Unsupervised Learning of 3D Scene Flow from Monocular Camera*

Guangming Wang, Xiaoyu Tian, Ruiqi Ding, and Hesheng Wang

Abstract—Scene flow represents the motion of points in the 3D space, which is the counterpart of the optical flow that represents the motion of pixels in the 2D image. However, it is difficult to obtain the ground truth of scene flow in the real scenes, and recent studies are based on synthetic data for training. Therefore, how to train a scene flow network with unsupervised methods based on real-world data shows crucial significance. A novel unsupervised learning method for scene flow is proposed in this paper, which utilizes the images of two consecutive frames taken by monocular camera without the ground truth of scene flow for training. Our method realizes the goal that training scene flow network with real-world data, which bridges the gap between training data and test data and broadens the scope of available data for training. Unsupervised learning of scene flow in this paper mainly consists of two parts: (i) depth estimation and camera pose estimation, and (ii) scene flow estimation based on four different loss functions. Depth estimation and camera pose estimation obtain the depth maps and camera pose between two consecutive frames, which provide further information for the next scene flow estimation. After that, we used depth consistency loss, dynamic-static consistency loss, Chamfer loss, and Laplacian regularization loss to carry out unsupervised training of the scene flow network. To our knowledge, this is the first paper that realizes the unsupervised learning of 3D scene flow from monocular camera. The experiment results on KITTI show that our method for unsupervised learning of scene flow meets great performance compared to traditional methods Iterative Closest Point (ICP) and Fast Global Registration (FGR). The source code is available at: https://github.com/IRMVLab/3DUnMonoFlow.

I. INTRODUCTION

The 3D perception of the scene is crucial to the upper-level control and planning of robots [1]. Scene flow represents the vector that describes the motion of a point in 3D space from the position in the first frame to the position in the second frame. Optical flow is its counterpart if scene flow gets projected to 2D image plane [2]. Motion estimation of each point in 3D space can provide rich information for motion segmentation, object localization [3], pose estimation [4], target tracking [5], etc. For non-deep learning methods, variational methods are widely used to estimate scene flow [6], [7], [8], [9], [10]. With the development of deep learning [11], the scene flow is estimated by combining disparity map [12] and optical flow [13], [14], [15].

With the development of deep learning methods for point clouds, estimation methods for scene flow based on point clouds are also developed recently [16], [17]. Scene flow network can provide the scene flow between the two given point clouds which are corresponding to two consecutive frames. The network can implement end-to-end estimation of scene flow and has been realized by [16], [17] recently. The problem solved by scene flow network is described as: with the inputs of the point cloud in the first frame PC_1 and the point cloud in the second frame PC_2, the scene flow network can estimate the vector $sf_i = (dx_i, dy_i, dz_i)$ for each point in the first frame that describes how the point moves to the location in the second frame. Due to the inhomogeneity during the sampling of point clouds, it is possible that for a point in the first frame there is no corresponding point in the second frame. In other words, a point in the first frame might not be able to match any point in the second frame after the movement via scene flow sf_i. The character is very similar to optical flow, which enhances the difficulty of the acquisition of ground truth for optical flow and scene flow. Most supervised research on optical flow has been done on synthetic datasets [18], as well as scene flow [16], [17]. That is why unsupervised learning is as important to scene flow as optical flow [19], [20], [21], [22], [23], [24]. The real-world image data can be used in the unsupervised training of scene flow with suitable losses as shown in Fig. 1 which bridges the gap between training data and testing data [8]. This paper is devoted to this.

Our contributions are as follows:

- The point clouds of two consecutive frames are obtained from 2D images and depth maps, while depth maps can
be acquired through inputting the images into the depth estimation network. Depth consistency of scene flow is proposed as penalty loss for the unsupervised learning of scene flow inspired by unsupervised learning of depth and pose estimation.

- The concepts of dynamic scene flow and static scene flow are presented in this paper. Static scene flow can be obtained from camera pose transformation.
- The loss for dynamic-static consistency is proposed. Overall scene flow, dynamic scene flow, and static scene flow which are generated from point clouds should satisfy a consistency relationship in geometry. The violation of consistency is punished for unsupervised learning of scene flow.
- The experiment was conducted on KITTI Odometry dataset [25] and KITTI scene flow dataset [8], in which the odometry dataset was used for unsupervised training and the scene flow dataset was used for testing. The results showed that our unsupervised method could achieve super performance than some traditional methods.

