Tumor-adjacent tissue co-expression profile analysis reveals pro-oncogenic ribosomal gene signature for prognosis of resectable hepatocellular carcinoma

Oleg V. Grinchuk1,†, Surya P. Yenamandra1,†, Ramakrishnan Iyer1, Malay Singh1,2, Hwee Kuan Lee1,2, Kiat Hon Lim3, Pierce Kah-Hoe Chow3,4,5 and Vladamir A. Kuznetsov1

1 Bioinformatics Institute, Singapore
2 Department of Computer Science, School of Computing, National University of Singapore, Singapore
3 Division of Surgical Oncology, National Cancer Centre, Singapore, Singapore
4 Office of Clinical Sciences, Duke-NUS Graduate Medical School, Singapore, Singapore
5 Department of HPB and Transplantation Surgery, Singapore General Hospital, Singapore

Keywords
adjacent non-malignant tissue; co-transcription; hepatocellular carcinoma; personalized prognostic biomarkers; primary tumor; ribosome gene

Correspondence
P. K.-H. Chow, Division of Surgical Oncology, National Cancer Centre, 20 College Road, 169856, Singapore
Fax: +65 6220 9323
Tel: +65 6326 6450
V. A. Kuznetsov, Bioinformatics Institute, 30 Biopolis Street #07-01, 138671, Singapore
Fax: +65 6478 8288
Tel: +65 6478 9047
E-mails: pierce.chow.k.h@singhealth.com.sg (PK-HC); vladimirk@bii.a-star.edu.sg (VAK)

†These authors contributed equally to this work.

Currently, molecular markers are not used when determining the prognosis and treatment strategy for patients with hepatocellular carcinoma (HCC). In the present study, we proposed that the identification of common pro-oncogenic pathways in primary tumors (PT) and adjacent non-malignant tissues (AT) typically used to predict HCC patient risks may result in HCC biomarker discovery. We examined the genome-wide mRNA expression profiles of paired PT and AT samples from 321 HCC patients. The workflow integrated differentially expressed gene selection, gene ontology enrichment, computational classification, survival predictions, image analysis and experimental validation methods. We developed a 24-ribosomal gene-based HCC classifier (RGC), which is prognostically significant in both PT and AT. The RGC gene overexpression in PT was associated with a poor prognosis in the training (hazard ratio = 8.2, \(P = 9.4 \times 10^{-9} \)) and cross-cohort validation (hazard ratio = 2.63, \(P = 0.004 \)) datasets. The multivariate survival analysis demonstrated the significant and independent prognostic value of the RGC. The RGC displayed a significant prognostic value in AT of the training (hazard ratio = 5.0, \(P = 0.03 \)) and cross-validation (hazard ratio = 1.9, \(P = 0.03 \)) HCC groups, confirming the accuracy and robustness of the RGC. Our experimental and bioinformatics analyses suggested a key role for c-MYC in the pro-oncogenic pattern of ribosomal biogenesis co-regulation in PT and AT. Microarray, quantitative RT-PCR and quantitative immunohistochemical studies of the PT showed that DKK1 in PT is the perspective biomarker for poor HCC outcomes. The common co-transcriptional pattern of ribosome biogenesis genes in PT and AT from HCC patients suggests a new scalable prognostic system, supported by the model of tumor-like metabolic redirection/assimilation in non-malignant AT. The RGC, comprising 24 ribosomal genes, is introduced as a robust and reproducible prognostic model for stratifying HCC

Abbreviations
1-D DDg, one-dimensional data-driven grouping; AFP, \(\alpha \) fetal protein; AT, adjacent non-malignant tissue; BCLC classification, Barcelona clinic liver cancer classification; CI, confidence interval; CPG, common prognostic gene(s); DEG, differentially expressed gene(s); FA/GO, Functional Annotation and Gene Ontology; HBV, hepatitis B virus; HCV, hepatitis C virus; HCC, hepatocellular carcinoma; IHC, immunohistochemistry; LCI, Liver Cancer Institute; OS, overall survival; PT, primary tumor; RGC, ribosomal gene classifier; SVR, support vector regression; SWVg, statistically weighted voting grouping; TER, translation elongation and ribosomal; TNM, tumor, node and metastasis.
1. Introduction

Hepatocellular carcinoma (HCC) ranks fifth among solid tumors and causes 70,000 annual deaths worldwide. It is the third leading cause of cancer-related mortality in males and is most prevalent in Asia and Africa. Unlike many solid tumors, the incidence and mortality of HCC have increased over the past decade (Ashtari et al., 2015). The absence or substantial progress of effective HCC therapies is indicated by the mortality rate, which is equivalent to the incidence rate in most countries (Bruix and Sherman, 2011).

