Semi-synthesis and cytotoxicity evaluation of pyrimidine, thiazole, and indole analogues of argentatins A–C from guayule (Parthenium argentatum) resin

Chandrashekhar Madasu¹ • Ya-Ming Xu¹ • E. M. Kittsiri Wijeratne¹ • Manping X. Liu¹ • István Molnár¹ • A. A. Leslie Gunatilaka²

Received: 12 October 2021 / Accepted: 7 December 2021 / Published online: 17 January 2022 © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Argentatins A–C (1–3), the major cycloartane-type triterpenoids of guayule resin, a byproduct of commercial rubber production, were converted into their pyrimidine (7–12), thiazole (13–15), and indole (16–18) analogues by a molecular hybridization approach. The cytotoxic activities of these fused heterocyclic analogues 7–18 were compared with those of argentatins A–C (1–3) against a panel of three sentinel human cancer cell lines [NCI-H460 (non-small cell lung), MCF-7 (breast adenocarcinoma), and SF-268 (central nervous system glioma)], and normal human fibroblast (WI-38) cells. The cytotoxicity data suggest that the pyrimidine analogues 7 and 8 (derived from 1), 9 and 10 (derived from 2), and 12 (derived from 3) had significantly enhanced activity compared to the parent compounds or their thiazole (13–15) and indole (16–18) analogues. These findings indicate that triterpenoid constituents of guayule resin may be exploited to obtain value-added products with potential applications in anticancer drug discovery.

Graphical Abstract

Keywords Guayule resin • Argentatins A–C • Pyrimidine analogues • Thiazole analogues • Indole analogues • Cytotoxic activity

Introduction
Natural products (NPs) continue to be valuable sources of structurally diverse and biologically active compounds for drug discovery [1–3]. Many NPs have also served as promising lead compounds for drug development, especially as anticancer agents, after chemical modifications [4, 5]. Triterpenoids, one of the major classes of NPs, have been reported to exhibit a variety of biological activities [6, 7]. Among these, cycloartane-type triterpenoids are found...
widely in plants and algae, some of which are known to display cytotoxic activity [8, 9]. Cycloartane-type triterpenoids, such as argentatins A–C, have been found to be the major chemical components in *Parthenium argentatum* Gray (guayule) resin [10, 11], which is one of the byproducts of the manufacture of natural rubber from guayule, a widely-investigated arid land crop of potential industrial importance [12–14]. Among argentatins, argentatin A has been found to have antimicrobial activity [15], whereas argentatin B is known to inhibit proliferation of colon (HCT-15) and prostate (PC-3) cancer cells [16]. Detailed studies on argentatin B have revealed that it is a non-competitive inhibitor of 3H-estradiol-binding receptors of hormone-dependent breast cancer [17]. In addition, ring A modification of argentatins A and B have provided several analogues with enhanced cytotoxic activity against some selected cancer cell lines [18, 19]. Therefore, it was of interest to investigate the effect of structural modifications of argentatins A–C (1–3) on their potential anticancer activity for the purpose of obtaining value-added products from this byproduct of guayule rubber production.

Heteroaromatic moieties such as pyrimidines, thiazoles, and indoles are important fragments representing useful pharmacophores for the enhancement of therapeutic activity. Compounds containing these moieties have been found to exhibit a wide variety of biological activities, including anticancer, anti-inflammatory, antimicrobial, anti-HIV, anti-tubercular, antioxidant, and anti-hypertensive activities [20–25]. Molecular hybridization involving the linking of two structural moieties as a single hybrid is an important strategy in medicinal chemistry to enhance biological activity and pharmacokinetic properties [26, 27]. We envisaged that argentatins A–C (1–3) with a carbonyl group at C-3 in ring A and some differences in ring D and the side chain could serve as suitable starting materials for conversion into the corresponding heteroaromatic hybrids which may then display enhanced biological activities. Herein we report the semi-synthesis of novel pyrimidine, thiazole, and indole analogues 7–18 of argentatins A–C (1–3) and the investigation of their cytotoxic activity against three sentinel human cancer cell lines and normal human fibroblast cells.

Results and discussion

Chemistry

Argentatins A–C (1–3) obtained from guayule resin [28], were used for the synthesis of their target pyrimidine, thiazole, and indole analogues as outlined in Schemes 1 and 2. Depicted in Scheme 1 is the synthesis of pyrimidine analogues (7–12). Claisen-Schmidt condensation [22] of 1–3 with benzaldehyde afforded their corresponding benzylidene intermediates 4–6 in 74–77% yield, which were the key precursors for the synthesis of their pyrimidine analogues. Presence of the benzylidene moiety in 4–6 were inferred from their characteristic absorption bands of the α, β-unsaturated carbonyl group at 1678 cm⁻¹ in their IR spectra and the presence of a signal at δC ~208 in their 13C NMR spectra. The stereochemistry of the newly formed double bond was determined to be of E-configuration from the 1H NMR coupling constant (ca. 3.0 Hz) observed for one of the protons at C-1 due to allylic coupling (Jtrans) [29] and by comparison with the 1H NMR data of H2-1 and the olefinic proton of the benzylidene group of 2-arylidenedihydrotestosterones for which E-configuration of the benzylidene double bond has been confirmed by X-ray crystallography [30]. Intermediates 4–6 were separately treated with guanidine hydrochloride, thiourea, and urea in the presence of ethanol KOH under reflux to give crude products which on treatment with DDQ (2,3-dichloro-5,6-dicyano-p-benzoquinone) in dry 1,4-dioxane at room temperature afforded 2′-amino-pyrimidine analogues (7, 9, and 11) in 49–79% yield and the 2′-oxo-3′H-pyrimidine analogues (8, 10, and 12) in 31–58% yield. The structures of pyrimidine analogues were confirmed by the characteristic peaks in their 13C NMR spectra. Signals around δC 175, 166, 161, and 116 ppm in 2′-amino-pyrimidine analogues (7, 9, and 11) were assigned to C-3, C-4′, C-2′ and C-2, respectively by the HMBC correlations of H2-1/C-2, H3-29/C-3, H3-30/C-3, H2-1/C-4′ and H2-1/C-2. The presence of the 2′-amino-pyrimidine moiety in these was further confirmed by the 1H NMR signal (δH 8.50-4.90, brs, 2H) due to the NH₂ group. It is noteworthy that the pyrimidine analogues 8, 10, and 12 exhibited only two 13C NMR signals for the pyrimidine moiety (at δC ~159 and 110–112 ppm), assigned for C-2′ and C-2 respectively, and the chemical shift of C-2 indicated the presence of 2′-oxo-substituted pyrimidine moiety in these [31]. The actual tautomer of pyrimidine moiety was suggested to be 3′H-pyrimidine because C-3 of 10 was detected at δC 164.4 ppm by the HMBC experiment although the signals due to C-3 and C-4′ of the pyrimidine ring were not detected or appeared as very weak peaks [32].

