THE SEROTONERGIC SYSTEM AND COGNITIVE FUNCTION

Abstract
Symptoms of cognitive dysfunction like memory loss, poor concentration, impaired learning and executive functions are characteristic features of both schizophrenia and Alzheimer’s disease (AD). The neurobiological mechanisms underlining cognition in healthy subjects and neuropsychiatric patients are not completely understood. Studies have focused on serotonin (5-hydroxytryptamine, 5-HT) as one of the possible cognition-related biomarkers. The aim of this review is to provide a summary of the current literature on the role of the serotonergic (5-HTergic) system in cognitive function, particularly in AD and schizophrenia.

The role of the 5-HTergic system in cognition is modulated by the activity and function of 5-HT receptors (5-HTR) classified into seven groups, which differ in structure, action, and localization. Many 5-HTR are located in the regions linked to various cognitive processes. Preclinical studies using animal models of learning and memory, as well as clinical in vivo (neuroimaging) and in vitro (post-mortem) studies in humans have shown that alterations in 5-HT activity influence cognitive performance. The current evidence implies that reduced 5-HT neurotransmission negatively influences cognitive functions and that normalization of 5-HT activity may have beneficial effects, suggesting that 5-HT and 5-HTR represent important pharmacological targets for cognition enhancement and restoration of impaired cognitive performance in neuropsychiatric disorders.

Keywords
- Alzheimer’s disease • Cognitive function • Receptors • Schizophrenia • Serotonin

1. Introduction
Cognitive functions represent a spectrum of mental abilities and complex processes related to attention, memory, judgment and evaluation, problem-solving and decision-making, as well as to comprehension and language synthesis. As normal aging is frequently associated with a decline in memory and cognitive abilities, cognitive impairment is one of the major challenges of our rapidly aging society. Moreover, cognitive deficits are prominent features of many psychiatric and neurodegenerative disorders including schizophrenia and Alzheimer’s disease (AD). In spite of extensive research, the neurobiological underpinnings of cognitive flexibility in both healthy subjects and neuropsychiatric patients are still unclear. A great deal of attention has been directed towards the role of serotonin (5-hydroxytryptamine, 5-HT) in various emotional states and mood disorders. More recently, studies have focused on 5-HT as one of the possible cognition-related biomarkers. This mini-review assesses the literature on the involvement of 5-HT receptors (5-HTR) in multiple aspects of cognitive performance and particularly emphasizes 5-HTRs potential for therapeutic intervention of cognitive deficits in AD and schizophrenia.

2. 5-HT and cognition
As a neurotransmitter, 5-HT not only regulates many important physiological processes such as body temperature, sleep, appetite, pain and motor activity [1], but also modulates higher brain functions, including cognition and emotional behaviour [2]. Widespread distribution of serotonergic (5-HTergic) neurons allows modulation of various neuronal networks located in distant brain regions whose coordinated activity is required for most cognitive functions [3]. A high density of 5-HTergic projections in the hippocampus and prefrontal cortex [4-6] underlines the anatomical and neurochemical linkage of the 5-HTergic system with brain areas most commonly associated with learning and memory [7]. While the 5-HTergic system in the hippocampus is involved in different memory processes, spatial navigation, decision making and social relationships [8-10], in the prefrontal cortex 5-HT plays a major role in working memory, attention, decision-making and reversal learning [11,12].

The neuromodulatory action of 5-HT on cognitive functions in both physiological and pathological states largely depends on the action of enzymes, transporters, and specific subtypes of expressed receptors (5-HTR), and their localization, which regulate local 5-HT
concentration and neurotransmission [13,14]. In addition, part of 5-HT’s role in the neurobiology of learning and memory might be attributed to complex interactions between the 5-HTergic system and other neurotransmitters such as acetylcholine, dopamine, GABA and glutamate [15]. Preclinical and clinical studies suggest that the activity of the 5-HTergic system is associated with short- and long-term memory and cognitive performance, during aging [16] as well as in many psychiatric (schizophrenia, depression, alcoholism) and neurological (AD, epilepsy) disorders [4,17,18].

Cognitive-attentional dysfunction is one of the key features of schizophrenia and it is related to poor psychosocial outcomes [19]. Major cognitive dimensions affected in schizophrenia include speed of processing, working memory, vigilance, attention, reasoning and problem solving, sound cognition, as well as both visual and verbal learning and memory [20]. In schizophrenia, ascending 5-HTergic pathways from the dorsal raphe nuclei to the substantia nigra and from the rostral raphe nuclei to the neocortex, limbic regions, and basal ganglia are upregulated, leading to dopaminergic hypofunction [21]. It is believed that the symptoms of schizophrenia are at least in part due to this interconnectivity between 5-HTergic and dopaminergic systems [22]. On the other hand, the disruption of serotonergic / cholinergic / GABAergic interactions in the frontal cortex [23], as well as synaptic disorganization in the hippocampus [24], suggests that synchronization of neural activity between the prefrontal cortex and the hippocampus might be crucial for the complex cognitive behaviour in schizophrenia [3].

The most pronounced symptom of AD is the progressive decline of various cognitive domains, primarily affecting episodic, semantic and working memory, but also executive functions such as attention, linguistic and visuospatial skills [25]. The hippocampus, the most affected brain area in AD, is involved in cognitive changes and impaired memory observed in the disease [26]. A reduced numbers and activity of 5-HTergic neurons [27,28], associated with a decrease in the concentration of 5-HT and its main metabolite 5-hydroxyindoleacetic acid (5-HIAA) in the post-mortem brain [29], cerebrospinal fluid [30], and blood platelets [31], suggest extensive serotonergic denervation in AD [32]. The association of 5-HT signalling with accumulation of amyloid-β (Aβ) plaques [27,33], and expression or processing of amyloid precursor protein (APP), as well as the improvement of cognitive functions following treatment with 5-HT modulators [32,34,35], indicate that the 5-HTergic system is a potential target for AD therapy. The alterations in the 5-HTergic system could be also associated with the development of non-cognitive symptoms in AD, called behavioural and psychological symptoms of dementia (BPSD), which affect up to 90% of dementia patients [36], and include aggressive behaviour, depression, psychotic symptoms (hallucinations, delusions), apathy, as well as changes in sleep and appetite [37].

3. Serotonin receptors (5-HTR)

A variety of 5-HTergic functions is accomplished by the release of 5-HT in targeted areas and its action via at least 14 different pre- and postsynaptic 5-HTR [38]. As shown in Tables 1 and 2, 5-HTR are subdivided according to their distribution, molecular structure, cell

Receptor family	Subtype	Distribution	Mechanism	Cellular response
5-HT₁	1A, 1B, 1D, 1E, 1F	CNS, blood vessels	Adenylate cyclase	Inhibitory
5-HT₂	2A, 2B, 2C	CNS, platelets, blood vessels, smooth muscle	Phospholipase C	Excitatory
5-HT₃	3A, 3B	CNS, PNS; GI tract	Ligand-gated ion channel	Excitatory
5-HT₄	CNS, PNS	Adenylate cyclase	Excitatory	
5-HT₅	CNS	Adenylate cyclase	Inhibitory	
5-HT₆	CNS	Adenylate cyclase	Excitatory	
5-HT₇	CNS, GI tract, blood vessels	Adenylate cyclase	Excitatory	

Abbreviations: CNS = central nervous system; PNS = peripheral nervous system, GI tract = gastrointestinal tract.

Receptor family	Distribution in the brain
5-HT₁	Pituitary gland, rostral raphe nuclei, hippocampus, prefrontal cortex cerebellum, basal ganglia, amygdala, globus pallidus, putamen, caudate nucleus
5-HT₂	Cerebral cortex, basal ganglia, amygdala, choroid plexus, hypothalamus, hippocampus, caudate nucleus, putamen, globus pallidus, substantia nigra
5-HT₃	Area postrema, tractus solitarius, limbic system, hippocampus, cerebral cortex
5-HT₄	Prefrontal cortex, caudate nucleus, putamen, globus pallidus, hippocampus, substantia nigra
5-HT₅	Cerebral cortex, amygdala, cerebellum, hypothalamus, hippocampus
5-HT₆	Dentate gyrus, hippocampus, olfactory tubercle, nucleus accumbens, amygdala, cerebellum
5-HT₇	Thalamus
response and function into seven groups from 5-HTR1 to 5-HTR7 [39, 40]. Except 5-HTR3, which are ligand-gated ion channels, all other 5-HTR are G-protein-coupled receptors influencing different transduction pathways [39].

Although 5-HTR are widespread in the central nervous system (CNS) and to a lesser extent in some peripheral organs, the prefrontal cortex and hippocampus are the two main targets of 5-HTergic neurons and express almost all 5-HTR [41, 42]. 5-HTR subtypes found in these brain regions include 5-HT1A, 5-HT1B, 5-HT2A, 5-HT2C, 5-HT3, 5-HT4, 5-HT5, and 5-HT7 class of receptors [43, 44]. The activation of different 5-HTR subtypes through the action of distinct neuronal networks, within the same brain region, or even within the same local synapse can have opposite outcomes [13, 45].

The changes in the 5-HTR related to cognition are given in Table 3. Since both agonists and antagonists of specific 5-HTR affect cognitive processes, 5-HTR emerged as attractive potential drug targets for the treatment of cognitive deficits.

Table 3. Changes in the 5-HTR related to cognition.

