Equações Específicas por Sexo para Estimativa do Consumo Máximo de Oxigênio em Cicloergometria

Sex-Specific Equations to Estimate Maximum Oxygen Uptake in Cycle Ergometry

Christina G. de Souza e Silva e Claudio Gil S. Araújo
Programa de Pós-Graduação em Cardiologia - Universidade Federal do Rio de Janeiro; Instituto do Coração Edson Saad - Universidade Federal do Rio de Janeiro; Clínica de Medicina do Exercício - CLINIMEX, Rio de Janeiro, RJ – Brasil

Resumo

Fundamento: A condição aeróbica, avaliada pela medida do VO₂máx no teste cardiopulmonar de exercício máximo (TCPE) ou estimada por equações no teste de exercício, é preditora de mortalidade. Porém, o erro obtido pela estimativa em um dado indivíduo pode ser alto, afetando decisões clínicas.

Objetivo: Determinar o erro de estimativa do VO₂máx em cicloergometria em população atendida nos serviços de ergometria e propor equações específicas por sexo para minimizar o erro na estimativa do VO₂máx.

Métodos: Foram avaliados 1715 adultos (18 a 91 anos) (68% homens) submetidos a TCPE máximo em cicloergômetro de membros inferiores (CMI) com protocolo de rampa. Calculou-se o erro percentual (E%) entre o VO₂máx medido e o estimado pela equação ACSM modificada (Lang e col. MSSE, 1992). A seguir, foram desenvolvidas equações de estimativa: 1) para toda a amostra testada (C-GERAL) e 2) separadamente por sexo (C-HOMENS e C-MULHERES).

Resultados: O VO₂máx medido foi maior em homens do que em mulheres – 29,4 ± 10,5 e 24,2 ± 9,2 mL.(kg.min)⁻¹ (p < 0,01) –. As equações de estimativa do VO₂máx foram mL.(kg.min)⁻¹: C-GERAL = [carga final (W)/peso (kg)] x 10,483 + 7; C-HOMENS = [carga final (W)/peso (kg)] x 10,791 + 7; e C-MULHERES = [carga final (W)/peso (kg)] x 9,820 + 7. Os E% em homens foram -3,4 ± 13,4% (ACSM modificada), 1,2 ± 13,2% (C-GERAL) e -0,9 ± 13,4% (C-HOMENS) (p < 0,01). Em mulheres, obtivemos: -14,7 ± 17,4% (ACSM modificada), -6,3 ± 16,5% (C-GERAL) e -1,7 ± 16,2% (C-MULHERES) (p < 0,01).

Conclusão: O erro de estimativa do VO₂máx através de equações específicas por sexo foi reduzido, porém não eliminado, nos testes de exercício em CMI. (Arq Bras Cardiol. 2015; 105(4):381-389)

Palavras-chave: Exercício Respiratório / utilização; Esforço Físico; Consumo de Oxigênio; Teste Cardiopulmonar de Exercício; Dados Demográficos; Ergometria.

Abstract

Background: Aerobic fitness, assessed by measuring VO₂max in maximum cardiopulmonary exercise testing (CPX) or by estimating VO₂max through the use of equations in exercise testing, is a predictor of mortality. However, the error resulting from this estimate in a given individual can be high, affecting clinical decisions.

Objective: To determine the error of estimate of VO₂max in cycle ergometry in a population attending clinical exercise testing laboratories, and to propose sex-specific equations to minimize that error.

Methods: This study assessed 1715 adults (18 to 91 years, 68% men) undertaking maximum CPX in a lower limbs cycle ergometer (LLCE) with ramp protocol. The percentage error (E%) between measured VO₂max and that estimated from the modified ACSM equation (Lang et al. MSSE, 1992) was calculated. Then, estimation equations were developed: 1) for all the sample tested (C-GENERAL); and 2) separately by sex (C-MEN and C-WOMEN).

Results: Measured VO₂max was higher in men than in women – 29.4 ± 10.5 and 24.2 ± 9.2 mL.(kg.min)⁻¹ (p < 0.01) –. The equations for estimating VO₂max [in mL.(kg.min)⁻¹] were: C-GENERAL = [final workload (W)/body weight (kg)] x 10.483 + 7; C-MEN = [final workload (W)/body weight (kg)] x 10.791 + 7; and C-WOMEN = [final workload (W)/body weight (kg)] x 9.820 + 7. The E% for men was: -3.4 ± 13.4% (modified ACSM); 1.2 ± 13.2% (C-GERAL) and -0.9 ± 13.4% (C-HOMENS) (p < 0.01). For women was: -14.7 ± 17.4% (modified ACSM); -6.3 ± 16.5% (C-GERAL) and -1.7 ± 16.2% (C-MULHERES) (p < 0.01).