Synthesis of thiazole and indole analogues (13–18) of argentatins A–C (1–3) is outlined in Scheme 2. The target thiazole analogues were obtained by a two-step protocol. Compounds 1–3 were brominated at C-2 by the reaction with liquid bromine in acetic acid at 0 °C–25 °C [18]. The resulting mixture of bromoketones (α and β epimers) were used without further purification for the next step involving cyclization with thiourea [31] in ethanol at reflux temperature to afford fused amino-thiazoles (13–15) in 46–58% yield. The identities of these products were confirmed by their NMR data. The characteristic broad singlet proton
signals at δ_H ~ 4.78 ppm of these in their ^1^H NMR spectra were assigned to the NH2 group, whereas the carbon signals in their ^13^C NMR spectra at δ_C ~164–168 (C-2'), ~154 (C-3), and ~116 (C-2) corresponding to thiazole rings were assigned with the help of HMBC correlations of H2-1/C-3, H2-1/C-2 and H3-29/C-3, H3-30/C-3.

The desired fused indole analogues (16–18) were prepared by Fries indole synthesis [33] involving condensation of argentatins A–C (1–3) with phenylhydrazine hydrochloride in acetic acid at 50 °C. The structures of the resulting indole analogues were confirmed by their NMR data. In their ^1^H NMR spectra, indole aromatic protons appeared as two pairs of doublets (H-2' ~7.29 ppm; H-5' ~7.38 ppm) and two pairs of triplets (H-3' ~7.10 ppm; H-4' ~7.04 ppm), and the NH protons appeared as singlets at δ_H ~7.76 ppm. The ^13^C NMR spectra exhibited eight characteristic signals in the range of δ_C ~108–143 ppm which were assigned by HMBC correlations of H2-1/C-3, H2-1/C-2 and H3-29/C-3, H3-30/C-3. The presence of cyclopropane ring of the argentatin moieties of 16–18 was confirmed by the proton signals at δ_H ~0.5 and 0.7 in their ^1^H NMR spectra and the carbon signals at δ_C ~30 in their ^13^C NMR spectra. The structures of all synthesized compounds were further supported by their HRMS data.

Scheme 1 Synthesis of pyrimidine analogues of argentatins A–C (1–3). Reagents and conditions: (i) EtOH, KOH, benzaldehyde, 45 °C, 12 h; (ii) a. EtOH, KOH, NH2C(=NH)NH2.HCl, reflux, 12 h; b. 1,4 dioxane, DDQ, 25 °C, 1 h; (iii) a. EtOH, KOH, NH2C(=O)NH2 reflux, 12 h; b. 1,4 dioxane, DDQ, 25 °C, 1 h.
Cytotoxicity evaluation

All twelve synthetic analogues (7–18) and their parent argentatins A–C (1–3) were evaluated for their cell proliferation inhibitory activity against a panel of three human sentinel cancer cell lines [NCI-H460 (non-small cell lung cancer), MCF-7 (breast adenocarcinoma), SF-268 (CNS cancer, glioma)] and normal human primary fibroblast (WI-38) cells by using the MTT assay [34]. Doxorubicin and DMSO were used as positive and negative controls, respectively. The results obtained are summarized in Table 1. These results revealed that compounds 7, 8, 9, 10, and 12 were active below a 10 μM concentration against most of the tested cell lines. Interestingly, amino-pyrimidine analogues 7 and 9 and oxo-pyrimidine analogues 8, 10, and 12 showed moderate cytotoxic effect against NCI-H460 and MCF-7 and were about 4–9-fold more active than the parent compounds 1–3. Additionally, the analogue 10 derived from argentatin B (2) showed moderate cytotoxicity against SF-268 cells and was ca. 4-fold more active than the parent compound. Significantly, most of the active compounds exhibited less cytotoxic activity towards the normal human fibroblast (WI-38) cells.

Conclusion

In summary, we designed and synthesized twelve new fused heterocyclic analogues 7–18 of argentatins A–C (1–3) by utilizing the C-3 keto functionality of ring A of the parent compounds. All analogues were evaluated for their cell proliferation inhibitory activity against the three sentinel cancer cell lines NCI-H460, MCF-7, SF-268, and towards normal fibroblast cells, WI-38. The bioassay results demonstrated that the analogues 7, 8, 9, 10, and 12 exhibited enhanced cytotoxic activity against NCI-H460 and

Table 1 Cytotoxicity (IC50) data of argentatins A–C (1–3) and their semi-synthetic analogues (7–12) against selected cancer cell lines and normal human cells

