Topological flat bands in twisted trilayer graphene

Zhen Ma a, Shuai Li a, Ya-Wen Zheng a, Meng-Meng Xiao a, Hua Jiang b, Jin-Hua Gao a,c, X.C. Xie c,d,e

a School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
b School of Physical Science and Technology, Soochow University, Suzhou 215006, China
c International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
d Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
e CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China

1. Introduction

Flat bands with nontrivial topology is believed to be the key in realizing high-temperature fractional topological states in the absence of the magnetic field [1–4]. Due to the quenched kinetic energy of the flat bands, the interplay between the Coulomb interaction and nontrivial band topology can induce novel topological strongly correlated electronic states [5,6]. However, most of the studies so far are based on theoretical flat band lattice models. To find topological flat bands in real materials is still a big challenge for both theory and experiment.

In last few years, the flat bands in twisted bilayer graphene (BLG) have drawn lots of research interest. In twisted BLG, the twisting produces a long-period moiré pattern, and induces moiré bloch bands [7]. Importantly, near some magic angles, the bands near the Fermi level become nearly flat, and thus the Coulomb interaction begins to play a dominating role [8]. Recently, correlated insulating phase and superconducting phase in twisted BLG have been observed in experiment [9–11], and a lot of efforts have been made to theoretically understand the correlated states in twisted BLG [12–23].

Very recently, several theoretical works point out the topological flat bands can be realized in the twisted chiral graphene multilayer systems, where two chiral stacked graphene multilayers are placed on top of each other with a small twist angle [24–28]. The most studied example is the twisted double bilayer graphene, in which twist can induce two nearly flat bands with nonzero valley Chern number. The Chern number can be further controlled by a perpendicular electric field. Interestingly, the twisted double bilayer graphene has already been realized in experiment, and novel correlated states are discovered near some magic angles [29–31]. Note that twist induced topological flat bands are also predicted to exist in the trilayer graphene (TLG)/Boron-Nitride heterostructure [32,33].

In this work, we theoretically study a simpler topological flat band system, i.e., twisted TLG, where one graphene monolayer is stacked on the top of a graphene bilayer with a small twisting angle. We show that the twisted TLG also has two topological nontrivial flat bands with electric-field controlled valley Chern number near the magnetic angle. We numerically calculate the band structures of the twisted TLG based on the continuum model [34]. Our main findings are: (a) like the twisted BLG, twisted TLG also has some magic angles, near which the twist can produce two nearly flat bands. The largest magnetic angle is about 1.12°. (b) Unexpectedly, even with a graphene monolayer as a building block, twist can open a small gap at all the Dirac points of the twisted TLG near the magic angle. Thus, we get two separated nearly flat bands around the Fermi level. The twist opened gap here depends on the twist angle, and can be enlarged by a perpendicular electric field...
This is quite unlike the twisted BLG, in which a perpendicular electric field cannot open a gap at the Dirac points that belong to graphene monolayer, due to the C3T symmetry. (c) Further calculations show that such two flat bands in the twisted TLG are Chern flat bands with finite valley Chern number, even in the absence of the perpendicular electric field. The valley Chern number of the flat bands here is sensitive to the relative small tight-binding parameters of the graphite, e.g., the trigonal warping. Meanwhile, the valley Chern number can be further controlled by the θ and E_f. Finally, because of the reduced symmetry of the twisted TLG resulted from its asymmetry stacking, we expect that the twisted TLG should have different topological correlated states from that in twisted BLG and twisted double bilayer graphene.

