Antibiofilm effects of N,O-acetals derived from 2-amino-1,4-naphthoquinone are associated with downregulation of important global virulence regulators in methicillin-resistant Staphylococcus aureus

Juliana Silva Novais¹, Mariana Fernandes Carvalho¹, Mariana Severo Ramundo², Cristiana Ossaille Beltrame², Reinaldo Barros Geraldo², Alessandro Kappel Jordão³, Vítor Francisco Ferreira⁴, Helena Carla Castro¹,² & Agnes Marie Sá Figueiredo¹,²

Despite the existing antibiotics, antimicrobial resistance is a major challenge. Consequently, the development of new drugs remains in great demand. Quinones is part of a broad group of molecules that present antibacterial activity besides other biological properties. The main purpose of this study was to evaluate the antibiofilm activities of synthetic N,O-acetals derived from 2-amino-1,4-naphthoquinone (7a: 2-(methoxymethyl)-amino-1,4-naphthoquinone; 7b: 2-(ethoxymethyl)-amino-1,4-naphthoquinone; and 7c: 2-(propynyloxymethyl)-amino-1,4-naphthoquinone) against methicillin-resistant Staphylococcus aureus (MRSA). The derivatives 7b and 7c, specially 7b, caused strong impact on biofilm accumulation. This inhibition was linked to decreased expression of the genes fnbA, spa, hla and psmα. More importantly, this downregulation was paralleled by the modulation of global virulence regulators. The substitution of 2-ethoxymethyl (7b) in comparison with 2-propynyloxymethyl (7c) enhanced sarA-agr inhibition, decreased fnbA transcripts (positively regulated by sarA) and strongly impaired biofilm accumulation. Indeed, 7b triggered intensive autolysis and was able to eliminate vancomycin-persistent cells. Consequently, 7b is a promising molecule displaying not only antimicrobial effects, but also antibiofilm and antipersistence activities. Therefore, 7b is a good candidate for further studies involving the development of novel and more rational antimicrobials able to act in chronic and recalcitrant infections, associated with biofilm formation.

Despite being part of the human microbiota, Staphylococcus aureus can cause pathological conditions varying from skin/soft tissue infections to more severe diseases, such as pneumonia, bloodstream infections (BSI), osteomyelitis, and endocarditis. These bacteria are a major cause of both hospital-associated and community-acquired infections worldwide. The S. aureus genomic plasticity has facilitated its accelerated evolution as the consequence of the lateral acquisition of new traits, including antimicrobial resistance genes.
The first case of methicillin-resistant *S. aureus* (MRSA) was reported in 1961, in England\(^1\). After that, MRSA rapidly spread throughout the world, becoming one of the main hospital-associated pathogens\(^2\). The pathogenicity of *S. aureus* infections is multifactorial and directly related to the production of a plethora of virulence factors and their interactions with the host\(^3\). The development of biofilm by *S. aureus* is considered the most important mode of growth lifestyle for some infections, mainly those related to implantable medical devices such as catheters, and to cardiac and orthopedic prostheses\(^4\). Also, biofilms can have other negative impacts on bacterial infections because bacterial cells in the biofilm growth do not efficiently respond to either antimicrobials or the killing promoted by the immune system\(^5,7\).

Some hypotheses have been proposed to explain the antimicrobial refractory/persistence in biofilms: (1) impairment of the antimicrobial penetration in the extracellular matrix; (2) activation of efflux pumps; (3) activation of stringent response with generation of persister cells due to increased concentration of the penta- or tetra-phosphate alarmone, commonly referred as (p)ppGpp; (4) specific genetic background of the bacterium; and (5) stochastic phenomenon, where a small population acquires a specific gene expression profile that leads to antimicrobial persistence\(^3,6\). The occurrence of subpopulations of bacteria that display antimicrobial persistence reinforces the importance of the discovery of new molecules that can kill persistent cells. However, the development of new antibacterial agents has decreased in recent decades\(^8,9\). In previous studies, using broth macrodilution for MIC determination, we have shown that *N,O*-acetal 2-amino-1,4-naphthoquinone derivatives presented promising action against planktonic Gram-positive bacteria\(^10\). In the study presented here, we demonstrated that 2-ethoxymethyl 2-amino-1,4-naphthoquinone, besides presenting acceptable pharmacological and toxicological parameters through in silico and ex vivo studies, also displays other desirable properties associated with antibiofilm and antipersistence effects. In addition, we investigated the mechanisms involved in the modulation of biofilm accumulation by this compound.

Materials and methods

Bacterial strains and growth conditions

Strain representatives of six globally spread clones/lineages of MRSA were used in this study to test the antimicrobial activity of the *N,O*-acetal derivatives against MRSA: NY/Japan-USA100/ST5-SCCmec III (strain CR15-071), USA300/ST8-SCCmec IV (strain USA300-0114), USA400/ST1-SCCmec IV (strain USA400-0051), Brazilian epidemic clone-BEC/ST239-SCCmec III (strain BMB9393), pediatric clone-USA800/ST5-SCCmec IV (strain USA800-0179), and OSPC-USA1100/ST30-SCCmec IV (strain 07-040). The *S. aureus* ATCC 25923 was used as a control for the experiment of drug susceptibility. The biofilm-producing strain BMB9393 (ST239-SCCmecIII) was chosen for biofilm assays because its superior capability to accumulate biofilm matrix compared with other MRSA strains\(^11\). For biofilm production, tryptic soy broth (TSB; BD, Franklin Lakes, NJ, USA) was supplemented with 1% (w/v) glucose (TSB-Glu). Tryptic soy agar (TSA; BD) was used for bacterial growth. The Mueller-Hinton broth (MHB; BD) and Mueller-Hinton agar (MHA; BD) was used for susceptibility tests. All strains were maintained in 10% (v/v) glycerol stocks and stored at ~80 °C.

N,O-acetal derivatives

To obtain *N,O*-acets derivates from 2-amino-1,4-naphthoquinone (6a), a methodology that employs microwave irradiation was used as described previously\(^12\). The 6a and its derivatives 7a [2-(methoxymethyl)-amino-1,4-naphthoquinone], 7b [2-(ethoxymethyl)-amino-1,4-naphthoquinone] and 7c [2-(propionyloxyethyl)-amino-1,4-naphthoquinone] were characterized using spectroscopic methods, such as \(^1\)H and \(^13\)C NMR\(^13\). Stock solutions of these derivatives were prepared in DMSO 100%. In the experiments, the final concentrations of DMSO were ≤2% (v/v), which showed in previous tests performed in this study to cause no effect in *S. aureus* planktonic or sessile growth.

Susceptibility tests

The antibacterial activity of 6a and its derivatives 7a, 7b, and 7c was tested as previously described using paper disks impregnated with each compound\(^14\). The derivatives were also analyzed quantitatively using microdilution assays in 96-well inert polystyrene microtiter plates (Nuclon; Nalge Nunc International, Rochester, NY, USA) to determine the minimal inhibitory concentration (MIC)\(^14\). Biological control, as well as growth conditions, were performed following CLSI recommendation\(^15,16\). Additionally, the MIC values of the MRSA strains BMB9393 (BEC) and CR15-071 (USA100), and the control strain ATCC25923, for the derivatives 7a, 7b and 7c were also determined using Mueller Hinton agar dilution following CLSI recommendation\(^16\). Controls were also performed using 2% (v/v) DMSO only.

