Carbon Chain Chemistry in Hot-core Regions around Three Massive Young Stellar Objects Associated with 6.7 GHz Methanol Masers

Kotomi Taniguchi1, Eric Herbst2,3, Liton Majumdar4, Paola Caselli5, Jonathan C. Tan2,6, Zhi-Yun Li2, Tomomi Shimoikura7, Kazuhito Dobashi8, Fumitaka Nakamura9,10,11, and Masao Saito9,10

1 Department of Physics, Faculty of Science, Gunagshin University, Mejiro, Toshima, Tokyo 171-8588, Japan; kotomi.taniguchi@gunagshin.ac.jp
2 Department of Astronomy, University of Virginia, Charlottesville, VA 22904, USA
3 Department of Chemistry, University of Virginia, Charlottesville, VA 22903, USA
4 School of Earth and Planetary Sciences, National Institute of Science Education and Research, HBNI Jatni 752050, Odisha, India
5 Max-Planck-Institute for Extraterrestrial Physics (MPE), Giessenbachstr, 1, D-85748 Garching, Germany
6 Department of Space, Earth & Environment, Chalmers University of Technology, SE-412 90 Gothenburg, Sweden
7 Faculty of Social Information Studies, Otsuka Women’s University, Sanban-cho, Chiyoda, Tokyo 102-8537, Japan
8 Department of Astronomy and Earth Sciences, Tokyo Kagakui University, Nukuikita-machi, Koganei, Tokyo 184-8501, Japan
9 National Astronomical Observatory of Japan (NAO), National Institutes of Natural Sciences, Osawa, Mitaka, Tokyo 181-8588, Japan
10 Department of Astronomical Science, School of Physical Science, SOKENDAI (The Graduate University for Advanced Studies), Osawa, Mitaka, Tokyo 181-8588, Japan
11 The University of Tokyo, Hongo, Bunkyo, Tokyo 113-0033, Japan

Received 2020 August 13; revised 2020 December 21; accepted 2020 December 23; published 2021 February 17

Abstract

We have carried out observations of CCH (N = 1 – 0), CH3CN (J = 5 – 4), and three 13C isotopologues of HC3N (J = 10 – 9) toward three massive young stellar objects (MYSOs), G12.89+0.49, G16.86–2.16, and G28.28–0.36, with the Nobeyama 45 m radio telescope. Combined with previous results on HC5N, the column density ratios of N(CCH)/N(HC3N), hereafter the CCH/HC3N ratios, in the MYSOs are derived to be ~15. This value is lower than that in a low-mass warm carbon chain chemistry (WCCC) source by more than one order of magnitude. We compare the observed CCH/HC3N ratios with hot-core model calculations. The observed ratios in the MYSOs can be best reproduced by models when the gas temperature is ~85 K, which is higher than in L1527, a low-mass WCCC source (~35 K). These results suggest that carbon-chain molecules detected around the MYSOs exist at least partially in higher temperature regions than those in low-mass WCCC sources. There is no significant difference in column density among the three 13C isotopologues of HC3N in G12.89+0.49 and G16.86–2.16, while HC313CN is more abundant than the others in G28.28–0.36. We discuss carbon-chain chemistry around the three MYSOs based on the CCH/HC3N ratio and the 13C isotopic fractionation of HC3N.

Unified Astronomy Thesaurus concepts: Astrochemistry (75); Interstellar molecules (849); Massive stars (732)

1. Introduction

Approximately 200 molecules have been identified in the interstellar medium and circumstellar shells (McGuire 2018). Around 40% of the interstellar molecules are accounted for by unsaturated carbon-chain molecules. Carbon-chain molecules, such as CCS and HC3N, are generally known to be abundant in cold (T ≈ 10 K) starless/prestellar cores (e.g., Suzuki et al. 1992; Benson et al. 1998). They are formed in the gas phase via ion–molecule reactions and exothermic neutral–neutral reactions without reaction energy barriers. Their abundances decrease in star-forming cores (Suzuki et al. 1992; Benson et al. 1998), due to their destruction and/or depletion onto dust grains in cold high density regions just before protostars form. Based on the above characteristics, these carbon-chain species are also called “early-type species.”

Around protostars, partially saturated complex organic molecules (COMs), which consist of more than six atoms and are rich in hydrogen atoms, are abundant (Herbst & van Dishoeck 2009). These regions are referred to as hot cores and hot coronas in high-mass and low-mass star-forming regions, respectively. The COMs are formed on dust grains in the cold starless core and warm-up phases (Garrod & Herbst 2006; Garrod et al. 2008). Gas-phase reactions also contribute to the formation of COMs in both warm regions (e.g., Skouteris et al. 2019) and in cold environments (Baltzãni et al. 2015). Although general formation processes of COMs have been proposed, recent ALMA observations have revealed complexities of COM chemistry around protostars both in high-mass and low-mass star-forming regions (Jorgensen et al. 2020, and references therein). For example, a chemical differentiation between N-bearing COMs and O-bearing COMs has been found (e.g., Crockett et al. 2015). Even among O-bearing COMs, there is a spatial segregation between COMs containing a C–O–C structure and those containing a C–OH bond (Tercero et al. 2018).

In contrast to hot corino chemistry, warm carbon chain chemistry (WCCC) was proposed initially around some low-mass protostars, such as L1527 and IRAS 15398–3359 (Sakai & Yamamoto 2013). In WCCC sources, carbon-chain molecules are efficiently formed from methane (CH4), which is desorbed from dust grains at temperatures of ~25–30 K (Hassel et al. 2008). Reactions between CH4 molecules and C+ ions initiate carbon-chain formation in the lukewarm gas (T ≈ 25–30 K). In high-mass star-forming regions, observational studies concerning carbon-chain chemistry are less well developed. It is unknown whether carbon-chain molecules are formed anew around massive young stellar objects (MYSOs), and, if they are formed, whether these carbon-chain molecules exist in higher temperature regions than those in low-mass WCCC sources.

Green et al. (2014) carried out survey observations of HC3N toward MYSOs containing 6.7 GHz CH3OH masers. They detected HC3N in 35 sources out of 79 MYSOs using the J = 12 – 11 line (31.951777 GHz; E_u/κ = 9.97 K) with the
analytical methods and results are summarized in Section 3.2. In combination with previous results on HC$_3$N reported by Taniguchi et al. (2017b), we derive the CCH/HC$_3$N ratios toward the three MYSOs. These CCH/HC$_3$N ratios toward the three MYSOs are compared with those in a low-mass WCCC source L1527 in Section 4.1, and with the model calculation in Section 4.2. In Section 4.3, the differences in column density among the three 13C isotopologues of HC$_3$N, namely the 13C isotopic fractionation, and possible main formation pathways of HC$_3$N are presented. We discuss carbon-chain chemistry around the three MYSOs based on the CCH/HC$_3$N ratio and the 13C isotopic fractionation of HC$_3$N in Section 4.4. The main conclusions of this paper are summarized in Section 5.

