Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
An innovative protocol for the artificial speech-directed, contactless administration of laboratory-based comprehensive cognitive assessments: PAAD-2 trial management during the COVID-19 pandemic

K. Shin Park*, Jennifer L. Etnier

Department of Kinesiology, University of North Carolina at Greensboro, United States of America

ARTICLE INFO

Keywords:
Alzheimer's disease
Artificial intelligence
Executive function
Neuropsychological tests
Speech synthesis
Text-to-speech
Physical activity
Working memory

ABSTRACT

The COVID-19 pandemic resulted in suspending in-person human subject research across most institutions in the US. Our extensive cognitive assessment for a phase-2 clinical trial, Physical Activity and Alzheimer's Disease-2 (PAAD-2), was also paused in March 2020. It was important to identify strategies to mitigate the risk of COVID-19 transmission during our testing, which initially required substantial human speech and close person-to-person contact for test directions and instant feedback on paper/pencil tests. Given current understanding of the COVID-19 transmission, we dramatically adjusted the testing protocol to minimize the production of speech droplets and allow social distancing while maintaining the integrity of testing. We adopted state-of-the-art speech synthesis and computerization techniques to create an avatar to speak on behalf of the experimenter for all verbal instructions/feedback, used a document camera to observe the paper/pencil tests from the required distances, and automated the testing sequence and timing. This paper aims 1) to describe an innovative laboratory-based cognitive testing protocol for a completely contact-free, computer-speaking, and semi-automated administration; and 2) to evaluate the integrity of the modified protocol (n = 37) compared with the original protocol (n = 32). We have successfully operated the modified protocol since July 2020 with no evidence of COVID-19 transmission during testing, and data support that the modified protocol is robust and captures data identical to the original protocol. This transition of data collection methods has been critical during the pandemic and will be useful in future studies to mitigate the risk of contagious disease transmission and standardize laboratory-based psychological tests.

Trial registration: ClinicalTrials.gov NCT03876314. Registered March 15, 2019

1. Introduction

The COVID-19 pandemic resulted in the suspension of in-person human research activities across most institutions in the United States. In response to the serious health threat at global and national levels, universities acted quickly to vacate their campuses by converting teaching to online, sending students, faculty, and staff home to perform their duties remotely, and putting all non-essential research on pause [1–3]. Wigginton and colleagues [4] estimated that 80% of on-site research activities at the authors’ universities were halted by limiting building access and only permitting studies on animals, patient safety, or COVID-19. Our extensive cognitive testing for a phase-2 clinical trial, Physical Activity and Alzheimer’s Disease-2 (PAAD-2) [5], was also paused in March 2020.

Mitigation of risk was partially attained by following the university’s
requirement of wearing face coverings and maintaining social distance for every person involved in testing. We further attempted to minimize the production of small speech droplets, which can cause airborne transmission of COVID-19 in confined environments [7–10]. Moreover, as speaking under face coverings imposes vocal fatigue and discomfort, difficulties in coordinating speech and breathing, and can make speech more difficult to understand [11], our goal was to reduce the need for speaking by the experimenter. As such, we employed state-of-the-art speech synthesis and computer programming techniques to have an avatar speak on behalf of the experimenter for all verbal instructions. We also used a document camera to allow the experimenter to observe participants’ performance from the required or even farther distances and employed computer program to automate the testing sequences and timing control.

While the protocol modifications substantially addressed safety concerns relative to COVID-19 transmission, the maintenance of the integrity of testing was critical for the clinical trial. Although the naturalness of synthesized speech has been previously established [12,13], its validity has not been demonstrated for cognitive testing in a laboratory setting. As such, adjustments were made on the protocol in response to pilot testing, and comparisons were made between data collected with the original protocol and the modified protocol. Information regarding the protocol, pilot testing, and these comparisons is intended to assist future investigators to reduce the risk of transmission of contagious diseases and standardize the administration of complex cognitive testing paradigms.

