Compilation of Propositional Weighted Bases

Adnan Darwiche
Computer Science Department
University of California, Los Angeles
CA 90095, USA
e-mail: darwiche@cs.ucla.edu

Pierre Marquis
CRIL-CNRS
Universit´e d’Artois
F-62307, Lens Cedex, France
e-mail: marquis@cril.univ-artois.fr

Abstract

In this paper, we investigate the extent to which knowledge compilation can be used to improve inference from propositional weighted bases. We present a general notion of compilation of a weighted base that is parametrized by any equivalence–preserving compilation function. Both negative and positive results are presented. On the one hand, complexity results are identified, showing that the inference problem is as difficult as in the general case, when the prime implicates, Horn cover or renamable Horn cover classes are targeted. On the other hand, we show that the inference problem becomes tractable whenever DNNF-compilations are used and clausal queries are considered. Moreover, we show that the set of all preferred models of a DNNF-compiled weighted base can be computed in time polynomial in the output size. Finally, we sketch how our results can be used in model-based diagnosis in order to compute the most probable diagnoses of a system.

1 INTRODUCTION

Penalty logic is a logical framework developed by Pinkas \cite{15,20} and by Dupin de St Cyr, Lang and Schiex \cite{13}, which enables the representation of propositional weighted bases. A weighted base is a finite set

\[W = \{\langle \phi_1, k_1 \rangle, \ldots, \langle \phi_n, k_n \rangle \} \]

Each \(\phi_i \) is a propositional formula, and \(k_i \) is its corresponding weight, i.e., the price to be paid if the formula is violated. In penalty logic, weights are positive integers or \(+\infty\) and they are additively aggregated.

Floating numbers can also be used; what is important is the fact that sum is a total function over the set of (totally ordered) numbers under consideration, and that it can be computed in polynomial time.

A weighted base can be considered as a compact, implicit encoding of a total pre-ordering over a set \(\Omega \) of propositional worlds. Indeed, given a weighted base \(W \), the weight of each world \(\omega \) can be defined as follows:

\[K_W(\omega) \overset{\text{def}}{=} \sum_{\langle \phi, k \rangle \in W, \omega \models \neg \phi} k. \]

That is, the weight of a world is the sum of all weights associated with sentences violated by the world. One can extend the function \(K_W \) to arbitrary sentences \(\alpha \):

\[K_W(\alpha) \overset{\text{def}}{=} \min_{\omega \models \alpha} K_W(\omega). \]

Finally, \(\min_W(\Omega) \) denotes the most preferred worlds in \(\Omega \), those having minimal weight:

\[\min_W(\Omega) \overset{\text{def}}{=} \{\omega \mid \omega \in \Omega, \forall \omega' \in \Omega K_W(\omega) \leq K_W(\omega')\}. \]

The weight of base \(W \), denoted \(K(W) \), is the weight of some world in \(\min_W(\Omega) \). Obviously enough, we have \(K(W) = K_W(\text{true}) \), and \(\omega \in \min_W(\Omega) \) if and only if \(K_W(\omega) = K(W) \).

Example 1.1 Let \(W = \{\langle a \land b, 2 \rangle, \langle \neg b, 1 \rangle\} \) be a weighted base. Let us consider the following four worlds over the variables appearing in \(W \), \(\text{Var}(W) \):

\[\begin{align*}
\omega_1 &= \langle a, b \rangle \\
\omega_2 &= \langle a, \neg b \rangle \\
\omega_3 &= \langle \neg a, b \rangle \\
\omega_4 &= \langle \neg a, \neg b \rangle
\end{align*} \]

we then have \(K_W(\omega_1) = 1, K_W(\omega_2) = 2, K_W(\omega_3) = 3, \) and \(K_W(\omega_4) = 2 \). Accordingly, we have \(K(W) = 1 \) and \(\min_W(\Omega) = \{\omega_1\} \).

\[\begin{align*}
\omega_1 &= \langle a, b \rangle \\
\omega_2 &= \langle a, \neg b \rangle \\
\omega_3 &= \langle \neg a, b \rangle \\
\omega_4 &= \langle \neg a, \neg b \rangle
\end{align*} \]
All formulas \(\phi \) associated with finite weights in a weighted base are called soft constraints, while those associated with the weight \(+\infty \) are called hard constraints.

Penalty logic has some valuable connections with possibilistic logic, as well as with Dempster–Shafer theory (see [13] for details). It is also closely connected to the optimization problem WEIGHTED-MAX-SAT considered in operations research. Accordingly, several proposals for the use of weighted bases can be found in the AI literature.

One of them concerns the compact representation of preferences in a decision making setting. Indeed, in some decision making problems, models (and formulas) can be used to encode decisions. Accordingly, the weight of a model can be viewed as an implicit representation of the set of all decisions of an agent, totally ordered w.r.t. their (dis)utility. Lauri and Lang [12] take advantage of such an encoding for group decision making. A key issue here from a computational point of view is the problem consisting in computing (one or all) element(s) from \(\text{min}_W(\Omega) \).

