The compactness and the concentration compactness via p-capacity

T. V. Anoop1 · Ujjal Das2

Received: 27 November 2020 / Accepted: 30 January 2021 / Published online: 7 April 2021
© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract

For $p \in (1, N)$ and $\Omega \subseteq \mathbb{R}^N$ open, the Beppo-Levi space $\mathcal{D}^{1,p}_0(\Omega)$ is the completion of $C_\infty^0(\Omega)$ with respect to the norm $\|u\|_{\mathcal{D}^{1,p}_0} := \left(\int_\Omega |\nabla u|^p \, dx\right)^{\frac{1}{p}}$. Using the p-capacity, we define a norm and then identify the Banach function space $\mathcal{H}(\Omega)$ with the set of all g in $L^1_{\text{loc}}(\Omega)$ that admits the following Hardy–Sobolev type inequality:

$$\int_\Omega |g|^p \, dx \leq C \int_\Omega |\nabla u|^p \, dx, \forall \ u \in \mathcal{D}^{1,p}_0(\Omega),$$

for some $C > 0$. Further, we characterize the set of all g in $\mathcal{H}(\Omega)$ for which the map $G(u) = \int_\Omega g|u|^p \, dx$ is compact on $\mathcal{D}^{1,p}_0(\Omega)$. We use a variation of the concentration compactness lemma to give a sufficient condition on $g \in \mathcal{H}(\Omega)$ so that the best constant in the above inequality is attained in $\mathcal{D}^{1,p}_0(\Omega)$.

Keywords Hardy–Sobolev inequality · Concentration compactness · p-capacity · Eigenvalue problem for p-Laplacian · Absolute continuous norm · Embedding of $\mathcal{D}^{1,p}_0(\Omega)$

Mathematics Subject Classification 28A12 · 28A33 · 35A23 · 35J20 · 46E30 · 46E35

1 Introduction

For $p \in (1, N)$ and an open subset Ω of \mathbb{R}^N, the Beppo-Levi space $\mathcal{D}^{1,p}_0(\Omega)$ is the completion of $C_\infty^0(\Omega)$ with respect to the norm $\|u\|_{\mathcal{D}} := \left(\int_\Omega |\nabla u|^p \, dx\right)^{\frac{1}{p}}$. We look for the weight function $g \in L^1_{\text{loc}}(\Omega)$ that admits the following Hardy–Sobolev type inequality:
\[
\int_\Omega g|u|^p\,dx \leq C \int_\Omega |\nabla u|^p\,dx, \quad \forall \, u \in D_0^1(\Omega),
\]
for some \(C > 0\).

Definition 1 A function \(g \in L^1_{\text{loc}}(\Omega)\) is called a Hardy potentials if \(|g|\) satisfies (1.1). We denote the space of Hardy potentials by \(\mathcal{H}(\Omega)\).

Using Poincaré inequality, it is easy to verify that \(L^\infty(\Omega) \subseteq \mathcal{H}(\Omega)\) if \(\Omega\) is bounded (in one direction). Further, the classical Hardy–Sobolev inequality ensures that
\[
\frac{1}{p} \int_\Omega |x|^p \, dx \leq \left(\frac{p}{N - p} \right) \int_\Omega |\nabla u|^p\,dx, \quad u \in D_0^1(\Omega)
\]
ensures that \(\frac{1}{|x|^p} \in \mathcal{H}(\Omega)\), even when \(\Omega\) contains the origin. In the context of improving the Hardy–Sobolev inequality, many examples of Hardy potentials were produced, see [1, 13, 18] and the references there in. For \(p = 2\) and \(\Omega\) bounded, \(L^r(\Omega) \subseteq \mathcal{H}(\Omega)\) with \(r > N^2/2\) [25], \(r = N^2/2\) [3]. For \(p \in (1, \infty)\) and for general domain \(\Omega\), in [31] authors showed that \(L^{N/p, \infty}(\Omega) \subseteq \mathcal{H}(\Omega)\) using the Lorentz–Sobolev embedding. If \(\Omega\) is the exterior of closed unit ball, then examples of Hardy potentials outside the \(L^{N/p, \infty}(\Omega)\) are provided in [7]. For \(g \in L^1_{\text{loc}}(\Omega)\), we consider
\[
\tilde{g}(r) = \text{ess sup}\{|g(y)| : |y| = r\}, \quad r > 0,
\]
where the essential supremum is taken with respect to \((N - 1)\)-dimensional surface measure. Let
\[
I(\Omega) = \{g \in L^1_{\text{loc}}(\Omega) : \tilde{g} \in L^1((0, \infty), r^{N-1}dr)\}; \quad \|g\|_I = \int_0^\infty r^{N-1}|\tilde{g}|(r)dr.
\]
Then, \(I(\Omega)\) is a Banach space with the norm \(\|\cdot\|_I\) and \(I(\Omega) \subseteq \mathcal{H}(\Omega)\) (Proposition 7).

In [26], Maz’ya gave a very intrinsic characterization of a Hardy potential using the \(p\)-capacity (see Sect. 2.4.1, page 128). Recall that, for \(F \subset \subset \Omega\), the \(p\)-capacity of \(F\) relative to \(\Omega\) is defined as,
\[
\text{Cap}_p(F, \Omega) = \inf \left\{ \int_\Omega |\nabla u|^p\,dx : u \in \mathcal{N}(F) \right\},
\]
where \(\mathcal{N}(F) = \{u \in D_0^1(\Omega) : u \geq 1\text{ in a neighbourhood of } F\}\). Thus for \(g \in \mathcal{H}(\Omega)\) and \(w \in \mathcal{N}(F)\), we have
\[
\int_F |g|\,dx \leq \int_\Omega |g||w|^p\,dx \leq C \int_\Omega |\nabla w|^p\,dx.
\]
Now by taking the infimum over \(\mathcal{N}(F)\) and as \(F\) is arbitrary, we get a necessary condition:
\[
\sup_{F \subset \subset \Omega} \frac{\int_F |g|\,dx}{\text{Cap}_p(F, \Omega)} \leq C.
\]
Maz’ya proved that the above condition is also sufficient for g to be in $\mathcal{H}(\Omega)$. Motivated by this, for $g \in L_{\text{loc}}^1(\Omega)$, we define,

$$\|g\| = \sup \left\{ \frac{\int_{F} |g| \, dx}{\text{Cap}_p(F, \Omega)} : F \subset \subset \Omega, |F| \neq 0 \right\}.$$

One can verify that $\|\cdot\|$ is a Banach function norm on $\mathcal{H}(\Omega)$. The Banach function space structure of $\mathcal{H}(\Omega)$ and Maz’ya’s characterization helps us to prove an embedding of $D_0^{1,p}(\Omega)$ which is finer than the Lorentz–Sobolev embedding proved in [4]. We also provide an alternate proof for the Lorentz–Sobolev embedding (Proposition 9).

For $g \in \mathcal{H}(\Omega)$, let B_g be the best constant in (1.1). In this article, we are interested to find the Hardy potentials $g \in \mathcal{H}(\Omega)$ for which B_g is attained in $D_0^{1,p}(\Omega)$. Many authors have considered similar problems in the context of finding the first (least) positive eigenvalue for the following weighted eigenvalue problem:

$$-\Delta_p u = \lambda g|u|^{p-2} u \quad \text{on} \quad D_0^{1,p}(\Omega).$$

(1.3)

If the map $G : D_0^{1,p}(\Omega) \to \mathbb{R}$ defined by $G(u) = \int_{\Omega} g|u|^p \, dx$ is compact, then a direct variational method ensures that the first positive eigenvalue for the above problem exists and B_g is attained in $D_0^{1,p}(\Omega)$. For $p=2$ and Ω bounded, the compactness of G is proved for $g \in L^r(\Omega)$ with $r > N$ in [25] and $r = N/2$ in [3]. For $p \in (1, \infty)$ and for general domain Ω, $g \in L^{r,d}(\Omega)$ with $d < \infty$, in [31]. The result is extended for a larger space $\mathcal{F}_p(\Omega) := C^\infty_c(\Omega)$ in $L^{\frac{N}{p}, \infty}(\Omega)$ in [8] for $p=2$ and in [5] for $p \in (1,N)$. In [7], authors obtained the compactness of G for $g \in I(B_1)$. We extend and unify all the existing sufficient conditions for the compactness of G by characterizing the set of all Hardy potentials for which the map G is compact on $D_0^{1,p}(\Omega)$. In fact, we provide three different characterizations, and each of them uses the Banach function space structure of $\mathcal{H}(\Omega)$ in one way or other. Our first characterization is motivated by the definition of the space $\mathcal{F}_p(\Omega)$ considered in [5, 8]. Here, we consider the following subspace of $\mathcal{H}(\Omega)$:

$$\mathcal{F}(\Omega) := C^\infty_c(\Omega) \text{ in } \mathcal{H}(\Omega).$$

Now, we have the following theorem:

Theorem 1 Let $g \in \mathcal{H}(\Omega)$. Then $G : D_0^{1,p}(\Omega) \to \mathbb{R}$ is compact if and only if $g \in \mathcal{F}(\Omega)$.

For the second characterization, we use the notion of the absolute continuous norm on a Banach function space.

Definition 2 Let $X = (X, \|\cdot\|_X)$ be a Banach function space. A function $f \in X$ is said to have absolute continuous norm, if for any sequence of measurable subsets (A_n) of Ω with χ_{A_n} converges to 0 a.e. on Ω, then $\|f \chi_{A_n}\|_X$ converges to 0.

Theorem 2 Let $g \in \mathcal{H}(\Omega)$. Then $G : D_0^{1,p}(\Omega) \to \mathbb{R}$ is compact if and only if g has absolute continuous norm in $\mathcal{H}(\Omega)$.
The third characterization is based on a concentration function that is defined using the norm on $H(\Omega)$. For $x \in \overline{\Omega}$ and $r > 0$, let $B_r(x)$ be the ball of radius r centered at x. Now for $g \in H(\Omega)$, we define,

$$C_g(x) = \lim_{r \to 0} \|g \chi_{B_r(x)}\|, \quad C_g(\infty) = \lim_{R \to \infty} \|g \chi_{B_R(0)}\|.$$

Observe that the concentration function C_g measures the lack of absolute continuity of the norm of g at all the points in Ω and at the infinity. Therefore, if C_g vanishes everywhere, then naturally one may anticipate the compactness of G, and precisely this is our next result.

Theorem 3 Let $g \in H(\Omega)$. Then $G : D_0^{1,p}(\Omega) \to \mathbb{R}$ is compact if and only if

$$C_g(x) = 0, \forall x \in \overline{\Omega} \cup \{\infty\}.$$

Observe that the best constant in (1.1) is attained in $D_0^{1,p}(\Omega)$ if and only if the following minimization problem (dual problem) has a minimizer:

$$\min \left\{ \int_{\Omega} |\nabla u|^p \, dx : u \in D_0^{1,p}(\Omega), \int_{\Omega} g |u|^p \, dx = 1 \right\}. \quad (1.4)$$

If G is compact, then the level set $G^{-1}\{1\}$ is weakly closed and hence the weak limit of a minimizing sequence lie in $G^{-1}\{1\}$. Indeed, the weak limit of a minimizing sequence solves the minimization problem and B_g is attained at this weak limit. However, for the existence of the weak limit of a minimizing sequence, it is not necessary to have $G^{-1}\{1\}$ is weakly closed. In other words, for a non-compact G, (1.4) may admit a minimizer. These cases were treated in [30] for $p = 2, \Omega = \mathbb{R}^N$ and in [28] for $p \in (1, N)$ and general Ω. In [30] Smets and [28], authors provided sufficient condition on g for the existence of minimizer for (1.4). In [30], Tertikas used the celebrated concentration compactness lemma of Lions ([21, 22]) and Smets proved a variant of this lemma in [28]. One of their main restrictions was the countability of the closure of the ‘singular’ set of g (see Remark 5 for their definition of a singular set). In this article, we define the singular set as $\Sigma_g = \{x \in \overline{\Omega} : C_g(x) > 0\}$ and in fact, Σ_g coincides with the singular set considered by Tertikas [30] and Smets [28]. In the next theorem, we provide a sufficient condition which is weaker than the countability assumptions of [28, 30] for the existence of minimizer for (1.4).

