Air Pollution During Pregnancy and Cord Blood Immune System Biomarkers

Jillian Ashley-Martin, PhD, Eric Lavigne, PhD, Tye E. Arbuckle, PhD, Markey Johnson, PhD,
Perry Hystad, PhD, Dan L. Crouse, PhD, Jean S. Marshall, PhD, and Linda Dodds, PhD

Objectives: We aimed to determine whether average and trimester-specific exposures to ambient measures of nitrogen dioxide (NO2) and particulate matter (PM2.5) were associated with elevated cord blood concentrations of immunoglobulin E (IgE) and two epithelial cell produced cytokines: interleukin-33 (IL-33) and thymic stromal lymphopoietin (TSLP).

Methods: This study utilized data and biospecimens from the Maternal-Infant Research on Environmental Chemicals (MIREC) Study. There were 2001 pregnant women recruited between 2008 and 2011 from 10 Canadian cities. Maternal exposure to NO2 and PM2.5 was estimated using land use regression and satellite-derived models.

Results: We observed statistically significant associations between maternal NO2 exposure and elevated cord blood concentrations of both IL-33 and TSLP among girls but not boys. Conclusions: Maternal NO2 exposure may impact the development of the newborn immune system as measured by cord blood concentrations of two cytokines.

The role of maternal exposure to environmental contaminants on the developing fetal immune system is not clear. It has been suggested that fetal exposure to some environmental contaminants can promote life-long changes to the developing immune system that would have an effect on immune system responses resulting in an increased risk of an allergic phenotype in childhood and beyond. Results from research related to the health effects of childhood exposures tend to be more conclusive than studies evaluating effects of fetal exposures. Authors of a comprehensive review concluded that “evidence is sufficient to support a causal association between traffic-related air pollution exposure and exacerbation of childhood asthma.” These authors also concluded that the evidence was suggestive but not sufficient to support a causal association between traffic exposure and incident asthma. Authors of cohort studies in France, Sweden, Germany, China, and North America, have reported that childhood air pollution exposure is significantly associated with exacerbation or development of childhood asthma or allergic disease. Systematic reviews have reported that traffic-related air pollution is associated with severity of childhood asthma symptoms and increased risk of incident asthma, allergies, and sensitization.

The body of literature regarding air pollution exposure and childhood asthma and allergic disease has limited ability to disentangle the role of in utero versus childhood exposure in allergic disease etiology. This distinction has relevance for identifying critical windows of exposure and effective prevention strategies. Recent studies have reported that NO2 and PM2.5 may affect placental function and gene expression, a process that may influence fetal development. Authors of birth cohort studies have reported associations between prenatal air pollution exposure and cord blood levels of immunoglobulin E (IgE), interleukin-10 (IL-10), and certain lymphocytes. However, to date, no studies have examined the association between in utero air pollution exposure and epithelial cell derived cytokines. It has been observed that epithelial cells have important roles in the regulation of both innate and adaptive immunity. As epithelial cells line the respiratory tract and skin, these cells may represent the point of first contact for many environmental contaminants. Unlike lymphopoietic cell derived cytokines, epithelial cell derived cytokines function in the absence of a mature immune system. In addition, common air pollutants such as NO2 have been shown to impact epithelial cell function. IL-33 and thymic stromal lymphopoietin (TSLP) are two epithelial cell derived cytokines that participate in allergic disease and type 2 inflammation. These mediators are known to have a critical role in the etiology of atopic dermatitis that is often the first manifestation of allergic disease in childhood. These two cytokines may have different mechanisms, as TSLP is thought to have a role in childhood allergy and asthma, whereas IL-33 has been linked to mechanisms underlying food allergy. We have previously demonstrated that these biomarkers are detectable at birth and associated with self-reported traffic exposure. Previous studies have examined the association between utero environmental contaminant exposure and cord blood IgE concentrations as a biomarker for infant allergy and this may also serve as an indicator of fetal susceptibility to air pollution.

The aim of the present study was to investigate the association between maternal exposure to ambient measures of PM2.5 and
NO₂ and cord blood concentrations of IgE, TSLP, and IL-33. The secondary objective is to determine the nature of these associations by trimester of exposure.

METHODS

Study Population and Data Sources

Details on the study design as well as the subpopulation for the current analysis have been published elsewhere. As described elsewhere, data and biospecimens were obtained from the Maternal-Infant Research on Environmental Chemicals (MIREC) Study, a trans-Canada prospective cohort study of pregnant women recruited in the first trimester from 10 Canadian cities between 2008 and 2011. As previously described, cord blood samples that were determined to be contaminated with maternal blood based on an elevated immunoglobulin A (IgA) concentration (>10 μg/mL) were excluded from the analysis. We excluded preterm infants and multiple births, as these infants have lower levels of the immune system biomarkers of interest in this study and children born preterm have been shown to have an increased risk of asthma in childhood. All participants gave informed consent upon recruitment and research ethics board approval was obtained from Health Canada, St. Justine’s Hospital (Montreal, QC), and the Izaak Walton Killam (IWK) Health Centre (Halifax, NS).