Notable disease treatment challenges include the high heterogeneity of the primary tumor (PT) and the pathophysiological status of the adjacent non-malignant tissue (AT), which affects 70% of patients after resection or local ablation (Llovet et al., 2005).

Recent studies of various cancers (including HCC) have incorporated global molecular profiling using various ‘omics’ platforms (Wang et al., 2015a). These studies have enabled the development of multiple multitumor prognostic biomarkers for stratifying cancer patients into risk subgroups that are relevant for potential treatments (Hoshida et al., 2012). Compared to several other cancers (e.g. breast, prostate and hematological), the molecular markers are not used for the diagnosis or determination of prognosis and treatment for HCC patients. Thus, evidence-based molecular markers that could accurately and reproducibly predict survival time and response to treatment must be identified (Bruix et al., 2016).

However, in this respect, significant challenges might reflect certain caveats: (a) poor clinical reproducibility (e.g. when a biomarker fails in an independent cohort validation) and/or poor genetic reproducibility (e.g. different enriched gene sets/deregulated pathways in an independent validation cohort), which limits or confounds the clinical and therapeutic utility of the biomarker, and (b) high diversity in the genetic status and high technical (e.g. different ‘omics’ platforms) and/or clinicopathological cross-cohort variability from independent clinical centers. To overcome these obstacles, a workflow for biomarker selection that identifies the most etiologically and pathobiologically essential genes, gene products and biological processes with high reproducibility and prognostically confident molecular patterns is needed.

It has been reported that AT substantially contributes to HCC and has an independent prognostic value (Hoshida et al., 2008), presumably reflecting the de novo multicentric occurrence of HCC in cirrhotic tissue, which impacts late HCC recurrence (>2 years recurrence-free survival). Alternatively, PT cells that remain after resection can disseminate across the AT of specific HCC patients to contribute to early HCC recurrence (≤2 years of recurrence-free survival) (Hoshida et al., 2008). However, the relationships between the PT and AT can be more complex.

A resurging interest in cancer cell and host tissue interactions, including metabolism, biogenesis and secreted metabolites, metabolic reprogramming in the systemic modulating of gene expression, and signaling pathways in joint cancer-host tissue compartments, has been observed in recent years. According to the ‘field cancerization’ model (Vauthey et al., 2000), pathological and genetic changes in tissues peripheral to a tumor could result from ‘preconditioning’ of the affected organ by various carcinogenic agents. For example, most HCC arise in the background of chronic liver disease [e.g. hepatitis B virus (HBV) or hepatitis C virus (HCV) infection, hepatitis and cirrhosis]. After the surgical resection of PT in the absence of effective therapy of the background medical condition(s), the significant probability of the appearance and development of tumor(s) in field cancerization may be similar to those that prompt the primary HCC.

Alternatively, PT cell growth and progression can modulate the host tissue metabolic pathways and induce epigenetic reprogramming in AT (Skill et al., 2011). These changes often lead to tumor-like functional modulations of the gene expression profiles in non-malignant tissue cells (Lou et al., 2009). For example, the DNA methylation status of a tumor suppressor regulatory signal(s) in the AT can not only be distinct from that of the normal (Arai et al., 2009) and cirrhotic liver tissues of non-HCC individuals, but also similar to that of the PT (Lou et al., 2009). In
addition, multiple metabolic coupling between PT and AT has been described. Experimental models have been developed (Shapot and Potapova, 1986; Shapot et al., 1972) of tumor-host tissue metabolic relationships demonstrating the competition of the tumor and host tissues for RNA precursors and other metabolites. These studies also characterized a phenomenon of the tumor capacity to act as ‘a trap’ for nitrogen and glucose, leading to tumor-like host cell metabolism and host tissue metabolic ‘assimilation’ peculiarities in glycolysis and RNA biosynthesis.

