Evaluating Climate Emulation: Unit Testing of Simple Climate Models

Adria K. Schwarber¹, Steven J. Smith¹,², Corinne A. Hartin², Benjamin Aaron Vega-Westhoff³, Ryan Sriver³

¹Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD 20742
²Joint Global Change Research Institute, 5825 University Research Ct, College Park, MD 20740
³Department of Atmospheric Sciences, University of Illinois Urbana-Champaign, Champaign, IL 61820

Correspondence to: Adria K. Schwarber (adria.schwarber@gmail.com)

Abstract. Simple climate models (SCMs) are numerical representations of the Earth’s gas cycles and climate system. SCMs are easy to use and computationally inexpensive, making them an ideal tool in both scientific and decision-making contexts (e.g., complex climate model emulation; parameter estimation experiments; climate metric calculations; and probabilistic analyses). Despite their prolific use, the fundamental responses of SCMs are often not directly characterized. In this study, we use unit tests of three chemical species (CO₂, CH₄, and BC) to understand the fundamental gas cycle and climate system responses of several SCMs (Hector v2.0, MAGICC 5.3, MAGICC 6.0, FAIR v1.0, and AR5-IR). We find that while idealized SCMs are widely used, they fail to capture important global mean climate response features, which can produce biased temperature results. Comprehensive SCMs, which have non-linear forcing and physically-based carbon cycle representations, show improved responses compared to idealized SCMs. Even some comprehensive SCMs fail to capture response timescales of more complex models under BC or CO₂ forcing perturbations. These results suggest where improvements should be made to SCMs. Further, we provide a set of fundamental tests that we recommend as a standard validation suite for any SCM. Unit tests allow users to understand differences in model responses and the impact of model selection on results.

1 Introduction

Climate models are one of the primary tools used by interdisciplinary scientists to understand changes in the climate. Models are generally classified by their complexity and comprehensiveness, spanning a range from idealized simple climate models (SCMs) to complex coupled Earth System Models (ESMs). While ESMs run on supercomputers and can take several months to simulate 100 years, SCMs can simulate the same period on a personal computer in seconds (van Vuuren et al., 2011a). SCMs have less detailed representations than ESMs, and themselves range in structure from idealized to more comprehensive climate representations (Millar et al., 2017). Comprehensive SCMs are models rooted in physical processes (e.g. energy balance models) and capture the main pathway by which climate forcers alter the energy budget: emissions to concentrations, top-of-the-atmosphere radiative forcing, and global mean surface air temperature (Geoffroy et al., 2013; Hartin et al., 2015; Meinshausen et al., 2011; Tanaka and Kriegler, 2007). Idealized
SCMs use even fewer equations, which do not necessarily correspond to individual physical processes, to parametrically represent the climate system (Millar et al., 2017).

SCMs are widely used in scientific and decision-making contexts largely because of their advantageous features, including their ease of use and low computational intensiveness. In particular, SCMs are traditionally used within human-Earth system models. These models couple the climate system with representations of the dynamics within the human system (e.g., energy systems and land-use changes) (Hartin et al., 2015; Ortiz and Markandya, 2009; H. Schneider and S.L. Thompson, 2000; Strassmann and Joos, 2018) and are used to assess global forcing or temperature targets (e.g., Representative Concentration Pathways (van Vuuren et al., 2011b), Shared Socioeconomic Pathways (Moss et al., 2010)). Several studies investigated potential sources of human-Earth system model uncertainty by exploring the climate components driving the models (Calel and Stainforth, 2017; Harmsen et al., 2015; van Vuuren et al., 2008, 2011a). Van Vuuren et al. (2011a) concluded that in most cases the results from human-Earth system models and SCMs were similar to the more complex, coupled Earth System Models (ESMs). The authors further noted that differences in SCM results can have implications for decision makers informed by such results, illustrating the need for improvements in uncertainty analysis (e.g. carbon cycle feedbacks or inertia in climate response). Harmsen et al. (2015) extended van Vuuren’s analysis to investigate emission reduction scenarios by including non-CO$_2$ radiative forcing. The authors concluded that many models may underestimate forcing differences after applying emission reduction scenarios, due to the omission of important short-lived climate forcers, such as black carbon (BC).

Few studies utilize idealized SCMs in human-Earth system models because of their inability to represent nonlinear forcings, such as air-sea exchanges (Khodayari et al., 2013) or ocean chemistry (Hoos et al., 2001; Tanaka and Kriegler, 2007). With simple extensions of the carbon cycle (e.g., ocean carbonate chemistry), both Hoos et al. (2001) and Tanaka and Kriegler (2007) found improved responses from their respective impulse response models, applicable when coupling to human-Earth system models.

