Genome Editing-Mediated Utrophin Upregulation in Duchenne Muscular Dystrophy Stem Cells

Kasturi Sengupta,1 Manoj K. Mishra,1 Emanuele Loro,1 Melissa J. Spencer,2,3 April D. Pyle,2,4 and Tejvir S. Khurana1

Utrophin upregulation is considered a promising therapeutic strategy for Duchenne muscular dystrophy (DMD). A number of microRNAs (miRNAs) post-transcriptionally regulate utrophin expression by binding their cognate sites in the 3′ UTR. Previously we have shown that miRNA: UTRN repression can be alleviated using miRNA let-7c site blocking oligonucleotides (SBOs) to achieve utrophin upregulation and functional improvement in mdx mice. Here, we used CRISPR/Cas9-mediated genome editing to delete five miRNA binding sites (miR-150, miR-296-5p, miR-133b, let-7c, miR-196b) clustered in a 500 bp inhibitory miRNA target region (IMTR) within the UTRN 3′ UTR, for achieving higher expression of endogenous utrophin. Deleting the UTRN IMTR in DMD patient-derived human induced pluripotent stem cells (DMD-hiPSCs) resulted in ca. 2-fold higher levels of utrophin protein. Differentiation of the UTRN edited DMD-hiPSCs (UTRNΔIMTR) by MyoD overexpression resulted in increased sarcolemmal α-sarcoglycan staining consistent with improved dystrophin glycoprotein complex (DGC) restoration. These results demonstrate that CRISPR/Cas9-based UTRN genome editing offers a novel utrophin upregulation therapeutic strategy applicable to all DMD patients, irrespective of the dystrophin mutation status.

INTRODUCTION

Duchenne muscular dystrophy (DMD) is an X-linked recessive disease affecting approximately 1 in ~5,000 live born males worldwide.1,2 DMD is caused by mutations in the DMD gene, resulting in the loss or extremely low expression of the dystrophin protein.3,4 Dystrophin is a 427 kDa cytoskeleton-associated protein and member of dystrophin glycoprotein complex (DGC), which functions as a linker between the extracellular matrix and the intracellular actin.5,6 Dystrophin provides structural integrity to myofibers during cycles of contraction and relaxation.6 In the absence of dystrophin, the increased sarcolemmal fragility leads to repeated cycles of muscle degeneration and regeneration, which inexorably result in replacement of contractile tissue with fibrotic and adipose tissues.5,10 DMD patients typically present by school age and a loss of ambulation by their teens. The disease continues to progress leading to increasing degrees of skeletal muscle weakness and respiratory and cardiac failure, typically by the fourth decade of life.1

Different genetic and pharmacological interventions designed to restore dystrophin expression by antisense oligonucleotide-mediated exon skipping,12–14 stop codon readthrough,15 dystrophin gene delivery,16–18 and CRISPR/Cas9 genome editing either to restore an open reading frame or to delete mutated exons19–22 are currently in different stages of preclinical or clinical studies. However, there are numerous challenges associated with toxicity, the necessity for systemic delivery of these approaches, as well as, the lack of global applicability to patients due to the existence of a variety of dystrophin mutations that cause DMD (https://www.dmd.nl/database.html).

A promising therapeutic approach for DMD that circumvents many of these issues is upregulating the dystrophin-related protein, utrophin: the chromosome 6-encoded autosomal paralog of dystrophin, with a high degree of structural and functional similarity to dystrophin.23–25 The major utrophin isoform in myofibers utrophin-A, is enriched in neuromuscular and myotendinous junctions of adult muscles and at the sarcolemma of regenerating myofibers.26–27 Small molecules such as heregulin,28 nabumetone,29 SMT C1100,30 and artificial transcription factors33,34 have been shown to upregulate UTRN gene expression by activating the UTRN-A promoter. In addition, utrophin can be upregulated by peptides and redistributed by diglycan-mediated protein anchoring at the post-transcriptional level.35–37 Previously, we and others have shown the existence of post-transcriptional inhibition of utrophin expression by a number of miRNAs targeting UTRN 3′ UTR.38,39 Suppressing one of those miRNA interactions with site blocking oligonucleotides (SBOs) for let-7c resulted in the utrophin upregulation-mediated functional improvement in mdx mouse.40 While providing a proof of concept, this approach is limited by the far from ideal pharmacological properties of SBO’s in vivo.41

In this study, we describe a CRISPR/Cas9-based utrophin genome editing strategy designed to upregulate utrophin expression by targeting...
post-transcriptional miRNA-mediated inhibition for DMD (Figure 1). In the native (unedited) state, the five miRNA binding sites for miR-150, miR-296-5p, miR-133b, miR-196b, and let-7c that are clustered at the inhibitory miRNA target region (IMTR) repress utrophin expression. We propose that CRISPR/Cas9 genome editing-mediated deletion of the UTRN-IMTR would eliminate the miRNA-binding sites at this locale, leading to increased utrophin expression and results in amelioration of the dystrophic phenotype in DMD, in vivo.

