Legendre-spectral Dyson equation solver with super-exponential convergence

Xinyang Dong, Dominika Zgid, Emanuel Gull, and Hugo U. R. Strand

1) Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA
2) Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
3) Department of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
4) Center for Computational Quantum Physics, The Flatiron Institute, New York, NY 10010, USA

(Dated: 3 February 2020)

Quantum many-body systems in thermal equilibrium can be described by the imaginary time Green’s function formalism. However, the treatment of large molecular or solid ab initio problems with a fully realistic Hamiltonian in large basis sets is hampered by the storage of the Green’s function and the precision of the solution of the Dyson equation. We present a Legendre-spectral algorithm for solving the Dyson equation that addresses both of these issues. By formulating the algorithm in Legendre coefficient space, our method inherits the known faster-than-exponential convergence of the Green’s function’s Legendre series expansion. In this basis, the fast recursive method for Legendre polynomial convolution, enables us to develop a Dyson equation solver with quadratic scaling. We present benchmarks of the algorithm by computing the dissociation energy of the helium dimer He$_2$ within dressed second-order perturbation theory. For this system, the application of the Legendre spectral algorithm allows us to achieve an energy accuracy of $10^{-9}E_h$ with only a few hundred expansion coefficients.

I. INTRODUCTION

The equilibrium properties of many-body quantum systems can be described by the finite temperature imaginary-time Green’s function formalism, which is widely applicable to condensed matter physics, quantum chemistry, and material science. Applications include numerical methods for low energy effective model Hamiltonians such as lattice Monte Carlo, dynamical mean field theory and its extensions, and diagrammatic Monte Carlo. Ab initio calculations using the random phase approximation, self-consistent second order perturbation theory, Hedin’s GW approach, and self energy embedding theory can also be formulated in imaginary time.

While the finite temperature Green’s function formalism is very successful in applications to model Hamiltonians, its applicability to quantum chemistry and materials science remains limited to simple molecular and periodic problems. This is due to the necessity of simultaneously describing both the core and valence orbitals, which results in an energy scale that is difficult to describe by a single imaginary time/frequency grid. A simple equidistant Matsubara grid would contain millions of points, thus making the storage and manipulation of the Green’s functions computationally costly. In contrast, a grid with only a small number of equidistant points will result in a poorly converged energy or density matrix, making calculations with Hartree precision challenging. Such precision is necessary in applications where the evaluation of interaction energies, energies of conformers, or energies of high-lying excited states is needed. Consequently, it is important to develop a compact representation that yield highly converged properties.

With the standard approach using equidistant Matsubara frequency grids with finite frequency cut-off, the imaginary time Green’s function only converges to the analytical result linearly in the number of Matsubara frequencies. Amending the representation with a low order high frequency expansion results in polynomial convergence. In practice, this is problematic, since for systems with a wide range of energy scales, the number of coefficients is controlled by the largest energy scale. Alternatives such as uniform power meshes have had some success. However, the most compact representations are achieved using a set of (orthogonal) continuous basis functions directly in imaginary time, such as orthogonal polynomials or numerical basis functions. The convergence of such a representation is faster than exponential and asymptotically superior to any polynomially converging representation.

In all imaginary time methods a central step is the solution of the Dyson equation for the single particle Green’s function. In the Matsubara frequency representation, the Dyson equation is diagonal and can be readily solved. However, the solution is plagued by the polynomial convergence with respect to the number of frequency coefficients used. In imaginary time the Dyson equation is a non-trivial integro-differential equation with a mixed boundary condition. Recently an algorithm for solving the Dyson equation in imaginary time using the Chebyshev polynomials has been presented. This algorithm preserves the exponential convergence of the orthogonal polynomial expansions. However, the central convolution step has a cubic scaling in the expansion order $N_L \sim O(N^3_L)$, which limits the applicability of the algorithm.

The development of compact representations and algorithms for solving the Dyson equation is an active field of research, see Tab. for an overview of the state-of-the-art methods. For a recent development see Ref.

In this paper, we present a Legendre spectral method...
for solving the Dyson equation with super exponential convergence and a convolution that scales quadratically \(\sim O(N^2) \), one order better than previous formulations. The super exponential convergence allows us to achieve an energy accuracy of \(10^{-9}E_h \) in a realistic quantum chemistry system with a few hundred expansion coefficients. We show this in a proof-of-concept benchmark: computing the dissociation energy of He\(_2\) using self-consistent second order perturbation theory, taking both the zero temperature and the complete basis limit.

This paper is organized as follows. In section II, we introduce the Dyson equation. In section III, we present our Legendre spectral method. In section IV and V, we apply our method to a realistic quantum chemistry problem, the dissociation energy of the noble gas He\(_2\). In section VI we present conclusions.

II. THEORY

The imaginary time single particle Green’s function \(G \) is defined on the interval \(\tau \in [-\beta, \beta] \), \(G(\tau) \equiv G(\beta - \tau) \), with \(\xi = +1 \) \((-1)\) for bosons (fermions), making it an (anti-)periodic function with a step discontinuity at \(\tau = 0 \), see Fig. 1. The imaginary time Dyson equation for \(G(\tau) \) is given by

\[
[-\partial_\tau - h]G(\tau) - \Sigma * G = 0,
\]

where \(h \) is the single particle energy, and \(\Sigma \) the self-energy, which accounts for all many-body interactions. We note in passing that \(\Sigma(\tau) \) has the same periodicity as \(G(\tau) \). The boundary condition for Eq. (1) is \(G(0) - \xi G(\beta) = -1 \), and the Fredholm type imaginary time convolution is defined as \(\Sigma * G \equiv \int_0^\beta d\tilde{\tau} \Sigma(\tau - \tilde{\tau})G(\tilde{\tau}) \).

Analytically the Dyson equation (Eq. 1) can be solved using the Fourier series expansion

\[
G(\tau) = \frac{1}{\beta} \sum_{n=-\infty}^{\infty} e^{-i\omega_n \tau} G(i\omega_n), \quad G(i\omega_n) = \int_0^\beta d\tau e^{i\omega_n \tau} G(\tau),
\]

where the Matsubara frequencies \(i\omega_n \) are given by \(i\omega_n = \frac{\pi}{\beta} (2n + \eta) \) with \(\eta = (1 - \xi)/2 \), and \(n \) integers. In Matsubara frequency space the Dyson equation (Eq. 1) is diagonal

\[
[i\omega_n - h - \Sigma(i\omega_n)]G(i\omega_n) = 1.
\]

Numerically, however, the discontinuity at \(\tau = 0 \) results in a slow asymptotic decay \(G(i\omega_n) \sim (i\omega_n)^{-1} \), see Fig. 1. This prevents a naive finite frequency \(|n| < N_\omega \) approximation \(G(\tau) \approx \frac{1}{\beta} \sum_{|n| < N_\omega} e^{-i\omega_n \tau} G(i\omega_n) \) from converging in \(N_\omega \) (the maximal error in \(G(\tau) \) scales as \(\sim O(N_\omega) = O(1) \)). The standard solution to this problem is to use a finite number \(p \) of high-frequency "tail" coefficients \(G_k \) to approximate \(G(i\omega_n) \approx \sum_k G_k/(i\omega_n)^k \) for \(|n| > N_\omega \), where the known asymptotic decay implies \(G_1 = 1 \). This type of tail correction procedure gives polynomial convergence in \(G(\tau) \) with the power determined by the order \(p \) of the tail expansion \(\sim O(N_\omega^{-p}) \), see e.g. Ref. [42–44]. In Fig. 2 this is shown for the case of \(p = 3 \) using the TRIQS library [61].

