Injection of Inositol Trisphosphorothioate
into *Limulus* Ventral Photoreceptors
Causes Oscillations of Free Cytosolic Calcium

Richard Payne and Barry V. L. Potter

From the Department of Zoology, University of Maryland, College Park, Maryland 20742; and
the School of Pharmacy and Pharmacology, University of Bath, Bath, BA2 7AY, United Kingdom

Abstract *Limulus* ventral photoreceptors contain calcium stores sensitive to release by D-myo-inositol 1,4,5 trisphosphate (InsP₃) and a calcium-activated conductance that depolarizes the cell. Mechanisms that terminate the response to InsP₃ were investigated using nonmetabolizable D,L-myo-inositol 1,4,5 trisphosphorothioate (InsPS₃). An injection of 1 mM InsPS₃ into a photoreceptor’s light-sensitive lobe caused an initial elevation of cytosolic free calcium ion concentration (Caᵢ) and a depolarization lasting only 1–2 s. A period of densensitization followed, during which injections of InsPS₃ were ineffective. As sensitivity recovered, oscillations of membrane potential began, continuing for many minutes with a frequency of 0.07–0.3 Hz. The activity of InsPS₃ probably results from the D-stereoisomer, since L-InsP₃ was much less effective than InsP₃. Injections of 1 mM InsP₃ caused an initial depolarization and a period of densensitization similar to that caused by 1 mM InsPS₃, but no sustained oscillations of membrane potential. The initial response to InsPS₃ or InsP₃ may therefore be terminated by desensitization, rather than by metabolism. Metabolism of InsP₃ may prevent oscillations of membrane potential after sensitivity has recovered. The InsPS₃-induced oscillations of membrane potential accompanied oscillations of Caᵢ and were abolished by injection of ethyleneglycol-bis(β-aminoethyl ether)-N,N’-tetraacetic acid. Removal of extracellular calcium reduced the frequency of oscillation but not its amplitude. Under voltage clamp, oscillations of inward current were observed. These results indicate that periodic bursts of calcium release underly the oscillations of membrane potential. After each burst, the sensitivity of the cell to injected InsP₃ was greatly reduced, recovering during the interburst interval. The oscillations may, therefore, result in part from a periodic variation in sensitivity to a constant concentration of InsPS₃. Prior injection of calcium inhibited depolarization by InsPS₃, suggesting that feedback inhibition of InsPS₃-induced calcium release by elevated Caᵢ may mediate desensitization between bursts and after injections of InsPS₃.

Address reprint requests to Dr. Richard Payne, Department of Zoology, University of Maryland, College Park, MD 20742-4415.
INTRODUCTION

\(d\text{-myo-inositol 1,4,5 trisphosphate (InsP}_3\) is thought to mediate the ability of light to release calcium from endoplasmic reticulum (ER) within invertebrate microvillar photoreceptors (Brown et al., 1984; Fein et al., 1984; Baumann and Walz, 1989). A brief (30–200 ms) injection of InsP\(_3\) into the light-sensitive lobe of a \textit{Limulus} ventral photoreceptor usually causes a transient rise in cytosolic free calcium ion concentration (\(Ca^*_i\)), lasting 1–2 s (Brown and Rubin, 1984; Payne et al., 1986b). The rise in \(Ca^*_i\) is accompanied by a depolarization which results from a calcium-activated increase in the sodium conductance of the photoreceptor’s plasma membrane (Payne et al., 1986a). This sodium conductance has similar properties to that activated by light (Brown et al., 1984; Fein et al., 1984; Payne et al., 1986a), suggesting that the release of calcium by InsP\(_3\) participates in phototransduction.

Several processes might contribute to the rapid termination of the release of calcium by InsP\(_3\). Two of these might reduce the concentration of InsP\(_3\) at the injection site. First, InsP\(_3\) might be metabolized to inactive products, such as inositol bisphosphate (InsP\(_2\); Berridge and Irvine, 1984). Secondly, dilution of InsP\(_3\) into the cell volume may reduce its concentration below the threshold for calcium release. Two other processes may act rapidly to reduce the effectiveness of InsP\(_3\) in releasing calcium. First, the InsP\(_3\)-sensitive ER might become rapidly depleted of calcium (Berridge and Irvine, 1989). Secondly, the calcium release mechanism might become less sensitive to InsP\(_3\) through feedback inhibition by elevated \(Ca^*_i\) (Worley et al., 1987; Baumann and Walz, 1989; Ogden et al., 1990; Parker and Ivorra, 1990; Payne et al., 1990) or by some other mechanism such as phosphorylation of the InsP\(_3\) receptor (Supattapone et al., 1988).

Invertebrate microvillar photoreceptors contain enzymes that rapidly dephosphorylate InsP\(_3\) to inactive Ins(1,4)P\(_2\) (Trowell, 1988; Wood et al., 1990). Wood et al. (1990) estimate that an initial concentration of InsP\(_3\) of 10\(\mu\)M within the outer segment of a squid photoreceptor would be metabolized to InsP\(_2\) with a half-time of 5 s. The role of the metabolism of InsP\(_3\) in terminating InsP\(_3\)-induced calcium release can be investigated by injecting an analogue of InsP\(_3\) that is resistant to metabolism, \(d\text{-myo-inositol 1,4,5 trisphosphorothioate (InsPS}_3\); Cooke et al., 1987a; Nahorski and Potter, 1989; Taylor et al., 1989). If rapid metabolism of InsP\(_3\) terminates calcium release then the injection of InsPS\(_3\) should prolong calcium release. We find that calcium release after injection of InsPS\(_3\) is prolonged, but it is not continuous. A large, transient elevation of \(Ca^*_i\), similar to that caused by InsP\(_3\), is followed by a period of insensitivity to further injections of InsPS\(_3\). As sensitivity returns, a series of oscillatory bursts of calcium release begin and continue for at least tens of minutes. Rapid desensitization of the mechanism for calcium release may account for both the decline of the initial transient rise in \(Ca^*_i\) and the transience of each oscillatory elevation of \(Ca^*_i\).

In addition to providing insight into the mechanism that releases calcium, the use of InsPS\(_3\) provides an important test of the hypothesis that InsP\(_3\) participates in the electrical response of the photoreceptor to light (Brown et al., 1984; Fein et al., 1984). If InsP\(_3\) is the only messenger of phototransduction in \textit{Limulus} photoreceptors, then injection of InsPS\(_3\) should mimic steady illumination. The oscillatory bursts of
depolarization that we observe after injection of InsPS$_3$ clearly do not mimic the sustained depolarization produced by steady illumination. Our results do not, therefore, support the proposal that InsP$_3$ is the only messenger that mediates the electrical response to light.

MATERIALS AND METHODS

Experimental Procedures

Conventional methods of intracellular recording and for stimulating ventral nerve photoreceptors were used, as described in detail elsewhere (Millecchia and Mauro, 1969; Fein and Charlton, 1977; Payne et al., 1990). Cells were stimulated with white light from a 100-W quartz-halogen source which was passed through a heat filter, neutral density (ND) filters, and a shutter before being focused onto the specimen plane. The intensity of light at the specimen, with no intervening ND filters, was 80 mW/cm2. Light intensities are quoted in this paper as log units of attenuation relative to this intensity. In order to view the preparation with an infrared-sensitive TV camera, cells were also continuously illuminated by an infrared beam, created by passing a second beam of light from the quartz-halogen lamp through an infrared filter before focusing it onto the specimen.

