In Vivo Outcome of Homology-Directed Repair at the \(HBB \) Gene in HSC Using Alternative Donor Template Delivery Methods

Sowmya Pattabhi,1 Samantha N. Lotti,1 Mason P. Berger,1 Swati Singh,1 Christopher T. Lux,1 Kyle Jacoby,1 Calvin Lee,2 Olivier Negre,2 Andrew M. Scharenberg,1,3,4,5 and David J. Rawlings1,4,5

1Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA, USA; 2bluebird bio, Inc., Cambridge, MA, USA; 3Casebia Therapeutics, Cambridge, MA, USA; 4Department of Pediatrics, University of Washington, School of Medicine, Seattle, WA, USA; 5Department of Immunology, University of Washington, School of Medicine, Seattle, WA, USA

Gene editing following designer nuclease cleavage in the presence of a DNA donor template can revert mutations in disease-causing genes. For optimal benefit, reversion of the point mutation in \(HBB \) leading to sickle cell disease (SCD) would permit precise homology-directed repair (HDR) while concurrently limiting on-target non-homologous end joining (NHEJ)-based \(HBB \) disruption. In this study, we directly compared the relative efficiency of co-delivery of a novel CRISPR/Cas9 ribonucleoprotein targeting \(HBB \) in association with recombinant adeno-associated virus 6 (rAAV6) versus single-stranded oligodeoxynucleotides (ssODNs) to introduce the sickle mutation (GTC or GTG; encoding E6V) or a silent change (GAA; encoding E6optE) in human CD34+ mobilized peripheral blood stem cells (mPBSCs) derived from healthy donors. In vitro, rAAV6 outperformed ssODN donor template delivery and mediated greater HDR correction, leading to both higher HDR rates and a higher HDR:NHEJ ratio. In contrast, at 12–14 weeks post-transplant into recipient, immunodeficient, NOD, B6, SCID Il2rg\(^{-/-}\), Kit(W41/W41) (NBSGW) mice, a ∼6-fold higher proportion of ssODN-modified cells persisted \textit{in vivo} compared to recipients of rAAV6-modified mPBSCs. Together, our findings highlight that methodology for donor template delivery markedly impacts long-term persistence of \(HBB \) gene-modified mPBSCs, and they suggest that the ssODN platform is likely to be most amenable to direct clinical translation.

INTRODUCTION

Sickle cell disease (SCD) is caused by a single-nucleotide transversion that increases the hydrophobicity of adult globin (\(β^+ \)) and renders it susceptible to polymerization. Patients with SCD have increased morbidity and a reduced lifespan.\(^{1-4}\) While curative treatment can be achieved through human leukocyte antigen (HLA)-matched allogeneic transplant from a healthy donor, the availability of HLA-matched donors is limited, and the outcomes are complicated by the possibility of graft-versus-host disease (GvHD) and short-term and long-term impacts following higher intensity myelo-ablative conditioning.\(^{5-8}\) Gene editing in autologous stem cells could circumvent the limitation of HLA-matched donor availability, directly correcting the disease-causing mutation in self-renewing stem cells and mitigating the historical risk of random integration posed by early viral vectors.\(^{9-13}\) Recent advances in lentiviral-based gene therapy have begun to provide significant therapeutic benefit in globin disorders, including SCD, leading to increased transfusion independence and improved quality of life.\(^{14-16}\) As a next step forward in this therapeutic arena, site-specific gene repair using the delivery of a donor template in association with ribonucleoprotein (RNP)-mediated DNA cleavage comprises an attractive next-generation approach, as it has the advantage of reversing the SCD mutation in a targeted manner.

Gene editing requires a site-specific endonuclease that creates a double-stranded break (DSB) that is resolved by cellular DNA repair machinery as seamless repair, error-prone non-homologous end joining (NHEJ), or precise homology-directed repair (HDR) in the presence of a DNA donor template. These repair outcomes are mutually exclusive, and, therefore, they compete for resolution by HDR requires entry into the S/G2 phase.\(^{17-19}\) These repair outcomes are mutually exclusive, and, therefore, they compete for overall outcome within individual hematopoietic stem cells (HSCs) and across the HSC population.

Several groups have shown that the SCD mutation in exon 1 of the \(HBB \) gene can be corrected by HDR utilizing designer nucleases, including zinc-finger nuclease (ZFN) mRNA, transcription activator-like effector nucleases (TALENs), and CRISPR/Cas9, in combination with alternative methods for co-delivery of a DNA repair template, including integrase-defective lentiviral vectors (IDLVs), recombinant adeno-associated virus 6 (rAAV6), and single-stranded oligodeoxynucleotides (ssODNs).\(^{20-23}\) Of these approaches, rAAV6 and ssODNs comprise the most efficient donor template delivery approach. In this study, we directly compared the relative efficiency of co-delivery of a novel CRISPR/Cas9 ribonucleoprotein targeting \(HBB \) in association with recombinant adeno-associated virus 6 (rAAV6) versus single-stranded oligodeoxynucleotides (ssODNs). In this study, we directly compared the relative efficiency of co-delivery of a novel CRISPR/Cas9 ribonucleoprotein targeting \(HBB \) in association with recombinant adeno-associated virus 6 (rAAV6) versus single-stranded oligodeoxynucleotides (ssODNs).\(^{20-23}\) Of these approaches, rAAV6 and ssODNs comprise the most efficient donor template delivery approach.
platforms. However, total editing outcomes, including the frequency of precise HDR versus NHEJ, have not been simultaneously compared for rAAV6 and ssODN donor template delivery methods. Importantly, to be clinically relevant and therapeutic, high-fidelity HDR outcomes must proportionately exceed the error-prone NHEJ which improperly repairs DSBs and causes genomic instability at the HBB gene.

To better understand the role of donor template delivery in (1) the proportion of HDR and NHEJ outcomes, (2) preserving the integrity and long-term engraftment potential of the HSC compartment after editing, and (3) altering the longitudinal persistence of edited cells, we directly assessed different methods of donor template delivery in vitro and in vivo in adult CD34+ mobilized peripheral blood stem cells (mPBSCs). This study was designed as a proof of concept, where either a sickle mutation (GTC or GTG; encoding Glutamate to Valine change [E6V]) or a silent change (GAA; encoding Glutamate to Glutamate [E6optE]) was introduced into healthy donor mPBSCs. Following RNP-mediated disruption of exon 1 of HBB and alternative donor template delivery, we assessed the outcome of gene editing using molecular analysis via droplet digital PCR (ddPCR) and globin expression via the induction of sickle globin (βS; in the case of GTC or GTG change, E6V) or restoration of adult globin (βA; in the case of GAA change, E6optE) as a functional outcome. Using these approaches, we directly compared the outcome of alternative delivery platforms.

