Phylogeny of yeasts and related filamentous fungi within
Pucciniomycotina determined from multigene sequence analyses

Q.-M. Wang1, M. Groenewald2, M. Takashima3, B. Theelen2, P.-J. Han1, X.-Z. Liu1, T. Boekhout1,2,4*, and F.-Y. Bai1,2*

1State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; 2CBS Fungal Biodiversity Center (CBS-KNAW), Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; 3Japan Collection of Microorganisms, RIKEN BioResource Center, Koyodai, Tsukuba, Ibaraki 305-0074, Japan; 4Shanghai Key Laboratory of Molecular Medical Mycology, Changzheng Hospital, Second Military Medical University, Shanghai, China

Abstract: In addition to rusts, the subphylum Pucciniomycotina (Basidiomycota) includes a large number of unicellular or dimorphic fungi which are usually studied as yeasts. Ribosomal DNA sequence analyses have shown that the current taxonomic system of the pucciniomycetous yeasts which is based on phenotypic criteria is not concordant with the molecular phylogeny and many genera are polyphyletic. Here we infer the molecular phylogeny of 184 pucciniomycetous yeast species and related filamentous fungi using maximum likelihood, maximum parsimony and Bayesian inference analyses based on the sequences of seven genes, including the small subunit ribosomal DNA (rDNA), the large subunit rDNA D1/D2 domains, the internal transcribed spacer regions (ITS 1 and 2) of rDNA including the 5.8S rDNA gene; the nuclear protein-coding genes of the two subunits of DNA polymerase II (RPB1 and RPB2) and the translation elongation factor 1-α (TEF1); and the mitochondrial gene cytochrome b (CYTB). A total of 33 monophyletic clades and 18 single species lineages were recognised among the pucciniomycetous yeasts employed, which belonged to four major lineages corresponding to Agaricostilbomycetes, Cystobasidiomycetes, Microbotryomycetes and Mixymycetes. These lineages remained independent from the classes Atractiellomycetes, Classicumycetes, Pucciniomycetes and Tritrichomycetes formed by filamentous taxa in Pucciniomycotina. An updated taxonomic system of pucciniomycetous yeasts implementing the ‘One fungus = One name’ principle will be proposed based on the phylogenetic framework presented here.

Key words: Fungi, Basidiomycota, Pucciniomycotina, Yeasts, Multigene phylogeny.

Published online 2 October 2015; http://dx.doi.org/10.1016/j.simyco.2015.08.002. Hard copy: June 2015.

INTRODUCTION

Basidiomycetous yeasts are unicellular or dimorphic fungi that belong to the three lineages of the Basidiomycota, namely Pucciniomycotina, Ustilaginomycotina and Agaricomycotina (also previously known as Uredinomycetes, Ustilaginomycetes and Hymenomycetes, respectively) (Boekhout 1991, Bauer et al. 2006, Hibbett et al. 2007, Boekhout et al. 2011). At present, yeasts in the Pucciniomycotina comprise 28 genera, including 19 teleomorphic and 9 anamorphic ones (Bauer et al. 2009, Boekhout et al. 2011, Turchetti et al. 2011, Toome et al. 2013, de Garcia et al. 2015). Our understanding of the phylogenetic relationships of these basidiomycetous yeasts and their systematics largely improved due to sequence analysis of parts of the ribosomal DNA (rDNA) (Fell et al. 2000a, Scorzetti et al. 2002), but the full taxonomic consequences of these studies have not yet been made. For instance, teleomorphic and anamorphic genera are still treated separately, and many anamorphic genera, such as Rhodotorula and Sporobolomyces, are polyphyletic (Fell et al. 2000a, Scorzetti et al. 2002, Boekhout et al. 2011, Hamamoto et al. 2011, Sampaio 2011a). Species of these two genera occur in three classes in the Pucciniomycotina, and some Rhodotorula species occur even in another subphylum Ustilaginomycotina (Boekhout et al. 2011, Sampaio 2011a).

Earlier results using sequence analysis of the small subunit (SSU or 18S) rDNA indicated that the yeast members within Pucciniomycotina could be divided into four groups, designated as the Agaricostilbomycetidae, Erythrobasidiomycetidae, Sporidiobolomycetidae and subbrunneus clusters (Hamamoto & Nakase 2000, Nakase 2000). Sequence analyses of the large subunit (LSU or 26S) rDNA D1/D2 domains and the internal transcribed spacer regions (ITS 1 and 2) rDNA including the 5.8S rDNA gene; the nuclear protein-coding genes of the two subunits of DNA polymerase II (RPB1 and RPB2) and the translation elongation factor 1-α (TEF1); and the mitochondrial gene cytochrome b (CYTB). A total of 33 monophyletic clades and 18 single species lineages were recognised among the pucciniomycetous yeasts employed, which belonged to four major lineages corresponding to Agaricostilbomycetes, Cystobasidiomycetes, Microbotryomycetes and Mixymycetes. These lineages remained independent from the classes Atractiellomycetes, Classicumycetes, Pucciniomycetes and Tritrichomycetes formed by filamentous taxa in Pucciniomycotina. An updated taxonomic system of pucciniomycetous yeasts implementing the ‘One fungus = One name’ principle will be proposed based on the phylogenetic framework presented here.

Peer review under responsibility of CBS-KNAW Fungal Biodiversity Centre.
Copyright © 2016, CBS-KNAW Fungal Biodiversity Centre. Production and hosting by ELSEVIER B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
(James et al. 2006) and its derived taxonomy (Hibbett et al. 2007) showed the potential of this kind of analysis to improve our understanding of fungal evolutionary relationships and taxonomy.

In the present work, we employed the six genes that were used in the AFTOL project (James et al. 2006) and an additional mitochondrial gene, cytochrome b (CYTB) that was used in phylogenetic analyses of some basidiomycetous yeast genera (Biswas et al. 2001, 2005, Yokoyama 2005, Wang & Bai 2008) to resolve the tree of life of the pucciniomycetous yeasts. The aim of this work is to recognise monophyletic clades and to improve the phylogeny and taxonomy of this group of eukaryotic microorganisms. In addition, by using available data, mainly generated from the AFTOL project (http://www.aftol.org/data.php), we also inferred the evolutionary relationships between the unicellular yeast taxa and the main groups of filamentous fungi in the Pucciniomycotina.

MATERIALS AND METHODS

Yeast and filamentous taxa employed

One hundred and ninety nine strains belonging to 184 yeast species within Pucciniomycotina were studied (Table 1). They were mostly type and authentic strains from CBS Fungal Biodiversity Centre (CBS-KNAW), Utrecht, The Netherlands, the China General Microbiological Culture Collection Center (CGMCC), Institute of Microbiology, Chinese Academy of Sciences, Beijing, China, and the Japan Collection of Microorganisms (JCM), RIKEN BioResource Center, Saitama, Japan. The type strains of all pucciniomycetous yeast species included in the latest edition of The Yeasts, a Taxonomic Study (Kurtzman et al. 2011) were employed. In addition, fifteen pucciniomycetous yeast species that were published after the publication of that treatment were used in this study. Fifteen representative filamentous taxa from the Pucciniomycotina were employed as references and two taxa from Ustilaginomycotina were used as an outgroup (Table 1). The alignments and trees were deposited in TreeBASE (No. 18076).

Sequencing and molecular phylogenetic analyses

A set of seven genes or loci were included in this study, including three rDNA regions, namely SSU, LSU D1/D2 domains and ITS (including 5.8S rDNA); three nuclear protein-coding genes, namely the largest subunit of RNA polymerase II (RPB1), the second largest subunit of RNA polymerase II (RPB2), and translation elongation factor 1-α (TEF1); and the mitochondrial gene cytochrome b (CYTB). Sequencing of the ITS region and LSU D1/D2 domains were performed using methods described previously (Fell et al. 2000b, Wang & Bai 2004). SSU rDNA sequences were determined according to Wang et al. (2003). Sequences of CYTB were obtained as described by Wang & Bai (2008). PCR and sequencing primers for RPB1, RPB2 and TEF1 are listed in Table 2. PCR amplification and sequencing of the three nuclear protein-coding genes were performed using methods described previously (Wang et al. 2014). GenBank accession numbers for all the sequences determined in this study are listed in Table 1.

Sequences were aligned with the MAFFT program (Standley 2013) using the L-INS-I algorithm. The alignment datasets were analysed with Modeltest version 3.04 (Posada & Crandall 1998) using the Akaike information criterion (AIC) to find the most appropriate model of DNA substitution. A general time-reversible model of DNA substitution additionally assuming a percentage of invariant sites and Γ-distributed substitution rates at the remaining sites (GTR + I + G) was selected for Maximum likelihood (ML) and Bayesian inference (BI) analyses. ML analysis was conducted using RAxML-HPC 7.2.8 (Stamatakis 2006) with a rapid bootstrap analysis using a random starting tree and 1 000 bootstrap replicates searching for the best maximum-likelihood tree, and with GTR+GAMMAI as the model of evolution. BI analysis was conducted using MrBayes 3.1.2 (Ronquist et al. 2012) with the GTR + I + G model and 5 000 000 to 10 000 000 generations, two independent runs and four chains. The other parameters were set as default. The analysis was stopped when the standard deviation of split frequencies between the trees generated in the independent runs was below 0.01. Twenty five percent of these trees were discarded, the remaining were used to compute a 50 % majority rule consensus tree to obtain estimates for posterior probabilities. Maximum parsimony (MP) analysis was performed using PAUP* 4.0b10 (Swofford 2002) with a heuristic search with 1 000 random additions and TBR. Bootstrap analysis was performed from 1 000 replicates using 10 random additions and TBR for each replicate. The gaps in the alignment were treated as missing data. MulTrees and Steepest descent options were not in effect. A bootstrap percentage (BP) of ≥70 % or a Bayesian posterior probability (PP) of ≥0.9 was considered as significantly supported in all constructed trees in this study.