Since \(G(\tau) \) is infinitely derivable on \(\tau \in [0, \beta] \), it can be much more efficiently represented by a finite orthogonal polynomial expansion

\[
G(\tau) \approx \sum_{n=0}^{N_L} G_n L_n[x(\tau)],
\]

where \(L_n[x] \) are Legendre polynomials defined on \(x \in [-1, 1] \) and \(x(\tau) = \frac{\tau}{\beta} - 1 \). The Legendre coefficients \(G_n \) have a faster than exponential asymptotic decay, see Fig. 1. This also causes the finite \(N_L \) expansion at the right hand side of Eq. (3) to converge faster than exponential \(\lesssim O(e^{-N_L}) \) to the analytical \(G(\tau) \).

III. LEGENDRE SPECTRAL METHOD

Here we develop a Legendre spectral method for solving the Dyson equation (Eq. 1), reformulating the
integro-differential equation in the space of Legendre coefficients G_n (Eq. 1). In the space of a finite Legendre expansion of order N_L, Eq. 1 is cast to a linear equation

$$\partial_{\tau} L_n[x(\tau)] = \frac{2}{\beta} \partial_x L_n(x)$$

$$= \frac{2}{\beta} \sum_{k=0, \text{odd}}^{n-1} (2k+1) L_k(x) = \sum_k D_{kn} L_k(x).$$

Hence the derivative matrix D_{kn} in Eq. 4 is given by

$$\frac{\beta}{2} D_{kn} \equiv \begin{cases} 2k+1, & 0 \leq k \leq n, k+n \text{ odd} \\ 0, & \text{elsewhere} \end{cases},$$

and is upper triangular, see Fig. 3. Using $L_n(\pm1) = (\pm1)^n$ the Dyson equation boundary condition can be written as

$$-1 = G(0) - \xi G(\beta) = \sum_n ((-1)^n - \xi) G_n. \quad (7)$$

A. Spectral convolution

The imaginary time convolution $[\Sigma * G]$ in the Dyson equation (Eq. 1) can be separated into the two terms of Volterra type

$$[\Sigma * G](\tau) = \int_0^\beta d\tau' \Sigma(\tau - \tau') G(\tau') \quad (8)$$

$$= \int_0^\tau d\tau' \Sigma(\tau - \tau') G(\tau') + \int_\tau^\beta d\tau' \xi \Sigma(\beta + \tau - \tau') G(\tau'),$$

FIG. 1. Single particle Green’s function in a) imaginary time $G(\tau)$, b) Matsubara frequency $G(i\omega_n)$ (with $(i\omega_n)^{-1}$ black line), and c) Legendre expansion coefficients G_n, for site one in the fermionic two level system with the second quantization Hamiltonian $H = -\mu c_i^c c_i + V(c_i^c c_2 + c_2^c c_1) + V_0 c_i^c c_2$ at inverse temperature $\beta = 1$, where c_i^c creates and c_i annihilates a fermion at site i and $\mu = -3, \epsilon = 3.3, V = 4$.

FIG. 2. Error in density Δn as a function of Legendre expansion order N_L and number of Matsubara frequencies N_ω, for the same system as in Fig. 1.

FIG. 3. (Color online) Matrix structure of the spectral derivative operator D_{kn} and the convolution operator $[\Sigma * G]$ for $\epsilon = 1$ and $\Sigma(\tau) = e^{-\tau\beta} (\xi e^{-\beta} - 1)^{-1}$ at $\beta = 1$ and $\xi = -1$ (fermions).
using the periodicity property \(\Sigma(-\tau) = \xi \Sigma(\beta - \tau) \). In
Eq. 8, \(\Sigma(\tau) \) is only evaluated for \(\tau \in [0, \beta] \), avoiding the
discontinuity at \(\tau = 0 \).

In Legendre space the convolution operator \([\Sigma \ast] \) can be written as a sum of two matrices \(B_{kn}^{\leq} \) rep-resenting the two Volterra terms Eq. 8
\[
[\Sigma \ast]_{kn} \equiv B_{kn}^{\leq} + \xi B_{kn}^{\geq} .
\]
(9)

Stable recursion relations for \(B_{kn}^{\leq} \) have been derived by
Hale and Townsend\(^\text{63} \) using the Fourier connection be-tween Legendre polynomials and spherical Bessel functions. Since the derivation is detailed in Ref. 63 we only state the result specialized to to the imaginary time con-
version in Eq. 8 here, and provide a derivation in Appendix A.

The coefficients are related by the recursion relation
\[
B_{k,n+1}^{\leq} = -\frac{n+1}{2k+3} B_{k+1,n}^{\leq} + \frac{2n+1}{2k-1} B_{k-1,n}^{\leq} + B_{k,n-1}^{\leq}
\]
(10)
which for each column require two previous columns to be
known. The recursion is only for the lower triangular coef-
ficients in \(B_{kn}^{\leq} \). The upper triangular coefficients are
computed using the transpose relation
\[
B_{k,n}^{\leq} = (-1)^{n+k} \frac{2k+1}{2n+1} B_{n,k}^{\leq} .
\]
(11)
The two first columns are given by the starting relations
\[
B_{k,0}^{\leq} = \begin{cases}
\Sigma_0 \pm \frac{\Sigma_1}{3}, & k = 0 \\
\pm \frac{\Sigma_{k-1} - \Sigma_{k+1}}{2k+3}, & k \geq 1
\end{cases},
\]
(12)
with the special case for \(k = 0 \), \(B_{0,1}^{\leq} = \pm B_{1,0}^{\geq} / 3 \), using
the Legendre coefficients \(\Sigma_n \) of the self-energy \(\Sigma \), c.f. Eq. 3.

B. Convergence and scaling

Since each coefficient in \(B_{kn}^{\leq} \) can be computed in \(O(1) \)
operations, the scaling of the convolution matrix con-
struction is \(\sim O(N_L^2) \). The self-energy \(\Sigma(\tau) \) is a smooth
function with asymptotic exponentially decaying Legendre coefficients which causes the entries of the dominantly
diagonal spectral convolution operator \([\Sigma \ast]_{kn} \) to decay exponentially both along and away from the diagonal, see Fig. 3.

The numerical solution of \(G(\tau) \) from the Dyson equation
constructed in terms of the linear system in Eq. 14 converges faster than exponentially to the analytical
solution, with increased number of Legendre coefficients \(N_L \), see Fig. 2. This is in stark contrast to the polynomial con-
vergence of the standard Matsubara tail approach\(^{14} \), also shown in Fig. 2.

C. Imaginary time transform

To retain the high accuracy of the Legendre spectral
Dyson solver the method has to be complemented with stable transforms between Legendre coefficients and imaginary time
\[
G_n = \sum_{i=0}^{N_L} S_{ni} G(\tau_i), \quad G(\tau_i) = \sum_{n=0}^{N_L} L_{in} G_n .
\]
(13)

To construct the well-conditioned transform matrices \(S_{ni} \) and \(L_{in} \) we employ Legendre quadrature and the Legendre-Gauss-Lobatto points \(x_i \in \{ x : (1 - x^2)L_{N_L}(x) = 0 \} \), \(x_0 = -1, x_N = 1 \), re-scaled to the imaginary time interval \([0, \beta] \), \(\tau_i = \beta x_i + 1 \). Using \(x_i \), the matrices \(S_{ni} \) and \(L_{in} \) can be directly constructed (avoiding
matrix inversion)
\[
L_{in} = L_n(x(\tau_i)) , \quad S_{ni} = \frac{\beta}{2W_n} \omega_i L_n(x(\tau_i)),
\]
(14)
where \(\int_{-1}^{1} dx L_n(x)L_m(x) = \delta_{nm} \frac{2}{2n+1} \equiv \delta_{nm} W_n \) and
\(\omega_i = \frac{2}{N(N+1)} L_{N_L}(x_i) \), see e.g. Refs. 62 and 64.

