Hypermethylated in Cancer 1 (HIC1) Recruits Polycomb Repressive Complex 2 (PRC2) to a Subset of Its Target Genes through Interaction with Human Polycomb-like (hPCL) Proteins*

Received for publication, November 3, 2011, and in revised form, January 31, 2012 Published, JBC Papers in Press, February 7, 2012, DOI 10.1074/jbc.M111.320234

Gaylor Boulay†1, Marion Dubuissez2, Capucine Van Rechem12, Antoine Forget‡3, Kristian Helin4, Olivier Ayrault5, and Dominique Leprince14

From the 1CNRS UMR 8161, Institut de Biologie de Lille, Université Lille Nord de France, Institut Pasteur de Lille, Lille 59021, France, the 2Institut Curie, CNRS UMR 3306, INSERM U1005, Centre Universitaire, Orsay 91405, France, and the 3BRIC, University of Copenhagen, Ole Maaløes vej, 5, DK-2200, Copenhagen, Denmark

* This work was supported in part by grants from the CNRS, the Ligue Nationale contre le Cancer (Comité Interrégional du Septentrion), the Fondation pour la Recherche Médicale (Comité du Nord), and the Association pour la Recherche contre le Cancer (Amé ergie, D. L.).
† This article contains supplemental Fig. S1 and Table S1.
‡ Supported by fellowships from the CNRS/Région Nord-Pas de Calais and the Association pour la Recherche contre le Cancer.
§ Present addresses: Harvard Medical School and Massachusetts General Hospital Cancer Center, Charlestown, MA 02129.
¶ Supported by a AVENIR/INSERM/Inca grant.
†‡1 To whom correspondence should be addressed: CNRS UMR 8161, Institut de Biologie de Lille, 1 Rue du Professeur Calmette, BP 447, 59021 Lille Cedex, France. Tel.: 00-33-3-20-87-11-19; Fax: 00-33-3-20-87-11-11; E-mail: dominique.leprince@ibl.fr.

Background: HIC1 is a transcriptional repressor recruiting CtBP and NuRD complexes.
Results: HIC1 interacts with human Polycomb-like proteins.
Conclusion: HIC1 recruits the Polycomb PRC2 on a subset of its target genes through interactions with Polycomb-like proteins.
Significance: Our results implicate hPCL proteins in the recruitment of PRC2 by transcription factors in mammals.

HIC1 (hypermethylated in cancer 1) is a tumor suppressor gene epigenetically silenced or deleted in many human cancers. HIC1 is involved in regulatory loops modulating p53- and E2F1-dependent cell survival, growth control, and stress responses. HIC1 is also essential for normal development because Hic1-deficient mice die perinatally and exhibit gross developmental defects throughout the second half of development. HIC1 encodes a transcriptional repressor with five C2H2 zinc fingers mediating sequence-specific DNA binding and two repression domains: an N-terminal BTB/POZ domain and a central region recruiting CtBP and NuRD complexes. By yeast two-hybrid screening, we identified the Polycomb-like protein hPCL3 as a novel corepressor for HIC1. Using multiple biochemical strategies, we demonstrated that HIC1 interacts with hPCL3 and its paralog PHF1 to form a stable complex with the PRC2 members EZH2, EED, and Suz12. Confirming the implication of HIC1 in Polycomb recruitment, we showed that HIC1 shares some of its target genes with PRC2, including ATOH1. Depletion of HIC1 by siRNA interference leads to a partial displacement of EZH2 from the ATOH1 promoter. Furthermore, in vivo, ATOH1 repression by HIC1 is associated with Polycomb activity during mouse cerebellar development. Thus, our results identify HIC1 as the first transcription factor in mammals able to recruit PRC2 to some target promoters through its interaction with Polycomb-like proteins.

Polycomb are maintenance repressive complexes important for development, stem cell renewal, and cancer (1). Polycomb group (PcG) proteins were first discovered in Drosophila for their role in the regulation of Hox genes during development and are now recognized as global epigenetic transcriptional regulators of cell fate decisions in all metazoans. They are organized in multiprotein modifying/chromatin complexes of variable composition (2). In mammals, the best characterized complexes are Polycomb repressive complexes 1 and 2 (PRC1 and PRC2). The PRC2 complex is composed of three core proteins, the histone methyltransferase EZH1 or EZH2, SUZ12, and one of the EED isoforms. EZH2 catalyzes the dimethylation and trimethylation of lysine 27 of histone 3 thereby generating an epigenetic repressive mark bound by the Polycomb (Pc) protein of PRC1 (2, 3).

In addition to these core components, PRC2 is associated with co-factors that are essential to modulate its activity and/or its recruitment to specific loci in embryonic stem cells, such as the recently characterized JARID2 protein, which contains an AT-rich DNA-binding domain (4, 5). However, the first PRC2 co-factor, Polycomb-like (PCL) was discovered in Drosophila through biochemical characterization of a 1-MDa complex distinct from the prominent 600-kDa E(z) complex PRC2 (6). In line with the significant expansion of PcG genes during evolution, three human orthologs of Drosophila Polycomb-like have been characterized, hPCL1/PHF1 (human Polycomb-like 1/PHF1 finger protein 1) (7), hPCL2/MTF2 (7, 8), and hPCL3/PHF19 (9). These three genes are differentially expressed suggesting that their expression pattern could provide other potential regulatory mechanisms to PcG target genes. Indeed, PHF1 and hPCL3 are widely expressed in different normal tissues with some examples of co-expression (7, 8). HPC1L3 is also

5 The abbreviations used are: PcG, Polycomb group; PRC, Polycomb repressive complex; PCL, Polycomb-like; PHD, plant homeodomain; qRT, quantitative reverse transcriptase; CR, central region; NLS, nuclear localization signal. ESC, extra sex combs; EED, embryonic ectoderm development; Suz12, suppressor of zeste 12; EZH2, enhancer of zeste homolog 2.
HIC1 Interacts with Human Polycomb-like Proteins

up-regulated in many cancers (9). By contrast, microarray analyses in mice have demonstrated that Pcl2 is highly expressed in undifferentiated embryonic stem cells and during embryonic development as well as in some adult tissues (8). PHF1, hPCL2, and hPCL3 are highly similar and display strong sequence similarities to Drosophila PCL. In particular, they share an N-terminal module consisting of three well defined functional domains, namely a TUDOR domain and two adjacent PHD (plant homeodomain) fingers immediately followed by a domain of extended homology with Drosophila PCL (8–10). These PCL proteins are not implicated in the formation and stability of the PRC2 complex in contrast with EED and SUZ12 but are essential for high levels of H3K27 trimethylation in Drosophila (11) and mammals (12, 13) as well as for the cell-specific targeting of PRC2 to specific loci such as some Hox genes (8, 14, 15).

HIC1 (hypermethylated in cancer 1) is a tumor suppressor gene frequently deleted or epigenetically silenced in many human cancers (16, 17). HIC1 is a bona fide tumor suppressor because Hic1 heterozygous mice have a high propensity to spontaneously develop tumors late in life (18). In addition, HIC1 synergizes with P53 in tumor suppression (19). HIC1 is a direct target of P53 and represses the transcription of SIRT1, a NAD + -dependent class III deacetylase that deacetylates and inactivates P53, thereby modulating P53-dependent DNA damage responses (20). Similarly, SIRT1 and HIC1 are also involved in a feedback regulatory loop with E2F1, a crucial activator of SIRT1 transcription in response to DNA damage. E2F1 activates HIC1 (21) and is inactivated by SIRT1-mediated deacetylation (22). Thus, HIC1 is placed at the crossroads of complex regulatory loops modulating P53-dependent and E2F1-dependent cell survival, growth control, and stress responses (17, 23). In addition, HIC1 is also essential for normal mammalian development as shown by Hic1 homozygous mice, which together with a perinatal death have several developmental anomalies resembling those found in Miller-Dieker syndrome patients (24, 25).

HIC1 encodes a sequence-specific transcriptional repressor with five Krüppel-like C2H2 zinc fingers and two autonomous repression domains: the N-terminal BTB/POZ domain and its repressor domains: the N-terminal BTB/POZ domain and its C-terminal LexA DNA-binding domain in a yeast two-hybrid vector. A human breast tissue random-primed cDNA library, transformed into the Y187 yeast strain and containing 10 million independent fragments, was used for mating. The screen was performed in conditions ensuring a minimum of 50 million interactions tested, to cover five times the primary complexity of the yeast-transformed cDNA library. 79 million interactions were actually tested with HIC1.