RESULTS AND DISCUSSION

Sequence data obtained

From the sequences of the yeast strains employed here, 98.4 % (188/191) TEF1, 98.9 % (174/176) RPB1, 97.9 % (186/190) RPB2, 87.1 % (162/186) CYTB, 51.8 % (102/197) SSU, 9.1 % (18/198) LSU D1/D2 and 8.1 % (16/198) ITS sequences were newly determined in this study and the remaining sequences were retrieved from GenBank (Table 1). PCR amplification and sequencing of rDNA regions were successful for all the species studied. The success ratios of PCR amplification and sequencing of the RPB1, RPB2, TEF1 and CYTB genes were 88 %, 91 %, 95 % and 93 %, respectively. The single gene sequences of the SSU rDNA, LSU rDNA D1/D2 domains, ITS + 5.8S rDNA, TEF1, RPB1, RPB2 and CYTB were aligned using the MAFFT algorithm (Standley 2013), resulting in alignments of 1 773, 646, 1 252, 1 023, 796, 1 270 and 387 nucleotide lengths, respectively. Different data sets consisting of the three rDNA regions, the four protein coding genes, and the combined seven genes, respectively, were constructed. When available, the corresponding sequences from representative filamentous taxa in Pucciniomycotina were also incorporated in the data sets. In addition, a data set of SSU and LSU rDNA D1/D2 sequences from the yeast strains employed in this study and those from the representative filamentous taxa compared in Bauer et al. (2006), Schell et al. (2011) and Toome et al. (2013) was constructed, because of the scarcity of available ITS and protein gene
Lineage/Clade	Species	Strain number	ITS	D1D2	SSU	RPB1	RPB2	TEF1	CYTB
Agaricostilbomycetes									
Agaricostilbales									
Kondoaceae									
Kondo	B. miscanthi	JCM 5733T	AF444516	AF189891	D38236	KJ708023	KJ708149	KJ707753	KJ707719
	B. phylia	JCM 7476T	AF444514	AF189894	D38237	KJ708022	KJ708152	KJ707756	KJ707727
	B. sorbi	AS 2.2303T	AF23343	AF23343	D38234	KJ708029	KJ708156	KJ707897	KJ707584
	B. subrosea	JCM 5735T	AF444565	AF189895	D38238	KJ708027	KJ708157	KJ707895	KJ707640
	B. thailandica	JCM 10651T	AB040114	EF384207	KJ708026	KJ708159	KJ707898	KJ707661	
	B. yuccicola	JCM 6251T	AF444518	AF189897	D38367	KJ708025	KJ708161	/	/
	Kondo aera	CBS 8352T	AF444562	AF189901	KJ708417	KJ708020	KJ708172	KJ707905	/
	K. malvinella	AS 2.1946T	AF444498	AF189903	D13776	KJ708021	KJ708173	KJ707896	KJ707586
Bensingtonia									
	B. ciliata	AS 2.1945T	AF444563	AF189887	D38233	KF706509	KF706536	KF706486	KJ707567
	B. naganoensis	JCM 5797T	AF444558	AF189893	D38366	KJ707960	KJ708151	KJ707755	KJ707722
	B. pseudonaganoensis	AS 2.2601T	DG224375	KJ707959	KJ708026	KJ708153	KJ707956	KJ707590	
Agaricostilbaceae									
	B. ingoldii	JCM 7445T	AF444519	AF189888	D38234	KJ707961	KJ708148	KJ707752	KJ707726
	B. musae	JCM 8801T	AF444569	AF189892	D34946	KJ707963	KJ708150	KJ707754	KJ707743
Agaricostilbum									
	Agaricostilbum hyphaenes	CBS 7811	AF444553	AF177406	AY657575	KJ707965	KJ708145	KJ707749	KJ707645
	A. pulcherinum	FO 29365	AJ026402	GU91289	FJ641966	KJ708424	KJ708345	/	/
	Sterigmatomyces elvisae	JCM 1822T	AF444551	AF177415	KJ708432	KJ707964	KJ708345	/	/
	S. elvis	JCM 1602	AB038053	KP216512	KP216516	KJ708077	KJ708208	KJ707852	AB040614
	S. halophilus	AS 2.1935T	AF444556	AF177416	D64119	KJ707962	/	/	KJ707890
	S. kasturi	CS 5730	AF444559	AF177407	U77662	/	/	KJ708163	KJ707883
	C. cuniculata	CBS 10086	KJ708465	KJ708368	KJ707985	KJ708164	KJ707886	KJ707593	KJ707594
	C. cuniculata	CBS 10065	KJ708466	KJ708369	KJ707984	KJ708165	KJ707887	KJ707594	KJ707594
Kurtzmanomyces									
	Kurtzmanomyces insolitus	JCM 10490T	AF444594	AF177408	KJ708424	KJ707986	KJ708175	KJ707893	KJ707885
	K. nectairei	AS 2.1950T	AF444494	AF177409	D64122	KJ707980	KJ708176	KJ707884	KJ707571
	K. tardus	JCM 10490T	AF444566	AF177410	KJ708425	KJ707992	KJ708177	KJ707885	KJ707686
	S. sasicola	AS 2.1933T	AF444548	AF177412	AB201688	KJ708335	KJ707900	KJ707565	KJ707565
	S. taupoensis	JCM 8770T	AF444592	AF177413	D68886	/	/	KJ708339	KJ707901

(continued on next page)
Table 1. (Continued)

Lineage/Clade	Species	Strain number	ITS	D1D2	SSU	RPB1	RPB2	TEF1	CYTB		
	S. xanthus	AS 2.1957^T	AF444547	AF177414	D64118	KJ707993	KJ708343	KJ707902	KJ707573		
lactophilus	S. lactophilus	JCM 7595^T	AF444545	AF177411	AB021675	/	KJ708312	KJ707889	KJ707642		
	S. iophatheri	CBS 11272^T	AB126046	AB124561	AB126046	KJ707988	KJ706315	KJ707880	KJ707608		
	Cystobasidiopsis nirenbergiae	BBA 65452^T	GG180106	FJ536254	/	/	/	/	/		
	Single-species lineage	Mycogloea nipponica	CBS 11308	KJ778629	KJ708456	KJ708370	KJ707802	KJ708194	KJ707882	KJ707609	
Incertae sedis in Agaricostilbales	Sporobolomyces clavatus	AS 2.2318^T	AY364839	AY364839	KJ708406	KJ707917	KJ708295	KJ707894	KJ707586		
	S. diospyri	JCM 12157^T	AB126047	AB124560	AB126047	KJ707989	KJ708296	KJ707904	KJ707696		
	S. dracophylli	AS 2.1959^T	AF444583	AF189982	D66882	KJ707987	KJ708299	KJ707879	KJ707575		
	S. pyrosiae	JCM 12159^T	AB126045	AB124562	AB126045	KJ707981	KJ708330	KJ707903	KJ707697		
	S. ruber	AS 2.1958^T	AF444550	AF189992	AB021686	KJ707983	KJ708333	KJ707899	KJ707574		
Single-species lineage	Bensingtonia sakaguchii	JCM 10047^T	AF444626	AF363646	AB001746	KJ707958	KJ708155	KJ707891	KJ707671		
Spiculogloeales	Sporobolomyces coprosmicola	JCM 8767^T	AF444576	AF189981	D66879	/	KJ708171	KJ707908	KJ707740		
	S. dimmenae	JCM 8762^T	AB038046	AB644404	D66881	KJ707991	KJ708297	KJ707907	KJ707739		
	S. linderae	JCM 8856^T	AF444582	AF189989	D66885	/	KJ708296	KJ707906	KJ707744		
	S. novozealandicus	JCM 8756^T	AB038048	KJ708467	KJ708443	KJ708073	KJ708319	KJ707851	KJ707738		
	S. subbrunneus	JCM 5278^T	AF444549	AF189997	AB21691	/	KJ707906	KJ707909	KJ707710		
Mycogloea	Mycogloea sp.	TUBFO40962	/	AY512868	DQ198791	/	/	/	/		
Spiculogloea	Spiculogloea sp.	TUB RB1040	/	AY512885	/	/	/	/	/		
Cystobasidiomycetes	Cystobasidiales	minuta	Cystobasidium fimetarium	DB1489	/	AY512843	AY124479	/	/	LM644071	/
	Rhodotorula benthica	JCM 10901^T	AB026001	AB026001	AB126647	KJ708081	KJ708214	KJ707842	KJ707691		
	R. calyptogena	JCM 10899^T	AB025996	AB025996	AB126648	KJ708075	KJ708218	KJ707840	KJ707690		
	R. laryngis	JCM 10953^T	AB078500	AB078500	AB126649	KJ708055	KJ708240	KJ707824	KJ707619		
	R. lysiniphila	JCM 5951^T	AB078501	AB078501	AB126650	KJ708074	KJ708243	KJ707845	KJ707721		
	R. minuta	AS 2.1516^T	AF190011	AF189945	D45367	KJ708059	KJ708246	KJ707825	KJ707562		
