Measures used to assess the burden of ESBL-producing *Escherichia coli* infections in humans: a scoping review

Kathryn L. McDonald, Sarah Garland, Carolee A. Carson, Kimberly Gibbens, E. Jane Parmley, Rita Finley and Melissa C. MacKinnon

1Public Health Agency of Canada, Guelph, Ontario, Canada; 2University of Waterloo, Waterloo, Ontario, Canada; 3Canadian Agency for Drugs and Technologies in Health, Ottawa, Ontario, Canada; 4University of Guelph, Guelph, Ontario, Canada

*Corresponding author. Present address: Alberta Health Services, Calgary, Alberta, Canada. E-mail: kathryn.mcdonald2@albertahealthservices.ca

Background: ESBL-producing bacteria pose a serious challenge to both clinical care and public health. There is no standard measure of the burden of illness (BOI) of ESBL-producing *Escherichia coli* (ESBL-EC) in the published literature, indicating a need to synthesize available BOI data to provide an overall understanding of the impact of ESBL-EC infections on human health.

Objectives: To summarize the characteristics of BOI reporting in the ESBL-EC literature to (i) describe how BOI associated with antimicrobial resistance (AMR) is measured and reported; (ii) summarize differences in other aspects of reporting between studies; and (iii) highlight the common themes in research objectives and their relation to ESBL-EC BOI.

Methods and results: Two literature searches, run in 2013 and 2018, were conducted to capture published studies evaluating the BOI associated with ESBL-EC infections in humans. These searches identified 1723 potentially relevant titles and abstracts. After relevance screening of titles and abstracts and review of full texts, 27 studies were included for qualitative data synthesis. This review identified variability in the reporting and use of BOI measures, study characteristics, definitions and laboratory methods for identifying ESBL-EC infections.

Conclusions: Decision makers often require BOI data to make science-based decisions for the implementation of surveillance activities or risk reduction policies. Similarly, AMR BOI measures are important components of risk analyses and economic evaluations of AMR. This review highlights many limitations to current ESBL-EC BOI reporting, which, if improved upon, will ensure data accessibility and usefulness for ESBL-EC BOI researchers, decision makers and clinicians.

1. **Introduction**

ESBL-producing bacteria pose a serious challenge to both clinical care and public health. First described in 1983, the emergence of ESBL Gram-negative Enterobacteriaceae has significantly contributed to the global public health problem of antimicrobial resistance (AMR). The β-lactamase enzymes produced by ESBL-producing bacteria are classified as Ambler class A and Bush–Jacoby–Medeiros class 2be. The ESBLs are plasmid-mediated β-lactamases that are capable of hydrolysing β-lactams, including penicillins, cephalosporins and monobactams, and they may be inhibited by β-lactamase inhibitors, including clavulanic acid, vaborbactam and avibactam. As a consequence of the frequent medical use of β-lactam antimicrobials to treat many human infections, the prevalence of ESBL-producing β-lactam-resistant infections continues to rise. ESBL-producing Enterobacteriaceae have likewise been found to possess genes that confer resistance to other classes of antimicrobials, including fluoroquinolones and aminoglycosides, and therefore can be MDR.

Escherichia coli represent a major group of ESBL-producing Gram-negative bacteria, responsible for a range of problematic nosocomial and community-acquired infections in humans, including, but not limited to, urinary tract infections and bloodstream infections. Current literature on ESBL-producing *E. coli* (herein denoted ESBL-EC) inconsistently defines ESBL infections and inconsistently describes how these infections are microbiologically confirmed, contributing to a lack of shared understanding of the frequency and importance of associated illnesses.

It has been demonstrated that infections caused by ESBL-EC result in excess burdens to patients and to healthcare systems in part because of their impact on antimicrobial treatment efficacy. A burden of illness (BOI) measure for AMR is an indicator that captures the impact of a resistant bacterial infection on human health and the healthcare system. To assess the burden of ESBL-EC infections in humans, studies frequently evaluate differences in morbidity, mortality and healthcare costs associated with resistant versus susceptible *E. coli* infections.
challenges our ability to understand the BOI attributed to these resistant infections.16,17 The lack of standardization of BOI measures is not unique to ESBL-EC infections and is also seen in the BOI literature for other infectious diseases.

There is a need for a synthesis of the available literature to provide decision makers with better information about ESBL-EC infections and their impact on BOI. The objective of this scoping review is to summarize how ESBL-EC infections are characterized in the literature by (i) describing how BOI associated with AMR is measured and reported; (ii) summarizing differences in other aspects of reporting between studies, including reporting of study characteristics, as well as characteristics of ESBL definitions and confirmation methods; and (iii) highlighting the common themes in research objectives and their relation to ESBL-EC BOI. This scoping review will contribute to Canada’s Integrated Assessment Model for Antimicrobial Resistance (IAM-AMR) Project, which integrates data on the BOI associated with ESBL-EC infections in humans. Quantitative data are not presented in this review; as such, this paper does not report whether or not ESBL-EC infections are associated with a higher BOI than non-ESBL-EC infections. A larger systematic review of the health and health systems burden of AMR Escherichia coli infections is being completed in parallel to this scoping review and it will provide a quantitative synthesis of the BOI measures using a meta-analysis.18

2. Methods

2.1 Literature search

This scoping review was guided by PRISMA-ScR methodology.19,20 A literature search was designed to capture published BOI data on ESBL-EC infections in humans. Six databases were searched: PubMed; Embase in Ovid; Scopus; Global Health in CAB Direct; CAB Abstracts; and Core Collection in Web of Science. Search strings were developed by epidemiologists working with the Canadian Integrated Program for Antimicrobial Surveillance (CIPARS) (Table 1, available as Supplementary data at JAC-AMR Online) and were validated by ensuring that known relevant articles were captured. An initial literature search was conducted on 31 May 2013, without date restrictions, and was updated on 7 June 2018 to include literature published since the initial 2013 search.

