Research Article

Epicardial adipose tissue thickness in patients with urolithiasis

Burak Altun1*, Eyup Burak Sancak2, Berkan Resorlu2, Hakan Tasolar3, Alpaslan Akbas2, Gurhan Adam4, Mustafa Resorlu4 and Mehzat Altun5

1MD, Assistant Professor, Department of Cardiology, Canakkale Onsekiz Mart University, Canakkale Turkey
2MD, Assistant Professor, Department of Urology, Canakkale Onsekiz Mart University, Canakkale, Turkey
3MD, Department of Cardiology, Adiyaman University Training and Research Hospital, Adiyaman, Turkey
4MD Assistant Professor, Department of Radiology, Canakkale Onsekiz Mart University, Canakkale, Turkey
5Vocational School of Health Services, Canakkale Onsekiz Mart University, Canakkale, Turkey

Received: 03 October, 2019
Accepted: 03 February, 2020
Published: 05 February, 2020

*Corresponding author: Burak Altun, MD, Assistant Professor, Department of Cardiology, Canakkale Onsekiz Mart University, Canakkale Turkey, Tel: 90-5075766657; Fax: 90-2862635959; E-mail: drburakaltun@yahoo.com.tr

Keywords: Epicardial adipose tissue; Metabolic syndrome; Urolithiasis
https://www.peertechz.com

Abstract

Aim: We aimed to assess the relationship between urinary stone disease which is accepted as a component of metabolic syndrome and epicardial adipose tissue (EAT) thickness.

Methods: The study included 45 patients and 39 healthy controls. EAT thickness was measured by echocardiography in all subjects.

Results: EAT thickness was higher (5.77±0.88 vs. 3.83±0.72mm, p<0.001) in patients than in control subjects. EAT thickness was correlated with age, triglyceride levels, low density lipoprotein cholesterol levels and family history. Regression analysis showed that family history, triglyceride levels and age were independent predictors of EAT thickness in kidney stone patients.

Conclusion: We suggest that urolithiasis should be considered as a component of metabolic syndrome and EAT thickness may be useful to detect early atherosclerosis in urolithiasis.

Introduction

Kidney Stone (KS) disease is a worldwide health problem, and its prevalence is increasing especially in industrialized countries, probably as a result of enviromental factors, such as lifestyle and dietary habits [1]. The etiology of KS is multifactorial, with epidemiologic studies showing that age, genetic factors, nutritional properties, geograhical factors and some medical conditions such as diabetes mellitus, hypertension and obesity are associated with urinary stone formation [1-3]. These medical conditions are now collectively named to as Metabolic Syndrome (MS) and large series reported that presence of metabolic syndrome is also associated with the increased risk of urinary stone disease [4-10].

Epicardial Adipose Tissue (EAT) thickness is true visceral fat located around the heart, especially subepicardial coronary vessels. Increases in the thickness of EAT which was measured by echocardiography have been shown to be directly associated with an increased risk of hypertension, coronary artery disease
and diabetes mellitus [11–16]. So this test can be used as a predictor of MS and its components. However there is currently no data in the literature regarding the relationship between thickness of EAT and KS disease. In this study, we aimed to assess the relationship between KS disease accepted as a component of MS and EAT thickness.

Materials and methods

Study population

Fifty-three patients with KS disease and 39 healthy subjects were enrolled in our study. Patients were excluded if they had inadequate view on echocardiography, a history of any kind of cardiovascular disease, active infection and history of uric acid, cystin or struvite stones. For this reasons 8 KS patients were excluded because of cardiovascular disease in 4, and insufficient echocardiographic view in 4. Each participant signed an informed consent form in accordance with the Declaration of Helsinki, and this study was approved by the local ethical committee of Canakkale Onsekiz Mart University.

