Chemical, Petroleum and Environmental Engineering

Improve Rheological Properties of Palygorskite Water-Based Drilling Fluid by Caustic Soda and Soda Ash

Nada M. Sulaiman*
* Department of Petroleum Engineering, University of Baghdad, Baghdad-Iraq
mohammednada9315@yahoo.com

Nada S. Al_Zubaidi
* Department of Petroleum Engineering, University of Baghdad, Baghdad-Iraq
nadaszubaidi@yahoo.com

ABSTRACT

In drilling fluid program, selecting the drilling fluid that will reduce the lost time is the first objective, and will be economical regardless of its cost. The amount and type of solids in drilling fluid is the primary control of the rheological and filtration properties. Palygorskite clay (attapulgite) is an active solid that has the ability to reactive with its environment and form a gel structure within a fluid and due to its stability in the presence of brines and electrolytes this type of clay is preferred for use. The aim of this study is to improve properties of Iraqi palygorskite (PAL) by adding different chemical additives such as caustic soda NaOH and soda ash Na2CO3 with a different concentration in both fresh and salt water-based drilling fluid to satisfy the API specification and to compete with imported palygorskite. The palygorskite claystone of Late Cretaceous age is present in the Western Desert of Iraq within the Digma Formation. In this study, two areas in Western Desert palygorskite were obtained, Bahr Al-Najaf and Trefawi. The results of rheological properties showed that the performance of Bahr Al-Najaf PAL was more affected by caustic soda than Trefawi PAL. In contrast, Trefawi PAL performance was more affected with low concentrations of soda ash than Bahr Al-Najaf PAL in both fresh and salt water-based drilling fluid. Also, these additives lead to improve the value of pH in both fresh and salt drilling fluid that increases the ability of clay to be more dispersed in drilling fluid. Besides that, enhancement of drilling fluid prepared with Iraqi palygorskite stability to 85 and 80 in fresh and saltwater, respectively, was observed with soda ash additions.

Keywords: clay, palygorskite, caustic soda, soda ash, rheological properties.

*Corresponding author

Peer review under the responsibility of University of Baghdad.
https://doi.org/10.31026/j.eng.2020.06.01
2520-3339 © 2019 University of Baghdad. Production and hosting by Journal of Engineering.
This is an open access article under the CC BY4 license http://creativecommons.org/licenses/by/4.0/.
Article received: 18/8/2019
Article accepted: 29/9/2019
Article published: 1/6/2020
تحسين الخواص الريولوجية لمائع الحفر مائي القاعدة المحضر من البالكورسكايت بإضافة الصودا الكاوية ورماد الصودا

ندى صباح الزبيدي
مدير
جامعة بغداد/قسم هندسة النفط

ندى محمد سليمان
طالبة ماجستير
جامعة بغداد/قسم هندسة النفط

الخلاصة
اختيار مائع الحفر الذي يقلل من الوقت الضائع في عمليات الحفر, هو الهدف الأول في تصميم برنامج مائع الحفر. كمية ونوع المواد الصلبة في مائع الحفر هي السيطرة الأولى على الخواص الريولوجية والترشيح. تعتبر أطيان البالكورسكايت من المواد الصلبة الفعالة والتي لها القدرة على التفاعل مع المحيط وتكوين تركيب هلامي داخل المائع وتتيح الاستفادة بوجود الاملاح. فيضت استخدام هذا النوع من الأطيان. الهدف من هذه الدراسة هو تحسين خواص واداية البالكورسكايت العراقي عن طريق إضافة مواد كيميائية ماتلفية مثل الصودا الياوية وبيكربونات الصوديوم بتركيزات ماتلفية في الماء العذب والمالح الوارض.

الكلمات الرئيسية: البالكورسكايت, الصودا الياوية, بيكربونات الصوديوم, الخواص الريولوجية.

1. INTRODUCTION

Drilling fluid is one of the essential factors to success rotary drilling operation, which consists of liquids and different active solids, inert solids, and chemical additives to enhance its properties. The principal functions of drilling fluid are removing cuttings from beneath the bit and carry out from the borehole, lubricate and cooling the bit, and maintain the stability of borehole by controlling the hydrostatic pressure to prevent blowouts and formation damage (Caenn, et al., 2017).