2. Lattice structure

As illustrated in Fig. 1a, we consider a twisted TLG, where one graphene monolayer (blue) is stacked on the top of a AB-stacked BLG (red) with a small twist angle θ. At $\theta = 0^\circ$, we get a AAB-stacked BLG, where $a_1 = a(1/2, \sqrt{3}/2)$ and $a_2 = a(-1/2, \sqrt{3}/2)$ are the lattice vectors in the non-rotated case, and the corresponding reciprocal lattice vector are $b_1 = \frac{e^{i\pi}}{3m}(2a_1 - a_2)$ and $b_2 = \frac{e^{i\pi}}{3m}(-a_1 + 2a_2)$. $a \approx 0.246$ nm is the lattice constant of graphite. Similarly, as the case of twisted BLG, a commensurate moiré supercell can be formed under the condition of $\cos \theta(m) = (3m^2 + 3m + 1)/(3m^2 + 3m + 1)$. Here, m is a positive integer. $t_1 = ma_1 + (m + 1)a_2$ and $t_2 = -(m + 1)a_1 + (2m + 1)a_2$ are the lattice vectors of the moiré supercell (see Fig. 1a). The corresponding reciprocal lattice vector of the moiré pattern are $G_1 = \frac{2\pi}{\sqrt{3}}(2t_1 - t_2)$ and $G_2 = \frac{2\pi}{\sqrt{3}}(-t_1 + 2t_2)$. The Dirac point is $K'_{1} = -\frac{\xi}{2}(R(t_1) + b_1)/3$, where I (b) denotes the Dirac point belongs to the top monolayer (bottom BLG). $R(\theta)$ is the rotation matrix, and $\theta_0 = \theta/2$ ($\theta_0 = -\theta/2$). $\xi = \pm1$ is the valley index. For convenience, we define $K = K'_{1}$ and $\bar{K} = K'_{2}$, as illustrated in Fig. 1b.

3. Continuum Hamiltonian

To calculate the electronic band structure of the twisted TLG, we use the method in Ref. [8], which was generalized to study the twisted multilayer graphene [24–28]. With the Bloch basis $|A_1, B_1, A_2, B_2, A_3, B_3\rangle$, the continuum Hamiltonian of the twisted TLG is a 6×6 matrix. For example, A_0 denotes the Bloch function of the carbon p_z orbital on the sublattice A in the third layer (top blue layer in Fig. 1a), i.e., $|k, A_0\rangle = N^{-1/2} \sum_{R} R \cdot a_k R |\phi_0(R)\rangle$. The continuum Hamiltonian for one valley is

$$H_{\text{TLG}}(\theta) = \begin{pmatrix} h_0(k_1) & T(r) \\ T^\dagger(r) & h_0(k_2) \end{pmatrix} + U,$$

(1)

where $k_1 = (R(\theta/2)(k - K_1')$ and $k_2 = R(\theta/2)(k - K_1')$. $h_0(k)$ is the Hamiltonian of monolayer graphene, $h_0(k)$ is the Hamiltonian of AB-stacked BLG, the off-diagonal term T represents the coupling between the twisted monolayer and bilayer, and $U = \text{diag}(-V, -V, 0, 0, V, V)$ is the perpendicular electric field induced asymmetry potential between layers.

For the AB-stacked BLG [35],

$$h_0(k) = \begin{pmatrix} h_0(k) & g(k) \\ g^\dagger(k) & h_0(k) \end{pmatrix} + h_\delta.$$

(2)

Here, $g(k)$ represent the interlayer hopping in BLG,

$$g(k) = \begin{pmatrix} \hbar v_k \gamma_1 \\ \hbar v_k \gamma_1 \end{pmatrix}.$$

(3)

where $k_s = \xi k_x + ik_y$, $v_{3,4} = \sqrt{3}g_{3,4}/2h$. γ_1 is the vertical hopping. γ_1 and γ_4 are smaller remote hopping, which correspond to trigonal warping and electron–hole asymmetry, respectively. We also include the energy difference between dimmer and non-dimmer sites in BLG [35], i.e., $h_\delta = \text{diag}(-\gamma_1, \gamma_1, 0)$.