Rapid pressure injection of substances into cells through single and double-barreled (“theta glass”) micropipette was achieved as previously described (Corson and Fein, 1983; Payne et al., 1990).

Observation of Aequorin Luminescence

Light from the preparation was collected by an objective lens (L25xFL, 0.36 NA, E. Leitz, Wetzlar, Federal Republic of Germany) and projected onto a dichroic mirror (DC675LP, Omega Optical Inc., Brattleboro, VT) mounted at 45° to the light beam. Infrared light passed through the dichroic mirror and was focused onto the infrared-sensitive TV camera. Visible light, including aequorin luminescence, which was reflected from the dichroic mirror, was focused onto the photocathode of a photomultiplier tube (R464, Hamamatsu Corp., Bridgewater, NJ). Transistor-transistor logic (TTL) pulses from the output of a photon-counting amplifier/discriminator (3470/AD6, Pacific Instruments, Inc., Concord, CA) were counted, placed into time bins, and continuously displayed by an IBM AT computer. Aequorin luminescence is expressed in the text as counts per second (cps).

Chemicals and Solutions

DL-InsPS$_3$ was synthesized as described previously (Cooke et al., 1987a) and purified by ion exchange chromatography on diethylaminoethyl (DEAE) Sephadex A-25. Reference to InsPS$_3$ implies the racemate unless indicated. L-InsP$_3$ was synthesized from resolved d-1,2,4-tri-O-benzyl-myoinositol (Gigg et al., 1987) essentially as described for DL-InsP$_3$ (Cooke et al., 1987b). All synthetic inositol polyphosphates were used as the triethylammonium salts. d-InsP$_3$ was obtained from Calbiochem-Behring Corp., San Diego, CA, as the trilithium salt.

All chemicals injected into the cells were dissolved in carrier solution (100 mM potassium aspartate, 10 mM N-2-hydroxyethylpiperazine-N'-2 ethane sulfonic acid [HEPES] pH 7.0). Potassium aspartate and aspartic acid were obtained from Sigma Chemical Co., St. Louis, MO. All inorganic reagents were of analytical grade. Calcium aspartate was made by the addition of stoichiometric amounts of Ca(OH)$_2$ to aspartic acid. Cells were normally bathed in artificial seawater (ASW) that contained 435 mM NaCl, 10 mM CaCl$_2$, 10 mM KCl, 20 mM MgCl$_2$, 25
mM MgSO₄, and 10 mM HEPES, pH 7.0 Ca-EGTA ASW was made by replacing the CaCl₂ with 1 mM EGTA obtained from Sigma Chemical Co.

Recombinant aequorin was the generous gift of Dr. O. Shimomura (Marine Biological Laboratory, Woods Hole, MA), Dr. S. Inouye (Chisso Chemical Corp., Yokohama, Japan), and Dr. Y. Kishi (Department of Chemistry, Harvard University, Cambridge MA). Recombinant aequorin was made by incubating recombinant apo-aequorin (Inouye et al., 1985, 1989) with coelenterazine (Kishi et al., 1972; Musicki et al., 1986). For microinjection, the aequorin was dissolved at a concentration of 6.7 mg/ml in carrier solution containing 100 μM EGTA.

RESULTS

Injection of InsPS₃ Causes an Immediate Transient Depolarization Followed by Oscillatory Bursts

Ventral photoreceptors are clearly divided into two or more lobes (Calman and Chamberlain, 1982; Stern et al., 1982), one or more light-sensitive rhabdomeral (R) lobes and an arhabdomeral (A) lobe that is insensitive to light. The sizes of the R and A lobes are highly variable from cell to cell, with diameters ranging from 40 to 100 μm and centers placed between 40 and 100 μm apart. The R lobe contains the InsP₃-sensitive ER (Payne and Fein, 1987) and the sites at which calcium acts to depolarize the photoreceptor (Payne et al., 1986a).

A single, brief injection of 1 mM InsPS₃ delivered, in darkness, from a micropipette that impaled the R lobe of a photoreceptor caused a large immediate depolarization lasting <2 s, followed by a period of reduced activity and then a series of bursts of depolarization (Fig. 1A). The bursts continued for several minutes (Fig. 1B). A further injection of InsPS₃ delivered during the bursts of depolarization (Fig. 1B, first vertical arrow) caused another large immediate depolarization followed by a period of inactivity.

After a third injection of InsPS₃ (Fig. 1B, second vertical arrow), the bursts developed a stable frequency of occurrence and continued for 41 min (Fig. 1C), after which we terminated the recording. We shall refer to these regular bursts as "oscillations" of membrane potential. The frequency of the oscillations varied from cell to cell from 0.3 to 0.07 Hz. The regularity of occurrence of the bursts of depolarization also varied from cell to cell. Not every cell injected with InsPS₃ developed stable oscillations of membrane potential. Many other cells exhibited irregularly occurring bursts of depolarization, the bursts having a similar mean frequency of occurrence to the oscillations. Like the oscillations, these irregularly-occurring bursts continued for many minutes after the injection. Out of 65 cells injected with InsPS₃, oscillations of membrane potential were recorded from 25 cells, while irregularly-occurring bursts of depolarization were recorded from the remainder.

Some photoreceptors were impaled with a second micropipette through which current was passed to clamp the membrane potential to its normal resting level. Once impaled, cells were injected with sufficient InsPS₃ to elicit oscillations of membrane potential. Voltage clamp of these photoreceptors at their resting potential (between −40 and −60 mV) did not alter the frequency of the oscillations, now of inward current rather than depolarization (Fig. 2). Modulation of channel activity by
membrane potential is therefore not necessary for the oscillations to occur. Similar results to those of Fig. 2 were obtained from five other cells.

The Site of Action of InsP₃ Is Stereospecific

Because the stock of InsP₃ was a racemate (Cooke et al., 1987a; Taylor et al., 1989), we investigated the stereospecificity of the action of InsP₃ in order to determine which

![Figure 1](image)

Figure 1. The injection of InsP₃ into a ventral photoreceptor causes an immediate depolarization, followed by oscillations of membrane potential. The photoreceptor was impaled in its R lobe with a micropipette containing 1 mM InsP₃. The time (in hours:minutes) at which each recording began is shown below each trace, on the left. The duration of the injections was 300 ms, pressure 30 psi. The horizontal arrow to the right of each trace indicates an absolute membrane potential of −45 mV. All traces were recorded from the same cell. (A) Membrane potential recorded during an injection, at the vertical arrow, of 1 mM InsP₃. The injection caused an immediate depolarization, lasting 1–2 s followed by delayed bursts of depolarization. (B) 8 min after the recording shown in A, the bursts of depolarization persisted. Two subsequent injections of InsP₃ (vertical arrows) resulted in immediate depolarizations, followed by regular oscillations of membrane potential. (C) The oscillations of membrane potential persisted for 41 min after the recording shown in B.

of the isomers was likely to be effective in releasing calcium. We injected 1 mM L-InsP₃ (Strupish et al., 1988) into the R lobe of a ventral photoreceptor through a double-barreled electrode which held either 1 mM D-InsP₃ or 1 mM InsP₃ in the other barrel. Injections of L-InsP₃ were much less effective than those of either D-InsP₃ or InsP₃ in depolarizing the photoreceptor and did not elicit oscillatory
bursts of depolarization. The mean immediate depolarization resulting from an injection of L-InsP₃ into seven cells was 2.3 ± 2 mV (SEM) whereas that to D-InsP₃ was 40 ± 5 mV.