Comprehensive SCMs are also used to simulate the climate or carbon cycle (Friedlingstein et al., 2014; Joos et al., 1999; Knutti et al., 2008), explore responses to anthropogenic perturbations (Geoffroy et al., 2013; Hope, 2006; Meinshausen et al., 2009; Rogelj et al., 2014), or address model spread in the various model intercomparison projects (MIPs) (Knutti and Sediáček, 2012; Monckton et al., 2015; Rogelj et al., 2012). These analyses often include comparisons to more complex models (Meinshausen et al., 2008, 2011). One comprehensive SCM in particular, MAGICC 6.0, is used as a reference in many studies because of its well-documented ability to emulate complex models (e.g., van Vuuren et al., 2011a).

Similarly, individual idealized SCM developers also explore the ability of impulse-response functions to simulate climate or carbon-cycle responses to perturbations (Hoos et al., 2001; Millar et al., 2016; Sausen and Schumann, 2000; Strassmann and Joos, 2018; Thompson and Randerson, 1999), often comparing to more complex models (Joos and Bruno, 1996). Sand et al. (2016), for example, employed a stylized SCM using sums of exponentials to find the
Arctic temperature response to regional short-lived climate forcer emissions (e.g., BC), and compared these responses to more complex models.

Climate indicators, such as transient climate response (TCR) (Allen et al., 2018; Millar et al., 2017), are also calculated using SCMs. TCR is the measure of the climate response to a 1% yr\(^{-1}\) increase in CO\(_2\) concentration until doubling of CO\(_2\) relative to pre-industrial level. TCR is useful for understanding the climate response on shorter time scales, as CO\(_2\) concentration doubling takes place in 70 years, a time-frame relevant for many planning decisions (Flato et al., 2013; Millar et al., 2015). Used in combination with TCR, the equilibrium climate sensitivity (ECS) can also be used to attribute the fraction of observed warming to anthropogenic influences, called the realized warming fraction (RWF). Millar et al. (2015) investigated TCR and ECS within a global climate-calibrated impulse-response model to show the implications of these values on future climate projections by specifically looking at the RWF.

Sums of exponentials are also commonly used to calculate other climate metrics, such as global warming potential (GWP) and global temperature potential (GTP) (Aamaas et al., 2013; Berntsen and Fuglestvedt, 2008; Fuglestvedt et al., 2010; Peters et al., 2011; Sarofim and Giordano, 2018). Stylized SCMs, however, often do not account for carbon cycle feedbacks, important for more realistic representations of climate. Both Millar et al. (2017) and Gasser et al. (2017) investigated the effects of adding carbon cycle feedbacks on these metrics produced with stylized SCMs, and found that accounting for feedbacks improved model responses (at least modestly, Gasser et al. 2017).

Despite their wide use, the fundamental responses of SCMs have not been fully characterized (Thompson, 2018).

2 Methods

2.1 Unit tests.
We use impulse-response tests, a type of unit test, to address this gap as recently suggested by the US National Academies (National Academies of Sciences, Engineering, 2016). An impulse-response test characterizes the SCMs’ climate and gas-cycle response to a forcing or emission impulse (Good et al., 2011; Joos et al., 2013). Here, we take a comprehensive approach evaluating several SCMs using forcing and emission impulse tests to understand the response of the climate system and gas cycles in the models. We use three main impulse tests: (a) a concentration impulse of CO\(_2\), (b) emissions impulses of BC, CH\(_4\), or CO\(_2\), (c) a 4xCO\(_2\) step increase in CO\(_2\) concentration. We carry out these experiments by instantaneously increasing emissions or forcing values in 2015 to avoid the model base years of our SCMs (see SI1).

2.2 Background.
Our unit tests are conducted against a changing CO\(_2\) concentration background using the Representative Concentration Pathway (RCP) 4.5 scenario (Thomson et al., 2011). For each unit test, therefore, we run a reference scenario in the SCMs, followed by each perturbation case described above. We report the response, which is obtained by subtracting the reference from the perturbation results. The changing CO\(_2\) concentration background is more realistic and also reveals biases not otherwise apparent under constant concentration conditions,
for example, in SCMs insensitive to changing background concentrations. Further, for emissions impulses this methodology is more readily implemented as a standard unit test (see SI1), as we recommend below.