Measurements

Systolic and diastolic blood pressures were measured after 5 minutes of rest. Laboratory tests included fasting plasma glucose, creatinine, total cholesterol, High-Density Lipoprotein (HDL) cholesterol, Low Density Lipoprotein cholesterol (LDL), triglycerides. Biochemical measurements were made using standard biochemical techniques with a device from Beckman Coulter Ireland Inc., Mervue, Galway, Ireland. Body Mass Index (BMI) was calculated by dividing the weight in kilograms by the squared height in meters. MS diagnosed according to the National Cholesterol Education Program Adult Treatment Panel III [17]. MS was defined as the presence of 3 or more following components: systolic and diastolic blood pressure ≥130/85mmHg, fasting plasma glucose ≥110mg/dL, serum triglyceride ≥150mg/dL, HDL<40mg/dL, and elevated waist circumference ≥102cm in men and ≥88cm in women.

The diagnosis of KS was established on the basis of the results of urinary ultrasound (Toshiba Aplio XG, Japan) using a 3.5MHz transducer. Renal calcification was classified as a urinary stone if the calcification was located in the collecting system. Stone burden was also determined. All evaluations were performed by experienced radiologists, who did not have any information about metabolic status of the patients.

EAT measurements

Echocardiograms were performed with a Vivid 7 (Vingmed electronic,GE, Horten, Norway) instrument according to standard techniques. We measured EAT thickness on the free wall of right ventricle from the parasternal long-axis views. EAT was identified as an echo-free space in the pericardial layers on the two-dimensional echocardiography, and its thickness was measured perpendicularly on the free wall of the right ventricle at end-diastole for 3 cardiac cycles [16,18] (Figure 1). An average value from these three measurements was obtained. The offline measurement of EAT thickness was performed by the same cardiologist who was unaware of the clinical data.

Results

Forty-five patients with KS disease and 39 healthy subjects were included in this study. Of the 84 patients included in the final analysis, 44% were men and 56% were women. Mean age was 50.5±10.4 years. Mean BMI was 25.5±3.4kg/m2. Demographic and laboratory characteristics of the study population are presented in Table 1. EAT thickness were higher (p<0.001) in KS disease patients than in healthy subjects (Figure 2). Multivariable analysis showed that increased EAT thickness was associated with family history of urolithiasis. EAT thickness was also significantly correlated with triglyceride levels (r=0.627, p<0.001, Figure 3), LDL levels, age, and family history. Table 2 shows the correlation between EAT thickness and study parameters in patients.

Multiple linear regression analyses with stepwise method were performed to evaluate independent variables of EAT thickness. Triglyceride levels, age, and family history of urolithiasis were independent predictors of EAT (Table 3).

Discussion

In our study EAT thickness were higher in KS disease than in control subjects and correlated with triglyceride levels, age and family history.

EAT is a component of visceral adiposity and related to MS and cardiovascular risk factors [11–13,16]. Recently, there has been increased interest in EAT thickness as a marker of
Atherosclerosis. In line with previous studies, it has been shown to be positively correlated with the severity of coronary artery disease [19–21].

The MS seems to be a risk factor for stone formation, because all components of this syndrome have been demonstrated to be independent risk factor for urinary stone formation [1–4]. National Health and Nutrition Examination Survey III reported a significant positive correlation between the MS traits and stone prevalence [22]. The association between MS and KS disease also confirmed with imaging studies. In a large study in which 2132 Caucasian patients were reviewed, presence of MS was independently found related to ultrasonographic evidence of urolithiasis [23]. Although several studies have reported an association between urolithiasis and individual components of MS, none of them showed a clear evidence about this togetherness [4–10]. Rendina, et al., [5], stated in their study that insulin resistance significantly influences the urinary salts supersaturation, and KS formation results from a phase change in which urinary dissolved salts condense into solids, and all phase changes are driven by salts supersaturation [24]. It has been shown in previous studies [6–10], that, especially its components, not directly MS, may cause kidney stones, however, the underlying mechanisms have not clearly been demonstrated. In our study, we found the EAT thickness higher in KS disease than in control subjects. Furthermore positive family history of urolithiasis is a risk factor for increased EAT thickness, in KS disease patients. Therefore present study is the first to report a clear evidence about relationship between MS and KS disease.

Table 1: Clinical and laboratory characteristics of the study population.

