Identification and structure characterization of five synthetic opioids: 3,4-methylenedioxy-U-47700, \(\alpha\)-methyl-acetylfentanyl, 2-thiophenefentanyl, benzoylfentanyl and benzoylbenzylfentanyl

Magdalena Popławska1 · Elżbieta Bednarek1 · Beata Naumczuk1 · Lech Kozerski1 · Agata Błażewicz1

Received: 10 April 2020 / Accepted: 30 May 2020 / Published online: 19 June 2020 © The Author(s) 2020

Abstract

Purpose The number of new synthetic opioids, especially fentanyl analogs, on the illicit market is increasing each year and becoming a disturbing phenomenon. Due to the very high potency, ease of addiction and high risk of overdose with the fatal effect, they pose a serious threat to public health. The ever-changing drug market, lack of reference standards and low doses make this class of new psychoactive substances (NPS) a continual analytical challenge in terms of detection and identification. Structure elucidations of five synthetic opioids are described in this paper.

Methods Unequivocal identifications were performed using liquid chromatography–high resolution tandem mass spectrometry with quadrupole time-of-flight analyzer (LC–QTOF-MS/MS) and nuclear magnetic resonance (NMR) spectroscopy with prior chromatographic purification of the sample in each case.

Results Identified NPS included one non-fentanyl opioid belonging to “U-compounds group”—3,4-methylenedioxy-U-47700 and four fentanyl analogs: \(\alpha\)-methyl-acetylfentanyl, benzoylfentanyl, 2-thiophenefentanyl and benzoylbenzylfentanyl.

Conclusions Complementary LC–QTOF-MS/MS and NMR techniques enabled the unambiguous identification of new synthetic opioids. To the best of our knowledge, this is the first comprehensive characterization of these five NPS with complete data which are published to facilitate their detection and identification by forensic and clinical laboratories.

Keywords Synthetic opioids · Non-fentanyl and fentanyl analogs · Structure identification · New psychoactive substance (NPS) · Liquid chromatography–high resolution tandem mass spectrometry with quadrupole time-of-flight analyzer (LC–QTOF-MS/MS) · Nuclear magnetic resonance (NMR) spectroscopy

Introduction

New psychoactive substances (NPS) available on European drug market pose a public health problem and challenge not only for policymakers but also analysts. By the end of 2018, over 730 NPS have been reported to the European Monitoring Center for Drugs and Drug Addiction (EMCDDA) through the Early Warning System (EWS). As many as 55 NPS were detected for the first time in Europe in 2018 [1]. Among all the groups of substances monitored, the most numerous are still synthetic cannabinoids, followed by derivatives of cathinone and phenylethylamine. A disturbing phenomenon is the appearance of substances from the group of opioids, especially fentanyl derivatives, and the fact that the number of new analogs identified is increasing each year. By the end of 2018, 49 new opioids were detected on the European drug market, including 34 fentanyl derivatives, as many as 10 fentanyl derivatives of which were first reported in 2018. They are unregistered derivatives of active pharmaceutical substance—fentanyl, used in authorized medicinal products. Considering their very high potency, ease of addiction and high risk of overdose with the fatal effect (due to respiratory depression), they pose a serious threat to public health [2, 3]. Other synthetic opioids, which are non-fentanyl derivatives, belong mainly to the group of the \(N\)-substituted benzamides and acetamides colloquially called “U-compounds” or the group of \(N\)-substituted cyclohexylmethylbenzamides known as the “AH-compounds” [4]. Majority of
these fentanyl and non-fentanyl analogs were synthesized and patented as potential non-addictive analgesics. Although they have been discarded on the next stage of drug development (mainly due to unsatisfying results of toxicity tests, side effects or potency), they are easily available on the illicit drug market. Novel synthetic opioids are distributed in various forms: powders, tablets, herbal mixtures and liquids.

Over the past 10 years, in National Medicines Institute (NMI), Poland, we have examined seven thousand samples of designer drugs in which about two hundred NPS have been detected by liquid chromatography-electrospray ionization-quadrupole time-of flight mass spectrometry (LC–ESI-QTOF-MS) and nuclear magnetic resonance (NMR) spectroscopy. Thirty-two of them were new on the EU market and were reported to the EWS-EMCDDA.

Among 13 synthetic opioids which were identified in our laboratory, as many as 8 have been reported to the EWS-EMCDDA for the first time (Table 1).

In Polish legislation, the problem of psychoactive substances is regulated by the Act of July 29, 2005 on countering drug addiction, which has been amended several times in recent years, first of all to control more NPS. In 2018, the amendment of the Act introduced a generic character for four NPS groups containing the basic core of the molecule and defined possible substituents, covering most substances from derivatives of 2-phenylethylamine, cathinone, synthetic cannabinoids (cannabinomimetics), and fentanyl derivatives. According to the last amendment of 2019, the fifth open group of benzodiazepines has been added.

A lot of new synthetic opioids have been identified and characterized recently [5–7], including a fentanyl derivative: furanylfentanyl [8] and a non-fentanyl: U-47700 [9, 10]. The identification of novel opioids is a continual analytical challenge due to their variety, low dose needed to cause desired effects, the lack of analytical data available for these substances and the lack of reference standards.

Here we describe the identification of five synthetic opioids detected in four illegal products (sample A, B, C and D) investigated in NMI laboratory. Analyses based on complementary methods LC–QTOF-MS/MS and NMR spectroscopy allowed elucidating their structures. Sample A contained a single compound belonging to “U-compounds group” identified as 3,4-methylenedioxy-U-47700 (compound 1), in sample B two fentanyl analogs were detected: o-methyl-acetylfentanyl (compound 2) and benzoylfentanyl (compound 3). Herbal sample C was enhanced with

Year	Substance	Chemical name	EMCDDA	Controlled in Poland since
2014	Butyrfentanyl (BF)	N-Phenyl-N-[1-(2-phenylethyl)piperidin-4-yl] butanamide	2014a	2015
	4-Fluorobutyrfentanyl (4F-BF)	N-(4-Fluorophenyl)-N-[1-(2-phenylethyl)piperidin-4-yl] butanamide	2014a	2015
	Furanylfentanyl (FU-F)	N-Phenyl-N-[1-(2-phenylethyl)piperidin-4-yl] furan-2-carboxamide	2015	2018
2017	U-47700	3,4-Dichloro-N-[2-(dimethylamino)cyclohexyl]-N-methylbenzamide	2015	2018
	Cyclopropylfentanyl	N-Phenyl-N-[1-(2-phenylethyl)piperidin-4-yl] cyclopropane-carboxamide	2017	2018
	2-Thiophenefentanyl	N-Phenyl-N-[1-(2-phenylethyl)piperidin-4-yl] thiophene-2-carboxamide	2017a	2018 (generic law)
	Benzylfentanyl	N-(1-Benzylpiperidin-4-yl)-N-phenylpropanamide	2017a	2018 (generic law)
	Acetylbenzylfentanyl (N-benzyl-acetylfentanyl)	N-(1-Benzylpiperidin-4-yl)-N-phenylacetamide	2017a	2018 (generic law)
	Benzoxybenzylfentanyl (N-benzyl-benzoylfentanyl)	N-(1-Benzylpiperidin-4-yl)-N-phenylbenzamide	2017a	2018 (generic law)
2018	4-Fluoro-isobutyrfentanyl (4F-iBF)	N-(4-Fluorophenyl)-2-methyl-N-[1-(2-phenylethyl)piperidin-4-yl]propanamide	2016	2018
	Benzoylfentanyl	N-Phenyl-N-[1-(2-phenylethyl)piperidin-4-yl] benzamide	2017	2018 (generic law)
	o-Methyl-acetylfentanyl (2-methyl-acetylfentanyl)	N-(2-Methylphenyl)-N-[1-(2-phenylethyl)piperidin-4-yl]acetamide	2018a	2018 (generic law)
	3,4-Methylenedioxy-U-47700 (3,4-MDO-U-47700)	N-[2-(Dimethylamino)cyclohexyl]-N-methyl-1,3-benzodioxole-5-carboxamide	2018a	Not controlled

