Growth of PdCoO$_2$ films with controlled termination by molecular-beam epitaxy and determination of their electronic structure by angle-resolved photoemission spectroscopy

Cite as: APL Mater. 10, 091113 (2022); https://doi.org/10.1063/5.0101837
Submitted: 03 June 2022 • Accepted: 04 August 2022 • Published Online: 22 September 2022

Qi Song, Jiaxin Sun, Christopher T. Parzyck, et al.

COLLECTIONS
Paper published as part of the special topic on Materials Challenges and Synthesis Science of Emerging Quantum Materials

ARTICLES YOU MAY BE INTERESTED IN

Growth of PdCoO$_2$ by ozone-assisted molecular-beam epitaxy
APL Materials 7, 121112 (2019); https://doi.org/10.1063/1.5130627

In situ x-ray studies of growth of complex oxides on graphene by molecular beam epitaxy
APL Materials 10, 091114 (2022); https://doi.org/10.1063/5.0101416

Large magneto-thermoelectric effect on the verge of metal–insulator and topological transitions in pyrochlore iridates
APL Materials 10, 091111 (2022); https://doi.org/10.1063/5.0097460
Growth of PdCoO$_2$ films with controlled termination by molecular-beam epitaxy and determination of their electronic structure by angle-resolved photoemission spectroscopy

Qi Song, Jiaxin Sun, Christopher T. Parzyck, Ludi Miao, Qing Xu, Felix V. E. Hensling, Matthew R. Barone, Cheng Hu, Jinkwon Kim, Brendan D. Faeth, Hanjong Paik, Phil D. C. King, Kyle M. Shen, and Darrell G. Schlom

AFFILIATIONS
1 Department of Materials Sciences and Engineering, Cornell University, Ithaca, New York 14853, USA
2 Department of Physics, Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853, USA
3 Platform for the Accelerated Realization, Analysis, and Discovery of Interface Materials (PARADIM), Cornell University, Ithaca, New York 14853, USA
4 SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, United Kingdom
5 Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853, USA
6 Leibniz-Institut für Kristallzüchtung, Max-Born-Straße 2, 12489 Berlin, Germany

Note: This paper is part of the Special Topic on Materials Challenges and Synthesis Science of Emerging Quantum Materials.

Author to whom correspondence should be addressed: schlom@cornell.edu

ABSTRACT

Utilizing the powerful combination of molecular-beam epitaxy (MBE) and angle-resolved photoemission spectroscopy (ARPES), we produce and study the effect of different terminating layers on the electronic structure of the metallic delafossite PdCoO$_2$. Attempts to introduce unpaired electrons and synthesize new antiferromagnetic metals akin to the isostructural compound PdCrO$_2$ have been made by replacing cobalt with iron in PdCoO$_2$ films grown by MBE. Using ARPES, we observe similar bulk bands in these PdCoO$_2$ films with Pd-, CoO$_2$-, and FeO$_2$-termination. Nevertheless, Pd- and CoO$_2$-terminated films show a reduced intensity of surface states. Additionally, we are able to epitaxially stabilize PdFe$_x$Co$_{1-x}$O$_2$ films that show an anomaly in the derivative of the electrical resistance with respect to temperature at 20 K, but do not display pronounced magnetic order.

Metallic oxides with the delafossite structure, shown in Fig. 1(a), have drawn significant attention in recent years due to their unique structural and electronic properties. Examples include PtCoO$_2$, which has the highest conductivity per carrier of all materials, and PdCoO$_2$, which has the longest mean free path (exceeding 20 μm at 4 K) among all known metals. The in-plane electrical conductivity of PdCoO$_2$ at room temperature, which is about four times higher than that of palladium metal itself, has been argued to arise from electron–phonon scattering mainly occurring within a single, closed, highly dispersive band of primarily palladium character at the Fermi level (E_F). The large spin-splitting of the surface state arising from the CoO$_2$ termination, in combination with the layered structure of PdCoO$_2$-based heterostructures makes this system ideal to study itinerant surface electrons driven by inversion-symmetry breaking. As for the magnetic properties of delafossites, PdCrO$_2$ is the only highly conducting delafossite material that orders magnetically; it orders antiferromagnetically (AFM) at around 37 K. Focusing on the electronic structure, the single band...
at the Fermi level with palladium character forms a reconstruction driven by the AFM order from the adjacent CrO$_2$ layer. Comparing AFM PdCrO$_2$ with nonmagnetic PdCoO$_2$, the spins from Cr$^{3+}$ interacting inside the CrO$_2$ layer with the palladium monolayers on either side of the CrO$_2$ layer play a critical role in the magnetic state of PdCrO$_2$.\cite{22}

Angle-resolved photoemission spectroscopy (ARPES) is the premiere experimental tool to directly observe electronic structure in quantum materials. The combination of oxide molecular-beam epitaxy (MBE) with ARPES allows us to customize and study the electronic structure of correlated oxides. This setup has enabled understanding of how strain, thickness, heterostructuring, and terminations can influence the electronic structure of thin films.

Due to the limited size of delafossite single crystals, the desire to explore the potential of metallic delafossites in electronic and spintronic devices, together with the exciting opportunities that can be explored in delafossite heterostructures, metallic delafossites are being grown in thin-film form by reactive sputtering, pulsed-laser deposition (PLD), and MBE. Unfortunately, the transport properties of these films (so far) pale in comparison to the single crystals. Differences between the Fermi surface of the so-called Pd-terminated PdCoO$_2$ with CoO$_2$-terminated PdCoO$_2$ have recently been reported for epitaxial films of PdCoO$_2$ grown by PLD.\cite{23} The claims of this prior study would be strengthened by improved evidence of surface termination control.

In this work, we describe an improved synthetic strategy for the growth of PdCoO$_2$ films with control of surface termination by MBE. Harnessing the ultra-high vacuum connection between our MBE and ARPES, we then study the electronic structure of Pd-terminated and CoO$_2$-terminated PdCoO$_2$. We find that our PdCoO$_2$ films exhibit similar bulk bands derived from palladium states but weak surface states compared to those in PdCoO$_2$ single crystals. Having succeeded in engineering the surface termination in PdCoO$_2$ over large areas, we then progress to investigate terminations of PdCoO$_2$ where we deliberately add unpaired electrons and study the resulting electronic structure by ARPES. Although we are able to epitaxially stabilize a variety of surface terminations involving iron substituting for cobalt in PdCoO$_2$, we do not see evidence of magnetic order.

Building upon our previous work,\cite{24} thin films of PdCoO$_2$ were synthesized by MBE in a Veeco GEN10 MBE system on (001) sapphire substrates. Details of the film growth are provided in the supplementary material. Figure 1(a) shows the shutter timing diagram used to supply fluxes of the individual molecular beams to the substrate to form PdCoO$_2$. After growth, films were cooled down to 300 °C in the same ozone background pressure (around 5 × 10$^{-4}$ Torr) in which they were grown and transferred under ultra-high vacuum conditions into an adjacent ARPES chamber. The reflection high-energy electron diffraction (RHEED) patterns acquired after deposition and the x-ray diffraction θ–2θ scans indicate the growth of single-phase PdCoO$_2$ films as shown in Figs. 1(b) and 1(c). The structure was characterized by a Panalytical Empyrean x-ray diffractometer utilizing Cu Ka$_1$ radiation. Electrical transport measured by a Quantum Design Physical Property Measurement System (PPMS) using a four-point van der Pauw geometry is shown in Fig. 1(d). The residual resistivity ratio (RRR = ρ_{300K}/ρ_{3K}) of this PdCoO$_2$ sample with a thickness of 52.1 nm is 3.3 in its as-grown state (i.e., no ex-situ postanneal). For comparison, the highest RRR previously achieved by MBE for a film in its as-grown state was 2.2 for a 10 nm thick PdCoO$_2$ film.\cite{25} After an ex-situ anneal, films grown by MBE can reach a RRR of around 8 for a 50 nm thick PdCoO$_2$ film. While these are the highest reported RRR values for films, PdCoO$_2$ single crystals can exhibit RRR as high as 400.\cite{26} The resistivity of epitaxial PdCoO$_2$ films and single crystals are comparable at room temperature;
the huge difference in resistivity emerges upon cooling. One likely defect responsible for this difference is the in-plane rotation twins present in all epitaxial delafossite films to date. The presence of 180° in-plane rotation twins in PdCoO2 film grown on (001) Al2O3 substrates manifest in the x-ray ϕ scan and scanning transmission electron microscopy images shown in Ref. 38, as well as the atomic force microscopy images shown in the supplementary material (Fig. S3).

