Abstract. Primary immunodeficiencies are genetic diseases, mainly monogenic, that affect various components of the immune system and stages of the immune response. The category of combined immunodeficiencies with associated or syndromic features comprises over 70 clinical entities, characterized by heterogeneity of clinical presentation, mode of transmission, molecular, biological, mutational and immunological aspects. The mutational spectrum is wide, ranging from structural chromosomal abnormalities to gene mutations. The impact on the function of the proteins encoded by the genes involved is different; loss of function is most common, but situations with gain of function are also described. Most proteins have multiple functions and are components of several protein interaction networks. The pathophysiological mechanisms mainly involve: Missing enzymes, absent or non-functional proteins, abnormal DNA repair pathways, altered signal transduction, developmental arrest in immune differentiation, impairment of cell-to-cell and intracellular communications. Allelic heterogeneity, reduced penetrance and variable expressivity are genetic phenomena that cause diagnostic difficulties, especially since most are rare/very rare diseases, which is equivalent to delaying proper case management. Most primary immunodeficiencies are Mendelian diseases with X-linked or recessive inheritance, and molecular diagnosis allows the identification of family members at risk and the application of appropriate primary and secondary prevention measures in addition to the specific curative ones. In conclusion, recognizing heterogeneity and its sources is extremely important for current medical practice, but also for the theoretical value of improving biological and biomedical applications.

Contents
1. Introduction
2. Molecular heterogeneity and biological processes
3. Mutational heterogeneity
4. Clinical heterogeneity and mode of inheritance
5. Conclusions

1. Introduction

Primary immunodeficiencies (PIDs) are rare, mostly monogenic genetic diseases that affect various components of the immune system and are characterized by pathological, clinical, and immunological diversity (1,2). The prevalence of PIDs is approximately 4-10 per 10^5 live births (3).

The International Union of Immunological Societies (IUIS) recognizes the existence of 430 entities and 408 different genes involved. It classifies diseases into 9 categories: Immunodeficiencies affecting cellular and humoral immunity, combined immunodeficiencies with associated or syndromic features, predominantly antibody deficiencies, diseases of immune dysregulation, congenital defects of phagocyte number or function, defects in intrinsic and innate immunity, autoinflammatory disorders, complement deficiencies and phenocopies of inborn errors of immunity (4-6). Of these, combined immunodeficiencies with associated or syndromic features present high heterogeneity manifested at the molecular and mutational level. Biological processes involve different gene expression products, ‘extraimmune’ clinical symptoms characteristic of each syndrome, and many diseases present incomplete penetrance and variable expressivity. This combined immunodeficiencies are classified into 10 types: Immunodeficiency with congenital thrombocytopenia; DNA repair defects (immunodeficiencies affecting cellular and humoral immunity); thymic defects with additional congenital anomalies; immuno-osseous dysplasias; hyper
IgE syndromes (hyperimmunoglobulin E syndromes or HIES); dyskeratosis congenita (DKC), myelodysplasia, short telomeres; defects of vitamin B12 and folate metabolism; ectodermal anhidrotic dysplasia with immunodeficiency (EDA-ID); and calcium channel defects (4).

Correct and early diagnosis is necessary to prevent complications and reduce mortality (7). The molecular diagnosis can be followed by early protective and curative interventions, but also by avoiding the usual interventions which in the case of certain PIDs can bring additional complications (for example use of DNA-radiomimetic drugs in radiosensitive PIDs) (8). It is estimated that 70-90% of patients with PID remain undiagnosed worldwide (9). The onset can be at any age, but early onset correlates negatively with the severity of the manifestations (7). In many cases, patients are consulted for recurrent infections, but the etiological diagnosis is delayed. There are studies that show that in the US the etiological diagnosis is delayed by up to 12.4 years (10). During all this time, negative consequences can appear in personal, social and professional life, so that the quality of life is profoundly altered (3,7,11). In some cases, patients also have a predisposition to autoimmune diseases, autoinflammatory diseases or lymphoproliferative phenomena (4,8,12-16).

2. Molecular heterogeneity and biological processes

The vast majority of genes involved are genes that encode proteins. In combined immunodeficiencies with syndromic features a double heterogeneity is present: A specific protein presents multiple and diverse molecular functions while several different proteins have the same molecular function. Table I summarizes the molecular functions of these proteins and the biological processes in which they intervene according to UniProt Knowledgebase https://www.uniprot.org/ (4-6,17-23).

Some genes encode proteins that interact with chromatin, being involved in chromatin binding (DNMT3B, RNF168, POLE, STAT5B and KDM6A), chromatin DNA binding (STAT3, KDM6A) or chromatin regulation (CHD7, MYSM1, KMT2D and KDM6A) (23). Other proteins interact with histones and allow histone binding (RNF168, MYSM1, WRAP53 and KMT2D), histone deacetylase binding (DNMT3B), histone demethylase activity [H3-K27 specific] (KDM6A) or histone methyltransferase activity [H3-K4 specific] (KMT2D and KMT2A) (23).

Another category is represented by genes that encode proteins implied in interaction with DNA: DNA binding (ZNF341, ATM, BLM, NFE2L2, DNMT3B, PMS2, POLE, POLE2, LIG1, ERCC6L2, TBX1, CHD7, FOXN1, MYSM1, STAT3, RTEL1, TERT, SP110 and KMT2D), DNA replication origin binding (MC4), single-stranded DNA binding (BLM, MCM4, STN1 and CTC1), or damaged DNA binding (NBN, DCLRE1B/SNMI/APOLLO) (23).

