The Hall property D_{π} is inherited by overgroups of π-Hall subgroups

Nomina Ch. Manzaeva
Novosibirsk State University, Novosibirsk, Russian Federation
Sobolev Institute of Mathematics, Novosibirsk, Russian Federation
manzaeva@mail.ru

Danila O. Revin
Sobolev Institute of Mathematics, Novosibirsk, Russian Federation
Novosibirsk State University, Novosibirsk, Russian Federation
revin@math.nsc.ru

Evgeny P. Vdovin Sobolev Institute of Mathematics, Novosibirsk, Russian Federation
Novosibirsk State University, Novosibirsk, Russian Federation
vdovin@math.nsc.ru

August 13, 2018

Abstract

Let π be a set of primes. We say that a finite group G is a D_{π}-group if the maximal π-subgroups of G are conjugate. In this paper, we give an affirmative answer to Problem 17.44(b) from “Kourovka notebook”, namely we prove that in a D_{π}-group an overgroup of a π-Hall subgroup is always a D_{π}-group.

1 Introduction

Throughout G is a finite group, and π is a set of primes. We denote by π' the set of all primes not in π, by $\pi(n)$ the set of all prime divisors of a positive
integer \(n \), given a group \(G \) we denote \(\pi(|G|) \) by \(\pi(G) \). A natural number \(n \) with \(\pi(n) \subseteq \pi \) is called a \(\pi \)-number, while a group \(G \) with \(\pi(G) \subseteq \pi \) is called a \(\pi \)-group. A subgroup \(H \) of \(G \) is called a \(\pi \)-Hall subgroup, if \(\pi(H) \subseteq \pi \) and \(\pi(|G : H|) \subseteq \pi' \), i.e. the order of \(H \) is a \(\pi \)-number and the index of \(H \) is a \(\pi' \)-number.

Following [8], we say that \(G \) satisfies \(\mathcal{E}_\pi \) (or briefly \(G \in \mathcal{E}_\pi \)), if \(G \) has a \(\pi \)-Hall subgroup. If \(G \) satisfies \(\mathcal{E}_\pi \) and every two \(\pi \)-Hall subgroups of \(G \) are conjugate, then we say that \(G \) satisfies \(\mathcal{C}_\pi \) (\(G \in \mathcal{C}_\pi \)). Finally, \(G \) satisfies \(\mathcal{D}_\pi \) (\(G \in \mathcal{D}_\pi \)), if \(G \) satisfies \(\mathcal{C}_\pi \) and every \(\pi \)-subgroup of \(G \) is included in a \(\pi \)-Hall subgroup of \(G \). Thus \(G \in \mathcal{D}_\pi \) if a complete analogue of the Sylow theorems for \(\pi \)-subgroups of \(G \) holds. Moreover, the Sylow theorems imply that \(G \in \mathcal{D}_\pi \) if and only if the maximal \(\pi \)-subgroups of \(G \) are conjugate.

A group \(G \) satisfying \(\mathcal{E}_\pi \) (or \(\mathcal{C}_\pi \), \(\mathcal{D}_\pi \)) is also called an \(\mathcal{E}_\pi \)-group (respectively, a \(\mathcal{C}_\pi \)-group, a \(\mathcal{D}_\pi \)-group). Given set \(\pi \) of primes we denote by \(\mathcal{E}_\pi \), \(\mathcal{C}_\pi \), and \(\mathcal{D}_\pi \) the classes of all finite \(\mathcal{E}_\pi \)-, \(\mathcal{C}_\pi \)-, and \(\mathcal{D}_\pi \)-groups, respectively.

In the paper, we solve the following problem from “Kourovka notebook” [16]:

Problem 1. [16, Problem 17.44(b)] In a \(\mathcal{D}_\pi \)-group, is an overgroup of a \(\pi \)-Hall subgroup always a \(\mathcal{D}_\pi \)-group?

The analogous problem for \(\mathcal{C}_\pi \)-property (see [16, Problem 17.44(a)]) was answered in the affirmative (cf. [26, 27]). An equivalent formulation to this statement is: *in a \(\mathcal{C}_\pi \)-group \(\pi \)-Hall subgroups are pronormal*. Recall that a subgroup \(H \) of a group \(G \) is said to be pronormal if, for every \(g \in G \), \(H \) and \(H^g \) are conjugate in \(\langle H, H^g \rangle \).

According to [25], we say that \(G \) satisfies \(\mathcal{U}_\pi \), if \(G \in \mathcal{C}_\pi \) and every overgroup of a \(\pi \)-Hall subgroup of \(G \) satisfies \(\mathcal{D}_\pi \). We denote also by \(\mathcal{U}_\pi \) the class of all finite groups satisfying \(\mathcal{U}_\pi \). Thus Problem 1 can be reformulated in the following way:

Problem 2. Is it true that \(\mathcal{D}_\pi = \mathcal{U}_\pi \)?

The following main theorem gives an affirmative answer to Problems 1 and 2.

Theorem 1. (Main theorem) Let \(\pi \) be a set of primes. Then \(\mathcal{D}_\pi = \mathcal{U}_\pi \). In other words, if \(G \) satisfies \(\mathcal{D}_\pi \) and \(H \) is a \(\pi \)-Hall subgroup of \(G \), then every subgroup \(M \) of \(G \) with \(H \leq M \) satisfies \(\mathcal{D}_\pi \).

One can formulate this statement by using the concept of strong pronormality. According to [25], a subgroup \(H \) of a group \(G \) is said to be strongly pronormal if, for every \(g \in G \) and \(K \leq H \), there exists \(x \in \langle H, K^g \rangle \) such that \(K^gx \leq H \). Theorem 1 is equivalent to the following
Theorem 2. Let \(\pi \) be a set of primes. In a \(D_\pi \)-group \(\pi \)-Hall subgroups are strongly pronormal.

In [18, Theorem 7.7], it was proven that \(G \) satisfies \(D_\pi \) if and only if each composition factor of \(G \) satisfies \(D_\pi \). Using this result, an analogous criterion for \(U_\pi \) is obtained in [23].

Theorem 3. [23, Theorem 2] A finite group \(G \) satisfies \(U_\pi \) if and only if each composition factor of \(G \) satisfies \(U_\pi \).

In order to solve [16, Problem 17.44(a)], the pronormality of Hall subgroup in finite simple groups was proven in [26]. The strong pronormality of Hall subgroups in finite simple groups together with Theorem 3 would imply the main theorem. However, M. Nesterov in [17] showed that \(\text{PSp}_{10}(7) \) contains a \(\{2,3\} \)-Hall subgroup that is not strongly pronormal.

Theorem 3 reduces Problem 1 to a similar problem for simple \(D_\pi \)-groups. All simple \(D_\pi \)-groups are known: in pure arithmetic terms, necessary and sufficient conditions for a simple group \(G \) to satisfy \(D_\pi \) can be found in [19].

It was proved in [23] that if \(G \) is an alternating group, a sporadic group or a group of Lie type in characteristic \(p \) \(\pi \), then \(G \) satisfies \(U_\pi \). An affirmative answer to Problem 1 in case \(2 \in \pi \) is obtained in [13]. In this paper, we consider the remaining case of \(D_\pi \)-groups of Lie type in characteristic \(p \) with \(2, p \notin \pi \).

2 Notation and preliminary results

All groups in the paper are assumed to be finite. Our notation is standard and agrees with that of [4] and [11]. By \(A : B \) and \(A . B \) we denote a split extension and an arbitrary extension of a group \(A \) by a group \(B \), respectively. Symbol \(A \times B \) denotes the direct product of \(A \) and \(B \). If \(G \) is a group and \(S \) is a permutation group, then \(G \wr S \) is the permutation wreath product of \(G \) and \(S \). We use notations \(H \leq G \) and \(H \trianglelefteq G \) instead of “\(H \) is a subgroup of \(G \)” and “\(H \) is a normal subgroup of \(G \)” respectively. For \(M \leq G \) we set \(M^G = \{ M^g \mid g \in G \} \). The subgroup generated by a subset \(M \) is denoted by \(\langle M \rangle \). The normalizer and the centralizer of \(H \) in \(G \) are denoted by \(N_G(H) \) and \(C_G(H) \), respectively, while \(Z(G) \) is the center of \(G \). The generalized Fitting subgroup of \(G \) is denoted by \(F^*(G) \). For a group \(G \), we denote by \(\text{Aut}(G) \) and \(\text{Out}(G) \) the automorphism group and the outer automorphism group, respectively. Denote a cyclic group of order \(n \) by \(n \), and an arbitrary solvable group of order \(n \) by \(\{n\} \). Recall that, for a group \(X \) and a prime \(t \), a \(t \)-rank \(m_t(X) \) is the maximal rank of elementary abelian \(t \)-subgroups of \(X \).
Throughout, F_q is a finite field of order q and characteristic p. By η we always denote an element of the set $\{+, -\}$ and we use η instead of η_1 as well. In order to make uniform statements and arguments, we use the following notations $GL_n^+(q) = GL_n(q)$, $GL_n^-(q) = GU_n(q)$, $SL_n^+(q) = SL_n(q)$, $SL_n^-(q) = SU_n(q)$, $PSL_n^+(q) = PSL_n(q)$, $PSL_n^-(q) = PSU_n(q)$, $E_6^+(q) = E_6(q)$, $E_6^-(q) = 2E_6(q)$. If G is a group of Lie type, then by $W(G)$ we denote the Weyl group of G.

The integral part of a real number x is denoted by $[x]$. For integers n and m, we denote by $\gcd(n, m)$ and $\lcm(n, m)$ the greatest common divisor and the least common multiple, respectively. If π is a set of primes, then $\min(\pi)$ is the smallest prime in π. If n is a positive integer, then n_π is the largest divisor d of n with $\pi(d) \subseteq \pi$. If g is an element of a group then there are elements g_π and $g_{\pi'}$ in $\langle g \rangle$ such that $g = g_\pi g_{\pi'}$ and $|g_\pi|$ is a π-number, while $|g_{\pi'}|$ is a π'-number.

If r is an odd prime and k is an integer not divisible by r, then $e(k, r)$ is the smallest positive integer e with $k^e \equiv 1 \pmod{r}$. So, $e(k, r)$ is the multiplicative order of k modulo r. In particular, if $e = e(k, r)$, then

$$e(k^a, r) = \frac{e}{\gcd(e, a)}.$$

For a natural number e set

$$e^* = \begin{cases} 2e & \text{if } e \equiv 1 \pmod{2}, \\ e & \text{if } e \equiv 0 \pmod{4}, \\ e/2 & \text{if } e \equiv 2 \pmod{4}. \end{cases}$$

The next result may be found in [28].

Lemma 1. ([28], Lemmas 2.4 and 2.5) Let r be an odd prime, k an integer not divisible by r, and m a positive integer. Denote $e(k, r)$ by e.

