Association of 17q24 rs1859962 gene polymorphism with prostate cancer risk
A systematic review and meta-analysis

Feiqiang Ren, MD, Peihai Zhang, MD, Ziyang Ma, MD, Ling Zhang, MD, Guangsen Li, MD, Xiaopeng Huang, MD, Degui Chang, MD, Xujun Yu, MD

Abstract
Background: Recently, several genome-wide association studies have demonstrated a cumulative association of 17q24 rs1859962 gene variants with prostate cancer (PCa) risk, but conflicting results on this issue have been reported. Hence, we performed a systematic literature review and meta-analysis to assess the association between 17q24 rs1859962 gene and PCa risk.

Methods: Systematic literature searches were conducted with PubMed, EMBASE, Science Direct/Elsevier, CNKI, and the Cochrane Library up to January 2019 for studies focusing on the association of 17q24 rs1859962 gene polymorphism with PCa risk. Meta-analysis was performed with Review Manager and Stata software. Combined OR were identified with 95% confidence intervals (95% CI) in a random or fixed effects model.

Results: Eight studies were identified, including 7863 cases of PCa patients and 17122 normal controls. Our results revealed significant associations between the 17q24 rs1859962 gene polymorphism and PCa in all genetic models (P < 0.05). The combined odds ratios and 95% confidence intervals were as follows: additive model (odds ratios [ORs] 1.44, 95%, confidence interval [CI] [1.32, 1.57]); codominant model (ORs 1.22, 95% CI [1.08, 1.39]); dominant model (ORs 1.25, 95%, CI [1.17, 1.34]); recessive model (ORs 1.27, 95% CI [1.18, 1.36]); allele model (ORs 1.32, 95% CI [1.12, 1.55]).

Conclusion: The present study supports the proposed association between the 17q24 gene rs1859962 and PCa progression. Specifically, this polymorphism is suggested to be a risk factor of PCa. However, studies with larger sample sizes are needed to better illuminate the correlation between 17q24 rs1859962 gene polymorphism and PCa.

Abbreviations: CI = confidence intervals, GWAS = genome-wide association study, OR = odds ratio, PCa = prostate cancer, SOX9 = sex determining region Y-box 9.

Keywords: 17q24 rs1859962 polymorphism, prostate cancer, single-nucleotide polymorphism

1. Introduction
Prostate cancer (PCa) is one of the most common cancers affecting men worldwide, and causes more than 250,000 deaths annually.[1,2] Although PCa is the most common noncutaneous tumor in developed countries, its etiology remains poorly understood.[3,4] Identifying risk factors for PCa is critical for developing interventions and improving our understanding of the biology of this disease.

Risk factors for PCa increase with age, ethnic background, and familial history of PCa.[5] A genome-wide association study (GWAS) found at least 35 loci related to PCa. Testing of these risk alleles across populations is important.[6,7] Approximately 42% of the risk of PCa can be explained by heritable genetic factors.

Chromosome 17q24 belongs to the non-coding pathogenic gene located in the long arm region 2 and 4 of chromosome 17 with a total length of about 600kb Genes, its biological expression mechanism is not yet clear. SOX9 (sex determining region Y)-box 9, which is located in relatively close proximity (1 Mb) to the 17q24 rs1859962 risk variant. It is an important gene associated with early embryonic development, it does not directly regulate testicular development, but occurs through the combined action of the SRY gene on the male Y chromosome.
The long arm of chromosome 17 has been reported in several linkage studies of PCa. Several large-scale GWASs have reported these SNP variants and PCa risk correlation, but conflicting results on this issue have been reported. Some studies reported that such a polymorphism may increase the risk of PCa, but others did not. Therefore, we systematically reviewed the available literature and performed a meta-analysis to evaluate the association of the 17q24 rs1859962 gene polymorphism with PCa risk, which might provide valuable insights on the biology of PCa.

2. Materials and methods

2.1. Literature search

This meta-analysis was restricted to published studies that investigated the association between the 17q24 rs1859962 gene polymorphism and PCa risk. Two independent reviewers searched PubMed, EMBASE, Science Direct/Elsevier, MEDLINE, and MeSH terms. For example, the search terms for the 17q24 rs1859962 gene were “17q24 rs1859962 gene,” “chromosome 17,” “17q24 gene,” “rs1859962,” or “17q gene,” “17q rs1859962 gene,” those for prostate cancer were “prostate cancer,” “prostatic neoplasms,” “cancer of prostate,” “cancer of the prostate,” “neoplasms, prostate,” “neoplasms, prostatic,” “prostate neoplasms,” “prostatic cancer,” or “PCa”; and those for the polymorphism were “SNP,” “single-nucleotide polymorphism,” “polymorphism,” “variation,” or “mutation.” All related articles and abstracts were retrieved. In addition, references cited within relevant reviews were retrieved manually; the search only focused on full articles.

