The aim of this study is to determine the Aluminum concentration in groundwater resources of Sistan and Baluchestan province, Iran. See the data in this article. For the purpose of this study, a total of 871 water samples were collected and values of quality parameters including pH, turbidity, total dissolved solids (TDS) and Aluminum concentration were measured (with two-time repetitions) according to Standard Methods for the Examination of Water and Wastewater, during the year 2016. The mean, maximum, minimum of Aluminum concentrations in all groundwater resources of Sistan and Baluchestan province, were: 0.015, 0.059, 0.0004 mg/l, respectively and also, the standard deviation was 0.012. Moreover, employing GIS software, the geo-statistical distribution of Aluminum concentration in groundwater aquifer in Sistan and Baluchestan was mapped.

© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Specifications table

Subject area	Environmental Sciences
More specific subject area	Heavy metal (Aluminum)
Type of data	Tables, Figures
How data was acquired	The pH and temperature parameters were measured by pH meter and turbidity meter, respectively. Also the measurement of the Aluminum concentration levels in the water samples was carried out using Atomic Absorption device (Analytic Jena AA6 vario 6).
Data format	Raw, Analyzed
Experimental factors	Determine the concentration levels of Aluminum
Experimental features	Water samples were carried out using Atomic Absorption device (Analytic Jena AA6 vario 6).
Data source location	Sistan and Baluchistan, Iran
Related research article	M. Radfard, M. Yunesian, R. Nabizadeh Nodehi, H. Biglari, M. Hadi, N. Yosefi, M. Yousefi, A. Abbasnia, AH. Mahvi. Drinking water quality and Arsenic health risk assessment in Sistan-and-Baluchestan, Southeastern province Iran. Human and Ecological Risk Assessment: An International Journal (2018) (DOI:10.1080/10807039.2018.1458210).

Value of the data

- Determination of the water parameters including Al, pH, TDS, Turbidity in ground water resources was conducted in Sistan and Baluchistan province, Iran.
- Data with Arc Gis zoning can help to better understanding the quality of ground water in this area.
- According to national standards, the concentration levels of Aluminum were within the standard range during the studied period. Therefore, consumption of water resources of this area likely will not cause any health problems associated with Aluminum metal.

1. **Data**

Tables 1 and 2 shows the minimum, mean, maximum and standard deviation of studied parameters including Al, pH, TDS, and Turbidity in the groundwater of the different cities (8 cities) of the Sistan and Baluchestan province. Also Fig. 1 illustrates the geo-statistical.

Distribution of Al concentration. In addition to, the mean of the total parameters in the studied area presented in Table 3.

2. **Experimental design, materials and methods**

2.1. **Study area description**

Sistan and Baluchistan province one of the large province of Iran, located province between 58°55’- 63°20’ eastern longitude and 25°4’- 31°25’ northern latitude, south of Iran [1] (Fig. 2).

2.2. **Sample collection and analytical procedures**

This study was conducted in Iranshahr, Chabahar, Khash, Zahedan, Zabol, Saravan, Sarbaz, Konarak, Zehak and Nik Shahr counties in Sistan and Baluchestan province. In the year 2017. Sampling was
Table 1
Minimum, mean, maximum and standard deviation of Al and pH in different cities of the province.

City	Number	Al (mg L\(^{-1}\))	pH		
		Min Average	Max STDEV	Min Average	Max STDEV
		0.001 0.016	0.059 0.018	6.85 7.88	8.58 0.346
Iranshahr	124	0.004 0.012	0.021 0.005	7.37 7.805	8.27 0.236
Chabahar	23	0.001 0.014	0.041 0.009	7.04 7.373	8.35 0.267
Khash	69	0.001 0.016	0.042 0.013	4.21 7.894	8.3 0.247
Zahedan	54	0.001 0.015	0.036 0.014	7.14 7.892	8.15 0.234
Zabol	16	0.001 0.014	0.059 0.013	6.81 7.816	8.3 0.285
Saravan	247	0.001 0.013	0.038 0.011	7.22 7.706	8.2 0.3
Sarbaz	23	0.001 0.013	0.042 0.01	7.34 7.772	8.25 0.197
Konarak	113	0.001 0.014	0.048 0.014	7.09 8	8.37 0.227

Table 2
Minimum, mean, maximum and standard deviation of TDS and Turbidity in different cities of the province.