Other genes encode transcription factors implied in RNA polymerase II activity (TBX1, FOXN1, STAT3, STAT5B, NFE2L2, KMT2A and BCL11B), DNA-binding transcription factor activity (ZBTB24, FOXN1, MYSM1, STAT3, SP110, STAT5B, KMT2D (MLL2), TBX1, ZNF341 and NFE2L2, BCL11B) or transcription factor binding (NBN, TBX1, STAT3 and NFKBIA) (23).

The functions of telomeres are regulated by other genes that influence telomeric DNA binding (TERT, TINF2, STN1 and CTC1), telomerase RNA binding (DKC1, NHP2, NOP10, TERT, PARN and WRAP53) or telomerase activity (TERT and DKC1) (23).

In addition, in immunodeficiencies different enzymatic activity may be disturbed: GTPase binding activity (WAS), small GTPase binding (WAS), phospholipase binding (WAS), protein kinase binding (WAS, ERCC6L2, STAT3, PARN and IKKβ), DNA-dependent protein kinase activity (ATM), helicase (BLM, HELLS, MCM4, ERCC6L2, CHD7, SMARCAL1, RTEL1, SKIV2L), hydrolase (HELLS, PMS2, MCM4, POLE, ERCC6L2, CHD7, SMARCAL1, MYSM1, RTEL1, TIP1, DCLRE1B/SNMI/APOLLO, PARN and MTHFD1), nuclease (PMS2, POLE, DCLRE1B/SNMI/APOLLO and PARN), metalloprotease (MYSM1), phosphoglucomutase activity (PGM3), DNA polymerase binding (RTEL1) (23).

Another process that is perturbed in immunodeficiencies is the ion binding and the main genes implied are TGFBR1, TGFBR2, ZNF341, DNMT3B, ZBTB24, RNF168, LIG1, MYSM1, EXT3L, RTEL1, TERT, PP1, PARN, TCN2, IKKβ (NEMO), SP110, HOIL1 (RBCK1), RNF31, KMT2D (MLL2), KMT2D (MLL2), KDM6A, BCL11B, STIM1, FAT4 and CCBE1 (23).

The connection with RNA could be abnormal in immunodeficiencies because of an abnormal ribonucleoprotein (DKC1, NHP2, NOP10 and WRAP53) or box H/ACA snoRNA binding (DKC1, NHP2 and NOP10) (23).

Other processes are disturbed because of gene mutations implied in protein binding (WAS, ATM, BLM, STAT3, TERT, IKKβ, WRAP53, IKKβ (NEMO), NFKBIA, ORAI1, STIM1, PNP, HOIL1, KDM6A, KMT2A and IL6ST), Rac GTPase (WAS), SH3 domain binding (WAS, WIP1F1), profilin binding (WIPF1), ATP binding [IKKβ, TGFBR1, TGFBR2, ATM, BLM (RECQL3), HELLS, PMS2, MCM4, LIG1, ERCC6L2, SKIV2L, CHD7, SMARCAL1, RTEL1 and MTHFD1], chaperone binding (TERT and WRAP53), actin (actin filament) binding (WAS, WIPF1 and ARPC1B) (23).

Other genes, such as RMRP, RN4ATAC or TERC, encode noncoding RNA (part of RNAse MRP), small nuclear RNA and telomerase RNA component (Table 1). Mutations in these genes cause alterations in processing of ribosomal RNA. RMRP gene mutations disturb mitochondrial DNA replication and cell cycle control. RN4ATAC gene mutations produce defects of spliceosome complex. Mutations in the TERC gene are implied in dysfunctions of telomere length (19,22,24-26).

Genes including HELLS, TBX1, SEMA3E, FOXN1, CCB1 and KDM6A encode proteins involved in development of one or more organs. The most illustrative example is the TBX1 gene that is involved in multiple biological processes: Angiogenesis, morphogenesis of cranial region, heart, parathyroid gland, pharyngeal system, soft palate, thymus or thyroid gland (23). Thus, deficiency in the TBX1 gene, characteristic to velo-cardio-facial syndrome, explains the association of abnormalities in multiple systems. The TBX1 gene allows thymus epithelium morphogenesis, lymphoid lineage cell migration into the thymus, regulation of positive thymic T cell selection and T cell homeostasis. Other developmental proteins are also involved in the genesis of various organs/components of the immune system. For example, the FOXN1 gene allows
Table I. Heterogeneity of molecular and biological processes in combined immunodeficiencies with associated or syndromic features (4-6,17,19-23).