Air Pollution Exposure

Details regarding development of the air pollution models and methodology for determining prenatal exposure histories have been described previously. Briefly, information on participant’s residential location [based on the forward sortation area (FSA) (ie, the first three letters of the postal code)] was collected from questionnaires administered in the 1st and 3rd trimesters. Air pollution concentrations were based on the population-weighted geographical coordinates of the FSA in which the mothers lived during pregnancy. If a subject moved during pregnancy, pollution estimates were reassigned according to their new FSA. Estimates of prenatal exposure to PM₂.₅ were derived from monthly surfaces of a land use regression (LUR) model that was developed using satellite-based PM₂.₅ estimates as well PM₂.₅ measurements from fixed-site monitoring stations. Our estimates of NO₂ were derived from a national LUR model developed using satellite NO₂ estimates and geograpic predictors, scaled temporally with ground monitors from the National Air Pollution Surveillance (NAPS) network. This scaling was done by first calculating a location-specific scaling factor at each fixed monitoring location for each month of the study period. A spatially resolved scaling surface was then created for each month through spatial interpolating of these location-specific monthly scaling factors using an inverse distance weighting (IDW) interpolation. This approach was applied to create monthly NO₂ estimates for FSA locations within 25 km of a NAPS station that measured NO₂ during the study period. Monthly scaling surfaces were then combined with annual LUR estimates to create monthly NO₂ and to estimate mean pregnancy and trimester-specific NO₂ exposure. We used a 25 km buffer for temporal adjustment with ground-based monitoring stations based on prior literature. We conducted a sensitivity analysis by using the NO₂ estimates from a national NO₂ LUR model (without the inclusion of the temporally scaled NAPS data). The national model had an R² of 0.73 and a root mean square error of 2.9 parts per billion (ppb). Pregnancy and trimester-level exposure estimates were calculated from monthly estimates for each calendar year on the basis of the proportion of pregnancy or trimester in that year. We used the temporally scaled exposure assessment model as our primary means of exposure assessment, as it facilitated trimester-specific model estimates.

Immune System Biomarkers

As previously described, immune system biomarkers were measured in the plasma of umbilical cord blood samples (details in). TSLP concentrations were measured using a commercial antibody kit (Biolegend, San Diego, CA). IL-33 concentrations were analyzed using antibodies from an R & D systems duoset (Minneapolis, MN). Total IgE and total IgA concentrations were analyzed using ELISA kits (EBioscience, San Diego, CA).

Statistical Analysis

On the basis of our previous work, the percentage of detectable samples was 42%, 52%, and 18% for TSLP, IL-33, and IgE, respectively. As a result, each immune system biomarker was categorized as binary variables. A composite variable was developed to identify samples with elevated concentrations of both TSLP and IL-33 (IL-33/TSLP), as these cytokines are highly correlated (Spearman correlation coefficient = 0.8). TSLP, and IL-33 were categorized as elevated at the 80th percentile (TSLP = 554 pg/mL; IL-33 = 879 pg/mL) because there are no pre-existing thresholds. Elevated concentrations of the composite IL-33/TSLP variable were defined as those samples that had elevated concentrations (≥80% ile) of both TSLP and IL-33. In recognition of the arbitrary nature of the 80th percentile threshold, we also conducted analyses between average pollutant exposure and IL-33 and TSLP dichotomized at the level of detection (LOD). On the basis of established cut-off values for IgE where odds of childhood allergic disease are increased, values at least 1.2 ng/mL (0.5 kU/L) were considered elevated.

Mixed effect logistic regression models were used to determine associations between average prenatal exposure to ambient air pollutants and binary measures of immune system biomarkers. This model accounted for potential correlations and other characteristics that distinguish subjects within the same recruitment site and FSAs. FSA and study recruitment site were included in the model as nested random effects. Ambient concentrations of PM₂.₅ and NO₂ were evaluated as continuous variables (1 unit increases) and as quartiles in logistic regression analysis. Confounders were a priori identified as maternal age and income on the basis of our previous analysis of predictors of the immune system biomarkers. Due to the strong association between maternal allergy and the immune system biomarkers, and to avoid overadjustment, we did not adjust for this variable. In addition, though cigarette smoking is a risk factor for allergic disease, it was not associated with the immune system biomarkers, possibly due to the low prevalence of smoking in the MIREC population, and, therefore, not included in the multivariate models. Therefore, we conducted sensitivity analyses excluding mothers with a history of maternal allergy and excluding current smokers. We tested for effect modification by sex by evaluating the P value of the sex–exposure interaction term and stratifying results by sex. We also examined the influence of including both pollutants in a model on effect estimates. Results are presented for average exposure throughout pregnancy as well as by trimester. In the trimester-specific analysis, only the joint IL-33/TSLP results are shown, as the individual IL-33 and TSLP results were similar.

Restricted cubic spline analyses were performed on all associations with significant results in analyses by both average pregnancy and trimester-specific exposure. This component of the analysis facilitated examination of dose–response relationships using continuous measures of exposure. Knots were specified at the 25th, 50th, and 75th percentiles; Akaike information criterion values were comparable to default knot choices and offered the advantage of comparison with the quartile results. Analyses were performed using SAS v. 9.3 (SAS Institute Inc., Cary, NC) and R v. 3.2.2 (R Foundation, Vienna, Austria).
TABLE 1. Study Participant Characteristics, MIREC Study, Canada, 2008–2011 (n = 1253)*

Characteristic	n (%)
Maternal age, yrs	
<29	328 (26.2)
30–34	451 (36.0)
≥35	474 (37.8)
Household income (SCAD)	
<30,000	90 (7.5)
30,001–50,000	117 (9.7)
50,001–100,000	513 (42.6)
>100,000	485 (40.3)
Smoking	
Never or quit before pregnancy	1102 (88.0)
Quit when pregnancy confirmed	90 (7.2)
Pre-pregnancy BMI	
Underweight (<18.5)	26 (2.2)
Normal (18.5–24.9)	708 (60.5)
Overweight (25–29.9)	268 (22.9)
Obese (≥30)	168 (14.4)
Maternal allergy	
No	1199 (95.7)
Yes	54 (4.3)
Parity	
Nulliparous	524 (41.9)
Primiparous	511 (40.9)
Multiparous	216 (17.3)
Infant sex	
Male	671 (62.2)
Female	582 (46.5)
Birth weight, g	
<2500	11 (0.9)
2501–4000	1050 (83.8)
>4000	192 (15.3)

*Subgroup total may not equal 1253 due to missing data.

