Significantly lower mean serum vitamin B12 and folic acid levels and a significantly higher frequency of serum iron deficiency in younger than in older atrophic glossitis patients

Yu-Hsueh Wu a,b,1, Yang-Che Wu c,d,1, Julia Yu-Fong Chang e,f, Yi-Pang Lee g, Chun-Pin Chiang e,f,g*, Andy Sun e,f,**

a Department of Stomatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
b Institute of Oral Medicine, School of Dentistry, National Cheng Kung University, Tainan, Taiwan
c School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
d Department of Dentistry, Taipei Medical University-Shuang Ho Hospital, Ministry of Health and Welfare, New Taipei City, Taiwan
e Department of Dentistry, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
f Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei, Taiwan
g Department of Dentistry, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan

Received 25 May 2022
Available online 11 June 2022

Abstract Background/purpose: Our previous study found that 19.0%, 16.9%, 5.3%, 2.3%, and 11.9% of 1064 atrophic glossitis (AG) patients have anemia, serum iron, vitamin B12, and folic acid deficiencies, and hyperhomocysteinemia, respectively. This study mainly evaluated the anemia, hematinic deficiencies, and hyperhomocysteinemia in 224 younger (<50 years old) and 840 older (>50 years old) AG patients.

Materials and methods: The blood hemoglobin (Hb) and serum iron, vitamin B12, folic acid, and homocysteine levels in 224 younger and 840 older AG patients were measured and compared with the corresponding levels in 112 younger (<50 years old) and 420 older (>50 years old) AG patients.
years old) healthy control subjects (HCSs), respectively.

Results: We found that 224 younger AG patients had significantly lower mean blood Hb and serum iron levels than 112 younger HCSs. Moreover, 840 older AG patients had significantly lower mean blood Hb and serum iron levels and a significantly higher mean serum homocysteine level than 420 older HCSs. In addition, 224 younger AG patients had significantly lower mean serum vitamin B12 and folic acid levels, a lower mean serum homocysteine level (marginal significance, \(P = 0.056 \)), a significantly higher frequency of serum iron deficiency, and a significantly lower frequency of hyperhomocysteinemia than 840 older AG patients.

Conclusion: The younger AG patients have significantly lower mean serum vitamin B12 and folic acid levels, a significantly higher frequency of serum iron deficiency, and a significantly lower frequency of hyperhomocysteinemia than the older AG patients.

ccompany for Dental Sciences of the Republic of China. Publishing services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Comparisons of means of parameters between 224 younger or 840 older AG patients and 112 younger or 420 older HCSs by Student’s t-test, respectively, as well as between 224 younger and 840 older AG patients were performed by Student’s t-test. The differences in frequencies of microcytosis (MCV < 80 fl)\(^22,23\), macrocytosis (MCV ≥ 100 fl)\(^24-26\), blood Hb and serum iron, vitamin B12, and folic acid deficiencies, hyperhomocysteinemia, and serum GPCA positivity between 224 younger or 840 older AG patients and 112 younger or 420 older HCSs, respectively, as well as between 224 younger and 840 older AG patients were compared by chi-square test. In addition, the differences in frequencies of 6 different types of anemia between 224 younger and 840 older AG patients were also compared by chi-square test. The result was considered to be significant if the P-value was less than 0.05.

Results

The MCV, mean blood Hb and serum iron, vitamin B12, folic acid, and homocysteine levels in 224 younger and 840 older AG patients and in 112 younger and 420 older HCSs are shown in Table 1. We found that 224 younger AG patients had significantly lower MCV, mean blood Hb and serum iron levels than 112 younger HCSs (all P-values < 0.005, Table 1). Although the 224 younger AG patients also had a higher mean serum homocysteine level than 112 younger HCSs, the difference was not significant (P = 0.171) (Table 1). Moreover, 840 older AG patients had significantly lower mean blood Hb and serum iron levels, and a significantly higher mean serum homocysteine level than 420 older HCSs (all P-values < 0.01, Table 1). In addition, 224 younger AG patients had significantly lower MCV and mean serum vitamin B12 and folic acid levels than 840 older AG patients (all P-values < 0.001, Table 1). The 224 younger AG patients also had a lower mean serum homocysteine level (marginal significance, P = 0.056) than 840 older AG patients. However, no significant differences in the mean blood Hb and serum iron levels were found between 224 younger and 840 older AG patients (Table 1).

