High-coverage genomes to elucidate the evolution of penguins

Pan, Hailin; Cole, Theresa L.; Bi, Xupeng; Fang, Miaoquan; Zhou, Chengran; Yang, Zhengtao; Ksepka, Daniel T.; Hart, Tom; Bouzat, Juan L.; Argilla, Lisa S.; Bertelsen, Mads F.; Boersma, P. Dee; Bost, Charles André; Cherel, Yves; Dann, Peter; Fiddaman, Steven R.; Howard, Pauline; Labuschagne, Kim; Mattern, Thomas; Miller, Gary; Parker, Patricia; Phillips, Richard A.; Quillfeldt, Petra; Ryan, Peter G.; Taylor, Helen; Thompson, David R.; Young, Melanie J.; Ellegaard, Martin R.; Gilbert, M. Thomas P.; Sinding, Mikkel Holger S.; Pacheco, George; Shepherd, Lara D.; Tennyson, Alan J.D.; Grosser, Stefanie; Kay, Emily; Nupen, Lisa J.; Ellenberg, Ursula; Houston, David M.; Reeve, Andrew Hart; Johnson, Kathryn; Masello, Juan F.; Stracke, Thomas; McKinlay, Bruce; Borboroglu, Pablo Garcia; Zhang, De Xing; Zhang, Guojie

Published in:
GigaScience

DOI:
10.1093/gigascience/giz117

Publication date:
2019

Document version
Publisher's PDF, also known as Version of record

Document license:
CC BY

Citation for published version (APA):
Pan, H., Cole, T. L., Bi, X., Fang, M., Zhou, C., Yang, Z., Ksepka, D. T., Hart, T., Bouzat, J. L., Argilla, L. S., Bertelsen, M. F., Boersma, P. D., Bost, C. A., Cherel, Y., Dann, P., Fiddaman, S. R., Howard, P., Labuschagne, K., Mattern, T. Zhang, G. (2019). High-coverage genomes to elucidate the evolution of penguins. GigaScience, 8(9), 1-17. https://doi.org/10.1093/gigascience/giz117

Download date: 20. jun.. 2024
DATA NOTE

High-coverage genomes to elucidate the evolution of penguins

Hailin Pan1,2,3,†, Theresa L. Cole4,5,†, Xupeng Bi1,6,7, Miaoquan Fang1,6,7, Chengran Zhou1,6, Zhengtao Yang1,6, Daniel T. Ksepka8, Tom Hart9, Juan L. Bouzat10, Lisa S. Argilla11, Mads F. Bertelsen12,13, P. Dee Boersma14, Charles-André Bost15, Yves Cherel15, Peter Dann16, Steven R. Fiddaman17, Pauline Howard18,19, Kim Labuschagne20, Thomas Mattern5, Gary Miller21,22, Patricia Parker23, Richard A. Phillips24, Petra Quillfeldt25, Peter G. Ryan26, Helen Taylor27,28, David R. Thompson29, Melanie J. Young5, Martin R. Ellegaard30, M. Thomas P. Gilbert30,31, Mikkel-Holger S. Sinding30, George Pacheco30, Lara D. Shepherd32, Alan J. D. Tennyson32, Stefanie Grosser5,33, Emily Kay34,35, Lisa J. Nupen26,36, Ursula Ellenberg37,38, David M. Houston39, Andrew Hart Reeve3,40, Kathryn Johnson34,35, Juan F. Masello25, Thomas Stracke19, Bruce McKinlay41, Pablo García Borboroglu14,42,43, De-Xing Zhang44 and Guojie Zhang1,2,3,7,*

1BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China; 2State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; 3Section for Ecology and Evolution, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark; 4Manaaki Whenua Landcare Research, PO Box 69040, Lincoln, Canterbury 7640, New Zealand; 5Department of Zoology, University of Otago, PO Box 56, Dunedin, Otago 9054, New Zealand; 6China National Genebank, BGI-Shenzhen, Shenzhen, Guangdong, China; 7Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China; 8Bruce Museum, Greenwich, CT 06830, USA; 9Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK; 10Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA; 11The Wildlife Hospital Dunedin, School of Veterinary Nursing, Otago Polytechnic, Dunedin, Otago 9016, New Zealand; 12Copenhagen Zoo, Roskildevej 38, DK-2000 Frederiksberg, Denmark; 13Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark; 14Center for Ecosystem Sentinels, Department of Biology, University of Washington, Seattle, WA 98195, USA; 15Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 du CNRS-La Rochelle Université, 79360 Villiers-en-Bois, France; 16Research Department, Phillip Island Nature

Received: 3 August 2019; Revised: 29 August 2019; Accepted: 29 August 2019

© The Author(s) 2019. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Penguins (Sphenisciformes) are a remarkable order of flightless wing-propelled diving seabirds distributed widely across the southern hemisphere. They share a volant common ancestor with Procellariiformes close to the Cretaceous-Paleogene boundary (∼20 species among 6 genera, penguins range from the tropical Galápagos Islands to the oceanic temperate forests of New Zealand, the rocky coastlines of the sub-Antarctic islands, and the sea ice around Antarctica. To inhabit such diverse and extreme environments, penguins evolved many physiological and morphological adaptations. However, they are also highly sensitive to climate change. Therefore, penguins provide an exciting target system for understanding evolutionary processes of speciation, adaptation, and demography. Genomic data are an emerging resource for addressing questions about such processes. **Results:** Here we present a novel dataset of 19 high-coverage genomes that, together with 2 previously published genomes, encompass all extant penguin species. We also present a well-supported phylogeny to clarify the relationships among penguins. In contrast to recent studies, our results demonstrate that the genus Aptenodytes is basal and sister to all other extant penguin genera, providing intriguing new insights into the adaptation of penguins to Antarctica. As such, our dataset provides a novel resource for understanding the evolutionary history of penguins as a clade, as well as the fine-scale relationships of individual penguin lineages. Against this background, we introduce a major consortium of international scientists dedicated to studying these genomes. Moreover, we highlight emerging issues regarding ensuring legal and respectful indigenous consultation, particularly for genomic data originating from New Zealand Taonga species. **Conclusions:** We believe that our dataset and project will be important for understanding evolution, increasing cultural heritage and guiding the conservation of this iconic southern hemisphere species assemblage.

Keywords: genomics; Sphenisciformes; comparative evolution; phylogenetics; speciation; biogeography; demography; climate change; Antarctica; evolution
Data Description

Context

Penguins (Sphenisciformes) are a unique order of seabirds distributed widely across the southern hemisphere (Fig. 1). Approximately 20 extinct penguin species are recognized across 6 well-defined genera (Aptenodytes, Pygoscelis, Eudyptes, Spheniscus, Eudyptula, and Megadyptes [1–3]). Debate has surrounded species/lineage boundaries in a few key areas:

1. Divisions between New Zealand little blue (Eudyptula minor minor), New Zealand white-flippered (Eudyptula minor albosignata), and Australian fairy penguins (Eudyptula novaehollandiae) [4–6].
2. Divisions between northern rockhopper (Eudyptes moseleyi), western rockhopper (Eudyptes chrysocome), and eastern rockhopper penguins (Eudyptes fiholii) [3, 7, 8].
3. Divisions between Fiordland crested (Eudyptes pachyrhynchus) and Snares crested penguins (Eudyptes robustus) [9, 10].
4. Divisions between macaroni (Eudyptes chrysolophus chrysolophus) and royal penguins (Eudyptes chrysolophus schlegeli) [3, 8, 11].

Penguins have an extensive fossil record, with >50 extinct species documented to date [3, 12, 13], extending back >60 million years [12]. Extant penguins span a modest range of sizes [14, 15], with the emperor penguin (Aptenodytes forsteri) the largest (30 kg) and Eudyptula penguins the smallest (1 kg). In contrast, the fossil record reveals that many extinct penguin species were giants (surpassing 100 kg in body mass [13]).

The radiation of penguins provides an excellent case study for researching biogeographic impacts on speciation processes. Penguins inhabit every major coastline in the southern hemisphere, and almost every island archipelago in the Southern Ocean [16]. Their range extends to unique ecological niches, from the tropical Galápagos Islands (Galápagos penguin, Spheniscus mendiculus) to the oceanic temperate forests of New Zealand (Eudyptes pachyrhynchus), rocky coastlines of the sub-Antarctic islands (E. fiholii), and the sea ice around Antarctica (Aptenodytes forsteri) [17]. For this reason, penguins have evolved many unique adaptations, specific to the variety of ecological environments. Previous studies have suggested that global climate change during the Eocene [18, 19], substantial oceanographic currents [7], and geological island uplift [3] were key drivers of penguin diversification. Although the phylogenetic relationships within penguins are relatively well understood [1, 3, 18, 20], it remains uncertain which lineage first diverged from other penguins. Molecular analyses have differed on whether Aptenodytes, Pygoscelis, or both together represent the sister taxa to all other extant penguins [3]. Both of these genera are endemic to coastal Antarctica and Antarctic and subantarctic islands, and thus a sequential branching pattern would suggest a polar ancestral area for extant penguins. In contrast, morphological data and the fossil record suggest that the more temperate-adapted genus Spheniscus was the first to diverge [3, 20]. Understanding the evolutionary diversification of penguins in respect to geological and climatic changes remains a substantial gap in understanding the biogeographic history of these iconic birds.