Our in vitro data demonstrated superiority for rAAV6 delivery, leading to proportionately greater HDR than NHEJ, whereas ssODN donor template delivery introduced significantly more NHEJ than HDR. In parallel, we performed a longitudinal assessment of engraftment and persistence of transplanted HDR-edited HSCs containing the GTC change (E6V). In contrast to our in vitro findings, a much greater percentage of cells modified by ssODN donor template persisted at 12–14 weeks in the bone marrow (BM) of NOD, B6, SCID Il2rγ−/− Kit(W41/W41) (NBSGW) recipient mice. Taken together, our findings provide an important functional assessment of alternative methods for HDR-based gene editing, and they help to inform the pathway to future clinical translation.

RESULTS
Optimizing Nuclease Efficiency in CD34 Cells
A nuclease screen was conducted to identify methods to efficiently create DSBs within exon 1 of the HBB gene (Figure 1A). The cleavage efficiencies of single-guide RNAs (sgRNAs) delivered as RNP complexes were evaluated in healthy human CD34+ mPBSCs. In the initial nuclease screen, RNP delivery of a series of candidate sgRNAs was tested at a Cas9:sgRNA ratio of 1:1, and it identified guide 4 (g4), g5, g6, and g1 as most efficient at creating DSBs (Figure S1A). Based on these findings, we optimized sgRNA-g1, as it created a DSB adjacent to codon 6, the site of the SCD mutation. sgRNA-g6 (G10), used by other groups, was also extensively tested in parallel.

Upon testing both guides at a Cas9:sgRNA ratio of 1:2.5 with the Neon transfection system, total editing rates doubled for sgRNA-g1 by MiSeq analysis was 38.7%; Figure 1B). The on-target disruption at HBB and possible off-target disruption at HBD by MiSeq analysis in mPBSCs using sgRNA-g1 delivered as RNP (donor n = 7). All bar graphs show mean ± SD. **p < 0.01, ***p < 0.001, ****p < 0.0001. p value was calculated by comparing each sample mean with the respective control sample mean by two-way ANOVA with Dunnett’s multiple comparison. See also Figure S1 and Table S2.

Figure 1. Screening of Nucleases to Create DSBs in Exon 1 of the HBB Gene
(A) Schematic representation of the genomic HBB gene showing the location of sgRNA-binding sites. A nucleotide substitution from GAG (codon 6 in red) to GTC or GTG changes the amino acid from glutamate to valine and causes SCD. (B) Optimizing the Cas9:sgRNA ratio to maximize editing efficiency in mPBSCs. NHEJ rates were analyzed by TIDE/ICE sequencing (Cas9:sgRNA ratio of 1:1 [40 pmol each], donor n = 2 or ratio of 1:2.5 [20 pmol of Cas9 and 50 pmol of sgRNA], donor n = 15). (C) Evaluating on-target disruption at HBB and possible off-target disruption at HBD by MiSeq analysis in mPBSCs using sgRNA-g1 delivered as RNP (donor n = 7). All bar graphs show mean ± SD. **p < 0.01, ***p < 0.001, ****p < 0.0001. p value was calculated by comparing each sample mean with the respective control sample mean by two-way ANOVA with Dunnett’s multiple comparison. See also Figure S1 and Table S2.

Figure S1. Screening of Nucleases to Create DSBs in Exon 1 of the HBB Gene
(A) Schematic representation of the genomic HBB gene showing the location of sgRNA-binding sites. A nucleotide substitution from GAG (codon 6 in red) to GTC or GTG changes the amino acid from glutamate to valine and causes SCD. (B) Optimizing the Cas9:sgRNA ratio to maximize editing efficiency in mPBSCs. NHEJ rates were analyzed by TIDE/ICE sequencing (Cas9:sgRNA ratio of 1:1 [40 pmol each], donor n = 2 or ratio of 1:2.5 [20 pmol of Cas9 and 50 pmol of sgRNA], donor n = 15). (C) Evaluating on-target disruption at HBB and possible off-target disruption at HBD by MiSeq analysis in mPBSCs using sgRNA-g1 delivered as RNP (donor n = 7). All bar graphs show mean ± SD. **p < 0.01, ***p < 0.001, ****p < 0.0001. p value was calculated by comparing each sample mean with the respective control sample mean by two-way ANOVA with Dunnett’s multiple comparison. See also Figure S1 and Table S2.
Table 1. Off-Target Genes Predicted by the CCTOP Algorithm

Gene	Chr	Start	End	Strand	MM	Target Sequence	PAM	Position	Gene	Gene ID
OT-1	8	141103484	141103506	+	4	TGAGCGAGAGTTCTCCTC	CGG	inter-genic	DENND3	ENSG0000105339
OT-2	19	11493685	11495707	+	4	CTAGCCCGACTTTCCTC	AGG	intronic	MIR7974	ENSG0000274713
OT-3	3	182066120	182066142	−	3	TAAAGGAGACTTTCCTC	AGG	inter-genic	LINC01206	ENSG0000242512
OT-4	11	5234396	5234418	+	4	TTTAGCCAGCTTCCTC	AGG	exonic	HBD	ENSG0000223609
OT-5	6	15847230	15847252	−	4	GGAGGGGACICCTTCCTC	TGG	intronic	TULP4	ENSG0000130338
HBB	11	5226984	5227006	+	0	GAAAGGAGACTTTCCTC	AGG	exonic	HBB	ENSG0000244734

The prediction of potential off-targets were done using CC-TOP algorithm. Chr, chromosome number; MM, mismatch in guide sequence; PAM, protospacer adjacent motif.

Introducing the GTC Change through rAAV6 Donor Template Delivery

Based on our previous data and work from other groups in achieving efficient HDR,26–29 we constructed an rAAV6 vector with 2.2-kb homology arms designed to introduce either a GTC (encoding E6V) or a silent change GAA (encoding E6optE) at codon 6 of exon 1 of the HBB gene. The design was focused on preserving intron 1 and native promoter and/or enhancer regions to maximize transcription and translation (Figure 2A). The experimental timeline is shown in Figure 2B.

