Some Classes of Co-Schwarzian Functions and Its Coefficient Inequality that Is Sharp

Gurmeet Singh and Misha Rani

Abstract — In our present work, we defined an inequality called Fekete – Szegö Inequality for functions \(f(z) \) in the classes of starlike functions and convex functions along with subclasses of these classes.

Keywords — Bounded analytic functions and concept of subordination, Convex functions, Fekete–Szegö Inequality, Starlike functions.

I. INTRODUCTION

We deal with geometric function theory and Koebe [6] proved that Riemann Mapping theorem is the main pillar of this theory. From this theorem, a conjecture called Bieberbach conjecture was produced. This conjecture was given by L. Bieberbach but finally proved by Louis De Branges[1]. While tackling with this conjecture, an equality arises called Fekete–Szegö Inequality, which was given by M. Fekete and G. Szegö [3]. Till now many researchers have solved this inequality for various classes and subclasses of starlike functions, convex functions, close-to-convex functions and for many other functions. Now, here we establish this inequality for different classes and subclasses of starlike functions and convex functions.

Firstly, we define some fundamental classes.

A consists of the family of analytic functions \(f \) with the normalization \(f(0) = 0, f'(0) = 1 \) and having functions of the type \(f(z) = z + \sum_{k=2}^{\infty} a_k z^k \);

\(S \) be the family of functions \(f \) normalized by \(f(0) = 0, f'(0) = 1 \) where \(f(z) = z + \sum_{k=2}^{\infty} a_k z^k \); univalent in the open disk: \(E = \{ z \in \mathbb{C} : |z| < 1 \} \) and \(S' \) the class of functions \(f \) for which \(\frac{zf'(z)}{f(z)} \) is subordinate to \(\phi(z) \); this was introduced by Ma and Minda [10].

In this equation, “\(\prec \)” denotes subordination [which states that let \(f(z) \) and \(g(z) \) are two analytic functions, if there exists a Schwarzian function \(w(z) \) (analytic in \(E \)) in such a way that \(|w(z)| < 1 \), \(w(0) = 0 \) and \(f(z) = g(w(z)) ; z \in E \), then the function \(f(z) \) is subordinate to \(g(z) \) and we write it as \(f(z) \prec g(z) \)].

The concept of subordination was given by Lindelöf [7]. Here, \(\phi(z) \) is an analytic function with positive real part on \(E \) which maps the unit disk \(E \) onto a region starlike with respect to 1 as well as symmetric with respect to real axis, satisfying conditions \(\phi(0) = 0 \) and \(\phi'(0) > 0 \) and Schwarzian function is an analytic function of the type \(w(z) = \sum_{n=1}^{\infty} c_n z^n \) with conditions \(w(0) = 0 \) and \(|w(z)| < 1 \).

Miller, S.S., Mocanu, P.T. and Reade, M.O. [9] proved the condition \(|c_1| \leq 1 \), \(|c_2| \leq 1 - |c_1|^2 \) for the above defined bounded analytic functions.

The class defined below is denoted by \(TK[a, b] \) and is a subclass of \(K \), satisfying the condition along with some subclasses:

\[
(1 - \alpha) \frac{f(z)}{z} + \alpha \left[\frac{zf'(z) + \beta^2 f''(z)}{|f(z)|^2} \right] \prec \phi(z).
\]

II. MAIN RESULT

THEOREM-1:
Let \(f(z) \in TK[a, b] \) and \(\phi(z) = \frac{1 + w(z)}{1 - w(z)} \); \(w(z) \) is a Schwarzian function, then:
After comparing, we get:

$$a_2 = \frac{-2c_4}{1 + \alpha(1 + 4\beta)}$$

$$a_3 = \frac{2[1 + \alpha(1 + 4\beta)]c_2 + [16\alpha(1 + 2\beta) + 2(1 + \alpha(1 + 4\beta)]c_1^2}{(1 + 5\alpha + 18\alpha\beta)(1 + \alpha(1 + 4\beta))^2}$$

Using these values of a_2 and a_3, we get:

$$a_3 - \mu a_3^2 = \frac{2c_2}{1 + 5\alpha + 18\alpha\beta} + \left(\frac{16\alpha(1 + 2\beta) + 2(1 + \alpha(1 + 4\beta)]^2}{(1 + 5\alpha + 18\alpha\beta)(1 + \alpha(1 + 4\beta))^2} - \frac{4\mu}{(1 + \alpha(1 + 4\beta))^2}\right)c_1^2$$

After applying mode on both sides, we get:
\[|a_3 - \mu a_2^2| \leq \left(\frac{2}{1 + 5\alpha + 18\beta} \right) |c_2| + \left| \frac{16\mu(1 + 2\beta + 2(1 + \alpha(1 + 4\beta)^2)}{(1 + 5\alpha + 18\beta)(1 + \alpha(1 + 4\beta))^2} - \frac{4\mu}{[1 + \alpha(1 + 4\beta)]^2} \right| |c_1|^2 \]

Using \(|c_2| \leq 1 - |c_1|^2\), we get:

\[|a_3 - \mu a_2^2| \leq \frac{2}{1 + 5\alpha + 18\beta} + \left| \frac{16\mu(1 + 2\beta + 2(1 + \alpha(1 + 4\beta)^2)}{(1 + 5\alpha + 18\beta)(1 + \alpha(1 + 4\beta))^2} - \frac{4\mu}{[1 + \alpha(1 + 4\beta)]^2} \right| |c_1|^2 \]

Case 1:

\[\mu \leq \frac{8\alpha(1 + 2\beta) + [1 + \alpha(1 + 4\beta)]^2}{2(1 + 5\alpha + 18\beta)} \]