2. Observations

The observations presented in this paper were carried out with the Nobeyama 45 m radio telescope in 2019 April and May (2018–2019 semester12). Our three target MYSOs are the sources observed by Taniguchi et al. (2017b, 2018b). The properties of the target sources are summarized in Table 1. These sources were selected with the following criteria:

1. the source decl. is above -21°,
2. the distance (D) is within 3 kpc, and
3. CH$_3$CN was detected with the Mopra telescope ($\int I_{\text{mb}}dv > 0.5$ K km s$^{-1}$ for the $J_K = 5_0 - 4_0$ line; Purcell et al. 2006).

In addition, the 6.7 GHz CH$_3$OH maser and molecular outflows are associated with all of the sources (Cyganowski et al. 2008; Li et al. 2016). The 6.7 GHz CH$_3$OH maser is known as a sign of massive star formation (Urquhart et al. 2015). The G28.28–0.36 MYSO is categorized as a GLIMPSE Extended Green Object (EGO; Cyganowski et al. 2011).

We used the FOREST receiver (Minamidani et al. 2016) in the on–on observing mode.13 The integration time for each scan was 20 s. The off-source positions for calibrating observations were set at +15′ away in decl. The main beam efficiency (η_{mb}) and the beam size (HPBW) at 86 GHz of this receiver are $\sim 50\%$ and 18″, respectively. The system temperatures were between ~ 200 and ~ 250 K, depending on weather conditions and elevation.

We used the SAM45 FX-type digital correlator in a frequency setup, the bandwidth and frequency resolution of which are 500 MHz and 122.07 kHz, respectively. This frequency resolution corresponds to a velocity resolution of 0.4 km s$^{-1}$ at the observed frequency range. We conducted two-channel binning in the final spectra, and the velocity resolution of the final spectra is ~ 0.8 km s$^{-1}$.

The telescope pointing was checked every 1.5 hr by observing the SiO maser line ($J = 1 - 0$; 43.12203 GHz) from OH39.7 $+1.5$ at ($\alpha_{2000}, \delta_{2000}$) = (18°56′03″, +06°38′49″). The H40 receiver was used for the pointing observations. The pointing errors were within 3″.

3. Results and Analyses

3.1. Results

We analyzed spectra with the Java NEWSTAR, which is a software package for data reduction and analyses of the

12 Proposal ID: SP189002, PI: Kotomi Taniguchi.

13 https://www.nro.nao.ac.jp/~nro45mrt/html/obs/nobs/scan.html#on-on
Nobeyama 45 m radio telescope.14 The total integration times are approximately 9 hr, 6 hr, and 7 hr, for G12.89$+$0.49, G16.86$-$2.16, and G28.28$-$0.36, respectively.

Figures 1–3 show spectra of CCH ($N = 1 – 0$), three 13C isotopologues of HC$_3$N ($J = 10 – 9$), and CH$_3$CN ($J = 5 – 4$), respectively, toward the three MYSOs. The rms noise levels are 4–5 mK in T_A^{*} scale in all of the sources. We fitted the spectra with a Gaussian profile. The obtained spectral line parameters are summarized in Table 2. We applied a main beam efficiency (η_{mb}) of 50\%, 46\%, and 48\% to the CCH, CH$_3$CN, and three 13C isotopologues of HC$_3$N lines, respectively, for calculation of T_{mb} values. These η_{mb} values were calculated by extrapolation using the reported values at 86 GHz and 110 GHz.15

The observed radial velocities (V_{LSR}) of each line are consistent with the systemic velocities of each source (Table 1) within the errors. The $J_K = 5_2 – 4_1$ line of CH$_3$CN in G28.28$-$0.36 shows a slightly larger V_{LSR} value compared with the systemic velocity, but this is due to the low signal-to-noise (S/N) ratio of this line.

Six lines of the hyperfine and fine structures of CCH have been detected from the three MYSOSs as shown in Figure 1. Their line widths (Δv) obtained by the Gaussian fitting are \sim3–3.5 km s$^{-1}$ in G12.89$+$0.49 and G16.86$-$2.16, and \sim2.5–3 km s$^{-1}$ in G28.28$-$0.36, respectively (see Table 2). These values agree with line widths of other carbon-chain molecules (Taniguchi et al. 2017b, 2018b). In addition, these line widths are consistent with typical line widths of molecular lines in hot cores.

All of the three 13C isotopologues of HC$_3$N have been detected with S/N ratios above 10 in G12.89$+$0.49 and G16.86$-$2.16, and S/N ratios between 6 and 9 in G28.28$-$0.36 (Figure 2). Their line widths are consistent with the main isotopologue of the same transition ($J = 10 – 9$; Taniguchi et al. 2018b) within the errors.

Five K-ladder lines ($K = 0–4$) of CH$_3$CN have been detected from G12.89$+$0.49 and G16.86$-$2.16, and four lines, missing the $J_K = 5_2 – 4_1$ line, were detected from G28.28$-$0.36, as shown in the upper panels of Figure 3. The line widths of the $K = 0$ line are in good agreement with those of carbon-chain species (CCH, HC$_3$N, and HC$_3$N), while the higher K-value lines show wider spectral features. These results suggest that the lines with higher upper energy levels come from inner hot regions.

3.2. Analyses

We describe analytical methods and present results in this subsection. The derived column densities and excitation temperatures are summarized in Table 3. These derived column densities are the averaged values with a beam size of 18\', in the same manner as previous studies (Taniguchi et al. 2017b, 2018b).

3.2.1. CCH

We derived excitation temperatures and column densities of CCH using the RADEX code (van der Tak et al. 2007). We assumed that the gas kinetic temperatures (T_{gas}) are equal to the excitation temperatures of CH$_3$CCH, T_{ex}(CH$_3$CCH), derived by the rotational diagram method using the K-ladder lines of the $J = 5 – 4$ and $6 – 5$ transitions (Taniguchi et al. 2018b). The T_{ex}(CH$_3$CCH) values were derived to be 33_{-10}^{+20} K, 29_{-8}^{+15} K, and 23_{-7}^{+12} K in G12.89$+$0.49, G16.86$-$2.16, and G28.28$-$0.36, respectively. The line widths of CCH are comparable to those of CH$_3$CCH, which supports the hypothesis that these species trace similar temperature regions and our assumption that T_{gas} can be set at T_{ex}(CH$_3$CCH).

The chemical model calculations (Taniguchi et al. 2019a) indicate that carbon-chain species are formed in the lukewarm ($T > 25$ K) region, where the CH$_4$ molecules are desorbed from dust grains, as in WCCC regions. In such temperature ranges, the lowest H$_2$ density was estimated to be \sim105 cm$^{-3}$ based on hot-core models by Nomura & Millar (2004). We then assumed that the H$_2$ density is 1 \times 105 cm$^{-3}$ at first.

With the above conditions (n(H$_2$) = 1 \times 105 cm$^{-3}$ and T_{gas} = 33 K, 29 K, and 23 K in G12.89$+$0.49, G16.86$-$2.16, and G28.28$-$0.36, respectively), the derived excitation temperature of CCH in G12.89$+$0.49 is higher than the assumed T_{gas} value (case a in Table 3). In G28.28$-$0.36, the column density and excitation temperature of CCH are (2.8 \pm 1.1)\times1014 cm$^{-2}$ and 16 \pm 3 K.