Disease	Gene (MOI)	Molecular function	Biological process
Immunodeficiency with congenital thrombocytopenia	WAS (XL)	GTPase regulator and binding activity; protein binding (actin, protein kinase); phospholipase binding	Fe-gamma receptor signaling pathway involved in phagocytosis; immune response; regulation of T cell antigen processing and presentation; T cell activation; T cell receptor signaling pathway involved
Wiskott-Aldrich syndrome (WAS LOF)	WAS	Actin binding; profilin binding; SH3 domain binding	Fe-gamma receptor signaling pathway involved in phagocytosis; regulation of cell shape, immune response against microorganisms
WIP deficiency	WIPF1 (AR)	Actin binding; profilin binding; SH3 domain binding	Fe-gamma receptor signaling pathway involved in phagocytosis; regulation of cell shape, immune response against microorganisms
ARPC1B deficiency	ARPC1B	Actin filament and binding; structural constituent of cytoskeleton	Fe-gamma receptor signaling pathway involved in phagocytosis
DNA repair defects other than those listed in the 1st category	ATM (AR)	ATP, protein and DNA binding; DNA-dependent protein kinase activity	Cell cycle; DNA damage
Ataxia-telangiectasia	ATM (AR)	ATP, protein and DNA binding; DNA-dependent protein kinase activity	Cell cycle; DNA damage
Nijmegen breakage syndrome	NBN (AR)	Damaged DNA and protein binding;	Cell cycle; DNA damage; DNA repair; host-virus interaction;
Bloom syndrome	BLM (RECQL3) (AR)	DNA binding; DNA and ATP binding; DNA-methyltransferase activity; histone deacetylase binding	DNA damage; DNA repair; DNA replication; DNA methylation; regulation of histone methylation and transcription
ICF1	DNMT3B (AR)	DNA binding; DNA and ATP binding; DNA-methyltransferase activity; histone deacetylase binding	DNA damage; DNA repair; DNA replication; DNA methylation; regulation of histone methylation and transcription
ICF2	ZBTB24 (AR)	DNA-binding transcription factor activity	Transcription; transcription regulation
ICF3	CDC47 (AR)	MYC-mediated cell transformation and apoptosis	Apoptosis; transcription
ICF4	HELLS (AR)	Developmental protein; helicase activity; hydrolase; ATP binding	Cell cycle; transcription; multicellular organism development
PMS2 deficiency	PMS2 (AR)	DNA binding; ATPase activity	DNA damage; DNA repair
RNF168 deficiency (Riddle syndrome)	RNF168 (AR)	DNA binding; DNA and ATP binding	DNA damage; DNA repair; ubiquitin conjugation pathway
MCM4 deficiency	MCM4 (AR)	DNA binding; DNA helicase activity	Cell cycle; DNA replication
POLE1 (polymerase ε subunit 1) deficiency (FILS syndrome)	POLE (AR)	DNA and metal binding; DNA-directed DNA polymerase activity	DNA damage; DNA repair; DNA replication
POLE2 (polymerase ε subunit 2) deficiency	POLE2 (AR)	DNA binding; DNA-directed DNA polymerase activity	DNA replication
Ligase I deficiency	LIG1 (AR)	DNA ligase activity; ATP, DNA and metal binding	Cell cycle; DNA damage, recombination, repair and replication
Table I. Continued.