Then

\[|a_3 - \mu a_2^2| \leq \frac{2}{1 + 5\alpha + 18\beta} + \left| \frac{16\alpha(1 + 2\beta)}{(1 + 5\alpha + 18\beta)(1 + \alpha(1 + 4\beta))^2} - \frac{4\mu}{[1 + \alpha(1 + 4\beta)]^2} \right| |c_1|^2 \]

Subcase 1 (a):

\[\mu \leq \frac{4 \alpha(1 + 2\beta)}{1 + 5\alpha + 18\beta} \]

Using \(|c_1| \leq 1\), we get:

\[|a_3 - \mu a_2^2| \leq \frac{2}{1 + 5\alpha + 18\beta} + \left| \frac{16\alpha(1 + 2\beta) + 4(1 + \alpha(1 + 4\beta)^2)}{(1 + 5\alpha + 18\beta)(1 + \alpha(1 + 4\beta))^2} - \frac{4\mu}{[1 + \alpha(1 + 4\beta)]^2} \right| |c_1|^2 \] (2)

Subcase 1 (b):

\[\mu \geq \frac{4 \alpha(1 + 2\beta)}{1 + 5\alpha + 18\beta} \]

Then

\[|a_3 - \mu a_2^2| \leq \frac{2}{1 + 5\alpha + 18\beta} \] (3)

Case 2:

\[\mu \geq \frac{8\alpha(1 + 2\beta) + [1 + \alpha(1 + 4\beta)]^2}{2(1 + 5\alpha + 18\beta)} \]

Then

\[|a_3 - \mu a_2^2| \leq \frac{2}{1 + 5\alpha + 18\beta} + \left| \frac{4\mu}{[1 + \alpha(1 + 4\beta)]^2} - \frac{16\alpha(1 + 2\beta) + 4(1 + \alpha(1 + 4\beta)^2)}{(1 + 5\alpha + 18\beta)(1 + \alpha(1 + 4\beta))^2} \right| |c_1|^2 \]

Subcase 2 (a):

\[\mu \geq \frac{4 \alpha(1 + 2\beta) + [1 + \alpha(1 + 4\beta)]^2}{1 + 5\alpha + 18\beta} \]

Then\[|a_3 - \mu a_2^2| \leq \frac{2}{1 + 5\alpha + 18\beta} + \left| \frac{16\alpha(1 + 2\beta) + 4(1 + \alpha(1 + 4\beta)^2)}{(1 + 5\alpha + 18\beta)(1 + \alpha(1 + 4\beta))^2} + \frac{4\mu}{[1 + \alpha(1 + 4\beta)]^2} \right| |c_1|^2 \] (4)

Subcase 2 (b):

\[\mu \leq \frac{4 \alpha(1 + 2\beta) + [1 + \alpha(1 + 4\beta)]^2}{1 + 5\alpha + 18\beta} \]
Then

\[|a_3 - \mu a_z^2| \leq \frac{2}{1+5\alpha + 18\alpha \beta} \quad (5) \]

Combining (2), (3), (4) and (5), we get the required result. Extremal functions of this inequality are given by:

\[f(z) = z \left(1 - \frac{2\alpha(\alpha + 5) + 2\beta[3 + 4\alpha(1 + 2\beta)]}{(1 + \alpha + 4\alpha \beta)(1 + 5\alpha + 18\alpha \beta)} \right)^{-\frac{1+5\alpha + 18\alpha \beta}{\alpha(\alpha + 2\beta)(3 + 4\alpha(1 + 2\beta))}} \]

and

\[f(z) = z \left(1 + 2z^2 \right)^{\frac{1}{1+5\alpha + 18\alpha \beta}}. \]

COROLLARY-2:

TK [1,0] = K, as by substituting \(\alpha = 1 \) and \(\beta = 0 \) the result becomes:

\[|a_3 - \mu a_z^2| \leq \begin{cases}
1 - \mu, & \text{if } \mu \leq \frac{2}{3}; \\
\frac{1}{3}, & \text{if } \frac{2}{3} \leq \mu \leq \frac{4}{3}; \\
\mu - 1, & \text{if } \mu \geq \frac{4}{3},
\end{cases} \]

which is the required result for the class \(K \) given by Keogh and Merkes [5].

THEOREM3:

Let \(f(z) \in TK[\alpha, \beta, \delta] \) and \(\phi(z) = \frac{1+w(z)}{1-w(z)} ; w(z) \) is a Schwarzian function, then:

\[|a_3 - \mu a_z^2| \leq \begin{cases}
\frac{16\alpha(1+2\beta)\delta^2 + 2\beta^2[1 + \alpha(1+4\beta)]^2}{1 + 5\alpha + 18\alpha \beta} - \frac{4\mu \delta^2}{[1 + \alpha(1+4\beta)]^2}; \\
\mu \leq \frac{8\alpha(1+2\beta)\delta^2 + (\delta^2 - \delta)(1 + \alpha(1+4\beta))^2}{1 + 5\alpha + 18\alpha \beta}; \\
\frac{2\delta}{1 + 5\alpha + 18\alpha \beta}; \\
\mu \leq \frac{8\alpha(1+2\beta)\delta^2 + (\delta^2 - \delta)(1 + \alpha(1+4\beta))^2}{1 + 5\alpha + 18\alpha \beta}; \\
\mu \geq \frac{8\alpha(1+2\beta)\delta^2 + (\delta^2 - \delta)(1 + \alpha(1+4\beta))^2}{1 + 5\alpha + 18\alpha \beta}; \\
\mu \geq \frac{16\alpha(1+2\beta)\delta^2 + 2\beta^2[1 + \alpha(1+4\beta)]^2}{1 + 5\alpha + 18\alpha \beta}.
\end{cases} \]

PROOF:

By definition of \(TK[\alpha, \beta, \delta] \),

\[\frac{(1-\alpha)f(z)}{z} + \alpha \frac{z f'(z) + \beta z^2 f''(z)}{(f(z))^2} = \left(\frac{1+w(z)}{1-w(z)} \right)^\delta \quad (6) \]

where

\[w(z) = c_1 z + c_2 z^2 + c_3 z^3 + \]

\[f(z) = z + a_2 z^2 + a_3 z^3 + \]

\[f'(z) = 1 + 2a_2 z + 3a_3 z^2 + 4a_4 z^3 \]

\[f''(z) = 2a_2 + 6a_3 z + 12a_4 z^2 \]

Now by putting all these values in (6), we get:

\[DOI: http://dx.doi.org/10.24018/ejmath.2021.2.4.49 \]

Vol 2 | Issue 4 | August 2021
Case Subcase
1 \[1+\alpha(1+4\beta)] a_2 z + [(1 + \alpha (5 + 18\beta)) a_3 - 4\alpha(1 + 2\beta)a_2^2] z^2 + = l + 2\delta c_1 z + 2(\delta c_2 + \delta^2 c_1^2)z^2 +

By comparing, we get:

\[
a_2 = \frac{2\delta c_1}{1+\alpha(1+4\beta)}
\]

and

\[
a_3 = \frac{2[1 + \alpha(1 + 4\beta)]^2 \delta c_2 + [16\alpha(1 + 2\beta) + 2[1 + \alpha(1 + 4\beta)]^2] \delta^2 c_1^2}{\{1 + \alpha(5 + 18\beta)\}\{1 + \alpha(1 + 4\beta)\}^2}
\]

Using these values of \(a_2\) and \(a_3\), we get:

\[
a_3 - \mu a_2^2 = \frac{2\delta c_2}{1+\alpha(5 + 18\beta)} + \left(\frac{16\alpha(1 + 2\beta) + 2[1 + \alpha(1 + 4\beta)]^2}{\{1 + \alpha(5 + 18\beta)\}\{1 + \alpha(1 + 4\beta)\}^2}\right) - \frac{4\mu}{1+\alpha(1+4\beta)^2} \delta^2 c_1^2
\]

After applying mode on both sides, we get:

\[
|a_3 - \mu a_2^2| \leq \left(\frac{2\delta}{1+\alpha(5 + 18\beta)}\right) |c_2| + \left(\frac{16\alpha(1 + 2\beta) + 2[1 + \alpha(1 + 4\beta)]^2}{\{1 + \alpha(5 + 18\beta)\}\{1 + \alpha(1 + 4\beta)\}^2}\right) - \frac{4\mu}{1+\alpha(1+4\beta)^2} \delta^2 |c_1| \]

Using \(|c_2| \leq 1 - |c_1|^2\), we get:

\[
|a_3 - \mu a_2^2| \leq \frac{2\delta}{1+\alpha(5 + 18\beta)} + \left(\frac{16\alpha(1 + 2\beta) + 2[1 + \alpha(1 + 4\beta)]^2}{\{1 + \alpha(5 + 18\beta)\}\{1 + \alpha(1 + 4\beta)\}^2}\right) - \frac{4\mu}{1+\alpha(1+4\beta)^2} \delta^2 |c_1| \]

Case 1:
If \(\mu \leq \frac{8\alpha(1+2\beta)+(1+\alpha(1+4\beta))^2}{2(1+\alpha(5+18\beta))}\), then,

\[
|a_3 - \mu a_2^2| \leq \frac{2\delta}{1+\alpha(5 + 18\beta)} + \left(\frac{16\alpha(1 + 2\beta)\delta^2 + 2(\delta^2 - \delta)(1 + \alpha(1 + 4\beta))}{\{1 + \alpha(5 + 18\beta)\}\{1 + \alpha(1 + 4\beta)\}^2}\right) - \frac{4\mu\delta^2}{1+\alpha(1+4\beta)^2} |c_1|^2
\]

Subcase 1 (a):
When

\[
\mu \leq \frac{8\alpha(1+2\beta)\delta^2 + (\delta^2 - \delta)(1 + \alpha(1 + 4\beta))}{2\delta^2(1+\alpha(5+18\beta))}
\]

Then, by using \(|c_1| \leq 1\), we get:

\[
|a_3 - \mu a_2^2| \leq \frac{2\delta^2(1+\alpha(1 + 4\beta))^2 + 16\alpha(1 + 2\beta)\delta^2}{\{1 + \alpha(5 + 18\beta)\}\{1 + \alpha(1 + 4\beta)\}^2} - \frac{4\mu\delta^2}{1+\alpha(1+4\beta)^2}
\]

(7)

Subcase 1 (b):
When \(\mu \geq \frac{8\alpha(1+2\beta)\delta^2 + (\delta^2 - \delta)(1 + \alpha(1 + 4\beta))}{2\delta^2(1+\alpha(5+18\beta))}\), then,

\[
|a_3 - \mu a_2^2| \leq \frac{2\delta}{1+\alpha(5 + 18\beta)} \]

(8)

Case 2:
If \(\mu \geq \frac{8\alpha(1+2\beta)+(1+\alpha(1+4\beta))^2}{2(1+\alpha(5+18\beta))}\), then,

\[
|a_3 - \mu a_2^2| \leq \frac{2\delta}{1+\alpha(5 + 18\beta)} + \left(\frac{4\mu\delta^2}{\{1+\alpha(1+4\beta)^2\}} - \frac{16\alpha(1 + 2\beta)\delta^2 + 2(\delta^2 - \delta)(1 + \alpha(1 + 4\beta))}{\{1 + \alpha(5 + 18\beta)\}\{1 + \alpha(1 + 4\beta)\}^2}\right) |c_1|^2
\]
Subcase-2 (a):
When \(\mu \geq \frac{8a(1+2\beta)\delta^2+(\delta^2+\delta)(1+a(1+4\beta))^2}{2\delta^2(1+a(5+18\beta))} \), then,
\[
|a_3 - \mu a_2^2 | \leq \frac{2\delta^2(1+a(1+4\beta))^2+16a(1+2\beta)\delta^2}{1+\alpha(5+18\beta)(1+a(1+4\beta))^2} + \frac{4\mu\delta^2}{(1+\alpha(1+4\beta))^2}
\]
(9)

Subcase – 2 (b):
When \(\mu \leq \frac{8a(1+2\beta)\delta^2+(\delta^2+\delta)(1+a(1+4\beta))^2}{2\delta^2(1+a(5+18\beta))} \), then,
\[
|a_3 - \mu a_2^2 | \leq \frac{2\delta}{1+\alpha(5+18\beta)}
\]
(10)

Combining (7), (8), (9) and (10), we get the required result.