IV. APPLICATION (GF2)

As a proof of concept application of the Legendre
spectral Dyson solver developed in this paper we em-
ploy the solver in a quantum chemistry setting using a
Gaussian basis set. We will employ self-consistent sec-
dorder order perturbation theory, also known as GF2\(^3 \),
which has seen a revival in recent years, both in ab initio condensed matter applications\(^6 \) and in quantum chemistry\(^1 \) in combination with embedding method.\(^2 \) Our implementation is built on the Coulomb-
integrals of the pyscf library\(^6 \).

In the resulting non-orthogonal basis set the Dyson
equation takes the form
\[
\sum_j [S_{ij}(\partial_\tau - \mu) + F_{ij} + \Sigma_{ij}^s] G_{jk}(\tau) = 0
\]
(15)
in which \(i,j,k \) are orbital indices, \(S_{ij} \) is the overlap
matrix, and \(F_{ij} \) is the so called Fock matrix, \(F_{ij} \equiv h_{ij} + \Sigma_{ij}^{\text{(HF)}} \). The boundary condition for this equation is \(\sum_j (G_{ij}(0) - \xi G_{ij}(\beta)) \cdot S_{jk} = -1_{ik} \). Here, the single
particle term \(h_{ij} \) accounts for electronic kinetic and
electrostatic matrix elements and the Hartree-Fock
self energy \(\Sigma_{ij}^{\text{(HF)}} \) is given by
\[
\Sigma_{ij}^{\text{(HF)}} = \sum_{kl} P_{kl}(v_{ijkl} - v_{iklj}/2) ,
\]
(16)
were \(P_{ij} \) the density matrix \(P_{ij} = -2G_{ij}(\beta) \), and \(v_{ijkl} \)
the electron-electron Coulomb repulsion integral.

In GF2 the imaginary-time-dependent part of the self
energy \(\Sigma(\tau) \) is approximated with the second order self
energy diagram using the full electron Greens function G, $\Sigma \approx \Sigma^{(\text{GF2})}[G]$ where

$$
\Sigma^{(\text{GF2})}_{ij}(\tau) = \sum_{klmpq} G_{kl}(\tau) G_{mn}(\tau) G_{pq}(\beta - \tau) \times v_{impk}(2v_{jnlq} - v_{jlnq}).
$$

The evaluation of $\Sigma^{(\text{GF2})}_{ij}(\tau)$ for fixed τ scales as $\sim O(N^5)$ where N is the number of atomic orbitals.

Solving for the GF2 Greens function G amounts to solving Eqs. (15), (16), and (17) which is a highly nonlinear problem. To find the solution we perform self-consistent iterations, see Fig. 4 for a schematic picture. The inner loop solves the Dyson equation [Eq. (15)] and updates the Hartree-Fock self energy $\Sigma^{(\text{HF})}$ [Eq. (16)] until convergence (in the Fock-matrix F). At convergence in F, one step of the outer loop is performed by re-evaluating the GF2 self energy $\Sigma^{(\text{GF2})}$ [Eq. (17)] and computing the relative change in total energy E. If the change is above a fixed threshold, the inner loop is started again. To compute the inter molecular energies, which is an energy difference, we need a threshold of 10^{-10}.

The total energy E of the system is given by

$$
E = \frac{1}{2} \text{Tr}[(h + F) P] + \text{Tr}[\Sigma \ast G] + E_{\text{nuc}},
$$

where E_{nuc} is the nuclei-nuclei Coulomb energy. The imaginary time trace $\text{Tr}[:]$ is defined as $\text{Tr}[A] \equiv -\sum_{\alpha} A_{\alpha}(\beta)$, and the $\Sigma \ast G$ convolution is computed with the spectral Legendre convolution as in Eq. (4).

V. RESULTS

The faster than exponential convergence of the Legendre spectral Dyson solver Eq. (4) is particularly suited for high precision calculations. A prime example is the computation of the binding energy D_e in noble-gas dimers, where the weak bonding requires high precision calculations of total energies. The binding energy D_e is obtained from the minimum of the interaction energy $E_{\text{int}}(r)$ as a function of atomic separation r

$$
D_e \equiv -E_{\text{int}}(r_e) \equiv -\min_r E_{\text{int}}(r),
$$

where r_e is the equilibrium atomic distance. The interaction energy E_{int} is in turn given by

$$
E_{\text{int}}(r) = E_{A_2}(r) - 2E_A(r),
$$

where E_{A_2} is the total energy of the dimer and E_A is the total energy of the single atom (the monomer) evaluated using the standard counterpoise correction. In noble gases the total energies E_A and E_{A_2} are of the order of Hartrees ($\sim E_h \equiv 1$ Ha) while the binding energy D_e is of the order of tens of micro Hartrees ($\sim 10^{-4}$ eV), hence requiring high precision calculation of the total energies.

We use He$_2$ as a prototype system since there exist published reference results for the binding energy D_e and equilibrium distance r_e calculated with Hartree-Fock (HF), second-order Moller-Plesset perturbation theory (MP2), coupled cluster single double (CCSD) theory and coupled cluster single double triple (CCSD(T)) theory. The MP2 method is closely related to GF2 and uses the second order self energy [Eq. (17)] evaluated at the HF Green’s function $G^{(\text{HF})}$, $\Sigma^{(\text{MP2})} = \Sigma^{(\text{GF2})}G^{(\text{HF})}$. Note however that the prefactors in the total energy differ.

Fig. 5 shows $E_{\text{int}}(r)$ (and $-D_e$) of He$_2$ computed with HF, MP2, and GF2 in the aug-cc-pvqz basis together with CCSD and CCSD(T) reference results on D_e. The GF2 results are obtained by fitting a 4th order polynomial to 21 r-points of $E_{\text{int}}(r)$ computed in a 0.1 Bohr range centered around the minimum at r_e. The GF2 results are obtained using the Legendre spectral Dyson solver while HF and MP2 are computed using pyscf. As seen in Fig. 5 He$_2$ does not bind within the Hartree-Fock approximation which gives a strictly positive interaction energy. Compared to MP2 our GF2 results are a considerable improvement, using the coupled cluster CCSD and CCSD(T) as reference.
TABLE II. Dissociation energies D_e (top) and equilibrium distances r_e computed by MP2, CCSD, CCSD(T), and GF2 with the basis sets aug-cc-pv$\{d,t,q,5\}$, with $n = d, t, q, 5$. The MP2, CCSD and CCSD(T) results are from Ref. 71.

D_e [μE_h]	MP2	CCSD	CCSD(T)	GF2
aug-cc-pvdz	12.69	16.78	18.57	18.17
aug-cc-pvtz	17.97	23.77	27.10	24.63
aug-cc-pvqz	19.66	25.79	29.64	26.59
aug-cc-pv$5z$	20.71	27.09	31.25	27.79
CBS	22.98	30.06	34.70	29.67

r_e [Bohr]	MP2	CCSD	CCSD(T)	GF2
aug-cc-pvdz	6.1680	6.0580	6.0086	6.0547
aug-cc-pvtz	5.9175	5.8060	5.7452	5.8244
aug-cc-pvqz	5.8606	5.7546	5.6891	5.7272
aug-cc-pv$5z$	5.8244	5.7210	5.6537	5.7388
CBS	5.769	5.672	5.607	5.680

A. Complete basis set limit

In order to extrapolate the results to the complete basis set (CBS) limit\cite{13},\cite{14},\cite{15}\cite{16}, we repeat the calculations using the augmented correlation consistent (aug-cc-pv$\{d,t,q,5\}$) basis set series with $n = d, t, q, 5$ (i.e., $n = 2, 3, 4, 5$). This series has been shown to enable accurate extrapolation of a number of properties due to its systematic convergence\cite{17} with the basis sets aug-cc-pv$\{d,t,q,5\}$, with $n = d, t, q, 5$. The MP2, CCSD, and CCSD(T) results are from Ref. 71.

