ROOTED TREES, NON-ROOTED TREES AND HAMILTONIAN B-SERIES

GEIR BOGFJELLMO, CHARLES CURRY, AND DOMINIQUE MANCHON

Abstract. We explore the relationship between (non-planar) rooted trees and free trees, i.e. without root. We give in particular, for non-rooted trees, a substitute for the Lie bracket given by the antisymmetrization of the pre-Lie product.

Keywords: Rooted trees; B-series; Trees; Hamiltonian vector fields.
Math. subject classification: 16W30; 05C05; 16W25; 17D25; 37C10

1. Introduction

A striking link between rooted trees and vector fields on an affine space \mathbb{R}^n has been established by A. Cayley [8] as early as 1857. The interest for this correspondence has been renewed since J. Butcher showed the key role of rooted trees for understanding Runge-Kutta methods in numerical approximation [5, 4, 16]. The modern approach to this correspondence can be summarized as follows: the product on vector fields on \mathbb{R}^n defined by:

$$ (\sum_{i=1}^{n} f_i \partial_i) \triangleright (\sum_{i=1}^{n} g_j \partial_j) := \sum_{j=1}^{n} \left(\sum_{i=1}^{n} f_i (\partial_i g_j) \right) \partial_j $$

is left pre-Lie, which means that for any vector fields a, b, c the associator $a \triangleright (b \triangleright c) - (a \triangleright b) \triangleright c$ is symmetric with respect to a and b. On the other hand, the free pre-Lie algebra with one generator (on some base field k) is the vector space T spanned by the planar rooted trees [10, 15]. The generator is the one-vertex tree \bullet, and the pre-Lie product on rooted trees is given by grafting:

$$ s \rightarrow t = \sum_{v \in V(t)} s \rightarrow_v t, $$

where $s \rightarrow_v t$ is the rooted tree obtained by grafting the rooted tree s on the vertex v of the tree t. Hence for any vector field a on \mathbb{R}^n there exists a unique pre-Lie algebra morphism F_a from T to vector fields such that $F_a(\bullet) = a$. This can be generalized to an arbitrary number of generators, since the free pre-Lie algebra on a set D of generators is the span of rooted trees with vertices coloured by D. In this case, for any collection $\underline{a} = (a_d)_{d \in D}$ of vector fields, there exists a unique pre-Lie algebra morphism $F_{\underline{a}}$ from the linear span T_D of coloured trees to vector fields on \mathbb{R}^n, such that $F_{\underline{a}}(\bullet_d) = a_d$ for any $d \in D$.

The vector fields $F_{\underline{a}}(t)$ (or $F_{\underline{a}}(t)$ in the coloured case) are the elementary differentials, building blocks of the B-series [16] which are defined as follows: for any linear form α on $T_D \oplus \mathbb{R}1$ where 1 is the empty tree, for any collection of vector fields \underline{a} and for any initial point $y_0 \in \mathbb{R}^n$, the corresponding B-series is a formal series in the indeterminate h given by:

$$ B_{\underline{a}}(\alpha, y_0) = \alpha(1)y_0 + \sum_{t \in T_D} h^{|t|} \frac{\alpha(t)}{\text{sym}(t)} F_{\underline{a}}(t)(y_0). $$

Date: January 17th 2013.

1Such coloured B-series are sometimes called NB-series in the literature.
Here $|t|$ is the number of vertices of t, and $\text{sym}(t)$ is its symmetry factor, i.e. the cardinal of its automorphism group $\text{Aut} t$. For any vector field a, the exact solution of the differential equation:

$$\dot{y}(t) = a(y(t))$$

with initial condition $y(0) = y_0$ admits a (one-coloured) B-series expansion at time $t = h$, and its approximation by any Runge-Kutta method as well \[5, 6, 16\]. The formal transformation $y_0 \mapsto B_a(\alpha, y_0)$ is a formal series with coefficients in $C^\infty(\mathbb{R}^n, \mathbb{R}^n)$.