In situ ARPES measurements are performed to study the effects of termination on the electronic structure of the PdCoO2 films. Our lab-based ARPES system photoexcites electrons with a Scienta omicron VUV 5000 helium discharge lamp using He–I photons at 21.2 eV and He–II photons at 40.4 eV. The emitted electrons are detected with a VG Scienta R4000 electron analyzer. The ARPES is vacuum-connected to the MBE growth chamber via an ultra-high vacuum transfer chamber.

We first compare the Fermi surface of Pd-terminated and CoO2-terminated PdCoO2 films in Figs. 2(a) and 2(b), respectively. The sharp hexagonal pocket centered at Γ [illustrated in red in Figs. 2(a) and 2(b)] is observed in both Pd- and CoO2-terminated PdCoO2 films. Two smaller hexagonal pockets inside the bulk state pocket illustrated in green and blue are observed in the CoO2-terminated PdCoO2 film, in agreement with previous reports of splitting of the CoO2 surface state at 1.75 eV below EF, as illustrated in Fig. S5 of the supplementary material. Dispersion along the K-M-K direction of Pd- and CoO2-terminated PdCoO2 films have similar bulk state features to those of PdCoO2 single crystals, but the surface states of our PdCoO2 films are weaker or even disappear at EF. Note that the alternating layers of Pd+ and CoO2 along the c-axis of PdCoO2 are not charge neutral. Doping of the surface by electrons arising from electronic reconstruction (i.e., no structural surface reconstruction) would generate the surface states observed on bulk single crystals.

In Figs. 3(a) and 3(c), we further compare the dispersion cut along the Γ-K direction of Pd- and CoO2-terminated PdCoO2, respectively. The fitted Fermi velocities (v_F) of the PdCoO2 bulk state of Pd- and CoO2-terminated films are all around 4.5 eV Å, as shown in Table I, in agreement with previous results measured on PdCoO2 single crystals by ARPES.41,42 Despite the invisible palladium surface state at EF, two spin-split surface states from the CoO2 termination show up at EF. These are indicated by blue and green circles in Fig. 3(c). From the momentum dispersion curves (MDCs) comparison of Pd- and CoO2-terminated samples in Fig. 3(e), it is easier to observe the CoO2 surface states at EF (indicated by the blue arrow) and very little of the palladium surface state is observed below EF (indicated by the red arrow). The Fermi velocities of the CoO2 surface states are 0.75 eV Å (blue) and 0.5 eV Å (green), respectively. This is roughly 10% of that of the bulk state, in agreement with the previous study of PdCoO2 single crystals.41,42

Comparing the electronic structure observed for our epitaxial PdCoO2 thin films to that reported for PdCoO2 single crystals with different terminations, our PdCoO2 films have similar bulk state features to those of PdCoO2 single crystals, but the surface states of our PdCoO2 films are weaker or even disappear at EF. One likely defect responsible for this difference is the in-plane rotation twins present in all epitaxial delafossite films to date. The presence of 180° in-plane rotation twins in PdCoO2 film grown on (001) Al2O3 substrates manifest in the x-ray ϕ scan and scanning transmission electron microscopy images shown in Ref. 38, as well as the atomic force microscopy images shown in the supplementary material (Fig. S3).

In situ ARPES measurements are performed to study the effects of termination on the electronic structure of the PdCoO2 films. Our lab-based ARPES system photoexcites electrons with a Scienta omicron VUV 5000 helium discharge lamp using He–I photons at 21.2 eV and He–II photons at 40.4 eV. The emitted electrons are detected with a VG Scienta R4000 electron analyzer. The ARPES is vacuum-connected to the MBE growth chamber via an ultra-high vacuum transfer chamber.

We first compare the Fermi surface of Pd-terminated and CoO2-terminated PdCoO2 films in Figs. 2(a) and 2(b), respectively. The sharp hexagonal pocket centered at Γ [illustrated in red in Figs. 2(a) and 2(b)] is observed in both Pd- and CoO2-terminated PdCoO2 films. Two smaller hexagonal pockets inside the bulk state pocket illustrated in green and blue are observed in the CoO2-terminated PdCoO2 film, in agreement with previous reports of splitting of the CoO2 surface state at 1.75 eV below EF, as illustrated in Fig. S5 of the supplementary material. Dispersion along the K-M-K direction of Pd- and CoO2-terminated PdCoO2 films have similar bulk state features to those of PdCoO2 single crystals, but the surface states of our PdCoO2 films are weaker or even disappear at EF. Note that the alternating layers of Pd+ and CoO2 along the c-axis of PdCoO2 are not charge neutral. Doping of the surface by electrons arising from electronic reconstruction (i.e., no structural surface reconstruction) would generate the surface states observed on bulk single crystals.

In Figs. 3(a) and 3(c), we further compare the dispersion cut along the Γ-K direction of Pd- and CoO2-terminated PdCoO2, respectively. The fitted Fermi velocities (v_F) of the PdCoO2 bulk state of Pd- and CoO2-terminated films are all around 4.5 eV Å, as shown in Table I, in agreement with previous results measured on PdCoO2 single crystals by ARPES.41,42 Despite the invisible palladium surface state at EF, two spin-split surface states from the CoO2 termination show up at EF. These are indicated by blue and green circles in Fig. 3(c). From the momentum dispersion curves (MDCs) comparison of Pd- and CoO2-terminated samples in Fig. 3(e), it is easier to observe the CoO2 surface states at EF (indicated by the blue arrow) and very little of the palladium surface state is observed below EF (indicated by the red arrow). The Fermi velocities of the CoO2 surface states are 0.75 eV Å (blue) and 0.5 eV Å (green), respectively. This is roughly 10% of that of the bulk state, in agreement with the previous study of PdCoO2 single crystals.41,42

Comparing the electronic structure observed for our epitaxial PdCoO2 thin films to that reported for PdCoO2 single crystals with different terminations, our PdCoO2 films have similar bulk state features to those of PdCoO2 single crystals, but the surface states of our PdCoO2 films are weaker or even disappear at EF. Note that the alternating layers of Pd+ and CoO2 along the c-axis of PdCoO2 are not charge neutral. Doping of the surface by electrons arising from electronic reconstruction (i.e., no structural surface reconstruction) would generate the surface states observed on bulk single crystals.
FIG. 3. Photoemission intensity distribution of Pd- and CoO$_2$-terminated PdCoO$_2$ films measured at a photon energy of 21.2 eV at 30 K. (a). Photoemission intensity distributions across Γ-K along the orange cut illustrated in (j) of the Pd-terminated PdCoO$_2$ film in Fig. 2(a). (b). Momentum dispersion curves (MDCs) at E_F to E_F-0.2 eV illustrated by the red dash lines in (a), (c) and (d) The same as (a) and (b), but taken from the CoO$_2$-terminated PdCoO$_2$ film in Fig. 2(b). The red, blue, and green circles in (c) indicate fitted peak positions of the PdCoO$_2$ bulk state and surface states from the MDC near E_F. Fitting details are shown in Fig. S6 of the supplementary material. (e). MDC comparison of the cut along the Γ-K direction at various energies. The blue arrows on the top indicate the extra peaks in the CoO$_2$-terminated PdCoO$_2$ film. The red arrow below E_F indicates the weak palladium surface state peak in the Pd-terminated PdCoO$_2$ film. (f) Photoemission spectra along K-M-K of the Pd-terminated PdCoO$_2$ film and its second derivative with respect to energy (g), (h) and (i) The same as (f) and (g), but taken from the same CoO$_2$-terminated PdCoO$_2$ film.

