Draft Genome Sequence of *Paenibacillus polymyxa* Strain Mc5Re-14, an Antagonistic Root Endophyte of *Matricaria chamomilla*

Martina Köberl, a, b Richard A. White III, b Sabine Erschen, a Tarek F. El-Arabi, c, d Janet K. Jansson, b Gabriele Berg a

Graz University of Technology, Institute of Environmental Biotechnology, Graz, Austria a; Pacific Northwest National Laboratory, Biological Sciences Division, Richland, Washington, USA b; Ain Shams University, Faculty of Agriculture, Cairo, Egypt c; Heliopolis University, Biotechnology Laboratory, Cairo, Egypt d.

*Paenibacillus polymyxa* strain Mc5Re-14 was isolated from the inner root tissue of *Matricaria chamomilla* (German chamomile). Mc5Re-14 revealed promising *in vitro* antagonistic activity against plant and opportunistic human pathogens. The 6.0-Mb draft genome reveals genes putatively involved in pathogen suppression and direct and indirect plant growth promotion.

Received 24 June 2015. Accepted 6 July 2015. Published 6 August 2015.

Citation Köberl M, White RA, III, Erschen S, El-Arabi TF, Jansson JK, Berg G. 2015. Draft genome sequence of *Paenibacillus polymyxa* strain Mc5Re-14, an antagonistic root endophyte of *Matricaria chamomilla*. Genome Announc. 3(4):e00861-15. doi:10.1128/genomeA.00861-15.

Copyright © 2015 Köberl et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 Unported license.

Address correspondence to Martina Köberl, martina.koeberl@tugraz.at.

*Paenibacillus polymyxa* strain Mc5Re-14 was isolated in April 2010 from the endorhiza of the German chamomile *Matricaria chamomilla* L., cultivated on the organically managed Sekem farms in the northeastern desert region of Egypt (30°22′28″N 31°59′41″E) (1). The soil texture at the desert farm was classified as loamy sand, with a clay content of 4%, organic carbon content of 0.8%, and an alkaline pH of 8.4 (2). Mc5Re-14 exhibited broad-spectrum antagonism against soilborne phytopathogenic fungi (*Verticillium dahliae*, *Fusarium culmorum*, and *Rhizoctonia solani*) and nematodes (*Meloidogyne incognita*) and was also active against the opportunistic human pathogen *Escherichia coli* (3, 4).

Treatment of chamomile plants with Mc5Re-14 under field conditions resulted in an elevated flavonoid content in the blossoms (5). Nucleotide sequence accession numbers. This whole-genome shotgun project has been deposited in the European Nucleotide Archive under the accession no. CVPD00000000. The version described in this paper is the first version, CVPD01000000.

ACKNOWLEDGMENTS This study was supported by the EU-Egypt Innovation Fund (RDI ENPI/2014/342-707) and the Austrian Science Fund FWF (J 3638), cofunded by the European Commission. A portion of this research is part of the Microbiomes in Transition Initiative at Pacific Northwest National Laboratory (PNNL). It was conducted under the Laboratory-Directed Research and Development Program at PNNL, a multiprogram national laboratory operated by Battelle for the U.S. Department of Energy under contract DE-AC05-76RL01830.

REFERENCES

1. Köberl M, Müller H, Ramadan EM, Berg G. 2011. Desert farming benefits from microbial potential in arid soils and promotes diversity and
plant health. PLoS One 6:e24452. http://dx.doi.org/10.1371/journal.pone.0024452.
2. Luske B, van der Kamp J. 2009. Carbon sequestration potential of reclaimed desert soils in Egypt. Louis Bolk Instituut & Soil and More International, Waddinxveen, the Netherlands. http://orgprints.org/16438/1/2192.pdf.
3. Köberl M, Ramadan EM, Adam M, Cardinale M, Hallmann J, Heuer H, Smalla K, Berg G. 2013. Bacillus and Streptomyces were selected as broad-spectrum antagonists against soilborne pathogens from arid areas in Egypt. FEMS Microbiol Lett 342:168–178. http://dx.doi.org/10.1111/j.1574-6968.2012.02350.x.
4. Köberl M, Schmidt R, Ramadan EM, Bauer R, Berg G. 2013. The microbiome of medicinal plants: diversity and importance for plant growth, quality and health. Front Microbiol 4:400. http://dx.doi.org/10.3389/fmicb.2013.00400.
5. Schmidt R, Köberl M, Mostafa A, Ramadan EM, Monschein M, Jensen KB, Bauer R, Berg G. 2014. Effects of bacterial inoculants on the indigenous microbiome and secondary metabolites of chamomile plants. Front Microbiol 5:64. http://dx.doi.org/10.3389/fmicb.2014.00064.
6. English AC, Richards S, Han Y, Wang M, Vee V, Qu J, Qin X, Muzny DM, Reid JG, Worley KC, Gibbs RA. 2012. Mind the gap: upgrading genomes with Pacific Biosciences RS long-read sequencing technology. PLoS One 7:e47768. http://dx.doi.org/10.1371/journal.pone.0047768.
7. Ma M, Wang C, Ding Y, Li L, Shen D, Jiang X, Guan D, Cao F, Chen H, Feng R, Wang X, Ge Y, Yao L, Bing X, Yang X, Li J, Du B. 2011. Complete genome sequence of Paenibacillus polymyxa SC2, a strain of plant growth-promoting rhizobacterium with broad-spectrum antimicrobial activity. J Bacteriol 193:311–312. http://dx.doi.org/10.1128/JB.01234-10.
8. Auch AF, von Jan M, Klenk HP, Göker M. 2010. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2:117–134. http://dx.doi.org/10.4056/sigs.531120.
9. Auch AF, Klenk HP, Göker M. 2010. Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs. Stand Genomic Sci 2:142–148. http://dx.doi.org/10.4056/sigs.541628.
10. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. 2013. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14:60. http://dx.doi.org/10.1186/1471-2105-14-60.
11. Aziz RK, Bartels D, Best AA, Delongh M, Disz T, Edwards RA, Formsmna K, Gerdes S, Glass EM, Kubiak M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O. 2008. The RAST server: Rapid Annotations using Subsystems Technology. BMC Genomics 9:75. http://dx.doi.org/10.1186/1471-2164-9-75.
12. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, Edwards RA, Gerdes S, Parrello B, Shukla M, Vonstein V, Wattam AR, Xia F, Stevens R. 2014. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 42:D206–D214. http://dx.doi.org/10.1093/nar/gkt1226.
13. Van Domselaar GH, Stothard P, Shrivastava S, Cruz JA, Guo A, Dong X, Lu P, Szafron D, Greiner R, Wishart DS. 2005. BASys: a Web server for automated bacterial genome annotation. Nucleic Acids Res 33:W455–W459. http://dx.doi.org/10.1093/nar/gki593.
14. Delcher AL, Harmon D, Kasif S, White O, Salzberg SL. 1999. Improved microbial gene identification with Glimmer. Nucleic Acids Res 27:4636–4641. http://dx.doi.org/10.1093/nar/27.23.4636.
15. Ganz HH, Law C, Schmuki M, Eichenseher F, Calendar R, Loessner MJ, Getz WM, Korlach J, Beyer W, Klumpp J. 2014. Novel giant siphovirus from Bacillus anthracis features unusual genome characteristics. PLoS One 9:e85972. http://dx.doi.org/10.1371/journal.pone.0085972.