Hopf surfaces in locally conformally Kähler manifolds with potential

Liviu Ornea¹ and Misha Verbitsky²

Abstract
An LCK manifold with potential is a quotient M of a Kähler manifold X equipped with a positive plurisubharmonic function f, such that the monodromy group acts on X by holomorphic homotheties and maps f to a function proportional to f. It is known that a compact M admits an LCK potential if and only if it can be holomorphically embedded to a Hopf manifold. We prove that any non-Vaisman, compact LCK manifold with potential contains a complex surface (possibly singular) with normalization biholomorphic to a Hopf surface H. Moreover, H can be chosen non-diagonal, hence, also not admitting a Vaisman structure.

Contents

1 Introduction: LCK manifolds
2 The form ω_0 on a compact LCK manifold with potential
3 Hopf surfaces in LCK manifolds with potential
 3.1 Complex surfaces of Kähler rank 1
 3.2 Algebraic groups and the Jordan-Chevalley decomposition
 3.3 Finding surfaces in LCK manifolds with potential

1 Introduction: LCK manifolds

Let (M, I) be a complex manifold, $\text{dim}_\mathbb{C} M \geq 2$. It is called locally conformally Kähler (LCK) if it admits a Hermitian metric g whose fundamental 2-form $\omega(\cdot, \cdot) := g(\cdot, I \cdot)$ satisfies

$$d\omega = \theta \wedge \omega, \quad d\theta = 0,$$

(1.1)

¹Partially supported by CNCS UEFISCDI, project number PN-II-ID-PCE-2011-3-0118.
²Partially supported by the Russian Academic Excellence Project '5-100', FAPERJ E-26/202.912/2018 and CNPq - Process 313608/2017-2.

Keywords: locally conformally Kähler, potential, Hopf manifold, Vaisman manifold.

2000 Mathematics Subject Classification: 53C55.
for a certain closed 1-form θ called the Lee form.

Definition 1.1 is equivalent to the existence of a covering \tilde{M} endowed with a Kähler metric Ω which is acted on by the deck group $\text{Aut}_M(\tilde{M})$ by homotheties. Let

$$\chi : \text{Aut}_M(\tilde{M}) \rightarrow \mathbb{R}^{>0}, \quad \chi(\tau) = \frac{\tau^*\Omega}{\Omega},$$

be the group homomorphism which associates to a homothety its scale factor.

For definitions and examples, see [DO] and our more recent papers.

An LCK manifold (M, ω, θ) is called Vaisman if $\nabla \theta = 0$, where ∇ is the Levi-Civita connection of g. The main example of Vaisman manifold is the diagonal Hopf manifold ([OV3]). The Vaisman compact complex surfaces are classified in [Be].

Note that there exist compact LCK manifolds which do not admit Vaisman metrics. Such are the LCK Inoue surfaces, [Be], the Oeljeklaus-Toma manifolds, [Kas], and the non-diagonal Hopf manifolds, [OV3].

It is known that on any Vaisman manifold with Lee form normalized to have length 1, the following formula holds, [Va2], [DO]:

$$d\theta^c = \theta \wedge \theta^c - \omega, \quad \text{where} \quad \theta^c(X) = -\theta(I X).$$

Moreover, one can see, [Ve], that the (1,1)-form $\omega_0 := -d^c\theta$ is semi-positive definite, having all eigenvalues positive, but one which is 0.

An LCK manifold is called with potential if it admits a Kähler covering on which the Kähler metric has a global and positive potential function which is acted on by holomorphic homotheties by the deck group. Among the examples: all Vaisman manifolds, but also non-Vaisman ones, such as the non-diagonal Hopf manifolds, [OV1], [OV4]. On the other hand, there exist compact LCK manifolds which cannot admit LCK potential, e.g. Inoue surfaces (see [OV1]) and their higher dimensional analogues, the Oeljeklaus-Toma manifolds, see Corollary 3.11.

One can prove, [OV4], that on a compact manifold, a positive, automorphic potential can always be deformed to a proper positive, automorphic potential. The existence of such a potential is equivalent with the image of the character χ being isomorphic with \mathbb{Z}. In this case, the LCK manifold with potential is called of LCK rank 1.

