The Effect of Fig Tree Latex (*Ficus carica*) on Stomach Cancer Line

SA Hashemi¹, S Abediankenari¹*, M Ghasemi², M Azadbakht³, Y Yousefzadeh¹, AA Dehpour⁴

¹Department of Microbiology and Immunology, Mazandaran University of Medical Sciences, Sari, Iran ²Department of Pathology, Mazandaran University of Medical Sciences, Sari, Iran ³Department of Pharmacogenosy, Mazandaran University of Medical Sciences, Sari, Iran ⁴Department of Biology, Islamic Azad University, Ghaemshahr Branch, Ghaemshahr, Iran

Abstract

Background: The therapeutic effect of herbal materials in inhibition of cancer cell growth was shown. This study investigates the effect of fig tree latex (*Ficus carica*) on stomach cancer line.

Methods: The *in vitro* effect of different doses of fig tree latex on stomach cancer cell line and the peripheral blood mononuclear cells was evaluated after 72 hours.

Results: Fig tree latex could inhibit the proliferation of cancer cell line without any cytotoxic effect on human normal cells. Five mg/ml was the optimum concentration in inhibition of cell line growth.

Conclusion: Cancer cell line was more sensitive to *Ficus carica* latex than normal cells. This anticancer activity might be due to presence of its proteolytic enzymes.

Keywords: Fig; *Ficus carica*; Stomach cancer cell line; Latex

Introduction

Cancer originates from some mutations in transformed cells and other heritable variations in susceptible cells. So far, abnormalities in about 350 genes have been demonstrated in human cancers¹,² and epidemiologically, cancer is responsible for one in eight of worldwide deaths.³ Gastrointestinal tract cancers are considered as the most important causes of global deaths. In 2000, 2.3 million of cancer cases were in alimentary tract presenting in pharynx, oesophagus, stomach and colorectal region. In Fars Province, southern Iran, the annual crude incidence rate and ASR regarding cancer of stomach was reported 2.32 and 3.82 in males while these figures in females were 1.03 and 1.60.⁴

It was shown that neoplasias in digestive organ are mostly due to modification in dietary habits,⁵ and in this relation, plants and herals as natural products were reported to have anti-cancer properties and even play an important role in the efficacy of chemotherapy.⁶,⁷ Different parts of *Ficus carica* (fig) and *Ficus sycomorus* were studied as herbal medicine. Latex is a substance originating from young leaves of fig tree when broken⁸ and has a cysteine proteinase enzyme that is active in a pH range of 6.5-8.5.⁹ Injection of *Ficus carica* latex was shown to change the growth rate of a benz- [a]-pyrene-induced sarcoma and could suppress small tumors in albino rats.¹⁰ Antioxidants and polyphenolic properties of fruits were demonstrated as an anti-inflammatory activity of fruits.¹¹,¹² The reports show that polyphenolic component of fruits has an antioxidant, antiinflammatory, antiallergic, antimicrobial and anticancer effect.¹³,¹⁶ *Ficus carica* latex and its derivatives have been shown to suppress the growth of transplanted and spontaneous tumors in mice.¹⁷,¹⁸ Therefore in the present study, the therapeutic effect of fig tree latex on stom...
ach cancer cell line and peripheral blood mononuclear cells were investigated in vitro.

Materials and Methods

We collected *Ficus carica* (fig) latex from fig tree in Sari (Iran) drop-by-drop through cutting young leaves of fig tree. Different concentrations of latex were provided including 0.125, 0.25, 0.5, 1, 2.5 and 5 mg/ml. The stomach cancer cell line was provided from National Cell Bank of Iran, NCBI=C-131. 3×10^4 cells were cultured in liquid medium (RPMI 1640) containing 10% fetal calf serum, 100 U/L penicillin and streptomycin. The culture flask’s environment was kept at 37°C, with a saturated humidity and 5% CO$_2$.

