Coupled-channel analysis of pion- and eta-electroproduction with the Jülich-Bonn-Washington model

M. Mai, 1 M. Döring, 1, 2 C. Granados, 1 H. Haberzettl, 1 J. Hergenrather, 1 Ulf-G. Meiβner, 3, 4, 5 D. Röchen, 4 I. Strakovsky, 1 and R. Workman 1

(Jülich-Bonn-Washington Collaboration)

1 Institute for Nuclear Studies and Department of Physics, The George Washington University, Washington, DC 20052, USA
2 Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, USA
3 Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Universität Bonn, 53115 Bonn, Germany
4 Institute for Advanced Simulation and Jülich Center for Hadron Physics, Forschungszentrum Jülich, 52425 Jülich, Germany
5 Tbilisi State University, 0186 Tbilisi, Georgia

Pion and eta electroproduction data are jointly analyzed for the first time, up to a center-of-mass energy of 1.6 GeV. The framework is a dynamical coupled-channel model, based on the recent Jülich-Bonn-Washington analysis of pion electroproduction data for the same energy range. Comparisons are made to a number of single-channel eta electroproduction fits. By comparing multipoles of comparable fit quality, we find some of these amplitudes are well determined over the near-threshold region, while others will require fits over an extended energy range.

I. INTRODUCTION

Early progress in baryon spectroscopy was driven by the analysis of meson-nucleon scattering data, such as pion-nucleon scattering ($\pi N \rightarrow \pi N, \pi N \rightarrow \pi \pi N$); see, e.g., Refs [1–5]. A viable alternative to this, specifically advantageous for detecting unstable intermediate states with small branching ratios to the πN channel, are photon-induced reactions [6]. Large data bases have been accumulated for these reactions as part of the extensive experimental programs at Jefferson Laboratory, MAMI, ELSA and other facilities [7–18].

On the theory side, many approaches have been developed to describe these reactions. Specifically for pion electroproduction, chiral perturbation theory (ChPT) has been successfully applied in the analysis of the threshold region [19–23]. In building on ChPT, chiral unitary models (see, e.g., the recent review [24]) have also become quite successful in accessing the resonance region. Such models provide the hadronic structure of many gauge-invariant chiral unitary formalisms [25–31]. For an in-depth discussion of the manifest implementation of gauge invariance see Ref. [32]. For even larger kinematical ranges, and large data bases, many phenomenological models have been developed. Major classes of these are: (1) isobar models [33–36] with unitarity constraints at lower energies; (2) K-matrix-based formalisms with built-in cuts associated with opening inelastic channels, and dispersion-relation constraints [34, 37, 38]. Multi-channel analyses have analyzed data and, in some cases, amplitudes from hadronic scattering data together with the photon-induced channels [39] by the Gießen [40], Bonn-Gatchina [41], Kent State [5], ANL-Osaka [42], Jülich-Bonn (JüBo) [43] and JPAC [44] groups. For more details, see the introduction of our recent paper [45].

Dynamical coupled-channel approaches [42, 43, 46–50] (DCC) have led to the discovery and confirmation of many new states [51] by extracting universal resonance parameters in terms of pole positions and residues of the transition amplitude in the complex-energy plane. In many analyses of pion- and photon-induced reactions, mass scans and χ^2 arguments are used to identify new states [52, 53] but recently model selection has also been explored [54, 55].

Furthermore, by extracting [7, 33, 35, 56–73] the Q^2 dependence of resonance couplings, a link between perturbative QCD and the region where quark confinement sets in can be established that serve as point of comparison for many quark models [74–85] and Dyson-Schwinger equations [86–101].

However, so far, no unified coupled-channel analysis of photo- and electroproduction experiments exists that simultaneously describes the $\pi N, \eta N$ and $K\Lambda$ final states. The present study provides a first step in this direction in the form of a coupled-channel analysis of pion and eta electroproduction data, extending our recent analysis of pion electroproduction data [45]. It is based on the JüBo approach [43] which fits an extensive scattering and photoproduction data base in the resonance region.

This study is organized as follows. Section II outlines formal aspects of the Jülich-Bonn-Washington (JBW) approach to pseudo-scalar meson electroproduction. These include the generalization to electroproduction of different final states and the influence of kinematic limits ($Q^2 = 0$, thresholds for channel openings, and pseudo-thresholds associated with Siegert’s theorem [102, 103]). Furthermore, we define the parametrization of the Q^2 dependence from the photon point at $Q^2 = 0$, where the underlying JüBo model describes photon- and meson-induced reactions, to electroproduction.

Section III reviews the results of previous single-
channel fits to eta electroproduction data. Section IV describes the data used in our fits, strategies to find χ^2 minima, and a modified χ^2 which more evenly weights the contributions of observables with different abundances. Section V compares our fits to data. Eta electroproduction multipoles are also compared, with etaMAID results displayed for reference.

Section VI compares the single- and coupled-channel results, with qualitative features discussed based on data quality/consistency. Finally, prospects for expanded analyses are considered.

II. FORMALISM

The multichannel meson electroproduction process1 in question reads

$$\gamma^*(q) + p(p) \rightarrow M(k'_i) + B(p'_i), \quad (2.1)$$

where bold symbols denote three-momenta throughout the manuscript. The meson and baryon in the final state, with the index i, are denoted by M and B, respectively. As shown in Fig. 1, the process occurs in two steps, with a virtual photon $\gamma^*(q)$ being produced via $e_{\text{in}}(k_e) \rightarrow e_{\text{out}}(k'_e) + \gamma^*(q)$, which then scatters off of the proton to a final meson-baryon state. The momentum transfer $Q^2 = -\omega^2 + q^2$, where ω is the photon energy, is non-negative for spacelike processes, and acts as an independent kinematical variable in addition to the total energy in the center-of-mass (cms) frame, W. In this frame, the magnitude of the three momentum of the photon ($q = |q|$) and produced meson ($k' = |k'|$) read

$$q = \sqrt{\lambda(W^2, m_p^2, -Q^2)} = \sqrt{\lambda(W^2, m^2, m^2_f)} = \sqrt{\lambda(W^2, m^2, m^2_f)}, \quad (2.2)$$

where $\lambda(x, y, z) = x^2 + y^2 + z^2 - 2xy - 2yz - 2zx$ denotes the usual Källén triangle function. The meson and baryon masses are denoted throughout this manuscript by m and m_i, respectively. With two incoming and three outgoing states there are $(3+2) \times 3 - 10 = 5$ independent kinematical variables. The canonical choice for the remaining three (in addition to W and Q^2) variables is illustrated in Fig. 1. The quantity $\epsilon = 1 + 2(q_2^2/Q^2)\tan^2\theta_e/2$ contains the electron scattering angle θ_e and q_2 denotes the photon three-momentum in the laboratory frame. The angle of the reaction plane to the scattering plane is given by ϕ and θ is the c.m. meson scattering angle in the latter plane. The experimental data discussed in the Sec. IV are represented with respect to these five variables $O(Q^2, W, \phi, \theta, \epsilon)$.

FIG. 1. Kinematics of an electroproduction experiment with the final meson-baryon state i. The scattering plane is defined by the respective in/outgoing electron momenta k_e/k'_e with the electron scattering angle θ_e. The reaction plane is spanned by the virtual photon and the outgoing meson, scattered by an angle θ.

As discussed in the previous paper [45] based on the seminal papers [104–107], the process of a photon-induced production of a meson off a nucleon is encoded in the transition amplitude. In the one-photon approximation, and considering the continuity equation for the current, the latter can be expressed in terms of three independent multipoles for a fixed quantum number ℓ_\pm of the final meson-baryon state. We chose those to be electric, magnetic and longitudinal multipoles $E_{\ell\pm}(W, Q^2)$, $M_{\ell\pm}(W, Q^2)$ and $L_{\ell\pm}(W, Q^2)$ with the latter related to the often-used Coulomb multipole as $\omega C_{\ell\pm}(W, Q^2) = qL_{\ell\pm}(W, Q^2)$. Each of the introduced multipoles carry a discrete index corresponding to the total angular momentum $J = \ell \pm 1/2$ and final-state index μ, e.g., $E_{\ell\mu\mp}^\mu$.

We construct the electroproduction multipoles on the basis of the dynamical coupled-channel Jülich-Bonn (JüBo) approach [48, 108] that provides the boundary condition at $Q^2 = 0$, incorporating the experimental information from real-photon and pion-induced reactions. In this approach, two-body unitarity and analyticity are respected and the baryon resonance spectrum is determined in terms of poles in the complex energy plane on the second Riemann sheet [109, 110].

Extending the ansatz of the JüBo approach, we begin by introducing a generic function (\mathcal{M}) for each electromagnetic multipole $(\mathcal{M}_{\mu\gamma^*} \in \{E_\mu, L_\mu, M_\mu\})$ as

$$\mathcal{M}_{\mu\gamma^*}(k, W, Q^2) = V_{\mu\gamma^*}(k, W, Q^2) \quad (2.3)$$

$$+ \sum_{\kappa} \int_0^\infty dp \, p^2 \, T_{\mu\kappa}(k, p, W) G_\kappa(p, W) V_{\kappa\gamma^*}(p, W, Q^2),$$

where the summation extends over intermediate meson-baryon channels $\kappa \in \{\pi N, \eta N, K \Lambda, K \Sigma, \pi \Delta, \rho N\}$. Note that the σN channel is not part of this list. The σN channel is part of the final-state interaction, but neither the hadronic resonance vertex functions nor the photon is directly coupled to it; once two-pion photon or electroproduction data are analyzed, such couplings will become relevant and will be included.