Next, we reduced the H$_2$ density to 5 \times 104 cm$^{-3}$ and derived the column densities and excitation temperatures of

14 https://www.nro.nao.ac.jp/~jnewstar/html/
15 https://www.nro.nao.ac.jp/~nro45mrt/html/prof/eff/eff2019.html
CCH (case b in Table 3). The column densities and excitation temperatures of CCH are derived to be $(4.1 \pm 1.4) \times 10^{14}$ cm$^{-2}$ and 13 ± 2 K in G12.89+0.49, and $(5.1 \pm 1.0) \times 10^{14}$ cm$^{-2}$ and 11 ± 2 K in G16.86–2.16, respectively. The column density of CCH is derived to be $(3.1 \pm 1.3) \times 10^{14}$ cm$^{-2}$ in G28.28–0.36. The column densities of CCH do not change and are in agreement for cases a and b within their errors.

Finally, we tried T_{ex} values at the lower limits of T_{ex} (CH$_3$CCH)—24 K in G12.89+0.49, 21 K in G16.86–2.16, and 17 K in G28.28–0.36—and an H$_2$ density of 1×10^5 cm$^{-3}$ (case c in Table 3). The derived column densities of CCH do not change significantly among all of the sets of assumed physical parameters. The results are consistent within their errors in all of the sources.

In the density range between 5×10^4 cm$^{-3}$ and 10^6 cm$^{-3}$, the derived column densities of CCH increase by only a factor of 2 at n(H$_2$) = 10^6 cm$^{-3}$. Thus, the assumed physical parameters do not change the cases densities of CCH significantly, and our following discussions are not affected.

3.2.2. 13C Isotopologues of HC$_3$N

Taniguchi et al. (2018b) derived the column densities and rotational temperatures of the main isotopologue of HC$_3$N, including the $J = 10 - 9$ line, toward the same MYSOs using the rotational diagram method under LTE conditions by following Goldsmith & Langer (1999). Here, we assume that the spatial distributions of the 13C isotopologues are the same as the main isotopologue and apply the LTE assumption for simplicity. We used the following formulae (Taniguchi et al. 2016a):

\[
\tau = - \ln \left[1 - \frac{T_{\text{mb}}}{J(T_{\text{ex}}) - J(T_{\text{bg}})} \right] \tag{1}
\]

where

\[
J(T) = \frac{h\nu}{k} \left\{ \exp \left(\frac{h\nu}{kT} \right) - 1 \right\}^{-1}, \tag{2}
\]

and

\[
N = \tau \frac{3h\Delta \nu}{8\pi^3} \sqrt{\frac{\pi}{4 \ln 2}} \frac{1}{\mu^2} \frac{Q}{J_{\text{lower}}} \frac{1}{1 + \exp \left(\frac{E_{\text{lower}}}{kT_{\text{ex}}} \right)} \times \left\{ 1 - \exp \left(- \frac{h\nu}{kT_{\text{ex}}} \right) \right\}^{-1}. \tag{3}
\]
In Equation (1), τ denotes the optical depth, and T_{mb} represents the peak intensities summarized in Table 2. The excitation temperature and the cosmic microwave background temperature (≈ 2.73 K) are indicated as T_{ex} and T_{bg}, respectively. We assumed that the excitation temperatures of the 13C isotopologues of HC$_3$N are equal to the rotational temperatures of the main isotopologue (Taniguchi et al. 2018b); 24 K, 20 K, and 13.4 K in G12.89+0.49, G16.86–2.16, and G28.28–0.36, respectively. Since we have considered the latest result on T_{ex} for HC$_3$N (Taniguchi et al. 2018b) as the most plausible, we used their results here. $J(T)$ in Equation (2) is the effective temperature equivalent to that in the Rayleigh–Jeans law. The symbols of \hbar, k, and ν denote the Planck constant, Boltzmann constant, and rest frequency, respectively. In Equation (3), N is the column density, $\Delta\nu$ is the line width (Table 2), Q is the rotational partition function, μ is the permanent electric dipole moment, and E_{lower} is the energy of the lower rotational energy level. We assume that the electric dipole moments of the 13C isotopologues of HC$_3$N are equal to that of the main isotopologue (3.73172 D; DeLeon & Muenter 1985).

The derived column densities are summarized in Table 3. In G12.89+0.49 and G16.86–2.16, the column densities of the three 13C isotopologues are consistent with each other in each source. On the other hand, HCC13CN is slightly more abundant than the others in G28.28–0.36, which agrees with the previous results (Taniguchi et al. 2016b).

In these observations, we observed only one rotational line for each 13C isotopomer, and derived the column densities by fixing the excitation temperatures. Hence, the absolute values of column densities may contain extra uncertainties due to the assumed T_{ex} value. However, these uncertainties do not affect our discussion, because we focus on the 13C isotopic fractionation of HC$_3$N, or relative differences in abundance among the 13C isotopologues, which are expected to trace the same conditions. Relative abundances are not affected by the assumed excitation temperature or absolute column densities, when we compare them using the same transition.

The derived column densities in G28.28–0.36 reported here and those of Taniguchi et al. (2016b) differ. This is caused by the different assumed excitation temperatures. We believe that the column densities derived here are more reliable, because...
Taniguchi et al. (2016b) assumed that the excitation temperature is 100 K, a typical hot core temperature. As mentioned before, the different values of column density do not affect our discussion. Our final conclusion using 13C isotopic fractionation (Section 4.3) is consistent with that of Taniguchi et al. (2016b).

3.2.3. CH$_3$CN

We derived the rotational temperatures and column densities of CH$_3$CN in the three sources from a rotational diagram analysis, using the following formula (Goldsmith & Langer 1999);

$$
\frac{3k}{8\pi \nu S T_{\text{rot}}} \ln N = \ln \frac{E_{\text{up}}}{Q(T_{\text{rot}})} - \frac{E_{\text{up}}}{k T_{\text{rot}}},
$$

where S is the line strength, E_{up} is the upper energy level, and $Q(T_{\text{rot}})$ is the partition function for the rotational temperature T_{rot}. The electric dipole moment of CH$_3$CN is 3.92197 D (Pickett et al. 1998). The $\int J_{\text{mb}}dv$ integral represents the integrated intensity values summarized in Table 2.

The rotational diagrams for each source are shown in the bottom panels of Figure 3. In the case of G12.89+0.49 and G16.86–2.16, we excluded the $J_k = 5_2 - 4_2$ line ($E_{\text{up}}/k = 127.5$ K) from the fitting, because the fitting results are significantly bad if we include this point. We conjecture that contributions of inner hot regions for this line are larger than those for other lines. In fact, the line widths of the $J_k = 5_2 - 4_2$ line are significantly larger than those of other CH$_3$CN lines (Table 2). The derived column densities and rotational temperatures are $1.2^{+1.2}_{-1.0} \times 10^{14}$ cm$^{-2}$ and 119^{+36}_{-33} K in G12.89+0.49, $4.5^{+1.8}_{-0.9} \times 10^{13}$ cm$^{-2}$ and 68^{+26}_{-15} K in G16.86–2.16, and $5.1^{+1.1}_{-0.8} \times 10^{12}$ cm$^{-2}$ and 36^{+11}_{-8} K in G28.28–0.36, respectively (see Table 3).