Disease	Gene (MOI)	Molecular function	Biological process		
DNA repair defects other than those listed in the 1st category					
NSMCE3 deficiency	NSMCE3 (AR)	Tumor antigen	DNA damage, recombination and repair; growth regulation		
ERCC6L2 (Hebo deficiency)	ERCC6L2 (AR)	DNA, ATP and protein kinase binding; helicase activity	DNA damage; DNA repair		
GINS1 deficiency	GINS1 (AR)	DNA-binding (single-stranded DNA)	DNA replication; inner cell mass cell proliferation		
Thymic defects with additional congenital anomalies					
DiGeorge/velocardiofacial syndrome (22q11.2DS)	Deletion in chromosome 22 (AD)				
TBX1 deficiency	TBX1 (AD)	Developmental protein; DNA and transcription activator binding; RNA polymerase II	Transcription; angiogenesis; thymus development; morphogenesis		
CHARGE syndrome	CHD7 (AD)	ATP and chromatin binding; DNA helicase activity; rRNA processing	RNA processing; transcription		
CHARGE syndrome	SEMA3E (AD)	Developmental protein; DNA-binding transcription activator	Angiogenesis; differentiation; neurogenesis		
Winged helix nude FOXN1 deficiency	FOXN1 (AR)	Developmental protein; DNA-binding transcription activator	Differentiation; transcription; thymus epithelium morphogenesis; lymphoid lineage		
Thymic defects with additional congenital anomalies			cell migration into thymus; regulation of thymic T cell selection; T cell homeostasis; T cell lineage commitment		
Chromosome 10p13-p14 deletion	Del10p13-p14 (AD)				
Chromosome 11q deletion	Del11q23 (AD)				
Immuno-osseous dysplasias					
Cartilage hair hypoplasia (CHH)	RMRP (AR)	Noncoding RNA	Processing of ribosomal RNA; cell cycle control		
Schimke immuno-osseous dysplasia	SMARCAL1 (AR)	Helicase activity; ATP binding	Cellular response to DNA damage stimulus		
MYSM1 deficiency	MYSM1 (AR)	DNA histone and metal ion binding	Transcription		
MOPD1 deficiency	RNU4ATAC (AR)	Small nuclear RNA (snRNA)	Part of spliceosome complex		
EXT13 deficiency	EXT13 (AR)	Metal ion binding; transferase activity	Proteoglycan biosynthetic process; regulation of cell growth		
Hyper-IgE syndromes (HIES)					
STAT3 deficiency (Job syndrome)	STAT3 (AD)	DNA, enzyme and chromatin binding; RNA polymerase activity	Host-virus interaction; transcription		
IL6 receptor deficiency	IL6R (AR)	Cytokine and enzyme binding, cytokine receptor activity	Regulation of the immune response, acute-phase reactions and hematopoiesis		
Disease	Gene (MOI)	Molecular function	Biological process		
--	-----------------------------------	--	--		
Hyper-IgE syndromes (HIES)					
IL6 signal transducer (IL6ST) deficiency	*IL6ST* (AR)	Cytokine and growth factor binding, cytokine receptor activity, binding	Host-virus interaction		
ZNF341 deficiency AR-HIES	*ZNF341* (AR)	DNA and metal ion binding; DNA-binding transcription activator activity	Transcription, transcription regulation		
ERBIN deficiency	*ERBIN* (AD)	Signaling receptor binding; structural constituent of cytoskeleton	Cell adhesion; cellular response to tumor necrosis factor; epidermal growth factor receptor signaling pathway		
Loeys-Dietz syndrome (TGFBR deficiency)	*TGFBR1* (AD)	Activin, ATP and metal ion binding; protein kinase activity	Apoptosis, differentiation, growth regulation		
Loeys-Dietz syndrome (TGFBR deficiency)	*TGFBR2* (AD)	Activin-activated receptor activity; activin, ATP and metal ion binding	Apoptosis, differentiation, growth regulation		
Comel-Netherton syndrome	*SPINK5* (AR)	Serine-type endopeptidase inhibitor activity	Cell differentiation; central nervous system development; regulation of T cell differentiation	Carbohydrate metabolism; hemopoiesis	Costimulatory signal for T-cell receptor-mediated T-cell activation; NF-kB activation in a T-cell receptor/CD3-dependent manner
PGM3 deficiency	*PGM3* (AR)	Magnesium binding; enzymatic activity			
CARD11 deficiency (heterozygous)	*CARD11* (AR AD LOF dominant negative)	CARD domain binding, guanylate kinase activity			
Dyskeratosis congenita (DKC), myelodysplasia, short telomeres					
XL-DKC	*DKC1* (XL)	RNA-binding; telomerase RNA binding	Ribosome biogenesis; rRNA processing		
AR-DKC with NHP2 deficiency	*NHP2* (AR)	RNA-binding; telomerase RNA binding	Ribosome biogenesis; rRNA processing		
AR-DKC with NHP3 or NOP10 deficiency	*NOP10* (AR)	RNA-binding; telomerase RNA binding	Ribosome biogenesis; rRNA processing		
AD/AR-DKC with RTEL1 deficiency	*RTEL1* (AD or AR)	DNA, ATP, DNA polymerase and metal ion binding; DNA helicase activity	DNA damage; DNA repair		
AD-DKC with TERC deficiency	*TERC* (AD)	Telomerase RNA component	DNA replication		
AD/AR-DKC with TERT deficiency	*TERT* (AD or AR)	DNA, chaperone, protein and metal ion -binding	Transcription and replication		
AD-DKC with TINF2 deficiency	*TINF2* (AD)	Telomeric DNA binding	Transcription of telomeres		
AD/AR-DKC with TPP1 deficiency	*TPP1* (AD or AR)	Peptidase activity; metal and ion binding	Development and cell differentiation; lipid and protein metabolic process		
AR-DKC with DCLRE1B deficiency	*DCLRE1B/SMN1/ APOLLO* (AR)	5’-3’ exonuclelease activity	DNA damage; DNA repair		
AR-DKC with PARN deficiency	*PARN* (AR (AD?))	3’-5’-Exoribonuclease activity; cation binding; metalion binding	Nonsense-mediated mRNA decay		
AR-DKC with WRAP53 deficiency	*WRAP53* (AR)	RNA chaperone histone protein binding	DNA damage; DNA repair; Host-virus interaction		
Coats plus syndrome	*STN1* (AR)	DNA binding	DNA repair; DNA replication;		
Coats plus syndrome	*CTC1* (AR)	DNA binding	Cell cycle control; multicellular organism growth		
SAMD9	*SAMD9* AD	Inflammatory response to tissue injury	Endosomal vesicle fusion		
Disease	Gene (MOI)	Molecular function	Biological process		
---------	------------	--------------------	--------------------		
Defects of vitamin B12 and folate metabolism					
Transcobalamin 2 deficiency	TCN2 (AR)	Cobalamin binding; metal ion binding	Cobalt transport; ion transport; Transport of different cellular components		
SLC46A1/PCFT deficiency	SLC46A1 (AR)	Folic acid binding; folic acid, heme, methotrexate and transporter activity			
MTHFD1 deficiency	MTHFD1 (AR)	ATP binding; enzymatic activity	Protein biosynthesis		
Anhidrotic ectodermodyplasia with immunodeficiency (EDA-ID)					
EDA-ID with NEMO/IKBKG deficiency	IKBKG (NEMO) (XL)	Protein and metal ion binding	DNA damage; host-virus interaction; transcription		
EDA-ID with IKBA GOF mutation	NFKBIA (IKBA) (XL)	Protein and enzyme binding	Host-virus interaction		
EDA-ID with IKBKB GOF mutation	IKBKB (AD GOF)	ATP and protein kinase binding, protein kinase activity	Host-virus interaction		
Calcium channel defects					
ORAI-1 deficiency	ORAI1 (AR)	Calmodulin-binding; store-operated calcium channel activity	Adaptive immunity; calcium transport;		
STIM1 deficiency	STIM1 (AR)	Calcium channel regulator activity; calcium ion binding	Calcium transport		
Other defects					
Purine nucleoside phosphorylase deficiency	PNP (AR)	Drug protein nucleoside and phosphate binding	Immune response; interleukin-2 secretion; neutrophil degranulation; nucleotide biosynthetic process; regulation of T cell proliferation; response to drug; urate biosynthetic process		
Immunodeficiency with multiple intestinal atresias	TTC7A (AR)	Component of a complex required to localize phosphatidylinositol 4-kinase (PI4K) to the plasma membrane	Cellular iron ion homeostasis; hemopoiesis; phosphatidylinositol phosphorylation		
Tricho-Hepato-Enteric Syndrome (THES)	TTC37 (AR)	Exosome-mediated RNA decay	Exonucleolytic catabolism of deadenylated mRNA		
Tricho-Hepato-Enteric Syndrome (THES)	SKIV2L (AR)	ATP and RNA binding; RNA helicase activity	RNA catabolic process		
Hepatic veno-occlusive disease with immunodeficiency	SPI10 (AR)	DNA, protein and metal ion binding; RNA polymerase II-specific	Host-virus interaction; transcription		
BCL11B deficiency	BCL11B (AD)	DNA, metal binding; RNA polymerase	Transcription		
Vici syndrome due to EPG5 deficiency	EPG5 (AR)	Clearance of autophagosomal cargo innate and adaptive immune response	Autophagy; cellular response to dsDNA; nucleotide transport; toll-like receptor 9 signaling pathway		
Disease	Gene (MOI)	Molecular function	Biological process		
--------------------------	---	---	--		
HOIL1 deficiency	HOIL1 (RBCK1) (AR)	Protein, enzyme and metal ion binding	Other defects		
HOIP deficiency	RNF31	Calcium ion colligating and protein binding	Host-virus interaction, transcription, Apoptosis; transcription		
Hennekam-lymphangiectasia-lymphedema syndrome	CCBE1 (AR)	Calcium ion and protease binding	Angiogenesis and lymphangiogenesis		
HOIP deficiency	RNF31	Calcium ion and protease binding	Angiogenesis and lymphangiogenesis		
Hennekam-lymphangiectasia-lymphedema syndrome	CCBE1 (AR)	Calcium ion and protease binding	Angiogenesis and lymphangiogenesis		
De novo mutations in nuclear factor, erythroid 2-like (NFE2L2) deficiency	NFE2L2 (AR)	DNA and protein binding; RNA polymerase II specific transcription	Host-virus interaction, transcription, Apoptosis; transcription		
De novo mutations in nuclear factor, erythroid 2-like (NFE2L2) deficiency	NFE2L2 (AR)	DNA and protein binding; RNA polymerase II specific transcription	Host-virus interaction, transcription, Apoptosis; transcription		
Stat5b deficiency	STAT5B	Chomatin, protein and hormone binding; RNA polymerase II Transcription	Transcription		
Stat5b deficiency	STAT5B	Chomatin, protein and hormone binding; RNA polymerase II Transcription	Transcription		
KMT2D deficiency	KMT2D (MLL2)	DNA histone and metal ion binding; histone methyltransferase activity	Transcription		
KMT2A deficiency	KMT2A	DNA histone and metal ion binding; histone methyltransferase activity	Transcription		
Wiedemann-Steiner syndrome	KDM6A (XL)	DNA histone and metal ion binding; histone methyltransferase activity	Transcription		
MOL, mode of inheritance: X-linked inheritance	AR, autosomal recessive inheritance; AD, autosomal dominant inheritance; AOM, autosomal Mendelian inheritance	Transcription, transcription, Host-virus interaction, transcription, Apoptosis	Host-virus interaction, transcription, Apoptosis; transcription		