Although penguins are tied to landmasses for breeding and nesting [21], all species spend most of their lives at sea [22] and are therefore important components of terrestrial, coastal, and marine ecosystems [23]. While some taxa inhabit environments with strong winds and extreme cold temperatures, experiencing seasonal fluctuations in the length of daylight across the breeding and chick-rearing seasons [24], others inhabit relatively temperate or even tropical climates, with little variation in day length. The unique morphological and physiological adaptations that have evolved within penguins include the complete loss of aerial flight, where penguins instead use their flipper-like wings in wing-propelled diving [25], densely packed waterproof and insulating feathers [26, 27], visual sensitivity of the eye lens for underwater predation [28–30], dense bones, stiff wing joints and reduced distal wing musculature to overcome buoyancy in water [31–33], enhanced thermoregulation for extreme low temperatures, long-term fasting, ability to digest secreted food, delayed digestion [34–40], different plumage [41] and crest ornaments [42], and catastrophic moult [43]. As such, penguins are an excellent system to study comparative evolution of adaptive traits.

Penguins are also sentinels of the Southern Ocean [16], being particularly sensitive to human and environmental change [44, 45]. Extensive demographic monitoring programs have indicated that many penguin species are declining in response to global warming [44–46], pollution, environmental degradation, and competition with fisheries, which are considered key drivers of these population declines [47–50]. Demographic coalescent models have demonstrated dramatic population declines during the Pleistocene ice ages, followed by rapid population expansions in response to global warming [51–54]. Future global warming is predicted to cause significant population declines [44, 55–57]. Understanding past demographic histories and inferring future demographic trajectories therefore remain important steps for predicting ecosystem-wide changes in this rapidly warming part of the planet.

Although penguins are a relatively well-studied group, previous evolutionary studies have been limited by the genetic markers used, such as short mitochondrial DNA [10, 58–60] or nuclear sequences [1, 8, 61, 62], microsatellites [63, 64], partial mitochondrial genomes [3, 65], or single-nucleotide polymorphisms [11, 53, 54, 66–68]. Several studies have hinted at associations between biological patterns and climate change [51–54, 60, 69]. Only a few studies have explored genome-wide evolutionary processes among penguins [51, 70] or between penguins and other birds [71–73], and these studies have focussed on just 2 Antarctic taxa: the Adélie penguin (Pygoscelis adeliae) and Aptenodytes forsteri. These previous studies have created a basic framework to understand the timing of penguin diversification, identify population fluctuations during past climate cycles, and have hinted at the molecular basis for a range of physiological and morphological adaptations [51]. The molecular genomic basis for the unique morphological and physiological adaptations of penguins, compared to other aquatic and terrestrial birds, remains largely unknown. No previous study has attempted to explore the evolution of all penguins under a comparative genomic or evolutionary framework. In this Data Note, we present 19 new high-quality genomes that, together with the 2 previously reported genomes [51], encompass all extant penguin species. We demonstrate the quality and application of this new dataset by constructing a well-supported phylogenomic tree of penguins. These data provide a critical resource for understanding the drivers of penguin evolution, the molecular basis of morphological and physiological adaptations, and demographic characteristics. For species naming, we follow standard nomenclature; however, for Eudyptula we follow Grosser et al. [5, 74] and for Eudyptes and Megadyptes we follow Cole et al. [3].
High-coverage genomes to elucidate the evolution of penguins

Methods

Sample collection, library construction, and sequencing

While it is possible to recover genome sequences from historical museum samples [75], such genomes are often of low quality and/or fragmented [76], limiting the ability of downstream analyses. Our project design (see below) relies on high-coverage genomes with little missing data (see Li et al. [51]). Therefore, we designed our sample collection to include only high-quality blood samples. We collected 94 blood samples spanning 19 different penguin species (1–28 samples per species; Supplementary Table 1). Samples were derived from the wild, zoological parks, or wildlife hospitals and were obtained according to strict permitting procedures, animal ethics, and consultation with indigenous representatives (Supplementary Table 1).

DNA was extracted from each sample at 1 of 3 laboratories as follows: we used the HiPire Blood DNA Midi Kit II at BGI (Hong Kong), the Qiagen DNeasy Blood and Tissue Kit (Qiagen, Valencia, CA, USA) at the University of Oxford (United Kingdom), and the KingFisher Cell and Tissue Kit in combination with the KingFisher Duo Prime Purification System at the University of Copenhagen (Denmark). All downstream methods were conducted at BGI. We diluted each DNA extraction to 20 μL using Tris-EDTA buffer. The quality and quantity of each DNA extraction was assessed by first estimating the concentration of 1 μL DNA extraction on a Microplate Reader, and DNA fragment size was evaluated by pulse gel electrophoresis or 1% agarose gel electrophoresis. Following quality control, a single sample per species was chosen for genomic library construction (Table 1).

We constructed 1 or more genomic libraries for each of the 19 penguin species depending on the DNA quality. For species that we could obtain high molecular weight DNA with the main band longer than 40 kb, we constructed 10X Genomics genomic libraries to produce 100× coverage sequencing data (Table 2). To do this, we attached a specific unique barcode to 1 end of short DNA fragment that are broken from 1 long DNA fragment, using standard protocols provided by Chromium™ Genome Solution. Because this protocol encompasses >1 million specific barcodes in a single solution, it decreases the chance of short DNA fragments with the same barcode being derived from unrelated long DNA fragments. For those species with shorter DNA fragments (<40 kb), we constructed genomic libraries following Illumina (San Diego, CA, [77]) or BGIseq 500 [78] protocols. Those protocols resulted in several paired-end libraries with insert sizes of either 250 or 500 bp, in addition to several mate-pair libraries with insert sizes ranging from 2 to 10 kb (Table 2). We further generated 100–320× coverage sequencing data for these species. Furthermore, we did not find any significant difference in the assembly quality between Illumina and BGIseq, while the 10x strategy normally produced better assembly than the other strategy with multiple insert-sized libraries (Table 3). Following sequencing, we generated 3.24 Tb sequencing reads encompassing all 19 penguin species, obtaining >111 Gb data per species (Table 2).

Figure 1: Locations of breeding colonies of penguins and sampling sites for the final genomes, adapted from Ksepka et al. [1]. Sampling locations are shown with a small white ellipse. Note that the sampling location of the Humboldt penguin (Spheniscus humboldti) is unclear because this individual was bred in the Copenhagen zoo, with ancestors imported from Peru and Chile in 1972. AMS: Amsterdam Island; ANT: Antipodes Islands; AUC: Auckland Islands; BOU: Bouvet; CAM: Campbell Island; CHA: Chatham Islands; CRZ: Crozet; FAL: Falkland Islands/Malvinas; GAL: Galapagos Islands; GOU: Gough Island; HEA: Heard Island; KER: Kerguelen; MAC: Macquarie Island; NZ: New Zealand; PEI: Prince Edward/Marion Island; SG: South Georgia; SNA: The Snares; SO: South Orkney Islands; SS: South Sandwich Islands.
Table 1: Sample collection information for the 21 penguin genomes (including 2 obtained in Li et al. (51))

Latin name	Common name	Sample type	Sampling location	Sample label	Date extracted
Eudyptes chrysolophus schlegeli	Royal	Wild	Green Gorge, Macquarie Island	4458	October 2017
Eudyptes chrysolophus	Macaroni	Wild	Marion Island, Prince Edward Islands	MP PEI 1	October 2017
Eudyptes pachyrhynchos	Fiordland-crested	Wild	Harrison Cove, Milford Sound, New Zealand South Island	MS 9	May 2017
Eudyptes robustus	Snares-crested	Dunedin Wildlife Hospital	The Snares, New Zealand sub-Antarctic	68M 28/09/13	September 2018
Eudyptes sclateri	Erect-crested	Wild	Antipodes Island, New Zealand sub-Antarctic	Ant 5	September 2018
Eudyptes filholi	Eastern rockhopper	Wild	Crozet Island	GS 12	May 2016
Eudyptes chrysoame	Western rockhopper	Wild	Falkland Islands/Malvinas	RH 110–1	May 2016
Eudyptes moseleyi	Northern rockhopper	Wild	Amsterdam Island	NRP 118–1	May 2016
Megadyptes antipodes antipodes	Yellow-eyed	Wild	Otago Peninsula, New Zealand South Island	OT 2 9/2/18	August 2018
Spheniscus magellanicus	Magellanic	Wild	Chiloe Island, Chile	AH 6	May 2016
Spheniscus demersus	African	Wild	Luderitz, Namibia	AP 173	July 2018
Spheniscus mendiculus	Galápagos	Wild	Galápagos Islands	GAPE 212	October 2017
Spheniscus humboldtii	Humboldt	Copenhagen Zoo	Peru and Chile lineages	Z-67–15	October 2016
Eudyptula minor albosignata	White-flippered	Christchurch Antarctic Centre	Banks Peninsula, Canterbury, New Zealand South Island	Fred	July 2018
Eudyptula minor minor	Little blue	National Aquarium of New Zealand	New Zealand North Island	Gonz	August 2018
Eudyptula novaehollandiae	Fairy	Wild	Phillip Island, Victoria, Australia	10/9/18–1	October 2018
Pygoscelis adeliae	Adélie	Wild	Inexpressible Island, Antarctica	[51]	NA
Pygoscelis papua	Gentoo	Wild	West Antarctic Peninsula, Antarctica	Gentoo penguin DNA -4	January 2018
Pygoscelis antarctica	Chinstrap	Wild	Thule Island, South Sandwich Islands	CP TH 060	November 2017
Aptenodytes patagonicus	King	Wild	Fortuna Bay, South Georgia	KP FORT 001	November 2017
Aptenodytes forsteri	Emperor	Wild	Emperor Island, Antarctica	[51]	NA
Table 2: Details of the sequencing platform used and the data statistics for 21 penguin genomes

