Correlation Classes on the Landscape:
To What Extent is String Theory Predictive?

Keith R. Dienes1, Michael Lennek2

1 Department of Physics, University of Arizona, Tucson, AZ 85721 USA
2 Centre de Physique Théorique, Ecole Polytechnique, CNRS, F-91128 Palaiseau, France

Abstract

In light of recent discussions of the string landscape, it is essential to understand the degree to which string theory is predictive. We argue that it is unlikely that the landscape as a whole will exhibit unique correlations amongst low-energy observables, but rather that different regions of the landscape will exhibit different overlapping sets of correlations. We then provide a statistical method for quantifying this degree of predictivity, and for extracting statistical information concerning the relative sizes and overlaps of the regions corresponding to these different correlation classes. Our method is robust and requires no prior knowledge of landscape properties, and can be applied to the landscape as a whole as well as to any relevant subset.
Over the past few years, the existence and implications of a vast string theory “landscape” have attracted considerable attention [1]. Indeed, research in this area has spanned a considerable range of topics and followed a number of different approaches [2–16]; for recent reviews, see Ref. [17]. However, because the specific low-energy phenomenology that can be expected to emerge from string theory depends critically on the particular choice of vacuum state within the landscape, and because the space of possible string vacua is extremely large (with some estimates putting the number of phenomenologically interesting vacua at 10^{500} or more [2]), the question which naturally arises is a critical one. To what extent can we say that string theory is predictive? In what sense can we say that certain low-energy phenomenological features of the observed universe are predicted by, or derivable from, string theory?

The question of predictivity goes to the heart of what it means to be doing science rather than mathematics. As such, there can be no more critical question for string theory than this. Of course, predictivity is not an absolute necessity for all aspects of science — indeed, good science often begins with observation and classification. However, while observers and experimentalists need not be primarily concerned with making predictions, theorists must be: theories of science must incorporate the ability not only to explain, but also to predict. This is especially true for string theory, which, as a branch of high-energy physics, must be judged by the prevailing standards of the field. Moreover, even though many of the direct experimental consequences of string theory lie at presently inaccessible energy scales, not all will be. And even if all of the firm experimental consequences of string theory were somehow proven to lie at scales exceeding those reachable by current accelerator technology, this would not free string theory from its obligations to make predictions which are testable at those higher energy scales — i.e., testable in principle, if not in practice.

On the one hand, even accepting this standard, one might argue that it is too much to ask that string theory be predictive in and of itself. From this perspective, one should rightly compare string theory not with a specific quantum field-theoretic model such as the Standard Model, but with quantum field theory itself — indeed, both string theory and quantum field theory can be viewed as languages or frameworks within which the subsequent act of model-building takes place. Just as the Lagrangian of the Standard Model is just one out of many possible self-consistent quantum field-theoretic Lagrangians, the correct string model might be just one out of many possible self-consistent string vacua. Thus, according to this argument, string theory is just as predictive as quantum field theory: neither becomes predictive until a particular model is constructed, and all predictions that ensue can be expected to hold only within that model.

While this argument has some validity, one could just as well argue that it misses a critical point. While quantum field theory tolerates many free parameters, string theory does not: generally all free parameters in string theory (such as gauge couplings, Yukawa couplings, and so forth) are determined by the vacuum expectation values of scalar fields and thus are expected to have dynamical origins within the
theory itself. Moreover, while many architectural details of a given model (such as the gauge group, the number of generations, or even the degree of supersymmetry) are uncorrelated within quantum field theory, string theory has deeper underpinnings in terms of the geometric properties and configurations of strings and branes. It therefore becomes meaningful to ask more from string theory than from quantum field theory.

Given the existence of the landscape, it is certainly too much to demand that string theory give rise to predictions for such individual quantities as the number of particle generations. Indeed, we already know that such individual quantities can vary greatly from one string vacuum to the next. However, it is perhaps not too much to ask that string theory manifest its predictive power through the existence of correlations between physical observables that would otherwise be uncorrelated in quantum field theory. Such correlations would be the spacetime phenomenological manifestations of the deeper underlying geometric structure that ultimately defines string theory and distinguishes it from a theory whose fundamental degrees of freedom are based on point particles. Of course, it is logically possible that string theory leads to sharp correlations amongst observables at high energy scales, but that the mathematical form of the connections between these high-scale observables and experimentally accessible low-scale observables completely washes these correlations away as far as a low-energy physicist might be concerned. However, there is no evidence that Nature is so cruel for the low-energy parameters of interest. Thus, our question concerning the predictivity of string theory boils down to a single critical question: to what extent are there correlations between different physical observables on the string-theory landscape?

Clearly, the existence of such correlations across the string theory landscape would imply that string theory is predictive, while the absence of such correlations would suggest that it is not. Indeed, many recent discussions of this issue have proceeded under the assumption that these are the only two logical options.

