Molecular Characterization and Genetic Diversity Assessment of Soybean Varieties using SSR Markers

G.K. Koutu, Arpita Shrivastava, Yogendra Singh* and S. Tiwari

Department of Plant Breeding & Genetics, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur (M.P), India

*Corresponding author

Abstract

Soybean (Glycine max (L.) Merrill) one of nature’s most versatile crops is increasingly becoming an important food and cash crop in the tropics due to its high nutrient quality and adaptability to various growing environments. Soybean is a grain legume crop. As food and feed soybean plays an important role throughout the different countries of the world. It provides oil as well as protein to the living beings. In present study Molecular characterization and genetic diversity assessment of soybean varieties was done using SSR markers. For this eight Soybean varieties were selected and 54 SSRs primer pairs, distributed across the integrated linkage map of soybean were used. The 8 varieties of soybean were profiled with 54 polymorphic SSR markers which produced 216 alleles. The allele number for each SSR locus varied from two to six with an average of 4.00. The fragment size of these 216 alleles was ranged from 95 to 437 bp. The number of alleles per primer pair (locus) ranged from 2 (Satt 207, Satt 671, Satt 414 and Satt 327) to 6 for Satt 552, Sat_107, Satt 002 and Satt 323 with an average of 4.00. All loci were polymorphic and were detected by Gene Tool software version 4.03.05.0. In the clustering pattern the dendogram generated based on SSR markers grouped the 08 Soybean varieties into two clusters having 06 and 02 varieties respectively.

Keywords
Soybean, Molecular Characterization, Genetic Diversity, SSR markers, Allele

Accepted: 04 March 2019
Available Online: 10 April 2019

Introduction

Soybean (Glycine max (L.) Merr.) is one of the world’s most important economic legume crops. A number of cultivars have been released in India from different soybean breeding centres for growing under different agro climatic conditions by introduction, selection, mutation and hybridization of elite cultivars and germplasm through systemic breeding and evaluation programmes (Chauhan et al., 2015). Generations of new and improved cultivars can be enhanced by new sources of genetic variation; therefore criteria for parental stock selection need to be considered not only by agronomic value, but also for genetic dissimilarity. Therefore, understanding the genetic diversity of soybean germplasm is essential to broaden the genetic base and to further utilize it in breeding program (Kumawat et al., 2015). Knowledge on genetic diversity in soybean
could help to understand the structure of germplasm, predict which combinations would produce the best offspring and facilitate to widen the genetic basis of breeding material for selection.

With the introduction of PPV & FRA 2001, the need for precise genotype characterization for varietal identification and clear distinctness has attained a greater importance. Such an insight could be achieved through molecular characterization of soybean germplasm using DNA markers, which are more informative, stable and reliable, as compared to morphological and molecular markers. Among different types of DNA markers being utilized for molecular characterization and genetic diversity analysis in plants, simple sequence repeats (SSR) markers are considered as molecular marker of choice due to their abundance, high polymorphism rate and high reproducibility. SSR markers have been widely used in the genetic diversity studies of the soybean germplasm collections worldwide and high levels of polymorphism at SSR loci have been reported for both the number of alleles per locus and the gene diversity (Maughan et al., 1995; Abe et al., 2003; Wang et al., 2006, 2010; Fu et al., 2007; Wang and Takahata, 2007; Li et al., 2008; Singh et al., 2010; Tantasawat et al., 2011). Early studies have shown utilization of molecular markers for identification of genetically diverse genotypes to use in crosses in breeding programme (Maughan et al., 1996; Thompson and Nelson, 1998).

Keeping the above view, the present investigation was carried out with an objective to study the diversity level among the genotypes and to identification of specific marker for particular genotype. Genetic distances will further help in identifying genetically diverse genotypes, which then can be utilized in creating valuable selectable variation.

Materials and Methods

Plant materials

The plant material comprises of eight soybean varieties in active seed multiplication chain developed and released by JNKVV, Jabalpur (Table 1). The seeds were obtained from the Seed Breeding Farm, Department of Plant Breeding & Genetics, JNKVV, Jabalpur (MP).