Receptor	Findings reported	Reference
5-HT1A	Decrease in receptor activity and density with aging in healthy subjects	54
	Stimulation of receptors by antipsychotics increase prefrontal cortical dopamine release	61
	Negative correlation between receptor binding potential and cognitive function in healthy persons	55
	Decreased receptor number or density in elderly with MCI and AD	57
	Relationship between receptor number and BPSD	58
	No correlation between receptor binding potential and cognitive function in healthy persons	56
	Receptors affect declarative and non-declarative memory functions via glutamatergic, cholinergic and GABAergic neurons	49
	Receptors regulate different kinases and immediate early genes implicated in memory formation	49
	Decreased receptor binding in amygdala of patients with schizophrenia	60
	Increased receptor binding in prefrontal cortex of patients with schizophrenia	60
	No change in brain receptor binding in patients with schizophrenia	60
	Activation of postsynaptic receptors in rodents impairs emotional memory through attenuation of neuronal activity	53
	Activation of presynaptic receptors reduces 5-HT release and exerts pro-cognitive effects on passive avoidance retention	53
	Potential of 5-HTR1A and DR2 heterodimers in the frontal cortex for cognitive enhancement	62
	Receptor agonist reduces cognitive function in experimental animals	66
	Decrease in receptor binding potential with aging in healthy subjects	65
	Role of receptor inverse agonists and antagonists in treatment of damaged memory and cognitive processes	66
	Decrease in receptor density in frontal and temporal cortex associated with cognitive dysfunction in patients with AD	67
	Decrease in receptor binding in brain stem associated with good response to psychotherapy in depressive patients	69
	Positive correlations between creative ability, a measure of divergent thinking, and average receptor availability in grey matter	64
	Increased receptor mRNA levels in the hippocampal formation in patients with schizophrenia	70
	Receptor agonists induce potentiation of latent inhibition, a characteristic of antipsychotics	71
	Decreased receptor number in hippocampus and frontal cortex with aging correlates with cognitive decline	27
	Severity of cognitive impairment in AD patients correlates with the decrease in receptor binding	77, 78
	Receptor antagonism improves cognition in schizophrenia	85
	Receptor antagonist improves working memory function in young and aged monkeys	82
	Receptor low affinity of the atypical antipsychotics is more beneficial for cognition and social function than high affinity	87
	Decrease in receptor density with aging correlates with cognitive decline	73
	Conflicting results in vivo studies of receptor binding on schizophrenia patients	83, 84
	Changes in receptor expression associated with pathological and progressive accumulation of Aβ in animal model of AD	79
	Decrease in brain receptor density in patients with AD	74-76
	Decrease in number of prefrontal receptors in brain of schizophrenia patients	60
	Receptor activation with high affinity agonist enhanced working memory in rats	80
	Intra hippocampal injections of receptor antagonist increase rat spatial learning and memory	81
	Receptor agonism, rather than antagonism has beneficial effects on cognitive functions in schizophrenia	99
	Both receptor agonists and antagonists may have positive effects on cognitive functions in schizophrenia	90
	Reducing receptor activity facilitates reversal learning in mouse by reducing influence of previously non-rewarded associations	92
	Receptor agonist treatment ameliorated impairments in cognitive flexibility and reversal learning in the mutant mice	94
	Administration of selective receptor antagonist, prior to environmental stress, prevented tau hyperphosphorylation and repaired defects in hippocampal LTP and spatial memory	93
	Stimulation with receptor agonist in vitro and in vivo reduces Aβ production	95, 96
	Increase of receptors in NK-cells linked with cognitive deficits in AD	
Receptor	Findings reported	Reference
---------	---	-----------
5-HT₃	Ondansetron blocked scopolamine-induced learning deficits in learning	104
	Ondansetron improved radial arm maze performance in MK801-impaired rats	103
	Antagonist itasetron showed memory-enhancing effects	105
	Receptor antagonists improve memory	102
	Receptor antagonists provide improvement in cognitive symptoms of schizophrenia	115
	Ondansetron as potential adjunctive treatment for schizophrenia particularly for	116-118
	negative symptoms and cognitive impairments	
	Improvements in verbal memory after tropisetron therapy	119
	Link between gene variant of the 5-HTR₃ subunit and sustained attention in	114
	schizophrenic patients	
	Blockade of receptors protects neurons against Ab-induced neurotoxicity by	106,107,
	inhibition and stimulation of glutamate and acetylcholine release, respectively	108
	Neuroprotective effects of synthetic compounds targeting 5-HT₃ with acetylcholin-	110-112
	esterase or with alpha-7 nicotinic receptor activity	
5-HT₄	Decreased receptor number in hippocampus and cortex from AD patients	58,140
	Receptor agonists and antagonists modulate short-term and long-term memory in	128
	rats	
	Beneficial effects of receptor activation in cognition in rodents and primates	122,129,
		130
	Receptor agonists acutely improved performance on learning and memory tests	132-134
	Receptor agonists reversed age-related or pharmacologically-induced cognitive	86,135-137
	deficits	
	Chronic partial agonist improved memory performance in mice	138
	Receptor agonists stimulate acetylcholine release, regulate memory performance,	141-143
	have neuroprotective and neurotrophic effects	
	No change in the receptor number during aging in humans	139
	Receptor role in cognitive processes and expression of genes that regulate	131
	synaptic plasticity	
	Receptor agonists decrease production of neurotoxic Aβ	142-144
	Receptor expression not changed in schizophrenic patients	146
	Receptor gene haplotype associated with schizophrenia	147
5-HT₅	Receptor blockade impairs short- and long-term memory, while its stimulation	150
	facilitate it	
	Receptor antagonist improves positive symptoms and cognitive impairment in animal	151,152
	models of schizophrenia, aged rats and mice with memory deficit	
5-HT₆	Decreased receptor density in temporal and frontal cortex in AD patients	67
	Decrease in the number of neurons expressing receptors in AD patients	74
	Receptor antagonists enhance cognitive performance	158,159
	Receptor agonists and antagonists regulate learning and memory	153-155
	High affinity receptor compounds are investigated \textit{in vitro} or in pre-	155-157
	clinical and clinical trials for the improvement of cognitive functions	
	\textit{in AD}	
	Recruitment of mammalian target of rapamycin (mTOR) by receptors in the prefrontal	162
	cortex (PFC) contributes to perturbed cognition in schizophrenia	
	Compounds with high receptor affinity are enrolled in preclinical and clinical	155-157
	investigations	
	Improvements following administration of receptor antagonists in preclinical tests	163
	for episodic memory, social cognition, executive function, working memory	
	Receptor antagonist in the AD mouse model counteracts memory impairment by	160
	attenuating the generation of Aβ	
	Receptor agonism facilitate the emotional learning by promoting the neuronal	161
	plasticity in caudate putamen, hippocampus, and PFC	
	Combination of receptor antagonist with low doses of prazosin enhances memory	164
	and demonstrates potential in treatment of schizophrenia	
	Receptors associated with hippocampus-dependent cognitive processes	166
	Increase in recognition memory and antipsychotic efficacy of receptor antagonist	182
	Receptor agonists could be useful in the treatment of memory decline in AD	175,176
	Decrease in the number of receptors expressing receptors in AD patients	178,179
	Association between receptor gene haplotype and schizophrenia	180
	Increase in the number of rats treated with typical antipsychotic haloperidol	178
	High affinity of several atypical antipsychotics for receptors	178,181
	Receptor antagonism have procognitive effects	167
	Receptor antagonist attenuated phencyclidine (PCP) and scopolamine-induced	168-171
	learning deficits and improved reference memory	
	Receptor antagonist attenuated MK-801, scopolamine and PCP-induced impairments	172,173
	in learning and memory	
	Receptor antagonism facilitates memory retention	174
5-HT₇	Selective receptor agonist rescues alterations in motor coordination, spatial	
	reference memory and synaptic plasticity in mouse model of Rett syndrome	174
3.1. 5-HT$_{1A}$ receptors

The 5-HT$_{1A}$ receptors, 5-HT$_{1A}$, are highly abundant in cortical and limbic brain regions, associated with cognitive functions [46]. The involvement of 5-HT$_{1A}$ autoreceptors in cognitive performance has been underlined by their important role in the regulation of the activity of the entire 5-HTergic system. 5-HT$_{1A}$ autoreceptors, located on the soma of 5-HTergic neurons, are key components of the negative feedback loop that inhibits neuronal signalling and 5-HT release [47]. 5-HT$_{1A}$ heteroreceptors located on postsynaptic 5-HTergic and non-5-HTergic neurons [39], particularly those in the limbic system, are involved in the control of cognitive functions, mood and emotional states [48]. 5-HT$_{1A}$ can affect declarative and non-declarative memory functions by exerting their influence on the activity of glutamatergic, cholinergic and GABAergic neurons in the cerebral cortex, hippocampus and the septohippocampal projection [49]. Moreover, 5-HT$_{1A}$ activation increases dopamine release in the medial prefrontal cortex, striatum, and hippocampus [50, 51]. In addition to cooperation with other neurotransmitter systems [52], 5-HT$_{1A}$ regulate the G-protein dependent and independent signalling pathways that target immediate early genes implicated in memory formation [49].

In rodents, activation of postsynaptic 5-HT$_{1A}$ impairs emotional memory through attenuation of neuronal activity, whereas presynaptic 5-HT$_{1A}$ activation reduces 5-HT release and exerts pro-cognitive effects on passive avoidance retention [53]. Human studies as well as experimentation in animals both suggest an association of 5-HT$_{1A}$ with cognition. In healthy subjects during aging the activity and density of 5-HT$_{1A}$ declines 10% every ten years [54]. Positron emission tomography (PET) studies have found a negative [55] or a lack of [56] correlation between 5-HT$_{1A}$ binding potential and cognitive function in healthy individuals. The discrepancies are probably due to the differences in specificity and sensitivity of cognitive tests and in methodologies that were used, as well as ethnic diversity of the subjects [56].

A progressive decline in the density of 5-HT$_{1A}$ in the hippocampus and dorsal raphe has been found in elderly subjects with mild cognitive impairment (MCI) and AD [57]. A relationship between the number of 5-HT$_{1A}$ in the temporal cortex and aggressive behaviour [58] suggests their role in development of BPSD. In addition, results from behavioural and pharmacological studies with antagonists or inverse agonists imply that 5-HT$_{1A}$ could be an important target for the new compounds used in AD treatment [59].

In addition to the association of the 5-HT$_{1A}$ and cognitive processes, reported in animal models, healthy subjects, and patients with MCI and AD, there are also data regarding their role in schizophrenia. Although in vivo imaging studies of 5-HT$_{1A}$ distribution in schizophrenia patients showed inconsistent results, it appears that ligand binding to 5-HT$_{1A}$ is enhanced in the cortical areas, while it is diminished or unchanged in the amygdala [60]. In addition, a recent meta-analysis study has reported a significant increase in post-mortem 5-HT$_{1A}$ binding in the prefrontal cortex of patients with schizophrenia [60]. Direct stimulation of 5-HT$_{1A}$ increases prefrontal cortical dopamine release. It is therefore possible that the antipsychotic effects of clozapine, ziprasidone and aripiprazole are in part due to their agonist effects on 5-HT$_{1A}$ [61]. The recent detection of 5-HT$_{1A}$ and dopamine receptors type 2 (DR$_2$) heterodimers in the frontal cortex and their potential for cognitive enhancement, has implications for the development of improved pharmacotherapy for schizophrenia or other disorders [62].