2. Objectives

The purpose of this paper is 1) to describe the detailed methods used to convert a complex cognitive testing protocol that involved close person-to-person contact, substantial human speech, and manual control of the testing sequence and timing into a completely contact-free, computer-speaking, and semi-automated protocol with the goal of significantly minimizing the production of human speech droplets and ensuring the maintenance of social distancing; and 2) to evaluate the integrity of the administration of the modified protocol (n = 37) in comparison with the administration of the original protocol (n = 32). This transition in terms of the data collection method has been critical during the COVID-19 pandemic and will be useful in future studies to mitigate the risk of transmitting contagious illnesses and to further standardize and automate the administration of laboratory-based cognitive tests. Our detailed description of the modified laboratory testing is intended to be useful for other researchers to partly or entirely replicate similar protocol adjustments during and after the pandemic while also providing a detailed description of the modification of the PAAD-2 protocol [5] as implemented after July 2020.

3. Protocol modification

3.1. Speech synthesis techniques

In 1968, the filmmakers of the epic science movie, “2001: Space Odyssey”, depicted a time 33 years in the future when an artificial intelligence (AI) computer could generate human-like voices to verbally communicate with spaceship crews. This futuristic vision was realized through the use of AI technology about a decade after the imagined year in that machine-generated speech started to become widely available through virtual assistants in smartphones, computers, and other modern devices such as Apple’s Siri, Amazon’s Alexa, and the Google Assistant

[14,15]. Since then, speech synthesis, also known as text-to-speech (TTS) technique, has been rapidly advancing and now the commercial Application Programming Interface (API) platforms allow people to easily create synthetic speech by converting text input into voice output. Recent improvements in one of the TTS synthesis models, called WaveNet [16,17], and subsequent neural network modeling have enabled substantial enhancements in the naturalness of synthesized voices to the extent of rivaling human speech [12,13]. Not just short-form content at the word, sentence, or paragraph level [18], but synthetic voices reading out a long-form article of more than 900 words were found to be comprehensible and pleasant to listen to for several minutes at a comparable level to human voices [19].

As a necessary modification to the PAAD-2 protocol [5] to allow for data collection during the COVID-19 pandemic, we created and operated synthetic voices that directed the entire 4-h testing session for the informed consent and cognitive assessments allowing the experimenter to maintain the required (6 ft) or even farther distances in the laboratory. Specifically, the summary of the consent form and all verbal instructions/feedback of cognitive tests were written as text or Speech Synthesis Markup Language (SSML) input files in the JavaScript Object Notation (JSON) format. We chose the WaveNet voice (en-US-Wavenet-D) and then set the rate of speaking to 0.89–0.93 and the pitch to –2.8. We used the macOS command line interface to convert the text or SSML files into waveform audio file (WAV) formats on the Google Cloud TTS API. More information on the implementation of the Google Cloud TTS API are proprietary but publicly available in a web document [20]. All WAV files of the synthetic voices were then added as sound components in an open-source programming platform, PsychoPy Experiment Builder [21], which are further described in later sections of this paper.

Consequently, our synthetic voice directs the entire testing session. The voice first explains the COVID-19 safety precautions, briefly describes each paragraph of the informed consent form, provides general instructions for the testing session, gives specific instructions and/or feedback for the Montreal Cognitive Assessment (MoCA) [22], the Test of Premorbid Functioning (TOPF) [23], the Rey-Osterrieth Complex Figure Test (ROCF) [24,25], the Paced Auditory Serial Addition Test (PASAT) [26], the Rey Auditory Verbal Learning Test (RAVLT) [25], the Trail Making Test (TMT) [27], and the Symbol Digit Modalities Test (SDMT) [28]. To maintain consistency with our original protocol, the synthetic voice asks participants to read and follow the test instructions written on the screen for the tests administered with E-Prime 3.0 software [29] on a desktop computer and the NIH Toolbox cognition battery on the iPad [30]. The synthetic voice also directs participants to make appropriate transitions between tasks on the computer with a keyboard or mouse, the iPad, or hard copies of documents, and to take a break for certain durations. See Table 1 for the instruments and response formats of each test.