Cytotoxicity assay

The Vero cell line was cultivated to form monolayers on 96-well flat-bottom culture plates with Dulbecco’s modified Eagle’s medium (DMEM; Thermo Fisher Scientific, Waltham, MA, USA) supplemented with 5% (v/v) fetal bovine serum (FBS; Thermo Fisher Scientific), 1 µg/ml fungizone, 2.5 Mm L-glutamine (amino acid), and 100 U/mL penicillin, during 24-h incubation period at 37 °C and 5% carbon dioxide (CO\(_2\)). After that, the supernatant was removed, and the cell monolayers were incubated for 24 h with different concentrations of 6a or its derivatives 7a, 7b, or 7c, ranging from 8 to 512 µg/mL. For comparative purposes, these experiments were also performed with the commercially available antibiotics, tetracycline and trimethoprim-sulfamethoxazole, using the same range of concentrations. All compounds were diluted in DMSO for a final concentration of 1% (v/v) in the cell monolayers. In the experimental controls, DMSO was added to the drug-untreated cell monolayers for a final concentration of 1% (v/v). After incubation, the supernatant was removed, and 100 µL fresh medium and 20 µL 3-[4,5-dimethylthiazole-2-y]-2,5-diphenyltetrazolium bromide (MTT; 1 mg/mL) were added into each well. Plates were incubated for 1 h, the supernatant again removed, and 200 µL dimethyl sulfoxide (DMSO) were added to each well to dissolve the formazan crystals for 10 min. Absorbance was measured at 570 nm using an ELISA reader (Thermo Plate, TP-READER, Thermo Fisher Scientific). The cytotoxic concentration 50% (CC\(_{50}\)) value was defined as the concentration of a derivative required...
for reducing cell viability by 50%. The selectivity index (SI) was calculated as follows: SI (µg/mL) = CC₅₀/MIC. Three independent experiments were performed in triplicate. Controls were performed using 2% (v/v) DMSO only.

Hemocompatibility assay. 2-Amino-1,4-naphthoquinone and its derivatives 7a, 7b, and 7c were also evaluated for their hemolytic activity, using final concentrations of 25 µg/mL, 50 µg/mL, 100 µg/mL, and 300 µg/mL in 1% (v/v) DMSO, according to Sathler and collaborators. Erythrocytes were collected from three human volunteers in a citrate tube and washed three times (3x) with PBS (pH 7.4). All derivatives were incubated with the PBS-erythrocyte suspension for 3 h at 37 °C. The hemolysis with the release of hemoglobin was quantified by the spectrophotometric reading of the supernatant at 545 nm. Hemolysis less than 10% represented hemocompatibility and non-toxicity against erythrocyte membranes. For the positive control, the human erythrocytes were lysed with 1% (v/v) Triton X-100. The negative control was performed with 1% (v/v) DMSO only. This protocol was approved by the Human Research Ethics Committee of the Universidade Federal Fluminense and under the number #20870414.9.0000.5243. All methods were carried out in accordance with relevant guidelines and regulations. In addition, informed consent was obtained from all volunteers. Three independent experiments were performed in triplicate.

ADMET properties. The in silico pharmacokinetic properties and toxicity profiles (ADMET) of 6a and its derivatives 7a, 7b, and 7c were evaluated using pkCSM—pharmacokinetic webserver (https://biosig.unimelb.edu.au/pkcsms/)²⁶, Pro-Tox-II webserver (https://tox.charite.de/protox_II/)²¹ and SwissADME webserver²². These results were also compared with the profiles of an antimalarial (atovaquone) and six antimicrobials (cefoxitin, ciprofloxacin, furazolidone, nitrofurantoin, tetracycline, and vancomycin). The theoretical pharmacokinetic properties evaluated were absorption, distribution, metabolism, and excretion (ADME). The absorption parameters were tested through simulation modelling of human intestinal absorption using Caco-2 permeability, human intestinal absorption, P-glycoprotein substrate, and P-glycoprotein I/II inhibition. For drug distribution, it was analyzed the steady-state volume of distribution (Vss) and the blood–brain barrier penetration (BBBP) predictions. Drug metabolism was analyzed by the theoretical activity of cytochrome P450 (CYP) enzymes. Lastly, excretion parameters including theoretical total clearance and renal OCT2 substrate were evaluated. Toxicological analyses comprised toxicity target, hepatotoxicity, hERG/II inhibitors, and toxicity endpoints including carcinogenic, mutagenic, immunotoxicity, and cytotoxicity parameters.

Effect of N,O-acetal derivatives on biofilm development. Biofilms were formed on polystyrene surfaces using the BEC representative, strain BMB9393. It had previously been shown that this method has a good correlation with an in vivo biofilm model. The compound 6a (1MIC = 128 µg/mL) and its derivatives 7a (1MIC = 256 µg/mL), 7b (1MIC = 128 µg/mL), and 7c (1MIC = 64 µg/mL) were added, separately, into each well of a polystyrene microtiter plate (Nunc) at concentrations of 1/4MIC, 1/8MIC, or 1/16MIC in trypticase soy broth with 1% glucose (TSB-Glu; 2x final concentration). The same volume of the bacterial culture in TSB-Glu (37 °C/18 h; at 250 rpm) diluted 1/100 in the same broth was added to the wells. After incubation (37 °C/24 h), supernatants were gently removed, rinsed with distilled water, and treated with crystal violet solution as described. The adhered biomass was suspended in ethanol PA, and the OD read at 570 nm using the SpectraMax Plus 384 (Absorbance Microplate; Molecular Devices, San Jose, CA, USA). Eight independent tests with three replicates each were performed. Controls were inoculated with the same bacterial inoculum but using only TSB-Glu with 2% (v/v) DMSO, final concentration.

Confocal laser scanning microscopy (CLSM). Because derivative 7b showed the stronger reduction in biofilm accumulation, this compound was elected for these and other experiments designed to unveil the mechanisms by which this molecule may affect biofilm development. For comparative purposes and validation of the experiments performed here, the derivative 7c, which exhibited a lesser but still important reduction on biofilm accumulation, was also included in these studies. For CLSM experiments, after 24 h of incubation, the supernatant containing planktonic cells was gently removed, and biofilm treated with 25 nM SYTO 9 DNA-intercalating stain (Invitrogen; Carlsbad, CA, EUA), as previously described. Before visualization, SYTO 9 solution was removed and the material visualized using a confocal laser scanning microscope (Model LSM510 Carl Zeiss Meditec; Jena, Germany). The microscope was configured with the argon laser (458 nm/477 nm/488 nm/514 nm). The images were randomly captured with the Neorlu-Plan 406/06 Korr. Controls were performed using 2% (v/v) DMSO only (final concentration). Three independent experiments were performed in quadruplicate.

