A relation between ethnobotany and bioprospecting of edible flower
Butterfly Pea (Clitoria ternatea) in Indonesia

WHISNU FEBRY AFRIANTO1,2, FADILA TAMNGE2, LAELI NUR HASANAH3
1Ecosystem and Biodiversity (Ecosbio), Jl. Merapi 02/01, Datengan, Grogol, Kediri 64151, East Java, Indonesia, *email: whisnu.afrianto@apps.ipb.ac.id
2Depertament of Animal Husbandry, Universitas Khairun, Jl. Raya Gambesi, Kampus II Unkhair, Ternate, North Maluku, Indonesia
3Departement of Nutrition, Faculty of Science and Technology, Universitas PGRI Yogyakarta, Jl. IKIP PGRI I Sonosewu No.117, Bantul 55184, Yogyakarta, Indonesia

Abstract. Afrianto WF, Tamnge F, Hasanah LN. 2020. Review: A relation between ethnobotany and bioprospecting of edible flower Butterfly Pea (Clitoria ternatea) in Indonesia. Asian J Ethnobiol 3: 51-61. Clitoria ternatea L., known as “bunga telang” in Indonesia, is an important medicinal plant to Fabaceae, an ornamental perennial climber. It has widely distributed throughout Africa, Asia, Australia, North and South America, Pacific (Northwestern, South-Central, and Southwestern). This review aims to study the relation between ethnobotany and bioprospecting of C. ternatea. The literature study revealed that Indonesian communities use flowers as part of C. ternatea as an eye medicine, boils disease, an ornamental plant, and a symbol in traditional ceremonies. Leaf, flower, seed, and root of this species have bioprospecting for medicine, agriculture, and food and beverage. Ethnobiology exploration of C. ternatea in Indonesia is an initial step to observe the bioprospecting potential. Then, further research can continue to produce commercial products that will provide an economic impact and motivate communities to take part in conservation actions. The present study assesses the minor works on bioecology, ethnobotany, bioprospecting, and market potential. We hope that the study's output can spur further research and industry approach.

Keywords: Bioprospecting, Clitoria ternatea, ethnobotany, Fabaceae, medicinal plant

INTRODUCTION

Clitoria ternatea L. is known as “bunga telang” in Indonesia. This wild plant belongs to the plant of the Fabaceae family (Karel et al. 2018). The origin of C. ternatea is still debatable, but some studies mentioned that C. ternatea is a native plant of Ternate, Indonesia Archipelago (Jain et al. 2003; Gupta et al. 2010; Oguis et al. 2019). The etymology of this species is postulated to be from the Ternate Island in the Indonesian archipelago. It is based on the specific description of Linnaeus produced (Oguis et al., 2019). Furthermore, according to Staples (1992), C. ternatea originated from the Pacific Ocean or the South China Sea, but it is from around the Indian Ocean. Currently, C. ternatea has widely distributed throughout Africa, Asia, Australia, North and South America, Pacific (Northwestern, South-Central, and Southwestern) (Al-Snafi 2016).

Clitoria ternatea is an ornamental perennial climber in other plants or in-wall of home gardens, which lives in various types of soil and has a pH of 5.5-8.9 (Sutedi 2013; Chen et al. 2018). It can adapt to heavy cracking clay soil areas (Hall 1985). C. ternatea is a self-pollination plant, and it spreads through seed (Chen et al. 2018). C. ternatea occurs in plentiful sunlight and is partially shaded (Jamil et al., 2018). Dry stressing can inhibit population growth, fresh weight, germination, shoot, and root length (Bharti and Kumari 2017). This medicinal plant can be found in high rainfall areas and prolonged dry season areas (Gomez and Kalamani 2003). The germination is 1-2 weeks, and the flowering is 3-4 weeks (Jamil et al. 2018).

The height of C. ternatea is up to 6 m with soft twigs. The description steam of C. ternatea is adpressed pubescent, glabrescent, and slender. C. ternatea has imparipinnate leaves consisting of 5-7 elliptic to lanceolate leaflets with a length of 1-6.7 cm and wide of 0.3-4 cm. The petiole length is 1-3 cm; the rachis is 1-6 cm, petiolules 1-3 mm, and leaflets 4-10 mm. The flower characteristics are axillary, paired, or solitary, with pedicels length of 6-9 mm, and striking blue and white color. The color of the seeds is black and brown, with a length of 4.5-7 mm, wide of 3-4 mm, and thick of 2-2.5 mm. The calyx is pubescent with tube 8-12 mm, under one-third of their length with the upper pair, acuminate or acute. The corolla is standard white, often margined with completely blue or blue. The pod is flat with a length of 6-12.5 cm and wide 0.7-1.2 cm; on each pod, there are 6-8 seeds. The color of the seeds is black and brown, with a length of 4.5-7 mm, wide of 3-4 mm, and thick of 2-2.5 mm (Gillett et al. 1971).

Leaves and flowers have flavonoids compounds (Kazuma et al. 2003a,b). The other non-proteinaceous components were found in the roots of C. ternatea. For instance, taraxerol, novel nomeologins, and clitoriienolactones A-C were found in the roots (Vasisht et al., 2016). C. ternatea has cyclotides (proteinaceous components) and is the only family member within the
Fabaceae (Gilding et al., 2015). The edible flowers had antioxidant activity and antimicrobial potential as a medicinal plant for several diseases (Petrova et al. 2016; Dhiman et al. 2017; Wang et al. 2017).

Ethnobotany of *C. ternatea* has been documented as the drug “Sankhupushpi” of Ayurveda (Mukherjee et al., 2008). Ayurveda means the science about life; it contains the traditional medicinal knowledge in India from between 2500 and 500 B.C (Mukherjee and Wahile 2006). The seeds and roots are used for alterative, laxative, and a ‘tonic of the nerves’ (Mukherjee et al., 2008). On the other hand, the data of ethnobotany in Indonesia is still limited. In Indonesia, *C. ternatea* is used as a medicinal plant or for traditional ceremonies and is known locally only.

Bioprospecting is an exploration of new natural resources of economic and social value. The pharmaceutical industry is one of the massive industries conducting it. However, other sectors, such as agriculture, construction, manufacturing, engineering, and others, also explore bioprospecting (Beattie et al., 2005). To find a novel of biological and chemical resources was conducted by exploration in nature or from traditional knowledge. Thus, the ethnobotany of species is crucial as foundation information for bioprospecting. Based on that, benefits from species can be used wider and optimal. This current literature review aims to study the relation between ethnobotany and bioprospecting of *C. ternatea*. The data documented of ethnobotany and bioprospecting from *C. ternatea* is to develop conservation action and optimize utilization

ETHNOBOTANY OF CLITORIA TERNATEA

Numerous ethnobotany research of *C. ternatea* is preliminary and requires a more thorough investigation. In Indonesia, research areas are still limited, such as East Java, Bali, West Nusa Tenggara, West Kalimantan, and Central Sulawesi. In Java, for instance, the data was only found in Madura. Ethnobotany knowledge of *C. ternatea* was depicted in Table 1.

The exploration of the ethnobotany of *C. ternatea* in Tamao Village did not reveal clear information about the utilization (Haryanti et al., 2015). However, based on literature, Dayak Tamambaloh in Embaloh Hulu is still keeping their local wisdom (Sulisistiyowati 2016). In general, the Dayak Tamambaloh Community finds beneficial plants from forests, house yards, gardens, river beaches, hills, and fields (Rike et al., 2018; Supiandi and Leliavia 2019).

