ON CERTAIN ISOMORPHISMS BETWEEN ABSOLUTE GALOIS GROUPS

M. ROVINSKY

1. Introduction

Let k be an algebraically closed field of characteristic zero, L its finitely generated extension of transcendence degree ≥ 2, and L' another finitely generated extension of k. It is a result of Bogomolov [B2] that any isomorphism between $\text{Gal}(\overline{L}/L)$ and $\text{Gal}(\overline{L}'/L')$ is induced by an isomorphism of fields $\overline{L} \rightarrow \overline{L}'$ identifying L with L'.

If the transcendence degree of L over k is one, the group $\text{Gal}(\overline{L}/L)$ is free, and therefore, its structure tells nothing about the field L.

Let F be an algebraically closed extension of k of transcendence degree one, and $G = G_{F/k}$ be the group of automorphisms over k of the field F. Let the set of subgroups $U_{L} := \text{Aut}(F/L)$ for all subfields L finitely generated over k be the basis of neighborhoods of the unity in G.

Let λ be a continuous automorphism of G. The purpose of this note is to show that if λ induces an isomorphism $\text{Gal}(F/L) \xrightarrow{\sim} \text{Gal}(F/L')$ then the fields L and L' are isomorphic (see Theorem 4.2 below for a more precise statement).

1.1. Notations. For a field F_1 and its subfield F_2 we denote by G_{F_1/F_2} the group of automorphisms of the field F_1 over F_2. Throughout the note k is an algebraically closed field of characteristic zero, F its algebraically closed extension of transcendence degree $1 \leq n < \infty$ and $G = G_{F/k}$. If K is a subfield of F then \overline{K} denotes its algebraic closure in F.

For a topological group H we denote by H^{o} its subgroup generated by the compact subgroups, and by H^{ab} the quotient of H by the closure of its commutant.

For a smooth projective curve C over a field, $\text{Pic}^{\geq m}(C)$ (resp., $\text{Pic}^{> m}(C)$) is the submonoid in $\text{Pic}(C)$ of sheaves of degree $\geq m$ (resp., $> m$).

2. A Galois-type correspondence

We consider a topology on G with the basis of neighborhood of an automorphism $\sigma : F \xrightarrow{\sim} F$ over k given by the cosets of the form σU_{L} for all subfields L of F finitely generated over k, where $U_{L} = \text{Aut}(F/L)$. This topology was introduced in [ΠI].

One checks that the topology is Hausdorff, locally compact, and totally decomposable.

Proposition 2.1 (ΠI, Lemma 1, Section 3). The map

$\{\text{subfields in } F \text{ over } k\} \rightarrow \{\text{closed subgroups in } G\}$ given by $K \mapsto \text{Aut}(F/K)$

is injective and induces one-to-one correspondences

- $\{\text{subfields } K \text{ of } F \text{ with } k \subseteq K \text{ and } F = \overline{K}\} \leftrightarrow \{\text{compact subgroups of } G\}$;
- $\left\{\text{subfields } K \text{ of } F \text{ finitely generated over } k \text{ with } F = \overline{K}\right\} \leftrightarrow \{\text{compact open subgroups of } G\}$.

The inverse correspondences are given by $G \supseteq H \mapsto F^{H} \subseteq F$. □

Denote by G^{o} the subgroup of G generated by the compact subgroups. Obviously, G^{o} is an open normal subgroup in G. 1
3. Decomposition subgroups in abelian quotients

Let $n = 1$. We are going to show that for any continuous automorphism λ of G and any L of finite type over k one has $\lambda(U_L) = U_{L'}$ for some L' isomorphic to L.

To do that we first need to construct decomposition subgroups in the abelian quotients U_L^{ab}. For a smooth projective model C of L over k set $\Phi_L = \operatorname{Hom}(\operatorname{Div}^0(C), \hat{\mathbb{Z}}(1))$. By Kummer theory, $U_L^{ab} = \operatorname{Hom}(L^\times, \hat{\mathbb{Z}}(1))$, so, as $\operatorname{Pic}^0(C)$ is a divisible group, the short exact sequence $1 \rightarrow L^\times/k^\times \rightarrow \operatorname{Div}^0(C) \rightarrow \operatorname{Pic}^0(C) \rightarrow 0$ induces an embedding $\Phi_L \hookrightarrow U_L^{ab}$. One identifies Φ_L with the $\hat{\mathbb{Z}}$-module of the $\hat{\mathbb{Z}}(1)$-valued functions on $C(k)$ modulo the constant ones.