Species	Library construction strategy	Sequencing platform	Raw data (Gb)	Clean data (Gb)
Eudyptes chrysolophus chrysolophus	10X	BGIseq500	145.9	126.9
Megadyptes antipodes antipodes	10X	BGIseq500	111.9	104.1
Spheniscus demersus	10X	BGIseq500	141.1	131.3
Spheniscus mendiculus	10X	BGIseq500	112.2	104.4
Eudyptula minor albosignata	10X	BGIseq500	132.5	124.8
Eudyptula minor minor	10X	BGIseq500	121.4	112.7
Eudyptula novaehollandiae	10X	BGISEQ500	180.4	168.5
Pygoscelis papua	10X	BGIseq500	134.5	124.0
Pygoscelis antarctica	10X	BGIseq500	154.5	139.7
Aptenodytes patagonicus	250 bp, 2 kb, 5 kb, 10 kb	BGIseq500	402.6	296.6
Eudyptes chrysolophus schlegeli	250 bp, 2 kb, 5 kb, 10 kb	HiSeq X ten and HiSeq 4000	146.4	104.7
Eudyptes robustus	250 bp, 2 kb, 5 kb	HiSeq X ten and HiSeq 4000	171.2	107.6
Eudyptes scletcheri	250 bp, 2 kb, 5 kb	HiSeq X ten and HiSeq 4000	156.2	103.2
Eudyptes fiholi	250 bp, 2 kb, 5 kb, 10 kb	HiSeq X ten and HiSeq 4000	195.0	146.8
Eudyptes chrysolophus	250 bp, 2 kb, 5 kb	HiSeq X ten and HiSeq 4000	195.1	111.6
Eudyptes pachyrhynchos	250 bp, 2 kb, 5 kb, 10 kb	HiSeq X ten and HiSeq 4000	212.6	150.7
Spheniscus magellanicus	250 bp, 2 kb, 5 kb, 10 kb	HiSeq X ten and HiSeq 4000	208.8	137.2

HiSeq X ten was used for sequencing small insert size libraries; HiSeq 4000 was used for sequencing mate-pair libraries.

Table 3: Assembly statistics and BUSCO results for 21 penguin genomes within a total of 4,915 conserved avian orthologs

Library construction strategy	Species	Contig N50 (bp)	Scaffold N50 (bp)	Genome size (bp)	Complete	Duplication	Fragmented	Missing
10x Eudyptes chrysolophus chrysolophus	83,954	87,954,837	1,317,732,923	91.80%	1.20%	4.20%	2.80%	
Megadyptes antipodes antipodes	83,954	87,954,837	1,317,732,923	91.80%	1.20%	4.20%	2.80%	
Spheniscus demersus	72,552	380,950	1,300,348,609	88.90%	1.60%	5.70%	3.80%	
Spheniscus mendiculus	72,552	380,950	1,300,348,609	88.90%	1.60%	5.70%	3.80%	
Eudyptula minor	95,773	21,866,543	1,374,338,381	85.60%	7.40%	4.20%	2.80%	
Eudyptula minor albosignata	95,773	21,866,543	1,374,338,381	85.60%	7.40%	4.20%	2.80%	
Eudyptula novaehollandiae	122,461	29,280,209	1,357,427,560	89.00%	4.70%	3.80%	2.50%	
Pygoscelis papua	93,785	2,780,837	1,309,329,553	90.70%	1.50%	5.00%	2.80%	
Pygoscelis antarctica	118,336	6,180,260	1,265,661,676	91.30%	1.20%	4.60%	2.90%	
Eudyptes chrysocome	116,769	2,903,810	1,256,739,118	91.50%	1.10%	4.20%	3.20%	
Eudyptes chrysolophus schlegeli	24,191	1,877,548	1,310,605,488	93.20%	1.50%	3.30%	2.00%	
Eudyptes pachyrhynchos	33,319	8,795,033	1,310,923,788	84.00%	8.60%	4.60%	2.80%	
Eudyptes robustus	29,712	380,950	1,300,348,609	88.90%	1.60%	5.70%	3.80%	
Eudyptes scletcheri	29,712	380,950	1,300,348,609	88.90%	1.60%	5.70%	3.80%	
Eudyptes fiholi	66,005	1,949,323	1,231,067,970	93.80%	1.00%	3.00%	2.20%	
Eudyptes chrysolophus	66,005	1,949,323	1,231,067,970	93.80%	1.00%	3.00%	2.20%	
Eudyptes moseleyi	95,773	21,866,543	1,374,338,381	85.60%	7.40%	4.20%	2.80%	
Spheniscus magellanicus	69,562	1,921,244	1,211,737,899	89.00%	1.00%	5.00%	2.80%	
Spheniscus humboldti	118,336	6,180,260	1,265,661,676	91.30%	1.20%	4.60%	2.90%	
Aptenodytes patagonicus	116,769	2,903,810	1,256,739,118	91.50%	1.10%	4.20%	3.20%	
Eudyptes chrysolophus	24,191	1,877,548	1,310,605,488	93.20%	1.50%	3.30%	2.00%	

Genome assembly and quality evaluation

Sequences obtained from the 250-bp insert size libraries and the 10x libraries were used to evaluate the genome size for each penguin using a k-mer approach [79]. Reads were scanned using a 17-bp window with 1 bp sliding and the frequency of each 17 k-mer was recorded. After all the reads were scanned, the k-mer frequency distributions were plotted and the depth with the highest frequency (Kdep) was defined. The genome size was estimated as the read number \(\times (\text{read length} - 17 + 1)/K_{\text{dep}} \). The filtered reads for the 10x libraries were only used for estimating the genome size with 17 k-mer, while all reads were used for Supernova assembly.

Sequencing errors have a major effect on subsequent genome assembly because they both introduce mistakes in the assembly and also decrease the assembly continuities. Several features can be linked to sequencing noise, including...
low-quality bases, adaptor contamination, and duplication [80]. To remove the potential biases introduced by sequencing noise, we filtered our raw sequencing reads prior to genome assembly, following strict standards including (i) discarding paired-end reads containing overlaps, (ii) removing reads with >20% low-quality bases as the quality score was <10, (iii) removing reads with >5% ambiguous N bases, (iv) removing paired-end reads containing identical sequences likely to be PCR duplicates, and (v) removing reads with adaptor sequences. Following filtering, each genome contained >104 Gb data. Overall, we obtained a total of 2.56 Tb high-quality data for all 19 penguin genomes (Table 2).

Both SOAPdenovo v. 2–2.04 (SOAPdenovo2, RRID:SCR_014986) [81] and Allpaths-LG (ALLPATHS-LG, RRID:SCR_010742) [82] were used to assemble the genomic data from various insert sizes. For SOAPdenovo, paired-end reads from small insert size libraries were used to construct de Bruijn graphs, with various k-mer ranging from 23 to 47. Contigs were subsequently constructed using contig modular with the “-D 1 -g” parameter to remove edges containing coverages no larger than 1. Following this, “map -k 35 -g” was used to map mate-pair reads into contigs, with k-mer size 35. Finally, we conducted scaffolding with parameters “scaffold -g -F” to assemble the contigs into longer linkages. The best version, in terms of various k-mer in the graph construction step, was chosen as the SOAPdenovo representative for each species. In addition, we also assembled genomic libraries from various insert sizes using Allpaths-LG following the default parameters. By comparing the assemblies from both SOAPdenovo and Allpaths-LG, according to both the scaffold N50 and the total length, we chose the best assembler as a representative for each of the 19 penguin species. Supernova v. 2.0 [83], recommended for 10x genomic data [83], was used to assemble those species with 10x genomic libraries, following the default parameters. The optimal assembly strategy chosen for each penguin species is listed in Supplementary Table 2. For each assembly, we used GapCloser v. 1.12 (GapCloser, RRID:SCR_015026) [81] to locally assemble and close gaps within each scaffold following the default parameters.

All penguins (including those obtained in Li et al. [51]) were estimated to have a ∼1.3-Gb genome (Fig. 2), containing low variances. Most assemblies have both a longer scaffold N50 and contig N50 than the Aptenodytes forsteri and Pygoscelis adeliae assemblies obtained by Li et al. [51] (Fig. 2). In total, the 21 genomes contained a scaffold N50 > 1 Mb, and of those, 13 genomes contained a scaffold N50 > 3 Mb. All penguin genomes contain a contig N50 > 19 kb and 15 of the genomes are > 30 kb. The maximum contig N50 extends to 163 kb for the macaroni penguin (Eudyptes chrysocome) [84] (Fig. 2). The highest-quality genome is Eudyptula novaehollandiae, encompassing a 29.3-Mb scaffold N50. Therefore, our results demonstrate consistency and high quality among all 21 penguin genomes (Fig. 2).

