Tuning-Free Plug-and-Play Hyperspectral Image Deconvolution With Deep Priors

Xiuheng Wang, Graduate Student Member, IEEE, Jie Chen, Senior Member, IEEE, and Cédric Richard, Senior Member, IEEE

Abstract—Deconvolution is a widely used strategy to mitigate the blurring and noisy degradation of hyperspectral images (HSIs) generated by the acquisition devices. This issue is usually addressed by solving an ill-posed inverse problem. While investigating proper image priors can enhance the deconvolution performance, it is not trivial to handcraft a powerful regularizer and to set the regularization parameters. To address these issues, in this article, we introduce a tuning-free plug-and-play (PnP) algorithm for HSI deconvolution. Specifically, we use the alternating direction method of multipliers (ADMM) to decompose the optimization problem into two iterative subproblems. A flexible blind 3-D denoising network (B3DDN) is designed to learn deep priors and to solve the denoising subproblem with different noise levels. A measure of 3-D residual whiteness is then investigated to adjust the penalty parameters when solving the quadratic subproblems, as well as a stopping criterion. Experimental results on both simulated and real-world data with ground truth demonstrate the superiority of the proposed method.

Index Terms—Deep learning, hyperspectral image (HSI) deconvolution, parameter estimation, plug-and-play (PnP), residual whiteness, tuning-free.

I. INTRODUCTION

Hyperspectral imaging systems simultaneously capture images of a scene over continuous narrow spectral bands ranging from ultraviolet to visible and infrared. The high spectral resolution provided by hyperspectral images (HSIs) enables us to conduct analyses that cannot be performed with conventional imaging techniques. Benefiting from abundant spectral information, hyperspectral imaging has been widely applied to applications as diverse as remote sensing [2] and computer vision [3]. However, due to various physical and hardware limitations, observed HSIs are usually blurred and corrupted by noise during the acquisition process, leading to degraded performance in subsequent analyses. Thus, it is desirable to restore images by deconvolution (inversion of the degradation process) techniques beforehand.

Multichannel images contain abundant spectral information across neighboring wavelengths, which raises the challenge of accounting for spectral correlations while ensuring spatial consistency compared to ordinary 2-D images [4], [5]. State-of-the-art deconvolution of multichannel (multispectral) images involves Wiener filter [6], [7], Kalman filter [8], and regularized least squares [9]. For hyperspectral deconvolution, an adaptive 3-D Wiener filter [10] and a filter-based linear method [4] have been used for astronomic HSIs. The 2-D fast Fourier transforms (FFTs) and Fourier-wavelet techniques have been considered in [11] and [12] for HSI deconvolution in order to benefit from computational efficiency in Fourier and wavelet domains. In [13], an online deconvolution algorithm was devised to process HSIs sequentially collected by a push-broom device.

Considering that deconvolution problems are usually highly ill-posed, it is strongly desirable to incorporate prior information of images to regularize the solutions. To this end, a computationally efficient algorithm in [14] performs HSI deconvolution subject to positivity constraints while accounting for spatial and spectral correlations. The work in [15] investigates both the spatial nonlocal self-similarity and spectral correlations by employing low-rank tensor priors. Defining proper priors and designing regularizers play a key role with these methods. However it is not a trivial task to handcraft powerful regularizers, having in mind that complex regularizers may also introduce extra difficulties in solving optimization problems. Recently, benefiting from the variable splitting principle, various plug-and-play (PnP) methods have been proposed recently. They consist of plugging image denoising modules in optimization modules to solve inverse problems. We shall now outline the main principles of the PnP framework.

Consider the general inverse problem consisting of minimizing the following objective function:

\[
\hat{x} = \arg\min_x D(x) + \lambda R(x) \tag{1}
\]
where \(x \) is the unknown variable to be estimated, \(\mathcal{D}(x) \) is the data fidelity term that ensures the consistency between the reconstructed and observed signals, and \(\mathcal{R}(x) \) is a regularizer that enforces desirable properties of the solution with \(\lambda \geq 0 \) the regularization parameter. With the alternating direction method of multipliers (ADMM) [16] or the half quadratic splitting method [17], the optimization problem (1) can be solved in \(K \) iterations consisting of two key operations

\[
\hat{x} = \arg \min_x \mathcal{D}(x) + \frac{\rho}{2} \| x - \hat{v} \|_2^2 \tag{2}
\]

\[
\hat{v} = \text{Denoiser}(\hat{x}, \sigma) \tag{3}
\]

where \(\rho \) is the penalty parameter and \(\text{Denoiser}(\cdot) \) represents a denoising operator with \(\sigma = (\lambda/\rho)^{1/2} \) the denoising strength. Conversely, this formulation can also implicitly define \(\mathcal{R}(\cdot) \) when plugging an arbitrary denoising operator. This allows benefit from the merits of deep learning and optimization methods [18] and to eliminate the need for expensive network retraining whenever the inverse problem changes [19]. Applications include magnetic resonance imaging (MRI) reconstruction [19], [20], 2-D image restoration [21], [22], [23], [24], and hyperspectral unmixing [25], [26]. Despite its effectiveness, this strategy has not yet been employed in HSI deconvolution problems, though similar difficulties of designing regularizers are encountered there.

Regardless of whether the regularizers are manually designed or implicitly learned as in recent PnP algorithms, it is desirable to select the regularization parameters properly to balance the contribution of prior information and observations. Classic parameter estimation methods used with handcrafted regularizers include the discrepancy principle (DP) [27], the L-curve [28], [29], the generalized cross validation (GCV) [30], [31], and Stein’s unbiased risk estimate (SURE) [32], [33]. Recently, Song et al. [34] proposed the maximum curvature criterion and the minimum distance criterion (MDC) on the response surface to estimate the regularization parameters in a nonnegative HSI deconvolution problem [14]. The MDC has been extended to HSI super-resolution by considering a deep prior regularizer in [35]. By defining and maximizing some whiteness measures of residual images, Almeida and Figueiredo [36] proposed a 2-D image deblurring method with objective criteria for adjusting the regularization parameter as well as the stopping criterion. In [37], an exact residual whiteness principle has been proposed for generalized Tikhonov-regularized 2-D image restoration. However, a specific-designed criterion for 3-D images, such as HSIs, is still missing.

Compared to handcrafted regularizers, implicit regularizers in PnP algorithms introduces extra challenges that need to be addressed for devising an automatic regularization parameter estimation strategy. In the PnP framework, \(\lambda \) is reparameterized by a series of internal parameters, including the penalty parameter \(\rho \), the denoising strength \(\sigma \), and the number of iterations \(K \) (related to stopping criteria). In [21], [25], and [26], a constant scaling factor is used to increase \(\rho \) linearly as iterations proceed. In [22], \(\sigma \) is exponentially decayed in sequential denoising subproblems. Nevertheless, the selected parameters in all these handcrafted criteria may lead to suboptimal performance since the internal parameters may not change monotonically. To address this issue, the methods in [23] and [24] consist of training a blind denoising network to estimate \(\sigma \) automatically. The work in [23] considers a fixed \(\rho \), while the approach in [24] considers a fixed \(\lambda \). Unlike these semiautomated approaches, deep reinforcement learning is used in [19] to determine all the internal parameters, leading to good convergence behavior and performance.

In this article, we introduce a fully automatic PnP hyperspectral deconvolution method that uses spectral–spatial priors learned from data by a deep neural network. The HSI deconvolution problem is addressed with an ADMM algorithm. In order to avoid manually selecting the regularization parameters, we define a nonnegative scalar measure of whiteness for 3-D residual images, which cooperates with a blind deep denoiser to adaptively adjust all the internal parameters. The contributions of this work are summarized as follows.

1) We propose a PnP framework for HSI deconvolution. Based on the ADMM algorithm, the optimization problem is split into two subproblems, a simple quadratic subproblem and a 3-D image denoising subproblem.

2) A blind 3-D denoising network (B3DDN) is designed and plugged into the proposed framework. This denoising operator learns both spatial context and spectral attributes of HSIs, bypassing the difficulty in designing regularizers. After training with simulated data, the flexibility of the B3DDN allows it to learn, without any extra training, the priors for real-world images even with a distinct number of spectral channels.

3) The proposed PnP framework is designed in a completely turning-free manner. Specifically, the penalty parameters are determined automatically by solving a scalar optimization problem, while the denoising strengths are implicitly learned by the B3DDN. A stopping criterion for the iterative process is also provided.