Conclusion: The error of estimate of VO₂max by use of sex-specific equations was reduced, but not eliminated, in exercise tests on LLCE. (Arq Bras Cardiol. 2015; 105(4):381-389)

Keywords: Breathing Exercise / utilization; Physical Exertion; Oxygen Consumption; Cardiopulmonary Exercise Testing; Demographic Data; Ergometry.
Introdução

A condição aeróbica é preditora independente de mortalidade1-3 e fornece informações diagnósticas e prognósticas relevantes4-6. Essa avaliação é feita de forma não-invasiva através da medida do consumo máximo de oxigênio (VO₂ máx) durante um teste de exercício em que são coletados e analisados os gases expirados. Esse procedimento é denominado teste cardíopulmonar de exercício (TCPE) máximo9,10.

Apesar de disponível em diversos serviços de ergometria, a medida de VO₂ máx demanda treinamento profissional11, equipamentos específicos e aumento do tempo para realização, dificultando uma maior utilização do TCPE.

Na impossibilidade da realização do TCPE, o VO₂ máx pode ser estimado por equações com base na duração12 ou intensidade no pico do esforço13,14. Aplicando-se essas equações a grupos de indivíduos, há uma tendência que a associação entre os valores estimados e aqueles medidos de VO₂ máx seja boa. No entanto, individualmente, a margem de erro de estimativa (EE) pode ser grande, acima de 15%15. Erros dessa magnitude são raramente aceitos na área biológica e excedem os que são observados em exames laboratoriais ou em medidas clínicas e antropométricas (ex. altura e peso). Na medida em que pequenas variações no VO₂ máx podem levar a importantes diferenças de conduta clínica ou de orientação de treinamento desportivo16, erros deste nível podem ser comprometedores, exigindo-se um esforço para minimizá-los.

Teoricamente, a eficiência mecânica na realização de um determinado gesto motor é expressa pela razão entre o trabalho gerado e o consumo de O₂ para a sua realização17. Essa varia entre os indivíduos e pode depender de idade, sexo, condição clínica e treinamento físico. Interessantemente, a maioria das equações disponíveis na literatura para a estimativa do VO₂ máx não levam em consideração essas possíveis relações, o que provavelmente contribui para o EE do VO₂ máx. Por exemplo, considerando as diferenças antropométricas, fisiológicas, biomecânicas e de desempenho desportivo, é oportuno analisar a influência do sexo sobre o EE do VO₂ máx.

Os objetivos do estudo foram: a) determinar o EE do VO₂ máx em cicloergometria para uma população tipicamente atendida em serviços de ergometria e b) propor equações específicas por sexo visando reduzir o EE da condição aeróbica em cicloergometria.

Métodos

Amostra

Foram revisados os dados de pacientes submetidos voluntariamente ao TCPE, entre o período de janeiro de 2008 a junho de 2014, em uma clínica privada. Para análise foram selecionados os pacientes que atendiam simultaneamente aos seguintes critérios de inclusão: a) ausência de avaliação anterior na clínica; b) idade ≥ 18 anos e c) TCPE máximo realizado em cicloergómetro de membros inferiores (CMI).

Neste período, foram realizadas 3874 avaliações e após aplicados os critérios de inclusão restaram 1715 indivíduos (1172 homens), conforme é representado na Figura 1. Em adendo, os seguintes 200 indivíduos submetidos a TCPE que atenderam aos critérios descritos acima foram utilizados para a validação das equações desenvolvidas.

Considerações Éticas

Todos os pacientes leram e assinaram o Termo de Consentimento Livre e Esclarecido antes do TCPE e a análise retrospectiva dos dados foi aprovada por Comitê de Ética em Pesquisa institucional.

Avaliação clínica e medidas de peso e altura

Antes da realização do TCPE, foi colhida uma história clínica, enfatizando as medicações de uso regular e fatores de risco para doença cardiovascular, e realizado um exame físico. Foram ainda obtidas as medidas de peso corporal e altura para cada indivíduo. As medicações prescritas não foram suspensas para a realização do TCPE.

O peso corporal foi medido em uma balança Cardiomed modelo Welmy, com resolução de 0,1 kg e a estatura foi obtida em um estadiômetro Sanny com resolução de 0,1 cm.

