OPTIMAL ANTIBLOCKING SYSTEMS OF INFORMATION SETS FOR THE BINARY CODES RELATED TO TRIANGULAR GRAPHS

HANS-JOACHIM KROLL*
Zentrum Mathematik
Technische Universität München
80290 München, Germany

SAYED-GHAHREMAN TAHERIAN AND RITA VINCEN TI
Department of Mathematical Sciences
Isfahan University of Technology
Isfahan, 84156-83111, Iran
Dipartimento di Matematica e Informatica
Università degli Studi di Perugia, Via Vanvitelli 1
06123 Perugia, Italy

Dedicated to Professor Helmut Karzel on the occasion of his 92nd birthday.

(Communicated by Sihem Mesnager)

Abstract. We present AI-systems for the binary codes obtained from the adjacency relation of the triangular graphs $T(n)$ for any $n \geq 5$. These AI-systems are optimal and have for n odd the full error-correcting capability.

1. Introduction

An antiblocking system of information sets (for short AI-system) for a t-error correcting code C is a set \mathfrak{A} of information sets for the code such that for every possible error vector e of weight t or less there exists an information set I in \mathfrak{A} with $e_i = 0$ for all $i \in I$. Clearly, an AI-system can be used for decoding. The method is described fully in [2] (cf. also Section 2). This antiblocking decoding is comparable with permutation decoding which uses a so-called PD-set of automorphisms of the code (cf. [1], [4]). But while for every t-error correcting linear code an AI-system exists (for example the system of all information sets) the existence of PD-sets is not guaranteed (cf. [3]). The relation between PD-sets and AI-systems results from the fact that for a PD-set Σ with respect to an information set I the set $\mathfrak{A} = \{\sigma^{-1}(I) \mid \sigma \in \Sigma\}$ is an AI-system.

Both algorithms, permutation decoding as well as antiblocking decoding, are the more efficient the smaller the PD-set and the AI-system, respectively. Therefore it is of special interest to find small PD-sets and small AI-systems.

In 2004 J.D. Key, J. Moori, and B.G. Rodrigues [1] presented PD-sets for the binary codes C_n from triangular graphs $T(n)$.

2020 Mathematics Subject Classification: Primary: 94B05, 94B35.

Key words and phrases: Linear codes, triangular graphs, permutation decoding, antiblocking decoding, antiblocking systems.

* Corresponding author: Hans-Joachim Kroll.

1 σ_π denotes the permutation part of σ.
The code C_n is a linear $\binom{n}{2}, n-1, n-1 \}$-code and $\binom{n}{2}, n-2, 2(n-2)$-code for n odd and n even, respectively (cf. [6], [1]). For n odd and n even they found a PD-set S with $|S| = n$ and $|S| = n^2 - 2n + 2$, respectively.

In this paper we construct AI-systems \mathfrak{A} for these codes consisting of pairwise disjoint information sets with $|\mathfrak{A}| = \lfloor \frac{n}{2} \rfloor$ (cf. Theorem 1). The codes C_n themselves are not the best ones in terms of error-correcting capability, unfortunately. But the found AI-systems are optimal in contrast to the AI-systems belonging to the PD-sets of [1]. While the AI-system \mathfrak{A} for n odd has the full error-correcting capability, the AI-system \mathfrak{A} for n even yields only a partial antiblocking decoding algorithm as it can correct only $\frac{n}{2} - 1$ errors instead of $n - 3$. In the last part of Section 3 we enlarge the AI-system \mathfrak{A} for n even such that $\frac{n}{2}$ errors can be corrected (cf. Proposition 3). This enlarged system is optimal for $n = 6$ and $n = 8$. In view of the found AI-systems we determine in the last section the standard generator matrices for the codes C_n. As examples we present for $n = 5, 6, 7, 8, 9, 10$ the AI-systems as well as the standard generator matrices.

2. Preliminaries

For the convenience of the reader, and in order to establish our notations we recall the relevant definitions and results of [3] and [2].

Let P be a finite set, k, t positive integers with $k + t \leq |P|$, and let \mathfrak{A} be a subset of the power set of P. In order to avoid trivial cases we assume $|P| \geq 3$.

\mathfrak{A} is called a t-antiblocking system on P of order k if for all $A \in \mathfrak{A}$ the cardinality $|A| = k$ and if the following holds

(AB) For every $B \subset P$ with $|B| = t$ there exists $A \in \mathfrak{A}$ such that $B \cap A = \emptyset$.

For the size of a t-antiblocking system \mathfrak{A} of order k on an n-set P there is a lower bound, the Schönheim bound: namely the complementary set family $\mathcal{C} = \{C_A \mid A \in \mathfrak{A}\}$ forms a t-covering and therefore with $r = n - k$

$$|\mathfrak{A}| = |\mathcal{C}| \geq \left\lceil \frac{n}{r} \left(\frac{n-1}{r-1} \left(\frac{n-2}{r-2} \cdots \frac{n-t+1}{r-t+1} \right) \cdots \right) \right\rceil =: g(n, k, t)$$

by Schönheim [5, Theorem 1].

Proposition 1. (cf. [3]). If $t < \lfloor \frac{n}{2} \rfloor$, then there exists up to permutations a unique t-antiblocking system \mathfrak{A} of order k on P with $|\mathfrak{A}| = t + 1 = g(n, k, t)$. Each t-antiblocking system of order k on P of cardinality $t+1$ consists of pairwise disjoint k-sets.

Let F be a finite field, and let n be a positive integer. Let C be a linear $[n, k, d]$-code, i.e. C is a k-dimensional vector subspace of the vector space F^n with minimum Hamming weight d (for the basic concepts of coding theory see [4].). For every positive integer $t \leq \frac{d-1}{2}$ the code C is a t-error-correcting code.

Let $w_t : F^n \to \mathbb{Z}; \ x = (x_1, \cdots, x_n) \mapsto |\{i \mid x_i \neq 0\}|$ denote the Hamming weight. For $I \subset \{1, \ldots, n\}$ let $\mathbb{C}I := \{1, \ldots, n\} \setminus I$ and let

$$p_I : F^n \to F^I, \ x \mapsto x|_I : \begin{cases} I & \to F \\ i & \mapsto x_i \end{cases}$$

be the I-projection of F^n.

I is called an information set for C if $|I| = k$ and $p_I(C) = F^I$, i.e. the restriction $p_I|_{C}$ of p_I on C is a bijection. For an information set I for C, let $\gamma_I := (p_I|_C)^{-1}p_I :$
is called adjacency mapping code and hence syn
Then a system instead of a PD-set in the permutation decoding algorithm; for details see [2].

