Nest tree preference shown by Ring-necked Parakeet Psittacula krameri (Scopoli, 1769) in northern districts of Tamil Nadu, India

M. Pandian

26 April 2021 | Vol. 13 | No. 5 | Pages: 18189–18199
DOI: 10.11609/jott.5991.13.5.18189-18199
Nest tree preference shown by Ring-necked Parakeet

Psittacula krameri (Scopoli, 1769) in northern districts of Tamil Nadu, India

M. Pandian

No. F1901, AIS Housing Complex, Natesan Nagar West, Virugambakkam, Chennai, Tamil Nadu 600092, India. pandian.m14@gmail.com

Abstract: This paper pertains to the nesting aspects of Psittacula krameri with specific reference to nesting-related habitats, number of individuals encountered, inter-specific interactions, and abnormalities in 71 villages covering seven northern districts of Tamil Nadu. A total of 797 nests (500 active and 297 non-active nests) and 1,119 individuals were enumerated on 284 trees and 13 temples/buildings belonging to eight species, seven genera, and five families. The highest number of nests (320) and birds (469) occurred on Boerhavia deflexa, followed by those near water bodies, human settlements, and temples/buildings. Pearson's chi-square test indicates that the birds showed preference towards certain nesting sites/nesting species. Inter-specific interactions occurred between P. krameri and Blue Rock Pigeon, Spotted Owlet, Indian Roller, and Black-rumped Flameback for sharing of cavities/holes for construction of nests. Abnormalities in bird's beak, cere, colour of feathers, and a suspected psittacine beak & feather disease (PBFD) were observed.

Keywords: Active nests, beak deformity, inter-specific competition, nesting trees.
INTRODUCTION

The Ring-necked Parakeet or Rose-ringed Parakeet *Psittacula krameri* (Scopoli, 1769) (Aves: Psittaciformes: Psittaculidae) is a native of the Indian subcontinent and Sub-Saharan Africa and now occurs in 35 countries (Menchetti et al. 2016) such as Britain, Belgium, the Netherlands, Germany, and Spain (Braun & Wink 2013). A subspecies *P. krameri manilensis* is distributed in southern India and Sri Lanka (BirdLife International 2018). Intensive trade, accidental or deliberate release of this species into new environments and its adaptation has led to the establishment of viable populations outside its native range (Strubbe & Matthysen 2009; Neo 2012). Tolerance to human presence, an omnivorous diet and a great reproductive rate (Thabete et al. 2013) make them successful invasive alien species and are even considered pests in the introduced European countries (Strubbe & Matthysen 2007). Many bird species use cavities as nesting sites, as it reduces the risk of predation more than other nest sites (Nice 1957; Cody 1985; Newton 1994). *Psittacula krameri* depends on trunk holes/cavities for their reproduction. They compete with other birds for nest-cavities due to their aggressive behaviour in Mauritius (Jones 1980) and Belgium (Strubbe & Matthysen 2009). In India, they widely inhabit several habitats (Rasmussen & Anderton 2005) and breeding occurs during December–May. In northern India, about 15% of *P. krameri* populations build their nests in wall holes or crevices in buildings (Grandi et al. 2016). In view of the limited resources of nest-cavities, inter-specific competitions exist between *P. krameri* and other birds (Wesolowski 2007; Cornelius 2008).

This species is considered a major agricultural pest in its native range (Khan 2002b) and in countries where it has invaded (Schackermann et al. 2014). The birds consume dry & fleshy fruits and seeds (Ali & Ripley 1968, 1987); they cause considerable damage to agricultural crops such as corn (*Zea mays* L.), sorghum (*Sorghum bicolor* (L.) Moench), paddy (*Oryza sativa* L.), safflower (*Carthamus tinctorius* L.), sunflower (*Helianthus annus* L.), fruits, and stored grains (Shivanarayan et al. 1981; Dhindsa & Saina 1994; Mukherjee et al. 2000; Shivashankar & Subramanya 2008). Abnormalities/deformities in beak, cere, and colour were observed among *P. krameri* individuals due to various reasons (Low 1992; Zwart 1995; Butler 2003; Kanwar 2019). Gokula et al. (1999) observed intra-specific differences between *Psittacula cyanocephala* and *P. columboides* in Siruvani of Tamil Nadu.

The IUCN Red List of Threatened Species has evaluated the status of this bird as ‘Least Concern’ because its population appears to be increasing but in view of its popularity as a pet and control by farmers due to its invasiveness, this has reduced its numbers in its native range (BirdLife International 2018). Except the above few works, no literatures are available on the study of the nesting habitats and abnormalities of *P. krameri* in Tamil Nadu. Hence, this study was carried out to fill the gaps. The objectives of this study are to assess the nesting tree preference of *P. krameri*, and identification of the nesting sites.

