Long-Term Effects of Autologous Bone Marrow Stem Cell Treatment in Acute Myocardial Infarction: Factors That May Influence Outcomes

David M. Clifford¹,²*, Sheila A. Fisher³, Susan J. Brunskill³, Carolyn Doree³, Anthony Mathur⁴,⁶, Mike J. Clarke⁵, Suzanne M. Watt¹,², Enca Martin-Rendon¹,²*

¹ Stem Cell Research Laboratory, NHS-Blood and Transplant, John Radcliffe Hospital, Oxford, United Kingdom, ²Nuffield Department of Clinical Laboratory Sciences, University of Oxford, Oxford, United Kingdom, ³Systematic Review Initiative, Clinical Research Group, NHSBT-Oxford, John Radcliffe Hospital, Oxford, United Kingdom, ⁴Department of Clinical Pharmacology, William Harvey Research Institute, London, United Kingdom, ⁵All-Ireland Hub For Trials Methodology Research, Queen’s University, Belfast, United Kingdom, ⁶Barts and the London NIHR Biomedical Research Unit, London, United Kingdom

Abstract

Aims: To investigate whether there are important sources of heterogeneity between the findings of different clinical trials which administer autologous stem cell treatment for acute myocardial infarction (AMI) and to evaluate what factors may influence the long-term effects of this treatment.

Methods and Results: MEDLINE (1950-January 2011), EMBASE (1974-January 2011), CENTRAL (The Cochrane Library 2011, Issue 1), CINAHL (1982-January 2011), and ongoing trials registers were searched for randomised trials of bone marrow stem cells as treatment for AMI. Hand-searching was used to screen recent, relevant conference proceedings (2005–2010/11). Meta-analyses were conducted using random-effects models and heterogeneity between subgroups was assessed using chi-squared tests. Planned analyses included length of follow-up, timing of cell infusion and dose, patient selection, small trial size effect, methodological quality, loss of follow-up and date of publication. Thirty-three trials with a total of 1,765 participants were included. There was no evidence of bias due to publication or time-lag, methodological quality of included studies, participant drop-out, duration of follow-up or date of the first disclosure of results. However, in long-term follow-ups the treatment seemed more effective when administered at doses greater than 10⁸ cells and to patients with more severe heart dysfunction.

Conclusions: Evaluation of heterogeneity between trials has not identified significant sources of bias in this study. However, clinical differences between trials are likely to exist which should be considered when undertaking future trials.

Introduction

Although advanced therapies have improved short-term survival following acute myocardial infarction (AMI), the incidence of heart failure is steadily increasing worldwide [1]. Current treatments do not address the substantial loss of tissue through injury nor cell death incurred during AMI [2]. In the last decade, autologous bone marrow stem cell (BMSC) treatment has aimed to complement thrombolytic therapies and primary angioplasty in the treatment of AMI (for review see [3]). The hypothesis has been that BMSC would improve heart function delaying the progression of the disease. There is now a substantial body of evidence from randomised trials to assess the effects of this treatment, and a recent update of a Cochrane review by several of the authors of this paper has systematically reviewed this evidence [4].

The first clinical trials were designed to test the safety and feasibility of this new treatment, but were not necessarily powered to assess its efficacy and long-term effects on survival free of major associated cardiac events [5,6,7,8,9]. To date the treatment appears safe and associated with low mortality and morbidity rates (for review see [3,10]). However, there is controversial evidence that a beneficial effect on global heart function is significant and persist long-term (for review see [5,11] and references therein). Clinical evidence from randomised trials of intracoronary infusion of BMSC post-AMI have been evaluated previously in several meta-analyses [10,12,13]. The major limitations in the field that may contribute to these conflicting
results among trials include the small trial sizes and differences in patient selection, participants lost to follow-up, cell isolation protocols, cell dose/type, timing of cell infusion, route of delivery and methodologies used to measure surrogates; as well as variation in data acquisition and data analysis protocols. In addition, new interventions generally raise concerns that early optimism is fuelled by extreme results in early disclosure just to be contradicted by later results [14,15,16]. The rationale of the underlying Cochrane systematic review was to evaluate the efficacy of any dose of autologous BMSC administered to patients with a diagnosis of AMI following revascularisation [4]. In our previous study, sub-group analyses were planned to assess the effect of using different methods (e.g. magnetic resonance imaging (MRI), echocardiography, left ventricular angiography, single positron emission computed tomography (SPECT) or radionucleide ventriculography (RVN)) to measure heart function [4]. The aim of the present study was to conduct further risk of bias and sub-group analyses to explore whether the overall estimate of treatment effect size is a reliable guide to its effect and therefore to address some of the limitations in the field. Here, pre-planned analyses included (i) small trial size effect, (ii) trial quality and participants lost to follow-up, (iii) length of follow-up in the trial design, (iv) date of publication bias, (v) timing of cell infusion, (vi) cell dose/type, (vii) route of delivery and (viii) differences in patient selection.