Palygorskite is 2:1 layer silicates, where the tetrahedral sheets are linked infinitely in two dimensions. It is structurally different from other clay minerals in that the octahedral sheets are continuous in only one dimension, and the tetrahedral sheets are divided into ribbons by the periodic inversion of rows of tetrahedrons. In other words, palygorskite consists of double silica tetrahedral chains linked by octahedral oxygen and hydroxyl groups containing aluminum and magnesium ions in a chain-like structure (Murray, 2007), as shown in Fig. 1 (Aghzzaf, et al., 2017). A general formula for palygorskite is (OH)2((OH)2 Mg2Si2O5(OH)2)4H2O. It is elongate in shape and often occurs as bundles of elongate and lath-like particles, usually, >5A°. The morphology of this clay mineral, as illustrated in Fig. 1- a is the most important physical attribute. This elongate needle shape is in contrast and compares to the flake-shaped kaolinite and montmorillonite, which leads to some unique applications and specifications, as shown in Table 1 (Haden and Schwint, 1967).
Table 1. Properties of industrial clays (Haden and Schwint, 1967).

Properties	Palygorskite	Bentonite	Kaolin
Principle Mineral	Palygorskite	Montmorillonite	Kaolinite
Crystal Structure	Chain	3-layer sheet	2-layer sheet
Particle Shape	Needle	Flake	Plate
Surface Area	High	Medium	Low
Sorptivity	High	Medium	Low
Binding Power	Medium	High	Low
Color	Gray to pink	Gray to white	White
Brightness	Low	Variable	High
Thickening Power	High	High	Low
Effect of Electrolyte	Little or none	flocculates	flocculates

Figure 1. (a) SEM image of palygorskite, (b) the pore distribution of palygorskite, (c) the crystal structure, (Aghzzaf, et al., 2017).
The internal arrangement of the tetrahedral and octahedral layers of palygorskite is unique in that there are channels through the structure, as in Fig.1. These channels are filled with what is termed zeolitic water. When this water is driven off by heating the surface area, and thus the sorptivity is increased, chemical compounds that are of the size that will fit into these channels are readily absorbed. Absorption and adsorption are properties related to the surface area. Absorption is the penetration of fluid molecules into the bulk of absorbing clay, whereas adsorption is the interaction between the fluid molecules and the clay surface (Murray, 2007). Palygorskite is one of the most important gel-forming clays where it gives stable suspensions of high viscosity at relatively low concentrations compared to other clays. Palygorskite suspensions are thixotropic and non-Newtonian at all concentrations. During dispersion, the bundles of palygorskite needle-shaped crystals disassociated to form a random lattice that can traps liquid to increase the viscosity of the system (Haden and Schwint, 1967). In other words, the particles are cross-linked, and water (liquid) is trapped (Moore, 1986). Several studies have been conducted to improve the performance of palygorskite. Different additives such as polymers, chemicals, and nanoparticles with various concentrations were added to enhance the properties of palygorskite water-based drilling fluids (fresh and saltwater). (Al-Baidari, 1997) studied the effect of aging time, chemicals, and polymers on the rheological properties of drilling fluids prepared with Iraqi claystones from Injana formation/Najaf-Karbala region and showed that when added Iraqi bentonite to palygorskite reached the required viscosity according to API specification. (Al-Ajeel et al., 2008) studied the beneficiation of attapulgite – montmorillonite claystone with dispersion sedimentation technique using polyionic salts as dispersant. This study was performed on attapulgite-rich claystone (palygorskite) sample from the Digma Formation exposed in the Western Desert of Iraq. The composition of clay materials mainly consists of attapulgite and montmorillonite minerals, together with quartz, calcite (represents the major impurity), dolomite, and gypsum as impurities. The results showed that tetrasodium pyrophosphate was much better than sodium hexametaphosphate, as a dispersant. Also, the dispersant quantity should be optimized in order to achieve good beneficiation of attapulgite clay from the dilute crude slurry. (Abdo and Haneef, 2013) studied the stability and rheological properties of drilling fluid at the HPHT environment by adding palygorskite nanoparticles to montmorillonite. (Xu, et al., 2013) studied the effect of added different electrolytes such as (KCl, KBr, KI, KH₂PO₄, KHSO₄, K₂HPO₄, K₂SO₄, and K₃PO₄) on the electrokinetic, rheological properties, stability of modified series of palygorskite samples. (Zhou, et al., 2015) showed the effect of added chemical additives such as magnesium oxide on the rheological behavior of palygorskite suspension. Other studies were conducted on the activation and treatment of palygorskite clay that was used in drilling fluids to enhance its performance. (Srasra, 2008), (Chen, et al., 2011), and (Cruz, et al., 2014), investigated the effect of heat activation on the specific surface area of palygorskite. In general, clays are used and applied in several industries such as in water-based mud (Salam, et al., 2019) and to remove oil from wastewater (Alwared and Faraj, 2015). This study aims to improve the performance of Iraqi palygorskite in fresh and salt water-based drilling fluid by adding chemical additives such as caustic soda and soda ash with various concentrations.
2. EXPERIMENTAL WORK

