Bis(nitrato-κO)(1,4,8,11-tetraazacyclotetradecane-κ⁴/N)zinc(II) methanol monosolvate

Yoshimi Ichimaru,a Koichi Kato,a* Masaaki Kurihara,a Wanchun Jin,b Tohru Koikec and Hiromasa Kurosakib*

aFaculty of Pharmaceutical Sciences, Shonan University of Medical Sciences, 16-48 Kamishinano, Totsuka-ku, Yokohama, Kanagawa 244-0806, Japan, bCollege of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Nagoya 463-8521, Japan, and cDepartment of Functional Molecular Science, Institute of Biochemical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan. *Correspondence e-mail: kato-k@kinjo-u.ac.jp, h-kurosaki@kinjo-u.ac.jp

The two ZnII atoms in the crystal structure of the title complex, [Zn(NO3)2(C10H24N4)]/C1CH3OH, have a distorted octahedral coordination sphere, defined by 1,4,8,11-tetraazacyclotetradecane (cyclam) N atoms in the equatorial plane and nitrate O atoms in the axial sites. The conformation of the cyclam is trans-III (R, R, S, S), which is typical for metal–cyclam complexes. Nitrate anions are involved in intra- and intermolecular hydrogen bonding with the N–H groups of the ZnII–cyclam unit. Together with the methanol solvent molecule, the hydrogen-bonding network connects the ZnII–cyclam units into ribbons running parallel to the a axis.

Structure description

Cyclam is a well-known macrocyclic polyamine and water-soluble ligand that can strongly chelate transition-metal cations. As a result, various cyclam derivatives and metal complexes have been synthesized, and their crystal structures have been described. The crystal structure of the title zinc nitrate complex, on the other hand, is the first reported in this context. We anticipate that, in future, this structural property can be used in the development of new functional materials.

The asymmetric unit of the title complex, [ZnII(C10H24N4 = cyclam)](NO3)2·CH3OH, comprises two half-ZnII–cyclam complexes that are centered on Zn1 and Zn2, as well as two nitrate anions that coordinate to each ZnII atom, and a methanol solvent molecule. The two half-ZnII–cyclam complexes are completed by inversion symmetry. Each ZnII atom is coordinated in a planar fashion by the four N atoms of the cyclam ligand. N1, N2,
N1i, and N2i [symmetry code: (i) 2 - x, 1 - y, 1 - z] define the cyclam plane around Zn1, and nitrate atoms O1 and O1i coordinate at the axial positions of the resulting distorted octahedron (Fig. 1). For Zn2, the equatorial plane is defined by N3, N4, N3ii, and N4ii [symmetry code: (ii) 1 - x, 1 - y, 1 - z], and the axially bound O atoms by O4 and O4ii (Fig. 2). The coordination environments of the two central Znii atoms are similar to that of Co(cyclam)Cl\textsubscript{2} (Oba & Mochida, 2015). The conformation of the cyclam structure is trans-III (R, R, S, S) type, which is the most energetically favorable conformation (Bosnich et al., 1965). The conformation is generally consistent with previous reports for metal–cyclam complexes such as Cuii (Emsley et al., 1990), Niii (Prasad et al., 1987), and Pdii (Hunter et al., 2004). The Zn1–O1 and Zn2–O4 bond lengths are 2.3045 (18) and 2.3233 (19) Å, respectively, which is longer than in the Znii–nitrate ion (ca 2.0 Å; Ichimaru et al., 2021; Kinoshita-Kikuta et al., 2021), owing to the hydrogen-bonding network detailed below. The N1–Zn1–O1 and N2–Zn2–O4 bond angles are 92.98 (8)\textdegree and 89.14 (9)\textdegree, and N3–Zn2–O4 and N4–Zn2–O4 are 91.98 (8) and 87.95 (9)\textdegree. These angles imply that both Znii atoms are on the centroid of the plane created by the four cyclam N atoms. However, the two cyclam rings chelating Zn1 and Zn2 have different asymmetric structures: N1–H1 and N2–H2 have syn-configurations, while N3–H3 and N4–H4 have anti-configurations.