Theorem 4 Let $g \in H(\Omega)$ be a nonnegative function such that $|\Sigma_g| = 0$ and

$$C^H_C g(x) < B_g, \forall x \in \overline{\Omega} \cup \{\infty\},$$

where $|\Sigma_g|$ denotes the Lebesgue measure of Σ_g, B_g is the best constant in (1.1) and $C^H_C = p^p(p-1)^{-p}$. Then B_g is attained on $D_0^{1,p}(\Omega)$.

If $g \in H(\Omega)$ with $g \geq 0, |\Sigma_g| = 0$ and $C^H_Cdist(g, F(\Omega)) < \|g\|$, then by the above theorem, B_g is attained on $D_0^{1,p}(\Omega)$ (Corollary 2). This helps us to produce Hardy potentials for which the map G is not compact; however, B_g is attained. The following theorem is an analogue of Theorem 1.3 of [30]:

 Springer
Theorem 5 Let $h \in \mathcal{H}(\Omega)$ with $h \geq 0$ and $\left| \sum h \right| = 0$. Then for any nonzero, nonnegative $\phi \in \mathcal{F}(\Omega)$, there exists $\varepsilon_0 > 0$ such that B_g is attained in $D_{0,1}^{1,p}(\Omega)$ for $g = h + \varepsilon \phi$, for all $\varepsilon > \varepsilon_0$.

Remark 1

(i) We provide cylindrical Hardy potentials g for which $\sum g = 0$, but $\sum g$ is not countable (see Remark 14). Such cylindrical weights were considered by Badiale and Tarantello in [9] (for $N = 3$), Mancini et. al in [24] (for $N \geq 3$) to study certain semi-linear PDE involving Sobolev critical exponent. In astrophysics, such critical exponent problems with cylindrical weights often arise in the dynamics of galaxies [11, 14].

(ii) For a cylindrical Hardy potential $g \in \mathcal{H}(\Omega)$ with $\sum g = 0$, one can consider its perturbation $\tilde{g} := g + \phi$ by a suitable $\phi \in C_\infty^c(\Omega)$ and apply the above theorem to ensure $B_{\tilde{g}}$ is attained in $D_{0,1}^{1,p}(\Omega)$ (see Remark 14 for a precise example). It is worth noticing that $\sum \tilde{g} = 0$ but not countable. Indeed, the results of [28, 30] are not applicable for such Hardy potentials.

The rest of the paper is organized as follows. In Section 2, we recall some important results that are required for the development of this article. Further, we discuss the function spaces $\mathcal{H}(\Omega)$, $\mathcal{F}(\Omega)$ and some embeddings of $D_{0,1}^{1,p}(\Omega)$ in Sect. 3. In Sect. 4 we prove Theorem 1, Theorem 2 and Theorem 3. Section 5 contains the proof of Theorem 4 and Theorem 5.

2 Preliminaries

In this section, we briefly outline the symmetrization, Banach function space, Lorentz spaces and p-capacity and list some of their properties. Further, we state a few other results that we use in the subsequent sections.

2.1 Symmetrization

Let $\Omega \subseteq \mathbb{R}^N$ be an open set. Let $\mathcal{M}(\Omega)$ be the set of all extended real-valued Lebesgue measurable functions that are finite a.e. in Ω. For $f \in \mathcal{M}(\Omega)$ and for $s > 0$, we define $E_f(s) = \{ x : |f(x)| > s \}$ and the distribution function a_f of f is defined as

$$a_f(s) := \int_{E_f(s)} dx,$$

where dA denotes the Lebesgue measure of a set $A \subseteq \mathbb{R}^N$. Now, we define the one-dimensional decreasing rearrangement f^* of f as below:

$$f^*(t) := \begin{cases} \text{ess sup } f, & t = 0 \\ \inf \{ s > 0 : a_f(s) < t \}, & t > 0. \end{cases}$$

The map $f \mapsto f^*$ is not sub-additive. However, we obtain a sub-additive function from f^*, namely the maximal function f^{**} of f^*, defined by
The sub-additivity of f^{**} with respect to f helps us to define norms in certain function spaces.

The *Schwarz symmetrization* of f is defined by

$$f^*(x) = f^*(\omega_N|x|^N), \quad \forall x \in \Omega^*,$$

where ω_N is the measure of the unit ball in \mathbb{R}^N and Ω^* is the open ball centered at the origin with same measure as Ω.

Next, we state an important inequality concerning the Schwarz symmetrization, see Theorem 3.2.10 of [15].

Proposition 1 (Hardy–Littlewood inequality) Let $\Omega \subseteq \mathbb{R}^N$ with $N \geq 1$ and $f, g \in \mathcal{M}(\Omega)$ be nonnegative functions. Then

$$\int_{\Omega} f(x)g(x) \, dx \leq \int_{\Omega^*} f^*(x)g^*(x) \, dx = \int_0^{||\Omega||} f^*(t)g^*(t) \, dt.$$ \hfill (2.1)

2.2 Banach function spaces

Definition 3 A normed linear space $X = (X(\Omega), \|\cdot\|_X)$ of functions in $\mathcal{M}(\Omega)$ is called a Banach function space if the following conditions are satisfied:

1. $\|f\|_X = \|f\|_X$, for all $f \in X$,
2. if (f_n) is a nonnegative sequence of function in $X(\Omega)$, increases to f, then $\|f_n\|_X$ increases to $\|f\|_X$.

The norm $\|\cdot\|_X$ is called a Banach function norm on X and the space X is called as Banach function space [32, Sect. 30, Chapter 6]. Indeed, the Banach function spaces are complete [32, Theorem 2, Sect. 30, Chapter 6]. For a Banach function space $(X(\Omega), \|\cdot\|_X)$, we define its associate space as follows.

Definition 4 Let $X = (X(\Omega), \|\cdot\|_X)$ be a Banach function space. For $u \in \mathcal{M}(\Omega)$, define

$$\|u\|_{X'} = \sup \left\{ \int_{\Omega} |fu| : f \in X(\Omega), \|f\|_X \leq 1 \right\}.$$

Then, the associate space $X(\Omega)'$ of $X(\Omega)$ is given by

$$X(\Omega)' = \{ u \in \mathcal{M}(\Omega) : \|u\|_{X'} < \infty \}.$$

One can verify that $X(\Omega)'$ is also a Banach function space with respect to the norm $\|\cdot\|_{X'}$. We refer to [10, 32] for further readings on Banach function spaces.
2.3 Lorentz spaces

The Lorentz spaces are refinements of the usual Lebesgue spaces and introduced by Lorentz in [23]. For more details on Lorentz spaces and related results, we refer to the book [15].

Given a function \(f \in \mathcal{M}(\Omega) \) and \((p, q) \in [1, \infty) \times [1, \infty]\) we consider the following quantity:

\[
|f|_{(p,q)} := \left\| t^{\frac{1}{p} - \frac{1}{q}} f^*(t) \right\|_{L^q((0,\infty))} = \begin{cases}
\left(\int_0^\infty t^{\frac{1}{p} - \frac{1}{q}} f^*(t)^q \, dt \right)^{\frac{1}{q}} & ; 1 \leq q < \infty, \\
\sup_{t > 0} t^{\frac{1}{p} - \frac{1}{q}} f^*(t) & ; q = \infty.
\end{cases}
\]

The Lorentz space \(L^{p,q}(\Omega) \) is defined as

\[
L^{p,q}(\Omega) := \{ f \in \mathcal{M}(\Omega) : |f|_{(p,q)} < \infty \}.
\]

\(|f|_{(p,q)} \) is a complete quasi-norm on \(L^{p,q}(\Omega) \). For \((p, q) \in (1, \infty) \times [1, \infty] \), let

\[
\|f\|_{(p,q)} := \left\| t^{\frac{1}{p} - \frac{1}{q}} f^{**}(t) \right\|_{L^q((0,\infty))}.
\]

Then \(\|f\|_{(p,q)} \) is a norm on \(L^{p,q}(\Omega) \) and it is equivalent to the quasi-norm \(|f|_{(p,q)} \) (see Lemma 3.4.6 of [15]). Next proposition identifies the associate space of Lorentz spaces, see [10] (Theorem 4.7, page 220).

Proposition 2 Let \(1 < p < \infty \) and \(1 \leq q \leq \infty \) (or \(p = q = 1 \) or \(p = q = \infty \)). Then the associate space of \(L^{p,q}(\Omega) \) is, up to equivalence of norms, the Lorentz space \(L^{q',p'}(\Omega) \), where \(\frac{1}{p} + \frac{1}{p'} = 1 \) and \(\frac{1}{q} + \frac{1}{q'} = 1 \).

2.4 The \(p \)-capacity

For any subset \(A \) of \(\mathbb{R}^N \) define,

\[
\text{Cap}_p(A) := \inf \left\{ \int_\Omega |\nabla u|^p \, dx : u \in D_0^{1,p}(\mathbb{R}^N), A \subseteq \text{int} \{ u \geq 1 \} \right\}.
\]

It can be shown that the above definition is consistent with our earlier definition when \(A \) is relatively compact in \(\Omega \). Next, we list some of the properties of capacity in the following proposition.

Proposition 3

(a) Let \(\Omega_1 \subseteq \Omega_2 \) be open in \(\mathbb{R}^N \). Then \(\text{Cap}_p(\Omega_2) \leq \text{Cap}_p(\Omega_1) \).

(b) \(\text{Cap}_p \) is an outer measure on \(\mathbb{R}^N \).

(c) For \(\lambda > 0 \) and \(F \subseteq \mathbb{R}^N \), \(\text{Cap}_p(\lambda F) = \lambda^{N-p} \text{Cap}_p(F) \).
For $F \subset \mathbb{R}^N$, \exists C > 0$ depending on p, N such that $|F| \leq C \text{Cap}_p(F)^{\frac{N}{N-p}}$.

(e) For $N > p$, $\text{Cap}_p(B_1) = N \omega_N \left(\frac{N-p}{p-1}\right)^{p-1}$, where B_1 is the unit ball in \mathbb{R}^N.

(f) $\text{Cap}_p(L(F)) = \text{Cap}_p(F)$, for any affine isometry $L : \mathbb{R}^N \mapsto \mathbb{R}^N$.

Proof

(a) Follows easily from the definition of capacity.
(b) See Theorem 4.14 of [16] (page 174).
(c), (d), (f) See Theorem 4.15 of [16] (page 175).
(e) Sect. 2.2.4 of [26] (page 106).

Remark 2 If a set A is measurable with respect to Cap_p then $\text{Cap}_p(A)$ must be 0 or ∞, see Theorem 4.14 of [16] (page 174).

The next theorem follows from Maz’ya’s characterization of Hardy potential, [26] (see Sect. 2.3.2, page 111).

Theorem 6 Let $p \in (1, N), \Omega \subseteq \mathbb{R}^N$ be open and $g \in L^1_{\text{loc}}(\Omega)$. If $g \in \mathcal{H}(\Omega)$, then
\[
\int_{\Omega} |g|^p u^p \, dx \leq C_H \|g\| \int_{\Omega} |\nabla u|^p \, dx, \forall u \in D_0^{1,p}(\Omega),
\]
where $C_H = p^p (p-1)^{1-p}$.

It is easy to see that the best constant satisfies the following inequalities:
\[
\|g\| \leq B_g \leq C_H \|g\|.
\] (2.2)

2.5 The space of measures

Let $\mathcal{M}(\mathbb{R}^N)$ be the space of all regular, finite, Borel signed measures on \mathbb{R}^N. Then, $\mathcal{M}(\mathbb{R}^N)$ is a Banach space with respect to the norm $\|\mu\| = |\mu|(\mathbb{R}^N)$ (total variation of the measure μ).

By Riesz representation theorem, we know that $\mathcal{M}(\mathbb{R}^N)$ is the dual of $C_0(\mathbb{R}^N)$ ($= C_c(\mathbb{R}^N)$ in $L^\infty(\mathbb{R}^N)$) [2, Theorem 14.14, Chapter 14]. Furthermore, the next proposition follows from the uniqueness of the Riesz representation theorem.