1 Some parts of the present section overlap with the discussion in Ref. [45], but here we generalize the framework to any final meson-baryon state.
The electroproduction kernel $V_{\mu \gamma^*}$ in Eq. (2.3) is parametrized as

$$V_{\mu \gamma^*}(p, W, Q^2) = \alpha_{\mu \gamma^*}^{NP}(p, W, Q^2) + \sum_{i=1}^{\text{max}} \frac{\gamma_{\gamma^* i}^c(W, Q^2)}{W - m_i^b},$$

introducing the Q^2-dependence via a separable ansatz,

$$\alpha_{\mu \gamma^*}^{NP}(p, W, Q^2) = \tilde{F}_\mu(Q^2) \alpha_{\mu \gamma^*}^{NP}(p, W),$$

$$\gamma_{\gamma^* i}^c(W, Q^2) = \tilde{F}_i(Q^2) \gamma_{\gamma^* i}^c(W).$$

The Q^2-independent pieces on the right hand side of both equations represent the input from the JüBo2017 solution [46]. Specifically, $\gamma_{\gamma^* i}^c$ describes the interaction of the photon with the resonance state i with bare mass m_i^b and $\alpha_{\mu \gamma^*}^{NP}$ accounts for the coupling of the photon to the so-called background or non-pole part of the amplitude. Both parameters are quantified by energy-dependent polynomials, see Ref. [48].

The Q^2 dependence is encoded entirely in the channel-dependent form-factor $\tilde{F}_\mu(Q^2)$ and another channel-independent form-factor $\tilde{F}_i(Q^2)$ that depends on the resonance index i. We emphasize that this structure is inherited from the JüBo photoproduction ansatz, which separates the photon-induced vertex (γ^c) from the decay vertex of a resonance to the final meson-baryon pair ($\gamma_{\mu \gamma^*}^{NP}$). Both $\tilde{F}_\mu(Q^2)$ and $\tilde{F}_i(Q^2)$ are chosen as

$$\tilde{F}_\mu(Q^2) = \tilde{F}_D(Q^2) e^{-\delta_\mu Q^2/m^2} P^N(Q^2/m^2, \tilde{\beta}_\mu),$$

$$\tilde{F}_i(Q^2) = \tilde{F}_D(Q^2) e^{-\delta_i Q^2/m^2} P^N(Q^2/m^2, \tilde{\delta}_i),$$

where $P^N(x, y) = 1 + x y_1 + \ldots + x^n y_N$ is a general polynomial with free parameters to be fitted together with δ_μ and δ_i to electroproduction data. The parameter-free form factor $\tilde{F}_D(Q^2)$ encodes the empirical dipole behavior, usually implemented in such problems, as well as a Woods-Saxon form factor which ensures supression at large Q^2. It reads

$$\tilde{F}_D(Q^2) = \frac{1}{(1 + Q^2/b^2)^2} \frac{1 + e^{-Q^2/b^2}}{1 + e^{-Q^2/(b^2 + c^2)}}$$

with $b^2 = 0.71$ GeV2, $b^2_w = 0.5$ GeV2 and $c^2 = 4.0$ GeV2, see Ref. [45] for more details.

As stated above, this procedure relies heavily on the input from the photoproduction, i.e., the functions $\alpha_{\mu \gamma^*}^{NP}(p, W)$ and $\gamma_{\gamma^* i}^c(W)$. Obviously, such an input cannot exist for the longitudinal multipoles as their contribution vanishes exactly at the photon-point. In this case we employ a strategy similar to that of Ref. [26]:

1) We recall that at the pseudo-threshold ($q = 0$) the electric and longitudinal multipoles relate according to the Siegert’s condition as

$$\frac{E_{\ell \pm}}{L_{\ell \pm}}|_{q=0} = 1, \quad \frac{E_{\ell -}}{L_{\ell -}}|_{q=0} = \frac{\ell}{1 - \ell}.$$
We incorporate these conditions using
\[\mathcal{M}_{\mu \gamma^*}(k, W, Q^2) = R_{\ell'}(\lambda, q/q_\gamma) \overline{\mathcal{M}}_{\mu \gamma^*}(k, W, Q^2) \] \hspace{1cm} (2.14)
for each multipole type and total angular momentum individually. Here,
\[R_{\ell'}(\lambda, r) = \frac{B_{\ell'}(\lambda r)}{B_{\ell'}(\lambda)} \] \hspace{1cm} (2.15)
with \(\ell' = \begin{cases} \ell, & \text{for } E_{\ell+}, L_{\ell\pm}, M_{\ell\pm}, \\ \ell - 2, & \text{for } E_{\ell-}, L_{\ell-} \text{ and } \ell \geq 2, \end{cases} \)
using Blatt-Weisskopf barrier-penetration factors [111, 112],
\[B_0(r) = 1, \] \hspace{1cm} (2.16)
\[B_1(r) = r / \sqrt{1 + r^2}, \]
\[B_2(r) = r^2 / \sqrt{9 + 3r^2 + r^4}, \]
\[B_3(r) = r^3 / \sqrt{225 + 45r^2 + 6r^4 + r^6}, \]
\[B_4(r) = r^4 / \sqrt{11025 + 1575r^2 + 135r^4 + 10r^6 + r^8}. \]

New free parameters \(\lambda \) need to be determined from a fit to experimental data. For simplicity and to keep the number of parameters low, the \(\lambda \)s are chosen as channel independent.

In summary, for every partial wave, the multipoles \(E_{\mu \gamma^*}, M_{\mu \gamma^*} \) and \(L_{\mu \gamma^*} \) are fully determined up to: (1) \((1 + N)\) channel-dependent fit parameters \(\beta_0^0, ..., \beta_4^N \) for the non-pole part; (2) \((1 + N)\) channel-independent parameters \(\delta_i^0, ..., \delta_i^N \) for each of the \(\ell_{\text{max}} \) resonances; (3) one channel-independent threshold behavior regulating parameter \(\lambda \); (4) channel-(in)dependent normalization factors \(\zeta_i^N \). Finally, any observable can be constructed from the described multipoles using a standard procedure involving CGLN and helicity amplitudes [104]. For explicit formulas we refer the reader to the previous publication [45].

III. PREVIOUS SINGLE-CHANNEL FITS

Before discussing our findings for the coupled-channel case, we review what has been learned from fits to the eta electroproduction data alone. The etaMAID model [33] is similar to the MAID2007 analysis [35] of pion production, with the fit including both eta photo- and electroproduction data. It differs from MAID2007 by a phase factor which was adjusted to the corresponding pion-nucleon phase. For eta photo- and electroproduction this was not found to be feasible, due to the quality and range of available \(\eta N \) production data. As a result, there exists an overall phase ambiguity, in comparisons of different eta photoproduction fits, which cannot be determined experimentally. Comparing the eta photoproduction fits of etaMAID and the Jülich-Bonn approach, overall qualitative agreement is improved by applying a simple overall sign. This is illustrated in Fig. 2. The overall phase, applied to etaMAID, yields a quantitative agreement between the JüBo, etaMAID, and Bonn-Gatchina determinations of the \(E_{0+} \) multipole. The \(M_{2-} \) multipole shows qualitative agreement, while the \(M_{1-} \) and \(E_{2-} \) multipoles show differences in sign and scale that hinder a comparison of electroproduction results extrapolated to \(Q^2 = 0 \).

The eta electroproduction fit of etaMAID requires a determination of the \(Q^2 \) dependence, which is chosen to be simpler than what was used for pion electroproduction (MAID2007). The dominant S-wave multipole near threshold, in principle, includes both the \(N(1535) \) and \(N(1650) \) resonance contributions. These have been combined using a single-quark transition model [163]. For the \(N(1535) \) multipole, the \(Q^2 \) dependence is assumed to be proportional to a dipole form factor multiplied by a ratio of linear functions of \(Q^2 \). Other resonance multipoles have \(Q^2 \) dependence approximated by a single dipole factor multiplied by a ratio of kinematic factors.

Included in etaMAID are the above mentioned \(N(1535) \) and \(N(1650) \), together with the \(N(1520), N(1675), N(1700), N(1710), \) and \(N(1720) \). Of these, the \(N(1650), N(1675), N(1710), \) and \(N(1720) \) were found to have \(\eta N \) branching ratios at the 3 - 26% level; the \(N(1520), N(1680), \) and \(N(1700) \) contributed with branching ratios less than 1%. The \(N(1535) \) had a 50% branching to the \(\eta N \) channel; there is universal agreement on this branching to the 10% level. Included in the fit were data available as of 2001, the cross section measurements of Ref. [160] and Ref. [162].

