Stromal reactivity differentially drives tumour cell evolution and prostate cancer progression

Ziv Frankenstein1,2,8, David Basanta1,8, Omar E. Franco3, Yan Gao4, Rodrigo A. Javier3, Douglas W. Strand3, MinJae Lee5, Simon W. Hayward6,7, Gustavo Ayala4,7 and Alexander R. A. Anderson1,7,8

Prostate cancer (PCa) progression is a complex eco-evolutionary process driven by the feedback between evolving tumour cell phenotypes and microenvironmentally driven selection. To better understand this relationship, we used a multiscale mathematical model that integrates data from biology and pathology on the microenvironmental regulation of PCa cell behaviour. Our data indicate that the interactions between tumour cells and their environment shape the evolutionary dynamics of PCa cells and explain overall tumour aggressiveness. A key environmental determinant of this aggressiveness is the stromal ecology, which can be either inhibitorily, highly reactive (supportive) or non-reactive (neutral). Our results show that stromal ecology correlates directly with tumour growth but inversely modulates tumour evolution. This suggests that aggressive, environmentally independent PCa may be a result of poor stromal ecology, supporting the concept that purely tumour epithelium-centric metrics of aggressiveness may be incomplete and that incorporating markers of stromal ecology would improve prognosis.

Stromal–epithelial interactions are well-established mediators of development in most organs, including common cancer sites such as the breast, gastrointestinal tract and prostate

In cancer, stromal alterations can both positively and negatively regulate tumour growth and progression. Experimental models have shown that cancer-associated fibroblasts (CAFs) can promote tumorigenesis in genetically initiated benign epithelial cells. The underlying mechanisms include activation of fibroblasts, recruitment of inflammatory cells, remodelling of the extracellular matrix (ECM) and secretion of growth factors and cytokines. Interactions between subpopulations of CAFs moderate the overall stromal effect on the epithelium, suggesting potentially complex and poorly defined ecological interactions between the various components of the tumour microenvironment. Indeed, stromal ecology is altered early in prostate cancer (PCa) development. Specifically, the stroma becomes reactive promoting tumour growth. Reactive stroma includes stromal cell phenotypic switching to activated myofibroblasts, altered ECM composition, increased growth factor bioavailability, elevated protease activity, influx of tumour-associated macrophages and induction of angiogenesis. The Gleason score is the standard grading by which PCa is diagnosed; combining this tumour-centric metric with reactive stroma grading (RSG) adds significant predictive value. The RSG grading system is based on the amount of reactive stroma. The percentage of intratumour reactive stroma is distributed in a 4-band system where: tumours with 0–5% reactive stroma are given an RSG of 0; tumours with 5–15% reactive stroma are given an RSG of 1; and tumours with 15–50% reactive stroma are given an RSG of 2. Tumours with >50% reactive stroma are assigned an RSG of 3. Hence, an RSG of 3 exhibits at least a 1:1 ratio of reactive stroma to epithelium. The latter is the most important category and has been dubbed stromogenic carcinoma. The presence of stromogenic (or reactive stroma) carcinoma (>50% stroma) in the entire tumour can predict biochemical recurrence and PCa-specific death. Reactive stroma has also been correlated with tumour progression in many other cancers, such as lung, breast and skin.

We have focused on PCa as a model of carcinogenesis. PCa is a substantial healthcare problem due to its high incidence and mortality. Most PCAs that are diagnosed early have an indolent course. In contrast, a subgroup of PCAs are so aggressive at diagnosis that surgery or radiation cannot control them. Current prognostic standard-of-care approaches, which are tumour-centric in nature, are limited in their ability to predict these individual patterns of progression, resulting in a high level of overtreatment.

There is a small but growing literature on mathematical models of tumour–stroma interactions, driven by our group and others. However, none of these consider how stromal ecology may alter tumour evolution. Pertinent to our current work is a previous model that employed a hybrid cellular automaton (HCA) approach to characterize the glandular architecture of prostate tissue through a layered epithelial homeostasis via growth factor signalling regulated by surrounding stroma.

Our previous work examined the role of reactive stroma during the early stages of PCa. While it focused on the interactions between differing degrees of stromal reactivity and the tumour, it crucially assumed a homogenous tumour population. In this study, we consider the later stages of invasive PCa and explicitly include a heterogeneous tumour cell population. Our central hypothesis is that tumour evolution is shaped by stromal ecology. Building on our previous model, we now explicitly incorporate the pathological

1Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA. 2Independent Researcher, New York, NY, USA. 3Department of Surgery, NorthShore University HealthSystem Research Institute, Evanston, IL, USA. 4Department of Pathology and Laboratory Medicine, University of Texas Health Science Center, Houston, TX, USA. 5Department of Urology, UT Southwestern Medical Center, Dallas, TX, USA. 6Biostatistics/Epidemiology/Research Design Core, Department of Internal Medicine, University of Texas Health Science Center, Houston, TX, USA. 7These authors contributed equally: Simon W. Hayward, Gustavo Ayala, Alexander R. A. Anderson. 8These authors jointly supervised this work: Ziv Frankenstein, David Basanta. ✉ E-mail: alexander.anderson@moffitt.org
features of human PCAs and have integrated mathematical and biological modelling to focus on phenotypes that elucidate disease initiation and local invasion. This allows us to investigate how the interplay between stromal components and a heterogeneous tumour epithelium modulates tumour evolution, growth and invasiveness. The predictions generated by this model were tested in biological models and cross-validated in a large cohort of human samples. We discovered that the PCa stroma exerts a selection pressure, which drives tumour heterogeneity and growth, and regulates evolution. Perhaps even more profound, the overall behaviour of the tumour in patients cannot be accurately predicted by either the cancer cell or the stromal response alone. In fact, the model predicts that the degree of stromal reactivity, when integrated with the current clinical methodology (Gleason grading with clinico-pathological parameters), significantly improves PCa prognosis predictions, which is in concordance with recent clinical studies. Counter-intuitively, our mathematical model also predicts that the degree of PCa stromal reactivity inversely correlates with the evolution of the cancer cell population to more aggressive phenotypes. This suggests that aggressive, stromal-independent PCa may be an evolutionary result of poor stromal reactivity.

Results
A multiscale prostate peripheral zone model characterizes the tumour microenvironment dialogue. To understand the role of the tumour microenvironment in PCa progression, we developed a model using an HCA paradigm that captures this interplay. We designed the model to explicitly incorporate cellular phenotypic heterogeneity within the context of a dynamic spatio-temporal microenvironment. Each cell is considered as an individual and its behaviour emerges as a function of its phenotype under the influence of its local microenvironment. We considered six mathematically abstracted cell types: normal basal and luminal epithelial cells; tumour epithelium; native stroma, for example, muscle and fibroblasts; reactive stroma, that is, CAFs/myofibroblasts induced from normal stroma; and motile stroma, representing a generic cell with inflammatory properties. While stroma can inhibit tumour growth (in fact, we have studied the balance of pro- and antitumour roles in stroma in previous work), in this study we decided to focus exclusively on the supportive role of stromal cells. While our previous work showed that stroma can inhibit tumour progression by hindering the ability of PCa cells from leaving the gland, the supportive role of stroma was shown to be more prevalent once the tumour established itself outside of the prostate gland. The physical microenvironment is described by a system of continuum deterministic equations (see Methods), which includes growth factors (affecting cell proliferation and function), the basement membrane (representing a mechanical barrier to the glands), the ECM (structural support to intercellular communication and growth), matrix metalloproteinases (MMPs; degradation of the ECM) and empty space (assumed to be occupied by interstitial fluid; Fig. 1a). These equations are coupled in space and time on a two-dimensional lattice, which is based on a histological slide of the human prostate peripheral zone (Fig. 1b–d).

We used a histological slide from a normal human prostate to generate a baseline model of the peripheral zone, within which a tumour is initiated. Image segmentation was used to retrieve the basic anatomical glandular structures and cellular densities (Fig. 1b). To reconstruct the tissue domain, histological information was discretized on a two-dimensional lattice (Fig. 1c,d). PCa pathogenesis was simulated by seeding a single abnormal luminal cell inside a duct near the centre of the lattice. Typically, the tumour cell populates the duct through division and then breaches the basement membrane. The tumour mutates and appropriate phenotypes invade throughout the peripheral zone, eventually reaching the edge of the lattice. In our model, as shown in Extended Data Fig. 1, cells migrate to orthogonal positions. Cells are also capable of division and apoptosis, as well as production and consumption of extracellular proteins and growth factors, as dictated to by the cell life cycle flow charts (Fig. 1e).

Many chemokines and cytokines play a documented role in movement-promoting paracrine interactions. However, the mechanisms of the signalling milieu surrounding tumours are complex and the fine details are not well understood. Dissecting the dialogue between the tumour and the stroma is a major experimental undertaking that would be considerably simplified by the development of integrated mathematical/experimental approaches focusing on cellular consequences rather than individual genes. The cellular phenotype is a product of both genetic and non-genetic determinants and is always defined in relation to a specific context. Cellular selection occurs at the phenotypic level and this is the scale that naturally integrates both intrinsic and extrinsic signals to produce a functional response.