3.2. 5-HT$_{1B}$ receptors

Activated presynaptic 5-HT$_{1B}$ type 1B (5-HT$_{1B}$) inhibit the release of 5-HT and other neurotransmitters (GABA, glutamate, noradrenaline), while modulating the release of acetylcholine [63]. Postsynaptic 5-HT$_{1B}$ are found on non-5-HTergic neurons within the basal ganglia, striatum, hippocampus and cortex [39]. Positive correlations between creative ability, a measure of divergent thinking, and average 5-HT$_{1B}$ levels in the grey matter have been reported in the study of Varrone et al. [64]. A moderate age-related decline in the brain’s 5-HT$_{1B}$ binding potential of 8% every 10 years has also been observed in healthy subjects [65]. The suggested role of 5-HT$_{1B}$ in memory and learning is consistent with the findings that 5-HT$_{1A}$ agonists reduce cognitive function in experimental animals [66].

Post mortem analysis of brains from AD patients showed a reduced density of 5-HT$_{1A}$ in the frontal and temporal cortex, associated with cognitive dysfunction [67]. Since these receptors inhibit acetylcholine release [68], when they are in a heteroreceptor context, lower expression of 5-HT$_{1A}$ observed in AD [67] might represent a compensatory mechanism aimed to repair downregulated acetylcholine levels. These results suggest that disrupted cognition in AD might be improved by the administration of inverse agonists and antagonists of 5-HT$_{1A}$ [66]. The suggested importance of 5-HT$_{1A}$ in cognition has been confirmed in a recent clinical PET study in patients with major depressive disorders before and after psychotherapy [69]. Increased 5-HT$_{1A}$ mRNA levels in the hippocampal formation were also observed in patients with schizophrenia [70]. The up-regulation of 5-HT$_{1A}$ in concert with the downregulation of 5-HT$_{1B}$ could lead to a reduction in GABAergic activity and consequently enhanced hippocampal glutamatergic output in schizophrenia [70]. On the other hand, agonists of 5-HT$_{1B}$ might provide an alternative therapeutic approach for schizophrenia, as they induce potentiation of latent inhibition, which is a characteristic of many effective antipsychotics [71].

3.3. 5-HT$_{2A}$ receptors

5-HT$_{2A}$ type 2A (5-HT$_{2A}$), are located mostly in different parts of the cortex, basal ganglia and slightly less in the hippocampus [39], where they enhance the release of dopamine, glutamate and GABA, and inhibit the release of noradrenaline [72]. An age-dependent decrease in the number of 5-HT$_{2A}$ was found in the hippocampus and frontal cortex of healthy individuals [27]. The observed 12% reduction in the density of 5-HT$_{2A}$ every decade, also correlates with cognitive decline [73].

Imunohistochemical [74], post-mortem [75] and imaging [76] studies revealed reduced brain 5-HT$_{2A}$ density in patients with AD. The severity of cognitive impairment in AD patients seems to also correlate with the decrease in neocortical temporal 5-HT$_{2A}$ [77, 78]. Studies
on the AD mouse model that overexpresses Aβ and has high age-dependent levels of amyloid plaques [79], suggested that changes in 5-HTR3 expression are associated with the pathological and progressive accumulation of Aβ.

Various animal studies investigated the effects 5-HTR3 agonists or antagonists on cognitive performance. The activation of 5-HTR3 with the high affinity agonist TCB-2 enhanced working memory in rats [80], while intrahippocampal injections of ritanserin (5-HTR1A/C antagonist) increased spatial learning and memory, also in rats [81]. Improved working memory was also observed in younger and older monkeys following treatment with 5-HTR3 antagonist EMD 281014 [82].

The role of 5-HTR3 in the most common cognitive deficits in schizophrenia, such as attention, executive functions, and spatial working memory is not clear [83]. A recent meta-analysis [60] found a reduced number of prefrontal 5-HTR in the post-mortem brain of schizophrenia patients. On the other hand, in vivo studies of 5-HTR3 binding reported conflicting results [83, 84]. The observed discrepancies might be due to the fact that post-mortem studies included patients treated with antipsychotics - 5-HTR1 antagonists, which may decrease the density of 5-HTR3. Although 5-HTR3 antagonism was reported to improve cognition in schizophrenia [85], the adverse side effects of 5-HTR3 antagonists, such as atypical antipsychotics olanzapine and clozapine, limit their clinical use to short-term treatment of BPSD in patients with most severe symptoms [86]. However, some studies suggest that 5-HTR3 affinity may play an important role in the modulation of the cognitive effects of atypical antipsychotics, indicating that low affinity to 5-HTR3 is more beneficial for cognitive and social performance than high affinity [87]. Further development of highly selective 5-HTR3 ligands is essential for elucidating the critical involvement of these receptors in different cognitive functions [88].

3.4. 5-HT3 receptors

5-HT activity in different brain regions is modulated by 5-HT type 2C (5-HTR3), which are found throughout the CNS [89]. RNA editing generates at least 14 functionally distinct 5-HT3 isoforms, any of which could be a potential target for improved therapeutic and side effect profiles [90]. Moreover, the negligible presence of 5-HT3 in cardiac and vascular tissues makes these receptors ideal targets for treatment of brain disorders, due to their limited peripheral side effects [91].

In various animal models, 5-HTR3 antagonism seems to improve cognitive flexibility 5-HTR3 blocking with the antagonist SB242084 promoted reversal learning in mice [92], whereas administration of the selective 5-HTR3 antagonist RS-102,221 prevented tau hyperphosphorylation and repaired the defects in hippocampal long-term potentiation and spatial memory [93], suggesting a beneficial effect on disrupted hippocampal synaptic plasticity. Treatment with the 5-HT3 antagonist CP809,101 improved impairments in cognitive flexibility and reversal learning in mutant mice with a genetically engineered 5-HT-synthesizing enzyme (tryptophanhydroxylase-2) [94]. Pharmacological stimulation of 5-HTR3C with another agonist dexamfenfluamine in vitro [95] and in vivo [96] enhanced secretion of the APP metabolite and reduced Aβ production, suggesting that one of the strategies for AD therapy development could be to target 5-HTR3. The significant increase of 5-HT3 in NF-cells has been linked with cognitive deficits in AD [97], suggesting that it may serve as a biomarker for diagnosing dementia.

The presence of 5-HT3 in the limbic system, frontal cortex, and hippocampus suggests their possible involvement in schizophrenia [98]. Preclinical data revealed that 5-HT3 modulation of cognitive symptoms might have beneficial effects in schizophrenia, as well [99]. Several studies indicated that both 5-HT3 antagonists and agonists may have positive effects on cognitive functions in schizophrenia [for review see 90]. Further research focused on the 5-HT3 modulation is necessary to assess whether 5-HT3 agonism or antagonism improve cognitive defects in schizophrenia [90].

3.5. 5-HT1 receptors

In contrast to all other 5-HT, 5-HT type 3 (5-HT) are ligand-gated channels that regulate permeability to sodium, potassium and calcium ions in the CNS and peripheral nervous system. These receptors induce rapid membrane depolarization and consequently the release of 5-HT, acetylcholine, dopamine, GABA and peptides [100]. While the location of 5-HT1a on presynaptic neurons in cortical regions, amygdala and striatum, and on postsynaptic neurons in the hippocampus [39], suggest a potential role in cognition, studies investigating the involvement of 5-HT1 receptors in cognitive functions are few.

The 5-HT1a antagonists, such as ondansetron, are mainly used for the treatment of chemotherapy-induced emesis [101]. However, they have been also shown to improve cognition in different models of memory impairment [102]. Boast et al. [103] reported that ondansetron improves radial arm maze performance in MK801-impaired rats, suggesting its cognition enhancing properties. Ondansetron also blocked scopolamine-induced learning deficits [104], whereas another 5-HT1 antagonist itasetron showed memory-enhancing effects [105].

Several pharmacological studies suggested the role of 5-HT1 in AD. 5-HT1 antagonists MDL72222 and Y25130 reduced Aβ protein-induced neurotoxicity in cultured rat cortical neurons [106]. Moreover, the inhibition of 5-HT1 with tropisetron alleviated the spatial memory deficit in the rat model of AD. It also protected neurons from Aβ-induced inflammation and neurotoxicity by inhibiting and stimulating glutamate and acetylcholine release, respectively [107,108], or by inhibiting calcineurin activity in the hippocampus [107]. Other 5-HT1 antagonists which interact with multiple targets have also been investigated [109]. Synthetic dual action compounds targeting 5-HT1 (antagonist) and acetylcholinoesterase activity (inhibitor) [110, 111], or 5-HT1 (inhibitor) and alpha-7 nicotinic receptor (activator) [112] had neuroprotective effects. 5-HT1 antagonists could therefore be used as building blocks in the development of new neuroprotective drugs.

While no significant changes in the number and affinity of 5-HT1 in amygdala of schizophrenic patients have been observed in one post-mortem study [113], another report noted a link between a coding variant of the...
S-HT\textsubscript{4R} subunit and sustained attention in schizophrenic patients [114], suggesting the involvement of S-HT\textsubscript{4R} in cognitive deficits in schizophrenia. Several recent studies also found that S-HT\textsubscript{4R} antagonists can provide significant amelioration of cognitive symptoms of schizophrenia [115]. Ondansetron has shown some promise in treatments for schizophrenia, particularly for negative symptoms and cognitive impairments [116, 117]. Akhoundzadeh et al. [116] and Levkovitz et al. [118] reported improved visuo-spatial learning and memory following treatment with ondansetron, whereas Zhang et al. [119] observed improvements in verbal memory after tropisetron therapy. These findings suggest that S-HT\textsubscript{4R} antagonists possibly have therapeutic potential for the management of cognitive deficits in both AD and schizophrenia.

3.6. S-HT\textsubscript{4} receptors

S-HT\textsubscript{4} type 4 (S-HT\textsubscript{4R}) have been found in different brain regions such as the hypothalamus, hippocampus, nucleus accumbens, ventral pallidum, amygdala, basal ganglia, olfactory bulbs, frontal cortex and substantia nigra [120, 121]. These receptors are clearly highly expressed in brain structures involved in memory processes, including cell bodies and nerve endings of GABA neurons in the limbic system, as well as cholinergic neurons in the cortex where they modulate acetylcholine release [122]. In addition to acetylcholine [123, 124], activation of S-HT\textsubscript{4R} increases the release of dopamine [125, 126] and S-HT\textsubscript{4} [127].

Both S-HT\textsubscript{4R} agonists and antagonists modulate short-term and long-term memory in rats [128]. Various studies reported beneficial effects of S-HT\textsubscript{4R} activation on cognition in rodents and primates [122, 129, 130]. S-HT\textsubscript{4R} have also been implicated in the expression of genes that regulate synaptic plasticity [131]. S-HT\textsubscript{4R} agonists, administered acutely, improved performance on learning and memory tests [132-134], and reversed age-related or pharmacologically-induced cognitive deficits [86, 135-137]. Chronic activation of S-HT\textsubscript{4R} also seems promising strategy for the treatment of memory deficits, as long-term administration of the partial agonist RS-67333 improved recognition memory in mice (138).