4) An HSI dataset containing six blurring and clear image pairs captured in indoor and outdoor scenes is provided with this work. This dataset allows us to show that our method is applicable with real-world scenarios. It also provides a benchmark for future research works in HSI deconvolution.

This article is organized as follows. In Section II, HSI deconvolution is formulated as a linear inverse problem. Section III introduces the proposed tuning-free deconvolution method based on the PnP framework with learned deep priors. In Section IV, experiments with simulated and real-world data are conducted and analyzed. Section V concludes this article.

II. PROBLEM FORMULATION

We denote a degraded HSI and its latent clean counterpart by \(Y \in \mathbb{R}^{N\times P \times Q} \) and \(X \in \mathbb{R}^{N\times P \times Q} \), respectively, where \(P \), \(Q \), and \(N \) are the numbers of rows, columns, and spectral bands of the image. Using lexicographical order, \(Y \) and \(X \) can be reshaped into vectors \(y \in \mathbb{R}^{NPQ \times 1} \) and \(x \in \mathbb{R}^{NPQ \times 1} \), respectively. The degraded image and the clean image at the \(i \)th spectral band are denoted by \(Y_i \in \mathbb{R}^{P \times Q} \) and
Fig. 1. Architecture of the proposed tuning-free scheme for HSI deconvolution. (Top) Network structure of the B3DDN. (Bottom) Numerical optimization steps in the ADMM framework.

\[Y_i = H_i \ast X_i + N_i \]

(4)

where \(H_i \) is the convolution kernel, possibly containing null entries, of size \(P \times Q \) encoding the point spread function (PSF) of the \(i \)th channel

\[H_i = \begin{pmatrix} H_{i1} & \cdots & H_{iQ} \\ \vdots & \ddots & \vdots \\ H_{iP1} & \cdots & H_{iPQ} \end{pmatrix}. \]

(5)

Operator \(\ast \) denotes the discrete 2-D convolution performed in the image domain, and \(N_i \) is an additive independent and identically distributed (i.i.d.) Gaussian noise with standard deviation \(\sigma \). Following [14], model (5) can be written as

\[y_i = H_i x_i + n_i \]

(6)

where \(H_i \) is a \(PQ \times PQ \) block-Toeplitz matrix with \(P \times Q \) Toeplitz blocks. Imposing periodic boundary conditions on \(H_i \), \(H_i \) can be rewritten as a block circulant matrix with circulant blocks, a structure denoted as circulant-block-circulant (CBC). This property allows us to design a Fourier domain implementation for solving the least-square problem in Section III-A.

Assuming that the convolution is separable and the noise variance is independent over spectral bands, the hyperspectral degradation model can be written as:

\[y = Hx + n \]

(7)

where \(H \) is a block-diagonal matrix of size \(NPQ \times NPQ \)

\[H = \begin{bmatrix} H_1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & H_N \end{bmatrix}. \]

(8)

The problem in HSI deconvolution is formulated as an inverse problem, where \(x \) is estimated by seeking the minimum of the following objective function:

\[\hat{x} = \arg\min_x \frac{1}{2} \| y - Hx \|^2 + \lambda \Phi(x) \]

(9)

where the first squared-error term \(\frac{1}{2} \| y - Hx \|^2 \) is the data fidelity term and \(\Phi(x) \) is the regularizer.

III. PROPOSED METHOD

Designing an effective regularizer \(\Phi(x) \) along with an efficient solving method is not trivial. Meanwhile, it is cumbersome to fine-tune the hyperparameter \(\lambda \) to balance the contribution of \(\Phi(x) \) for different images. To tackle these issues, we propose to learn priors from hyperspectral data and incorporate it into the model-based optimization to tackle the regularized inverse problem in (9). More specifically, using the variable splitting technique, we transform problem (9) into two subproblems, namely, a simple quadratic problem with a penalty parameter and a 3-D image denoising problem with a certain denoising strength. These subproblems are iteratively solved, using a linear method and a blind deep neural network until the convergence criterion is met. In this procedure, the penalty parameter is automatically estimated, while the denoising strength is implicitly learned. Finally, the algorithm is automatically terminated by stopping criteria. Our tuning-free HSI deconvolution scheme is shown in Fig. 1.
A. Variable Splitting Based on the ADMM

The ADMM is adopted to decouple the data fidelity term and the regularization term in (9). By introducing an auxiliary variable \(\mathbf{z} \), problem (9) can be written in the equivalent form

\[
\hat{\mathbf{x}} = \arg \min_{\mathbf{x}} \frac{1}{2} \| \mathbf{y} - \mathbf{Hx} \|^2 + \lambda \Phi(\mathbf{z}), \quad \text{s.t.} \; \mathbf{z} = \mathbf{x}.
\]

(10)

The associated augmented Lagrangian function is given by

\[
L_\rho(\mathbf{x}, \mathbf{z}, \mathbf{v}) = \arg \min_{\mathbf{x}} \frac{1}{2} \| \mathbf{y} - \mathbf{Hx} \|^2 + \lambda \Phi(\mathbf{z})
\]

\[+ \mathbf{v}^T(\mathbf{z} - \mathbf{x}) + \frac{\rho}{2} \| \mathbf{z} - \mathbf{x} \|^2 \]

(11)

with \(\mathbf{v} \) the dual variable and \(\rho > 0 \) the penalty parameter. Scaling \(\mathbf{v} \) as \(\mathbf{v} = (1/\rho)\mathbf{v} \), problem (11) can be iteratively solved by repeating the following successive steps:

\[
\mathbf{x}_{k+1} = \arg \min_{\mathbf{x}} \frac{1}{2} \| \mathbf{y} - \mathbf{Hx} \|^2 + \frac{\rho_k}{2} \| \mathbf{x} - \hat{\mathbf{x}}_k \|^2
\]

(12a)

\[
\mathbf{z}_{k+1} = \arg \min_{\mathbf{z}} \lambda \Phi(\mathbf{z}) + \frac{\rho_k}{2} \| \mathbf{z}_k - \mathbf{z} \|^2
\]

(12b)

\[
\mathbf{u}_{k+1} = \mathbf{u}_k + \mathbf{x}_{k+1} - \mathbf{z}_{k+1}
\]

(12c)

and \(\rho_k \) denotes the penalty parameter at the \(k \)-th iteration. In this way, the data fidelity term and the regularization term in (9) are decoupled into two subproblems [see (12a) and (12b)]. Subproblem (12a) is a least-square problem that can be solved analytically as follows:

\[
\mathbf{x}_{k+1} = (\mathbf{H}^T \mathbf{H} + \rho_k \mathbf{I})^{-1}(\mathbf{H}^T \mathbf{y} + \rho_k \hat{\mathbf{x}}_k).
\]

(14)

Subproblem (12b) can be reformulated as

\[
\mathbf{z}_{k+1} = \arg \min_{\mathbf{z}} \frac{1}{2\sigma_k^2} \| \mathbf{z}_k - \mathbf{z} \|^2 + \Phi(\mathbf{z})
\]

(15)

where \(\sigma_k = (\lambda/\rho_k)^{1/2} \).

From a Bayesian perspective, (15) can be considered as a denoising problem, removing Gaussian noise with noise-level \(\sigma_k \) from the noisy HSI \(\hat{\mathbf{z}}_k \) to obtain the clean HSI \(\mathbf{z}_{k+1} \). In other words, a denoising operator can be used for neglecting the design of the regularization term \(\Phi(\mathbf{z}) \).

B. Estimating Parameters via 3-D Residual Whiteness

In most real-world applications, no ground-truth information is available for fine-tuning the algorithm parameters or terminating the optimization at a proper iteration. To tackle this issue, a measure of residual whiteness of 3-D images is defined in this section, and the optimal value of \(\rho_k \) at each iteration, as well as the number of iterations, can be determined with the help of this measure. To be specific, we propose to evaluate the optimal \(\rho_k^* \) in (12a) by solving a scalar optimization problem. The stopping criterion then consists of comparing this 3-D whiteness measure between two iterations.

