Numerical Simulations of the Molecular Behavior and Entropy of Supercritical Argon

Matthew David Marko
mattdmarko@gmail.com
April 9, 2020

Abstract

A numerical model is built, simulating the principles of kinetic gas theory, to predict pressures of molecules in a spherical pressure vessel; the model tracks a single particle and multiplies the force on the spherical walls by a mole of molecules to predict the net pressure. An intermolecular attractive force is added for high-density simulations, to replicate a real fluid; the force is chosen to ensure the fluid matches the Peng-Robinson equation of state as it is compressed to a near supercritical density. The standard deviations of the molecule position and velocity with respect to temperature and density is studied to define the entropy. A parametric study of a Stirling cycle heat engine utilizing near-supercritical densities is modeled, to study how the temperature dependence of the attractive intermolecular Van der Waal forces can affect the net total entropy change to the surrounding environment.

1 Introduction

In the design of any thermodynamic system to convert heat to and from mechanical work, the laws of thermodynamics must always be considered. The first law of thermodynamics
states that the change in internal energy equals the heat and work input into the working fluid \([1–6]\)

\[
\delta u = \delta q - \delta w, \tag{1}
\]

where \(\delta u \ (J/kg)\) is the change in specific internal energy, \(\delta q \ (J/kg)\) is the specific heat transfered, and \(w \ (J/kg)\) is the specific work applied across the boundary \([2–6]\)

\[
\delta w = P \cdot \delta v. \tag{2}
\]

The second law has been described by Rudolph Clausius \([1]\) in 1854 as

\[
\oint \frac{\delta q}{T} \leq 0, \tag{3}
\]

which states that any internally reversible thermodynamic cycle must generate a positive entropy \(\delta s \geq 0\) to the surrounding universe, where the change in entropy \(\delta s \ (J/kg \cdot K)\) is defined as \([2–12]\)

\[
\delta s = \frac{\delta q}{T}, \tag{4}
\]

where \(T \ (K)\) is the absolute temperature, and \(\delta q \ (J/kg)\) represent the heat transferred per unit mass. Because of Clausius’ equation, an ideal gas heat engine has a thermodynamic efficiency limit of the Carnot efficiency

\[
\eta_C = \frac{w_{out}}{q_{in}} = \frac{q_{in} - q_{out}}{q_{in}} = 1 - \frac{T_L}{T_H}, \tag{5}
\]

though exceptions to equation \([5]\) have been observed at the quantum level \([13–15]\) as well as in the presence of supercritical fluids \([16]\).

Entropy is also defined as a level of disorder, characterized by Boltzmann’s entropy
\[S = k_B \cdot \log(\Omega), \tag{6} \]

where \(S \) (J/K) represents the total entropy, \(k_B \) (1.38065·10\(^{-23}\) J/K) represents Boltzmann’s constant, \(\log \) represents the natural logarithm, and \(\Omega \) represents the number of possible microstates of the system of molecules. If the molecules are at absolute zero (\(T = 0 \) K), when there is no movement of the molecules, then \(\Omega = 1 \), and thus (according to equation 6) \(S = 0 \) J/K.

Equation 6 can be derived from the equation for isothermal (\(\delta T = 0 \)) heating and expansion of an ideal gas. An ideal gas is a fluid at a low enough density where the intermolecular attractive and repulsive Van der Waal forces are negligible, and therefore the equation of state is defined in equation 7

\[P \cdot V = N \cdot k_B \cdot T, \tag{7} \]

where \(P \) (Pa) represents the pressure, \(V \) (m\(^3\)) represents the total volume of the gas, \(N \) represents the number of molecules of the gas, \(k_B \) is the Boltzmann constant (1.38065·10\(^{-23}\) J/K), and \(T \) (K) represents the absolute temperature. When an ideal gas is undergoing isothermal expansion [3], the heat input \(q_{\delta T = 0} \) (J/kg) is equal to the work output \(W_{\delta T = 0} \) (J/kg) defined by equation 2, and therefore the heat input and work output of an ideal gas undergoing isothermal heating and expansion is defined in equation 8

\[q_{\delta T = 0} = W_{\delta T = 0} = \int P \cdot dV = N \cdot k_B \cdot T \cdot \int \frac{dV}{V} = N \cdot k_B \cdot T \cdot \log\left(\frac{V_2}{V_1}\right). \tag{8} \]

The change in entropy of an ideal gas is defined by equation 4, and therefore the change in entropy of an ideal gas undergoing isothermal expansion is found by plugging equation 8 into equation 4

\[\delta s_{\delta T = 0} = \frac{\delta q}{T} = N \cdot k_B \cdot \log\left(\frac{V_2}{V_1}\right) = k_B \cdot \log\left(\frac{V_2}{V_1}\right)^N. \tag{9} \]
By doubling the volume, you are effectively doubling the number of microstates possible (for each molecule), and therefore one can derive equation 6 from 9.

2 Kinetic Theory of an Ideal Gas

The kinetic model of an ideal gas \[\text{[3,4,17]} \] is a well-established model to predict the kinetic energy of an ideal gas. Internal energy, by definition, is the summation of the kinetic energy from all of the random molecular motion within a fluid, as well as any potential energy from intermolecular forces. In the kinetic model, the gas is assumed to follow the ideal gas equation of state defined in equation 7. For the kinetic model to be applicable, the gas must be ideal, where all of the molecules are moving independent of each other, and there is no interaction between different gas molecules, either by collision or intermolecular forces \[\text{[4]} \].

If a molecule is moving within the \(x \) direction and hits the boundary of a container or pressure vessel, provided the gas is thermodynamically stable and there is no heat transfer, it will bounce off of the wall in the opposite direction. The change in momentum for each molecular collision is therefore

\[
\Delta p = (m_m \cdot v_x) - (-m_m \cdot v_x) = 2 \cdot m_m \cdot v_x, \tag{10}
\]

where \(\Delta p \) (kg·m/s) is the change in momentum, \(m_m \) (kg) is the mass of an individual molecule, and \(v_x \) is the velocity in the \(x \)-direction. The average time \(\Delta \tau \) (s) for a molecule to cross the length \(L \) (m) of the pressure vessel is

\[
\Delta \tau = \frac{2L}{v_x}. \tag{11}
\]

The force applied to the walls of the pressure vessel with an individual molecular collision \(F_m \) (Newtons) is the change in momentum per unit time

\[
F_m = \frac{\Delta p}{\Delta \tau} = \frac{m_m \cdot v_x^2}{L}, \tag{12}
\]
and the total force on the walls of the pressure vessel F (Newtons) is thus

$$F = N \cdot F_m = \frac{N \cdot m_m \cdot v_{RMS}^2}{L}, \quad (13)$$

where N is the total count of the molecules.

So far this analysis has only been in the x-direction, when in reality the molecules are bouncing in three dimensions. Assuming the average speed in all three directions are identical, as is the case in a stable fluid, according to Pythagorean theorem the average Root Mean Square (RMS) total velocity v_{RMS} (m/s) is thus

$$v_{RMS}^2 = v_x^2 + v_y^2 + v_z^2 = 3v_x^2, \quad (14)$$

and thus equation (13) can be rewritten as

$$F = \frac{N \cdot m_m \cdot v_{RMS}^2}{3L}. \quad (15)$$

In the kinetic theory, equation (15) would only apply to molecules that have no rotational or vibrational energies, specifically monatomic molecules such as helium, neon, argon, xenon, krypton, or radon gas [4].

The pressure, by definition, is merely the ratio of the total force over the area of the container, and therefore assuming the container is cubic in shape, the pressure P (Pa) is

$$P = \frac{F}{L^2} = \frac{N \cdot m_m \cdot v_{RMS}^2}{3L^3} = \frac{N \cdot m_m \cdot v_{RMS}^2}{3V}, \quad (16)$$

where V (m3) is the volume of the container.

The total kinetic energy of the gas KE (J) is defined as the sum of the kinetic energies of the gas molecules

$$KE = \frac{1}{2} N \cdot m_m \cdot v_{RMS}^2, \quad (17)$$
and therefore plugging equation 17 into equation 16

\[P = \frac{2 \cdot KE}{3V}, \]

and therefore the kinetic energy of a monatomic ideal gas can be defined as

\[KE = \frac{3}{2} P \cdot V. \] (18)

As the kinetic model is dealing with an ideal gas, equation 7 is applicable, and thus

\[KE = \frac{3}{2} P \cdot V = \frac{3}{2} \cdot m_T \cdot R \cdot T = \frac{3}{2} N \cdot k_B \cdot T, \] (19)

where \(m_T \) (kg) is the total mass of the gas

\[m_T = N \cdot m_m. \]

The relationship between temperature and kinetic energy is thus defined with equations 17 and 19. This can be rewritten as

\[KE = \frac{1}{2} N \cdot m_m \cdot v_{RMS}^2 = \frac{3}{2} N \cdot k_B \cdot T, \]

and thus the average total velocity of a particle of an ideal gas is proportional to the square root of the temperature \[4\]

\[v_{RMS} = \sqrt{\frac{3 k_B \cdot T}{m_m}}. \] (20)

The kinetic heat energy \(\delta q \) of a monatomic ideal gas is simply

\[U = \frac{3}{2} N \cdot k_B \int_0^T dT = \frac{3}{2} N \cdot k_B \cdot T. \]

The change in entropy of an ideal monatomic gas undergoing isochoric heating at a constant
volume is therefore

\[
\delta s_{V=0} = \frac{3}{2} N \cdot k_B \int_{T_0}^{T} \frac{dT}{T} = \frac{3}{2} N \cdot k_B \cdot \log \left(\frac{T}{T_0} \right) = \frac{3}{2} N \cdot k_B \cdot \log \left(\frac{\frac{m_m v_{RMS}^2}{3k_B}}{\frac{m_m v_{RMS,0}^2}{3k_B}} \right) = \frac{3}{2} N \cdot k_B \cdot \log \left(\frac{v_{RMS}}{v_{RMS,0}} \right)^2 = 3 \cdot N \cdot k_B \cdot \frac{v_{RMS}}{v_{RMS,0}}
\]

This represents the change in entropy for heating an ideal gas at a constant volume; it is different from equation 9, which represents the isothermal heating of an ideal gas with simultaneous expansion in order to maintain a constant temperature. If equation 9 and 21 are combined, the estimated entropy is

\[
S = N \cdot k_B \cdot \{3 \cdot \log(v_{RMS}) + \log \left(\frac{V}{b \cdot MM} \right) \}.
\]

3 Kinetic Gas Simulation

A model was built in the Fortran programming language, to simulate one mole (6.02214086-10^{23}) of argon molecules traveling in a spherical volume. Argon was chosen because it is a simple monatomic molecule, commonly used in industry, and its critical properties are not at excessively low temperatures (ex. Helium). Argon has a molar mass \(MM\) of 39.9 g/mole, a critical pressure \(P_c\) of 4.863 MPa, a critical temperature \(T_c\) of 150.687 K, a critical density of 535 kg/m\(^2\), and a critical specific volume \(V_c\) of 1.8692 cm\(^3\)/g.

The model will take the dimensionless reduced temperature \(T_R\) and reduced specific volume \(V_R\) as inputs. The temperature is easily calculated as \(T = T_R \cdot T_c\), and the volume (for one mole) is calculated as \(V = V_R \cdot V_c \cdot MM\). From the known volume of the sphere, the radius and surface area are easily calculated as

\[
R_{sphere} = \left(\frac{3}{\pi \cdot 4} V_{sphere} \right)^{\frac{1}{3}},
\]

\[
A_{sphere} = 4 \cdot \pi \cdot R_{sphere}^2.
\]

The model has the option of simulating the particle at a constant speed for a given
temperature, if so the speed is constantly the v_{RMS} speed for the given temperature defined in equation 20. The model also gives the option of simulating a profile of faster and slower speeds; the speed profile will maintain the same RMS average speed defined in equation 20, and the average speed v_{avg} (m/s) will be determined as

$$v_{avg} = v_{RMS} \sqrt{\frac{8}{3 \pi}} \tag{24}$$

If the model calls for N_Y velocity increments to be simulated, a subroutine in the Fortran code will generate a $N_Y \cdot 1$ vector-array, ranging from 0.2 to 1.8, averaging 1.0, with a standard deviation of 0.71. This vector-array will be multiplied by the average molecule velocity at the boundary v_{avg}; the RMS of the velocity vector-array will be equal to v_{RMS} determined with 20.

The time-step $\delta \tau$ (s) is determined by the estimated time for an argon molecule traveling at the average speed v_{avg} (m/s) across the diameter of the sphere $2 \cdot R_{sphere}$ (m). This time is divided by the integer value $N_{\delta \tau}$ that is specified by the model, to give a time-step.

$$\delta \tau = \left(\frac{2 \cdot R_{sphere}}{v_{avg}} \right) \cdot \frac{1}{N_{\delta \tau}} \tag{25}$$

It is necessary to record the molecule’s position and velocity with each increment, but with different angles and speeds, it is impossible to know exactly how many time steps will be needed for each test parameter. In this Fortran code, an array length of $10 \cdot N_{\delta \tau}$ was found to be more than enough to avoid any risk of running out of array space. In this study, a resolution of $N_{\delta \tau} = 300$ was used; increasing the resolution beyond this number was not observed to have any significant impact on the results.

At each velocity increment, the model simulates a molecule leaving the surface of the sphere at different angles. As a sphere is effectively identical at all surface locations, the point of initial contact will be defined as ($-R,0,0$). The initial velocity will be defined in
three dimensions as

\[
\begin{align*}
V_x &= V_i \sin(\theta) \cdot \cos(\phi) \\
V_y &= V_i \sin(\theta) \cdot \sin(\phi) \\
V_z &= V_i \cos(\theta),
\end{align*}
\] (26)

where \(\phi\) ranges from 0 to \(\pi/2\), and \(\theta\) ranges from 0 to \(\pi\), both in 361 increments, resulting in \(361^2 = 130,321\) different simulations for each temperature and volume increment. The velocity magnitude \(V_i\) (m/s) for the individual increment is determined from the temperature (equation 20); the initial velocity magnitude is kept constant at \(v_{RMS}\) for each temperature, and \(N_Y = 1\).

The kinetic gas theory assumes the molecule travels across the long length of the volume and directly impacts the wall; in reality molecules will travel at all possible angles. If a molecule were to travel directly through the center of the sphere, the time \(\tau\) (s) to travel will simply be \(\tau = 2 \cdot R_{sphere}/v_{avg}\), and the force due to the change in momentum for a single molecule will be derived from equation 15, where \(F = m_m \cdot v_{RMS}^2 / (3 \cdot 2 \cdot R_{sphere})\). Assuming the spherical volume, if a molecule were to travel at an angle from the center of the sphere, the travel time \(\tau\) (s) will be reduced, but the force will also be reduced as the molecule is hitting the surface at an angle, and will only transmit part of its energy to changing momentum and direction.