Although some studies reported that aging does not change the number of S-HT\textsubscript{4R} in the human brain [139], reduced levels of S-HT\textsubscript{4R} have been measured post-mortem in the hippocampus and cortex of AD patients [58,140]. Both, in vivo and in vitro studies imply that activation of S-HT\textsubscript{4R} by agonists like S-HT itself has a beneficial effect in AD. S-HT\textsubscript{4R} agonists have been shown to stimulate acetylcholine release [141], regulate memory performance and have neuroprotective and neurotrophic effects [142, 143]. Additionally, they stimulate the non-amyloid-forming metabolism of APP and thus decrease the production of neurotoxic Aβ, involved in the AD etiology [142-144].

Since they modulate cognitive functions, S-HT\textsubscript{4R} receptors are attractive target candidates for therapeutic strategies aimed at curbing cognitive symptoms of schizophrenia [145]. S-HT\textsubscript{4R} expression does not appear to change in schizophrenic patients [146], but S-HT\textsubscript{4R} gene variants have been associated with schizophrenia [147]. Overall, selective S-HT\textsubscript{4R} ligands may provide novel approaches for the development of new cognitive enhancers, which would be useful for treatments of both AD and schizophrenia [138].

3.7. S-HT\textsubscript{5} receptors

S-HT\textsubscript{5} type 5 (S-HT\textsubscript{5R}) are expressed in different brain regions like the cerebral cortex, hippocampus, nucleus accumbens, amygdala, and hypothalamus [148, 149]. A preclinical study demonstrated that blocking and stimulation of S-HT\textsubscript{5R} might impair and facilitate short- and long-term memory, respectively [150]. On the other hand, the S-HT\textsubscript{5R} antagonist ASP5736 improved positive and cognitive symptoms in a schizophrenia mouse model as well as in aged rats and mice with scopolamine-induced working memory deficit [151, 152]. These data suggest that ASP5736 may be used in the treatment of cognitive defects in schizophrenic patients. As far as we know, no data are yet available on S-HT\textsubscript{5R} and AD.

3.8. S-HT\textsubscript{7} receptors

S-HT\textsubscript{7} type 6 (S-HT\textsubscript{7R}) are located on postsynaptic S-HT neurons in the basal ganglia, cortex and limbic system and on cholinergic and GABAergic neurons in the striatum [39]. Preclinical studies on S-HT\textsubscript{7R} suggest their role in regulation of learning and memory, mediated probably by stimulation of glutamatergic and cholinergic transmission [153-155].

The density of S-HT\textsubscript{7R} in the temporal and frontal cortex [67], as well as the number of neurons expressing S-HT\textsubscript{7R} [74], are reduced in AD patients, suggesting that these receptors might also be a good target for anti-dementia medication. Several compounds with high affinity to S-HT\textsubscript{7R}, especially S-HT\textsubscript{7R} antagonists, have been synthesized and are currently being investigated in vitro or are in different phases of preclinical and clinical trials for the improvement of cognitive functions in AD [155-157]. S-HT\textsubscript{7R} antagonists were shown to enhance cognitive performance in different learning and memory tests performed on rodents and primates [158, 159]. For instance, in the AD mouse model, the S-HT\textsubscript{7R} antagonist SB271036, counteracts memory deficiencies probably by reducing Aβ formation via the inhibition of γ-secretase activity and the inactivation of astrocytes and microglia [160]. S-HT\textsubscript{7R} agonism has also been reported to facilitate emotional learning by promoting the neuronal plasticity in the caudate putamen, hippocampus, and prefrontal cortex [161].

In animal models of schizophrenia, the activation of S-HT\textsubscript{7R} was associated with the stimulation of the mTOR (mammalian Target of Rapamycin) signalling pathway in prefrontal cortex. Rapamycin, the mTOR inhibitor, prevented cognitive deficits induced by S-HT\textsubscript{7R} agonists [162]. Improvements in episodic memory, social cognition, executive function, and working memory were also observed following administration of S-HT\textsubscript{7R} antagonists in preclinical trials [163]. There are also reports showing that the combination of S-HT\textsubscript{7R} antagonist PRX-07034 with low doses of prazosin enhances memory which could be used for the treatment of schizophrenia [164].

3.9. 5-HT\textsubscript{4} receptors

5-HT\textsubscript{4R} type 7 (5-HT\textsubscript{4R}) are the most recently discovered 5-HT. They are located mostly in the hippocampus, hypothalamus and thalamus, and somewhat less in the cortex, as well as in...
the amygdala and the dorsal raphe nucleus [39, 165]. Although 5-HTR7 are associated with hippocampus-dependent cognitive processes [166], their role in memory and cognition is still unclear, mainly due to the lack of selective agonists and antagonists. Most studies are therefore done with partially specific drugs that also target other receptors.

Preclinical data show pro-cognitive effects of a 5-HTR7 antagonist, alone or in combination with antidepressants, indicating that 5-HTR7 antagonist represent new targets for the treatment of cognitive deficits in stress-related neuropsychiatric disorders [167]. The 5-HTR7 antagonist SB-269970 attenuated PCP and scopolamine-induced learning deficits [168-170], and improved reference memory [171]. Another antagonist, lurasidone, attenuated MK-801, scopolamine and PCP-induced impairments in learning and memory [172,173].

In the mice model of Rett syndrome, treatment with LP-211, a selective 5-HTR7 agonist, improved motor coordination, spatial reference memory, and synaptic plasticity, suggesting a potential therapeutic potential of 5-HTR7, agonism in therapies for this neurological disorder [174]. Recent findings in rodents suggested that antagonism of the 5-HTR7 assists memory retention, likely through activation of 5-HTR1D which facilitate emotional memory [53].

In addition, preclinical study proposed that 5-HTR7 agonists could be useful in the treatment of impaired memory associated with aging or AD [175]. Therapeutic effects of 5-HTR7 agonists on cognitive symptoms in AD have also been examined in clinical trials [176]. It therefore seems that promnesic or anti-amnesic effects of both 5-HTR7 agonists and antagonists depend on whether the basal performance is normal or impaired [177].

The lower expression of 5-HTR7 in the hippocampus and prefrontal cortex of schizophrenia patients [178, 179], a positive association between a 5-HTR7, gene haplotype and the incidence of schizophrenia [180], the affinity of several atypical antipsychotics for 5-HTR7 [178, 181], and the increase of the 5-HTR7 number in rats treated with typical antipsychotic haloperidol [178], all suggest the involvement of these 5-HT receptors in the neurobiological alterations in schizophrenia. In line with the potential contribution of 5-HTR7 to cognitive dysfunction in schizophrenic patients, a preclinical study suggested an improvement in recognition memory and antipsychotic efficacy after treatment with a 5-HTR7 antagonist in animal model of psychosis and cognition [182].

4. Conclusion

Evidence from the literature suggests that the 5-HTergic system plays a significant role in cognitive performance. Pro-cognitive and neuroprotective effects of 5-HT have been observed in both humans and animals [183-186]. The involvement of 5-HT receptors in learning and memory is consistent with high expression of those receptors in limbic areas, the prefrontal cortex and basal ganglia, which are all brain regions involved in the regulation of various cognitive processes [187] and are innervated by 5-HTergic projections from the raphe nuclei [5]. Modulatory effects of different 5-HT receptors on cognition are additionally mediated by interactions with other neurotransmitter systems such as cholinergic, dopaminergic, GABAergic and glutamatergic.

Although agonists and/or antagonists of 5-HT1A, 5-HT2A, 5-HT3, 5-HT4, 5-HT7, 5-HT1D, and 5-HT7, have a potential for the treatment of cognitive deficits in healthy elderly people and patients with AD and schizophrenia [187], results of studies attempting to identify individual 5-HTergic targets for cognitive enhancement have been somewhat disappointing.

Contradictory findings might be due to variability in the choice of protocols for training/testing, behavioral tasks and animal models, as well as drugs that were used. Moreover, dysfunction in distinct cognitive areas, observed during aging or in diseases such as schizophrenia and AD, might have different underlying mechanisms. This might suggest that subjects with different cognitive impairments could benefit from customized therapeutic strategies. As the effects of a drug on a single 5-HT receptor could be counterbalanced by changes in the other receptors in order to maintain homeostasis, the development of medications which act on multiple 5-HTergic targets may be more promising for treatments of cognitive impairments caused by 5-HTergic dysfunction.

An example of such a multitarget drug is the antidepressant vortioxetine [188, 189], which modulates various 5-HTergic components, acting as a 5-HT7, 5-HT4, and 5-HT1A antagonist, and a 5-HT2A, partial agonist, a 5-HT1B antagonist and also a 5-HT transporter inhibitor. It produces more robust effects on cognitive function by activation of multiple neurotransmitter systems (noradrenergic, dopaminergic, cholinergic, histaminergic, etc.), or possibly some other factors such as brain-derived neurotrophic factor (BDNF), which are critical for neural plasticity and cognitive processing [13].

Overcoming the big challenges in the development of these drugs, is an extremely worthy endeavor as it would result in the substantial improvement of the quality of life of patients with age-related cognitive impairments and other diseases with a significant component of memory dysfunction, such as AD and schizophrenia. New pharmacological, genetic and epigenetic tools, including selective 5-HTergic antagonists and agonists, as well as novel transgenic, molecular and neuroimaging techniques might offer important insights into the role of 5-HTergic system in cognitive performance including memory formation, amnesia, or related behavioral/psychiatric alterations. Investigating changes in the 5-HTergic and other neurotransmitter systems at a circuit level, as well as potential neurobiological markers (5-HT-protein or mRNA expression, signaling cascades, etc.) may prove particularly valuable in elucidating normal and impaired cognition and exploring the full potential of 5-HTergic drugs as cognition enhancers.