Before the implementation of our modified protocol, we ensured that the naturalness of synthetic speech was acceptable for an extensive cognitive assessment through pilot testing of the entire protocol. We therefore repeatedly tested whether six pilot subjects (a professor and graduate students in psychology) clearly understand the synthesized instructions for test directions and safety precautions and accordingly designed the new protocol to ensure that the artificial speech and automated sequence are easy to follow and identical to the original protocol, which is further addressed in this paper. In the following paragraphs, we further illustrate how the synthetic voices are presented along with an avatar to direct the entire testing protocol based on precise management of timing.

1 These platforms include Google Cloud (https://cloud.google.com/text-to-speech), IBM Watson (https://www.ibm.com/cloud/watson-text-to-speech), Amazon Polly (https://aws.amazon.com/polly/), and Microsoft Azure (https://azure.microsoft.com/en-us/services/cognitive-services/text-to-speech/) etc.
We developed an avatar and presented him with his mouth moving along with the synthesized voices given that human speech can be better understood by seeing the face of a talker even when the speech is audible and intact [31]. We first created a series of still images of different facial expressions and compiled the images in short time intervals (less than 100 ms) to create an animation image that included moving eyes, eyebrows, jaws, and lips to imitate facial movements of human speech. We then put a face covering on the avatar as a means of requesting participants to do the same and building rapport with the participant during the testing session. The avatar was added and programmed as a movie component to the PsychoPy Builder [21] in time with the audio files of synthetic voices. Consequently, the synthetic voice was presented in synchrony with the avatar just like he was talking to participants on the computer monitor, so that our participants would better understand verbal instructions and be more engaged with the computer during the testing session.

3.3. Contact-free testing environment

We configured the hardware by connecting a desktop computer as the central processing unit (CPU) to two monitors, two keyboards, and two mice for an experimenter and a participant (see Fig. 1). We set up the dual monitors to display duplicate content, and accordingly, the experimenter was able to operate each test on the computer, observe a participant's performance on the monitor, and observe the behaviors/responses of a participant from farther away than the 6-ft required distance. For a participant to better interact with the computer, we set up two mice for an experimenter and a participant (see Fig. 1). We set up different forms are used at pre-, mid-, and post-test. Break duration in parentheses is equal to the distance for instant evaluations and/or feedback [22,27,28,32]. We vide the verbal instructions and audio-record their verbal responses. Considering the required distance, we set up a monitor, so that our participants would better understand verbal instructions and be more engaged with the computer during the testing session.

Abbreviation

Abbreviation	Description
MoCA	Montreal Cognitive Assessment
PASAT	Paced Auditory Serial Addition Test
SDMT	Symbol Digits Modalities Test
ROCFT	Rey-Osterrieth Complex Figure Test
RAVLT	Rey Auditory Verbal Learning Test
VTS	Vienna Test System

Note: One- or two-sample t-tests or equivalence tests (ET) were conducted to compare each test duration between two protocols. Results indicate that two protocols are significantly equivalent in terms of its duration. Equivalence margin (Cohen's d, δ) was ±0.7. Some test duration of the original protocol was not measured and thus estimated (δ). Total protocol duration is about 3.5 hr at pre-test and 3 hr at mid- and post-test. Synthetic voice is used for all necessary verbal instructions and feedback for informed consent, test directions and transitions, and breaks between tests. Different forms are used at pre-, mid-, and post-test. Break duration in parentheses is estimated by a custom-developed Python code and instructions by the synthetic voice. Newly added features in the modified protocol 1. Synthetic voice gives feedback in response to a key press if necessary. Subjects' verbal responses are recorded on a microphone. "Pre only" subjects' paper works are observed from the required distance using a document camera. Batch 0 without informed consent is combined with Batch 1 at mid- and post-tests and comes after the biological sampling. Testing sequences of Batch 2 and 4 can be changed by automatic timing control by the Python codes (see Fig. 2 for more information).
therefore set the paper forms on a clipboard along with a document camera above them, then connected the camera to the computer and developed a custom Python code based on an open-source computer vision package, the OpenCV library [33]. Using this method, the experimenter was able to see the camera view on the monitor to observe participant's performance on the paper forms and provide necessary evaluation/feedback through the synthetic voice by pressing designated keys on the keyboard (see Fig. 1 for a schematic overview).