EXTREMALS:
The result is sharp for extremal functions:
\[
f(z) = z \left(1 - \frac{2\delta\alpha[(\alpha + 5) + 2\beta[3 + 4\alpha(1 + 2\beta)]]}{[1 + \alpha(1 + 4\beta)][1 + (5 + 18\beta)\alpha]} \right)^{-\frac{1+5\alpha+18\alpha\beta}{\alpha(5+\alpha)\beta^{3}+4\alpha(1+2\beta)]}}
\]
and \(f(z) = z(1 + 2\delta z^2)^{1+a(5+18\beta)} \).

COROLLARY-4:
\(TK[\alpha, \beta, 1] = TK[\alpha, \beta] \), as by substituting \(\delta = 1 \), the result becomes:
\[
|a_3 - \mu a_2^2 | \leq \left\{ \begin{array}{ll}
\frac{16a(1+2\beta)+2[1+a(1+4\beta)]^2}{[1+a(1+4\beta)]^2[1+(5+18\beta)a]} & \mu \leq \frac{4\alpha(1+2\beta)}{1+a(5+18\beta)}; \\
\frac{4\alpha(1+2\beta)}{1+a(5+18\beta)} & \frac{4\alpha(1+2\beta)}{1+a(5+18\beta)} \leq \mu \leq \frac{4\alpha(1+2\beta)+(1+a(1+4\beta))^2}{1+a(5+18\beta)}; \\
\frac{4\mu}{1+a(1+4\beta)^2} & \frac{4\alpha(1+2\beta)+(1+a(1+4\beta))^2}{1+a(5+18\beta)} \leq \mu \leq \frac{4\alpha(1+2\beta)+(1+a(1+4\beta))^2}{1+a(5+18\beta)}; \\
\mu & \geq \frac{4\alpha(1+2\beta)+(1+a(1+4\beta))^2}{1+a(5+18\beta)}.
\end{array} \right.
\]
which is the required result for the class \(TK[\alpha, \beta] \).

COROLLARY-5:
\(TK[1, 0, 1] = K \), as by substituting \(\alpha = 1, \beta = 0 \) and \(\delta = 1 \), the result becomes:
\[
|a_3 - \mu a_2^2 | \leq \left\{ \begin{array}{ll}
1 - \mu, & \text{if } \mu \leq \frac{2}{3}; \\
\frac{1}{3}, & \frac{2}{3} \leq \mu \leq \frac{4}{3}; \\
\mu - 1, & \text{if } \mu \geq \frac{4}{3}.
\end{array} \right.
\]
which is the required result for the class \(K \).

THEOREM6:
Let \(f(z) \in TK[\alpha, \beta, A, B] \) and \(\phi(z) = \frac{1+Aw(z)}{1+Bw(z)} \); \(w(z) \) is a Schwarzian function, then:
\[|a_3 - \mu a_2^2| \leq \frac{4\alpha(1+2\beta)(A-B)^2 - B(A-B)[1 + \alpha(1+4\beta)]^2}{(1 + 5\alpha + 18\alpha^2)(1 + \alpha(1+4\beta))^2} - \frac{\mu(A-B)^2}{[1 + \alpha(1+4\beta)]^2}; \]

\[\mu \leq \frac{4\alpha(1+2\beta)(A-B) - (B+1)[1 + \alpha(1+4\beta)]^2}{(A-B)(1 + 5\alpha + 18\alpha^2)}; \]

\[\frac{A - B}{1 + 5\alpha + 18\alpha^2} \leq \frac{4\alpha(1+2\beta)(A-B) + (B+1)\{1 + \alpha(1+4\beta)]^2}{(A-B)(1 + 5\alpha + 18\alpha^2)}; \]

\[\frac{\mu(A-B)^2}{[1 + \alpha(1+4\beta)]^2} \leq \frac{4\alpha(1+2\beta)(A-B)^2 - B(A-B)[1 + \alpha(1+4\beta)]^2}{(A-B)(1 + 5\alpha + 18\alpha^2)}; \]

\[\mu \geq \frac{4\alpha(1+2\beta)(A-B) + (B+1)\{1 + \alpha(1+4\beta)]^2}{(A-B)(1 + 5\alpha + 18\alpha^2)}. \]

PROOF:

By definition of TK \([\alpha, \beta, A, B]\),

\[(1-\alpha)\frac{f''(z)}{f'(z)} + \alpha\frac{\{f''(z) + \beta z^2 f''(z)\}'}{f'(z)} = \frac{1+\alpha w(z)}{1+\beta w(z)} \] (11)

where

\[w(z) = c_1z + c_2z^2 + c_3z^3 \]

\[f(z) = z + a_2z^2 + a_3z^3 \]

\[f'(z) = 1 + 2a_2z + 3a_3z^2 + 4a_4z^3 \]

\[f''(z) = 2a_2 + 6a_3z + 12a_4z^2 \]