RESULTS

CRISPR/Cas9 Genome Editing Strategy to Delete the IMTR of UTRN

We have previously shown that UTRN gene expression is regulated by five inhibitory miRNAs targeting the 3′ UTR (Figure 2A). To delete these miRNA-binding sites clustered in the IMTR of the UTRN 3′ UTR, we designed four compatible short guide RNAs (sgRNAs 1–4; Table S1) targeting the flanking region of IMTR in the human UTRN gene. Both SaCas9 and the sgRNA pairs were cloned in the same vector (p-UTRN). Both SaCas9 and the sgRNA pairs were cloned in the same vector (p-UTRN). The wild-type, DMD, and edited DMD-hiPSC clones were screened for homozygous IMTR deletion (UTRNΔIMTR) using the PCR strategy described above (Figure 2C). Deletions were confirmed by sequencing PCR products from the edited clones (Figure 3D). Utrophin protein expression in UTRNΔIMTR and sham-edited DMD-hiPSC were compared by western blotting and UTRNΔIMTR clones showed up-to 2-fold utrophin upregulation (Figures 3E and 3F).

Validation of hiPSC Clones Post-genome Editing

Pluripotency of the wild-type, DMD, and edited UTRNΔIMTR hiPSC clones was confirmed by immunostaining for nuclear expression of the pluripotency marker Nanog (Figure 4). The top five potent off-target sites of the sgRNA 1 and 4 used for genome editing were determined with the COSMID bioinformatics-based tool and sequenced by PCR amplification of the loci. No off-target mutations were observed at these sites in the selected UTRNΔIMTR clones demonstrating the precise nature of genome editing of the guide RNA pairs.

Characterization of hiPSCs Differentiated to Myogenic Lineage by MyoD Overexpression

The wild-type, DMD, and selected UTRNΔIMTR hiPSC clones were differentiated to myogenic lineage using a tamoxifen-inducible MyoD expressing lentivirus (Figure 5A). The edited and unedited fused, multinucleated myotubes showed positive myosin heavy chain (MYHC) expression by immunostaining upon differentiation (Figure 5B). For all the three differentiated lines, 40%–50% of multinucleated myotubes were MYHC-positive myotubes (Figures 5C). Expression of the myogenic genes (MyoD1, MyoG [Myogenin], and endogenous MyoD1), as well as the pluripotency marker Nanog, were quantified in the UTRNΔIMTR cells by quantitative PCR (qPCR) at day 0, day 4, and day 8 post-tamoxifen induction. The qPCR profile showed a sharp decline in Nanog expression and a concomitant increase in MyoD1, MyoG, and endogenous MyoD1 genes, supporting differentiation of the UTRNΔIMTR cells to a myogenic lineage (Figure 5D). Utrophin expression in the differentiated myotubes were quantified by western blotting. UTRNΔIMTR myotubes showed higher utrophin expression compared to DMD myotubes (Figure 5E).

Unedited UTRN

CRISPR/Cas9 Edited UTRN

miRNA mediated repression

RISC

miRNA

UTRN coding sequence

IMTR

inhibitory miRNA target region

sgRNA

Unedited UTRN

CRISPR/Cas9 Edited UTRN

miRNA mediated repression

UTRN coding sequence

IMTR

inhibitory miRNA target region

sgRNA

Figure 1. CRISPR/Cas9 Strategy for Relieving miRNA Driven Post Transcriptional Repression and Increased Expression of Utrophin

The schematic summarizes our CRISPR/Cas9 genome editing strategy to delete the IMTR from the UTRN 3′ UTR with the rationale that the edited UTRN 3′ UTR (UTRNΔIMTR) would reduce miRNA-mediated post-transcriptional repression and lead to higher expression of utrophin.

Figure 2. Characterization of hiPSCs Differentiated to Myogenic Lineage by MyoD Overexpression

The wild-type, DMD, and selected UTRNΔIMTR hiPSC clones were differentiated to myogenic lineage using a tamoxifen-inducible MyoD expressing lentivirus. The edited and unedited fused, multinucleated myotubes showed positive myosin heavy chain (MYHC) expression by immunostaining upon differentiation. For all the three differentiated lines, 40%–50% of multinucleated myotubes were MYHC-positive myotubes. Expression of the myogenic genes (MyoD1, MyoG [Myogenin], and endogenous MyoD1), as well as the pluripotency marker Nanog, were quantified in the UTRNΔIMTR cells by quantitative PCR (qPCR) at day 0, day 4, and day 8 post-tamoxifen induction. The qPCR profile showed a sharp decline in Nanog expression and a concomitant increase in MyoD1, MyoG, and endogenous MyoD1 genes, supporting differentiation of the UTRNΔIMTR cells to a myogenic lineage.
Utrophin Overexpression Increases Sarcolemmal α-Sarcoglycan Expression in UTRNΔIMTR hiPSC-Derived Myotubes