Proposition 4 Let $\mu \in \mathcal{M}(\mathbb{R}^N)$ be a positive measure. Then for an open $V \subseteq \mathbb{R}^N$,
\[
\mu(V) = \sup \left\{ \int_{\mathbb{R}^N} \phi \, d\mu : 0 \leq \phi \leq 1, \phi \in C^\infty_c(\mathbb{R}^N) \text{ with Supp}(\phi) \subseteq V \right\}
\]
and for any Borel set $E \subseteq \Omega$, $\mu(E) := \inf \{ \mu(V) : E \subseteq V, \text{ Vopen} \}$.

Recall that, a sequence (μ_n) is said to be weak* convergent to μ in $\mathcal{M}(\mathbb{R}^N)$, if
\[\int_{\mathbb{R}^N} \phi \, d\mu_n \to \int_{\mathbb{R}^N} \phi \, d\mu, \text{ as } n \to \infty, \forall \phi \in C_0(\mathbb{R}^N). \]

In this case we denote \(\mu_n^* \rightharpoonup \mu \). The next proposition is a consequence of Banach–Alaoglu theorem which states that for any normed linear space \(X \), the closed unit ball in \(X^* \) is weak* compact.

Proposition 5 Let \((\mu_n)\) be a bounded sequence in \(\mathcal{M}(\mathbb{R}^N) \), then there exists \(\mu \in \mathcal{M}(\mathbb{R}^N) \) such that \(\mu_n \rightharpoonup \mu \) up to a subsequence.

2.6 Brezis–Lieb lemma

The following lemma is due to Brezis and Lieb (see Theorem 1 of [12]).

Lemma 1 Let \((\Omega, \mathcal{A}, \mu)\) be a measure space and \((f_n)\) be a sequence of complex-valued measurable functions which are uniformly bounded in \(L^p(\Omega, \mu) \) for some \(0 < p < \infty \). Moreover, if \((f_n)\) converges to \(f \) a.e., then

\[\lim_{n \to \infty} \left| \|f_n\|_{(p,\mu)} - \|f_n - f\|_{(p,\mu)} \right| = \|f\|_{(p,\mu)}. \]

We also require the following inequality (see [20], page 22) that played an important role in the proof of Brezis–Lieb lemma: for \(a, b \in \mathbb{C} \),

\[\|a + b|^p - |a|^p \| \leq \varepsilon |a|^p + C(\varepsilon, p)|b|^p \] \hspace{1cm} (2.3)

valid for each \(\varepsilon > 0 \) and \(0 < p < \infty \).

3 Embeddings

In this section we prove the following continuous embeddings:

\[L^N_{\infty}(\Omega) \hookrightarrow \mathcal{H}(\Omega); \quad \mathcal{F}_N(\Omega) \hookrightarrow \mathcal{F}(\Omega); \quad I(\Omega) \hookrightarrow \mathcal{F}(\Omega). \]

We provide alternate proofs for certain classical embeddings and also provide an embedding of \(D_0^{1,p}(\Omega) \) finer than Lorentz–Sobolev embeddings.

Proposition 6 For \(p \in (1, N) \) and an open subset \(\Omega \) in \(\mathbb{R}^N \), \(L^N_{\infty}(\Omega) \) is continuously embedded in \(\mathcal{H}(\Omega) \).

Proof Observe that, \(\text{Cap}_p(F^*) \leq \text{Cap}_p(F^*, \Omega^*) \leq \text{Cap}_p(F, \Omega) \). The first inequality comes from \((a)\)th property of Proposition 3 and the latter one follows from Polya–Szegö inequality. \(\text{Cap}_p(F^*) = N \omega_N \left(\frac{N-p}{p-1} \right)^{p-1} R^{N-p}, \) where \(R \) is the radius of \(F^* \) (by \((e)\)th property of Proposition 3). Now, for a relatively compact set \(F \),
By setting $\omega_{N}R^{N} = t$, we get
\[
\frac{\int_{F}|g|(x) \, dx}{\text{Cap}_{p}(F, \Omega)} \leq \frac{\int_{F^{*}}g^{*}(x) \, dx}{\text{Cap}_{p}(F^{*}, \mathbb{R}^{N})} = \frac{\int_{0}^{\frac{t}{N(\frac{N-p}{p-1})}}g^{*}(t) \, dt}{N(\frac{N-p}{p-1})^{p-1}} = \frac{R^{p}g^{**}(\omega_{N}R^{N})}{N(\frac{N-p}{p-1})^{p-1}}.
\]

Now take the supremum over $F \subset \subset \Omega$ to obtain,
\[
\|g\| \leq C(N, p)\|g\|_{(\frac{N}{p}, \infty)},
\]
with $C(N, p) = \frac{1}{N(\omega_{N})^{\frac{p}{N}}(\frac{N-p}{p-1})}$.

\[\square\]

Proposition 7 For $p \in (1, N)$ and an open subset Ω in \mathbb{R}^{N}, $I(\Omega)$ is continuously embedded into $\mathcal{H}(\Omega)$.

Proof For $g \in I(\Omega)$ and $u \in N(F)$, use Lemma 2.1 of [7] to obtain
\[
\int_{F}|g| \, dx \leq \int_{\Omega}|g||u|^{p} \, dx \leq C_{H}\|g\|_{I} \int_{\Omega}|
abla u|^{p} \, dx, \ \forall u \in D^{1,p}_{0}(\Omega),
\]
where C depends only on N, p. Taking the infimum over $N(F)$ and then the supremum over F we obtain $\|g\| \leq C_{H}\|g\|_{I}$. \[\square\]

Remark 3 Notice that $I(\Omega)$ and $\mathcal{H}(\Omega)$ are not rearrangement invariant Banach function spaces. For example, for $p = 2, N \geq 3$ and $\beta \in (\frac{2}{N}, 1)$ consider the following function analogous to Example 3.8 of [6],
\[
g(x) = \begin{cases}
\frac{(|x| - 1)^{-\beta}}{N}, & 1 < |x| \leq 2, \\
0, & \text{otherwise}.
\end{cases}
\]

It can be verified that $g \in I(\mathbb{R}^{N})$ and $g^{*} \notin \mathcal{H}(\mathbb{R}^{N})$.

As we have mentioned before, if $g \in \mathcal{F}_{c}(\Omega)$ then G is compact and the same is true if $g \in I(\Omega)$, where $\Omega = \overline{B_{1}}^{c}$. Next proposition shows that $\mathcal{F}(\Omega)$ contains these spaces.

Proposition 8 Let $p \in (1, N)$. Then

(i) $\mathcal{F}_{c}(\Omega) \subseteq \mathcal{F}(\Omega)$ for any open subset Ω in \mathbb{R}^{N}.

(ii) $I(\Omega) \subseteq \mathcal{F}(\Omega)$ for $\Omega = B_{d} \setminus \overline{B}_{c}; \ 0 \leq c < d \leq \infty$.

Proof Recall that, $\mathcal{F}_{c}(\Omega)$ is the closure of $C_{c}^{\infty}(\Omega)$ in $L^{p, \infty}_{c}(\Omega)$ and $\mathcal{F}(\Omega)$ is closure of $C_{c}^{\infty}(\Omega)$ in $\mathcal{H}(\Omega)$. Now since $\|\cdot\| \leq C\|\cdot\|_{(\frac{N}{p}, \infty)}$, it is immediate that $\mathcal{F}_{c}(\Omega)$ is contained in $\mathcal{F}(\Omega)$. Similarly, in order to prove (ii), it is enough to show $C_{c}^{\infty}(\Omega)$ is dense in $I(\Omega)$. For this, let

\[\square\] Springer
\(g \in L^1(\Omega)\) and \(e > 0\) be arbitrary. As \(C^\infty_c((c, d))\) is dense in \(L^1((c, d), r^{p-1})\), there exists \(\phi \in C^\infty_c((c, d))\) such that \(\|g - \phi\|_{L^1((c, d), r^{p-1})} < e\). Now, for \(x \in \Omega\) let \(\sigma(x) := \phi(|x|)\). By denoting, \(h = g - \sigma\) we have \(h(r) = \tilde{g}(r) - \phi(r)\). Therefore,
\[
\|g - \sigma\|_r = \int_0^\infty |\tilde{h}(r)r^{p-1}|\,dr = \|\tilde{g} - \phi\|_{L^1((0, \infty), r^{p-1})} < e.
\]

\(\square\)

Remark 4 In [5, Lemma 3.5], authors have shown that \(F_\omega(\Omega)\) contains the Hardy potentials that have faster decay than \(\frac{1}{|x-a|^p}\) at all points \(a \in \overline{\Omega}\) and at infinity. Such Hardy potentials arise in the work of Szulkin and Willem [29]. Above proposition assures that they belong to \(F(\Omega)\).

Next, we give an alternate proof for the Lorentz–Sobolev embedding of \(D_{1,0}^{1,p}(\Omega)\). The idea is similar to that of Corollary 3.6 of [6].

Proposition 9 For \(p \in (1, N)\) and an open subset \(\Omega\) in \(\mathbb{R}^N\), \(D_{1,0}^{1,p}(\Omega)\) is continuously embedded in \(L^{p',p}(\Omega)\).

Proof Without loss of generality we may assume \(\Omega = \mathbb{R}^N\) (for a general domain \(\Omega\), the result will follow by considering the zero extension to \(\mathbb{R}^N\)). Let \(g \in \mathcal{H}(\Omega)\) be such that \(g^* \in \mathcal{H}(\Omega)\). Then using the Polya–Szego inequality, we have
\[
\int_{\mathbb{R}^N} g^* |u^*|^p \,dx \leq C_H \|g^*\| \int_{\mathbb{R}^N} |\nabla u^*|^p \,dx \leq C_H \|g^*\| \int_{\mathbb{R}^N} |\nabla u|^p \,dx, \quad \forall u \in D_{1,0}^{1,p}(\mathbb{R}^N).
\]

In particular, for \(g(x) = \frac{1}{aw_N^p|x|^p}\), \(g^*(s) = \frac{1}{s^p}\) and \(\|g^*\| = \frac{(p-1)^{p-1}}{N(N-p)^{p-1}}\). Now
\[
\int_{\mathbb{R}^N} g^* |u^*|^p \,dx = \int_0^\infty g^*(s) |u^*(s)|^p \,ds. \quad \text{Thus from the above inequality, we obtain}
\]
\[
\int_0^\infty \frac{|u^*(s)|^p}{s^p} \,ds \leq C(N, p) \int_{\mathbb{R}^N} |\nabla u|^p \,dx, \quad \forall u \in D_{1,0}^{1,p}(\Omega).
\]

The left-hand side of the above inequality is \(\|u\|_{(p',p)}^p\), a quasi-norm equivalent to the norm \(\|u\|_{(p',p)}^p\) in \(L^{p',p}(\Omega)\). This completes the proof. \(\square\)

Corollary 1 For \(p \in (1, N)\) and an open subset \(\Omega\) in \(\mathbb{R}^N\), \(D_{1,0}^{1,p}(\Omega)\) is compactly embedded in \(L^{p',p}_{loc}(\Omega)\).

Proof Clearly \(D_{1,0}^{1,p}(\Omega)\) is continuously embedded into \(W_{loc}^{1,p}(\Omega)\). Since \(W_{loc}^{1,p}(\Omega)\) is compactly embedded in \(L^{p',p}_{loc}(\Omega)\), we have the required embedding. \(\square\)

Notice that we used just one Hardy potential \(\frac{1}{|x|^p}\) to obtain the Lorentz–Sobolev embedding in Proposition 9. Instead, if we consider all of \(\mathcal{H}(\Omega)\), then we anticipate to get an embedding finer than the above one. For this, we consider the following space (defined in a similar way as the associate space):
\[
\mathcal{E}(\Omega) := \{u \in \mathcal{M}(\Omega) : |u|^p \in \mathcal{H}(\Omega)'\}.
\]
One can verify that $\mathcal{E}(\Omega)$ is a Banach function space with respect to the norm

$$||u||_E := \left(\int |u|^p \, dx\right)^{\frac{1}{p}}.$$

In the next theorem, we establish an embedding of $\mathcal{D}^{1,p}_0(\Omega)$ into $\mathcal{E}(\Omega)$. Further, we assert that the embedding is finer than the classical one.