However, we believe that neither of these of these two options is likely to represent the true nature of correlations on the string landscape. Rather, we believe that the true nature of such correlations lies somewhere between these two extremes and is more likely to resemble that shown in Fig. [1]. In Fig. [1], some regions of the landscape exhibit certain correlations and other regions of the landscape exhibit other correlations. The number of such distinct regions is likely to be vast, and many of these regions are also likely to have non-trivial overlaps. For example, we can imagine that one region might principally correspond to perturbative heterotic strings (in which worldsheet symmetries such as conformal invariance and modular invariance play a decisive role in producing correlations amongst low-energy observables), while another region might principally correspond to intersecting D-brane models (in which decisive roles are instead played by tadpole anomaly constraints). Of course, it is a naïve expectation that different correlation-class regions will correspond neatly to different underlying string construction methods, and more subtle mappings between
Figure 1: A sketch of a landscape in which different regions exhibit different correlations between phenomenological observables X, Y, Z, and W. As discussed in the text, the overlaps between these regions can then exhibit correlations amongst larger subsets of observables or multiple independent correlations involving smaller subsets of observables. For example, while each region separately exhibits a correlation amongst two observables, the overlap between Regions I and II exhibits a single correlation between three observables while the overlap between Regions I and III exhibits two independent correlations, each involving only two observables. Many other generalizations and geometric configurations are possible.

construction methodologies and correlation regions will undoubtedly occur. For this reason, it is important that such regions be defined according to their low-energy phenomenological predictions and correlations, not according to their construction methodologies. Thus these regions need not be disjoint, and indeed non-trivial overlaps will occur.

Given such a picture, the precise nature of correlations at a given point on the landscape is likely to depend rather sensitively on the location of that point relative to the boundaries of all possible nearby regions. For example, in Fig. 1 we observe that two phenomenological properties X and Y are correlated in Region I, while Y and Z are correlated in Region II and W and Z are correlated in Region III. Even though each of these regions exhibits only a single correlation involving two phenomenological quantities, we see that the intersections of these regions nevertheless exhibit a number
of different correlation patterns:

- overlap I & II: single three-quantity correlation (X,Y,Z)
- overlap II & III: single three-quantity correlation (Y,Z,W)
- overlap I & III: two two-quantity correlations (X,Y) and (Z,W)
- overlap I, II, & III: single four-quantity correlation (X,Y,Z,W). \(1\)

Strictly speaking, such a situation fails to yield a single correlation which holds across the landscape as a whole. As such, this situation is one in which it might be claimed that string theory as a whole is non-predictive. However, even in such a situation, we can still claim that string theory is partially predictive if the sizes of these correlation-class regions are relatively large compared with the landscape as a whole. If there exist huge sub-tracts of the landscape across which correlations hold, then we can claim that string theory is entirely predictive within each such domain. At the opposite extreme, however, it may turn out that the fundamental regions across which such correlations hold are relatively small. For example, one could imagine a situation in which each region is so small that it contains no more than a single model. In such a case, we would then claim that string theory is entirely non-predictive.

In the remainder of this paper, we would like to attach a quantitative measure to this notion of predictivity. Specifically, given a situation such as that sketched in Fig. 1, we would like to develop a mathematical measure of our power to observe correlations on the landscape and extract some measure of predictivity.

While there are many ways to develop such a mathematical model, we shall proceed as follows. At a practical level, we can imagine that we have sampled a certain number \(x \gg 1\) of models, randomly selected across the landscape as a whole. Let us assume that we have analyzed the physical observables predicted from these \(x\) models, and we have not observed any correlations that hold across this set of models. Clearly, this means that not all \(x\) of our models come from the same region; at least one model must originate from a different region.

We can then ask for the probability that there exists a partitioning of our data set into two groups of models such that there exist correlations which hold across each group separately. If no such two-way partitions exist, we could then attempt to construct three-way partitions which have the same property, and so forth. In general, we can seek to derive the probability \(P_x(n)\) that we can partition our \(x\) models into \(n\) distinct classes, each of which individually exhibits correlations across the class as a whole. This question is sketched schematically in Fig. 2.