During the testing, the synthetic voice instructed participants to receive, complete, and submit all paper forms in a contact-free manner for safety management. A file tray along with all test forms in file folders were set up on the right side from the participants, at least 24 h before the testing session. For each test during the testing session, the avatar instructed participants to take out certain testing form(s) from a file folder in a particular color (e.g., yellow, purple, or red) from each shelf of the file tray and complete the necessary paper tests using a pencil or pen. Separate folders were necessary to keep the contents of certain forms of memory tests confidential before the administration (e.g., delayed recognition for the ROCFT and RAVLT). Upon completion of paperwork, participants were instructed to submit the completed forms into the bottom shelf of the file tray.

3.4. Programming platform

We developed and operated the entire testing protocol using Python programming language [34] along with an open-source Python-based experiment control software, PsychoPy [21,35,36]. PsychoPy (available at psychopy.org) was developed for designing and editing behavioral experiments based on a graphical user interface (GUI) called “Builder” and/or Python scripts [21,35,36]. PsychoPy Builder allows the researcher to generate a Python script for the developed experiment, which is easily executed as a Python program. PsychoPy allowed us to start and stop the synthetic voice and talking avatar as sound and movie components in synchrony, audio-record verbal responses using the microphone components, measure the duration of test performances, program the sequences of the entire testing procedure, and automatically execute the proper tests using the clock functions and code components based on sub-millisecond precision [37,38]. Detailed information on the components and function are publicly available in the PsychoPy reference manual [39].

3.5. Batched and automated test timing and sequence

Using the PsychoPy Builder interface, we developed Python programs to enable the computerized administration of the MoCA, TOPF, ROCFT, PASAT, RAVLT, TMT, SDMT, Paired Associates, and Logical Memory based on each test's administration manual. We then compiled all test programs into five (mid- and post-test) or six (pre-test) batches so that the Python programs would keep functioning to measure the timing when participants were working on tests one after another (see Table 1 and Fig. 2 for an overview). By collating the tests into batches, the programs were able to automatically execute the correct test at the exactly desired time, count the duration for a break, and provide instructions for a break of any duration. The Python batches continued its timer function when E-Prime tests were operated.

While test timing was not important and all directions were provided in a fixed order in Batch 0 and Batch 1, time measurement was critical for the 20- or 30-min delayed recall of the ROCFT, RAVLT, Paired Associates, and Logical Memory tests (hereafter called delayed memory tests) in Batches 2, 3, 4, and 5 to choose and administer the correct test at the exact right time. See Fig. 2 for the sequences and logic of Batch 2, 3, 4, and 5. Immediately after the copy/learning or initial recall trials for the delayed memory tests, a timer was programmed to start keeping track of time. When beginning the break routine, the remaining time to the 20- or 30-min delay was counted, and the avatar instructed the participants to take a break for the measured duration. Using the text components in the PsychoPy Builder, a countdown timer in minutes and seconds was displayed on the computer screen during the break. When the break was over, the avatar provided instructions for the delayed memory tests in each batch. When the time limit was exceeded, rarely but possibly by a few seconds or minutes for slow test takers, no break was offered, and the delayed recall trials started immediately.

![Fig. 1. A schematic overview of the avatar-directed contactless cognitive testing environment.](image-url)
3.6. Automation of program execution

Our modified protocol is further equipped with automatic execution of all computer tests and batch programs with Python or E-Prime 3.0 following the manual implementation of the initial program. We enabled the automatic administration by using a customized code from an open-source operating system interface package, OS module, in the Python standard library [40]. We specifically added the function ‘os.startfile(path)’ to the code component in the PsychoPy Builder in order to start a file with its associated application, which acted like double-clicking the designated test files or batch programs. This technique allowed the experimenter to efficiently administer the entire testing protocol by eliminating any chance of wasting time to locate and manually start a test or batch file or making errors by executing a wrong program. Below we further describe how each testing protocol is specifically programmed in the different batches.