DNA Extraction

Total genomic DNA was isolated from fresh young leaves following the CTAB (cetyl trimethyl ammonium bromide) procedure as described by Saghai Maroof et al., (1984) with some modifications. Quantification of DNA was accomplished by analyzing the DNA on 0.8% agarose gel stained with ethidium bromide using diluted uncut lambda DNA as standard. Final concentration was adjusted to 50ngμl⁻¹ for further uses in PCR analysis.

PCR amplification

A total of 54 SSRs primer pairs, distributed across the integrated linkage map of soybean (Cregan et al., 1999) were used. The details of SSR markers, their sequences and motifs are given in table 2. DNA was amplified by PCR using our previously standardized method (Sahu et al., 2012) in a total volume of 10 μl containing 2X PCR assay buffer, 1.5mM MgCl2, 100μM of each dNTPs, 12ng each of forward and reverse primers, 0.2 units of Taq DNA polymerase and 25 ng of genomic DNA template. Amplification reaction initiated with a 5-minute pre-denaturation steps at 94⁰C followed by 35 cycles of DNA denaturation at 94⁰C for 30 seconds, primer annealing at 50-55⁰C for 30 seconds and DNA extension at 72⁰C for 7 minutes was performed after 35 cycles. Amplified PCR products was
separated on 2.0% of agarose gel at a voltage of 90V for the period of 45 minutes to 1 hour in 1X TBE buffer stained with ethidium bromide. The gel was visualized in UV transilluminator and photograph taken using Syngen make gel documentation system.

SSR allele scoring and data analysis

The presence or absence of SSR fragment in each accession was recorded for all the polymorphic SSR markers. The SSR bands appearing without ambiguity were scored as 1 (present) and 0 (absent) for each primer. The size of the amplified product was calculated on the basis of its mobility relative to molecular mass of marker (100 bp DNA ladder). The genetic similarity among genotypes was estimated based on Jaccard’s similarity coefficient. The resulting similarity matrix was further analysed using the unweighted pair-group method arithmetic average (UPGMA) clustering algorithm for construction of dendrogram; the computations were carried out using NTSYSpc version 2.2 (Rohlf 2000).

Results and Discussion

SSR polymorphism

Molecular characterization of germplasm accessions reveals underlying allelic diversity and genetic base of germplasm collection. In the present study a total of 54 SSR primer pairs, distributed on different linkage groups of soybean (Cregan et al., 1999), were used. The 8 varieties of soybean were profiled with 54 polymorphic SSR markers which produced 216 alleles. The allele number for each SSR locus varied from two to six with an average of 4.00. The fragment size of these 216 alleles was ranged from 95 to 437 bp. The high percentage of polymorphic SSR loci detected in this study was consistent with previous studies (Maughan et al., 1995; Rongwen et al., 1995; Diwan and Cregan 1997; Narveletal. 2000; Kumar et al., 2009; Singh et al., 2010; Bisen et al., 2015). The number of alleles per primer pair (locus) ranged from 2 (Satt 207, Satt 671, Satt 414 and Satt 327) to 6 for Satt 552, Sat_107, Satt 002 and Satt 323 with an average of 4.00 (Table 3 and Fig. 1).

Identification of unique allele

Presence of unique band helped in the identification of specific genotype and may be useful for DNA fingerprinting. Such markers are highly reliable in the establishment of genetic relatedness among the genotypes. Similar results were reported by Jain et al., (1994), Srivastava et al., (2001), and Vinu et al., (2013) in different crop species. Different unique alleles were amplified by eighteen different SSR loci viz., Satt 215 for JS 97-52, Satt 519 for JS 20-29, Satt 244 and Satt 364 for JS 20-69, Satt 152, Sat_167, Satt 598 and Satt 154 for JS 20-34, Satt 453, Satt 294 and Satt 446 for JS 93-05, Satt 523 for JS 95-60, Satt 369, Satt 386, Satt 267 and Satt 337 for JS 20-98 and Satt 146, Satt 552 for JS 335 (Table 3). The genotypes identified for these unique alleles can be used in marker assisted introgression program but further validation is required for marker traits linkage in segregating populations.