1) Measure of 3-D Residual Whiteness: We define the residual image \(\mathbf{r}_{k+1} \in \mathbb{R}^L \) with \(L = NPQ \) by

\[
\mathbf{r}_{k+1} = \mathbf{Hx}_{k+1} - \mathbf{y}
\]

(16)

with its equivalent 3-D image matrix denoted by \(\mathbf{R}_{k+1} \in \mathbb{R}^{NPQ} \). The autocorrelation of \(\mathbf{R}_{k+1} \) is defined as

\[
\mathbf{A}_{\mathbf{R}_{k+1}}(n, p, q) = \frac{1}{L} (\mathbf{R}_{k+1} * \mathbf{R}_{k+1})
\]

(17)

where * denotes the 3-D discrete correlation. The sample autocorrelation at indexes \((n, p, q) \) is given by:

\[
\mathbf{A}_{\mathbf{R}_{k+1}}(n, p, q) = \frac{1}{L} \sum_{m, i, j} \mathbf{R}_{k+1}(n, p, q) \mathbf{R}_{k+1}(m - n, i - p, j - q)
\]

(18)

with \(1 \leq m \leq N, 1 \leq i \leq P, 1 \leq j \leq Q \). When the residual is close to the modeling error \(\mathbf{n} \), i.e., a white Gaussian noise, \(\mathbf{A}_{\mathbf{R}_{k+1}}(n, p, q) \) satisfies the following asymptotic property:

\[
\lim_{L \to \infty} \mathbf{A}_{\mathbf{R}_{k+1}}(n, p, q) \approx \begin{cases} \sigma^2 & \text{if } (n, p, q) = (0, 0, 0) \\ 0 & \text{if } (n, p, q) \neq (0, 0, 0) \end{cases}
\]

(19)

The size \(L \) of HSIs is usually large (between \(10^6 \) and \(10^8 \)) so that we can assume that the sample autocorrelation at all indexes \((n, p, q) \neq (0, 0, 0) \) is close to zero. This assumption is based on the following result of the Gaussian process \(\mathbf{n} \) with its equivalent 3-D image matrix denoted by \(\mathbf{N} \) and sample autocorrelation \(\mathbf{A}_{\mathbf{N}_{k+1}}(n, p, q) \) defined by replacing \(\mathbf{R} \) as \(\mathbf{N} \) in (18).

Theorem 1: If \(\mathbf{n} \) has a finite variance \(\sigma \) and \(L \) tends to \(\infty \), any \(\mathbf{A}_{\mathbf{N}_{k+1}}(n, p, q) \) with \((n, p, q) \neq (0, 0, 0) \) is asymptotically uncorrelated and Gaussian-distributed with zero mean and stand deviation \(\sigma_n = \sigma^2/L \).

Proof: The proof follows directly by applying [38, Proposition 1] to the 3-D domain.

The rationale behind imposing residual whiteness is to estimate parameters by constraining the residual autocorrelation at nonzero indexes to be small. To make this measure independent of \(\sigma \), inspired by [37], we consider the normalized autocorrelation defined as follows:

\[
\overline{\mathbf{X}}_{\mathbf{R}_{k+1}}(n, p, q) = \frac{\mathbf{A}_{\mathbf{R}_{k+1}}(0, 0, 0)}{\| \mathbf{R}_{k+1} \|_F}
\]

(20)

where \(\| \cdot \|_F \) denotes the matrix Frobenius norm. All entries \(\overline{\mathbf{X}}_{\mathbf{R}_{k+1}}(n, p, q) \) satisfies

\[
\lim_{L \to \infty} \overline{\mathbf{X}}_{\mathbf{R}_{k+1}}(n, p, q) \approx \begin{cases} 1 & \text{if } (n, p, q) = (0, 0, 0) \\ 0 & \text{if } (n, p, q) \neq (0, 0, 0) \end{cases}
\]

(21)

We can now introduce the \(\sigma \)-independent nonnegative scalar measure of 3-D residual whiteness defined as

\[
W(\mathbf{R}_{k+1}) = \| \overline{\mathbf{X}}_{\mathbf{R}_{k+1}} \|_F^2 = \frac{\| \mathbf{R}_{k+1} \|_F^2}{\| \mathbf{R}_{k+1} \|_F^2}
\]

(22)
Algorithm 1 Adaptive Penalty Parameter Estimation

Input: Blurred observation \(y \), internal image \(\tilde{x}_k \), blurring kernel \(H \).

Output: Optimal adaptive parameter \(\rho_k^* \).

1. Initialize \(a, b, \epsilon \).
2. while \(b - a > \epsilon \) do
 1. \(\rho_k^{(1)} = a + \delta(b - a) \)
 2. \(\rho_k^{(2)} = b - \delta(b - a) \)
 3. if \(\mathcal{W}(r_{k+1, \rho_k^{(1)}}) < \mathcal{W}(r_{k+1, \rho_k^{(2)}}) \)
 \(b = \rho_k^{(2)} \)
 4. else
 \(a = \rho_k^{(1)} \)
 end while
3. \(\rho_k^* = (a + b) / 2 \)

2) Penalty Parameter Estimation: The solution \(x_{k+1} \) of (14) actually depends on parameter \(\rho_k \) setting. To devise the parameter selection procedure, we make \(\rho_k \) explicit by writing \(x_{k+1, \rho_k} \). In order to automatically estimate the penalty parameter \(\rho_k \) in (12a), the term \(\| x - \tilde{x}_k \|^2 \) can be viewed as a regularizer that enforces the solution \(x_{k+1, \rho_k} \) to tend to \(\tilde{x}_k \). As the restored image \(x_{k+1, \rho_k} \) tends to fit the desired target image, the related residual image \(r_{k+1, \rho_k} = Hx_{k+1, \rho_k} - y \) tends to be close to the Gaussian noise perturbation \(n \) in (7).

With (22), we propose to estimate the optimal penalty parameter by solving the following scalar optimization problem:

\[
\rho_k^* = \arg \min_{\rho_k} \mathcal{W}(r_{k+1, \rho_k}).
\]

(23)

The varying range of \(\rho_k \) is \((0, \infty)\). In practice, we substitute \(\infty \) by a sufficiently large value.

A fast golden-section search method is used for determining a local minimum of (23). This method iteratively over an interval \((a, b)\) and generates two internal points

\[
\rho_k^{(1)} = a + \delta(b - a) \quad \rho_k^{(2)} = b - \delta(b - a)
\]

(24)

where \(\delta = 0.618 \) is the golden ratio. As shown in Algorithm 1, whiteness criterion \(\mathcal{W}(r_{k+1, \rho_k}) \) is compared at \(\rho_k^{(1)} \) and \(\rho_k^{(2)} \). If it is smaller at the former point than at the latter point, then \(b \) is substituted by \(\rho_k^{(2)} \). Otherwise, \(a \) is substituted by \(\rho_k^{(1)} \). This procedure is repeated with the new smaller interval \((a, b)\) until \(b - a < \epsilon \) with \(\epsilon \) a small positive threshold. Finally, the estimated optimal penalty parameter is given by

\[
\rho_k^* = (a + b) / 2
\]

(25)

and the solution of subproblem (12a) is provided by

\[
x_{k+1} = (H^T H + \rho_k^* I)^{-1}(H^T y + \rho_k^* \tilde{x}_k).
\]

(26)

3) Stopping Criterion: To take both HSI deconvolution performance and computational time into account, it is important to properly set the maximum number of iterations. Iterations can be performed until no significant improvement between two consecutive iterations is observed. Considering the whiteness measure in (22), we propose to stop the iterative process with the following normalized criterion:

\[
\mathcal{W}(r_{k+1}) \geq \mathcal{W}(r_k) \quad \text{or} \quad \frac{\| \mathcal{W}(r_{k+1}) - \mathcal{W}(r_k) \|}{\| \mathcal{W}(r_{k+1}) \|} < \zeta
\]

(27)

where \(\zeta \) is a small positive threshold and \(r_k \) and \(r_{k+1} \) represent the residual image of the solutions \(x_k \) and \(x_{k+1} \), respectively.

C. Learning Spectral–Spatial Priors via B3DDN

Instead of using a handcrafted regularizer \(\Phi(\cdot) \) and solving subproblem (12b) explicitly, we propose to carry out this task with a deep neural network-based denoiser. This denoiser is trained beforehand to extract spectral–spatial prior information from hyperspectral training observations. Then, it is plugged into the iterative algorithm to solve subproblem (12b). We denote this denoising operator by \(\mathcal{D}(\cdot) \). As it is performed in the 3-D image domain to jointly capture spatial and spectral information, we write (15) as follows:

\[
Z_{k+1} = \mathcal{D}(\tilde{Z}_k, \sigma_k).
\]

(28)

Observe that \(\mathcal{D}(\cdot) \) is parameterized by the noise level \(\sigma_k \). For setting it, most existing methods use empirical strategies that may lead to underdenoising or oversmoothing of \(\tilde{Z}_k \) [23]. In addition, since \(\sigma_k \) decreases as iterations progress, some works choose to train a set of specific models that can handle different noise levels [22]. To avoid these redundant learning tasks, we shall now see how to design a B3DDN \(\mathcal{F}(\cdot) \) with respect to \(\sigma_k \), but parameterized by \(\Theta \), by considering residual learning formulation

\[
Z_{k+1} = \tilde{Z}_k - \mathcal{F}(\tilde{Z}_k; \Theta).
\]

(29)

1) 3-D Convolution: Unlike 2-D convolution resulting in spectral information distortion, 3-D convolution (3DConv) extracts spatial features from neighboring pixels and spectral features from adjacent bands, simultaneously, without compromising spectral resolution. The 3DConv also involves less parameters, and it is more appropriate for HSI processing due to the difficulty in capturing a big enough volume of hyperspectral data. In addition, 3DConv enables the neural network to handle HSIs with an arbitrary number of spectral bands without modifying its architecture [39]. In this way, there is no need to retrain a neural network when the number of spectral bands changes. This key property allows our method to be applied to any real-world dataset by using a pretrained neural network.