RESULTS

The number of cord blood samples that met the inclusion criteria (term, singleton birth) was 1253. We excluded 171 samples from the NO2 analysis due to residence beyond 25 km of a NAPs station. Baseline maternal and infant characteristics are summarized in Table 1. Only a small number of participants used allergy medications (4.3%) or smoked during pregnancy (4.9%). Most participants were 30 years of age or over and had a household income of greater than $50,000 (Table 1). Median PM2.5 levels for the duration of pregnancy were 8.34 μg/m3 with an interquartile range (IQR) of 3.22 μg/m3. Median NO2 levels for the duration of pregnancy were 14.15 ppb (IQR 12.99). Average NO2 and PM2.5 levels were moderately correlated (Spearman correlation coefficient r = 0.40). Correlations among the trimester-specific measures of each pollutant were moderate (PM2.5 ranged from 0.59 to 0.62; NO2 ranged from 0.79 to 0.83). Trimester-specific and average measures were highly correlated for each pollutant (0.82 to 0.86 for PM2.5 and 0.88 to 0.95 for NO2). Effect modification by infant sex was observed in the NO2 and IL-33/TSLP model (product term P = 0.01) and the PM2.5 and IgE model (product term P = 0.05). Although no effect modification by sex was observed between NO2 and IgE or PM2.5 and IL-33/TSLP (both P > 0.10), we present all results stratified by infant sex.

Among boys, no statistically significant associations were observed between NO2 or PM2.5 and any of the immune system biomarkers; odds ratios (ORs) were close to the null value and not suggestive of an inverse or positive relation (Table 2). Among girls, statistically significant associations were observed between the top two quartiles of NO2 (>14.16 ppb) and elevated IL-33, TSLP, and TSLP/IL-33 (Table 3). Compared with women with NO2 exposure levels in the lowest quartile, those in the highest quartile (>20.76 ppb) had an elevated odds of high cord blood IL-33/TSLP [OR = 3.42, 95% confidence interval (95% CI): 1.61 to 7.27], TSLP (OR = 3.00; 95% CI: 1.55 to 5.82), and IL-33 concentrations (OR = 3.20; 95% CI: 1.60 to 6.40). One unit (ppb) increases in NO2 were also statistically significantly associated with IL-33, TSLP, and IL-33/TSLP (OR of elevated IL-33/TSLP per 1 ppb increase in NO2 = 1.05, 95% CI: 1.02 to 1.08). When IL-33 and TSLP were dichotomized at the LOD, the associations with mean NO2 were attenuated (fourth quartile NO2 IL-33 OR = 1.25 (95% CI: 0.76 to 2.05); TSLP OR = 1.38 (95% CI: 0.84 to 2.29)). No statistically significant associations were observed between PM2.5 and IL-33 or TSLP whether measured independently or jointly. Elevated (fourth quartile) PM2.5 exposure (>9.23 μg/m3) was associated with significantly increased odds of IgE concentrations among girls (OR = 2.57, 95% CI: 1.24 to 5.32). Maternal PM2.5 exposure, measured as a continuous variable, was positively associated with elevated IgE (OR per 1 μg/m3 PM2.5 = 1.14, 95% CI: 1.00 to 1.31). Inclusion of both pollutants in one model did not produce any notable changes in results.

When stratified by trimester of exposure, results were similar for boys with no significant associations and effect estimates tending to be close to the null value (Table 4). Among girls, the magnitude of the association between NO2 and IL-33/TSLP was strongest when exposure was measured during the third trimester (third trimester NO2 >20.76 ppb OR IL-33/TSLP = 4.39, 95% CI: 2.00 to 9.64). First trimester PM2.5 concentrations in the fourth quartile (>9.23 μg/m3) were significantly associated with elevated levels of IgE (OR = 2.37, 95% CI: 1.23 to 4.58) among girls. Second trimester third quartile PM2.5 exposure was associated with statistically significantly increased odds of high IL-33/TSLP (OR = 2.16, 95% CI: 1.03 to 4.53) among girls (Table 5).

In the cubic spline analysis, the overall association between the NO2 and high IL33/TSLP among girls was significant (P = 0.004). The P value testing the null hypothesis of linearity was 0.09. The spline curve plateaued at approximately the 75%ile (20.76 ppb), though CIs are wide and crossing the null value at this concentration (Fig. 1). The spline curve of the relation between PM2.5 and IgE among girls did not have a significant overall association (P overall association = 0.15) and did not significantly deviate from linearity (P = 0.77) (Fig. 2).

In the sensitivity analysis, excluding women with a history of maternal allergy or current smokers had no impact on the results (data not shown in tables). In addition, using the LUR model of NO2 exposure assessment did not materially change the ORs from the mean pregnancy exposure models. Trimester-specific values estimated from the LUR model were highly correlated. As a result, trimester-specific ORs were similar to each other (data not shown).