A peripheral heparinized blood sample was collected from 3 normal subjects and the mononuclear cells were isolated by centrifugation on a Ficoll histopaque (1.077, Sigma, USA). The cells from the interphase were washed three times with RPMI (1640 medium, Gibco) and counted and their viability was determined by trypan blue. All samples were run triplicates in 96-well plates. Cultures were incubated at 37°C in a humidified 5% CO$_2$ atmosphere for 3 days and then pulsed with 200 µl 3-[4,5-dimethylthiazolyl]-2,5-diphenyl-tetrazolium bromide (MTT: Sigma) as a color indicator of metabolic activity. The supernatant was harvested for 4 hrs. Later, dimethylsulfoxide (DMSO) was added (200 µl) and the color change was read in an ELISA reader at 630 nm wave length. Data are presented as mean±SD. For statistical analysis, paired t-test was used.

Results

After 72 h treatment of 1 mg/ml concentration of *Ficus carica* latex in culture media, the mean±SD was 0.23±0.033. In addition, for 2.5 mg/ml was 0.183±0.04 and in the concentration of 5 mg/ml, the mean±SD reached 0.17±0.014. The proliferation level of 1, 2.5 and 5 mg/ml concentrations of *Ficus carica* latex were significantly different from the control (Table1). After 72 h incubation, the effects of various concentrations of *Ficus carica* latex on cancer and normal cells were presented in Figure 1, Figure 2, and Figure 3.

Fig concentration (mg/ml)	Mean±SD	P value
0.125	0.2687±0.06529	0.085
0.25	0.2913±0.08109	0.40
0.5	0.3020±0.09627	0.463
1	0.2323±0.03398	0.033
2.5	0.1830±0.04051	0.025
5	0.1763±0.01498	0.008
Control	0.3567±0.02743	

Table1: The effect of Fig tree latex on stomach cancer cell line proliferation in comparison with control in culture media, evaluated by MTT assay (optical density of 630 nm).
Fig. 3: Peripheral blood mononuclear cells treated with Ficus carica latex (5 mg/ml) after 72 h.

Discussion

In this research, the anticancer effect of Ficus carica latex in different concentrations was studied. The 5 mg/ml concentration had the greatest effect in inhibition of stomach cancer cell line growth but without any obvious effect on peripheral blood mononuclear cells. Wang et al. studied the effect of fresh fig fruit latex on human cancer cell line and showed that the fresh latex acted as an anticancer substance. In contrast with our work, the dried form of Ficus carica latex was used and after 3 months, it was weighted and solved it in 1 ml of distilled water. After filtration, it was used in different concentrations. It was shown that fig tree latex powder can save its anticancer properties after a long period of time and may be used as an anticancer substance.

Ficin, a cysteine proteinase isolated from the latex of Ficus carica tree is known to occur in various forms. Cysteine proteinases are a group of enzymes leading to apoptosis of cancer cells. Furthermore, the anticancer effects may be associated with antioxidant properties due to its polyphenolic components. Additionally, Ficus carica latex inhibited the proliferation of cancer cell line but did not indicate any cytotoxic activity against normal cells in vitro. We concluded that Ficus carica can have an anticancer cell activity while cancer cells were more sensitive to this latex than normal cells.

Acknowledgement

This study was supported by grant from Mazandaran University of Medical Sciences. The authors are grateful to Arazmohammad Mirabi for technical assistance.

Conflict of interest: None declared.

