A peer-reviewed version of this preprint was published in PeerJ on 11 December 2017.

View the peer-reviewed version (peerj.com/articles/4099), which is the preferred citable publication unless you specifically need to cite this preprint.

Šochová E, Husník F, Nováková E, Halajian A, Hypša V. (2017) Arsenophonus and Sodalis replacements shape evolution of symbiosis in louse flies. PeerJ 5:e4099 https://doi.org/10.7717/peerj.4099
Arsenophonus and Sodalis replacements shape evolution of symbiosis in louse flies

Eva Šochová¹, Filip Husník²,³, Eva Nováková¹,³, Ali Halajian⁴, Václav Hypša¹,³

¹Department of Parasitology, University of South Bohemia, České Budějovice, Czech Republic
²Department of Molecular Biology, University of South Bohemia, České Budějovice, Czech Republic
³Institute of Parasitology, Biology Centre, ASCR, v.v.i., České Budějovice, Czech Republic
⁴Department of Biodiversity, University of Limpopo, Sovenga 0727, South Africa

Corresponding author:

Eva Šochová¹

Email address: sochova.e@seznam.cz

¹ Present address: University of British Columbia, Vancouver, British Columbia, Canada
Abstract

Symbiotic interactions between insects and bacteria are ubiquitous and form a continuum from loose facultative symbiosis to greatly intimate and stable obligate symbiosis. In blood-sucking insects living exclusively on vertebrate blood, obligate endosymbionts are essential for hosts and hypothesized to supplement B-vitamins and cofactors missing from their blood diet. The role and distribution of facultative endosymbionts and their evolutionary significance as seeds of obligate symbioses are much less understood. Here, using phylogenetic approaches, we focus on the Hippoboscidae phylogeny as well as the stability and dynamics of obligate symbioses within this bloodsucking group. In particular, we demonstrate a new potentially obligate lineage of Sodalis co-evolving with the Olfersini subclade of Hippoboscidae. We also show several likely facultative Sodalis lineages closely related to Sodalis praecaptivus (HS strain) and suggest repeated acquisition of novel symbionts from the environment. Similar to Sodalis, Arsenophonus endosymbionts also form both obligate endosymbiotic lineages co-evolving with their hosts (Ornithomyini and Ornithoica groups) as well as possibly facultative infections incongruent with the Hippoboscidae phylogeny. Finally, we reveal substantial diversity of Wolbachia strains detected in Hippoboscidae samples falling into three supergroups: A, B, and the most common F. Altogether, our results prove the associations between Hippoboscoidea and their symbiotic bacteria to undergo surprisingly dynamic, yet selective, evolutionary processes strongly shaped by repeated endosymbiont replacements. Interestingly, obligate symbionts only originate from two endosymbiont genera, Arsenophonus and Sodalis, suggesting that the host is either highly selective about its future obligate symbionts or that these two lineages are the most competitive when establishing symbioses in louse flies.

Background
Symbiotic associations are widespread among animals and bacteria and often considered to undergo a common evolution as a holobiont (Zilber-Rosenberg & Rosenberg, 2008). The host and symbiont are either fully dependent on each other for reproduction and survival (obligate symbiosis) or not (facultative symbiosis), but in reality, there is a gradient of such interactions (Moran, McCutcheon & Nakabachi, 2008). Any establishment of a symbiotic association brings not only advantages, but also several challenges to both partners. Perhaps the most crucial is that after entering the host, the endosymbiont genome tends to decay due to population genetic processes affecting asexual organisms with small effective population sizes (Moran, 1996) and the host is becoming dependent on such a degenerating symbiont (Koga et al. 2007; Pais et al. 2008). Since symbionts are essential for the host, the host can try to escape from this evolutionary 'rabbit hole' by an acquisition of novel symbionts or via endosymbiont replacement and supplementation (Bennett & Moran, 2015). This phenomenon, known in almost all insect symbiotic groups, was especially studied in the sap-feeding group Hemiptera (Sudakaran, Kost & Kaltenpoth, 2017), while only few studies were performed from blood-sucking groups.

Blood-sucking insects, living exclusively on vertebrate blood, such as sucking lice (Allen et al. 2007; Hypša & Křížek 2007; Fukatsu et al. 2009; Allen et al. 2016), bed bugs (Hypša & Aksoy, 1997; Hosokawa et al., 2010; Nikoh et al., 2014), kissing bugs (Ben-Yakir 1987; Beard et al. 1992; Hypša & Dale 1997; Šorfová et al. 2008; Pachebat et al. 2013), tsetse flies (Aksoy, 1995; Dale & Maudlin, 1999), bat flies (Trowbridge, Dittmar & Whiting, 2006; Hosokawa et al., 2012; Wilkinson et al., 2016), and louse flies (Trowbridge et al. 2006; Nováková & Hypša 2007; Chrudimský et al. 2012) have established symbiotic associations with bacteria from different lineages, mostly α-proteobacteria (Hosokawa et al., 2010) and γ-proteobacteria (Aksoy 1995; Hypša & Aksoy 1997; Hypša & Dale 1997; Dale et al. 2006; Allen et al. 2007; Hypša & Křížek 2007; Nováková & Hypša 2007; Chrudimský et al. 2012;
Hosokawa et al. 2012; Wilkinson et al. 2016). Obligate symbionts of these blood-sucking hosts are hypothesized to supplement B-vitamins and cofactors missing from their blood diet or present at too low concentration (Akman et al., 2002; Kirkness et al., 2010; Rio et al., 2012; Nikoh et al., 2014; Nováková et al., 2015; Boyd et al., 2016, 2017), but experimental evidence supporting this hypothesis is scarce (Hosokawa et al., 2010; Nikoh et al., 2014; Michalkova et al., 2014; Snyder & Rio, 2015). The role played by facultative bacteria in blood-sucking hosts is even less understood, with metabolic or protective function as the two main working hypotheses (Geiger et al., 2005, 2007; Toh et al., 2006; Belda et al., 2010; Snyder et al., 2010; Weiss et al., 2013).

Due to their medical importance, tsetse flies (Diptera, Glossinidae) belong to the most frequently studied models of such symbioses (International Glossina Genome Initiative 2014). They harbour three different symbiotic bacteria: obligate symbiont Wigglesworthia glossinidia which is essential for the host survival (Pais et al., 2008), facultative symbiont Sodalis glossinidius which was suggested to cooperate with Wigglesworthia on thiamine biosynthesis (Belda et al., 2010), and reproductive manipulator Wolbachia (Pais et al., 2011). Considerable amount of information has till now been accumulated on the distribution, genomics and functions of these bacteria (Akman et al., 2002; Toh et al., 2006; Rio et al., 2012; Balmand et al., 2013; Michalkova et al., 2014; Snyder & Rio, 2015). In contrast to our understanding of tsetse fly symbioses, only scarce data are available on the symbioses in its closely related groups. Apart from Glossinidae, the superfamily Hippoboscoidea includes additional three families of obligatory blood-sucking flies, tightly associated with endosymbionts, namely Nycteribiidae, Streblidae, and Hippoboscidae. Monophyly of Hippoboscoidea has been confirmed by numerous studies (Nirmala, Hypša & Žurovec, 2001; Dittmar et al., 2006; Petersen et al., 2007; Kutty et al., 2010), but its inner topology has not been fully resolved. The monophyletic family Glossinidae is considered to be a sister group to the three remaining...
families together designated as Pupipara (Petersen et al., 2007). The two groups associated with bats probably form one branch, where Nycteribiidae seems to be monophyletic while monophyly of Streblidae was not conclusively confirmed (Dittmar et al., 2006; Petersen et al., 2007; Kutty et al., 2010). According to several studies, Hippoboscidae is regarded to be a monophyletic group with not well-resolved exact position in the tree (Nirmala, Hypša & Žurovec, 2001; Dittmar et al., 2006; Petersen et al., 2007). However, louse flies were also shown to be paraphyletic in respect to bat flies (Dittmar et al., 2006; Kutty et al., 2010).

