CASE REPORT

Radiopathological correlations of myopericytomas of the hand: emphasis on the MRI perivascular pushing growth pattern

1AMANDINE CROMBÉ, MD, MSc, 2AMINE BOUHAMAMA, MD, 3FRANÇOIS LE LOARER, MD, PhD and 1MICHÈLE KIND, MD, MSc

1Department of Radiology, Institut Bergonié, Comprehensive Cancer Center of Aquitaine, F-33000, Bordeaux, France
2Department of Radiology, Centre Léon Bérard, Comprehensive Cancer Center of Rhone Alpes, F-33000, Bordeaux, France
3Department of Pathology, Institut Bergonié, Comprehensive Cancer Center of Aquitaine, F-33000, Bordeaux, France

Address correspondence to: Amandine Crombé
E-mail: a.crombe@bordeaux.unicancer.fr

SUMMARY
Myopericytomas are exceedingly rare soft-tissue tumors with less than 10 cases including radiological depictions. We report three new cases of benign myopericytomas located in the soft-tissues of the hand in adult patients. A pre-treatment MRI was available for all patients and systematically evidenced well-defined, lobulated tumors closely related to the superficial palmar vascular arch and/or digital vessels with a perivascular pushing growth pattern that correlated with pathological findings. Though rare, this small case series show that myopericytomas display recurrent imaging features that could support their radiological diagnosis.

CLINICAL PRESENTATION
A 72-year-old male without significant medical history presented with a lump of the right palmar hand side. This lesion was slowly growing for more than 5 years and became progressively painful.

IMAGING FINDINGS
On MRI, the tumor measured 54 mm and was well-circumscribed with lobulated margins. It was closely related to the superficial palmar vascular arch with perivascular nodular clusters demonstrating a pushing growth pattern. The tumor showed thinner extensions following the common palmar digital vessels of the fifth finger (Figure 1). It displayed high signal intensities (SIs) on fat sat T2 weighted imaging (T2WI) and low SI on T1WI, similar to the muscles. There was no cystic, fatty, necrotic, myxoid, or fibrotic component. The surrounding tissues did not exhibit edema, aponeurotic or peritumoral enhancement. The tumor showed a limited intratumoral heterogeneity on T2WI due to intratumoral nodules delineated by lower SI on T2WI.

DIFFERENTIAL DIAGNOSES
The close relationship to palmar vessels raised the hypothesis of a tumor of vascular or pericytic origin such as hemangiopericytoma, angioleiomyoma, myofibroma or myopericytoma. The slow progression, the well-defined margins, the lack of necrosis and the limited heterogeneity were rather in favor of a benign lesion but soft-tissue sarcoma, especially leiomyosarcoma, could not be excluded.

INVESTIGATIONS
An ultrasonography-guided core needle biopsy was performed because the tumor was deep-seated, over 5 cm without obvious diagnosis. The histopathological analysis revealed a proliferation of cells containing significant eosinophilic cytoplasm and arranged in short fascicles circumscribing tightly small blood vessels. There was no cytologic atypia and the proliferative activity was low (1–2% of cells positive for Ki67). Immunohistochemistry demonstrated a strong and diffuse positive staining for alpha-smooth muscle actin, desmin and h-caldesmon. These features were compatible with a benign myopericytoma of the hand.

The patient was subsequently treated with a curative surgery. The gross examination of the surgical specimen showed strong analogy with MRI. The tumor was well-circumscribed, multinodular and solid with a yellow-white pearl color. The ‘hemangiopericytic’ concentric perivascular growth pattern was responsible for a thinning of the vessel lumen (Figure 2). No infarction, hemorrhage or necrosis was reported.
Following these findings, we performed a request on the pathological databases of two French Sarcoma Reference Centres and we identified a total of 13 patients with myopericytomas of the upper limb including two with a pre-treatment MRI. Interestingly, they also shared this perivascular pushing growth pattern.

The first patient was a 30-year-old female. She presented with a discrete lump of the palmar and ulnar side of the left wrist that became progressively painful with paraesthesia in the ulnar nerve territory. A MRI was performed showing a 45-mm-long, well-circumscribed, lobulated and multinodular tumor that followed the same orientation as the ulnar vessels and spread along the superficial palmar vascular arch with small, thin extensions following the common palmar digital vessels towards the fifth, fourth and fifth fingers. There was no surrounding edema or bone invasion. SI, signal intensity; T₁WI, T₁ weighted imaging; T₂WI, T₂ weighted imaging.

The second patient was a 51-year-old male who presented with a slowly progressive lump in the fifth finger of the right hand. A MRI was performed before excisional surgery, which demonstrated a 9-mm-long, well-circumscribed, homogeneous, nodular tumor with iso-SI on T₁WI, high SI on fat sat T₂WI and homogeneous contrast-enhancement (Figure 4). The tumor was superficially seated in the soft-tissue of the radial side of fifth finger and developed along the proper palmar digital vessel. A glomic tumor was initially hypothesized because of the close relationship to a digital vessel and the homogeneous enhancement, but the histopathological analysis of the surgical specimen confirmed a myopericytoma.