MOI, mode of inheritance; XL, X-linked inheritance; AR, autosomal recessive inheritance; AD, autosomal dominant inheritance; AOM, autosomal Mendelian inheritance.
thymus epithelium morphogenesis, lymphoid lineage cell migration into the thymus, regulation of positive thymic T cell selection, T cell homeostasis and T cell lineage commitment (Table I) (19,22,24-26).

The pathogenic complexity of combined immunodeficiencies associated with syndromic features could be explained by the multiple interactions between the mentioned genes and important cell processes, such as the cell cycle, DNA damage, DNA repair process, DNA replication, apoptosis, transcription, cell division, multicellular organism development, ribosome biogenesis and processing, immune response, autophagy and cell adhesion. The pathophysiological mechanisms mainly involved are: Missing enzymes, absent or non-functional proteins, abnormal DNA repair, altered signal transduction, developmental arrest in immune differentiation, impairment of cell-to-cell and intracellular communications (Table I) (19,22,24-26).

3. Mutational heterogeneity

The majority of combined immunodeficiencies with syndromic features are monogenic diseases caused by mutations in a pair of nuclear genes and only few diseases are caused by chromosomal microdeletions.

Most mutations are loss-of-function (LOF) mutations with a recessive pattern of transmission. Other mutations produce a gain of function (GOF). GOF mutations are almost always dominant (27). In some situations, for the same gene, distinct missense mutations may cause either LOF or GOF. An example of this is the STAT3 gene (28). STAT3 LOF mutation causes Job syndrome while STAT3 GOF mutation causes a form of immunodeficiency characterized by an immune deregulation. Thus, in such situations it is absolutely necessary to perform genetic testing to detect the mutation and its effect on the protein (29). All of these can influence also the treatment strategy. In STAT3 GOF the efficient treatment includes monoclonal antibody (mAb) against IL-6R and HSCRT, while in STAT3 LOF the most efficient treatment is the long term use of antibiotics and humanized recombinant monoclonal against IgE (30-32).

4. Clinical heterogeneity and mode of inheritance

Clinical heterogeneity is even greater as in the case of combined immunodeficiencies with syndromic features when it presents an interindividual and interfamilial variable expressivity, in correlation with the type of mutation. In such cases, identification of a specific association of abnormalities allows an early diagnosis, sometimes even before the onset of immune manifestations (33). In the majority of cases, immunodeficiency clinical signs are not specific such as infections, skin inflammation, hematologic autoimmune/autoinflammatory disorders, and different types of malignancy. Thus discovery of a particular non-immune feature becomes very helpful for a precocious diagnosis (33-35).

