Pandemic episodes, CO₂ emissions and global temperatures

Manuel Monge¹ · Luis A. Gil-Alana²,³

Received: 30 September 2020 / Accepted: 27 January 2022 / Published online: 3 February 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2022

Abstract
This paper deals with the relationship between the CO₂ emissions and the global temperatures across the various pandemic episodes that have been taken place in the last 100 years. To carry out the analysis, first we conducted unit root tests finding evidence of nonstationary I(1) behavior, which means that a shift in time causes a change in the shape of distribution. However, due to the low statistical power of unit root tests, we also used a methodology based on long memory and fractional integration. Our results indicate that the emissions display very heterogeneous behavior in relation to the degree of persistence across pandemics. The temperatures are more homogeneous, finding values for the orders of integration of the series smaller than 1 in all cases, thus showing mean reverting behavior.

JEL Classification C22 · C25

1 Introduction
Over the last 100 years, the temperature on the Earth’s surface has been rising significantly (see Nicholls et al. 1996; Jones and Wigley 2010; and Folland et al. 2018; among others) caused by the effect of the burning and emissions of fossil fuels, industrialization and greenhouse gas concentration in the atmosphere (Anderegg et al. 2010; Beckage et al. 2018, etc.). Nevertheless, it is important to consider other factors such as solar irradiance, which are innate in the climate system, and which also affect this situation. According to Zickfeld et al. (2012), McMillan and Wohar (2013) and Zickfeld et al. (2016), the temperature and the concentration of carbon dioxide in the atmosphere exhibit a close correspondence. Also, National Oceanic and Atmospheric Administration (NOAA) and authors such as Laat and Maurellis (2004), Hansen et al. (2010), Cahill et al. (2015) and Sanz-Pérez et al. (2016) support the hypothesis that the carbon dioxide concentration and temperatures exhibit the same behavior and move in a very similar way.

In recent times, we have seen that an infectious disease named SARS-CoV-2, of the Coronaviridae family and which caused the COVID-19 disease, was identified in Wuhan City, China, in December 2019 (see Hui et al. 2020 and World Health Organization) causing an unprecedented cessation of human activities and affecting global energy use and CO₂ emissions.

The confinement imposed on the population as a sanitary measure has brought about drastic changes in energy use with an impact on CO₂ emissions. The OECD report (2020) indicates that the virus will cause a negative supply shock to the world economy, by forcing factories to shut down and disrupting global supply chains. This has resulted in a decrease of 5.8% in global fossil CO₂ emissions during the first quarter of 2020 (see Liu et al. 2020). According to Le Quéré et al. (2020) and their sensitivity tests, the decrease in annual fossil CO₂ emissions from the severe and forced confinement of world populations has been between −4.2% (if pandemic restrictions are lifted by mid-June) and −7.5% (if some restrictions remain worldwide until the end of 2020). According to some researchers, these rates of decrease are similar to those which are necessary year after year over the next few decades to limit climate change and prevent warming of 1.5 °C.

Comments from the Editor and an anonymous reviewer are gratefully acknowledged

¹ Manuel Monge
manuel.monge@ufv.es

¹ Faculty of Law and Business, Universidad Francisco de Vitoria (UFV), 28223 Madrid, Spain
² University of Navarra, Pamplona, Spain
³ Universidad Francisco de Vitoria (UFV), Madrid, Spain

1 https://www.who.int/news-room/q-a-detail/q-a-coronaviruses
Doing an extensive review of the bibliography, most of the literature tends to focus on studies based on temperatures and CO₂ separately. On the one hand, researchers have focused their efforts to study global temperatures using stochastic processes and trends (see, e.g., Bloomfield 1992; Bloomfield and Nychka 1992; Galbraith and Green 1992; Woodward and Gray 1993, 1995; Koenker and Schorfheide 1994; Zhang and Basner 1999; Harvey and Mills 2001; Fomby and Vogelsang 2003; Gil-Alana 2003, 2005, 2008a,b; Vogelsang and Franses 2005; Mills 2006, 2010; Gay-Garcia et al. 2009; Hendry and Pretis 2013; Kaufmann et al. 2006, 2010, 2013; Estrada et al. 2013; Chang et al. 2015, etc.). On the other hand, emissions have also been studied by many authors: Sun and Wang (1996); Slottje et al. (2001); Alby (2006); Ezcurra (2007); Chang and Lee (2008); Romero-Avila (2008); Lee et al. (2008); Lee and Chang (2009); Nourry (2009); Panopoulou and Pantelidis (2009); Christidou et al. (2013); Yavuz and Yilanci (2013); Ahmed et al. (2016); Tiwari et al. (2016); Gil-Alana and Solarin (2018); Gil-Alana and Trani (2019); among others. Finally, other authors such as McMillan and Wohar (2013), Zhang et al. (2019), Ying et al. (2020) and Gil-Alana and Monge (2020) have taken into consideration the two variables together using various methodologies such as unit root tests and autoregression models (McMillan and Wohar 2013), multilayer and multivariable network methods (Zhang et al. 2019), multilayer climate network approach (Ying et al. 2020) and fractional integration (Gil-Alana and Monge 2020).

