Some Unsettled Questions in the Problem of Neutrino Oscillations

Beshtoev Kh. M.

JINR, Dubna

Abstract

It is noted that the theory of neutrino oscillations can be constructed only in the framework of the particle physics theory, where is a mass shell conception and then transitions (oscillations) between neutrinos with equal masses are real and between neutrinos with different masses are virtual. It is necessary to solve the question: which type of neutrino transitions (oscillations) is realized in nature? There can be three types of neutrino transitions (oscillations). At present it is considered that Dirac and Majorana neutrino oscillations can be realized. It is shown that we cannot put Majorana neutrinos in the standard weak interactions theory without violation of the gauge invariance. Then it is obvious that there can be only realized transitions (oscillations) between Dirac neutrinos with different flowers. Also it is shown that the mechanism of resonance enhancement of neutrino oscillations in matter cannot be realized without violation of the law of energy-momentum conservation. Though it is supposed that we see neutrino oscillations in experiments, indeed there only transitions between neutrinos are registered. In order to register neutrino oscillations it is necessary to see second or even higher neutrino oscillation modes in experiments. For this purpose we can use the elliptic character of the Earth orbit. The analysis shows that the SNO experimental results do not confirm smallest of $\nu_e \to \nu_\tau$ transition angle mixings, which was obtained in CHOOZ experiment. It is also noted that there is contradiction between SNO, Super-Kamiokande, Homestake and the SAGE and GNO (GALLEX) data.
I. Introduction

The suggestion that, by analogy with K°, \bar{K}° oscillations, there could be neutrino oscillations (i.e., that there could be neutrino-antineutrino oscillations $\nu \rightarrow \bar{\nu}$) was considered by Pontecorvo [1] in 1957. It was subsequently considered by Maki et al. [2] and Pontecorvo [3] that there could be mixings (and oscillation) of neutrinos of different aromas (i.e., $\nu_e \rightarrow \nu_\mu$ transitions).

The problem of solar neutrinos arose after the first experiment has been performed in order to measure the flux of neutrinos from the Sun by the $^{37}Cl - ^{37}Ar$ [4] method. The flux was found to be several times smaller than expected from calculations made in accordance with the standard solar model (SSM) [5]. It was suggested in [6] that the solar neutrino deficit could be explained by Majorana neutrino oscillations. Subsequently, when the result of the experiment at Kamiokande [7] confirmed the existence of the deficit relative to the SSM calculations, one of the attractive approaches to the explanation of the solar neutrino deficit became resonant enhancement of neutrino oscillations in matter [8]. Resonant enhancement of neutrino oscillations in matter was obtained from Wolfenstein’s equation for neutrinos in matter [9]. It was noted in Ref. [10] that Wolfenstein’s equation for neutrinos in matter is an equation for neutrinos in matter in which they interact with matter not through the weak but through a hypothetical weak interaction that is left-right symmetric. Since only left components of neutrinos participate in the standard weak interactions, the results obtained from Wolfenstein’s equation have no direct relation to real neutrinos.

Later experimentalists obtained the first results on the Gran Sasso $^{71}Ga - ^{71}Ge$ experiment [11], that within a 3σ limit did not disagree with the SSM calculations. The new data from the SAGE experiment [12] is fairly close to the Gran Sasso results.

After the discovery of neutrino transitions (oscillations) on Super-Kamiokande [13, 14] and on SNO [15], it is necessary to analyze the situation, which arises in the problem of neutrino oscillations.

This work is devoted to discussion of some theoretical and exper-
imental questions, which have been kept unsettled in the problem of neutrino oscillations. These are: construction of the correct neutrino oscillations theory; quest for the type of neutrino transitions (oscillations); determination of the concrete mechanism of neutrino transitions; real observation of the neutrino oscillations on experiments; solution of some contradictions in experiments (CHOOZ problem, inconsistency SNO, SK, Homestake and GNO, SAGE data).

II. THEORY

1. The Theory of Neutrino Oscillations

In the old theory of neutrino oscillations [6, 16], constructed in the framework of Quantum Mechanics in analogy with the theory of K^0, \bar{K}^0 oscillation, it is supposed that mass eigenstates are ν_1, ν_2, ν_3 neutrino states but not physical neutrino states ν_e, ν_μ, ν_τ, and that the neutrinos ν_e, ν_μ, ν_τ are created as superpositions of ν_1, ν_2, ν_3 states. This means that the ν_e, ν_μ, ν_τ neutrinos have no definite mass, i.e. their masses may vary in dependence on the ν_1, ν_2, ν_3 admixture in the ν_e, ν_μ, ν_τ states. On the example of K^0, \bar{K}^0 mesons (eigenstates of the strong interactions) we can well see that on the time $10^{-23} sec$ (a typical time of the strong interactions) the K^0_1, K^0_2 mesons-eigenstates of the weak interactions cannot be created since its typical time is $10^{-6} - 10^{-8} sec$. Naturally, in this case the law of conservation of the energy and the momentum of the neutrinos is not fulfilled. Besides, every particle must be created on its mass shell and it will be left on its mass shell while passing through vacuum. It is clear that this picture is incorrect.