2.3 Models. Three comprehensive SCMs—Hector v2.0 (Hartin et al., 2015; Kriegler, 2005), MAGICC 5.3 BC-OC (Smith and Bond, 2014), and MAGICC 6.0 (Meinshausen et al., 2011)—are used in this study (SI2). The models were selected based on their availability, use in the literature, and their applicability to decision making. We also include two idealized SCMs which employ sums of exponentials to represent the climate or gas-cycle responses, a general approach often used in the literature (Aamaas et al., 2013; Fuglestvedt et al., 2003), referred to as impulse response functions (IRFs). IRFs linearly approximate the response of a system to a given forcing (Hooss et al., 2001). A widely used version tested here is the impulse response (IR) model used in the Intergovernmental Panel on Climate Change Fifth Assessment Report (Myhre et al., 2013), referred to as AR5-IR. Additionally, we test version 1.0 of the Finite Amplitude IR (FAIR) model, an extension of AR5-IR including a representation of carbon cycle feedbacks and non-linear forcing (Millar et al., 2017).

3 Results

We highlight differences in model responses to a suite of unit tests to support an informed model selection (see Table 1). We begin by testing the fundamental dynamics of the temperature response to a well-mixed greenhouse gas forcing impulse by perturbing CO₂ concentrations (Fig. 1), bypassing the carbon cycle (if present).

We report both time-series responses (Fig. 1a) and time-integrated responses (Fig. 1b; SI 9). Integrated responses form the basis of commonly used metrics, such as GWP and GTP (Fuglestvedt et al., 2010).

3.1 Responses to CO₂ Concentration Impulse. First we consider the comprehensive SCMs. Both versions of MAGICC show shifted responses in the first few years following the perturbation due to the way this model treats sub-annual integration of forcing (SI5). The shifted responses do not significantly impact integrated results. MAGICC 6.0 initially responds more strongly to the perturbation, with a 6% larger integrated temperature response 20 years after the impulse compared to the comprehensive SCMs average (SI9). After 30 years, the comprehensive SCMs are within 2% of each other.

The idealized SCMs show varied responses to a CO₂ concentration impulse. AR5-IR has a much stronger response compared to the comprehensive SCMs; the integrated response is 6% larger than the comprehensive SCMs 20 years after the pulse, increasing to 30% by the end of the model runs. This large difference is due to the absence of feedbacks and nonlinearities in the AR-IR model. FAIR represents such nonlinearities, responding similarly to the
comprehensive SCMs in the near-term, but has a 7% weaker response 285 years after the impulse. The approximations used to represent the carbon cycle and non-linear forcing might account for this, but it is unclear from these results.

Figure 1: Global mean temperature response (a) and integrated global mean temperature response (b) from a CO$_2$ concentration perturbation in SCMs (MAGICC 6.0 – yellow, MAGICC 5.3 BC-OC – red, Hector v2.0 – blue, AR5-IR – green, FAIR – pink). The perturbations are conducted in 2015 against the background of the Representative Concentration Pathway (RCP) 4.5 scenario (see Methods). The time-integrated response, analogous to the Absolute Global Temperature Potential, is reported as 0-285 years after the perturbation.

3.2 Responses to Emissions Impulses. We now test the model response to an emissions impulse. Compared to forcing-only experiments, emissions perturbation experiments have additional levels of uncertainty from the conversion of emissions to concentrations, as well as carbon cycle feedbacks. As a diagnostic we examine the forcing response, functionally equivalent to examining the concentration response. The three comprehensive SCMs have small differences (<10%) in the integrated forcing response (Fig. 2b) from CO$_2$ (dashed) emission impulses for all time horizons. AR5-IR, an idealized SCM, responds 11% stronger than the comprehensive SCMs average 20 years after the pulse, increasing to a 17% difference 285 years after the impulse.

We complete the model response sequence by examining the temperature response from emissions perturbations, which is conceptually the combination of the temperature response from a concentration impulse (Fig. 1) and the forcing response from an emissions impulse (Fig. 2). Similarities in the comprehensive SCM responses in Figs. 1 and 2 are reflected in the <5% difference in the temperature response from a CO$_2$ emissions perturbation 20 years after the impulse (Fig. 3b). AR5-IR responds 30% stronger and FAIR <10% weaker compared to the comprehensive SCMs average 20 years after the perturbation (Fig. 3a). FAIR introduces a state-dependent carbon cycle representation.
and is, in general, an improvement over AR5-IR, but shows a systematic difference with the comprehensive SCMs.

We indirectly compare the time-integrated airborne fraction in our SCMs to three comprehensive ESMs and seven Earth System Models of Intermediate Complexity (EMICs) using results from the Joos et al. (2013) 100 GtC CO$_2$ pulse experiment. Unlike Joos et al., we conduct this experiment with a changing background concentration (SI11). The airborne fraction is, therefore, higher in our results. Despite the difference in methodology, comparing the MAGICC 6.0 results here and in Joos et al. allows us to use transitive logic to draw broader conclusions about the other comprehensive SCMs. We note that the Joos et al. MAGICC 6.0 ensemble mean airborne fraction is similar to their multi-model mean at each time horizon (Fig. S23). Because Hector and MAGICC 5.3 have a similar response to MAGICC 6.0 in our results, we conclude that the comprehensive SCM carbon cycle representations generally capture ESM and EMIC responses.