MATERIALS AND METHODS

Study area

The present study was carried out in 71 villages in seven districts of northern Tamil Nadu, viz., Chennai, Thiruvallur, Ranipet, Kancheepuram, Chengelpet, Villupuram, and Kallakurichi spread over 17,680km² (Fig. 1). Agriculture is the primary occupation in these areas except Chennai City and adjoining areas. The major crops in the study area are *Oryza sativa* L., *Sorghum bicolor* (L.) Moench, *Pennisetum glaucum* (L.) R.Br., *Eleusine coracana* Gaertn., *Setaria italica* (L.) P.Beauvois., *Saccharum officinarum* L. (Poaceae), *Vigna radiata* (L.) R.Wilczek., and *Arachis hypogaea* L. (Fabaceae). Small-scale cultivation of ornamental flowers, vegetables, and fruits also occurs. The maximum and minimum temperatures of these districts are 37°C and 28°C, respectively. The average annual rainfall of the state is 907mm (Tamil Nadu 2020).

METHODS

Three informants from villages who were traditionally engaged in farming and well acquainted with the location of tall trees, groves, and birds in the study districts were selected. Along with them areas were identified that had considerable populations of *P. krameri* and their nesting sites in 71 villages covering seven districts in the northern region of Tamil Nadu. The determined nesting sites were surveyed during the breeding season from 01 November 2019 to 31 March 2020 between 06.00 & 09.00 h and 15.00 & 18.00 h when the birds are usually active. The individuals and number of nests were determined using total count method (Bibby et al. 2000). *P. krameri* usually follow communal roosting during non-breeding periods and in the breeding season the flock splits and moves to various habitats searching for cavities to construct nests. Hence, the movements
of birds, the nesting trees, excavating cavities on the trunks, holes and crevices in temples/buildings, entry and exit of birds from such cavities, number of nests, active/non-active nests, and inter-specific interactions with other birds for sharing nesting sites were observed using binoculars without causing any disturbance to the birds. The active nest cavities were ascertained by watching the frequent visits of birds to the cavities, carrying nesting materials: prolonged presence of any one of the pair in the cavity was presumed as the birds incubating eggs, and prey delivery to hatchlings. Non-active/abandoned cavities were ascertained by non-visiting of birds to the cavities during the study period after excavating cavities. The eggs and other breeding activities were not studied. Locations of the nesting trees and temples/buildings were determined using GPS. Pearson’s chi-square test was applied to determine whether Ring-necked Parakeet individuals select trees, temples/buildings equally across the study area for construction of nests using SPSS (Statistical Package for Social Sciences) version 25.0 software. The test of significance was assessed at $p<0.05$. Photographs and videos were taken using Nikon P1000 digital camera.

RESULTS

Psittacula krameri individuals and their preference of nesting sites

In the present study, a total of 284 trees belonging to five families, seven genera, and eight species were found with nests of P. krameri, of which Borassus flabellifer L. harboured the maximum numbers of nests (n= 164; 55.2%), followed by Cocos nucifera L. (n= 90; 30.3%), Albizia lebbeck (L.) Benth. (n= 10; 3.4%), and Madhuca longifolia J.F.Macbr. (n= 9; 3%). Temples/buildings shared about 4.4% of nesting sites. A total of 797 nests (500 active nests and 297 non-active nests) and 1,119 individuals of P. krameri were enumerated on the 297 nesting sites (nesting trees -284 and temples/buildings-13) in seven districts (Table 1). Maximum of 72 nests and 88 birds were observed in Gadavari Kandigai.
Village and in four villages no nests were counted but individuals of *P. krameri* were enumerated. The details of villages containing nests and birds are given in Table 2.

Of the total *B. flabellifer* trees (164) enumerated in the study area, 158 were dead and six were living trees. Among *B. flabellifer*, maximum of 98.1% nests (n= 314) and 96.2% birds (n= 451) were found on dead trees and only 1.9% nests (n= 6), and 3.8% birds (n= 18) were enumerated on living *B. flabellifer* trees.

Out of 797 nests enumerated, 63.4% nests (n= 505) were found on dead trees of *B. flabellifer*, *C. nucifera*, and *P. sylvestris*. Similarly out of 1,119 birds counted, 65.1% birds (n= 729) were observed on these dead trees. About 26% nests (n= 208) and 16.8% birds (n= 188) were counted on temples and buildings. The remaining 10.3% nests (n= 84) and 16.4% birds (n= 184) were found on the living trees of *B. flabellifer*, *M. longifolia*, *F. religiosa*, *F. benghalensis*, *A. indica*, and *A. lebbeck*. Except roosting of birds, no nests were found on *F. religiosa* and *A. indica*. Out of total nests (797) enumerated during the current breeding season, 62.7% (n= 500) were active nests and the remaining 37.3% nests (n= 297) were non-active nests. The study reveals that the birds constructed 72.2% of active nests (n= 361) on the trunk cavities of three palm species, followed by 17.4% active nests (n= 87) on temples/buildings and 10.4% active nests (n= 52) on living trees, viz., *B. flabellifer*, *M. longifolia*, *F. benghalensis*, and *A. lebbeck*.

Chi-square test was used to determine whether any significance existed between the type of nesting sites such as trees, temples/ buildings and the number of birds, nests, active nests and non-active nests. The test revealed that there exists statistically significant association between nesting sites (trees/temples/ buildings) and the number of birds (p< 0.05), nests (p< 0.05), active nests (p< 0.000) and non-active nests (p< 0.05) in the study area.

