Faber polynomial coefficient estimates for a subclass of bi-univalent functions involving q-analogue of Ruscheweyh operator

Suhila Elhaddada and Maslina Darusb
Department of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
E-mail: asuhila.e@yahoo.com
bmaslina@ukm.edu.my

Abstract. In this article, we introduce a new subclass of analytic bi-univalent functions using the Ruscheweyh type q-analogue operator. In addition, we estimate upper bounds for general and early bounds of Taylor-Maclaurin coefficients in functions of the class which is considered by using Faber polynomial expansions.

1. Introduction
The function class is denoted by \mathcal{A} which represented by the following form:

$$k(z) = z + \sum_{m=2}^{\infty} a_m z^m, \quad (z \in \Delta)$$

(1.1)

that are analytic in $\Delta = \{z \in \mathbb{C} : |z| < 1\}$ and satisfy the following normalization conditions:

$$k(0) = 0 \quad \text{and} \quad k'(0) = 1.$$

In addition, Let S be the subfamily of \mathcal{A} consisting of univalent functions. Further, Let \mathcal{P} be the subclass of analytic functions in Δ and satisfy the inequality $Re(\Psi(z)) > 0$ in Δ of the form

$$\Psi(z) = 1 + \sum_{m=1}^{\infty} \Psi_m z^m,$$

(1.2)

where $|\Psi_m| < 2$, by Caratheodory’s Lemma (see, [1]).

For the two functions $k(z)$ and $h(z)$ analytic in Δ, we say that $k(z)$ is subordinate to $h(z)$, usually denoted by $k(z) < h(z)$ ($z \in \Delta$), if there exists a Schwarz function $\varphi(z)$ within Δ with $\varphi(0) = 0$ and $|\varphi(z)| < 1$ ($z \in \Delta$), such that $k(z) = h(\varphi(z)),$ ($z \in \Delta$).

It is well known that $k(\Delta) \geq 1/4$ for any $k \in S$, by the Koebe’s theorem [1]. Also, every univalent function k has an inverse k^{-1}, which is defined by

$$k^{-1}(k(z)) = z, \quad (z \in \Delta),$$
A function \(k \in \mathcal{A} \) is said to be bi-univalent in \(\Delta \) if both \(k \) and \(k^{-1} \) are univalent in \(\Delta \). Let \(\sigma \) denote the class of bi-univalent functions given by the Taylor-Maclaurin series expansion (1.1).

Previously, work by Lewin [2] investigated the bi-univalent function class, found the bound 1.51 for the modulus of \(|a_2| \). This was followed by hypotheses from Brannan and Clunie [3] that \(|a_2| \leq \sqrt{2} \) for \(k \in \sigma \). Subsequently, Netanyahu [4] demonstrated that, \(k \in \sigma \), \(\max |a_2| = \frac{5}{3} \). In addition, various subclasses within \(\sigma \) as the class of bi-univalent functions were found by Brannan and Taha [5], which have similarities with the well-known \(S^* (\beta) \) and \(K (\beta) \) subclasses respectively for convex and starlike functions of order \(0 \leq \beta < 1 \) in \(\Delta \). Several researchers have recently examined boundaries of various subclasses of bi-univalent functions (as in e.g. [6], [7], [8], [9], [10] and [11]).

The Faber polynomials presented by Faber [12] play a vital part in different ranges of mathematical sciences, particularly in the theory of geometric functions. Grunsky [13] succeeded in defining a set of necessary and sufficient conditions for the univalence for a given function and in these conditions, the coefficients of the Faber polynomials play a significant role. Schiffer [14] used the Faber polynomials to give differential equations for univalent functions that solved such extreme problems with regard to coefficients of such functions.