To study the impact of environmental selection on PCa phenotype heterogeneity, eight initial tumour phenotypes with different levels of growth factor and MMP production were chosen. These are key biological drivers of PCa growth and invasion. Tumour cells in the model mutate randomly (through unbiased drift at division) from their parental phenotype by altering their growth factor and MMP production rates. To explore the role of stroma, two different stromal reactivity phenotypes were modelled: high stromal reactivity (stromal cells that on activation produce high amounts of growth factor) and low stromal reactivity (stromal cells that on activation produce low amounts of growth factor). This leads to 16 different combinations of tumour–stromal growth conditions. We performed a total of 4,800 simulations consisting of 300 repeats for the 16 different tumour–stromal combinations.

Cancer–stroma phenotypic dialogue regulates tumour growth and invasion in a nonlinear manner. In silico, the level of stromal activation, defined as the proportion of stromal cells activated per year, is significantly correlated with the level of tumour growth (tumour epithelium and reactive stroma). Representations of tumours growing in low and high stromal reactivity are presented (Fig. 2a–d). Tumours, initiated using a single cancer cell that are characterized by low growth factor and MMP production, grow faster in microenvironments with higher stromal reactivity (Fig. 2e). This suggests that the degree of stromal reactivity may be at least...
as important a driver of differential tumour growth and invasion as the phenotype of the initially seeded tumour cell (Fig. 2f,h). More specifically, tumours grow faster, as measured by time to maximal size, that is, time to the edge of the domain, not only when initiated with an aggressive epithelial phenotype, that is, high levels of growth factor and MMP production, but also when seeded with non-aggressive phenotypes, provided the tumour microenvironment contains high stromal reactivity (Fig. 2f,h).
These data are consistent with research from our laboratories and others that have emphasized the role of reactive stroma facilitating tumour growth\(^4\).

This model also makes the intriguing prediction that stromal cells with high reactivity can be activated not only within or adjacent to the tumour, but also at some distance beyond the tumour...
Human-derived stroma drives cancer growth in vivo in a stromal grade-specific manner. To examine the prediction that the nature of reactive stroma plays a role in tumour promotion, we isolated and validated the CAFs from human PCa samples as described previously. Sections of the source tissues were scored for reactive stromal grade according to standard guidelines. Stromal grading was done without regard to the Gleason score in these samples. We tested for the expression of three key markers associated with stromal activation (CD90, TGF-β1 and SDF1α) and compared the expression of these in BHPrrS1 cells growing in autonomously conditioned medium. Both RSG1-CAF- and RSG3-CAF-conditioned media caused the upregulation of stromal activation markers in this system; no such upregulation was seen with the conditioned medium from benign stromal cells (Fig. 2).

In summary, differential tumour growth and invasion is correlated with the levels of growth factor production by the initiating tumour cell and the degree of stromal reactivity. However, this is a nonlinear relationship (like Michaelis–Menten kinetics). The results from the in silico model also predict that the degree of stromal reactivity is reflected by the proportion of activated stromal cells. Taken together, this suggests that the phenotypes of the tumour cells and the degree of stromal reactivity could, in combination, act as a more accurate prognostic marker.

An integrated cancer biomarker (ICB): combining RSG and Gleason scoring. Based on the results obtained in silico and in vivo, we created a clinical combination biomarker with data from the epithelium and stroma. As a stromal marker, we used the percentage of RSG3 within radical prostatectomy PCa, as described previously. We chose the Gleason score as an epithelial marker. This new 'ICB' was tested against biochemical recurrence and PCa-specific death. Optimal cut-off values for the percentage of RSG3 were obtained by using a minimum P value approach for every Gleason category (Gleason scores 6, 7 and 8–10; Fig. 3h). These data support the in vivo data and validate our approach.
staging, extra-capsular extension, margins) into the model. The AIC for the model with the ICB is much lower than the Gleason score with the current clinico-pathological parameters, both for biochemical recurrence (552.95 < 702.63) and PCa-specific death (233.7 < 308.17) (Fig. 4n). The addition of the ICB significantly helps the model specification. This demonstrates that the interaction
between Gleason score and stromal grading provides more information than either marker alone in the model.

**Reactive stroma drives cancer evolution and heterogeneity.** To better understand how the dialogue between tumour cells and stromal reactivity drives evolution in our mathematical representation, we examined two conditions of stromal reactivity (Fig. 5a–e). When a non-aggressive tumour cell (that is, one with low rates of growth factor and MMP production) is seeded in our multiscale prostate peripheral zone model with low stromal reactivity, the rate of tumour evolution is faster than in a high stromal reactivity prostate peripheral zone model with low stromal reactivity, the competition between tissues (tumour and environment (Fig. 5f). Interestingly this does not translate into a rate of tumour evolution is faster than in a high stromal reactivity prostate peripheral zone model with low stromal reactivity, the growth factor and MMP production) is seeded in our multiscale model.

**Fig. 4 | The ICB stratifies all Gleason grades in a cohort of 1,291 PCa patients with over 20 years of follow-up.** a, b, Histology of a Gleason-score-6 cancer without stromal response (a) compared to a Gleason-score-6 cancer with exuberant stromogenic response (RSG3) (b). g, h, Patients with more than 20% of the tumour having an RSG3 pattern were associated with increased PCa-specific death (g, P = 0.0008) and biochemical recurrence (h, P = 0.0597).

c, d, Histological representations for Gleason-score-7 cancers without reactive stroma (c) and with RSG3 (d). i, j, In Gleason-score-7 patients, the cut-off for statistical significance is 60% of the tumour having an RSG3 pattern (i, PCa-specific death, P = 0.004; j, biochemical recurrence, P = 0.0341).

e, f, High-Gleason-score cancers (Gleason score, 8–10) can grow in solid masses (e) or embedded in RSG3 (f). k, l, The cut-off in this category is higher, the cut-off for statistical significance is 60% of the tumour having an RSG3 pattern were associated with increased PCa-specific death (g, PCa-specific death, P = 0.0008) and biochemical recurrence (h, P = 0.0597).

Reactive stroma drives cancer evolution and heterogeneity. To better understand how the dialogue between tumour cells and stromal reactivity drives evolution in our multiscale prostate peripheral zone model with low stromal reactivity, the rate of tumour evolution is faster than in a high stromal reactivity environment (Fig. 5f). Interestingly this does not translate into a larger tumour since the competition between tissues (tumour and stroma) for the limited growth factor resource slows overall growth (Fig. 5a–c). However, this competition places a strong selection pressure on the tumour, driving it towards cell phenotypes that produce more growth factor to survive. The increased selection pressure varies both spatially and temporally, depending on the relative local abundance of tumour and stromal cells. The resulting tumours tend to be more phenotypically heterogeneous (Fig. 5c). Conversely, the selection pressure for more aggressive phenotypes is much lower in tumour microenvironments characterized by high stromal reactivity, even when the initial tumour cell is not aggressive (Fig. 5e). The resulting tumours are less phenotypically heterogeneous and more driven by drift than selection. These tumours are the ones that grow and invade the fastest. This phenomenon is due

**Fig. 4 | The ICB stratifies all Gleason grades in a cohort of 1,291 PCa patients with over 20 years of follow-up.** a, b, Histology of a Gleason-score-6 cancer without stromal response (a) compared to a Gleason-score-6 cancer with exuberant stromogenic response (RSG3) (b). g, h, Patients with more than 20% of the tumour having an RSG3 pattern were associated with increased PCa-specific death (g, P = 0.0008) and biochemical recurrence (h, P = 0.0597).

c, d, Histological representations for Gleason-score-7 cancers without reactive stroma (c) and with RSG3 (d). i, j, In Gleason-score-7 patients, the cut-off for statistical significance is 60% of the tumour having an RSG3 pattern (i, PCa-specific death, P = 0.004; j, biochemical recurrence, P = 0.0341).

e, f, High-Gleason-score cancers (Gleason score, 8–10) can grow in solid masses (e) or embedded in RSG3 (f). k, l, The cut-off in this category is higher, the cut-off for statistical significance is 60% of the tumour having an RSG3 pattern were associated with increased PCa-specific death (g, PCa-specific death, P = 0.0008) and biochemical recurrence (h, P = 0.0597).
to the abundance of stromal-derived growth factor not only within the
tumour, but also further afield because of extended stromal acti-
vation. Of note is that the other evolving trait, MMP production,
does not seem to be differentially selected between the high and
low stromal reactivity microenvironments (Extended Data Fig. 2).
However, there is a trend for higher production in the high stromal
reactivity microenvironments (Extended Data Fig. 2).

An intriguing prediction of our model is that the differences
in tumour evolution are modulated in a nonlinear way by the
growth these tumours display.