Testing the GTC (encoding E6V) rAAV6 donor template (3% culture volume) resulted in HDR rates of 37.5% ± 15% and residual NHEJ rates of 12.7% ± 5.3% (Figure 2C). Testing of GTC (encoding E6V) rAAV6 with both the electroporation and nucleofection systems demonstrated that increases in total editing rates led to increases in rates of both HDR and residual NHEJ (Figure S2A). The HDR and residual NHEJ rates measured when RNP was co-delivered with GTC rAAV6 were additionally validated by colony sequencing (30.8% ± 6.3% HDR, 17.9% ± 7.2% NHEJ), n = 5 donors; Figure S2B). Cell viability after electroporation and transduction with 3% culture volume of GTC rAAV6 was on average 79.2% (Figure S2C). Globin sub-types were measured in differentiated erythroid progenitors. In lieu of studies using HSCs from SCD subjects, we next tested the introduction of a silent change (GAA, encoding E6optE). Testing the GAA (encoding E6optE) rAAV6 donor template (1% culture volume) co-delivered with RNP resulted in HDR rates of 37.5% ± 6% and NHEJ rates of 43.7% ± 11.5% (Figure 2E). Of note, the increase in total NHEJ events using co-delivery of RNP and GAA (encoding E6optE) rAAV6 compared with the co-delivery of RNP and GTC (encoding E6V) rAAV6 cassettes likely reflects an increase in overall editing rates using the nucleofection system. While our data for GTC (encoding E6V) rAAV6 editing included experiments using both Neon (n = 3) and Lonza (n = 1), GAA (encoding E6optE) rAAV6 co-delivery was tested exclusively with the Lonza system (n = 3).

Cell viability after electroporation and transduction with 1% GAA (encoding E6optE) rAAV6 was on an average 60% (Figure S2C). RP-HPLC analysis identified a marked decrease in βA levels (from 82% in control cells to 16.9% ± 15% in RNP-edited cells) and 3-fold increases in γA (HBG1) and γG (HBG2) in the RNP-edited samples. In contrast, co-delivery of RNP and 1% GAA (encoding E6optE) rAAV6 led to a less robust reduction in βA levels (54.2% ± 10% βA expression, n = 3; Figure 2F) and less prominent increases in γA (HBG1) and γG (HBG2). The retention of βA expression following co-delivery of RNP and GAA (encoding E6optE) rAAV6 can be ascribed to AAV-mediated HDR. Consistent with this conclusion, RP-HPLC analysis of cells treated with co-delivery of RNP and GAA (encoding E6optE) rAAV6 showed 64.7% βA after HDR (Figure S4). Taken together, our findings demonstrate the capacity of RNP and rAAV6 co-delivery to promote high levels of HDR in exon 1 of HBB, leading to either an introduction of sickle mutation or a silent mutation designed to revert the sickle mutation in patient cells.

Introducing the GAA Change through ssODN Donor Template Delivery

We next performed experiments assessing the efficiency of co-delivery of RNP and ssODNs to introduce the identical nucleotide changes achieved using rAAV6 in mPBSCs. Alternative 168-bp ssODNs were designed to generate a GTC (encoding E6V), GTC (encoding E6V), or GAA (encoding E6optE) nucleotide change (Figure 3A). The experimental timeline is shown in Figure 3B.
There was a dose-dependent increase in cytotoxicity with increasing concentrations of ssODN tested (Figure S5A). The HDR gene conversion rate following co-delivery of RNP and 50 pmol ssODN was 11.9% ± 3.4% for the GTC ODN and 17% ± 4.3% for the GTG ODN, and the residual NHEJ was 17.4% ± 17.5% and 20.0% ± 1.7%, respectively (Figures 3C and S5B). The HDR and NHEJ rates for 50 pmol GTG ssODN (encoding E6V) were further validated by colony sequencing and were 12.6% ± 8.8% and 30.1% ± 12.4%, respectively (Figure S5C).

Globin sub-types were assessed by RP-HPLC. We observed a significant decrease in β^A and 1.5-fold increases in γ^A (HBG1) and γ^G (HBG2) following RNP-mediated disruption. The co-delivery of RNP and varying concentrations of ssODN led to a dose-dependent increase in sickle globin expression, with optimal β^S expression with 50 pmol GTC (encoding E6V) ssODN (Figure S5D) and GTG ssODN (Figure S5D). Editing with GTC (encoding E6V) ssODN resulted in 5.2% β^S expression (50 pmol, n = 5; Figure 3D), and editing with GTG (encoding E6V) ssODN resulted in 5.3% β^S expression (50 pmol, n = 3), respectively (Figure S5D). Consistent with these averages, a sample chromatogram derived from differentiated erythroid cells demonstrated 8.9% β^S expression with GTC (encoding E6V) ssODN (Figure S6) and 9.2% β^S with GTG (encoding E6V) ssODN (Figure S7). A direct comparison of editing in mPBSCs from the same donor using GTC ssODN versus rAAV6 demonstrated 8.9% versus 24.5% β^S expression, respectively (Figure S6).
Introducing the GAA Change through ssODN Donor Template Delivery

Consistent with our experiments using rAAV6 donor templates, we also tested the introduction of a silent change (GAA, encoding E6optE) with the ssODN donor template, at the indicated concentrations (50 pmol ssODNs, donor n = 5). (D) RP-HPLC analysis of erythroid cells to measure the globin sub-types (%) with the respective mock sample by two-way ANOVA with Dunnett’s multiple comparison. Asterisks are color matched to the respective mock sample. See also Figures S5–S8.

Globin sub-types in differentiated erythroid pellets were measured, and a significant decrease in β^A (25.7%, n = 6 donors) and 1.5- to 3-fold increases in γ^A (HBG1) and γ^G (HBG2) were observed with RNP-mediated disruption. In contrast, use of the GAA (encoding E6optE) ssODN donor template retained β^A expression at 58.4% (n = 6 donors; Figure 3F). A sample chromatogram, showing globin sub-types in edited differentiated erythroid cells, demonstrates an increase from 0% HbA in RNP-disrupted samples to 75.6% following...
the co-delivery of RNP and GAA (encoding E6optE) ssODN (Figure S9). A direct comparison of RNP-only edited mPBSC versus cells edited using the co-delivery of RNP and HDR donor template showed an increase in HbA expression from 0% to 75.6% and 64.7% for GAA ssODN and rAAV6 donor templates, respectively (Figure S9).

Comparison of ssODN and rAAV6 Donor Template Delivery Methods by MiSeq Analysis

To further assess gene-editing efficiencies achieved using our alternative platforms, we used MiSeq analysis to validate the editing outcomes. The HDR and NHEJ rates achieved using the Neon electroporation system for RNP co-delivery in association with all ssODN donor templates versus GTC (encoding E6V) rAAV6 donor template showed an increase in HbA expression from 0% to 75.6% and 64.7% for GAA ssODN and rAAV6 donor templates, respectively (Figure S9).