Expression of biofilm-associated genes. Total RNA was obtained using the RNase Kit (Qiagen; Hilden, North Rhine-Westphalia, Germany) from sessile cells treated with 1/4MIC of the N,O-acetal derivatives 7b (32 µg/mL) or 7c (16 µg/mL). Gene expression analyses were performed using real-time RT-qPCR with Power SYBR Green RNA-to-CTTM 1-Step Kit (Applied Biosystems, Foster City, CA, USA). The platform used was a One Step Real-Time PCR System (Applied Biosystems). The genes chosen were those well characterized as associated with biofilm development, including fnbA, spa, mecA, hla, and psmα3—encoding fibronectin-binding proteins A (FnBPA), staphylococcal protein A (Spa), penicillin-binding protein 2a or 2’ (PBP 2a or 2’), α hemolysin, and phenol-soluble modulin α3, respectively. To confirm the data from real-time RT-qPCR for the biofilm-associated genes, and to further understand the mechanisms by which 7b caused a profound effect on MRSA biofilm, the same experiments were performed with the derivative 7c. Additionally, these data were also validated by testing important biofilm and global virulence regulators, involved in the modulation of the biofilm-associated genes, such as RNAIII (the main effector molecule of the Agr quorum sensing), sarA (a global
transcriptional regulator), and sigB (the alternative σ-factor B of the *S. aureus* RNA polymerase), using new RNA preparations. The validated PCR primers used for each gene tested are listed in the Supplementary Table S1. Relative quantification (RQ) of the target transcript was determined by calculating the comparative ΔΔCT using the 16S rRNA as the reference gene. Controls were performed using only the compound diluent, 2% (v/v) DMSO (final concentration). For each set of three independent experiments were performed in triplicate.

Effect of 7b and 7c derivatives in *S. aureus* autolytic system. The autolytic activity in the presence and absence of the derivatives 7b or 7c was measured by quantifying *atlA* cDNA by real-time qRT-PCR, as described above. To validate the RT-qPCR data for derivative 7b, the same experiment was performed for derivative 7c. Additionally, to confirm these data, quantification of extracellular DNA (eDNA) was performed in the supernatant of bacterial growth treated and untreated with 1/4MIC of these two derivatives (32 µg/mL and 16 µg/mL, respectively), using a previously described method25. Controls were performed using 2% (v/v) DMSO only. Three independent experiments were performed in triplicate.

Clone (strain)	MIC (µg/mL)	6a	7a	7b	7c
Control strain					
S. aureus ATCC 25923	32	128	64	16	
MRSA					
BEC (BMB9393)	128	256	128	64	
NY/Japan-USA100 (CR15-071)	256	256	128	128	
USA300 (USA300-0114)	256	128	64	64	
USA400 (USA400-0051)	128	128	128	64	
OSPC-USA1100 (07-040)	256	256	128	128	
Pediatric-USA800 (USA800-0179)	128	256	256	64	

Table 1. Comparison of the minimum inhibitory concentration (MIC) of the *N*, *O* acets derived from 2-amino-1,4-naphthoquinone for pandemic MRSA clones, using broth microdilution testing.

Results

Antibacterial activity. The *N*,*O* acets derived from 2-amino-1,4-naphthoquinone (6a), the compounds 7a, 7b, and 7c, showed antimicrobial effects against the representatives of major MRSA international clones (Supplementary Table S2). It is important to highlight the activity of these derivatives— inhibition zones ranging from 8 ± 2.0 to 13 ± 1.0 mm—against the strain BMB9393 (ST239-SCC mec II). This MRSA lineage shows resistance to several classes of antimicrobials besides β-lactams, including aminoglycosides, quinolones, and tetracycline, but showed to be susceptible to all derivatives tested here. The antimicrobial properties of these compounds were also evaluated using the minimal inhibitory concentration (MIC) method. The MIC of the derivatives using broth microdilution for the reference strain ATCC 25923 and MRSA clones ranged between 16 to 128 µg/mL and 64 to 256 µg/mL, respectively (Table 1). The MIC values for the strains BMB9393 (BEC) and CR15-071 (USA100) determined by broth microdilutions were also confirmed by agar dilution method.

Hemocompatibility profile and cytotoxicity indexes for Vero cells. The hemocompatibility data showed that the derivatives did not interact with erythrocytes membrane showing maximum values of 3.10 ± 0.1% (7a), 2.7 ± 0.3% (7b), 1.5 ± 0.5% (7c), and 3.0 ± 0.9% (6a) in the highest concentration evaluated (300 µg/mL) and thus were unable to cause membrane lysis, with no release of hemoglobin (Fig. 1). These values were similar to those of vancomycin (3.6 ± 0.8%) and ciprofloxacin (2.4 ± 0.6%), as shown by t-test.
The cytotoxic concentrations 50% (CC50) for Vero cells showed that 7b (CC50 = 219.95 ± 1.87) was less toxic compared with 6a, 7a, and 7c derivatives. SI values were calculated to evaluate the selectivity of the derivatives for the bacteria. The 7b derivative (SI = 1.72) showed some degree of selectivity for eukaryotic cells. Despite that, this value was better than that of sulfamethoxazole-trimethoprim (SI = 1.01) (Table 2).

ADMET properties. The N,O-acetal derivatives were submitted to silico ADME/Tox (absorption and distribution, metabolism, excretion, and toxicity) analysis (Tables 3 and 4). The theoretical absorption values of 6a, 7a, 7b, and 7c derivatives were above 70%. However, in the group of the referential drugs, only atovaquone, ciprofloxacin, and furazolidone showed values above 70%, while the data for cefoxitin, doxorubicin, and tetracycline were below 70% (Table 3). The cytotoxic concentrations 50% (CC50) for Vero cells showed that 7b (CC50 = 219.95 ± 1.87) was less toxic compared with 6a, 7a, and 7c derivatives. SI values were calculated to evaluate the selectivity of the derivatives for the bacteria. The 7b derivative (SI = 1.72) showed some degree of selectivity for eukaryotic cells. Despite that, this value was better than that of sulfamethoxazole-trimethoprim (SI = 1.01) (Table 2).

Table 2. Cytotoxicity values (CC50), minimum inhibitory concentration (MIC) and selective index (SI) of the N,O acetals derived from 2-amino-1,4-naphthoquinone. TET tetracycline, TMP-STX trimethoprim-sulfamethoxazole.

Derivative	CC50 (µg/mL)	MIC (µg/mL)	SI
6a	97.35 ± 3.12	128	0.76
7a	155.28 ± 1.03	256	0.61
7b	219.95 ± 1.87	128	1.72
7c	20.15 ± 2.11	64	0.31
TET	66.6 ± 2.22	32	2.08
TMP-STX	32.58 ± 1.33	32	1.01

Table 3. Comparison of ADME (absorption, distribution, metabolism and excretion) parameters between N,O acetal derivatives from 2-amino-1,4-naphthoquinone and antimalarial (atovaquone) and antibacterial drugs. *Volume of distribution; †Blood–brain barrier; ‡Cytochrome P450.