Cell Culture—WI-38 were purchased from ATCC (14 passages) and cultured in minimal essential medium (Invitrogen) supplemented with 10% fetal calf serum (FCS), nonessential amino acids, and gentamicin. HEK293T cells were maintained in DMEM (Invitrogen) supplemented with 10% FCS, gentamicin, and nonessential amino acids. BJ-tert cells were maintained in DMEM supplemented with 10% FCS and penicillin/streptomycin.

Plasmids and shRNA Retroviral Infections—The pTL1-HIC1, pcDNA3-FLAG-HIC1, pcDNA3-FLAG-HIC1 L225A, K314R, E316A, and K314Q expression vectors as well as each of the isolated domains (10), as well as for Myc-EZH2 (34), HA-EED, and HA-SUZ12 (35, 36) have been previously described. We PCR amplified and cloned a fragment corresponding to the CTBP and NuRD complexes, which interact with the HIC1 central region, and we further demonstrate that this interaction mainly relies on its BTB/POZ domain. On the other hand, the common TUDOR domain and the hPCL3L-specific PHD2 domain are both involved in the interaction with HIC1. However, although both hPCL3L and hPCL3S isoforms interact with HIC1 and EZH2, only hPCL3L favors the formation of a ternary complex with HIC1 and PRC2 components. Consistent with these findings, we demonstrate that, in normal WI38 fibroblasts, HIC1 recruits PHF1 and the PRC2 complex to some HIC1 target genes such as ATOH1 as well as the ENF1A and CXC7 promoters, as shown by the detection of high levels of H3K27 trimethylation and EZH2.

Functional analyses using RNAi knockdown demonstrate that HIC1 is necessary for the stable recruitment of EZH2 on ATOH1 in WI38 and BJ-tert cells. Finally, in vivo during mouse cerebellar development, ATOH1 repression by HIC1 is associated with Polycomb-mediated epigenetic activity. In conclusion, our results identify HIC1 as the first transcription factor in mammals able to recruit the repressive PRC2 complex to a discrete subset of target genes through its interaction with Polycomb-like proteins.
HIC1 Interacts with Human Polycomb-like Proteins

by BamHI and EcoRI restriction sites into pcDNA3-FLAG. All constructs were verified by sequencing. shRNA were cloned in the pSuperRetro vector according to the manufacturer’s instructions using previously published sequences targeting PHF1 (12) and HIC1 (37). BJ-tet cells were infected with retrovirus encoding shRNA as previously described (30) for 24 h, fresh medium was added for 24 h and infected cells were selected for 48 h by puromycin treatment at 2 μg/ml.

Antibodies—Rabbit polyclonal anti-HIC1 (325 and 2563) antibodies (31), the monoclonal antibodies against EZH2 (AC22), EED (AA19), and Bmi1 (AP27) (35, 36), and the polyclonal antibodies against the C-terminal end of hPCL3L (10) have been previously described. For HIC1 immunoblotting shown in Figs. 1E, 8E, 9A, and 10A, we used a new batch of polyclonal antibodies obtained by injecting a synthesized peptide corresponding to the C-terminal end of HIC1 into New Zealand rabbits (Eurogentec, Seraing, Belgium). Similarly, to generate polyclonal antibodies against PHF1, two peptides were synthesized and used to immunize two New Zealand rabbits. Their sequences are (amino acids 360–374) H2N-CGVRSP LGKR PEP E-CONH2 (325) and (amino acids 312–327) H2N-HKDRFI SGR EIKKRR C-CONH2. Commercial antibodies of the following specificity were used: FLAG from Sigma (M2 monoclonal antibody F3165); GAL4 (sc-577), ACTIN (sc-1616-R), GAPDH (sc-32233), and MYC tag (sc-789) were from Santa Cruz; HA (mouse monoclonal from BABCO); anti-Suz12 (D39F6) from Cell Signaling; anti-acetyl Histone H3 (ab1791) from Abcam. Western Blot—Western blots were performed as previously described (10, 31). The secondary antibodies were horseradish peroxidase-linked antibodies raised against rabbit or mouse immunoglobulins (Amersham Biosciences).

Small Interfering RNAs—WI-38 cells were reverse-transfected with RNAiMax (Invitrogen) according to the manufacturer’s instructions using 20 nm small interfering RNA targeting HIC1 (HIC1 siGENOME Smart Pool M-006532-01, Dharmacon), EZH2 (siGENOME Smart Pool M-004218-03), or a scrambled sequence. 72 h later cells were harvested for protein, RNA, or chromatin extraction. In Fig. 10, cells were incubated for 6 days using 5 nm small interfering RNA.

Chromatin Immunoprecipitation—Conventional ChIP and sequential ChIP were performed as previously described (10). The purified DNAs were used for PCR analyses with Fast Start TaqDNA Polymerase (Roche Applied Science) using the relevant primers for ATOH1 and GAPDH (supplemental Table S1).

Quantitative ChIP was performed according to the Q2 ChIP protocol as previously described with slight modifications (38). Briefly, formaldehyde was added directly to the cultured cells to a final concentration of 1% for 15 min at 37 °C. Adding glycerol to a final concentration of 0.125 m stopped the cross-linking. After 5 min at 37 °C, cells were lysed directly in the plates by resuspension in cell lysis buffer for 5 min. Then, the samples were pelleted, resuspended in nuclei lysis buffer, and sonicated to chromatins with an average size of 250 bp using a BioRuptor (Diagenode, Liege, Belgium). Whole postnatal day 5 (P5) mice cerebellum (C57BL/6 background) were immersed in 1% formaldehyde in PBS for 2.5 h on ice, whereas P21 cerebella (C57BL/6 background) were first cut into 4 pieces. Glycine was added to 250 mm and incubated for 5 min at room temperature. After washing with PBS, samples were extensively resuspended in 500 μl of cell lysis buffer, incubated 10 min on a rotator at 4 °C, and centrifuged. Pellets were then resuspended in 200 μl of nuclei lysis buffer, separated into two tubes, and sonicated with 9 sets of 30-s pulses using a BioRuptor at the highest power. Chromatin was diluted to a concentration of 1.5 A260 units in RIPA buffer (10 mm Tris/ HCl, pH 7.5, 1 mm EDTA, 0.5 mm EGTA, 1% Triton X-100, 0.1% SDS, 0.1% sodium deoxycholate, 140 mm NaCl). Chromatin (100 μl, 1.5 A260 units) was transferred to a tube containing 2.4 μg of antibody-magnetic protein A-coated bead (Millipore) complexes in 100 μl of RIPA buffer and incubated overnight on a rotator at 4 °C. Immunocomplexes were washed three times in ice-cold RIPA buffer and once in TE buffer (10 mm Tris/HCl, pH 8, 10 mm EDTA). Each wash lasted for 4 min on a rotator at room temperature. ChIP complexes were transferred to a new tube with TE buffer, which was removed and replaced by 150 μl of elution buffer (20 mm Tris/HCl, pH 7.5, 50 mm NaCl, 1% SDS) containing 50 μg/ml of proteinase K and incubated 1 h at 55 °C. Then samples were treated with 133 μg/ml of RNase A for 30 min at 37 °C. Finally, the supernatant was recovered and incubated for 2 h at 68 °C. DNAs as well as 5% input (5 μl of 1.5 A260 units) were purified on Nucleobond Extract II (Macherey-Nagel) and eluted with 150 μl of H2O. The protocol involving mouse use was per-
HIC1 Interacts with Human Polycomb-like Proteins

formed in accordance with the National and European regulation on the protection of animals used for scientific purposes.

RT-PCR and Quantitative PCR—RNA extraction, reverse transcription, and quantitative PCR were performed as previously described (10).

Immunoprecipitated DNA was analyzed in a MX3005P fluorescence resonance timer (Stratagene) in triplicates by real-time PCR starting from 3 µl of template DNA in a final volume of 10 µl containing power SYBR Green (Applied Biosystems) and primers at a final concentration of 0.5 µM. The primers used are summarized in supplemental Table S1. According to a melting point analysis, only one PCR product was amplified under these conditions. An input control was used to generate a standard curve for each gene. Results were expressed as % input for EZH2 and as a ratio of total histone H3 for acetyl-H3, H3K27me3, and H3K27me2. Each condition was performed twice and a representative experiment is shown.