*In stating that these models are selected randomly, we are disregarding the critical issue that arises due to the fact that our sampling techniques will inevitably introduce biases that distort the apparent space of models in non-trivial ways. Methods of overcoming these difficulties were developed in Ref. \[10\], and we shall assume in the remainder of this paper that such methods have already been utilized and all such distortions have been eliminated as far as possible.
Figure 2: Schematic illustration of the fundamental problem. Suppose data from \(x \) string models does not exhibit any correlations amongst low-energy physical observables which hold across all \(x \) models. What is the probability \(P_x(n) \) that we can partition our \(x \) models into \(n \) distinct classes, each of which individually exhibits correlations across the class as a whole? Clearly \(P_x(n) \) grows as a function of \(n \), ultimately reaching \(P_x(n) = 1 \) for \(n = x \) (i.e., the case in which each class is no larger than a single model). The behavior of \(P_x(n) \) as a function of \(n \) for \(1 < n < x \) determines the extent to which the landscape sketched in Fig. 1 is predictive, with larger \(P_x(n) \) for small \(n \) indicating a larger degree of predictivity.
We can immediately make a number of statements concerning $P_x(n)$. First, $P_x(n)$ will clearly grow monotonically as a function of n. This follows from the observation that if a given set of x models can be successfully partitioned into n correlation classes, then it can necessarily be successfully partitioned into any greater number of correlation classes. Second, we observe that $P_x(n)$ should ultimately reach $P_x(n) = 1$ for $n = x$. This corresponds to the case in which each correlation class is no larger than a single model — although relatively useless, such a partition is indeed guaranteed to be successful. Finally, we are intrinsically assuming that $P_x(1) = 0$. This essentially serves as an initial condition.

What interests us, however, is the behavior of $P_x(n)$ as a function of n for $1 < n < x$, as this determines the extent to which the landscape sketched in Fig. 1 is predictive. Indeed, larger values of $P_x(n)$ for small n can be associated with a larger degree of predictivity for the landscape as a whole, in the sense that our correlation classes on the landscape are larger rather than smaller.

It is important to reiterate that we are defining our correlation classes of models in terms of their spacetime phenomenological predictions rather than their underlying worldsheet or D-brane constructions. Needless to say, it is only in this manner that we can declare two different models to be phenomenologically distinct. But at a deeper level, we observe that this method of defining our correlation classes overcomes whatever theoretical prejudices we might have concerning which phenomenological properties are associated with which model-construction techniques. Indeed, one might argue that the very notion of string theory being predictive rests on the existence of correlation classes which transcend the somewhat artificial boundaries associated with different underlying model-construction methods.

We also stress that in this paper, we shall not be concerned with the inner workings of the “correlation finder” sketched in Fig. 2. Likewise, we shall not be concerned with the question of how to partition our x models into the n test classes which are then individually examined for internal correlations. Needless to say, these are very important questions — the former is critical for data analysis in general, and the latter might potentially be addressed through direct enumeration of different partitioning possibilities or on the basis of other external physical information. However, our purpose in this paper is to study the mathematical extent to which we can learn about the properties of the underlying landscape, assuming that such data-analysis tools are at our disposal.

We shall now calculate the probabilities $P_x(n)$. In order to do so, we shall first need to quantify the sizes and overlaps between the correlation regions sketched in Fig. 1. Let us therefore assume that a given randomly selected string model has a probability p_i of being a member of the i^{th} correlation class. In some sense, the p_i quantify the “sizes” of the individual correlation-class regions across the string landscape. We shall also need to quantify the sizes of two-region overlaps, three-region overlaps, and so forth. Towards this end, we shall let p_{ij} denote the probability that a randomly selected string model is simultaneously a member of both the i^{th} and
j^{th} correlation classes (where $i \neq j$), p_{ijk} denote the probability that such a string model is simultaneously a member of the i^{th}, j^{th}, and k^{th} correlation classes (where i, j, and k are all unequal), and so forth.

In general, these quantities $p_{ijk...}$ can vary significantly across the landscape. However, for the purposes of calculating the overall probabilities $P_x(n)$, what really concern us are the “average” values of these quantities. We shall therefore assume a uniform “average” distribution in which

$$p_{i_1,i_2,...,i_N} = a_N p$$

(2)

where p is an overall arbitrary probability, and where the a-coefficients satisfy the constraints

$$0 \leq ... \leq a_4 \leq a_3 \leq a_2 \leq 1$$

(3)

with $a_1 \equiv 1$. There is also another constraint on the a-coefficients which will be explained shortly.

In order to understand these assumptions, it will help to consider an abstract geometric picture of the landscape in which each string model occupies a volume of arbitrary dimensionality but fixed, uniform magnitude. We shall refer to the entire space of models arranged this way as the “correlation space”. Note that the correlation space is not the usual geometric picture of the landscape in which the different directions might be parametrized by different low-energy observables, or alternatively by different string-construction parameters (e.g., fluxes). Indeed, in such a picture, models which are in the same correlation classes can be scattered across the landscape and need not occupy contiguous regions. By contrast, in the correlation space, each model occupies an equal volume of arbitrary (irrelevant) dimensionality, and models can be freely repositioned so that models in the same correlation class (according to their low-energy observables) occupy neighboring contiguous regions, as in Fig. 1.

In terms of the correlation space, our probability distributions can be understood geometrically as follows. If we imagine the entire correlation space to occupy a normalized volume $V = 1$, then p_i is nothing but the volume of the i^{th} correlation region, p_{ij} is nothing but the volume of the (i, j) overlap region, and so forth. Likewise, our assumptions in Eqs. (2) and (3) indicate that p is the average volume of each correlation class individually, while $a_n p$ is the average volume of each overlap region between n different correlation classes.

