Competition between electron-phonon attraction and weak Coulomb repulsion

J. K. Freericks(a) and Mark Jarrell(b).
(a)Department of Physics, Georgetown University, Washington, DC 20057-0995
(b)Department of Physics, University of Cincinnati, Cincinnati, OH 45221
(March 23, 2022)

Abstract

The Holstein-Hubbard model is examined in the limit of infinite dimensions. Conventional folklore states that charge-density-wave (CDW) order is more strongly affected by Coulomb repulsion than superconducting order because of the pseudopotential effect. We find that both incommensurate CDW and superconducting phases are stabilized by the Coulomb repulsion, but, surprisingly, the commensurate CDW transition temperature is more robust than the superconducting transition temperature. This puzzling feature is resolved by a detailed analysis of perturbation theory.

Typeset using REV\TeX

\copyright 1994 by the authors. Reproduction of this article by any means is permitted for non-commercial purposes.
Introduction. Interacting electronic systems with both electron-electron repulsion and phonon-mediated attractive interactions display a rich variety of ground states due to the competition between these interactions. In conventional low-temperature superconductors (SC), the electron-phonon interaction dominates over the Coulomb repulsion, since the latter is reduced from its bare values by the so-called pseudopotential effect (as described by Bogoliubov, et. al. [1] and Morel and Anderson [2]). The electron-phonon interaction is also believed to be responsible for charge-density-wave (CDW) order in weakly doped BaBiO$_3$. However, the Coulomb repulsion dominates over the electron-phonon interaction in the high-temperature superconducting cuprates, with commensurate spin-density-wave (SDW) order occurring in the (undoped) parent compounds.

Although the Coulomb interaction (in the form of the Hubbard model [3,4]) and the electron-phonon interaction (in the form of the Holstein model [5]) have both been extensively studied, there has been only limited work on the combined Holstein-Hubbard model [6] and only one exact theorem for the case of an attractive Coulomb interaction [7].

The conventional lore for the effect of the Coulomb interaction on a superconductor with strong electron-phonon interactions, is that the Coulomb repulsion is reduced from its bare values. This is because the electron-phonon interaction is retarded, allowing the electrons to attract each other, through the exchange of a virtual phonon, without being at the same lattice site at the same time. A quantitative estimate for this so-called pseudopotential effect can be made, and the (dimensionless) Coulomb repulsion $\rho(\mu)U_c$ is reduced to

$$\rho(\mu)U^*_c := \frac{\rho(\mu)U_c}{1 + \rho(\mu)U_c \ln \frac{W}{2\omega_D}},$$

where $\rho(\mu)$ is the electronic density of states (DOS) for an electron (of one spin) at the Fermi energy, U_c is the bare Coulomb repulsion, W is the electronic bandwidth, and ω_D is the Debye frequency. There is, however, no pseudopotential effect for a CDW distortion, because retardation effects play a limited role in a static CDW, where the electrons remained paired at every other lattice site. Therefore, we expect that the Coulomb repulsion will reduce the transition temperatures for CDW order much more than for SC, and that the
SC phase is thereby stabilized relative to the CDW phase.

Formalism. The dynamical mean-field theory (MFT) of Metzner and Vollhardt has been employed to exactly solve the Hubbard and Holstein models in infinite spatial dimensions using the quantum Monte Carlo (QMC) algorithm of Hirsch and Fye. The Holstein-Hubbard model

$$H = -\frac{t^*}{2\sqrt{d}} \sum_{<i,j>\sigma} c_{i\sigma}^\dagger c_{j\sigma} + g \sum_i x_i (n_{i\uparrow} + n_{i\downarrow} - 1) + U_c \sum_i n_{i\uparrow} n_{i\downarrow}$$

$$+ \frac{1}{2} \sum_i (\frac{p_i^2}{M} + M\Omega^2 x_i^2) ,$$

is written in standard notation: $c_{i\sigma}^\dagger$ is a creation operator for an electron localized at site i with spin σ; $n_{i\sigma} := c_{i\sigma}^\dagger c_{i\sigma}$ is the corresponding number operator; x_i is the phonon coordinate at site i; and p_i is its momentum. The hopping integral is $t := t^*/2\sqrt{d}$, the deformation potential is g, U_c is the Coulomb repulsion, Ω is the phonon frequency, and $M = 1$ is the phonon mass. The scaled hopping integral t^* determines the energy unit and is set equal to one ($t^* = 1$). The effective electron-electron attraction (due to phonon exchange) satisfies $U = -g^2/M\Omega^2$, and competes with the Coulomb repulsion $U_c > 0$.