Our main objective in this research paper is to conduct a serious statistical analysis about the statistical properties of various time series dealing with global temperatures and global CO₂ emissions. We use techniques based on long memory and fractional integration that allow the number of differences to be taken in the series to render them stationary fractional differences required to render a series I(0) stationary is a fractional value. More in particular, we use fractionally integrated autoregressive moving average ARMA (ARFIMA) models, thus allowing for a fractional degree of differentiation in the level of the series of global annual temperatures (land temperatures, land and ocean temperatures and Northern and Southern hemisphere temperatures) as well as annual global CO₂ emissions from 1880 to 2014, taking into consideration the eight large pandemic events around the world, prior to the present one caused by COVID-19.

The motivation that is behind this work is that previous studies that have investigated the nonstationarity/stationarity of the series under investigation only have considered integer degrees of differentiation, i.e., 0 for stationary series and 1 for nonstationary ones, not considering cases where the degree of differentiation may be a fractional value between 0 and 1. In fact, many recent studies have shown that many climatological and CO₂ emission-related time series display a long memory pattern, implying different results than those obtained based on classical analysis and that only used integer degrees of differentiation (see, e.g., Barassi et al. 2011; Belbute and Pereira 2017; Gil-Alana and Trani 2019 for papers dealing with CO₂ emissions and Vera-Valdes 2020; Mangat and Reschenhofer 2020; Gil-Alana and Monge 2020; Awe and Gil-Alana 2021 and others for papers with temperature data).

The paper is organized as follows: Sect. 2 briefly describes the techniques used in the paper, while Sect. 3 presents the dataset and Sect. 4 contains the main empirical results. Finally, Sect. 5 concludes the paper.

2 Methodology

2.1 Unit roots methods

There exist many different ways of testing for unit roots. The most common ones are those of Fuller (1976) and Dickey and Fuller (1979), the ADF tests. They are asymptotically optimal when the data are stationary. Other more updated unit root methods are those proposed in Phillips and Perron (1988), Kwiatkowski et al. (1992), Elliott et al. (1992), Ng and Perron (2001), etc.

2.2 ARFIMA (p, d, q) model

To carry out this research, we employ long memory methods based on fractional integration where the number of differences required to render a series I(0) stationary is a fractional value.

Following a mathematical notation, given a time series \(x_t \), where \(t = 1, 2, \ldots \), we say it is integrated of order \(d \) (and denoted as \(x_t \approx I(d) \)) if:

\[
(1 - L)^d x_t = u_t, t = 1, 2, \ldots ,
\]

where \(d \) can be any real value, \(L \) is the lag operator \((Lx_t = x_{t-1}) \) and \(u_t \) is I(0), defined as a covariance stationary process with a spectral density function that is positive and finite at the zero frequency. Thus, \(u_t \) may display some type of time dependence of the weak form, i.e., the type of an invertible and stationary Autoregressive Moving Average (ARMA) form, i.e.,

\[
\phi(L)u_t = \theta(L)\epsilon_t, t = 1, 2, \ldots ,
\]

where \(\phi(L) \) refers to the AR polynomial, \(\theta(L) \) refers to the MA one and \(\epsilon_t \) is a white noise process. In such a case, if \(u_t \) is ARMA (p, q), \(x_t \) is said to be fractionally integrated ARMA, i.e., ARFIMA (p, d, q).

Depending on the value of the differencing parameter \(d \), several specifications based on (1) can be observed: The
process would be short memory or I(0) when \(d = 0 \) in (1). This occurs because \(x_t = u_t \). The high degree of association between observations which are far distant in time receives the name of long memory and occurs when \(d > 0 \). Within this last assumption, the process is still covariance stationary if \(d < 0.5 \) with the autocorrelations decaying hyperbolically slowly.

The reading that we can make of the results obtained from the fractional \(d \) is as follows: We consider a process of reversion which means that the shocks disappear in the long run when \(d \) is smaller than 1, and the lower the value of \(d \) is, the faster the reversion process is. In contrast to the above, the shocks are expected to be permanent when \(d \geq 1 \).