We will be interested in canonical B-series \[7\], i.e. such that the formal transformation $B_a(\alpha, -)$ is a symplectomorphism for any collection of hamiltonian vector fields a. Here, the dimension $n = 2r$ is even, and \mathbb{R}^{2r} is endowed with the standard symplectic structure:

$$\omega(x, y) = \sum_{i=1}^{r} x_i y_{r+i} - x_{r+i} y_i,$$

and a vector field $a = \sum_{i=1}^{2r} a_i \partial_i$ is hamiltonian if there exists a smooth map $H : \mathbb{R}^{2r} \to \mathbb{R}$ such that:

$$a_i = -\frac{\partial H}{\partial t_{i+r}} \quad \text{for } i = 1, \ldots, r,$$

$$a_i = \frac{\partial H}{\partial t_{i-r}} \quad \text{for } i = r + 1, \ldots, 2r.$$

Recall that the Poisson bracket of two smooth maps f, g on \mathbb{R}^{2r} is given by:

$$\{f, g\} = \sum_{i=1}^{r} \frac{\partial f}{\partial t_i} \frac{\partial g}{\partial t_{i+r}} - \frac{\partial g}{\partial t_i} \frac{\partial f}{\partial t_{i+r}}.$$

Hence hamiltonian vector fields are those vector fields a which can be expressed as:

$$a = \{H, -\}$$

for some $H \in C^\infty(\mathbb{R}^{2r})$. A B-series turns out to be canonical if and only if the following condition holds for any rooted trees s and t \[3, \text{Theorem 2}\]:

$$\alpha(s \circ t) + \alpha(t \circ s) = \alpha(s)\alpha(t),$$

where $s \circ t$ is the right Butcher product, defined by grafting the tree t on the root of the tree s. This result is also valid in the coloured case. The infinitesimal counterpart of this result expresses as follows \[16\], Theorem IX.9.10 for one-colour case): a B-series $B_a(\alpha, -)$ with $\alpha(1) = 0$ defines a hamiltonian vector field for any hamiltonian vector field a if and only if:

$$\alpha(s \circ t) + \alpha(t \circ s) = 0.$$

Let us call the B-series of the type described above hamiltonian B-series. Our interest in non-rooted trees comes from the following elementary observation: the two rooted trees $s \circ t$ and $t \circ s$ are equal as non-rooted trees, and one is obtained from the other by shifting the root to a neighbouring vertex. As an easy consequence of \[8\], any hamiltonian B-series $B_a(\alpha, -)$ has to satisfy that if two rooted trees s and t are equal as non-rooted trees, then:

$$\alpha(s) = \pm\alpha(t).$$

This implies that, modulo a careful account of the signs involved, hamiltonian B-series are naturally indexed by non-rooted trees rather than by rooted ones. The sign is plus or minus according to the parity of the minimal number of "root shifts" $s_1 \circ s_2 \mapsto s_2 \circ s_1$ that are required to change s into t.

In the present paper we address the following question: what survives from the pre-Lie structure at the level of non-rooted trees? There is a natural linear map $\tilde{\mathcal{X}}$ from non-rooted trees to (the linear span of) rooted trees, sending a tree to the sum of all its rooted representatives, with alternating signs. Its precise definition involves a total order on rooted trees introduced by A. Murua [19]. We propose a binary product \diamond on the linear span of non-rooted trees, which is roughly speaking an alternating sum of all trees obtained by linking a vertex of the first tree with a vertex of the second tree. Theorem 4 is the key result of the paper. It implies the fact that \diamond is a Lie bracket and that $\tilde{\mathcal{X}}$ is a Lie algebra morphism, the Lie bracket on rooted trees being given by antisymmetrizing the pre-Lie product.