Statistics—Experiments were performed at least twice independently in duplicates or triplicates. Statistical analyses were performed by Student’s *t* test. The asterisk (*) indicates *p* < 0.05.

RESULTS

HIC1 Interacts with hPCL3L and PHF1—To further characterize the repression mechanisms brought about by HIC1 on its target genes, we conducted a yeast two-hybrid screen using the two autonomous repression domains of HIC1, the BTB/POZ domain and the central region, as bait to screen a human mammary gland library (Fig. 1A). As previously described, this screen has already identified in addition to CtBP, ARID1A/BAF250A, a component of the SWI/SNF complexes and MTA1, a component of the NuRD repressive complexes as new HIC1 partners (27, 32). In addition, seven interacting clones corresponded to the N-terminal half (amino acids 32–361) of hPCL3 (human Polycrom-like 3), one of the three human orthologs of the *Drosophila* PCL (Polycrom-like) protein (9). The isolated preys contained the TUDOR domain, the two autonomous repression domains of HIC1, the BTB/POZ domain and the central region, respectively, through the GLDLSKK motif and the domain of BCL6 and PLZF, the HIC1 BTB/POZ domain is an HDAC-independent repression domain insensitive to inhibition of Class I and II HDACs such as TSA (43). Aside from the HDAC-independent repression domain insensitive to inhibitors of Class I and II HDACs such as TSA (43).

We thus hypothesize that the BTB/POZ domain could be the HIC1 repression domain implicated in the interaction with hPCL3L. To that end, we used BTB- and BTB-CR-Gal4 chimera including a nuclear localization signal (NLS) and an HA epitope, as previously described (33) (Fig. 3A). Similarly, neither the SUMOylation-deficient mutants K314R and E316A nor the K314Q mutant mimicking a constitutive acetylation showed significantly reduced binding to hPCL3 compared with wild-type HIC1 (Fig. 2B).

The CtBP and NuRD repression complexes have been linked, respectively, to the recruitment of PcG proteins and to the deposition of its specific epigenetic mark, H3K27me3 (39–41). To investigate a potential link in the case of HIC1, we performed co-immunoprecipitation analyses between hPCL3L and HIC1 point mutants compromised in their ability to interact with these two complexes. The HIC1 L225A mutant carries a point mutation in the GLDLS motif that abrogates its interaction with CtBP (42). Several point mutants in the SUMOylation/acetylation switch motif MK314HEP severely impaired its interaction with CtBP (42). Several point mutants in the SUMOylation/acetylation switch motif MK314HEP severely impaired its interaction with CtBP (42). Several point mutants in the SUMOylation/acetylation switch motif MK314HEP severely impaired its interaction with CtBP (42). Several point mutants in the SUMOylation/acetylation switch motif MK314HEP severely impaired its interaction with CtBP (42).

The isolated preys contained the TUDOR domain, the two autonomous repression domains of HIC1, the BTB/POZ domain and the central region, respectively, through the GLDLSKK motif and the domain of BCL6 and PLZF, the HIC1 BTB/POZ domain is an HDAC-independent repression domain insensitive to inhibitors of Class I and II HDACs such as TSA (43). Aside from the Class III deacetylase SIRT1 (20), hPCL3L is therefore only the HDAC-independent repression domain insensitive to inhibitors of Class I and II HDACs such as TSA (43).

This result could at least partly explain why PHF1 was not initially identified as a potential HIC1 partner. Thus, our results demonstrate that HIC1 interacts with two Polycomb-like proteins, hPCL3 and PHF1.

HIC1 Recruits hPCL3L via Its BTB/POZ Domain and Independently of CtBP and NuRD Complexes—The bait used in the two-hybrid screen included the two repression domains of HIC1, the BTB/POZ domain and the central region (CR) in-frame with a C-terminal DNA-binding domain to mimic the structure of the wild-type HIC1 protein. The CtBP and MTA1 corepressors isolated in this screen clearly interact with the central region, respectively, through the GLDLSKK motif and the MKH3HEP SUMOylation/acetylation switch motif (Fig. 1A) (27, 31, 33).

To confirm this interaction, we first performed coimmunoprecipitation analyses in transiently transfected HEK293T cells. HIC1 was coprecipitated by FLAG-hPCL3L (Fig. 1B) and conversely, FLAG-hPCL3L was coimmunoprecipitated by HIC1 (Fig. 1C) demonstrating that full-length HIC1 and hPCL3 associate in vivo. Furthermore, as shown in Fig. 6B, FLAG-HIC1 proteins can efficiently co-immunoprecipitate endogenous hPCL3L in HEK293T.

The *Drosophila* PCL has three human homologues, PHF1 (hPCL1), hPCL2, and hPCL3, which exhibit distinct expression patterns (8, 9). However, these three homologues are highly related notably for the presence of the TUDOR and tandem PHD domains. Previously, we demonstrated through quantitative RT-PCR analyses that PHF1 but not hPCL3 is highly expressed together with HIC1 in normal human WI38 fibroblasts (10). Because these WI-38 cells are a convenient model to study the functional properties of endogenous HIC1 proteins (20, 27), we asked whether HIC1 could also interact with PHF1. As expected from their common structural organization, HIC1 was coimmunoprecipitated by FLAG-PHF1 (Fig. 1D) and conversely FLAG-PHF1 was coprecipitated by HIC1 (Fig. 1E). According to our previous results of qRT-PCR in mammary HMEC-htERT and MCF10A cells (10), PHF1 appeared less expressed than hPCL3L in the human mammary gland, the tissue used to construct the library for the yeast two-hybrid screen. This result could at least partly explain why PHF1 was not initially identified as a potential HIC1 partner. Thus, our results demonstrate that HIC1 interacts with two Polycomb-like proteins, hPCL3L and PHF1.
recruit independently three distinct repression complexes through its BTB/POZ domain and central region.

The Two hPCL3 Isoforms Interact with HIC1 via Their TUDOR and PHD2 Domains—The full-length hPCL3L protein contains a TUDOR domain and two tandem zinc finger-like PHD domains, PHD1 and PHD2, which were all included in the isolated prey (Fig. 1A). The hPCL3 gene also encodes a shorter isoform, which contains only the TUDOR and PHD1 domains (Fig. 4A) (9). In transient transfection assays, HIC1 is co-immunoprecipitated by this shorter isoform (Fig. 4B). To determine which domain is responsible for the interaction with HIC1, we conducted co-immunoprecipitation assays between HIC1 and our previously described FLAG-tagged deletion mutants (Fig. 4E) (10). As shown in Fig. 4C, a strong interaction was detected between HIC1 and the N-terminal half of hPCL3L containing the TUDOR domain (lane 3) or with the isolated PHD2 domain.
By contrast, a very weak interaction was detected between HIC1 and the C-terminal half of hPCL3 containing the PHD1 domain (Fig. 4C, lane 4). Notably, the PHD1 domain is poorly conserved in the phylogeny of PCL3 proteins in striking contrast with the TUDOR and PHD2 domains (10). In accordance with a conserved mechanism of interaction between HIC1 and Polycomb-like proteins, a truncated form of PHF1 containing its TUDOR, PHD1, and PHD2 domains was sufficient to co-immunoprecipitate HIC1 (Fig. 4D).

A

![Image](lane 5). By contrast, a very weak interaction was detected between HIC1 and the C-terminal half of hPCL3 containing the PHD1 domain (Fig. 4C, lane 4). Notably, the PHD1 domain is poorly conserved in the phylogeny of PCL3 proteins in striking contrast with the TUDOR and PHD2 domains (10). In accordance with a conserved mechanism of interaction between HIC1 and Polycomb-like proteins, a truncated form of PHF1 containing its TUDOR, PHD1, and PHD2 domains was sufficient to co-immunoprecipitate HIC1 (Fig. 4D).

