SOLUTIONS TO CHERN-SIMONS-SCHRÖDINGER SYSTEMS WITH EXTERNAL POTENTIAL

LINGYU LI AND JIANFU YANG*

Department of Mathematics
Jiangxi Normal University
Nanchang, Jiangxi 330022, China

JINGE YANG

School of Sciences
Nanchang Institute of Technology
Nanchang 330099, China

ABSTRACT. In this paper, we consider the existence of static solutions to the nonlinear Chern-Simons-Schrödinger system

\[
\begin{align*}
-iD_0\Psi - (D_1D_1 + D_2D_2)\Psi + V\Psi &= |\Psi|^{p-2}\Psi, \\
\partial_0A_1 - \partial_1A_0 &= -\frac{i}{2}\lambda[\nabla D_2\Psi - \Psi\nabla\overline{\Psi}], \\
\partial_0A_2 - \partial_2A_0 &= \frac{i}{2}\lambda[\nabla D_1\Psi - \Psi\nabla\overline{\Psi}], \\
\partial_1A_2 - \partial_2A_1 &= -\frac{1}{2}\lambda|\Psi|^2.
\end{align*}
\]

(1)

with an external potential \(V(x) \), where \(D_0 = \partial_t + i\lambda A_0 \) and \(D_k = \partial_{x_k} - i\lambda A_k \), \(k = 1, 2 \), for \((x_1, x_2, t) \in \mathbb{R}^2, t \) are covariant derivatives, \(\lambda \) is the coupling number. Suppose that \(V(x) \) satisfies \(\lim_{|x| \to \infty} V(x) = +\infty \), we show for \(2 < p < 4 \) that there exists \(\lambda^* > 0 \) such that if \(0 < \lambda < \lambda^* \), problem (1) has two nontrivial static solutions \((\Psi_\lambda, A_{0\lambda}, A_{1\lambda}, A_{2\lambda}) \). Moreover, there also exists \(\lambda^* > 0 \) such that if \(\lambda > \lambda^* \), problem (1) has no nontrivial solutions. While for \(p > 4 \) we assume in addition that \(x \cdot \nabla V(x) \geq 0 \), then problem (1) admits a mountain pass solution for all \(\lambda > 0 \).

1. Introduction. In this paper, we investigate the existence of solutions to Chern-Simons-Schrödinger systems. It is known that the Schrödinger equation

\[
i\frac{\partial \Psi(x, t)}{\partial t} = -\Delta \Psi(x, t) + V(x)\Psi(x, t) - |\Psi(x, t)|^{p-2}\Psi(x, t)
\]

(2)

with \(p > 2 \) in \(\mathbb{R}^2 \times \mathbb{R}^+ \) can be introduced as the Euler-Lagrange equation of the Lagrange density

\[
\mathcal{L} = -\frac{1}{2}Re\{i\Psi(x, t)\frac{\partial \Psi(x, t)}{\partial t}\} + \frac{1}{2}|
abla \Psi(x, t)|^2 + \frac{1}{2}V(x)|\Psi(x, t)|^2 - \frac{1}{p}|\Psi(x, t)|^p,
\]

(3)

where \(V(x) \) is the external potential. A static solution, that is a solution \(\Psi(x, t) = u(x) \) of (2) which is independent of \(t \), satisfies the Schrödinger equation

\[
-\Delta u(x) + V(x)u(x) = |u(x)|^{p-2}u(x), \quad x \in \mathbb{R}^2.
\]

2020 Mathematics Subject Classification. Primary: 35J50; Secondary: 35J10.

Key words and phrases. Chern-Simons-Schrödinger system, variational method, nontrivial solutions.

* Corresponding author: Jianfu Yang.
Taking into account the interaction of the electromagnetic field and the matter field, one includes the Chern-Simons term into the Lagrangian density. The Lagrangian density then becomes
\[
\mathcal{L}_c = \frac{1}{4} \varepsilon^{\mu \nu \alpha \beta} A_\mu F_{\nu \alpha} - \frac{1}{4} Re \{ i\bar{\Psi}(x,t)D_\mu \Psi(x,t) \} + \frac{1}{2} |D \Psi(x,t)|^2 \\
+ \frac{1}{2} V(x)|\Psi(x,t)|^2 - \frac{1}{p} |\Psi(x,t)|^p,
\] (5)
where \(\Psi : \mathbb{R}^{2,1} \rightarrow \mathbb{C} \) is the complex scalar field, \(A_\mu : \mathbb{R}^{2,1} \rightarrow \mathbb{R} \), \(\mu = 0, 1, 2 \), are the gauge fields, which obey the Lorentz condition \(\sum_{\mu=0}^2 \partial_\mu A_\mu = 0 \). By \(D_\mu = \partial_\mu + i\lambda A_\mu \) and \(D_j = \partial_j - i\lambda A_j \), \(j = 1, 2 \), for \((x_1, x_2, t) \in \mathbb{R}^{2,1} \) we denote the covariant derivatives, where \(\lambda \) is the coupling number and we set \(F_{\mu \nu} = \partial_\mu A_\nu - \partial_\nu A_\mu \) for \(\mu, \nu = 0, 1, 2 \). Inside the Lagrangian density \(\mathcal{L}_c \) we denote by \(i \) the imaginary unit, and \(-\frac{1}{2} \varepsilon^{\mu \nu \alpha \beta} A_\mu F_{\nu \alpha}\) the Chern-Simons term. The corresponding Euler-Lagrange system of \(\mathcal{L}_c \) is given as follows.
\[
\begin{align*}
-\partial_0 \Psi - & (D_1 D_1 + D_2 D_2) \Psi + V \Psi = |\Psi|^{p-2} \Psi, \\
\partial_\mu A_1 - & \partial_1 A_\mu = -\frac{1}{2} i\lambda [\bar{\Psi} D_\mu \Psi - \Psi \bar{D}_\mu \Psi], \\
\partial_\mu A_2 - & \partial_2 A_\mu = \frac{1}{2} i\lambda [\bar{\Psi} D_\mu \Psi - \Psi \bar{D}_\mu \Psi], \\
\partial_1 A_2 - & \partial_2 A_1 = -\frac{1}{2} \lambda |\Psi|^2.
\end{align*}
\] (6)
The system (6) is considered in \([4, 7, 8, 9]\), which describes the dynamics of large number of particles in an electromagnetic field. This model is important for the study of the high-temperature superconductor, fractional quantum Hall effect and Aharonov-Bohm scattering. System (6) is referred to be the Chern-Simons-Schrödinger system, it is invariant under the following gauge transformation
\[
\phi \rightarrow \phi e^{i\chi}, \quad A_\mu \rightarrow A_\mu - \partial_\mu \chi
\]
for arbitrary \(C^\infty \) function \(\chi : \mathbb{R}^{2,1} \rightarrow \mathbb{R} \).