	R. pallida	JCM 3780^T	AB078492	AF189962	AB126651	KJ708056	KJ708253	KJ707826	KJ707621		
	R. pinicola	AS 2.2193^T	AF444292	AF444293	AB126652	KJ708057	KJ708257	KJ707827	KJ707579		
	R. stooffiae	JCM 10954^T	AF444627	AF444722	AB126653	KJ708058	KJ708266	KJ707828	KJ70629		
Single-species lineage	Occultifur externus	JCM 10725^T	AF444567	AF189910	AB055193	KJ708060	KJ708199	KJ707829	KJ707689		
Lineage/Clade	Species	Strain number	ITS	D1D2	SSU	RPB1	RPB2	TEF1	CYTB		
--------------	--------------------------------	---------------	-------------	------------	-------------	---------------	---------------	---------------	--------------		
Erythrobasidiales											
Erythrobasidium	Erythrobasidium hasegawianum	AS 2.1923T	AF444522	AF189899	D12803	KF706506	KF706534	KJ707776	KJ707563		
	Sporobolomyces elongatus	AS 2.1949T	AF444561	AF189983	AB021669	KJ708012	KJ708300	KJ707782	KJ707570		
	S. yunnanensis	AS 2.2090T	AB030353	AB127358	AF229176	KJ708015	KJ708344	KJ707779	KJ707576		
Bannoa	Bannoa sp.	MP 3490	DQ631900	DQ631898	DQ631899	/	DQ631901	DQ631902			
	B. hahajimensis	JCM 10336T	AB035897	AB082571	AB035897	KJ708014	KJ708146	KJ707750	KJ707682		
	Sporobolomyces bischofiae	JCM 10338T	AB035721	AB082572	AB035721	KJ708018	KJ708292	KJ707777	KJ707684		
	S. ogasawarensis	JCM 10326T	AB035713	AB082570	AB035713	KJ708017	KJ708323	KJ707781	KJ707681		
	S. syzygií	JCM 10337T	AB035720	AB082573	AB035720	KJ708011	KJ708338	KJ707778	KJ707683		
Single-species clade											
	Cyrenella elegans	CBS 274.82	KJ778626	KJ708454	KJ708360	KJ707980	KJ708168	KJ707830	KJ707620		
	Rhodotorula lactosa	CBS 5826T	AF444540	AF189936	D45366	KJ708016	KJ708239	/	AB040633		
Naohideales											
Naohidea	Naohidea sebacea	CBS 8477T	DQ911616	DQ831020	KP216515	KF706508	KF706535	KF706487	KJ707654		
	N. sebacea	CBS122592	/	/	/	KJ708019	KJ708198	KJ707783	KJ707612		
Incertae sedis in Cystobasidiomycetes											
	R. aurantiaca	JCM 8977T	AF444523	AF189920	AB126644	KP216521	KJ708211	KJ707762	AB040615		
	R. aurantiaca	JCM 3771T	AF444538	AF189921	KJ708436	KJ707970	KJ708212	KJ707757	AB040616		
		JCM 6356T	AF444544	AF189988	AB021674	KJ707977	KJ708310	KJ707760			
		JCM 7549T	AF444515	AF189991	AB021685	KJ708328	KJ707761	KJ707728			
		JCM 2959T	AF444511	AF189995	AB021687	/	/	KJ707758	KJ707703		
		JCM 3776T	AF444504	AF189944	AB126645	KJ707973	KJ708244	KJ707995	AB040635		
		JCM 8772T	AF444577	AF189980	D66880	KJ707966	KJ708296	KJ707798	KJ707742		
		JCM 2252T	AF444521	AF189984	AB021671	KJ707969	KJ708302	KJ707977	KJ707589		
	S. foliosa	JCM 2963T	AF444576	AF189985	KJ708433	KJ707968	KJ708304	KJ707799	KJ707705		
	S. gracilis	JCM 5299T	AF444546	AF189990	AB021677	KJ708324	KJ707955	KJ707712			
	S. oryzicola	JCM 5299T	AF444546	AF189990	AB021677	KJ708324	KJ707955	KJ707712			
	S. symmetricus	AS 2.2299T	AY364836	AY364836	KJ708350	KJ708337	KJ707800	KJ707582			
	S. vermiculatus	JCM 10247T	AB030335	AF460176	AB030322	KJ707967	KJ708342	KJ707801	KJ707675		
Sakaguchia	Rhodotorula cladiensis	CBS 10878T	FJ008055	FJ008049	KJ708354	/	KJ708219	KJ707647	KJ707603		
	R. lamelibrachii	CBS 9598T	AB025999	AB025999	AB126646	KJ708098	KJ708314	KJ707876	KJ707667		
	R. meli	CBS 10797T	FJ807883	KJ708452	KJ708355	KJ708085	KJ708245	KJ707555	KJ707602		
	R. oryzae	AS 2.2363T	AY335160	AY335161	KJ708352	KJ708100	KJ708250	KJ707853	KJ707587		
	R. oryzae	AS 2.3289	KP216523	KJ708451	KJ708353	KJ708103	KJ708251	KJ707848	KJ707592		
Lineage/Clade	Species	Strain number	ITS	D1D2	SSU	RPB1	RPB2	TEF1	CYTB		
--------------	----------------------------------	-----------------------	-----------	------------	------------	------------	------------	------------	------------		
Rhodotorula sp.	JCM 8162	KJ778625	KJ708453	KJ708356	KJ708079	KJ708268	KJ707858	KJ707732			
Sakaguchia dacryoidea	JCM 3795T	AF444597	AF189972	D13459	KJ708102	KJ708348	KJ707709				
Rhodotorula magnisporus	CBS 7999	AF444571	AF444723	KJ708351	KJ708099	KJ708346	KJ707878	KJ707647			
Rhodotorula bicembroneinensis	CBS 8598T	EU075189	EU075187	KJ708359	KJ708082	KJ708215	/	KJ707657			
S. dacryoidea	JCM 3789T	AF155971	AF444723	KJ708351	KJ708099	KJ708346	KJ707878	KJ707647			
S. magnisporus	JCM 11898T	AB112078	AB111954	KJ708428	KJ708013	KJ708317	KJ707780	KJ707695			
Microbotryomycetes	**Sporidiobolales**	****	**	**	**	**	**	**	**		
Rhodosporidium	JCM 9279T	AF444542	AF070420	AB073920	/	/	KJ707874	KJ707746			
R. diobovatum	JCM 3787T	AF444502	AF070421	AB073921	KJ708091	KJ708277	KJ707865	KJ707708			
R. kratochvilaevae	JCM 8171T	AF444520	AF071436	AB073923	KJ708095	KJ708205	KJ707863	KJ707733			
R. paladgenum	JCM 10292T	AF444492	AF071434	AB073924	KJ708094	KJ708206	KJ707870	KJ707676			
R. sphaerocarpum	JCM 8120T	AF444499	AF071435	AB073925	KJ708086	KJ708207	KJ707867	KJ707734			
R. toruloides	CBS 349	AF444498	AF071436	AB073926	KJ708090	KJ708278	/	KJ707623			
R. toruloides	AS 2.1389	KJ77637	KJ708092	KJ708265	KJ707866	KJ707866	KJ707625				
Rhodotorula araucariae	JCM 3770T	AF444510	AF070424	AB073927	KJ708096	KJ708209	KJ707862	AB041048			
R. dairenensis	CBS 4046T	AF444501	AF070425	AB073928	KJ708097	KJ708210	KJ707866	KJ707625			
R. evergladiensis	CBS 10880T	FJ008054	FJ008084	KJ708398	/	KJ708228	KJ707834				
R. glutinis	JCM 8208T	AF444539	AF070426	X89653	/	/	KJ707869	AB040626			
R. graminis	JCM 3775T	AF444505	AF070431	X89687	KJ708093	KJ708234	KJ707868	AB040628			
R. mucilaginosa	JCM 8115T	AF444541	AF070432	AB21668	/	/	KJ707861	KJ707731			
Sporobolomyces magnisporus	JCM 11898T	AB030342	AF207886	KJ708404	KJ708089	KJ708209	KJ707864	KJ707714			
Sporidiobolus microsporus	JCM 6882T	AF444535	AF070436	KJ708441	KJ708054	KJ708284	KJ707817	KJ707724			
Sporidiobolus microsporus	JCM 6882T	AF444535	AF070436	KJ708441	KJ708054	KJ708284	KJ707817	KJ707724			
Microbotryomycetes	**Sporidiobolales**	****	**	**	**	**	**	**	**		
R. fluviatile	JCM 10311T	AF189915	AF070437	AB073922	KJ708046	KJ708204	KJ707816	KJ707679			
R. lusitaniae	JCM 8547T	AF189915	AF070437	AB073924	KJ708047	/	KJ707812	KJ707737			
Rhodotorula colostris	CBS 349	JN246563	JN246563	KJ708399	KJ708051	KJ708220	KJ707818	KJ707622			
S. ruinesiae	JCM 1839T	AF444591	AF070434	AB021693	KJ708052	KJ708286	KJ707820	KJ707700			
S. odoratus	JCM 1164T	KJ778628	KJ708045	KJ708322	KJ707819	KJ707694					
Table 1. (Continued)