In the modern theory on neutrino oscillations [17]-[18], constructed in the framework of the particle physics theory, it is supposed that:

1) The physical states of the ν_e, ν_μ, ν_τ neutrinos are eigenstates of the weak interaction and, naturally, the mass matrix of ν_e, ν_μ, ν_τ neutrinos is diagonal. All the available experimental results indicate that the lepton numbers l_e, l_μ, l_τ are well conserved, i.e. the standard weak interactions do not violate the lepton numbers.
2) Then, in order to violate the lepton numbers, it is necessary to introduce an interaction violating these numbers. It is equivalent to introducing nonseasonal mass terms in the mass matrix of ν_e, ν_μ, ν_τ. By diagonalizing this matrix, we go to the ν_1, ν_2, ν_3 neutrino states. Exactly like it was in the case of K^0 mesons created in strong interactions, when mainly K^0, \bar{K}^0 mesons were produced, in the considered case ν_e, ν_μ, ν_τ, but not ν_1, ν_2, ν_3, neutrino states are mainly created in the weak interactions (this is so, because the contribution of the lepton numbers violating interactions in this process is too small). And in such case no oscillations take place.

3) Then, when the ν_e, ν_μ, ν_τ neutrinos are passing through vacuum, they will be converted into superpositions of the ν_1, ν_2, ν_3 owing to the presence of the interactions violating the lepton number of neutrinos and will be left on their mass shells. And, then, oscillations of the ν_e, ν_μ, ν_τ neutrinos will take place according to the standard scheme [16-18]. Whether these oscillations are real or virtual, it will be determined by the masses of the physical neutrinos ν_e, ν_μ, ν_τ.

i) If the masses of the ν_e, ν_μ, ν_τ neutrinos are equal, then the real oscillation of the neutrinos will take place.

ii) If the masses of the ν_e, ν_μ, ν_τ are not equal, then the virtual oscillation of the neutrinos will take place. To make these oscillations real, these neutrinos must participate in the quasielastic interactions, in order to undergo transition to the mass shell of the other appropriate neutrinos by analogy with $\gamma - \rho^0$ transition in the vector meson dominance model.

2. Neutrino Oscillation Types

The mass matrix of ν_e and ν_μ neutrinos has the form

$$
\begin{pmatrix}
m_{\nu_e} & 0 \\
0 & m_{\nu_\mu}
\end{pmatrix}.
$$

Due to the presence of the interaction violating the lepton numbers, a nondiagonal term appears in this matrix and then this mass matrix is
transformed into the following nondiagonal matrix \((CP\) is conserved):

\[
\begin{pmatrix}
 m_{\nu_e} & m_{\nu_e\nu_\mu} \\
 m_{\nu_\mu\nu_e} & m_{\nu_\mu}
\end{pmatrix},
\]

\((2)\)

then the lagrangian of mass of the neutrinos takes the following form \((\nu \equiv \nu_L)\):

\[
\mathcal{L}_M = -\frac{1}{2} \left[m_{\nu_e} \bar{\nu}_e \nu_e + m_{\nu_\mu} \bar{\nu}_\mu \nu_\mu + m_{\nu_e\nu_\mu} (\bar{\nu}_e \nu_\mu + \bar{\nu}_\mu \nu_e) \right] \equiv
\]

\[\equiv -\frac{1}{2} (\bar{\nu}_e, \bar{\nu}_\mu) \left(\begin{pmatrix} m_{\nu_e} & m_{\nu_e\nu_\mu} \\ m_{\nu_\mu\nu_e} & m_{\nu_\mu} \end{pmatrix} \right) \left(\begin{pmatrix} \nu_e \\ \nu_\mu \end{pmatrix} \right),\]

\((3)\)

which is diagonalized by turning through the angle \(\theta\) and (see ref. in [16]) and then this lagrangian \((3)\) transforms into the following one:

\[
\mathcal{L}_M = -\frac{1}{2} \left[m_1 \bar{\nu}_1 \nu_1 + m_2 \bar{\nu}_2 \nu_2 \right],
\]

\((4)\)

where

\[
m_{1,2} = \frac{1}{2} \left[(m_{\nu_e} + m_{\nu_\mu}) \pm \left((m_{\nu_e} - m_{\nu_\mu})^2 + 4m_{\nu_e\nu_\mu}^2 \right)^{1/2} \right],
\]

and angle \(\theta\) is determined by the following expression:

\[
tg2\theta = \frac{2m_{\nu_e\nu_\mu}}{(m_{\nu_\mu} - m_{\nu_e})},
\]

\((5)\)

\[
\nu_e = \cos\theta \nu_1 + \sin\theta \nu_2,
\]

\[
\nu_\mu = -\sin\theta \nu_1 + \cos\theta \nu_2.
\]

\((6)\)

From eq.(5) one can see that if \(m_{\nu_e} = m_{\nu_\mu}\), then the mixing angle is equal to \(\pi/4\) independently of the value of \(m_{\nu_e\nu_\mu}\):

\[
\sin^22\theta = \frac{(2m_{\nu_e\nu_\mu})^2}{(m_{\nu_e} - m_{\nu_\mu})^2 + (2m_{\nu_e\nu_\mu})^2},
\]