According to the World Health Organization (WHO) criteria, microcytosis of erythrocyte was defined as having MCV < 80 fl\(^22,23\), macrocytosis of erythrocyte was defined as having MCV ≥ 100 fl\(^24-26\), and men with Hb < 13 g/dL and women with Hb < 12 g/dL were defined as having Hb deficiency or anemia.\(^27\) Furthermore, patients with the serum iron level < 60 µg/dL,\(^28\) the serum vitamin B12 level < 200 pg/mL,\(^29\) or the folic acid level < 4 ng/mL\(^10\) were defined as having serum iron, vitamin B12 or folic acid deficiency, respectively. In addition, patients with the blood homocysteine level > 12.1 µM (which was the mean serum homocysteine level of healthy control subjects plus two standard deviations) were defined as having hyperhomocysteinemia.\(^1\) By the above-mentioned definitions, 13.4%, 1.8%, 18.8%, 28.1%, 4.0%, 3.6%, 7.1%, and 21.0% of 224 younger AG patients and 5.8%, 4.4%, 19.0%, 13.9%, 5.6%, 1.9%, 13.2%, and 28.2% of 840 older AG patients were diagnosed as having microcytosis, macrocytosis, blood Hb and serum iron, vitamin B12, and folic acid deficiencies, hyperhomocysteinemia, and serum GPCA positivity, respectively (Table 2). Moreover, 224 younger AG patients had significantly higher frequencies of microcytosis, blood Hb and serum iron deficiencies, hyperhomocysteinemia, and serum GPCA positivity than 112 younger HCSs (all P-values < 0.05, Table 2). Furthermore, 840 older AG patients had significantly higher frequencies of microcytosis, macrocytosis, blood Hb and serum iron, vitamin B12, and folic acid deficiencies, hyperhomocysteinemia, and serum

Group	MCV (fl)	Hb (g/dL)	Iron (µg/dL)	Vitamin B12 (pg/mL)	Follic acid (ng/mL)	Homocysteine (µM)
Younger AG patients (n = 224)	87.3 ± 9.0	13.1 ± 1.9	85.0 ± 39.8	628.4 ± 258.3	13.2 ± 6.3	8.3 ± 7.6
P-value	0.003	<0.001	<0.001	0.964	0.886	0.171
Younger AG patients (n = 840)	90.7 ± 7.5	13.1 ± 1.3	89.3 ± 28.9	702.0 ± 280.9	15.6 ± 6.6	9.7 ± 10.2
P-value	<0.001	<0.001	<0.001	0.348	0.598	0.005
Younger HCSSs (n = 112)	89.9 ± 3.4	13.8 ± 0.9	104.0 ± 31.3	627.1 ± 217.7	13.1 ± 5.5	7.3 ± 1.8
Older HCSSs (n = 420)	90.6 ± 3.6	13.8 ± 0.9	98.1 ± 26.6	716.8 ± 224.8	15.4 ± 5.8	8.3 ± 2.1

a. Comparisons of means of parameters between 224 younger or 840 older AG patients and 112 younger or 420 older HCSs by Student’s t-test, respectively.
b. Comparisons of means of parameters between 224 younger and 840 older AG patients by Student’s t-test.
Comparisons of frequencies of parameters between 224 younger or 840 older AG patients and 112 younger or 420 older HCSs by chi-square test, respectively.

Comparisons of frequencies of parameters between 224 younger and 840 older AG patients by chi-square test.

Table 2

Group	Patient number (%)	Iron deficiency (%)	Folic acid deficiency (%)	Hyperhomocysteinemia (%)
Younger AG patients (n = 224)				
Iron deficiency	13 (5.8)	0.001	<0.001	<0.001
Folic acid deficiency	9 (4.0)	0.100	0.073	0.001
Hyperhomocysteinemia	17 (7.6)	0.001	<0.001	0.001
Older AG patients (n = 840)				
Iron deficiency	49 (5.8)	0.001	<0.001	<0.001
Folic acid deficiency	44 (5.3)	0.001	0.001	0.001
Hyperhomocysteinemia	60 (7.1)	0.001	<0.001	0.001
Younger HCSs (n = 112)				
Iron deficiency	0 (0.0)	0.001	<0.001	<0.001
Folic acid deficiency	0 (0.0)	0.001	0.001	0.001
Hyperhomocysteinemia	2 (1.8)	0.001	<0.001	0.001
Older HCSs (n = 420)				
Iron deficiency	19 (4.5)	0.001	<0.001	<0.001
Folic acid deficiency	0 (0.0)	0.001	0.001	0.001
Hyperhomocysteinemia	12 (2.9)	0.001	<0.001	0.001