Reported for the first time to EWS-EMCDDA by NMI, Poland
2-thiophenefentanyl (compound 4) and sample D contained, among several fentanyl analogs, one unknown compound identified as benzoylbenzylfentanyl (compound 5).

Materials and methods

Materials and reagents

Samples were collected directly from the users by NMI in Warsaw in 2017 and 2018 as a part of the research project. The pilot testing of psychoactive substances obtained directly from users of "designer drugs" in Poland was implemented within the framework of tasks defined in the National Health Program. Three samples consisted of white powders (samples A, B, D) and one sample was in a form of herbal material (sample C). A reference spectrum of fentanyl was extracted from the data obtained for the original medicinal product Fentanyl WZF from Polfa Warszawa S.A. (Warsaw, Poland).

Methanol and acetonitrile, both of purity suitable for LC–MS, were purchased from Merck Millipore (LiChrosolv; Darmstadt, Germany); formic acid from Honeywell (Metropolis, IL, USA); acetonitrile Chromasolv™ from Honeywell [high-performance liquid chromatography (HPLC) grade]; dimethyl sulfoxide (DMSO) pure p.a. from POCH SA (Gliwice, Poland); 85% formic acid p.a. from Chempur (Piekary Śląskie, Poland); methanol-d₄ [methyl-d₃ alcohol-d, 99.8 atom %D, containing 0.03%(v/v) tetramethylsilane (TMS)] (CD₃OD) from Armar Isotopes (Dottingen, Switzerland). Doubly distilled water additionally purified in the Nanopure Diamond UV Deionization System from Barnstead (Dubuque, IA, USA) was used throughout.

Sample preparation

For LC–QTOF-MS/MS analysis, ca. 0.5 mg of powder or ca. 5 mg of herbal mixture was dissolved or extracted with a 1:1:1 (v/v/v) mixture of water/methanol/acetonitrile, with the assistance of ultrasonication for 10 min, and afterwards filtered by Whatman 0.2 μm pore size polytetrafluoroethylene filter media (GE Healthcare, Chicago, IL, USA). If necessary, the filtrate was further diluted to a suitable concentration.

For NMR analysis, several milligrams of powder (samples A, D) were dissolved in 0.7 mL of CD₃OD and ca. 30 mg of herbal mixture (sample C) was extracted in 1.5 mL of CD₃OD. Several milligrams of powder (sample B) were dissolved in 1.5 mL of DMSO and purified using HPLC method. Fraction at retention time 13.4 min (compound 2) and 16.3 min (compound 3) was collected, lyophilized and next dissolved in 0.7 mL of CD₃OD. The solutions were transferred to 5 mm NMR tube.

Instruments and methods

High-performance liquid chromatography–quadrupole time-of-flight tandem mass spectrometry

Identifications of new compounds were performed by means of a high-resolution tandem mass spectrometer with time-of-flight analyzer micrOTOF-QII from Bruker Daltonik (Bremen, Germany) coupled to high-performance liquid chromatography Ultimate 3000 system from Dionex (a part of Thermo Fisher Scientific, Waltham, MA, USA) applying a standard screening method which is used in the laboratory. Chromatographic separations were carried out on Hyperil GOLD C18 analytical column (100 × 2.1 mm i.d., 3 μm particle size; Thermo Fisher Scientific) with a guard column Hypersil GOLD (10 × 2.1 mm i.d., 3 μm particle size; Thermo Fisher Scientific) at 25 °C. Linear gradient elution using solvent A consisting of water/acetonitrile/formic acid (90/10/0.1, v/v/v) and solvent B consisting of methanol/acetonitrile/formic acid (90/10/0.1, v/v/v) was applied with the flow rate set at 0.15 mL min⁻¹ and the following program was used: 0–2 min, 10%B; 2–7 min, 10–90%B; 7–9 min, 90%B; 9–12 min, 90–10%B; 12–14 min, 10%B. MS settings were as follows: ESI, positive ion mode; capillary voltage, 4500 V; end plate offset, -500 V; dry gas flow rate, 8.0 L min⁻¹; dry heater, 180 °C; MS data, full scan mode (from m/z 50 to 1500). High mass accuracies were ensured by a calibration of TOF analyzer using a solution of sodium formate prior to each sample. Collision energy was linearly ramped as a function of m/z ratio in the fragmentation experiments. For values from m/z 200 to 400, the voltage gradient linearly increased from 20 to 25 eV, for values from m/z 400 to 800, it increased from 25 to 35 eV and for values from m/z 800 to 1500, it held at 35 eV. Product ions were obtained by the collision induced dissociation.

HPLC purification for NMR experiments

Purification of sample B was performed on HPLC system from Shimadzu USA Manufacturing Inc. (Canby, OR, USA) consisting of a low pressure gradient flow LC-20AT pump, a DGU-20A on line solvent degasser, a photodiode array detector SPD-M20A, an SIL-10AF sample injector and an FRC-10A fraction collector. The data were monitored using Shimadzu LabSolution system. Separations were carried out on Bionacom Velocity C18 LPH HPLC column (150 × 10 mm i.d., 3 μm particle size; Genore Chromatography, Nagłowice, Poland) using 0.1% formic acid as an aqueous solvent (A) and acetonitrile as an organic solvent (B), in the following gradient: 0–10 min, 20–50%B; 10–15 min, 50–80%B. Flow rate of the mobile phase was set at 3 mL min⁻¹. The course of the chromatography was
monitored using ultraviolet detection at a wavelength of 254 nm and peaks of interest were collected by the fraction collector.

NMR spectroscopy

The NMR spectra were recorded at 298 K on Varian VNMRS-500 spectrometer (Varian, Inc., Palo Alto, CA, USA) operated at 499.8 and 125.7 MHz for 1H and 13C, respectively. The spectrometer was equipped with an inverse 1H{13P-15 N} the 5 mm Z-SPEC Nalorac IDG 500-5HT probe with an actively shielded z-gradient coil. The high power 1H and 13C π/2 pulses were 7.6 and 11.6 μs, respectively. The NMR experiments were run using the standard Varian software.

The 1H NMR spectra and the 1H dimension in 2D heteronuclear spectra were referenced to the internal reference of TMS. The 1D 13C{1H} spectra and 13C dimension in 2D heteronuclear spectra were referenced to the solvent (CD3OD, δc = 49.0 ppm), which was treated as a secondary standard.