The Holstein-Hubbard model is solved by QMC simulation. The QMC algorithm determines the local electronic Green’s function $G(i\omega_n)$ at each Fermionic Matsubara frequency $\omega_n := \pi T(2n+1)$, by mapping the infinite-dimensional lattice to an impurity problem. This mapping has been described in detail elsewhere. The Green’s function satisfies

$$G(i\omega_n) = F_\infty[i\omega_n + \mu - \Sigma(i\omega_n)] ,$$

with $\Sigma(i\omega_n)$ the electronic self energy and $F_\infty(z) := \int dy \rho(y)/(z - y)$ the rescaled complementary error function of a complex argument [$\rho(y) := \exp(-y^2)/\sqrt{\pi}$ is the noninteracting DOS].

The momentum-dependent susceptibility $\chi(q) = T \sum \tilde{\chi}_{mn}(q) =: T \sum \tilde{\chi}(q, i\omega_m, i\omega_n)$ (for CDW, SDW, or SC order) satisfies a Dyson equation

$$\tilde{\chi}_{mn}(q) = \chi_m^0(q) \delta_{mn} - T \sum_p \chi_m^0(q) \Gamma_{mp} \tilde{\chi}_{pn}(q)$$

for CDW, SDW, or SC order, respectively.
for each ordering vector q, with χ^0 the relevant bare susceptibility, and Γ_{mp} the local irreducible vertex function. The bare susceptibility for commensurate $[q = Q := (\pi, \pi, \pi, \ldots)]$ CDW or SDW order is

$$\chi^0_n(Q) := -\frac{G(i\omega_n)}{i\omega_n + \mu - \Sigma(i\omega_n)},$$

(5)

with a more complicated form for incommensurate wavevectors [13]. On the other hand, the uniform bare susceptibility for SC order satisfies

$$\chi^0_n'(0) := -\frac{\text{Im}G(i\omega_n)}{\omega_n - \text{Im}\Sigma(i\omega_n)}.$$

(6)

The irreducible vertex functions are extracted directly from the QMC data [5]. Figure 1 displays the lowest-order diagrammatic contributions to the vertex functions in the (a) CDW, (b) SC, (c) and SDW channels.

Transition temperatures are found by starting in the disordered (high-temperature) phase, and reducing the temperature until the susceptibility for each ordered phase diverges. The highest transition temperature T_c determines the initial symmetry of the ordered phase.

Results. The phase diagrams for the Holstein-Hubbard model with $g = 0.5$, $\Omega = 0.5$, $U = -1.0$, and $U_c = 0.0, 0.25, 0.5, 0.75$, are displayed in Figure 2. These phase diagrams are determined by QMC calculations and by a second-order iterated perturbation theory (IPT) [14] (there are no detectable phase transitions with the IPT for $U_c = 0.75$). The solid dots (lines) depict the commensurate CDW, the open dots (dotted lines) depict the incommensurate order, and the open triangles (dot-dashed lines) depict the SC phase for the QMC (IPT) calculations (the dashed lines connecting the QMC points are a guide to the eye).

The QMC data displays two types of notable behavior. First, there are no stable incommensurate phases when $U_c = 0$; the incommensurate phases become stable near the CDW-SC phase boundary only for $U_c > 0$. The explanation for this is simple: if the SC phase was ignored, the CDW phase would suffer a commensurate-incommensurate phase transition as $T_c \to 0$ in a similar fashion to the repulsive Hubbard model [15]; however,
the SC transition temperature is greater than the highest incommensurate CDW transition temperature, precluding its appearance at $U_c = 0$. As U_c increases, the SC T_c drops below the maximal incommensurate CDW T_c, which allows the incommensurate order to occur. Second, even though the region where the CDW phase is stable shrinks as U_c is increased, the CDW transition temperature \textit{is reduced by a smaller factor} than the SC transition temperature, in opposition to the conventional folklore.