Teste Cardíopulmonar de Exercício Máximo

O TCPE foi realizado em uma sala específica, climatizada entre 21 e 24 graus Celsius e com umidade relativa do ar entre 40 e 60%. O TCPE seguiu um protocolo em rampa individualizado que objetivava uma duração entre 8 e 12 minutos, em um CMI (Inbrasport CG-04, Inbrasport, Brasil), de acordo com as Diretrizes da Sociedade Brasileira de Cardiologia18, sob supervisão médica presencial e qualificada em um laboratório devidamente equipado para lidar com eventuais intercorrências clínicas. Todos os TCPEs foram realizados por apenas quatro médicos, seguindo uma rotina de procedimentos bem definida, especialmente no que se refere ao estímulo para obtenção de esforço verdadeiramente máximo. A altura do selim foi individualmente ajustada de modo a proporcionar uma extensão quase completa do joelho na posição mais baixa e uma flexão do quadril inferior a noventa graus na posição mais alta do pedal. A frequência de pedaladas foi manejada entre 65 e 75 rotações por minuto.

Os indivíduos foram monitorizados por eletrocardiógrafo digital (ErgoPC Elite versões 3.2.1.5 ou 3.3.4.3 ou 3.3.6.2, Micromed, Brasil) durante a realização do TCPE, obtendo-se a medida da frequência cardíaca (FC) através da leitura dos registros de eletrocardiograma na derivação CC5 obtidos ao final de cada minuto. A coleta dos gases expirados foi feita através de um pneumotacógrafo Prevent (MedGraphics, Estados Unidos) acoplado a uma peça bucal, com oclusão nasal concomitante. Para a medida e análise dos gases expirados foi utilizado um analisador metabólico VO₂ 2000 (MedGraphics, Estados Unidos) que era calibrado diariamente antes da realização da primeira avaliação do dia e repetido quando necessário. As médias dos resultados dos gases expirados eram lidos a cada 10 segundos e posteriormente consolidados minuto-a-minuto do TCPE.
Considerou-se como VO₂máx o maior valor obtido em um dado minuto do TCPE. A pressão arterial foi aferida a cada minuto através de um esfigmomanômetro manual no membro superior direito.

A natureza máxima do exercício, que é mais facilmente avaliada pelo TCPE – presença de limiar anaeróbico e curvas de equivalentes ventilatórios em formato de U –, foi corroborada pela exaustão voluntária máxima (nota 10 na escala de 0-10 de Borg) do indivíduo sendo avaliado representada pela incapacidade de continuar a pedalar na rotação previamente estabelecida apesar do forte encorajamento verbal. Conforme descrito em estudo anterior, a caracterização do TCPE como máximo foi também confirmada pela impressão do médico supervisor e registrada no laudo do TCPE. Vale destacar que nenhum TCPE foi interrompido ou considerado máximo exclusivamente por critérios de FC.

Equações de predição do VO₂máx e da FC máxima

Os valores previstos do VO₂máx para cada paciente, como simples referência para comparação com os valores efetivamente medidos de VO₂máx, foram obtidos a partir de equações específicas para homens [60 – 0,55 x idade (anos)] e para mulheres [48 – 0,37 x idade (anos)].

Os valores previstos da FC máxima foram obtidos a partir da equação 208 – 0,7 x idade, para pacientes de ambos os sexos.

Equações de estimativa do VO₂máx

Para a análise do EE do VO₂máx expresso em função do peso corporal foi avaliada a partir do cálculo da diferença entre os valores medido e estimado (VO₂máx medido – VO₂máx estimado) em mL.(kg.min)⁻¹, e a partir dos erros percentuais (E%) - [(VO₂máx medido - VO₂máx estimado)/VO₂máx medido] x 100 – obtidos pela aplicação de cada uma das equações citadas acima, sendo o VO₂máx medido aquele obtido pela mensuração e análise dos gases expirados, como detalhado anteriormente. Valores negativos de EE e E% significam, portanto, que o VO₂máx estimado foi maior do que o VO₂máx medido, ou seja, que o valor calculado pela equação superestimou o valor medido.
Análise Estatística

Os resultados foram descritos como média e desvio-padrão ou como percentuais, dependendo da natureza da variável. A comparação das características demográficas e dos resultados do TCPE entre homens e mulheres foi realizada por teste t não pareado ou pelo teste do qui-quadrado. Os ER e E% das equações, quando apropriado, foram comparados por teste-t pareado ou pelo teste de ANOVA quando a comparação foi realizada entre três ou mais grupos. Os valores de VO₂ máx medido e de VO₂ máx estimado para as três equações do estudo – C-GERAL, C-HOMENS e C-MULHERES – foram comparados e analisados por regressão linear e também por correlação intraclass. As análises estatísticas foram realizadas no software Prism 6 (GraphPad, EUA) e SPSS 16 (SPSS, EUA), adotando-se o critério de 5% de probabilidade como nível de significância.