II. RELATED WORK

A. Scene Flow Estimation

Scene flow can be obtained from a variety of sources. Menze et al. [7] divided the objects of the scene into independent moving rigid objects, and two consecutive frames of binocular images were used to estimate scene flow with discrete-continuous Conditional Random Field (CRF). Bounding boxes, segmentation, and object recognition are introduced in [26]. Then in [8], the robust discrete optical flow was combined to track large displacement. Lv et al. [14] proposed the joint supervised learning of camera motion and mask for rigid parts with the synthesized RGB-D dataset, and the scene flow is estimated by optical flow in non-rigid regions and static flow. Battrawy et al. [27] fuse sparse LiDAR and stereo images to estimate the scene flow. With the seeds built from LiDAR, the matches of stereo images become more robust and the mismatches can be filtered after the consistency check. Later, optical flow, segmentation, and parallax estimation based on deep learning are combined as an energy minimization problem for scene flow estimation [28]. Jiang et al. [15] proposed a novel network to estimate scene flow from stereo which is more compact by sharing features with a shared encoder.

Scene flow can be applied to point clouds directly and the estimation of scene flow with point clouds is underexplored. Dewan et al. [29] reduced the scene flow with point cloud to an equivalent energy minimization problem and the analysis of dynamics is based on point level. Ushani et al. [30] obtained scene flow from a filtered occupancy grid which is constructed by raw LiDAR data and then the foreground is extracted. With the development of deep learning for 3D point clouds [31], [32], [33], [34], [35], FlowNet3D [17] was proposed and could directly process point clouds and generate 3D scene flow from point clouds in the end-to-end style. Behl et al. [36] proposed a trainable model for joint scene flow estimation and rigid motion prediction from unstructured LiDAR data. A learnable operator named parametric continuous convolution which can operate over non-rigid structured data was proposed by Wang et al. [37]. HPLFlowNet [16] proposed DownBCL, UpBCL, and CorrBCL operations to restore the rich information in point clouds. Wu et al. [38] introduced a learnable cost volume layer and proposed PointPWC-Net to directly process point clouds in a coarse-to-fine fashion. A hierarchical neural network with a double attentive embedding layer was proposed in [39] for the scene flow estimation of two consecutive point clouds.

B. Unsupervised Estimation of Optical Flow

Scene flow based on deep learning with the input of point clouds directly is just developing [17], [16], [38], [39]. To our knowledge, there is no unsupervised learning for 3D scene flow from only monocular videos by the time the paper was finished. Since scene flow and optical flow are very similar, unsupervised learning for optical flow is reviewed here. The movement of pixels in the image is defined as optical flow which is a 2D vector. Dosovitskiy et al. [18] firstly proposed a convolutional network to estimate the optical flow with a supervised method. The structure of the network gets improved later [40]. Early networks are trained on the synthetic dataset [13], that is because the ground truth of optical flow in the real world is difficult to obtain, which increases the difficulty for supervision and estimation. As a result, the method of unsupervised learning on real-world data has attracted much attention [20], [41], [21], [22], [23], [24].

Ren et al. [19] used image warping to minimize photometric consistency in unsupervised training and estimating for optical flow. Meister et al. [20] introduced consistency loss and a method with empirical parameters for occlusion in the process of computing consistency and warping images. Occlusion is considered as an important issue in the estimation of disparity, optical flow, and scene flow in recent years [42], [21], [22], [23], [24]. More recently, works have continued to address this problem by distilling the knowledge of existing networks to improve the accuracy of unsupervised estimation for optical flow [23], [24]. Recently, some works focus on unsupervised learning of optical flow combined with depth and pose [43], [44], [45]. GeoNet [43] is proposed to jointly estimate monocular depth, optical flow, and ego-motion from videos and the optical flow learns the residual motion of scenes. Ranjan et al. [44] introduced a dynamic and static segmentation based framework to coordinate the training of various specialized networks. Similarly, pixels are divided into rigid regions, non-rigid regions, and occluded regions in [45], [46] to train several networks. Hur et al. [47] proposed to estimate scene flow based on images, but stereo videos are used for training, while our method only needs monocular videos to learn scene flow estimation. This paper is inspired by the above.
III. Unsupervised Learning of Scene Flow