Preference of habitats for nesting

The study also tested the relationship between the selection of nesting sites and surrounding habitats such as agricultural lands, water bodies, human settlements, and temples/buildings by *P. krameri* populations (Fig. 2). About 39.4% of nesting sites (n= 117), 29.1% nests (n= 234), and 33% birds (n= 369) occurred near agricultural lands. Thirty-five per cent of nesting sites (n= 104), 22.8% nests (n= 182), and 24.3% birds (n= 272) occurred adjacent to water bodies such as bunds of lakes, ponds, rivers, or canals. About 22.2% nesting sites (n= 66), 28.3% nests (n= 226), and 28.1% birds (n= 314) were found near human settlement areas; 19.5% nests (n= 155), and 14.6% birds (n= 164) were counted on 13 temples/buildings (3.4%). The study also revealed that a maximum of active nests 35.2% (n= 176) were found on trees located in the agricultural areas, followed by 26.6% active nests (n= 133) near water bodies, 24.6% nests (n= 124) in the human settlement areas, and 12.6% nests (n= 63) on temples/ buildings (Image 1). Statistically a significant association exists between the type of habitats such as agricultural lands, water bodies, residential areas, temple & number of birds (p< 0.05), nests (p< 0.05), active nests (p< 0.05), and non-active nests (p< 0.05). Hence, all four types of habitats had an impact on the number of birds and nests in the study area.
Observation of inter-species interactions

A pair of *P. krameri* competed with a pair of Blue Rock Pigeon *Columba livia* (Aves: Columbiformes: Columbidae) that had occupied one hole in a temple wall at Thiruvalangadu Village (13.1307°N & 79.7747°E), finally chasing away the blue rock pigeons, occupied the hole and continued breeding. Similar incidents of *P. krameri* competing with a Black-rumped Flameback *Dinopium benghalense* (Aves: Piciformes: Picidae), a Spotted Owlet *Athene brama* (Aves: Strigiformes: Strigidae), and an Indian Roller *Coracias benghalensis* (Aves: Coraciiformes: Coraciidae) in Gadavarikandigai Village (13.1300°N & 79.6226°E) for sharing trunk cavities were observed (Image 2).

Observation on abnormalities

In the present study, one male bird with beak deformity was observed on the compound wall of a temple in Thiruvalangadu Village (Thiruvallur District). The upper mandible of this bird was found elongated, curved and this colourless overgrown part of the beak had elongated up to the neck. One female bird with swollen and discolored cere and a big nostril was observed in Gadavarikandigai Village. Another bird, a Spotted Owlet, and an Indian Roller were observed with colour abnormalities, i.e., yellow feathers on their back and colour abnormalities, i.e., yellow feathers on their head in Gadavankandial Village (Kanchipuram District). Another bird with loss of feathers and wart like skin on their back and colour abnormalities, i.e., yellow feathers on their back and colour abnormalities, i.e., yellow feathers on their head in Gadavankandial Village (Kanchipuram District). Another bird with loss of feathers and wart like skin on their back and colour abnormalities, i.e., yellow feathers on their back and colour abnormalities, i.e., yellow feathers on their head in Gadavankandial Village (Kanchipuram District). Another bird with loss of feathers and wart like skin on their back and colour abnormalities, i.e., yellow feathers on their back and colour abnormalities, i.e., yellow feathers on their head in Gadavankandial Village (Kanchipuram District). Another bird with loss of feathers and wart like skin on their back and colour abnormalities, i.e., yellow feathers on their back and colour abnormalities, i.e., yellow feathers on their head in Gadavankandial Village (Kanchipuram District).

DISCUSSION

In the present study, it was observed that *P. krameri* individuals selected a variety of trees for nesting, but they showed a preference towards palms (Arecaceae): *B. flabellifer*, *C. nucifera* and *P. sylvestris*. Among the palms, they preferred *B. flabellifer* (55.2%; n= 164) in the study area since 40.1% of nests (n= 320) and 41.9% birds (n= 469) occurred on them. The present observation of maximum number of nests and birds were found on *B. flabellifer* trees. The present study also reveals that they largely preferred dead palm trees for construction of nests. Except six *B. flabellifer* trees, all the palm trees (n= 158) that bore nests were dead trees. It suggests that the birds selected dead tree trunks for easy excavation of cavities using their powerful beaks. Once they select

Nesting trees / temples / buildings	Family	No. of nesting trees/sites studied	Total No. of birds	Total No. of Nests	Active nests	Non-active nests					
		Count	%	Count	%	Count	%	Count	%		
1 Borassus flabellifer	Arecaee	164	55.2%	469	41.9%	320	40.2%	232	46.4%	88	29.6%
2 Cocos nucifera	Arecaee	90	30.3%	266	23.8%	185	23.2%	129	25.8%	56	18.9%
3 Phoenix sylvestris	Arecaee	3	1.0%	12	1.1%	6	0.8%	6	1.2%	0	0.0%
4 Madhuca latifolia	Sapotaee	9	3.0%	42	3.8%	27	3.4%	16	3.2%	11	3.7%
5 Ficus religiosa	Moracea	1	0.3%	6	0.5%	0	0.0%	0	0.0%	0	0.0%
6 Ficus benghalensis	Moracea	3	1.0%	18	1.6%	1	0.1%	1	0.2%	0	0.0%
7 Azadirachta indica	Meliaeae	4	1.3%	18	1.6%	0	0.0%	0	0.0%	0	0.0%
8 Albizia lebbeck	Fabaceae	10	3.4%	100	8.9%	50	6.3%	29	5.8%	21	7.1%
9 Temples/ buildings	-	13	4.4%	188	16.8%	208	26.1%	87	17.4%	121	40.7%
Total		297	100.0%	1119	100.0%	797	100.0%	500	100.0%	297	100.0%

Table 1. Details of nesting sites, nests, non-active nests and birds counted in seven districts of Tamil Nadu.
Table 2. List of villages where nests of individuals of Psittacula krameri were counted.

