SPS-neutralization in tissue samples for efficacy testing of antimicrobial peptides

CURRENT STATUS: UNDER REVISION

Gabrielle Dijksteel gdijksteel@burns.nl
Association of Dutch Burn Centres, Amsterdam Movement Sciences
Corresponding Author
ORCiD: 0000-0002-2460-738X

Peter Nibbering
Leiden University Medical Centre, Albinusdreef 2, 2333 ZA Leiden, the Netherlands

Magda Ulrich
Association of Dutch Burn Centres, Zeestraat 29, 1941 AJ Beverwijk, the Netherlands.

Esther Middelkoop
Association of Dutch Burn Centres, Zeestraat 29, 1941 AJ Beverwijk, the Netherlands.

Bouke Boekema
Association of Dutch Burn Centres, Zeestraat 29, 1941 Beverwijk, the Netherlands

DOI:
10.21203/rs.2.12222/v1

SUBJECT AREAS
Infectious Diseases

KEYWORDS
sodium polyanethol sulfonate, antimicrobial peptides, SAAP-148, efficacy, residual activity, neutralization.
Abstract

Background Accurate determination of the efficacy of antimicrobial agents requires neutralization of residual antimicrobial activity in the samples before microbiological assessment of the number of surviving bacteria. Sodium polyanethol sulfonate (SPS) is a known neutralizer for the antimicrobial activity of aminoglycosides and polymyxins. In this study, we evaluated the ability of SPS to neutralize residual antimicrobial activity of antimicrobial peptides SAAP-148 and pexiganan; 1% (wt/v) in PBS antibiotics mupirocin (Bactroban) and fusidic acid (Fucidin) in ointments; 2% (wt/wt) and disinfectants 2% (wt/wt) silver sulfadiazine cream (SSD) and 0.5% (v/v) chlorhexidine in 70% alcohol.

Methods Homogenates of human skin models that were exposed to various antimicrobial agents for 1 h were pipetted on top of Methicillin-resistant Staphylococcus aureus (MRSA) on agar plates to demonstrate the presence of residual antimicrobial activity in tissue samples. To determine the efficacy of SPS in neutralization, various antimicrobial agents were mixed with PBS, 0.05%, 0.1%, 0.5% or 1% (wt/v) SPS in PBS. Subsequently, 10^5 colony forming units (CFU) MRSA were added to the mixtures and these were incubated for 30 min to determine the antimicrobial effect. Ex vivo excision wound models were inoculated with 10^5 CFU MRSA for 1 h and exposed to SAAP-148, pexiganan, chlorhexidine or PBS for 1 h to study the effect of SPS-neutralization on the bacterial killing of these antimicrobials. To quantify the number of surviving bacteria, 10-fold serial dilutions of the homogenates were cultured overnight on agar plates.

Results All tested antimicrobials displayed residual activity in tissue samples, resulting in a lower recovery of surviving bacteria on agar. SPS concentrations at $\geq 0.05\%$ (wt/v) were able to neutralize the antimicrobial activity of SAAP-148, pexiganan and chlorhexidine, resulting in the complete recovery of bacteria. However, SPS did not neutralize the activity of SSD, Bactroban and Fucidin. Finally, SPS-neutralization in ex vivo efficacy tests
of SAAP-148 (p<0.001), pexiganan (p<0.05) and chlorhexidine (p<0.01) resulted in at least 10-fold higher numbers of MRSA compared to control samples without SPS-neutralization.

Conclusion SPS can be used for the neutralization of residual activity of different antimicrobials, including SAAP-148, pexiganan and chlorhexidine and this prevents an overestimation of their efficacy.

Introduction

Efficacy is a fundamental parameter in the discovery and development of antimicrobial agents. To determine the efficacy of an antimicrobial treatment, the drug must be neutralized immediately after the treatment time to prevent an overestimation of efficacy [1]. Neutralization of the residual activity can be achieved by reducing the effective concentration of the antimicrobial agent via dilution, filtration, centrifugation, chemical inactivation and other methods [2, 3]. However, chemical inactivation is probably the most accurate procedure as the residual antimicrobials are immediately inactivated after addition of the chemicals, also known as neutralizing agents, to the test sample. Nevertheless, chemical inactivation of antimicrobial agents is not commonplace in drug efficacy testing.