The absence of dystrophin protein in DMD muscles results in the disruption of the DGC and the lack of sarcolemmal staining for different components of the DGC, such as α-sarcoglycan. Restoration of individual DGC proteins expression at the sarcolemma suggests restoration of the DGC and considered a marker of improvement when evaluating dystrophin or utrophin-based therapeutic strategies. We therefore tested whether upregulated utrophin could increase sarcolemmal α-sarcoglycan expression in UTRNΔIMTR DMD-hiPSC-derived myotubes, by immunostaining. The UTRNΔIMTR DMD-hiPSC-derived myotubes showed significantly higher α-sarcoglycan level compared to the DMD-hiPSC-derived myotubes, supporting the restoration of utrophin anchored DGC by genome editing in the DMD-hiPSCs (Figures 6A and 6B). The increases noted on immunostaining was independently supported by western blot data showing overall higher expression of α-sarcoglycan in UTRNΔIMTR DMD-hiPSC-derived myotubes compared with DMD-hiPSC-derived myotubes (Figure 6C). Consistent with the utrophin upregulation mediated restoration of the DGC, we showed restoration of another DGC member, β-dystroglycan in UTRNΔIMTR DMD-hiPSC-derived myotubes by immunostaining (Figure S2).

DISCUSSION

The rapid developments in genome editing has generated enormous excitement and hope for treating devastating diseases such as DMD. In this study, we describe a CRISPR/Cas9-mediated genome editing approach for increasing utrophin expression, as a therapeutic strategy for DMD (Figure 1). We used this approach to delete a 500 bp IMTR containing five miRNA binding sites (i.e., miR-150, miR-296-5p, miR-133b, let-7c, and miR-196b) within the UTRN 3’ UTR in HEK293T cells and select appropriate sgRNA pairs (Figure 2). To test the strategy, we used sgRNA pairs 1 and 4 to delete the IMTR from DMD-hiPSCs (Figures 3A and 3D) and validated the UTRNΔIMTR DMD-hiPSC clonal lines for utrophin upregulation by western blotting (Figures 3E and 3F) and expression of the pluripotency marker Nanog by immunofluorescence (Figure 4). Lentivirus driven MyoD-mediated myogenic differentiation was utilized to drive the hiPSCs into myotubes and differentiation validated by monitoring the fusion index, as well as reduced expression of pluripotency marker and increased levels of myogenic markers by qPCR (Figure 5). Upon differentiation to myotubes, higher α-sarcoglycan levels were noted in edited compared to unedited DMD myotubes (Figure 6), suggestive of functional improvement due the UTRN genome editing, we describe in this study.

Previously described CRISPR/Cas9-mediated genome-editing-based therapeutic strategies for DMD have largely focused on editing dystrophin and met with varying degrees of success in preclinical studies. In common, these approaches, while extremely encouraging in preclinical studies, have fundamental limitations in that they would not be applicable to all DMD patients, need to be
custom-designed for specific mutations, and would be predicted to be limited by immunity to the newly expressed dystrophin. Nevertheless, adeno-associated virus (AAV)-mediated CRISPR genome editing in larger animal model of DMD to correct the dystrophin mutation and express a shorter form of dystrophin supports the efficacy and promise of using genome editing for DMD. Dystrophin-
independent CRISPR/Cas9 editing approaches have also been described for leveraging myostatin\(^57\) and transcriptional activation of utrophin\(^58,59\) as potentially therapeutic approaches. Our approach targets post-transcriptional mechanisms for increasing utrophin expression by deleting the miRNA target sites located in the IMTR of the \(\text{UTRN}^3\) \(\text{UTR}\). The advantages of our approach are that other cellular targets of respective miRNAs remain unperturbed, this single editing strategy is applicable to all DMD patients, and a predicted lack of immune issues since DMD patient are not utrophin naive as they express utrophin since before birth.\(^24\)

\(\text{In vivo}\) preclinical studies using these targets leveraged by genome editing have been achieved using iPSCs, as well as AAV-mediated editing with varying degrees of success. AAV-based approaches have the advantage of enabling the same therapeutic viral vector(s) to be used in a number of patients and ease of delivery. However, the AAV-based approaches have limitations related to the cloning capacity, long-term expression of Cas9, and immune reactions against the capsid or cargo (i.e., Cas9,\(^34\) Dystrophin).\(^53\) While our study was restricted to genome editing of iPSCs \(\text{in vitro}\), editing of autologous and/or allogenic iPSCs coupled with transplantation is a promising approach that has been used \(\text{in vivo}\) in a variety of disease models including DMD.\(^23,32,48-62\)

Both approaches have limitations but major efforts are ongoing to harness the potential of these approaches. Indeed, the recent demonstration that AAV9-mediated editing can transduce muscle satellite cells\(^63\) and stem cells\(^54\) exemplify the rapid pace of progress toward applying these strategies to develop therapies in DMD. Additionally, the \(\text{UTRN}\) genome editing strategy and proof-of-principle studies described here could potentially be combined with full-length utrophin, miniaturized utrophin (\(\mu\)Utro) upregulation,\(^75,65\) or utrophin-independent approaches for synergistic effects.