Another suggested use of penalty logic concerns inference from inconsistent belief bases. Based on the preference information given by \(K_W \), several inference relations from a weighted base \(W \) can be defined. Among them is skeptical inference given by \(\alpha \models_W \beta \) if and only if every world \(\omega \) that is of minimal weight among the models of \(\alpha \) is a model of \(\beta \). In this framework, propositional formulas represent pieces of (explicit) belief. The inference relation \(\models_W \) is interesting for at least two reasons. On the one hand, it is a comparative inference relation, i.e., a rational inference relation satisfying supraclassicality [13]. On the other hand, weighted bases can be used to encode some well-known forms of inference from stratified belief bases \(B = (B_1, \ldots, B_n) \) [21; 1; 12]. Especially, the so-called skeptical lexicographic inference \(B \models_{\text{lex}} \) can be recovered as a specific case of true \(\models_W \) for some weighted base \(W \).

Example 1.2 Let \(B = (B_1, B_2) \) be a belief base interpreted under lexicographic inference, where \(B_1 = \{ a \lor b \lor c \} \) (the most reliable stratum) and \(B_2 = \{ \lnot a \land c, \lnot b \land c, \lnot c \} \). \(W \) can associate with \(B \) the weighted base

\[
W_B = \{ (a \lor b \lor c, 4), (\lnot a \land c, 1), (\lnot b \land c, 1), (\lnot c, 1) \}.
\]

The unique most preferred world for \(W_B \) is \((\lnot a, \lnot b, c) \) that is also the only lexicographically-preferred model of \(B \).

Weighted bases enable more flexibility than stratified belief bases (e.g., violating two formulas of weight 5 is worse than violating a single formula of weight 9, but this cannot be achieved through a simple stratification).

The inference problem from a weighted base \(W \) consists in determining whether \(\text{true} \models_W \beta \) holds given \(W \) and \(\beta \). Up to now, weighted bases have been investigated from a theoretical point of view, only. Despite their potentialities, we are not aware of any industrial application of weighted bases. There is a simple (but partial) explanation of this fact: inference (and preferred model enumeration) from weighted bases are intractable. Actually, the inference problem is known as \(\Delta_p^2 \)-complete [12] (even in the restricted case where queries are literals). Furthermore, it is not hard to show that computing a preferred world from \(\text{min}_W(\Omega) \) is \(\text{F}_\Delta^2 - \text{complete} \). This implies that any of the two problems is very likely to require an unbounded polynomial number of calls to an NP oracle to be solved in polynomial time on a deterministic Turing machine.

In this paper, we investigate the extent to which knowledge compilation [1] can be used to improve inference from weighted bases. The key idea of compilation is pre-processing of the fixed part of the inference problem. Several knowledge compilation functions dedicated to the clausal entailment problem have been pointed out so far (e.g., [23; 15; 4; 7; 3; 24; 25; 3; 8]). The input formula is turned into a compiled one during an off-line compilation phase and the compiled form is used to answer the queries on-line. Assuming that the formula does not often change and that answering queries from the compiled form is computationally easier than answering them from the input formula, the compilation time can be balanced over a sufficient number of queries. Thus, when queries are CNF formulas, the complexity of classical inference falls from \(\text{coNP} \)-complete to \(\text{P} \). While none of the techniques listed above can ensure the objective of enhancing inference to be reached in the worst case (because the size of the compiled form can be exponentially larger than the size of the original knowledge base – see [23; 8]), experiments have shown such approaches valuable in many practical situations [24; 3; 10].

In the following, we show how compilation functions for clausal entailment from classical formulas can be extended to clausal inference from weighted bases. Any equivalence–preserving knowledge compilation function can be considered in our framework. Unfortunately, for many target classes for such functions, including the prime implicates, Horn cover and renamable Horn cover classes, we show that the inference problem from a compiled base remains \(\Delta_p^2 \)-complete, even for very simple queries (literals). Accordingly, in this situation, there is no guarantee that compiling a weighted base using any of the corresponding compilation functions may help. Then we fo
In the following, we consider a propositional language $PROP_{PS}$ defined inductively from a finite set PS of propositional symbols, the boolean constants $true$ and $false$ and the connectives \neg, \land, \lor in the usual way. L_{PS} is the set of literals built up from PS. For every formula ϕ from $PROP_{PS}$, $Var(\phi)$ denotes the symbols of PS occurring in ϕ. As mentioned before, if $W = \{\langle \phi_1, k_1 \rangle, \ldots, \langle \phi_n, k_n \rangle\}$ is a weighted base, then $Var(W) = \bigcup_{i=1}^{n} Var(\phi_i)$.

Formulas are interpreted in a classical way. As evoked before, $\Omega (= 2^{PS})$ denotes the set of all interpretations built up from PS. Every interpretation (world) $\omega \in \Omega$ is represented as a tuple of literals. Mod(ϕ) is the set of all models of ϕ.