On the Kähler covering of an LCK manifold with potential, one has $\pi^*\omega = \psi^{-1} d d^c \psi$, where the potential is $\psi = e^{-\nu}$ and the Lee form is $\pi^*\theta = d\nu$. Hence we have ([OV2], also [AD]):

The eigenvalues of a Hermitian form η are the eigenvalues of the symmetric operator L_η defined by the equation $\eta(x, I y) = g(Lx, y)$.
Claim 1.1: Equation (1.3) is satisfied on LCK manifolds with potential.

The aim of this paper is to prove that any compact non-Vaisman LCK manifold with potential contains a complex surface (possibly singular) with normalization biholomorphic to a Hopf surface which is non-diagonal (this is the same as being non-Vaisman). As an application, we show that a compact LCK manifold with potential \((M, \omega, \theta)\) is Vaisman if and only if the form \(d^c \theta\) is sign semi-definite.

2 The form \(\omega_0\) on a compact LCK manifold with potential

In general, on an LCK manifold \(M\) with potential \(\psi\) on \(\tilde{M}\), the norm (w.r.t. the LCK metric) of the Lee form \(d\psi\) is not constant. The constancy of the norm of the Lee form is equivalent to the LCK metric being Gauduchon (see Proposition 2.3 below) and Vaisman, as shown in [MM].

Definition 2.1: On a complex manifold of complex dimension \(n\), a Hermitian metric whose Hermitian 2-form \(\omega\) satisfies the equation \(\partial \bar{\partial} \omega^{n-1} = 0\) is called Gauduchon.

Remark 2.2: On a compact Hermitian manifold, a Gauduchon metric exists in each conformal class and it is unique up to homothety. Moreover, it is characterized by the co-closedness of its Lee form. A Vaisman metric is a Gauduchon metric in its conformal class, [G].

Proposition 2.3: Let \((M, \omega, \theta)\) be a compact LCK manifold with potential. Then the LCK form \(\omega\) is Gauduchon if and only if \(|\theta| = \text{const.}\)

Proof: The Hermitian form \(\omega\) is Gauduchon if and only if \(dd^c \omega^{n-1} = 0\).

We compute \(dd^c \omega^{n-1}\) using equation (1.3) which is satisfied on an LCK manifold with potential (Claim 1.1). This gives

\[
 dd^c \omega^{n-1} = (n-1)^2 \omega^{n-1} \wedge \theta \wedge \theta^c + (n-1) \omega^{n-1} \wedge d\theta^c.
\]

On the other hand,

\[
 \omega^{n-1} \wedge \theta \wedge \theta^c = \frac{1}{n} |\theta|^2 \omega^n
\]

and

\[
 d\theta^c \wedge \omega^{n-1} = -\omega \wedge \omega^{n-1} + \theta \wedge \theta^c \wedge \omega^{n-1} = \left(\frac{1}{n} |\theta|^2 - 1 \right) \omega^n.
\]
All in all we get:

\[dd^c \omega^{n-1} = \frac{(n-1)^2}{n} |\theta|^2 \omega^n + (n-1) \left(\frac{1}{n} |\theta|^2 - 1 \right) \omega^n = (n-1)(|\theta|^2 - 1)\omega^n. \]

Then \(dd^c \omega^{n-1} = 0 \) if and only if \(|\theta| = 1\). This finishes the proof.

Observe now that the eigenvalues of \(\omega_0 = -d\theta^c \) are \(1 \) (with multiplicity \(n-1 \)) and \(1 - |\theta|^2 \). As \(\omega_0 \) is exact on a compact manifold, its top power cannot be sign-definite (Stokes theorem). Two possibilities occur:

1. \(|\theta|\) is non-constant, and then \(1 - |\theta|^2 \) has to change sign on \(M \);
2. \(|\theta|\) = const. and then \(|\theta| = 1 \) and \(\omega_0 \) is semi-positive definite.

We obtained the following corollary.

Corollary 2.4: Let \((M, \omega, \theta)\) be a compact LCK manifold with potential. Then the LCK metric is Gauduchon if and only if \(\omega_0 = -d\theta^c \) is semi-positive definite, and is then Vaisman.

Remark 2.5: Our interest in studying the form \(\omega_0 \) on compact LCK manifolds arose from the attempt to clarify the relation between the pluricanonical condition \(((\nabla \theta)^{1,1} = 0\), equivalent with \(d^c \theta = \theta \wedge \theta^c - |\theta|^2 \omega \)), introduced in \([Kok]\), and the existence of a positive, automorphic potential. In fact, from the above it can be seen that a compact LCK manifold with potential, and with constant norm of \(\theta \) is pluricanonical, and hence, by \([MM]\), it is Vaisman.