MATERIALS AND METHODS

Cell Culture and Maintenance

HEK293T cells (ATCC) were maintained in standard growth condition in DMEM high glucose (GIBCO) supplemented with 10% fetal bovine serum (Sigma-Aldrich) and 1% Pen/Strep (GIBCO).

sgRNA Design and Cloning

All hiPSCs were reprogrammed from skin fibroblast with STEMCCA cassette in Dr. April Pyle’s laboratory, UCLA, as described in Karumbayaram et al.\(^66\) We used two different hiPSC lines, one derived from a healthy individual (Wt 1002) and the other one derived from DMD patient harboring exon 46–51 deletion (CDMD1003). All the hiPSCs were grown in hESC-qualified Matrigel (Corning), fed daily with mTeSR 1 media (STEMCELL Technologies) as previously described and passaged every 4–5 days.

All hiPSCs were reprogrammed from skin fibroblast with STEMCCA cassette in Dr. April Pyle’s laboratory, UCLA, as described in Karumbayaram et al.\(^66\) We used two different hiPSC lines, one derived from a healthy individual (Wt 1002) and the other one derived from DMD patient harboring exon 46–51 deletion (CDMD1003). All the hiPSCs were grown in hESC-qualified Matrigel (Corning), fed daily with mTeSR 1 media (STEMCELL Technologies) as previously described and passaged every 4–5 days.

sgRNA Design and Cloning

All guide RNAs for generating the IMTR deletion (\(\text{UTRN}\Delta\text{IMTR}\)) were designed using the Benchling web tool for CRISPR design (Table S1). The CMV promoter of pX601 plasmid (Addgene plasmid # 61591) was replaced with EF1\(\alpha\) promoter for improved expression of SaCas9 and an EGFP cassette was cloned at C-terminal of SaCas9 (pX601-EF1\(\alpha\)::SaCas9-GFP). Individual sgRNA oligonucleotides were annealed and cloned in this modified pX601 plasmid at the BsaI restriction site before the sgRNA scaffold according to the protocols from the Zhang lab (https://www.addgene.org/crispr/zhang/). pX601-EF1\(\alpha\)::SaCas9-GFP-U6::sgRNA. For expression of dual sgRNAs in the same plasmid, the second sgRNA under U6 promoter, were PCR amplified from the corresponding plasmid and subcloned at KpnI site of pX601-EF1\(\alpha\)::...
SaCas9-GFP-U6::sgRNA. The cloned plasmids were confirmed by sequencing. (Figure S3).

Genome Editing Validation of sgRNAs

HEK293T cells were transfected with plasmids containing SaCas9 and different pairs of sgRNAs using Lipofectamine 3000 (Invitrogen). The cells were suspended in DirectPCR Lysis Reagent (Viagen Biotech) and incubated with proteinase K for 6 hr at 55°C and heat inactivated at 85°C for 45 mins. 1 mL of genomic DNA (gDNA) extract were directly used for PCR screening of UTRN-IMTR deletion. In brief, a UTRN forward primer (5'-CCCTTGGTGAAAGATCAG-3') and UTRN reverse primer (5'-ACTTACCTCCATGTTACTGC-3') were used to amplify a fragment spanning the IMTR with GoTaq Green Master Mix (Promega), using the following cycling conditions: 95°C for 5 mins, 34 cycles at 95°C for 30 s, 60°C for 30 s, 72°C for 1 min, and final extension at 72°C for 10 mins. The PCR products and TrackIt 100 bp DNA ladder (Thermo Fisher Scientific) were electrophoresed on a 2% agarose gel. Gel images were captured using a G:Box imaging system (SYNGENE).

Electroporation of hiPSC Lines

Approximately 5×10^6 hiPSCs were harvested using Accutase solution (Sigma-Aldrich) and washed in phosphate buffered saline (PBS, without Ca$^{2+}$ and Mg$^{2+}$). Harvested cells were suspended in 75 μL of Resuspension Buffer R (Neon Kit, Invitrogen) and mixed with 25 μg of plasmid DNA. Cells were electroporated with three 10 ms pulses at 1,200 V (Neon Transfection System, Thermo Fisher Scientific). Post-electroporation cells were plated on Matrigel coated plates in mTeSR 1 media with 5 μM ROCK inhibitor (Y-27632, STEMCELL Technologies).

