Original Research Article

Performance of Indigenous and Exotic Coconut Germplasm for Yield and Nut Quality under Aliyarnagar Condition

U. Tripura*, P. Paramaguru, J. Suresh, N. Kumaravadivel, A. Subramanian and N. Shoba

Coconut Research Station, Tamil Nadu Agricultural University, Aliyarnagar- 642 101, India

*Corresponding author

ABSTRACT

Investigation was carried out at Coconut Research Station, Tamil Nadu Agricultural University, Aliyarnagar, during 2015-2017 to study the performance of indigenous and exotic coconut genotypes for yield and nut quality. Wide variations on vegetative parameters were observed within the genotypes. Among the nineteen genotypes the maximum vegetative characters viz., palm height (15.70 m) in Java Tall, trunk girth (1.26 m each) in FMS and Andaman Giant, number of functional leaves (38.25) in Ceylon tall, petiole length and length of leaflet bearing portion (1.53 m and 5.84 m) in Nadora Tall and number of inflorescence per palm per year (14.16) were recorded in Seychelles Tall. The maximum number of bunches per palm per year and nut yield per palm per year were recorded by Seychelles Tall (13.36 and 211.50, respectively) compared to minimum values recorded by Tipur Tall (10.13 and 67.25). The maximum nut characters namely whole nut weight (1999.50 g), dehusked nut weight (1323.00 g), kernel weight (510.00 g) and copra content (390.50 g) were recorded by Andaman Giant. However, the maximum nut husk weight was recorded by San Roman (390.50 g) compared to lowest recorded by Arasampatti Tall (187.00 g). Though, the number of nuts was maximum in genotype Seychelles Tall but considering to the quantitative and qualitative characters it revealed that genotype Andaman Giant performed better than other genotypes.

Keywords
Coconut germplasm, Nut yield, Nut quality, Crop improvement

Accepted: 24 January 2018
Available Online: 10 February 2018

Introduction

Cocos nucifera L., Arecaceae, (2n=32), is the most ubiquitous plant in lowland tropics of the World. It is grown as a plantation crop over large areas and in homesteads as well. It provides food, drink, beverage, medicine, fibre and a variety of raw materials for production of an array of products of commercial importance. India is the third largest coconut producing country in the world, contributing for 31.02 per cent of the world production. Indonesia, Philippines and India are the leading coconut growing countries having 75.87 per cent of the total area under coconut, contributing 75.48 per cent of the coconut production of the world (APCC, 2015). India occupies a prominent position in the world map with an annual production of 21,665.00 million nuts from an area of 2.14 Mha (APCC, 2015). It is cultivated in 16 states and in 4 union territories of the country. The major coconut growing states in the country are Kerala,
Tamil Nadu, Karnataka and Andhra Pradesh which together account for more than 90.11 percent of the coconut production. The yield of coconut, being a complex character, is controlled by a number of components and their interaction. Identification of suitable genotypes with superior quality as consumer preference and more number of nuts per palm as farmer’s preference will be a favourable step. Hence, the study was taken up to evaluate the performance of indigenous and exotic germplasm of coconut for yield and nut quality under Aliyarnagar condition.

Materials and Methods

An experiment was carried out at Coconut Research Station, Tamil Nadu Agricultural University, Aliyarnagar, during 2015 to 2017. The 19 indigenous and exotic genotypes were taken for the study. Among 19 genotypes six genotypes were indigenous and 13 genotypes were exotic origin. The list of genotypes and origin were given in Table 1.

The experiment was laid out in a randomized block design with two replications. Three set of genotypes were taken for the study which had been planted at a distance of 7.5 x 7.5 m during 1988, 1990 and 1994 under All India Coordinated Research Project (AICRPs). The age of the trees ranged between 23 and 29 years. Recommended package of practices were followed for all the genotypes (Nampoothiri et al., 2000). The observations on vegetative parameters and nut characters were recorded by drawing random sample of three nuts (12 months maturity) per germplasm in each replication.

The yield of nuts per palm was recorded periodically at each harvest from September to August and pooled to get nut yield per palm per year. Data was subjected to statistical analysis using analysis of variance (Gomez and Gomez, 1984).