Usually, the onset of disease occurs in childhood, but retarded manifestations could be found in the case of a hypomorphic mutations or a random X-chromosome inactivation in women heterozygote for a X-linked recessive mutation (33,36,37).

Infections observed in various primary immunodeficiency diseases can be bacterial, viral or fungal. Each infection has certain particularities. For example non-tuberculosis mycobacteria infections are found in IKBKG, IKKB, GOF NFKB1A/IKB deficiency; pyogenic pneumonia with pneumatocele formation and empyema/abscess and visceral abscess with S. aureus in childhood are specific for STAT3 deficiency; recurrent pyogenic sepsis is found in NEMO deficiency (33).

Viral infections with EBV (Epstein-Barr virus) and HHV8 (human herpes virus 8) - Kaposi sarcoma in young subjects are associated with STIM1 deficiency, AT (ATM), WAS (WASP), CHH (RMRP). Infection with HPV (human papilloma virus) with severe/recalcitrant warts, flat or verruca (often on trunk, face, neck, extremities, genital regions) are found in Netherton syndrome (SPINK5), WAS (WASP), NEMO deficiency (IKBKG), AT (ATM). Widespread molluscum contagiosum is associated with WAS, NEMO deficiency (IKBKG). Pneumonia with Pneumocystis jirovecii is present in WAS (WASP), NEMO deficiency (IKBKG), VODI (SPI10), CARD11. Chronic mucocutaneous infection with Candida spp. is found in IKBG, IKB, IKBB, NEMO deficiency, VODI (SPI10) and infection with Aspergillus spp. is specific for STAT3 deficiency (33).

In combined immunodeficiencies, various inflammatory skin conditions are found: Generalized exfoliative erythroderma of infancy in Comèl-Netherton syndrome (SPINK5); diffuse early-onset eczema and erythroderma and muscle amylopectinosis in HOIL1 deficiency; severe early-onset atopic eczema in WAS, Comèl-Netherton syndrome, PGM3, STAT5b deficiencies, STAT3 deficiency; congenital livedo in FILS syndrome (POLE) (33).

Autoimmune/autoinflammatory disorders associated with primary immunodeficiencies include organ-specific autoimmunity (in 22q deletion syndrome, WASP, ATM, STAT5B mutations). Global hematologic autoimmunity changes have been observed in 22q deletion syndrome, PNP, STIM1, ORAI1, WASP, ATM and STAT5B mutations while hematologic autoimmunity with non-virally induced lymphoproliferation have been associated with STIM1 deficiency, 22q11 deletion, 10p deletion. Other changes have been associated with sterile arthritis (WASP or STAT5B mutations); early-onset inflammatory bowel disease (WASP and IKBKG mutations); trichohepatoenteric syndrome -skiv2l and Ttcc7 mutations, Veno-occlusive disease with immunodeficiency (VODI) SPI10 mutations; early-onset diarrhea and malabsorption from ICF-Immunodeficiency-centromeric instability-facial anomalies syndrome determined by mutations in DNMTB3, ZBTB24, CDCA7 and HELLS genes (33,38).

An increased risk of certain malignancies has been found in certain immunodeficiency syndromes. Various DNA repair deficiencies (ATM, NBN, LIG1) are associated with mainly lymphomas. MCM4 deficiency predisposes to EBV-associated lymphomas; Wiskott-Aldrich syndrome with myelodysplasia, leukemias and lymphomas. HHV8 is associated with primary Kaposi sarcoma (TNFRSF4, IFNGRI, WAS and STIM1); CHH (RMRP) with an increased risk of basal cell carcinoma and of EBV-associated lymphoproliferation (25,33,39-45).

In combined immunodeficiencies with syndromic features all type of monogenic transmission have been identified. Pedigree analysis is an easy-to-use tool available to any
practitioner to establish this fact. However, some genetic phenomena, such as low frequency of the disease (some of the immunodeficiencies are extremely rare diseases), incomplete penetrance of the disease, variable expressivity and de novo mutations, can complicate the process of identification of the type of transmission. A special situation is the allelic heterogeneity encountered for example in the case of Kabuki syndrome (KS): KMT2D-related KS is inherited in an autosomal dominant manner while KDM6A-related KS is inherited in an X-linked manner (45). There is also the variant in which mutations in a gene determine a condition that can be transmitted differently; STAT5b deficiency can be transmitted in an autosomal recessive or in an autosomal dominant model (33).

5. Conclusion

In conclusion, recognizing heterogeneity and its sources is extremely important for current medical practice, but also for the theoretical value of improving biological and biomedical applications.

Acknowledgements

Not applicable.

Funding

Not applicable.

Availability of data and materials

All data and materials supporting the results of the present study are available in the published article and supported by relevant references.

Authors’ contributions

All three authors contributed equally to preparing the review and the data search and collection. LC carried out the writing of the original draft preparation and CG carried out the writing, review and editing of the manuscript. EVG conducted the validation and supervision of the literature review and writing. All authors read and approved the final manuscript.

Ethics approval and consent to participate

Not applicable.

Patient consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

References

1. Abraham RS and Aubert G: Flow cytometry, a versatile tool for diagnosis and monitoring of primary immunodeficiencies. Clin Vaccine Immunol 23: 254-271, 2016.