Although there are several procedures to estimate the degree of differentiation \(d \) (see Geweke and Porter-Hudak 1983; Phillips 1999, 2007; Sowell 1992; Robinson 1995; Beran 1995; etc.), we base our results on the maximum likelihood procedure (see Sowell 1992) and we use the Akaike information criterion (AIC, Akaike 1973) and the Bayesian information criterion (BIC; Akaike 1979) to select the right ARFIMA model.

3 Data

We use global annual temperature anomalies using data from meteorological stations; global annual temperature anomalies computed from land and ocean; and global annual temperature anomalies for the northern and southern hemispheres computed using land and ocean data, and we also use annual data from the Carbon Dioxide Information Analysis Center (CDIAC) of the global \(\text{CO}_2 \) emissions originating from fossil fuel burning to analyze the behavior of these variables in the long term during the periods of pandemics for the time period from 1880 to 2009.

Following the research done by Jordà et al. (2020), the dates that we have used for our analysis are collected in the following table:

Event	Start	End
Global Flu Pandemic	1889	1890
Sixth Cholera Pandemic	1899	1923
Encephalitis Lethargica Pandemic	1915	1926
Spanish Flu	1918	1920
Asian Flu	1957	1958
Hong Kong Flu	1968	1969

Figure 1 plots the original data of the global fossil fuel \(\text{CO}_2 \) emissions and the four annual anomalies in the temperature series mentioned above indicating the pandemic periods. Although there is a constant increase in the trend across the sample, in periods of a pandemic it is observed that the temperatures stabilize/decrease with respect to the trend.

4 Results

We start the analysis by performing the three standard unit root tests outlined in Sect. 2. We select the augmented Dickey–Fuller test (ADF) to examine the statistical properties of the original series and its differences to obtain robust results.

Table 1 displays the results, which suggest that the original data are nonstationary I(1) and the first differences are stationary I(0).

Identical results are obtained if other more updated unit root methods are used, such as those mentioned in the previous section. (These results are available from the authors upon request).

Our results so far indicate that all the original series are nonstationary I(1); however, due to the low power of the unit root methods under fractional alternatives, we also perform different ARFIMA (\(p, d, q \)) models to study the persistence of the subsamples corresponding to the different periods of pandemic since 1880.

We select the most appropriate ARFIMA specification for each series for the Akaike information criterion (AIC; Akaike 1973) and Bayesian information criterion (BIC; Akaike 1979). We allow for ARFIMA models of the form

\[\text{ARFIMA}(0, d, 0), \text{ARFIMA}(1, d, 0), \text{ARFIMA}(2, d, 0), \text{ARFIMA}(0, d, 1), \text{ARFIMA}(0, d, 2), \text{ARFIMA}(1, d, 1), \text{ARFIMA}(1, d, 2), \text{ARFIMA}(2, d, 1), \text{ARFIMA}(2, d, 2) \]

i.e., we choose any ARFIMA(\(p, d, q \)) with \(p \) and \(q \) being smaller than or equal to 2. Once the various configurations were calculated, and following the selection criteria mentioned above, the results are collected in Table 2.

Table 2 displays the estimates of the fractional parameter \(d \) and the AR and MA terms obtained using Sowell’s (1992) maximum likelihood estimator of various ARFIMA (\(p, d, q \))

5 See Diebold and Rudebush (1991), Hassler and Wolters (1994) and Lee and Schmidt (1996).

6 Note, however, that the AIC and the BIC may not necessarily be the best criteria in applications involving fractional differentiation. See, e.g. Beran (1998).
specifications with all combinations of \((p, q)\) with \(p, q \leq 2\), for global annual temperatures (land temperatures, land and ocean temperatures and Northern and Southern hemispheres temperatures) and global annual \(\text{CO}_2\) emissions in each pandemic subperiod.

Starting with the \(\text{CO}_2\) emissions, we see that the values of \(d\) range widely between 0.0007 (ELP) and 1.9997 (GFP), and though the confidence intervals are, in some cases, very wide (clearly due to the small sample sizes in some of the periods examined), we observe that the \(I(0)\) hypothesis cannot be rejected in the cases of the Sixth Cholera Pandemia (SCP), the Encephalitis Lethargica Pandemia (ELP) and the Asian Flu (AF), while the \(I(1)\) null cannot be rejected for the Global Flu Pandemia (GFP), the Sixth Cholera Pandemia (SCP), the Asian Flu (AF) and the SARS; finally, these two hypotheses are rejected in favor of \(I(d, 0 < d < 1)\) behavior in the cases of Spanish Flu (SF), Hong Kong Flu (HKF) and the HINI Pandemia. Thus, the results here are very heterogeneous across the different periods of pandemics.