Genetic relationship among soybean varieties

Cluster analysis was used to group the varieties and to construct a dendogram. The dendogram generated based on SSR markers grouped the 08 soybean varieties in two clusters. Cluster I comprised of two sub-clusters. Sub-cluster I comprised of four varieties i.e. JS 93-05, JS 20-69, JS 20-29 and JS 97-52. Sub-cluster II comprised of two soybean varieties i.e. JS 95-60 and JS 20-34. Cluster II comprised of two soybean varieties i.e. JS 20-98 and JS 335 (Fig. 1 and 2).
Table 1: SSR markers with their sequences selected for the study (http://www.soybase.org)

Primers	Reverse sequence	Forward sequence	Amplification temperature (°C)
Satt 146	GTG GTG GTG GTG AAA ACT ATT AGA A	AAG GGA TCC CTC AAC TGA CTG	55
Sat_268	GCG TGA GGA GGT TCA AAA ATA ACA T	GCG TAC AAT TGA TGC CAT AAA T	55
Satt 270	GCG CAG TGC ATG GTT TTC TCA	TGT GAT GCC CCT CT T	55
Satt 207	GCG ATT GTG ATT GTA GTC CCT AAA	GCG TTT TTC TCA TTT TGA TTC CTA AAC	55
Satt 369	GCG AGT TCG AAT TTC TTC TCA AGT	AAC ATC CAA AGA AAT GTG TTC ACA A	55
Satt 309	GCG CCT TAA ATA AAA CCC GCA ACT	GCG CCT TCA AAT TGG CGT CTT	55
Sat_243	GCG GCA ACC GCT TAA AAA TAA TTT AAG AT	GCG ATG TCG AAT GAT TAT TAA TCA AAA TC	55
Satt 152	TAG GGT TGT CAC GTT TTT GTT CTT A	GCG CTA TTC CTA CAA CAC A	55
Sat_167	TTG AGC CGA AAG TTC AAT TCT A	AAG GCA CTC TTC CAT CAA TAC AA	52
Satt 529	GCA CAA TGA CAA TCA CAT ACA	GCG CAT TAA GGC ATA AAA AAG GAT A	52
Satt 441	AAA TGC ACC CATCAA TCA CA	AAA CCC ACC CTC AAA AAT AAA A	52
Satt 598	CAC AAT ACC TGT GGC GTI TAT ACT AT	CGA TTT GAA TAT ACT TAC GGT CTA TA	52
Satt 453	TAG TGG GGA AGG GAA GTT ACC	GCG GAA AAA AAA CAA TAA ACA ACA	52
Satt 318	GCG ATA TTT TTA GTG TGG CTA AG	GCG CAC GTT GAT TTT TTT ATA GTA A	52
Satt 671	GCG AGA AAT GAG ATA ATG GTT GAT A	GCG TAA TAC CAA AAG TAG AAT AAA ATA A	52
Satt 386	CTT CGT TGA TAC CTC AGT AGA GTA CAA A	GCG GAT GAT TTT TAT AGA ATA GAT AAT	52
Satt 281	TGC ATG GCA CGA GAA AGA AGT A	AAG CTC CAC ATG CAG TTC AAA AC	55
Satt 215	CCC ATT CAA TTA TGG AGC AAA ATTC	GCG CCT TCT TCT GCT AAA TCA	55
Satt 244	GCG ATG GGG ATA TTT TCT TTA TTA TCA G	GCG CCC CAT ATG TTT AAA TTA TAT GGA G	55
Satt 431	GCG CAC GAA AGT TTT TCT GTA ACA	GCG TGG CAC CCT TGA TAA ATA A	55
Satt 519	CCG CAA GGT TAC GAA CTC CTA GAA	GGA TTT CAA AAG ATG AAC ACA GA	55
Satt 523	GCG CTT TTT CGG CTG TTA TTA TTA ACT	GCG ATT TCT TCC TGG AAG AAT TTT CTG	55
Satt 353	GCG AAT GGG AAT GCC TTC TTA TTC TA	CAT ACA CGC ATT GCC TTC TTT GAA	55
Satt 414	GCG TCA TAA TAA TGG CTA GAA CAT AAA	GCG TAT TCC TAG TCA CAT GCT ATT TCA	55
Sat_124	GGG AGT TCA AAC ATC CAT TAG TGG TAT A	GGG TCC ATT CCA CTT TTT GTA CAA TAT	55
Satt 552	GAT CCC CAT TGG CTT TCT ACT T	CGA ACC GGC AAA ACC AAG AT	55
Satt 294	GCG CTC AGT GTG AAA GTT GTT TCT AT	GCG GGT CAA ATG CAA ATT ATT TTT	55
Satt 285	GCG GAC TAA TTC TTA TTT AAA ACAA AACA CACA AC	GCG ACA TAT TGG ATT AAA AAC ATA CTT	55
Satt 538	GGG GCG ATA AAC TAG AAC AGG A	GCA GGC TTA TCT TAA GAC AAG T	55
Satt 156	CCA ACT TAA CCC AGG GAC TTA CT	CGC ACC CCT CAT CCT ATG TA	55
Sat_107	GGA GGA ATT ATT TGG GTT GTA C	TTT GGA AGT ATA AAA TTA TGA ATG ACT	50
Satt 045	ATG CCT CTC CCT CCT	TGG TTT CTA CTT TCT ATA ATT T	50
Satt 160	CAT CAA AAG TTT ATA ACG TGT AGA T	TCC CAC ACA GTT TCC ATA TAA TAT A	50
Satt 267	CAC GGC GTA TTT TTA TTT TG	CCG GTC TGA CCT ATT CTC AT	50
Satt 423	GTT GGG GAA TTA AAA AAA TG	TTC GCT TGG GTT CAG TTA CTT	50
Satt 154	AAA GAA ACG GAA CTA ATA CTA CAT T	AGA TAC TAA CAA GAG GCA TAA AAC T	50
Satt 371	GAG ATC CCG AAA TTT TAG TGT AAC A	TGC AAA CTA ACT GGA TTC ACT CA	50
Satt 002	TCA TTT TGA ATC GTT GAA	TGT GGG TAA AAT AGA TAA AAA T	50
Satt 229	GCG AGG TGG TCT AAA ATT ATT ACC TAT	TGG CAG CAC ACC TGC TAA GGG AAT AAA	58
Satt 557	GCG CAC TAA CCC TTT ATT GAA	GCG GGA TCC ACC ATG TAA TAT GTG	58
Satt 367	GCG GAA TAG TTG CCA AAC AAT AAT C	GCG GAT ATG CCA CTT CTC TCG TGA C	58
Satt 232	GCG GAC ATG ATA AAT GCA ATC ACT TAA AAA G	GCG GCG GTA ATG TAC GTT GAG A	58
Sat_366	GCG GAC ATG GTA CAT CTA TAT TAC GAG TAT T	GCG GCA CAA GAA CAG ACG AAA CTA TT	58
Satt 597	CGA GGC ACA ACC ATC ACC AC	GCT GCA GCG TGT CTG TAG TAT	58
Satt 549	GCG CGC AAC AAT CAC TAG TAC G	GCG GCA AAA CTG TGG AGT ATT GCA A	58
Satt 589	GCG AAA AAG TAA TAT AAG TAG AAA AAG G	GCG CAG ACA ATT TCA GTG GCA GAT AGA	58
Satt 323	TGT GCG TTT AAA TTG CAG CTA AAT	GCG GTC GTC CTA TCT AAT GAA GAG	55
Satt 333	GCG CAA CGA CAT TTT CAC GAA GTT	GCG AAT GGT TTT TGC TGG AAA GTA	55
Satt 327	GCG TCG TAG CAA TGT CAC CA	GCG CAC CGA AAA GAT AAC AAA	55
Satt 337	GCG TAA TAC GCA AAA CAT AAT TAG CCT A	GCG TAA ATC TGA TAT ATG TTA CCA CTG A	55
Satt 364	ATC GGG TCA TGA CTT TGG AAG A	GCG GCA TAA GTT TTC ATC CCA TC	55
Satt 380	GCG TGC CCT TAC TCT CAA AAA AAA A	GCG AGT AAC GGT CTT CTA ACA AGG AAA G	55
Satt 446	GCG GGC AAA TTT GAC CTA ACT CAC AAC	CCG CAT AAA AAA CAC AAC AAA TTA	55
Satt 313	GCG CGA GGT ATG GAA CCT AAC TCA CA	GCG GTA AGT CAT GGC TTT TTA ATC TT	55
Table 2 Number, polymorphic and unique alleles and allele size in soybean involving SSR markers