2.1 Materials

The materials that have been used in preparing different samples of water-based drilling fluids are:

2.1.1 Palygorskite

Two types of Iraqi palygorskite (PAL) have been supplied by Iraq Geological Survey (GEOSURV- IRAQ) from Bahr Al-Najaf in Al-Najaf governorate and the second from Trefawi in Al-Anbar governorate. These two types were compared with commercial palygorskite, which was supplied from the Basrah Oil Company (BOC).

2.1.2 Chemical Additives

The specifications and the concentration ranges of chemical additives that were used in preparing water-based drilling fluids are shown in Table 2

Name	Formula	Common Name	Solubility g/100g water	Concentration lb/bbl (g/350cc)	Functions
Sodium Chloride	NaCl	Rock Salt	36	10-25 or (125)	Used as produced or as prepared brine in completion and workover operations to saturate water before drilling rock salt
Sodium Carbonate	Na₂CO₃	Soda Ash	21.5	0.2-4	Principle use is for removal of soluble calcium salts from makeup waters and muds; some use in clay beneficiation
Sodium Hydroxide	NaOH	Caustic Soda	119	0.2-4	Used in water muds to raise pH: to solubilize lignite, lignosulfonate and tannin substances; to counteract corrosion, and to neutralize hydrogen sulfide

Table 2. Specification of Chemical Additives (Darley and Gray, 1988), and (MI, 1996)

2.2 Experiments

The experiments were divided into two parts, as illustrated in Table 3. In the first part, an evaluation of Iraqi palygorskite types Bahr Al-Najaf and Trefawi with a concentration of 11 and 9.6 wt. %, respectively, was mixed with different concentrations of caustic soda and soda ash in
fresh water-based drilling fluid and compared with the base sample (without chemical additives). In the second part, salt water-based drilling fluid was used.

Drilling fluids (prepared samples) made in the lab from Iraqi palygorskite must be given a preliminary mixing using Hamilton Beach mixer to mix drilling fluid for 20 min, then be aged for 16 hours to allow the colloids time to hydrate. The rheological properties (apparent viscosity (AV), plastic viscosity (PV), and 10 sec/10 min gel strength) of each sample were measured using Fann viscometer model 35. Each experiment was repeated three times to obtain accurate results.

Table 3. Drilling fluid with different additives and concentrations in fresh and salt water.

Type of Based Mud	PAL Type	PAL %	Distilled Water, cc	NaCl, g	NaOH, g	Na₂CO₃, g
Fresh Based Drilling Fluid	Bahr Al-Najaf	11	450	------	------	------
		11	450	------	0.5,1,2,3	------
		11	450	------	1,2,3,4	------
	Trefawi	9.6	450	------	------	------
		9.6	450	------	0.5,1,2,3	------
		9.6	450	------	0.4,0.6,0.8,1	------
Salt-Based Drilling Fluid	Bahr Al-Najaf	11	450	80.25	------	------
		11	450	80.25	0.5,1,2,3	------
		11	450	80.25	1,2,3,4	------
	Trefawi	9.6	450	80.25	------	------
		9.6	450	80.25	0.5,1,2,3	------
		9.6	450	80.25	0.6,0.8,1,2,3	

3. RESULTS and DISCUSSION
3.1 Rheological properties of Iraqi PAL with caustic soda

The effect of caustic soda on drilling fluid properties is illustrated in Table 4 to Table 7 and shown in Fig.2 to Fig.7
Caustic soda is a fresh water-based drilling fluid prepared with Trefawi PAL caused an increase in PV, YP, and AV. While in Bahr Al-Najaf PAL fresh water-based drilling fluids, the effect revealed a considerable difference. Where, due to montmorillonite (MMT) in Bahr Al-Najaf PAL (XRD analysis showed the presence of montmorillonite, palygorskite kaolinite, feldspar, quartz, and calcite), low concentration of caustic soda caused a decrease in PV, YP, and AV. Poor dispersion (aggregation) of Bahr Al-Najaf PAL caused due to sodium cation. Then with 3 g of caustic soda, an increase in PV, YP, and AV was observed in Table 4 and Table 5, where NaOH addition caused the reinforcing of palygorskite flocculation.