Note that the volume of each overlap region must scale linearly with p (the volume of each individual region) because our overlap regions will generally have the same dimensionalities in the correlation space as each individual region. This explains the assumption in Eq. (2). Indeed, this is the major advantage of working with the correlation space rather than the usual geometric visualization of the landscape in which models are placed along axes parametrized by low-energy observables. In the usual visualization, we would easily expect situations in which our different correlation classes have intersections of reduced dimensionalities. By contrast, all such
situations are automatically incorporated within the correlation space without any required changes in dimensionality.

Likewise, the constraint in Eq. (3) merely assures that the volume of the average overlap region between \(n \) different correlation classes in the correlation space cannot exceed the volume of the average overlap region between \((n-1) \) different correlation classes. This too makes intuitive sense, since the \(n \)-overlap region is by definition more restrictive than the \((n-1) \)-overlap region. Note that the limiting case with \(a_2 = 0 \) corresponds to the situation in which all correlation regions are necessarily disjoint, while the case with \(a_2 = 1 \) represents a null limit in which all correlation regions overlap completely. This implies that \(a_3 = a_4 = ... = 1 \) as well, which in turn implies that there is really only one correlation region. This implies that \(p = 1 \).

Given the distributions in Eqs. (2) and (3), the next step is to calculate the probability \(\phi_n \) that a randomly selected string model is a member of any of \(n \) previously selected correlation classes. For example, the probability \(\phi_1 \) that a given model is a member of a single previously specified correlation class \(i \) is nothing but

\[
\phi_1 = p_i = p , \tag{4}
\]

while the probability \(\phi_2 \) that a given model is a member of at least one of two previously specified correlation classes \((i, j) \) is given by

\[
\phi_2 = p_i + p_j - p_{ij} = 2p - a_2p = (2 - a_2)p \tag{5}
\]

and the probability \(\phi_3 \) that a given model is a member of at least one of three previously specified correlation classes \((i, j, k) \) is given by

\[
\phi_3 = p_i + p_j + p_k - p_{ij} - p_{jk} - p_{ik} + p_{ijk} = 3p - 3a_2p + a_3p
= (3 - 3a_2 + a_3)p . \tag{6}
\]

Note that in the correlation space, each of these results has a natural geometric interpretation: \(\phi_1 \) is the volume of a single correlation region; \(\phi_2 \) is the combined volume of two correlation regions [which is the sum of the volume of each region minus the (double-counted) volume of their overlap]; and so forth. In general, for \(\ell \) previously specified correlation classes \((i, j, k, r, ..., s) \), we have

\[
\phi_{\ell} = \sum_{i} p_i - \sum_{ij} p_{ij} + \sum_{ijk} p_{ijk} - \sum_{ijkr} p_{ijkr} + ... + p_{ijkr...s}
= \left[\sum_{m=1}^{\ell} (-1)^{m+1} \frac{\ell!}{m!(\ell-m)!} a_m \right] p \tag{7}
\]

where the summations in the first line of Eq. (7) are over all unequal choices from amongst the classes \((i, j, k, r, ..., s) \).
Of course, logical consistency requires that $\phi_1 \leq \phi_2 \leq \phi_3 \leq \ldots$. This in turn places an additional constraint on the a-coefficients in Eq. (2). Thus, while Eq. (3) indicates that each a_i cannot exceed a_{i-1}, we now see that each a_i also cannot be too much smaller than a_{i-1}. This new constraint merely reflects the mathematical fact that if all two-region overlaps are large, there is no way to prevent three-region overlaps from also being fairly large, and so forth. For example, while we have $a_3 \leq a_2$, the requirement that $\phi_3 \geq \phi_2$ also requires that $a_3 \geq 2a_2 - 1$.

Given these results for ϕ_i, we now have all of the ingredients necessary to calculate $P_x(n)$. Let us begin by calculating the exclusive probabilities $\hat{P}_x(n)$ and see how they evolve as we examine more and more models in the landscape. Unlike the general probabilities $P_x(n)$ that x models will exhibit at least n different correlation classes, the exclusive probabilities $\hat{P}_x(n)$ represent the probabilities that x models will exhibit exactly n correlation classes.