Focusing next on the temperatures, all values of \(d\) are now in the range \((0, 1)\) implying fractional integration, and the highest values correspond to the Sixth Cholera Pandemia (SCP), with the values of \(d\) ranging between 0.4091 (Land Temp.) and 0.5473 (Land Oc. Temp.). In many cases, the \(I(0)\) hypothesis cannot be rejected in any single case (GFP, AF, HKF or SARS) but neither for SF in three out of the four temperature series. In general, we observe that the orders of integration are smaller than 1 in all cases for the temperature series (the only exception is Land Oc. Temp. for the Spanish Flu (SF)), implying mean reversion, with shocks having temporary effects and disappearing by themselves in the long run.

5 Concluding remarks

In this paper we have examined forty time series corresponding to the eight pandemic subsamples (Global Flu Pandemic, Sixth Cholera Pandemic, Encephalitis Lethargica Pandemic, Spanish Flu, Asian Flu, Hong Kong Flu, SARS Pandemic and H1N1 Pandemic) that have been taken place during the last 120 years to understand if these pandemic episodes follow a similar pattern.

Our first focus has been to analyze the statistical properties of these time series using unit roots methods. We started by performing ADF unit root tests and the results of these and other similar methods suggest that the series are non-stationary \(I(1)\) while the first differences are stationary \(I(0)\).

On the other hand, and in order to be more general, we also estimated the differencing parameter \(d\) in terms of a
Pandemic episodes, CO₂ emissions and global temperatures

Table 1 Unit roots tests. (i) Model with no deterministic components; (ii) with an intercept and (iii) with a linear time trend. Inside the parenthesis the p-value is reflected, outside the t-statistic with test critical value at 0.1% (***) ; 1% (**); 5% (*)

Augmented Dickey–Fuller Test
(i)
1. Global Flu Pandemic
CO₂ Emissions
Land Temp
Land Oc Temp
North Land Oc Temp
South Land Oc Temp
2. Sixth Cholera Pandemic
CO₂ Emissions
Land Temp
Land Oc Temp
North Land Oc Temp
South Land Oc Temp
3. Encephalitis Lethargica Pandemic
CO₂ Emissions
Land Temp
Land Oc Temp
North Land Oc Temp
South Land Oc Temp
4. Spanish Flu
CO₂ Emissions
Land Temp
Land Oc Temp
North Land Oc Temp
South Land Oc Temp
5. Asian Flu
CO₂ Emissions
Land Temp
Land Oc Temp

Table 1 (continued)

Augmented Dickey–Fuller Test

(i)	(ii)	(iii)	
North Land Oc Temp	-3.189 (0.00571)**	-3.133 (0.00684)**	-3.027 (0.00905)**
South Land Oc Temp	-1.468 (0.162)	-2.571 (0.0213)*	-2.692 (0.0175)*
6. Hong Kong Flu			
CO₂ Emissions	2.524 (0.0226)*	-0.115 (0.910)	-2.636 (0.0196)*
Land Temp	-2.402 (0.0288)*	-2.310 (0.0355)*	-2.572 (0.0222)*
Land Oc Temp	-2.908 (0.0103)*	-2.830 (0.0127)*	-2.910 (0.0114)*
North Land Oc Temp	-2.433 (0.0271)*	-2.581 (0.0209)*	-2.593 (0.0213)*
South Land Oc Temp	-1.660 (0.116)	-1.605 (0.129)	-2.780 (0.0148)*
7. SARS Pandemic			
CO₂ Emissions	2.901 (0.00993)**	0.710 (0.488)	-1.914 (0.0749)
Land Temp	0.543 (0.594)	-2.822 (0.0123)*	-3.817 (0.00168)***
Land Oc Temp	0.514 (0.614)	-2.545 (0.0216)*	-3.887 (0.00146)***
North Land Oc Temp	0.378 (0.710)	-2.520 (0.0228)*	-3.620 (0.00252)***
South Land Oc Temp	0.404 (0.691)	-2.801 (0.01281)*	-4.162 (0.000835)***
8. H1N1 Pandemic			
CO₂ Emissions	2.330 (0.0399)*	-1.161 (0.273)	-1.885 (0.0921)
Land Temp	0.564 (0.584)	-3.335 (0.00756)**	-4.482 (0.00153)***
Land Oc Temp	0.690 (0.504)	-2.975 (0.0139)*	-4.262 (0.00211)***
North Land Oc Temp	0.730 (0.481)	-2.606 (0.0262)*	-3.050 (0.00138)*
South Land Oc Temp	0.429 (0.676)	-3.642 (0.00452)**	-4.769 (0.001017)***

fractional model using an ARFIMA (p, d, q) approach. To select the right model, we combined all the possible (p, d, q) cases, with p and q smaller than or equal to 2 to find the best specification throughout AIC and BIC methods.