Critically, these models allow us to manipulate multiple factors
in the plex nature of cancer pathogenesis, both spatially and temporally.

To test this prediction in human samples, we performed an
analysis of three well-established PCa molecular regulators: andro-
gen receptor; phosphorylated Akt1; and activated nuclear factor
kappa B (NF-κB, phospho-p65). The analysis was performed on
triple-immunostained tissue sections of a large cohort of patients,
described previously, using image deconvolution, tissue compart-
ment segmentation (that is, tumour versus stroma) and cell-by-cell
analysis of each marker. Figure 5g–l shows the tissue examples from
patients with RSG1 (Fig. 5g–i) versus RSG3 (Fig. 5j–l), where cell
colour reflects the expression intensity for each of the individual
cells in expression of phosphorylated Akt, androgen receptor and
the central immune regulator NF-κB.

Further analysis was performed on tissues from each Gleason
score category, and over RSG1 (Fig. 5m–o, blue) and RSG3
(Fig. 5m–o, red), like the ICB and in silico model predictions. We
quantified Akt, androgen receptor and NF-κB across all individual
cells in tissues from a large population of patients (Fig. 5m–o).
Results of the average expression across all cells show a trend towards
selection of a more aggressive phenotype in low reactive stroma
(that is, high levels of biomarker expression; see Extended Data
Fig. 3). To isolate a subset of the tumour cell population that would
be under greater selection pressure, we analysed the top 1% of
cells in each of the selected patients (Fig. 5m–o). We
identified a statistically significant difference between patients with
RSG1 and RSG3, with higher expression of androgen receptor and
Akt in RSG1, than in RSG3, in this cell population. Therefore, low
reactive stroma (RSG1) appears to be associated with increased
expression of Akt and androgen receptor (compared to high
reactive stroma, RSG3) and this effect is more pronounced in
Gleason-score-6 and -7 tumours. The in silico predictions (Fig. 5f)
show that intermediate tumour cell phenotypes evolve towards
higher growth factor production under low stromal reactivity con-
ditions, showing a similar trend to these patient samples.

We performed co-culture experiments using three human
prostate cell lines (LNCaP, C4-2B and PC-3) representing mildly,
moderately and aggressively invasive disease in medium condi-
tioned by RSG1 or RSG3 tumour-derived fibroblasts (Fig. 5p–r).
Equal numbers of cells, either as pairs or all three lines together,
were plated and the number of each cell type at the end of the
culture period was counted (Extended Data Fig. 4). These studies
were consistent with the mathematical predictions in that the most
aggressive cell type did not outgrow the other populations; in most
situations where all three lines were co-cultured, the dominant cell
at the end of the study was the intermediate C4-2B cell line (Fig. 5q).

On inspection of some of the patient samples, we noticed
significant gradients in Akt and androgen receptor expression. We
reasoned that such gradients may be indicative of an evolving popu-
lation. We developed a simple algorithm to examine the slope of
expression across the triple-stained samples by analysing the change
in expression spatially across each individual sample (Fig. 5v); the
larger the slope the more quickly expression changes with distance.
We observed the largest slopes in Gleason-score-7 patients with
RSG1 for all three markers (Akt, androgen receptor and NF-κB;
Fig. 5s–u). If we view the slope as a metric for evolution, this is
again consistent with our in silico predictions that the greatest
evolution occurs at intermediate phenotypes with low stromal
reactivity (see Fig. 5f).

Discussion
In vitro and in vivo methods constitute the backbone of current
biological knowledge. Yet, they are limited in their ability to model
complex interactions and diverse dynamics because of their reduc-
tionist nature. Mathematical modelling readily captures the com-
plex nature of cancer pathogenesis, both spatially and temporally.
Critically, these models allow us to manipulate multiple factors
both in isolation and simultaneously, combining key features as well

---

**Table 1 | Multivariable association between ICB and risk of biochemical recurrence and PCa-specific death based on the Cox proportional hazards model**

| Variable | Adjusted hazard ratio (95% confidence interval) | P |
|----------|-----------------------------------------------|---|
| **Biochemical recurrence** | | |
| ICB (reference: Gleason score 6/RSG3 0–20) | <0.0001 | |
| Gleason score 6/RSG3 21–95 | 2.41 (0.67, 8.62) | 0.1763 |
| Gleason score 7/RSG3 0–60 | 3.2 (1.70, 6.04) | 0.0003 |
| Gleason score 7/RSG3 61–95 | 4.32 (2.05, 9.10) | 0.0001 |
| Gleason score 8–10/RSG3 0–70 | 3.25 (1.42, 7.44) | 0.0054 |
| Gleason score 8–10/RSG3 71–95 | 7.29 (3.37, 15.77) | <0.0001 |
| Extra-capsular extension versus none | 1.50 (0.95, 2.38) | 0.0834 |
| Seminal vesicle invasion versus none | 1.35 (0.93, 1.96) | 0.1165 |
| Margins versus none | 2.24 (1.55, 3.24) | <0.0001 |
| Lymph node status versus none | 2.82 (1.91, 4.16) | <0.0001 |
| log(preoperative PSA) > 1.9 versus ≤1.9 | 1.80 (1.19, 2.72) | 0.0056 |
| **PCa-specific death** | | |
| ICB (reference: Gleason score 6/RSG3 0–20) | <0.0001 | |
| Gleason score 6/RSG3 21–95 | 7.89 (0.47, 131.5) | 0.1499 |
| Gleason score 7/RSG3 0–60 | 5.64 (0.68, 46.58) | 0.1083 |
| Gleason score 7/RSG3 61–95 | 12.69 (1.38, 117.0) | 0.025 |
| Gleason score 8–10/RSG3 0–70 | 18.6 (1.85, 186.8) | 0.013 |
| Gleason score 8–10/RSG3 71–95 | 55.82 (6.22, 501.0) | 0.0003 |
| Extra-capsular extension versus none | 1.94 (0.52, 7.33) | 0.3265 |
| Seminal vesicle invasion versus none | 2.81 (1.26, 6.26) | 0.0118 |
| Margins versus none | 1.26 (0.50, 3.14) | 0.6242 |
| Lymph node status versus none | 1.84 (0.83, 4.05) | 0.1321 |
| log(preoperative PSA) > 1.9 versus ≤1.9 | 0.89 (0.40, 1.96) | 0.7698 |
as teasing apart their individual contributions, while still predict-
ing how their interactions will shape tumour behaviour. Features
such as interactions at different scales and the stochastic nature
of evolution can be tested experimentally in silico. Therefore, to
better understand the dialogue between tumour and stroma, we
have implemented a hybrid multiscale model of carcinogenesis in
the prostate peripheral zone. Results from this model generated insights
into the role of stroma in cancer evolution and led us to new ideas.
Our model generated multiple hypotheses, some of which were
tested in vitro and in vivo and subsequently validated in a large
cohort of patients. This integrated paradigm merges data from bio-
logy and pathology on the microenvironmental regulation of PCa
cell behaviour and leads to insights in understanding cancer evolu-
tion, heterogeneity and progression. Our theoretical framework is
a significant step in the development of mathematical models that
better mimic human PCa.

Interactions between tumour stroma and epithelium are estab-
lished regulators of PCa progression. Cells derived from the
reactive stroma (CAFs) can drive tumour growth and invasion. In
PCa, the degree of stromogenic response to a tumour corre-
lates to biochemical progression and cancer-specific death. Our
multiscale prostate peripheral zone model recapitulates these
observations, demonstrating its ability to reproduce known bio-
logical and pathological processes and building confidence in its
predictive power.

Stroma plays an important role in the development of PCa. Our
model goes beyond this finding and predicts that the interplay
between stroma and epithelium (that is, the balance of individual
cancer cell aggressiveness and stromal reactivity) is more important
than either stromal or epithelial properties alone. From our model,
we have derived the following predictions: (1) the balance between
stromal activation and tumour aggressiveness is key to tumour
progression; (2) stromal cells can enhance stromal activation,
suggesting that reactive stroma can become self-activating under
certain conditions; and (3) the degree of stromal reactivity regulates
tumour epithelial evolution. Our integrated approach allowed us
to test and validate hypotheses 1 and 2, and provide strong support
for hypothesis 3.

The model predicts that growth factors produced by either the
reactive stroma or cancer cells play complimentary roles and may
compensate for each other. Specifically, to our knowledge, the idea
that reactive stroma may contribute to further stromal activation is
new. The underlying mechanisms of this phenomenon are under
investigation and await a more complete description of the tumour
stroma phenotype from PCa patients on a single-cell basis. The sig-
ificance of this balance was validated using both in vivo modelling
and human studies. Results in both mice and humans were consist-
ent with our mathematical prediction.