2) Network Architecture: The B3DDN architecture is shown in Fig. 1 (top). Each 3-D block contains a 3DConv layer, a batch normalization (BN) layer, and a ReLU layer. BN is used to speed up the training process as well as to boost the denoising performance [40]. Besides the input layer and the output layer, a 3DConv layer, a ReLU activation function layer, B 3-D blocks, and a last 3DConv layer are sequentially connected to form the proposed network. The last convolutional layer contains one 3-D filter, while the others are composed of 32 3-D filters. The kernel size of each 3-D filter is \(3 \times 3 \times 3 \), which means that the depth of the kernel along the spectral dimension and its size over the spatial dimension are 3 and 3 \(\times 3 \), respectively. Compared to existing
Algorithm 2: Tuning-Free HSI Deconvolution With Deep Priors Learned From B3DDN

Input: Network parameters Θ, blurred observation y, blurring kernel H.

Output: Deblurred HSI x.

1. Initialize $x = x_0$, auxiliary variable $z_0 = x_0$, scaled dual variable $u_0 = 0$, $k = 0$.
2. While stopping criteria in (27) are not met do
 1. Estimate ρ_k^* using Algorithm 1
 2. $x_{k+1} = (H^T H + \mu I)^{-1}(H^T y + \rho_k^* \tilde{x}_k)$
 3. $\tilde{z}_k = x_{k+1} + u_k$
 4. $Z_{k+1} = F(\tilde{z}_k; \Theta)$
 5. $u_{k+1} = u_k + x_{k+1} - z_{k+1}$
 6. $k = k + 1$
3. End while

In this section, we shall conduct experiments of HSI deconvolution on both simulated and real-world datasets to validate our method. The results provided by the proposed method are compared with those of several HSI deconvolution methods from both quantitative and qualitative perspectives. The source code and the proposed real-world data are made available at https://github.com/xiuheng-wang/Tuning_free_PnP_HSI_deconvolution.

A. Simulation Datasets and Experimental Setup

Two simulation datasets, on the one hand the Columbia Multispectral Database (CAVE2) [42], and on the other hand a remotely sensed hyperspectral data over Chikusei [3], were used to evaluate the performance of our method.

1) CAVE Dataset: It contains 32 HSIs recorded under controlled illuminations in a laboratory. Each image has a spatial resolution of 512×512 pixels, over 31 spectral channels ranging from 400 to 700 nm at a wavelength interval of 10 nm.

2) Chikusei Dataset: It is an airborne hyperspectral scene acquired by a visible and near-infrared imaging sensor over agricultural and urban regions in Chikusei, Ibaraki, Japan. The scene consists of 2517×2335 pixels with a ground sampling distance of 2.5 m, over 128 spectral channels ranging from 363 to 1018 nm. The black boundaries in the spatial domain were removed, leading to a scene of size 2048×2048 pixels.

The HSIs of the two datasets were scaled to the range [0, 1] and then used as ground truths for x. The observations y were generated by using the blurring kernels H and corrupted with a white Gaussian noise n with standard deviation σ, with H and σ defined as follows (see Fig. 2):

- 1) the 9×9 Gaussian kernel with bandwidth 2 and $\sigma = 0.01$;
- 2) the 13×13 Gaussian kernel with bandwidth 3 and $\sigma = 0.01$;
- 3) the 9×9 Gaussian kernel with bandwidth 2 and $\sigma = 0.03$;
- 4) circle kernel with diameter 7 and $\sigma = 0.01$;
- 5) motion kernel from [44] of size 13×13 and $\sigma = 0.01$;
- 6) square kernel with side length 5 and $\sigma = 0.01$.

The first 20 images were selected from the CAVE dataset for training and the remaining 12 images were used for the test. For the Chikusei dataset, a 1024×2048 subimage was extracted from the top area of the image for training, while the remaining part was cropped into 32 nonoverlapping $256 \times 256 \times 128$ subimages that were used as test data.

B. Implementation Details

We implemented the proposed blind denoising network B3DDN with PyTorch framework. The Adam optimizer [45] with an initial learning rate of 0.0002 and a batch size of 64 was used to minimize the loss function (30) with 500 epochs. The weights were initialized by the method in [46]. At every epoch of the training stage, each original HSI was randomly cropped into 128 and 512 patches of size 64×64, respectively, for the CAVE and the Chikusei datasets.
To train the B3DDN in a blind manner, we added an i.i.d. Gaussian noise with random standard deviation in the range [0, 2.10] to each patch, which was then randomly rotated or flipped for data augmentation purpose. We set the number B of 3-D blocks to 8 by considering the computational cost and memory demand, and thus, the number of parameters of the proposed B3DDN denoiser is 10^{113}.

Once the denoiser was trained, we plugged the B3DDN into the ADMM. Since the computational complexity of 3-D discrete correlation in (22) can be high (O(L^2)), we used the FFT (O(L \log L)) to compute it. Step (26) was also efficiently computed in the Fourier domain. For the golden-section search method and the stopping criterion presented in Section III-B, we set \(a = 0, b = 10, \epsilon = 0.001, \) and \(\zeta = 0.0002\).

C. Quantitative Metrics and Baselines

In order to evaluate the quality of the deconvolution result \(\hat{X}\) by comparing it with the ground truth of \(X\), we considered four quantitative metrics. The first one is the root-mean-square error (RMSE), which is defined as

\[
RMSE = \sqrt{\frac{1}{NPQ} \sum_{i=1}^{N} \|\hat{X}_i - X_i\|_F^2}
\]

which measures the similarities between the deconvolution image and the reference image. A lower RMSE value indicates better quality. The second metric is the peak-signal-to-noise ratio (PSNR)

\[
PSNR = 10 \log_{10} \left(\frac{P \max(X_i)^2}{\|\hat{X}_i - X_i\|_F^2} \right)
\]

which measures the quality of the deconvolution image compared to the original image. The higher the PSNR, the better quality. The third metric is the average of Structural SIMilarity (SSIM) [47], averaged over all channels of \(\hat{X}\) and \(X\), i.e.,

\[
SSIM = \frac{1}{N} \sum_{i=1}^{N} \frac{(2\mu_{\hat{X}} \mu_X + C_1)(2\sigma_{\hat{X}X} + C_2)}{(\mu_{\hat{X}}^2 + \mu_X^2 + C_1)(\sigma_{\hat{X}}^2 + \sigma_X^2 + C_2)}
\]

where \(\mu_{\hat{X}}\) and \(\mu_X\) are the mean values of images \(\hat{X}_i\) and \(X_i\), \(\sigma_{\hat{X}}\) and \(\sigma_X\) are the standard deviations of \(\hat{X}_i\) and \(X_i\), and \(C_1 > 0\) and \(C_2 > 0\) are constants. The SSIM is an indicator of the spatial structure preservation of the deconvolution image. A higher the SSIM value indicates better spatial structure preservation. The last metric is the Erreur Relative Globale Adimensionnelle de Synthèse (ERGAS) [48] defined as

\[
ERGAS = 100 \sqrt{\frac{1}{N} \sum_{i=1}^{N} \frac{\|\hat{X}_i - X_i\|_F^2}{\text{mean}(X_i)^2}}
\]

The best results are indicated by boldface numbers.