District	Name of the village	Total no. of nests counted	Total no. of the birds counted	
Tiruvallur	Tiruvallur	15	10	
	Pugathur	13	22	
4	Chinna Kadambur mottur	6	8	
	Sembedu	4	6	
5	Periya Kadambur mottur	7	10	
	Mambakkam	8	12	
7	Thiruvvalangadu	54	70	
Chennai	Egmore DPI	7	20	
	Egmore	19	26	
10	LIC	6	10	
	Anna Salai EB office	1	2	
12	Nanthiveduthangal	10	14	
13	Soganur	3	7	
14	Gadavari kandigai	72	88	
15	Mathimangalam	4	16	
16	Kunnathur	3	6	
17	Pallakunnathur	6	10	
18	Pazhayapalayam	10	14	
19	Pazhayapalayam mottur	1	2	
20	Minnal	13	18	
21	Marankandigai	8	8	
22	Chinna Vailambadi	17	29	
23	Paranji	2	14	
24	Gangai mottur	21	32	
25	Melandurai	23	37	
26	Kizhanthurai	8	12	
27	Poiyappakkam	1	2	
28	Kumpinipet	4	8	
29	Melakadu	21	56	
30	Arumpakkam	16	28	
31	Paruthiputhur	1	2	
32	Nagavedu	15	24	
33	Padi	8	18	
34	Kanchipuram East	6	8	
35	Baluchettichatram	2	5	
36	Padalam	16	24	
37	Ottivakkam	17	14	
38	Maduranthangam	0	2	
39	Palur	4	2	
District	Name of the village	Total no. of nests counted	Total no. of the birds counted	
----------	---------------------	---------------------------	-------------------------------	
40	Mallam	3	4	
41	Kolliyangunam	5	8	
42	Nallamur	4	6	
43	Thenkalavai	13	14	
44	Kiledayalam	20	30	
45	Nedimohiyanur	14	28	
46	Vilangambadi	24	44	
47	Thenkolapakkam	5	10	
48	Kutteripattu	26	24	
49	Sozhiyasorkulam	6	12	
50	Thenputthur	6	12	
51	Kenipattu	10	12	
52	Thiruvakkarai	1	2	
53	Kanniyam	1	2	
54	Konamangalam	3	6	
55	Thazhuthali	4	4	
56	Perumbakkam	0	6	
57	vanur	11	18	
58	Aurovile	1	2	
59	Veedur	2	2	
60	Siruval	11	24	
61	Pombur	6	6	
62	Thenkodipakkam	4	6	
63	Gingee	60	44	
64	Thiruvamathur	11	4	
65	Tindivanam	0	12	
66	kodukur	1	2	
67	Tirumangalam	0	0	
68	Tirukkovilur	38	26	
69	Khayur	30	20	
70	Koduvur	1	2	
71	Thirumangalam	0	1	
Total		7	71	1119

A dead palm tree, both male and female individuals were involved in excavating holes in the tree trunks. In Tamil Nadu indiscriminate felling of *B. flabellifer* trees for firewood and due to urbanization, widening of roads, and construction of buildings have been reported (M. Pandian pers. obs.). The study further reveals that the birds utilized the already existing cavities in living trees such as *M. longifolia*, *F. benghalensis*, and *A. lebbeck* for building nests. No incident of excavation of cavities on the above three tree species was noticed during the study period.

Ali & Rilpey (1969) reported that in India, apart from the cavities of trees this bird also utilizes existing crevices in buildings for construction of nests. In Pakistan, this bird selected holes in trees as well as crevices in buildings for construction of nests (Jahan et al. 2018). Breeding of *P. krameri* in buildings is very common in Britain, Germany, Belgium, and Japan (Braun 2004, 2007). Some breeding pairs build nests in wall holes or crevices of buildings in north India and Spain. In Pavia (northern Italy), the entire population breeds in scaffold holes of the Visconti castle and towers (Grandi et al. 2016). The present study reveals
that 26% nests (n= 208) and 16.8% birds (n= 188) were counted on 10 temples and three buildings in the study area. The present observation of successful utilization of available holes/crevices in the temple and buildings for construction of nests by *P. krameri* population matches the findings of Ali & Rilpey (1969), Jahan et al. (2018), and Braun (2004, 2007).