2.2 Inclusion criteria

To be included in this review, articles needed to be published in English and use an analytical observational study design (including but not limited to cross-sectional, cohort, case-control or hybrid), as defined by Dohoo, Martin and Stryhn.21 Included articles had to originate from countries listed as very high development index (HDI) in the United Nations 2018 Human Development Index Report, in order to ensure high relevance to a Canadian context.22 Only studies pertaining to human infections with ESBL-EC (exposed group) and non-ESBL-EC comparator groups (control group) and that analysed at least one BOI measure were considered for this review. Examples of BOI measures include mortality, morbidity, length of hospital stay and healthcare costs13 as well as indicators of patient, payer and provider burdens associated with ESBL-EC and non-ESBL-EC infections.15

2.3 Relevance screening

After removal of duplicates, relevance screening of titles and abstracts was conducted at the time of the literature searches by a single reviewer, screening for language, HDI status, study design, study population and infection type (ESBL-EC or non-ESBL-EC infections) to identify eligible studies for full text review. Articles that failed to meet one or more primary screening inclusion criteria were excluded from this review.

Articles that met title and abstract inclusion criteria proceeded to full-text review, which was conducted independently by two reviewers (K.L.M., M.C.M.), using web-based systematic review software (Distiller SR).24 Full text review used additional criteria for inclusion, including the presence of ESBL-EC infections and non-ESBL-EC comparator groups, and BOI outcomes with extractable E. coli-specific data.

2.4 Qualitative data extraction

Data extraction was performed by two reviewers individually, using a pre-determined custom data extraction form in the web-based software (Distiller SR).24 Qualitative data of interest included study characteristics (country, study period, type of data, study design, site description, study objectives and themes, description of ESBL and ESBL confirmation methods), characteristics of the study participants (description of ESBL and non-ESBL groups, age and gender of participants) and information related to outcomes used to measure the BOI of ESBL-EC.

3. Results

3.1 Characteristics of included studies

This literature search identified 1723 (de-duplicated) potentially relevant articles for screening; 27 references met all inclusion criteria and reported BOI outcome data for ESBL-EC (Figure 1).

Study characteristics

All (n = 27) references used hospital-based data in their analyses.25–51 The majority of studies (93%, n = 25) utilized data specifically captured for the purposes of their studies, while two studies utilized data collected for different surveillance purposes.39,40 Data collected for surveillance purposes included single-site surveillance39 and multisite nationwide surveillance.40

The earliest data included in this review were collected in 1991,41 with the latest data extending to the end of 201627,51 (Figure 2). With the exception of one reference by Ho et al.,43 which was published in 2002, all references were published between 2007 and 2018.

References most commonly reported on the burden of ESBL-EC exclusively, however, several references (n = 4) also reported burden data for other organisms, such as Klebsiella spp. and all Gram-negative bacteria.26,39,47,50 Studies were predominantly conducted in South Korea (n = 7) and Spain (n = 6). Author-reported study designs were predominantly cohort (44%, n = 12) and case-control (26%, n = 7) (Table 1). Multiple studies originated from the same medical facility.29,30,33,35,40,46,47 and also the same cohort.30,47
Figure 1. Literature search and screening process, adapted from the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) for a scoping review of BOI measures related to ESBL-producing E. coli infections in humans.

Figure 2. Years of data collection and publication period for data included in the scoping review of BOI measures related to ESBL-producing E. coli infections in humans. *Frequency of Data Collection: each year of data during a multi-year collection period is recorded as one value.
ESBL-EC and non-ESBL-EC group characteristics

Studies frequently localhost enrolment to specific types of *E. coli* infection (ESBL and non-ESBL) with the most common infection types being bloodstream infection (n = 20), urinary tract infection (n = 3) and acute pyelonephritis (n = 2) (Table 1). Two studies enrolled *E. coli* infections in general without restricting to a specific type of *E. coli* infection (Table 1).

ESBL-EC groups ranged in size from 15–211 participants, with a mean group size of 68 (median 60) participants. By contrast, non-ESBL-EC groups had a much larger range in size (36–4547), with a mean size of 383 (median 100) participants. Matching was used in ESBL and non-ESBL selection for 44% (n = 12) of studies. Characteristics used for matching included age, sex, type of infection, date of admission or discharge, length of stay and disease severity (Table 1). Of studies that reported selection details, a ratio of either 1:1 or 2:1 of non-ESBL-EC to ESBL-EC patients was used during selection, however, no selection details were reported for the remaining references (n = 15).

Reporting of age characteristics varied between references (Table S2). Most (n = 21) reported either group median or mean age, with a measure of variation, however, the lack of consistent reporting made age characteristics challenging to summarize. Six references did not report age details for ESBL-EC or non-ESBL-EC groups. The most commonly used age restrictions were adults and elderly (n = 7), or other (>14–16 years of age) (n = 5), indicating that the majority of studies collected data from adults and/or elderly populations. No age restrictions were reported for 14 references.

Gender was reported for ESBL-EC and non-ESBL-EC groups in most references (81%, n = 22) (Table S3). Participant group gender ratios varied, however, the proportion of females ranged from 34%–88% in case groups and 32%–94% in control groups. No gender demographics were reported in five references.