A standard single-pulse experiment was used to acquire the 1H spectrum using an 8000 Hz spectral window, 30° pulse width, an acquisition time of 4 s, relaxation delay of 2 s, and 64,000 complex data points.

Gradient-selected correlation spectroscopy (COSY): spectral widths, 6000 Hz in both dimensions; 1024 complex points in t2, 512 increments in t1; 1–4 scans per increment; relaxation delay, 1 s; sine-bell squared apodization functions used in processing.

The 1D 13C NMR spectra were run using a spectral range of 32,000 Hz, 30° pulse width, an acquisition time of 1 s, a relaxation delay of 1 s, and by collecting 32,000 complex data points.

The phase sensitive adiabatic heteronuclear single quantum coherence (1H{13C}HSQC) and 1H{13C}HMBC experiments. The proton-carbon correlations obtained from 1H{1H}COSY, 1H{13C}HSQC and 1H{13C}HMBC experiments. The presence of oxygen, nitrogen and sulfur ions in structures of studied compounds and the molecular formulae were determined on the basis of QTOF-MS results.

Results

LC–MS/MS chromatogram obtained for sample A displayed a single peak at 6.9 min corresponding to compound 1, the structure of which was further investigated on the basis of mass spectrometric data. Two main peaks at 8.4 min for compound 2 and at 8.9 min for compound 3 were detected in sample B. A peak at the retention time of 8.7 min was recorded for the extract of sample C. It corresponded to compound 4 and its structure elucidation is described below. Sample D was a mixture of several compounds. Two main compounds were identified as N-benzylfentanyl at 7.8 min and 1-benzyl-4-propionyloxypiperidine at 6.7 min. There were two other less intense peaks. The first one at 7.4 min was derived from acetylbenzylfentanyl, and the last one at 8.2 min was unknown compound 5, the structure of which was characterized using QTOF-MS/MS data.

Except for the LC–MS/MS spectrum of compound 3 and some 1H NMR spectra without assignments, all presented analytical data had not been previously described in any scientific articles, reports, EMCDDA notifications or databases at the time points of our identification (Table 1).

Identification of compound 1:

3,4-methylenedioxo-U-47700

LC–QTOF-MS/MS results

The protonated molecular ion [M + H]+ at m/z 305.1848 with predicted chemical formula C17H22N2O3+ (error 3.7 ppm) was recorded. The most intense product ion at m/z 260.1286 (C14H18NO3+*) was formed by the cleavage of dimethylamine. Subsequent product ions in the MS/MS spectrum (Fig. 1) derived from the cleavage of C–N bonds on the nitrogen from the amide bond. The amide bond breakage formed the product ion at m/z 149.0234, whereas the cleavage of dimethylaminocyclohexane moiety resulted in two product ions corresponding to dimethylaminocyclohexane...
Table 2 Cumulative data of electrospray ionization-quadrupole time-of-flight-tandem mass spectra obtained for investigated new synthetic opioids

Compound name	Precursor ion \([M+H]^+\)	Chemical formula	Theoretical value \((m/z)\)	Error \((\text{mDa})\)	Error \((\text{ppm})\)	Relative intensity \(\%\)
3,4-Methylenedioxy-U-47700 (compound 1)	305.1848a C₁₇H₂₅N₂O₃	305.1860	1.1	3.7	2.2	
3,4-Methylenedioxy-U-47700 (compound 1)	260.1286 C₁₅H₁₈NO₃	260.1281	-0.5	-1.9	100	
3,4-Methylenedioxy-U-47700 (compound 1)	180.0656 C₁₂H₁₆O₂	180.0655	-0.1	-0.3	6.4	
3,4-Methylenedioxy-U-47700 (compound 1)	162.0546 C₁₀H₁₄N	162.0550	0.3	2.1	0.1	
3,4-Methylenedioxy-U-47700 (compound 1)	149.0234 C₈H₅O₂	149.0233	-0.1	-0.6	8.5	
3,4-Methylenedioxy-U-47700 (compound 1)	126.1274 C₇H₁₂N	126.1277	0.3	2.3	0.4	
3,4-Methylenedioxy-U-47700 (compound 1)	123.0448 C₆H₁₂O₂	123.0441	-0.7	-5.7	0.5	
o-Methyl-acetylfentanyl (compound 2)	337.2265a C₂₂H₂₉N₂O	337.2274	0.9	2.8	72.2	
o-Methyl-acetylfentanyl (compound 2)	295.2139 C₂₀H₂₇N₂	295.2169	3	10	0.2	
o-Methyl-acetylfentanyl (compound 2)	245.1652 C₁₅H₂₁N₂O	245.1648	-0.3	-1.4	0.1	
o-Methyl-acetylfentanyl (compound 2)	216.1380 C₁₄H₁₈NO	216.1383	0.3	1.2	5.2	
o-Methyl-acetylfentanyl (compound 2)	188.1434 C₁₂H₁₈N	188.1434	-0.1	-0.3	100	
o-Methyl-acetylfentanyl (compound 2)	186.1268 C₁₂H₁₀N	186.1277	1	5.2	0.6	
o-Methyl-acetylfentanyl (compound 2)	176.1057 C₁₁H₁₄NO	176.1070	1.3	7.2	0.3	
o-Methyl-acetylfentanyl (compound 2)	160.1112 C₁₁H₁₂N	160.1121	0.9	5.4	0.3	
o-Methyl-acetylfentanyl (compound 2)	150.0897 C₁₀H₁₀NO	150.0913	1.6	10.6	0.4	
o-Methyl-acetylfentanyl (compound 2)	146.0960 C₈H₁₂N	146.0964	0.4	2.8	1.5	
o-Methyl-acetylfentanyl (compound 2)	134.0963 C₇H₁₀N	134.0964	0.2	1.1	1.5	
o-Methyl-acetylfentanyl (compound 2)	105.0702 C₆H₉	105.0699	-0.4	-3.4	5.4	
o-Methyl-acetylfentanyl (compound 2)	84.0811 C₅H₁₀N	84.0808	-0.3	-3.8	0.1	
Benzoylfentanyl (compound 3)	385.2253a C₂₆H₂₉N₂O	385.2274	2.1	5.5	28.1	
Benzoylfentanyl (compound 3)	279.1814 C₁₉H₂₃N₂	279.1856	4.2	15.1	0.1	
Benzoylfentanyl (compound 3)	264.1385 C₁₇H₂₁NO	264.1383	-0.3	-1	0.8	
Benzoylfentanyl (compound 3)	238.1197 C₁₆H₂₀NO	238.1226	2.9	12.3	0.3	
Benzoylfentanyl (compound 3)	198.0900 C₁₄H₁₈NO	198.0913	1.3	6.8	0.6	
Benzoylfentanyl (compound 3)	188.1436 C₁₃H₁₈N	188.1434	-0.3	-1.4	100	
Benzoylfentanyl (compound 3)	160.1127 C₁₁H₁₄N	160.1121	-0.6	-4	0.5	
Benzoylfentanyl (compound 3)	146.0962 C₁₀H₁₂N	146.0964	0.3	1.8	0.9	
Benzoylfentanyl (compound 3)	134.0971 C₉H₁₂N	134.0964	-0.7	-4.9	0.8	
Benzoylfentanyl (compound 3)	105.0340 C₅H₉	105.0335	-0.5	-4.6	11.1	
Benzoylfentanyl (compound 3)	84.0817 C₅H₁₀N	84.0808	-0.9	-11	0.07	
2-Thiophenefentanyl (compound 4)	391.1831a C₂₄H₂₇N₂OS	391.1839	0.8	2	30.7	
2-Thiophenefentanyl (compound 4)	270.0944 C₁₈H₁₆NOS	270.0947	0.3	1.2	0.9	
2-Thiophenefentanyl (compound 4)	244.0783 C₁₆H₁₄NOS	244.0791	0.8	3.2	0.2	
2-Thiophenefentanyl (compound 4)	204.0468 C₁₄H₁₂NOS	204.0478	0.9	4.7	0.8	
2-Thiophenefentanyl (compound 4)	188.1439 C₁₂H₁₈N	188.1434	-0.5	-2.8	100	
2-Thiophenefentanyl (compound 4)	160.1106 C₁₀H₁₄N	160.1121	1.5	9.2	0.3	
2-Thiophenefentanyl (compound 4)	146.0963 C₈H₁₂N	146.0964	0.1	0.5	0.7	
2-Thiophenefentanyl (compound 4)	134.0966 C₇H₁₂N	134.0964	-0.2	-1.4	0.9	
2-Thiophenefentanyl (compound 4)	110.9903 C₅H₁₂OS	110.9899	-0.4	-3.7	4.8	
2-Thiophenefentanyl (compound 4)	105.0702 C₅H₉	105.0699	-0.3	-2.7	5.1	
2-Thiophenefentanyl (compound 4)	84.0796 C₅H₁₀N	84.0808	1.2	14	0.1	
Benzoylbenzylfentanyl (compound 5)	371.2105a C₂₅H₂₇N₂O	371.2118	1.3	3.4	29.6	
Benzoylbenzylfentanyl (compound 5)	264.1388 C₁₈H₁₆NO	264.1383	-0.5	-2	0.5	
Benzoylbenzylfentanyl (compound 5)	198.0903 C₁₀H₁₂NO	198.0913	1	5.1	0.8	
Benzoylbenzylfentanyl (compound 5)	188.1066 C₉H₁₂NO	188.1070	0.4	2	1.1	
at m/z 126.1274 and N-methyl-1,3-benzodioxole-5-carboxamide fragment at m/z 180.0656. Two minor signals at m/z 81.0699 and 123.0448 are characteristic of rings which are present in the molecule: cyclohexyl ring and methylenedioxyphenyl ring, respectively. The structure of compound 1 was further elucidated by NMR spectra.