FACS of hiPSC Lines

48 h post-electroporation GFP-positive hiPSCs were FACS sorted in BD FACS Jazz System (BD Biosciences) at the FACS core of The Children’s Hospital of Philadelphia. Cells were harvested and suspended as single cells in FACS buffer (PBS, 1% FBS, 1 mM EDTA, 5 μM Y-27632). GFP-positive cells were gated with reference to mock electroporated-negative cell population. FACS sorted GFP-positive hiPSCs were plated immediately in pre-warmed Matrigel coated...
10 cm plate (5,000–10,000 cells/10 cm plate) with mTeSR™1 media supplemented with 10% CloneR (STEMCELL Technologies).

UTRNΔIMTR hiPSC Colony Screening

FACS sorted hiPSCs formed visible colonies by 7 days in culture. Colonies were picked and split in 96 well Matrigel coated plate with mTeSR™1 media. After 3 days cells were split and half harvested for genomic DNA extraction with DirectPCR Lysis Reagent (Viagen Biotech). The gDNA was used for PCR screening of UTRN-ΔIMTR deletion with the primer pairs flanking UTRN-ΔIMTR, as mentioned above. Positive homozygous colonies were selected for further expansion.

Western Blot

Cells were lysed in radioimmunoprecipitation assay (RIPA) buffer (20 mM Tris-HCl [pH 7.5], 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1% NP-40, 1% sodium deoxycholate, 2.5 mM sodium pyrophosphate, 1 mM β-glycerophosphate, 1 mM sodium orthovanadate) supplemented with complete protease inhibitor cocktail (Roche). Total protein was measured by Pierce BCA Protein assay kit (Thermo Fisher Scientific). 10 µg of total protein was resolved in 3%–8% Tris-Acetate protein gel (NuPAGE, Thermo Fisher Scientific) and transferred to nitrocellulose membrane using Trans-Blot Turbo Transfer System (Bio-Rad). For immunoblotting, membranes were first blocked with 5% non-fat dry milk in TBS with 1% Tween20 for 1 h in room temperature. After blocking, blots were incubated with the following primary antibodies; mouse monoclonal anti-utrophin (1:100, Mancho3[8A4], developed by Prof. Glenn E. Morris; DSHB, IA, USA) and mouse anti-α-tubulin (1:5,000, T6199, Sigma-Aldrich) for overnight at 4°C. Next day, blots were washed; incubated with mouse immunoglobulin G (IgG) binding protein (m-IgGkBP) conjugated to horseradish peroxidase (HRP) (1:2,500, sc-516102, Santa Cruz Biotechnology); washed and developed using Immobilon Western Chemiluminescent HRP Substrate (Millipore) and imaged in LI-COR C-Digit Blot Scanner (LI-COR Biosciences-US).

Immunostaining

Cells were grown in Matrigel coated slide chambers, fixed with freshly prepared 4% paraformaldehyde (PFA) for 15 mins, permeabilized with 0.25% Triton X-100 for 5 mins, blocked with 4% BSA for 1 h, and stained with primary antibody overnight at 4°C. The following primary antibody dilutions were used: rabbit monoclonal anti-Sox2 (1:200, #9092, Cell Signaling Technology), rabbit monoclonal anti-Nanog (1:200, #9092, Cell Signaling Technology), mouse monoclonal anti-α-tubulin (1:200, T6199, Sigma-Aldrich), MF20c (1:50, DSHB), goat polyclonal anti-α-sarcoglycan (1:50, sc-16165, Santa Cruz Biotechnology), and mouse monoclonal anti-β-dystroglycan (1:500, NCL-b-DG, Leica Biosystems, Germany). Secondary antibody dilutions were goat anti-mouse AF488 (1:400, A11029, Thermofisher Scientific) and donkey anti-goat AF594 (1:400, A11058, Thermofisher Scientific). Finally, cells were mounted with ProLong Gold antifade reagent with DAPI (Invitrogen). Images were obtained with the Invitrogen EVOS FL auto 2 Cell Imaging System. Quantification of α-sarcoglycan expression in differentiated myotubes were done in ImageJ software v2.0 using line intensity plot profile of individual myotubes and normalized with respective DAPI intensity. Percentage of α-sarcoglycan intensity for each group were plotted and statistical analysis was done by Kruskal-Wallis multiple comparison test.
RNA Isolation and qPCR
Total RNA was extracted from hiPSCs with TRIzol (Thermo Fisher Scientific). The yield and quality of purified RNA samples were determined using NanoDrop 2000 Spectrophotometer (Thermo Scientific). 1 μg of total RNA samples were treated with DNase I (Invitrogen) for 15 mins and then heat inactivated with 2.5 mM EDTA at 65°C for 10 mins. DNase I treated total RNA was reverse transcribed with oligo dT primer using SuperScript III reverse transcriptase (Thermo Fisher Scientific). qPCR was performed in triplicate with Power SYBR Green PCR master mix (Applied Biosystems) in QuantStudio 3 Real-Time PCR System for *MyoD1*, *MyoG*, *Nanog*, and *GAPDH*. *GAPDH* was used as endogenous control. Relative expression levels were calculated by the cycle threshold method. Primer sequences used in qPCR are mentioned in Table S5.