When $x = 1$, there is only one model and consequently only one correlation class needed. We therefore have $\hat{P}_1(1) = 1$ and $\hat{P}_1(n) = 0$ for all $n > 1$. Next, when we select our second model, there are two possibilities: either it is in the same correlation class as our first model (which happens with probability ϕ_1), or it is not. We thus find that $\hat{P}_2(1) = \phi_1 = p$, while $\hat{P}_2(2) = 1 - \phi_1 = 1 - p$. Proceeding to the third model, we again have the same situation: it may be in the same correlation classes as we have already seen, or it may not. Tallying the possibilities in each case, we then find $\hat{P}_3(1) = \phi_1^2 = p^2$, while $\hat{P}_3(2) = \phi_1(1 - \phi_1) + (1 - \phi_1)\phi_2 = (3 - a_2)(p - p^2)$ and $\hat{P}_3(3) = (1 - \phi_1)(1 - \phi_2) = 1 - (3 - a_2)p + (2 - a_2)p^2$.

This process continues as we select more and more models. Ultimately, all of our exclusive probabilities $\hat{P}_x(n)$ can be generated through the recursion relation

$$
\hat{P}_t(k) = \hat{P}_{t-1}(k)\phi_k + \hat{P}_{t-1}(k-1) [1 - \phi_{k-1}]
$$

with the initial condition $\hat{P}_1(1) = 1$. This recursion relation merely says that there are only two possible ways of finding k correlation classes after ℓ models have been examined: either there were already k classes found from amongst the previous $\ell - 1$ models (and the ℓ^{th} model must be in one of these k classes), or there were only $k - 1$ classes found from amongst the previous $\ell - 1$ models (and the ℓ^{th} model is not in one of those classes). These possibilities then give rise to the first and second terms on the right side of Eq. (8).

Given the recursion relation in Eq. (8), we immediately see that $\hat{P}_x(1) = \phi_1^x = p^x$, which is the probability that x models are all in the same correlation class. Likewise, we see that $\hat{P}_x(x) = \prod_{i=1}^x (1 - \phi_i)$, which is the probability that each successive model is outside the correlation classes determined by the previous models.

Finally, given the exclusive probabilities $\hat{P}_x(n)$, we can easily calculate the general probabilities $P_x(n)$:

$$
P_x(n) = \sum_{m=1}^n \hat{P}_x(m) .
$$

9
It then follows, for example, that while $P_x(1) = \hat{P}_x(1) = p^x$, we have $P_x(x) = 1$, as required.

Using Eqs. (7), (8), and (9), it is straightforward to evaluate $P_x(n)$ as a function of n in the range $1 \leq n \leq x$ for any \{p, a_2, a_3, ...\}. Our results are shown in Fig. 3 for the case with $p = 1/30$ and $a_i = 0$ for all $i \geq 2$, corresponding to a situation in which there are 30 disjoint correlation classes. Already, we can observe certain general features. For $x \lesssim 1/p$, we see that $P_x(n)$ reaches 1 when $n = x$, as required. However, for $x \gg 1/p$, we see that $P_x(n)$ reaches 1 near $n \approx 1/p$. This too makes sense, since we expect to achieve a successful partition of our data set when the number of partitions is approximately equal to $1/p$, the number of disjoint correlation classes. Finally, we observe that as $x \to \infty$, the curve $P_x(n)$ asymptotes to a sharp step function at $n = n^*$ where $n^* \equiv [1/p] + 1$, i.e., where n^* is the smallest integer

![Figure 3: The probabilities $P_x(n)$, plotted (solid lines) as functions of n in the range $1 \leq n \leq x$ for (a) $x = 15$, (b) $x = 29$, (c) $x = 100$, and (d) $x = 200$. In each case, we have chosen $p = 1/30$ and $a_i = 0$ for all $i \geq 2$, so that our correlation classes are all non-overlapping (disjoint). The dashed line shows ϕ_n as a function of n. For $x \lesssim 1/p$, we see that $P_x(n)$ reaches 1 when $n = x$; by contrast, for $x \gg 1/p$, we see that $P_x(n)$ reaches 1 near $n \approx 1/p$. As $x \to \infty$, the curve $P_x(n)$ asymptotes to a sharp step function at $n = 1/p$. Thus, as the number of models examined increases beyond $1/p$, measuring $P_x(n)$ can yield an extremely precise measure for the average value of p_i on the string landscape.](image-url)
exceeding $1/p$. This sharpening into a step function also makes intuitive sense. As we examine more and more models, it becomes more and more unlikely that we have missed finding at least one representative model from any correlation class. Thus, we can only achieve successful partitionings when the number of partitions equals the number of correlation classes.

This last result provides us with a clear “experimental” way of determining the average value of p_i on the string landscape. Indeed, as the number of models increases beyond $1/p$ [which can be determined from the increasing sharpness of the rise of $P_x(n)$], the location of this rise in $P_x(n)$ will be given by n_*, the smallest integer exceeding $1/p$.