Lineage/Clade	Species	Strain number	ITS	D1D2	SSU	RPB1	RPB2	TEF1	CYTB
Kriegeriales									
Kriegeriaceae									
Kriegeria	K. eriophori	CBS 8387T	AF444602	NR_119455	DQ419918	KJ708144	KJ708174	KJ707936	KJ707649
glacialis	R. glacialis	CBS 10436T	EF151249	EF151258	KJ708381	KJ708067	KJ708233	KJ707831	KJ707597
R. psychrophenoica	CBS 10438T	EF151246	EF151255	KJ708382	KJ708071	KJ708259	KJ707859	KJ707598	
R. psychrolithica	CBS 10440T	EF151243	EF151252	KJ708383	/	KJ708260	KJ707833	KJ707599	
Single-species									
Camptobasidiaceae									
Glaciozyma	G. antarctica	JCM 9057T	AF444529	AF189906	DQ785788	KJ708131	KJ708182	/	KJ707745

(continued on next page)
Table 1. (Continued)

Lineage/Clade	Species	Strain number	ITS	D1D2	SSU	RPB1	RPB2	TEF1	CYTB		
Leucosporidiales	Leucosporidium creatinivorum	JCM 10699	KJ778627	KJ708455	KJ708385	KJ708064	KJ708221	KJ707857	KJ707687		
	L. creatinivorum	CBS 8620T	AF444629	AF189925	KJ708418	KJ708036	KJ708178	KJ707789	KJ707658		
	L. fellii	JCM 9887T	AF444508	AF189907	KJ708449	KJ708030	KJ708184	KJ707784	KJ707748		
	L. fragarium	JCM 9330	AF444530	AF070428	KJ708437	KJ708034	KJ708231	KJ707790	AB040623		
	L. fragarium	CBS 6254T	AF444530	AF070428	KJ708413	KJ708031	KJ708179	KJ707791	AB040623		
	L. golubevi	CBS 9651T	AY212987	AY212999	KJ708386	KJ708037	KJ708185	KJ707787	/		
	L. intermedium	JCM 5291T	AF444630	AF189889	D38235	KJ708132	KJ708188	KJ707785	KJ707711		
	L. muscorum	CBS 6921T	AF444527	AF070433	KJ708414	KJ708038	KJ708180	KJ707793	AB040638		
	L. scotti	JCM 9052T	AF444495	AF070419	X53499	KJ708033	KJ708186	KJ707788	AB040658		
	L. yakuticum	JCM 10701	AY212989	AY189971	KJ708426	KJ708032	KJ708274	KJ707794	KJ707688		
Microbotryales	Microbotryum reticulatum	CBS 101451	KJ778630	KJ708457	KJ708389	KJ708040	KJ708189	KJ707806	KJ707596		
	M. scabiosae	CBS 677.93	KJ708459	KJ708459	KJ708390	/	KJ708195	KJ707808	KJ70633		
	M. scabiosae	CBS 176.24	KJ708458	KJ708458	KJ708301	KJ708039	KJ708190	KJ707810	KJ70615		
	M. scorzonerae	CBS 685.93	KJ708461	KJ708461	KJ708392	/	KJ708191	KJ707804	KJ70635		
	M. scorzonerae	CBS 364.33	KJ708460	KJ708460	KJ708393	KJ708043	KJ708196	KJ707805	KJ70624		
	M. violaceum	CBS 143.21	KJ708462	KJ708462	KJ708388	KJ708042	KJ708192	KJ707811	KJ70613		
	Sphacelotheca hydropiperis	CBS 179.24	KJ708463	KJ708463	KJ708394	KJ708041	KJ708281	KJ707807	KJ70616		
	S. koordersiana	JAG 55	DQ832221	DQ832219	DQ832220	DQ832222	DQ832222	/	/		
	Single-species lineage	JCM 3932T	AF444524	AF189933	AY657013	/	KJ708235	KJ707802	/		
Heterogastridiales	Heterogastridium	CBS 591.93	GU291276	GU291290	KJ708412	KJ708009	KJ708170	KJ707770	KJ70630		
Incertae sedis in Microbotryomycetes	H. hordeae	JCM 1692T	AF444536	AF189923	KJ708363	KJ708130	KJ708216	KJ707949	AB040619		
	Rhodotorula bogoriensis	JCM 3929T	AF444526	AF189924	KJ708362	KJ708127	KJ708217	KJ707946	AB040620		
	R. buffonii	JCM 3934T	AF444531	AF189964	KJ708361	KJ708128	KJ708261	KJ707937	AB040642		
	R. creolica	JCM 10955T	AF444570	AF189926	KJ708365	KJ708135	KJ708222	KJ707942	/		
	R. pilati	JCM 9036T	AF444598	AF189963	KJ708364	KJ708137	KJ708265	KJ707947	AB040641		
	Sporobolomyces tsugae	JCM 2960T	AF444580	AF189998	AB021692	/	KJ708340	KJ707945	KJ707628		
	tsugae	JAG 55	DQ836223	DQ836222	DQ836222	DQ836222	DQ836222	/	/		
	yarrowii	CBS 11420T	GO121045	GO121044	KJ708366	KJ708069	KJ708264	KJ707849	KJ707610		
	R. straminea	CBS 10976T	EU872491	EU872489	KJ708367	KJ708065	KJ708269	KJ707844	KJ707606		
Lineage/Clade	Species	Strain number	ITS	D1D2	SSU	RPB1	RPB2	TEF1	CYTB		
--------------	---------	---------------	-----	------	-----	------	------	------	------		
	R. yarrowii	JCM 8232^T	AF444628	AF189971	AB032658	/	KJ708275	KJ707838	KJ707735		
	griseoflavus	JCM 12422^T	KP216522	AB175591	AB176530	KJ708142	KJ708303	KJ707944	KJ707698		
	S. griseoflavus	JCM 5653^T	AF444557	AF189986	D66884	KJ708143	KJ708305	KJ707950	KJ707717		
	yamatoana	Benningtonia yamatoana	AS 2.1956^T	AF444634	AF189896	D38239	KJ708141	KJ708160	KJ707948	KJ707572	
	Rhodotorula arctica	CBS 9278	AB478857	AB478858	/	KJ708371	KJ708070	KJ708210	KJ707856	KJ707666	
	singularis	R. lignophila	CBS 7109^T	AF444513	AF189943	/	KJ708372	KJ7081139	KJ708241	KJ707953	KJ707637
	Colacogloea	Colacogloea peniophorae	CBS 684.93	DQ202270	AY629313	DQ234565	DQ234569	DQ234550	DQ234566	/	
	Rhodotorula cycloclastica	CBS 8448^T	AF444732	AF444631	/	KJ708376	KJ707997	KJ708224	KJ707775	KJ707652	
	R. diffinens	JCM 1695^T	AF444533	AF075465	/	KJ708380	KJ708125	KJ708226	KJ707939	AB040621	
	R. eucalyptica	CBS 8499^T	EU075185	EU075183	/	KJ708377	KJ708061	KJ708227	KJ707839	KJ707655	
	R. folorum	JCM 1996^T	AF444633	AF317804	/	KJ708378	KJ708126	KJ708230	KJ707941	AB040622	
	R. philyra	JCM 3933^T	AF444506	AF075471	/	KJ708438	KJ708095	KJ708254	KJ707772	KJ707631	
	R. retinophila	CBS 8446^T	AF444624	AF444730	/	KJ708373	KJ708094	KJ708262	KJ707771	KJ707651	
	R. terpenoidalis	CBS 8445^T	AF444623	AF444729	/	KJ708374	KJ707999	KJ708272	KJ707774	KJ707650	
	Sporobolomyces falcatus	JCM 6838^T	AF444534	AF189934	/	KJ708445	KJ708004	KJ708237	KJ707803	AB040631	
	R. vanillica	JCM 9741^T	AF444575	AF189970	/	KJ708448	KJ708005	KJ708273	KJ707809	KJ707747	
	sonckii	R. auriculariae	JCM 1597^T	AF444507	AF188922	/	KJ708429	KJ708134	KJ708213	KJ707935	AB040617
	R. sonckii	JCM 3935^T	AF444601	AF189969	/	KJ708439	KJ708118	KJ708267	KJ707911	AB040643	
	Curvibasidium	Curvibasidium cygneicollum	JCM 10310^T	AF444900	AF189928	/	KJ708423	KJ708001	KJ708169	KJ707768	KJ707678
	C. cygneicollum	JCM 9029^T	AB038090	KP216511	/	KJ708444	KJ708062	KJ708232	KJ707836	AB040625	
	C. pallidicoralium	CBS 9029^T	AF444641	AF444736	/	KJ708420	KJ708000	KJ708273	KJ707809	KJ707747	
	Rhodotorula nothofagi	JCM 9034	AF444537	AF189950	/	KJ708447	KJ708002	KJ708248	KJ707765	AB040639	
	Reniforma	Reniforma strues	CBS 8263^T	AF444573	AF189912	/	KJ708157	KJ708122	KJ708200	KJ707927	KJ707648
	Single-species lineage	Pseudoleucosporidium fasciculatum	CBS 8786^T	KJ778628	AY212993	/	KJ708387	KJ707998	KJ708133	KJ707769	/
	Rhodotorula crocea	CBS 2029^T	FM957565	AY372179	/	KJ708410	KJ708007	KJ708223	KJ708213	KJ707618	
	R. ferulica	JCM 8231^T	AF444622	AF363645	/	KJ708431	KJ708008	KJ708236	KJ707764	AB040630	
	R. hylophila	JCM 1805^T	AF444622	AF363645	/	KJ708431	KJ708008	KJ708236	KJ707764	AB040630	
	R. javanica	JCM 9032^T	AF444532	AF189935	/	KJ708446	KJ708006	KJ708238	KJ707766	AB040632	
	Sporobolomyces inositophilus	JCM 5654^T	AF444559	AF189987	/	KJ708136	KJ708306	KJ707951	KJ707718	(continued on next page)	
Lineage/Clade	Species	Strain number	ITS	D1D2	SSU	RPB1	RPB2	TEF1	CYTB		
------------------------	-----------------------	---------------	-------	--------	-------	------------	------------	------------	---------------		
Mixiomyctes	Mixia	CBS 9802	DQ831010	DQ831009	D14163	KJ708076	KJ708193	KJ707837	KJ707670		
Tritirachiomycetes	Tritirachium oryzae	CBS 164.67	GQ329853	KF258732	JF779647	/	JF779648	JF779645	/		
	Tritirachium sp.	CBS 473.93	JF779664	JF779649	JF779650	/	JF779646	JF779651	/		
	Tritirachium sp.	CBS 265.96	JF779668	JF779652	JF779653	/	JF779654	/	/		
Pucciniomycetes	Chrysomyxa arctostaphyli	CFB22246	DQ200930	AY700192	AY657009	/	DQ408138	DQ435789	/		
	Endocronartium harknessii	CFB22250	DQ206982	AY700193	AY665785	/	DQ234551	DQ234567	/		
	Helicobasidium mompa	CBS 278.51	AY292429	AY254179	U77064	/	/	EF100614	/		
	Insolibasidium deformans	TD8183-1	/	AF522169	AY123292	/	/	/	/		
	Platygloea disciformis	IFO32431	DQ234565	AY629314	DQ234563	/	DQ234554	DQ056288	/		
	Puccinia graminis tritic	CRL75-36-700-3/ECS	AF468044	AF522177	AY125409	XM_00334476	XM_003321826	XM_00333024	/		
	Septobasidium canescens	DUKE-DAH(323)	DQ241446	DQ241479	DQ241410	/	/	/	/		
Atractiellomycetes	Helicogloea lagerheimii	FO 36341	AY512849	AY124476	/	/	/	/	/		
	H. variabilis	KW 1540	L20282	U78043	/	/	/	/	/		
	Platygloea vestita	DB 1280	AY512872	AY124480	/	/	/	/	/		
Classiculomycetes	Classicula fluitans	ATCC 64713	AY512838	AY124478	/	/	/	/	/		
	Jaculispora submersa	CCM 8127	AY512853	AY124477	/	/	/	/	/		
Ustilaginomycotina	Rhodotorula phylloplana	JCM 9035 T	AB038131	AF190004	AJ486258	KP322906	KP323063	KP323116	AB041051		
	Ustilago maydis	CBS 504.76/IFM 49220	AF453938	AY854090	X62396	XM401478	AY485636	AY885160	AB040663		
sequences of filamentous taxa in the _Pucciniomycotina_. Each of the data sets was subjected to ML, MP and BI analyses. The trees obtained were visually compared to inspect the phylogenetic concordance among the taxa analysed, based on which backbones of the trees shown here were obtained from ML analysis. The seven genes-based ML tree was used as the primary basis for lineage and clade recognition and definition, and as the starting point for the subsequent comparison and discussion.

Major lineages

The higher-level phylogenetic classification of the _Pucciniomycotina_ proposed in Aime et al. (2006) and Bauer et al. (2006) mainly based on SSU and LSU rDNA sequence analyses was adopted in Hibbett et al. (2007) and Boekhout et al. (2011). They distinguished eight classes, namely _Agaricostilbomycetes_, _Atractiellomycetes_, _Classidulomycetes_, _Cystobasidiales_, _Cryptomycocolacomycetes_, _Microbotryomycetes_, _Mixiomyces_ and _Pucciniomycetes_. Schell et al. (2011) proposed a new class _Tritirachiomycetes_ in this subphylum based on multiple gene analyses and septal pore ultrastructure to accommodate the anamorphic genus _Tritirachium_ that was once classified in the _Pezizomycotina_ (Ascomycota). This affiliation was recently confirmed by Manohar et al. (2014) and Aime et al. (2014).

In agreement with Boekhout et al. (2011) our phylogenetic analyses based on the seven-gene dataset showed that the majority of the yeast species employed belonged to four major lineages corresponding to _Agaricostilbomycetes_, _Cystobasidiales_, _Mixiomyces_ and _Pucciniomycetes_ (Fig. 1). The phylogenetic analyses of the three rDNA genes and four protein coding genes (Figs 2, 3) showed a similar result to that obtained from the analysis of the seven-gene dataset. However, the position of the _Spiculogloeales_ varied. In the seven genes-based tree this order showed a close relationship to the _Mixiomyces_ with 94–99 % BP and 1.0 PP support values.
The **Mixiomycetes** contains only one species *Mixia osmundae*, which is a fern parasite occurring on *Osmunda* ferns (Nishida et al. 1995, 2011). The close affinity of the *Spiculogloeales* with *Mixia osmundae* was also revealed and strongly supported in the trees drawn from the four protein-coding genes (Fig. 3). However, in the trees constructed from the three rDNA regions, the *Spiculogloeales* formed a lineage basal to *Agaricostilbomycetes* with 59–91% BP and 1.0 PP support values, while *Mixia osmundae* was located as a branch basal to the *Microbotryomycetes* lineage with 1.0 Bayesian PP support (Fig. 2).

The phylogenetic relationships between the yeast species and the filamentous fungal lineages recognised within *Pucciniomycotina* so far (Aime et al. 2006, 2014, Bauer et al. 2006, Boekhout et al. 2011, Schell et al. 2011) are shown in the tree constructed from the SSU and LSU rDNA D1/D2 domains sequences (Fig. 5). The yeast lineages mentioned above and the filamentous lineages, *Atractiellomycetes*, *Classicalimycetes*, *Pucciniomycetes* and *Tritirachiumycetes*, were separated as independent lineages. *Microbotryomycetes* exhibited a close relationship to the filamentous fungal lineage *Classicalimycetes* with moderate BP (56–79%) and strong PP (1.0) support, being in agreement with Aime et al. (2006, 2014) and Bauer et al. (2006). However, the phylogenetic relationships among the remaining lineages were not confidently resolved. The *Spiculogloeales* was located as a deep lineage basal to the *Agaricostilbomycetes* with 88–89% BP and 1.0 PP support (Fig. 5), being similar to the result shown in the tree based on the three rDNA regions (Fig. 2). This result suggests that the *Spiculogloeales* may represent a distinct class, supporting Bauer et al. (2006) and Aime et al. (2014) who indicated that the *Agaricostilbomycetes* might not be monophyletic and need to be separated into two classes because of the weakly supported monophyly of the class obtained from SSU rDNA sequence analysis.

Table 3. (Continued).