Similarly, we compare the temperature response of the comprehensive SCMs to Joos et al. We find that the comprehensive SCMs capture ESM and EMIC responses in the near-term, with expected differences in response over longer time horizons due to rising background concentrations (SI11).

For idealized SCMs, we find that under changing background conditions, FAIR underestimates the airborne fraction compared to the Joos et al. multi-model mean at each time horizon. Without a physical processes-based carbon cycle, AR5-IR is insensitive to pulse size and background concentration (Millar et al., 2017), which results in a similar time-integrated airborne fraction compared to the Joos et al. multi-model mean at each time horizon. The comprehensive SCMs and to a lesser extent, FAIR, offer an improved response compared to AR5-IR (Millar et al., 2017).
We next consider model responses to methane (CH$_4$) emissions perturbations, a shorter lived greenhouse gas with a dynamic atmospheric lifetime (see SI1). The integrated forcing responses of Hector and MAGICC 5.3 are similar, as expected (SI17). The integrated forcing response from MAGICC 6.0, however, shows a larger difference (9%) 100 years after the pulse (Fig. 2b). As in the CO$_2$ emissions perturbations, AR5-IR has a much stronger response (22%) to a CH$_4$ emissions perturbation 20 years after the pulse, with no meaningful increase 50 years after the pulse (SI8).

Finally, we look at the models’ temperature responses to aerosols by perturbing black carbon (BC) forcing (Fig 3). The BC response increases quickly in both MAGICC models compared to the other SCMs (SI9). Differences in these responses to a BC perturbation derive from model design. Both versions of MAGICC have differential and faster forcing responses over land, where most BC is located, compared to oceans, termed the geometrical effect (Meinshausen et al., 2011). This results in MAGICC responding faster than Hector v2.0, which does not differentiate forcing over land and ocean. Because AR5-IR presents the aerosol forcing as an exponential decay, the integrated temperature response is 20% stronger 20 years after the pulse compared to the other SCMs.

Due to the geometrical effect, we presume that the faster response in MAGICC is more realistic. However, models vary in the representations of aerosol effects (SI2). The greenhouse gas-like representation of aerosols in AR5-IR, for example, results in the unrealistically long response time scale found in this test. We do not explicitly conduct other aerosol perturbations (e.g., sulfate), but we would expect results showing similar responses.

BC has a unique set of atmospheric interactions, acting as an absorbing aerosol and causing inhomogeneous warming (Stjern et al., 2017). The response to a step in BC has been found to have a flat long-term temperature response (Sand et al., 2016). We find that comprehensive simple models respond over a much longer time scale than an ESM experiment investigating the climate response to BC (SI12). This is an indication that SCM responses to BC, in particular, should be reevaluated.
3.3 Responses to 4xCO₂ Concentration Step

Finally, we compare our SCMs with complex models using the abrupt 4xCO₂ concentration experiment from Phase 5 of the Coupled Model Intercomparison Project (CMIP5) (Taylor et al., 2012) (see SI1 and SI3). We find that Hector, MAGICC 5.3, and FAIR have initially quicker responses to an abrupt 4xCO₂ concentration increase (Fig. 4). This is also reflected in their long term RWF, which is also larger than most of the complex models (see SI9). Compared to the other SCMs, AR5-IR has a slower response to an abrupt 4xCO₂ concentration increase which does not substantially increase 25 years after the pulse, reflected in a lower RWF. Differences between the model responses to a finite pulse (Fig 1) and a large concentration step (Fig. 4) demonstrates the expected bias in AR5-IR under larger perturbations. The insensitivity of idealized SCMs to changing background concentrations will bias results if used under realistic future pathways (Millar et al., 2017).

Compared to the other comprehensive SCMs, MAGICC 6.0 initially responds more strongly under a CO₂ concentration impulse (Fig. 1). In the non-linear abrupt 4xCO₂ concentration regime MAGICC 6.0 responds more slowly, similar to the complex model responses, especially in the first 20 years after the pulse. MAGICC 6.0 appears to respond more reasonably under stronger forcing conditions than the other SCMs.

![Global Mean Temperature Response from 4xCO₂ Concentration Step](image)

Figure 4: Global mean temperature response from 4xCO₂ concentration step in CMIP5 models (grey) and SCMs (MAGICC 6.0 – yellow, MAGICC 5.3 BC-OC – red, Hector v2.0 – blue, FAIR – pink, AR5-IR – green). A climate sensitivity value of 3°C was used in the SCMs and the thick lines represent CMIP5 models with an ECS between 2.5 - 3.5 °C.