In Bahr Al-Najaf PAL and Trefawi PAL salt water-based drilling fluids, caustic soda with low concentration caused an increase in rheological properties due to flocculation of clay particles. Whilst with 3 g of caustic soda, the PV, YP, and AV decrease due to particle's aggregation, as shown in Table 6 and Table 7.

Drilling fluids prepared with both types are instable with and without caustic soda except Bahr Al-Najaf PAL fresh water-based drilling fluid. Where the stability increased, and there is a 6.25% enhancement, as shown in Table 4. This instability also affects gel strength, where the readings are unacceptable.

The ratio of YP/PV is high at all Iraqi PAL drilling fluids with caustic soda according to the rheological requirement where this ratio should be a maximum of 1.5 (API specification 13A, 2014).

Adding caustic soda caused an increase in pH value to 10-10.7 with 0.5 and 1.0 g and to 11 with 2 and 3 g in Iraqi PAL fresh water-based drilling fluids, as illustrated in Table 4 and Table 5. While in Iraqi PAL salt water-based drilling fluids, the pH values increased to 10.5 with 0.5 g caustic soda and 11 with 1 g and remained stable with the addition after that, as shown in Table 6 and Table 7.

Table 4. Effect of caustic soda on the properties of Bahr Al-Najaf PAL fresh water-based drilling fluid.

NaOH Weight, g	AV, (cP)	PV, (cP)	YP, (lb/100ft²)	YP/PV	pH	ρ, (lb/gal)	Gel Strength, (lb/100 ft²)	Stability %
0	15.17	4.33	21.67	5	7.5	8.5	17.5	80
0.5	7.5	1.57	11.86	7.55	10.7	8.6	5.5	6
1	10	1	18	18	10.7	8.6	16	85
2	13.75	0.83	25.84	31.13	11	8.6	22	24
3	20	2.83	34.34	12.13	11.1	8.6	23	25

Table 5. Effect of caustic soda on the properties of Trefawi PAL fresh water-based drilling fluid.

NaOH Weight, g	AV, (cP)	PV, (cP)	YP, (lb/100ft²)	YP/PV	pH	ρ, (lb/gal)	Gel Strength, (lb/100 ft²)	Stability %
0	15.17	4.33	21.67	5	7.5	8.5	17.5	80
0.5	7.5	1.57	11.86	7.55	10.7	8.6	5.5	6
1	10	1	18	18	10.7	8.6	16	85
2	13.75	0.83	25.84	31.13	11	8.6	22	24
3	20	2.83	34.34	12.13	11.1	8.6	23	25

Table 6. Effect of caustic soda on the properties of Bahr Al-Najaf PAL salt water-based drilling fluid.

NaOH Weight, g	AV, (cP)	PV, (cP)	YP, (lb/100ft²)	YP/PV	pH	ρ, (lb/gal)	Gel Strength, (lb/100 ft²)	Stability %
0	15.17	4.33	21.67	5	7.5	8.5	17.5	80
0.5	7.5	1.57	11.86	7.55	10.7	8.6	5.5	6
1	10	1	18	18	10.7	8.6	16	85
2	13.75	0.83	25.84	31.13	11	8.6	22	24
3	20	2.83	34.34	12.13	11.1	8.6	23	25

Table 7. Effect of caustic soda on the properties of Trefawi PAL salt water-based drilling fluid.

NaOH Weight, g	AV, (cP)	PV, (cP)	YP, (lb/100ft²)	YP/PV	pH	ρ, (lb/gal)	Gel Strength, (lb/100 ft²)	Stability %
0	15.17	4.33	21.67	5	7.5	8.5	17.5	80
0.5	7.5	1.57	11.86	7.55	10.7	8.6	5.5	6
1	10	1	18	18	10.7	8.6	16	85
2	13.75	0.83	25.84	31.13	11	8.6	22	24
3	20	2.83	34.34	12.13	11.1	8.6	23	25
Table 5. Effect of caustic soda on the properties of Trefawi fresh water-based drilling fluid

NaOH Weight, g	AV, cP	PV, cP	YP, lb/100ft²	YP/PV	pH	ρ, lb/gal	Gel Strength, lb/100 ft²	Stability %	
0	15.34	3.34	23.99	7.18	7.4	8.6	11.5	12	75
0.5	20	5.5	29	5.27	10	8.6	8	8.5	75
1	24	8	32	4	10.5	8.6	7	6	75
2	30	10.5	39	3.71	11	8.7	12	12	75
3	35	13	44	3.38	11	8.7	10	9	75

Table 6. Effect of caustic soda on the properties of Bahr Al-Najaf PAL salt water-based drilling fluid.