References

1. Futreal PA, Coin L, Marshall M, Down T, Hubbard T, Wooster R, Rahman N, Stratton MR. A census of human cancer genes. Nat Rev Cancer 2004;4:177-83. [14993899] [doi:10.1038/nrc1299]
2. Broadhead ML, Clark JC, Dass CR, Choong PF. Microarray: an instrument for cancer surgeons of the future? ANZ J Surg 2010;80:531-6. [20795968] [doi:10.1111/j.1445-2197.2010.05379.x]
3. Wolf R, Davidovici B. Treatment of genital warts: facts and controversies. Clin Dermatol 2010;28:546-8. [20797516] [doi:10.1016/j.clindermatol.2010.03.013]
4. Mehrabani D, Tabei SZ, Heydari ST, Shamsina SJ, Shokpou N, Amini M, Masoumi SJ, Julaee H, Farahmand M, Manafi A. Cancer occurrence in Fars Province, Southern Iran. Iran Red Crescent Med J 2008;10:314-322.
5. Huang X, Zhang Q, Kang X, Song Y, Zhao W. Factors associated with cancer related fatigue in breast cancer patients undergoing endocrine therapy in an urban setting: a cross-sectional study. BMC Cancer 2010;10:453. [20731876] [doi:10.1186/1471-2407-10-453]
6. Ferguson PJ, Kurowksa E, Freeman DJ, Chambers AF, Koropatnick DJ. A Flavonoid fraction from cranberry extracts inhibits proliferation of human tumor cell lines. J Nutr 2004;134:1529-35. [15173424]
7. Mann J. Natural products in cancer chemotherapy: past, present and future. Naturel Review cancer 2002;2:143-8.
8. Lansky EP, Paavilainen HM, Pavlius AG, Newman RA, Ficus spp. (fig): ethnobotany and potential as anti-cancer and anti-inflammatory agents. J Ethnopharmacol 2008;119:195-213. [18639820] [doi:10.1016/j.ejp.2008.06.025]
9. Devaraj KB, Kumar PR, Prakash V. Purification, characterization, and solvent-induced thermal stabilization of ficin from Ficus carica. J Agric Food Chem 2008;56:11417-23. [18991449] [doi:10.1021/jf802205a]
10. Rubnov S, Kashman Y, Rabinowitz R, Schlesinger M, Mechoulam R. Suppressors of cancer cell proliferation from fig (Ficus carica) resin: isolation and structure elucidation. J Nat Prod 2001;64:993-6. [11473446] [doi:10.1021/np000592z]
11. Son YO, Kim J, Lim JC, Chung Y, Chung GH, Lee JC. Ripe fruit of Solanum nigrum L. inhibits cell growth and induces apoptosis in MCF-7 cells. Food Chem Toxicol 2003;41:1421-8. [12905277] [doi:10.1016/S0278-6915(03)00161-3]
12. Mertens-Talcott SU, Percival SS. Ellagic acid and quercetin interact synergistically with resveratrol in the induction of apoptosis and cause transient cell cycle arrest in human...
leukemia cells. *Cancer Lett* 2005; 218:141-51. [15670891] [doi:10.1016/j.canlet.2004.06.007]

13 Potter JD. Cancer prevention: epidemiology and experiment. *Cancer Lett* 1997;114:7-9. [9103244] [doi: 10.1016/S0304-3835(97)04615-6]

14 Kim MJ, Kim YJ, Park HJ, Chung JH, Leem KH, Kim HK. Apoptotic effect of red wine polyphenols on human colon cancer SNU-C4 cells. *Food Chem Toxicol* 2006;44:898-902. [16243419] [doi:10.1016/j.fct.2005.08.031]

15 Cushnie TP, Lamb AJ. Antimicrobial activity of flavonoids. *Int J Antimicrob Agents* 2005;26:343-56. [16323269] [doi:10.1016/j.ijantimicag.2005.09.002]

16 Yamamoto Y, Gaynor RB. Therapeutic potential of inhibition of the NF-κB pathway in the treatment of inflammation and cancer. *J Clin Invest* 2001;107:135-42. [11160126] [doi:10.1172/JCI11914]

17 Ullman SB. The inhibitory and necrosis-inducing effects of the Latex of Ficus carica L. on transplanted and spontaneous tumors. *Exp Med Surg* 1952;10:26-49. [14954889]

18 Ullman SB, Clark GM, Roan KM. The effects of the fraction R3 of the latex of ficus carica L. on the tissues of mice bearing spontaneous mammary tumors. *Exp Med Surg* 1952;10:287-305. [13052096]

19 Freshney R. Culture of Animal Cells: A Manual of Basic Technique. Alan R. Liss Inc., New York, 1987; p. 117.

20 Wang J, Wang X, Jiang S, Lin P, Zhang J, Lu Y, Wang Q, Xiong Z, Wu Y, Ren J, Yang H. Cytotoxicity of fig fruit latex against human cancer cells. *Food Chem Toxicol* 2008;46:1025-33. [18078703] [doi:10.1016/j.fct.2007.10.042]

21 López-Otin C, Matrisian LM. Emerging roles of proteases in tumour suppression. *Nat Rev Cancer* 2007;7:800-8. [17851543] [doi:10.1038/nrc2228]