Resultados

Características demográficas e clínicas da amostra

A amostra foi constituída em sua maioria por indivíduos do sexo masculino (68,3%), com a idade variando entre 18 e 91 anos, sendo que 23,2% apresentavam índice de massa corporal (IMC) ≥ 30 kg.m⁻². Outros dados mais detalhados, assim como a prevalência de alguns fatores de risco para doença arterial coronariana, as principais morbidades e as medições em uso regular são apresentados nas Tabelas 1 e 2.

Dados do TCPE

A duração dos TCPEs foi de 10 ± 2 minutos. A média da FC máxima para o conjunto dos indivíduos foi de 159 ± 25 bpm, correspondendo a 92% do valor previsto, sendo maior naqueles pacientes que não faziam uso de β-bloqueador (166 ± 20 bpm) (p < 0,01). Os homens alcançaram cargas finais mais altas do que as mulheres (172 ± 70 vs 111 ± 45 watts; p < 0,01) e atingiram um VO₂ máx maior (29,4 ± 10,5 vs 24,2 ± 9,2 mL.(kg.min)⁻¹; p < 0,01). Na amostra, o VO₂ máx medido tendeu a ser discretamente menor do que o previsto com base na idade e sexo, correspondendo a 96% e a 82% do valor previsto pelas equações de Jones e col.²¹, respectivamente, para homens e mulheres. Uma síntese dos principais resultados do TCPE é apresentada na Tabela 3.

Valores estimados de VO₂ máx

Em relação ao VO₂ máx estimado, os valores encontrados a partir da equação ACSM modificada foram, respectivamente, para homens e mulheres, 29,8 ± 9,8 e 26,9 ± 8,9 mL.(kg.min)⁻¹, mostrando que esta equação tende a superestimar o VO₂ máx. Os ER e E% diferiram para os sexos (p < 0,01), com valores de -0,4 ± 3,2 mL.(kg.min)⁻¹ e -3,4 ± 13,4% para os homens e de -2,7 ± 3,5 mL.(kg.min)⁻¹ e -14,7 ± 17,4% para as mulheres, respectivamente.

Equação C-GERAL

Determinando a equação específica para a amostra estudada, sem fazer distinção por sexo e com as mesmas variáveis da equação ACSM modificada, obteve-se a seguinte equação (C-GERAL): (carga final/peso) x 10,483 + 7, onde o valor 7, como explicado anteriormente, corresponde a uma simplificação dos dois últimos termos daquela outra equação, ao considerar a soma do consumo de oxigênio em repouso [3,5 mL.(kg.min)⁻¹] e de um valor idêntico de consumo de oxigênio para pedalar sem resistência. Aplicando-se a equação C-GERAL foram obtidos os seguintes resultados de VO₂ máximo estimado (mL.(kg.min)⁻¹): 28,3 ± 8,9e 24,9 ± 7,9 em homens e mulheres, respectivamente. Apesar de os valores obtidos de EE e E% terem permanecido semelhantes nos homens – 1,1 ± 3,3 mL.(kg.min)⁻¹ e 1,2 ± 13,2%, respectivamente –, nas mulheres houve uma redução significativa do EE do VO₂ máx, passando para -0,7 ± 3,5 mL.(kg.min)⁻¹, e um E% de -6,3 ± 16,5% (p < 0,01).

Equações C-HOMENS e C-MULHERES

Na sequência, foram obtidas as seguintes equações específicas por sexo: C-HOMENS: (carga final/peso) x 10,791 + 7. Utilizando -se essas novas equações, os valores do VO₂ máx estimado foram 28,9 ± 9,2 mL.(kg.min)⁻¹ em homens e 23,7 ± 7,4 mL.(kg.min)⁻¹ em mulheres. O EE foi reduzido em ambos os sexos, e novamente de forma mais expressiva nas mulheres. Em homens foi obtido um EE de 0,5 ± 3,2 mL.(kg.min)⁻¹ e um E% de -0,9 ± 13,4% (p < 0,01), enquanto para as mulheres, o EE foi reduzido para 0,5 ± 3,6 mL.(kg.min)⁻¹, sendo o E% de apenas -1,7 ± 16,2% (p < 0,01) (Figura 2).