The cytotoxic concentrations 50% (CC50) for Vero cells showed that 7b (CC50 = 219.95 ± 1.87) was less toxic compared with 6a, 7a, and 7c derivatives. SI values were calculated to evaluate the selectivity of the derivatives for the bacteria. The 7b derivative (SI = 1.72) showed some degree of selectivity for eukaryotic cells. Despite that, this value was better than that of sulfamethoxazole-trimethoprim (SI = 1.01) (Table 2).
The toxicity parameters of the derivatives studied were predicted using PkCSM and Pro-Tox II webserver (Table 4). The oral rat acute toxicity (LD50) for 6a, 7a, 7b and 7c derivatives ranged from 1.776 mol/kg to 2.192 mol/kg. The rat oral chronic toxicity (LOAEL) varied from 2.503 log mg/kg b.w. per day to 2.776 mg/kg b.w. per day, and the maximum tolerated dose ranged from 0.516 log mg/kg b.w. per day to 0.778 log mg/kg b.w. per day (Table 4). Hepatotoxicity has been and remains a major reason for drug withdrawal from clinical use26. Considering pkCSM prediction, the compounds showing hepatotoxic potential were just amongst referential drugs including cefoxitin, ciprofloxacin, doxorubicin, and vancomycin (Table 4).

Concerning the cardiotoxic potential, all N,O-acetal derivatives were classified as non-hERG I and II inhibitors. It is noteworthy that atovaquone, doxorubicin, and vancomycin were all classified as hERG II inhibitors, according with platform used (Table 4). Similar to doxorubicin, tetracycline, and vancomycin, the derivatives 7a and 7c were predicted to be immunotoxic. Moreover, 6a, 7a and 7c derivatives were expected to be carcinogenic as well as furazolidone and nitrofurantoin. The theoretical mutagenic effect was predicted for the derivatives 6a, 7a and 7b. However, this effect was also observed for doxorubicin, furazolidone, and nitrofurantoin, which are drugs of current clinical use (Table 4).

Impact of N,O-acetals derived from 2-amino-1,4-naphthoquinone on biofilm formation. The concentration of 32 μg/ml (1/4MIC) of 7b was enough to reduce the accumulated biofilm matrix by 87.4% ± 1.9% while 16 μg/mL (1/4MIC) of 7c reduced by 75.6% ± 3.7%. This inhibition was more specific for biofilm development since such a strong impact in growth reduction was not observed for planktonic cells at these concentrations (Supplementary Figure S2). In addition, 1/4MIC 6a (32 μg/ml) and 7a (64 μg/ml), although showing antimicrobial effects, were much less effective at reducing biofilm development compared with 7b or 7c (Fig. 2A). It is notable that vancomycin, one of the last resources to treat MRSA severe infections, was not able to reduce biofilm development (Fig. 2A). CLSM was used to visualize the biofilm architectures and clearly document the inhibitory effects of 1/4MIC 7b and 7c (Fig. 2B). The images obtained endorse the results observed in a micro-

Table 4. Comparison of toxicity parameters between N,O acetal derivatives from 2-amino-1,4-naphthoquinone and antimalarial (atovaquone) and antibacterial drugs.

Drug	Toxicity	Oral rat acute toxicity (LD50)	Oral rat chronic toxicity (LOAEL)	hERG I	hERG II	Hepatotoxicity	Toxicological endpoint			
	Numeric (mol/kg)	Numeric (log mg/kg,bw/day)	Categorical (Yes/No)				Immunotoxicity	Carcinogenicity	Cytotoxicity	Mutagenicity
6a	1.776	2.776	No/No/No	Inactive	Active	Inactive	Active			
7a	2.136	2.512	No/No/No	Active	Active	Inactive	Active			
7b	2.192	2.503	No/No/No	Inactive	Inactive	Active	Active			
7c	2.158	2.553	No/No/No	Active	Active	Inactive	Inactive			
Atovaquone	2.327	2.009	No/Yes	Inactive	Inactive	Inactive	Inactive			
Cefoxitin	1.544	2.909	No/Yes	Inactive	Inactive	Inactive	Inactive			
Ciprofloxacin	2.891	1.036	No/Yes	Inactive	Active	Active	Active			
Doxorubicin	2.408	3.359	No/Yes	Active	Inactive	Active	Active			
Furazolidone	2.645	1.355	No/No	Inactive	Active	Inactive	Active			
Nitrofurantoin	2.565	1.390	No/No	Inactive	Active	Inactive	Active			
Tetracycline	2.214	3.038	No/No	Inactive	Active	Inactive	Inactive			
Vancomycin	2.482	9.212	No/Yes	Active	Inactive	Inactive	Inactive			
Figure 2. Effect of 1/4MIC of 6a and N,O acetal naphthoquinone derivatives 7a, 7b, and 7c on biofilm development. (A) Biofilm formed on surfaces and stained with crystal violet. (B) Confocal laser scanning microscopy (CLSM). Effects of 1/4MIC of the derivatives 7b (32 µg/mL) and 7c (16 µg/mL) on biofilm formed by the MRSA strain BMB9393, compared with the untreated biofilm (Cneg). Van vancomycin (1/4 MIC; 0.5 µg/mL). NS not significant; **p value < 0.001; and ***p < 0.0001. The biofilms were treated with SYTO 9 and the image obtained in (I) two-dimensional axis (xy) and (II) three-dimensional plane (xyz). (III) Biofilm thickness. Red scale = 10 µm. For each set of experiments, a total of three independent experiments were performed in quadruplicate.

plate-based assay, demonstrating that 7b and 7c were able to decrease biofilm accumulation massively compared with untreated biofilms (Fig. 2B). In these assays, 7b also showed superior ability in reducing biofilm formation in relation to 7c (Fig. 2B).

The antibiofilm effect of N,O-acetals derived from 2-amino-14-naphthoquinones was linked to decreased expression of biofilm-associated genes. Some S. aureus genes are well known for their role in biofilm development. Therefore, due to the strong biofilm inhibition promoted by the derivative 7b, we investigated the role played by this compound in the expression of important biofilm-associated genes, to get some insights on the mechanisms by which this molecule strongly impairs biofilm production. Additionally, the derivative 7c, which also affects biofilm accumulation, but in lesser extent, was also included for comparison purpose. Among these genes, the mecA encoding PBP2A was not significantly affected by 1/4MIC of 7b (32 µg/mL) or 7c (16 µg/mL) (Fig. 3A). The expression of fnbA encoding FnbpA protein—an important adhesion in S. aureus biofilm development—was reduced by 89.3 ± 1.5% after treatment with derivative 7b (p < 0.0001). However, for the 7c derivative, the reduction for this gene was only 24.64 ± 3.5% (p < 0.01) (Fig. 3A). The expression of hla encoding hemolysin/α-toxin (Hla) was considerably reduced by 90.0 ± 0.6% and 86.5 ± 1.0% after treatment with derivatives 7b and 7c, respectively (p < 0.0001). Also, an important reduction—by 95.4 ± 0.9% for 7b and 74.82 ± 4.9% for 7c (p < 0.0001)—was observed for the spa gene, which encodes the staphylococcal protein A. The expression of another important biofilm-associated gene, the psma3 gene encoding the phenol soluble modulin alpha 3—was reduced by 97.75 ± 0.6% for 7b and 87.73 ± 4.3% for 7c (p < 0.0001) (Fig. 3A).