DISCUSSION

This study was conducted to determine the association between maternal exposure to ambient air pollutants and umbilical cord blood concentrations of IgE, TSLP, and IL-33. There is a body of literature supporting a causal association between childhood exposure to air pollutants and exacerbation of asthma and literature that is suggestive of an association between air pollution and development of asthma as well as recent immunological literature demonstrating the integral role of these immune system biomarkers in the mechanisms underlying childhood allergy.

We observed that maternal NO2 exposure was associated with significantly increased odds of high cord blood IL-33 and TSLP concentrations among girls. This finding was consistent in analyses.
of categorical and continuous exposure variables and persisted whether IL-33 and TSLP were analyzed individually or jointly. This association was not, however, observed in analyses wherein TSLP and IL-33 were dichotomized at the LOD in light of literature suggesting that IL-33 and TSLP are cross-regulated and that IL-33 can induce TSLP production, our finding of an association between NO\textsubscript{2} and two cytokines together is not surprising.25 When stratified by trimester of exposure, this association was most pronounced during the third trimester. Given the wide CIs in the NO\textsubscript{2} effect estimates as well as the novelty of these findings, replication in further studies is warranted.

As this study is the first of its kind, it was not feasible to conduct direct comparisons with previous epidemiological studies. However, the present findings are consistent with results regarding relations among NO\textsubscript{2}, epithelial cells, and TSLP. NO\textsubscript{2} exposure may induce epithelial cell injury29 and promote release of pro-inflammatory mediators.26 Furthermore, diesel exhaust, which may contain NO\textsubscript{2}, has been shown to upregulate epithelial cell production of TSLP.30

The present findings are also consistent with literature from animal models reporting that in utero exposure to pollutants, including diesel and particulate matter, promotes susceptibility to asthma and allergic sensitization31-33 and induces the release of pro-inflammatory mediators, such as IL-8, from lung tissue.34 Maternal air pollution exposure may also stimulate placental production of pro-inflammatory cytokines and subsequently influence fetal immune system development.35 We therefore speculate that the observed association between NO\textsubscript{2} and IL-33 and TSLP is mediated by air pollution induced inflammatory responses in maternal airway tissue. These maternal responses, which can include release of pro-inflammatory mediators, may promote fetal epithelial cell cytokine production. Given the stronger magnitude of association in the third trimester, it is possible that later gestational NO\textsubscript{2} exposure is the critical window for influencing TSLP and IL-33 concentrations. Experimental evidence has suggested that third trimester exposure to the heavy metal lead may be more likely to promote Th2 cytokine response than exposure earlier in pregnancy.36 However, authors of a birth cohort study in the Czech Republic reported that air pollution (PM\textsubscript{2.5} and polycyclic aromatic hydrocarbons) exposure during the first trimester was associated with increases in T lymphocytes that may promote autoimmune responses.22 Scientific understanding regarding the critical window of gestational exposure for each pollutant and specific immunological endpoint is limited. Replication of the present findings regarding third trimester NO\textsubscript{2} exposure and pro-inflammatory cytokine responses will help address this knowledge gap.

Table 2: Mixed-Level Logistic Regression Analysis of Average Ambient Air Pollutants and Cord Blood Immune System Biomarkers Among Boys, Odds Ratios, and 95% Confidence Intervals (n = 574)a

Pollutant1	IgE ≥ 0.5 ku/L	IL-33 > 80%ile	TSLP > 80%ile	IL-33/TSLP > 80%ile
NO\textsubscript{2} ppb				
<7.77	1.0	1.0	1.0	1.0
7.78 to ≤14.15	1.28 (0.63–2.61)	2.31 (1.14–4.65)	2.25 (1.16–4.38)	1.91 (0.86–4.21)
14.16 to ≤20.76	1.93 (0.93–3.99)	2.51 (1.19–5.28)	2.87 (1.43–5.76)	2.77 (1.24–6.20)
>20.76	1.02 (0.47–2.17)	3.20 (1.60–6.40)	3.00 (1.55–5.82)	3.42 (1.61–7.27)
PM\textsubscript{10} μg/m3				
≤0.01	1.0	1.0	1.0	1.0
6.02 to ≤8.34	1.97 (0.93–4.20)	1.26 (0.61–2.60)	1.52 (0.78–2.97)	1.35 (0.64–2.82)
8.44 to ≤9.23	1.47 (0.64–2.92)	1.53 (0.79–2.98)	1.44 (0.75–2.78)	1.44 (0.70–2.95)
>9.23	2.57 (1.24–5.32)	1.25 (0.57–2.70)	1.14 (0.55–2.37)	1.04 (0.47–2.31)
1	1.14 (1.00–1.31)	1.07 (0.93–1.23)	1.03 (0.89–1.18)	1.02 (0.88–1.18)

aIgE, immunoglobulin E; IL, interleukin; TSLP, thymic stromal lymphopoietin.

1Adjusted for maternal age, household income (center and FSA are random effects).

2Pollutant concentrations are average exposure levels throughout pregnancy.