Results and Discussion

In the present investigation, significant differences were observed on palm height, palm girth, number of functional leaves, petiole length, length of leaflet bearing portion and number of inflorescence per palm among the genotypes (Table 2). The maximum palm height (15.70 m) was recorded by Java Tall followed by FMS (15.44 m) compared minimum palm height recorded by Guam (7.59 m). Significantly highest trunk girth was recorded by FMS and Andaman Giant (1.26 m each) which was on par with Zanziber Tall (1.16 m) compared to lowest recorded by BSI (0.91 m).

Maximum number of functional leaves per palm per year was recorded by Ceylon Tall (38.25) which was on par with genotypes Zanziber Tall, San Roman and East Coast Tall (38.00 each) compared to minimum values recorded by Tiptur Tall (29.25). The longest petiole length and length of leaflet bearing portion were recorded by Nadora Tall (1.53 and 5.84 m, respectively). However, the maximum no. of inflorescence per palm per year was recorded by Seychelles Tall (14.16) which was on par with Laccadive Ordinary (13.80) compared to minimum values recorded by Tiptur Tall (11.56). Perera and Ekanayake (2008) studied the traits of leaf, inflorescence, and fruit diversity of Sri Lankan indigenous coconut varieties using multivariate discriminating methods. This study also reported a high diversity for fruit characters and vegetative characters among cultivars. The length of leaf and the number of leaves are important character, since it decides the ability of the leaf to support the bunches in its axils and also increase the photosynthetic efficiency. Similar results were also reported by Jerard (2002); Jayalakshi and Sree Rangasamy (2002); Basavaraju et al., (2011); Suchitra (2014) and Ramanandam et al., (2017).
Table 1 List of coconut genotypes and their origin and characters

S. No	Genotype	Origin	Year of planting	Characters
1	Arasampatti Tall (Check)	India	1988	Superior yielder, local cultivar of west coast region
2	Zanziber Tall	Zanzibar		Tender nut and copra
3	San Roman	Philippines		High yielding with large nuts
4	Gonthembili	Sri Lanka		Tender nut and copra
5	Java Tall	Indonesia		Big nut with high kernel, suitable for tender nut
6	Federated Malay States (FMS)	Malaysia		Tender nut and copra, Drought tolerance
7	British Solomon Island (BSI)	Solomon islands		Tender nut and copra
8	St. Vincent	Trinidad & Tobago		Tender nut and copra
9	Malayan Green Dwarf (MGD)	Malaysia		Good quality tender nut water, root wilt resistance
10	Tiptur Tall	India		Leaf spot resistance
11	Guam	Guam Island		Local cultivar of Guam Island
12	Ceylon Tall	Sri Lanka	1990	High copra and oil content
13	Jamaica Tall	Jamaica		Tender nut and copra
14	Seychelles Tall	Seychelles Island		High yielder and copra content
15	Laccadive Ordinary (LO)	India		Excellent for toddy and high oil
16	East Coast Tall (ECT)	India		Tender nut and copra
17	Andaman Giant (AG)	India		Large nuts, Drought tolerance
18	Cochin China (CC)	Vietnam		Good toddy yielder
19	Nadora Tall	India	1994	Local cultivar of Goa region
Table 2 Growth and reproductive attributes of coconut genotypes under Aliyarnagar condition