As usual, every finite set of formulas is considered as the conjunctive formula whose conjuncts are the elements of the set. A CNF formula is a (finite) conjunction of clauses, where a clause is a (finite) disjunction of literals. A formula ϕ is a Horn CNF if and only if it is a CNF formula where each prime implicat of ϕ appears as a conjunct (one representative per equivalence class). A formula ϕ is Horn CNF if and only if it is a CNF formula s.t. every clause in it contains at most one positive literal. A formula ϕ is a Horn CNF formula, where σ is a substitution from L_{PS} to L_{PS} s.t. $\sigma(l) = l$ for every literal l of L_{PS} except those of a set L, and for every literal l of L, $\sigma(-l) = l$.

We assume the reader familiar with the complexity classes P, NP, $coNP$ and Δ_2^P of the polynomial hierarchy. $F\Delta_2^P$ denotes the class of function problems associated to Δ_2^P (see [18] for details).

3 COMPILE WEIGHTED BASES

In this section, we first show how knowledge compilation techniques for improving clausal entailment can be used in order to compile weighted bases. Then, we present some complexity results showing that compiling a weighted base is not always a good idea, since the complexity of inference from a compiled base does not necessarily decrease. We specifically focus on prime implicates [2] and Horn covers and renamable Horn covers compilations [3].

3.1 A FRAMEWORK FOR WEIGHTED BASES COMPILE

Let $W = \{\langle \phi_1, k_1 \rangle, \ldots, \langle \phi_n, k_n \rangle\}$ be a weighted base. In the case where $\bigwedge_{i=1}^{n} \phi_i$ is consistent, then $K(W) = 0$ and $\min_{W}(\Omega)$ is the set of all models of $\bigwedge_{i=1}^{n} \phi_i$. Accordingly, in this situation, inference \vdash_W is classical entailment, so it is possible to directly use any knowledge compilation function and compiling W comes down to compile $\bigwedge_{i=1}^{n} \phi_i$. However, this situation is very specific and out of the ordinary when weighted bases are considered (otherwise, weights would be useless). A difficulty is that, in the situation where $\bigwedge_{i=1}^{n} \phi_i$ is inconsistent, we cannot compile directly this formula using any equivalence–preserving knowledge compilation function (otherwise, trivialization would not be avoided). Indeed, in this situation, \vdash_W is not classical entailment any longer, so a more sophisticated approach is needed.

In order to compile weighted bases, it is helpful to consider weighted bases in normal form:

Definition 3.1 (Weighted bases in normal form)

A belief base $W = \{\langle \phi_1, k_1 \rangle, \ldots, \langle \phi_n, k_n \rangle\}$ is in normal form if and only if for every $i \in 1 \ldots n$, either $k_i = +\infty$ or ϕ_i is a propositional symbol.

Every weighted base can be turned into a query–equivalent base in normal form.

Definition 3.2 (V–equivalence of weighted bases)

Let W_1 and W_2 be two weighted bases and let $V \subseteq PS$. W_1 and W_2 are V–equivalent if and only if for every pair of sentences α and β in $PROP_V$, we have $\alpha \vdash_W \beta$ precisely when $\alpha \vdash_{W_1} \beta$.

Accordingly, two V–equivalent weighted bases must agree on queries built up from the symbols in V. Note that a stronger notion of equivalence can be defined by requiring that both bases induce the same weight function, i.e., $K_{W_1} = K_{W_2}$. Finally, note that if K_{W_1} and K_{W_2} agree on the sentences in $PROP_V$, then W_1 and W_2 must be V–equivalent.

Proposition 3.1

Let $W = \{\langle \phi_1, k_1 \rangle, \ldots, \langle \phi_n, k_n \rangle\}$ be a weighted base. If

\[
H \overset{def}{=} \{ \langle \phi_i, +\infty \rangle \mid \langle \phi_i, +\infty \rangle \in W \},
\]

\[
S \overset{def}{=} \{ \langle holds_i \Rightarrow \phi_i, +\infty \rangle, \langle holds_i, k_i \rangle \mid \langle \phi_i, k_i \rangle \in W \text{ and } k_i \neq +\infty \},
\]

then W is V–equivalent with H and S.

1 A prime implicate of a formula ϕ is a logically strongest clause entailed by ϕ.

2 A $DNNF$–compilation is as introduced in [3]. This case is much more favourable since the clausal inference problem becomes tractable. We also show that the preferred models of a $DNNF$–compilation of a weighted base can be enumerated in output polynomial time. Finally, we sketch how our results can be used in the model–based diagnosis framework in order to compute the most probable diagnoses of a system.
where \(\{ \text{holds}_1, \ldots, \text{holds}_n \} \subseteq PS \setminus V ar(W) \), then the weighted base \(W \downarrow \overset{\text{def}}{=} H \cup S \) is in normal form.

Moreover, \(K_W \) and \(K_{W_1} \) agree on all weights of sentences in \(PROP_{V ar(W)} \) and, hence, \(W \downarrow \) is \(V ar(W) \)-equivalent to \(W \).

