Quantum Statistics: Is there an effective fermion repulsion or boson attraction?

W. J. Mullin and G. Blaylock

Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003

Abstract

Physicists often claim that there is an effective repulsion between fermions, implied by the Pauli principle, and a corresponding effective attraction between bosons. We examine the origins of such exchange force ideas, the validity for them, and the areas where they are highly misleading. We propose that future explanations of quantum statistics should avoid the idea of a effective force completely and replace it with more appropriate physical insights, some of which are suggested here.
I. INTRODUCTION

The Pauli principle states that no two fermions can have the same quantum numbers. The origin of this law is the required antisymmetry of the multi-fermion wavefunction. Most physicists have heard or read a shorthand way of expressing the Pauli principle, which says something analogous to fermions being “antisocial” and bosons “gregarious.” Quite often this intuitive approach involves the statement that there is an effective repulsion between two fermions, sometimes called an “exchange force,” that keeps them spatially separated. We inquire into the validity of this heuristic point of view and find that the suggestion of an effective repulsion between fermions or an attraction between bosons is actually quite a dangerous concept, especially for beginning students, since it often leads to an inaccurate physical interpretation and sometimes to incorrect results. We argue that the effective interaction interpretation of the Pauli principle (or Bose principle) should almost always be replaced by some alternate physical interpretation that better reveals the true physics.

Physics comes in two parts: the precise mathematical formulation of the laws, and the conceptual interpretation of the mathematics. David Layzer says, “There is a peculiar synergy between mathematics and ordinary language. . . . The two modes of discourse [words and symbols] stimulate and reinforce one another. Without adequate verbal support, the formulas and diagrams tend to lose their meaning; without formulas and diagrams, the words and phrases refuse to take on new meanings.” Interpreting the meaning of wavefunction symmetry or antisymmetry in a simple pedagogical representation is thus vitally important. However, if those words actually convey the wrong meaning of the mathematics, they must be replaced by more accurate words. We feel this is the situation with the heuristic “effective repulsion” for fermions or “effective attraction” for bosons, or “exchange force” generally.

One can demonstrate there is no real force due to Fermi/Bose symmetries by examining a time-dependent wave packet for two noninteracting spinless fermions. Consider the antisymmetric wave function for one-dimensional Gaussian wave packets, each satisfying the Schrödinger equation, and moving towards each other:

\[
\psi(x_1, x_2, t) = C \left\{ f(x_1, x_2) \exp \left[-\alpha (x_1 - vt + a)^2 - \beta (x_2 + vt - a)^2 \right]
- f(x_2, x_1) \exp \left[-\alpha (x_2 - vt + a)^2 - \beta (x_1 + vt - a)^2 \right] \right\}, \tag{1}
\]

where \(x_1\) and \(x_2\) are the particle coordinates, \(f(x_1, x_2) = \exp [imv(x_1 - x_2)/\hbar]\), \(C\) is a time-
dependent factor, and the packet width parameters α and β are unequal. In reality, each single-particle packet will spread with time, but we assume that the spreading is negligible over the short time that we consider the system. At $t = 0$ the α-packet is peaked at $-a$ and moving to the right with velocity v, while the β-packet is peaked at $+a$ and traveling to the left with the same velocity. Of course we cannot identify which particle is in which packet since they are indistinguishable, and each has a probability of being in each packet. At $t = 0$ the packets are assumed well separated with little overlap.

At $t = a/v$, the wave function becomes

$$\psi(x_1, x_2, t) = C \left\{ f(x_1, x_2) \exp \left[-\alpha(x_1)^2 - \beta(x_2)^2 \right] - f(x_2, x_1) \exp \left[-\alpha(x_2)^2 - \beta(x_1)^2 \right] \right\},$$

and the direct and exchange parts have maximal overlap. The wave function clearly vanishes at $x_1 = x_2$ (as it does at all times). At the time $t = 2a/v$, the packets have passed through one another and overlap very little again:

$$\psi(x_1, x_2, t) = C \left\{ f(x_1, x_2) \exp \left[-\alpha(x_1 - a)^2 - \beta(x_2 + a)^2 \right] - f(x_2, x_1) \exp \left[-\alpha(x_2 - a)^2 - \beta(x_1 + a)^2 \right] \right\}.$$

Now the α-packet is peaked at $+a$, but still moving to the right and the β-packet is peaked at $-a$ and still moving to the left. The packets have moved through one another unimpeded since, after all, they represent free-particle wave functions. Describing this process in terms of effective forces would imply the presence of scattering and accelerations, which do not occur here, and would be highly misleading.

Nonetheless, the concept of effective fermion repulsion is evident in many texts, particularly in discussions of the behavior of an ideal fermion gas — a case we explore further in section II. A common usage of the repulsion idea is in the interpretation of the second virial coefficient of an ideal gas. The first correction to classical ideal gas pressure due just to statistics is positive for spinless fermions and negative for spinless bosons. Here (similar to most other texts that treat the subject, including one authored by one of us) says, “The quantum correction that is introduced by statistics appears as an attractive potential for BE [Bose-Einstein] statistics and as a repulsive potential for FD [Fermi-Dirac] statistics.” Patria’s book carries the idea further, developing an actual mathematical formula for the effective interaction between fermions or between bosons! He says, “In the Bose case, the potential is throughout attractive, thus giving rise to a ‘statistical attraction’ among bosons;
in the Fermi case, it is throughout repulsive, giving a ‘statistical repulsion’ among fermions.’’ This interaction formula first appeared in 1932 in an article by Unlenbeck and Gropper, who may well be the originators of the whole statistical interaction picture. We discuss this formula in more detail in the next section.

Wannier is a bit stronger in his assessment of the quantum thermal distribution function for fermions: “The particles exert a very strong influence on each other because a particle occupying a state excludes the others from it. This is equivalent to a strong repulsive force comparable to the strongest forces occurring in the problem.”

The modern physics book of Leighton omits the word “effective” in discussing the so-called fermion interaction: “As compared with the behavior of hypothetical but distinguishable particles, Bose particles exhibit an additional attraction for one another and tend to be found near one another in space; Fermi particles, on the contrary, repel one another and tend not to be found near one another in space.” The classic kinetic-theory handbook by Herschfelder et al. may set the record by using the terms “apparent repulsion” (and “apparent attraction”) four times.