Nycteribiidae, Streblidae (bat flies), and Hippoboscidae (louse flies) are often associated with Arsenophonus bacteria (Trowbridge, Dittmar & Whiting, 2006; Dale et al., 2006; Nováková, Hypša & Moran, 2009; Morse et al., 2013; Duron et al., 2014). In some cases, these symbionts form clades of obligate lineages coevolving with their hosts, but some of Arsenophonus lineages are likely representing loosely associated facultative symbionts spread horizontally across the population (Nováková, Hypša & Moran, 2009; Morse et al., 2013; Duron et al., 2014). Bat flies and louse flies are also commonly infected with Bartonella spp. (Halos et al., 2004; Morse et al., 2012b). Wolbachia infection was found in all Hippoboscoidea groups (Pais et al., 2011; Hosokawa et al., 2012; Morse et al., 2012a; Nováková et al., 2015).

Moreover, several Hippoboscidae species were also found to harbour distinct lineages of Sodalis-like bacteria (Dale et al. 2006; Nováková & Hypša 2007; Chrudimský et al. 2012) likely representing similar facultative-obligatory gradient of symbioses as observed for Arsenophonus.

Hippoboscoidea thus represent a group of blood-sucking insects with strikingly dynamic symbioses. Obligate symbionts from Arsenophonus and Sodalis clades tend to come and go, disrupting the almost flawless host-symbiont co-phylogenies often seen in insect-bacteria systems. However, why are the endosymbiont replacements so common and what keeps the symbiont consortia limited to the specific bacterial clades remains unknown.
flies as medically important vectors of pathogens are undoubtedly the most studied Hippoboscoidea lineage. However, their low species diversity (22 species), sister relationship to all other clades, and host specificity to mammals, do not allow to draw any general conclusions about the evolution of symbiosis in Hippoboscoidea. To fully understand the symbiotic turn-over, more attention needs to be paid to the neglected Nycteribiidae, Streblidae, and Hippoboscidae lineages. Here, using gene sequencing and draft genome data from all involved partners, we present phylogenies of Hippoboscidae and their symbiont lineages and try to untangle their relationship to the host. In particular, we ask if these are obligate co-evolving lineages, facultative infections, or if they likely represent recent symbiont replacements just re-starting the obligate relationship.

Methods

Sample collection and DNA isolation

Samples of louse flies were collected in seven countries (South Africa, Papua New Guinea, Ecuador – Galapagos, Vietnam, France, Slovakia, and the Czech Republic; see Table S1 for details), the single sample of bat fly was collected in the Czech Republic. All samples were stored in 96% ethanol at -20°C. DNA was extracted using the QIAamp DNA Micro Kit (Qiagen; Hilden, Germany) according to the manufacturer’s protocol. DNA quality was verified using the Qubit High Sensitivity Kit (Invitrogen) and 1% agarose gel electrophoresis.

PCR, cloning, and sequencing

All DNA samples were used for amplification of three host genes (COI, 16S rRNA gene, EF) and symbiont screening with 16S rRNA gene primers (Table S2). Ten Wolbachia positive samples were used for MLST typing (coxA, fbpA, ftsZ, gatB, hcpA; see Table S2). PCR reaction was performed under standard conditions using High Fidelity PCR Enzyme Mix (Thermo Scientific) and Hot Start Tag DNA Polymerase (Qiagen) according to the
manufacturer’s protocol. PCR products were analysed using 1% agarose gel electrophoresis and all symbiont 16S rDNA products were cloned into pGEM®–T Easy vector (Promega) according to the manufacturer’s protocol. Inserts from selected colonies were amplified using T7 and SP6 primers or isolated from plasmids using the Plasmid Miniprep Spin Kit (Jetquick). Sanger sequencing was performed by an ABI Automatic Sequencer 3730XL (Macrogen Inc., Geumchun-gu-Seoul, Korea) or ABI Prism 310 Sequencer (SEQme, Dobříš, the Czech Republic).

In addition to sequencing, we also included in our analyses genomic data of *Melophagus ovinus* (Nováková et al., 2015), *Lipoptena cervi* (Nováková et al., 2016), *Ornithomya biloba*, and *Crataerina pallida* (E. Šochová unpublished data) as well as their endosymbionts (see Table S1).

Although there is MLST available for *Arsenophonus* bacteria (Duron, Wilkes & Hurst, 2010), we were not successful in amplifying these genes.

Alignments and phylogenetic analyses

The assemblies of raw sequences were performed in Geneious v8.1.7 (Kearse et al., 2012). Datasets were composed of the assembled sequences, extracted genomic sequences, sequences downloaded from GenBank (see Supplemental Table S4) or the *Wolbachia* MLST database. The sequences were aligned with Mafft v7.017 (Katoh, 2002; Katoh, Asimenos & Toh, 2009) implemented in Geneious using an E-INS-i algorithm with default parameters. The alignments were not trimmed as trimming resulted in massive loss of informative position. Phylogenetic analyses were carried out using maximum likelihood (ML) in PhyML v3.0 (Guindon & Gascuel, 2003; Guindon et al., 2009) and Bayesian inference (BI) in MrBayes v3.1.2 (Huelsenbeck & Ronquist, 2001). The *GTR+I+Γ* evolutionary model was selected in jModelTest (Posada, 2009) according to the Akaike Information Criterion (AIC). The subtree
pruning and regrafting (SPR) tree search algorithm and 100 bootstrap pseudoreplicates were used in the ML analyses. BI runs were carried out for 10 million generations with default parameters, and Tracer v1.6 (http://tree.bio.ed.ac.uk/software/tracer/) was used for convergence and burn-in examination. Phylogenetic trees were visualised and rooted in FigTree v1.4.2 (http://tree.bio.ed.ac.uk/software/figtree/) and their final graphical adjustments were performed in Inkscape v0.91 (https://inkscape.org/en/).

Host phylogeny was reconstructed using single-gene analyses and a concatenated matrix of three genes (mitochondrial 16S rRNA, mitochondrial cytochrome oxidase I, and nuclear elongation factor). Concatenation of genes was performed in Phyutility 2.2.6 (Smith & Dunn, 2008). Phylogenetic trees were inferred for all species from the Hippoboscoidea superfamily, as well as for smaller datasets comprising only Hippoboscidae species. This approach was employed to reveal possible artefacts resulting from missing data and poor taxon-sampling (e.g. short, ~ 360 bp, sequences of COI available for Streblidae and Nycteribiidae).

Mitochondrial genomes

Problems with reconstruction of host phylogeny based on mitochondrial genes (16S and COI) lead us to assemble mitochondrial genomes of four main louse fly lineages. Contigs of mitochondrial genomes were identified in genomic data of M. ovinus, L. cervi, O. biloba, and C. pallida using BLASTn and tBLASTn searches (Altschul et al., 1990). Open reading frame identification and preliminary annotations were performed using NCBI BlastSearch in Geneious. For identification of Numts, raw sequences were mapped to mitochondrial data using Bowtie v2.2.3 (Langmead & Salzberg, 2012). Web annotation server MITOS (http://mitos.bioinf.uni-leipzig.de/) was used for final annotation of proteins and rRNA/tRNA genes. We selected 15 mitochondrial genes (Table S4) present in all included taxa for phylogenetic inference as described above.
Results

Phylogenetic data

We obtained 134 host sequences: 31 sequences of 16S rRNA of 370 - 545 bp, 47 sequences of EF of 207 - 922 bp, and 56 sequences of COI of 299 - 1,522 bp; and 70 symbiont 16S rRNA sequences of 777 - 1,589 bp. We also assembled and annotated 4 host mitochondrial genomes of 15,975 – 16,445 bp. For more details see Supplemental Table S3. All raw sequences can be found online in Supplemental Data S1 (their description is included in Supplemental Table S6).

Hippoboscidae phylogeny

We reconstructed host phylogeny using three markers: 16S rRNA, EF and COI; as well as mitochondrial genomes. Our analyses of draft genome data revealed that all analysed mitochondrial genomes of louse flies are also present as Numts (nuclear mitochondrial DNA) on the host chromosomes, especially the COI gene often used for phylogenetic analyses. The taxonomically restricted mitochondrial genome matrix verified monophyly of Hippoboscoidea (Supplemental Figure Fig. S1). Our three-gene dataset yielded only partially resolved and unstable inner Hippoboscoidea phylogeny. Glossinidae and Nycteribiidae formed a well-defined monophyletic groups (only ML analysis of COI did not confirm monophyly of Nycteribiidae and also did not resolve its relationship to Streblidae), but monophyly of Hippoboscidae and Streblidae was not well supported and different genes/analyses frequently inferred contradictory topologies. Within Hippoboscidae, the position of the Hippoboscinae group and the genus Ornithoica were the most problematic (Fig. 1, Supplemental Figures Fig. S2-8).

