Ergodicity of the action of the positive rationals on the group of finite adeles and the Bost-Connes phase transition theorem

Sergey Neshveyev

Abstract

For each $\beta \in (0, +\infty)$ there exists a canonical measure μ_β on the ring A_f of finite adeles. We show that Q^*_+ acts ergodically on (A_f, μ_β) for $\beta \in (0, 1]$, and then deduce from this the uniqueness of KMSβ-states for the Bost-Connes system.

Bost and Connes [BC] constructed a remarkable C*-dynamical system which has a phase transition with spontaneous symmetry breaking involving a action of the Galois group $\text{Gal}(Q^{ab}/Q)$, and whose partition function is the Riemann ζ function. In their original defi-
nition the underlying algebra arises as the Hecke algebra associated with an inclusion of certain $ax + b$ groups. Recently Laca and Raeburn [LR, L2] have realized the Bost-Connes algebra as a full corner of the crossed product algebra $C_0(A_f) \times Q^*_+$. This new look at the system has allowed to simplify significantly the proof of the existence of KMS-states for all temperatures, and the proof of the phase transition theorem for $\beta > 1$ [L1]. On the other hand, for $\beta \leq 1$ the uniqueness of KMSβ-states implies the ergodicity of the action of Q^*_+ on A_f for certain measures (in particular, for the Haar measure). The aim of this note is to give a direct proof of the ergodicity, and then to show that the uniqueness of KMSβ-states easily follows from it.

Though the proof of the Bost-Connes phase transition theorem (for $\beta \leq 1$) thus obtained differs from the proofs given in [BC] and [L1], it is entirely based on these papers. In particular, the key point is an application of Dirichlet’s theorem.

So let \mathcal{P} be the set of prime numbers, A_f the restricted product of the fields Q_p, $p \in \mathcal{P}$, of p-adic numbers, $\mathcal{R} = \prod_p \mathbb{Z}_p$ its maximal compact subring, $W = \mathcal{R}^* = \prod_p \mathbb{Z}_p^*$. The group Q^*_+ of positive rationals is embedded diagonally into A_f, and so acts by multiplications on the additive group of finite adeles. Then the Bost-Connes algebra C_Q is the full corner of $C_0(A_f) \times Q^*_+$ determined by the characteristic function of \mathcal{R} [L2]. The dynamics σ_t is defined as follows [L1]; it is trivial on $C_0(A_f)$, and $\sigma_t(\lambda(q)) = q^{it}\lambda(q)$, where $\lambda(q)$ is the multiplier of $C_0(A_f) \times Q^*_+$ corresponding to $q \in Q_+^*$. Then ([L1]) there is a one-to-one correspondence between (β, σ_t)-KMS-states on C_Q and measures μ on A_f such that

$$\mu(\mathcal{R}) = 1 \text{ and } q_+^\beta \mu \text{ for all } q \in Q^*_+ \text{ (i.e., } \mu(q^{-1}X) = q^{-\beta} \mu(X)). \quad (1\beta)$$

Namely, the KMS-state corresponding to μ is the restriction of the dual weight on $C_0(A_f) \times Q^*_+$ to C_Q.

Note that if $\beta > 1$ and μ is a measure with the property (1β) then $\mu(W) = \frac{1}{\zeta(\beta)} > 0$, since $W = \mathcal{R}\setminus \cup_p p\mathcal{R}$. Moreover, the sets $qW, q \in Q^*_+$, are disjoint, and their union is a set of full measure (since $\sum_{n \in \mathbb{N}} \mu(nW) = 1$). Thus there exists a one-to-one correspondence between
probability measures on W and measures on A_f satisfying (1β). On the other hand, if $\beta \leq 1$ then $\mu(W) = 0$.

For each $\beta \in (0, +\infty)$ there is a unique W-invariant measure μ_β satisfying (1β). Explicitly, $\mu_\beta = \otimes_p \mu_{\beta,p}$, where $\mu_{\beta,p}$ is the measure on Q_p such that $\mu_{1,p}$ is the Haar measure ($\mu_{1,p}(Z_p) = 1$), and

$$\frac{d\mu_{\beta,p}}{d\mu_{1,p}}(a) = \frac{1 - p^{-\beta}}{1 - p^{-1}} |a|_{p}^{\beta - 1} \text{ for } a \in Q_p.$$

In fact, for the proof of Proposition below we will only need to know that the restriction of $\mu_{\beta,p}$ to Z_p^* is a (non-normalized) Haar measure.

Proposition. The action of Q_+^* on (A_f, μ_β) is ergodic for $\beta \in (0, 1]$.

