Ab Initio Approach to s-Shell Hypernuclei $^3_\Lambda$H, $^4_\Lambda$H, $^4\Lambda$He and $^5\Lambda$He with a $\Lambda N - \Sigma N$ Interaction

H. Nemura, Y. Akaishi, and Y. Suzuki

1 Institute of Particle and Nuclear Studies, KEK, Tsukuba 305-0801, Japan
2 Department of Physics, Niigata University, Niigata 950-2181, Japan

(Dated: January 13, 2022)

Variational calculations for s-shell hypernuclei are performed by explicitly including Σ degrees of freedom. Four sets of YN interactions (SC97d(S), SC97e(S), SC97f(S) and SC89(S)) are used. The bound-state solution of $^5\Lambda$He is obtained and a large energy expectation value of the tensor $\Lambda N - \Sigma N$ transition part is found. The internal energy of the $^4\Lambda$He subsystem is strongly affected by the presence of a Λ particle with the strong tensor $\Lambda N - \Sigma N$ transition potential.

PACS numbers: 21.80.+a, 21.45.+v, 21.10.Dr, 13.75.Ev

Few-body calculations for s-shell hypernuclei with mass number $A = 3 - 5$ are important not only to explore exotic nuclear structure, including the strangeness degrees of freedom, but also to clarify the characteristic features of the hyperon-nucleon (YN) interaction. Although several interaction models have been proposed, the detailed properties (e.g. 3S_0 or 3P_0 phase shift, strength of $\Lambda N - \Sigma N$ coupling term) of the YN interaction are different among the models. The observed separation energies (B_s’s) of light Λ hypernuclei are expected to provide important information on the YN interaction, because the relative strength of the spin-dependent term or of the $\Lambda N - \Sigma N$ coupling term is affected from system to system.

Recently, few-body studies for $A = 3, 4$ hypernuclei have been conducted using modern YN interactions. According to these developments, the Nijmegen soft core (NSC) model 97f (or 97e) seems to be compatible with the experimental B_s’s, though the calculated B_s for $^4\Lambda$H* or $^5\Lambda$He* is actually slightly smaller than the experimental value. These few-body calculations, however, have not yet reached a stage to calculate $B_s(\Lambda\Lambda\Lambda)$.

If one constructs a phenomenological central ΛN potential, which is consistent with the experimental $B_s(\Lambda\Lambda\Lambda)$, $B_s(\Lambda\Lambda\Lambda)$, $B_s(\Lambda\Lambda\Lambda)$, $B_s(\Lambda\Lambda\Lambda)$ and $B_s(\Lambda\Lambda\Lambda)$ values as well as the Λp total cross section, that kind of potential would overestimate the $B_s(\Lambda\Lambda\Lambda)$ value due to the difficulty of performing a complete five-body treatment. Only one attempt was made, using a variational Monte Carlo calculation with the NSC99 YN interaction. Though NSC99 well reproduces both the experimental $B_s(\Lambda\Lambda\Lambda)$ and $B_s(\Lambda\Lambda\Lambda)$ values as well as the experimental Λp total cross section, a bound-state solution of $\Lambda\Lambda\Lambda$ was not found. In view of the aim to pin down a reliable YN interaction, a systematic study for all s-shell hypernuclei is desirable.

The NN tensor interaction due to a one-pion-exchange mechanism is the most important ingredient for the binding mechanisms of light nuclei. More than a third, or about one half, of the interaction energy comes from the tensor force for the $^4\Lambda$He. Since the pion-(or kaon-) exchange also induces the $\Lambda N - \Sigma N$ transition for the YN sector, both the NN and $\Lambda N - \Sigma N$ tensor interactions may also play important roles for light hypernuclei. If this is the case, the structure of the core nucleus (e.g. $^4\Lambda$He) in the hypernucleus ($^5\Lambda$He) would be strongly influenced by the presence of a Λ particle.

The purpose of this letter is twofold: First is to perform an ab initio calculation for $^5\Lambda$He as well as $A = 3, 4$ hypernuclei explicitly including Σ degrees of freedom. Second is to discuss the structural aspects of $^4\Lambda$He with an appropriate YN interaction which is consistent with all of the s-shell hypernuclear data.