Table 1. List of ethnobotany research of *Clitoria ternatea* in Indonesia

Location	Part	Utilization	References
Tamao Village, Embaloh Hulu District, West Kalimantan	Flowers	Medicine, traditional ceremony, and ornamental	Haryanti et al. (2015)
Five of Pakraman Villages, Bali (Pakraman Jatiluwih Tabanan, Pakraman Sukawati Gianyar, Pakraman Penglipuran Bangli, Pakraman Tenganan Karangasem, and Pakraman Banyuning Buleleng)	Flowers	Traditional ceremony (Panca Yadnya)	Surata et al. (2015)
Lenteng District, Guluk-Guluk District, and Bluto District in Sumenep Regency.	Flowers	Eye disease medicine	Destryana and Ismawati (2019)
The Hindu Community of Jagaraga Village, West Lombok Regency, West Nusa Tenggara	Flowers	Eye disease medicine	Eni et al. (2019)
Togian Tribe, Tojo Una-Una, Central Sulawesi	Flowers and roots	Boils and fever medicine	Tabeo et al. (2019)
The Adjacent Area of Lake Buyan-Tamblingan, Bali	Flowers	Eye disease medicine	Oktavia et al. (2019)
Mincidan Village, Klungkung, Bali	Flowers	Eye disease medicine, ‘nunas’ tirta ceremony, and ornamental	Defiani and Kriswiyanti (2019)
Madura Sumenep Communities	Flowers	Clean and clear baby’s eyes	Ismawati and Destryana (2019)
The ethnobotany from some areas in Indonesia used the flowers for many purposes. Flower of *C. ternatea* is utilized as the medicine for eye diseases by the Sumenep-Madura community (Ismawati and Destryana 2019), the adjacent area of Lake Buyan-Tamblingan, Bali (Oktavia et al. 2019), the community around the area model of KPH Kapuas Upstream (Haryanti et al. 2015), as well as the Hindu Community of Jagara Village, West Lombok Regency, West Nusa Tenggara (Eni et al. 2019). Ethnobotany knowledge of *C. ternatea* for eyes medicine has been proven through research. The phenol 0.026% from the extracts of *C. ternatea* flower revealed inhibition of 0.87mm as an antibacterial of *Staphylococcus aureus*, a bacterium that causes eye diseases (Hutajulu et al. 2008). Through ultrafiltration (UF), the extracts of *C. ternatea* in water extract sterilization can be used to eye drops ingredients (Anthika et al., 2015). Furthermore, the extracts of *C. ternatea* can dissolve Calcium (Ca) and Sodium (Na) compiler cataract model in the concentration of 2.5% (Kusmini et al. 2017).

Togian tribal communities in Malenge Island, Talatako District, Tojo Una-Un, Central Sulawesi used *C. ternatea* for boils medicine (Tabeo et al. 2019). Boils are also caused by *S. aureus*. The antibiotic of *S. aureus* can be produced from ultrasound-assisted aqueous leaf and petal extract, ethanolic leaf, and callus extract of *C. ternatea* (Shahid et al. 2009; Anthika et al. 2015). In addition, *C. ternatea* also has an antipyretic activity that can reduce fever (Devi et al., 2003).

The various ceremonies which belong to the *Panca Yadnya* ceremony need part of plants for the ceremony, and *C. ternatea* is one of them (Surata et al. 2015; Defiani and Krisiwiyanti 2019). Hindu Bali’s people use leaves, flowers, and fruits as a medium of offering (*sesajan*) and praying (*persembahyangan*) (Sardiana and Dinata 2010). Furthermore, they classified into several uses such as *canang* (offering to God), *kewangen* (scenting God’s name), and *bhasma* (the symbol of Siva’s purity) (Surata et al., 2015).

C. ternatea is also used as an ornamental plant. Since *C. ternatea* has an attractive color for making aesthetic scenery to home and garden and ornamental crop adding value (Karel et al. 2018). For example, Mincidan Village in Bali uses plant floral diversity to promote ecotourism (Defiani and Krisiwiyanti 2019).

BIOPROSPECTING

Bioprospecting includes cultural information, biodiversity information, and processing and handling technology. Bioprospecting is the effort to search genes and natural compounds of biodiversity for product development (Push pangadan et al. 2018). The economic benefits from *C. ternatea* include food and beverage, forage, phytochemicals, biopesticides, bioinsecticides, colorants, and medicines. In this part, we reviewed the evidence, based on scientific and research, the difference with the ethno botany that only focused on Indonesia’s studies. In bioprospecting, we explored the current research progress of *C. ternatea* from Indonesia. Thus, we can elaborate on evidence-based scientific and ethnobotany from Indonesia.

Phytochemicals

Leaf of *C. ternatea* contains compounds such as 3-rutinoside, beta-sitosterol, 3 monoglucoside, 3-o-rhamnosylglucoside, 3-neohesperidoside, kaempferol-3-o-rhamnosyl essential oils (Tiwari and Gupta 1959; Morita et al. 1977; Mukherjee et al. 2008; Manjula et al. 2013; Thakur et al. 2018). The seed contains oleic, linoleic, stearic, beta-sitosterol, polypeptide, linolenic acids, a water-soluble mucilage, delphinidin 3, 3’, 5’-tri-o-glucoside, palmitic, finotin, oligosaccharides, *p*-hydroxycinnamic acid (4), anthoxanthin glucoside, flavonol-3-glycoside, ethyl a-d-galactopyranoside, adenosine, 3,5,7,4-tetrahydroxylflavone, 3-rhamnoglucoside, hexacosanol-sitosterol (5),-sitosterol (Grindley et al. 1954; Kulshrestha and Khare 1967; Kulshrestha and Khare 1968; Joshi et al. 1981; Revilleza et al. 1990; Macedo and Xavier-Filho 1992; Husain and Devi 1998; Kelemu et al. 2004). Root has been reported containing alanine, amino butyric acid, aspartic acid, arginine, flavonoids, glycine, histidine, leucine, methyleneglutamic acid, ornithine, saponins, phenols, taraxerone, taraxerol, valine (Banerjee and Chakravarti 1964; Rajagopalan 1964; Kumar et al. 2008; Swain et al. 2012; Manjula et al. 2013). The flower has tertiarnins, flavonoids, alkaloids, tannins, resins. (Kazuma et al. 2003 a,b; Kazuma et al. 2004; Manjula et al. 2013).

Food and beverage use

The flower of *C. ternatea* is used as a natural coloring for food and beverage. The bright blue color is the advantage characteristic of colors. The color is produced from anthocyanin in tertiarnins (Srivastava and Pande 1977; Zussiva et al. 2012). It is the pigment of the flavonoid group, which is soluble in water (Zussiva et al., 2012). For a natural dye of food and beverage, *C. ternatea* showed the best result in the anthocyanin with the treatment of the 10% addition maltodextrin concentration (Hariadi et al. 2018). The compound’s content is stable and could withstand high temperatures (Azima et al., 2017; Angriani 2019). Coloring extracts flower was used to an ice lolly with the same quality with blue diamonds of Cl 42090 (Hartono and Angelia 2013). It can also be coloring for several traditional foods such as putu, onde-onde, bandang, barangko, getuk lindri, cendol, candy, sticky rice tapai, and others (Saati et al. 2018; Angriani 2019; Febrianti 2019; Permuna 2019; Palmibong and Pariama 2020; Shofi and Putri 2020). The flower extracts with 0.25% and 1% concentration were more stable when used in the paracetamol syrup preparations (Pratimasari and Lindawati 2018). Furthermore, *C. ternatea* was used for coloring goat milk yogurt, and it showed effects on the levels of pressure (color) (Devi et al. 2019).