Methods

Eligibility
Inclusion criteria: (i) randomized trials, (ii) participants with a clinical diagnosis of AMI, (iii) within a month of receiving revascularisation by percutaneous coronary intervention (PCI) or thrombolytic therapy or both, (iv) any dose of autologous BMSC, (v) any route of administration, (vi) in the comparator arm participants did not receive BMSC and (vii) any co-interventions provided they were equally applied to each trial arm.

Search Strategy
The search strategy is detailed elsewhere [4]. Briefly, databases were searched through to January 31st 2011 for randomised trials in which BMSC were administered as treatment for AMI, including MEDLINE (1950–2011), EMBASE (1974–2011), CENTRAL (The Cochrane Library 2011, Issue 1), CINAHL (1982–2011), PubMed, Lilacs, and the Transfusion Evidence Library. Ongoing trial registers (ClinicalTrials.gov, the ISRCTN Register and the WHO International Clinical Trials Platform Registry) were also searched. Searches were combined with adaptations of the Cochrane highly sensitive RCT search filter in MEDLINE, EMBASE and CINAHL [17]. No restrictions by language, year of publication or publication status were imposed. Proceedings from the American Heart Association (2005–2010) and International Society of Stem Cell Research (2005–2011) conferences and the reference lists of identified studies and relevant review articles were hand searched for additional studies.

Data Extraction
For each eligible trial, the study and patient population characteristics, the nature of the intervention and comparator, and the outcomes assessed were extracted. The quality of the studies was assessed on the bases of generation of random sequence, concealment of treatment allocation, blinding of outcome assessment and adequacy of follow-up [18]. Eligibility screening, data extraction and assessment of methodological quality were undertaken independently by a total of three reviewers, such that at least two reviewers looked at each potentially eligible trial. Where a trial had used several methods for outcome assessment (e.g. echocardiography, MRI, SPECT, RVN or left ventricular angiography), MRI data were preferentially included in our analysis.

Statistical Analysis
Outcome data were analysed quantitatively using RevMan 5 and presented as relative risk (RR) for dichotomous outcomes or weighted mean difference (WMD) for continuous outcomes with 95% confidence interval (CI); two-sided significance tests are reported. Meta-analyses were undertaken using random effects models, due to the high degree of heterogeneity present in these studies [4,10]. Statistical heterogeneity was examined using the I² statistic [19] and the chi-squared test.

Sensitivity Analysis
Bias related to study size (such as publication bias [20]) was assessed by funnel plots with Egger’s test used to assess asymmetry. Sensitivity analyses were undertaken for all relevant included data to assess the influence of (i) the methodological quality of the trials, (ii) the length of follow-up, (iii) participant drop-out and (iv) publication date. These analyses were specified before they were conducted. In the first instance, trials where the generation of random sequence was rated adequate (marked YES) were analysed separately from those where the generation of random sequence was rated as unclear (marked UNCLEAR) or inadequate (marked NO), as a possible explanation for observed statistical heterogeneity. To assess the effect of length of follow-up on results, trials with short term follow-up periods that have been followed up long term were analyzed separately from those with no long-term follow-up. The influence of participants drop-out was determined by analyzing separately trials with less than 20% drop-out, randomised trials with 20 to 50% drop-out and randomised trials with greater than 50% drop-out for major outcomes measured as dichotomous data (e.g. mortality, reinfarction and target vessel revascularisation). Finally, trials were sub-grouped on the basis of their by start date, end date, publication of the main/full article and disclosure or publication of the first results on the primary outcome (LVEF), to assess the possibility of a relationship between publication date and effect size. Other potential reasons for observed heterogeneity were explored via sub-group analysis, with particular emphasis placed on clinical, treatment and outcome measurement differences among the included studies. Sub-groups were stratified by the timing of BMSC transplantation from onset of AMI, dose of BMSC administered, route of administration and baseline LVEF. Differences in effect size between subgroups were assessed using chi-squared tests for heterogeneity between sub-groups as implemented in RevMan 5.