Let \(\mathfrak{A} \) be a \(t \)-antiblocking system of order \(k \) on the set of the coordinate positions. Then \(\mathfrak{A} \) is called a \(t \)-AI-system for \(C \) if every \(A \in \mathfrak{A} \) is an information set. With this notation we can establish the Antiblocking Decoding Algorithm. It uses a \(t \)-AI-system instead of a PD-set in the permutation decoding algorithm; for details see [2].

Antiblocking Decoding Algorithm (cf. [2]): Let \(\mathfrak{A} \) be a \(t \)-AI-system for the linear \([n, k, d]\)-code \(C \).

1. For a received senseword \(w \in F^n \) compute \(\gamma_A(w) \) and \(wt(syn_A(w)) \) for \(A \in \mathfrak{A} \) until an \(A' \) is found with \(wt(syn_A(w)) \leq t \).
2. \(w \) is decoded as \(c = \gamma_A(w) \in C \).
3. If \(wt(syn_A(w)) > t \) for all \(A \in \mathfrak{A} \) then there is no \(c \in C \) with \(wt(w - c) \leq t \).

Clearly the antiblocking decoding algorithm is the more efficient the smaller the AI-system.

A \(t \)-antiblocking system \(\mathfrak{A}_0 \) is called optimal if \(|\mathfrak{A}_0| = \min \{|\mathfrak{A}| \mid \mathfrak{A} \text{ is a } t\text{-antiblocking system on } P \text{ of order } k \} = b(n, k, t) \). Clearly, \(b(n, k, t) \geq g(n, k, t) \).

In the next section we will use the following

Lemma 1. Let \(K \) be a commutative field, \(u \) a positive integer and \(A \in K^{n\times u} \) a symmetric matrix of rank \(k \). Denote by \(a_{11}, \ldots, a_u \) the rows of \(A \). Further, let \(j_1, \ldots, j_k \in \{1, \ldots, u\} \) such that \(a_{j_1}, \ldots, a_{j_k} \) are linearly independent. Denote by \(a_{1h}', \ldots, a_{uh}' \) the rows of the matrix \(A' \) formed by the columns \(a_{j_1}'r_h, (h = 1, \ldots, k) \). Then \(a_{j_1}', \ldots, a_{j_k}' \) are linearly independent. In other words, the principal \(k \times k \) submatrix of \(A \) indexed by \(j_1, \ldots, j_k \) has rank \(k \).

Proof. Note that \(A' \) is a submatrix of \(A \) since \(A \) is symmetric. The columns \(a_{j_h}'r_h \) \((h = 1, \ldots, k)\) are linearly independent, hence the rank of \(A' \) is \(k \). Therefore \(\dim(a_{j_h}'r_h \mid j = 1, \ldots, u) = k \). Since the rank of \(A \) is \(k \) there exist for every row \(a_{j_0}'r_h \) of \(A' \) elements \(\lambda_h \in K \) with \(a_{j_0}'r_h = \sum_{h=1}^{k} \lambda_h a_{j_h}'r_h \), hence \(a_{j_0}'r_h = \sum_{h=1}^{k} \lambda_h a_{j_h}'r_h \). Therefore \(\langle a_{j_h}'r_h \mid h = 1, \ldots, k \rangle = \langle a_{j_h}'r_h \mid j = 1, \ldots, u \rangle \) implying the assertion as \(\dim(a_{j_h}'r_h \mid j = 1, \ldots, u) = k \).

3. **AI-systems for the binary codes related to triangular graphs**

Let \(n \) be a positive integer, \(N(n) := \{1, 2, \ldots, n\} \) and \(P(n) := \{X \mid X \subset N(n), |X| = 2\} \) the set of all 2-subsets of \(N(n) \). The set \(P(n) \) is the set of vertices of the triangular graph \(T(n) \); two vertices \(X, Y \in P(n) \) are adjacent iff \(|X \cap Y| = 1 \) (cf. [1], [6]).

Denote by \(F_2 \) the prime field of order 2. The mapping

\[
\text{ad} : P(n) \times P(n) \to F_2, \quad (X, Y) \mapsto X^\text{ad}Y \defeq \begin{cases} 1 & \text{if } |X \cap Y| = 1, \\ 0 & \text{otherwise} \end{cases}
\]

is called adjacency mapping.
For $X \in P(n)$ we consider the mapping $X^{ad} : P(n) \rightarrow F_2$, $Y \mapsto X^{ad}Y$. The set $P(n)^{ad} := \{X^{ad} \mid X \in P(n)\}$ is a subset of the vector space $F_2^{P(n)}$ of all mappings $P(n) \rightarrow F_2$.

The linear code $C_n := \langle P(n)^{ad} \rangle \subset F_2^{P(n)}$ is called the code related to $T(n)$.

Some of the following results can be found already in [1]. Anyway we prove them again as we want to avoid the 1-designs related to the triangular graphs and in order to make this paper self-contained.

Remark 2. For $n = 4$ we have $\{1,2\}^{ad} = \{3,4\}^{ad}$.

Lemma 2. Let $n \geq 5$. Then for $X,Y \in P(n)$, $X \neq Y$ it holds $X^{ad} \neq Y^{ad}$.

Proof. Because of $n \geq 5$ there exists $a \in N(n)$, $a \notin X \cup Y$. Since $X \neq Y$ there is $x \in X \setminus Y$. Then $X \cap \{x,a\} = \{x\}$ and $Y \cap \{x,a\} = \emptyset$. Therefore $X^{ad}\{x,a\} = 1$ and $Y^{ad}\{x,a\} = 0$, thus $X^{ad} \neq Y^{ad}$.

Referring to Remark 2 and Lemma 2 we assume in the following that $n \geq 5$.

As we are interested in AI-systems we look for information sets of C_n.

Proposition 2. Let $B = \{B_1, \ldots, B_k\} \subset P(n)$. If $B^{ad} = \{B_1^{ad}, \ldots, B_k^{ad}\}$ is a basis of C_n then B is an information set.

Proof. Let $B^{ad} = \{B_1^{ad}, \ldots, B_k^{ad}\}$ be a basis of C_n. Denote by $A := (X^{ad}Y)_{X,Y \in P(n)}$ the adjacency matrix and A' the submatrix of the columns indexed by B. The rows of A correspond to the mappings X^{ad} for $X \in P(n)$, hence the rank of A is $k = \dim C_n$. The rows of the matrix A' correspond to the restrictions of the mappings X^{ad} to B. Therefore $\{X^{ad}|_B \mid X \in B\}$ is linearly independent by Lemma 1. Since B^{ad} is a basis of C_n we obtain that

$$p_B|_{C_n} = \text{Rest}_B : C_n \rightarrow F_2^B, \quad c \mapsto c_B := \begin{cases} \{B \rightarrow F_2 \\ X \mapsto c(X) \end{cases}$$

is a bijection.