NMR spectroscopy

The NMR data for compound 1 are collected in Table 3. In the 1H NMR spectrum of compound 1, there were signals belonging to 24 protons (three singlets of CH₃ groups, seven multiplets in the range of 1.4–4.7 ppm, one signal at 6.02 ppm of CH₂ group and three signals of aromatic protons). The 13C NMR spectrum consisted of seventeen signals, thirteen of which on the basis of the 1H{¹³C}HSQC spectrum were assigned to CH₃ (three signals), CH₂ (five signals) and CH (two signals in aliphatic and three in aromatic part of spectrum) groups. The other four signals belong to quaternary carbon atoms.

The occurrence in ¹H NMR spectrum of the aliphatic spin-spin coupling pattern in the range of 1.4–4.7 ppm belonging to ten protons and simultaneously the presence in ¹³C NMR spectrum of carbon atom signals belonging to four CH₂ groups and two CH groups confirmed the presence of the double-substituted cyclohexyl ring.

The ¹H and ¹³C chemical shifts of signals of three CH₃ groups as well as of two CH groups of the double-substituted cyclohexyl ring may suggest that these groups are connected to the heteroatom, e.g., nitrogen atom. The connection of CH₃ groups to the nitrogen atoms which are simultaneously connected to a cyclohexyl ring was confirmed by the occurrence of strong cross-peaks through three bonds in ¹H{¹³C}HMBC spectrum: H10-C11, H17-C12, H12-C17 and H12-C18.

The occurrence of the signals of three aromatic protons in the ¹H NMR spectrum as well as the presence of the three signals of CH group and three signals of quaternary carbon atom in the aromatic part of the ¹³C NMR spectrum indicated the presence of double substituted phenyl ring.

Table 2 (continued)

Compound name	Precursor ion° [M+H]⁺	Chemical formula	Chemical formula	Theoretical value (m/z)	Error (mDa)	Error (ppm)	Relative intensity (%)
174.1281	C₁₂H₁₆N	174.1277	−0.4	2.4	100		
146.0959	C₁₀H₁₂N	146.0964	0.5	3.8	0.6		
120.0806	C₈H₁₀N	120.0808	0.2	1.6	0.4		
105.0337	C₇H₉O	105.0335	−0.2	2.2	14.3		
91.0538	C₇H₈	91.0542	0.4	4.4	10.3		
82.0652	C₅H₈N	82.0651	−0.1	1.3	0.2		

Fig. 1 Product ion spectra by liquid chromatography-electrospray ionization-quadrupole time-of-flight tandem mass spectrometry (LC–ESI-QTOF-MS/MS) for 3,4-methylenedioxy-U-47700 (compound 1) with assigned fragmentation pattern; auto-scaled view (upper) and zoomed view (lower)
Additionally, the 13C chemical shifts (about 150 ppm) of quaternary carbon atoms C1a and C3a of this ring suggested that these carbon atoms were connected to the oxygen atom. The presence of strong cross-peaks in the 1H/13C HMBC spectrum: H2-C3a and H2-C1a confirmed that CH$_2$ group is connected to phenyl ring via oxygen atom. Based on above information, the presence of the 1,3-benzodioxole moiety could be confirmed in the structure of the tested compound.

Moreover, in the 13C NMR spectrum, there was a signal of quaternary carbon atom located at 175.1 ppm (C8) which could be attributed to the amide group. The complex proton spectral pattern around C11-C12 bond did not allow the assessment of cis/trans geometry along this bond, although, considering the bulky substituents on both carbon atoms, trans geometry should be favored.

Finally, the structure of compound 1 was determined as N-[2-(dimethylamino)cyclohexyl]-N-methyl-1,3-benzodioxole-5-carboxamide, so-called 3,4-methylenedioxy-U-47700.

Identification of compound 2: o-methyl-acetylfentanyl

LC–QTOF-MS/MS results

The mass spectrum of the analyte with the precursor ion [M + H]$^+$ at m/z 337.2265, corresponding to the protonated molecule C$_{22}$H$_{29}$N$_2$O$_2^+$, was similar to MS data obtained for fentanyl. Furthermore, almost all product ions, both main fragments (at m/z 188.1434 originated from N-phenylethylpiperidine, at m/z 105.0702 corresponding to phenylethyl moiety and at m/z 216.1380 formed by cleavage of C–N bonds in piperidine ring) and those of relative intensity below 2%, could be found in the MS/MS spectrum of fentanyl. However, the cleavage of an amide bond formed distinctive fragments for fentanyl precursor ion at m/z 281.2018 corresponding to C$_{19}$H$_{25}$N$_2$O$_2^+$ and for o-methyl-acetylfentanyl at m/z 295.2139 which matches with elemental composition C$_{20}$H$_{27}$N$_2$O$_2^+$. Characteristic difference of 14 Da and confirmed presence of N-phenylethylpiperidine indicated that the methyl group is attached to N-phenyl ring. The product ion spectrum of compound 2 is depicted in Fig. 2. Comparison of fentanyl and compound 2 fragmentation spectra is shown in Fig. 3. However, to determine the position of the methyl group at the phenyl ring, the NMR experiment was necessary to be conducted.