The IPT approximation is reasonable for both the CDW and SC T_c’s and for the phase boundary between CDW and SC order. The approximate CDW transition temperature is again reduced by a smaller factor than the SC transition temperature as U_c increases. Thus one can understand this effect by studying the weak-coupling formalism. The IPT errs only by predicting a large incommensurate CDW-ordered region at $U_c = 0$ which shrinks as U_c increases, exactly opposite to what the QMC found, and it is unable to predict any finite T_c’s for $U_c = 0.75$.

The modification of the CDW transition temperature at half filling is plotted versus U_c in Figure 3. The CDW phase is followed for $0 < U_c < |U|$, since a SDW phase is expected to be the stable phase for $U_c > |U|$ at half filling [3] (this can be seen at weak coupling by comparing the CDW vertex to the SDW vertex in a power series as shown in Figure 1, indicating $\Gamma_{SDW} > \Gamma_{CDW}$ when $U_c > |U|$). $T_c(U_c)$ is smaller than $T_c(U_c = 0)$ in the weak-coupling regime ($g < 0.625$) and the curves are nearly linear in $U_c/|U|$, with a decreasing slope as g increases. In the strong-coupling regime ($g = 1.0$), the Coulomb repulsion initially \textit{enhances} the transition temperature (since it reduces the energy of the virtual state formed by breaking the bipolaron) before causing a reduction as $U_c \to |U|$.

\textit{Theory.} Much of the unexpected and notable behavior found in the QMC and ITP results can be illustrated within an analytic approximation. A weak-coupling analysis of the CDW and SC transition temperatures is performed in the square-well approximation [where the soft cutoffs $\Omega^2/\{\Omega^2 + (\omega_m - \omega_n)^2\}$ are replaced by hard cutoffs $\theta(\omega_c - |\omega_m|)\theta(\omega_c - |\omega_n|)$] [16]. A first-order calculation is accurate only to the lowest order in $1/U$. We summarize the main results here. Details will be given elsewhere.
In the SC channel, for small U_c one finds \[17\]

$$\frac{T_{c}^{SC}(U_c)}{T_{c}^{SC}(0)} \approx \exp \left[-\frac{1}{\rho(\mu)|U|} \frac{1}{\mu(U_c)} \right] \approx \exp \left[-\frac{U_c/|U|}{\rho(\mu)|U|} \right],$$

for arbitrary filling, with

$$I := -\frac{T}{\rho(\mu)} \sum_{\omega_n > \omega_c} \text{Im}F_{\infty}(i\omega_n + \mu)$$

$$\approx \frac{2}{\pi} \int_{0}^{\infty} dy \frac{\rho(y + \mu) + \rho(y - \mu)}{2\rho(\mu)} \tan^{-1} \frac{y}{\omega_c},$$

and ω_c is the cutoff frequency for the square well (the second line holds when $T_c \ll \omega_c$). In the limit $\omega_c \rightarrow 0$, one finds $I \rightarrow \ln(W/2\omega_c)$, as in the original work \[1\], but the above expression also holds for arbitrary electronic DOS \[18\].

Calculations in the CDW phase are more difficult. Restricting to the case of half filling ($\mu = 0$) and again for small U_c, one finds

$$\frac{T_{c}^{CDW}(U_c)}{T_{c}^{CDW}(0)} \approx \exp \left[-\frac{1}{\rho(0)} \frac{1}{2 - \alpha(U_c)} \frac{1}{|U| - U_c} \right]$$

$$\approx \exp \left[-\frac{U_c/|U|}{\rho(0)(2 - \alpha(0))|U|} \right],$$

with $\alpha(U_c)$ a parameter that measures the reduction of the direct electron-phonon attraction by the exchange diagrams in Fig. 1(a). This parameter satisfies $0 < \alpha < 1$ with $\alpha \rightarrow 0$ as $\Omega \rightarrow 0$ and $\alpha \rightarrow 1$ as $\Omega \rightarrow \infty$. An estimate for α yields

