Molecular cloning and characterization of a novel gene MsKMS1 in Medicago sativa

B. Han1,2, P. Zhang3, Z.-Q. Zhang4, Y.-F. Wang2, T.-M. Hu2,* and P.-Z. Yang2,*

1 Faculty of Animal Science and Technology, Yunnan Agriculture University, Kunming 650201, Yunnan, P.R. China
2 College of Grassland Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China
3 Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, Heilongjiang, P.R. China
4 Key Laboratory of Grassland Resources, Ministry of Education P.R. of China, College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, Inner Mongolia, P.R. China

*Corresponding author: Fax: +86 29 87092164, E-mail: hutianming@126.com, yangpeizhi@126.com

Abstract

Vacuole membrane proteins play a critical role in the regulation of plant physiological processes including normal growth and development, and responses to stresses. The killing me slowly 1 (KMS1) gene that encodes a soluble N-ethylmaleimide-sensitive fusion attachment receptor (SNARE) domain-containing vacuole membrane protein was first reported in Arabidopsis. Currently, the function of KMS1 in other plants under stress is poorly understood. In this study, we report cloning, expression, and characterization of a novel KMS1 gene in alfalfa (Medicago sativa L.), designated MsKMS1 (GenBank accession No. JX467688). The full-length cDNA of MsKMS1 was 1396 bp and contained a complete open reading frame of 1257 bp, which encoded a putative protein of 418 amino acids. The BLASTp analysis showed that MsKMS1 shared high amino acid sequence similarities with KMS1 from other plants such as Medicago truncatula (99%), Cicer arietinum (89%), Glycine max (77%), Prunus mume (76%), Ricinus communis (72%), Populus euphratica (72%), Theobroma cacao (72%), and Arabidopsis thaliana (67%). Transient transformation of onion (Allium cepa) bulb scale epidermal cells by biolistic bombardment showed that MsKMS1 was localized to the plasma membrane. Quantitative real-time PCR revealed that MsKMS1 expression was upregulated under different abiotic stresses (200 mM NaCl, 20% (m/v) polyethylene glycol 6000] and 10 mg dm⁻³ abscisic acid. Transgenic tobacco plants were obtained via Agrobacterium-mediated transformation and treated with 200 mM NaCl. Reverse-transcription PCR data showed that MsKMS1 was successfully transcribed and expressed in the leaves of transgenic plants. The MsKMS1-overexpressors showed a lower malondialdehyde content and maintained a higher relative water content and proline content compared with non-transgenic controls under salt stress. These results indicate that the introduction of the MsKMS1 gene could improve salt stress resistance in tobacco plants. This study reveals the role of MsKMS1 in the regulation of plant responses to abiotic stress and provides evidence for further functional studies of the KMS1 family in alfalfa.

Keywords: abscisic acid, functional analysis, NaCl, onion, PEG 6000, SNARE domain, transgenic tobacco plants.

Received 13 December 2019, last revision 16 April 2020, accepted 17 April 2020.

Abbreviations: ABA - abscisic acid; AQP - aquaporin protein; GFP - green fluorescent protein; HYG - hygromycin; KMS - killing me slowly 1; MDA - malondialdehyde; ORF - open reading frame; PEG - polyethylene glycol; RT-PCR - reverse transcription polymerase chain reaction; RACE - rapid amplification of cDNA ends; RWC - relative water content; SNARE - soluble N-ethylmaleimide-sensitive fusion attachment receptor; TZF - tandem zinc finger protein.

Acknowledgements: This work was supported by the National Natural Science Foundation of China (Grant Nos. 31572456 and 31772660) and the Scientific Research Fund of the Education Department in Yunnan Province (Grant No. 2020J0248).

Conflict of interest: The authors declare that they have no conflict of interest.
Introduction

Drought, salinity, and extreme temperatures are common environmental stresses that adversely affect plant growth and development. Plants respond to these abiotic stresses through various pathways, and a growing number of stress resistance genes have been identified. For example, transgenic plants overexpressing aquaporin (AQP) genes such as *Oryza sativa* plasma membrane intrinsic protein 1, *Solanum tuberosum* tonoplast intrinsic proteins 2, *Sesuvium portulacastrum* aquaporin protein (AQP) 1, *Triticum turgidum* plasma membrane intrinsic protein 1, *Triticum aestivum* nodulin26-like intrinsic protein, and *Triticum aestivum* AQP 8 have been shown to present a salt-tolerant phenotype (Gao et al. 2010, Hu et al. 2012, Chang et al. 2016, Kapilan et al. 2018). Several other AQP genes are also involved in plant tolerance to multiple stresses. The *TaAQP7* from *Triticum aestivum* has been shown to confer tolerance to drought, osmotic, and cold stresses, whereas *Panax ginseng* tonoplastic intrinsic proteins 1 enhances drought and salt tolerance (Peng et al. 2007, Zhou et al. 2012, Huang et al. 2014).

