Non- (quantum) differentiable C^1-functions in the spaces with trivial Boyd indices

Denis Potapov and Fyodor Sukochev

Mathematics Subject Classification (2000). Primary 47A55; Secondary 47L20.

Keywords. Commutator estimates, derivations.

Abstract. If E is a separable symmetric sequence space with trivial Boyd indices and S_E is the corresponding ideal of compact operators, then there exists a C^1-function f_E, a self-adjoint element $W \in S_E$ and a densely defined closed symmetric derivation δ on S_E such that $W \in \text{Dom } \delta$, but $f_E(W) \notin \text{Dom } \delta$.

1. Introduction.

This paper studies properties of infinitesimal generator $\delta^\mathcal{S}$ of a strongly continuous group $\alpha = \{\alpha_t\}_{t \in \mathbb{R}}$ in Banach algebras $\mathcal{S} \subseteq \mathcal{B}(\mathcal{H})$, given by $\alpha_t(y) = e^{itX}ye^{-itX}$, $y \in \mathcal{S}$, where X is an unbounded self-adjoint operator in the Hilbert space \mathcal{H}. The generator $\delta^\mathcal{S}$ is a densely defined closed symmetric derivation on \mathcal{S} and we are concerned with the question when its domain $\text{Dom } \delta^\mathcal{S}$ satisfies the following condition

$$x = x^* \in \text{Dom } \delta^\mathcal{S} \Rightarrow f(x) \in \text{Dom } \delta^\mathcal{S},$$

for every C^1-function $f : \mathbb{R} \to \mathbb{C}$. In the recent paper [3], it is shown that there are C^*-algebras \mathcal{S} and operators X for which the implication above fails (see also [9]). In this paper, we consider the case when the Banach algebra \mathcal{S} is a symmetrically normed ideal of compact operators on \mathcal{H} (see e.g. [4] and Section 3 below). It is immediately clear that for every self-adjoint operator X, the group α acts isometrically on such an ideal \mathcal{S} and, in fact, is a C_0-group on \mathcal{S}, provided that \mathcal{S} is separable (see e.g. [2]). It is an interesting problem to determine the class of ideals \mathcal{S} in which $\text{Dom } \delta^\mathcal{S}$ is closed with respect to the C^1-functional calculus. Note, that the class of such ideals is non-empty. For example it contains the Hilbert-Schmidt ideal. The proof of the latter claim may be found in [10]. On the other hand, it is unclear whether this class contains the Schatten-von
2 D. Potapov and F. Sukochev

Neumann ideals \mathcal{G} when $1 < p < \infty$, $p \neq 2$. In this paper, we however show that the class of all symmetrically normed ideals \mathcal{G} whose Boyd indices are trivial fail the implication above. For various geometric characterizations of the latter class we refer to [1] (see also Section 3 below). Our methods are built upon and extend those of [3, 9]. Our results also contribute to the study of commutator bounded operator-functions initiated in [5–7].

2. Schur multipliers.

Let $\mathbb{M}_n(\mathbb{C})$ be the C^*-algebra of all $n \times n$ complex matrices, let $B \in \mathbb{M}_n(\mathbb{C})$ be a diagonal matrix $\text{diag}\{\lambda_1, \lambda_2, \ldots, \lambda_n\}$. The Schur multiplier $M_f(B)$ associated with the diagonal matrix B and the function $f : \mathbb{R} \mapsto \mathbb{C}$ is defined as follows. For every matrix $X = \{\xi_{jk}\}_{j,k=1}^n \in \mathbb{M}_n(\mathbb{C})$, the matrix $M_f(B)(X) \in \mathbb{M}_n(\mathbb{C})$ has (j,k) entry given by

$$
[M_f(B)(X)]_{jk} = \psi_f(\lambda_j, \lambda_k) \xi_{jk}, \quad 1 \leq j, k \leq n,
$$

where

$$
\psi_f(\lambda, \mu) = \begin{cases}
\frac{f(\lambda) - f(\mu)}{\lambda - \mu}, & \lambda \neq \mu, \\
0, & \lambda = \mu.
\end{cases}
$$

Alternatively, if $\{P_j\}_{j=1}^n$ is the collection of one-dimensional spectral projections of the matrix B then $B = \sum_{j=1}^n \lambda_j P_j$, and

$$
M_f(B)X = \sum_{1 \leq j, k \leq n} \psi_f(\lambda_j, \lambda_k) P_j XP_k. \tag{2.1}
$$

For every matrix $X \in \mathbb{M}_n(\mathbb{C})$ the following equation outlines the interplay between the Schur multiplier $M_f(B)$ and the commutator $[B, X] = BX - XB$

$$
M_f(B)([B, X]) = [f(B), X]. \tag{2.2}
$$

Indeed,

$$
M_f(B)([B, X]) = \sum_{1 \leq j, k \leq n} \psi_f(\lambda_j, \lambda_k) P_j \left[\sum_{s=1}^n \lambda_s P_s, X\right] P_k
= \sum_{1 \leq j, k \leq n} \psi_f(\lambda_j, \lambda_k)(\lambda_j - \lambda_k) P_j XP_k
= \sum_{1 \leq j, k \leq n} (f(\lambda_j) - f(\lambda_k)) P_j XP_k
= \sum_{1 \leq j, k \leq n} P_j \left[\sum_{s=1}^n f(\lambda_s) P_s, X\right] P_k = [f(B), X].
$$
3. Symmetric spaces with trivial Boyd indices.

Let $E = E(0, \infty)$ be a symmetric Banach function space, i.e. $E = E(0, \infty)$ is a rearrangement invariant Banach function space on $(0, \infty)$ (see [8]) with the additional property that $f, g \in E$ and $g \prec f$ imply that $\|g\|_E \leq \|f\|_E$. Here $g \prec f$ denotes submajorization in the sense of Hardy, Littlewood and Polya, i.e.

$$\int_0^t g^*(s) \, ds \leq \int_0^t f^*(s) \, ds, \quad t > 0,$$

where f^* (respectively, g^*) stands for the decreasing rearrangement of the function f (respectively, g).