A. Problem Description

Given two consecutive frames of images I_1 and I_2 for the same scene, we can get the depth estimation network and pose network by the unsupervised learning [48]. Then, the depth maps of two images are obtained through the depth estimation network. From the images and depth maps, two consecutive frames of point clouds can be obtained. Further, what we need to get is the 3D scene flow transformation sf without the constraint between each point to the other in a frame. With the ideal scene flow sf, the physical position of the spatial point corresponding to the first frame can be obtained in the second frame.

By inputting two consecutive images into the depth network respectively, the corresponding depth maps D_1 and D_2 can be obtained. The point clouds $X = (PC_1^1, F_1)$ and $Y = (PC_2^2, F_2)$ corresponding to the pixels of the above two frames can be easily obtained from the depth maps of the two frames with the camera intrinsic matrix K, where PC_i^1 is the points in Cartesian coordinates obtained from:

$$PC_i^1 = D_i \cdot K^{-1} \cdot I_i, i \in \{1, 2\},$$

in which each pixel $p_{u,v} = (u, v, 1)$ in image I_i represents the pixel coordinate on the image plane. D_i represents the depth map. $F_i = (R_i, G_i, B_i)$ ($i \in \{1, 2\}$) represents the color features of the point clouds. With the point clouds of the two images, the scene flow sf corresponding to each point in the first frame is desired. However, this is not an easy task. On the one hand, similar to optical flow, not all points in the first frame can be found in the second frame due to occlusion. On the other hand, when scenes in the real world are sampled, the points in PC_1^1 not always coincide with the points in PC_2^2. All these problems bring difficulties to our unsupervised scene flow learning.

In order to perform training on the unlabeled image datasets, four loss functions are adopted: (1) depth consistency loss, (2) dynamic-static consistency loss, (3) Chamfer loss, and (4) Laplacian regularization loss. In the meanwhile, we apply the loss functions to each level of the predicted scene flow so as to make full use of the hierarchical structure of the scene flow network [39]. The specific loss functions are described separately in the following sections.

B. Depth Consistency Loss

For the unlabeled datasets, the scene flow network cannot be trained directly by minimizing the difference between ground truth flow and the estimated flow due to the lack of annotated ground truth flow. To solve the problem, local consistency is used to design depth consistency loss. First, point clouds PC_1^1 and PC_2^2 of the first and the second frames are input into the scene flow network, and the estimated scene flow sf_o can be obtained. Let $\hat{PC}_2^2 = PC_1^1 + sf_o$ be the position where point cloud PC_1^1 of the first frame flow to the second frame and \hat{D}_2 be the depth values of \hat{PC}_2^2. With the projection equation:

$$\hat{I}_2 = \frac{1}{\hat{D}_2} \cdot K \cdot \hat{PC}_2^2,$$

\hat{PC}_2^2 can be projected on the image plane of the second frame. (u, v) represents the projected pixel coordinate in \hat{I}_2 for each point of \hat{PC}_2^2. And then the interpolated depth map \hat{D}_2 is acquired through the following bilinear interpolation:

$$\hat{D}_2(u, v) = \frac{D_2(i_1, j_1)}{(i_2 - i_1)(j_2 - j_1)}(i_2 - u)(j_2 - v) + \frac{D_2(i_2, j_1)}{(i_2 - i_1)(j_2 - j_1)}(u - i_1)(j_2 - v) + \frac{D_2(i_1, j_2)}{(i_2 - i_1)(j_2 - j_1)}(i_2 - u)(v - j_1) + \frac{D_2(i_2, j_2)}{(i_2 - i_1)(j_2 - j_1)}(u - i_1)(v - j_1).$$