In Table II, we summarize the binding energy D_e and equilibrium distance r_e of He$_2$ computed by MP2, CCSD, CCSD(T), and GF2 using the aug-cc-pv$\{d,t,q,5\}$ basis sets. The aug-cc-pv$\{d,t,q,5\}$ basis sets are of the same order as the number of atomic orbitals N. Hence, the scaling of GF2, $O(1)$, is comparable to the scaling of CCSD, $O(N^6)$. As seen in Table II, the GF2 result for D_e is closer to CCSD(T) than CCSD, while the CCSD result for r_e is closer to CCSD(T) result than GF2, making GF2 competitive to CCSD and a considerable improvement compared to MP2.

With the systematic convergence of D_e and r_e as a function of basis set size n, it is possible to extrapolate to the complete basis set limit $n \to \infty$. We extrapolate D_e and r_e using our GF2 aug-cc-pv$\{d,t,q,5\}$ results by fitting the exponential model: $A \cdot e^{-B(n-2)} + C$, proposed in Ref. 71, where A, B, and C are parameters. The applicability of the model is checked by a logarithmic plot, see Fig. 6. The resulting CBS limit of our GF2 results are $D_e \approx 29.67 \mu E_h$ and $r_e \approx 5.680 a_0$, see also Table II.

VI. CONCLUSION AND OUTLOOK

We introduce a Legendre-spectral algorithm for solving the Dyson equation in Legendre coefficient space. By staying in Legendre-coefficient space the algorithm converges super exponentially with respect to the number of Legendre coefficients N_L used to represent the imaginary time Green’s function\cite{18}. This is in stark contrast to the Matsubara frequency space based approach with only polynomial convergence\cite{19},\cite{20}. The exponential convergence is shared with a recently presented Chebyshev polynomial based algorithm\cite{21} where the convolution scales as $O(N_L^2)$. Currently there is no known algorithm for Chebyshev series that can compute the convolution term with the same efficiency as in the Legendre series\cite{22}. Our work goes beyond this, employing a Legendre convolution with $O(N_L^2)$ scaling, enabling the application to larger ab initio systems.

To benchmark the algorithm we apply it to the quantum chemistry computation of the dissociation energy of the noble gas He$_2$ using self-consistent second order perturbation theory (GF2). The exponential convergence of our algorithm allows us to reach the required 10$^{-10}$ E_h zero temperature total-energy precision using only 100 – 200 Legendre coefficients in the Dunning basis series aug-cc-pv$\{d,t,q,5\}$.

The algorithm is also relevant for condensed matter ab initio applications in periodic systems that require high precision, such as GF2\cite{23} and Hedin’s GW\cite{24}. This is a promising venue for future research.

ACKNOWLEDGMENTS

HURS would like to acknowledge helpful discussions and support from 1) Alex Barnett and Manas Rachh.
on the fundamentals of spectral methods ii) Keaton Burns for pointing out Ref. \[63\] iii) Sergey Isakov for providing independent reference results for testing the pyscf-GF2 implementation and useful discussions vi) Lewin Boehnke, Andreas Herrmann, Philipp Werner, and Hiroshi Shinaoka, who took part in early discussion on Green’s function representations which guided the development of the method and v) Antoine Georges, Olivier Parcollet, Manuel Zingl, Alexandru Georgescu, Igor Krivenko, and Nils Wentzell, who contributed both through discussions and contributions to the TRIQS project. EG and XD were supported by the Simons Collaboration on the many-electron problem. DZ acknowledges support from NSFCHE-1453894. The Flatiron Institute is a division of the Simons Foundation.

Appendix A: Convolution matrix

In this appendix, we derive Eqs. \[10\] \[11\] \[12\] in the main text. The derivation follows Ref. \[63\] but with more details for both integrals in Eq. \[8\]

1. Convolution and Fourier transform

The convolution of two continuous integrable functions is defined in Ref. \[63\]

\[
h(x) = (f * g)(x) \equiv \int_{-\infty}^{\infty} dt \, f(t)g(x - t). \tag{A1}
\]

With the assumption \(f\) and \(g\) are periodic functions, their Fourier transform can be written as

\[
\mathcal{F}\{f\}(\omega) = \int_{-\infty}^{\infty} dx \, e^{-i\omega x}f(x), \tag{A2}
\]

\[
\mathcal{F}^{-1}\{f\}(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} dx \, e^{i\omega x}f(x), \tag{A3}
\]

which satisfy the Fourier inversion theorem \(\mathcal{F}^{-1}\{\mathcal{F}\{f\}\} = f\) and convolution theorem \[63\]

\[
\mathcal{F}\{f * g\} = \mathcal{F}\{f\} \cdot \mathcal{F}\{g\}. \tag{A4}
\]

2. Legendre polynomials

The Legendre polynomials \(P_n(x)\) can be defined recursively using the three term recurrence relation

\[
P_0(x) = 1, \quad P_1(x) = x, \quad (n + 1)P_{n+1}(x) = (2n + 1)xP_n(x) - nP_{n-1}(x). \tag{A5}
\]

They are orthogonal on \([-1, 1]\)

\[
\int_{-1}^{1} dx \, P_m(x)P_n(x) = \delta_{m,n} \frac{2}{2n + 1} \tag{A6}
\]

and the derivatives satisfy the recurrence relation

\[
(2n + 1)P_n(x) = \frac{d}{dx} [P_{n+1}(x) - P_{n-1}(x)] \tag{A7}
\]

The Fourier transform and inverse Fourier transform of the Legendre polynomials can be expressed in terms of Bessel functions

\[
\mathcal{F}\{P_n\} = \int_{-1}^{1} dx \, e^{-i\omega x}P_n(x) = 2(-i)^n j_n(\omega) \tag{A8}
\]

\[
\mathcal{F}^{-1}\{P_n\} = \int_{-1}^{1} dx \, e^{i\omega x}P_n(x) = 2i^n j_n(\omega) \tag{A9}
\]

where \(j_n(z)\) is the \(n\)th spherical Bessel function, and \(P_n = 0\) outside \([-1, 1]\).

By combining Eq. \[A4\] and Eq. \[A8\], the convolution of Legendre polynomials can be expressed in terms of Bessel functions

\[
(P_m * P_n)(x) = \frac{2(-i)^{m+n}}{\pi} \int_{-\infty}^{\infty} d\omega \, e^{i\omega x} j_m(\omega)j_n(\omega) \tag{A10}
\]

This is the central observation of Ref. \[63\] that enables the derivation of recursion relations for the Legendre polynomial convolution.