Faber polynomial expansion of functions \(k \in \mathcal{A} \) of the form (1.1), can be used to represent the coefficients of \(g = k^{-1} \) as:

\[
g(\omega) = k^{-1}(\omega) = \omega + \sum_{m=2}^{\infty} \frac{1}{m!} K_{m-1}^{m}(a_2, a_3, \ldots) \omega^m,
\]

where

\[
K_{m-1}^{m} = \frac{(-m)!}{(2m + 1)!(m - 1)!} a_2^{m-1} + \frac{(-m)!}{[2(-m + 1)]!(m - 3)!} a_2^{m-3} a_3 + \frac{(-m)!}{(2m - 3)!} a_2^{m-4} a_4
\]

\[
+ \frac{(-m)!}{[2(-m + 2)]!(m - 5)!} a_2^{m-5} [a_5 + (-m + 2) a_3^2] + \frac{(-m)!}{(2m - 6)!} a_2^{m-6} [a_6 + (-2m + 5) a_3 a_4]
\]

\[
+ \sum_{i \geq 7} a_2^{m-i} V_i,
\]

and \(V_i \) with \(7 \leq i \leq m \) is a homogeneous polynomial of degree \(i \) in the variables \(a_2, a_3, \ldots, a_m \), (all details can be found in [15]). Particularly, the first three terms of \(K_{m-1}^{m} \) are

\[
\frac{1}{2} K_1^{2} = -a_2,
\]

\[
\frac{1}{3} K_2^{3} = 2a_2^2 - a_3,
\]

\[
\frac{1}{4} K_3^{4} = -(5a_2^3 - 5a_2a_3 + a_4).
\]

In general, an expansion of \(K_m^{p} \) is given by (see, for details, [16]).

\[
K_m^{p} = p a_m + \frac{(p - 1)}{2} F_m^2 + \frac{p!}{(p - 3)!} F_m^3 + \cdots + \frac{p!}{(p - m)!} F_m^m, \quad (p \in \mathbb{Z}),
\]
where
\[Z = \{0, \pm 1, \ldots\} \text{ and } F^p_m = F^p_m(a_2, a_3, \ldots), \]
and, alternatively, by (see, [15]).
\[F^m_n(a_1, a_2, \ldots, a_m) = \sum_{n=1}^{\infty} \frac{n!(a_1)^{\sigma_1} \cdots (a_m)^{\sigma_m}}{\sigma_1! \cdots \sigma_m!}, \]
while \(a_1 = 1 \), and the sum is taken over all nonnegative integers \(\sigma_1, \ldots, \sigma_m \) satisfying
\[\sigma_1 + \sigma_2 + \ldots + \sigma_m = n, \quad \sigma_1 + 2\sigma_2 + \ldots + m\sigma_m = m. \]
Evidently,
\[F^m_n(a_1, a_2, \ldots, a_m) = a_1^n. \]

The application of \(q \)-calculus is very important in the theory in analytic functions. Jackson is known to be the first to succeed in developing \(q \)-integral and \(q \)-derivative in a systematic way (for more details, see [17, 18]). Purohit and Raina [19] for example examined the use of fractional \(q \)-calculus operators in defining a number of analytic function classes for \(\Delta \) as an open unit disk. Meanwhile, Mohammed and Darus [20] evaluated \(q \)-operator characteristics in terms of geometry and approximation with reference to particular analytic function subclasses within compact disks. In addition, fractional \(q \)-derivative and fractional \(q \)-integral operators, among other \(q \)-calculus operators, have been applied in constructing a number of analytic function subclasses, as in [21], [22], [23], [24], [25], [26], [27], [28], [29] and [19]. A more complete treatment of applied \(q \)-analysis within the theory of operators may be found in [30] and [31].