The next step is to get a description of Φ_L in terms of the Galois groups. Clearly, $U_L^{ab} = \Phi_{k(x)}$.

Lemma 3.1.

- If U is an open compact subgroup in G then $N_G(U) = N_{G^0}(U)$.
- If, moreover, $N_G(U)/U$ has no abelian subgroups of finite index then $U = U_{k(x)}$ for some $x \in F - k$.
- For any $x \in L - k$ the transfer $U_{k(x)}^{ab} \rightarrow U_L^{ab}$ factors through Φ_L.
- The span of images of the transfers $U_{k(x)}^{ab} \rightarrow U_L^{ab}$ for all $x \in L - k$ is dense in Φ_L.

Proof.

- By Proposition 2.1 $U = U_L$ for a field L finitely generated over k. Then the group $N_G(U_L)/U_L$ coincides with the group of automorphisms of the field L over k. As the automorphism groups of projective curves of genus > 1 are finite, if L is isomorphic to the function field of such a curve, then the normalizer of U in G is compact. As the automorphism groups of elliptic curves are generated by elements of order ≤ 4 and contain abelian subgroups of index ≤ 6, if L is isomorphic to the function field of such a curve, then the normalizer of U in G is generated by its compact subgroups. This implies that if $N_G(U)/U$ has no abelian subgroups of finite index then L should be the function field of a rational curve. As the automorphism group of the rational curve is generated by involutions, the normalizer of U in G is generated by its compact subgroups.

- The transfer is induced by the norm homomorphism $L^\times/k^\times \xrightarrow{\text{Nm}_{L/k(x)}} k(x)^\times/k^\times$, which is the restriction of the push-forward map $\operatorname{Div}^0(C) \xrightarrow{x} \operatorname{Div}^0(\mathbb{P}^1)$.

Since $k(x)^\times/k^\times = \operatorname{Div}^0(\mathbb{P}^1)$, the transfer factors through Φ_L.

- Each point p of a smooth projective model C of L over k is a difference of very ample effective divisors on C. These divisors themselves are zero-divisors of some rational functions, i.e., there are surjective morphisms $x, y : C \rightarrow \mathbb{P}^1$ and a point $0 \in \mathbb{P}^1$ such that $x^{-1}(0) - y^{-1}(0) = p$. Then $\delta_p = x^*\delta_0 - y^*\delta_0 : C(k) \rightarrow \hat{\mathbb{Z}}(1)$ is a δ-function of the point p of C. As the span of δ-functions is dense in the group Φ_L, we are done. \square

For a point of $C(k)$ its decomposition subgroup in $\Phi_L \subset U_L$ consists of all functions supported on it. In the case $L = k(x)$ the decomposition subgroups in $U_{k(x)}^{ab}$ are parametrized by the set (which is isomorphic to $\mathbb{P}^1(k)$) of parabolic subgroups P in $N_GU_{k(x)}/U_{k(x)}$. The subgroup D_P consists of elements in $U_{k(x)}^{ab}$ fixed under the adjoint action of P. Clearly, $D_P \cong \hat{\mathbb{Z}}(1)$.

Each inclusion of subgroups $U_L \subset U_{k(x)}$ induces a homomorphism $U_L^{ab} \rightarrow U_{k(x)}^{ab}$. Consider the evident homomorphism $U_L^{ab} \xrightarrow{\varphi_L} \prod_{x \in L - k} U_{k(x)}^{ab}$. For any non-zero element h of the group U_L^{ab}, considered as a homomorphism from the group L^\times, there is an element $x \in L^\times$ with $h(x) \neq 0$, so the image of h in $U_{k(x)}^{ab}$ is non-zero, and thus, φ_L is injective.
To construct decomposition subgroups for an arbitrary \(L \), consider such a subgroup \(D \cong \hat{\mathbb{Z}} \) in the target of \(\varphi_L \) that its projection to each of \(U_{k(x)}^{ab} \) is of finite index in some decomposition subgroup. Then our nearest goal is to show that the set of decomposition subgroups in \(U_{k(x)}^{ab} \) coincides with the set of maximal subgroups among \(\Phi_L \cap \varphi_L^{-1}(D) \).