Griffiths does an interesting calculation of the average distance between two particles at positions x_1 and x_2 when one is in state ψ_a and the other in ψ_b, the two functions being orthogonal and normalized. For distinguishable particles with wave function $\psi_a(x_1)\psi_b(x_2)$, the mean-square separation is

$$\langle (x_1 - x_2)^2 \rangle_d = \langle x^2 \rangle_a + \langle x^2 \rangle_b - 2\langle x \rangle_a \langle x \rangle_b,$$

where $\langle x^2 \rangle_i = \int dx x |\psi_i(x)|^2$. For spinless fermions the wave function must be antisymmetrized, and for bosons symmetrized, giving

$$\Psi = \frac{1}{\sqrt{2}} [\psi_a(x_1)\psi_b(x_2) \pm \psi_a(x_2)\psi_b(x_1)],$$

where the upper sign is for bosons and the lower for fermions. From this form it is easy to compute the corresponding mean-square separation as

$$\langle (x_1 - x_2)^2 \rangle_\pm = \langle (x_1 - x_2)^2 \rangle_d \mp 2\langle x \rangle_{ab},$$

where $\langle x \rangle_{ab} = \int dx x \psi_a^*(x)\psi_b(x)$. Thus he finds that bosons tend to be closer together and fermions farther apart when compared to distinguishable particles. Griffiths comments, “The system behaves as though there were a ‘force of attraction’ between identical bosons,
pulling them closer together, and a ‘force of repulsion’ between identical fermions, pushing them apart. We call it an exchange force, although it’s not really a force at all—no physical agency is pushing on the particles; rather it is a purely a geometrical consequence of the symmetrization requirement.” This wording shows more care than the works cited above and is thus less likely to be misinterpreted. However, the term “force” has explicit meaning for physicists. It implies a push or pull, along with its associated acceleration, deflection, scattering, etc. Are these elements properly associated with the exchange force? If not, then the term should be replaced with something carrying more accurate connotations.

Our intention is not to be critical of authors for using the words “repulsion” and “attraction” in describing the statistical effects of wavefunction antisymmetry or symmetry. This concept has been with physics since the early days of quantum mechanics. Nevertheless, it is important to examine the usefulness of this heuristic interpretation of the mathematics. As Layzer has pointed out, no such interpretation can carry the whole weight of the rigorous mathematical formulation; however, if a heuristic interpretation brings along the baggage of subsequent misconceptions, then physicists must be more circumspect in its use.

For example, consider the following case where there is a complete breakdown of the concept. Suppose two spinless fermions or bosons have a completely repulsive interparticle potential and impinge on one another at energies low enough that there is only s-wave scattering. As we show in Sec. III if the scattering amplitude for distinguishable particles is f, then the scattering amplitude for fermions vanishes identically, whereas for that for bosons is $2f$. In this case statistical symmetry has diminished the interaction for fermions—not made it more repulsive—and it has enhanced the interaction for bosons—not made it less repulsive.

Wherever the idea of an effective force breaks down (as it does in our wave-packet description and in the s-wave scattering example), we need to replace this interpretation with other heuristic interpretations that better represent the physics. This is our aim in each of the examples we analyze below.

In Sec. II we examine more closely the physics that gives rise to the idea of an effective statistical interaction between quantum particles and will derive the Uhlenbeck-Gropper formula for the interaction. Section III will take the opposite point of view, and find cases where the idea is highly misleading and indeed where the effect is actually opposite the usual implication. Sec. IV summarizes our conclusions.
II. EXAMPLES OF THE STATISTICAL INTERACTION

There are several places where the idea of a statistical interaction arises somewhat naturally, and might seem to imply an effective force. The virial correction to the pressure of an ideal gas is most likely the origin of this idea of effective interaction. The physics of white dwarf stars is another classic example of “Fermi repulsion.” The diatomic hydrogen atom is bound in the electron singlet state, while the triplet is unbound, which is often used as an example of the effective repulsion between like-spin electrons due to the Paul principle. When two rare gas atoms approach one another there is a hard-core exponential repulsion between the atoms, which is often explained by the electron statistical repulsion. On the other hand when trapped bosons condense, they collapse to a smaller region in the center of the trap; which gives the impression of an effective boson statistical attraction. In each of these cases we will show that relying on the intuitive idea of Pauli repulsion or Bose attraction may actually hinder understanding of the basic phenomena. Alternative explanations are provided.

Virial expansion. A real gas has an equation of state that differs from that of an ideal classical gas. For high temperature T and low density n of the gas, the pressure P can be written

$$P = nk_B T (1 + nB(T)),$$ \hspace{1cm} (7)

where k_B is the Boltzmann constant and B is known as the second virial coefficient. This equation gives the lowest terms of the so-called virial expansion, a series in powers of $n\lambda^3$, where λ is the thermal wavelength, given by $\lambda = \sqrt{\hbar^2/(2\pi mk_B T)}$ for particles of mass m.

For ideal spinless fermions and bosons, standard calculations\(^4,10\) give the effect of Fermi or Bose symmetry:

$$B(T) = -\eta \frac{\lambda^3}{25/2},$$ \hspace{1cm} (8)

where $\eta = \pm 1$, with the plus sign for bosons and the minus for fermions. Thus fermions exert a larger pressure, and bosons a smaller pressure, on the walls than a classical gas at the same temperature.

Compare this result with that for a classical interacting gas, where the second virial coefficient is given by\(^\text{48}\)

$$B(T) = \frac{1}{2} \int dr \left(1 - e^{-\beta U(r)}\right),$$ \hspace{1cm} (9)
where $U(r)$ is the real interatomic potential at separation r and $\beta = 1/k_B T$. It is evident from Eq. (9) that a completely repulsive potential leads to a positive $B(T)$ and a positive contribution to the pressure, while an attractive one results in a negative contribution.