This work starts by defining key terms and detailed concepts within the \(q \)-calculus applied here. For the purposes of the report, the following assumption is made: 0 < \(q \) < 1. Firstly, fractional \(q \)-calculus operators for a function with complex values \(k(z) \) are defined below:

Definition 1.1 Let 0 < \(q \) < 1 and define the \(q \)-number \([m]_q \) by
\[
[m]_q = \begin{cases}
1-q^m, & (m \in \mathbb{C}), \\
1-q^{m-1} \sum_{n=0}^{m-1} q^n = 1 + q + q^2 + \ldots + q^{j-1}. & (m = j \in \mathbb{N})
\end{cases}
\]

Definition 1.2 Let 0 < \(q \) < 1 and define the \(q \)-factorial \([m]_q! \) by
\[
[m]_q! = \begin{cases}
[m]_q[m-1]_q \cdots [1]_q, & m = 1, 2, \ldots, \\
1, & m = 0.
\end{cases}
\]

Definition 1.3 (see [17],[18]) The \(q \)-derivative operator \(\partial_q \) of a function \(k \) is determined by
\[
\partial_q k(z) = \begin{cases}
\frac{k(qz) - k(z)}{(q-1)z}, & (z \neq 0) \\
k'(z). & (z = 0)
\end{cases}
\]

We note from Definition 1.3 that
\[
\lim_{q \to 1} (\partial_q k)(z) = \lim_{q \to 1} \frac{k(qz) - k(z)}{(q-1)z} = k'(z).
\]
From (1.1) and (1.6), we get

\[\partial_q k(z) = 1 + \sum_{m=2}^{\infty} [m]_q a_m z^{m-1}. \]

In 2014, the authors in [21] defined the Ruscheweyh type \(q \)-analogue operator \(R_q^\delta \) by

\[R_q^\delta k(z) = z + \sum_{m=2}^{\infty} \frac{\left[m + \delta - 1 \right]_q}{[\delta]_q [m-1]_q} a_m z^m, \quad (1.7) \]

where \(\delta \geq 0 \) and \([m]_q\) defined by (1.5).

Also, as \(q \to 1^- \) we have

\[\lim_{q \to 1^-} R_q^\delta k(z) = z + \sum_{m=2}^{\infty} \frac{(m + \delta - 1)!}{(\delta)! (m-1)!} a_m z^m \]

\[= R^\delta k(z), \]

where \(R^\delta k(z) \) is Ruscheweyh differential operator described in [32] and studied by many researchers, for instance [33] and [34].

Now, using the differential operator \(R_q^\delta k(z) \) and the concept of subordination, we define a new subclass of \(\sigma \) as:

Definition 1.4 Let \(\delta \geq 0 \) and \(\xi \geq 1 \). Then \(k \in \sigma \) is said to be in the class \(B\sigma^d (\delta, \xi; \Psi) \) if and only if

\[(1 - \xi) \frac{R_q^\delta k(z)}{z} + \xi \partial_q (R_q^\delta k(z)) < \Psi(z), \]

and

\[(1 - \xi) \frac{R_q^\delta g(\omega)}{\omega} + \xi \partial_q (R_q^\delta g(\omega)) < \Psi(\omega), \]

where \(g(\omega) = k^{-1}(\omega) \) and \(R_q^\delta \) are given by (1.3) and (1.7), respectively.

Remark 1.1 It can be noted that the class \(B\sigma^d (\delta, \xi; \Psi) \) is reduced to various subclasses of bi-univalent functions by specializing the parameters, for instance:

- For \(q \to 1^- \) and \(\delta = 0 \), the class \(B\sigma^d (\delta, \xi; \Psi) \) reduces to the class \(B(\xi; \Psi) \) examined by Peng and Han [35].
- For \(\xi = 1, q \to 1^- \) and \(\delta = 0 \) the class \(B\sigma^d (\delta, \xi; \Psi) \) reduces to the class \(B(\Psi) \) examined by Peng and Han [35].

In the following main results, the Faber polynomial expansion is used to determine the upper bounds for general coefficient \(|a_n| \). In addition, we offer estimates for the initial coefficients for functions belong to the class \(B\sigma^d (\delta, \xi; \Psi) \).
2. Main Results

In the following theorem, we estimated the coefficients bound for such functions which belong to the class $B\sigma^q(\delta, \xi; \Psi)$.