The simulation starts off with a molecule at position \((-R,0,0)\). With each time-step, it increments the three dimensions based on the 3-dimensional velocity described in equation 26. The model uses a \texttt{while} loop until the radius \(r_{ii}\) (m) of the position

\[
r_{ii} = \sqrt{x^2 + y^2 + z^2};
\] (27)

exceeds the radius of the sphere, \(r_{ii} > R_{sphere}\). At this point, the molecule has impacted the cylinder wall. If the molecule travels right through the center and impacts the other end at position \((R,0,0)\), then the velocity will be \(V_i \cdot (1,0,0)\), and the force impacted will be
at a maximum; the travel time \(\tau \) (s) will also be the maximum \(\tau = 2R_{\text{sphere}}/V_i \). If the molecule were to travel at a 90° perpendicular direction, where the velocity were \(V_i\cdot(0, 1, 0) \) or \(V_i\cdot(0, 0, 1) \), the position will remain at (-R,0,0) and the travel time \(\tau \) will effectively be 0. For all the molecules traveling at angles in between the two extremes, the force applied is simply the dot product of the velocity with the position of the impact

\[
V X_{\text{rat}} = X_x V_x + X_y V_y + X_z V_z,
\]

(28)

and the dimensionless \(V X_{\text{rat}} \) is applied to the equation for the force applied by a single molecule \(F_m \) (N) defined in equation (29)

\[
F_m = \frac{V X_{\text{rat}} m_i \sqrt{V_x^2 + V_y^2 + V_z^2}}{3 \cdot 2 \cdot R_{\text{sphere}}}.
\]

(29)

Throughout this simulation, for all initial angles and velocities, the position and velocity in three dimensions is tabulated and recorded. Each position and velocity is stored in a large data file, and at the conclusion of the simulation, the average, RMS, and standard deviation of both the positions and the velocities are determined. The purpose of determining the standard deviation is to find the relationship between the standard deviation of the position and velocity, as it relates to entropy, determined with equations 4, 9, and 21.

4 Kinetic-Potential Simulation

The ideal gas equation breaks down in the presence of intermolecular attractive and repulsive Van der Waal forces, and therefore empirical equations of states are used, such as the
Redlich-Kwong \[18\] and the Peng-Robinson equation of state \[19,20\]

\[P = \frac{R \cdot T}{v - B} - \frac{A \cdot \alpha}{v^2 + 2 \cdot B \cdot v - B^2}, \]
(30)

\[A = 0.45724 \cdot \frac{R^2 \cdot T^2}{P_c}, \]

\[B = 0.07780 \cdot \frac{R \cdot T_c}{P_c}, \]

\[\alpha = (1 + \kappa \cdot (1 - \sqrt{T_R}))^2, \]

\[\kappa = 0.37464 + 1.54226 \cdot \omega - 0.26992 \cdot \omega^2, \]

where \(\omega \) is Pitzer’s acentric factor, defined as

\[\omega = \log_{10} (\frac{P_c}{P'_s}) - 1, \]
(31)

where \(P'_s \) (Pa) is the saturated pressure at a reduced temperature of \(T_R = 0.7 \), and \(P_c \) (Pa) is the critical pressure. For all of the monatomic fluids including argon, \(\omega = 0 \). The coefficient \(A \) represents the intermolecular attractive force, and the coefficient \(B \) represents the actual volume of the molecules at absolute zero. As the specific volume \(v \) (m\(^3\)/kg) increases (and the density decreases), equation (30) matches the ideal gas law defined in equation (7).

As the density of a fluid increases to the point of being a saturated liquid, saturated gas, or supercritical fluid, intermolecular attractive (and repulsive) forces \[21–26\] can impact the pressure and temperature of the fluid. As the molecules get closer together in the presence of attractive intermolecular forces, the internal potential energy will decrease. The thermodynamic data yields an empirical equation that closely predicts the change in specific internal energy \(\Delta u \) (J/kg) during isothermal compression and expansion

\[\Delta u = \frac{a'}{\sqrt{T}} \cdot (\frac{1}{v_1} - \frac{1}{v_2}), \]
\[a' = \frac{R^2 \cdot T^{2.5}}{9 \cdot (2^{\frac{3}{2}} - 1) \cdot P_c}, \]
(32)

where \(v_1 \) and \(v_2 \) (m\(^3\)/kg) represent the specific volume, \(T \) represents the temperature, \(R \)
(J/kg·K) represents the gas constant,

\[R = \frac{R_U}{MM} = \frac{A \cdot k_B}{MM}, \quad (33) \]

where \(A \) is Avogadro’s Number \(6.02214 \times 10^{23} \) (J/K), \(k_B \) is Boltzman’s Constant \(1.38 \times 10^{-23} \) (J/K), \(MM \) (kg/mole) is the molar mass, \(T_C \) (K) represents the critical temperature, and \(P_C \) (Pa) represents the critical pressure. The intermolecular attractive parameter \(a' \) defined in equation \(32 \) is thus \(1,063.8 \) Pa·K\(^{0.5}\)·m\(^{6}\)·kg\(^{-2}\) for argon.

The value of \(a' \) happens to be the same coefficient used in the Redlich-Kwong \([18]\) equation of state; equation \(32 \) does not actually use any equation of state, as it is an empirical equation based on published data by NIST in the literature. The change in internal energy equation \(32 \) during evaporation has been observed on many different molecules, including the highly polar fluid water; the monatomic fluids of argon, krypton, and xenon; the diatomic fluid nitrogen; ammonia; the hydrocarbons of methane, ethane, propane, and both normal and iso-butane; and the refrigerants Freon R-12, R-22, and R-134a. All of the data provided utilized the available online tables from NIST \([27]\), which are based on previously published experimental and empirical thermodynamics data \([28–53]\). First, equation \(32 \) matched remarkably for the change in internal energy during isothermal expansion during vaporization, all over a wide temperature range \(\Delta T \) (K). The calculated coefficient \(a' \) (Pa·K\(^{0.5}\)·m\(^{6}\)·kg\(^{-2}\)) and the coefficient of determination \(R^2 \) between the NIST values and equation \(32 \) are all tabulated in Table 1.

If dealing with a purely ideal gas, molecules have no interaction with each other, and the pressure and velocities can be solved with the purely analytical approach of the kinetic gas theory. To model real fluids, with intermolecular Van der Waal fluids, assumptions for the intermolecular forces are necessary. In Lennard Jones’ equation, the attractive VDW force \(F_{VDW} \) (N) for two molecules is proportional to the distance between particles to the sixth exponent \([5, 54]\)

\[F_{VDW} = \frac{a'}{r^6}, \quad (34) \]
Fluid	M (g/Mole)	T_C (K)	P_C (MPa)	a'	ΔT (K)	R^2
Water (H$_2$O)	18.02	647.14	22.064	43.971	274-647	0.98572
Argon (Ar)	39.948	150.687	4.863	1.062	84-150	0.98911
Krypton (Kr)	83.798	209.48	5.525	484	116-209	0.98858
Xenon (Xe)	131.3	289	5.84	417	162-289	0.98972
Nitrogen (N$_2$)	28.0134	126.2	3.4	1.982	64-126	0.98565
Ammonia (NH$_3$)	17.0305	405.4	11.3119	29.824	196-405	0.98603
Methane (CH$_4$)	16.043	190.53	4.598	12.520	91-190	0.97818
Ethane (C$_2$H$_6$)	30.07	305.34	4.8714	10.937	91-305	0.94881
Propane (C$_3$H$_8$)	44.098	369.85	4.2477	9.418	86-369	0.93372
Butane (C$_4$H$_{10}$)	58.125	425.16	3.796	8.594	135-424	0.9631
Iso-Butane (C$_4$H$_{10}$)	58.125	407.85	3.64	8.078	114-407	0.95368
Freon R-12	120.91	385.12	4.1361	1.423	175-384	0.98465
Freon R-22	86.47	369.295	4.99	2.077	172-369	0.98741
Freon R-134a	102.03	374.21	4.0593	1.896	170-374	0.9884

Table 1: The calculated coefficient a' (Pa\cdotK$^{0.5}\cdot$m$^6\cdot$kg$^{-2}$) and the coefficient of determination R^2 between the NIST values and equation 32 over a specified temperature range ΔT (K).

where a' is a constant and r (m) is the distance between two molecules. While the Lennard Jones potential equation [54] also includes a twelfth power for the repulsive forces, these are not based in reality, and the repulsive forces due to the Pauli Exclusion Principle are considered by subtracting the minimum possible volume B (m3/kg) in the VDW equation of state.

For the sake of simplicity, assume that the volume is a perfect sphere of a real, monatomic fluid molecules following the VDW equation of state. The surface area A_{sphere} (m2) and volume of this sphere V_{sphere} (m3) is simply

$$V_{sphere} = \frac{4}{3}\pi R_{sphere}^3,$$

$$A_{sphere} = 4\pi R_{sphere}^2,$$

where R_{sphere} (m) represents the sphere radius. Next, assume a molecule is on the far edge of this sphere; to determine the net attractive forces one must determine the summation of the average distances of the other molecules within the volume.

$$\hat{P}(x) = \frac{A(x)}{A_{avg}}$$
The cross-section area of the sphere at a given X-axis point $A(x)$ can be found from the radius of the cross section

$$A(x) = \pi \cdot R_{\text{sphere}}^2 \cdot \cos^2 \left(\sin^{-1} \left(\frac{x}{R_{\text{sphere}}} \right) \right),$$

(37)

while the average cross section area is simply the total volume of the sphere over the diameter of the sphere

$$A_{\text{avg}} = \frac{4}{3} \frac{\pi \cdot R_{\text{sphere}}^3}{2 \cdot R_{\text{sphere}}},$$

(38)

$$= \frac{2}{3} \frac{\pi \cdot R_{\text{sphere}}^2}{},$$

and now the probability $\tilde{P}(x)$ can be found by plugging the results of equation 37 and 38 into equation 36

$$\tilde{P}(x) = \frac{3}{2} \cos^2 \left(\sin^{-1} \left(\frac{x}{R_{\text{sphere}}} \right) \right).$$

(39)

The next step is to integrate across the diameter of the sphere along the X-axis in order to find the overall average distance to the sixth power $\bar{\delta x}^6$ (m)

$$\delta x^6 = \int_{-R}^{R} (R - x)^6 \cdot \tilde{P}(x) dx,$$

(40)

$$= \int_{-R_{\text{sphere}}}^{R_{\text{sphere}}} (R_{\text{sphere}} - x)^6 \frac{3}{2} \cos^2 \left(\sin^{-1} \left(\frac{x}{R_{\text{sphere}}} \right) \right) dx,$$

$$= \frac{16}{3} R_{\text{sphere}}^6.$$

It is desired not just for the average distance to a particle at the edge of the sphere, but all throughout the radius. A particle moving on the X-axis will experience attraction from particles both in front of and behind it, and therefore the proper average $\tilde{\delta x}^6$, for the purpose of determining net total attraction towards the center of the sphere

$$\tilde{\delta x}^6(r) = \int_{-R_{\text{sphere}}}^{r} (r - x)^6 \frac{3}{2} \cos^2 \left(\sin^{-1} \left(\frac{x}{R_{\text{sphere}}} \right) \right) dx - \int_{r}^{R_{\text{sphere}}} (R_{\text{sphere}} - x)^6 \frac{3}{2} \cos^2 \left(\sin^{-1} \left(\frac{x}{R_{\text{sphere}}} \right) \right) dx,$$

(41)
which can be simplified by the approximate equation

\[\delta x^6(r) \approx \frac{16}{3} r^3, \]

(42)

where \(r \) (m) represents the radial position on the X-axis, where \(0 < r < R_{\text{sphere}} \). The correlation coefficient between the two equations \(\text{eq. 41} \) and \(\text{eq. 42} \), where \(\delta r = 0.001 \), is \(R = 0.99936 \).

\(r \)	\(\delta x^5(r) \) eq. 41	\(\delta x^9(r) \) eq. 42
0.05005	0.033158	0.00066867
0.1001	0.06865	0.0053494
0.15015	0.10887	0.018054
0.2002	0.15633	0.042795
0.25025	0.21373	0.083584
0.3003	0.28399	0.14443
0.35035	0.37035	0.22935
0.4004	0.4764	0.34236
0.45045	0.60615	0.48746
0.4995	0.76063	0.66467
0.54955	0.95109	0.88515
0.5996	1.1803	1.1497
0.64965	1.4545	1.4623
0.6997	1.7809	1.827
0.74975	2.1671	2.2477
0.7998	2.6218	2.7286
0.84985	3.1547	3.2736
0.8999	3.7763	3.8867
0.94995	4.4982	4.5719
1	5.3333	5.3333

Table 2: Comparison of \(\delta x^6(r) \) functions between equation 41 and 42. The correlation coefficient between the two equations (\(\delta r = 0.001 \)) is \(R = 0.99936 \).

While typical conservative forces such as gravity, electrostatic forces, and VDW attractive forces increase as the distance between two attractive objects decreases, it is clear from equation 41 that the forces will decrease when a given molecule moves closer to the center of the volume, proportional to the radial position cubed. This makes physical sense, as near the center of the sphere, the attractive forces of neighboring molecules on one side of the molecule counteract the attractive forces from the other side.

When modeling the effects of intermolecular attractive forces, it is not enough to simply
take the pressure reduced from the intermolecular attractive Van der Waal force, multiply it by the spherical surface area, divide it by the number of molecules, and reduce it by the relative radius cubed. The reason for this is that the overall change in pressure of the real fluid includes the pressure reduced from the attractive force, as well as the change in time for the molecule to travel across the spherical volume. An increasing force will inherently accelerate the molecule towards the center, and decelerate it towards the other side, reducing the travel time, and thus increasing the pressure. It is necessary to select a force that balances these two impacts on the final pressure, in order to achieve the correct pressure for the equation of state.

A parametric study of the supercritical argon molecules propagating in the sphere was conducted to determine the exact function for the intermolecular force on each molecule. The maximum such a force will be is that which will cause the drop in pressure observed in most empirical equations of states, such as the Peng-Robinson defined in equation 30

\[
\delta P = - \frac{A \cdot \alpha}{v^2 + 2B^*v - B^2}. \tag{43}
\]

The derivative of the change in internal energy defined in equation 32 gives a very close approximation for \(\delta P\)

\[
\delta P \approx - \frac{R^2T_c^{2.5}}{9(2^* - 1)P_c} \frac{1}{\sqrt{T}} \frac{1}{v^2}.
\]

The force needs to be some ratio of this, as increasing the force will increase the average speed of a molecule (for a given \(v_{RMS}\) (m/s) at the surfaces), reducing the time in between impacted the sphere’s surface, and increasing the pressure.