The moiré interlayer coupling is $T(r) = \sum_{n=1,2} T_{n} \cdot e^{-iQ_{n} \cdot r}$, where

$$T_{n} = (0 \ 1) \otimes \begin{pmatrix} \omega_1 & \omega_2 e^{i\xi \phi} \\ \omega_2 e^{-i\xi \phi} & \omega_1 \end{pmatrix}.$$

(4)

Here, $\xi \phi = 2\pi/3$. ω_1 and ω_2 are the intrasublattice and intersublattice tunneling amplitude between the adjacent twisted layers, where $\omega_1 < \omega_2$ due to the atomic corrugations [36]. Note that, the hopping matrix T_{n} couples the Bloch states from adjacent twisted graphene layers with the momentum difference $Q_{n} = R(n \phi) \cdot (K - K)$.
4. Topological flat bands with the minimal model

Let us first consider a minimal model of the twisted TLG, where the smaller parameters of the BLG, i.e., γ_3, γ_4, and Δ in Eq. (2), are ignored. As we will see, in twisted TLG, the topology of the moiré flat bands (i.e., the valley Chern number) are sensitive to the choice of these small parameters. Thus, the minimal model here is a good starting point.

The calculated band structures of the twisted TLG with different twisted angle θ are given in Fig. 1c–h. Generally speaking, the electronic structure of the twisted TLG near the Dirac points can be viewed as a combination of a AB-stacked BLG and a graphene monolayer [34] (see also in Fig. 1c). For one valley in the moiré Brilloin zone, there are two inequivalent Dirac points (K and \bar{K} in Fig. 1b). The electronic states near K is mainly located on the twisted graphene monolayer, where two linear bands form a Dirac cone like graphene. Meanwhile, there are two parabolic bands near the K points like the BLG, the electronic states in which are distributed on the BLG part of the twisted TLG. Similar as the twisted graphene monolayer, where two linear bands form a Dirac cone like graphene. Nevertheless, there are two parabolic bands near the K points like the BLG, the electronic states in which are distributed on the BLG part of the twisted TLG. Similar as the twisted angle is reduced, the two bands near the Fermi level narrows (see Fig. 1d). At a magic angle about 1.12°, these two bands become nearly flat (see Fig. 1d). Note that twisting can open a small gap between the two parabolic bands near the K point (see in Fig. 1d). The smaller θ is, the larger the gap is. These band features above are consist with the former understanding about the twisted TLG [34].

Our calculations show some unusual characteristics of the band structure of twisted TLG. First, unlike the twisted BLG, the Dirac cone at K from the top single layer is gapped by a twisting angle. Though this gap is tiny, it becomes distinguishable when θ approaches the magic angle, as shown in Fig. 1f, h. And the gap can be further enlarged by a perpendicular electric field E_z. So, the two bands near the Fermi level in the twisted TLG are actually separated by the twisting, even in the absence of the perpendicular electric field. This is quite different from the case of twisted BLG, where the linear dispersion near the Dirac points of single layer graphene is always retained, and an applied electric field only induces a potential difference between layers. Note that, in twisted BLG, the degeneracy at Dirac points are protected by the C_2T symmetry, which is lack in twisted TLG.

The two flat bands in twisted TLG have non-zero valley Chern number. Due to the gaps at the Dirac points, we can numerically calculate the valley Chern number of each flat band C_n, where $n = \pm h$ is the band index (electron band or hole band) and $\xi = \pm$ denotes the valley. We use the standard formula, where the Berry curvature is

$$\Omega_n(k) = -2 \sum_{n\neq m} \text{Im} \left(\frac{\langle u_n | \frac{\partial}{\partial k_x} | u_m \rangle \langle u_m | \frac{\partial}{\partial k_y} | u_n \rangle}{(E_m - E_n)^2} \right).$$