A connection to the Fermi or Bose ideal gas is made by considering the pair density matrix given by

$$G(1,2) = V^2 \frac{\langle r_1 r_2 | e^{-\beta H_{12}} | r_1 r_2 \rangle}{\text{Tr}(e^{-\beta H_{12}})} = \lambda^3 \sum_{\mathbf{p}_1 \mathbf{p}_2} \psi_{\mathbf{p}_1}(\mathbf{r}_1) \psi_{\mathbf{p}_2}(\mathbf{r}_2) e^{-\beta(\epsilon_{\mathbf{p}_1} + \epsilon_{\mathbf{p}_2})} (1 + \eta P_{12}) \psi^*_{\mathbf{p}_1}(\mathbf{r}_1) \psi^*_{\mathbf{p}_2}(\mathbf{r}_2),$$

(10)

where $\psi_{\mathbf{p}_i}(\mathbf{r}_i)$ is a plane-wave momentum state for particle i and P_{12} is the permutation operator interchanging \mathbf{r}_1 and \mathbf{r}_2. The single-particle energy is $\epsilon_{\mathbf{p}} = p^2/2m$. Changing the momentum sums to integrals and carrying out the calculations leads us to the following result depending on relative position r_{12} only:

$$G(r_{12}) = \left(1 + \eta e^{-2\pi r_{12}^2/\lambda^2}\right).$$

(11)

The purely classical ideal gas result would correspond to $\eta = 0$ with no correlation between particles. Fermions, on the other hand, have G small within a thermal wavelength, an example of the spatial consequences of the Pauli principle. Bosons have G larger than the classical value. This result is consistent with the Griffiths’ calculation of $\langle(x_1 - x_2)^2\rangle$ cited in Sec. I.

Spatial correlations in a classical gas are described by the two-particle distribution function given by $G_{cl}(1,2) = e^{-\beta U(r)}$. Thus, as in Ref. 6 and repeated in Ref. 4, we identify by analogy an effective statistical potential as

$$U_{\text{eff}}(r) = -k_B T \ln \left(1 + \eta e^{-2\pi r_{12}^2/\lambda^2}\right).$$

(12)

This quantity is plotted in Fig. 1. It is purely repulsive for fermions and attractive for bosons. If we put this back into the classical expression for the second virial coefficient, we get precisely the result quoted in Eq. (8). A repulsive potential excludes atoms from approaching too closely and raises the pressure; fermions also have an “excluded volume” of λ^3 and an increase in pressure. This comparison seems to be the major impetus behind the concept of “effective force” as applied to Fermi statistics. Is the physics similar enough for the analogy to be useful? Our opinion is that it is not very helpful, as we argue below.

In a classical gas the rms average momentum remains $\sqrt{p^2} = \sqrt{3mk_B T}$ even when there are interactions. Pressure is force per unit area and the force comes from the impulse of an
atom striking the wall. The average force that a single particle exerts on the wall is, by the
impulse-momentum theorem, \(F = \Delta p / \Delta t \) where \(\Delta p \) is twice the average momentum and
\(\Delta t \) is the average time over which the force is exerted, which here is not the time of contact,
but rather the time for an atom to cross the width \(L \) of the container, that is, \(\Delta t = mL/\overline{p} \).
When one makes the volume of an ideal classical gas smaller (at constant \(T \)) \(\overline{p} \) is unchanged,
but the transit time \(\Delta t \) is diminished causing the pressure to increase. Analogously, when
a classical gas has repulsive interactions “turned on” with no change in the temperature or
\(\overline{p} \), the pressure rises because of a decreased average transit time: some molecules bounce off
others back to the wall they just left. But this is not what happens in the fermion case.
The idea that the correlation hole in the two-body density Eq. (11) gives rise to “bounces”
or deflections of fermions from one another is a misconception that arises from the idea of
a Pauli repulsion. When one compares Fermi gas dynamics to that of classical statistics,
what is altered is not the effective \(L \) in the transit time, but rather the \(\overline{p} \) in both \(\Delta p \) and in
\(\Delta t \). For a given value of \(T \), the momentum distribution in an ideal Bose or Fermi gas differs
from that in an ideal classical gas. The exact quantum second virial coefficient is given by\(^{11}\)
\[
B(T) = \frac{1}{2V} \int \! d\mathbf{r}_1 d\mathbf{r}_2 \left[1 - G(1, 2) \right].
\] (13)
This result explains why the substitution of \(U_{\text{eff}} \) into the classical equation gives the exact
answer. Nevertheless, it is not the spatial dependence of \(G \) that gives us physical insight;
it is the momentum dependence: Carry out the position integration indicated in Eq. (13)
with \(G \) as given by Eq. (10). The result is
\[
\frac{1}{2V} \int \! d\mathbf{r}_1 d\mathbf{r}_2 G(1, 2) = \frac{\lambda^6}{V} \left\{ \frac{1}{2} \sum_{\mathbf{p}_1 \mathbf{p}_2} e^{-\beta(\epsilon_{\mathbf{p}_1} + \epsilon_{\mathbf{p}_2})} + \eta \sum_{\mathbf{p}} e^{-2\beta \epsilon_{\mathbf{p}}} \right\}.
\] (14)
The quantity inside the curly brackets is the partition function for two quantum particles.
The first term of this is just the classical partition function and its contribution is already
accounted for in the classical ideal gas pressure; it cancels out in Eq. (13). The second
term corrects the wrong classical momentum distribution represented by the first term. The
classical term includes double-occupation states; for fermions the second term cancels these
out. For bosons, the classical counting undercounts these double-occupation terms and the
second term corrects that fault as well. Writing the second virial coefficient in momentum
space clarifies how the change in momentum distribution affects the pressure. For bosons,
there is a lowering of the average momentum so the force on the wall is lessened. For
fermions, the momentum is raised increasing the pressure. The idea of an effective repulsion between fermions just ignores the real physics and gives a very poor analogy with classical repulsive gases.

White dwarf stars and related objects. It is the fermion zero-point pressure that prevents the collapse under gravitational forces of the white dwarf star. Kran"n says, “A white dwarf star is prevented from collapse by the Pauli principle, which prevents the electron wave functions from being squeezed too close together... Will the repulsion of the electron wave functions due to the Pauli principle be able to prevent the collapse of any star, no matter how massive?” (This line leads into a discussion of neutron stars.) We feel this qualitative picture of what goes on in a white dwarf star could, as with the second virial coefficient interpretation, be greatly improved by discussion in terms of the momentum-space features of the Pauli principle. Most elementary discussions of white dwarfs incorporate a discussion of “Fermi repulsion” by doing a dimensional analysis that equates the zero-point energy of the ideal Fermi gas to the gravitational self-energy of the star matter. The Fermi temperature is much greater than the physical temperature in the star so that the $T = 0$ fermion gas is used as a model.