Let us consider the group of dilations $\{\sigma_\tau\}_{\tau > 0}$ defined on the space $S = S(0, \infty)$ of all Lebesgue measurable functions on $(0, \infty)$. The operator σ_τ, $\tau > 0$ is given by

$$(\sigma_\tau f)(t) = f(\tau^{-1} t), \quad t > \infty.$$

If E is a symmetric Banach function space, then the lower (respectively, upper) Boyd index α_E (respectively, β_E) of the space E is defined by

$$\alpha_E := \lim_{\tau \to +0} \frac{\log \|\sigma_\tau\|_{E \to E}}{\log \tau} \quad \text{(respectively,} \quad \beta_E := \lim_{\tau \to +\infty} \frac{\log \|\sigma_\tau\|_{E \to E}}{\log \tau}.\quad$$

We say that the space E has the trivial lower (resp. upper) Boyd index when $\alpha_E = 0$ (respectively, $\beta_E = 1$). It is known that, if $\alpha_E = 0$ (respectively, $\beta_E = 1$), then the space E is not an interpolation space in the pair (L_1, L_∞) for every $p < \infty$ (respectively, (L_q, L_∞) for every $1 < q$, [8, Section 2.b].

Proposition 3.1. ([8, Proposition 2.b.7]) If E be a symmetric sequence space and $\alpha_E = 0$ (respectively, $\beta_E = 1$), then for every $\varepsilon > 0$ and every $n \in \mathbb{N}$ there exist n disjointly supported vectors $\{x_j\}_{j=1}^n$ in E, having the same distribution, such that for every scalars $\{a_j\}_{j=1}^n$ the following holds

$$\max_{1 \leq j \leq n} |a_j| \leq \left(1 + \varepsilon\right) \max_{1 \leq j \leq n} |a_j|$$

(respectively, $1 - \varepsilon$)

$$\sum_{j=1}^n |a_j| \leq \sum_{j=1}^n |a_j|.$$

(3.1)

If E is separable then x_j can be chosen finitely supported.

\mathcal{E}^E denotes the corresponding symmetric ideal of compact operators on the Hilbert space $\ell_2 = \ell_2(\mathbb{N})$, i.e. the space of all compact operators x such that $s(x) \in E$, where $s(x)$ is the step function such that

$$s(x)(t) = s_k, \quad k < t \leq k + 1, \quad k \geq 0$$

and $\{s_k\}_{k \geq 0}$ the sequence of singular numbers (counted with multiplicities) of the operator x (see e.g. [4]). The norm in the space \mathcal{E}^E is given by $\|x\|_{\mathcal{E}^E} := \|s(x)\|_E$. In particular, if $E = L_p$, then the ideal $\mathcal{E}^p = \mathcal{E}^{L_p}$, $1 \leq p < \infty$ stands for the...
Schatten-von Neumann ideals of compact operators and \mathcal{S}^∞ stands for the ideal of all compact operators equipped with the operator norm, see [4].

Let ℓ_2^n be the subspace in ℓ_2 spanned by the first n standard unit vector basis. If an element $B \in \mathcal{S}^E$ is such that $B = B|_{\ell_2^n}$, then we identify B with its matrix from $M_n(\mathbb{C})$.

Proposition 3.2. Let E be a separable symmetric function space and $\alpha_E = 0$ (respectively, $\beta_E = 1$). For every scalar $\varepsilon > 0$ and every positive integer $n \in \mathbb{N}$ there exist linear operators Φ_n and Ψ_n such that

(i) $\Phi_n, \Psi_n : M_n(\mathbb{C}) \rightarrow M_{k_n}(\mathbb{C})$, where $\{k_n\}_{n\geq 1}$ is a sequence of positive integers;

(ii) the operators Φ_n, Ψ_n map diagonal (respectively, self-adjoint) matrices to diagonal (respectively, self-adjoint) matrices;

(iii) if $M_f(B), M_f(\Phi_n(B))$ are the Schur multiplier associated with the diagonal matrices $B \in M_n(\mathbb{C}), \Phi_n(B) \in M_{k_n}(\mathbb{C})$ and the function f, then

$$
\Psi_n(M_f(B)X) = M_f(\Phi_n(B))\Psi_n(X) \quad \text{for every matrix } X \in M_n(\mathbb{C});
$$

(iv) $\|X\|_{\mathcal{S}^\infty} \leq \|\Psi_n(X)\|_{\mathcal{S}^\infty} \leq (1 + \varepsilon)\|X\|_{\mathcal{S}^\infty}$ (respectively, $(1 - \varepsilon)\|X\|_{\mathcal{S}^1} \leq \|\Psi_n(X)\|_{\mathcal{S}^1} \leq \|X\|_{\mathcal{S}^1})$ for every matrix $X \in M_n(\mathbb{C})$.

Proof. Let n be a fixed positive integer and $\varepsilon > 0$ be a fixed positive scalar. Let $\{x_j\}_{j=1}^n$ be a sequence of finitely and disjointly supported vectors, having the same distribution such that [5.1] holds. Let X_0 be the matrix given by $X_0 = diag\{x^*_1(k)\}_{k \geq 1}$, i.e. X_0 is the finite diagonal matrix in \mathcal{S}^E that corresponds to the decreasing rearrangement x^*_1 in E. Let I be the identity matrix of the same size as X_0. We define the linear operators Φ_n and Ψ_n by

$$
\Phi_n(X) := X \otimes I, \quad \text{and} \quad \Psi_n(X) := X \otimes X_0, \quad X \in M_n(\mathbb{C}).
$$

The claims (i) (ii) now, follow immediately from the definition of Φ_n and Ψ_n and the claim (iii) follows from (2.1).