Ways in which the surfaces of our films differ from the single crystals provide routes to different or no surface states. For ARPES measurements of cleaved (001)-oriented PdCoO$_2$ single crystals, the polar surface exposed after cleaving may drive an electronic reconstruction of the surface or alternatively a mixture of termination regions, some of which are terminated by palladium and some of which are terminated by CoO$_2$, to alleviate the polar surface charge. To synthesize PdCoO$_2$ films, we use shuttered MBE growth to provide a full layer of palladium or CoO$_2$ as the terminating surface. This difference in the surface reconstruction structure of epitaxial PdCoO$_2$ films might result in a different electronic reconstruction from that of cleaved PdCoO$_2$ single crystals. We show the reconstruction of our films in low-energy electron diffraction (LEED) with different terminations in Fig. S4 of the supplementary material. Additional differences exist between our PdCoO$_2$ films and PdCoO$_2$ single crystals. For example, PdCoO$_2$ films grown on (001) Al$_2$O$_3$ substrates are known to have a high density of 180° in-plane rotation twins. Furthermore, our films might contain oxygen vacancies to neutralize the surface polar effect. These may also play a role in the differences observed in the surface states between PdCoO$_2$ single crystals and our epitaxial films. In particular, the palladium surface state is very reactive; it can be essentially destroyed by temperature cycling of ARPES measurements. Prior ARPES results of a PdCoO$_2$ film grown by PLD, where the palladium termination is confirmed by the absence of a CoO$_2$ surface state in the electronic structure, does not show the PdCoO$_2$ bulk state. In contrast, our Pd-terminated films show a strong PdCoO$_2$ bulk state without a CoO$_2$ surface state, but are missing the palladium surface state. One possible reason for this is the difference in sample quality, particularly of the sample surface and the ability of MBE to control the termination of

TABLE I. Fermi velocities of the bulk states of PdCoO$_2$ from fitting the ARPES spectra of PdCoO$_2$ films.
Fermi Velocity
v_F (eV Å)
of the PdCoO$_2$ film. We note that our MBE and ARPES measurements are made immediately following film growth and that the ultra-high vacuum connection between our MBE and ARPES systems enables us to investigate the electronic structure of the pristine growth surface.

With the goal of introducing magnetic order into the surface of PdCoO$_2$, we attempt to replace the cobalt in the CoO$_2$ surface termination with a different transition metal. The low spin state ($S = 0$) of the d^3 electron configuration of Co$^{3+}$ in octahedral coordination underlies the lack of magnetic order in PdCoO$_2$. In contrast, PdCrO$_2$ is known to order antiferromagnetically at 37 K due to the unpaired spins ($S = 3/2$) arising from Cr$^{3+}$ with its d^5 electron configuration.\(^{43-46}\) Considering what other transition metals are stable in the 3+ oxidation state under the highly oxidizing conditions needed to stabilize PdCoO$_2$ led us to attempt to substitute Fe$^{3+}$ for Co$^{3+}$. Other known iron-containing delafossites, such as the semiconductors AgFeO$_2$ and CuFeO$_2$ with bandgap larger than 1 eV, are known to exhibit magnetic phase transitions.\(^{47,48}\) Combining magnetic FeO$_2$ with conducting palladium might create a new metallic delafossite with interesting magnetic properties. Note that PdFeO$_2$ is neither a known compound nor has it been suggested to form in the delafossite structure by prior crystal chemistry based suggestions of delafossites\(^{49,50}\) nor first-principles suggestions for new delafossites.\(^{51,52}\)

Our attempts to terminate PdCoO$_2$ with a monolayer of FeO$_2$ were successful. To do so, we used epitaxial stabilization, a process in which lattice misfit strain energies and interfacial energies are exploited to favor a desired metastable phase over the equilibrium phase.\(^{53-56}\) ARPES measurements reveal the FeO$_2$-terminated PdCoO$_2$ film to have a similar bulk band to PdCoO$_2$, but there is no extra surface state at the Fermi surface nor a reconstruction driven by AFM order like in PdCrO$_2$. In addition, we synthesized Pd(Co, Fe)O$_2$ films containing a solid solution of iron and cobalt in each CoO$_2$ layer of the Pd(Fe)O$_2$ film. Electrical transport measurements on a series of 13 nm thick PdFe$_{x}$Co$_{1-x}$O$_2$ films with varying x (0 < x ≤ 0.2) all show a drop in resistance at low temperature. Other than the dip shown in $d\rho/dT$ at low temperature, which is different from other known delafossites, no pronounced magnetic order is observed by magnetic susceptibility measurement down to 3 K. This behavior is in contrast to what is seen for PdCrO$_2$. Turning to the electronic structure of the PdFe$_{x}$Co$_{1-x}$O$_2$ films revealed by ARPES, a similar bulk band to PdCoO$_2$ is observed. No reconstruction appears at the Fermi surface nor is any temperature dependence of the electronic structure of PdFe$_{x}$Co$_{1-x}$O$_2$ seen.

We added a full monolayer of FeO$_2$ to a Pd-terminated PdCoO$_2$ film in an attempt to vary the termination of PdCoO$_2$ by introducing unpaired electrons (spin) from Fe$^{3+}$. As ARPES is a surface sensitive measurement, if the unpaired electrons from Fe$^{3+}$ with its d^5 configuration in the surface FeO$_2$ layer interact within the FeO$_2$ layer and with the adjacent palladium layer like the CrO$_2$ layer does in the AFM metal PdCrO$_2$,\(^{11}\) we expect to see distinct features arise in the Fermi surface of the FeO$_2$-terminated PdCoO$_2$ film. The well crystallized FeO$_2$ termination determined by RHEED is shown in Fig. 5(a). Unfortunately, no difference is observed in the ARPES other than the similar PdCoO$_2$ bulk state appearing at the Fermi surface in the FeO$_2$-terminated PdCoO$_2$ film, as shown in Figs. 2(c) and 2(g). No reconstruction of the Fermi surface was seen at low temperature. The bulk band was also free of any temperature-dependent feature when we analyzed the MDCs in the Γ-K direction shown in Fig. 4(e). Thus, our epitaxial FeO$_2$ layer on the surface of PdCoO$_2$...

FIG. 4. Photoemission intensity distribution of FeO$_2$- and Fe$_{0.17}$Co$_{0.83}$O$_2$-terminated PdCoO$_2$ films and their temperature dependence. (a) Photoemission intensity distributions across Γ-K along the orange cut illustrated in Fig. 3(j) of the FeO$_2$-terminated PdCoO$_2$ film in Fig. 2(d). (b) Temperature dependence of the energy dispersion curves (EDCs) of k_x illustrated in (a), (c) and (d) The same as (a) and (b), but are taken from the Fe$_{0.17}$Co$_{0.83}$O$_2$-terminated PdCoO$_2$ film in Fig. 2(d). (e) Temperature dependence of the momentum dispersion curves (MDCs) at E_F for the FeO$_2$-terminated film. (f) The same as (e), but for the Fe$_{0.17}$Co$_{0.83}$O$_2$-terminated PdCoO$_2$ film.
film does not appear to create a spin interaction with the underlying palladium layer. On the other hand, PdFeO₂ is a metastable phase and we can only stabilize one formula unit of PdFeO₂. It is possible that the FeO₂ termination is insulating due to oxygen vacancies to neutralize its otherwise polar surface and preventing it from contributing to the electronic structure. The photoemission intensity data we collect include the film beneath the FeO₂ layer, which is PdCoO₂ itself.

