Whole exome sequencing in 17 consanguineous Iranian pedigrees expands the mutational spectrum of inherited retinal dystrophies

Atta Ur Rehman1,11, Neda Sepahi2,11, Nicola Bedoni1,11, Zeinab Ravesh3, Arash Salmaninejad4, Francesca Cancellieri5,6, Virginie G. Peter3,5,6,7, Mathieu Quinodoz3,5,6, Majid Mojarrad4, Alireza Pasdar4,6,9, Ali Ghanbari Asad2, Saman Ghalamkari10, Mehran Piran2, Mehrdad Piran2, Andrea Superti-Furga5 & Carlo Rivolta3,5,6

Inherited retinal dystrophies (IRDs) constitute one of the most heterogeneous groups of Mendelian human disorders. Using autozygome-guided next-generation sequencing methods in 17 consanguineous pedigrees of Iranian descent with isolated or syndromic IRD, we identified 17 distinct genomic variants in 11 previously-reported disease genes. Consistent with a recessive inheritance pattern, as suggested by pedigrees, variants discovered in our study were exclusively bi-allelic and mostly in a homozygous state (in 15 families out of 17, or 88%). Out of the 17 variants identified, 5 (29%) were never reported before. Interestingly, two mutations (GUCY2D: c.564dup, p.Ala189ArgfsTer130 and TULP1: c.1199G > A, p.Arg400Gln) were also identified in four separate pedigrees (two pedigrees each). In addition to expanding the mutational spectrum of IRDs, our findings confirm that the traditional practice of endogamy in the Iranian population is a prime cause for the appearance of IRDs.

Inherited retinal dystrophies/degenerations (IRDs) are Mendelian disorders of the eye that affect approximately 1 in 1500 people worldwide and constitute a major cause of inherited blindness1. Mainly characterized by the progressive death of photoreceptor cells in the retina, IRDs present a high degree of genetic and phenotypic heterogeneity2. So far, mutations in over 270 genes have been associated with various forms of IRDs (RetNet: https://sph.uth.edu/retnet/; accessed April 17, 2020); however, this list is constantly increasing. Sequencing of all exons and exon–intron boundaries of these genes has successfully contributed to the understanding of the genetic etiology of 50–70% of patients3–5. Since a larger proportion of IRDs are caused by recessive mutations6, next-generation sequencing (NGS) coupled with homozygosity mapping has further accelerated detection of candidate variants in consanguineous pedigrees7.

Close-kin marital unions have long been practiced in the Iranian population as a cultural feature7. In spite of a significant decline in consanguinity in Iran in recent years, prevalence of recessive genetic disorders is still high in the country, possibly due to the presence of marked population stratification that favors intra-community marriages7,8. As a result, increased genomic homozygosity in specific societies or ethnic groups leads to the clinical observation of the effect of rare founder mutations9. The present study was performed with the aim of characterizing genetically a cohort of 17 consanguineous Iranian families with IRDs.

1Division of Genetic Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland. 2Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran. 3Department of Genetics and Genome Biology, University of Leicester, Leicester, UK. 4Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. 5Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland. 6Department of Ophthalmology, University of Basel, Basel, Switzerland. 7Institute of Experimental Pathology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland. 8Medical Genetics Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. 9Division of Applied Medicine, Medical School, University of Aberdeen, Aberdeen, UK. 10Persian Bayangene Research and Training Institute, Shiraz, Iran. 11These authors contributed equally: Atta Ur Rehman, Neda Sepahi and Nicola Bedoni. *email: carlo.rivolta@iob.ch
Methods

Enrollment of families and DNA extraction. This study was approved by the Ethics Committees of all our respective Institutions (the Ethikkommission Nordwest- and Zentralschweiz, the Ethics Committee of Mashhad University of Medical Sciences, the Ethics Commission of the Noncommunicable Diseases Research Center of Fasa University of Medical Sciences, and the Ethics Commission of the Canton de Vaud) and adhered to the principles of the Declaration of Helsinki. All individuals participating in this study were Iranian residents, who agreed in contributing to this study by signing a written informed consent form. Patients were clinically evaluated by local ophthalmologists and their medical records were maintained at their respective hospitals. Approximately 5.0 ml peripheral blood was collected using a EDTA K2 golden vac disposable vacuum blood collection tube (Zhejiang Gondong Medical Technology, China) or were mixed with EDTA anticoagulant (Merck KGaA, Darmstadt, Germany) after sample collection. DNA was extracted from peripheral blood leukocytes following standard protocols. Quantitative assessment of DNA was made using a NanoDrop 1000 Spectrophotometer (Thermo Fisher Scientific, USA), whereas integrity was evaluated by running the DNA samples on a 1% agarose gel. Pedigrees were drawn with the help of HaploPainter.