Let us prove (iv). For every matrix $X \in M_n(\mathbb{C})$ there exist unitary matrices U, V such that

$$
UXV = diag\{s_1, s_2, \ldots, s_n\}.
$$

Now, it follows from elementary properties of tensors, that

$$
\Phi_n(U)\Psi_n(X)\Phi_n(V) = (U \otimes I)(X \otimes X_0)(V \otimes I) = (UXV) \otimes X_0 = \Psi_n(UXV) = diag\{s_jX_0\}_{j=1}^n,
$$

and so

$$
\|\Psi_n(X)\|_{\mathcal{S}^E} = \|\Phi_n(U)\Psi_n(X)\Phi_n(V)\|_{\mathcal{S}^E} = \|diag\{s_jX_0\}_{j=1}^n\|_{\mathcal{S}^E} = \left\| \sum_{j=1}^n s_jx_j \right\|_{E}.
$$
Now, the claim in (iv) for $\alpha_E = 0$ (respectively, $\beta_E = 1$) follows from combining the equality above with the first estimate in (3.1) (respectively, the second estimate in (3.1)).

The operators Φ_n, Ψ_n are very similar to those, constructed in the proof of [1, Theorem 4.1].

4. Commutator estimates.

From now on let $h : \mathbb{R} \rightarrow \mathbb{R}$ be a function with the following properties

1. $h(t) \in C^1(\mathbb{R} \setminus \{0\})$;
2. $h(t) = h(-t)$ when $t \neq 0$, $h(0) \geq 0$;
3. $h(\cdot)$ is increasing function on $(0, \infty)$;
4. $h(\pm \infty) = +\infty$;
5. $0 \leq h'(t)/h(t) \leq 1$ when $t \in (0, \infty)$.

Proposition 4.1. Let $h(t)$ be a function that satisfies the conditions (a)–(e) above. If f is a function defined as follows

$$f(t) = \begin{cases} |t|(h(\log |t|))^{-1}, & \text{if } |t| < 1, \ t \neq 0, \\ 0, & \text{if } t = 0. \end{cases} \quad (4.1)$$

then $f(t) \in C^1(-1, 1)$ and $f'(t) \geq 0$ for every $t \in (0, 1)$.

Proof. The function given in (4.1) is even so it is sufficient to consider only the case $t \geq 0$. It follows from the definition of the function f that for every $t \in (0, 1)$ function f is continuously differentiable. To calculate the derivative at zero, we use the definition

$$f'(0) = \lim_{t \to 0} \frac{f(t) - f(0)}{t - 0} = \lim_{t \to 0} (h(\log t))^{-1} = 0.$$

In order to verify that $f'(t) \to 0$ when $t \to +0$, we note first that

$$f'(t) = (h(\log t))^{-1} \left(1 - \frac{h'(\log t)}{h(\log t)}\right), \quad 0 < t < 1.$$

Since $h(t) \geq 0$ for every $t \in \mathbb{R}$, together with the property (e) it now follows that for every $t \in (0, 1)$

$$0 \leq f'(t) \leq 2(h(\log t))^{-1} \to 0, \text{ as } t \to +0.$$

□
Let matrices $D, V \in \mathbb{M}_m(\mathbb{C})$ and $A, B \in \mathbb{M}_{2m}(\mathbb{C})$ be defined as follows

$$D = \text{diag}\{e^{-1}, e^{-2}, \ldots, e^{-m}\},$$
$$V = \{v_{jk}\}_{j,k=1}^m,$$
$$v_{jk} = \begin{cases} (k-j)^{-1}(e^{-j} + e^{-k})^{-1}, & \text{if } j \neq k, \\ 0, & \text{if } j = k. \end{cases}$$

(4.2)

and

$$A = \begin{bmatrix} 0 & V \\ -V & 0 \end{bmatrix}, \quad B = \begin{bmatrix} D & 0 \\ 0 & -D \end{bmatrix}.$$

(4.3)

The following proposition provides commutator estimates in the norm of the ideal of compact operators which are very similar to those established in [3] and [9].

Proposition 4.2. For any function $f : \mathbb{R} \to \mathbb{R}$ given by (4.1), there exists an absolute constant K_0 such that for every $m \geq 3$ and for every scalar $0 < p \leq 1$ the following estimates hold

(i) $\| [B, A] \|_{\mathcal{S}_\infty} \leq \pi$,

(ii) $\| [f(pB), A] \|_{\mathcal{S}_\infty} \geq \frac{pK_0}{h(m - \log p)} \log \frac{m}{2}$.

Proof. The proof of the first claim is based on the norm estimates of the Hilbert matrix, see [3, the proof of Lemma 3.6]. Hence, we need to establish only the second one. Let us first note, since the function f is even, it follows from definition of matrices A, B that

$$f(pB)A - Af(pB) = \begin{bmatrix} 0 & f(pD)V - Vf(pD) \\ f(pD)V - Vf(pD) & 0 \end{bmatrix}.$$

so

$$\| [f(pB), A] \|_{\mathcal{S}_\infty} = \| [f(pD), V] \|_{\mathcal{S}_\infty}.$$

(4.4)

If $S = \{s_{jk}\}_{j,k=1}^m = f(pD)V - Vf(pD) \in \mathbb{M}_m(\mathbb{C})$, then

$$s_{kj} = s_{jk} = \frac{f(pe^{-j}) - f(pe^{-k})}{(e^{-j} + e^{-k})(k-j)} \geq 0, \quad 1 \leq j, k \leq m.$$