Then the following identities hold.

$$(k^m - 1)_r = \begin{cases} (k^e - 1)_r(m/e)_r & \text{if } e \text{ divides } m, \\ 1 & \text{if } e \text{ does not divide } m; \end{cases}$$

$$(k^m - (-1)^m)_r = \begin{cases} (k^{e^*} - (-1)^{e^*})_r(m/e^*)_r & \text{if } e^* \text{ divides } m, \\ 1 & \text{if } e^* \text{ does not divide } m. \end{cases}$$

$$\prod_{i=1}^{m}(k^i - 1)_r = (k^e - 1)_r^{[m/e]}([m/e]!)_r$$

$$\prod_{i=1}^{m}(k^i - (-1)^i)_r = (k^{e^*} - (-1)^{e^*})_r^{[m/e^*]}([m/e^*]!)_r.$$
In Lemma 2, we collect some known facts about π-Hall subgroups in finite groups.

Lemma 2. Let G be a finite group, A a normal subgroup of G.

(a) If H is a π-Hall subgroup of G then $H \cap A$ is a π-Hall subgroup of A and HA/A is a π-Hall subgroup of G/A. In particular, a normal subgroup and a homomorphic image of an E_π-group satisfy E_π. (see [8, Lemma 1])

(b) If M/A is a π-subgroup of G/A, then there exists a π-subgroup H of G with $M = HA$. (see [1, Lemma 2.1])

(c) An extension of a C_π-group by a C_π-group satisfies C_π. (see [8, C1 and C2] or [25, Proposition 5.1])

(d) If $2 \not\in \pi$ then $E_\pi = C_\pi$. In particular, if $2 \not\in \pi$ then a group G satisfies E_π if and only if each composition factor of G satisfies E_π. (see [3, Theorem A], [6, Theorem 2.3], [25, Theorem 5.4])

(e) If G possesses a nilpotent π-Hall subgroup then G satisfies D_π. (see [8, Theorem A], [7, Theorem 2.3], [25, Theorem 6.2])

(f) A group G satisfies D_π if and only if both A and G/A satisfy D_π. Equivalently, $G \in D_\pi$ if and only if each composition factor of G satisfies D_π. (see [18, Theorem 7.7], [25, Collorary 6.7])

Lemma 3. (see [8, Theorem 3], [25, Theorem 6.9]) Let S be a simple group of Lie type with the base field \mathbb{F}_q of characteristic p. Suppose $2 \not\in \pi$ and $|\pi \cap \pi(S)| \geq 2$. Then S satisfies D_π if and only if the pair (S, π) satisfies one of the Condition I-IV below.

Condition I. Let $p \in \pi$ and $\tau = (\pi \cap \pi(S)) \backslash \{p\}$. We say that (S, π) satisfies Condition I if $\tau \subseteq \pi(q - 1)$ and every number from π does not divide $|W(S)|$.

Condition II. Suppose that S is not isomorphic to $2B_2(q), 2G_2(q), 2F_4(q)'$ and $p \not\in \pi$. Set $r = \min(\pi \cap \pi(S))$ and $\tau = (\pi \cap \pi(S)) \backslash \{r\}$. Denote by α the number $e(q, \tau)$. We say that (S, π) satisfies Condition II if there exists $t \in \tau$ with $b = e(q, t) \neq a$ and one of the following holds.

(a) $S \cong A_{n-1}(q), a = r - 1, b = r, (q^{r-1} - 1) = r, \left\lceil \frac{n}{r} \right\rceil = \left\lceil \frac{n}{r} \right\rceil + 1$, and both $e(q, s) = b$ and $n < bs$ hold for every $s \in \tau$.

(b) $S \cong A_{n-1}(q), a = r - 1, b = r, (q^{r-1} - 1) = r, \left\lceil \frac{n}{r} \right\rceil = \left\lceil \frac{n}{r} \right\rceil + 1$, $n \equiv -1 \pmod r$ and both $e(q, s) = b$ and $n < bs$ hold for every $s \in \tau$.

5
(c) $S \simeq 2A_{n-1}(q)$, $r \equiv 1 \pmod{4}$, $a = r - 1$, $b = 2r$, $(q^{r-1} - 1)_r = r$,
\[
\left[\frac{n}{r - 1} \right] = \left[\frac{n}{r} \right] \quad \text{and} \quad e(q, s) = b \quad \text{for every} \ s \in \tau.
\]

(d) $S \simeq 2A_{n-1}(q)$, $r \equiv 3 \pmod{4}$, $a = \frac{r - 1}{2}$, $b = 2r$, $(q^{r-1} - 1)_r = r$,
\[
\left[\frac{n}{r - 1} \right] = \left[\frac{n}{2} \right] \quad \text{and} \quad e(q, s) = b \quad \text{for every} \ s \in \tau.
\]

(e) $S \simeq 2A_{n-1}(q)$, $r \equiv 1 \pmod{4}$, $a = r - 1$, $b = 2r$, $(q^{r-1} - 1)_r = r$,
\[
\left[\frac{n}{r - 1} \right] = \left[\frac{n}{r} \right] + 1, \ n \equiv -1 \pmod{r} \quad \text{and} \quad e(q, s) = b \quad \text{for every} \ s \in \tau.
\]

(f) $S \simeq 2A_{n-1}(q)$, $r \equiv 3 \pmod{4}$, $a = \frac{r - 1}{2}$, $b = 2r$, $(q^{r-1} - 1)_r = r$,
\[
\left[\frac{n}{r - 1} \right] = \left[\frac{n}{2} \right] + 1, \ n \equiv -1 \pmod{r} \quad \text{and} \quad e(q, s) = b \quad \text{for every} \ s \in \tau.
\]

(g) $S \simeq 2D_n(q)$, $a \equiv 1 \pmod{2}$, $n = b = 2a$ and for every $s \in \tau$ either
\[e(q, s) = a \quad \text{or} \quad e(q, s) = b.
\]

(h) $S \simeq 2D_n(q)$, $b \equiv 1 \pmod{2}$, $n = a = 2b$ and for every $s \in \tau$ either
\[e(q, s) = a \quad \text{or} \quad e(q, s) = b.
\]

In cases (e)-(h), a π-Hall subgroup of $S \simeq 2D_n(q)$ is cyclic.

Condition III. Suppose that S is not isomorphic to $2B_2(q), 2G_2(q), 2F_4(q)'$ and $p \notin \pi$. Set $r = \min(\pi \cap \pi(S))$ and $\tau = (\pi \cap \pi(S)) \setminus \{r\}$. Denote by c the number $e(q, r)$. We say that (S, π) satisfies Condition III if $e(q, t) = c$ for every $t \in \tau$ and one of the following holds.

(a) $S \simeq A_{n-1}(q)$ and $n < ct$ for every $t \in \tau$.

(b) $S \simeq 2A_{n-1}(q)$, $c \equiv 0 \pmod{4}$ and $n < ct$ for every $t \in \tau$.

(c) $S \simeq 2A_{n-1}(q)$, $c \equiv 2 \pmod{4}$ and $2n < ct$ for every $t \in \tau$.

(d) $S \simeq 2A_{n-1}(q)$, $c \equiv 1 \pmod{2}$ and $n < 2ct$ for every $t \in \tau$.

(e) S is isomorphic to one of the groups $B_n(q)$, $C_n(q)$ or $2D_n(q)$, c is even and $2n < ct$ for every $t \in \tau$.

(f) S is isomorphic to one of the groups $B_n(q)$, $C_n(q)$ or $D_n(q)$, c is odd and $n < ct$ for every $t \in \tau$.

(g) $S \simeq D_n(q)$, c is even and $2n \leq ct$ for every $t \in \tau$.

6
(h) $S \simeq 2D_n(q)$, c is odd and $n \leq ct$ for every $t \in \tau$.

(i) $S \simeq 3D_4(q)$.

(j) $S \simeq E_6(q)$ and if $r = 3$ and $c = 1$ then $5, 13 \notin \tau$.

(k) $S \simeq 2E_6(q)$ and if $r = 3$ and $c = 2$ then $5, 13 \notin \tau$.

(l) $S \simeq E_7(q)$; if $r \neq 3$ and $c \neq 1$ then $5, 7, 13, 1R, \tau$.

(m) $S \simeq E_8(q)$; if $r \neq 3$ and $c \neq 2$ then $5, 7, 13, 1R, \tau$.

(n) $S \simeq G_2(q)$.

(o) $S \simeq F_4(q)$ and if $r = 3$ and $c = 1$ then $13 \notin \tau$.

Condition IV. We say that (S, π) satisfies Condition IV if one of the following holds.

(a) $S \simeq 2B_2(2^{2m+1}), \pi \cap \pi(G)$ is contained in one of the sets $\pi(2^{2m+1} - 1), \pi(2^{2m+1} \pm 2^{m+1} + 1)$.

(b) $S \simeq 2G_2(3^{2m+1}), \pi \cap \pi(G)$ is contained in one of the sets $\pi(3^{2m+1} - 1) \setminus \{2\}, \pi(3^{2m+1} \pm 3^{m+1} + 1) \setminus \{2\}$.

(c) $S \simeq 2F_4(2^{2m+1}), \pi \cap \pi(G)$ is contained in one of the sets $\pi(2^{2(2m+1)} \pm 1), \pi(2^{2m+1} \pm 2^{m+1} + 1), \pi(2^{2(2m+1)} + 2^{3m-2} + 2^{m+1} - 1), \pi(2^{2(2m+1)} \pm 2^{3m+2} + 2^{2m+1} + 2^{m+1} - 1)$.

In the next three lemmas, we recall some preliminary results about U_π-property.

Lemma 4. [23, Theorem 4] If $G \in D_\pi$ is either an alternating group, or a sporadic simple group, or a simple group of Lie type in characteristic $p \in \pi$, then G satisfies U_π.

Lemma 5. [13, Lemma 3] The following statements are equivalent.

(a) $D_\pi = U_\pi$.

(b) In every simple D_π-group G, all maximal subgroups containing a π-Hall subgroup of G satisfy D_π.

Lemma 6. [13, Theorem 1] If $2 \in \pi$ then $D_\pi = U_\pi$.
In view of Lemma [3], we consider the case when \(\pi \) is a set of odd primes.

Lemma 7. [24, Theorem 1] Let \(G \) be a group of Lie type in characteristic \(p \). Suppose that \(2, p \notin \pi \) and \(H \) is a \(\pi \)-Hall subgroup of \(G \). Set \(r = \min(\pi \cap \pi(G)) \) and \(\tau = (\pi \cap \pi(G)) \setminus \{r\} \). Then \(H \) has a normal abelian \(\tau \)-Hall subgroup.

In spite of Lemma [4], we say that a pair \((G, \pi) \) satisfies (\[4\]) if

\[
\text{every } \pi\text{-subgroup of } G \text{ has a normal abelian } \tau\text{-Hall subgroup,}
\]

where \(r = \min(\pi \cap \pi(G)) \) and \(\tau = (\pi \cap \pi(G)) \setminus \{r\} \).

(\[*\])

Suppose that \(G \in \mathcal{E}_\pi \) is a group of Lie type in characteristic \(p \) and \(2, p \notin \pi \). If \(G \in \mathcal{D}_\pi \), then every \(\pi \)-subgroup of \(G \) is contained in a \(\pi \)-Hall subgroup of \(G \), and hence by Lemma [4] we have that \((G, \pi) \) satisfies (\[4\]). The following lemma gives sufficient conditions for the validity of the converse statement.