S no.	Primers	Number of alleles	Polymorphic alleles	Unique alleles	Allele size range (bp)
1	Satt 146	5	5	1	392-437
2	Sat_268	5	5	-	306-354
3	Satt 270	5	5	-	382-426
4	Satt 207	2	2	-	420-426
5	Satt 369	4	4	1	330-355
6	Satt 309	3	3	-	229-239
7	Sat_243	2	2	-	372-381
8	Satt 152	3	3	1	300-330
9	Sat_167	4	4	1	289-305
10	Satt 529	5	5	-	283-311
11	Satt 441	4	4	-	311-340
12	Satt 598	3	3	1	229-243
13	Satt 453	4	4	1	217-234
14	Satt 318	3	3	-	246-259
15	Satt 671	2	2	-	194-200
16	Satt 386	3	3	1	178-189
17	Satt 281	4	4	-	233-251
18	Satt 215	4	4	1	121-133
19	Satt 244	3	3	1	160-200
20	Satt 431	4	4	-	182-200
21	Satt 519	4	4	1	217-234
22	Satt 523	4	4	1	167-183
23	Satt 353	4	4	-	162-183
24	Satt 414	2	2	-	278-285
25	Sat_124	5	5	-	200-218
26	Satt 552	6	6	1	151-180
27	Satt 294	4	4	1	200-269
28	Satt 285	4	4	-	152-169
29	Satt 538	5	5	-	95-120
30	Satt 156	4	4	-	406-433
31	Sat_107	6	6	-	126-204
32	Satt 045	5	5	-	125-148
33	Satt 160	4	4	-	229-243
34	Satt 267	4	4	1	220-318
35	Satt 423	2	2	-	227-246
36	Satt 154	4	4	1	262-326
37	Satt 371	5	5	-	241-272
38	Satt 002	6	6	-	114-137
S. No.	Primer	Unique allele Size (bp)	Genotype showing unique allele		
--------	----------	-------------------------	--------------------------------		
1	Satt 215	133	JS 97-52		
2	Satt 519	217	JS 20-29		
3	Satt 244	200	JS 20-69		
4	Satt 364	225			
5	Satt 152	330	JS 20-34		
6	Sat_167	305			
7	Satt 598	238			
8	Satt 154	326			
9	Satt 453	217	JS 93-05		
10	Satt 294	269			
11	Satt 446	300			
12	Satt 523	167	JS 95-60		
13	Satt 369	338	JS 20-98		
14	Satt 386	178			
15	Satt 267	318			
16	Satt 337	184			
17	Satt 146	392	JS 335		
18	Satt 552	180			