Over the past years, different neutralizing agents have been used to inactivate different antimicrobials, e.g.: i) lecithin and polysorbate 20 have been used for the neutralization of chlorhexidine [1, 4], ii) sodium thiosulphate was used for iodine [5] and iii) chondroitin sulfate for polyhexamethylene biguanide [6]. In the absence of neutralizing agents, bacteria surviving the efficacy test may be completely eradicated by residual antimicrobial activity during sample preparation and/or microbiological quantification [7]. This shows the relevance of neutralizing agents in efficacy testing of antimicrobials.

Currently, there is an increasing interest in the development of antimicrobial peptides
(AMPs) because they are highly effective against antibiotic resistant bacteria [8, 9]. AMPs eradicate bacteria by disrupting the bacterial membrane and therefore, it is believed that bacterial-resistance to AMPs is less likely to occur [10, 11]. For these reasons, AMPs are considered promising therapeutic candidates for the development of agents to combat bacterial infections not effectively responding to antibiotics. We aim to accurately determine the efficacy of highly potent AMPs using neutralizing agents.

Previously, Edberg (1998) et al. reported that aminoglycoside and polymyxin antibiotics can be neutralized selectively using sodium polyanethol sulfonate (SPS) [12]. Yet, SPS is not commonly used to neutralize residual antimicrobial activity in efficacy tests. In the current study, we investigated the efficacy of various antimicrobial agents in the presence and absence of SPS with the aim to i) determine the applicability of SPS for the neutralization of different antimicrobial agents and ii) evaluate the importance of neutralization of residual antimicrobial activity in test samples.

Materials And Methods

Antimicrobial agents

SAAP-148 is a synthetic AMP inspired on the structure of the human cathelicidin, LL-37 [13]. Pexiganan is an analogue of the frog peptide called magainin 2 and was previously clinically tested [14]. Both SAAP-148 and pexiganan synthesized, purified and identified as described by Nell (2006) et al. [15]. Lyophilized peptide was dissolved in phosphate-buffered saline (PBS) (Gibco, Paisley, UK) and aliquots of the peptide in PBS were stored at −20°C until use. The other antimicrobial agents used in this study were 1% (wt/wt) silver sulfadiazine (SSD) cream (Pharmacy of the Medical Centre Alkmaar, Alkmaar, the Netherlands), 0.5% (v/v) chlorhexidine in 70% alcohol (Orphi Farma B.V., Lage Zwaluwe, the Netherlands), 2% (wt/wt) mupirocin in an ointment (Bactroban; GlaxoSmithKline B.V., Zeist, the Netherlands) and 2% (wt/wt) fusidic acid in an ointment (Fucidin; Leo Pharma
Preparation of ex vivo models

Human skin was obtained after elective surgery at the Red Cross Hospital (Beverwijk, the Netherlands) according to institutional guidelines and following “code of conduct for responsible use”, drafted by Federa (Foundation Federation of Dutch Medical Scientific Societies). Human skin grafts with a thickness of 0.8 mm were prepared from this tissue using a dermatome (Aesculap AG & Co. KG, Tuttlingen, Germany). Excision wounds were inflicted by removing 0.3 mm of the upper part of the skin containing the epidermis using a dermatome (width 7 mm). Subsequently, the graft was cut into pieces of approximately 1 cm2 using a scalpel.

Bacterial culture

Methicillin-resistant Staphylococcus aureus (MRSA) strain (LUH14616) was stored in Luria-Bertani (LB; Oxoid, Ltd, Basingstoke, UK) medium supplemented with 15% (v/v) glycerol at -80°C. LB agar plates were used to grow the inocula at 37°C and 5% CO$_2$ overnight. To create a mid-log phase growth culture, bacteria were cultured in LB medium at 37°C, shaken at 200 rpm. The bacterial culture was centrifuged at 3600 \times g for 5 min and the pellet was re-suspended in PBS to the desired bacterial concentration, based on the optical density at 600 nm.

