3-Dimensional Mapping Coastal Zone using High Resolution Satellite Stereo Imageries

Zhonghua Hong1*, Fengling Liu1, Yun Zhang1

1. College of Information Technology, Shanghai Ocean University, 999 Hucheng Huan Road, Shanghai, P. R. China.
2. College of Surveying and Geo-informatics and Research, Tongji University, 1239 Siping Road, Shanghai, P. R. China.

Abstract. The metropolitan coastal zone mapping is critical for coastal resource management, coastal environmental protection, and coastal sustainable development and planning. The results of geometric processing of a Shanghai coastal zone from 0.7-m-resolution QuickBird Geo stereo images are presented firstly. The geo-positioning accuracy of ground point determination with vendor-provided rigorous physical model (RPM) parameters is evaluated and systematic errors are found when compared with ground control points surveyed by GPS real-time kinematic (GPS-RTK) with 5 cm accuracy. A bias-compensation process in image space that applies a RPM bundle adjustment to the RPM-calculated 3D ground points to correct the systematic errors is used to improve the geo-positioning accuracy. And then, a area-based matching (ABM) method is used to generated the densely corresponding points of left and right QuickBird images. With the densely matching points, the 3-dimensional coordinates of ground points can be calculated by using the refined geometric relationship between image and ground points. At last step, digital surface model (DSM) can be achieved automatically using interpolation method. Accuracies of the DSM as assessed from independent checkpoints (ICPs) are approximately 1.2 m in height.

Keywords: metropolitan, coastal zone, 3-dimensional mapping, high resolution satellite stereo imageries.

1. Introduction
The metropolitan coastal zone mapping is critical for coastal resource management, coastal environmental protection, and coastal sustainable development and planning. With the rapid development of high resolution satellite imagery (HRSI), 3-Dimensional mapping coastal zone become feasibility scheme \cite{6} \cite{8} \cite{10} \cite{11} \cite{13}. However, geo-positioning accuracy will serious impact the final accuracy of coastal mapping \cite{1} \cite{8} \cite{9}. Moreover, the vender provided sensor model parameters remain obvious bias \cite{4} \cite{14} \cite{15} when were used to directly geo-positioning. Therefore, the sensor parameters should be refined by ground control points. There are two categories sensor models in HRSI such as: rigorous physical model (RPM) and rational function model (RFM). The RFM

* Corresponding Author. E-mail address: hzh_2000@163.com; zhong@shou.edu.cn
refinement was presented by many researchers, but the RPM refinement reported few. Another key technology is automatic digital surface model (DSM) generation can be found [2] [12] [16]. Therefore, this paper will discuss the RPM refinement for 3-Dimensional mapping coastal zone using QuickBird stereo images in Shanghai.

2. Methods

Figure 1 shows the entire framework for automatic 3-Dimensional Mapping Coastal Zone using QuickBird stereo HRSI. Two issues are investigated: (1) area-based automatic image matching, and (2) rigorous physical refinement. The former two key technologies used in this approach will discuss in detailed in the following sections.

![Figure 1. Framework for 3-Dimensional Mapping Coastal Zone using QuickBird stereo images](image)

2.1. Area-based Image matching

With the above stereo images, dense matching can be completed by using area image-matching procedure to match the respective images. Area-based image stereo matching [5] is a composite technique where first the similarity measure between template window and search window is found by normalized cross correlation technique. Least square also were used to improve the matching accuracy to sub-pixel. With this composite method dense point to point correspondence can be achieved with greater accuracy.

2.2. Rigorous physical model refinement

A rigorous sensor model (RPM) [3] is a physical model that describes the imaging geometry and the transformation between the object space and image space. For an image point within a CCD array, its image coordinates are \((x, y)\) and ground coordinates \((X_G, Y_G, Z_G)\). The coordinates of the
exposure centre of the array in the ground coordinate system at the imaging epoch \(t \) are \((X_s(t), Y_s(t), Z_s(t))\). Therefore, the collinearity condition \([17]\) can be expressed as Equation (1):

\[
\begin{align*}
x_R &= z_R r_1(X_G - X_s(t)) + r_2(Y_G - Y_s(t)) + r_3(Z_G - Z_s(t)) \\
y_R &= z_R r_4(X_G - X_s(t)) + r_5(Y_G - Y_s(t)) + r_6(Z_G - Z_s(t)) \\
z_R &= r_7(X_G - X_s(t)) + r_8(Y_G - Y_s(t)) + r_9(Z_G - Z_s(t))
\end{align*}
\]

