On the width of lattice-free simplices

Jean-Michel KANTOR

I Introduction

Integral polytopes (see [Z] for the basic definitions) are of interest in combinatorics, linear programming, algebraic geometry-toric varieties [D, O], number theory [K-L]. We study here lattice-free simplices, that is simplices intersecting the lattice only at their vertices.

A natural question is to measure the “flatness” of these polytopes, with respect to integral dual vectors. This (arithmetical) notion plays a crucial role:

- in the classification (up to affine unimodular maps) of lattice-free simplices in dimension 3 (see [O, MMM].
- in the construction of a polynomial-time algorithm for integral linear programming (flatness permits induction on the dimension, [K-L]).

Unfortunately there were no known examples (in any dimension) of lattice-free polytopes with width bigger than 2. We prove here the following

Theorem:
Given any positive number α strictly inferior to $\frac{1}{e}$, for d large enough there exists a lattice-free simplex of dimension d and width superior to αd.

The proof is non-constructive and uses replacing the search for lattice-free simplices in \mathbb{Z}^d by the search for ”lattice-free lattices ” containing $\mathbb{Z}^d”$ (“turning the problem inside out”, see par. II), specializing in the next step to lattices of a simple kind, depending on a prime number p. The existence of lattice-free simplices with big width is then deduced by elementary computations, through a sufficient inequality involving the dimension d, the width k and the prime p (see (14)).

The author thanks with pleasure H. Lenstra for crucial suggestions, V. Guillemin and I. Bernstein for comments.

Notations

\mathcal{P}_d: The set of integral polytopes in \mathbb{R}^d; if P is such a polytope, P is a convex compact set, the set Vert(P) of vertices of P is a subset of \mathbb{Z}^d.

\mathcal{S}_d: The set of integral simplices in \mathbb{R}^d. In particular σ_d will denote the canonical simplex with vertices at the origin and

$e_i = (0, \ldots, 0, 1, 0, \ldots, 0) — 1$ at the i-th coordinate—

G_d: the group of affine unimodular maps:

$$G_d = \mathbb{Z}^d \rtimes GL(d, \mathbb{Z})$$

acts on \mathbb{R}^d (preserving \mathbb{Z}^d), \mathcal{P}_d, and \mathcal{S}_d.

A d-lattice M is a lattice with

$$\mathbb{Z}^d \subset M \subset \frac{1}{m}\mathbb{Z}^d$$

for some $m \in \mathbb{N}^*$.

II. Turning simplices inside out.
II.1. Let σ be an integral simplex of dimension d in \mathbb{R}^d, and L the sublattice of \mathbb{Z}^d it generates:

$$L = \left\{ \sum_{i=1}^r m_i a_i, \ a_i \in \text{Vert}(\sigma) \ m_i \in \mathbb{Z} \right\}.$$

We assume for simplicity one vertex of σ at the origin. The following is obvious:

Proposition 1. i) There exists a linear isomorphism

$$\varphi : \mathbb{R}^d \to \mathbb{R}^d \quad \varphi(x) = y = (y_j)_{j=1,\ldots,n}$$

such that

$$\varphi(\sigma) = \sigma_d.$$

It is unique up to permutation of the y_i's, and

$$\varphi(L) = \mathbb{Z}^d, \quad \varphi(\mathbb{Z}^d) = M$$

where M is a d-lattice.

ii) Conversely, given a d-lattice M, there exists a linear isomorphism

$$\psi : \mathbb{R}^d \to \mathbb{R}^d$$

such that

$$\psi(M) = \mathbb{Z}^d,$$

and the image of σ_d by ψ is an integral simplex σ of dimension d corresponding to M as in i).

All d-lattices generate \mathbb{R}^d as vector space over \mathbb{R}, and the Proposition is an easy consequence of this.

Remarks.

- Because φ is an isomorphism, the following indices are equal

$$[\mathbb{Z}^d : L] = [M : \mathbb{Z}^d].$$

The determinant of the lattice L is classically the volume of the parallelotope built on a basis of L. If σ generates L as above,

(1) \hspace{1cm} \text{vol}(\sigma) = \frac{1}{d!} \det L

(2) \hspace{1cm} \det M = \frac{1}{d! \text{vol} \sigma}.$$

- Proposition 1 has a straightforward extension to the case of two lattices L and M with

$$L \subset M \subset \frac{1}{p} L$$

II.2. Lattice-free simplices and their width

Recall the following [K, K-L].
Definition 1. An integral polytope P in \mathbb{R}^d is *lattice-free* if

$$P \cap \mathbb{Z}^d = \text{Vert}(P)$$

Definition 2. Given an integral non-zero vector u in $(\mathbb{Z}^d)^*$, the u-width of the polytope P of \mathcal{P}_d is defined by

$$w_u(P) = \max_{x,y \in P} <u, x - y>.$$

The *width* of P is

(4) $$w(P) = \inf_{u \in (\mathbb{Z}^d)^*, \, u \neq 0} w_u(P).$$

Remark: The width is the minimal length of all integral projections $u(P)$ for non-zero u.