Concordantly, we identified that Gleason score and RSG quanti-
tation (stromogenic carcinoma), when combined as the ICB,
 improve predictive power. In fact, RSG quantitation significantly
stratifies all the recurrence and death risk categories as suggested by
the current Gleason grading system. Due to its combinatorial nature,
this system better addresses the issue of heterogeneity in both can-
cer differentiation and degree of stromal response. These results
suggest that for patients whose tissue shows a high percentage of
the tumour with stromogenic response, the risk should be consid-
ered higher than the standard Gleason assessment. Conversely, low
percentage of RSG3 in a patient's biopsy would imply a lower risk
than the standard Gleason assessment. We showed that the degree
of stromal reactivity, when integrated with the current clinical in use
methodology (Gleason score with clinico-pathological parameters),
significantly improves PCa prognosis and may be used to modify the
way patients are treated. We stress that the ICB can stratify most
of the problematic intermediate Gleason-score-7 category. It is also
important to note that the percentage of tumour with RSG3 varies
between Gleason subgroups. Gleason score 6 requires a minimum
of 21% of the tumour with RSG3 to be predictive. This increases
to 61 and 71% in Gleason score 7 and Gleason score 8–10, respec-
tively, demonstrating that the dynamic of the interplay between
stroma and cancer has differential thresholds. This supports the
balance concept between stroma and cancer cells identified in the
mathematical model.

The most important prediction of this study is that evolutionary
dynamics in tumours growing in the presence of stroma with high
stromal reactivity is different from those growing in association
with low stromal reactivity. The clear implication of this finding is
that the progression of tumours reflects the ability of the host to
respond to specific stimuli. In low stromal reactivity situations, the
rate of epithelial cell evolution is higher, leading to increased het-
erogeneity with selection for increased growth factor production.
In contrast, high stromal reactivity results in lower evolutionary
pressures on the tumour epithelium, such that enough growth factor is
provided by the reactive stromal cells. Therefore, the differentiation

---

Fig. 5 | Stromal reactivity drives tumour cell evolution and progression: in silico and clinical analysis. a–e. Evolution of tumour cell phenotypes through space and time (6–12.8 years) under low (blue) and high (red) stromal reactivity conditions (this figure extends the timescale of Fig. 2a–d). The heatmap shows tumour cell phenotype (growth factor production) distribution in low (a–c) and high stromal reactivity (d,e) after 6 (a,d), 8.3 (b,e) and 12.8 (c) years of growth. f. Tumour cell phenotypic change in growth factor production from 8 different initiating phenotypes in high (red) and low (blue) stromal reactivity environments (the average change and s.d. across 300 simulations per initiating phenotype) is shown. g–i. Representative samples of triple-immunostained biopsies for three well-established PCa molecular regulators—phosphorylated Akt (g); androgen receptor (h); and the central inflammatory regulator NF-κB (i) from two patients, one with RSG1 (g–i) and the other with RSG3 (j–l); levels of expression were classified as low (blue), medium (green) or high (red). m–o. Single-cell quantitative analysis of triple-immunostained tissue sections for patients with RSG1 (blue) versus RSG3 (red) in each Gleason category for the three molecular markers, Akt (m), androgen receptor (n) and NF-κB (phospho-p65, o). The top 1% of gene expression in cells from each of the patient’s biopsies that are shown (subset of the tumour cell population that would be under the greater selection pressure); each individual bar represents the average (and s.d.) for a single patient over many cells. The gene expression shows LNCaP-BFP (blue), C4-2B-RFP (green) and PC-3-GFP (red) were cultured in the presence of conditioned medium from either NPF, RSG1-CAF or RSG3-CAF for 4 weeks. p. Representative images for each group are shown (cells are false coloured for internal consistency of illustrations). q–r. Quantitation of individual cell populations was determined by fluorescence-activated cell sorting analysis and shows the fraction of each tumour cell line, LNCaP-BFP (blue), C4-2B-RFP (green) and PC-3-GFP (red), in RSG1-CAF or RSG3-CAF conditioned medium. To identify the most significant evolutionary gradient in expression across a given biopsy, we analysed the rate of change in expression through space starting from the cell with the highest individual level of expression. Each sample was split into four different sections, with the origin of this split being the highest expressing cell in the example shown (coordinates, 575,746) (v) (See Extended Data Fig. 5 for more detail). The slope from that cell to the edge of the biopsy in terms of radial distance was then calculated. The most statistically significant slope was the one assigned to that specific patient. s–u. This analysis was performed on patients with RSG1 and compared to RSG3 in each Gleason category showing the most significant slope per patient for the three molecular markers, Akt (s), androgen receptor (t) and NF-κB (phospho-p65) (u). The larger the slope the more quickly expression changes with distance from the highest expressing cell. In m–o and s–u, 14 RSG1 and 14 RSG3 Gleason-score-6 patients; 20 RSG1 and 20 RSG3 Gleason-score-7 patients; and 12 RSG1 and 12 RSG3 Gleason-score-8–10 patients were analysed.
state of cancer cells tends to drift in terms of growth factor production, rather than undergoing rigorous selection for the high expression needed for survival when an outside source is unavailable. This suggests that high levels of stromally produced growth factor may result in less aggressive individual cancer cell phenotypes; nonetheless, the tumour constitutes a larger invasive mass. Using cell-by-cell data analysis of triple-immunostained biomarkers in a cohort of human patients, we identified a signal that indicated that...
PCa cells growing with low reactive stroma (RSG1) have a higher rate of selection, leading to evolution of a more advanced phenotype. These changes were more significant in Gleason-score-6 and -7 patients, than Gleason score 8–10, (Fig. 5g), which is concordant with our mathematical model predictions that identify greater evolution when starting with intermediate cancer cell phenotypes (and a less heterogeneous population). Therefore, evolution of the most malignant phenotypes in a tumour cell population is not necessarily consistent tumour growth and invasion since it is modulated by the stromal response. In addition, tumour aggressiveness, as defined by the Gleason score, is differentially modulated by stromal response. These different risk estimations and evolutionary dynamics (and tumour heterogeneity) mean that the overall behaviour of patient tumours is driven by both tumour cells (Gleason score) and the stromal response of the host (ICB).

Fig. 6 | Interactions between tumour cells and stroma shape the evolutionary dynamics of PCa and drive overall tumour aggressiveness. Growth factor signalling is essential to both tumour and reactive stroma. Limited availability of growth factors leads to an increased competition between tumour and stromal cells. This competition results in slower tumour growth (lower risk estimation) but also increased selection and more rapid evolution (leading to a more heterogeneous population). In contrast, where growth factor availability is not limiting, there are more mutualistic interactions between tumour and stroma. This situation results in faster growing tumours (higher risk estimation) but, paradoxically, weaker selection pressure leading to less aggressive tumour cells (and a less heterogeneous population). Therefore, evolution of the most malignant phenotypes in a tumour cell population is not necessarily consistent tumour growth and invasion since it is modulated by the stromal response. In addition, tumour aggressiveness, as defined by the Gleason score, is differentially modulated by stromal response. These different risk estimations and evolutionary dynamics (and tumour heterogeneity) mean that the overall behaviour of patient tumours is driven by both tumour cells (Gleason score) and the stromal response of the host (ICB).
cell phenotypes favouring growth factor production. These altered cells, by nature, are less stromally dependent and eventually form invasive tumours. However, the tumour is relatively indolent until these growth factor-producing cells have developed and been selected, which could take time (perhaps even beyond the lifetime of the patient) when compared to the first case, where a tumour can immediately access high levels of growth factor.

In conclusion, our data indicate that the interactions between tumour cells and reactive stroma shape the evolutionary dynamics of PCa and explain overall tumour aggressiveness (Fig. 6). We show that the degree of stromal reactivity, when coupled with the current clinical biomarkers, significantly improves PCa prognosis, both for death and recurrence, that may alter treatment decisions. We also show that stromal reactivity correlates directly with tumour growth but inversely modulates tumour evolution. This lends weight to the idea that aggressive, stromal-independent PCa may be an inevitable evolutionary result of poor stromal reactivity and that purely tumour-centric metrics of aggressiveness may be insufficient in terms of clinical outcome.