Table I

Scenarios	Metrics	HLP	SSP	WLRTR	3DFTV	Ours
(a)	RMSE	4.420 ± 1.787	4.848 ± 1.825	4.735 ± 2.076	4.332 ± 1.863	**3.132 ± 1.320**
	PSNR	36.166 ± 3.334	35.373 ± 3.385	35.872 ± 3.759	36.450 ± 3.793	**39.252 ± 3.465**
	SSIM	0.9167 ± 0.0379	0.9305 ± 0.0393	0.9380 ± 0.0466	0.9401 ± 0.0439	**0.9493 ± 0.0367**
	ERGAS	18.15 ± 8.25	19.51 ± 8.12	18.96 ± 8.33	17.34 ± 7.69	**13.01 ± 6.23**
(b)	RMSE	5.707 ± 2.452	5.955 ± 2.398	6.439 ± 2.812	5.667 ± 2.539	**4.581 ± 1.993**
	PSNR	34.034 ± 3.567	33.541 ± 3.492	33.084 ± 3.740	34.116 ± 3.872	**36.305 ± 3.612**
	SSIM	0.8911 ± 0.0483	0.9031 ± 0.0494	0.9025 ± 0.0616	0.9136 ± 0.0550	**0.9234 ± 0.0422**
	ERGAS	22.92 ± 10.11	23.71 ± 9.86	25.46 ± 10.84	22.40 ± 9.86	**18.54 ± 8.39**
(c)	RMSE	7.669 ± 1.390	5.270 ± 1.622	5.099 ± 1.972	5.016 ± 1.727	**4.225 ± 1.324**
	PSNR	30.599 ± 1.550	34.309 ± 2.607	34.827 ± 3.201	34.741 ± 2.975	**36.211 ± 2.485**
	SSIM	0.6406 ± 0.0337	0.8565 ± 0.0539	**0.8956 ± 0.0387**	0.8851 ± 0.0390	0.8708 ± 0.0594
	ERGAS	33.49 ± 16.27	22.28 ± 10.14	20.80 ± 9.07	20.47 ± 8.66	**18.64 ± 9.28**
(d)	RMSE	4.189 ± 1.636	4.584 ± 1.680	4.328 ± 1.903	4.167 ± 1.803	**2.305 ± 0.938**
	PSNR	36.548 ± 3.181	35.862 ± 3.331	36.686 ± 3.736	36.805 ± 3.803	**41.653 ± 3.074**
	SSIM	0.9165 ± 0.0348	0.9354 ± 0.0374	0.9450 ± 0.0436	0.9403 ± 0.0430	**0.9542 ± 0.0340**
	ERGAS	17.36 ± 7.98	18.49 ± 7.67	17.45 ± 7.82	16.69 ± 7.46	**9.86 ± 5.17**
(e)	RMSE	3.759 ± 1.166	3.954 ± 1.333	4.335 ± 1.780	3.587 ± 1.443	**3.041 ± 2.783**
	PSNR	37.149 ± 2.492	37.160 ± 3.108	36.497 ± 3.490	37.991 ± 3.543	**40.722 ± 5.730**
	SSIM	0.9118 ± 0.0239	0.9472 ± 0.0311	**0.9428 ± 0.0436**	0.9510 ± 0.0397	0.8907 ± 0.1642
	ERGAS	15.94 ± 7.39	16.01 ± 6.56	17.46 ± 7.49	14.37 ± 6.16	**15.56 ± 19.66**
(f)	RMSE	3.971 ± 1.453	4.356 ± 1.563	4.109 ± 1.765	3.957 ± 1.666	**2.280 ± 1.231**
	PSNR	36.910 ± 2.985	36.322 ± 3.302	37.130 ± 3.698	37.225 ± 3.743	**41.932 ± 3.687**
	SSIM	0.9195 ± 0.0270	0.9397 ± 0.0334	0.9480 ± 0.0450	0.9468 ± 0.0410	**0.9475 ± 0.0618**
	ERGAS	16.58 ± 7.61	17.60 ± 7.26	16.64 ± 7.46	15.89 ± 7.04	**9.79 ± 5.89**
Fig. 3. Visual results for all methods in blurring scenario (a) on the CAVE dataset. The first and second rows present the results for two different blurred images. The false-color images were generated for clear visualization with the 22nd, 14th, and 7th channels used for red, green, and blue, respectively.

which characterizes the overall quality of the deconvolution image. A smaller ERGAS means a better result.

We compared our method with three HSI deconvolution methods of reference: hyper-Laplacian priors (HLP) [49], spatial and spectral priors (SSPs) [14], weighted low-rank tensor recovery (WLRTR) [15], and 3-D fractional total variation (3DFTV) [50], each with well-designed regularizers. The HLP considers spatial gradient priors, i.e., the HLPs of images. The SSP exploits both the spatial and spectral smoothness priors of HSIs. The WLRTR simultaneously captures nonlocal similarity within spectral–spatial cubic and spectral correlation by a low-rank tensor recovery model. The 3DFTV exploits both the local and nonlocal smoothness of images in all dimensions. We used the codes provided by the authors of these methods and downloaded them, and we tuned their parameters by following the rules as stated in the corresponding papers to achieve the best deconvolution performance.

D. Performance Evaluation on Simulated Data

We start validating the tuning-free scheme with the CAVE dataset by demonstrating its effectiveness in terms of HSI deconvolution performance over the other methods.

Table I reports the average values and standard deviations of RMSE, PSNR, SSIM, and ERGAS. For all blurring scenarios, one can observe that our method outperformed all competing methods in terms of performance and robustness. For quality comparison, consider scenario (a) for example. Fig. 3 shows the blurred image, deblurred images, ground truth of real and fake peppers (first row), and superballs (second row) from the CAVE dataset. Visually, our method provides more details, including sharper edges and more vivid gloss. This confirms the effectiveness of the proposed method in recovering the spatial information of the latent clear HSIs.

To further evaluate the robustness of the proposed method, consider scenario (a) for example. We set the noise level from 0.01 to 0.05 at an interval of 0.01 to generate varying noise interruptions added to input images. In Table II, it can be seen that the performance of all methods deteriorates with the increase in noise levels. However, the proposed method still provides the best quantitative results with all different noise interruptions.

σ	Methods	RMSE	PSNR	SSIM	ERGAS
0.01	HLP	4.420	36.166	0.9167	18.15
	SSP	4.848	35.373	0.9305	19.51
	WLRTR	4.735	35.872	0.9380	18.96
	3DFTV	4.332	36.450	0.9401	17.34
	Ours	3.132	39.252	0.9493	13.01
0.02	HLP	5.597	33.571	0.8084	23.77
	SSP	5.001	34.951	0.8973	20.52
	WLRTR	4.817	35.602	0.9283	19.39
	3DFTV	4.486	36.006	0.9301	17.96
	Ours	3.574	37.851	0.9140	15.17
0.03	HLP	7.669	30.599	0.6406	33.49
	SSP	5.270	34.309	0.8565	22.28
	WLRTR	5.099	34.827	0.8956	20.80
	3DFTV	5.016	34.741	0.8851	20.47
	Ours	4.225	36.211	0.8708	18.64
0.04	HLP	10.018	28.206	0.4942	44.43
	SSP	5.643	33.547	0.8155	24.66
	WLRTR	6.611	32.107	0.7539	27.42
	3DFTV	6.143	32.682	0.7778	26.05
	Ours	4.750	35.060	0.8324	21.37
0.05	HLP	12.411	26.320	0.3859	55.50
	SSP	6.101	32.742	0.7766	27.49
	WLRTR	9.496	28.748	0.5363	40.74
	3DFTV	7.696	30.572	0.6462	33.57
	Ours	5.329	33.976	0.7984	24.60

The best results are indicated by boldface numbers.