Results

Description of the Included Studies and Summary of Previous Findings
The search strategy followed has been described in detail elsewhere [4]. A total of 2,169 citations were identified in the initial search of which thirty-three were primary references to eligible studies (Figure S1). The characteristics of all included studies are detailed in Tables S1 and S5. The thirty-three included randomised trials represent thirty-nine treatment comparisons where BMSC was compared with control in 1,765 patients. Treatment comparisons were defined following the criteria previously described (for review see also [4]). Clinical outcomes and efficacy of BMSC treatment following AMI are fully described.
in detail in our previous study [4] and are summarised here and in supplementary material for clarity. BMSC administration within a month of AMI has no significant effect on mortality, morbidity, or adverse events. Cumulative figures are presented as ±61 months follow-up in supplementary data (Table S2 and reference to studies Table S5). The statistical heterogeneity in this case was negligible ($I^2 = 0.11\%$). However, a statistical power calculation showed that a study with over 5,000 participants in each randomised group would be required in order to achieve 80% power to detect any significant difference in mortality rates given the relatively low incidence of death within the follow-up period for these trials (2.8% in BMSC and 3.6% in Control groups, respectively). BMSC treatment significantly improved left ventricular volumes and ejection fraction in short- and long-term follow-up periods. However, a considerable degree of statistical heterogeneity ($I^2 > 75\%$) was observed in both infarct size and LVEF comparisons. A summary is presented in supplementary data (Table S3 and reference to studies Table S5). As global LVEF and infarct size have been used as surrogates in many of the included trials, this study was designed to explore the observed heterogeneity using these two outcome measures.

Exploring Heterogeneity: Risk of Bias

In order to explore the heterogeneity observed above and to dispel concerns raised with novel interventions, risks of bias were assessed according to the criteria described in the Methods.

(a) **Risk of publication bias and small study effect.** The possibility of publication bias and study size was assessed by Funnel plot and the Egger’s test (Figure 1A&B). The analysis showed no significant small study effects ($p = 0.726$) and, therefore, little evidence of publication bias.

(b) **Methodological quality of included studies.** The quality assessment of the included studies is summarized in supplementary data (Table S4). Sensitivity analysis to estimate the effect of randomization on LVEF was not required as all included studies followed an adequate method of sequence generation during randomization (Table S4) and this could be assessed because of the high quality of reporting of these relatively recent trials.

(c) **Loss of follow-up bias on mortality and morbidity.**

In 37 trials, 80% or more (ranging from 80%–100%) of randomized participants were analyzed by their randomized treatment group. One trial did not report loss of follow-up [21]. In the remaining trial, only 63.64% of randomized participants were included in the analysis [22]. Sensitivity analyses excluding this trial from the meta-analysis [22] had a negligible effect on the effects on mortality during short term (RR 0.80, 95% CI 0.40 to 1.61, $p = 0.52$ compared to RR 0.75, 95% CI 0.39 to 1.46, $p = 0.40$) and long term (RR 0.63, 95% CI 0.20 to 2.00, $p = 0.43$ compared to RR 0.59, 95% CI 0.22 to 1.56, $p = 0.29$) follow-up. Similar results were observed for incidence of re-infarction, restenosis, hospital readmission and target vessel revascularization, suggesting a negligible risk of bias. Here the original analyses with all included studies are presented (Table S2).

(d) **Length of follow-up bias on LVEF.** For this purpose, the 36 trials that reported short-term LVEF data were divided into two groups: 22 trials were followed-up only for <12 months (Figure 2A) whilst the remaining 14 trials were followed up for 12–61 months (Figure 2B). BMSC treatment effect on LVEF in trials followed up for <12 months (WMD 3.56%, 95% CI 1.74 to 5.37, $p = 0.0001$- Figure 2A) was not statistically different from the treatment effect in trials followed-up for 12–61 months (WMD 2.71%, 95% CI 1.35 to 4.06, $p<0.0001$- Figure 2B). These results suggest that those trials with long-term follow-up are representative of all included studies (Table S1).