Acknowledgments

Conflict of interest statement: The authors declare no conflict of interest. The authors thank Marta Radman Livaja and Donald C. Carleton Jr. for editing the English language.
References

1. Olivier B., Serotonin: a never-ending story, Eur. J. Pharmacol., 2015, 753, 2-18
2. Ciranna L., Serotonin as a modulator of glutamate- and GABA-mediated neurotransmission: implications in physiological functions and in pathology, Curr. Neuropharmacol., 2006, 4, 101-114
3. Puig M., Gener T., Serotonin modulation of prefronto-hippocampal rhythms in health and disease, ACS Chem. Neurosci., 2015, 6, 1017-1025
4. Mück-Šeler D., Pivac N., Serotonin, Period. Biol., 2011, 113, 29-41
5. Charnay Y., Léger L., Brain serotonergic circuitries, Dialogues Clin. Neurosci., 2010, 12, 471-487
6. Boureau Y.L., Dayan P., Opponency revisited: competition and cooperation between dopamine and serotonin, Neropsychopharmacology, 2011, 36, 74-97
7. Harvey JA., Role of the serotonin 5-HT1A receptor in learning, Learn. Mem., 2003, 10, 355-362
8. Glikmann-Johnston Y., Saling M.M., Reutens D.C., Stout J.C., Green M.F., Kern R.S., Braff D.L., Mintz J., Neurocognitive deficits and Terry A.V.Jr., Buccafusco J.J., Wilson C., Cognitive dysfunction in
9. Lin S.H., Lee L.T., Yang Y.K., Serotonin and mental disorders: a concise Rodriguez J.J., Noristani H.N., Verkhratsky A., The serotonergic system Seyedabadi M., Fakhfouri G., Ramezani V., Mehr S.E., Rahimian R., The
10. Meneses A., Serotonin, neural markers, and memory, Front. Cogn., 2004, 55, 41-53
11. Leiser S.C., Lu Y., Pehrson A.L., Dale E., Smagin G., Sanchez C., Leiser S.C., Lu Y., Serotonergic regulation of prefrontal cortical circuitries involved in cognitive processing: a review of individual 5-HT receptor mechanisms and concerted effects of 5-HT receptor exemplified by the multimodal antidepressant vortioxetine, ACS Chem. Neurosci., 2015, 6, 970-986
12. Robbins T.W., From arousal to cognition: the integrative position of the prefrontal cortex, Prog. Brain Res., 2000, 126, 469-483
13. Clark L., Cools R., Robbins T.W., The neuropsychology of ventral prefrontal cortex: decision-making and reversal learning, Brain Cogn., 2004, 55, 41-53
14. Leiser S.C., Lu Y., Pehrson A.L., Dale E., Smagin G., Sanchez C., Serotonergic regulation of prefrontal cortical circuitries involved in cognitive processing: a review of individual 5-HT receptor mechanisms and concerted effects of 5-HT receptor exemplified by the multimodal antidepressant vortioxetine, ACS Chem. Neurosci., 2015, 6, 970-986
15. Robbins T.W., From arousal to cognition: the integrative position of the prefrontal cortex, Prog. Brain Res., 2000, 126, 469-483
16. Clark L., Cools R., Robbins T.W., The neuropsychology of ventral prefrontal cortex: decision-making and reversal learning, Brain Cogn., 2004, 55, 41-53
17. Leiser S.C., Lu Y., Pehrson A.L., Dale E., Smagin G., Sanchez C., Serotonergic regulation of prefrontal cortical circuitries involved in cognitive processing: a review of individual 5-HT receptor mechanisms and concerted effects of 5-HT receptor exemplified by the multimodal antidepressant vortioxetine, ACS Chem. Neurosci., 2015, 6, 970-986
18. Meneses A., Serotonin, neural markers, and memory, Front. Cogn., 2015, 6, 143
19. Seyedabadi M., Fakhfouri G., Ramezani V., Mehr S.E., Rahimian R., The role of serotonin in memory: interactions with neurotransmitters and downstream signalling, Exp. Brain Res., 2014, 232,723-738
20. Rodriguez J.J., Noristani H.N., Verkhratsky A., The serotonergic system in ageing and Alzheimer's disease, Prog. Neurobiol., 2012, 99, 15-41
21. Lin S.H., Lee L.T., Yang Y.K., Serotonin and mental disorders: a concise review on molecular neuroimaging evidence, Clin. Psychopharmacol. Neurosci., 2014, 12, 196-202
22. Terry A.V.Jr., Buccafusco J.J., Wilson C., Cognitive dysfunction in neuropsychiatric disorders: selected serotonin receptor subtypes as therapeutic targets, Behav. Brain Res., 2008, 195, 30-38
23. Green M.F., Kern R.S., Braff D.L., Mintz J., Neurocognitive deficits and functional outcome in schizophrenia: are we measuring the "right stuff"?, Schizophr. Bull. 2000, 26, 119-136
24. Charnley D., Nestle E., Neurobiology of mental illness, 3rd ed., Oxford University Press, New York, 2011
25. Kapur S., Remington G., Serotonin-dopamine interaction and its relevance to schizophrenia, Am. J. Psychiatry, 1996, 153, 466-476
26. Stephan K.E., Friston K.J., Frith C.D., Dysconnection in schizophrenia: from abnormal synaptic plasticity to failures of self-monitoring, Schizophr. Bull., 2009, 35, 509-527
27. Dean B., A predicted cortical serotonergic/cholinergic/GABAergic interface as a site of pathology in schizophrenia, Clin. Exp. Pharmacol. Physiol., 2001, 28, 74-78
28. Boyer P., Phillips J.L., Rousseau F.L., Ilivitsky S., Hippocampal abnormalities and memory deficits: new evidence of a strong pathophysiological link in schizophrenia, Brain Res. Rev., 2007, 54, 92-112
29. Joubert S., Gour N., Guedj E., Didic M., Guériot C., Koric L., et al., Early-onset and late-onset Alzheimer's disease are associated with distinct patterns of memory impairment, Cortex, 2016, 74, 217-232
30. Moodley K.K., Chan D., The hippocampus in neurodegenerative disease, Front. Neurol. Neurosci., 2014, 34, 95-108
31. Meltzer C.C., Smith G., DeKosky S., Pollock B.G., Mathis C.A., Moore R.Y., et al., Serotonin in aging, late-life depression, and Alzheimer's disease: the emerging role of functional imaging, Neuropsychopharmacology, 1998, 18, 407-430
32. Aletrino M.A., Vogels O.J., Van Domburg P.H., Ten Donkelaar H.J., Cell loss in the nucleus raphes dorsalis in Alzheimer's disease, Neurobiol. Aging, 1992, 13, 461-468
33. Garcia-Alloza M., Gil-Bea F.J., Diez-Ariza M., Chen C.P., Francis P.T., Lasherbas B., Cholinergic-serotonergic imbalance contributes to cognitive and behavioural symptoms in Alzheimer's disease, Neuropsychologia, 2005, 43, 442-449
34. Tohgi H., Abe T., Takahashi S., Kimura M., Takahashi J., Kikuchi T., Concentrations of serotonin and its related substances in the cerebrospinal fluid in patients with Alzheimer type dementia, Neurosci. Lett., 1992, 141, 5-12
35. Mück-Šeler D., Presečki P., Mimica N., Mustapić M., Pivac N., Babić A., et al., Platelet serotonin concentration and monoamine oxidase type B activity in female patients in early, middle and late phase of Alzheimer's disease, Prog. Neuropsychopharmacol. Biol. Psychiatry, 2009, 33, 1228-1231
36. Ramirez M.J., Lai M.K., Tordera R.M., Francis P.T., Serotonergic therapies for cognitive symptoms in Alzheimer's disease: rationale and current status, Drugs, 2014, 74, 729-736
37. Cirrito J.R., Disabato B.M., Restivo J.L., Verges D.K., Goebel W.D., Sathyan A., et al., Serotonin signaling is associated with lower amyloid-β levels and plaques in transgenic mice and humans, Proc. Natl. Acad. Sci. USA, 2011, 108, 14968-14973
38. Payton S., Cahill C.M., Randall J.D., Gullans S.R., Rogers J.T., Drug discovery targeted to the Alzheimer's APP mRNA 5'-untranslated region: the action of paroxetine and dimercaptoopropanol, J. Mol. Neurosci., 2003, 20, 267-275
[35] Gendehuys W.J., Van der Schyf C.J., Role of serotonin in Alzheimer's disease: a new therapeutic target?, CNS Drugs, 2011, 25, 765-781
[36] Lanari A., Amenta F., Silvestrelli G., Tomassoni D., Parnetti L., Neurotransmitter deficits in behavioural and psychological symptoms of Alzheimer's disease, Mech. Ageing Dev., 2006, 127, 158-165
[37] Cerejeira J., Lagarto L., Mukaetova-Ladinska E.B., Behavioral and psychological symptoms of dementia, Front. Neurol., 2012, 3, 73
[38] Nichols D.E., Nichols C.D., Serotonin receptors, Chem. Rev., 2008, 108, 1614-1641
[39] Hoyer D., Hannon J.P., Martin G.R., Molecular, pharmacological and functional diversity of 5-HT receptors, Pharmacol. Biochem. Behav., 2002, 71, 533-554
[40] McCory J.D., Roth B.L., Structure and function of serotonin G protein-coupled receptors, Pharmacol. Ther., 2015, 150, 129-142
[41] Berumen L.C., Rodríguez A., Miledi R., García-Alcocer G., Serotonin receptors in hippocampus, ScientificWorldJournal, 2012, 2012, 823493
[42] Celada P., Puig M.V., Artigas F., Serotonin modulation of cortical neurons and networks, Front. Integr. Neurosci., 2013, 7, 25
[43] Barnes N.M., Sharp T., A review of central 5-HT receptors and their function, Neuropharmacology, 1999, 38, 1083-1152
[44] Meneses A., Involvement of 5-HT_H receptors on memoryformation: simple agonism, antagonism, or inverse agonism?, Cell. Mol. Neurobiol., 2002, 22, 675-688
[45] Ciranna L., Serotonin as a modulator of glutamate- and GABA-mediated neurotransmission: implications in physiological functions and in pathology, Curr. Neuropharmacol., 2006, 4, 101-114
[46] Hall H., Lundkvist C., Halldin C., Farde L., Pike V.W., McCarron J.A., et al., Autoradiographic localization of 5-HT_H receptors in the post-mortem human brain using [¹¹C]WAY-100635 and [¹C]WAY-100635, Brain Res., 1997, 745, 96-108
[47] Hjorth S., Bengtsson H.J., Kullberg A., Carlzon D., Peilot H., Auerbach S.B., Serotonin autoreceptor function and antidepressant drug action, J. Psychopharmacol., 2000, 14, 177-185
[48] Popova N.K., Naumenko V.S., 5-HT_H receptor as a key player in the brain 5-HT system, Rev. Neurosci., 2013, 24, 191-204
[49] Ogren S.O., Eriksson T.M., Elvander-Tottie E., D’Addario C., Ekström J.C., Svenningsson P., et al., The role of 5-HT_H receptors in learning and memory, Behav. Brain Res., 2008, 195, 54-77
[50] Li Z., Ichikawa J., Dai J., Meltzer H.Y., Aripiprazole, a novel antipsychotic drug, preferentially increases dopamine release in the prefrontal cortex and hippocampus in rat brain, Eur. J. Pharmacol., 2004, 493, 75-83
[51] Bantick R.A., De Vries M.H., Grasby P.M., The effect of a 5-HT_H receptor agonist on striatal dopamine release, Synapse, 2005, 57, 67-75
[52] Chilmonczyk Z., Bojarski A.J., Plic A., Sytle L., Functional selectivity and antidepressant activity of serotonin 1A receptor ligands, Int. J. Mol. Sci., 2015, 16, 18474-18506
[53] Stiedl O., Pappa E., Konradsson-Geuen Å., Ögren S.O., The role of the serotonin receptor subtypes 5-HT_H and 5-HT_H, and its interaction in emotional learning and memory, Front. Pharmacol., 2015, 6, 162
[54] Tauscher J., Verhoef N.P., Christensen B.K., Hussey D., Meyer J.H., Kecojevic A., et al., Serotonin 5-HT_H receptor binding potential declines with age as measured by [¹¹C]WAY-100635 and PET, Neuropsychopharmacology, 2001, 24, 522-530
[55] Yasuno F., Suhara T., Nakayama T., Ichimiy T., Okubo Y., Takano A., et al., Inhibitory effect of hippocampal 5-HT_H receptors on human explicit memory, Am. J. Psychiatry, 2003, 160, 334-340
[56] Borg J., Molecular imaging of the 5-HT_H receptor in relation to human cognition, Behav. Brain. Res., 2008, 195, 103-111
[57] Kepe V., Barrio J.R., Huang S.C., Ercoli L., Siddarth P., Shoghi-Jadid K., et al., Serotonin 1A receptors in the living brain of Alzheimer's disease patients, Proc. Natl. Acad. Sci. USA, 2006, 103, 702-707
[58] Lai M.K., Tsang S.W., Francis P.T., Esiri M.M., Hope T., Lai O.F., et al, [1H]GR113808 binding to serotonin 5-HT_H receptors in the postmortem neocortex of Alzheimer disease: a clinicopathological study, J. Neural Transm., 2003, 110, 779-788
[59] Pessoa-Mahana H., Recabarren-Gajardo G., Temer J.F., Zapata-Torres G., Pessoa-Mahana C.D., Saizt Barria C., et al., Synthesis, docking studies and biological evaluation of benzo[1]thiophen-2-yl-3-(4-arylpiperazin-1-yl)-propan-1-one derivatives on 5-HT_H serotonin receptors, Molecules, 2012, 17, 1388-1407
[60] Selvaraj S., Arnone D., Cappai A., Howes O., Alterations in the serotonin system in schizophrenia: a systematic review and meta-analysis of postmortem and molecular imaging studies, Neurosci. Biobehav. Rev., 2014, 45, 233-245
[61] Ichikawa J., Ishii H., Bonaccorso S., Fowler W.L., O’Laughlin I.A., Meltzer H.Y., 5-HT_H and D₂ receptor blockade increases cortical DA release via 5-HT_H receptor activation: a possible mechanism of atypical antipsychotic-induced cortical dopamine release, J. Neurochem., 2001, 76, 1521-1531
[62] Lukasiewicz S., Blasiak E., Szafran-Pilch K., Dziedzicka-Wasylewska M., Dopamine D₂ and serotonin 5-HT_H receptor interaction in the context of the effects of antipsychotics in vitro studies, J. Neurochem., 2016, doi: 10.1111/jnc.13582 [Epub ahead of print]
[63] Pauwels PJ., 5-HT_H receptor antagonists, Gen. Pharmacol., 1997, 29, 293-303
[64] Varrone A., Svenningsson P., Marklund P., Fatouros-Bergman H., Forsberg A., Halldin C., et al., 5-HT_H receptor imaging and cognition: a positron emission tomography study in control subjects and Parkinson’s disease patients, Synapse, 2015, 69, 365-374
[65] Matuskey D., Pittman B., Planeta-Wilson B., Walderhaug E., Henry S., Gallezot J-D., et al., Age effects on the serotonin 1B receptor as assessed by PET imaging, J. Nucl. Med., 2012, 53, 1411-1414
[66] Meneses A., Hong E., Role of 5-HT_H, 5-HT_H, and 5-HT_H receptors in learning, Behav. Brain Res., 1997, 87, 105-110
[67] Garcia-Alloza M., Hirst W.D., Chen C.P., Lasheras B., Francis P.T., Ramirez M.J., Differential involvement of 5-HT_H and 5-HT_H receptors in cognitive and non-cognitive symptoms in Alzheimer’s disease, Neuropsychopharmacology, 2004, 29, 410-416
[68] Raiteri M., Marchi M., Maura G., Bonanno G., Presynaptic regulation of acetylcholine release in the CNS, Cell. Biol. Int. Rep., 1989, 13, 1109-1118
[69] Tiger M., Rücker C., Forsberg A., Varrone A., Lindfors N., Halldín C., et al., Reduced 5-HT_{1A} receptor binding in the dorsal brain stem after cognitive behavioural therapy of major depressive disorder, Psychiatry Res., 2014, 223, 164-170