The role of global staphylococcal regulators in the decreased expression of biofilm-associated genes. The effect of 1/4MIC of the derivatives 7b (32 µg/mL) and 7c (16 µg/mL) in the expression of rnaIII (encoding the RNAIII, the main effector molecule of the quorum-sensing Agr), sarA (encoding the transcriptional regulator SarA), and sigB (encoding an alternative RNA polymerase sigma subunit) were tested (Fig. 3B). A pronounced decrease was observed for the rnaIII expression, which regulates the temporal expression of several S. aureus virulence genes, such as hla, spa, fnbpA and psma3. The number of RNAIII transcripts was reduced by 88.0 ± 1.1% for derivative 7b and 70.6 ± 2.2% for 7c (p < 0.0001). Derivative 7b also reduced importantly sarA gene expression at 65.5 ± 6.0% (p < 0.001). However, no important effect on sarA expression was observed for the derivative 7c. Moreover, derivative 7c increased sigB transcripts at 57.22 ± 5.2% (p < 0.01) while 7b did not affect the expression of the sigB transcription factor (Fig. 3B).

Effect of N,O-acetals derived from 2-amino-1,4-naphthoquinone in the S. aureus autolytic system. The role played by 1/4MIC 7b (32 µg/mL) on the autolytic activity was evaluated in the biofilm cell growth of the strain BMB9393. An important increase of 3.5 times (p < 0.0001) in the atlA transcripts was observed. This result was validated by the fact that 1/4MIC 7c (16 µg/mL) led to three-fold increase in the atlA expression (p < 0.0001) (Fig. 4A). In agreement with this data, the amount of eDNA measured in the bacterial supernatant increased, after treatment of bacterial cultures with 7c. Indeed, the bacterial cell lysis was even higher (about two-fold) for the derivative 7b (p < 0.0001), which triggered an increased expression of atlA in comparison with 7c (Fig. 4B).
Evaluation of N,O-acetal derivatives against MRSA cells persistent to vancomycin. It is well known that harsh environments such as those encountered in biofilm growth, nutrient-depleted conditions and other stressful conditions can lead to the emergence of nonresistant bacteria that are refractory to antimicrobial treatment. In this study, high inoculum size was used to generate subpopulations of vancomycin-persistent cells at concentrations as high as 4MIC (8 µg/mL). After 18 h incubation, refractory/persistent cells (4.5 × 10^8 CFU/mL) of the strain (CR15-071) representative of the clone USA100 were recovered from vancomycin plates (4MIC). However, when 1MIC of the derivatives 7b (128 µg/mL) or 7c (128 µg/mL)—both effective to inhibit biofilm development—were added to the plates containing vancomycin (4MIC), a complete inhibition of per-
Acetal derivatives seem to affect P-glycoprotein, which is involved in drug exclusion. All together, these data bacteremia and biofilm-associated infections. Notably, despite the infection control measures, bacteremia caused these derivatives are currently causing the majority of hospital and community infections worldwide, including with different recommended methods for some drug/strain combinations, including for S. aureus CR15-071 (USA100). Actually, previous studies have already demonstrated disagreement in MIC data obtained dilution, confirmed the MIC data obtained by broth microdilution of the MRSA strains BMB9393 (BEC) and used in the previous study, the MICs for the derivatives were predicted to show intermediate Vss values, representing good predictions for adequate plasma distribution profiles. In addition, the analysis of BBB values, according to SwissADME calculation, suggested that O-acetal derivatives. Derivatives 6a revealed an optimal in silico prediction of oral bioavailability for the O,N-acetal derivatives. Derivatives 7b, and 7c did not display a hemolytic profile, according to Dobrovolskaia and collaborators. The toxicity tests using monolayers of the Vero cell line revealed that the 7b derivative showed better SI value indicating that 7b displayed not only antibacterial effect but also higher selectivity against MRSA strain than toxicity to eukaryotic cells. Theoretical pharmacokinetic properties are important parameters to assess potential compounds during drug discovery process. All N,O-acetal derivatives showed good predictions for absorption values in the human intestine, similar to atovaquone, ciprofloxacin, and furazolidone. Indeed, the compounds 7b and 7c showed absorption values greater than 90%, close to that of ciprofloxacin, which is a good estimative for oral bioavailability.

Interestingly, only N,O-acetal derivatives and atovaquone showed permeability to Caco-2 cells, which has been used as a model for human intestinal absorption of drugs. The results also suggested that none of the N,O-acetal derivatives seem to affect P-glycoprotein, which is involved in drug exclusion. All together, these data reveal an optimal in silico prediction of oral bioavailability for the N,O-acetal derivatives. Derivatives 6a, 7b and 7c showed intermediate Vss values, representing good predictions for adequate plasma distribution profiles. In addition, the analysis of BBB values, according to SwissADME calculation, suggested that N,O-acetal derivatives could cross blood brain barrier.

It has been estimated that CYPs could be able to metabolize around 75% of the commercially available drugs. None of the derivatives tested was substrate for cytochrome P450 isozyme CYP2D6 and CYP3A4. Moreover, these derivatives were only presumed to be inhibitors of CYP1A2, except 7c derivative that was predicted to inhibit CYP2C19. Interestingly, CYP1A2 is one main xenobiotic metabolizing enzyme in humans, and a recent study associated this enzyme with the bioactivation of procarcinogens, including 4-(methylnitrosamino)-1-(3-pyridyl)-1-butane (NNK), a tobacco specific and potent pulmonary carcinogen. Drug clearance was measured by determining Log(CLtot). Except for 6a, all derivatives tested presented high Log(CLtot) values, but still acceptable. Actually, these values were lower than those observed for referential drugs.

Persistent cells was achieved for derivative 7b (p < 0.0001), and an important reduction of 88.3% (p = 0.0002) in the total of persistent cells were caused by the association with the derivative 7c (Fig. 5). Accordingly, the N,O acetal derivative 7b was not only able to inhibit bacterial biofilm, but also showed an important and impressive ability to kill persistent cells at MIC concentrations, which were totally refractory to 4MIC vancomycin.