We do not know sizes of the emission regions and so could not apply a beam dilution correction for each line. The analyses without the beam dilution correction may overestimate the rotational temperature and underestimate the column density.

4. Discussion

4.1. Comparison of the CCH/HC$_5$N Ratio between MYSOs and WCCC Sources

As mentioned in Section 1, the CCH/HC$_5$N ratio can probably be used as a temperature probe for regions where carbon-chain molecules exist. In this subsection, we will compare the CCH/HC$_5$N ratio among MYSOs and a low-mass WCCC source.

We summarize the CCH/HC$_5$N ratio around the three high-mass protostars and one low-mass protostar (L1527) in Table 4. We estimated the errors for the most severe cases to confirm that the CCH/HC$_5$N ratios in MYSOs are clearly different from that in L1527.

The column densities of HC$_5$N were previously derived to be $2.39^{+0.13}_{-0.12} \times 10^{13}$ cm$^{-2}$, $2.78^{+0.16}_{-0.18} \times 10^{13}$ cm$^{-2}$, and $2.05^{+0.05}_{-0.06} \times 10^{13}$ cm$^{-2}$ in G12.89+0.49, G16.86–2.16, and G28.28–0.36, respectively (Taniguchi et al. 2017b). These column densities were derived by the rotational diagram method using 10 lines with upper state energies of 7.0–99.7 K. Using the column densities of CCH summarized in Table 3, the CCH/HC$_5$N ratios are calculated to be 17^{+5}_{-3}, 17^{+6}_{-5}, and 14^{+7}_{-5} in each MYSO. These high-mass values were obtained using the column densities of CCH in case c in Table 3. The errors cover all three cases. These CCH/HC$_5$N ratios are the averaged values over the Nobeyama beam size of 18″.
Species Transition	Frequency\(^a\) (GHz)	\(E_{\text{up}}/k\) (K)	\(T_{\text{mb}}\) (K)	\(\Delta v\) (km s\(^{-1}\))	\(\int T_{\text{mb}}dv\) (K km s\(^{-1}\))	\(V_{\text{LSR}}\) (km s\(^{-1}\))	\(T_{\text{mb}}\) (K)	\(\Delta v\) (km s\(^{-1}\))	\(\int T_{\text{mb}}dv\) (K km s\(^{-1}\))	\(V_{\text{LSR}}\) (km s\(^{-1}\))	\(T_{\text{mb}}\) (K)	\(\Delta v\) (km s\(^{-1}\))	\(\int T_{\text{mb}}dv\) (K km s\(^{-1}\))	\(V_{\text{LSR}}\) (km s\(^{-1}\))	
CCH \(J = \frac{3}{2} - \frac{1}{2}\)	\(F = 1 \rightarrow 1\)	87.284156	4.2	0.341 (15)	3.06 (16)	1.15 (14)	33.7 (1)	0.36 (3)	3.1 (3)	1.2 (2)	17.3 (1)	0.359 (17)	2.12 (12)	0.86 (11)	49.4 (1)
	\(F = 2 \rightarrow 1\)	87.316925	4.2	1.548 (13)	3.66 (4)	6.2 (6)	33.1 (1)	2.69 (3)	2.73 (4)	8.1 (8)	17.5 (1)	1.272 (15)	2.91 (4)	4.1 (4)	49.6 (1)
	\(F = 1 \rightarrow 0\)	87.328624	4.2	1.042 (14)	3.39 (5)	3.9 (4)	33.0 (1)	1.30 (3)	3.38 (10)	4.8 (5)	17.4 (1)	0.852 (16)	2.53 (6)	2.4 (2)	49.6 (1)
\(J = \frac{1}{2} - \frac{1}{2}\)	\(F = 1 \rightarrow 1\)	87.402004	4.2	1.035 (14)	3.36 (5)	3.8 (4)	33.5 (1)	1.28 (3)	3.32 (10)	4.7 (5)	17.1 (1)	0.893 (16)	2.52 (5)	2.5 (3)	49.2 (1)
	\(F = 0 \rightarrow 1\)	87.407165	4.2	0.556 (15)	3.04 (9)	1.9 (2)	32.8 (1)	0.65 (3)	3.07 (19)	2.2 (3)	17.2 (1)	0.551 (17)	2.15 (8)	1.35 (15)	49.3 (1)
	\(F = 1 \rightarrow 0\)	87.446512	4.2	0.336 (15)	2.99 (16)	1.11 (13)	33.8 (1)	0.35 (3)	3.1 (3)	1.2 (2)	17.3 (1)	0.335 (17)	2.20 (14)	0.83 (11)	49.5 (1)
\(J = 10 \rightarrow 9\)	\(H^{13}\)CCCN	88.166832	23.3	0.103 (6)	3.7 (3)	0.41 (6)	32.4 (1)	0.092 (7)	3.1 (3)	0.31 (5)	17.3 (1)	0.052 (9)	2.4 (5)	0.14 (4)	49.1 (1)
\(J = 10 \rightarrow 9\)	\(H^{13}\)CCCN	90.593059	23.9	0.111 (5)	3.9 (2)	0.46 (6)	33.3 (1)	0.100 (6)	3.0 (2)	0.33 (5)	17.0 (1)	0.076 (9)	1.6 (2)	0.15 (3)	49.0 (1)
\(J = 10 \rightarrow 9\)	\(H^{13}\)CCCN	90.601777	23.9	0.103 (5)	3.7 (2)	0.42 (5)	32.3 (1)	0.096 (6)	3.2 (3)	0.33 (5)	17.5 (1)	0.071 (8)	2.3 (3)	0.18 (4)	49.5 (1)
\(J_K = 5_a - 4_b\)	\(J_K = 5_a - 4_b\)	91.9587260	127.5	0.116 (6)	8.2 (5)	1.01 (13)	31.0 (1)	0.050 (8)	9.5 (1.8)	0.51 (14)	17.3 (2)
\(J_K = 5_a - 4_b\)	\(J_K = 5_a - 4_b\)	91.9711304	77.5	0.353 (7)	6.23 (14)	2.4 (2)	34.1 (1)	0.188 (10)	6.5 (4)	1.3 (2)	17.9 (1)	0.030 (6)	4.5 (1.0)	0.14 (5)	50.3 (4)
\(J_K = 5_a - 4_b\)	\(J_K = 5_a - 4_b\)	91.97999943	41.8	0.410 (7)	5.52 (11)	2.4 (3)	32.7 (1)	0.254 (11)	5.3 (3)	1.5 (2)	17.4 (1)	0.075 (7)	2.8 (3)	0.23 (4)	49.0 (2)
\(J_K = 5_a - 4_b\)	\(J_K = 5_a - 4_b\)	91.9853141	20.4	0.614 (7)	5.88 (9)	3.9 (4)	32.2 (5)	0.493 (12)	4.83 (15)	2.6 (3)	17.2 (2)	0.219 (8)	2.35 (10)	0.58 (7)	49.6 (3)
\(J_K = 5_a - 4_b\)	\(J_K = 5_a - 4_b\)	91.9870876	13.2	0.651 (9)	3.68 (6)	2.6 (3)	32.8 (2)	0.587 (13)	3.73 (11)	2.4 (3)	17.4 (2)	0.264 (8)	2.10 (8)	0.63 (7)	49.0 (3)

Notes. Numbers in parentheses are the standard deviation, expressed in units of the last significant digits. The standard deviation for \(T_{\text{mb}}\) and \(\Delta v\) is derived from the Gaussian fit, and we derived the standard deviation for \(\int T_{\text{mb}}dv\) taking the standard deviation of \(T_{\text{mb}}\) and \(\Delta v\) and 10% absolute calibration errors due to the chopper-wheel calibration into consideration.