These results are valid for the situation in which all correlation classes are disjoint. However, this general situation persists even when the a-coefficients are non-zero and overlaps between regions become significant. Indeed, with non-zero overlap regions, the volumes ϕ_n will no longer grow linearly with n; these volumes will accrue more slowly as a function of n because only part of the volume corresponding to each new correlation class leads to new territory not previously covered. Nevertheless, the previous behavior for $P_x(n)$ persists, provided we more generally define n_* as the smallest integer n for which $\phi_n = 1$. Indeed, just as in the disjoint-region case, we find that $P_x(n)$ reaches 1 when $n = x$ for $x \lesssim n_*$, while $P_x(n)$ reaches 1 near $n \approx n_*$ for $x \gg n_*$. Indeed, as $x \to \infty$, the curve $P_x(n)$ continues to asymptote to a sharp step function at $n = n_*$.

This situation is illustrated in Fig. 4. For this figure, we have taken $a_1 = 1$ and $a_n = r^{n-1}$ where r is a pre-determined scale factor; note that such a-coefficients satisfy all of the self-consistency constraints previously discussed. Also note that even though ϕ_n is growing only very slowly as a function of n, the probabilities $P_x(n)$ still make a relatively sharp transition from 0 to 1, even for $x \leq n_*$. A similar situation emerges for any $r < p$.

Thus, even when there are significant overlaps between correlation regions on the landscape, we see that we can continue to extract sharp “experimental” data about the landscape merely by taking $x \gg n_*$. Indeed, the only difference relative to the disjoint-region case is that we are now extracting information about n_* rather than about $1/p$.

There is only one finely-tuned situation in which this method of measuring $P_x(n)$ fails to yield clear information about the underlying landscape: this occurs if n_* is infinite. At first glance, it may seem that one cannot ever physically realize a situation in which n_* is infinite. However, it is possible for ϕ_n to approach 1 as an asymptote rather than actually hit 1 for finite n. Again considering the case with $a_n = r^{n-1}$ for all $n \geq 2$, it turns out that we can mathematically realize such a situation by taking $r = p$. Such a situation is illustrated in Fig. 5 where we see that our probability function $P_x(n)$ fails to reach a fixed shape no matter how large x becomes.

Physically, taking $r = p$ corresponds to a situation in which each new correlation class adds an incrementally smaller amount of new volume, so that an infinite number
Figure 4: The probabilities $P_x(n)$, plotted as functions of n in the range $1 \leq n \leq x$ for (a) $x = 30$, (b) $x = 100$, (c) $x = 200$, (d) $x = 500$, and (e) $x = 1000$. In each case, we have chosen $p = 1/30$. However, unlike the plot in Fig. 3, we have taken $a_n = r^{n-1}$ with $r = 0.03$ for all $n \geq 2$, reflecting significant overlaps between correlation-class regions. The dashed line shows ϕ_n as a function of n, reaching $\phi_n = 1$ at $n_* = 76$. We see that $P_x(n)$ behaves similarly to the case in Fig. 3 with the primary difference that significantly larger values of x are required in order to “saturate” the probability function and trigger the transition to a step function. Despite these differences, however, we see that measuring $P_x(n)$ for $x \gg n_*$ continues to yield an extremely precise measure for n_* on the string landscape.

Figure 5: The probabilities $P_x(n)$, plotted as functions of n in the range $1 \leq n \leq x$ for (a) $x = 30$, (b) $x = 100$, (c) $x = 200$, (d) $x = 500$, and (e) $x = 1000$. This plot is the same as in Fig. 4 except that we have now taken $r = 1/30$. As is evident, this change in the value of r (adjusting its value by a mere few parts in a thousand) has changed the behavior of $P_x(n)$ significantly, shifting $n_* \to \infty$ and entirely eliminating the asymptotic step-function behavior for $P_x(n)$ no matter how large x becomes. As argued in the text, this represents a highly fine-tuned situation in which the landscape consists of an infinite number models and an infinite number of correlation classes. In such a case, string theory would have no predictive power.
of correlation classes are required to saturate the full correlation space. Clearly, such a situation is highly fine-tuned, requiring a landscape exhibiting both an infinite number of models and an infinite number of correlation classes. String theory would have absolutely no predictive power in such a situation. However, there exist general arguments suggesting that the number of string models in the landscape is actually finite. If so, then such a situation cannot arise.

Likewise, for mathematical completeness, we remark that a similar situation with infinite \(n_* \) can also arise in our example by taking \(r > p \). In such cases, as \(n \to \infty \), the function \(\phi_n \) asymptotes to a value less than 1, once again implying that \(n_* \) is infinite. However, this situation is also clearly unphysical, since it corresponds to the self-contradictory claim that there exist non-vanishing regions of the landscape which are not populated by any string models!

We conclude, then, that measuring \(P_x(n) \) provides a robust practical method of extracting information concerning the average behavior of the different correlation classes across the string landscape. This in turn provides a direct and compelling way of quantifying the extent to which string theory is predictive. Perhaps the primary virtue of this method is that it can readily be applied for situations in which only a relatively small number of string models are examined, provided these models are randomly selected from across the entire landscape as a whole. Indeed, all that is required is that \(x \), the number of models examined, exceed \(n_* \) by perhaps one or two orders of magnitude, a proposition which can be verified (without a priori knowledge of \(n_* \)) by measuring \(P_x(n) \) for increasing values of \(x \) and observing if and when this function saturates into step-function behavior.

