Editorial

Green and Friendly Communication for Sensor Networks

Changqiao Xu, 1 Gabriel-Miro Muntean, 2 Liang Zhou, 3 and Xiaohong Jiang 4

1 School of Network Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China
2 School of Electronic Engineering, The RINCE Institute, Dublin City University, Research and Engineering Building, Glasnevin, Dublin 9, Ireland
3 School of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210000, China
4 School of Systems Information Science, Future University Hakodate, Hakodate 041-8655, Japan

Correspondence should be addressed to Changqiao Xu; cxq@bupt.edu.cn

Received 29 April 2015; Accepted 29 April 2015

Copyright © 2015 Changqiao Xu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Recent advances of various sensor technologies, such as the Internet of Things, sensor cloud, underwater sensor, and healthcare sensor, have moved us toward the era of worldwide sensor networks. People can sense and collect necessary sensory data anytime and anywhere. However, efficient resource utilization in terms of energy consumption, spectrum allocation, routing selection, and so forth is still a big challenge in the sensor networks research area. Designing “green” sensor networks, the next generation of wireless sensor networks, has become a matter of paramount importance. On the other hand, the lack of cooperation among sensors not only affects the quality of communication, but also results in unbalance of resource utilization, which further reduces the robustness of the sensor system. “Friendly” cooperation among sensors, such as information sharing, spectrum/energy awareness, routing adaptation, and data caching, enables providing potential benefits for optimizing and balancing the resource usage, hence improving the lifetime of the entire sensor network. Therefore, green and friendly communication becomes the utmost important and promising avenue for the future sensor network research.

17 paper submissions were received. After thorough and meticulous reviews, followed by extensive discussions among the guest editors.

Among the accepted papers, there are two articles addressing the integration of data communications coming from wireless sensor networks with the purpose of achieving energy-saving. In “ECMTADR: Energy Conservative Multitier Architecture with Data Reduction for Cluster-Based Wireless Sensor Networks,” T. Cevik proposes a sophisticated architecture comprising data reduction, load balance, and topology control for data communication. N. Ullah et al., in “Modeling MAC Protocol Based on Framed Slotted Aloha for Low Energy Critical Infrastructure Sensor Networks,” analyze a MAC protocol for low energy critical infrastructure monitoring (LECIM) networks and propose a framed slotted aloha based MAC for LECIM using linear increasing contention window size to reduce the packet drop probability.

Cooperation is one of the most effective methods to improve the performance and robustness of routing algorithms, particularly when working under wireless sensor networks. The paper by Y. Cheng and L. Yang entitled “A Novel Energy-Efficient Reception Method Based on Random Network Coding in Cooperative Wireless Sensor Networks” presents an opportunistic reception algorithm for energy-efficient transmission in cooperative WSNs. In “Shared MPR Sets for Moderately Dense Wireless Multihop Networks,” T. Kitasuka and S. Tagashira propose a method for achieving more efficient multipoint relay selection in moderately dense wireless multihop networks than the conventional multipoint relay selection. In “Intelligent Transmission Power Allocation for Distributed Beamforming in Wireless Sensor Networks,” S. Chung and I. Joe propose an Intelligent Transmission Power Allocation algorithm to guarantee the required channel capacity considering dynamic channel statement, number
of cooperating source nodes, and distance between the average source nodes and destination. Y. Sun et al., in “An Adaptive Routing Protocol Based on QoS and Vehicular Density in Urban VANETs,” explore an adaptive routing protocol based on QoS and vehicular density in urban VANET environments.

The trade-off between security and energy efficiency for wireless sensors networks is addressed in the paper by D. Rusinek et al. entitled “Security Trade-Off and Energy Efficiency Analysis in Wireless Sensor Networks.” The authors propose an energy analysis module for the quality of protection modeling language by means of which one can analyze the influence of various security levels on the energy consumption of a protocol. Furthermore, an advanced communication module is proposed as an extension of the quality of protection modeling language, which enhances the abilities to analyze complex wireless sensor networks.

High efficient resource dissemination and delivery are also an important issue for the green and friendly communications in wireless sensor networks. The paper by S. Jia et al. entitled “A Novel Interest Detection-Based Video Dissemination Algorithm under Flash Crowd in Mobile Ad Hoc Networks” proposes a novel interest detection-based video dissemination algorithm under flash crowd in mobile ad hoc networks. In “Cloud-Assisted Scalable Video Delivery Solution over Mobile Ad Hoc Networks,” L. Zhong and S. Jia present a novel Cloud-Assisted Scalable Video Delivery Solution over mobile ad hoc networks.

All these works are mature and present detailed research proposals, good testing results, and interesting result analyses. It is hoped that the audience will appreciate them and the readers will have pleasant reading.

Acknowledgments

Thanks are due to all the authors for submitting their works to this special issue. The guest editors would like to thank all the reviewers for their hard work and for all their suggestions and comments, leading to improvements in the quality of the accepted papers. They hope these papers will represent a useful starting point and stimulus for further research in the sensor technologies area.

Changqiao Xu
Gabriel-Miro Muntean
Liang Zhou
Xiaohong Jiang
Submit your manuscripts at
http://www.hindawi.com