In addition to replacing the entire CoO₂ monolayer with an FeO₂ monolayer, we also investigated the partial replacement of cobalt with iron hoping that the presence of iron in multiple layers of the Pd(Co,Fe)O₂ structure would enhance the chance of spin interaction between the Fe²⁺ and the adjacent palladium layer. In Figs. 2(d) and 2(h), one can observe that the band of the PdFe₀.₁₇Co₀.₈₃O₂ film still has similar features to the bulk state of PdCoO₂, but with significant noise. Meanwhile, similar to the FeO₂-terminated PdCoO₂ film, no temperature dependence of the bulk band of Pd(Fe,Co)O₂ is seen at E_F [see Figs. 4(c)–4(f)]. We compared the Fermi velocity (v_F) of the PdFe₀.₁₇Co₀.₈₃O₂ film with the other three different terminations of PdCoO₂ films in Table I, and within experimental error, they all have the same v_F value as that of PdCoO₂ single crystals. Thus, the partial replacement of cobalt by iron in each CoO₂ layer does not bring any ordered spin interaction between the (Co,Fe)O₂ layers nor do we observe any evidence of interaction with the electrons of Pd(Fe,Co)O₂, which contribute to the bulk band of PdCoO₂. The noise observed in the Fermi surface of the PdFe₀.₁₇Co₀.₈₃O₂ film might come from the increased disorder accompanying the replacement of cobalt by iron. With the d^8 configuration of Fe³⁺ and the d^9 configuration of Co³⁺, the Fe₀.₁₇Co₀.₈₃O₂ layer should, in principle, have a $d^{9/2}$ configuration resulting in unfilled d electron bands. Nonetheless, no new conducting band is seen at E_F as shown in Fig. 4. On the other hand, a hole doping scenario in which 0.17 electrons move from the palladium layer to the Fe₀.₁₇Co₀.₈₃O₂ layer would leave the Fe₀.₁₇Co₀.₈₃O₂ layer in an insulating state. Such a scenario would require hole doping of 0.17 holes on the palladium layer. A comparison of the momentum E_k at E_F (k_F) shown in Fig. S7 of the supplementary material, reveals no pronounced difference between the k_F of a PdCoO₂ film and a Fe₀.₁₇Co₀.₈₃O₂ film.

Further characterization of the PdFeₓCo₁₋ₓO₂ films is shown in Fig. 5. The maximum percentage of iron that we are able to incorporate into epitaxial PdFeₓCo₁₋ₓO₂ films while retaining a single phase is $x = 0.20$. RHEED of a single-phase, 13 nm thick PdFe₀.₂Co₀.₈O₂ film is shown in Fig. 5(a). The fringes in the x-ray diffraction $θ$-$2θ$ scans of the PdFeₓCo₁₋ₓO₂ films indicate the high structural quality of these films. Electrical transport measurement on the PdFeₓCo₁₋ₓO₂ films is shown in Fig. 5(d). Note that the PdCoO₂ film shown in this comparison has a thickness of 13 nm, a quarter of the thickness of the PdCoO₂ film in Fig. 1(d). The upturn in resistivity of the pure PdCoO₂ film (0% Fe) seen in Fig. 5(d) below 20 K likely originates from localization in the ultrathin film. As more cobalt is replaced by iron, the absolute resistivity of the iron-doped PdCoO₂ film keeps increasing. Interestingly, instead of showing an upturn at low temperature like is seen in the pure PdCoO₂ film, the Fe-doped PdCoO₂ films show a drop at low temperature in electrical resistivity. Moreover, as the iron content x of the PdFeₓCo₁₋ₓO₂ film is increased, a more pronounced drop in resistivity is seen. Derivatives of the resistivity as a function of temperature of these PdFeₓCo₁₋ₓO₂ films are shown in Fig. 5(e). Strikingly, a dip at about 20 K is observed in the temperature derivatives of all iron-doped

![FIG. 5. Structural and electrical characterization of 13 nm thick PdFeₓCo₁₋ₓO₂ thin films grown on (001) Al₂O₃ substrates. (a) In situ RHEED pattern of a FeO₂-terminated PdCoO₂ thin film and a PdFeₓCo₀.₈O₂ thin film terminated with the Fe₀.₂Co₀.₈O₂ layer. (b) X-ray diffraction of a series of PdFeₓCo₁₋ₓO₂ thin films with x ranging from 0 to 0.2. (c) Close-up of the 006 reflection in (b). (d) Resistivity vs temperature of the PdFeₓCo₁₋ₓO₂ thin films shown in (b). (e) Derivative of the film resistivity with respect to temperature as a function of temperature of these same PdFeₓCo₁₋ₓO₂ thin films. * = 006 peak of the (001) Al₂O₃ substrate.](https://aplmater.scitation.org/content/10/9/111361018371/fig/5)
PdCoO$_2$ films, which is opposite to the dp/dT in PdCrO$_2$ where a peak shows up at T_N driven by AFM order. The amplitude of the dip observed for PdFe$_{0.17}$Co$_{0.83}$O$_2$ increases with larger iron concentration.

A comparison of the temperature dependence of the Hall coefficient (R_{HI}) between a PdCoO$_2$ film and a PdFe$_{0.17}$Co$_{0.83}$O$_2$ film is shown in Fig. 6(a). The R_{HI} measurements are consistent with electrons acting as the carriers in both PdCoO$_2$ and PdFe$_{0.17}$Co$_{0.83}$O$_2$ films. The magnitude of R_{HI} in the PdCoO$_2$ film is in agreement with prior reports from PdCoO$_2$ single crystals. In contrast to Ref. 39, we do not observe an anomalous Hall effect in our PdCoO$_2$ films at low temperature. Hall resistivities of the PdCoO$_2$ film and the PdFe$_{0.17}$Co$_{0.83}$O$_2$ film are shown in Fig. S9 of the supplementary material. The PdFe$_{0.17}$Co$_{0.83}$O$_2$ film exhibits a larger R_{HI} than does the pure PdCoO$_2$ film, which could be a result of carriers being trapped by iron-induced structural defects. For the PdCoO$_2$ film, the temperature dependence of R_{HI} at low temperature becomes flat while for the iron-doped PdCoO$_2$ film the R_{HI} starts increasing below 20 K, which is the same temperature at which the change in dp/dT is observed in Fig. 5. One possibility for the observed resistivity anomaly at low temperature is that it is driven by iron disorder, since it is independent of the iron concentration. One scenario explaining why the R_{HI} difference between PdCoO$_2$ film and the PdFe$_{0.17}$Co$_{0.83}$O$_2$ film does not reflect on the band structure is that the electrons from iron do not interact with the electrons from palladium. Instead, iron clusters just trap the electrons from the PdCoO$_2$. Within this scenario, it is possible that iron disorder clusters in PdFe$_{0.17}$Co$_{0.83}$O$_2$ films are revealed by AFM in the supplementary material (Fig. S3). In Figs. 6(c) and 6(d), the magnetoresistance of the same PdCoO$_2$ film and PdFe$_{0.17}$Co$_{0.83}$O$_2$ film shows distinct magnetic dependences. The overall scale of magnetoresistance in the PdCoO$_2$ film is much smaller than that observed in PdCoO$_2$ single crystals. The temperature dependence of the magnetoresistance of the PdFe$_{0.17}$Co$_{0.83}$O$_2$ film shows weak-localization-like behavior, which may arise from the magnetic disorder resulting from the addition of iron. The temperature dependence of the magnetic susceptibility of the PdFe$_{0.17}$Co$_{0.83}$O$_2$ thin film shows no transition or difference between the zero-field-cooled (ZFC) and field-cooled (FC) curves as shown in the supplementary material (Fig. S10). The observed behavior is in contrast to the splitting that is expected when AFM order is observed, such as in PdCrO$_2$. Thus, the replacement of cobalt by iron does not appear to result in any spin order. Instead, only signs of magnetic disorder are seen.