(e) **Disclosure or publication date bias on LVEF.** The influence of study start date or end date and main publication date on the primary outcome (LVEF) was estimated by sorting the included studies according to those dates. Interestingly, no significant effect was observed in any of these comparisons, indicating a negligible risk of bias on treatment effect. However, when trials were grouped by the year when the first results were disclosed, the studies that disclosed their results first (in 2004) [6,23] showed an average greater effect on LVEF in favour of the treatment than the studies that were designed or reported later (Figure 3A). If we exclude these early trials from the meta-analysis, the overall estimate for the effect on LVEF was reduced (WMD 2.80%, 95% CI 1.83 to 3.77, $p<0.001$- Figure 3B) compared to the pool of all included studies (WMD 3.26%, 95% CI 2.12 to 4.40, $p<0.001$- Figure 3A). However, the difference was not substantial and the inclusion of trials with the early, most promising results showed low risk of bias.

Exploring Heterogeneity: Sub-group Analysis

Planned sub-group analyses were carried out to assess the impact of (i) the timing of the BMSC transplantation following AMI, (ii) the dose of BMSC administered, (iii) the route of administration and (vi) the baseline LVEF on infarct size and LVEF for long term follow-up (Table 1). Timing of administration of BMSC infusion was sub-grouped into ≤7 days and >7 days, to reflect the median delay to BMSC infusion from AMI across included studies. Our previous work suggested that doses of BMSC >10⁶ would be required to observe a significant change in LVEF in the treated arm compared with the control arm [10]. Therefore, for the purpose of this study, trials were divided into two groups according to dose: ≤10⁶ BMSC and >10⁶ BMSC. All included trials where the route of administration is detailed in their methods administered BMSC via the infarct related coronary artery. Only one trial compared venous and arterial delivery of BMSC [24]. Therefore, the pre-planned analysis subgrouping the trials by route of delivery was deemed not appropriate in the present study. Finally, further analyses were carried out dividing the trials in two groups to reflect the median value of baseline LVEF in the included trials: ≤40% and >40% baseline LVEF.

(a) **Timing of BMSC infusion.** Table 1 shows statistically significant changes in both infarct size (WMD = −5.2%, $p = 0.007$) and LVEF (WMD = 4.8%, $p = 0.0005$), in favour of BMSC, when the treatment was administered within 7 days post-AMI. At present, there are no data available to assess the long term effect on BMSC on infarct size for treatment administered after 7 days, however a significant difference in LVEF in favour of BMSC was maintained when the treatment was administered later than 7 days (WMD = 5.9%, $p = 0.01$). No significant differences between subgroups were observed for long-term follow-up LVEF ($p = 0.68$).

(b) **BMSC dose.** BMSC treatment had a significant effect on infarct size (WMD = −4.3%, $p = 0.005$) and LVEF (WMD = 4.7%, $p = 0.0001$) after long-term follow-up when doses >10⁶ BMSC were administered. In contrast, the
infarct size and LVEF showed no significant improvement when doses \(\leq 10^6 \) BMSC were administered.

(c) **Baseline LVEF.** Furthermore, the long-term reduction in infarct size in favour of BMSC treatment was statistically significant when the treatment was administered to participants with baseline LVEF \(\leq 40\% \) (WMD = \(-5.1\%\), \(p = 0.006 \)) whereas no significant effect was observed in participants with baseline LVEF \(> 40\% \) (WMD = \(-1.4\%\), \(p = 0.23 \)). The difference in effect sizes these between subgroups was marginally significant (\(p = 0.08 \)). The effect of BMSC on LVEF was also greater and more statistically significant when participants had LVEF \(\leq 40\% \) at baseline (WMD = \(-5.6\%\), \(p < 0.0001 \)) compared with participants with baseline LVEF \(> 40\% \) (WMD = \(2.4\%\), \(p = 0.006 \)), the difference in effect size between these subgroups was clearly significant for this outcome (\(p = 0.04 \)).

Figure 1. Assessment of risk of bias due to publication and study size on LVEF. (A) Funnel plot and (B) Egger’s test. No significant risk of publication bias or small study effects was observed. doi:10.1371/journal.pone.0037373.g001

Taken together, these data indicate that the timing of BMSC transplantation following AMI, the dose of BMSC administered and the baseline LVEF are factors that may contribute to the clinical heterogeneity observed among the studies included in this meta-analysis.