Impact of ssODN versus rAAV6 Delivery on Sustained Engraftment of HDR-Edited Cells In Vivo

To understand the role of alternative donor template platforms in altering the long-term engraftment potential of HDR-edited
CD34+ cells, healthy control mPBSCs edited to introduce the GTC (encoding E6V) change were transplanted into busulfan-conditioned (12.5–25 mg/kg) NBSGW recipient mice, an immunodeficient strain that permits the development of a human erythroid compartment. Cells, derived from identical donors, edited with each platform (2 × 10^6 cells) were transplanted at day 1 following electroporation. Transplanted animals were assessed over time and evaluated at 3 or 12–14 weeks for human cell engraftment in the BM and spleen (Figure 5A).

Human chimerism was comparable for NBSGW recipients of mock- or ssODN-edited cells. In contrast, a significant decrease in human (h)CD45+ cell engraftment was observed in recipients of rAAV6-edited cells (Figure 5B). No decline in hCD45+ cell engraftment was observed at 14 weeks in animals that received cells transduced with rAAV6 alone (without RNP co-delivery; data not shown). Additionally, the proportion of CD19+ B cells was modestly increased in the rAAV6-edited group, suggesting skewing toward more differentiated progeny (Figure 5C). Other lineages, including myeloid (CD33+),...
Cells isolated from the BM were cultured in erythroid differentiation media for 2 weeks after harvest to permit expansion of CD235^+ cells (with an increase from 4.01% at harvest to 27.6% CD235^+ in \textit{ex vivo} cultures; Figure 5D). Representative flow plots of edited donor cells pre- and post-transplant revealed equivalent proportions of primitive HSC sub-populations, including CD34^+, CD34^+CD38^-; and CD34^-CD38^-CD133^-CD90^- cells (Figures 5E, S11A, and S11B).

The input HDR rates (day 14 in culture) across 4 transplants were 24.28% ± 7.5% and 17.5% ± 6% for rAAV6 and ssODN delivery methods, respectively. HDR-edited cells in the BM at 3 weeks post-transplant declined to 13.58% ± 0.16% and 15.19% ± 2.8% (n = 2) for rAAV6 and ssODN delivery, respectively. At 12–14 weeks, the HDR rates declined precipitously to 0.66% ± 0.66% (n = 17) in recipients of rAAV6-edited cells. Strikingly, HDR rates also declined, but to a much lesser extent, to 4.136% ± 2.1% (n = 18) in recipients of ssODN-edited cells (Figure 5F). The input NHEJ was 7% ± 1.4% and 13.5% ± 3.7% for rAAV6 and ssODN donor template delivery methods, respectively, and that remained unchanged at 3 weeks post-transplant (rAAV6, 9% ± 3%; ssODN, 12.3% ± 2.1%) and declined at 12–14 weeks (NHEJ rAAV6, 1.3% ± 0.85%; ssODN, 5% ± 2.7%; Figure 5G). HDR and NHEJ rates in the BM of NBSGW mice \textit{in vivo} were verified by MiSeq analysis (HDR rAAV6, 0.65% ± 0.65%; ssODN, 3.84% ± 2.1%; NHEJ rAAV6, 2.5% ± 2.5%; ssODN, 9.9% ± 5.3%; Figures S12A and S12B). An average of 120,534 pairwise-aligned MiSeq reads was obtained from each \textit{in vivo} BM sample (Figure S12C). Crispresso^30 analysis identified that the BM samples of rAAV6-edited animals had fewer frameshift mutations (1.4% \textit{in vivo}) compared to BM samples from ssODN-edited animals (5.3% \textit{in vivo}; Figure S12D).

A subset of each initial edited input CD34^- cell population was maintained \textit{in vitro} in erythroid culture conditions and analyzed for globin sub-types. rAAV6-edited cells exhibited 16.4% ± 6.8% and ssODN-edited cells exhibited 12.42% ± 4.4% \beta^S expression (Figure S12A). The \textit{ex vivo} BM cultures analyzed by HPLC expressed 3.8% \beta^S (n = 3 animals) in the ssODN-edited group. In contrast, \beta^S was not detected in the rAAV6- (n = 4 animals) or mock-epitope recipients (n = 2 animals; Figure S12B). HPLC of the 69 burst-forming unit-erythroid (BFU-E) colonies revealed 3.35 colonies derived from the ssODN-edited group expressing \beta^S, resulting in an average of 5.13% \beta^S expression. In contrast, \beta^S expression was not detected in rAAV6-edited (n = 26 colonies) or mock-edited colonies (n = 8 colonies; Figures S13C and S13D). The HPLC profile of single colonies for mock samples contained 97% HbA, whereas the edited groups had a decrease in HbA and an increase in HbF (HbF rAAV6, 17.4%; ssODN, 17.9%) and/or Hbs (Figures S13C and S13D). Chromatograms of single-erythroid colonies derived from the ssODN-edited group demonstrated \beta^S expression levels of 38.7%, 84.5%, and 56.3% (Figures S14 and S15). Taken together, these data demonstrate that ssODN-modified cells outperformed rAAV6-modified cells in NBSGW mice \textit{in vivo}, leading to both higher sustained engraftment of HDR-edited cells and sickle globin expression.

DISCUSSION

Delivery of a DNA donor template comprises a crucial step in achieving precise gene correction following targeted gene cleavage in human HSCs. Importantly, the overall ratio of HDR to NHEJ significantly impacts the potential clinical benefit of gene correction in SCD. While significant previous work has separately assessed alternative nuclease and donor template delivery methods, no direct \textit{in vitro} and \textit{in vivo} comparison of the most efficient methods has been performed to date. In the current study, we assessed the role of alternative donor template delivery methods to achieve initial gene conversion events \textit{in vitro} as well as the impact on the survival, stem-like potential, and sustained engraftment of edited cells \textit{in vivo}. Our combined data demonstrate the complexity and address some of the challenges in achieving long-term clinical gene correction in SCD.

We observed no major differences in HSC viability, phenotype, or expansion \textit{in vitro} using rAAV6 compared with ssODN delivery. However, we show that rAAV6 donor templates mediate consistently higher HDR:NHEJ ratios. In contrast, in transplant experiments, we show that higher levels of sustained HDR are achieved using HSCs edited with ssODN donor templates.