Methods

Multiscale prostate peripheral zone model. The model we developed builds on the HCA model described by Basanta and Anderson. The definition of an HCA model requires a set of partial differential equations that characterize the physical microenvironment, a set of life-cycle flow charts that characterize the behaviour of the cells under microenvironmental constraints (Fig. 1c) and a cellular automaton framework to integrate them. The following system of nonlinear partial differential equations define growth factor ($G$), MMP ($E$) and ECM/basement membrane ($M$) as the three key continuous microenvironmental variables:

\[
\begin{align*}
\frac{\partial G}{\partial t} & = \text{Basal cell production} + \text{Tumor cell production} + \text{Reactive stromal cell production} + \text{Growth factor dynamics} \\
\frac{\partial E}{\partial t} & = \text{Enzyme diffusion} + \text{Basal cell production} + \text{Tumor cell production} + \text{Reactive stromal cell production} + \text{Enzyme degradation} + \text{MMP dynamics} \\
\frac{\partial M}{\partial t} & = \text{Basal cell production} + \text{Basal cell consumption} + \text{Luminal cell consumption} + \text{Enzyme diffusion} + \text{ECM/basement membrane dynamics} \\
\end{align*}
\]

\(\delta_i\) and \(\delta_j\) are the growth factor and MMP diffusion coefficients, respectively; \(x, y, t\) represents the x and y dimensions of the two-dimensional domain; \(t\) is time; \(m, \alpha, \beta, T, \kappa, \phi, \chi, \kappa, \rho, \gamma, \delta, \eta, \zeta, \kappa, \tau, \theta\) are positive constants with biologically significant values as based on Basanta. Then, a discretized form of the HCA model described by Basanta and Anderson. The definition of an HCA framework to integrate them. The following system of nonlinear partial differential equations define growth factor ($G$), MMP ($E$) and ECM/basement membrane ($M$) as the three key continuous microenvironmental variables:

\[
\begin{align*}
\frac{\partial G}{\partial t} & = \text{Basal cell production} + \text{Tumor cell production} + \text{Reactive stromal cell production} + \text{Growth factor dynamics} \\
\frac{\partial E}{\partial t} & = \text{Enzyme diffusion} + \text{Basal cell production} + \text{Tumor cell production} + \text{Reactive stromal cell production} + \text{Enzyme degradation} + \text{MMP dynamics} \\
\frac{\partial M}{\partial t} & = \text{Basal cell production} + \text{Basal cell consumption} + \text{Luminal cell consumption} + \text{Enzyme diffusion} + \text{ECM/basement membrane dynamics} \\
\end{align*}
\]

\(\delta_i\) and \(\delta_j\) are the growth factor and MMP diffusion coefficients, respectively; \(x, y, t\) represents the x and y dimensions of the two-dimensional domain; \(t\) is time; \(m, \alpha, \beta, T, \kappa, \phi, \chi, \kappa, \rho, \gamma, \delta, \eta, \zeta, \kappa, \tau, \theta\) are positive constants with biologically significant values as based on Basanta. Then, a discretized form of the equations is solved numerically on a two-dimensional lattice that represents a small slice of prostate tissue. All cell types (tumour, basal, luminal, stromal and inflammatory) are modulated by the microenvironment on this lattice and can migrate, proliferate, die and mutate according to the life-cycle flow charts (Fig. 1c). Further detail can be found in the Supplementary Information and Extended Data Fig. 1.

Tumour cells in the model have two continuously variable phenotypes, namely growth factor ($G$) and MMP ($E$) production. These traits are passed from a parent tumour cell to its two daughter cells with some small variation, chosen at random from an interval equally weighted in both directions to avoid biased drift. The model is agnostic with respect to specific biological mechanisms that underlie this drift, which could include gradual accumulation of mutations, regulation of gene transcription by epigenetics or aneuploidy, or changes in the number or structure of organelles, for example. The evolution of these phenotypes in time and space is an important consideration of this work.

The switch between stroma ($S$) and reactive stroma ($RS$) phenotypes is driven by the growth factor stimulus. Reactive stromal cells are activated if the level of growth factor ($G$) is above the threshold $G_{\text{thr}}$ and are deactivated if the growth factor level $G$ falls below the threshold $G_{\text{thr}}$.

Clinical specimens. To validate the findings of the mathematical model and its biological validation, we used a unique human tissue resource. The cohort was selected from patients operated on by a single surgeon, without additional forms of therapy other than surgery, and over 20 years of follow-up.

Cohort enrolment and follow-up. The Baylor College of Medicine Prostate Cancer database contains information for over 9,000 patients who underwent radical prostatectomy at one of the College’s affiliated institutions for at least one recurrence (institutional review board no. H-1158). Of these patients, 1,291 were operated on by a single surgeon between 1983 and 1998 without any previous form of adjuvant therapy, such as radiation or hormonal therapy. This study was approved by the Baylor College of Medicine institutional review board (no. H-11436).

Radical prostatectomy specimens from these patients were processed using whole-mount slides according to procedures described previously. After surgery, the prostate specimens were sliced into 5-mm-thick tissue whole mounts. The tissue slices were then fixed in 10% neutral buffered formalin and embedded in paraffin according to a routine procedure. A single pathologist performed the pathological analysis, which included staging, pathological staging, margins, capsular penetration, seminal vesicle invasion, primary and secondary Gleason grades from biopsy and prostatectomy, lymph node status, tumour volume and geographical location. The clinical and pathological data of patients who met the entry criteria were available for analysis. The clinical follow-up data include PSA recurrence (defined as a PSA of 0.4 ng or two consecutive rises), clinical metastasis and PCa-specific death.

Clinical characteristics. The age of patients ranged from 37 to 80 with a mean of 62 and median of 63 years. Patients were followed post-operatively for an average of 42.08 (mean) and 35.2 months (s.d.), a median of 45.2 months and a maximum of 167.74 months. Preoperative PSA level was available in 603 PCa cases and ranged from 0.3 to 100 nmol l\(^{-1}\) with a median of 7.2 nmol l\(^{-1}\) and an s.d. of 10.99 nmol l\(^{-1}\). Approximately 30% of patients had a preoperative PSA level of 10.5 nmol l\(^{-1}\). Approximately 44.6% had a Gleason score of 6; 48.6% had a Gleason score of 6 or 7; and 6.8% had a higher Gleason score (8–10). Lymph node metastasis was found in 40 (6.4%) patients and biochemical recurrence was seen in 120 patients (19.3%). Extra-capsular extension was found in 44.5%. Margins were positive in 15.3% and seminal vesicle invasion had occurred in 12.4% of patients. For this study, we quantified the area of stromogenic carcinoma pattern (RSG) tumour with high risk in the whole-mount-embedded radical prostatectomy specimens in a percentile fashion.

Statistical analysis. Cox proportional hazards regression analyses for each of biochemical recurrence and PCa-specific death were conducted to evaluate univariable and multivariable associations between a stromal marker (that is, the percentage of RSG3 within radical prostatectomy PCa) and risk of recurrence or death. Important standard clinico-pathological risk factors such as Gleason score, extra-capsular extension, seminal vesicle invasion, margins, lymph node status and preoperative PSA were also considered while developing multivariable models to examine the contribution of a stromal marker (that is, percentage RSG3) over traditional factors. Specifically, we focused on determining the effect of stromal marker addition on epithelial cancer marker (that is, Gleason score) by evaluating whether the association between Gleason score and risk of recurrence (or death) differs by levels of percentage RSG3. This led to combining these two markers, resulting in the ICB. While developing the integrated marker, assessment of linearity/functional form and residuals was made to ensure that the underlying linearity assumptions between the predictors and outcome were valid. To establish optimal cut-off values of percentage RSG3 for every Gleason score category, we used a minimum $P$ value approach as well as goodness-of-fit tests for overall significance of the model. A test of proportional hazards assumption was also performed and indicated that there was no statistically significant evidence of assumption violation.

To validate our findings from the survival analyses, we looked at the predictive performance of the new ICB against current standard clinico-pathological risk factors by conducting multivariable logistic regression models, where the binary outcome of biochemical recurrence or death was examined. The prediction accuracy of each model was measured using the area under the receiver operating characteristic area under the curve (AUC).

Given the fact that the increase in AUC was very small when the model already includes highly significant standard risk factors (for example, AUC > 0.85), the magnitude of improvement in AUC may not be nearly as meaningful as the value of the AUC itself. Therefore, in addition to the AUC, we considered deviance-based measures such as the AIC, which is widely used to examine whether the addition of an extra independent variable improves the model specification (that is, the relative quality of the model), while controlling for...
goodness of fit and the complexity of the model at the same time. The Hosmer–Lemeshow goodness-of-fit test was also constructed to examine the agreement between observed outcomes and predictions. For the statistical analysis, we used measurements that were taken from distinct samples. All analyses were performed primarily using widely available tools in SAS V.9.4 (SAS Institute). All tests were two-sided at a significance level of 0.05.

Androgen receptor, pAkt and p-NF-κB p65 (phospho S276) triple staining. New tissue microarray slides were triple immunohistochemically stained by using the androgen receptor (catalogue no. CM109A; Biocare Medical), pAkt (catalogue no. M3628; Dako) and p-NF-κB p65 (phospho S276) (catalogue no. ab106129; Abcam) antibodies. Before the triple staining, all three antibodies were tested in test tissue microarray slides containing different human prostate tissue samples. Briefly, sections were deparaffinized in xylene, rehydrated through decreasing concentrations of alcohol ending in PBS, subjected to heat-induced antigen retrieval in Target Retrieval Solution (pH 9.0, catalogue no. S2367; Dako) for 4 min at 125 °C in a Pascall instrument (catalogue no. S28030; Dako) and allowed to cool off at room temperature. Endogenous peroxidase activity was quenched in 3% hydrogen peroxide solution in distilled water for 10 min at room temperature. To inhibit non-specific staining, sections were incubated with a protein blocking solution (catalogue no. X0999; Dako) for 10 min at room temperature, then incubated with a mixture of mouse monoclonal antibody against androgen receptor (1:100) and rabbit polyclonal antibody against pAkt (1:10) in antibody diluent (catalogue no. S0829; Dako) for 1 h at room temperature. Sections were washed and the bound antibody was detected using a MACH2 Double Stain 2 Polymer Detection kit (mouse-HPRP+ rabbit-AP, catalogue no. MRCT525; Biocare Medical), with 3,3′-diaminobenzidine (for androgen receptor) and Vulcan Fast Red (for Akt, catalogue no. FR805; Biocare Medical) as chromogens.