Recently, it has been found that the introduction of the CCCH-tandem zinc finger protein gene *Oryza sativa* tandem zinc finger protein 5 reduces rice yield loss under drought conditions (Selvaraj et al. 2020). Overexpression of *Thellungiella halophila* homeobox protein 1 and the *Thellungiella halophila* stress related NaCl, the homeodomain transcription factor gene, improves the heat stress resistance of *Thellungiella halophila* (Liu et al. 2019). Moreover, many myeloblastosis family genes participate in plant responses to one or more abiotic stresses including low temperature, high salinity, and water stress (Seo et al. 2009, Chen et al. 2013, Kim et al. 2013, Song et al. 2019). Therefore, transforming such genes into crops has the potential to generate genetically modified plants with improved tolerance to abiotic stresses.

Soluble N-ethylmaleimide-sensitive fusion attachment protein receptors (SNAREs) are also known to participate in plant defense responses against abiotic stresses (Bao et al. 2005). Zhu et al. (2002) have identified an *Arabidopsis thaliana* mutant that is sensitive to salt and osmotic stresses, osm1, in which the Qc-SNARE gene of the trans-Golgi network, *Arabidopsis thaliana* syntaxin of plants 61, is missing. Additionally, Deng et al. (2007) have reported that the SNARE-related gene R295 in the *Hevea brasiliensis* responds to the external stress caused by rubber tapping and thus may be involved in stress signal transduction. The *killing me slowly 1* (KMS1) gene that encodes a SNARE-domain-containing protein was first reported in *Arabidopsis thaliana* and knock-out mutation showed a slow lethal effect (Wang et al. 2011). So far, there have been no reports on the role of KMS1 in the abiotic stress resistance of plants.

Alfalfa (*Medicago sativa* L.) is a high-quality forage legume that is planted worldwide (Geng 1995). However, alfalfa production is often severely limited by abiotic stresses, such as salinization, drought, and cold damage (Boyer 1982, Long et al. 2006). Breeding of salt- and drought-resistant cultivars of alfalfa is therefore of practical significance. In this study, we cloned a KMS1-encoding gene from *M. sativa*, designated MsKMS1. We analyzed the amino acid sequence characteristics of MsKMS1 and its expression patterns in different tissues of alfalfa plants subjected to various abiotic stresses. We further explored the role of MsKMS1 in the salt tolerance of transgenic tobacco seedlings. The results could be useful for the breeding of high-quality stress-resistant alfalfa cultivars.

Materials and methods

Plants and experimental design: Alfalfa seedlings (*Medicago sativa* L. cv. Zhongmu No. 1) were cultured on a Murashige and Skoog basal medium for 3 weeks and divided into 2 groups, with a minimum of 100 plants per group. One group was directly used for gene cloning and tissue-specific expression analysis. The other groups were treated with 200 mM NaCl, 20% (m/v) polyethylene glycol (PEG) 6000, or 10 mg dm⁻³ abscisic acid (ABA). Root, stem, and leaf samples were taken at 0, 2, 4, 8, 12, and 24 h of treatment for quantitative real-time PCR analysis.

Cloning of MsKMS1 cDNA: Total RNA was extracted from the leaves of untreated alfalfa seedlings using a Trizol reagent (Invitrogen, Carlsbad, CA, USA). The extracted RNA was reverse-transcribed into cDNA using a cDNA synthesis kit (*Takara*, Otsu, Shiga, Japan) following the manufacturer’s instructions.

In accordance with the methods used by Chen et al. (2008), the sequence of the drought-resistant upregulated gene *TC83565* was retrieved from the expressed sequence tag database of the model legume *Medicago truncatula* (http://www.tigr.org/). Three’ rapid amplification of cDNA ends (RACE)- and 5’ RACE-specific primers were designed using Primer Premier v. 5.0 (Premier Biosoft International, Palo Alto, CA, USA): P1 (5’-ACTTTTGTCTTATACCTGGG-3’) and P2 (5’-ACCCAGGTATAGAACAAAAG-3’). The 3’ and 5’ ends of *TC83565* were amplified using P1/P2 and an abridged universal amplification primer (5’-GGCCACGCCTGCGACTGAC-3’) using a SMART™ RACE cDNA amplification kit (Clontech Laboratories, Mountain View, CA, USA) following the manufacturer’s instructions.