Our results indicate that for the CO₂ emissions the results are quite heterogeneous across the different pandemic periods and the intervals are in some cases very wide such that for example, for the Global Flu Pandemic, the I(1) and the I(2) hypotheses cannot be rejected, and for the SCP and AF, the same happens for the I(0) and I(1) hypotheses; for SARS only the I(1) cannot be rejected and for ELP, the I(0) one; finally for SF, HKF and HINI, the estimated values of d are constrained between 0 and
Table 2 Results of long memory tests. The second column displays the selected model, indicating the orders for the AR and MA dynamics. Column 3 reports the estimates of d while Column 4 the associated standard error. The 95% confidence band is displayed in Column 5, and Column 6 indicates the nature of the process according to the estimated value of d.

Data analyzed	Model Selected	d	Std. Error	Interval	$I(d)$
Global Flu Pandemic (GFP)					
CO2 Emissions	ARFIMA (2, d, 2)	1.999704	0.809815	[0.67, 3.33]	I(1), I(2)
Land Temp	ARFIMA (0, d, 0)	0.346508	0.272745	[-0.10, 0.80]	I(0)
Land Oc Temp	ARFIMA (0, d, 0)	0.309616	0.274918	[-0.14, 0.76]	I(0)
North Land Oc Temp	ARFIMA (0, d, 0)	0.316282	0.307083	[-0.19, 0.82]	I(0)
South Land Oc Temp	ARFIMA (0, d, 0)	0.347257	0.248897	[-0.06, 0.76]	I(0)
Sixth Cholera Pandemic (SCP)					
CO2 Emissions	ARFIMA (2, d, 2)	0.031729	0.724844	[-1.16, 1.22]	I(0), I(1)
Land Temp	ARFIMA (0, d, 0)	0.409173	0.118911	[0.21, 0.60]	I(d)
Land Oc Temp	ARFIMA (0, d, 0)	0.547342	0.168255	[0.27, 0.82]	I(d)
North Land Oc Temp	ARFIMA (0, d, 0)	0.532731	0.120291	[0.33, 0.73]	I(d)
South Land Oc Temp	ARFIMA (0, d, 0)	0.546337	0.175783	[0.26, 0.84]	I(d)
Encephalitis Lethargica Pandemic (ELP)					
CO2 Emissions	ARFIMA (2, d, 2)	0.000752	0.379078	[-0.62, 0.62]	I(0)
Land Temp	ARFIMA (0, d, 0)	0.295605	0.132778	[0.08, 0.51]	I(d)
Land Oc Temp	ARFIMA (0, d, 0)	0.162323	0.280178	[-0.42, 0.51]	I(0)
North Land Oc Temp	ARFIMA (0, d, 0)	0.000695	0.000000	N/A	N/A
South Land Oc Temp	ARFIMA (0, d, 0)	0.542281	0.222463	[0.18, 0.91]	I(d)
Spanish Flu					
CO2 Emissions	ARFIMA (2, d, 2)	0.483415	0.194936	[0.16, 0.80]	I(d)
Land Temp	ARFIMA (0, d, 0)	0.122845	0.398497	[-0.53, 0.78]	I(0)
Land Oc Temp	ARFIMA (0, d, 0)	0.521546	0.353553	[-0.06, 1.10]	I(0), I(1)
North Land Oc Temp	ARFIMA (0, d, 0)	0.190815	0.448218	[-0.55, 0.93]	I(0)
South Land Oc Temp	ARFIMA (0, d, 0)	0.677094	0.248314	[0.27, 1.09]	I(1)
Asian Flu					
CO2 Emissions	ARFIMA (2, d, 2)	0.490717	0.570964	[-0.45, 1.43]	I(0), I(1)
Land Temp	ARFIMA (0, d, 0)	0.328255	0.294040	[-0.16, 0.81]	I(0)
Land Oc Temp	ARFIMA (0, d, 0)	0.221126	0.319530	[-0.30, 0.75]	I(0)
North Land Oc Temp	ARFIMA (0, d, 0)	0.264609	0.334664	[-0.29, 0.82]	I(0)
South Land Oc Temp	ARFIMA (0, d, 0)	0.036722	0.280214	[-0.42, 0.50]	I(0)
Hong Kong Flu					
CO2 Emissions	ARFIMA (0, d, 1)	0.391767	0.041207	[0.32, 0.46]	I(d)
Land Temp	ARFIMA (0, d, 0)	0.051361	0.302555	[-0.45, 0.55]	I(0)
Land Oc Temp	ARFIMA (0, d, 0)	0.000982	0.000000	N/A	N/A
North Land Oc Temp	ARFIMA (0, d, 0)	0.000577	0.000000	N/A	N/A
South Land Oc Temp	ARFIMA (0, d, 0)	0.000227	0.000000	N/A	N/A
SARS Pandemic					
CO2 Emissions	ARFIMA (0, d, 0)	1.106565	0.174356	[0.82, 1.39]	I(1)
Land Temp	ARFIMA (0, d, 0)	0.220313	0.276622	[-0.23, 0.68]	I(0)
Land Oc Temp	ARFIMA (0, d, 0)	0.175943	0.281709	[-0.29, 0.64]	I(0)
North Land Oc Temp	ARFIMA (0, d, 0)	0.151330	0.270351	[-0.29, 0.60]	I(0)
South Land Oc Temp	ARFIMA (0, d, 0)	0.000,433	0.000000	N/A	N/A
H1N1 Pandemic					
CO2 Emissions	ARFIMA (0, d, 0)	0.597296	0.208375	[0.25, 0.94]	I(d)
Land Temp	ARFIMA (0, d, 0)	0.029406	0.304302	[-0.47, 0.53]	I(0)
Land Oc Temp	ARFIMA (0, d, 0)	0.000,989	0.000000	N/A	N/A
North Land Oc Temp	ARFIMA (0, d, 0)	0.001,622	0.000000	N/A	N/A
South Land Oc Temp	ARFIMA (0, d, 0)	0.000,215	0.000000	N/A	N/A
1. Thus, only for the last three subsamples (SF, HKF and HINI) there is some evidence of mean reversion and transitory shocks contrary to what happens in the rest of the cases. For the temperature series, mean reversion occurs in all cases, since all the estimated values of d are strictly smaller than 1, and the highest levels of persistence occur in the case of SCP and SP. For the remaining periods, the I(0) hypothesis is rarely rejected, and thus the recovery of a shock will take place in a shorter period of time. These results are consistent with those presented in Gil-Alana and Monge (2020) where the emissions are found to be I(1) or I(d) with d close to 1 (as in the cases of the Global Flu Pandemic, the Sixth Cholera Pandemic, the Asian Flu and SARS Pandemics), while the temperatures display orders of integration strictly smaller than 1, and thus show mean reverting behavior. These results suggest that in the event of exogenous shocks, temperatures will recover by themselves unlike what happens with the emissions in the majority of the cases where there is no reversion to the mean and strong actions should be adopted to recover the original long term projections.