Lemma 8. [24, Theorem 5] Let \(G \) be a group of Lie type with the base field \(\mathbb{F}_q \) of characteristic \(p \), and \(G \) is not isomorphic to \(2B_2(q), 2G_2(q), 2F_4(q) \)'.

Suppose that \(2, p \notin \pi \) and \(G \in \mathcal{E}_\pi \). Assume further that \(e(q, t) = e(q, s) \) for every \(t, s \in \pi \cap \pi(G) \). Then \(G \in \mathcal{D}_\pi \) if and only if \((G, \pi) \) satisfies (\[4\]).

The next lemma says, when a simple group \(S \) satisfies \(\mathcal{E}_\pi \) and does not satisfy \(\mathcal{D}_\pi \).

Lemma 9. ([3, Theorem 1.1], [3, Theorem 6.14], [20, Lemmas 5-7]) Let \(S \) be a simple group. Suppose that \(2 \notin \pi \) and \(S \in \mathcal{E}_\pi \setminus \mathcal{D}_\pi \). Set \(r = \min(\pi \cap \pi(S)) \) and \(\tau = (\pi \cap \pi(S)) \setminus \{r\} \). Then one of the following holds.

(I) \(S \cong O'N \) and \(\pi \cap \pi(S) = \{3, 5\} \).

(II) \(S \) is a group of Lie type with the base field \(\mathbb{F}_q \) of characteristic \(p \) and either (A) or (B) below is true:

(A) \(p \in \pi, \ p \) divides \(|W(S)| \), every \(t \in (\pi \cap \pi(S)) \setminus \{p\} \) divides \(q - 1 \) and does not divide \(|W(S)| \).

(B) \(p \notin \pi \) and one of (a)-(i) below holds.

(a) \(S \cong \text{PSL}_n(q), \ e(q, r) = r - 1, (q^{r-1} - 1)_r = r, \left[\frac{n}{r-1}\right] = \left[\frac{q^n}{r}\right] \) and for every \(t \in \tau \) we have \(e(q, t) = 1 \) and \(n < t \).

(b) \(S \cong \text{PSU}_n(q), r \equiv 1 \pmod{4}, e(q, r) = r - 1, (q^{r-1} - 1)_r = r, \left[\frac{n}{r-1}\right] = \left[\frac{q^n}{r}\right] \) and for every \(t \in \tau \) we have \(e(q, t) = 2 \) and \(n < t \).
(c) $S \cong \text{PSU}_n(q)$, $r \equiv 3 \pmod{4}$, $e(q, r) = \frac{r-1}{2}$, $(q^{r-1} - 1)_r = r$, $\left[\frac{r}{q} \right] = \left[\frac{2}{q} \right]$ and for every $t \in \tau$ we have $e(q, t) = 2$ and $n < t$.

(d) $S \cong E_6(q)$, $\pi \cap \pi(S) \subseteq \pi(q-1)$, $3, 13 \in \pi \cap \pi(S)$, $5 \notin \pi \cap \pi(S)$.

(e) $S \cong {E}_6(q)\, ^2$, $\pi \cap \pi(S) \subseteq \pi(q+1)$, $3, 13 \in \pi \cap \pi(S)$, $5 \notin \pi \cap \pi(S)$.

(f) $S \cong E_7(q)$, $\pi \cap \pi(S)$ is contained in one of the sets $\pi(q-1)$ or $\pi(q+1)$, $3, 13 \in \pi \cap \pi(S)$, $5, 7 \notin \pi \cap \pi(S)$.

(g) $S \cong E_8(q)$, $\pi \cap \pi(S)$ is contained in one of the sets $\pi(q-1)$ or $\pi(q+1)$, $3, 13 \in \pi \cap \pi(S)$, $5, 7 \notin \pi \cap \pi(S)$.

(h) $S \cong E_8(q)$, $\pi \cap \pi(S)$ is contained in one of the sets $\pi(q-1)$ or $\pi(q+1)$, $5, 31 \in \pi \cap \pi(S)$, $3, 7 \notin \pi \cap \pi(S)$.

(i) $S \cong F_4(q)$, $\pi \cap \pi(S)$ is contained in one of the sets $\pi(q-1)$ or $\pi(q+1)$, $3, 13 \in \pi \cap \pi(S)$.

Remark on Lemma 9. Consider simple classical groups in characteristic p. Suppose that $2, p \notin \pi$. If a simple classical group satisfies \mathcal{E}_π and does not satisfy \mathcal{D}_π, then it must be linear or unitary by Lemma 9. Thus if $S \in \mathcal{E}_\pi$ is a simple orthogonal or sympletic group, then $S \in \mathcal{D}_\pi$. However, there are isomorphisms amongst the classical groups, and it may happen that a simple orthogonal or sympletic group $S \in \mathcal{E}_\pi$ is isomorphic to a linear or unitary group S_1 (see Proposition 2.9.1]. One can check in this case that $S_1 \in \mathcal{D}_\pi$. For instance, suppose that $S = \Omega^+_{n}(q) \cong \text{PSL}^±_n(q) = S_1$. Assume also that $S_1 \in \mathcal{E}_\pi \setminus \mathcal{D}_\pi$, and therefore S_1 satisfies one of items (I(B)a), (I(B)b), or (I(B)c) of Lemma 8. If $r = \min(\pi \cap \pi(S_1))$, we have that $r \leq n = 4$ (see Lemma 9 below) and so $r = 3$. Then $\left[\frac{r}{q} \right] \neq \left[\frac{2}{q} \right]$ and none of conditions (I(B)a), (I(B)b), or (I(B)c) holds. Hence we conclude that $S_1 = \text{PSL}^±_n(q) \in \mathcal{D}_\pi$. Thus if S is a simple orthogonal or sympletic group in characteristic p, π is a set of primes with $2, p \notin \pi$ and $S \in \mathcal{E}_\pi$, then $S \in \mathcal{D}_\pi$.

We consider $\text{GL}_n^\pi(q)$ as the set $\{(a_{ij}) \in \text{GL}_n(q^2) \mid (a_{ij})^\pi = ((a_{ij})^{-1})^\pi\}$, where $(a_{ij})^\pi = (a_{ji})^\pi$ is the transposed of (a_{ij}). In the following statement, we specify the structure of π-Hall subgroup in $\text{GL}_n^\pi(q)$ in case $2, p \notin \pi$ and $\text{GL}_n^\pi(q)$ does not satisfy \mathcal{D}_π.

Lemma 10. Let $G = \text{GL}_n^\pi(q)$, where $q = p^m$ and p is a prime. Denote by D the subgroup of all diagonal matrices in G, so that $D \cong (q - \eta)^n$, and by P the subgroup of permutation matrices of G, so that $P \cong S_n$ and P normalizes D. Suppose that $2, p \notin \pi$ and $G \in \mathcal{E}_\pi \setminus \mathcal{D}_\pi$. Set $r = \min(\pi \cap \pi(G))$ and $\tau = (\pi \cap \pi(G)) \setminus \{r\}$. Then the following statements hold.

(a) r does not divide $q - \eta$, $\pi \subseteq \pi(q - \eta)$, and a π-Hall subgroup T of D is isomorphic to $(q - \eta)^n$.
(b) P is a π'-group, a π-Hall subgroup of P is nontrivial and coincides with a Sylow r-subgroup R of P and R is elementary abelian of order $r^{[n/r]}$.

d) Consider the automorphism $\varphi : (a_{ij}) \mapsto (a_{ij}^p)$ of G. Then φ normalizes T and centralizes R. In particular, φ normalizes TR.

e) Let $d = \left[\frac{r}{p} \right]$ and $n = dr + k$. Then $C_{TR}(R) \simeq (q - \eta)^{d+k} \times R$ and $m_t(C_{TR}(R)) = d + k$ for every $t \in \pi$.

Proof. Since $G \in \mathcal{E}_\pi \setminus \mathcal{D}_\pi$ and $2 \notin \pi$, Lemma 2 implies that the unique nonabelian composition factor $S = \text{PSL}_n^q(q)$ of G lies in $\mathcal{E}_\pi \setminus \mathcal{D}_\pi$. Since $p \notin \pi$, we obtain that S satisfies one of items (II(B)a-II(B)c) of Lemma 3. Observe that $\pi(G) = \pi(S)$. Denote $e(q, r)$ by e.

(a) Since $D \simeq (q - \eta)^n$ is abelian, D satisfies \mathcal{D}_π. Items (II(B)a-II(B)c) of Lemma 3 imply $\tau \subseteq \pi(q - \eta)$. It suffices, therefore, to prove that r does not divide $q - \eta$.

If $\eta = +$, then $S = \text{PSL}_n(q)$ satisfies item (II(b)a) of Lemma 3. It now follows that $e = r - 1 > 1$, and so r does not divide $q - \eta$.

If $\eta = -$, then $S = \text{PSU}_n(q)$ satisfies either (II(b)b) or (II(b)c) of Lemma 3. It is easy to see that in both cases e is not equal to 2, and so r does not divide $q + 1$. Observe also that in both cases $e^* = r - 1$. Thus $r \notin \pi(q - \eta)$, as required.

(b) It follows from items (II(B)a-II(B)c) of Lemma 3 that $n < t$ for every $t \in \tau$, and hence $P \simeq S_n$ is a π'-group. Then $|\pi \cap \pi(P)| \leq 1$, and P satisfies \mathcal{D}_π by the Sylow theorems. As we have seen above, if $\eta = +$ then $e = r - 1$, and if $\eta = -$ then $e^* = r - 1$. Lemma 4 implies that

$$\left| \text{GL}_n(q) \right|_r = (q^e - 1)^{\left[\frac{n}{e} \right]} \left(\left\lfloor \frac{n}{e} \right\rfloor \right)_r,$$

$$\left| \text{GU}_n(q) \right|_r = (q^{e^*} - (-1)^{e^*})^{\left[\frac{n}{e^*} \right]} \left(\left\lfloor \frac{n}{e^*} \right\rfloor \right)_r.$$

Hence

$$\left| \text{GL}_n(q) \right|_r = (q^{r-1} - 1)^{\left[\frac{n}{r-1} \right]} \left(\left\lfloor \frac{n}{r-1} \right\rfloor \right)_r. \quad (1)$$

Since r divides the order of G, we have that $n \geq r - 1$. Also, since $\left[\frac{n}{r-1} \right] = \left[\frac{n}{r} \right]$, we have that $n \geq r$, and so a Sylow r-subgroup R of P is nontrivial. Then $d = \left[\frac{n}{r} \right] > 0$ and it follows from $d = \left[\frac{n}{r-1} \right]$ that

$$n = dr + k = d(r - 1) + (d + k) \text{ and } 0 < d + k < r - 1. \quad (2)$$
In particular, \(d < r - 1 \) and a Sylow \(r \)-subgroup \(R \) of \(P \) is isomorphic to \(r^d \) by [11, 11.3.1, Example III]. Moreover

\[
 n = d(r - 1) + (d + k) \leq d(r - 1) + r - 2 \leq r(r - 2).
\]

(c) Since \(T \) is a characteristic subgroup of \(D \), we conclude that \(R \) normalizes \(T \), and so \(TR \) is a \(\pi \)-subgroup of \(G \). To prove that \(TR \) is a \(\pi \)-Hall subgroup of \(G \), it suffices to show that \(|G|_\pi = |TR| = (q - \eta)_r^{n/[r]}n/r \).