Since system (6) is setting in the whole space, a problem of the loss of the compactness is then raised if the variational method applied. In order to avoid such a problem, in \([1]\) a particular form of solutions of (6)
\[
\Psi(t,x) = u(|x|) e^{i\omega t}, \quad A_0(t,x) = h_1(|x|), \\
A_1(t,x) = \frac{x_2}{|x|^2} h_2(|x|), \quad A_2(t,x) = \frac{x_1}{|x|^2} h_2(|x|),
\]
is considered without the potential \(V \), where \(\omega > 0 \) and \(u, h_1, h_2 \) are real value functions. Then, solutions are found in the radially symmetric space \(H^1_0(\mathbb{R}^2) \) as critical points of the associated functional
\[
J(u) = \frac{1}{2} \int_{\mathbb{R}^2} \left\{ |\nabla u|^2 + (\omega + \xi) u^2 + \frac{u^2}{|x|^2} \left(\int_0^{|x|} s^{-1/2} (s^{-1/2} \left. \frac{\partial u}{\partial s} \right|_{s=0} \right) ds \right\}^2 \right\} dx - \frac{1}{p} \int_{\mathbb{R}^2} |u|^p dx.
\]
However, it is quite involved in finding critical points of \(J \). Actually, such a problem was treated differently in accordance to the range of the exponent \(p \). Precisely, for \(p > 4 \) it is considered a minimization problem on the Nehari-Pohozaev manifold; while for \(2 < p < 4 \), the minimization problem is constrained in \(L^2 \) sphere. Essentially, it is a nonlinear eigenvalue problem. For the case \(p = 4 \), a self-dual solution can be found by Liouville equations. Suppose that \(V \) is radially symmetric, it is studied in \([14]\) the existence, nonexistence and multiplicity of the same type of solutions for (6). While for the case \(V \) being non-radial, nontrivial solutions are found in \([15]\) under the assumption \(p > 4 \). Further results can be found in \([1, 2, 3, 6, 12, 13]\) and references therein.
In this paper, we consider the existence and nonexistence of static solutions of (6) for $p > 4$ and $2 < p < 4$ under the assumption that

(V) $V(x) \geq 0$ and $\lim_{|x| \to \infty} V(x) = \infty$;

(V₁) $x \cdot \nabla V(x) \geq 0$.

We remark that the harmonic potential $V(x) = |x|^2$ satisfies assumptions (V) and (V₁).

For static solutions of (6), the gauge field $(A₁, A₂)$ obeys the Coulomb condition

$\partial_1 A₁ + \partial_2 A₂ = 0$.

Moreover, a static solution $(u, A₀, A₁, A₂)$ satisfies

$\begin{align*}
-\Delta u + V(x)u + \lambda A₀ u + \lambda^2 (A₁² + A₂²) u &= |u|^{p-2} u, \\
\partial_1 A₀ &= \lambda^2 A₂ u², \\
\partial_2 A₀ &= -\lambda^2 A₁ u² \\
\partial_1 A₂ - \partial_2 A₁ &= -\frac{1}{2} \lambda |u|^², \\
\partial_1 A₁ + \partial_2 A₂ &= 0.
\end{align*}$

(7)

Let

$\mathcal{H} = \{ u \in H¹(\mathbb{R}²) : \int_{\mathbb{R}²} V(x) u² \, dx < \infty \}$

be the space with the norm

$||u||_H = \left(\int_{\mathbb{R}²} (|\nabla u|^2 + V(x)u²) \, dx \right)^{\frac{1}{2}}$.

We will find solutions of problem (7) by looking for critical points of the associated functional

$J_\lambda(u, A₀, A₁, A₂) = \frac{1}{2} \int_{\mathbb{R}²} (|\nabla u|^² + V(x)|u|^² + (\lambda A₀ + \lambda^2 A₁² + \lambda^2 A₂²)|u|^²) \, dx$

$+ \frac{1}{2} \int_{\mathbb{R}²} (A₀ F₁₂ + A₁ \partial₂ A₀ - A₂ \partial₁ A₀) \, dx - \frac{1}{p} \int_{\mathbb{R}²} |u|^p \, dx.$

(8)

Such a problem can be reduced, see section 2 for details, to find critical points of the functional

$I_\lambda(u) = \frac{1}{2} \int_{\mathbb{R}²} (|\nabla u|^² + V(x)u²) \, dx + \frac{1}{2} \lambda^4 \int_{\mathbb{R}²} \left(\frac{1}{4\pi} \int_{\mathbb{R}²} \frac{x₂ - y₂}{|x - y|^²} u²(y) \, dy \right)^² u²(x) \, dx$

$+ \frac{1}{2} \lambda^4 \int_{\mathbb{R}²} \left(\frac{1}{4\pi} \int_{\mathbb{R}²} \frac{x₁ - y₁}{|x - y|^²} u²(y) \, dy \right)^² u²(x) \, dx - \frac{1}{p} \int_{\mathbb{R}²} |u|^p \, dx.$

(9)

In the case $p > 4$, we have the following existence result.

Theorem 1.1. Suppose that $p > 4$ and $V(x)$ satisfies (V) and (V₁). Then problem (7) has a nontrivial solution.

We may show that the functional $I_\lambda(u)$ has the mountain pass geometry, the mountain pass theorem without (PS) condition implies that there is a (PS)c sequence of I_λ. However, it is difficult to bound such a sequence. The information in the mountain pass theorem is not enough to do it. In order to obtain further information, we show that there is a (PS)c sequence of I_λ near the Pohozaev manifold by a variant mountain pass theorem. With the help of the Pohozaev identity, the argument can be carried through.

Next, we consider the case $2 < p < 4$. In this case the functional I_λ has different features from the case $p > 4$. The coupling number λ now is taken into account as a parameter.

Theorem 1.2. Suppose that $2 < p < 4$ and $V(x)$ satisfies (V). Then there exists $\lambda^* > 0$ such that if $0 < \lambda < \lambda^*$, problem (7) has two nontrivial solutions.
In the case $p \in (2, 4)$, the essential difficulty is again to bound the (PS) sequence. In the radial case with $V(x) = \omega$ being constant, it was proved in [12] that there is a threshold value ω_0 in connection with ω such that, among other things, problem (6) has two solutions if $\omega \in (\omega_0, \bar{\omega})$, see [12] for details. The argument in [12] relies heavily on the radial symmetry of functions. The problem remains unsolved if the potential function $V(x)$ is not a constant. Similar problems arise in the Schrödinger-Poisson problem. Under certain conditions, it was proved in [10, 11] the existence and nonexistence of solutions for the Schrödinger-Poisson problem with $p \in (1, 2)$. Inspired of these works, we establish the existence of solutions for problem (7) in the case $2 < p < 4$. However, our situation differs from the Schrödinger-Poisson problem.

Finally, we have the following nonexistence result.

Theorem 1.3. Suppose that $2 < p < 4$ and $V(x)$ satisfies (V). Then there exists $\tilde{\lambda} > 0$ such that problem (7) has no nontrivial solutions if $\lambda > \tilde{\lambda}$.

In view of the coupling number λ in the covariant derivatives, we remark that there exist static solutions of problem (7) if $0 < \lambda < \lambda^*$, while there is no solution provided that $\lambda > \lambda^*$. It is not clear whether $\lambda^* = \tilde{\lambda}$, or what is the threshold value of λ.

This paper is organized as follows. After some preparations in section 2, we prove existence and nonexistence results in section 3 for $p > 4$ and in section 4 for $2 < p < 4$.