Blue tea from *C. ternatea* began to be known in Indonesia. It possesses antioxidant properties for healthy beverages because it reduces oxidative stress (Srichalkul 2018; Lakshan et al. 2019). Moreover, drinking *C. ternatea* can reduce postprandial glucose and insulin concentration.
concomitant (Chusak et al. 2018a). Processing of C. ternatea is conducted through drying, either using sunlight or an oven. Drying is one of the most critical steps in processing C. ternatea tea. The aims are to prolong shelf life, prevent microorganism growth, reduce weight to press storage and transport costs, and minimize enzymatic degradation (Fernandes et al. 2018). Drying is conducted at 08.00-12.00; then, it is continued on the next day. By doing so, the beneficial compounds of C. ternatea are not damaged by sunlight (Mulasangari 2019). C. ternatea tea is made with five flower petals (1.0 g) dissolved in 250 ml boiling water. Consuming C. ternatea tea routinely is good for the thin phlegm in asthmatics (Kusuma 2019) and can improve human health due to its non-coffeenated contents (Panda 2018).

Starch digestibility of cooked rice with a rice cooker was reduced by the incorporation of 1.25% and 2.5% (w/w) of C. ternatea flower extracted and 2.5% (w/w) with a microwave oven (Chusak et al. 2019). Flower extracts of C. ternatea caused a reduction in hydrolysis index, predicted glycemic index of flour, and glucose release at 0.5%, 1%, and 2% (w/w). In comparison, 5%, 10%, and 20% (w/w) decreased the rate of starch digestion of the wheat bread. The pancreatic α-amylase activity can be inhibited by 1% and 2% (w/w) by using a substrate of all flours (Chusak et al. 2018b). In addition, flower extracts of C. ternatea inhibited the flower damage and disease of Pseudomonas aeruginosa (the extracted ethanol flower concentration of 10% to 100%) and Bacillus cereus (the extracted ethanol flower concentration of 30% to 100%) (Riyanto et al. 2019). These bacteria have been reported as the food poisoning cases in several foods such as rice and noodles in Indonesia’s market, particularly in food streets (Ruriani and Nurhayati 2010; Amanati 2014; Ekantini et al. 2017). This makes C. ternatea use a bioactive potential for food preservation (Kamila et al., 2009).

Agricultural applications

Anthemhinitic

C. ternatea has Anthemhinitic activity reported killing Meloidogyne incognita (Hasan and Jain 1985; Kumari and Devi 2013). The high effectiveness to inhibition of hatching of the egg can be used to minimize the damage of M. incognita to fruits and leaves of mulberry. M. incognita has been reported decreasing in pepper production in Bangkian and West Kalimantan (Sukanya 2001). In soybean, M. incognita can make lost yield up to 30%-90% (Suryanti et al., 2017). M. incognita is also a critical plant disease on kenaf (Hibiscus cannabinus) production in the nursery and tomato development area (Budi et al. 2006; Pradana et al. 2016; Irmawati et al. 2019).

Antibacterial and antifungal

The purification of C. ternatea seed produces a small protein called Finotin (Kelemu et al. 2004). Finotin has been reported to significantly kill the bacteria of Xanthomonas axonopodis, which attacks beans. X. axonopodis is a disease that causes severe damage in soybean crops and economic loss in citrus crops in Indonesia (Das 2003; Khaeruni et al. 2007; Khaeruni et al. 2008).

As a fungicide, a protein that was designed as a Ct protein from the isolation of C. ternatea seed caused the death of some fungus, such as Alternaria sp., Aspergillus flavus, Cladosporium sp., Curvularia sp., Rhizopus sp., and Sclerotium sp. (Ajesh and Sreejith 2014). Finotin from C. ternatea seed could inhibit Bipolaris oryzae, Pyricularia grisea from rice, Colletotrichum gloeosporioides, and Lasiodiplodia theobromae from Stylosanthes spp; Colletotrichum lindemuthianum, Fusarium solani from common bean, and Rhizoctonia solani from Brachiaria spp (Kelemu et al. 2004). Furthermore, Fusarium oxysporum that causes molder disease on Shallot from Indonesia can be killed by the crude aqueous leaf extracts of 50% (Das and Chatterjee 2014) and flower extracts at 5% concentration (Suganda and Adhi 2017). Research by Suganda and Adhi (2017) is preliminary for plant antifungals since the focus is mainly on human pathogens rather than plant pathogens.

Insectidal

Cyclotide sequences have insectidal activity against Helicoverpa armigera, the cotton budworm (Pothen et al., 2011). H. amigera makes cotton fruit undeveloped and fallen because of browning buds, flowers, and bulbs, especially in central areas of cotton production in Indonesia such as Central Java, East Java, South Sulawesi, Southeast Sulawesi, East Nusa Tenggara, West Nusa Tenggara, and Bali (Diyasti et al. 2016). 1-2% (vol/vol) of the oil-based formulation of the C. ternatea mixture was used for integrated pest management (IPM) to control Helicoverpa spp in Australian cotton. Furthermore, 1% w/w finotin application to Zabrotos subfasciatus and 5% w/w to Acanthoscelides obscurs resulted in a maximum level of 100% larva mortality (Mensah et al. 2015).

Forage for livestock

To obtain high quality and nutrition, C. ternatea is harvested at 45 days (Mahala et al., 2012). C. ternatea has high productivity up to 17-25 tons/ha (Abdelhamid and Gabr 1993). A high carotenoid content positively impacts bovine livestock fertility and egg yolk color (Barro and Ribeiro 1983). C. ternatea also has a better potential nutritive value than alfalfa and clover (Abreu et al., 2014).

Clitioria ternatea escalates diets and sound quality for ruminants due to its nutritional contents (Gomez and Kalamani 2003; Avalos et al. 2004; Juma et al. 2006; Shammad 2019). As a forage, C. ternate increases the weight of beef cattle and cows, 0.7 and 0.36 kg/day, respectively (Sutedi 2013). In addition, the weight loss of cows during shipment from Timor to Java can be minimized up to 5-7% when generally it is 12-15% (Nunik 2009).

Barros et al. (1991) discovered a better dietary N of goats given C. ternatea as forage. Guinea Grass-Clitioria mixed hay can be a potential forage to sheep because it increases digestible dry matter intake up to 61% (Sandoval et al. 2009). Besides that, the use of C. ternatea to sheep also provides a positive effect on wool growth and live weight gain (Schlink 1998). The two cuts of C. ternatea
have better acid and neutral detergent fiber, acid detergent lignin cellulose, crude protein and fiber, hemicellulose than berseem hay (Abdelhamid and Gabr 1993). A decrease of 10% of C. ternatea for boilers diet showed better growth (Marin et al., 2003). A comparison between C. ternatea and Brachiaria humidicola showed that C. ternatea has higher protein content and metabolizes energy, but the fiber content was lower than B. Humidicola. Nevertheless, 15% C. ternatea substitution decreased growth and consumption in chicken (Monforte et al. 2002).