We will call \(W \downarrow \) the normal form of \(W \). Intuitively, the variable \(\text{holds}_i \) is guaranteed to be false in any world that violates the sentence \(\phi_i \) and, hence, that world is guaranteed to incur the penalty \(k_i \).

Example 1.1 (Continued) The weighted base

\[
W \downarrow = \{ \langle \text{holds}_1 \Rightarrow (a \land b), +\infty \rangle, \\
\langle \text{holds}_2 \Rightarrow -b, +\infty \rangle, \langle \text{holds}_1, 2 \rangle, \langle \text{holds}_2, 1 \rangle \}
\]

is a normal form of \(W \) as given by Proposition \[3.1\]. The normalized weighted base \(W \downarrow \) induces the following weight function:

World	\(W_{W[1]} \)
\(a, b, \text{holds}_1, \text{holds}_2 \)	+\infty
\(a, b, \text{holds}_1, -\text{holds}_2 \)	1
\(a, b, -\text{holds}_1, \text{holds}_2 \)	+\infty
\(a, b, -\text{holds}_1, -\text{holds}_2 \)	3
\(-a, -b, \text{holds}_1, \text{holds}_2 \)	+\infty
\(-a, -b, \text{holds}_1, -\text{holds}_2 \)	+\infty
\(-a, b, -\text{holds}_1, \text{holds}_2 \)	+\infty
\(-a, b, -\text{holds}_1, -\text{holds}_2 \)	3
\(-a, -b, \text{holds}_1, \text{holds}_2 \)	+\infty
\(-a, -b, \text{holds}_1, -\text{holds}_2 \)	+\infty
\(-a, -b, -\text{holds}_1, \text{holds}_2 \)	2
\(-a, -b, -\text{holds}_1, -\text{holds}_2 \)	3

We have \(K(W \downarrow) = 1 \) and

\[
\min_{W \downarrow}(\Omega) = \{ (a, b, \text{holds}_1, -\text{holds}_2) \}.
\]

Moreover, \(K_W \) and \(K_{W_1} \) agree on all sentences constructed from the variables in \(\{ a, b \} \).

We now discuss the compilation of a weighted base in normal form. The basic idea is to combine all hard constraints in the base into a single constraint, which preserves the weight function induced by the base. We then compile that single hard constraint using an equivalence-preserving compilation function \(COMP \), that is, a function which maps each sentence \(\alpha \) into its compiled form \(COMP(\alpha) \).

From here on, we will use \(\hat{W} \) to denote the conjunction of all sentences in the weighted base \(W \) that have +\infty weights:

\[
\hat{W} \overset{\text{def}}{=} \bigwedge_{(\phi_i, +\infty) \in W} \phi_i.
\]

Definition 3.3 (Compilation of a weighted base)

Let \(W = \{ (\phi_1, k_1), \ldots, (\phi_n, k_n) \} \) be a weighted base. Let \(COMP \) be any equivalence-preserving knowledge compilation function. The \(COMP \)-compilation of \(W \) is the weighted base

\[
W_{W_{COMP}} \overset{\text{def}}{=} \{ (\text{COMP}(\hat{W}), +\infty) \} \cup \{ (\text{holds}_i, k_i) \mid (\text{holds}_i, k_i) \in W \downarrow \text{and } k_i \neq +\infty \}.
\]

That is, to compile a weighted base \(W \), we perform three steps. First, we compute a normal form \(W \downarrow \) according to Proposition \[3.1\], which is guaranteed to be \(V \)-equivalent to \(W \), where \(V \) are the variables in \(W \). Next, we combine all of the hard constraints of \(W \downarrow \) into a single hard constraint \(\hat{W} \). Finally, we compile \(\hat{W} \) using the function \(COMP \).

Example 1.1 (Continued) We have

\[
\hat{W} = (\neg \text{holds}_1 \lor (a \land b)) \land (\neg \text{holds}_2 \lor \neg b).
\]

Accordingly, the Blake-compilation of \(W \) is

\[
\{ (\neg \text{holds}_1 \lor a) \land (\neg \text{holds}_2 \lor b) \land (\neg \text{holds}_1 \land \neg \text{holds}_2), +\infty \}, \langle \text{holds}_1, 2 \rangle, \langle \text{holds}_2, 1 \rangle \}.
\]

Given Proposition \[3.1\] and since \(COMP \) is equivalence-preserving, we have:

Corollary 3.1 Let \(W = \{ (\phi_1, k_1), \ldots, (\phi_n, k_n) \} \) be a weighted base. Let \(COMP \) be any equivalence-preserving knowledge compilation function. \(K_{W_{COMP}} \) and \(K_W \) agree on the sentences in \(PROP_{V ar(W)} \). Moreover, \(W \) and \(W_{W_{COMP}} \) are \(V ar(W) \)-equivalent.