The Hamiltonian (H) of a system comprising nucleons and a hyperon (Λ or Σ) is given by 2 \times 2 components as

$$H = \begin{pmatrix} H_A & V_{\Lambda - \Sigma} \\ V_{\Lambda - \Sigma}^T & H_\Sigma \end{pmatrix},$$

where $H_A(H_\Sigma)$ operates on the $(\Lambda-(\Sigma-\Sigma))$ component and

$$V_{\Lambda - \Sigma} = \sum_{i=1}^{A-1} \langle N\Lambda - N\Sigma \rangle_i.$$

We employ the G3RS potential for the NN interaction and the SC97d(S), SC97e(S), SC97f(S) or SC89(S) potential for the YN interaction, where all interactions have tensor and spin-orbit components in addition to the central one. We omit small nonstatistical correction terms ($L \cdot S$ terms) in the G3RS NN interaction and odd partial-wave components in each interaction in order to focus on the main part of the interaction in the even parity state. The calculated binding energies for light nuclei (2H, 3H, $^4\Lambda$He and $^4\Lambda$He) are 2.28, 7.63, 6.98 and 24.57 MeV, respectively. The YN interactions have Gaussian form factors whose parameters are set to...
reproduce the low-energy S matrix of the corresponding original Nijmegen YN interactions\cite{20}. These Gaussian form factors help to save significant computer time.

The binding energies of various systems are calculated in a complete A-body treatment. The variational trial function must be flexible enough to incorporate both the explicit Σ degrees of freedom and higher orbital angular momenta. The trial function is given by a combination of basis functions:

\[
\Psi_{JM\Sigma T\tau} = \sum_{k=1}^{N} c_k \varphi_k, \quad \text{with} \quad \varphi_k = A \{ G(\mathbf{x}; A_k) | \theta_{L_k} (\mathbf{x}; u_k, K_k) \chi_{S_k} | J M \eta_{T M T \tau} \} .
\]

(3)

Here, A is an antisymmetrizer acting on nucleons and χ_{S_k} ($\eta_{T M T \tau}$) is the spin (isospin) function. $\eta_{T M T}$ has two components: upper (lower) component refers to the Λ-(Σ)-component. The abbreviation $\mathbf{x} = (x_1, \cdots , x_{A-1})$ is a set of relative coordinates. A set of linear variational parameters (c_1, \cdots , c_N) is determined by the Ritz variational principle.

A spatial part of the basis function is constructed by the correlated Gaussian(CG) multiplied by the orbital angular momentum part $\theta_L (\mathbf{x})$, expressed by the global vector representation\cite{21}. CG is defined by

\[
G(\mathbf{x}; A_k) = \exp \left\{ -\frac{1}{2} \sum_{i<j}^A \alpha_{kij} (r_i - r_j)^2 \right\} = \exp \left\{ -\frac{1}{2} \sum_{i,j=1}^{A-1} (A_k)_{ij} x_i \cdot x_j \right\} .
\]

(4)

The $(A-1) \times (A-1)$ symmetric matrix (A_k) is uniquely determined in terms of the interparticle correlation parameter (α_{kij}). The GVR of $\theta_{L_k} (\mathbf{x}; u_k, K_k)$ takes the form

\[
\theta_{L_k} (\mathbf{x}; u_k, K_k) = \varphi_k^{2K_k + L_k} Y_{L_k} (\hat{\mathbf{v}}_k), \quad \text{with} \quad \varphi_k = \sum_{i=1}^{A-1} (u_k)_i x_i .
\]

(5)

The A_k and u_k are sets of nonlinear parameters which characterize the spatial part of the basis function. Allowing the factor $\varphi_k^{2K_k}$ ($K_k \neq 0$) is useful to improve the short-range behavior of the trial function. The value of K_k is assumed to take 0 or 1. The variational parameters are optimized by a stochastic procedure. The above form of the trial function gives accurate solutions. The reader is referred to Refs. \cite{14, 21} for details and recent applications. For the spin and isospin parts, all possible configurations are taken into account.

Table \ref{table1} lists the results of the Λ separation energies. The scattering lengths of the $^1S_0(a_0)$ and $^3S_1(a_1)$ states for each YN interaction are also listed in Table \ref{table1} where the interactions are given in increasing order of $|a_1|$ (and in decreasing order of $|a_0|$). The $SC97(S)$ interaction produces no or very weakly bound state for $^3\Lambda^+\,$, $^3\Lambda^+\,$ or $^5\Lambda^+\,$. For the $SC97d(S)$, the $B_A(\Lambda^{+})$ value is about $2 - 3$ MeV. This is a first \textit{ab initio} calculation to produce the bound state of Λ^{+} with explicit Σ degrees of freedom.