Discussion

The present study was designed: (i) to assess potential risks of bias and diversity amongst different randomised trials to address major limitations in the field and (ii) to evaluate what factors may influence the long-term effect of BMSC treatment. This meta-analysis confirms the findings of our previous study [4] that BMSC treatment moderately improves heart function and has as yet not been associated with any significant safety concerns, but does not decrease mortality or morbidity significantly in long-term follow-up (with the caveat that there have been no studies designed to address mortality). Our power...
Figure 2. Forest plot of Weighted Mean Difference (WMD, with 95% CI (confidence interval)) in left ventricular ejection fraction (LVEF) in short-term follow-up. (A) Twenty-two randomised trials reporting only short-term follow-up and (B) the remaining 14 trials that reported long-term outcome data as well as short-term data. BMSC treatment significantly improved LVEF in trials with short-term follow-up (3.56%, 95% CI 1.74 to 5.37, p<0.0001) as well as in trials with short- and long-term follow-up (2.71%, 95% CI 1.35 to 4.06, p<0.0001).

doi:10.1371/journal.pone.0037373.g002
calculation estimates that a trial with several thousand participants would be needed to detect significant differences in mortality between treatment and control groups. Recently, the first trial to address mortality associated with BMSC treatment in patients who suffered AMI has been designed and funded by the European Union (EU FP7–BAMI). The BAMI trial will be administering unfractionated bone marrow mononuclear cells to patients who have suffered from AMI, similarly to the majority of trials included in the present study. The results of this trial should allow us to directly answer the question of whether BMSC therapy following AMI can change the prognosis of this disease.

As the results of the present study are not always consistent with those of large randomised trials [7,8,25,26,27], we have conducted extensive sensitivity analyses to evaluate potential factors that may account for the discrepancies observed. Major limitations in the field have been enumerated earlier in the Introduction. Importantly, the underlying Cochrane systematic review for this study is unique and superior to others previously reported in a number of ways and has allowed us to address some of those issues. Firstly, it is based on a comprehensive search strategy and a protocol approved by the Cochrane Collaboration prior to starting the search. Although the majority of randomised trials were identified through searching the main databases (MEDLINE, EMBASE, CENTRAL and CINAHL), hand-searching identified several crucial references used to assess risk of bias that would have otherwise been missed [7,21,26,28,29,30,31]. Secondly, the robustness of the original systematic review has been tested extensively within this study through a comprehensive sensitivity analysis and risk of bias assessment to explore the presence and impact of heterogeneity. Finally, the large number of trials included here allows particularly powerful assessments of heterogeneity through planned sub-group analysis.

It has been suggested that measurement of surrogates such as LVEF by different methodology may be a risk of bias because of the known limitations of some methods [32]. Analysis of the included studies sub-grouped by the methodology used to measure surrogate outcomes has been addressed elsewhere [4]. It has also been suggested that stopping or reporting early results in randomised trial may affect the perception that the public has of the treatment efficacy in novel interventions [33]. As early results are more limited than the results of a final analysis, concerns have been raised as treatment effects seen early may either not be real or may be overly optimistic. In this study, we have had a unique opportunity to assess whether factors such as short versus long follow-up or early reporting of results may contribute to bias amongst the pooled results of all included trials. The risk of bias due to length of follow-up for LVEF was negligible indicating that those trials with long term follow-up data are representative of all included studies. This conclusion may have implications interpreting early results from trials with long-term follow-up or trials with short term follow-up only. In addition, low risk of bias was observed when studies were grouped by study start date, study end date or publication of main reference to the studies. There were no significant differences of treatment effect on LVEF when two early results...
Table 1. Long term follow up (12–61 months) for infarct size and LVEF: sub-group analysis.

Subgroup Analysis	Timing of SCT	Dose	Baseline LVEF
No. studies (No. participants)			
Infarct size (%), WMD with 95% CI			
No studies (No. participants)			
N/A	N/A	N/A	N/A
≤7 days	≤7 days	≤7 days	≤7 days
Difference in subcategories	Difference in subcategories	Difference in subcategories	Difference in subcategories
–1.96 (1.23, 3.23)	–1.96 (1.23, 3.23)	–1.96 (1.23, 3.23)	–1.96 (1.23, 3.23)
≤30%	≤30%	≤30%	≤30%

CI, confidence interval; LVEF, left ventricular ejection fraction; N/A, not applicable; SCT, stem cell transplantation; WMD, weighted mean difference.