\((7)\)

\[
\left(\begin{pmatrix} m_{\nu_1} & 0 \\ 0 & m_{\nu_2} \end{pmatrix} \right).
\]

It is interesting to remark that expression \((7)\) can be obtained from the Breit-Wigner distribution \([19]\)

\[
P \sim \frac{(\Gamma/2)^2}{(E - E_0)^2 + (\Gamma/2)^2},
\]

\((8)\)
by using the following substitutions:
\[E = m_{\nu_e}, \quad E_0 = m_{\nu_\mu}, \quad \Gamma/2 = 2m_{\nu_e,\nu_\mu}, \]
where \(\Gamma/2 \equiv W(\ldots) \) is a width of \(\nu_e \to \nu_\mu \) transition, then we can use a standard method [18, 20] for calculating this value.

The expression for time evolution of \(\nu_1, \nu_2 \) neutrinos (see (4), (6)) with masses \(m_1 \) and \(m_2 \) is
\[
\nu_1(t) = e^{-iE_1t}\nu_1(0), \quad \nu_2(t) = e^{-iE_2t}\nu_2(0),
\]
where
\[
E_k^2 = (p^2 + m_k^2), \quad k = 1, 2.
\]

If neutrinos are propagating without interactions, then
\[
\nu_e(t) = \cos \theta e^{-iE_1t}\nu_1(0) + \sin \theta e^{-iE_2t}\nu_2(0),
\]
\[
\nu_\mu(t) = -\sin \theta e^{-iE_1t}\nu_1(0) + \cos \theta e^{-iE_2t}\nu_2(0).
\]
Using the expression for \(\nu_1 \) and \(\nu_2 \) from (6), and putting it into (10), one can get the following expression:
\[
\nu_e(t) = \left[e^{-iE_1t}\cos^2 \theta + e^{-iE_2t}\sin^2 \theta \right] \nu_e(0) +
\]
\[
+ \left[e^{-iE_1t} - e^{-iE_2t} \right] \sin \theta \cos \theta \nu_\mu(0), \quad (11)
\]
\[
\nu_\mu(t) = \left[e^{-iE_1t}\sin^2 \theta + e^{-iE_2t}\cos^2 \theta \right] \nu_\mu(0) +
\]
\[
+ \left[e^{-iE_1t} - e^{-iE_2t} \right] \sin \theta \cos \theta \nu_e(0).
\]

The probability that neutrino \(\nu_e \) created at the time \(t = 0 \) will be transformed into \(\nu_\mu \) at the time \(t \) is an absolute value of amplitude \(\nu_\mu(0) \) in (11) squared, i. e.
\[
P(\nu_e \to \nu_\mu) = |(\nu_\mu(0) \cdot \nu_e(t))|^2 =
\]
\[
= \frac{1}{2} \sin^2 2\theta \left[1 - \cos((m_2^2 - m_1^2)/2p)t \right],
\]
where it is supposed that \(p \gg m_1, m_2; E_k \approx p + m_k^2/2p. \)

The expression (12) presents the probability of neutrino aroma oscillations. The angle \(\theta \) (mixing angle) characterizes value of mixing.
The probability $P(\nu_e \rightarrow \nu_\mu)$ is a periodical function of distances, where the period is determined by the following expression:

$$L_o = 2\pi \frac{2p}{|m_2^2 - m_1^2|}. \quad (13)$$

And probability $P(\nu_e \rightarrow \nu_e)$ that the neutrino ν_e created at time $t = 0$ is preserved as ν_e neutrino at time t is given by the absolute value of the amplitude of $\nu_e(0)$ in (11) squared. Since the states in (11) are normalized states, then

$$P(\nu_e \rightarrow \nu_e) + P(\nu_e \rightarrow \nu_\mu) = 1. \quad (14)$$

So, we see that aromatic oscillations caused by nondiagonality of the neutrinos mass matrix violate the law of the $-\ell_e$ and ℓ_μ lepton number conservations. However, in this case, as one can see from exp. (14), the full lepton numbers $\ell = \ell_e + \ell_\mu$ are conserved.

We can also see that there are two cases of ν_e, ν_μ transitions (oscillations) [18], [20].

1. If we consider the transition of ν_e into ν_μ particle, then

$$\sin^2 2\beta \approx \frac{4m_{\nu_e,\nu_\mu}^2}{(m_{\nu_e} - m_{\nu_\mu})^2 + 4m_{\nu_e,\nu_\mu}^2}, \quad (15)$$

How can we understand this $\nu_e \rightarrow \nu_\mu$ transition?

If $2m_{\nu_e,\nu_\mu} = \frac{\Gamma}{2}$ is not zero, then it means that the mean mass of ν_e particle is m_{ν_e} and this mass is distributed by $\sin^2 2\beta$ (or by the Breit-Wigner formula) and the probability of the $\nu_e \rightarrow \nu_\mu$ transition differs from zero and it is defined by masses of ν_e and ν_μ particles and m_{ν_e,ν_μ}, which is computed in the framework of the standard method, as pointed out above.

