The Accuracy of the RK-4 and RK-5 Technique as a Numerical Solution to the SEIRS Model of Online Game Addiction on Mathematics Students

Syafruddin Side1*, Abdul Saman2, Nur Rezky Ramadhan3, and Sahlan Sidjara1
1Department of Mathematics Universitas Negeri Makassar, Indonesia
2Department of Educational Psychology and Guidance, Universitas Negeri Makassar, Indonesia
3Department of Mathematics, Bosowa University, Indonesia

*Email: syafruddin@unm.ac.id

Abstract. This study aims to determine the accuracy of Runge kutta order-4 (RK-4) and order-5 (RK-5) as a solution to the SEIRS numerical model for online game addiction in mathematics students at Universitas Negeri Makassar. The model used in online game addiction is the Suspected-Exposed-Infected-Recovered-Suspected (SEIRS). This is a quantitative research with secondary data obtained from a closed questionnaire where students were given several answer choices. It starts by examining the SEIRS model of online game addiction, before determining general solutions using the RK-4 and RK-5 techniques. The model is then analyzed and simulated using RK-4 and RK-5 techniques, which are compared to determine the most accurate one. The results show that the SEIRS simulation model is accurate for predicting the number of online game addictions. Furthermore, the Runge-Kutta technique can be used to observe the trend of increasing cases of online games among students. The numerical simulation showed that the RK-4 technique is more accurate than the RK-5 when the population is larger. The simulation results of the SEIRS model using MAPLE provided an estimated increase in online game addiction that can be used by students and their parents to limit the number of permits associated with launching online games.

Keywords: SEIRS model, RK-4, RK-5, online game addiction, mathematics students

1. Introduction

Online games are globally played by two or more people through the internet or other computer network, simultaneously [1]. This type of game is continuously increasing due to the significant growth in computer networks [2]. Online games are currently being performed by social networks, such as Facebook and Line, which tends to have positive and negative effect on teenagers. One of its negative effects is addiction, which prevents players from achieving their various goals [3-4]. Furthermore, when players are unable to control themselves, learning and working to achieve success becomes a problem. These games also harmful to the health [5].

Indonesia has approximately 6 million online game fanatics with 40% teenagers. A survey showed that of 64.45% and 47.85% of boys and girls aged 12-22 years are addicted [6]. Students rigorous participation in online games, leads to death. For instance, people have died from sitting in front of their computers for a prolonged period [2,5]
Several studies have been carried out on online game obsession in Makassar, which includes [7] discussions on its social effect despite the use of SIR, SIRS, SEIR, and SEIRS models to cases of the Covid-19 pandemic [8–16], Dengue Fever and Tuberculosis. Study on the mathematical model of online game addiction has been carried out by [17,18] and research on numerical solutions using the order-4 (RK-4) and order-5 (RK-5) Runge Kutta technique has been carried out by [19,20]. This study resulted in a numerical solution of [17] using the RK-4 and RK-5 SEIRS models on social dilemmas, particularly online game addiction. This study also investigated and simulated applying secondary data to determine and estimate the total student addicted to online games at the mathematics departments of the Makassar State University.

2. Technique

This is an applied research and the SEIRS mathematical model [15] was improved by examining and simulating the model using Maple. Secondary data were collected on online game addictions of students at Makassar State University. Furthermore, the numerical solution of the SEIRS model was obtained by applying the RK-4 and RK-5 [19,20]. The results were examined with the data on the number of online game addictions for Mathematics student at Universitas Negeri Makassar. The two techniques were compared to find out which RK-4 or RK-5 techniques were more specific in estimating the number of online game addictions in mathematics students.

3. Result

3.1. SEIRS model on the problem of online game addiction

Population differences in online game addiction problems using the SEIRS model can be described in Figure 1:

![Figure 1. SEIRS model scheme for online game addiction.](image)

The overall population is classified into 4 parts: Susceptible (S) which denotes the group of students that are susceptible to online game addiction, Exposed (E) represents players however not including addicts, Infected (I) denotes those that are addicted to online games, and recovered (R) represents the group of students free from online game addiction. The model parameters are shown in Table 1.