Proof. Consider the space $L^2(\mathcal{R}, d\mu_\beta)$ and the subspace H of it consisting of the functions that are constant on N-orbits. In other words, $H = \{f \in L^2(\mathcal{R}, d\mu_\beta) | V_nf = f, n \in \mathbb{N}\}$, where $(V_nf)(x) = f(nx)$. Since any Q_+^*-invariant subset of A_f is completely determined by its intersection with \mathcal{R}, it suffices to prove that H consists of constant functions. For this we will compute the action of the projection $P : L^2(\mathcal{R}, d\mu_\beta) \to H$ on a basis of $L^2(\prod_{p \in B} Z_p, \otimes_{p \in B} \mu_{\beta,p})$ (considered as a subspace of $L^2(\mathcal{R}, d\mu_\beta)$) for each finite subset B of \mathcal{P}.

Let χ be a character of $\prod_{p \in B} Z_p^*$. Consider χ first as a function on $\prod_{p \in B} Z_p^*$ by letting $\chi = 0$ outside of $\prod_{p \in B} Z_p^*$. Then using the projection $\mathcal{R} \to \prod_{p \in B} Z_p^*$, consider χ as a function on \mathcal{R}. Let \mathbb{N}_B be the unital multiplicative subsemigroup of \mathbb{N} generated by $p \in B$. Note that the sets $n \prod_{p \in B} Z_p^*$, $n \in \mathbb{N}_B$, are disjoint, their union is a subset of $\prod_{p \in B} Z_p^*$ of full measure, and the operator $n^{-\beta / 2}V_n^*$ maps isometrically $L^2(\prod_{p \in B} Z_p^*, \otimes_{p \in B} \mu_{\beta,p})$ onto $L^2(n \prod_{p \in B} Z_p^*, \otimes_{p \in B} \mu_{\beta,p})$ for any $n \in \mathbb{N}_B$. Hence the functions $V_n^*\chi$, $n \in \mathbb{N}_B$, $\chi \in (\prod_{p \in B} Z_p^*)^*$, form an orthogonal basis for $L^2(\prod_{p \in B} Z_p^*, \otimes_{p \in B} \mu_{\beta,p})$. So we have to compute $PV_n^*\chi$. But if $g \in H$ then $(V_n^*\chi, g) = (\chi, g)$, whence $PV_n^*\chi = P\chi$. Thus we have only to compute $P\chi$.

For a finite subset A of \mathcal{P}, let H_A be the subspace consisting of the functions that are constant on N_A-orbits, P_A the projection onto H_A. Then $P_A \setminus P$ as $A \setminus \mathcal{P}$. Set

$$W_A = \prod_{p \in A} Z_p^* \times \prod_{q \in \mathcal{P} \setminus A} Z_q \subset \mathcal{R}.$$

Note, as above, that $\cup_{n \in N_A} nW_A$ is a subset of \mathcal{R} of full measure. We state that

$$P_A f|_{N_A} \equiv \frac{1}{\zeta_A(\beta)} \sum_{n \in N_A} n^{-\beta} f(nx) \text{ for } x \in W_A,$$

where $\zeta_A(\beta) = \sum_{n \in N_A} n^{-\beta} = \prod_{p \in A} (1 - p^{-\beta})^{-1}$. Indeed, denoting the right hand part of (2) by f_A, for $g \in H_A$ we obtain

$$(f_A, g) = \sum_{n \in N_A} \int_{nW_A} f_A(x)g(x) d\mu_\beta(x) = \sum_{n \in N_A} n^{-\beta} \int_{W_A} f_A(x)g(x) d\mu_\beta(x)$$

$$= \zeta_A(\beta) \int_{W_A} f_A(x)g(x) d\mu_\beta(x) = \sum_{n \in N_A} n^{-\beta} \int_{W_A} f(nx)g(nx) d\mu_\beta(x)$$

$$= \sum_{n \in N_A} \int_{nW_A} f(x)g(x) d\mu_\beta(x) = (f, g).$$

Returning to the computation of $P\chi$, we see that

$$P_A \chi|_{N_A} \equiv \frac{\chi(x)}{\zeta_A(\beta)} \sum_{n \in N_A} n^{-\beta} \chi(n) = \chi(x) \prod_{p \in A} \frac{1 - p^{-\beta}}{1 - \chi(p)p^{-\beta}} \text{ for } x \in W_A.$$
Thus if χ is trivial then $P_A \chi \equiv \prod_{p \in \mathcal{P}} (1 - p^{-\beta})$ for all $A \supset B$, hence $P \chi$ is a constant. If χ is non-trivial then since $||P_A \chi||_\infty \leq 1$ and the product $\prod_{p: \text{Re}(\chi(p)) < 0} (1 - p^{-\beta})$ diverges by Dirichlet’s theorem [S], we have $P \chi = 0$.

\[\text{Corollary, [BC]}\] For $\beta \in (0, 1]$ there exists a unique (β, σ_t)-KMS state on \mathcal{C}_Q.