We performed an initial screening of multiple candidate guide RNAs spanning a 53-bp region around the sickle mutation site. As shown here, sgRNA-g1 efficiently creates DSBs immediately adjacent to the sickle mutation site (between 21 and 22 bp), and it was, therefore, chosen as a potentially more useful guide than sgRNA-g6 (G10)21,22,24 that generates a DSB between 37 and 38 nt in exon 1 of \textit{HBB}, which is 16 bp away from the mutation site. Use of Cas9:sgRNA at a ratio of 1:2.5 promoted the highest levels of editing in human mPBSCs, with no demonstrable off-target effects (Figures 1B, S1B, and S1C). Of note, total editing rates increased 2.5-fold when using the nucleofection system (Figure S1D), with increases in both HDR as well as residual indels in vitro (Figures S2A and S5E). The nucleofection system is now widely used to edit the \textit{HBB} locus22,31,32. Although the increase in HDR using the nucleofection system is a favorable outcome, it is associated with a parallel, clinically undesirable increase in NHEJ that could be impactful when trying to preferentially promote exonic repair. Following delivery of RNP containing sgRNA-g1, we tested the capacity of alternative rAAV6 cassettes versus a series of ssODNs to drive nucleotide changes in the sixth codon of exon 1 of \textit{HBB}. Our \textit{in vitro} studies demonstrated that rAAV6 promotes greater rates of HDR than NHEJ (GTC rAAV6, 37.5% ± 15% HDR and 12.7% ± 5.3% NHEJ; Figure 2C); in contrast, ssODN delivery drives more NHEJ than HDR (GTC ssODN, 11.9% ± 3.4% HDR and 17.4% ± 17.5% NHEJ; Figures 3C and 4A).

Importantly, in parallel with our \textit{in vitro} analysis of gene editing, we directly assessed the potential impact of alternative donor template delivery methods on the sustained engraftment of HDR-edited cells. We utilized the NBSGW humanized model that permits high levels of human HSC engraftment and facilitates studies of erythroid cells.33–35
Tracking of edited cells in the BM and spleen at 12–14 weeks post-transplant demonstrated that multi-lineage engraftment was achieved in all recipients. However, overall human chimerism was lower in recipients of rAAV6-edited cells compared to recipients transplanted with mock- or ssODN-edited populations (Figure 5B). Relative to input levels, HDR rates were lower in cells within the BM for both donor template delivery platforms. This overall decline in engraftment of HDR-edited cells is consistent with multiple previous reports using each of these donor template delivery approaches. Notably, however, despite the loss of HDR-edited cells in both settings, the proportion of HDR-edited cells remained ~6-fold higher (4.14%, n = 18 versus 0.66%, n = 17) in recipients of ssODN-edited mPBSCs compared to cells modified with rAAV6. Similarly, 5% NHEJ was detected in animals that were engrafted with ssODN-edited cells, while only 1.3% NHEJ was detected in recipients of cells modified with rAAV6.

Our in vivo data suggest that, in comparison with ssODN-edited cells, rAAV6-edited cells fail to engraft efficiently and/or are rapidly outcompeted by unedited cells. The negative impact of rAAV6 likely reflects a synergistic response to combined assaults to the HSC compartment through DSBs and virally mediated template delivery. These combined events and the presence of episomal AAV could alter HSC metabolism, thereby limiting proliferation, survival, and/or self-renewal. Alternatively, a smaller proportion of long-term HSCs (LT-HSCs) could have been modified using rAAV6 delivery, leading to a decline in long-term gene-modified cells. Importantly, consistent with our molecular data showing very low HDR rates in engrafted cells with rAAV6 delivery, βS expression was identified only when engrafted BM cells were enriched for pooled 235° erythroid cells (data not shown). In contrast, we observed βS expression via RP-HPLC analysis at levels (~5%) equivalent to our molecular data in both pooled- and single-erythroid colonies in recipients of ssODN-edited mPBSCs.

As a proof-of-concept study to compare donor template delivery methods in driving gene correction, we introduced the sickle mutation, thereby contributing to an overall lower engraftment of HDR-edited cells than would be achieved following gene correction in SCD patient cells. We introduced the sickle allele to provide a clear functional phenotype for HDR, to compare different donor delivery methods, to evaluate sustained HDR rates in vivo, and to assess globin expression (sickle globin) in the BM. The E6V GTC change introduces a disease mutation that is likely to confer a survival disadvantage that affects the persistence of edited human cells in the BM, a feature not present in most other studies. Of note, compared with our findings, other groups utilizing co-delivery of RNP and rAAV6 donors targeting the HBB and CD40L loci, respectively, in mPBSCs have reported higher sustained HDR rates in vivo (3.5%–4.4%).

In both models, rAAV6-edited cells have equal survival opportunity compared with wild-type cells to re-constitute the BM.

Even higher sustained HDR rates (10%–12%, and more recently 25.5%) using an rAAV6 donor template have been reported using patient cord blood CD34+ cells in the correction of X-linked severe combined immunodeficiency (SCID-X1). A higher engraftment rate of CD34+ cells derived from cord blood (or fetal liver) compared with mPBSCs and the lack of survival disadvantage likely account for some of these differences. Additional improvement in engraftment of AAV6-edited cells could potentially be achieved using the Lonza nucleofection system in association with alternative culture conditions, including lower cell seeding density following editing. These approaches may improve the survival of HDR-edited cells and/or enrich for editing within long-term HSCs. However, within the scope of this study, comparing introduction of the sickle mutation into mobilized CD34+ cells from the same donor, ssODN delivery substantially outperformed rAAV6 donor delivery based on better sustained engraftment of HDR-edited cells within the BM at 12–14 weeks.

Consistent with our findings introducing the sickle mutation in healthy donor mPBSCs, recent work using SCD patient-derived mPBSCs and ssODN-based gene correction to revert the sickle mutation resulted in sustained HDR rates of ~20% in the BM at 16–20 weeks post-transplant. In contrast to HSCs edited to express the sickle mutation (in our study), homozygous sickle cells that undergo mono-allelic or bi-allelic correction gain a fitness advantage and/or survival advantage and outcompete cells homozygous for the sickle allele as well as mutant cells with indels. As the next step toward clinical application of HDR-based editing in SCD, we generated codon-optimized sickle correction donor templates encoding an E6optE amino acid change via HDR targeting. We achieved efficient HDR rates in vitro using this approach in mPBSCs (rAAV6, 37.5%; ssODN, 29.6%). Testing these correction templates in patients with SCD will provide important additional information regarding the potential for clinical translation. Ideally, precise correction through HDR should exceed the error-prone NHEJ outcomes when editing at the HBB gene. However, based on selective advantage, the delivery of HSCs with heterogeneous editing outcomes resulting in βS/βS, βS/βb, and βS/βA alleles in vivo, providing a spectrum of outcomes more desirable than homozygous sickle alleles.

Taken together, our findings provide the first demonstration that ssODN delivery outperforms rAAV6 donor template delivery in permitting sustained gene conversion outcomes in vivo in long-term HSCs. As shown here, rAAV6 mediates more efficient HDR rates in vitro, and it has previously been demonstrated by our group and others to minimally impact in vivo function of gene-edited primary human T or B cells. Additional modifications, however, will likely be required to increase the efficiency of AAV6 donor delivery to drive sustained HDR in long-term HSCs to permit effective clinical translation.