Based on Figure 1, the SEIRS mathematical model is obtained as shown in Equation (1) – (4).

\[
\frac{ds}{dt} = \mu + \theta r - \alpha s - \mu s \\
\frac{de}{dt} = \alpha s - \beta e - \mu e \\
\frac{di}{dt} = \beta e - \delta i - \mu i \\
\frac{dr}{dt} = \delta i - \theta r - \mu r
\]

Table 1. Parameters definition of the SEIRS model for online game addiction

Parameter	Description
\(\alpha\)	the scale of movement from groups of students who are prone to online game addiction (suspected) to groups who start playing online games (exposed).
\(\beta\)	the scale of movement from a group of students who started playing online games (exposed) to a group who were addicted to online games (infected).
\(\delta\)	the scale of movement from a group of students who are addicted to online games (infected) to a group who are free from online game addiction (recovered).
the scale of movement from a group of students who are free from online game addiction (recovered) to a group who are prone to online game addiction (suspected).

\[\theta \] the rate of students leaving (moving, quitting, dropping out).

The first values of the variable and parameter applied of SEIRS model for online game addiction.

Table 2. Initial values of SEIRS model for online game addiction

Parameters	Values	Variable	Initial Value	Sample Propotion
\(\mu \)	0.181	S	49	0.17
\(\alpha \)	0.331	E	220	0.78
\(\beta \)	0.036	I	2	0.007
\(\delta \)	0.895	R	13	0.04
\(\theta \)	0.351	Total	284	1

According to the data and parameters in Table 2, the simulation model was used to determine the plot transmission by applying Maple. The results are performed by Figures 2 to 6. Based on these Figures the values of the number of SEIRS model for online game addiction presented on Table 3.

Figure 2. Prediction number of online game addiction for suspected and exposed cases

Figure 3. Prediction number of online game addiction for infected and recovered cases
Table 3. The number of SEIRS model for online game addiction

T	S	E	I	R
0	49	220	2	13
1	47.0084	216.8489	2.5414	12.5251
2	45.1012	213.7016	3.01678	12.1190
3	43.2763	210.5608	3.4329	11.7728
4	41.5316	207.4289	3.7959	11.4784
5	39.8646	204.3086	4.1112	11.2288
6	38.2731	201.2018	4.3838	11.0176
7	36.7543	198.1108	4.6179	10.8394
8	35.2731	195.0375	4.8177	10.6893
9	33.9247	191.9839	4.9866	10.5631
10	32.6086	188.9518	5.1278	10.4569
11	31.3550	185.9427	5.2444	10.3674
12	30.1610	182.9581	5.3389	10.2917
13	29.0243	179.9949	5.4135	10.2272
14	27.9423	177.0679	5.3705	10.1718
15	26.9135	174.1648	5.5117	10.1235

3.2. Numerical solutions of SEIRS model for online game addiction

Numerical solution of SEIRS model for online game addiction using RK-4 and RK-5 adopted in [19,20]

3.3. Numerical solution of SEIRS model using RK-4

The standard formula of the RK-4 technique as in [19,20], then the model for online game addiction can be described as follows:

\[S_{t+1} = S_t + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)i \]
\[E_{t+1} = E_t + \frac{1}{6}(l_1 + 2l_2 + 2l_3 + l_4)i \]
\[I_{t+1} = I_t + \frac{1}{6}(m_1 + 2m_2 + 2m_3 + m_4)i \]
\[R_{t+1} = R_t + \frac{1}{6}(j_1 + 2j_2 + 2j_3 + j_4)i \]

with

\[k_1 = \mu + \theta r - \alpha s - \mu s; \]
\[k_2 = \mu + \theta (r + n_1 \frac{l}{2}) - \alpha (s + k_1 \frac{l}{2}) - \mu (s + k_1 \frac{l}{2}) - \beta (e + l_1 \frac{l}{2}) \]
\[k_3 = \mu + \theta (r + n_2 \frac{l}{2}) - \alpha (s + k_2 \frac{l}{2}) - \mu (s + k_2 \frac{l}{2}) - \beta (e + l_2 \frac{l}{2}) \]
\[k_4 = \mu + \theta (r + n_3) - \alpha (s + k_3) - \mu (s + k_3) - \beta (e + l_3) - \mu (e + l_3); \]
\[m_4 = \beta (e + l_3) - \delta (i + m_3) - \mu (i + m_3); \]