Items [11(B)a] and [11(B)c] of Lemma 3 yield \((q^{r-1} - 1)_r = r \) and we have seen that \([n/(r - 1)] = d < r - 1 \). Thus,

\[
 ([n/(r - 1)]!)_r = 1.
\]

In view of (c), we conclude that \(|G|_\pi = r^{n/[r-1]} = r^{n/r} \), as required.

Calculate \(t \)-part of order of \(G \) for every \(t \in \tau \). It follows from items [11(B)a] and [11(B)c] of Lemma 3 that \(e(q, t) = e(q, s) \) for every \(t, s \in \tau \). Denote \(e(q, t) \) by \(f \).

Observe that if \(\eta = + \) then \(f = 1 \), and if \(\eta = - \) then \(f = 2 \) and \(f^* = 1 \). Since \(n < t \), Lemma 4 yields

\[
 |GL_n(q)|_t = (q^f - 1)_t^{[n/f]} ([n/f]!)_t = (q - 1)_t^n (n!)_t = (q - 1)_t^n
\]

and

\[
 |GU_n(q)|_t = (q^{f^*} - (-1)^{f^*})_t^{[n/f^*]} ([n/f^*]!)_t = (q + 1)_t^n (n!)_t = (q + 1)_t^n
\]

Thus \(|G|_\pi = (q - \eta)_r^n \), as required.

(d) Clearly, \(\varphi \) normalizes \(D \) and centralizes \(P \). In particular, \(\varphi \) also centralizes \(R \). Since \(T \) is a characteristic subgroup of \(D \), we have that \(\varphi \) normalizes \(T \).

(e) We will denote by \(D_1 \) the subgroup of \(D \) consisting of all matrices \(\text{diag}(1, \ldots, \alpha, \ldots, 1) \) where \(\alpha \) is an element of the corresponding field such that \(\alpha^q = \alpha \) and \(\alpha \) is placed on the \(i \)th position. Let \(T_i \) be the unique \(\tau \)-Hall subgroup of \(D_1 \). It is clear that both \(P \) and \(R \) act on the set

\[
 \Omega = \{T_1, \ldots, T_n\}
\]

via conjugation. Since \(R \) is a Sylow \(r \)-subgroup of \(P \simeq S_n \), and in view of (c), \(R \) has \(d \) orbits of size \(r \) and \(k \) orbits of size 1 on \(\Omega \) (see [11, 11.3.1, Example III]). It is easy to see that if \(\Delta \) is an orbit of \(R \) on \(\Omega \) then

\[
 C_{\langle \Delta \rangle}(R) \simeq (q - \eta)_r \quad \text{and}
\]

\[
 C_T(R) = \langle C_{\langle \Delta \rangle}(R) \mid \Delta \text{ is an orbit of } R \text{ on } \Omega \rangle \simeq (q - \eta)_r^{d+k}.
\]
Since R is abelian, we obtain that

$$C_{TR}(R) \cong (q - \eta)^{d+k} \times R.$$

Thus, for every $t \in \tau$, the maximal rank of elementary abelian t-subgroup

$m_t(C_{TR}(R))$ is equal to $d + k$.

Since $\text{PSL}_n^\eta(q)$ is a unique nonabelian composition factor of $\text{GL}_n^\eta(q)$, as a consequence of (a) and the proof of (b) we obtain

Lemma 11. Let $S = \text{PSL}_n^\eta(q)$, where $q = p^m$, and let $2, p \notin \pi$. Set $r = \min(\pi \cap \pi(S))$. Then $S \in \mathcal{E}_r \setminus \mathcal{D}_r$ implies $\gcd(n, q - \eta) = 1$ and $r \leq n \leq r(r-2)$.

Lemma 12. Let $G = \text{GL}_n^\eta(q)$, where $q = p^m$ and p is a prime. Consider the automorphism $\varphi : (a_{ij}) \mapsto (a_{ij}^{\eta})$ of G. Suppose that $2, p \notin \pi$ and $G \in \mathcal{E}_r \setminus \mathcal{D}_r$. Set $r = \min(\pi \cap \pi(G))$ and $\tau = (\pi \cap \pi(G)) \setminus \{r\}$. Take arbitrary $t \in \tau$. Then G contains an r-subgroup R and an elementary abelian t-subgroup K such that

(a) R is a Sylow r-subgroup of G centralized by φ_2;

(b) K is φ-invariant, $K \leq C_G(R)$, and the rank of K equals $2d + k$, where d and k are defined by $d = \lceil n/r \rceil$ and $k = n - dr$;

(c) if m is divisible by t and $\psi \in \langle \varphi \rangle$ is of order t, then K in (II) can be chosen such that $K \leq C_G(\psi) \cap C_G(R)$.

Proof. It follows from Lemma [1](b) that $d = \lceil n/r \rceil > 0$. The equality $n = d(r-1) + d + k$ implies that G contains a subgroup of block-diagonal matrices

$$X = \underbrace{\text{GL}_n^\eta(q) \times \ldots \times \text{GL}_n^\eta(q)}_{d \text{ times}} \times \underbrace{\text{GL}_1^\eta(q) \times \ldots \times \text{GL}_1^\eta(q)}_{k+d \text{ times}}.$$

This subgroup is φ-invariant. Every $\text{GL}_n^\eta(q)$ contains a subgroup $\text{GL}_n^\eta(p)$ centralized by φ_2. Consider a subgroup

$$Y = \underbrace{\text{GL}_n^\eta(p) \times \ldots \times \text{GL}_n^\eta(p)}_{d \text{ times}} \times \underbrace{\text{GL}_1^\eta(p) \times \ldots \times \text{GL}_1^\eta(p)}_{k+d \text{ times}}$$

of X. It follows from Fermat’s little theorem that $|\text{GL}_n^\eta(p)|_r > 1$. So, Y contains an elementary abelian r-subgroup R of order r^d and R is centralized by φ_2. By Lemma [1] we have that $|G|_r = r^d$ and R is a Sylow r-subgroup.
of G, as required. Observe that $Z(X) \simeq (q - \eta)^{2d+k}$. Lemma [10](a) implies that t divides $q - \eta$. Thus the unique maximal elementary abelian t-subgroup K of $Z(X)$ is a desired subgroup.

If m is divisible by t, then $q = q_0$ where $q_0 = p^{m/t}$. By Fermat’s little theorem $q_0 \equiv q \pmod{t}$ and since $q \equiv \eta \pmod{t}$ we obtain that

$$q_0 \equiv \eta \pmod{t}.$$

Consider a subgroup X_0 such that $Y \leq X_0 \leq X$ and

$$X_0 = \prod_{r=1}^{d} \left(\prod_{r=1}^{k} \left(\prod_{r=1}^{d} \left(\prod_{r=1}^{k} \right) \right) \right).$$

Clearly, $X_0 \leq \text{GL}_n(q) = C_G(\psi)$. It is easy to see that $Z(X_0) \leq Z(X)$ and since t divides $q_0 - \eta$, we conclude that $K \leq Z(X_0) \leq C_G(\psi)$. □

We also need some information about automorphisms of groups of Lie type. Let S be a simple group of Lie type. Definitions of diagonal, field and graph automorphisms of S agree with that of [21]. The group of inner-diagonal automorphisms of S is denoted by p_S. By [21, 3.2], there exists a field automorphism ρ of S such that every automorphism σ of S can be written $\sigma = \beta \rho \gamma$, with β and γ being an inner-diagonal and a graph automorphisms, respectively, and $l \geq 0$. The group $\langle \rho \rangle$ is denoted by Φ_S. In view of [3, 7-2], the group Φ_S is determined up to \hat{S}-conjugacy. Since S is centerless, we can identify S with the group of its inner automorphisms.

Lemma 13. [21, 3.3, 3.4, 3.6] Let S be a simple group of Lie type over \mathbb{F}_q of characteristic p. Set $A = \text{Aut}(S)$ and $\hat{A} = \hat{S}\Phi_S$. Then the following statements hold.

(a) $S \leq \hat{S} \leq \hat{A} \leq A$ is a normal series for A.

(b) \hat{S}/S is abelian; $\hat{S} = S$ for the groups $E_6(q), F_4(q), G_2(q), 3D_4(q)$, in other cases the order of \hat{S}/S is specified in Table 1.

| S | $|\hat{S}/S|$ |
|----------|--------------|
| $A_1(q)$ | gcd($l+1, q-1$) |
| $2A_1(q)$ | gcd($l+1, q+1$) |
| $B_1(q), C_1(q), E_7(q)$ | gcd($2, q-1$) |
| $D_1(q)$ | gcd($4, q^l-1$) |
| $2D_1(q)$ | gcd($4, q^l+1$) |
| $E_6(q)$ | gcd($3, q-1$) |
| $2E_6(q)$ | 13, gcd($3, q+1$) |
(c) $A = \hat{A}$ with the exceptions: A/\hat{A} has order 2 if S is $A_l(q)$ ($l \geq 2$), $D_l(q)$ ($l \geq 5$) or $E_6(q)$, or if S is $B_2(q)$ or $F_4(q)$ and $q = 2^{2n+1}$, or if S is $G_2(q)$ and $q = 3^{2n+1}$; A/\hat{A} is isomorphic to S_3 if S is $D_4(q)$.

Below we need an information about maximal subgroups of groups of Lie type. For classical groups we use the Aschbacher theorem [11, Theorem 1.2.1] and for the information about subgroups lying in the Aschbacher classes we refer to [1]. Maximal subgroups of exceptional groups of Lie type are specified in Lemmas [14] and [15].

Let G be a finite exceptional simple group of Lie type over \mathbb{F}_q, where $q = p^s$. Then by [22] there is a simple adjoint algebraic group \overline{G} over the algebraic closure of \mathbb{F}_q, and a surjective endomorphism σ of \overline{G} such that $G = O^\sigma(\overline{G}_\sigma)$, the subgroup of \overline{G}_σ generated by all its p-elements.

\textbf{Lemma 14.} [13, Theorem 2] Let $G = O^\sigma(\overline{G}_\sigma)$ be a finite exceptional group of Lie type, G_1 is chosen so that $G \leq G_1 \leq \text{Aut}(G)$, and let M be a maximal subgroup of G_1 such that $G \leq M$. Then either $F^*(M)$ is simple, or one of the following holds.

(a) $M = N_{G_1}(D_\sigma)$, where D is a σ-stable closed connected subgroup and D is either parabolic or reductive of maximal rank.

(b) $M = N_{G_1}(E)$, where E is an elementary abelian s-subgroup with s prime and $E \leq \overline{G}_\sigma$; the pair (G, E) is as in Table 2, in each case $s \neq p$.

(c) M is the centralizer of a graph, field, or graph-field automorphism of G of prime order.

(d) $\overline{G} = E_8$, $p > 5$ and $F^*(M) \in \{\text{PSL}_2(5) \times \text{PSL}_2(9), \text{PSL}_2(5) \times \text{PSL}_2(q)\}$.