3.7. Informed consent and screening

In Batch 0 at the pre-test, the avatar read out the summary of safety precautions and informed consent. Participants were instructed to press spacebar on the keyboard to move on to the next paragraph when they fully understood the information. They were also encouraged to further read over the hard copies of the consent form or ask any questions to the experimenter. At the end of the consent, the avatar asked the participants to sign the form and submit the signed document into the file tray. The experimenter discontinued the testing for excluded people and provided appropriate clinical referrals based on the PAAD-2 protocol [5].
immediate recall. Then, the Stroop Color-Word Task, the same version with a similar clinical trial [41], was executed with E-Prime 3.0, and then the PASAT was followed. After that, the avatar instructed a break for the remaining time to 30 min. After the break, the participant was instructed to take out paper forms from colored folders, complete and submit them one after another for the ROCFT delayed recall and recognition. If less than 8 min was left for the PASAT, a break was given and the PASAT was administered after the delayed recognition. Next, the TOL-F [42] was administered, then the avatar gave the half-way break for 7 min. The duration of ROCFT trials was measured by a key press. See Table 1 and Fig. 2 for an overview.

After the break, Batch 2 was closed and followed by the Batch 3, in which the RAVLT learning and immediate recalls were administered. Then, the 30-min timer started, and the avatar directed participants to the iPad for the NIH Toolbox tests and then to the computer for the E-Prime test. Then, the TMT was followed, for which participants' drawings on the paper forms were observed via the document camera and feedback was given through the synthetic voice by pressing the designated prompt keys by the experimenter, which was programmed based on the TMT protocol [32]. Afterwards, the remaining time was counted, the avatar instructed a break for the measured duration, and a countdown timer was presented. After the break, the avatar gave directions for RAVLT delayed recall and recognition on a paper form, which was obtained from a colored folder and submitted to the file tray. See Table 1 and Fig. 2 for an overview.

Without a break, Batch 4 started for the Paired Associates learning and immediate recall. Next, the 20-min timer started, and the avatar gave instructions for the E-Prime test. After that, E-Prime tests were executed. The break was verbally instructed by the synthetic voice and provided for the remaining time on the 20-min timer. If insufficient time was left in 20 min delay for a test, the test was skipped, and a break was given for the remaining time. The skipped test was administered after the delayed recall. Then, Batch 4 was closed, and Batch 5 was executed. See Table 1 and Fig. 2 for an overview.

Batch 5 started with Logical Memory learning and immediate recall while audio-recording verbal responses, which was followed by a 20-min timer starting with the E-Prime test. Subsequently, the SDMT written, oral, and incidental learning trials [28] were administered. For the SDMT practice trials, the experimenter observed the participants' drawings on the paper forms via the document camera and provided appropriate feedback through the synthetic voice by pressing the designated prompt keys. After the SDMT, the program counted the remaining time, the avatar instructed a break for the measured duration with a countdown timer displayed; if no time was left, no break was offered. After the break, the delayed recall followed along with audio-recordings, and upon completion the avatar instructed the end of testing and our appreciation for participants' efforts.

3.9. Troubleshooting

Batched and automated operation of the test programs are efficient and convenient. Based on our pilot tests, we found that the programs occasionally crashed for an unknown reason, especially when the batch program was continuing its timer during another E-Prime 3.0 test. We therefore included in our protocol the use of a manually operated backup timer of 20- and 30-min to ensure the precise administration of the delayed recall trials in the event of a crash. We also placed each program file in the same directory as the batch program, so the experimenter could manually execute a test program at the right time if the automatic execution was not working.

3.10. Participants and COVID-19 safety precautions

Participants in the PAAD-2 trial are middle-aged (40–65 years) adults with a family history of Alzheimer's disease, who are cognitively normal, healthy enough for exercise, not otherwise clinically impaired, and identified as sedentary based on American College of Sports Medicine (ACSM)'s physical activity guidelines [43]. The inclusion criteria did not specifically include any criteria that put participants into the Centers of Disease Control (CDC)'s high-risk category when originally defined. However, as of June 25, 2020, the CDC removed the specific age threshold of >65 years and replaced that with a statement that risk increases with increasing age [44]. Prior to scheduling participants, we discuss the CDC's risk guidance to ensure that they are aware of their own personal risk category classification. Within 24 h of scheduled visits, the experimenter and participants are required to complete a COVID-19 screening form. This allowed for the reporting of any COVID-19 symptoms or positive diagnosis, any contacts with people having COVID-19 symptoms or positive diagnosis, and/or any travel(s) outside the state in the past 14 days. We also used this screening to identify if participants had additional factors that would put them at increased risk for serious health consequences when contracting COVID-19 [45]. For participants identified as having high risk of serious consequences of a COVID-19 infection [46], we discussed this with the participant prior to scheduling.