![FIG. 1: Density distributions of N, Λ and Σ for $^3\Lambda^+\,$](image)

The order of the spin doublet structure of the $A = 4$ system is correctly reproduced for all YN interactions; the ground (excited) state has spin-parity, $J^P = 0^+(1^+)$ for both isodoublet hypernuclei $^6\Lambda^+\,$ and $^6\Lambda^+\,$. Although the strengths of the 1S_0 and 3S_1 interactions of the $SC97d(S)$ are almost the same as each other, the energy-level of the 0^+ state is clearly lower than that of the 1^+ state. All of the $A = 3$ bound states given in Table \ref{table1} have $J^P = 1^+$, in agreement with experiment. No other bound state has been obtained for all of the YN interactions. For the $SC97e(S)$, the differences between the calculated and experimental B_A values are the smallest among the YN interactions employed in the present study.

Table \ref{table1} lists the probability, P_{Σ} (in percentage), of finding a Σ particle in the system. The sizable amount of $P_{\Sigma}(\Lambda^{+})$'s is obtained. This implies that the $\Lambda - \Sigma$ coupling plays an important role, even for the $^3\Lambda^+\,$, despite a large excitation energy of the core nucleus, $^4\Lambda$ (with the isospin 1), in the Σ-component. For the $A = 4$ system, the P_{Σ}'s of the 0^+ state are about $1 - 2\%$, except for the $SC89(S)$, while the P_{Σ}'s of the 1^+ state are nearly equal to or smaller than that of the 0^+ state.

Figure \ref{figure1} displays the density distributions for $^5\Lambda^+\,$ using $SC97e(S)$, and of N, Λ and Σ from the center-of-mass (CM) of $^4\Lambda$. Figure \ref{figure1} also shows the Λ-distribution obtained from the Isle $\Lambda - \alpha$ potential\cite{22}. The experimental pionic decay width of $^5\Lambda$ suggests that the Λ-distribution should spread over a rather outer region compared to the distribution of the α, as was discussed in Ref. \cite{22}. The present curve of the Λ-distribution is similar to that obtained by the Isle potential. The Σ-distribution has a shape similar to the N-distribution. The root-mean-square (rms) radii of N, Λ and Σ from the CM of the $^4\Lambda$ are 1.5, 2.9 and 1.6 fm, respectively.
where \(\mu \) is the reduced mass of the \(Y+c \) system and \(\mu_Y \) is the mass of the core nucleus.

The kinetic energy of the relative motion between the \(Y \) and \(c \) is given by

\[
T_{Y\rightarrow c} = \frac{\mu_Y}{\mu} \left(\frac{p_Y^2}{2m_Y} - \frac{2}{(A-1)m_N} \right),
\]

where \(\mu_Y = \frac{(A-1)m_N+m_Y}{A-1} \) is the reduced mass for the \(Y+c \) system and \(\mu_Y \) is the dynamical mass of the relative coordinate between \(Y \) and \(c \) (Y = \(\Lambda \) or \(\Sigma \)).

Table I lists the energy expectation values of the kinetic and potential energy terms for \(^4\text{He} \). The contributions from the spin-orbit and the Coulomb potentials are not shown in the table, though the calculations include them. Here, \(T_c \) is the kinetic energy of the core nucleus (c) subtracted by the CM energy of c:

\[
T_c = \sum_{i=1}^{A-1} \frac{p_i^2}{2m_N} - \frac{(\sum_{i=1}^{A-1} p_i)^2}{2(A-1)m_N}. \tag{6}
\]

The kinetic energy of the relative motion between the \(Y \) and the CM of c is given by

\[
T_{Y\rightarrow c} = \frac{\mu_Y}{\mu} \left(\frac{p_Y^2}{2m_Y} - \frac{2}{(A-1)m_N} \right) \tag{7}
\]

where \(\mu_Y = \frac{(A-1)m_N+m_Y}{A-1} \) is the reduced mass for the \(Y+c \) system and \(\mu_Y \) is the dynamical mass of the relative coordinate between \(Y \) and \(c \) (Y = \(\Lambda \) or \(\Sigma \)).