The four points $(i_m, j_n), (m, n \in \{1, 2\})$ represent the four nearest points of (u, v) on the depth map. $D_2(i_m, j_n), (m, n \in \{1, 2\})$ represents the depth values of the four points. $D_2(u, v)$ represents the depth value of point (u, v). Then, through the projection of \hat{I}_2 with the new depth map \hat{D}_2 into 3D space,

$$\hat{PC}_2^2 = \hat{D}_2 \cdot K^{-1} \cdot \hat{I}_2,$$

the point cloud \hat{PC}_2^2 of the second frame after interpolation can be obtained. If the scene flow estimation is accurate enough, then point clouds \hat{PC}_2^2 and PC_2^2 should be in the same physical position. Therefore, depth consistency loss is defined as the Euclidean distance between these points:

$$L_{Depth} = \sum ||\hat{PC}_2^2 - PC_2^2||^2.$$

C. Dynamic-static Consistency Loss

The scene flow of the point cloud from the first frame to the second frame is generated by the transformation of the camera ego-motion and the movement of objects in the scene. Therefore, the sum of the scene flow generated by the movement of objects in the scene is consistent with the overall scene flow, which is called dynamic-static consistency in this paper. Images I_1 and I_2 of the first and the second frames are input into the pose network obtained by the joint unsupervised learning of depth and pose, and the transformation of camera pose (R, t) from the first frame to the second frame can be obtained. R represents rotation matrix and t represents translation vector. Based on this, the position PC_1^1 of the point cloud $X = (PC_1^1, F_1)$, which represents the coordinates of the point cloud X observed in the second frame, can be obtained from the transformation:

$$PC_2^2 = PC_1^1 \cdot R + t.$$

As shown in Fig. 2 $sf = PC_2^1 - PC_1^1$ is defined as static flow from the first frame to the second frame. Then, X and Y are input into the scene flow network to obtain the estimated dynamic flow sf_d, i.e. the scene flow generated by moving objects. According to dynamic-static consistency, if the scene flow estimation is accurate, the overall flow from the point cloud of the first frame to the second frame should satisfy $sf_d = sf + sf_o$. Hence, the difference between the overall

$$L_{DS} = \sum ||sf_d - sf - sf_o||^2.$$
flow and the sum of static flow and dynamic flow forms dynamic-static consistency loss:
\[
L_{DS} = \sum_{i} \left\| \overline{s_{f_i}} - (s_{f_i} + \overline{s_{d_i}}) \right\|^2. \tag{7}
\]

D. Chamfer Loss

In order to make the point cloud of the first frame after scene flow warping close to the point cloud of the second frame as much as possible, we choose Chamfer distance as one of our loss functions as in [38]. As described in Section III-B, \(PC_2' \) represents the point cloud warped from the point cloud of the first frame according to the predicted scene flow. Therefore, the Chamfer loss can be described as:
\[
L_{Cha} = \sum_{p_1 \in PC_1} \min_{p_2 \in PC_1'} \left\| p_1 - p_2 \right\|^2 + \sum_{p_2 \in PC_2} \min_{p_1 \in PC_1} \left\| p_1 - p_2 \right\|^2, \tag{8}
\]
where \(p_1' \) is the point of \(PC_2' \) and \(p_2 \) is the point of \(PC_2 \).

E. Laplacian Regularization Loss

We refer to previous works [38], [49] and use Laplacian regularization as our loss function. Assuming that the predicted scene flow is accurate, the Laplacian of the warped point cloud \(PC_2' \) should be the same as the Laplacian of point cloud \(PC_2 \). Let \(N(p_i) \) be a local area around point \(p_i \) and \(|N(p_i)| \) be the number of points in \(N(p_i) \). The Laplacian coordinate vector \(\gamma(p_i) \) of \(p_i \) can be represented as:
\[
\gamma(p_i) = \frac{1}{|N(p_i)|} \sum_{p_j \in N(p_i)} (p_j - p_i), \tag{9}
\]
and the Laplacian of \(PC_2' \) and \(PC_2 \) can be computed. Then we can obtain the interpolated Laplacian coordinate vector \(\gamma(p_2') \) of \(PC_2' \) through inverse distance weighted interpolation:
\[
\gamma(p_2') = \frac{\sum_{j=1}^{k} w(p_2', p_j) \gamma(p_j)}{\sum_{j=1}^{k} w(p_2', p_j)}, \tag{10}
\]
in which \(w(p_2', p_j) = 1/d(p_2', p_j) \), \(p_j \in N(p_2') \cup PC_2' \), \(d(p_2', p_j) \) is the Euclidean distance between two points. Hence, the Laplacian regularization loss is described as:
\[
L_{LR} = \sum_{p_2 \in PC_2} \left\| \gamma(p_2') - \gamma(p_2) \right\|^2. \tag{11}
\]