Table 3: Details of five unique SSR alleles identified
Fig. 1 SSR Profiling of Soybean varieties using different SSR markers (M: 100 bp marker, 1: JS 97-52, 2: JS 20-29, 3: JS 20-69, 4: JS 20-34, 5: JS 93-05, 6: JS 95-60, 7: JS 20-98, 8: JS 335)

Fig. 2 Rooted Dendogram of soybean varieties based on SSR markers
Fig. 3 Unrooted Dendrogram of soybean varieties based on SSR markers

Evaluation of genetic divergence and relatedness among breeding materials has significant implications for the improvement of crop plants. Knowledge on genetic diversity in soybean could help breeders and geneticists to understand the structure of germplasm, predict which combinations would produce the best offspring and facilitate to widen the genetic basis of breeding material for selection. Information on genetic distances based on microsatellite markers shall be preferred in creating selectable genetic variation using genotypes which are genetically apart (Vieira et al., 2007; Vinu et al., 2013). The diversity analysis can further be utilized for the development of diverse gene pool. The hybridization among the diverse gene pool will result into more heterotic combinations.

References

Abe J, Xu DH, Suzuki Y, Kanazawa A, Shimamoto Y (2003) Soybean germplasm pools in Asia revealed by nuclear SSRs. Theor Appl Genet 106:445–453.

Bisen Anchal, Khare D, Nair P and Tripathi N (2015) SSR analysis of 38 genotypes of soybean (Glycine max(L.) Merr.) genetic diversity in India. Physiol Mol Biol Plants. 21(1): 109–115.

Chauhan, DK, Bhat JA, Thakur AK, Kumari S, Hussain Z and Satyawathi CT (2015) Molecular characterization and genetic diversity assessment in soybean (Glycine max (L.) Merr.) varieties using SSR markers. Indian Journal of Biotechnology. 14:504-510.

