ON SOME HADAMARD-TYPE INEQUALITIES FOR DIFFERENTIABLE m–CONVEX FUNCTIONS

*M. EMİN ÖZDEMİR, ♠AHMET OCAK AKDEMİR, AND ★MERVE AVCI

Abstract. In this paper some new inequalities are proved related to left hand side of Hermite-Hadamard inequality for the classes of functions whose derivatives of absolute values are m–convex. New bounds and estimations are obtained. Applications for some Theorems are given as well.

1. INTRODUCTION

Let $f : I \to \mathbb{R}$ be a convex function on the interval I of real numbers and $a, b \in I$ with $a < b$. If f is a convex function then the following double inequality, which is well-known in the literature as Hermite-Hadamard inequality, holds [see [5], p. 137];

\[f \left(\frac{a+b}{2} \right) \leq \frac{1}{b-a} \int_a^b f(x) \, dx \leq \frac{f(a) + f(b)}{2}. \]

(1.1)

For recent results, generalizations and new inequalities related to the inequality presented above see [1]-[4].

In [10], Toader defined the concept of m–convexity as the following;

Definition 1. The function $f : [0, b] \to \mathbb{R}$, $b > 0$, is said to be m–convex, where $m \in [0, 1]$, if for every $x, y \in [0, b]$ and $t \in [0, 1]$ we have

\[f \left(tx + m(1-t)y \right) \leq tf(x) + m(1-t)f(y). \]

Denote by $K_m(b)$ the set of the m–convex functions on $[0, b]$ for which $f(0) \leq 0$.

Several papers have been written on m–convex functions on $[0, b]$ and we refer the papers [7], [8], [9], [10], [11], [12], [13], [14], [15] and [16]. In [17], Dragomir and Agarwal proved following inequality for convex functions;

Theorem 1. Let $f : I \subseteq \mathbb{R} \to \mathbb{R}$, be a differentiable mapping on I^0 and $a, b \in I$, where $a < b$. If $|f'(x)|$ is convex on $[a, b]$, then the following inequality holds;

\[\left| \frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_a^b f(x) \, dx \right| \leq \frac{(b-a)(|f'(a)| + |f'(b)|)}{8}. \]

(1.2)

In [4], Pearce and Pečarić proved the following inequalities for convex functions;

2000 Mathematics Subject Classification. 26D15.

Key words and phrases. m–Convex, Hadamard-Type Inequalities, Hölder inequality, Power mean inequality, Favard’s inequality.

♦Corresponding author.
Theorem 2. Let \(f : I \subseteq \mathbb{R} \to \mathbb{R} \) be a differentiable mapping on \(I \) and \(a, b \in I \), where \(a < b \). If \(|f'|^q \) is convex on \([a, b]\) for some \(q \geq 1 \), then

\[
(1.3) \quad \left| \frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_a^b f(x)dx \right| \leq \frac{b-a}{4} \left(\frac{|f'(a)|^q + |f'(b)|^q}{2} \right)^{\frac{1}{q}}
\]

and

\[
(1.4) \quad \left| \frac{f(a + b)}{2} - \frac{1}{b-a} \int_a^b f(x)dx \right| \leq \frac{b-a}{4} \left(\frac{|f'(a)|^q + |f'(b)|^q}{2} \right)^{\frac{1}{q}}.
\]

In [7], Bakula et al. proved the following inequality for \(m \)-convex functions:

Theorem 3. Let \(I \) be an open real interval such that \([0, \infty) \subset I \). Let \(f : I \to \mathbb{R} \) be a differentiable function on \(I \) such that \(f' \in L[a, b] \), where \(0 \leq a < b < \infty \). If \(|f'|^q \) is \(m \)-convex on \([a, b]\) for some fixed \(m \in (0, 1] \) and \(q \in [1, \infty) \), then;

\[
\left| \frac{f(a + b)}{2} - \frac{1}{b-a} \int_a^b f(x)dx \right| \leq \frac{b-a}{4} \min \left\{ \left(\frac{|f'(a)|^q + m |f'(b)|^q}{2} \right)^{\frac{1}{q}}, \left(\frac{m |f'(a)|^q + |f'(b)|^q}{2} \right)^{\frac{1}{q}} \right\}.
\]

In [13], Dragomir established following inequalities of Hadamard-type similar to above.

Theorem 4. Let \(f : [0, \infty) \to \mathbb{R} \) be a \(m \)-convex function with \(m \in (0, 1] \). If \(0 \leq a < b < \infty \) and \(f \in L_1[a, b] \), then one has the inequality:

\[
(1.5) \quad f \left(\frac{a + b}{2} \right) \leq \frac{1}{b-a} \int_a^b f(x) + mf \left(\frac{x}{m} \right) dx \leq \frac{m + 1}{4} \left[f(a) + f(b) + mf \left(\frac{a}{m} \right) + mf \left(\frac{b}{m} \right) \right].
\]

The following classical inequality is well-known in the literature as Favard’s inequality (see [18, 19, p.216]):

Theorem 5. (i) (Favard’s inequality) Let \(f \) be a non-negative concave function on \([a, b]\). If \(q \geq 1 \), then

\[
(1.6) \quad \frac{2^q}{q+1} \left(\frac{1}{b-a} \int_a^b f(x)dx \right)^q \geq \frac{1}{b-a} \int_a^b f^q(x)dx.
\]

If \(0 < q < 1 \) the reverse inequality holds in \((1.7)\).

(ii) (Thunsdorff’s inequality) If \(f \) is a non-negative, convex function with \(f(a) = 0 \), then for \(q \geq 1 \) the reversed inequality holds in \((1.8)\).

Motivated by the above results, in this paper we consider new Hadamard-type inequalities for functions whose derivatives of absolute values are \(m \)-convex by using fairly elementary analysis and some classical inequalities like Hölder inequality, Power-mean inequality and Favard’s inequality. These new results gives new upper bounds for the Theorem 2-3. We also give some applications.
2. MAIN RESULTS

To prove our main results, we use following Lemma which was used by Alomari et al. (see [6]).