Compound	Cell linesa			
	NCI-H460	SF-268	MCF-7	WI-38
1	31.2 ± 0.0	35.0 ± 0.2	32.8 ± 1.2	41.4 ± 2.8
2	17.5 ± 0.9	31.2 ± 1.7	23.1 ± 0.4	21.0 ± 2.9
3	>35.0	>35.0	>35.0	>35.0
7	4.0 ± 0.8	>10.0	3.8 ± 1.0	9.8 ± 1.0
8	4.4 ± 0.7	>10.0	4.0 ± 0.4	>10.0
9	3.8 ± 0.8	>10.0	5.7 ± 0.6	8.1 ± 1.1
10	3.9 ± 0.3	7.6 ± 0.7	3.6 ± 0.1	5.9 ± 0.5
12	3.4 ± 0.7	>10.0	4.0 ± 0.8	>10.0
Doxorubicin	0.1 ± 0.0	0.4 ± 0.1	0.3 ± 0.1	0.8 ± 0.1

aResults are expressed as Inhibition Concentration (IC50) value in μM; Doxorubicin and DMSO were used as positive and negative controls, respectively; Analogues 11 and 13–17 were inactive against all 3 cancer cell lines and normal cells up to 10.0 μM concentration

Key: NCI-H460 = human non-small cell lung cancer; SF-268 = human CNS cancer (glioma); MCF-7 = human breast cancer; WI-38 = normal human primary fibroblast cells

Scheme 2 Synthetic routes to thiazole and indole analogues of argentatins A–C. Reagents and conditions: (i) a. CH3COOH (1.0 mL), Br2 (1.5 eq), 0–25 °C, 1 h; b. Ethanol (0.5 mL), NH2C(=S)NH2 (1.5 eq), reflux, 12 h; (ii) CH3COOH (1.0 mL), PhNHNH2.HCl (1.5 eq), 50 °C, 5 h
MCF-7 cells compared to the parent argentatins 1–3. Among all compounds tested, the pyrimidine analogue 10 was unique in displaying single-digit micro-molar activity against SF-268 cells. The preliminary structure-activity relationship (SAR) study suggested that the 2′-amino-pyrimidine and 2′-oxy-3′H-pyrimidine derivatives were more active than the thiazole and the indole analogues against the cell lines tested. These findings support the possibility of development of potential anticancer agents from some tri-terpenoid constituents of the guayule resin.

Experimental

Chemistry

General

Reagents for chemical synthesis were purchased from Sigma-Aldrich and Fischer Scientific (USA). All solvents were distilled prior to use. The progress of all reactions was monitored by thin-layer chromatography (TLC) using silica gel 60 F254 plates (Merck). Visualization was accomplished under UV light (254 nm) and spraying with 1% aqueous H2SO4/H2O/CH3CO2H followed by heating. Purification of compounds was carried out by column chromatography using silica gel 40 μm flash chromatography packing (J. T. Baker, Jackson, TN, USA). 1D and 2D NMR spectra were recorded in CDCl3 with a Bruker Avance III 400 spectrometer at 400 MHz and 1H NMR and 100 MHz for 13C NMR using residual CHCl3 as the internal standard. The chemical shift (δ) values are expressed in parts per million (ppm) and coupling constants (J) are given in Hertz (Hz). Optical rotations were measured with a JASCO Dip-370 polarimeter using MeOH as the solvent. Preparative HPLC purification was performed on a Waters Delta Prep 4000 equipped with a PDA 996 detector using a 10 × 250 mm Phenomenex Luna 5 μm C-18 column for reversed-phase (RP) chromatography. High Resolution Mass Spectra (HRMS) were recorded on Agilent G6224A TOF mass spectrometer. The following abbreviations were used to indicate the NMR signals: s = singlet, brs = broad singlet, d = doublet, t = triplet, m = multiplet, J = coupling constant. All compounds used for cytotoxicity assays were purified by HPLC and the purity of each compound was determined to be ≥95% by HPLC analysis.

Isolation and identification of argentatins A–C (1–3)

Argentatins A–C (1–3) used for the semi-synthesis of their analogues 7–18 were obtained from guayule (Parthenium argentatum AZ-2) resin as described previously [28].

General procedure for synthesis of compounds 4–6

To a solution of appropriate compounds 1 (1.0 eq, 50.0 mg), 2 (1.0 eq, 50.0 mg), and 3 (1.0 eq, 60.0 mg) in absolute EtOH (5.0 mL) were added benzaldehyde (2.0 eq) and KOH (2.0 eq), and the resulting mixture was stirred at 45 °C for 12 h. After completion of the reaction (monitored by TLC), it was neutralized with 10% aqueous HCl and extracted (3 x) with EtOAc. The combined organic layer was dried over anhydrous Na2SO4, evaporated under reduced pressure, and the residue was passed through a silica gel column with CH2Cl2-i-PrOH (97:3) and hexane-EtOAc (85:15) as eluents to afford 4 (44.0 mg, 74%), 5 (46.0 mg, 77%), and 6 (46.6 mg, 79%) respectively.

2-benzylidene-(16β,20S,24R)-20,24-epoxy-16,25-dihydroxy-cycloartan-3-one (4) Light yellow solid; [α]D25 +136.0° (c 0.1, CHCl3); IR (KBr) νmax 3394 (O-H), 2970 (C-H), 1775 (C=O, –unsaturated ketone), 1593 (Ar C=), 1461, 1380, 1164 (C-O), 1018, 952, 694 cm⁻¹; 1H NMR (400 MHz, CDCl3): δ 0.44 (d, J = 4.6 Hz, 1H, H-19a), 0.70 (d, J = 4.6 Hz, 1H, H-19b), 0.91 (s, 3H, H3-28), 0.92 (m, 1H, H-6a), 1.07 (s, 3H, H3-29), 1.21 (m, 1H, H-7a), 1.11 (s, 3H, H3-26), 1.17 (s, 3H, H3-30), 1.22 (s, 3H, H3-27), 1.25 (s, 3H, H3-18), 1.38 (m, 1H, H-7b), 1.40 (s, 3H, H3-21), 1.51 (m, 1H, H-15a), 1.60 (m, 1H, H-6b), 1.70 (m, 1H, H-22a), 1.76 (m, 2H, H2-12), 1.98 (m, 1H, H-5), 1.94 (m, 2H, H2-23), 2.03 (m, 1H, H-15b), 2.13 (d, J = 7.8 Hz, 1H, H-17), 2.16 (m, 2H, H2-11), 2.24 (m, 1H, H-22b), 2.51 (d, J = 16.2 Hz, 1H, H-1a), 2.85 (dd, (J = 3.0, 16.2 Hz, 1H, H-1b), 3.82 (t, J = 15.0 Hz, 1H, H-24), 4.59 (m, 1H, H-16), 7.27-7.36 (m, 5H, Ar-H), 7.37 (s, 1H, H-2’); 13C NMR (100 MHz, CDCl3): δ 208.1 (C-3), 135.9 (C-2’), 135.8 (C-2), 130.1 (Ar-C), 128.3 (Ar-C), 128.2 (Ar-C), 87.1 (C-20), 84.5 (C-24), 73.3 (C-16), 70.8 (C-25), 55.6 (C-17), 48.7 (C-4), 48.6 (C-15), 48.4 (C-8), 46.5 (C-14), 46.3 (C-13), 45.4 (C-5), 37.3 (C-22), 36.6 (C-1), 33.1 (C-12), 30.3 (C-19), 27.3 (C-27), 26.2 (C-11), 26.1 (C-26), 25.5 (C-7), 25.3 (C-18), 24.2 (C-30), 24.1 (C-10), 23.7 (C-23), 21.9 (C-26), 21.6 (C-21), 21.3 (C-29), 21.1 (C-21), 20.5 (C-28), 19.3 (C-9); HRESIMS m/z calcd for C37H53O4 561.3941, found 561.3938 [M+H]+.