Lentivirus Generation
For tamoxifen inducible *MyoD* expressing 3rd generation lentivirus production, HEK293T cells were transfected at 80%–90% confluency with psPAX2, pMD2.G, and pCMVMyoD-(ERT)puro plasmids using Lipofectamine 3000 (Invitrogen). Lentiviral particles were harvested as supernatant after 48 h and 72 h of transfection. The psPAX2 and pMD2.G plasmids and the pCMVMyoD-(ERT)puro plasmid were a generous gift from Prof. Joseph A. Baur lab, UPenn, and Prof. M. Carrie Mickle’s laboratory, UCLA, respectively.

Directed Differentiation of hiPSC Lines
hiPSCs were differentiated into skeletal muscle cells by overexpression of *MyoD*, as described in Young et al. hiPSCs were plated as single cells on Matrigel in SMC4 (basal media: DMEM/F12 with 20% knockout serum replacement (KOSR, Life Technologies), 100 μM Essential Amino Acids Solution (NEAA, Life Technologies), 1% Glutamine, 1% Non-essential Amino Acids Solution (NEAA, Life Technologies), 1% Glutamax (Life Technologies), 100 μM beta-mercaptoethanol, 10 ng/mL basic fibroblast growth factor (bFGF, Life Technologies), SMC4: basal media with daily addition of 5 μM ROCK inhibitor (Y27632, StemCell Technologies). 0.4 μM PD0325901 (Sigma-Aldrich), 1 μM CHIR99021 (Tocris Bioscience), and 2 μM SB431542 (Tocris Bioscience). When cells were 70%–80% confluent, they were infected with tamoxifen inducible *MyoD*-ERT lentivirus with 4 μg/mL protamine sulfate (Sigma-Aldrich) and spun inoculated at 1,250 rpm for 90 mins at 32°C. 48 h post-transduction cells were selected with 1 μg/mL puromycin in SMC4 for 3 days. Next day cells were split and plated on Matrigel in basal media without bFGF plus 5 μM ROCK inhibitor at approximately 1 × 10^5 cells/cm². The cells were treated with 5 μM tamoxifen in DMEM with 15% FBS for 4 days for *MyoD* induction and then differentiated in low glucose DMEM with 5% horse serum and 1 μM tamoxifen for 7 days with daily change of media.

Statistical Analysis
Data were analyzed using the GraphPad Prism v8 statistical software package. Values are presented as mean ± standard error of mean (SEM). Statistical analysis was performed using Mann-Whitney test or Kruskal-Wallis test with statistical significance set at p ≤ 0.05. For image quantification statistical analysis was performed using Kruskal-Wallis test with statistical significance set at p ≤ 0.05.
11. Tsuda, T. (2018). Clinical Manifestations and Overall Management Strategies for Duchenne Muscular Dystrophy. Methods Mol. Biol. 1687, 19–28.

12. Alter, J., Lou, F., Rahimovitz, A., Yin, H., Rosenfeld, J., Wilton, S.D., Partridge, T.A., and Lu, Q.L. (2006). Systemic delivery of morpholinol oligonucleotide restores dystrophin expression widebody and improves dystrophic pathology. Nat. Med. 12, 175–177.

13. Cirak, S., Feng, L., Anthony, K., Arechavala-Gomez, V., Torrelli, S., Sewry, C., Morgan, J.E., and Muntoni, F. (2012). Restoration of the dystrophin-associated glycoprotein complex after exon skipping therapy in Duchenne muscular dystrophy. Mol. Ther. 20, 462–467.

14. Mendell, J.R., Goemans, N., Lowes, L.P., Alfano, L.N., Berry, K., Shao, J., Kaye, E.M., and Mercuri, E.; Etepliren Study Group and Telethon Foundation DMD Italian Network (2016). Longitudinal effect of etepliren versus historical control on ambulation in Duchenne muscular dystrophy. Ann. Neurol. 79, 257–271.

15. Bushby, K., Finkel, R., Wong, B., Barohn, R., Campbell, C., Comi, G.P., Connolly, S.T., Fairclough, R.J., Storer, R., Wilks, F.J., Potter, A.C., Squire, S.E., Powell, D.S., Cozzoli, A., Capogrosso, R.F., Lambert, A., et al. (2011). Daily treatment with SMTCI1100, a novel small molecule utrophin upregulator, dramatically reduces the dystrophic symptoms in the mdx mouse. PLoS ONE 6, e19189.

16. Mattes, E., Corbi, N., Di Certo, M.G., Strimpakos, G., Severini, C., Onori, A., Desantis, A., Libri, V., Buontempo, S., Floridi, A., et al. (2007). Utrophin up-regulation by an artificial transcription factor in transgenic mice. PLoS ONE 2, e774.