II.3 Known results on the width of lattice-free polytopes in dimension d:

$d = 2$:
Lattice-free simplices are all integral triangles of area $1/2$; they are equivalent to σ_2. This is elementary.

$d = 3$:
Lattice-free polytopes have width one; in the case of simplices, this result has various proofs and applications (it is known sometimes as the “terminal lemma”, see [F, M-S, O, Wh]).

$d = 4$:
All lattice-free simplices have at least one basic facet (face with codimension one) [W]
-this fact is not true in higher dimensions.

Examples: There exist some interesting examples:
-L. Schläfli’s polytopes, studied by Coxeter [C];
-A recent example given by H. Scarf [private communication]; the simplex in dimension 5 with vertices the origin, the first four vectors e_i and for last vertex $(23, 39, 31, 43, 57)$, has width 3.
- We have found with the help of a computer, some examples of width 2, 3 and 4 in dimension 4 and 5 [F-K].

No other result seems to be known, apart from the following asymptotic result:

Proposition 2. There exists a universal constant C such that for any lattice-free polytope of dimension d

(5) $$w(P) \leq Cd^2.$$

Proof. The “Flatness Theorem” of [K-L] asserts that there exists C such that any convex compact set K in \mathbb{R}^d with

$$K \cap \mathbb{Z}^d = \phi$$

satisfies

(6) $$w(K) \leq C d^2$$

3
where \(w \) is defined as in I.2.

If \(P \) is any lattice-free polytope, take a point \(a \) in the relative interior of \(P \) and apply the previous Flatness Theorem to the homothetic \(\tilde{P} \) of \(P \) with respect to \(a \) and fixed ratio \(\alpha \) strictly less than one. Then formula (4) shows that the width of \(P \), which is proportional to the width of \(\tilde{P} \), is also bounded by a function of type (6).

Remark: `Recent results of [B] show that (5) is true with a right hand side proportional to \(d \log d \).

II.4. Turning the width inside out

Let us first define a new norm on \(\mathbb{R}^d \): If \(x = (x_1, \ldots, x_d) \in \mathbb{R}^d \)

\[
\|x\| = \sup_i |x_i|
\]

Define

(7) \[
\|x\| = \sup_i (0, x_i) - \inf_i (0, x_i)
\]

It is the support function of the following symmetric convex compact set in \((\mathbb{R}^d)^*\):

\[
K = \sigma_d - \sigma_d
\]

(see [O], p.182).

Lemma 1. \(\| \| \) is a norm, and

\[
\|x\|_\infty \leq \|x\| \leq 2\|x\|_\infty
\]

From now on \((\sigma, M)\) are as in Proposition 1. We can identify the dual of the lattice \(M \) with a subgroup of \((\mathbb{Z}^d)^*\):

\[
\mathbb{Z}^d \subset M, \quad M^* \subset (\mathbb{Z}^d)^* \\
\xi \in M^*: \xi = (\xi_1, \ldots, \xi_d) \in (\mathbb{Z}^d)^*
\]

Definition 3. Let

(8) \[
w(M) = \inf_{\xi \in M^*} \|\xi\|
\]

Then we have

Proposition 3.

\[
w(\sigma) = w(M)
\]

Proof. The isomorphism \(\varphi \) changes \(\sigma \) into \(\sigma_d \), linear forms \(u \) on \(\mathbb{Z}^d \) into linear forms on \(M \), and

\[
w_\xi(\sigma_d) = \sup_{x \in \sigma_d} (\xi, x) - \inf_{y \in \sigma_d} <\xi, y>
\]

\[
= \sup_i (0, \xi_i) - \inf_i (0, \xi_i)
\]

\[
= \|\xi\|.
\]
II.5. With notations as in II.1, we have

\[\sigma \cap \mathbb{Z}^d = \text{Vert} \sigma \iff M \cap \sigma_d = \text{Vert} (\sigma_d) \]

We can conclude this part by asserting that the existence of an integral lattice-free simplex of dimension \(d \), volume \(v/d! \) and width at least \(k \) is equivalent with the existence of a \(d \)-lattice \(M \), containing \(\mathbb{Z}^d \), with

\[
\begin{cases}
 M \cap \sigma_d = \text{Vert} \sigma_d \\
w(M) \geq k \\
det(M) = \frac{1}{v}.
\end{cases}
\]

III. In search of lattice-free simplices (asymptotically)

III.1. We restrict our study to \(d \)-lattices of type:

\[M(y) = \mathbb{Z}^d + \frac{1}{p} \mathbb{Z} \ y \quad y \in \mathbb{Z}^d \quad M \neq \mathbb{Z}^d \]

where \(p \) is a prime number; clearly this lattice depends only on the class of \(y \) in \((\mathbb{Z}/p\mathbb{Z})^d\).