A parametric study was performed to find the exact ratio of this pressure, and a function for the force (N) on a given molecule, accelerating it as it travels towards the center and decelerating it as it travels back towards the surface, was determined in order that the molecule satisfy the Peng-Robinson equation of state defined in equation 30. The Van der
Waal attractive force F_{VDW} (N) is thus

$$F_{VDW} = \chi \cdot \frac{R^2 T_{c}^{2.5}}{9(2^{4} - 1)P_{c}} \cdot \frac{1}{\sqrt{T}} \cdot \frac{1}{\sqrt{v^2}} \cdot \frac{A_{sphere}}{N},$$

(44)

where N is the number of molecules in the sphere (one mole for this simulation), and χ is a dimensionless coefficient

$$\chi = 2.3246 - \frac{0.8441}{\sqrt(V_R)} - 0.8670 \cdot T_R, \quad T_R \leq 1$$

$$= 2.3246 - \frac{0.8441}{\sqrt(V_R)} - 0.8670 \cdot \sqrt{T_R}, \quad T_R \geq 1$$

(45)

determined from a parametric study. This force F_{VDW} (N) is the force at the surface of the sphere towards the center; this force decreases in each of the three dimensions as the molecule gets closer to the center

$$F_x = -F_{VDW} \cdot \left(\frac{x}{R}\right)^3.$$

$$F_y = -F_{VDW} \cdot \left(\frac{y}{R}\right)^3.$$

$$F_z = -F_{VDW} \cdot \left(\frac{z}{R}\right)^3.$$

5 Kinetic Simulation to Determine Entropy

Two parametric simulations of this model were conducted, with negligibly low intermolecular attractive forces applied, for one mole of near-ideal gas argon. The first parametric simulation (run 1) started off at a reduced specific temperature T_R of 2.0, and increased to 3.0, while maintaining a constant reduced specific volume V_R of 100. The second parametric simulation (run 2) started off with a reduced specific volume V_R of 100, expanded up to a reduced specific volume V_R of 1,000, all at a constant reduced temperature T_R of 2.0 (approximately 300 K). The actual volume of the sphere V_{sphere} (m3) for one mole of argon was determined from the reduced volume V_R, the specific density $\rho_c = 535$ kg/m3, and the
molar mass $MM = 39.9$ g/mole simply by

$$V_{sphere} = \frac{V_R \cdot MM}{\rho_c},$$

and thus the radius R_{sphere} (m) and surface area A_{sphere} (m2) of the sphere can be determined from V_{sphere} (m3) with equation (46).

The reduced specific volumes V_R and reduced specific temperatures T_R, as well as the pressures determined with the model P_{kin} (kPa), the pressures determined with the Peng-Robinson equation of state P_{PR} (kPa) defined in equation (30) as well as the internal energy U (kJ), are tabulated in Table 3 for run 1 and Table 6 for run 2. In both simulation, the numerical prediction for the pressure matched the Peng-Robinson pressures within less than 1%. The internal energy for run 1 went up with increasing temperatures based on the specific heat C_V (J/kg·K), whereas the internal energy for run 2 was nearly constant; the minimal increase is due to the increase in internal potential energy, due to the reduced loss in pressure from the attractive Van der Waal intermolecular forces (equation (43)).

The average molecular positions $\text{Avg} \ X$, $\text{Avg} \ Y$, and $\text{Avg} \ Z$ (m); and RMS molecular velocities $\text{RMS} \ V_X$, $\text{RMS} \ V_Y$, and $\text{RMS} \ V_Z$ (m/s) are tabulated in Tables 4 and 7 for run 1 and run 2, respectively. The standard deviations of the molecular position X_{STD}, Y_{STD}, and Z_{STD} (m); and standard deviations of the molecular velocities $V_{X,STD}$, $V_{Y,STD}$, and $V_{Z,STD}$ (m/s) are tabulated in Tables 5 and 8 for run 1 and run 2, respectively. As expected, in run 1, with increasing temperatures at a constant volume, the standard deviations of the velocity increases, whereas the standard deviations of the position remains relatively unchanged. Also expected, in run 2, with increasing volume and a constant temperature, the standard deviations of the position increases, whereas the standard deviations of the velocity remains relatively unchanged.

Entropy is a measure of the disorder of a system, and the number of possible positions and velocities of a molecular system, and so it would make logical sense that as the entropy of a system of molecules increases, the standard deviations of the molecular positions and/or velocities would increase. The entropy S (J/kg·K) as estimated in equation (22) was compared
to the standard deviations of the molecular positions and velocities, and empirical equation (47) was generated from the numerically obtained standard deviations of run 1 and run 2. The comparisons in entropy are tabulated in Table 9 and the correlation coefficient R between equation 22 and 47 for both run 1 and run 2 was $R=0.9923$.

\[
S = \Phi_1 + \Phi_2 \cdot V_{STD} + \Phi_3 \cdot X_{STD}, \tag{47}
\]

\[
X_{STD} = \sqrt{X_{X,STD}^2 + X_{Y,STD}^2 + X_{Z,STD}^2}
\]

\[
V_{STD} = \sqrt{V_{X,STD}^2 + V_{Y,STD}^2 + V_{Z,STD}^2}
\]

\[
\Phi_1 = 172.2593,
\]

\[
\Phi_2 = 1.2793 \cdot 10^{-4},
\]

\[
\Phi_3 = 2168.8433.
\]
Table 3: The reduced temperature T_R, reduced specific volume V_R, pressure (obtained with the model) P_{kin} (kPa), pressure obtained with the Peng-Robinson equation of state defined in equation 30 P_{PR} (kPa), the % errors between the numerical and empirical pressure, and the internal energy U (kJ) determined with the RMS velocity (Table 4) for run 1.
\begin{table}
\centering
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline
Trial & Avg X (m) & Avg Y (m) & Avg Z (m) & RMS V_X (m/s) & RMS V_Y (m/s) & RMS V_Z (m/s) \\
\hline
1 & -0.066977 & 0.027098 & -2.778e-09 & 289.2383 & 204.4911 & 250.8883 \\
2 & -0.06695 & 0.027107 & -2.7757e-09 & 293.2069 & 207.0102 & 254.0916 \\
3 & -0.066952 & 0.027107 & -2.0865e-09 & 296.7418 & 209.5186 & 257.1673 \\
4 & -0.066953 & 0.027106 & -2.7759e-09 & 300.2352 & 211.9975 & 260.207 \\
5 & -0.066954 & 0.027106 & -2.776e-09 & 303.6895 & 214.4473 & 263.2111 \\
6 & -0.066956 & 0.027105 & -2.7761e-09 & 307.105 & 216.8698 & 266.1814 \\
7 & -0.066957 & 0.027105 & 9.4804e-09 & 310.4831 & 219.2653 & 269.1193 \\
8 & -0.066958 & 0.027104 & 5.1647e-09 & 313.8248 & 221.635 & 272.0258 \\
9 & -0.066959 & 0.027104 & -2.776e-09 & 317.1318 & 223.9793 & 274.9017 \\
10 & -0.06696 & 0.027103 & -2.7764e-09 & 320.405 & 226.2995 & 277.7475 \\
11 & -0.066961 & 0.027103 & 7.976e-09 & 323.6448 & 228.5964 & 280.5649 \\
12 & -0.066962 & 0.027103 & -1.9462e-09 & 326.8527 & 230.8708 & 283.3541 \\
13 & -0.066963 & 0.027103 & -2.7766e-09 & 330.0303 & 233.1222 & 286.116 \\
14 & -0.066963 & 0.027102 & -2.7767e-09 & 333.1775 & 235.352 & 288.852 \\
15 & -0.066964 & 0.027102 & -2.7767e-09 & 336.2957 & 237.5618 & 291.5612 \\
16 & -0.066964 & 0.027102 & -2.7768e-09 & 339.3856 & 239.75 & 294.2463 \\
17 & -0.066965 & 0.027102 & -2.7768e-09 & 342.4478 & 241.92 & 296.9058 \\
18 & -0.066966 & 0.027102 & -2.7769e-09 & 345.4824 & 244.0701 & 299.543 \\
19 & -0.066966 & 0.027101 & -2.7769e-09 & 348.4907 & 246.2012 & 302.1575 \\
20 & -0.066967 & 0.027101 & -2.777e-09 & 351.4736 & 248.314 & 304.7493 \\
21 & -0.066967 & 0.027101 & -1.8002e-09 & 354.4316 & 250.4091 & 307.319 \\
\hline
\end{tabular}
\caption{The mean position and RMS velocity for run 1.}
\end{table}

21
Trial	$X_{X,STD}$ (m)	$X_{Y,STD}$ (m)	$X_{Z,STD}$ (m)	$V_{X,STD}$ (m/s)	$V_{Y,STD}$ (m/s)	$V_{X,STD}$ (m/s)
1	0.0026905	0.00067387	0.0017681	12111.056	12864.746	62944.914
2	0.0026915	0.00067418	0.0017701	12427.305	13188.486	64562.535
3	0.0026915	0.00067416	0.00177	12729.76	13510.059	66135.008
4	0.0026914	0.00067414	0.0017699	13032.178	13831.644	67797.68
5	0.0026914	0.00067412	0.0017698	13334.629	14153.262	69280.078
6	0.0026914	0.00067411	0.0017697	13636.997	14474.855	70852.547
7	0.0026912	0.00067409	0.0017696	13939.477	14796.468	72425.211
8	0.0026912	0.00067408	0.0017695	14242.004	15117.968	73998.047
9	0.0026911	0.00067406	0.0017695	14544.544	15439.505	75570.953
10	0.0026911	0.00067405	0.0017694	14847.077	15761.027	77143.688
11	0.0026911	0.00067404	0.0017693	15149.649	16082.619	78716.648
12	0.002691	0.00067404	0.0017693	15452.23	16404.287	80289.547
13	0.002691	0.00067402	0.0017692	15754.771	16725.828	81862.352
14	0.002691	0.00067401	0.0017692	16057.435	17047.375	83435.445
15	0.002691	0.00067401	0.0017691	16359.894	17368.988	85007.906
16	0.002691	0.000674	0.0017691	16662.418	17690.438	86580.891
17	0.0026909	0.000674	0.001769	16964.77	18012.127	88153.094
18	0.0026909	0.00067399	0.001769	17267.299	18333.793	89726.031
19	0.0026909	0.00067398	0.0017689	17569.984	18655.346	91299.148
20	0.0026909	0.00067398	0.0017689	17872.594	18976.932	92872.109
21	0.0026909	0.00067397	0.0017689	18175.207	19298.521	94444.992

Table 5: The position and velocity standard deviations for run 1.
Trial	V_R	T_R	P_{kin} (kPa)	P_{PR} (kPa)	P_{error} (%)	U (kJ)
1	100	2	345.4537	335.0073	0.31	93.8471
2	120	2	287.8502	279.3072	0.31	93.9061
3	140	2	246.6736	239.4888	0.3	93.9482
4	160	2	215.8105	209.607	0.3	93.9798
5	180	2	191.8241	186.355	0.29	94.0044
6	200	2	172.6565	167.7467	0.29	94.0241
7	220	2	156.9532	152.5172	0.29	94.0402
8	240	2	143.8597	139.8229	0.29	94.0537
9	260	2	132.7964	129.0794	0.29	94.065
10	280	2	123.3077	119.8691	0.29	94.0748
11	300	2	115.0808	111.8856	0.29	94.0832
12	320	2	107.8863	104.8991	0.28	94.0906
13	340	2	101.5342	98.7339	0.28	94.0971
14	360	2	95.8966	93.2532	0.28	94.1029
15	380	2	90.8398	88.3489	0.28	94.1081
16	400	2	86.3029	83.9347	0.28	94.1128
17	420	2	82.1948	79.9406	0.28	94.117
18	440	2	78.4569	76.3093	0.28	94.1209
19	460	2	75.041	72.9937	0.28	94.1244
20	480	2	71.912	69.9541	0.28	94.1276
21	500	2	69.0377	67.1576	0.28	94.1305

Table 6: The reduced temperature T_R, reduced specific volume V_R, pressure (obtained with the model) P_{kin} (kPa), pressure obtained with the Peng-Robinson equation of state defined in equation P_{PR} (kPa), the % errors between the numerical and empirical pressure, and the internal energy U (kJ) determined with the RMS velocity (Table 7) for run 2.
Trial	Avg X (m)	Avg Y (m)	Avg Z (m)	RMS V_X (m/s)	RMS V_Y (m/s)	RMS V_Z (m/s)
1	-0.066977	0.027098	-2.778e-09	289.2383	204.4491	250.8883
2	-0.071174	0.028796	-2.9521e-09	289.2383	204.4491	250.8883
3	-0.074927	0.030314	-3.1077e-09	289.2383	204.4491	250.8883
4	-0.078337	0.031694	-3.2492e-09	289.2383	204.4491	250.8883
5	-0.081474	0.032963	-3.3793e-09	289.2383	204.4491	250.8883
6	-0.084386	0.034141	-3.5001e-09	289.2383	204.4491	250.8883
7	-0.08711	0.035243	-3.6131e-09	289.2383	204.4491	250.8883
8	-0.089674	0.03628	-3.7194e-09	289.2383	204.4491	250.8883
9	-0.092098	0.037261	-3.82e-09	289.2383	204.4491	250.8883
10	-0.094402	0.038193	-3.9155e-09	289.2383	204.4491	250.8883
11	-0.096598	0.039082	-4.0066e-09	289.2383	204.4491	250.8883
12	-0.098699	0.039932	-4.0937e-09	289.2383	204.4491	250.8883
13	-0.10071	0.040747	-4.1773e-09	289.2383	204.4491	250.8883
14	-0.10265	0.041531	-4.2577e-09	289.2383	204.4491	250.8883
15	-0.10452	0.042286	-4.3351e-09	289.2383	204.4491	250.8883
16	-0.10632	0.043015	-4.4098e-09	289.2383	204.4491	250.8883
17	-0.10806	0.04372	-4.4821e-09	289.2383	204.4491	250.8883
18	-0.10975	0.044404	-4.5522e-09	289.2383	204.4491	250.8883
19	-0.11139	0.045066	-4.6201e-09	289.2383	204.4491	250.8883
20	-0.11298	0.04571	-4.6862e-09	289.2383	204.4491	250.8883
21	-0.11453	0.046337	-4.7504e-09	289.2383	204.4491	250.8883

Table 7: The mean position and RMS velocity for run 2.
Trial	$X_{X,STD}$ (m)	$X_{Y,STD}$ (m)	$X_{Z,STD}$ (m)	$V_{X,STD}$ (m/s)	$V_{Y,STD}$ (m/s)	$V_{Z,STD}$ (m/s)
1	0.0026905	0.00067387	0.0017681	12111.056	12864.746	62944.914
2	0.0030382	0.0076096	0.0019966	12111.056	12864.746	62944.914
3	0.0033671	0.0084333	0.0022127	12111.056	12864.746	62944.914
4	0.0036806	0.0092184	0.0024187	12111.056	12864.746	62944.914
5	0.0039812	0.0099715	0.0026162	12111.056	12864.746	62944.914
6	0.0042709	0.010697	0.0028066	12111.056	12864.746	62944.914
7	0.0045511	0.011399	0.0029907	12111.056	12864.746	62944.914
8	0.0048229	0.01208	0.0031693	12111.056	12864.746	62944.914
9	0.0050873	0.012742	0.0033431	12111.056	12864.746	62944.914
10	0.0053449	0.013387	0.0035124	12111.056	12864.746	62944.914
11	0.0055965	0.014017	0.0036777	12111.056	12864.746	62944.914
12	0.0058425	0.014633	0.0038394	12111.056	12864.746	62944.914
13	0.0060835	0.015237	0.0039977	12111.056	12864.746	62944.914
14	0.0063198	0.015829	0.004153	12111.056	12864.746	62944.914
15	0.0065518	0.01641	0.0043054	12111.056	12864.746	62944.914
16	0.0067797	0.01698	0.0044552	12111.056	12864.746	62944.914
17	0.0070038	0.017542	0.0046025	12111.056	12864.746	62944.914
18	0.0072244	0.018094	0.0047475	12111.056	12864.746	62944.914
19	0.0074417	0.018639	0.0048903	12111.056	12864.746	62944.914
20	0.0076559	0.019175	0.005031	12111.056	12864.746	62944.914
21	0.0078671	0.019704	0.0051698	12111.056	12864.746	62944.914

Table 8: The position and velocity standard deviations for run 2.
Table 9: The entropy, both theoretical (equation 22) and with the empirical equation 47. The correlation coefficient between equation 22 and 47 for both run 1 and run 2 is R=0.9923.
6 The Supercritical Stirling Cycle Heat Engine

A Stirling engine cycle is defined by isothermal compression at the cold sink (stage 1-2), isochoric heating from the cold to the hot temperature (stage 2-3), isothermal expansion at the hot source (stage 3-4), and isochoric cooling back from the hot temperature to the cold temperature (stage 4-1). An ideal Stirling cycle heat engine, with perfect regeneration from the isochoric cooling (stage 4-1) to the isochoric heating (stage 2-3) will have the Carnot thermodynamic efficiency defined in equation 5.