2. Preliminaries. In this section, we present some fundamental facts for future reference.

Integrating by part in (8) we find

$$J_\varepsilon(u, A_0, A_1, A_2) = \frac{1}{2} \int_{\mathbb{R}^2} (|\nabla u|^2 + V(x)|u|^2 + (\lambda A_0 + \lambda^2 A_1^2 + \lambda^2 A_2^2)|u|^2) \, dx$$

$$+ \int_{\mathbb{R}^2} A_0 F_{12} \, dx - \frac{1}{p} \int_{\mathbb{R}^2} |u|^p \, dx.$$

Equation (7) implies

$$\int_{\mathbb{R}^2} A_0 F_{12} \, dx = -\frac{1}{2} \int_{\mathbb{R}^2} \lambda A_0 |u|^2 \, dx.$$

Hence,

$$J_\lambda(u, A_0, A_1, A_2) = \frac{1}{2} \int_{\mathbb{R}^2} (|\nabla u|^2 + V(x)|u|^2 + \lambda^2 (A_1^2 + A_2^2)|u|^2) \, dx - \frac{1}{p} \int_{\mathbb{R}^2} |u|^p \, dx.$$

Next, the Coulomb condition $\partial_1 A_1 + \partial_2 A_2 = 0$ and the equation $\partial_1 A_2 - \partial_2 A_1 = -\frac{1}{2} \lambda |u|^2$ yield

$$\Delta A_1 = \frac{1}{2} \lambda \partial_2(|u|^2), \quad -\Delta A_2 = \frac{1}{2} \lambda \partial_1(|u|^2).$$

Solving equation (12) for each $u \in \mathcal{H}$ we obtain

$$A_1 = A_1(u) = \frac{1}{2} \lambda K_2 * (|u|^2) = -\frac{1}{4\pi} \lambda \int_{\mathbb{R}^2} \frac{x_2 - y_2}{|x - y|^2} |u(y)|^2 \, dy$$

and

$$A_2 = A_2(u) = -\frac{1}{2} \lambda K_1 * (|u|^2) = \frac{1}{4\pi} \lambda \int_{\mathbb{R}^2} \frac{x_1 - y_1}{|x - y|^2} |u(y)|^2 \, dy,$$

where $K_1(x) = \frac{1}{2\pi} \ln |x|$, $K_2(x) = 2\pi |x|^{-1}$. The functions K_1 and K_2 are known as the fundamental solutions of the Laplace and Helmholtz equations, respectively.
where $K_i = \frac{-x_i}{\pi|x|^2}$, $i = 1, 2$ and $*$ denotes the convolution. Similarly, the equation
\[\Delta A_0 = \lambda^2 (\partial_t (A_2 |u|^2) - \partial_2 (A_1 |u|^2)) \]
implies that
\[A_0 = A_0(u) = \lambda^2 (K_1 \ast (A_2 |u|^2) - K_2 \ast (A_1 |u|^2)). \]
Moreover, for $u \in H$ we have
\[(A_k'(u), u) = 2A_k(u), \quad k = 1, 2. \]

Therefore, the functional J_λ can be written as
\[I_\lambda(u) = \frac{1}{2} \int_{\mathbb{R}^2} \left(|\nabla u|^2 + V(x)u^2 \right) dx + \frac{1}{2} \lambda^4 \int_{\mathbb{R}^2} \left(-\frac{1}{4\pi} \int_{\mathbb{R}^2} \frac{x_2 - y_2}{|x - y|^2} u^2(y) dy \right) u^2(x) dx \]
\[+ \frac{1}{2} \lambda^4 \int_{\mathbb{R}^2} \left(\frac{1}{4\pi} \int_{\mathbb{R}^2} \frac{x_1 - y_1}{|x - y|^2} u^2(y) dy \right) u^2(x) dx - \frac{1}{p} \int_{\mathbb{R}^2} |u|^p dx. \]
We know that I_λ is well defined in H and $I_\lambda \in C^1(H)$. If u is a critical point of I_λ, defining A_0, A_1, A_2 through (13), (14) and (15), we may verify that (u, A_0, A_1, A_2) is a solution of problem (7). In the following, we focus on finding critical points of the functional I_λ.

Define the integral operator T by
\[T u(x) = \int_{\mathbb{R}^2} \frac{u(y)}{|x - y|} \, dy. \]

The following result was proved in [15].

Lemma 2.1. Let $1 < s < 2$ and $\frac{1}{s} - \frac{1}{q} = \frac{1}{2}$.

(i) There is a positive constant C depending only on s and q such that
\[\left(\int_{\mathbb{R}^2} |Tu(x)|^q \, dx \right)^{\frac{1}{q}} \leq C \left(\int_{\mathbb{R}^2} |u(x)|^s \, dx \right)^{\frac{1}{s}}. \]

(ii) If $u \in H^1(\mathbb{R}^2)$, then for $k = 1, 2$ we have
\[\|A_k(u)\|_{L^s(\mathbb{R}^2)} \leq C \|u\|_{L^2(\mathbb{R}^2)}^2 \]
and
\[\|A_0(u)\|_{L^s(\mathbb{R}^2)} \leq C \|u\|_{L^2(\mathbb{R}^2)}^2 \|u\|_{L^4(\mathbb{R}^2)}^2. \]

(iii) For $k = 1, 2$ we have
\[\|A_k(u)u\|_{L^2(\mathbb{R}^2)} \leq C \|A_k(u)\|_{L^s(\mathbb{R}^2)} \|u\|_{L^2(\mathbb{R}^2)}^2. \]

The following result is a counterpart of Brézis-Lieb lemma for the nonlocal term, it can be found or proved as that in [15].

Lemma 2.2. Suppose that u_n converges to u a.e. in \mathbb{R}^2 and u_n weakly converges to u in $H^1(\mathbb{R}^2)$. Then $A_k(u_n(x)), k = 1, 2,$ converges to $A_k(u(x))$ a.e. in \mathbb{R}^2. Moreover, for $k = 1, 2,$
\[\int_{\mathbb{R}^2} A_k^2(u_n - u)(u_n - u)^2 \, dx = \int_{\mathbb{R}^2} A_k^2(u_n^2 \, dx - \int_{\mathbb{R}^2} A_k^2(u) \, u^2 \, dx + o_n(1) \]
and for each $v \in L^2(\mathbb{R}^2)$,
\[\int_{\mathbb{R}^2} (A_k^2(u_n - u)v) \, dx = \int_{\mathbb{R}^2} (A_k^2(u_n) - A_k^2(u))uv \, dx + o_n(1). \]
3. Existence for the case \(p > 4 \). In this section, we consider the existence of solutions for problem (7) in the case \(p > 4 \). In this case, the parameter \(\lambda \) is irrelevant, we set \(\lambda = 1 \).

First, we remark that the functional \(I = I_1 \) has a mountain pass geometry.

Lemma 3.1. There hold

(i) There is an \(e \in \mathcal{H} \) such that \(I(e) < 0 \).

(ii) There exist \(\delta > 0, r > 0 \) such that \(I(u) > \delta \) if \(\|u\|_{\mathcal{H}} = r \).