An alternate physical description arises from considering the hydrostatic equilibrium conditions of the star. The star is assumed to contain N nuclei (assumed all helium) in radius R. A spherical shell of thickness dr at radius r has an outward force due to a difference between the pressure $P(r)$ on the inner surface and the pressure $P(r + dr) = P + dP$ (with $dP < 0$) on the outer surface, caused by the nonuniform nuclear number density of the star, $n(r)$. This net outward force $4\pi r^2 dP$ is balanced by the gravitational pull toward the center due to the total mass $M(r)$ enclosed by the shell. The mass of the shell itself is $4\pi r^2 n(r) dr m_{\text{He}}$, where m_{He} is the helium mass, so that

$$dP = -\frac{GM(r)n(r) dr m_{\text{He}}}{r^2}. \quad (15)$$

The crucial idea is that P is the pressure of a degenerate electron gas with the electron density maintained by charge neutrality at twice the helium number density $n_e(r) = 2n(r)$. For a non-relativistic model the Pauli pressure at $T = 0$ is given by standard statistical arguments as $P \approx \hbar^2 n_e^{5/3}/m_e$. Chandrasekhar develops a second-order differential equation for $n(r)$ from these steps. We can do a simple dimensional analysis based on Eq. (15).
by replacing dP/dr by $-P/R$, $n(r)$ by N/R^3, $M(r)$ by $M(R) = m_{\text{He}}N$, etc. to arrive at

$$R = \frac{\hbar^2}{Gm_e m_{\text{He}}^2} \frac{1}{N^{1/3}} \approx \frac{1}{M^{1/3}}. \quad (16)$$

This is the usual non-relativistic result, which does not demonstrate the collapse at some large M like the relativistic case, but gives the idea behind the stability of the star.

The gravitational attraction on a mass element is balanced by the difference in Pauli pressure across the mass shell. In order to develop a qualitative argument for the strong density dependence of the Pauli pressure that supports the star against gravitational collapse, we can return to the argument used for the virial coefficient. In a box of sides L, the pressure is force per unit area A, or $P = (N/A)\Delta p/\Delta t$. But the average momentum per particle Δp imparted to the wall for a degenerate Fermi gas is of order p_F, the Fermi momentum. The transit time is $\Delta t \sim Lm_e/p_F$ so that

$$P \approx \frac{N}{AL} \frac{p_F}{m_e} = n_e \frac{p_F^2}{m_e}. \quad (17)$$

The Fermi momentum itself is strongly dependent on the density because of the necessity to fill the single-particle energy levels with two per momentum state. This requirement is $N = (2V/\hbar^3) \int dp \, n_p$ with n_p a step function cutting off at $p = p_F$. This integral gives $p_F = \hbar(3\pi^2 n_e)^{1/3}$. Note that p_F is related to a deBroglie wavelength by

$$p_F = \frac{\hbar}{\lambda} \approx \hbar n_e^{1/3}. \quad (18)$$

Thus the maximum wavelength is approximately the interparticle separation, which one can argue is necessitated by the Pauli principle requiring that the electrons be in single-particle wave packets compact enough that they don’t overlap. This is an argument about quantum-mechanical wave-function correlation rather than an argument based on an effective force. The connection to the Pauli pressure is the high momentum that this correlation induces. We end up with

$$P \approx n_e \frac{p_F^2}{m_e} \approx \frac{\hbar^2}{m_e} n_e^{5/3}. \quad (19)$$

If by “preventing the wave functions from being squeezed too close together” one means that the fermion wave function must have sufficient curvature for nodes to appear whenever any two coordinates are equal, then the idea leads directly to the correct behavior. This extra curvature requires higher Fourier components. The pressure differs from one kind of statistics to another directly because of differing momentum distributions; the Fermi
distribution involves larger average momenta, giving it a Pauli pressure. The idea of “wave function repulsion” as a \textit{correlation} that leads to this momentum distribution might be useful, although the word “repulsion” still carries the connotation of a force, which is less useful.

The physical explanations of neutron stars13 strange quark matter14 the Thomas-Fermi model of the atom15 are all analogous to the white dwarf star in that the Pauli pressure of a Fermi fluid is the basis of resistance to compression.

\textit{The hydrogen molecule and interatomic forces.} The singlet electron state of hydrogen is bound while the triplet state is unbound. Is it a case of the Pauli repulsion giving the spatially antisymmetric state associated with the triplet higher energy? Griffiths9 applying the discussion of exchange forces to this problem, says “The system behaves as though there were a ‘force of attraction’ between identical bosons, pulling them closer together… If electrons were bosons, the symmetrization requirement…would tend to concentrate the electrons toward the middle, between the two protons…, and the resulting accumulation of negative charge would attract the protons inward, accounting for the covalent bond… But wait. We have been ignoring spin….” He then talks of the fact that the entire spin and space wave function must be antisymmetric and gets the proper bonding in the singlet state. He shows that for the spatially antisymmetric triplet state “the concentration of negative charge should actually be shifted to the wings…, tearing the molecule apart.”

While this explanation is very carefully worded and provides a very useful physical picture of the hydrogen bond, a strikingly different picture of covalent bonding and antibonding is given by the work of Herring16 Herring argues that the energy difference between singlet and triplet states (in widely separated atoms at least) is properly interpreted as a splitting between atomic levels due to tunneling. Consider the hypothetical case of two \textit{spinless}, \textit{distinguishable} electrons in a hydrogen molecule. The Hamiltonian has the form

\begin{equation}
H = t_1 + t_2 + V(12) + U(1) + U(2),
\end{equation}

in which \(t_i\) is the kinetic energy operator for particle \(i\), \(V(12)\) represents the particle-particle interaction, and \(U(i)\) is an external double-well potential representing the attraction of the \(i^{th}\) electron to the two nuclei located, say, at \(R_a\) and \(R_b\). The Hamiltonian is symmetric under interchange of the two particles, so the eigenfunctions must be either symmetric or
antisymmetric, even for these distinguishable particles. Let \(\psi_+ \) and \(\psi_- \) represent the lowest symmetric and antisymmetric eigenfunctions, respectively, with corresponding energies \(E_+ \) and \(E_- \).