17. Pissani, C., Strimpakos, G., Gabanella, F., Di Certo, M.G., Onori, A., Severini, C., Lorusso, S., Farioli-vecchioli, S., Carrezzato, L., Esposito, A., et al. (2018). Utrophin up-regulation by artificial transcription factors induces muscle rescue and impacts the neuromuscular function in mdx mice. Biochem. Biophys. Acta Mol. Basis Dis. 1864 (4 Pt A), 1117–1122.

18. Amenta, A.R., Yilmaz, A., Bogdanov, S., McKechnie, B.A., Abedi, M., Khurana, T.S., and Fallon, J.R. (2011). Biglycan recruits utrophin to the sarcolemma and counters dystrophic pathology in mdx mice. Proc. Natl. Acad. Sci. USA 108, 762–767.

19. Ito, M., Ehara, Y., Li, J., Inada, K., and Ohno, K. (2017). Protein-Anchoring Therapy of Biglycan for Mdx Mouse Model of Duchenne Muscular Dystrophy. Hum. Gene Ther. 28, 428–436.

20. Morgoulis, D., Berenstein, P., Cazacu, S., Kazimirsky, G., Dori, A., Barnea, E.R., and Brodie, C. (2019). sPfIP promotes myoblast differentiation and utrophin expression while inhibiting fibrosis in Duchenne muscular dystrophy via the H19/miR-675/let-7 and miR-21 pathways. Cell Death Dis. 10, 82.

21. Basu, U., Lozynska, O., Moorwood, C., Patel, G., Wilton, S.D., and Khurana, T.S. (2011). Translational regulation of utrophin by miRNAs. PLoS ONE 6, e29376.

22. Rosenberg, M.L., Georges, S.A., Asawachaiarn, A., Analau, E., and Tapscott, S.J. (2006). MyoD inhibits Fst1 and Utrn expression by inducing transcription of miR-206. J. Cell Biol. 175, 77–85.

23. Mishra, M.K., Loro, E., Sengupta, K., Wilton, S.D., and Khurana, T.S. (2017). Functional improvement of dystrophic muscle by repression of utrophin: let-7c interaction. PLoS ONE 12, e0182676.

24. Echevarria, L., Aupy, P., and Cayenvalle, A. (2018). Exon-skipping advances for Duchenne muscular dystrophy. Hum. Mol. Genet. 27 (R2), R163–R172.

25. Silva, J., Nichols, J., Thenuissen, T.W., Guo, G., van Oosten, A.L., Barrandourn, O., Wray, J., Yamanaka, S., Chambers, L., and Smith, A. (2009). Nanog is the gateway to the pluripotent ground state. Cell 138, 722–737.

26. Cradick, T.J., Qiu, P., Lee, C.M., Fine, E.J., and Bao, G. (2014). COSMID: A Web-based Tool for Identifying and Validating CRISPR/Cas Oil-target Sites. Mol. Ther. Nucleic Acids 3, e214.

27. Ohlendieck, K., and Campbell, K.P. (1991). Dystrophin-associated proteins are greatly reduced in skeletal muscle from mdx mice. J. Cell Biol. 115, 1685–1694.

28. Roberds, S.L., Anderson, R.D., Ibraghimov-Beskrovnaya, O., and Campbell, K.P. (1993). Primary structure and muscle-specific expression of the 50-kDa dystrophin-associated glycoprotein (adhalin). J. Biol. Chem. 268, 23739–23742.

29. Matsumura, K., Lee, C.C., Caskey, C.T., and Campbell, K.P. (1993). Restoration of dystrophin expression bodywide and improves dystrophic pathology. Proc. Natl. Acad. Sci. USA 90, 14025–14030.

30. Rognoni, V., Lin, S., and Burgunder, J.M. (2000). Differential expression of dystrophin, utrophin, and dystrophin-associated proteins in human muscle cell culture. J. Cell Physiol. Res. 300, 447–457.

31. Weir, A.P., Burton, E.A., Harrod, G., and Davies, K.E. (2002). A- and B-utrophin have different expression patterns and are differentially up-regulated in mdx muscle. J. Biol. Chem. 277, 45285–45290.
50. Long, C., McAnally, J.R., Shelton, J.M., Mireault, A.A., Bassel-Duby, R., and Olson, E.N. (2014). Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA. Science 345, 1184–1188.

51. Ousterout, D.G., Kabadi, A.M., Thakore, P.I., Majoros, W.H., Reddy, T.E., and Gersbach, C.A. (2015). Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy. Nat. Commun. 6, 6244.

52. Zhang, Z., Zhang, Y., Gao, F., Han, S., Cheah, K.S., Tse, H.F., and Lian, Q. (2017). CRISPR/Cas9 Genome-Editing System in Human Stem Cells: Current Status and Future Prospects. Mol. Ther. Nucleic Acids 9, 230–241.