Lemma 2. The set of lattices \(M \) (for a fixed \(p \)) can be identified with the space of lines in \((\mathbb{Z}/p\mathbb{Z})^d\).

In particular the number of such lattices is

\[m(d, p) = \frac{p^d - 1}{p - 1}. \]

Let \(f(d, p) \) be the number of lattices \(M \) such as (10) satisfying

\[M \cap \tilde{\sigma}_d \neq \phi \]

where

\[\tilde{\sigma}_d = \sigma_d \setminus \text{Vert}(\sigma_d). \]

(The lattice \(M \) intersects \(\sigma_d \) in other points than the vertices).

Lemma 3.

\[f(d, p) \leq \frac{(p + 1) \ldots (p + d)}{d!} - (d + 1). \]

Proof.

\[x \in M(y) \cap \tilde{\sigma}_d \quad \{ x = z + \frac{my}{p} \} \quad \implies (m, p) = 1. \]
Writing \(\frac{mu}{p} \) as the sum of an integral vector and a remainder we get

\[
x = z + z' + \frac{\tilde{y}}{p}, \quad 0 \leq \tilde{y}_i < p, \quad \tilde{y}_i \in \mathbb{N}
\]

\[
x \in \tilde{\sigma}_d
\]

\[
\implies z + z' = 0.
\]

\[
x = \frac{\tilde{y}}{p},
\]

\[
\tilde{y} \in p\tilde{\sigma}_d \cap \mathbb{Z}^d
\]

But the vectors \(y, my, \tilde{y} \) define the same line in \((\mathbb{Z}/p\mathbb{Z})^d\). This shows that the number of lattices \(M(y) \) satisfying (12) is less than the number of points in \(p\tilde{\sigma}_d \cap \mathbb{Z}^d \), given by the right hand side of the lemma \([E]\).

Let now \(g(d, p, k) \) be the number of lattices \(M(y) \) as in (10) with

\[
w(M(y)) \leq k.
\]

Lemma 4.

(13)

\[
g(p, d, k) \leq 2[(k + 1)^{d+1} - k^{d+1}]p^{d-2}.
\]

Proof:

The assumption on the lattice means the existence of a vector \(\xi \) in \(\mathbb{Z}^d \)

\[
\xi \neq 0 \quad y = (y_1, \ldots, y_d), \quad \xi = (\xi_1, \ldots, \xi_d)
\]

\[
\sum \xi_i y_i \in p\mathbb{Z}
\]

\[
\|\xi\| \leq k \implies \|\xi\|_{\infty} \leq k.
\]

The number of integral points \(\xi \) of norm less or equal to \(k \) is

\[
n(k, d) = (k + 1)^{d+1} - k^{d+1}
\]

[Proof :]

Let

\[
m = \inf_{i}(0, \xi_i)M = \sup_{i}(0, \xi_i)
\]

The possible values of \(m \) are

\[
m = -k, \ldots, -1, 0
\]

a/ For all values except 0 one of the \(x_i \) has value \(m \), and the others can take any value between \(m \) and \(m + k \). For each \(m \) the number of possibilities is equal to

\[
S_1 = [k + 1]^d - k^d
\]

b/ When

\[
m = 0
\]

6
all x'_is are non-negative, and the contribution is

$$S_2 = [k + 1]^d$$

Adding up the contributions we get

$$n(k, d) = k[(k + 1)^d - k^d] + (k + 1)^d = (k + 1)^{d+1} - k^{d+1}.$$

Going back to the proof of Lemma 4, choose a vector ξ with norm smaller than k (strictly less than p): this implies that the linear form defined by ξ:

$$\hat{\xi} : (\mathbb{Z}/p\mathbb{Z})^d \to \mathbb{Z}/p\mathbb{Z}$$

is surjective, and its kernel has p^{d-1} elements; the number of corresponding lattices is

$$r(p, d) = \frac{p^{d-1} - 1}{p - 1} \leq 2p^{d-2}.$$

We can choose at most $n(k, d)$ vectors ξ.

Hence, by the mean value theorem,

$$g(p, d, k) \leq 2[(k + 1)^{d+1} - k^{d+1}]p^{d-2} \leq 2(d + 1)(k + 1)^dp^{d-2}. \quad (13)$$

III.3. From Lemmas 3 and 4 we conclude that for large d and k the following condition

$$2(d + 1)(k + 1)^d p^{d-2} + \frac{(p + d)^d}{d!} < p^{d-1} \quad (14)$$

ensures the existence of a lattice $M(y)$ of width greater than k, dimension d, and

$$M(y) \subset \frac{1}{p}\mathbb{Z}^d.$$

The following is well-known:

Lemma 5.