Characteristics	Kidney Stone disease (n=45)	Healthy subjects (n=39)	P value
Age, years	49.8±12.7	51.2±7.1	0.540
BMI, kg/m²	27.1±3.4	23.7±2.3	<0.001
SBP, mm Hg	120.8±19.8	118.2±16.0	0.516
DBP, mm Hg	69.4±22.6	77.1±18.8	0.048
Waist circumference, cm	100.4±10.3	73.5±4.8	<0.001
Laboratory data			
Glucose, mg/dl	98.9±12.5	71.5±4.6	<0.001
Creatinine, mg/dl	0.85±0.1	0.83±0.1	0.640
LDL cholesterol, mg/dl	126.8±39.5	97.8±18.7	<0.001
HDL cholesterol, mg/dl	30.3±25.5	36.5±5.8	0.177
Triglyceride, mg/dl	149.4±74.7	105.8±33.2	<0.001
EAT thickness, mm	5.77±0.88	3.83±0.72	<0.001

BMI: Body Mass Index; SBP: Systolic Blood Pressure; DBP: Diastolic Blood Pressure; LDL: Low Density Lipoprotein; HDL: High Density Lipoprotein; EAT: Epicardial Adipose Tissue

Table 2: Correlation of study parameters with epicardial adipose tissue thickness.

Parameters	r	P value
EAT thickness	-	-
Age	0.478	<0.001
BMI	0.036	0.817
Waist circumference	-0.082	0.592
Family history	0.524	<0.001
SBP	0.237	0.130
DBP	0.212	0.162
Glucose	-0.098	0.524
Creatinine	0.054	0.749
LDL cholesterol	0.522	<0.001
HDL cholesterol	0.165	0.285
Triglyceride	0.627	<0.001

BMI: Body Mass Index; SBP: Systolic Blood Pressure; DBP: Diastolic Blood Pressure; LDL: Low Density Lipoprotein; HDL: High Density Lipoprotein; EAT: Epicardial Adipose Tissue

Table 3: Results of multiple regression analysis of patients population.

Parameter	β	P- value
Age	0.33	0.008
Family history	0.38	0.004
Triglyceride	0.379	0.005

Citation: Altun B, Sancak EB, Resorlu H, Tasolar H, Akbas A, et al. (2020) Epicardial adipose tissue thickness in patients with urolithiasis. J Cardiovasc Med Cardiol 7(1): 024-027. DOI: https://dx.doi.org/10.17352/2455-2976.000106
There are several limitations in the present study. First, it is performed with a cross-sectional design. Second, urinary metabolic evaluations were not performed and urinary US was used as the main imaging modality instead of noncontrast computed tomography. However, US has many advantages, including wide availability, low cost, and lack of radiation exposure. Finally, our study population is limited in numbers. Therefore, these results should be confirmed by large multicenter studies.

Conclusion

The relationship between KS disease and EAT thickness was researched in this study and EAT thickness was found to be higher in KS disease patients than in controls. We suggest that urolithiasis should be considered as a component of metabolic syndrome and EAT thickness may be useful to detect early atherosclerosis in urolithiasis.