4 Conclusions

By using fundamental unit tests, we found that idealized SCMs using sums of exponentials often fail to capture the responses of more complex models. SCMs that include representations of non-linear processes, such as FAIR, show improved responses, though these models still do not perform as well as comprehensive SCMs with physically-based
representations. Fundamental forcing tests, such as a 4xCO₂ concentration step, show that some SCMs (Hector, MAGICC 5.3, and FAIR) have a faster warming rate in this strong forcing regime compared to more complex models. However, comprehensive SCM responses are similar to more complex models under smaller, more realistic perturbations (Joos et al., 2013).

Impulse	Species	Hector v2.0	MAGICC 5.3	MAGICC 6.0	FAIR v1.0	AR5-IR
Forcing	CO₂ impulse	***	***	***	**	*
	4xCO₂ step	**	**	***	**	*
GHG Emissions	CO₂	***	***	***	**	*
	CH₄	***	***	***	--	**
Aerosols*	SO₂, BC	**	***	***	--	*

Table 1: Summary of SCM Performance. The performance scale is generally based on the maximum difference in time-integrated temperature response compared to the relevant reference (generally comprehensive SCM average in SI 9). ***: 0-10%, **: 10-20%, *: 20-30% difference (SI13). * This ranking refers to aerosol response in general, which do not differ substantially for different aerosol types in these models. For BC specifically, all ratings should be reduced since none of the SCMs accurately represent the temporal response for BC seen in ESMs (Sand et al., 2016) (SI12).

There are numerous benefits to using simplified models, but the selection of the model should be rooted in a clear understanding of the model responses (see Table 1). Our work illustrates the necessity of using fundamental unit tests to evaluate SCMs. Given that idealized SCMs are biased in their response patterns, more comprehensive SCMs could be used for many applications without compromising on accessibility or computational requirements.
Author contribution. SJS, CAH, and AKS contributed to experiment design and figure development. AKS performed the experimental simulations and developed the AR5-IR model code in R. AKS prepared the manuscript with contributions from all co-authors.

Conflict of Interest. The authors declare that they have no conflicts of interest.

Acknowledgements. This research was supported by the U.S. Department of Energy, Office of Science, as part of research in Multi-Sector Dynamics, Earth and Environmental System Modeling Program. The Pacific Northwest National Laboratory is operated for DOE by Battelle Memorial Institute under contract DE-AC05-76RL01830. The views and opinions expressed in this paper are those of the authors alone.

We acknowledge the World Climate Research Programme's Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups for producing and making available their model output. For CMIP the U.S. Department of Energy's Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals.

The views and opinions expressed in this paper are those of the authors alone.

Code Availability

All model input files generated for our experiments, and the resulting impulse response functions, are provided in the Supplementary Materials. The authors appreciate that any use of this data be attributed.

References

Aamaas, B., Peters, G. P. and Fuglestvedt, J. S.: Simple emission metrics for climate impacts, Earth Syst. Dyn., 4(1), 145–170, doi:10.5194/esd-4-145-2013, 2013.

Allen, M. R., Shine, K. P., Fuglestvedt, J. S., Millar, R., Cain, M., Frame, D. J. and Macey, A. H.: A solution to the misrepresentations of CO2-equivalent emissions of 2 short-lived climate pollutants under ambitious mitigation, npj Clim. Atmos. Sci., (February), 1–8, doi:10.1038/s41612-018-0026-8, 2018.

Berntsen, T. and Fuglestvedt, J.: Global temperature responses to current emissions from the transport sectors, Proc. Natl. Acad. Sci., 105(49), 19154–19159, doi:10.1073/pnas.0804844105, 2008.

Calel, R. and Stainforth, D. A.: On the physics of three integrated assessment models, Bull. Am. Meteorol. Soc., 98(6), 1199–1216, doi:10.1175/BAMS-D-16-0034.1, 2017.

Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S. C., Collins, W., Cox, P., Driouech, F., Emori, S., Eyring, V., Forest, C., Gleckler, P., Guilyardi, E., Jakob, C., Kattsov, V., Reason, C. and Rummukainen, M.: Evaluation of Climate Models, Clim. Chang. 2013 Phys. Sci. Basis. Contrib. Work. Gr. I to Fifth Assess. Rep. Intergov. Panel Clim. Chang., 741–866, doi:10.1017/CBO9781107415324, 2013.

Friedlingstein, P., Meinshausen, M., Arora, V. K., Jones, C. D., Anav, A., Liddicoat, S. K. and Knutti, R.: Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks, J. Clim., 27(2), 511–526, doi:10.1175/JCLI-D-12-00579.1, 2014.
Fuglestvedt, J. S., Berntsen, T. K., Godal, O., Sausen, R., Shine, K. P. and Skodvin, T.: Metrics of climate change: Assessing radiative forcing and emission indices, Clim. Change, 58(3), 267–331, doi:10.1023/A:1023905326842, 2003.