The data of Ref. [160] were taken for \(Q^2 \) values of 2.4
and 3.6 GeV2, and for c.m. energies between approximately 1.5 and 1.6 GeV. Cross sections show, within uncertainties, a flat angular distribution, independent of the angle ϕ. Based on this and a relativistic quark model expectation [164] that longitudinal contributions should be small, a Breit-Wigner-plus-background fit was done to extract the $N(1535)$ contribution. The authors of Ref. [164] concluded that the background was consistent with zero and terms beyond an S-wave approximation amounted to less than 7%. The size of longitudinal contributions had also been explored experimentally [165, 166] by varying ϵ in order to extract the ratio of longitudinal and transverse cross sections. This ratio for Q^2 values between 0.4 and 1.0 GeV2, and c.m. energies corresponding to the $N(1535)$, was found to be about 20% with 100% uncertainties. Cross sections up to a c.m. energy of 1.9 GeV, for Q^2 between 0.15 to 1.5 GeV2, were measured in Ref [162]. Here, the cross section was fitted to an expansion in multipoles up to $J = 3/2$. Unlike Ref. [160], evidence for significant interference between S- and P-wave contributions was found with cross sections displaying θ dependence also at a c.m. energy corresponding to the $N(1535)$.

Data from Ref. [161] have the benefit of a wide kinematic range, with c.m. energies between 1.5 and 2.3 GeV, and Q^2 values from 0.13 to 3.3 GeV2. Cross sections were expanded in terms of Legendre polynomials. Here too, the angular behavior was concluded to be mainly due to interference between S- and P-wave contribution, though they could not distinguish between the $N(1710)$ and $N(1720)$ as a source. Fits to this data set tended to show more ϕ dependence in the cross section near the $N(1535)$ than was given in the etaMAID result — though these data were not included in the etaMAID solution.

Data from Ref. [167] covers the c.m. energy range from threshold to 1.8 GeV for Q^2 values of 5.7 and 7.0 GeV2. Angular behavior is again attributed to S- and P-wave interference. There is evidence that this interference may change sign in going from lower to higher values of Q^2. EtaMAID appears to give a reasonable qualitative description of the data even at these high Q^2 values, even though these data were not included in the fit.

IV. DATA AND FITS

By design, the introduced framework is capable of addressing the electroproduction multipoles and observables simultaneously in all considered channels \{\pi N, \eta N, K \Lambda, K \Sigma, \pi \Delta, \rho N\}. Experimentally, the most extensively explored final-state channels are \pi N, \eta N, and K \Lambda. Therefore, and also extending upon the already available single channel JBW analysis of Ref. [45], we first restrict the data base to pion and eta final states within the same kinematical range, i.e., $0 < Q^2/GeV^2 < 4$, $1.13 < W/GeV < 1.6$. However, we emphasize that all two-body channels and all spin configurations of the three-body channels ρN, $\pi \Delta$, and $p \sigma$ are considered in the intermediate states. The data coverage in this kinematical window is summarized in Fig. 3.

The new ηN data set consists entirely of differential cross sections, given by

$$
\frac{d\sigma}{d\Omega', dE_e d\Omega} = \left(\frac{\alpha}{2\pi^2} \frac{E_\gamma}{E_e} \frac{q_L}{Q^2} \frac{1}{1-\epsilon} \right) \frac{d\sigma^v}{d\Omega},
$$

where Ω refers to the angles of the final meson-baryon system (θ, ϕ) and Ω' are the angles of the final electron at energy E_e. The energy of the initial electron is denoted by E_γ. The differential cross section $d\sigma^v/d\Omega$ for the virtual photon sub-process is commonly further de-
TABLE I. Data used in the fit, separated by observable type

Type	$N_{\pi^0}^{p,n}$ data	$N_{\pi^\mp}^{n,p}$ data	$N_{\pi^n}^{pp}$ data
ρ_{LT}	45 [114, 115]		
$\rho_{LT'}$	2644 [116–120]	4354 [147, 148]	
σ_L	–	2 [149]	
$d\sigma/d\Omega$	39942 [117, 118, 121, 141–145]	1874 [160–162]	
$\sigma_T + \epsilon \sigma_L$	318 [114, 117, 121, 135, 136, 142–144]	144 [151, 156]	
σ_T	10 [139]	2 [149]	
σ_{LT}	312 [114, 117, 121, 135, 136, 142–144]	106 [151, 156]	
$\sigma_{LT'}$	198 [116, 135, 142, 143]	192 [116]	
σ_{TT}	266 [121, 135, 136, 143, 144]	91 [151, 156]	
K_{D1}	1527 [118]	–	
Py	–	2 [145, 146]	

TABLE II. Fit results of the coupled-channel JBW analysis with respect to πN and ηN data. The second column shows results of a fit using standard (4.4) ('reg') and weighted (4.5) ('wt') χ^2 functions, respectively, whereas the last three columns separate out contributions for individual final-state channels (per datum).

Type	χ^2/dof	$\chi^2_{\pi^o p,n}$	$\chi^2_{\pi^\mp n}$	$\chi^2_{\eta p}$
β_{pi}^{reg}	1.66	1.68	1.61	1.77
β_{pi}^{reg}	1.73	1.71	1.71	2.29
β_{pi}^{reg}	1.69	1.69	1.66	1.89
β_{pi}^{reg}	1.69	1.7	1.64	2.05

V. RESULTS

Each of the followed fit strategies led to a successful description of both considered channels. The fit results are

\[
\chi^2 = \sum_{i=1}^{N_{\text{all}}} \left(\frac{O_{\text{exp}}^i - \bar{O}_i}{\Delta_{\text{stat}}^i + \Delta_{\text{syst}}^i} \right)^2, \tag{4.4}
\]

with respect to the $\pi^0, \pi^\mp, \eta p$ channels simultaneously. The data, as taken from SAID, contain also systematic uncertainties Δ_{syst} that are separately quoted in the data base [168]. We note that the database sizes are vastly different in these channels. Thus, this simple choice of the χ^2 function might marginalize the influence of the smaller ηN dataset. To test this hypothesis, we additionally perform a minimization with respect to a commonly used weighting scheme (for a typical application see, e.g., [169]),

\[
\chi^2_{\text{wt}} = \sum_{j \in \{\pi^0, \pi^\mp, \eta p\}} \sum_{i=1}^{N_{\text{all}}} \frac{N_j}{3N_j} \left(\frac{O_{\text{exp}}^j - \bar{O}_j}{\Delta_{\text{stat}}^j + \Delta_{\text{syst}}^j} \right)^2. \tag{4.5}
\]

Third, after the minimization routine (utilizing MINUIT library [170]) has converged, all 209 + 40 = 249 parameters are relaxed and the minimization is repeated leading to the eight different solutions $\{\beta_1^{\text{reg}}, \beta_4^{\text{reg}}, \beta_1^{\text{wt}}, \beta_4^{\text{wt}}\}$, discussed in the next section.

holding all but the new parameters fixed, we minimize a regular χ^2 function

\[
\chi^2_{\text{reg}} = \sum_{i=1}^{N_{\text{all}}} \left(\frac{O_{\text{exp}}^i - \bar{O}_i}{\Delta_{\text{stat}}^i + \Delta_{\text{syst}}^i} \right)^2, \tag{4.4}
\]

In contrast, in both πN channels also polarization data have been measured which are connected to the multipoles as described explicitly in Ref. [45]. As discussed there, when both differential cross section data and structure functions ($\sigma_T, \sigma_L, \sigma_{LT}, \sigma_{LT'}$) were available from the same experiment at the same kinematics, double counting was avoided with preference given to the differential cross section data. This is statistically more sound, as correlations between separated contributions to the differential cross section data are typically not quoted.

To study constraints of the experimental data on the present coupled-channel formalism, we employ the following fit strategies. First, starting with the fit results of the pion-electroproduction analysis [45], including S-, P- and D-waves, while setting $N = 2$ in Eq. (2.6), we allow for 40 new parameters,

\[
\begin{align*}
\beta_{\eta N}^0, \beta_{\eta N}^1, \beta_{\eta N}^2, \quad &\text{for } E_{\pm}, L_{\pm}, M_{\ell \pm} \text{ and } \ell \leq 2, \\
\tilde{c}^{NP}_{\eta N}, \quad &\text{for } L_{1-},
\end{align*}
\]

in addition to the 209 previously [45] available parameters. Specifically, for all intermediate channels we chose again $\tilde{c}^{NP}_{\eta \neq \eta N} = \tilde{c}^{NP}_{\eta N}$ and $\tilde{c}^{(0,1.2)}_{\mu \neq \{\pi N, \eta N\}} = 0$. Second, starting from any of the four best fit results\(^2\) of Ref. [45] and

\(^2\) These solutions were obtained following different fit strategies in order to obtain a representation of the systematic uncertainty. The two solutions of Ref. [45], with extended Q^2 ranges of up to 8 GeV\(^2\), are not used in this work.
collected in Table II including contributions separated out for each of the considered final-state channels ($\pi^0 p$, $\pi^+ n, \eta p$). As expected, fit results relying on the weighted version of the χ^2 function (4.5) led to a much better description of the ηp data, which are much sparser than the πN data. When comparing the individual contributions to those of the previous JBW single-channel study [45] we note that the description of both πN channels is similar in the present coupled-channel analysis. The same holds true for the contributions to subsets of data separated with respect to individual observable types. For more details on the πN channels, see Ref. [45] as well as the interactive JBW homepage [171].

Taking a closer look on the fit results we find a relatively weak ϕ-dependence in the data and corresponding fits, see Figs. 4 and 5. In the latter figure, there are two data points from Ref. [172] for each angle θ at a fixed value of ϕ. These were obtained from measurements at azimuthal angles ϕ and $(360-\phi)$, respectively. The cross sections were averaged in Ref. [162], but both values are retained in our database. In Fig. 6 we compare fits and data at nearby kinematic points for which the fit curves are nearly identical. This gives a visual comparison of the data consistency.