A figura 3 mostra o erro padrão de estimativa e ilustra a associação entre os valores de VO₂ máx estimado e medido.
Tabela 2 – Principais características clínicas e medicações de uso regular na amostra (n = 1715)*

Morbidades	Homens (n = 1172)	Mulheres (n = 543)
Hipertensão arterial sistêmica	428 (36,5%)	114 (21,0%)
Dislipidemia	496 (42,6%)	140 (25,8%)
Obesidade	193 (16,5%)	61 (11,2%)
Diabetes mellitus	113 (9,6%)	29 (5,3%)
Doença arterial coronariana	249 (21,2%)	39 (7,2%)
Infarto agudo do miocárdio	125 (10,7%)	18 (3,3%)
Revascularização miocárdica	96 (8,2%)	10 (1,8%)

Uso de medicações		
β-bloqueador	302 (25,8%)	91 (16,8%)
Bloqueador de canal de cálcio	109 (9,3%)	37 (6,8%)
IECA	125 (10,7%)	19 (3,5%)
BRA	340 (29,0%)	113 (20,8%)
Diurético	186 (15,9%)	68 (12,5%)
Vasodilatador	82 (7,0%)	14 (2,6%)
Anti-lipemiante	531 (45,3%)	151 (27,9%)
Anti-agregante plaquetário	387 (33,0%)	82 (15,1%)
Anti-arrítmico	71 (6,1%)	25 (4,6%)

BRA: Bloqueador do receptor de angiotensina; IECA: Inibidor da enzima conversora de angiotensina. *Valores expressos como n(%).

Tabela 3 – Principais resultados do teste cardiopulmonar de exercício (n = 1715)*

Variável	Homens (n = 1172)	Mulheres (n = 543)
Duração (min)	10 ± 2	9 ± 3
FC máx (bpm)	158 ± 26	161 ± 24
- Com β-bloqueador	135 ± 25	133 ± 24
- Sem β-bloqueador	166 ± 21	167 ± 20
Carga máxima (watts)	172 ± 70	111 ± 45
VO₂ máx medido [mL.(kg.min⁻¹)]	29,4 ± 10,5	24,2 ± 9,2

FC: Frequência cardíaca; *Valores expressos como média ± desvio-padrão.

para a amostra geral e para homens e mulheres, analisados separadamente. Destacam-se ainda os altos valores de coeficiente de correlação intraclasse obtidos, com os respectivos intervalos de confiança (IC): C-GERAL = 0,9703 (IC 95%: 0,9674 a 0,9730), C-HOMENS = 0,9725 (IC 95%: 0,9691 a 0,9755) e C-MULHERES = 0,9680 (IC 95%: 0,9621 a 0,9729). A inspeção visual das distribuições permitiu caracterizar que houve homocedasticidade nas regressões lineares.

A partir da aplicação das equações desenvolvidas no presente estudo, foram obtidos na amostra de validação os seguintes resultados de EE e E%: C-GERAL (n = 200) 0,5 ± 2,5 mL.(kg.min⁻¹) e 0,7±9,1%; C-HOMENS (n = 135) 0,5 ± 2,5 mL.(kg.min⁻¹) e 1,0 ± 8,6%; e C-MULHERES (n = 65) 0,5 ± 2,0 mL.(kg.min⁻¹) e 0,5 ± 8,5%.

Discussão

O TCPE é o exame mais apropriado para a avaliação da condição aeróbia. Contudo, em nosso meio, ainda é bastante comum o uso do teste de exercício sem coleta e análise de gases expirados para essa finalidade, ainda que isso seja acompanhado de expressiva margem de erro¹⁵. Dessa forma, é importante disponibilizar equações específicas que permitam reduzir esse EE nos testes de exercício realizados em hospitais e clínicas.
Apesar de estudos anteriores terem sido realizados com este mesmo objetivo24-27, a utilização de amostras pequenas prejudica a extrapolação dos resultados encontrados. Por exemplo, Lang e cols.14 e Latin e Berg28 aplicaram a equação de estimativa do VO\textsubscript{2}máx do ACSM13 em 60 homens e 60 mulheres, respectivamente, encontrando valores estimados menores do que os de VO\textsubscript{2}máx medidos, em ambos os sexos. Por outro lado, Greiwe e cols.29, aplicando esta mesma equação a 15 homens e 15 mulheres com perfis clínicos semelhantes obteve valores superestimados de VO\textsubscript{2}máx. Além disso, apesar de a introdução por Lang e cols.14 do fator 260 mL.min-1 na equação do ACSM ter produzido resultados mais aproximados da estimativa do VO\textsubscript{2}máx em sua amostra, para corresponder ao gasto energético em mover os pedais sem qualquer resistência adicionada, o nosso estudo, ao aplicar essa equação ACSM modificada mostrou a manutenção de erros expressivos na comparação entre os valores estimados e medidos. A discrepância dos resultados descritos acima sugere erros relevantes quando as equações são desenvolvidas a partir de amostras pequenas.