Acknowledgements: This article came out from a workshop in December 2012 at NTNU in Trondheim. The authors thank Elena Celledoni, Kurusch Ebrahimi-Fard, Brynjulf Owren and all the participants for illuminating discussions. The third author also thanks Ander Murua and Jesus Sanz-Serna for sharing references and for their encouragements. This work is partly supported by Campus France, PNC Aurora 24678ZC. The third author also acknowledges a support by Agence Nationale de la Recherche (projet CARMA).

2. Structural facts about non-rooted trees

We denote by T (resp. FT) the set of non-planar rooted (resp. non-rooted) trees. We denote by \mathcal{T} (resp. \mathcal{FT}) the vector spaces freely generated by T (resp. FT). The projection $\pi : T \rightarrow FT$ is defined by forgetting the root. It extends linearly to $\pi : \mathcal{T} \rightarrow \mathcal{FT}$. Rooted trees will be denoted by latin letters s, t, \ldots, non-rooted trees by greek letters σ, τ, \ldots. We will also use "free tree" as a synonymous for "non-rooted tree". For any free tree τ and for any vertex v of τ, we denote by τ_v the unique rooted tree built from τ by putting the root at v.

2.1. A total order on rooted trees. Recall that any rooted tree t is obtained by grafting rooted trees t_1, \ldots, t_q on a common root:

$$t = B_+(t_1, \ldots, t_q).$$

The trees t_j are called the branches of t. A. Murua defines in [19] a total order on the set of (one-colour) rooted trees in a recursive way as follows: the canonical decomposition of a tree t is given by $t = t_L \diamond t_R$ where t_R is the maximal branch of t. The maximality is to be understood with respect to the total order, supposed to be already defined for trees with number of vertices strictly smaller than $|t|$. Then $s < t$ if and only if:

- either $|s| < |t|$,
- or $|s| = |t|$ and $s_L < t_L$,
- or $|s| = |t|$, $s_L = t_L$ and $s_R < t_R$.

In the one-colour case, the total order of the first few trees is:

$$\bullet < \overset{1}{\triangle} < \overset{1}{\triangledown} < \overset{2}{\triangle} < \overset{2}{\triangledown} < \overset{3}{\triangle} < \overset{3}{\triangledown} < \overset{4}{\triangle} < \overset{4}{\triangledown} < \overset{5}{\triangle} < \overset{5}{\triangledown} < \overset{6}{\triangle} < \overset{6}{\triangledown} < \cdots$$

If we prescribe a total order on the set of colours D and allow the set of one node coloured trees to inherit this order, incorporating this into the definition above gives a total order on the set of coloured rooted trees. Note that the structure of the one-colour order is not entirely preserved, as, for example, for two colours $\bullet < \circ$ we have $\overset{\bullet}{\circ} > \overset{\circ}{\circ}$ whereas $\overset{\bullet}{\circ} < \overset{\circ}{\bullet}$.

2.2. **Superfluous trees.** This notion has been introduced in [1], where the authors describe order conditions for canonical B-series coming from Runge-Kutta approximation methods. Let $B_2(\alpha, -)$ be a hamiltonian B-series. According to [2], we have $\alpha(t \circ s) = 0$ for any rooted tree t. Any non-rooted tree τ such that there exists a rooted tree s with $s \circ s \in \pi^{-1}(\tau)$ is called a superfluous tree, and a rooted tree t is said to be superfluous if its underlying free tree $\pi(t)$ is. Such trees never appear in a hamiltonian B-series. For any free tree $\tau \in FT$, its canonical representative is the maximal element of the set $\pi^{-1}(\tau) \subset T$ for the total order above. The following lemma gives a characterization of superfluous trees:

Lemma 1. Let $\tau \in FT$ have two distinct vertices v and w such that $\tau_v = \tau_w$ is the canonical representative of τ. Then:

1. v and w are the two ends of a common edge in τ,
2. There exists $s \in T$ such that $\tau_v = \tau_w = s \circ s$.