F. Unsupervised Loss

As described in section III-C, the overall scene flow can be replaced by the sum of dynamic scene flow and static scene flow. Therefore, \(PC_2' \) in section III-B can be presented in two ways, and depth consistency loss has two different ways to compute. Let \(L_{Depth1} \) be the loss computed from the overall scene flow, \(L_{Depth2} \) be the loss computed from the sum of dynamic and static scene flow, and \(L_{Depth} = L_{Depth1} + L_{Depth2} \). The overall unsupervised loss is a weighted sum of all loss functions over all levels of scene flow estimation:
\[
L_{Un} = \sum_{k=1}^{K} \alpha_k \left(\beta_1 L_{Depth1} + \beta_2 L_{DS} + \beta_3 L_{Cha} + \beta_4 L_{LR} \right), \tag{12}
\]
where \(\alpha_k \) are factors for different levels of scene flow outputs and \(\beta_i \) are weights for different loss functions.

IV. EXPERIMENTS

A. Datasets and Data Preprocessing

As described in section III our data contains colorized point clouds, therefore we can input colors as features into the scene flow network. The models are trained with our approach on KITTI Odometry dataset [25] and tested on KITTI scene flow dataset [8]. KITTI Odometry dataset is a dataset of image sequences of consecutive frames, which is stored in PNG format and contains 22 sequences. The dataset is widely used in odometry estimation and includes vehicles, pedestrians, and other complex objects in various situations like city, road, campus, etc.

With the depth values of the images which are obtained from the depth network, the pixels in the first frame can be

![Diagram](https://via.placeholder.com/150)
projected into the camera coordinate system of the first frame and represented as PC_1^1. In a similar way, the pixels in the second frame can be projected into the camera coordinate system of the second frame and represented as PC_2^2. For each frame of images in the dataset, we can obtain the point cloud corresponding to the pixels in the 3D space.

Our experiment is based on the point clouds of two consecutive frames without the need for the ground truth of scene flow. Since the movement of the points from the ground and sky has no practical significance for the scene flow estimation, and too many sky and ground points may even have a negative impact on the subsequent sampling, we removed the points of the ground and sky from our training data. To be specific, we define points beyond a certain range as either ground or sky, and we removed these points from the point cloud of a frame. In this paper, we choose $1.15m$ as the height range and $35m$ as the depth range. Points whose height is below $1.15m$ and whose depth is beyond $35m$ are regarded as the ground and the sky respectively. In the meanwhile, because 3D LiDAR has a certain scanning range, we removed the points out of the range of LiDAR. Also, we compared the depth maps of the two frames and removed occluded regions. The point cloud visualization before and after removal is shown in Fig. 3.

KITTI scene flow dataset contains 200 scenes for training and 200 scenes for test which is generated by establishing a 3D CAD model for the dynamic objects. Liu et al. [17] processed the first 150 data points from KITTI scene flow dataset and removed the ground points. Each of the dataset contain two frames of point clouds and the ground truth scene flow of the first frame derived from the optical flow.

B. Network Settings

The scene flow network in [39] is adopted in this paper, which can estimate the scene flow between two point clouds as an end-to-end process. This network has a more-for-less hierarchical architecture, which means that there are more input points than output points. Since the joint learning of depth and pose from monocular videos have achieved good results, we chose the depth network and camera motion network proposed in [48] as our networks.

The network is trained under the guidance of minimizing loss L_{Un}. The factors are set as $\alpha_1 = 0.02$, $\alpha_2 = 0.04$, $\alpha_3 = 0.08$, and $\alpha_4 = 0.16$. The weight parameters are set as $\beta_1 = 0.1$, $\beta_2 = 0.1$, $\beta_3 = 1.0$, and $\beta_4 = 0.3$. Adam optimization is adopted in our training and the initial learning rate is set as 10^{-3}. Our experiments are implemented on a Titan RTX GPU with PyTorch 1.7.1, and the training batch size is 5.