Genetic analyses. Exome capture and library preparation was performed on one affected individual per family using the SureSelect Human All Exon v6 kit (Agilent, Santa Clara, CA, USA) and the HiSeq Rapid PE Cluster Kit v2 (Illumina, San Diego, CA, USA), from 2 μg genomic DNA. Whole-exome sequencing (WES) was performed at the Institute of Genomics of the University of Tartu (Estonia) using an Illumina HiSeq (HSQ-700358) instrument. Bioinformatic analyses were performed as described previously. Briefly, raw reads were mapped to the human reference genome (hg19/GRCh37) using the Novoalign software (V3.08.00, Novocraft Technologies). Next, Picard (version 2.14.0-SNAPSHOT) was used to remove duplicate reads and Genome Analysis Toolkit (GATK) (version 3.8) was used to perform base quality score recalibration on both single-nucleotide variants and insertion–deletions. A VCF file with the variants was generated by HaplotypeCaller. They were annotated according to a specific in-house pipeline using mainly ANNOVAR software (Oct 2019 release) and splicing predictors: spliceAI, MaxEntScan, and Ada and RF scores from dbscSNV. Then, DNA variants were filtered to have less than 1 % allele frequency in ExAC,g, gnomAD,v, 1000 Genomes,w, and GME (GME Variole http://igm.ucsd.edu/gme/index.php). Variants were then retained according to their predicted impact on protein sequence and splicing of preRNA, according to ANNOVAR RefSeq annotation (missense, stopgain, frameshift or non-frameshift indels, or canonical splicing) and splicing predictors (MaxEntScan [minimal change of 6], spliceAI [minimal score of 0.2] and dbscSNV-ADA [minimal score of 0.2]).

Autozygosity mapping was performed on WES data with AutoMap. Nomenclature of all the variants was confirmed through VariantValidator. Clinical significance of the variants was evaluated with the help of publicly available databases such as ClinVar, the Human Gene Mutation Database (HGMD) and Varsome, as well as according to their frequency in available databases, e.g. the Genome Aggregation Database (gnomAD). Seven online in-silico tools were used to predict the pathogenicity of all variants. The online in-silico tools used included MutationTaster, Mutation Assessor, Polymorphism Phenotyping v2 (PolyPhen-2), Likelihood Ratio Test (LRT), Sorting Intolerant from Tolerant (SIFT), PROVEAN, and Combined Annotation Dependent Depletion (CADD). Furthermore, all candidate variants were compared with data from Iranome, a database containing information from 800 exomes from individuals belonging to eight major ethnic groups in Iran (http://www.irano.me/; accessed on April 19, 2020). Finally, Sanger sequencing was performed to validate all potentially pathogenic variants and to establish their causality through strict genotype–phenotype co-segregation within the available family members.

Results

Following WES analysis in 17 probands of Iranian descent, 16 of which were the direct offspring of consanguineous unions (Fig.1), we identified 17 distinct genetic variants in 11 genes linked to inherited retinal diseases (Tables 1 and 2). Of the 17 pedigrees, two families each were linked to disease-causing variants in GUCY2D, IQCB1, RDH12, RP1, and TULP1 genes, while only one family was found with causative variants in either USH1G, ABCA4, NMNAT1, CRB1, or BBS2 genes. The mutational spectrum across these 11 genes comprised 7 missense variants, 4 nonsense variants, 4 small insertion–deletions (Indels) or duplications leading to frameshifts, one canonical splice site variant and one synonymous variant with effect on splicing. As expected, most of the variants in our study were found in a homzygous state (in 15 families out of 17, or 88%). Compound heterozygosity was detected in two families (F009 and IRN_070, Tables 1, 2). Except for one homozygous allele in the RP1 gene (NM_0007201.1.c:788-1G > A) in family IRN_039, all other homozygous pathogenic variants were found in genes that were located inside a so-called run of homozygosity (ROH), generally spanning more than one megabase (Mb) in size.