Assessment of residual antimicrobial activity

Ex vivo excision wound models were topically exposed to 20 or 200 µL of 1% (wt/v) SAAP-148 in PBS, 1% (wt/v) pexiganan in PBS, 1% (wt/wt) SSD, 0.5% (v/v) chlorhexidine in 70%
alcohol, 2% (wt/wt) Bactroban, 2% (wt/wt) Fucidin or PBS for 1 h. Tissue samples were transferred to polypropylene vials containing 1 mL of PBS and a 7-mm metal bead. Tissue homogenates were prepared using a TissueLyser LT (Qiagen, Venlo, the Netherlands) set at 50 Hz for 4 min. Subsequently, five µL of 10-fold serially diluted 10^7 colony forming units (CFU)/mL MRSA were plated on LB agar plates and 5 µL of 10-fold serially diluted homogenates of excision wound models exposed to an antimicrobial agent or PBS were pipetted on top of the bacteria. The surviving bacteria in each dilution step were evaluated after overnight incubation of the agar plates at 37°C and 5% CO$_2$.

SPS-neutralization of antimicrobial activity

Ten mL of PBS or one of the antimicrobial agents: 1% (wt/v) SAAP-148 in PBS, 1% (wt/v) pexiganan in PBS, 1% (wt/wt) SSD, 0.5% (v/v) chlorhexidine in 70% alcohol, 2% (wt/wt) Bactroban or 2% (wt/wt) Fucidin were added to polypropylene vials containing 400 mL of PBS, 0.05%, 0.1%, 0.5% or 1% (wt/v; final concentrations) SPS (Figure 1) in PBS (Merck, KGaA, Darmstadt, Germany). Subsequently, 90 mL of 5.6×10^5 CFU/mL MRSA suspension were added to the vials and the mixtures were briefly vortexed. After 30 min incubation at 37 °C and 5% CO$_2$, a 7 mm metal bead was added to the vials to homogenize the samples using a TissueLyser set at 50 Hz for 4 min. This was performed to mimic the procedure of the skin samples. Ten-fold serial dilutions of the homogenates were cultured on LB agar plates to quantify the number of surviving bacteria after overnight incubation at 37°C and 5% CO$_2$.

Ex vivo efficacy testing in the absence and presence of neutralizing agent SPS

Excision wound models were inoculated with 10 µL of 10^7 CFU/mL MRSA for 1 h and then
topically exposed to 20 mL of 1% (wt/v) SAAP-148 in PBS, 1% (wt/v) pexiganan in PBS, 0.5% (v/v) chlorhexidine in 70% alcohol or PBS for 1 h. Thereafter, tissue samples were transferred to polypropylene vials containing a 7-mm metal bead and 1 mL of PBS with or without 0.05% (wt/v) SPS to prepare tissue homogenates using a TissueLyser set at 50 Hz for 4 min. Ten-fold serial dilutions of the tissue homogenates were cultured on LB agar plates. The numbers of viable bacteria were determined after overnight incubation of the agar plates at 37°C and 5% CO₂.

Statistical analysis

To determine the statistically significant differences between two sample groups the non-parametric Kruskal-Wallis test and the Mann Whitney rank-sum test were used.

Results

Residual antimicrobial activity in tissue samples

To evaluate the presence of residual antimicrobial activity, *ex vivo* excision wound models were topically exposed to 20 µL of various antimicrobial agents or PBS for 1 h, and homogenates were prepared. Subsequently, serial dilutions of these homogenates were pipetted on top of serially diluted MRSA suspensions on agar. All tested antimicrobial agents showed residual activity *(Figure 2)*. Particularly for the undiluted SSD-, chlorhexidine-, Bactroban- and Fucidin-exposed tissue homogenates bacterial killing was evident as inhibition zones appeared or bacteria were completely eradicated. Only at 1000-fold dilution of the Bactroban- and Fucidin-exposed tissue homogenates, surviving bacteria were detected. In contrast, the surviving bacteria of the SAAP-148- and pexiganan-exposed tissue homogenates were comparable to that of the PBS-exposed tissue homogenates. However, when 10-fold higher antimicrobial amounts (200 µL) were
used for the SAAP-148- and pexiganan-exposed tissue homogenates, bacterial killing was observed. Inhibition zones appeared for the undiluted pexiganan-exposed tissue homogenate whereas for the undiluted SAAP-148-exposed tissue homogenate bacteria were completely eradicated. Interestingly, at 10-fold dilution of this SAAP-148-exposed tissue homogenate inhibition zones appeared (Figure 2), indicating that at high antimicrobial concentrations residual activity is highly effective against bacteria.