Discussion

The N,O acetals derived from 2-amino-1,4-naphthoquinone, 7a, 7b, and 7c showed antibacterial activity not only for the methicillin-susceptible strain but also for internationally spread MRSA lineages, including ST239-SCCmecIII, which shows high multiresistance level, homogeneous resistance to methicillin, and increased ability to accumulate biofilm. Divergent MIC values were observed for some of these derivatives in relation to previous studies with the strain ATCC 25923. However, this may be attributed to the use of different methods in these two studies. Although we did not compare broth microdilution with broth macrodilution method, the latter used in the previous study, the MICs for the derivatives 7a, 7b, 7c performed here, using Mueller Hinton agar dilution, confirmed the MIC data obtained by broth microdilution of the MRSA strains BMB9393 (BEC) and CR15-071 (USA100). Actually, previous studies have already demonstrated disagreement in MIC data obtained with different recommended methods for some drug/strain combinations, including for S. aureus. The MRSA lineages (ST1-SCCmecIV, ST5-SCCmecII, ST8-SCCmecIV, ST30-SCCmecIV, and ST239-SCCmecIII) tested for these derivatives are currently causing the majority of hospital and community infections worldwide, including bacteremia and biofilm-associated infections. Notably, despite the infection control measures, bacteriaemia caused by MRSA remains at high frequency and accounts for a mortality rate of about 25%.

The in vitro toxicity assays revealed that the derivatives 7a, 7b, and 7c did not display a hemolytic profile, according to Dobrovolskaia and collaborators. The toxicity tests using monolayers of the Vero cell line revealed that the 7b derivative showed better SI value indicating that 7b displayed not only antibacterial effect but also higher selectivity against MRSA strain than toxicity to eukaryotic cells. Theoretical pharmacokinetic properties are important parameters to assess potential compounds during drug discovery process. All N,O-acetal derivatives showed good predictions for absorption values in the human intestine, similar to atovaquone, ciprofloxacin, and furazolidone. Indeed, the compounds 7b and 7c showed absorption values greater than 90%, close to that of ciprofloxacin, which is a good estimative for oral bioavailability.

Figure 5. Effect of N,O-acetal derivatives against MRSA cells persistent to vancomycin. Persistent cells of the strain related to USA100 clone (CR15-071) were detected in plates containing 8 µg/mL vancomycin and high bacterial load. A dose dependent inhibition of persistent cells was observed for different combinations of vancomycin (8 µg/mL) with concentrations of 1/8MIC (16 µg/mL) to 1/2MIC (64 µg/mL) of each derivative. Note that 1MIC (128 µg/mL) of the derivative 7c was able to eliminate vancomycin-persistent cells completely. Data were represented by the mean of three independent experiments with triplicates. The bar represents the standard deviation. NS not significant; *p < 0.01; **p < 0.001; and ***p < 0.0001.
such as ciprofloxacin, doxorubicin, furazolidone, and nitrofurantoin. None of the N,O-acetal derivatives tested was predicted to show hepatotoxicity. Also, they were not expected to inhibit hERG I and II channels. Drug-hERG channel interactions have been considered a therapeutic challenge as a major cause acquired-long QT syndrome. Actually, a relationship between chronic heart failure (CHF) and S. aureus bacteremia was suggested. CHF patients with S. aureus bacteremia showed a significantly higher mortality rate compared with patients with normal heart functions.

This observation reinforces the need of non-cardiogenic effect for anti-MRSA drug candidates and highlights this promising profile of our derivatives.

Data from the ProTox-II platform revealed that the 7b derivative showed good toxicological parameters, except for the mutagenic profile. This feature could be related to the mechanism of action of these derivatives. Besides oxidative stress, another mechanism of action generally associated with naphthoquinones is the ability to bind to topoisomerase complex causing damage to the DNA replication process. Despite that, in vitro studies using V79 Chinese hamster cells did not confirm a mutagenicity effect for 1,4-naphthoquinone.

Besides the antimicrobial activity against MRSA and the improvement of pharmacological parameters, the introduction of the 2-ethoxymethyl radical generating the 7b derivative resulted in the best antibiofilm and antipersistency effects. Furthermore, contrarily to the substitution by 2-methoxymethyl or 2-propynloxy, the 2-ethoxymethyl substituted amino-1,4-naphthoquinone did not inhibit four of five CYPs enzymes tested, was not a substrate of CYP3A4 and CYP2D6, and also was predicted to have the best intestinal absorption, comparable to ciprofloxacin.

It is well known that biofilm development enhances S. aureus ability to cause infections and persist into the host. In the present study, the N,O acetal derivatives from 2-amino-1,4-naphthoquinone, 7b and 7c, were able to reduce biofilm accumulation in 88% and 75%, respectively, at 1/4MIC without causing similar massive reduction in viability of planktonic cells. Oy and collaborators also found that other naphthoquinone derivatives (biosynthetic pyranonaphthoquinone (PNP) polyketides) impaired biofilms formed by methicillin-susceptible S. aureus (MSSA), ATCC 25923, and Newman strains. It is important to remark that vancomycin, considered one of the last resources to treat infections caused by MRSA, did not impair biofilm development in the study model chosen. Not only that, induction of biofilm by vancomycin had already been observed for some S. aureus strains.

In one of the first stages of biofilm development, bacteria adhere to biotic or abiotic surfaces, in a mechanism mediated by bacterial surface adhesion molecules, such as the fibronecin-binding protein A (FnBPA) encoded by the fnbA gene. The expression of fnbA is upregulated by the sarA in an agrRNAIII-independent mode. The derivative 7b, that showed a drastic reduction in biofilm accumulation in 1/4MIC, also presented a deeper decrease in the expression of the fnbA gene paralleled by an also important decline in sarA transcripts. Actually, it is well known that inhibition of sarA also leads to impairment of biofilm development in S. aureus, which might explain the important reduction observed in the biofilm accumulation caused by the 7b derivative. In agreement with these data, the decrease of fnbA transcripts for MRSA treated with 7c was less pronounced when compared with 7b. Indeed, 7c also presented a lower ability to impair biofilm development compared with 7b. Moreover, the poorer effect of 7c in the decreasing sarA expression could be explained by the increase in the expression of sigB caused by 7c. SigB is a sarA-positive regulator that has also been implicated in the modulation of the maturation phase of S. aureus biofilms.

Protein A is an antiphagocytic protein encoded by the spa gene that can also provide S. aureus with self-aggregation property, which is an important condition for biofilm development. The MRSA treatment with both 7b and 7c derivatives caused an important reduction in the spa expression, which was more pronounced for 7b, and thus it might also account for the stronger biofilm impairment caused by these derivatives. The control of spa expression is complex and involves an intricate regulatory network.

Notably, the derivatives 7b and 7c showed antibiofilm effects associated not only with a strong inhibition of fnbA and spa genes but also with an important attenuation in the expression of cytotoxicity-associated genes, such as hla encoding the staphyloccocal α-hemolysin, hld encoding δ-hemolysin (whose coding sequence is localized inside the sequence of agr-rnaiII), and psmα3 encoding phenol-soluble modulin alpha 3 peptide. It is very well known that PSMs are multifactorial molecules in staphylococcal pathogenesis. PSMs are broadly cytolytic, inducing the killing of different cell types. Furthermore, PSMs are important for the architecture of the S. aureus biofilms. The α-hemolysin (Hla) is the prototype for small β-barrel pore-forming cytotoxins, which induces lysis of different host cells, including monocytes, neutrophils, pneumocytes, and endothelial cells. Besides its action promoting biofilm development, it was observed that Δhla mutants lead to attenuated bloodstream infections in animal models. It is notable that the inhibitory effects in toxin-associated genes were also more pronounced for 7b than 7c. Due to the importance of these genes for S. aureus pathogenesis, although we did not perform studies using animal models, it seems logical to suppose that the attenuation of cytotoxic genes, caused by these derivatives, is likely to result in antivirulence effects.