Overall, 29% (5 out of 17 different alleles) of the variants reported here were previously unpublished. Similarly, 8 of the total 17 distinct alleles had no gnomAD entry, while the others were all very rare, with no occurrence of homozygous individuals in the gnomAD database (Table 3). Interestingly, we identified two variants, each segregating homozygously in two separate pedigrees: GUCY2D (NM_0007201.1.c:564dup, p.Ala189ArgfsTer130; families IRN_001 and IRN_042) and TULP1 (NM_0007232.1.c:1199G > A, p.Arg400Gln; families F007 and F034). All 7 missense variants with their predicted pathogenicity scores are listed in Table 3. While 6 of them were previously known to be pathogenic, including NMNAT1 (p.Glu257Lys)30, GCA3 (p.Arg283Gln)31, CRB1 (p.Cys201Arg)32, TULP1 (p.Arg400Gln)33, RDH12 (p.Arg239Trp)34, and CNGA3 (p.Ile174Phe), was novel. Additionally, segregation analysis within the available family members using Sanger sequencing revealed strict genotype–phenotype correlation for all nonsynonymous variants.
Figure 1. Pedigrees showing genotype–phenotype co-segregation for all detected variants. m, variant identified; +, wild-type allele.
Furthermore, we identified four already published nonsense pathogenic variants in our cohort, including *RDH12* (p.Gly127Ter)36, *CRB1* (p.Trp1293Ter)37, *IQCB1* (p.Arg489Ter)38, and *IQCB1* (p.Arg502Ter)38. Similarly, we identified three novel frameshift variants, in addition to the previously known frameshift in the *ABCA4* gene (p.Leu296CysfsTer4)39. Novel frameshift variants comprised *GUCY2D* (p.Ala189ArgfsTer130), *RP1* (p.Val196GlyfsTer33), and *USH1G* (p.Glu332ThrfsTer53).

Lastly, we detected a novel canonical splice site variant in the *RP1* gene (NM_006269.1:c.788-1G $>$ A) in family IRN_039, and a known pathogenic synonymous change predicted to alter splicing in the *BBS2* gene (NM_031885.3:c.471G $>$ A;p.Thr157 =) in family IRN_06540.

Discussion

Consanguinity is a major risk factor for the occurrence of rare recessive Mendelian disorders, yet it is a long-lived social practice in many Asian and African countries. In Iran, the second most populated country in the Middle East, 37.4% of all marriages are between consanguineous partners. Of these, 19.3% occur between first cousins and 18.1% involve second cousins7.

In this work, we used consanguinity as a means to facilitate identification of mutations in IRD cases, through an autozygome-guided NGS approach. Consistent with the high level of consanguinity displayed by the Iranian population, we observed a recessive inheritance pattern in all our cases, with the largest majority of them carrying indeed homozygous pathogenic variants in known IRD genes. With only one exception, all genes carrying homozygous pathogenic variants resided inside runs of homozygosity, thus supporting earlier studies that highlighted the importance of homozygosity mapping in consanguineous families41–46. Nevertheless, compound heterozygous patients were also identified, with mutations in *CRB1* and *NMNAT1*. Interestingly, these patients (from families F009, and IRN_070, respectively) also had relatively lower values of overall genomic homogeneity (197, and 71 Mb, respectively, over an average of 280.0 Mb in the cohort as a whole). The appearance of
compound heterozygosity in the Iranian population is not unprecedented, and an earlier study suggested that CRB1 is a commonly mutated gene in Iranian patients with non-syndromic IRDs\(^4\),\(^7\). Interestingly, our cohort did not include any instance of variants in USH2A, although mutations in this gene are considered to be among the most frequent causes of Usher syndrome or non-syndromic retinitis pigmentosa (RP)\(^4\).\(^8\).

The mutational spectrum in our cohort comprised 1 synonymous (with predicted effect on splicing), 1 splice change, 7 missense, 4 nonsense, and 4 frameshift variants. To establish pathogenicity of the novel missense variants we heavily relied on data from existing literature and the ACMG guidelines. Lastly, we assessed the status of each variant by comparing them with the Iranome database, to filter out common variants specific to Iranian population.

Unlike missense substitutions, the majority of nonsense and frameshift DNA changes can be considered as \textit{bona fide} deleterious mutations, since they mostly constitute loss-of-function (pLoF) alleles in genes where this pathogenicity mechanism is well known (criteria PVS1 of ACMG guidelines). We therefore classified all of them as such, based on this feature and the fact that they were all either absent or present at an extremely low frequency in the gnomAD database.