Proof. First of all, the maximal branch of τ_v contains w (and vice-versa). Indeed, Suppose the maximal branch of τ_v does not contain w (and hence vice-versa). Let

$$\tau_v = B^+(t_1, t_2, \ldots, t_n, t_w, t_{\text{max}}), \quad \tau_w = B^+(t'_1, t'_2, \ldots, t'_n, t'_v, t'_{\text{max}}),$$

where t_w is the branch of τ_v containing w and t'_v similarly. It is clear that t'_v contains all branches of τ_v except t_w. Hence $|t'_v| > |t_1| + \ldots + |t_n| + |t_{\text{max}}|$ and as $|t_{\text{max}}| = |t'_{\text{max}}|$ we have $|t'_v| > |t'_{\text{max}}|$, a contradiction. Now suppose that v and w are not neighbours, and choose a vertex x between v and w, i.e. such that there is a path from v to w of meeting x. The maximal branch of τ_x cannot contain both v and w; suppose it does not contain v. Then it is a subtree of the maximal branch τ_v and hence contains strictly less vertices. Looking at the canonical decompositions:

$$t := \tau_v = \tau_w = t_L \circ t_R, \quad t' := \tau_x = t'_L \circ t'_R,$$

we have then $|t'_L| > |t_L|$, which immediately yields $\tau_x > \tau_v$, which is a contradiction. This proves the first assertion, and the second assertion follows immediately. \hfill \Box

There are four superfluous free trees with six vertices or less. The corresponding superfluous rooted trees are:

![Superfluous trees](image)

We denote by S the set of superfluous free trees and by FT' the set of non-superfluous trees, hence $FT = FT' \sqcup S$. The corresponding linear spans will be denoted by S and FT'. We have $FT = S \oplus FT'$, which leads to a linear isomorphism:

$$FT' \sim FT / S.$$

2.3. **Symmetries.** We keep the notations of the previous subsection. For any non-superfluous tree $\tau \in FT'$ we denote by \star the unique vertex such that τ_\star is the canonical representative of τ. The group of automorphisms of τ is the subgroup $\text{Aut } \tau$ of the group of permutations φ of $\mathcal{V}(\tau)$ which respect the tree structure, i.e. such that, for any $v, w \in \mathcal{V}(\tau)$, there is an edge between v and w if and only if there is an edge between $\varphi(v)$ and $\varphi(w)$.

For any rooted tree t we also denote by $\text{Aut } t$ its group of automorphisms, i.e. the subgroup of the group of permutations φ of $\mathcal{V}(t)$ which respect the rooted tree structure. It obviously coincides with the stabilizer of the root in $\text{Aut } \pi(t)$. Now for any non-superfluous free tree τ it is obvious from Lemma [1] that $\text{Aut } \tau$ fixes the vertex \star, hence $\text{Aut } \tau = \text{Aut } \tau_\star$.\hfill \Box
Now $\text{Aut } \tau$ acts on the set of vertices $V(\tau)$. Moreover, for any vertex v this group acts transitively on the subset of possible roots for τ_v, namely:
\[R_v(\tau) := \{ w \in V(\tau), \tau_w \sim \tau_v \}. \]

Hence $R_v(\tau)$ identifies itself with the homogeneous space:
\[R_v(\tau) \sim \text{Aut } \tau_v / \text{Aut } \tau_v. \]

This immediately leads to the following proposition, which is implicit in the proof of Lemma IX.9.7 in \cite{16}:

Proposition 2. Let τ be a non-superfluous free tree, let t be a rooted tree such that $\pi(t) = \tau$, and let $N(t, \tau)$ be the number of vertices $v \in V(\tau)$ such that $\tau_v = t$. Then:
\[N(t, \tau) = \frac{\text{sym}(\tau_v)}{\text{sym}(t)}. \]