As for underlying multipoles, we found that in most cases longitudinal multipoles are subdominant to electric and magnetic ones. An overview of all considered multipoles is shown in Fig. 8 for the c.m. energy fixed to 1535 MeV. There, in most cases and within the systematic uncertainties of our approach — quantified by the spread of predictions from fits $\{\hat{\delta}_1^{\text{reg}}, \ldots, \hat{\delta}_4^{\text{reg}}, \hat{\delta}_1^{\text{wt}}, \ldots, \hat{\delta}_4^{\text{wt}}\}$ — we observe an agreement with the MAID2007 (πN) and etaMAID (ηN) multipole predictions\(^3\). The isospin $I = 1/2$ πN multipoles are shown in the same figure with the pertinent comparison to the MAID2007 solution for convenience.

Fixing the virtuality Q^2 to some values of interest the multipoles are shown in Figs. 9 and 10. There, we observe that the dominant E_{0^+} multipole agrees well with that of the etaMAID parametrization when correcting for the phase convention (-1) and isospin factor ($1/\sqrt{3}$). To be clear, we show our multipoles in the isospin basis, which make them smaller by a factor of $1/\sqrt{3}$ compared to the etaMAID multipoles which are quoted in the particle basis. As the results show, longitudinal multipoles seem indeed very small compared to the electric and magnetic ones. Interestingly, the M_{2^-} multipole seems to have a similar trend as that of the MAID solution, while the corresponding uncertainties seem to change with different Q^2 values. This can be attributed to the gaps in ηp data at some fixed Q^2 kinematics, see next section.

Finally, we demonstrate in Fig. 7 the full Q^2 vs W dependence of the E_{0^+} and M_{2^-} multipoles, corresponding to quantum numbers of the $N(1535)1/2^-$ and $N(1520)3/2^-$. We observe that the systematic uncertainties discussed above are well under control. In particular, all fit solutions show a non-trivial Q^2 dependence. This supports our expectation that the helicity couplings will carry new physical information, when full (W, Q^2) information is extracted, being part of our future plans.

VI. DISCUSSION AND CONCLUSION

We have generalized our recent analysis of pion electroproduction [45] to include eta electroproduction data.
This allowed a coupled-channel fit up to \(W = 1.6 \) GeV for \(Q^2 < 4 \) GeV\(^2\). For both reactions, partial waves up to \(\ell = 2 \) were included. Given that the pion and eta electroproduction databases are very different in size, we compared \(\chi^2 \) minimization without and with weighting factors to increase the influence of the smaller eta electroproduction dataset.

As in Ref. [26], using different fit strategies, we found several solutions with nearly equivalent \(\chi^2/d\text{data} \) values. The fits achieved \(\chi^2/d\text{data} \) values near 1.7, similar to our previous fits to pion data alone. The fit to pion data and the resulting multipoles showed little change from the single-channel case. This result held in both weighted and unweighted fits.

Also, as in our pion electroproduction fits, the spread of results for multipoles provided a measure of systematic errors. As expected, the \(E_{0^+} \) multipole was reliably determined with a \(Q^2 \) dependence similar to that exhibited in etaMAID (once a phase ambiguity was accounted for).

The evidence for contributions from higher partial waves depends on the experiment. As mentioned, the data of Ref. [160] are compatible with a Breit-Wigner contribution from the \(N(1535) \), without any need for a background term, higher partial waves, or longitudinal multipoles, for a fit covering the energy range considered in the present analysis. The later experiment of Ref. [161], however, displays a clear forward-backward asymmetry (a sign of P-wave interference) and some evidence for D-wave interference producing a convex shape.

In our multipole solutions, there is evidence for sizeable P-wave contributions, but the spread implies the P-wave multipoles are not well determined. This is expected since the corresponding candidate states \(N(1710)1/2^+ \) and \(N(1720)3/2^+ \) are beyond the upper energy limit. Interestingly, the \(M_2 \) multipoles are quite consistent, and appear to give a consistent value for this multipole, which also agrees with the etaMAID values away from the \(Q^2 = 0 \) photon point and the upper \(Q^2 \) limit of our fits.

We can understand the consistency of multipole determinations in Figs. 9 and 10, plotting multipoles versus center-of-mass energy for fixed \(Q^2 \) (0.2, 1, 2, and 3 GeV\(^2\)), based on the data fitted and the constraint at \(Q^2 = 0 \). The lowest-\(Q^2 \) plot displays multipoles for a \(Q^2 \) value below the lower limit (0.3 GeV\(^2\)) of fitted data and is close to the photoproduction point, where it was shown that the etaMAID and JüBo fits can be quite different. The behavior at \(Q^2 = 3 \) GeV\(^2\) is supported by data from Ref. [160] (2.4 and 3.6 GeV\(^2\)) which can be fitted with only a Breit–Wigner contribution to \(E_{0^+} \) and shows no evidence for P- and D-waves.

The plots for intermediate \(Q^2 \) are supported by data from Refs. [161, 162], of which Ref. [161] is more precise. These plots show the most consistency for multipoles that can be determined over this narrow energy range. Note also that longitudinal multipoles are small (consistently among all our solutions) whereas this feature was built in in some earlier fits [160].

In summary, this first coupled-channel fit to both pion and eta electroproduction data supports an expanded study. As a first step, the number of included partial waves and the energy limits will be increased. Once completed, we will attempt an expansion to kaon electroproduction [8, 173–178], in the near-threshold region. We will also be in a position to explore resonance behavior at the pole as a function of \(Q^2 \) using tools developed to study the JüBo photoproduction amplitudes.

Acknowledgements

This work is supported by the U.S. Department of Energy, DOE Office of Science, Office of Nuclear Physics awards DE-SC0016582 and DE-SC0016583 and contract DE-AC05-06OR23177. It is also supported by the NSFC and the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through the funds provided to the Sino-German Collaborative Research Center TERRI 110 “Symmetries and the Emergence of Structure in QCD” (NSFC Grant No. 12070131001, DFG Project-ID 196253076-TRR 110), by the Chinese Academy of Sciences (CAS) through a President’s International Fellowship Initiative (PIFI) (Grant No. 2018DM0034), by the VolkswagenStiftung (Grant No. 93562), and by the EU Horizon 2020 research and innovation programme, STRONG-2020 project under grant agreement No. 824093. The multipole calculation and parameter optimization are performed on the Colonial One computer cluster [179]. The authors gratefully acknowledge...
FIG. 7. Predictions of $E_{\pi^+}(W,Q^2)$ corresponding to the quantum numbers of $N(1535)$. Different surfaces correspond to the best fit solutions obtained minimizing the regular (red boundary lines) and weighted (blue boundary lines) version of the χ^2 function.

the computing time granted through JARA on the supercomputer JURECA [180] at Forschungszentrum Jülich that was used to produce the input at the photon point.

[1] G. Höhler, Methods and Results of Phenomenological Analyses / Methoden und Ergebnisse phänomenologischer Analysen, edited by H. Schopper, Landolt-Boernstein - Group I Elementary Particles, Nuclei and Atoms, Vol. 9b2 (Springer, 1983).
[2] R. E. Cutkosky, R. E. Hendrick, J. W. Alcock, Y. A. Chao, R. G. Lipes, J. C. Sandusky, and R. L. Kelly, “PION - NUCLEON PARTIAL WAVE ANALYSIS,” Phys. Rev. D 20, 2804 (1979).
[3] R. A. Arndt, W. J. Briscoe, I. I. Strakovsky, and R. L. Workman, “Extended partial-wave analysis of pIN scattering data,” Phys. Rev. C 74, 045205 (2006), arXiv:nucl-th/0605082.
[4] R. A. Arndt, W. J. Briscoe, M. W. Paris, I. I. Strakovsky, and R. L. Workman, “Baryon Resonance Analysis from SAID,” Chin. Phys. C 33, 1063-1068 (2009), arXiv:0906.3709 [nucl-th].
[5] M. Shrestha and D. M. Manley, “Multichannel parametrization of πN scattering amplitudes and extraction of resonance parameters,” Phys. Rev. C 86, 055203 (2012), arXiv:1208.2710 [hep-ph].
[6] David G. Ireland, Eugene Pasyuk, and Igor Strakovsky, “Photoproduction Reactions and Non-Strange Baryon Spectroscopy,” Prog. Part. Nucl. Phys. 111, 103752 (2020), arXiv:1906.04228 [nucl-ex].
[7] I. G. Aznauryan et al. (CLAS), “Electroexcitation of nucleon resonances from CLAS data on single pion electroproduction,” Phys. Rev. C 80, 055203 (2009), arXiv:0909.2349 [nucl-ex].
[8] P. Achenbach et al. (A1), “Beam helicity asymmetries in $K^+\Lambda$ electroproduction off the proton at low Q^2,” Eur. Phys. J. A 53, 198 (2017).
[9] D. S. Carman, K. Joo, and V. I. Mokeev, “Strong QCD Insights from Excited Nucleon Structure Studies with CLAS and CLAS12,” Few Body Syst. 61, 29 (2020), arXiv:2006.15566 [nucl-ex].
[10] Reinhard Beck and Ulrike Thoma, “Spectroscopy of baryon resonances,” EPJ Web Conf. 134, 02001 (2017).

[11] S. H. Shiu et al. (LEPS), “Photoproduction of Λ and Σ0 hyperons off protons with linearly polarized photons at E_{γ} = 1.5 – 3.0 GeV,” Phys. Rev. C 97, 015206 (2018), arXiv:1711.04996 [nucl-ex].