In summary, we have synthesized high-quality PdCoO$_2$ films by MBE and harnessed the atomic layer control afforded by MBE to tune the termination of these films to study the resulting electronic structure by ARPES. On comparing the Pd-terminated and CoO-terminated PdCoO$_2$ films with those of PdCoO$_2$ single crystals, though the resistivity of our PdCoO$_2$ films are far higher than that of single crystals at low temperature, we find the PdCoO$_2$ bulk states in our films show features similar to those of PdCoO$_2$ single crystals, while the palladium surface state and CoO$_2$ surface state are not as strong as those of the PdCoO$_2$ single crystals. This difference might arise due to different electronic reconstructions. We also studied FeO$_2$-terminated PdCoO$_2$ films and find that the only remaining PdCoO$_2$ bulk state in the electronic structure is similar to that of PdCoO$_2$. In addition, we have successfully synthesized PdFe$_{x}$Co$_{1-x}$O$_2$ films. From the electric transport measurements, the addition of iron further increases the resistivity of PdCoO$_2$ films at room temperature. Meanwhile, we see different behavior at low
temperature compared to pure PdCoO$_2$ films, but no magnetic ordering akin to what happens in PdCrO$_2$ is seen in our PdFe$_{1-x}$Co$_x$O$_2$ films. The electronic structure of a PdFe$_{0.17}$Co$_{0.83}$O$_2$ film shows a bulk state similar to that seen in pure PdFeO$_2$ films. Although we do not induce new spin order in delafossite films by replacing cobalt by iron in PdFe$_{1-x}$Co$_x$O$_2$ with x up to 0.2 or a pure FeO$_2$ terminating monolayer, our work invites further exploration of ways in which the electronic structure of delafossites can be perturbed by exploiting the ability of MBE to control atomic layering in combination with ARPES to measure its impact.

See the supplementary material for the growth methods of the PdFe$_{1-x}$Co$_x$O$_2$ ($0 \leq x \leq 0.2$) films and additional characterization by AFM, LEED, ARPES, and XPS, as well as the results of Hall effect and magnetization measurements.

The authors thank Alfred Zong, Juan Jiang, Yu He, and Liguo Ma for their insightful discussions. This paper was primarily supported by the U.S. Department of Energy, office of Basic Sciences, Division of Materials Science and Engineering under Award No. DE-SC0002334. This paper made use of the Cornell Center for Materials Research shared facilities, which are supported through the NSF Materials Research Science and Engineering Centers Program (Grant No. DMR-1719875). This paper also made use of the Cornell Energy Systems Institute Supported Facilities partly sponsored by the NSF (Grant No. MRI DMR-1338010) and the Kavli Institute at Cornell. Substrate preparation was performed, in part, at the Cornell NanoScale Facility, a member of the National Nanotechnology Coordinated Infrastructure, which is supported by the NSF (Grant No. NNCI-1438826). C.T.P. acknowledges support from Air Force Office of Scientific Research Grant No. FA9550-21-1-0168 and National Science Foundation Grant No. DMR-2104427. P.D.C.K. gratefully acknowledges support from the European Research Council (through the QUESTDO project, Grant No. 714193). Q.X. acknowledges support from the REU Site: Summer Research Program at PARADIM (Grant No. DMR-2150446). The authors thank Sean C. Palmer for his assistance with substrate preparation.

AUTHOR DECLARATIONS

Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

Qi Song: Conceptualization (equal); Data curation (equal); Formal analysis (equal); Writing – original draft (equal). Brendan D. Faeth: Data curation (supporting). Hanjong Paik: Data curation (supporting). Phil D. C. King: Writing – review & editing (supporting). Kyle M. Shen: Resources (equal). Darrell G. Schлом: Conceptualization (equal); Data curation (supporting); Funding acquisition (lead); Project administration (equal); Resources (equal); Writing – review & editing (equal). Jiaxin Sun: Data curation (equal); Writing – review & editing (supporting). Christopher T. Parzyck: Formal analysis (supporting); Writing – review & editing (equal). Ludi Miao: Data curation (equal); Writing – review & editing (supporting). Qing Xu: Data curation (supporting). Felix V.E. Hensling: Data curation (supporting). Matthew R. Barone: Data curation (supporting); Formal analysis (supporting); Writing – review & editing (supporting). Cheng Hu: Data curation (supporting). Jinkwon Kim: Data curation (supporting).

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author upon reasonable request.