Theorem 7 Let $1 < p < N$ and Ω be open in \mathbb{R}^N. Then

(a) $\mathcal{D}^{1,p}_0(\Omega)$ is continuously embedded into $\mathcal{E}(\Omega)$,
(b) $\mathcal{E}(\Omega)$ is a proper subspace of $L^{p^*}(\Omega)$.

Proof

(a) For $g \in \mathcal{H}(\Omega)$, by Theorem 6,

$$\int g|u|^p \, dx \leq C_H ||g|| \int |\nabla u|^p \, dx, \forall u \in \mathcal{D}^{1,p}_0(\Omega).$$

Now taking the supremum over the unit ball in $\mathcal{H}(\Omega)$, we obtain

$$||u||_E \leq C_H^{\frac{1}{p}} ||u||_{\mathcal{D}^{1,p}_0(\Omega)}, \forall u \in \mathcal{D}^{1,p}_0(\Omega).$$

(b) Clearly $v \in \mathcal{E}(\Omega)$ if and only if $|v|^p \in \mathcal{H}(\Omega)'$. Further, $L^{p^*}(\Omega) \subset \mathcal{H}(\Omega)$ and hence $\mathcal{H}(\Omega)' \subset L^{p^*}(\Omega)$ (by Proposition 2). Now, we can easily deduce that $\mathcal{E}(\Omega) \subset L^{p^*}(\Omega)$.

\square

4 The compactness

In this section, we develop a g depended concentration compactness lemma as in [28]. Then, we give equivalent conditions for compactness and prove Theorem 1, 2 and 3.

Lemma 2 Let $\Phi \in C^1_b(\Omega)$ be such that $\nabla \Phi$ has compact support and $u_n \rightharpoonup u$ in $\mathcal{D}^{1,p}_0(\Omega)$. Then

$$\lim_{n \to \infty} \int_\Omega |\nabla((u_n - u)\Phi)|^p \, dx = \lim_{n \to \infty} \int_\Omega |\nabla(u_n - u)|^p |\Phi|^p \, dx.$$

Proof Let $\varepsilon > 0$ be given. Using (2.3),

$$\left| \int_\Omega |\nabla((u_n - u)\Phi)|^p \, dx - \int_\Omega |\nabla(u_n - u)|^p |\Phi|^p \, dx \right|$$

$$\leq \varepsilon \int_\Omega |\nabla(u_n - u)|^p |\Phi|^p \, dx + C(\varepsilon, p) \int_\Omega |u_n - u|^p |\nabla \Phi|^p \, dx.$$
Since $\nabla \Phi$ is compactly supported, by Corollary 1 the second term in the right-hand side of the above inequality goes to 0 as $n \to \infty$. Further, as (u_n) is bounded in $D_0^{1,p}(\Omega)$ and $\varepsilon > 0$ is arbitrary, we obtain the desired result.

A function in $D_0^{1,p}(\Omega)$ can be considered as a function in $D_0^{1,p}(\mathbb{R}^N)$ by usual zero extension. Following this convention, for $u_n, u \in D_0^{1,p}(\Omega)$ and a Borel set E in \mathbb{R}^N, we denote

$$v_n(E) = \int_E g|u_n - u|^p \, dx; \quad \Gamma_n(E) = \int_E |\nabla (u_n - u)|^p \, dx; \quad \tilde{\Gamma}_n(E) = \int_E |\nabla u_n|^p \, dx.$$

If $u_n \rightharpoonup u$ in $D_0^{1,p}(\Omega)$, then v_n, Γ_n and $\tilde{\Gamma}_n$ have weak* convergent subsequences (Proposition 5). Let

$$v_n \rightharpoonup^* v; \quad \Gamma_n \rightharpoonup^* \Gamma; \quad \tilde{\Gamma}_n \rightharpoonup^* \tilde{\Gamma} \text{ in } \mathcal{M}(\mathbb{R}^N).$$

Next, we prove the absolute continuity of the measure ν with respect to Γ.

Lemma 3 Let $g \in H(\Omega), g \geq 0$ and $u_n \rightharpoonup u$ in $D_0^{1,p}(\Omega)$. Then for any Borel set E in \mathbb{R}^N,

$$\nu(E) \leq C_H C_g^* \Gamma(E), \quad \text{where } C_g^* = \sup_{x \in \Omega} C_g(x).$$

Proof As $u_n \rightharpoonup u$ in $D_0^{1,p}(\Omega)$, $u_n \rightharpoonup u$ in $L^p_{\text{loc}}(\Omega)$ (by Corollary 1). For $\Phi \in C_c^\infty(\mathbb{R}^N)$, $(u_n - u)\Phi \in D_0^{1,p}(\Omega)$ and thus by Theorem 6,

$$\int_{\mathbb{R}^N} |\Phi|^p \, dv_n = \int_{\Omega} g|(u_n - u)\Phi|^p \, dx \leq C_H \|g\| \int_{\Omega} |\nabla ((u_n - u)\Phi)|^p \, dx \leq C_H \|g\| \int_{\mathbb{R}^N} |\nabla ((u_n - u)\Phi)|^p \, dx.$$

Take $n \to \infty$ and use Lemma 2 to obtain

$$\int_{\mathbb{R}^N} |\Phi|^p \, d\nu \leq C_H \|g\| \int_{\mathbb{R}^N} |\Phi|^p \, d\Gamma. \quad (4.1)$$

Now by Proposition 4, we get

$$\nu(E) \leq C_H \|g\| \Gamma(E), \quad \forall E \text{ Borel in } \mathbb{R}^N. \quad (4.2)$$

In particular, $\nu \ll \Gamma$ and hence by Radon–Nikodym theorem,

$$\nu(E) = \int_E \frac{d\nu}{d\Gamma} \, d\Gamma, \quad \forall E \text{ Borel in } \mathbb{R}^N. \quad (4.3)$$

Further, by Lebesgue differentiation theorem (page 152–168 of [17]) we have

$$\frac{d\nu}{d\Gamma}(x) = \lim_{r \to 0} \frac{\nu(B_r(x))}{\Gamma(B_r(x))}. \quad (4.4)$$

Now replacing g by $g\chi_{B_r(x)}$ and proceeding as before,

$$\nu(B_r(x)) \leq C_H \|g\chi_{B_r(x)}\| \Gamma(B_r(x)).$$

Thus from (4.4) we get

$$\frac{d\nu}{d\Gamma}(x) = \lim_{r \to 0} \frac{\nu(B_r(x))}{\Gamma(B_r(x))}.$$
\[\frac{d\nu}{d\Gamma}(x) \leq C_H C_\gamma(x) \] \hspace{1cm} (4.5)

and hence \(\|\frac{d\nu}{d\Gamma}\|_\infty \leq C_H C_\gamma \). Now from (4.3) we obtain \(\nu(E) \leq C_H C_\gamma \Gamma(E) \) for all Borel subsets \(E \) of \(\mathbb{R}^N \).

Remark 5 In [30] (for \(p = 2 \) and \(\Omega = \mathbb{R}^N \)) and in [28] (for \(p \in (1, N) \) and \(\Omega \subseteq \mathbb{R}^N \)), the authors considered the following concentration function:

\[S_g(x) = \liminf_{r \to 0} \left\{ \int \left| \nabla u \right|^p \ dx : u \in \mathcal{D}_0^{1,p}(\Omega \cap B_r(x)), \int g \left| u \right|^p \ dx = 1 \right\}, \]

and they considered the singular set to be \(\left\{ x \in \overline{\Omega} : S_g(x) < \infty \right\} \) and assumed that the closure of it is at most countable (see (H) of [30] and (H1) of [28]). One can easily see that their singular set coincides with \(\sum_g \) (by (5.1)). The countability assumption allowed them to describe \(\nu \) as a countable sum of Dirac measures located on \(\sum_g \) and using this they have obtained the absolute continuity of \(\nu \) with respect to \(\Gamma \) (see Lemma 2.1 of [28] and Lemma 3.1 of [30]), whereas we use the Radon–Nikodym theorem and the Lebesgue differentiation theorem to prove the absolute continuity of \(\nu \) with respect to \(\Gamma \). We would like to stress that we do not make any assumption on the cardinality or the structure of \(\sum_g \) for this purpose.

The next lemma gives a lower estimate for the measure \(\hat{\Gamma} \). Similar estimate is obtained in Lemma 2.1 of [28]. We make a weaker assumption, \(\sum_g \) is of Lebesgue measure 0, than the assumption \(\sum_g \) is countable.

Lemma 4 Let \(g \in \mathcal{H}(\Omega) \) be such that \(g \geq 0 \) and \(|\sum_g| = 0 \). If \(u_n \rightharpoonup u \) in \(\mathcal{D}_0^{1,p}(\Omega) \), then

\[\hat{\Gamma} \geq \begin{cases} \left| \nabla u \right|^p + \frac{\nu}{C_\gamma} \frac{1}{C_\gamma} & \text{if } C_\gamma \neq 0, \\ \left| \nabla u \right|^p, & \text{otherwise.} \end{cases} \]

Proof Our proof splits into three steps.

Step 1: \(\hat{\Gamma} \geq \left| \nabla u \right|^p \). Let \(\phi \in C_c^\infty(\mathbb{R}^N) \) with \(0 \leq \phi \leq 1 \), we need to show that

\[\int_{\mathbb{R}^N} \phi \ d\hat{\Gamma} \geq \int_{\mathbb{R}^N} \phi \left| \nabla u \right|^p \ dx. \]

Notice that,

\[\int_{\mathbb{R}^N} \phi \ d\hat{\Gamma} = \lim_{n \to \infty} \int_{\mathbb{R}^N} \phi \ d\hat{\Gamma}^n = \lim_{n \to \infty} \int_{\Omega} \phi \left| \nabla u_n \right|^p \ dx = \lim_{n \to \infty} \int_{\Omega} F(x, \nabla u_n(x)) \ dx, \]

where \(F : \Omega \times \mathbb{R}^N \mapsto \mathbb{R} \) is defined as \(F(x, z) = \phi(x)|z|^p \). Clearly, \(F \) is a Caratheodory function and \(F(x, .) \) is convex for almost every \(x \). Hence, by Theorem 2.6 of [27] (page 28), we have

\[\lim_{n \to \infty} \int_{\Omega} \phi \left| \nabla u_n \right|^p \ dx \geq \int_{\Omega} \phi \left| \nabla u \right|^p \ dx = \int_{\mathbb{R}^N} \phi \left| \nabla u \right|^p \ dx \]

and this proves our claim 1.

Step 2: \(\hat{\Gamma} = \Gamma \), on \(\sum_g \). Let \(E \subseteq \sum_g \) be a Borel set. Thus, for each \(m \in \mathbb{N} \), there exists an open subset \(O_m \) containing \(E \) such that \(|O_m| = |O_m \setminus E| < \frac{1}{m} \). Let \(\epsilon > 0 \) be given. Then, for any \(\phi \in C_c^\infty(O_m) \) with \(0 \leq \phi \leq 1 \), using (2.3) we have
\[\int \Omega \phi \, d\Gamma_n \, dx - \int \Omega \phi \, d\Gamma \, dx \leq \int \Omega \phi |\nabla (u_n - u)|^p \, dx - \int \Omega \phi |\nabla u_n|^p \, dx \leq \varepsilon \int \Omega \phi |\nabla u_n|^p \, dx + C(\varepsilon, p) \int \Omega |\nabla u|^p \, dx \]

where \(L = \sup_n \left\{ \int \Omega |\nabla u_n|^p \, dx \right\} \). Now letting \(n \to \infty \), we obtain
\[|\int \Omega \phi \, d\Gamma - \int \Omega \phi \, d\Gamma| \leq \varepsilon L + C(\varepsilon, p) \int \Omega |\nabla u|^p \, dx \]. Therefore,
\[|\Gamma(O_m) - \Gamma(O_m)| = \sup \left\{ \int \Omega \phi \, d\Gamma - \int \Omega \phi \, d\Gamma \mid \phi \in C_c^\infty(O_m), 0 \leq \phi \leq 1 \right\} \]
\[\leq \varepsilon L + C(\varepsilon, p) \int \Omega |\nabla u|^p \, dx \].