2-benzylidene-(16β,20R,24R)-16,24-epoxy-25-hydroxy-cycloartan-3-one (5) Light yellow solid; [α]D25 +109.5° (c 0.1, CHCl3); IR (KBr) νmax 3409 (O-H), 2939 (C-H), 1678 (α,β unsaturated ketone), 1593 (Ar C=), 1461, 1377, 1164 (C-O), 1033, 694 cm⁻¹; 1H NMR (400 MHz, CDCl3): δ 0.43 (d, J = 4.0 Hz, 1H, H-19a), 0.70 (d, J = 4.0 Hz, 1H, H-19b), 0.90 (s, 3H, H3-28), 0.91 (d, J = 6.4 Hz, 3H, H3-27), 1.03 (m, 1H, H-7a), 1.08 (s, 3H, H3-29), 1.07 (s, 6H, H3-26, H3-27), 1.13 (s, 3H, H3-18), 1.17 (s, 3H, H3-30),
The reaction mixtures were neutralized with 10% aq. HCl and extracted with EtOAc (3 x 5 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to give crude products. Crude products were then dissolved in dry 1,4-dioxane (2.0 mL). DDQ (1.5 eq) was added and the resulting reaction mixtures were stirred at 25 °C for 1 h (TLC control). The reaction mixtures were then quenched with 10% aq. NaHCO₃ solution, and extracted with EtOAc (3 x 5 mL) and evaporated under vacuo. The resulting residues were purified by column chromatography using silica gel with toluene-EtOAc (90:10) and CH₂Cl₂-i-PrOH (95:5) to afford the argentinatagelines 7 (12.8 mg, 79%), 9 (6.4 mg, 60%), and 11 (10.5 mg, 49%).
1.37 (s, 3H, H-29), 1.54 (m, 1H, H-23a), 1.76 (m, 2H, H-26), 1.57 (m, 1H, H-17), 1.60 (m, 2H, H-12), 1.55 (m, 1H, H-5), 1.85 (m, 1H, H-8), 1.74 (m, 1H, H-22b), 1.97 (d, J = 16.2 Hz, 1H, H-1a), 1.88 (m, 1H, H-15b), 1.90 (m, 1H, H-23b), 2.02 (m, 2H, H-11), 2.03 (m, 1H, H-20), 2.84 (d, J = 16.2 Hz, 1H, H-1b), 3.56 (dd, J = 2.0, 12.7 Hz, 1H, H-24), 4.57 (m, 1H, H-16), 4.85 (Brs, 2H, -NH₂), 7.33-7.45 (m, 5H, Ar-H); ¹³C NMR (100 MHz, CDCl₃) δ 175.2 (C-3), 166.6 (C-4), 160.9 (C-2'), 138.9 (Ar-C), 128.5 (Ar-C), 128.3 (Ar-C), 128.2 (Ar-C), 115.9 (C-2), 82.5 (C-24), 74.8 (C-16), 73.2 (C-25), 57.4 (C-17), 48.5 (C-5), 45.8 (C-14), 45.6 (C-8), 45.6 (C-13), 45.1 (C-15), 42.3 (C-4), 35.4 (C-22), 34.9 (C-1), 32.6 (C-12), 29.8 (C-19), 28.8 (C-20), 27.4 (C-29), 25.7 (C-7), 25.6 (C-10), 25.4 (C-27), 24.3 (C-11), 23.8 (C-26), 23.6 (C-23), 23.4 (C-30), 22.3 (C-6), 20.8 (C-21), 19.7 (C-9), 19.0 (C-28), 19.0 (C-18); HRESIMS m/z calc for C₃₈H₅₄N₃O₂ 584.4216, found 584.4214 [M + H]⁺.

Synthesis of argentatin analogues 8, 10 and 12

To stirred solutions of the appropriate intermediates 4 (1.0 eq, 15.0 mg), 5 (1.0 eq, 16.0 mg), and 6 (1.0 eq, 15.0 mg) in absolute EtOH (1.5 mL) were added urea (2.0 eq) and KOH (2.0 eq), and the resulting mixtures were refluxed for 12 h (TLC control). The reaction mixtures were then neutralized with 10% aq. HCl and extracted with EtOAc (3 × 5 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The resulting residues were dissolved in dry 1,4-dioxane (2.0 mL), DDQ (1.5 eq) was added and stirred at 25°C for 1 h (TLC control). The reaction mixtures were quenched with 10%aq. NaHCO₃ solution, extracted with EtOAc (3 × 5 mL), dried (anhydrous Na₂SO₄), and evaporated under reduced pressure to provide the crude products which were then purified by column chromatography using silica gel eluting with toluene-EtOAc (15:10) and CH₂Cl₂-i-PrOH (95:10) to afford the argentatin analogues 8 (5.0 mg, 31%), 10 (10.0 mg, 58%), and 12 (6.5 mg, 40%).