3 Hopf surfaces in LCK manifolds with potential

3.1 Complex surfaces of Kähler rank 1

Definition 3.1: ([HL]) A compact complex surface is **of Kähler rank 1** if and only if it is not Kähler but it admits a closed semipositive (1,1)-form whose zero locus is contained in a curve.

Lemma 3.2: A compact LCK surface \(M \) with potential and semi-positive form \(\omega_0 \) has Kähler rank 1.

Proof: We have to show that \(M \) cannot admit a Kähler metric. By absurd, if \(M \) admitted a Kähler form \(\Omega \), then, as \(\omega_0 \) is exact, \(\omega_0 \wedge \Omega = -d(\theta^c \wedge \Omega) \) was an exact volume form, which is impossible by Stokes’ theorem. Hence \(M \) is non-Kähler.

Version 3.0, March 03, 2019
Recall that a **Hopf surface** is a finite quotient of H, where H is a quotient of $\mathbb{C}^2\setminus 0$ by a polynomial contraction. A Hopf surface is **diagonal** if this polynomial contraction is expressed by a diagonal matrix.

Compact surfaces of Kähler rank 1 have been classified in [CT] and [Br]. They can be:

1. Non-Kähler elliptic fibrations,
2. Diagonal Hopf surfaces and their blow-ups,
3. Inoue surfaces and their blow-ups.

The LCK Inoue surfaces cannot have LCK metrics with potential, as shown in [Ot, Corollary 3.13].

A cover of a blow-up of any complex manifold cannot admit plurisubharmonic functions because, by the lifting criterion, the projective spaces contained in the blow-up lift to the cover. Thus blow-ups cannot have global potential.

We are left with non-Kähler elliptic fibrations and diagonal Hopf surfaces which are known to admit Vaisman metrics, see e.g. [Be]. And hence:

Proposition 3.3: All compact LCK surfaces with potential and with semi-positive form ω_0 are Vaisman. ■

For further use it is convenient to list all criteria used to distinguish Vaisman Hopf surfaces from non-Vaisman ones.

Theorem 3.4: Let M be a Hopf surface. Then the following are equivalent.

(i) M is Vaisman.

(ii) M is diagonalizable.

(iii) M has Kähler rank 1.

(iv) M contains at least two distinct elliptic curves.

Proof: The equivalence of the first three conditions is proven above. The equivalence of (iv) and (ii) is shown by Iku Nakamura and Masahide Kato ([N, Theorem 5.2]). Note that the cited result refers to primary Hopf surfaces, but we can always pass to a finite covering and the number of elliptic curves will not change because the eigenvectors for rationally independent eigenvalues cannot be mutually exchanged, and if they were dependent, they would produce infinitely many elliptic curves. ■
3.2 Algebraic groups and the Jordan-Chevalley decomposition

In this section we fix an n-dimensional complex vector space V.

Lemma 3.5: Let $A \in \text{GL}(V)$ be a linear operator, and $\langle A \rangle$ the group generated by A. Denote by G the Zariski closure of $\langle A \rangle$ in $\text{GL}(V)$. Then, for any $v \in V$, the Zariski closure Z_v of the orbit $\langle A \rangle \cdot v$ is equal to the usual closure of $G \cdot v$.

Proof: Clearly, Z_v is G-invariant. Indeed, its normalizer $N(Z_v)$ in $\text{GL}(V)$ is an algebraic group containing $\langle A \rangle$, hence $N(Z_v)$ contains G. The converse is also true: since $\langle A \rangle$ normalizes $\langle A \rangle \cdot v$, its Zariski closure G normalizes the Zariski closure Z_v of the orbit. Therefore, the orbit $G \cdot v$ is contained in Z_v. Since $G \cdot v$ is a constructible set, its Zariski closure coincides with its usual closure, $[H], [Kol]$. This gives $\overline{G \cdot v} \subset Z_v$. As $\overline{G \cdot v}$ is algebraic and contains $\langle A \rangle \cdot v$, the inclusion $Z_v \subset \overline{G \cdot v}$ is also true. ■

The reason we take the Zariski closure is explained in the following (see also [OV2, Theorem 2.1]):

Claim 3.6: Let $I \subset \mathbb{C}[z_1, \ldots, z_n]$ be an ideal which is invariant with respect to an isomorphism A of the space $\langle z_1, \ldots, z_n \rangle$ acting on the polynomial ring. Then I is invariant with respect to the Zariski closure G of $\langle A \rangle$.