If $1 \leq j < k \leq m$, then, since functions $h(t)$ and e^t are monotone, we have

$$s_{jk} = \left(\frac{pe^{-j}}{h(j - \log p)} - \frac{pe^{-k}}{h(k - \log p)} \right) (e^{-j} + e^{-k})^{-1}(k-j)^{-1} \geq \frac{p(e^{-j} - e^{-k})}{h(k - \log p)} (2e^{-j}(k-j))^{-1} \geq \frac{p(1 - e^{-1})}{2h(k - \log p)(k-j)} \geq \frac{p(1 - e^{-1})}{2h(m - \log p)(k-j)}.$$

Now, using \(\sum_{j=1}^{k-1} \frac{1}{j} \geq \log k \), we have
\[
\sum_{j=1}^{m} s_{jk} \geq \sum_{j=1}^{k-1} s_{jk} \geq \frac{p(1-e^{-1})}{2h(m - \log p)} \sum_{j=1}^{k-1} \frac{1}{k-j} \geq \frac{p(1-e^{-1})}{2h(m - \log p)} \log k.
\]

Finally, letting \(x = (m^{-1/2}, m^{-1/2}, \ldots, m^{-1/2}) \in \mathbb{C}^m \), we obtain
\[
\|S\|_{\infty} \geq \langle Sx,x \rangle \geq \frac{1}{m} \sum_{j,k=1}^{m} s_{jk} \geq \frac{1}{m} \frac{p(1-e^{-1})}{2h(m - \log p)} \sum_{k=1}^{m} \log k \geq \frac{1}{m} \frac{p(1-e^{-1})}{2h(m - \log p)} \frac{m}{2} \log \frac{m}{2}.
\]

Setting \(K_0 = \frac{(1-e^{-1})}{4} \), we have
\[
\|f(pD),V]\|_{\infty} \geq \|S\|_{\infty} \geq \frac{pK_0}{h(m - \log p)} \log \frac{m}{2}.
\]

which, together with (4.4), completes the proof. \(\square \)

Together with (2.2), Proposition 4.2 provides a lower estimate for the operator norm of Schur multiplier associated with the function \(f \), given by (4.1), and diagonal matrix \(pB \) given by (4.2) and (4.3) for every scalar \(0 < p \leq 1 \) and every integer \(m \geq 3 \). Now we extend that lower estimate to a larger class of ideals.

Proposition 4.3. Let \(E \) be a separable symmetric function space with trivial Boyd indices. For every \(m \geq 3 \), let \(A_m, B_m \in M_{2m}(\mathbb{C}) \) be given by (4.2) and (4.3), \(\Phi_{2m}, \Psi_{2m} \) be the operators from the Proposition 3.2 for the \(\varepsilon = \frac{1}{2} \). There exists an absolute constant \(K_1 \) such that for every scalar sequence \(0 < p_m \leq 1 \), and for the sequence of the diagonal matrices \(W_m = \Phi_{2m}(p_m B_m) \in M_{k_m}(\mathbb{C}) \) the following estimate holds
\[
\|M_f(W_m)\|_{\infty E \rightarrow \infty E} \geq \frac{K_1}{h(m - \log p_m)} \log \frac{m}{2}, \quad m \geq 3,
\]
where \(f : \mathbb{R} \rightarrow \mathbb{R} \) is an arbitrary function given by (4.1).

Proof. Letting \(X_m^\infty = [p_m B_m, \frac{1}{p_m} A_m], \quad m \geq 3, \)

we infer from Proposition 4.2 and from (2.2) that for every \(m \geq 3 \)
\[
\|X_m^\infty\|_{\infty} \leq \pi,
\]
\[
\|M_f(p_m B_m)(X_m^\infty)\|_{\mathcal{S}^\infty} = \|[f(p_m B_m), \frac{1}{p_m} A_m]\|_{\mathcal{S}^\infty} \\
\geq \frac{K_0}{h(m - \log p_m) \log \frac{m}{2}}.
\]

It follows from the definition of Schur multiplication and duality that
\[
\|M_f(p_m B_m)\|_{\mathcal{S}^1 \rightarrow \mathcal{S}^1} = \|M_f(p_m B_m)\|_{\mathcal{S}^\infty \rightarrow \mathcal{S}^\infty} \\
\geq \frac{K_0}{\pi h(m - \log p_m) \log \frac{m}{2}}, \quad m \geq 3.
\]
The last estimate implies that there exists a sequence of \(X_m^1 \in M_{2m}(\mathbb{C})\) such that
\[
\|M_f(p_m B_m)(X_m^1)\|_{\mathcal{S}^1} \geq \|X_m^1\|_{\mathcal{S}^1} \geq \frac{K_0}{2\pi h(m - \log p_m) \log \frac{m}{2}}, \quad m \geq 3.
\]
Suppose now, that \(\alpha_E = 0\) and set \(X_m = \Psi_{2m}(X_m^\infty)\) for every \(m \geq 3\). It follows from Proposition 3.2 that, for every \(m \geq 3\), \(W_m\) is a finite diagonal self-adjoint matrix such that
\[
\|M_f(W_m)(X_m)\|_{\mathcal{S}^E} \geq \frac{\|M_f(p_m B_m)(X_m^1)\|_{\mathcal{S}^1}}{\|X_m^1\|_{\mathcal{S}^1}} = \frac{\|\Psi_{2m}(M_f(p_m B_m)(X_m^\infty))\|_{\mathcal{S}^E}}{\|\Psi_{2m}(X_m^\infty)\|_{\mathcal{S}^E}} \\
\geq \frac{2}{3} \frac{\|M_f(p_m B_m)(X_m^\infty)\|_{\mathcal{S}^\infty}}{\|X_m^\infty\|_{\mathcal{S}^\infty}} \geq \frac{2K_0}{3\pi h(m - \log p_m) \log \frac{m}{2}}.
\]

If we put \(K_1 = 2K_0/(3\pi)\), that completes the proof of the case \(\alpha_E = 0\). The only difference in treating the case \(\beta_E = 1\) is that we need to use \(X_m^1\) instead of \(X_m^\infty\) in the above estimates. \(\square\)

The following proposition proves that if a function \(f : \mathbb{R} \rightarrow \mathbb{R}\) is given by (4.1) and the multipliers \(M_f(W_m)\) are not uniformly bounded in \(\mathcal{S}^E\), then this function is not commutator bounded in the sense of [6].