(e) $F^*(M)$ is as in Table 3.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|}
\hline
G & E & $N_{\overline{G}}(E)$ & Conditions \\
\hline
$G_2(p)$ & 2^3 & $2^3 \cdot \text{SL}_3(2)$ & \\
$2G_2(3)'$ & 2^3 & $2^3 \cdot 7$ & \\
$F_4(p)$ & 3^3 & $3^3 \cdot \text{SL}_3(3)$ & $p \geq 5$ \\
$E_6(p)$ & 3^3 & $3^{3+3} \cdot \text{SL}_3(3)$ & $p = \eta \mod 3, p \geq 5$ \\
$E_7(q)$ & 2^2 & $(2^2 \times (\text{PO}_6^+(q) \cdot 2^2)) \cdot S_3$ & $\text{PO}_6^+(q) \cdot 2^2 = D_4(q)$ \\
$E_8(p)$ & 2^5 & $2^{5+10} \cdot \text{SL}_5(2)$ & \\
$E_8(p^n)$ & 5^3 & $5^3 \cdot \text{SL}_3(5)$ & $p \neq 2, 5$; $a = \begin{cases} 1, & \text{if } 5 \mid p^2 - 1 \\ 2, & \text{if } 5 \mid p^2 + 1. \end{cases}$ \\
$2E_6(2)$ & 3^2 & $\text{NG}(E) = (3^2 \cdot [8]) \times (\text{PSL}_3(3) \cdot 2)$ & \\
$E_7(3)$ & 2^2 & $\text{NG}(E) = (2^2 : 3) \times 3^1$ & \\
\hline
\end{tabular}
\end{table}
Table 3

G	$F^*(M)$
$F_4(q)$	$\text{PSL}_2(q) \times G_2(q)$ (\(p \geq 3, q \geq 5\))
$E_6^+(q)$	$\text{PSL}_2(q) \times G_2(q)$, $\text{PSU}_3(q) \times G_2(q)$ (\(q \geq 3\))
$E_7(q)$	$\text{PSL}_2(q) \times \text{PSL}_2(q)$ (\(p \geq 5\)), $\text{PSL}_2(q) \times G_2(q)$ (\(p \geq 3, q \geq 5\)), $G_2(q) \times F_4(q)$ (\(q \geq 4\)), $G_2(q) \times \text{PSp}_6(q)$
$E_8(q)$	$\text{PSL}_2(q) \times \text{PSL}_2(q)$ (\(p \geq 5\)), $\text{PSL}_2(q) \times G_2(q^2)$ (\(p \geq 3, q \geq 5\)), $G_2(q) \times F_4(q)$, $\text{PSL}_2(q) \times G_2(q) \times G_2(q)$ (\(p \geq 3, q \geq 5\))

To simplify our proof of Theorem 1 we need a list of maximal subgroups of $^2F_4(q)$.

Lemma 15. [14, Main Theorem] Every maximal subgroup of $G = ^2F_4(q)$, $q = 2^{2m+1}$, $m \geq 1$, is isomorphic to one of the following.

(a) $[q^{11}] : (A_1(q) \times (q-1))$.
(b) $[q^{10}] : (2B_2(q) \times (q-1))$.
(c) $\text{SU}_3(q) : 2$.
(d) $((q+1) \times (q+1)) : \text{GL}_2(3)$.
(e) $((q - \sqrt{2q} + 1) \times (q - \sqrt{2q} + 1)) : [96]$ if $q > 8$.
(f) $((q + \sqrt{2q} + 1) \times (q + \sqrt{2q} + 1)) : [96]$.
(g) $(q^2 - \sqrt{2qq} + q - \sqrt{2q} + 1) : 12$.
(h) $(q^2 + \sqrt{2qq} + q + \sqrt{2q} + 1) : 12$.
(i) $\text{PGU}_3(q) : 2$.
(j) $^2B_2(q) : 2$.
(k) $B_2(q) : 2$.
(l) $^2F_4(q_0)$, if $q_0 = 2^{2k+1}$ with $(2m + 1)/(2k + 1)$ prime.
3 Proof of the main theorem

In view of Lemma 6, we may assume that $2 \not\in \pi$. By Lemma 5 it is sufficient to prove the following statement

in each simple nonabelian D_π-group G,

all maximal subgroups containing a π-Hall subgroup of G satisfy D_π. (3)

Statement (3) is true for alternating and sporadic simple groups, and simple groups of Lie type, if the characteristic p lies in π, by Lemma 4. Thus we remain to consider simple groups of Lie type in characteristic p with $p \not\in \pi$.

So we assume that G is a simple D_π-group of Lie type with the base field \mathbb{F}_q of characteristic p and $2, p \not\in \pi$.

In view of the Sylow theorems, we suppose that $|\pi \cap \pi(G)| \geq 2$. So G satisfies one of Conditions II-IV of Lemma 3.

Throughout this section, let H be a π-Hall subgroup of G, M a maximal subgroup of G with $H \leq M$. Clearly, H is a π-Hall subgroup of M, in particular $M \in \mathcal{E}_\pi$. We proof (3) if we show that M satisfies D_π.

Assume by contradiction that M does not satisfy D_π. Since $M \in \mathcal{E}_\pi$, Lemma 2(d) implies that every composition factor of M satisfies \mathcal{E}_π. Since $M \not\in D_\pi$, Lemma 2(4) implies that M has a nonabelian composition factor $S \in \mathcal{E}_\pi \setminus D_\pi$.

Recall that $r = \min(\pi \cap \pi(G))$ and $\tau = (\pi \cap \pi(G)) \setminus \{r\}$. We proceed in a series of steps.

Step 1. The following statements hold.

(a) $|\pi \cap \pi(S)| \geq 2$;

(b) $r \in \pi(S)$;

(c) (S, π) satisfies (4);

(d) $S \simeq \text{PSL}^\eta_{n_1}(q_1)$ for some q_1, n_1 and η; S satisfies one of items [I(B)a-I(B)c] of Lemma 4. In particular, $\tau \cap \pi(S) \subseteq \pi(q_1 - \eta)$, and $t > n_1$ for every $t \in \tau \cap \pi(S)$;

(e) $r \not\in \pi(q_1 - \eta)$, $\gcd(n_1, q_1 - \eta) = 1$ and $r \leq n_1 \leq r(r - 2)$;

(f) $\text{Out}(S)$ is an r'-group.

Note: As we mentioned in Remark on Lemma 3, S cannot be isomorphic to an orthogonal or sympletic group.
(a) If $|\pi \cap \pi(S)| \leq 1$ then $S \in \mathcal{D}_\pi$ by the Sylow theorems. Consequently, $|\pi \cap \pi(S)| \geq 2$.

(b), (c) Since G satisfies \mathcal{D}_π, every π-subgroup of G is contained in a π-Hall subgroup of G. It follows from Lemma 4 that (G, π) satisfies \mathcal{A}, i.e. every π-subgroup of G has a normal abelian τ-Hall subgroup. Lemma 2(3) implies that every π-subgroup of S is a homomorphic image of a π-subgroup of M and hence of G. Thus every π-subgroup of S possesses a normal abelian τ-Hall subgroup, in particular, a π-Hall subgroup of S possesses a normal abelian τ-Hall subgroup.

If $r \notin \pi(S)$ then a π-Hall subgroup of S is abelian. So by Lemma 2(4) we have $S \in \mathcal{D}_\pi$, a contradiction. Therefore, we conclude $r \in \pi(S)$, as required. So $r = \min(\pi \cap \pi(S))$ and $(\pi \cap \pi(S)) \cap \{r\} = \tau \cap \pi(S)$. Since every π-subgroup of S possesses a normal abelian τ-Hall subgroup, we obtain that (S, π) satisfies \mathcal{B}.

(d) Since $2 \notin \pi$ and $S \in \mathcal{E}_\pi \setminus \mathcal{D}_\pi$, the possibilities for S are determined in Lemma 3.

Suppose that S satisfies item (I) of Lemma 4. Then $S \cong O'\mathrm{N}$ and $\pi \cap \pi(S) = \{3, 5\}$. But a $\{3, 5\}$-Hall subgroup of $O'\mathrm{N}$ does not possess a normal Sylow 5-subgroup (see proof of [4, Theorem 6.14]), hence (S, π) does not satisfy \mathcal{B} and this case is impossible.

Consequently, S is a group of Lie type with a base field \mathbb{F}_{q_1} of a characteristic p_1. Assume first that S satisfies item II(A) of Lemma 4 and so $p_1 \in \pi$. If $p_1 \neq r$ then $r \in (\pi \cap \pi(S)) \setminus \{p_1\}$ and r does not divide $|W(S)|$. Since $\pi(|W(S)|) = \pi(l!)$ for some natural l, we obtain that $l < r < p_1$ and it contradicts the fact that p_1 divides $|W(S)|$. Suppose now that $p_1 = r$. Denote by U a Sylow p_1-subgroup of S. In view of [4, Theorem 3.2], a Borel subgroup $B = N_S(U)$ contains a π-Hall subgroup H_0 of S. Since a τ-Hall subgroup Q of H_0 is normal (in H_0), we obtain that $H_0 = U \times Q$. So H_0 is nilpotent, and $S \in \mathcal{D}_\pi$ by Lemma 2(4), a contradiction.

Hence S satisfies item II(B) of Lemma 4 in particular, $p_1 \notin \pi$. If S satisfies one of items II(B)c-II(B)c, then $\pi \cap \pi(S) \subseteq \pi(q_1 \pm 1)$, and therefore $e(q_1, t) = e(q_1, s)$ for every $t, s \in \pi \cap \pi(S)$. Recall that $2, p_1 \notin \pi$ and $S \in \mathcal{E}_\pi$.

Now (S, π) satisfies \mathcal{B} by Step 1(c), so Lemma 3 implies that S satisfies \mathcal{D}_π, a contradiction. Thus S satisfies one of items II(B)c-II(B)c of Lemma 4 in particular,

$$S \cong \mathrm{PSL}_{n_1}^\eta(q_1)$$

for some q_1, n_1 and η.

Now the rest of statement (d) follows from items II(B)c-II(B)c of Lemma 3.

(e) The statements follow from Lemma 4.

(f) In view of (e) and Lemma 13, it is sufficient to prove that $|\Phi_S|$ is
an r'-group. If r divides $|\Phi_S|$ then $q_1 = q_0^r$ for some q_0 and this equality contradicts the conclusion $(q_1^{r-1} - 1)_r = r$ in $\text{II}(\text{B})\text{a} - \text{II}(\text{B})\text{c}$ of Lemma 9.