\(^a\) Rest frequency and excitation energy are taken from the Cologne Database for Molecular Spectroscopy (CDMS; Müller et al. 2005) for the lines of CCH and \(^{13}\)C isotopologues of HC\(_3\)N, and the Jet Propulsion Laboratory (JPL) catalog (Pickett et al. 1998) for the CH\(_3\)CN lines.

\(^b\) Line widths are calculated using the following formula: \(\Delta v = \sqrt{\Delta v_{\text{gau}}^2 - \Delta v_{\text{inst}}^2}\), where \(\Delta v_{\text{gau}}\) and \(\Delta v_{\text{inst}}\) are the line widths obtained by the Gaussian fit and the instrumental velocity resolution (0.8 km s\(^{-1}\)), respectively.
The Astrophysical Journal, 908:100 (12pp), 2021 February 10
Taniguchi et al.

Table 3

Species	G12.89+0.49	G16.86–2.16	G28.28–0.36			
	\(N \) (cm\(^{-2}\))	\(T_{\text{ex}} \) (K)	\(N \) (cm\(^{-2}\))	\(T_{\text{ex}} \) (K)	\(N \) (cm\(^{-2}\))	\(T_{\text{ex}} \) (K)
CCH\(^a\)	\((4.2 \pm 1.4) \times 10^{14} \)	40 ± 15	\((4.9 \pm 1.1) \times 10^{14} \)	26 ± 6	\((2.8 \pm 1.1) \times 10^{14} \)	16 ± 3
CCH\(^b\)	\((4.1 \pm 1.4) \times 10^{14} \)	13 ± 2	\((5.1 \pm 1.0) \times 10^{14} \)	11 ± 2	\((3.1 \pm 1.3) \times 10^{14} \)	9 ± 1
CCH\(^c\)	\((3.9 \pm 1.3) \times 10^{14} \)	17 ± 3	\((4.8 \pm 0.9) \times 10^{14} \)	14 ± 2	\((2.9 \pm 1.2) \times 10^{14} \)	11 ± 1
H\(^1\)CCCN	\((1.8 \pm 0.2) \times 10^{15} \)	24 \(^a\)	\((1.4 \pm 0.2) \times 10^{15} \)	20 \(^a\)	\((7.6 \pm 2.1) \times 10^{14} \)	13.4 \(^d\)
HC\(^1\)CN	\((1.9 \pm 0.2) \times 10^{15} \)	24 \(^d\)	\((1.4 \pm 0.2) \times 10^{15} \)	20 \(^d\)	\((7.9 \pm 1.6) \times 10^{14} \)	13.4 \(^d\)
HCC\(^1\)CN	\((1.8 \pm 0.2) \times 10^{15} \)	24 \(^d\)	\((1.4 \pm 0.2) \times 10^{15} \)	20 \(^d\)	\((9.97 \pm 1.9) \times 10^{14} \)	13.4 \(^d\)
CH\(_3\)CN	\(1.2^{+1.3}_{-1.1} \times 10^{14} \)	119^{+45}_{-36}	\(4.5^{+1.5}_{-0.95} \times 10^{13} \)	68^{+36}_{-26}	\(5.1^{+1.1}_{-0.51} \times 10^{12} \)	36^{+16}_{-11}

Notes. The errors are the standard deviation.
\(^a\) The assumed gas kinetic temperatures are fixed at the excitation temperatures of CH\(_3\)CCH derived by Taniguchi et al. (2018b): 33 K, 29 K, and 23 K for G12.89+0.49, G16.86–2.16, and G28.28–0.36, respectively. The assumed \(\text{H}_2 \) densities are fixed at \(1 \times 10^{13} \) cm\(^{-3}\).
\(^b\) The assumed gas kinetic temperatures are fixed at the excitation temperatures of CH\(_3\)CCH derived by Taniguchi et al. (2018b). The assumed \(\text{H}_2 \) densities are fixed at \(5 \times 10^{12} \) cm\(^{-3}\).
\(^c\) The assumed gas kinetic temperatures are fixed at the lower limits of excitation temperatures of CH\(_3\)CCH derived by Taniguchi et al. (2018b): 24 K, 21 K, and 17 K for G12.89+0.49, G16.86–2.16, and G28.28–0.36, respectively. The assumed \(\text{H}_2 \) densities are fixed at \(1 \times 10^{13} \) cm\(^{-3}\).
\(^d\) The excitation temperatures are fixed at the main species derived by Taniguchi et al. (2018b).

Table 4

Comparison of the CCH/H\(_{2}\)N Ratio around Young Protostars

Source Type	Source	MYSOs	Low-mass WCCC Source	
	G12.89+0.49\(^a\)	G16.86–2.16\(^a\)	G28.28–0.36\(^a\)	L1527\(^b\)
CCH/H\(_{2}\)N	17^{+3}_{-2}	17^{+2}_{-2}	14^{+5}_{-3}	625^{+304}_{-339}

Notes. The upper and lower errors were calculated as \(\delta N(\text{CCH}) \pm \delta N(\text{H}_2\text{N})/\sqrt{N(\text{H}_2\text{N})+\delta N(\text{H}_2\text{N})} \), where \(\delta N(\text{species}) \) represents the standard deviation of the column densities.
\(^a\) The column densities of HC\(_2\)N were taken from Taniguchi et al. (2017b): \(2.39^{+0.15}_{-0.11} \times 10^{13} \) cm\(^{-2}\), \(2.78^{+0.16}_{-0.12} \times 10^{13} \) cm\(^{-2}\), and \(2.05^{+0.12}_{-0.085} \times 10^{13} \) cm\(^{-2}\) in G12.89+0.49, G16.86–2.16, and G28.28–0.36, respectively.
\(^b\) The column densities of HC\(_2\)N and CCH were taken from Yoshida et al. (2019).

For L1527, the low-mass WCCC source, Yoshida et al. (2019) derived the column density and excitation temperature of HC\(_2\)N to be \((2.4 \pm 1.8) \times 10^{12} \) cm\(^{-2}\) and 22 ± 7 K, respectively. Yoshida et al. (2019) derived the CCH column density in L1527 to be \((1.2 \pm 0.2) \times 10^{12} \) cm\(^{-2}\) and \((1.5 \pm 0.3) \times 10^{12} \) cm\(^{-2}\) by non-LTE and LTE methods, respectively. Thus, the CCH/HC\(_2\)N ratio in L1527 is \(625^{+304}_{-339} \).

We clearly recognize a difference in the CCH/HC\(_2\)N ratio between MYSOs and the L1527 low-mass WCCC source (see Table 4). Specifically, the CCH/HC\(_2\)N ratios in MYSOs are lower than that in the low-mass WCCC source by one order of magnitude at least, suggesting that the carbon-chain chemistry around MYSOs is different from that in low-mass counterparts.