It was previously found that agr-RNAIII can positively or negatively regulate biofilms depending on the background of the strains, and that agr-RNAIII is a positive biofilm regulator for strains with the ST239 SCC- mecIII background, such as BMB939. In fact, agr-RNAIII was impaired by both derivatives 7b and 7c, and again 7b caused a deeper effect by diminishing RNAIII transcripts. The impairment of RNAIII agrees with the reduction observed in hla and psmα3, since RNAIII is a positive regulator for these genes. AtlA is the main S. aureus muramidase that has an important role in cell wall biogenesis and the septation process during bacterial cell division. It was found that small fractions of bacterial cell lysis enhance biofilm formation due to the ligation of eDNA to proteins and polysaccharides of the biofilm matrix. However, it was demonstrated that the uncontrolled expression of atlA causes increased cell lysis, resulting in a defective biofilm formation. Thus, the triggering of the autolytic system by 7b and 7c is likely to play a role in the impact of these naphthoquinone derivatives in MRSA biofilm development.

Therapeutic failures during the administration of vancomycin have been described, and in some cases, involved patients with MRSA infections. A hypothesis suggested to explain these failures was linked to a...
decreased penetration of vancomycin into the biofilm matrix. Also, it was proposed that stress conditions in the hyper-populated environment, such as those encountered in biofilm growth or high bacterial load, might induce the generation of persistent cells. However, the exact mechanisms through which bacteria become refractory/persistent to different antimicrobials in the biofilm environment are still to be completely clarified.

In this study, we found that 7b derivative at 1MIC (128 µg/mL) was able to eradicate subpopulations of persistent cells that survived to concentrations of 4MIC (8 µg/mL) vancomycin. The ability of these derivatives to trigger cell autolysis might be involved in the killing of persistent cells. It was previously shown that the deletion of the operon msaABCR of S. aureus increased the processing of the major S. aureus autolysin by proteases, leading to the activation of the muramidase activity. In addition, it was found that msaABCR deletion enhanced the effectiveness of antibiotics against persistent cells, which was attributed to the increased cell lysis. Thus, it is interesting to further investigate the role played by the autolytic system in the killing of vancomycin-persistent cells by these naphthoquinone derivatives and other active molecules.

Conclusions
In conclusion, the accelerated evolution and dissemination of antimicrobial resistance in S. aureus are outpacing the development of completely new antibiotics, and antibiofilm agents might provide an interesting alternative. In this context, the 2-(ethoxymethyl)-amino-1,4-naphthoquinone (7b) derivative, besides the antimicrobial action, also showed strong antibiofilm and antipersistence effects against multidrug-resistant MRSA strains. These effects were paralleled by the ability of 7b to concomitantly affects (directly or indirectly) important S. aureus virulence regulators (agr-RNAIII and sarA) and biofilm-associated genes (spa, fnbA, hla and psmα3). Finally, these properties associated with the biological and pharmacological aspects of this compound identified 7b derivative as an interesting model for the design of potentially promising and more effective drugs against MRSA (Fig. 6).

Received: 9 July 2020; Accepted: 27 October 2020
Published online: 12 November 2020