Lineage/Clade	Seven genes	rDNA	Protein genes	SSU + D1D2
	BP1/BP2/PP	BP1/BP2/PP	BP1/BP2/PP	BP1/BP2/PP
Erythrobasidium	100/100/1.0	97/86/1.0	nm/nm/nm	93/91/1.0
Banno	100/100/1.0	100/100/1.0	100/100/1.0	99/100/1.0
Incertae sedis	100/100/1.0	100/100/1.0	100/100/1.0	99/100/1.0
auranicata	100/100/1.0	100/100/1.0	100/100/1.0	99/100/1.0
marina	100/99/1.0	100/100/1.0	100/78/1.0	99/93/1.0
Sakaguchia	100/100/1.0	81/56/1.0	99/100/1.0	84/85/1.0
magnisporus	100/97/1.0	97/78/1.0	91/76/1.0	98/96/1.0
Microbotryomycetes	100/100/1.0	100/100/1.0	99/99/1.0	99/100/1.0
Sporidiobiales	88/100/1.0	99/100/1.0	82/100/1.0	91/93/1.0
Rhodosporidium	100/100/1.0	100/100/1.0	88/100/1.0	94/97/1.0
Mixed *Rhodosporidium*/Sporidiobolus	88/89/1.0	100/100/1.0	82/100/1.0	98/98/1.0
Sporidiobolus	100/100/1.0	100/100/1.0	74/100/1.0	98/100/1.0
Kriegeriales	ns/nm/nm	nm/nm/nm	nm/nm/nm	nm/nm/nm
glacialis	99/100/1.0	86/92/1.0	100/93/ns	52/ns/1.0
Leucosporidiales	95/99/1.0	98/97/1.0	91/96/1.0	74/70/1.0
Leucosporidium	95/99/1.0	98/97/1.0	91/96/1.0	74/70/1.0
Microbotryales	81/100/1.0	100/100/1.0	nm/nm/nm	66/74/ns
Microbotryum	100/100/1.0	100/100/1.0	100/100/1.0	ns/75/1.0
Incertae sedis	100/100/1.0	100/100/1.0	100/100/1.0	99/100/1.0
tsugae	82/93/nm	nm/nm/nm	93/94/1.0	nm/nm/nm
yarrowii	100/100/1.0	100/100/1.0	100/100/1.0	99/99/1.0
griseoflavus	100/100/1.0	100/100/1.0	100/100/1.0	99/99/1.0
yamatoana	100/100/1.0	100/100/1.0	100/100/1.0	93/98/1.0
singularis	100/100/1.0	100/100/1.0	100/100/1.0	99/100/1.0
Colacogloea	99/89/1.0	67/86/ns	72/85/1.0	nm/nm/nm
vanillica	100/100/1.0	100/100/1.0	100/100/1.0	99/100/1.0
sonckii	100/100/1.0	100/100/1.0	100/100/1.0	99/100/1.0
Curvibasidium	100/100/1.0	100/100/1.0	100/100/1.0	99/100/1.0

Note. BP1 and BP2, bootstrap values from the maximum likelihood and maximum parsimony analyses, respectively; PP, Bayesian posterior probability; nm: not monophyletic; ns, not supported.
Boekhout et al. (2011) were resolved with strong statistical support values in all the trees drawn from different data sets using different algorithms (Table 3, Figs 2–5). However, as shown above, the Spiculogloeales formed a sister lineage to Mixiomycetes, rather than to the Agaricostilbales in the trees drawn from the seven genes and the four protein-coding genes (Figs 3, 4). The order Spiculogloeales was proposed by Bauer et al. (2006) for a well-supported clade formed by two unidentified teleomorphic species, Spiculogloea sp. RB 1040 and Mycogloea sp. FO 40962, resulted from phylogenetic analyses of the joint SSU/LSU data set. Sporobolomyces (pro parte) was included in this order due to the fact that Sporobolomyces coprosimicola showed a close relationship with Spiculogloea sp. RB 1040 in the tree from the LSU rDNA sequences (Bauer et al. 2006). In the Spiculogloeales lineage recognised from the seven-gene dataset obtained in this study, five anamorphic species of the genus Sporobolomyces, namely S. linderae, S. coprosimicola, S. subbrunneus, S. dimmenae and S. novazealandicus, formed the subbrunneus clade which was resolved and strongly supported in all the trees constructed in this study (Figs 2–5). The SSU and LSU rDNA D1/D2 tree showed that this clade was closely related with Spiculogloea sp. RB 1040 and Mycogloea sp. FO 40962 formed a branch basal to Spiculogloea sp. RB 1040 and the subbrunneus clade with strong BP and PP support (Fig. 5). The species of Mycogloea shared some phenotypic characters with those of Spiculogloea, including the presence of dimorphism, mycoparasitism and presence of tremelloid haustorial cells subtended by clamp connections (Bandoni 1998).

However, previous molecular analyses (Aime et al. 2006, 2014, Bauer et al. 2006) and this study (Fig. 5) indicated that Mycogloea does not appear monophyletic. The genus Spiculogloea contains four described species with S. occulta as the type (Roberts 1996, 1997, Hauerslev 1999, Trichies 2006). However, molecular data are not available from any of them at present. Additional molecular analyses on a better taxonomic sampling including the type species are needed to resolve the phylodetic placements of Mycogloea and Spiculogloea species.

In the Agaricostilbales lineage, nine well-supported clades with yeasts species occurred, namely Agaricostilbum, Bensingtonia, Chionosphaera, Kondoia, Kurtzmanomyces, ingoldii, lactophilus, ruber and sasicola. In addition, Bensingtonia sakaguchii and a filamentous species, Mycogloea nipponica that has a yeast stage, were each recognised to represent a clade (Table 3, Figs 2–4).

The Agaricostilbum clade contained two teleomorphic Agaricostilbum species and two anamorphic Sterigmatomyces species. The type species of both genera were included in this clade. Agaricostilbum species form synnemata-like basidiomata and have a stable yeast state with buds usually produced on short denticles (Wright 1970, Wright et al. 1981, Bandoni & Boekhout 2011). The Sterigmatomyces species produce conidia on stipes and appear to lack a filamentous stage (Fell 1966, 2011a). Species of Agaricostilbum and Sterigmatomyces occurred together in trees drawn from the LSU rDNA D1/D2 domains (Fell et al. 2000b), ITS (Scorzetti et al. 2002) and from all data sets generated in this study (Figs 2–5), suggesting that they represent a robust single clade.

The two Bensingtonia species, B. musae and B. ingoldii, which were assigned to the Agaricostilbum clade in Scorzetti et al. (2002) and to the Agaricostilbaceae in Bauer et al. (2006) and Boekhout et al. (2011), formed the ingoldii clade distinct from, but closely related to the Agaricostilbum clade with strong support values in all the trees obtained in this study (Figs 2–5). These two Bensingtonia species form ballistoconidia but do not form conidiogenous stalks (Nakase et al. 1989, 2011, Takashima et al. 1995), thus being different from the Agaricostilbum and Sterigmatomyces species. Therefore, the two Bensingtonia species are assigned in a separate clade in this study.

The Kondoia clade accommodated two Kondoia species including the type species of this genus, K. malvinella, and seven anamorphic species of the genus Bensingtonia (Table 1, Fig. 4). The Bensingtonia clade contained B. ciliata, the type species of the genus, and two other species B. naganoensis and B. pseudonaganoensis. Each of the Kondoia and the Bensingtonia clades received strong support values in all the trees obtained from different data sets (Table 3, Figs 2–5). The Bensingtonia clade was assigned to the Agaricostilbaceae in Bauer et al. (2006) and Boekhout et al. (2011) based on LSU rDNA sequence analyses. However, Wang et al. (2012) indicated that this clade was closely related to the Kondoia clade. The close relationship of this clade with the Kondoia clade was strongly supported in the trees constructed from different data sets in this study (Figs 3–5), suggesting that the Bensingtonia clade should be assigned to the Kondoia clade.

From the species included in the Chionosphaeraceae in Bauer et al. (2006, 2009) and Boekhout et al. (2011), five distinct clades and two single species lineages were distinguished (Table 3, Figs 2–5). The three anamorphic Kurtzmanomyces species including the type species of this genus formed a distinct clade closely related to the teleomorphic species Mycogloea nipponica that forms auricularioid basidia (Bandoni 1998). Though the latter has a Kurtzmanomyces-like state, the connection between Kurtzmanomyces and M. nipponica needs to be addressed further as discussed in Sampiao (2011b). The original description of M. nipponica based on a Japanese collection did not include a living culture (Bandoni 1998). The culture from which molecular data were obtained was isolated from a collection made in Taiwan (Kirschner et al. 2003). It is not clear whether the Kurtzmanomyces species have a sexual Mycogloea-like stage and if the remaining five Mycogloea species (Bandoni 1998) have a Kurtzmanomyces-like yeast stage. The present and previous (Aime et al. 2006, 2014, Bauer et al. 2009) studies indicate that the genus Mycogloea is polyphyletic and species of this genus occur in the Agaricostilbales and Spiculogloeales. Thus, at present, we consider it better to treat M. nipponica as representing a clade separated from the Kurtzmanomyces clade. The two teleomorphic Chionosphaera species including the generic type Ch. apobasidialis formed an independent clade with a close affinity to the Kurtzmanomyces clade and M. nipponica (Fig. 4). The genus Chionosphaera is characterised by holobasidia that are different from the gasteroid basidia of Mycogloea nipponica (Bandoni 1998, Kwon-Chung 2011).

The ten Sporobolomyces species in the family Chionosphaeraceae employed in this study were separated into three different clades, namely the sasicola clade with three species, the lactophilus clade with two species, and the ruber clade with five species (Table 1, Fig. 4). The lactophilus and sasicola clades showed a close relationship in all the trees obtained (Figs 2–5). The sasicola clade recognised in Scorzetti et al. (2002) based on LSU rDNA D1/D2 sequence analysis included Sporobolomyces lactophilus, however, the inclusion of this species in the sasicola clade was not supported in the ITS tree (Scorzetti et al. 2002). The close relationship of the three species in the sasicola clade and the two species in the lactophilus clade was
Fig. 1. Phylogeny of yeast species in the Pucciniomycotina inferred from the combined sequences of the SSU rDNA, LSU rDNA D1/D2 domains, ITS regions (including 5.8S rDNA), RPB1, RPB2, TEF1 and CYTB. The tree backbone was constructed using maximum likelihood analysis. Bootstrap percentages of maximum likelihood and maximum parsimony analyses over 50% from 1,000 bootstrap replicates and posterior probabilities of Bayesian inference above 0.9 are shown respectively from left to right on the deep and major branches resolved. Bar = 0.2 substitutions per nucleotide position.
Fig. 2. Phylogeny of yeast species in the Pucciniomycotina inferred from the combined sequences of the SSU rDNA, LSU rDNA D1/D2 domains, and ITS regions (including 5.8S rDNA). The tree backbone was constructed using maximum likelihood analysis. Bootstrap percentages (BP) of maximum likelihood and maximum parsimony analyses over 50% from 1000 bootstrap replicates and posterior probabilities (PP) of Bayesian inference above 0.9 are shown respectively from left to right on the deep and major branches and in the brackets following the clades resolved. The branches ending with filled diamonds represent single-species clades. Bar = 0.1 substitutions per nucleotide position. Note: ns, not supported (BP < 50% or PP < 0.9); nm, not monophyletic.
not supported in the LSU rDNA D1/D2 tree constructed in Boekhout et al. (2011) either. Thus, we prefer to maintain the lactophilus and the sasicola clades as distinct clades. Bauer et al. (2009) described the teleomorphic genus Cystobasidiopsis with only one species, C. nirenbergiae, and showed that it clustered together with S. lactophilus based on neighbour-joining analysis of the LSU rDNA D1/D2 sequences. Our ML, MP and BI analyses of the LSU rDNA D1/D2 sequences
also clustered C. nirenbergiae together with S. lactophilus and S. lophatheri with 71–98 % BP and 1.0 PP supports (data not shown). More sequence data are needed to confirm the relationship of C. nirenbergiae with the lactophilus clade. The close relationship of the lactophilus and the sasicola clades with the Chionosphaera and Kurtzmanomyces clades occurred in all trees obtained in this study, supporting that they belong to the Chionosphaeraceae.
Fig. 5. Phylogeny of yeast taxa and filamentous fungi in the Puccinioomycotina inferred from the combined sequences of SSU rDNA and LSU rDNA D1/D2 domains. The tree backbone was constructed using maximum likelihood analysis. Bootstrap percentages (BP) of maximum likelihood and maximum parsimony analyses over 50% from 1000 bootstrap replicates and posterior probabilities (PP) of Bayesian inference above 0.9 are shown respectively from left to right on the deep and major branches and clades resolved. The branches ending with filled diamonds represent single-species clades. Bar = 0.02 substitutions per nucleotide position. Note: ns, not supported (BP < 50% or PP < 0.9).
The **ruber** clade was assigned to the *Chionosphaeraceae* in Boekhout et al. (2011), but its affinity to the other clades of this family mentioned above was not supported in this study. In trees drawn from the rDNA regions and the four protein-coding genes, the **ruber** clade was located as a sister lineage to the *Agaricostibaceae* and the *Kondaceae*, respectively (Figs 2, 3). In the seven genes-based tree, this clade was resolved as a sister lineage to the other families within *Agaricostilbomycetes* (Fig. 4), which suggests that the **ruber** clade represents a separate family in this class.