After sequencing (Beijing Genomics Institute, Beijing, China), the reads were assembled in DNAMAN v. 6.0 (Lynnon Biosoft, Quebec, QC, Canada) to obtain the full-length open reading frame (ORF). Specific primers were subsequently designed for the full-length cDNA of *TC83565*: P3 (5’-CCATTTTTGACTCACTTGCG-3’) and P4 (5’-CTAATCAGTTGAGGTAGAAATG-3’). The full-length cDNA of *TC83565* was subjected to PCR amplification using the primer set P3/P4 and high-fidelity polymerase. PCR amplicons were ligated to the PMD18-T vector and transformed into *Escherichia coli* DH5α™ competent cells (Beijing Genomics Institute). Positive clones were screened and sent to Beijing Genomics Institute for sequencing.
Multiple sequence alignments of deduced amino acid sequences were performed using an internet BLAST search (http://www.ncbi.nlm.nih.gov/BLAST/) with DNAMAN v. 6.0. A phylogenetic tree was constructed using the neighbor-joining method.

Subcellular localization assay: MsKMS1 was amplified using the newly designed specific primers P5 (5'-GGGTCTCAGAATGGTTCTGGAGAATAAGCT -3'), XbaI restriction site underlined) and P6 (5'-GGGTCTCGAGCTAATCAGTTGAGTAAGATGTTTGATGC -3'), XhoI restriction site underlined). The amplification conditions were as follows: pre-denaturation at 94 °C for 5 min, followed by 28 cycles of denaturation at 94 °C for 30 s, annealing at 56 °C for 30 s, and extension at 72 °C for 1 min, and a final extension at 72 °C for 10 min.

The amplicons were double-digested with XbaI and XhoI, and then ligated to the PB221-GFP (green fluorescent protein) vector. The ligated products were transformed into E. coli DH5α competent cells. The plasmids were extracted from positive clones using a commercial kit (Promega, Madison, WI, USA) and sent to Beijing Genomics Institute for sequencing. The positive recombinant plasmid 35S-MsKMS1-GFP was introduced into onion (Allium cepa) bulb scale epidermal cells via biolistic bombardment (Mare et al. 2004). Cells were incubated at room temperature in darkness for 24 h and then observed under a laser scanning confocal microscope (LSM510META, META Zeiss, Jena, Germany).

Real-time quantitative PCR (RT-PCR) assay: Total RNA was extracted from the roots, stems, and leaves of alfalfa seedlings treated with and without abiotic stress. In accordance with the full-length cDNA sequence of MsKMS1, specific primers P7 (5'-GGCCAAAGGTGATGGCTTTATGCT-3') and P8 (5'-TATGCAGACACCCGAAGACCGA-3') were designed for real-time quantitative PCR assays. The β-actin gene from M. sativa was used as the internal reference to design the primers P9 (5'-TTTGGAGACTTTCAATGTGCCCGC-3') and P10 (5'-TAGCATGTTGGAGATGCATAACCT-3').

The PCR reaction was prepared using a SYBR Premix Ex Taq™ kit (Takara) following the manufacturer’s instructions. PCR amplification was carried out in two steps on a CFX96 real-time PCR system (Bio-Rad, Hercules, CA, USA) with denaturation at 95 °C for 30 s and 40 cycles of 95 °C for 5 s and 60 °C for 30 s. The cDNA samples were assayed in three biological replicates with three technical replicates each. The MsKMS1 expressions in the roots, stems, and leaves of alfalfa seedlings were calculated using the 2-ΔΔCt method (Livak and Schmittgen 2001).

Transformation of tobacco: The plant expression vector pCAMBIA1301 (preserved in our laboratory) and the plasmid MsKMS1 containing the target gene were double-digested with EcoR I and Hind III. The digested products were ligated with T4 DNA ligase overnight and the recombinant plasmid pCAMBIA1301-MsKMS1 was transformed into E. coli DH5α competent cells. The plasmids were extracted from positive clones using a commercial kit (Promega) and sent to Beijing Genomics Institute for sequencing.

The expression vector pCAMBIA1301-MsKMS1 was introduced into Agrobacterium tumefaciens GV3101 using the freeze-thaw method (Qi and Zilong 2002). Positive clones were cultured in an Agrobacterium rhizogenes culture medium at 28 °C on a rotary shaker till the absorbance of the broth culture at 600 nm reached 0.6. Tobacco seedlings (Nicotiana tabacum L. cv. NC89) were obtained from the Tobacco Research Institute of Chinese Academy of Agricultural Science (Qingdao, China). Four-week-old seedlings were infected with the broth culture using the leaf disc method (Horsch et al. 1985). The calli were induced on different media containing 50 mg dm⁻³ hygromycin, and transgenic plants (T1) were obtained after differentiation and rooting. Positive transgenic plants screened by PCR were transplanted into soil and grown at a temperature of 25 °C, a 16-h photoperiod, an irradiance of 250 μmol m⁻² s⁻¹, and a relative humidity of 70 %.