Além disso, a observação de diferença no EE entre homens e mulheres utilizando a mesma equação sugere a conveniência de desenvolver equações específicas para cada sexo. Nesse sentido, Storer e cols.30 desenvolveram três equações de estimativa utilizando as variáveis carga, peso e idade: uma geral para ambos os sexos, uma específica para homens e outra específica para mulheres. Nesse estudo, ao aplicar essas equações, obtiveram menores erros na comparação entre os valores estimados e medidos. A discrepância dos resultados descritos acima sugere erros relevantes quando as equações são desenvolvidas a partir de amostras pequenas.

Recentemente, em um importante estudo, Almeida e cols.32 utilizaram uma grande amostra de indivíduos brasileiros (3119 indivíduos), objetivando desenvolver uma equação adequada para prever o VO\textsubscript{2}máx em testes de exercício realizados em esteira rolante, a partir de idade, sexo, IMC e nível de atividade física. No entanto, vale enfatizar que ainda que seja importante ter dados de referência para o VO\textsubscript{2}máx a partir de equações desenvolvidas para a própria população brasileira, isso não atende à questão do erro do VO\textsubscript{2}máx estimado quando não são coletadas e analisadas medidas de gases expirados durante o teste de exercício. Enquanto o VO\textsubscript{2}máx previsto é obtido a partir de variáveis clínicas pré-teste, tais como idade e sexo, o VO\textsubscript{2}máx estimado é calculado com base em variáveis obtidas durante a realização do teste de exercício, tais como carga e duração do teste. Assim sendo, ao melhor do nosso conhecimento, não há estudos na população brasileira com grande amostra (maior do que mil casos) que tenham desenvolvido equações específicas para estimar o VO\textsubscript{2}máx em testes de exercício realizados em CMI.

Na realidade, as questões de tamanho e de representatividade amostral são bastante relevantes. Neder e cols.33 já haviam observado que os indivíduos tipicamente selecionados para participar dos estudos não eram representativos dos indivíduos mais comumente referidos para teste de exercício, podendo levar a viéses de seleção. Desta forma, em nosso estudo, optamos por não excluir pacientes obesos, portadores de doenças cardiovasculares ou pulmonares e/ou que faziam uso regular de medicações capazes de influenciar as respostas fisiológicas ao exercício, para garantir uma amostra representativa daquela que é mais comumente referenciada aos
Figura 3 – Correlação entre os valores de VO₂ máx medido e estimado pelas equações: a) C-GERAL, b) C-HOMENS e c) C-MULHERES. EPE: Erro padrão de estimativa; r_{cl}: Coeficiente de correlação intraclasses.
serviços de ergometria. Vale observar que apesar desse perfil clínico variado, o VO\textsubscript{2max} previsto para a idade manteve-se relativamente próximo ao medido, especialmente nos homens. Traçando uma comparação entre os dados obtidos em nosso estudo e os reportados por Herdy e Uhlendorf14 na região sul do Brasil, temos que o VO\textsubscript{2max} medido dos homens assemelharam-se aos valores de referência para sedentários entre 55 a 64 anos [30,0 ± 6,3 mL.(kg.min)-1] ou ativos entre 65 e 74 anos [30,0 ± 6,1 mL.(kg.min)-1], já o VO\textsubscript{2max} encontrado nas mulheres foram similares aos valores de referência de sedentários entre 55 e 64 anos [23,9 ± 4,2 mL.(kg.min)-1].

A mais provável razão para essa discreta discrepância deve ser o fato de que o estudo de Herdy e Uhlendorf14 utilizou TCPE em esteira rolante, o que pode justificar a tendência de valores mais altos encontrados para a mesma faixa etária.

O nosso estudo apresenta alguns pontos fortes: 1) ao nosso conhecimento, nenhum outro estudo brasileiro para avaliação de equações de estimativa do VO\textsubscript{2max} foi baseado em uma amostra tão numerosa de indivíduos (superior a mil indivíduos); 2) os cicloergômetros e analisadores de gases eram periodicamente calibrados seguindo as especificações dos respectivos fabricantes e 3) todas as informações originais dos laudos estavam disponíveis em formato digital (banco de dados) e foram criteriosamente revisadas para excluir aqueles com informações incompletas.