We now evaluate the proposed method on remotely sensed data: the Chikusei dataset. This dataset, with more spectral bands, allows to analyze how our method exploits spectral information. The mean and variance of the numerical results for all methods in six blurring scenarios are shown in Table III. It can be observed that the quantitative metrics of our method surpass the other competing methods in most cases. Fig. 4 shows the visual results. As can be seen, the proposed method provides the results with clearer and sharper visual effects compared to the other methods. This illustrates the superiority
TABLE III
RMSE, PSNR, SSIM, AND ERGAS OF THE DIFFERENT METHODS APPLIED TO THE CHIKUSEI DATASET IN THE SIX BLURRING SCENAROIS

Scenarios	Metrics	HLP	SSP	WLRTR	3DFTV	Ours
	RMSE	3.233 ± 0.420	3.050 ± 0.452	3.138 ± 0.518	3.207 ± 0.501	2.560 ± 0.316
	PSNR	38.979 ± 1.131	40.182 ± 1.528	40.051 ± 1.710	39.546 ± 1.583	41.032 ± 1.076
	SSIM	0.9124 ± 0.0141	0.9334 ± 0.0148	0.9267 ± 0.0183	0.9171 ± 0.0191	0.9420 ± 0.0086
	ERGAS	32.25 ± 3.40	28.13 ± 2.64	25.29 ± 3.54	35.37 ± 2.93	27.87 ± 2.84
(a)	RMSE	3.945 ± 0.576	3.819 ± 0.566	4.091 ± 0.678	4.037 ± 0.644	3.428 ± 0.502
	PSNR	37.604 ± 1.348	38.392 ± 1.573	37.872 ± 1.741	37.708 ± 1.637	38.989 ± 1.438
	SSIM	0.8822 ± 0.0227	0.9016 ± 0.0222	0.8871 ± 0.0276	0.8819 ± 0.0275	0.9091 ± 0.0183
	ERGAS	35.30 ± 4.08	32.40 ± 3.60	31.45 ± 4.97	39.85 ± 3.59	30.92 ± 3.23
(b)	RMSE	7.094 ± 0.197	3.506 ± 0.386	3.777 ± 0.429	3.662 ± 0.416	3.413 ± 0.295
	PSNR	31.391 ± 0.252	37.942 ± 0.930	37.447 ± 0.955	37.756 ± 0.994	37.934 ± 0.703
	SSIM	0.6268 ± 0.0060	0.8839 ± 0.0146	0.8816 ± 0.0157	0.8841 ± 0.0152	0.8784 ± 0.0113
	ERGAS	90.14 ± 11.92	50.26 ± 6.80	39.95 ± 4.34	48.15 ± 5.01	51.38 ± 7.55
(c)	RMSE	3.361 ± 0.177	2.879 ± 0.427	2.890 ± 0.477	3.076 ± 0.483	2.335 ± 0.202
	PSNR	39.122 ± 0.995	40.625 ± 1.505	40.724 ± 1.689	39.900 ± 1.587	41.290 ± 0.729
	SSIM	0.9148 ± 0.0114	0.9399 ± 0.0132	0.9364 ± 0.0160	0.9228 ± 0.0178	0.9430 ± 0.0045
	ERGAS	32.76 ± 3.47	27.22 ± 2.47	23.73 ± 3.17	34.59 ± 2.86	32.56 ± 3.76
(d)	RMSE	2.960 ± 0.253	2.436 ± 0.352	2.790 ± 0.460	2.797 ± 0.436	1.995 ± 0.106
	PSNR	39.127 ± 0.681	41.869 ± 1.380	41.025 ± 1.644	40.574 ± 0.534	42.207 ± 0.468
	SSIM	0.9147 ± 0.0055	0.9558 ± 0.0090	0.9408 ± 0.0147	0.9338 ± 0.0149	0.9507 ± 0.0028
	ERGAS	35.79 ± 4.15	25.42 ± 2.14	23.09 ± 2.90	33.56 ± 2.96	36.06 ± 4.93
(e)	RMSE	2.990 ± 0.327	2.688 ± 0.395	2.691 ± 0.441	2.913 ± 0.453	2.148 ± 0.186
	PSNR	39.352 ± 0.902	41.174 ± 1.473	41.313 ± 1.659	40.334 ± 1.561	41.971 ± 0.694
	SSIM	0.9188 ± 0.0093	0.9456 ± 0.0116	0.9438 ± 0.0140	0.9295 ± 0.0161	0.9506 ± 0.0038
	ERGAS	32.68 ± 3.53	26.19 ± 2.29	22.46 ± 2.89	33.74 ± 2.82	30.62 ± 3.68

The best performance results are indicated by boldface numbers.

Fig. 4: Visual results for all methods with blurring scenario (d) applied to the Chikusei dataset. The first and second rows present the results for two different images. The false-color images were generated for clear visualization with the 122nd, 84th, and 57th channels used for red, green, and blue, respectively.

of our method in recovering the latent HSIs with more spectral bands.

E. Convergence Illustration

In many PnP algorithms for inverse imaging problems, the ADMM is widely used as a variable splitting technique. In some works, the convergence of PnP schemes based on some linear denoisers, including nonlocal means (NLM) [51] and Gaussian mixture model (GMM) [52], has been proven theoretically. It is difficult if not impossible to prove the convergence of our method as the B3DDN denoiser involves amounts of nonlinear operators. In practice, however, as illustrated in the following, we observed that the proposed deconvolution framework shows good convergence behavior.

Fig. 5 shows the mean RMSE curves of our algorithm obtained for the CAVE dataset in the case of scenarios (a)–(c). It can be observed that the algorithm, even with its nonlinear B3DDN denoiser, exhibits a stable and robust convergence behavior independently of the blurring kernel and noise level. Moreover, a low mean RMSE value was reached after few iterations, which indicates that early stopping can be considered to limit computation time.
Fig. 5. RMSE convergence mean curves (blue) of our method with the CA VE dataset and blurring scenarios (a)–(c). Red lines represent the iteration number given by the proposed stopping criterion.

Fig. 6. Estimated penalty parameters ρ_k as a function of iteration index k, for different images of the CA VE dataset and blurring scenarios (a)–(c). Lines with different colors refer to different test images.

F. Behavior With Respect to PnP Internal Parameter Estimation

Deep priors that capture both the spatial context and spectral correlations of the latent clean HSIs mainly contribute to the effectiveness of our method. However, the internal parameter setting procedure and the stopping criterion also play a crucial role in achieving satisfactory performance by yielding a good balance with the contribution of deep priors. In contrast, observe that the automatic setting of the regularization parameters is not implemented by the other competing methods during the test.

Fig. 6 shows how the penalty parameter varies along with the iterations, for different images of the CAVE dataset, and for scenarios (a)–(c). According to the PnP principle, the estimated noise level σ_k is assumed to decrease along with the iterations, as the reconstructed image converges to a desired point. Therefore, the penalty parameter $\rho_k = \lambda / \sigma_k^2$ is expected to increase [24]. As can be seen in Fig. 6, parameter ρ changes coincide with this trend for almost all test images. Fig. 5 shows the number of iterations K for scenarios (a)–(c). It can be observed that our stopping criterion automatically interrupts the PnP algorithm when it has nearly converged, which contributes to save computation time.

G. Performance Evaluation on Real-World Data

To validate the effectiveness of our method in real-world conditions, we collected six unfocused HSIs and the corresponding focused images for different indoor and outdoor scenes. Specifically, as shown in Fig. 7, the HSIs of the indoor scenes were recorded under controlled illuminations, while the outdoor HSIs were captured under normal daylight illumination. To fully capture the complex blurs caused by the imaging system, our dataset was elaborated to address HSI deconvolution problem with respect to defocus effect. In particular, blurred images were obtained by making the camera out of focus, while clear references were also captured by focusing the camera. We captured these images with the GaiaField systems (see details in [53]) of our laboratory at Northwestern Polytechnical University. The GaiaField (Jiangsu Dualix Spectral Image Technology Company Ltd., GaiaField-V10) is a push-broom imaging spectrometer with an HSIA-OL50 lens, covering the visible and near-infrared wavelengths ranging from 373.70 to 1000.90 nm, with a spectral resolution of 4.6 nm (129 channels in total). The spatial resolution of the images is 780×696 pixels.

For all acquired images, we conducted a preprocessing procedure as described in [54]. First, we removed overnoisy and overexposed bands. We got 45 exploitable bands, which were normalized such that the 0.999 intensity quantile corresponded
to the value 1. Then, all HSIs were denoised using the approach described in [55] to enhance images. Blurred images and their clear counterparts are shown in the first and second columns of Fig. 8, respectively. Note that these image pairs are not strictly aligned due to multiple factors affecting the camera mounting. The clear images were used for visual comparisons only. The blurring kernel in each channel was estimated using the method described in [56]. For illustration purpose, Fig. 9 shows the kernels in the 10th, 20th, 30th, and 40th channels of the blurred images fruit and bicycle. For all experiments, we added an i.i.d. Gaussian noise to the blurred images, with a signal-to-noise ratio (SNR) set to 40 dB.

In real-world HSI deconvolution scenarios, no ground truth is available for training the B3DDN. Benefiting from the flexibility of the B3DDN in denoising HSIs of various origins with distinct numbers of spectral bands, in this experiment, we used the network parameters Θ learned with the CAVE dataset (31 spectral bands). Fig. 8 shows the deblurred images obtained with all the competing algorithms, from columns 3 to 7. It can be seen that our method still performed better, or similarly, in recovering details compared to HLP, SSP, WLRTR, and 3DFTV, though all competing methods only achieved limited performance probably due to deviations.