The genome assembly completeness provides an evaluation of the assembly quality. We used BUSCO v. 3.0.2 (BUSCO, RRID:SCR_015008) [84] to evaluate our newly assembled penguin genomes with the avian database aves_odb9, which encompasses 4,915 conserved avian orthologs (Table 3). Only ∼3% of the core genes in aves_odb9 could not be annotated on the 21 penguin genomes (ranging between 2% and 7.8%). This demonstrates that all 21 penguin genomes are near-complete, containing only a few gaps. We identified an average of 90% complete core genes on each of the 21 penguin genomes, with the richest being 93.8% on Eudyptes chrysolophus. Furthermore, when several genes were annotated in >1 copy, we considered them to be duplications. Duplication rates among the 21 penguin genomes varied only between 0.6% and 8.6%. In addition, only ∼4% of the core genes were partly annotated on each of the 21 penguin genomes (Fig. 2). Overall, we obtained almost-complete, high-quality genomes. Our genomic dataset (including those obtained in Li et al. [51]) encompasses all extant penguin species, representing a comprehensive dataset.
Repeat annotation

We used RepeatMasker v. 4.0.7 (RepeatMasker, RRID:SCR_012954) [85, 86], TRF v. 4.09 [87], and RepeatModeler v. 1.0.8 (RepeatModeler, RRID:SCR_015027) [88, 86] to identify repetitive sequences in each of the penguin genomes. We compared our genomes to 5 avian outgroups: wedge-rumped storm petrel (Hydrobatas vittata), Wilson’s storm petrel (Oceanites oceanicus), Atlantic yellow-nosed albatross (Thalassarche chlororhynchos), zebra finch (Taeniopygia guttata), and chicken (Gallus gallus). Genome sequences were aligned to RepBase23.04 [89] through RepeatMasker, and each hit was further classified into detailed categories. Tandem repeats, which are a series of DNA sequences containing >2 adjacent copies, were identified with TRF using the default parameters. In addition, we used RepeatModeler in a de novo repeat family identifying approach. All identified repeat elements were classified into 7 categories (DNA, long interspersed nuclear element [LINE], short interspersed nuclear element [SINE], long terminal repeat [LTR], other, unknown, tandem repeat) according to classification in repeat databases. Repeat annotations using the 3 methods were combined into a non-redundant repeat annotation for each penguin genome and the 5 outgroups.

Approximately 10% of the genome sequences were identified as repeat elements on each penguin genome, which is similar to the 5 outgroups (Table 2). Although all penguin genomes had similar repeat content, they varied in content for each category. In all penguins and outgroups, the most abundant repeat category was LINE. E. moseleyi has the richest tandem repeats of 3.52%, which is substantially greater than A. forsteri, which has a rich tandem repeats of 2.24% and contains the second richest tandem repeats repeat in all penguins. Eudyptula minor had the highest genome sequences identified as LTR (4.26%). See Table 4 for specific details on repeat annotations for each species.

Protein-coding gene annotation

We used the annotation methods developed by The Bird 10,000 Genomes (B10K) consortium [90] to annotate the 21 penguin genomes. Prior to annotating the protein-coding genes, a non-redundant avian reference gene set, consisting of protein sequences from Taeniopygia guttata and Gallus gallus, was generated [71]. Whole-genome protein sequences of Ensembl gene sets (release-85) of Taeniopygia guttata and Gallus gallus were then used to identify 12,337 orthologs based on whole-genome synteny relationships that were downloaded from the UCSC Genome Browser [91]. For both Taeniopygia guttata and Gallus gallus, we compared the 2 proteins in each ortholog and chose the longer homologous sequence with the human ortholog protein sequence in the reference gene set. Within 12,337 orthologs, 6,888 from Taeniopygia guttata and 5,449 from Gallus gallus were selected as the reference gene set. Following this, specific genes of Taeniopygia guttata or Gallus gallus were added to the reference gene set. This reference gene set comprised 5,084 Taeniopygia guttata genes without Gallus gallus orthologs and 3,158 G. gallus genes that had not been identified as ortholog genes to Taeniopygia guttata. Finally, protein sequences were filtered if they contained <50 amino acids, consisted of function as transposons/retrotransposons, or contained only a single non-functional exon. The final avian reference gene set therefore contained 20,181 protein-coding genes.

To annotate the protein-coding genes from the penguin genomes, protein sequences from the avian reference gene set were then mapped to each of the 21 penguin genomes. First, protein sequences were aligned to each penguin genome using TBLASTN v. 2.2.2 (TBLASTN, RRID:SCR_011822) [92] with a 1e−5 e-value cut-off. Multiple adjacent hits from the same protein were then linked together using genBlast v. 1.0.4 [93] to obtain the candidate gene boundary. A candidate hit was removed if a protein had <30% amino acids aligned to the penguin genome. For each candidate hit for each protein, we extracted genomic sequences covering this hit with 2 kb upstream and downstream of the extension. Extracted genome sequences and corresponding homologous protein sequences were then prepared as input for GeneWise v. 2.4.1 (GeneWise, RRID:SCR_015054) [94] to the annotated protein-coding gene models, which included exon and intron boundaries. Coding sequences for each annotated gene model were extracted from each genome according to the annotated gene model, and then each coding sequence was translated into the protein sequence. This annotated protein sequence was then aligned with the corresponding homolog protein sequence using MUSCLE v. 3.8.31 (MUSCLE, RRID:SCR_011811) [95], while removing annotated proteins with <40% identity with the corresponding homolog protein sequence. Annotated proteins with <30 amino acids and annotated proteins containing >2 frame shifts or 1 premature stop codon were then removed. If a genome locus had been annotated using several gene models, the gene model with the highest identity with the corresponding homolog protein was selected. Therefore, the annotated gene set for our penguin genomes contained no overlapping genes.

Protein sequences from human (hg38) and avian transcripts were also mapped to each penguin genome and the annotated gene models (as above). For the avian transcripts dataset, we obtained 71 avian transcriptomic samples from NCBI [96] (Supplementary Table 3) and assembled those into transcripts using either Newbler v2.9 [97] for 454 sequencing assemblies. We used ORFfinder [96] to identify open reading frames (ORFs) for transcripts, and the protein sequences were then translated from the ORF. The protein sequences translated from the transcripts were then mapped to the avian reference gene set and the human protein sequences, while removing those with similarity to the avian reference gene set or the human protein sequences. Transcripts with ORF length <150 bp were also removed. Protein sequences from 5,257 transcripts were then used for annotation. Three gene model sets annotated from the avian reference gene set, the human protein sequences, and transcriptome were then combined into a final non-redundant gene set. We prioritized 3 gene model sets in the following order: avian reference gene set > human protein > transcriptome.

After applying the above methods, we annotated the 19 newly assembled penguin genomes, as well as the 2 previously published penguin genomes [51]. We identified ~16,000 genes on each penguin genome, which is similar to the genomes of Taeniopygia guttata and Gallus gallus. The average gene length and coding sequence length are ~19 and 1.3 kb, respectively. Each gene encompasses ~8 exons, with an average length of 170 bp. Intron lengths are an average length of 2.6 kb (Table 5).

Gene function annotation

To assign functions to each gene, we aligned each gene to 3 functional databases: Swiss-Prot release-2019_03 [99], InterPro v. 68.0 (InterPro, RRID:SCR_006695) [100], and KEGG v8.9 (KEGG, RRID:SCR_012773) [101]. Protein sequences of each gene were aligned to Swiss-Prot database using BLASTP [92], and the function of the best hit was selected as the function annotation for this gene. We then searched InterPro databases that encompass ProDom, PRINTS, Pfam, SMART, PANTHER, ProSiteProfiles, and ProSitePat-
Species	Length	LINE	SINE	LTR	Other	Total
Eudyptes chrysolophusschlegeli	10,967,993	32	3 & 3	20	1	19,016,107
Eudyptes chrysolophus	9,840,577	30	3	10	1	13,048,543
Eudyptes pachyrhynchus	9,700,549	32	3 & 3	10	1	15,433,953
Eudyptes robustus	10,035,161	32	3 & 3	10	1	19,745,403
Eudyptes sclateri	9,603,106	32	3 & 3	10	1	15,661,073
Eudyptes filholi	9,447,824	32	3 & 3	10	1	15,441,753
Eudyptes chrysocome	9,067,962	32	3 & 3	10	1	15,526,803
Eudyptes moseleyi	9,367,954	32	3 & 3	10	1	16,683,674
Megadyptes antipodes	9,608,349	32	3 & 3	10	1	15,456,973
Spheniscus magellanicus	10,393,349	32	3 & 3	10	1	18,886,673
Spheniscus demersus	9,811,467	32	3 & 3	10	1	15,412,773
Spheniscus mendiculus	10,792,037	32	3 & 3	10	1	17,861,773
Spheniscus humboldti	9,950,523	32	3 & 3	10	1	16,011,773
Eudyptula minor	10,287,254	32	3 & 3	10	1	16,921,773
Eudyptula minor minor	10,689,228	32	3 & 3	10	1	17,450,773
Eudyptula novaehollandiae	10,542,998	32	3 & 3	10	1	17,087,773
Pygoscelis adeliae	8,905,965	32	3 & 3	10	1	14,201,773
Pygoscelis papua	10,178,035	32	3 & 3	10	1	16,728,773
Pygoscelis antarctica	10,021,109	32	3 & 3	10	1	16,042,173
Aptenodytes patagonicus	9,883,830	32	3 & 3	10	1	15,584,830
Aptenodytes forsteri	9,648,988	32	3 & 3	10	1	15,293,988
Hydrobates tethys	10,174,835	32	3 & 3	10	1	16,954,835
Oceanites oceanicus	8,172,757	32	3 & 3	10	1	14,487,757
Thalassarche chlororhynchos	10,390,449	32	3 & 3	10	1	16,954,449
Taeniopygia guttata	5,985,051	32	3 & 3	10	1	11,927,051
Gallus gallus	13,929,789	32	3 & 3	10	1	20,859,789
High-coverage genomes to elucidate the evolution of penguins

...and then constructed best hits (RBHs) that were present in the Taeniopygia guttata genome and the 21 penguin/5 avian outgroup genomes (described above), retaining orthologs with no missing data, and re-...