Muir and Massaete (1996) found that the crude protein content of dietary components used during experiments in rabbits was 16 %. It is because C. ternatea has protein up to 18-25%, which complies with the nutritional needs of rabbits (Sutedi 2013). Nevertheless, Elamin et al. (2011) suggested that sweet potato is better used for rabbits than C. ternatea based on performance and blood constituents.

Soil fertility

The high nodule maintenance and the non-structural carbohydrate mobilization make C. ternatea adapt quickly to stress after the shoot removal (De Souza et al. 1996). C. ternatea increases Nitrogen, Phosphor, Potassium, and Magnesium and impacts soil acidification and nutrient solubilization (Njunique et al. 2004; Aldereite-Chavez et al. 2011). Environmental conditions affect nodulation growth. The optimum nodulation growth is on moderate temperatures, such as at 06.00 (27-32°C), 14.00 (36-42°C) and 18.00 (27-30°C) and with the light intensity in summer (11.4-17.1 Wm-2) and winter (11.4 Wm-2), as well as the optimum duration of 11-14 hours (Habish and Mahdi 1979). On the other hand, an optimum soil pH was 6.3 in the four strains of C. ternatea (Zoroug and Munns 1980a). Phosphor is an essential nutrient for nodulation growth (Zoroug and Munns 1980b). Unfortunately, we currently do not find the C. ternatea to improve soil fertility in Indonesia. This can be an opportunity to discover the utilization of C. ternatea to improve soil fertility in Indonesia. It is because C. ternatea grows horizontally and makes tightly covered. This growth characteristic brings several benefits, such as preventing erosion, maintaining soil moisture, and improving soil fertility from leaves (Suarna 2005).

Medicinal properties

Antimicrobial

Clitiotes T1-T2 in flower, seed, and root of C. ternatea can be used as an antimicrobial against *Pseudomonas aeruginosa*, *Klebsiella pneumonia*, and *Escherichia coli* (Nguyen et al. 2011). Fourth, novel cyclotide sequences have been identified, and noted that C. ternatea was one of the prosperous cyclotide-producing medicinal plants (Nguyen et al. 2016). Ethanolic and aqueous leaf and callus extracts can inhibit human diseases bacteria, such as *Bacillus cereus*, *B. subtilis*, *Enterococcus faecalis*, *Staphylococcus aureus*, *S. epidermidis*, *Streptococcus pyogenes*, and *S. viridans* (Shahid et al. 2009); *Micrococcus luteus* (Ajesh and Sreejith 2014); *Salmonella typhi* and *Proteus Vulgaris* (Anand et al. 2011). Moreover, as an antifungal, 14.3 kDa seed protein inhibited *Aspergillus fumigatus*, *A. niger*, *Candida albicans*, *C. parapsilosis*, *Cryptococcus neoformans*, *C. albids*, and *C. laurentii* (Ajesh and Sreejith 2014). Leaf extracts successfully inhibited *Aspergillus niger* (Kamila et al. 2009). In ethnombotany, communities mostly use C. ternatea for diseases caused by microbes, such as eye disease and boils caused by *S. aureus*. There are numerous benefits from C. ternatea as an antimicrobial that Indonesian communities have not explored.

Antidiabetic

In Indonesia, it has 10,681,400 cases of diabetes in adults (International Diabetes Federation 2020). Currently, C. ternatea leaf extracts have shown potential for an antidiabetic medicine (Daisy and Rajathi 2009; Suganya et al. 2014; Talpa et al. 2014; Chusak et al. 2018b; Kavitha 2018). Leaf extracts of C. ternatea decrease blood glucose, HbA1c, other biochemical parameters and increase serum insulin level (Kavitha 2018). After five hours of oral administration, the mix of Punica granatum and the dried flower powder resulted in an antihyperglycemic effect. This is affected by flavonoids and alkaloids (Borikar et al., 2018). The root extract in experimental rat models, C. ternatea, prevented pancreatic tissue in juvenile diabetic and the possible complications related to brain hippocampal area CA3 (Mathida et al. 2012).

Anti-inflammatory activity, antipyretic activity, and analgesic

Leaf and flower extracts of C. ternatea have been identified as having an inflammatory activity (Devi et al., 2003; Bathia et al., 2013; Suganya et al., 2014; Singh et al., 2018). Petroleum ether extract and ethanol resulted in the analgesic activity that ethanol-treated extract showed up to 2 hours of long-lasting effect (Bathia et al. 2013). Flavonoids were important for anti-inflammatory, analgesic, and antipyretic activities in C. ternatea (Devi et al., 2003). The methanol extract of C. ternatea root at 200, 300, and 400 mg/kg body weight doses. The yeast-provoked raised the temperature dose-dependent and decreased the temperature body to normal (Parimaladevi et al. 2004). Drugs (narcotics or non-narcotics) treat inflammatory and pain conditions, which are very costly and have adverse effects. Natural drugs, especially from C. ternatea, can be an option for providing cheaper and feasible drugs.

Antioxidant activity

The root extracts of C. ternatea have antioxidant activity based on some research both in white flowers and blue flowers (Patil and Patil 2011; Jadhav et al. 2013). Flower extracts of C. ternatea have been reported to have antioxidant activity (Kamkaen and Wilkinson 2009; Jayachitra and Padma 2012; Jadhav et al. 2013; Zingare et al. 2013; Azima et al. 2014; Iamsaard et al. 2014; Phrueksanan et al. 2014; Azima et al. 2017; Havananda and Luengwilai 2019; Lakshan et al. 2019). Biological synthesized MgO-NPs of flower extracts of C. ternatea showed high antioxidant activity (Sushma et al. 2016). The white flower produces higher enzyme antioxidants than the blue flower (Jayachitra and Padma 2012). Antioxidant
activity in *C. ternatea* prevents lipid peroxidation in erythrocytes, protein oxidation, and free radical-induced hemolysis (Phrueksanan et al., 2014). *C. ternatea* has enzyme and non-enzyme antioxidants rather than the other plants, such as *Eclipta prostrata* (Rao et al. 2009), *Syzygium cumini*, and *Ardisia colorata* (Azima et al. 2017). In addition, Antioxidant activity in *C. ternatea* is potent to be cosmetic properties (Kamlaen and Wilkinson 2009). Currently, the need for natural anti-aging is rising since synthetic antioxidants bring side effects such as allergies, asthma, inflammation, headache, loss of consciousness, and disorders of the eyes and stomach (Sharmila et al., 2016). *C. ternatea* has the potential to be used as a natural antioxidant.

Nootropic activity

Nootropic activity, anxiolytic, anticonvulsant, antistress activity, and antidepressants have been found in the extracts of *C. ternatea* (Jain et al., 2003; Talpate et al. 2014). Root extracts of *C. ternatea* increase acetylcholine in the hippocampus to enhance memory and learning (Rai et al. 2001; Rai et al. 2002). An increase of rat brain acetylcholine and acetycholinesterase activity was produced from the alcoholic extracts root of *C. ternatea* at 300 mg/kg doses (Taranalli and Cheermankuzy 2000). In addition, *C. ternatea* also raises episodic memory and cellularity and declines autophagy. However, several studies have reported only in experimental animals (rats). This progress is proved that *C. ternatea* has the potential for improvement in human cognitive performance.