Lemma 3. If $a,x,y \in N(n)$, $a \neq x \neq y \neq a$ then $\{x,a\}^{ad} + \{y,a\}^{ad} = \{x,y\}^{ad}$.

Proof. Let $Z \in P(n)$. Put $X = \{x,a\}$, $Y = \{y,a\}$. If $x, y, a \notin Z$ then $X \cap Z = \emptyset = Y \cap Z = \{x,y\} \cap Z$, hence $X^{ad}Z = 0 = Y^{ad}Z = \{x,y\}^{ad}Z$ and therefore $(X^{ad} + Y^{ad})(Z) = X^{ad}Z + Y^{ad}Z = 0 = \{x,y\}^{ad}Z$.

(2) If $x,y \notin Z$, $a \in Z$ then $X^{ad}Z = 1 = Y^{ad}Z$ and $\{x,y\}^{ad}Z = 0$, hence $(X^{ad} + Y^{ad})(Z) = 1 + 1 = 0 = \{x,y\}^{ad}Z$.

(3) If $x \in Z$, $y \notin Z$ then $\{x,y\}^{ad}Z = 1$ and $X^{ad}Z = \begin{cases} 0 & \text{if } a \in Z \\ 1 & \text{if } a \notin Z \end{cases}$, hence $(X^{ad} + Y^{ad})(Z) = 1 = \{x,y\}^{ad}Z$.

As well, if $y \in Z$, $x \notin Z$ then $(X^{ad} + Y^{ad})(Z) = 1 = \{x,y\}^{ad}Z$.

(4) If $x,y \in Z$ then $a \notin Z$ and $X^{ad}Z = 1 = Y^{ad}Z$ and $\{x,y\}^{ad}Z = 0$, thus $(X^{ad} + Y^{ad})(Z) = 0 = \{x,y\}^{ad}Z$.

(1), (2), (3), and (4) imply $\{x,a\}^{ad} + \{y,a\}^{ad} = \{x,y\}^{ad}$.

Note that Lemma 3 corresponds to formula (3) in [1].
Lemma 4. Let $A \subset P(n)$ such that $\bigcup_{X \in A} X = N(n)$ is a disjoint union. Then n is even and $f := \sum_{X \in A} X^{ad} = 0$.

Proof. Clearly, n is even, as $N(n)$ is a disjoint union of 2-sets. Let $Y = \{y_1, y_2\} \subset P(n)$. Then there exists exactly one $X_i \in A$ with $y_i \in X_i$ for $i = 1, 2$. For all $X \in A \setminus \{X_1, X_2\}$ it holds $X \cap Y = \emptyset$, hence $X^{ad}Y = 0$.

If $X_1 = X_2$ then $X_1^{ad}Y = 0$ and thus $\sum_{X \in A} X^{ad}Y = 0$. If $X_1 \neq X_2$ then $X_1^{ad}Y = 1 = X_2^{ad}Y$ and $\sum_{X \in A} X^{ad}Y = 1 + 1 = 0$. Therefore $f = 0$. \qed

Lemma 5. Let $c, d \in N(n)$, $c \neq d$ and $B_c := \{(i, c)^{ad} \mid i \in N(n), i \neq c\}$, $dB_c := B_c \setminus \{(d, c)^{ad}\}$. Then

(1) For n odd, B_c is a basis of C_n.
(2) For n even, dB_c is a basis of C_n.

Proof. (0) Let $\{x_1, x_2\} \in P(n)$, $x_1, x_2 \neq c$. Then $\{x_1, c\}^{ad} + \{x_2, c\}^{ad} = \{x_1, x_2\}^{ad}$ by Lemma 3, hence $\{x_1, x_2\}^{ad} \in \langle B_c \rangle$. Therefore $P(n)^{ad} \subset \langle B_c \rangle \subset C_n$ and thus $\langle B_c \rangle = C_n$.

(1) Let $\emptyset \neq X \subset N(n), c \notin X$ and $f_X := \sum_{x \in X} \{x, c\}^{ad}$.
If $|X|$ is odd then $X \neq N(n) \setminus \{c\}$ and there exists $y \in N(n), y \neq c, y \notin X$. Then $\{x, c\}^{ad} \{y, c\} = 1$ for all $x \in X$, hence $f_X(\{y, c\}) = 1$.
If $|X|$ is even choose $x_0 \in X$. Then $\{x_0, c\}^{ad} \{x_0, c\} = 0$ and $\{x, c\}^{ad} \{x_0, c\} = 1$ for all $x \in X \setminus \{x_0\}$. Since $|X \setminus \{x_0\}|$ is odd it follows $f_X(\{x_0, c\}) = 1$.
Therefore $f_X \neq 0$, i.e. only the trivial linear combination of mappings of B_c yields the zero map. Hence B_c is linearly independent, thus B_c is a basis by (0).

(2) Let $\emptyset \neq X \subset N(n), c, d \notin X$ and $f_X := \sum_{x \in X} \{x, c\}^{ad}$.
Let $x_0 \in X$. Then $\{x_0, c\} \cap \{x_0, d\} = \emptyset$ and $\{x, c\} \cap \{x_0, d\} = \emptyset$ for all $x \in X$, $x \neq x_0$, hence $\{x_0, c\}^{ad} \{x_0, d\} = 1$ and $\{x, c\}^{ad} \{x_0, d\} = 0$ for all $x \in X$, $x \neq x_0$, thus $f_X(\{x_0, d\}) = 1$. Therefore $f_X \neq 0$, i.e. only the trivial linear combination of mappings of dB_c yields the zero map. Hence dB_c is linearly independent.

Let $m := \frac{n}{2}$ and $X_i := (2i - 1, 2i)$ for $i = 1, ..., m$. Then $\bigcup_{i=1,...,m} X_i = N(n)$ is a disjoint union of $N(n)$ and thus $\sum_{i=1}^m X_i^{ad} = 0$ by Lemma 4. Hence $\sum_{i=1}^{m-1} X_i^{ad} = \{2m - 1, 2m\}^{ad} = X_m^{ad}$.

For $i = 1, ..., m - 1$ it holds $\{2i - 1, 2i\}^{ad} = \{1, 2i - 1\}^{ad} + \{1, 2i\}^{ad}$ by Lemma 3. Hence $\{X_i^{ad} \mid i = 1, ..., m - 1\} \subset \langle N B_1 \rangle$ and thus $\{2m - 1, 2m\}^{ad} = X_m^{ad} = \sum_{i=1,...,m-1} X_i^{ad} \in \langle N B_1 \rangle$.