C. Evaluation Criteria

The evaluation method on 3D scene flow in [39] is followed. The evaluation criteria included: EPE3D: end point error in 3D, whose value is the L-2 norm of the difference between the predicted flow and the ground truth flow for each point after averaging. Acc3D Strict: the accuracy for scene flow which represents the percentage of points with EPE3D less than $0.05m$ or relative error less than 5%. Acc3D Relax:
the accuracy for scene flow which represents the percentage of points with EPE3D less than 0.1 m or relative error less than 10%. Outliers3D: the percentage of points with EPE3D more than 0.3 m or relative error more than 10%.

D. Results

Quantitative results are shown in Table I. We implemented the unsupervised scene flow training based only on monocular images and the scene flow network trained with our unsupervised methods performs well on the evaluation criteria compared to traditional methods Iterative Closest Point (ICP) [41] and Fast Global Registration (FGR) [50].

E. Ablation Study

In order to study the effects for each of the above unsupervised loss functions and different methods of data processing, we designed ablation studies. Tables II and III show the results of ablation studies. The experiments prove that each of our methods can improve performance.

We started with the evaluation of the effect of each loss function proposed in Section III. As shown in Table I, from the drop in performance we can see the lack of each loss function will do harm to the evaluation result. And in all loss functions, Chamfer loss plays a crucial role. Then we compared the influence of different data processing methods on the performance. From Table III we can see the importance of data processing. Proper methods which remove the points of ground and sky improve the performance greatly.

V. Conclusion

This paper used depth network and pose network to generate colorized point clouds and put forward the idea of dynamic and static scene flow. Further, it proposed dynamic-static consistency of scene flow and depth consistency of point cloud which can provide an unsupervised learning approach for scene flow. We reduced the cost of the training process greatly as unlabeled data is used in our network training. High accuracy is achieved and the application of scene flow can be supported. 3D odometry estimation method [51] based on 2D images using the pseudo LiDAR obtained from images is our future work.

REFERENCES

[1] Z. Liu, W. Chen, J. Lu, H. Wang, and J. Wang, “Formation control of mobile robots using distributed controller with sampled-data and communication delays,” IEEE Transactions on Control Systems Technology, vol. 24, no. 6, pp. 2125–2132, 2016.
[2] S. Vedula, S. Baker, P. Rander, R. Collins, and T. Kanade, “Three-dimensional scene flow,” in Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2. IEEE, 1999, pp. 722–729.
[3] X. Zhao and H. Wang, “Self-localization using point cloud matching at the object level in outdoor environment,” in 2019 IEEE 9th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER). IEEE, 2019, pp. 1447–1452.
[4] Y. Liu, H. Wang, F. Xu, Y. Wang, W. Chen, and Q. Tang, “Local pose optimization with an attention-based neural network,” in 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2019, pp. 3084–3089.
[5] Y. Shi and H. Wang, “Visual tracking via an ensemble of random classifiers,” in 2016 IEEE International Conference on Real-time Computing and Robotics (ICAR). IEEE, 2016, pp. 603–608.
[6] C. Vogel, K. Schindler, and S. Roth, “3d scene flow estimation with a piecewise rigid scene model,” International Journal of Computer Vision, vol. 115, no. 1, pp. 1–28, 2015.
[7] M. Menze and A. Geiger, “Object scene flow for autonomous vehicles,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 3061–3070.
[8] M. Menze, C. Heipke, and A. Geiger, “Object scene flow,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 140, pp. 60–76, 2018.
[49] O. Sorkine, “Laplacian mesh processing,” Eurographics (STARs), vol. 29, 2005.

[50] Q.-Y. Zhou, J. Park, and V. Koltun, “Fast global registration,” in European Conference on Computer Vision. Springer, 2016, pp. 766–782.

[51] G. Wang, X. Wu, Z. Liu, and H. Wang, “Pwclonet: Deep lidar odometry in 3d point clouds using hierarchical embedding mask optimization,” Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021.