Table 3: Mixed-Level Logistic Regression Analysis of Average Ambient Air Pollutants and Cord Blood Immune System Biomarkers Among Girls, Odds Ratios, and 95% Confidence Intervals (n = 507)a

Pollutant1	IgE ≥ 0.5 ku/L	IL-33 > 80%ile	TSLP > 80%ile	IL-33/TSLP > 80%ile
NO\textsubscript{2} ppb				
<7.77	1.0	1.0	1.0	1.0
7.78 to ≤14.15	1.28 (0.63–2.61)	2.31 (1.14–4.65)	2.25 (1.16–4.38)	1.91 (0.86–4.21)
14.16 to ≤20.76	1.93 (0.93–3.99)	2.51 (1.19–5.28)	2.87 (1.43–5.76)	2.77 (1.24–6.20)
>20.76	1.02 (0.47–2.17)	3.20 (1.60–6.40)	3.00 (1.55–5.82)	3.42 (1.61–7.27)
PM\textsubscript{10} μg/m3				
≤0.01	1.0	1.0	1.0	1.0
6.02 to ≤8.34	1.97 (0.93–4.20)	1.26 (0.61–2.60)	1.52 (0.78–2.97)	1.35 (0.64–2.82)
8.44 to ≤9.23	1.47 (0.64–2.92)	1.53 (0.79–2.98)	1.44 (0.75–2.78)	1.44 (0.70–2.95)
>9.23	2.57 (1.24–5.32)	1.25 (0.57–2.70)	1.14 (0.55–2.37)	1.04 (0.47–2.31)
1	1.14 (1.00–1.31)	1.07 (0.93–1.23)	1.03 (0.89–1.18)	1.02 (0.88–1.18)

aIgE, immunoglobulin E; IL, interleukin; TSLP, thymic stromal lymphopoietin.

1Adjusted for maternal age, household income (center and FSA are random effects).

2Pollutant concentrations are average exposure levels throughout pregnancy.
We hypothesize that it is unlikely that the cytokines measured in the present study are produced by maternal epithelial cells. IL-33 is a member of the IL-1 family and previous research has reported that IL-1α and IL-1β do not readily cross the placenta. However, it is unlikely that maternal TSLP crosses the placenta due to its large molecular weight, which is of comparable size to IL-1, and the absence of known active transport processes.

The observed sex-dependent nature of the association between NO$_2$ IL-33, and TSLP is also consistent with previous research. Studies examining relations between traffic-related pollutants, including NO$_2$, and childhood asthma have shown stronger associations among girls than boys. This potential early life air pollution susceptibility among girls is of particular interest, as boys tend to have a higher prevalence of asthma at younger ages. However, it is unlikely that maternal TSLP crosses the placenta due to its large molecular weight, which is of comparable size to IL-1, and the absence of known active transport processes.

We observed statistically significant associations between PM$_{2.5}$ exposure, particularly during the first trimester, and IgE among girls. One identified birth cohort study from the Czech Republic reported a statistically significant positive association between PM$_{2.5}$ exposure during the sixth month of gestation and cord blood IgE; exposure during all other time periods was of a null or inverse relation. Authors of another cohort study reported that the association between early life air pollution exposure and certain types of asthma was stronger with NO$_2$ than PM$_{2.5}$. We observed a higher prevalence of asthma at younger ages.

Traffic-related air pollution and correlated exposures, therefore, may be the underlying causal agent. These correlated exposures include diesel exhaust, polycyclic aromatic hydrocarbons, and certain volatile organic compounds (eg, benzene, toluene, ethylbenzene, and xylene), all of which have been linked to related adverse respiratory and allergic outcomes. Literature regarding PM$_{2.5}$ and NO$_2$ exposure has not demonstrated consistent results regarding the relative contributions of these pollutants to childhood allergic disease outcomes. Authors of a prospective birth cohort study in Germany reported that NO$_2$ but not PM$_{2.5}$ was associated with childhood eczema, whereas PM$_{2.5}$ but not NO$_2$ was associated with asthmatic bronchitis. Authors of another cohort study reported that the association between early life air pollution exposure and certain types of asthma was stronger with NO$_2$ than PM$_{2.5}$. The mechanism underlying these observed sex-dependent differences and susceptibilities at birth warrants further investigation.

We find our study to be stronger, more consistent association with NO$_2$ that PM$_{2.5}$ may be attributable to the fact that the NO$_2$ exposure estimates are an approximation of traffic-related air pollution exposure, whereas the satellite-derived PM$_{2.5}$ estimates are reflective of both anthropogenic and biogenic sources of PM$_{2.5}$. Traffic-related air pollution and correlated exposures, rather than NO$_2$, therefore may be the underlying causal agent. These correlated exposures include diesel exhaust, polycyclic aromatic hydrocarbons, and certain volatile organic compounds (eg, benzene, toluene, ethylbenzene, and xylene), all of which have been linked to related adverse respiratory and allergic outcomes. Literature regarding PM$_{2.5}$ and NO$_2$ exposure has not demonstrated consistent results regarding the relative contributions of these pollutants to childhood allergic disease outcomes. Authors of a prospective birth cohort study in Germany reported that NO$_2$ but not PM$_{2.5}$ was associated with childhood eczema, whereas PM$_{2.5}$ but not NO$_2$ was associated with asthmatic bronchitis. Authors of another cohort study reported that the association between early life air pollution exposure and certain types of asthma was stronger with NO$_2$ than PM$_{2.5}$.
TABLE 5. Mixed-Level Logistic Regression Analysis of Air Pollutants by Trimester of Exposure and Cord Blood Immune System Biomarkers Among Girls, Odds Ratios, and 95% Confidence Intervals*