Arsenophonus and Sodalis phylogenies
In total, 72 endosymbiont 16S rRNA genes were sequenced in this study and six additional sequences of this gene were mined from our draft genomic data: four of Arsenophonus, one of Sodalis, and one of Wolbachia. Twenty eight symbionts were identified as members of the genus Arsenophonus, 13 symbionts were the most similar to Sodalis-allied species, and 31 sequences were of Wolbachia origin. Despite of cloning, we did not obtain any sequences of Bartonella reported to occur in some Hippoboscoidea. Moreover, using only phylogenetic approach, we would not be able to decide whether Bartonella-Hippoboscidae interaction is mutualistic or pathogenic, therefore Bartonella symbiosis is not in the scope of this manuscript.

Putative assignment to the obligate or likely facultative symbiont categories was based on GC content of their 16S rRNA gene and genomic data available (Supplemental Table S3), branch length, and the phylogenetic analyses.

Phylogenetic analyses of the genus Arsenophonus based on 16S rDNA sequences revealed several distinct clades of likely obligate Arsenophonus species congruent with their host phylogeny, partially within the Nycteribiidae, Streblidae, and several Hippoboscidae lineages (Fig. 2, Supplemental Figures Fig. S9 and Fig. S10). However, it is important to note that these clades do not form a single monophyletic clade of co-diverging symbionts, but rather several separate lineages. Within Hippoboscidae, the Arsenophonus sequences from the Ornithomyini group form a monophyletic clade congruent with Ornithomyini phylogeny. With the exception of Arsenophonus symbiont of Crataerina spp. which was probably recently replaced by another Arsenophonus bacteria. Other obligate Arsenophonus lineages were detected in the genera Lipoptena, Melophagus, and Ornithoica. All other Arsenophonus sequences from the Hippoboscidae either represent facultative symbionts or putatively obligate symbioses which are impossible to reliably detect by phylogenetic methods (but see the discussion for Hippobosca sp.).
Most of the putatively facultative endosymbionts of the Hippoboscidae typically possess short branches and are also related with the previously described species *Arsenophonus arthropodicus* and *Arsenophonus nasoniae*. Interestingly, both obligate and likely facultative lineages were detected from several species, e.g. *Ornithomya biloba*, *Ornithomya avicularia*, and *Ornithomya fringillina* (Fig. 2). Phylogenetic analyses including symbionts from the genera *Nycterophylia* and *Trichobius* did not clearly place them into the *Arsenophonus* genus. Rather, they likely represent closely related lineages to the *Arsenophonus* clade as their position was unstable and changed with different taxon samplings and methods.

Within *Sodalis*, the phylogenetic reconstruction revealed a putatively obligate endosymbiont from the tribe Olfersini, including the genera *Pseudolynchia* and *Icosta*, and several facultative lineages. However, co-evolution with *Icosta* sp. seems to be imperfect and does not strictly follow the host phylogeny (Fig. 3).

Wolbachia **MLST analysis**

In *Wolbachia*, the 16S rDNA sequences were used only for an approximate supergroup determination (Fig. 4). The MLST analysis was performed with ten selected species (one of them was obtained from genomic data of *O. biloba*; see Table S3). Overall prevalence of *Wolbachia* in louse flies is 54.55%; 30 positive individuals out of 55 diagnosed. The supergroup A was detected from 4 species (4 individuals), the supergroup B from 5 species (9 individuals), and the supergroup F from 7 species (17 individuals) (Fig. 4). Additionally, *Nycteribia kolenatii* (one individual) was infected with the supergroup F.

Discussion

Hippoboscidae phylogeny: an unfinished portrait
Although closely related to the medically important tsetse flies, the other hippoboscoids have only rarely been studied and their phylogeny is still unclear. Based on our concatenated matrix, we obtained the topology which to some extent resembles the one presented Petersen et al. (2007), although with slightly different taxon sampling (Fig. 1; Supplemental Figure Fig S2).

However, our three single-gene datasets implied only poor phylogenetic signal available carried by the hippoboscoid sequences. Therefore, we took an advantage of the four complete mitochondrial genomes reconstructed in this study to test the reliability of the previous phylogenetic reconstructions. The phylogenetic reconstruction based on the mitochondrial matrix correspond to the three-gene concatenated matrix phylogeny suggesting that mitochondrial genomes would be valuable for further phylogenetic analyses of this group (Fig. 1; Supplemental figure Fig. S1). According to our results, Glossinidae, Nycteribiidae and Hippoboscidae were retained as monophyletic groups, but monophyly of Streblidae was not supported using the complete matrix (Supplemental Figure Fig. S2). Streblidae lineage appears to be paraphyletic with respect to Nycteribiidae and clusters into two groups, the Old World and the New World species, as previously reported (Dittmar et al., 2006; Kutty et al., 2010).

Within Hippoboscidae, the groups Lipopteninae, Hippoboscinae, Ornithomyini and Olfersini (nomenclature was adopted from Petersen et al. (2007)) are well-defined and monophyletic, but their exact relationships are still not clear. The most problematic taxa are Hippoboscinae and also the genus Ornithoica with their positions depending on the used genes/analyses (Fig. 1; Supplemental figures Fig. S2-8). A possible explanation for these inconsistencies in the topologies can be a hypothetical rapid radiation from the ancestor of Hippoboscoidea group into main subfamilies of Hippoboscidae leaving in the sequences only very weak phylogenetic signal for this period of Hippoboscidae evolution. The most difficulties in reconstructing Hippoboscoidea phylogeny is caused by missing data (only short sequences of COI are available especially for Nycteribiidae and Streblidae in the GenBank; Supplemental Figure Fig.
Moreover, COI phylogenies are known to be affected by numerous pseudogenes called Numts (Black IV & Bernhardt 2009). The Numts, we found to be common in louse fly genomes, can thus also contribute to the intricacy of presented phylogenies. On the other hand, EF seems to provide plausible phylogenetic information (Supplemental Figure Fig. S4). The biggest drawback of this marker however lies in the data availability in public databases, restricting an appropriate taxon sampling for the Hippoboscoidea superfamily.

Hidden endosymbiont diversity within the Hippoboscidae family

Among the three most commonly detected Hippoboscidae endosymbionts, attention has been predominantly paid to *Arsenophonus* as the supposedly most common obligate endosymbiont of this group. Our data show that several different lineages of *Arsenophonus* have established the symbiotic lifestyle within Hippoboscidae (Fig. 2). According to our results supported by genomic data, there are at least four lineages of likely obligate endosymbionts: *Arsenophonus* in Ornithomyini (genomes of *Arsenophonus* from *Ornithomya biloba* and *Crataerina pallida* will be published elsewhere), *Arsenophonus* in *Ornithoica* spp., previously described *Arsenophonus melophagi* (Nováková et al., 2015) and *Arsenophonus lipopteni* (Nováková et al., 2016). All these possess reduced genomes with low GC content as a typical feature of obligate endosymbionts (McCutcheon & Moran, 2012). Interestingly, within Ornithomyini, the original obligate *Arsenophonus* endosymbiont of *Crataerina* spp. was recently replaced by another *Arsenophonus* bacterium with ongoing genome reduction (E. Šochová unpublished data). Apart from these potentially obligate lineages, there are other hippoboscid associated *Arsenophonus* bacteria distributed in the phylogenetic tree among *Arsenophonus* endosymbionts with likely facultative or free-living lifestyle (Supplemental Figure Fig. S10). This pattern suggests *Arsenophonus* is likely being repeatedly acquired from the environment. It has been hypothesized that obligate endosymbionts often evolve from facultative symbionts
which are no longer capable of horizontal transmission between the hosts (Moran, McCutcheon & Nakabachi, 2008). Due to their recent change of lifestyle, endosymbionts with an ongoing genome reduction in many ways resemble facultative symbionts, e.g. their positions in phylogenetic trees are not stable and differ with the analysis method and taxon sampling (Fig. 2, Supplemental Figures Fig. S9 and S10). Such nascent stage of endosymbiosis was indicated for the obligate Arsenophonus endosymbiont of C. pallida (E. Šochová unpublished data) and similar results can be expected for Arsenophonus endosymbionts of Hippobosca species.