As a fluid gets more and more dense, the molecules get closer to each other, and the impact of intermolecular forces increases. When a Stirling Engine uses a dense real fluid as its working fluid, the internal energy will in fact change during isothermal compression and expansion, and can be simply and accurately approximated with empirical equation 32. To improve on the accuracy, the potential energy of the real argon will be determined by integrating the reduced pressure from the intermolecular Van der Waal forces defined in equation 43, as well as the kinetic energy of a mole of argon traveling at the numerically simulated RMS average velocity $\bar{v}_{RMS} \text{ (m/s)}$, and therefore the internal energy of a mole of argon is defined in equation 48

$$U(V,T) = \frac{1}{2}MM(\bar{v}_{RMS})^2 - MM\int_{V}^{\infty} \frac{A\alpha}{V^2 + 2B V - B^2} dv. \quad (48)$$

This argon model will simulate the entropy of a theoretical high-density Stirling cycle engine 16, using one mole of argon gas as the working fluid. The reduced specific volume at top and bottom dead center are $V_R = 1.5$ and $V_R = 15.0$, whereas the reduced specific temperatures are $T_R = 1.3 \approx -78^\circ\text{C}$ and $T_R = 2.0 \approx 25^\circ\text{C}$ at the low and hot temperature range. The thermodynamic properties of the argon working fluid at each stage of this cycle are tabulated in Table 10; the specific work $\delta w \text{ (J/kg)}$ and specific heat $\delta q \text{ (J/kg)}$ inputs, as well as the changes in specific internal energy $\delta u \text{ (J/kg)}$ and specific entropy $\delta s \text{ (J/kg-K)}$ as determined with equation 4 are tabulated in Table 11.

The reduced specific volumes V_R and reduced specific temperatures T_R, as well as the pressures determined with the model $P_{kin} \text{ (MPa)}$, the pressures determined with the Peng-
Robinson equation of state P_{PR} (MPa) defined in equation 30, as well as the internal energy (equation 48), are tabulated in Tables 12, 15, 18, and 21 for stages 1-2, 2-3, 3-4, and 4-1, respectively. In both simulation, the numerical prediction for the pressure matched the Peng-Robinson pressures within less than 3% error.

The average molecular position $Avg X$, $Avg Y$, and $Avg Z$ (m); and average RMS molecular velocity $RMS V_X$, $RMS V_Y$, and $RMS V_Z$ (m/s), are tabulated in Tables 13, 16, 19, and 22 for stages 1-2, 2-3, 3-4, and 4-1, respectively. The standard deviations of the molecular position $X_{X,STD}$, $X_{Y,STD}$, and $X_{Z,STD}$ (m); and standard deviations of the molecular velocities $V_{X,STD}$, $V_{Y,STD}$, and $V_{Z,STD}$ (m/s) are tabulated in Tables 14, 17, 20, and 23 for stages 1-2, 2-3, 3-4, and 4-1, respectively. The change in entropy, including the difference in entropy δs_0 (J/K) due to standard deviation of the molecule location and velocity as determined with empirical equation 47, as well as the change in entropy δs_1 (J/K) to the universe from the heat input and output as determined by equation 4, is tabulated in Table 24. The cumulative change in entropy $\int \delta s_0$ (J/K) and $\int \delta s_0$ (J/K) throughout this cycle is tabulated in Table 25.

Stage	P (MPa)	v (cm3/g)	T (°C)	P_R	v_R	T_R
1	1.3744	28.0374	-78	0.28263	15	1.3
2	9.6737	2.80374	25	1.9893	1.5	1.3
3	20.6058	2.80374	25	4.2373	1.5	2.0
4	2.1744	28.0374	25	0.44713	15	2.0

Table 10: Pressure P (MPa) as determined from the Peng-Robinson equation of state (equation 30), specific volume v (cm3/g), temperature T (°C), reduced pressure P_R, reduced specific volume v_R, and reduced temperature T_R, for the Stirling cycle heat engine utilizing supercritical argon gas as the working fluid.
Stage Change	δu (J/kg)	δw (J/kg)	δq (J/kg)	δs (J/kg·K)
Stage 1-2 | -609 | 2670 | -3279 | 15.8933
Stage 2-3 | 1378 | 318 | 1060 | -2.5789
Stage 3-4 | 603 | -5300 | 5903 | -19.8044
Stage 4-1 | -1372 | -115 | -1257 | 4.8796

Table 11: The change in specific internal energy δu (J/kg), specific work δw (J/kg), specific heat transfer δq (J/kg), and specific entropy δs (J/kg·K) obtained by equation 4 between each of the four stages of the high-pressure Stirling cycle heat engine.

Trial	V_R	T_R	P_{kin} (MPa)	P_{PR} (MPa)	P_{error} (%)	U (kJ)	S (J/K)
1 | 15 | 1.3 | 1.5047 | 1.3803 | 0.9 | 2.3263 | 186.1793
2 | 14.325 | 1.3 | 1.5759 | 1.4418 | 0.93 | 2.3209 | 186.1226
3 | 13.65 | 1.3 | 1.6545 | 1.509 | 0.96 | 2.3149 | 186.065
4 | 12.975 | 1.3 | 1.7409 | 1.5828 | 1 | 2.3084 | 186.0064
5 | 12.3 | 1.3 | 1.8373 | 1.6643 | 1.04 | 2.3012 | 185.9468
6 | 11.625 | 1.3 | 1.9447 | 1.7545 | 1.08 | 2.2931 | 185.8862
7 | 10.95 | 1.3 | 2.0658 | 1.8551 | 1.14 | 2.2841 | 185.8242
8 | 10.275 | 1.3 | 2.2028 | 1.968 | 1.19 | 2.2739 | 185.761
9 | 9.6 | 1.3 | 2.3591 | 2.0955 | 1.26 | 2.2623 | 185.6964
10 | 8.925 | 1.3 | 2.5395 | 2.2406 | 1.33 | 2.249 | 185.6303
11 | 8.25 | 1.3 | 2.7495 | 2.4074 | 1.42 | 2.2336 | 185.5625
12 | 7.575 | 1.3 | 2.9976 | 2.601 | 1.52 | 2.2156 | 185.4928
13 | 6.9 | 1.3 | 3.2948 | 2.8285 | 1.65 | 2.1941 | 185.421
14 | 6.225 | 1.3 | 3.8526 | 3.0997 | 0.8 | 2.2783 | 185.5059
15 | 5.55 | 1.3 | 3.1184 | 3.4286 | 0.9 | 2.2573 | 185.4435
16 | 4.875 | 1.3 | 3.4368 | 3.8359 | 1.04 | 2.2303 | 185.3809
17 | 4.2 | 1.3 | 3.8257 | 4.3537 | 1.21 | 2.1945 | 185.3191
18 | 3.525 | 1.3 | 4.3101 | 5.035 | 1.44 | 2.1447 | 185.2591
19 | 2.85 | 1.3 | 4.9259 | 5.9747 | 1.76 | 2.0708 | 185.2027
20 | 2.175 | 1.3 | 5.7384 | 7.3689 | 2.21 | 1.95 | 185.1532
21 | 1.5 | 1.3 | 6.9257 | 9.7546 | 2.9 | 1.7175 | 185.1134

Table 12: The reduced temperature T_R, reduced specific volume V_R, pressure (obtained with the model) P_{kin} (MPa), pressure obtained with the Peng-Robinson equation of state defined in equation 30 P_{PR} (MPa), the % errors between the numerical and empirical pressure, the internal energy U (kJ) obtained with equation 48 utilizing the RMS velocities tabulated in Table 13 and the entropy S (J/K) as defined with empirical equation 47 for stage 1-2.
Table 13: The mean position and RMS velocity, for stage 1-2.

Trial	Avg X (m)	Avg Y (m)	Avg Z (m)	RMS V_X (m/s)	RMS V_Y (m/s)	RMS V_Z (m/s)
1	-0.035587	0.014398	-1.476e-09	233.1914	164.8321	202.2726
2	-0.035045	0.014179	-1.4536e-09	233.1914	164.8321	202.2726
3	-0.034486	0.013952	-1.4304e-09	233.1914	164.8321	202.2726
4	-0.033908	0.013718	-1.4064e-09	233.1914	164.8321	202.2726
5	-0.032688	0.013225	-1.3558e-09	233.1914	164.8321	202.2726
6	-0.032043	0.012964	-1.329e-09	233.1914	164.8321	202.2726
7	-0.031371	0.012692	-1.3012e-09	233.1914	164.8321	202.2726
8	-0.030668	0.012408	-1.272e-09	233.1914	164.8321	202.2726
9	-0.029932	0.01211	-1.2415e-09	233.1914	164.8321	202.2726
10	-0.029157	0.011796	-1.2094e-09	233.1914	164.8321	202.2726
11	-0.028339	0.011466	-1.1754e-09	233.1914	164.8321	202.2726
12	-0.027471	0.011114	-1.1394e-09	233.1914	164.8321	202.2726
13	-0.026218	0.010851	-9.3108e-09	242.5788	165.3416	204.4496
14	-0.025204	0.010454	-9.0304e-09	243.4964	165.3842	204.6685
15	-0.024103	0.010023	-9.838e-10	244.6179	165.4364	204.9353
16	-0.022895	0.0095513	-9.3251e-10	246.0186	165.4973	205.2718
17	-0.021547	0.0090258	-9.0961e-10	247.8141	165.5699	205.7093
18	-0.020014	0.0084283	-8.3083e-09	250.1926	165.6579	206.2937
19	-0.018218	0.0077264	-7.3337e-10	253.4464	165.7632	207.1082
20	-0.016012	0.0068541	-5.7272e-10	257.9062	165.8705	208.2573
21	-0.016012	0.0068541	-5.7272e-10	257.9062	165.8705	208.2573
Trial	$X_{X, STD}$ (m)	$X_{Y, STD}$ (m)	$X_{Z, STD}$ (m)	$V_{X, STD}$ (m/s)	$V_{Y, STD}$ (m/s)	$V_{Z, STD}$ (m/s)
-------	-----------------	-----------------	-----------------	-------------------	-------------------	-------------------
1	0.00075956	0.00019024	0.00049914	7872.1855	8362.085	40914.195
2	0.0007366	0.00018449	0.00048405	7872.1855	8362.085	40914.195
3	0.00071328	0.00017865	0.00046872	7872.1855	8362.085	40914.195
4	0.00068956	0.00017271	0.00045314	7872.1855	8362.085	40914.195
5	0.00064093	0.00016667	0.00043729	7872.1855	8362.085	40914.195
6	0.00061581	0.00015424	0.00042114	7872.1855	8362.085	40914.195
7	0.00059023	0.00014128	0.00040467	7872.1855	8362.085	40914.195
8	0.00056409	0.00013458	0.00038787	7872.1855	8362.085	40914.195
9	0.00053733	0.00012771	0.0003531	7872.1855	8362.085	40914.195
10	0.00050988	0.00012064	0.00031651	7872.1855	8362.085	40914.195
11	0.00048168	0.00011336	0.00029744	7872.1855	8362.085	40914.195
12	0.00045262	0.00010734	0.00028797	8137.1377	8409.0684	41799.648
13	0.00042695	0.00010374	0.00028797	8409.0684	41799.648	41799.648
14	0.00039586	9.9569e-05	0.00026773	8163.0317	8413.8047	41889.188
15	0.00036346	9.1474e-05	0.00024665	8194.3926	8419.2754	41998.473
16	0.0003295	8.2989e-05	0.00022457	8233.542	8426.04	42136.496
17	0.00029362	7.403e-05	0.00020125	8283.9036	8434.9443	42316.305
18	0.00025533	6.4468e-05	0.00017636	8350.0996	8446.5508	42557.098
19	0.00021373	5.4084e-05	0.00014926	8440.4346	8462.3477	42893.82
20	0.00016731	4.2474e-05	0.0001187	8563.1191	8483.8496	43371.117

Table 14: The position and velocity standard deviations, for stage 1-2.
Trial	V_R	T_R	P_{kin} (MPa)	P_{PR} (MPa)	P_{error} (%)	U (kJ)	S (J/K)
21	1.5	1.3	6.9257	9.7546	2.9	1.7175	185.1134
22	1.5	1.335	7.6201	10.3281	2.62	1.7855	185.2743
23	1.5	1.37	8.3064	10.8998	2.38	1.8537	185.4357
24	1.5	1.405	8.9868	11.4697	2.16	1.922	185.5979
25	1.5	1.44	9.6619	12.038	1.97	1.9905	185.7609
26	1.5	1.475	10.3307	12.6046	1.8	2.059	185.9242
27	1.5	1.51	10.9932	13.1697	1.65	2.1277	186.0882
28	1.5	1.545	11.6497	13.7332	1.52	2.1965	186.2526
29	1.5	1.58	12.3019	14.2953	1.39	2.2653	186.4177
30	1.5	1.615	12.9485	14.856	1.28	2.3343	186.5829
31	1.5	1.65	13.589	15.4153	1.18	2.4033	186.7486
32	1.5	1.685	14.2238	15.9733	1.1	2.4724	186.9148
33	1.5	1.72	14.8548	16.53	1.01	2.5415	187.0811
34	1.5	1.755	15.479	17.0855	0.94	2.6107	187.2477
35	1.5	1.79	16.1041	17.6397	0.87	2.6799	187.415
36	1.5	1.825	16.7196	18.1928	0.81	2.7492	187.5825
37	1.5	1.86	17.3336	18.7448	0.75	2.8185	187.7503
38	1.5	1.895	17.9406	19.2956	0.7	2.8878	187.9181
39	1.5	1.93	18.5432	19.8454	0.66	2.9571	188.0862
40	1.5	1.965	19.1431	20.3941	0.61	3.0265	188.2546
41	1.5	2	19.7386	20.9418	0.57	3.0959	188.4232