$$\alpha(U_c) \approx 1 - \frac{I\rho(0)(|U| - U_c)}{1 - I\rho(0)|U|}$$

which does approach 1 as $\omega_c \rightarrow \infty$ ($I \rightarrow 0$) and 0 as $\omega_c \rightarrow 0$ [$I \rightarrow 1/\rho(0)(2|U| - U_c)$] \[18\]. Substituting Eq. (10) into Eq. (9) finally yields

$$\frac{T_{c}^{CDW}(U_c)}{T_{c}^{CDW}(0)} \approx \exp \left[-\frac{U_c}{|U|} \left(\frac{1}{\rho(0)|U|} - I \right) \right].$$

The resolution of the puzzle of how U_c affects $T_c(CDW)$ versus $T_c(SC)$ is seen by examining the small U_c limits of Eqs. (7) and (9). The pseudopotential effect disappears in the SC channel as $U_c \rightarrow 0$, and the effect on T_c is enhanced away from half filling since
$\rho(\mu) < \rho(0)$. On the other hand, the effect of U_c on the CDW transition temperature is further reduced by the parameter I in Eq. (11). Thus, at least in the weak-coupling limit, U_c initially reduces the SC T_c more than it does the CDW T_c.

Fig. 3 shows the weak-coupling results (with the parameter I fitted to the QMC data for small Coulomb repulsion). One can see the weak-coupling formalism is excellent for $g = 0.4$, but becomes less accurate as the coupling strength increases.

In the strong-coupling limit, where the electrons are paired into bipolarons at a temperature much higher than the transition temperature for the ordered phase, the initial effect of U_c is to enhance the CDW T_c, because Coulomb repulsion reduces the bipolaron binding energy E_b, thereby increasing $T_c \propto 1/E_b$. The analysis for the pure electron-phonon case, is easily modified by changing the energy of all intermediate states to take into account the Coulomb repulsion [19]. The CDW transition temperature at half filling then satisfies

$$
\frac{T_{c_{CDW}}(U_c)}{T_{c_{CDW}}(0)} \approx \frac{1}{1 - \left| U_c \right|} \left[1 + \sum_{n=1}^{\infty} \frac{(-S)^n}{(1 + S')(2 + S')... (n + S')} \right]
$$

$$
/ \left[1 + \sum_{n=1}^{\infty} \frac{(-S)^n}{(1 + S)(2 + S)... (n + S)} \right]
$$

(12)

to second order in $|U|$, with $S := |U|/\Omega$ and $S' := S - (U_c/\Omega)$. This analysis has been extended to fourth order, but it is too cumbersome to be shown here. The solid line in Fig. 3 depicts the fourth-order approximation for $T_c(U_c)/T_c(0)$ [which lies with 10% of Eq. (12) for $U_c < 0.5|U|]$ when $g = 1$. Note how poor this approximation is as U_c becomes a sizeable fraction of $|U|$.

Conclusions. We have found that the conventional folklore for how Coulomb repulsion affects the electron-phonon interaction is flawed in assuming the SC transition temperature is more robust than the CDW transition temperature, but is resolved by detailed analysis of the weak-coupling theory. The Coulomb repulsion stabilizes the SC phase relative to the CDW phase and also allows for the appearance of incommensurate CDW order because $T_{c_{max}}^{(SC)} < T_{c_{max}}^{(ICDW)}$ for finite U_c. What happens to the phase diagram for $U_c > |U|$? We conjecture that the CDW phase is taken over by the SDW phase at half filling, but do not know whether or not SC phases can remain stable away from half filling (due to the
pseudopotential effect) or if paramagnetism prevails. Work along these lines is in progress.

We would like to acknowledge useful discussions with J. Deisz, R. Scalettar, D. Scalapino, and H.-B. Schuttler. This work was supported by the National Science Foundation grant No. DMR-9107563. In addition MJ would like to acknowledge the support of the NSF NYI program. Computer support was provided by the Ohio Supercomputer Center.
REFERENCES

[1] N. N. Bogoliubov, N. V. Tolmachev, and D. V. Shirkov, *A New Method in the Theory of Superconductivity* (Consultants Bureau, New York, 1959).