References
1. Figueiredo, A. M. S. & Ferreira, F. A. The multifaceted resources and microevolution of the successful human and animal pathogen methicillin-resistant Staphylococcus aureus. Mem. Inst. Oswaldo Cruz 109, 265–278 (2014).
2. Botelho, A. M. N. et al. Local diversification of methicillin-resistant Staphylococcus aureus ST239 in South America after its rapid worldwide dissemination. Front. Microbiol. 10, 82. https://doi.org/10.3389/fmicb.2019.00082 (2019).
3. Jevons, M. P. "Celbenni"-resistant Staphylococci. Br. Med. J. 1, 124–125 (1961).
5. Figueiredo, A. M. S., Ferreira, F. A., Beltrame, C. O. & Côrtes, M. F. The role of biofilms in persistent infections and factors involved in ica-independent biofilm development and gene regulation in Staphylococcus aureus. Crit. Rev. Microbiol. 43, 602–620 (2017).
6. Jolivet-Gougeon, A. & Bonnau-Mallet, M. Biofilms as a mechanism of bacterial resistance. Drug Discov. Today Technol. 11, 49–56 (2014).
7. Martin, C. et al. Strategies for antimicrobial drug delivery to biofilm. Curr. Pharm. Des. 21, 43–66 (2015).
8. Singh, S., Singh, S. K., Chowdhury, I. & Singh, R. Understanding the mechanism of bacterial biofilms resistance to antimicrobial agents. Open Microbiol. J. 11, 53–62 (2017).
9. Fair, R. J. & Tor, Y. Antibiotics and bacterial resistance in the 21st century. Perspect. Med. Chem. 6, 25–64 (2014).
10. Renwick, M. J., Brogan, D. M. & Mosaials, E. A systematic review and critical assessment of incentive strategies for discovery and development of novel antibiotics. J. Antibiot. (Tokyo) 69, 73–86 (2016).
11. Jordão, A. K. et al. Synthesis using microwave irradiation and antibacterial evaluation of new N-O-acetals and N,S-acetals derived from 2-amino-1,4-naphthoquinones. Eur. J. Med. Chem. 136, 196–201 (2013).
12. Costa, M. O. C. et al. Complete genome sequence of a variant of the methicillin-resistant Staphylococcus aureus ST239 lineage, strain BMB9393, displaying superior ability to accumulate ica-independent biofilm. Genome Announc. 1, e00576-13 (2013).
13. Moreira, C. S. et al. Searching for a potential antibacterial lead structure against bacterial biofilms among new naphthoquinone compounds. J. Appl. Microbiol. 122, 651–662 (2017).
14. Lopes, S. M. M. et al. Hetero–Diels–Alder reactions of novel 3-triazolyl-nitrosoalkenes as an approach to functionalized 1,3,2-triazoles with antibacterial profile. Eur. J. Med. Chem. 143, 1010–1020 (2018).
15. Clinical and Laboratory Standards Institute. M02Ed13 | Performance Standards for Antimicrobial Disk Susceptibility Tests, 13th Ed. (2018).
16. Clinical and Laboratory Standards Institute. M07: Dilution AST for Aerobically Grown Bacteria, 11th Ed. (2018).
17. Bagla, V. P., McGaw, L. J., Elgorashi, E. E. & Elffo, J. N. Antimicrobial activity, toxicity and selectivity index of two biflavonoids and a flavone isolated from Podocarpus henkelii (Podocarpaceae) leaves. BMC Complement. Altern. Med. 14, 383. https://doi.org/10.1186/1472-6882-14-383 (2014).
18. Sallher, P. et al. In vitro and in vivo analysis of the antithrombotic and toxicological profile of new antplatelets N-acetyldihydrazone derivatives and development of nanosystems: Determination of novel NAH derivatives antplatelet and nanotechological approach. Thromb. Res. 134, 376–383 (2014).
19. Dobrovol’skaya, M. A., Germolec, D. R. & Weaver, J. L. Evaluation of nanoparticle immunotoxicity. Nat. Nanotechnol. 4, 411–414 (2009).
20. Pires, D. E. V., Blundell, T. L. & Ascher, D. B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem. 58, 4066–4072 (2015).
21. Banerjee, P., Eckert, A. O., Schrey, A. K. & Preisner, R. ProTox-II: A webserver for the predictor of toxicity of chemicals. Nucleic Acids Res. 46, 257–263 (2018).
22. Daina, A., Michelin, O. & Zoete, V. Swiss ADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 7, 42717. https://doi.org/10.1038/srep42717 (2017).
23. Ferreira, F. A. et al. Comparison of in vitro and in vivo systems to study ica-independent Staphylococcus aureus biofilms. J. Microbiol. Methods 88, 393–398 (2012).
24. Coelho, L. R. et al. agr RNAII divergently regulates glucose-induced biofilm formation in clinical isolates of Staphylococcus aureus. Microbiology 154, 3480–3490 (2008).
25. Ferreira, F. A. et al. Impact of agr dysfunction on virulence profiles and infections associated with a novel methicillin-resistant Staphylococcus aureus (MRSA) variant of the lineage ST1-SCCmec IV. BMC Microbiol. 13, 93. https://doi.org/10.1186/s12879-013-0139-3 (2013).
26. Björnsson, E. S. Hepatotoxicity by drugs: The most common implicated agents. Int. J. Mol. Sci. 17, 224. https://doi.org/10.3390/ijms17020224 (2016).
27. Rylander, M., Brorson, J. E., Johnson, J. & Norrby, R. Comparison between agar and broth minimum inhibitory concentrations of cefamandole, Cefotin, and cefuroxime. Antimicrob. Agents Chemother. 15, 572–579 (1979).
28. Bassetti, M. et al. Characteristics of Staphylococcus aureus bacteremia and predictors of early and late mortality. PLoS ONE 12, e0170236. https://doi.org/10.1371/journal.pone.0170236 (2017).
29. Sharma, D. et al. Interplay of the quality of ciprofloxacin and antibiotic resistance in developing countries. Front. Pharmacol. 8, 546. https://doi.org/10.3389/fphar.2017.00546 (2017).
30. Angelis, I. D. & Turco, L. Caco-2 cells as a model for intestinal absorption. Curr. Protoc. Toxicol. Chapter 20, Unit20.6 (2011).
31. Jeremic, S., Amić, A., Stanojević-Pirković, M. & Marković, Z. Selected anthraquinones as potential free radical scavengers and P-glycoprotein inhibitors. Org. Biomol. Chem. 16, 1890–1902 (2018).
32. Me, R. et al. Fluid balance concepts in medicine: Principles and practice. World J. Nephrol. 7, 1–28 (2018).
33. Morov, G., Martiny, V. Y., Vayer, P., Villoutreix, B. O. & Miteva, M. A. Toward in silico structure-based ADMET prediction in drug discovery. Drug Discov. Today. 17, 44–55 (2012).
34. Corral, P. A., Botello, J. F. & Xing, C. Design, synthesis, and enzymatic characterization of quinazoline-based CYP1A2 inhibitors. Bioorg. Med. Chem. Lett. 30, 126719. https://doi.org/10.1016/j.bmcl.2019.126719 (2020).
35. Angelis, I. D. & van der Poll, T. Severe sepsis and septic shock. N. Engl. J. Med. 369, 840–851 (2013).
36. Smitt, J., Adelborg, T., Thomsen, R. W., Segard, M. & Schmieder, H. C. Chronic heart failure and mortality in patients with community-acquired Staphylococcus aureus bacteremia: A population-based cohort study. BMC Infect. Dis. 16, 227. https://doi.org/10.1186/s12879-016-1570-7 (2016).
37. Hueso-Falcón, I. et al. Synthesis and biological evaluation of naphthoquinone–cumarin conjugates as topoisomerase II inhibitors. Bioorg. Med. Chem. Lett. 27, 484–489 (2017).
38. Ludwig, C., Dogra, S. & Glatt, H. Genotoxicity of 1,4-benzoquinone and 1,4-naphthoquinone in relation to effects on glutatione and NAD(P)H levels in V79 cells. Environ. Health Perspect. 82, 223–228 (1989).
39. Oja, T. et al. Effective antibiofilm polyketides against Staphylococcus aureus from the pyranonaphthoquinone biosynthetic pathways of Streptomyces species. Antimicrob. Agents Chemother. 59, 6046–6052 (2015).
40. He, X., Yuan, F., Lu, F., Yin, Y. & Cao, J. Vancomycin-induced biofilm formation by methicillin-resistant Staphylococcus aureus is associated with the secretion of membrane vesicles. Microb. Pathog. 110, 225–231 (2017).
41. Xiong, Y.-Q. et al. Impacts of sarA and agr in Staphylococcus aureus strain Newman on fibronectin-binding protein A gene expression and fibronectin adherence capacity in vitro and in experimental infective endocarditis. Infect. Immun. 72, 1832–1836 (2004).
42. Beenen, K. E. et al. Epistatic relationships between sarA and agr in Staphylococcus aureus biofilm formation. PLoS ONE 5, e10790. https://doi.org/10.1371/journal.pone.0010790 (2010).
43. Lauderdale, K. J., Bole, R. R., Cheung, A. L. & Horwitz, A. R. Interconnections between Sigma B, agr, and proteolytic activity in Staphylococcus aureus biofilm maturation. Infect. Immun. 77, 1623–1635 (2009).
44. Mitchell, G. et al. SigB is a dominant regulator of virulence in Staphylococcus aureus small-colony variants. PLoS ONE 8, e65018. https://doi.org/10.1371/journal.pone.0065018 (2013).
The authors declare no competing interests.

Acknowledgements
This study was financed in part by FAPERJ grant E-26/202.823/2017, E-26/210.875/2016, E-26/010.002435/2019; CNPQ GRANT 307672/2019-0; and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.

Author contributions
All authors discussed the results and contributed to the final version of this manuscript. J.S.N. performed all experiments, was responsible for data analysis and interpretation, and was involved in drafting the manuscript and revising the final version. M.F.C. confirmed the identification and genotype of the strains and participated in the experiments of persistence in S. aureus and revising the final version of the manuscript. A.K.J. and V.F.F. were responsible for the synthesis and analysis of the derivatives. They also revised the version of the manuscript. R.B.G. contributed to the in silico studies and revised the final version of the manuscript. M.R. and S.A. participated in the experiments of biofilm development and gene expression assays, and also revised the final version. M.F.C. confirmed the identification and genotype of the strains and participated in the experiments of biofilm development and revising the final version.

Competing interests
The authors declare no competing interests.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s41598-020-76372-z.

Correspondence and requests for materials should be addressed to H.C.C. or A.M.S.F.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020