Table 15: The reduced temperature T_R, reduced specific volume V_R, pressure (obtained with the model) P_{kin} (MPa), pressure obtained with the Peng-Robinson equation of state defined in equation 30 P_{PR} (MPa), the % errors between the numerical and empirical pressure, the internal energy U (kJ) obtained with equation 48 utilizing the RMS velocities tabulated in Table 16 and the entropy S (J/K) as defined with empirical equation 47 for stage 2-3.
Trial	Avg X (m)	Avg Y (m)	Avg Z (m)	RMS V_X (m/s)	RMS V_Y (m/s)	RMS V_Z (m/s)
21	-0.016012	0.0068541	-5.727e-10	257.9062	165.8705	208.2573
22	-0.016038	0.0068454	-6.4225e-10	259.9315	168.0591	210.6734
23	-0.016062	0.0068374	1.6952e-09	261.9767	170.2163	213.0688
24	-0.016086	0.0068295	-6.4905e-10	264.0343	172.3413	215.4502
25	-0.016108	0.0068221	-6.4905e-10	266.1017	174.4399	217.8147
26	-0.016128	0.0068152	-6.5104e-10	268.1809	176.5127	220.1578
27	-0.016148	0.0068087	5.2874e-10	270.2665	178.5588	222.4862
28	-0.016167	0.0068024	2.4662e-09	272.3582	180.5813	224.7963
29	-0.016184	0.0067966	2.3627e-10	274.4534	182.58	227.0909
30	-0.016201	0.006791	-6.5776e-10	276.5556	184.5551	229.3649
31	-0.016217	0.0067855	-6.5916e-10	278.6596	186.5104	231.6213
32	-0.016231	0.0067806	2.559e-09	280.7635	188.4435	233.8631
33	-0.016245	0.0067758	-6.6179e-10	282.8697	190.3584	236.0845
34	-0.016259	0.0067712	-6.6298e-10	284.9751	192.2531	238.2907
35	-0.016272	0.006767	9.6614e-10	287.076	194.1292	240.4836
36	-0.016284	0.0067627	-6.6518e-10	289.178	195.986	242.6583
37	-0.016295	0.0067588	1.0292e-09	291.2759	197.8251	244.8188
38	-0.016306	0.0067551	-6.6714e-10	293.3735	199.6489	246.9593
39	-0.016317	0.0067517	-6.6804e-10	295.4665	201.4549	249.0864
40	-0.016326	0.0067484	3.5112e-10	297.5555	203.2462	251.1972
41	-0.016336	0.0067449	-4.8459e-10	299.6399	205.0207	253.2946

Table 16: The mean position and RMS velocity, for stage 2-3.
Trial	$X_{X,STD}$ (m)	$X_{Y,STD}$ (m)	$X_{Z,STD}$ (m)	$V_{X,STD}$ (m/s)	$V_{Y,STD}$ (m/s)	$V_{X,STD}$ (m/s)
21	0.00016731	4.2474e-05	0.0001187	8563.1191	8483.8496	43371.117
22	0.00016717	4.2395e-05	0.00011801	8754.4951	8705.7207	44383.273
23	0.00016703	4.2319e-05	0.00011736	8945.7754	8927.0146	45398.32
24	0.0001669	4.2246e-05	0.00011676	9138.0107	9148.5137	46418.77
25	0.00016676	4.2176e-05	0.00011621	9330.9297	9370.1973	47443.227
26	0.00016664	4.2115e-05	0.0001157	9524.1729	9592.1318	48469.469
27	0.00016652	4.2057e-05	0.00011523	9717.8438	9814.0869	49500.113
28	0.00016639	4.2001e-05	0.00011479	9911.874	10036.352	50533.391
29	0.00016627	4.195e-05	0.00011438	10106.753	10258.5	51570.262
30	0.00016616	4.1901e-05	0.000114	10301.739	10480.549	52608.262
31	0.00016605	4.1852e-05	0.00011364	10497.555	10702.74	53648.422
32	0.00016595	4.1811e-05	0.00011331	10693.362	10925.292	54691.938
33	0.00016585	4.1769e-05	0.000113	10889.772	11147.769	55735.875
34	0.00016574	4.1727e-05	0.0001127	11086.111	11369.986	56782.465
35	0.00016566	4.1693e-05	0.00011243	11284.201	11592.922	57832.363
36	0.00016557	4.1655e-05	0.00011217	11481.937	11815.598	58883.035
37	0.00016548	4.1622e-05	0.00011193	11680.159	12038.313	59936.227
38	0.0001654	4.1591e-05	0.00011169	11878.296	12261.111	60988.887
39	0.00016531	4.1562e-05	0.00011147	12076.861	12483.627	62044.059
40	0.00016524	4.1534e-05	0.00011127	12275.724	12706.661	63100.047
41	0.00016517	4.1502e-05	0.00011107	12475.365	12929.374	64158.133

Table 17: The position and velocity standard deviations, for stage 2-3.
Table 18: The reduced temperature T_R, reduced specific volume V_R, pressure (obtained with the model) P_{kin} (MPa), pressure obtained with the Peng-Robinson equation of state defined in equation 30 P_{PR} (MPa), the % errors between the numerical and empirical pressure, the internal energy U (kJ) obtained with equation 48 utilizing the RMS velocities tabulated in Table 19, and the entropy S (J/K) as defined with empirical equation 47 for stage 3-4.

Trial	V_R	T_R	P_{kin} (MPa)	P_{PR} (MPa)	P_{error} (%)	U (kJ)	S (J/K)
41	1.5	2	19.7386	20.9418	0.57	3.0959	188.4232
42	2.175	2	13.6818	14.3757	0.48	3.3078	188.5157
43	2.85	2	10.611	11.04	0.39	3.4181	188.5957
44	3.525	2	8.7097	8.989	0.31	3.4855	188.672
45	4.2	2	7.402	7.5913	0.25	3.531	188.7459
46	4.875	2	6.429	6.5744	0.2	3.5637	188.8181
47	5.55	2	5.7077	5.8001	0.16	3.5883	188.8886
48	6.225	2	5.1254	5.1902	0.12	3.6075	188.9576
49	6.9	2	4.6519	4.6972	0.1	3.6229	189.0251
50	7.575	2	4.2593	4.2901	0.07	3.6355	189.0911
51	8.25	2	3.9285	3.9482	0.05	3.646	189.1558
52	8.925	2	3.6454	3.657	0.03	3.6548	189.2192
53	9.6	2	3.4009	3.4059	0.01	3.6624	189.2814
54	10.275	2	3.187	3.187	0	3.669	189.3425
55	10.95	2	2.9986	2.9949	0.01	3.6747	189.4026
56	11.625	2	2.8315	2.8246	0.02	3.6798	189.4617
57	12.3	2	2.682	2.6726	0.04	3.6843	189.5199
58	12.975	2	2.5478	2.5362	0.05	3.6883	189.5773
59	13.65	2	2.4261	2.413	0.05	3.6919	189.6338
60	14.325	2	2.3158	2.3013	0.06	3.6952	189.6896
61	15	2	2.2151	2.1995	0.07	3.6982	189.7445
Trial	Avg X (m)	Avg Y (m)	Avg Z (m)	RMS Vx (m/s)	RMS Vy (m/s)	RMS Vz (m/s)	
-------	-----------	-----------	-----------	--------------	--------------	--------------	
41	-0.016336	0.0067449	-4.8459e-10	299.6399	205.0207	253.2946	
42	-0.018512	0.0076267	-7.6001e-10	298.4725	204.9624	253.0187	
43	-0.020283	0.0083371	1.2691e-09	297.2648	204.9016	252.7355	
44	-0.021795	0.0089414	-8.97e-10	296.2813	204.8495	252.5075	
45	-0.023125	0.0094727	-9.5257e-10	295.4987	204.8082	252.3243	
46	-0.02432	0.0099494	-1.0025e-09	294.8679	204.7732	252.179	
47	-0.025408	0.010384	-1.0479e-09	294.3521	204.7452	252.059	
48	-0.026411	0.010785	1.6399e-09	293.922	204.7215	251.9608	
49	-0.027344	0.011158	-1.1287e-09	293.5596	204.7004	251.8781	
50	-0.028217	0.011507	-1.1652e-09	293.2509	204.6827	251.8061	
51	-0.02904	0.011837	-2.853e-10	292.9823	204.6683	251.7451	
52	-0.029819	0.012149	-1.8103e-10	292.7488	204.6553	251.6911	
53	-0.030559	0.012445	-1.2629e-09	292.5424	204.6442	251.6441	
54	-0.031265	0.012728	-1.2924e-09	292.3616	204.6334	251.6005	
55	-0.03194	0.012999	-1.3205e-09	292.2	204.6233	251.5622	
56	-0.032589	0.013259	-1.3476e-09	292.0529	204.6156	251.5285	
57	-0.033212	0.013509	7.5363e-09	291.9213	204.6066	251.4982	
58	-0.033813	0.013751	-1.3986e-09	291.8004	204.6001	251.4708	
59	-0.034394	0.013984	-1.4227e-09	291.6908	204.5937	251.4456	
60	-0.034956	0.014209	-1.0421e-09	291.5905	204.5857	251.4229	
61	-0.0355	0.014428	-1.4688e-09	291.4971	204.5832	251.4015	

Table 19: The mean position and RMS velocity, for stage 3-4.
Trial	$X_{X,STD}$ (m)	$X_{Y,STD}$ (m)	$X_{Z,STD}$ (m)	$V_{X,STD}$ (m/s)	$V_{Y,STD}$ (m/s)	$V_{Z,STD}$ (m/s)
41	0.00016517	4.1502e-05	0.00011107	12475.365	12929.374	64158.133
42	0.00021139	5.3099e-05	0.00014177	12434.195	12922.285	64018.438
43	0.00025288	6.3492e-05	0.00016912	12392.114	12914.973	63875.223
44	0.00029113	7.307e-05	0.00019427	12357.918	12908.773	63760.016
45	0.00032697	8.205e-05	0.00021781	12330.242	12904.039	63667.551
46	0.00036093	9.0542e-05	0.00024008	12308.524	12899.748	63594.273
47	0.00039335	9.8666e-05	0.00026135	12290.263	12896.818	63533.746
48	0.00042446	0.00010645	0.00028176	12275.29	12894.176	63484.234
49	0.00045446	0.00011396	0.00030143	12262.619	12891.751	63442.59
50	0.00048351	0.00012123	0.00032047	12251.912	12889.524	63406.324
51	0.00051169	0.00012829	0.00033895	12242.573	12888.176	63375.582
52	0.0005391	0.00013516	0.00035694	12234.135	12886.805	63348.426
53	0.00056582	0.00014186	0.00037448	12226.761	12885.491	63324.754
54	0.00059198	0.0001484	0.00039162	12220.334	12884.207	63302.836
55	0.00061755	0.0001548	0.00040838	12214.35	12883.092	63283.516
56	0.00064257	0.00016107	0.0004248	12209.103	12882.014	63266.578
57	0.00066714	0.00016721	0.0004409	12204.678	12881.137	63251.363
58	0.00069128	0.00017325	0.00045672	12200.577	12880.461	63237.582
59	0.00071497	0.00017918	0.00047226	12196.782	12879.593	63224.891
60	0.00073829	0.00018502	0.00048756	12193.267	12878.667	63213.461
61	0.00076122	0.00019077	0.00050262	12190.051	12878.667	63202.711

Table 20: The position and velocity standard deviations, for stage 3-4.
Trial	V_R	T_R	P_{kin} (MPa)	P_{PR} (MPa)	P_{error} (%)	U (kJ)	S (J/K)
61	15	2	2.2151	2.1995	0.07	3.6982	189.7445
62	15	1.965	2.1724	2.1587	0.06	3.632	189.5698
63	15	1.93	2.1298	2.1178	0.06	3.5659	189.3951
64	15	1.895	2.0871	2.077	0.05	3.4998	189.2205
65	15	1.86	2.0442	2.0362	0.04	3.4337	189.0457
66	15	1.825	2.0014	1.9953	0.03	3.3676	188.8712
67	15	1.79	1.9584	1.9544	0.02	3.3015	188.6966
68	15	1.755	1.9156	1.9135	0.01	3.2355	188.5222
69	15	1.72	1.8726	1.8726	0	3.1694	188.3478
70	15	1.685	1.8295	1.8317	0.01	3.1033	188.1734
71	15	1.65	1.7863	1.7907	0.02	3.0373	187.9991
72	15	1.615	1.8693	1.7498	0.68	2.93	187.7623
73	15	1.58	1.8288	1.7088	0.7	2.863	187.5864
74	15	1.545	1.7883	1.6678	0.72	2.796	187.4105
75	15	1.51	1.7478	1.6268	0.74	2.729	187.2346
76	15	1.475	1.7072	1.5857	0.77	2.6619	187.0587
77	15	1.44	1.6667	1.5447	0.79	2.5949	186.8828
78	15	1.405	1.6262	1.5036	0.82	2.5277	186.707
79	15	1.37	1.5857	1.4625	0.84	2.4606	186.5311
80	15	1.335	1.5452	1.4214	0.87	2.3935	186.3552
1	15	1.3	1.5047	1.3803	0.9	2.3263	186.1793

Table 21: The reduced temperature T_R, reduced specific volume V_R, pressure (obtained with the model) P_{kin} (MPa), pressure obtained with the Peng-Robinson equation of state defined in equation 30 P_{PR} (MPa), the % errors between the numerical and empirical pressure, the internal energy U (kJ) obtained with equation 48 utilizing the RMS velocities tabulated in Table 22, and the entropy S (J/K) as defined with empirical equation 47 for stage 4-1.
Table 22: The mean position and RMS velocity, for stage 4-1.