Fig. 8. Blurred images, reference images, and visual results for all methods on the real-world dataset. The false-color images were generated for clear visualization with the 38th, 24th, and 10th channels used for red, green, and blue, respectively.

Fig. 9. Estimated blurring kernels in the 10th, 20th, 30th, and 40th channels of the blurred images fruit (first row) and bicycle (second row) of the real-world dataset.
in estimating kernels. This demonstrates the applicability of our method in real-world scenarios, as well as the necessity of further investigating blind HSI deconvolution algorithms.

Finally, we conducted the experiment for evaluating the running time using the blurred image fruit from our real-world dataset. All the baselines were implemented using MATLAB, while our method was carried out using Python. We conducted all the experiments on a server with Intel Xeon Gold 6152 CPU, 512-GB random access memory, and NVIDIA Tesla P40 GPU. Time consuming of all the compared methods is shown in Table IV. It can be observed that our method achieves most competitive deconvolution results with relatively less computation time.

V. CONCLUSION

In this article, we presented a tuning-free HSI deconvolution method based on the PnP framework. Instead of using hand-crafted priors, we designed a blind B3DDN denoiser based on deep learning to learn the spectral–spatial information of HSIs from data and plugged it into an ADMM optimizer. The internal parameters were automatically estimated by a measure of 3-D residual whiteness and learned by the B3DDN during iterations. Experimental results demonstrated that the proposed method can not only effectively handle various simulated blurring settings but can also be applied to real-world scenarios. In the future, we will address blind HSI deconvolution and computational cost reduction to further enhance the applicability of our method in real-world scenarios.

REFERENCES

[1] X. Wang, J. Chen, C. Richard, and D. Brie, “Learning spectral-spatial prior via 3DDCN for hyperspectral image deconvolution,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), May 2020, pp. 2403–2407.

[2] J. M. Bioucas-Dias, A. Plaza, G. Camps-Valls, P. Scheunders, N. M. Nasrabadi, and J. Chanussot, “Hyperspectral remote sensing data analysis and future challenges,” IEEE Geosci. Remote Sens. Mag., vol. 1, no. 2, pp. 6–36, Jun. 2013.

[3] L. Yan, M. Zhao, X. Wang, Y. Zhang, and J. Chen, “Object detection in hyperspectral images,” IEEE Signal Process. Lett., vol. 28, pp. 508–512, 2021.

[4] S. Bongard, F. Soulez, É. Thiébaut, and É. Pecontal, “3D deconvolution of hyper-spectral astronomical data,” Monthly Notices Roy. Astronomical Soc., vol. 418, no. 1, pp. 258–270, Nov. 2011.

[5] P. Sarder and A. Nehorai, “Deconvolution methods for 3-D fluorescence microscopy images,” IEEE Signal Process. Mag., vol. 23, no. 3, pp. 32–45, May 2006.

[6] N. P. Galatsanos and R. T. Chin, “Digital restoration of multichannel images,” IEEE Trans. Acoust., Speech Signal Process., vol. 37, no. 3, pp. 415–421, Mar. 1989.

[7] B. Hunt and O. Kubler, “Karhunen–Loève multispectral image restoration—Part I: Theory,” IEEE Trans. Acoust., Speech, Signal Process., vol. ASSP-32, no. 3, pp. 592–600, Jun. 1984.

[8] A. M. Tekalp and G. Pavlović, “Multichannel image modeling and Kalman filtering for multispectral image restoration,” Signal Process., vol. 19, no. 3, pp. 221–232, Mar. 1990.

[9] N. P. Galatsanos, A. K. Kataggelos, R. T. Chin, and A. D. Hillery, “Least squares restoration of multichannel images,” IEEE Trans. Signal Process., vol. 39, no. 10, pp. 2222–2236, Oct. 1991.

[10] J.-M. Gaucel, M. Guillaume, and É. Pecontal, “Adaptive-3D-wiener for hyperspectral image restoration: Influence on detection strategy,” in Proc. EUSIPCO, 2006, pp. 1–5.

[11] E. Thiébaut, “Introduction to image reconstruction and inverse problems,” in Optics in Astrophysics. Dordrecht, The Netherlands: Springer, 2005, pp. 1–26.

[12] R. N. Neelamani, H. Choi, and R. Baraniuk, “ForWaRD: Fourier-wavelet regularized deconvolution for ill-conditioned systems,” IEEE Trans. Signal Process., vol. 52, no. 2, pp. 418–433, Feb. 2004.

[13] Y. Song, E.-H. Djeroune, J. Chen, C. Richard, and D. Brie, “Online deconvolution for industrial hyperspectral imaging systems,” SIAM J. Imag. Sci., vol. 12, no. 1, pp. 54–86, Jan. 2019.

[14] S. Henrot, C. Soussen, and D. Brie, “Fast positive deconvolution of hyperspectral images,” IEEE Trans. Image Process., vol. 22, no. 2, pp. 828–833, Feb. 2013.

[15] Y. Chang, L. Yan, Y. Zhao, H. Fang, Z. Zhang, and S. Zhong, “Weighted low-rank tensor recovery for hyperspectral image restoration,” IEEE Trans. Cybern., vol. 50, no. 11, pp. 4558–4572, Nov. 2020.

[16] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122, Nov. 2011.

[17] D. Geman and C. Yang, “Nonlinear image recovery with half-quadratic regularization,” IEEE Trans. Signal Process., vol. 4, no. 7, pp. 952–946, Jul. 1995.

[18] J. Chen, M. Zhao, X. Wang, C. Richard, and S. Rahardja, “Integration of physics-based and data-driven models for hyperspectral image unmixing: A summary of current methods,” IEEE Signal Process. Mag., vol. 40, no. 2, pp. 61–74, Mar. 2023.

[19] K. Wei, A. Aviles-Rivero, J. Liang, Y. Fu, C.-B. Schönlieb, and H. Huang, “Tuning-free plug-and-play proximal algorithm for inverse imaging problems,” in Proc. Int. Conf. Mach. Learn. (ICML), 2020, pp. 10158–10169.

[20] S. V. Venkatakrishnan, C. A. Bouman, and B. Wohlberg, “Plug-and-play priors for model based reconstruction,” in Proc. IEEE Global Conf. Signal Inf. Process., Dec. 2013, pp. 945–948.

[21] A. Brifman, Y. Romano, and M. Elad, “Turning a denoiser into a super-resolver using plug and play priors,” in Proc. IEEE Int. Conf. Image Process. (ICIP), Sep. 2016, pp. 1404–1408.

[22] K. Zhang, W. Zuo, S. Gu, and L. Zhang, “Learning deep CNN denoiser prior for image restoration,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 3929–3938.

[23] M. Chen, Y. Chang, S. Cao, and L. Yan, “Learning blind denoising network for noisy image deblurring,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), May 2020, pp. 2533–2537.

[24] K. Zhang, Y. Li, W. Zuo, L. Zhang, L. Van Gool, and R. Timofte, “Plug-and-play image restoration with deep denoiser prior,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 10, pp. 6360–6376, Oct. 2022.

[25] X. Wang, M. Zhao, and J. Chen, “Hyperspectral unmixing via plug-and-play priors,” in Proc. IEEE Int. Conf. Image Process. (ICIP), Oct. 2020, pp. 1063–1067.

[26] M. Zhao, X. Wang, J. Chen, and W. Chen, “A plug-and-play priors framework for hyperspectral unmixing,” IEEE Trans. Geosci. Remote Sens., vol. 60, 2022, Art. no. 5501213.

[27] A. M. Thompson, J. C. Brown, J. W. Kay, and D. M. Titterington, “A study of methods of choosing the smoothing parameter in image restoration by regularization,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 13, no. 4, pp. 326–339, Apr. 1991.

[28] P. C. Hansen, “Analysis of discrete ill-posed problems by means of the L-curve,” SIAM Rev., vol. 34, no. 4, pp. 561–580, Dec. 1992.

[29] C. R. Vogel, “Non-convergence of the l-curve regularization parameter selection method,” Inverse Probl., vol. 12, no. 4, p. 535, 1996.

[30] G. H. Golub, M. Heath, and G. Wahba, “Generalized cross-validation as a method for choosing a good ridge parameter,” Technometrics, vol. 21, no. 2, pp. 215–223, May 1979.

