PlncRNA-1 induces apoptosis through the Her-2 pathway in prostate cancer cells

Qing Yang, Zi-Lian Cui, Qin Wang, Xun-Bo Jin, Yong Zhao, Mu-Wen Wang, Wei Song, Hua-Wei Qu, Wei-Ting Kang

To determine whether PlncRNA-1 induces apoptosis in prostate cancer cells through the Her-2 pathway. The expression of PlncRNA-1, Her-2, and related cyclin proteins in 23 cases of prostate cancer and adjacent normal tissues was analyzed and compared. LNCaP cells were divided into a control group and an LNCaP-PlncRNA-1-siRNA experimental group. Normal prostate RWPE-1 cells were divided into an RWPE-1 control group and an RWPE-1-PlncRNA-1 experimental group. After PlncRNA-1 silencing and overexpression, changes in Her-2 and cyclinD1 expression levels were detected both in vivo and in vitro. In prostate cancer tissues, Her-2 and PlncRNA-1 were highly expressed and significantly correlated. In LNCaP cells, the expression of Her-2 and cyclinD1 decreased following the downregulation of PlncRNA-1 as assessed by real-time PCR and Western blotting. In RWPE-1 cells, the expression of Her-2 and cyclinD1 increased following PlncRNA-1 overexpression. Flow cytometry revealed that the proportion of LNCaP cells in G2/M phase was significantly increased after PlncRNA-1 silencing and that the proportion of RWPE-1 cells in G2/M phase was significantly decreased after PlncRNA-1 overexpression. Furthermore, animal experiments validated these results. In conclusion, in prostate cancer, PlncRNA-1 regulates the cell cycle and cyclinD1 levels and can also regulate proliferation and apoptosis in prostate cancer cells through the Her-2 pathway.

Asian Journal of Andrology (2017) 19, 453–457; doi: 10.4103/1008-682X.178849; published online: 27 May 2016

Keywords: apoptosis; cell cycle; Her-2; LNCaP; long noncoding RNA; PlncRNA-1; prostate cancer

INTRODUCTION

Prostate cancer (PCa) is one of the most common malignant tumors of the male genitourinary system. In 2015, the American Cancer Society reported an estimated 230,800 new prostate cancer cases, accounting for 26% of cancers in men and making PCa the most prevalent cancer among males. PCa also has the second highest mortality rate among cancers, with an estimated 27,540 PCa-attributed deaths.1

Previously, we found that the long noncoding RNA (lncRNA), PlncRNA-1, is frequently overexpressed in PCa cell lines and tissues according to RNA-seq and real-time PCR analyses. We found that PlncRNA-1 plays an important role in the pathogenesis of PCa. In addition to reciprocally regulating the androgen receptor (AR), PlncRNA-1 knockdown induces tumor cell apoptosis.2 In the present study, we found that PlncRNA-1 regulates the expression of Her-2 during apoptosis. Thus, we propose that PlncRNA-1-induced apoptosis may act through the Her-2 signaling pathway.

Her-2 (also known as ErbB-2) is a 185-kDa cell membrane receptor encoded by the proto-oncogene ErbB-2 and is a member of the epidermal growth factor receptor (EGFR) family. This protein family consists of ErbB-1 (also known as EGFR, Her-1), ErbB-2, ErbB-3 (Her-3), and ErbB-4 (Her-4). Her-2 p185 protein is composed of an extracellular domain, a transmembrane domain, and an intracellular domain that possesses endogenous tyrosine kinase activity. In normal human tissues, the Her-2/neu protein is absent or expressed at trace levels, whereas in breast, ovarian, lung, stomach, liver, prostate, and other malignant tumors, the Her-2/neu protein is highly expressed.3–5

Tumor cells expressing high levels of Her-2 exhibit increased proliferation and cell malignancy, while differentiation and apoptosis are inhibited. Her-2 p185 protein promotes tumor cell growth through multiple pathways and molecules.6

The expression profile of Her-2 is closely related to patient prognosis: patients with high Her-2 expression levels are prone to tumor metastases and short survival times.7 Because Her-2 expression significantly differs between normal and tumor cells, the Her-2 protein has become an ideal target for immunotherapy.8,9

PlncRNA-1 was first identified in PCa tissues; however, its role in the development of PCa has not been fully elucidated.1 This study confirms that PlncRNA-1 and Her-2 expression levels are highly correlated and that tumor cell apoptosis was induced following the downregulation of PlncRNA-1, which also triggered a decrease in Her-2 protein expression. These discoveries will provide a new theoretical basis for therapeutic interventions for the prevention and treatment of PCa.