Trial	Avg X (m)	Avg Y (m)	Avg Z (m)	RMS V$_X$ (m/s)	RMS V$_Y$ (m/s)	RMS V$_Z$ (m/s)
61	-0.0355	0.014428	-1.4688e-09	291.4971	204.5832	251.4015
62	-0.035496	0.014429	-1.4685e-09	289.0241	202.7886	249.2124
63	-0.035493	0.01443	-1.4682e-09	286.5298	200.9805	247.0038
64	-0.035489	0.014431	-1.4679e-09	284.0149	199.1556	244.776
65	-0.035485	0.014433	6.7697e-09	281.4797	197.3137	242.5276
66	-0.035481	0.014434	-1.4672e-09	278.9223	195.4551	240.2589
67	-0.035477	0.014436	-1.4669e-09	276.3444	193.5779	237.9677
68	-0.035472	0.014437	-1.4665e-09	273.7418	191.6822	235.6573
69	-0.035468	0.014439	2.6397e-09	271.1165	189.7692	233.3229
70	-0.035462	0.014441	-1.4657e-09	268.4683	187.8354	230.9655
71	-0.035458	0.014443	5.5553e-10	265.7936	185.8824	228.5862
72	-0.035578	0.014398	-1.476e-09	259.9124	183.72	225.4507
73	-0.035578	0.014398	-1.476e-09	257.0806	181.7183	222.9943
74	-0.035578	0.014398	-1.476e-09	254.2173	179.6944	220.5106
75	-0.035578	0.014398	-1.476e-09	251.3213	177.6473	217.9986
76	-0.035578	0.014398	-1.476e-09	248.3916	175.5764	215.4574
77	-0.035578	0.014398	-1.476e-09	245.4269	173.4808	212.8857
78	-0.035578	0.014398	-1.476e-09	242.4259	171.3596	210.2827
79	-0.035578	0.014398	-1.476e-09	239.3873	169.2118	207.647
80	-0.035587	0.014398	-1.476e-09	236.3097	167.0363	204.9774

1 -0.035587 | 0.014398 | -1.476e-09 | 233.1914 | 164.8321 | 202.2726
Table 23: The position and velocity standard deviations, for stage 4-1.

Trial	$X_{X,STD}$ (m)	$X_{Y,STD}$ (m)	$X_{Z,STD}$ (m)	$V_{X,STD}$ (m/s)	$V_{Y,STD}$ (m/s)	$V_{Z,STD}$ (m/s)
61	0.00076122	0.00019077	0.00050262	12190.051	12878.667	63202.711
62	0.0007613	0.00019078	0.00050275	11979.74	12653.573	62106.824
63	0.00076137	0.0001908	0.00050289	11769.589	12428.755	61010.902
64	0.00076143	0.00019083	0.00050305	11559.307	12204.073	59915.305
65	0.00076147	0.00019085	0.00050321	11349.042	11979.267	58819.648
66	0.00076155	0.00019088	0.00050338	11138.983	11754.545	57724.32
67	0.00076164	0.00019091	0.00050356	10928.737	11529.713	56628.637
68	0.00076172	0.00019094	0.00050376	10718.919	11305.094	55534.383
69	0.0007618	0.00019097	0.00050395	10509.233	11080.416	54439.594
70	0.00076188	0.00019101	0.00050417	10299.312	10855.646	53345.043
71	0.00076194	0.00019104	0.00050438	10089.736	10631.023	52251.656
72	0.00075956	0.00019024	0.00049914	9779.6768	10388.283	50828.02
73	0.00075956	0.00019024	0.00049914	9567.7334	10163.149	49726.48
74	0.00075956	0.00019024	0.00049914	9355.79	9938.0166	48624.945
75	0.00075956	0.00019024	0.00049914	9143.8467	9712.8838	47523.41
76	0.00075956	0.00019024	0.00049914	8931.9033	9487.751	46421.875
77	0.00075956	0.00019024	0.00049914	8719.96	9262.6182	45320.34
78	0.00075956	0.00019024	0.00049914	8508.0166	9037.4844	44218.801
79	0.00075956	0.00019024	0.00049914	8296.0732	8812.3516	43117.266
80	0.00075956	0.00019024	0.00049914	8084.1299	8587.2188	42015.73
1	0.00075956	0.00019024	0.00049914	7872.1855	8362.085	40914.195
Trial	δs_0 (J/K)	δs_1 (J/K)	Trial	δs_0 (J/K)	δs_1 (J/K)	
-------	------------------	------------------	-------	------------------	------------------	
1	-0.17588	0.33839	41	0.16867	-0.23228	
2	-0.056728	0.42342	42	0.092491	-3.4944	
3	-0.057627	0.44536	43	0.079956	-2.3947	
4	-0.058585	0.46965	44	0.076307	-1.8376	
5	-0.05961	0.49672	45	0.073902	-1.4966	
6	-0.060591	0.52711	46	0.072242	-1.2648	
7	-0.062019	0.56142	47	0.070494	-1.0965	
8	-0.063185	0.60048	48	0.068976	-0.96845	
9	-0.064585	0.64529	49	0.067472	-0.86758	
10	-0.066118	0.67925	50	0.065975	-0.78599	
11	-0.067808	0.75818	51	0.064727	-0.71862	
12	-0.069685	0.8306	52	0.063836	-0.66198	
13	-0.071789	0.91806	53	0.06224	-0.6137	
14	0.084935	0.36012	54	0.061105	-0.5203	
15	-0.062444	0.87445	55	0.060064	-0.53568	
16	-0.062554	0.97989	56	0.059098	-0.50373	
17	-0.061862	1.116	57	0.058254	-0.4754	
18	-0.059979	1.2997	58	0.057407	-0.45012	
19	-0.056355	1.5642	59	0.056482	-0.4274	
20	-0.049502	1.9871	60	0.055765	-0.40687	
21	-0.039792	2.8138	61	0.054953	-0.38825	
22	0.16088	-0.34252	62	-0.17472	0.22131	
23	0.16136	-0.33451	63	-0.17472	0.22528	
24	0.16227	-0.32676	64	-0.17464	0.22939	
25	0.16293	-0.31935	65	-0.17471	0.23364	
26	0.16329	-0.31222	66	-0.17456	0.23806	
27	0.164	-0.30538	67	-0.17461	0.24265	
28	0.16445	-0.29881	68	-0.17436	0.24742	
29	0.16504	-0.29248	69	-0.17446	0.25237	
30	0.16527	-0.2864	70	-0.17438	0.25754	
31	0.16563	-0.28055	71	-0.17425	0.2629	
32	0.16619	-0.2749	72	-0.23686	0.43587	
33	0.1663	-0.26947	73	-0.17588	0.2783	
34	0.16668	-0.26424	74	-0.17588	0.28462	
35	0.16731	-0.25915	75	-0.17588	0.29124	
36	0.16741	-0.2543	76	-0.17588	0.29816	
37	0.16783	-0.24958	77	-0.17588	0.30543	
38	0.16778	-0.24504	78	-0.17588	0.31305	
39	0.16816	-0.24064	79	-0.17588	0.32107	
40	0.16834	-0.23639	80	-0.17588	0.3295	

Table 24: Change in the entropy, including the difference in entropy δs_0 (J/K) due to standard deviation of the molecule location and velocity as determined with empirical equation [47] as well as the change in entropy δs_1 (J/K) to the universe from the heat input and output as determined by equation [4].
Trial	$\int \delta s_0$ (J/K)	$\int \delta s_1$ (J/K)	$\int \delta s_0 + \int \delta s_1$ (J/K)	Trial	$\int \delta s_0$ (J/K)	$\int \delta s_1$ (J/K)	$\int \delta s_0 + \int \delta s_1$ (J/K)
1	-0.17588	0.33839	0.16251	41	2.068	13.0822	15.1502
2	-0.23261	0.79181	0.5292	42	2.1605	9.5878	11.7483
3	-0.29024	1.2072	0.91693	43	2.2405	7.1931	9.4336
4	-0.34882	1.6768	1.328	44	2.3168	5.3555	7.6723
5	-0.40843	2.1735	1.7651	45	2.3907	3.8589	6.2496
6	-0.46902	2.7007	2.2316	46	2.4629	2.5941	5.057
7	-0.53104	3.2621	2.731	47	2.5334	1.4976	4.031
8	-0.59423	3.8626	3.2683	48	2.6024	0.52915	3.1316
9	-0.65881	4.5079	3.849	49	2.6699	-0.33843	2.3314
10	-0.72493	5.2051	4.4802	50	2.7359	-1.1244	1.6114
11	-0.79274	5.9633	5.1705	51	2.8006	-1.843	0.95754
12	-0.86242	6.7939	5.9315	52	2.864	-2.505	0.35894
13	-0.93421	7.7119	6.7777	53	2.9262	-3.1187	-0.19251
14	-0.84928	8.0721	7.2228	54	2.9873	-3.6907	-0.70344
15	-0.91172	8.9465	8.0348	55	3.0474	-4.2264	-1.1791
16	-0.97427	9.9264	8.9521	56	3.1065	-4.7302	-1.6237
17	-1.0361	11.0424	10.0062	57	3.1647	-5.2056	-2.0408
18	-1.0961	12.3421	11.246	58	3.2221	-5.6557	-2.4336
19	-1.1525	13.9063	12.7538	59	3.2786	-6.0831	-2.8045
20	-1.202	15.8933	14.6914	60	3.3344	-6.49	-3.1556
21	-1.2418	18.7072	17.4654	61	3.3893	-6.8782	-3.4889
22	-1.0899	18.3646	17.2838	62	3.2146	-6.6569	-3.4423
23	-0.91952	18.0301	17.1106	63	3.0399	-6.4316	-3.3917
24	-0.75725	17.7034	16.9461	64	2.8653	-6.2022	-3.337
25	-0.59432	17.384	16.7897	65	2.6905	-5.9686	-3.278
26	-0.43103	17.0718	16.6408	66	2.516	-5.7305	-3.2145
27	-0.26703	16.7664	16.4994	67	2.3414	-5.4879	-3.1465
28	-0.10258	16.4676	16.365	68	2.167	-5.2405	-3.0734
29	0.062455	16.1751	16.2376	69	1.9926	-4.9881	-2.9955
30	0.22773	15.8887	16.1165	70	1.8182	-4.7305	-2.9124
31	0.39336	15.6082	16.0015	71	1.6439	-4.4676	-2.8237
32	0.55955	15.3333	15.8928	72	1.4071	-4.0318	-2.6247
33	0.72585	15.0638	15.7897	73	1.2312	-3.7355	-2.5223
34	0.89253	14.7996	15.6921	74	1.0553	-3.4688	-2.4136
35	1.0598	14.5404	15.6003	75	0.87941	-3.1776	-2.2982
36	1.2273	14.2861	15.5134	76	0.70353	-2.8794	-2.1759
37	1.3951	14.0365	15.4316	77	0.52765	-2.574	-2.0464
38	1.5629	13.7915	15.3544	78	0.35176	-2.261	-1.9092
39	1.731	13.5508	15.2819	79	0.17588	-1.9399	-1.764
40	1.8994	13.3145	15.2138	80	0	-1.6104	-1.6104

Table 25: Cumulative change in the entropy, including the cumulative difference in entropy $\int \delta s_0$ (J/K) due to standard deviation of the molecule location and velocity as determined with empirical equation 47, as well as the cumulative change in entropy $\int \delta s_1$ (J/K) to the universe from the heat input and output as determined by equation 4.
7 Conclusion

The change in entropy to the surrounding δs_1 assumes heat transfer occurs at a virtually identical temperature between the surrounding and the argon. As expected, it is clear looking at Table 24 and 25 that while the entropy of the fluid increases, the entropy of the surrounding universe is decreasing (and vice versa); it is observed, however, that the magnitude in the change in entropy is consistently different despite the fact that identical heat transfer occurs at identical temperatures. The net change in entropy at the conclusion of this cycle $(\int \delta s_1 + \int \delta s_0) = \int \delta s_1$ is -1.6104 J/K, suggesting a net reduction of entropy to the universe for each revolution of one mole of high-pressure argon throughout this cycle, due to the intermolecular attractive Van der Waal force [16], in violation of Clausius' Theorem [1] described in equation [3]. In addition, the net entropy of the high-pressure argon working fluid $\int \delta s_0$ is 0 J/K as this cycle is internally reversible.

One observation is that the total entropy of the real-fluid argon, when utilizing the empirical equation [47] and the numerically obtained standard deviations for the molecule position and velocity, is consistently greater than for a mole of ideal gas argon of comparable temperature (equation 22). The intermolecular attractive forces add to the RMS velocities (typically 10% increase), and require the molecules to travel (on average) a longer spatial distance to move throughout the spherical container. In an ideal gas, the increase in entropy (equation 4) for a given quantity of heat energy input is reduced for higher entropy fluids (i.e. hotter temperatures). The same holds true for fluids of identical temperatures, but differences in entropy; the entropy of the real fluid is higher, but the increase in entropy for a given heat input is less than the decrease in entropy (defined equation [22]) of the ideal-gas surrounding universe. This characteristics of entropy, and the increase in disorder and entropy as a result of intermolecular attractive Van der Waal force, demonstrates how Clausius’s Theorem (equation [3]) can be violated with this macroscopic, high pressure Stirling cycle heat engine, where the intermolecular attractive Van der Waal forces affect the entropy of the working fluid, and the cycle results in a net decrease in total entropy to the surrounding universe.
References

[1] Sadi Carnot, E. Clapeyron, Rudolph Clausius, and E. Mendoza. *Reflections on the Motive Power of Fire and other Papers on the Second Law of Thermodynamics*. Dover Publications Inc, Mineola, NY, 1960.

[2] Enrico Fermi. *Thermodynamics*. Dover Publications Inc, New York, NY, 1936.

[3] Yunus A. Cengel and Michael A. Boles. *Thermodynamics, An Engineering Approach Sixth Edition*. McGraw Hill Higher Education, Columbus OH, 2008.

[4] Daniel V. Schroeder. *An Introduction to Thermal Physics*. Addison Wesley Longman, Boston MA, 2000.

[5] Terrell L. Hill. *An Introduction to Statistical Thermodynamics*. Dover Publications, 1960, 1960.

[6] R. K. Pathria. *Statistical Mechanics, 2nd Edition*. Butterworth-Heinemann, 30 Corporate Drive, Suite 400, Burlington, MA 01803 USA, 1972.