Theorem 2.1 For $\delta \geq 0$ and $\xi \geq 1$, let $k \in B\sigma^q(\delta, \xi; \Psi)$. If $a_k = 0; k = 2\ldots m - 1$, then

$$|a_m| \leq \frac{2(1 - q)}{|1 - q + \xi(q - q^m)|} \frac{[m + \delta - 1]q!}{[\delta]q![m - 1]q!}, m \geq 4. \quad (2.1)$$

Proof. Let k be given by (1.1), we have

$$1 \leq (1 - \xi) - \frac{R^q_k(z)}{z} + \xi \partial_q(R^q_k(z)) = 1 + \sum_{m=2}^{\infty} [1 + \xi([m]_q - 1)] \times \frac{[m + \delta - 1]q!}{[\delta]q![m - 1]q!} a_m z^{m-1}, \quad (2.2)$$

and for $g = k^{-1}$, we have

$$1 \leq (1 - \xi) - \frac{R^q_k(\omega)}{\omega} + \xi \partial_q(R^q_k(\omega)) = 1 + \sum_{m=2}^{\infty} [1 + \xi([m]_q - 1)] \times \frac{[m + \delta - 1]q!}{[\delta]q![m - 1]q!} \omega z^{m-1}, \quad (2.3)$$

where \mathcal{K}^{-m}_{m-1} as in (1.4).

On the other hand, since $k \in B\sigma^q(\delta, \xi; \Psi)$ and $k^{-1} \in B\sigma^q(\delta, \xi; \Psi)$, there exist two Schwartz functions

$$\nu(z) = \sum_{m=1}^{\infty} b_m z^m \quad \text{and} \quad \theta(\omega) = \sum_{m=1}^{\infty} d_m \omega^m,$$

such that

$$1 = (1 - \xi) - \frac{R^q_k(z)}{z} \sum_{m=1}^{\infty} b_m z^m = \Psi(\nu(z)), \quad (2.4)$$

and

$$1 = (1 - \xi) - \frac{R^q_k(\omega)}{\omega} \sum_{m=1}^{\infty} d_m \omega^m = \Psi(\theta(\omega)), \quad (2.5)$$

where

$$\Psi(\nu(z)) = 1 + \sum_{m=1}^{\infty} \sum_{n=1}^{m} \Psi_n F^n_m(b_1, \ldots, b_m) z^m, \quad (2.6)$$

and

$$\Psi(\theta(\omega)) = 1 + \sum_{m=1}^{\infty} \sum_{n=1}^{m} \Psi_n F^n_m(d_1, \ldots, d_m) \omega^m. \quad (2.7)$$

From (2.2), (2.4), and (2.6) we get

$$[1 + \xi([m]_q - 1)] \times \frac{[m + \delta - 1]q!}{[\delta]q![m - 1]q!} a_m = \sum_{n=1}^{m-1} \Psi_n F^n_{m-1}(b_1, \ldots, b_{m-1}), \quad (m \geq 2). \quad (2.8)$$
Similarly, form (2.3), (2.5), and (2.7) we have
\[
\left[1 + \xi([m]q - 1) \right] \times \frac{[m + \delta - 1]q!}{[\delta]q! [m-1]q} c_m = \sum_{n=1}^{m-1} \Psi_n F_{m-1}^n (d_1, \ldots, d_{m-1}), \ (m \geq 2).
\] (2.9)

Note that for \(a_k = 0; \ \kappa = 2, \ldots, m - 1 \), we have \(c_m = -a_m \) and so
\[
\left[1 + \xi([m]q - 1) \right] \times \frac{[m + \delta - 1]q!}{[\delta]q! [m-1]q}, a_m = \Psi_1 b_{m-1}, \quad - \left[1 + \xi([m]q - 1) \right] \times \frac{[m + \delta - 1]q!}{[\delta]q! [m-1]q}, a_m = \Psi_1 d_{m-1}.
\]

Taking the absolute value of the above two equations, we obtain
\[
|a_m| = \left| \Psi_1 b_{m-1} \right| = \left| \left[1 + \xi([m]q - 1) \right] \times \frac{[m + \delta - 1]q!}{[\delta]q! [m-1]q} \right| = \left| \left[1 + \xi([m]q - 1) \right] \times \frac{[m + \delta - 1]q!}{[\delta]q! [m-1]q} \right|.
\]
by applying the Caratheodory's Lemma, we have
\[
|a_m| \leq \frac{2(1 - q)}{|1 - q + \xi(q - q^m)| \frac{[m + \delta - 1]q!}{[\delta]q! [m-1]q}}.
\]

Which obviously completes the proof of Theorem 2.1.