The Relative Effectiveness of InsP₃ and InsP₅ Depends on the Site of Their Injection

We compared the responses of the photoreceptor to injections of 1 mM InsP₃ with those to 1 mM InsP₅. We also determined the dependence of the effectiveness of the

injections on their location within the photoreceptor. InsP₅ has been shown to be less effective when injected into the A lobe rather than into the R lobe (Fein et al., 1984). We wished to determine whether this was due to metabolism of InsP₅, while en route from the A lobe to the ER in the R lobe.

Injections of InsP₅ and InsP₃ into the R lobe. We filled a double-barreled micropipette with 1 mM InsP₅ in one barrel and 1 mM InsP₃ in the other. A photoreceptor was impaled with this micropipette in either its A or R lobe, placement being judged by the different visual appearance of the lobes (Stern et al., 1982). At
the end of the experiment, the identification of the lobe was confirmed by scanning the photoreceptor with a 20-μm-diam spot of light, and recording the depolarization produced by brief flashes of light. Sensitivity to light is greatest in the R lobe and least in the A lobe (Stern et al., 1982).

A series of five brief injections were delivered to either barrel of the micropipette. When placed in the R lobe (Fig. 3A), the response to the first injection of InsP3 consisted of an immediate, transient depolarization. Subsequent injections of InsP3,

![Graph A](image1.png)

![Graph B](image2.png)

![Graph C](image3.png)

![Graph D](image4.png)

Figure 3. Relative effectiveness of injections of InsP3 or InsP3S when injected into the R lobe (A and B) or A lobe (C and D) of two ventral photoreceptors. (A and B) Membrane potential during injections of (A) 1 mM InsP3 and (B) 1 mM InsP3S delivered into the R lobe of a photoreceptor through a double-barreled micropipette. InsP3 and InsP3S produce a similar immediate depolarization, but no oscillations follow the injection of InsP3. (C and D) Membrane potential during injections of (C) 1 mM InsP3 and (D) 1 mM InsP3S, delivered into the A lobe of another photoreceptor. InsP3S is much more effective than InsP3 in producing delayed oscillations of membrane potential. The lower trace in each record shows the time and duration of the pressure pulse delivered to the micropipette. The transient negative deflection after each injection of InsP3 after the first is an injection artifact resulting from the use of the barrel containing InsP3 to record membrane potential. All injections were of duration 300 ms, pressure 50 psi. The horizontal arrow to the right of each trace indicates an absolute membrane potential of −45 mV.

delivered between 2 and 8 s after the first were ineffective in causing another transient depolarization. Sensitivity to injections of InsP3 recovered completely within 1 min (not shown). The response to InsP3S was more complex (Fig. 3B). An immediate, transient depolarization, very similar to that caused by InsP3, immediately followed the injection. As for injections of InsP3, a period of desensitization followed, during which subsequent injections were ineffective. However, 11 s later, bursts of
depolarization developed and continued for the next 15 min when the recording was terminated.

Out of a total of eight cells investigated, in all cases the immediate transient depolarizations after the first injections of either InsP₃ or InsPS₃ were similar in amplitude and time course. The severity of the desensitization after the first injections varied from cell to cell. For four of the eight cells, injections of InsPS₃ or InsP₃ after the first were entirely ineffective (as in Fig. 3 B). In the other cells, injections after the first resulted in transient depolarizations which were much smaller than that caused by the first injection and which were delayed with respect to the time of injection (for example, Fig. 4). After the period of desensitization, bursts of depolarization were irreversibly elicited by injections of 1 mM InsPS₃ into the R lobe of seven of the cells. Injection of InsPS₃ into the remaining cell resulted in an irreversible desensitization of the cell to both light and InsPS₃. In only one of the eight cells were bursts of depolarization elicited by injections of InsP₃, and in this case,
the bursts died out within 45 s. Addition of 10 mM triethylammonium aspartate (the
counterion to InsPS₃; see Materials and Methods) to the solution of 1 mM InsP₃
resulted in similar responses to injections into eight cells as were observed after
injections of 1 mM InsP₃ alone.

Injections of InsPS₃ and InsP₃ into the A lobe. When the micropipette was placed in
the A lobe of another photoreceptor, injections of InsP₃ elicited only a few small
bursts of depolarization (Fig. 3 C). Injections of InsPS₃, however, elicited a striking
series of bursts of depolarization after a delay of 11 s between the injection of InsPS₃
and the first burst (Fig. 3 D). For five other cells, the delay varied from 4 to 13 s. In
all cells, the bursts of depolarization continued for many minutes after the injections.
We conclude that InsPS₃ is much more effective than InsP₃ when injected into the A
lobe and that the metabolism of InsP₃ may therefore play a role in limiting its spread
within the photoreceptor.

**Desensitization of the Response to InsPS₃, Results from a Decreased Ability of InsPS₃
to Elevate Ca.**

The desensitization of the response to injections of InsP₃ that follow a first, effective
injection has been shown to be caused by an inability of InsP₃ to release calcium
(Payne et al., 1990). We wished to determine whether the same holds for the response
to InsPS₃. We therefore impaled a photoreceptor with a micropipette containing
eaquorin (Shimomura et al., 1962; Brown and Blinks, 1974) and injected 10–100 pl
of aequorin solution (see Materials and Methods) before impalement with another
micropipette containing 1 mM InsPS₃. Changes in Ca were then monitored during a
series of three injections of 1 mM InsPS₃, delivered to the R lobe (Fig. 4). The first
injection resulted in an immediate depolarization of 32 mV which reached its peak
400 ms after the injection began. This immediate depolarization was accompanied by
a large increase in aequorin luminescence, the peak emission being 1,618 cps. The
second injection, delivered 2 s after the first, failed to elicit an immediate depolariza-
tion. However, a small delayed depolarization reaching a peak 1.4 s after the
beginning of the second injection is evident. No significant increase in aequorin
luminescence followed the second injection. The third injection of InsPS₃, delivered 4
s after the first, failed to significantly depolarize the photoreceptor or to detectably
increase the aequorin luminescence.

After the first injection of InsPS₃, the aequorin luminescence remained elevated,
creating a "tail" of luminescence that declined throughout the period of desensitiza-
tion. The mean aequorin luminescence before the first injection was 24 cps. Before
the second injection, it was 374 cps and before the third it had declined somewhat to
190 cps. The mean aequorin luminescence had declined to 40 cps by the time at
which the bursts of depolarization began.