[12] C. S. Akondi et al. (A2), “Experimental study of the γp → K^{0}Σ^{+}, γn → K^{0}Λ, and γn → K^{0}Σ^{0} reactions at the Mainz Microtron,” Eur. Phys. J. A 55, 202 (2019), arXiv:1811.05547 [nucl-ex].

[13] D. H. Ho et al. (CLAS), “Beam-target helicity asymmetry E in K^{0}Λ and K^{0}Σ^{0} photoproduction on the neutron,” Phys. Rev. C 98, 045205 (2018), arXiv:1805.04561 [nucl-ex].

[14] Hiroaki Ohnishi, Fuminori Sakuma, and Toshiyuki Takahashi, “Hadron Physics at J-PARC,” Prog. Part. Nucl. Phys. 113, 103773 (2020), arXiv:1912.02380 [nucl-ex].

[15] S. Alef et al. (BGO-OD), “The BGOOD experimental setup at ELSA,” Eur. Phys. J. A 56, 104 (2020), arXiv:1910.11939 [physics.ins-det].

[16] N. Zachariou et al. (CLAS), “Double polarisation observable C for single pion photoproduction from the proton,” Phys. Lett. B 817, 103 (2021).

[17] U. Shrestha et al. (CLAS), “Differential cross sections for Λ(1520) using photoproduction at CLAS,” Phys. Rev. C 103, 025206 (2021), arXiv:2101.06134 [hep-ex].

[18] N. Markov et al. (CLAS), “Exclusive π^{0}p photoproduction off protons in the resonance region at photon virtualities 0.4 GeV^{2} ≤ Q^{2} ≤ 1 GeV^{2},” Phys. Rev. C 101, 015208 (2020), arXiv:1907.11974 [nucl-ex].

[19] Veronique Bernard, Norbert Kaiser, and Ulf G. Meißner, “On the low-energy theorems for threshold pion photoproduction,” Phys. Lett. B 282, 448–452 (1992).

[20] Veronique Bernard, Norbert Kaiser, T. S. H. Lee, and Ulf G. Meißner, “Chiral symmetry and threshold p0 photoproduction,” Phys. Rev. Lett. 70, 387–390 (1993).

[21] V. Bernard, Norbert Kaiser, T. S. H. Lee, and Ulf G. Meißner, “Threshold pion photoproduction in chiral perturbation theory,” Phys. Rept. 246, 315–363 (1994), arXiv:hep-ph/9310329.

[22] V. Bernard, Norbert Kaiser, and Ulf-G. Meißner, “Threshold neutral pion photoproduction in heavy baryon chiral perturbation theory,” Nucl. Phys. A 607, 379–401 (1996), [Erratum: Nucl. Phys. A 633, 695–697 (1998)], arXiv:hep-ph/9601267.

[23] M. Hilt, B. C. Lehnhart, S. Scherer, and L. Tiator, “Pion photo- and electroproduction in relativistic baryon chiral perturbation theory and the chiral MAID interface,” Phys. Rev. C 88, 055207 (2013), arXiv:1309.3385 [nucl-th].

[24] Maxim Mai, “Review of the Λ(1405) A curious case of a strangeness resonance,” Eur. Phys. J. ST 230, 1593–1607 (2021), arXiv:2010.00056 [nucl-th].

[25] Dino Ručić, Maxim Mai, and Ulf-G. Meißner, “η-Photoproduction in a gauge-invariant chiral unitary framework,” Phys. Lett. B 704, 659–662 (2011), arXiv:1108.4825 [nucl-th].

[26] Maxim Mai, Peter C. Bruns, and Ulf-G. Meißner, “Pion photoproduction off the proton in a gauge-invariant chiral unitary framework,” Phys. Rev. D 86, 094033 (2012), arXiv:1207.4923 [nucl-th].

[27] Peter C. Bruns, “A formalism for the study of K^{+}Σ photoproduction in the Λ(1405) region,” (2020), arXiv:2012.11298 [nucl-th].

[28] M. Döring and K. Nakayama, “On the cross section ratio sigma(n)/sigma(p) in eta photoproduction,” Phys. Lett. B 683, 145–149 (2010), arXiv:0909.3538 [nucl-th].

[29] M. Döring and K. Nakayama, “The Phase and pole structure of the N(1535) in pi N → pi N and gamma N → pi N,” Eur. Phys. J. A 43, 83–105 (2010), arXiv:0906.2949 [nucl-th].

[30] B. Borasoy, P. C. Bruns, Ulf-G. Meißner, and R. Nissler, “A Gauge invariant chiral unitary framework for kaon photo- and electroproduction on the proton,” Eur. Phys. J. A 34, 161–183 (2007), arXiv:0709.3181 [nucl-th].

[31] Ulf-G. Meißner and J. A. Oller, “Chiral unitary meson baryon dynamics in the presence of resonances: Elastic pion nucleon scattering,” Nucl. Phys. A 673, 311–334 (2000), arXiv:nucl-th/9912026.

[32] Helmut Haberzettl, “Gauge invariance of meson photoproduction currents revisited,” Phys. Rev. D 104, 056001 (2021), arXiv:2105.11554 [hep-ph].

[33] L. Tiator, M. Gorchtein, V. L. Kashevarov, K. Nikonov, M. Ostrick, M. Hadžimehmedović, R. Omerović, H. Osmanović, J. Stahov, and A. Svac, “Eta and Etaprime Photoproduction on the Nucleon with the Isobar Model EtaMAID2018,” Eur. Phys. J. A 54, 210 (2018), arXiv:1807.04525 [nucl-th].

[34] O. Hanstein, D. Drechsel, and L. Tiator, “Multipole analysis of pion photoproduction based on fixed t dispersion relations and unitarity,” Nucl. Phys. A 632, 561–606 (1998), arXiv:nucl-th/9709067.

[35] Ron L. Workman, William M. Paris, William J. Briscoe, and Igor I. Strakovsky, “Unified Chew-Mandelstam dispersion relations and unitary isobar model,” Eur. Phys. J. A 34, 69–97 (2007), arXiv:0710.0306 [nucl-th].

[36] Helmut Haberzettl, “Gauge invariance of meson photo- and electroproduction currents revisited,” Phys. Rev. D 104, 056001 (2021), arXiv:2105.11554 [hep-ph].

[37] L. Tiator, M. Gorchtein, V. L. Kashevarov, K. Nikonov, M. Ostrick, M. Hadžimehmedović, R. Omerović, H. Osmanović, J. Stahov, and A. Svac, “Eta and Etaprime Photoproduction on the Nucleon with the Isobar Model EtaMAID2018,” Eur. Phys. J. A 54, 210 (2018), arXiv:1807.04525 [nucl-th].
duction in a combined analysis of pion- and photon-induced reactions,” Eur. Phys. J. A 51, 70 (2015), arXiv:1504.01643 [nucl-th].

44. J. Nys, V. Mathieu, C. Fernández-Ramírez, A. N. Hiller Blin, A. Jackura, M. Mikhasenko, A. Pilloni, A. P. Szczepaniak, G. Fox, and J. Ryckebusch (JPAC), “Finite-energy sum rules in eta photoproduction off a nucleon,” Phys. Rev. D 95, 034014 (2017), arXiv:1611.04658 [hep-ph].

45. Maxim Mai, Michael Döring, Carlos Granados, Helmut Haberzettl, Ulf-G. Meißner, Deborah Rönchen, Igor Strakovsky, and Ron Workman (Jülich-Bonn-Washington), “Jülich-Bonn-Washington model for pion electroproduction multipoles,” Phys. Rev. C 103, 065204 (2021), arXiv:2104.07312 [nucl-th].

46. D. Rönchen, M. Döring, and U.-G. Meißner, “The impact of K* A photoproduction on the resonance spectrum,” Eur. Phys. J. A 54, 110 (2018), arXiv:1801.10458 [nucl-th].

47. H. Kamano, S. X. Nakamura, T. S. H. Lee, and T. Sato, “Isospin decomposition of γ N → N transitions within a dynamical coupled-channels model,” Phys. Rev. C 94, 015201 (2016), arXiv:1605.00363 [nucl-th].

48. D. Rönchen, M. Döring, F. Huang, H. Haberzettl, J. Haidenbauer, C. Hanhart, S. Krewald, U.-G. Meißner, and K. Nakayama, “Photocouplings at the Pole from Pion Photoproduction,” Eur. Phys. J. A 50, 101 (2014), [Erratum: Eur.Phys.J.A 51, 63 (2015)], arXiv:1401.0634 [nucl-th].

49. H. Kamano, S. X. Nakamura, T. S. H. Lee, and T. Sato, “Extraction of P11 resonances from pi N data,” Phys. Rev. C 81, 065207 (2010), arXiv:1001.5083 [nucl-th].

50. L. Tiator, S. S. Kamalov, S. Ceci, G. Y. Chen, D. Drechsel, A. Svarc, and S. N. Yang, “Singularity structure of the π N scattering amplitude in a meson-exchange model up to energies W ≤ 2.0− GeV,” Phys. Rev. C 82, 055203 (2010), arXiv:1007.2126 [nucl-th].

51. P. A. Zyla et al. (Particle Data Group), “Review of Particle Physics,” PTEP 2020, 083C01 (2020).

52. V. Crede et al. (CBELSA/TAPS), “Photoproduction of Neutral Pions off Protons,” Phys. Rev. C 84, 055203 (2011), arXiv:1107.2151 [nucl-ex].