Each potential part (V) takes account of a summation over appropriate particle pairs (see Eq. (9) for example). The energy expectation values of the first three columns in Table I are written as

\[
\langle V \rangle = \langle \Psi_\Lambda | V | \Psi_\Lambda \rangle + \langle \Psi_\Sigma | V | \Psi_\Sigma \rangle \tag{8}
\]

where the upper (lower) component of the \(\Psi_{J\text{MTM}} \) is denoted by \(\Psi_\Lambda \) (\(\Psi_\Sigma \)).

The first (second) term of each element \((T_c), (T_{Y\rightarrow c}) \) or \((V_{NN}) \) in Table I represents the first (second) term of Eq. (7). The energy of the \(^4\text{He} \) subsystem changes a lot from that of the isolated one,

\[
\Delta E_c = \langle T_c \rangle + \langle V_{NN} \rangle - \langle T_c \rangle - \langle V_{NN} \rangle \approx 4.7 \text{MeV} \tag{9}
\]

This difference is considerably large despite the fact that the rms radius of N from the CM of \(^4\text{He} \) for the \(^4\Lambda \text{He} \) hardly changes from that for \(^4\text{He} \). On the other hand, the tensor \(\Lambda N - \Sigma N \) transition part has a surprisingly large energy expectation value (about \(-20 \text{MeV} \)). This large coupling energy makes \(^4\Lambda \text{He} \) bound in spite of both the energy loss of \(\Delta E_c \) and the extremely high energy of the \(\Sigma \)-component (\(\Delta E_{\Sigma} \sim 600 \text{MeV} \)).

The calculated wave function is divided into orthogonal components according to the orbital angular momentum \((L) \), the total spin \((S) \), the core nucleus spin \((S_c) \) and the core nucleus isospin \((T_c) \). Table IV displays the probability of each component for \(^4\Lambda \text{He} \). The table also lists the probability of \(S \)-state or of \(D \)-state for \(^4\Lambda \text{He} \).

The sizable amount of probability of the \(\Sigma \)-component is found in the \(D \)-state while the sum of \(S \)-state probabilities in the \(\Lambda \)-component is slightly smaller that for \(^4\text{He} \). Moreover, though the presence of a \(\Lambda \) in \(^4\text{He} \) with the strong tensor \(\Lambda N - \Sigma N \) transition potential influences the structure of the \(D \)-state component and reduces the energy expectation value of the tensor \(\Lambda N \) interaction, the large coupling energy \((V_{\Lambda - \Sigma}) \) of the tensor part bears the bound state of \(^4\Lambda \text{He} \) instead.

In summary, we have made a systematic study of all s-shell hypernuclei based on ab initio calculations using \(Y N \) interactions with an explicit \(\Sigma \) admixture. The bound-state solution of \(^4\Lambda \text{He} \) was obtained. As the Ref. claimed, though there is none of the interaction models to describe very precisely the experimental \(B_\Lambda \)'s, the five-body calculation convinced us that the anomalous bind-
TABLE III: Energy expectation values of the kinetic and potential energy terms for 5He, given in units of MeV. The SC97e(S) YN interaction is used. For each potential part, a summation over appropriate particle pairs is taken into account (see Eq. [10] for example) and two central (3E and 5E) and a tensor (7E) components are listed separately. The first (second) term of each element (T_e), (T_{Y-c}) or (V_{NN}) represents the first (second) term of Eq. [1] ($O = T_e, T_{Y-c}$ or V_{NN}). The energy expectation values of (T_e) and three (V_{NN})'s for isolated 4He are 84.86, -33.22, -33.05 and -43.93 MeV, respectively.

(T_e)	(T_{Y-c})	(V_{NN})	(V_{NN})	2(V_{NN}) - (V_{NN})	(V_{NN})
83.43 + 2.74	9.11 + 3.88	-33.14 - 0.35	-3.97	-0.02	0.07
82.73 + 2.14	9.11 + 3.88	-33.14 - 0.35	2.95	-1.02	1.56
82.73 + 2.14	9.11 + 3.88	-33.14 - 0.35	2.95	-1.02	1.56
82.73 + 2.14	9.11 + 3.88	-33.14 - 0.35	2.95	-1.02	1.56

TABLE IV: Probability, given in percentage, of each component with the total orbital angular momentum (L), total spin (S), core nucleus spin (S_c) and core nucleus isospin (T_c) in Λ- or in Σ-component for 5He. The SC97e(S) YN interaction is used. The probability in S- or in D-state for 4He is also listed.