Pollutant	N (%)	IgE ≥0.5 ku/L	IL-33/TSLP ≥80th%ile
NO\textsubscript{2}, ppb			
Trimester 1			
≤7.77	118 (24.9)	1.0	1.0
0.78 to ≤14.15	133 (28.1)	1.81 (0.80–4.07)	0.82 (0.35–1.95)
14.16 to ≤20.76	102 (21.6)	2.39 (1.03–5.55)	1.36 (0.56–3.29)
>20.76	120 (25.4)	1.67 (0.72–3.86)	1.89 (0.84–4.27)
Trimester 2			
≤7.77	118 (24.3)	1.0	1.0
7.78 to ≤14.15	145 (29.9)	1.56 (0.69–3.48)	1.27 (0.58–2.76)
14.16 to ≤20.76	105 (21.6)	3.37 (1.49–7.62)	2.45 (1.13–5.32)
>20.76	117 (24.1)	1.13 (0.47–2.74)	1.90 (0.88–4.08)
Trimester 3			
≤7.77	146 (29.4)	1.0	1.0
7.78 to ≤14.15	136 (27.4)	1.45 (0.71–2.97)	2.41 (1.08–5.37)
14.16 to ≤20.76	113 (22.8)	1.43 (0.67–3.05)	2.71 (1.19–6.16)
>20.76	131 (26.4)	1.63 (0.77–3.47)	4.39 (2.00–9.64)
PM\textsubscript{2.5}, μg/m3			
Trimester 1			
≤6.01	169 (29.1)	1.0	1.0
6.02 to ≤8.43	158 (27.2)	1.47 (0.72–2.96)	0.93 (0.45–1.90)
8.44 to ≤9.23	98 (16.9)	1.26 (0.55–2.86)	0.81 (0.35–1.85)
>9.23	155 (26.7)	2.37 (1.23–4.58)	1.34 (0.66–2.70)
Trimester 2			
≤6.01	148 (25.5)	1.0	1.0
6.02 to ≤8.43	166 (28.6)	1.84 (0.89–3.78)	1.59 (0.79–3.19)
8.44 to ≤9.23	113 (19.5)	1.75 (0.80–3.85)	2.16 (1.03–4.53)
>9.23	153 (26.4)	1.92 (0.92–4.00)	1.10 (0.51–2.36)
Trimester 3			
≤6.01	170 (29.3)	1.0	1.0
6.02 to ≤8.43	166 (28.6)	1.05 (0.53–2.08)	1.04 (0.52–2.09)
8.44 to ≤9.23	123 (21.2)	1.52 (0.76–3.03)	1.72 (0.85–3.48)
>9.23	121 (20.9)	1.60 (0.80–3.18)	1.27 (0.62–2.61)

*IgE, immunoglobulin E; IL, interleukin; TSLP, thymic stromal lymphopoietin.
*Adjusted for maternal age and income (center and FSA are random effects).

Strengths of this study included the relatively large sample size in the MIREC study, the inclusion of many potential confounding factors, and the availability of novel immune system biomarkers. The use of spatiotemporal models for NO\textsubscript{2} and PM\textsubscript{2.5}.

FIGURE 1. Restricted cubic spline analysis of average NO\textsubscript{2} (ppb) and elevated IL-33 and TSLP among girls (≥80th%ile). Adjusted for maternal age and income. Knots set at 25th, 50th, and 75th percentiles. Error bars indicate 95% confidence intervals.

FIGURE 2. Restricted cubic spline analysis of average PM\textsubscript{2.5} (μg/m3) and elevated IgE (≥0.5 ku/L) among girls. Adjusted for maternal age and income. Knots set at 25th, 50th, and 75th percentiles. Error bars indicate 95% confidence intervals.
enabled us to develop average exposure measures over the time span of a pregnancy that captured both detailed spatial and temporal variations in pollutant concentrations.

A primary limitation of our study is the potential exposure misclassification of the air pollutants resulting from the use of three-digit postal codes rather than full residential address. We did not have information on work location, time spent at home, or indoor pollutants. Further, the use of different exposure estimation methods for the two pollutants precluded direct comparison of results for the two pollutants. A second limitation is the lack of clinical outcome data. Although IL-33 and TSLP have been implicated in allergic disease,13 literature on the longitudinal relationship from birth to childhood is lacking. Thus, it is not possible to draw definitive conclusions about the risk of developing childhood allergic disease on the basis of these findings. Determining the impacts of the observed results on childhood allergic disease requires further follow-up of the MIREC cohort. Third, considering that high NO2 concentrations are found in regions of high population density, it is possible that the observed results are subject to residual confounding due to co-occurring pollutants or characteristics unique to this subpopulation.

CONCLUSIONS

We report a positive, statistically significant association between maternal NO2 exposure and elevated (≥80th percentile) cord blood concentrations of the epithelial cell derived cytokines TSLP and IL-33. We also observed a positive association between early childhood average and first trimester exposure to PM2.5 exposure (≥9.23 μg/m3) and high IgE among girls (first trimester exposure OR = 2.37, 95% CI: 1.23 to 4.58), although these associations were not statistically significant in spine analysis. These findings suggest that maternal NO2 exposure may impact newborn immune system development as measured by cord blood concentrations of two cytokines. Replication of these observed findings, particularly in a cohort of differing socioeconomic and ethnic background than the MIREC population, will help clarify the public health implications of low-level in utero NO2 exposure. Studies that further elucidate the observed dose–response relationships, the role of timing of exposure, and the physiologic mechanisms will be a valuable contribution to understanding early life influences on immune system function, potential subsequent risk of allergic disease, and differential responses by child sex.