3.2 ESBL reporting in the literature

Definitions of ESBL

Definitions of ESBLs were infrequently reported among references. The majority of references did not use any form of definition for what constituted an ESBL-producing organism (70%, n = 19). Of the eight references that included some form of definition, five common attributes were identified. Six studies mentioned plasmid-mediated resistance, six specified resistance to specific groups of antimicrobials, four discussed co-resistance, two referred to hydrolysis as a mechanism of resistance, and two referred to resistance genes (Table S4). Four articles cited Paterson and Bonomo8 in their definition of ESBLs: ‘ESBLs are β-lactamases capable of conferring bacterial resistance to the penicillins, first-, second-, and third-generation cephalosporins, and aztreonam (but not the cephemycins or carbapenems) by hydrolysis of these antibiotics, and which are inhibited by β-lactamase inhibitors such as clavulanic acid.’ Additionally, two articles cited a definition used by Pitout and Laupland:11 One group of β-lactamases, extended-spectrum β-lactamases (ESBLs), have the ability to hydrolyse and cause resistance to various types of the newer β-lactam antibiotics, including the expanded-spectrum (or third-generation) cephalosporins (e.g., cefotaxime, ceftiraxone, cefazidime) and monobactams (e.g., aztreonam), but not the cephemycins (e.g., cefoxitin and cefotetan) and carbapenems (e.g., imipenem, meropenem, and ertapenem).1

Methods for ESBL confirmation

Methods for ESBL confirmation varied between studies. The largest percentage of studies (41%, n = 11) used double disc synergy tests as confirmation of ESBL. Other methods included broth microdilution (n = 6) or disc diffusion (n = 1). Four studies reported the use of CLSI guidelines,26,41,42,44 yet only three provided citations for the CLSI information supplement version that was used to guide ESBL confirmation methodology.26,41,44 Two additional studies reported other confirmation methods: Ambler class C identification set25 and cefotaxime/amoxicillin/clavulanic acid plate.31 Three studies failed to report confirmation methods.37,39,50

3.3 Common themes in ESBL-EC research

Twenty five (93%) studies reported investigating outcomes of ESBL-EC infections as a main theme in study research objectives.25,26,29–51 Examples include assessment of clinical characteristics and clinical outcome,25,26,37,40,48–51 evaluation of impact on treatment outcomes45,46 and estimation of differences in mortality.38,47 The remaining two studies reported outcome data in study results, yet outcomes were not included as a theme in study research objectives.27,28 Most studies also reported on identification of risk factors (n = 15), analysis of prevalence/incidence (n = 4), molecular epidemiology (n = 3), analysis of antimicrobial susceptibility profiles (n = 3), analysis of clinical characteristics (n = 1) and analysis of treatments (n = 1) as main themes present in research objectives.

3.4 Burden of illness

Studies reported data on 12 different outcome measures to analyse the BOI of ESBL-EC infections in humans (Table 2). In total, among the 27 studies, 113 results for BOI measures were reported. Outcome data that were general to all *E. coli* infections, and not specific for ESBLs, or that reported combined data for *Klebsiella pneumoniae* and *E. coli* were excluded (n = 21 BOI data points). The following 92 results are based on BOI measures with outcome data specific to ESBL-EC from the 27 studies included in this scoping review.

Seventeen references reported one to three outcomes, six reported four to six outcomes, and four reported seven to nine outcomes. The three most commonly reported BOI measures were mortality (n = 27), inappropriate initial antimicrobial therapy (IIAT) (n = 16) and length of stay (n = 11) (Table 2).

3.4.1 Mortality

All studies evaluated at least one measure of mortality to assess the BOI in patients with ESBL-EC infections.25–51 The majority (n = 26) of studies provided a description of how mortality was measured.25,31,33,51 While one study did not.32 The most commonly reported measures of mortality include 30 day (n = 13), in-hospital (n = 7), 14 day (n = 4) and 7 day (n = 4) (Table S5). Despite commonalities in timeframes for reporting all-cause and infection-attributable mortalities, the reporting of how mortality was defined within these timeframes varied between studies.
Reference	Author reported study design	No. of sites	Study type	Country of study	Bacterial species	Underlying common disease process	ESBL-EC group	No. of ESBL-EC participants	Non-ESBL-EC group	No. of non-ESBL-EC participants	Details of ESBL-EC and non-ESBL-EC group selection
Namikawa H et al. (2017)	not reported	single-site	retrospective	Japan	*E. coli*	N/A	ESBL-EC BSI	31	Non-ESBL-EC BSI	98	No selection.
Maslikowska JA et al. (2016)	case-control	single-site	retrospective	Canada	*E. coli*, *Klebsiella* spp.	N/A	ESBL-EC infection	61	Non-ESBL-EC infection	50	Cases and controls matched 1:1. Criteria: sex, age (± 5 years), type of infection, bed allocation.
Lee H et al. (2018)	case-control	single-site	retrospective	Republic of Korea	*E. coli*	All from the emergency department	ESBL-EC UTI	50	Non-ESBL-EC UTI	100	Cases and controls matched 1:2. Criteria: age (± 5 years) and sex.
Artero A et al. (2017)	cohort	single-site	prospective	Spain	*E. coli*	All elderly (≥ 65 years) and had to have community-onset pyelonephritis and/or urosepsis and were in a high rate setting of ESBL-EC	ESBL-EC UTI	85	Non-ESBL-EC UTI	225	No selection.
Leistner R et al. (2014)	cohort	single-site	retrospective	Germany	*E. coli*	N/A	ESBL-EC BSI	115	Non-ESBL-EC BSI	983	No selection.
Leistner R et al. (2014)	case-control	single-site	retrospective	Germany	*E. coli*	N/A	ESBL-EC BSI	92	Non-ESBL-EC BSI	92	Cases and controls matched 1:1. Criteria: age (± 5 years), sex, CCI (± 2), discharge year. LOS of the controls before the onset of BSI had to be at least as long as the respective case.
Van Aken S et al. (2014)	case-control	multisite (≥ 3)	retrospective	Sweden	*E. coli*	N/A	ESBL-EC BSI	70	Non-ESBL-EC BSI	140	Cases and controls matched 1:2. Criteria: time period, bacterial species, the occurrence of bacteraemia and study location.
Alotaibi et al. (2017)	not reported	single-site	prospective	Saudi Arabia	*E. coli*	N/A	ESBL-EC BSI	66	Non-ESBL-EC BSI	105	No selection.