(16β,20S,24R)-16,24,25-trihydroxy-2′-amino-4′-phenyl-pyrimidino[5′,6′:2,3]cycloartane (8) White solid; [α]D²⁰ +127.0° (c 0.1, MeOH); IR (KBr) νmax 3504 (O-H), 3406 (N-H), 2933 (C-H), 1622, 1556 (Ar = C = C), 1456, 1380, 1022, 702 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.32 (d, J = 4.2 Hz, 1H, H-19a), 0.64 (d, J = 4.2 Hz, 1H, H-19b), 0.87 (d, J = 6.3 Hz, 3H, H₃-21), 0.90 (s, 3H, H₃-28), 1.12 (s, 3H, H₃-26), 1.14 (s, 3H, H-18), 1.18 (s, 1H, H-22a), 1.19 (s, 6H, H₃-30, H-27), 1.20 (m, 1H, H-23a), 1.38 (m, 1H, H-15a), 1.42 (m, 1H, H-23b), 1.37 (s, 3H, H₃-29), 1.59 (m, 2H, H₂-6), 1.60 (m, 1H, H-5), 1.62 (m, 2H, H₂-12), 1.64 (m, 1H, H-17), 1.77 (m, 1H, H-22b), 1.80 (m, 1H, H-27), 1.86 (m, 1H, H-20), 1.98 (d, J = 16.5 Hz, 1H, H-1a), 1.97 (m, 1H, H-8), 2.04 (m, 2H, H₂-11), 2.08 (m, 1H, H-15b), 2.85 (d, J = 16.2 Hz, 1H, H-1b), 3.55 (dd, 1H, H-24), 4.47 (m, 1H, H-16), 4.82 (brs, 2H, -NH₂), 7.33-7.43 (m, 5H, Ar-H); ¹³C NMR (100 MHz, CDCl₃) δ 175.3 (C-3), 166.5 (C-4'), 160.8 (C-2'), 138.6 (Ar-C), 128.6 (Ar-C), 128.1 (Ar-C), 115.8 (C-2), 75.2 (C-24), 72.8 (C-25), 72.6 (C-16), 56.7 (C-17), 48.8 (C-5), 47.5 (C-15), 46.4 (C-8), 45.6 (C-14), 45.1 (C-13), 42.3 (C-4), 34.8 (C-1), 32.5 (C-12), 31.1 (C-22), 29.6 (C-19), 27.2 (C-27), 26.5 (C-20), 26.3 (C-11), 26.1 (C-7), 25.6 (C-23), 25.5 (C-10), 24.2 (C-26), 23.5 (C-29), 22.7 (C-6), 22.2 (C-30), 20.0 (C-9), 19.0 (C-18, C-28), 17.6 (C-21); HRESIMS m/z calc for C₃₈H₅₆N₃O₃ 604.4205, found 604.4216 [M + H]⁺.

(16β,20S,24R)-16,24-epoxy-25-hydroxy-2′-amino-4′-phenyl-3′ H-pyrimidino[5′,6′:2,3]cycloartane (10) White solid; [α]D²⁰ +34.2° (c 0.1, MeOH); IR (KBr) νmax 3427 (O-H), 2939 (C-H), 1645 (C = O), 1600 (Ar = C = C), 1450, 1379, 1110 (C-O), 1056 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.33 (d, J = 4.4 Hz, 1H, H-19a), 0.63 (d, J = 4.4 Hz, 1H, H-19b), 0.86 (d, J = 6.4 Hz, 3H, H₃-21), 0.87 (s, 3H, H₃-28), 1.09 (s, 3H, H₃-18), 1.06 (s, 6H, H₃-26, H-27), 1.16 (m, 1H, H-7a), 1.37 (s, 3H, H₃-30), 1.38 (m, 1H, H-22a), 1.40 (m, 1H, H-7b), 1.48 (m, 1H, H-15a), 1.52 (s, 3H, H₃-29), 1.54 (m, 1H, H-23a), 1.76 (m, 2H, H₂-6), 1.57 (m, 1H, H-17), 1.60 (m, 2H, H₂-12), 1.55 (m, 1H, H-5), 1.85 (m, 1H, H-8), 1.74 (m, 1H, H-22b), 1.88 (d, J = 16.2 Hz, 1H, H-1a), 1.88 (m, 1H, H-15b), 1.90 (m, 1H, H-23b), 2.02 (m, 2H,
Synthesis of argentatin analogues 13, 14, and 15

To each of the stirred solutions of 1 (10.0 mg, 1.0 eq), 2 (10.0 mg, 1.0 eq.), and 3 (1.0 eq, 15.0 mg) in CH₃CO₂H (1.0 mL) was added a bromine solution (1.5 eq) and the resulting mixtures were stirred at 0–25 °C for 1 h (TLC control). The reaction mixtures were quenched with (10%)aq. NaHCO₃ solution and extracted with EtOAc (3 × 5 mL). The combined EtOAc extracts were dried (anhydrous Na₂SO₄) and concentrated under reduced pressure. The resulting residues were dissolved in absolute EtOH (0.5 mL) to which thiourea (1.5 eq) was added and refluxed for 12 h (TLC control). The reaction mixtures were extracted with EtOAc (3 × 5 mL), dried (anhydrous Na₂SO₄), and evaporated under reduced pressure. The residues thus obtained were purified by column chromatography using silica gel. Elution with hexane-EtOAc (60-40) followed by CH₂Cl₂-i-PrOH (90-10) afforded the argentatin analogues 13 (6.5 mg, 58%), 14 (6.0 mg, 53%), and 15 (5.2 mg, 46%).
Phenyldiazine hydrochloride (1.5 eq) was added to stirred solutions of I (10.0 mg, 1.0 eq), 2 (15.0 mg, 1.0 eq) and 3 (10.0 mg, 1.0 eq) in CH₂CO₂H (1.0 mL) at 25 °C, warmed up to 60°C and stirred at this temperature for 5 h (TLC control). The reaction mixtures were then washed with 10% aq. NaHCO₃ solution and extracted with EtOAc (3 × 5 mL). The combined organic layers were dried (anhydrous Na₂SO₄) and concentrated under reduced pressure to give crude products, which were purified by column chromatography using silica gel and eluting with toluene-EtOAc (90:10) and CH₂Cl₂-n-ProOH (96:4) to afford the argentinan analogues 16 (8.6 mg, 74%), 17 (10.0 mg, 57%), and 18 (7.8 mg, 68%).