Discussion

This study found that the younger AG patients had significantly lower mean blood vitamin B12 and folic acid levels, a lower mean serum homocysteine level (marginal significance, \(P = 0.056 \)), a significantly higher frequency of serum iron deficiency, a significantly lower frequencies of hyperhomocysteinemia and serum GPCA positivity than the older AG patients. To explain why we had these findings, first, we had to understand the composition of our two groups of AG patients. The younger (\(\leq 50 \) years old) AG patients consisted of 42 men and 182 women, with a male to female ratio of approximately 1:4.3 and a mean age of 44.0 years. Thus, the majority of our male, younger AG patients might have sufficient total body androgen levels, and the majority of our female, younger AG patients might still have menstrual cycles and enough total body estrogen levels. The older (\(> 50 \) years old) AG patients was composed of 108 men and 732 women, with a male to female ratio of approximately 1:6.8 and a mean age of 67.6 years. Thus, our male, older AG patients might have slightly
decreased total body androgen level and nearly all the female, older AG patients might be in the menopause status and had a reduced total body estrogen level. It is well known that androgens can stimulate erythropoiesis and increase levels of red blood cells (RBCs) and Hb through the mechanisms of stimulation of erythropoietin release, increase in bone marrow activity, and augmentation of iron incorporation into the RBCs. However, estrogens do not have this erythropoiesis-enhancement effect and even have a striking negative effect on the erythropoiesis, especially in patients with chronic mountain sickness (Monge’s disease). In menopause women, total body estrogen level decreases because of the cessation of ovarian functions and iron increases as a result of cease of menstrual blood loss. Nevertheless, estrogen deficiency up-regulates hepcidin, which inhibits intestinal iron absorption, leading to lower serum iron levels. In general, each healthy pregnancy depletes the mother of approximately 500 mg of iron. Menstrual blood losses are highly variable, ranging from 10 to 250 mL (4–100 mg of iron) per period. During childbearing years, an adult female loses an average of 2 mg of iron daily. However, in the postmenopausal women, iron deficiency is uncommon in the absence of menstrual bleeding. Furthermore, because women eat less food than men, they must be more than twice as efficient as men in the absorption of iron to avoid iron deficiency. Therefore, anemia is twice as prevalent in females as in males. This difference is significantly greater during the childbearing years due to pregnancies and menses. In this study, men constituted approximately one-fifth of younger AG patients and approximately one-eighth of older AG patients, suggesting that the androgen factor may play a more important role in the group of our younger AG patients than in the group of our older AG patients. On the contrary, menopausal women constituted seven-eighths of our older AG patients, indicating that the menopause is a relevant factor influencing the blood Hb and serum iron levels in the group of our older AG patients. Moreover, younger women consisted of four-fifths of our younger AG patients, indicating pregnancies and menses are two important factors influencing the blood Hb and serum iron levels in the group of our younger AG patients. Taken the above-mentioned evidences together, for the younger AG patients, the active total body physiological function and relatively high total body androgen level are positive factors that increase the blood Hb and serum iron levels, but the repeated menstrual blood losses and one or more times of pregnancy are negative factors that decrease the blood Hb and serum iron levels. Moreover, for the older AG patients, the menopause is the positive factor that enhances the blood Hb and serum iron levels, whereas the slightly decrease total body physiological function and relatively low total body androgen level are negative factors that reduce the blood Hb and serum iron levels. Therefore, the overall effects of these positive and negative factors could finally explain why the younger AG patients had lower mean serum iron level and significantly higher frequency of serum iron deficiency than the older AG patients.