Figure 1. A 72-year-old male with a swelling of the ulnar palmar side of the hand underwent a conventional MRI. (a) Coronal T₁WI showed a 54 mm-long, well-defined, non-encapsulated single tumor with SI similar to normal muscle, without fat or hemorrhage (white arrowhead). (b) Coronal fat-suppressed T₂WI demonstrated high SI and intratumoral nodule delineated by thin strand of lower SI on T₂WIWI (white arrows) leading to a slight heterogeneity. (c) On consecutive axial fat-suppressed T₂WIWI, the tumor demonstrated a close relationship to superficial digital flexor tendons as well as superficial palmar arch with extensions following the third, fourth and fifth fingers. There was no surrounding edema or bone invasion. SI, signal intensity; T₁WI, T₁ weighted imaging; T₂WI, T₂ weighted imaging.

Figure 2. Histopathological analysis of the surgical specimen. (a) HES slice showed a marked concentric thickening of the ulnar side of the superficial palmar arch leading to a narrowing of the vascular lumen (black asteroid), together with (b) perivascular tumor nodule (black arrows). (c) Magnification emphasized the presence of multiple uniform fusiform small cells with eosinophilic cytoplasm inside the vessel wall (white arrowhead), which were organized around smaller vessels (white arrows). (d) Immunohistochemistry demonstrated a strong and diffuse positive staining for h-caldesmon. HES, hematoxylin and eosin stained.
Factors are unclear but some case reports have highlighted a context of prior trauma or immunodeficiency. Myopericytomas are generally solitary tumors, even if rare multifocal cases have been found.

Regarding the distal upper extremities, less than 25 cases have been published so far, including less than 10 with imaging. However, they share common features that could help to establish diagnosis. The medical history usually consisted of a slowly progressive painless lump, known for years, and that became inconvenient for daily activities. On ultrasonography, myopericytomas typically demonstrated a hypoechoic, firm, slightly heterogeneous and well-defined lesion adjacent to vessels, mostly of the palmar side of the hand, with hypervascularity on doppler. Herein, ultrasonography (not shown) was only available for Patient 2 in order to guide the biopsy—the other ones being performed out of our sarcoma reference center and not available on our PACS.

MRI is the best imaging modality for characterizing myopericytomas. In all reports, myopericytomas displayed iso- to low SI on T_1WI, high SI on T_2WI, with a discrete heterogeneity due to an intratumoral nodular aspect, and rather lobulated contour. The sizes ranged from 9 to 54 mm. The previous studies systematically stressed the proximity to an artery or a vein. Interestingly, myopericytomas seemed to encase and push adjacent organs rather than invade them. After contrast agent injection, myopericytomas constantly demonstrated a strong, avid enhancement related to their vascular origin, without peritumoral...

Figure 3. A 30-year-old underwent a contrast-enhanced MRI to characterize a chronic swelling of the palmar and ulnar side of the left wrist. MRI showed a well-defined multinodular 21 mm-large and 45 mm-long tumor (white arrowheads). (a) The lesion had same signal intensities as normal muscle on Axial T_1WI without fat or hemorrhage (white arrowhead). (b) On axial T_2WI, it showed high SI and a moderate intratumoral heterogeneity (white arrowhead). (c) On consecutive axial fat-suppressed, contrast-enhanced T_1WI, the tumor demonstrated a close relationship to ulnar vessels with contiguous nodules spreading along superficial palmar arch (white arrows) and common palmar digital vessels (black arrows). It displayed a marked, homogeneous enhancement, no necrosis. There was no peritumoral enhancement. (d) The coronal reformation of the contrast-enhanced T_1WI clearly illustrates the perivascular growth pattern, with a lobulated tumor spreading along the palmar arch (white arrows) and its digital branches (black arrows). SI, signal intensity; T_1WI, T_1 weighted imaging; T_2WI, T_2 weighted imaging.

Figure 4. A 51-year-old male underwent a MRI because of a swelling of the fifth finger of the right hand. (a) On coronal T_1WI, the lesion was located on the radial side of the fifth finger. It was 9 mm-long, unique, well-defined, homogeneous and it demonstrated same SIs as normal muscle (white arrowhead). (b) On coronal fat-suppressed T_2WI, the tumor demonstrated homogeneous high SI, without peritumoral edema (white arrowhead). (c) On consecutive axial fat-suppressed, contrast-enhanced T_1WI, the tumor demonstrated marked, homogeneous enhancement, without peritumoral enhancement. It was located in the prolongation of the fifth proper palmar digital vessel (black arrows). SI, signal intensity; T_1WI, T_1 weighted imaging; T_2WI, T_2 weighted imaging.
enhancement. Interestingly, Van Camp et al performed an arte-riography and a dynamic-contrast enhanced MRI of a myopericytoma showing an arterial enhancement and a washout. Such a kinetic of enhancement may be reminiscent of a glomus tumor and could help making diagnosis.