B

![Image](lane 5). By contrast, a very weak interaction was detected between HIC1 and the C-terminal half of hPCL3 containing the PHD1 domain (Fig. 4C, lane 4). Notably, the PHD1 domain is poorly conserved in the phylogeny of PCL3 proteins in striking contrast with the TUDOR and PHD2 domains (10). In accordance with a conserved mechanism of interaction between HIC1 and Polycomb-like proteins, a truncated form of PHF1 containing its TUDOR, PHD1, and PHD2 domains was sufficient to co-immunoprecipitate HIC1 (Fig. 4D).

In conclusion, these results demonstrate that both the TUDOR and PHD2 domains are required for the interaction with HIC1. Notably, these two domains interacting with HIC1 are also involved in the interaction with EZH2 (10).

hPCL3L Favors Formation of a Ternary Complex with HIC1 and PRC2 Complex—We finally decided to clarify the role of these interactions between HIC1 and Polycomb-like proteins. Although they contain different combinations of functional domains, the two hPCL3 isoforms interact both with HIC1 (Figs. 1B and 4B) and EZH2 and EED, two components of PRC2 complexes (10). Nevertheless, hPCL3L and hPCL3S display different subcellular localizations and are present in two different EZH2 containing complexes as previously shown by gel filtration analyses (10). These observations prompted us to investigate whether both hPCL3 isoforms could form a “ternary” complex with HIC1 and components of the PCR2 complex. In a preliminary experiment, the three components necessary to obtain a stable PRC2 complex, EZH2, EED, and SUZ12, were cotransfected together with HIC1 and with or without each of the two hPCL3 isoforms. HIC1 proteins were immunoprecipitated with FLAG antibodies and their associated proteins were
detected with HA and MYC antibodies. Our results demonstrate that hPCL3L, but not the hPCL3S isoform lacking the PHD2 domain, promotes interactions between HIC1 and two PRC2 components, EZH2 and SUZ12 (Fig. 5, compare lanes 6–8). The strong and constant interaction observed with EED (lanes 6–8) could be explained by the interaction between EED and the C-terminal moiety of HIC1 containing the 5 zinc finger motifs (supplemental Fig. S1).

To unambiguously demonstrate that hPCL3L, HIC1, and the PRC2 complex are engaged into a ternary complex, FLAG-HIC1, HA-hPCL3L, and PRC2 components (MYC-EZH2, HA-SUZ12, and HA-EED) were cotransfected in HEK293T cells and we performed two rounds of sequential immunoprecipitation (IP). The cell lysates were first immunoprecipitated with polyclonal antibodies against HIC1 to detect co-immunoprecipitation (IP) or with anti-FLAG monoclonal antibodies to ascertain the presence of hPCL3S (IP: FLAG). 2% of each lysate was directly resolved by SDS-PAGE and immunoblotted with the indicated antibodies (INPUT). C, association of HIC1 with hPCL3 is dependent on the TUDOR and PHD2 domains. HEK293T cells were transiently transfected with the indicated expression plasmids as well as with the empty pcDNA3-FLAG vector as a control for 48 h. Whole cells extracts were prepared in IPH buffer and incubated with anti-FLAG antibodies (two bottom panels: IP FLAG, lanes 1–5) and immunoblotted (WB) with anti-HIC1 antibodies to detect HIC1 co-immunoprecipitation (middle panel) and with anti-FLAG monoclonal antibodies to verify the presence of hPCL3 deletion mutants in the immunoprecipitates (bottom panel). 2% of each lysate was directly resolved by SDS-PAGE and immunoblotted with antibodies against HIC1 to ascertain the presence of HIC1 (top panel: INPUT). D, HIC1 interacts with the N-terminal moiety of PHF1. A similar co-transfection experiment was performed in HEK293T cells with a similar combination of expression plasmids but using the FLAG-PHF1 encoding amino acids 1–240 corresponding to the conserved functional domains.
HIC1 Interacts with Human Polycomb-like Proteins

In accordance with these results, upon ectopic expression in HEK293T, FLAG-HIC1 proteins could efficiently co-immunoprecipitate hPCL3L as well as several endogenous PRC2 components including Suz12, Eed, and EZH2, the catalytic subunit of PRC2 complexes, but not the PRC1 component Bmi1 (Fig. 6B). In addition, we were able to detect an interaction between the endogenous HIC1 and Suz12 proteins in WI-38 fibroblasts (Fig. 6C). In conclusion, our results suggest that Polycomb-like proteins, and especially hPCL3L, can stabilize interactions between HIC1 and PRC2 components through the formation of a ternary complex.

EZH2 and H3K27 Trimethylation Are Associated with a Subset of HIC1 Target Genes—We then examined if these interactions could result in a functional activity of Polycomb complexes on HIC1 target genes. To that end, we assessed by ChIP-qPCR analyses the levels of two epigenetic marks and the histone methyltransferase EZH2 on various HIC1 target genes in WI-38 cells. The histone modification H3K27me3, specifically catalyzed by PRC2, was detected on canonical PRC2 target genes such as MYT1, CCND2, and the ATOH1 enhancer as expected (45), but also on CXCR7 (37) and EFNA1 (46), two HIC1 target genes that had not been previously recognized as PRC2 targets (Fig. 7A). The ATOH1 enhancer is a direct target gene of HIC1 in mouse embryonic cerebellum and in human medulloblastoma cell lines (47) as well as in normal WI-38 fibroblasts (27). Interestingly, ATOH1 is also found in a list of genes repressed by PRC2 components in TIG3 human embryonic fibroblasts (45). By contrast, no consistent level of H3K27me3 modification was detected on other HIC1 target genes such as CCND1, the distal sites in the SIRT1 promoter and E2F1, or on the GAPDH promoter used as negative control. Previously, we detected through ChIP analyses followed by PCR amplification the presence of H3K27me3 on the proximal HIC1 binding sites in the SIRT1 promoter (27). However, due to the extremely high GC content of this region, we failed to amplify it in our quantitative ChIP-qPCR assay (data not shown).

In accordance with H3K27me3 detection, EZH2 was highly detected on MYT1, ATOH1, and EFNA1 but at lower levels on CCND2 and CXCR7 (Fig. 7B). Surprisingly, despite the absence of H3K27me3, significant levels of EZH2 were also detected on the distal SIRT1 promoter (Fig. 7B).

We next assessed by ChIP the levels of an activating epigenetic mark on the same subset of genes. As shown in Fig. 7C, the levels of H3K27me3 are globally inversely mirrored on each gene by the levels of total acetylated histone H3. In conclusion, several HIC1 target genes are enriched in H3K27me3 histone modification and the PRC2-methyltransferase EZH2 in close agreement with the interaction between HIC1, Polycomb-like proteins, and PRC2.

HIC1 Recruits PHF1 and PRC2 Complex to ATOH1 Enhancer in WI-38 Cells—We next wanted to investigate the relationship between HIC1, human Polycomb-like proteins, and PRC2 complex at an endogenous target locus. To demonstrate that ATOH1 is indeed a target gene common to the HIC1 and PRC2 complexes, we carried out single ChIP experiments in growing WI-38 cells. As shown in Fig. 8A, HIC1 is found at the ATOH1 enhancer together with the H3K27me3 epigenetic mark specifically deposited by the PRC2 complex. However, we failed to detect any enrichment for hPCL3L. This result suggests that our hPCL3L antibodies, although suitable for ChIP after transient transfection of hPCL3L (data not shown) might not be suitable for ChIP analyses of endogenous proteins. Another explanation could be the relatively low level of hPCL3L mRNAs previously detected by qRT-PCR analyses of WI-38 cells (10). Indeed, hPCL3 seems preferentially overexpressed in many cancers (9). Therefore, we investigated the binding of PHF1, which interacts with HIC1 (Fig. 1D) and which, by contrast with hPCL3, is strongly expressed in WI-38 cells (10). As expected from all our results, we detected PHF1 bound to the ATOH1 enhancer together with HIC1 and H3K27me3 (Fig. 8B).