In summary, we have addressed some of the limitations present in the field here and elsewhere [4]. However, other limitations such as small study sizes, patient-related factors and variability in protocols still remain. This study shows that risk of bias due to publication, quality of the studies, loss of follow-up, duration of follow-up and date of disclosure of early results is minor among randomised trials that administer BMSC as treatment for AMI. BMSC treatment significantly reduces infarct size and improves LVEF long-term. Factors such as timing of BMSC transplantation, cell dose and baseline LVEF could affect the successful outcome of this treatment. An attempt has now been made with the design of the BAMI trial to standardise the techniques of BMNC isolation and delivery to man and to measure clinically significant end-points such as mortality.
Supporting Information

Figure S1 PRISMA diagram.

Table S1 Characteristics of the included studies.

Table S2 Relative risk of dichotomous clinical outcomes.

Table S3 Weighted mean differences of continuous outcomes measured.

Table S4 Quality assessment of included studies.

References

1. Velagapudi RS, Pencina MJ, Murabito JM, Wang TJ, Parikh NI, et al. (2008) Long-term trends in the incidence of heart failure after myocardial infarction. Circulation 118: 2057–2062.
2. McMurray JJ, Pfeffer MA (2005) Heart failure. Lancet 365: 1877–1899.
3. Wollert KC, Drexler H (2010) Cell therapy for the treatment of coronary heart disease: a critical appraisal. Nat Rev Cardiol 7: 204–215.
4. Clifford DM, Fisher SA, Brunskill SJ, Doree C, Mathur A, et al. (2012) Stem cell treatment for acute myocardial infarction. Cochrane Database Syst Rev 2: CD006536.
5. Wollert KC, Meyer GP, Lee J, Rings-Lichtenberg S, Lippolt P, et al. (2004) Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet 364: 141–148.
6. Chen SL, Fang WW, Ye P, Liu YH, Qian J, et al. (2004) Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am J Cardiol 94: 92–97.
7. Janssens SP, Dubois C, Bogaert J, Theunissen K, Derese C, et al. (2006) Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet 367: 113–121.
8. Lunde K, Solheim S, Aakhus S, Arnesen H, Abdelnoor M, et al. (2006) Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N Engl J Med 355: 1199–1209.
9. Schachinger V, Erbs S, Elsasser A, Haberbesch W, Hambrecht R, et al. (2006) Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med 355: 1210–1221.
10. Martin-Remond E, Brunskill SJ, Hyde CJ, Stanworth SJ, Mathur A, et al. (2008) Autologous bone marrow stem cells to treat acute myocardial infarction: a systematic review. Eur Heart J 29: 1087–1091.
11. Janssens SP (2011) Cardiac bone marrow cell therapy: the proof of the pudding appears in published research: the Proteus phenomenon in molecular genetics. Arch Intern Med 167: 989–997.
12. Lipinski MJ, Biondi-Zoccai GG, Abbate A, Khianey R, Sheiban I, et al. (2007) Impact of intracoronary cell therapy on left ventricular function in the setting of acute myocardial infarction: a collaborative systematic review and meta-analysis of controlled clinical trials. J Am Coll Cardiol 50: 1761–1767.
13. Ioannidis JP, Trikalinos TA (2003) Early extreme contradictory estimates may appear in published research: the Proteus phenomenon in molecular genetics research and randomized trials. J Clin Epidemiol 56: 543–549.
14. Hopewell S, Clarke M, Stewart L, Tierney J (2007) Time to publication for results of clinical trials. Cochrane Database Syst Rev. MR000011 p.
15. Trikalinos TA, Churchill R, Ferri M, Leucht S, Tsoumani A, et al. (2004) Effect sizes in cumulative meta-analyses of mental health randomized trials evolved over time. J Clin Epidemiol 57: 1124–1130.
16. Robinson KA, Dickersin K (2002) Development of a highly sensitive search strategy for the retrieval of reports of controlled trials using PubMed. Int J Epidemiol 31: 150–153.
17. Higgins J, Green S (2008) Cochrane Handbook for Systematic Reviews of Interventions 5.0.0; Higgins J, Green S, editors. Chichester, UK: John Wiley & Sons Ltd.