Continued
Table 1. Continued

Reference	Author reported study design	No. of sites	Study type	Country of study	Bacterial species	Underlying common disease process	ESBL-EC group	No. of ESBL-EC participants	Non-ESBL-EC group	No. of non-ESBL-EC participants	Details of ESBL-EC and non-ESBL-EC group selection
Trecarichi EM et al. (2009)	cohort	single-site	retrospective	Italy	*E. coli*	All have haematological malignancies	ESBL-EC BSI	26	Non-ESBL-EC BSI	36	No selection.
Rodríguez-Barrón J et al. (2010)	case-control	multisite (≥3)	retrospective and prospective	Spain	*E. coli*	All community-onset	ESBL-EC BSI	95	Non-ESBL-EC BSI	188	Cases and controls matched 1:2. Criteria: hospital and time period.
Park SH et al. (2011)	cohort	single-site	retrospective	South Korea	*E. coli*	All community-onset	ESBL-EC BSI	50	Non-ESBL-EC BSI	100	Cases and controls matched 1:2. Criteria: diagnosis time period.
Peña C et al. (2008)	cohort	single-site	retrospective	Spain	*E. coli*	All hospitalized patients	ESBL-EC infection	100	Non-ESBL-EC infection	100	Cases and controls matched 1:1. Criteria: site of infection and closest date of admission to the case.
Esteve-Palau E et al. (2015)	cohort	single-site	retrospective	Spain	*E. coli*	All required hospitalization, were community onset (community acquired or healthcare-associated) and had to be symptomatic UTI	ESBL-EC UTI	60	Non-ESBL-EC UTI	60	Cases and controls matched 1:1. Criteria: age, sex and date of admission.
Melzer M, Peterson I. (2007)	not reported	single-site	prospective	UK	*E. coli*	N/A	ESBL-EC BSI	46	Non-ESBL-EC BSI	308	No selection.
Khan FY et al. (2010)	observational	single-site	prospective	Qatar	*E. coli*, *Klebsiella* spp., *Enterobacter* cloacae, all bacteraemias included. Gram-positive and -negative.	N/A	ESBL-EC BSI	27	Non-ESBL-EC BSI	70	No selection.
Tumbarello M et al. (2010)	cohort	single-site	retrospective	Italy	*E. coli*	All were adult inpatients	ESBL-EC BSI	37	Non-ESBL-EC BSI	97	No selection.
Ortega M et al. (2009)	other surveillance	single-site	prospective	Spain	*E. coli*	N/A	ESBL-EC BSI	211	Non-ESBL-EC BSI	4547	No selection.
Kang CI et al. (2010)	cohort	multisite (≥3)	retrospective	South Korea	*E. coli*	All community-onset	ESBL-EC BSI	82	Non-ESBL-EC BSI	783	No selection.
Study	Design	Setting	Country	Pathogen	Outcomes	Cases	Controls	Matched	Criteria		
-------------------------------	--------------	---------------------------------	---------------	--------------	------------------------	-------	----------	---------	--		
Ho PL et al. (2002)	Case-control	Single-site retrospective	Hong Kong	*E. coli*	ESBL-EC BSI	50	100	1:2	Cases and controls matched 1:2. Criteria: specialty, sex, age (+/- 10 years) and the closest date to isolation of the corresponding case.		
Gudiol C et al. (2009)	Observational	Single-site prospective	Spain	*E. coli*	ESBL-EC BSI	17	118		No selection.		
Denis B et al. (2015)	Case-control	Single-site retrospective	France	*E. coli*	ESBL-EC BSI	41	41		Cases and controls matched 1:1. Criteria: date of a case.		
Park SH et al. (2015)	Case-control	Single-site retrospective	Republic of Korea	*E. coli*	Community-associated ESBL-EC APN	75	225	1:3	Cases and controls were matched 1:3. Criteria: date of treatment.		
Leistner R et al. (2014)	Cohort	Single-site retrospective	Germany	*E. coli*, *Klebsiella* spp.	ESBL-EC BSI	178	1321		No selection.		
Ha YE et al. (2013)	Cohort	Single-site retrospective	South Korea	*E. coli*	ESBL-EC BSI	95	255		No selection.		
Lee S et al. (2014)	Cohort	Single-site retrospective	South Korea	*E. coli*	Non-ESBL-EC APN	26	52		Cases and Controls matched 1:2. Criteria: bacteraemia, age, sex, CCI, SAPS II and modified APN score. There was a 16-point scoring system for the matching.		
Kim SH et al. (2013)	Not reported	Single-site retrospective	South Korea	*E. coli*, *Klebsiella* spp.	Neutropenic fever in patients with haematological disease that received chemotherapy or stem cell transplantation	15	72		No selection.		
Haruki Y et al. (2018)	Cohort	Single-site retrospective	Japan	*E. coli*	Critically ill patients in the ICU	24	77		No selection.		

BSI, bloodstream infection; UTI, urinary tract infection; APN, acute pyelonephritis; CCI, Charlson comorbidity index; LOS, length of stay; N/A, not applicable (indicating that information for this field was not provided in the article).

*Originating from Charité University Hospital, Berlin, Germany.
*Originating from Catholic University Hospital, Milano, Italy.
*Originating from Daejeon St. Mary’s Hospital, Daejeon, South Korea.
*Originating from the same cohort of patients.
Most studies (70%, n = 19) did not define whether the timeframe of reporting was measured from disease onset, discontinuation of antibiotics or discharge. Only eight studies reported when mortality was measured from. Six studies reported mortality following the onset of infection or from the first positive blood culture, and two studies reported mortality following the discontinuation of antibiotics.

3.4.2 Inappropriate initial antimicrobial therapy
Sixteen studies reported a measure of IIAT or inappropriate empirical antimicrobial therapy. An example of a general definition of IIAT, as used by Gudiol et al., was: ‘if the treatment regimen did not include at least one antibiotic that is active in vitro against the infecting microorganism’. In 10 studies, no timeframe was associated with an assessment of IIAT. The remaining studies (n = 6) included the timeframes of within 24 h of blood culture (n = 5) and within 48 h of blood culture (n = 1). An example of the former was reported by Denis et al. as: ‘active antibiotic not initiated within 24 h after blood sample was drawn’. Additional components of IIAT definitions included dose of antimicrobial, the timing of administration and adherence to antimicrobial recommendations.