City	Number	TDS (mg L\(^{-1}\))	Turbidity (NTU)
		Min Mean Max STDEV	Min Average Max STDEV
Iranshahr	124	241 1049.47 3130 570.82	0.19 0.638 4.28 0.589
Chabahar	23	452 1313.61 2426 682.61	0.32 0.638 3.02 0.559
Khash	69	439 1091.04 2573 524.09	0.19 0.684 4.67 0.878
Zahedan	54	306 1870.28 9001 1178.74	0.2 0.699 5.7 0.991
Zabol	16	425.6 546.4 702.72 388.19	0.23 0.917 1.6 0.451
Saravan	247	114 934.5 2413 453.87	0.18 0.904 5.45 0.844
Sarbaz	23	274 548.35 1965 226.43	0.16 0.913 7.5 1.348
Konarak	113	956 1314.78 2035 329.61	0.23 0.842 4.46 0.957
Nikshahr	202	312 708.46 1542 273.84	0.2 0.637 3.65 0.557

Fig. 1. Dispersion of Al concentration (mg L\(^{-1}\)) by GIS software.
done from the water wells directly and also, in the lack of the direct access to the wells, samples were taken from the closest water distribution network that fed from wells. The GIS software and IDW interpolation method were used to determine the latitude and longitude of well locations. The location of the counties, the sampling sites and the dispersion of the Aluminum is shown in the Fig. 1. After surveying the studied area, 871 major water resources that were used for bathing, washing, and mainly for drinking, were selected within the 1-year-monitoring period and then mapped using the GIS software. Samples were collected using a plastic sampling containers, which were washed with 20% Nitric acid solution. Also, in order to protect samples containers from secondary pollution, they were preserved with plastic bags on the transportation to sampling sites. Finally, to

Parameter	Al (mg L\(^{-1}\))	pH	Turbidity (NTU)	TDS (mg L\(^{-1}\))
Max	0.059	8.31	4.5	2485.3
Min	0.0004	7.11	0.211	391.07
Average	0.015	7.8	0.763	1033.88
STDEV	0.012	0.271	0.774	514.02
More than the permissible	0%	0%	11%	79%
Number	871	871	871	871

Fig. 2. Location map of the studied area and sampling site.
prevent microbial activity, the samples were stored in a Polystyrene box at 4°C and also, 2 ml Nitric acid was added to each one liter of samples to increase the stability of the them [12]. The pH and Turbidity parameters were measured at sampling site and measurement of TDS and Aluminum samples were performed according to Standard Methods for the Examination of Water and Wastewater in the laboratory [13]. To ensure the accuracy of the data, experiments were repeated after one week and also, it should be noted that sampling for repetition of the experiments, was done from the same sampling site. Finally, the data was analyzed using independent t-test and also, Excel 2007 software. GIS was used to plot the geostatistical distribution of Aluminum, and additionally, to identify the areas with maximum level of pollutants [2–5]. The pH and temperature were measured by pH meter and turbidity meter, respectively. Also, the measurement of the Aluminum concentration levels in the water samples was carried out using Atomic Absorption device (Analytic Jena AA6 vario 6) [14].

Acknowledgements

The authors are grateful to Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran for their support for this study.

Transparency document. Supporting information

Transparency data associated with this article can be found in the online version at https://dx.doi.org/10.1016/j.dib.2018.08.180.

References

[1] A. Abbasnia, N. Yousefi, A.H. Mahvi, R. Nabizadeh, M. Radfard, M. Yousefi, M. Alimohammadi, Evaluation of groundwater quality using water quality index and its suitability for assessing water for drinking and irrigation purposes; case study of Sistan and Baluchistan province (Iran), Hum. Ecol. Risk Assess.: Int. J. (2018), https://doi.org/10.1080/10807039.2018.1458596.

[2] M. Radfard, M. Yunesian, R. Nabizadeh Nodehi, H. Biglari, M. Hadi, N. Yosefi, M. Yousefi, A. Abbasnia, A.H. Mahvi, Drinking water quality and arsenic health risk assessment in Sistan-and-Baluchestan, Southeastern province Iran, Hum. Ecol. Risk Assess.: Int. J. (2018), https://doi.org/10.1080/10807039.2018.1458210.

[3] A. Abbasnia, M. Alimohammadi, A.H. Mahvi, R. Nabizadeh, M. Yousefi, A.A. Mohammadi, H. Pasalari H, M. Mirzabeigi, Assessment of groundwater quality and evaluation of scaling and corrosiveness potential of drinking water samples in villages of Chabahar city, Sistan and Baluchistan province in Iran, Data Brief 16 (2018) 182–192.