Within bat flies, we found obligate Arsenophonus lineages in both Nycteribiidae and Streblidae as well as several presumably facultative Arsenophonus infections in both groups (Supplemental Figures Fig. S9 and S10). Similar results were reported in several previous studies (Morse et al., 2013; Duron et al., 2014; Wilkinson et al., 2016). Members of the Arsenophonus clade were also reported from Nycterophyllinae and Trichobiinae (Streblidae) (Morse et al., 2012a) and Cyclopodia dubia (Nycteribiidae) (Wilkinson et al., 2016). However, our results do not support their placement within the clade, as these sequences were attracted by the long branches in the ML analyses. The endosymbiont of Nycterophyllinae and Trichobiinae probably represents an ancient lineage closely related to Arsenophonus clade (Supplemental Figure Fig. S9) while the endosymbiont of Cyclopodia dubia is more likely related with Pectobacterium spp.; therefore, we excluded this bacterium from our further analyses. These findings indicate that bat flies established the endosymbiotic lifestyle several times independently with at least three bacterial genera.

In contrast to Arsenophonus, only a few studies reported Sodalis-like endosymbiotic bacteria from Hippoboscidae (Nováková & Hypša 2007; Chrudimský et al. 2012; Nováková et al. 2015). Dale et al. (2006) detected a putative obligate endosymbiont from Pseudolynchia
canariensis which was suggested to represent *Sodalis* bacterium. We detected this symbiont in several members of the Olfersini group and according to our results, it is obligate *Sodalis*-like endosymbiont forming a monophyletic clade, but its congruence with the Olfersini phylogeny is somewhat imperfect (Fig. 3). This incongruence might be a consequence of phylogenetic artefacts likely affecting long branches of *Sodalis* symbionts from *Icosta*. Similar to *Arsenophonus*, *Sodalis* bacteria also establish possible facultative associations, e. g. with *Melophagus ovinus* (Chrudimský et al., 2012; Nováková et al., 2015), *Ornithomya avicularia* (Chrudimský et al., 2012) or *Ornithomya biloba* (this study). *Sodalis* endosymbiont from *Crataerina melbae* was suggested to be obligate (Nováková & Hypša 2007), but our study did not support this hypothesis since it clusters with free-living *Sodalis praecaptivus*. Interestingly, *Sodalis* endosymbiont of *Microlynchia galapagoensis* was inferred to be closely related to *Sodalis*-like co-symbiont of *Cinara cedri*, which underwent rapid genome deterioration after a replacement of former co-symbiont (Meseguer et al., 2017). These results suggest that there are several loosely associated lineages of *Sodalis* bacteria in louse flies. On one hand, the endosymbiont of *Microlynchia galapagoensis* probably represents a separate (or ancient) *Sodalis* infection, but on the other hand, other *Sodalis* infections seem to be repeatedly acquired from the environment as implied by their relationship to e.g. *Sodalis praecaptivus* (Clayton et al., 2012) (Fig. 3).

Coinfections of obligate and facultative *Arsenophonus* strains in Hippoboscidae (or potentially *Sodalis* in Olfersini) are extremely difficult to recognize using only PCR-acquired 16S rRNA gene. Facultative endosymbionts retain several copies of this gene and thus their 16S rRNA tend to be amplified more likely in PCR than from reduced obligate endosymbionts due to its higher copy number and lower frequency of mutations in primer binding sites. Even though there is a MLST available for *Arsenophonus* bacteria (Duron, Wilkes & Hurst, 2010), it was
shown that it is effective only partially (Duron et al., 2014). Since our data are probably also
influenced by this setback, we do not speculate which of the detected potentially facultative
Arsenophonus lineages represent source of 'ancestors' for several distinct obligate lineages or
which of them were involved in the recent replacement scenario. However, the
replacement/independent-origin scenario is well illustrated by endosymbionts from Olfersini
(Fig. 2, Fig. 3).

To complement the picture of Hippoboscidae endosymbiosis, we also reconstructed Wolbachia
evolution. We found three different supergroups: A, B and F (see Table S3). Apparently, there
is no coevolution between Wolbachia and Hippoboscidae hosts suggesting horizontal
transmission between species (Fig. 4) as common for this bacterium (Schilthuizen &
Stouthamer, 1997; Gerth et al., 2014). Since Wolbachia seems to be one of the most common
donors of genes horizontally transferred to insect genomes, including tsetse flies (Husnik et al.
2013; Brelsfoard et al. 2014; Sloan et al. 2014), we cannot rule out that some of Wolbachia
sequences detected in this study represent HGT insertions into the respective host genomes.
The biological role of Wolbachia in Hippoboscidae was never examined in spite of its relatively
high prevalence in this host group (55%). The F supergroup was detected as the most frequent
lineage in Hippoboscidae which is congruent with its common presence in blood-sucking
insects such as Streblidae (Morse et al., 2012a), Nycteribiidae (Hosokawa et al., 2012),
Amblycera (Covacin & Barker, 2007), and Cimicidae (Hosokawa et al., 2010; Nikoh et al.,
2014).

Besides the three main Hippoboscidae symbionts we paid attention to, Bartonella spp. that are
also widespread among louse flies and bat flies. The infection seems to be fixed only in
Melophagus ovinus suggesting a mutualistic relationship (Halos et al., 2004), but additional
functional data are needed to confirm this hypothesis (Nováková et al., 2015). Nevertheless, deer ked and sheep ked are also suspected of vectoring bartonellosis (Maggi et al., 2009; de Bruin et al., 2015). According to the recent findings, Bartonella spp. used to be originally gut symbionts which adapted to pathogenicity (Hid Segers et al., 2016; Neuvonen et al., 2016).

What is behind dynamics of Hippoboscidae-symbiont associations?

According to our results, symbiosis in the Hippoboscidae group is very dynamic and influenced by frequent symbiont replacements. Arsenophonus and Sodalis infections seem to be the best resources for endosymbiotic counterparts, but it remains unclear why just these two genera. Both are endowed with several features of free-living/pathogenic bacteria enabling them to enter new host which can be crucial in establishing novel symbiotic association. Sodalis glossinidius possesses modified outer membrane protein (OmpA) which is playing an important role in the interaction with the host immune system (Weiss et al., 2008; Weiss, Maltz & Aksoy, 2012). Both Sodalis and Arsenophonus bacteria retain genes for the type III secretion system (Dale et al., 2001; Wilkes et al., 2010; Chrudimský et al., 2012; Oakeson et al., 2014) allowing pathogenic bacteria to invade eukaryotic cells. Moreover, several strains of these bacteria are cultivable under laboratory conditions (Hypša & Dale 1997; Dale & Maudlin 1999; Dale et al. 2006; Darby et al. 2010; Chrudimský et al. 2012; Chari et al. 2015) suggesting that they should be able to survive horizontal transmission. For instance, Arsenophonus nasoniae is able to spread by horizontal transfer between species (Duron, Wilkes & Hurst, 2010), while Sodalis-allied bacteria have several times successfully replaced ancient symbionts (Conord et al., 2008; Koga et al., 2013; Meseguer et al., 2017).

Whereas the facultative endosymbionts of Hippoboscoidea are widespread in numerous types of tissues such as milk glands, bacteriome, haemolymph, gut, fat body, and reproductive organs.
The obligate endosymbionts are restricted to the bacteriome and milk glands (Aksoy, 1995; Attardo et al., 2008; Balmand et al., 2013; Morse et al., 2013; Nováková et al., 2015). Entering the milk glands ensures vertical transmission of facultative endosymbiont to progeny and better establishment of the infection. Vertical transmission also enables the endosymbiont to hitch-hike with the obligate endosymbiont and because the obligate endosymbiont is inevitably degenerating (Moran, 1996; Wernegreen, 2002), the new co-symbiont can eventually replace it if needed. For instance, *Sodalis melophagi* was shown to appear in both milk glands and bacteriome and to code for the same full set of B-vitamin pathways (including in addition the thiamine pathway) as the obligate endosymbiont *Arsenophonus melophagi* (Nováková et al., 2015). This suggests that it could be potentially capable of shifting from facultative to obligatory lifestyle and replace the *Arsenophonus melophagi* endosymbiont.