NMR spectroscopy

The NMR data for compound 2 are collected in Table 4. In the 1H NMR spectrum, there were: two singlets of CH$_3$ groups, an AA'BB' aliphatic spin system (–CH$_2$–CH$_2$– moiety), nine multiplets in the range of 1.4–4.5 ppm and signals of nine aromatic protons. The 13C NMR spectrum consisted of twenty signals belonging to carbon atoms of CH$_3$ (two signals), CH$_2$ (six signals) and CH groups (one signal in aliphatic and seven in aromatic part of spectrum) as well as to the four of quaternary carbon atom.

The spin-spin coupling pattern in the range of 1.4–4.5 ppm belonging to nine protons was assigned to para substituted piperidine ring on the basis of the 1H/1H COSY and 1H/13C HSQC spectra (the protons are connected with five carbon atoms of four CH$_2$ groups and one CH group).

Table 3 Experimental 1 dimensional (D) and 2D nuclear magnetic resonance (NMR) spectroscopic data of compound 1 in CD$_2$OD

Numbering of atom position (see figure)	1H NMR δ [ppm] (multiplicity, number of protons J_{HH} [Hz])	13C NMR δ [ppm]	1H/1H COSY	1H/13C HMBC
1a (C)	150.8	-	-	-
2 (CH$_3$)	6.02 (m, 2H)	103.1	C1a, C3a	-
3a (C)	-	149.1	-	-
4 (CH)	7.09 (brs, 1H)	109.3	-	-
5 (C)	130.5	-	-	-
6 (CH)	7.09 (s, 1H, J_{CH}=8.5 Hz)	123.3	H7	-
7 (CH)	6.90 (d, 1H, J_{CH}=8.5 Hz)	109.0	H6	C1a, C3a, C5
8 (CH=O)	-	175.1	-	-
10 (CH$_3$)	2.97 (s, 3H)	33.5	-	C9, C11
11 (CH)	4.70 (brs, 1H)	55.3	H12, H16a, H16b	-
12 (CH)	3.71 (dd, 1H, J_{CH}=11.6, 3.7 Hz)	65.4	H11, H13a, H13b	C11, C17, C18, C13
13a (CH$_3$)	1.65 (s, 1H)	24.2	H12, H13a, H13b	-
13b (CH=O)	2.23 (m, 1H)	25.0	Strongly coupled system	-
14a (% CH$_3$)	1.44 (m, 1H)	25.6	Strongly coupled system	-
14b (5 % CH$_3$)	1.96 (m, 1H)	30.3	Strongly coupled system	-
15a (5 % CH$_3$)	1.45 (m, 1H)	43.5	-	C12, C18
15b (5 % CH$_3$)	1.88 (m, 1H)	38.1	-	-

brs broad singlet, COSY correlation spectroscopy, δ chemical shift [ppm], d doublet, HMBC heteronuclear multiple bond correlation, J_{HH} proton-proton coupling constant [Hz], m multiplet, s singlet, td triplet of doublets

aprotons H15 and H16 can be interchange
The symmetrical para substitution of piperidine ring was confirmed by the identical chemical shifts of carbon atoms C2 and C6. However, the unsymmetrical remote environment, flanking the 3-CH₂ and 5-CH₂ groups, adjacent to a substitution center, may induce observed geminal nonequivalence in proton and carbon spectra (see Table 4) of these groups. The ¹H and ¹³C chemical shifts of the CH group of piperidine ring (4.51/54.8 ppm) indicated that this group is connected with heteroatom e.g., nitrogen atom.

The occurrence of the coupling system of nine aromatic protons in the ¹H NMR spectrum as well as the presence of the seven signals of CH group and three signals of quaternary carbon atom in the aromatic part of the ¹³C NMR spectrum indicated the presence of one phenyl group and one substituted phenyl group. The substituent was a CH₃ group, attached in ortho-position, confirmed by the long-range proton-carbon correlations obtained from ¹H{¹³C} HMBC spectrum; the CH₃ group located at 2.27 ppm.
piperidine ring via nitrogen atom.

The LC–QTOF-MS/MS data of compound 3 resulted in the fragment at m/z 188.1436 corresponding to N-phenylethylpiperidine moiety. The exact mass of the second product ion at m/z 105.0340 determined the possible formula C7H5O+.

Moreover, in 13C NMR spectrum, there was a signal of quaternary carbon atom at 138.2 ppm (C21) and 139.6 ppm (C16) and to one carbon atom of CH group at 132.8 ppm (C20).

The NMR data also confirmed the presence of an ethylene group –CH2–CH2–. That group is connected to the phenyl ring as well as to piperidine ring via nitrogen atom as evidenced by occurring strong cross-peaks in the 1H/13C HMBC spectrum: H10/14-C8, H8-C10/14, H11/13-C9, H2a-C7, H6a-C7, H7-C2, and H7-C6. The 1H and 13C chemical shifts of the ethylene group –CH2–CH2–. That group is connected to the acetamide group. The piperidine ring H8-C9, H2a-C7, H6a-C7, H7-C2, and H7-C6. The 1H and 13C chemical shifts of the ethylene group (2.80/33.4 ppm and 2.73/60.7 ppm) also confirmed that this group is connected to piperidine ring via nitrogen atom.

Moreover, in 13C NMR spectrum, there was a signal of quaternary carbon atom located at 173.1 ppm (C22) and signal of CH3 group at 23.0 ppm (C23) which could be attributed to the acetamide group. The piperidine ring as well as ortho-substituted phenyl group were connected to the nitrogen atom of acetamide group as evidenced by occurring strong cross-peaks in the 1H[13C]HMBC spectrum: H4-C22 and H4-C16.

Finally, compound 2 was determined as N-(2-methylphenyl)-N-[1-(2-phenylethyl)piperidin-4-yl]acetamide (ortho-methyl-acetylfentanyl).

Identification of compound 3: benzoylfentanyl

LC–QTOF-MS/MS results

The LC–QTOF-MS/MS data of compound 3 displayed the protonated monoisotopic ion [M + H]+ at m/z 385.2253 (C26H29N2O+, error 5.5 ppm). MS/MS experiment formed two main product ions (Fig. 4). The most intense ion at m/z 188.1436 corresponded to N-phenylethylpiperidine moiety. The exact mass of the second product ion at m/z 105.0340 determined the possible formula C7H5O+ and indicated that this product ion derived rather from the benzoyl group than from phenylethyl moiety that is also included in fentanyl or o-methyl-acetylfentanyl (Figs. 2, 3). Phenylethyl product ion of the latter two drugs gave a theoretical value at m/z 105.0699, but its low intensity with the limited resolution of mass spectrometer did not allow observing it as a completely separated ion. Apart from the benzoyl product ion, the cleavage of amide bond resulted in the fragment at m/z 279.1814 corresponding to N-phenyl-1-(2-phenylethyl)piperidin-4-amine. An ion at m/z 198.0900 corresponded to N-phenylbenzamide substructure. Formation of several minor fragments at m/z 134.0971, 146.0962, 160.1127, 264.1385 and 238.1197 was a consequence of cleavages of piperidine ring bonds.