53. A. V. Anisovich, V. Burkert, J. Hartmann, E. Klempt, V. A. Nikov, E. Pasyuk, A. V. Sarantsev, S. Strauch, and U. Thoma, “Evidence for ∆(1232)7+/82+π+π−→π+π−π+π− Electroproduction from the CLAS Detector,” Phys. Rev. C 93, 025206 (2016), arXiv:1509.05460 [nucl-ex].

54. E. L. Isupov et al. (CLAS), “Measurements of p→ e+π−π+π− Cross Sections with CLAS at 1.40 GeV < W < 2.0 GeV and 2.0 GeV² < Q² < 5.0 GeV²,” Phys. Rev. C 96, 025209 (2017), arXiv:1705.01901 [nucl-ex].

55. V. D. Burkert, V. I. Mokeev, and B. S. Ishkhanov, “The Nucleon Resonance Structure from the π⁺π⁻→π⁺π⁻ Photoproduction Reaction off Protons,” Moscow Univ. Phys. Bull. 74, 243–255 (2019), arXiv:1901.09709 [nucl-ex].

56. A. N. Hiller Blin et al., “Nucleon resonance contributions to unpolarised inclusive electron scattering,” Phys. Rev. C 100, 035201 (2019), arXiv:1904.08016 [hep-ph].

57. T. Mart, C. Bennhold, and H. Haberzettl, “An isobar model for the photoproduction and electroproduction of kaons on the nucleon,” PiN Newslett. 16, 86–91 (2002).

58. V. I. Mokeev et al., “Evidence for the N(1720)3/2+ Nucleon Resonance from Combined Studies of CLAS π⁺π⁻ p Photo- and Electroproduction Data,” Phys. Lett. B 805, 135457 (2020), arXiv:2004.13531 [nucl-ex].

59. Nathan Isgur and Gabriel Karl, “P Wave Baryons in the Quark Model,” Phys. Rev. D 18, 4187 (1978).
Simon Capstick and Nathan Isgur, “Baryons in a Relativized Quark Model with Chromodynamics,” AIP Conf. Proc. 132, 267–271 (1985).

Simon Capstick, “Photoproduction and electroproduction of nonstrange baryon resonances in the relativized quark model,” Phys. Rev. D 46, 2864–2881 (1992).

Simon Capstick and Winston Roberts, “Quasi two-body decays of nonstrange baryons,” Phys. Rev. D 49, 4570–4586 (1994), arXiv:nucl-th/9310030.

M. Ronniger and B. C. Metsch, “Effects of a spin-flavour dependent interaction on the baryon mass spectrum,” Eur. Phys. J. A 47, 162 (2011), arXiv:1111.3835 [hep-ph].

G. Ramalho and M. T. Peña, “A covariant model for the gamma N -> N(1535) transition at high momentum transfer,” Phys. Rev. D 84, 033007 (2011), arXiv:1105.2223 [hep-ph].

C. Jayalath, J. L. Goity, E. Gonzalez de Urreta, and N. N. Scoccola, “Negative parity baryon decays in the 1/Nc expansion,” Phys. Rev. D 84, 074012 (2011), arXiv:1108.2042 [nucl-th].

I. G. Azaumyavan and V. D. Burkert, “Nucleon electromagnetic form factors and electroexcitation of low lying nucleon resonances in a light-front relativistic quark model,” Phys. Rev. C 85, 055202 (2012), arXiv:1205.7559 [hep-ph].

B. Golli and S. Sirca, “A chiral quark model for meson electroproduction in the region of D-wave resonances,” Eur. Phys. J. A 49, 111 (2013), arXiv:1306.3330 [nucl-th].

Igor T. Obukhovsky, Amand Faessler, Dimitry K. Fedorov, Thomas Gutsche, and Valery E. Lyubovitskij, “Transition form factors and helicity amplitudes for electroexcitation of negative- and positive-parity nucleon resonances in a light-front quark model,” Phys. Rev. D 100, 094013 (2019), arXiv:1909.13787 [hep-ph].

G. Ramalho, M. T. Peña, and K. Tsushima, “Hyperon electromagnetic timelike elastic form factors at large q^2,” Phys. Rev. D 101, 014014 (2020), arXiv:1908.04864 [hep-ph].

G. Ramalho and M. T. Peña, “Covariant model for the Dalitz decay of the N(1535) resonance,” Phys. Rev. D 101, 114008 (2020), arXiv:2003.04850 [hep-ph].

Craig D. Roberts and Anthony G. Williams, “Dyson-Schwinger equations and their application to hadronic physics,” Prog. Part. Nucl. Phys. 33, 477–575 (1994), arXiv:hep-ph/9403224.

C. D. Roberts, “Hadron Properties and Dyson-Schwinger Equations,” Prog. Part. Nucl. Phys. 61, 50–65 (2008), arXiv:0712.0633 [nucl-th].

G. Eichmann, R. Alkofer, A. Krassnigg, and D. Nichmorus, “Nucleon mass from a covariant three-quark Faddeev equation,” Phys. Rev. Lett. 104, 201601 (2010), arXiv:0912.2246 [hep-ph].

D. J. Wilson, I. C. Cloet, L. Chang, and C. D. Roberts, “Nucleon and Roper electromagnetic elastic and transition form factors,” Phys. Rev. C 85, 052205 (2012), arXiv:1112.2212 [nucl-th].

Chen Chen, Lei Chang, Craig D. Roberts, Shaolong Wan, and David J. Wilson, “Spectrum of hadrons with strangeness,” Few Body Syst. 53, 293–326 (2012), arXiv:1204.2553 [nucl-th].

Gernot Eichmann and Christian S. Fischer, “Nucleon Compton scattering in the Dyson-Schwinger approach,” Phys. Rev. D 87, 036006 (2013), arXiv:1212.1761 [hep-ph].

Shu-Sheng Xu, Chen Chen, Ian C. Cloet, Craig D. Roberts, Jorge Segovia, and Hong-Shi Zong, “Contact-interaction Faddeev equation and, inter alia, proton tensor charges,” Phys. Rev. D 92, 114034 (2015), arXiv:1509.03311 [nucl-th].

Jorge Segovia, Bruno El-Bennich, Eduardo Rojas, Ian C. Cloet, Craig D. Roberts, Shu-Sheng Xu, and Hong-Shi Zong, “Completing the picture of the Roper resonance,” Phys. Rev. Lett. 115, 171801 (2015), arXiv:1504.04386 [nucl-th].

Gernot Eichmann, Helios Sanchis-Alepuz, Richard Williams, Reinhard Alkofer, and Christian S. Fischer, “Baryons as relativistic three-quark bound states,” Prog. Part. Nucl. Phys. 91, 1–100 (2016), arXiv:1606.09602 [hep-ph].

Gernot Eichmann, Christian S. Fischer, and Helios Sanchis-Alepuz, “Light baryons and their excitations,” Phys. Rev. D 94, 094033 (2016), arXiv:1607.05748 [hep-ph].

Volker D. Burkert and Craig D. Roberts, “Colloquium: Roper resonance: Toward a solution to the fifty year puzzle,” Rev. Mod. Phys. 91, 011003 (2019), arXiv:1710.02540 [nucl-ex].

Chen Chen, Ya Lu, Daniele Binosi, Craig D. Roberts, Jose Rodriguez-Quintero, and Jorge Segovia, “Nucleon-to-Roper electromagnetic transition form factors at large Q^2,” Phys. Rev. D 99, 034013 (2019), arXiv:1811.08440 [nucl-ph].

Si-Xue Qin, Craig D. Roberts, and Sebastian M. Schmidt, “Poincare\-\,e-covariant analysis of heavy-quark baryons,” Phys. Rev. D 97, 114017 (2018), arXiv:1801.09697 [nucl-th].

Si-Xue Qin, Craig D. Roberts, and Sebastian M. Schmidt, “Spectrum of light- and heavy-baryons,” Few Body Syst. 60, 26 (2019), arXiv:1902.00026 [nucl-th].

Chen Chen, Gastao Inacio Krein, Craig D Roberts, Sebastian M Schmidt, and Jorge Segovia, “Spectrum and structure of octet and decuplet baryons and their positive-parity excitations,” Phys. Rev. D 100, 054009 (2019), arXiv:1901.04305 [nucl-th].

Yu Lu, Chen Chen, Zhu-Fung Cui, Craig D Roberts, Sebastian M Schmidt, Jorge Segovia, and Hong Shi Zong, “Transition form factors: \(\gamma^p \rightarrow \Delta(1232), \Delta(1600)\),” Phys. Rev. D 100, 034001 (2019), arXiv:1904.03205 [nucl-th].

A. J. F. Siegenthaler, “Note on the interaction between nuclei and electromagnetic radiation,” Phys. Rev. 52, 787–789 (1937).

Lothar Tiator, “Pion Electroproduction and Siegenthaler’s Theorem,” Few Body Syst. 57, 1087–1093 (2016).

G. F. Chew, M. L. Goldberger, F. E. Low, and Yoichiro Nambu, “Relativistic dispersion relation approach to photomeson production,” Phys. Rev. 106, 1345–1355 (1957).

Philippe Denner, “Theory of the Electro- and Photoproduction of pi Mesons,” Phys. Rev. 124, 2000–2010 (1961).