REFERENCES

1. Dietert RR, Lee JE, Hussain I, Piepenbrink M. Developmental immunotoxicology of lead. Toxicol Appl Pharm. 2004;198:86–94.
2. Holladay S, Smalowicz R. Development of the murine and human immune system: differential effects of immunotoxins depend on time of exposure. Environ Health Perspect. 2000;108:463–473.
3. Luebbe RW, Chen DH, Dietert R, Yang Y, King M, Luster MI. The comparative immunotoxicity of five selected compounds following developmental or adult exposure. J Toxicol Environ Health B. 2006;9:1–26.
4. Health Effects Institute. Traffic-Related Air Pollution: a Critical Review of the Literature on Emissions, Exposure, and Health Effects. Final Version of the Literature on Emissions, Exposure, and Health Effects. Philadelphia, PA: Elsevier; 2015.
5. Saenz SA, Taylor BC, Artis D. Welcome to the neighborhood: epithelial cell-derived cytokines license innate and adaptive immune responses at mucosal sites. Immunol Rev. 2009;226:172–190.
6. Abbasi A. Cellular and Molecular Immunology. Philadelphia, PA: Elsevier Saunders; 2015.
7. Brumman SA, Perdijk O, van Neerven RJ, Savellouk HFJ. Mucosal immune development in early life: setting the stage. Arch Immunol Ther Exp. 2013;61:251–268.
8. Ayayagi VN, Januszkiewicz A, Nath J. Pro-inflammatory responses of human bronchial epithelial cell to acute nitrogen dioxide exposure. Toxicol. 2004;197:149–164.
9. Frampton BW, Boscia J, Roberts NI, Azadnin M, Torres A, Cox C, et al. Nitrogen dioxide exposure: effects on airway and blood cells. Am J Physiol Lung Cell Mol Physiol. 2002;282:L155–L165.
10. Bartemes KR, Kita H. Dynamic role of epithelium-derived cytokines in asthma. Clin Immunol. 2012;143:222–235.
11. Brandt EB, Sivaprasad U. Th2 cytokines and atopic dermatitis. J Clin Cell Immunol. 2011;2:1–25.
12. Gauvreaux GM, O’Byrne, Boulou LP, Wang Y, Cockerof D, Bigler J, et al. Effects of an anti-TSLP antibody on allergen-induced asthmatic responses. N Engl J Med. 2014;370:2102–2110.
33. Chu DK, Llop-Guevar A, Walker TD, Flader K, Goncharova S, Boudreau JE, et al. IL-33, but not thymic stromal lymphopoietin or IL-25, is central to mite and dust allergen sensitization. J Allergy Clin Immunol. 2013;131:187–200.

34. Muto T, Fukuoka A, Kabashima K, Ziegler SF, Nakashima K, Matsushita K, et al. The role of basophils and proallergic cytokines, TSLP and IL-33, in cutaneously sensitized food allergy. Int Immunol. 2014;26:539–549.

35. Ashley-Martin J, Dodds L, Arbrack TE, Levy AR, Platt BW, Marshall JS. Predictors of interleukin-33, thymic stromal lymphopoietin and immunoglobulin E. Pediatr Allergy Immunol. 2015;26:161–167.

36. Grandjean P, Poulsen LK, Heilmann C, Steuerwald U, Weihe P. Allergy and sensitization during childhood associated with prenatal and lactational exposure to marine pollutants. Environ Health Perspect. 2013;131:731–736.

37. Okada E, Sasaki S, Sajio Y, Washino N, Miyashita C, Kobayashi S, et al. Prenatal exposure to perfluorinated chemicals and relationships with atopy and allergic diseases in infants. Environ Res. 2012;112:118–125.

38. Arbrack TE, Fraser WD, Fisher M, Davis K, Liang CL, Lupien N, et al. Cohort profile: the maternal-infant research on environmental chemicals research platform. Paediatr Perinatal Epidemiol. 2013;27:415–425.

39. Owensby DR, McCullough J, Johnson CC, Peterson EL. Evaluation of IgA measurements as a method for detecting maternal blood contamination of cord blood samples. Pediatr Allergy Immunol. 1996;7:125–129.

40. Alpert CS, Bowen JR, Lain SL, Allen HD, Vivian-Taylor JM, Roberts CL. Pregnancy exposures and risk of childhood asthma admission in a population birth cohort. Pediatr Allergy Immunol. 2011;22:836–842.

41. Been JV, Lugtenberg MJ, Heilmann C, Steuerwald U, Kramer BW, Mommers M. Preterm birth and childhood wheezing disorders: a systematic review and meta-analysis. PLoS Med. 2014;11:e1001596.

42. Lavigne E, Ashley-Martin J, Dodds L, Arbrack TE, Hystad P, Johnson M, et al. Air pollution exposure during pregnancy and fetal markers of metabolic function: the MIREC Study. Am J Epidemiol. 2016;183:842–851.

43. Hystad P, Setton E, Cervantes A, Poplawski K, Deschenes S, Brauer M, et al. Creating national air pollution models for population exposure assessment in Canada. Environ Health Perspect. 2011;119:1123–1129.

44. Hystad P, Villeneuve PJ, Goldberg MS, Crouse DL, Johnson K, Canadian Cancer Registries Epidemiology Research Group. Exposure to traffic-related air pollution and the risk of developing breast cancer among women in eight Canadian provinces: a case–control study. Environ Int. 2015;74:240–248.

45. Johnson M, Macneill M, Gregicak-Mannion A, Nethery E, Xu X, Dales. et al. Development of temporally refined land-use regression models predicting daily household-level air pollution in a panel study of lung function among asthmatic children. J Expo Sci Environ Epidemiol. 2013;23:251–267.

46. Bechle MJ, Millet D, Marshall JD. A national spatiotemporal exposure surface for NO2: monthly scaling of a satellite-derived land-use regression, air pollution and the risk of developing breast cancer among women in eight Canadian provinces: a case-control study. Environ Int. 2015;74:240–248.