[4] A. Neisi, M. Mirzabeysi (Radfard), G. Zeyduni, A. Hamzezadeh, D. Jailii, A. Abbasnia, M. Yousefi, R. khodadadi, Data on fluoride concentration levels in cold and warm season in City area of Sistan and Baluchulastan Province, Iran, Data Brief 18 (2018) 713–718.

[5] M. Mirzabeysi, A. Abbasnia, M. Yunesian, R.N. Nodehi, N. Yousefi, M. Hadi, et al., Heavy metal contamination and health risk assessment in drinking water of Sistan and Baluchistan, Southeastern Iran, Hum. Ecol. Risk Assess.: Int. J. 23 (2017) 1893–1905.

[6] M. Mirzabeysi, N. Yousefi, A. Abbasnia, H. Youzi, M. Alikhani, A.H. Mahvi, Evaluation of groundwater quality and assessment of scaling potential and corrosiveness of water supply networks, Iran, J. Water Supply: Res. Technol.-Aqua (2017) (jws2).

[7] A. Taklastana, M. Mirzabeysi (Radfard), M. Yousefi, A. Abbasnia, R. Khodadadda, A.H. Mahvi, D. Jaili Naghan, Neuro-fuzzy inference system prediction of stability indices and sodium absorption ratio in Lordegan rural drinking water resources in west Iran, Data Brief 18 (2018) 255–261.

[8] M. Yousefi, S.M. Arami, H. Takallo, M. Hosseini, M. Radfard, H. Soleimani, A.A. Mohammadi, Modification of pumice with HCl and NaOH enhancing its fluoride adsorption capacity: kinetic and isotherm studies, Hum. Ecol. Risk Assess.: Int. J. (2018), https://doi.org/10.1080/10807039.2018.1469968.

[9] A. Abbasnia, M. Radfard, A.H. Mahvi, M. Yousefi, H. Soleimani, et al., Groundwater quality assessment for irrigation purposes based on irrigation water quality index and its zoning with GIS in the villages of Chabahar, Sistan and Baluchistan, Iran, Data Brief 19 (2018) 623–631.

[10] Khadjieh Jafari, AliAkbar Mohammad, Zahra Heidari, Farzaneh Baghal Asghari, Majid Radfard, Mahmoud Yousefi, Mahmoud Shams, Data on microbiological quality assessment of rural drinking water supplies in Tiran County, Isfahan province, Iran, Data Brief 18 (2018) 1122–1126.

[11] Z. Heidarinejad, Z.B. Hashemzadeh, G.K. Feizabadi, F.B. Asghari, M. Radfard, B. Akharpour, H.N. Saleh, H. Faraji, Data on quality indices of groundwater resource for agricultural use in the Jolfa, East Azerbaijan, Iran, Data Brief 19 (2018) 1482–1489.
[12] Hamed Akbari, Hamed Soleimani, Majid Radfard, Abbas Abasnia, Bayram Hashemzadeh, Hesam Akbari, Amir Adibzadeh, Data on investigating the Nitrate concentration levels and quality of bottled water in Torbat-e Heydarieh, Khorasan Razavi province, Iran, Data Brief (2018), https://doi.org/10.1016/j.dib.2018.08.031 (ISSN 2352-3409).

[13] Davoud Jalili, Majid RadFard, Hamed Soleimani, Hesam Akbari, Ali Kavosi, Abbas Abasnia, Amir Adibzadeh, Data on Nitrate-Nitrite pollution in the groundwater resources a Sonqor plain in Iran, Data Brief (2018), https://doi.org/10.1016/j.dib.2018.08.023 (ISSN 2352-3409).

[14] Hamed Soleimani, Omid Nasri, Boshra Ojaghi, Hasan Pasalari, Mona Hosseini, Bayram Hashemzadeh, Ali Kavosi, Safdar Masoumi, Majid Radfard, Amir Adibzadeh, Ghasem Kiani Feizabadi, Data on drinking water quality using water quality index(WQI) and assessment of groundwater quality for irrigation purposes in Qorveh & Dehgolan, Kurdistan, Iran, Data Brief (2018), https://doi.org/10.1016/j.dib.2018.08.022 (ISSN 2352-3409).