Proof: First, we show that the 0-adic completion \hat{I} of I is G-invariant in the 0-adic completion of the polynomial ring $\mathbb{C}[z_1, \ldots, z_n]$, which is the ring of formal power series $\mathbb{C}[[z_1, \ldots, z_n]]$. However, any A-invariant subspace in a finite-dimensional space is G-invariant by definition of G, and the ideal \hat{I} is obtained as an inverse limit of finite-dimensional subspaces of finite quotients of the polynomial ring. Therefore, \hat{I} is G-invariant. The ideal I is G_A-invariant, because $I = \hat{I} \cap \mathbb{C}[z_1, \ldots, z_n]$. ■

Let now $G \subset \text{GL}(V)$ be an algebraic group over \mathbb{C}. Recall that an element $g \in G$ is called **semisimple** if it is diagonalizable, and **unipotent** if $g = e^n$, where n is a nilpotent element of its Lie algebra.

Theorem 3.7: (Jordan-Chevalley decomposition, [H] Section 15) For any algebraic group $G \subset \text{GL}(V)$, any $g \in G$ can be represented as a product of two commuting elements $g = g_s g_u$, where g_s is semisimple, and g_u unipotent. Moreover, this decomposition is unique and functorial under homomorphisms of algebraic groups.
Corollary 3.8: Let M be a submanifold of a linear Hopf manifold $H = (V \setminus 0)/A$, $M \subset V \setminus 0$ its \mathbb{Z}-covering, and G the Zariski closure of $\langle A \rangle$ in $\text{GL}(V)$. Then \tilde{M} contains the G-orbit of each point $v \in \tilde{M}$. Moreover, G is a product of $G_s := (\mathbb{C}^*)^k$ and a unipotent group G_u commuting with G_s, and both of these groups preserve \tilde{M}.

Proof: Let X be the closure of \tilde{M} in \mathbb{C}^N. The ideal I_X of X is generated by polynomials, as shown in [OV1, Proof of Theorem 3.3]. As the polynomial ring is Noetherian, I_X is finitely generated, [AM]. Therefore, X is a cone of a projective variety.

Consider the smallest algebraic group G containing A. Then G acts naturally on X and preserves it. The last assertion of Corollary 3.8 is implied by the Jordan-Chevalley decomposition.

3.3 Finding surfaces in LCK manifolds with potential

Lemma 3.9: Let M be a non-Vaisman submanifold of a linear Hopf manifold $H = (V \setminus 0)/A$, $\dim_{\mathbb{C}} M \geq 3$, and $G = G_s G_u$ the Zariski closure of $\langle A \rangle$ with its Jordan-Chevalley decomposition. Then M contains a surface M_0, possibly singular, with G_u acting non-trivially on its \mathbb{Z}-covering $\tilde{M}_0 \subset V$.

Proof: Another form of this statement is proven by Masahide Kato ([Kat]).

We shall use induction on dimension of M. To prove Lemma 3.9 it would suffice to find a subvariety $M_1 \subset M$ of codimension 1 such that G_u acts non-trivially on its \mathbb{Z}-covering $\tilde{M}_1 \subset \mathbb{C}^n \setminus 0$ (note that G_u is non-trivial because M is non-Vaisman). Replacing V by the smallest A-invariant subspace containing \tilde{M}, we may assume that the intersection $\tilde{M} \cap V_1 \neq V_1$ for each proper subspace $V_1 \subset V$. Now take a codimension 1 subspace $V_1 \subset V$ which is A-invariant and such that G_u acts on V_1 non-trivially (equivalently, such that A acts on V_1 non-diagonally). Using the Jordan decomposition of A, such V_1 is easy to construct. Then $\tilde{M}_1' := V_1 \cap \tilde{M}$ gives a subvariety of M of codimension 1 and with non-trivial action of G_u.

The same argument gives the following corollary, also parallel to a theorem by Ma. Kato.

Corollary 3.10: Let M be a compact LCK manifold with potential. Then M has a flag of embedded subvarieties $M \ni M_1 \nrightarrow M_2 \nrightarrow \cdots \nrightarrow M_{\dim M - 1}$ with $\text{codim } M_i = i$. ■
Recall that Oeljeklaus-Toma manifolds (see [OT]) do not admit complex curves ([Ver] where the argument doesn’t need smoothness). Then Corollary 3.10 implies (see also [IO] for a more recent different proof):

Corollary 3.11: The Oeljeklaus-Toma manifolds cannot admit LCK structures with potential.