MATERIALS AND METHODS

Samples, cells, and antibodies

Frozen PCa tissue was obtained with informed consent from patients

1Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, PR China; 2Shandong University School of Medicine, Jinan, Shandong, PR China; 3Minimally Invasive Urology Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, PR China; 4Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, Shandong, PR China.

†These two authors contributed equally to this article.

Correspondence: Dr. ZL Cui (122526195@qq.com)

Received: 21 August 2015; Revised: 20 November 2015; Accepted: 26 January 2016
who underwent radical resections at the Shandong Provincial Hospital. Ethical consent was granted by the Committees for Ethical Review of Research involving Human Subjects of Shandong Provincial Hospital. LNCaP and RWPE-1 cells were cultured in Dulbecco’s modified Eagle’s medium (Invitrogen, Carlsbad, CA, USA), supplemented with 10% fetal bovine serum, at 37°C and 5% CO₂. Mouse monoclonal Her-2, cyclinD1, and β-actin antibodies were purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA). AC480 (BMS-599626) was purchased from Selleck (Houston, TX, USA).

Plasmid construction and transfection

For overexpression analyses, CDNA encoding the complete open reading frame of PlncRNA-1 was cloned into the pBabe vector to generate the PlncRNA-1 expression plasmid. The expression plasmid was verified by sequencing both strands and was used to transfect RWPE-1 cells to establish the PlncRNA-1-overexpression cell line. For PlncRNA-1 interference, the control (pSuper) and pSuper-shPlncRNA-1s plasmids were purchased from Shanghai Genechem Co., LTD (Shanghai, China) and were used to transfect LNCaP cells to establish the PlncRNA-1-knockdown cell line. The transfection efficiency of PlncRNA-1 was confirmed by quantitative reverse transcription PCR (qRT-PCR) analysis.

Western blotting

Equal amounts of protein were separated on SDS polyacrylamide gels and were electrotransferred to polyvinylidene fluoride membranes (Millipore, Bedford, MA, USA). The membranes were immunoblotted overnight at 4°C with primary antibodies followed by the corresponding secondary antibodies. β-actin was used as the loading control.

Quantitative reverse-transcription PCR

RNA was extracted using TRIzol reagent according to the manufacturer’s recommended protocol (Invitrogen), qRT-PCR was performed using the StepOne and StepOne Plus Real-Time PCR Systems (Applied Biosystems, Foster City, CA, USA). GAPDH was used as a loading control. The experiments were repeated a minimum of 3 times.

Flow cytometry analysis of the cell cycle

To assay the cell cycle stage, exponentially growing cells were trypsinized, rinsed twice with ice-cold phosphate-buffered saline (PBS), and fixed in 75% ice-cold ethanol. The fixed cells were washed with ice-cold PBS and incubated at 37°C for 30 min in 1 ml of PBS containing 20 μg ml⁻¹ RNase A (Fermentas) and stained with 20 μg ml⁻¹ propidium iodide (Sigma-Aldrich) for 10 min at room temperature. The DNA content was then determined by flow cytometry. The percentages of cells in the G0/G1, S, and G2/M phases were determined on a BD FACSCalibur (Becton Dickinson, NJ, USA), and data were analyzed with FlowJo software (Tree Star, Inc, OR, USA.).

In vivo tumorigenesis assays

In vivo tumorigenesis and metastasis assays were performed as described previously. Briefly, 1 × 10⁶ cells were subcutaneously injected into the right flanks of nude mice. Tumor length (L) and width (W) were measured every 3 days, and tumor volume was calculated using the following equation: volume = (W² × L)/2. After 4 weeks, the mice were killed, and the tumor volume and weight were measured. All animal experiments were performed with the approval of the Shandong Provincial Hospital’s Animal Care and Use Committee.