Lemma 3.2 (= Lemma 5.2 of [B1] = Lemma 3.4’ of [B2]). Suppose that \(f \) is such a function on a projective space \(\mathbb{P} \) over an infinite field that the restriction of \(f \) to each projective line in \(\mathbb{P} \) is constant on the complement to a point on it.

Then \(f \) is a flag function, i.e., there is a filtration \(P_0 \subset P_1 \subset P_2 \subset \ldots \) of \(\mathbb{P} \) by projective subspaces such that \(f \) is constant on \(P_0 \) and on all strata \(P_{j+1} - P_j \).

Lemma 3.3. For any smooth projective curve \(C \) there is a constant \(N = N(C) \) such that for any \(\mathcal{L}, \mathcal{L}' \in \text{Pic}^{\geq N}(C) \) the natural map \(\Gamma(C, \mathcal{L}) \otimes \Gamma(C, \mathcal{L}') \rightarrow \Gamma(C, \mathcal{L} \otimes \mathcal{L}') \) is surjective.

Proof. Fix an invertible sheaf \(\mathcal{L}_0 \) on \(C \) of degree 1. By Serre vanishing theorem, there is such an integer \(N' \) that the sheaf \((\mathcal{L}_0 \boxtimes \mathcal{L}_0)^{\otimes N'}(-\Delta) \) on \(C \times C \) is generated by its global sections, and therefore, for any \(\mathcal{L}, \mathcal{L}' \in \text{Pic}^{\geq N'}(C) \) the sheaf \((\mathcal{L} \boxtimes \mathcal{L}')(-\Delta) \) is ample. Let \(N = N' + 2g \). Then by Kodaira vanishing theorem, for any \(\mathcal{L}, \mathcal{L}' \in \text{Pic}^{\geq N}(C) \) the short exact sequence

\[
0 \rightarrow (\mathcal{L} \boxtimes \mathcal{L}')(-\Delta) \rightarrow \mathcal{L} \boxtimes \mathcal{L}' \rightarrow \mathcal{L} \otimes \mathcal{L}' \rightarrow 0
\]

of sheaves on \(C \times C \) induces a surjection \(\Gamma(C, \mathcal{L}) \otimes \Gamma(C, \mathcal{L}') \rightarrow \Gamma(C, \mathcal{L} \otimes \mathcal{L}') \). \(\square \)

Lemma 3.4. If \(\varphi_L^{-1}(D) \) is in \(\Phi_L \) then it is a subgroup in a decomposition subgroup in \(U_{k(x)}^{ab} \).

Proof. Let \(f \in \varphi_L^{-1}(D) \cap \Phi_L \), i.e., \(f : C(k) \rightarrow \hat{\mathbb{Z}}(1) \) for a smooth projective model \(C \) of \(L \) over \(k \), and for any very ample invertible sheaf \(\mathcal{L} \) on \(C \) restrictions of the induced function \(f : |\mathcal{L}| \rightarrow \hat{\mathbb{Z}}(1) \) to projective lines in \(|\mathcal{L}| \) are “\(\delta \)-functions” on them. Then, by Lemma 3.2, \(f \) is a flag function. Therefore, the function \(\hat{f} : |\mathcal{L}|^\vee \rightarrow \hat{\mathbb{Z}}(1) \) given by \(H \mapsto f(\text{general point of } H) \) is a “\(\delta \)-function”.

Let \(g \) be the genus of \(C \). Consider the composition \(\hat{f}_\mathcal{L} : C(k) \rightarrow |\mathcal{L}|^\vee \rightarrow \hat{\mathbb{Z}}(1) \). It takes \(x \) to

\[
f(x) + f(\text{general point of } |\mathcal{L}|(x)).
\]