We also used additional safety precautions including ensuring that they were the first or only person to complete cognitive testing or that they were scheduled for testing more than one hour following a previous participant. For all participants, when the experimenter or a participant entered the testing room, they were first required to sanitize their hands. After each testing session, all devices on the desks were wiped off. We covered the participant's keyboard with a transparent plastic slip and exchanged it with a new one after each testing session. We wiped off the file tray, the pencils and pen, and the experimenter's and participant's chairs after each testing session, and also switched all of these pieces of equipment with another set of equipment after each participant.

4. Protocol evaluation

4.1. Participants

We have safely and efficiently operated the modified protocol since July 2020 for the pre-test (n = 37), mid-test (n = 7), and post-test (n = 15). We compared the pre-test data of the modified protocol with that of the original protocol (n = 32) in terms of the test duration (Table 1) and test performance (Table 2). We describe demographics for participants completing the original and modified protocol in Table 2.

4.2. Data analyses

We conducted a series of one- or two-sample t-tests and equivalence tests (ET) to detect significant differences or equivalence between data collected using the original and modified protocols. The goal of ET is to examine whether the null hypothesis that there is significant difference between two parties can be actually rejected, which is exactly opposite to the traditional comparative study (e.g., t-test) examining a null hypothesis that there is no meaningful difference between two approaches [47,48]. Significant equivalence is determined with the equivalence margin (6), the maximum acceptable range of values in which the subtle difference must fall to be considered equivalent [47].

The ET complements the traditional hypothesis testing and vice versa. For example, when the null hypothesis of a traditional t-test is accepted, the absence of a true effect is supported but not statistically verified; ET can statistically uphold this case [49]. ET can also identify significantly greater than zero but negligible effect, when it is smaller than the meaningful effect size by falling in the equivalence margin [47]. To examine whether the presence of meaningful differences between two protocols can be rejected, we followed two one-sided tests (TOST) procedure, an established method of ET [48,49], with an upper and lower equivalence margin at ±0.7, which was determined in consideration of the sample size [49]. All statistical analyses were conducted with R 4.0.3 [50].
Table 2
Comparisons of performance between the original and modified PAAD-2 cognitive testing protocol.

Participants' characteristics	Original (n = 32)	Modified (n = 37)	ET (p)	t- or z-test (p)
Age, mean (SD)	56.9 ± 1.2	56.1 ± 0.85	< 0.05	0.60
Female gender (%)	31 (96.9%)	31 (83.8%)	< 0.01	0.16†
Race/ethnicity, non-Hispanic white (%)	28 (87.5%)	35 (94.6%)	< 0.01	0.54†
Years of education, mean (SD)	16.0 ± 0.33	16.9 ± 0.36	0.13	0.09

Testing batches and components

Comparisons of test scores (M ± SE)	ET (p)	t-test (p)
0		
MoCA		
Test of Premorbid Functioning, %		
NIH TB List Sort Working Memory Score		
NIH TB Picture Sequence Memory Score		
MST - Lure Discrimination Index, %		
MST - Old Discrimination Index, %		
PDT - Perceptual Discrimination Index, %		
ROCFT - Copy, %		
ROCFT - Immediate Recall, %		
ROCFT - Delayed Recall, %		
ROCFT - Delayed Recognition, %		
TOL - Planning Score		
Trail Making - A, arc		
Trail Making - B, sec		
RAVLT - Learning Summary, %		
RAVLT - Immediate Recall, %		
NIH TB Dimensional Change Card Sort Score		
NIH TB Flanker Inhibitory Control Score		
Spatial Working Memory Score		
Spatial Relations, %		
SDMT - Written, %		
SDMT - Oral, %		
SDMT - Incidental Learning, %		
Logical Memory - Delayed Recall, %		

Abbreviation: MoCA, Montreal Cognitive Assessment; MST, Mnemonic Similarity Task; PASAT, Paced Auditory Serial Addition Test; PDT, Perceptual Discrimination; RAVLT, Rey Auditory Verbal Learning Test; ROCFT, Rey-Osterrieth Complex Figure Test; SDMT, Symbol Digits Modalities Test.