The period of desensitization and inactivity is therefore one in which Ca remains
elevated. Similar results were obtained from six other cells. A transient depolariza-
tion, aequorin luminescence and subsequent desensitization were also recorded when
cells bathed in 0Ca-EGTA ASW were injected with InsPS₃, indicating that, as for InsP₃
(Brown and Rubin, 1984; Payne et al., 1986b) the elevation of Ca results from the
release of calcium from intracellular stores.
A Prior Injection of Calcium Desensitizes the Response to dt-InsPS3

The experiment of Fig. 4 demonstrates that the period of desensitization to InsPS3 is accompanied by a sustained elevation of Ca2+. Previous work has shown that prior elevation of Ca2+ inhibits calcium release by subsequent injections of InsPs (Payne et al., 1990). We thought it likely that the same mechanism might account for the period of desensitization to InsPS3. To test this hypothesis directly, we impaled ventral photoreceptors with a double-barreled micropipette containing 1 mM CaCl2 in one barrel and 1 mM InsPS3 in the other. We injected a brief pulse of CaCl2 1.5 s before one of InsPS3. Fig. 5 B shows that the injection of calcium caused a transient depolarization, indicating a large elevation of Ca2+, followed by a suppression of the
immediate response to the subsequent injection of InsPS₃ (compare Fig. 5 B with Fig. 5, A and C). Similar results were obtained in six cells injected with 1 mM calcium aspartate and in one other cell injected with 1 mM CaCl₂. Injection of five cells with carrier solution 1.5 s before an injection of InsPS₃ had no significant effect on the InsPS₃-induced depolarization.

The InsPS₃-induced Oscillations in Membrane Potential Are Accompanied by Oscillations of Ca⁺

Photoreceptors were impaled with a micropipette containing aequorin and injected with 10–100 pl of aequorin solution (See Materials and Methods) before impalement with another micropipette containing 1 mM InsPS₃. Sufficient 1 mM InsPS₃ was then injected to initiate spontaneous oscillatory bursts of depolarization (Fig. 6). The larger and longer bursts of depolarization were each accompanied by a small burst of aequorin luminescence indicating a small, or highly localized, rise in Ca⁺ (Fig. 6 A). Shorter bursts, of amplitude < 20 mV were not accompanied by detectable aequorin signals, possibly owing to the long (500 ms) integration time used in counting photons emitted by the aequorin. The aequorin signals associated with each burst were much smaller than those accompanying the immediate depolarization that followed the first of a series of injections of 1 mM InsPS₃ delivered to the same cell during the period of oscillatory activity (Fig. 6 B). Note that, as for Fig. 4, the period of suppression of oscillatory activity after the injection of InsPS₃ is accompanied by a “tail” of elevated Ca⁺. The elevations of Ca⁺ during the oscillations were also very much smaller than those observed after a saturating light flash (Fig. 6 C). We conclude that the small elevations of Ca⁺ that accompany the oscillations of depolarization are probably caused by the release of only a fraction of the calcium stored within the photoreceptor. Similarly small oscillations of aequorin luminescence were observed in four other cells injected with InsPS₃.

Injection of the Calcium Buffer EGTA Abolishes the Oscillatory Bursts of Depolarization

Photoreceptors were injected with sufficient InsPS₃ to initiate oscillatory bursts of depolarization (Fig. 7 A) and then with a single injection of 100 mM EGTA through a second micropipette (Fig. 7 B). The injection of EGTA completely suppressed the oscillations. A subsequent injection of 1 mM InsPS₃ still elicited a transient depolarization with a complex waveform (Fig. 7 C), but did not result in any subsequent oscillatory bursts of depolarization. A further series of six injections of EGTA abolished the response to InsPS₃ (Fig. 7 D).

We also investigated the effect of the injections of EGTA on the response to prolonged light flashes (Fig. 7 E–G). The response to a prolonged light flash before injection of InsPS₃ or EGTA is shown in Fig. 7 E. The first injection of EGTA, which abolished the oscillations of membrane potential, somewhat reduced the initial transient peak of the light response and increased the sustained plateau (Fig. 7 F). The series of EGTA injections that abolished the immediate response to an injection of InsPS₃ also abolished the initial transient depolarization caused by the light flash, while the smaller plateau depolarization remained (Fig. 7 G). Similar results were obtained from six other cells.
Figure 6. The oscillations of membrane potential elicited by injection of 1 mM InsPS₃ are accompanied by oscillations of Ca₂⁺ and are transiently suppressed by further injections of InsPS₃ into the same cell. A bright light flash delivered to the same cell releases much more calcium than does each oscillation. (A) Oscillations of membrane potential (upper trace) and aequorin luminescence (lower trace) elicited by prior injection of InsPS₃. The aequorin luminescence was counted into 500-ms bins. (B) Membrane potential (upper trace) and aequorin luminescence (lower trace) recorded during a series of injections of InsPS₃, delivered during the period of oscillatory activity. The first of the injections elicited a large depolarization and a large increase in aequorin luminescence, after which the response to the subsequent injections and the spontaneous oscillations of membrane potential were suppressed. Note the change in scale of the aequorin luminescence trace, as compared to A. The aequorin luminescence was counted into 500-ms bins. The injections were of duration 300 ms, pressure 40 psi. (C) Membrane potential (upper trace) and aequorin luminescence (lower trace) recorded following a light flash, log intensity = 0, duration 50 ms that was delivered subsequent to the record in B. The shutter to the photomultiplier tube was open before and for a period beginning 10 ms after the end of the stimulating flash. Note the change in scale of the aequorin luminescence compared to A and B. Aequorin luminescence was counted into 20-ms bins. The horizontal arrow to the right of each voltage trace indicates an absolute membrane potential of −45 mV. All traces were recorded from the same cell.
Comparing these results with those obtained using aequorin we conclude that a rise in Ca, causes both the immediate depolarization that follows an injection of InsPS₃ and the subsequent oscillatory bursts. The larger quantity of EGTA needed to abolish the immediate depolarization is consistent with the larger elevation of Ca, during the immediate depolarization, compared to that during a burst.

Figure 7. Injections of EGTA abolish the oscillations of membrane potential that follow injection of 1 mM InsPS₃ and greatly reduce the initial transient response to light, but do not abolish the steady, plateau response to light. (A) Membrane potential recorded during an injection of 1 mM InsPS₃. The injection elicited a series of oscillatory bursts of depolarization. (B) Injection of 100 mM EGTA abolished the oscillatory bursts of depolarization. This record follows and is continuous with A. (C) 100 s after the injection of EGTA shown in B, a subsequent injection of InsPS₃ produced a transient depolarization, but no sustained oscillatory bursts of depolarization. (D) After six further injections of 100 mM EGTA into the same cell (not shown) an injection of 1 mM InsPS₃ was without effect. (E--G) The injections of EGTA greatly reduced the initial transient response to light of the same cell used in A–D, but did not abolish the plateau response to light. Depolarizations caused by 5-s light flashes, log intensity −6, are shown: (E) before injection of either EGTA or InsPS₃; (F) after the injection of EGTA shown in B; (G) after the six further injections of EGTA delivered before the recording shown in D. The horizontal arrow to the right of each trace indicates an absolute membrane potential of −45 mV. The injections of InsPS₃ were of duration 100 ms, pressure 40 psi. The injections of EGTA were of duration 100 ms, pressure 40 psi. All traces were recorded from the same cell.