Author Contribution Manuel Monge contributed to conceptualization, data curation, formal analysis, investigation, methodology, project administration, software, supervision, validation, visualization, writing the original draft, and writing, reviewing and editing.

Luis A. Gil-Alana participated in writing, reviewing and editing, visualization, supervision and formal analysis.

Funding Prof. Manuel Monge and Prof. Luis A. Gil-Alana acknowledge the support from an internal Project of the Universidad Francisco de Vitoria.

Prof. Luis A. Gil-Alana gratefully acknowledges the financial support from the MINEIC-AEI-FEDER ECO2017-85,503-R project from “Ministerio de Economía, Industria y Competitividad” (MINEIC), “Agencia Estatal de Investigación” (AEI) Spain and “Fondo Europeo de Desarrollo Regional” (FEDER).

Data availability The data employed in this research paper are downloaded from https://cdiac.ess-dive.lbl.gov/trends/temp/hansen/data.html and https://cdiac.ess-dive.lbl.gov/trends/emis/tre_glb_2014.html.

The data that support the findings of this study are available on request from the corresponding author.

Code availability Not applicable.

Declarations

Conflicts of interest All authors have participated in (a) conception and design, or analysis and interpretation of the data; (b) drafting the article or revising it critically for important intellectual content; and (c) approval of the final version. This manuscript has not been submitted to, nor is under review at, another journal or other publishing venue. The authors have no affiliation with any organization with a direct or indirect financial interest in the subject matter discussed in the manuscript.

References

Ahmed M, Khan AM, Bibi S, Zakaria M (2016) Convergence of per capita CO2 emissions across the globe: Insights via Wavelet analysis. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2016.10.053

Akaike H (1973) Maximum likelihood identification of Gaussian autoregressive moving average models. Biometrika 60(2):255–265

Akaike H (1979) A Bayesian extension of the minimum AIC procedure of autoregressive model fitting. Biometrika 66(2):237–242

Alby JE (2006) Per capita carbon dioxide emissions: convergence or divergence? Environ Resour Econ 33:533–555

Anderegg WRL, Prall JW, Harold J, Schneider SH (2010) Expert Credibility in Climate Change. Proc Natl Acad Sci USA 107:12107–12109. https://doi.org/10.1073/pnas.1003187107

Awe O, Gil-Alana LA (2021) Fractional integration analysis of precipitation dynamics: empirical insights from Nigeria. Tellus A Dyn Meteorol Oceanogr 73:1