Note: Two-sample t- or z-tests or equivalence tests (ET) were conducted to compare the demographics and cognitive performance between two groups of participants of the original and modified protocols. Results indicate that participants of two protocols were significantly equivalent and not significantly different in their ages and 94% of test scores. Equivalence margin (Cohen’s d, δ) was ±0.7. *Results of Fisher’s exact probability tests with Yates continuity correction.

4.3 Results

As expected, safety precautions have been effective such that none of the experimenters or participants have contracted COVID-19 in our testing environment. All participants have expressed a clear understanding of the instructions and of the feedback from the synthetic voice. We asked the participants to press a key to repeat the synthesized instructions or request clarification when unclear, yet they rarely pressed the key to replay any instructions or ask clarifying questions (<1% of the total instructions). Automatic control of the testing sequence and timing functioned well without causing any significant error or delay during the testing. All data including audio recordings of verbal responses, hand-written and -drawn responses on paper forms, and keyboard and mouse responses on the computer have been safely acquired.

Results indicate that the modified protocol is significantly equivalent to the original protocol in terms of its duration (Table 1) and participants’ age and performance (Table 2). No significant differences were found in gender (p = .16), race/ethnicity (p = .54), or years of education (p = .09) between the two groups. Although years of education was not significantly equivalent (p = .13), gender (p = .01) and race/ethnicity (p = .01) were significantly equivalent. As can be seen in Table 1, the time control of the modified protocol was robust and the 20- and 30-min time delays were accurately maintained. The only tests for which duration of the modified protocol was significantly different from the original protocol was the ROCFT copy (p < .001), immediate recall (p < .01), and delayed recall (p < .05), for which the task time is completely determined by the participant with no time limit. For all of these, participants in the modified protocol took significantly longer to complete the task than those who used the original protocol. This longer duration of task completion is likely reflected in the marginally higher performance during the modified protocol for copy (p = .10), immediate recall (p < .05), and delayed recall (p = .07). The only other performance difference was found for the MST lure discrimination index (p < .05). All other test scores were not significantly different and, in most cases, significantly equivalent between two protocols (see Table 2).

5. Discussion

In this modified protocol for the PAAD-2 cognitive testing, we describe the specific methods of the implementation of TTS synthesis and computer programming techniques and their benefits for safety and the integrity of cognitive assessment. The adoption of the techniques from AI and computer vision packages enabled us to provide standardized instructions and feedback without human speech and to closely view paper copies of documents from a safe distance (farther than 6 ft)
for an extensive cognitive testing protocol during a pandemic. According to the feedback from experimenters and the consistently positive responses from participants, the modified testing procedures have provided a safe and pleasant environment for cognitive assessment for both the experimenter and participants. This is critical for the prevention of COVID-19 but also for the provision of accurate and standardized verbal instructions compared with speaking under a face covering from the required social distance.

We also evaluated the integrity of the modified protocol and substantiated that the modified protocol is robust and generally equivalent to the original protocol in terms of its duration and participants’ performance. The automated control of test timing and sequence we developed functioned flawlessly and required less training for the experimenter than traditional human-led administration of cognitive tests. Our interpretation of the marginal differences from the original protocol for the ROCFT test duration is that the experimenter in the original protocol often asked whether the drawing tasks were finished from a close distance, which could have functioned as a prompt to stop the task. By contrast, in the modified protocol, participants self-initiated and finished the drawing task without any prompt and the experimenter was a distance away and not directly observing their behaviors. The longer duration of drawing tasks could be associated with the learning and memory performance.

We acknowledge the limitation of comparing two different groups of participants for the evaluation of protocol legitimacy. Although no significantly different demographic characteristics were detected between the two groups, it is possible that there may be marginal differences in terms of other unmeasured variables between the two groups that could affect cognitive performance. We will carefully consider any marginal differences between the two protocols as the study continues and when analyzing the study outcomes.