Statistical analysis

Experimental data are shown as the means ± standard deviation (s.d.). The results from different treatment groups were compared using two-tailed Student’s t-tests. Differences were considered to be significant at P < 0.05. Statistical analyses were performed with SPSS/Win11.0 software (SPSS, Inc., Chicago, IL, USA).

RESULTS

Overexpression of PlncRNA-1 and Her-2 in PCa tissues

We detected Her-2 and PlncRNA-1 expression in 23 cases of PCa using real-time PCR. The high expression of PlncRNA-1 in PCa tissues was consistent with our previous findings. Her-2 was also highly expressed in PCa tissues (Figure 1a–1d). Based on a linear correlation analysis (r² = 0.416), the expression levels of these genes were highly correlated, and the differences between the conditions were significant (P = 0.027; Figure 1e). Gu et al. found that the expression of Her-2 in PCa was significantly higher than in benign prostatic hyperplasia (BPH), suggesting that Her-2 plays an important role in the development of PCa.

PlncRNA-1 knockdown decreased Her-2 expression in LNCaP cells, and PlncRNA-1 overexpression upregulated Her-2 expression in RWPE-1 cells

We synthesized two shPlncRNA-1 constructs to silence PlncRNA-1 and transfected them into LNCaP cells. Quantitative RT-PCR analysis showed that compared with the mock control group, PlncRNA-1 levels were significantly lower in the treatment group, indicating that both shPlncRNA-1 constructs produced obvious interference effects (Figure 2a). As indicated by qRT-PCR and Western blotting, Her-2 mRNA and protein levels in the treatment group were significantly decreased compared with the control groups (Figure 2b and 2c). After the overexpression of PlncRNA-1 in RWPE-1 cells, Her-2 levels were significantly higher in the treatment group than in the mock and control groups, as assessed by quantitative RT-PCR and Western blotting (Figure 2d–2f). These results suggest that the regulation of PlncRNA-1 expression may significantly affect the Her-2 signaling pathway. The overexpression of Her-2 in tumors has been correlated with increased metastases and poor prognoses. These results suggest that downregulating PlncRNA-1 should reduce Her-2 expression, which should result in improved tumor prognosis.

PlncRNA-1 regulates the cell cycle and cyclin expression

After transfection with either of the two shPlncRNA-1 constructs, the number of LNCaP cells in G2/M phase cells significantly increased compared with the control groups (Figure 3a and 3b). In addition, the level of cyclinD1 in the LNCaP cell treatment group significantly decreased compared with the mock group (Figure 3c). After PlncRNA-1 was transfected into RWPE-1 cells, the number of cells in G2/M phase significantly decreased compared with the mock group (Figure 3c and 3d). Compared with the mock group, the level of cyclinD1 in the RWPE-1 cells treatment group significantly increased, as assessed by Western blotting (Figure 3f). These results indicate that PlncRNA-1 regulates cell growth by influencing the cell cycle and cyclinD1 expression. CyclinD1 was previously shown to be the downstream of Her-2, and PlncRNA-1 downregulation is known to induce the downregulation of Her-2 and cyclinD1. Therefore, PlncRNA-1 may regulate cyclinD1 expression by regulating Her-2.

Animal experiments

For in vivo experiments, 20 nude mice were divided into a mock group (5 rats), a control group (5 rats), treatment Group 1 (5 rats), and treatment Group 2 (5 rats). LNCaP and LNCaP-shPlncRNA-1 cells were subcutaneously implanted into nude mice. The tumor volumes were measured weekly, and the tumors were excised after 4 weeks. We found that the tumor growth rate of the treatment group was slower than those of the mock and the control groups and that the tumor weight was significantly lower for the treatment groups than for the mock and control groups (P < 0.05) (Figure 4a–4c). These results indicate that tumor growth
PlncRNA-1 induces apoptosis through Her-2
Q Yang et al

was significantly inhibited by PlncRNA-1 silencing. After the tumors were excised, PlncRNA-1, Her-2, and cyclinD1 levels were assessed by real-time PCR. We found that PlncRNA-1, cyclinD1, and Her-2 levels were significantly decreased (Figure 4e). Immunohistochemistry and Western blotting confirmed that expression of Her-2 and cyclinD1 proteins in the treatment groups was significantly lower than in the mock and control groups (Figure 4d and 4f). In our in vivo experiments, knocking down PlncRNA-1 also led to a decrease in cyclinD1 and Her-2 expression.