By using the initial values and parameters values as in Table 2, then:

\[s_{0+1} = s_0 + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4) = 48.1851 \]
\[s_{1+1} = s_1 + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4) = 47.3702 \]
\[e_{0+1} = e_0 + \frac{1}{6}(l_1 + 2l_2 + 2l_3 + l_4) = 218.7267 \]
\[e_{1+1} = e_1 + \frac{1}{6}(l_1 + 2l_2 + 2l_3 + l_4) = 217.4533 \]
\[i_{0+1} = i_0 + \frac{1}{6}(m_1 + 2m_2 + 2m_3 + m_4) = 2.2271 \]
\[i_{1+1} = i_1 + \frac{1}{6}(m_1 + 2m_2 + 2m_3 + m_4) = 2.4542 \]
\[r_{0+1} = r_0 + \frac{1}{6}(n_1 + 2n_2 + 2n_3 + n_4) = 12.7992 \]
\[r_{1+1} = r_1 + \frac{1}{6}(n_1 + 2n_2 + 2n_3 + n_4) = 12.5985 \]

The iteration continues until \(t = 15 \), then a estimation for online game addiction number is found as described on Table 4.

Table 4. The number estimation of SEIRS Model for online game addiction by RK-4

t	S	E	I	R
0	49	220	2	13
1	48.1851	218.7267	2.2271	12.7992
2	47.3702	217.4533	2.4542	12.5984
3	46.5553	216.1801	2.6814	12.3977
4	45.7405	214.9067	2.9085	12.1969
5	44.9256	213.6333	3.1356	11.9961
6	44.1107	212.3601	3.3627	11.7954
7	43.2958	211.0867	3.5898	11.5946
8	42.4809	209.8133	3.8170	11.3938
9	41.6660	208.5400	4.0440	11.1931
10	40.8511	207.2667	4.2712	10.9923
11	40.0363	205.9933	4.4983	10.7915
12	39.2214	204.7200	4.7255	10.5908
13	38.4065	203.4467	4.9525	10.3900
14	37.5916	202.1734	5.1797	10.1892
15	36.7767	200.9001	5.4068	9.9885

3.4. Numerical solution of SEIRS model using runge kutta method

The standart formula of the RK-5 technique as in [19,20], then the model for online game addiction is described as follows:

\[S_{r+1} = S_r + \frac{1}{90}(7k_1 + 32k_3 + 12k_4 + 32k_5 + 7k_6)i \]
\[E_{r+1} = E_r + \frac{1}{90}(7l_1 + 32l_3 + 12l_4 + 32l_5 + 7l_6)i \]
\[I_{h+1} = I_h + \frac{1}{90}(7m_1 + 32m_3 + 12m_4 + 32m_5 + 7m_6)i \]
\[I_{i+1} = I_i + \frac{1}{90}(7n_1 + 32n_3 + 12n_4 + 32n_5 + 7n_6)i \]
\[R_{r+1} = R_r + \frac{1}{90}(7j_1 + 32j_3 + 12j_4 + 32j_5 + 7j_6)i \]

By using the initial values and parameters values as in Table 2, then:

\[s_{0+1} = s_0 + \frac{1}{90}(7k_1 + 32k_3 + 12k_4 + 32k_5 + 7k_6)i = 48.1851 \]
\[s_{1+1} = s_1 + \frac{1}{90}(7k_1 + 32k_3 + 12k_4 + 32k_5 + 7k_6)i = 47.3702 \]
The iteration continues until $t = 15$, then an estimation of the number of online game addiction is gained as described in Table 5.