Barussi MR, Cole MA, Elliott RJ (2011) The stochastic convergence of CO2 emissions: a long memory approach. Environmental and Resource Economics 49(3):367–385

Beckage B, Gross LJ, Lacaske K, Carr E, Metcalf SS, Winter JM, Howe PD, Fefferman N, Franck T, Zia A, Kinzig A, Hoffman FM (2018) Nat Clim Chang 8:79–84. https://doi.org/10.1038/s41558-017-0031-7

Beltubé JM, Pereira AM (2017) Do global CO2 emissions from fossil-fuel consumption exhibit long memory? a fractional-integration analysis. Appl Econ 49(40):4055–4070

Beran J (1995) Maximum likelihood estimation of the differencing parameter for invertible short and long memory autoregressive integrated moving average models. J R Stat Soc B 57:659–672

Beran J (1998) On unified model selection for stationary and nonstationary short- and long-memory autoregressive processes. Biometrika 85:4

Bloomfield P (1992) Trends in global temperatures. Clim Change 21(1):275–287

Bloomfield P, Nychka D (1992) Climate spectra and detecting climate change. Clim Change 21(3):275–287

Cahill N, Rahmstorf S, Parnell AC (2015) Change points of global temperature. Environ Res Lett 10(8):1–6. 084002. https://doi.org/10.1088/1748-9326/10/08/084002

Chang Y, Kim Ch S, Miller JI, Park JY, Park S (2015) Time series analysis of global temperature distributions: identifying and estimating persistent features in temperature anomalies. Working Paper 15–13, University of Missouri

Chang CP, Lee CC (2008) Are per capita carbon dioxide emissions converging among industrialized countries? New time series evidence with structural breaks. Environ Resource Econ 13(4):497–515

Christidou M, Panagiotidis T, Sharma A (2013) On the stationarity of per capita carbon dioxide emissions over a century. Econ Model 33:918–925

Dickey DA, Fuller WA (1979) Distribution of the estimators for autoregressive time series with a unit root. J Am Stat Assoc 74(366a):427–431

Diebold FX, Rudebusch GD (1991) On the power of Dickey-Fuller tests against fractional alternatives. Econ Lett 35:155–160

Elliott G, Rothenberg TJ, Stock JH (1992) Efficient tests for an autoregressive unit root. Econometrica 64:813–836

Estrella F, Perron P, Gay-Garcia C, Martinez-Lopez B (2013) A time-series analysis of the 20th century climate simulations produced for the IPCCs Fourth Assessment Report. PLoS ONE 8:e60017

Ezcurra R (2007) Is there cross-country convergence in carbon dioxide emissions? Energy Policy 35:1363–1372
Gil-Alana LA, Boucher O, Colman A, Parker DE (2018) Causes of irregularities in trends of global mean surface temperature since the late 19th century. Sci Adv 4:eaa05297. https://doi.org/10.1126/sciadv.aao5297

Koenker R, Schorfheide F (1994) Quantile spline models for global temperature change. Clim Change 28(4):395–404

Kwiatkowski D, Phillips PC, Schmidt P, Shin Y (1992) Testing the null hypothesis of stationarity against the alternative of a unit root. J Econ 54(1–3):159–178

Koenker R, Schorfheide F (1994) Quantile spline models for global temperature change. Clim Change 28(4):395–404

Fuller WA (1976) Introduction to Statistical Time Series, New York: JohnWiley. Introduction to Statistical Time Series 1976

Galbraith JW, Green C (1992) Inference about trends in global temperatures. Clim Change 22(3):209–221

Gay-Garcia C, Estrada F, Sanchez A (2009) Global and hemispheric temperatures revisited. Clim Change 94:333–349

Geweke J, Porter-Hudak S (1983) The estimation and application of long memory time series models. J Time Ser Anal 4(4):221–238

Lee CC, Chang CP, Chen PF (2008) Do CO2 emissions levels converge among 21 OECD countries? New evidence from unit root structural break tests. Appl Econ Lett 15(7):551–556

Lee CC, Chang CP (2009) Stochastic convergence of per capita carbon dioxide emissions and multiple structural breaks in OECD countries. Econ Model 26:1375–1381

Lee D, Schmidt P (1996) On the power of the KPSS test of stationarity against fractionally-integrated alternatives. J Econ 73(1):285–302

Liu Z, Deng Z, Ciais P, Le R et al (2020). Decreases in global CO2 emissions due to COVID-19 pandemic. arXiv preprint arXiv:2004.13614

Le Quéré C, Jackson RB, Jones MW, Smith, et al (2020) Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement. Nature Clim Chang 10:647–653

Le Quéré C, Jackson RB, Jones MW, Smith, et al (2020) Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement. Nature Clim Chang 10:647–653