Fuglestvedt, J. S., Shine, K. P., Berntsen, T., Cook, J., Lee, D. S., Stenke, A., Skeie, R. B., Velders, G. J. M. and Waizt, I. A.: Transport impacts on atmosphere and climate: Metrics, Atmos. Environ., 44(37), 4648–4677, doi:10.1016/j.atmosenv.2009.04.044, 2010.

Gasser, T., Peters, G. P., Fuglestvedt, J. S., Collins, W. J., Shindell, D. T. and Ciais, P.: Accounting for the climate–carbon feedback in emission metric, Earth Syst. Dyn., 8(2), 235–253, doi:10.5194/esd-8-235-2017, 2017.

Geoffroy, O., Saint-martin, D., Olivier, D. J. L., Voldoire, A., Bellon, G. and Tytéca, S.: Transient climate response in a two-layer energy-balance model. Part I: Analytical solution and parameter calibration using CMIP5 AOGCM experiments, J. Clim., 26(6), 1841–1857, doi:10.1175/JCLI-D-12-00195.1, 2013.

Good, P., Gregory, J. M. and Lowe, J. A.: A step-response simple climate model to reconstruct and interpret AOGCM projections, Geophys. Res. Lett., 38(1), n/a–n/a, doi:10.1029/2010GL045208, 2011.

Harmsen, M. J. H. M., Van Vuuren, D. P., Van Den Berg, M., Hof, A. F., Hope, C., Krey, V., Lamarque, J.-F., Marucchi, A., Shindell, D. T. and Schaeffer, M.: How well do integrated assessment models represent non-CO2 radiative forcing?, Clim. Change, 133, 565–582, doi:10.1007/s10584-015-1485-0, 2015.

Hartin, C. A., Patel, P., Schwarber, A., Link, R. P. and Bond-Lamberty, B. P.: A simple object-oriented and open-source model for scientific and policy analyses of the global climate system - Hector v1.0, Geosci. Model Dev., 8(4), 939–955, doi:10.5194/gmd-8-939-2015, 2015.

Hooss, G., Voss, R., Hasselmann, K., Maier-Reimer, E. and Joos, F.: A nonlinear impulse response model of the coupled carbon cycle-climate system (NICCS), Clim. Dyn., 18(3–4), 189–202, doi:10.1007/s0038200100170, 2001.

Hope, C.: The Marginal Impact of CO2 from PAGE2002: An Integrated Assessment Model Incorporating the IPCC’s Five Reasons for Concern, Integr. Assess. J., 6(1), 16–56, doi:10.1016/j.iana.2003.09.014, 2006.

Joos, F. and Bruno, M.: Pulse response functions are cost-efficient tools to model the link between carbon emissions, atmospheric CO2 and global warming, Phys. Chem. Earth, 21(5–6), 471–476, doi:10.1016/S0709-1946(97)81144-5, 1996.

Joos, F., Müller-Fürstenberger, G. and Stephan, G.: Correcting the carbon cycle representation: How important is it for the economics of climate change?, Environ. Model. Assess., 4(2), 133–140, doi:10.1023/A:1019004015342, 1999.

Joos, F., Roth, R., Fuglestvedt, J. S., Peters, G. P., Enting, I. G., Von Bloh, W., Brovkin, V., Burke, E. J., Eby, M., Edwards, N. R., Friedrich, T., Fröhlicher, T. L., Halloran, P. R., Holden, P. B., Jones, C., Klein, T., Mackenzie, F. T., Matsumoto, K., Meinshausen, M., Plattner, G. K., Reisinger, A., Segschneider, J., Shaffer, G., Steinacher, M., Strassmann, K., Tanaka, K., Timmermann, A. and Weaver, A. J.: Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: A multi-model analysis, Atmos. Chem. Phys., 13(5), 2793–2825, doi:10.5194/acp-13-2793-2013, 2013.

Khodayari, A., Wuebbles, D. J., Olsen, S. C., Fuglestvedt, J. S., Berntsen, T., Lund, M. T., Waitz, I., Wolfe, P., Forster, P. M., Meinshausen, M., Lee, D. S. and Lim, L. L.: Intercomparison of the capabilities of simplified climate models to project the effects of aviation CO2 on climate, Atmos. Environ., 75, 321–328, doi:10.1016/J.ATMOSENV.2013.03.055, 2013.

Knutti, R. and Sedláček, J.: Robustness and uncertainties in the new CMIP5 climate model projections, Nat. Clim. Chang., 3(October), 1–5, doi:10.1038/nclimate1716, 2012.