Proposition 4.4. Let \(E\) be a separable symmetric function space. If \(f\) is a \(C^1\)-function and \(W_m \in M_{k_m}(\mathbb{C})\) is a sequence of diagonal matrices \((m \geq 3)\) such that
\[
\|M_f(W_m)\|_{\mathcal{S}^E} \rightarrow \infty,
\]then there exist self-adjoint operators \(W, X\), acting on \(\ell_2\), such that
\[
[W, X] \in \mathcal{S}^E, \quad [f(W), X] \notin \mathcal{S}^E.
\]

If, in addition, the norms \(\|W_m\|_{\mathcal{S}^\infty}\) are uniformly bounded, then \(W(Dom X) \subseteq Dom X\), and if the following series converges
\[
\sum_{m \geq 3} \|W_m\|_{\mathcal{S}^E},
\]
then operator W belongs to S^E and
\[\|W\|_E \leq \sum_{m \geq 3} \|W_m\|_E. \]

Proof. It follows from (4.5) that there exists a subsequence of positive integers m_r ($r \geq 1$) and a sequence of self-adjoint matrices $X_r(i) \in M_{k'_r}(\mathbb{C})$ such that
\[\|M_f(W_r')(X_r(i))\|_E \geq 2r^3\|X_r(i)\|_E, \quad r \geq 1, \] (4.6)
where we let, for brevity, $k'_r = k_{m_r}$ and $W_r' = W_{m_r} \in M_{k'_r}(\mathbb{C})$. Let $r \geq 1$ be fixed, let $\{\lambda_j\}_{j=1}^{k'_r}$ be the sequence of eigenvalues of the matrix W_r', and let $\{P_j\}_{j=1}^{k'_r}$ be the collection of corresponding one-dimensional spectral projections. For $\lambda \in \mathbb{R}$, we set
\[Q_{\lambda} = \sum_{1 \leq j \leq k'_r, \lambda_j = \lambda} P_j. \]
There are only a finite number of non-zero projections among $\{Q_{\lambda}\}_{\lambda \in \mathbb{R}}$, let us denote them as $\{Q_s\}_{s=1}^{s'}$, $1 \leq s \leq k'_r$ and the corresponding sequence of eigenvalues as $\{\lambda'_s\}_{s=1}^{s'}$, the scalars λ'_s are mutually distinct. We consider the self-adjoint matrices
\[\hat{X}_r = \sum_{j=1}^{s'} Q_j X_r(i) Q_j, \quad \text{and} \quad X_r^{(2)} = X_r(i) - \hat{X}_r. \]
It follows from (2.1) that (recall that $\psi_f(\lambda, \lambda) = 0$)
\[M_f(W_r')(\hat{X}_r) = \sum_{1 \leq j, l \leq k'_r} \psi_f(\lambda_j, \lambda_l) P_j \hat{X}_r P_l \]
\[= \sum_{t=1}^{s} \sum_{1 \leq j, l \leq k'_r} \psi_f(\lambda_j, \lambda_l) P_j Q_t X_r(i) P_l \]
\[= \sum_{t=1}^{s} \sum_{1 \leq j, l \leq k'_r} \psi_f(\lambda_t, \lambda_t) Q_t X_r(i) Q_t = 0, \]
and so
\[M_f(W_r')(X_r^{(2)}) = M_f(W_r')(X_r(i)). \] (4.7)
Now, noting that $\|\hat{X}_r\|_E \leq \|X_r(i)\|_E$ (see [4, Theorem III.4.2]) and hence $\|X_r^{(2)}\|_E \leq 2\|X_r(i)\|_E$, $X_r^{(2)}$, we infer from (4.7) and (4.6)
\[\|M_f(W_r')(X_r^{(2)})\|_E \geq r^3\|X_r^{(2)}\|_E. \] (4.8)
We set
\[X_r^{(3)} = \sum_{1 \leq j, l \leq k'_r} \lambda_l P_j X_r^{(2)} P_l, \]
where
\[
\lambda_{jl} = \begin{cases}
0, & \lambda_j = \lambda_l, \\
-i \frac{\lambda_j - \lambda_l}{\lambda_j - \lambda_l}, & \lambda_j \neq \lambda_l.
\end{cases}
\]

The matrix \(X_r^{(3)}\) is self-adjoint and
\[
X_r^{(2)} = \sum_{1 \leq j, l \leq k_r'} P_j X_r^{(2)} P_l = i \sum_{1 \leq j, l \leq k_r'} \lambda_{jl}(\lambda_j - \lambda_l) P_j X_r^{(2)} P_l
\]
\[
= i \sum_{1 \leq j, l \leq k_r'} \lambda_{jl} P_j (W_r' X_r^{(2)} - X_r^{(2)} W_r') P_l
\]
\[
= i \left[W_r', \sum_{1 \leq j, l \leq k_r'} \lambda_{jl} P_j X_r^{(2)} P_l \right] = i [W_r', X_r^{(3)}].
\]

Finally, we let
\[
X_r = r^{-2} \|X_r^{(2)}\|_{\mathcal{B}(E)}^{-1} X_r^{(3)}.
\]