REFERENCES

1. C. W. Hicks, A. S. Gibbs, A. P. Mackenzie, H. Takatsu, Y. Maeno, and E. A. Yel-land, “Quantum oscillations and high carrier mobility in the delafossite PdCoO$_2$,” Phys. Rev. Lett. 109, 116401 (2012).
2. P. Kushwaha, V. Sunko, P. J. Moll, L. Bawden, J. M. Riley, N. Nandi, H. Rosner, M. P. Schmidt, F. Arnold, E. Hassinger, T. K. Kim, M. Hoesch, A. P. Mackenzie, and P. D. King, “Nearly free electrons in a 5d delafossite oxide metal,” Sci. Adv. 1, e1500692 (2015).
3. A. P. Mackenzie, “The properties of ultrapure delafossite metals,” Rep. Prog. Phys. 80, 032501 (2017).
4. V. Eyert, R. Frésard, and A. Maignan, “On the metallic conductivity of the delafossite PdCoO$_2$ and PtCoO$_2$,” Chem. Mater. 20, 2370–2373 (2008).
5. K. Kim, H. C. Choi, and B. I. Min, “Fermi surface and surface electronic structure of delafossite PdCoO$_2$,” Phys. Rev. B 80, 035116 (2009).
6. K. P. Ong, D. J. Singh, and S. W., “Unusual transport and strongly anisotropic thermopower in PtCoO$_2$ and PdCoO$_2$,” Phys. Rev. Lett. 104, 176601 (2010).
7. K. P. Ong, J. Zhang, J. S. Tse, and P. Wu, “Origin of anisotropy and metallic behavior in delafossite PdCoO$_2$,” Phys. Rev. B 81, 115120 (2010).
8. R. Daou, R. Frésard, S. Hébert, and A. Maignan, “Large anisotropic thermal conductivity of the intrinsically two-dimensional metallic oxide PdCoO$_2$.” Phys. Rev. B 91, 041113 (2015).
9. V. Sunko, H. Rosner, P. Kushwaha, S. Khim, F. Mazzola, L. Bawden, O. J. Clark, J. M. Riley, D. Kasinathan, M. W. Haverkort, T. K. Kim, M. Hoesch, J. Fuji, I. Vobornik, A. P. Mackenzie, and P. D. C. King, “Maximal Rashba-like spin splitting via kinetic-energy-coupled inversion-symmetry breaking.” Nature 549, 492–496 (2017).
10. H. Takatsu, H. Yoshizawa, and Y. Maeno, “Comparative study of conductive delafossites with and without frustrated spins on a triangular lattice, PdMo$_2$ (M = Cr, Co),” J. Phys.: Conf. Ser. 145, 012046 (2009).
11. H. Takatsu and Y. Maeno, “Single crystal growth of the metallic triangular-lattice antiferromagnet PdCrO$_3$,” J. Cryst. Growth 312, 3461–3465 (2010).
12. H.-J. Noh, J. Jeong, D. Jeong, H. S. Moon, E.-J. Cho, J. M. Ok, I. S. Kim, K. Kim, B. I. Min, H.-K. Lee, J.-Y. Kim, B.-G. Park, H.-D. Kim, and S. Lee, “Direct observation of localized spin antiferromagnetic transition in PdCoO$_2$ by angle-resolved photoemission spectroscopy,” Sci. Rep. 4, 3680 (2014).
13. V. Sunko, F. Mazzola, S. Kitamura, S. Khim, P. Kushwaha, O. J. Clark, M. D. Watson, I. Marković, D. Biswas, L. Pourvouki, T. K. Kim, L. T. Lee, P. K. Thakur, H. Rosner, A. Georges, R. Moessner, T. Oka, A. P. Mackenzie, and P. D. C. King, “Probing spin correlations using angle-resolved photoemission in a coupled metallic/Mott insulator system,” Sci. Adv. 6, eaaz6811 (2020).
14. M. D. Le, S. Jeon, A. I. Kolesnikov, D. J. Yoneshen, A. S. Gibbs, J. S. Kim, J. Jeong, H. J. Noh, C. Park, J. Yu, T. G. Perring, and J. G. Park, “Magnetic interactions in PdCoO$_2$ and their effects on its magnetic structure,” Phys. Rev. B 98, 024429 (2018).
15. B. Burganov, C. Adamo, A. Mulder, M. Uchida, P. D. C. King, J. W. Harter, D. E. Shai, A. S. Gibbs, A. P. Mackenzie, R. Uecker, M. Bruetzam, M. R. Beasley, C. J. Fennie, D. G. Schлом, and K. M. Shen, “Strain control of ferromagnetism and many-body interactions in two-dimensional ruthenates,” Phys. Rev. Lett. 116, 197003 (2016).
16. J. P. Ruf, H. Paik, N. J. Schreiber, H. P. Nair, L. Miao, J. K. Kawasaki, J. N. Nelson, B. D. Faeth, Y. Lee, B. H. Goode, B. Pamuk, C. J. Fennie, L. F. Kourkoutis, D. G. Schлом, and K. M. Shen, “Strain-stabilized superconductivity,” Nat. Commun. 12, 59 (2021).
P. D. C. King, H. I. Wei, Y. F. Nie, M. Uchida, C. Adamo, S. Zhu, X. He, I. Bozovic, D. G. Schlom, and K. M. Shen, “Atomic-scale control of competition between electronic phases in ultrathin LaNiO$_2$,” Nat. Nanotechnol. 9, 443–447 (2014).

K. Kawasaki, C. H. Kim, N. Nelson, S. Crisp, C. J. Zollner, E. Biegert, J. T. Heron, C. J. Fennie, D. G. Schlom, and K. M. Shen, “Engineering carrier effective masses in ultrathin quantum wells of In$_2$O$_3$,” Phys. Rev. Lett. 121, 176802 (2018).

C. T. Parzych, A. Galdi, J. K. Nangol, W. J. DeBenettleti, J. Balajka, B. D. Faeth, H. Paik, C. Hu, T. A. Arias, M. A. Hines, D. G. Schlom, K. M. Shen, and J. M. Maxson, “Single-crystal alkali aluminide photocathodes: High efficiency in the ultraviolet limit,” Phys. Rev. Lett. 128, 114801 (2022).

K. Kawasaki, M. Uchida, H. Paik, D. G. Schlom, and K. M. Shen, “Evolution of electronic correlations across the rutile, perovskite, and Ruddlesden-Popper oxides with octahedral connectivity,” Phys. Rev. B 94, 121104 (2016).

K. Kawasaki, D. Baek, H. Paik, H. P. Nair, L. F. Kourkoutis, D. G. Schlom, and K. M. Shen, “Rutile In$_2$O$_3$/TiO$_2$ superlattices: A hyperconnected analog to the Ruddlesden-Popper structure,” Phys. Rev. Mater. 2, 054206 (2018).

N. Nelson, N. J. Schreiber, A. B. Georgescu, B. H. Goode, B. D. Faeth, C. T. Parzych, C. Zeledon, L. F. Kourkoutis, A. J. Mills, A. Georges, D. G. Schlom, and K. M. Shen, “Interfacial charge transfer and persistent metallicity of ultrathin Sr$_2$IrO$_3$/SrRuO$_3$ heterostructures,” Sci. Adv. 8, eabj0481 (2022).

Q. Song, T. L. Yu, X. Lou, B. P. Xie, H. C. Xu, C. H. P. Wen, Q. Yao, S. Y. Zhang, X. T. Zhu, J. D. Guo, R. Peng, and D. L. Feng, “Evidence of cooperative effect on the enhanced superconducting transition temperature at the FeSe/SrTiO$_3$ interface,” Nat. Commun. 10, 578 (2019).

W. Harter, L. Maritato, D. E. Shai, E. I. Monken, Y. Nie, D. G. Schlom, and K. M. Shen, “Nodeless superconducting phase arising from a strong (π, π) antiferromagnetic phase in the infinite-layer electron-doped Sr$_{1-x}$La$_x$CuO$_2$ compound,” Phys. Rev. Lett. 109, 267001 (2012).

W. Harter, L. Maritato, D. E. Shai, E. I. Monken, Y. Nie, D. G. Schlom, and K. M. Shen, “Doping evolution and polar surface reconstruction of the infinite-layer cuprate Sr$_2$La$_{1-x}$CuO$_4$,” Phys. Rev. B 92, 053149 (2015).

Y. F. Nie, D. Di Sante, S. Chatterjee, P. K. R. Naicker, D. G. Schlom, and K. M. Shen, “Formation and observation of a quasi-two-dimensional d_{xy} liquid electron in epitaxially stabilized Sr$_{1-x}$La$_x$TiO$_3$ thin films,” Phys. Rev. Lett. 115, 096405 (2015).

H. I. Wei, C. Adamo, E. A. Nowicki, E. B. Lochochi, S. Chatterjee, J. P. Ruf, M. R. Beasley, D. G. Schlom, and K. M. Shen, “Electron doping of the parent cuprate La$_2$CuO$_4$ without cation substitution,” Phys. Rev. Lett. 117, 147002 (2016).

E. B. Lochochi, H. Paik, M. Uchida, D. G. Schlom, and K. M. Shen, “Controlling surface carrier density by illumination in the transparent conductor La-doped Ba$_2$O$_3$,” Appl. Phys. Lett. 112, 181603 (2018).

N. Nelson, C. T. Parzych, R. D. Faeth, J. K. Kawasaki, D. G. Schlom, and K. M. Shen, “Mott gap collapse in lightly hole-doped Sr$_{1-x}$La$_x$TiO$_3$,” Nat. Commun. 11, 2597 (2020).

S. Harada, S. Ito, and A. Tsukazaki, “Electric dipole effect in PdCoO$_2$:β-Ga$_2$O$_3$ Schottky diodes for high-temperature operation,” Sci. Adv. 5, eaax573 (2019).

H. Lee, T. Harada, F. Trier, L. Marcano, F. Godel, S. Valencia, A. Tsukazaki, and M. Bises, “Nonreciprocal transport in a Rashba ferromagnet, delafossite PdCoO$_2$,” Nano Lett. 21, 8687–8692 (2021).