2.2. Eligibility criteria

Inclusion criteria: Studies were included if they tested the association of 17q24 rs1859962 gene variants with PCa. The case groups were PCa patients, while the controls were male, no family history of PCa, negative digital rectal examination, and PSA level <4 ng/mL. Genotyping for the 17q24 rs1859962 gene SNP was conducted using polymerase chain reaction-restriction fragment length polymorphism. Available data were extracted from the article, including eligible and genotyped cases and controls, and the numbers of cases and controls for each 17q24 rs1859962 genotype.

Exclusion criteria: Studies were excluded if they involved case reports; were only published as abstracts, reports from meetings, or review articles; lacked a control population; lacked data on genotype frequencies; or duplicated previous publications.

2.3. Study selection and validity assessment

Two independent reviewers screened the titles and abstracts of all citations obtained from the literature search. All relevant studies that appeared to meet the eligibility criteria were retrieved. If an ambiguous decision was made based on the title and abstract, the full text was analyzed. The final decision regarding the eligibility of studies was made by reviewing the articles. Disagreements were resolved by consensus or a third reviewer. Two reviewers completed the quality assessment according to the primary criteria for nonrandomized and observational studies of the Newcastle-Ottawa quality assessment scale in meta-analyses.

2.4. Data extraction and statistical analysis

The following data were extracted from the papers by 3 reviewers: authors, year of publication, country, number, and genotyping methods, outcomes of eligible and genotyped cases and controls, and the numbers of cases and controls for each 17q24 rs1859962 genotype. Disagreements were resolved by consensus. Quantitative meta-analysis was performed by 2 reviewers using Review Manager (RevMan) software (version 5.2; The Nordic Cochrane Centre, The Cochrane Collaboration, 2012, Copenhagen, Denmark) and Stata software (version 12.0; College Station, TX). Available data were analyzed in the meta-analysis.

The combined odds ratio (OR) and its 95% confidence interval (CI) were calculated. Heterogeneity was assessed using the P-value and the I² statistic (I²) in the pooled analyses, which represents the percentage of total variation across studies. If the P-value was less than .1 or the I²-value was greater than 50%, the summary estimate was analyzed in a random-effects model. Otherwise, a fixed-effects model was applied. To reduce I error probability, using 3 genetic models for each genotype repeat the comparison several times in pairs. Allele model was calculated for wild type homozygotes versus heterozygotes and mutant type homozygotes, wild type homozygotes versus mutant type homozygotes, wild type homozygotes and heterozygote versus mutant type homozygote. Additive mode was calculated for wild type homozygotes versus mutant type homozygotes, dominant model was calculated for mutant type homozygote versus wild type homozygotes and heterozygote. Recessive model was calculated for heterozygotes and mutant type homozygotes versus wild type homozygotes. Codominant model was calculated for mutant type versus mutant type homozygotes. The association between 17q24 rs1859962 polymorphism in the 17q24 rs1859962 gene and PCa risk was investigated in an allelic model (T vs G), additive model (TT vs GG), dominant model (TT and TG vs GG), recessive model (TT vs TG and GG), and codominant model (TG vs GG). In addition, publication bias was detected by visual symmetry of funnel plots, with asymmetry suggesting possible publication bias. It was also assessed by Begg and Egger test in the meta-analysis. A P-value of less than .05 was considered to indicate publication bias. We also conducted a sensitivity analysis of the meta-analysis.