We suggest that the complex taxonomic structure of the symbiosis in Hippoboscoidea can be result of multiple replacements, similar to that already suggested for the evolution of symbiosis in *Columbicola* lice (Smith et al., 2013) or mealybugs (Husnik & McCutcheon 2016). Based on the arrangement of the current symbioses in various species of Pupipara, the ancestral endosymbiont was likely either an *Arsenophonus* or *Sodalis* bacterium (given our finding of the potential obligate *Sodalis* lineage in Olfersini). In the course of Pupipara evolution and speciation, this symbiont was repeatedly replaced by different *Arsenophonus* (or *Sodalis* in Olfersini if not ancestral) lineages, as indicated by the lack of phylogenetic congruence and differences in genome reduction, gene order, and GC content in separate *Arsenophonus* lineages (Nováková et al. 2015, 2016; E. Šochová unpublished data). This genomic diversity across the *Arsenophonus* bacteria from distinct Hippoboscidae thus likely reflects their different age correlating with the level of genome reduction in symbiotic bacteria.
Conclusions

Despite the considerable ecological and geographical variability, the Hippoboscoidea families surprisingly share some aspects of their association with symbiotic bacteria. Particularly, they show high affinity to two bacterial genera, Arsenophonus and Sodalis. This affinity is not only reflected by frequent occurrence of the bacteria but mainly by their multiple independent acquisitions. Comparisons between the hippoboscid and bacterial phylogenies indicate several independent origins of the symbiosis, although more precise evolutionary reconstruction is still hampered by the uncertainties in hippoboscid phylogenies.

Acknowledgement

Ali Halajian thanks Prof. Wilmien J Luus-Powell (Biodiversity Research Chair, University of Limpopo) for support and Prof. Derek Engelbrecht for help with bird catching and identifications.

References

Akman L., Yamashita A., Watanabe H., Oshima K., Shiba T., Hattori M., Aksoy S. 2002. Genome sequence of the endocellular obligate symbiont of tsetse flies, Wigglesworthia glossinidia. Nature genetics 32:402–407. DOI: 10.1038/ng986.

Aksoy S. 1995. Wigglesworthia gen. nov. and Wigglesworthia glossinidia sp. nov., taxa consisting of the mycetocyte-associated, primary endosymbionts of tsetse flies. International journal of systematic bacteriology 45:848–51. DOI: 10.1099/00207713-45-4-848.

Allen JM., Burleigh JG., Light JE., Reed DL. 2016. Effects of 16S rDNA sampling on estimates of the number of endosymbiont lineages in sucking lice. PeerJ 4:e2187. DOI:
Allen JM., Reed DL., Perotti MA., Braig HR. 2007. Evolutionary relationships of “Candidatus Riesia spp.”, endosymbiotic enterobacteriaceae living within hematophagous primate lice. *Applied and environmental microbiology* 73:1659–64. DOI: 10.1128/AEM.01877-06.

Altschul SF., Gish W., Miller W., Myers EW., Lipman DJ. 1990. Basic local alignment search tool. *Journal of molecular biology* 215:403–10. DOI: 10.1016/S0022-2836(05)80360-2.

Attardo GM., Lohs C., Heddi A., Alam UH., Yildirim S., Aksoy S. 2008. Analysis of milk gland structure and function in *Glossina morsitans*: milk protein production, symbiont populations and fecundity. *Journal of insect physiology* 54:1236–42. DOI: 10.1016/j.jinsphys.2008.06.008.

Balmand S., Lohs C., Aksoy S., Heddi A. 2013. Tissue distribution and transmission routes for the tsetse fly endosymbionts. *Journal of Invertebrate Pathology* 112:S116–S122. DOI: 10.1016/j.jip.2012.04.002.

Beard CB., Mason PW., Aksoy S., Tesh RB., Richards FF. 1992. Transformation of an insect symbiont and expression of a foreign gene in the Chagas’ disease vector *Rhodnius prolixus*. *The American journal of tropical medicine and hygiene* 46:195–200.

Belda E., Moya A., Bentley S., Silva FJ. 2010. Mobile genetic element proliferation and gene inactivation impact over the genome structure and metabolic capabilities of *Sodalis glossinidius*, the secondary endosymbiont of tsetse flies. *BMC genomics* 11:449.

Ben-Yakir D. 1987. Growth retardation of *Rhodnius prolixus* symbionts by immunizing host against *Nocardia (Rhodococcus) rhodnii*. *Journal of Insect Physiology* 33:379–383. DOI: 10.1016/0022-1910(87)90015-1.

Bennett GM., Moran NA. 2015. Heritable symbiosis: The advantages and perils of an evolutionary rabbit hole. *Proceedings of the National Academy of Sciences* 112:201421388. DOI: 10.1073/pnas.1421388112.
Black IV WC., Bernhardt SA. 2009. Abundant nuclear copies of mitochondrial origin (NUMTs) in the Aedes aegypti genome. Insect molecular biology 18:705–13. DOI: 10.1111/j.1365-2583.2009.00925.x.

Boyd BM., Allen JM., Koga R., Fukatsu T., Sweet AD., Johnson KP., Reed DL. 2016. Two bacteria, Sodalis and Rickettsia, associated with the seal louse Proechinophthirus fluctus (Phthiraptera: Anoplura). Applied and environmental microbiology:AEM.00282-16-. DOI: 10.1128/AEM.00282-16.

Boyd BM., Allen JM., Nguyen N-P., Vachaspati P., Quicksall ZS., Warnow T., Mugisha L., Johnson KP., Reed DL. 2017. Primates, lice and bacteria: speciation and genome evolution in the symbionts of hominid lice. Molecular Biology and Evolution 15:521. DOI: 10.1093/molbev/msx117.

Brelsfoard C., Tsiamis G., Falchetto M., Gomulski LM., Telleria E., Alam U., Doudoumis V., Scolari F., Benoit JB., Swain M., Takac P., Malacrida AR., Bourtzis K., Aksoy S. 2014. Presence of extensive Wolbachia symbiont insertions discovered in the genome of its host Glossina morsitans morsitans. PLoS neglected tropical diseases 8:e2728. DOI: 10.1371/journal.pntd.0002728.

de Bruin A., van Leeuwen AD., Jahfari S., Takken W., Földvári M., Dremmel L., Sprong H., Földvári G. 2015. Vertical transmission of Bartonella schoenbuchensis in Lipoptena cervi. Parasites & vectors 8:176. DOI: 10.1186/s13071-015-0764-y.

Clayton AL., Oakeson KF., Gutin M., Pontes A., Dunn DM., von Niederhausern AC., Weiss RB., Fisher M., Dale C. 2012. A novel human-infection-derived bacterium provides insights into the evolutionary origins of mutualistic insect-bacterial symbioses. PLoS genetics 8:e1002990. DOI: 10.1371/journal.pgen.1002990.

Conord C., Despres L., Vallier A., Balmand S., Miquel C., Zundel S., Lemperiere G., Heddi A. 2008. Long-term evolutionary stability of bacterial endosymbiosis in curculionoidea:
additional evidence of symbiont replacement in the dryophthoridae family. *Molecular biology and evolution* 25:859–68. DOI: 10.1093/molbev/msn027.

Covacin C., Barker SC. 2007. Supergroup F *Wolbachia* bacteria parasitise lice (Insecta: Phthiraptera). *Parasitology research* 100:479–85. DOI: 10.1007/s00436-006-0309-6.

Dale C., Beeton M., Harbison C., Jones T., Pontes M. 2006. Isolation, pure culture, and characterization of “*Candidatus Arsenophonus arthropodicus,*” an intracellular secondary endosymbiont from the hippoboscid louse fly *Pseudolynchia canariensis*. *Applied and environmental microbiology* 72:2997–3004. DOI: 10.1128/AEM.72.4.2997-3004.2006.

Dale C., Maudlin I. 1999. *Sodalis* gen. nov. and *Sodalis glossinidius* sp. nov., a microaerophilic secondary endosymbiont of the tsetse fly *Glossina morsitans morsitans*. *International journal of systematic bacteriology* 49 Pt 1:267–75. DOI: 10.1099/00207713-49-1-267.

Dale C., Young SA., Haydon DT., Welburn SC. 2001. The insect endosymbiont *Sodalis glossinidius* utilizes a type III secretion system for cell invasion. *Proceedings of the National Academy of Sciences* 98:1883–1888. DOI: 10.1073/pnas.98.4.1883.

Darby AC., Choi J-H., Wilkes T., Hughes MA., Werren JH., Hurst GDD., Colbourne JK. 2010. Characteristics of the genome of *Arsenophonus nasoniae*, son-killer bacterium of the wasp *Nasonia*. *Insect molecular biology* 19 Suppl 1:75–89. DOI: 10.1111/j.1365-2583.2009.00950.x.