4.2. Temperature Dependence of the CCH/H\(_{2}\)N Ratio

Table 3 shows the CCH/H\(_{2}\)N ratios in MYSOs (orange horizontal line) and L1527 (blue horizontal line) along with the modeled value as a function of temperature. The modeled CCH/H\(_{2}\)N ratio generally decreases as the temperature increases. The observed CCH/H\(_{2}\)N values in the MYSOs agree best with the modeled value at \(T \approx 85 \) K. In the case of L1527, there are some regions where the observed value is reproduced by the model calculation, but the most likely point is at \(T \approx 35 \) K, taking the distributions of carbon-chain species in L1527 (Sakai et al. 2010) and the profile of the gas temperature (e.g., van’t Hoff et al. 2018) into consideration. This temperature almost agrees with the carbon-chain spatial distribution in L1527 (Sakai et al. 2010) and matches the WCCC model (Hassel et al. 2008).

Panel (b) of Figure 4 shows the result of a fast warm-up period \((5 \times 10^5 \) yr \) with the same cosmic-ray ionization rate \((1.3 \times 10^{-17} \) s\(^{-1}\) \) as in panel (a). The observed CCH/H\(_{2}\)N ratio agrees with the model at \(T \approx 87 \) K, which is consistent with the temperature suggested from panel (a) of \(T \approx 85 \) K.

To summarize, carbon-chain species around MYSOs exist in higher temperature regions than those in low-mass WCCC sources. This suggestion is also supported by the facts that the CCH column densities in the MYSOs are lower than those in the low-mass WCCC sources, while the HC\(_2\)N column densities in the MYSOs are higher than those in the low-mass counterparts by more than one order of magnitude. These results may indicate that HC\(_2\)N exists in higher temperature regions where CCH is deficient around the MYSOs, as discussed in detail later.

Distributions of carbon-chain species could be extended to cold and/or lukewarm envelopes too (e.g., Bianchi et al. 2019). In that case, the observed CCH/H\(_{2}\)N ratios should be considered as the upper limits because of the mixing with low-temperature components. Such contributions from the low-
temperature components are expected to be larger in MYSOs than those in low-mass protostars. This means that the temperature where carbon-chain species exist around MYSOs estimated from the above comparison is the lower limit, and our conclusion that carbon-chain molecules around MYSOs exist in higher temperature regions compared to those around low-mass WCCC sources does not change. In fact, Taniguchi et al. (2019a) suggested that the observed lower limit of the HC$_3$N abundance and the observed HC$_3$N/CH$_3$OH ratio in G28.28–0.36 can be reproduced when the temperature reaches the desorption temperature of HC$_3$N ($T \approx 115$ K). Thus, HC$_3$N around MYSOs could exist in hot-core regions with temperatures above 100 K.

Comparisons of ratios between molecular column densities are more reliable than those of fractional abundances with respect to H$_2$, mainly because of large uncertainties in deriving H$_2$ column densities. Hence, we conclude that HC$_3$N around MYSOs exists in higher temperature regions than in the low-mass WCCC case. In such temperature regimes, CCH seems to be destroyed efficiently by reactions with O ($T \leq 90$ K) and H$_2$ ($T \geq 90$ K). On the other hand, the gas-phase HC$_3$N molecules are removed mainly by reactions with HCO$^+$ and by adsorption onto dust grains. The gas-phase HCO$^+$ abundance is much lower than those of O and H$_2$ by a few orders of magnitude. Therefore, the destruction rate of HC$_3$N is slower than that of CCH in such high temperature conditions. In fact, the CCH column densities in MYSOs are lower than those in low-mass WCCC sources, while the HC$_3$N column densities in MYSOs are higher than those in low-mass WCCC sources. This implies that CCH is possibly destroyed more efficiently in high-mass star-forming regions in larger scales because of the higher temperature. A similar conclusion that CCH is efficiently destroyed around massive stars has also been reached in previous studies (e.g., Jiang et al. 2015). Moreover, the possibility of more efficient destruction of carbon-chain species by atomic oxygen in high-mass star-forming regions compared to that in low-mass counterparts was suggested by Taniguchi et al. (2018c).

Panel (c) of Figure 4 shows the model result with a high cosmic-ray ionization rate of 4×10^{-14} s$^{-1}$ and a fast warm-up period (5×10^3 yr) taken from Taniguchi et al. (2019a). We present only the fast warm-up model because the observed HC$_3$N abundance could not be reproduced in the slow warm-up model and the high cosmic-ray ionization rate (see Taniguchi et al. 2019a). Such a high cosmic-ray ionization rate could be possible in protostellar systems (Padovani et al. 2016), and abundances of a few carbon-chain species in the OMC-2 FIR 4 young intermediate-mass protoclusters can be reproduced with this high cosmic-ray ionization rate (Fontani et al. 2017; Favre et al. 2018). In this model, the observed CCH/HC$_3$N ratios in MYSOs can be explained at temperatures of \sim80 K and \sim160 K. Since the observed CCH/HC$_3$N ratios are possibly the upper limits as discussed before, temperatures above 160 K are not omitted, while the observed ratios cannot be reproduced by the model at temperatures of \sim90–160 K. Again, the suggested temperatures where carbon-chain species exist (\geq80 K and \geq160 K) are higher than those in the low-mass WCCC source.

4.3. 13C Isotopic Fractionation of HC$_3$N in MYSOs

During the observations presented in this paper, we have detected the three 13C isotopologues of HC$_3$N in the three MYSOs. We summarize the derived 12C/13C ratios of HC$_3$N in the three MYSOs in Table 5. The 12C/13C ratio depends on the distance from the Galactic center, hereafter D_{GC} (e.g., Milam et al. 2005). In Table 5, we listed the predicted 12C/13C ratios...
The column densities of the main isotopologue were derived to be $G_{12.89} = 3.2\times10^{13}$ cm$^{-2}$, $G_{16.86} = 3.1\times10^{13}$ cm$^{-2}$, and $G_{28.28} = 2.4\times10^{13}$ cm$^{-2}$ in G12.89, G16.86–2.16, and G28.28–0.36, respectively (Taniguchi et al. 2018b). The errors are the standard deviation.

a Calculated using the formula derived by Yan et al. (2019).

b The results are the standard deviation.

We derive the column density ratios of $[^{13}\text{C}\text{CCCN}] / [^{12}\text{C}\text{CCCN}]$, $[\text{HCC}^{13}\text{CN}] / [\text{HCC}^{12}\text{CN}]$, and the results are summarized in Table 6. Taniguchi et al. (2016b) determined these ratios to be 1.00 ± 0.14 in G28.28–0.36 with higher velocity resolution (0.5 km s$^{-1}$) spectra. The ratios derived in this paper in G28.28–0.36 show a similar tendency; the abundances of $[^{13}\text{C}\text{CCCN}]$ and $[\text{HCC}^{13}\text{CN}]$ are comparable to each other, and the abundance of $[\text{HCC}^{13}\text{CN}]$ is higher than the others. On the other hand, in G12.89+0.49 and G16.86–2.16, we could not recognize any differences in abundance among the ^{13}C isotopologues.