Now as \(m \to \infty \), \(|O_m| \to 0 \) and hence \(|\Gamma(E) - \Gamma(E)| \leq \varepsilon L \). Since \(\varepsilon > 0 \) is arbitrary, we conclude \(\Gamma(E) = \Gamma(E) \).

Step 3: \(\hat{\Gamma} \geq |\nabla u|^p + \frac{\nu}{C_H c^*_e} \), if \(C^*_e \neq 0 \). Let \(C^*_e \neq 0 \). Then from Lemma 3 we have \(\hat{\Gamma} \geq \frac{\nu}{C_H c^*_e} \).

Furthermore, (4.5) and (4.3) ensures that \(\nu \) is supported on \(\sum g \). Hence, Step 1 and Step 2 yield the following:
\[\hat{\Gamma} \geq \left\{ \begin{array}{c}
|\nabla u|^p, \\
\frac{\nu}{C_H c^*_e}.
\end{array} \right. \quad (4.6) \]

Since \(|\sum g| = 0 \), the measure \(|\nabla u|^p \) is supported inside \(\sum c_e^* \) and hence from (4.6) we easily obtain \(\hat{\Gamma} \geq |\nabla u|^p + \frac{\nu}{C_H c^*_e} \).

Lemma 5 Let \(g \in \mathcal{H}(\Omega) \), \(g \geq 0 \) and \(u_n \rightharpoonup u \) in \(D_0^{1,p}(\Omega) \) and \(\Phi_R \in C_c^\infty(\mathbb{R}^N) \) with \(0 \leq \Phi_R \leq 1 \), \(\Phi_R = 0 \) on \(\overline{B}_R \) and \(\Phi_R = 1 \) on \(B_{R+1}^c \). Then,

(A) \(\lim_{R \to \infty} \lim_{n \to \infty} \int_{\Omega \setminus \overline{B}_R} g|u_n|^p \, dx = \lim_{R \to \infty} \lim_{n \to \infty} \nu_n(\Omega \cap \overline{B}_R^c) = \lim_{R \to \infty} \lim_{n \to \infty} \int_{\Omega} \Phi_R \, d\nu_n \),

(B) \(\lim_{R \to \infty} \lim_{n \to \infty} \int_{\Omega \setminus \overline{B}_R} |\nabla u_n|^p \, dx = \lim_{R \to \infty} \lim_{n \to \infty} \Gamma_n(\Omega \cap \overline{B}_R^c) = \lim_{R \to \infty} \lim_{n \to \infty} \int_{\Omega} \Phi_R \, d\Gamma_n \).

Proof By Brezis–Lieb lemma,
\[\lim_{n \to \infty} \nu_n(\Omega \cap \overline{B}_R^c) = \int_{\Omega \setminus \overline{B}_R} g|u_n|^p \, dx \]
\[= \int_{\Omega \setminus \overline{B}_R} g|u_n - u|^p \, dx - \int_{\Omega \setminus \overline{B}_R} g|u_n|^p \, dx \]
\[= \int_{\Omega \setminus \overline{B}_R} g|u|^p \, dx. \]

As \(g|u|^p \in L^1(\Omega) \), the right-hand side integral goes to 0 as \(R \to \infty \). Thus, we get the first equality in (A). For the second equality, it is enough to observe that
\[\int_{\Omega \cap B_{R+1}^c} g|u_n - u|^p \, dx \leq \int_{\Omega} g|u_n - u|^p \Phi_R \, dx \leq \int_{\Omega \cap B_R} g|u_n - u|^p \, dx. \]

Now by taking \(n, R \to \infty \), respectively, we get the required equality. Now we proceed to prove (B). For \(\varepsilon > 0 \), there exists \(C(\varepsilon, p) > 0 \) (by (2.3)) such that

\[
\begin{align*}
\lim_{n \to \infty} \left| \int_{\Omega \cap B_R^c} \nabla u_n \right|^p \, dx &= \lim_{n \to \infty} \left| \int_{\Omega \cap B_R^c} \nabla (u_n - u) \right|^p \, dx - \int_{\Omega \cap B_R} \nabla u_n \right|^p \, dx \\
&\leq \varepsilon \lim_{n \to \infty} \int_{\Omega \cap B_R} \left| \nabla u_n \right|^p \, dx + C(\varepsilon, p) \int_{\Omega \cap B_R} \left| \nabla u \right|^p \, dx \\
&\leq \varepsilon L + C(\varepsilon, p) \int_{\Omega \cap B_R} \left| \nabla u \right|^p \, dx,
\end{align*}
\]

where \(L \geq \int_{\Omega} \left| \nabla u \right|^p \, dx \) for all \(n \). Thus, by taking \(R \to \infty \) and then \(\varepsilon \to 0 \), we obtain the first equality of (B). The second equality of part (B) follows from the same argument as that of part (A).

\[\square \]

Lemma 6 Let \(g \in \mathcal{H}(\Omega), g \geq 0 \) and \(u_n \to u \) in \(D_0^{1,p}(\Omega) \). Set

\[v_{\infty} = \lim_{R \to \infty} \lim_{n \to \infty} \nu_n(\Omega \cap B_R^c) \quad \text{and} \quad \Gamma_{\infty} = \lim_{R \to \infty} \lim_{n \to \infty} \Gamma_n(\Omega \cap B_R^c). \]

Then

(i) \(v_{\infty} \leq C_H C_g(\infty) \Gamma_{\infty} \),

(ii) \(\lim_{n \to \infty} \int_{\Omega} g(u_n) \, dx = \int_{\Omega} g(u) \, dx + ||v|| + v_{\infty} \),

(iii) Further, if \(|\sum \xi_i| = 0 \), then we have

\[
\lim_{n \to \infty} \int_{\Omega} |\nabla u_n| \, dx \geq \begin{cases}
\int_{\Omega} |\nabla u| \, dx + \frac{||v||}{C_H C_g} + \Gamma_{\infty}, & \text{if } C_g^* \neq 0 \\
\int_{\Omega} |\nabla u| \, dx + \Gamma_{\infty}, & \text{otherwise.}
\end{cases}
\]

Proof (i): For \(R > 0 \), choose \(\Phi_R \in C^1_b(\mathbb{R}^N) \) satisfying \(0 \leq \Phi_R \leq 1 \), \(\Phi_R = 0 \) on \(B_R \) and \(\Phi_R = 1 \) on \(B_{R+1}^c \). Clearly, \((u_n - u)\Phi_R \in D_0^{1,p}(\Omega \cap B_R^c) \). Since \(||g \chi_{B_R^c}|| < \infty \), by Theorem 6,

\[
\int_{\Omega \cap B_R} |(u_n - u)\Phi_R|^p \, dx \leq C_H ||g \chi_{B_R^c}|| \int_{\Omega \cap B_R} |\nabla (u_n - u)\Phi_R|^p \, dx.
\]

By Lemma 2 we have \(\lim_{n \to \infty} \int_{\Omega \cap B_R} |\nabla (u_n - u)\Phi_R|^p \, dx = \lim_{n \to \infty} \int_{\Omega \cap B_R} |\Phi_R|^p \, d\Gamma_n \). Therefore, letting \(n \to \infty, R \to \infty \) and using Lemma 5 successively in the above inequality we obtain \(v_{\infty} \leq C_H C_g(\infty) \Gamma_{\infty} \).

(ii): By choosing \(\Phi_R \) as above and using Brezis–Lieb lemma together with part (A) of Lemma 5, we have

\[\square \]
\[
\lim_{n \to \infty} \int_{\Omega} g|u_n|^p \, dx \\
= \lim_{n \to \infty} \left[\int_{\Omega} g|u_n|^p (1 - \Phi_R) \, dx + \int_{\Omega} g|u_n|^p \Phi_R \, dx \right] \\
= \lim_{n \to \infty} \left[\int_{\Omega} g|u|^p (1 - \Phi_R) \, dx + \int_{\Omega} g|u_n - u|^p (1 - \Phi_R) \, dx + \int_{\Omega} g|u_n|^p \Phi_R \, dx \right] \\
= \int_{\Omega} g|u|^p \, dx + \|v\| + v_\infty.
\]

(iii): Notice that
\[
\lim_{n \to \infty} \int_{\Omega} |\nabla u_n|^p \, dx = \lim_{n \to \infty} \left[\int_{\Omega} |\nabla u_n|^p (1 - \Phi_R) \, dx + \int_{\Omega} |\nabla u_n|^p \Phi_R \, dx \right] \\
= \bar{\Gamma}(1 - \Phi_R) + \lim_{n \to \infty} \int_{\Omega} |\nabla u_n|^p \Phi_R \, dx
\]

By taking \(R \to \infty \) and using part (B) Lemma 5 we get
\[
\lim_{n \to \infty} \int_{\Omega} |\nabla u_n|^p \, dx = \|\bar{\Gamma}\| + \Gamma_\infty.
\]

Now, using Lemma 4, we obtain
\[
\lim_{n \to \infty} \int_{\Omega} |\nabla u_n|^p \, dx \geq \left\{ \begin{array}{ll}
\int_{\Omega} |\nabla u|^p \, dx + \frac{\|v\|}{C_H \varepsilon_g^p} + \Gamma_\infty, & \text{if } C_\varepsilon \neq 0 \\
\int_{\Omega} |\nabla u|^p \, dx + \Gamma_\infty, & \text{otherwise.} \end{array} \right.
\]

\[\square\]

Remark 6 (The assumptions on the singular set \(\sum_g \)) Let us recall the following fundamental result in the concentration compactness theory by Lions [22, Lemma 1.2]. Let \(v, \Gamma \) be two nonnegative, bounded measures on \(\mathbb{R}^N \) such that
\[
\left[\int_{\mathbb{R}^N} |\phi|^q \, dv \right]^{\frac{1}{q}} \leq C \left[\int_{\mathbb{R}^N} |\phi|^p \, d\Gamma \right]^{\frac{1}{p}}, \quad \forall \phi \in C_\infty^{\infty}(\mathbb{R}^N),
\] (4.7)

for some \(C > 0 \) and \(1 \leq p < q \). Then there exist at most a countable set \(\{x_j \in \mathbb{R}^N : j \in \mathbb{J}\} \) and \(v_j \in (0, \infty) \) such that
\[
v = \sum_{j \in \mathbb{J}} v_j \delta_{x_j},
\] (4.8)

For \(q = p \), in [28, 30] authors assumed the countability of the singular set \(\sum_g \) and obtain the same representation of \(\gamma \) as in (4.8). This representation helps them for proving the results ([30, Lemma 3.1], [28, Lemma 2.1]). In this situation, we have seen that \(\gamma \) is supported on the set \(\sum_g \) (by Lemma 3). In this article, we relax the countability assumption on \(\sum_g \) and by pass the representation of \(\gamma \) in order to derive Lemma 6. Indeed, we have (4.1) which is the limiting case of (4.7) \((q = p) \).
In the following lemma we approximate $\mathcal{F}(\Omega)$ functions using $L^\infty(\Omega)$ functions similar result is obtained for $\mathcal{F}_p(\Omega)$ in Proposition 3.2 of [8].

Lemma 7 $g \in \mathcal{F}(\Omega)$ if and only if for every $\varepsilon > 0$, $\exists g_\varepsilon \in L^\infty(\Omega)$ such that $|\text{Supp}(g_\varepsilon)| < \infty$ and $\|g - g_\varepsilon\| < \varepsilon$.

Proof Let $g \in \mathcal{F}(\Omega)$ and $\varepsilon > 0$ be given. By definition of $\mathcal{F}(\Omega)$, $\exists g_\varepsilon \in C^\infty_c(\Omega)$ such that $\|g - g_\varepsilon\| < \varepsilon$. This g_ε fulfill our requirements. For the converse part, take a g satisfying the hypothesis. Let $\varepsilon > 0$ be arbitrary. Then $\exists g_\varepsilon \in L^\infty(\Omega)$ such that $|\text{Supp}(g_\varepsilon)| < \infty$ and $\|g - g_\varepsilon\| < \frac{\varepsilon}{2C}$, where C is the embedding constant for the embedding $L^\infty(\Omega)$ into $\mathcal{H}(\Omega)$. Now by triangle inequality, we obtain $\|g - \phi_\varepsilon\| < \varepsilon$ as required. \hfill \square

The next proposition gives an interesting property of capacity, which helps us to localize the norm on $\mathcal{H}(\Omega)$.