So, this is a solution of the problem of the origin of mixing angle in the theory of vacuum oscillations.

In this case the probability of $\nu_e \rightarrow \nu_\mu$ transition (oscillation) is described by the following expression:

$$P(\nu_e \rightarrow \nu_\mu, t) = \sin^2 2\beta \sin^2 \left[\pi t \frac{|m_{\nu_1}^2 - m_{\nu_2}^2|}{2p_{\nu_e}} \right], \quad (16)$$
where p_{ν_e} is a momentum of ν_e particle.

Originally it was supposed [6, 16] that these oscillations are real oscillations, i.e. that there takes place real transition of electron neutrino ν_e into muon neutrino ν_μ (or tau neutrino ν_τ). Then the neutrino $\nu_x = \mu, \tau$ is decayed in electron neutrino plus something

$$ \nu_x \rightarrow \nu_e + \quad (17) $$

as a result we get energy from vacuum, which equals the mass difference (if $m_{\nu_x} > m_{\nu_e}$)

$$ \Delta E \sim m_{\nu_x} - m_{\nu_e}. \quad (18) $$

Then, again this electron neutrino transits into muon neutrino, which is decayed again and we get energy and etc. **So we got a perpetuum mobile!** Obviously, the law of energy conservation cannot be fulfilled in this process. The only way to restore the law of energy conservation is to demand that this process is virtually one. Then, these oscillations will be the virtual ones and they are described in the framework of the uncertainty relations. The correct theory of neutrino oscillations can be constructed only into the framework of the particle physics theory, where the conception of mass shell is [17], [18], [20].

2. If we consider the virtual transition of ν_e into ν_μ neutrino at

$$ m_{\nu_e} = m_{\nu_\mu} \quad (i.e. \text{without changing the mass shell}), $$

then

$$ tg2\beta = \infty, \quad (19) $$

$$ \beta = \pi/4, \text{ and} $$

$$ sin^22\beta = 1. \quad (20) $$

In this case the probability of the $\nu_e \rightarrow \nu_\mu$ transition (oscillation) is described by the following expression:

$$ P(\nu_e \rightarrow \nu_\mu, t) = \left[\pi t \frac{4m_{\nu_e,\nu_\mu}^2}{2p_a} \right]. \quad (21) $$

In order to make these virtual oscillations real, their participation in quasielastic interactions is necessary for the transitions to their own mass shells [20].
It is clear that the $\nu_e \to \nu_\mu$ transition is a dynamical process.

The question is: which type of neutrino oscillations is realized in the Nature?

3. The third type of transitions (oscillations) can be realized by mixings of the fields (neutrinos) in analogy with the vector dominance model ($\gamma - \rho^o$ and $Z^o - \gamma$ mixings) in a way as it takes place in the particle physics. Since the weak couple constants $g_{\nu_e}, g_{\nu_\mu}, g_{\nu_\tau}$ of ν_e, ν_μ, ν_τ neutrinos nearly are equally in reality, i.e. $g_{\nu_e} \simeq g_{\nu_\mu} \simeq g_{\nu_\tau}$ then the angle mixings are nearly maximal:

$$\sin \theta_{\nu_e,\nu_\mu} \simeq \frac{g_{\nu_e}}{\sqrt{g_{\nu_e}^2 + g_{\nu_\mu}^2}} = \frac{1}{\sqrt{2}} \simeq \sin \theta_{\nu_e,\nu_\tau} \simeq \sin \theta_{\nu_\mu,\nu_\tau}. \quad (22)$$

Therefore, if the masses of these neutrinos are equal (which is hardly probable), then transitions between neutrinos will be real and if the masses of these neutrinos are not equal then transitions between neutrinos will be virtual in analogy with $\gamma - \rho^o$ transitions.

3. Mechanisms of Neutrino oscillations

3.1. Impossibility of resonance enhancement of neutrino oscillations in matter

In three different approaches: by using mass Lagrangian [10,21,22], by using the Dirac equation [21,22], and using the operator formalism [23], the author of this work has discussed the problem of the mass generation in the standard weak interactions and has come to a conclusion that the standard weak interaction cannot generate masses of fermions since the right-handed components of fermions do not participate in these interactions. It is also shown [24] that the equation for Green function of the weak-interacting fermions (neutrinos) in the matter coincides with the equation for Green function of fermions in vacuum and the law of conservation of the energy and the momentum of neutrino in matter will be fulfilled [23] only if the energy W of polarization of matter by the neutrino or the corresponding term in
Wolfenstein equation, is zero (it means that neutrinos cannot generate permanent polarization of matter). These results lead to the conclusion: resonance enhancement of neutrino oscillations in matter does not exist.

The simplest method to prove the absence of the resonance enhancement of neutrino oscillations in matter is:

If we put an electrical (or strong) charged particle a in vacuum, there arises polarization of vacuum. Since the field around particle a is spherically symmetrical, the polarization must also be spherically symmetrical. Then the particle will be left at rest and the law of energy and momentum conservation is fulfilled.