Preference of habitats for nesting

As a social bird, *P. krameri* generally prefers to build nests on trees situated near agricultural lands. Occurrence of 29.1% nests (n= 234) and 33% birds (n= 369) on the trees situated near the agricultural lands prove that the birds preferred to breed in agricultural areas where abundant food materials are available. Another 22.8% nests (n= 182) and 24.3% birds (n= 272) were found on trees located near water bodies. Maximum nests of *P. krameri* were found in the areas where cultivation of crops occurs and near water bodies in Punjab (Khan 2002a) and Hawaii (Paton et al. 1982). In the present study, occurrence of 51.9% nests (n= 416) and 57.3% birds (n= 641) in agricultural lands and close to water bodies in rural villages clearly indicates that the birds selected nesting sites in agrarian landscapes ensuring availability of abundant food material. Hence it matches with the observations of Khan (2002a) and Paton et al. (1982).
Nest tree preference by Ring-necked Parakeet

Image 2. Inter-specific competition: a—male parakeet fighting with a pair of Blue Rock Pigeons | b—nestlings of Spotted Owlet | c—Indian Roller guarding its nest on top of dead B. flabellifer tree, and | d—Black-rumped Flameback excavating cavity. © M. Pandian.

Image 3. Abnormalities in Psittacula krameri: a—male bird with beak deformity | b—female bird with cere deformity | c—female bird with suspected infection of psittacine beak & feather disease | d—female bird with colour abnormality. © M. Pandian.
This bird also preferred trees near human settlements and holes/crevices of temples/buildings for construction of nests. It suggests that the birds tolerate the presence of human.

Observation of inter-specific interactions

Cavity nesters pose a unique habitat problem. Obligate cavity nesters are associated with intra and inter-specific competition for nest sites (Collias & Collias 1984; Nilsson 1984). Jones (1980) had stated that incidents of competition between *P. krameri* and mynas *Acidotheres tristis* for sharing nest cavities in trees was reported in Mauritius. In view of the limited availability of nest-holes, inter-specific competition usually occurs between secondary cavity nesting birds in human altered landscapes (Cornelius 2008). They compete with native birds for sharing trunk-holes in Belgium also (Strubbe & Matthysen 2009). In the present study too *P. krameri* competed with a Blue Rock Pigeon, for sharing a hole in a temple, with a Spotted Owlet, an Indian Roller and a Black-rumped Flameback for sharing trunk holes in *B. flabellifer* trees during the breeding period. Hence, the present observation of inter-specific competition with other birds for sharing nesting sites corroborates with the findings of Jones (1980) and (Strubbe & Matthysen 2009).

Observation of abnormalities

Beak abnormalities may occur due to various causes such as malnutrition, infections, injuries, mutations, defective bone growth, tear of rhamphotheca, and misalignment of maxilla & mandible (Oslen 2003; Handel et al. 2010; Zylberberg et al. 2018). Deformed beaks take many forms with upper/lower mandibles elongated, curved or mandibles crossed and are more prevalent in passerines (Craves 1994). Pomeroy (1962) has observed that abnormal bills in wild birds are rare with an estimated frequency of less than 0.5%. British Trust for Ornithology (BTO 2014) has recorded 36 species with beak deformities including ring-necked parakeets. In India, Kasambe et al. (2009) and Soni et al. (2019) have reported bill deformities in Yellow-billed Blue Magpie, Crow, and Common Myna. Kanwar (2019) has recorded beak abnormality in Ring-necked Parakeets in Chandigarh. In the present study, the upper mandible of one male bird was found colourless, curved and elongated up to its neck. This type of beak deformity may cause hardship to the bird while foraging and feeding chicks. Out of 1,119 birds studied, only one individual, i.e., 0.09% had a bill deformity. Hence, it confirms the view of Pomeroy (1962) that abnormal bills in wild birds are rare with an estimated frequency of less than 0.5%

One female bird with swollen and distorted cere with a big nostril was observed. Cornification and keratinization of the cere can progress to close up the nostrils. These abnormalities in cere might have been caused by the mite, *Knemidokoptes pilae* (Zwart 1995). The study reveals that one female bird with similar symptoms of swollen and distorted cere with big opening was found. The observed symptoms matched the findings of Zwart (1995).

Colour mutations in *P. krameri* such as yellow (Bhargava & Hanfee 1996), white-rose (Mahabal et al. 2015), albinism (Mahabal et al. 2016), and cinnamon green (Kushwaha & Kumar 2018) have been reported in India. In U.K., many colour mutations have occurred in captive birds (Low 1992; Butler 2003). Hence, the present observation of yellow colour mutation of feathers in the study area corroborates the findings of the aforesaid authors.

Pass & Perry (1984) and Ritchie et al. (1991) had stated that psittacine beak & feather disease (PBFD) caused by a virus has emerged as a major threat to the wild parakeet populations. The observed four *P. krameri* individuals with similar symptoms of feather loss and warty skin on their heads are suspected to have PBFD.

CONCLUSION

The present study was confined to a small geographical area covering 71 villages in seven northern districts of Tamil Nadu. Since a total of 1,119 individuals and 797 nests were enumerated in this region, it is considered a hotspot for breeding of this species. A systematic survey of the entire state would throw more light on the status and distribution of Ring-necked Parakeets in the state, and help in drafting an action plan to conserve their habitats in and around villages and also in the urban areas.