Therefore $\{1, n\}^{ad} = \{1, 2m\}^{ad} = \{1, 2m - 1\}^{ad} + \{2m - 1, 2m\}^{ad} \in \langle N B_1 \rangle$, hence $\langle N B_1 \rangle = \langle B_1 \rangle = C_n$ by (0). Therefore, since $|d B_c| = |n B_1|$ and $d B_c$ is linearly independent, $d B_c$ is a basis of C_n. \qed

For $c = n$ in Lemma 5 the set B_n corresponds to (6) in [1].

Since $|B_1| = n - 1$ and $|n B_1| = n - 2$ we have as a consequence of Lemma 5

Corollary 1. (cf. [6])

(1) If n is odd then $\dim C_n = n - 1$.
(2) If n is even then $\dim C_n = n - 2$.

We are going to look for t-AI-systems on $P(n)$ of order $k = \begin{cases} n - 1 & \text{for } n \text{ odd} \\ n - 2 & \text{for } n \text{ even} \end{cases}$ for $t < \lfloor \frac{|P(n)|}{k} \rfloor$. By Proposition 1 in [3] such t-AI-systems consist of pairwise disjoint information sets. Unfortunately the information sets corresponding via Proposition
Lemma 6. Let \(n = 2m \). For \(l \in \{1, \ldots, m\} \) the set \(A^\text{ad}_l := \{X^\text{ad} \mid X \in A_l\} \) is linearly independent.

Proof. The proof is divided into three steps.

(1) \(A^\text{ad}_l \) is linearly independent (cf. [1] Lemma 3.5). Let \(X \subset \{1, \ldots, 2m - 2\} \), \(X \neq \emptyset \) and \(x_0 := \min X \). We show that \(f := \sum_{x \in X} \{x, x + 1\}^\text{ad} \neq 0 \).

For all \(x \in X \), \(x \neq x_0 \) it holds \(\{x, x + 1\} \cap \{x_0, 2m\} = \emptyset \) since \(x_0 := \min X \) and \(x < 2m - 1 \), hence \(\{x, x + 1\}^\text{ad} \{x_0, 2m\} = 0 \). Furthermore \(\{x_0, x_0 + 1\} \cap \{x_0, 2m\} = \{x_0\} \) since \(x_0 \neq 2m - 1 \), hence \(\{x_0, x_0 + 1\}^\text{ad} \{x_0, 2m\} = 1 \).

Therefore \(f(\{x_0, 2m\}) = 1 \), thus \(f \neq 0 \).

(2) Let \(l > 1 \). Let \(V_l := \{(m-l+1, j) \mid j = m+1, \ldots, m+l\} \) and \(V_0 := \{i, m+l\} \) with \(i = m-l+2, \ldots, m-1 \) and \(H := V_l \cup V_0 \). Then \(H^\text{ad} \) is linearly independent.

Let \(X \subset \{m-l+2, \ldots, m-1\} \) and \(Y \subset \{m+1, \ldots, m+l\} \), such that \(X \cup Y \neq \emptyset \).

We show that \(f := \sum_{x \in X} \{x, m+l\}^\text{ad} + \sum_{y \in Y} \{m-l+1, y\}^\text{ad} \neq 0 \).
With $c = m - l + 1$ and $d = m$ it follows that $V_{c,d}^m$ is linearly independent by Lemma 5 (2). Therefore we may assume $X \neq \emptyset$. Hence there is $x_0 \in X$, $m - l + 2 \leq x_0 \leq m - 1$. Then $\{m - l + 1, y\}^d \{x_0, m\} = 0$ for all $y \in Y$, $\{x, m + l\}^d \{x_0, m\} = 0$ for all $x \in X$, $x \neq x_0$ and $\{x_0, m + l\}^d \{x_0, m\} = 1$. Therefore $f(\{x_0, m\}) = 1$, thus $f \neq 0$.

(3) For $1 < l \leq m$ we have $A_{l,d}^d$ is linearly independent. Let $A \subset A_l$ and $f := \sum_{a \in A} a^d$. We show $f \neq 0$.

Let $D_l := \{\{i, i + l\} \mid i \in \{1, ..., m - l + 1, l, ..., 2m - l - 1\}\}$ and $W_l := \{\{m - l + 1, j\} \mid j = m + 2, ..., m + l\} \cup \{\{i, m + l\} \mid i = m - l + 2, ..., m - 1\}$. Then $A_l = D_l \cup W_l$. Since W_l is linearly independent by (2) we may assume $A \cap D_l \neq \emptyset$. Let $X := \bigcup_{a \in A} a$ and $x_0 := \min X$, $x_1 := \max X$. Since $A \cap D_l \neq \emptyset$ it holds $\{x_0, x_0 + l\} \in D_l$ or $\{x_1 - l, x_1\} \in D_l$.

Case 1. $\{x_0, x_0 + l\} \in D_l$. Then $\{x_0, x_0 + l\} \cap \{x_0, 2m\} = \{x_0\}$ as $x_0 \neq 2m$, hence $\{x_0, x_0 + l\}^d \{x_0, 2m\} = 1$. Let $a \in A$, $a \neq \{x_0, x_0 + l\}$. Then $a \cap \{x_0, 2m\} = \emptyset$ as $\max a \leq x_1$ and $\max a = x_1$ would imply $a = \{x_1 - l, x_1\}$. Hence $a^d \{x_1 - l, x_1\} = 1$. Therefore $f(\{x_1 - l, x_1\}) = 1$.

Case 2. $\{x_1 - l, x_1\} \in D_l$. Then $\{x_1 - l, x_1\} \cap \{x_1, 2m\} = \{x_1\}$. Let $a \in A$, $a \neq \{x_1 - l, x_1\}$. Then $a \cap \{x_1, 2m\} = \emptyset$ as $\max a \leq x_1$ and $\max a = x_1$ would imply $a = \{x_1 - l, x_1\}$. Hence $a^d \{x_1, 2m\} = 1$. Therefore $f(\{x_1, 2m\}) = 1$.

Lemma 7.

(1) Let $n = 2m$ be even. Then A_l^d is a basis of C_n for $l = 1, ..., m$.

(2) Let $n = 2m - 1$ be odd. Then A_l^d is a basis of C_n for $l = 1, ..., m - 1$.

Proof. For $l = 1, ..., m$ it holds $|A_l| = m - l + 1 + l - 1 + l - 2 + m - l = 2m - 2$, hence $|A_l^d| = 2m - 2$ by Lemma 2.

(1) By Corollary 1 it holds $\dim C_n = n - 2$. Since $|A_l^d| = 2m - 2 = n - 2$ and since A_l^d is linearly independent by Lemma 6 it follows that A_l^d is a basis for C_n.