$|u_n\rangle$ is the moiré superlattice Bloch state, and E_n is the corresponding eigenvalue. The Chern number of the nth band C_n is calculated through $C_n = \int_{\text{BZ}} \frac{d^2k}{(2\pi)^2} \Omega_n(k)$ [26]. In Fig. 1f and h, the black numbers are the Chern numbers of the electron band ($C_{\pm} = 1$) and hole band ($C_{-\pm} = -2$) in one valley ($\xi = \pm 1$) with the minimal model. Note that, due to the time reversal symmetry, $C_{\pm} = -C_{-\pm}$. When θ is large, e.g., $\theta = 5^\circ$ in Fig. 1c and d, the gap at K is too tiny to be distinguished. We thus calculate the total Chern number of the two low energy flat bands. We find that $C_{\text{total}} = -1$, as shown in Fig. 1d. Note that, $C_{\text{total}} = -1$ is always valid in the twisted TLG. Actually, there is a rule of the total Chern number in twisted chiral multilayer graphene, which is reported in a separated work by authors and collaborators [27].

5. Influence of additional band parameters

Since the bandwidth of the two central bands is narrow at small twist angle, the additional bands parameter of BLG, i.e., γ_3, γ_4 and Δ, can essentially influence the behaviors of the two flat bands, thus change the band topology as well. So, when we consider the topology of the flat bands, the choice of these additional band parameters can give rise to different conclusions.

In Fig. 2, we show the influence of the additional band parameters on the flat band topology. We first consider the trigonal warping γ_3 in Fig. 2a. For the valley Chern number of the two central bands (C_{\pm}, C_{\pm}), there is a change from $(1, 1)$ to $(-1, -1)$, when we increase γ_3 from 0 to its realistic value about 320 meV. This is because that a band touching between the two central bands occurs when increasing the γ_3. With similar reason, γ_4 and Δ can affect the band topology as well. The change of Chern number resulted from γ_3 is illustrated in Fig. 2b. Finally, we use two sets of tight-binding parameters of the BLG, which are commonly used in literatures [25, 26], to calculate the band structure and valley Chern number of the twisted TLG (see Fig. 2c, d). We see that a deviation of γ_4 less than 100 meV can lead to different predictions about the valley Chern number. In the following, we use the parameters in Fig. 2f.

6. Phase diagram of valley Chern number

Here, with realistic parameters, we calculate the valley Chern number of the twisted TLG as a function of θ and V. The calculated results are given in Fig. 3. Importantly, the twisted angle θ and the particle-hole asymmetry V are all tunable in experiment, so that this phase diagram can be verified in further experiments.

In Fig. 3a and b, we change θ from 1.3° to 1.05°. As expected, twist not only can modify the Chern number of each central bands, but also change the gap at the Dirac points. We further calculate the band structures with different applied potential V. Fig. 2c and d.
show the bands with $V = \pm 20$ meV, respectively. Note that, the twisted TLG is a asymmetrical stacking, i.e., a single layer on a bilayer. So, the effects of E_{\parallel} on the band structure depend on its direction, i.e., $\pm V$ give rise to different band structures. This is different from the twisted double BLG, in which E_{\parallel} with opposite direction will give the same band structure, due to its symmetrical stacking. Take the case of Fig. 3c for example, the bandwidth of upper band is about 8.8 meV, and that of the lower band is about 30 meV. These are the typical bandwidth of the central bands in twisted TLG. With a finite V, the electron flat band becomes much narrower than the hole flat band, because of the electron-hole asymmetry [25]. Meanwhile, we see that the gap at K is enlarged to 3.8 meV (Fig. 3d) by an applied potential difference $V = 20$ meV, while its typical value is about 0.2 meV when $V = 0$ (Fig. 1h).

Finally, we give the phase diagram of the valley Chern number for each central band in Fig. 3e and f. The calculated results illustrate that nearly flat bands (electron or hole bands) with Chern number from -2 to 2 can be realized in the twisted TLG system with proper twisting angle and perpendicular electric field.

7. Summary

We have theoretically shown that twisted TLG has two separated flat bands with finite valley Chern number, which can be controlled by the twisting angle and applied potential difference. Considering its simpler structure and different symmetry, we think that the twist TLG is also a promising platform to study the novel correlated states in topological bands, which should be of the equal importance as the twisted double bilayer graphene. We hope that our work can stimulate further essential experiment progress on this novel system.