Dittmar K., Porter ML., Murray S., Whiting MF. 2006. Molecular phylogenetic analysis of nycteribiid and streblid bat flies (Diptera: Brachycera, Calyptratae): implications for host associations and phylogeographic origins. *Molecular phylogenetics and evolution* 38:155–70. DOI: 10.1016/j.ympev.2005.06.008.

Duron O., Schneppat UE., Berthomieu A., Goodman SM., Droz B., Paupy C., Nkoghe JO., Rahola N., Tortosa P. 2014. Origin, acquisition and diversification of heritable bacterial endosymbionts in louse flies and bat flies. *Molecular ecology* 23:2105–17. DOI:
Duron O., Wilkes TE., Hurst GDD. 2010. Interspecific transmission of a male-killing bacterium on an ecological timescale. Ecology Letters 13:1139–1148. DOI: 10.1111/j.1461-0248.2010.01502.x.

Fukatsu T., Hosokawa T., Koga R., Nikoh N., Kato T., Hayama S., Takefushi H., Tanaka I. 2009. Intestinal endocellular symbiotic bacterium of the macaque louse Pedicinus obtusus: distinct endosymbiont origins in anthropoid primate lice and the old world monkey louse. Applied and environmental microbiology 75:3796–9. DOI: 10.1128/AEM.00226-09.

Geiger A., Ravel S., Frutos R., Cuny G. 2005. Sodalis glossinidius (Enterobacteriaceae) and vectorial competence of Glossina palpalis gambiensis and Glossina morsitans morsitans for Trypanosoma congolense savannah type. Current microbiology 51:35–40. DOI: 10.1007/s00284-005-4525-6.

Geiger A., Ravel S., Mateille T., Janelle J., Patrel D., Cuny G., Frutos R. 2007. Vector competence of Glossina palpalis gambiensis for Trypanosoma brucei s.l. and genetic diversity of the symbiont Sodalis glossinidius. Molecular biology and evolution 24:1029. DOI: 10.1093/molbev/msl135.

Gerth M., Gansauge M-T., Weigert A., Bleidorn C. 2014. Phylogenomic analyses uncover origin and spread of the Wolbachia pandemic. Nature communications 5:5117. DOI: 10.1038/ncomms6117.

Guindon S., Delsuc F., Dufayard J-F., Gascuel O. 2009. Estimating Maximum Likelihood Phylogenies with PhyML. In: Posada D., ed. Bioinformatics for DNA sequence analysis. Totowa, NJ: Humana Press, 113–137. DOI: 10.1007/978-1-59745-251-9_6.

Guindon S., Gascuel O. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52:696–704. DOI:
Halos L., Jamal T., Maillard R., Girard J., Chomel B., Vayssier-Taussat M., Boulouis H-J. 2004. Role of Hippoboscidae flies as potential vectors of Bartonella spp. infecting wild and domestic ruminants. Applied and environmental microbiology 70:6302–5. DOI: 10.1128/AEM.70.10.6302-6305.2004.

Hid Segers F., Kešnerová L., Kosoy M., Engel P. 2016. Genomic changes associated with the evolutionary transition of an insect gut symbiont into a blood-borne pathogen. DOI: 10.1038/ismej.2016.201.

Hosokawa T., Koga R., Kikuchi Y., Meng X-Y., Fukatsu T. 2010. Wolbachia as a bacteriocyte-associated nutritional mutualist. Proceedings of the National Academy of Sciences of the United States of America 107:769–74. DOI: 10.1073/pnas.0911476107.

Hosokawa T., Nikoh N., Koga R., Satô M., Tanahashi M., Meng X-Y., Fukatsu T. 2012. Reductive genome evolution, host-symbiont co-speciation and uterine transmission of endosymbiotic bacteria in bat flies. The ISME journal 6:577–87. DOI: 10.1038/ismej.2011.125.

Huelsenbeck JP., Ronquist F. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755. DOI: 10.1093/bioinformatics/17.8.754.

Husník F., McCutcheon JP. 2016. Repeated replacement of an intrabacterial symbiont in the tripartite nested mealybug symbiosis. Proceedings of the National Academy of Sciences of the United States of America 113:E5416-24. DOI: 10.1073/pnas.1603910113.

Husník F., Nikoh N., Koga R., Ross L., Duncan RP., Fujie M., Tanaka M., Satoh N., Bachtrog D., Wilson ACC., Dohlen CD Von., Fukatsu T., McCutcheon JP. 2013. Horizontal Gene Transfer from Diverse Bacteria to an Insect Genome Enables a Tripartite Nested Mealybug Symbiosis. CELL 153:1567–1578. DOI: 10.1016/j.cell.2013.05.040.

Hypša V., Dale C. 1997. In vitro culture and phylogenetic analysis of “Candidatus
Arsenophonus triatominarum,” an intracellular bacterium from the triatomine bug, *Triatoma infestans*. *International journal of systematic bacteriology* 47:1140–4.

Hypša V., Aksoy S. 1997. Phylogenetic characterization of two transovarially transmitted endosymbionts of the bedbug *Cimex lectularius* (Heteroptera: Cimicidae). *Insect Molecular Biology* 6:301–304. DOI: 10.1046/j.1365-2583.1997.00178.x.

Hypša V., Křížek J. 2007. Molecular evidence for polyphyletic origin of the primary symbionts of sucking lice (Phthiraptera, Anoplura). *Microbial Ecology* 54:242–251. DOI: 10.1007/s00248-006-9194-x.

Chari A., Oakeson KF., Enomoto S., Jackson DG., Fisher MA., Dale C. 2015. Phenotypic characterization of *Sodalis praecaptivus* sp. nov., a close non-insect-associated member of the *Sodalis*-allied lineage of insect endosymbionts. *International journal of systematic and evolutionary microbiology* 65:1400–5. DOI: 10.1099/ijs.0.000091.

Chrudimský T., Husník F., Novákova E., Hypša V. 2012. *Candidatus* *Sodalis melophagi* sp. nov.: phylogenetically independent comparative model to the tsetse fly symbiont *Sodalis glossinidius*. *PloS one* 7:e40354. DOI: 10.1371/journal.pone.0040354.

International Glossina Genome Initiative IGG. 2014. Genome sequence of the tsetse fly (*Glossina morsitans*): vector of African trypanosomiasis. *Science (New York, N.Y.)* 344:380–6. DOI: 10.1126/science.1249656.

Katoh K. 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. *Nucleic Acids Research* 30:3059–3066. DOI: 10.1093/nar/gkf436.

Katoh K., Asimenos G., Toh H. 2009. Multiple alignment of DNA sequences with MAFFT. In: Posada D., ed. *Bioinformatics for DNA sequence analysis*. Totowa, NJ: Humana Press, 39–64. DOI: 10.1007/978-1-59745-251-9_3.

Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., Buxton S., Cooper A., Markowitz S., Duran C., Thierer T., Ashton B., Meintjes P., Drummond A. 2012.
Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. *Bioinformatics* 28:1647–1649. DOI: 10.1093/bioinformatics/bts199.

Kirkness EF., Haas BJ., Sun W., Braig HR., Perotti MA., Clark JM., Lee SH., Robertson HM., Kennedy RC., Elhaik E., Gerlach D., Kriventseva E V., Elsik CG., Graur D., Hill CA., Veenstra JA., Walenz B., Tubio JMC., Ribeiro JMC., Rozas J., Johnston JS., Reese JT., Popadic A., Tojo M., Raoult D., Reed DL., Tomoyasu Y., Kraus E., Krause E., Mittapalli O., Margam VM., Li H-M., Meyer JM., Johnson RM., Romero-Severson J., Vanzee JP., Alvarez-Ponce D., Vieira FG., Aguadê M., Guirao-Rico S., Anzola JM., Yoon KS., Strycharz JP., Unger MF., Christley S., Lobo NF., Seufferheld MJ., Wang N., Dasch GA., Struchiner CJ., Madey G., Hannick LI., Bidwell S., Joardar V., Caler E., Shao R., Barker SC., Cameron S., Bruggner R V., Regier A., Johnson J., Viswanathan L., Utterback TR., Sutton GG., Lawson D., Waterhouse RM., Venter JC., Strausberg RL., Berenbaum MR., Collins FH., Zdobnov EM., Pittendrigh BR. 2010. Genome sequences of the human body louse and its primary endosymbiont provide insights into the permanent parasitic lifestyle. *Proceedings of the National Academy of Sciences of the United States of America* 107:12168–73. DOI: 10.1073/pnas.1003379107.