Por outro lado, há algumas limitações do estudo que merecem ser destacadas. Todos os TCPEs foram realizados seguindo protocolos de rampa. Dessa forma, não é possível saber se as equações de estimativa do VO\textsubscript{2max} aqui apresentadas poderão ser aplicadas para testes de exercício em CMI realizados com outros protocolos.

É possível que outros fatores tais como idade, nível de adiposidade e padrão recente ou histórico de exercício físico regular e uso de determinadas medicações, possam estar contribuindo para o EE através da influência na eficiência mecânica. Este foi um estudo preliminar para analisar o EE do VO\textsubscript{2max} mas, como anteriormente descritas, estão em andamento. Análises estatísticas subsequentes, como a regressão multivariada utilizando as variáveis que demonstraram influência no EE do VO\textsubscript{2max}, poderão ser aplicadas para testes de exercício em CMI.

Conclusão

O nosso estudo identificou que a aplicação de equações estrangeiras (ACSM modificada) induziu um importante EE quando aplicada a uma população típica de serviços de ergometria brasileiros. Foi então desenvolvida uma equação – C-GERAL – que reduziu parcialmente o EE. Contudo, uma análise separada por sexo identificou a necessidade de desenvolver equações específicas – C-HOMENS e C-MULHERES – que foram capazes de reduzir ainda mais, sem todavia eliminar, o EE. Dessa forma, para os serviços que não possuem condições de efetivamente realizar o TCPE para a medida do VO\textsubscript{2max}, são apresentadas alternativas mais precisas para a estimativa de VO\textsubscript{2max} em testes de exercício em CMI.

Contribuição dos autores

Concepção e desenho da pesquisa, Análise e interpretação dos dados, Análise estatística, Redação do manuscrito e Revisão crítica do manuscrito quanto ao conteúdo intelectual importante: de Souza e Silva CG, Araújo CGS; Obtenção de dados: Araújo CGS.

Potencial conflito de interesse

Declaro não haver conflito de interesses pertinentes.

Fontes de financiamento

O presente estudo foi parcialmente financiado pelo CNPq e FAPERJ.

Vinculação acadêmica

Este artigo é parte de dissertação de Mestrado de Christina G. de Souza e Silva pelo Instituto do Coração Edson Saad - Universidade Federal do Rio de Janeiro.

Referências

1. Barry VW, Baruth M, Beets MW, Dunstone JL, Liu J, Blair SN. Fitness vs. fatness on all-cause mortality: a meta-analysis. Prog Cardiovasc Dis. 2014;56(4):382-90.

2. Kodama S, Saito K, Tanaka S, Maki M, Yachi Y, Asumi M, et al. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: a meta-analysis. JAMA. 2009;301(19):2024-35.

3. Laukkanen JA, Rauramaa R, Salonen JT, Kurl S. The predictive value of cardiorespiratory fitness combined with coronary risk evaluation and the risk of cardiovascular and all-cause death. J Intern Med. 2007;262(2):263-72.

4. Myers J, Prakash M, Froelicher V, Do D, Partington S, Atwood JE. Exercise capacity and mortality among men referred for exercise testing. N Engl J Med. 2002;346(11):793-801.

5. Chang JA, Froelicher VF. Clinical and exercise test markers of prognosis in patients with stable coronary artery disease. Curr Probl Cardiol. 1994;19(9):533-87.

6. Pate RR, Pratt M, Blair SN, Haskell WL, Macera CA, Bouchard C, et al. Physical activity and public health. A recommendation from the Centers for Disease Control and Prevention and the American College of Sports Medicine. JAMA. 1995;273(5):402-7.
7. Kavanagh T, Mertens DJ, Hamm LF, Beyene J, Kennedy J, Corey P, et al. Peak oxygen intake and cardiac mortality in women referred for cardiac rehabilitation. J Am Coll Cardiol. 2003;42(12):2139-43.

8. Mitchell JH, Sproule BJ, Chapman CB. The physiological meaning of the maximal oxygen intake test. J Clin Invest. 1958;37(4):538-47.

9. Albuaini K, Egred M, Alahmar A, Wright DJ. Cardiopulmonary exercise testing and its application. Heart. 2007;93(10):1285-92.

10. Haskell WL, Lee IM, Pate RR, Powell KE, Blair SN, Franklin BA, et al. Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Med Sci Sports Exerc. 2007;39(8):1423-34.

11. Guazzi M, Adams V, Conraads V, Halle M, Mezzani A, Vanhees L, et al. EACPR/AHA Joint Scientific Statement. Clinical recommendations for cardiopulmonary exercise testing data assessment in specific patient populations. Eur Heart J. 2012;33(23):2917-27.