The Sensitivity to an Injection of InsP₃ or Light Oscillates during the Oscillatory Bursts

We investigated the effect of the InsPS₃-induced bursts of depolarization on the sensitivity of the photoreceptor to InsP₃. We impaled a cell with a double-barreled
electrode containing 1 mM InsPS₃ in one barrel and 100 μM InsP₃ in the other. Stable oscillations of membrane potential were elicited by a series of injections of InsPS₃ (Fig. 8A). For the cell of Fig. 8, the interval between the end of one spontaneous burst and the onset of the next was 13 ± 2 s (mean ± SD of seven intervals). Brief injections of InsP₃ were delivered to test the cell's sensitivity to InsP₃ at various times after a spontaneous burst (Fig. 8, B and C). The amplitudes of the depolarizations caused by the injections of InsP₃ were least just after a spontaneous burst of depolarization and had fully recovered before the next burst was due (Fig. 8 C). Oscillations of sensitivity to InsP₃ accompanied InsPS₃-induced oscillations of membrane potential in five other cells.

Removal of Extracellular Calcium Slows the Frequency of Oscillations

We also investigated the role of extracellular calcium ion concentration (Ca₀) in sustaining the oscillations of membrane potential caused by InsPS₃. Complete replacement of Ca₀ has been shown to have at least two consequences in ventral photoreceptors. First, calcium no longer enters the photoreceptor through any open
ion channels. Secondly, the mean level of Ca, in darkness is reduced (Levy and Fein, 1985). Both of these consequences might affect the amplitude or frequency of the oscillatory bursts of depolarization.

We injected a photoreceptor with sufficient InsPS3 to cause oscillations in membrane potential (Fig. 9A) and then bathed the cell with 0Ca-EGTA ASW. For the cell of Fig. 9, application of 0Ca-EGTA ASW for 7 min resulted in a reduction in the mean burst frequency from 0.3 to 0.13 Hz (Fig. 9B). The mean amplitude of the bursts fell only slightly from 19.7 ± 3.9 to 17.2 ± 4.2 mV. 11 min after replacement of 0Ca-EGTA ASW with ASW the burst frequency was restored to 0.3 Hz, but burst amplitude fell further to 11.6 ± 2 mV (Fig. 9C). Similar reductions in the frequency of the bursts, with no significant decline in burst amplitude, were observed when three other cells were bathed in 0Ca-EGTA ASW. The results indicate that the entrance of calcium into the cytosol from the extracellular space is not necessary for producing the bursts of depolarization but that the frequency of the oscillation may be modulated either by an influx of calcium or by the mean level of Ca.

Light Suppresses the Oscillations of Ca

During InsPS3-induced oscillations of membrane potential, further injections of InsPS3 cause a “tail” of elevated Ca, during which oscillations of membrane potential are suppressed (Fig. 6B). Steady illumination also produces a sustained elevation of Ca, (Levy and Fein, 1985) and might therefore be expected to also suppress InsPS3-induced oscillations in Ca, and membrane potential. Cells were injected with sufficient InsPS3 to induce sustained oscillations of membrane potential. Bright flashes of light reversibly suppressed the oscillations during the illumination and for a period following the cessation of illumination (Fig. 10B). Dim light, which causes a lesser elevation of Ca, also suppresses the oscillations, but only during the period of illumination (Fig. 10A).
DISCUSSION

InsPS₃ Is an Effective Analogue of InsP₃ in Elevating Ca,

InsPS₃ is an effective agonist of InsP₃ in ventral photoreceptors, as in other cells (Strupish et al., 1988; Nahorski and Potter, 1989; Taylor et al., 1989). The activity of InsPS₃ probably arises from the D-stereoisomer, since we find the site of action of InsP₃ is stereospecific. L-InsP₃ is much less effective than D-InsP₃ in depolarizing the photoreceptor. Such stereospecificity has previously been established in Swiss 3T3 cells (Strupish et al., 1988), hepatocytes (Taylor et al., 1989), and GH₃ cells (Strupish et al., 1988). Since L-InsP₃ was synthesized from a resolved racemic precursor, it cannot be excluded that the small depolarization observed resulted from a minor contamination with D-InsP₃. An identical sample was ineffective in mobilizing calcium in Xenopus oocytes (Taylor et al., 1988) and only weakly active in permeabilized hepatocytes (Taylor et al., 1989).

![Graph showing membrane potential oscillations](image)

Figure 10. Illumination inhibits the InsPS₃-induced oscillations of membrane potential. Oscillations of membrane potential were recorded from a photoreceptor after the injection of InsPS₃. The records show the effect of illumination by a 5-s flash of intensity (A) -6.3 log units and (B) -2.3 log units. The horizontal arrow to the right of each trace indicates an absolute membrane potential of -45 mV. Both traces were recorded from the same cell.

InsPS₃ Is More Effective Than InsP₃ in Causing Prolonged Bursts of Depolarization

The relative effectiveness of an injection of InsPS₃ compared to that of an injection of InsP₃ depends on the site of the injection and the time considered after the injection. When the injection is made into the R lobe, which contains the InsP₃-sensitive ER, the first of a series of injections of either InsPS₃ or InsP₃ results in a similar immediate, transient depolarization. Subsequent injections, delivered a few seconds after the first, are much less effective in elevating Ca, and so depolarizing the photoreceptor. The difference between the response to InsPS₃ and InsP₃ is evident once this period of desensitization is over. InsPS₃ is then much more effective than InsP₃ in causing bursts of depolarization that persist for many minutes. The simplest explanation for this difference is that the bursts arise from the continued presence of unmetabolized InsPS₃.

The known resistance of InsPS₃ not only to 5-phosphatase activity but also to 3-kinase activity (Nahorski and Potter, 1989; Taylor et al., 1989) makes it unlikely...
that Ins(1,3,4,5)P$_4$ or InsP(1,4)P$_2$ play an important role in the phenomena demonstrated in this paper. InsP$_3$, on the other hand, would be expected to be metabolized to Ins(1,4)P$_2$, which is much less effective in releasing calcium or depolarizing ventral photoreceptors (Brown et al., 1984; Fein et al., 1984) and possibly also to Ins(1,3,4,5)P$_4$.

When the injections of InsPS$_3$ and InsP$_3$ are made into the A lobe, at a site that is distant from the R lobe, InsPS$_3$ is more effective than InsP$_3$ in depolarizing the photoreceptor, even during the initial part of the response. There is a delay of several seconds before bursts of depolarization caused by InsPS$_3$ or InsP$_3$ begin, presumably the time taken for diffusion from the A to the R lobe (Fein et al., 1984). This result suggests that in addition to limiting the time for which it acts, metabolism of InsP$_3$ confines its action within the cell.