Indeed, suppose that $S \cong \text{PSU}_{n_1}(q_1)$ and $r \equiv 1 \pmod{4}$ or $S \cong \text{PSL}_{n_1}(q_1)$ i.e. S satisfies $\text{II}(\text{B})\text{a} - \text{II}(\text{B})\text{b}$ of Lemma 9. Under these conditions $e(q_1, r) = r - 1$. Since $q_1^{r-1} - 1$ is divisible by q_0^{r-1} for every i, we conclude that $e(q_0, r) = r - 1$. Now

\[q_0^{r-1} - 1 = \left(\frac{r-1}{q_0^{r-1}} - 1 \right) \left(\frac{r-1}{q_0^{r-1}} + 1 \right) \]

implies that $q_0^{(r-1)/2} + 1$ is divisible by r, i.e. $q_0^{(r-1)/2} \equiv -1 \pmod{r}$. Therefore

\[\sum_{i=0}^{r-1} (-1)^{r-1-i} q_0^{r-1+i} \equiv r \pmod{r} \]

and we obtain that

\[q_1^{r-1} - 1 = \left(\frac{r-1}{q_1^{r-1}} - 1 \right) \left(\frac{r-1}{q_0^{r-1}} + 1 \right) \left(\sum_{i=0}^{r-1} (-1)^{r-1-i} q_0^{r-1+i} \right) \]

is divisible by r^2; a contradiction.

Now, suppose that $S \cong \text{PSU}_{n_1}(q_1)$ and $r \equiv 3 \pmod{4}$, i.e. S satisfies $\text{II}(\text{B})\text{c}$ of Lemma 9. Then $e(q_1, r) = (r - 1)/2$ and $e(q_0, r) = (r - 1)/2$. This implies that $q_0^{(r-1)/2} \equiv 1 \pmod{r}$ and

\[\sum_{i=0}^{r-1} q_0^{r-1+i} \equiv r \pmod{r}. \]

Hence

\[q_1^{r-1} - 1 = \left(\frac{r-1}{q_1^{r-1}} + 1 \right) \left(\frac{r-1}{q_0^{r-1}} - 1 \right) \left(\sum_{i=0}^{r-1} q_0^{r-1+i} \right) \]

is divisible by r^2; a contradiction again.

Step 2. M is not almost simple.

Assume that M is an almost simple group. Therefore, S is a unique non-abelian composition factor of M and we may assume that $S \leq M \leq \text{Aut}(S)$. Since M contains a π-Hall subgroup H of G, we arrive at a contradiction with $G \in \mathcal{D}_\pi$ if we find a π-subgroup of M (and hence of G) which is not isomorphic to any subgroup of H.
In order to prove Step 2, first, for every \(t \in \tau \cap \pi(S) \), we estimate \(m_t(C) \), where \(C \) is the centralizer in \(H \) of a Sylow \(r \)-subgroup of \(H \) (and of both \(M \) and \(G \), of course) and, second, we find an elementary abelian \(t \)-subgroup \(E \) of \(M \), which centralizes a Sylow \(r \)-subgroup \(R_0 \) of \(H \) and whose rank is greater than \(m_t(C) \). It is clear that \(ER_0 \) is not isomorphic to any subgroup of \(H \). In particular, \(ER_0 \) is not conjugate in \(G \) to any subgroup of \(H \).

Consider the group \(GL^n_{n_1}(q_1) \) first. Recall that

\[
GL^n_{n_1}(q_1) = \{(a_{ij}) \in GL_n(q_1^2) \mid (a_{ij}) = ((a_{ij})^{-1})^T\},
\]

where \((a_{ij})^T = (a_{ji})\) is the transposed of \((a_{ij})\). Let \(\varphi \) be an automorphism of \(GL^n_{n_1}(q_1) \) defined by \(\varphi : (a_{ij}) \mapsto (a_{ij}^q) \), where \(p_1 \) is the characteristic of \(\mathbb{F}_{q_1} \).

Let \(T \) be a \(\pi \)-Hall subgroup of the subgroup of all diagonal matrices in \(GL^n_{n_1}(q_1) \), and \(R \) a Sylow \(r \)-subgroup of the subgroup of permutation matrices of \(GL^n_{n_1}(q_1) \). Denote by \(\pi \) the \(\pi \)-part of \(\varphi \). Then by Lemma 2 we have that \(TR \) is a \(\pi \)-Hall subgroup of \(GL^n_{n_1}(q_1) \) and \(H_t = TR \langle \chi \rangle \) is a \(\pi \)-Hall subgroup of \(GL^n_{n_1}(q_1) \).

Now consider the natural homomorphism

\[\pi : GL^n_{n_1}(q_1) \langle \varphi \rangle \to B, \text{ where } B = GL^n_{n_1}(q_1) \langle \varphi \rangle / Z(GL^n_{n_1}(q_1)). \]

Observe that \(B \) is isomorphic to \(\hat{S} \Phi_S \), where \(\hat{S} = PGL^n_{n_1}(q_1) \) and \(\Phi_S \) are defined in Lemma 3. By Lemma 3 we see that \(\overline{TR} \) is a \(\pi \)-Hall subgroup of \(\hat{S} \) and \(\overline{H_1} \) is a \(\pi \)-Hall subgroup of \(B \). Since \(|\hat{S} : S| = \gcd(n_1, q_1 - \eta) \) is a \(\pi \)-number by Step 1(e), we obtain \(\overline{TR} \leq S \) and \(\overline{H_1} \cap S = \overline{TR} \) is a \(\pi \)-Hall subgroup of \(S \). In particular, \(\overline{R} \) is a Sylow \(r \)-subgroup of \(S \).

Note that \(H \) is a \(\pi \)-subgroup of \(\text{Aut}(S) \). It follows from Lemma 3 that \(|\text{Aut}(S)/B| \in \{1, 2\} \). Since \(2 \not\equiv 1 \pmod{\pi} \), we conclude that \(H \) is contained in \(B \). Since \(H \) is a \(\pi \)-Hall subgroup of \(M \), we have that \(H \cap S \) is a \(\pi \)-Hall subgroup of \(S \). Lemma 3 yields that \(S \in \mathcal{C}_\pi \). Therefore we may assume that \(H \cap S \) and \(\overline{TR} \) coincide.

Step 1(f) implies that every Sylow \(r \)-subgroup of \(S \) is a Sylow \(r \)-subgroup of \(\text{Aut}(S) \). In particular, \(\overline{R} \) is a Sylow \(r \)-subgroup of \(H \) and \(H / (H \cap S) \) is a \(\tau \)-group. Recall that \(r \) does not divide \(q_1 - \eta \) by Step 1(e). Therefore, \(\gcd(|\overline{R}|, |Z(GL^n_{n_1}(q_1))|) = 1 \) and \(R \simeq \overline{R} \). It now follows from [3, 3.28] that \(C_{\tau}(\overline{R}) = \overline{C_{\tau}(R)} \). Thus,

\[
C_{H \cap S}(\overline{R}) = C_{\overline{TR}}(\overline{R}) = \overline{RC_{\tau}(R)} = \overline{RC_{\tau}(R)} = \overline{C_{\tau}(R)}.
\]

Since \(C_{\tau}(R) \simeq (q_1 - \eta)^{d+k} \times R \) by Lemma 10(e), where \(d \) and \(k \) are defined by \(d = [n/r] \) and \(k = n - dr \), we obtain that \(C_{\tau}(R) \simeq (q_1 - \eta)^{d+k-1} \times R \) and \(m_t(C_{H \cap S}(\overline{R})) = d + k - 1 \) for every \(t \in \tau \cap \pi(S) \).
As we have seen above, \(|\widehat{S} : S|\) is a \(\pi'-\text{number}\). Thus

\[
H/(H \cap S) = H/(H \cap \widehat{S}) \cong H\widehat{S}/\widehat{S} \leq B/\widehat{S} \cong \langle \varphi \rangle
\]

and \(H/(H \cap S)\) is cyclic. Therefore, if \(t \in \tau \cap \pi(S)\), then

\[
m_t(C_H(\overline{R})) - m_t(C_{H \cap S}(\overline{R})) \leq 1
\]

and \(m_t(C_H(\overline{R}))\) is equal to either \(d + k - 1\) or \(d + k\). The Sylow theorems imply that the same statement holds for the centralizer in \(H\) of an arbitrary Sylow \(r\)-subgroup of \(H\).

Take some \(t \in \tau \cap \pi(S)\). As we have noted above, we complete Step 2 if we find a subgroup \(E\) in \(HS \leq M\) such that \(E\) is an elementary abelian \(t\)-group of rank greater than \(m_t(C_H(\overline{R}))\) and \(E\) centralizes a Sylow \(r\)-subgroup \(R_0\) of \(HS\).

Lemma \[2\] implies that there is a subgroup \(R_1 \times K\) in \(\text{GL} \!\!\!\!\!_n(q_t)\) such that \(R_1\) is a Sylow \(r\)-subgroup of \(\text{GL} \!\!\!\!\!_n(q_t)\) centralized by \(\varphi_2\) and \(K\) is a \(\varphi\)-invariant elementary abelian \(t\)-subgroup of rank \(2d + k\). A subgroup \(\overline{K}\) is an elementary abelian \(t\)-subgroup of \(\overline{S} = \text{GL} \!\!\!\!\!_n(q_t)\). Since \(\overline{S} : S|\) is a \(\pi'-\text{number}\), we conclude that \(\overline{K} \leq \overline{S}\).

If \(m_t(C_H(\overline{R}))\) equals \(d + k - 1\), then \(E = \overline{K}\) is a desired subgroup. Indeed, the rank of \(\overline{K}\) is equal to \(2d + k - 1\) and is greater than \(d + k - 1\), since \(d = [n_1/r] > 0\) in view of Step 1(e). Moreover, \(\overline{K}\) centralizes the Sylow \(r\)-subgroup \(R_0 = \overline{R_1}\) of both \(S\) and \(HS\).

If \(m_t(C_H(\overline{R}))\) equals \(d + k\), then \(|C_H(\overline{R})/(C_{H \cap S}(\overline{R}))| > 1\) and \(C_H(\overline{R})\) contains an element \(h\) of order \(t\) such that \(h \notin S\). Moreover, \(h \notin \overline{S}\), since \(\overline{S} : \overline{S}|\) is a \(\pi'-\text{number}\). In view of \([3\ (7-2)]\) we obtain that \(\langle h \rangle = \langle \psi \rangle^\delta\) where \(\psi \in \langle \varphi \rangle\) is of order \(t\) and \(\delta\) is an element in \(\overline{S}\). By Lemma \[2(\[3])\], we can assume that \(K\) is centralized by \(\psi\). The subgroup \(E = \langle \overline{K}, \psi \rangle = \langle \overline{K}, \psi \rangle\) is an elementary abelian \(t\)-subgroup of \(HS\). The rank of \(E\) is equal to \(2d + k\) and \(E\) centralizes the Sylow \(r\)-subgroup \(R_0 = \overline{R_1}\) of both \(S\) and \(HS\). So, \(E\) is a desired subgroup. This completes the proof of Step 2.

Step 3. \(G\) is not a classical group.

Assume that \(G\) is a classical group, and so \(G\) satisfies either Condition II or Condition III of Lemma \[3\]. If \(G\) satisfies either item (g) or item (h) of Condition II, then a \(\pi\)-Hall subgroup \(H\) of \(G\) is cyclic. Since \(H \leq M\), it follows from Lemma \[4(\[3])\] that \(M\) satisfies \(D_\pi\), a contradiction. Therefore, \(G\) satisfies either Condition III or one of items (a)-(f) of Condition II, in particular \(\epsilon(q, t) = \epsilon(q, s)\) for every \(t, s \in \tau\).
Set
\[a = e(q, r) \text{ and } b = e(q, t) \] for every \(t \in \tau \).