The combination

\[
\phi_{ab}(1, 2) = \frac{1}{\sqrt{2}} (\psi_+ + \psi_-)
\]

is a function for which particle 1 is localized near site \(R_a \), and particle 2 near site \(R_b \). If \(P_{12} \) is the permutation operator then the function \(P_{12} \phi_{ab}(1, 2) = \phi_{ab}(2, 1) = \phi_{ba}(1, 2) \) is localized around the exchanged sites; that is, particle 1 is localized near site \(R_b \), and particle 2 near site \(R_a \). Herring calls the functions \(\phi_{ab}(1, 2) \) and \(\phi_{ba}(1, 2) \) “home-base functions.” If one sets the initial conditions such that the particles are in \(\phi_{ab}(1, 2) \), then the two particles will tunnel through the double-well barrier between \(\phi_{ab}(1, 2) \) and \(\phi_{ba}(1, 2) \) with frequency \(\omega = (E_+ - E_-)/\hbar \). We can write the energy of these two lowest states for distinguishable particles as

\[
E_\pm = E_0 \pm J,
\]

where \(E_0 = (E_+ + E_-)/2 \) and \(J = (E_+ - E_-)/2 \). A theorem states that the symmetric nodeless state must be the ground state, thereby implying that \(J \) is negative. This energy splitting occurs independent of any spin effects.

If the two particles are spin-1/2 fermions, exactly the same physics holds, except now the symmetric wave function \(\psi_+ \) must be associated with an antisymmetric spin function while \(\psi_- \) must be associated with a symmetric spin function in order to keep the entire wave function overall antisymmetric. The result is that Eq. (22) is replaced by

\[
E_\pm = E_0 \pm J \sigma_1 \cdot \sigma_2,
\]

where \(\sigma_i \) is a Pauli spin matrix. This operator expression acts in spin space to associate the correct spin state (singlet or triplet) with the correct energy. Since the symmetric spatial state is the ground state, as in the distinguishable particle case, the singlet state energy of the electrons is lower than that of the triplet state.

Note that we are not at all criticizing the idea quoted from Ref. 9 that the lowering of the energy in the spin singlet state can be associated with the concentration of the electron cloud in the region between the two nuclei. However, the energy lowering would arise even if the two particles were distinguishable; so it does not actually stem from their fermion
character. Of course, the fact that the corresponding spin state must be singlet is a fermion property. The suggestion that Fermi statistics or Pauli repulsion plays a role in the lowering of the singlet relative to the triplet state of H₂ misses the essential fact that much of the energy difference is due to splitting between tunneling states and that the tunneling ground state must be nodeless and symmetric.

Let’s continue the above discussion, but with the hydrogen nuclei replaced with helium nuclei. We can get an idea of the behaviour of the electronic energy for this pair of helium atoms by using the same symmetric and antisymmetric wave functions. Because of the Pauli principle, the two extra electrons would (in some approximation) be placed in the spatially antisymmetric, antibonding, triplet state, thereby losing the tunneling energy advantage of the symmetric state. This extra energy supplies a physical explanation for the repulsive interatomic interaction when the closed-shell electron clouds start to overlap. Within the Born-Oppenheimer approximation, the electronic energy (plus the internuclear Coulomb repulsion) is used as a potential energy for the atomic nuclei. The short-ranged repulsive part of this interaction potential between two rare-gas atoms is often described by a phenomenological \(1/r^{12}\) or exponential repulsion. Here then is a case of a real repulsion arising; however, it is a repulsion between the nuclei—not the electrons.

While the Pauli principle is certainly vital in understanding molecular forces, the idea of an effective fermion statistical repulsion has never really entered the picture. Indeed, we feel its introduction short-circuits the discussion and could cause one to miss the basic physics.

Bose-Einstein condensation. Condensation of bosons into a harmonic trap might seem the best example of boson effective attraction. The condensate in a trap is a noticeably smaller object than the cloud of non-condensed atoms surrounding it. Of course, the real reason for this is that the ground state in the trap of the interacting bosons has smaller radius than that of the excited states. The particles are correlated to be in the same state; in this case it is a spatially more compact one.

One of the present authors has also used the following argument to explain the fact that the lowest excited mode in a Bose fluid is a phonon rather than a single-particle motion: “Bosons prefer to be in the same state with one another, so that if one atom is pushed on by an external force, all the particles within a deBroglie wavelength \(\lambda\) (which is large at low temperature) want to move in the same way. The collective motion of a sound wave allows
this while the single-particle motions are frozen out by this tendency.” This argument seems based on the idea of a kind of boson effective attraction. A more rigorous argument is given by Feynman. If \(\Phi \) is the ground state of the Bose fluid, then one might suppose that \(e^{ik \cdot r_1} \Phi \) is an excited state involving a single particle with momentum \(k \). However the state has to be symmetric, so this state must be replaced by \(\sum_i e^{ik \cdot r_i} \Phi \), which is precisely the one-phonon state. The particles “preferring to be in the same state” is a verbal expression to represent wave-function symmetry. Superfluids can be described by a “wave function” (order parameter), which depends on a single position variable, has a magnitude and phase, and represents the superfluid distribution. It costs energy to make this function nonuniform, as when a vortex is present. The system “prefers” to have the same phase and amplitude throughout, a property sometimes called “coherence.” Any idea of an effective boson attraction is better replaced by this latter concept.

III. WHERE THE IDEA OF A STATISTICAL INTERACTION FAILS

We have already argued above that the idea of a statistical fermion repulsion or boson attraction has the potential to make one miss the essential physics of the physical effect being explained. Worse however, is the fact that this idea might cause misconceptions and lead to incorrect conclusions. We present here some cases where that might occur.

The other spin state. Most of the textbooks quoted in Sec. I say unequivocally that fermions repel and bosons attract without the qualification of, say, the term “spinless.” These books have ignored, at some pedagogic risk, the effects of spin, which is usually taken into account only later. The effective repulsion or attraction (if there were one) is an effect of the spatial part of the wave function only. If the total spin state is symmetric, the space wave function is antisymmetric for fermions and symmetric for bosons, leading to the effects envisioned in most textbooks. However, when the total spin state is antisymmetric (as for two spin 1/2 particles in a spin singlet, or for two spin 1 particles in the \(S = 1, m_s = 0 \) state) the roles of fermions and bosons are reversed. Two spin 1/2 fermions in the spin singlet state behave like two spinless bosons, and two spin 1 bosons in the \(S = 1, m_s = 0 \) state behave like spinless fermions.