In the three present cases, the final diagnosis was rendered by histopathological analysis. Hematoxylin and eosin stained slides demonstrated the typical features associated with myopericytomas and notably a concentric perivascular growth pattern. This appearance is in keeping with the pericytic origin of these tumors encasing the vascular structure from which they arise and sometimes protruding into the lumens of the vascular branches (Figure 5). Immunohistochemistry systematically found strong and diffuse positive staining for ASMA and h-caldesmon, while staining for CD34 and desmin seemed more inconstant. Interestingly, myopericytomas are underlined by somatic mutations of PDGFRB (Platelet derived growth factor receptor B—a growth factor involved in angiogenesis) in about 60% of cases. Nevertheless, it cannot help to distinguish them from other pericytic tumors because PDGFRB alterations can also be found in angioleiomyomas and myofibromas.

To the best of our knowledge, 11 cases of malignant myopericytomas have been reported. They were histopathologically characterized by high mitotic rate, hypercellularity, pleomorphism and necrosis but they lacked radiopathological correlations. Six of these patients developed metastasis in the liver, skin, heart, brain and bone. Three of them died of their disease.

The treatment for benign myopericytomas consists of a curative surgery with rare local recurrence likely due to incomplete resection, thereby requiring regular follow-up based on clinical examination.

To conclude, myopericytomas belong to a continuous spectrum of tumors of pericytic lineage with nodular, concentric, perivascular pushing growth pattern that parallels their imaging features. Myopericytomas of the hand typically present as well-circumscribed and nodular lesions attached to (or encasing) the superficial palmar arch and its digital branches, together with an avid contrast-enhancement on MRI. Patients should be referred to a sarcoma reference center before surgery in order to perform imaging-guided core-needle biopsy because of potential malignancy.

LEARNING POINTS

1. Myopericytomas are extremely rare ubiquitous tumours that have been recently described and are mostly encountered in the distal extremities of adults.
2. They share common MRI features that correlate with histopathological analysis. They present as well-limited lobulated and nodular tumors with a close relationship to palmar vessels reminiscent of their pericytic lineage. They rather encase and push aside the vascular and other surrounding structures, instead of invading them.
3. Patients with a suspicion of myopericytoma must be referred to a Sarcoma Reference Center because of potential malignancy.

ACKNOWLEDGMENT
The authors would like to thank Mrs Camille Martinerie for medical writing services.

INFORMED CONSENT STATEMENT
Informed consents from the first two patients were obtained. Regarding the third patient, the informed consent could not be obtained despite exhaustive efforts to contact him over a 7 months period, but proved unsuccessful. The patient data have been anonymized to protect patient identity.
glomangiopericytoma, and myopericytoma: a spectrum of tumors showing perivascular myoid differentiation. Am J Surg Pathol 1998; 22: 513–25.

3. Laga AC, Tajirian AL, Islam MN, Bhattacharyya I, Cohen DM, Plamondon CJ, et al. Myopericytoma: report of two cases associated with trauma. J Cutan Pathol 2008; 35: 866–70. doi: https://doi.org/10.1111/j.1600-0560.2007.00910.x

4. PPL L, Wong O-K, PCW L, Cheung O-Y, L-C H, Wong W-C, et al. Myopericytoma in patients with AIDS: a new class of Epstein-Barr virus-associated tumor. Am J Surg Pathol 2009; 33: 1666–72.

5. Kara A, Keskinbora M, Kayaalp ME, Şeker A, Erdil M, Bülbul M. An atypical presentation of myopericytoma in palmar arch and review of the literature. Case Rep Orthop 2014; 2014: 1–3. doi: https://doi.org/10.1155/2014/759329

6. Wagner ER, Shin AY. Myopericytoma of the hypothenar eminence: case report. HAND 2015; 10: 349–52. doi: https://doi.org/10.1007/s11552-014-9655-5

7. Van Camp L, Goubau J, Van den Berghe I, Mermuys K. Myopericytoma of the base of the finger: radiological and pathological description of a rare benign entity. J Hand Surg Am 2019; 44: 69.e1–69.e5. doi: https://doi.org/10.1016/j.jhags.2018.03.015

8. Mentzel T, Dei Tos AP, Sapi Z, Kutzner H. Myopericytoma of skin and soft tissues: clinicopathologic and immunohistochemical study of 54 cases. Am J Surg Pathol 2006; 30: 104–13.

9. Hung YP, Fletcher CDM. Myopericytomatosis: clinicopathologic analysis of 11 cases with molecular identification of recurrent PDGFRB alterations in Myopericytomatosis and Myopericytoma. Am J Surg Pathol 2017; 41: 1034–44.

10. Agaimy A, Bieg M, Michal M, Geddert H, Märkl B, Seitz J, et al. Recurrent somatic PDGFRB mutations in sporadic Infantile/Solitary adult Myofibromas but not in Angioleiomyomas and Myopericytomas. Am J Surg Pathol 2017; 41: 195–203. doi: https://doi.org/10.1097/PAS.0000000000000752

11. McMenamin ME, Fletcher CDM. Malignant myopericytoma: expanding the spectrum of tumours with myopericytic differentiation. Histopathology 2002; 41: 450–60. doi: https://doi.org/10.1046/j.1365-2559.2002.01537.x