The main property of Spherical Bessel functions used is the three term recurrence relation

\[
j_{n-1}(z) = \frac{\cos z}{z} j_n(z) - \frac{1}{z} j_n(z), \quad n \geq 0 \tag{A11}
\]

The convolution equation Eq. \[A1\] can be computed by replacing the two continuous functions \(f(x)\) and \(g(x)\) on bounded interval with polynomial approximates \(f_M(x)\) and \(g_N(x)\) of sufficiently high degree. With two Legendre series \(f_M(x)\) and \(g_N(x)\) supported on \(x \in [-1, 1]\)

\[
f_M(x) = \sum_{m=0}^{M} a_m P_m(x), \quad g_N(x) = \sum_{n=0}^{N} b_n P_n(x), \tag{A12}
\]

Eq. \[A1\] becomes

\[
h(x) = (f_M * g_N)(x) = \int_{\min(1,x+1)}^{\max(-1,x-1)} dt \, f_M(t)g_N(x - t)
\]

\[
= \int_{-1}^{x+1} dt \, f_M(t)g_N(x - t) + \int_{x-1}^{1} dt \, f_M(t)g_N(x - t), \tag{A13}
\]

which can be computed separately in two integration domains \(x \in [-2, 0]\) and \(x \in [0, 2]\) (see Fig. 4.1 in Ref. \[63\].)
a. **First interval** \(x \in [-2, 0] \)

For \(x \in [-2, 0] \) we have \(h(x) = h^<(x) \) where

\[
h^<(x) = \int_{-2}^{x+1} dt f_M(t) g_N(x-t) = \sum_{k=0}^{m+n+1} \gamma_k P_k(x+1).
\]

Using the orthogonality of Legendre polynomials Eq. \((A10)\), we have

\[
\gamma_k = \frac{2k+1}{2} \sum_{m=0}^{N} \alpha_m \left[\int_{-2}^{0} dx P_k(x+1) \int_{-1}^{x+1} dt f_M(t) g_N(x-t) \right] + \frac{N}{2} \beta_n \sum_{m=0}^{M} \alpha_m \left[\int_{-2}^{0} dx P_k(x+1) \int_{-1}^{x+1} dt P_m(t) P_n(x-t) \right]
\]

collecting terms we can write \(\gamma_k = \sum_{n=0}^{N} B_{k,n}^\gamma \beta_n \) where

\[
B_{k,n}^\gamma = \frac{2k+1}{2} \sum_{m=0}^{M} \alpha_m \left[\int_{-2}^{0} dx P_k(x+1) \int_{-1}^{x+1} dt P_m(t) P_n(x-t) \right] = \frac{2k+1}{2} \sum_{m=0}^{M} \alpha_m \int_{-1}^{1} ds P_k(s) (P_m * P_n)(s-1).
\]

Applying the recursion relation of the spherical Bessel functions (Eq. \((A11)\)) on \(n \) and \(k \), we have

\[
(-i)^{m+n+1} i^k j_k(\omega) j_m(x)(\omega) = (-i)^{m+n+1} i^k j_k(\omega) j_m(\omega) \left(\frac{2n+1}{\omega} j_n(x) - j_{n-1}(x) \right)
\]

\[
= \frac{2n+1}{2k+1} \left[(-i)^{m+n+1} i^k (j_k(\omega) + j_{k-1}(\omega)) j_m(\omega) j_n(x) + (-i)^{m+n+1} i^k (j_k(\omega) j_m(\omega)) j_{n-1}(\omega) \right]
\]

Back insert in Eq. \((A18)\) and simplifying prefactors in \(k \) gives

\[
B_{k,n+1}^\gamma = -\frac{2n+1}{2k+3} B_{k+1,n}^\gamma + \frac{2n+1}{2k-1} B_{k-1,n}^\gamma + B_{k,n-1}^\gamma
\]

b. **Second interval** \(x \in [0, 2] \)

For \(x \in [0, 2] \) we have \(h(x) = h^>(x) \) where

\[
h^>(x) = \int_{x-1}^{1} dt f_M(t) g_N(x-t) = \sum_{k=0}^{m+n+1} \gamma_k^> P_k(x-1).
\]

\(\gamma_k^> \) can be computed in the same way as \(\gamma_k^< \), see Eq. \((A15)\)

\[
\gamma_k^> = \frac{2k+1}{2} \sum_{m=0}^{N} \alpha_m \left[\int_{-2}^{0} dx P_k(x-1) \int_{x-1}^{1} dt f_M(t) g_N(x-t) \right] = \frac{2k+1}{2} \sum_{m=0}^{N} \alpha_m \int_{-1}^{1} ds P_k(s) (P_m * P_n)(s-1).
\]

collecting terms we can write \(\gamma_k^> = \sum_{n=0}^{N} B_{k,n}^\gamma \beta_n \) where

\[
B_{k,n}^\gamma = \frac{2k+1}{2} \sum_{m=0}^{M} \alpha_m \left[\int_{-2}^{0} dx P_k(x-1) \int_{x-1}^{1} dt P_m(t) P_n(x-t) \right] = \frac{2k+1}{2} \sum_{m=0}^{M} \alpha_m \int_{-1}^{1} ds P_k(s) (P_m * P_n)(s+1).
\]

Consider the \(B_{k,n+1}^< \) term, changing the order of integration and Fourier transforming the remaining Legendre polynomial gives

\[
B_{k,n+1}^< = \frac{2(2k+1)}{\pi} \sum_{m=0}^{M} (-i)^{m+n+1} i^k \alpha_m \int_{-\infty}^{\infty} d\omega j_k(\omega) j_m(\omega) j_{n+1}(\omega) e^{-i\omega}.
\]

\[
B_{k,n}^> = \frac{2k+1}{\pi} \sum_{m=0}^{M} (-i)^{m+n} \alpha_m \int_{-\infty}^{\infty} d\omega e^{i\omega(s+1)} j_m(\omega) j_n(\omega)
\]
Since the exponent in the integral is unchanged when applying the recursion relations of the spherical Bessel functions we conclude that \(B^< \) obeys the same recursion relation as \(B^< \), albeit with a different starting point since the “seeding” integrals have a different sign in the exponent.

c. Summary

The convolution matrices for both the intervals can be expressed as the integral sums

\[
B_{k,n}^\leq = \frac{2(2k + 1)}{\pi} \sum_{m=0}^{M} (-i)^{m+n} i^k a_m \\
\times \int_{-\infty}^{\infty} d\omega \, j_k(\omega) j_m(\omega) j_n(\omega) e^{\pm i\omega} \quad (A25)
\]
differing only in the sign in the exponent. The coefficients are related by the recursion relation

\[
B_{k,n+1}^\leq = \frac{2n + 1}{2k + 3} B_{k+1,n}^\leq + \frac{2n + 1}{2k + 1} B_{k-1,n}^\leq + B_{k,n-1}^\leq \quad (A26)
\]

In practice this recursion relation is only stable below the diagonal with \(k > n \). To get entries above diagonal, the transpose relation, that can be derived from the integral expression Eq. [A18] is used

\[
B_{k,n}^\leq = (-1)^{n+k} \frac{2k + 1}{2n + 1} B_{n,k}^\leq \quad (A27)
\]

3. Initial values \(B_{k,0}^\leq \) and \(B_{k,1}^\leq \)

To start the recursion, the initial values for \(n = 0 \) and \(1 \) are needed. To derive explicit expressions for these terms we repeatedly use the Volterra integral formula for Legendre polynomials from Ref. [11]

\[
S_{a,n}(x) = \int_0^x dt \, P_n(t) , \quad (A28)
\]

\[
S_{a,0}(x) = x - a , \quad (A29)
\]

\[
S_{a,n}(x) = \frac{1}{2n + 1} \left[P_{n+1}(t) - P_{n-1}(t) \right]_a \quad (A30)
\]

for \(a = \pm 1 \) we get

\[
S_{\pm1,0}(x) = x \mp 1 = P_1(x) \mp P_0(x) , \quad (A31)
\]

\[
S_{\pm1,n}(x) = \frac{1}{2n + 1} \left[P_{n+1}(x) - P_{n-1}(x) \right] , \quad (A32)
\]

where we have used \(P_n(\pm1) = (\pm1)^n \) to cancel the constant terms.