2. Bonilla FA, Khan DA, Ballas ZK, Chinen J, Frank MM, Hsu JT, Keller M, Kobrynski LJ, Komarow HD, Mazer B, et al.: Practice parameter for the diagnosis and management of primary immunodeficiency. J Allergy Clin Immunol 136: 1186-205.e1-78, 2015.

3. Fischer A, Provot J, Jais JP, Alcaïs A and Mahlaoui N; members of the CEREDIH French PID study group: Autoimmune and inflammatory manifestations occur frequently in patients with primary immunodeficiencies. J Allergy Clin Immunol 140: 1388-1393.e8, 2017.

4. Picard C, Bobby Gaspar H, Al-Herz W, Bousfiha A, Casanova JL, Chatila T, Crow YJ, Cunningham-Rundles C, Etzioni A, Franco JL, et al.: International union of immunological societies: 2017 primary immunodeficiency diseases committee report on inborn errors of immunity. J Clin Immunol 38: 96-128, 2018.

5. Bousfiha A, Jeddane L, Picard C, Al-Herz W, Aïal F, Chatila T, Cunningham-Rundles C, Etzioni A, Franco JL, Holland SM, et al.: Human inborn errors of immunity: 2019 update of the IUIS phenotypical classification. J Clin Immunol 40: 66-81, 2020.

6. Vanghe SG, Al-Herz W, Bousfiha A, Chatila T, Cunningham-Rundles C, Etzioni A, Franco JL, Holland SM, Klein C, Morio T, et al.: Human inborn errors of immunity: 2019 update on the classification from the international union of immunological societies expert committee. J Clin Immunol 40: 24-54, 2020.

7. Condino-Neto A and Espinosa-Rosas FJ: Changing the lives of people with primary immunodeficiencies (PI) with early testing and diagnosis. Front Immunol 9: 1439, 2018.

8. Stray-Pedersen A, Sorte HS, Samaraokeon P, Gambin T, Chinn IK, Coban Akdemir ZH, Erichsen HC, Forbes LR, Gu S, Yuan B, et al.: Primary immunodeficiency diseases: Genomic approaches delineate heterogeneous Mendelian disorders. J Allergy Clin Immunol 139: 232-245, 2017.

9. Primary Immunodeficiency Diseases (PID) Driving Diagnosis for Optimal Care in Europe. European Reference Paper http://worldpiweek.org/sites/default/files/basic_page_documents/PID_European_Reference_Paper.pdf (accessed on May 1, 2020).

10. Immune Deficiency Foundation: Primary Immune Deficiency Diseases in America: 2007. The Third National Survey of Patients. Prepared by: Abt SRBI, Inc. May 1, 2009.https://primaryimmune.org/wp-content/uploads/2011/04/Primary-Immune-Deficiencies-in-America-2007The-Third-National-Survey-of-Patients.pdf. (accessed on 26 April 2020).

11. Chapel H, Provot J, Gaspar HB, Españoil T, Bonilla FA, Solis L and Drabwell J; Editorial Board for Working Party on Principals of Care at IPOPI: Primary immune deficiencies-principles of care. Front Immunol 5: 627, 2014.

12. Suarez F, Mahlaoui N, Canioni D, Andriamanga C, Dubois d’Enghien C, Brousse N, Jais JP, Fischer A, Hermine O and Stoppa-Lyonnet D: Incidence, presentation, and prognosis of malignancies in ataxia-telangiectasia: A report from the French national registry of primary immune deficiencies. J Clin Immunol 33: 202-208, 2013.

13. Shapiro RS: Malignancies in the setting of primary immunodeficiency: Implications for hematologists/oncologists. Am J Hematol 86: 48-55, 2011.

14. Grimbacher B, Warnatz K, Yong PFK, Korgasew AS and Peter HH: The crossroads of autoimmunity and immunodeficiency: Lessons from polygenic traits and monogenic defects. J Allergy Clin Immunol 137: 3-17, 2016.

15. de Jesus AA, Canna SW, Liu Y and Goldbach-Mansky R: Molecular mechanisms in genetically defined autoinflammatory diseases: Disorders of amplified danger signaling. Annu Rev Immunol 33: 823-874, 2015.

16. Junkman-Berk BM, van den Berg JM, Ten Berge IJ, Bredius RG, Jonkman-Berk BM, van den Berg JM, Ten Berge IJ, Bredius RG, de Jesus AA, Canna SW, Liu Y and Goldbach-Mansky R: Molecular mechanisms in genetically defined autoinflammatory diseases: Disorders of amplified danger signaling. Annu Rev Immunol 33: 823-874, 2015.

17. Shapiro RS: Malignancies in the setting of primary immunodeficiency: Implications for hematologists/oncologists. Am J Hematol 86: 48-55, 2011.

18. Grimbacher B, Warnatz K, Yong PFK, Korgasew AS and Peter HH: The crossroads of autoimmunity and immunodeficiency: Lessons from polygenic traits and monogenic defects. J Allergy Clin Immunol 137: 3-17, 2016.

19. de Jesus AA, Canna SW, Liu Y and Goldbach-Mansky R: Molecular mechanisms in genetically defined autoinflammatory diseases: Disorders of amplified danger signaling. Annu Rev Immunol 33: 823-874, 2015.