If we put a weakly interacting particle b (a neutrino) in vacuum, then since the field around the particle has a left-right asymmetry (weak interactions are left interactions with respect to the spin direction [25, 29]), polarization of vacuum must be nonsymmetrical, i.e. on the left side there arises maximal polarization and on the right there is zero polarization. Since polarization of the vacuum is asymmetrical, there arises asymmetrical interaction of the particle (the neutrino) with vacuum and the particle cannot be at rest and will be accelerated. Then the law of energy momentum conservation will be violated. The only way to fulfill the law of energy and momentum conservation is to demand that polarization of vacuum be absent in the weak interactions. The same situation will take place in matter. It is necessary to remark that for above considered proof it is sufficient to know that the field around of the weakly interacting particle is asymmetrical (and there is no a necessary to know the precise form of this field). It is necessary also to remark that the Super-Kamiokande datum on day-night asymmetry [13] is

$$ A = (D - N)/(\frac{1}{2}(D + N)) = -0.021 \pm 0.020(stat) + 0.013(-0.012)(syst). $$

and it does not leave hope on possibility of the resonance enhancement of neutrino oscillations in matter.

In means that the forward scattering amplitude of the weak interactions have a specific behavior.
It is interesting to remark that in the gravitational interaction the polarization does not exist either.

An Amplitude of forward scattering at the weak interactions

Connection between refraction coefficient \(n \) and amplitude of forward scattering \(f_k(k, 0) \) in matter is given by the following expression:

\[
 n - 1 = \frac{2\pi}{k^2} \sum_i \text{Re} f_i(k, 0),
\]

where \(i \) is index of summation and \(k, p \) respectively are momentum and transfer momentum.

Since at the weak interactions the polarization is absent, then

\[
 n = 1,
\]

and

\[
 \text{Re} f_i(k, 0) = 0,
\]

i.e.

\[
 \text{Re} f_i(k, p) \to 0, \quad p \to 0.
\]

The amplitude of forward scattering goes to zero when transfer momentum goes to zero in contrast to the strong and electromagnetic interactions, where it differs from zero.

3.2. Majorana Neutrino Oscillations

At present it is supposed [26] that the neutrino oscillations can be connected with Majorana neutrino oscillations. I will show that we cannot put Majorana neutrinos in the standard Dirac theory. It means that on experiments the Majorana neutrino oscillations cannot be observed.

Majorana fermion in Dirac representation has the following form [6, 16, 27]:
\[\chi^M = \frac{1}{2} [\Psi(x) + \eta C\Psi^C(x)], \]

\[\Psi^C(x) \to \eta C\bar{\Psi}^T(x), \]

where \(\eta \) is a phase, \(C \) is a charge conjunction, \(T \) is a transposition.

From Exp. (28) we see that Majorana fermion \(\chi^M \) has two spin projections \(\pm \frac{1}{2} \) and then the Majorana spinor can be rewritten in the following form:

\[\chi^M(x) = \begin{pmatrix} \chi_{\frac{1}{2}}(x) \\ \chi_{-\frac{1}{2}}(x) \end{pmatrix}. \]

(29)

The mass Lagrangian of Majorana neutrinos in the case of two neutrinos \(\chi^e, \chi^\mu \) (\(-\frac{1}{2} \) components of Majorana neutrinos, and \(\bar{\chi} \ldots \) is the same Majorana fermion with the opposite spin projection) in the common case has the following form:

\[\mathcal{L}'_M = -\frac{1}{2} (\bar{\chi}^e, \bar{\chi}^\mu) \begin{pmatrix} m_{\chi^e} & m_{\chi^e\chi^\mu} \\ m_{\chi^\mu\chi^e} & m_{\chi^\mu} \end{pmatrix} \begin{pmatrix} \chi^e \\ \chi^\mu \end{pmatrix}. \]

(30)

Diagonalizing this mass matrix by standard methods one obtains the following expression:

\[\mathcal{L}'_M = -\frac{1}{2} (\bar{\nu}_1, \bar{\nu}_2) \begin{pmatrix} m_{\nu_1} & 0 \\ 0 & m_{\nu_2} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \end{pmatrix}, \]

(31)

where

\[\nu_1 = cos \theta \chi^e - sin \theta \chi^\mu, \]

\[\nu_2 = sin \theta \chi^e + cos \theta \chi^\mu. \]

These neutrino oscillations are described by expressions (9)-(14) with the following substitution of \(\nu_{e\mu} \to \chi^M_{e\mu} \).

The standard theory of weak interactions is constructed on the base of local gauge invariance of Dirac fermions. In this case Dirac fermions have the following lepton numbers \(l_l \) which are conserved,

\[l_l, l = e, \mu, \tau, \]

(32)

and Dirac antiparticles have lepton numbers with the opposite sign...
\(\bar{l} = -l. \) \hspace{1cm} (33)

Gauge transformation of Majorana fermions can be written in the form:

\[
\chi'_{+\frac{1}{2}}(x) = \exp(-i\beta)\chi_{+\frac{1}{2}}(x), \\
\chi'_{-\frac{1}{2}}(x) = \exp(+i\beta)\chi_{-\frac{1}{2}}(x). \tag{34}
\]

Then lepton numbers of Majorana fermions are

\[
l^M = \sum_i l^M_i (+1/2) = -\sum_i l^M_i (-1/2),
\]

i. e., antiparticle of Majorana fermion is the same fermion with the opposite spin projection.