[31] S. J. Reeves, “Optimal space-varying regularization in iterative image restoration,” IEEE Trans. Image Process., vol. 3, no. 3, pp. 319–324, May 1994.
[32] C. M. Stein, “Estimation of the mean of a multivariate normal distribution,” Ann. Statist., vol. 9, no. 6, pp. 1135–1151, Nov. 1981.
[33] D. Van De Ville and M. Kocher, “Nonlocal means with dimensionality reduction and SURE-based parameter selection,” IEEE Trans. Image Process., vol. 20, no. 9, pp. 2683–2690, Sep. 2011.
[34] Y. Song, D. Brie, E. H. Djeumoue, and S. Henrot, “Regularization parameter estimation for non-negative hyperspectral image deconvolution,” IEEE Trans. Image Process., vol. 25, no. 11, pp. 5316–5330, Nov. 2016.
[35] X. Wang, J. Chen, Q. Wei, and C. Richard, “Hyperspectral image super-resolution via deep prior regularization with parameter estimation,” IEEE Trans. Circuits Syst. Video Technol., vol. 32, no. 4, pp. 1708–1723, Apr. 2022.
[36] M. C. Almeida and M. A. T. Figueiredo, “Parameter estimation for blind and non-blind deblurring using residual whiteness measures,” IEEE Trans. Image Process., vol. 22, no. 7, pp. 2751–2763, Jul. 2013.
[37] A. Lanza, M. Pragliola, and F. Sgallari, “Residual whiteness principle for parameter-free image restoration,” Electron. Trans. Numer. Anal., vol. 53, pp. 329–352, Jan. 2020.
[38] A. Lanza, S. Morigli, F. Sciachitano, and F. Sgallari, “Whiteness constraints in a unified variational framework for image restoration,” J. Math. Imag. Vis., vol. 60, no. 9, pp. 1503–1526, Nov. 2018.
[39] W. Liu and J. Lee, “A 3-D atrous convolution neural network for hyperspectral image denoising,” IEEE Trans. Geosci. Remote Sens., vol. 57, no. 8, pp. 5701–5712, Aug. 2019.
[40] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a Gaussian Denoiser: Residual learning of deep CNN for image denoising,” IEEE Trans. Image Process., vol. 26, no. 7, pp. 3142–3155, Jul. 2017.
[41] H. Zhao, O. Gallo, I. Frosio, and J. Kautz, “Loss functions for image restoration with neural networks,” IEEE Trans. Comput. Imag., vol. 3, no. 1, pp. 47–57, Mar. 2017.
[42] F. Yasuma, T. Mitsunaga, D. Iso, and S. K. Nayar, “Generalized assisted pixel camera: Postcapture control of resolution, dynamic range, and spectrum,” IEEE Trans. Image Process., vol. 19, no. 9, pp. 2241–2253, Sep. 2010.
[43] N. Yokoya and A. Iwasaki, “Airborne hyperspectral data over Chikusei,” Space Appl. Lab., Univ. Tokyo, Tokyo, Japan, Tech. Rep. SAL-2016-05-07, May 2016.
[44] A. Levin, Y. Weiss, F. Durand, and W. T. Freeman, “Understanding and evaluating blind deconvolution algorithms,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2009, pp. 1964–1971.
[45] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” 2014, arXiv:1412.6980.
[46] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Dec. 2015, pp. 1026–1034.
[47] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: From error visibility to structural similarity,” IEEE Trans. Image Process., vol. 13, no. 4, pp. 600–612, Apr. 2004.
[48] J. M. Teodoro, J. M. Bioucas-Dias, and M. A. T. Figueiredo, “Scene-adapted plug-and-play algorithm with convergence guarantees,” in Proc. IEEE 27th Int. Workshop Mach. Learn. Signal Process. (MLSP), Sep. 2017, pp. 1–6.
[49] M. Zhao, J. Chen, and Z. He, “A laboratory-created dataset with ground truth for hyperspectral unmixing evaluation,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 12, no. 7, pp. 2170–2183, Jul. 2019.
[50] S. Reehari et al., “Plug-and-play priors for bright field electron tomography and sparse interpolation,” IEEE Trans. Trans. Comput. Imag., vol. 2, no. 4, pp. 408–423, Dec. 2016.
[51] A. M. Teodoro, J. M. Bioucas-Dias, and M. A. T. Figueiredo, “Scene-adapted plug-and-play algorithm with convergence guarantees,” in Proc. IEEE 27th Int. Workshop Mach. Learn. Signal Process. (MLSP), Sep. 2017, pp. 1–6.
[52] M. Zhao, J. Chen, and Z. He, “A laboratory-created dataset with ground truth for hyperspectral unmixing evaluation,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 12, no. 7, pp. 2170–2183, Jul. 2019.
[53] M. S. Almeida and L. B. Almeida, and J. Chanussot, “A convex formulation for hyperspectral image superresolution via subspace-based regularization,” IEEE Trans. Geosci. Remote Sens., vol. 53, no. 6, pp. 3373–3388, Jun. 2014.
[54] R. E. Roger and J. F. Arnold, “Reliably estimating the noise in AVIRIS hyperspectral images,” Int. J. Remote Sens., vol. 17, no. 10, pp. 1951–1962, Apr. 1996.
[55] D. Krishnan, T. Tay, and R. Fergus, “Blind deconvolution using a normalized sparsity measure,” in Proc. CVPR, Jun. 2011, pp. 233–240.

Xinheng Wang (Graduate Student Member, IEEE) received the B.S. degree in electronic and information engineering and the M.S. degree in signal and information processing from Northwestern Polytechnical University, Xi’an, China, in 2018 and 2021, respectively. He is currently pursuing the Ph.D. degree with the Université Côte d’Azur, Nice, France.

His research interests include signal and image processing, machine learning, and change point detection.

Mr. Wang was a co-recipient of the Champion of Grand Challenges on NIR Image Colorization of IEEE International Conference on Visual Communications and Image Processing (VCIP) 2020.

Jie Chen (Senior Member, IEEE) received the B.S. degree from Xi’an Jiaotong University, Xi’an, China, in 2006, the Dipl.Ing. degree in information and telecommunication engineering from the University of Technology of Troyes (UTT), Troyes, France, in 2009, the M.S. degree in information and telecommunication engineering from Xi’an Jiaotong University in 2009, and the Ph.D. degree in systems optimization and security from UTT in 2013.

From 2013 to 2014, he was with the Lagrange Laboratory, University of Nice Sophia Antipolis, Nice, France. From 2014 to 2015, he was with the Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA. He is currently a Professor with Northwestern Polytechnical University, Xi’an.

His research interests include adaptive signal processing, distributed optimization, hyperspectral image analysis, and acoustic signal processing.

Dr. Chen was the Technical Co-Chair of International Workshop on Acoustic Signal Enhancement (IWAENC) 2016 and IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC) 2021 and 2022 held in Xi’an. He served as a Distinguished Lecturer for the Asia–Pacific Signal and Information Processing Association from 2018 to 2019, the Co-Chair for the IEEE Signal Processing Society Summer School in 2019, in Xi’an, and the General Co-Chair for IEEE International Workshop on Machine Learning for Signal Processing (MLSP) 2022.

Cédric Richard (Senior Member, IEEE) received the Dipl.Ing. and M.S. degrees from the Compiègne University of Technology, Compiègne, France, in 1994, and the Ph.D. degree from the Compiègne University of Technology in 1998, all in electrical and computer engineering.

He is currently a Full Professor with the Université Côte d’Azur, Nice, France. He is also the Head of the Chair on AI for Smart and Secure Territories, 3IA Côte d’Azur Interdisciplinary Institute for Artificial Intelligence. He is the author of more than 350 journal articles and conference papers. His research interests include statistical signal processing and machine learning.

Dr. Richard is the Director of the French federative CNRS research association ISIS (information, signal, image, and vision). From 2010 to 2015, he was distinguished as a Junior Member of the Institut Universitaire de France. He has served as the Senior Area Chair for the IEEE Signal Processing Letters since 2020 and an Associate Editor for the IEEE OPEN JOURNAL OF SIGNAL PROCESSING since 2019. From 2015 to 2018, he was also the Senior Area Chair of the IEEE TRANSACTIONS ON SIGNAL PROCESSING and an Associate Editor of the IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS. He is the Chair of the IEEE Signal Processing Theory and Methods Technical Committee. From 2019 to 2020, he served as the Director-at-Large of Region 8 (Europe, Middle East, and Africa) of the IEEE Signal Processing Society (IEEE SPs) and a member of the Board of Governors of the IEEE SPs. He was an Associate Editor of the IEEE TRANSACTIONS ON SIGNAL PROCESSING from 2006 to 2010.