Returning to the convolution matrices we have for \(B_{k,n}^\leq \) and \(n = 0 \), using \(P_0(x) = 1 \),

\[
B_{k,0}^\leq = \pm \frac{2k + 1}{2} \sum_{m=0}^{M} \alpha_m \int_{-1}^{1} dx \, P_k(x) \int_{-1}^{x} dt \, P_m(t)
\]

\[
= \pm \frac{2k + 1}{2} \sum_{m=0}^{M} \alpha_m \int_{-1}^{1} dx \, P_k(x) S_{\mp1,m}(x)
\]

\[
= \pm \frac{2k + 1}{2} \sum_{m=0}^{M} \alpha_m \frac{2m + 1}{2m + 1} \int_{-1}^{1} dx \, P_k(x) \left[P_{m+1}(x) - P_{m-1}(x) \right] \quad (A33)
\]

repeatedly using the Legendre orthogonality relation [Eq. (A6)] gives

\[
B_{k,0}^\leq = \begin{cases}
\alpha_0 \pm \frac{\alpha_1}{3} , & \quad k = 0 \\
\pm \frac{\alpha_k}{2k + 1} + \frac{\alpha_{k+1}}{2k + 3} , & \quad k \geq 1
\end{cases} \quad (A34)
\]

For the second column with \(n = 1 \) we detail the derivation of \(B_{k,1}^\leq \); the other case \(B_{k,1}^\leq \) can be done analogously. Using \(F_1(x) = x \) we get

\[
B_{k,1}^\leq = \frac{2k + 1}{2} \sum_{m=0}^{M} \alpha_m \\
\times \int_{-2}^{0} dx \, P_k(x + 1) \int_{-1}^{x+1} dt \, P_m(t) P_1(x-t)
\]

\[
= \frac{2k + 1}{2} \sum_{m=0}^{M} \alpha_m \\
\times \int_{-1}^{1} dx \, P_k(x) \int_{-1}^{x} dt \, P_m(t)(x-t-1)
\]

\[
= -B_{k,0}^\leq + \frac{2k + 1}{2} \sum_{m=0}^{M} \alpha_m \int_{-1}^{1} dx \, P_k(x) \int_{-1}^{x} dt \, P_m(t) \int_{t}^{x} ds
\]

\[
= -B_{k,0}^\leq + \frac{2k + 1}{2} \sum_{m=0}^{M} \alpha_m \int_{-1}^{1} dx \, P_k(x) \int_{-1}^{x} ds \int_{-1}^{s} dt \, P_m(t) \quad (A35)
\]

where the last step is obtained by changing the order of integration. The last integral relation is a double Volterra integral and can hence be written using \(S_{-1,m}(x) \) as

\[
B_{k,1}^\leq = -B_{k,0}^\leq + \frac{2k + 1}{2} \sum_{m=0}^{M} \alpha_m \int_{-1}^{1} dx \, P_k(x) \int_{-1}^{x} ds \, S_{-1,m}(s)
\]

\[
= -B_{k,0}^\leq + \frac{1}{2} \sum_{m=0}^{M} \alpha_m \int_{-1}^{1} dx \, [P_{k-1}(x) - P_{k+1}(x)] S_{-1,m}(x) \quad (A36)
\]
where we in the second step have used partial integration and the Legendre derivative relation, Eq. (A7).

For the second case \(B_{k,1} \), the only difference is when we change the integration variable, we get \((x - t + 1)\) instead of \((x - t - 1)\) in Eq. (A35), so the sign before \(B_{k,0} \) is changed to \(+1\). By using Eq. (A33) we obtain the recursion relation

\[
B_{k,1} = \mp B_{k,0} + \frac{B_{k-1,0}}{2k-1} - \frac{B_{k+1,0}}{2k+3}, \quad k \geq 1 \quad (A37)
\]

with the special case for \(k = 0 \), \(B_{0,1} = \mp B_{1,0}/3 \).
1A. A. Abrikosov, I. Dzyaloshinskii, L. P. Gorkov, and R. A. Silverman, Methods of quantum field theory in statistical physics (Dover, New York, NY, 1975).

2R. Blankenbecler, D. J. Scalapino, and R. L. Sugar, “Monte Carlo calculation of correlated boson systems,” Phys. Rev. D 24, 2278–2286 (1981).

3A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, “Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions,” Rev. Mod. Phys. 68, 13–125 (1996).

4A. Toschi, A. A. Katanin, and K. Held, “Dynamical vertex approximation: A step beyond dynamical mean-field theory,” Phys. Rev. B 75, 045118 (2007).

5A. N. Rubtsov, P. I. Katsnelson, and A. I. Lichtenstein, “Dual fermion approach to nonlocal correlations in the Hubbard model,” Phys. Rev. B 77, 033101 (2008).

6T. Maier, M. Jarrell, T. Pruschke, and M. H.ettler, “Quantum cluster theories,” Rev. Mod. Phys. 77, 1027–1080 (2005).

7N. Prokof’ev and B. Svistunov, “Bold diagrammatic monte carlo technique: When the sign problem is welcome,” Phys. Rev. Lett. 99, 250201 (2007).

8M. Kalkan, J. Klíma, and G. Kresse, “Low scaling algorithms for the random phase approximation: Imaginary time and laplace transformations,” Journal of Chemical Theory and Computation 10, 2498–2507 (2014) pMID: 26580770, http://dx.doi.org/10.1021/jctc.4b01268.

9P. García-González and R. W. Godby, “Self-consistent calculation of total energies of the electron gas using many-body perturbation theory,” Phys. Rev. B 63, 075112 (2001).

10N. E. Dahlen and R. van Leeuwen, “Self-consistent solution of the dyson equation for atoms and molecules within a conserving approximation,” The Journal of Chemical Physics, The Journal of Chemical Physics 122, 164102 (2005).

11J. J. Phillips and D. Zgid, “Communication: The description of strong correlation within self-consistent green’s function second-order perturbation theory,” The Journal of Chemical Physics, The Journal of Chemical Physics 140, 241101 (2014).

12J. J. Phillips, A. A. Kananenka, and D. Zgid, “Fractional charge and spin errors in self-consistent green’s function theory,” The Journal of Chemical Physics 142, 194108 (2015) https://doi.org/10.1063/1.4921259.

13A. A. Kananenka, J. J. Phillips, and D. Zgid, “Efficient temperature-dependent green’s functions methods for realistic systems: Compact grids for orthogonal polynomial transforms,” Journal of Chemical Theory and Computation 12, 564–571 (2016).

14A. A. Kananenka, A. R. Welden, T. N. Lan, E. Gull, and D. Zgid, “Efficient temperature-dependent green’s function methods for realistic systems: Using cubic spline interpolation to approximate matsubara green’s functions,” Journal of Chemical Theory and Computation 12, 2250–2259 (2016).

15A. A. Rusakov and D. Zgid, “Self-consistent second-order greens function perturbation theory for periodic systems,” The Journal of Chemical Physics 144, 054106 (2016) https://doi.org/10.1063/1.4940900.

16A. R. Welden, A. A. Rusakov, and D. Zgid, “Exploring connections between statistical mechanics and greens functions for realistic systems: Temperature dependent electronic entropy and internal energy from a self-consistent second-order greens function,” The Journal of Chemical Physics 145, 204106 (2016) https://doi.org/10.1063/1.4967449.

17S. Iskakov, A. A. Rusakov, D. Zgid, and E. Gull, “Effect of propagator renormalization on the band gap of insulating solids,” Phys. Rev. B 100, 085112 (2019).

18L. Iedun, “New method for calculating the one-particle green’s functions with application to the electron-gas problem,” Phys. Rev. 139, A796–A825 (1965).

19F. Aryasetiawan and O. Gunnarsson, “The GW method,” Reports on Progress in Physics 61, 237–312 (1998).

20A. Stan, N. E. Dahlen, and R. van Leeuwen, “Levels of self-consistency in the gw approximation,” The Journal of Chemical Physics 130, 114105 (2009) https://doi.org/10.1063/1.3089567.

21A. Kutepov, S. Y. Savrasov, and G. Kotliar, “Ground-state properties of simple elements from gw calculations,” Phys. Rev. B 80, 041103 (2009).