MATERIALS AND METHODS

rAAV6 Production

rAAV6 stocks were produced as previously described. The rAAV6 vector, serotype helper, and HgT1-adeno helper plasmids were transfected into HEK293T cells. Cells were harvested at 48 h, lysed,
and treated with benzonase. An iodixanol density gradient was used to purify the virions with recombinant rAAV6 genomes. The qPCR-based titers of rAAV6 genomes were determined by using inverted terminal repeat (ITR)-specific primers and probe. 1%, 2%, and 3% of the culture volume were used for transducing rAAV6 into mPBSCs.

CD34+ HSCs

Frozen mPBSCs were purchased from Cooperative Center for Excellence in Hematology (CCEH) at Fred Hutchinson Cancer Research Institute, Seattle, WA.

sgRNA and TALEN Designs

A search of the literature identified guide RNA sequences that are widely used across groups to edit the HBB gene. 22,24,31,32 We further designed guides that were predicted to cut close to the sickle mutation using CRISPR design tools (https://zlab.bio/guide-design-resources; http://crispor.tedor.net/). All guides were synthesized as chemically modified 2'-O-methyl analogs with 3' phosphorothioate internucleotide linkages in the first three 5' and 3' terminal residues (Synthego, CA).

Electroporation, Transduction of Cells, and Erythroid Differentiation Culture

Alt-R Sp Cas9 Nuclease 3NLS protein was used for all studies (Integrated DNA Technologies, Coralville, IA). The CD34+ cells were cultured in stem cell growth medium (SCGM; CellGenix, NH) with 100 ng/mL each of fms-like tyrosine kinase 3 ligand (FLT-3L), thrombopoietin (TPO), human stem cell factor (hSCF), and interleukin-6 (IL-6) (PeproTech, Rocky Hill, NJ). Cells were electroporated 48 h after thaw, using the Neon electroporation system (Thermo Fisher Scientific, Waltham, MA) at 1,300 V, 20 ms, and 1 pulse or the Lonza 4-D nucleofector (Lonza, Basel, Switzerland; CM149 protocol). The Cas9 RNP was made right before electroporation or nucleofection. Cells after electroporation or nucleofection were added to either rAAV6 containing SCGM media with cytokines (at a ratio of 1:2.5 of Cas9:sgRNA). The RNP mixture was made fresh and treated with 6 units of EcoRV high-fidelity restriction enzyme (EcoRV-HF; New England Biolabs, Ipswich, MA) at 37°C for 15 min to digest the gDNA outside of the amplicon region. ddPCR forward and reverse primers (ddPCR F/R) were used to amplify a 210-bp amplicon. The assay was designed as a dual-probe assay, with WT-hexachlorofluorescein (HEX) and HDR-6-carboxyfluorescein (FAM) probe run together, and the reference-HEX probe was run in parallel in a separate well with the same ddPCR F/R primers (Table S1), using ddPCR supernox for probes (no deoxyuridine-5′-triphosphate [dUTP], Bio-Rad). The droplets were generated and amplified on a Bio-Rad thermocycler (95°C, 5 min; 94°C, 30 s; 56°C, 1 min; 72°C, 1 min; step 2, 49 cycles of 98°C, 10 min and 12°C, ∞). The FAM and HEX fluorescence intensities were measured on the Bio-Rad QX200 machine (Bio-Rad, Hercules, CA). The HDR (%) events (HDR-FAM+) and WT (WT-HEX+) events were calculated after correction for the reference gene (REF-HEX'; Table S1).

\[
\% \text{HDR} = \frac{\% \text{HDR FAM} + \text{Ref HEX}^+}{\text{Ref HEX}} + \frac{\% \text{WT} \text{HEX} + \text{Ref HEX}}{\text{Ref HEX}}
\]

(Figure S16)

Measuring Indel Frequencies

gDNA from day 10 post-electroporation was used to amplify the 1,250-bp amplicon around the cut site with forward and reverse primers (HBB-F/R-1250; Table S1). The PCR products were cleaned using NucleoSpin gel and PCR clean-up kit (Machery Nagel, PA), and they were subject to Sanger sequencing with the sequencing primer (SCL-F/R-386; Table S1). The sequences were analyzed using TIDE or inference of CRISPR edits (ICE) algorithm to measure INDELS following editing. 48,49

MiSeq Analysis

The HBB (386-bp) and HBD (301-bp) gene-specific amplicons were amplified from 200 ng gDNA using PrimeSTAR GXL DNA polymerase (TaKaRa, Kusatsu, Japan) with MiSeq primers (Table S1). The primers added an overhang adaptor sequence onto the amplicons. Nextera 96-index kit (FC-121-1012, Illumina, San Diego, CA) was used to add a 5' and 3' unique index to each sample. The samples were purified with Agencourt AMPure XP (Beckman Coulter, Brea, CA), and the band was verified on a PAGE gel. The samples were measured and pooled to make libraries, and quality control was done on Qubit (Thermo Fisher Scientific, Waltham, MA) and analyzed on MiSeq 500 Cycle2 kit (Illumina, San Diego, CA) at the Genomics core, Fred Hutchinson Cancer Research Institute, Seattle, WA. The data were mined using the Crispresso2 algorithm. 50 Analysis of HBB gene was used for quantitation of on-target gene modification and HBD gene was used for quantitation of off-target analysis.
Engraftment Studies in NBSGW Mice

The NBSGW mice were purchased from Jackson Laboratories and maintained in a designated pathogen-free facility at the Seattle Children’s Research Institute (SCRI). All animal studies were performed according to the Association for Assessment and Accreditation of Laboratory Animal Care (AAALAC) standards and were approved by the SCRI Institutional Animal Care and Use Committee (IACUC). In our experiments, 6- to 7-week-old NBSGW mice were busulfan (Selleckchem) treated 24 h before transplant of edited cells. 2 × 10^6 edited cells were infused by tail vein 24 h after editing. The animals in the mock treatment group received 2 × 10^6 cells that were cultured for 48 h under identical conditions but were not electroporated. The animals were monitored regularly. The BM and spleen from these animals were harvested at 3 weeks and 12–14 weeks after transfer, and the cells were analyzed for human chimerism of hCD45+ and mCD45+ and multi-lineage engraftment of CD19+, CD33+, CD235a, CD3+, CD34+, and CD38+ cells (Table S3). The gDNA from BM cells was harvested and analyzed by ddPCR to determine HDR (%) and WT (%). The indels were analyzed by ICE sequencing. The BM cells were cultured in erythroid differentiation media for 2 weeks after harvest. The cells from ex vivo differentiation cultures were measured for CD235a expression by flow cytometry. The cells were also pelleted, washed, and analyzed by RP-HPLC at 2 weeks post-harvest to look for globin expression. BM cells (30,000 cells/plate/3 mL methylcellulose) were added to MethoCult complete media (STEMCELL Technologies, Vancouver, Canada) and plated for colony-forming unit (CFU) analysis. Single BFU-E colonies were picked at 14 days post-harvest, lysed in water, and analyzed by IEC for globin expression.