3.2 SOME COMPLEXITY RESULTS

In the following, the next tractable classes of formulas, that are target classes for some existing equivalence-preserving compilation functions \(COMP \), are considered:

- The **Blake** class is the set of formulas given in prime implicates normal form,
- The **Horn cover** class is the set of disjunctions of Horn CNF formulas,
- The **renamable Horn cover** class (r. Horn cover for short) is the set of the disjunctions of renamable Horn CNF formulas.
The Blake class is the target class of the compilation function \(COMP_{Blake}\) described in [13]. The Horn cover class and the renamable Horn cover class are target classes for the tractable covers compilation functions given in [3]. We shall note respectively \(COMP_{Horn\ cover}\) and \(COMP_{r.\ Horn\ cover}\) the corresponding compilation functions.

Accordingly, a Blake (resp. Horn cover, r. Horn cover) compiled weighted base \(W\) is defined as a weighted base in normal form whose unique hard constraint belongs to the Blake (resp. Horn cover, r. Horn cover) class.

In the next section, we will also focus on the DNNF class. We consider it separately because — unlike the other classes — it will lead to render tractable clausal inference from compilations.

Of course, all these compilation functions \(COMP\) are subject to the limitation evoked above: in the worst case, the size of the compiled form \(COMP(\Sigma)\) is exponential in the size of \(\Sigma\). Nevertheless, there is some empirical evidence that some of these approaches can prove computationally valuable for many instances of the clausal entailment problem (see e.g., the experimental results given in [24, 3, 10]).

As evoked previously, knowledge compilation can prove helpful only if inference from the compiled form is computationally easier than direct inference. Accordingly, it is important to identify the complexity of inference from a compiled weighted base if we want to draw some conclusions about the usefulness of knowledge compilation in this context. Formally, we are going to consider the following decision problems:

Definition 3.4 (FORMULA \(\models_W\))
FORMULA \(\models_W\) is the following decision problem:

- **Input:** A weighted base \(W\) and a formula \(\beta\) from PROP\(_{PS}\).
- **Query:** Does \(true\models_W\beta\) hold?

FORMULA \(\models_W\) (resp. LITERAL \(\models_W\)) is the restriction of FORMULA \(\models_W\) to the case where \(\beta\) is required to be a CNF formula (resp. a term).

When no restriction is put on \(W\), FORMULA \(\models_W\) is known as \(\Delta_0^P\)-complete [12], even in the restricted LITERAL \(\models_W\) case. Now, what if \(W\) is a compiled weighted base? We have identified the following results:

Proposition 3.2 (Inference from compiled weighted bases)
The complexity of CLAUSE \(\models_W\) and of its restrictions to literal inference when \(W\) is a Blake (resp. Horn cover, r. Horn cover) compiled weighted base is reported in Table 1.

Table 1: Complexity of clausal inference from compiled weighted bases.

COMP	CLAUSE / LITERAL \(\models_W\)
Blake	\(\Delta^P_0\)-complete
Horn cover	\(\Delta^P_2\)-complete
r Horn cover	\(\Delta^P_2\)-complete

Hardness results can be easily derived from results given in [8] due to the fact that (skeptical) lexicographic inference \(\models_{lex}\) from a stratified belief base can be easily encoded as inference from a weighted base. Indeed, if \(m\) is the maximum number of formulas belonging to any stratum \(B_i\) of \(B = \{B_1, \ldots, B_k\}\), then let \(W_B = \{\langle \phi, (m+1)^{k-i}\rangle \mid \phi \in B_i\}\) (see Example 1.2 for an illustration). It is not hard to prove that \(B \models_{lex}\beta\) if and only if \(true \models_{W_B}\beta\).

The complexity results reported in Table 1 do not give good news: there is no guarantee that compiling a belief base using the Blake (or the Horn cover or the r. Horn cover) compilation function leads to improve inference since its complexity from the corresponding compiled bases is just as hard as the complexity of \(\models_W\) in the general case.

Fortunately, it is not the case that such negative results hold for any compilation function. As we will see in the next section, DNNF-compilations of weighted bases exhibit a much better behaviour.

4 COMPILING WEIGHTED BASES USING DNNF

In this section, we focus on DNNF-compilations of weighted bases. After a brief recall of what DNNF-compilation is, we show that DNNF-compilations support two important computational tasks in polynomial time, especially preferred model enumeration and clausal inference.

4.1 A GLIMPSE AT THE DNNF LANGUAGE

The DNNF language is the set of sentences, defined as follows [8]:

Definition 4.1 (DNNF)
Let \(PS\) be a finite set of propositional variables. A sentence in DNNF is a rooted, directed acyclic graph (DAG) where each leaf node is labeled with true, false, \(x\) or \(\neg x\), \(x \in PS\); each internal node is labeled with \(\land\) or \(\lor\) and can have arbitrarily many children. Moreover, the decomposability property is satisfied: for each conjunction \(C\) in the sentence, the conjuncts of \(C\) do not share variables.
way from a tractability reasons some leaf nodes are duplicated in the figure. For instance, Figure 2 depicts a smooth DNFF sentence sat-

Figure 1: A sentence in DNFF.

Figure 2: A sentence in smooth DNFF.