Needless to say, the calculations in this paper may be easily generalized to more complex landscape distributions and correlation-region overlap patterns. However, the central point of this paper is general and remains applicable regardless of such possible generalizations: there will always be a value \(n_* \) at which \(\phi_n = 1 \), and this value can be “experimentally” extracted with great statistical certainty through the methods we have described. Indeed, we have shown this explicitly for landscape distributions at both extremes: distributions in which our correlation-class regions are entirely disjoint, and distributions in which significant overlaps occur.

Note that even our notion of “correlation class” can be generalized without altering the main results of this paper. In this paper, we have implicitly assumed that within a single correlation class, there exists a tight mathematical relation between specific low-energy observables. However, this requirement may also be relaxed: meaningful correlation classes may also exist in which one might be able to say nothing more than that a certain range of values for one specific low-energy observable tends to be statistically correlated with a certain range of values for a different low-energy observable. Indeed, evidence that such types of correlation classes exist has recently been presented in Ref. [15]. Nevertheless, the methods we have developed in this paper are applicable to these types of generalized correlation classes as well.

It is perhaps premature to speculate about a likely value of \(n_* \) across the string
landscape, but we would imagine that n_* should not exceed $O(10)$ at most if string theory is to have any meaningful predictive power. As we have discussed, such correlation classes might correspond, for example, to different types of model construction, or different topological classes of compactification geometry. In such cases, obtaining and analyzing a sufficient number of string models should not be difficult.

Of course, our method of examining $P_x(n)$ can also be used to examine the properties of any subset of the landscape. For example, one might restrict to a class of models which share a common underlying construction methodology. In such cases, the resulting information for n_* then applies to the correlation regions appropriate for that subset. Our method is therefore suitable for examinations of arbitrary subsets of the landscape, without requiring knowledge of the string landscape as a whole.

Acknowledgments

We wish to thank the CERN Theory Division, where this work was initiated, for hospitality during the July/August 2008 TH Institute on String Phenomenology. The work of KRD was supported in part by the U.S. Department of Energy under Grant DE-FG02-04ER-41298 and by the U.S. National Science Foundation under Grant PHY/0301998. The work of ML was supported in part by ANR grant ANR-05-BLAN-0079-02, RTN contracts MRTN-CT-2004-005104 and MRTN-CT-2004-503369, CNRS PICS #2530, 3059 and 3747, and by a European Union Excellence Grant MEXT-CT-2003-509661. We are happy to thank W. Taylor for discussions.

References

[1] S. Kachru, R. Kallosh, A. Linde and S. P. Trivedi, Phys. Rev. D 68, 046005 (2003) [arXiv:hep-th/0301240];
 L. Susskind, arXiv:hep-th/0302219
 For popular introductions, see:
 R. Bousso and J. Polchinski, Sci. Am. 291, 60 (2004);
 S. Weinberg, arXiv:hep-th/0511037;
 A. N. Schellekens, arXiv:0807.3249 [physics.pop-ph].
[2] M. R. Douglas, JHEP 0305, 046 (2003) [arXiv:hep-th/0303194].
[3] S. Ashok and M. R. Douglas, JHEP 0401, 060 (2004) [arXiv:hep-th/0307049];
 F. Denef and M. R. Douglas, JHEP 0405, 072 (2004) [arXiv:hep-th/0404116];
 A. Giryavets, S. Kachru and P. K. Tripathy, JHEP 0408, 002 (2004) [arXiv:hep-th/0404243];
 A. Misra and A. Nanda, Fortsch. Phys. 53, 246 (2005) [arXiv:hep-th/0407252];
M. R. Douglas, Comptes Rendus Physique 5, 965 (2004) [arXiv:hep-th/0409207];
J. Kumar and J. D. Wells, Phys. Rev. D 71, 026009 (2005) [arXiv:hep-th/0409218];
JHEP 0509, 067 (2005) [arXiv:hep-th/0506252];
F. Denef and M. R. Douglas, JHEP 0503, 061 (2005) [arXiv:hep-th/0411183];
O. DeWolfe, A. Giryaevets, S. Kachru and W. Taylor, JHEP 0502, 037 (2005)
[arXiv:hep-th/0411061];
B. S. Acharya, F. Denef and R. Valandro, JHEP 0506, 056 (2005) [arXiv:hep-th/0502060];
F. Denef and M. R. Douglas, [arXiv:hep-th/0602072]
J. Shelton, W. Taylor and B. Wecht, [arXiv:hep-th/0607015];
A. Hebecker and J. March-Russell, [arXiv:hep-th/0607120].