3. Results

3.1. Characteristics of the included studies

Figure 1 shows the details of the review process performed in this study. A total of 694 unduplicated studies were identified, 8 of which were ultimately selected in accordance with the eligibility criteria, and all reviewers were in agreement about the inclusion of all of these 8 papers. All these 8 studies were case-control study. Table 1 summarizes the data from the 8 studies. In total, the retrieved studies involved 7863 cases of PCa patients and 17,122 normal controls. All of these studies reported exclusion/inclusion criteria. In addition, all of these studies tested for the 17q24 rs1859962 polymorphism by using restriction fragment length polymorphism analysis after polymerase chain reaction amplification.
3.2. Meta-analysis
The test of heterogeneity suggested that the data of the recessive model and additive model be analyzed in a fixed-effects model, and the dominant, codominant, and allele models be analyzed in a random-effects model. The meta-analysis revealed significant associations between the 17q24 rs1859962 gene polymorphism and PCa in all genetic models (P < .05). The combined ORs and 95% CIs were as follows: Additive model (ORs 1.44, 95% CI [1.32, 1.57]) (Fig. 2); Codominant model (ORs 1.22, 95% CI [1.08, 1.39]) (Fig. 3); Dominant model (ORs 1.25, 95%, CI [1.17, 1.34]) (Fig. 4); Recessive model (ORs 1.27, 95% CI [1.18, 1.36]) (Fig. 5); Allele model (ORs 1.32, 95% CI [1.12, 1.55]) (Fig. 6). Begg funnel plots were largely symmetric (Figs. 7A, 8A, 9A, 10A, 11A), suggesting that there was no publication bias in the meta-analysis. Egger regression test also indicated little evidence of publication bias in all genetic models (P > .05) (Table 2). We also conducted a sensitivity analysis of the meta-analysis. We omitted 1 study at a time, and the calculated combined ORs for the remaining studies yielded consistent results. In the overall meta-analysis, no single study significantly changed the combined results, which indicated that the results were statistically stable and reliable (Figs. 7B, 8B, 9B, 10B, 11B).

Author	Country	Case	Control										
Author	Country	n	T	G	TT	TG	GG	n	T	G	TT	TG	GG
Gudmundsson 2007	Iceland	1501	1534	1468	408	718	375	11290	12351	10229	3319	5713	2258
Netherlands	999	965	1043	236	483	280		1466	1594	1338	495	604	367
Spain	456	445	467	117	211	128		1078	1130	1026	322	486	270
USA	537	523	551	136	251	150		510	555	465	173	209	128
Zheng 2008	Sweden	2893	2662	3124	637	1388	868	1781	1788	1774	452	884	445
Zhou 2011	China	119	132	106	36	60	23	105	137	73	44	49	12
Liu 2011	Japan	518	755	281	279	197	42	323	497	149	189	119	15
Zhang 2012	China	267	292	242	79	134	54	265	313	217	89	135	41
Chan J 2013	Singapore	287	353	221	106	141	40	141	170	112	53	64	24
Rojas 2014	Chile	167	146	188	29	88	50	33	29	37	5	19	9
Li 2015	China	119	136	102	39	58	22	130	98	162	17	64	49
Figure 2. Forest plot showing the meta-analysis outcomes of the additive model.

Figure 3. Forest plot showing the meta-analysis outcomes of the codominant model.

Figure 4. Forest plot showing the meta-analysis outcomes of the dominant model.
Figure 5. Forest plot showing the meta-analysis outcomes of the recessive model.

Figure 6. Forest plot showing the meta-analysis outcomes of the allele model.

Figure 7. Begg publication bias and Sensitivity analysis plot of additive model, (A) Begg publication bias; (B) sensitivity analysis.
4. Discussion

This study focused on 8 reports in the literature to clarify the association of the 17q24 rs1859962 gene polymorphism with the risk of PCa. For the additive model, dominant model, recessive model, codominant model, and allele model, 7, 3, 2, 2, and 6 studies reported a significant association between the 17q24 rs1859962 gene polymorphism and PCa, respectively, while the others did not. Our results reveal that, overall, significant associations between the 17q24 rs1859962 gene polymorphism and PCa were found in all genetic models. Specifically, the data indicate that 17q24 rs1859962 gene polymorphism might be a risk factor of PCa.
17q24 SNPs rs1859962 belongs to the noncoding pathogenic gene located in the long arm region 2 and 4 of chromosome 17, with a total length of about 600 kb. Genes, its biological expression mechanism is not yet clear. SOX9 (SRY (sex determining region Y)-box 9), which is located in relatively close proximity (1 Mb) to the 17q24 rs1859962 risk variant. It is an important gene associated with early embryonic development, it does not directly regulate testicular development, but occurs through the combined action of the SRY gene on the male Y chromosome.