Because of the dependence of the effectiveness of InsP$_3$ on the position of the micropipette in the cell and the high concentration of the analogues present in the micropipette, it is difficult to estimate the relative potency of InsP$_3$ and InsPS$_3$ in releasing calcium once they reach their site of action in the R lobe. The best estimate might be to compare the immediate depolarizations produced by InsP$_3$ and InsPS$_3$ when injected directly into the R lobe. At this early time, the effects of hydrolysis and dilution into the cytosol would be lessened. The similar amplitude of the immediate depolarizations produced by 1 mM InsP$_3$ and InsPS$_3$ suggests that InsP$_3$ and InsPS$_3$ might have a similar potency at the release site. In preliminary experiments, however, in which we reduced the concentration of the analogues in the injection micropipette, we have observed that 100 μM InsPS$_3$ was less effective than 100 μM InsP$_3$ in producing an immediate depolarization (unpublished observations). The similar responses to 1 mM InsPS$_3$ or InsP$_3$ might therefore be due either to local saturation of the receptor sites for InsP$_3$ or to the rapid effect of calcium-mediated negative feedback. It is likely, therefore, that the sustained effectiveness of DL-InsP$_3$ in causing bursts of depolarization is due to its resistance to hydrolysis rather than any greater potency compared to that of InsP$_3$ at its site of action.

The Mechanism of Desensitization to InsPS$_3$

Although hydrolysis of InsP$_3$ may limit its action in the long term, preventing prolonged bursts of depolarization, there is clearly another mechanism that terminates the immediate, transient depolarization that follows an injection. This mechanism must account for the rapid decline of the immediate depolarization resulting from injections of InsPS$_3$. The decline is most likely due to a reduced ability of InsPS$_3$ to release calcium, since the immediate depolarization is followed by a period of desensitization during which further injections of InsPS$_3$ are much less effective than the first. As the sensitivity returns after an injection of InsPS$_3$, bursts of depolarization begin. The short duration of these oscillatory bursts of depolarization caused by InsPS$_3$ also suggests a desensitization process. We show that the sensitivity of the cell to InsP$_3$ is suppressed after each burst of depolarization, recovering in the interval between the bursts.

Two general mechanisms might account for the period of desensitization that follows injection of InsP$_3$ or InsPS$_3$. The first is a feedback inhibition by elevated Ca$_i$ of the ability of InsPS$_3$ to release more calcium (Ogden et al., 1990; Parker and...
Ivorra, 1990; Payne et al., 1990). The second is a depletion of calcium stores following release of calcium by the first injection (Berridge, 1989). We think it possible that the first injection of InsPS₃ may locally deplete calcium stores in ventral photoreceptors but we cannot assess the extent of this depletion. We have, however, investigated the possibility of feedback inhibition by calcium. We have shown that an injection of calcium prior to an injection of InsPS₃ inhibits the ability of InsPS₃ to depolarize the photoreceptor. We have also shown that Ca, remains elevated during the period of desensitization that follows a series of injections of InsPS₃. After this lingering elevation of Ca, has declined, bursts of depolarization begin. Thus a feedback loop exists whereby elevated Ca inhibits calcium release by InsPS₃.

The Mechanism of the Oscillatory Bursts

Oscillations of Ca, or Ca,-dependent ion currents have been observed in several types of cells injected or dialyzed with InsP₃ or InsPS₃ (Oron et al., 1985; Evans and Marty, 1986; Capiod et al., 1987; Taylor et al., 1988; Wakui et al., 1989). In Limulus photoreceptors, the oscillations continue for at least tens of minutes following injection of InsPS₃. They are also occasionally observed following injections of InsP₃ (Corson and Fein, 1987; Payne et al., 1988), but they do not then persist for more than a few tens of seconds. The slowing of the oscillation frequency when extracellular calcium is removed, without a reduction in burst amplitude, suggests that entrance of calcium from the extracellular space plays a modulatory role in the timing of the bursts of depolarization but is not critical for the production of the bursts, in agreement with previous observations on isolated bursts induced by InsP₃ (Corson and Fein, 1987). In this respect the bursts are similar to those observed in some other cell types (Harootunian et al., 1988; Jacob et al., 1988; Kawanishi et al., 1989; Kurtz and Penner, 1989).

During the InsPS₃-induced oscillations of Ca, we find a periodic variation in the sensitivity of the photoreceptors to InsP₃. Sensitivity is minimal just after a burst of calcium release and recovers in the interburst interval. It seems likely that the sensitivity to the constant presence of InsPS₃ might vary similarly and play a role in creating the oscillations of Ca. The variation in sensitivity might be due either to feedback inhibition by calcium released during the previous burst or to a variation of the amount of calcium in the InsP₃-sensitive ER. We think it unlikely, however, that feedback inhibition of calcium release is the sole cause of the oscillations. The reduction of burst frequency upon removal of extracellular calcium is not readily explainable by a model in which calcium only modulates the action of InsP₃ by negative feedback. It seems more likely that feedback inhibition is one component of a mechanism which might also include a periodic production of InsP₃ (Woods et al., 1987; Jacob et al., 1988; Meyer and Stryer, 1988) or calcium-induced calcium release (Berridge and Irvine, 1989; Goldbeter et al., 1990). Our result contrasts with the lack of any periodic changes in sensitivity to InsP₃ during oscillations of Ca, in depolarized fibroblasts (Harootunian et al., 1988). The relative contributions of variations in the concentration of InsP₃ and variations in the sensitivity to InsP₃ to the mechanism responsible for oscillation may vary between cell types.

We also note that the peaks of aequorin luminescence observed during the oscillatory bursts of calcium release are very much smaller than the peak Ca reached
after a bright light flash or an injection of InsPS₃. Only a small fraction of the InsP₃- and light-sensitive store of calcium may, therefore, be released during each burst. Further work may determine whether the small fraction released is due to a spatial localization of the stores involved in creating the oscillatory bursts.

Elevation of the mean Cₐᵢ by an exogenous stimulus such as a flash of light or an injection of InsPS₃ is accompanied by a subsequent desensitization of the cell and a suppression of the oscillations. Thus after a series of injections of InsPS₃, oscillations only begin once Cₐᵢ has returned close to its original level, as judged by aequorin luminescence. These results suggest that the oscillations of Cₐᵢ and membrane potential occur only when the mean Cₐᵢ is below a certain value.