Now we come to discussion of the problem of the place of Majorana fermion in the standard theory of weak interactions [28].

To construct the standard theory of weak interactions [29], Dirac fermions are used. The absence of contradiction of this theory with the experimental data confirms that all fermions are Dirac particles.

Now, if we want to put the Majorana fermions into the standard theory we must take into account that, in the common case, the gauge charges of the Dirac and Majorana fermions are different (especially it is well seen in the example of Dirac fermion having an electrical charge since it cannot have a Majorana charge (it is worth to remind that in the weak currents the fermions are included in the couples form)). In this case we cannot just include Majorana fermions in the standard theory of weak interactions by gauge invariance manner. Then, in the standard theory the Majorana fermions cannot appear.

3.3. Transitions (Oscillations) of Aromatic Neutrinos

In the work [2] Maki et al. supposed that there could exist transitions between aromatic neutrinos \(\nu_e, \nu_\mu \). Afterwards \(\nu_\tau \) was found and then \(\nu_e, \nu_\mu, \nu_\tau \) transitions could be possible. The author of this work has developed this direction (see [21, 25]). It is necessary to remark that only this scheme of oscillations is realistic for neutrino oscillations.
III. EXPERIMENTS

1. Experimental Observation of the Neutrino Oscillations

At present, it is supposed that the neutrino oscillations were observed [13-15]. In these experiments only transitions between the Sun or atmospheric neutrinos have been observed. Since we suppose that there take place the neutrino oscillations, therefore we must observe (Sun) neutrino oscillations in reality. Since the length of neutrino oscillations is sufficiently great we cannot observe higher modes in terrestrial experiment. But we have another possibility to observe the Sun neutrino oscillation using the fact that the Earth orbit is elliptic one with:

Earth’s perihelion \(R_P = 147.117 \cdot 10^6 \text{km} \),
Earth’s aphelion \(R_A = 152.083 \cdot 10^6 \text{km} \),

and their difference \(\Delta R \) is \(\Delta R = 4.866 \cdot 10^6 \text{km} \). Since the Sun neutrinos conclude all energies up to \(15MeV \), we must divide this energy spectrum on energy regions (also distances must be divided on regions) and observe these neutrino fluxes as function of energy and the Earth’s distances from the Sun. At these conditions we must observe the neutrino oscillations if the length of neutrino oscillation \(R_{osc} \) is bigger than the region \(\Delta \), where these (high energy) neutrinos are generated on the Sun i.e.

\[
\Delta \sim 0.05R_{\text{sun}} \sim 10^4 \text{km},
\]

\[
R_{osc} > \Delta.
\]

It is obvious that in these experiments it is impossible to register \(\nu_\mu \leftrightarrow \nu_\tau \) oscillations since their length, as we know from Super-Kamiokande experiments, is small enough. The Super-Kamiokande and SNO detectors wholly fit for such observations.
2. The Earth Neutrinos

At present, there exist big detectors on the Sun and atmospheric neutrinos observation. The problem study of the Earth neutrino sources present enormous interest, therefore, using the same detectors it is possible to research the Earth neutrino sources. More detailed consideration this question will be published later. It is important that there is no a necessity to reconstruct the detectors. It is only necessary to collect data from the Earth as it is fulfilled for the Sun neutrinos but for opposite to the Sun direction [30]. In this way we can obtain the Earth neutrino sources map using the detectors located in different places of the Earth surface.

3. The Problem with GNO (GALLEX), SAGE Data

As stressed above, transitions between neutrinos with different flavor have been already observed and the neutrino mixing angles are nearly maximal. The Super-Kamiokande [13], SNO [15], Homestake [31] data (D) normalized on SSM calculations (see [32]) are in good agreement.

Homestake 1970-1994, \(E_{\text{thre}} = 0.814\):

\[
\nu_e + ^{71}Ga \rightarrow ^{71}Ge + e^{-}, \quad \frac{D^\text{exp}}{D^\text{BP2000}} = 0.34 \pm 0.03
\]

Super-Kamiokande 1996-2001, \(E_{\text{thre}} = 4.75 MeV\):

\[
\nu_e + e^- \rightarrow \nu_e + e^-, \quad \frac{D^\text{exp}}{D^\text{BP2000}} = 0.465 \pm 0.015;
\]

SNO \(E_{\text{thre}} = 6.9 MeV\)

\[
\nu_e + d \rightarrow p + p + e^-, \quad \frac{D^\text{exp}}{D^\text{BP2000}} = 0.35 \pm 0.02,
\]