Lemma 3.12: Let $M_1 \subset H = (V \setminus 0)/\langle A \rangle$ be a surface in a Hopf manifold, possibly singular, and $G = G_sG_u$ the Zariski closure of $\langle A \rangle$ with its Jordan-Chevalley decomposition. Assume that G_u acts on the \mathbb{Z}-covering \tilde{M} non-trivially. Then the normalization of M is a non-diagonal Hopf surface.

Proof: Replacing G by its quotient by the subgroup acting trivially on \tilde{M} if necessary, we may assume that G acts properly on a general orbit in \tilde{M}. Then G is at most 2-dimensional. However, it cannot be 1-dimensional because G_s contains contractions (hence cannot be 0-dimensional) and G_u acts non-trivially. Therefore, $G_s \simeq \mathbb{C}^*$ and $G_u \simeq \mathbb{C}$.

Since G_s acts by contractions, the quotient $S := \tilde{M}/G_s$ is a compact curve, equipped with G_u-action which has a dense orbit. The group G_u can act non-trivially only on a genus 0 curve, and there is a unique open orbit O of G_u, with $S \setminus O$ being one point.

Let now M be a normalization of M_1. Since the singular set of M_1 is G_s-invariant, it has dimension at least 1, and since M is normal, it is non-singular in codimension 1, hence smooth.

All complex subvarieties of M are by construction G-invariant, and the complement of an open orbit is an elliptic curve, hence M has only one elliptic curve. As M is a surface of a Hopf manifold, it is LCK with potential and hence it is a deformation of a Vaisman surface ([OV2]) which can be Hopf or elliptic ([Be]). By the classification of the non-Kähler compact surfaces, a smooth deformation of a non-Hopf elliptic surface is again an elliptic surface, and hence it has many elliptic curves. As M has only one elliptic curve, it must be a deformation of a Hopf surface and it is non-diagonalizable by Theorem 3.4.

Theorem 3.13: Let M be a non-Vaisman compact LCK manifold with potential, $\dim_{\mathbb{C}} M \geq 3$. Then M contains a surface with normalization biholomorphic to a non-diagonal Hopf surface.

Proof: Let M be a compact LCK manifold with potential, $\dim_{\mathbb{C}} M \geq 3$. Then M is holomorphically embedded into a Hopf manifold $\mathbb{C}^N \setminus \langle A \rangle$, where $A \in \text{GL}(N, \mathbb{C})$.

- 8 -
is a linear operator, see [OV1] Theorem 3.4. Applying Lemma 3.9 and Lemma 3.12, we find a non-diagonal Hopf surface in M. ■

As an application, we now prove the following characterization of Vaisman manifolds:

Corollary 3.14: Let (M, I) be a compact LCK manifold with potential. Assume the Hermitian form ω_0 is semi-positive definite. Then the LCK metric of (M, I) is Vaisman.

Proof: If $\dim_{\mathbb{C}} M = 2$, this is just Proposition 3.3. If $\dim_{\mathbb{C}} M \geq 3$, M contains a surface whose normalization is a non-diagonal Hopf surface H. Then ω_0 restricts to a semi-positive definite (1,1) form on H. By Proposition 3.3, H is Vaisman, and hence diagonal, contradiction. ■

Acknowledgments. L.O. thanks the Laboratory for Algebraic Geometry at the Higher School of Economics in Moscow for hospitality and excellent research environment during February and April 2014 and April 2015.

Both authors are indebted to Paul Gauduchon, Andrei Moroianu, and Victor Vuletescu for extremely useful discussions.

References

[AD] V. Apostolov, G. Dloussky, *Locally conformally symplectic structures on compact non-Kähler complex surfaces*, IMRN, 9 (2016), 2717–2747. arXiv:1501.02687.

[AM] M.F. Atiyah, I.G. Macdonald, *Introduction to commutative algebra*, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont. 1969.

[Be] F.A. Belgun, *On the metric structure of non-Kähler complex surfaces*, Math. Ann. 317 (2000), no. 1, 1–40.

[Br] M. Brunella, *A characterization of Inoue surfaces* Comment. Math. Helv. 88 (2013), no. 4, 859–874. arXiv:1011.2035.

[CT] I. Chiose, M. Toma, *On compact complex surfaces of Kähler rank one*, Amer. J. Math. 135 (2013), no. 3, 851–860. arXiv:1010.2591.