Lemma 1. Let \(f : I \subseteq \mathbb{R} \to \mathbb{R} \), be a differentiable mapping on \(I \) where \(a, b \in I \), with \(a < b \). Let \(f' \in L[a, b] \), then the following equality holds:

\[
\begin{align*}
f \left(\frac{a + b}{2} \right) - \frac{1}{b - a} \int_a^b f(x) \, dx &= \frac{b - a}{4} \left[\int_0^1 t f' \left(\frac{a + b}{2} + (1 - t) a \right) \, dt + \int_0^1 (t - 1) f' \left(t b + (1 - t) \frac{a + b}{2} \right) \, dt \right].
\end{align*}
\]

Theorem 6. Let \(f : [0, \infty) \to \mathbb{R} \), be a differentiable mapping such that \(f' \in L[a, b] \). If \(|f'| \) is \(m \)-convex on \([a, b]\), where \(0 \leq a < b < \infty \) and for some fixed \(m \in (0, 1] \), then the following inequality holds:

\[
\left| f \left(\frac{a + b}{2} \right) - \frac{1}{b - a} \int_a^b f(x) \, dx \right| \leq \min \{ T_1, T_2, T_3, T_4 \}
\]

where

\[
\begin{align*}
T_1 &= \frac{b - a}{12} \left[2 \left| f' \left(\frac{a + b}{2} \right) \right| + m \left| f' \left(\frac{a}{m} \right) + f' \left(\frac{b}{m} \right) \right| \right], \\
T_2 &= \frac{b - a}{12} \left[\left| f' \left(\frac{a + b}{2} \right) \right| + m \left| f' \left(\frac{a + b}{2m} \right) + m \left| f' \left(\frac{b}{m} \right) \right| \right| \\
T_3 &= \frac{b - a}{12} \left[\left| f' \left(\frac{a}{m} \right) + \left| f' \left(\frac{b}{m} \right) \right| \right| + 2m \left| f' \left(\frac{a + b}{2m} \right) \right| \\
T_4 &= \frac{b - a}{12} \left[\left| f' \left(\frac{a + b}{2} \right) \right| + m \left| f' \left(\frac{a + b}{2m} \right) + m \left| f' \left(\frac{a}{m} \right) + f' \left(\frac{b}{m} \right) \right| \right| \right].
\end{align*}
\]

Proof. From the equality which is given in the Lemma 1 and by using the properties of modulus, we have

\[
\begin{align*}
\left| f \left(\frac{a + b}{2} \right) - \frac{1}{b - a} \int_a^b f(x) \, dx \right| &\leq \frac{b - a}{4} \left[\int_0^1 \left| f' \left(\frac{a + b}{2} + (1 - t) a \right) \right| \, dt \\
&\quad + \int_0^1 \left| t - 1 \right| \left| f' \left(t b + (1 - t) \frac{a + b}{2} \right) \right| \, dt \right].
\end{align*}
\]

By using \(m \)-convexity of \(|f'| \) on \([a, b]\), we know that for any \(t \in [0, 1] \)

\[
\left| f' \left(\frac{t a + b}{2} + (1 - t) a \right) \right| \leq t \left| f' \left(\frac{a + b}{2} \right) \right| + m (1 - t) \left| f' \left(\frac{a}{m} \right) \right|
\]

(2.3)
and

\[f'(tb + (1 - t) \frac{a + b}{2}) \leq (1 - t) \left| f'(\frac{a + b}{2}) \right| + mt \left| f'(\frac{b}{m}) \right|. \]

From the inequalities (2.3) and (2.4), we obtain

\[\left| f\left(\frac{a + b}{2}\right) - \frac{1}{b - a} \int_a^b f(x)dx \right| \leq \frac{b - a}{4} \left[\int_0^1 t \left| f'(\frac{a + b}{2}) \right| + m(1 - t) \left| f'(\frac{a}{m}) \right| \right] dt \]

\[+ \int_0^1 (1 - t) \left((1 - t) \left| f'(\frac{a + b}{2}) \right| + mt \left| f'(\frac{b}{m}) \right| \right) dt \].

By calculating the above integrals, we get the following inequality;

\[(2.5) \]

\[\left| f\left(\frac{a + b}{2}\right) - \frac{1}{b - a} \int_a^b f(x)dx \right| \leq \frac{b - a}{12} \left[2 \left| f'(\frac{a + b}{2}) \right| + m \left(\left| f'(\frac{a}{m}) \right| + \left| f'(\frac{b}{m}) \right| \right) \right]. \]

Analogously, we obtain the following inequalities;

\[(2.6) \]

\[\left| f\left(\frac{a + b}{2}\right) - \frac{1}{b - a} \int_a^b f(x)dx \right| \leq \frac{b - a}{12} \left[\left| f'(a) \right| + \left| f'(\frac{a + b}{2}) \right| + \frac{m}{2} \left| f'(\frac{b}{m}) \right| \right] \]

\[(2.7) \]

\[\left| f\left(\frac{a + b}{2}\right) - \frac{1}{b - a} \int_a^b f(x)dx \right| \leq \frac{b - a}{12} \left[2 \left| f'(\frac{a + b}{2}) \right| + m \left| f'(\frac{a + b}{2m}) \right| \right] \]

and

\[(2.8) \]

\[\left| f\left(\frac{a + b}{2}\right) - \frac{1}{b - a} \int_a^b f(x)dx \right| \leq \frac{b - a}{12} \left[\left| f'(a) \right| + \left| f'(\frac{a + b}{2}) \right| + \frac{m}{2} \left| f'(\frac{b}{m}) \right| \right]. \]

From the inequalities (2.5), (2.6), (2.7) and (2.8), we get the desired result. \(\square \)

Corollary 1. If we choose \(m = 1 \) in (2.7), we obtain the inequality;

\[\left| f\left(\frac{a + b}{2}\right) - \frac{1}{b - a} \int_a^b f(x)dx \right| \leq \frac{b - a}{12} \left[2 \left| f'(\frac{a + b}{2}) \right| + \left| f'(b) \right| \right]. \]

Corollary 2. Under the assumptions of Theorem 6;

i) If we choose \(m = 1 \) and \(|f'| \) is increasing in (2.7), we obtain the inequality;

\[\left| f\left(\frac{a + b}{2}\right) - \frac{1}{b - a} \int_a^b f(x)dx \right| \leq \frac{b - a}{12} \left[2 \left| f'(\frac{a + b}{2}) \right| + |f'(b)| \right]. \]
Let \(\lambda > 0 \).