Proposition 10 There exists $C_1, C_2 > 0$ such that for $F \subset \subset \Omega$,

(i) $\text{Cap}_p(F \cap B_r(x), \Omega \cap B_2(x)) \leq C_1 \text{Cap}_p(F \cap B_r(x), \Omega)$, $\forall r > 0$.

(ii) $\text{Cap}_p(F \cap B_{2r}^c, \Omega \cap \overline{B}_r) \leq C_2 \text{Cap}_p(F \cap B_{2r}^c, \Omega)$, $\forall R > 0$.

Proof (i) Let $\Phi \in C^\infty_c(\mathbb{R}^N)$ be such that $0 \leq \Phi \leq 1$, $\Phi = 1$ on $B_1(0)$ and $\text{Supp}(\Phi) \subset \subset B_2(0)$. Take $\Phi_r(z) = \Phi\left(\frac{z}{r}\right)$. Let $\varepsilon > 0$ be given. Then for $F \subset \subset \Omega$, $\exists \Phi \in \mathcal{N}(F \cap B_r(x))$ such that $\int_\Omega |\nabla u|^p < \text{Cap}_p(F \cap B_r(x), \Omega) + \varepsilon$. If we set $w_r(z) = \Phi_r(z)u(z)$, then it is easy to see that $w_r \in D_0^{1,p}(\Omega \cap B_{2r}(x))$ and $w_r \geq 1$ on $F \cap B_r(x)$. Further, we have the following estimate:

$$\int_\Omega |\nabla w_r|^p dx \leq C \left[\int_\Omega |\Phi_r|^p |\nabla u|^p dx + \int_\Omega |u|^p |\nabla \Phi_r|^p dx \right] \leq C \left[\int_\Omega |\nabla u|^p dx + \left(\int_\Omega |u|^{p^*} dx \right)^{p/p^*} \left(\int_\Omega |\nabla \Phi_r|^N dx \right)^{p/N} \right].$$

By noticing $\int_\Omega |\nabla \Phi_r|^N dx \leq \int_{\mathbb{R}^N} |\nabla \Phi|^N dx$ and then using the Sobolev embedding, we obtain

$$\int_\Omega |\nabla w_r|^p dx \leq C_1 \int_\Omega |\nabla u|^p dx,$$

where C_1 is a constant independent of F, r and ε. Therefore,

$$\text{Cap}_p(F \cap B_r(x), \Omega \cap B_{2r}(x)) \leq C_1 \text{Cap}_p(F \cap B_r(x), \Omega) + C_1 \varepsilon.$$

Now as $\varepsilon > 0$ is arbitrary we obtain the desired result.

(ii) For $\Phi \in C^\infty_c(\mathbb{R}^N)$ with $0 \leq \Phi \leq 1$, $\Phi = 0$ on $B_1(0)$ and $\Phi = 1$ on $B_2(0)^c$, we take $\Phi_R(z) = \Phi(\frac{z}{R})$. The rest of the proof is similar to the proof of (i). \hfill \square

Now we consider the map $|G| : D_0^{1,p}(\Omega) \mapsto \mathbb{R}$ defined as $|G|(u) = \int_\Omega |g||u|^p dx$ and state the following proposition.
Proposition 11 Let $g \in \mathcal{H}(\Omega)$. Then G is compact if and only if $|G|$ is compact.

Proof Let $u_n \rightarrow u$ in $\mathcal{D}_0^{1,p}(\Omega)$. Then $u_n \rightarrow u$, $g|u_n|^p \rightarrow g|u|^p$ and $|g||u_n|^p \rightarrow |g||u|^p$ a.e in Ω. Further,

$$|g|u_n|^p| = |g||u_n|^p. \quad (4.9)$$

Now as $g \in \mathcal{H}(\Omega)$, both of $g|u_n|^p$, $g|u|^p$ belong to $L^1(\Omega)$. Since equality occurs in (4.9), a direct application of generalized dominated convergence theorem proves the required equivalence.

Lemma 8 Let $g \in \mathcal{H}(\Omega)$ and $G : \mathcal{D}_0^{1,p}(\Omega) \mapsto \mathbb{R}$ is compact. Then,

(i) if (A_n) is a sequence of bounded measurable subsets such that χ_{A_n} decreases to 0, then $\|g\chi_{A_n}\| \rightarrow 0$ as $n \rightarrow \infty$.

(ii) $\|g\chi_{\Omega}\| \rightarrow 0$ as $n \rightarrow \infty$.

Proof (i) Let (A_n) be a sequence of bounded measurable subsets such that χ_{A_n} decreases to 0. If $\|g\chi_{A_n}\| \rightarrow 0$, then $\exists a > 0$ such that $\|g\chi_{A_n}\| > a, \forall n$ (by the monotonicity of the norm). Thus, $\exists F_n \subset \subset \Omega$ and $u_n \in \mathcal{N}(F_n)$ such that

$$\int_{\Omega} |\nabla u_n|^p \, dx < \frac{1}{a} \int_{F_n \cap \Omega} |g| \, dx \leq \frac{1}{a} \int_{\{|u_n| \geq 1\}} |g||u_n|^p \, dx. \quad (4.10)$$

Since A_n‘s are bounded and χ_{A_n} decreases to 0, it follows that $|A_n| \rightarrow 0$, as $n \rightarrow \infty$. Further, as $g \in L^1(A_1)$, we also have $\int_{F_n \cap \Omega} |g| \, dx \rightarrow 0$. Hence from the above inequalities, $u_n \rightarrow 0$ in $\mathcal{D}_0^{1,p}(\Omega)$. For $0 < \varepsilon < 1$, consider $w_n^\varepsilon = \frac{|u_n|^p}{(|u_n| + \varepsilon)^p |u_n|_D}$. One can check that for each n, $w_n^\varepsilon \in \mathcal{D}_0^{1,p}(\Omega)$ and it is bounded uniformly (with respect to n) in $\mathcal{D}_0^{1,p}(\Omega)$. Thus up to a subsequence, w_n^ε converges weakly to w in $\mathcal{D}_0^{1,p}(\Omega)$ as $n \rightarrow \infty$. Now using the embedding of $\mathcal{D}_0^{1,p}(\Omega)$ into $L^\infty(\Omega)$, we obtain that $\|w_n^\varepsilon\|_{L^\infty} \leq C \frac{|u_n|^p_\varepsilon}{|u_n|^p_\varepsilon}$. Thus $\|w_n^\varepsilon\|_{L^\infty} \rightarrow 0$ as $n \rightarrow \infty$ and hence $w = 0$, i.e., $w_n^\varepsilon \rightarrow 0$ in $\mathcal{D}_0^{1,p}(\Omega)$ as $n \rightarrow \infty$. By the compactness of $|G|$ we infer

$$\lim_{n \rightarrow \infty} \int_{\Omega} |g||w_n^\varepsilon|^p \, dx = 0. \quad \text{On the other hand, for each } n \in \mathbb{N} \text{ and } 0 < \varepsilon < 1,$$

$$\int_{\Omega} |g||w_n^\varepsilon|^p \, dx = \int_{\Omega} \frac{|g||u_n|^p_\varepsilon}{(|u_n| + \varepsilon)^p |u_n|_D} \, dx \geq \int_{\{|u_n| \geq \varepsilon\}} \frac{|g||u_n|^p_\varepsilon}{(2|u_n|)^p |u_n|_D} \, dx \geq \frac{1}{2^{p-2}} \int_{\{|u_n| \geq \varepsilon\}} \frac{|g||u_n|^p}{|u_n|_D} \, dx > \frac{a}{2^{p-2}}$$

which is a contradiction.

(ii) If $\|g\chi_{\Omega}\| \rightarrow 0$, as $n \rightarrow \infty$, then there exists $F_n \subset \subset \Omega$ such that

$$\frac{a}{\text{Cap}_p(F_n, \Omega)} \leq \frac{\int_{F_n \cap B_{r_n}^c} |g| \, dx}{\text{Cap}_p(F_n \cap B_{r_n}^c, \Omega)} \leq \frac{C \int_{F_n \cap B_{r_n}^c} |g| \, dx}{\text{Cap}_p(F_n \cap B_{r_n}^c \cap \Omega \cap \overline{B_{r_n}^c})}.$$
for some $a > 0$ and $C > 0$. Last inequality follows from the part (ii) of Proposition 10. Thus, for each n there exists $z_n \in \mathcal{D}_0^1(\Omega \cap B_{\frac{1}{2}})$ with $z_n \geq 1$ on $F_n \cap B_{\frac{1}{n}}$ such that

$$\int_\Omega |\nabla z_n|^p \, dx \leq \frac{C}{a} \int_{F_n \cap B_{\frac{1}{n}}} |g| \, dx \leq \frac{C}{a} \int_\Omega |g| |z_n|^p \, dx.$$

By taking $w_n = \frac{z_n}{\|z_n\|_D}$ and following a same argument as in (i) we contradict the compactness of $|G|$ and hence, that of G. \hfill \square

Next for $\phi \in C_c^\infty(\Omega)$ we compute C_{ϕ}.

Proposition 12 Let $\phi \in C_c^\infty(\Omega)$. Then $C_{\phi} \equiv 0$.

Proof First notice that for $\phi \in C_c^\infty(\Omega)$,

$$\|\phi \chi_{B_{(r)}}\| = \sup_{F \subset \subset \Omega} \left[\frac{\int_{F \cap B_{(r)}} |\phi| \, dx}{\text{Cap}_p(F, \Omega)} \right] \leq \sup_{F \subset \subset \Omega} \left[\frac{\text{Cap}_p((F \cap B_{(r)})^*)}{\text{Cap}_p((F \cap B_{(r)}))} \right] \cdot \frac{\sup(|\phi|) |(F \cap B_{(r)})^*|}{\text{Cap}_p((F \cap B_{(r)}))}.$$

If d is the radius of $(F \cap B_{(r)})^*$ then

$$\frac{|(F \cap B_{(r)})^*|}{\text{Cap}_p((F \cap B_{(r)}))} = \frac{\omega_N d^N}{N \omega_N \left(\frac{N}{p-1} \right)^{p-1} d^{N-p}} = C(N, p) d^p \leq C(N, p)p^p.$$

Thus, $C_{\phi}(x) = \lim_{r \to 0} \|\phi \chi_{B_{(r)}}\| = 0$. Also, one can easily see that $C_{\phi}(\infty) = 0$ as ϕ has compact support. \hfill \square

Remark 7 In fact, the same arguments as in the above proposition show that $C_g \equiv 0$ if $g \in L^\infty(\Omega)$ and g has compact support.

The next theorem proves Theorem 1, Theorem 2 and Theorem 3 in one shot.

Theorem 8 Let $g \in \mathcal{H}(\Omega)$. Then, the following statements are equivalent:

(i) $G : \mathcal{D}_0^1(\Omega) \to \mathbb{R}$ is compact,

(ii) g has absolute continuous norm in $\mathcal{H}(\Omega)$,

(iii) $g \in \mathcal{F}(\Omega)$,

(iv) $C_g = 0 = C_g(\infty)$.

Proof $(i) \implies (ii) :$ Let G be compact. Take a sequence of measurable subsets (A_n) of Ω such that χ_{A_n} decreases to 0 a.e. in Ω. Part (ii) of Lemma 8 gives $\|g \chi_{B_{\frac{1}{2}}} \| \to 0$, as $n \to \infty$. Choose $\epsilon > 0$ arbitrarily. There exists $N_0 \in \mathbb{N}$, such that $\|g \chi_{B_{\frac{1}{2}}} \| \leq \epsilon$, $\forall n \geq N_0$. Now $A_n = (A_n \cap B_{N_0}) \cup (A_n \cap B_{N_0}^c)$, for each n. Thus,

$$\|g \chi_{A_n}\| = \|g \chi_{A_n \cap B_{N_0}}\| + \|g \chi_{A_n \cap B_{N_0}^c}\| \leq \|g \chi_{A_n \cap B_{N_0}}\| + \epsilon.$$
By part (i) of Lemma 8, there exists $N_1 \geq N_0 \in \mathbb{N}$ such that $\|g_x|_{\Omega} \| \leq \frac{\epsilon}{2}$, $\forall n \geq N_1$ and hence $\|g_x\| \leq \epsilon$ for all $n \geq N_1$. Therefore, g has absolutely continuous norm.