12. Bruce RA, Kusumi F, Hosmer D. Maximal oxygen intake and nomographic assessment of functional aerobic impairment in cardiovascular disease. Am Heart J. 1973;85(4):546-62.

13. American College of Sports Medicine. (ACSM). Guidelines for graded exercise testing and training. 3rd ed. Philadelphia: Lea & Febiger; 1986. p. 162-3.

14. Lang PB, Latin RW, Berg KE, Mellion MB. The accuracy of the ACSM cycle ergometry equation. Med Sci Sports Exerc. 1992;24(2):272-6.

15. Araújo CG, Herdy AH, Stein R. Maximum oxygen consumption measurement: valuable biological marker in health and in sickness. Arq Bras Cardiol. 2013;100(4):e51-3.

16. Kavanagh T, Mertens DJ, Hamm LF, Beyene J, Kennedy J, Corey P, et al. Prediction of long-term prognosis in 12,169 men referred for cardiac rehabilitation. Circulation. 2002;106(6):666-71.

17. Jobson AS, Hopker JG, Korff T, Passfield L. Gross efficiency and cycling performance: a brief review. J Sci Cycling. 2012;1(1):3-8.

18. Meneghelo RS, Araújo CG, Stein R, Mastrocolla LE, Albuquerque PF, Serra SM, et al; Sociedade Brasileira de Cardiologia. III Guideline of Sociedade Brasileira de Cardiologia on the exercise test. Arq Bras Cardiol. 2010;95(sup1):1-26.

19. Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377-81.

20. Balassiano DH, Araújo CG. Maximal heart rate: influence of sport practice during childhood and adolescence. Arq Bras Cardiol. 2013;100(4):333-8.

21. Jones NL, Campbell EK, Edwards RH, Robertson DG. Clinical exercise testing. Philadelphia: WB Saunders; 1975.

22. Duarte CV, Araújo CG. Cardiac vagal index does not explain age-independent maximal heart rate. Int J Sports Med. 2013;34(6):502-6.

23. American College of Sports Medicine. ACSM’s guidelines for exercise testing and prescription. 7th ed. Philadelphia: Lippincott Williams & Wilkins; 2006.

24. Artero EG, Jackson AS, Sui X, Lee DC, O’Connor DP, Lavie CJ, et al. Longitudinal algorithms to estimate cardiopulmonary fitness: associations with nonfatal cardiovascular disease and disease-specific mortality. J Am Coll Cardiol. 2014;63(21):2289-96.

25. Grant S, Cobbett K, Ajmad AM, Wilson J, Alchison T. A comparison of methods of predicting maximum oxygen uptake. Br J Sports Med. 1995;29(3):147-52.

26. Harrison MH, Bruce DL, Brown GA, Cochrane LA. A comparison of some indirect methods for predicting maximal oxygen uptake. Aviat Space Environ Med. 1980;51(10):1128-33.

27. Peterson MJ, Pieper CF, Morey MC. Accuracy of VO2(max) prediction equations in older adults. Med Sci Sports Exerc. 2003;35(1):145-9.

28. Latin RW, Berg KE. The accuracy of the ACSM and a new cycle ergometry equation for young women. Med Sci Sports Exerc. 1994;26(5):642-6.

29. Cireiwe JS, Kaminski LA, Whaley MH, Dwyer GB. Evaluation of the ACSM submaximal ergometer test for estimating VO2max. Med Sci Sports Exerc. 1995;27(9):1315-20.

30. Storer TW, Davis JA, Cioazzo VJ. Accurate prediction of VO2max in cycle ergometry. Med Sci Sports Exerc. 1990;22(5):704-12.

31. Magrani P, Pompeu FA. Equations for predicting aerobic power (VO2) of young Brazilian adults. Arq Bras Cardiol. 2010;94(6):763-70.

32. Almeida AE, Stefani CM, Nascimento JA, Almeida NM, Santos AC, Ribeiro JP, et al. An equation for the prediction of oxygen consumption in a Brazilian population. Arq Bras Cardiol. 2014;103(4):299-307.

33. Neder JA, Nery LE, Castelo A, Andreoni S, Lerario MC, Sachs A, et al. Prediction of metabolic and cardiopulmonary responses to maximum cycle ergometry: a randomised study. Eur Respir J. 1999;14(6):1304-13.

34. Herdy AH, Ulhendorf D. Reference values for cardiopulmonary exercise testing for sedentary and active men and women. Arq Bras Cardiol. 2011;96(1):54-9.