We further explained why the younger AG patients had the significantly lower mean serum vitamin B12 and folic acid levels and a non-significantly higher frequency of folic acid deficiency than the older AG patients. Previous studies discovered significantly lower mean folate levels in buccal mucosal cells and sera of 25 smokers than in those of 34 non-smokers. Pivathilake et al. also demonstrated lower buccal mucosal cell folate and vitamin B12 concentrations in 39 current smokers than in 60 noncurrent smokers. Our previous study of serum folic acid levels in oral precancer patients also found significantly lower mean serum folic acid levels in cigarette smokers or heavy smokers than in non-smokers, and in betel quid chewers than in non-chewers. The findings of above-mentioned studies indicate the existence of vitamin B12 and folic acid deficiencies in the sera and oral mucosal cells of the smokers and betel quid chewers. We suggest that the mechanisms of vitamin B12 and folic acid deficiencies may result from elevated vitamin B12 and folic acid consumption in response to rapid cell proliferation or tissue repair caused by the irritation or damage of oral mucosal cells by the carcinogens in tobacco or betel quid. In this study, we did not assess the frequencies of cigarette smoking and betel quid chewing habits in our 224 younger and 840 older AG patients. However, in the Taiwan population, the males ≥18 years of age had a significantly higher prevalence of smoking habit.

Table 3 Comparison of frequencies of 6 different types of anemia between 224 younger (<50 years old) and 840 older (>50 years old) atrophic glossitis (AG) patients.

Anemia type	Younger AG patients (n = 224)	Older AG patients (n = 840)	P-value
Pernicious anemia	2 (0.9)	20 (2.4)	0.260
Other macrocytic anemia	1 (0.4)	7 (0.8)	0.873
Normocytic anemia	15 (6.7)	102 (12.1)	0.028
Iron deficiency anemia	22 (9.8)	8 (1.0)	<0.001
Thalassemia trait-induced anemia	2 (0.9)	19 (2.3)	0.299
Other microcytic anemia	0 (0.0)	4 (0.5)	0.674
Total	42 (18.8)	160 (19.0)	0.996

* Comparison of frequencies of 6 different types of anemia between 224 younger and 840 older AG patients by chi-square test.
(23.1% for men and 2.9% for women) or betel quid chewing habit (16.8% for men and 1.2% for women) than the females ≥18 years of age.48 Because there is a significantly higher prevalence of smoking or betel quid chewing habit in men than in women in the Taiwan population as well as in younger people than in older people, we strongly suggest that the smoking or betel quid chewing habit may be the major factors that result in the lower mean serum vitamin B12 and folic acid levels and higher frequency of folic acid deficiency in the younger AG patients than in the older AG patients.13–48 In addition, although the younger people tend to have more active physiological function including relatively higher intestinal absorption rate and better regeneration and tissue repair functions, these younger AG patients should have more severe deficiencies of vitamin B12 and folic acid to express the symptoms of AG. Thus, it is not surprised to see the significantly lower mean serum vitamin B12 and folic acid levels and a significantly higher frequency of folic acid deficiency in the younger AG patients than in the older AG patients. Homocysteine is formed during methionine metabolism.49 Both vitamin B12 and folic acid function as co-enzymes for the conversion of homocysteine to methionine.50 Thus, patients with vitamin B12 and/or folic acid deficiencies may have hyperhomocysteinemia. A previous study has shown that a supplementation with folic acid and vitamins B12 and B6 can reduce blood homocysteine levels.51 Our previous studies also demonstrated that supplemetations with vitamin BC capsules plus corresponding deficient vitamin B12 and/or folic acid can reduce the abnormally high serum homocysteine level to significantly lower levels in patients with either AG or burning mouth syndrome.20,21 In this study, although significantly lower mean serum vitamin B12 and folic acid levels and a higher frequency of serum folic acid deficiency in the younger AG patients than in the older AG patients were found, there were a marginally significant lower mean serum homocysteine level and a significantly lower frequency of hyperhomocysteinemia in the younger AG patients than in the older AG patients. We suggest that these results may be also due to the relatively minor deviations of the mean serum vitamin B12 and folic acid levels of the younger or older AG patients from those of the younger or older HCSs, respectively (Table 1).