To ensure that the third antibody staining would not cross-react with the androgen receptor and pAkt staining, sections were incubated with a denaturing solution for 2 min (catalogue no. DNS001; Biocare Medical), then incubated with rabbit polyclonal antibody against pNF-κB p65 (phospho S276) (1:300) for 2 h at room temperature. Sections were washed and the bound antibody was detected using a MACH2 Rabbit HRP-Polymer (catalogue no. HRHP520; Biocare Medical) with Vina Green (catalogue no. BRR307AF; Biocare Medical) as chromogen. Finally, sections were counterstained with CAT haematoxylin (1:4 diluted with water for 40 s, catalogue no. CATHE; Biocare Medical) and bluing reagent (10 s, catalogue no. SL203; Statlab Medical Products), then air-dried at 65 °C for 15 min and mounted with Ecomount (catalogue no. EM897L; Biocare Medical).

Quantification of androgen receptor, pAkt and p-NF-κB p65 using image deconvolution, segmentation and analysis. Hot spot areas of expression of the 3 biomarkers within the PCA tissues were imaged using the Vectra v.1.4.0 (one 200x images per core). A combination of deconvolution imaging (such as Vectra) and image segmentation technology (such as InForm v.2.1.1) was used. All immunostained slides were digitized with the use of a multispectral imaging system that enabled capturing a series of images from a single field at a spectrum of specific wavelengths (420–720 nm). Multiple series of images taken at different wavelengths at one shot is called ‘image cube’. Image cubes were created for each case and saved in both multispectral .im3 and JPEG formats. All images were taken at 200x magnification and captured >95% of 0.6 mm tissue cores. The measurement of intratumoral structural wavelengths enables more accurate separation of tissue and cellular components.

The InForm image segmentation system was used to separate non-neoplastic and neoplastic PCA tissues from the normal muscular host stromal tissues, as well as reactive stroma. The signal was analysed only in the epithelial component.

Image segmentation software was used for tissue and cellular analysis of the tumour stroma in the prostate adenocarcinoma. Pictures from each case were reviewed individually; only tumour and tumoural stroma areas were selected for further analysis. Tissues were algorithm-segmented into compartments (cancer epithelium and cancer stroma); each compartment was segmented into individual cells and each cell was segmented into nuclei and cytoplasm. Individual cells were recognized within each compartment and the androgen receptor, pAkt and p-NF-κB p65 signal was separated and analysed in each compartment of the tumour separately in each individual cell. All were analysed in the cytoplasm of the cancer cells. In conclusion, we provided read-outs per individual cells, in each compartment, each with coordinates for spatial localization within the tissues.

Isolation and characterization of CAFs. Isolation and validation of the tumour-inducing abilities of CAFs from tissue samples was performed as described previously19. After enzymatic (collagenase) digestion of prostate tissues, cells were enriched for fibroblasts by sub-culturing (up to 4 passages) in 10% Roswell Park Memorial Institute (RPMI) medium. Characterisation of fibroblasts included the assessment of stromal markers (smooth muscle actin and vimentin) and lack of epithelial contamination (wide-spectrum cytokeratin) by western blot analysis. Stromogenic (or RSG) classification of 6 CAF strains isolated from patients (3 from RSG1 and 3 from RSG3) was performed by scoring of Masson’s trichrome-stained tissues according to standard guidelines9. The RSG grading system is based on the percentage of intratumour reactive stroma (stained for collagen by Masson’s trichrome staining) where RSG0 = <5%, RSG1 = 5–15%, RSG2 = 15–50% and RSG4 = >50%. Concurrently, samples were scored for Gleason grade. The Gleason score of the CAFs used in the in vitro/in vivo studies from RSG1 tumours were 6 (3+3), 7 (3+4) and 7 (4+3); in RSG3 tumours, they were 7 (4+3), 7 (4+3) and 7 (3+4). Immunohistochemical staining for Ki67 was performed and a labelling index calculated for each sample.

Effects of RSG status of source material on the tumour-inducing capability of CAF cells. To test the effects of RSG characteristics on tumour growth, an initiated but non-tumorigenic prostate epithelial cell line BPH1 (100k) was recombined with CAFs (250k) with different RSGs and grafted under the renal capsule of castrated, testosterone-supplemented CB17/crI-Hsd-severe combined immunodeficient mice (SCID, Harlan) as described previously20. The BPH1 cell line responds to stimuli of RSGs by undergoing specific gene expression changes, including tumour-initiation genes. We had previously noted that the volume of such tumours varies according to the patient source of CAFs but had not examined this phenomenon formally. CAFs from each RSG group were used in a standardized recombination assay and grafted to SCID mice for 12 weeks. The resultant tumours were collected; their area in a central cross-section and invasiveness measured from the surface of the kidney to the deepest point of penetration was determined.

To test how PCA cell lines respond to CAFs, and specifically to determine whether such a response is a function of the source tumour from which the CAFs were derived, three cell lines (100k LNCaP, C4-2B and PC-3) representing progressively less aggressive tumours were transduced with lentiviral vectors carrying an enhanced green fluorescent protein and a luciferase reporter gene, and CAFs from each RSG group were tested in a recombination assay using the media and conditions described above.

Cell culture conditions. The stromal cell lines BHPHSI (our stocks), primary normal prostate fibroblasts (NPF) and CAFs derived from RSG1 and RSG3 tumours were grown in 5% FCS RPMI 1640 medium21. The non-tumorigenic prostate epithelial cell line BPH1 was cultured in 5% RPMI medium. The PCA epithelial cell line LNCaP and its derivative C4-2B (from the CCL Core at the MD Anderson Center) were cultured in T medium (10% FCS DMEM/F12 culture medium) plus supplements21. PC-3 cells (ATCC CRL-1435) were cultured in 1-FK medium.

Effects of stroma-conditioned medium on growth. The NPFs and CAFs derived from RSG1 and RSG3 tumours were grown in RPMI 1640 supplemented with 0.5% FCS and 10−10 M testosterone for 48–72 h, after which the media were collected, centrifuged and filtered (0.45 μm).

PC-3, C4-2B and LNCaP cells (from ATCC and the MD Anderson Center) representing progressively less aggressive tumours, were transduced with lentiviral constructs carrying fluorescent colour tags (colours are a gift from A. Zilstra). Cells were grown under positive blasticidin selection; then, moderate colour expression was selected using fluorescence-activated cell sorting to generate green, red and blue lines designated as PC-3-GFP, LNCaP-BFP and C4-2B-RFP. Cells were seeded (all combination mixtures of single-cell line alone, three pair combinations and all three colours together) in 96-well dishes in triplicate at an initial density of 5,000 total cells per well. The cells were allowed 24 h to attach after which the medium was changed to a 1:1 mixture of CAE-CM and RPMI 1640, then adjusted to 0.5% FCS. Medium was changed twice weekly for 4 weeks; images were taken at the end of each week to determine cell distribution. At the end of the experiment, cells were passed through a MACSQuint Analyzer (Miltenyi Biotec) to generate colour-specific counts of total cells per well.

Reporting Summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability
All clinical data used was de-identified. All clinical data elements exist at Baylor College of Medicine, but the authors no longer have direct access to them. Contact G. Ayala to discuss clinical data access.

Code availability
The code used to produce all the simulations in the paper is available at the https://github.com/MathOnco/PCASim github repository.

Received: 1 May 2019; Accepted: 19 February 2020; Published online: 11 May 2020

References
1. Strand, D. W., Franco, O. E., Basanta, D., Anderson, A. R. A. & Hayward, S. W. Perspectives on tissue interactions in development and disease. Curr. Mol. Med. 10, 95–112 (2010).
2. Simon-Assmann, P., Spenle, C., Lefebvre, O. & Kedingter, M. The role of the basement membrane as a modulator of intestinal epithelial-mesenchymal interactions. Prog. Mol. Biol. Transl. Sci. 96, 175–206 (2010).
Articles

3. Parmar, H. & Cunha, G. R. Epithelial–stromal interactions in the mouse and human mammary gland in vivo. Endoc. Relat. Cancer 11, 437–458 (2004).

4. Sugimoto, H., Mundel, T. M., Kieran, M. W. & Kalluri, R. Identification of fibroblast heterogeneity in the tumor microenvironment. Cancer Biol. Ther. 5, 1640–1646 (2006).