References

1. Ekane S, Wildschutz T, Simon J, Schulman CC (1997) Urinary lithiasis: epidemiology and pathophysiology. Acta Urol Belg 65: 1-8.
2. Meydan N, Barutca S, Caliskan S, Camsari T (2003) Urinary Stone Disease in Diabetes Mellitus. Scand J Urol Nephrol 37: 64-70.
3. Lieske JC, de la Vega LS, Gettmann MT, Slezak JM, Bergstrahl EJ, et al. (2006) Diabetes mellitus and the risk of urinary tract stones: a population-based case-control study. Am J Kidney Dis 51: 897-904.
4. West B, Luke A, Durazo-Arvizu RA, Cao G, Shoham D, et al. (2008) metabolic syndrome and self-reported history of kidney stones: the National Health and Nutrition Examination Survey (NHANES III) 1998-1994. Am J Kidney Dis 51: 741-747.
5. Rendina D, Mossetti G, De Filippo G, Benvenuto D, Vivona CL, et al. (2009) The relationship between metabolic syndrome and nephrolithiasis in an inpatient population in Southern Italy: role of gender, hypertension and abdominal obesity. Nephrol Dial Transplant 24: 900-906.
6. Jeong IG, Kang T, Bang JK, Park J, Kim W, et al. (2011) Association between metabolic syndrome and severity of kidney stones from a nationwide survey on urolithiasis in Japan. Am J Kidney Dis 61: 923-929.
7. Peiris AN, Soothmann MS, Hoffmann RG, Hennes MI, Wilson CR, et al. (1989) Adiposity, fat distribution, and cardiovascular risk. Ann Intern Med 110: 867-872.
8. Folsom AR, Kushi LH, Anderson KE, Mink PJ, Olson JE, et al. (2000) Associations of general and abdominal obesity with multiple health outcomes in older women: the Iowa Women's Health Study. Arch Intern Med 160: 2117-2128.
9. Rexrode KM, Buring JE, Manson JE (2001) Abdominal and total adiposity and risk of coronary heart disease in men. Int J Obes Relat Metab Disord 25: 1047-1056.
10. Natale F, Tedesco MA, Mocerino R, de Simone V, De Marco GM, et al. (2009) Visceral adiposity and arterial stiffness: echocardiographic epicardial fat thickness reflects, better than waist circumference, carotid arterial stiffness in a large population of hypertensives. Eur J Echocardiogr 10: 549-555.
11. Jeong JW, Jeong MH, Yun KH, Oh SK, Park EM, et al. (2007) Echocardiographic epicardial fat thickness and coronary artery disease. Circ J 71: 536-539.
12. Iacobellis G, Ribaudo MC, Assael F, Veci E, Tiberi C, et al. (2003) Echocardiographic epicardial adipose tissue is related to anthropometric and clinical parameters of metabolic syndrome: a new indicator of cardiovascular risk. J Clin Endocrinol Metab 88: 5163-5168.
13. Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, et al. (2005) Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute. Circulation 112: 2735-2752.
14. Iacobellis G, Assael F, Ribaudo MC, Zappaterreno A, Alessi G, et al. (2003) Epicardial fat from echocardiography: A new method for visceral adipose tissue prediction. Obes Res 11: 304-310.
15. Reaven GM (1988) Role of insulin resistance in human disease. Diabetes 37: 1595-1607.
16. DeFronzo RA, Ferrannini E (1991) Insulin resistance: a multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care 14: 173-194.
17. Haffner S, Valdez R, Hazuda H, Mitchell BD, Morales PA, et al. (1992) Prospective analysis of the insulin-resistance syndrome (syndrome X). Diabetes 41: 715-722.
18. West B, Luke A, Durazo-Arvizu RA, Cao G, Shoham D, et al. (2008) EAT thickness and the prevalence of kidney stones: the National Health and Nutrition Examination Survey (NHANES III) 1988-1994. Am J Kidney Dis 51: 741-747.
19. Sakhae K, Capolongo G, Malaouf NM, Pasch A, Moe OW, et al. (2012) Metabolic syndrome and the risk of calcium stones. Nephrol Dial Transplant 27: 3008-3010.
20. Kohijimo Y, Sasaki Y, Iguchi M, Matsumura N, Inagaki T, et al. (2013) Association of metabolic syndrome traits and severity of kidney stones: results from a nationwide survey on urolithiasis in Japan. Am J Kidney Dis 61: 923-929.
21. Peiris AN, Soothmann MS, Hoffmann RG, Hennes MI, Wilson CR, et al. (1989) Adiposity, fat distribution, and cardiovascular risk. Ann Intern Med 110: 867-872.
22. Folsom AR, Kushi LH, Anderson KE, Mink PJ, Olson JE, et al. (2000) Associations of general and abdominal obesity with multiple health outcomes in older women: the Iowa Women's Health Study. Arch Intern Med 160: 2117-2128.
23. Rexrode KM, Buring JE, Manson JE (2001) Abdominal and total adiposity and risk of coronary heart disease in men. Int J Obes Relat Metab Disord 25: 1047-1056. DOI: https://dx.doi.org/10.17352/2455-2976.000106