From Lemma 1 and by using the properties of modulus, we have

\[
\left| f\left(\frac{a + b}{2} \right) - 4 \sum_{k=0}^{\lambda - 1} f\left(\frac{a + b}{2^k} \right) \right| \leq \frac{b - a}{12} \left[2 f'\left(\frac{a + b}{2} \right) \right].
\]

ii) If we choose \(m = 1 \) and \(|f'| \) is decreasing in \([2, 3] \), we obtain the inequality:

\[
\left| f\left(\frac{a + b}{2} \right) - \frac{1}{b - a} \int_a^b f(x) \, dx \right| \leq \frac{b - a}{12} \left[2 f'\left(\frac{a + b}{2} \right) \right].
\]

iii) If we choose \(m = 1 \) and \(|f'|(\frac{a + b}{2})| = 0 \) in \([2, 3] \), we obtain the inequality:

\[
\left| f\left(\frac{a + b}{2} \right) - \frac{1}{b - a} \int_a^b f(x) \, dx \right| \leq \frac{b - a}{12} \left[|f'(a)| + |f'(b)| \right].
\]

iv) If we choose \(m = 1 \) and \(|f'(a)| = |f'(b)| = 0 \) in \([2, 3] \), we obtain the inequality:

\[
\left| f\left(\frac{a + b}{2} \right) - \frac{1}{b - a} \int_a^b f(x) \, dx \right| \leq \frac{b - a}{12} \left[|f'(a)| + |f'(b)| \right].
\]

Theorem 7. Let \(f : [0, \infty) \rightarrow \mathbb{R} \), be a differentiable mapping such that \(f' \in L[a, b] \). If \(|f'|^{\frac{q}{q+1}} \) is \(m \)-convex on \([a, b]\), where \(0 \leq a < b < \infty \), for some fixed \(m \in (0, 1] \) and \(p > 1 \), then the following inequality holds:

\[
(2.9) \left| f\left(\frac{a + b}{2} \right) - \frac{1}{b - a} \int_a^b f(x) \, dx \right| \leq \frac{b - a}{4 (p + 1)^\frac{1}{p}} \left(\frac{1}{2} \right) \min \{ U_1, U_2, U_3, U_4 \}
\]

where \(\frac{1}{q} + \frac{1}{p} = 1 \) and

\[
U_1 = \left(\left| f'\left(\frac{a + b}{2} \right) \right|^q + m |f'\left(\frac{a}{m} \right)|^q \right)^{\frac{1}{q}} + \left(\left| f'\left(\frac{a + b}{2} \right) \right|^q + m |f'\left(\frac{b}{m} \right)|^q \right)^{\frac{1}{q}},
\]

\[
U_2 = \left(\left| f'(a) \right|^q + m |f'\left(\frac{a + b}{2m} \right)|^q \right)^{\frac{1}{q}} + \left(\left| f'(b) \right|^q + m |f'\left(\frac{b}{2m} \right)|^q \right)^{\frac{1}{q}},
\]

\[
U_3 = \left(\left| f'(a) \right|^q + m |f'\left(\frac{a + b}{2m} \right)|^q \right)^{\frac{1}{q}} + \left(\left| f'(b) \right|^q + m |f'\left(\frac{b}{2m} \right)|^q \right)^{\frac{1}{q}},
\]

\[
U_4 = \left(\left| f'\left(\frac{a + b}{2} \right) \right|^{q'} + m |f'\left(\frac{a}{m} \right)|^{q'} \right)^{\frac{1}{q'}} + \left(\left| f'\left(\frac{b}{2} \right) \right|^{q'} + m |f'\left(\frac{b}{2m} \right)|^{q'} \right)^{\frac{1}{q'}}.
\]

Proof. From Lemma 1 and by using the properties of modulus, we have

\[
(2.10) \left| f\left(\frac{a + b}{2} \right) - \frac{1}{b - a} \int_a^b f(x) \, dx \right| \leq \frac{b - a}{4} \left[\int_0^1 |t| f'\left(\frac{a + b}{2} + (1 - t) a \right) \, dt + \int_0^1 |t - 1| f'\left(\frac{b}{2} + (1 - t) a \right) \, dt \right].
\]
By applying the Hölder inequality to the inequality (2.11), we get

\[
\left| f\left(\frac{a+b}{2}\right) - \frac{1}{b-a} \int_a^b f(x) \, dx \right|
\leq \frac{b-a}{4} \left[\left(\int_0^1 t^p \, dt \right)^{\frac{1}{p}} \left(\int_0^1 \left| f'(t \left(\frac{a+b}{2} \right) + (1-t) a \right) \right|^q \, dt \right]^{\frac{1}{q}}
\leq \frac{b-a}{4(p+1)^{\frac{1}{p}}} \left(\int_0^1 t^p \, dt \right)^{\frac{1}{p}} \left[\left(\int_0^1 \left| f'(t \left(\frac{a+b}{2} \right) + (1-t) a \right) \right|^q \, dt \right]^{\frac{1}{q}}
+ \left(\int_0^1 (1-t)^p \, dt \right) \left(\int_0^1 \left| f'(tb + (1-t) \left(\frac{a+b}{2} \right)) \right|^q \, dt \right) \left(\int_0^1 \left| f'(tb + (1-t) \left(\frac{a+b}{2} \right)) \right|^q \, dt \right)^{\frac{1}{q}}.
\]