Scattering theory. When two particles scatter elastically via a repulsive force the idea of
an additional effective interaction due to Fermi or Bose symmetry can lead to trouble. In the
center-of-mass frame the two particles approach from opposite directions and scatter into
opposite directions as shown in Fig. 2a. If the particles are distinguishable, the probability
of detecting particle p1 in detector D1 and particle p2 in detector D2 is given by

\[P(\text{p1 in D1}) = |f(\theta)|^2, \]

(24)

where \(f(\theta) \) is the scattering amplitude. Similarly, the probability of detecting particle p2
in detector D1 and particle p1 in D2 (as in Figure 2b) is given by

\[P(\text{p1 in D2}) = |f(\pi - \theta)|^2. \]

(25)

When you don’t care which particle goes to which detector, but just want to measure the
cross section for either particle in a detector, the probability for a particle in detector D1 is

\[P(\text{p1 or in D1}) = |f(\theta)|^2 + |f(\pi - \theta)|^2. \]

(26)

Since the particles are in principle distinguishable there is no interference between ampli-
tudes, even if the detectors themselves do not identify the difference between particles.

Now suppose the two particles are indistinguishable. In this case the two amplitudes
corresponding to Figs. 2a and 2b interfere, and must be combined before squaring. If
the particles are identical fermions, the two-particle wave function is antisymmetric with
respect to particle exchange. Since diagrams 2a and 2b are related by the exchange of the
two particles in the final state, they contribute to the total amplitude with opposite signs.
Thus, the probability to detect a fermion in detector D1 is

\[P_{\text{Fermi}}(\text{p in D1}) = |f(\theta) - f(\pi - \theta)|^2. \]

(27)

This is obviously different from the distinguishable case above. The difference is especially
remarkable at \(\theta = \pi/2 \), where the fermion scattering probability vanishes. Moreover, in the
limit of s-wave scattering, which is a good approximation for some low energy cases, the
scattering is independent of the angle \(\theta \) and the fermion probability for scattering is zero for
all angles. A similar argument holds for bosons, but with the amplitudes adding instead of
subtracting, leading to the scattering probability:

\[P_{\text{Bose}}(\text{p in D1}) = |f(\theta) + f(\pi - \theta)|^2. \]

(28)
In this case, the scattering probability at $\theta = \pi/2$ is twice the value for distinguishable particles. For s-wave scattering P_{Bose} is a factor of two times the distinguishable value at all angles.

The interpretation of these results in the context of an effective fermion repulsion or an effective boson attraction is quite confusing. For scattering at 90 degrees, or for s-wave scattering at all angles, it looks as if the total repulsive force is reduced in the case of fermions (leading to a smaller scattering probability) and enhanced in the case of bosons (leading to a larger scattering probability). This is exactly backwards from the notion that the scattering force should be supplemented by an effective repulsion for fermions and partially canceled by an effective attraction for bosons. It clearly demonstrates why the idea of an effective repulsion or attraction is a dangerous concept.

Focusing on the direct effects of the Bose or Fermi symmetry leads to a more useful conceptual approach to scattering. For two identical particles, the total spin state is symmetric. For fermions having a total spin state that is symmetric (either both spins up or both spins down), the space wave function itself must be antisymmetric as written in Eq. [5]. For this wave function, the amplitude for the two fermions to be in the same place ($r_1 = r_2$) is obviously zero. As noted in Sec. I two identical fermions are on average farther apart than two distinguishable particles would be under the same circumstances. Consequently, the fermions interact less and are less likely to scatter. One can similarly argue that bosons are closer together on average, interact more and are more likely to scatter.

This conclusion is true whether the scattering force is repulsive or attractive, but it depends critically on the spin state of the two particles. For identical particles the spin state is necessarily symmetric, forcing the fermion spatial wave function to be antisymmetric or the boson wave function to be symmetric. However, if the two particles are in an antisymmetric spin state, e.g., two fermions in a spin-zero state, the conditions are reversed.

As a specific example of repulsive scattering, consider the quantum electrodynamic interaction of two electrons (Moller scattering). In QED, there are two lowest-order Feynman diagrams that contribute to the scattering amplitude with opposite signs, corresponding to the direct and exchange diagrams of Figure 2. In the non-relativistic limit, the electron spins do not change as a result of the interaction. (This is due to the fact that the low energy interaction occurs primarily via an electric field.) There is then only one final spin state to consider when doing the calculation. If the initial state has both particles with spin up then
the final state also has both spins up. This case is treated in introductory particle-physics texts and the cross section for scattering is

\[
\frac{d\sigma}{d\theta} \text{(identical spins)} = \frac{m^2 \alpha^2}{32p^4} \left(\frac{1}{\sin^2 \frac{\theta}{2}} - \frac{1}{\cos^2 \frac{\theta}{2}} \right)^2,
\]

(29)

where \(\alpha \) is the fine structure constant and \(p \) is momentum of the electrons in the center-of-mass frame. One notes that the cross section at \(\theta = \pi/2 \) vanishes, as it should.

To explore the case of an antisymmetric spin wave function, one can also calculate the scattering cross section for electrons in a spin-zero state:

\[
\frac{d\sigma}{d\theta} \text{(spin zero)} = \frac{m^2 \alpha^2}{32p^4} \left(\frac{1}{\sin^2 \frac{\theta}{2}} + \frac{1}{\cos^2 \frac{\theta}{2}} \right)^2.
\]

(30)

This differs from the identical spin case in the relative sign of the two terms.

These results should be compared to what the cross section would be if the two electrons were distinguishable. In that case, only the direct diagram of contributes, and the cross section for scattering with both spins up turns out to be the same as the spin-averaged cross section for electron-muon scattering found in many texts, with the muon mass set equal to the electron mass. After symmetrizing around \(\theta = \pi/2 \) to account for detectors that are sensitive to either particle, the cross section can be written as

\[
\frac{d\sigma}{d\theta} \text{(distinguishable electrons)} = \frac{m^2 \alpha^2}{32p^4} \left(\frac{1}{\sin^4 \frac{\theta}{2}} + \frac{1}{\cos^4 \frac{\theta}{2}} \right).
\]

(31)

All three cases are plotted as a function of scattering angle in Fig. 3a. All cross sections are symmetric around \(\pi/2 \), so only the range 0 to \(\pi/2 \) is plotted. As expected, the symmetric spin case gives the smallest scattering cross section, the antisymmetric spin case gives the largest cross section, and the case of distinguishable particles is in between. Moreover, as Fig. 3b shows, the ratios of the cross sections change as a function of scattering angle. At small scattering angles, the fermion cross sections are almost the same as the distinguishable particle cross section. The maximum difference occurs at \(\theta = \pi/2 \). It is difficult for any kind of effective fermion interaction to capture this effect, and moreover, the idea of an effective Fermi repulsion gives the wrong sign in the case of a repulsive scattering force.