The structure of compound 3 was further revealed by NMR spectra.

NMR spectroscopy

The NMR data for compound 3 are collected in Table 5. In the 1H NMR spectrum there were signals belonging to thirteen aliphatic and fifteen aromatic protons. In the 13C NMR spectrum there were eighteen signals, from which four can be assigned to the carbon atoms of the CH2 groups and ten to the CH groups (one signal in aliphatic and nine in...
The aromatic part of spectrum). The other four signals belonged to quaternary carbon atoms.

The five multiples of nine protons in the range of 1.7–4.7 ppm in the 1H NMR spectrum were assigned to para substituted piperidine ring. In this compound in contrast to compound 2, equivalent protons at positions 2a and 6a, 2b and 6b, 3a and 5a, and 3b and 5b were observed. Also in the 13C NMR spectrum only two carbon atom signals connected with those protons were observed pointing to equivalent carbon atoms at positions 2 and 6, and 3 and 5. Additionally, the 1H and 13C chemical shifts of the CH group of piperidine (4.72/55.0 ppm) indicated that this group is connected with nitrogen atom like for compounds 2.

The occurrence of the coupling system of fifteen aromatic protons in the 1H NMR spectrum as well as the presence of the nine signals of CH group and three signals of quaternary carbon atom in the aromatic part of the 13C NMR spectrum indicated the presence of three phenyl groups.

Table 5 Experimental 1D and 2D NMR spectroscopic data of compound 3 in CD$_3$OD

Numbering of atom position (see figure)	1H NMR δ [ppm] (multiplicity, number of protons J_{HH} [Hz])	13C NMR δ [ppm]	1H/1H COSY	1H/13C HMBC
2a (¼ CH$_2$)	2.42 (2H, brs)	53.9	H3a/5a, H3b/5b, H2b/6b	-
6a (¼ CH$_2$)	3.20 (2H, d, J_{HH}=11.7 Hz)	H3a/5a, H3b/5b, H2a/6a	-	
2b (¼ CH$_2$)	1.69 (2H, qd, J_{HH}=12.5, 3.7 Hz)	30.7	H3a/5a, H3b/5b, H2a/6a, H4	C2/C6, C3/C5, C4
6b (¼ CH$_2$)	2.05 (2H, d, J_{HH}=12.5 Hz)	H3a/5a, H3b/5b, H2b/6b, H4	-	
3a (¼ CH$_2$)	4.72 (1H, hsq)	55.0	H3a/5a, H3b/5b, H2b/6b	-
5a (¼ CH$_2$)	2.69 (2H, m)	60.9	H8	C2/C6, C8
7a (CH$_2$)	2.79 (2H, m)	33.7	H7	C9, C10/C14, C7
9a (C)	-	140.6	-	-
10/14 (CH)	7.19 (2H, m, overlapped)	129.7	-	C12, C10/C14, C8
11/13 (CH)	7.25 (2H, m, overlapped)	129.6	-	C9, C11/13
12 (CH)	7.17 (1H, m, overlapped)	127.4	-	C10/14
16 (C)	-	140.5	-	-
17/21 (CH)	7.14 (2H, m, overlapped)	132.1	-	C17/21, C19, C16
18/20 (CH)	7.26 (2H, m, overlapped)	130.0	-	C18/20, C16
19 (CH)	7.22 (1H, m, overlapped)	129.2	-	C17/C21
22 (C=O)	-	173.4	-	-
23 (C)	-	138.1	-	-
24/28 (CH)	7.24 (2H, m, overlapped)	129.0	-	C24/28, C26, C22
25/27 (CH)	7.16 (2H, m, overlapped)	128.8	-	C25/27, C23
26 (CH)	7.19 (1H, m, overlapped)	130.4	-	C24/28

(for abbreviations, see Tables 3 and 4)
Like in compound 2, an ethylene group –CH₂–CH₂– is connected to the one of phenyl group as well as to piperidine ring via nitrogen atom.

Moreover, in ¹³C NMR spectrum there was signal of quaternary carbon atom located at 173.4 ppm (C₂₂) which could be attributed to the amide group. The second phenyl group was attached directly to carbonyl atom as evidenced by occurring a strong cross-peak in the ¹H{¹³C}HMBC spectrum: H₂₄/₂₈–C₂₂. The piperidine ring as well as the next phenyl group was connected to the nitrogen atom of amide group.

Finally, the structure of compound 3 was determined as N-phenyl-N-[1-(2-phenylethyl)piperidin-4-yl]benzamide, so-called benzoylfentanyl or phenylfentanyl.

Identification of compound 4: 2-thiophenefentanyl

LC–QTOF-MS/MS results

The LC–QTOF-MS/MS data of compound 4 displayed the protonated molecular ion [M+H]⁺ at m/z 391.1831 with the isotope pattern characteristic to a compound containing one sulphur atom in the molecule and suggested formula C₂₄H₂₇N₂O₂S⁺ (calculated m/z 391.1839, error 2.0 ppm). Similarly to fragmentation spectra of fentanyl and fentanyl analogs with the unsubstituted phenylethylpiperidine group, two main characteristic fragments at m/z 188.1439 and at m/z 105.0702 were observed in MS/MS spectrum of compound 4 (Fig. 5). The third relatively intense ion at m/z 110.9903 (C₄H₇O₂S⁺ thienoyl moiety) arose from the amide bond cleavage. A less intense ion at m/z 204.0468 was associated with the cleavage between the piperidine ring and N-phenyl-amide moiety. Several minor fragments were formed due subsequent bond-breaking in the piperidine ring. To verify position in which the thiophene ring is linked to carboxamide group, measurements using NMR had to be performed.

NMR spectroscopy

The NMR data for compound 4 were collected in Table 6. In the ¹H NMR spectrum, there were signals from thirteen aliphatic and thirteen aromatic protons. In the ¹³C NMR spectrum, there were eighteen signals, fourteen of which were assigned to proton-bearing carbon atoms of CH₂ (four signals) and CH groups (one signal in aliphatic and nine in aromatic part of spectrum). The other four signals belonged to quaternary carbon atoms. Based on the NMR data the presence of the para substituted piperidine ring and ethylene group were confirmed.

The analysis of the coupling pattern of signals of thirteen aromatic protons in the ¹H NMR and ¹H{¹H}COSY spectra as well as the aromatic part of the ¹³C NMR spectrum (the nine signals of CH group and three signals of quaternary carbon atom) confirmed the presence of two phenyl and 2-thiophene groups.