It is easy to see that

\[
\int_0^1 t^p \, dt = \int_0^1 (1-t)^p \, dt = \frac{1}{p+1}.
\]

Hence, by \(m\)-convexity of \(|f'|^q\) on \([a,b]\), we obtain the inequality:

\[
(2.11)\left| f\left(\frac{a+b}{2}\right) - \frac{1}{b-a} \int_a^b f(x) \, dx \right|
\leq \frac{b-a}{4(p+1)^{\frac{1}{p}}} \left(\int_0^1 t^p \, dt \right)^{\frac{1}{p}} \left[\left(\int_0^1 \left| f'(t \left(\frac{a+b}{2} \right) + (1-t) a \right) \right|^q \, dt \right]^{\frac{1}{q}}
+ \left(\int_0^1 (1-t)^p \, dt \right) \left(\int_0^1 \left| f'(tb + (1-t) \left(\frac{a+b}{2} \right)) \right|^q \, dt \right) \left(\int_0^1 \left| f'(tb + (1-t) \left(\frac{a+b}{2} \right)) \right|^q \, dt \right)^{\frac{1}{q}}.
\]

By a similar argument to the proof of Theorem 6, analogously, we obtain the following inequalities:

\[
(2.12)\left| f\left(\frac{a+b}{2}\right) - \frac{1}{b-a} \int_a^b f(x) \, dx \right|
\leq \frac{b-a}{4(p+1)^{\frac{1}{p}}} \left(\int_0^1 t^p \, dt \right)^{\frac{1}{p}} \left[\left(\int_0^1 \left| f'(t \left(\frac{a+b}{2} \right) + (1-t) a \right) \right|^q \, dt \right]^{\frac{1}{q}}
+ \left(\int_0^1 (1-t)^p \, dt \right) \left(\int_0^1 \left| f'(tb + (1-t) \left(\frac{a+b}{2} \right)) \right|^q \, dt \right) \left(\int_0^1 \left| f'(tb + (1-t) \left(\frac{a+b}{2} \right)) \right|^q \, dt \right)^{\frac{1}{q}}.
\]

\[
(2.13)\left| f\left(\frac{a+b}{2}\right) - \frac{1}{b-a} \int_a^b f(x) \, dx \right|
\leq \frac{b-a}{4(p+1)^{\frac{1}{p}}} \left(\int_0^1 t^p \, dt \right)^{\frac{1}{p}} \left[\left(\int_0^1 \left| f'(t \left(\frac{a+b}{2} \right) + (1-t) a \right) \right|^q \, dt \right]^{\frac{1}{q}}
+ \left(\int_0^1 (1-t)^p \, dt \right) \left(\int_0^1 \left| f'(tb + (1-t) \left(\frac{a+b}{2} \right)) \right|^q \, dt \right) \left(\int_0^1 \left| f'(tb + (1-t) \left(\frac{a+b}{2} \right)) \right|^q \, dt \right)^{\frac{1}{q}}.
\]
Corollary 3. Under the assumptions of Theorem 7, if we choose \(m = 1 \), we obtain the inequality:

\[
(2.14) \quad \left| f \left(\frac{a+b}{2} \right) - \frac{1}{b-a} \int_a^b f(x) \, dx \right| \leq \frac{b-a}{4 (p+1) \frac{q}{p}} \left(1 + \frac{1}{2} \right) \left[\left(\left| f' \left(\frac{a+b}{2} \right) \right| p + \left| f' \left(\frac{a}{m} \right) \right| q \right)^{\frac{1}{q}} + \left(\left| f' \left(\frac{a+b}{2} \right) \right| q + \left| f' \left(\frac{b}{m} \right) \right| q \right)^{\frac{1}{q}} \right].
\]

From the inequalities (2.11) - (2.14), we obtain the inequality in (2.9). The second inequality in (2.9) follows from facts that:

\[
\lim_{p \to \infty} \left(\frac{1}{1 + p} \right)^{\frac{1}{p}} = 1, \quad \lim_{p \to 1^+} \left(\frac{1}{1 + p} \right)^{\frac{1}{p}} = \frac{1}{2}
\]

and

\[
\frac{1}{2} < \left(\frac{1}{1 + p} \right)^{\frac{1}{p}} < 1.
\]

Corollary 4. Under the assumptions of Theorem 7:

i) If we choose \(m = 1 \) and \(|f'|^{\frac{p}{p-1}} \) is increasing in \((a, b) \), we obtain the inequality:

\[
\left| f \left(\frac{a+b}{2} \right) - \frac{1}{b-a} \int_a^b f(x) \, dx \right| \leq \frac{b-a}{4 (p+1) \frac{q}{p}} \left(\left| f' \left(\frac{a+b}{2} \right) \right| q + \left| f' \left(\frac{b}{m} \right) \right| q \right)^{\frac{1}{q}}.
\]

ii) If we choose \(m = 1 \) and \(|f'|^{\frac{p}{p-1}} \) is decreasing in \((a, b) \), we obtain the inequality:

\[
\left| f \left(\frac{a+b}{2} \right) - \frac{1}{b-a} \int_a^b f(x) \, dx \right| \leq \frac{b-a}{4 (p+1) \frac{q}{p}} \left(\left| f' \left(\frac{a+b}{2} \right) \right| q + \left| f' \left(\frac{a}{m} \right) \right| q \right)^{\frac{1}{q}}.
\]

iii) If we choose \(m = 1 \) and \(\left| f' \left(\frac{a+b}{2} \right) \right|^{\frac{p}{p-1}} = 0 \) in (2.14), we obtain the inequality:

\[
\left| f \left(\frac{a+b}{2} \right) - \frac{1}{b-a} \int_a^b f(x) \, dx \right| \leq \frac{b-a}{4 (p+1) \frac{q}{p}} \left(\frac{1}{2} \right)^{\frac{1}{q}} \left(\left| f' \left(\frac{a}{m} \right) \right| + \left| f' \left(\frac{b}{m} \right) \right| \right).
\]
iv) If we choose \(m = 1 \) and \(|f'(a)|^\frac{m}{2} = |f'(b)|^\frac{m}{2} = 0 \) in (2.14), we obtain the inequality:

\[
\left| f\left(\frac{a+b}{2}\right) - \frac{1}{b-a} \int_a^b f(x)dx \right| \leq \frac{b-a}{4(p+1)^\frac{1}{p}} \left(\frac{1}{2} \right)^\frac{1}{q} \left| f'\left(\frac{a+b}{2}\right) \right|.
\]

Theorem 8. Let \(f : [0, \infty) \to \mathbb{R} \), be a differentiable mapping such that \(f' \in L[a, b] \). If \(|f'|^q \) is \(m \)-convex on \([a, b]\), where \(0 \leq a < b < \infty \), for some fixed \(m \in (0, 1) \) and \(q \geq 1 \), then the following inequality holds:

\[
(2.15) \quad \left| f\left(\frac{a+b}{2}\right) - \frac{1}{b-a} \int_a^b f(x)dx \right| \leq \frac{b-a}{4} \left(\frac{1}{2} \right)^{1-q} \min\{V_1, V_2, V_3, V_4\}
\]

where

\[
V_1 = \left(\frac{1}{3} \right) \left| f'\left(\frac{a+b}{2}\right) \right|^q + \frac{m}{6} \left| f'\left(\frac{a}{m}\right) \right|^q + \left(\frac{1}{3} \right) \left| f'\left(\frac{a}{m}\right) \right|^q,
\]

\[
V_2 = \left(\frac{1}{6} \right) \left| f'(a) \right|^q + \frac{m}{3} \left| f'\left(\frac{a+b}{2m}\right) \right|^q + \left(\frac{1}{3} \right) \left| f'\left(\frac{a+b}{2m}\right) \right|^q,
\]

\[
V_3 = \left(\frac{1}{6} \right) \left| f'(a) \right|^q + \frac{m}{3} \left| f'\left(\frac{a+b}{2m}\right) \right|^q + \left(\frac{1}{6} \right) \left| f'(b) \right|^q + \frac{m}{3} \left| f'\left(\frac{a+b}{2m}\right) \right|^q,
\]

\[
V_4 = \left(\frac{1}{3} \right) \left| f'\left(\frac{a+b}{2}\right) \right|^q + \frac{m}{6} \left| f'\left(\frac{a}{m}\right) \right|^q + \left(\frac{1}{6} \right) \left| f'(b) \right|^q + \frac{m}{3} \left| f'\left(\frac{a+b}{2m}\right) \right|^q.
\]

Proof. From Lemma 1, we can write

\[
\left| f\left(\frac{a+b}{2}\right) - \frac{1}{b-a} \int_a^b f(x)dx \right| \leq \frac{b-a}{4} \left[\int_0^1 t \left| f'\left(\frac{a+b}{2} + (1-t) \frac{a}{m}\right) \right| dt + \int_0^1 (t-1) \left| f'\left(\frac{a+b}{2} + (1-t) \frac{a}{m}\right) \right| dt \right].
\]

By applying the Power-mean inequality, we get

\[
\left| f\left(\frac{a+b}{2}\right) - \frac{1}{b-a} \int_a^b f(x)dx \right| \leq \frac{b-a}{4} \left[\left(\int_0^1 t dt \right)^{1-q} \left(\int_0^1 t \left| f'\left(\frac{a+b}{2} + (1-t) \frac{a}{m}\right) \right|^q dt \right)^{\frac{1}{q}}
\]

\[
+ \left(\int_0^1 (t-1) dt \right)^{1-q} \left(\int_0^1 (t-1) \left| f'\left(\frac{a+b}{2} + (1-t) \frac{a}{m}\right) \right|^q dt \right)^{\frac{1}{q}} \right].
\]
Now by using m–convexity of $|f'|^q$ on $[a, b]$ and by computing the integrals, we obtain the following inequality:

\[(2.16) \quad \left| f\left(\frac{a+b}{2}\right) - \frac{1}{b-a} \int_a^b f(x)dx \right| \leq \frac{b-a}{4} \left(\frac{1}{2}\right)^{1-\frac{1}{q}} \left\{ \left(\frac{1}{3} \left| f'\left(\frac{a+b}{2}\right)\right|^q + \frac{m}{6} \left| f'\left(\frac{a}{m}\right)\right|^q \right)^{\frac{1}{q}} \right. \]

\[+\left(\frac{1}{3} \left| f'\left(\frac{a+b}{2}\right)\right|^q + \frac{m}{6} \left| f'\left(\frac{b}{m}\right)\right|^q \right)^{\frac{1}{q}} \].