In this study, the younger AG patients had a significantly higher frequency of IDA (9.8%) than the older AG patients (1.0%, \(P < 0.001 \)). This could be due to the finding that the younger AG patients had a higher frequency of serum iron deficiency (28.1%) than the older AG patients (13.9%, \(P < 0.001 \)). On the contrary, the older AG patients had a significantly higher frequency of normocytic anemia (12.1%) than the younger AG patients (6.7%, \(P = 0.028 \)). We suggest that the significantly higher frequency of normocytic anemia in the older AG patients than in the younger AG patients may result from the relatively higher frequencies of chronic or inflammatory diseases in the older AG patients than in the younger AG patients.31–34

The results of this study conclude that the younger AG patients do have significantly lower mean serum vitamin B12 and folic acid levels, a significantly higher frequency of serum iron deficiency, and a significantly lower frequency of hyperhomocysteinemia than the older AG patients.

Declaration of competing interest

The authors have no conflicts of interest relevant to this article.

Acknowledgments

This study was partially supported by the grants (Nos. 102-2314-B-002-125-MY3 and 105-2314-B-002-075-MY2) of Ministry of Science and Technology, Taiwan.

References

1. Chiang CP, Chang JYF, Wang YP, Wu YC, Wu YH, Sun A. Significantly higher frequencies of anemia, hematologic deficiencies, hyperhomocysteinemia, and serum gastric parietal cell antibody positivity in atrophic glossitis patients. *J Formos Med Assoc* 2018;117:1065–71.
2. Sun A, Lin HP, Wang YP, Chiang CP. Significant association of deficiency of hemoglobin, iron and vitamin B12, high homocysteine level, and gastric parietal cell antibody positivity with atrophic glossitis. *J Oral Pathol Med* 2012;41:508–4.
3. Chiang CP, Chang JYF, Wang YP, Wu YH, Wu YC, Sun A. Atrophic glossitis: etiology, serum autoantibodies, anemia, hematologic deficiencies, hyperhomocysteinemia, and management. *J Formos Med Assoc* 2020;119:774–80.
4. Chiang CP, Wu YH, Wu YC, Chang JYF, Wang YP, Sun A. Anemia, hematologic deficiencies, hyperhomocysteinemia, and serum gastric parietal cell antibody positivity in 884 patients with burning mouth syndrome. *J Formos Med Assoc* 2020;119:813–20.
5. Chiang CP, Wu YC, Wu YH, Chang JYF, Wang YP, Sun A. Gastric parietal cell and thyroid autoantibody in patients with burning mouth syndrome. *J Formos Med Assoc* 2020;119:1758–63.
6. Chiang ML, Wu YH, Chang JYF, Wang YP, Wu YC, Sun A. Anemia, hematologic deficiencies, and hyperhomocysteinemia in gastric parietal cell antibody-positive and -negative burning mouth syndrome patients. *J Formos Med Assoc* 2021;120:819–26.
7. Chiang ML, Jin YT, Chiang CP, Wu YH, Chang JYF, Sun A. Anemia, hematologic deficiencies, hyperhomocysteinemia, and gastric parietal cell antibody positivity in burning mouth syndrome patients with vitamin B12 deficiency. *J Dent Sci* 2020;15:34–41.
8. Chiang ML, Chiang CP, Sun A. Anemia, hematologic deficiencies, and gastric parietal cell antibody positivity in burning mouth syndrome patients with or without hyperhomocysteinemia. *J Dent Sci* 2020;15:214–21.
9. Jin YT, Chiang ML, Wu YH, Chang JYF, Wang YP, Sun A. Anemia, hematologic deficiencies, hyperhomocysteinemia, and gastric parietal cell antibody positivity in burning mouth syndrome patients with iron deficiency. *J Dent Sci* 2020;15:42–9.
10. Jin YT, Wu YC, Wu YH, Chang JYF, Chiang CP, Sun A. Anemia, hematologic deficiencies, hyperhomocysteinemia, and gastric parietal cell antibody positivity in burning mouth syndrome patients with or without microcytosis. *J Dent Sci* 2021;16:608–13.
11. Jin YT, Wu YH, Wu YC, Chang JYF, Chiang CP, Sun A. Anemia, hematologic deficiencies, hyperhomocysteinemia, and gastric parietal cell antibody positivity in burning mouth syndrome patients with macrocytosis. *J Dent Sci* 2021;16:1133–9.
12. Jin YT, Wu YH, Wu YC, Chang JYF, Chiang CP, Sun A. Anemia, hematologic deficiencies, and hyperhomocysteinemia in serum gastric parietal cell antibody-positive burning mouth syndrome patients without serum thyroid autoantibodies. *J Dent Sci* 2021;16:1110–6.
13. Chiang CP, Wu YH, Chang JYF, Wang YP, Wu YC, Sun A. Does serum gastric parietal cell antibody titer have influence on anemia and vitamin B12 deficiency in atrophic glossitis patients? J Formos Med Assoc 2020;119:377–83.