[7] Rongjia Yang. Is gravity entropic force. *MDPI Entropy*, 16:4483–4488, 2014. http://doi.org/10.3390/e16084483

[8] Takashi Torii. Violation of the third law of black hole thermodynamics in higher curvature gravity. *MDPI Entropy*, 14:2291–2301, 2012. http://doi.org/10.3390/e14112291

[9] Oyvind Gron. Entropy and gravity. *MDPI Entropy*, 14:2456–2477, 2012. http://doi.org/10.3390/e14122456

[10] Jeroen Schoenmaker. Historical and physical account on entropy and perspectives on the second law of thermodynamics for astrophysical and cosmological systems. *MDPI Entropy*, 16:4430–4442, 2014. http://doi.org/10.3390/e16084420

[11] Alessandro Pesci. Entropy bounds and field equations. *MDPI Entropy*, 17:5799–5810, 2015. http://doi.org/10.3390/e17085799
[12] Er Shi, Xiaqin Sun, Yecong He, and Changwei Jiang. Effect of a magnetic quadrupole field on entropy generation in thermomagnetic convection of paramagnetic fluid with and without a gravitational field. *MDPI Entropy*, 19:96, 2017. http://doi.org/10.3390/e19030096

[13] J. Rossnagel, F. Schmidt-Kaler, O. Abah, K. Singer, and E. Lutz. Nanoscale heat engine beyond the carnot limit. *Physical Review Letters*, 112:030602, 22 January 2014. http://doi.org/10.1103/PhysRevLett.112.030602

[14] Jan Klaers, Stefan Fuelt, Atac Imamoglu, and Emre Togan. Squeezed thermal reservoirs as a resource for a nanomechanical engine beyond the carnot limit. *Physical Review X*, 7:031044, 13 September 2017. http://doi.org/10.1103/PhysRevX.7.031044

[15] Nelly Huei Ying Ng, Mischa Prebin Woods, and Stephanie Wehner. Surpassing the carnot efficiency by extracting imperfect work. *New Journal of Physics*, 19:113005, 7 November 2017. http://doi.org/10.1088/1367-2630/aa8ced

[16] Matthew Marko. The saturated and supercritical stirling cycle thermodynamic heat engine cycle. *AIP Advances*, 8(8):085309, 2018. http://doi.org/10.1063/1.5043523

[17] M. Born and H.S. Green. A general kinetic theory of liquids, the molecular distribution functions. *Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences*, 188, 1946. http://doi.org/10.1098/rspa.1946.0093

[18] Otto. Redlich and J. N. S. Kwong. On the thermodynamics of solutions. v. an equation of state. fugacities of gaseous solutions. *Chemical Reviews*, 44(a):233–244, 1949. http://doi.org/10.1021/cr60137a013

[19] Ding-Yu Peng and Donald B. Robinson. A new two-constant equation of state. *Industrial and Engineering Chemistry Fundamentals*, 75(1):59–64, 1976. http://doi.org/10.1021/i160057a011

[20] Kenneth S. Pitzer. Origin of the acentric factor. *American Chemical Society Symposium Series, Phase Equilibria and Fluid Properties in the Chemical Industry*, 60.
[21] W.H. Keesom. The second virial coefficient for rigid spherical molecules, whose mutual
attraction is equivalent to that of a quadruplet placed at their centre. *Royal Netherlands
Academy of Arts and Sciences Proceedings*, 18 I:636–646, 1915.

[22] Fabio L. Leite, Carolina C. Bueno, Alessandra L. Da Róz, Ervino C. Ziemath, and
Osvaldo N. Oliveira Jr. Theoretical models for surface forces and adhesion and their
measurement using atomic force microscopy. *MDPI Molecular Sciences*, 13:12773–
12856, 2012. http://doi.org/10.3390/ijms131012773

[23] The General Theory of Molecular Forces. F. London. *Transactions of the Faraday
Society*, 33:8–26, 1937. http://doi.org/10.1039/TF937330008B

[24] Roger H. French. Origins and applications of London dispersion forces and Hamaker
constants in ceramics. *Journal of the American Ceramic Society*, 83:2117–2146, 2000.
http://doi.org/10.1111/j.1151-2916.2000.tb01527.x

[25] A. D. McLachlan. Retarded dispersion forces in dielectrics at finite temperatures. *Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences*,
274:80–90, 1963. http://doi.org/10.1098/rspa.1963.0115

[26] M.H. Hawton, V.V. Paranjape, and J. Mahanty. Temperature dependence of dispersion
interaction, application to van der Waals forces and the polaron. *Physical Review B*,
26:1682–1688, 1982. http://doi.org/10.1103/PhysRevB.26.1682

[27] P.J. Linstrom and Eds W.G. Mallard. *NIST Chemistry WebBook, NIST Standard Ref-
erence Database Number 69*. National Institute of Standards and Technology, Gaithers-
burg MD, 20899, April 29 2018. http://doi.org/10.18434/T4D303

[28] Reiner Tillner-Roth and Hans Dieter Baihr. An international standard formulation for
the thermodynamic properties of 1,1,1,2-tetrafluoroethane (hfc-134a) for temperatures
from 170 k to 455 k and pressures up to 70 mpa. *Journal of Physical and Chemical
Reference Data*, 23(5):657–729, 1994. http://doi.org/10.1063/1.555958

[29] Roland Span, Eric W. Lemmon, Richard T Jacobsen, Wolfgang Wagner, and Akimichi
Yokozeki. A reference equation of state for the thermodynamic properties of nitrogen for
temperatures from 63.151 to 1000 k and pressures to 2200 mpa. *Journal of Physical and Chemical Reference Data*, 29(6):1361–1433, 2000. http://doi.org/10.1063/1.1349047.

[30] W. Wagner and A. Prub. The iapws formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. *Journal of Physical and Chemical Reference Data*, 31(2):387–535, 2002. http://doi.org/10.1063/1.1461829.

[31] U. Setzmann and W. Wagner. A new equation of state and tables of thermodynamic properties for methane covering the range from the melting line to 625 k at pressures up to 100 mpa. *Journal of Physical and Chemical Reference Data*, 20(6):1061–1155, 1991. http://doi.org/10.1063/1.555898.

[32] Daniel G. Friend, Hepburn Ingham, and James F. Fly. Thermophysical properties of ethane. *Journal of Physical and Chemical Reference Data*, 20(2):275–347, 1991. http://doi.org/10.1063/1.555881.

[33] H. Miyamoto and K. Watanabe. A thermodynamic property model for fluid-phase propane. *International Journal of Thermophysics*, 21(5):1045–1072, 2000. http://doi.org/10.1023/A:1026441903474

[34] H. Miyamoto and K. Watanabe. Thermodynamic property model for fluid-phase n-butane. *International Journal of Thermophysics*, 22(2):459–475, 2001. http://doi.org/10.1023/A:1010722814682.

[35] H. Miyamoto and K. Watanabe. A thermodynamic property model for fluid-phase isobutane. *International Journal of Thermophysics*, 23(2):477–499, 2002. http://doi.org/10.1023/A:1015161519954.

[36] Richard B. Stewart and Richard T. Jacobsen. Thermodynamic properties of argon from the triple point to 1200 k with pressures to 1000 mpa. *Journal of Physical Chemistry Reference Data*, 18(1):639–798, 1989. http://doi.org/10.1063/1.555829.

[37] Ch. Tegeler, R. Span, and W. Wagner. A new equation of state for argon covering the fluid region for temperatures from the melting line to 700 k at pressures up
to 1000 mpa. *Journal of Physical Chemistry Reference Data*, 28(3):779–850, 1999.
[10.1063/1.556037](http://doi.org/10.1063/1.556037)

[38] M. A. Anisimov, A. T. Berestov, L. S. Veksler, B. A. Kovalchuk, and V. A. Smirnov. Scaling theory and the equation of state of argon in a wide region around the critical point. *Soviet Physics JETP*, 39(2):359–365, 1974.

[39] Kwan Y. Kim. Calorimetric studies on argon and hexafluoro ethane and a generalized correlation of maxima in isobaric heat capacity. *PhD Thesis, Department of Chemical Engineering, University of Michigan*, 1974.

[40] William D. McCain Jr and Waldemar T. Ziegler. The critical temperature, critical pressure, and vapor pressure of argon. *Journal of Chemical and Engineering Data*, 12(2):199–202, 1967. [10.1021/je60033a012](http://doi.org/10.1021/je60033a012)

[41] O. Sifner and J. Klomfar. Thermodynamic properties of xenon from the triple point to 800 k with pressures up to 350 mpa. *Journal of Physical Chemistry Reference Data*, 23(1):63–152, 1994. [10.1063/1.555956](http://doi.org/10.1063/1.555956)

[42] James A. Beattie, Roland J. Barriault, and James S. Brierley. The compressibility of gaseous xenon. ii. the virial coefficients and potential parameters of xenon. *Journal of Chemical Physics*, 19:1222, 1951. [10.1063/1.1748000](http://doi.org/10.1063/1.1748000)

[43] H. H. Chen, C. C. Lim, and Ronald A. Aziz. The enthalpy of vaporization and internal energy of liquid argon, krypton, and xenon determined from vapor pressures. *Journal of Chemical Thermodynamics*, 7:191–199, 1975. [10.1016/0021-9614(75)90268-2](http://doi.org/10.1016/0021-9614(75)90268-2).

[44] Richard T. Jacobsen and Richard B. Stewart. Thermodynamic properties of nitrogen including liquid and vapor phases from 63k to 2000k with pressures to 10,000 bar. *Journal of Physical Chemistry Reference Data*, 2(4):757–922, 1973. [10.1063/1.3253132](http://doi.org/10.1063/1.3253132)

48
[45] Lester Haar and John S. Gallagher. Thermodynamic properties of ammonia. *Journal of Physical Chemistry Reference Data*, 7(3):635–792, 1978. http://doi.org/10.1063/1.555579

[46] Nathan S. Osborne, Harold F. Stimson, and Defoe C. Ginnings. Measurements of heat capacity and heat of vaporization of water in the range 0 to 100 C. *Part of Journal of Research of the National Bureau of Standards*, 23:197–260, 1939.

[47] N. S. Osborne, H. F. Stimson, and D. C. Ginnings. Calorimetric determination of the thermodynamic properties of saturated water in both the liquid and gaseous states from 100 to 374 C. *Journal of Research NBS*, 18(389):983, 1937.

[48] H. Sato, K. Watanabe, J.M.H Levelt Sengers, J.S. Gallagher, P.G. Hill, J. Straub, and W. Wagner. Sixteen thousand evaluated experimental thermodynamic property data for water and steam. *Journal of Physical Chemistry Reference Data*, 20(5):1023–1044, 1991. http://doi.org/10.1063/1.555894

[49] Leighton B. Smith and Frederick G. Keyes. The volumes of unit mass of liquid water and their correlation as a function of pressure and temperature. *Proceedings of American Academy of Arts and Sciences*, 69:285, 1934. http://doi.org/10.2307/20023049

[50] Nathan S. Osborne, Harold F. Stimson, and Defoe C. Ginnings. Thermal properties of saturated water and steam. *Journal of Research of the National Bureau of Standards*, 23:261–270, 1939.

[51] D. M. Murphy and T. Koop. Review of the vapor pressures of ice and supercooled water for atmospheric applications. *Q. J. R. Meteorological Society*, 131:1539–1565, 2005. http://doi.org/10.1256/qj.04.94

[52] B. A. Younglove and J. F. Ely. Thermophysical properties of fluids, methane, ethane, propane, isobutane, and normal butane. *Journal of Physical Chemistry Reference Data*, 16(4):577–798, 1987. http://doi.org/10.1063/1.555785

[53] Manson Benedict, George B. Webb, and Louis C. Rubin. An empirical equation for thermodynamic properties of light hydrocarbons and their mixtures i. methane,
ethane, propane and nbutane. *AIP Journal of Chemical Physics*, 8:334, 1940. [http://doi.org/10.1063/1.1750658]

[54] John Edward Lennard-Jones. On the determination of molecular fields. *Proceedings of the Royal Society A*, 106(738):463–477, 1924. [http://doi.org/10.1098/rspa.1924.0082]
program MakeInput
implicit none
real Vr,Tr
real U,S_entropy,P_kinetic,P_PR
double precision pi,Kb,Av
real t1,t2,Rat(100),outputdat(22)
integer fooint,ct,ii,jj,kk,ppnum
character(len=16) filenameSV

call CPU_Time(t1)

pi=3.1415926535897932384626
Kb=1.38064852e-23
Av=6.02214086e23

open(unit=1000,file='param_output_data_run1_run2_stirling.txt')
ppnum=0

Vr=100
do ii=1,21
 ppnum=ppnum+1
 Tr=2.+((ii-1)*0.05)
call ThermoCalc(Vr,Tr,ppnum,outputdat)
call CPU_Time(t2)

if (ppnum<10) then
 write(filenameSV,'("Save_0",I1,".txt")')ppnum
elseif (ppnum<100) then
 write(filenameSV,'("Save_",I2,".txt")')ppnum
endif
open(unit=ppnum,file=filenameSV)
write(ppnum,*) ppnum,Vr,Tr,outputdat,'t (s) = ',(t2-t1)
close(ppnum)

write(1000,*) ppnum,Vr,Tr,outputdat,'t (s) = ',(t2-t1)
print *,ppnum,'/122, t (s) = ',t2
enddo

Tr=2
do ii=1,21
 ppnum=ppnum+1
 Vr=100.+((ii-1)*20.)
call ThermoCalc(Vr,Tr,ppnum,outputdat)
call CPU_Time(t2)

if (ppnum<10) then
 write(filenameSV,'("Save_0",I1,".txt")')ppnum
elseif (ppnum<100) then
 write(filenameSV,'("Save_",I2,".txt")')ppnum
endif

52
endif

open(unit=ppnum,file=filenameSV)
write(ppnum,*) ppnum,Vr,Tr,outputdat,'t (s) = ','(t2-t1)
close(ppnum)

write(1000,*),ppnum,Vr,Tr,outputdat,'t (s) = ','(t2-t1)
print *,ppnum,'/122, t (s) = ',t2
endo
Vr=1.5

do ii=1,20
 ppnum=ppnum+1
 Tr=1.3+((ii-1)*0.0350)
call ThermoCalc(Vr,Tr,ppnum,outputdat)
call CPU_Time(t2)

 if (ppnum<10) then
 write(filenameSV,'("Save_0",I1,".txt")')ppnum
 elseif (ppnum<100) then
 write(filenameSV,'("Save_",I2,".txt")')ppnum
 endif
 open(unit=ppnum,file=filenameSV)
 write(ppnum,*) ppnum,Vr,Tr,outputdat,'t (s) = ',(t2-t1)
 close(ppnum)

 write(1000,*)ppnum,Vr,Tr,outputdat,'t (s) = ',(t2-t1)
 print *,ppnum,'/122, t (s) = ',t2
endo
do

Tr=2.0

do ii=1,20
 ppnum=ppnum+1
 Vr=1.5+((ii-1)*0.675)
call ThermoCalc(Vr,Tr,ppnum,outputdat)
call CPU_Time(t2)
if (ppnum<10) then
 write(filenameSV,'("Save_0",I1,".txt")')ppnum
elseif (ppnum<100) then
 write(filenameSV,'("Save_",I2,".txt")')ppnum
endif
open(unit=ppnum,file=filenameSV)
write(ppnum,*) ppnum,Vr,Tr,outputdat,'t (s) = ',(t2-t1)
close(ppnum)
write(1000,*) ppnum,Vr,Tr,outputdat,'t (s) = ',(t2-t1)
print *,ppnum,'/122, t (s) = ',t2
enddo