(ii) we also applied column-based alignment filtering using trimAl, using the parameter “automated1” to heuristically choose trimming parameters based on input alignment characters; (iii) nucleic acid alignments were also obtained using trimAl, using the parameter “backtrans” to obtain a back-translation for a given amino acid alignment. Alignment filtering was applied to (i) the column-based alignments, by removing all missing data, and retaining alignment lengths >50 bp (resulting in 7,229 orthologs, the “TrimAl data” set); and (ii) applying a full-matrix occupancy to the no missing dataset (retaining 7,011 orthologs, the “Nomissingdata” set) following the pipeline published previously [108]. Loci containing no missing taxa were then retained, by removing alignment columns containing gaps, undetermined bases (Ns), or ambiguity characters and loci with a post-filtering alignment length <200 bp.

We constructed gene trees for each locus using RAxML v8.2.12 (RAxML, RRID:SCR_006086) [109] and then constructed phylogenetic trees using 2 coalescent-based methods, MP-EST v. 2.0 and ASTRAL-III, based on the gene trees. First, we used RAxML v. 8.2.12 to infer the highest-scoring maximum likelihood tree from unpartitioned alignments for each locus using a GTR+GAMMA substitution model, 20 independent tree searches beginning from random starting tree topologies, and 500 bootstrap replicates for each locus. Resulting gene trees were rooted with Gullus gullus using the “ape” package in R v. 3.5.2 [110]. We then created a coalescent-based phylogenetic tree using MP-EST v. 2.0 [104] by estimating trees from a set of rooted gene trees by maximizing a pseudo-likelihood function. Species tree and bootstrap topology searches were achieved over 3 independent replicates, using a different starting seed and with 10 independent tree searches per run. The highest-scoring tree in 10 tree searches was kept as the result for each replicate. Because the 3 final trees from MP-EST replicates shared the same tree topol-

Species	Number of protein-coding genes	Mean gene length (bp)	Mean coding sequence length (bp)	Mean exons per gene	Mean exon length (bp)	Mean intron length (bp)
Eudyptes chrysolophus schlegeli	17,191	18,860	1,351	7.9	171	2,540
Eudyptes chrysolophus	16,311	20,248	1,392	8.2	170	2,623
Eudyptes pachyrhynchos	19,170	17,394	1,306	7.4	178	2,535
Eudyptes robustus	17,126	16,254	1,295	7.4	174	2,529
Eudyptes sclateri	15,786	19,627	1,402	8.2	171	2,527
Eudyptes filholi	15,963	19,959	1,407	8.2	171	2,562
Eudyptes chrysocephale	16,280	19,436	1,382	8.1	171	2,555
Eudyptes moseleyi	16,812	19,767	1,370	8.0	171	2,621
Megadyptes antipodes	16,563	18,509	1,334	7.8	171	2,533
Spheniscus magellanicus	16,795	19,311	1,381	8.1	171	2,535
Spheniscus demersus	16,134	19,029	1,344	7.8	171	2,584
Spheniscus mendiculus	16,390	17,097	1,311	7.6	172	2,382
Spheniscus humboldi	16,587	19,642	1,387	8.1	170	2,558
Eudyptula minor ablosignata	17,424	18,837	1,338	7.8	172	2,574
Eudyptula minor minor	17,802	19,078	1,349	7.8	172	2,598
Eudyptula nouvelloflandiae	17,188	19,271	1,355	7.9	172	2,609
Pygoscelis adeliae	14,463	20,595	1,385	8.3	168	2,648
Pygoscelis papua	16,698	18,276	1,333	7.8	172	2,503
Pygoscelis antarctica	15,488	19,520	1,381	8.1	171	2,558
Aptenodytes patagonicus	15,195	19,596	1,384	8.1	170	2,552
Aptenodytes forsteri	15,593	19,844	1,381	8.1	170	2,584
Hydrobates terhys	15,915	17,898	1,344	8.1	165	2,323
Oceanites oceanicus	16,055	17,936	1,356	8.0	170	2,377
Thalassarche chlororhyphus	13,347	10,029	1,110	6.4	175	1,667
Taeniopygia antipodes	19,174	14,787	1,196	7.2	167	2,198
Gullus gullus	17,883	16,965	1,414	8.3	171	2,135
ology, we kept the highest-scoring tree as the final tree for further analysis. Branch lengths were re-estimated in coalescent units of substitutions per site by constraining alignments to the MP-EST tree topology using the “-f E” option in ExaML v.3.0.21 [103]. Bootstrap values were plotted using RAxML based on the bootstrap replicates, and trees were outgroup-rooted with *Gallus gallus*.

While the resulting topologies of the outgroups *Hydrobates tethys*, *Oceanites oceanicus*, and *Thalassarche chlororhynchos* are slightly different between coalescent-based and concatenation-based methods, the topologies of our penguin genomes are identical using both methods (Fig. 3). Our final phylogeny (Fig. 3) encompassing all extant penguin genomes is slightly different to a recent phylogenetic study using mitochondrial genomes [3]. Specifically, while the mitochondrial phylogeny suggested that *Aptenodytes* + *Pygoscelis* are sister to all other penguins, our full genome phylogeny suggests that *Aptenodytes* alone is sister to all other penguins. This result confirms earlier results combining data from a small set of mitochondrial genes and the nuclear RAG-1 gene [1, 62] and provides intriguing new evidence on the historical biogeographical and evolutionary patterns of adaptation to Antarctica. We expect this novel genomic dataset to provide further important insights into the evolution of penguins in the southern hemisphere.

Re-use Potential

Consortium organization and further research plans

The 19 high-coverage genomes presented here, along with the *Aptenodytes forsteri* and *Pygoscelis adeliae* genomes presented by members of our consortium in 2014 [51], provide an exciting resource for understanding evolutionary diversification, the molecular basis for unique functional adaptation, and demographic histories of penguins. The Penguin Genome Consortium is an international team of scientists with backgrounds in marine ornithology, ecology, molecular biology, evolutionary and comparative genomics, phylogenetics, physiology, palaeontology, veterinary science, and bioinformatics. The diverse skills encompassed within our highly collaborative consortium will be essential to study these genomes under comparative genomic and evolutionary frameworks. In doing so, we will expand on [51] by investigating 3 key areas related to penguin evolution and adaptation.

Table 6: Function annotation results for protein-coding genes for 21 penguins and 5 outgroups

Species	Swissprot Number	Swissprot %	KEGG Number	KEGG %	Interpro Number	Interpro %	Overall Number	Overall %
Eudyptes chrysolophus schlegeli	16,739	97.37	15,347	89.27	16,916	98.40	17,064	99.26
Eudyptes chrysolophus chrysophylius	15,863	97.25	14,646	89.79	16,051	98.41	16,191	99.26
Eudyptes pachyrhynchus	18,680	97.44	17,250	89.98	18,873	98.45	19,028	99.26
Eudyptes robustus	16,580	96.81	15,500	90.51	16,816	98.19	16,988	99.19
Eudyptes scolopai	15,383	97.45	14,172	89.78	15,540	98.44	15,664	99.23
Eudyptes filholi	15,555	97.44	14,362	89.97	15,696	98.33	15,840	99.23
Eudyptes chrysoceome	15,692	96.39	14,732	90.49	15,977	98.14	16,148	99.19
Eudyptes moseleyi	16,377	97.41	15,153	90.13	16,540	98.38	16,688	99.26
Megadyptes antipodes antipodes	15,755	95.12	14,993	90.52	16,264	98.19	16,445	99.29
Spheniscus magellanicus	16,371	97.48	15,136	90.12	16,532	98.43	16,670	99.26
Spheniscus demersus	15,388	95.38	14,579	90.36	15,839	98.17	16,001	99.18
Spheniscus mendiculus	15,714	95.88	14,801	90.31	16,090	98.17	16,254	99.17
Spheniscus humboldtii	16,172	97.50	14,954	90.15	16,319	98.38	16,460	99.23
Eudyptula minor albosignata	16,615	95.36	15,778	90.55	17,098	98.13	17,297	99.27
Eudyptula minor minor	16,994	95.46	16,073	90.29	17,476	98.17	17,663	99.22
Eudyptula novaehollandiae	16,423	95.55	15,561	90.53	16,692	98.28	17,060	99.26
Pygoscelis adeliae	13,964	96.55	13,054	90.26	14,220	98.32	14,348	99.20
Pygoscelis papua	15,931	95.41	15,097	90.41	16,378	98.08	16,553	99.13
Pygoscelis antarctica	15,050	97.17	13,853	89.44	15,224	98.30	15,360	99.17
Aptenodytes patagonicus	14,808	95.45	13,493	88.80	14,954	98.41	15,063	99.13
Aptenodytes forsteri	15,053	96.54	14,112	90.50	15,308	98.17	15,478	99.26
Hydrobates tethys	15,493	97.35	14,273	89.68	15,628	98.20	15,775	99.12
Oceaniates oceanicus	15,622	97.30	14,412	89.77	15,775	98.26	15,919	99.15
Thalassarche chlororhynchos	12,958	97.09	11,881	89.02	13,072	97.94	13,219	99.04
Tremornoppyg guttata	18,367	95.79	17,115	89.26	18,537	96.68	18,918	98.66
Gal1lus gallus	16,760	93.72	15,585	87.15	17,079	95.50	17,263	96.53
Evolutionary relationships and taxonomic boundaries
With a deep evolutionary history, and diverse radiation, penguins provide an exciting system to understand the evolutionary drivers of diversification [3]. Moreover, robust taxonomic frameworks can be crucial for directing limited conservation resources for maximum gains. Significant uncertainty remains regarding species/lineage boundaries between some closely related penguin taxa. The genomes generated here therefore provide an exciting new dataset to examine taxonomic, phylogenetic, and biogeographical patterns for understanding penguin evolution.