Cell–cell interactions, external regulatory signaling factors and the active transport of biomolecules that are secreted from PT via the exosomes/microvesicles may induce and maintain the specific tumor-driven pro-oncogenic biological processes and signaling pathways relevant to RNA biosynthesis and the ribosomal biogenesis in AT. We propose the presence of multiple tumor-producing molecular signals, secreting factors and tumor-induced external metabolite trapping processes that collectively establish tumor-like common RNA biosynthesis and ribosome biogenesis patterns and specific steady-state aberrant pathways in AT cells. The interactions between tumor and host tissue compartments assume the co-microevolution of metabolic processes in AT and AT cell populations during the course of cancer cell metabolism, genetic and epigenetic alterations, cell growth, death and migration, clonal selection and other factors of tumor progression.

In an effort to identify HCC biomarkers, many studies have developed models of gene expression profiling to discover biomarkers either in PT or AT samples (Hoshida et al., 2012). Some studies have additionally used the differentially expressed genes (DEGs) between PT and AT as prognostic biomarkers at the prognostic variable pre-selection step (Mah et al., 2014; Orimo et al., 2008). By contrast, in the present study, we hypothesize that the next-generation prognostic biomarkers for HCC prognosis and prediction can be determined via the automatic selection of a subset(s) of co-expressed survival significant genes in PT and AT pairs. This strategy uses the concepts of (a) field cancerization and (b) PT-initiated biogenesis assimilation in AT compartments as systemically affected by aggressively growing PT compartments. To our knowledge, such an approach to tumor-host tissue co-evolution analysis has not been considered previously in the literature in the context of prognostic/predictive biomarker discovery and disease risk stratification.

We aimed to develop a prognostic biomarker discovery model that would (a) identify common pro-oncogenic biological processes induced by aggressive PT growth in PT and AT and (b) select variables predicting HCC patient risks after curative resection. We suggested that the expression of potential prognostic genes pre-selected in the cells of AT, as a non-malignant cell population, was more genetically stable and less vulnerable to oncogenic reprogramming compared to the pre-selected genes in the PT cell population. We also assumed that the identification of statistically enriched gene subsets/pathways/biological mechanisms consistent in AT and PT pairs is another important step toward further shortlisting the most biologically/pathologically essential gene candidates for biomarkers. We expected that the use of these two strict pathobiology-based pre-selection criteria would eliminate numerous indirectly correlated but non-essential gene confounders with less or non-reproducible mechanistic functions and prognostic abilities.

In the present study, we specified both a genetic and metabolic preconditioning ‘field cancerization’ model in PT and AT and a PT-like AT cell ribosomal biogenesis model. We analyzed the role of gene expression patterns in cancer predisposition and metabolism, coupling cancer and non-malignant host tissues as an interconnected two-compartmental tissue cell population system.

We developed a hypothesis-driven HCC biomarker discovery and statistically-based computationally prediction method. We selected a specific group of common prognostic genes (CPGs) co-expressed in both PT and AT, generating HCC patient risk stratification into relatively favorable and unfavorable disease outcome subgroups. The CPG analysis enabled the identification of translation elongation and ribosomal (TER) gene subsets with common pro-oncogenic prognostic patterns as the most over-represented gene subsets in PT and AT. We showed how the data analysis, integrating paired PT and AT samples, identified the HCC prognostic ribosomal gene classifier (RGC). This prognostic classifier demonstrated high confidence, robustness and reproducibility across the studied cohorts and identified the clinically and pathobiologically reproducible low- and high-risk patient subgroups with thoroughly characterized and druggable deregulated biological pathways. In summary, these results highlight the importance of the deregulation of the TER pathway in HCC, comprising the essential pathological feature common to PT and AT. We discuss the clinical perspectives of these findings and the potential applications of these tools and also propose a novel strategy for the identification of uniformly co-regulated, pathway-specific, statistically reliable and reproducible prognostic biomarkers.
2. Materials and methods