3.4.3 Length of stay
Eleven studies reported length of stay in the hospital as a measure of BOI. The majority, 64% (n = 7), reported the total length of stay, while others reported length of stay post-infection (n = 5). One study also reported pre-infection length of stay and the length of stay in the ICU and in a normal ward. Definitions of post-infection length of stay varied, however, most studies that used this measure (n = 4) analysed the period from first positive blood culture or onset of infection until the patient was discharged, transferred to an alternative facility, or until patient death.

3.4.4 Sepsis or shock
Seven studies reported severe sepsis, septic shock or shock as BOI measures. Septic shock was most commonly reported (n = 6) and was reported in conjunction with severe sepsis in four studies (Table 5). Of the four studies which reported both severe sepsis and septic shock, only one reported individual results for each of the two measures.

3.4.5 Treatment failure
Seven studies reported treatment failure as a measure of BOI. Treatment failure was commonly categorized as clinical or microbiological failures (Table 5). Clinical failure was reported in six studies, and was often grouped as early clinical failure (timeframes varied from 72 h to 7 days), overall clinical failure (without time constraints) or all measures of failure. An example of a definition of clinical failure, as used by Esteve-Palau et al., was: ‘when the patient showed no improvement or at least one of the initial symptoms worsened, or needed a switch of antimicrobial therapy, or died’.

Three studies reported microbiological failure, with a consensus definition of failure to achieve negative culture, though there was variability in time frames (Table 5). One study reported all three measures of treatment failure.

3.4.6 Other BOI measures
Additional BOI measures reported in references included ICU stay, disease severity, cost, measures of antimicrobial therapy efficacy and time to stability and relapse. Six studies reported ICU stay as a measure of BOI, however, this measure was not explicitly attributed to infection in any study. Six studies also reported disease severity as a measure of BOI. APACHE II score and Pitt bacteremia score were the most common measures of disease severity reported (n = 3 and n = 2, respectively).

Table 2. Identified BOI measures for ESBL-producing E. coli infections in humans

BOI measures category	No. of peer-reviewed references	No. of peer-reviewed references with ESBL-EC specific data for BOI measures
Mortality	27	27
Inappropriate initial antimicrobial therapy	21	16
Length of stay	13	11
Sepsis or shock	12	7
Treatment failure	8	7
ICU care	8	6
Disease severity	8	6
Cost	5	3
Time to appropriate antimicrobial therapy	5	5
Time to clinical stability	2	1
Relapse	2	2
Duration of IIAT	2	1
Total number of results for BOI measures	113	92
respectively). Disease severity was also measured with the SOFA score \((n = 1)\).

Three studies reported cost as a measure of BOI.30,37,40 All three studies reported on elements of total (or overall) costs, which included direct and indirect costs (Table S8). One study also reported on the cost per episode, which included the cost of hospitalization and outpatient antimicrobial therapy.37

BOI measures of antimicrobial efficacy included time to appropriate antimicrobial therapy, duration of IIAT and delay in appropriate antimicrobial therapy. Five studies reported time to appropriate antimicrobial therapy as a BOI measure.37,38,44,46,49 Of these, four reported time to appropriate antimicrobial therapy recorded in days.37,44,46,49 One study by Park et al.46 reported the BOI measure of duration of IIAT within 48 h. Moreover, one study reported the delay in appropriate antimicrobial therapy, dichotomizing as more or less than 24 h.38

Lastly, patient response to antimicrobial therapy was evaluated with the additional BOI measures of time to stability and relapse. One study reported time to clinical stability as a measure of BOI, which was evaluated in reference to the time to fever resolution.19 Two studies reported relapse as a measure of BOI.15,49 A 2015 study from Park et al.46 provided a detailed definition of relapse as: ‘a positive culture of baseline pathogen during the follow-up period after microbiological eradication had been confirmed’. By contrast, Lee et al.49 defined relapse using a 3 month time period, with no further specification.

4. Discussion

ESBL-EC infections place a burden on health systems and the health of patients. Our review has shown inconsistencies in how ESBL-EC research is reported, particularly the inconsistent reporting of ESBL definitions and variability in ESBL confirmation methods reported in the literature. We likewise identified variation in reporting of research objective themes in relation to BOI, and the use of BOI measures. Together, these inconsistencies made it challenging to synthesize the literature and improve our understanding of the BOI attributable to ESBL-EC infections.

A key finding of this review was the identification of several gaps in ESBL-EC reporting. Only 8/27 studies reported a definition of ESBL-EC. The infrequent use of definitions observed in this review could contribute to a lack of shared understanding of ESBL-producing organisms in terms of their mechanisms and spectrum of resistance.9 This may result in notable differences in parameters used to define ESBLs, which could compromise the validity of inter-study comparisons. The absence of standardized confirmation methods may also pose challenges for drawing inter-study conclusions about ESBLs if parameters for screening and confirmation lack standardization.

Variability in the reporting of research themes within study objectives was likewise observed. Most studies \((n = 25)\) reported an analysis of outcomes or prognosis (morbidity and mortality) as a theme in the title and/or objectives. This review was aimed at describing BOI attributable to ESBL-EC infections in humans, and so the reporting of outcomes and prognosis within study objectives was a component of primary literature screening. The two studies that did not report outcomes or prognosis instead reported risk factor analysis as a research theme.27,28 This was an interesting finding that demonstrated the importance of considering the variability in research themes when designing search strategies for future reviews. Our search string had sufficient sensitivity to capture these studies and to identify their relevance to our review, however, more focused search strategies might not have been able to capture studies which reported variable research themes.