To further confirm that HIC1 recruits PHF1 to the ATOH1 enhancer, we performed sequential ChIP experiments as previously described (27). Chromatin prepared from WI-38 cells were immunoprecipitated with HIC1 antibodies followed by PHF1 antibodies or rabbit IgG as negative control. As shown in Fig. 8C (left panel), a PCR-amplified band was obtained only for

FIGURE 5. hPCL3L but not hPCL3S promotes the interaction between HIC1 and members of the PRC2 complex. HEK293T cells were transiently transfected with the indicated expression plasmids as well as with the empty pcDNA3-FLAG vector as a control for 48 h. Whole cell extracts were prepared in IPH buffer and incubated with anti-FLAG antibodies (top four panels, IP: FLAG [HIC1], lanes 1–8) and immunoblotted (WB) with anti-FLAG monoclonal antibodies to verify the presence of HIC1 in the immunoprecipitates (IP) and with antibodies against the MYC and HA epitope to detect co-immunoprecipitation, respectively, of EZH2 and Suz12, EED, hPCL3L, and hPCL3S. 2% of each lysate was directly resolved by SDS-PAGE and immunoblotted with the same antibodies to ascertain the presence of the relevant expression vectors in each transfection condition (bottom four panels: INPUT, lanes 1–8).
HIC1/PHF1 on the ATOH1 enhancer. As control, similar results were obtained when we carried out the sequential ChIP with the PHF1 antibodies first (Fig. 8C, right panel) and no signal was obtained for the GAPDH promoter. In conclusion, these results demonstrate that HIC1 might form a stable complex with PHF1 on the ATOH1 enhancer, which is also co-occupied by PRC2 and PRC1 components.

To directly link the interaction between HIC1 and PHF1 to recruitment of the PRC2 complex, we assessed the levels of EZH2, H3K27me3, and of total acetylated H3 on a subset of target genes in WI-38 cells transfected with siRNA targeting HIC1 or control siRNA. In these cells, protein levels of HIC1 were almost completely extinguished, whereas the total levels of EZH2, H3K27me3, and histone H3 appeared globally unaf-

FIGURE 6. HIC1 forms a ternary complex with hPCL3L and PRC2. The sequential immunoprecipitation (IP) protocol is schematically drawn. HEK293T cells were transiently transfected with the indicated combination of FLAG-HIC1, MYC-EZH2, and HA-tagged versions of hPCL3L, Suz12, or EED as well as with the empty pcDNA3-FLAG vector as a control. Whole cells extracts were prepared in IPH buffer and incubated with anti-FLAG antibodies coupled to agarose beads (IP: FLAG, lanes 1–8). After washings, the beads were incubated with excess FLAG peptide to elute the immunoprecipitated materials, which were then subjected to a second round of immunoprecipitation with anti-hPCL3L antibodies recognizing the transitory expressed but not the endogenous proteins. These immunoprecipitates were immunoblotted (WB) with anti-MYC, anti-HA, and anti-HIC1 antibodies to detect the formation of the ternary complex in the relevant immunoprecipitates (top four panels, lanes 1–8). 2% of each lysate was directly resolved by SDS-PAGE and successively immunoblotted with anti-MYC, anti-HA, and anti-HIC1 antibodies (INPUT, bottom four panels, lanes 1–8). B, co-immunoprecipitation analyses of chromatin-associated proteins. HEK293T cells were transfected transiently with the expression vector for FLAG-tagged HIC1 or the empty pcDNA3-FLAG vector as a control. The chromatin-associated fractions were prepared as previously described (10) and incubated with anti-FLAG antibodies. 2% of each nuclear fraction (INPUT, lanes 1 and 2) and the immunoprecipitates (IP: FLAG, lanes 3 and 4) were directly resolved by SDS-PAGE and transferred to nitrocellulose membranes. Relevant pieces were immunoblotted (WB) with monoclonal anti-EZH2, EED, Bmi1, and GAPDH or polyclonal anti-hPCL3L (10) and Suz12 antibodies to detect co-immunoprecipitation of these endogenous proteins with exogenous FLAG-HIC1 (top two panels (IP: FLAG), lanes 3 and 4). As control the blot was also probed with anti-FLAG to verify the presence of HIC1 in the INPUT and in the relevant immunoprecipitate (bottom panels, lanes 2 and 4). C, co-immunoprecipitation of endogenous Suz12 proteins by HIC1 in normal WI-38 fibroblasts.
HIC1 Interacts with Human Polycomb-like Proteins

FIGURE 7. A subset of HIC1 target genes is associated with H3K27 trimethylation and EZH2. Levels of H3K27 trimethylation (A), EZH2 (B), and total acetylated H3 (C) of various genes were analyzed by ChIP-qPCR in WI-38 fibroblasts. The genes analyzed are arranged in three groups: HIC1 target genes (CCND1, SIRT1-distal HIRE sites, EF2F, CKCR7, EFN1A1, and ATOH1), Polycomb target genes (ATOH1, CCND2, and MYT1), and a housekeeping gene as control (GAPDH). The dotted box highlights CKCR7 and EFNA1, which have been identified as potential PRC2 target genes in this study due to the presence of H3K27me3 and EZH2. Enrichments for each modification were assessed by quantitative real-time PCR in triplicate. A representative experiment is shown.

A. ChiP qPCR in WI-38 cells

HIC1 target genes

- H3K27me3
- IgG

B. EZH2

- % Input Relative to H3 density
- CCND1
distal SIRT1
EF2F
CKCR7
EFNA1
ATOH1
CCND2
MYT1
GAPDH

C. Acetyl H3

- % Input Relative to H3 density
- CCND1
distal SIRT1
EF2F
CKCR7
EFNA1
ATOH1
CCND2
MYT1
GAPDH

In embryonic stem cells knocked-down for Pcl2 (15). Nevertheless, total acetyl-H3 levels were significantly increased on the proximal sites of the ATOH1 promoter (Fig. 8G). This could reflect a partial and incomplete activation of these HIC1 and PRC2 target genes, corresponding to the recently characterized antagonistic switch between H3 lysine 27 methylation and acetylation in the transcriptional regulation of Polycomb target genes (49).

To consolidate these results, we switched to another cell type expressing high levels of endogenous HIC1, the immortalized foreskin fibroblasts BJ-tert. In these cells, a stable HIC1 down-regulation was obtained by retroviral-induced expression of a specific shRNA (Fig. 9A). As expected from our previous results, in the absence of HIC1, we equally observed a significant decrease of EZH2 occupancy all along the ATOH1 locus (Fig. 9C), confirming the implication of HIC1 in PRC2 recruitment. As previously described (12), EZH2 recruitment was not affected in the absence of PHF1 (Fig. 9, B and C, sh PHF1). This could be explained by the constant interaction observed between HIC1 and another PRC2 component EED, independently of PCL proteins (Fig. 5). However, in BJ-tert cells treated with siRNA for a longer period (6 days), H3K27me3 levels on ATOH1 were slightly diminished in the absence of HIC1, although less efficiently than following EZH2 depletion (Fig. 10).

In conclusion, even though H3K27me3 levels remained only slightly affected, HIC1 depletion strongly reduced PRC2 occupancy on ATOH1 in two different cell types and by two independent methods of HIC1 knockdown, namely inactivation by siRNAs or shRNAs. These results thus strongly support a functional interaction between the transcriptional repressor HIC1 and Polycomb-like proteins in WI-38 and BJ-tert fibroblasts and most likely during embryonic development on a subset of HIC1 target genes.

HIC1 and Polycomb Complexes Are Functionally Linked on ATOH1 during Cerebellum Development in Vivo—We finally decided to validate in vivo the new relationship established between HIC1 and Polycomb complexes. For this purpose, we focused on mouse cerebellar development as a dynamic functional model of HIC1-induced repression of ATOH1, which is found deregulated in medulloblastomas (47, 50, 51). Briefly, cerebellum is composed of two main cell layers. Postnatal expansion driven by Sonic hedgehog (Shh) of granule cell precursors forms the external granule cell layer composed of proliferative BrdU+/ATOH1+/HIC1− cells (47, 50, 52). After 7 days of cerebellar development, those cells start to differentiate and migrate through the Purkinje cells and the molecular cell layer to form the mature granule cells, which are BrdU−/ATOH1+/HIC1− cells (47, 50, 52). P5 and P21 mice cerebellum are, respectively, composed in the majority of proliferating granule cell precursor cells and of differentiated mature granule cell cells. Postnatal cerebella were dissected from P5 and P21 mice and ATOH1 repression during development was confirmed by qRT-PCR in P21 cerebellum (Fig. 11A, top panel) in accordance with HIC1 binding on its enhancer as previously described (47) and hereby demonstrated by ChIP (Fig. 11A, bottom panel). Finally, to extend these results in line with our model, epigenetic mark
HIC1 Interacts with Human Polycomb-like Proteins

occupancy on ATOH1 were addressed by ChIP-qPCR. As expected from all of our results, in P21 mouse cerebellum, we observed a significant increase of H3K27me3 levels and a concomitant diminution of acetyl-H3 and H3K27me2 levels (Fig. 11, B and C).