(16β,20R,24R)-16,24,25-trihydroxy-2'-amino-1,3-thiazolo-[2,3-c] cycloartane (15) White solid; [α]D²⁵ +137 (c 0.1, MeOH); IR (KBr) νmax 3421 (O-H), 3340 (N-H), 2931 (C-H), 1627 (C=O), 1614, 1538, 1450 (C-O), 1406, 1377, 1243 (C=O), 1217, 1189, 1142 (C-O), 1132, 1019, 941, 821 (C-O), 736, 695, 645 (C-O), 575, 467 (C-O), 403 (C-H), 361 (C-H), 307 (C-H)

Synthesis of argentatin analogues 16, 17 and 18

(16β,20R,24R,26R)-16,20,24-trihydroxy-1'H-indolono[3,2-b]cycloartane (16) White solid; [α]D²⁵ +134 (c 0.1, MeOH); IR (KBr) νmax 3417 (O-H), 2958 (C-H), 1461, 1384, 1180, 1103, 740 cm⁻¹; 1H NMR (400 MHz, CDCl₃):

δ 0.50 (d, J = 4.4 Hz, 1H, H-19a), 0.72 (d, J = 4.4 Hz, 1H, H-19b), 0.91 (m, 1H, H-6a), 0.96 (s, 3H, H₂-27), 1.10 (m, 1H, H-7a), 1.13 (s, 3H, H₂-26), 1.23 (s, 3H, H₂-30), 1.24 (s, 3H, H₂-27), 1.30 (s, 3H, H-18), 1.32 (s, 3H, H₂-29), 1.43 (m, 1H, H-7b), 1.47 (s, 3H, H₃-21), 1.57 (m, 1H, H-15a), 1.74 (m, 1H, H-22a), 1.77 (m, 1H, H-6b), 1.78 (m, 1H, H-5), 1.84 (m, 2H, H-12), 1.96 (m, 2H, H₂-23), 1.98 (m, 1H, H-8), 2.08 (m, 1H, H-15b), 2.18 (d, J = 7.5 Hz, 1H, H-17), 2.26 (d, J = 15.2 Hz, 1H, H-1a), 2.28 (m, 1H, H-22b), 2.31 (m, 2H, H₂-11), 2.90 (d, J = 15.2 Hz, 1H, H-1b), 3.86 (t, J = 7.7 Hz, 1H, H-24), 4.62 (ddd, J = 12.7, 7.7, 5.0 Hz, 1H, H-16), 7.04 (t, J = 7.0 Hz, 1H, H-4'), 7.10 (t, J = 7.0 Hz, 1H, H-3'), 7.29 (d, J = 7.6 Hz, 1H, H-2'), 7.38 (d, J = 7.6 Hz, 1H, H-5'), 7.79 (s, 1H, NH-1); 13C NMR (100 MHz, CDCl₃): δ 142.9 (C-3), 135.8 (C-6'), 127.6 (C-7'), 121.0 (C-3'), 118.9 (C-4'), 117.8 (C-5'), 115.0 (C-2'), 108.1 (C-2), 87.3 (C-20), 84.5 (C-24), 73.5 (C-16), 70.9 (C-25), 55.6 (C-17), 48.8 (C-15), 48.7 (C-5), 46.7 (C-8), 46.6 (C-14), 46.3 (C-13), 36.5 (C-4), 37.4 (C-22), 33.3 (C-12), 30.6 (C-19), 29.9 (C-1), 27.5 (C-29), 27.3 (C-27), 26.2 (C-26), 26.1 (C-7, C-11), 25.7 (C-18), 25.3 (C-10), 24.1 (C-30), 23.8 (C-23), 21.2 (C-6), 21.3 (C-21), 20.6 (C-28), 19.3 (C-9); HREIMS m/z calculated for C₃₆H₅₂NO₃ 546.3947, found 546.3940 [M + H]⁺.
(16β,20R,24R)-16,24,25-trihydroxy-1'H-indolo[3,2-b]cycloartane (18) White solid; [α]D25 +111.0° (c 0.1, MeOH); IR (KBr) νmax 3174 (O-H), 2939 (C-H), 1465, 1380, 1180, 1053, 740 cm−1; 1H NMR (400 MHz, CDCl3): δ 0.50 (d, J = 4.2 Hz, 1H, H-19a), 0.71 (d, J = 4.2 Hz, 1H, H-19b), 0.95 (d, J = 6.1 Hz, 3H, H3-21), 0.96 (s, 3H, H3-28), 0.98 (m, 1H, H-6a), 1.13 (m, 1H, H-22a), 1.16 (s, 3H, H3-26), 1.20 (s, 3H, H3-18), 1.21 (s, 3H, H3-27), 1.23 (s, 3H, H3-30), 1.26 (m, 1H, H-7a), 1.32 (s, 3H, H-29), 1.38 (m, 1H, H-15a), 1.44 (m, 1H, H-7b), 1.60 (m, 2H, H2-23), 1.64 (m, 1H, H-5), 1.70 (m, 1H, H-17), 1.74 (m, 2H, H2-12), 1.80 (m, 1H, H-6b), 1.90 (m, 1H, H-22b), 1.95 (m, 1H, H-20), 1.98 (m, 1H, H-8), 2.14 (m, 1H, H-15b), 2.26 (d, J = 15.5 Hz, 1H, H-1a), 2.28 (m, 2H, H2-11), 2.90 (d, J = 15.5 Hz, 1H, H-1b), 3.58 (dd, δ = 7.2 Hz, 1H, H-1′), 4.50 (m, 1H, H-16), 7.03 (t, J′ = 6.8 Hz, 1H, H-4′), 7.10 (t, J′ = 7.2 Hz, 1H, H-3′), 7.29 (d, J = 7.2 Hz, 1H, H-2′), 7.38 (d, J = 7.2 Hz, 1H, H-5′), 7.76 (s, 1H, NH-1′); 13C NMR (100 MHz, CDCl3): δ 142.8 (C-3), 135.8 (C-6′), 127.6 (C-7′), 120.9 (C-3′), 119.8 (C-4′), 117.8 (C-5′), 110.5 (C-2′), 108.1 (C-2), 75.2 (C-24), 73.0 (C-16, C-25), 56.8 (C-17), 48.9 (C-5), 48.1 (C-15), 46.7 (C-14), 46.6 (C-8), 45.3 (C-13), 36.6 (C-4), 32.8 (C-12), 31.1 (C-22), 30.4 (C-19), 29.9 (C-1), 27.5 (C-29), 26.8 (C-27), 26.6 (C-20), 26.2 (C-23), 25.9 (C-7), 25.8 (C-11), 24.7 (C-10), 24.1 (C-30), 23.2 (C-26), 21.3 (C-6), 20.2 (C-28), 19.6 (C-18), 19.5 (C-9), 17.7 (C-21); HRESIMS m/z calc for C36H54NO3 548.4104, found 548.4103 [M + H]+.