Comparative genomics and adaptation
Penguins provide an excellent system to study comparative evolutionary adaptation [51]. We will use our genomes to explore comparative evolution among penguins, and between penguins and other avian orders. By examining loci under positive selection, we shall reveal the molecular basis for the unique physiological and morphological adaptations to different environments and ecologies that are exhibited by penguins.

Penguins in a changing world
Penguins are sensitive indicators of environmental change [44, 45]. It is predicted that future climate change will lead to significant declines in many penguin populations [47–50]. Conservation management decisions can be guided by demographic assessments. However, there remains a substantial gap in predicting ecosystem-wide changes to future climate change. As such, demographic analyses of these genomes will be critical for conservation management of penguins and other Southern Ocean assemblages.

Cultural significance
The context in which wildlife research in New Zealand is undertaken is evolving rapidly and heading into new legal and novel cultural contexts [111–114]. Recent initiatives such as the bestowing of the rights of an individual on Te Urewera, a former national park, set an international precedent for this change in approach [115]. Therefore, it is critical that research permissions be obtained and appropriate indigenous consultation with Iwi, Rūnanga, Whānau, and Hapū be conducted. The regulatory arm of the New Zealand government in this process, the Department of Conservation, is legally required to give effect to the Principles of the Treaty of Waitangi [116] in its administration of the legislation pursuant to which Authorities are issues.

At another level the Ngāi Tahu Deed of Settlement Act recognizes all native penguin species as Taonga, or treasured possessions [117]. Consequently, not only is it a legal requirement to undertake rigorous Māori consultation when studying Taonga [118, 119], the Department of Conservation has to have particular regard to the views of Iwi, Rūnanga, Whānau, or Hapū when considering whether to authorize any application. Recent discussions have also emphasized that Taonga genomes are sacred (tapu) because they are considered to contain both the living and the future generations (whakapapa, mauri, and wairua of tipuna), engendering Māori concerns surrounding the commercialization, ownership, storage, and modification of Taonga genomes [120]. We generated Taonga genomes en-
comprising hooho (yellow-eyed penguin, Megadyptes antipodes antipodes), kororā (little penguin, Eudyptula spp.), pokiotiwha (Snare-crested penguin, E. robustus), tawaki (Fiordland-crested penguin, E. pachyrhynchos), and erect-crested penguin (Eudyptes schalen). These genomes were obtained following rigorous Department of Conservation permitting procedures (including collection, holding, and exporting permits) and following Department of Conservation Iwi, Rūnanga, Whānau, or Hapū consultation (Supplementary Table 1). Several of the Taonga genomes studied here were collected alongside broader research projects, and additional consultation efforts were undertaken for those projects. We emphasize that there will be no commercialization, ownership, or modification of any of the genomes presented here. While these Taonga genomes will be publicly available, it is critical that new researchers studying these genomes take the appropriate steps to seek additional Māori permissions and consultation, which will ensure respect of New Zealand cultural values.

The emerging issues surrounding the generation and use of Taonga genomes also highlight that Māori consultation should also be undertaken when obtaining genomes from Taonga housed in overseas museum collections. We hope that the data and our research questions presented here, and our future research outputs using these genomes will be valuable for both cultural heritage and for conservation management of penguin populations.

Early-release use of the data

The Fort Lauderdale [121] and Toronto [122] agreements state that in exchange for early release of datasets, the data producers retain the right to be the first to describe and analyse the complete datasets in peer-reviewed publications. Comparative and evolutionary genomic analyses are currently being carried out, and the consortium welcomes new members interested in contributing to this work. While this work is still underway we have published these 19 penguin genomes to provide early access, while requesting researchers intending to use these data for similar cross-species comparisons to continue to follow the long-running Fort Lauderdale and Toronto rules.

Conclusions

Genomics is prohibitively costly—it requires high-quality samples and extensive laboratory and bioinformatic skills. The genomics era has been boosted by global research consortiums, which bring together contextual, technical, and analytical skills spanning a network of international collaborations [123–126]. Our consortium and dataset introduced here are no exception, and as such, we expect our future research using these genomes to bring together additional collaborators that encompass a wide range of expertise regarding penguin biology and physiology. At another level, collecting high-quality fresh blood samples from some of the most remote regions in the Southern Ocean remains technically and logistically difficult, requiring the efforts and long-term organization from many collaborations and expedition programs. While this study is an exciting development for understanding the evolution of penguins, the global efforts involved in designing our study, obtaining samples, and developing appropriate sequencing and bioinformatic pipelines have been extensive. The dataset and project design introduced here highlight the need for transparent research projects and global collaborations, which together maximize the use of samples, minimizing sequencing costs, and laboratory and analytical efforts.

In this study we have presented 19 new high-coverage penguin genomes. Together with 2 genomes previously obtained by members of our consortium [51], this combined dataset encompasses the genomes of all extant penguin species. We have also constructed a comprehensive phylogenomic tree encompassing all extant penguins. We will use these datasets to address a range of evolutionary, adaptive, biogeographic, and demographic questions regarding penguins. As such, we hope not only that our ongoing projects that encompass these genomes will provide novel insights for understanding the broad evolution and adaptation of avifauna to different environments but also that this knowledge will increase cultural heritage and aid conservation management decisions for remote Southern Ocean regions.

Availability of supporting data and materials

The genome sequencing data and assemblies of this study have been deposited in the CNSA (https://db.cngb.org/cnsa/) of the CNSDb database with the accession number CP0000605, as well as the NCBI database with the Bioproject ID PRJNA556735 (Aptenodytes patagonicus: SAMN12384866; Eudyptula chrysolophus chrysolophus: SAMN12384869; E. c. schlegeli: SAMN12384870; E. chrysocome: SAMN12384872; E. filholi: SAMN12384875; E. moseleyi: SAMN12384871; E. pachyrhynchos: SAMN12384875; Eudyptes robustus: SAMN12384876; E. s. s. schalen: SAMN12384874; Eudyptula minor alboina: SAMN12384880; E. m. minor: SAMN12384879; E. novaehollandiae: SAMN12384878; Megadyptes antipodes antipodes: SAMN12384877; Pygoscelis antarctica: SAMN12384868; P. papua: SAMN12384867; Spheniscus demersus: SAMN12384881; S. humboldti: SAMN12384883; S. magellanicus: SAMN12384882; S. mendiculus: SAMN12384884. Data from all of the penguin species are also available from the GigaScience GigaDB database [127].

Additional files

Supplementary Table 1: Phylogenomic trees.
Supplementary Table 2: Sampling and permitting details of all penguin samples tested.
Supplementary Table 3: Information of 71 avian transcriptomic samples downloaded from NCBI.

Abbreviations

BLAST: Basic Local Alignment Search Tool; bp: base pairs; BUSCO: Benchmarking Universal Single-Copy Orthologs; CNSA: CNGB Nucleotide Sequence Archive; ExaML: Exascale Maximum Likelihood; Gb: gigabase pairs; kb: kilobase pairs; KEGG: Kyoto Encyclopedia of Genes and Genomes; LINE: long interspersed nuclear element; LTR: long terminal repeat; Mb: megabase pairs; NCBI: National Center for Biotechnology Information; ORF: open reading frame; RAxML: Randomized Accelerated Maximum Likelihood; SINE: short interspersed nuclear element; TRF: Tandem Repeat Finder; UCSC: University of California Santa Cruz.

Ethics approval and consent to participate

All samples were obtained under valid animal ethics permits.
Competing interests
The authors declare that they have no competing interests.

Funding
This project was supported by the National Key R&D Program of China (MOST) grant 2018YFC1406901 and by the Science, Technology and Innovation Commission of Shenzhen Municipality grant No. JCYJ20170817150721687 and JCYJ20170817150239127. T.L.C. was supported by an Otago University postgraduate publishing bursary. G.Z. was supported by the Lundbeckfonden (grant No. R190-2014-2827), Carlsbergfonden (grant No. CF16-0663), the Villum Foundation (grant No. 25900), and by the Strategic Priority Research Program of the Chinese Academy of Science (grant No. XDB13000000, XDB31020000). M.T.P.G. was supported by the ERC Consolidator Grant 681396 "Extinction Genomics".

Authors’ contributions
G.Z. developed the concept; G.Z., D.-X.Z., T.L.C., and H.P. designed the project and wrote the manuscript; L.S.A., J.L.B., M.E.B., P.D.B., T.L.C., Y.C., P.D., U.E., S.R.F., S.G., D.M.H., P.H., T.H., E.K., K.L., G.M., T.M., L.J.N., P.P., P.G.R., D.R.T., H.T., and M.J.Y. collected and/or provided samples; J.L.B., T.L.C., A.H.R., T.H., K.J., B.M., T.S., D.R.T., and G.Z. facilitated sample collection; H.P., S.R.F., M.R.E., M.-H.S.S., and G.P. undertook laboratory work. H.P., M.B., M.F., C.Z., and Z.Y. undertook the bioinformatics work; G.Z., T.L.C., H.P., M.T.K., C.-A.B., M.R.E., P.G.B., M.T.P.G., T.H., J.F.M., R.A.P., A.J.D.T., L.D.S., M.-H.S.S., and P.Q. helped design sampling and project directions. All authors contributed to the final manuscript.