22M. J. van Setten, F. Caruso, S. Sharifzadeh, X. Ren, M. Scheffler, F. Liu, J. Lischner, L. Lin, J. R. Deslippe, S. G. Louie, C. Yang, F. Weigend, J. B. Neaton, F. Evers, and P. Rinke, “Gw100: Benchmarking g0w0 for molecular systems,” Journal of Chemical Theory and Computation 11, 5665–5687 (2015).

23E. Maggio, F. Liu, M. J. van Setten, and G. Kresse, “Gw100: A plane wave perspective for small molecules,” Journal of Chemical Theory and Computation 13, 635–648 (2017).

24M. Grumet, P. Liu, M. Kaltak, J. c. v. Klimeck, and G. Kresse, “Beyond the quasiparticle approximation: Fully self-consistent gw calculations,” Phys. Rev. B 98, 155143 (2018).

25A. L. Kutepov, “Electronic structure of na, k, s, and li from self-consistent solution of hedin’s equations including vertex corrections,” Phys. Rev. B 94, 155101 (2016).

26A. L. Kutepov, “Self-consistent solution of hedin’s equations,” Semiconductors and insulators,” Phys. Rev. B 95, 195120 (2017).

27A. A. Kananenka, E. Gull, and D. Zgid, “Systematically improvable multiscale solver for correlated electron systems,” Phys. Rev. B 91, 121111 (2015).

28F. N. Lan, A. A. Kananenka, and D. Zgid, “Communication: Towards ab initio self-energy embedding theory in quantum chemistry,” The Journal of Chemical Physics 143, 241102 (2015) https://doi.org/10.1063/1.4938562.

29D. Zgid and E. Gull, “Finite temperature quantum embedding theories for correlated systems,” New Journal of Physics 19, 023047 (2017).

30F. N. Lan and D. Zgid, “Generalized self-energy embedding theory,” The Journal of Physical Chemistry Letters 8, 2200–2205 (2017).

31T. N. Lan, A. Shee, J. Li, E. Gull, and D. Zgid, “Testing self-energy embedding theory in combination with gw,” Phys. Rev. B 96, 155106 (2017).

32L. N. Tran, S. Iskakov, and D. Zgid, “Spin-unrestricted self-energy embedding theory,” The Journal of Physical Chemistry Letters 9, 4444–4450 (2018).

33A. A. Rusakov, S. Iskakov, L. N. Tran, and D. Zgid, “Self-energy embedding theory (set) for periodic systems,” Journal of Chemical Theory and Computation 15, 229–240 (2019).

34D. E. Taylor, J. G. ngyn, G. Galli, C. Zhang, F. Gygi, K. Hirao, J. W. Song, K. Rahul, O. Anatole von Lilienfeld, R. Podeszwa, I. W. Bulk, T. M. Henderson, G. E. Scausers, J. Toulouke, R. Peverati, D. G. Truhlar, and K. Szalewicz, “Blind test of density-functional-based methods on intermolecular interaction energies,” The Journal of Chemical Physics 145, 124105 (2016).

35G. Chalasinski and M. M. Szczesiak, “Origins of structure and energetics of van der waals clusters from ab initio calculations,” Chemical Reviews 94, 1723–1765 (1994).

36G. Chalasinski and M. M. Szczesiak, “State of the art and challenges of the ab initio theory of intermolecular interactions,” Chemical reviews 100, 42274252 (2000).

37G. Chalasinski and M. Gutowski, “Weak interactions between small systems. models for studying the nature of intermolecular forces and challenging problems for ab initio calculations,” Chemical Reviews 88, 943–962 (1988).

38R. Podeszwa, R. Bukowski, and K. Szalewicz, “Potential energy surface for the benzene dimer and perturbational analysis of p-p interactions,” The Journal of Physical Chemistry A 110, 10345–10354 (2006).

39S. Sharma, K. Sivalingam, F. Neece, and G. K.-L. Chan, “Low-energy spectrum of iron-sulfur clusters directly from many-particle quantum mechanics,” Nature Chemistry 6, 927–938 (2014).

40Z. Li, S. Guo, Q. Sun, and G. K.-L. Chan, “Electronic landscape of the p-cluster of nitrogenase as revealed through many-
electron quantum wavefunction simulations,” *Nature Chemistry* **11**, 1026–1033 (2019)

41T. Matsubara, “A new approach to quantum-statistical mechanics,” *Prog. Theor. Phys.* **14**, 351–378 (1955)

42N. Blümer, *Mott-Hubbard Metal-Insulator Transition and Optical Conductivity in High Dimensions*, Ph.D. thesis, Universität Augsburg (2002).

43A.-B. Comanac, *Dynamical mean field theory of correlated electron systems: New algorithms and applications to local observables*, Ph.D. thesis, Columbia University (2007).

44D. Hügel, P. Werner, L. Pollet, and H. U. R. Strand, “Bosonic self-energy functional theory,” *Phys. Rev. B* **94**, 195119 (2016).

45W. Ku and A. G. Eguíluz, “Band-gap problem in semiconductors revisited: Effects of core states and many-body self-consistency,” *Phys. Rev. Lett.* **89**, 126401 (2002).

46W. Ku, *Electronic Excitations in Metals and Semiconductors: Ab Initio Studies of Realistic Many-Particle Systems*, Ph.D. thesis, University of Tennessee (2000).

47L. Boehnke, H. Hafermann, M. Ferrero, F. Lechermann, and O. Parcollet, “Orthogonal polynomial representation of imaginary-time green’s functions,” *Phys. Rev. B* **84**, 075145 (2011).

48E. Grull, S. Isakov, I. Krivenko, A. A. Rusakov, and D. Zgid, “Pauli–Chernov polynomial representation of imaginary-time response functions,” *Phys. Rev. B* **98**, 075127 (2018).

49H. Shinaoka, J. Otsuki, M. Ozeki, and K. Yoshimi, “Compressing green’s function using intermediate representation between imaginary-time and real-frequency domains,” *Phys. Rev. B* **96**, 035147 (2017).

50N. Chikano, J. Otsuki, and H. Shinaoka, “Performance analysis of a physically constructed orthogonal representation of imaginary-time green’s function,” *Phys. Rev. B* **98**, 035104 (2018).

51N. Chikano, K. Yoshimi, J. Otsuki, and H. Shinaoka, “ir-basis: Open-source database and software for intermediate-representation basis functions of imaginary-time green’s functions,” *Computer Physics Communications* **240**, 181 – 188 (2019).

52L. Li, M. Wallerberger, N. Chikano, C.-N. Yeh, E. Gull, and H. Shinaoka, “Sparse sampling approach to efficient ab initio calculations at finite temperature,” *Phys. Rev. B* **101**, 035144 (2020).

53M. Kaltak and G. Kresse, “Minimax isometry method,” (2019), arXiv:1909.01740 (cond-mat.mtrl-sci)

54T. W. Negele and H. Orland, *Quantum Many-Particle Systems* (Westview Press, 1998).

55A. L. Fetter and J. D. Walecka, *Quantum Theory of Many-Particle Systems* (Dover Publications Inc., 31 East 2nd Street, Mineloa, New York 11501, 2003).

56A. Altland and B. Simons, *Condensed Matter Field Theory*, 2nd ed. (Cambridge University Press, The Edinburgh Building, Cambridge CB2 8RU, UK, 2010).

57G. Stefanucci and R. van Leeuwen, *Nonequilibrium Many-Body Theory of Quantum Systems A Modern Introduction* (Cambridge University Press, 2013).

58A. A. Kananenka, A. R. Welden, T. N. Lan, E. Gull, and D. Zgid, “Efficient temperature-dependent green’s function methods for realistic systems: Using cubic spline interpolation to approximate matsubara green’s functions,” *Journal of Chemical Theory and Computation* **12**, 2250–2259 (2016).

59M. Schüler and Y. Pavlyukh, “Spectral properties from matsubara green’s function approach: Application to molecules,” *Phys. Rev. B* **97**, 115164 (2018).