Proof. The proof of (ii) is standard. To show (i), fixed a \(u \in C_c^\infty(\mathbb{R}^2) \setminus \{0\} \), we set \(v_t(x) = tu(tx) \). Then,

\[
I(v_t(x)) = \frac{t^2}{2} \int_{\mathbb{R}^2} |\nabla u|^2 \, dx + \frac{1}{2} \int_{\mathbb{R}^2} V(t^{-1}x)u^2 \, dx
+ \frac{t^2}{2} \int_{\mathbb{R}^2} (A_1^2(u) + A_2^2(u))u^2(x) \, dx - \frac{t^{p-2}}{p} \int_{\mathbb{R}^2} |u|^p \, dx.
\]

Hence, \(I_\lambda(v_t(x)) \to \infty \) is \(t \to +\infty \) provided that \(p > 4 \). The assertion follows. \(\square \)

Now we may define the mountain pass level for \(I \):

\[
e = \inf_{\gamma \in \Gamma} \sup_{t \in [0,1]} I(\gamma(t)),
\]

where

\[
\Gamma = \{ \gamma \in C([0,1], \mathcal{H}) : \gamma(0) = 0, I(\gamma(1)) < 0 \}.
\]

In order to bound the \((PS)_c\) sequence of \(I \), we define for any \(u \in \mathcal{H} \) the function \(\Phi(s, u) = e^s u(e^s x), x \in \mathbb{R}^2 \). Note that \(A_k(\Phi(s, u)) = e^s A_k(u(e^s x)), k = 1, 2, \) we have

\[
I \circ \Phi(s, u) = \frac{1}{2} e^{2s} \int_{\mathbb{R}^2} |\nabla u|^2 \, dx + \frac{1}{2} \int_{\mathbb{R}^2} V(e^{-s}x)u^2 \, dx
+ \frac{1}{2} e^{2s} \int_{\mathbb{R}^2} (A_1^2(u) + A_2^2(u))u^2(x) \, dx - \frac{1}{p} e^{(p-2)s} \int_{\mathbb{R}^2} |u|^p \, dx
\]

defined on \(\mathbb{R} \times \mathcal{H} \). We may verify that

\[
\langle \frac{\partial I \circ \Phi(s, u)}{\partial u}, v \rangle = e^{2s} \int_{\mathbb{R}^2} \nabla u \nabla v \, dx + \int_{\mathbb{R}^2} V(e^{-s}x)uv \, dx
+ e^{2s} \int_{\mathbb{R}^2} (A_1(u)(A_1'(u), v) + A_2(u)(A_2'(u), v))u^2(x) \, dx
+ e^{2s} \int_{\mathbb{R}^2} (A_1^2(u) + A_2^2(u))uv \, dx - e^{(p-2)s} \int_{\mathbb{R}^2} |u|^{p-2}uv \, dx
\]
for each $v \in \mathcal{H}$, and for $h \in \mathbb{R}$,
\[
\langle \frac{\partial I \circ \Phi(s,u)}{\partial s}, h \rangle = e^{2sh} \int_{\mathbb{R}^2} |\nabla u|^2 \, dx - \frac{1}{2} e^{-sh} \int_{\mathbb{R}^2} x \cdot \nabla V(e^{-s}x)u^2 \, dx
\]
\[
+ e^{2sh} \int_{\mathbb{R}^2} (A^2_1(u) + A^2_2(u))u^2(x) \, dx - \frac{p-2}{p} he^{(p-2)s} \int_{\mathbb{R}^2} |u|^p \, dx.
\]
(21)

In view of Lemma 3.1, we have $I \circ \Phi(s,u) > 0$ for (s,u) with $|s|$ and $\|u\|_\mathcal{H}$ small, and $I \circ \Phi(0,c) < 0$. Hence, $I \circ \Phi(s,u)$ has the mountain pass geometry. We define the mountain pass level for $I \circ \Phi(s,u)$:
\[
b = \inf_{\tilde{\gamma} \in \tilde{\Gamma}} \sup_{\gamma \in \Gamma} I \circ \Phi(\tilde{\gamma}(t)),
\]
(22)

where
\[
\tilde{\Gamma} = \{ \tilde{\gamma} \in C([0,1], \mathbb{R} \times \mathcal{H}) : \tilde{\gamma}(0) = (0,0), I \circ \Phi(\tilde{\gamma}(1)) < 0 \}.
\]

Since $\Gamma = \{ \Phi \circ \tilde{\gamma} : \tilde{\gamma} \in \tilde{\Gamma} \}$, we have $c = b$, where c, b are defined in (18) and (22) respectively.

Now we will find a $(PS)_c$ sequence of I nearby the Pohozaev manifold. The argument is based on the following general minimax principle which is Theorem 2.8 in [16].

Proposition 1. Let X be a Banach space. Let M_0 be a closed subspace of the metric space M and $\Gamma_0 \subset C(M_0, X)$. Define
\[
\Gamma = \{ \gamma \in C(M, X) : \gamma|_{M_0} \in \Gamma_0 \}.
\]

If $\varphi \in C^1(X, \mathbb{R})$ satisfies
\[
\infty > c := \inf_{\gamma \in \Gamma} \sup_{u \in M} \varphi(\gamma(u)) > a := \sup_{\gamma_0 \in \Gamma_0} \sup_{u \in M_0} \varphi(\gamma_0(u))
\]
then, for every $\varepsilon \in (0, \frac{c-a}{2T})$, $\delta > 0$ and $\gamma \in \Gamma$ such that
\[
\sup_{\gamma \in \Gamma} \varphi \circ \gamma \leq c + \varepsilon,
\]
there exists $u \in X$ such that
\begin{enumerate}
\item $c - 2\varepsilon \leq \varphi(u) \leq c + 2\varepsilon$,
\item $\text{dist}(u, \Gamma(M)) \leq 2\delta$,
\item $\|\varphi'(u)\| \leq 8\varepsilon/\delta$.
\end{enumerate}

Let
\[
Q(u) = \int_{\mathbb{R}^2} (|\nabla u|^2 - \frac{1}{2} x \cdot \nabla V(x)u^2 + (A^2_1(u) + A^2_2(u))u^2) \, dx - \frac{p-2}{p} \int_{\mathbb{R}^2} |u|^p \, dx.
\]

An application of Proposition 1 to the functional $I \circ \Phi(s,u)$ yields the following result.

Lemma 3.2. There exists a sequence $\{u_n\} \subset \mathcal{H}$ such that
\[
I(u_n) \to c, \quad I'(u_n) \to 0, \quad Q(u_n) \to 0
\]
(23)
as $n \to \infty$.

Proof. The result was given in [5] for the Schrödinger-Poisson equation. We sketch the proof here for reader’s convenience.

Since the functional $I \circ \Phi(s,u)$ has a mountain pass geometry, taking $M = [0,1]$ in Proposition 1, we find that there exists a sequence $\{(s_n, v_n)\}$ in $\mathbb{R} \times \mathcal{H}$ such that
\[
(I \circ \Phi)(s_n, v_n) \to c, \quad (I \circ \Phi)'(s_n, v_n) \to 0, \quad s_n \to 0
\]
(24)
as $n \to \infty$. Therefore, for $(h, w) \in \mathbb{R} \times \mathcal{H}$,
\[
\langle (I \circ \Phi)'(s_n, v_n), (h, w) \rangle = (I'(\Phi(s_n, v_n)), \Phi(s_n, w)) + Q(\Phi(s_n, v_n))h. \tag{25}
\]
Taking $h = 1$, $w = 0$ in (25) we obtain
\[
Q(\Phi(s_n, v_n)) \to 0 \quad \text{as} \quad n \to \infty.
\]
Let $u_n = \Phi(s_n, v_n)$. Then
\[
Q(u_n) \to 0 \quad \text{as} \quad n \to \infty.
\]
We may also verify that for each $v \in \mathcal{H}$,
\[
\langle I'(u_n), v \rangle \to 0 \quad \text{as} \quad n \to \infty.
\]
The assertion follows. \hfill \Box

Now we show that the $(PS)_c$ sequence of $I(u)$ is bounded.