Now, by putting all these values in (11), we get:

\[(1-\alpha)(1+a_2z + a_3z^2) - \alpha\left(\frac{\{x+2a_2z^2+3a_3z^3+\beta 2a_2z^2+\beta 6a_3z^3+\beta 12a_4z^4+\ldots\}}{1+2a_2z+3a_3z^2+\ldots}\right) = \frac{1+\alpha c_1z + c_2z^2 + \ldots}{1+\beta (c_1z+c_2z^2+\ldots)} \]

By expanding the series, we get:

\[1 + [1+\alpha(1+4\beta)] a_2 z + [(1 + \alpha(5 + 18\beta)) a_3 - 4a(1+2\beta)a_2^2]z^2 = 1 + (A-B)c_1 z + [(A-B)c_2 - B(A-B)c_1^2]z^2 \]

By comparing, we get:

\[a_2 = \frac{(A-B)c_1}{1+\alpha(1+4\beta)} \]

and

\[a_3 = \frac{(A-B)[1 + \alpha(1+4\beta)]^2 c_2 + (A-B)[4\alpha(1+2\beta)(A-B) - B(1 + \alpha(1+4\beta)]}{\{1 + \alpha(5 + 18\beta)](1 + \alpha(1+4\beta)]} \]

Using these values of \(a_2\) and \(a_3\), we get:

\[a_3 - \mu a_2^2 = \frac{(A-B)c_2}{1+\alpha(5+18\beta)} + \left(\frac{4\alpha(1+2\beta)(A-B) - B[1+\alpha(1+4\beta)]^2}{1+\alpha(5+18\beta)](1 + \alpha(1+4\beta)]^2} \frac{(A-B)^2 \mu}{[1+\alpha(1+4\beta)]^2} \right) c_1^2 \]

After applying mode on both sides, we get:

\[|a_3 - \mu a_2^2| \leq \frac{(A-B)}{1+\alpha(5+18\beta)} |c_2| + \left|\frac{4\alpha(1+2\beta)(A-B) - B[1+\alpha(1+4\beta)]^2}{1+\alpha(5+18\beta)](1 + \alpha(1+4\beta)]^2} \frac{(A-B)^2 \mu}{[1+\alpha(1+4\beta)]^2} \right| |c_1|^2 \]
Using $|c_2| \leq 1 - |c_1|^2$, we get:

$$|a_3 - \mu a_2^2| \leq \frac{(A-B)}{1+\alpha(5+18\beta)} + \left\{\frac{4\alpha(1+2\beta)(A-B)-(1+\alpha(14\beta))^2}{(1+\alpha(5+18\beta))(1+\alpha(14\beta))^2} - \frac{(A-B)^2\mu}{(1+\alpha(14\beta))^2}\right\}|c_1|^2$$

Case 1:
If $\mu \leq \frac{4\alpha(1+2\beta)(A-B)-(1+\alpha(14\beta))^2}{(A-B)(1+\alpha(5+18\beta))}$, then,

$$|a_3 - \mu a_2^2| \leq \frac{(A-B)}{1+\alpha(5+18\beta)} + \left\{\frac{4\alpha(1+2\beta)(A-B)-(1+\alpha(14\beta))^2}{(1+\alpha(5+18\beta))(1+\alpha(14\beta))^2} - \frac{(A-B)^2\mu}{(1+\alpha(14\beta))^2}\right\}|c_1|^2$$

Subcase – 1 (a):
When $\mu \leq \frac{4\alpha(1+2\beta)(A-B)-(1+\alpha(14\beta))^2}{(A-B)(1+\alpha(5+18\beta))}$

By using $|c_1| \leq 1$, we get:

$$|a_3 - \mu a_2^2| \leq \frac{4\alpha(1+2\beta)(A-B)-(1+\alpha(14\beta))^2}{(1+\alpha(5+18\beta))(1+\alpha(14\beta))^2} - \frac{(A-B)^2\mu}{(1+\alpha(14\beta))^2} \tag{12}$$

Subcase – 1 (b):
When $\mu \geq \frac{4\alpha(1+2\beta)(A-B)-(1+\alpha(14\beta))^2}{(A-B)(1+\alpha(5+18\beta))}$

$$|a_3 - \mu a_2^2| \leq \frac{(A-B)}{1+\alpha(5+18\beta)} \tag{13}$$

Case – 2:
If $\mu \geq \frac{4\alpha(1+2\beta)(A-B)-(1+\alpha(14\beta))^2}{(A-B)(1+\alpha(5+18\beta))}$, then,

$$|a_3 - \mu a_2^2| \leq \frac{(A-B)}{1+\alpha(5+18\beta)} + \left\{\frac{(A-B)^2\mu}{1+\alpha(14\beta)^2} - \frac{4\alpha(1+2\beta)(A-B)+(1+\alpha(14\beta))^2}{(1+\alpha(5+18\beta))(1+\alpha(14\beta))^2}\right\}|c_1|^2$$

Subcase-2 (a):
When $\mu \geq \frac{4\alpha(1+2\beta)(A-B)+(1+\alpha(14\beta))^2}{(A-B)(1+\alpha(5+18\beta))}$

$$|a_3 - \mu a_2^2| \leq \frac{(A-B)^2\mu}{1+\alpha(14\beta)^2} - \frac{4\alpha(1+2\beta)(A-B)-(1+\alpha(14\beta))^2}{(1+\alpha(5+18\beta))(1+\alpha(14\beta))^2} \tag{14}$$

Subcase – 2 (b):
When $\mu \leq \frac{4\alpha(1+2\beta)(A-B)+(1+\alpha(14\beta))^2}{(A-B)(1+\alpha(5+18\beta))}$, then,

$$|a_3 - \mu a_2^2| \leq \frac{(A-B)}{1+\alpha(5+18\beta)} \tag{15}$$

Combining (12), (13), (14) and (15), we get the required result.