Genotypes	Palm height (m)	Trunk Girth (m)	No. of functional leaf/palm/year	Petiole length (m)	Length of leaflet bearing portion (m)	No. of inflorescence/palm/year
Arasampatti Tall (check)	14.43	1.05	33.50	1.06	4.40	12.20
Zanziber Tall	15.38	1.16	38.00	1.22	5.16	13.00
San Roman	14.57	1.04	38.00	1.37	5.19	13.02
Gonthembili	13.20	1.06	36.00	1.13	5.44	13.38
Java Tall	15.70	1.14	36.75	1.50	5.64	12.63
Federated Malay States (FMS)	15.44	1.26	35.50	1.26	5.62	12.37
British Solomon Island (BSI)	13.37	0.91	35.75	1.38	5.54	12.94
St. Vincent	12.31	1.07	34.50	1.44	5.35	12.29
Malayan Green Dwarf (MGD)	14.40	1.03	37.00	1.36	4.77	12.67
Tiptur Tall	9.51	0.85	29.25	1.09	4.59	11.56
Guam	7.59	0.97	29.55	1.20	4.60	12.56
Ceylon Tall	11.33	0.99	38.25	1.30	5.59	13.39
Jamaica Tall	8.56	0.96	36.75	1.18	4.17	12.50
Seychelles Tall	10.44	0.97	36.25	1.40	4.51	14.16
Laccadive Ordinary (LO)	11.36	1.10	35.75	1.43	5.24	13.80
East Coast Tall (ECT)	10.58	0.78	38.00	1.17	5.74	13.27
Andaman Giant (AG)	12.04	1.26	37.50	1.43	5.82	13.14
Cochin China (CC)	9.81	1.06	37.00	1.37	5.10	12.79
Nadora Tall	11.85	1.14	31.50	1.53	5.84	13.57
Mean	12.20	1.04	35.52	1.30	5.17	12.91
SE(d)	0.89	0.04	1.08	0.08	0.17	0.21
CD(P=0.05)	2.63	0.12	3.20	0.25	0.51	0.61
CV (%)	10.27	5.51	4.29	9.02	4.72	2.25
Table 3: Yield and nut quality characters of coconut genotypes under Aliyarnagar condition

Genotypes	No. of bunches/palm/yr	Nuts/palm/year	Whole nut wt. (g)	Dehusked nut wt. (g)	Husk wt. (g)	Kernel wt. (g)	Copra content (g)
Arasampatti Tall (check)	11.50	108.75	835.00	512.00	187.00	246.50	119.00
Zanziber Tall	12.75	107.50	1261.00	541.00	556.50	260.00	165.00
San Roman	12.17	80.25	1982.50	1225.00	677.50	485.00	254.50
Gonthembili	12.73	104.92	1279.00	556.50	482.50	260.50	178.00
Java Tall	12.42	118.17	1508.50	790.50	492.50	376.00	173.50
Federated Malay States (FMS)	11.88	100.83	1498.50	733.50	535.50	352.00	185.50
British Solomon Island (BSI)	11.69	98.50	1545.00	688.50	620.50	302.50	208.50
St. Vincent	11.50	114.25	1425.50	685.00	616.00	325.00	184.50
Malayan Green Dwarf (MGD)	11.81	111.25	1064.50	642.50	223.00	359.00	175.00
Tiptur Tall	10.13	67.25	972.50	566.50	323.50	269.50	151.50
Guam	11.33	99.17	1236.50	675.00	303.00	325.00	191.00
Ceylon Tall	12.98	119.33	1375.00	730.00	552.50	362.50	170.50
Jamaica Tall	11.67	131.92	1375.00	723.00	550.00	344.50	128.00
Seychelles Tall	13.36	211.50	1130.00	644.00	387.50	318.50	216.00
Laccadive Ordinary (LO)	12.87	137.50	1217.75	618.00	437.50	300.50	154.50
East Coast Tall (ECT)	13.05	127.42	1329.00	743.00	406.50	281.00	145.50
Andaman Giant (AG)	12.58	117.50	1999.50	1323.00	489.50	510.00	390.50
Cochin China (CC)	11.75	153.67	990.00	519.00	375.00	232.50	142.50
Nadora Tall	12.75	125.50	1219.50	640.00	460.00	316.50	180.00
Mean	12.15	117.64	1328.64	713.47	456.63	327.74	184.92
SE(d)	0.13	8.55	60.60	37.90	54.31	18.88	17.96
CD(P=0.05)	0.40	25.40	180.06	112.61	56.09	53.38	
CV (%)	1.56	10.28	6.45	7.51	16.82	8.15	13.74
A wide variation was observed for nut yield and nut characters among the coconut genotypes (Table 3). The maximum number of bunches per palm per year was recorded by Seychelles Tall (13.36) followed by East Coast Tall (13.05) compared to minimum values recorded by Tiptur Tall (10.13). Significantly highest pooled nut yield per palm per year was recorded by Seychelles Tall (211.50 nuts) compared to lowest recorded by Tiptur Tall (67.25 nuts). The genotypes Andaman Giant recorded higher nut characters viz., whole nut weight (1999.50 g) and dehusked nut weight (1323.00 g), kernel weight (510.00 g) and copra content (390.50 g) followed by San Ramon (1982.50 g, 1225.00 g, 485.00 g and 254.50 g, respectively) compared to lowest recorded by Arasampatti Tall (835.00 g, 512.00 g, 246.50 g and 119.00 g, respectively). However, the highest husk weight (677.50 g) was recorded by San Roman, on par with BSI (620.50 g) and St. Vincent (616.00 g) compared to lowest recorded by Arasampatti Tall (187.00 g). The maximum number of nut yield may be due to the increased production of inflorescence per palm per year and number of functional leaves per year which might have contributed higher photosynthetic accumulation towards the reproductive phase. Higher copra content might be due to the higher yield and higher kernel weight. Jayabose et al., (2008) reported that among ten Coconut tall cultivars Cochin China Tall (CCT) showed the high kernel weight followed by Philippines Ordinary Tall (PHOT). In the present investigation results are in agreement with Jerard (2002); Basavaraju et al., (2011); Suchitra (2014) and Ramanandam et al., (2017).