SOX9 belongs to the SOX (Sry-related high mobility group box) family of transcription factors and is a key regulator of developmental processes including male sex determination, chondrogenesis, neurogenesis, and neural crest development. Heterozygous SOX9 mutation is the cause of campomelic dysplasia, a severe form of human dwarfism characterized by extreme cartilage and bone malformation, which is frequently associated with XY sex reversal. The identified major targets of SOX9 are collagens (such as type II collagen [Col2a1] and type XI collagen [Col11a2]) during chondrogenesis and the Mullerian inhibiting substance during male sex differentiation. In adult tissues, SOX9 is expressed in intestinal crypts and hair follicles, where it is regulated by the Wnt/β-catenin or Sonic hedgehog signaling pathways and seems to be necessary to maintain stem cell/progenitor cell populations.

Recently studies reported that SOX9 can interact with and regulate AR expression in PCa cells, which express high levels of AR in PCa cells indicates that SOX9-regulated genes may similarly play critical roles in supporting PCa growth. SOX9 also acts as a transcription factor in the development of prostate epithelia and its overexpression evidently plays a role in PCa tumorigenesis by the Wnt/β-catenin pathway, which has been implicated in the initiation and progression of many types of cancer. Manuel et al reported that SOX9 has also been identified as a downstream target of oncogene ERG and a recent large histopathological study found a strong correlation between positive ERG status and moderate and high levels of SOX9 in PCa tumor tissues.

Our findings suggest that 17q24 rs1859962 gene polymorphism is a risk factor of PCa. The possible mechanisms may be that the target genes regulated by SOX9, and through stimulate androgen receptor, prostate-specific antigen expression, transcriptional regulation in PCa tumorigenesis, when over expressed. In this meta-analysis the G/G genotype is significantly associated with PCa risk. The transformation from codon T to G at this site, may influenced the biological function express of normal prostate cells, resulting in the increase risk of PCa. However, studies with larger sample sizes are needed to better illuminate the mechanisms of 17q24 rs1859962 in the PCa tumorigenesis.

There are some limitations in our study, which need to be taken into consideration when interpreting the results of this meta-analysis. First, the sample size of each study was relatively small, and a total of 7863 PCa patients and 17122 normal controls were investigated in the 8 studies. Second, several studies on this issue were excluded owing to a lack of control data. Furthermore, because of the limited amount of original research, a subgroup of 17q24 rs1859962 gene polymorphism in different race was not conducted. As such, it is difficult to draw definitive conclusions about the clinical value of 17q24 rs1859962 gene variants in PCa.

In summary, the results of this meta-analysis suggests that 17q24 (rs1859962, G) is possibly a risk factor of PCa. The possible mechanism behind this may be as follows: the target genes regulated by SOX9, the transformation from codon T to G at this site, may influenced the biological function express of

Table 2

	Coeff.	Std. Err.	t	P >	[95% Conf. Interval]
Allele	2.3	2.30	0.72	.50	-0.57, 2.60
Additive	1.02	0.70	1.45	.18	-4.96, 9.57
Dominant	-1.19	2.52	-0.47	.65	-6.90, 4.52
Recessive	0.27	0.64	0.43	.68	-1.17, 1.72
Codominant	0.77	1.23	0.63	.55	-2.01, 3.56
normal prostate cells, and it through stimulate androgen receptor, prostate-specific antigen expression, transcriptional regulation resulting in the increase risk of PCa. However, many important questions remain unanswered, including a more detailed analysis of the interactions between 17q sequence variants with PCa risk variants elsewhere in the genome and whether such modulation reflects SOX9 direct or indirect effects. In any case, SOX9-regulated genes may participate in important processes such as tumor angiogenesis, growth, or invasion. So studies with larger sample sizes are needed to shed more light on the correlation between 17q24 rs1859962 gene variants and PCa.

Author contributions

Conceptualization: Feiqiang Ren, Peihai Zhang, Ziyang Ma, Ling Zhang, Guangsen Li, Xiaopeng Huang, Degui Chang, Xunjun Yu.

Data curation: Feiqiang Ren, Peihai Zhang, Ziyang Ma, Ling Zhang, Guangsen Li, Xiaopeng Huang, Degui Chang, Xunjun Yu.

Formal analysis: Feiqiang Ren, Peihai Zhang, Ziyang Ma, Ling Zhang, Guangsen Li, Xiaopeng Huang, Degui Chang, Xunjun Yu.

Funding acquisition: Feiqiang Ren, Peihai Zhang, Ziyang Ma, Ling Zhang, Guangsen Li, Xiaopeng Huang, Degui Chang, Xunjun Yu.