These results confirmed in vivo the functional interaction between HIC1 and Polycomb complexes first described in vitro through an original mechanism involving Polycomb-like proteins and second, ex vivo in WI-38 and BJ-tert cells where HIC1 is necessary for the stable recruitment of the PRC2 complex on a subset of its target genes.

DISCUSSION

In this report, we identified human Polycomb-like proteins, hPCL3 and PHF1, as new HIC1 corepressors. These findings decipher another transcriptional repression mechanism selectively brought about by HIC1 on a subset of its target genes. More generally, we demonstrate for the first time that a
sequence-specific transcription factor interact with Polycomb-like proteins in mammals to favor the recruitment of PCR2 to some of its target genes.

Through yeast two-hybrid screening of a human mammary gland library with the two HIC1 repression domains, BTB-RC, as a bait, we have previously identified the SWI/SNF, CtBP, and NuRD complexes as HIC1 corepressors (27, 32). For these latter two, we have identified two small conserved peptide motifs located in the central region as being involved in the interaction (27, 31, 42). Here, we have validated through various biochemical assays another candidate isolated in the same screen, hPCL3. Interestingly, the interaction between HIC1 and hPCL3 relies mainly on the HIC1 BTB/POZ domain. The BTB/POZ domain is a conserved dimerization and protein/protein interaction domain found in multiple proteins throughout eukaryotic genomes (53, 54). In human, more than 50 proteins contain an N-terminal BTB/POZ domain associated with Krüppel zinc fingers. Most of them are transcriptional repressors that recruit HDAC containing complexes mainly through their BTB/POZ domain, such as for example, BCL6 and PLZF, respectively, implicated in diffuse large B-cell lymphomas. By contrast, HIC1 BTB/POZ is a repression domain independent of Class I and Class II HDAC whose repression mechanisms are still elusive (43). Although HIC1 interacts, at least partly through its BTB/POZ domain, with Class III HDAC SIRT1 (20), this interaction could be rather involved in the regulation of HIC1 transcriptional activity through the acetylation/SUMOylation switch on lysine 314 favoring NuRD recruitment (27, 33). Therefore, our results provide the first mechanistic clue for the repression function of the HIC1 BTB/POZ domain. Notably, the PLZF BTB/POZ domain also interacts with the Polycomb group protein Bmi1, a component of the PRC1 complex (55). Although we cannot totally exclude the participation of the central region, our results demonstrate that the interaction between HIC1 and hPCL3 occurred independently of the CtBP and NuRD complexes. These findings fit perfectly with the model of the hierarchical recruitment of repressing complexes, with HDACs containing complexes first, followed by Polycomb complexes to establish a robust epigenetic silencing of some target genes (55).

Reciprocally, we demonstrate that HIC1 interacts with two domains found in the N-terminal functional module conserved between hPCL3L and PHF1, the TUDOR and PHD2 domains. The TUDOR domain initially characterized in RNA-binding protein is now widely recognized as a domain essential for transcriptional regulation through its binding implicating a cage of 2 to 4 aromatic residues to methylated lysine or arginine in various proteins, including histone tails (56–58). However, a recent NMR study of the Drosophila Polycomb-like TUDOR domain revealed that it contained an atypical incomplete “aromatic cage” unlikely to bind methylated lysine or arginine. By contrast, the human PCL orthologs exhibit a complete aromatic cage and might thus bind methylated residues (59). In addition, Drosophila and human PCL proteins share a distinct
hydrophobic patch at the surface of their TUDOR domains that could be engaged in protein-protein interactions (59), as shown here for HIC1 and previously for EZH2 (10). Finally, the TUDOR domain is also common to the two hPCL3 isoforms, which exhibit different subcellular localization and belong to different high-molecular weight complexes containing at least EZH2 (10). Therefore, regardless of the final composition and physiological function of these two isoform-specific hPCL3 containing complexes, HIC1 can interact with both of them but the physiological relevance of the interaction between HIC1 and the short isoform of hPCL3 still remains elusive.

Another domain implicated in the interaction with HIC1 is the PHD2 domain. The PHD finger originally characterized as a protein-protein interaction domain is involved in many biochemical functions, notably methyl-lysine binding (60, 61). Its PHD2 domain appears essential for the function of hPCL3 proteins because it is also implicated in the interaction with EZH2 as well as in the self-association of hPCL3 containing complexes, HIC1 can interact with both of them but the physiological relevance of the interaction between HIC1 and the short isoform of hPCL3 still remains elusive.

According to studies in Drosophila and mammals, they are involved in

FIGURE 10. Extended loss of HIC1 affects H3K27me3 levels on ATOH1 in BJ-tert fibroblasts. Inactivation of endogenous HIC1 or EZH2 in BJ-tert fibroblasts with siRNA treatment for 6 days. In A, whole cell extracts were analyzed by Western blotting for the expression levels of HIC1 and H3K27me3. Actin was used as a loading control. In B, EZH2 mRNA levels were assessed by qRT-PCR. In C, enrichments for H3K27me3 modification were assessed by ChIP qPCR on ATOH1, MYT1, and GAPDH as described above. The asterisk (*) indicates p < 0.05.
recruitment and/or activation of PRC2 (8, 11–15). Our results suggest their implication in the recruitment or stabilization of PRC2 by the transcription factor HIC1.

In our experimental conditions, PRC2 levels were only partly reduced in the absence of HIC1, suggesting that other factors could be involved in their recruitment in addition to HIC1, the latter allowing its stabilization by recruiting Polycomb-like proteins. Following HIC1 decreases, PRC2 could also be maintained at least for a short time on their common target genes, notably by a direct interaction of the EED protein with H3K27me3 (3, 68). Then H3K27me3 could be maintained and this could explain the absence of derepression of target loci as previously reported following knockdown of PCL2 in embryonic stem cells (15). Polycomb target genes are stably repressed and even after the loss of PRC2 components, their re-expression is not obviously observed (48, 69).

HIC1 is a tumor suppressor gene also implicated in normal development (17, 18, 24). Despite its functional importance, very few HIC1 direct target genes have been identified so far. Among them, we have demonstrated the PRC2 recruitment, as assessed by EZH2 co-occupancy and high levels of H3K27 trimethylation, on ATOH1, EFNA1, and CXCR7. ATOH1, a neuronal transcription factor, essential for migration of granule cell precursors during cerebellum development, has already been identified as a PRC2 target gene in TIG3 human embryonic fibroblasts (45). HIC1 is dynamically regulated through the migration of the granule cell precursors into the internal granule cell layer (47). In addition, loss of HIC1 through hypermethylation of its promoters is often found in medulloblastomas (70). Therefore, the efficient repression of ATOH1 and possibly other targets by HIC1 through PRC2 is intimately linked to cerebellar differentiation and required to avoid tumorigenesis. CXCR7, a scavenger receptor for the chemokine SDF-1 is up-regulated in breast, lung, and prostate tumors, which often display HIC1 hypermethylation (32). Similarly, EFNA1, which encodes a cell surface ligand for Eph tyrosine kinase receptors, is a direct target gene of HIC1 whose deregulation through HIC1 epigenetic silencing contributes to epithelial malignancy (46). CXCR7 (71, 72) and EFNA1 (46, 73) have also been implicated in proper embryonic development.

In conclusion, HIC1 has been implicated in normal development as well as in cellular growth (27, 29, 30, 46) whose deregulation due to HIC1 loss could contribute to tumorigenesis. Thus, the functional interaction of HIC1 with the PRC2 complex in cancer and development remains to be investigated. It will also be essential to decipher the precise mechanisms underlying the differential promoter binding by the various HIC1-corepressors complexes. These studies will help to decipher the roles of HIC1 in development as well as the mechanisms underlying its tumor suppressor function.

Acknowledgments—We thank Dr. Raphaël Margueron for helpful discussions and Dr. Brian R. Rood for critical reading of the manuscript.