For every \(r \geq 1\) we have constructed so far the finite self-adjoint matrices \(W_r', X_r\) such that
\[
\|[W'_r, X_r]\|_{\mathcal{B}(E)} \leq ||W'_r, X_r||_{\mathcal{B}(E)} \leq r^{-2} \|X_r^{(2)}\|_{\mathcal{B}(E)}^{-1} \|[W'_r, X_r^{(3)}]\|_{\mathcal{B}(E)} \leq r^{-2} \|X_r^{(2)}\|_{\mathcal{B}(E)}^{-1} \|X_r^{(2)}\|_{\mathcal{B}(E)} = \frac{1}{r^2}
\]

and
\[
\|[f(W'_r), X_r]\|_{\mathcal{B}(E)} \leq r^{-2} \|X_r^{(2)}\|_{\mathcal{B}(E)}^{-1} \|[f(W'_r), X_r^{(3)}]\|_{\mathcal{B}(E)} \leq r^{-2} \|X_r^{(2)}\|_{\mathcal{B}(E)}^{-1} \|M_f(W'_r)([W'_r, X_r^{(3)}])\|_{\mathcal{B}(E)} \leq r^{-2} \|X_r^{(2)}\|_{\mathcal{B}(E)}^{-1} \|M_f(W'_r)(X_r^{(2)})\|_{\mathcal{B}(E)} \geq r \|X_r^{(2)}\|_{\mathcal{B}(E)} \geq r.
\]

Now, we set \(\mathcal{H} = \bigoplus_{r \geq 1} C_k', X = \bigoplus_{r \geq 1} X_r\) and \(W = \bigoplus_{r \geq 1} W_r'\). Recall, that by the definition we have
\[
\mathcal{H} = \{\{\xi_r\}_{r \geq 1} : \xi_r \in C_k', \sum_{r \geq 1} \|\xi_r\|^2 < \infty\},
\]
\[
\text{Dom } X = \{\xi = \{\xi_r\}_{r \geq 1} \in \mathcal{H} : X(\xi) = \{X_r(\xi_r)\}_{r \geq 1} \in \mathcal{H}\},
\]
\[
\text{Dom } W = \{\xi = \{\xi_r\}_{r \geq 1} \in \mathcal{H} : W(\xi) = \{W_r(\xi_r)\}_{r \geq 1} \in \mathcal{H}\}.
\]
\(W, X \) are self-adjoint operators, acting on the separable Hilbert space \(\mathcal{H} \) and

\[
\| [W, X] \|_{\mathcal{E}} \leq \sum_{r \geq 1} \| [W'_r, X_r] \|_{\mathcal{E}} \leq \sum_{r \geq 1} \frac{1}{r^2} < \infty, (4.11)
\]

\[
\| [f(W), X] \|_{\mathcal{E}} \geq \max_{r \geq 1} \| [f(W'_r), X_r] \|_{\mathcal{E}} \leq \infty. (4.12)
\]

If we assume that

\[
\sum_{m \geq 3} \| W_m \|_{\mathcal{E}} < \infty,
\]

then

\[
\| W \|_{\mathcal{E}} \leq \sum_{r \geq 1} \| W'_r \|_{\mathcal{E}} \leq \sum_{m \geq 3} \| W_m \|_{\mathcal{E}} < \infty.
\]

If we assume that \(\sup_{m \geq 3} \| W_m \|_{\mathcal{E}} \leq M < \infty \), then, by (4.11), for every \(\xi = [\xi_r]_{r \geq 1} \in \text{Dom } X \),

\[
\left(\sum_{r \geq 1} \| X_r(W'_r(\xi_r)) \|^{2} \right)^{\frac{1}{2}} = \left(\sum_{r \geq 1} \| W'_r(X_r(\xi_r)) - [W'_r, X_r](\xi_r) \|^{2} \right)^{\frac{1}{2}} \leq M \left(\sum_{r \geq 1} \| X_r(\xi_r) \|^{2} \right)^{\frac{1}{2}} + \sup_{r \geq 1} \| [W'_r, X_r] \|_{\mathcal{E}} \left(\sum_{r \geq 1} \| \xi_r \|^{2} \right)^{\frac{1}{2}} < \infty.
\]

Hence \(W(\xi) \in \text{Dom } X \). The claim is proved. \(\Box \)

It follows from Propositions 4.3 and 4.4 that any function \(f : \mathbb{R} \to \mathbb{R} \) given by (4.1) with the function \(h \) satisfying the condition \(\frac{\log(m/2)}{h(m \log p_m)} \to \infty \), as \(m \to \infty \) (here \(\{p_m\}_{m \geq 0} \) is some scalar sequence satisfying \(0 < p_m \leq 1 \)) is not commutator bounded in any separable symmetrically normed ideal with trivial Boyd indices. In other words, there exist self-adjoint operators \(W, X \), acting on a separable Hilbert space \(\mathcal{H} \), such that \([W, X] \in \mathcal{E} \) but \([f(W), X] \notin \mathcal{E} \). We shall now show how further adjustments to the choice of the function \(h \) and the sequence \(\{p_m\}_{m \geq 0} \) can be made in order to guarantee that the operator \(W \) above belongs to \(\mathcal{E} \). First, we need the following auxiliary results.

Proposition 4.5. For every \(\varepsilon > 0 \) there exists a function \(\chi_\varepsilon \) such that

(i) \(\chi_\varepsilon \in C^1(\mathbb{R}) \),
(ii) \(\chi_\varepsilon(t) = 0, \) if \(t \leq 0 \),
(iii) \(\chi_\varepsilon(t) = 1, \) if \(t \geq 1 \),
(iv) \(0 \leq \chi'_\varepsilon \leq 1 + \varepsilon \).
Proof. Let \(\xi(t) \) be the continuous function such that \(\xi(t) = 0 \), if \(t \leq 0 \) or \(t \geq 1 \), \(\xi(t) = 1 + \epsilon \), if \(\epsilon/(1 + \epsilon) \leq t \leq 1/(1 + \epsilon) \) and linear elsewhere. It then follows, that the function
\[
\chi(\epsilon)(t) = \int_{-\infty}^{t} \xi(\tau) \, d\tau, \quad t \in \mathbb{R},
\]
satisfies the assertion. □

Proposition 4.6. Let \(s_m, q_m \) \((m \geq 0) \) be two increasing sequences such that

(i) \(s_m \to +\infty \), \(s_0 = 0 \),
(ii) \(q_m \to +\infty \), \(q_0 = 1 \),
(iii) \(\alpha = \sup_{m \geq 1} \frac{\log q_m - \log q_{m-1}}{s_m - s_{m-1}} < 1 \).