The Action of InsPS₃ Does Not Mimic That of Steady Illumination

Light increases the production of InsP₃ in Limulus ventral photoreceptors (Brown et al., 1984). If InsP₃ is the only messenger of phototransduction in Limulus photoreceptors, then injection of InsPS₃ should mimic steady illumination. This is clearly not the case. Steady illumination does not cause oscillations of Cₐᵢ or of membrane potential, but rather a steady elevation of Cₐᵢ (Levy and Fein, 1985) and a maintained depolarization during which oscillations of Cₐᵢ induced by InsPS₃ are suppressed (Fig. 10). Our results do not support the proposal that the production of InsP₃ alone can account for excitation by light. This conclusion is subject to several caveats. We assume that InsP₃ released by light acts primarily at the same site as does injected InsPS₃, and that the calcium channel in the ER responds to both with similar kinetics. In addition, light delivers InsP₃ to the cytosol in a very different manner from the micropipette that delivers InsPS₃, since production of InsP₃ by steady light might be localized to the site of each effectively absorbed photon. Other evidence, however, supports the conclusion. The intracellular injection of the calcium chelator EGTA slows and diminishes, but does not abolish the response to light (Lisman and Brown, 1975) even though it abolishes the response to injections of InsPS₃ (Fig. 7) and InsP₃ (Rubin and Brown, 1985; Payne et al., 1986b). Recent work (Frank and Fein, 1990) shows that the injection of calcium chelators diminishes the amplitude of the initial transient response to a prolonged light response far more than it diminishes that of the sustained plateau response (see also Fig. 7). Thus it is possible that InsP₃ is involved only in generating the initial transient response and that another messenger might mediate the plateau response and suppress oscillations of Cₐᵢ (Frank and Fein, 1990). This messenger might be other products of phosphoinositide metabolism such as diacylglycerol, metabolites of InsP₃, or messengers produced by other pathways, such as cyclic guanosine monophosphate (Johnson et al., 1986; Bacigalupo et al., 1990). Alternatively, InsP₃-induced calcium release might accelerate the production of a messenger which opens the light-sensitive channels (Bolsover and Brown, 1985).

We thank Drs. O. Shimomura, S. Inouye, and Y. Kishi for their generous gift of recombinant aequorin. We also thank Ms. I. Levitan, Dr. B. Walz, and Dr. J.E. Lisman for their comments.

The National Institutes of Health (EY07793) and the Science and Engineering Council (UK), Molecular Recognition Initiative provided financial support. Dr. Payne is a Sloan Foundation Fellow and Dr. Potter is a Lister Institute Fellow.

Original version received 20 July 1990 and accepted version received 17 October 1990.
REFERENCES

Bacigalupo, J., E. Johnson, P. Robinson, and J. E. Lisman. 1990. Second messengers in invertebrate phototransduction. In Transduction in Biological Systems. C. Hidalgo, J. Bacigalupo, E. Jaimovich, and J. L. Vergara, editors. Plenum Press, New York.

Baumann, O., and B. Walz. 1989. Calcium and inositol polyphosphate-sensitivity of the calcium-sequestering endoplasmic reticulum in the photoreceptor cells of the honey bee drone. Journal of Comparative Physiology Section A. 165:627–636.

Berridge, M. J. 1989. Inositol 1,4,5 trisphosphate-induced calcium mobilization is localized in Xenopus oocytes. Proceedings of the Royal Society of London Series B. 238:235–243.

Berridge, M. J., and R. F. Irvine. 1984. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature. 312:315–321.

Berridge, M. J., and R. F. Irvine. 1989. Inositol phosphates and cell signalling. Nature. 341:197–205.

Bolsover, S. R., and J. E. Brown. 1985. Calcium ion, an intracellular messenger of light adaptation, also participates in excitation of Limulus ventral photoreceptors. Journal of Physiology. 364:381–393.

Brown, J. E., and J. R. Blinks. 1974. Changes in intracellular free calcium during illumination of invertebrate photoreceptors: detected with aequorin. Journal of General Physiology. 64:643–665.

Brown, J. E., and L. J. Rubin. 1984. A direct demonstration that inositol trisphosphate induces an increase in intracellular calcium in Limulus photoreceptors. Biochemical and Biophysical Research Communications. 125:1137–1142.

Brown, J. E., L. J. Rubin, A. J. Ghalayini, A. L. Tarver, R. F. Irvine, M. J. Berridge, and R. E. Anderson. 1984. myo-Inositol polyphosphate may be a messenger for visual excitation in Limulus photoreceptors. Nature. 311:160–162.

Calman, B. G., and S. C. Chamberlain. 1982. Distinct lobes of Limulus photoreceptors. II. Structure and ultrastructure. Journal of General Physiology. 80:839–862.

Capiod, T., A. C. Field, D. C. Ogden, and C. A. Sanford. 1987. Internal perfusion of guinea-pig hepatocytes with buffered Ca2+ or inositol 1,4,5-trisphosphate mimics noradrenergic activation of K+ and Cl− conductances. FEBS Letters. 217:247–252.

Cooke, A. M., R. Gigg, and B. V. L. Potter. 1987a. myo-Inositol 1,4,5-trisphosphorothioate: a novel analogue of a biological second messenger. Journal of the Chemical Society, Chemical Communications. 1987:1525–1526.

Cooke, A. M., B. V. L. Potter, and R. Gigg. 1987b. Synthesis of DL-my-o-inositol 1,4,5 trisphosphate. Tetrahedron Letters. 28:2305–2308.

Corson, D. W., and A. Fein. 1983. Quantitative pressure injection of picoliter volumes into Limulus ventral photoreceptors. Biophysical Journal. 44:299–304.

Corson, D. W., and A. Fein. 1987. Inositol 1,4,5-trisphosphate induces bursts of calcium release inside Limulus ventral photoreceptors. Brain Research. 425:343–346.

Evans, M. G., and Marty, A. 1986. Potentiation of muscarinic and adrenergic responses by an analogue of guanosine 5’ triphosphate. Proceedings of the National Academy of Sciences. 83:4099–4102.

Fein, A., and J. S. Charlton. 1977. Enhancement and phototransduction in the ventral eye of Limulus. Journal of General Physiology. 69:553–569.

Fein, A., R. Payne, D. W. Corson, M. J. Berridge, and R. F. Irvine. 1984. Photoreceptor excitation and adaptation by inositol 1,4,5 trisphosphate. Nature. 311:157–160.

Frank, T. M., and A. Fein. 1990. The role of IP3 in invertebrate visual transduction. Biophysical Journal. 57:366a. (Abstr.)

Gigg, J., R. Gigg, S. Payne, and R. Conant. 1987. The allyl group for protection in carbohydrate chemistry. Part 20. Synthesis of 1L-1-O-methyl myo inositol [(+)-bornesitol] by resolution.
of (±)-1,2,4-tri-O-benzyl myo inositol. Journal of the Chemical Society, Perkin Transactions I. 1987:1757–1762.

Goldbeter, A., G. Dupont, and M. J. Berridge. 1990. Minimal model for signal-induced Ca²⁺ oscillations and for their frequency encoding through protein phosphorylation. Proceedings of the National Academy of Sciences. 87:1461–1465.

Harootunian, A. T., J. P. Y. Kao, and R. Y. Tsien. 1988. Agonist-induced calcium oscillations in depolarized fibroblasts and their manipulation by photorelease Ins(1,4,5)P₃, Ca²⁺, and Ca²⁺ buffer. Cold Spring Harbor Symposia on Quantitative Biology. 53:935–943.

Inouye, S., S. Aoyama, T. Miyata, F. I. Tsuji, and Y. Sakaki. 1989. Overexpression and purification of the recombinant calcium-binding protein apoaequorin. Journal of Biochemistry. 105:473–477.