Frits A. Berends, A. Domachie, and D. L. Wever, “Photoproduction and electroproduction of pions. 1. Dispersion relation theory,” Nucl. Phys. B 4, 1–53 (1967).

Claudio Ciofi Degli Atti, “ELECTRON SCATTER-
ING BY NUCLEI,” Prog. Part. Nucl. Phys. 3, 163–328 (1978).

[108] D. Rönchen, M. Döring, F. Huang, H. Haberzettl, J. Haidenbauer, C. Hanhart, S. Krewald, U.-G. Meißen, and K. Nakayama, “Coupled-channel dynamics in the reactions piN → piN, etaN, KLambda, KSigma,” Eur. Phys. J. A 49, 44 (2013), arXiv:1211.6998 [nucl-th].

[109] M. Döring, C. Hanhart, F. Huang, S. Krewald, and U.-G. Meißen, “Analytic properties of the scattering amplitude and resonances parameters in a meson exchange model,” Nucl. Phys. A 829, 170–209 (2009), arXiv:0903.4337 [nucl-th].

[110] M. Döring, C. Hanhart, F. Huang, S. Krewald, and U.-G. Meißen, “The Role of the background in the extraction of resonance contributions from meson-baryon scattering,” Phys. Lett. B 681, 26–31 (2009), arXiv:0903.1781 [nucl-th].

[111] J. Blatt and V. Weisskopf, Theoretical Nuclear Physics (John Wiley & Sons, New York, 1952).

[112] D. Mark Manley, Richard A. Arndt, Yogesh Goradia, and Vigdor L. Teplitz, “An Isobar Model Partial Wave Analysis of πN → ππN in the Center-of-mass Energy Range 1320–(MeV) to 1930–(MeV),” Phys. Rev. D 30, 904 (1984).

[113] A. V. Anisovich, R. Beck, E. Klempt, V. A. Nikonov, A. V. Sarantsev, and U. Thoma, “Pion- and photo-induced transition amplitudes to ΔK, ΣK, and Ση,” Eur. Phys. J. A 48, 88 (2012), arXiv:1205.2255 [nucl-th].

[114] C. Mertz et al., “Search for quadrupole strength in the electroexcitation of the delta(1232),” Phys. Rev. Lett. 86, 2963–2966 (2001), arXiv:nucl-ex/9902012.

[115] D. Elsner et al., “Measurement of the LT-asymmetry in p10 electroproduction at the energy of the Delta(1232) resonance,” Eur. Phys. J. A 27, 91–97 (2006), arXiv:nucl-ex/0507014.

[116] K. Joo et al. (CLAS), “Measurement of the polarized structure function sigma(LT-prime) for p(polarized-p, e-prime p) p10 in the Delta(1232) resonance region,” Phys. Rev. C 68, 032201 (2003), arXiv:nucl-ex/0301012.

[117] N. F. Sparveris et al. (OOPS), “Measurement of the R(LT) response function for p10 electroproduction at Q**2 = 0.070 (GeV/c)**2 in the N → Delta transition,” Phys. Rev. C 67, 058201 (2003), arXiv:nucl-ex/0212022.

[118] J. J. Kelly et al. (Jefferson Lab Hall A), “Recoil polarization for delta excitation in pion electroproduction,” Phys. Rev. Lett. 95, 102001 (2005), arXiv:nucl-ex/0505024.

[119] P. Bartsch et al., “Measurement of the beam helicity asymmetry in the p(polarized-e, e-prime p) p10 reaction at the energy of the Delta(1232) resonance,” Phys. Rev. Lett. 88, 142001 (2002), arXiv:nucl-ex/0112009.

[120] I. K. Bensafa et al. (MAMI-A1), “Beam-helicity asymmetry in photon and pion electroproduction in the Delta(1232) resonance region at Q**2 = 0.35 (GeV/c)**2,” Eur. Phys. J. A 32, 69–75 (2007), arXiv:hep-ph/0612248.

[121] G. Laveissiere et al. (JLab Hall A), “Backward electroproduction of p10 mesons on protons in the region of nucleon resonances at four momentum transfer squared Q**2 = 1.0-Gev/c**2,” Phys. Rev. C 69, 045203 (2004), arXiv:nucl-ex/0308009.

[122] M. Ungaro et al. (CLAS), “Measurement of the N → Delta+(1232) transition at high momentum transfer by p10 electroproduction,” Phys. Rev. Lett. 97, 112003 (2006), arXiv:hep-ex/0606042.

[123] Jörg Gayler, Electroproduction of π⁰ mesons in the region of Δ(1232) with momentum transfer q² = 15 fm⁻², Tech. Rep. DESY-F21-71-2 (DESY, 1971).

[124] Jürgen May, Koinzidenzmessungen zur Untersuchung der Reaktion ep → eπ⁰ beim Impulsübertrag q² ≈ 1 GeV² im Massenbereich zwischen 1.136 und 1.316 GeV, Ph.D. thesis, Hamburg U. (1971).

[125] Christopher T. Hill, Higgs Scalars and the Nonleptonic Weak Interactions, Other thesis, Caltech (1977).

[126] K. Joo et al. (CLAS), “Q**2 dependence of quadrupole strength in the gamma**p → Delta+(1232) → p p10 transition,” Phys. Rev. Lett. 88, 122001 (2002), arXiv:hep-ex/0110007.

[127] V. V. Frolov et al., “Electroproduction of the Delta(1232) resonance at high momentum transfer,” Phys. Rev. Lett. 82, 45–48 (1999), arXiv:hep-ex/9808024.

[128] R. Siddle et al., “Coincidence π⁺ electroproduction experiments in the first resonance region at momentum transfers of 0.3, 0.45, 0.60, 0.76 GeV/c²,” Nucl. Phys. B 35, 93–119 (1971).

[129] Rainer Haidan, Elektroproduktion pseudoskalarer Meso- nen im Resonanzgebiet bei großen Impulsüberträgen, Ph.D. thesis, Hamburg U. (1979).

[130] F. Kalleicher, U. Dittmayer, R. W. Gothe, H. Putsch, T. Reichelt, B. Schoch, and M. Wilhelm, “The determination of sigma(LT)/sigma(TT) in electroproduction in the Delta resonance region,” Z. Phys. A 359, 201–204 (1997).

[131] K. Baetznner et al., “P0π electroproduction at the delta(1236) resonance at a four-momentum transfer of q-squared = 0.3(gev/c)-squared,” Nucl. Phys. B 76, 1–14 (1974).

[132] A. Latham et al., “Coincidence electroproduction of single neutral pions in the resonance region at q = 2 = 0.5 (GeV/ c) 2,” Nucl. Phys. B 156, 58–92 (1979).

[133] A. Latham et al., “Electroproduction of π⁰ Mesons in the Resonance Region at q² = 1.0-(GeV)/c²,” Nucl. Phys. B 189, 1–14 (1981).

[134] Sean C. Stave, Lowest Q² Measurement of the γπ → Δ Reaction: Probing the Pionic Contribution, Ph.D. thesis, MIT (2006).

[135] N. F. Sparveris et al., “Determination of quadrupole strengths in the gamma**p → Delta(1232) transition at Q**2 = 0.20-(GeV/c)**2,” Phys. Lett. B 651, 102–107 (2007), arXiv:nucl-ex/0611033.

[136] J. C. Alder, F. W. Brasse, W. Fehrenbach, Joerg Gayler, S. P. Goel, R. Haidan, V. Korbel, J. May, M. Merkwitz, and A. Nurinba, “Electroproduction of neutral pions in the resonance region,” Nucl. Phys. B 105, 253–271 (1976).

[137] N. G. Afanasev, A. S. Esaulov, A. M. Pilipenko, and Yu. I. Titov, “Separation of Transversal and Longitudinal Components of Cross-Section of Pion Electroproduction on Proton Near the Threshold,” Pisma Zh. Eksp. Teor. Fiz. 22, 400–402 (1975).

[138] W. J. Shuttleworth et al., “Coincidence π⁰ electroproduction in the second resonance region,” Nucl. Phys. B 45, 428–448 (1972).

[139] H. Blume, R. Farber, N. Feldmann, K. Heinloth, D. Kramarczyk, F. Kuckelkorn, H. J. Michels, J. Paehler, and J. P. Dowd, “ELECTROPRODUCTION OF P0
MESONS ON PROTONS AT $W = 1400$-MeV TO 2000-MeV, $q^2 < 0.01$-GeV2 TO 0.1-GeV2, AND $t = 0.6$-GeV2 TO 2.2-GeV2 CORRESPONDING TO Theta (CM) $p_i = 145$-degrees TO 180-degrees, "Z. Phys. C 16, 283 (1983)."

[140] Manfred Rosenberg, "Electroproduction of Neutral π Mesons in the Range of the Two Nucleon Resonance at 0.3 GeV/c^2 Momentum Transfer, Thesis, Bonn (1979)."

[141] Veit Gerhardt, "Pion-Elektroproduktion im Bereich der 2. und 3. Nukleonresonanz, Ph.D. thesis, Hamburg U. (1979)."

[142] C. Kunz et al. (MIT-Bates OOPS), "Measurement of the transverse longitudinal cross-sections in the p (polarized-e, e-prime p) p0 reaction in the Delta region," Phys. Lett. B 564, 21–26 (2003), arXiv:nucl-ex/0302018.