NaOH Weight, g	AV, cP	PV, cP	YP, lb/100ft²	YP/PV	pH	ρ, lb/gal	Gel Strength, lb/100 ft²	Stability %	
0	12.65	5	15.3	3.1	6.6	9.5	9	11	80
0.5	19	5.34	27.14	5.08	10.5	9.5	16	16.5	80
1	21.5	6.2	30.6	4.93	11	9.6	15.5	16	80
2	23	5.8	34.4	5.93	11	9.6	15	15.5	80
3	18.75	5.5	26.5	4.82	11	9.6	14	14.5	80
Table 7. Effect of caustic soda on the properties of Trefawi PAL salt water-based drilling fluid.

NaOH Weight, g	AV, (cP)	PV, (cP)	YP, (lb/100ft²)	YP/PV	pH	ρ, (lb/gal)	Gel Strength, (lb/100 ft²)	Stability %	
0	12.34	4.34	15.99	3.68	6.5	9.5	7	7.7	80
0.5	15	4.25	21.5	5.05	10.5	9.6	7	7.5	80
1	16	4.5	23	5.11	11	9.6	7.5	8.5	80
2	18.3	3.67	29.26	7.97	11	9.6	8.5	9	80
3	18.5	5	27	5.4	11	9.65	9.5	8.5	80

Figure 2. Effect of caustic soda on apparent viscosity for Bahr Al-Najaf PAL a- freshwater b-saltwater.
Figure 3. Effect of caustic soda on plastic viscosity for Bahr Al-Najaf PAL in a- freshwater b- saltwater.

Figure 4. Effect of caustic soda on yield point for Bahr Al-Najaf PAL a- freshwater b- saltwater.

Figure 5. Effect of caustic soda on apparent viscosity for Trefawi PAL a- freshwater b- saltwater.
3.2 Rheological properties of Iraqi PAL with soda ash

The effect of soda ash on drilling fluid properties is illustrated in Table 8 to Table 11 and shown in Fig.8 to Fig. 13.

The rheological parameters, including AP, PV, YP, and gel strength of Bahr AL-Najaf PAL freshwater drilling fluid with different concentrations of soda ash, are illustrated in Table 8. These parameters decreased with increasing soda ash concentrations. This effect is due to the montmorillonite (MMT) clay in Bahr AL-Najaf PAL composition. While in Trefawi PAL freshwater drilling fluid, the addition of different concentrations of ash revealed a reverse effect, as shown in Table 9. Whereas soda ash concentration increases the rheological properties of Trefawi PAL freshwater drilling fluid that has significant readings with 0.8 and 1.0 g soda ash. An increase in rheological properties is due to the attractive electrostatic interaction between soda ash particles dispersed in the scaffolding structure with positive charges, and the palygorskite rods with negative charges had an impact on the inversion of palygorskite rods configuration (Zhou, et al., 2015).

Soda ash in salt water-based drilling fluids prepared with Iraqi PAL salt water-based drilling fluids caused a slight increase in PV, YP, AV, and gel strength, as described in Table 10 and
This is due to the high concentration of sodium cation (from NaCl and Na₂CO₃), which caused an aggregation to palygorskite particles.

In general, all types of drilling fluids with and without soda ash have high values of the YP/PV ratio according to the API specifications.

The stability of Bahr AL-Najaf PAL freshwater drilling fluids did not affect with soda ash concentration. While the stability of Trefawi PAL freshwater drilling fluids increased and there is 6.67 % and 20 % enhancement with 0.4 and 0.8 g soda ash concentration respectively as shown in Table 8 and Table 9. Bahr AL-Najaf PAL salt water drilling fluids stability enhancement is 6.25 % with 1.0 g soda ash and remain the same stability with other concentrations. Also, the stability enhancement of Trefawi saltwater drilling fluids is 6.25 % with 0.6 g soda ash and maintains stability with the rest additions.