P. F. Garcia, R. D. Shannon, P. E. Bierstedt, and R. B. Flippin, “O$_2$ electrocatalysis on thin film metallic oxides electrodes with the delafossite structure,” J. Electrochem. Soc. 127, 1974–1978 (1980).

S. Harada, K. Fujiwara, and A. Tsukazaki, “Highly conductive PdCoO$_2$ ultrathin films for transparent electrodes,” APL Mater. 6, 046107 (2018).

Y. Yordanov, W. Sigle, P. Kaya, M. E. Gruner, R. Pentcheva, B. Keimer, and H.-U. Habermeier, “Large thermopower anisotropy in PdCoO$_2$ thin films,” Phys. Rev. Mater. 3, 085403 (2019).

M. Ok, M. Brahlek, W. S. Choi, K. M. Roccapietre, M. F. Chisholm, S. Kim, C. Sohn, E. Skoropata, S. Yoon, J. S. Kim, and H. N. Lee, “Pulsed-laser epitaxy of metallic delafossite PdCoO$_2$ thin films,” APL Mater. 8, 051104 (2020).

T. Miyakawa, T. Harada, S. Ito, and A. Tsukazaki, “Inhomogeneous interface dipole effect at the Schottky junctions of PdCoO$_2$ on β-Ga$_2$O$_3$ (211) substrates,” J. Appl. Phys. 120, 025302 (2020).
Supplementary material for "Growth of PdCoO$_2$ films with controlled termination by molecular-beam epitaxy and determination of their electronic structure by angle-resolved photoemission spectroscopy"

Qi Song, Jiaxin Sun, Christopher T. Parzyck, Ludi Miao, Qing Xu, Felix V.E. Hensling, Matthew R. Barone, Cheng Hu, Jinkwon Kim, Brendan D. Faeth, Hanjong Paik, Phil D. C. King, Kyle M. Shen, and Darrell G. Schlom

1) Department of Materials Sciences and Engineering, Cornell University, Ithaca, New York 14853, USA
2) Department of Physics, Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853, USA
3) Platform for the Accelerated Realization, Analysis, and Discovery of Interface Materials (PARADIM), Cornell University, Ithaca, New York 14853, USA
4) SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, UK
5) Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853, USA
6) Leibniz-Institut für Kristallzüchtung, Max-Born-Straße 2, 12489 Berlin, Germany
A. Composition control methods for growth of PdCoO$_2$ films

Building upon our previous work,1 thin films of PdCoO$_2$ were synthesized by reactive oxide molecular-beam epitaxy (MBE) in a Veeco GEN-10 MBE system on (001) sapphire substrates. The substrates were heated to temperatures in the 500 °C to 580 °C range as determined by a thermocouple close to, but not in contact with the substrate heater. A mixture of approximately 80% ozone and 20% oxygen at a background pressure of 5×10^{-6} to 8.5×10^{-6} Torr was used during deposition. The fluxes of palladium, cobalt, and iron evaporated from MBE effusion cells were each set to provide a flux of around 1×10^{13} atoms·cm$^{-2}$/sec using a quartz crystal microbalance. This initial calibration was then refined by measuring the thickness of a palladium calibration film grown on a (111) (ZrO$_2$)$_{0.905}$(Y$_2$O$_3$)$_{0.09}$ substrate, a Co$_3$O$_4$ calibration film grown on a (100) MgAl$_2$O$_4$ substrate, and an Fe$_2$O$_3$ calibration film grown on a (001) Al$_2$O$_3$ substrate.2

Epitaxial PdCoO$_2$ films were grown in two different ways. In the first method, the palladium and cobalt shutters were actuated to supply monolayer doses of palladium and cobalt following the sequence of atomic layers along the c-axis of the crystal structure of PdCoO$_2$, as well as the film termination layer. We refer to this method as "shutter-controlled growth," and results from this method are shown in Fig. S1. Under a continuous ozone flux, growth is initiated with the CoO$_2$ monolayer. The first fourteen alternating monolayers (containing seven formula units PdCoO$_2$) are grown assuming unity sticking coefficients of cobalt and palladium, i.e., a Pd:Co ratio of 1:1. After the deposition of seven formula units, 20% excess palladium is supplied in each shuttered dose, i.e., a Pd:Co ratio of 1.2:1.1 The excess palladium supplied in each shuttered dose is to make up for the evaporation of palladium oxide at the relatively high substrate temperature and ozone pressure used.3 The flux of iron was adjusted according to the desired film composition assuming that the sticking coefficient of iron is unity.

The second method we have used to grow single-phase epitaxial PdCoO$_2$ films involves the codeposition of cobalt, palladium, and ozone under conditions that the excess palladium supplied desorbs as PdO (g). We refer this method as "absorption-controlled growth," and results using this method are shown in Fig. S2.
FIG. S1. **Shutter-controlled growth of PdCoO$_2$.** Here shutters are used to provide monolayer doses following the sequence of atomic layers along the c-axis of the PdCoO$_2$ crystal structure. All of the films in the main text are grown by this method. The first seven formula units of PdCoO$_2$ are grown with a ratio of Pd:Co = 1:1 after which 20% excess palladium is supplied to make up for the evaporation of palladium oxide. (a) RHEED patterns of a seven formula-unit-thick PdCoO$_2$ film grown at 530 °C viewed along the indicated azimuths. Note that the first seven formula units of PdCoO$_2$ grown with Pd:Co = 1:1 are extremely sensitive to the incident fluxes. Slight variation from the stoichiometric composition can induce impurity phases and compromise later growth. With precise composition control, the growth window of the substrate temperature can vary from 450 °C to 600 °C. (b) Diagram showing the phases observed in grown films as a function of the Pd:Co ratio and growth temperature under a constant ozone background pressure of 5×10^{-6} Torr. All of the data points here are starting with single-phase seven formula-unit-thick PdCoO$_2$. The red dots indicate phase-pure PdCoO$_2$ films while blue dots represent films that contain PdCoO$_2$ but are not phase pure. Although excess palladium is supplied during the growth of the thicker films, the excess ratio of Pd:Co is still essential to the growth. If the ratio is less than 1.18, the film tends to form Co$_3$O$_4$ as an impurity phase. On the other hand, if the ratio is larger than 1.2, the extra palladium tends to form palladium metal as an impurity phase, usually accompanied by the Co$_3$O$_4$ phase. The insets show RHEED patterns containing the impurity phase of palladium metal (top) and Co$_3$O$_4$ (bottom). Even with the precise excess Pd:Co ratio, the growth temperature of PdCoO$_2$ is still limited to the range of 450 °C to 600 °C; higher growth temperature can result in single-phase Co$_3$O$_4$ films.
FIG. S2. The absorption-controlled growth method exploits volatility differences between the constituents elements to produce a single-phase film within a limited range of growth conditions referred to as a growth window. Here, all of the elements are supplied at the same time and thermodynamics provides automatic composition control within a growth window, resulting in phase-pure PdCoO$_2$ films. Unfortunately, the termination layer of the film usually turns out to be a mixture of the palladium and CoO$_2$ monolayers. All the films described here are initiated with one monolayer of CoO$_2$. Diagrams showing the phases observed in the codeposited films as a function of substrate temperature and Pd:Co ratio for films deposited on (a) (001) Al$_2$O$_3$ substrates and on (b) (111) LaAlO$_3$ substrates. The red dots indicate phase-pure PdCoO$_2$ films, while the blue dots indicate PdCoO$_2$ films containing additional phases, usually CoO$_2$ or palladium. For PdCoO$_2$ growth by absorption control, the growth window of temperature is smaller compared to that of shutter-controlled growth, but the absolute temperature of the growth window is hotter. The flux ratio of Pd:Co can extend from 1.12 to 1.3. For PdCoO$_2$ films grown on (111) LaAlO$_3$ substrates, the similarly narrow growth window is about 70 °C lower than for growth on (001) Al$_2$O$_3$ substrates.
B. Atomic force microscopy for different terminations of PdCoO$_2$ films grown on (001) Al$_2$O$_3$ substrates