Employing speech synthesis technique for neurocognitive testing in the pandemic has the clear advantage of mitigating the risk of the transmission of the virus. Recent studies have revealed that small speech droplets generated by ordinary speaking could remain airborne for extended periods of time and therefore it is highly possible that normal talking causes airborne viral transmission of the COVID-19 virus in confined environments [7,8]. In addition to wearing a face covering, having a computer speak for all necessary instructions and feedback during an extensive testing session limits the extent to which the experimenter must speak while wearing a face covering. Recent evidence indicates that wearing face coverings during professional and essential activities increased the perception of and when analyzing the study outcomes.

Moreover, using a synthetic voice facilitates the testing procedure by limiting the extent to which the experimenter must speak while wearing a face covering. Recent evidence indicates that wearing face coverings during professional and essential activities increased the perception of vocal fatigue and discomfort, difficulties in understanding speech, auditory feedback, and difficulties in coordinating speech and breathing [11]. Using synthetic voice eliminates such difficulties and thus reduces the chance of the experimenter being fatigued and making errors in testing instructions and feedback during an extensive testing session. In this regard, the computerized testing is more rigorous and standardized than the experimenter-led version once properly administered.

Ethical and practical challenges must be considered relative to human research activities during the COVID-19 pandemic [2]. Such challenges include but are not limited to: What level of risk for disease transmission is acceptable to resume in-person human subject research? What safety precautions are mandatory? To address this challenge, researchers developed a risk-benefit framework to prioritize studies in tiers (0, 1, 2, 3) based on a combination of the incremental risk of COVID-19 transmission (high, medium, low, or none) introduced by the research activity and the potential benefits of study participation (1–4) at an individual level [2]. The framework considers contact distance, contact duration, number of contacts per day, personal protective equipment, and participant characteristics (e.g., age, medical condition, risk of contracting COVID-19). Our study would be considered as a tier 2 study with a low risk based on the contact-free administration with the state-of-the-art technologies and safety precautions. Further discussion is needed how to consider our safety precautions into the risk-benefit framework and how to efficiently utilize the modern technology we employed in other research settings.

In recent decades, speech synthesis technology has been widely applied to commercially-available mobile devices and computers [14,15] and also efficiently utilized in the fields of healthcare [51] and education [52]. For example, synthesized speech has been used for an interactive medication reminder and tracking on wrist devices [53], as a clinical assistant for visually impaired people [54], and other assistive device, speech-based healthcare apps, websites, and/or emergency call centers [51]. A comprehensive review on the use of speech technology for healthcare was recently published [51]. Nonetheless, the application of speech technology for behavioral experiments or psychological assessment remains at a rudimentary level. To our knowledge, this innovative protocol for the PAAD-2 is the seminal attempt for synthesized voices to completely replace human speech for informed consent and verbal instructions and feedback for a comprehensive battery of laboratory-based cognitive assessment. This technique can be used for older adults with sensory or cognitive impairments by adjusting the pace of speech to help with their understanding. Other low risk means of behavioral experiments are available such as videoconference [55], telephone [56], or web-based software [57]. Such online-based methodologies are beneficial in its mobility and accessibility but limited in its level of precision compared with lab-based systems and have slightly more variability in its measures [57].

We plan to use this methodology in the future even after the pandemic for its benefits for safety management, standardization of test directions, precise control over test timing, automation of test sequences and execution, efficiency of data collection procedures, and the integrity of data obtained. Our employment of the AI-based methods may be informative for other researchers interested in employing safe, rigorous, and automated laboratory tests during and after the pandemic.

Funding

This work has been completed as part of a phase 2 clinical trial (ClinicalTrials.gov NCT03876314), “The Effect of Physical Activity on Cognition Relative to APOE Genotype (PAAD-2)”, which is funded by the National Institutes of Health (R01AG058919). The content of this manuscript is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Ethics approval and consent to participate

Approval for this study was obtained from the Institutional Review Board of the University of North Carolina at Greensboro (IRB number 18–0228). Informed consent was obtained from all individual participants included in the study at the first in-person visit at the pre-test.

Availability of data and materials

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Consent for publication

Not applicable.