Inouye, S., M. Noguchi, Y. Sakaki, Y. Takagi, T. Miyata, S. Iwagana, T. Miyata, and F. I. Tsuji. 1985. Cloning and sequence analysis of cDNA for the luminescent protein aequorin. Proceedings of the National Academy of Sciences. 82:3154–3158.

Jacob, R., J. E. Merritt, T. J. Hallam, and T. J. Rink. 1988. Repetitive spikes in cytoplasmic calcium evoked by histamine in human endothelial cells. Nature. 335:40–45.

Johnson, E. C., P. R. Robinson, and J. E. Lisman. 1986. cGMP is involved in the excitation of invertebrate photoreceptors. Nature. 324:468–470.

Kawanishi, T., L. M. Blank, A. T. Harootunian, M. T. Smith, and R. Y. Tsien. 1989. Ca²⁺ oscillations induced by hormonal stimulation of individual fura-2-loaded hepatocytes. Journal of Biological Chemistry. 264:12859–12865.

Kishi, Y., H. Tanino, and T. Goto. 1972. The structure confirmation of the light-emitting moiety of bioluminescent jellyfish Aequorea. Tetrahedron Letters. 27:2747–2748.

Kurtz, A., and R. Penner. 1989. Angiotensin II induces oscillations of intracellular calcium and blocks anomalous rectifying potassium current in mouse renal juxtaglomerulosa cells. Proceedings of the National Academy of Sciences. 86:3423–3427.

Levy, S., and A. Fein. 1985. Relationship between light-sensitivity and intracellular free calcium in Limulus ventral photoreceptors. Journal of General Physiology. 85:805–841.

Lisman, J. E., and J. E. Brown. 1975. Effects of intracellular injection of calcium buffers on light adaptation in Limulus ventral photoreceptors. Journal of General Physiology. 66:489–506.

Millecchia, R., and A. Mauro. 1969. The ventral photoreceptor cells of Limulus. III. A voltage-clamp study. Journal of General Physiology. 54:331–351.

Musicki, B., Y. Kishi, and O. Shimomura. 1986. Structure of the functional part of the photoprotein aequorin. Journal of the Chemical Society, Chemical Communications. 1986:1566–1568.

Nahorski, S. R., and B. V. L. Potter. 1989. Molecular recognition of inositol polyphosphates by intracellular receptors and metabolic enzymes. Trends in Pharmacological Sciences. 10:139–144.

Ogden, D. C., T. Capiod, J. W. Walker, and D. R. Trentham. 1990. Kinetics of the conductance evoked by Noradrenaline, inositol trisphosphate or Ca²⁺ in guinea-pig isolated hepatocytes. Journal of Physiology. 422:585–602.

Oron, Y., E. Nadler, and M. Lupu. 1985. Inositol 1,4,5 trisphosphate mimics muscarinic response in Xenopus oocytes. Nature. 313:141–143.

Parker I., and I. Ivorra. 1990. Inhibition by Ca²⁺ of inositol trisphosphate-mediated Ca²⁺ liberation: a possible mechanism for oscillatory release of Ca²⁺. Proceedings of the National Academy of Sciences. 87:260–264.

Payne, R., D. W. Corson, and A. Fein. 1980a. Pressure injection of calcium both excites and adapts Limulus ventral photoreceptors. Journal of General Physiology. 88:107–126.
Payne R., D. W. Corson, A. Fein, and M. J. Berridge. 1986. Excitation and adaptation of Limulus ventral photoreceptors by inositol 1,4,5 trisphosphate result from a rise in intracellular calcium. *Journal of General Physiology*. 88:127–142.

Payne, R., and A. Fein. 1987. Inositol 1,4,5 trisphosphate releases calcium from specialized sites within *Limulus* photoreceptors. *Journal of Cell Biology*. 104:933–937.

Payne, R., T. M. Flores, and A. Fein. 1990. Feedback inhibition by calcium limits the release of calcium by inositol trisphosphate in *Limulus* ventral photoreceptors. *Neuron*. 4:547–555.

Payne, R., B. Walz, S. Levy, and A. Fein. 1988. The localization of calcium release by inositol trisphosphate in *Limulus* ventral photoreceptors and its control by negative feedback. *Philosophical Transactions of the Royal Society of London, Series B*. 320:359–379.

Rubin, L. J., and J. E. Brown. 1985. Intracellular injection of calcium buffers blocks IP$_3$-induced but not light-induced electrical responses of *Limulus* ventral photoreceptors. *Biophysical Journal*. 47:38a. (Abstr.)

Shimomura, O., F. H. Johnson, and Y. Saiga. 1962. Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan *Aequorea*. *Journal of Cellular and Comparative Physiology*. 59:223–240.

Stern, J., K. Chinn, J. Bacigalupo, and J. E. Lisman. 1982. Distinct lobes of *Limulus* ventral photoreceptors. I. Functional and anatomical properties of lobes revealed by removal of glial cells. *Journal of General Physiology*. 80:825–857.

Strupish, J., A. M. Cooke, B. V. L. Potter, R. Gigg, and S. R. Nahorski. 1988. Stereospecific mobilization of intracellular calcium by inositol 1,4,5 trisphosphate. *Biochemical Journal*. 253:901–905.

Supattapone, S., S. K. Danoff, A. Theibert, S. K. Joseph, J. Steiner, and S. H. Snyder. 1988. cAMP-dependent phosphorylation of a brain inositol trisphosphate receptor decreases its release of calcium. *Proceedings of the National Academy of Sciences*. 85:8747–8750.

Taylor, C. W., M. J. Berridge, K. D. Brown, A. M. Cooke, and B. V. L. Potter. 1988. *Biochemical and Biophysical Research Communications*. 150:626–632.

Taylor, C. W., M. J. Berridge, A. M. Cooke, and B. V. L. Potter. 1989. Inositol trisphosphorothioate, a stable analogue of inositol trisphosphate which mobilizes intracellular calcium. *Biochemical Journal*. 259:645–650.

Trowell, S. C. 1988. Inositol trisphosphatase and bisphosphatase activities in the retina of the crab. *FEBS Letters*. 238:281–284.

Wakui, M., B. V. L. Potter, and O. H. Petersen. 1989. Pulsatile intracellular calcium release does not depend on fluctuations in inositol trisphosphate concentration. *Nature*. 339:317–320.

Wood, S. F., E. Z. Szuts, and A. Fein. 1990. Metabolism of inositol 1,4,5 trisphosphate in squid photoreceptors. *Journal of Comparative Physiology Section B*. 160:293–298.

Woods, N. M., K. S. R. Cuthbertson, and P. H. Cobbold. 1987. Agonist-induced oscillations in cytoplasmic free calcium ion concentration in single rat hepatocytes. *Cell Calcium*. 8:79–100.

Worley, P. F., J. M. Baraban, S. Supattapone, V. S. Wilson, and S. H. Snyder. 1987. Characterization of inositol trisphosphate receptor binding in brain. *Journal of Biological Chemistry*. 262:12132–12136.