20. Junkman-Berk BM, van den Berg JM, Ten Berge IJ, Bredius RG, Driessen GJ, Dalm VA, van Dissel JT, van Deuren M, Jonkman-Berk BM, van den Berg JM, Ten Berge IJ, Bredius RG, de Jesus AA, Canna SW, Liu Y and Goldbach-Mansky R: Molecular mechanisms in genetically defined autoinflammatory diseases: Disorders of amplified danger signaling. Annu Rev Immunol 33: 823-874, 2015.

21. Shapiro RS: Malignancies in the setting of primary immunodeficiency: Implications for hematologists/oncologists. Am J Hematol 86: 48-55, 2011.

22. Grimbacher B, Warnatz K, Yong PFK, Korgasew AS and Peter HH: The crossroads of autoimmunity and immunodeficiency: Lessons from polygenic traits and monogenic defects. J Allergy Clin Immunol 137: 3-17, 2016.
19. Mäkitie O and Vakkilainen S: Cartilage-hair hypoplasia-anauxetic dysplasia spectrum disorders. In: GeneReviews® [Internet]. Adam MP, Ardinger HH, Pagon RA, et al (eds). University of Washington, Seattle, WA, 1993-2020. 2012 Mar 15 [Updated 2020 Aug 6]. https://www.ncbi.nlm.nih.gov/books/NBK84550/ (accessed on 17 April 2020).

20. Nagy R, Wang H, Albrecht B, Wieczorek D, Gillesen-Kaesbach G, Haan E, Meinecke P, de la Chapelle A and Westman JA: Microcephalic osteodysplastic primordial dwarfism type I with biallelic mutations in the RNU4ATAC gene. Clin Genet 82: 140-146, 2012.

21. HGNC Database: HUGO Gene Nomenclature Committee (HGNC), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom. Available online: https://www.genenames.org/accessed on April 2020.

22. Savage SA: Dyskeratosis Congenita. In: GeneReviews® [Internet]. Adam MP, Ardinger HH, Pagon RA, et al (eds). University of Washington, Seattle, WA, 1993-2020. 2009 Nov 12 [Updated 2019 Nov 21]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK22301/ Accessed April 17, 2020.

23. The UniProt Consortium: UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res 47: D506-D515, 2019.

24. Al-Herz W, Boussiha A, Casanova JL, Chattila T, Conley ME, Cunningham-Rundles C, Eiztioni A, Franco JL, Gaspar HB, Holland SM, et al: Primary immunodeficiency diseases: An update on gain-of-function mutations in primary immunodeficiency diseases. Curr Opin Hematol 19: 635-256, 2012.

25. Jung S, Lee S, Kim S and Nam H: Identification of genomic features in the classification of loss- and gain-of-function mutations. BMC Med Inform Decis Mak 15 (Suppl 1): S6, 2015.

26. Notarangelo LD and Fleisher TA: Targeted strategies directed at the molecular defect: Toward precision medicine for select primary immunodeficiency disorders. J Allergy Clin Immunol 139: 715-723, 2017.

27. Weinreich MA, Vogel TP, Rao VK and Milner JD: Up, down, and all around: Diagnosis and treatment of novel STAT3- phosphorylation on Hyper-IgE syndrome. Case Reports Infect Dis 2019: 575-583, 2019.

28. Collin M, Bigley V, Hanifia M and Hambleton S: Human dendritic cell deficiency: The missing ID? Nat Rev Immunol 11: 575-583, 2011.

29. Nelson KS and Lewis DB: Adult-onset presentations of genetic immunodeficiencies: Genes can throw slow curves. Curr Opin Infect Dis 23: 359-364, 2010.

30. Gug C, Hujanu D, Vaida M, Doroş G, Popa C, Stroescu, Furău G, Furău C, Grigoriţă L and Mozos I: De novo unbalanced translocation t(15;22)(q26.2;q12) with velo-cardio-facial syndrome: A case report and review of the literature. Exp Ther Med 16: 3589-3595, 2018.

31. de Miranda NF, Björkman A and Pan-Hammerström Q: DNA repair: The link between primary immunodeficiency and cancer. Ann N Y Acad Sci 1246: 50-63, 2011.

32. Leechawengwongs W and Shearer WT: Lymphoma complicating primary immunodeficiency syndromes. Curr Opin Hematol 19: 305-312, 2012.

33. Casey JP, Nobbs M, McGregor P, Lynch S and Ennis S: Recessive mutations in MCM4/PRKDC cause a novel syndrome involving a primary immunodeficiency and a disorder of DNA repair. J Med Genet 49: 242-245, 2012.

34. Karalis A, Tischkowitz M and Millington GW: Dermatological manifestations of inherited cancer syndromes in children. Br J Dermatol 164: 245-256, 2011.

35. Byun M, Ma CS, Akçaş A, Pedergnana V, Palendira U, Myoung J, Avery DT, Liu Y, Abhyankar A, Lorenzo L, et al: Inherited human OX40 deficiency underlying classic Kaposi sarcoma of childhood. J Exp Med 210: 1743-1759, 2013.

36. Leroy S, Moshous D, Cassar O, Reguerre Y, Byun M, Pedergnana V, Canioni D, Gessain A, Oksenhendler E, Fieschi C, et al: Multicentric Castleman disease in an HHV8-infected child born to consanguineous parents with systematic review. Pediatrics 129: e199-e203, 2012.

37. Adam MP, Hudgins L and Hannibal M: Kabuki syndrome. In: GeneReviews®. [Internet]. Adam MP, Hudgins L and Hannibal M: Kabuki syndrome. [Updated 2019 Nov 21]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK84550/ Accessed April 26, 2020.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) License.