Lemma 3.3. Any sequence $\{u_n\} \subset \mathcal{H}$ satisfying
\[
I(u_n) \to c, \quad I'(u_n) \to 0, \quad Q(u_n) \to 0 \tag{26}
\]
as $n \to \infty$, is bounded in \mathcal{H}.

Proof. By (26), we have
\[
I(u_n) = \frac{1}{2} \int_{\mathbb{R}^2} |\nabla u_n|^2 \, dx + \frac{1}{2} \int_{\mathbb{R}^2} V(x)u_n^2 \, dx + \frac{1}{2} \int_{\mathbb{R}^2} (A_1^2(u_n) + A_2^2(u_n))u_n^2(x) \, dx \\
- \frac{1}{p} \int_{\mathbb{R}^2} |u_n|^p \, dx = c + o(1) \tag{27}
\]
and
\[
Q(u_n) = \int_{\mathbb{R}^2} |\nabla u_n|^2 \, dx - \frac{1}{2} \int_{\mathbb{R}^2} x \cdot \nabla V(x)u_n^2 \, dx + \int_{\mathbb{R}^2} (A_1^2(u_n) + A_2^2(u_n))u_n^2(x) \, dx \\
- \frac{p-2}{p} \int_{\mathbb{R}^2} |u_n|^p \, dx = o(1) \tag{28}
\]
as $n \to \infty$. We deduce from (27) and (28) that
\[
\frac{p-4}{2} \int_{\mathbb{R}^2} |\nabla u_n|^2 \, dx + \frac{p-2}{2} \int_{\mathbb{R}^2} V u_n^2 \, dx + \frac{p-4}{2} \int_{\mathbb{R}^2} (A_1^2(u_n) + A_2^2(u_n))u_n^2(x) \, dx \\
+ \frac{1}{2} \int_{\mathbb{R}^2} x \cdot \nabla V(x)u_n^2 \, dx = (p-2)c + o(1) \tag{29}
\]
Since $p > 4$, by assumption (V_1), $\{\|u_n\|_{\mathcal{H}}\}$ is bounded. \hfill \Box

Finally, we show in this section that the Palais-Smale condition holds for each $c \in \mathbb{R}$.

Proposition 2. Suppose (V) and (V_1) hold for $p > 4$, and (V) holds for $2 < p < 4$ respectively. Let $\{u_n\} \subset \mathcal{H}$ be a bounded $(PS)_c$ sequence of I_λ, that is,
\[
I_\lambda(u_n) \to c, \quad I'_\lambda(u_n) \to 0
\]
as $n \to \infty$. Then $\{u_n\}$ contains a convergent subsequence.
Proof. Since \(\{u_n\} \) is bounded in \(\mathcal{H} \), so we may assume that
\[
 u_n \rightharpoonup u \quad \text{in} \quad \mathcal{H}, \quad u_n \to u \quad \text{in} \quad L^p(\mathbb{R}^2), \quad p \geq 2, \quad u_n \to u \quad \text{a.e.} \quad \mathbb{R}^2. \tag{30}
\]
Let
\[
 J_k(u) = \int_{\mathbb{R}^2} A_k^2(u)u^2\, dx, \quad k = 1, 2.
\]
We have for all \(v \in \mathcal{H} \) that
\[
 \langle J_k(u), v \rangle = 2 \int_{\mathbb{R}^2} A_k^2(u)uv + A_k \langle A'_k(u), v \rangle u^2\, dx.
\]
We claim that for all \(v \in \mathcal{H} \),
\[
 \langle J_k(u_n) - J_k(u), v \rangle = 2 \int_{\mathbb{R}^2} (A_k(u_n)(A'_k(u_n), v)u_n^2 + A_k^2(u_n)u_n v - A_k(u)(A'_k(u), v)u^2 - A_k^2(u)uv)\, dx
\]
\[
\to 0
\]
as \(n \to \infty \). Indeed,
\[
| \int_{\mathbb{R}^2} (A_k^2(u_n)u_n v - A_k^2(u)uv)\, dx | \leq | \int_{\mathbb{R}^2} (A_k^2(u_n)v - A_k^2(u_n)uv)\, dx | + | \int_{\mathbb{R}^2} (A_k^2(u_n) - A_k^2(u))uv\, dx |. \tag{32}
\]
By the Hölder and Hardy-Littlewood-Sobolev inequalities, we deduce that
\[
| \int_{\mathbb{R}^2} (A_k^2(u_n)u_n v - A_k^2(u)uv)\, dx |
\leq C\|A_k^2(u_n)\|_{L^{\frac{2}{q}}(\mathbb{R}^2)} \|v\|_{L^{2q'}} \|u_n - u\|_{L^{2q'}} \tag{33}
\]
as \(n \to \infty \), where \(q > 2, \frac{2}{q} + \frac{1}{q'} = 1 \) and \(1 < s < 2, \frac{1}{s} - \frac{1}{q} = \frac{1}{2} \). Similarly, by Lemma 2.2 we find
\[
| \int_{\mathbb{R}^2} (A_k^2(u_n) - A_k^2(u))uv\, dx |
\leq C\|A_k^2(u_n) - u\|_{L^{\frac{2}{q}}(\mathbb{R}^2)} \|v\|_{L^{2q'}} \|u\|_{L^{2q'}} + o(1) \tag{34}
\]
as \(n \to \infty \).

Next, we show that
\[
\int_{\mathbb{R}^2} A_k(u_n)(A'_k(u_n), v)u_n^2\, dx \to \int_{\mathbb{R}^2} A_k(u)(A'_k(u), v)u^2\, dx \tag{35}
\]
as \(n \to \infty \) for \(v \in \mathcal{H} \). Since
\[
\int_{\mathbb{R}^2} A_k(u_n)(A'_k(u_n), v)u_n^2\, dx
\]
\[
= \int_{\mathbb{R}^2} A_k(u_n)(A'_k(u_n), v)(u_n^2 - u^2)\, dx + \int_{\mathbb{R}^2} A_k(u_n)(A'_k(u_n), v)u^2\, dx. \tag{36}
\]
First we show that
\[\|A_k(u_n)\langle A'_k(u_n), v \rangle\|_{L^2} \leq C. \] (37)

Then, the weakly convergence of \(A_k(u_n)\langle A'_k(u_n), v \rangle \) implies for each \(v \in \mathcal{H} \) that
\[
\int_{\mathbb{R}^2} A_k(u_n)\langle A'_k(u_n), v \rangle u^2 \, dx \to \int_{\mathbb{R}^2} A_k(u)\langle A'_k(u), v \rangle u^2 \, dx
\] (38)
since \(u \in \mathcal{H} \). To prove (37), we note that
\[
|\langle A'_k(u_n), v \rangle| \leq C \int_{\mathbb{R}^2} \frac{|u_n|}{|x-y|} \, dx \leq (\int_{\mathbb{R}^2} \frac{|u_n|^2}{|x-y|^q} \, dx)^{\frac{p}{2}} (\int_{\mathbb{R}^2} \frac{|v|^2}{|x-y|^q} \, dx)^{\frac{1}{2}},
\]
that is,
\[
|\langle A'_k(u_n), v \rangle| \leq |Tu_n|^p |Tv|^\frac{q}{2}. \] (39)

It follows from the Hardy-Littlewood-Sobolev inequality that
\[
\left| \int_{\mathbb{R}^2} A_k(u_n)\langle A'_k(u_n), v \rangle u^2 \, dx \right| \\
\leq \|A_k(u_n)\|_{L^2} \|\langle A'_k(u_n), v \rangle\|_{L^2} \|u_n\|_{L^{2q'}} \|u\|_{L^q} \] (40)
\[
\leq C \|u_n\|_{L^{2q'}} \|Tu_n\|_{L^{q'}} \|Tv\| \to 0
\]
So (37) holds true.