REFERENCES
1. Sauvageau, M., and Sauvageau, G. (2010) Polycomb group proteins. Multifaceted regulators of somatic stem cells and cancer. Cell Stem Cell 7,
1. Morey, L., and Helin, K. (2010) Polycomb group protein-mediated repression of transcription. Trends Biochem. Sci. 35, 323–332.

2. Marguereon, R., and Reinberg, D. (2011) The Polycomb complex PRC2 and its mark in life. Nature 469, 343–349.

3. Pasini, D., Cloos, P. A., Walfridsson, J., Olson, L., Bukowski, J. P., Johansen, J. V., Bak, M., Tommerup, N., Rappiliser, J., and Helin, K. (2010) JARID2 regulates binding of the Polycomb repressive complex 2 to target genes in ES cells. Nature 464, 306–310.

4. Boulay, G., Rosnoblet, C., Guérardel, C., Angrand, P. O., and Leprince, D. (2010) JARID2 and PRC2, partners in regulating gene expression. Genes Dev. 24, 368–380.

5. Tief, F., Prasad-Sinha, J., Vere, A., Rasmussen-Lestander, A., and Harte, P. J. (2003) A 1-megadalton ESC/E(Z) complex from Drosophila that contains Polycomb-like and RPD3. Mol. Cell. Biol. 23, 3332–3362.

6. Coulson, M., Robert, S., Eyre, H. J., and Saint, R. (1998) The identification and localization of a human gene with sequence similarity to Polycomb-like of Drosophila melanogaster. Genomics 48, 381–383.

7. Carter, M. G., Johns, M. A., Zeng, X., Zhou, L., Zink, M. C., Mankowski, J. L., Donovan, D. M., and Baylin, S. B. (2004) Mice deficient in the candidate tumor suppressor gene Hic1 exhibit developmental defects of structures affected in the Miller-Dieker syndrome. Hum. Mol. Genet. 9, 413–419.

8. Tie, F., Prasad-Sinha, J., Vere, A., Rasmussen-Lestander, A., and Harte, P. J. (2003) Identification of transcription.

9. Wang, C., Chen, L., Hou, X., Li, Z., Kabra, N., Li, M., Nemoto, S., Finkle, T., Gu, W., Cress, W. D., and Chen, J. (2006) Interactions between E2F1 and SirT1 regulate apoptotic response to DNA damage. Nat. Cell Biol. 8, 1025–1031.

10. Dehennaut, V., and Leprince, D. (2009) Implication of HIC1 (hypermethylated in cancer 1) in the DNA damage response. Bull. Cancer 96, 666–72.

11. Carter, M. G., Johns, M. A., Zeng, X., Zhou, L., Zink, M. C., Mankowski, J. L., Donovan, D. M., and Baylin, S. B. (2000) Mice deficient in the candidate tumor suppressor gene Hic1 exhibit developmental defects of structures affected in the Miller-Dieker syndrome. Hum. Mol. Genet. 9, 413–419.

12. Pasini, D., Cloos, P. A., Walfridsson, J., Olson, L., Bukowski, J. P., Johansen, J. V., Bak, M., Tommerup, N., Rappiliser, J., and Helin, K. (2010) JARID2 regulates binding of the Polycomb repressive complex 2 to target genes in ES cells. Nature 464, 306–310.

13. Cao, R., Wang, H., He, J., Erdjument-Bromage, H., Tempst, P., and Zhang, M. (2004) The receptor tyrosine kinase Epha2 is a direct target gene of Hic1 (hypermethylated in cancer 1) in the DNA damage response. J. Biol. Chem. 279, 5366–5378.

14. Chakraborty, G., Sorsari, T., Desai, S., Verghese, G., and Helin, K. (2003) EZH2 is downstream of the PR-B/E2F pathway, essential for proliferation and amplified in cancer. EMBO J. 22, 5323–5335.

15. Pasini, D., Cloos, P. A., Jensen, M. R., Lazzerini Denchi, E., and Helin, K. (2004) Suz12 is essential for mouse development and EZH2 histone methylation activity. J. Cell Biol. 164, 361–373.

16. Chen, W. Y., Zeng, X., Carter, M. G., Morrell, C. N., Chiu Yen, R. W., Esteller, M., Watkins, D. N., Herman, J. G., Mankowski, J. L., and Baylin, S. B. (2010) Loss of a single Hic1 allele accelerates polyf formation in APC(Δ716) mice. Oncogene 30, 2659–2669.

17. Fouveau, B., Boulay, G., Pinte, S., Van Rechem, C., Rood, B. R., Guérardel, C., and Leprince, D. (2010) Polycomb-like gene is up-regulated in multiple cancers. Nature 464, 69–78.

18. Boulay, G., Rosnoblet, C., Guérardel, C., Angrand, P. O., and Leprince, D. (2011) Functional characterization of human Polycomb-like 3 isoforms identifies them as components of distinct EZH2 protein complexes. Biochem. J. 434, 333–342.

19. Nekrasov, M., Klymenko, T., Frateman, S., Papp, B., Oktaba, K., Köcher, T., Cohen, A., Stunnenberg, H. G., Wilm, M., and Müller, J. (2007) Pcl-PRC2 is needed to generate high levels of H3K27 methylation at Polycomb target genes. EMBO J. 26, 4078–4088.

20. Tommerup, N., Rappsilber, J., and Helin, K. (2010) Polycomb-like 2 facilitates the recruitment of PRC2 Polycomb panah, R., Bezstarosti, K., Demmers, J., Koseki, H., and Brockdorff, N. (2003) A 1-megadalton ESC/E(Z) complex from mouse embryonic stem cell self-renewal and differentiation. Cell Stem Cell 6, 153–166.

21. Wang, S., Robertson, G. P., and Zhu, J. (2004) A novel human homologue of Drosophila Polycomb-like gene is up-regulated in multiple cancers. Gene 343, 69–78.

22. Boulay, G., Rosnoblet, C., Guérardel, C., Angrand, P. O., and Leprince, D. (2011) Functional characterization of human Polycomb-like 3 isoforms identifies them as components of distinct EZH2 protein complexes. Biochem. J. 434, 333–342.

23. Casanova, M., Preissner, T., Cerase, A., Poot, R., Yamada, D., Li, X., Ap- panah, R., Betsarostis, K., Demmers, J., Koseki, H., and Brockdorff, N. (2011) Polycomb-like 2 facilitates the recruitment of PRC2 Polycomb group complexes to the inactive X chromosome and to target loci in embryonic stem cells. Development 138, 1471–1482.

24. Wale, M. M., Bial, M. A., de Weir, W., Nelkin, B. D., Isa, J. P., Cavenee, W. K., Kuerbitz, S. J., and Baylin, S. B. (1995) p53 activates expression of W. K., Kuerbitz, S. J., and Baylin, S. B. (1995) p53 activates expression of W. K., Kuerbitz, S. J., and Baylin, S. B. (1995) p53 activates expression of HIC1 Interacts with Human Polycomb-like Proteins

25. Pospichalova, V., Tureckova, J., Ladanyi, M., Karp, J. E., Gokgoz, N., Wunder, J. S., Andrulis, I. L., Levine, M. I., Krogan, N. J., Reiter, J. F., and Stanford, W. L. (2010) Polycomb-like 2 associates with PRC2 and regulates transcriptional networks during mouse embryonic stem cell self-renewal and differentiation. Cell Stem Cell 6, 153–166.

26. Chakraborty, G., Sorsari, T., Desai, S., Verghese, G., and Helin, K. (2003) EZH2 is downstream of the PR-B/E2F pathway, essential for proliferation and amplified in cancer. EMBO J. 22, 5323–5335.

27. Pasini, D., Cloos, P. A., Jensen, M. R., Lazzerini Denchi, E., and Helin, K. (2004) Suz12 is essential for mouse development and EZH2 histone methylation activity. J. Cell Biol. 164, 361–373.

28. Dahl, J. A., and Collas, P. (2007) Q2 ChIP, a quick and quantitative chromatin immunoprecipitation assay, unravels epigenetic dynamics of developmental regulatory networks affected in the Miller-Dieker syndrome. Hum. Mol. Genet. 9, 413–419.
opmentally regulated genes in human carcinoma cells. *Stem Cells* 25, 1037–1046.