Neutralization of antimicrobial activity by SPS

To determine whether SPS (Figure 1) can effectively neutralize different antimicrobial agents, mixtures containing 400 mL of PBS or 0.05%, 0.1%, 0.5% or 1% (wt/v) SPS in PBS and 10 mL of various antimicrobial agents or PBS were prepared. Subsequently, MRSA with a final concentration of 10^5 CFU/mL was added to these mixtures to determine the antimicrobial effect. Of note, the increasing concentrations of SPS did not affect the bacterial survival as the number of viable bacteria in the presence of SPS was comparable to the number of viable bacteria in PBS alone (Figure 3). The antimicrobial activity of SAAP-148, pexiganan and chlorhexidine was efficiently neutralized by $\geq 0.05\%$ (wt/v) SPS, resulting in the complete survival of approximately 10^5 CFU/mL MRSA (Figure 3). However, the antimicrobial activity of SSD, Bactroban, and Fucidin was not affected by these SPS concentrations as either no colonies were detected or colonies were found in 10-or more fold dilutions but not in the undiluted samples on agar (data not shown).

Efficacy testing of antimicrobial agents in the absence or presence of SPS

To test the effect of 0.05% (wt/v) SPS in PBS on the efficacy of antimicrobial agents, ex vivo excision wound models were inoculated with 10^5 CFU MRSA for 1 h and were exposed
to 20 mL of various antimicrobial agents or PBS for 1 h. Subsequently, the tissue samples were homogenized in 1 mL of PBS with or without SPS to neutralize the residual antimicrobials. SPS-neutralization of SAAP-148 (p<0.001), pexiganan (p<0.05) or chlorhexidine (p<0.01) immediately after sampling resulted in at least 10-fold higher numbers of surviving bacteria than without SPS-neutralization (Figure 4). This shows that without SPS-neutralization these antimicrobial agents remain active, resulting in an overestimation of their efficacy.

Discussion

We have shown that all tested antimicrobial agents displayed residual activity in tissue homogenates, as inhibition zones appeared on the agar or the number of CFU decreased. Notably, when 20 µL of SAAP-148 were used for the SAAP-148-exposed tissue homogenates residual activity was not evident; however, when 10-fold higher antimicrobial amounts (200 µL) were used for the SAAP-148-exposed tissue homogenates, inhibition zones appeared when this homogenate was 10-times diluted (Figure 2). This indicates that SAAP-148 interacts with tissue components and that the remaining amounts of active antimicrobials were higher and thus more effective against bacteria when 10-fold higher antimicrobial amounts were used to prepare the homogenate.

As was recommended in the American Society for Testing and Materials standard, we not only determined the efficacy of the polyanionic detergent SPS (Figure 1) in inactivating various antimicrobial agents but also determined its toxicity for the MRSA strain LUH14616 used in this study [16]. We anticipated that SPS would not neutralize the activity of SSD, Bactroban and Fucidin, due to their net negative charge at physiological conditions, which prevents the binding of SPS via electrostatic attraction. Nevertheless, SPS not only effectively neutralizes aminoglycoside or polymyxin antibiotics but also other antimicrobials, including SAAP-148, pexiganan and chlorhexidine (Figure 3). Because SPS
binds to and therefore inactivates antimicrobials depending on their cationic strength, it is believed that SPS could be more commonly used for the neutralization of AMPs in efficacy tests as they are usually highly positively charged.