Figure 1 depicts a DNFF of the hard constraint \(\overline{W}\), where \(W\) is the weighted base given in Example 1.1. Note here that \(\overline{W}\) is the normal form constructed from \(W\) according to Proposition 3.1, and \(\overline{W}\) is the conjunction of all hard constraints in \(W\).

An interesting subset of DNFF is the set of smooth DNFF sentences [9]:

Definition 4.2 (Smooth DNFF) A DNFF sentence satisfies the smoothness property if and only if for each disjunction \(C\) in the sentence, each disjunct of \(C\) mentions the same variables.

Interestingly, every DNFF sentence can be turned into an equivalent, smooth one in polynomial time [9].

For instance, Figure 3 depicts a smooth DNFF which is equivalent to the DNFF in Figure 1. Note that for readability reasons some leaf nodes are duplicated in the figure.

Among the various tasks that can be achieved in a tractable way from a DNFF sentence are conditioning, clausal entailment, forgetting and model enumeration (given that the DNFF is smooth) [8, 11].

4.2 TRACTABLE QUERIES

Given a weighted base \(W\), and given a DNFF-compilation of \(W\), we now show how the compilation can be used to represent the preferred models of \(W\) as a DNFF in polynomial time.

Definition 4.3 (Minimization of a weighted base) A minimization of a weighted base \(W\) is a propositional formula \(\Delta\) where the models of \(\Delta\) are \(\min_W(\Omega)\).

Note that this notion generalizes the notion of minimization of a propositional formula \(\phi\) reported in [8], for which the preferred models are those containing a maximal number of variables assigned to true. Such a minimization can be easily achieved in a weighted base setting by considering the base \(\{\langle \phi, +\infty \rangle \} \cup \bigcup_{x \in \text{Var}(\phi)} \{\langle x, 1 \rangle \}\).

Definition 4.4 (Minimization of DNFF-compilation) Let \(W\) be a DNFF-compilation of a weighted base. Let \(\langle \alpha, +\infty \rangle\) be the single hard constraint in \(W\), where \(\alpha\) is a DNFF sentence. Suppose that \(\alpha\) is also smooth.

- We define \(k(\alpha)\) inductively as follows:
 - \(k(\text{true}) \overset{\text{def}}{=} 0\) and \(k(\text{false}) \overset{\text{def}}{=} +\infty\).
 - If \(\alpha\) is a literal, then:
 - If \(\alpha = \neg\text{holds}_i\), then \(k(\alpha) \overset{\text{def}}{=} k_i\), where \(\text{holds}_i, k_i \in W\).
 - Otherwise, \(k(\alpha) \overset{\text{def}}{=} 0\).
 - \(k(\alpha = \bigvee_i \alpha_i) \overset{\text{def}}{=} \min_i k(\alpha_i)\).
 - \(k(\alpha = \bigwedge_i \alpha_i) \overset{\text{def}}{=} \sum_i k(\alpha_i)\).

We define \(\min(\alpha)\) inductively as follows:

- If \(\alpha\) is a literal or a boolean constant, then \(\min(\alpha) \overset{\text{def}}{=} \alpha\).
- \(\min(\alpha = \bigvee_i \alpha_i) \overset{\text{def}}{=} \bigvee_{\alpha(\alpha_i) = k(\alpha_i)} \min(\alpha_i)\).
- \(\min(\alpha = \bigwedge_i \alpha_i) \overset{\text{def}}{=} \bigwedge_i \min(\alpha_i)\).

We have the following result:

Proposition 4.1 Let \(W\) be a DNFF-compilation of a weighted base. Let \(\langle \alpha, +\infty \rangle\) be the single hard constraint in \(W\), where \(\alpha\) is a smooth DNFF sentence. Then \(\min(\alpha)\) is a smooth DNFF and is a minimization of \(W\).

Figure 4 (left) depicts the weight \(k(\alpha)\) of every subformula \(\alpha\) of the smooth DNFF sentence given in Figure 2. Figure 4 (right) depicts the minimization of the DNFF in Figure 2. Figure 5 (right) depicts a simplification of this minimized DNFF which has a single model.
Since \(\min(\alpha) \) can be computed in time polynomial in the size of \(DNNF \alpha \), and since clausal entailment can be done in time linear in the size of \(\alpha \) [8], we have:

Corollary 4.1 The clausal inference problem \(CLAUSE \mid \neg \) from \(DNNF \)-compilations of weighted bases is in \(P \).

Since model enumeration can be done in output polynomial time from a smooth \(DNNF \), we also have:

Corollary 4.2 The preferred model enumeration problem from \(DNNF \)-compilations of weighted bases can be solved in output polynomial time.

5 APPLICATION TO MODEL-BASED DIAGNOSIS

We now briefly sketch how the previous results can be used to compute the set of most probable diagnoses of a system in time polynomial in the size of system description and the output size. The following results generalize those given in [8] to the case where the probability of failure of components is available.