(ii) \implies (iii): Let g has absolute continuous norm in $H(\Omega)$. Then, $\|g_{x_n}\|$ converge to 0 as $m \to \infty$. Let $\epsilon > 0$ be arbitrary. We choose $m_\epsilon \in \mathbb{N}$ such that $\|g_{x_n}\| < \epsilon$, $\forall m \geq m_\epsilon$. Now for any $n \in \mathbb{N}$,

$$g = g_{x|_{[\epsilon] \leq n}} + g_{x|_{[\epsilon] > n}} + g_{x_{m_n}} \iff g_n + h_n,$$

where $g_n = g_{x|_{[\epsilon] \leq n}}$ and $h_n = g_{x|_{[\epsilon] > n}} + g_{x_{m_n}}$. Clearly, $g_n \in L^\infty(\Omega)$ and $|\text{Supp}(g_n)| < \infty$. Furthermore,

$$\|h_n\| \leq \|g_{x|_{[\epsilon] > n}}\| + \|g_{x_{m_n}}\| < \|g_{x|_{[\epsilon] > n}}\| + \epsilon.$$

Now, $g \in L^1_{\text{loc}}(\Omega)$ ensures that $x_{[\epsilon] > n} \to 0$ as $n \to \infty$. As g has absolutely continuous norm, $\|g_{x|_{[\epsilon] > n}}\| < \epsilon$ for large n. Therefore, $\|h_n\| < 2\epsilon$ for large n. Hence, Lemma 7 concludes that $g \in \mathcal{F}(\Omega)$.

(iii) \implies (iv): Let $g \in \mathcal{F}(\Omega)$ and $\epsilon > 0$ be arbitrary. Then, there exists $g_\epsilon \in C_c^\infty(\Omega)$ such that $\|g - g_\epsilon\| < \epsilon$. Thus, Proposition 12 infers that C_{g_ϵ} vanishes. Now as $g = g_\epsilon + (g - g_\epsilon)$, it follows that $C_{g}(x) \leq C_{g_\epsilon}(x) + C_{g - g_\epsilon}(x) \leq \|g - g_\epsilon\| < \epsilon$ and hence $C_{g}^* = 0$. By a similar argument one can show $C_{g}(\infty) = 0$.

(iv) \implies (i): Assume that $C_{g}^* = 0 = C_{g}(\infty)$. Let (u_n) be a bounded sequence in $D^{1,p}_0(\Omega)$. Then by Lemma 6, up to a subsequence, we have

$$\nu_\infty \leq C_H C_{g}(\infty) \Gamma_\infty,$$

$$\|\nu\| \leq C_H C_{g}^{*} \|\Gamma\|,$$

$$\lim_{n \to \infty} \int_{\Omega} |g||u_n|^p \, dx = \int_{\Omega} |g||u|^p \, dx + \|\nu\| + \nu_\infty.$$

As $C_{g}^* = 0 = C_{g}(\infty)$ we immediately conclude that

$$\lim_{n \to \infty} \int_{\Omega} |g||u_n|^p \, dx = \int_{\Omega} |g||u|^p \, dx$$

and hence $G : D^{1,p}_0(\Omega) \mapsto \mathbb{R}$ is compact (Proposition 11).

Remark 8 (Rellich compactness theorem) Let Ω be a bounded domain in \mathbb{R}^N and $g \equiv 1$ on Ω. Then, by Remark 7, $C_{g} \equiv 0$ and hence, by the above equivalence G is compact on $D^{1,p}_0(\Omega)$, i.e., $D^{1,p}_0(\Omega)$ is compactly embedded into $L^p(\Omega)$.

Remark 9 Let $N > p$ and $g(x) = \frac{1}{|x|^p}$ in \mathbb{R}^N. Then for any $r > 0$, using Proposition 3 we get

$$\int_{B_r(0)} \frac{dx}{|x|^p} \leq \frac{(p - 1)^{p-1}}{(N - p)^p}.$$

Thus $C_{g}(0) = \frac{(p-1)^{p-1}}{(N-p)^p}$ and hence $g \notin \mathcal{F}(\mathbb{R}^N)$.

Remark 10 Let $X = (X(\Omega), \|\cdot\|_X)$ be a Banach function space and $f \in X$. Then f is said to have continuous norm in X, if for each $x \in \Omega$, $|f_{x_{B_r(x)}}|$ converges to 0, as $r \to 0$. Observe that by Theorem 8, the set of all functions having continuous norm and the set of all function having absolute continuous norm are one and the same on $H(\Omega)$. However, in [19], authors constructed a Banach function space where these two sets are different.
Now, we recall Maz’ya’s concentration function Π_r, (see Sect. 2.4.2, page 130 of [26]). For $F \subset \Omega$ with $|F| \neq 0$, let $\Pi(F, g, \Omega) := \frac{\int_F |g| \, dx}{\text{Cap}_p(F, \Omega)}$. Then

$$
\Pi_r(x) = \lim_{r \to 0} \sup_{F \subset \Omega} \{ \Pi(g, F, \Omega) \} \leq \frac{\int_V |\chi_{B_r(x)}| \, dx}{\text{Cap}_p(V \cap \Omega)} \leq \sup_{F \subset \Omega} \{ \Pi(g, F, \Omega) \} = \Pi_r^2(x).
$$

The last inequality follows as $V \cap B_r(x)$ is relatively compact in $\Omega \cap B_{2r}(x)$. Taking the supremum over all $V \subset \Omega$ and letting $r \to 0$ we obtain $C_r(x) \leq \Pi_r(x)$. By a similar argument we also get $C_r(\infty) \leq \Pi_r(\infty)$ as required.

Next proposition shows that C_r coincides with Π_r. As C_r measures the concentration using the norm of $\mathcal{H}(\Omega)$, we prefer C_r over Π_r.

Proposition 13 Let $g \in \mathcal{H}(\Omega)$. Then $C_r(x) = \Pi_r(x)$ for all $x \in \Omega$ and $C_r(\infty) = \Pi_r(\infty)$.

Proof First notice that $\Pi_r(x) \leq C_r(x)$, for any $x \in \Omega$ and $\Pi_r(\infty) \leq C_r(\infty)$. On the other hand for $V \subset \Omega$,

$$
\frac{\int_V |g| \chi_{B_r(x)} \, dx}{\text{Cap}_p(V \cap \Omega)} \leq \frac{\int_V |\chi_{B_r(x)}| \, dx}{\text{Cap}_p(V \cap \Omega)} \leq \sup_{F \subset \Omega} \frac{\int_F |g| \, dx}{\text{Cap}_p(F, \Omega)}. \tag{2736}
$$

5 A concentration compactness criteria

Recall that, for $g \in \mathcal{H}(\Omega)$, the best constant B_g in (1.1) is given by

$$
\frac{1}{B_g} = \inf_{u \in G^{-1}(1)} \int_{\Omega} |\nabla u|^p \, dx.
$$

Proof of Theorem 4 Let $(u_n) \in G^{-1}(1)$ be a sequence that minimizes $\int_{\Omega} |\nabla u|^p \, dx$ over $G^{-1}(1)$. Then up to a subsequence, we can assume that $u_n \rightharpoonup u$ in $D^{1,p}_{\text{loc}}(\Omega)$ and $u_n \to u$ a.e. in Ω. Further, $|\nabla u_n - \nabla u|^p \rightharpoonup \Gamma, |\nabla u_n| \rightharpoonup \tilde{\Gamma}, g |u_n - u|^p \to \nu$ in $\mathbb{M}(\mathbb{R}^N)$. Since $u_n \in G^{-1}(1)$, using Lemma 6 we have

$$
1 = \int_{\Omega} g |u|^p \, dx + \|\nu\| + \nu_\infty.
$$

Suppose $\|\nu\|$ or ν_∞ is nonzero. Then C^*_r or $C_r(\infty) \neq 0$, respectively. Now using Hardy–Sobolev inequality and Lemma 6, we obtain the following estimate:
\[1 = B_g \times \lim_{n \to \infty} \int_{\Omega} |\nabla u_n|^p \, dx \geq B_g \left[\int_{\Omega} |\nabla u|^p \, dx + \frac{\|v\|}{Ch_c} + \Gamma_\infty \right] \]
\[\geq B_g \left[\frac{1}{B_g} \int_{\Omega} g|u|^p \, dx + \frac{\|v\|}{Ch_c} + \frac{v_\infty}{Ch_c(\infty)} \right] \]
\[> \frac{B_g}{B_g} \left[\int_{\Omega} g|u|^p \, dx + \|v\| + v_\infty \right], \]
a contradiction. Thus \(\|v\| = 0 = v_\infty \). Therefore, \(\int_{\Omega} g|u|^p \, dx = 1 \) and consequently, \(B_g \) is attained at \(u \).

\(\square \)

Remark 11 For \(g(x) = \frac{1}{|x|^p} \) in \(\mathbb{R}^N \), it is well known that \(B_g \) is not attained in \(D_0^{1,p}(\Omega) \). Further, \(C_g(0) = \frac{(p-1)p^{-1}}{(N-p)p} \) and hence \(C_H C_g = B_g \).

Remark 12 Recall the definition of \(S_g(x) \). In [28], author also considered the following quantities:

\[S_g(x) := \liminf_{r \to 0} \left\{ \int_{\Omega} |\nabla u|^p \, dx : u \in D_0^{1,p}(\Omega \cap B_r(x)), \int_{\Omega} g|u|^p \, dx = 1 \right\}, \]
\(S^*_g \) := \sup_{x \in \Omega} S_g(x),

\[S_g(\infty) := \liminf_{R \to \infty} \left\{ \int_{\Omega} |\nabla u|^p \, dx : u \in D_0^{1,p}(\Omega \cap B_R^c), \int_{\Omega} g|u|^p \, dx = 1 \right\}, \]

\[S_g := \inf \left\{ \int_{\Omega} |\nabla u|^p \, dx : u \in D_0^{1,p}(\Omega), \int_{\Omega} g|u|^p \, dx = 1 \right\}. \]

Since \(S_g(\cdot) \) captures the best constant in the Hardy inequality locally at the points of \(\Omega \) and at the infinity, by (2.2), we have

\[\|g\| \leq \frac{1}{S_g} \leq C_H \|g\|, \quad C_g \leq \frac{1}{S_g} \leq C_g^*, \quad C_g(\infty) \leq \frac{1}{S_g(\infty)} \leq C_H C_g(\infty). \quad (5.1) \]

Therefore, if \(C_H C_g^* < \|g\| \) and \(C_H C_g(\infty) < \|g\| \) then \(S_g < S^*_g \) and \(S_g < S_g(\infty) \). Thus, if in addition \(\sum_{g} \) is countable, then Theorem 4 also follows from Theorem 3.1 of [28]. Therefore, our sufficient condition is slightly weaker than that of [28]. This is mainly because of the gap in the Hardy inequality given in 6 (see (2.2)). However, on the other hand, our sufficient condition assumes \(|\sum_{g}| = 0 \) instead of its countability.

Remark 13 In [28], Smets proved the Mazya’s compactness criteria by showing that \(G \) is compact if and only if \(S^*_g = S_g(\infty) = \infty \). Observe that, one can easily derive this result by using (5.1) together with Theorem 3.