The signal of quaternary carbon atom located in ¹³C NMR spectrum at 154.4 ppm (C₂₂) could be attributed to the amide group. The 2-thiophene group was attached directly to carbonyl atom as evidenced by occurring a
strong cross-peak in the 1H(13C)HMBC spectrum: H24-C22. The piperidine ring as well as phenyl group was connected to the nitrogen atom of amide group as evidenced by occurring a strong cross-peaks in the 1H(13C)HMBC spectrum: H4-C22 and H4-C16.

Like in compounds 2 and 3, the ethylene group was connected to the other phenyl group as well as to piperidine ring via nitrogen atom.

Finally, based on mass spectra and NMR data, compound 4 was determined as N-phenyl-N-[1-(2-phenylethyl)piperidin-4-yl]thiophene-2-carboxamide, and named as 2-thiophenafentanyl. It is structurally related to furanylfentanyl by replacement of the oxygen atom in the furan ring with a sulphur atom.

Identification of compound 5: benzoylbenzylfentanyl

LC–QTOF-MS/MS results

The protonated molecular ion at m/z 371.2105 with the predicted chemical formula C$_2$H$_7$N$_2$O$^+$ (error 3.4 ppm) was detected in LC–QTOF-MS/MS spectrum. Elimination of the benzyl moiety and the cleavage between the piperidine ring and N-phenyl-amide moiety resulted in the formation of two most intense product ions in MS/MS spectrum at m/z 91.0538 and 174.1281, respectively (Fig. 6). Similarly to compound 3 a product ion at m/z 105.0337 which derived from benzoyl moiety elimination was present. Less intense product ions were formed by the piperidine ring degradation. An ion at m/z 198.0903 was associated with the cleavage between the piperidine ring and N-phenyl-amide moiety. The breaking of C–N bonds in piperidine ring and further loss of the phenyl group generated a product ion at m/z 188.1066. Due to limited amount of sample D, which was a mixture of several benzylfentanyl analogs and low content of investigated compound 5 in this mixture, structural confirmation by means of NMR spectroscopy was not possible.

On the basis of mass spectra, a structure of compound 5 was proposed as N-(1-benzylpiperidin-4-yl)-N-phenylbenzamide (benzoylbenzylfentanyl).

Discussion

Except for compound 3, which has been seized and detected for the first time in Sweden in March 2017 [11], all of them were identified for the first time on the illicit EU market and reported to the EWS-EMCDDA by NMI [12–15]. Such notification includes names, identifiers of the substance, sample origin (seizure by law enforcement agencies, poisonings, samples collected from NPS users or test purchases), chemical and physical properties, analytical methodologies applied for structure elucidation or harm caused by the NPS. Analytical data are also provided, because they can substitute the reference data for other laboratories (in the absence of reference standards at the time of the first detection). All these information are collected in The European Database on New Drugs (EDND). However, access to the EDND is restricted only to the members of the Network and selected members of the national early warning systems, which implies that, except this limited group of users, other European scientists as well as control laboratories or scientific communities.

Table 6 Experimental 1D and 2D NMR spectroscopic data of compound 4 in CD$_3$OD

Numbering of atom position (see figure)	1H NMR	1C NMR	1H/1H COSY	1H/1C HMBC
2a (C$_{1}$)	3.08 (2H, dd, J_{HH}=12.6, 2.1 Hz)	129.9H	C7, C26	
6a (C$_{1}$)	3.60 (2H, m)	127.8H	25 C22, C23, C25, C24	
2b (C$_{1}$)	3.18 (2H, m)	133.7H	25 C22, C26, C25, C23	
6b (C$_{1}$)	1.82 (2H, dd, J_{HH}=12.9, 3.9 Hz)	130.8- C17/21		
5a (C$_{1}$)	2.22 (2H, dd, J_{HH}=2.9 Hz)	53.4	H3a/5a, H3b/5b, H2a/6a, H26	
5b (C$_{1}$)	4.89 (1H, m)	53.5	C16, C26, C3, C22	
7 (CH$_{2}$)	3.20 (2H, m)	129.7	H12C 9, C11/13	
8 (CH$_{2}$)	2.96 (2H, m)	129.9	H10/14, C12	
9 (C)	-	138.0	-	
10/14 (CH)	7.25 (2H, m)	129.7	H11/13	C12, C10/14, C8
11/13 (CH)	7.31 (2H, dd, J_{HH}=3.9, 1.2 Hz)	132.4	H18/20	C17/21, C18/20, C19
12 (CH)	7.24 (1H, m)	129.2	H11/13	C10/14
16 (C)	-	139.6	-	
17/21 (CH)	7.33 (2H, m)	132.4	H18/20	C17/21, C18/20, C19
18/20 (CH)	7.53 (2H, m)	131.0	H17/21	C18/20, C16
19 (CH)	7.53 (1H, m)	130.8	-	C17/21
22 (C=O)	-	164.4	-	
23 (C)	6.66 (1H, dd, J_{HH}=3.9, 1.2 Hz)	133.7	H25	C22, C26, C25, C23
25 (CH)	6.80 (1H, dd, J_{HH}=5.1, 3.9 Hz)	127.8	H24, H26	C25, C24, C26
26 (CH)	7.47 (1H, dd, J_{HH}=5.1, 1.2 Hz)	132.7	H25	C24, C23, C25, C22
from other regions of the world cannot reach the contents of EDND system. Therefore, the publication of this manuscript in an international journal is essential to make the analytical information for these five NPS widespread in the world.

Compounds 1 and 2 have never been detected before but the structure of compound 2 was taken into account as a potential component of illicit preparation even in the 1980s [16]. After our notification, the detection of compounds 3 and 5 on the US market using gas chromatography–mass spectrometry (GC–MS) was published [17]. To the best of our knowledge, our paper is the first comprehensive report that characterized these newly identified NPSs by means of LC–QTOF-MS/MS and 1D and 2D NMR spectroscopy. Some GC–MS and 1H NMR spectra without any assignments were attached to the SWGDRUG monographs [18, 19] or commercial websites providing product information of analytical reference standards [20–23]. In the case of compound 3, available literature or reports [24] contained only selected analytical information, therefore, we present complete LC–QTOF-MS/MS and NMR data for easier identification and characterization of benzoylfentanyl.

The molecule of compound 1 is structurally related to internationally controlled U-47700. Two chlorine groups at the 3- and 4-positions on the phenyl ring in U-47700 structure are replaced with a methylenedioxy group in 3,4-methylenedioxy-U-47700 molecule. The modification based on methylenedioxy group introduction to positions 3 and 4 of the aromatic ring was observed also in other NPS classes like phenylethylamines, cathinones, aminooxindanes, piperazines and even synthetic opioids which belong to fentanyl analogs (benzodioxole fentanyl).

In case of compound 4, if one based the identification on LC–MS/MS results only, it should be performed with caution, because its isomer may have similar MS/MS spectrum. In this study, 2-position of thiophene moiety was verified by the NMR, however, the reference standards of 3-thiophene isomer is currently also available and potentially may appear on the illicit market.