Hence, by a similar argument to the proofs of Theorem 6-7, analogously, we obtain the following inequalities:

\[(2.17) \quad \left| f\left(\frac{a+b}{2}\right) - \frac{1}{b-a} \int_a^b f(x)dx \right| \leq \frac{b-a}{4} \left(\frac{1}{2}\right)^{1-\frac{1}{q}} \left\{ \left(\frac{1}{6} \left| f'\left(\frac{a+b}{2}\right)\right|^q + \frac{m}{3} \left| f'\left(\frac{b}{m}\right)\right|^q \right)^{\frac{1}{q}} \right. \]

\[+\left(\frac{1}{6} \left| f'\left(\frac{a+b}{2}\right)\right|^q + \frac{m}{3} \left| f'\left(\frac{b}{m}\right)\right|^q \right)^{\frac{1}{q}} \],

\[(2.18) \quad \left| f\left(\frac{a+b}{2}\right) - \frac{1}{b-a} \int_a^b f(x)dx \right| \leq \frac{b-a}{4} \left(\frac{1}{2}\right)^{1-\frac{1}{q}} \left\{ \left(\frac{1}{6} \left| f'\left(\frac{a+b}{2}\right)\right|^q + \frac{m}{3} \left| f'\left(\frac{a+b}{2m}\right)\right|^q \right)^{\frac{1}{q}} \right. \]

\[+\left(\frac{1}{6} \left| f'\left(\frac{a+b}{2}\right)\right|^q + \frac{m}{3} \left| f'\left(\frac{b}{2m}\right)\right|^q \right)^{\frac{1}{q}} \],

and

\[(2.19) \quad \left| f\left(\frac{a+b}{2}\right) - \frac{1}{b-a} \int_a^b f(x)dx \right| \leq \frac{b-a}{4} \left(\frac{1}{2}\right)^{1-\frac{1}{q}} \left\{ \left(\frac{1}{3} \left| f'\left(\frac{a+b}{2}\right)\right|^q + \frac{m}{6} \left| f'\left(\frac{a}{m}\right)\right|^q \right)^{\frac{1}{q}} \right. \]

\[+\left(\frac{1}{6} \left| f'\left(\frac{a+b}{2}\right)\right|^q + \frac{m}{3} \left| f'\left(\frac{a}{2m}\right)\right|^q \right)^{\frac{1}{q}} \].

By the inequalities (2.16)–(2.19), we obtain the inequality (2.15). \qed
Corollary 5. Under the assumptions of Theorem 8, if we choose $m = 1$, we obtain the inequality:

$$
\left| f \left(\frac{a+b}{2} \right) - \frac{1}{b-a} \int_a^b f(x) \, dx \right|
\leq \frac{b-a}{4} \left(\frac{1}{2} \right)^{1-\frac{1}{q}} \left(\frac{1}{3} \left| f' \left(\frac{a+b}{2} \right) \right|^q + \frac{1}{6} \left| f' \left(b \right) \right|^q \right)^{\frac{1}{q}}.
$$

Corollary 6. Under the assumptions of Theorem 8:

i) If we choose $m = 1$ and $|f'|^q$ is increasing in $[2.15]$, we obtain the inequality:

$$
\left| f \left(\frac{a+b}{2} \right) - \frac{1}{b-a} \int_a^b f(x) \, dx \right| \leq \frac{b-a}{4} \left(\frac{1}{2} \right)^{1-\frac{1}{q}} \left(\frac{1}{3} \left| f' \left(\frac{a+b}{2} \right) \right|^q + \frac{1}{6} \left| f' \left(b \right) \right|^q \right)^{\frac{1}{q}}.
$$

ii) If we choose $m = 1$ and $|f'|^q$ is decreasing in $[2.15]$, we obtain the inequality:

$$
\left| f \left(\frac{a+b}{2} \right) - \frac{1}{b-a} \int_a^b f(x) \, dx \right| \leq \frac{b-a}{4} \left(\frac{1}{2} \right)^{1-\frac{1}{q}} \left(\frac{1}{3} \left| f' \left(\frac{a+b}{2} \right) \right|^q + \frac{1}{6} \left| f' \left(a \right) \right|^q \right)^{\frac{1}{q}}.
$$

iii) If we choose $m = 1$ and $|f' (\frac{a+b}{2})|^q = 0$ in $[2.15]$, we obtain the inequality:

$$
\left| f \left(\frac{a+b}{2} \right) - \frac{1}{b-a} \int_a^b f(x) \, dx \right| \leq \frac{b-a}{8} \left(\frac{1}{3} \right)^{\frac{1}{q}} (|f'(a)| + |f'(b)|).
$$

iv) If we choose $m = 1$ and $|f'(a)|^q = |f'(b)|^q = 0$ in $[2.15]$, we obtain the inequality:

$$
\left| f \left(\frac{a+b}{2} \right) - \frac{1}{b-a} \int_a^b f(x) \, dx \right| \leq \frac{b-a}{4} \left(\frac{1}{6} \right)^{1-\frac{1}{q}} \left| f' \left(\frac{a+b}{2} \right) \right|.
$$

Theorem 9. Let $f, g : [0, b] \to \mathbb{R}$, be concave and m–concave functions, $m \in (0, 1)$, where $0 \leq a < b < \infty$ and $q \geq 1$. Then

$$
f \left(\frac{a+b}{2} \right) g \left(\frac{a+b}{2} \right) \geq \frac{(p+1) \frac{1}{q} (q+1) \frac{1}{q}}{16} \times \left(\frac{1}{b-a} \int_a^b \left[f(x) + mf \left(\frac{x}{m} \right) \right] \left[g(x) + mg \left(\frac{x}{m} \right) \right] \, dx \right).
$$

where $\frac{1}{q} + \frac{1}{p} = 1$.

If f, g are convex and m–convex functions, with $f(0) = 0$, then the reverse of the above inequality holds.