In addition to the methanol solvate molecule, two nitrate anions are involved in the formation of an inter- and intramolecular hydrogen-bonding network. The nitrate anion coordinating to Zn1 forms an intramolecular hydrogen bond (O2•••H1–N1) and an intermolecular hydrogen bond (O3•••H4–N4) (Fig. 2). N2–H2 and N3–H3 create hydrogen bonds with the other nitrate ion. As a result, the hydrogen-bond network includes all N-bound H atoms. Table 1 summarizes numerical data of the hydrogen bonding. In the crystal packing, the different moieties form ribbons parallel to the a axis through the hydrogen-bonding network (Fig. 3). The distances between Zn atoms parallel to the a axis, for example, Zn1•••Zn2, are 7.6706 (3) Å (Fig. 3). The distances between Zn atoms in neighboring ribbons, for example, Zn1•••Zn1iii [symmetry code: (iii) x, \(\frac{1}{2} - y, -\frac{1}{2} + z\)], are 7.93804 (18) Å (Figs. 3 and 4). The nitrate ions coordinating to Zn1 and Zn2 have an N•••N distance of 3.409 (4) Å (Fig. 3).
Synthesis and crystallization

Under an argon atmosphere, zinc nitrate hexahydrate (1.5 g, 5 mmol), dissolved in dry methanol (5 ml), was added to a 20 ml dry methanolic solution of cyclam (1.0 g, 5 mmol). The reaction mixture was agitated at room temperature for 2 h before the solvent was evaporated to get a colorless solid. To obtain colorless crystals appropriate for X-ray crystallography, the crude product was dissolved in hot methanol, filtered through a cellulose filter (0.45 μm pore size) and cooled to room temperature (yield 1.7 g, 87%).

Refinement

Table 2 summarizes crystal data, data collection, and structure refinement details.

Funding information

Funding for this research was provided by: Japan Society for the Promotion of Science (grant No. JP21K15244 to K. Kato; grant No. JP21K06455 to H. Kurosaki; grant No. JP20K07210 to T. Koike).

References

Bosnich, B., Poon, C. K. & Tobe, M. L. (1965). Inorg. Chem. 4, 1102–1108.

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.

Emsley, J., Arif, M., Bates, P. A. & Hursthouse, M. B. (1990). J. Mol. Struct. 220, 1–12.

Hunter, T. M., Paisey, S. J., Park, H., Cleghorn, L., Parkin, A., Parsons, S. & Sadler, P. J. (2004). J. Inorg. Biochem. 98, 713–719.

Ichimaru, Y., Kato, K., Kurosaki, H., Fujioka, H., Sakai, M., Yamaguchi, Y., Wanchun, J., Sugiura, K., Imai, M. & Koike, T. (2021). IUCr Data, 6, x210397.

Kinoshita-Kikuta, E., Ichimaru, Y., Yamano, Y., Kato, K., Kurosaki, H., Inoue, K., Koike, T. (2021). Bull. Chem. Soc. Jpn, 94, 2670–2677.

Oba, Y. & Mochida, T. (2015). Polyhedron, 99, 275–279.

Prasad, L., Nyburg, S. C. & McAuley, A. (1987). Acta Cryst. C43, 1038–1042.

Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.

Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
full crystallographic data

IUChData (2022). 7, x220854 [https://doi.org/10.1107/S2414314622008549]

Bis(nitrato-κO)(1,4,8,11-tetraazacyclotetradecane-κ^4N)zinc(II) methanol monosolvate

Yoshimi Ichimaru, Koichi Kato, Masaaki Kurihara, Wanchun Jin, Tohru Koike and Hiromasa Kurosaki

Bis(nitrato-κO)(1,4,8,11-tetraazacyclotetradecane-κ^4N)zinc(II)] methanol monosolvate

Crystal data

\[\text{[Zn(NO}_3\text{)}_2(C_{10}H_{24}N_4)]\cdot\text{CH}_3\text{O}\]