Next, we prove that
\[
\int_{\mathbb{R}^2} A_k(u_n)\langle A'_k(u_n), v \rangle (u_n^2 - u^2) \, dx \to 0. \] (41)
Indeed, for \(s_1 = \frac{2q}{q+1} \),
\[
\left| \int_{\mathbb{R}^2} A_k(u_n)\langle A'_k(u_n), v \rangle (u_n^2 - u^2) \, dx \right| \\
\leq \|A_k(u_n)\|_{L^{s_1}} \|\langle A'_k(u_n), v \rangle\|_{L^{s_1}} \|u_n - u\|_{L^{2q'}} \|u_n + u\|_{L^{2q'}} \] (42)
\[
\leq C \|u_n\|_{L^{2q'}} \|Tu_n\|_{L^{2q'}} \|Tv\| \to 0
\]
as \(n \to \infty \). Consequently, the claim (31) holds true.

In the same way, we may infer from (38), (41) and the weak convergence of \(u_n \) in \(\mathcal{H} \) that
\[
\langle I'_k(u), v \rangle = 0, \quad \text{for each } v \in \mathcal{H}. \] (43)

We can also verify that
\[
\langle A'_k(u_n), u_n \rangle = 2A_k(u_n). \] (44)

Now, we are ready to show that \(u_n \) converges to \(u \) in \(\mathcal{H} \). By (44),
\[
(A_1(u_n), A'_1(u_n), u_n) + A_2(u_n, A'_2(u_n), u_n) u_n^2 = 2(A_1^2(u_n) + A_2^2(u_n)) u_n^2,
\]
and then
\[
\phi(1) = \langle I'_k(u_n), u_n \rangle \\
= \int_{\mathbb{R}^2} (|\nabla u_n|^2 + V(x) u_n^2) \, dx + 3\lambda^2 \int_{\mathbb{R}^2} (A_1^2(u_n) + A_2^2(u_n)) u_n^2 \, dx - \int_{\mathbb{R}^2} |u_n|^p \, dx \] (45)
Similarly,
\[0 = \langle I'_*(u), u \rangle = \int_{\mathbb{R}^2} (|\nabla u|^2 + V(x)u^2) \, dx + 3\lambda^2 \int_{\mathbb{R}^2} (A_1^2(u) + A_2^2(u))u^2 \, dx - \int_{\mathbb{R}^2} |u|^p \, dx. \]
(46)

Let \(v_n = u_n - u \). By (45), (46) and Lemma 2.2,
\[\int_{\mathbb{R}^2} (|\nabla v_n|^2 + V(x)v_n^2) \, dx + 3\lambda^2 \int_{\mathbb{R}^2} (A_1^2(v_n) + A_2^2(v_n))v_n^2 \, dx = o(1) \]
as \(n \to \infty \). Since
\[
\left| \int_{\mathbb{R}^2} (A_1^2(v_n) + A_2^2(v_n))v_n^2 \, dx \right| \\
\leq C \left(\|A_1^2(v_n)\|_{L^p} \|v_n^2\|_{L^q} + \|A_2^2(v_n)\|_{L^p} \|v_n^2\|_{L^q} \right) \\
\leq C \|v_n^2\|_{L^p}^2 \|v_n^2\|_{L^q}^2 \to 0
\]
as \(n \to \infty \), we conclude \(\|v_n\|_{H} \to 0 \) as \(n \to \infty \). The proof is complete. \(\square \)

Proof of Theorem 1.1. The result follows by Lemma 3.1, Lemma 3.2, Lemma 3.3 and Proposition 2. \(\square \)

4. **Existence and nonexistence for the case** \(2 < p < 4 \). In this section, we show the existence and nonexistence of solutions for problem (7) when \(2 < p < 4 \), that is, we will prove Theorem 1.2 and Theorem 1.3. We start with the following result.

Proposition 3. Suppose \(2 < p < 4 \) and \((V)\) holds. If \(\{u_n\} \subset \mathcal{H} \) is such that \(I_\lambda(u_n) \leq C \), then \(\{u_n\} \) is uniformly bounded in \(\mathcal{H} \).

Proof. For each \(u \in \mathcal{H} \) solving equation (12), we obtain \(A_k = A_k(u), k = 1, 2 \), which satisfies
\[
\lambda \int_{\mathbb{R}^2} |u|^4 \, dx = \int_{\mathbb{R}^2} 2(\partial_2 A_1 - \partial_1 A_2)|u|^2 \, dx \\
= 4 \int_{\mathbb{R}^2} \left[-A_1 \partial_2 \left(\frac{1}{2}|u|^2 \right) + A_2 \partial_1 \left(\frac{1}{2}|u|^2 \right) \right] \, dx \\
= 4\lambda^{-1} \int_{\mathbb{R}^2} (- A_1 \Delta A_1 - A_2 \Delta A_2) \, dx \\
= 4\lambda^{-1} \int_{\mathbb{R}^2} (|\nabla A_1|^2 + |\nabla A_2|^2) \, dx.
\]

By (7),
\[
\int_{\mathbb{R}^2} (|\nabla u|^2 + \lambda^2 (A_1^2 + A_2^2)u^2) \, dx \\
= \int_{\mathbb{R}^2} (|\partial_1 u|^2 + |\partial_2 u|^2 + \lambda^2 (A_1^2 + A_2^2)u^2) \, dx \\
\geq 2\lambda \int_{\mathbb{R}^2} (A_2 \partial_1 \left(\frac{1}{2}|u|^2 \right) - A_1 \partial_2 \left(\frac{1}{2}|u|^2 \right)) \, dx \\
= 2 \int_{\mathbb{R}^2} (|\nabla A_1|^2 + |\nabla A_2|^2) \, dx = \frac{1}{2} \lambda^2 \int_{\mathbb{R}^2} |u|^4 \, dx.
\]