Transport theory. Consider the example of thermal conductivity in a polarized fermion gas. One might think from the idea of Pauli repulsion that increasing polarization would shorten the particle’s mean-free path in the gas, which in turn would lower the thermal conductivity \(\kappa \). The opposite behavior is more likely to happen. At sufficiently low temperature
where s-wave scattering predominates, polarization will actually cause a dramatic increase in κ, because, as we have just seen, the s-wave scattering cross section between like-spin fermions vanishes and only scattering between unlike spins, which now happens less often, can contribute to the mean free path.

We treat a gas obeying Boltzmann statistics, but having full quantum-mechanical collisions. For this to be true, the deBroglie wavelength must be larger than the scattering length, but smaller than the average separation between particles. If the temperature is low enough s-wave scattering will predominate. This situation can occur, for example, in trapped Fermi or Bose gases. The heat current for spin species μ in temperature gradient dT/dz is given by arguments analogous to those for an unpolarized gas29:

$$J_\mu = -n_\mu \overline{v}_\mu k_B \frac{dT}{dz}, \quad (32)$$

where n_μ is the density of μ spins, \overline{v}_μ is the average velocity of either spin species, l_μ is the mean free path of a μ spin and k_B, the Boltzmann constant, is the specific heat per molecule. In Eq. 32 μ is + for up spins and − for down spins; there is a separate heat equation for each spin species. We have dropped any constant factors in the expression. When s-wave scattering dominates, up spins can interact only with down spins and not with each other, and vice versa. Thus the mean free path is $l_\mu = \overline{v} \tau_\mu$ where τ_μ is the inverse of the scattering rate given by

$$\frac{1}{\tau_\mu} = n_{-\mu} \overline{v} \sigma_{+-}, \quad (33)$$

with σ_{+-} the cross section for spin up-down scattering. The spin density $n_{-\mu}$ occurs on the right in Eq. 33 because it is that of the target particles for the incoming μ spins. The result is that

$$J_\mu = -\frac{n_\mu \overline{v} k_B}{n_{-\mu} \sigma_{+-}} \frac{dT}{dz}. \quad (34)$$

If $n_+ / n_- \gg 1$, the heat current J_- for down spins is negligible compared to J_+ for the up spins and the thermal conductivity is

$$\kappa = \frac{n_+ \overline{v} k_B}{n_- \sigma_{+-}}. \quad (35)$$

For high polarizations ($n_+ / n_- \gg 1$) κ can be very large. The increase in κ and other transport coefficients for polarized systems has been predicted theoretically30,31,32 and also seen experimentally33. A similar increase also occurs if the particles are degenerate. The idea of a statistical repulsion is counterintuitive to this result.
Ferromagnetism. A very simple mean-field picture of magnetic fluids is provided by a model in which the particles interact by s-wave scattering only. Thus again there is no up-up or down-down interactions and the energy of the system of \(N_+ \) up spins and \(N_- \) down spins is given by

\[
E = E_+ + E_- + gN_+N_-,
\]

where \(E_\sigma \) is the total kinetic energy of the \(\sigma \) spins, which is proportional to \(N_\sigma^{5/3} \) as in the ideal Fermi gas. The interaction parameter \(g \) measures the scattering energy between up and down spins. Two up spins (or two down spins) do not “see” each other in this model. If \(g > 0 \), this model has three possible states. If \(g \) is small, then the system favors less kinetic energy by having \(N_+ = N_- = N/2 \). That is, one has antiferromagnetism. However, if \(g \) is large enough, then either all the spins are up or all down to minimize the potential energy; ferromagnetism results. The kinetic energy in this case is larger than it would be if \(N_\sigma = N/2 \), but the potential energy is zero. The wave-function antisymmetry between two like spins has made them invisible to one another and non-interacting, because their minimum separation is greater than the range of the interaction. The idea of a Pauli exchange force would lead one to assume a higher associated potential energy (as in Eq. (12)), but what actually happens is that the kinetic energy is raised by having more like spins, while at the same time statistics favors lowering the potential energy.

IV. DISCUSSION

Our goals in this paper have been to clarify the idea of the statistical effects sometimes referred to as “exchange forces”. We believe the term “force” used in this context may mislead students (and even more advanced workers), who might misinterpret the geometrical effect being described. We have given several examples of instances where statistical or exchange forces have been invoked to provide a conceptual explanation of the physics. We have not introduced any new physics in these examples, but we have tried to show how a teacher or writer might provide an alternative interpretation that avoids the exchange force terminology and thereby arrives at a deeper heuristic understanding of the physics. Indeed we identified several cases where the concept of an effective statistical force could lead to the opposite of the correct answer. When a concept has that potential, it is time to replace it.
Our alternative heuristics have taken several forms. We like Griffith's wording: “it is not really a force at all... it is purely a geometric consequence of the symmetrization requirement.” For same-spin fermions, the requirement that the wave function vanish whenever two particles are at the same position means that the wave function must have increased curvature, which leads to an enhanced momentum distribution. Indeed in many cases, the real statistical effect corresponds to a change in kinetic energy (i.e., momentum distribution) as in the explanation of the virial pressure or the white dwarf star, whereas a force picture leads to a change in potential energy as in the Unlenbeck-Gropper potential of Eq. (12). Equally helpfully, the geometrical interpretation leads directly to the changes in average particle separation as compared to distinguishable particles, with same-spin fermions farther apart on average, which nicely explains the scattering results where same-spin fermions have a reduced interaction.

It is hard to underestimate the importance of the conceptual element of physics. Whole introductory courses have been constructed that leave out much of the mathematical half and concentrate only on the so-called “conceptual” side of the subject. Moreover, we emphasize to our students that they have not understood a theory until they can describe the physics in simple conceptual terms. Given that emphasis, we offer the following guiding principle regarding statistical symmetries: “May the force be not with you.”

Acknowledgments

We would like to thank Dr. Terry Schalk for introducing the concern about Fermi repulsion to us, and Profs. John Donoghue and Barry Holstein for helpful conversations.
1. D. Layzer, “The Synergy Between Writing and Mathematics” in Writing to Learn Mathematics and Science, eds. Paul Connolly and Teresa Vilardi (Teacher College Press, NY, 1989).