Cytotoxicity evaluation

Cytotoxic activity of test compounds was determined in a panel of human non-small cell lung (NCI-H460), human CNS glioma (SF-268), human breast (MCF-7) and normal cells (WI 38) using the dye-reduction (MTT) assay as described previously [34]. Doxorubicin and DMSO were used as positive and negative controls, respectively. The test compounds were dissolved in DMSO and diluted to the desired concentrations in culture medium and were added to 96-well plates. After 72 h, incubation at 37 °C in a CO2 incubator, dye solution MTT [3-(4, 5-dimethylthiazol-2-yl)-2,5- diphenyl tetrazolium bromide] was added to each well (1:10 dilution). After agitation, incubation was continued for 4 h at 37 °C in a CO2 incubator. The supernatant liquid from each well was carefully removed, and the resulting formazan crystals were dissolved in DMSO. The absorbance in each well was read using a microplate reader at 570 nm (with reference set to 650 nm).

Acknowledgements This project was supported by the USDA-NIFA (Grant # 2017-68005-26867; Kimberly Ogden, PI) and Hatch projects ARZT-1005072 (AALG) and ARZT-1361640-H12-224 (IM), and the University of Arizona College of Agriculture. Any opinions, findings, conclusions, or recommendations expressed in this publication/work are those of the authors and do not necessarily reflect the view of the U.S. Department of Agriculture. We thank Dr. Lijiang Xuan, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, P. R. China for HRMS data.

Compliance with ethical standards

Conflict of interest IM has disclosed financial interests in TEVA Pharmaceuticals Hungary and the University of Debrecen, Hungary, which are unrelated to the subject of the research presented here. All other authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

1. Butler MS. The role of natural product chemistry in drug discovery. J Nat Prod. 2004;67:2141–53. https://doi.org/10.1021/np040106y
2. Newman DJ, Cragg GM. Natural products as sources of new drugs from 1981 to 2014. J Nat Prod. 2016;79:629–61. https://doi.org/10.1021/acs.jnatprod.5b01055
3. Kingston DO. Modern natural products drug discovery and its relevance to biodiversity conservation. J Nat Prod. 2011;74:496–511. https://doi.org/10.1021/np100550h
4. Butler MS. Natural products to drugs: natural product derived compounds in clinical trials. Nat Prod Rep. 2005;22:475–516. https://doi.org/10.1039/B514294F
5. Newman DJ, Natural products as leads to potential drugs: an old process or the new hope for drug discovery. J Med Chem. 2008;51:2589–99. https://doi.org/10.1021/jm070409O
6. Salvador JAR, Moreira VM, Gonçalves BMF, Leal AS, Jing Y. Urans-type pentacyclic triterpenoids as useful platforms to discover anticancer drugs. Nat Prod Rep. 2012;29:1463–79. https://doi.org/10.1039/C2NP20060K
7. Petronelli A, Pannitteri G, Testa U. Triterpenoids as new promising anticancer drugs. Anticancer Drugs. 2009;20:880–92. https://doi.org/10.1097/CAD.0b013e328330f890
8. Rahim A, Saito Y, Miyake K, Goto M, Chen CH, Alam G, et al. Kleinhospitine E and cycloartane triterpenoids from Kleinhovia hospita. J Nat Prod. 2018;81:1619–27. https://doi.org/10.1021/aacs.jnatprod.8b00211
9. Banjar MFS, Mohamed GA, Shehata IA, Abdallah HM, Shatid AA, Alalfiidi MY, et al. Cycloschimperols A and B, new cytotoxic cycloartane triterpenoids from Euphorbia schimperi. Phytochem Lett. 2019;32:90–95. https://doi.org/10.1016/j.phytol.2019.05.008
10. Vivar AR, Vázquez MM, Matsubara C, Sánchez GP, Nathan PJ. Triterpenes in Parthenium argentatum, structures of argentatins C and D. Phytochemistry 1990;29:915–22. https://doi.org/10.1016/S0031-1823(00)00527-3
11. Komoroski RA, Gregg EC, Shockcor JP, Geckle JM. Identi-
14. Maatoq GT, Gamal AAHE, Furbacher TR, Cornuelle TL, Hoffmann JJ. Triterpenoids from Parthenium argentatum s. P. tomentosum. Phytochemistry. 2002;60:755–60. https://doi.org/10.1016/S0031-9422(02)00166-8

15. Martínez VM, Martínez R, Perez GE, Díaz M, Sanchez H. Antimicrobial properties of argentatin A, isolated from Parthenium argentatum. Fitoterapia 1994;65:371–2.