Table 5. The number prediction of SEIRS model for online game addiction by RK-5

t	S	E	I	R
0	49	220	2	13
1	48.185	218.7267	2.2271	12.7992
2	47.3702	217.4533	2.4542	12.5984
3	46.5553	216.1801	2.6814	12.3977
4	45.7405	214.9067	2.9085	12.1969
5	44.9256	213.6333	3.1356	11.9961
6	44.1107	212.3601	3.3627	11.7954
7	43.2958	211.0867	3.5898	11.5946
8	42.4809	209.8133	3.8170	11.3938
9	41.6660	208.5400	4.0440	11.1931
10	40.8511	207.2667	4.2712	10.9923
11	40.0363	205.9933	4.4983	10.7915
12	39.2214	204.7200	4.7255	10.5908
13	38.4065	203.4467	4.9525	10.3900
14	37.5916	202.1734	5.1797	10.1892
15	36.7767	200.9001	5.4068	9.9885

The uses of SEIR to determine online game addiction of Mathematics Students, at Universitas Negeri Makassar with the RK-4 and RK-5 techniques are shown in Tables 6 and 7.

Table 6. Errors comparison of suspected and exposed for online game addiction

t	SRK-4	SRK-5	SExact	ΔSRK-4	ΔSRK-5	ERK-4	ERK-5	EExact	ΔERK-4	ΔERK-5
0	49	49	49	0	0	220	220	0	0	0
1	48.1851	48.185	47.008	1.177	1.177	218.727	218.727	216.849	1.878	1.878
2	47.3702	47.3702	45.101	2.269	2.269	217.453	217.453	213.849	3.752	3.752
3	46.5553	46.5553	43.276	3.279	3.279	216.633	216.633	210.561	5.619	5.619
4	45.7405	45.7405	41.532	4.209	4.209	214.907	214.907	207.429	7.748	7.748
5	44.9256	44.9256	39.865	5.061	5.061	213.633	213.633	204.309	9.325	9.325
6	44.1107	44.1107	38.273	5.837	5.837	212.360	212.360	201.202	11.158	11.158
7	43.2958	43.2958	36.754	6.542	6.542	211.087	211.087	198.111	12.976	12.976
8	42.4809	42.4809	35.306	7.175	7.175	209.813	209.813	195.038	14.776	14.776
9	41.6660	41.6660	33.925	7.741	7.741	208.540	208.540	191.984	16.556	16.556
10	40.8512	40.8512	32.609	8.242	8.242	207.267	207.267	189.952	18.315	18.315
11	40.0363	40.0363	31.355	8.681	8.681	205.993	205.993	185.943	20.051	20.051
12	39.2214	39.2214	30.161	9.060	9.060	204.720	204.720	182.958	21.762	21.762
13	38.4065	38.4065	29.024	9.382	9.382	203.447	203.447	179.999	23.447	23.447
Table 7. Errors comparison of infected and recovered for online game addiction

t	IRK-4	IRK-5	lExact	ΔIRK-4	ΔIRK-5	RRK-4	RRK-5	RElact	ΔRRK-4	ΔRRK-5
0	2.2271	2.2271	2.2514	0.0243	0.0243	2.0948	2.0948	0.0243	0.0243	0.0243
1	2.4542	2.4542	2.3168	0.0376	0.0376	2.1295	2.1295	0.0376	0.0376	0.0376
2	2.6814	2.6814	2.3429	0.0516	0.0516	2.1397	2.1397	0.0516	0.0516	0.0516
3	2.9085	2.9085	2.3790	0.0785	0.0785	2.1296	2.1296	0.0785	0.0785	0.0785
4	3.1356	3.1356	2.4111	0.0975	0.0975	2.1196	2.1196	0.0975	0.0975	0.0975
5	3.3627	3.3627	2.4383	1.0211	1.0211	2.1194	2.1194	1.0211	1.0211	1.0211
6	3.5899	3.5899	2.4617	1.0281	1.0281	2.1094	2.1094	1.0281	1.0281	1.0281
7	3.8170	3.8170	2.4817	1.0007	1.0007	2.0994	2.0994	1.0007	1.0007	1.0007
8	4.0441	4.0441	2.4966	0.9425	0.9425	2.0894	2.0894	0.9425	0.9425	0.9425
9	4.2712	4.2712	5.1277	0.8566	0.8566	2.0794	2.0794	0.8566	0.8566	0.8566
10	4.4983	4.4983	5.2444	0.7461	0.7461	2.0694	2.0694	0.7461	0.7461	0.7461
11	4.7255	4.7255	5.3389	0.6134	0.6134	2.0594	2.0594	0.6134	0.6134	0.6134
12	4.9526	4.9526	5.4135	0.4609	0.4609	2.0494	2.0494	0.4609	0.4609	0.4609
13	5.1797	5.1797	5.4705	0.2908	0.2908	2.0394	2.0394	0.2908	0.2908	0.2908
14	5.4068	5.4068	5.5118	0.1049	0.1049	2.0294	2.0294	0.1049	0.1049	0.1049