EXTREMALS:

Extremal functions of this inequality is given by:

$$f(z) = \left(1 + \frac{A(1-3\alpha) + B[1+2\alpha^2+7\alpha] + 2\beta B(1+7\alpha+8\alpha(1+2\beta))}{[1+\alpha(5+18\beta)][1+\alpha(1+4\beta)]}\right)z$$

and $f(z) = z [1 + (A - B)z^2]^{1\alpha(5+18\beta)}$.

COROLLARY-7:

$TK[\alpha, \beta, 1, -1] = TK[\alpha, \beta]$, as by substituting A =1 and B = -1, the result becomes:
\[|a_3 - \mu a_2^2| \leq \begin{cases}
\frac{16\alpha(1+2\beta)+2\left[1+\alpha(1+4\beta)\right]^2}{1+5\alpha+18\alpha\beta} + \frac{4\mu}{1+\alpha(1+4\beta)}; \\
\frac{4\alpha(1+2\beta)}{1+5\alpha+18\alpha\beta}; \\
\frac{2}{1+5\alpha+18\alpha\beta}; \\
\frac{4\mu}{1+\alpha(1+4\beta)}; \\
\frac{16\alpha(1+2\beta) + 2\left[1+\alpha(1+4\beta)\right]^2(1+5\alpha+18\alpha\beta)}{1+\alpha(1+4\beta)}; \\
\mu \leq \frac{4\alpha(1+2\beta)}{1+5\alpha+18\alpha\beta}; \\
\mu \leq \frac{4\alpha(1+2\beta) + 1+\alpha(1+4\beta)}{2(1+5\alpha+18\alpha\beta)}; \\
\mu \leq \frac{4\alpha(1+2\beta) + 1+\alpha(1+4\beta)}{1+5\alpha+18\alpha\beta}.
\end{cases} \]

which is the required result for the class \(TK[a, \beta]\).

COROLLARY-8:
\(TK [1,0,1, -1] = K\), as by substituting \(a = 1, \beta = 0, A = 1\) and \(B = -1\), the result becomes:
\[|a_3 - \mu a_2^2| \leq \begin{cases}
1 - \mu, \text{ if } \mu \leq \frac{2}{3}; \\
\frac{1}{3}, \text{ if } \mu^2 \leq \frac{4}{3}; \\
\mu - 1, \text{ if } \mu \geq \frac{4}{3}.
\end{cases} \]

which is the required result for the class \(K\).

THEOREM9:
If \(f(z) \in TK[a, \beta, A, B, \delta]\) and \(\phi(z) = \left(\frac{1+Aw(z)}{1+Bw(z)}\right)^{\delta}\), then:
\[|a_3 - \mu a_2^2| \leq \begin{cases}
\frac{\delta(A-B)}{1+5\alpha+18\alpha\beta}; \\
\frac{\delta(A-B)}{1+\alpha(1+4\beta)}; \\
\frac{\delta(A-B)}{1+5\alpha+18\alpha\beta}; \\
\frac{\delta(A-B)}{1+\alpha(1+4\beta)}; \\
\frac{\delta(A-B)}{1+5\alpha+18\alpha\beta}; \\
\frac{\delta(A-B)}{1+\alpha(1+4\beta)}; \\
\frac{\delta(A-B)}{1+5\alpha+18\alpha\beta}.
\end{cases} \]

PROOF:
By definition of \(TK[a, \beta, A, B, \delta]\),
\[(1-\alpha)\frac{f(z)}{z} + \frac{zf'(z) + \alpha zf''(z)}{f(z)^2} = \left(\frac{1+Aw(z)}{1+Bw(z)}\right)^{\delta} \] \hspace{1cm} (16)

where
\[w(z) = c_1 z + c_2 z^2 + c_3 z^3 \]
\[f(z) = a_2 z^2 + a_3 z^3 \]
\[f'(z) = 1 + 2 a_2 z + 3 a_3 z^2 + 4 a_4 z^3 \]
\[f''(z) = 2 a_2 + 6 a_3 z + 12 a_4 z^2 \]

Now, by putting all these values in (16), we get:
\[(1 - \alpha) (1 + a_2 z + a_3 z^2 + \ldots) + \alpha \left[\frac{z + 2a_2 z^2 + 3a_3 z^3 + \beta_2 a_2 z^2 + \beta_5 a_3 z^3 + \beta_1 12 a_4 z^4 + \ldots}{1 + 2a_2 z + 3a_3 z^2 + \ldots} \right]_t \]

By expanding the series, we get:

\[= \left(1 + A(c_1 z + c_2 z^2 + \ldots) \right) \delta \]

\[= \left(1 + B(c_1 z + c_2 z^2 + \ldots) \right) \delta \]

By expanding the series, we get:

\[= 1 + \delta (A - B) c_1 z + \delta (A - B) c_2 + \frac{\delta^2}{2} (A^2 + B^2) c_1^2 - \frac{\delta}{2} (A^2 - B^2) c_1^2 \]z^2.