We also found a synonymous change in the BBS2 gene (c.471G > A, p.Thr157 =) co-segregating with Bardet-Biedl syndrome in one family (IRN_065) and reported in three previous studies\(^4\),\(^9\),\(^9\). Due to the high nucleotide conservation and its localization at an exon–intron boundary, it is possible that the c.471G > A substitution may impair the correct splicing of BBS2 pre-mRNA. Indeed, all splicing predictors tested (AdaBoost and RandomForest from dbscSNC, MaxEntScan, and spliceAI) indicated a high impact on splicing and disruption of the 5’ site. Our findings thus provide additional support to the potential pathogenicity of this apparently neutral variant. It is worthwhile to mention here that the majority of the previously reported patients with the p.Thr157 = mutation originated from Middle Eastern countries, such as Lebanon and Iran\(^4\),\(^9\),\(^9\). Although this variant perfectly co-segregates with disease in family IRN_065 and has been described in previous reports in association with Bardet-Biedl syndrome\(^4\),\(^9\),\(^9\), there is still a chance that it could represent a benign DNA change, detected in homozygosity in our patients by virtue of their ethnical origin. Additional functional studies are needed to definitely confirm its pathogenic role in syndromic IRD.

Family ID	Gene name	Transcript ID	cDNA change	Protein change	Variant type	Zygosity	ROH (Mb)	Autozygome (Mb)
F003	RDH12	NM_152443.2	c.379G > T	p.(Gly127Ter)	Nonsense	Hom 17.49	324.54	
F007	TULP1	NM_003322.5	c.1199G > A	p.(Arg400Gln)	Missense	Hom 21.58	391.04	
F009	CRB1	NM_201253.2	c.601T > C	p.(Cys201Arg)	Missense	Het NA	197.05	
			c.3879G > A	p.(Trp1293Ter)	Nonsense	Het NA	197.05	
F021	CNGA3	NM_001298.2	c.848G > A	p.(Arg283Gln)	Missense	Hom 16.5	312.59	
F027	RDH12	NM_152443.2	c.715C > T	p.(Arg239Trp)	Missense	Hom 20.78	359.39	
F034	TULP1	NM_003322.3	c.1199G > A	p.(Arg400Gln)	Missense	Hom 46.06	220.69	
IRN_001	GUCY2D	NM_000180.3	c.564dup	p.(Ala189ArgfeTer130)	Frameshift	Hom 21.19	425.35	
IRN_004	RCB1	NM_001023570.3	c.1465C > T	p.(Arg489Ter)	Nonsense	Hom 24.48	285.78	
IRN_028	RPI	NM_006269.1	c.584dup	p.(Val96GlyfsTer33)	Frameshift	Hom 4.25	338.69	
IRN_033	CNGA3	NM_001298.2	c.830G > A	p.(Arg277His)	Missense	Hom 16.5	242.18	
IRN_038	USH1G	NM_173477.4	c.980_993dup	p.(Glu332ThrfsTer53)	Frameshift	Hom 10.54	228.74	
IRN_039	RPI	NM_006269.1	c.788-1G > A	rsl	Splicing	Hom 31.05	213.79	
IRN_041	RCB1	NM_001319107.1	c.1504C > T	p.(Arg502Ter)	Nonsense	Hom 31.84	165.28	
IRN_042	GUCY2D	NM_000180.3	c.564dup	p.(Ala189ArgfeTer130)	Frameshift	Hom 2.96	322.99	
IRN_063	ARCA4	NM_000350.2	c.885del	p.(Leu296CysfsTer4)	Frameshift	Hom 9.94	353.75	
IRN_065	BBS2	NM_031885.3	c.471G > A	p.(Thr157 =)	Synonymous/splicing	Hom 31.05	185.25	
IRN_070	NMNAT1	NM_022787.3	c.520A > T	p.(Ile174Phe)	Missense	Het NA	71.41	
			c.769G > A	p.(Glu257Lys)	Missense	Het NA	71.41	

Table 1. List of genetic variants identified in 17 Iranian families. Hom homozygous, Het heterozygous, ROH runs of homozygosity, NA not available, Mb megabases.
Since geographic isolation and consanguinity-driven genomic homozygosity lead to the enrichment of rare founder mutations in specific societies or ethnic groups, the presence of such mutations in our cohort of patients from related families is not surprising. Similar to other reports, we identified two mutations that were present in more than one pedigree. The first, p.Ala189ArgfsTer130 in GUCY2D, was shared by two families originating from the Fars province in the Southwest of Iran and was found in a common ROH of 3.0 Mb with an identical haplotype. The second was a homozygous missense variant (p.Arg400Gln) in TULP1, detected in two families from the Razavi Khorasan province, in Northeastern Iran, again in a common ROH of 21.5 Mb with an identical haplotype. This latter variant has been previously reported in an Indian family in a homozygous state.