We first need to briefly recall what a consistency-based diagnosis of a system is [23]:

Definition 5.1 (Consistency-based diagnosis)

- A diagnostic problem \(\mathcal{P} = \langle SD, OK, OBS \rangle \) is a triple consisting of:
 - a formula \(SD \) from \(PROP_{PS} \), the system description.
 - a finite set \(OK = \{ok_1, \ldots, ok_n\} \) of propositional symbols. “ok_i is true” means that the component \(i \) of the system to be diagnosed is not faulty.
 - \(OBS \) is a term, typically gathering the inputs and the outputs of the system.

- A consistency-based diagnosis \(\Delta \) for \(\mathcal{P} \) is a complete \(OK \)-term (i.e., a conjunction of literals built up from \(OK \) in which every \(ok_i \) occurs either positively or negatively) s.t. \(\Delta \land SD \land OBS \) is consistent.

Because a system can have a number of diagnoses that is exponential in the number of its components, preference criteria are usually used to limit the number of candidates. The most current ones consist in keeping the diagnoses containing as few negative \(OK \)-literals as possible (w.r.t. set inclusion or cardinality).

When the a priori probability of failure of components is available (and such probabilities are considered independent), the most probable diagnoses for \(\mathcal{P} \) can also be preferred. Such a notion of preferred diagnosis generalizes the one based on minimality w.r.t. cardinality (the latter corresponds to the case where the probability of failure of components is uniform and \(< \frac{1}{2} \)).

Interestingly, the most probable diagnoses for \(\mathcal{P} \) can be enumerated in output polynomial time as soon as a smooth \(DNNF \)-compilation \(\mathcal{P}_{DNNF} \) corresponding to \(\mathcal{P} \) has been derived first.

Definition 5.2 (Compilation of a diagnostic problem)

Let \(\mathcal{P} \) be a diagnostic problem for which the a priori probability of failure \(p_i \) of any component \(i \) is available.

\(\mathcal{P}_{DNNF} \) is the smooth \(DNNF \)-compilation associated with \(\mathcal{P} \).

In this definition, \(SD \mid OBS \) denotes the conditioning of \(SD \) by the term \(OBS \), i.e., the formula obtained by replacing in \(SD \) every variable \(x \) by \(true \) (resp. \(false \)) if \(x \) (resp. \(\neg x \)) is a positive (resp. negative) literal of \(OBS \).
The log transformation performed here enables to compute the log of the probability of a diagnosis \(\Delta \) as \(\sum_{\phi_k \in \Delta} \log p_i \). Because log is strictly nondecreasing, the induced preference ordering between diagnoses is preserved.

Proposition 5.1

- \(K(\mathcal{P}_{\text{DNNF}}) \) is the log of the probability of any most probable diagnosis for \(\mathcal{P} \).

- The most probable diagnoses for \(\mathcal{P} \) are the the models of \(\text{Forget}(\min(\text{DNNF}(SD | OBS)), PS \setminus OK) \).

An important point is that \(\mathcal{P}_{\text{DNNF}} \) does not have to be re-compiled each time the observations change; indeed, a DNNF sentence \(\text{DNNF}(SD | OBS) \) equivalent to the conditioning of \(SD \) by the observations \(OBS \) can be computed as \(\text{DNNF}(SD) | OBS \), the conditioning of a DNNF sentence equivalent to \(SD \) by \(OBS \). Since conditioning can be achieved in linear time from a DNNF formula, it is sufficient to compile only the system description \(SD \) (that is the fixed part of the diagnostic problem) so to compute \(\text{DNNF}(SD) \) instead of \(\text{DNNF}(SD | OBS) \).

Because (1) forgetting variables in a DNNF formula can be done in polynomial time \({\text{[8]}}\) and (2) the models of a smooth DNNF formula can be generated in time polynomial in the output size \({\text{[8]}}\), we obtain that:

Corollary 5.1 The most probable diagnoses for a diagnostic problem \(\mathcal{P} \) can be enumerated in time polynomial in the size of \(\mathcal{P}_{\text{DNNF}} \).

6 CONCLUSION

In this paper, we have studied how existing knowledge compilation functions can be used to improve inference from propositional weighted bases. Both negative and positive results have been put forward. On the one hand, we have shown that the inference problem from a compiled weighted base is as difficult as in the general case, when prime implicates, Horn cover or renamable Horn cover target classes are considered. On the other hand, we have shown that this problem becomes tractable whenever DNNF-compilations are used. Finally, we have sketched how our results can be used in model-based diagnosis in order to compute the most probable diagnoses of a system.

\footnote{For every formula \(\phi \) and every set of variables \(X \), \(\text{Forget}(\phi, X) \) denotes the logically strongest consequence of \(\phi \) that is independent from \(X \), i.e., that can be turned into an equivalent formula in which no variable from \(X \) occurs.}

Acknowledgements

The first author has been partially supported by NSF grant IIS-9988543 and MURI grant N00014-00-1-0617. The second author has been partly supported by the IUT de Lens, the Université d’Artois, the Région Nord/Pas-de-Calais under the TACT-TIC project, and by the European Community FEDER Program.