14. Chiang CP, Wu YH, Chang JYF, Wang YP, Wu YC, Sun A. Hematocrit deficiencies, hyperhomocysteinemia, and gastric parietal cell antibody positivity in atrophic glossitis patients with normocytosis. J Formos Med Assoc 2020;119:1109–15.

15. Chiang CP, Wu YH, Wang YP, Wu YC, Sun A. Anemia, hematocrit deficiencies, and gastric parietal cell antibody positivity in atrophic glossitis patients with or without hyperhomocysteinemia. J Formos Med Assoc 2020;119:544–52.

16. Wu YH, Jin YT, Wu YC, Chang JYF, Chiang CP, Sun A. Anemia, hematocrit deficiencies, hyperhomocysteinemia, and gastric parietal cell antibody positivity in burning mouth syndrome patients with normocytosis. J Dent Sci 2017;22:35–41.

17. Jin YT, Wu YH, Wu YC, Chang JYF, Chiang CP, Sun A. Higher gastric parietal cell antibody titer significantly increases the frequencies of macrocytosis, serum vitamin B12 deficiency, and hyperhomocysteinemia in patients with burning mouth syndrome. J Dent Sci 2022;17:57–62.

18. Chiang CP, Wu YH, Wang YP, Wu YC, Sun A. Anemia, hematocrit deficiencies, and hyperhomocysteinemia in burning mouth syndrome patients with thyroglobulin antibody/thyroid microsomal antibody positivity but without gastric parietal cell antibody positivity. J Dent Sci 2022;17:106–12.

19. Wu YH, Jin YT, Wu YC, Chang JYF, Chiang CP, Sun A. Anemia, hematocrit deficiencies, and hyperhomocysteinemia in male and female burning mouth syndrome patients. J Dent Sci 2022;17:935–41.

20. Sun A, Wang YP, Lin HP, Chen HM, Cheng SJ, Chiang CP. Significant reduction of homocysteine level with multiple B vitamins in atrophic glossitis patients. Oral Dis 2013;19:519–24.

21. Sun A, Lin HP, Wang YP, Chen HM, Cheng SJ, Chiang CP. Significant reduction of serum homocysteine level and oral symptoms after different vitamin supplement treatments in patients with burning mouth syndrome. J Oral Pathol Med 2013;42:474–9.

22. Lin HP, Wu YH, Wang YP, Wu YC, Chang JYF, Sun A. Anemia and hematocrit deficiencies in gastric parietal cell antibody-positive and negative oral mucosal disease patients with microcytosis. J Formos Med Assoc 2017;116:613–9.

23. Wu YC, Wang YP, Chang JYF, Cheng SJ, Chen HM, Sun A. Oral manifestations and blood profile in patients with iron deficiency anemia. J Formos Med Assoc 2014;113:83–7.

24. Sun A, Wang YP, Lin HP, Jia JS, Chiang CP. Do all the patients with gastric parietal cell antibodies have pernicious anemia? Oral Dis 2013;19:381–6.

25. Sun A, Chang JYF, Wang YP, Cheng SJ, Chen HM, Chiang CP. Do all the patients with vitamin B12 deficiency have pernicious anemia? J Oral Pathol Med 2016;45:23–7.

26. Chang JYF, Wang YP, Wu YC, Cheng SJ, Chen HM, Sun A. Hematocrit deficiencies and pernicious anemia in oral mucosal disease patients with macrocytosis. J Formos Med Assoc 2015;114:736–41.

27. WHO/UNICEF/UNU. Iron deficiency anaemia assessment, prevention, and control: a guide for programme managers. Geneva, Switzerland: World Health Organization, 2001.

28. Shine JW. Microcytic anemia. Am Fam Physician 1997;55:2455–62.

29. Morris MS, Jacques PF, Rosenberg IH, Selhub J. Folate and vitamin B-12 status in relation to anemia, macrocytosis, and cognitive impairment in older Americans in the age of folic acid fortification. Am J Clin Nutr 2007;85:193–200.