Statistical Analysis

The data collected from experiments were analyzed on Graph Pad Prism 7 using two-way ANOVA with Dunnett’s multiple comparisons test. All samples across groups were compared to control or mock-treated cells to evaluate significance (ns, not significant; *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001).

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.omtn.2019.05.025.

AUTHOR CONTRIBUTIONS

Conceptualization, S.P., D.J.R., A.M.S., and K.J.; Methodology, S.P., D.J.R., A.M.S., and K.J.; Investigation, S.P., S.N.L., M.P.B., O.N., C.L., and S.S.; Writing – Original Draft, S.P.; Writing – Review & Editing, S.P. and D.J.R.; Funding Acquisition, D.J.R. and A.M.S.; Resources, D.J.R.; Supervision, S.P., C.T.L., D.J.R., and A.M.S.

CONFLICTS OF INTEREST

A.M.S. is an employee of Casebia Therapeutics, Cambridge, MA, and receives equity. O.N. and C.L. are employees and shareholders of bluebird bio, Cambridge, MA. The other authors declare no competing interests.

ACKNOWLEDGMENTS

We would like to thank Iram Khan, King Hung and Ezra Lopez for making rAAV6 viruses. All the sequencing support was provided by the Seattle Children’s Research Institute sequencing core. We would like to thank Garrett Heffner for scientific discussions and expertise. Synthego Inc., CA, provided chemically modified sgRNA for screening. We are grateful for their assistance. MiSeq data were processed by Seattle Children’s Research Institute, Bioinformatics Core. We would like to thank Andrew Timmins and Paul Hodor for their assistance and support with processing the MiSeq data. This work was supported by the Seattle Children’s Research Institute, Program for Cell and Gene Therapy; the NIH (under award 1R01HL136135-02); bluebird bio, Inc.; and the Children’s Guild Association Endowed Chair in Pediatric Immunology (D.J.R.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

REFERENCES

1. Kato, G.J., Piel, F.B., Reid, C.D., Gaston, M.H., Ohene-Frempong, K., Krishnamurti, L., Smith, W.R., Panezinto, J.A., Weatherell, D.J., Costa, F.F., and Vichinsky, E.P. (2018). Sickle cell disease. Nat. Rev. Dis. Primers 4, 18010.
2. Piel, F.B., Steinberg, M.H., and Rees, D.C. (2017). Sickle Cell Disease. N. Engl. J. Med. 376, 1561–1573.
3. Sankaran, V.G., and Weiss, M.J. (2015). Anemia: progress in molecular mechanisms and therapies. Nat. Med. 21, 221–230.
4. Serjeant, G.R. (2013). The natural history of sickle cell disease. Cold Spring Harb. Perspect. Med. 4, a011783.
5. Hoban, M.D., Orkin, S.H., and Bauer, D.E. (2016). Genetic treatment of a molecular disorder: gene therapy approaches to sickle cell disease. Blood 127, 839–848.
6. Johnson, F.L., Look, A.T., Gockerman, J., Ruggiero, M.R., Dalla-Pozza, L., and Billings, F.T. (1984). Bone-marrow transplantation in a patient with sickle-cell anemia. N. Engl. J. Med. 311, 780–783.
7. Gluckman, E. (2013). Allogeneic transplantation strategies including haploidentical transplantation in sickle cell disease. Hematology (Am. Soc. Hematol. Educ. Program) 2013, 370–376.
8. Bauer, D.E., Brendel, C., and Fitzhugh, C.D. (2017). Curative approaches for sickle cell disease: A review of allogeneic and autologous strategies. Blood Cells Mol. Dis. 67, 155–168.
9. Braun, C.J., Boztug, K., Paruzynski, A., Witzel, M., Schwarzer, A., Rothe, M., Modlich, U., Beier, R., Göhring, G., Steinemann, D., et al. (2014). Gene therapy for Wiskott-Aldrich syndrome–long-term efficacy and genotoxicity. Sci. Transl. Med. 6, 227ra33.
10. Hacein-Bey-Abina, S., Garrigue, A., Wang, G.P., Soulier, J., Lim, A., Morillon, E., Clappier, E., Caccavelli, L., Delabesse, E., Beldjord, K., et al. (2008). Insertional onco genesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J. Clin. Invest. 118, 3132–3142.
11. Hacein-Bey-Abina, S., von Kalle, C., Schmidt, M., Le Deist, F., Wuillafort, N., Mchtyre, E., Radford, L., Villeval, J.L., Fraser, C.C., Cavazzana-Calvo, M., and Fischer, A. (2003). A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N. Engl. J. Med. 348, 255–256.
12. Modlich, U., Navarro, S., Zychlinski, D., Maetzig, T., Knoss, S., Brugman, M.H., Schambach, A., Charrier, S., Galy, A., Thrasher, A.J., et al. (2009). Insertional transformation of hematopoietic cells by self-inactivating lentiviral and gammaretroviral vectors. Mol. Ther. 17, 1919–1928.
13. Stein, S., Ott, M.G., Schultz-Strasser, S., Jauch, A., Burwinkel, B., Kinner, A., Schmidt, M., Kramar, A., Schwäble, J., Glimm, H., et al. (2010). Genomic instability and myelodysplasia with monosomy 7 consequent to EVI1 activation after gene therapy for chronic granulomatous disease. Nat. Med. 16, 198–204.
14. Thompson, A.A., Walters, M.C., Kwiakowski, J., Rasko, J.E.J., Ribeil, J.A., Hongeng, S., Magrin, E., Schiller, G.J., Payen, E., Semeraro, M., et al. (2018). Gene Therapy in
Patients with Transfusion-Dependent β-Thalassemia. N. Engl. J. Med. 378, 1479–1493.

15. Marktel, S., Scaramuzzia, S., Cicalese, M.P., Giglio, F., Galimberti, S., Lidonnici, M.R., Calbi, V., Assanelli, A., Bernardo, M.E., Rossi, C., et al. (2019). Intrabone hematopoietic stem cell gene therapy for adult and pediatric patients affected by transfusion-dependent β-thalassemia. Nat. Med. 25, 234–241.