Then there exists a function \(h \) that satisfies the conditions (a)–(e) (preceding Proposition 4.1) and such that \(h(s_m) = q_m \) for every \(m \geq 0 \).

Proof. Let \(\epsilon = 1/\alpha - 1 \), and \(\chi(\epsilon) \) be the function from Proposition 4.5. For every \(t \geq 0 \) we define
\[
H(t) = \sum_{m \geq 1} \chi(\epsilon) \left(\frac{t - s_{m-1}}{s_m - s_{m-1}} \right) \left(\log q_m - \log q_{m-1} \right). \tag{4.13}
\]

We have that \(x \geq s_{m-1} \) (respectively, \(x < s_m \)) if and only if
\[
\frac{x - s_{m-1}}{s_m - s_{m-1}} \geq 0 \quad \text{(respectively, } \frac{x - s_{m-1}}{s_m - s_{m-1}} < 1 \).
\]

Now, it follows from above that for every fixed \(t \geq 0 \) the sum (4.13) is finite,
\[
H(s_0) = H(0) = 0 = \log q_0,
\]
and for every \(k \geq 1 \)
\[
H(s_k) = \sum_{m \geq 1} \chi(\epsilon) \left(\frac{s_k - s_{m-1}}{s_m - s_{m-1}} \right) \left(\log q_m - \log q_{m-1} \right)
= \sum_{m=1}^{k} \left(\log q_m - \log q_{m-1} \right) = \log q_k.
\]

We set \(h(t) := \exp(H(t)) \) for every \(t \geq 0 \) and \(h(t) = h(-t) \) for every \(t < 0 \), then \(h(s_m) = q_m \) for every \(m \geq 0 \). Let us check the conditions (a)–(e)

(a) The function \(H \) is a \(C^1 \)-function as a finite sum of \(C^1 \)-functions, so \(h \) is a \(C^1 \)-function for every \(t \neq 0 \);
(b) this item holds by the definition of \(h(t) \), and \(h(0) = \exp(H(0)) = 1 \);
(c) the function \(H(t) \) is increasing, for every \(t \geq 0 \), as it is the sum of increasing functions, so the function \(h \) is increasing also;
(d) since the sequence \(h(s_m) = q_m \) tends to infinity and since \(h(\cdot) \) is an increasing even function, we have \(h(\pm \infty) = +\infty \);
(e) for every $t \geq 0$ there exists an integer $k \geq 1$ such that $s_{k-1} \leq t < s_k$, thus it follows from Proposition 4.3.3 that

$$H'(t) = \sum_{m \geq 1} \chi'_\varepsilon \left(\frac{t - s_{m-1}}{s_m - s_{m-1}} \right) \frac{\log q_m - \log q_{m-1}}{s_m - s_{m-1}}$$

$$= \chi'_\varepsilon \left(\frac{t - s_{k-1}}{s_k - s_{k-1}} \right) \frac{\log q_k - \log q_{k-1}}{s_k - s_{k-1}}$$

$$\leq \alpha(1 + \varepsilon) = 1,$$

and so

$$0 \leq H'(t) = \frac{h'(t)}{h(t)} \leq 1.$$ \hspace{1cm} \Box$$

Now, we are in a position to prove our main result.

Theorem 4.7. For every separable symmetric function space E with trivial Boyd indices, there exists a C^1-function f_E, self-adjoint operators W, X, acting on a separable Hilbert space H such that

$$W \in \mathcal{G}^E, \quad [W, X] \in \mathcal{G}^E, \quad W(Dom X) \subseteq Dom X, \quad [f_E(W), X] \notin \mathcal{G}^E.$$

Proof. Let $m \geq 0, q_m := (\log(m + e))^{1/2}, B_m$ be the diagonal matrices, given by (4.2) and (4.3), Φ_{2m}, Ψ_{2m} be the operators from Proposition 3.2 for $\varepsilon = 1/2$. Let $\{p_m\}_{m \geq 0}$ be a sequence that satisfies the following five conditions

(i) p_m is decreasing to zero;
(ii) $0 < p_m \leq 1$;
(iii) $p_0 = 1$;
(iv) $\frac{1}{p_m} \geq m^2 \|\Phi_{2m}(B_m)\|_{\mathcal{E}}, m \geq 1$;
(v) $\frac{1}{p_m} \geq \frac{q_m^2}{\varepsilon q_{m-1}} : \frac{1}{p_m - 1}, m \geq 1$.

We construct such a sequence by induction. If the numbers $p_0, p_1, \ldots, p_{m-1}$ satisfy the conditions above, then p_m can be taken to be any positive number for which

$$\frac{1}{p_m} \geq \max \left\{ 1, \frac{1}{p_{m-1}}, m^2 \|\Phi_{2m}(B_m)\|_{\mathcal{E}}, \frac{q_m^2}{\varepsilon q_{m-1}} : \frac{1}{p_m - 1} \right\}.$$