53. Wu, Y., Zeng, J., Roscoe, B.P., Liu, P., Yao, Q., Lazzarotto, C.R., Clement, K., Cole, M.A., Luk, K., Baricordi, C., et al. (2019). Highly efficient therapeutic gene editing of human hematopoietic stem cells. Nat. Med. 25, 776–783.

54. Nelson, C.E., Wu, Y., Gemberling, M.P., Oliver, M.L., Waller, M.A., Bohning, J.D., Robinson-Hamm, J.N., Bulakhk, K., Castellanos Rivera, R.M., Collier, J.H., et al. (2019). Long-term evaluation of AAV-CRISPR genome editing for Duchenne muscular dystrophy. Nat. Med. 25, 427–432.

55. Song, Y., Morales, L., Malik, A.S., Mead, A.F., Greer, C.D., Mitchell, M.A., Petrov, M.T., Su, L.T., Choi, M.E., Rosenblum, S.T., et al. (2019). Non-immunogenic utrophin gene therapy for the treatment of muscular dystrophy animal models. Nat. Med. 25, 1505–1511.

56. Anosie, L., Hildyard, J.C.W., Li, H., Sanchez-Ortiz, E., Mireault, A., Caballero, D., Harron, R, Stathopoulou, T.R., Massey, C., Shelton, J.M., et al. (2018). Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy. Science 362, 86–91.

57. Wei, Y., Chen, Y., Qiu, Y., Zhao, H., Liu, G., Zhang, Y., Meng, Q., Wu, G., Chen, Y., Cai, X., et al. (2016). Prevention of Muscle Wasting by CRISPR/Cas9-mediated Disruption of Myostatin In Vivo. Mol. Ther. 24, 1889–1891.

58. Wojtal, D., Koraladevi, D.U., Malam, Z., Abdullah, S., Wong, T.W., Hyatt, E., Baghestani, Z., Pereira, S., Stavropoulos, J., Moully, V., et al. (2016). Spell Checking Nature: Versatility of CRISPR/Cas9 for Developing Treatments for Inherited Disorders. Am. J. Hum. Genet. 98, 90–101.

59. Liao, H.K., Hatana, K., Araoka, T., Reddy, P., Wu, M.Z., Sui, Y., Yamauchi, T., Sakurai, M., O’Keefe, D.D., Núñez-Delicado, E., et al. (2017). In Vivo Target Gene Activation via CRISPR/Cas9-Mediated Trans-epigenetic Modulation. Cell 171, 1495–1507.

60. Maffioletti, S.M., Sarcar, S., Henderson, A.B.H., Mannhardt, I., Pinton, L., Moyle, L.A., Steele-Stallard, H., Cappellari, O., Wells, K.E., Ferrari, G., et al. (2018). Three-Dimensional Human iPSC-Derived Artificial Skeletal Muscles Model Muscular Dystrophies and Enable Multilineage Tissue Engineering. Cell Rep. 23, 899–908.

61. Daniel-Moreno, A., Lamsfus-Calac, A., Raju, J., Antony, J.S., Handgretinger, R., and Mezger, M. (2019). CRISPR/Cas9-modified hematopoietic stem cells-present and future perspectives for stem cell transplantation. Bone Marrow Transplant. 54, 1940–1950.

62. Danisovic, L., Cullenova, M., and Csoobonyesova, M. (2018). Induced Pluripotent Stem Cells for Duchenne Muscular Dystrophy Modeling and Therapy. Cells 7, 253.

63. Nance, M.E., Shi, R., Hakim, C.H., Wasala, N.B., Yue, Y., Pan, X., Zhang, T., Robinson, C.A., Duan, S.X., Yao, G., et al. (2019). AAV9 Edits Muscle Stem Cells in Normal and Dystrophic Adult Mice. Mol. Ther. 27, 1568–1585.

64. Goldstein, J.M., Tabebordbar, M., Zhu, K., Wang, L.D., Messemer, K.A., Peacker, B., Ashrafi Kakhti, S., Gonzalez-Celeiro, M., Shwartz, Y., Cheng, J.K.W., et al. (2019). In Situ Modification of Tissue Stem and Progenitor Cell Genomes. Cell Rep. 27, 1254–1264.

65. Odom, G.L., Gregorevic, P., Allen, J.M., Finn, E., and Chamberlain, J.S. (2008). Microutrophin delivery through rAAV6 increases lifespan and improves muscle function in dystrophic dystrophin/utrophin-deficient mice. Mol. Ther. 16, 1538–1545.

66. Karumbayaram, S., Lee, P., Arghadi, S.F., Cooper, A.R., Patterson, M., Kohn, D.B., Pyle, A., Clark, A., Byrne, J., Zack, J.A., et al. (2012). From skin biopsy to neurons through a pluripotent intermediate under Good Manufacturing Practice protocols. Stem Cells Transl. Med. 1, 36–43.