(48)
For each $\varepsilon > 0$, there holds for $2 < p < 4$ that

$$\frac{1}{p} t^p \leq C t^2 + \varepsilon t^4.$$

Hence, by the assumption and (48),

$$C \geq I_\lambda(n) = \frac{1}{2} \int_{\mathbb{R}^2} (|\nabla u_n|^2 + V(x)u_n^2 + \lambda^2 A_1^n u_n^2 + \lambda^2 A_2^n u_n^2) \, dx - \frac{1}{p} \int_{\mathbb{R}^2} |u_n|^p \, dx$$

$$\geq \frac{1}{4} \int_{\mathbb{R}^2} (|\nabla u_n|^2 + \lambda A_1^n u_n^2 + \lambda A_2^n u_n^2) \, dx + \frac{1}{2} \int_{\mathbb{R}^2} V(x)u_n^2 \, dx$$

$$+ \frac{1}{8} \lambda^2 \int_{\mathbb{R}^2} |u_n|^4 \, dx - C_\varepsilon \int_{\mathbb{R}^2} |u_n|^2 \, dx - \varepsilon \int_{\mathbb{R}^2} |u_n|^4 \, dx.$$

Choosing $\varepsilon = \frac{1}{16} \lambda^2$, we obtain

$$C + C\|u_n\|_{L^2(\mathbb{R}^2)}^2 \geq \frac{1}{4} \int_{\mathbb{R}^2} (|\nabla u_n|^2 + \lambda^2 A_1^n u_n^2 + \lambda^2 A_2^n u_n^2) \, dx + \frac{1}{2} \int_{\mathbb{R}^2} V(x)u_n^2 \, dx$$

$$\geq \frac{1}{4} \int_{\mathbb{R}^2} (|\nabla u_n|^2 + V(x)u_n^2 + \lambda A_1^n u_n^2 + \lambda A_2^n u_n^2) \, dx.$$

(49)

Now, we claim that $\|u_n\|_{L^2(\mathbb{R}^2)} \leq C$ uniformly in n. Suppose on the contrary that $\|u_n\|_{L^2(\mathbb{R}^2)} \to \infty$ as $n \to \infty$. Let $v_n(x) = \frac{u_n(x)}{\|u_n\|_{L^2(\mathbb{R}^2)}}$. Then v_n satisfies

$$\int_{\mathbb{R}^2} |\nabla v_n|^2 \, dx + \lambda^2 \|u_n\|_{L^2(\mathbb{R}^2)}^2 \int_{\mathbb{R}^2} (A_1^n(v_n)v_n^2 + A_2^n(v_n)v_n^2) \, dx + \int_{\mathbb{R}^2} V(x)v_n^2 \, dx$$

$$\leq \frac{C}{\|u_n\|_{L^2(\mathbb{R}^2)}} + C.$$

(50)

This implies that $\|v_n\|_{H^1} \leq C$. So we may assume that

$$v_n \rightharpoonup v \text{ in } H, \quad v_n \to v \text{ in } L^p(\mathbb{R}^2), \quad p \geq 2, \quad v_n \to v \text{ a.e. } \mathbb{R}^2.$$

(52)

Therefore, $\int_{\mathbb{R}^2} v_n^2 \, dx = 1$. By Lemma 2.2, we have $A_k(v_n) \to A_k(v)$ a.e. \mathbb{R}^2 and

$$\int_{\mathbb{R}^2} A_k^n(v_n)v_n^2 \, dx = \int_{\mathbb{R}^2} A_k^n(v_n - v)(v_n - v)^2 \, dx + \int_{\mathbb{R}^2} A_k^n(v)v^2 \, dx + o(1)$$

(53)

as $n \to \infty$ for $k = 1, 2$. By the Hölder inequality,

$$\left| \int_{\mathbb{R}^2} A_k^n(v_n - v)(v_n - v)^2 \, dx \right| \leq \|A_k^n(v_n - v)\|_{L^\frac{q}{p}} \|v_n - v\|_{L^\frac{2q}{q'}} + o(1),$$

(54)

where $\frac{q}{q'} + \frac{1}{q'} = 1$. The Hardy-Littlewood-Sobolev inequality yields

$$\|A_k^n(v_n - v)\|_{L^\frac{q}{p}} \leq C\|v_n - v\|_{L^q}^2,$$

(55)

where $1 < s < 2$, $\frac{1}{s} - \frac{1}{q} = \frac{1}{2}$. We conclude from (52)-(55) that for $k = 1, 2$,

$$\int_{\mathbb{R}^2} A_k^n(v_n)v_n^2 \, dx \to \int_{\mathbb{R}^2} A_k^n(v)v^2 \, dx$$

(56)

as $n \to \infty$. On the other hand, by (51),

$$\int_{\mathbb{R}^2} (A_1^n(v_n)v_n^2 + A_2^n(v_n)v_n^2) \, dx \to 0$$

(57)
as \(n \to \infty \). Equations (56) and (57) imply that
\[
\int_{\mathbb{R}^2} (A_1^2(v) v^2 + A_2^2(v) v^2) \, dx = 0.
\] (58)

Thus,
\[A_j(v) v = 0, \quad a.e. \quad \mathbb{R}^2, \quad \partial_2(A_1(v)^2) = 0, \quad \partial_1(A_2(v)^2) = 0 \quad a.e. \quad \mathbb{R}^2 \]
implying
\[
0 = \int_{\mathbb{R}^2} \partial_2(A_1(v)^2) \, dx = \int_{\mathbb{R}^2} \partial_2A_1(v)^2 + A_1 \partial_2 v^2 \, dx
\] (59)
and
\[
0 = \int_{\mathbb{R}^2} \partial_1(A_2(v)^2) \, dx = \int_{\mathbb{R}^2} \partial_1A_2(v)^2 + A_2 \partial_1 v^2 \, dx.
\] (60)

Namely,
\[
\int_{\mathbb{R}^2} (\partial_1 A_2(v) - \partial_1 A_2(v)) v^2 \, dx + 2 \int_{\mathbb{R}^2} (v A_2(v) \partial_1 v - v A_1 \partial_2 v) \, dx = 0.
\] (61)

As a result,
\[
\int_{\mathbb{R}^2} |v|^4 \, dx = 2 \int_{\mathbb{R}^2} (\partial_1 A_2(v) - \partial_1 A_2(v)) v^2 \, dx + 4 \int_{\mathbb{R}^2} (v A_2(v) \partial_1 v - v A_1 \partial_2 v) \, dx = 0.
\] (62)

Hence, \(v = 0 \) a.e. \(\mathbb{R}^2 \), which is a contradiction since
\[
1 = \int_{\mathbb{R}^2} |v_n|^2 \, dx \to \int_{\mathbb{R}^2} |v|^2 \, dx.
\]
The proof is completed. \(\square \)

Now, we prove the existence results.

Proof of Theorem 1.2. Consider the functional
\[
I_0(u) = \frac{1}{2} \int_{\mathbb{R}^2} (|\nabla u|^2 + V(x) u^2) \, dx - \frac{1}{p} \int_{\mathbb{R}^2} |u|^p \, dx.
\]
It is standard to verify that there are \(r > 0 \) and \(\alpha > 0 \) such that
\[
I_0(u) \geq \alpha \quad \text{if} \quad \|u\|_{\mathcal{H}} = r.
\]
We also can find an \(e \in \mathcal{H} \) such that \(\|e\|_{\mathcal{H}} > r \) and \(I_0(e) < 0 \). By the continuity of the function \(I_\lambda \) in \(\lambda \), there is \(\lambda^* > 0 \) such that for \(0 < \lambda < \lambda^* \), \(I_\lambda(u) \geq \alpha \) if \(\|u\|_{\mathcal{H}} = r \) and \(I_\lambda(e) < 0 \). By Lemma 2.2, we know \(I_\lambda \) satisfies (PS) condition. The mountain pass theorem implies that \(I_\lambda(u) \) has a critical point \(u_c \) satisfies \(I_\lambda(u_c) > 0 \).