5. Orio, A. et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121, 335–348 (2005).

6. Tuxhorn, J. A., Ayala, G. E. & Rowley, D. R. Reactive stroma in prostate cancer progression. J. Urol. 166, 2472–2483 (2001).

7. Tuxhorn, J. A., McAlhany, S. J., Dang, T. D., Ayala, G. E. & Rowley, D. R. Stromal cells promote angiogenesis and growth of human prostate tumors in a differential reactive stroma (DRS) xenograft model. Cancer Res. 62, 3298–3307 (2002).

8. Ayala, G. et al. Reactive stroma as a predictor of biochemical-free recurrence in prostate cancer. Clin. Cancer Res. 9, 4792–4801 (2003).

9. Olumi, A. F. et al. Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res. 59, 5092–5101 (1999).

10. Franco, O. E. et al. Altered TGF-β signaling in a subpopulation of human prostatic cells promotes prostate carcinogenesis. Cancer Res. 71, 1272–1281 (2011).

11. Kiskowski, M. A. et al. Role for stromal heterogeneity in prostate carcinogenesis. Cancer Res. 71, 3459–3464 (2011).

12. Bremnes, R. M. et al. The role of tumor stroma in cancer progression and prognosis: emphasis on carcinoma-associated fibroblasts and non-small cell lung cancer. J. Thorac. Oncol. 6, 209–217 (2011).

13. Tuxhorn, J. A. et al. Reactive stroma in human prostate cancer: induction of myofibroblast phenotype and extracellular matrix remodeling. Clin. Cancer Res. 8, 2912–2923 (2002).

14. Levesque, C. & Nelson, P. S. Cellular constituents of the prostate stroma: key to prostate cancer. Am. J. Pathol. 164, 1660–1669 (2004).

15. Penson, D. F. et al. General quality of life 2 years following treatment for prostate cancer: a systematic review of outcome measures for clinical and research purposes. Urol. Int. 67, 203–213 (2001).

16. Levesque, C. & Nelson, P. S. Cellular constituents of the prostate stroma: key to prostate cancer. Am. J. Pathol. 164, 1660–1669 (2004).

17. Ganz, P. et al. Influence of patient and treatment characteristics on quality of life following radical prostatectomy or radiotherapy. J. Clin. Oncol. 19, 3022–3029 (2001).

18. Parmar, H. & Cunha, G. R. Epithelial–stromal interactions in the prostate. J. Natl Cancer Inst. 85, 1019–1026 (1993).

19. Potosky, A. L. et al. Five-year outcomes after prostatectomy or radiotherapy for clinically localized prostate cancer: results of the Prostate Cancer Outcomes Study. J. Clin. Oncol. 21, 1147–1154 (2003).

20. Penson, D. F. et al. Recruitment of CD34+ fibroblasts in tumor-associated reactive stroma: the reactive microvasculature hypothesis. Am. J. Pathol. 184, 1860–1873 (2014).

21. Penson, D. F. et al. General quality of life 2 years following treatment for prostate cancer: which influences outcomes? Results from the Prostate Cancer Outcomes Study. J. Clin. Oncol. 21, 1147–1154 (2003).

22. Pound, C. R. et al. Natural history of progression after PSA elevation following radical prostatectomy: JAMA 281, 1591–1597 (1999).

23. Han, M., Partin, A. W., Pound, C. R., Epstein, J. I. & Walsh, P. C. Long-term biochemical disease-free and cancer-specific survival following anatomic radical retropubic prostatectomy. The 15 year Johns Hopkins experience. Urol. Clin. North Am. 28, 555–565 (2001).

24. Schellhammer, P. F. et al. Radical retropubic prostatectomy: a prospective randomized trial of 1,000 consecutive patients. J. Urol. 172, 915–919 (2004).

25. Hulbert, J. R. et al. Natural history of progression after PSA elevation following radical prostatectomy: JAMA 281, 1591–1597 (1999).

26. Meijer, R. et al. Long-term progression after radical prostatectomy for clinically localized prostate cancer: continued risk of biochemical failure after 5 years. J. Urol. 164, 101–105 (2000).

27. Meijer, R. et al. Long-term progression after radical prostatectomy for clinically localized prostate cancer: continued risk of biochemical failure after 5 years. J. Urol. 164, 101–105 (2000).

28. Meijer, R. et al. Long-term progression after radical prostatectomy for clinically localized prostate cancer: continued risk of biochemical failure after 5 years. J. Urol. 164, 101–105 (2000).

29. Meijer, R. et al. Long-term progression after radical prostatectomy for clinically localized prostate cancer: continued risk of biochemical failure after 5 years. J. Urol. 164, 101–105 (2000).

30. Meijer, R. et al. Long-term progression after radical prostatectomy for clinically localized prostate cancer: continued risk of biochemical failure after 5 years. J. Urol. 164, 101–105 (2000).

31. Meijer, R. et al. Long-term progression after radical prostatectomy for clinically localized prostate cancer: continued risk of biochemical failure after 5 years. J. Urol. 164, 101–105 (2000).

32. Meijer, R. et al. Long-term progression after radical prostatectomy for clinically localized prostate cancer: continued risk of biochemical failure after 5 years. J. Urol. 164, 101–105 (2000).

33. Meijer, R. et al. Long-term progression after radical prostatectomy for clinically localized prostate cancer: continued risk of biochemical failure after 5 years. J. Urol. 164, 101–105 (2000).

34. Meijer, R. et al. Long-term progression after radical prostatectomy for clinically localized prostate cancer: continued risk of biochemical failure after 5 years. J. Urol. 164, 101–105 (2000).

35. Meijer, R. et al. Long-term progression after radical prostatectomy for clinically localized prostate cancer: continued risk of biochemical failure after 5 years. J. Urol. 164, 101–105 (2000).

36. Meijer, R. et al. Long-term progression after radical prostatectomy for clinically localized prostate cancer: continued risk of biochemical failure after 5 years. J. Urol. 164, 101–105 (2000).

37. Meijer, R. et al. Long-term progression after radical prostatectomy for clinically localized prostate cancer: continued risk of biochemical failure after 5 years. J. Urol. 164, 101–105 (2000).

38. Meijer, R. et al. Long-term progression after radical prostatectomy for clinically localized prostate cancer: continued risk of biochemical failure after 5 years. J. Urol. 164, 101–105 (2000).

39. Meijer, R. et al. Long-term progression after radical prostatectomy for clinically localized prostate cancer: continued risk of biochemical failure after 5 years. J. Urol. 164, 101–105 (2000).

40. Meijer, R. et al. Long-term progression after radical prostatectomy for clinically localized prostate cancer: continued risk of biochemical failure after 5 years. J. Urol. 164, 101–105 (2000).

Acknowledgements

A.R.A.A., G.A. and S.W.H. gratefully acknowledge National Cancer Institute funding for this work through grant no. U01CA151924.
Author contributions
A.R.A.A., D.B., G.A. and S.W.H. developed the initial concept and obtained the funding. Z.F., D.B. and A.R.A.A. developed the mathematical model and simulation code. O.E.F., R.A.J., D.W.S. and S.W.H. conceived, designed and performed the in vitro and in vivo experiments. Y.G., M.I. and G.A. performed the statistical analysis of the clinical data. G.A. collated, stained and quantified the clinical data. Z.F. analysed the triple-stained clinical samples. Z.F., D.B., O.E.F., D.W.S., S.W.H., G.A. and A.R.A.A. co-wrote the paper.

Competing interests
G.A. declares an interest in Stromont (a virtual company). All other authors declare no competing interests.