Proof. Since f, g are m–concave, by using the inequality (1.3), we can write

$$
f \left(\frac{a+b}{2} \right) \geq \frac{1}{b-a} \int_a^b f(x) + mf \left(\frac{x}{m} \right) \, dx
$$
and
\[g\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_a^b g(x) + mg\left(\frac{x}{m}\right) dx. \]

By using Favard’s inequality for \(p \)–th powers of both sides of inequality, we have
\[
f^p\left(\frac{a+b}{2}\right) \geq \left(\frac{1}{b-a} \int_a^b f(x) + mf\left(\frac{x}{m}\right) dx\right)^p \geq \frac{p+1}{2p} \left[\frac{1}{b-a} \int_a^b \left(f(x) + mf\left(\frac{x}{m}\right) \right)^p dx \right]
\]
and similarly, we have
\[
g^q\left(\frac{a+b}{2}\right) \geq \frac{q+1}{2q} \left[\frac{1}{b-a} \int_a^b \left(g(x) + mg\left(\frac{x}{m}\right) \right)^q dx \right].
\]

It follows that
\[
f\left(\frac{a+b}{2}\right) \geq \frac{(p+1)^\frac{1}{2}}{2} \left[\frac{1}{b-a} \int_a^b \left(f(x) + mf\left(\frac{x}{m}\right) \right)^p dx \right]^\frac{1}{p}
\]
and
\[
g\left(\frac{a+b}{2}\right) \geq \frac{(q+1)^\frac{1}{2}}{2} \left[\frac{1}{b-a} \int_a^b \left(g(x) + mg\left(\frac{x}{m}\right) \right)^q dx \right]^\frac{1}{q}.
\]

By multiplying both sides of the above inequalities, we get
\[
f\left(\frac{a+b}{2}\right) g\left(\frac{a+b}{2}\right) \geq \frac{(p+1)^\frac{1}{2}}{4} \left[\frac{1}{b-a} \int_a^b \left(f(x) + mf\left(\frac{x}{m}\right) \right)^p dx \right]^\frac{1}{p} \times \left[\frac{1}{b-a} \int_a^b \left(g(x) + mg\left(\frac{x}{m}\right) \right)^q dx \right]^\frac{1}{q}.
\]

By using Hölder inequality, we have
\[
f\left(\frac{a+b}{2}\right) g\left(\frac{a+b}{2}\right) \geq \frac{(p+1)^\frac{1}{2}}{16} \frac{(q+1)^\frac{1}{2}}{16} \times \left[\frac{1}{b-a} \int_a^b \left[f(x) + mf\left(\frac{x}{m}\right) \right] dx \right] \left[g(x) + mg\left(\frac{x}{m}\right) \right] dx.
\]

If \(f, g \) are \(m \)–convex, then using Thunsdorff’s inequality we obtain desired result.
\[\square \]
Corollary 7. Under the assumptions of Theorem 9, if we choose \(m = 1 \), we obtain the inequality:

\[
f \left(\frac{a + b}{2} \right) g \left(\frac{a + b}{2} \right) \geq \frac{(p + 1)^\frac{1}{p} (q + 1)^\frac{1}{q}}{4} \times \left(\frac{1}{b - a} \int_a^b f(x)g(x)dx \right).
\]

3. APPLICATIONS TO SOME SPECIAL MEANS

We now consider the applications of our Theorems to the following special means

a) The arithmetic mean:

\[
A = A(a, b) := \frac{a + b}{2}, \quad a, b \geq 0,
\]

b) The logarithmic mean:

\[
L = L(a, b) := \begin{cases}
\frac{b - a}{\ln b - \ln a} & \text{if } a = b, \\
\frac{a - b}{\ln a - \ln b} & \text{if } a \neq b,
\end{cases} \quad a, b \geq 0,
\]

c) The \(p \)-logarithmic mean:

\[
L_p = L_p(a, b) := \begin{cases}
\left[\frac{p^{p+1} - q^{p+1}}{(p+1)(q-b)} \right]^{1/p} & \text{if } a \neq b, \\
\frac{1}{p} & \text{if } a = b,
\end{cases} \quad p \in \mathbb{R} \setminus \{-1, 0\}; \quad a, b > 0.
\]

We now derive some sophisticated bounds of the above means.

Proposition 1. Let \(a, b \in \mathbb{R}, \; 0 < a < b \) and \(n \in \mathbb{Z}, \; |n| \geq 2 \). Then, we have:

\[
|A^n(a, b) - L^n_n(a, b)| \leq \min \{K_1, K_2, K_3, K_4\}
\]

where

\[
K_1 = \frac{n(b - a)}{12} \left[2|A(a, b)|^{n-1} + m \left(\left| \frac{a}{m} \right|^{n-1}, \left| \frac{b}{m} \right|^{n-1} \right) \right],
\]

\[
K_2 = \frac{n(b - a)}{12} \left[|A(a, b)|^{n-1} + m \left| \frac{A(a, b)}{m} \right|^{n-1} + A \left(|a|^{n-1}, m \left| \frac{b}{m} \right|^{n-1} \right) \right],
\]

\[
K_3 = \frac{n(b - a)}{12} \left[A \left(|a|^{n-1} + |b|^{n-1} \right) + 2m \left| \frac{A(a, b)}{m} \right|^{n-1} \right],
\]

\[
K_4 = \frac{n(b - a)}{12} \left[|A(a, b)|^{n-1} + m \left| \frac{A(a, b)}{m} \right|^{n-1} + A \left(m \left| \frac{a}{m} \right|^{n-1}, |b|^{n-1} \right) \right].
\]

Proof. The proof is immediate from Theorem 6 applied for \(f(x) = x^n \), which is an \(m \)-convex function. \(\square \)

Proposition 2. Let \(a, b \in \mathbb{R}, \; 0 < a < b \) and \(n \in \mathbb{Z}, \; |n| \geq 2, \; k \geq 1 \). Then, we have:

\[
|A^n(a, b) - L^n_k(a, b)| \leq \frac{b - a}{4} \left(\frac{1}{2} \right)^{1 - \frac{1}{k}} \min \{L_1, L_2, L_3, L_4\}
\]
where

\[L_1 = \frac{n}{k} 2A \left[\left(2A \left(\frac{1}{3} \left| (A(a,b)) \frac{q(a-k)}{k} \right| + \frac{m}{6} \left| a \frac{q(a-k)}{k} \right| \right) \right)^{\frac{1}{3}} \right. \\
+ \left. \left(2A \left(\frac{1}{3} \left| (A(a,b)) \frac{q(a-k)}{k} \right| + \frac{m}{6} \left| b \frac{q(a-k)}{k} \right| \right) \right)^{\frac{1}{3}} \right] \]