2. C. V. Heer, Statistical Mechanics, Kinetic Theory, and Stochastic Processes (Academic Press, New York, 1972) p.209.

3. J. J. Brehm and W. J. Mullin, Introduction to the Structure of Matter, (John Wiley and Sons, Inc., New York, 1989).

4. R. K. Patria, Statistical Mechanics, (Pergamon Press, Oxford, 1972).

5. G. H. Wannier, Statistical Physics, (John Wiley and Sons, Inc., New York, 1966), p. 179.

6. G. E. Uhlenbeck and L. Gropper, “The Equation of State of a Non-Ideal Einstein-Bose or Fermi-Dirac Gas,” Phys. Rev. 41, 79-90 (1932).

7. R. B. Leighton, Principles of Modern Physics, (McGraw-Hill Book Company, New York, 1959) p. 239.

8. J. O. Hirschfelder, C. F. Curtis, and R. B. Bird, Molecular Theory of Gases and Liquids, (John Wiley and Sons, Inc., New York, 1954) pp. 402, 404, 438, 673.

9. D. J. Griffiths, Introduction to Quantum Mechanics (Prentice Hall, Englewood Cliffs, NJ, 1995) p. 184.

10. K. Huang, Statistical Mechanics 2nd ed. (John Wiley and Sons, New York, 1987).

11. K. Krane, Modern Physics (John Wiley and Sons, New York, 1996). p. 508.

12. S. Chandrasekhar, An Introduction to the Study of Stellar Structure (Dover Publications, Inc., New York, 1957).

13. S. D. Kawaler, I. Novikov, and G. Srinivasan, Stellar Remnants (Springer, Berlin, 1997).

14. E. Witten, “Cosmic separation of phases”, Phys. Rev. D30, p. 272-285 (1984).

15. E. G. Harris, Introduction to Modern Theoretical Physics (John Wiley and Sons, New York, 1975), Vol. 2, p. 532.

16. C. Herring, “Critique of the Heitler-London Method of Calculating Spin Couplings at Large Distances,” Rev. Mod. Phys. 34, 631-645 (1962); Magnetism, eds. G. T. Rado and H. Suhl (Academic Press, New York, 1966) Vol. IIB, Ch. 1.

17. E. Lieb and D. Mattis, “Theory of Ferromagnetism and the Ordering of Electronic Energy Levels,” Phys. Rev. 125, 164-172 (1962).
Eq. (23) can be given a rigorous derivation16,19 in which the factor $\sigma_1 \cdot \sigma_2$ arises from the spin pair-permutation operator $P_{12}^{(s)} = 1/2(1 + \sigma_1 \cdot \sigma_2)$ acting on spin-space functions to ensure correct overall wave function antisymmetry. The H_2 problem has analogs in many-body physics in electron magnetism16,17 and in the nuclear magnetism of solid 3He20,21.

P. A. M. Dirac, \textit{the Principles of Quantum Mechanics} 4th ed. (Oxford Press, London, 1958) p. 224.

D. J. Thouless, “Exchange in solid 3He and the Heisenberg Hamiltonian,” Proc. Phys. Soc, 86, 893-904 (1965).

A. K. McMahan, “Critique of Recent Theories of Exchange in Solid 3He,” J. Low Temp. Phys. 8, 115-158 (1972).

The idea that the energy lowering in the H_2 molecule comes from electrons tunneling in a six-dimensional hyperspace from one site pair to the opposite can be strengthened by expressing J in terms of a surface integral16. This surface integral represents a particle current crossing a hypersurface separating the two localized site arrangements (a, b) and (b, a).

J. M. Ziman, \textit{Principles of the Theory of Solids} (Cambridge University Press, Cambridge, 1965).

At large separations r between the nuclei of the atoms, the potential is usually well described as a dispersion or van der Waal’s interaction (due to virtual induced electric dipoles—not included in the H_2 discussion), which varies as $-1/r^6$. Parameters for phenomenological interatomic potentials are determined from scattering data or thermal data25.

For a review, see C. J. Pethick and H. Smith, \textit{Bose-Einstein Condensation in Dilute Gases} (Cambridge University Press, Cambridge, 2002).

R. P. Feynman, \textit{Statistical Mechanics}, (W. A. Benjamin, Inc. Reading, MA, 1972) p. 328.

For simplicity, we have assumed that the scattering potential is azimuthally symmetric, as it is in so many applications, so that there is no dependence on the angle ϕ.

Francis Halzen and Alan D. Martin, \textit{Quarks and Leptons: An Introductory Course in Modern Particle Physics} (John Wiley & Sons, New York, 1984) p. 119.

F. Reif, \textit{Fundamentals of Statistical and Thermal Physics}, (McGraw-Hill Book Company, New York, 1965) p. 480.

C. Lhuillier and F. Laloe, “Transport properties in a spin polarized gas. I,” J. Physique, 43, 197-224 (1982).

W. J. Mullin and K. Miyake, “Exact Transport Properties of Degenerate, Weakly Interacting,
and Spin-Polarized Fermions,” J. Low Temp. Phys. 53, 313-338 (1983).

32 A. E. Meyerovich, “Spin-Polarized Phases of 3He,” Ch. 13 in Helium Three, eds. W. P. Halperin and L. P. Pitaevskii (Elsevier Science Publishers, B.V., Amsterdam, 1990).

33 M. Leduc, P. J. Nacher, D. S. Betts, J. M. Daniels, G. Tastevin, and F. Laloë, “Nuclear Polarization and Heat Conduction Changes in Gaseous 3He,” Europhys. Lett. 4, 59-63 (1987).

34 Paul G. Hewitt, Conceptual Physics (Prentice-Hall, NY 2001).
FIG. 1: Plot of the effective statistical “interaction” versus position. For bosons this function is attractive; for fermions it is repulsive.
FIG. 2

FIG. 2: Diagrams for two-particle scattering.
FIG. 3:

a) The cross section for electron scattering as a function of scattering angle for identical spins (dotted line), for the spin-zero state (dashed line), and for the hypothetical case of distinguishable particles (solid line). All plots are in units of $\frac{m^2a^2}{32\pi^3}$.

b) The ratio $\frac{d\sigma}{d\theta}$ (identical)/$\frac{d\sigma}{d\theta}$ (distinguishable) (dotted line) and the ratio $\frac{d\sigma}{d\theta}$ (spin zero)/$\frac{d\sigma}{d\theta}$ (distinguishable) (dashed line).