Note added. We note that the twisted TLG we proposed here has been realized in very recent experiments [37–39], just a few months after the preliminary version of this work was announced on arXiv.

Acknowledgments

We thank the supports by the National Natural Science Foundation of China (11534001, 11874160, 11274129, 11874026, and 61405067), the National Key Research and Development Program of China (2017YFA0403501), the Fundamental Research Funds for the Central Universities (HUST: 2017KFXJX027), and the National Basic Research Program of China (2015CB921102). We thank Jianpeng Liu and Jia-Qi Cai for invaluable discussions.

Author contributions

Zhen Ma, Shuai Li, Yawen Zheng, and Mengmeng Xiao performed the calculations. Jinhua Gao, Hua Jiang and X. C. Xie analyzed the results and wrote the manuscript.

References

[1] Tang E, Mei J-W, Wen X-G. High-temperature fractional quantum hall states. Phys Rev Lett 2011;106:230802.
[2] Sun K, Gu Z, Katsura H, et al. Nearly flatbands with nontrivial topology. Phys Rev Lett 2011;106:236803.
[3] Neupert T, Santos L, Chamon C, et al. Fractional quantum hall states at zero magnetic field. Phys Rev Lett 2011;106:236804.
[4] Wang Y-F, Gu Z-C, Gong C-D, et al. Fractional quantum hall effect of hard-core bosons in topological flat bands. Phys Rev Lett 2011;107:146803.
[5] Bergholtz EJ, Liu Z. Topological flat band models and fractional chern insulators. Int J Mod Phys B 2013;27:1330017.
[6] Neupert T, Chamon C, Iadecola T, et al. Fractional (chern and topological) insulators. Phys Rev B 2013;88:205103.
[7] Bistritzer R, MacDonald AH. Moiré bands in twisted double-layer graphene. Proc Natl Acad Sci USA 2011;108:12233-7.
[8] Cao Y, Fatemi V, Demir A, et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 2018;556:80-4.
[9] Cao Y, Fatemi V, Fang S, et al. Conventional superconductivity in magic-angle graphene superlattices. Nature 2018;556:43-43.
[10] Yankowitz M, Chen S, Polshyn H, et al. Tuning superconductivity in twisted bilayer graphene. Science 2019;363:1059-64.
[11] Po HC, Zou L, Vishwanath A, et al. Origin of mott insulating behavior and superconductivity in twisted bilayer graphene. Phys Rev X 2018;8:031089.
[12] Yuan NQ, Fu L. Model for the metal-insulator transition in graphene superlattices and beyond. Phys Rev B 2018;98:045103.
[13] Koshino M, Yuan NQ, Koreszni T, et al. Maximally localized wannier orbitals and the extended hubbard model for twisted bilayer graphene. Phys Rev X 2018;8:031087.

Conflict of interest

The authors declare that they have no conflict of interest.
[15] Xu C, Balents L. Topological superconductivity in twisted multilayer graphene. Phys Rev Lett 2018;121:087001.

[16] Isobe H, Yuan NFQ, Fu L. Unconventional superconductivity and density waves in twisted bilayer graphene. Phys Rev X 2018;8:041041.

[17] Kang J, Vafeq O. Symmetry, maximally localized wannier states, and a low-energy model for twisted bilayer graphene narrow bands. Phys Rev X 2018;8:031088.

[18] Wu F, Macdonald AH, Martin J. Theory of phonon-mediated superconductivity in twisted bilayer graphene. Phys Rev Lett 2018;121:257001.

[19] Xie M, MacDonald AH. Nature of the correlated insulator states in twisted bilayer graphene. Phys Rev Lett 2020;124:097601.

[20] Liu C-C, Zhang L-D, Chen W-Q, et al. Chiral spin density wave and $d+i d$ superconductivity in the magic-angle-twisted bilayer graphene. Phys Rev Lett 2018;121:217001.