In the present study, 12 types of BOI measure were identified in 27 studies reporting 92 results specific to ESBL-EC BOI, highlighting the complexity of ESBL-EC reporting. The most commonly reported BOI measures included mortality, IIAT, length of stay, sepsis, shock and treatment failure. Measures that were less frequently reported included ICU care, disease severity, cost, time to appropriate antimicrobial therapy, time to stability, relapse and duration of IIAT. Differences in the frequency of reporting of the different BOI measures was a key finding of this review and is likely reflective of differences in the availability of retrospectively collected outcome data from hospital-based data sources. Other measures of BOI exist, but were not observed in this review, including disability-adjusted life years (DALYs), quality-adjusted life years, and number of years lost due to disease and lost productivity.52 Recently, Cassini et al. (2019)53 published DALYs for third-generation cephalosporin-resistant \(E. \text{ coli}\) among other antimicrobial-resistant bacterial infections. This publication should stimulate future publication of DALYs for ESBL-EC infections from different populations.

A previous review by Naylor et al. (2018)15 noted differences in the use of specific patient and health system BOI measures to evaluate differences between susceptible and resistant infections. In the current review, all studies reported mortality as a measure of patient burden, however, morbidity measures were less frequently used. Similarly, length of stay in hospital and ICU care were commonly used to summarize the burden on health systems yet measures of cost were infrequently reported in literature. The lack of cost BOI data observed in this review is consistent with previous syntheses of economic burden literature.15,54 Nine studies failed to report outcome data specific to ESBL-EC (data were presented combined with multiple bacterial species) for certain BOI measures, causing 21 BOI measures to be excluded from the synthesis.

Different measures of BOI may be of greater importance for different public health applications. For example, analyses of the economic burden of ESBL-EC, for use in policy development might require more detailed data on length of stay, or treatment and disease-related healthcare costs from ESBL-EC literature. By contrast, analyses of patient burdens from ESBL-EC for use in health research and to inform patient care might require a higher level of detail on treatment failure, relapse, mortality and other measures of morbidity and treatment efficacy from ESBL-EC literature. These differences in applications and data availability drive the variability in the types of BOI measures reported by individual studies and they all have the ability to provide insight into various aspects of the BOI attributable to ESBL-EC.

We also observed that the application of a given BOI measure differed between studies. For example, mortality was defined by six different parameters in the literature, including infection-attributable mortality, in-hospital mortality, and 7, 14, 21 and 30 day mortality. Within these six parameters, measurement of mortality (from disease onset, discharge or discontinuation of antibiotics) was further varied. In one instance, no definition of mortality was provided.32 The distinction between all-cause versus disease-specific mortality has important implications on BOI
analyses, as does the parameter of time used in mortality definitions. Therefore, mortality measures should be appropriately defined to minimize risk of misinterpretation.35 This variability was observed in many other BOI measures, including sepsis, shock, treatment failure, and length of stay, which makes data synthesis challenging. The variability or lack of definitions for BOI measures used in the studies highlights an opportunity for improved reporting. This would allow knowledge users to clearly appreciate the differences between studies when they are comparing results and facilitate synthesis of results in meta-analyses.

The majority of ESBL-EC BOI data in this study originated from hospital-based data collection sources. This finding was not surprising but demonstrates that data used in BOI analyses are predominantly based on more severe infections that required hospitalization. Our review is therefore unable to describe ESBL-EC BOI in the community as there was no available research to describe the BOI of less severe ESBL-EC infections that were not treated in hospital. We likewise identified variability in reporting of patient demographics such as the measure of central tendency used to describe age, the use and reporting of age restrictions and the reporting of gender, which challenged the analysis of potential vulnerabilities such as age and gender. This is an important finding, as the identification of at-risk subgroups are a major concern for policy makers, and so the consistent reporting of patient demographics is vital for accurately defining the scope of public health problems and for informing the objectives to be achieved through policy activities.

This review has several limitations, including the small number of references included for synthesis, the lack of recent ESBL-EC BOI data, and the lack of Canadian ESBL-EC BOI literature. This may be due in part to publication delay, and also the exclusion of studies from countries which were not in the very high HDI category of the United Nations 2018 Human Development Index Report.22 This exclusion criterion was applied to generate results with high relevance to the Canadian context of BOI attributable to ESBL-EC, however, it may have impacted the capture of other relevant ESBL-EC BOI references. Similarly, the majority of references captured in this review included data collected in 2013 or earlier, with only one reference reporting on Canadian ESBL-EC BOI data.26 There is need for more Canadian ESBL-EC BOI research and information sharing of Canadian BOI measures captured through existing Canadian surveillance programmes and activities, as well as more recent data to provide a more complete analysis of the Canadian context of ESBL-EC BOI. Another potential limitation of this review was the lack of quality analysis. A quality analysis was intentionally absent from this review, as this will be completed in a parallel systematic review through a risk of bias assessment.18

In conclusion, an integrated understanding of the clinical and public health impacts of ESBL-EC infections is vital for healthcare priority setting and planning. Policy-makers require summarized and clear information regarding the BOI related to ESBL-EC and this necessitates standardized or harmonized ways of reporting such information. This information is also needed for risk analysis, economic analysis, and to inform future surveillance activities. Harmonization of data collection, analysis and reporting of information on the BOI of AMR is needed. This could be achieved through guideline research, drafting or development and sharing by academia, national surveillance organizations, health professional societies or international standard-setting organizations.

This review highlighted many limitations of current ESBL-EC reporting, which, if improved upon, will ensure data accessibility and usefulness for ESBL-EC BOI researchers, surveillance epidemiologists, risk assessors and clinicians.

Acknowledgements
The authors thank Dr Richard Reid-Smith (Public Health Agency of Canada) for his supervision and support while conducting this review, and Dr Jon Sargeant (University of Guelph) for web-based software support.

Funding
This work was supported by the Genome Research Development Initiative and also by the Ontario Ministry of Agriculture, Food and Rural Affairs.

Transparency declarations
None to declare.