Bensingtonia sakaguchii was consistently located as a separate lineage basal to the family *Chionosphaeraceae* in different trees with strong BP and PP support values (Figs 2–5). Phenotypically, this species has Q9 as the major ubiquinone that differs from the other species in the *Chionosphaeraceae* that have Q10 (Boekhout et al. 2011).

Cystobasidiomycetes

This class mainly consists of taxa known from yeast stages only. Three orders, *Cystobasidiales*, *Erythrobasidiales* and *Naohidea*, were distinguished by Aime et al. (2006, 2014), Bauer et al. (2006) and Boekhout et al. (2011) based on LSU rDNA sequence analyses. However, the circumscription of the *Erythrobasidiales* in Aime et al. (2006) is different from that in the latter two studies. In addition to the three orders, we observed four more sister clades in the *Cystobasidiomycetes* in the tree from the seven genes (Fig. 6), which were also largely resolved and supported in the trees from the rDNA and the four protein gene datasets (Figs 2, 3).

The teleomorphic species *Naohidea sebacea* in the *Naohidea* formed a basal branch in the *Cystobasidiomycetes* in all the trees constructed in this study (Figs 2, 3, 5, 6), being in agreement with Boekhout et al. (2011) and Sampaio & Chen (2011). This species is mycoparasitic, forms cream-colored colonies, has ‘simple’ septal pores and reproduces by long and slender basidia without probasidia (Oberwinkler 1990, Sampaio & Chen 2011).

The *Cystobasidiomycetes* proposed in Bauer et al. (2006) contains two teleomorphic genera, *Cystobasidium* and *Occultifur*, and some anamorphic *Rhodotorula* species based on SSU and LSU rDNA sequence analyses. Recently, Yurkov et al. (2015) confirmed the close relationship of nine described *Rhodotorula* species in the *R. minuta* clade with *Cystobasidium fimetarum*, the type species of the genus, based on ML analysis of SSU, ITS, LSU rDNA D1/D2 and TEF1 sequences. They transferred the *Rhodotorula* species to the genus *Cystobasidium*. The monophyly of the *Cystobasidium* clade was shown in all the trees generated in this study with strong support values (Figs 2, 3, 5, 6). Though the separation of *Occultifur externus* from the other taxa in the *Cystobasidiomycetes* was not resolved in Sampaio & Oberwinkler (2011) based on LSU rDNA D1/D2 sequence analysis, it was located as a distinct branch basal to the *Cystobasidiomycetes* clade in all the trees obtained in this study (Figs 2, 3, 5, 6), being in agreement with Nagahama et al. (2006), Boekhout et al. (2011) and Yurkov et al. (2015). *C. fimetarum* and *O. externus* share some morphological characters, including the presence of clamp connections and haustoria, a similar basidial morphology and mode of basidiospore germination. The former species differs, however, from the latter by the presence of probasidia (Sampaio et al. 1999, Scorza et al. 2002, Sampaio & Oberwinkler 2011). The phylogenetic and phenotypic comparisons suggest that *O. externus* represents a separate clade. The yeast species with hydrogenated coenzyme Q10 system (Q-10H2) formed two clades in the *Erythrobasidiales*, namely the *Bannoa* and *Erythrobasidium* clades, which was proposed by Bauer et al. (2006). The *Bannoa* clade included a teleomorphic species *Bannoa hahajimensis*, an undescribed *Bannoa* species MP 3490 (Scorza et al. 2002) and three *Sporobolomyces* species (Table 1, Fig. 6). The *Erythrobasidium* clade contained the monotypic teleomorphic genus *Erythrobasidium* and two *Sporobolomyces* species (Table 1, Fig. 6). The close phylogenetic relationship of the two clades was resolved in almost all the trees obtained, but their sexual life cycles are distinguishable. *Erythrobasidium hasegawianum* produces unicellular basidia without mating (Hamamoto 2011, Hamamoto et al. 1988), while *Bannoa hahajimensis* produces unicellular basidia on a clamp connection formed after mating (Hamamoto et al. 2002).

Two anamorphic species *Rhodotorula lactosa* and *Crenellina elegans* were located as basal branches to the two clades in the *Erythrobasidiales* in the trees drawn from the seven genes and the four protein coding genes (Figs 3, 6). The affinity of *R. lactosa* with the *Erythrobasidiales* was also supported in the rDNA trees, which located *R. lactosa* as a sister branch to the *Erythrobasidium* clade (Fig. 2). This result is consistent with Boekhout et al. (2011) and Sampaio (2011a), though the major CoQ of *R. lactosa* is Q-9 (Yamada & Kondo 1973). The phylogenetic position of *Cy. elegans* remains uncertain. In contrast to the results obtained from the seven-gene and four protein coding gene sequence analyses, this species was located in a branch basal to the *Cystobasidiomycetes* and *Erythrobasidiales* in the tree obtained from the three rDNA genes with strong support (Fig. 2), being in agreement with the result shown in Sampaio (2011c) based on LSU rDNA D1/D2 sequence analysis. *Cy. elegans* is an unusual species as it forms conidia with radiate appendages resembling those of aquatic hyphomycetes. It also forms clamp connections in the hyphae and telospores, although germination of telospores with basidia has not been observed (Gochanour 1981, Sampaio 2011c). The phylogenetic and phenotypic comparisons suggest that *Cy. elegans* represents an independent lineage in *Cystobasidiomycetes*.

The *marina* clade included *Rhodotorula marina* and five *Sporobolomyces* species (Table 1, Fig. 6). Interestingly, all *Sporobolomyces* species in this clade form nearly symmetrical ballistoconidia, differing from the other *Sporobolomyces* species that typically form asymmetrical ballistoconidia (Shivas & Rodrigues de Miranda 1983, Wang & Bai 2004). The *aurantiaca* clade contained two *Rhodotorula* and three *Sporobolomyces* species (Table 1, Fig. 6). The *marina* and *aurantiaca* clades were also recognised in Scorza et al. (2002), Nagahama et al. (2006) and Boekhout et al. (2011). A close relationship of these two clades was shown in the tree from the three rDNA genes (Fig. 2), but was not supported in the trees from the four protein-coding genes and the seven genes (Figs 1, 3). Species from these two clades were included in the *Erythrobasidiales* in Aime et al. (2006). This conclusion, however, was not supported in the present study. In the rDNA and the four protein-coding genes-based trees, the position of these two clades varied (Figs 2, 3). In the seven-genes-based tree, the *marina* and *aurantiaca* clades were resolved as sister lineages to the *Erythrobasidiales* (Fig. 6). The *magnisporus* clade consisted of *Sporobolomyces magnisporus* and three *Rhodotorula* species described recently.
Fig. 6. Phylogeny of yeast species in the Cystobasidiomycetes inferred from the combined sequences of SSU rDNA, LSU rDNA D1/D2 domains, ITS regions (including 5.8S rDNA), RPB1, RPB2, TEF1 and CYTB. The tree backbone was constructed using maximum likelihood analysis. Bootstrap percentages (BP) of maximum likelihood and maximum parsimony analyses over 50 % from 1,000 bootstrap replicates and posterior probabilities (PP) of Bayesian inference above 0.9 are shown respectively from left to right on the deep and major branches and clades resolved. The branches ending with filled diamonds represent single-species clades. Bar = 0.05 substitutions per nucleotide position. Note: ns, not supported (BP < 50 % or PP < 0.9); nm, not monophyletic.
by Pohl et al. (2011). Sporobolomyces magnisporus was assigned to the Erythrobasidiales in Boekhout et al. (2011). The close relationship of the magnisporus clade with the Erythrobasidiales was shown in Pohl et al. (2011) and in the rDNA genes-based tree in this study (Fig. 2). However, in the trees from the four protein coding genes and the seven genes, the relationships of the magnisporus clade with the other clades in Cystobasidiomycetes were not resolved (Figs 3, 6).

The Sakaguchia clade included the monotypic teleomorphic genus Sakaguchia and five anamorphic Rhodotorula species (Table 1, Fig. 6). This clade was consistently resolved and strongly supported in all the trees constructed in this study (Table 3, Fig. 6) and previous studies (Nagahama et al. 2006, Boekhout et al. 2011). The genus Sakaguchia was treated as ‘incertae sedis’ in Aime et al. (2006), Bauer et al. (2006) and Boekhout et al. (2011), but was assigned to the Erythrobasidiales in Fell (2011b). The close phylogenetic relationship of the Sakaguchia clade with the clades in Cystobasidiomycetes was not resolved in any of the trees generated in this study (Figs 2, 3, 5, 6). Furthermore, Sakaguchia dacyroidea produces teliospores (Yamada et al. 1994, Fell & Statzell-Tallman 1998), that are different from the sexual structures of Bannoia and Erythrobasidium species in the Erythrobasidiales. Our results suggest that the Sakaguchia clade together with the marina, aurantiaca and magnisporus clades represent lineages distinct from the currently recognised orders in the Cystobasidiomycetes.

Microbotryomycetes

More than half of the yeast species comprised in this study belong to the class Microbotryomycetes. Within this class, six and nine clades were distinguished by Scorzetti et al. (2002) and Boekhout et al. (2011), respectively. Five orders, namely Heterogastridiales, Kriegeriales, Leucosporidiales, Microbotryales and Sporidiobolales, have been proposed in this class mainly based on SSU, LSU and ITS-5.8S rDNA sequence analyses (Sampaio et al. 2003, Aime et al. 2006, 2014, Bauer et al. 2006, Hamamoto et al. 2011, Toome et al. 2013). These orders were also recognised in this study. In addition to the clades that could be assigned to the five orders, we observe a considerable number of clades that did not belong to any of the orders.

The Sporidiobolales was resolved as a monophyletic group with strong BP and PP support values (Table 3, Fig. 7). Three clades, namely Rhodesporidium, Sporidiobolus and mixed Rhodesporidium/Sporidiobolus clades (Fig. 7), are in agreement with Boekhout et al. (2011). The Rhodesporidium clade was composed of nine Rhodotorula and six Rhodesporidium species and Sporobolomyces alborubescens, including the type species of the former two genera (Rhodotorula glutinis and Rhodesporidium toruloides). The Sporidiobolus clade contained 15 Sporobolomyces and five Sporidiobolus species, including the type species of these two genera (Sporobolomyces roseus and Sporidiobolus johnsonii). The mixed Rhodesporidium/Sporidiobolus clade consisted of nine species from the four genera mentioned above (Table 1, Fig. 7). The three clades were well-supported in the trees drawn from the seven-gene and the rDNA datasets with 100 % BP and 1.0 PP supports (Figs 2, 7). In the tree derived from the four protein coding gene dataset, each of the three clades was also resolved as monophyletic group by ML and BI analyses with strong support values (Table 3), but was not resolved as a monophyletic group by MP analysis (Fig. 3).