Koga R., Bennett GM., Cryan JR., Moran NA. 2013. Evolutionary replacement of obligate symbionts in an ancient and diverse insect lineage. *Environmental microbiology* 15:2073–81. DOI: 10.1111/1462-2920.12121.

Koga R., Tsuchida T., Sakurai M., Fukatsu T. 2007. Selective elimination of aphid endosymbionts: effects of antibiotic dose and host genotype, and fitness consequences. *FEMS microbiology ecology* 60:229–39. DOI: 10.1111/j.1574-6941.2007.00284.x.

Kutty SN., Pape T., Wiegmann BM., Meier R. 2010. Molecular phylogeny of the Calyptratae (Diptera: Cyclorrhapha) with an emphasis on the superfamily Oestroidea and the position
of Mystacinobiidae and McAlpine’s fly. Systematic Entomology 35:614–635. DOI: 10.1111/j.1365-3113.2010.00536.x.

Langmead B., Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nature methods 9:357–9. DOI: 10.1038/nmeth.1923.

Maggi RG., Kosoy M., Mintzer M., Breitschwerdt EB. 2009. Isolation of Candidatus Bartonella melophagi from human blood. Emerging infectious diseases 15:66–8. DOI: 10.3201/eid1501.081080.

McCutcheon JP., Moran NA. 2012. Extreme genome reduction in symbiotic bacteria. Nature reviews. Microbiology 10:13–26. DOI: 10.1038/nrmicro2670.

Meseguer AS., Manzano-Marín A., Coeur d’Acier A., Clamens A-L., Godefroid M., Jousselin E. 2017. Buchnera has changed flatmate but the repeated replacement of co-obligate symbionts is not associated with the ecological expansions of their aphid hosts. Molecular Ecology 26:2363–2378. DOI: 10.1111/mec.13910.

Michalkova V., Benoit JB., Weiss BL., Attardo GM., Aksoy S. 2014. Vitamin B6 generated by obligate symbionts is critical for maintaining proline homeostasis and fecundity in tsetse flies. Applied and environmental microbiology 80:5844–53. DOI: 10.1128/AEM.01150-14.

Moran NA. 1996. Accelerated evolution and Muller’s rachet in endosymbiotic bacteria. Proceedings of the National Academy of Sciences 93:2873–2878. DOI: 10.1073/pnas.93.7.2873.

Moran NA., McCutcheon JP., Nakabachi A. 2008. Genomics and evolution of heritable bacterial symbionts. Annual review of genetics 42:165–90. DOI: 10.1146/annurev.genet.41.110306.130119.

Morse SF., Bush SE., Patterson BD., Dick CW., Gruwell ME., Dittmar K. 2013. Evolution, multiple acquisition, and localization of endosymbionts in bat flies (Diptera:
Morse SF., Dick CW., Patterson BD., Dittmar K. 2012a. Some like it hot: evolution and ecology of novel endosymbionts in bat flies of cave-roosting bats (Hippoboscoidea, Nycterophilinae). *Applied and environmental microbiology* 78:8639–49. DOI: 10.1128/AEM.02455-12.

Morse SF., Olival KJ., Kosoy M., Billeter S., Patterson BD., Dick CW., Dittmar K. 2012b. Global distribution and genetic diversity of *Bartonella* in bat flies (Hippoboscoidea, Streblidae, Nycteribiidae). *Infection, Genetics and Evolution* 12:1717–1723. DOI: 10.1016/j.meegid.2012.06.009.

Neuvonen M-M., Tamarit D., Näslund K., Liebig J., Feldhaar H., Moran NA., Guy L., Andersson SGE. 2016. The genome of Rhizobiales bacteria in predatory ants reveals urease gene functions but no genes for nitrogen fixation. *Scientific reports* 6:39197. DOI: 10.1038/srep39197.

Nikoh N., Hosokawa T., Moriyama M., Oshima K., Hattori M., Fukatsu T. 2014. Evolutionary origin of insect-*Wolbachia* nutritional mutualism. *Proceedings of the National Academy of Sciences* 111:10257–10262. DOI: 10.1073/pnas.1409284111.

Nirmala X., Hypša V., Žurovec M. 2001. Molecular phylogeny of Calyptratae (Diptera: Brachycera): the evolution of 18S and 16S ribosomal rDNAs in higher dipterans and their use in phylogenetic inference. *Insect molecular biology* 10:475–85.

Nováková E., Husník F., Šochová E., Hypša V. 2015. *Arsenophonus* and *Sodalis* symbionts in louse flies: an analogy to the *Wigglesworthia* and *Sodalis* system in tsetse flies. *Applied and environmental microbiology* 81:6189–99. DOI: 10.1128/AEM.01487-15.

Nováková E., Hypša V. 2007. A new *Sodalis* lineage from bloodsucking fly *Craterina melbae* (Diptera, Hippoboscoidea) originated independently of the tsetse flies symbiont *Sodalis*.
Nováková E., Hypša V., Moran NA. 2009. Arsenophorus, an emerging clade of intracellular symbionts with a broad host distribution. *BMC microbiology* 9:143. DOI: 10.1186/1471-2180-9-143.

Nováková E., Hypša V., Nguyen P., Husník F., Darby AC. 2016. Genome sequence of Candidatus Arsenophorus lipopteni, the exclusive symbiont of a blood sucking fly Lipoptena cervi (Diptera: Hippoboscidae). *Standards in Genomic Sciences* 11:1–7. DOI: 10.1186/s40793-016-0195-1.

Oakeson KF., Gil R., Clayton AL., Dunn DM., von Niederhausern AC., Hamil C., Aoyagi A., Duval B., Baca A., Silva FJ., Vallier A., Jackson DG., Latorre A., Weiss RB., Heddi A., Moya A., Dale C. 2014. Genome degeneration and adaptation in a nascent stage of symbiosis. *Genome biology and evolution* 6:76–93. DOI: 10.1093/gbe/evt210.

Pacebat JA., van Keulen G., Whitten MMA., Girdwood S., Del Sol R., Dyson PJ., Facey PD. 2013. Draft genome sequence of Rhodococcus rhodnii strain LMG5362, a symbiont of Rhodnius prolixus (Hemiptera, Reduviidae, Triatominae), the principle vector of Trypanosoma cruzi. *Genome announcements* 1:e00329-13. DOI: 10.1128/genomeA.00329-13.

Pais R., Balmand S., Takac P., Alam U., Carnogursky J., Brelsfoard C., Galvani A., Aksoy S., Medlock J., Heddi A., Lohs C. 2011. Wolbachia symbiont infections induce strong cytoplasmic incompatibility in the tsetse fly Glossina morsitans. *PLoS Pathogens* 7:e1002415. DOI: 10.1371/journal.ppat.1002415.

Pais R., Lohs C., Wu Y., Wang J., Aksoy S. 2008. The obligate mutualist Wigglesworthia glossinidia influences reproduction, digestion, and immunity processes of its host, the tsetse fly. *Applied and environmental microbiology* 74:5965–74. DOI:
Petersen FT., Meier R., Kutty SN., Wiegmann BM. 2007. The phylogeny and evolution of host choice in the Hippoboscoidea (Diptera) as reconstructed using four molecular markers. *Molecular phylogenetics and evolution* 45:111–22. DOI: 10.1016/j.ympev.2007.04.023.

Posada D. 2009. Selection of models of DNA evolution with jModelTest. In: Posada D., ed. *Bioinformatics for DNA sequence analysis*. Totowa, NJ: Humana Press, 93–112. DOI: 10.1007/978-1-59745-251-9_5.

Rio RVM., Symula RE., Wang J., Lohs C., Wu Y., Snyder AK., Bjornson RD., Oshima K., Biehl BS., Perna NT., Hattori M., Aksoy S. 2012. Insight into the transmission biology and species-specific functional capabilities of tsetse (Diptera: glossinidae) obligate symbiont Wigglesworthia. *mBio* 3:e00240-11-. DOI: 10.1128/mBio.00240-11.

Schilthuizen M., Stouthamer R. 1997. Horizontal transmission of parthenogenesis-inducing microbes in *Trichogramma* wasps. *Proceedings. Biological sciences / The Royal Society* 264:361–6. DOI: 10.1098/rspb.1997.0052.