18. Higgins J, Green S (2008) Cochrane Handbook for Systematic Reviews of Interventions 5.0.0; Higgins J, Green S, editors. Chichester, UK: John Wiley & Sons Ltd.
19. Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21: 1539–1558.
20. Hopewell S, Louden K, Clarke MJ, Oxman AD, Dickersin K (2009) Publication bias in clinical trials due to statistical significance or direction of trial results. Cochrane Database Syst Rev. MR000006 p.
21. Fernandez-Pereira C, Vigo C, Bataglia S, De la Hou R, Vettes H, et al. (2006) Autologous bone marrow stem cell transplantation after myocardial infarction. In: hospital and long-term follow-up results of the randomised argentinean trial (STAR AMI). Eur Heart J August. 279 p.
22. Zhuova NS, Staroverov, II, Stukalova OV, Samoleinko LE, Romanov IA, et al. (2008) An experience of the use of stem cells in the treatment of patients with myocardial infarction and low ejection fraction. Kardiologiya 49: 19–24.
23. Meyer GP, Wollert KC, Lozj J, Stellens J, Lippolt P, et al. (2006) Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months’ follow- up from the randomised BOOST-BOEhe marrow transfer to enhance ST-elevation infarct regeneration trial. Circulation 113: 1287–1294.
24. Nogueira FB, Silva SA, Haddad AF, Peixoto CM, Carvalho RM, et al. (2009) Sydolic function of patients with myocardial infarction undergoing autologous bone marrow transplantation. Ann Bras Cardiol 93: 374–379, 367–372.
25. Hirsch A, Nijveldt R, van der Vleuten PA, Tijssen JG, van der Giesen WJ, et al. (2011) Intracoronary infusion of mononuclear cells from bone marrow or peripheral blood compared with standard therapy in patients after acute myocardial infarction treated by primary percutaneous coronary intervention: results of the randomised controlled HERBE trial. Eur Heart J 32: 1736–1747.
26. Roncalli J, Mosquet P, Piot C, Trochu JN, Le Corvoisier P, et al. (2011) Intracoronary autologous mononuclear bone cell transfer for acute myocardial infarction: results of the randomized multi-center BôXAMI trial. Eur Heart J 32: 1748–1757.
27. Tendera M, Wojakowski W, Kuzyillo W, Chojnowska L, Kepka C, et al. (2009) Intracoronary infusion of bone marrow-derived selected CD34+CXCR4+ cells and non-selected mononuclear cells in patients with acute STEMI and reduced left ventricular ejection fraction: results of randomized, multicentre Myocardial Regeneration by Intracoronary Infusion of Selected Population of Stem Cells in Acute Myocardial Infarction (REGENT) Trial. Eur Heart J 30: 1313–1321.
28. Grajejk S, Popiel M, Gil L, Brabowrowicz I, Lesiak M, et al. (2010) Influence of bone marrow stem cells on left ventricle perfusion and ejection fraction in patients with acute myocardial infarction of anterior wall: randomized clinical trial: Impact of bone marrow stem cell intracoronary infusion on improvement of microcirculation. Eur Heart J 31: 691–702.
29. Kaplan RS, Popos SW, Djon VA, Soegena TE, Rybov VV, et al. (2005) Autologous mononuclear bone marrow cells during reparative regeneration after acute myocardial infarction. Bull Exp Biol Med 140: 640–643.
30. Piepoli MF, Vallisa D, Arbas D, Cavanna L, Cleir L, et al. (2010) Bone marrow cell transplantation improves cardiac, autonomic, and functional indexes in acute anterior myocardial infarction patients (Cardiac Study). Eur J Heart Fail 12: 172–180.
31. Li QZ, Zhang M, Jing YZ, Zhang WW, Liu Y, et al. (2007) The clinical study of autologous peripheral blood stem cell transplantation by intracoronary infusion in patients with acute myocardial infarction (AMI). Int J Cardiol 115: 52–56.
32. Arnesen L, Lunde K, Aakhus S, Forfang K (2007) Cell therapy in myocardial infarction. Lancet 369: 2142–2143.
33. Kumar A, Galep S, Djof G R B: Treatment of patients with multiple myeloma: an overview of systematic reviews. Acta Haematol 125: 8–22.