The Leucosporidiales included two teliospore-forming yeast genera, namely Leucosporidium and Mastigobasidium, and the anamorphic genus Leucosporidiella (Table 2, Fig. 7). The latter was proposed by Sampaio et al. (2003) as the anamorphic counterpart of Leucosporidium to accommodate the Rhodotorula species that belong to the Leucosporidiales. In this study, the described Mastigobasidium, Leucosporidium and Leucosporidiella species except Leucosporidium fasciculatum were located in the monophyletic Leucosporidium clade, which was resolved in all the trees constructed from different data sets (Figs 2, 3, 5, 7). The assignment of Leucosporidium felli and Mastigobasidium intermedium to the Leucosporidiales is uncertain in Sampaio et al. (2003) because of their clustering with the Microbotryales in the Bayesian Markov chain Monte Carlo (MCMC) analysis of LSU rDNA D1/D2 sequences. The affinity of L. felli and M. intermedium with the Leucosporidium clade was also not supported in Boekhout et al. (2011). In the present study, the close relationship of these two species within the Leucosporidium clade was resolved and strongly supported in all the trees obtained (Figs 2, 3, 5, 7), being in agreement with Yurkov et al. (2012) and de Garcia et al. (2015). Yurkov et al. (2012) described Leucosporidium drummii, that produces hyphae without clamp connections and intercalary teliospores. The teliospores germinate with either typical basidia for species of the genus Leucosporidium or produce, depending on the conditions, hyphae that originated from curved melabasidia similar to those of Mastigobasidium intermedium (Golubev 1999, Sampaio et al. 2003, Yurkov et al. 2012). Recently, Laich et al. (2014) described an anamorphic species as Leucosporidium escuderoi f.a. based on the new code for fungal nomenclature (McNeill et al. 2012), de Garcia et al. (2015) transferred the species of the genera Mastigobasidium and Leucosporidiella into the genus Leucosporidium and proposed a new genus Pseudoleucosporidium to accommodate the species Leucosporidium fasciculatum. Another Leucosporidium species, L. antarcticum, was transferred to the genus Glaciozyma which was proposed for a group of psychrophilic yeasts from various cold environments, such as soil, seawater and sediment, in Antarctica and European glaciers (Turchetti et al. 2011). Recently, a new species Glaciozyma litorale was isolated from silt, alga and coastal sand in the White Sea intertidal zone, supporting the psychrophilic nature of this genus (Kachalkin, 2014). The genus Glaciozyma was assigned to the family Camptobasidiaceae in the Kriegeriales by Toome et al. (2013) based on LSU rDNA D1/D2 sequence analysis.

Six species from the order Kriegeriales proposed by Toome et al. (2013) were employed in this study, including Glaciozyma antarctica representing the family Camptobasidiaceae, and Kriegeria eriophori and four Rhodotorula species representing the family Kriegeriaceae (Table 1). These species were located together in a cluster in the seven-gene tree (Fig. 7). The affinity of G. antarctica with the species in the Kriegeriaceae was not supported by ML and MP analyses. In the rDNA and the four protein-coding genes-based trees, G. antarctica was not located in the same cluster with the Kriegeriaceae species (Figs 2, 3), suggesting that the order Kriegeriales defined by Toome et al. (2013) may not be monophyletic. Among the four Rhodotorula species in this order, R. glacialis, R. psychrophenolica and R. psychrophila (Margesin et al. 2007) formed a strongly supported clade labeled as glacialis in all the trees obtained (Table 3, Figs 2, 3, 5, 7). The close relationship between the monotypic teleomorphic genus Kriegeria and the glacialis clade was shown in different trees, but the statistic support values were
Fig. 7. Phylogeny of yeast species in the Microbotryomycetes inferred from the combined sequences of SSU rDNA, LSU rDNA D1/D2 domains, ITS regions (including 5.8S rDNA), RPB1, RPB2, TEF1 and CYTB. The tree backbone was constructed using maximum likelihood analysis. Bootstrap percentages (BP) of maximum likelihood and maximum parsimony analyses over 50 % from 1 000 bootstrap replicates and posterior probabilities (PP) of Bayesian inference above 0.9 are shown respectively from left to right on the deep and major branches and clades resolved. The branches ending with filled diamonds represent single-species clades. Bar = 0.05 substitutions per nucleotide position. Note: ns, not supported (BP < 50 % or PP < 0.9); nm, not monophyletic.
low or lacking (Table 3), suggesting they represent separate clades. The species *Rhodotorula rosulata* formed a branch basal to the *Kriegeria* and the *glacialis* clades in the trees from the seven genes and the three rDNA genes with 100 % BP and 1.0 PP supports values (Figs 2, 7), suggesting that *R. rosulata* represents another clade in the *Kriegeriales*. Toome et al. (2013) showed that *R. rosulata* was closely related to *Meredith-blackwellia eburnea* in their ML analysis of LSU, SSU and ITS.
sequences. These authors, however, did not transfer *R. rosulata* to *Meredithblackwellia* because of the lack of statistic support. The relationship between *R. rosulata* and *Me. eburnea* needs to be addressed further.

Within the *Microbotryales* as defined by Bauer et al. (1997) only one known anamorphic yeast species *Rhodotorula hordea* was included based on LSU rDNA D1/D2 sequence analysis (Boekhout et al. 2011, Sampaio 2011a). In agreement with Boekhout et al. (2011) this species was located as a basal branch of the order with strong support value in the trees from the seven genes (Fig. 7) and the rDNA genes (Fig. 2) in this study. However, in the tree from the four protein-coding genes, the affinity of the species with the *Microbotryales* was not resolved (Fig. 3). The closest relative of *R. hordea* is *Ustilytoma fluidans*, a parasite of *Glyceria* (Graminiae) plants (Vánky 2002). In the LSU rDNA D1/D2 domains, *R. hordea* differs from *Ustilytoma fluidans* by only one mismatch (Sampaio 2011a), suggesting that the former represents a yeast stage of *U. fluidans* or a closely related *Ustilytoma* species. No yeast species is included in the *Heterogastriales* which includes the genus *Heterogastrium*.

The species that could not be assigned to any recognised orders in *Microbotryomycetes* formed 10 clades and 7 monotypic lineages. In addition to the four *Rhodotorula* species which were included in the *Colacogloea* clade in Boekhout et al. (2011) and Sampaio (2011a), two *Rhodotorula* species and *Sporobolomyces falcatus* (Table 2, Fig. 7) were included in this clade together with the dimorphic mycoparasite *Colacogloea peniophorae*, which forms minute basidicarps in nature (Sampaio 2011). In the phylogenetic trees obtained from the seven genes, *Rhodotorula foliorum, Rhodotorula diffiusa* and *Sporobolomyces falcatus* clustered in the *Colacogloea* clade (Fig. 7). Though the affinity of these three species with this clade was weak or not supported in the trees from the rDNA genes (Figs 2, 5), this was supported in the tree from the four protein-coding genes (Fig. 3).

The *Curvibasidium* clade contained two teleomorphic *Curvibasidium* species (Table 1). *Leucosporidium fasciculatum* was located basal to this clade with 100% BP and 1.0 PP support values in the trees from the seven genes, the rDNA and the four protein-coding genes (Figs 2, 3, 7). The close relationship of *L. fasciculatum* with the *Curvibasidium* clade was also shown in previous studies (Sampaio et al. 2004, Boekhout et al. 2011, Sampaio, 2011e), however, in contrast to *Curvibasidium, L. fasciculatum* lacks clamp connections and forms septate basidia (phragmobasidia) (Sampaio 2011d). Therefore, *L. fasciculatum* has been placed in a new genus *Pseudoleuco- sporidium* by de Garcia et al. (2015). The *vanillica* clade contained two *Rhodotorula* species as recognised by Sampaio et al. (2004) and Boekhout et al. (2011). The *Curvibasidium* and *vanillica* clades and *L. fasciculatum* were located basal to the *Leucosporidiales* in the trees from the seven-genes with moderate PP support values (Fig. 7) and in the tree from the rDNA genes with strong supports by all algorithms employed (Fig. 2). However, in the tree from the four protein-coding genes, the close relationships of these two clades with the *Leucosporidiales* were not resolved (Fig. 3). Phenotypically, the *Curvibasidium* species form non-septate basidia, which is a unique feature in the *Puccinomyctolina* (Sampaio et al. 2004).

Among the species tentatively assigned to the *yamatoana/Leucosporidium antarcticum* group in Boekhout et al. (2011), three (*Kriegeria eriophorii, Camptobasidium hydrophilum* and *Leucosporidium antarcticum*) were assigned to the *Kriegeriales* by Toome et al. (2013). From the remaining species of this group, four clades and two single-species lineages were distinguished in this study (Fig. 7). The *buffonii* clade contained three *Rhodotorula* species, the *tsgae* clade included *Sporobolomyces tsgae* and two *Rhodotorula* species, and the *yarrowii* clade comprised three *Rhodotorula* species. These three clades clustered together in the ML and MP trees based on the seven genes with weak ML BP support (Fig. 7). The BI tree from the seven genes, and the trees from the rDNA and the four protein-coding genes did not support the close relationship of these three clades (Figs 2, 3, 7). *Rhodotorula cresolica* was located in the *tsgae* clade in the tree from the four protein-coding genes with 93–94% BP and 1.0 pp support values (Fig. 3). This phylogeny was also supported by the ML and MP analyses of the seven genes, though not supported in the BI tree from the seven genes and the trees from the rDNA dataset (Figs 2, 5, 7).

The *griseoflavus* clade containing two *Sporobolomyces* species, the *yamatoana* clade with *Bensingtonia yamatoana* and *Rhodotorula arctica*, and the *singularis* clade with *Sporobolomyces singularis* and *Rhodotorula lignophila*, clustered together with high BP and PP values in all the phylogenetic trees constructed (Figs 2, 3, 5, 7). Each of these clades received strong support values in the trees. *Sporobolomyces inositophilus* was located in the same cluster with these three clades with strong support values (Fig. 7), however, its relationship to each of the clades was not resolved by ML and BI, suggesting that this species may represent a separate clade. In addition, species of the *griseoflavus* and *yamatoana* clades were characterised by the presence of Q10 and Q9, respectively, supporting their separation as two clades.

Rhodotorula auriculariae located in the *yamatoana/Leuco- sporidium antarcticum* group in Boekhout et al. (2011) was shown to be closely related with *Rhodotorula sonckii*, which was located as a basal branch of the *Microbotryomycetes* in Boekhout et al. (2011). The *sonckii* clade formed by these two species clustered with the *Microbotryales* and *Heterogastriales* in the tree from the seven genes (Fig. 7). The close relationship of this clade with the *Microbotryales* was also supported in the tree from the rDNA genes (Fig. 2), but not supported in the tree from the four protein-coding genes (Fig. 3). The relationship of the *sonckii* clade with the *Heterogastriales* was not resolved in the analyses of the rDNA and the four protein-coding genes (Figs 2, 3). *Rhodotorula ferulica* was also placed in the *yamatoana/Leucosporidium antarcticum* group by Boekhout et al. (2011). This species was located basal to the *Colacogloea* clade in the ML tree from the seven genes but the BP support was weak. This relationship was, however, not resolved by the other algorithms used in this study (Fig. 7, Table 3).