\(M_r = 421.76\)

Monoclinic, \(P2_1/c\)

\(a = 15.3412 (5) \text{ Å}\)

\(b = 9.4306 (3) \text{ Å}\)

\(c = 12.7716 (4) \text{ Å}\)

\(β = 105.864 (4)°\)

\(V = 1777.38 (10) \text{ Å}^3\)

\(Z = 4\)

\(F(000) = 888\)

\(D_a = 1.576 \text{ Mg m}^{-3}\)

Cu \(Kα\) radiation, \(\lambda = 1.54184 \text{ Å}\)

Cell parameters from 4300 reflections

\(\theta = 3.0–68.2°\)

\(\mu = 2.36 \text{ mm}^{-1}\)

\(T = 100 \text{ K}\)

Block, clear colourless

\(0.54 \times 0.19 \times 0.09 \text{ mm}\)

Data collection

Rigaku XtaLAB Synergy-i diffractometer

Detector resolution: 10.0 pixels mm\(^{-1}\)

\(ω\) scans

Absorption correction: multi-scan

(CrysAlisPro; Rigaku OD, 2022)

\(T_{\text{min}} = 0.356, T_{\text{max}} = 1.000\)

9899 measured reflections

3230 independent reflections

2568 reflections with \(I > 2σ(I)\)

\(R_{\text{int}} = 0.078\)

\(θ_{\text{max}} = 68.3°, θ_{\text{min}} = 3.0°\)

\(h = -11→1\)

\(k = -11→1\)

\(l = -15→15\)

Refinement

Refinement on \(F^2\)

Least-squares matrix: full

\(R[F^2 > 2σ(F^2)] = 0.063\)

\(wR(F^2) = 0.188\)

\(S = 1.01\)

3230 reflections

231 parameters

0 restraints

Primary atom site location: dual

Hydrogen site location: mixed

H-atom parameters constrained

\(w = 1/[σ^2(F^2) + (0.1278P)^2]\)

where \(P = (F^2_c + 2F^2_s)/3\)

\((Δ/σ)_{\text{max}} = 0.001\)

\(Δρ_{\text{max}} = 1.01\ \text{e Å}^{-3}\)

\(Δρ_{\text{min}} = -0.92\ \text{e Å}^{-3}\)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All hydrogen atoms were placed using a geometrical computation.
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²)