Supplementary data
Tables S1 to S8 are available as Supplementary data at JAC-AMR Online.

References
1. Bradford PA. Extended-spectrum β-lactamas in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev 2001; 14: 933–51.
2. Schwaber MJ, Navon-Venezia S, Kaye KS et al. Clinical and economic impact of bacteremia with extended-spectrum-β-lactamase-producing Enterobacteriaceae. Antimicrob Agents Chemother 2006; 50: 1257–62.
3. Ambler R, Coulson F. A standard numbering scheme for the Class A β-lactamases. Biochem J 1991; 276: 269–72.
4. Bush K, Jacoby GA, Medeiros AAA. Functional classification scheme for β-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother 1995; 39: 1211–33.
5. Drawz SM, Bonomo RA. Three decades of β-lactamase inhibitors. Clin Microbiol Rev 2010; 23: 160–201.
6. Rupp M, Fey PD. Extended spectrum β-lactamase (ESBL)-producing Enterobacteriaceae. Considerations for diagnosis, prevention and drug treatment. Drugs 2003; 63: 353–65.
7. Li XZ, Mehrotra M, Ghimire S et al. β-Lactam resistance and β-lactamases in bacteria of animal origin. Vet Microbiol 2007; 121: 197–214.
8. Paterson DL, Bonomo RA. Extended-spectrum β-lactamases: a clinical update. Clin Microbiol Rev 2005; 18: 657–86.
9. Shaikh S, Fatima J, Shaki S et al. Antibiotic resistance and extended spectrum β-lactamases: types, epidemiology and treatment. Saudi J Biol Sci 2015; 22: 90–101.
10. Thakuria B, Lahon K. The beta lactam antibiotics as an empirical therapy in a developing country: an update on their current status and recommendations to counter the resistance against them. J Clin Diagnostic Res 2013; 7: 1207–14.
11. Caltrit C, Scalfaro C, Colombo S et al. Extended-spectrum beta lactamase producing enterobacteriaceae among the pediatric population: Who is at risk...
and why? Results from a single-centre prospective study. Infez Med 2016; 24: 318–25.
12 Morosini ML, Garcia-Castillo M, Coque TM et al. Antibiotic coresistance in extended-spectrum-β-lactamase-producing Enterobacteriaceae and in vitro activity of tigecycline. Antimicrob Agents Chemother 2006; 50: 2695–9.
13 Pfitzner JDD, Laupland KB. Extended-spectrum β-lactamase-producing Enterobacteriaceae: an emerging public-health concern. Lancet Infect Dis 2008; 8: 159–66.
14 Rawat D, Nair D. Extended-spectrum ß-lactamas in Gram Negative Bacteria. J Global Infect Dis 2010; 2: 263–74.
15 Naylor NR, Atun R, Zhu N et al. Estimating the burden of antimicrobial resistance: a systematic literature review. Antimicrob Resist Infect Contra 2018; 7: 58–75.
16 Lambert ML, Suetens C, Savey A et al. Clinical outcomes of health-care-associated infections and antimicrobial resistance in patients admitted to European intensive-care units: a cohort study. Lancet Infect Dis 2011; 11: 30–8.
17 Alam MF, Cohen D, Butler C et al. The additional costs of antibiotics and re-consultations for antibiotic-resistant Escherichia coli urinary tract infections managed in general practice. Int J Antimicrobial Agents 2009; 33: 255–7.
18 Mackinnon M, Sargeant J, Pearl D et al. A Protocol for a Systematic Review and Meta-Analysis of the Health and Healthcare System Burden Due to Human Escherichia coli Infections Resistant to Third/Fourth/Fifth Generation Cephalosporins or Quinolones, or with Multidrug Resistance. 2018. http://hdl.handle.net/10214/16263.
19 Tricco AC, Lillie E, Zarin W et al. PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Ann Intern Med 2018; 169: 467–73.
20 Moher D, Liberati A, Tetzlaff J et al. Reprint—preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Phys Ther 2009; 89: 873–80.
21 Dohoo I, Martin W, Stryhn H. Veterinary Epidemiologic Research. VER Inc. 2014.
22 United Nations Development Programme. Human Development Report Programme. Human Development Report 2016. http://hdr.undp.org/sites/default/files/2016_human_development_report.pdf.
23 Marogakis LL, Perencevich EN, Cosgrove SE. Clinical and economic burden of antimicrobial resistance. Expert Rev Anti Infect Ther 2008; 6: 751–63.
24 Evidence Partners. DistillerSR. https://www.evidencedpartners.com/products/distillers-systemic-review-software/.
25 Namikawa H, Yamada K, Fujimoto H et al. Clinical characteristics of bacteremia caused by extended-spectrum β-lactamase-producing Escherichia coli at a tertiary hospital. Intern Med 2017; 56: 1807–15.
26 Mosliiowska JA, Walker SAN, Elliott M et al. Impact of infection with extended-spectrum β-lactamase-producing Escherichia coli or Klebsiella species on outcome and hospitalization costs. J Hosp Infect 2016; 92: 33–41.
27 Lee H, Han SB, Kim JH et al. Risk factors of urinary tract infection caused by extended spectrum β-lactamase-producing Escherichia coli in emergency department. Am J Emerg Med 2018; 36: 1068–12.
28 Artero A, Esparcia A, Alberola J et al. Prospective cohort study of risk factors for extended-spectrum β-lactamase-producing Escherichia coli urinary tract infections in elderly patients admitted to hospital. Int J Clin Pract 2017; 71: 1–7.
29 Leistner R, Gürntke S, Sakellariou C et al. Bloodstream infection due to extended-spectrum β-lactamase (ESBL)-positive K. pneumoniae and E. coli: an analysis of the disease burden in a large cohort. Infection 2014; 42: 991–7.
30 Leistner R, Bloch A, Sakellariou C et al. Costs and length of stay associated with extended-spectrum β-lactamase production in cases of Escherichia coli bloodstream infection. J Glob Antimicrob Resist 2014; 2: 107–9.
31 Van Aken S, Lund N, Ahl J et al. Risk factors, outcome and impact of empirical antimicrobial treatment in extended-spectrum β-lactamase-producing Escherichia coli bacteremia. Scand J Infect Dis 2014; 46: 753–62.
32 Alotaibi FE, Bukhari EE. Escherichia coli bacteremia: Clinical features, risk factors and clinical implication of antimicrobial resistance. African J Microbial Res 2017; 11: 38–44.
33 Trecarichi EM, Tumbarello M, Spanu T et al. Incidence and clinical impact of extended-spectrum β-lactamase (ESBL) production and fluoroquinolone resistance in bloodstream infections caused by Escherichia coli in patients with hematological malignancies. J Infect 2009; 58: 299–307.
34 Rodrigue-Baño J, Picón E, Gijón P et al. Community-onset bacteremia due to extended-spectrum β-lactamase-producing Escherichia coli: risk factors and prognosis. Clin Infect Dis 2010; 50: 40–8.
35 Park SH, Choi SM, Lee DG et al. Emergence of extended-spectrum β-lactamase-producing Escherichia coli as a cause of community-onset bacteremia in South Korea: risk factors and clinical outcomes. Microb Drug Res 2011; 17: 537–44.
36 Peña C, Gudial C, Calatayud L et al. Infections due to Escherichia coli producing extended-spectrum β-lactamase among hospitalised patients: factors influencing mortality. J Hosp Infect 2008; 68: 116–22.
37 Esteve-Palau E, Solande G, Sanchez F et al. Clinical and economic impact of urinary tract infections caused by ESBL-producing Escherichia coli requiring hospitalization: a matched cohort study. J Infect 2015; 71: 667–74.
38 Meiser M, Petersen I. Mortality following bacteraemic infection caused by extended spectrum β-lactamase (ESBL) producing E. coli compared to non-ESBL producing E. coli. J Infect 2007; 55: 254–9.
39 Khan FY, Elshafie SS, Almaslamani M et al. Epidemiology of bacteremia in Hamad General Hospital, Qatar: one year hospital-based study. Travel Med Infect Dis 2010; 8: 377–87.
40 Tumbarello M, Spanu T, Di Bidino R et al. Costs of bloodstream infections caused by Escherichia coli and influence of extended-spectrum β-lactamase production and inadequate initial antibiotic therapy. Antimicrob Agents Chemother 2010; 54: 4085–91.
41 Ortega M, Marco F, Soriano A et al. Analysis of 4758 Escherichia coli bacteremia episodes: Predictive factors for isolation of an antibiotic-resistant strain and their impact on the outcome. J Antimicrobial Chemother 2009; 63: 568–74.
42 Kang CI, Song JH, Chung DR et al. Risk factors and treatment outcomes of community-onset bacteremia caused by extended-spectrum β-lactamase-producing Escherichia coli. Int J Antimicrob Agents 2010; 36: 284–7.
43 Ho PL, Chan WM, Tsang KWT et al. Bacteremia caused by E. coli producing extended-spectrum β-lactamase: a case-control study of risk factors and outcomes. Scand J Infect Dis 2002; 34: 567–73.
44 Gudiol C, Calatayud L, Garcia-Vidal C et al. Bacteremia due to extended-spectrum β-lactamase-producing Escherichia coli (ESBL-EC) in cancer patients: Clinical features, risk factors, molecular epidemiology and outcome. J Antimicrobial Chemother 2009; 65: 333–41.
45 Denis B, Lafaurie A, Brouard P et al. Prevalence, risk factors, and impact on clinical outcome of extended-spectrum β-lactamase-producing Escherichia coli bacteremia: a five-year study. J Infect Dis 2015; 39: 1–6.
46 Park SH, Choi SM, Lee DG et al. Impact of extended-spectrum β-lactamase production on treatment outcomes of acute pyelonephritis caused by Escherichia coli in patients without health care-associated risk factors. Antimicrob Agents Chemother 2015; 59: 1962–8.
47 Leistner R, Sakellariou C, Gürntke S et al. Mortality and molecular epidemiology associated with extended-spectrum β-lactamase production in Escherichia coli from bloodstream infection. Infect Drug Resist 2014; 7: 57–62.
48 Ha YE, Kang CI, Cha MK et al. Epidemiology and clinical outcomes of bloodstream infections caused by extended-spectrum β-lactamase-producing Escherichia coli in patients with cancer. *Int J Antimicrob Agents* 2013; 42: 403.