The following *Rhodotorula* species, *R. crocea*, *R. hylophila*, and *R. javanica*, occupied isolated positions in the *Micro- botryomycetes* with their closest relatives not being resolved. Their phylogenetic positions changed in different trees constructed from different data sets using different algorithms (Figs 2, 3, 5, 7). The species *Reniforma strues*, which was located at the deepest branch in the *Microbotryomycetes* in Boekhout et al. (2011), exhibited a relationship with *Heterogastriales pycnidio- deum* (*Heterogastriales*) in the trees from the seven and the rDNA genes with strong BP and PP support values (Figs 2, 7). However, the position of the former was uncertain in the tree from the four protein-coding genes (Fig. 3). *Reniforma strues* is a morphologically unique anamorphic yeast species, forming reniform cells and buds (Pore & Sorenson 1990, Pore & Fell 2011).
CONCLUSION

The molecular phylogeny of yeasts and related dimorphic and filamentous basidiomycetes in the Puccinimycotina was inferred based on analyses of sequences of seven genes using different phylogenetic algorithms. The major phylogenetic groupings of pucciniomycetous yeasts observed in previous studies based on the LSU rDNA D1/D2 domains or ITS-5.8S sequences (Fell et al. 2000b, Scorzetti et al. 2002, Boekhout et al. 2011) were confirmed in the present study. In each of the major groups, more robust topologies with higher resolution were achieved in this study than obtained before. The yeast taxa employed were assigned into four major lineages, namely Agaricostilbomycetes, Cystosporobolomyces, Microbotryomycetes, and Mixiomyces. These lineages are independent from Atractiellomycetes, Classicilumycetes, Cryptomyco colacomyces, Pucciniomycetes and Tritirachiomycetes that are formed by filamentous taxa in the Puccinimycotina.

The orders distinguished in previous studies except the Kriegeriales were all resolved as monophyletic groups in this study. The order Spiculogloeales were all resolved as monophyletic groups in this study. In addition to the orders distinguished in previous studies except the Kriegeriales, several groups that seem to represent new orders were recognised. The boundaries of some of these new groups remain to be defined. A total of 33 monophyletic clades and 18 single species lineages were recognised among the pucciniomycetous yeasts employed in this study (Tables 1, 3). As shown previously, the majority of the currently anamorphic genera are polyphyletic. For example, Rhodotorula and Sporobolomyces species occurred in 17 and 23 clades, respectively. These genera and related teleomorphic ones need to be redefined. A considerable number of new genera need to be proposed to accommodate the monophyletic clades that do not include any generic type species. The next step will be to propose an updated taxonomic system for yeasts and related taxa within Puccinimycotina based on the phylogenetic framework presented here and to implement the ‘One fungus = One Name’ principle.

ACKNOWLEDGEMENTS

This study was supported by grants No. 30970013 and No. 3101010392 from the National Natural Science Foundation of China (NSFC), No. 2012078 from the Youth Innovation Promotion Association of the Chinese Academy of Sciences and No. 10CDP019 from the Royal Netherlands Academy of Arts and Sciences (KNAW). TB is supported by grant NPRP 5-298-3-086 of Qatar Foundation. The authors are solely responsible for the content of this manuscript.

REFERENCES

Aime MC, Matheny PB, Henk DA, et al. (2006). An overview of the higher level classification of Puccinimycotina based on combined analyses of nuclear large and small subunit rDNA sequences. Mycologia 98: 896–905.

Aime MC, Toome M, McLaughlin DJ (2014). Puccinimycotina. In: The mycota. Vol. VII, Part A: Systematics and evolution (McLaughlin DJ, Spatafora JW, eds), 2nd edn. Springer-Verlag, Berlin: 271–294.

Bandoni RJ (1998). On some species of Mycogloea. Mycology 39: 31–36.

Banderi RJ, Boekhout T (2011). Agaricostilbum Wright (1970). In: The yeasts, a taxonomic study (Kurtzman CP, Fell JW, Boekhout T, eds), 5th edn. Elsevier, Amsterdam: 1375–1378.

Bauer R, Begerow D, Sampaio JP, et al. (2006). The simple-septate basidio- mycetes: a synopsis. Mycological Progress 5: 41–66.

Bauer R, Metzler B, Begerow D, et al. (2009). Cystobasidiomycetin anamergenese, a new agaricostilbomycete (Puccinimycotina). Mycological Research 113: 960–966.

Bauer R, Oberwinkler F, Vänky K (1997). Ultrastructural markers and systematics in smut fungi and allied taxa. Canadian Journal of Botany 75: 1273–1314.

Biswas SK, Wang L, Yokoyama K, et al. (2005). Molecular phylogenetics of the genus Trichosporon inferred from mitochondrial cytochrome b gene sequences. Journal of Clinical Microbiology 43: 5171–5178.

Biswas SK, Yokoyama K, Nishimura K, et al. (2001). Molecular phylogenetics of the genus Rhodotorula and related basidioscytum yeasts inferred from the mitochondrial cytochrome b gene. International Journal of Systematic and Evolutionary Microbiology 51: 1191–1199.

Boekhout T (1991). A revision of ballistoconidium-forming yeasts and fungi. In: Studies in Mycology 33: 1–104.

Boekhout T, Fonseca A, Sampaio JP, et al. (2011). Discussion of teleomorphic and anamorphic basidioscytum yeasts. In: The yeasts, a taxonomic study (Kurtzman CP, Fell JW, Boekhout T, eds), 5th edn. Elsevier, Amsterdam: 1339–1372.

de García V, Coelho MA, Maia TM, et al. (2015). Sex in the cold: taxonomic reorganization of psychrotolerant yeasts in the order Leucosporidiales. FEMS Yeast Research 15: fov019. http://dx.doi.org/10.1036/femsyr/fov019.

Fell JW (1986). Sterigmatomyces, a new fungal genus from marine areas. Antonie Van Leeuwenhoek 39: 90–104.

Fell JW (2011a). Sterigmatomyces Fell (1966). In: The yeasts, a taxonomic study (Kurtzman CP, Fell JW, Boekhout T, eds), 5th edn. Elsevier, Amsterdam: 1991–1994.

Fell JW (2011b). Sakaguchia Y, Yamada, Maeda & Mikata (1994). In: The yeasts, a taxonomic study (Kurtzman CP, Fell JW, Boekhout T, eds), 5th edn. Elsevier, Amsterdam: 1541–1544.

Fell JW, Boekhout T, Fonseca A, et al. (2000a). Basidioscytum yeasts. In: The mycota VII, Systematic and evolution part B (Esser K, Lemke PA, eds). Springer-Verlag, Berlin: 3–35.

Fell JW, Boekhout T, Fonseca A, et al. (2000b). Biodiversity and systematics of basidioscytum yeasts as determined by large-subunit rDNA D1/D2 domain sequence analysis. International Journal of Systematic and Evolutionary Microbiology 50: 1351–1371.

Fell JW, Statzell-Tallman A (1998). Rhodosporidium Banno. In: The yeasts, a taxonomic study (Kurtzman CP, Fell JW, Boekhout T, eds), 4th edn. Elsevier, Amsterdam: 678–692.

Golubev VV (1999). Mastigobasidium, a new teleomorphic genus for the perfect state of ballistosporosis yeast Bensingtonia intermedia. International Journal of Systematic Bacteriology 49: 1301–1305.

Gochenaur SE (1981). Cyrenella eleana gen. et sp. nov., a dikaryotic ana- morph. Mycotaaxon 13: 267–277.

Hamamoto M (2011). Erythrobasidium Hamamoto, Sugiyama & Konagata (1991). In: The yeasts, a taxonomic study (Kurtzman CP, Fell JW, Boekhout T, eds), 5th edn. Elsevier, Amsterdam: 1433–1435.

Hamamoto M, Boekhout T, Nakase T (2011). Sporobolomyces Klyuyev & van Niel (1924). In: The yeasts, a taxonomic study (Kurtzman CP, Fell JW, Boekhout T, eds), 5th edn. Elsevier, Amsterdam: 1929–1990.

Hamamoto M, Nakase T (2000). Phylogenetic analysis of the ballistoconidium-forming yeast genus Sporobolomyces based on 18S rDNA sequences. International Journal of Systematic and Evolutionary Microbiology 50: 1373–1380.

Hamamoto M, Sugiyama J, Konagata K (1988). Transfer of Rhodotorula hasagawaee to a new basidioscytum genus Erythrobasidium as Eryth- robasidium hasagawaee comb. nov. The Journal of General and Applied Microbiology 34: 279–287.

Hamamoto M, Thanh VN, Nakase T (2002). Bannoahahajimensis gen. nov., sp. nov., and three related anamorphs, Sporobolomyces bischofiae sp. nov., Sporobolomyces ogasawarensis sp. nov. and Sporobolomyces syzygi sp. nov., yeasts isolated from plants in Japan. International Journal of Systematic and Evolutionary Microbiology 52: 1023–1032.

Hauerslev K (1995). New and rare species of Heterobasidiomycetes. Mycotaaxon 72: 465–486.
Derxomyces gen. nov. and Hannaella gen. nov., and description of eight novel Derxomyces species. *FEMS Yeast Research* **8**: 799–814.

Wang QM, Bai FY, Zhao JH, et al. (2003). *Bensingtonia changbaiensis* sp. nov. and *Bensingtonia sorbi* sp. nov., novel ballistoconidium-forming yeast species from plant leaves. *International Journal of Systematic and Evolutionary Microbiology* **53**: 2085–2089.

Wang QM, Boekhout T, Bai FY (2012). *Bensingtonia rectispora* sp. nov. and *Bensingtonia bomiensis* sp. nov., novel ballistoconidium-forming yeast species from plant leaves collected in Tibet. *International Journal of Systematic and Evolutionary Microbiology* **62**: 2039–2044.

Wang QM, Theelen B, Groenewald M, et al. (2014). Moniliellomycetes and Malasseziomycetes, two new classes in Ustilaginomycotina. *Persoonia* **33**: 41–47.

Wright JE (1970). *Agaricostilbum*, a new genus of Deuteromycetes on palm spathes from Argentina. *Mycologia* **62**: 679–682.

Wright JE, Bandoni RJ, Oberwinkler F (1981). *Agaricostilbum*: an auricularioid basidiomycete. *Mycologia* **73**: 880–886.

Yamada Y, Kondo K (1973). Coenzyme Q system in the classification of the yeast genera *Rhodotorula* and *Cryptococcus*, and the yeast-like genera *Sporobolomyces* and *Rhodosporidium*. *The Journal of General and Applied Microbiology* **19**: 59–77.

Yamada Y, Maeda K, Mikata K (1994). The phylogenetic relationships of *Rhodosporidium dacryoides* Fell, Hunter et Tallman based on the partial sequences of 18S and 26S ribosomal RNAs: the proposal of *Sakaguchia* gen. nov., a heterobasidiomycetous yeast genus. *Bioscience, Biotechnology and Biochemistry* **58**: 99–103.

Yokoyama K (2005). Phylogenetic relationship of the genus *Malassezia* based on mitochondrial cytochrome b gene. *Japanese Journal of Medical Mycology* **46**: 151–156.

Yurkov AM, Kachalkin AV, Daniel HM, et al. (2015). Two yeast species *Cystobasidium psychroaquaticum* f.a. sp. nov. and *Cystobasidium rietchiei* f.a. sp. nov. isolated from natural environments, and the transfer of *Rhodotorula minutula* clade members to the genus *Cystobasidium*. *Antonie Van Leeuwenhoek* **107**: 173–185.

Yurkov AM, Schafer AM, Begerow D (2012). *Leucosporidium drummii* sp. nov., a member of the Microbotryomycetes isolated from soil. *International Journal of Systematic and Evolutionary Microbiology* **62**: 728–734.