Since \(M \) is not almost simple by Step 2, the famous Aschbacher’s theorem \([\text{1}]\) implies that \(M \) belongs to one of Aschbacher’s classes \(C_1 - C_8 \). The structure of members of Aschbacher’s classes is specified in \([\text{11}]\). Recall that by Step 1(b,d) \(M \) possesses a composition factor \(S \cong \text{PSL}_{n_1}(q_1), r \in \pi(S) \) and \(e(q_1, t) = e(q_1, s) \) for every \(t, s \in \tau \cap \pi(S) \). Set
\[a_1 = e(q_1, r) \text{ and } b_1 = e(q_1, t) \] for every \(t \in \tau \cap \pi(S) \).

Assume that \(q_1 = q \). Then \(a_1 = a \) and \(b_1 = b \). Since \(S \) satisfies one of items (II(b),c) of Lemma \([\text{3}]\) by Step 1(d), we have that \(a \neq b \) and \(b \leq 2 \). Consequently, \(G \) cannot satisfy Condition III, and so one of items (a)-(f) of Condition II holds for \(G \). This implies that \(b \geq r > 2 \), a contradiction. Thus we conclude that \(q_1 \neq q \).

We now consider Aschbacher’s classes to specify all possibilities for \(M \) to have a composition factor \(S \) isomorphic to \(\text{PSL}_{n_1}(q_1) \) with \(q_1 \neq q \) (recall that \(S \) cannot be isomorphic to orthogonal or sympletic groups). The structure of members of Aschbacher’s classes \(C_1 - C_8 \) is presented in \([\text{11}], \text{Chapter 4}\). By using this information, we check below that, in every case when \(M \) is an element of corresponding Aschbacher’s class \(C_1 - C_8 \), there is at most one such possibility for \(M \).

\(C_1 \): The structure of members of \(C_1 \) is presented in \([\text{11}], \text{\S} 4.1\). The unique possibility for \(M \) appears in \([\text{11}], \text{Proposition 4.1.18}\):

(a) \(G = \text{PSU}_n(q), M \cong \left[q^{m(2n-3m)} \right] : \left[c / \gcd(q + 1, n) \right] \cdot (\text{PSL}_m(q^2) \times \text{PSU}_{n-2m}(q)) \cdot [d] \), where \(1 \leq m \leq [n/2] \),

\[c = |\{(\lambda_1, \lambda_2) \mid \lambda_i \in \mathbb{F}_{q^2}, \lambda_2^{q+1} = 1, \lambda_1^{m(q-1)} \lambda_2^{-2m} = 1\}|, \]

\[d = (q^2 - 1) \gcd(q^2 - 1, m) \gcd(q + 1, n - 2m)/c. \]

In this case, \(S \cong \text{PSL}_{n_1}(q_1) \) with \(n_1 = m \) and \(q_1 = q^2 \).

\(C_2 \): The structure of members of \(C_2 \) is presented in \([\text{11}], \text{\S} 4.2\). The unique possibility for \(M \) appears in \([\text{11}], \text{Proposition 4.2.4}\):

(b) \(G = \text{PSU}_n(q), M \cong \left[\frac{(q-1) \gcd(q+1, \frac{q}{2})}{\gcd(q+1, n)} \right] \cdot \text{PSL}_{n_1/2}(q^2) \cdot \left[\frac{\gcd(q^2-1, \frac{q}{2})}{\gcd(q+1, \frac{q}{2})} \right] \cdot 2. \)

In this case, \(S \cong \text{PSL}_{n_1}(q_1) \) with \(n_1 = n/2 \) and \(q_1 = q^2 \).

\(C_3 \): The structure of members of \(C_3 \) is presented in \([\text{11}], \text{\S} 4.3\). The unique possibility for \(M \) appears in \([\text{11}], \text{Proposition 4.3.6}\):

21
(c) $G = \text{PSL}_n^\eta(q)$, $M \simeq c \cdot \text{PSL}_m^u(q^u) \cdot d \cdot u$, where $n = mu$, u is prime
(if $\eta = -$, $u \geq 3$), $c = \frac{\gcd(q^{u-\eta},m)}{\gcd(q^u,\eta)}$, $d = \frac{\gcd(q^{u-\eta},m)}{\gcd(q^u,\eta)}$.

In this case, $S \simeq \text{PSL}_n^\eta(q_1)$ with $n_1 = m$, $q_1 = q^u$ and η is the same for
G and S.

C_4, C_7: The structure of members of C_4 and C_7 presented in [11, §4.4 and §4.7]
implies that if a composition factor of members of C_4 or C_7 is isomorphic
to $\text{PSL}_n^\eta(q_1)$ then $q_1 = q$.

C_5: The structure of members of C_5 is presented in [11, §4.5]. The unique
possibility for M appears in [11, Proposition 4.5.3]:

(d) $G = \text{PSL}_n^\eta(q)$, M is a normal subgroup in $\text{PGL}_n^\eta(q_1)$ of index
$\frac{lcm(q-1, \frac{q^\eta - q^{\eta-1}}{gcd(q-1,q^\eta)})}{gcd(q-\eta,n)}$, where $q = q_1^u$, u is prime and $u \geq 3$ if $\eta = -$.

In this case, $S \simeq \text{PSL}_n^\eta(q_1)$ with $n_1 = n$ and η is the same for G and S.

C_6: The structure of members of C_6 presented in [11, §4.6] implies that if a
composition factor of members of C_6 is isomorphic to $\text{PSL}_n^\eta(q_1)$ then
$q_1 = q$.

C_8: The structure of members of C_8 is presented in [11, §4.8]. The unique
possibility for M appears in [11, Proposition 4.8.5]:

(e) $G = \text{PSL}_n(q)$, $M \simeq \text{PSU}_n(q_1) : \left[\frac{gcd(q_1+1,n)c}{gcd(q-1,n)} \right]$, where $q = q_1^2$ and
$c = \frac{q-1}{lcm(q_0+1, \frac{q^\eta - q^{\eta-1}}{gcd(q-1,q^\eta)})}$.

In this case, $S \simeq \text{PSL}_n^\eta(q_1)$ with $n_1 = n$.

In cases (d) and (e), M is almost simple and we exclude them in view of
Step 2.

Now we exclude the remaining cases (a)–(c). Recall some statements from
Step 1 which hold for S.

$S \simeq \text{PSL}_n(q_1)$	$S \simeq \text{PSU}_n(q_1)$
$a_1 = r - 1$	$r \equiv 1 \pmod{4}$ and $a_1 = r - 1$, or $r \equiv 3 \pmod{4}$ and $a_1 = \frac{r-1}{2}$
$b_1 = 1$	$b_1 = 2$
$(q_1^{r-1} - 1)_{a_1} = r$	$(q_1^{r-1} - 1)_{a_1} = r$
$r \leq n_1 \leq r(r-2)$	$r \leq n_1 \leq r(r-2)$

If $S \simeq \text{PSL}_n(q_1)$, we see that a_1 is even and $a_1 > 1$. If $S \simeq \text{PSU}_n(q_1)$,
we see that either $a_1 \equiv 0 \pmod{4}$, or $a_1 \equiv 1 \pmod{2}$. So, in the case where
S is unitary, a_1 cannot equal $2k$ with k odd, in particular, $a_1 \neq 2$.

22
In the rest of Step 3, we fix some \(t \in \tau \cap \pi(S) \).

Cases (a) and (b). In these cases \(S \cong \text{PSL}_{m_1}(q^2) \). Since \(e(q^2, t) = b_1 = 1 \), we conclude \(b = e(q, t) \) is equal to 1 or 2. This implies that \(G \) cannot satisfy Condition II, and so \(G \) satisfies Condition III; in particular \(a = b \). Therefore, \(a = e(q, r) \) equals 1 or 2, and \(a_1 = e(q^2, r) = 1 \), which is a contradiction with the fact that \(a_1 > 1 \).

Case (c). In this case \(S \cong \text{PSL}_{m}(q^u) \), where \(mu = n \) and \(u \) is prime (if \(\eta = -1, u \geq 3 \)). Show that \(u = r \) and, in particular, \(r \) divides \(n \).

Assume first that \(\eta = + \), i. e. \(G = \text{PSL}_n(q) \) and \(S \cong \text{PSL}_{m}(q^u) \). Since \(a_1 = e(q^u, r) > 1 \), we have that \(a = e(q, r) \geq a_1 > 1 \) and \(a \neq u \). Since \(b_1 = e(q^u, t) = 1 \), we obtain that \(b = e(q, t) = \gcd(b, u)b_1 = \gcd(b, u) \) divides \(u \). Therefore, \(b \) is equal to 1 or \(u \). Hence \(G \) cannot satisfy Condition III where \(a = b \), since \(a \) cannot equal 1 or \(u \). Consequently, \(G \) satisfies either item (a) or item (b) of Condition II, and \(b = r = u \).

Assume now that \(\eta = -1 \), i. e. \(G = \text{PSU}_n(q) \) and \(S \cong \text{PSU}_{m}(q^u) \). Since

\[
 a = \gcd(a, u)a_1 \quad \text{and} \quad a_1 \not\equiv 2 \pmod{4},
\]

we have that \(a \not\equiv 2 \pmod{4} \). In particular \(a \neq 2 \) and \(a \neq 2u \) (recall that \(u \geq 3 \) is prime in this case). It follows from \(b = \gcd(b, u)b_1 \) and \(b_1 = 2 \) that \(b \) is equal to \(2 \) or \(2u \). Consequently, \(a \neq b \) and \(G \) satisfies one of items (c)-(f) of Condition II. This implies \(b = 2r = 2u \).

Thus we have that \(r = u \), and so \(r \) divides \(n \). Therefore, \(G \) cannot satisfy items (b), (e) and (f) of Condition II, where \(n \equiv -1 \pmod{r} \). Hence \(G \) satisfies one of items (a), (c) or (d) of Condition II. Now it follows that

\[
 \left\lfloor \frac{n}{r-1} \right\rfloor = \left\lfloor \frac{n}{r} \right\rfloor = \frac{n}{r} = m.
\]

These equalities yield that

\[
 n = mr = m(r-1) + m
\]

and \(m < r - 1 \), which is a contradiction with the fact that \(m = n_1 \geq r \).

Thus in all cases (a)-(e) we obtain a contradiction, and so \(G \) cannot be a classical group, as wanted. To prove the statement (3) it remains to show that \(G \) cannot be an exceptional group.

Step 4. \(G \) is not an exceptional group.

Assume that \(G \) is an exceptional group, and so \(G \) satisfies either Condition III or Condition IV of Lemma 3. The description of \(\pi \)-Hall subgroups...
in the exceptional groups in characteristic p with $2, p \not\equiv \pi$ is given in \cite{24}. Recall that by Step 1 M possesses a composition factor $S \cong \text{PSL}^n_{n_1}(q_1)$, $r \leq n_1 \leq r(r-2)$ and $|\tau \cap \pi(S)| \geq 1$. Also if $\eta = +$ then $e(q_1,t) = 1$, and if $\eta = -$ then $e(q_1,t) = 2$ for every $t \in \tau \cap \pi(S)$, in particular, $q_1 \geq 4$.