Acknowledgements
We thank the following: John Cockrem, Scott Fleming, Helen McConnell, Chris Rickard, Sarah Fraser, Otto Whitehead, Kyle Morrison, and Amy Van Buren for help collecting samples; Jonathan Banks, Kirsten Rodgers, and Jo Hiscock for sample information; Manuel Paredes Oyarzún and Hernán Rivera Meléndez for facilitating permits and sample collection; Lauren Tworkowski, Richard O’Rorke, and Joanna Sumner for facilitating sample collection; Adrian Smith for providing laboratory support to extract 2 DNA samples; Peter Dearden, Neil Fouke, Michael Knapp, Hooni Langsburh, Claire Porima, Nic Rawlence, Paul Scofield, Ben Te Aika, Jonathan Waters, Janet Wilmshurst, and Jamie Wood for discussions regarding New Zealand indigenous consultation; Neil Fouke and Jesse Mason for facilitating New Zealand Department of Conservation permits and/or obtaining past permit details; Brett Gartrell and Pauline Nijsman for providing animal ethics details; and the China National Genebank for contributing the sequencing resources for this project. The Penguin Genome Consortium welcomes participation and collaboration for our ongoing work regarding comparative and evolutionary genomics of penguins.

References
1. Ksepka DT, Bertelli S, Giannini NP. The phylogeny of the living and fossil Sphenisciformes (penguins). Cladistics 2006;22(5):412-41.
2. Cole TL, Waters J, Shepherd LD, et al. Ancient DNA reveals that the ‘extinct’ Hunter Island penguin (Tasidypetes hunteri) is not a distinct taxon. Zool J Linn Soc 2018;182(2):459-64.
3. Cole TL, Ksepka DT, Mitchell KJ, et al. Mitogenomes uncover extinct penguin taxa and reveal island formation as a key driver of speciation. Mol Biol Evol 2019;36(4):784-97.
4. Challies CW, Burleigh RR. Abundance and breeding distribution of the white-flippered penguin (Eudyptula minor albognata) on Banks Peninsula, New Zealand. Notornis 2004;51(1):1-6.
5. Grosser S, Rawlence NJ, Anderson CNK, et al. Invader or resident? Ancient-DNA reveals rapid species turnover in New Zealand little penguins. Proc Biol Sci 2016;283(12215):20152279.
6. Mattern T, Wilson K-J. New Zealand penguins – current knowledge and research priorities. A report compiled for Birds New Zealand. 2018. http://www.birdsnz.org.nz/wp-content/uploads/2019/06/06/1904-NZ-Penguin-Research-Priorities-Report-Mattern-Wilson.pdf. Accessed on 11 September 2019.
7. Banks J, Van Buren A, Cherel Y, et al. Genetic evidence for three species of rockhopper penguins, Eudyptes chrysocephalus. Polar Biol 2006;30(1):61-67.
8. Frugone M-J, Lowther A, Noll D, et al. Contrasting phylogeographic pattern among Eudyptes penguins around the Southern Ocean. Sci Rep 2018;8(1):17481.
9. Christidis L, Boles WE. Systematics and Taxonomy of Australian Birds. Canberra, Australia: CSIRO; 2008:98.
10. Cole TL, Rawlence NJ, Dussex N, et al. Ancient DNA of crested penguins: Testing for temporal genetic shifts in the world’s most diverse penguin clade. Mol Phylogenet Evol 2019;131:72-79.
11. Frugone M-J, López ME, Segovia NI, et al. More than the eye can see: Genomic insights into the drivers of genetic differentiation in Royal/Macaroni penguins across the Southern Ocean. Mol Phylogenet Evol 2019;139:106563.
12. Slack KE, Jones CM, Ando T, et al. Early penguin fossils, plus mitochondrial genomes, calibrate avian evolution. Mol Biol Evol 2006;23(6):1144-55.
13. Mayr G, Scofield RP, De Pietri VL, et al. A Paleocene penguin from New Zealand substantiates multiple origins of gigantism in fossil Sphenisciformes. Nat Commun 2017;8(1):1927.
14. Stonehouse B. The general biology and thermal balances of penguins. Adv Ecol Res 1967;4:131–96.
15. Marchant S, Higgins PJ. Handbook of Australian, New Zealand and Antarctic Birds. Vol. 1, Pt. B. Melbourne, Australia: Oxford University Press; 1990.
16. Boersma PD. Penguins as marine sentinels. Bioscience 2008;58(7):597-607.
17. , Roptert-Coudert Y, Hindell MA, Phillips R, De Broyer C, Koubbi P, Griffiths HJ, Raymond B, Udelem d’Acoz Cd’, Van de Putte AP, Danis B, David B, Grant S, Gutt J, Held C, Hosie G, Huettmann F, Post A, Roptert-Coudert Y , et al., Cambridge, Scientific Committee on Antarctic Research et alBiogeographic patterns of birds and mammals. In: The Biogeographic Atlas of the Southern Ocean. Scientific Committee on Antarctic Research. 2014:364-87.
18. Baker AJ, Pereira SL, Haddrath OP, et al. Multiple gene evidence for expansion of extant penguins out of Antarctica due to global cooling. Proc Biol Sci 2006;273(1582):11-17.
19. Acosta Hospitaleche C, Reguero M, Scarano A. Main pathways in the evolution of the Paleogene Antarctic Sphenisciformes. J South Am Earth Sci 2013;43:101-11.
20. Bertelli S, Giannini NP. A phylogeny of extant penguins (Aves: Sphenisciformes) combining morphology and mitochondrial clades. Cladistics 2005;21(3):209-39.
21. Garcia Borboroglu P, Boersma PD. Penguins: Natural History and Conservation. Seattle, WA, USA: University of Washington Press; 2013:328.
22. Thiebôt JB, Cherel Y, Trathan PN, et al. Coexistence of oceanic predators on wintering areas explained by population-scale foraging segregation in space or time. Ecology 2012;93(1):12–130.
23. Woehler EJ, Cooper J, Croxall JP, et al. A Statistical Assessment of the Status and Trends of Antarctic and Sub-Antarctic Seabirds. Cambridge, UK: Scientific Committee on Antarctic Research; 2011.
24. Goldsmith R, Sladen WJ. Temperature regulation of some Antarctic penguins. J Physiol 1961;157:251–62.
25. Ksepka DT, Ando T. Penguins past, present, and future: trends in the evolution of the Sphenisciformes. In: Dyke G, Kaiser G , eds. Living Dinosaurs. Oxford, UK: Wiley; 2011:155–86.
26. Watson M. Report on the Anatomy of the Spheniscidae Collected by HMS Challenger, During the Years 1873–1876. Edinburgh, UK: Neill and Co.; 1883.
27. Taylor JRE. Thermal insulation of the down and feathers of pygoscelid penguin chicks and the unique properties of penguin feathers. Auk 1986;103:160–8.
28. Sivak JG. The role of a flat cornea in the amphibious behaviour of the blackfoot penguin (Spheniscus demersus). Can J Zool 1976;54:1341–5.
29. Sivak JG, Millodot M. Optical performance of the penguin eye in air and water. J Comp Physiol 1977;119:241–7.
30. Bowmaker JK, Martin GR. Visual pigments and oil droplets in the penguin, Spheniscus humboldti. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 1985;156:71–77.
31. Meister W. Histological structure of the long bones of penguins. Anat Rec 1962;143:377–87.
32. Raikow RJ, Bicanovský L, Bledsoe AH. Forelimb joint mobility and the evolution of wing-propelled diving in birds. Auk 1988;105:446–51.
33. Schreweis DO. A comparative study of the appendicular musculature of penguins (Aves: Sphenisciformes). Smithsonian Contrib Zool 1982;341:1–46.
34. Frost PGH, Siegfried WR, Greenwood PJ. Arterio-venous heat exchange systems in the Jackass penguin Spheniscus demersus. J Zool 1975;175:231–41.
35. Groscolas R. Metabolic adaptations to fasting in emperor and king penguins. In: Davis LS, Darby JT , eds. Penguin Biology. San Diego, CA, USA: Academic; 1990:269–96.
36. Cherel Y, Gilles J, Handrich Y, Le Maho Y. Nutrient reserve dynamics and energetics during long-term fasting in the king penguin (Aptenodytes patagonicus). J Zool 1994;234:1–12.
37. Groscolas R, Robin JP. Long-term fasting and re-feeding in penguins. Comp Biochem Physiol A Mol Integr Physiol 2001;128:645–55.
38. Gauthier-Clerc M, Le Maho Y, Clerquin Y, et al. Seabird reproduction in an unpredictable environment: How King penguins provide their young chicks with food. Mar Ecol Prog Ser 2002;237:291–300.
39. Thouzeau C, Le Maho Y, Froget G, et al. Spheniscins, avian β-defensins in preserved stomach contents of the king penguin, Aptenodytes patagonicus. J Biol Chem 2003;278:5103–8.
40. Thomas DB, Fordyce RE. The heterothermal loophole exploited by penguins. Auk J Zool 2008;55:317–21.
41. Thomas DB, McGoiverin CM, McGraw KJ, et al. Vibrational spectroscopic analyses of unique yellow feather pigments (spheniscins) in penguins. J Roy Soc Interface 2013;10(83):20121065.
62. Gavryushkina A, Heath TA, Ksepka DT, et al. Bayesian total evidence dating reveals the recent crown radiation of penguins. Syst Biol 2017;66(1):57–73.
63. Grosser S, Burridge CP, Peucker AJ, et al. Coalescent modelling suggests recent secondary-contact of cryptic penguin species. PLoS One 2015;10(12):e0144966.
64. Vianna JA, Noll D, Mura-Jornet I, et al. Comparative genome-wide polymorphic microsatellite markers in Antarctic penguins through next generation sequencing. Genet Mol Biol 2017;40(3):676–87.
65. Ramos B, González-Acuña D, Loyola DE, et al. Landscape genomics: natural selection drives the evolution of mitochondrion in penguins. BMC Genomics 2018;19:53.
66. Clucas GV, Younger JL, Kao D, et al. Dispersal in the sub-Antarctic: King penguins show remarkably little population genetic differentiation across their range. BMC Evol Biol 2016;16(1):211.
67. Younger JL, Clucas GV, Kao D, et al. The challenges of detecting subtle population structure and its importance for the conservation of Emperor penguins. Mol Ecol 2017;26(15):3883–97.
68. Clucas GV, Younger JL, Kao D, et al. Comparative population genomics reveals key barriers to dispersal in Southern Ocean penguins. Mol Ecol 2018;27(23):4680–97.
69. Younger J, Emmerson L, Southwell C, et al. Proliferation of East Antarctic Adélie penguins in response to historical deglaciation. BMC Evol Biol 2015;15(1):236.
70. Zhao H, Li J, Zhang J. Molecular evidence for the loss of three basic tastes in penguins. Curr Biol 2015;25(4):R141–2.
71. Zhang G, Li C, Li Q, et al. Comparative genomics reveals insights into avian genome evolution and adaptation. Science 2014;346(6215):1311–20.
72. Borges R, Khan I, Johnson WE, et al. Gene loss, adaptive evolution and the co-evolution of plumage coloration genes with opsins in birds. BMC Genomics 2015;16:751.
73. Jarvis ED, Mirarab S, Aberer AJ, et al. Whole genome analyses resolve early branches in the tree of life of modern birds. Science 2014;346(6215):1320–31.
74. Grosser S, Scofield RP, Waters JM. Multivariate skeletal analyses support a taxonomic distinction between New Zealand and Australian Eudyptula penguins (Sphenisciformes: Spheniscidae). Emu 2017;117:176–283.
75. Bi K, Linderoth T, Vanderpool D, et al. Unlocking the vault: Next-generation museum population genomics. Mol Ecol 2013;22(24):6018–32.
76. Stiller J, Zhang G. Comparative phylogenomics, a stepping stone for bird biodiversity studies. Diversity 2019;11(7):115.
77. Edmunds S (2018): HiSeq 4000 sequencing protocol. protocols.io. http://dx.doi.org/10.17504/protocols.io.q58dy9w.
78. Huang J, Liang X, Xuan Y, et al. A reference human genome dataset of the BGISEQ-500 sequencer. Gigascience 2017;6(5):1–9.
79. Teh BT, Lim K, Yong CH, et al. The draft genome of tropical fruit durian (Durio zibethinus). Nat Genet 2017;49:1633–41.
80. Heydari M, Miclou G, Demeester P, et al. Evaluation of the impact of Illumina error correction tools on de novo genome assembly. BMC Bioinformatics 2017;18:374.
81. Luo R, Liu B, Xie Y, et al. SOAPdenovo2: An empirically improved memory-efficient short-read de novo assembler. Gigascience 2012;1(1):18.
82. Gnerre S, MacCallum I, Przybylski D, et al. High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc Natl Acad Sci U S A 2011;108(4):1513–8.
83. Weisenfeld NI, Kumar V, Shah P, et al. Direct determination of diploid genome sequences. Genome Res 2017;5:757–67.
84. Simão FA, Waterhouse RM, Ioannidis P, et al. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 2015;31(19):3210–2.
85. Smit AFA, Hubley R, Green P. RepeatMasker Open-4.0. 2013–2015. RepeatMasker Home Page. http://www.repeatmasker.org. Accessed on 1 June 2019.
86. RepeatMasker. RepeatMasker Home Page. http://www.repeatmasker.org. Accessed on 1 June 2019.
87. Benson G. Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Res 1999;27(2):573–80.
88. Smit AFA, Hubley RR, Green PR. Open-1.0. 2008–2015. Seattle, WA, USA: Institute for Systems Biology; 2008.
89. Bao W, Kojima KK, Kohnay O. Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob DNA 2015;6(1):11.
90. Bird 10,000 Genomes (B10K) Project. http://b10k.genomics.cn.
91. UCSC synteny data. ftp://hgdownload.soe.ucsc.edu goldenPath/galGal4/vsTaeGut2/.
92. Altschul SF, Gish W, Miller W, et al. Basic local alignment search tool. J Mol Biol 1990;215(3):403–10.
93. She R, Chu JS, Wang K, et al. GenBlastA: Enabling BLAST to identify homologous gene sequences. Genome Res 2009;19(1):143–9.
94. Birney E, Clamp M, Durbin R. GeneWise and genomewise. Genome Res 2004;14(5):988–95.
95. Edgar RC. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004;32(5):1792–7.
96. Wheeler DL, Barrett T, Benson DA, et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 2006;34:155–6.
97. Silva GG, Dutilh BE, Matthews TD, et al. Combining de novo and reference-guided assembly with scaffold builder. Source Code Biol Med 2013;8(1):23.
98. Grabherr MG, Haas BJ, Yassour M, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 2011;29(7):644.
99. Boeckmann B, Bairoch A, Apweiler R, et al. The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res 2003;31(1):365–70.
100. Jones P, Binns D, Chang HY, et al. InterProScan 5: Genome-scale protein function classification. Bioinformatics 2014;30(9):1236–40.
101. Kanehisa M, Sato Y, Furumichi M, et al. New approach for understanding genome variations in KEGG. Nucleic Acids Res 2018;47(D1):D590–5.
102. Ashburner M, Sato Y, Furumichi M, et al. New approach for understanding genome variations in KEGG. Nucleic Acids Res 2018;47(D1):D590–5.
103. Grabherr MG, Haas BJ, Yassour M, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 2011;29(7):644.
104. Boeckmann B, Bairoch A, Apweiler R, et al. The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res 2003;31(1):365–70.
105. Jones P, Binns D, Chang HY, et al. InterProScan 5: Genome-scale protein function classification. Bioinformatics 2014;30(9):1236–40.
106. Kanehisa M, Sato Y, Furumichi M, et al. New approach for understanding genome variations in KEGG. Nucleic Acids Res 2018;47(D1):D590–5.
106. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol Biol Evol 2013;30(4):772–80.

107. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009;25(15):1972–3.

108. Sackton TB, Grayson P, Cloutier A, et al. Convergent regulatory evolution and loss of flight in paleognathous birds. Science 2019;364(6435):74–8.

109. Stamatakis A. RAxML version 8: A tool for phylogenetic analysis and post analysis of large phylogenies. Bioinformatics 2014;30(9):1312–3.

110. Paradis E, Claude J, Strimmer K. APE: Analyses of phylogenetics and evolution in R language. Bioinformatics 2004;20(2):289–90.

111. Tipene-Matua B, Henaghan M. Establishing a Māori ethical framework for genetic research with Māori. In: Henaghan M, ed. Genes, Society and the Future. Dunedin, New Zealand: Human Genome Research Project; 2007:1–44.

112. Wilcox PL, Charity JA, Roberts MR, et al. A values-based process for cross-cultural dialogue between scientists and Māori. J R Soc N Z 2008;38:215–27.

113. Hudson M, Milne M, Reynolds P, et al. Te Ara Tika Guidelines for Māori research ethics: A framework for researchers and ethics committee members, New Zealand, Health Council of New Zealand. 2010.

114. Galla SJ, Buckley TR, Elshaire R, et al. Building strong relationships between conservation genetics and primary industry leads to mutually beneficial genomic advances. Mol Ecol 2016;25(21):5267–81.

115. New Zealand Biodiversity Action Plan 2016 – 2020. Department of Conservation, Department of Conservation, Wellington. 2016: ISBN: 978-0-478-15095-7.

116. Waitangi Tribunal. http://www.waitangitribunal.govt.nz/. Accessed on 27 July 2019

117. Department of Conservation. Ngāi Tahu Taonga Animal Species. 2006. R50082. https://www.doc.govt.nz/globalassets/documents/about-doc/concessions-and-permits/consevation-revealed/ngai-tahu-taonga-animals-lowres.pdf.

118. Wong FB, Wiley EO, Johnson WE, et al. Tissue sampling methods and standards for vertebrate genomics. GigaScience 2012;1(1):8.

119. National Human Genome Institute. Reaffirmation and Extension of NHGRI Rapid Data Release Policies: Large-scale Sequencing and Other Community Resource Projects. https://www.genome.gov/10506537/reaffirmation-and-extension-of-nhgri-rapid-data-release-policies. Accessed on 27 July 2019.

120. Koepfli KP, Paten BGenome 10K Community of Scientists, et al., Genome 10K Community of Scientists The Genome 10K Project: A way forward. Annu Rev Anim Biosci 2015;3(1):57–111.

121. Wang Y, Zhang C, Wang N, et al. Genetic basis of ruminant headgear and rapid antler regeneration. Science 2019;364(6446):eaav6335.

122. Pan H, Cole T, Bi X, et al. High-coverage genomes of all extant penguin taxa. GigaScience Database 2019. http://dx.doi.org/10.5524/100649.