Liu Z, Deng Z, Ciais P, Lei R et al (2020). Decreases in global CO2 emissions due to COVID-19 pandemic. arXiv preprint arXiv:2004.13614

McMillan DG, Wohar ME (2013) The relationship between temperature and CO2 emissions: evidence from a short and very long dataset. Appl Econ 45(26):3683–3690

Mills TC (2006) Modelling current trends in northern hemisphere temperatures. Int J Climatol 26:867–884

Mills TC (2010) Skinning a cat: alternative models of representing temperature trends. Clim Change 101:415–426

Mills TC (2010) Skinning a cat: alternative models of representing temperature trends. Clim Change 101:415–426

Ng S, Perron P (2001) Lag length selection and the construction of unit root tests with good size and power. Econometrika 69(6):1519–1554

Nicholls N, Grau GV, Jouzel J, Kart TR, Ogullo LA, Parker DE (1996) Climate Change 1995: The Science of Climate Change. Cambridge University Press, Cambridge, pp 153–192

Nourry M (2009) Re-examining the empirical evidence for stochastic convergence of two air pollutants with a pair-wise approach. Environ Resource Econ 44:555–570

OECD (2020) OECD Economic Outlook, Interim Report March 2020: Coronavirus, the world economy at risk. OECD Publishing, Paris

Panopoulou E, Pantelidis T (2009) Club convergence in carbon dioxide emissions. Environ Resource Econ 44(1):47–70

Phillips PCB (1999) Discrete Fourier transforms of fractional processes. Cowles Foundation for Research in Economics, Yale University, Discussion Paper No, p 1243

Phillips PCB (1999) Discrete Fourier transforms of fractional processes. Cowles Foundation for Research in Economics, Yale University, Discussion Paper No, p 1243

Phillips PCB, Perron P (1988) Testing for a unit root in time series regression. Biometrika 75(2):335–346

Phillips PCB (1999) Discrete Fourier transforms of fractional processes. Cowles Foundation for Research in Economics, Yale University, Discussion Paper No, p 1243

Phillips PCB (2007) Unit root log periodogram regression. J Econ 138(1):104–124

Phillips PCB (2007) Unit root log periodogram regression. J Econ 138(1):104–124

Robinson PM (1995) Gaussian semi-parametric estimation of long range dependence. Ann Stat 23:1630–1661

Romero-Avila D (2008) Convergence in carbon dioxide emissions among industrialised countries revisited. Energy Econ 30(5):2265–2282

Sanz-Pérez E, Murdock C, Didas S, Jones C (2016) Direct Capture of CO2 from ambient air. Chem Rev 116(19):11840–11876

Sowell F (1992) Modeling long-run behavior with the fractional ARIMA model. J Monet Econ 29(2):277–302

Sun L, Wang M (1996) Global warming and global dioxide emissions: An empirical study. J Environ Manage 46:327–343

Springer
Pandemic episodes, CO₂ emissions and global temperatures

489

Tiwari AK, Kyophilavong P, Albulescu CT (2016) Testing the stationarity of CO₂ emissions series in Sub-Saharan African countries by incorporating nonlinearity and smooth breaks. Res Int Bus Financ 37:527–540

Vera-Valdes JE (2020) Temperature anomalies, long memory and aggregation. Econometrics 9:9

Vogelsang TJ, Franses PH (2005) Are winters getting warmer? Environ Model Softw 20:1499–1555

Woodward WA, Gray HL (1993) Global warming and the problem of testing for trend in time series data. J Clim 6(5):953–962

Woodward WA, Gray HL (1995) Selecting a model for detecting the presence of a trend. J Clim 8(8):1929–1937

Yavuz NC, Yilanci V (2013) Convergence in Per Capita Carbon Dioxide Emissions Among G7 Countries: A TAR Panel Unit Root Approach. Environ Resour Econ 54:283–291

Ying N, Zhou D, Han ZG, Chen QH, Ye Q, Xue ZG (2020) Rossby Waves Detection in the CO2 and Temperature Multilayer Climate Network. Geophys Res Lett 47:GL086507

Zhang X, Basher RE (1999) Structural time series models and trend detection in global and regional temperature series. J Clim 12:2357–2358

Zhang Y, Fan J, Chen X, Ashkenazy Y, Havlin S (2019) Significant impact of Rossby waves on air pollution detected by network analysis. Geophys Res Lett 46:2019GL084649

Zickfeld K, Arora VK, Gillett NP (2012) Is the climate response to CO₂ emissions path dependent?. Geophys Res Lett 39:5.

Zickfeld K, MacDougall AH, Matthews HD (2016) On the proportionality between global temperature change and cumulative CO₂ emissions during periods of net negative CO₂ emissions. Environ Res Lett 11(5):055006

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.