By putting \(\delta = 0 \) in Theorem 2.1, we obtain the following corollary.

Corollary 2.1 [36] For \(\xi \geq 1 \), let \(k \in \mathcal{B}\sigma^q(\xi; \Psi) \). If \(a_k = 0; \ \kappa = 2, \ldots, m - 1 \), then
\[
|a_m| \leq \frac{2(1 - q)}{1 - q + \xi(q - q^m)}, \ m \geq 4.
\]
Setting \(q \to 1^- \) and \(\delta = 0 \) in the above theorem, we obtain the following result.

Corollary 2.2 For \(\xi \geq 1 \), let \(k \in \mathcal{B}(\xi; \Psi) \). If \(a_k = 0; \ \kappa = 2, \ldots, m - 1 \), then
\[
|a_m| \leq \frac{2}{1 + \xi(m - 1)}, \ m \geq 4.
\]

In next theorem, we estimate the following early coefficient bounds for functions belong to the class \(\mathcal{B}\sigma^q(\delta, \xi; \Psi) \).

Theorem 2.2 Let \(\delta \geq 0 \) and \(\xi \geq 1 \). If \(k \in \mathcal{B}\sigma^q(\delta, \xi; \Psi) \) then we have the following consequence

1. \(|a_2| \leq \min \left\{ \frac{2}{(1 + \xi q)\delta + 1]q}, \frac{2\sqrt{1 + q}}{\sqrt{(1 + \xi q)(q^2)}\delta + 2]q} \right\} \).
2. \(|a_3| \leq \min \left\{ \frac{4}{(1 + \xi q)\delta + 1]q + 2]q}, \frac{2(1 + q)}{\sqrt{(1 + \xi q)(q^2)}\delta + 2]q}, \frac{6(1 + q)}{(1 + \xi q)(q^2)}\delta + 2]q \right\} \).
3. \(|a_3 - 2a_2^2| \leq \frac{4(1 + q)}{\sqrt{(1 + \xi q)(q^2)}\delta + 2]q} \).

Upon substituting the value of ... d_1, (2.12)

Next, in order to find the bounds of \(|a_2| \), we subtract (2.11) from (2.13), we get

\[
2 \left[1 + \xi([3]_q) - 1 \right] \times \frac{[\delta + 1]_q[\delta + 2]_q}{[2]_q} (a_2 - a_3) = \Psi_1(b_2 - d_2) + \Psi_2(b_1^2 - d_1^2),
\]

or, equivalently,

\[
|a_2| \leq \frac{2\sqrt{1 + q}}{\sqrt{[1 + \xi(q + q^2)][\delta + 1]_q[\delta + 2]_q}}.
\] (2.15)

Next, in order to find the bounds of \(|a_3| \), we substitute (2.13) from (2.11), we get

\[
2 \left[1 + \xi([3]_q) - 1 \right] \times \frac{[\delta + 1]_q[\delta + 2]_q}{[2]_q} (a_3 - a_2^2) = \Psi_1(b_2 - d_2) + \Psi_2(b_1^2 - d_1^2),
\]

then

\[
|a_3| \leq |a_2|^2 + \frac{[2]_q |\Psi_1(b_2 - d_2)|}{2 \left[1 + \xi([3]_q - 1) \right] [\delta + 1]_q[\delta + 2]_q}.
\] (2.16)