Since it is a “\(\delta \)-function”, and all the hyperplanes \(x + |\mathcal{L}(x)| \) in \(\mathcal{L} \) are pairwise distinct, there are such functions \(b_0 : \text{Pic}^{\geq 2g}(C) \rightarrow \hat{\mathbb{Z}}(1) \) and \(a : \text{Pic}^{\geq 2g}(C) \rightarrow C(k) \) that

\[
f(x) + f(\text{general point of } |\mathcal{L}|(x)) = b_0(\mathcal{L})\delta_{x,a(\mathcal{L})} + b_1(\mathcal{L}),
\]

where \(b_1 : \text{Pic}^{2g}(C) \rightarrow \hat{\mathbb{Z}}(1) \) is the function \(\mathcal{L} \mapsto f(\text{general point of } |\mathcal{L}|) \). Then

\[
f(x) = b_0(\mathcal{L})\delta_{x,a(\mathcal{L})} + b_1(\mathcal{L}) - b_1(\mathcal{L}(x)).
\]

By Lemma 3.3, for any \(\mathcal{L}, \mathcal{L}' \in \text{Pic}^{\geq N}(C) \) the image of the map \(|\mathcal{L}| \times |\mathcal{L}'| \rightarrow |\mathcal{L} \otimes \mathcal{L}'| \) of summation of divisors is not contained in any hyperplane in \(|\mathcal{L} \otimes \mathcal{L}'| \). Then a sum of a general divisor in \(|\mathcal{L}| \) and a general divisor in \(|\mathcal{L}'| \) is a general divisor in the linear system \(|\mathcal{L} \otimes \mathcal{L}'| \), so one has

\[
b_1(\mathcal{L} \otimes \mathcal{L}') = b_1(\mathcal{L}) + b_1(\mathcal{L}'),
\]

and therefore, for any sheaf \(\mathcal{L}_0 \) of degree zero one has

\[
b_1(\mathcal{L}') + b_1(\mathcal{L}_0 \otimes \mathcal{L}) = b_1(\mathcal{L}) + b_1(\mathcal{L}_0 \otimes \mathcal{L}'),
\]

so \(b_2(\mathcal{L}_0) := b_1(\mathcal{L}_0 \otimes \mathcal{L}) - b_1(\mathcal{L}) : \text{Pic}^0(C) \rightarrow \hat{\mathbb{Z}}(1) \) does not depend on \(\mathcal{L} \). It is easy to see that \(b_2 \) is a homomorphism, which therefore should be zero, since \(\text{Pic}^0(C) \) is a divisible group. From this we conclude that \(b_1(\mathcal{L}) = b_1(\deg \mathcal{L}) \), and finally, \(f(x) = b_0(\mathcal{L})\delta_{x,a(\mathcal{L})} + b_2(\mathcal{L}) \) is a \(\delta \)-function on \(C(k) \), i.e., corresponds to a point of \(C \), or to a decomposition subgroup in \(U_{k(x)}^{ab} \). \(\square \)
4. Automorphisms of subgroups between G^0 and G

Lemma 4.1. 1. Suppose that for a subgroup H in G containing G^0 (the restriction to G^0 of) a homomorphism $\lambda : H \rightarrow G$ induces the identity map of the set \mathfrak{F} of compact open subgroups in G. Then $\lambda = \text{id}$.

2. The centralizer of G^0 in $G_{F/\mathbb{Q}}$ is trivial.

Proof. For any $\sigma \in H$ and any open compact subgroup U one has $\sigma U \sigma^{-1} = \lambda(\sigma U \sigma^{-1}) = \lambda(\sigma) \lambda(U) \lambda(\sigma)^{-1} = \lambda(\sigma) U \lambda(\sigma)^{-1}$, so $\sigma^{-1} \lambda(\sigma) = 1$.

For a variety X of dimension n over k without birational automorphisms and any $x \in F - k$ there is a subfield $L_x \subset F$ containing x isomorphic to the function field of X. Then the normalizer of U_{L_x} coincides with U_{L_x}, and the intersection of all U_{L_x} is $\{1\}$, so $\sigma^{-1} \lambda(\sigma) = 1$. On the other hand, if $\tau \in G_{F/\mathbb{Q}}$ normalizes $U_{k(x, P(x)^{1/2})}$ for all polynomials P over k, then $\tau \in G_{F/k}$, and therefore, $\tau = 1$. \square

Let \mathfrak{F} be the set of compact open subgroups in G^0, and let $\mathbb{Q}(\chi)$ be the quotient of the free abelian group generated by \mathfrak{F} by the relations $[U] = [U : U'] \cdot [U']$ for all $U' \subset U$. As the intersection of a pair of a compact open subgroups in G is a subgroup of finite index in both of them, $\mathbb{Q}(\chi)$ is a one-dimensional \mathbb{Q}-vector space. The group G acts on it by the conjugations. Let χ be the character of this representation of G.