2.1. HCC patients and tissue samples

We retrospectively analyzed the hepatic tissue samples of HCC patients from Singapore, which were collected after surgical treatment with informed consent from the patients. The patients underwent radical resection and follow-up between 2000 and 2013 at Singapore General Hospital, and their hepatic tissue samples were collected at the National Cancer Centre of Singapore/SingHealth Tissue Repository. HCC diagnosis and treatment for the HCC patients were based on established histological criteria (International Working Party, 1995). After surgical treatment, patients were followed up at least once every 3–6 months. Other post-surgery patient treatments included imaging and α-fetoprotein (AFP) monitoring on each follow-up. The Singapore HCC cohort (Singapore cohort) presented here included only HCC patients diagnosed with resectable HCC, with good liver function (Child status A or B), adequate future liver remnant and good general health. The HCC patients with unresectable lesions with poor liver function or general health (Chow et al., 2016) were excluded from the analysis. Linked clinical and histopathology data collected from the patient medical records were rendered anonymous. The study was approved by the SingHealth Institutional Review Board. Cost and practical issues restricted the primary sample size in the present study to 125 HCC patients. PT and AT liver samples obtained at the time of definitive surgery were snap-frozen and preserved at −80 °C. The inclusion of matching AT samples in the study was based only on the availability of the samples from the SingHealth Tissue Repository and satisfactory results of RNA and microarray quality control. A paired sample design was used and clinical data were available for analysis only after re-identification of the RNA samples and full completion of microarray profiling.

Median follow-up in the Singapore cohort was 11.17 years. The detailed patient and tumor features of the Singapore and the Liver Cancer Institute (LCI) cohorts are presented in Tables 1 and S1.

2.2. Study design and endpoint

The present study complied with the recommendations for reporting prognostic cancer biomarkers according to the REMARK statement (McShane et al., 2005) (Table S2) and the guidelines for evaluating prognostic biomarkers (Simon et al., 2009). The prognostic biomarker(s) demonstrated certain traits: (a) significant prognostic power in the training and validation sample sets; (b) statistically independent prognostic value in a multivariate analysis that included known clinicopathological predictive variables; and (c) significant predictive power confirmed in an external cohort reported by independent investigators using the same technology. The primary endpoint of the study was the patient overall survival (OS). OS was defined as the time between surgical resection and death of any cause at last follow-up. Other measures of patient benefits from use of prognostic biomarkers, such as disease-free or recurrence-free survival, were not used because they are surrogate to OS and may not always translate to longer OS (Goh et al., 2016; Llovet et al., 2008a). Additionally, OS proved to be useful in large and successful targeted drug therapy trials of HCC (Llovet et al., 2008b).

2.3. Patient tissue sample processing, gene expression microarrays and quantitative RT-PCR analysis methods

All tissue samples were uniformly homogenized using a TissueLyser LT from Qiagen (Germantown, MD, USA) in accordance with the manufacturer’s instructions. RNA isolation was performed for all tissue lysates. Sample preparation and hybridization of labeled cRNA to the HumanHT-12 v4 Expression BeadChip arrays (Illumina, Inc., San Diego, CA, USA) were conducted in accordance with the manufacturer’s instructions. Data from 10 patients were excluded as a result of low RNA or microarray preparation quality (Kauffmann et al., 2009). Finally, we used 115 PT samples and 52 AT samples matched to 52 corresponding PT. After the completion of RNA and microarray quality control, the included samples were matched to corresponding clinical data and re-identified before data analysis. The quantitative PCR experiments were conducted using a QuantStudio™ 6 Flex Real-Time PCR system in accordance with the standard instructions for Power SYBR Green master mix from ABI systems (Applied Biosystems, Foster City, CA, USA). The qRT PCR signals were normalized with standard reference TBP and relative fold change abundances for desired genes were estimated.