It follows from (v) above, that

$$\frac{ep_{m-1}}{p_m} \geq \frac{q_m^2}{q_{m-1}} ,$$

and, taking logarithms,

$$1 + \log \frac{1}{p_m} - \log \frac{1}{p_{m-1}} \geq 2(\log q_m - \log q_{m-1}).$$
Putting \(s_m = m - \log p_m \), we have
\[
0 \leq \frac{\log q_m - \log q_{m-1}}{s_m - s_{m-1}} \leq \frac{1}{2}, \quad m \geq 0.
\]
Thus, we have verified that the sequences \(\{q_m\}_{m \geq 0} \) and \(\{s_m\}_{m \geq 0} \) satisfy the conditions of Proposition 4.6 and so there exists a function \(h_E(t) \) such that
\[
h_E(m - \log p_m) = h_E(s_m) = q_m = (\log(e + m))^{1/2}.
\]
If \(f_E \) is the function, given by (4.1), with the above choice of \(h_E \), \(W_m := \Phi_{2m}(p_mB_m) \in M_{k_m}(\mathbb{C}) \), where \(B_m \) given by (4.2) and (4.3), is the finite diagonal matrix then it follows from Proposition 4.3
\[
\|M_f(W_m)\|_{\mathcal{E} \to \mathcal{E}} \geq \frac{K_1}{h(m - \log p_m)} \log \frac{m}{2} = \frac{K_1}{(\log(m + e))^{1/2}} \to \infty.
\]
On the other hand, by our choice of \(p_m \) (see (iv) above) we have that
\[
\|W_m\|_{\mathcal{E} \to \mathcal{E}} \leq p_m\|\Phi_{2m}(B_m)\|_{\mathcal{E} \to \mathcal{E}} \leq \frac{1}{m^2}, \quad m \geq 3.
\]
Now the assertion of Theorem 4.7 follows from Proposition 4.6. \(\square \)

5. Domains of generators of automorphism flows.

Let \(E \) be a separable symmetric function space with trivial Boyd indices, let \(\mathcal{S}^E \) be the corresponding symmetrically normed ideal and let \(X \) be a self-adjoint operator (may be unbounded), acting on a separable Hilbert space \(\mathcal{H} \). We consider a group \(\alpha = \{\alpha_t\}_{t \in \mathbb{R}} \) of automorphisms on \(\mathcal{S}^E \) given by
\[
\alpha(t)T = e^{itX} Te^{-itX}, \quad T \in \mathcal{S}^E, \quad t \in \mathbb{R}.
\]
It follows from separability of \(\mathcal{S}^E \) that \(\alpha \) is a \(C_0 \)-group, [2, Corollary 4.3]. The infinitesimal generator \(\delta \) of \(\alpha(t) \) is defined by
\[
\text{Dom } \delta := \left\{ T \in \mathcal{S}^E : \text{ there exists } \| \cdot \|_{\mathcal{S}^E} - \lim_{t \to 0} \frac{\alpha(t)T - T}{t} \right\},
\]
\[
\delta(T) := \| \cdot \|_{\mathcal{S}^E} - \lim_{t \to 0} \frac{\alpha(t)T - T}{t} \quad \text{ for every } T \in \text{Dom } \delta.
\]
\(\delta \) is a closed densely defined symmetric derivation on \(\mathcal{S}^E \), i.e. densely defined closed linear operator such that \(\delta(T^*) = \delta(T)^* \) and \(\delta(TS) = \delta(T)S + T\delta(S) \), for all \(T, S \in \text{Dom } \delta \), see e.g. [2, Proposition 4.5]. It is proved in [3, Proposition 2.2], that
\[
\text{Dom } \delta = \{ T \in \mathcal{S}^E : \ T(\text{Dom } X) \subseteq \text{Dom } X, \ [T, X] \in \mathcal{S}^E \}
\]
and
\[
\delta(T) = i[T, X], \quad T \in \text{Dom } \delta.
\]
Now, Theorem 4.7 yields
Corollary 5.1. For every separable symmetric function space E with trivial Boyd indices, there exists a C^1-function f_E, a self-adjoint operator $W \in \mathcal{S}^E$ and closed densely defined symmetric derivation δ on \mathcal{S}^E, such that $W \in \text{Dom} \, \delta$ but

$$f_E(W) \notin \text{Dom} \, \delta.$$

References

[1] J. Arazy, Some remarks on interpolation theorems and the boundness of the triangular projection in unitary matrix spaces, Integral Equations Operator Theory 1 (1978), no. 4, 453–495.

[2] B. de Pagter and F. A. Sukochev, Commutator estimates and R-flows in non-commutative operator spaces, Proc. Edinb. Math. Soc. (to appear).

[3] B. de Pagter, F. A. Sukochev, and W. van Ackooij, Domains of infinitesimal generators of automorphism flows, J. Funct. Anal. 218 (2005), no. 2, 409–424.

[4] I. C. Gohberg and M. G. Krein, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Izdat. “Nauka”, Moscow, 1965.

[5] E. Kissin and V. S. Shulman, Classes of operator-smooth functions. II. Operator-differentiable functions, Integral Equations Operator Theory 49 (2004), no. 2, 165–210.

[6] Classes of operator-smooth functions. I. Operator-Lipschitz functions, Proc. Edinb. Math. Soc. (2) 48 (2005), no. 1, 151–173.

[7] Classes of operator-smooth functions. III. Stable functions and Fuglede ideals, Proc. Edinb. Math. Soc. (2) 48 (2005), no. 1, 175–197.

[8] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces. II, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 97, Springer-Verlag, Berlin, 1979.

[9] A. McIntosh, Functions and derivations of C^*-algebras, J. Funct. Anal. 30 (1978), no. 2, 264–275.

[10] D. S. Potapov and F. A. Sukochev, Lipschitz and commutator estimates in symmetric operator spaces, to appear in J. Operator Theory.

Denis Potapov
e-mail: pota0002@infoeng.flinders.edu.au

Fyodor Sukochev
School of Informatics and Engineering,
Faculty of Science and Engineering,
Flinders Univ. of SA, Bedford Park, 5042,
Adelaide, SA, Australia.
e-mail: sukochev@infoeng.flinders.edu.au