16. Flores EA, Franco AEB, López PG, Marure RL, Vázquez MM. Argentatin B inhibits proliferation of prostate and colon cancer cells by inducing cell senescence. Molecules. 2015;20:21125–37. https://doi.org/10.3390/molecules201219757

17. Calzada L, Salazar EL, Tellez J, Martínez M, Martínez R. Effect of tetracyclic triterpenes (argentatins A, B and D) on the estradiol receptor of hormone-dependent tumors of human breast. Med Sci Res. 1995;23(12):815–6.

18. Delgado HP, Apan TR, Vázquez MM. Synthesis of argentatin A derivatives as growth inhibitors of human cancer cell lines in vitro. Bioorg Med Chem Lett. 2005;15:1005–8. https://doi.org/10.1016/j.bmcl.2004.12.038

19. Delgado HP, Compadre CM, Apan TR, Fambuena MJM, Compadre RL, Wegman PO, et al. Synthesis and comparative molecular field analysis (CoMFA) of argentatin B derivatives as growth inhibitors of human cancer cell lines. Bioorg Med Chem. 2006;14:1889–901. https://doi.org/10.1016/j.bmc.2005.10.038

20. Singh R, Choudin A. An overview of biological importance of pyrimidines. World J Pharm Pharm Sci. 2014;3(12):574–97.

21. Mallavadhan UV, Chandrashekhar M, Nayak VL, Ramakrishna S. Synthesis and anticancer activity of novel fused pyrimidine hybrids of myrrhanone C, a bicyclic triterpene of Commiphora mukul gum resin. Mol divers. 2015;19:745–57. https://doi.org/10.1007/s11030-015-9621-3

22. Chandrashekhar M, Sagarika G, Ramakrishna S, Uppuluri VM. Synthesis and anti-inflammatory activity of some novel pyrimidine hybrids of myrrhanone A, a bicyclic triterpene of Commiphora mukul gum resin. Monatsh Chem. 2017;148:2183–93. https://doi.org/10.1007/s00706-017-2024-7

23. Nevagi RJ. Biological and medicinal significance of 2-aminothiazoles. Der Pharm Lett. 2014;6(5):134–50. https://www.scholarsresearchlibrary.com/articles/biological-and-medicinal-significance-of-2aminothiazoles.pdf

24. Borková L, Frydrych I, Jakubcová N, Adánek R, Lišková B, Gurská S, et al. Synthesis and biological evaluation of triterpenoid thiazoles derived from betulonic acid, dihydrobetulonic acid, and ursolic acid. Eur J Med Chem. 2020;185:111806 https://doi.org/10.1016/j.ejmech.2019.111806

25. Sayed MTE, Hamdy NA, Osman DA, Ahmed KM. Indoles as anticancer agents. Adv Mod Onco Res. 2015;1:20–35. https://doi.org/10.18282/amor.v1i1.12

26. Bosquesi PS, Melo TRF, Vizzioli EO, dos Santos JL, Chung MC. Anti-inflammatory drug design using a molecular hybridization approach. Pharmaceuticals. 2011;4:1450–74. https://doi.org/10.3390/ph411450

27. Ren Y, Ma Y, Cherukupalli T, Tavis JE, Menéndez-Arias L, Liu X, et al. Discovery and optimization of benzenesulfonamides-based hepatitis B virus capsid modulators via contemporary medicinal chemistry strategies. Eur J Med Chem. 2020;206:112714 https://doi.org/10.1016/j.ejmech.2020.112714

28. Xu YM, Madaus C, Liu MX, Wijeratne EMK, Dierig D, White B, et al. Cycloartane and lanostane-type triterpenes from the resin of Parthenium argentatum AZ-2, a byproduct of guayule rubber production. ACS Omega. 2021;6:15484–98. https://doi.org/10.1021/acsomega.1c01714

29. Baily WF, Ovaska TV. Alloyclic proton-proton coupling in stereo-defined alkylideneoctaheterobutanes and alkylideneoctacyclooctabutanes. J Mex Chem Soc. 2009;53:139–42. http://www.scielo.org.mx/pdf/jmcs/v53n3/v53n3a10.pdf

30. Kiss MA, Peñina M, Bazgier V, May NV, Baji A, Jordà R, et al. Synthesis of dihydrotestosterone derivatives modified in the A-ring with (hetero)arylidene, pyrazolo[1,5-α]pyrimidine and triazolo[1,5-α]pyrimidine moieties and their targeting of the androgen receptor in prostate cancer. J Steroid Biochem Mol Biol. 2021; 105904. https://doi.org/10.1016/j.jsbmb.2021.105904

31. Barlin GB, Brown DJ, Fenn MD. Carbon-13 nuclear magnetic resonance spectra in the identification of N-, O- or S-methyl derivatives of some tautomeric hydroxy and mercapto nitrogen heterocycles. Aust J Chem. 1984;37:2391–5. https://doi.org/10.1071/CH9842391

32. Baji Á, Kiss T, Wöllfling J, Kovács D, Ignaz N, Gopisetty MK, et al. Multicomponent access to androstano-arylpyrimidines under microwave conditions and evaluation of their anti-cancer activity in vitro. J Steroid Biochem Mol Biol. 2017;172:79–88. https://doi.org/10.1016/j.jsbmb.2017.06.001

33. Wu Q, Wang R, Shi Y, Li W, Li M, Chen P, et al. Synthesis and biological evaluation of panaxatriol derivatives against myocardial ischemia/reperfusion injury in the rat. Eur J Med Chem. 2020;206:111729 https://doi.org/10.1016/j.ejmech.2019.111729

34. Wijeratne EMK, Bashyal BP, Liu MX, Rocha DD, Gunaherath GMKB, ÜRen JM, et al. ent-kaurane diterpenoids from endolichenic fungal strains Geopyxis aff. majalis and Geopyxis sp. AZ0066: Structure-activity relationships of geopyxins and their analogues. J Nat Prod. 2012;75:361–9. https://doi.org/10.1021/np200769q