[2] P. Morel and P. W. Anderson, Phys. Rev. **125**, 1263 (1962).

[3] M. Jarrell, Phys. Rev. Lett. **69**, 168 (1992); M. Jarrell and Th. Pruschke, Z. Phys. B **90**, 187 (1993).

[4] M. J. Rozenberg, X. Y. Zhang, and G. Kotliar, Phys. Rev. Lett. **69**, 1236 (1992); A. Georges and W. Krauth, Phys. Rev. Lett. **69**, 1240 (1992).

[5] J. K. Freericks, M. Jarrell, and D. J. Scalapino, Phys. Rev. B **48**, 6302 (1993); Europhys. Lett. **25**, 37 (1994).

[6] J. Zhong and H.-B. Schuttler, Phys. Rev. Lett. **69**, 1600 (1992).

[7] J. K. Freericks and E. H. Lieb, Phys. Rev. B **51**, 2812 (1995).

[8] W. Metzner and D. Vollhardt, Phys. Rev. Lett. **62**, 324 (1989).

[9] J. Hubbard, Proc. Royal Soc. London (Ser. A) **276**, 238 (1963).

[10] T. Holstein, Ann. Phys. (N.Y.) **8**, 325 (1959).

[11] J. E. Hirsch and R. M. Fye, Phys. Rev. Lett. **56**, 2521 (1986).

[12] U. Brandt and C. Mielsch, Z. Phys. B **75**, 365 (1989); F. J. Okhawa, Phys. Rev. B **44**, 6812 (1991); Prog. Theor. Phys. Suppl. **106**, 95 (1991); A. Georges and G. Kotliar, Phys. Rev. B **45**, 6479 (1992).

[13] E. Müller-Hartmann, Z. Phys. B **74**, 507 (1989); **76**, 211 (1989).

[14] J. K. Freericks and M. Jarrell, Phys. Rev. B **50**, 6939 (1994).

[15] J. K. Freericks and M. Jarrell, Phys. Rev. Lett. **74**, 186 (1995).
[16] J. K. Freericks and D. J. Scalapino, Phys. Rev. B 49, 6368 (1994); J. K. Freericks, Phys. Rev. B 50, 403 (1994).

[17] F. Marsiglio, J. Low Temp. Phys. 87, 659 (1992).

[18] In the weak-coupling limit, one can show that the maximal value for the parameter I is set by the interaction strength in the following way: $I_{\text{max}} < 2/\rho(\mu)|U|$ for the SC channel; and $I_{\text{max}} = 1/\rho(0)[(2 - \alpha)|U| - U_c]$ for the CDW channel at half filling.

[19] J. K. Freericks, Phys. Rev. B 48, 3881 (1993).
FIG. 1. Lowest-order contribution to the irreducible vertex function in the (a) charge-density-wave, (b) superconducting, and (c) spin-density-wave channels. The solid lines denote electron propagators, the wiggly lines denote phonon propagators, and the dotted lines denote the Coulomb repulsion.
FIG. 2. Phase diagram for the Holstein-Hubbard model with $g = 0.5$, $\Omega = 0.5$, $U = -1.0$, and $U_c = 0.0$, 0.25, 0.5, and 0.75. The solid dots (lines) are for the commensurate CDW, the open dots (dotted lines) are for the incommensurate CDW, and the open triangles (dot-dashed lines) are for the SC as determined from a QMC (IPT) calculation. There are no transitions detected by the IPT for $U_c = 0.75$. The dashed line through the QMC points is a guide to the eye.
FIG. 3. Relative change in the CDW transition temperature at half filling due to Coulomb repulsion. Four different cases are shown: \(g = 0.4 \) (solid dots); \(g = 0.5 \) (open dots); \(g = 0.625 \) (open triangles); and \(g = 1.0 \) (open squares). The dotted lines are the weak-coupling approximations for \(g = 0.4, 0.5, \) and \(0.625 \). The parameter \(I \) is adjusted to produce the correct slope as \(U_c \to 0 \). The solid line is a fourth-order strong-coupling approximation for the \(g = 1.0 \) case.