REFERENCES

Ali, S. & S.D. Ripley (1968). Handbook of the Birds of India and Pakistan, Vol 3. Oxford University Press, Oxford, 380pp.

Ali, S. & S.D. Ripley (1987). Handbook of the birds of India and Pakistan, Compact Edition. Oxford University Press, New Delhi, 278pp.

Bhargava, R. & H. Hanfee (1996). Sightings of a Yellow Rose-ringed Parakeet. *Newsletter for Birdwatchers* 36: 81.

Bibby, C.J., N.D. Burgess, D.A. Hill & S.H. Mustoe (2000). *Birds Census Techniques, 2nd Edition*. Academic Press, New York, 302pp.

BirdLife International (2018). The IUCN Red List of Threatened Species. Accessed on 01 April 2020. https://iucnredlist.org/species/22685441/132057695

BTO (2014). British Trust for Ornithology. Species Affected, *Garden Bird Survey*. bto.org. Accessed on 15 December 2019.

Braun, M. (2004). *Alien species in urban habitats: Ecology and niche
expansion of Ring-necked Parakeets (Psittacula krameri Scopoli, 1769) in Heidelberg, Germany: Marburg University, 127pp.

Braun, M. (2007). How does thermal insulation on buildings as a result of EU climate protection-affect the breeding biology of tropical Ring-necked Parakeets (Psittacula krameri) in temperate Central Europe?. Ornithol Jahres Baden-Wurtt 23: 39–56.

Braun, M.P. & M. Wink (2013). Nesting development of ring-necked parakeets (Psittacula krameri) in a nest box population. The Open Ornithology Journal 6: 9–24.

Butler, C.J. (2003). Population biology of the introduced Rose-ringed Parakeet Psittacula krameri in the UK. Thesis, Department of Zoology, University of Oxford, 312pp.

Cody, M.L. (1985). Habitat selection in the Sylviine Warblers of Western Europe and North America, 86–129 pp. In: Cody, M.L. (ed.) Habitat selection in Birds. Academic Press, Orlando, Florida, New York, 585pp.

Collias, N.E. & E.C. Collias (1984). Nest building and bird behaviour. Princeton University Press, Princeton, New Jersey, 336pp.

Cornelius, C. (2008). Spatial variation in nest-site selection by a secondary cavity-nesting bird in a human-altered landscape. The Condor 110(4): 615–626.

Crawes, J.A. (1994). Passerines with deformed bills-North American Birds. Banders 19(1): 14–18.

Dhindsa M.S. & H.K. Saina (1994). Agricultural Ornithology: an Indian perspective. Journal of Bioscience 19: 391–402.

Gokula, V., C. Venkataraman, S. Saravanan & S. Swaminathan (1999). Inter and intraspecific variation in the resource use of blossom-headed and Blue-winged parakeets in Siruvani, Tamil Nadu, India. Journal of the Bombay Natural History Society 96(2): 225–231.

Grandi, G., M. Menchetti & E. Moris (2016). Use of putlog holes of Visconti Castle by breeding ring-necked parakeets (Psittacula krameri) in Pavia (northern Italy). In: Atti del III Congresso Nazionale Fauna Problematica, Cesena., Palazzo del Ridotto, 24–26 November 2016. 90–91.

Handel, C.M., L.M. Pajot, S.M. Matsuka, C.V. Hemert, J.C. Derisi (2018). The parrots on the way of extinction. Springer, New York, vii+603pp.

Jones, C.G. (1980). The pathogens of psittacine beak and feather disease. Australian Veterinary Journal 61: 69–74.

Newton, I. (1994). The role of nest sites in limiting the numbers of hole-nesting birds: a review. Biological Conservation 70: 265–276.

Nice, M.M. (1957). Nesting success in altricial birds. Auk 74: 305–321.

Nilsson, S.G. (1984). The evolution of nest-site selection among hole-nesting birds. The importance of nest predation and competition. Ornis Scand 15: 167–175.

Olsen, G.H. (2003). Oral biology and beak disorder of birds. Veterinary Clinics of North America. Exotic Animal Practice 6(3): 505–521.

Pass, D.A. & R.A. Perry (1984). The pathogens of psittacine beak and feather disease. Australian Veterinary Journal 61: 69–74.

Paton, P., C. Griffin & L. Griffin (1982). Rose-ringed parakeet nesting in Hawaii: A potential agricultural threat. Elepaio 43(5): 37–39.

Pomeroy, D.E. (1962). Birds with abnormal birth. British Birds 55: 49–72

Rasmussen, P.C. & J.C. Anderton (2005). Birds of South Asia: The Ripley Guide. 2. vols. Smithsonian Institution & Lynx Editions, Washington D.C. & Barcelona, 378pp.

Ritchie, B.W., F.D. Niasro, K.S. Latimer, W.L. Steffens, D. Pest & P.D. Lukert (2010). Oral biology and beak disorder of birds. Veterinary Clinics of North America. Exotic Animal Practice 6(3): 505–521.