FIG. S3. Atomic force microscopy (AFM) images of differently terminated PdCoO$_2$ films: (a) Pd-terminated; (b) CoO$_2$-terminated; (c) FeO$_2$-terminated; and (d) Fe$_{0.17}$Co$_{0.83}$O$_2$-terminated. All of the films are around 13 nm thick.
C. Surface reconstruction of PdCoO$_2$ film grown on a (001) Al$_2$O$_3$ substrate

FIG. S4. Low-energy electron diffraction (LEED) pattern of differently terminated PdCoO$_2$ films at different energies: (a) Pd-terminated; (b) CoO$_2$-terminated; and (c) Fe$_{0.17}$Co$_{0.83}$O$_2$-terminated. Distinct reconstructions corresponding to the white, yellow, and red sets of spots are illustrated.
D. Electronic structure

FIG. S5. Photoemission intensity maps of differently terminated PdCoO$_2$ films measured at a photon energy of 40.4 eV. Photoemission intensity mapping of a (a) Pd-terminated, (b) CoO$_2$-terminated, and (c) Fe$_{0.17}$Co$_{0.83}$O$_2$-terminated PdCoO$_2$ films. (d) Photoemission intensity distributions across Γ-K along the orange cut illustrated in Fig. 3(j) of a Pd-terminated PdCoO$_2$ film and its second derivative with respect to energy. The Pd-terminated surface state is more pronounced when measured at this photon energy. (e),(f) are the same as (d), but taken from a CoO$_2$-terminated PdCoO$_2$ film and a Fe$_{0.17}$Co$_{0.83}$O$_2$-terminated PdCoO$_2$ film, respectively.

Name of band	v_F from parabolic fitting (eV · Å)	v_F from linear fitting (eV · Å)
Bulk state	3.54 ± 0.35	4.32 ± 0.25
Surface state 1	0.75 ± 0.07	0.79 ± 0.11
Surface state 2	0.47 ± 0.02	0.53 ± 0.03

TABLE S1. Different fitting results of v_F in the CoO$_2$-terminated PdCoO$_2$ film as shown in Fig. 3.
FIG. S6. Fermi velocity (v_F) fitting of the PdCoO$_2$ bulk state and surface states, respectively. Momentum dispersion curves (MDCs) near E_F are used to obtain v_F. Lorentz peaks are used to find the momentum of these bands. Linear fitting and parabolic fitting of the peak positions are applied and give rise to similar results as shown in Table S1. We use linear fitting in the main text.

FIG. S7. Comparison of MDCs along K-Γ-K direction at E_F of (a) a 5 nm thick PdCoO$_2$ film and of (b) a 13 nm thick PdFe$_{0.17}$Co$_{0.83}$O$_2$ film. Data were taken at He-II photo energy (40.4 eV) at 6 K. Momentum at E_F of the PdCoO$_2$ film and the PdFe$_{0.17}$Co$_{0.83}$O$_2$ film shows no obvious difference.
E. X-Ray Photoelectron Spectroscopy

FIG. S8. (a) The results of x-ray photoelectron spectroscopy for a 12 nm thick PdCoO$_2$ film and a 12 nm thick PdFe$_{0.2}$Co$_{0.8}$O$_2$ film. Fe 2p peaks are shown in the PdFe$_{0.2}$Co$_{0.8}$O$_2$ film. (b) Fine scan of Fe 2p peaks of the PdFe$_{0.2}$Co$_{0.8}$O$_2$ film. Due to the instrumental resolution and limited amount of iron present in the sample, it is difficult to assign the Fe 2p peaks to a particular iron oxide oxidation state (e.g., Fe$^{3+}$ or Fe$^{2+}$ behavior). (The Fe 2$p_{3/2}$ peaks show Fe$^{3+}$ behavior and the Fe 2$p_{1/2}$ peaks show a combination of Fe$^{3+}$ and Fe$^{2+}$ behavior.)4,5 Data are taken at room temperature.
F. Hall effect

FIG. S9. The Hall resistivity ρ_{xy} for the PdCoO$_2$ film and the PdFe$_{0.17}$Co$_{0.83}$O$_2$ film shown in Fig. 6 of the main text at 2.5 K. The Data are antisymmetrized to get rid of the longitudinal component. The magnetic field H (in the range of \pm 14 T) is applied parallel to the c axis. The magnetic field H applied in Fig. 6(a) of the main text is in the range of \pm 1 T.
G. Magnetization

FIG. S10. (a),(b) Temperature dependence of magnetization vs magnetic field for a 12.5 nm thick PdCoO$_2$ film and a 12.8 nm thick PdFe$_{0.17}$Co$_{0.83}$O$_2$ film, respectively. (c),(d) The same as (a) and (b), but these scans are made on a finer scale at small magnetic field. (e),(g) Zero-field-cooled (ZFC) and field-cooled (FC) curves showing the temperature dependence of the magnetic susceptibility in the (001) plane of the PdCoO$_2$ film under an applied magnetic field of 1 T and 0.01 T, respectively. (f),(h) The same as (e) and (g), but for the PdFe$_{0.17}$Co$_{0.83}$O$_2$ film. Measurements are made using a Quantum Design MPMS3 SQUID magnetometer. Prior to the magnetization measurements, the backside coating of platinum (with a thin titanium adhesion layer) was mechanically removed so that only the PdCoO$_2$ and PdFe$_{0.17}$Co$_{0.83}$O$_2$ films, respectively, measured. Further, the contribution from sapphire substrate was subtracted prior to plotting to show the behavior of just the films. To properly normalize the signal from the bare sapphire substrate (from the same batch of the substrates from the same vendor), the samples and the substrate were weighed.
REFERENCES

1. J. Sun, M. R. Barone, C. S. Chang, M. E. Holtz, H. Paik, J. Schubert, D. A. Muller, and D. G. Schlom, “Growth of PdCoO$_2$ by ozone-assisted molecular-beam epitaxy,” APL Mater. 7, 121112 (2019).

2. J. Sun, C. T. Parzyck, J. H. Lee, C. M. Brooks, L. F. Kourkoutis, X. Ke, R. Misra, J. Schubert, F. V. Hensling, M. R. Barone, Z. Wang, M. E. Holtz, N. J. Schreiber, Q. Song, H. Paik, T. Heeg, D. A. Muller, K. M. Shen, and D. G. Schlom, “Canonical approach to cation flux calibration in oxide molecular-beam epitaxy,” Phys. Rev. Mater. 6, 033802 (2022).

3. K. M. Adkison, S. L. Shang, B. J. Bocklund, D. Klimm, D. G. Schlom, and Z. K. Liu, “Suitability of binary oxides for molecular-beam epitaxy source materials: A comprehensive thermodynamic analysis,” APL Mater. 8, 081110 (2020).

4. R. Tang, C. Jiang, W. Qian, J. Jian, X. Zhang, H. Wang, and H. Yang, “Dielectric relaxation, resonance and scaling behaviors in Sr$_3$Co$_2$Fe$_{24}$O$_{41}$ hexaferrite,” Sci. Rep. 5, 13645 (2015).

5. C. Yu, Y. Zeng, B. Yang, R. Wylde, R. Donnan, J. Wu, J. Xu, F. Gao, I. Abrahams, M. Reece, and H. Yan, “SrFe$_{12}$O$_{19}$ based ceramics with ultra-low dielectric loss in the millimetre-wave band,” Appl. Phys. Lett. 112, 143501 (2018).