47. Johnson M, Macneill M, Gregicak-Mannion A, Nethery E, Xu X, Dales. et al. Development of temporally refined land-use regression models predicting daily household-level air pollution in a panel study of lung function among asthmatic children. J Expo Sci Environ Epidemiol. 2013;23:251–267.

48. Bechle MJ, Millet D, Marshall JD. A national spatiotemporal exposure surface for NO2: monthly scaling of a satellite-derived land-use regression, air pollution and the risk of developing breast cancer among women in eight Canadian provinces: a case–control study. Environ Int. 2015;74:240–248.

49. Hystad P, Millet D, Marshall JD. A national spatiotemporal exposure surface for NO2: monthly scaling of a satellite-derived land-use regression, air pollution and the risk of developing breast cancer among women in eight Canadian provinces: a case–control study. Environ Int. 2015;74:240–248.

50. Bleick B, Grunig G, Chu H, et al. MicroRNA-375 regulates of thymic stromal lymphopoietin by diesel exhaust particles and ambient particulate matter in human bronchial epithelial cells. J Immunol. 2013;190:3757–3763.

51. Fedullo AV, Lerne A, Yang Z, et al. Pulmonary exposure to particles during pregnancy causes increased neonatal asthma susceptibility. Am J Respir Cell Mol Biol. 2008;38:57–67.

52. Hamada K, Suzuki Y, Lerne A, et al. Exposure of pregnant mice to an air pollutant aerosol increases asthma susceptibility in offspring. J Toxicol Environ Health A. 2007;70:688–695.

53. Hong X, Liu C, Chen X, et al. Maternal exposure to airborne particulate matter causes postnatal immunological dysfunction in mice offspring. Toxicology. 2013;306:59–67.

54. Sexton KG, Jeffries HE, Kamens RM, et al. Photochemical products in urban mixtures enhance inflammatory responses in lung cells. Inhal Toxicol. 2004;16(Suppl 1):107–114.

55. de Melo JO, Soto SF, Katayama M, et al. Maternal blood contamination of cord blood samples. Pediatr Allergy Immunol. 1996;7:125–129.

56. Aaltonen R, Heikkinen T, Hakala T, et al. Transfer of airborne particulate matter causes postnatal immunological dysfunction in mice offspring. J Immunol. 2015;206:187–200.

57. Aaltonen R, Heikkinen T, Hakala T, et al. Transfer of airborne particulate matter causes postnatal immunological dysfunction in mice offspring. J Immunol. 2015;206:187–200.

58. Aaltonen R, Heikkinen T, Hakala T, Laine K, Alanen A. Transfer of proinflammatory cytokines across term placenta. Obstet Gynecol. 2005;106:802–807.

59. Zaretsky MV, Alexander JM, Byrd W, et al. Transfer of inflammatory cytokines across the placenta. Obstet Gynecol. 2012;119:1534–1540.

60. McConnell R, Berhane K, Yao L, et al. Traffic, susceptibility, and childhood asthma. Environ Health Perspect. 2006;114:766–772.

61. Van Vliet P, Smit P, de Hartog J, et al. Traffic, susceptibility, and acute asthma events across the Detroit–Windsor international border: study design and preliminary results. J Expo Sci Environ Epidemiol. 2012;22:582–589.

62. Garner R, Kohen D. Changes in the prevalence of asthma among Canadian children. Health Rep. 2007;19:11–16.

63. Beckerman B, Jerrett M, Brook JR, et al. Motor vehicle exhaust and chronic respiratory symptoms in children living near freeways. Environ Health Perspect. 2006;114:122–127.

64. Aaltonen R, Heikkinen T, Hakala T, et al. Transfer of airborne particulate matter causes postnatal immunological dysfunction in mice offspring. J Immunol. 2015;206:187–200.

65. McConnell R, Berhane K, Yao L, et al. Traffic, susceptibility, and childhood asthma. Environ Health Perspect. 2006;114:766–772.

66. Bechle MJ, Millet D, Marshall JD. A national spatiotemporal exposure surface for NO2: monthly scaling of a satellite-derived land-use regression, air pollution and the risk of developing breast cancer among women in eight Canadian provinces: a case–control study. Environ Int. 2015;74:240–248.

67. Johnson M, Macneill M, Gregicak-Mannion A, Nethery E, Xu X, Dales. et al. Development of temporally refined land-use regression models predicting daily household-level air pollution in a panel study of lung function among asthmatic children. J Expo Sci Environ Epidemiol. 2013;23:251–267.

68. Bechle MJ, Millet D, Marshall JD. A national spatiotemporal exposure surface for NO2: monthly scaling of a satellite-derived land-use regression, air pollution and the risk of developing breast cancer among women in eight Canadian provinces: a case–control study. Environ Int. 2015;74:240–248.

69. Johnson M, Macneill M, Gregicak-Mannion A, Nethery E, Xu X, Dales. et al. Development of temporally refined land-use regression models predicting daily household-level air pollution in a panel study of lung function among asthmatic children. J Expo Sci Environ Epidemiol. 2013;23:251–267.

70. Bechle MJ, Millet D, Marshall JD. A national spatiotemporal exposure surface for NO2: monthly scaling of a satellite-derived land-use regression, air pollution and the risk of developing breast cancer among women in eight Canadian provinces: a case–control study. Environ Int. 2015;74:240–248.

71. Bechle MJ, Millet D, Marshall JD. A national spatiotemporal exposure surface for NO2: monthly scaling of a satellite-derived land-use regression, air pollution and the risk of developing breast cancer among women in eight Canadian provinces: a case–control study. Environ Int. 2015;74:240–248.