(2) Let $C_{2m} = (P(2m)^d)$ and $C_{2m - 1} = (P(2m - 1)^d)$. By (1) A_l^d generates C_{2m}. Therefore the restrictions of the mappings of $A_l^d \subset F_2^{P(2m)}$ to $P(2m - 1)$ generate $C_{2m - 1}$. Since $|A_l^d| = 2m - 2 = n - 1$ and since $\dim C_{2m - 1} = n - 1$ it follows that A_l^d is a basis for $C_{2m - 1} = C_n$.

Theorem 1. Let $n \geq 5$ be an integer and C_n the binary code related to the triangular graph $T(n)$. For $l = 1, ..., m := \lceil \frac{n}{2} \rceil$ let be

$$A_l = \{\{i, i + l\} \mid i = 1, ..., m - l + 1\} \cup$$
$$\{\{m - l + 1, j\} \mid j = m + 2, ..., m + l\} \cup$$
$$\{\{i, m + l\} \mid i = m - l + 2, ..., m - 1\} \cup$$
$$\{\{i, i + l\} \mid i = m, ..., 2m - l - 1\}.$$

(1) If $n = 2m - 1$ is odd then $\mathfrak{A}_n := \{A_l \mid l = 1, ..., m - 1\}$ is an optimal $(m - 2)$-AI-system for C_n.

(2) If $n = 2m$ is even then $\mathfrak{A}_n := \{A_l \mid l = 1, ..., m\}$ is an optimal $(m - 1)$-AI-system for C_n.

Proof. By Lemma 7 the set A_l^d is a basis of C_n for $l \in N(m - 1)$ and $l \in N(m)$, respectively. Hence A_l is an information set by Proposition 2. Since the information sets A_l are pairwise disjoint and since $|A| = m - 1$ and $|A| = m$, respectively, the
system \mathfrak{M} is an $(m - 2)$-AI-system for C_{2m-1} and an $(m - 1)$-AI-system for C_{2m}, respectively. For $P(n)$ and $k = \dim C_n$ it holds
\[
\left\lfloor \frac{|P(n)|}{k} \right\rfloor = \begin{cases}
 m - 1 & \text{if } n = 2m - 1 \\
 m & \text{if } n = 2m
\end{cases}.
\]
Hence \mathfrak{M} is optimal in both cases by Proposition 1.

Remark 3. For odd $n = 2m - 1$ the full error-correcting capability of the code C_n is $t = m - 2$, and thus the $(m - 2)$-AI-system of Theorem 1 is suitable for the antiblocking decoding of the code C_n. On the other hand the full error-correcting capability of the code C_{2m} is $t = 2m - 3$. Hence the $(m - 1)$-AI-system of Theorem 1 yields only a partial antiblocking decoding algorithm for the code C_{2m}.

In the last part of this section we will enlarge the $(m - 1)$-AI-system \mathfrak{M}_2 to an m-AI-system \mathfrak{M}_2^m of size $m + \lceil \frac{m}{2} \rceil$. Put $m_1 := \lceil \frac{m}{2} \rceil$.

Let $Q_0 := \{ \{i, 2m\} \mid i = m, \ldots, 2m - 1\}$, $Y_1 := \{ \{i, 2m\} \mid i = 1, \ldots, m\}$, and for positive numbers l with $1 < l < m_1 - 1$ let
\[Y_l := \{ \{i, 2m - l + 1\} \mid i = 1, \ldots, m - l\} \text{ and } Q_l := \{ \{l, 2m - l\}, \{m, 2m - l + 1\}\}.
\]
Finally put
\[Y_{m_1 - 1} := \begin{cases}
 \{ \{m_1 - 1, 3m_1 + 2\}, \{m_1, 3m_1 + 2\} \} & \text{for } m = 2m_1 \\
 \{ \{m_1 - 1, 3m_1\} \} & \text{for } m = 2m_1 - 1
\end{cases},
\]
\[Q_{m_1 - 1} := \begin{cases}
 \{ \{m_1 - 1, 3m_1 + 1\}, \{m_1 + 1, 3m_1 + 2\} \} & \text{for } m = 2m_1 \\
 \{ \{m_1 - 1, 3m_1 - 1\} \} & \text{for } m = 2m_1 - 1
\end{cases}
\]
and $Y_{m_1} := \emptyset$.

Note that $Q_l \cup Y_l \subset A_{m-l+1}$ for $l = 1, \ldots, m_1 - 1$.

We have $|Q_0| = m$, $|Y_l| = m - 2l$, $Q_l = 2$ for $l = 1, \ldots, m_1 - 2$ and $|Y_{m_1 - 1}| = |Q_{m_1 - 1}| = 2$ for $m = 2m_1$, $|Y_{l-1}| = |Q_{m_1 - 1}| = 1$ for $m = 2m_1 - 1$. For $l = 1, \ldots, m_1$ let $A_{m+l} := \bigcup_{i=0}^{l-1} Q_i \cup Y_i$. Then $|A_{m+l}| = 2m - 2$.

Lemma 8. For $l = 1, \ldots, m_1$ the set A_{m+l} is an information set for the code C_{2m}.

Proof. (1) $A_{m+l}^\text{ad} = m-l B_{2m}$ is a basis by Lemma 5(2) and Corollary 1(2), hence A_{m+l} is an information set by Proposition 2.

(2) Let $l \in \{2, \ldots, m_1\}$. For $X \in A_{m+l} \setminus Q_0$ it holds max $X \geq 2m - l \geq 3m_1 - 1 > m$. Because of $l \geq 2$ we have $\{m-1, 2m\} \in Q_1 \subset A_{m+l}$. For $j \in \{1, \ldots, m_1\}$, $j \neq m - l$ there is an $X \in A_{m+l} \setminus Q_0$ with $j \in X$ and $2m - 1 \geq \max X > m$, thus $\{\max X, 2m\} \in Q_0$, hence $\{j, 2m\}^\text{ad} = \{j, \max X\}^\text{ad} + \{\max X, 2m\}^\text{ad} \in (A_{m+l}^\text{ad})$ by Lemma 3. Therefore $m-l B_{2m} \subset (A_{m+l}^\text{ad})$ and thus $C_{2m} = (A_{m+l}^\text{ad})$. Hence A_{m+l} is an information set by Proposition 2.

Proposition 3. $\mathfrak{M}_{2m} := \{A_i \mid i = 1, \ldots, m + m_1\}$ is an m-AI-system for the code C_{2m}.

Proof. Since \mathfrak{M}_{2m} consists of $m + m_1$ information sets for C_{2m} we have only to show that \mathfrak{M} is an antiblocking system. Let $B \subset P(n)$ with $|B| = m$. We may assume $A_i \cap B \neq \emptyset$ for $i = 1, \ldots, m + m_1 - 1$, and therefore we may assume $B = \{T_i \mid i = 1, \ldots, m\}$ and $T_i \in A_i$ for $i = 1, \ldots, m$.