AC480, a Her-2 inhibitor, blocked the effect of PlncRNA-1
To verify the relationship between PlncRNA-1 and Her2, after overexpression of PlncRNA-1 in RWPE-1 cells, we added the Her-2 inhibitor AC480. We found that the number of RWPE-1 cells in G2/M phase decreased after PlncRNA-1 overexpression, which was consistent with our previous findings (Figure 5a and 5b). However, after addition of the Her-2 inhibitor AC480, the number of cells in G2/M phase increased again, and the expression of cyclinD1 was also decreased (Figure 5a–5c). These results further confirm that PlncRNA-1 regulates cell growth by regulating Her-2.

DISCUSSION
In Europe and other developed countries, PCa is one of the most common and malignant tumors. A variety of treatment options are available if PCa is detected early, and the disease can be cured by surgery or radiotherapy. However, if PCa has advanced to the castration-resistant stage, there is no effective treatment, and care is primarily palliative. To investigate the pathogenesis of PCa, we applied next-generation sequencing techniques to screen for abnormal gene expression levels in prostate carcinoma samples relative to adjacent tissues. Our results showed that PlncRNA-1 was upregulated to very high levels in cancerous tissues. In the present study, we confirmed that PlncRNA-1 acts as an oncogene in prostate cancer, consistent with our previous findings. By downregulating and upregulating PlncRNA-1, we found that changes in Her-2 and cyclinD1 are highly correlated with changes in PlncRNA-1. Her-2 is a well-known cancer gene that is not expressed or is found at the trace levels in normal human tissues; however, Her-2 is overexpressed in mammary gland, ovarian, lung, stomach, and liver tumors. The level of Her-2 is closely
PlncRNA-1 induces apoptosis through Her-2

Q Yang et al

Flow cytometry analysis of changes in the cell cycle and cyclin D1 levels, which lead to apoptosis. After PlncRNA-1 knockdown in LNCaP cells, the number of cells in G2/M phase increased. Following PlncRNA-1 overexpression in RWPE-1 cells, the number of cells in G2/M phase decreased. CyclinD1 expression in LNCaP cells was decreased after PlncRNA-1 knockdown. CyclinD1 expression in RWPE-1 cells was increased after PlncRNA-1 overexpression.

Expression of HULC, another lncRNA, is significantly higher in the metastases of liver and colorectal cancers. HULC is a “decoy molecule” or “miRNA sponge” that downregulates the expression of miR-372 at the transcriptional level, resulting in the upregulation of its target gene PRKACB, which activates CREB. Activated CREB binds to the HULC promoter to promote the transcription of HULC.17

HOTAIR was the first lncRNA shown to regulate tumor metastasis and is significantly upregulated in breast cancer, hepatocellular carcinoma, squamous cell carcinoma of the larynx, and other malignant tumors. The expression of HOTAIR is closely correlated with tumor stage, metastasis, and survival.18 HOTAIR may promote tumor development by promoting the inactivation of PTEN methylation.19

MEG3 was the first lncRNA found to act as a tumor suppressor and is approximately 1.6 kb in size. MEG3 is expressed in many normal human tissues, but it is downregulated or lost in a variety of tumor tissues through gene deletion or promoter methylation. MEG3 can activate p53-dependent or p53-independent signaling pathways to inhibit tumor formation. The MEG3-mediated activation of p53 is dependent on its secondary structure rather than its primary sequence.20

PTENP1 is a PTEN pseudogene that competes with the target miRNA (e.g., miR-17, miR-21, and miR-19) to increase the miRNA-mediated translational inhibition of PTEN. This suggests that different types of ncRNAs (i.e., miRNAs and lncRNAs) can work together to affect transcriptional regulation.21

CONCLUSION

LncRNAs play a variety of regulatory roles. These RNAs exist in large quantities, and their functions and mechanisms are complex, necessitating comprehensive studies. The present study found that PlncRNA-1 in PCa can regulate the cell cycle, the expression of the cell cycle-related protein cyclinD1, and the proliferation and apoptosis of prostate cancer cells through the Her-2 pathway. The relationship among PlncRNA-1, Her-2, and cyclinD1 remains unknown; whether these elements are directly or indirectly regulated is not clear, and the mechanism underlying this process requires additional study.
PlncRNA-1 induces apoptosis through Her-2

Q Yang et al

All authors have read and approved the final version of the manuscript, and agreed with the order of presentation of the authors.