Suppose G satisfies Condition III first. So G is not isomorphic to $2B_2(q)$, $2G_2(q)$ or $2F_4(q)^\prime$. Hence by \cite{24} Lemmas 7-13 we have that a π-Hall subgroup H of G is abelian or $\pi \cap \pi(G) \subseteq \pi(q \pm 1)$. If H is abelian then M satisfies D_π by Lemma 3\cite{3}, a contradiction. Consequently $\pi \cap \pi(G) \subseteq \pi(q \pm 1)$. If $q_1 = q^n$ for some natural n, it follows from $\pi \cap \pi(S) \subseteq \pi(q \pm 1)$ that $\pi \cap \pi(S) \subseteq \pi(q^n \pm 1) = \pi(q_1 \pm 1)$, and so $e(q_1,t) = e(q_1,s)$ for every $t, s \in \pi \cap \pi(S)$. Since (S, π) satisfies (3) by Step 1(c), Lemma 8\cite{8} implies that S satisfies D_π, a contradiction. Thus we conclude that q_1 is not a power of q.

Let \overline{G} be a adjoint simple algebraic group and σ a surjective endomorphism of \overline{G} such that $G = O^\sigma(\overline{G})$. All maximal subgroups of G are presented in Lemma 14\cite{14}. Since M is not almost simple, we consider all possibilities for M according to items (a)-(e) of Lemma 14\cite{14}.

Case (a): $M = N_G(D_\sigma)$, where D is a σ-stable closed connected subgroup and D is either parabolic or reductive subgroup of maximal rank. If D is parabolic, then there are no composition factors of M isomorphic to $\text{PSL}^n_{n_1}(q_1)$ with $q_1 \neq q^n$. If D is reductive subgroup of maximal rank, then M is a subgroup of maximal rank in sense of \cite{12}. Since $G \subseteq \overline{G}_\sigma$, we have that S is a composition factor of $N_{\overline{G}_\sigma}(D_\sigma)$. According to Tables 5.1 and 5.2 from \cite{12}, we obtain that S is isomorphic to one of the following groups $\text{PSL}_2(5)$, $\text{PSL}_3(2)$ or $\text{PSU}_4(2)$. If $S \cong \text{PSL}_2(5)$ then $n_1 = 2$, which is a contradiction with the fact that $n_1 \geq r > 2$. If S is isomorphic to $\text{PSL}_3(2)$ or $\text{PSU}_4(2)$ then $q_1 = 2$ and it contradicts the fact $q_1 \geq 4$.

Case (b): $M = N_G(E)$, where E is an elementary abelian s-subgroup with s prime and $E \subseteq \overline{G}_\sigma$ (see Table 2). Since $G \subseteq \overline{G}_\sigma$, we have that S is a composition factor of $N_{\overline{G}_\sigma}(E)$. According to Table \cite{2} we obtain that S is isomorphic to one of the following groups $\text{PSL}_3(2)$, $\text{PSL}_3(3)$, $\text{PSU}_3(3)$, $\text{PSL}_5(5)$ or $\text{PSL}_5(2)$. If S is isomorphic to $\text{PSL}_3(2)$, $\text{PSL}_3(3)$, $\text{PSU}_3(3)$ or $\text{PSL}_5(2)$, then $q_1 < 4$, a contradiction. If $S \cong \text{PSL}_3(5)$, then there is no odd prime q with $e(q_1,t) = 1$, and so $\tau \cap \pi(S) = \emptyset$, which is a contradiction with the fact that $|\tau \cap \pi(S)| \geq 1$.

Case (c): M is the centralizer of a graph, field, or graph-field automorphism of G of prime order. The structure of M is presented in \cite{8}. Theorem 4.5.1, Theorem 4.7.3, Propositions 4.9.1 and 4.9.2]. As we mentioned in Remark on Lemma 1\cite{1}. S cannot be isomorphic to an orthogonal or sympletic group. So we see that there are no centralizers of a graph, field, or graph-field
automorphism of G of prime order with a composition factor isomorphic to $\text{PSL}_{n_1}(q_1)$ where $q_1 \neq q^n$.

Cases (d) and (e): either $G = E_8$, $p > 5$ and $F^*(M)$ is one of groups $\text{PSL}_2(5) \times \text{PSL}_2(9)$, $\text{PSL}_2(5) \times \text{PSL}_2(q)$ or $F^*(M)$ is as in Table 3. The maximality and the structure of M implies that M is a subgroup of $\text{Aut}(F^*(M))$, in particular, $M/F^*(M)$ is solvable. Hence case (d) holds and S is isomorphic to one of the following groups $\text{PSL}_2(5)$, $\text{PSL}_2(9)$. Now we have $n_1 = 2$, a contradiction with the fact that $n_1 \geq r > 2$.

Thus in all cases (a)-(e) we obtain a contradiction, and so G cannot satisfy Condition III. Consequently, we conclude that G satisfies Condition IV, and G is isomorphic to one of groups $2^2 B_2(q)$, $2^2 G_2(q)$ or $2^2 F_4(q)'$. Since $2 \neq \pi$, in view of [3], 6.13 Corollary $2^2 F_4(2)'$ does not satisfy E_π, and therefore G cannot be isomorphic to $2^2 F_4(2)'$. Since $2^2 F_4(q)' = 2^2 F_4(q)$ with $q > 2$, further we write $2^2 F_4(q)$ instead of $2^2 F_4(q)'$.

By [24], Lemma 14, if G is isomorphic to $2^2 B_2(q)$ or $2^2 G_2(q)$, or if G is isomorphic to $2^2 F_4(q)$ and $3 \neq \pi$, then H is abelian. Since $H \leq M$, it now follows form Lemma [3] that M satisfies D_π, a contradiction. Consequently, we deduce that G is isomorphic to $2^2 F_4(q)$ and $3 \in \pi$, and therefore $r = 3$. All maximal subgroups of G are specified in Lemma [13]. Since M has a composition factor $S \simeq \text{PSL}_{n_1}(q_1)$ and $r < n_1 < r(r - 2)$, we obtain that $n_1 = 3$ and $S \simeq \text{PSU}_3(q_1)$ with $q_1 = q = 2^{2m+1}$. By Step 1(d) S satisfies II(B) of Lemma [4]. In particular,

$$e(q_1, r) = \frac{r - 1}{2} = 1.$$

But $q_1 = 2^{2m+1} \equiv -1 \pmod{3}$. So we obtain a contradiction with the fact that $e(q_1, 3) = e(q_1, r) = 1$.

Thus we conclude that G cannot be an exceptional group, and so the main theorem is proved.

References

[1] Aschbacher M.: On the maximal subgroups of the finite classical groups. Inventiones mathematicae 76 (3) 469—514 (1984).

[2] Borel A. and Institute for Advanced Study (Princeton, N.J.): Seminar on algebraic groups and related finite groups. Lecture notes in mathematics, Springer-Verlag (1970).
[3] Gorenstein D., Lyons R.: The local structure of finite groups of characteristic 2 type. Vol. 42, American Mathematical Society (1983).

[4] Gorenstein D., Lyons R., Solomon R.: The classification of the finite simple groups. Number 3, American Mathematical Soc., Providence, RI (1998).

[5] Gross F.: On a conjecture of Philip Hall. Proc. London Math. Soc. s3-52 (3), 464—494 (1986).

[6] Gross F.: Conjugacy of odd order Hall subgroups. Bull. London Math. Soc. 19 (4), 311—319 (1987).

[7] Gross F.: Odd order Hall subgroups of the classical linear groups. Mathematische Zeitschrift 220 (1), 317—336 (1995).

[8] Hall P.: Theorems like Sylow’s. Proceedings of the London Mathematical Society s3-6 (2), 286—304 (1956).

[9] Isaacs I.M.: Finite group theory. Graduate Studies in Mathematics, Vol. 92, American Mathematical Soc., Providence, RI (2008).

[10] Kargapolov M.I., Merzljakov Ju.I.: Fundamentals of the theory of groups. Graduate Texts in Mathematics, 62. Springer-Verlag, New York-Berlin (1979).

[11] Kleidman P.B., Liebeck M.W.: The subgroup structure of the finite classical groups. Vol. 129, Cambridge University Press (1990).

[12] Liebeck M.W., Saxl J., Seitz G.M.: Subgroups of maximal rank in finite exceptional groups of Lie type. Proc. London Math. Soc 65 (3) 297—325 (1992).

[13] Liebeck M.W., Seitz G.M.: Maximal subgroups of exceptional groups of Lie type, finite and algebraic. Geom. Dedicata 36, 353—387 (1990).

[14] Malle G.: The maximal subgroups of $^2F_4(q^2)$. J.Algebra 139 (1), 52—69 (1991).

[15] Manzaeva N.Ch.: Heritability of the property $D_π$ by overgroups of π-Hall subgroups in the case where $2 \in \pi$. Algebra and Logic 53 (1), 17—28 (2014).

[16] Mazurov V.D., Khukhro E.I. (Eds.): The Kourovka notebook. Unsolved problems in group theory. 17th Edition, Russian Academy of Sciences Siberian Division Institute of Mathematics, Novosibirsk (2010).
[17] Nesterov M.N.: On pronormality and strong pronormality of Hall subgroups. Siberian Mathematical Journal 58 (1), 128—133 (2017).

[18] Revin D.O., Vdovin E.P.: Hall subgroups of finite groups. Contemporary Mathematics 402 229—265 (2006).

[19] Revin D.O.: The D_π-property in finite simple groups. Algebra and Logic 47 (3), 210—227 (2008).

[20] Revin D.O.: Around a conjecture of P. Hall. Siberian Electronic Mathematical Reports 6, 366—380 (2009) (in Russian).

[21] Steinberg R.: Automorphisms of finite linear groups. Canad. J. Math 12 (4), 606—616 (1960).

[22] R. Steinberg, Endomorphisms of linear algebraic groups, Mem. Amer. Math. Soc. 80 (1968).

[23] Vdovin E.P., Manzaeva N.Ch., Revin D.O.: On the heritability of the property D_π by subgroups. Proceedings of the Steklov Institute of Mathematics 279 (1) 130—138 (2012).

[24] Vdovin E.P., Revin D.O.: Hall subgroups of odd order in finite groups. Algebra and Logic 41 (1), 8–29 (2002).

[25] Vdovin E.P., Revin D.O.: Theorems of Sylow type. Russian Math. Surveys 66 (5), 829—870 (2011).

[26] Vdovin E.P., Revin D.O.: Pronormality of Hall subgroups in finite simple groups. Siberian Math. J. 53 (3), 419—430 (2012).

[27] Vdovin E.P., Revin D.O.: On the pronormality of Hall subgroups. Siberian Math. J. 54 (1), 22—28 (2013).

[28] Weir A.J.: Sylow p-subgroups of the classical groups over finite fields with characteristic prime to p. Proc. AMS 6 (4) 529—533 (1955).

[29] Wielandt H.: Zum Satz von Sylow. Math. Z. 60 (1), 407—408 (1954).