[DO] S. Dragomir, L. Ornea, *Locally conformally Kähler geometry*, Progress in Math. 155, Birkhäuser, 1998.

[G] P. Gauduchon, *La 1-forme de torsion d’une variété Hermitienne compacte*, Math. Ann. 267 (1984), 495–518.

[HL] R. Harvey and H. B. Lawson Jr., *An intrinsic characterization of Kähler manifolds*, Invent. Math. 74 (1983), no. 2, 169–198.
[H] J.E. Humphreys, Linear algebraic groups, GTM 21, 4th ed., Springer, 1998.

[IO] N. Istrati, A. Otiman, De Rham and twisted cohomology of Oeljeklaus-Toma manifolds, arXiv:1711.07847. To appear in Ann. Inst. Fourier.

[Kas] H. Kasuya, Vaisman metrics on solvmanifolds and Oeljeklaus-Toma manifolds, Bull. London Math. Soc, 45 (2013), no. 1, 15–26. arXiv:1204.1878.

[Kat] Ma. Kato, Some Remarks on Subvarieties of Hopf Manifolds, Tokyo J. Math. 2, Nr. 1 (1979), 47–61.

[Kok] G. Kokarev, On pseudo-harmonic maps in conformal geometry, Proc. London Math. Soc., 99 (2009), 168–94. arXiv:0705.3821

[Kol] J. Kollár, Exercises in the birational geometry of algebraic varieties. Analytic and algebraic geometry, 495–524, IAS/Park City Math. Ser., 17, Amer. Math. Soc., Providence, RI, 2010.

[MM] A. Moroianu, S. Moroianu, On pluricanonical locally conformally Kähler manifolds, IMRN, December 2015 DOI: 10.1093/imrn/rnw151. arXiv:1512.04318

[N] I. Nakamura, On Surfaces of Class VII0 with Curves, Invent. Math. 78, 393–443 (1984).

[OT] K. Oeljeklaus, M. Toma, Non-Kähler compact complex manifolds associated to number fields, Ann. Inst. Fourier 55 (2005), 1291–1300.

[OV1] L. Ornea, M. Verbitsky, Locally conformal Kähler manifolds with potential. Math. Ann. 348 (2010), 25–33. arXiv:math/0407231.

[OV2] L. Ornea, M. Verbitsky, Topology of Locally Conformally Kähler Manifolds with Potential, IMRN, Vol. 2010, pp. 717–726. arXiv:0904.3362

[OV3] L. Ornea, M. Verbitsky, Locally conformally Kahler metrics obtained from pseudo-convex shells, Proc. Amer. Math. Soc. 144 (2016), 325–335. arXiv:1210.2080

[OV4] L. Ornea, M. Verbitsky, LCK rank of locally conformally Kähler manifolds with potential, J. Geom. Physics. 107 (2016), 92–98. arXiv:1601.07413

[Ot] A. Otiman, Morse-Novikov cohomology of locally conformally Kähler surfaces, arXiv:1609.07675

[Va2] I. Vaisman, Generalized Hopf manifolds, Geom. Dedicata 13 (1982), no. 3, 231–255.

[Ve] M. Verbitsky, Theorems on the vanishing of cohomology for locally conformally hyper-Kähler manifolds, Proc. Steklov Inst. Math. 246 no. 3 (2004), 54–78. arXiv:math/0302219

[Ver] S.M. Verbitskaya, Curves on the Oeljeklaus-Toma manifolds, Funct. Anal. Appl. 48, No. 3 (2014), 223–226.
L. Ornea, M. Verbitsky

Hopf surfaces in LCK manifolds with potential

Liviu Ornea
University of Bucharest, Faculty of Mathematics,
14 Academiei str., 70109 Bucharest, Romania, and
Institute of Mathematics “Simion Stoilow” of the Romanian Academy,
21, Calea Grivitei Street 010702-Bucharest, Romania
lornea@fmi.unibuc.ro, liviu.ornea@imar.ro

Misha Verbitsky
Instituto Nacional de Matemática Pura e Aplicada (IMPA)
Estrada Dona Castorina, 110, Jardim Botânico, CEP 22460-320,
Rio de Janeiro, RJ - Brasil
also:
Laboratory of Algebraic Geometry, HSE University,
Department of Mathematics, 9 Usacheva str., Moscow, Russia,
verbit@mccme.ru