Sloan DB., Nakabachi A., Richards S., Qu J., Murali SC., Gibbs RA., Moran NA. 2014. Parallel histories of horizontal gene transfer facilitated extreme reduction of endosymbiont genomes in sap-feeding insects. *Molecular biology and evolution* 31:857–71. DOI: 10.1093/molbev/msu004.

Smith SA., Dunn CW. 2008. Phyutility: a phyloinformatics tool for trees, alignments and molecular data. *Bioinformatics* 24:715–716. DOI: 10.1093/bioinformatics/btm619.

Smith WA., Oakeson KF., Johnson KP., Reed DL., Carter T., Smith KL., Koga R., Fukatsu T., Clayton DH., Dale C. 2013. Phylogenetic analysis of symbionts in feather-feeding lice of the genus Columbicola: evidence for repeated symbiont replacements. *BMC Evolutionary Biology* 13:1. DOI: 10.1186/1471-2148-13-109.

Snyder AK., Deberry JW., Runyen-Janecky L., Rio RVM. 2010. Nutrient provisioning
facilitates homeostasis between tsetse fly (Diptera: Glossinidae) symbionts. *Proceedings of the Royal Society of London B: Biological Sciences* 277:2389–97. DOI: 10.1098/rspb.2010.0364.

Snyder AK., Rio RVM. 2015. “*Wigglesworthia morsitans*” folate (Vitamin B9) biosynthesis contributes to tsetse host fitness. *Applied and environmental microbiology* 81:5375–86. DOI: 10.1128/AEM.00553-15.

Šorfová P., Škeříková A., Hypša V. 2008. An effect of 16S rRNA intercistronic variability on coevolutionary analysis in symbiotic bacteria: molecular phylogeny of *Arsenophonus triatominarum*. *Systematic and applied microbiology* 31:88–100. DOI: 10.1016/j.syapm.2008.02.004.

Sudakaran S., Kost C., Kaltenpoth M. 2017. Symbiont acquisition and replacement as a source of ecological innovation. *Trends in Microbiology* 25:375–390. DOI: 10.1016/j.tim.2017.02.014.

Toh H., Weiss BL., Perkin S a H., Yamashita A., Oshima K., Hattori M., Aksoy S. 2006. Massive genome erosion and functional adaptations provide insights into the symbiotic lifestyle of *Sodalis glossinidius* in the tsetse host. *Genome research* 16:149–156. DOI: 10.1101/gr.4106106.

Trowbridge RE., Dittmar K., Whiting MF. 2006. Identification and phylogenetic analysis of *Arsenophonus*- and *Photorhabdus*-type bacteria from adult Hippoboscidae and Streblidae (Hippoboscoidea). *Journal of invertebrate pathology* 91:64–8. DOI: 10.1016/j.jip.2005.08.009.

Weiss BL., Maltz MA., Aksoy S. 2012. Obligate symbionts activate immune system development in the tsetse fly. *Journal of immunology* 188:3395–403. DOI: 10.4049/jimmunol.1103691.

Weiss BL., Wang J., Maltz MA., Wu Y., Aksoy S. 2013. Trypanosome infection establishment...
in the tsetse fly gut is influenced by microbiome-regulated host immune barriers. *PLoS pathogens* 9:e1003318. DOI: 10.1371/journal.ppat.1003318.

Weiss BL., Wu Y., Schwank JJ., Tolwinski NS., Aksoy S. 2008. An insect symbiosis is influenced by bacterium-specific polymorphisms in outer-membrane protein A. *Proceedings of the National Academy of Sciences of the United States of America* 105:15088–93. DOI: 10.1073/pnas.0805666105.

Wernegreen JJ. 2002. Genome evolution in bacterial endosymbionts of insects. *Nature reviews.* Genetics 3:850–61. DOI: 10.1038/nrg931.

Wilkes TE., Darby AC., Choi J-H., Colbourne JK., Werren JH., Hurst GDD. 2010. The draft genome sequence of *Arsenophonus nasoniae*, son-killer bacterium of *Nasonia vitripennis*, reveals genes associated with virulence and symbiosis. *Insect molecular biology* 19 Suppl 1:59–73. DOI: 10.1111/j.1365-2583.2009.00963.x.

Wilkinson DA., Duron O., Cordonin C., Gomard Y., Ramasindrazana B., Mavingui P., Goodman SM., Tortosa P. 2016. The bacteriome of bat flies (Nycteribiidae) from the Malagasy region: a community shaped by host ecology, bacterial transmission mode, and host-vector specificity. *Applied and Environmental Microbiology*:AEM.03505-15. DOI: 10.1128/AEM.03505-15.

Zilber-Rosenberg I., Rosenberg E. 2008. Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. *FEMS microbiology reviews* 32:723–35. DOI: 10.1111/j.1574-6976.2008.00123.x.
Figure 1 Host phylogeny derived from concatenation of three genes: 16S rRNA, EF, and COI. The phylogeny was reconstructed by BI analysis. Posterior probabilities and bootstrap support are printed upon branches, respectively (asterisk was used for very low or missing bootstrap branch support). Taxa labelled with voucher are newly sequenced in this study. Genomic COI sequences are labelled with rRNA. Three smaller trees on the top of the figure represent outlines of three separate phylogenetic trees based on BI analyses of 16S rRNA, EF, and COI genes. Full versions of these phylogenies are included in Supplemental Figures (Fig. S6-8). Three main families of Hippoboscidae are colour coded: yellow for Lipopteninae (one group), brown for Hippoboscinae (one group), and orange for Ornithomiinae (three groups). Colour squares label branches where are placed main Hippoboscidae groups. This labelling corresponds with labelling of branches at smaller outlines, which are in addition to this highlighted with the same colour. All host trees are included in Supplemental Figures (Fig. S1-8).
Figure 2 16S rRNA phylogeny of *Arsenophonus* in Hippoboscidae inferred by BI analysis. Posterior probabilities and bootstrap support are printed upon branches, respectively (asterisk was used for very low or missing bootstrap branch support). Taxa labelled with voucher are newly sequenced in this study. Genomic sequences are labelled with rRNA. Taxa in dark purple represent *Arsenophonus* bacteria which genome was sequenced. Numbers behind these taxa correspond to their GC content of 16S rRNA, GC content of genome, and genome size, respectively. Numbers behind other taxa correspond to GC content of their 16S rRNA. Smaller picture on the right side represents host phylogeny to which symbiont phylogeny was compared. Red lineages correspond to obligate symbionts while orange lineage is symbiont of recent origin. Blue A represent likely facultative *Arsenophonus* infection.

To achieve this, we also used the information available on *groEL* gene by Morse et al. (2013) and Duron et al. (2014). Phylogenetic reconstructions of *Arsenophonus* of entire Hippoboscoidea and all *Arsenophonus* bacteria are included in Supplemental Figures (Fig. S9 and Fig. S10).

(on next page)
Figure 3 16S rRNA phylogeny of *Sodalis* in Hippoboscidae inferred by BI analysis. Posterior probabilities and bootstrap support are printed upon branches, respectively (asterisk was used for very low or missing bootstrap branch support). Taxa labelled with voucher are newly sequenced in this study. Taxa in dark purple represent *Sodalis*-like bacteria which genome was sequenced. Numbers behind these taxa correspond to their GC content of 16S rRNA, GC content of genome, and genome size, respectively. Numbers behind other taxa correspond to GC content of their 16S rRNA. Red lineages correspond to obligate symbionts while orange lineage is symbiont of recent origin. Red dashed line shows that co-evolution between *Icosta* spp. and their obligate endosymbiont imperfect.

(on next page)
Figure 4 *Wolbachia* phylogeny inferred from 16S rRNA and MLST genes by BI analysis. Posterior probabilities and bootstrap support are printed upon branches, respectively (asterisk was used for very low or missing bootstrap branch support). Colour letters upon branches correspond to *Wolbachia* supergroups. Taxa in red represent *Wolbachia* bacteria from Hippoboscidae and Nycteribidae which are newly sequenced in this study. Taxa labelled with # in the 16S tree represent taxa which were used for the MLST analysis. *Wolbachia* from *O. biloba*, which was obtained from genomic data, is labelled with rRNAob. Supergroup E was used for rooting both trees.

(on next page)