[70] López-Figueroa A.L., Norton C.S., López-Figueroa M.O., Armellini-Dodel D., Burke S., Akil H., et al., Serotonin 5-HT_{1A}, 5-HT_{1B} and 5-HT_{2A} receptor mRNA expression in subjects with major depression, bipolar disorder, and schizophrenia, Biol. Psychiatry, 2004, 55, 225-233

[71] Boulenguez P., Peters S.L., Mitchell S.N., Chauveau J., Gray J.A., Joseph M.H., Dopamine release in the nucleus accumbens and latent inhibition in the rat following microinjections of a 5-HT_{1A} agonist into the dorsal subiculum: implications for schizophrenia, J. Psychopathol. Sci., 1998, 12, 258-267

[72] Fink K.B., Govert M., 5-HT receptor regulation of neurotransmitter release, Pharmacol. Rev., 2007, 59, 360-417

[73] Hasselbalch S.G., Madsen K., Svarer C., Pinborg L.H., Holm S., Paulson O.B., et al., Reduced 5-HT_{2A} receptor binding in patients with mild cognitive impairment, Neurobiol. Aging, 2008, 29,1830-1838

[74] Lorke D.E., Lu G., Cho E., Yew D.T., Serotonin 5-HT_{1A}, 5-HT_{1B}, and 5-HT_{2A} receptors in the prefrontal cortex of Alzheimer and normal aging patients, BMC Neurosci., 2006, 7, 36

[75] Tsang S.W., Keene J., Hope T., Spence I., Frances P., et al., A serotoninergic basis for hyperphagic eating changes in Alzheimer’s disease, J. Neurol. Sci., 2010, 288, 151-155

[76] Marner L., Norton C.S., López-Figueroa M.O., Armellini-Dodel D., Burke S., Akil H., et al., Serotonin 5-HT_{1A}, 5-HT_{1B}, and 5-HT_{2A} receptor mRNA expression in subjects with major depression, bipolar disorder, and schizophrenia, Biol. Psychiatry, 2004, 55, 225-233

[77] Hasselbalch S.G., Madsen K., Svarer C., Pinborg L.H., Holm S., Paulson O.B., et al., Reduced 5-HT_{2A} receptor binding in patients with mild cognitive impairment, Neurobiol. Aging, 2008, 29,1830-1838

[78] Lorke D.E., Lu G., Cho E., Yew D.T., Serotonin 5-HT_{1A}, 5-HT_{1B}, and 5-HT_{2A} receptors in the prefrontal cortex of Alzheimer and normal aging patients, BMC Neurosci., 2006, 7, 36

[79] Tsang S.W., Keene J., Hope T., Spence I., Frances P., et al., A serotoninergic basis for hyperphagic eating changes in Alzheimer’s disease, J. Neurol. Sci., 2010, 288, 151-155

[80] Marner L., Norton C.S., López-Figueroa M.O., Armellini-Dodel D., Burke S., Akil H., et al., Serotonin 5-HT_{1A}, 5-HT_{1B}, and 5-HT_{2A} receptor mRNA expression in subjects with major depression, bipolar disorder, and schizophrenia, Biol. Psychiatry, 2004, 55, 225-233

[81] Hasselbalch S.G., Madsen K., Svarer C., Pinborg L.H., Holm S., Paulson O.B., et al., Reduced 5-HT_{2A} receptor binding in patients with mild cognitive impairment, Neurobiol. Aging, 2008, 29,1830-1838

[82] Lorke D.E., Lu G., Cho E., Yew D.T., Serotonin 5-HT_{1A}, 5-HT_{1B}, and 5-HT_{2A} receptors in the prefrontal cortex of Alzheimer and normal aging patients, BMC Neurosci., 2006, 7, 36

[83] Rasmussen H., Erritzoe D., Andersen R., Ebdrup B.H., Aggernaes B., Oranje B., et al., Decreased frontal serotonin 2A receptor binding in antipsychotic-naive patients with first-episode schizophrenia, Arch. Gen. Psychiatry., 2010, 67, 9-16

[84] Okubo Y., Suhara T., Suzuki K., Kobayashi K., Inoue O., Terasaki O., et al., Serotonin 5-HT_{1A} receptors in schizophrénic patients studied by positron emission tomography, Life Sci., 2000, 66, 2455-2464

[85] Roth B.L., Hanizavareh S.M., Blum A.E., Serotonin receptors represent highly favorable molecular targets for cognitive enhancement in schizophrenia and other disorders, Psychopharmacology, 2004, 174, 17-24

[86] Liperoti R., Pedone C., Corsonello A., Antipsychotics for the treatment of behavioral and psychological symptoms of dementia (BPSD), Curr. Neuropharmacol., 2008, 6, 117-124

[87] Tyson P.J., Laws K.R., Flowers K.A., Tyson A., Mortimer A.M., Cognitive function and social abilities in patients with schizophrenia: relationship with atypical antipsychotics, Psychiatry Clin. Neurosci., 2006, 60, 473-479

[88] Zhang G., Stackman R.W., The role of serotonin 5-HT_{2A} receptors in memory and cognition, Front. Pharmacol., 2015, 6, 225

[89] Di Giovannini G., De Deurwaerdère P., New therapeutic opportunities for 5-HT_{2A} receptor ligands in neuropsychiatric disorders, Pharmacol. Ther., 2016, 157, 125-126

[90] Jensen N.H., Cremers T.J., Sotty F., Therapeutic potential of 5-HT_{2C} receptor ligands, ScientificWorldJournal, 2010, 10, 1870-1885