Based on the ^{13}C isotopic fractionation patterns, we can constrain the main formation pathways of carbon-chain species (e.g., Taniguchi et al. 2016a; Burkhardt et al. 2018). Regarding HC$_3$N, three fractionation patterns and corresponding formation pathways were proposed (Taniguchi et al. 2016b, 2017a):

1. If the abundance ratios are $[\text{HCC}^{13}\text{CN}] / [\text{HCC}^{12}\text{CN}]$ and $[\text{HCC}^{12}\text{CN}] / [\text{HCC}^{13}\text{CN}] = 1$: x (x is an arbitrary value), the reaction “$\text{C}_2\text{H}_2 + \text{CN}$” is dominant.
2. If the abundance ratios are $[\text{HCC}^{13}\text{CN}] / [\text{HCC}^{12}\text{CN}]$ and $[\text{HCC}^{12}\text{CN}] / [\text{HCC}^{13}\text{CN}] = y$: z (y and z are arbitrary values), the reaction “$\text{CCH} + \text{HNC}$” is dominant.
3. If the abundance ratios are $[\text{HCC}^{13}\text{CN}] / [\text{HCC}^{12}\text{CN}]$: $[\text{HCC}^{12}\text{CN}] / [\text{HCC}^{13}\text{CN}] = 1:1$, the electron recombination reaction of HC_3NH^+ is dominant.

The third pathway is a hypothesis, because Taniguchi et al. (2017a) assumed that there are competitive formation pathways of HC_3NH^+, which have not been confirmed by any observations. According to the above classification, the main formation pathway of HC$_3$N is the electron recombination reaction of HC$_3$NH$^+$ in G12.89+0.49 and G16.86–2.16. In G28.28–0.36, the reaction between C$_2$H$_2$ and CN is dominant, which agrees with the conclusion by Taniguchi et al. (2016b). We will discuss a possible explanation for the difference in the main formation mechanism of HC$_3$N between G28.28–0.36 and the others in the next subsection.

4.4. Constraints of Ages of MYSOs Based on the CCH/HC$_3$N Ratio and the ^{13}C Isotopic Fractionation of HC$_3$N

We constrain the age and possible carbon-chain chemistry in each MYSO based on the CCH/HC$_3$N ratio (Section 4.2) and the ^{13}C isotopic fractionation of HC$_3$N (Section 4.3). Figure 5 shows the time dependence of the CCH/HC$_3$N ratio and temperature during the warm-up period (Taniguchi et al. 2019a). The data are the same as in Figure 4. Figure 6 shows the time dependence of contributions for each formation pathway of HC$_3$N. The basic formation and destruction mechanisms of carbon-chain species do not change between the different warm-up periods with the same cosmic-ray ionization rate (1.3×10^{-17} s$^{-1}$) (Taniguchi et al. 2019a). Since the formation and destruction mechanisms depend on the temperature, the age value will change but our discussions need not change. We can investigate the time-dependence of the formation pathways of HC$_3$N in detail using the model with the slow warm-up period, and so presented this model here. The results of the fast warm-up period with a cosmic-ray ionization rate of 1.3×10^{-17} s$^{-1}$ were not presented in Figure 6, because we were not able to find any new results.

As discussed in Section 4.2, the observed CCH/HC$_3$N ratios in MYSOs agree with the model at a temperature of ~85 K. This temperature corresponds to 1.08×10^3 yr, as shown in panel (a) of Figure 5. Just before this time ($t < 1.07 \times 10^3$ yr), the main formation pathway of HC$_3$N is the reaction between C$_2$H$_2$ and CN (panel (a) of Figure 6). This is consistent with the reaction proposed based on the ^{13}C isotopic fractionation in G28.28–0.36.

The electron recombination reaction of HC$_3$NH$^+$ is dominant in the model with the high cosmic-ray ionization rate during the whole warm-up period (panel (b) of Figure 6). Thus, the ^{13}C isotopic fractionation of HC$_3$N in G12.89+0.49 and G16.86–2.16 can be explained by this high cosmic-ray ionization rate model. These results suggest that the cosmic-ray ionization rates in G12.89+0.49 and G16.86–2.16 may be higher than that in G28.28–0.36 or physical structures in

16 This age does not mean a physical age of an MYSO, because we derive the age from the chemical network simulations and the age will change by the assumed warm-up timescales.
G12.89+0.49 and G16.86–2.16 allow cosmic rays to penetrate into regions where carbon-chain species are formed. The observed CCH/HC$_5$N ratios in MYSOs agree with the age of $(4.7–4.86) \times 10^5$ yr as indicated in panel (c) of Figure 5.

In summary, the observed CCH/HC$_5$N ratios around MYSOs can be reproduced in the chemical network simulations at a given temperature and time. Taking the 13C isotopic fractionation of HC$_3$N into consideration, G12.89+0.49 and G16.86–2.16 may prefer the model with the high cosmic-ray ionization rate ($\zeta = 4 \times 10^{-14}$ s$^{-1}$), while G28.28–0.36 agrees with the model with the standard cosmic-ray ionization rate ($\zeta = 1.3 \times 10^{-17}$ s$^{-1}$). These results imply that carbon-chain chemistry in G12.89+0.49 and G16.86–2.16 may resemble that in the OMC-2 FIR 4 young intermediate-mass protoclusters (Fontani et al. 2017; Favre et al. 2018), but that in G28.28–0.36 is different from the other MYSOs and OMC-2 FIR 4. The clear 13C isotopic fractionation of HC$_3$N in G28.28–0.36 supports its bottom-up formation during the warm-up stage, while carbon-chain species, at least HC$_5$N, exist in higher temperature regions than those in low-mass WCCC sources. Different chemical pathways are present because of the possibly different physical conditions, as suggested by our chemical code. Future observations with interferometers such as ALMA will clarify such a new type of carbon-chain chemistry around MYSOs.

5. Conclusions

We have carried out observations of the rotational lines of CCH ($N = 1 – 0$), CH$_3$CN ($J = 5 – 4$), and three 13C isotopologues of HC$_3$N ($J = 10 – 9$) toward the three MYSOs, G12.89+0.49, G16.86–2.16, and G28.28–0.36, with the
Nobeyama 45 m telescope. The observational results and main conclusions are as follows:

1. We determined the CCH/HC₅N ratios, which are considered as a temperature probe where carbon-chain species exist in the three MYSOs. The CCH/HC₅N ratios are derived to be ~15 in the MYSOs. These CCH/HC₅N ratios in the MYSOs are lower than those in low-mass WCCC sources by more than one order of magnitude.

2. We compare these observational values to the chemical network simulations with a warm-up period. The observed CCH/HC₅N ratios in the MYSOs are reproduced when the temperature reaches ~85 K, while that in L1527 agrees with the model at a temperature of ~35 K. In the model calculation with the high cosmic-ray ionization rate

\(4 \times 10^{-14} \text{s}^{-1}\), the observed CCH/HC₅N ratios in the MYSOs can be reproduced at temperatures of ~80 K and ~160 K. Hence, HC₅N detected around the MYSOs exists preferentially in higher temperature regions than that in low-mass WCCC sources. In such temperature regimes \((T \geq 70 \text{ K})\), CCH, which is a reactive species, is efficiently destroyed by reactions with O and/or H₂.