\[L_2 = \frac{n}{k} 2A \left[\left(2A \left(\frac{1}{6} \left| a \frac{q(a-k)}{k} \right| + \frac{m}{3} \left| A(a,b) \frac{q(a-k)}{k} \right| \right) \right)^{\frac{1}{3}} \right. \\
+ \left. \left(2A \left(\frac{1}{3} \left| (A(a,b)) \frac{q(a-k)}{k} \right| + \frac{m}{6} \left| b \frac{q(a-k)}{k} \right| \right) \right)^{\frac{1}{3}} \right] \]

\[L_3 = \frac{n}{k} 2A \left[\left(2A \left(\frac{1}{6} \left| a \frac{q(a-k)}{k} \right| + \frac{m}{3} \left| A(a,b) \frac{q(a-k)}{k} \right| \right) \right)^{\frac{1}{3}} \right. \\
+ \left. \left(2A \left(\frac{1}{6} \left| b \frac{q(a-k)}{k} \right| + \frac{m}{3} \left| A(a,b) \frac{q(a-k)}{k} \right| \right) \right)^{\frac{1}{3}} \right] \]

\[L_4 = \frac{n}{k} 2A \left[\left(2A \left(\frac{1}{3} \left| (A(a,b)) \frac{q(a-k)}{k} \right| + \frac{m}{6} \left| a \frac{q(a-k)}{k} \right| \right) \right)^{\frac{1}{3}} \right. \\
+ \left. \left(2A \left(\frac{1}{6} \left| b \frac{q(a-k)}{k} \right| + \frac{m}{3} \left| A(a,b) \frac{q(a-k)}{k} \right| \right) \right)^{\frac{1}{3}} \right] \]

Proof. The assertion follows from Theorem 8 applied to \(f(x) = x^\frac{1}{n} \), which is an \(m \)-convex function. \(\square \)

REFERENCES

[1] S.S. Dragomir, Two mappings in connection to Hadamard’s inequalities, Journal of Math. Anal. Appl., 167 (1992), 49-56.
[2] U.S. Kirmaci, Inequalities for differentiable mappings and applications to special means of real numbers to midpoint formula, Appl. Math. Comput., 147 (2004), 137-146.
[3] U.S. Kirmaci and M.E. Özdemir, On some inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, Appl. Math. Lett., 167 (1992), 49-56.
[4] C.E.M. Pearce and J. Pečarić, Inequalities for differentiable mappings with application to special means and quadrature formulæ, Appl. Math. Lett., 13(2) (2000), 51–55.
[5] J.E. Pečarić, F. Proschan and Y.L. Tong, Convex Functions, Partial Orderings and Statistical Applications, Academic Press Inc., 1992.
[6] M.W. Alomari, M. Darus and U.S. Kirmaci, Some inequalities of Hermite-Hadamard type for s-convex functions, Acta Mathematica Scientia, (2011) 31B(4):1643–1652.
$[7]$ M.K. Bakula, M.E. Özdemir and J. Pečarić, Hadamard-type inequalities for m–convex and (α, m)–convex functions, *J. Inequal. Pure and Appl. Math.*, 9, (4), (2007), Article 96.

$[8]$ M.K. Bakula, J. Pečarić and M. Ribibić, Companion inequalities to Jensen’s inequality for m–convex and (α, m)–convex functions, *J. Inequal. Pure and Appl. Math.*, 7 (5) (2006), Article 194.

$[9]$ S.S. Dragomir and G. Toader, Some inequalities for m–convex functions, Studia University Babes Bolyai, *Mathematica*, 38 (1) (1993), 21–28.

$[10]$ G. Toader, Some generalisation of the convexity, *Proc. Colloq. Approx. Opt.*, Cluj-Napoca, (1984), 329-338.

$[11]$ M.E. Özdemir, M. Avci and E. Set, On some inequalities of Hermite-Hadamard type via m–convexity, *Applied Mathematics Letters*, 23 (2010), 1065-1070.

$[12]$ G. Toader, On a generalization of the convexity, *Mathematica*, 30 (53) (1988), 83-87.

$[13]$ S.S. Dragomir, On some new inequalities of Hermite-Hadamard type for m–convex functions, *Tamkang Journal of Mathematics*, 33 (1) (2002).

$[14]$ H. Kavurmaci, M. Avci, M.E. Özdemir, New Ostrowski type inequalities for m–convex functions and applications, accepted.

$[15]$ M.E. Özdemir, E. Set and M.Z. Sarıkaya, Some new Hadamard’s type inequalities for co-ordinated m–convex and (α, m)–convex functions, *Hacettepe J. of Math. and Ist.*, 40, 219-229, (2011).

$[16]$ M.Z. Sarıkaya, M.E. Özdemir and E. Set, Inequalities of Hermite–Hadamard’s type for functions whose derivatives absolute values are m–convex, *RGMIA Res. Rep. Coll.* 13 (2010) Supplement, Article 5.

$[17]$ S.S. Dragomir and R.P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, *Appl. Math. Lett.*, 11 (5), 91-95, (1998).

$[18]$ N. Latif, J. Pečarić and I. Perić, Some New Results Related to Favard’s Inequality, *J. Inequal. Appl.*, 2009, Article ID 128486.

$[19]$ J. Pečarić, F. Proschan and Y.L. Tong, Convex functions, Partial Orderings and Statistical Applications, *Academic Press*, 1992.

\ast *Atatürk University, K. K. Education Faculty, Department of Mathematics, 25240, Campus, Erzurum, Turkey*

\bullet *Ağrı İbrahim Çėcen University Faculty of Science and Letters, Department of Mathematics, 04100, Ağrı, Turkey*

E-mail address: emos@atauni.edu.tr

E-mail address: ahmetakdemir@agri.edu.tr