The microarray data for the gene expression profiling of the HCC patient samples are publicly available at GEO: GSE76427. As a validation HCC cohort, we used publicly available data for the 206 HCC patients from the Liver Cancer Institute (the LCI HCC cohort, Fudan University, Shanghai, China, GSE14520) (Roessler et al., 2012) that passed the same microarray quality assessment (Kauffmann et al., 2009).
selected the LCI dataset for the Singapore data analysis validation because (a) the LCI group is a relatively large publicly available gene expression dataset (includes 206 paired PT-AT samples); (b) clinical data including patient survival data have been available for these 206 patients, allowing survival prediction analysis for the PT-AT paired expression dataset to be carried out; (c) Singapore and LCI datasets include mostly Chinese/Asian patients; and (d) patients in both groups have a predominantly HBV-driven ethology.

Table 1. Clinicopathological characteristics in HCC patients’ cohorts used in the present study.

Clinical characteristic	Singapore (training)	LCI (validation)	P-value
	(n = 115)	(n = 206)	
1 HBV infection (yes/no/-/%)	53/43/19/46	187/4/15/91	< 0.001
2 HCV infection (yes/no/-/%)	20/36/59/18	–	–
3 Sex, male (yes/no/%)	93/22/81	183/23/89	0.06d
4 Age (years) ≥50/50/median	104/11/64	120/86/51	< 0.001
5 AFP (> 300 ng·mL⁻¹/≤ 300 ng·mL⁻¹/-/%)	42/68/5/37	94/109/3/46	0.12
6 Cirrhosis (yes/no/%)	62/53/54	189/17/92	< 0.001
7 Multinodular/solitary tumors (yes/no/%)	26/89/23	40/166/19	0.5d
8 Tumor size (> 5 cm/≤ 5 cm/%)	65/50/57	71/134/34	< 0.001
9 Total nodules (yes/%)	89/77	–	–
10 Microscopic vascular invasion (yes/no/%)	16/14	–	–
11 Albumin Child points (yes/%)	74/64	–	–
12 Bilirubin Child points (yes/%)	34/20	–	–
13 Child-Pugh status (yes/%)	7/6	–	–
14 Milan criteria (beyond/within/%)	107/93	–	–
15 Edmondson tumor grade (3, 4/1, 2/-/%)	131/11	–	–
16 Platelets score (> 100/≤ 100/%)	1/1	–	–
17 Metastasis(imaging) (yes/no/-/%)	75/40/65	–	–
18 Presence of tumor capsule (yes/no/-/%)	62/50/3/53	–	–
19 Extra-hepatic invasion(histology) (yes/no/%)	1087/94	–	–
20 Portal vein invasion (yes/no/-/%)	2/110/3/2	–	–
21 Positive tumor margins (yes/no/%)	8/102/5/7	–	–
22 BCLC staging (yes/%)	12/103/10	–	–
23 TNM staging (II–IV/I–IV/–)	1.17 (0.45–3.12)	4.36 (1.36–4.80)	< 0.001
24 Median follow-up (OS), years (25–75th percentile)	25 (22)	80 (39)	0.002d
25 Overall death, n (%)	43/65	105/86/15/51	0.9d

aNumber of patients/percentage.
bTotal nodules, based on histology report, including satellite nodules.
cAlbumin Child points, Child-Pugh Category score: 1 point = > 35 g·L⁻¹; 2 points = 28–35 g·L⁻¹; 3 points = ≤ 28 g·L⁻¹; Bilirubin Child points, Child-Pugh Category score: 1 point = ≤ 34.2 μmol·L⁻¹; 2 points = 34.2–51.3 μmol·L⁻¹; 3 points = > 51.3 μmol·L⁻¹; Edmondson tumor grade: 1 = Grade 1; 2 = Grade 2; 3 = Grade 3; 4 = Grade 4. –, missing data.
dFisher’s exact test (two-sided).
eMann-Whitney test.

Molecular Oncology 12 (2018) 89-113 © 2017 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.
which potentially could result in deregulated molecular pathways distinct from other available patients groups with predominantly HCV-driven HCC.