2.4. **Grafting and linking.** Let σ and τ be two non-rooted trees, and let us choose a vertex v of σ and a vertex w of τ. We will denote by $\sigma_{v \rightarrow w} \tau$ the non-rooted tree obtained by taking σ and τ together and adding a new edge between v and w. This linking operation is related to grafting of rooted trees as follows: for any other choice of vertices x of σ and y of τ we have:
\[(\sigma_{v \rightarrow w} \tau)_y = \sigma_v \rightarrow_w \tau_y, \]
\[(\sigma_{v \rightarrow w} \tau)_x = \tau_w \rightarrow_v \sigma_x. \]

3. **A binary operation on non-rooted trees**

The linear map $\widetilde{X} : T \rightarrow T$ is defined for any non-rooted tree τ by:
\[\widetilde{X}(\tau) = \sum_{v \in V(\tau)} \varepsilon(v, \tau) \tau_v, \]

and extended linearly. Here $\varepsilon(v, \tau)$ is equal to 0 if τ is superfluous, and is equal to 1 (resp. -1) if τ is not superfluous and if the number of requested root shifts to change τ_v into the canonical representative of τ is even (resp. odd). This number, which we denote by $\kappa(v, \tau)$, is indeed unambiguous for non-superfluous trees according to Lemma \cite{11}. We obviously have:
\[\varepsilon(v, \tau) = \varepsilon(\varphi(v), \tau) \]
for any $\varphi \in \text{Aut } \tau$. The introduction of the map \widetilde{X} is justified by the fact that, according to \cite{5}, \cite{15} and Proposition 2 rooted trees involved in hamiltonian B-series do group themselves under terms $\tilde{X}(\tau)$ with $\tau \in FT$. Indeed,

Proposition 3.
\[B_{\text{sym}}(\alpha, -) = \sum_{\tau \in FT} h^{v|} \frac{\alpha(\tau_v)}{\text{sym}(\tau_v)} F_{\text{sym}}(\widetilde{X}(\tau)). \]

Now let us define a binary product on FT by the formula:
\[\sigma \circ \tau = \sum_{v \in V(\sigma), w \in V(\tau)} \delta(v, w) \sigma_{v \rightarrow w} \tau, \]

with $\delta(v, w) := \varepsilon(w, \sigma_{v \rightarrow w} \tau) \varepsilon(v, \sigma) \varepsilon(w, \tau)$.

Theorem 4. We have $\sigma \circ \tau \in FT'$ for any $\sigma, \tau \in FT$, and $\sigma \circ \tau = 0$ if σ or τ is superfluous. The product \circ is antisymmetric, and the following relation holds:
\[\tilde{X}(\sigma \circ \tau) = \tilde{X}(\sigma) \rightarrow \tilde{X}(\tau) \rightarrow \tilde{X}(\sigma) = [\tilde{X}(\sigma), \tilde{X}(\tau)]. \]
Proof. A computation of the left-hand side gives:
\[
\tilde{X}(\sigma \circ \tau) = \sum_{v, x \in V(\sigma), w \in V(\tau)} \varepsilon(x, \sigma_{v \rightarrow w}) \varepsilon(w, \sigma_{v \rightarrow w}) \varepsilon(v, \sigma) \varepsilon(w, \tau)(\sigma_{v \rightarrow w})_x \\
+ \sum_{v \in V(\sigma), w, y \in V(\tau)} \varepsilon(y, \sigma_{v \rightarrow w}) \varepsilon(w, \sigma_{v \rightarrow w}) \varepsilon(v, \sigma) \varepsilon(w, \tau)(\sigma_{v \rightarrow w})_y,
\]
and computing the right-hand side gives:
\[
[\tilde{X}(\sigma), \tilde{X}(\tau)] = - \sum_{v, x \in V(\sigma), w \in V(\tau)} \varepsilon(v, \sigma) \varepsilon(w, \tau) \tau_w \rightarrow_x \sigma_v \\
+ \sum_{v \in V(\sigma), w, y \in V(\tau)} \varepsilon(v, \sigma) \varepsilon(w, \tau) \tau_v \rightarrow_y \tau_w.
\]
Exchanging \(x\) and \(v\) in the first sum, and \(y\) and \(w\) in the second, we get:
\[
[\tilde{X}(\sigma), \tilde{X}(\tau)] = - \sum_{v, x \in V(\sigma), w \in V(\tau)} \varepsilon(x, \sigma) \varepsilon(w, \tau) \tau_w \rightarrow_v \sigma_x \\
+ \sum_{v \in V(\sigma), w, y \in V(\tau)} \varepsilon(v, \sigma) \varepsilon(y, \tau) \tau_v \rightarrow_y \tau_y.
\]
The first assertion is immediate since \(\varepsilon(w, \sigma_{v \rightarrow w})\) vanishes if \(\sigma_{v \rightarrow w} \tau\) is superfluous. The second assertion is also immediate, since \(\delta(v, w)\) vanishes if \(\sigma\) or \(\tau\) is superfluous. The antisymmetry comes from the fact that \(v\) and \(w\) are neighbours in \(\sigma_{v \rightarrow w} \tau\).