Identification of transgenic tobacco by PCR: After transformation, total genomic DNA was extracted from tobacco leaves using a DNA extraction kit (BioTeke, Beijing, China) following the manufacturer’s instructions. The extracted DNA served as a template for the PCR amplification of a 521 bp gene fragment from the hygromycin (HYG) gene using the HYG universal primers: HygF (5'-CGATTCCGGAAATGCTTTGAG-3') and HygR (5'-CGTCTCTGCTGTCATGAC-3'). The following PCR program was used: pre-denaturation at 95 °C for 5 min, followed by 30 cycles of 95 °C for 40 s, 57 °C for 40 s, and 72 °C for 1 min, and a final extension at 72 °C for 10 min. The negative control was prepared using the DNA of wild-type tobacco as the template, and the blank control was prepared with DNA-free water. The PCR results were used to examine whether the target gene was successfully transformed into tobacco. Reverse-transcription PCR (RT-PCR) was performed using the primers P3 and P4 to examine the expression of the target gene.

Stress response test of transgenic tobacco: The resistant tobacco seedlings were propagated by cuttings. Cutting seedlings with uniform growth were grown in a greenhouse for a month and then exposed to 200 mM NaCl. Leaf samples were taken at 1, 4, 7, 14, 20, and 23 d of treatment and immediately frozen at -80 °C until used. Relative water content (RWC), malondialdehyde (MDA) and proline content in the tobacco leaves were assayed using a DNA extraction kit (BioTeke, Beijing, China) following the manufacturer’s instructions. The amplified DNA served as a template for the PCR amplification of a 521 bp gene fragment from the hygromycin (HYG) gene using the HYG universal primers: HygF (5'-CGATTCCGGAAATGCTTTGAG-3') and HygR (5'-CGTCTCTGCTGTCATGAC-3'). The following PCR program was used: pre-denaturation at 95 °C for 5 min, followed by 30 cycles of 95 °C for 40 s, 57 °C for 40 s, and 72 °C for 1 min, and a final extension at 72 °C for 10 min. The negative control was prepared using the DNA of wild-type tobacco as the template, and the blank control was prepared with DNA-free water. The PCR results were used to examine whether the target gene was successfully transformed into tobacco. Reverse-transcription PCR (RT-PCR) was performed using the primers P3 and P4 to examine the expression of the target gene.

Statistical analysis: Data are presented as means ± standard errors (SEs). The figures were drawn using Excel 2010 (Microsoft, Redmond, WA, USA). One-way analysis of variance (ANOVA) was performed to analyze the significance of the differences between groups of data using SPSS 16.0 statistics (SPSS Inc., Chicago, IL, USA). The significance was defined at α = 0.05 according to the least significance difference (LSD) test.
Fig. 1. The amino acid sequence alignment of Medicago sativa killing me slowly 1 (MsKMS1) with other selected plant species. Conserved residues are shaded in black. Gray shading indicates similar residues in more than 80% of all the sequences. The predicted soluble N-ethylmaleimide-sensitive fusion attachment receptor (SNARE)-interacting conserved domain is shown with a solid underline and six transmembrane domains are highlighted with colored boxes. The species and corresponding GenBank accession numbers are as follows: Arabidopsis thaliana (NP_567450), Cicer arietinum (XP_004496743), Glycine max (XP_003539287), Medicago sativa (AGE13753), Medicago truncatula (XP_003592411), Populus euphratica (XP_011021552), Prunus mume (XP_008224532), Ricinus communis (XP_002516770), and Theobroma cacao (XP_007034717).
Results

The 3'- and 5'-end gene fragments of MsKMS1 were obtained via the rapid amplification of cDNA ends (RACE) method using the cDNA from the leaves of untreated alfalfa seedlings as the PCR template. Sequence analysis showed that the 3'- and 5'-end gene fragments were 1,036 and 600 bp in length, respectively. The full-length cDNA was 1,396 bp in length. Based on the nucleotide sequence of the full-length cDNA, specific primers (P3 and P4) were designed to amplify its ORF. Sequence analysis showed that the ORF, designated MsKMS1 (GenBank accession No. JX467688), was 1,257 bp in length and encoded a putative protein of 418 amino acids.