One can get an explicit formula for χ as follows. Fix a subfield L of F finitely generated and of transcendence degree n over k. Then for any $\sigma \in G$ one has $[U_L] = [L \sigma(L) : L] \cdot [U_{L \sigma(L)}]$ and $[U_{\sigma(L)}] = [L \sigma(L) : \sigma(L)] \cdot [U_{L \sigma(L)}]$, and therefore, $\chi(\sigma) = \frac{[L \sigma(L) : L]}{[L \sigma(L) : \sigma(L)]}$. This implies that $\chi : G \rightarrow \mathbb{Q}_+^\times$ is surjective, and its restriction to G^0 is trivial.

Theorem 4.2. Let $n = 1$, H be a subgroup in G containing G^0, and $N_{G_{F/\mathbb{Q}}}(H)$ its normalizer in $G_{F/\mathbb{Q}}$. Then $N_{G_{F/\mathbb{Q}}}(H) \subseteq N_{G_{F/\mathbb{Q}}}(G) = \{\text{automorphisms of } F \text{ preserving } k\}$, and the adjoint action of $N_{G_{F/\mathbb{Q}}}(H)$ on H induces an isomorphism from $N_{G_{F/\mathbb{Q}}}(H)$ to the group of continuous open automorphisms of H. If $H \supseteq \ker \chi$ then $N_{G_{F/\mathbb{Q}}}(H) = N_{G_{F/\mathbb{Q}}}(G^0)$.

Proof. For each $U \in \mathfrak{F}$ let Div_U^+ be the free abelian semi-group, whose generators are decomposition subgroups in U_{ab}, and for each integer $d \geq 2$ let

$$\mathfrak{G}_U^{(d)} = \{U_L \supset U \mid [U_L : U] = d, L \cong k(t)\} \subset \mathfrak{F}.$$

For a smooth projective model C of F^U the set $\mathfrak{G}_U^{(d)}$ is in bijection with the disjoint union of Zariski-open subsets in Grassmannians

$$\prod_{\mathcal{L} \in \text{Pic}^d(C)} \left(\text{Gr}(1, |\mathcal{L}|) - \bigcup_{x \in C(k)} \text{Gr}(1, x + |\mathcal{L}(x)|) \right).$$

One can define:

- an “invertible sheaf of degree d without base points” \mathcal{L}, as a subset of $\mathfrak{G}_U^{(d)} \subset \mathfrak{F}$ consisting of elements equivalent under the relation generated by $U_1 \sim_U U_2$ if there are decomposition subgroups $D_a \subset U_1^\text{ab}$ and $D_b \subset U_2^\text{ab}$ such that their preimages in U^ab contain the same collections of decomposition subgroups with the same indices of their images in D_a and D_b;
- the “linear system” $|\mathcal{L}|$, as the set of maximal collections of elements of \mathcal{L} “intersecting at a single point”, i.e., the subset of the free abelian semi-group Div_U^+;
- a “line presented in \mathcal{L}” in $|\mathcal{L}|$, as an element of $\mathcal{L} \subset \mathfrak{G}_U^{(d)}$, considered as a subset in $|\mathcal{L}|$;
- an arbitrary “line” in $|\mathcal{L}|$, as a subset in $|\mathcal{L}|$ of type $D + l$, where $D \in \text{Div}_U^+$ and l is a line presented in the sheaf $\mathcal{L}(-D)$ without base points;
• an “s-subspace” in $|\mathcal{L}|$, as the union of all lines passing through a given point in $|\mathcal{L}|$ and intersecting a given “($s-1$)-subspace” in $|\mathcal{L}|$.

Now we remark that for any sufficiently big d and any sheaf $\mathcal{L} \subset \mathfrak{Gr}^{(d)}_U$ the set C_U of decomposition subgroups in U^d can be canonically identified with the subset of $|\mathcal{L}|'$ consisting of those hyperplanes in $|\mathcal{L}|$ that each line on each of them is “absent in \mathcal{L}”. As $|\mathcal{L}|'$ has a canonical structure of a projective space (but not of a projective space over k), this gives us a canonical structure of a scheme on C_U. Let κ_U be the function field of C_U.