CONFLICT OF INTEREST
The authors declare that there are no conflicts of interest or financial disclosures.

ACKNOWLEDGMENTS
This study was funded by the National Natural Science Foundation of China (grant No. 81202016) and the Shandong Province Science and Technology (grant No. 2014GSF118165). The authors thank the professors of Shanghai Changhai Hospital for their advice.

REFERENCES

1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin 2015; 65: 5–29.
2. Cui Z, Ren S, Lu J, Wang F, Xu W, et al. The prostate cancer-up-regulated long noncoding RNA PlncRNA-1 modulates apoptosis and proliferation through reciprocal regulation of androgen receptor. Urol Oncol 2013; 31: 1117–23.
3. Demonty G, Bernard-Marty C, Puglisi F, Mancini I, Piccianti M. Progress and new standards of care in the management of HER-2 positive breast cancer. Eur J Cancer 2007; 43: 497–509.
4. Osman I, Mikhail M, Shuch B, Clute M, Cheli CD, et al. Serum levels of shed Her2/neu protein in men with prostate cancer correlate with disease progression. J Urol 2005; 174: 2174–7.
5. Gu K, Mes-Masson AM, Gauthier J, Saad F. Overexpression of her-2/neu in human prostate cancer and benign hyperplasia. Cancer Lett 1996; 99: 185–95.
6. Marmor MD, Skaria KB, Yarden Y. Signal transduction and oncogenesis by ErbB/HER receptors. Int J Radiat Oncol Biol Phys 2004; 58: 903–13.
7. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987; 235: 178–82.
8. Malara AE, Fedele C, Aloj J, Arna L, Caccetti P, et al. Effects of a human compact anti-ErbB2 antibody on prostate cancer. Oncol Rep 2012; 28: 297–302.
9. Prives G, Luca T, Musso N, Vancheri C, Crimi N, et al. In vitro antiproliferative effect of trastuzumab (Herceptin) combined with cetuximab (Erbitux) in a model of human non-small cell lung cancer expressing EGFR and HER2. Clin Exp Med 2015; 15: [Epub ahead of print].
10. Poliseno L, Saimam E, Paostrakul L, Aventian M, Lusinchi N, et al. ErbB-2 induces the cyclin D1 gene in prostate epithelial cells in vitro and in vivo. Cancer Res 2007; 67: 4364–72.
11. Tripathi V, Ellis JD, Shen Z, Song DY, Pan Q, et al. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell 2010; 39: 925–38.
12. Wang J, Liu X, Wu H, Ni P, Gu Z, et al. CREB up-regulates long non-coding RNA, HULC expression through interaction with microRNA-372 in liver cancer. Nucleic Acids Res 2010; 38: 5366–73.
13. Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 2010; 464: 1071–6.
14. Li D, Feng J, Wu T, Wang Y, Sun Y, et al. Long intergenic noncoding RNA HOTAIR is overexpressed and regulates PTEN methylation in laryngeal squamous cell carcinoma. Am J Pathol 2013; 182: 64–70.
15. Zhang X, Rice K, Wang Y, Chen W, Zhang Y, et al. Maternally expressed gene 3 (MEG3) noncoding ribonucleic acid: isoform structure, expression, and functions. Endocrinology 2010; 151: 939–47.
16. Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, et al. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 2010; 465: 1033–8.

AUTHOR CONTRIBUTIONS
QY carried out the genetic studies, participated in the PCR, Western blotting, immunohistochemistry, statistical analysis, and drafted the manuscript; ZLC conceived of the study, participated in its design and coordination, and helped to draft the manuscript; QW implemented animal experiments; XBJ, YZ, MWW, WS, and HWQ were responsible for collecting tissue samples of prostate cancer; WTK was responsible for clinical data collation.