Since $Q_0 \cap A_i = \emptyset$ for $i = 1, \ldots, m$ it holds $Q_0 \cap B = \emptyset$.

If $\bigcup_{i=0}^{l-1} Q_i \cap B = \emptyset$ for $l < m_1$ then $Y_l \cap B \neq \emptyset$ since $\mathcal{A}_{m+l} \cap B \neq \emptyset$, hence $T_{m-l+1} \in Y_l$ as $Y_l \subset \mathcal{A}_{m-l+1}$ and $\mathcal{A}_{m-l+1} \cap B = \{T_{m-l+1}\}$, thus $Q_l \cap B = \emptyset$ as $Q_l \subset \mathcal{A}_{m-l-1} \cap Y_l$.

Therefore, since $Q_0 \cap B = \emptyset$ we obtain in succession $Q_l \cap B = \emptyset$ for $l = 1, \ldots, m_1 - 1$. Hence $\mathcal{A}_{m+m_1} \cap B = \emptyset$.

Remark 4. The Schönheim bound for an m-AI-system for the code C_{2m} is $g(2m^2 - m, 2m - 2, m) = m + 2$ and $|\mathfrak{X}_{2m}| = m + \lceil \frac{m}{2} \rceil$, hence the difference is $\lceil \frac{m}{2} \rceil - 2$, but it is not known if there exists an m-AI-system \mathfrak{X}'' with $|\mathfrak{X}''| = m + 2$.

For $n = 6$ and $n = 8$ we have $m_1 = 2$. Thus \mathfrak{X}_6' is an optimal 3-AI-system for the code C_6 and \mathfrak{X}_8' is an optimal 4-AI-system for the code C_8. Note that for $n = 6$ the full error-correcting capability is $t = 3$.

4. **Standard generator matrix for C_n**

Let $n \geq 5$ be an integer, C_n the code related to the triangular graph $T(n)$ and \mathfrak{A}_n the AI-system for C_n presented in Theorem 1.

In order to derive the code C_n in an explicit form by a generator matrix we have to order the set of the coordinate positions $P(n)$. For this purpose we order firstly each information set $A_i \in \mathfrak{A}_n$ and also the remaining set $R := P(n) \ \bigcup_{i=1}^{\lceil \frac{m}{2} \rceil} A_i$ lexicographic. Then, as the A_i's are pairwise disjoint, we order the set of the coordinate positions $P(n)$ by $A_1, A_2, \ldots, A_{\lceil \frac{m}{2} \rceil}, R$.

For $m = \lceil \frac{n}{2} \rceil$ and $i = 1, \ldots, m - 1$ put

$$g_{2i} = \sum_{j=1}^{i} \{2j - 1, 2j\}^{ad} \quad \text{and} \quad g_{2i-1} = \sum_{j=i}^{m-1} \{2j, 2j+1\}^{ad}$$

We are going to show that

$$G_n := (g_{h}(x))_{x \in P(n)}$$

is the standard generator matrix.

Note

(a) $g_2 = \{1, 2\}^{ad}$ and $g_{2i} = g_{2(i-1)} + \{2i - 1, 2i\}^{ad}$ for $i = 2, \ldots, m - 1$,

(b) $g_{2m-3} = \{2(m - 1), 2m - 1\}^{ad}$ and

$$g_{2m-3} = \{2(i - 1), 2i - 1\}^{ad} + g_{2i-1} \text{ for } i = m - 1, \ldots, 2.$$

(c) For $x = \{j, j+1\} \in A_1$ we have

$$i, j+1\}^{ad}(x) = \begin{cases} 1 & \text{for } j = i - 1 \text{ and } j = i + 1 \\ 0 & \text{else} \end{cases}$$

In particular

(d) $g_2(x) = \begin{cases} 1 & \text{for } x = \{2, 3\} \\ 0 & \text{for } x \in A_1 \ \bigcup \{\{2, 3\}\} \end{cases}$

(e) $g_{2m-3}(x) = \begin{cases} 1 & \text{for } x = \{2m - 3, 2m - 2\} \\ 0 & \text{for } x \in A_1 \ \bigcup \{\{2m - 3, 2m - 2\}\} \end{cases}$.
By (a), (d) and (c) we obtain for $i, j = 1, ..., m - 1$
\[
g_{2i}(\{j, j + 1\}) = \begin{cases}
1 & \text{for } j = 2i \\
0 & \text{for } j \neq 2i
\end{cases}.
\]

By (b), (e) and (c) we obtain for $i, j = 1, ..., m - 1$
\[
g_{2i-1}(\{j, j + 1\}) = \begin{cases}
1 & \text{for } j = 2i - 1 \\
0 & \text{for } j \neq 2i - 1
\end{cases}.
\]

Therefore the columns of G_n indexed by A_1 form the identity matrix I_k for $k = 2m - 1$, thus G_n is the standard generator matrix for C_n.

Note that the standard generator matrix for $C_{2m - 1}$ is the submatrix of G_{2m} formed by the first $|P(2m - 1)| = (\frac{2m - 1}{2})$ columns of G_{2m}.

In order to apply the antiblocking decoding algorithm we need for every $A_l \in \mathcal{A}_n$ the syndrome $syn_l := syn_{\mathcal{A}_l}$ (cf. Section 2).

Let $A_l \in \mathcal{A}_n$. The columns indexed by A_l form a $k \times k$ submatrix S_l of G_n. Since A_l is an information set, then the matrix S_l is invertible. Therefore, by suitable row operations of G_n we can achieve a generator matrix iG_n such that the columns indexed by A_l form the identity matrix I_k. Clearly, $iG_n = S_l^{-1}G_n$. Denote by $\gamma_l := \gamma_{A_l}$ (cf. Section 2) and A_l the submatrix of iG_n indexed by $\mathcal{L}(A_l)$. Then $\gamma_l(v) = p_{A_l}(v)S_l^{-1}G_n$ for $v \in F_2^n$ and $syn_l(v) = p_{\mathcal{L}A_l}(v) - p_{A_l}(v)A_l$ (cf. Remark 1).

As examples we write down the found AI-systems and standard generator matrices for $n = 5, 6, 7, 8, 9$ and 10, i.e. $m = \lceil \frac{n}{2} \rceil$ is 3, 4 and 5.

Example 1. $m = 3$, i.e. $n = 5$ and $n = 6$.