60P. D. Lax, *Functional Analysis* (John Wiley & Sons, Inc., 2002).

61O. Parcollet, M. Ferrero, T. Ayral, H. Hafermann, I. Krivenko, L. Mesio, and P. Seth, “Titie: A toolbox for research on interacting quantum systems,” *Comput. Phys. Commun.* **196**, 398–415 (2015).

62L.-L. W. Tse, I. S. Tan, *Spectral methods Algorithms, Analysis and Applications*, Springer Series in Computational Mathematics, Vol. 41 (Springer, 2011).

63N. Hale and A. Townsend, “An algorithm for the convolution of legendre series,” *SIAM Journal on Scientific Computing, SIAM Journal on Scientific Computing* **36**, A1207–A1220 (2014).

64T. T. T. Jie Shen, *Spectral and High-Order Methods with Applications*, edited by C. Yuzhuo, Mathematics Monograph Series 3 (Science press Beijing, 2006).

65A. A. Rusakov and D. Zgid, “Self-consistent second-order green’s function perturbation theory for periodic systems,” *The Journal of Chemical Physics* **145**, 204106 (2016), http://dx.doi.org/10.1063/1.4967449.

66A. R. Welden, A. A. Rusakov, and D. Zgid, “Exploring connections between statistical mechanics and green’s functions for realistic systems: Temperature dependent electronic entropy and internal energy from a self-consistent second-order green’s function,” *The Journal of Chemical Physics* **145**, 204106 (2016), http://dx.doi.org/10.1063/1.4967449.

67D. Neuhauser, R. Baer, and D. Zgid, “Stochastic self-consistent second-order green’s function method for correlation energies of large molecular systems,” *Journal of Chemical Theory and Computation* **13**, 5396–5403 (2017).

68Q. Sun, T. C. Berkelbach, N. S. Blunt, G. H. Booth, S. Guo, Z. Li, J. Liu, J. D. McClain, E. R. Sayfutyarova, S. Sharma, S. Wouters, and G. K.-L. Chan, “Pyscf: the python-based simulations of electronic excitations in metals and semiconductors,” *Journal of Chemical Theory and Computation* **8**, e1340 (2018).

69This follows from the generalized imaginary time trace $\text{Tr}[G] \equiv \frac{1}{\beta} \int_0^\beta \int_0^\beta d\tau d\tau' \delta_\beta(\tau - \tau' + 0^+) - G_{ab}(\tau, \tau')$ of a response function $G_{ab}(\tau, \tau') \equiv -< \mathbf{c}_a(\tau) \mathbf{c}_b(\tau') >$.

70S. Boys and F. Bernardi, “The calculation of small molecular interactions by the differences of separate total energies, some procedures with reduced errors,” *Molecular Physics* **19**, 553–566 (1970), https://doi.org/10.1080/00268977000101561.

71T. Van Mourik, A. K. Wilson, and T. H. Dunning, “Benchmark calculations with correlated molecular wavefunctions. xiii. potential energy curves for he2, ne2 and ar2 using correlation consistent basis sets through augmented sextuple zeta,” *Molecular Physics, Molecular Physics* **96**, 529–547 (1999).

72L. J. Holleboom and J. G. Snijders, “A comparison between the mo/ller-plesset and greens function perturbative approaches to the calculation of the correlation energy in the manyelectron problem,” *The Journal of Chemical Physics* **93**, 5826–5837 (1990), https://doi.org/10.1063/1.459578.

73D. Fèlèr, “Application of systematic sequences of wave functions to the water dimer,” *The Journal of Chemical Physics* **61**, 6114–6118 (1972).

74R. Helgaker, W. Klopper, H. Koch, and J. Noga, “Basis-set convergence of correlated calculations on water,” *The Journal of Chemical Physics* **106**, 9639–9646 (1997).

75A. R. Kendall, T. H. Dunning, and R. J. Harrison, “Electron affinities of the firstrow atoms revisited. systematic basis sets and wave functions,” *The Journal of Chemical Physics* **69**, 6796–6806 (1978), https://doi.org/10.1063/1.402569.

76D. E. Woon and T. H. Dunning, “Gaussian basis sets for use in correlated molecular calculations. iii. the atoms aluminum through argon,” *The Journal of Chemical Physics* **98**, 1358–1371 (1993), https://doi.org/10.1063/1.404393.

77D. E. Woon and T. H. Dunning, “Gaussian basis sets for use in correlated molecular calculations. iv. calculation of static electrical response properties,” *The Journal of Chemical Physics* **100**, 2975–2988 (1994), https://doi.org/10.1063/1.466439.

78D. Fèlèr, “Application of systematic sequences of wave functions to the water dimer,” *The Journal of Chemical Physics* **69**, 6104–6114 (1972).

79D. E. Woon and T. H. Dunning, “Benchmark calculations with correlated molecular wavefunctions. i. multireference configuration interaction calculations for the second row diatomic hydrides,” *The Journal of Chemical Physics* **99**, 1914–1929 (1993), https://doi.org/10.1063/1.465306.
D. E. Woon and T. H. Dunning, “Calculation of the electron affinities of the second row atoms: AlCl,” The Journal of Chemical Physics 99, 3730–3737 (1993), https://doi.org/10.1063/1.466148.

D. E. Woon, “Accurate modeling of intermolecular forces: a systematic mller-plesset study of the argon dimer using correlation consistent basis sets,” Chemical Physics Letters 204, 29–35 (1993).

K. A. Peterson, R. A. Kendall, and T. H. Dunning, “Benchmark calculations with correlated molecular wave functions. ii. configuration interaction calculations on first row diatomic hydrides,” The Journal of Chemical Physics 99, 1930–1944 (1993), https://doi.org/10.1063/1.465307.

S. S. Xantheas and T. H. Dunning, “Theoretical studies of sulfuric species of importance in atmospheric chemistry. i. characterization of the mercaptooxy (hsa) and hydroxythio (soh) isomers,” The Journal of Physical Chemistry 97, 6616–6627 (1993).

D. E. Woon, “Benchmark calculations with correlated molecular wave functions. v. the determination of accurate ab initio intermolecular potentials for he2, ne2, and ar2,” The Journal of Chemical Physics 100, 2838–2850 (1994), https://doi.org/10.1063/1.466478.

D. E. Woon and T. H. Dunning, “Benchmark calculations with correlated molecular wave functions. vi. second row a2 and first row/second row ab diatomic molecules,” The Journal of Chemical Physics 101, 8877–8893 (1994), https://doi.org/10.1063/1.4668080.

D. E. Woon, T. H. Dunning, and K. A. Peterson, “Ab initio investigation of the n2hf complex: Accurate structure and energetics,” The Journal of Chemical Physics 104, 5883–5891 (1996), https://doi.org/10.1063/1.471520.

P. van Mourik and T. H. Dunning, “Ab initio characterization of the structure and energetics of the arhf complex,” The Journal of Chemical Physics 107, 2451–2462 (1997), https://doi.org/10.1063/1.475148.

K. A. Peterson and T. H. Dunning, “The co molecule: the role of basis set and correlation treatment in the calculation of molecular properties,” Journal of Molecular Structure: THEOCHEM 400, 93–117 (1997) ab Initio Benchmark Studies.

K. A. Peterson, A. K. Wilson, D. E. Woon, and T. H. Dunning Jr., “Benchmark calculations with correlated molecular wave functions.xii. core correlation effects on the homonuclear diatomic molecules b2-f2,” Theoretical Chemistry Accounts 97, 251–259 (1997).

Y. Katznelson, Fundamental Principles of Optical Lithography (Dover, 1976).

A. R. DiDonato, “Recurrence relations for the indefinite integrals of the associated legendre functions,” Mathematics of Computation 38, 547–551 (1982).