\textbf{Proof.} Let ϕ_β be the KMS$_\beta$-state corresponding to μ_β. Since $L^\infty(A_f, d\mu_\beta) \times \mathbb{Q}_+^*$ is a factor by Proposition, and $\pi_{\phi_\beta}(\mathcal{C}_Q)'$ is its reduction, ϕ_β is a factor state. This and the discussion before Proposition show that

(i) ϕ_β is an extremal KMS$_\beta$-state;

(ii) ϕ_β is a unique W-invariant KMS$_\beta$-state.

Now the proof is finished as in [BC, Theorem 25]:

If ψ is an extremal KMS$_\beta$-state then $\int_W w_\ast \psi \, dw = \phi_\beta$. Since KMS$_\beta$-states form a simplex, we conclude that $\psi = \phi_\beta$.

\[\text{Remarks.}\]

(i) The expression for $P \chi$ in the proof of Proposition shows that the divergence of the product

$$\prod_{p \in \mathcal{P}} \left| \frac{1 - p^{-\beta}}{1 - \chi(p)p^{-\beta}} \right|$$

for non-trivial χ is a necessary condition for the ergodicity (otherwise $P \chi$ would be a non-zero function, which can not be constant since $\int_R P \chi \, d\mu_\beta = \int_R \chi \, d\mu_\beta = 0$), hence for the uniqueness of KMS$_\beta$-states. So the appearance of (some form of) Dirichlet’s theorem in the proofs is not an accident.

(ii) By [BC, Theorem 5] $\pi_{\phi_\beta}(\mathcal{C}_Q)'$ is a factor of type III for $\beta \in (0, 1]$. Then the factor $L^\infty(A_f, d\mu_\beta) \times \mathbb{Q}_+^*$ is also of type III. Hence its smooth flow of weights is trivial, that means that the action of \mathbb{Q}_+^* on $(\mathbb{R}_+ \times A_f, dt \otimes d\mu_\beta)$ is ergodic [CT]. In particular, the spectral subspaces of $L^\infty(A_f, d\mu_\beta)$ corresponding to the characters $q \mapsto \xi^q$ of \mathbb{Q}_+^* have to be trivial for all $t \neq 0$.

But the projection P_t onto the subspace $\{f \mid V_\alpha f = n^t f\}$ of $L^2(\mathcal{R}, d\mu_\beta)$ is computed with the same ease as in the proof of Proposition:

$$P_t = s - \lim_{A \not\supset \mathcal{P}} P_{t,A}, \quad (P_{t,A} f)(m,x) = \frac{m^it}{\zeta_A(\beta)} \sum_{n \in \mathbb{N}_A} n^{-\beta-it} f(nx) \quad \text{for } x \in W_A, \, m \in \mathbb{N}_A.$$

Thus the product

$$\prod_{p \in \mathcal{P}} \left| \frac{1 - p^{-\beta}}{1 - \chi(p)p^{-\beta-it}} \right|$$

has to be divergent for all $t \neq 0$ and all number characters χ modulo m.
References

[BC] Bost J.-B., Connes A., *Hecke algebras, type III factors and phase transitions with spontaneous symmetry breaking in number theory*, Selecta Math. (New Series) 1 (1995), 411–457.

[CT] Connes A., Takesaki M., *The flow of weights on factors of type III*, Tôhoku Math. J. 29 (1977), 473–575.

[L1] Laca M., *Semigroups of *-endomorphisms, Dirichlet series, and phase transitions*, J. Func. Anal. 152 (1998), 330–378.

[L2] Laca M., *From endomorphisms to automorphisms and back: dilations and full corners*, preprint math.OA/9911135.

[LR] Laca M., Raeburn I., *A semigroup crossed product arising in number theory*, J. London Math. Soc. 59 (1999), 330–344.

[S] Serre J.-P. *Cours d’arithmétique*. P.U.F. Paris, 1970.

Institute for Low Temperature Physics & Engineering
Lenin Ave 47
Kharkov 310164, Ukraine
neshveyev@ilt.kharkov.ua