	x	y	z	Ueq *	Ueq	
Zn1	1.000000	0.500000	0.500000	0.0174(3)		
Zn2	0.500000	0.500000	0.500000	0.0210(3)		
O1	0.90165(12)	0.6144(2)	0.57953(17)	0.0228(5)		
O4	0.41074(12)	0.4107(2)	0.60524(17)	0.0240(5)		
O3	0.77063(11)	0.6485(2)	0.60726(18)	0.0285(6)		
O2	0.83570(14)	0.4444(3)	0.6451(2)	0.0327(6)		
N4	0.60866(19)	0.5006(2)	0.6400(3)	0.0180(7)		
H4	0.664921	0.519254	0.617093	0.022*(7)		
O7	0.81007(13)	0.9063(2)	0.4951(2)	0.0361(6)		
H7	0.812347	0.819336	0.516078	0.043*(7)		
O6	0.28873(13)	0.3907(2)	0.6578(2)	0.0392(7)		
O5	0.31960(14)	0.5903(2)	0.5959(2)	0.0373(7)		
N2	0.89281(18)	0.4685(3)	0.3604(2)	0.0212(6)		
H2	0.835219	0.491792	0.379058	0.025*(6)		
N1	0.98381(15)	0.3061(3)	0.5702(2)	0.0214(6)		
H1	0.933487	0.318926	0.605250	0.026*(6)		
N5	0.83550(14)	0.5680(3)	0.6110(2)	0.0174(6)		
N6	0.33879(16)	0.4640(3)	0.6198(2)	0.0203(6)		
N3	0.47857(15)	0.7086(2)	0.5418(2)	0.0206(6)		
H3	0.428178	0.705969	0.577575	0.025*(7)		
C9	0.62304(18)	0.3673(3)	0.7042(2)	0.0228(7)		
H9A	0.570572	0.350872	0.733703	0.027*(6)		
H9B	0.677734	0.377161	0.766423	0.027*(6)		
C5	0.90590(18)	0.5758(3)	0.2809(2)	0.0273(7)		
H5A	0.849116	0.587691	0.221956	0.033*(6)		
H5B	0.954085	0.544320	0.248060	0.033*(6)		
C8	0.59354(18)	0.6245(3)	0.7040(2)	0.0241(7)		
H8A	0.650488	0.649443	0.759304	0.029*(7)		
H8B	0.547153	0.601449	0.742138	0.029*(7)		
C6	0.45112(18)	0.8098(3)	0.4500(2)	0.0243(7)		
H6A	0.501178	0.820272	0.415422	0.029*(7)		
H6B	0.439699	0.903787	0.478126	0.029*(7)		
C7	0.56169(17)	0.7496(3)	0.6268(2)	0.0242(7)		
H7A	0.548869	0.832283	0.668051	0.029*(7)		
H7B	0.609813	0.776730	0.592444	0.029*(7)		
C1	1.06750(19)	0.2846(3)	0.6595(3)	0.0286(7)		
H1A	1.116932	0.251144	0.629517	0.034*(7)		
H1B	1.057015	0.211822	0.710621	0.034*(7)		
C10	0.63455(18)	0.2400(3)	0.6356(2)	0.0243(7)		
H10A	0.658080	0.159721	0.685250	0.029*(7)		
H10B	0.681107	0.263706	0.597912	0.029*(7)		
C2	0.95855(19)	0.1838(3)	0.4955(3)	0.0294(8)		
H2A	0.947341	0.100243	0.536938	0.035*(8)		
H2B	1.009659	0.160697	0.465025	0.035*(8)		
C4	0.88514(18)	0.3207(3)	0.3175(3)	0.0298(8)		
---	---	---	---	---	---	---
H4A	0.940106	0.297254	0.294672	0.036*		
H4B	0.832302	0.314258	0.252673	0.036*		
C3	0.87418 (19)	0.2135 (3)	0.4024 (3)	0.0316 (8)		
H3A	0.853153	0.122895	0.364889	0.038*		
H3B	0.825874	0.247888	0.433994	0.038*		
C11	0.7259 (2)	0.9615 (4)	0.5002 (3)	0.0329 (7)		
H11A	0.676872	0.901659	0.457126	0.049*		
H11B	0.718800	1.058159	0.470901	0.049*		
H11C	0.723491	0.963070	0.576083	0.049*		

Atomic displacement parameters (Å²)