Proof of Theorem 5 Let \(h \in \mathcal{H}(\Omega) \) be nonnegative and \(|\sum_{g}| = 0 \). Take a nonzero, nonnegative \(\phi \in \mathcal{F}(\Omega) \) and \(\epsilon_0 = \frac{(2c_{g-1}) \|h\|}{\|\phi\|} \), then for \(\epsilon > \epsilon_0 \), let \(g = h + \epsilon \phi \). Clearly, \(|\sum_{g}| = 0 \) and
Similarly, we can show \(C_H C_g(\infty) < \|g\| \leq B_g \). Therefore, by Theorem 4, \(B_g \) is attained.

\[C_H C_g^* = C_H C_{g+\epsilon\phi} = C_H C_g^* \leq C_H \|h\| < \frac{\|h\| + \epsilon \|\phi\|}{2} \leq \|g\| \leq B_g. \]

Remark 14 (i). For \(2 \leq k < N \) and for \(z \in \mathbb{R}^N \), we write \(z = (x, y) \in \mathbb{R}^k \times \mathbb{R}^{N-k} \). Now consider \(g(z) = \frac{1}{|z|^p} \) in \(\mathbb{R}^k \times \mathbb{R}^{N-k} \). By Theorem 2.1 of [9], \(g \in \mathcal{H}(\mathbb{R}^N) \) if \(p < k \). Next we show that \(\sum g = \{0\} \times \mathbb{R}^{N-k} \). For any \((0, y) \in \mathbb{R}^k \times \mathbb{R}^{N-k} \) and \(r > 0 \), using the translation invariance of both the integral and the \(\text{Cap}_p \), we have

\[
\int_{B_r(0,y)} g(z) \frac{dz}{\text{Cap}_p(B_r(0,y))} = \frac{1}{|z|^p} \int_{B_r(0,y)} \frac{dz}{\text{Cap}_p(B_r(0,y))} = \frac{1}{\text{Cap}_p(B_r(0,y))}. \]

Now by taking \(r \to 0 \) we have \(C_g(0,0) \geq C \frac{1}{|z|^p} > 0 \) and hence \(\sum g \geq \{0\} \times \mathbb{R}^{N-k} \).

Next for \(z_0 = (x_0, y_0) \in \{0\} \times \mathbb{R}^{N-k} \), let \(0 < r < |x_0| \) Then by Proposition 3, we obtain

\[
\int_{B_r(z_0)} \frac{dz}{\text{Cap}_p(B_r(z_0))} \leq \frac{1}{|x_0| - r} \int_{B_r(z_0)} \frac{dz}{\text{Cap}_p(B_r(z_0))} = \left(\frac{p-1}{N-p} \right)^{r^p} \left(\frac{1}{N(|x_0| - r)^p} \right). \]

Now by taking \(r \to 0 \), we obtain \(C_g(z_0) = 0 \). Hence, \(\sum g \geq \{0\} \times \mathbb{R}^{N-k} \).

(ii). Let \(2 \leq k < N, p < k \). We consider \(g(z) = \frac{1}{|z|^p} \), for \(z = (x, y) \in \mathbb{R}^k \times \mathbb{R}^{N-k} \). In Example 14, we have seen that \(g \in \mathcal{H}(\Omega) \) with \(\sum g \) is uncountable and \(|\sum g| = 0 \). Now choose any \(\phi \in \mathcal{F}(\Omega) \) such that \(\|\phi\| = 2(2C_H - 1)\|g\| \) and consider \(\tilde{g} := g + \phi \). Then, \(\epsilon_0 = \frac{1}{2} \) and hence that \(B_g \) is attained (by Theorem 5). Further, in Example 14, we have seen that \(\sum \tilde{g} \) is also uncountable and \(|\sum \tilde{g}| = 0 \). Thus, \(\tilde{g} \) lies outside the class of functions considered in [28, 30].

Corollary 2 Let \(g \in \mathcal{H}(\Omega) \) with \(g \geq 0 \) and \(|\sum g| = 0 \). If \(C_H \text{dist}(g, \mathcal{F}(\Omega)) < \|g\| \), then \(B_g \) is attained in \(D_0^{1,p}(\Omega) \).

Proof For \(g, h \in L^1_{\text{loc}}(\Omega) \) and \(F \subseteq \Omega \),

\[
\frac{\int_F |g| \chi_{B_r(x)} \, dx}{\text{Cap}_p(F, \Omega)} \leq \frac{\int_F |g - h| \chi_{B_r(x)} \, dx}{\text{Cap}_p(F, \Omega)} + \frac{\int_F |h| \chi_{B_r(x)} \, dx}{\text{Cap}_p(F, \Omega)}. \]

By taking the supremum over all such \(F \) and \(r \) tends to 0, respectively, we obtain \(C_g(x) \leq C_{g-h}(x) + C_h(x) \) and hence

\[
C_g^* \leq C_{g-h}^* + C_h^*. \tag{5.2} \]

Now as \(C_H \text{dist}(g, \mathcal{F}(\Omega)) < \|g\| \), \(\exists \phi \in \mathcal{F}(\Omega) \) such that \(C_H \|g - \phi\| < \|g\| \). Thus by (5.2), \(C_H C_g^* \leq C_H C_{g-h}^* + C_H \|g - \phi\| < \|g\| \leq B_g \) and similarly \(C_H C_g(\infty) < B_g \). Now the result follows from Theorem 4.

Next proposition also gives us another way to produce the Hardy potential for which \(B_g \) is attained in \(D_0^{1,p}(\Omega) \) without \(G \) being compact.

\[\square \] Springer
Proposition 14 Let \(g \in L^1_{\text{loc}}(\Omega) \) be such that \(g^+ \in \mathcal{F}(\Omega) \). Then the best constant \(B_g \) is attained.

Proof Let \((u_n) \) be a sequence that minimizes \(\int_{\Omega} |\nabla u|^p \, dx \) over \(G^{-1}\{1\} \). Then, \((u_n) \) is bounded in \(D^{1,p}_0(\Omega) \) and hence up to a subsequence \(u_n \to u \) in \(D^{1,p}_0(\Omega) \) and \(u_n \to u \) a.e. in \(\Omega \).

Since \(g^+ \in \mathcal{F}(\Omega) \), \(\lim_{n \to \infty} \int_{\Omega} g^+ u_n |u|^p \, dx = \int_{\Omega} g^+ |u|^p \, dx \) (by Theorem 1). Further, \(\int_{\Omega} g^- |u_n|^p \, dx = \int_{\Omega} g^+ |u_n|^p \, dx - 1 \). Now Fatou’s lemma gives \(\int_{\Omega} g^- |u|^p \, dx \leq \int_{\Omega} g^+ |u|^p \, dx - 1 \). Thus, \(1 \leq \int_{\Omega} g |u|^p \, dx \) and hence \(\tilde{u} \) is a required element in \(D^{1,p}_0(\Omega) \) for which the best constant is attained.

Remark 15 The above proposition gives an alternate way to produce examples of weight function \(g \) for which the best constant \(B_g \) is attained without \(G \) being compact. For example, take \(g \) in \(L^1_{\text{loc}}(\Omega) \) with \(g^+ \in \mathcal{F}(\Omega) \) and \(g^- \notin \mathcal{F}(\Omega) \).

Acknowledgement T. V. Anoop would like to thank the Department of Science & Technology, India, for the research grant DST/INSPIRE/04/2014/001865.

References

1. Adimurthi, Chaudhuri, N., Ramaswamy, M.: An improved Hardy-Sobolev inequality and its application. Proc. Amer. Math. Soc., 130(2), 489–505 (electronic), (2002)
2. Aliprantis, C.D., Border, K.C.: Infinite dimensional analysis. Springer, Berlin, third edition, (2006). A hitchhiker’s guide
3. Allegretto, W.: Principal eigenvalues for indefinite-weight elliptic problems in \(\mathbb{R}^n \). Proc. Amer. Math. Soc. 116(3), 701–706 (1992)
4. Alvino, A.: Sulla diseguaglianza di Sobolev in spazi di Lorentz. Boll. Un. Mat. Ital. A (5) 14(1), 148–156 (1977)
5. Anoop, T.V.: Weighted eigenvalue problems for the \(p \)-Laplacian with weights in weak Lebesgue spaces. Electron. J. Differential Equations 2011(64), 1–22 (2011)
6. Anoop, T.V., Das, U., Sarkar, A.: On the generalized Hardy-Rellich inequalities. Proc. Roy. Soc. Edinburgh Sect. A 150(2), 897–919 (2020)
7. Anoop, T.V., Drábek, P., Sasi, S.: Weighted quasilinear eigenvalue problems in exterior domains. Calc. Var. Partial Differ Equ 53(3–4), 961–975 (2015)
8. Anoop, T.V., Lucia, M., Ramaswamy, M.: Eigenvalue problems with weights in Lorentz spaces. Calc. Var. Partial Differ Equ 36(3), 355–376 (2009)
9. Badiale, M., Tarantello, G.: A Sobolev-Hardy inequality with applications to a nonlinear elliptic equation arising in astrophysics. Arch. Ration. Mech. Anal. 163(4), 259–293 (2002)
10. Bennett, C., Sharpley, R.: Interpolation of operators. Pure and applied mathematics, vol. 129. Academic Press Inc, Boston (1988)
11. Bertin, G.: Dynamics of Galaxies. Cambridge University Press, Cambridge (2000)
12. Brézis, H., Lieb, E.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Amer. Math. Soc. 88(3), 486–490 (1983)
13. Brezis, H., Vázquez, J.L.: Blow-up solutions of some nonlinear elliptic problems. Rev. Mat. Univ. Complut. Madrid 10(2), 443–469 (1997)
14. Ciotti, L.: Dynamical models in astrophysics. Lecture Notes, Scuola Normale Superiore, Pisa (2001)
15. Edmunds, D.E., Evans, W.D.: Hardy operators, function spaces and embeddings. Springer monographs in mathematics. Springer, Berlin (2004)
16. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions, Revised Textbooks in Mathematics. CRC Press, Boca Raton (2015)
17. Federer, H.: Geometric measure theory. Die Grundlehren der mathematischen Wissenschaften, vol. 153. Springer, New York (1969)
18. Filippas, S., Tertikas, A.: Optimizing improved Hardy inequalities. J. Funct. Anal. 192(1), 186–233 (2002)
19. Lang, J., Nekvinda, A.: A difference between continuous and absolutely continuous norms in Banach function spaces. Czechoslovak Math. J. 47(122(2)), 221–232 (1997)
20. Lieb, E.H., Loss, M.: Analysis, volume 14 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, second edition, (2001)
21. Lions, P.L.: The concentration-compactness principle in the calculus of variations: The locally compact cases I & II. Ann. Inst. H. Poincaré Anal. Non Linéaire, 1(2), 109–145, 223–283 (1984)
22. Lions, P.L.: The concentration-compactness principle in the calculus of variations: The limit cases I and II. Rev. Mat. Iberoamericana, 1(1), 45–121, 145–201 (1985)
23. Lorentz, G.G.: Some new functional spaces. Ann. of Math. 2(51), 37–55 (1950)
24. Mancini, G., Fabbri, I., Sandeep, K.: Classification of solutions of a critical Hardy-Sobolev operator. J. Differ Equ 224(2), 258–276 (2006)
25. Manes, A., Micheletti, A.M.: Un’estensione della teoria variazionale classica degli autovalori per operatori ellittici del secondo ordine. Boll. Un. Mat. Ital. 4(7), 285–301 (1973)
26. Maz’ja, V.G.: Sobolev spaces. Springer Series in Soviet Mathematics. Springer-Verlag, Berlin, 1985. Translated from the Russian by T. O. Shaposhnikova
27. Rindler, F.: Calculus of variations Universitext. Springer, Cham (2018)
28. Smets, D.: A concentration-compactness lemma with applications to singular eigenvalue problems. J. Funct. Anal. 167(2), 463–480 (1999)
29. Szulkin, A., Willem, M.: Eigenvalue problems with indefinite weight. Studia Math. 135(2), 191–201 (1999)
30. Tertikas, A.: Critical phenomena in linear elliptic problems. J. Funct. Anal. 154(1), 42–66 (1998)
31. Visciglia, N.: A note about the generalized Hardy-Sobolev inequality with potential in $L^{p/d}(\mathbb{R}^n)$. Calc. Var. Partial Diff Equ 24(2), 167–184 (2005)
32. Zaanen, A.C.: An Introduction to the Theory of Integration. North-Holland Publishing Company, Amsterdam (1958)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.