Table 8. Average errors identification of RK-4 and RK-5 technique for online game addiction

f(x)	Error Average RK-4	Error Average RK-5	Difference	Difference(%)
S	6.07705084	6.07705085	3.7373E-08	0.0000000615%
E	42.0459023	42.04580231	1.91906E-08	0.0000000046%
I	4.69749512	4.69749534	2.095E-07	0.0000000460%
R	2.68850459	2.68850493	3.39897E-07	0.0000012643%

According to Table 8 the RK-4 technique is more precise in calculating total students prone to online game addiction than the RK-5, and the number of students who are no longer addicted to online games. While the RK-5 technique is more precise than the RK-4 to calculate total students who have the potential for addiction (have symptoms). The comparison of these 2 techniques is very small and they all have their individual benefits in estimating the scale of population movement. However, the accuracy of the 2 techniques is significantly different from the technique used to calculate students’ subject movement, this will be very influential if the research is carried out widely, not only on students but at all levels of students in Indonesia. Because in this research the data obtained is very small, the results obtained are also very small, namely 0.000004% for addicted students, or in other words the difference obtained does not reach a student, so this study concluded that the RK-4 and RK-5 techniques have the same level of accuracy, although significantly larger data and the same parameter scale (comparison) will provide accuracy to RK-4.

4. Discussion

Research on cases associated with online game addiction conducted by [7] showed that a decrease in depression level, lowers students addiction and vice versa. The results on the SEIR and SEIRS mathematical model by [17,18] focused on model construction and analysis, while the research focused on the numerical solution of the model applying the RK-4 and RK-5 techniques whose effects provided information that the RK-4 for The SEIRS model as a solution to the dilemma of online game addiction in students majoring in mathematics is more precise in estimating the number of cases than the RK-5. The results of the SEIRS model simulation using the RK-4 and RK-5 techniques which are the development of the RK-4 technique, in other words the error in RK-4 is getting smaller, but the
results prove that the RK-4 is still more precise than the RK-4. If the population is larger, it is influenced by the parameter values of each compartment.

5. Conclusion
In conclusion, online game addiction cases formed using the SEIRS mathematical model, analysis and simulation has the ability to predict the addiction cases in students in the future. The numerical solution of the SEIR model of online game addiction is carried out using the RK-4 and 5 techniques, which means both techniques have the same level of accuracy, this is shown in the trend of the relatively the same value of \(\Delta \).

6. Acknowledgements
The authors are grateful to PD DIKTI No: 127/SP2H/LT/DRPM/2021 for financial assistance. The authors are also grateful to UNM and mathematics students at Universitas Negeri Makassar for their support in providing the necessary research data.