Knutti, R., Allen, M. R., Friedlingstein, P., Gregory, J. M., Hegerl, G. C., Meehl, G. A., Meinshausen, M., Murphy, J. M., Plattner, G. K., Raper, S. C. B., Stocker, T. F., Stott, P. A., Teng, H. and Wigley, T. M. L.: A review of uncertainties in global temperature projections over the twenty-first century, J. Clim., 21(11), 2651–2663, doi:10.1175/2007JCLI2119.1, 2008.

Kriegler, E.: Imprecise Probability Analysis for Integrated Assessment of Climate Change, Time, 258 [online] Available from: https://publis.hup.uni-potsdam.de/opus4-ubp/frontdoor/index/index/docId/497 (Accessed 29 October 2017), 2005.

Meinshausen, M., Raper, S. C. B. and Wigley, T. M. L.: Emulating IPCC AR4 atmosphere-ocean and carbon cycle models for projecting global-mean, hemispheric and land/ocean temperatures: MAGICC 6.0, Atmos. Chem. Phys. Discuss., 8(2), 6153–6272 [online] Available from: https://hal.archives-ouvertes.fr/hal-00304059 (Accessed 21 May 2018), 2008.

Meinshausen, M., Meinshausen, N., Hare, W., Raper, S. C. B., Frieler, K., Knutti, R., Frame, D. J. and Allen, M. R.: Greenhouse-gas emission targets for limiting global warming to 2 °C, Nature, 458(7242), 1158–1162, doi:10.1038/nature08017, 2009.
Meinshausen, M., Raper, S. C. B. and Wigley, T. M. L.: Emulating coupled atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6 - Part 1: Model description and calibration, Atmos. Chem. Phys., 11(4), 1417–1456, doi:10.5194/acp-11-1417-2011, 2011.

Millar, J. R., Nicholls, Z. R., Friedlingstein, P. and Allen, M. R.: A modified impulse-response representation of the global near-surface air temperature and atmospheric concentration response to carbon dioxide emissions, Atmos. Chem. Phys., 17(11), 7213–7228, doi:10.5194/acp-17-7213-2017, 2017.

Millar, R. J., Otto, A., Forster, P. M., Lowe, J. a., Ingram, W. J. and Allen, M. R.: Model structure in observational constraints on transient climate response, Clim. Change, 199–211, doi:10.1007/s10584-015-1384-4, 2015.

Millar, R. J., Nicholls, Z. R., Friedlingstein, P. and Allen, M. R.: A modified impulse-response representation of the global response to carbon dioxide emissions, Atmos. Chem. Phys. Discuss., 1–20, doi:10.5194/acp-2016-405, 2016.

Monckton, C., Soon, W. W. H., Legates, D. R. and Briggs, W. M.: Why models run hot: results from an irreducibly simple climate model, Sci. Bull., 60(1), 122–135, doi:10.1007/s11434-014-0699-2, 2015.

Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., van Vuuren, D. P., Carter, T. R., Emori, S., Kainuma, M., Kram, T., Meehl, G. A., Mitchell, J. F. B., Nakicenovic, N., Riahi, K., Smith, S. J., Stouffer, R. J., Thomson, A. M., Weyant, J. P. and Wilbanks, T. J.: The next generation of scenarios for climate change research and assessment, Nature, 463(7282), 747–756, doi:10.1038/nature08823, 2010.

Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, J., Huang, J., Koch, D., Lamarque, J.-F., Lee, D., Mendoza, B., Nakajima, T., Robock, A., Stephens, G., Takemura, T. and Zhang, H.: Anthropogenic and Natural Radiative Forcing, Clim. Chang. 2013 Phys. Sci. Basis. Contrib. Work. Gr. I to Fifth Assess. Rep. Intergov. Panel Clim. Chang., 659–740, doi:10.1017/CBO9781107415324.018, 2013.

National Academies of Sciences, Engineering, and M.: Assessment of a Near-Term Update to the Social Cost of Carbon, edited by T. N. A. Press, Washington, DC., 2016.

Ortiz, R. A. and Markandya, A.: Integrated Impact Assessment Models of Climate Change with an Emphasis on Damage Functions: a Literature Review, Basqu. Cent. Clim. Chang., (October 2009), 1–35 [online] Available from: http://ideas.repec.org/p/bcc/wpaper/2009-93266/4/040201, 2011.

Rogelj, J., Meinshausen, M. and Knutti, R.: Global warming under old and new scenarios using IPCC climate sensitivity range estimates, Nat. Clim. Chang., 2(4), 248–253, doi:10.1038/nclimate1385, 2012.

Rogelj, J., Schaeffer, M., Meinshausen, M., Shindell, D. T., Hare, W., Klimont, Z., Velders, G. J. M., Amann, M. and Schellnhuber, H. J.: Disentangling the effects of CO2 and short-lived climate forcer mitigation, Proc. Natl. Acad. Sci., 111(46), 16325–16330, doi:10.1073/pnas.1415631111, 2014.