Upon substituting the value of \(a_2 \) from equation (2.14) and (2.15) into (2.16) to get

\[
|a_3| \leq \frac{4}{\left[1 + \xi(q + q^2) \right][\delta + 1]_q[\delta + 2]_q} + \frac{2(1 + q)}{\left[1 + \xi(q + q^2) \right][\delta + 1]_q[\delta + 2]_q},
\]

and

\[
|a_3| \leq \frac{6(1 + q)}{\left[1 + \xi(q + q^2) \right][\delta + 1]_q[\delta + 2]_q}.
\]

Finally, we rewrite (2.13) as

\[
\left[1 + \xi([3]_q - 1) \right] \times \frac{[\delta + 1]_q[\delta + 2]_q}{[2]_q} (a_3 - 2a_2^2) = -(\Psi_1d_2 + \Psi_2d_1^2).
\]
and therefore
\[|a_3 - 2a_2^2| = \left| \frac{2|q(\Psi_1 d_2 + \Psi_2 d_2^2)}{[1 + \xi((3|q - 1) [\delta + 1]_q [\delta + 2]_q] \leq \frac{4(1 + q)}{[1 + \xi(q + q^2)] [\delta + 1]_q [\delta + 2]_q}. \]

This completes the proof of Theorem 2.2.

By putting \(\delta = 0 \) in Theorem 2.2, we obtain the following corollary.

Corollary 2.3 [36] For \(\xi \geq 1 \), let \(k \in \mathcal{B}(\xi; \Psi) \). Then

1. \(|a_2| \leq \frac{2}{1+\xi(\delta)} \),
2. \(|a_3| \leq \frac{4}{(1+\xi(\delta)^2} + \frac{2}{1+\xi(\delta+2)} \),
3. \(|a_3 - 2a_2^2| \leq \frac{4}{1+\xi(\delta+2)} \).

Setting \(q \to 1^- \) and \(\delta = 0 \) in Theorem 2.2, we get the following result.

Corollary 2.4 For \(\xi \geq 1 \), let \(k \in \mathcal{B}(\xi; \Psi) \), then

1. \(|a_2| \leq \frac{2}{1+\xi} \),
2. \(|a_3| \leq \frac{4}{(1+\xi)^2} + \frac{2}{1+2\xi} \).

Acknowledgement: Universiti Kebangsaan Malaysia supported the above work under grant: GUP-2019-032.