Cregan PB, Jarvik T, Bush AL, Shoemaker RC, Lark KG, Kahler AL, Kaya N, vanToai TT, Lohnes DG, Chung J, Specht JE (1999) An integrated genetic linkage map of the soybean genome. Crop Sci., 39: 1464–1490.

Diwan N, Cregan PB (1997) Automated sizing of fluorescent-labeled simple sequence repeat (SSR) markers to assay genetic variation in soybean. Theor Appl Genet 95:723–733.

Fu YB, Peterson GW, Morrison MJ (2007) Genetic diversity of Canadian soybean cultivars and exotic germplasm revealed by simple sequence repeat markers. Crop Sci 47:1947–1954.

Kumar J, Verma V, Goyal A, Shahi AK, Sparoo R, Sangwan RS, Qazi GN (2009) Genetic diversity analysis in Cymbopogon species
using DNA markers. Plant Omics J 2:20–29.
Kumawat, G., Singh G, Gireesh C, Shivakumar M, Arya Mamta, Agarwal DK and Husain Syed Masroor (2015) Molecular characterization and genetic diversity analysis of soybean (Glycine max (L.) Merr.) germplasm accessions in India. Physiol Mol Biol Plants. 21(1): 101–107.
Li W, Han Y, Zhang D, Yang M, Teng W, Jiang Z, Qiu L, Sun G (2008) Genetic diversity in soybean genotypes from north-eastern China and identification of candidate markers associated with maturity rating. Plant Breed 127:494–500
Maughan PJ, Saghai Maroof MA, Buss GR (1995) Microsatellite and amplified sequence length polymorphism in cultivated and wild soybean. Genome 38:715–725
Maughan PJ, Saghai Maroof MA, Buss GR, Huestis GM (1996) Amplified fragment length polymorphism (AFLP) in soybean: species diversity, inheritance and near isogenic line analysis. Theor Appl Genet 93:392–401
Narvel JM, Fehr WR, Chu WC, Grant D, Shoemaker RC (2000) Simple sequence repeat diversity among soybean plant introductions and elite genotypes. Crop Sci 40:1452–1458.
Rongwen J, Akkaya MS, Bhahwat AA, Lavi U, Cregan PB (1995) The use of microsatellite DNA markers for soybean genotype identification. Theor Appl Genet 90:43–48.
Saghai-Maroo K, Soliman M, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci U S A 81:8014–8018
Sahu P, Khare D, Tripathi N, Shrivastava AN, Saini N (2012) Molecular screening for disease resistance in soybean. J Food Leg 25(3):200–205.
Singh RK, Bhatia VS, Bhat KV, Mohapatra T, Singh NK, Bansal KC, Koundal KR (2010) SSR and AFLP based genetic diversity of soybean germplasm differing in photoperiod sensitivity. Genet and Mol Bio 33: 319–324.
Singh RK, Mishra SK, Singh SP, Mishra N, Sharma ML (2010) Evaluation of microsatellite markers for genetic diversity analysis among sugarcane species and commercial hybrids. Aus J Crop Sci 4:116–125.
Tantasawat P, Trongchuen J, Prajongjai T, Jenweerawat S, Chaowiset W (2011) SSR analysis of soybean (Glycine max (L.) Merr.) genetic relationship and variety identification in Thailand. Aust. J. Crop Sci 5:283–290
Thompson JA, Nelson RL (1998) Utilization of diverse germplasm for soybean yield improvement. Crop Sci 38:1362–1368.
Wang KJ, Takahata Y (2007) A preliminary comparative evaluation of genetic diversity between Chinese and Japanese wild soybean (Glycine soja) germplasm pools using SSR markers. Genet Resour Crop Evol 54: 157–165.
Wang L, Guan R, Zhangxiong L, Chang R, Qiu L (2006) Genetic diversity of Chinese cultivated soybean revealed by SSR markers. Crop Sci 46: 1032–1038.
Wang M, Li R, Yang W, Du W (2010) Assessing the genetic diversity of cultivars and wild soybeans using SSR markers. African J of Biotechnol 9:4857–4866.

How to cite this article:
Koutu, G.K., Arpita Shrivastava, Yogendra Singh and Tiwari, S. 2019. Molecular Characterization and Genetic Diversity Assessment of Soybean Varieties using SSR Markers. Int.J.Curr.Microbiol.App.Sci. 8(04): 173-182. doi: https://doi.org/10.20546/ijcmas.2019.804.018