By comparing, we get:

\[a_2 = \frac{\delta (A - B) c_1}{1 + \alpha (1 + 4\beta)}\]

and

\[\delta (A - B) [1 + \alpha (1 + 4\beta)]^2 c_2 + \frac{\delta}{2} (A^2 - B^2) + \frac{\delta^2}{2} (A^2 + B^2) c_1^2 = \frac{\delta (A - B) [1 + \alpha (1 + 4\beta)]^2 c_2 + \frac{\delta}{2} (A^2 - B^2) + \frac{\delta^2}{2} (A^2 + B^2) c_1^2}{1 + \alpha (1 + 4\beta)}\]

Using these values of \(a_2\) and \(a_3\), we get:

\[a_3 - \mu a_2^2 = \frac{\delta (A - B) c_2}{1 + \alpha (5 + 18\beta)} + \frac{\delta (A - B) [4\alpha \delta (1 + 2\beta) (A - B) + \frac{\delta}{2} (A - B) - (A + B)] (1 + \alpha (1 + 4\beta)^2)}{1 + \alpha (5 + 18\beta)(1 + \alpha (1 + 4\beta)^2)}\]

After applying mode on both sides, we get:

\[|a_3 - \mu a_2^2| \leq \left(\frac{\delta (A - B)}{1 + \alpha (5 + 18\beta)} \right) |c_2| + \frac{\delta (A - B) [4\alpha \delta (1 + 2\beta) (A - B) + \frac{\delta}{2} (A - B) - (A + B)] (1 + \alpha (1 + 4\beta)^2)}{1 + \alpha (5 + 18\beta)(1 + \alpha (1 + 4\beta)^2)} |c_1|^2\]

Using \(|c_2| \leq 1 - |c_1|^2\), we get:

\[|a_3 - \mu a_2^2| \leq \left(\frac{\delta (A - B)}{1 + \alpha (5 + 18\beta)} \right) + \frac{\delta (A - B) [4\alpha \delta (1 + 2\beta) (A - B) + \frac{\delta}{2} (A - B) - (A + B)] (1 + \alpha (1 + 4\beta)^2)}{1 + \alpha (5 + 18\beta)(1 + \alpha (1 + 4\beta)^2)} |c_1|^2\]

Case 1:

If \(\mu \leq \frac{4\alpha \delta (1 + 2\beta) (A - B) + \frac{\delta}{2} (A - B) - (A + B) - 1}{\delta (A - B) (1 + \alpha (5 + 18\beta))}\), then,

\[|a_3 - \mu a_2^2| \leq \left(\frac{\delta (A - B)}{1 + \alpha (5 + 18\beta)} \right) + \left(\frac{\delta (A - B) [4\alpha \delta (1 + 2\beta) (A - B) + \frac{\delta}{2} (A - B) - (A + B) - 1]}{1 + \alpha (5 + 18\beta)(1 + \alpha (1 + 4\beta)^2)} \right) |c_1|^2\]

Subcase 1 (a):

When \(\mu \leq \frac{4\alpha \delta (1 + 2\beta) (A - B) + \frac{\delta}{2} (A - B) - (A + B) - 1}{\delta (A - B) (1 + \alpha (5 + 18\beta))}\), then, by using \(|c_1| \leq 1\), we get:

\[|a_3 - \mu a_2^2| \leq \left(\frac{\delta (A - B) [4\alpha \delta (1 + 2\beta) (A - B) + \frac{\delta}{2} (A - B) - (A + B) - 1]}{1 + \alpha (5 + 18\beta)(1 + \alpha (1 + 4\beta)^2)} \right) - \frac{\delta^2 (A - B)^2 \mu}{(1 + \alpha (1 + 4\beta)^2)}\]

(DOI: http://dx.doi.org/10.24018/ejmath.2021.2.4.49)

Vol 2 | Issue 4 | August 2021
Subcase – 1 (b):
When \(\mu \geq \frac{4a\delta(1+2\beta)(A-B)+\delta(A-B)(\frac{1}{2}\{A-B\} - \frac{1}{2}(A+B)+1\{1+a(1+4\beta)\})^2}{\delta(A-B)(1+a(5+18\beta))} \), then,

\[
|a_3 - \mu a_2^2| \leq \frac{\delta(A-B)}{1+a(5+18\beta)}
\]

(18)

Case – 2:
If \(\mu \geq \frac{4a\delta(1+2\beta)(A-B)+\delta(A-B)(\frac{1}{2}\{A-B\} - \frac{1}{2}(A+B)+1\{1+a(1+4\beta)\})^2}{\delta(A-B)(1+a(5+18\beta))} \), then,

\[
|a_3 - \mu a_2^2| \leq \frac{\delta(A-B)}{1+a(5+18\beta)}\left(\frac{\delta^2(A-B)^2\mu}{(1+a(1+4\beta))^2} - \frac{\delta(A-B)[4a\delta(1+2\beta)(A-B)+\delta(A-B)(\frac{1}{2}\{A-B\} - \frac{1}{2}(A+B)+1\{1+a(1+4\beta)\})^2]}{(1+a(5+18\beta))(1+a(1+4\beta))^2}\right) |c_1|^2
\]

(19)

Subcase 2 (a):
When \(\mu \geq \frac{4a\delta(1+2\beta)(A-B)+\delta(A-B)(\frac{1}{2}\{A-B\} - \frac{1}{2}(A+B)+1\{1+a(1+4\beta)\})^2}{\delta(A-B)(1+a(5+18\beta))} \), then,

\[
|a_3 - \mu a_2^2| \leq \frac{\delta^2(A-B)^2\mu}{(1+a(1+4\beta))^2} - \frac{\delta(A-B)[4a\delta(1+2\beta)(A-B)+\delta(A-B)(\frac{1}{2}\{A-B\} - \frac{1}{2}(A+B)+1\{1+a(1+4\beta)\})^2]}{(1+a(5+18\beta))(1+a(1+4\beta))^2}
\]

(20)

By combining (17), (18), (19) and (20), we get the required result.

FOR EXTREMALS:
Extremal functions of this inequality is given by:

\[
f(z) = \left(1 + \frac{\delta(A-B)(1-3a+2a\beta)}{\delta(A-B)(1+a(1+4\beta))^2}\right)^{-1} \frac{\delta(A-B)(1-3a+2a\beta)}{\delta(A-B)(1+a(1+4\beta))^2}\[1 + \frac{\delta(A-B)(1-3a+2a\beta)}{\delta(A-B)(1+a(1+4\beta))^2}\]

and \(f(z) = z [1 + \delta(A-B)z^2]^{-1} \).