Schackermann, J., H.V. Wehrend, N. Weiss & A. Klein (2014). High trees increase sunflower predation by birds in an agricultural landscape. Vol 2. Frontiers in Ecology and Evolution 2: 35. https://doi.org/10.3389/fevo.2014.00035

Shivanarayan, N., K.S. Babu & M.H. Ali (1981). Breeding biology of Ring-ringed Parakeet, Psittacula krameri at Maruteru. Pavo 19: 92–96.

Shivashankar, T. & S. Subramanya (2008). Prevention of Rose-ringed parakeet Psittacula krameri damage to Sunflower Helianthus annus. Indian Birds 42(2): 60–65.

Son, S., N.K. Sahi & T.K. Kler (2019). Records of beak deformities in Punjab, India. Journal of the Bombay Natural History Society 116: 52–53.

Strubbe, D. & E. Matthey (2007). Invasive Ring-necked Parakeets Psittacula krameri in Belgium: habitat selection and impact on native birds. Ecography 30(4): 578–588.

Strubbe, D. & E. Matthey (2009). Establishment success of native Ring-necked and Monk Parakeets in Europe. Journal of Biogeography 36(12): 2264–2278.

Tamil Nadu (2020). Government of Tamil Nadu website www.tn.gov.in. Accessed on 13 April 2020.

Thabete, V., L. Thompson, L. Hart & M. Brown (2013). Seasonal effects on the thermoregulation of invasive rose-ringed parakeets (Psittacula krameri). Journal of Thermal Biology 38(8): 553–559. https://doi.org/10.1016/j.jtherbio.2013.09.006

Wesolowski, T. (2007). Lessons from long-term hole-nester studies in a prairieval temperate forest. Journal of Ornithology 148: 395–405.

Zwart, P. (1995). Diseases of the respiratory tract in Psittacine birds. Veterinary Quarterly 17(1): 52–53.

Zylinderberg, M., C.V. Hemert, C.M. Handler & J.C. Derisi (2018). Avian keratin disorder of Alaska Black-capped Chickadees is associated with Poeocirrus infection. Virology Journal 15(1): 100.
The Journal of Threatened Taxa (JoTT) is dedicated to building evidence for conservation globally by publishing peer-reviewed articles online every month at a reasonably rapid rate at www.threatenedtaxa.org. All articles published in JoTT are registered under Creative Commons Attribution 4.0 International License unless otherwise mentioned. JoTT allows unrestricted use, reproduction, and distribution of articles in any medium by providing adequate credit to the author(s) and the source of publication.

ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print)

Date of Publication: 26 April 2021 (Online & Print)
DO: 10.11609/jott.2021.13.5.18099-18410

Articles

Spatiotemporal movement pattern of Asian Elephants Elephas maximus Linnaeus, 1758 in Sindhudurg District, Maharashtra, India
– Milind Dimangbar Patil, Vinayak Krishna Patil & Nirdin Avinash Mungi, Pp. 18099–18109

Conservation ecology of birds in Mt. Hilong-hilong, a Key Biodiversity Area on Mindanao Island, the Philippines
– Arturo G. Gracia Jr., Alma B. Mohagan, Janezcel C. Buriat, Welfredo L. Yu Jr, Janine Mondalo, Florfe M. Acma, Hannah P. Lumista, Riah Calising & Krizler Cejuela Tanalgo, Pp. 18110–18121

Nesting and hunting behaviour of Olive Ridley Turtles Lepidochelys olivacea (Eschscholtz, 1829) (Reptilia: Cetoroidea: Cheloniiidae) on Dr. Abdul Kalam Island, Odisha, India
– P. Poornima, Pp. 18122–18131

Communications

Feeding ecology of Walia ibex Capra walie (Mammalia: Artiodactyla: Bovidae) in Simien Mountains National Park, Ethiopia
– D. Ejigu, A. Bekele & L. Powell, Pp. 18132–18140

Assessment of crop and property damage caused by Semnopithecus vetulus nestor (Bennett, 1833) (Mammalia: Primates: Cercopithecidae) in Gampaha District, Sri Lanka
– Sunil Wijetilaka, Lakshani S. Weerasekara, Samyaa Bandara & Kithsin B. Ranawana, Pp. 18141–18147

Habitat preference of the Indian Pangolin Manis crassicaudata inhabiting Margalla Hills National Park, Islamabad, Pakistan
– Tarig Mahmood, Shaista Andleeb & Faraz Akrim, Pp. 18148–18155

The endangered Himalayan Red Panda: first photographic evidence from its westernmost distribution range
– Saroj Shrestha, Sony Lama, Ang Phuri Sherpa, Sonam Tashi Lama & Dinesh Ghale, Pp. 18156–18163

Ecological niche modelling predicts significant impacts of future climate change on two endemic rodents in eastern Africa
– Aditya Srinivasulu, Alembharn Assefa & Chelmala Srinivasulu, Pp. 18164–18176

Avian diversity in a fragmented landscape of central Indian forests (Bhopal Forest Circle)
– Amit Kumar, Yogesh Dubey & Advait Edgaonkar, Pp. 18177–18188

Nest tree preference shown by Ring-necked Parakeet Psittacula krameri
– Aditya Srinivasulu, Alembrhan Assefa & Chelmala Srinivasulu, Pp. 18164–18176