\(E_{\text{thre}} = 2.2 MeV\)

\[
\nu_e + d \rightarrow p + n + e^-, \quad \frac{D^\text{exp}}{D^\text{BP2000}} = 1.01 \pm 0.13,
\]
\[E_{\text{thre}} = 5.2\text{MeV} \]
\[\nu + e^- \rightarrow \nu + e^-, \quad \frac{D^{\text{exp}}}{D^{BP200}} = 0.47 \pm 0.05, \]

But normalized on SSM [32] GNO (GALLEX) [33], SAGE [12, 34] data are higher than above data on values 0.16 – 0.20

GNO (GALLEX) 1998-2000, \(E_{\text{thre}} = 0.233\text{MeV} \)
\[\nu_e + ^{71}\text{Ga} \rightarrow ^{71}\text{Ge} + e^-, \quad \frac{D^{\text{exp}}}{D^{BP200}} = 0.51 \pm 0.08; \]

SAGE 1990-2001, \(E_{\text{thre}} = 0.233\text{MeV} \)
\[\nu_e + ^{71}\text{Ga} \rightarrow ^{71}\text{Ge} + e^-, \quad \frac{D^{\text{exp}}}{D^{BP200}} = 0.54 \pm 0.05; \]

Since the length of neutrino transitions (oscillations) is proportional to their energy (see eq.(13)), therefore, the smaller are the neutrino energies, the smaller are the lengths of transitions (oscillations), hence the norm of transitions (oscillations) at the small energies must be the same as at the high ones. In order to resolve this problem it is probably necessary to examine calibration of the last experiments. It is more likely that the Standard Sun model [32] requires a revision in these energy regions. It is very important to organize an experiment with neutral currents in this energy region in order to register the full (the Sun) neutrino fluxes. It is clear that there is no sense in drawing the allowed regions pictures until this problem is solved.

4. The CHOOZ problem

In the France reactor experiment on \(\bar{\nu}_e \) neutrinos, there was observed a very small angle mixing for \(\bar{\nu}_e \rightarrow \bar{\nu}_\tau \) transitions [35]. If it is correct then on SNO there should be observed [15] only the \(\nu_e \rightarrow \nu_\mu \) neutrino transitions and the \(\nu_e \rightarrow \nu_\tau \) transitions must be suppressed, i.e. relation between \(\nu_e \) and \(\nu_\mu \) neutrino fluxes must be equal
\[\Phi_{\nu_e} \simeq \Phi_{\nu_\tau}. \]

(36)

However, in the SNO experiments on neutral currents, we can see approximate equality the numbers of the three type of neutrinos.
\[\Phi_{\nu_e} \simeq \frac{1}{2}(\Phi_{\nu_\tau} + \Phi_{\nu_\mu}). \]

(37)
It is clear that the angle of $\bar{\nu}_e \rightarrow \bar{\nu}_\tau$ transition cannot be small. Since distance from the reactor is small then this detector can register only a small mixing angle (to see correct mixing angle the detector must be in a distance not smaller than the oscillations length).

Conclusion

It is noted that the theory of neutrino oscillations can be constructed only in the framework of the particle physics theory, where is a mass shell conception and then transitions (oscillations) between neutrinos with equal masses are real and between neutrinos with different masses are virtual.

It is necessary to solve the question: which type of neutrino transitions (oscillations) is realized in nature? There can be three types of neutrino transitions (oscillations).

At present it is considered that Dirac and Majorana neutrino oscillations can be realized. It is shown that we cannot put Majorana neutrinos in the standard weak interactions theory without violation of the gauge invariance. Then it is obvious that there can be only realized transitions (oscillations) between Dirac neutrinos with different flowers.

Also it is shown that the mechanism of resonance enhancement of neutrino oscillations in matter cannot be realized without violation of the law of energy-momentum conservation.

Though it is supposed that we see neutrino oscillations in experiments, indeed there only transitions between neutrinos are registered. In order to register neutrino oscillations it is necessary to see second or even higher neutrino oscillation modes in experiments. For this purpose we can use the elliptic character of the Earth orbit.

The analysis shows that the SNO experimental results do not confirm smallest of $\nu_e \rightarrow \nu_\tau$ transition angle mixings, which was obtained in CHOOZ experiment. It is also noted that there is contradiction between SNO, Super-Kamiokande, Homestake and the SAGE and GNO (GALLEX) data.
References