(1)

And then, Incorporation of image polynomial terms into the basic model of Equation(1) yields a RPM refinement, which takes the form:

\[
\begin{align*}
x_R &= A_0 + A_1 x_R + A_2 y_R + A_3 x_R y_R + A_4 x_R^2 + A_5 y_R^2 + \cdots = z_R r_{11}(X_G - X_s(t)) + r_{12}(Y_G - Y_s(t)) + r_{13}(Z_G - Z_s(t)) \\
y_R &= B_0 + B_1 x_R + B_2 y_R + B_3 x_R y_R + B_4 x_R^2 + B_5 y_R^2 + \cdots = z_R r_{14}(X_G - X_s(t)) + r_{15}(Y_G - Y_s(t)) + r_{16}(Z_G - Z_s(t))
\end{align*}
\]

(2)

Where, \((x_R, y_R)\) are image coordinate observations. \(A_0, \cdots A_5\) and \(B_0, \cdots B_5\) are the transformation parameters. Within this formulation there are four general logical choices of additional parameter (AP) sets: translation model, shift and drift model, affine model, second-order model and higher-order model. However, the reported results revealed that more than second-order model will perform unstable accuracy. Therefore, just former mentioned four refinement models will be used in this paper.

3. Experiment and discussion

3.1. Data Source

A basic QuickBird stereo pairs images were acquired on 2004 in Shanghai city and 73 RTK GPS-surveyed points were used to reconstruct the 3-Dimentional coastal zone.

3.2. Refinement accuracy

Owing to including systemic error about 10-25m in QuickBird image stereo position directly using the vender-provided RPM, GCPs were added to reduce the systemic error and refined the RPM. 29 well distributed control points were selected to refine the RPM p and the residual ground points as check points. The RMS errors were calculated in image space and the results indicated that the second-order polynomial refinement model obtained the best accuracy in east-west (RME:0.398m), south-north(RME:0.309) and elevation(RME:0.821m), respectively.

3.3. Three-Dimensional Mapping Coastal Zone

3-Dimentional Mapping Coastal Zone using QuickBird stereo images can be achieved by the framework showed in Fig.1. Figure 2 showed the proposed DSM created from QuickBird stereo image pairs. For checking the accuracy of created DSM, there were 44 ground points as check points for evaluation of the DSM accuracy. The RMS error showed on Table 1 was calculated and the RMS error reached 1.146m. However, the maximum residual of check points was 5.096m over four times of RMS error, which revealed that some error corresponding points remain in processing.

Table 1. Accuracy of CKPs of 3-Dimentional Coastal Zone
DSM accuracy of CKPs
Number of CKPs
Maximum residual (m)
Minimum residual (m)
Mean residual (m)
RMS error (m)
4. Conclusions and future works
In this report the RPM refinement applied and results of 3-Dimensional mapping coastal zone using QuickBird stereo images in Shanghai city, China are described. Owing to the bias errors in the vendor-provided RPM with the QuickBird imageries, the second-order polynomial refinement model in the image space, which produced the 0.5m in horizontal direction and 0.8m in vertical direction accuracy, was adopted for the DSM generation. Future work will combine the optical and SAR images to reconstruct the 3-Dimensional mapping coastal zone.

5. References
[1] Aguilar M A, Aguilar F J, Agüera F and Sánchez J A 2007 Geometric accuracy assessment of QuickBird Basic Imagery using different operational approaches Photogramm Eng Rem S 12 1321-1332.
[2] Capaldo P, Crespi M, Fratarcangeli F, Nascetti A and Perialce F 2012 DSM generation from high resolution imagery applications with WorldView-1 and Geoscope-1 Ita J. Remote Sens 1 41-53.
Acknowledgments

Research supported by The Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, and supported by Shanghai Science and Technology Committee (Project 11510501300).