Investigation: Feiqiang Ren, Peihai Zhang, Ziyang Ma, Ling Zhang, Guangsen Li, Xiaopeng Huang, Degui Chang, Xunjun Yu.

Methodology: Feiqiang Ren, Peihai Zhang, Ziyang Ma, Ling Zhang, Guangsen Li, Xiaopeng Huang, Degui Chang, Xunjun Yu.

Project administration: Feiqiang Ren, Peihai Zhang, Ziyang Ma, Ling Zhang, Guangsen Li, Xiaopeng Huang, Degui Chang, Xunjun Yu.

Resources: Feiqiang Ren, Peihai Zhang, Ziyang Ma, Ling Zhang, Guangsen Li, Xiaopeng Huang, Degui Chang, Xunjun Yu.

Software: Feiqiang Ren, Peihai Zhang, Ziyang Ma, Ling Zhang, Guangsen Li, Xiaopeng Huang, Degui Chang, Xunjun Yu.

Supervision: Feiqiang Ren, Peihai Zhang, Ziyang Ma, Ling Zhang, Guangsen Li, Xiaopeng Huang, Degui Chang, Xunjun Yu.

Validation: Feiqiang Ren, Peihai Zhang, Ziyang Ma, Ling Zhang, Guangsen Li, Xiaopeng Huang, Degui Chang, Xunjun Yu.

Visualization: Feiqiang Ren, Peihai Zhang, Ziyang Ma, Ling Zhang, Guangsen Li, Xiaopeng Huang, Degui Chang, Xunjun Yu.

Writing – original draft: Feiqiang Ren, Peihai Zhang, Ziyang Ma, Ling Zhang, Guangsen Li, Xiaopeng Huang, Degui Chang, Xunjun Yu.

Writing – review and editing: Feiqiang Ren, Peihai Zhang, Ziyang Ma, Ling Zhang, Guangsen Li, Xiaopeng Huang, Degui Chang, Xunjun Yu.

References

[1] Ferlay J, Shin HR, Bray F, et al. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 2010;127:2893–917.

[2] Guo Y, Zhi F, Chen P, et al. Green tea and the risk of prostate cancer: a systematic review and meta-analysis. Medicine (Baltimore) 2017;96:e6426.

[3] Jemal A, Center MM, DeSantis C, et al. Global patterns of cancer incidence and mortality rates and trends. Cancer Epidemiol Biomarkers Prev 2010;19:893–907.

[4] Horwich A, Parker C, Bangma C, et al. Prostate cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 2010;21:129–33.

[5] Chung CC, Giampa J, Yeager M. Fine mapping of a region of chromosome 11q13 reveals multiple independent loci associated with risk of prostate cancer. Hum Mol Genet 2011;20:2869–78.

[6] Sun J, Purcell L, Gao Z. Association between sequence variants at 17q12 and prostate cancer risk in European and African Americans. Prostate 2008;68:691–7.

[7] Thomas G, Jacobs KB, Yeager M. Multiple loci identified in a genome-wide association study of prostate cancer. Nat Genet 2008;40:310–5.

[8] Waters KM, Le Marchand L, Kolonel LN. Generalizability of associations from prostate cancer genome-wide association studies in multiple populations. Cancer Epidemiol Biomarkers Prev 2008;18:1283–9.

[9] Lange EM. Genome-wide scan for prostate cancer susceptibility genes using families from the University of Michigan prostate cancer genetics project finds evidence for linkage on chromosome 17 near BRCA1. Prostate 2003;57:326–34.

[10] Xu J, Dimitrov L, Chang BL, et al. A combined genomewide linkage scan of 1,233 families for prostate cancer-susceptibility genes conducted by the international consortium for prostate cancer genetics. Am J Hum Genet 2005;77:219–29.

[11] Lange EM, Robbins CM, Gillanders EM, et al. Fine-mapping the putative chromosome 17q21-22 prostate cancer susceptibility gene to a 10cM region based on linkage analysis. Hum Genet 2007;121:49–55.

[12] Zuhlke KA, Madero JJ, Beebe-Dimmer J, et al. Truncating BRCA1 mutations are uncommon in a cohort of hereditary prostate cancer families with evidence of linkage to 17q markers. Clin Cancer Res 2004;10:5975–80.

[13] Kraft P, Pharoah P, Chanock SJ, et al. Genetic variation in the HSD17B1 gene and risk of prostate cancer. PLoS Genet 2005;68:110–7.