[21] Guo H, Zhu X, Feng S, et al. Pairing symmetry of interacting fermions on a twisted bilayer graphene superlattice. Phys Rev B 2018;97:235453.

[22] Huang TY, Zhang LF, Ma TX. Antiferromagnetically ordered mott insulator and $d+i d$ superconductivity in twisted bilayer graphene: a quantum monte carlo study. Sci Bull 2019;64:310–4.

[23] Zhang L. Lowest-energy moiré band formed by dirac zero modes in twisted bilayer graphene. Sci Bull 2019;64:495–8.

[24] Zheng Y-H, Mao D, Cao Y, et al. Nearly flat chern bands in moiré superlattices. Phys Rev B 2019;99:235406.

[25] Koshino M. Band structure and topological properties of twisted double bilayer graphene. Phys Rev B 2019;99:235406.

[26] Lee JY, Khalaf E, Liu S, et al. Theory of correlated insulating behaviour and spin-triplet superconductivity in twisted double bilayer graphene. Nat Commun 2019;10:5333.

[27] Liu J, Ma Z, Gao J, et al. Quantum valley hall effect, orbital magnetism, and anomalous hall effect in twisted multilayer graphene systems. Phys Rev X 2019;9:031021.

[28] Chebrolu NR, Chittari BL, Jung J. Flat bands in twisted double bilayer graphene. Phys Rev B 2019;99:235417.

[29] Liu X, Hao Z, Khalaf E, et al. Tunable spin-polarized correlated states in twisted double bilayer graphene. Nature 2020;583:221.

[30] Shen C, Chu Y, Wu Q, et al. Correlated states in twisted double bilayer graphene. Nat Phys 2020;16:320.

[31] Cao Y, Rodan-Legrain D, Rubies-Bigorda O, et al. Tunable correlated states and spin-polarized phases in twisted bilayer–bilayer graphene. Nature 2020;583:215–20.

[32] Chen G, Jiang L, Wu S, et al. Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice. Nat Phys 2019;15:237–41.

[33] Chittari BL, Chen G, Zhang Y, et al. Gate-tunable topological flat bands in trilayer graphene boron-nitride moiré superlattices. Phys Rev Lett 2019;122:016401.

[34] Suárez Morell E, Pacheco M, Chico L, et al. Electronic properties of twisted trilayer graphene. Phys Rev B 2013;87:125414.

[35] McCann E, Koshino M. The electronic properties of bilayer graphene. Rep Prog Phys 2013;76:056503.

[36] Koshino M, Yuan NFQ, Koretsune T, et al. Maximally localized wannier orbitals and the extended hubbard model for twisted bilayer graphene. Phys Rev X 2018;8:031087.

[37] Shi Y, Xu S, Al Ezzi MM, et al. Tunable van Hove singularities and correlated states in twisted trilayer graphene. arXiv:2004.12414, 2020.

[38] Polshyn H, Zhu J, Kumar MA, et al. Electrical switching of magnetic order in an orbital Chern insulator. Nature 2020, doi: 10.1038/s41586-020-2963-8.

[39] Chen S, He M, Zhang YH, et al. Electrically tunable correlated and topological states in twisted monolayer–bilayer graphene. Nat Phys 2020, doi: 10.1038/s41567-020-01062-6.

Ma Zhen obtained his B.Sc. degree from Zhengzhou University of Light Industry in 2014. He is currently working as a Ph.D. candidate at Huazhong University of Science and Technology with Prof. Jin-Hua Gao. His research interest is two-dimensional materials and moiré heterostructures.

Jin-Hua Gao obtained his B.Sc. degree from Peking University in 2003, and Ph.D. degree form Institute of Physics, Chinese Academy of Sciences in 2008. He joined the Huazhong University of Science and Technology in 2012, and is currently a professor at the School of Physics. His research interest is two-dimensional materials and topological materials. His research focuses on moiré heterostructures.