Vr=15
do ii=1,20
 ppnum=ppnum+1
 Tr=2.0-((ii-1)*0.0350)
call ThermoCalc(Vr,Tr,ppnum,outputdat)
call CPU_Time(t2)
if (ppnum<10) then
 write(filenameSV,'("Save_0",I1,".txt")')ppnum
elseif (ppnum<100) then
 write(filenameSV,'("Save_",I2,".txt")')ppnum
endif
open(unit=ppnum,file=filenameSV)
write(ppnum,*) ppnum,Vr,Tr,outputdat,'t (s) = ',(t2-t1)
close(ppnum)

write(1000,*), ppnum, Vr, Tr, outputdat, 't (s) = ', (t2-t1)
print *, ppnum, '/122, t (s) = ', t2
enddo

close(1000)

end program

c ------------------------------- Make Source -------------------------------

subroutine ThermoCalc(Vr, Tr, ppnum, outputdat)

real, intent(in) :: Vr, Tr
integer, intent(in) :: ppnum
real, intent(out) :: outputdat(22)

real U, S_entropy, P_kinetic, P_PR
real t1, t2
double precision MM, Pc, Tc, Vc, ecc, V, T, Rg, a, b, R, AreaS, minVr
double precision kappa, a_PR, xx(3), Vx(3), Vx0(3), RMS3(3)
double precision Coeff
double precision dP_VWD, F_VDW_m, phi, theta, Vel, dP_VDW, V_rms_0, V_avg_0
double precision drX, Vel_travel(3), Vel_xx
double precision VelF, Vrat(3), Xrat(3)
double precision VXdot, dP_Pauli, P_IG, U KE, U PE
double precision Read6(6), Avg6(6), StDev6(6), V_rms_calc, V_avg_calc

c character (len=200) output

integer ii, ii0, jj, jj0, kk, ct, dir(3)
integer dx0, Nx, Ny, Np, Total_CT
double precision bp, aa
double precision pi, Kb, Av, m_m, dt, Fx(3), fooV(2)
double precision, allocatable :: phi_fct(:), theta_fct(:), rrX(:, :)
double precision, allocatable :: VXrat(:, :), F_dat(:, :), VelFdat(:, :)
double precision, allocatable :: Vel_travelDat(:, :), Vel_fct(:, :)
double precision, allocatable :: Xstore(:, :), Vstore(:, :)
double precision, allocatable :: Fx_Stored(:, :)
double precision, allocatable :: foocrap(:, :), randnum(:, :)
integer, allocatable :: Tct(:)

c character(len=16) filenameSV

filenameSV = 'BigData_XV_3.txt'

call CPU_Time(t1)

c --- Make Source ---

57
\[\pi = 3.1415926535897932384626 \]
\[K_b = 1.38064852 \times 10^{-23} \]
\[A_v = 6.02214086 \times 10^{23} \]

\[c \quad dx_0 = 300 \quad ! \text{Estimated time steps per bounce} \]
\[c \quad Nx = 361 \quad ! \text{Number of steps in each degree (square it in theta and phi)} \]
\[c \quad Ny = 101 \quad ! \text{Number of steps at each degree increment, varying speed randomly} \]

\[dx_0 = 300 \quad ! \text{Estimated time steps per bounce} \]
\[Nx = 361 \quad ! \text{Number of steps in each degree (square it in theta and phi)} \]
\[Ny = 1 \quad ! \text{Number of steps at each degree increment, varying speed randomly} \]

\[c \quad \text{Argon} \]
\[\text{MM} = 0.0399 \quad ! \text{Molar Mass (kg/mole)} \]
\[Pc = 4.863 \times 10^6 \quad ! \text{Critical Pressure (Pa)} \]
\[Tc = 150.687 \quad ! \text{Critical Temperature (K)} \]
\[Vc = 1./535 \quad ! \text{Critical Volume (m}^3/\text{kg)} \]
\[ecc = 0 \quad ! \text{Eccentricity factor} \]

\[\text{---} \]
\[Np = (Nx**2) * Ny \]

\[\text{ALLOCATE}(rrX(Np,3)) \]
\[\text{ALLOCATE}(Tct(Np)) \]
ALLOCATE(VXrat(Np))
ALLOCATE(F_dat(Np))
ALLOCATE(VeLFdat(Np))
ALLOCATE(Vel_travelDat(Np))
ALLOCATE(Vel_fct(Np))
ALLOCATE(Xstore((dx0*10),3))
ALLOCATE(Vstore((dx0*10),3))
ALLOCATE(Fx_Stored((dx0*10),3))
ALLOCATE(randnum(Ny))

ALLOCATE(foocrap(Np))

V=Vr*Vc*MM
T=Tr*Tc

m_m=MM/Av
Rg=Av*Kb/MM
a=0.45724*(Rg**2)*(Tc**2)/Pc
b=0.07780*Rg*Tc/Pc

minVr=1./100
if (Vr<((1+minVr)*b/Vc)) then
 V=((1+minVr)*b/Vc)*Vc*MM
endif

bp=(2.**(1./3))-1.
aa=(1/(9*bp))*(Rg**2)*(Tc**2.5)/Pc
59
\[
R = (V \times (3./(4\pi)))^{**(1./3)} \\
Rb = ((V-(b*MM))\times(3./(4\pi)))^{**(1./3)} \\
\text{AreaS} = 4\pi \times (R^{**2}) \\
\]

\[
V_{rms_0} = \sqrt{3*KB*T/m_m} \\
V_{avg_0} = V_{rms_0} \times (sqrt(8/(3*pi))) \\
\]

\[
kappa = 0.37464 + (1.54226*ecc) - (0.26992*(ecc**2)) \\
a_{PR} = (1. + (kappa \times (1-(sqrt(T/Tc)))))*2 \\
P_{PR} = ((Rg*T)/((V/MM)-b)) \\
P_{PR} = P_{PR} - ((a_{PR}*a)/(((V/MM)**2)+(2*b*(V/MM)-(b**2)))) \\
\]

\[
dt = (2*R/V_{avg_0})/dx0 \\
\]

\[
ct = 0 \\
do \ jj = 1,Nx \\
\phi = (pi/2)*((jj-1.)/(Nx-1.)) \\
do \ ii = 1,Nx \\
\]

\[
ct = ct+1 \\
\theta = (pi)*((ii-1.)/(Nx-1.)) \\
xx(1) = (sin(\theta)) \times (cos(\phi)) \\
xx(2) = (sin(\theta)) \times (sin(\phi)) \\
xx(3) = cos(\theta) \\
\]

\[
do \ kk = 1,Ny \\
rrX(((ct-1)*Ny)+kk,1) = xx(1) \\
rrX(((ct-1)*Ny)+kk,2) = xx(2) \\
\]

60
\[
rrX(((ct-1)\times Ny)+kk,3)=xx(3)
\]
enddo
enddo
enddo

call make_rand_fct(Ny,randnum)

\[
V_{rms_calc}=0
\]
\[
V_{avg_calc}=0
\]
do ii=1,Ny
\[
V_{avg_calc}=V_{avg_calc}+(randnum(ii)\times V_{avg_0}/Ny)
\]
\[
V_{rms_calc}=V_{rms_calc}+((randnum(ii)\times V_{avg_0})^{2}/Ny)
\]
enddo
\[
V_{rms_calc}=\sqrt{V_{rms_calc}}
\]

do ii=1,(Nx**2)
do jj=1,Ny
\[
ii0=((ii-1)\times Ny)+jj
\]
if (Ny==1) then
\[
Vel_fct(ii0)=V_{rms_0}
\]
else
\[
Vel_fct(ii0)=(randnum(jj))\times V_{avg_0}
\]
endif
enddo
enddo
Total_CT=0
open(unit=ppnum,file=filenameSV)
do ii=1,Np
 if ((mod(ii,Nx*Nx))==0) then
 call CPU_Time(t2)
 print *,(ii/(Nx*Nx)),'/',Ny,' ','t=',NINT(t2-t1)
 print *,'Vr=',Vr,'Tr=',Tr,ppnum,'/122'
 endif
 call Get_dP_VDW(Vel_fct(ii),Vr,dP_VDW)
 F_VDW_m=dP_VDW*AreaS/Av
 Vx0=(Vel_fct(ii))*(rrX(ii,:))
 Vx=Vx0
 xx=xx*0
 xx(1)=-R
 drX=(sqrt(sum(xx**2)))*(0.99)
 Xstore=Xstore*0
 Vstore=Vstore*0
 Fx_Stored=Fx_Stored*0
 ct=0
 do while ((abs(drX/R))<1.0)
 ct=ct+1
 xx=xx+(Vx*dt)
 drX=(sqrt(sum(xx**2)))
do jj=1,3
 if (xx(jj)==0) then
 dir(jj)=0
 else
 dir(jj)=-(xx(jj)/(abs(xx(jj))))
 endif
endo
Fx=(abs(F_VDW_m*((xx/R)**3)))*dir
do jj=1,3
 Vx(jj)=Vx(jj)+(Fx(jj)*dt/m_m)
endo
write(ppnum,*) xx,Vx

dojj=1,3
 Xstore(ct,jj)=xx(jj)
 Vstore(ct,jj)=Vx(jj)
 Fx_Stored(ct,jj)=Fx(jj)
endo
if (ct>(dx0*10)) then
 drX=10*R
 print *,’PROBLEM!!!’,ct,dx0
endif
endo
Tct(ii)=ct
Total_CT=Total_CT+ct
Vel_travel=Vel_travel*0
do jj=1,3
 fooreal1=0
 do kk=1,ct
 fooreal1=fooreal1+(Vstore(kk,jj)/ct)
 enddo
 Vel_travel(jj)=fooreal1
enddo

do jj=1,3
 Vel_travelDat(ii)=Vel_travelDat(ii)+(Vel_travel(jj)**2)
enddo
Vel_travelDat(ii)=sqrt(Vel_travelDat(ii))

VelF=0
do jj=1,3
 VelF=VelF+(Vstore(ct,jj)**2)
enddo
VelF=sqrt(VelF)
VelFdat(ii)=VelF

Vrat=Vstore(ct,:)/VelF
Xrat=xx/R

VXdot=0
do jj=1,3
 VXdot=VXdot+(Xrat(jj)*Vrat(jj))
enddo
VXrat(ii)=VXdot

F_dat(ii)=((2*m_m*VXdot)*VelF/(ct*dt))-F_VDW_m

enddo
close(ppnum)

Avg6=Avg6*0.
RMS3=RMS3*0.
StDev6=StDev6*0.

open(unit=ppnum,file=filenameSV)
do ii=1,Total_CT
 read(ppnum,*) Read6(:)
 Avg6=Avg6+Read6
 RMS3=RMS3+(Read6(4:6)**2.)
endo
dAvg6=Avg6/Total_CT
RMS3=snrt(RMS3/Total_CT)
close(ppnum)

open(unit=ppnum,file=filenameSV)
do ii=1,Total_CT
 read(ppnum,*) Read6(:)
 StDev6=StDev6+((Read6-Avg6)**2)
endo
StDev6=StDev6/Total_CT
close(ppnum)
\[P_{\text{kinetic}} = 0 \]
\[U_{\text{KE}} = 0 \]
\[S_{\text{entropy}} = 0 \]
do ii=1,Np
\[P_{\text{kinetic}} = P_{\text{kinetic}} + (F_{\text{dat}}(ii)) \]
\[U_{\text{KE}} = U_{\text{KE}} + (V_{\text{elFdat}}(ii)^{**2}) \]
\[S_{\text{entropy}} = S_{\text{entropy}} + (V_{\text{el_travelDat}}(ii)) \]
enddo

\[P_{\text{kinetic}} = ((P_{\text{kinetic}}/Np)*(Av/AreaS))*(R/Rb) \]
\[P_{\text{IG}} = Av*Kb*T/V \]

\[U_{\text{KE}} = ((U_{\text{KE}}/Np))*(0.5*Av*m_m) \]
\[U_{\text{PE}} = -dP_{\text{VDW}}*V \]
\[U = U_{\text{KE}} + U_{\text{PE}} \]
\[S_{\text{entropy}} = ((3*log(S_{\text{entropy}}/Np))+(log(V-(b*MM))))*Av*Kb \]

outputdat(1)=U
outputdat(2)=S_{\text{entropy}}
outputdat(3)=P_{\text{kinetic}}
outputdat(4)=P_{\text{PR}}
outputdat(5:10)=Avg6
outputdat(11:16)=StDev6
outputdat(17:19)=RMS3
outputdat(20)=Total_CT
outputdat(21)=V_rms_calc
outputdat(22)=V_avg_calc

end subroutine

c ==
c ==

c ==

subroutine linspace(start,stop,ct,out)

real, intent(in) :: start,stop
integer, intent(in) :: ct
real, intent(out) :: out(ct)
real dx,foo
integer ii

dx=(stop-start)/(ct-1.)
foo=start

do ii=1,ct
 out(ii)=foo
 foo=foo+dx
enddo

end subroutine
subroutine Get_dP_VDW(Vel,Vr,dP_VDW)

real, intent(in) :: Vr
double precision, intent(in) :: Vel
double precision, intent(out) :: dP_VDW
double precision pi,Kb,Av,m_m,T_eff,Tr,Pc
double precision MM,Tc,Vc,V,R,Coeff,Rb,bp,aa
integer ii

pi=3.1415926535897932384626
Kb=1.38064852e-23
Av=6.02214086e23

Argon

MM=.0399 ! Molar Mass (kg/mole)
Pc=4.863e6 ! Critical Pressure (Pa)
Tc=150.687 ! Critical Temperature (K)
Vc=1./535 ! Critical Volume (m^3/kg)

V=Vr*Vc*MM

m_m=MM/Av
Rg=Av*Kb/MM

bp=(2.**(1./3))-1.
aa=(1/(9*bp))*(Rg**2)*(Tc**2.5)/Pc
\[T_{\text{eff}} = (\text{Vel}^2) \frac{m_m}{(3Kb)} \]
\[Tr = \frac{T_{\text{eff}}}{T_c} \]

if (Tr<1.) then
 \[\text{Coeff} = (2.3246 + (-0.8441/(\sqrt{Vr})) + (-0.8670)) \times Tr \]
else
 \[\text{Coeff} = 2.3246 + (-0.8441/(\sqrt{Vr})) + (-0.8670 \times \sqrt{Tr}) \]
endif
if (Coeff>1) then
 \[\text{Coeff} = 0 \]
endif

\[dP_{\text{VDW}} = \frac{(aa/(\sqrt{T_{\text{eff}}}))}{((V/MM)^2)} \]
\[dP_{\text{VDW}} = dP_{\text{VDW}} \times \text{Coeff} \]

end subroutine

c
==
c
==
c
==

subroutine make_rand_fct(NN, randdat)
integer, intent(in) :: NN

double precision, intent(out) :: randdat(NN)

double precision, allocatable :: NormFct(:,), Xfct(:)

double precision, allocatable :: NormFct0(:)

double precision ctX, x, MinX, stdev0, dx, foo

integer ii

ALLOCATE(Xfct(NN))
ALLOCATE(NormFct0(NN))
ALLOCATE(NormFct(NN))

MinX=0.200
stdev0=0.71

dx=((1.-MinX)*2.)/(NN-1)

tX0=0.0

do ii=1,NN
 x=MinX+((ii-1)*dx)
 Xfct(ii)=x
 NormFct(ii)=(exp(-0.5*(((x-1)/stdev0)**2)))
 ctX=ctX+(1./(exp(-0.5*(((x-1)/stdev0)**2))))
endo

randdat(1)=MinX

do ii=2,NN
 foo=(((1.-MinX)*2.)*(1./NormFct(ii))/ctX)
 randdat(ii)=randdat(ii-1)+foo

70
end do

end subroutine

C ===

C ===