In summary, this work extends current knowledge about the genetic landscape of IRDs in Iran and, in line with previous studies, supports the evidence that homozygosity mapping is an effective tool for uncovering rare genomic variants in consanguineous pedigrees with rare recessive disorders. Most importantly, we hope that our data would contribute to better molecular diagnosis and access to future gene therapy trials in Iran.

Table 2. ClinVar classification, ACMG classification, and other features of all variants identified. NA not available.

Family ID	Gene name	Transcript ID	cDNA change	Protein change	Previous reports	ClinVar	ACMG	ACMG criteria
F003	RDH12	NM_152443.2	c.379G>T	p.(Gly127Ter)	36 Pathogenic	Pathogenic	PVS1, PM2, PP1, PP3, PP5	
F007	TULP1	NM_003322.5	c.1199G>A	p.(Arg400Gln)	33 Pathogenic	Likely pathogenic	PM2, PM5, PP1, PP3, PP5	
F009	CRB1	NM_201253.2	c.601T>C	p.(Cys201Arg)	31 Uncertain significance	Likely pathogenic	PM2, PM3, PP1, PP3	
			c.3879G>A	p.(Trp1295Ter)	37 Pathogenic	Pathogenic	PM1, PM2, PP1, PP3, PP5	
F021	CNGA3	NM_001298.2	c.848G>A	p.(Arg283Gln)	31 Pathogenic	Likely pathogenic	PM1, PM2, PM5, PP1, PP2, PP3, PP5	
F027	RDH12	NM_152443.2	c.715C>T	p.(Arg239Trp)	34 Likely pathogenic	Likely pathogenic	PM2, PM5, PP1, PP3, PP5	
F034	TULP1	NM_003322.3	c.1199G>A	p.(Arg400Gln)	33 Pathogenic	Likely pathogenic	PM2, PM5, PP1, PP3, PP5	
IRN_001	GUCY2D	NM_000180.3	c.564dup	p.(Ala189Argf-sTer130)	Novel NA	Pathogenic	PM1, PM2, PP1, PP3, PP5	
IRN_004	IQCB1	NM_001023570.3	c.1465C>T	p.(Arg489Ter)	39 Pathogenic	Pathogenic	PM1, PM2, PP1, PP3, PP5	
IRN_028	RPE1	NM_006269.1	c.584dup	p.(Val196GlyfTer33)	Novel NA	Pathogenic	PM1, PM2, PP1, PP3, PP5	
IRN_033	CNGA3	NM_001298.2	c.830G>A	p.(Arg277His)	35 Pathogenic	Likely pathogenic	PM1, PM2, PM5, PP1, PP3, PP5	
IRN_038	USH1G	NM_173477.4	c.980_993dup	p.(Glu332Thr-fTer53)	Novel NA	Pathogenic	PM1, PM2, PP1, PP3	
IRN_039	RPE1	NM_006269.1	c.788-1G>A	r.spl	Novel NA	Pathogenic	PM1, PM2, PP1, PP3	
IRN_041	IQCB1	NM_001319107.1	c.1504C>T	p.(Arg502Ter)	36 Pathogenic	Pathogenic	PM1, PM2, PP1, PP3, PP5	
IRN_042	GUCY2D	NM_000180.3	c.564dup	p.(Ala189Argf-sTer130)	Novel NA	Pathogenic	PM1, PM2, PP1, PP3	
IRN_063	ABCG4	NM_000350.2	c.885del	p.(Leu296CysfTer4)	38 Pathogenic	Pathogenic	PM1, PM2, PP1, PP3, PP5	
IRN_065	BBS2	NM_031885.3	c.471G>A	p.(Thr157=)	40 Uncertain significance	Uncertain significance	PM2, PP1, PP3	
IRN_070	NMNAT1	NM_022787.3	c.520A>T	p.(Ile174Phe)	Novel NA	Likely pathogenic	PM1, PM2, PM3, PP1, PP2, PP3	
			c.769G>A	p.(Glu257Lys)	36 Pathogenic	Likely pathogenic	PM3, PM2, PP1, PP2, BP4, PP5	
Table 3. Allele frequencies and pathogenicity scores for all variants identified. AF allele frequency, D deleterious (SIFT, LRT, PROVEAN) or disease causing (mutation taster) or damaging (Polyphen 2), B benign, T tolerated, N neutral, A disease causing automatic, H high, L low, M medium, NA not available.