$L = 0$	$L = 2$
$S = \frac{1}{2}$	$S = \frac{3}{2}$
$S_c = 0$	$S_c = 1$
$S_c = 1$	$S_c = 2$
$S_c = 2$	$S_c = 2$

5He

$\langle T_c = 0 \rangle \otimes \Lambda$ | 89.14 | 0.03 | 0.19 | 3.74 | 5.36 |

$\langle T_c = 1 \rangle \otimes \Sigma$ | 0.10 | 0.09 | 1.34 | ~ 0 | 0.01 |

4He | 89.56 | 10.44 |

We are thankful to Y. Fujiwara, K. Miyagawa, H. Kumada, K. Varga and S. Shimamura for useful communications. One of the authors (H.N.) would like to thank for JSPS Research Fellowships for Young Scientists. The calculations of $A = 4, 5$ systems were made using the RCNP’s SX-5 computer and KEK’s SR8000 computer.

[1] P. M. M. Maessen, Th. A. Rijken and J. J. de Swart, Phys. Rev. C 40, 2226 (1989).
[2] Th. A. Rijken, V. G. J. Stokes and Y. Yamamoto, Phys. Rev. C 59, 21 (1999); V. G. J. Stokes and Th. A. Rijken, *ibid.* C 59, 3009 (1999).
[3] Y. Fujiwara, C. Nakamoto and Y. Suzuki, Phys. Rev. Lett. 76, 2242 (1996); Phys. Rev. C 54, 2180 (1996).
[4] K. Miyagawa, H. Kamada, W. Glöckle and V. Stoks, Phys. Rev. C 51, 2095 (1995).
[5] E. Hiyama, M. Kaminura, T. Motoba, T. Yamada and Y. Yamamoto, Phys. Rev. C 65, 013101 (2001).
[6] A. Nogga, PhD Thesis, Ruhr University, Bochum (2001); A. Nogga, H. Kamada and W. Glöckle, Phys. Rev. Lett. 88, 172501 (2002).
[7] R. H. Dalitz, R. C. Herndon and Y. C. Tang, Nucl. Phys. B 47, 199 (1972).
[8] H. Nemura, Y. Suzuki, Y. Fujiwara and C. Nakamoto, Prog. Theor. Phys. 103, 929 (2000).
[9] H. Bandó and I. Shimodaya, Prog. Theor. Phys. 63, 1812 (1980).
[10] S. Shimamura, Y. Akaishi and H. Tanaka, Prog. Theor. Phys. 71, 546 (1984).
[11] A. R. Bodmer, Phys. Rev. 141, 1387 (1966).
[12] B. F. Gibson, A. Goldberg and M. S. Weiss, Phys. Rev. C 6, 741 (1972).
[13] B. F. Gibson and E. V. Hungerford III, Phys. Rep. 257, 349 (1995).
[14] J. A. Carlson, in *LAMPF Workshop on (π,K) Physics*, edited by B. F. Gibson, W. R. Gibbs and M. B. Johnson, AIP Conf. Proc. No. 224 (AIP, New York, 1991), p.198.
[15] Y. Akaishi, in *Cluster Models and Other Topics*, edited by T. T. S. Kuo and E. Osnes (World Scientific, Singapore, 1986), p.259.
[16] Y. Suzuki and K. Varga, *Stochastic Variational Approach to Quantum-Mechanical Few-Body Problems*, Lecture Notes in Physics, Vol. m54 (Springer-Verlag, Berlin Heidelberg, 1998).
[17] Steven C. Pieper *et al.*, Phys. Rev. C 64, 014001 (2001).
[18] R. Tamagaki, Prog. Theor. Phys. 39, 91 (1968).
[19] Y. Akaishi, T. Harada, S. Shimamura and Khin Swe Myint, Phys. Rev. Lett. 84, 3539 (2000).
[20] S. Shimamura, private communication.
[21] K. Varga and Y. Suzuki, Phys. Rev. C 52, 2885 (1995); Y. Suzuki, J. Usukura and K. Varga, J. Phys. B 31, 31 (1998).
[22] I. Kumagai-Fuse, S. Okabe and Y. Akaishi, Phys. Lett. B 345, 386 (1995).
[23] H. Takahashi et al., Phys. Rev. Lett. 87, 212502 (2001).