3. We determined the \(^{13}\text{C}\) isotopic fractionation of HC₅N in the three MYSOs. All of the three \(^{13}\text{C}\) isotopologues of HC₅N show similar column densities in G12.89-0.49 and G16.86-2.16, while HCC/HC₅N is more abundant than the others in G28.28-0.36. Based on the results, the electron recombination reaction of HC₅NH\(^{+}\) is proposed as the main formation pathway of HC₅N in G12.89-0.49 and G16.86-2.16. This is consistent with the model with the high cosmic-ray ionization rate. On the other hand, in G28.28-0.36, the main formation pathway of HC₅N is the reaction between C₂H₂ and CN. This reaction is dominant in the model with the standard cosmic-ray ionization rate \((1.3 \times 10^{-17} \text{s}^{-1})\).

Based on the CCH/HC₅N ratio and the \(^{13}\text{C}\) isotopic fractionation, the carbon-chain chemistry in the G28.28-0.36 MYSO seems to be different from that in the other two MYSOs. OMC-2 FIR 4 (Fontani et al. 2017; Favre et al. 2018), and low-mass WCCC sources. In this source, cyanopolyynes are likely formed by the bottom-up mechanism during the lukewarm regions \((25 < T < 50 \text{ K})\) and exist in higher temperature regions \((T \geq 85 \text{ K})\) than in low-mass WCCC sources.

We would like to express our special thanks to the staff of the Nobeyama Radio Observatory. The Nobeyama Radio Observatory is a branch of the National Astronomical Observatory of Japan, National Institutes of Natural Sciences. K.T. would like to thank the University of Virginia for providing the funds for her postdoctoral fellowship in the Virginia Initiative on Cosmic Origins (VICO) research program. This work was supported by JSPS KAKENHI grant No. JP20K14523. E.H. thanks the National Science Foundation for support through grant AST-1906489. Z.Y.L. is supported in part by NSF AST-1910106 and NASA 80NSSC20K0533. J.C.T. acknowledges ERC grant MSTAR and VR grant 2017-04522.

Facility: Nobeyama 45 m radio telescope.

Software: NEWSTAR, Nautilus (Rauad et al. 2016).

References

Balucani, N., Ceccarelli, C., & Tsuquet, V. 2015, MNRAS, 449, L16
Benson, P. J., Caselli, P., & Myers, P. C. 1998, ApJ, 506, 743
Bianchi, E., Ceccarelli, C., Codella, C., et al. 2019, ECS, 3, 2659
Burkhardt, A. M., Herbst, E., Kalenskii, S. V., et al. 2018, MNRAS, 474, 5068
Crockett, N. R., Bergin, E. A., Neill, J. L., et al. 2015, ApJ, 806, 239
Cyganowski, C. J., Brogan, C. L., Hunter, T. R., et al. 2011, ApJ, 743, 56
Czyżewski, J., Winters, M., Goldsmith, P. F., & Langer, W. D. 1999, ApJ, 517, 209
Green, C.-E., Green, J. A., Burton, M. G., et al. 2014, MNRAS, 443, 2252
Hassel, G. E., Herbst, E., & Garrod, R. T. 2008, ApJ, 681, 1385
Herbst, E., & van Dishoeck, E. F. 2009, ARA&A, 47, 472
Immer, K., Reid, M. J., Menten, K. M., et al. 2013, A&A, 553, A117
Jiang, X.-J., Liu, H. B., Zhang, Q., et al. 2015, ApJ, 808, 114
Jorgensen, J. K., Belloche, A., & Garrod, R. T. 2020, ARA&A, 58, 727
Li, F. C., Xu, Y., Wu, Y. W., et al. 2016, AJ, 152, 92
Lu, X., Zhang, Q., Liu, H. B., et al. 2014, ApJ, 790, 84
McGuire, B. A. 2018, ApJS, 239, 17
Milam, S. N., Savage, C., Brewster, M. A., et al. 2005, ApJ, 634, 1126
Minamidani, T., Nishimura, N., Miyamoto, Y., et al. 2016, Proc. SPIE, 9914, 09114Z
Müller, H. S. P., Schöler, F., Stutzki, J., et al. 2005, JMoSt, 742, 215
Nomura, H., & Millar, T. J. 2004, A&A, 414, 927
Pickett, H. M., Poynter, R. L., Cohen, E. A., et al. 1998, JQSRT, 60, 883
Purcell, C. R., Balasubramanyam, R., Burton, M. G., et al. 2006, MNRAS, 367, 553
Rauad, M., Wakelam, V., & Hersant, F. 2016, MNRAS, 459, 3756
Sakai, N., Sakai, T., Hirota, T., et al. 2010, ApJ, 722, 1633
Sakai, N., & Yamamoto, S. 2013, ChRv, 113, 8961
Skouteris, D., Balucani, N., Ceccarelli, C., et al. 2019, MNRAS, 482, 3567
Suzuki, H., Yamamoto, S., Oishi, M., et al. 1992, ApJ, 392, 551
Taniguchi, K., Herbst, E., Caselli, P., et al. 2019a, ApJ, 878, 167
Taniguchi, K., Herbst, E., Ozeki, H., et al. 2019b, ApJ, 884, 167
Taniguchi, K., Miyamoto, Y., Saito, M., et al. 2018a, ApJ, 866, 32
Taniguchi, K., Ozeki, H., Saito, M., et al. 2016a, ApJ, 817, 147
Taniguchi, K., Ozeki, H., & Saito, M. 2017a, ApJ, 846, 46
Taniguchi, K., Saito, M., Hirota, T., et al. 2017b, ApJ, 844, 68
Taniguchi, K., Saito, M., Majumdar, L., et al. 2018b, ApJ, 866, 150
Taniguchi, K., Saito, M., & Ozeki, H. 2016b, ApJ, 830, 106
Taniguchi, K., Saito, M., Shimoikura, T., et al. 2018c, ApJ, 854, 133
Tercero, B., Cuadrado, S., López, A., et al. 2018, A&A, 620, L6
Urrutia, J. S., Moore, T. J. T., Menten, K. M., et al. 2015, MNRAS, 446, 3461
van der Tak, F. F. S., Black, J. H., Schöier, F. L., et al. 2007, A&A, 468, 627
van’t Hoff, M. L. R., Tobin, J. J., Harsono, D., et al. 2018, A&A, 615, A83
Yan, Y. T., Zhang, J. S., Henkel, C., et al. 2019, ApJ, 877, 154
Yoshida, K., Sakai, N., Nishimura, Y., et al. 2019, PASJ, 71, S18

ORCID iDs

Kotomi Taniguchi @ https://orcid.org/0000-0003-4402-6475
Eric Herbst @ https://orcid.org/0000-0002-4649-2536
Liton Majumdar @ https://orcid.org/0000-0001-7031-8039
Paola Caselli @ https://orcid.org/0000-0003-1481-7911
Jonathan C. Tan @ https://orcid.org/0000-0002-3389-9142
Tomomi Shimoikura @ https://orcid.org/0000-0002-1054-3004
Kazuzhito Dobashi @ https://orcid.org/0000-0001-8058-8577
Fumitaka Nakamura @ https://orcid.org/0000-0001-5431-2294
Masao Saito @ https://orcid.org/0000-0003-0769-8627