Gene name	Transcript ID	cDNA change	Protein change	gnomAD AF	Trans DSM DBS	SIFT	Polyphen2	LRT	Mutation taster	Mutation assessor	PROVEAN AF	CAID	MaxEntScan	SpliceAI	dbscSNV ADA	dbscSNV RF	
ABCA4	NM_000350.2	c.885del	p.(Leu295Cys [IVS1] +2)	2.0 × 10^-5	NA	NA	NA	NA	NA	28.1	NA	NA	NA	NA	NA	NA	
BBS2	NM_001485.3	c.671G>A	p.(Ile224Lys)	4.4 × 10^-5	NA	NA	NA	NA	NA	NA	NA	0.96	0.005	0.005	0.005	0.005	
CNGA3	NM_001289.2	c.846G>A	p.(Arg282Gln)	4.6 × 10^-5	NA	NA	D	D	D	D	28.8	NA	NA	NA	NA	NA	NA
CRB1	NM_001255.2	c.601T>C	p.(Cys201Arg)	1.2 × 10^-5	NA	D	NA	D	NA	23.5	NA	NA	NA	NA	NA	NA	
CRB1	NM_001255.2	c.587G>A	p.(Ter130)	2.0 × 10^-5	NA	NA	NA	NA	D	26.7	NA	NA	NA	NA	NA	NA	
GUCY2D	NM_000180.3	c.564dup	p.(Glu189Argf-stop)	1.0 × 10^-5	NA	NA	NA	NA	NA	25.7	NA	NA	NA	NA	NA	NA	
JPCB1	NM_00102570.3	c.1435C>T	p.(Glu478Val)	4.2 × 10^-5	NA	NA	NA	NA	NA	26.6	NA	NA	NA	NA	NA	NA	
JPCB1	NM_00102570.3	c.1354G>T	p.(Arg448Trp)	9.0 × 10^-5	NA	NA	D	A	NA	36.4	NA	NA	NA	NA	NA	NA	
LDB1	NM_002445.3	c.579G>T	p.(Ter192)	1.0 × 10^-5	NA	NA	D	D	D	1.2 × 10^-5	T	D	22.9	NA	NA	NA	NA
RBP1	NM_0002619.1	c.564del	p.(Leu199Glnf-stop)	0.5395	NA	NA	NA	NA	NA	32.0	NA	NA	NA	NA	NA	NA	
RBP1	NM_0002619.1	c.788G>A	p.(Arg263Glu)	7.1 × 10^-5	NA	NA	D	D	D	8.9 × 10^-5	NA	NA	NA	NA	NA	NA	
TULP1	NM_003322.3	c.189G>T	p.(Ter63)	5.3 × 10^-5	NA	NA	NA	NA	NA	29.8	0.9999	0.954	0.005	0.005	0.005	0.005	
USH2G	NM_001322.13	c.980_993dup	p.(Arg327Trp)	2.4 × 10^-5	NA	NA	NA	NA	NA	28.6	NA	NA	NA	NA	NA	NA	

Received: 22 February 2021; Accepted: 6 September 2021
Published online: 29 September 2021
A.U.R., Z.R. and C.R. wrote the manuscript. A.U.R., N.B., and F.C. performed all experimental work, including DNA extraction, Sanger validation of WES results and segregation analysis. M.Q., N.B., and V.G.P. analyzed and to the Fondation Guillaume Gentil for support to ASF.

Acknowledgements
We would like to thank all of the participating families. We are also grateful to the Swiss Confederation for the award of a PhD fellowship to AUR, to Mashhad University of Medical Sciences for supporting part of the work, in the framework of the PhD thesis of AS, to the Swiss National Science Foundation for grant # 176097 to CR, and to the Fondation Guillaume Gentil for support to ASF.

Author contributions
A.U.R., Z.R. and C.R. wrote the manuscript. A.U.R., N.B., and F.C. performed all experimental work, including DNA extraction, Sanger validation of WES results and segregation analysis. M.Q., N.B., and V.G.P. analyzed WES and SNP genotype data. A.S., M.M., N.S., A.P., A.G.A., S.G., M.P., and M.P. recruited patients. A.S.F. and C.R. designed the study. All authors reviewed the manuscript.
Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to C.R.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021