References

[1] S. Benferhat, C. Cayrol, D. Dubois, J. Lang, and H. Prade. Inconsistency management and prioritized syntax-based entailment. In *Proc. of the 13th International Joint Conference on Artificial Intelligence (IJCAI’93)*, pages 640–645, Chambéry, 1993.

[2] S. Benferhat, D. Dubois, and H. Prade. How to infer from inconsistent beliefs without revising. In *Proc. of the 14th International Joint Conference on Artificial Intelligence (IJCAI’95)*, pages 1449–1455, Montreal, 1995.

[3] Y. Boufkhad, E. Grégoire, P. Marquis, B. Mazure, and L. Saïs. Tractable cover compilations. In *Proc. of the 15th International Joint Conference on Artificial Intelligence (IJCAI’97)*, pages 122–127, Nagoya, 1997.

[4] M. Cadoli and F.M. Donini. A survey on knowledge compilation. *AI Communications*, 10:137–150, 1997. (printed in 1998).

[5] S. Coste-Marquis and P. Marquis. Compiling stratified belief bases. In *Proc. of the 14th European Conference on Artificial Intelligence (ECAI’00)*, pages 23–27, Berlin, 2000.

[6] M. Dalal. Semantics of an anytime family of reasoners. In *Proc. of the 12th European Conference on Artificial Intelligence (ECAI’96)*, pages 360–364, Budapest, 1996.

[7] A. Darwiche. Compiling devices: a structure-based approach. In *Proc. of the 6th International Conference on Knowledge Representation and Reasoning (KR’98)*, pages 156–166, Trento, 1998.

[8] A. Darwiche. Compiling knowledge into decomposable negation normal form. In *Proc. of the 16th International Joint Conference on Artificial Intelligence (IJCAI’99)*, pages 284–289, Stockholm, 1999.

[9] A. Darwiche. Decomposable negation normal form. *Journal of the Association for Computing Machinery*, 48(4):1–42, 2001.
[10] A. Darwiche. A Compiler for Deterministic Decomposable Negation Normal Form. Technical Report D-125, Computer Science Department, UCLA, Los Angeles, Ca 90095, 2002. To appear in AAAI’02.

[11] A. Darwiche and P. Marquis. A perspective on knowledge compilation. In Proc. of the 17th International Joint Conference on Artificial Intelligence (IJCAI’99), pages 175–182, Seattle (WA), 2001.

[12] F. Dupin de St Cyr. Gestion de l’évolutif et de l’incertain en logiques pondérées. PhD thesis, Université Paul Sabatier, 1996.

[13] F. Dupin de St Cyr, J. Lang, and Th. Schiex. Penalty logic ans its link with Dempster-Shafer theory. In Proc. of the 10th Conference on Uncertainty in Artificial Intelligence (UAI’94), pages 204–211, 1994.

[14] R. Dechter and I. Rish. Directional resolution: the Davis-Putnam procedure, revisited. In Proc. of the 4th International Conference on Knowledge Representation and Reasoning (KR’94), pages 134–145, Bonn, 1994.

[15] A. del Val. Tractable databases: how to make propositional unit resolution complete through compilation. In Proc. of the 4th International Conference on Knowledge Representation and Reasoning (KR’94), pages 551–561, Bonn, 1994.

[16] C. Lafage and J. Lang. Logical representation of preferences for group decision making. In Proc. of the 7th International Conference on Knowledge Representation and Reasoning (KR’00), pages 457–468, Breckenridge (CO), 2000.

[17] P. Marquis. Knowledge compilation using theory prime implicates. In Proc. of the 14th International Joint Conference on Artificial Intelligence (IJCAI’95), pages 837–843, Montreal, 1995.

[18] Ch. Papadimitriou. Computational complexity. Addison-Wesley, 1994.

[19] G. Pinkas. Propositional nonmonotonic reasoning and inconsistency in symmetric neural networks. In Proc. of the 12th International Joint Conference on Artificial Intelligence (IJCAI’91), pages 525–530, 1991.

[20] G. Pinkas. Reasoning, nonmonotonicity and learning in connectionist networks that capture propositional knowledge. Artificial Intelligence, 77:203–247, 1995.

[21] G. Pinkas and R.P. Loui. Reasoning from inconsistency: a taxonomy of principles for resolving conflict. In Proc. of the 3rd International Conference on Knowledge Representation and Reasoning (KR’92), pages 709–719, Cambridge (MA), 1992.

[22] R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence, 32:57–95, 1987.

[23] R. Reiter and J. de Kleer. Foundations of assumption-based truth maintenance systems: preliminary report. In Proc. of the 6th National Conference on Artificial Intelligence (AAAI’87), pages 183–188, Seattle (WA), 1987.

[24] R. Schrag. Compilation for critically constrained knowledge bases. In Proc. of the 13th National Conference on Artificial Intelligence (AAAI’96), pages 510–515, Portland (OR), 1996.

[25] B. Selman and H.A. Kautz. Knowledge compilation and theory approximation. Journal of the Association for Computing Machinery, 43:193–224, 1996.