	U¹¹	U¹²	U¹³	U¹²	U¹³	U¹³
Zn1	0.0152 (4)	0.0120 (4)	0.0215 (4)	−0.00113 (18)	−0.0010 (3)	0.0007 (2)
Zn2	0.0191 (4)	0.0141 (5)	0.0245 (4)	0.00029 (19)	−0.0030 (3)	−0.0013 (2)
O1	0.0144 (9)	0.0192 (11)	0.0366 (12)	−0.0024 (8)	0.0099 (8)	−0.0047 (9)
O4	0.0131 (9)	0.0232 (12)	0.0364 (11)	0.0042 (8)	0.0080 (8)	0.0045 (10)
O3	0.0145 (9)	0.0193 (12)	0.0517 (14)	0.0038 (8)	0.0093 (9)	−0.0010 (10)
O2	0.0258 (11)	0.0225 (13)	0.0545 (16)	0.0051 (10)	0.0188 (11)	0.0139 (12)
O5	0.0137 (12)	0.0149 (15)	0.0229 (15)	−0.0021 (8)	0.0010 (11)	−0.0007 (9)
O7	0.0321 (11)	0.0227 (13)	0.0584 (16)	0.0018 (9)	0.0207 (11)	0.0021 (12)
O6	0.0214 (10)	0.0341 (14)	0.0685 (17)	0.0064 (10)	0.0229 (11)	0.0227 (13)
O5	0.0291 (11)	0.0165 (13)	0.0733 (19)	0.0070 (10)	0.0258 (12)	0.0078 (12)
N2	0.0146 (12)	0.0234 (13)	0.0230 (15)	0.0013 (11)	0.0006 (10)	−0.0039 (12)
N1	0.0165 (11)	0.0156 (13)	0.0339 (14)	0.0035 (9)	0.0102 (10)	0.0027 (11)
N5	0.0095 (10)	0.0179 (14)	0.0224 (12)	−0.0002 (10)	0.0002 (9)	−0.0036 (11)
N6	0.0106 (11)	0.0263 (15)	0.0211 (13)	0.0018 (12)	−0.0007 (9)	0.0019 (12)
N3	0.0162 (11)	0.0163 (13)	0.0283 (13)	−0.0028 (9)	0.0045 (9)	−0.0011 (10)
C9	0.0156 (12)	0.0218 (17)	0.0293 (15)	0.0014 (12)	0.0036 (11)	0.0049 (13)
C5	0.0182 (13)	0.039 (2)	0.0228 (15)	0.0049 (13)	0.0017 (11)	0.0058 (14)
C8	0.0189 (13)	0.0247 (18)	0.0267 (15)	−0.0022 (12)	0.0030 (11)	−0.0063 (14)
C6	0.0166 (13)	0.0168 (15)	0.0376 (17)	−0.0011 (11)	0.0042 (11)	0.0004 (14)
C7	0.0183 (13)	0.0202 (16)	0.0319 (16)	−0.0049 (12)	0.0030 (11)	−0.0059 (14)
C1	0.0208 (14)	0.0287 (19)	0.0354 (18)	0.0094 (13)	0.0059 (12)	0.0119 (15)
C10	0.0172 (12)	0.0186 (16)	0.0331 (16)	0.0021 (12)	0.0001 (11)	0.0036 (14)
C2	0.0238 (15)	0.0110 (15)	0.055 (2)	−0.0010 (12)	0.0142 (14)	−0.0033 (14)
C4	0.0153 (13)	0.036 (2)	0.0357 (18)	−0.0025 (14)	0.0035 (12)	−0.0174 (16)
C3	0.0178 (13)	0.0199 (17)	0.057 (2)	−0.0060 (12)	0.0104 (13)	−0.0149 (15)
C11	0.0259 (13)	0.0356 (19)	0.0372 (19)	0.0017 (17)	0.0084 (12)	0.0016 (16)

Geometric parameters (Å, °)