AN RELATION BETWEEN ETHNOBOTANY AND BIOPROSPECTING

There are three critical stimuli to interfere with the community’s attitudes, i.e. (i) natural stimulus, (ii) helpful stimulus, and (iii) religious stimulus (Zuhud et al. 2007). The stimuli are a powerful driver of the community’s attitude and behavior for realizing conservation actions. Firstly, the natural stimulus is a sustainable resource that needs to be based on biocology characters. This plant is a wildflower. Even though people also cultivate in the home garden (Eni et al. 2019). Farmers can increase their income and conserve agro-biodiversity through their home gardens (Mohri et al., 2013; Sutoro 2017).

Secondly, the valuable stimulus is the values of human-being needs for economic, medicine, biological/ecological, and the other benefits. It can be identified by biological/ecological utilization, medicinal uses, economic sectors, and social culture aspects (Deryanti et al., 2007; Zakiyyah et al., 2016). Exploration knowledge is an initial step to optimize the potential of *C. ternatea*. The study of ethnobotany can be used to analyze the bioprospecting of *C. ternatea*. Then, further research can continue to produce commercial products to increase income for the community. For example, the information from the ethnobotany of *C. ternatea* in Indonesia describes it as a medicinal plant, some processed products such as herbal tea (dried *C. ternatea*), coloring powder, and eye drops. Species are endangered or rare because people use natural resources to utilize knowledge or exploit. So, when the valuable stimulus can be optimized, it will empower the community to be part of conservation action. Optimizing bioprospecting can generate income and support the conservation project (Skirycz et al., 2016).

Thirdly, a religious stimulus is noble values, especially the rewards from God, spiritual values, universal religious values, merit, happiness, cultural/traditional wisdom, inner satisfaction, and many more. For instance, a local concept of traditional medicine called “Usada Taru Pramana” in Bali. In the idea, *C. ternatea* is regarded as a medicinal plant for the eye (Cahyaningsih et al. 2019). Bali communities admit Usada or Auskhadi in Sanskrit as guidance for plant medicine (Sutomo and Iryadi 2019). It is related to the Hindu-Bali’s belief, *Tri Hita Karana*. *Tri Hita Karana* is the philosophy of harmony relation between human beings and God (*parhyangan*), harmony with other people (*pawongan*), and connection with nature (*palemahan*) (Wirawan and Pendit 2017) (Figure 2). *Parhyangan* is a value/mindset element that can be described in the existence of the Hindu temple. According to Suarmini (2011), *Parhyangan* associated with social subsystems is realized by conducting ceremonies on certain days. In these ceremonies, *C. ternatea* is usually used as one of the elements. *Pawongan* is associated with a social subsystem, where the community has to maintain harmony and togetherness. *Palemahan* is related to the mindset/value realized in preserving, such as a village, village forest, and nature. Rather than exploiting nature, *Palemahan* intends to think that nature is an equitable partner.

Based on the three critical stimuli to the effect of community’s attitudes, the relation between ethnobotany, bioprospecting, society, and conservation was shown in Figure 3. We modified the circle of regard by adding ethnobotany as a part of values. Since Indonesia is rich in ethnobotany knowledge that can be a source of natural products. In exploration (ethnobotany), species are still known locally and limited. Thus, comprehensive research by government research institutes or private industries is needed for scientifically proven. The result of the study is products that can be promoted to more comprehensive customers. The products can be used as commercial products. Finally, the study should provide an economic impact on the communities and motivate communities to conserve them.

FUTURE OUTLOOK OF MARKET OVERVIEW

According to the Indonesian Agriculture Ministry Decree Number 511/Kpts/PD.310/9/2020, *C. ternatea* on kinds of plant commodities fostered by Directorate General of Plantation, Directorate General of Food Crops, and the Directorate General of Horticulture (Indonesian Agriculture Ministry 2020) However, in the market overview, the production of *C. ternatea* products are still not optimal. However, herbal medicine is rising gradually with the “back to nature” trend worldwide (Fernandes et
In 2019, the traditional medicine industrial sector grew above 6% or above the national economic growth. Industries absorbed herbal medicine of 63% total market, then exports by 14%, and for household consumption 23% in 2007 (Indonesian Agriculture Ministry 2007). In Indonesia, most herbal medicine consumers are economically categorized as the low-middle class (Andriati and Wahjudi 2016).

A qualitative study with descriptive analysis was used to survey the three most significant marketplaces in Indonesia, e.g., Tokopedia (www.tokopedia.com), Bukalapak (www.bukalapak.com), and Shopee (www.shopee.co.id). It aimed to know the diversity of C. ternatea in the Indonesian marketplace. We observed the products sold from 100 procedures in each marketplace (Figure 4). Result explicate that C. ternatea was mostly sold as a dried flower tea (Tokopedia 65%, Bukalapak of 53%, and Shopee of 74%) and a commercial seed/seedling (Tokopedia of 22%, Bukalapak of 41%, and Shopee of 22%). This result is identical with ethnobotany information which said that the flower of C. ternatea is used the most. Less than 10% of C. ternatea was used for beverages. Also, there was a product of eye drops (1%). The same percentage of 1% was used for fresh leaf, flower, and coloring powder. Thus, according to this data, the utilization of C. ternatea has still not developed optimally.

The current development of technology eliminates the gap between producers and consumers. Through e-commerce, for instance, it is easier for the farmers to enlarge their market access, increase the sale, and reduce transaction costs (Chang and Just 2009; Mishra et al. 2009; Zapata et al. 2016; Fecke et al. 2018). In January 2020, the total of internet users in Indonesia reached +175.4 M, and this number increased by +17% between 2019 and 2020. That makes Indonesia the top five most significant internet users, with people spending 7 hours 59 minutes longer than globally (Kemp 2020). This condition leads to a shift of consumers’ behavior from conventional to digital in their daily activities.

Most producers are small-medium enterprises that use home gardens or limited land and partnership farmers with social enterprises to sell and process their products—for example, empowering farmers through the partnership that Agradaya dan Javara has done. Javara claims to have a partnership with more than 5000 farmers throughout Indonesia and is envisioning “to preserve Indonesia’s biodiversity and brings community-based, organic products to broader markets” (Javara 2020). On the other hand, Agradaya has a partnership with more than 300 farmers in Yogyakarta and East Java and brings a mission of “collaboration for sustainable agriculture” (Agradaya 2019).

C. ternatea is also grown for urban farming since it can live in various habitat types. For instance, Konekroot is rooftop farming that has hydroponic, aquaponics, and organic agriculture (Konekroot 2019). They sell processing C. ternatea for dried tea or seed/seedling. They also use C. ternatea for garnish of food. Besides that, Kebun Kumara, a social enterprise located in Jakarta, grows C. ternatea in its urban space for agriculture. Like Konekroot, Kebun Kumara also sells seed/seedling of C. ternatea (Kebun Kumara 2019).

In conclusion, the ethnobotany of C. ternatea can be knowledge resources for bioprospecting in several utilizations, such as food and beverage, agriculture, and medicine. Through innovation, technology, and research, the potential of C. ternatea can be explored to provide high-quality products under tremendous opportunities. We hope that the study will impact communities’ economics and escalate their motivation to conserve C. ternatea.
References

Abdelhamid AM, Gabe AA. 1993. The evaluation of new fodder sources (Clitoria and Pilipepis) under Egyptian conditions. Arch Anim Nutr 44: 85-93. DOI: 10.1080/17450939309386060.