[14] White KA, Lange EM, Ray AM, et al. Prohibitin mutations are uncommon in prostate cancer families linked to chromosome 17q. Prostate Cancer Prostatic Dis 2006;9:298–302.

[15] Guimondnsson J, Sulem P, Steinthorsdottir V, et al. Two variants on chromosome 17 confer prostate cancer risk, and the one in TCF2 protects against type 2 diabetes. Nat Genet 2007;39:977–83.

[16] Zheng SL, Sun J, Wiklund F, et al. Cumulative association of five genetic variants with prostate cancer. N Engl J Med 2008;358:910–9.

[17] Zhou CH, Wang JY, Cao SY, et al. Association between single nucleotide polymorphisms on chromosome 17q and the risk of prostate cancer in a Chinese population. Chin J Cancer 2011;30:271–30.

[18] Liu M, Suzuki M, Arai T, et al. A replication study examining three common single-nucleotide polymorphisms and the risk of prostate cancer in a Japanese population. Prostate 2011;71:1023–1032.

[19] Zhang YR, Xu Y, Yang K, et al. Association of six susceptibility loci with prostate cancer in northern Chinese men. Asian Pac J Cancer Prev 2012;13:6273–6.

[20] Chan JY, Li H, Singh O, et al. 8q24 and 17q prostate cancer susceptibility loci in a multiethnic Asian cohort. Urol Oncol 2013;31:1553–60.

[21] Rojas PA, Torres-Estay V, Cerda-Infante J, et al. Association of a single-nucleotide polymorphism from chromosome 17q21 with the aggressiveness of prostate cancer in a Hispanic population. Cancer Res Clin Oncol 2014;140:783–8.

[22] Li XH, Zhang Z, Zhang YH, et al. A correlation study between EEFSEC gene and risk of prostate cancer. J Prostate Cancer 2006;9:298–302.

[23] Chaboisser MC, Kobayashi A, Vidal VI. Functional analysis of Sox5 and Sox6 antigens expression, transcriptional regulation resulting in the increase risk of PCa. However, many important questions remain unanswered, including a more detailed analysis of the interactions between 17q sequence variants with PCa risk variants elsewhere in the genome and whether such modulation reflects SOX9 direct or indirect effects. In any case, SOX9-regulated genes may participate in important processes such as tumor angiogenesis, growth, or invasion. So studies with larger sample sizes are needed to shed more light on the correlation between 17q24 rs1859962 gene variants and PCa.
[27] Foster JW, Dominguez-Steglich MA, Guioli S. Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene. Nature 1994;372:525–30.

[28] Santa Barbara P, Bonneaud N, Boizet B. Direct interaction of SRY-related protein SOX9 and steroidogenic factor 1 regulates transcription of the human anti-Mullerian hormone gene. Mol Cell Biol 1998;18: 6653–65.

[29] Blache P, van de WM, Duluc I, et al. SOX9 is an intestine crypt transcription factor, is regulated by the Wnt pathway, and represses the CDX2 and MUC2 genes. J Cell Biol 2004;166:37–47.

[30] Vidal VP, Chaboissier MC, Lutzkendorf S. Sox9 is essential for outer root sheath differentiation and the formation of the hair stem cell compartment. Curr Biol 2005;15:1340–51.

[31] Wang H, McKnight NC, Zhang T, et al. SOX9 is expressed in normal prostate basal cells and regulates androgen receptor expression in prostate cancer cells. Cancer Res 2007;67:528–36.

[32] GTEx Consortium. The genotype-tissue expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 2015;348:648–60.

[33] Thomsen MK, Butler CM, Shen MM, et al. Sox9 is required for prostate development. Dev Biol 2008;316:302–11.

[34] Thomsen MK, Ambrosine L, Wynn S, et al. SOX9 elevation in the prostate, promotes proliferation and cooperates with PTEN loss to drive tumor formation. Cancer Res 2010;70:979–87.

[35] Cai C, Wang H, He H, et al. ERG induces androgen receptor-mediated regulation of SOX9 in prostate cancer. J Clin Invest 2013;123: 110–22.

[36] Burdelski C, Bajupi E, Tsourlakis MC, et al. Loss of SOX9 expression is associated with PSA recurrence in ERG-positive and PTEN deleted prostate cancers. PLoS One 2015;10:e0128525.

[37] Drivdahl R, Haugk KH, Sprenger CC, et al. Suppression of growth and tumorigenicity in the prostate tumor cell line M12 by overexpression of the transcription factor SOX9. Oncogene 2004;23:4584–93.