[143] S. Stave et al., "Lowest Q^2 Measurement of the gamma* \rightarrow Delta Reaction: Probing the Pionic Contribution," Eur. Phys. J. A 30, 471–476 (2006), arXiv:nucl-ex/0604013.

[144] N. F. Sparveris et al. (OOPS), "Investigation of the conjectured nucleon deformation at low momentum transfer," Phys. Rev. Lett. 94, 022003 (2005), arXiv:nucl-ex/0408003.

[145] G. A. Warren et al. (M.I.T.-Bates OOPS, FPP), "Induced proton polarization for p0 electroproduction at $Q^2 = 0.126$-GeV$^2 / c^2$ around the Delta (1232) resonance," Phys. Rev. C 68, 3722 (2008), arXiv:nucl-ex/0901004.

[146] Th. Pospischil et al., "Measurement of the recoil polarization in the p (polarized-e, e-prime polarized p) p0 reaction at the Delta(1232) resonances," Phys. Rev. Lett. 86, 2959–2962 (2001), arXiv:nucl-ex/0010020.

[147] K. Joo et al. (CLAS), "Measurement of the polarized structure function sigma(LT-prime) for p(polarized-e, e-prime p+)+ in the Delta(1232) resonance region," Phys. Rev. C 70, 042201 (2004), arXiv:nucl-ex/0407013.

[148] K. Park, private communication, (2007).

[149] D. Gaskell et al., "Longitudinal electroproduction of charged pions from H-1, H-2, He-3," Phys. Rev. Lett. 87, 202301 (2001).

[150] H. Egriyan et al. (CLAS), "Single p_i+ electroproduction on the proton in the first and second resonance regions at 0.25-GeV2 $< Q^2 < 0.65$-GeV2 using CLAS," Phys. Rev. C 73, 025204 (2006), arXiv:nucl-ex/0601007.

[151] H. Breuker et al., "Forward p_i- Electroproduction in the First Resonance Region at Four Momentum Transfers $q^2 = 0.15$-(GeV/c)2 and 0.3-(GeV/c)2+2," Nucl. Phys. B 146, 285–302 (1978).

[152] G. Bardin, J. Dulas, J. Julien, A. Magnon, B. Michel, and J. C. Montret, “A measurement of the longitudinal and transverse parts of the π^+ electroproduction cross-section at 1175 MeV pion-nucleon centre-of-mass energy,” Lett. Nuovo Cim. 13, 485–488 (1975).

[153] G. Bardin, J. Dulas, A. Magnon, B. Michel, and J. C. Montret, “A Transverse and Longitudinal Cross-Section Separation in a p_i+ Electroproduction Coincidence Experiment and the Pion Radius,” Nucl. Phys. B 120, 45–61 (1977).

[154] Martyn Davenport, Electroproduction of neutral and positive pions between the first and second resonance regions, Ph.D. thesis, Lancaster (1980).

[155] O. Vapenikova et al., “ELECTROPRODUCTION OF SINGLE CHARGED PIONS FROM DEUTERIUM AT $Q^2<2$ APPROXIMATELY 1-GEV2 IN THE RESONANCE REGION,” Z. Phys. C 37, 251–258 (1988).

[156] J. C. Alder, H. Behrens, F. W. Brasse, W. Fehrenbach, Joerg Gayler, S. P. Goel, R. Haidan, V. Korbel, J. May, and M. Merkowitz, “Electroproduction of p_i+ Mesons in the Resonance Region,” Nucl. Phys. B 99, 1–12 (1975).

[157] E. Evangelides et al., “Electroproduction of π^+ mesons in the second and third resonance regions,” Nucl. Phys. B 71, 381–394 (1974).

[158] H. Breuker et al., “Electroproduction of π^+ Mesons at Forward and Backward Direction in the Region of the D–13 (1520) and F^+ (1688) Resonances,” Z. Phys. C 13, 113 (1982).

[159] H. Breuker et al., “Backward Electroproduction of π^+ Mesons in the Second and Third Nucleon Resonance Region,” Z. Phys. C 17, 121 (1983).

[160] C. S. Armstrong et al. (Jefferson Lab E94014), “Electroproduction of the $S(11)(1535)$ resonance at high momentum transfer,” Phys. Rev. D 60, 052004 (1999), arXiv:nucl-ex/9811001.

[161] H. Denizli et al. (CLAS), “Q^2 dependence of the $S(11)(1535)$ photocoupling and evidence for a P-wave resonance in eta electroproduction,” Phys. Rev. C 76, 015204 (2007), arXiv:0704.2546 [nucl-ex].

[162] R. Thompson et al. (CLAS), “The $e^- p \rightarrow e$-prime p eta reaction at and above the $S(11)(1535)$ baryon resonance,” Phys. Rev. Lett. 86, 1702-1706 (2001), arXiv:hep-ex/0011029.

[163] Volker Burkert and Zhu-jun Li, “What do we know about the Q^2 evolution of the Gerasimov-Drell-Hearn sum rule?” Phys. Rev. D 47, 46–50 (1993).

[164] F. Ravndal, “Electroproduction of nucleon resonances in a relativistic quark model,” Phys. Rev. D 4, 1466–1474 (1971).

[165] F. W. Brasse, W. Flauger, Joerg Gayler, V. Gerhardt, S. P. Goel, C. Gossling, R. Haidan, M. Merkowitz, D. Pock, and H. Wriedt, “Separation of Sigma-L and Sigma-T in eta-Electroproduction at the Resonance S11 (1535),” Nucl. Phys. B 135, 37–44 (1978).

[166] H. Breuker et al., “DETERMINATION OF $R = \sigma_{\text{L+}} / \sigma_{\text{L-}}$ FROM ETA ELECTROPRODUCTION AT THE S11 (1535) RESONANCE,” Phys. Lett. B 74, 409–412 (1978).

[167] M. M. Dalton et al., “Electroproduction of Eta Mesons in the S(11)(1535) Resonance Region at High Momentum Transfer,” Phys. Rev. C 80, 015205 (2009), arXiv:0804.3509 [hep-ex].

[168] GWU, SAID website, http://gwdac.phys.gwu.edu (2021).

[169] Maxim Mai and Ul-G. Meißner, “New insights into antikaon-nucleon scattering and the structure of the Lambda(1405),” Nucl. Phys. A 900, 51 – 64 (2013), arXiv:1202.2030 [nucl-th].

[170] F. James, “MINUIT Function Minimization and Error Analysis: Reference Manual Version 94.1,” (1994).

[171] JLAB Interactive Scattering Analysis website (under development), https://jlab.physics.gwu.edu (2021).

[172] Richard Thompson, Eta Electroproduction in the Region of the Isospin 1/2 1535 MeV Baryon Resonance, Ph.D. thesis, Pittsburgh (2000).

[173] D. S. Carman et al. (CLAS), “First measurement of transferred polarization in the exclusive polarized-e $p^- \rightarrow e$-prime K+ polarized-Lambda reaction,” Phys. Rev. Lett. 90, 131804 (2003), arXiv:hep-ex/0212014.
[174] P. Ambrozewicz et al. (CLAS), “Separated structure functions for the exclusive electroproduction of K+ Lambda and K+ Sigma0 final states,” Phys. Rev. C 75, 045203 (2007), arXiv:hep-ex/0611036.

[175] R. Nasseripour et al. (CLAS), “Polarized Structure Function sigma(LT-prime) for p(polarized-e, e-prime K+) Lambda in the Nucleon Resonance Region,” Phys. Rev. C 77, 065208 (2008), arXiv:0801.4711 [nucl-ex].

[176] D. S. Carman et al. (CLAS), “Beam-Recoil Polarization Transfer in the Nucleon Resonance Region in the Exclusive vec-ep —> e-prime K+ vec-Lambda and vec-ep —> e-prime K+ vec-Sigma0 Reactions at CLAS,” Phys. Rev. C 79, 065205 (2009), arXiv:0904.3246 [hep-ex].

[177] D. S. Carman, K. Park, B. A. Raue, and Volker Crede (CLAS), “Separated Structure Functions for Exclusive $K^+\Lambda$ and $K^+\Sigma^0$ Electroproduction at 5.5 GeV with CLAS,” Phys. Rev. C 87, 025204 (2013), arXiv:1212.1336 [nucl-ex].

[178] M. Gabrielyan et al. (CLAS), “Induced polarization of Λ in kaon electroproduction,” Phys. Rev. C 90, 035202 (2014), arXiv:1406.4046 [nucl-ex].

[179] GWU, Colonial One High Performance Computing, https://colonialone.gwu.edu (2021).

[180] Jülich Supercomputing Centre, “JURECA: Modular supercomputer at Jülich Supercomputing Centre,” Journal of large-scale research facilities 4 (2018), 10.17815/jlsrf-4-121-1.
FIG. 8. JBW coupled-channel results. Multipoles (in mfm) in the πN and ηN $I = 1/2$ channel at $W = 1535$ MeV in comparison to the result of the MAID2007 [35] and etaMAID2001 [33] analyses, respectively. The latter results are extracted from the MAID homepage and multiplied by $-1/\sqrt{3}$, adjusting for a phase- and isospin factor. The leftmost column shows the total angular momentum. Fits correspond to the results of Tab. II with the same line shape coding as in Ref [45].
FIG. 9. Eta electroproduction multipoles for lower fixed values of Q^2. Notation as given in Figure 8.
FIG. 10. Eta electroproduction multipoles for higher fixed values of Q^2. Notation as given in Figure 8.