Abreu MLC, Vieira RAM, Rocha NS, Araujo RP, Gloria LS, Fernandes AM, de Lacerda PD, Junior AG. 2014. Clitoria ternatea L. as a potential high quality forage legume. Asian Australias J Anim Sci 27 (2): 169-178. DOI: 10.5713/ajas.2013.13343.

Agrawal U. 2019. About Agrawal. Retrieved from https://www.agrawalyid.com

Ajeish K, Sreejith K. 2014. A novel antifungal protein with lysozyme-like activity from seeds of Clitoria ternatea. J Appl Biochem Biotechnol 173: 682-693. DOI: 10.1007/s12100-014-0880-8.

Al-Smaie AE. 2016. Pharmacological importance of Clitoria ternatea-A review. IOSR J Pharm 6 (3): 68-83.

Alderete-Chevez A, Guerra-Santos JJ, Cruz-Lander NDL, Brito R, Guervera E, Gelbert R, Nunez E. 1993. Influence of Clitoria ternatea flower in relation to fertility in tropical soils. J Appl Anim Res 11 (2): 1044-1048. DOI: 10.9239/jaras.2011.1044.1048.

Amanat L. 2014. Staphylococcus Aureus and Bacillus Cereus bacteria testing on instant noodle products at the market. Ber Litbang Industri 3 (2): 73-80.

Anand SP, Doshi A, Nandagopalan V. 2011. Antibacterial studies on leaves of Clitoria ternatea Linn.-a high potential medicinal plant. Int J Appl Bio Pharm Technol 2 (3): 453-456.

Andrian, Wahjudi RMT. 2016. Society’s acceptance level of herb as alternative to modern medicine for lower, middle, and upper-class groups. Masyarakat, Kebud dan Polit Konserv 19 (1): 79-90.

Azima SAM, Norham A, Manshoo N. 2017. Phenolics, antioxidant, and color properties of aqueous pigmented plant extracts: Ardisia colorata var. elliptica, Clitoria ternatea, Garcinia mangostana, and Syzygium cumini. J Funct Foods 38: 232-241. DOI: 10.1016/j.jff.2017.09.018.

Azima SAM, Norham A, Manshoo N. 2014. Anthocyanin content in relation to the antioxidant activity and color properties of Garcinia mangostana peel, Syzygium cumini, and Clitoria ternatea extracts. Int Food Res J 21 (6): 2369-2375.

Banerjee SK, Chakravarti RN. 1964. Taxaroxene from Clitoria ternatea Linn. Bull Calcutta Sch Trop Med 12: 23.

Barro C, Ribeiro A. 1985. The study of Clitoria ternatea L. hay as a forage alternative in tropical countries. Evolution of the chemical composition at four different growth stages. J Sci Food Agric 34: 780-782. DOI: 10.1002/jsfa.2740340803.

Barro NS, Freire LCL, Lopes EA, Johnson WL. 1991. Comparative study of digestibility of forage legume with sheep and goats. 1: in vivo digestibility of cunha hay. Pesq Agropec Bras 26: 1209-1213.

Bathia M, Chahal J, Gupta S. 2013. Analgesic and anti-inflammatory activities of Clitoria ternatea Linn. leaves extract on rat model. Int J Pharm Sci Res 3 (2): 600-660.

Beattie AJ, Barthlott W, Elisabetfsky E, Farrell R, Kheng CT, Rosenthal JP, Simpson D, Leakey RRB, Wolfson M, Laird S. 2005. New products and industries from biodiversity. Ecosystems and Human Well-Being. In: Hassan R, Scholles R, Ash N (eds). Millennium Ecosystem Assessment. Island Pr., Washington DC.

Bharti S, Kamari D. 2017. Drought stress response in Clitoria ternatea L. Intl J Innovative & Futuristic Res 4 (10): 7932-7940.

Borikar SP, Kullewarg NA, Mahaputra DK, Dumore NG. 2018. Dried flower powder combination of Clitoria ternatea and Panica granatum demonstrated analogous anti-hyperglycemic potential as compared to standard drug metformin: In vivo study in Sprague Dawley rats. J Appl Pharm Sci 8 (11): 75-79. DOI: 10.7324/JAPS.2018.81111.

Budi US, Basuki N, Sudjindro. 2006. The resistance character inheritance of root-nut nematicide (Meloidogyne incognita) in kenaf (Hibiscus cannabinus L.). Zanat 17 (1): 60-65. DOI: 10.24198/zanat.v17i1.6755.

Bukalapak. 2020. Telag. Retrieved from www.bukalapak.com

Cayahanishingh E, Shanti PEK, Santoso P. 2019. Phytochemical screening and antioxidant activity of telang flower extract (Clitoria ternatea L.) using uv-vis spectrophotometry. J Ilm Medicam 5 (1): 51-57. DOI: 10.17633/medicam.v5i1.851.

Chang HH, Just DR. 2009. Internet access and farm household income-empirical evidence using a semi-parametric assessment in Taiwan. J Agric Econ 60 (2): 348-366. DOI: 10.1111/j.1477-9552.2008.00189.x.

Chen LH, Chen IC, Chen PY, Huang PH. 2018. Application of butterfly pea flower extract in mask development. Sci Pharm 86 (53): 1-9. DOI: 10.3390/scipharm86004053.

Chusak C, Henry C, Chantarasinlapin P, Techasukthavorn V, Adsakwattana S. 2018b. Influence of Clitoria ternatea flower extract on the in vitro enzymatic digestibility of starch and its application in bread. Foods 7 (7): 102. DOI: 10.3390/foods7070102.

Chusak C, Thilavech T, Henry CJ, Adsakwattana S. 2018a. Acute effect of Clitoria ternatea flower beverage on glycemic response and antioxidant capacity in healthy subjects: a randomized crossover trial. BMC Compl Altern Med 18 (1): 1-11. DOI: 10.1186/s12906-017-0757-7.

Chusak C, Ying JAY, Zhen JL, Pasakamon P, Henry CJ, Ngamukote S, Adsakwattana S. 2019. Impact of Clitoria ternatea (butterfly pea) flower on in vitro starch digestibility, texture, and sensory attributes of cooked rice using domestic cooking methods. Food Chem 295: 664-652. DOI: 10.1016/j.foodchem.2019.05.157.

Daisy P, Rajathi M. 2009. Hypoglycemic Effects of Clitoria ternatea Linn. (Fabaceae) in Allotan-induced Diabetes in Rats. Trop J Pharm Res 8 (5): 393-398. DOI: 10.4314/tjpr.v8i5.48082.

Das AK. 2003. Citrus canker-A review. J Appl Hort 5 (1): 52-60. DOI: 10.1111/j.1477-9552.2003.0015.15.

Das N, Chatterjee P. 2014. Antifungal effect of Clitoria ternatea leaf extract on seeds of Psam sativum in relation to the activities of some enzymes. Intl J Res Ayurveda Pharma 5: 99-101. DOI: 10.7897/2277-4343.05120.