There is a significant effect of soda ash on the pH value of all types of drilling fluids prepared with Bahr AL-Najaf PAL. While the slight effect is observed in Trefawi PAL drilling fluids, unlike caustic soda (strong base), weak base soda ash has less effect on pH value.

Table 8. Effect of soda ash on the properties of Bahr Al-Najaf PAL fresh waterbased drilling fluid.

Weight of Na₂CO₃, g	AP, (cP)	PV, (cP)	YP, (lb/100ft²)	Yp/PV, (lb/100 ft²/cP)	pH	ρ, (lb/gal)	Gel Strength (lb/100 ft²)	Stability %	
0	15.17	4.33	21.67	5.0	7.5	8.5	17.5	18.5	80
1	11.42	2.83	17.17	6.07	9	8.78	17	20	80
2	9.67	2.33	14.67	6.29	9	8.78	12.5	14	80
3	10	2	16	8	9	8.78	14.5	15.8	80
4	10	2.5	15	6	9	8.78	14	15	80

Table 9. Effect of soda ash on the properties of Trefawi PAL fresh waterbased drilling fluid.

Weight of Na₂CO₃, g	AP, (cP)	PV, (cP)	YP, (lb/100ft²)	Yp/PV, (lb/100 ft²/cP)	pH	ρ, (lb/gal)	Gel Strength (lb/100 ft²)	Stability %	
0	15.34	3.34	23.99	7.18	7.4	8.6	11.5	12	75
0.4	19.33	4.17	30.33	7.27	7.4	8.7	18.5	19.5	80
0.6	22.75	4.83	35.84	7.42	7.5	8.7	20	20.5	80
0.8	70	4	136	68	7.5	8.75	36	43	90
1	80	3.5	155	62	7.7	8.8	90	96	90
Table 10. Effect of soda ash on the properties of Bahr Al-Najaf PAL salt water-based drilling fluid.

Weight of Na₂CO₃, g	AV, (cP)	PV, (cP)	YP, (lb/100 ft²)	YP/PV	pH	ρ, (lb/gal)	Gel Strength (lb/100 ft²)	Stability %	
							10 sec	10 min	
0	12.65	5	15.33	3.1	6.6	9.5	9	11	80
1	10.67	4	13.33	3.33	8	9.55	8	8.5	85
2	11	2.7	16.66	6.24	8	9.55	8.5	9	85
3	11.5	3.5	16	4.57	8	9.6	8.6	9	85
4	12	4	16	4	8	9.6	9	9.4	85

Table 11. Effect of soda ash on the properties of Trefawi PAL salt water-based drilling fluid.

Weight of Na₂CO₃, g	AV, (cP)	PV, (cP)	YP, (lb/100 ft²)	YP/PV, (lb/100 ft²/cP)	pH	ρ, (lb/gal)	Gel Strength (lb/100 ft²)	Stability %	
							10 sec	10 min	
0	12.34	4.34	15.99	3.68	6.5	9.5	7	7.7	80
0.6	11	4	14	3.5	7	9.6	8	8.5	85
0.8	12	4.5	14	2.8	7	9.6	7	7.5	85
2	15.5	5	21	4.2	7.7	9.6	9	9.5	85
3	15.5	5	21	4.2	8	9.6	8.5	9	85
Figure 8. Effect of soda ash on apparent viscosity for Bahr Al-Najaf PAL a-freshwater b-saltwater.

Figure 9. Effect of soda ash on plastic viscosity for Bahr Al-Najaf PAL a-freshwater b-saltwater.

Figure 10. Effect of soda ash on yield point for Bahr Al-Najaf PAL a-freshwater b-saltwater.

Figure 11. Effect of soda ash on apparent viscosity for Trefawi PAL a-freshwater b-saltwater.
Figure 12. Effect of soda ash on plastic viscosity for Trefawi PAL a-freshwater b-saltwater.

Figure 13. Effect of soda ash on yield point for Trefawi PAL a-fresh water b-saltwater.