(1) If \(\sigma\) or \(\tau\) is superfluous, any individual term in both sides vanishes.

(2) If \(\sigma\) and \(\tau\) are not superfluous, it may happen that \(\sigma_{v \rightarrow w} \tau\) is superfluous for some \(v \in V(\sigma)\) and \(w \in V(\tau)\). The corresponding term \(\tilde{X}(\sigma_{v \rightarrow w} \tau)\) in \(\tilde{X}(\sigma \circ \tau)\) vanishes. On the other hand, the sum of all terms in \([\tilde{X}(\sigma), \tilde{X}(\tau)]\) corresponding to the couple \((v, w)\) chosen above writes down as:
\[
T_{v, w} := - \sum_{x \in V(\sigma)} (-1)^{\kappa(x, \sigma) + \kappa(w, \tau)} \tau_w \rightarrow_v \sigma_x \\
+ \sum_{y \in V(\tau)} (-1)^{\kappa(v, \sigma) + \kappa(y, \tau)} \sigma_v \rightarrow_w \tau_y.
\]
The distance \(d(x, v)\) between \(x\) and \(v\) in \(\sigma\) is defined as the length of the (unique) path joining \(x\) and \(v\) in \(\sigma\). It is clearly equal modulo 2 to the sum \(\kappa(x, \sigma) + \kappa(v, \sigma)\). Similarly, \(d(y, w) = \kappa(y, \tau) + \kappa(w, \tau)\) modulo 2. Hence, using (12) and (13) we get:
\[
T_{v, w} = (-1)^{\kappa(v, \sigma) + \kappa(w, \tau)} \left(- \sum_{x \in V(\sigma)} (-1)^{d(x, v)} (\sigma_{v \rightarrow w} \tau)_x + \sum_{y \in V(\tau)} (-1)^{d(y, w)} (\sigma_{v \rightarrow w} \tau)_y \right).
\]
Now the distance \(d(x, v)\) is the same if we compute it in \(\sigma\) or in \(\sigma_{v \rightarrow w} \tau\), and similarly for \(d(y, w)\). Finally, using the fact that \(v\) and \(w\) are neighbours in \(\sigma_{v \rightarrow w} \tau\), we have \(d(x, w) = d(x, v) + 1\) for any \(x \in V(\sigma)\), the distance being computed in \(\sigma_{v \rightarrow w} \tau\). This finally gives:
\[
T_{v, w} = (-1)^{\kappa(v, \sigma) + \kappa(w, \tau)} \sum_{z \in V(\sigma_{v \rightarrow w} \tau)} (-1)^{d(z, w)} (\sigma_{v \rightarrow w} \tau)_z,
\]
which vanishes since \(\sigma_{v \rightarrow w} \tau\) is superfluous.
(3) Finally, if \(\sigma, \tau \) and \(\sigma v \ldots w \tau \) are not superfluous, using \([12]\) and \([13]\), both sides will be equal if we have:

\[
\begin{align*}
\kappa(x, \sigma v \ldots w \tau) + \kappa(w, \sigma v \ldots w \tau) + \kappa(v, \sigma) &= \kappa(x, \sigma) + 1 \mod 2, \\
\kappa(y, \sigma v \ldots w \tau) + \kappa(w, \sigma v \ldots w \tau) + \kappa(w, \tau) &= \kappa(y, \tau) \mod 2.
\end{align*}
\]

Using the fact that \(v \) and \(w \) are neighbours, it rewrites as:

\[
\begin{align*}
\kappa(x, \sigma v \ldots w \tau) + \kappa(x, \sigma) &= \kappa(v, \sigma v \ldots w \tau) + \kappa(v, \sigma) \mod 2, \\
\kappa(y, \sigma v \ldots w \tau) + \kappa(y, \tau) &= \kappa(w, \sigma v \ldots w \tau) + \kappa(w, \tau) \mod 2.
\end{align*}
\]

These two last identities are always verified: looking for example at the right-hand side of the first one, moving vertex \(v \) to a neighbour will change both \(\kappa \)'s by \(\pm 1 \). It remains then to jump from neighbour to neighbour up to \(x \). The proof of the second identity is completely similar.

Using the identification of \(\mathcal{FT}/S \) with \(\mathcal{FT}' \), a straightforward consequence of Theorem 4 is the following:

Corollary 5. The linear map \(\bar{X} \) is an injection of \(\mathcal{FT}' \) into \(\mathcal{T} \), and the product \(\circ : \mathcal{FT}' \times \mathcal{FT}' \to \mathcal{FT}' \) verifies:

\[\bar{X}(\sigma \circ \tau) = [\bar{X}(\sigma), \bar{X}(\tau)]. \]

As a consequence, the product \(\circ \) satisfies the Jacobi identity, and \(\bar{X} \) is an embedding of Lie algebras.

4. Application to elementary hamiltonians

Keeping the previous notations, the vector field \(\mathcal{F}_{\underline{\mathcal{A}}} (\bar{X}(\tau)) \) is hamiltonian for any (decorated) non-rooted tree \(\tau \). Hence it can be uniquely written as \(\{H_{\underline{\mathcal{A}}} (\tau), -\} \) for some \(H_{\underline{\mathcal{A}}} (\tau) \in C^\infty(\mathbb{R}^2r) \), called the elementary hamiltonian associated with \(\tau \).

Proposition 6. For any free trees \(\sigma, \tau \) we have:

\[\{H_{\underline{\mathcal{A}}} (\sigma), H_{\underline{\mathcal{A}}} (\tau)\} = H_{\underline{\mathcal{A}}} (\sigma \circ \tau). \]

Proof. We compute:

\[
\begin{align*}
\{H_{\underline{\mathcal{A}}} (\sigma), H_{\underline{\mathcal{A}}} (\tau)\} &= \{H_{\underline{\mathcal{A}}} (\sigma), -\}, \{H_{\underline{\mathcal{A}}} (\tau), -\}\} \\
&= \mathcal{F}_{\underline{\mathcal{A}}} (\bar{X}(\sigma), \bar{X}(\tau)) \\
&= \mathcal{F}_{\underline{\mathcal{A}}} (\bar{X}(\sigma \circ \tau)) \\
&= \mathcal{F}_{\underline{\mathcal{A}}} \circ \bar{X}(\sigma \circ \tau) \\
&= \{H_{\underline{\mathcal{A}}} (\sigma \circ \tau), -\}.
\end{align*}
\]

One concludes by using the uniqueness of the hamiltonian representation of a hamiltonian vector field.