De Souza ES, Burity HA, Oliveira J, Figueiredo MVB, de Lyra MDCCP. 1996. N2-fixation and growth of the calopogonum (Calopogonum mucronoides dev.) and of the clitoria (Clitoria ternatea L.) after successive cuts. Rev Bras Zootec 25 (6): 1036-1048.

Defiani MR, Kriswiyanti E. 2019. Floral diversity in Mincidan Village, Klungkung, Bali to support ecotourism. Simbiosis 7 (1): 14-21. DOI: 10.24843/SIMBIOSIS.2019.v07.i01.ph1.

Deryant S, Zuhud EAM, Soekmadi R. 2007. Conservation of nutmeg (Myristica fragrans) in Jakarta region. Asia Pac J Sch 852: 1993.05120.

Destryana RA, Ismawati. 2019. Ethnobotany and the use of wild plants as traditional medicine by the Madura Communities (study case in
Lenteng, Gulak-guluk, and Bluto Districts). J Food Technol Agroindustry 1 (2): 1-8.
Devi BP, Boonmathan R, Mandal SC. 2003. Anti-inflammatory, analgesic, and antipyretic properties of Clitoria ternatea root. Curr Sci 85(1): 126-33. DOI: 10.1155/S0011312103000517.
Devi, AP. Setyawattanu T, Sumarmon J, 2019. The Effect of Butterfly Pea (Clitoria ternatea) Addition on Syneresis and Levels of Pleasure of Goat Milk Yoghurt. ANGON; J Anim Sci Technol 1 (2): 145-151.
Dhananjay MR, Kariyappa CK, Kumar R, Montgul S, Sharma S. 2017. Determination of phytochemical and antioxidant activities in edible flowers. Int J Hortic 7 (4): 26-32. DOI: 10.5376/ij.hortij.2017.07.0004.
Diyasti F, Santoso T, Kusumah YM. 2016. Morphology, biology, and molecular characteristics of three isolates of Helicoverpa armigera Malm (Lepidoptera: Noctuidae). Indones J Entomol 13 (3): 117-126. DOI: 10.5909/jie.13.11.17.
Ekanti PRRI, Mega KT, Prasojo P. 2017. Identification of phenol and delphinidin in the petals of (Clitoria ternatea) L. and its effect to Syphophillus aureus as eyes bacterial disease. J Agro-Based Ind 25 (2): 35-44.
Ismadisii M, Burawat J, Asit S, Sukhorun W, Srisanidkulchai B, Ubabunid N, Wattanathom J, Hipkaew W, Fongmoo D, Kondo H. 2014. Antioxidant activity and protective effect of Clitoria ternatea flower extract on testicular damage induced by ketoconazole in rats. J Zhejiang Univ Sci B 15 (6): 545-555. DOI: 10.1631/jzus.B1300299.
Indonesian Agriculture Ministry. 2007. Prospect and Directions of Agribusiness Development for Medicinal Plant. Indonesian Agency for Agricultural Research and Development, Bogor.
Indonesian Agriculture Ministry. 2020. Plant commodities fostered by the Directorate General of Plantation, Directorate General of Food Crops, and the Directorate General of Horticulture. Indonesian Agriculture Ministry, Jakarta.
International Diabetes Federation. 2020. IDF Western Pacific members. Retrieved from https://www.idf.org/our-network/regions-members/western-pacific/members/104-indonesia.html.
Irmawati L, Robana RR, Nuraida N. 2019. Resistance of seven tomato varieties to root-knot nematodes (Meloidogyne spp.) Agrotech. Res. J. Trop. Sci. 7 (2): 61-68. DOI: 10.55123/ijh.2019.007.03.5.
Jeon B, Im E.J. 2019. Utilization of anthocyanins from several plants as a natural color in the making of getuk lindri. Cereal Bacteria 3 (1): 145-156. DOI: 10.20546/ijcmas.2018.709.079.
Jana D. 2019. Role of aqueous flower extract in vitro. J Sci Technol 6 (1): 121-128. DOI: 10.21776/ib.biotech.2019.007.03.5.
Kazuma K, Noda N, Suzuki M. 2003a. Ruta chalapensis: a review. Food Rev Int 19 (3): 231-236. DOI: 10.1080/87559129.2019.1639727.
Khaeruni A, Tjahjono AH, Dahari SN. 2019. Determination of phytochemical and antioxidant activities in edible flowers of (Clitoria ternatea) L. and of (Ipomoea batatas) L. germplasm. Genet Resour Crop Evol 66 (2): 645-658. DOI: 10.1007/s10722-018-00738-6.
Kuban Kumara. 2019. About us. Retrieved from https://www.kebunkumara.id/
Koltz S, Cardona C, Segura G. 2004. Antimicrobial and insecticidal protein isolated from seed of Clitoria ternatea, butterfly pea flower legume. Plant Physiol Biochem 42: 867-873. DOI: 10.1016/j.plaphy.2004.10.013.
Kemp S. 2020. Digital 2020: Global Digital Overview. In Global Digital Insights. Retrieved from https://datareportal.org/reports/digital-2020-global-digital-overview.
Khoja MA, Tjahjono B, Suwanto A, Sinaga MS. 2007. Rapid detection of bacterial pustule disease on soybean employing PCR technique
with specific primers. Hatay J Biosci 14 (2): 76-80. DOI: 10.4308/ijnh.14.2.76.
Khaire A, Tjahjono B, Suswanto A, Sinaga MS. 2008. Virulence of some Xanthomonas axonopodis pv. glycines isolates from Edamame on three soybean varieties. J. Hana dan Penyakit Tumbuhan Trop 8 (1): 39-46. DOI: 10.2396/ejt/jpt.1839-46.
Konekroot. 2019. The importance of urban food. Retrieved from https://konekroot.com
Kulsrebek D, Khrpe MP. 1967. Chemical investigation of the seeds of Clitoria ternatae. Curr Sci 36: 124-125.
Kulsrebek DA, Khrpe MP. 1968. Chemical study of Clitoria ternatae seeds. Chemische Berichte 101: 2096-2105. DOI: 10.1002/chem.19681010627.
Kumar V, Gour M, Kumar S, Mal M, Mukherjee PK. 2008. Validation of HPTLC method for the analysis of taxerol in Clitoria ternatae. Phytocoanal Am 19: 244-250. DOI: 10.1002/pca.1042.
Kumari NV, Devi ML. 2013. Effect of some indigenous plant extracts on the inhibition of egg hatching of nematode Meloidogyne incognita. Chitwood infeasting mulberry. Hort Res New Spec 2: 35-39.
Kusriu E, Tristantini D, Izza N. 2017. Activity test of telang flower extract (Clitoria ternatae L.) as an anti-cataract agent. J Am Indones Sci Agric 2 (1): 30-36. DOI: 10.29244/jiais.2111.
Kumad AY. 2019. Potential of telang flower telang flower tea (Clitoria ternatae) as a medicinal herb of phlegm thinner through a mucosity test. J Asian J Clin Case Study 60: 228-235.
Panda S. 2018. A mini-review on non-cafeinated blue tea. Int J Innov Res Eng Multidiscip Phys Sci 6 (4): 710-713.
Parimalabedi B, Boonmuth S, Mandal SC. 2004. Evaluation of some plant taxerol as a feed additive to turkeys. Poult Sci 83 (3): 324-326. DOI: 10.1174/0368-45287.1995191.
Patil AP, Patil VR. 2011. Comparative evaluation of in vitro antioxidant activity of root of blue and white flowered varieties of Clitoria ternatae. J Nat Prod 10 (4): 485-491. DOI: 10.3923/jnpr.2011.485.491.
Permana MAW. 2019. The development of natural dye from butterfly pea canary products [Dissertation]. Universitas Pendidikan Indonesia, Bandung, [Indonesian].
Petkova I, Zlatkova P. 2016. Endophytic bacteria from Clitoria ternatea as a medici- nal herb. Evid Based Compl Altern Med 2). DOI: 10.1155/2016/649.
Pradana AP, Munif A, Supramana. 2016. Endophytic bacteria from Clitoria ternatea for its potential activity of ro. The constituents in the leaves of Brachiaria humidicola in broiler feeding. Interciencia 28 (3): 178-179. DOI: 10.4067/S0719-06462013000300023.
Rao DB, Kiran CR, Madhavi Y, Rao PK, Rao TR. 2009. Evaluation of antipyretic potential of Lablab purpureus as a biopesticide for cotton pest management. J Evid Based Med 2: 178-179. DOI: 10.1155/jebm.2009.178.
Rao M, Kiran CR, Madhavi Y, Rao PK, Rao TR. 2009. Evaluation of antipyretic potential of Lablab purpureus as a biopesticide for cotton pest management. J Evid Based Med 2: 178-179. DOI: 10.1155/jebm.2009.178.
Rai K, Murthy K, Karanth K, Nalini K, Rao M, Srivinask K. 2006. Clitoria ternatae root extract enhances acetylcholine content in rat hippocampus. Fitoterapia 73 (7-8): 685-689. DOI: 10.1016/S0367-326X(02)00249-6.
Rai KS, Murthy KD, Karanth KS, Nalini K, Rao M, Srivinask KK. 2001. Clitoria ternatae (Linn) root extract treatment during the growth spurt period enhances learning and memory in rats. Indian J Physiol Pharmacol 45 (3): 305-313.
Rajagopalan N, 1964. Free amino acids and amides in legume root nodules. Curr Sci 33: 454-456.
Rao DB, Kiran CR, Madhavi Y, Rao PK, Rao TR. 2009. Evaluation of the antioxidant potential of Clitoria ternatae L. and Eclipta prostrata L. Indian J Biochem Biophys 46: 247-252.
Rashel RO, Mendoza EM, Raymundo LC. 1990. Oligosaccharides in several Philippine indigenous food legumes: Determination, localization, and removal. Plant Foods Hum Nutr 40 (1): 83-93. DOI: 10.1007/BF02187282.
Rike N, Nita ST. 2018. Ethnobotany of plant food in Dayak tambalamah community, west Kalimantan, Indonesia. Int J Acad Res Dev 3 (3): 267-273.
Riyanto EF, Nurjanah AN, Suharti SNI. 2019. Inhibition of ethanol extracted of butterfly pea flower (Clitoria ternatae L.) against food-destroying bacteria. J Kesehat Bakti Tunas Husada J Ilmu-ilmu
Keperawatan, Anal Kesehat dan Farm 19 (2): 218-225. DOI: 10.36465/j.kbfh.1912.500.