Amino acid sequence alignment indicated that the deduced amino acid sequence of MsKMS1 was highly homologous to that of KMS1 from other plants. It was also found that MsKMS1 belonged to the SNARE-associated Golgi proteins. MsKMS1 contained one conserved SNARE domain and six transmembrane domains. According to the sequence alignment results (Fig. 1), MsKMS1 shared high amino acid sequence similarities with the KMS1 of Medicago truncatula (XP003592411; 99 %) and Cicer arietinum (XP004496743; 89 %). Relatively high sequence similarities were also observed with the KMS1 of Glycine max (XP003539287; 77 %), Prunus mume (XP008224532; 76 %), Ricinus communis (XP002516770; 72 %), Populus euphratica (XP011021552; 72 %), Theobroma cacao (XP007034717; 70 %), and A. thaliana (NP 567450; 67 %). Phylogenetic analysis revealed that the amino acid sequence of MsKMS1 had the highest homology with other leguminous plants, such as M. truncatula, C. arietinum, G. max, and G. soja (Fig. 2).

Confocal microscopy analysis showed that the empty vector 35S-GFP was expressed both on the plasma membrane and in the nucleus of onion cells (Fig. 3A-C). By contrast, the green fluorescent signal of the 35S-MsKMS1-GFP plasmid was mainly distributed on the plasma membrane (Fig. 3D-F). These observations indicated that the protein encoded by MsKMS1 was localized to the plasma membrane.

Using real-time quantitative PCR, it was found that MsKMS1 was ubiquitously expressed in the roots, stems, and leaves of alfalfa. The highest expressions were observed in root samples, followed by leaf and stem samples (Fig. 4). The different expressions of MsKMS1 in various plant tissues indicated that its expression pattern was tissue specific in alfalfa.

The quantitative PCR data showed that the MsKMS1 expressions differed among alfalfa tissues under various abiotic stresses (Fig. 5). When the alfalfa plants were treated with PEG6000, the MsKMS1 expressions displayed a varying pattern of increases and decreases over time in the roots, stems, and leaves. The highest expression of MsKMS1 in the stems was observed at 2 h (1.7-fold in comparison with that at 0 h), in the leaves at 4 h (2.1-fold), and in the roots at 12 h (3.3-fold; Fig. 5A). After subjecting alfalfa plants to NaCl treatment, the MsKMS1 expressions peaked in the roots (1.7-fold), stems (1.4-fold), and leaves (2.6-fold) at 8 h. During the 24-h treatment period, the MsKMS1 expressions in the roots
and stems were not significantly different. All tissues had slightly higher MsKMS1 expressions at 24 h than at 0 h (Fig. 5B).

After treating alfalfa plants with ABA, the MsKMS1 expressions in the roots reached a maximum at 8 h (1.9-fold), and then declined, but remained slightly higher than at 0 h. In the stems, the MsKMS1 expressions peaked at 12 h (1.8-fold) and then declined to a lower level at 24 h than at 0 h. In the leaves, the MsKMS1 expression reached a maximum at 12 h (1.4-fold), and then declined but remained slightly higher than at 0 h (Fig. 5C).

Taken together, these results indicated that MsKMS1 expression was upregulated in various alfalfa tissues after abiotic stress treatment.

The transgenic plants were verified with the primers of resistance gene, hygromycin. The target bands were amplified in the transgenic plants but not in the control, which indicated that the target gene has been successfully integrated into the tobacco genome (Fig. 6). Moreover, an RT-PCR assay using the leaves of positive transgenic seedlings confirmed that MsKMS1 was successfully integrated into the tobacco genome and transcribed into mRNA.

The salt tolerance of transgenic tobacco plants was tested in terms of leaf RWC and MDA and proline content. The RWC in all tobacco plants gradually decreased with time under salt stress and the lowest values occurred at 23 d. Transgenic plants had significantly higher RWC values than non-transgenic controls at 20 d ($P < 0.05$). Although no significant differences were found at other time points, the RWC in the transgenic plants was slightly higher than in the non-transgenic controls throughout the experiment (Fig. 7A). This indicated that the transgenic plants expressing MsKMS1 lost less water under salt stress and hence had a higher salt tolerance than the non-transgenic plants.

![Fig. 4. Relative expression (fold-change) of *Medicago sativa killing me slowly 1* (MsKMS1) in various tissues. Means ± SEs. No significant difference was found between groups.](image)

![Fig. 5. Relative expression of *Medicago sativa killing me slowly 1* (MsKMS1) induced by abiotic stresses in different tissues.](image)
The MDA content gradually increased with time in all plants under salt stress. The MDA content in transgenic plants was significantly lower than in the non-transgenic controls at 14 d and 20 d. A similar trend was observed at other time points, although the difference in MDA content was not significant between groups (Fig. 7B). This indicated that the expression of MsKMS1 generally improved cell membrane stability and mitigated salt stress damage in transgenic plants, thereby contributing to higher salt tolerance.