4. CONCLUSIONS

- Palygorskite water-based drilling fluids had a low pH value. Adding caustic soda (NaOH) and soda ash (Na$_2$CO$_3$), which are strong and weak bases respectively, resulted in an enhancement in pH value and the ability of palygorskite dispersion in drilling fluid.
- Bahr Al-Najaf palygorskite was more affected by caustic soda than Trefawi palygorskite in both fresh and salt water-based drilling fluids while Trefawi palygorskite was more affected with low concentrations of soda ash than Bahr Al-Najaf palygorskite in both fresh and salt water-based drilling fluid.
- The stability of Bahr Al-Najaf PAL fresh water-based drilling fluid was enhanced with caustic soda, while Trefawi PAL fresh water-based drilling fluid stability was enhanced with soda ash. Both of Bahr Al-Najaf PAL and Trefawi PAL salt water-based drilling fluids stability were enhanced with soda ash to 80.
NOMENCLATURE

API = American Petroleum Institute
AV = apparent viscosity, cP
BOC = Basrah Oil Company
Iraqi PAL = Bahr AL-Najaf PAL and Trefawi PAL.
PAL = Palygorskite
PV = plastic viscosity, cP
XRD = X-Ray Diffraction
YP = Yield Point, lb/100ft²
\(\rho \) = Density, lb/gal

REFERENCES

• Al- Baidari A. P. Y and Al- Bassam K. (1997). Mineralogy, Geochemistry and Assessment of the Claystones of Injana Formation in Najaf – Karbala Region.
• Abdo, J., and Haneef, M. D. (2013). Clay nanoparticles modified drilling fluids for drilling of deep hydrocarbon wells. Applied Clay Science, 86, 76-82.
• AïtAghzzaf, A., Rhouta, B., Rocca, E., and Khalil, A. (2017). Grafted palygorskite as containers of heptanoate for corrosion protection of steel in NaCl medium. Corrosion Science, 114, 88-95.
• Alwared, A. I., and Faraj, N. S. (2015). Coagulation-Flotation Process for Removing Oil from wastewater using Sawdust+ Bentonite. Journal of Engineering, 21(6), 62-76.
• Chen, H., Zhao, J., Zhong, A., and Jin, Y. (2011). Removal capacity and adsorption mechanism of heat-treated palygorskite clay for methylene blue. Chemical Engineering Journal, 174(1), 143-150.
• Caenn R., Darly H. C., and Gray G.R. (2017). Composition and Properties of Drilling and Completion Fluids.
• Cruz Magalhães, X. K., do Socorro Ferreira, S. M., Santos, M. R. D. M. C., Benvindo, L. A., Leite, B. L., Nunes Cordeiro, C. M. W., & Silva Filho, E. C. (2014). Thermal Activation of Palygorskite at Different Temperatures. In Materials Science Forum (Vol. 775, pp. 47-51). Trans Tech Publications.
• E. Edition, C. Api, M. Annex, A. S. Part, and O. F. U. S. National, “Specification for Drilling Fluids Materials,” vol. 2009, no. February 2010, 2014.
• Frini-Srasra, N., and Srasra, E. (2008). Effect of heating on palygorskite and acid treated palygorskite properties surface Engineering and Applied Electrochemistry, 44 (1), 43-49.
• Salam, M., Al-Zubaidi, N. S., & Al-Wasiti, A. A. (2019). Enhancement in Lubricating, Rheological, and Filtration Properties of Unweighted Water-Based Mud Using XC Polymer NPs. Journal of Engineering, 25(2), 96-115.
• Haden, W. L., and Schwint, I. A. (1967). Attapulgite: its properties and applications. Industrial & Engineering Chemistry, 59(9), 58-69.
• Moore. P. L. (1986) "Moore – Drilling Practices Manual.pdf."
• Murray. H. H. (2007). Application Clay Mineralogy.
• Mustafa, A. M. K., Abdullah, S. N., and Al-Ajeel, A. W. A. (2008). BENEFICIATION OF ATTAPULGITE–MONTMORILLONITE CLAYSTONE BY DISPERSION SEDIMENTATION. Iraqi Bulletin of Geology and Mining, 4(1), 117-124.
• Xu, J., Wang, W., and Wang, A. (2013). Influence of anions on the electrokinetic and colloidal properties of palygorskite clay via high-pressure homogenization, Journal of Chemical and Engineering Data, 58(3), 764-772.
• Zhou, F. S., Li, T. Q., Yan, Y. H., Cao, C., Zhou, L., and Liu, Y. (2015). Enhanced viscosity of aqueous palygorskite suspensions through physical and chemical processing. Advances in Materials Science and Engineering, 2015.