Ruriani E, Nurhayati. 2010. Investigation of Bacillus cereus and Salmonella in fried rice sold by street vendor around campus. Agrotek 4 (1): 68-75.

Salsita EA, Mulyasari S, Wachid M, Wira, G. 2018. The bioprospection of edible flower butterfly Pea. Jurnal Pertanian 20 (3): 127-134. DOI: 10.22146/j pertanian.28576.

Sasmita NJ, Prathyusha S, Swathi G, Madhavi T, Raja BDP, Mallikarjuna K, Kim HS. 2016. Facile approach to synthesize magnesium oxide nanoparticles by using Clitoria ternatea—characterization and in vitro antioxidant studies. Appl NanoSci 6: 437-444. DOI: 10.1007/s13204-014-0455-1.

Sutedi E. 2013. Potential of butterfly pea (Clitoria ternatea) as a forage. Wartazoa 23 (2): 51-62. DOI: 10.14334/wartazoa.v23i2.7157.

Sutomo, Iryadi R. 2019. Conservation of traditional medicinal plants "Usada Bali", Bul Udayana Mengabdi 18 (9): 58-63. DOI: 10.24843/BUM.2019.v18.i04.p11.

Sutono. 2017. Utilization and conservation of food crop genetic diversity in home gardens. Iptek Tanam Pangan 12 (2): 105-112.

Swain SS, Rout KK, Chand PK. 2012. Production of tripenoid anti-cancer compound taxareol in agrobacterium-transformed root cultures of butterfly pea (Clitoria ternatea L.). Appl Biochem Biotechnol 168 (3): 487-503. DOI: 10.1007/s10529-010-1979-1.

Tabo DF, Ibrahim N, Nugrahani AW. 2016. Ethnobotany of the Togian Village in Malenge Island, T. Tala and District, Tojo Una-Una Regency, Central Sulawesi. Biocelebes 13 (1): 31-37.

Talpe KA, Bhosale UA, Zambare MR, Somani R. 2014. Antihyperglycemic and antioxidant activity of Clitoria ternatea Linn. on streptozotocin-induced diabetic rats. Ayu J 34 (4): 433-439. DOI: 10.4103/0974-8527.135220.

Shahid M, Shahzad A, Anis M. 2018. Anthocyanin and anti-inflammatory activity of Clitoria ternatea in experimental animals. J Ethnopharmacol 242: 2015-26. DOI: 10.1016/j.eurpharm.2018.05.026.

Shirchakli B. 2018. Ultrasonication extraction, bioactivity, antioxidant activity, total flavonoid, total phenolic, and antioxidant of Clitoria Ternatea Linn flower extract for an anti-aging drug. Pharmacogn Mag 14 (56): 322-327. DOI: 10.4103/pm.pm_206_17.

Shirvastava BK, Pande ES. 1977. Anthocyanins from the flower of Clitoria ternatea L. Planta Med 32: 138-140. DOI: 10.1055/s-0028-1097573.

Staples JB. 1992. “Clitoria ternatea L.” in Plant Resources of Southeast Asia. Padoc Scientific Pub, Wageningen.

Suarmini NW. 2011. The role of Pakraman Village in strengthening socio-cultural resilience through the knowledge concept of "Usada Bali". Jurnal Pertanian 34 (10): 782-790. DOI: 10.1016/j.fpti2016.03.006.

Srivastava BK, Pande ES. 1977. Anthocyanins from the flower of Clitoria ternatea L. Planta Med 32: 138-140. DOI: 10.1055/s-0028-1097573.

Staples JB. 1992. “Clitoria ternatea L.” in Plant Resources of Southeast Asia. Padoc Scientific Pub, Wageningen.

Suarmini NW. 2011. The role of Pakraman Village in strengthening socio-cultural resilience through the knowledge concept of "Usada Bali". Jurnal Pertanian 34 (10): 782-790. DOI: 10.1016/j.fpti2016.03.006.

Srivastava BK, Pande ES. 1977. Anthocyanins from the flower of Clitoria ternatea L. Planta Med 32: 138-140. DOI: 10.1055/s-0028-1097573.

Staples JB. 1992. “Clitoria ternatea L.” in Plant Resources of Southeast Asia. Padoc Scientific Pub, Wageningen.