The MDA content rapidly increased with time in all tobacco plants under salt stress. Generally, transgenic plants had higher proline content than non-transgenic plants, and the difference between groups was significant at 23 d (Fig. 7C). This might also indicate that the transgenic plants expressing MsKMS1 had a higher salt tolerance than the non-transgenic plants.

The proline content rapidly increased with time in all tobacco plants under salt stress. Generally, transgenic plants had higher proline content than non-transgenic plants, and the difference between groups was significant at 23 d (Fig. 7C). This might also indicate that the transgenic plants expressing MsKMS1 had a higher salt tolerance than the non-transgenic plants.
Discussion

In this study, specific primers were designed in accordance with an expressed sequence tag retrieved from the *M. truncatula* database. The designed primers were used in combination with the RACE technique to clone a novel KMS1-encoding gene, *MsKMS1*, from alfalfa. The *BLASTp* analysis showed that *MsKMS1* shared high amino acid sequence similarities with the KMS1 of other plants, especially *M. truncatula* and *C. arietinum*. Further analysis indicated that *MsKMS1* encoded a vacuole membrane protein containing a conserved SNARE domain and six transmembrane domains.

The SNARE proteins are known to participate in plant defense responses against abiotic stresses (Bao et al. 2008a, b). The mechanisms underlying the role of SNARE proteins in defense responses have been investigated in many studies. Bao et al. (2008a, b) found that the expression of the *SNARE11* gene, *Oryza sativa Novel Plant SNARE 11 (NPSN11)*, in *Oryza sativa* was elevated by H$_2$O$_2$ but reduced by NaCl or PEG 6000 treatment. The transformation of *Oryza sativa NPSN11* into yeast and tobacco cells improved their resistance to H$_2$O$_2$ and increased their sensitivity to NaCl and mannitol. In *Arabidopsis*, the deletion of the SNARE gene *Arabidopsis syntaxin vesicle-associated membrane protein 71* was found to reduce stomatal closure, increase the rate of water loss in leaves, and decrease plant tolerance to drought stress. In addition, *Arabidopsis syntaxin vesicle-associated membrane protein 71* controlled the transport of H$_2$O$_2$ in vesicles and mediated the intracellular accumulation and distribution of reactive oxygen species, thereby regulating plant tolerance to salt stress (Leshem et al. 2010).

The KMS1 was first reported in *A. thaliana* as an endoplasmic reticulum-related protein that is involved in the early secretory pathway (Wang et al. 2011). KMS1 was localized to the endoplasmic reticulum in *A. thaliana*, which was similar to the intracellular location of homologs in other plants (Bard et al. 2006, Calvo-Garrido et al. 2008). In contrast, Sauermann (2008) claimed that the mammalian homolog of KMS (vacuole membrane protein 1) was located on the plasma membrane. In the present study, it was found that MsKMS1 was localized to the plasma membrane, which differed from the results of previous studies on plants. Taken together, these findings suggest that the MsKMS1 homologs are all located on the membrane system and participate in the transportation or secretion pathways, thereby playing an important role in plant defense responses to abiotic stresses.

Using real-time quantitative PCR, the expression of the *MsKMS1* gene was quantified in different alfalfa tissues subjected to various abiotic stresses. *MsKMS1* expression showed tissue-specific patterns in the roots, stems, and leaves of alfalfa, with the highest expression being found in the roots. These distinct tissue-specific expression patterns of *MsKMS1* suggest that this gene may have versatile functions in alfalfa. Moreover, an upregulation of *MsKMS1* expression was observed in alfalfa plants under different abiotic stresses. This indicates that *MsKMS1* is involved in the responses of alfalfa to salt (NaCl), drought (PEG6000), and ABA. In addition, the transgenic tobacco plants had higher leaf RWC and proline content, but lower MDA content, compared with the non-transgenic plants under salt stress. This confirms that *MsKMS1* plays a role in improving the salt tolerance of alfalfa. To our knowledge, this study provides the first evidence for the function of *KMS1* in abiotic stress resistance in plants.

Conclusions

In this study, a novel KMS1-encoding gene, *MsKMS1*, was cloned from alfalfa. The *MsKMS1* encoded a vacuole membrane protein containing a conserved SNARE domain and six transmembrane domains. The MsKMS1 was localized to the plasma membrane and the expression was detected in leaves, stems, and roots of alfalfa, with the highest expression observed in the roots. Transgenic tobacco plants obtained via *Agrobacterium*-mediated transformation showed higher salt tolerance than non-transgenic plants, indicating that *MsKMS1* expression improved the stress tolerance of plants. These findings demonstrate that MsKMS1 participates in the regulation of different processes in response to abiotic stresses.