Furthermore, the effect of residual activity of SSD, Bactroban and Fucidin on bacteria could be inhibited via dilution as colonies could be observed in 10-or more fold dilutions but not in the undiluted samples. However, for highly potent antimicrobials dilution of test samples may not be effective enough to eliminate the residual activity. Therefore, we studied SPS-neutralization in efficacy tests of SAAP-148, pexiganan and chlorhexidine. SPS-neutralization of these antimicrobials was required to prevent ongoing bacterial killing during sample preparation (Figure 4). This is in agreement with Kampf et al. (2005), who reported that neutralizing agents were required to effectively inactivate a chlorhexidine-containing hand rub in efficacy tests [1, 4]. Thus, neutralizing agents in efficacy tests can inactivate residual antimicrobial activity, which in turn can prevent an overestimation of the drug efficacy.

A Phase II/III clinical trial for the treatment of infected diabetic foot ulcers with pexiganan was completed, where pexiganan failed to demonstrate its effectiveness with statistically significant data [14]. This was an unexpected finding in view of previous in vitro studies of pexiganan, which showed that this peptide was highly effective against bacteria [17]. As no neutralizing agents were used in the in vitro studies, it cannot be excluded that an overestimation of pexiganan’s efficacy in vitro may in part explain the difference between the in vitro and ex vivo results. In line with this suggestion, we emphasize the importance of neutralization of residual antimicrobial activity in efficacy testing of novel AMPs, such as SAAP-148.

Conclusion

Depending on the antimicrobial agent, residual activity in tissue samples can be high.
Residual activity of different antimicrobial agents, including SAAP-148, pexiganan and chlorhexidine, can be neutralized using SPS. As a consequence, an overestimation of the drug efficacy is prevented. Thus, accurate preclinical efficacy testing of novel AMPs, using SPS-neutralization, will allow appropriate designs for clinical testing, if relevant.

List Of Abbreviations

Acronym	Description
AMP	Antimicrobial peptide
CFU	Colony forming units
LB	Luria-Bertani
MRSA	Methicillin-resistant *Staphylococcus aureus*
PBS	Phosphate-buffered saline
SD	Standard deviations
SPS	Sodium polyanethol sulfonate
SSD	Silver sulfadiazine

Declarations

Ethical approval and consent

Human skin was obtained according to institutional guidelines and medical research “code of conduct for responsible use”, drafted by Federa (Foundation Federation of Dutch Medical Scientific Societies).

Consent for publication

All authors read and approved the final manuscript.

Availability of data and material

The datasets used and analyzed during the current study are available from the
corresponding author on reasonable request.

Competing interests

The authors declare that they have no competing interests.

Funding

The collaboration project was co-funded by the public-private partnership (PPP) allowance made available by Health-Holland, Top Sector life Sciences & Health as well as by a contribution from the Dutch Burns Foundation, Madam Therapeutics B.V., Mölnlycke Health Care AB, Leiden University Medical Centre, Amsterdam University Medical Centre and the Association of Dutch Burn Centres [LSH-TKI40-43100-98-017].

Authors’ contributions

PHN supplied the AMPs SAAP-148 and pexiganan. GSD performed the experiments and wrote the manuscript. All authors assisted with the interpretation of the data and participated in writing the manuscript.

Acknowledgments

We thank Dr. Bas Zaat of the Department of Medical Microbiology at the Academic Medical Centre Amsterdam in the Netherlands, for recommending SPS as a neutralizer for SAAP-148.

References

1. Kampf G, Shaffer M, Hunte C. Insufficient neutralization in testing a chlorhexidine-containing ethanol-based hand rub can result in a false positive efficacy assessment.
2. Eissa ME, Nouby AS. Validation of Spore-Forming Organisms Recovery from Peroxygen-Based Disinfectants. 2014;4:23-32.

3. Sutton SVW, Proud DW, Rachui S, Brannan DK. Validation of microbial recovery from disinfectants. PDA J Pharm Sci Technol. 2002;56:255-66.

4. Reichel M, Heisig P, Kampf G. Pitfalls in efficacy testing - How important is the validation of neutralization of chlorhexidine digluconate? Ann Clin Microbiol Antimicrob. 2008;7:1-7.

5. Phillips PL, Yang Q, Davis S, Sampson EM, Azeke JI, Hamad A, et al. Antimicrobial dressing efficacy against mature Pseudomonas aeruginosa biofilm on porcine skin explants. Int Wound J. 2015;12:469-83.

6. Müller G, Kramer A. In vitro action of a combination of selected antimicrobial agents and chondroitin sulfate. Chem Biol Interact. 2000;124:77-85.