			N3—C7	1.483 (3)	
Zn1	O1	2.3045 (18)			
Zn1	O1i	2.3045 (18)	C9—H9A	0.9900	
Zn1	N2	2.090 (3)	C9—H9B	0.9900	
Zn2	N2i	2.090 (3)	C9—C10	1.524 (4)	
Zn1	Ni	2.081 (2)	C5—H5A	0.9900	
Zn1	Ni	2.081 (2)	C5—H5B	0.9900	
Bond	Distance (Å)	Bond	Distance (Å)	Bond	Distance (Å)
--------------	--------------	--------------	--------------	--------------	--------------
Zn2—O4ii	2.3233 (19)	C5—C1i	1.520 (4)	O4—N6	1.272 (3)
Zn2—O4	2.3232 (19)	C8—H8A	0.9900	O3—N5	1.242 (3)
Zn2—N4ii	2.085 (3)	C8—H8B	0.9900	O2—N5	1.244 (4)
Zn2—N4	2.085 (3)	C8—C7	1.530 (4)	N4—H4	1.0000
Zn2—N3	2.087 (2)	C6—H6A	0.9900	N4—C9	1.484 (4)
Zn2—N3ii	2.087 (2)	C6—H6B	0.9900	N4—C8	1.480 (4)
O1—N5	1.267 (3)	C6—C10ii	1.535 (4)	O7—H7	0.8603
O4—N6	1.272 (3)	C7—H7A	0.9900	O7—C11	1.410 (4)
O3—N5	1.242 (3)	C7—H7B	0.9900	O6—N6	1.228 (3)
O2—N5	1.244 (4)	C1—H1A	0.9900	O5—N6	1.245 (4)
N4—H4	1.0000	C1—H1B	0.9900	N2—H2	1.0000
N4—C9	1.484 (4)	C8—H8A	0.9900	N2—C5	1.485 (4)
N4—C8	1.480 (4)	C8—H8B	0.9900	N2—C4	1.490 (4)
O7—H7	0.8603	C2—H2A	0.9900	N1—H1	1.0000
O7—C11	1.410 (4)	C2—H2B	0.9900	N1—C1	1.480 (4)
O6—N6	1.228 (3)	C2—C3	1.525 (4)	N1—C2	1.480 (4)
O5—N6	1.245 (4)	C4—H4A	0.9900	O1—Zn1—O1	180.0
N2—H2	1.0000	C4—H4B	0.9900	N2—Zn1—O1	90.86 (9)
N2—C5	1.485 (4)	C4—C3	1.525 (5)	N2—Zn1—O1i	90.86 (9)
N2—C4	1.490 (4)	C3—H3A	0.9900	N2—Zn1—O1ii	89.14 (9)
N1—H1	1.0000	C3—H3B	0.9900	N1i—Zn1—O1	180.00 (15)
N1—C1	1.480 (4)	C11—H11A	0.9800	N1i—Zn1—O1i	92.98 (8)
N1—C2	1.480 (4)	C11—H11B	0.9800	N1i—Zn1—O1ii	87.02 (8)
N3—H3	1.0000	C11—H11C	0.9800	N1—Zn1—O1	87.02 (8)
N3—C6	1.481 (4)	O4—Zn2—O4ii	1.520 (4)	N1—Zn1—O1i	92.98 (8)
O4—Zn2—O4ii	180.0	N3—C6—H6A	109.3	N1—Zn1—O1ii	87.02 (8)
N4i—Zn2—O4i	87.95 (9)	N3—C6—H6B	109.3	N1—Zn1—N2	85.19 (10)
N4i—Zn2—O4ii	92.05 (9)	N3—C6—C10ii	111.7 (2)	N1—Zn1—N2i	94.81 (10)
N4i—Zn2—O4	92.05 (9)	N3—C6—C10ii	111.7 (2)	O4—Zn2—O4ii	180.0
N4i—Zn2—N4	180.0	C7—C8—H8A	109.9	N4—Zn2—O4ii	180.0
N4i—Zn2—N3	94.42 (9)	C7—C8—H8B	109.9	N4—Zn2—O4ii	180.0
Bond	Angle (°)	Bond	Angle (°)		
----------------------	-----------	----------------------	-----------		
N4—Zn2—N3	94.42 (9)	N3—C7—C8	109.2 (2)		
N4—Zn2—N3	85.58 (9)	N3—C7—H7A	109.8		
N4>Zn2—N3	85.58 (9)	N3—C7—H7B	109.8		
N3—Zn2—O4	88.02 (8)	C8—C7—H7A	109.8		
N3—Zn2—O4	91.98 (8)	C8—C7—H7B	109.8		
N3—Zn2—O4	91.98 (8)	H7A—C7—H7B	108.3		
N3—Zn2—N3	88.02 (8)	N1—C1—C5	108.9 (2)		
N3—Zn2—N3	180.0	N1—C1—H1A	109.9		
N5—O1—Zn1	130.97 (17)	N1—C1—H1B	109.9		
N6—O4—Zn2	127.85 (18)	C5—C1—H1A	109.9		
Zn2—N4—H4	107.5	C5—C1—H1B	109.9		
C9—N4—Zn2	115.77 (18)	H1A—C1—H1B	108.3		
C9—N4—H4	107.5	C9—C10—C6	116.0 (2)		
C8—N4—Zn2	105.45 (18)	C9—C10—H10A	108.3		
C8—N4—H4	107.5	C9—C10—H10B	108.3		
C8—N4—C9	112.7 (3)	C6—C10—H10A	108.3		
C11—O7—H7	107.3	C6—C10—H10B	108.3		
Zn1—N2—H2	107.8	H10A—C10—H10B	107.4		
C5—N2—Zn1	105.34 (18)	N1—C2—H2A	109.2		
C5—N2—H2	107.8	N1—C2—H2B	109.2		
C5—N2—C4	113.4 (3)	N1—C2—C3	112.1 (2)		
C4—N2—Zn1	114.27 (19)	H2A—C2—H2B	107.9		
C4—N2—H2	107.8	C3—C2—H2A	109.2		
Zn1—N1—H1	106.5	C3—C2—H2B	109.2		
C1—N1—Zn1	105.80 (17)	N2—C4—H4A	109.3		
C1—N1—H1	106.5	N2—C4—H4B	109.3		
C2—N1—Zn1	116.65 (18)	N2—C4—C3	111.8 (3)		
C2—N1—H1	106.5	H4A—C4—H4B	107.9		
C2—N1—C1	114.1 (2)	C3—C4—H4A	109.3		
O3—N5—O1	118.6 (2)	C3—C4—H4B	109.3		
O3—N5—O2	120.8 (2)	C2—C3—H3A	108.2		
O2—N5—O1	120.6 (2)	C2—C3—H3B	108.2		
O6—N6—O4	119.8 (3)	C4—C3—C2	116.2 (2)		
O6—N6—O5	120.3 (2)	C4—C3—H3A	108.2		
O5—N6—O4	119.9 (2)	C4—C3—H3B	108.2		
Zn2—N3—H3	106.8	H3A—C3—H3B	107.4		
C6—N3—Zn2	115.81 (18)	O7—C11—H11A	109.5		
C6—N3—H3	106.8	O7—C11—H11B	109.5		
C6—N3—C7	114.4 (2)	O7—C11—H11C	109.5		
C7—N3—Zn2	105.63 (17)	H11A—C11—H11B	109.5		
C7—N3—H3	106.8	H11A—C11—H11C	109.5		
N4—C9—H9A	109.2	H11B—C11—H11C	109.5		
N4—C9—H9B	109.2				