References

Bao, Y.M., Wang, J.F., Huang, J., Zhang, H.S.: Cloning and characterization of three genes encoding Qb-SNARE proteins in rice. - Mol. Genet. Genomics 279: 291-301, 2008a.
Bao, Y.M., Wang, J.F., Huang, J., Zhang, H.S.: Molecular cloning and characterization of a novel SNAP25-type protein gene *OsSNAP32* in rice (*Oryza sativa* L.). - Mol. Biol. Rep. 35: 145-152, 2008b.
Bao, Y.M., Wang, Z.F., Zhang, H.S.: Structure and function of SNAREs family in plant. - Chin. Bull. Bot. 22: 715-722, 2005.
Bard, F., Casano, L., Mallabiabarrena, A., Wallace, E., Saito, K., Kitayama, H., Guizzunti, G., Hu, Y., Wendler, F., DasGupta, R., Perrimon, N., Malhotra, V.: Functional genomics reveals genes involved in protein secretion and Golgi organization. - Nature 439: 604-607, 2006.
Bayer, J.S.: Plant productivity and environment. - Science 218: 443-448, 1982.
Calvo-Garrido, J., Carilla-Latorre, S., Lazaro-Dieuguez, F., Egea, G., Escalante, R.: Vacuole membrane protein 1 is an endoplasmic reticulum protein required for organelle biogenesis, protein secretion, and development. - Mol. Biol. Cell 19: 3442-3453, 2008.
Chang, W.J., Liu, X.W., Zhui, J.H., Fan, W., Zhang, Z.L.: An aquaporin gene from halophyte *Salsola portulacastum*, *SpAQP1*, increases salt tolerance in transgenic tobacco. - Plant Cell Rep. 35: 385-395, 2016.
Chen, D., Liang, M.X., Walz, D.D., Weimer, B., Peel, M.D., Bugbee, B., Michaelson, J., Davis, E., Wu, Y.: Identification of dehydration responsive genes from two non-nodulated alfalfa cultivars using *Medicago truncatula* microarrays. - Acta Physiol. Plant. 30: 183-199, 2008.
Chen, Y., Chen, Z.L., Kang, J.Q., Kang, D.M., Gu, H.Y., Qin, G.J.: AtMYB14 regulates cold tolerance in *Arabidopsis*. - Plant mol. Biol. Rep. 31: 87-97, 2013.
Deng, L.H., Luo, M.W., Zhang, C.F.: Cloning a novel gene encoding long vesicle associated membrane protein from...
Hovea brasiliensis. - Acta agron. sin. 33: 826-830, 2007.
Gao, Z.X., He, X.L., Zhao, B.C., Zhou, C.J., Liang, Y.Z., Ge, R.C., Shen, Y.Z., Huang, Z.J.: Overexpressing a putative aquaporin gene from wheat, TaNIP, enhances salt tolerance in transgenic Arabidopsis. - Plant Cell Physiol. 51: 767-775, 2010.
Geng, H.: Alfalfa. - Chinese Agricultural Press, Beijing 1995.
Horsch, R., Fry, J., Hoffmann, N., Eicholtz, D., Rogers, S.A., Fraley, R.: A simple and general method for transferring genes into plants. - Science 227: 1229-1231, 1985.
Hu, W., Yuan, Q.Q., Wang, Y., Cai, R., Deng, X.M., Wang, J., Zhou, S.Y., Chen, M.J., Chen, L.H., Huang, C., Ma, Z.B., Yang, G.X., He, G.Y.: Overexpression of a wheat aquaporin gene, TaAQP8, enhances salt stress tolerance in transgenic tobacco. - Plant Cell Physiol. 53: 2127-2141, 2012.
Huang, C., Zhou, S.Y., Hu, W., Deng, X.M., Wei, S.Y., Yang, G.X., He, G.Y.: The wheat aquaporin gene TaAQP7 confers tolerance to cold stress in transgenic tobacco. - Z. Naturforsch. C. 69: 142-148, 2014.
Kapilan, R., Vaziri, M., Zwiazek, J.J.: Regulation of aquaporins in plants under stress. - Biol. Res. 51: 4, 2018.
Kim, J.H., Nguyen, N.H., Jeong, C.Y., Nguyen, N.T., Hong, S.W., Lee, H.: Loss of the R2R3 MYB, AtMyb73, causes hyper-induction of the SOS1 and SOS3 genes in response to high salinity in Arabidopsis. - J. Plant Physiol. 170: 1461-1465, 2013.
Leshem, Y., Golani, Y., Kaye, Y., Levune, A.: Reduced expression of the v-SNAREs AtVAMP71/AtVAMP7C gene family in Arabidopsis reduces drought tolerance by suppression of abscisic acid-dependent stomatal closure. - J. exp. Bot. 61: 2615-2622, 2010.