34. Montalescot G, Raut P, Wittenberg O, Ecolan P, Elhadad S, et al. (2001) Platelet glycoprotein Ilb/IIIa inhibition with coronary stenting for acute stent treated patients with suspected restenosis. N Engl J Med 344: 925–933.
35. Stone GW, Grines CL, Cox DA, Garcia E, Tcheng JE, et al. (2002) Comparison of angioplasty with stenting, with or without abciximab, in acute myocardial infarction. N Engl J Med 346: 957–966.
36. Halken A, Singh M, Nikolaou E, Grittos CL, Tcheng JE, et al. (2005) Prediction of mortality after primary percutaneous coronary intervention for acute myocardial infarction: the CADILLAC risk score. J Am Coll Cardiol 45: 1397–1405.
37. Sumemos ML, Ves J, Tijssen JG, Vermeer F, Verheugt FW, et al. (1989) Long-term benefit of early thrombolytic therapy in patients with acute myocardial infarction: 5 year follow-up of a trial conducted by the Interevent Cardiology Institute of The Netherlands. J Am Coll Cardiol 14: 1609–1615.
38. Assmus B, Rolf A, Erbs S, Elsasser A, Haberbosch W, et al. (2010) Clinical outcome 2 years after intracoronary administration of bone marrow-derived progenitor cells in acute myocardial infarction. Circ Heart Fail 3: 89–96.
39. Brunskill SJ, Hylde CJ, Doree CJ, Watt SM, Martin-Rendon E (2009) Route of delivery and baseline left ventricular ejection fraction, key factors of bone-marrow-derived cell therapy for ischaemic heart disease. Eur J Heart Fail 11: 887–896.
40. Schachinger V, Aicher A, Dobert N, Rover R, Diener J, et al. (2008) Pilot trial on determinants of progenitor cell recruitment to the infarcted human myocardium. Circulation 118: 1425–1432.
41. Gnecchi M, Zhang Z, Ni A, Dzau VJ (2008) Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res 103: 1204–1219.
42. Traverse JH, Henry TD, Vaughan DE, Ellis SG, Pepine CJ, et al. (2009) Rationale and design for TIME: A phase II, randomized, double-blind, placebo-controlled pilot trial evaluating the safety and effect of timing of administration of bone marrow mononuclear cells after acute myocardial infarction. Am Heart J 158: 356–363.
43. Traverse JH, Henry TD, Vaughan DE, Ellis SG, Pepine CJ, et al. (2010) Late-TIME: a phase-II, randomized, double-blinded, placebo-controlled, pilot trial evaluating the safety and effect of administration of bone marrow mononuclear cells 2 to 3 weeks after acute myocardial infarction. Tex Heart Inst J 37: 412–420.
44. Meluzin J, Janousek S, Mayer J, Groch L, Homacek I, et al. (2008) Three-, 6-, and 12-month results of autologous transplantation of mononuclear bone marrow cells in patients with acute myocardial infarction. Int J Cardiol 128: 183–192.
45. Yao K, Huang R, Sun A, Qian J, Liu X, et al. (2009) Repeated autologous bone marrow mononuclear cell therapy in patients with large myocardial infarction. Eur J Heart Fail 11: 691–698.
46. Quyyumi AA, Waller EK, Murrow J, Esteves F, Galt J, et al. (2011) CD34(+) cell infusion after ST elevation myocardial infarction is associated with improved perfusion and is dose dependent. Am Heart J 161: 98–105.
47. Cao F, Sun D, Li C, Narsinh K, Zhao L, et al. (2009) Long-term myocardial functional improvement after autologous bone marrow mononuclear cells transplantation in patients with ST-segment elevation myocardial infarction: 4 years follow-up. Eur Heart J 30: 1986–1994.
48. Jin B, Yang Y, Shi H, Luo X, Li Y, et al. (2006) Autologous intracoronary mononuclear bone marrow cell transplantation for acute anterior myocardial infarction: Outcomes after 12-month follow-up. Journal of Clinical Rehabilitative Tissue Engineering Research 12: 2267–2271.
49. Suarez de Lezo J, Herrera CP, M. , Romero M, Pavlovic D, Segura J, et al. (2007) Tratamiento regenerativo en pacientes con infarto agudo de pared anterior revascularizado y funcion ventricular deprimida. Rev Esp Cardiol 60: 357–365.
50. Penicka M, Horak J, Kobylika P, Pytlík R, Kozak T, et al. (2007) Intracoronary injection of autologous bone marrow-derived mononuclear cells in patients with large anterior acute myocardial infarction: a prematurely terminated randomized study. J Am Coll Cardiol 49: 2373–2374.