Though the number of nut was maximum in genotypes Seychelles Tall but considering to the quantitative and qualitative characters it revealed that genotypes Andaman Giant showed significantly higher quantitative and qualitative characters compared to other genotypes. Hence, the study concluded that the genotype Andaman Giant is considered to be more suitable for further crop improvement programme under Aliyarnagar condition.

References

APCC. 2015. Compiled from information provided by APCC member countries, FAO Production Yearbooks and NSO. pp. 1-2.

Gomez, K. A. and A. A. Gomez. 1984. Statistical Procedures for Agricultural Research, 2nd Edition. John Wiley and Sons, New York.

Jayabose, C., S. Ganesh, K. V. Mohanan and S. Arulraj. 2008. Estimation of heterosis of economical importance of coconut. J. Plantation Crops, 36(3): 151-154.

Jayalakshmy, V. G. and S. R. SreeRangasamy. 2002. Morphological variability in coconut cultivars. Madras Agric. J., 89: 154.

Jerard, A. B. 2002. Studies on the mean performance, variability, association analysis, stability and diversity in coconut (Cocos nucifera L.) genotypes. Ph.D. Thesis submitted to Tamil Nadu Agricultural University, Coimbatore, India.

Nampoothiri, K. U. K., H. P. Singh, S. Arulraj and C. Thamban. 2000. Coconut cultivation technology. Coconut Development Board, Kochi.

Perera, S. A. C. N. and G. K. Ekanayake. 2008. “Characterization of Sri Lankan indigenous coconut (Cocos nucifera L.) varieties for diversity in quantitative morphology,” Tropical Agriculturist, 157: 25–42.

Ramanandam, G., K. Ravindra Kumar, E. Padma, M. Kalpana and H. P. Maheswarappa. 2017. Potential coconut (Cocos nucifera) hybrids for yield and
quality for coastal region of Andhra Pradesh (India). Indian J. Agric. Sci., 87 (8): 1073-1076.

Suchithra, M. 2014. Studies on performance of certain indigenous and exotic coconut genotypes (Cocos nucifera L.). M.Sc. Thesis submitted to Tamil Nadu Agricultural University, Coimbatore, India.

How to cite this article:

Tripura, U., P. Paramaguru, J. Suresh, N. Kumaravadivel, A. Subramanian and Shoba, N. 2018. Performance of Indigenous and Exotic Coconut Germplasm for Yield and Nut Quality under Aliyarnagar Condition. Int.J.Curr.Microbiol.App.Sci. 7(02): 2611-2617. doi: https://doi.org/10.20546/ijcmas.2018.702.318