Compound 5 differs from compound 3 by the removal of single carbon in a chain of N-substituent of piperidine ring. According to the literature [25], such a structure modification dramatically reduces the potency of fentanyl N-benzyl analogs, leaving them inactive. However, Polish authorities responsible for NPS supervision, reported fatal intoxications associated with the products of the same name as sample D, in which fentanyl with benzylfentanyl were found. In sample D fentanyl was not detected. Results of this sample analysis, in which four compounds including two N-benzylfentanyl, two N-benzylfentanyl derivatives and 1-benzyl-4-propionyloxypiperidine were identified, indicated that it was most probably the effect of the failed synthesis. One of the major compound in sample D 1-benzyl-4-propionyloxypiperidine was reported as a manufacturing impurity and a marker of Jenssen synthesis route of illicit fentanyl [26].

Conclusions

In this study, identification and analytical characterization of five synthetic opioids, including one non-fentanyl opioid belonging to “U-compounds group” and four fentanyl analogs were presented. Structure elucidation was based on LC–QTOF-MS/MS and NMR data. These synthetic opioids were detected in samples collected in Warsaw by NMI during last two years that confirmed the trend of increasing popularity of this group of NPS in Europe.
The data presented in this article will be useful for identifying the 5 synthetic opioids included in illicit products or human specimens.

Acknowledgements This work was supported with statutory subsidies by Polish Ministry of Science and Higher Education [project number 8.66] and Ministry of Health [grant number 147/H3/BO/2018].

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Ethical approval This article does not contain any studies with human participants or animals performed by any of the authors.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. European Monitoring Centre for Drug and Drug Addiction (2019) European drug report. Trends and development. Publications Office of the European Union, Luxembourg. https://doi.org/10.2810/191370
2. Suzuki J, El-Haddad S (2017) A review: fentanyl and non-pharmacological fentanyls. Drug Alcohol Depend 171:107–116. https://doi.org/10.1016/j.drugalcdep.2016.11.033
3. Fogarty MF, Papsun DM, Logan BK (2018) Analysis of fentanyl and 18 novel fentanyl analogs and metabolites by LC–MS–MS, and report of fatalities associated with methoxycetylfentanyl and cyclopropylfentanyl. J Anal Toxicol 42:592–604. https://doi.org/10.1093/jat/bky035 (open access article)
4. Solimini R, Pichini S, Pacifici R, Busardò FP, Giorgetti R (2018) Pharmacotoxicology of non-fentanyl derived new synthetic opioids. Front Pharmacol 9:654. https://doi.org/10.3389/fphar.2018.00654 (open access article)
5. Hikin L, Smith PR, Ringland E, Hudson S, Morley SR (2018) Multiple fatalities in the North of England associated with synthetic fentanyl analogue exposure: detection and quantitation a case series from early 2017. Forensic Sci Int 282:179–183. https://doi.org/10.1016/j.forsciint.2017.11.036
6. Armenian P, Vo KT, Bars-Walker J, Lynch KL (2018) Fentanyl, fentanyl analogs and novel synthetic opioids: a comprehensive review. Neuropharmacology 134:121–132. https://doi.org/10.1016/j.neuropharm.2017.10.016
7. Roda G, Faggiani F, Bolchi C, Pallavicini M, Dei Cas M (2019) Ten years of fentanyl-like drugs: a technical-analytical review. Anal Sci 35:479–491. https://doi.org/10.2116/analsci.18R004 (open access article)
8. de Melo Barbosa L, Santos JM, de Morais DR, Nimtz AV, Eberlin MN, de Oliveira MF, Costa JL (2019) Fast UHPLC-MS/MS method for analysis of furanylfentanyl in different seized blotter papers. Drug Test Anal 11:178–185. https://doi.org/10.1002/dta.2472
9. Fleming SW, Cooley JC, Johnson L, Frazee CC, Domanski K, Kleinschmidt K, Garg U (2017) Analysis of U-47700, a novel synthetic opioid, in human urine by LC–MS–MS and LC–QToF. J Anal Toxicol 41:173–180. https://doi.org/10.1093/jat/bkw131 (open access article)
10. Metushi I, Schneir A, Fitzgerald R (2017) Identification of novel synthetic opioid U-47700 through a broad screen time of flight high-resolution mass spectrometry method. Am J Clin Pathol 147(Suppl 2):S165. https://doi.org/10.1093/ajcp/aqw191.029 (meeting abstract)
11. European Monitoring Centre for Drugs and Drug Addiction (2017) Benzoylfentanyl. EU early warning system formal notification EU–EWS–RCS–FN–2017–0018
12. European Monitoring Centre for Drugs and Drug Addiction (2018) 3,4-Methylenedioxy-U-47700. EU early warning system formal notification EU–EWS–RCS–FN–2018–0021
13. European Monitoring Centre for Drugs and Drug Addiction (2018) 2-Methylacetylfentanyl. EU early warning system formal notification EU–EWS–RCS–FN–2018–0039
14. European Monitoring Centre for Drugs and Drug Addiction (2017) Thiophenefentanyl. EU early warning system formal notification EU–EWS–RCS–FN–2017–0041
15. European Monitoring Centre for Drugs and Drug Addiction (2017) Benzoylbenzylfentanyl. EU early warning system formal notification EU–EWS–RCS–FN–2017–0051
16. Moore JM, Allen AC, Cooper DA, Carr SM (1986) Determination of fentanyl and related compounds by capillary gas chromatography with electron capture detection. Anal Chem 58:1656–1660. https://doi.org/10.1021/ac00121a013
17. Casale JF, Mallette JR, Claro G, Hays PA, Frisch M, Chan KT (2018) Synthesis and characterization of benzoylfentanyl and benzoylbenzylfentanyl. Microgram J 15:1–8 (open access article)
18. SWGDRUG monograph (2018) 2-Thiophenoyl fentanyl HCl. https://www.swgdrug.org/Monographs/2-Thiophenoylfentanyl.pdf. Accessed 20 Feb 2019
19. SWGDRUG monograph (2017) Benzoylbenzyl fentanyl. https://www.swgdrug.org/Monographs/Benzoylbenzylfentanyl.pdf. Accessed 20 Feb 2019
20. Caymay Chemical (2017) GCMS. https://www.caymanchem.com/gcms/22753-0511960-GCMS.pdf. Accessed 15 May 2019
21. Caymay Chemical (2017) GCMS. https://www.caymanchem.com/gcms/23548-0516520-GCMS.pdf. Accessed 15 May 2019
22. Caymay Chemical (2017) GCMS. https://www.caymanchem.com/gcms/22802-0511239-GCMS.pdf. Accessed 20 Feb 2019
23. Caymay Chemical (2018) GCMS. https://www.caymanchem.com/gcms/24249-0522385-GCMS.pdf. Accessed 20 Feb 2019
24. European Monitoring Centre for Drugs and Drug Addiction (2017) Benzoylfentanyl. Case report: EDND–CR–2019–3564
25. Vardanyan RS, Hruby VJ (2014) Fentanyl-related compounds and derivatives: current status and future prospects for pharmaceutical applications. Future Med Chem 6:385–412. https://doi.org/10.4155/fmc.13.215
26. Lurie IS, Berrier AL, Casale JF, Iio R, Bozenko JS Jr (2012) Profiling of illicit fentanyl using UHPLC–MS/MS. Forensic Sci Int 220:191–196. https://doi.org/10.1016/j.forsciint.2012.02.024

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.