[4] M. R. Douglas, [arXiv:hep-th/0405279];
M. Dine, E. Gorbatov and S. D. Thomas, [arXiv:hep-th/0407043];
M. Dine, D. O’Neil and Z. Sun, JHEP 0507, 014 (2005) [arXiv:hep-th/0501214];
JHEP 0601, 162 (2006) [arXiv:hep-th/0505202];
M. Dine and Z. Sun, JHEP 0601, 129 (2006) [arXiv:hep-th/0506246].

[5] M. R. Douglas and W. Taylor, [arXiv:hep-th/0606109];
B. S. Acharya and M. R. Douglas, [arXiv:hep-th/0606212].

[6] R. Blumenhagen, F. Gmeiner, G. Honecker, D. Lust and T. Weigand, Nucl.
Phys. B 713, 83 (2005) [arXiv:hep-th/0411173];
JHEP 0601, 004 (2006) [arXiv:hep-th/0510170];
F. Gmeiner, D. Lust and M. Stein, JHEP 0705, 018 (2007) [arXiv:hep-th/0703011];
F. Gmeiner and G. Honecker, JHEP 0709, 128 (2007) [arXiv:0708.2285 [hep-th]];
JHEP 0807, 052 (2008) [arXiv:0806.3039 [hep-th]].
For a review, see:
F. Gmeiner, [arXiv:hep-th/0608227].

[7] T. P. T. Dijkstra, L. R. Huiszoon and A. N. Schellekens, Phys. Lett.
B 609, 408 (2005) [arXiv:hep-th/0403196];
Nucl. Phys. B 710, 3 (2005) [arXiv:hep-th/0411129];
P. Anastasopoulos, T. P. T. Dijkstra, E. Kiritsis and A. N. Schellekens, Nucl.
Phys. B 759, 83 (2006) [arXiv:hep-th/0605226].

[8] J. P. Conlon and F. Quevedo, JHEP 0410, 039 (2004) [arXiv:hep-th/0409215];
S. S. AbdusSalam, J. P. Conlon, F. Quevedo and K. Suruliz, JHEP 0712, 036 (2007)
[arXiv:0709.0221 [hep-th]].

[9] K. R. Dienes, Phys. Rev. D 73, 106010 (2006) [arXiv:hep-th/0602286].
[10] K. R. Dienes and M. Lennek, Phys. Rev. D 75, 026008 (2007) [arXiv:hep-th/0610319].

[11] K. R. Dienes, M. Lennek, D. Senechal and V. Wasnik, Phys. Rev. D 75, 126005 (2007) [arXiv:0704.1320 [hep-th]]; New J. Phys. 10, 085003 (2008) [arXiv:0804.4718 [hep-ph]].

[12] O. Lebedev, H. P. Nilles, S. Raby, S. Ramos-Sanchez, M. Ratz, P. K. S. Vaudrevange and A. Wingerter, Phys. Lett. B 645, 88 (2007) [arXiv:hep-th/0611095];
S. Raby and A. Wingerter, Phys. Rev. D 76, 086006 (2007) [arXiv:0706.0217 [hep-th]];
B. Dundee, S. Raby and A. Wingerter, arXiv:0805.4186 [hep-th];
O. Lebedev, H. P. Nilles, S. Ramos-Sanchez, M. Ratz and P. K. S. Vaudrevange, arXiv:0807.4384 [hep-th];
B. Dundee and S. Raby, arXiv:0808.0992 [hep-th].

[13] A. E. Faraggi, C. Kounnas and J. Rizos, arXiv:hep-th/0606144, arXiv:hep-th/0611251.

[14] P. Candelas, X. de la Ossa, Y. H. He and B. Szendroi, arXiv:0706.3134 [hep-th]; M. Gabella, Y. H. He and A. Lukas, arXiv:0808.2142 [hep-th].

[15] G. L. Kane, P. Kumar and J. Shao, J. Phys. G 34, 1993 (2007) [arXiv:hep-ph/0610038]; Phys. Rev. D 77, 116005 (2008) [arXiv:0709.4259 [hep-ph]].

[16] K. R. Dienes, E. Dudas and T. Gherghetta, Phys. Rev. D 72, 026005 (2005) [arXiv:hep-th/0412185];
N. Arkani-Hamed, S. Dimopoulos and S. Kachru, arXiv:hep-th/0501082;
J. Distler and U. Varadarajan, arXiv:hep-th/0507090;
B. Feldstein, L. J. Hall and T. Watari, arXiv:hep-ph/0608121;
V. Balasubramanian, J. de Boer and A. Naqvi, arXiv:0805.4196 [hep-th].

[17] J. Kumar, arXiv:hep-th/0601053;
M. R. Douglas and S. Kachru, arXiv:hep-th/0610102.