Now, we consider the minimization problem
\[
m_\lambda = \inf_{u \in \mathcal{H}} I_\lambda(u)
\]
for \(0 < \lambda < \lambda^* \). Since \(I_\lambda(e) < 0 \), by Proposition 3, \(-\infty < m_\lambda < 0 \). By the Ekeland variational principle, there exists a sequence \(\{u_n\} \subset \mathcal{H} \) such that
\[
I_\lambda(u_n) \to m_\lambda, \quad I'_\lambda(u_n) \to 0
\]
as \(n \to \infty \). By Proposition 3, \(\{u_n\} \) is bounded in \(\mathcal{H} \). Proposition 2 implies that \(\{u_n\} \) has a convergent subsequence. Hence, we may assume \(u_n \to u_\lambda \) in \(\mathcal{H} \). As a result, we obtain that \(m_\lambda = I_\lambda(u_\lambda) \) and \(I'_\lambda(u_\lambda) = 0 \). The proof is complete. \(\square \)
Finally, we show the nonexistence result.

Proof of Theorem 1.3. Since

\[
\lambda \int_{\mathbb{R}^2} |u|^4 \, dx = 2 \int_{\mathbb{R}^2} (-u A_1 \partial_x u + u A_2 \partial_y u) \, dx
\]

we obtain

\[
\lambda^2 \int_{\mathbb{R}^2} (A_1^2 + A_2^2) u^2 \, dx \geq \frac{3}{2 \varepsilon^2} \int_{\mathbb{R}^2} |u|^4 \, dx - \frac{\lambda^2}{\varepsilon^4} \int_{\mathbb{R}^2} |\nabla u|^2 \, dx.
\]

Let \(u = y_\lambda \neq 0 \) be a critical point of \(I_\lambda \) for every \(\lambda > 0 \). Then,

\[
0 = \langle I'_\lambda(u), u \rangle
\]

\[
= \int_{\mathbb{R}^2} (|\nabla u|^2 + V(x) u^2) \, dx + 3\lambda^2 \int_{\mathbb{R}^2} (A_1^2(u) + A_2^2(u)) u^2 \, dx - \int_{\mathbb{R}^2} |u|^p \, dx
\]

\[
\geq \frac{1}{2} \int_{\mathbb{R}^2} (|\nabla u|^2 + \lambda_1 u^2) \, dx + \frac{3\lambda^2}{2 \varepsilon^2} \int_{\mathbb{R}^2} |u|^4 \, dx - \frac{3\lambda^2}{\varepsilon^4} \int_{\mathbb{R}^2} |\nabla u|^2 \, dx - \int_{\mathbb{R}^2} |u|^p \, dx
\]

\[
= \left(\frac{1}{2} - \frac{3\lambda^2}{\varepsilon^4} \right) \int_{\mathbb{R}^2} |\nabla u|^2 \, dx + \int_{\mathbb{R}^2} \left(\frac{1}{2} \lambda_1 u^2 + \frac{3\lambda^3}{2 \varepsilon^2} |u|^4 - |u|^p \right) \, dx.
\]

Choosing \(\varepsilon > 0 \) such that \(\frac{1}{2} = \frac{3\lambda^2}{\varepsilon^2} \), we find

\[
0 = \langle I'_\lambda(u), u \rangle \geq \int_{\mathbb{R}^2} \left(\frac{1}{2} \lambda_1 u^2 + \frac{\sqrt{6} \lambda^2}{2} |u|^4 - |u|^p \right) \, dx > 0
\]

provided that \(\lambda > 0 \) large, a contradiction. The assertion follows.

Acknowledgments. J. F. Yang is supported by NNSF of China, No:11671179 and 11771300. J. G. Yang is supported by NNSF of China, No:11701260, NSF of Jiangxi Province, No: 20192BAB211005.

REFERENCES

[1] J. Byeon, H. Huh and J. Seok, Standing waves of nonlinear Schrödinger equations with the gauge field, *J. Funct. Anal.*, **263** (2012), 1575–1608.

[2] J. Byeon, H. Huh and J. Seok, On standing waves with a vortex point of order \(N \) for the non-linear Chern-Simons-Schrödinger equations, *J. Differ. Equ.*, **261** (2016), 1285–1316.

[3] P. L. Cunha, P. d’Avenia, A. Pomponio and G. Siciliano, A multiplicity result for Chern-Simons-Schrödinger equation with a general nonlinearity, *Nonlinear Differ. Equ. Appl.*, **22** (2015), 1831–1850.

[4] V. Dunne, *Self-Dual Chern-Simons Theories*, Springer, New York, 1995.

[5] Y. He and G. Li, Standing waves for a class of Schrödinger-Poisson equations in \(\mathbb{R}^3 \) involving critical Sobolev exponents, *Ann. Acad. Sci. Fenn. Math.*, **40** (2015), 729–766.

[6] H. Huh, Standing waves of the Schrödinger equation coupled with the Chern-Simons gauge field, *J. Math. Phys.*, **53** (2012), 063702, 8 pp.

[7] R. Jackiw and S.-Y. Pi, Classical and quantal nonrelativistic Chern-Simons theory, *Phys. Rev. D*, **42** (1990), 3500–3513.

[8] R. Jackiw and S.-Y. Pi, Soliton solutions to the gauged nonlinear Schrödinger equation on the plane, *Phys. Rev. Lett.*, **64** (1990), 2969–2972.

[9] R. Jackiw and S.-Y. Pi, Self-dual Chern-Simons solitons, *Progr. Theoret. Phys. Suppl.*, **107** (1992), 1–40.

[10] Y. Jiang and H. Zhou, Schrödinger-Poisson system with steep potential well, *J. Differ. Equ.*, **251** (2011), 582–608.

[11] Y. Jiang and H. Zhou, Multiple solutions for a Schrödinger-Poisson-Slater equation with external Coulomb potential, *Sci. China Math.*, **57** (2014), 1163–1174.
[12] A. Pomponio and D. Ruiz, A variational analysis of a gauged nonlinear Schrödinger equation,
J. Eur. Math. Soc., **17** (2015), 1463–1486.

[13] A. Pomponio and D. Ruiz, Boundary concentration of a gauged nonlinear Schrödinger equation on large balls, *Calc. Var. Partial Differential Equations* **53** (2015), 289–316.

[14] Y. Wan and J. Tan, Standing waves for the Chern-Simons-Schrödinger systems without (AR) condition, *J. Math. Anal. Appl.*, **415** (2014), 422–434.

[15] Y. Wan and J. Tan, The existence of nontrivial solutions to Chern-Simons-Schrödinger systems, *Discrete Contin. Dyn. Syst.*, **37** (2017), 2765–2786.

[16] M. Willem, *Minimax Theorems*, Progress in Nonlinear Differential Equations and their Applications, 24. Birkhäuser Boston, Inc., Boston MA, 1996.

Received August 2020; revised November 2020.

E-mail address: lilingyu2965@163.com

E-mail address: jfyang.2000@yahoo.com

E-mail address: jgyang2007@yeah.net