References

[1] L. Abia, J. M. Sanz-Serna, Order conditions for canonical Runge-Kutta schemes, SIAM J. Numer. Anal. **28**, 1081-1096 (1991).

[2] A. Agrachev, R. Gamkrelidze, Chronological algebras and nonstationary vector fields, J. Sov. Math. 17 (1981) 1650–1675.

[3] A. L. Araujo, A. Murua, J.-M. Sanz-Serna, Symplectic methods based on decompositions, SIAM J. Num. Anal. (1996).
[4] Ch. Brouder, *Runge-Kutta methods and renormalization*, Eur. Phys. J. C Part. Fields 12 (2000) 512–534.
[5] J. C. Butcher, *An algebraic theory of integration methods*, Math. Comp. 26 (1972) 79–106.
[6] J. C. Butcher, *The numerical analysis of ordinary differential equations. Runge–Kutta and general linear methods*, Wiley, Chichester, 2008.
[7] M. P. Calvo, J. M. Sanz-Serna, *Canonical B-series*, Numer. Math. 67, 161-175 (1994).
[8] A. Cayley, *On the theory of the analytical forms called trees*, Phil. Mag. 13, 172-176 (1857).
[9] E. Celledoni, R. McLachlan, D. McLaren, B. Owren, R. Quisipel W. Wright, *Energy-preserving Runge-Kutta methods*, M2AN (Mathematical Modelling and Numerical Analysis), 43 (4), 645-649 (2009).
[10] F. Chapoton, M. Livernet, *Pre-Lie algebras and the rooted trees operad*, Internat. Math. Res. Notices 2001 (2001) 395–408.
[11] F. Chapoton, M. Livernet, *Relating two Hopf algebras built from an operad*, Internat. Math. Res. Notices 2007 Art. ID rnm131, 27 pp.
[12] Ph. Chartier, E. Hairer, G. Vilmart, *A substitution law for B-series vector fields*, preprint INRIA No. 5498 (2005).
[13] Ph. Chartier, E. Hairer, G. Vilmart, *Numerical integrators based on modified differential equations*, Math. Comp. 76 (2007) 1941–1953.
[14] Ph. Chartier, A. Murua, *An algebraic theory of order*, M2AN Math. Model. Numer. Anal. 43 (2009) 607–630.
[15] A. Dzhumadil’daev, C. Lőfwall, *Trees, free right-symmetric algebras, free Novikov algebras and identities*, Homology Homotopy and Appl. 4 (2002) 165–190.
[16] E. Hairer, C. Lubich, G. Wanner, *Geometric numerical integration* Structure-preserving algorithms for ordinary differential equations, vol. 31, Springer Series in Computational Mathematics. Springer-Verlag, Berlin, 2002.
[17] D. Kreimer, *The combinatorics of (perturbative) quantum field theories*, Phys. Rep. 363 (2002) 387–424. arXiv:hep-th/0010059.
[18] H. Munthe–Kaas, W. Wright, *On the Hopf Algebraic Structure of Lie Group Integrators*, Found. Comput. Math. 8 (2008) 227–257.
[19] A. Murua, *The Hopf algebra of rooted trees, free Lie algebras, and Lie series*, Found. Comput. Math. 6 (2006) 387–426.
[20] J.-M. Sanz-Serna, *Runge–Kutta schemes for hamiltonian systems*, BIT Numerical Analysis, 28 No4 (1988), 877–883.
[21] J. M. Sanz-Serna, *Symplectic integrators for Hamiltonian problems: an overview*, Acta Numerica 1(1992), 243-286.

NTNU
E-mail address: bogfjell@math.ntnu.no

HERIOT WATT UNIVERSITY
E-mail address: chc5@hw.ac.uk

UNIVERSITÉ BLAISE PASCAL, C.N.R.S.-UMR 6620, BP 80026, 63171 Aubière, FRANCE
E-mail address: manchon@math.univ-bpclermont.fr
URL: http://math.univ-bpclermont.fr/~manchon/