16. Ribeil, J.A., Hacène-Bey-Albina, S., Payen, E., Magnani, A., Semeraro, M., Magrin, E., Caccavelli, L., Neven, B., Bourget, P., El Nemer, W., et al. (2017). Gene Therapy in a Patient with Sickle Cell Disease. N. Engl. J. Med. 378, 848–855.

17. Branzeti, D., and Foiati, M. (2008). Regulation of DNA repair throughout the cell cycle. Nat. Rev. Mol. Cell Biol. 9, 297–308.

18. Chiruvella, K.K., Liang, Z., and Wilson, T.E. (2013). Repair of double-strand breaks by end joining. Cold Spring Harb. Perspect. Biol. 5, a012757.

19. Morgan, R.A., Gray, D., Lomova, A., and Kohn, D.B. (2017). Hematopoietic Stem Cell Gene Therapy: Progress and Lessons Learned. Cell Stem Cell 21, 574–589.

20. Hoban, M.D., Cost, G.J., Mendel, M.C., Romero, Z.G., Campo-Fernandez, B., McNeill, M., et al. (2018). In vivo selection for corrected β-globin alleles after CRISPR/Cas9 editing in human sickle hemopoietic stem cells enhances therapeutic potential. bioRxiv. https://doi.org/10.1101/omtn.2019.05.025.

33. Fiorini, C., Abdulhay, N.J., McFarland, S.K., Munschauer, M., Ulrich, J.C., Chiarle, R., and Sankaran, V.G. (2017). Developmentally-faithful and effective human erythropoesis in immunedeficient and Kit mutant mice. Am. J. Hematol. 92, E513–E519.

34. Mcintosh, B.E., Brown, M.E., Duffin, B.M., Mauport, J.P., Vereide, D.T., Shukvin, I.L., and Thomson, J.A. (2015). Nonirradiated NOD.B6.Scid IL2rg -/- KitW/W41 (NsgW41) mice support multilinage engraftment of human hematopoietic cells. Stem Cell Reports 4, 171–180.

35. Rahming, S., Kronstein-Wiedemann, R., Fohgrub, J., Kronstein, N., Nevmerzhitskaya, A., Bornhäuser, M., Gassmann, M., Platt, A., Orden, R., Tonn, T., and Waskow, C. (2016). Improved Human Erythropoiesis and Platelet Formation in Humanized NSGW41 Mice. Stem Cell Reports 7, 591–601.

36. Charlesworth, C.T., Camarena, J., Cromer, M.K., Vaidyanathan, S., Bak, R.O., Park, J.M., Potter, J., Dever, D.P., and Porteus, M.H. (2018). Priming Human Repopulating Hematopoietic Stem and Progenitor Cells for Cas9/gRNA Gene Targeting. Mol. Ther. Nucleic Acids J2, 89–104.

37. De Ravin, S.S., Li, L., Wu, X., Choi, U., Allen, C., Koonztz, S., Lee, J., Theobald-Whiting, N., Chu, J., Garofalo, M., et al. (2017). CRISPR-Cas9 gene repair of hematopoietic stem cells from patients with X-linked chronic granulomatous disease. Sci. Transl. Med. 9, eaad3480.

38. Cromer, M.K., Vaidyanathan, S., Ryan, D.E., Curry, B., Lucas, A.B., Camarena, J., Kauslikhi, M., Hay, S.R., Martin, R.M., Steinfeld, I., et al. (2018). Global Transcriptional Response to CRISPR/Cas9-AAV6-Based Genome Editing in CD34+ Hematopoietic Stem and Progenitor Cells. Mol. Ther. 26, 2431–2442.

39. Kuo, C.Y., Long, J.D., Campo-Fernandez, B., de Oliveira, S., Cooper, A.R., Romero, Z., Hoban, M.D., Jorgensen, V., Lill, G.R., et al. (2018). Site-Specific Gene Editing of Human Hematopoietic Stem Cells for X-Linked Hyper-IgM Syndrome. Cell Rep. 23, 2606–2616.

40. Schröli, G., Ferrari, S., Conway, A., Jacob, A., Capo, V., Albano, L., Plati, T., Castiello, M.C., Sanvito, F., Genneray, A.R., et al. (2017). Preclinical modeling highlights the therapeutic potential of hematopoietic stem cell gene editing for correction of SCID-X1. Sci. Transl. Med. 9, eaao6820.

41. Pavel-Dinu, M., Wiebing, V., Dejene, B.T., Srifa, W., Mantri, S., Nicolas, C.E., Lee, C., Bao, G., Kilbeek, E.J., Punjya, N., et al. (2019). Gene correction for SCID-X1 in long-term hematopoietic stem cells. Nat. Commun. 10, 1634.

42. Hung, K.L., Meilis, I., Hale, M., Chen, C.Y., Singh, S., Jackson, S.W., Miao, C.H., Khan, I.F., Rawlings, D.J., and James, R.G. (2018). Engineering Protein-Secreting Plasma Cells by Homology-Directed Repair in Primary Human B Cells. Mol. Ther. 26, 456–467.

43. Khan, I.F., Hirata, R.K., and Russell, D.W. (2011). AAV-mediated gene targeting methods for human cells. Nat. Protoc. 6, 482–501.

44. Rutledge, E.A., Halbert, C.L., and Russell, D.W. (1998). Infectious clones and vectors derived from adenovirus-associated virus (AAV) serotypes other than AAV type 2. J. Virol. 72, 309–319.

45. Aurnhammer, C., Haase, M., Muether, N., Hausl, M., Rauschhuber, C., Huber, I., Nitschko, M., Busch, U., Sing, A., Ehrhardt, A., and Baiker, A. (2012). Universal real-time PCR for the detection and quantification of adenov-associated virus serotype 2-derived inverted terminal repeat sequences. Hum. Gene Ther. Methods 23, 18–28.

46. Wjoeda, U., Noel, P., and Miller, J.L. (2002). Fetal and adult hemoglobin production during adult erythropoesis: coordinate expression correlates with cell proliferation. Blood 99, 3005–3013.

47. Xiang, J., Wu, D.C., Chen, Y., and Paulson, R.F. (2015). In vitro culture of stress erythroid progenitors identifies distinct progenitor populations and analogous human progenitors. Blood 125, 1803–1812.

48. Brinkman, E.K., Chen, T., Amendola, M., and van Steensel, B. (2014). Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res. 42, e168.

49. Haisa, T., Maures, T., Waite, K., Yang, J., Kelso, R., Holdren, K., and Stoner, R. (2018). Inference of CRISPR Edits from Sanger Trace Data. bioRxiv. https://doi.org/10.1101/251082.