7. References
[1] Puspitosari, W. A & Linaldi A. 2009. Hubungan Antara Kecanduan Online Game dengan Depresi. Mutiara Medika, vol.9, No.1.
[2] Syahran, R. 2015. Ketergantungan Online Game dan penanganannya. Jurnal Psikologi & konseling, Vol.1, No.1
[3] Henry, S. 2007. Panduan Praktis Membuat Game 3D. Yogyakarta: GrahaIlmu
[4] Suplig, M. A. 2017. Pengaruh Kecanduan Game Online Siswa SMA Kelas X Terhadap Kecerdasan Sosial Sekolah Kristen Swasta di Makassar. Jurnal Jaffray, Vol.15, No.2.
[5] Ramadhani, A. 2013. Hubungan Motif Bermain Game Online dengan Perilaku Agresifitas Remaja Awal. Ejournal Ilmu Komunikasi, Vol.1, No.1.
[6] Feprinca, D. 2014. Hubungan Motivasi Bermain Game Online Pada Masa Dewasa Terhadap Perilaku Kecanduan Game Online Defence of The Ancient. Skripsi. Malang: Universitas Brawijaya.
[7] Mulyani, R. D. 2018. Hubungan Antara Depresi dan Kecanduan Online game Pada Mahasiswa di Yogyakarta. Skripsi. Yogyakarta: Universitas Islam Indonesia.
[8] Side, S., Sukarna, S., Asfarina, G.T., Isbar Pratama, M., Mulbar, U., 2018. Analysis of SEIRS Model for Cholera Spreading with Vaccination and Treatment Factors. Journal of Physics: Conference Series, Vol.114(1).
[9] S Annas, MI Pratama, M Rifandi, W Sanusi, S Side . 2020. Stability analysis and numerical simulation of SEIR model for pandemic COVID-19 spread in Indonesia. Chaos, Solitons & Fractals Vol. 139, 110072
[10] M Abdy, S Side, S Annas, W Nur, W Sanusi,. 2021. An SIR epidemic model for COVID-19 spread with fuzzy parameter: the case of Indonesia. Advances in difference equations. 2021 (1), 1-17
[11] Side, S., Badwi, N., Pratama, M.I., Sidjara, S., & Sanusi, W. 2019. A SEIRS model analysis and simulation for dengue fever transmission. International Journal of Scientific and Technology Research, Vol.8(10), 1048-1053.
[12] Rangkuti, Y.M., Side, S., Noorani, M.S.M., 2014. Numerical analytic solution of SIR model of dengue fever disease in South Sulawesi using homotopy perturbation technique and variational iteration technique. Journal of Mathematical and Fundamental Sciences. Vol.46A(1), 91-105.
[13] Nakata, Y & Kunia T. 2010. Global Dynamics of a Class of SEIRS Epidemic Models in a Periodic Environment. Journal of Mathematical Analysis and Apllications, Vol.363.
[14] Dontwi I. K, W. Obeng D, E.A Andam & L. Obiri A. 2014,. A mathematical model to predict the prevalence and transmission dynamics of tuberculosis in amansie west district, Ghana. British Journal of Mathematics & Computer Science. Vol 4(3): 402-4025.
[15] Side, S., Pratama, M.I., Aidid, M.K., & Sanusi, W. 2020. Analysis and simulation of SII model for diabetes mellitus. International Journal of Scientific & Technology Research. Vol 9 (01), 2193-2197.
[16] Syafruddin, S., and M.S.M Noorani. 2013. A SIR model for spread of dengue fever disease (simulation for south sulawesi Indonesia and selangor Malaysia). *World journal of modeling and simulation*; Vol. 9 (2):96-105

[17] Azwan Anwar, Rahmat Syam, Muh. Isbar Pratama and Syafruddin Side, 2021. SEIRS Model Analysis for Online Game Addiction Problem of Mathematics Students. *Journal of Physics: Conference Series*, Volume 1918, 042024

[18] S Side, NA Muzakir, D Pebriani, SN Utari, 2021. Model SEIR Kecanduan Game Online pada Siswa di SMP Negeri 3 Makassar. *Sainsmat: Jurnal Ilmiah Ilmu Pengetahuan Alam*. Vol 9 (1), 91-102

[19] W Sanusi, MI Pratama, M Rifandi, S Sidjara, S Side., 2021. Numerical Solution of SIRS model for Dengue Fever Transmission in Makassar City with Runge Kutta Technique. *Journal of Physics: Conference Series* 1752 (1), 012004.

[20] N R Ramadhan, I Minggi and S Side, 2021., The Accuracy Comparison of the RK-4 and RK-5 Technique of SEIR Model for Tuberculosis Cases in South Sulawesi. *Journal of Physics: Conference Series*, Volume 1918, 042027.