COROLLARY-10:
\(TK[\alpha, \beta, 1, -1, 1] = TK[\alpha, \beta] \), as by substituting \(A = 1, B = -1 \) and \(\delta = 1 \), the result becomes:

\[
|a_3 - \mu a_2^2| \leq \left\{ \begin{array}{c} \frac{4\alpha(1+2\beta)-\delta(A-B)(\frac{1}{2}\{A-B\} - \frac{1}{2}(A+B)+1\{1+a(1+4\beta)\})^2}{1+a(5+18\beta)}; & \mu \leq \frac{4\alpha(1+2\beta)}{1+5a+18a\beta} \; \text{and} \; \frac{4\alpha(1+2\beta)-\delta(A-B)(\frac{1}{2}\{A-B\} - \frac{1}{2}(A+B)+1\{1+a(1+4\beta)\})^2}{1+a(5+18\beta)}; \\
\frac{4\alpha(1+2\beta)}{1+5a+18a\beta}; & \mu \leq \frac{4\alpha(1+2\beta)}{1+5a+18a\beta} \; \text{and} \; \frac{4\alpha(1+2\beta)}{1+5a+18a\beta} \\
\end{array} \right.
\]

\(\mu \geq \frac{4\alpha(1+2\beta)}{1+5a+18a\beta} \),

which is the required result for the class \(TK[\alpha, \beta] \).

COROLLARY-11:
\(TK[\alpha, \beta, 1, -1, \delta] = TK[\alpha, \beta, \delta] \), as by substituting \(A = 1 \) and \(B = -1 \), the result becomes:
which is the required result for the class \(TK[\alpha, \beta, \delta] \).

COROLLARY-12:

\(TK[\alpha, \beta, A, B, 1] = TK[\alpha, \beta, A, B] \), as by substituting \(\delta = 1 \), the result becomes:

\[
|a_3 - \mu a_2^2| \leq \begin{cases}
16a(1+2\beta)(A-B)^2 - B(A-B)[1+a(1+4\beta)]^2 & \mu \leq \frac{4a(1+2\beta)(A-B)^2 - B(A-B)[1+a(1+4\beta)]^2}{(A-B)(1+5a+18a\beta)}; \\
\frac{1}{5a+18a\beta} & \mu \leq \frac{4a(1+2\beta)(A-B)^2 - B(A-B)[1+a(1+4\beta)]^2}{(A-B)(1+5a+18a\beta)}; \\
\frac{4a(1+2\beta)(A-B)^2 - B(A-B)[1+a(1+4\beta)]^2}{(A-B)(1+5a+18a\beta)} & \mu \geq \frac{4a(1+2\beta)(A-B)^2 - B(A-B)[1+a(1+4\beta)]^2}{(A-B)(1+5a+18a\beta)}.
\end{cases}
\]

which is the required result for the class \(TK[\alpha, \beta, A, B] \).

REFERENCES

[1] De Branges, L. (1985), A proof of Bieberbach Conjecture, *Acta. Math.*, vol. 154, pp. 137-152.
[2] Duren, P.L. (1977), Coefficient of univalent functions, *Bulletin of American Mathematical Society*, vol. 83, pp. 891-911.
[3] Fekete, M. and Szegö, G. (1933), Eine Bemerkung über ungerade schlichte funktionen, *J. London Math. Soc.*, vol. 8, pp. 85-89.
[4] Garabedian, P.R. and Schiffer, M. (1955), A Proof for the Bieberbach Conjecture for the fourth coefficient, *Arch. Rational Mech. Anal.*, vol. 4, pp. 427-465.
[5] Keogh, F.R. and Merkes, E.P. (1989), A coefficient inequality for certain classes of analytic functions, *Proc. Amer. Math. Soc.*, vol. 20, pp. 8-12.
[6] Koebe, P. (1907), Über Die uniformisierung beliebiger analytischer Kurven, *Nachr. Ges. Wiss. Göttingen*, vol. 1907, pp. 633-669.
[7] Lindelof, E. (1909), Memoire sur certaines inequalities dans la theorie des functions monogenes et sur quelques proprietes nouvelles de ces fonctions dans la voisinsaged’unpointsingulier essential, *Acta Soc. Sci. Fenn.*, vol. 23, pp. 481-519.
[8] Löwner, C. (1923), Untersuchungen über schlichte konforme Abbildungen des Einheitskreises I, *Math. Ann.*, vol. 89, pp. 103-121.
[9] Miller, S.S., Mocanu, P.T. and Reade, M.O. (1973), All convex functions are univalent and starlike, *Proceedings of American Mathematical Society*, vol. 37, pp. 553-554.
[10] Minda, D. and MA, W., A unified treatment of some special classes of univalent functions, In proceedings of the conference on complex analysis, Z. Li, P. Ren, I. Yang and S. Zhang (Eds.), Int. Press (1994), 157-169.
[11] Nevanlinna, R. (1922), Über die Eigenschaften einer analytischen funktionen in der Umgebung einer singulären Stele Order Linie, *Acta Soc. Sci. Fenn.*, vol. 50, pp. 1-46.
[12] Pederson, R. (1968-69), A proof for the Bieberbach conjecture for the sixth coefficient, *Arch. Rational Mech. Anal.*, vol. 31, pp. 331-351.
[13] Pederson, R. and Schiffer, M. (1972), A proof for the Bieberbach conjecture for the fifth coefficient, *Arch. Rational Mech. Anal.*, vol. 45, pp. 161-193.
[14] Singh, G. (2014), Fekete–Szegö Inequality for a new class and its certain subclasses of analytic functions, *General Mathematical Notes*, vol. 21, pp. 86-96.

DOI: http://dx.doi.org/10.24018/ejmath.2021.2.4.49