References

1. Duren P L 1983 Univalent Functions (Grundlehren der Mathematischen Wissenschaften, 259, Springer-Verlag, New York)
2. Lewin M 1976 On a coefficient problem for bi-univalent functions Proc. Amer. Math. Soc. 18, 63–68
3. Brannan D and Clunie J 1980 Aspects of contemporary complex analysis (Academic Press, New York and London)
4. Netanyahu E 1969 The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in \(|z| < 1\) Arch. Rational Mech. Anal. 32, 100–112
5. Brannan D and Taha T 1988 On some classes of bi-univalent functions, In Mathematical Analysis and Its Applications (pp. 53–60)
6. Aldweby H and Darus M 2019 On a subclass of bi-univalent functions associated with the \(q \)-derivative operator J. Math. Comput. Sci. 19, 58–64
7. Srivastava H M, Mishra A K and Gochhayat P 2010 Certain subclasses of analytic and bi-univalent functions Appl. Math. Lett. 23, 1188âˆ’1192
8. Srivastava H M, Gaboury S and Ghanim F 2018 Coefficient estimates for a general subclass of analytic and bi-univalent functions of the Ma-Minda type RACSAM 112, 1157–1168
9. Srivastava H M, Gaboury S and Ghanim F 2017 Coefficient estimates for some general subclasses of analytic and bi-univalent functions Afr. Mat. 28, 693–706
10. Xu Q -H, Gui Y -C and Srivastava H M 2012 Coefficient estimates for a certain subclass of analytic and bi-univalent functions Appl. Math. Lett. 25, 990–994
11. Xu Q -H, Xiao H -G and Srivastava H M 2012 A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems Appl. Math. Comput. 218, 11461–11465
12. Faber G 1903 Über polynomialische entwickelungen Math. Ann. 57 (3) 389–408
13. Grunsky H 1939 Koeffizientenbedingungen für schlicht abbildende meromorphe Funktionen Math. Z. 45, 29–61
14. Schiffer M 1938 A method of variation within the family of simple functions Proc. Lond. Math. Soc. 44, 432âˆ’449
15. Airault H 2008 Remarks on Faber polynomials Int. Math. Forum 3, 9, 449–456
16. Airault H and Bouali H 2006 Differential calculus on the Faber polynomials Bull. Sci. Math. 130, 179–222
17. Jackson F H 1910 On \(q \)-definite integrals Quart. J. Pure Appl. Math. 41, 193–203
18. Jackson F H 1908 On \(q \)-functions and a certain difference operator Trans. R. Soc. Edinb. 46, 253–281
19. Purohit S D and Raina R K 2013 Fractional \(q \)-calculus and certain subclass of univalent analytic functions Math. (Cluj) 55, 62–74
[20] Mohammed A and Darus M 2013 A generalized operator involving the q-hypergeometric function Mat. Vesnik 65 454â–S465
[21] Aldweby H and Darus M 2014 Some subordination results on q-analogue of Ruscheweyh differential operator Abstr. Appl. Anal. 2014 1–6
[22] Aldweby H and Darus M 2013 A subclass of harmonic univalent functions associated with q-analogue of Dzioè-Srivatava operator ISRN Math. Anal. 2013 1–6
[23] Alsoboh A and Darus M 2019 New subclass of analytic functions defined by q-differential operator with respect to k-symmetric points Int. J. Math. Comput. Sci. 14 (4) 761–773
[24] Alsoboh A and Darus M 2019 On subclasses of harmonic univalent functions defined by Jackson (p, q)-derivative J. Math. Anal. 10 (3) 123–130
[25] Elhaddad S and Darus M 2019 On meromorphic functions defined by a new operator containing the MittagÅŠLeffler function Symmetry 11 (2) 210
[26] Elhaddad S, Aldweby H and Darus M 2018 Some properties on a class of harmonic univalent functions defined by q-analogue of Ruscheweyh operator J. Math. Anal. 9 (2) 28–35
[27] Elhaddad S, Aldweby H and Darus M 2019 On a subclass of harmonic univalent functions involving a new operator containing q-Mittag-Leffler function Int. J. Math. Comput. Sci. 14 (4) 833–847
[28] Mahmood S, Srivastava H M, Khan N, Ahmad Q Z, Khan B and Ali I 2019 Upper bound of the third Hankel determinant for a subclass of q-starlike functions Symmetry 11 (3) 347
[29] Purohit S D and Raina R K 2011 Certain subclass of analytic functions associated with fractional q-calculus operators Math. Scand. 109 55–70
[30] Aral A, Gupta V and Agarwal R P 2013 Applications of q-Calculus in Operator Theory (New York: Springer)
[31] Exton H 1983 q-Hypergeometric Functions and Applications (Chichester : Horwood)
[32] Ruscheweyh S 1975 New criteria for univalent functions Amer. Math. Soc. 49 109-115
[33] Mogra M L 1999 Applications of Ruscheweyh derivatives and Hadamard product to analytic functions Inte. J. Math. and Mathematical Sci. 22 (4), 795–805
[34] Shukla S L and Kumar V 1983 Univalent functions defined by Ruscheweyh derivatives Inter. J. Math. and Mathematical Sci. 6 (3) 483â–S486
[35] Peng Z and Han Q 2014 On the coefficients of several classes of bi-univalent functions Acta Math. Sci. 34 (1) 228–240
[36] Altinkaya Ş and Yalçin S 2017 Faber polynomial coefficient estimates for certain classes of bi-univalent functions defined by using the Jackson (p, q)-derivative operator J. Nonlinear Sci. Appl. 10 (6) 3067–3074