7. HP W, C E. Problematik der Inaktivierung am Beispiel des in vitro-Tests. Hyg Med. 1978;3:326-30.

8. Park S-C, Park Y, Hahm K-S. The role of antimicrobial peptides in preventing multidrug-resistant bacterial infections and biofilm formation. Int J Mol Sci. 2011;12:5971-92.

9. Diamond G, Beckloff N, Weinberg A, Kisich KO. The roles of antimicrobial peptides in innate host defense. Curr Pharm Des. 2009;15:2377-92.

10. Bechinger B, Gorr S-U. Antimicrobial Peptides: Mechanisms of Action and Resistance. J Dent Res. 2017;96:254-60.

11. Zasloff M. Antimicrobial peptides of multicellular organisms. Nature. 2002;415:389-95.

12. Edberg SC, Bottenbley CJ, Gam K. Use of sodium polyanethol sulfonate to selectively
inhibit aminoglycoside and polymyxin antibiotics in a rapid blood level antibiotic assay. Antimicrob Agents Chemother. 1976;9:414–7.

13. de Breij A, Riool M, Cordfunke RA, Malanovic N, de Boer L, Koning RI, et al. The antimicrobial peptide SAAP-148 combats drug-resistant bacteria and biofilms. Sci Transl Med. 2018;10(423):eaan4044.

14. Lamb HM, Wiseman LR. Pexiganan Acetate. Drugs. 1998;56:1047–52.

15. Nell MJ, Tjabringa GS, Wafelman AR, Verrijk R, Hiemstra PS, Drijfhout JW, et al. Development of novel LL-37 derived antimicrobial peptides with LPS and LTA neutralizing and antimicrobial activities for therapeutic application. Peptides. 2006;27:649–60.

16. ASTM E1054 : Standard Test Methods for Evaluation of Inactivators of Antimicrobial Agents. ASTM International. 2002. https://global.ihs.com/doc_detail.cfm?document_name=ASTM E1054&item_s_key=00019439. Accessed 26 Apr 2019.

17. Ge Y, MacDonald D, Henry MM, Hait HI, Nelson KA, Lipsky BA, et al. In vitro susceptibility to pexiganan of bacteria isolated from infected diabetic foot ulcers. Diagn Microbiol Infect Dis. 1999;35:45–53.

Figures
Figure 1

Structural formula of SPS (ChemDraw, PerkinElmer, 2018)
Residual antimicrobial activity: Five mL of serially diluted MRSA were plated on agar and 5 mL of homogenates of excision wound models exposed to 20 mL or 10-fold higher amounts (200 mL) of various antimicrobial agents or PBS were pipetted on top of the bacteria. Results of one experiment are illustrated as the surviving bacteria in each dilution step.
Figure 3

Effect of SPS on the antimicrobial activity of various antimicrobial agents

Mixtures of 10 mL of SAAP-148, pexiganan, chlorhexidine or PBS and 400 mL of PBS, 0.05%, 0.1%, 0.5% or 1% (wt/v; final concentrations) SPS in PBS were prepared. Ninety mL of MRSA with a final concentration of 105 CFU/mL were added to these mixtures to determine the antimicrobial activity after 30 min incubation at 37°C and 5% CO2. The means and standard deviations (SD) of three independent experiments performed in duplicate is shown. Results are expressed as the number of surviving bacteria in log10 CFU/mL. * indicates significant difference as compared to the samples without SPS (*p<0.05).
SPS-neutralization of residual activity of various antimicrobial agents. Excision wound models were inoculated with 105 CFU/mL MRSA for 1 h and exposed to 20 μL of SAAP-148 (1% wt/v), pexiganan (1% wt/v), chlorhexidine (0.5% v/v in 70% alcohol) or PBS for 1 h. Subsequently, the models were homogenized in 1 mL of PBS with or without 0.05% (wt/v) SPS. The means and SD of at least eight independent experiments performed in triplicate is shown. Results are expressed as the number of surviving bacteria in log10 CFU/mL. * indicates significant difference as compared to the samples without SPS (*p<0.05; **p<0.01; ***p<0.001).