Liu, C., Ma, H.Z., Zhou, J., Li, Z.X., Peng, Z.H., Guo, F., Zhang, J.: TshD1 and TsnAC1 cooperatively play roles in plant growth and abiotic stress resistance of Thellungiella halophila. - Plant J. 99: 81-97, 2019.
Livak, K.J., Schmittgen, T.D.: Analysis of relative gene expression data using real-time quantitative PCR and the 2(T) (-Delta Delta C) method. - Methods 25: 402-408, 2001.
Long, S.P., Ainsworth, E.A., Leakey, A.D., Nössberger, J., Ort, D.R.: Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations. - Science 312: 1918-1921, 2006.
Mare, C., Mazzucotelli, E., Crosati, C., Francia, E., Stanca, A.M., Cattivelli, L.: Hv-WRKY38: a new transcription factor involved in cold- and drought-response in barley. - Plant mol. Biol. 55: 399-416, 2004.
Peng, Y.H., Lin, W.L., Cai, W.M., Arora, R.: Overexpression of a Panax ginseng tonoplast aquaporin alters salt tolerance, drought tolerance and cold acclimation ability in transgenic Arabidopsis plants. - Planta 226: 729-740, 2007.
Qi, S., Zilong, S.: Transgenic plants technology and its application for bioproductions. - Pharm. Biol. 9: 117, 2002.
Sauermann, M., Sahin, O., Sultmann, H., Blaszkiewicz, S., Majety, M., Zatloukal, K., Fuzesi, L., Pouštka, A., Wiemann, S., Arlt, D.: Reduced expression of vacuole membrane protein 1 affects the invasion capacity of tumor cells. - Oncogene 27: 1320-1326, 2008.
Selvaraj, M.G., Jan, A., Ishizaki, T., Valencia, M., Dedicova, B., Manuyama, K., Ogata, T., Todaka, D., Yamaguchi-Shinozaki, K., Nakashima, K., Ishitani, M.: Expression of the CCHT tandem zinc finger protein gene OsTZF5 under a stress-inducible promoter mitigates the effect of drought stress on rice grain yield under field conditions. - Plant Biotechnol. J. 18: 1711-1721, 2020.
Seo, P.J., Xiang, F.N., Qiao, M., Park, J.Y., Lee, Y.N., Kim, S.G., Lee, Y.H., Park, W.J., Park, C.M.: The MtFB6 transcription factor mediates abscisic acid signaling during drought stress response in Arabidopsis. - Plant Physiol. 151: 275-289, 2009.
Shekawat, U.K.S., Srinivas, L., Ganapathi, T.R.: MusaDHIN-1, a novel multiple stress-inducible SK-type dehydrin gene, contributes affirmatively to drought- and salt-stress tolerance in banana. - Planta 234: 915-932, 2011.
Song, Y.G., Lv, J., Qu, N.W., Bai, T., Yang, N., Dong, W.: The constitutive expression of alfalfa MsMYB2L enhances salinity and drought tolerance of Arabidopsis thaliana. - Plant Physiol. Biochem. 141: 300-305, 2019.
Wang, P.W., Hummel, E., Osterrieder, A., Meyer, A.J., Frigerio, L., Sparkes, I., Hawes, C.: KMS1 and KMS2, two plant endoplasmic reticulum proteins involved in the early secretory pathway. - Plant J. 66: 613-628, 2011.
Zhou, S.Y., Hu, W., Deng, X.M., Ma, Z.B., Chen, L.H., Huang, C., Wang, C., Yang, G.X., He, Y.Z., Yang, G.X., He, G.Y.: Overexpression of the wheat aquaporin gene, TaAQP7, enhances drought tolerance in transgenic tobacco. - PLoS ONE 7: e52439, 2012.
Zhu, J.H., Gong, Z.Q., Zhang, C.Q., Song, C.P., Damsz, B., Inan, G., Koiswa, H., Zhu, J.K., Hasegawa, P.M., Bressan, R.A.: OSM1/SYP61: A syntaxin protein in Arabidopsis controls abscisic acid-mediated and non-abscisic acid-mediated responses to abiotic stress. - Plant Cell 14: 3009-3028, 2002.

© The authors. This is an open access article distributed under the terms of the Creative Commons BY-NC-ND Licence.