Given any sequence of numbers (a_d) going to infinity, there exists an equivalent sequence (p_d) of prime numbers.

Proof: Given ε strictly positive we know from the prime number theorem that for d large enough there exists a prime number p_d in the interval $[(1 - \varepsilon)a_d, (1 + \varepsilon)a_d]$. This implies

$$|p_d - a_d| < \varepsilon a_d$$

for d large enough.

Choose now α arbitrary - we will soon fix it - and a sequence (p_d) of primes with

$$p_d \sim \alpha d!$$

and let us find α and a sequence (k_d) such that

$$2(d + 1)(k_d + 1)^d p_d^{d-2} < \frac{1}{2}p_d^{d-1} \quad (15)$$
These two conditions imply (14)

The condition (16) is satisfied for large enough d if

$$\alpha < \frac{1}{2}.$$

Indeed

$$p_d + d \sim \alpha d!;$$

since

$$\alpha < \frac{1}{2}$$

(16) follows if we can show that

$$(1 + d/p)^{d-1} \to 1$$

$$d \to \infty$$

where

$$p = p_d$$

But

$$\log(1 + d/p)^{d-1} \leq (d - 1)d/p \sim d^2/\alpha d! \to 0$$

Then (15) becomes

$$k_d + 1 < \left[\frac{1}{4(d + 1)} p_d \right]^{\frac{1}{2}}$$

This last expression is equivalent, because of Stirling’s formula, to $\frac{d}{e}$. Hence if we choose any sequence of integral numbers (k_d) with

$$k_d < \beta d$$

with

$$0 < \beta < \frac{1}{e}$$

then (15) and (16) are satisfied for large d.

Theorem. For any β strictly less than $1/e$, there exists for sufficiently large d a sequence of lattice-free simplices of dimension d and width w_d,

$$w_d > \beta d.$$

Defining

$$w(d) = \sup_{\sigma} w(\sigma)$$

supremum taken over all lattice-free simplices of dimension d, then the previous Theorem amounts to:
$$\lim_{d \to \infty} \frac{w(d)}{d} \geq \frac{1}{e}$$

Final Remark. The study above raises the hope of improving the bounds on the maximal width, by introducing more general lattices generated by a finite number of rational vectors, and replacing the prime p by powers in (10) (Note the study of general lattices of such type in [Sh]). Unfortunately -and rather mysteriously- our computations in these new cases give the same bounds.

References

[B] Banaszczyk - Litvak - Pajor A. Szarek The flatness theorem, the Gaussian projection and analogues of the reverse Santalo inequality for non-symmetric convex bodies

[C] Coxeter H.S.M. The polytope 2_{21} whose 27 vertices correspond to the lines on the generic cubic surface, American J.M. 62; 457-486, 1940.

[D] Dais D., Enumerative combinatorics of invariants of certain complex threefolds with trivial canonical bundle, Dissertation, Bonn 1994.

[E] L. Euler Introductio in analysis infinitorum, Vol. 1, Ch. 16 (1748), 253-257

[F] Frumkin H., Description of elementary three-dimensional polyhedra. Conference on statistical and discrete analysis, Alma Ata, 1981 (Russian).

[F.K.] Fermigier S. - Kantor J.M., Exemples de grande épaisseur, Paris 1997.

[K] Kantor J.M. Triangulations of integral polytopes and Ehrhart polynomials, Beträge für Algebra und Geometrie, 1997.

[K.L.] Kannan R. - Lovasz L., Covering minima and lattice-point free convex bodies, Ann. of Mathematics, 128, 577-602, 1988.

[M.M.M] Mori K. - Morrison D. - Morrison I., On four dimensional terminal quotient singularities, Mathematics of computation 51, 1988, N° 184, 769-786.

[M.S.] Morrison D. - Stevens G., Terminal quotient singularities in dimension three and four, Proceedings of the Amer. Math. Soc. 90, 1984, N° 1, 15-20.

[O.] Oda T., Convex bodies and algebraic geometry, Ergeb. Springer-Verlag, 1988.

[S] Scarf H.E. Integral polyhedra in three space Math. Oper. res. 10-403-438, 1985.

[Sh] Shimura G. Introduction to the arithmetic theory of automorphic functions, Princeton Univ. Press 1971

[W.] Wessels, Die Sätze von White .. Diplomarbeiten, Bochum 1989.

[Wh] White G.K., Lattice tetrahedra, Canad. Journal of math. 16 (1961), 389-396.

[Z] Ziegler G. Lectures on polytopes, Springer-Verlag, GTM 152, 1996