Clearly, $\lambda(G^o) = G^o$ and the restriction of λ to G^o induces a bijection $\mathfrak{Gr}^{(d)}_U \sim \mathfrak{Gr}^{(d)}_{\lambda(U)}$ for each $d \geq 2$, and for any sheaf $\mathcal{L} \subset \mathfrak{Gr}^{(d)}_U$ it induces a map $|\mathcal{L}| \rightarrow |\lambda(\mathcal{L})|$ which transforms subspaces into subspaces of the same dimension, i.e., a collineation. As λ induces a collineation $|\mathcal{L}|' \sim |\lambda(\mathcal{L})|'$, the fundamental theorem of projective geometry (see, e.g., [A]) implies that such λ induces an isomorphism $C_U \sim C_{\lambda(U)}$ of schemes over \mathbb{Q}. This isomorphism does not depend on d and \mathcal{L}, since it determines the collineations $|\mathcal{L}'| \sim |\lambda(\mathcal{L}')|$ for all $\mathcal{L}' \subset \mathfrak{Gr}^{(d)}$. Denote by σ_U the induced isomorphism $\kappa_{\lambda(U)} \sim \kappa_U$.

For each subgroup U' of finite index in U the natural map $C_{U'} \rightarrow C_U$ is a morphism of schemes, and in particular, κ_U is naturally embedded into $\kappa_{U'}$. The group G^o acts on the field $\lim_{U \rightarrow \mathcal{L}} \kappa_{\lambda(U)} \sim F$ commuting with the G^o-action. Since the diagram

$$
\begin{align*}
C_{U'} & \rightarrow C_{\lambda(U')} \\
\downarrow & \quad \downarrow \\
C_U & \rightarrow C_{\lambda(U)}
\end{align*}
$$

commutes, the restriction of $\sigma_{U'}$ to κ_U coincides with σ_U, and finally, we get an automorphism σ of F induced by λ. As k is the only maximal algebraically closed subfield in its arbitrary finitely generated extension, σ induces an automorphism of k, and therefore, normalizes G^o.

Then the restriction to G^o of $\text{ad}(\sigma) \circ \lambda$ acts trivially on all of $\mathfrak{Gr}^{(d)}$. As any open compact subgroup is an intersection of elements of $\mathfrak{Gr}^{(d)}_U$, for d big enough and U' small enough, $\text{ad}(\sigma) \circ \lambda$ acts on \mathfrak{S} also trivially. By Lemma 4.3, this implies that $\lambda = \text{ad}(\sigma^{-1})$. □

Remark. If k is countable then the inverse of any continuous automorphism as in the statement of Theorem 1.2 is automatically continuous :

Lemma 4.3. If k is countable, and $U \xrightarrow{\lambda} U'$ is a continuous surjective homomorphism of open subgroups in $G_{F/k}$ and $G_{F'/k'}$ then the image in U' of an open subset in U is open.

Proof. Let $U_L \subset U$ be an open compact subgroup. Then U/U_L is a countable set surjecting onto the set $U'/\lambda(U_L)$. By Proposition 2.1, for the subfield $L' = F^{\lambda(U_L)}$ one has $L' = F$. If $\lambda(U_L)$ is not open then L' is not finitely generated over k', and therefore, $U'/\lambda(U_L)$ is not countable. □

References

[A] E.Artin, *Geometric algebra*. Interscience Publishers, Inc., New York-London, 1957.

[B1] F.A.Bogomolov, *Abelian subgroups of Galois groups*, Izv.AN SSSR, ser. matem. 55 (1991), no. 1, 32–67.

[B2] F.A.Bogomolov, *On two conjectures in birational algebraic geometry*, Algebraic geometry and analytic geometry (Tokyo, 1990), 26–52, ICM-90 Satell. Conf. Proc., Springer, Tokyo, 1991.

[III,III] I.I.Piatetski-Shapiro, I.R.Shafarevich, *Galois theory of transcendental extensions and uniformization*, Izv.AN SSSR, ser. matem. 30 (1966), 671–704.