\[\text{Zn1—O1—N5—O3} \quad -149.2 (2) \quad \text{N4—C9—C10—C6} \quad -71.3 (3) \]
\[\text{Zn1—O1—N5—O2} \quad 30.9 (4) \quad \text{N4—C8—C7—N3} \quad 57.2 (3) \]
\[\text{Zn1—N2—C5—C1} \quad -42.5 (2) \quad \text{N2—C4—C3—C2} \quad -73.0 (3) \]
\[\text{Zn1—N2—C4—C3} \quad 57.8 (3) \quad \text{N1—C2—C3—C4} \quad 70.0 (3) \]
Zn1—N1—C1—C5i 41.5 (2) C9—N4—C8—C7 −169.3 (2)
Zn1—N1—C2—C3 −53.7 (3) C5—N2—C4—C3 178.6 (2)
Zn2—O4—N6—O6 164.3 (2) C8—N4—C9—C10 177.6 (2)
Zn2—O4—N6—O5 −16.1 (4) C6—N3—C7—C8 −168.6 (2)
Zn2—N4—C9—C10 56.1 (3) C7—N3—C6—C10ii 179.3 (2)
Zn2—N4—C8—C7 −42.1 (2) C1—N1—C2—C3 −177.7 (2)
Zn2—N3—C6—C10ii 56.1 (3) C2—N1—C1—C5 i 171.1 (2)
Zn2—N3—C7—C8 −40.1 (2) C4—N2—C5—C1 i −168.2 (2)

Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)
D—H···A
N1—H1···O2
N2—H2···O5ii
N2—H2···O6i
N3—H3···O5
N4—H4···O3
O7—H7···O1
O7—H7···O3

Symmetry code: (ii) −x+1, −y+1, −z+1.