S.H. Schneider and S.L. Thompson: V. A Simple Climate Model Used in Economic Studies of Global Change, Integr. Assess., 59–80, 2000.

Sand, M., Bernsten, T. K., Von Salzen, K., Flanner, M. G., Langner, J. and Victor, D. G.: Response of Arctic temperature to changes in emissions of short-lived climate forcers, Nat. Clim. Chang., 6(3), 286–289, doi:10.1038/nclimate2880, 2016.

Sarofim, M. C. and Giordano, M. R.: A quantitative approach to evaluating the GWP timescale through implicit discount rates, Earth Syst. Dyn. Discuss. Rev., 1013–1024, doi:10.5194/esd-2018-6, 2018.

Sausen, R. and Schumann, U.: Estimates of the Climate Response to Aircraft CO2 and NO x Emissions Scenarios, Clim. Change, 44(1–2), 27–58, doi:10.1023/A:1005579306109, 2000.

Smith, S. J. and Bond, T. C.: Two hundred fifty years of aerosols and climate: The end of the age of aerosols, Atmos. Chem. Phys., 14(2), 537–549, doi:10.5194/acp-14-537-2014, 2014.

Sjören, C. W., Samset, B. H., Myhre, G., Forster, P. M., Hodnebrog, Ø., Andrews, T., Boucher, O., Faluvegi, G., Iversen, T., Kasoar, M., Kharin, V., Kirkevåg, A., Lamarque, J. F., Olivié, D., Richardson, T., Shawki, D., Shindell, D., Smith, C. J., Takemura, T. and Voulgarakis, A.: Rapid Adjustments Cause Weak Surface Temperature Response to Increased Black Carbon Concentrations, J. Geophys. Res. Atmos., 122(21), 11,462–11,481, doi:10.1002/2017JD027326, 2017.

Strassmann, K. and Joos, F.: The Bern Simple Climate Model (BernSCM) v1.0: an extensible and fully documented open source reimplementation of the Bern reduced form model for global carbon cycle-climate simulations, Geosci. Model Dev., 1–31, doi:10.5194/gmd-2017-233, 2018.

Tanaka, K. and Kriegler, E.: Aggregated carbon cycle, atmospheric chemistry, and climate model (ACC2) – Description of the forward and inverse modes –. Reports Earth Syst. Sci., 199, 2007.

Taylor, K. E., Stouffer, R. J. and Meehl, G. A.: An overview of CMIP5 and the experiment design, Bull. Am. Meteorol. Soc., 93(4), 485–498, doi:10.1175/BAMS-D-11-00094.1, 2012.
Thompson, M. V. and Randerson, J. T.: Impulse response functions of terrestrial carbon cycle models: Method and application, Glob. Chang. Biol., 5(4), 371–394, doi:10.1046/j.1365-2486.1999.00235.x, 1999.

Thompson, T. M.: Modeling the climate and carbon systems to estimate the social cost of carbon, Wiley Interdiscip. Rev. Clim. Chang., (October 2017), e532, doi:10.1002/wcc.532, 2018.

Thomson, A. M., Calvin, K. V., Smith, S. J., Kyle, G. P., Volke, A., Patel, P., Delgado-Arias, S., Bond-Lamberty, B., Wise, M. A., Clarke, L. E. and Edmonds, J. A.: RCP4.5: A pathway for stabilization of radiative forcing by 2100, Clim. Change, 109(1), 77–94, doi:10.1007/s10584-011-0151-4, 2011.

van Vuuren, D. P., Meinshausen, M., Plattner, G.-K., Joos, F., Strassmann, K. M., Smith, S. J., Wigley, T. M. L., Raper, S. C. B., Riahi, K., de la Chesnaye, F., den Elzen, M. G. J., Fujino, J., Jiang, K., Nakicenovic, N., Paltsev, S. and Reilly, J. M.: Temperature increase of 21st century mitigation scenarios, Proc. Natl. Acad. Sci., 105(40), 15258–15262, doi:10.1073/pnas.0711129105, 2008.

van Vuuren, D. P., Lowe, J., Stehfest, E., Gohar, L., Hof, A. F., Hope, C., Warren, R., Meinshausen, M. and Plattner, G. K.: How well do integrated assessment models simulate climate change?, Clim. Change, 104(2), 255–285, doi:10.1007/s10584-009-9764-2, 2011a.

van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G. C., Kram, T., Krey, V., Lamarque, J.-F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S. J. and Rose, S. K.: The representative concentration pathways: an overview, Clim. Change, 109(1–2), 5–31, doi:10.1007/s10584-011-0148-z, 2011b.