Additional information
Extended data is available for this paper at https://doi.org/10.1038/s41559-020-1157-y.
Supplementary information is available for this paper at https://doi.org/10.1038/s41559-020-1157-y.
Correspondence and requests for materials should be addressed to A.R.A.A.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
© The Author(s), under exclusive licence to Springer Nature Limited 2020
Extended Data Fig. 1 | Representation of movement probabilities. Representation of the probabilities of cell located at coordinates \((i,j)\) moving to one of its four orthogonal neighbors \((PM_{1-4})\) or remaining stationary \((PM_0)\).
Extended Data Fig. 2 | Evolution of tumour cell MMP production under low and high SR conditions. The evolution of tumour cell phenotypes through space and time (6-12.8 years) under low (blue) and high (red) SR conditions (this is the MMP equivalent of Fig. 5a–f). Heat map shows tumour cell phenotype (MMP production) distribution in low SR (a-c) and high SR (d, e). Tumor cell phenotypic change in MMP production from 8 different initiating phenotypes in high (red) and low (blue) SR environments (the average change and standard deviation across 100 simulations per initiating phenotype) is show in panel f.
Extended Data Fig. 3 | SR drives tumour cell evolution and progression. Extension of Fig. 5m–o. Single cell quantitative analysis of the triple immunostained (AKT, AR and NFkB) tissue sections for patients with RSG1 (blue) vs. RSG3 (red) in each Gleason category. Expression in all cells from each of the patient’s biopsies are shown, each individual bar represents the average (and deviation) for a single patient over all cells. Insets for AKT and NFkB have more appropriate y-axis scales to better illustrate differences.
Extended Data Fig. 4 | Co-culture experiment details (Relevant to Fig. 5q, r). a. Prostate Cancer cell lines LNCaP-BFP, C4-2B-RFP and PC3-GFP were cultured in the presence of conditioned medium (CM) from RSG1-CAF or RSG3-CAF for 4 weeks. Quantitation of individual cell populations was determined by FACS analysis. The number of each cell line out of 10,000 gated total number of cells (Y-axis) is shown for each cell line. b. Co-culture experiments using aggressive C4-2B and PC3 cells exposed to RSG1-CAF and RSG3-CAF. Quantitation and analysis were similar to those performed for the triple co-culture experiments. Data represents the mean of three different experiments performed in triplicate.
Extended Data Fig. 5 | Calculating evolutionary gradients from patient biopsies. Analysis of triple stained tissue samples (Gleason 7 with R5G1) illustrating our approach to identify the most statistically significant evolutionary gradient in AKT expression. To identify the most significant gradient across a given biopsy, we analyzed the rate of change in expression through space starting from the cell with highest individual level of expression. Slope was calculated across radial distance from the cell with highest expression in the biopsy, in the example shown here, coordinates (575,746) (a). Analysis was performed on patients with R5G1 and compared to R5G3 in each Gleason category (b) showing the most significant slope per patient for the 3 molecular markers, AKT (left), AR (middle) and NF-B (phospho-p65, right). The larger the slope the more quickly expression changes with distance from the highest expressing cell per patient for the 3 molecular markers, AKT (left), AR (middle) and NF-B (phospho-p65, right). The larger the slope the more quickly expression changes with distance from the highest expressing cell.
Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a  Confirmed

☐ X The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

☐ X A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

☐ X The statistical test(s) used AND whether they are one- or two-sided

☐ X Only common tests should be described solely by name; describe more complex techniques in the Methods section.

☐ X A description of all covariates tested

☐ X A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

☐ X A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

☐ X For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted Give P values as exact values whenever suitable.

☐ X For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

☐ X For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

☐ X Estimates of effect sizes (e.g. Cohen’s d, Pearson’s r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection

The code used to produce all simulations in the paper is available at the following github repository:

https://github.com/MathOnco/PCASim

Data analysis

Figure 3H: SAS Proc GENMOD; Figure 4G-L: SAS Proc LIFETEST; Table 1: SAS Proc PHREG

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- A description of any restrictions on data availability

All clinical data used was de-identified. All of these clinical data elements exist at Baylor College of Medicine, the authors no longer have direct access to them. There is no weblink.
Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

- Life sciences
- Behavioural & social sciences
- Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/re-reporting-summary-flat.pdf

Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

**Study description**
Briefly describe the study. For quantitative data include treatment factors and interactions, design structure (e.g. factorial, nested, hierarchical), nature and number of experimental units and replicates.

**Research sample**
Describe the research sample (e.g. a group of tagged Passer domesticus, all Stenocereus thurberi within Organ Pipe Cactus National Monument), and provide a rationale for the sample choice. When relevant, describe the organism taxa, source, sex, age range and any manipulations. State what population the sample is meant to represent when applicable. For studies involving existing datasets, describe the data and its source.

**Sampling strategy**
Note the sampling procedure. Describe the statistical methods that were used to predetermine sample size OR if no sample-size calculation was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient.

**Data collection**
Describe the data collection procedure, including who recorded the data and how.

**Timing and spatial scale**
Indicate the start and stop dates of data collection, noting the frequency and periodicity of sampling and providing a rationale for these choices. If there is a gap between collection periods, state the dates for each sample cohort. Specify the spatial scale from which the data are taken.

**Data exclusions**
If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the rationale behind them, indicating whether exclusion criteria were pre-established.

**Reproducibility**
Describe the measures taken to verify the reproducibility of experimental findings. For each experiment, note whether any attempts to repeat the experiment failed OR state that all attempts to repeat the experiment were successful.

**Randomization**
Describe how samples/organisms/participants were allocated into groups. If allocation was not random, describe how covariates were controlled. If this is not relevant to your study, explain why.

**Blinding**
Describe the extent of blinding used during data acquisition and analysis. If blinding was not possible, describe why OR explain why blinding was not relevant to your study.

Did the study involve field work?  
- Yes  
- No

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

| Materials & experimental systems | Methods |
|----------------------------------|---------|
| n/a | Involved in the study |
| ☒ ☒ | Antibodies |
| ☒ ☒ | Eukaryotic cell lines |
| ☒ ☒ | Palaeontology |
| ☒ ☒ | Animals and other organisms |
| ☒ ☒ | Human research participants |
| ☒ ☒ | Clinical data |
| n/a | Involved in the study |
| ☒ | ChIP-seq |
| ☒ | Flow cytometry |
| ☒ | MRI-based neuroimaging |

**Antibodies**

Antibodies used  
AR (Biocare Medical, cat# CM109A), pAkt (Dako, cat# M3628) and pNF-κB (phospho S276) (Abcam, cat# ab106129), Ki67 (Abcam, cat# ab16667)

Validation  
All antibodies validated by manufacturers, all data available on manufacturer website. All widely used and stained as expected.
Eukaryotic cell lines

Policy information about cell lines

Cell line source(s) LNCaP (ATCC), PC3 (ATCC), C4-2B (MD Anderson, original source), BPH1 (Originated in Hayward lab, own stocks).

Authentication STR profiling by ATCC all cell lines (note C4-2B are a derivative of LNcap so STR profiles essentially the same). Note; Carcinoma associated fibroblasts (CAF) used here were derived from pre-existing deidentified clinical samples and are considered non-human subjects research. These are non-immortalized cell strains that are derived from patient tissue and used at low passage number. As such they are not subject to STR profiling, but are routinely checked for mycoplasma.

Mycoplasma contamination All cell lines negative for mycoplasma - Mycoalert (Lonza)

Commonly misidentified lines (See ICLAC register)

Name any commonly misidentified cell lines used in the study and provide a rationale for their use.

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals CB17/Scid- severely combined immunodeficient (SCID) mice, all adult, 6-10 weeks, male (Harlan)

Wild animals Did not involve wild animals

Field-collected samples Did not involve field collected samples

Ethics oversight Vanderbilt University IACUC (animal work was performed while Dr. Hayward was at Vanderbilt, prior to his move to NUHS)

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Human research participants

Policy information about studies involving human research participants

Population characteristics Carcinoma associated fibroblasts (CAF) used here were derived from pre-existing deidentified clinical samples and are considered non-human subjects research.

As of December 2008 there was information on over 9000 patients with benign prostate hyperplasia (BPH) or cancer in the Baylor College of Medicine (BCM) PCa Specialized Program of Research Excellence (SPORE) Medical Informatics Core Database (IRB H-11436). This cohort is similar to the one utilized for the Ayala, et. al. paper that first identified RSG as predictive for BCR in PCa (12). Baylor College of Medicine: This cohort includes 1,291 of the above patients underwent surgery by a single surgeon (P.S) between 1983 and 1998. Surgeries were performed without neoadjuvant chemo- radiation therapy. 642 patients with full clinicopathologic characterization and over 20 years of follow-up were selected to construct a tissue microarray. Inclusion criteria for this retrospective radical prostatectomy tissue array cohort were as follows: (1) no pre-operative neoadjuvant therapy, (2) surgery performed by single surgeon (P.S.) between 1983-1998, (3) radical prostatectomy specimen available in the tissue bank, (4) sufficient presence of cancerous tissue in surgical specimen for cores of microarray. Patients’ age ranged from 37 to 80 years with median of 63 and mean of 62 years. Average length of patient follow-up after surgery was 42.08±33.2 months (median = 45.2, maximum = 167.74). Prostatic-specific antigen levels before the surgery were available for 603 cases, and ranged from 0.3 to 100 ng/mL, and median of 7.2 ng/mL, and SD of 10.99 ng/mL. Thirty percent of patients had PSA level of higher than 10.5 ng/mL before surgery. Prostate specific antigen (PSA) recurrence was defined as a PSA > 0.4ng or two consecutive rises. Clinical stage of all radical prostatectomy specimens tumors was determined by using the American Joint Committee on Cancer (AJCC) pT classification.

Recruitment Describe how participants were recruited. Outline any potential self-selection bias or other biases that may be present and how these are likely to impact results.

Ethics oversight According to the new guidelines this research is exempt. However, the patients were consented for the tissue acquisition at Baylor College of Medicine. There is an IRB at Baylor (IRB H-11436) and all studies were approved by the University of Texas McGovern Medical School IRB under protocol HSC-MS-13-0094.

Note that full information on the approval of the study protocol must also be provided in the manuscript.