1. Pontecorvo B. M., Soviet Journ. JETP, 1957, v. 33, p.549; JETP, 1958, v.34, p.247.
2. Maki Z. et al., Prog.Theor. Phys., 1962, vol.28, p.870.
3. Pontecorvo B. M., Soviet Journ. JETP, 1967, v. 53, p.1717.
4. Davis R. et al., Phys. Rev. Letters, 1968, vol.20, p.1205.
5. Bahcall J. et al., Phys. Lett.B, 1968, vol.26, p.1;
 Bahcall J., Bahcall N., Shaviv G., Phys. Rev. Lett. 1968, vol.20, p.1209;
 S. Turck-Chieze et al., Astrophys.J. 335 (1988), p.415.
6. Gribov V., Pontecorvo B.M., Phys. Lett. B, 1969, vol.28, p.493.
7. Hirata K.S. et al., Phys. Rev. Lett., 1989, vol.63,p.16.
8. Mikheyev S.P., Smirnov A.Ju., Nuovo Cimento, 1986, vol.9,p.17.
9. Wolfenstein L., Phys. Rev.D, 1978, vol.17, p.2369.
10. Beshtoev Kh.M., JINR Commun. E2-91-183, Dubna, 1991;
 Proceedings of III Int. Symp. on Weak and Electromag. Int. in Nucl. (World Scient., Singapoure, P. 781, 1992);
 13th European Cosmic Ray Symp. CERN, Geneva, HE-5-13.
11. Anselmann P. et al., Phys. Lett. B, 1992, vol.285, p.376; 1992, vol.285, p.391;
 Hampel W. et al., Phys. Lett. B, 1999, v.447, p. 127.
12. Abdurashitov J.N. et al., Phys. Lett.B, 1994, vol.328, p.234; Phys. Rev. Lett., 1999, v.83, p.4683.
13. Kameda J., Proceedings of ICRC 2001, August 2001, Germany, Hamburg, p.1057.
 Fukuda S. et al., Phys. Rev . Lett. 2001, v. 25, p.5651;
 Phys. Lett. B 539, 2002, p.179.
14. Toshito T., hep-ex/0105023;
 Kameda J., Proceeding of 27th ICRC, August 2001;
Hamburg, Germany, v.2, p.1057.
Mauger Ch., 31-st ICHEP, Amsterdam, July 2002.
15. Ahmad Q. R. et al., Internet Pub. nucl-ex/0106015, June 2001.
 Ahmad Q. R. et al., Phys. Rev. Lett. 2002, v. 89, p.011301-1;
 Phys. Rev. Lett. 2002,v. 89, p.011302-1.
16. Bilenky S.M., Pontecorvo B.M., Phys. Rep., C41(1978)225;
 Boehm F., Vogel P., Physics of Massive Neutrinos: Cambridge
 Univ. Press, 1987, p.27, p.121;
 Bilenky S.M., Petcov S.T., Rev. of Mod. Phys., 1977, v.59,
 p.631.
17. Beshtoev Kh.M., JINR Commun. E2-92-318, Dubna, 1992;
 JINR Rapid Communications, N3[71]-95.
18. Beshtoev Kh.M., Internet Pub. hep-ph/9911513;
 The Hadron Journal, v.23, 2000, p.477;
 Proceedings of 27th Intern. Cosmic Ray Conf., Germany,
 Hamburg, 7-15 August 2001, v.3, p. 1186.
19. Blatt J.M., Waiscopff V.F., The Theory of Nuclear Reactions,
 INR T.R. 42.
20. Beshtoev Kh.M., JINR Commun. E2-99-307, Dubna, 1999;
 JINR Commun. E2-99-306, Dubna, 1999.
21. Beshtoev Kh.M., Phys. of Elem. Part. and Atomic Nucl.
 (Particles and Nuclei), 1996, v.27, p.53.
22. Beshtoev Kh. M., JINR Communication E2-93-167, Dubna,
 1993; JINR Communication P2-93-44, Dubna, 1993;
23. Beshtoev Kh.M., hep-ph/9912532, 1999;
 Hadronic Journal, 1999, v.22, p.235.
24. Beshtoev Kh.M., JINR Communication E2-2000-30, Dubna,
 2000; Internet Publ. hep-ph/0003274.
25. Beshtoev Kh.M., JINR Communication D2-2001-292, Dubna,
 2001; Internet Publ. hep-ph/01 03274.
26. C. Gonzalez-Garcia 31-st ICHEP, Amsterdam, July 2002.
27. Rosen S.P., Lectore Notes on Mass Matrices, LASL preprint, 1983.
28. Beshtoev Kh.M., JINR Commun. E2-92-195, Dubna, 1992.
29. Glashow S.L.- Nucl. Phys., 1961, vol.22, p.579 ;
 Weinberg S.- Phys. Rev. Lett., 1967, vol.19, p.1264 ;
 Salam A.- Proc. of the 8th Nobel Symp., edited by
 N. Svarthholm (Almgvist and Wiksell, Stockholm) 1968, p.367.
30. Mitsui T., Proceedings of the 31-st ICHEP, August 2002,
 Amsterdam, Netherlands.
31. Davis R. et al., Phys. Rev. Letters, 1968, vol.20;
 Lande K., Neutrino 2002, may 2002, Munich, Germany.
32. Bahcall J., Pinsonneault M.N. and Sarbani B. Astrophysical
 Journ 2001, v. 555, p.990.
33. Belloti E., Nucl. Phys.B (Proc. Suppl.), 2001,v. 91, p.44;
 Hampel W. et al., Phys. Lett.B, 1996, v. 388, p.364;
 Kirsten T., Neutrino 2002, May 2002, Munich, Germany.
34. Gavrin V. N., Nucl. Phys. B (Proc. Suppl.) 2001, v. 91, p.36.
35. Appolinio M., Phys. Lett. B, 1999, v.466, p.415.