In this case the sets \mathcal{A}_l considered in Theorem 1 are
\[
\mathcal{A}_1 = \{\{1, 2\}, \{2, 3\}, \{3, 4\}, \{4, 5\}\}, \\
\mathcal{A}_2 = \{\{1, 3\}, \{2, 4\}, \{2, 5\}, \{3, 5\}\}, \\
\mathcal{A}_3 = \{\{1, 4\}, \{1, 5\}, \{1, 6\}, \{2, 6\}\}.
\]

Furthermore,
\[
g_1 = \{2, 3\}^{ad} + \{4, 5\}^{ad}, \quad g_2 = \{1, 2\}^{ad}, \quad g_3 = \{4, 5\}^{ad}, \quad g_4 = \{1, 2\}^{ad} + \{3, 4\}^{ad}.
\]

1.a. $n = 5$.

By Theorem 1 the system $\mathcal{A}_5 = \{\mathcal{A}_1, \mathcal{A}_2\}$ is a 1-AI-system for the code C_5.

The set of the coordinate positions is $P(5) = \mathcal{A}_1 \cup \mathcal{A}_2 \cup \{\{1, 4\}, \{1, 5\}\}$.

For C_5 we obtain the standard generator matrix
\[
G_5 = \begin{pmatrix}
I_4 & \begin{pmatrix}
1 & 0 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 1
\end{pmatrix}
\end{pmatrix}.
\]

1.b. $n = 6$.

By Theorem 1 the system $\mathcal{A}_6 = \{\mathcal{A}_1, \mathcal{A}_2, \mathcal{A}_3\}$ is a 2-AI-system for the code C_6.
With the additional information sets \(A_4 = \{1, 6\}, \{3, 6\}, \{4, 6\}, \{5, 6\} \) and \(A_5 = \{2, 6\}, \{3, 6\}, \{4, 6\}, \{5, 6\} \) the system \(\mathcal{A}_6' = \{A_1, A_2, A_3, A_4, A_5\} \) is a 3-AI-system for the code \(C_6 \) (cf. Proposition 3).

For \(C_6 \) we obtain the standard generator matrix

\[
G_6 = \begin{pmatrix}
I_4 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0
\end{pmatrix}.
\]

For this example we will compute the syndrome for each \(A_l \in \mathcal{A}_6' \), i.e. the matrices \(A_l \).

The inverses of the submatrices \(S_l \) of \(G_6 \) formed by the columns indexed by the information sets \(A_l \) are

\[
S_1^{-1} = I_4, \quad S_2^{-1} = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 0
\end{pmatrix}, \quad S_3^{-1} = \begin{pmatrix}
0 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0
\end{pmatrix}, \quad S_4^{-1} = \begin{pmatrix}
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 \\
1 & 1 & 0 & 1
\end{pmatrix}, \quad S_5^{-1} = \begin{pmatrix}
0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 \\
1 & 0 & 0 & 1
\end{pmatrix}.
\]

Denote by \(R \) the submatrix of \(G_6 \) formed by the last three columns, and denote by \(R_4 \) and \(R_5 \) the submatrices of \(G_6 \) formed by the columns indexed by \(\{1, 4\}, \{1, 5\}, \{2, 6\} \) and \(\{1, 4\}, \{1, 5\}, \{1, 6\} \), respectively.

The submatrices \(A_l \) of \(S_l^{-1} G_6 \) formed by the columns indexed by \(\mathcal{L}A_l \) are

\[
A_1 = \begin{pmatrix}
1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 0
\end{pmatrix},
\]

\[
A_2 = (S_2^{-1}|S_2^{-1} S_3|S_2^{-1} R) = \begin{pmatrix}
1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0
\end{pmatrix},
\]

\[
A_3 = (S_3^{-1}|S_3^{-1} S_2|S_3^{-1} R) = \begin{pmatrix}
0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0
\end{pmatrix},
\]

\[
A_4 = (S_4^{-1}|S_4^{-1} S_2|S_4^{-1} R_4) = \begin{pmatrix}
0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1
\end{pmatrix}.
\]
Example 2. $m = (0111 \ 0110 \ 1000 \ 010)$.

1. $\text{syn}_1(w) = (0110 \ 1000 \ 010) - (0111)A_1$

2. $\text{syn}_2(w) = (0111 \ 1000 \ 010) - (0110)A_2$

For $l = 1, 2, 3, 4, 5$ and $v \in F_2^{P(n)}$ we have $\text{syn}_l(v) = p_{\mathcal{A}_l}(v) - p_{\mathcal{A}_l}(v)A_l$.

Let us apply the Antiblocking Decoding Algorithm to the received senseword $w = (0111 \ 0110 \ 1000 \ 010)$.

1. $\text{syn}_1(w) = (0110 \ 1000 \ 010) - (0111)A_1$

2. $\text{syn}_2(w) = (0111 \ 1000 \ 010) - (0110)A_2$

Example 2. $m = 4$, i.e. $n = 7$ and $n = 8$.

In this case the sets \mathcal{A}_l considered in Theorem 1 are

1. $\mathcal{A}_1 = \{\{1, 2\}, \{2, 3\}, \{3, 4\}, \{4, 5\}, \{5, 6\}, \{6, 7\}\}$
2. $\mathcal{A}_2 = \{\{1, 3\}, \{2, 4\}, \{3, 5\}, \{3, 6\}, \{4, 6\}, \{5, 7\}\}$
3. $\mathcal{A}_3 = \{\{1, 4\}, \{2, 5\}, \{2, 6\}, \{2, 7\}, \{3, 7\}, \{4, 7\}\}$
4. $\mathcal{A}_4 = \{\{1, 5\}, \{1, 6\}, \{1, 7\}, \{1, 8\}, \{2, 8\}, \{3, 8\}\}$

Furthermore,

1. $g_1 = \{2, 3\}^{ad} + \{4, 5\}^{ad} + \{6, 7\}^{ad}$
2. $g_2 = \{1, 2\}^{ad}$
3. $g_3 = \{4, 5\}^{ad} + \{6, 7\}^{ad}$
4. $g_4 = \{1, 2\}^{ad} + \{3, 4\}^{ad}$
5. $g_5 = \{6, 7\}^{ad}$
6. $g_6 = \{1, 2\}^{ad} + \{3, 4\}^{ad} + \{5, 6\}^{ad}$

2.a. $n = 7$.

By Theorem 1 the system $\mathfrak{A}_7 = \{\mathcal{A}_1, \mathcal{A}_2, \mathcal{A}_3\}$ is a 2-1-system for the code C_7. The set of the coordinate positions is $P(7) = \mathcal{A}_1 \cup \mathcal{A}_2 \cup \mathcal{A}_3 \cup \{\{1, 5\}, \{1, 6\}, \{1, 7\}\}$. For C_7 we obtain the standard generator matrix

$$G_7 = I_6 \begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1
\end{pmatrix}.$$
2.b. \(n = 8 \).