39. Srivinasa, L., and Atchison, M. L. (2004) YY1 DNA binding and PcG recruitment requires CtBP. *Genes Dev.* 18, 2596–2601.

40. Morey, L., Brenner, C., Fazi, F., Villa, R., Gutierrez, A., Buschbeck, M., Nervi, C., Minucci, S., Fuks, F., and Di Croce, L. (2008) MBD3, a component of the NuRD complex, facilitates chromatin alteration and deposition of epigenetic marks. *Mol. Cell. Biol.* 28, 5912–5923.

41. Reynolds, N., Salmon-Divon, M., Dvinge, H., Hynes-Allen, A., Balasooriya, G., Leprince, D., Hendrich, B., and Leprince, D. (2011) NuRD-mediated deacytlation of H3K27 facilitates recruitment of Polycomb repressive complex 2 to direct gene repression. *EMBO J.* 31, 593–605.

42. Stankovic-Valentin, N., Verger, A., Delort-Balderi, S., Qu, C., Roussel, M. F., Crossley, M., and Leprince, D. (2006) A L225A substitution in the human tumor suppressor HIC1 abolishes its interaction with the corepressor CtBP. *FEBS J.* 273, 2879–2890.

43. Deltour, S., Guerardel, C., and Leprince, D. (1999) Recruitment of SMRT/N-CoR-mSin3A-HDAC-repressing complexes is not a general mechanism for BTB/POZ transcriptional repressors, The case of HIC-1 and yFBP-B. *Proc. Natl. Acad. Sci. U.S.A.* 96, 14831–14836.

44. Wang, J., Wang, G., Matsuura, I., He, D., and Liu, F. (2004) Activation of Smad transcriptional activity by protein inhibitor of activated STAT3 (PIAS3). *Proc. Natl. Acad. Sci. U.S.A.* 101, 99–104.

45. Dodelet, V. C., and Pasquale, E. B. (2000) Eph receptors and ephrin ligands. *Cell* 103, 1037–1046.

46. Boukarahla, H., Saurin, A. J., Batsché, E., Mossadegh, N., van Lohuizen, M., Otte, A. P., Pradel, J., Muchardt, C., Sieweke, M., and Dupert, E. (2009) The PRC1 Polycomb group complex interacts with PLZF/RARA to mediate leukemic transformation. *Genes Dev.* 23, 1195–1206.

47. Adams-Cioaba, M. A., and Min, J. (2009) Structure and function of histone methylation binding proteins. *Biochem. Cell Biol.* 87, 93–105.

48. Huang, Y., Fang, J., Bedford, M. T., Zhang, Y., and Xu, R. M. (2006) Recognition of histone H3 lysine-4 methylation by the double Tudor domain of JMJD2A. *Science* 312, 748–751.

49. Corsini, L., and Sattler, M. (2007) Tudor hooks up with DNA repair. *Nat. Struct. Mol. Biol.* 14, 98–99.

50. Friberg, A., Oddone, A., Klymenko, T., Müller, J., and Sattler, M. (2010) Structure of an atypical Tudor domain in the Drosophila Polycomb-like protein. *Protein Sci.* 19, 1906–1916.

51. Ayrault, O., Zhao, H., Zindy, F., Qu, C., Sherr, C. J., and Roussel, M. F. (2005) BMPs oppose Math1 in cerebellar development and in medulloblastoma. *Cell* 122, 683–695.

52. Grimmer, M. R., and Weiss, W. A. (2008) BMPs oppose Math1 in cerebellar development and in medulloblastoma. *Cell* 136, 885–897.

53. Bombard, A., Storm, D., Skoroda, E., Lopes, J., Albertsen, L. K., Kato, H., and Weiss, W. A. (2008) BMPs support Math1 in cerebellar development and in medulloblastoma. *Cell* 136, 885–897.

54. Grimmer, M. R., and Weiss, W. A. (2008) BMPs oppose Math1 in cerebellar development and in medulloblastoma. *Cell* 136, 885–897.

55. Boukarahla, H., Saurin, A. J., Batsché, E., Mossadegh, N., van Lohuizen, M., Otte, A. P., Pradel, J., Muchardt, C., Sieweke, M., and Dupert, E. (2009) The PRC1 Polycomb group complex interacts with PLZF/RARA to mediate leukemic transformation. *Genes Dev.* 23, 1195–1206.

56. Adams-Cioaba, M. A., and Min, J. (2009) Structure and function of histone methylation binding proteins. *Biochem. Cell Biol.* 87, 93–105.

57. Huang, Y., Fang, J., Bedford, M. T., Zhang, Y., and Xu, R. M. (2006) Recognition of histone H3 lysine-4 methylation by the double Tudor domain of JMJD2A. *Science* 312, 748–751.

58. Corsini, L., and Sattler, M. (2007) Tudor hooks up with DNA repair. *Nat. Struct. Mol. Biol.* 14, 98–99.

59. Friberg, A., Oddone, A., Klymenko, T., Müller, J., and Sattler, M. (2010) Structure of an atypical Tudor domain in the Drosophila Polycomb-like protein. *Protein Sci.* 19, 1906–1916.

60. Bief, M. (2006) The PHD finger, a nuclear protein-interaction domain. *Trends Biochem. Sci.* 31, 35–40.

61. Mellor, J. (2006) It takes a PHD to read the histone code. *Cell* 126, 22–24.

62. Bracken, A. P., and Helin, K. (2009) Polycomb group proteins. Navigators of lineage pathways led astray in cancer. *Nat. Rev. Cancer* 9, 773–784.

63. Schuettengruber, B., and Cavalli, G. (2009) Recruitment of Polycomb group complexes and their role in the dynamic regulation of cell fate choice. *Development* 136, 3551–3542.

64. Sing, A., Pannell, D., Kariakakis, A., Sturgeon, K., Djabali, M., Ellis, J., Lipshitz, H. D., and Cordes, S. P. (2009) A vertebrate Polycomb response element governs segmentation of the posterior hindbrain. *Cell* 138, 885–897.

65. Dodelet, V. C., and Pasquale, E. B. (2000) Eph receptors and ephrin ligands. *Cell* 103, 1037–1046.

66. Boukarahla, H., Saurin, A. J., Batsché, E., Mossadegh, N., van Lohuizen, M., Otte, A. P., Pradel, J., Muchardt, C., Sieweke, M., and Dupert, E. (2009) The PRC1 Polycomb group complex interacts with PLZF/RARA to mediate leukemic transformation. *Genes Dev.* 23, 1195–1206.

67. Adams-Cioaba, M. A., and Min, J. (2009) Structure and function of histone methylation binding proteins. *Biochem. Cell Biol.* 87, 93–105.

68. Huang, Y., Fang, J., Bedford, M. T., Zhang, Y., and Xu, R. M. (2006) Recognition of histone H3 lysine-4 methylation by the double Tudor domain of JMJD2A. *Science* 312, 748–751.

69. Pasini, D., Bracken, A. P., Hansen, J. B., Capillo, M., and Helin, K. (2007) Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. *Genes Dev.* 20, 1123–1136.

70. Zhang, W., Zeng, X., Briggs, K. J., Beaty, R., Simons, B., Chiu Yen, R. W., Long, J., Wang, G., Matsuura, I., He, D., and Liu, F. (2004) Activation of Smad transcriptional activity by protein inhibitor of activated STAT3 (PIAS3). *Proc. Natl. Acad. Sci. U.S.A.* 101, 99–104.

71. Boldajipour, B., Mahabaleshwar, H., Keshav, E., Reichman-Fried, M., Blaser, H., Minina, S., Wilson, D., Xu, Q., and Raz, E. (2008) Control of chemokine-guided cell migration by ligand sequestration. *Cell* 132, 463–473.

72. Sierro, F., Biben, C., Martínez-Muñoz, L., Mellado, M., Ransohoff, R. M., Boldajipour, B., Mahabaleshwar, H., Keshav, E., Reichman-Fried, M., Blaser, H., Minina, S., Wilson, D., Xu, Q., and Raz, E. (2008) Control of chemokine-guided cell migration by ligand sequestration. *Cell* 132, 463–473.

73. Dodelet, V. C., and Pasquale, E. B. (2000) Eph receptors and ephrin ligands. Embryogenesis to tumorigenesis. *Oncogene* 19, 5614–5619.