49 Lee S, Song DY, Cho SH et al. Impact of extended-spectrum β-lactamase on acute pyelonephritis treated with empirical ceftriaxone. *Microb Drug Resist* 2014; 20: 39.

50 Kim SH, Kwon JC, Choi SM et al. Escherichia coli and Klebsiella pneumoniae bacteremia in patients with neutropenic fever: Factors associated with extended-spectrum β-lactamase production and its impact on outcome. *Ann Hematol* 2013; 92: 533–41.

51 Haruki Y, Hagiya H, Haruki M et al. Clinical characteristics and outcome of critically ill patients with bacteremia caused by extended-spectrum β-lactamase-producing and non-producing *Escherichia coli*. *J Infect Chemother* 2018; 24: 1–4.

52 Lajoie J. Understanding the Measurement of Global Burden of Disease. 2015. https://nccid.ca/publications/understanding-the-measurement-of-global-burden-of-disease/.

53 Cassini A, Högberg LD, Plachouras D et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. *Lancet* 2019; 19: 56–66.

54 WHO. Antimicrobial Resistance: Global Report on Surveillance 2014. https://www.who.int/drugresistance/documents/surveillancereport/en/.

55 Cosgrove SE, Carmeli Y. The impact of antimicrobial resistance on health and economic outcomes. *Clin Infect Dis* 2003; 36: 1433–7.