New records of six termite (Blattoidea: Termitidae) species from Kerala, India
– Poovoli Amina & K. Rajmohana, Pp. 18149–18154

Status, abundance, and seasonality of butterfly fauna at Kuvempu University Campus, Karnataka, India
– M.N. Harisha & B.B. Hossetti, Pp. 18355–18363

Observations on butterflies of non-protected areas of Tabasar, Assam, India
– Abhijit Konwar & Manashi Bortamuly, Pp. 18364–18377

Three new distribution records of Conidae (Gastropoda: Neogastropoda: Conoidea) from the Andaman Islands, India
– Jayaseelan Benjamin Franklin & Deepak Arun Apte, Pp. 18378–18384

A new record of an endangered and endemic rare Rein Orchid Habenaria rariflora from Gujarat, India
– Mital R. Bhatt, Pp. 18385–18389

Glimpse of climber diversity in Saharanpur District, Uttar Pradesh, India
– Lalita Saini, Archasvi Tyagi, Inam Mohammad & Vijai Malik, Pp. 18390–18402

Notes

Photographic record of Temminck’s Tragopan Tragopan temminckii (Gray, 1831) (Aves: Galliformes: Phasianidae) from eastern Bhutan: an evidence of its westward range expansion
– Tshering Dorji, Kintey Kinley, Letro Letro, Dawa Tshering & Prem Nanda Maidali, Pp. 18403–18405

The Malay Cardamom Meistera aculeata (Roxb.) Škorník. & M.F. Newman (Zingiberaceae: Alpinioideae) from the Palghat gap: a new record to Kerala, India
– Vadakkeveedu Jagadesh Aswani, Manjakulam Khadhersha Jabeena & Maya Chandrashekaran Nair, Pp. 18406–18410

Legumes of Kerala, India: a checklist
– Anoop P. Balan & S.V. Predeep, Pp. 18257–18282

Legumes of Kerala, India: a checklist
– Anoop P. Balan & S.V. Predeep, Pp. 18257–18282

Marine mammal strandings in the northern Palik Bay from 2009 to 2020
– Vedharajan Balaji & Veeramuthu Sekar, Pp. 18313–18318

First distribution record of the Asiatic Toad Bufo gargarizans Cantor, 1842 from India — Dilbang Valley in Arunachal Pradesh
– Sahil Nijhawan, Jayanta Kumar Roy, Iho Mitapo, Gata Miwu, Jibi Pulu & M. Firoz Ahmed, Pp. 18319–18323

A checklist of fishes of Telangana State, India
– Kante Krishna Prasad & Chelmala Srinivasulu, Pp. 18324–18343

Report on the stingless bees of Bhutan (Hymenoptera: Apidae: Meliponini)
– Tshering Nidup, Pp. 18344–18348

A new distribution record of mason wasp Sphecidae: Larrinae) from Noida, Uttar Pradesh, India
– P. Sreevidhya, S.V. Akhil & C.D. Sebastian, Pp. 18215–18226

Astenus Two new light attracted rove beetle species of Staphylinidae: Paederinae) from Kerala, India
– Kalesh Sadasivan, Pp. 18200–18214

Two new species of Euphaea Seyls, 1840 (Odonata: Zygoptera: Euphaeidae) from northern Western Ghats, India
– Shriram Dinkar Bhakare, Vinayak P Nair, Pratima Ashok Pawar, Sunil Hanmant Bhoite & Kaesh Sadasivan, Pp. 18200–18214

Three new distribution records of Conidae (Gastropoda: Neogastropoda: Conoidea) from the Andaman Islands, India
– Jayaseelan Benjamin Franklin & Deepak Arun Apte, Pp. 18378–18384

A new record of an endangered and endemic rare Rein Orchid Habenaria rariflora from Gujarat, India
– Mital R. Bhatt, Pp. 18385–18389

Glimpse of climber diversity in Saharanpur District, Uttar Pradesh, India
– Lalita Saini, Archasvi Tyagi, Inam Mohammad & Vijai Malik, Pp. 18390–18402

First report of the fleshy mushroom Trichaleurina javanica (Rehm) M. Carbone et al. (Ascomycota: Pezizales: Chorioactidaceae) from southern India
– Munuswamy Kumar, Sekar Nithya & Antony Agnes Kayalvizhi, Pp. 18398–18402

Notes

Photographic record of Temminck’s Tragopan Tragopan temminckii (Gray, 1831) (Aves: Galliformes: Phasianidae) from eastern Bhutan: an evidence of its westward range expansion
– Tshering Dorji, Kintey Kinley, Letro Letro, Dawa Tshering & Prem Nanda Maidali, Pp. 18403–18405

The Malay Cardamom Meistera aculeata (Roxb.) Škorník. & M.F. Newman (Zingiberaceae: Alpinioideae) from the Palghat gap: a new record to Kerala, India
– Vadakkeveedu Jagadesh Aswani, Manjakulam Khadhersha Jabeena & Maya Chandrashekaran Nair, Pp. 18406–18410

Legumes of Kerala, India: a checklist
– Anoop P. Balan & S.V. Predeep, Pp. 18257–18282

Legumes of Kerala, India: a checklist
– Anoop P. Balan & S.V. Predeep, Pp. 18257–18282