By Theorem 1 the system \(\mathcal{A}_8 = \{A_1, A_2, A_3, A_4\} \) is a 3-AI-system for the code \(C_8 \). The set of the coordinate positions is \(P(8) = A_1 \cup A_2 \cup A_3 \cup A_4 \cup \{\{4,8\}, \{5,8\}, \{6,8\}, \{7,8\}\} \).

For \(C_8 \) we obtain the standard generator matrix

\[
G_8 = \begin{pmatrix}
0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0
\end{pmatrix}.
\]

With the additional information sets
\(\mathcal{A}_5 = \{\{1,8\}, \{2,8\}, \{4,8\}, \{5,8\}, \{6,8\}, \{7,8\}\} \) and
\(\mathcal{A}_6 = \{\{1,7\}, \{3,8\}, \{4,8\}, \{5,8\}, \{6,8\}, \{7,8\}\} \) the system
\(\mathcal{A}_8' = \{A_1, A_2, A_3, A_4, A_5, A_6\} \) is a 4-AI-system for the code \(C_8 \) (cf. Proposition 3).

Example 3. \(m = 5 \), i.e. \(n = 9 \) and \(n = 10 \).

In this case the sets \(\mathcal{A}_l \) considered in Theorem 1 are

\[
\begin{align*}
A_1 &= \{\{1,2\}, \{2,3\}, \{3,4\}, \{4,5\}, \{5,6\}, \{6,7\}, \{7,8\}, \{8,9\}\}, \\
A_2 &= \{\{1,3\}, \{2,4\}, \{3,5\}, \{4,6\}, \{4,7\}, \{5,7\}, \{6,8\}, \{7,9\}\}, \\
A_3 &= \{\{1,4\}, \{2,5\}, \{3,6\}, \{3,7\}, \{3,8\}, \{4,8\}, \{5,8\}, \{6,9\}\}, \\
A_4 &= \{\{1,5\}, \{2,6\}, \{2,7\}, \{2,8\}, \{2,9\}, \{3,9\}, \{4,9\}, \{5,9\}\}, \\
A_5 &= \{\{1,6\}, \{1,7\}, \{1,8\}, \{1,9\}, \{1,10\}, \{2,10\}, \{3,10\}, \{4,10\}\}.
\end{align*}
\]

Furthermore,

\[
\begin{align*}
g_1 &= \{2,3\}^{ad} + \{4,5\}^{ad} + \{6,7\}^{ad} + \{8,9\}^{ad}, \quad g_2 = \{1,2\}^{ad}, \\
g_3 &= \{4,5\}^{ad} + \{6,7\}^{ad} + \{8,9\}^{ad}, \quad g_4 = \{1,2\}^{ad} + \{3,4\}^{ad}, \\
g_5 &= \{6,7\}^{ad} + \{8,9\}^{ad}, \quad g_6 = \{1,2\}^{ad} + \{3,4\}^{ad} + \{5,6\}^{ad}, \\
g_7 &= \{8,9\}^{ad}, \quad g_8 = \{1,2\}^{ad} + \{3,4\}^{ad} + \{5,6\}^{ad} + \{7,8\}^{ad}.
\end{align*}
\]

3.a. \(n = 9 \).

By Theorem 1 the system \(\mathcal{A}_9 = \{A_1, A_2, A_3, A_4\} \) is a 3-AI-system for the code \(C_9 \). The set of the coordinate positions is \(P(9) = A_1 \cup A_2 \cup A_3 \cup A_4 \cup \{\{1,6\}, \{1,7\}, \{1,8\}, \{1,9\}\} \).

With the matrices
\[S_2 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}, \quad S_3 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}, \quad S_4 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \end{pmatrix}, \quad R = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}. \]

the standard generator matrix for \(C_9 \) is \(G_9 = (I_8|S_2|S_3|S_4|R) \).

3.b. \(n = 10 \).

By Theorem 1 the system \(\mathcal{A}_{10} = \{ \mathcal{A}_1, \mathcal{A}_2, \mathcal{A}_3, \mathcal{A}_4, \mathcal{A}_5 \} \) is a 4-AI-system for the code \(C_{10} \).

The set of the coordinate positions is \(P(10) = \mathcal{A}_1 \cup \mathcal{A}_2 \cup \mathcal{A}_3 \cup \mathcal{A}_4 \cup \mathcal{A}_5 \cup \{\{5,10\}, \{6,10\}, \{7,10\}, \{8,10\}, \{9,10\}\} \).

For \(C_{10} \) we obtain the standard generator matrix

\[G_{10} = \begin{pmatrix} 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \end{pmatrix}. \]

With the additional information sets

\(\mathcal{A}_6 = \{\{1,10\}, \{2,10\}, \{3,10\}, \{5,10\}, \{6,10\}, \{7,10\}, \{8,10\}, \{9,10\}\} \),

\(\mathcal{A}_7 = \{\{1,9\}, \{2,9\}, \{4,10\}, \{5,10\}, \{6,10\}, \{7,10\}, \{8,10\}, \{9,10\}\} \),

\(\mathcal{A}_8 = \{\{1,9\}, \{2,8\}, \{4,10\}, \{5,10\}, \{6,10\}, \{7,10\}, \{8,10\}, \{9,10\}\} \),

the system \(\mathcal{A}'_{10} = \{ \mathcal{A}_1, \mathcal{A}_2, \mathcal{A}_3, \mathcal{A}_4, \mathcal{A}_5, \mathcal{A}_6, \mathcal{A}_7, \mathcal{A}_8 \} \) is a 5-AI-system for the code \(C_{10} \) (cf. Proposition 3).

ACKNOWLEDGMENTS

The authors would like to thank Thomas Honold for his valuable and insightful comments, which have substantially improved our manuscript.
References

[1] J. D. Key, J. Moori and B. G. Rodrigues, Permutation decoding for the binary codes from triangular graphs, European J. Combin., 25 (2004), 113–123.

[2] H.-J. Kroll and R. Vincenti, Antiblocking decoding, Discrete Appl. Math., 158 (2010), 1461–1464.

[3] H.-J. Kroll and R. Vincenti, How to find small AI-systems for antiblocking decoding, Discrete Math., 312 (2012), 657–665.

[4] V. Pless and W. C. Huffman, Handbook of Coding Theory, Elsevier, Amsterdam, 1998.

[5] J. Schönheim, On Coverings, Pacific J. Math., 14 (1964), 1405–1411.

[6] V. D. Tonchev, Combinatorial Configurations Designs, Codes, Graphs, Pitman Monographs and Surveys in Pure and Applied Mathematics, Vol. 40, Longman, New York, 1988.

Received for publication July 2020.

E-mail address: kroll@ma.tum.de
E-mail address: taherian@cc.iut.ac.ir
E-mail address: rita.vincenti@unipg.it