[91] Cheng J., Kozikowski A.P., We Need 2C but Not 2B: Developing serotonin 2C (5-HT_{2C}) receptor agonists for the treatment of CNS disorders, Chem. Med. Chem., 2015, 10, 1963-1967

[92] Nilsson S.R., Ripley T.L., Somerville E.M., Clifton P.G., Reduced activity at the 5-HT_{2C} receptor enhances reversal learning by decreasing the influence of previously non-rewarded associations, Psychopharmacology, 2012, 224, 241-254

[93] Busceti C.L., Di Pietro P., Rizioz B., Traficante A., Biagioni F., Nisticò R., et al., 5-HT_{2C} serotonin receptor blockade prevents tau protein hyperphosphorylation and corrects the defect in hippocampal synaptic plasticity caused by a combination of environmental stressors in mice, Pharmacol. Res., 2015, 99, 258-268

[94] Del’Guidice T., Lemay F., Lemasson M., Levasseur-Moreau J., Manta S., Etievant A., Stimulation of 5-HT_{2C} receptors improves cognitive deficits induced by human tryptophan hydroxylase 2 loss of function mutation, Neuropsychopharmacology, 2014, 39, 1125-1134

[95] Nitsch R.M., Deng M., Gwoldon J.H., Wurtman R.J., Serotonin 5-HT_{1A} and 5-HT_{1C} receptors stimulate amyloid precursor protein metabolism in guinea pigs, Brain Res. 2002, 951, 135-140

[96] Martins L.C., Rocha N.P., Torres K.C., Dos Santos R.R., França G.S., de Moraes E.N., et al., Disease-specific expression of the serotonin-receptor 5-HT_{2C} in natural killer cells in Alzheimer’s dementia, J. Neuroimmunol, 2012, 251, 73-79
[98] Chagraoui A., Thibaut F., Skiba M., Thuillez C., Bourin M., 5-HT \textsubscript{3C} receptors in psychiatric disorders: a review, Prog. Neuropsychopharmacol. Biol. Psychiatry, 2016, 66, 120-135

[99] Clemett D.A., Punhani T., Duxon M.S., Blackburn T.P., Fone K.C., Immunohistochemical localisation of the 5-HT\textsubscript{3C} receptor protein in the rat CNS, Neuropharmacology, 2000, 39, 123-132

[100] Faerber L., Drechslers S., Ladenburger S., Gschaidmeier H., Fischer W., The neuronal 5-HT\textsubscript{3} receptor network after 20 years of research - evolving concepts in management of pain and inflammation, Eur. J. Pharmacol., 2007, 560, 1-8

[101] Herrstedt J., Dömbernowsky P., Anti-emetic therapy in cancer chemotherapy: current status, Basic Clin. Pharmacol. Toxicol., 2007, 101, 143-150

[102] Pehrson A., Gaarn du Jardin Nielsen K., Jensen J.B., Sanchez C., Herrstedt J., Dombernowsky P., Anti-emetic therapy in cancer chemotherapy: current status, Basic Clin. Pharmacol. Toxicol., 2007, 101, 143-150

[103] Bockaert J., Claeysen S., Compan V., Dumuis A., 5-HT\textsubscript{4} receptors, Nat. Rev. Neurosci., 2003, 4, 438-449

[104] Zhang X.Y., Liu L., Liu S., Hong X., Chen da C., Xiu M.H., et al., Short-term troisetron treatment and cognitive and P50 auditory gating deficits in schizophrenia, Am. J. Psychiatry, 2012, 169, 974-981

[105] Rahimian R., Fakhfouri G., Ejtemaei Mehr S., Ghia J.E., Genazzani A.A., Payandemehr B., et al., Tropisetron attenuates Ab\textsubscript{25-35}-induced cognitive deficits in the marmoset, Pharmacol. Biochem. Behav., 1992, 42, 75-83

[106] Carey G.J., Costall B., Domney A.M., Gerrard P.A., Jones D.N., Naylor R.J., et al., Ondansetron and arecoline prevent scopolamine-induced cognitive deficits in the marmoset, Pharmacol. Biochem. Behav., 1992, 42, 75-83

[107] Vilaró M.T., Cortés R., Mengod G., Serotonin 5-HT\textsubscript{4} receptors and neuroprotection: therapeutic opportunities for 5-HT\textsubscript{3} receptor antagonists on peripheral and central diseases, Drug Discov. Today, 2012, 17, 741-747

[108] Cappelli A., Gallelli A., Manini M., Anzini M., Mennuni L., Makovec F., et al., Further studies on the interaction of the 5-hydroxytryptamine 3 (5-HT\textsubscript{3}) receptor with arylpiperazine ligands. Development of a new 5-HT\textsubscript{3} receptor ligand showing potent acetylcholinesterase inhibitory properties, J. Med. Chem., 2005, 48, 3564-3575

[109] Rezvani A.H., Kholdebarin E., Crucato F.H., Callahan P.M., Lowe D.A., Levin E.D., Effect of R3487/MEM3454, a novel nicotinic a7 receptor partial agonist and 5-HT, antagonist on sustained attention in rats, Prog. Neuropsychopharmacol. Biol. Psychiatry, 2009, 33, 269-275

[110] Abi-Dargham A., Laruelle M., Lipska B., Jaskiw G.E., Wong D.T., Robertson D.W., et al., Serotonin 5-HT\textsubscript{3} receptors in schizophrenia: a postmortem study of the amygdala, Brain Res., 1993, 616, 53-57

[111] Lennertz L., Wagner M., Frommann I., Schulze-Rauschenbach S., Schuhmacher A., Kühn K.U., et al., A coding variant of the novel serotonin receptor subunit 5-HT\textsubscript{3E} influences sustained attention in schizophrenia patients, Eur. Neuropsychopharmacol., 2010, 20, 414-420

[112] Mannion R.J., Armour S., Derry S., McQuay H.J., Moore A., Roland M., et al., Ability of 5-HT\textsubscript{3} receptor ligands to modulate rat striatal dopamine release in vitro and in vivo, Br. J. Pharmacol., 1996, 117, 55-62
[127] Ge J., Barnes N.M., 5-HT₄ receptor-mediated modulation of 5-HT release in the rat hippocampus in vivo, Br. J. Pharmacol., 1996, 117, 1475-1480

[128] Letty S., Child R., Dumuis A., Pantalone A., Bockaert J., Rondouin G., 5-HT₄ receptors improve social olfactory memory in the rat, Neuropharmacology, 1997, 36, 681-687

[129] King M.V., Marsden C.A., Fone K.C., A role for the 5-HT₄ receptor in learning and memory, Trends Pharmacol. Sci., 2008, 29, 482-492

[130] Marchetti E., Jacquet M., Jeltsch H., Migliorati M., Nivet E., Cassel J.C., et al., Complete recovery of off-association activity of learning by activation of 5-HT₄ receptors after dentate granule cell damage in rats, Neurobiol. Learn. Mem., 2008, 90, 185-191

[131] Vidal R., Pilar-Cuéllar F., dos Anjos S., Linge R., Treceño B., Vargas V., et al., New strategies in the development of antidepressants: towards the modulation of neuroplasticity pathways, Curr. Pharm. Des., 2011, 17, 521-533

[132] Leong V., Dauphin F., Boulouard M., RS 67333 and D-cycloserine accelerate learning acquisition in the rat, Neuropharmacology, 2001, 41, 517-522

[133] Mohler E.G., Shacham S., Noiman S., Lezoualch F., Robert S., Gastineau L., E., et al., VRX-03011, a novel 5-HT₄ agonist, enhances memory and accelerate learning acquisition in the rat, Neuropharmacology, 2007, 53, 563-573

[134] Levallet G., Hotte M., Boulouard M., Dauphin F., Increased particulate phosphodiesterase 4 in the prefrontal cortex supports 5-HT₄ receptor-induced improvement of object recognition memory in the rat, Psychopharmacology, 2009, 202, 125-139

[135] Fontana DJ., Daniels S.E., Wong E.H., Clark R.D., Egnlien R.M., The effects of novel, selective 5-hydroxytryptamine 5-HT₄ receptor ligands in rat spatial navigation, Neuropharmacology, 1997, 36, 689-696

[136] Lamirault L., Simon H., Enhancement of place and object recognition memory in young adult and old rats by RS 67333, a partial agonist of 5-HT₄ receptors, Neuropharmacology, 2001, 41, 844-853

[137] Lelong V., Lhommeur L., Dauphin F., Boulouard M., BIMU 1 and RS 67333, two 5-HT₄ receptor agonists, modulate spontaneous alternation deficits induced by scopolamine in the mouse, Naunyn Schmiedebergs Arch. Pharmacol., 2003, 367, 621-628

[138] Quiedeville A., Boulouard M., Hamidouche K., Da Silva Costa-Aze V., Nee G., Rochais C., et al., Chronic activation of 5-HT₄ receptors or blockade of 5-HT₄ receptors improve memory performances, Behav. Brain Res., 2015, 293, 10-17

[139] Madsen K., Haahr M.T., Marner L., Keller S.H., Baare W.F., Svarer C., et al., Age and sex effects on 5-HT₄ receptors in the human brain: a [(11)C]SB207145 PET study, J. Cereb. Blood Flow Metab., 2011, 31, 1475-1481

[140] Reynolds G.P., Mason S.L., Meldrum A., De Kecker S., Parnes H., Egnlien R.M., et al., 5-Hydroxytryptamine 5-HT₄ receptors in post mortem human brain tissue: distribution, pharmacology and effects of neurodegenerative diseases, Br. J. Pharmacol., 1995, 114, 993-998

[141] Matsumoto M., Togashi H., Mori K., Ueno K.-L., Ohashi S., Kojima T., et al., Evidence for involvement of central 5-HT₄ receptors in cholinergic function associated with cognitive processes: behavioral, electrophysiological, and neurochemical studies, J. Pharmacol. Exp. Ther., 2001, 296, 676-682

[142] Cho S., Hu Y., Activation of 5-HT₄ receptors inhibits secretion of b-amyloid peptides and increases neuronal survival, Exp. Neurol., 2007, 203, 274-278

[143] Giannoni P., Gaven F., de Bundel D., Baranger K., Marchetti-Gauthier E., Roman F.S., Early administration of RS 67333, a specific 5-HT₄ receptor agonist, prevents amyloidogenesis and behavioral deficits in the 5XFAD mouse model of Alzheimer’s disease, Front. Aging Neurosci., 2013, 5, 96

[144] Cochet M., Donnegar R., Cassier E., Gaven F., Lichtenthaler S.F., Marín P., et al., 5-HT₄ receptors constitutively promote the non-amyloidogenic pathway of APP cleavage and interact with ADAM10, ACS Chem. Neurosci., 2013, 4, 130-140

[145] Shimizu S., Mizuguchi Y., Ohno Y., Improving the treatment of schizophrenia: role of 5-HT₄ receptors in modulating cognitive and extrapyramidal motor functions, CNS Neurol. Disord. Drug Targets, 2013, 12, 861-869

[146] Dean B., Tomaskovic-Crook E., Opeskin K., Keks N., Copolov D., No change in the density of the serotonin₄ receptor, the serotonin 4 receptor or the serotonin transporter in the dorsolateral prefrontal cortex from subjects with schizophrenia, Neurochem. Int., 1999, 34, 109-115

[147] Suzuki T., Iwata N., Kitamura Y., Kitajima T., Yamanouchi Y., Ikeda M., et al., Association of a haplotype in the serotonin 5-HT₄ receptor gene (HTR4) with Japanese schizophrenia, Am. J. Med. Genet. B Neuropsychiatr. Genet., 2003, 121B, 7-13

[148] Pasqualetti M., Ori M., Nardi I., Castagna M., Cassano G.B., Marazziti D., Distribution of the 5-HT₄ serotonin receptor mRNA in the human brain, Mol. Brain Res., 1998, 56, 1-8

[149] Oliver K.R., Kinsey A.M., Wainwright A., Sinnatharsingh Dj., Localization of 5-HT₄ receptor-like immunoreactivity in the rat brain, Brain Res., 2000, 867, 131-142

[150] Gonzalez R., Chavez-Pascacio K., Meneses A., Role of 5-HT₄ receptors in the consolidation of memory, Behav. Brain Res., 2013, 252, 246-251

[151] Yamazaki M., Harada K., Yamamoto N., Yarimizu J., Harada K., Yamamoto N., Yarimizu J., Okabe M., Association of a haplotype in the serotonin 5-HT₄ receptor gene (HTR4) with Japanese schizophrenia, Am. J. Med. Genet. B Neuropsychiatr. Genet., 2003, 121B, 7-13

[152] Pasqualetti M., Ori M., Nardi I., Castagna M., Cassano G.B., Marazziti D., Distribution of the 5-HT₄ serotonin receptor mRNA in the human brain, Mol. Brain Res., 1998, 56, 1-8

[153] Fone K.C., An update on the role of the 5-HT₄ receptor in cognitive function, Neuropharmacology, 2008, 55, 1015-1022
[154] Woods S., Clarke N.N., Layfield R., Fone K.C., 5-HT$_6$ receptor agonists and antagonists enhance learning and memory in a conditioned emotion response paradigm by modulation of cholinergic and glutamatergic mechanisms, Br. J. Pharmacol., 2012, 167, 436-449

[155] Bali A., Singh S., Serotonergic 5-HT$_6$ receptor antagonists. Heterocyclic chemistry and potential therapeutic significance, Curr. Top. Med. Chem., 2015, 15, 1643-1662

[156] Liu K.G., Robichaud A.J., 5-HT$_7$ antagonists as potential treatment for cognitive dysfunction, Drug Dev. Res., 2009, 70, 145-168

[157] Ramirez M.J., 5-HT$_6$ receptors and Alzheimer's disease, Alzheimer's Res. Ther., 2013, 5, 15

[158] Foley A.G., Murphy K.J., Hirst W.D., Gallagher H.C., Hagan J.J., Upton N., The 5-HT$_6$ receptor antagonist SB-271046 reverses scopolamine-disrupted consolidation of a passive avoidance task and ameliorates spatial task deficits in aged rats, Neuropsychopharmacology, 2004, 29, 93-100

[159] Upton N., Chuang T.T., Hunter A.J., Virley D.J., 5-HT$_6$ receptor antagonists as novel cognitive enhancing agents for Alzheimer's disease, Neurotherapeutics, 2008, 5, 458-469

[160] Yun H.M., Park K.R., Kim E.C., Kim S., Hong J.T., Serotonin 6 receptor controls Alzheimer's disease and depression, Oncotarget, 2015, 6, 26716-26728

[161] Pereira M., Martynych B.J., Andreatini R., Svenningsson P., 5-HT$_6$ receptor agonism facilitates emotional learning, Front. Pharmacol., 2015, 6, 200

[162] Meffre J., Chaumont-Dubel S., Mannoury la Cour C., Loiseau F., Watson D.J., Dekeyne A., et al., 5-HT$_6$ receptor recruitment of mTOR as a mechanism for perturbed cognition in schizophrenia, EMBO Mol. Med., 2012, 41043-1056

[163] de Bruin N.M., Kruse C.G., 5-HT$_6$ receptor antagonists: potential efficacy for the treatment of cognitive impairment in schizophrenia, Curr. Pharm. Des., 2015, 21, 3739-3759

[164] Abraham R., Nirogi R., Shinde A., Irupannanavar S., Low-dose prazosin in combination with 5-HT$_6$ antagonist PRX-07034 has antipsychotic effects, Can. J. Physiol. Pharmacol., 2015, 93, 13-21

[165] Beaudet G., Bouet V., Jozet-Alves C., Schuman-Bard P., Dauphin F., Paizanis E., et al., Spatial memory deficit across aging: current insights of the role of 5-HT$_6$ receptors, Front. Behav. Neurosci., 2015, 9, 86

[166] Roberts A.J., Nirogi R., Shinde A., Irupannanavar S., Low-dose prazosin in combination with 5-HT$_6$ antagonist PRX-07034 has antipsychotic effects, Can. J. Physiol. Pharmacol., 2015, 93, 13-21

[167] Horiguchi M., Huang M., Meltzer H.Y., Interaction of mGlu2/3 agonism with clozapine and lurasidone to restore novel object recognition in subchronic phencyclidine-treated rats, Psychopharmacology, 2011, 217, 13-24

[168] Gasbarri A., Cifariello A., Pomplii A., Meneses A., Effect of 5-HT$_7$ antagonist SB-269970 in the modulation of working and reference memory in the rat, Behav. Brain Res., 2008, 195, 164-170

[169] Meneses A., Effects of the 5-HT$_7$ receptor antagonists SB-269970 and DR 4004 in autoshaping Pavlovian/instrumental learning task, Behav. Brain Res., 2004, 155, 275-282

[170] Horiguchi M., Huang M., Meltzer H.Y., The role of 5-hydroxytryptamine 7 receptors in the phencyclidine-induced novel object recognition deficit in rats, J. Pharmacol. Exp. Ther., 2011, 338, 605-614

[171] De Filippis B., Chiiodi V., Adriani W., Lacivita E., Mallozzi C., Leopoldo M., Long-lasting beneficial effects of central serotonin receptor 7 stimulation in female mice modeling Rett syndrome, Front. Behav. Neurosci., 2015, 9, 86

[172] Perez-Garcia G.S., Meneses A., Effects of the potential 5-HT7 receptor agonist AS 19 in an autoshaping learning task, Behav. Brain Res., 2005, 163, 136-140

[173] Werner F.M., Covenas R., Serotonergic drugs: agonists/antagonists at specific serotonergic subreceptors for the treatment of cognitive, depressant and psychotic symptoms in Alzheimer's disease, Curr. Pharm. Des., 2016, doi: 10.2174/1381612822666160127113524 [Epub ahead of print]

[174] Horiguchi M., Huang M., Meltzer H.Y., The role of 5-hydroxytryptamine 7 receptors in the phencyclidine-induced novel object recognition deficit in rats, J. Pharmacol. Exp. Ther., 2011, 338, 605-614

[175] East S.Z., Burnet P.W., Kerwin R.W., Harrison P.J., An RT-PCR study of 5-HT$_6$ and 5-HT$_7$ receptor mRNAs in the hippocampal formation and prefrontal cortex in schizophrenia, Schizophr. Res., 2002, 57, 15-26

[176] Ikeda M., Iwata N., Kitajima T., Suzuki T., Yamanouchi Y., Kinoshita Y., et al., Positive association of the serotonin 5-HT$_7$ receptor gene with schizophrenia in a Japanese population, Neuropsychopharmacology, 2006, 31, 866-871

[177] Ikeda M., Iwata N., Kitajima T., Suzuki T., Yamanouchi Y., Kinoshita Y., et al., Positive association of the serotonin 5-HT$_7$ receptor gene with schizophrenia in a Japanese population, Neuropsychopharmacology, 2006, 31, 866-871

[178] Roth B.L., Craigo S.C., Choudhary M.S., Uluer A., Monsma F.J.Jr., Shih Y., et al., Binding of typical and atypical antipsychotic agents to 5-hydroxytryptamine-6 and 5-hydroxytryptamine-7 receptors, J. Pharmacol. Exp. Ther., 1994, 268, 1403-1410

[179] Waters K.A., Stean T.O., Hammond B., Virley J.D., Upton N., Kew J.N.C., et al., Effects of the selective 5-HT$_7$ receptor antagonist SB-269970 in animal models of psychosis and cognition, Behav. Brain Res., 2012, 228, 211-218

[180] Haider S., Khaliq S., Ahmed S.P., Haleem D.J., Long-term tryptophan administration enhances cognitive performance and increases 5-HT metabolism in the hippocampus of female rats, Amino Acids, 2006, 31, 421-425
[184] Levkovitz Y., Ophir-Shaham O., Bloch Y., Treves I., Fennig S., Grauer E., Effect of L-tryptophan on memory in patients with schizophrenia, J. Nerv. Ment. Dis., 2003, 191, 568-573

[185] Porter R.J., Lunn B.S., O’Brien J.T., Effects of acute tryptophan depletion on cognitive function in Alzheimer’s disease and in the healthy elderly, Psychol. Med., 2003, 33, 41-49

[186] Schmitt J.A., Wingen M., Ramaekers J.G., Evers E.A., Riedel W.J., Serotonin and human cognitive performance, Curr. Pharm. Des., 2006, 12, 2473-2486

[187] Meneses A., 5-HT systems: emergent targets for memory formation and memory alterations, Rev. Neurosci., 2013, 24, 629-64

[188] Sanchez C., Asin K.E., Artigas F., Vortioxetine, a novel antidepressant with multimodal activity: review of preclinical and clinical data, Pharmacol. Ther., 2015, 145, 43–57

[189] Stahl S.M., Modes and nodes explain the mechanism of action of vortioxetine, a multimodal agent (MMA): enhancing serotonin release by combining serotonin (5HT) transporter inhibition with actions at 5HT receptors (SHT₁A, SHT₁B, SHT₁D, SHT₁ receptors), CNS Spectr., 2015, 20, 93-97