2.4. Immunohistochemical staining of formalin-fixed paraffin-embedded samples

DKK1 protein expression was determined using a DKK1 antibody (ab61034; Abcam, Cambridge, MA, USA) in liver FFPE tumor sections from six HCC patients and the RGC risk subgroups (HR and LR) in accordance with a standard immunohistochemistry (IHC) protocol. Automated hematoxylin and diaminobenzidine staining (IHC DAB1 Leica Bond III) using a Leica Bond III Automated Stainer (Leica Biosystems, Wetzlar, Germany) was performed using the protocol: (a) dewaxing; (b) pretreatment; and (c) IHC staining. The dewaxing step was performed at 72 °C, followed by pretreatment (unmasking) with the Bond epitope retrieval 2 (ER2) solution, with washing steps being performed using absolute alcohol and Bond Wash Solution. IHC staining was performed using the primary antibody and the Bond™ Polymer Refine Detection kit (Leica Biosystems) was used for subsequent detection. After staining, the slides were dehydrated in absolute alcohol, cleaned with xylene and mounted with DEPEX mounting media (WVR International, Radnor, PA, USA).

2.5. Statistical and bioinformatics analyses

To select the survival significant genes and to stratify patients into the relatively LR and HR HCC subgroups, we used the one-dimensional data-driven grouping (1-D DDg) method that was previously developed and successfully used for survival prognosis (Chan et al., 2012; Grinchuk et al., 2015; Motakis et al., 2009).

We defined the CPG as the 1-D DDg-defined survival significant gene, and the expression value was binarized using a 1-D DDg cut-off value, with patients being stratified into low-risk (LR) or high-risk (HR) subgroups for identical PT and AT samples (e.g. either exclusively tumor suppressor-like or exclusively pro-oncogenic in both tissue types from the same patient).

The statistically weighted voting grouping (SWVg) method is a variable selection and multivariate prediction statistically-based voting prediction method (Kuznetsov et al., 2006) that uses the 1-D DDg-derived binary variables (predictors) of the patient risk groups (LR and HR) as an input dataset (Motakis et al., 2009). Following 1-D DDg, the input file is used to obtain the statistical voting stratification of a patient from the grouping information generated using the binary variables. For each patient, the SWVg score is calculated based on an optimized number of statistically weighted votes of the binary variables. The estimated SWVg score cut-off was determined by maximizing the significance of the patient separation into HR and LR subgroups. For each patient, the SWVg calculates the prognostic score quantifying the risk of disease development, rank orders the patients by their SWVg scores and separates the patients into the LR and HR subgroups according to the estimated cut-off score.

DEGs were identified using the GenePattern portal (Reich et al., 2006) and the significance of the RGC subgroup similarity was estimated using the ‘SubMap’ module in the portal (Hoshida et al., 2007). For Functional Annotation and Gene Ontology (FA/GO) and Pathway Maps analyses, we used either DAVID bioinformatics (da Huang et al., 2009a) or MetaCore (https://portal.genego.com/).

A support vector regression (SVR) analysis of the immunohistochemical section images from formalin-fixed paraffin-embedded PT was performed as described previously (Smola and Vapnik, 1997). Briefly, each of the six representative HCC patients (three from the HR RGC subgroup and three from the LR RGC subgroup) had 54 (6 × 9) sub-images in the dataset. All sub-images from the LR and HR patients were labeled ‘0’ and ‘1’, respectively. This dataset was labeled with RGB covariance matrix-based features and used to train and test the SVR system. The image-processing pipeline, covariance-based feature extraction system and SVR system were implemented using ImageJ, OpenCV, C++ and R (see Supporting information: Image based analysis of immunohistochemistry slides). Categorical variables were analyzed using a two-sided Fisher’s exact test or the Freeman–Halton extension of Fisher’s exact test. The Mann–Whitney U-test was applied for continuous variables (CytelStudio, version 9; Cytel, Inc., Cambridge, MA, USA). Confidence intervals for the proportions of agreement were calculated according to the Wilson efficient-score method (Newcombe, 1998). Univariate and multivariate analyses were performed using the Cox proportional hazards regression model and the R ‘survival’ package.

2.6. ChIP-seq binding regions analysis in the proximal promoters of the RGC and other gene sets

To support the in silico prediction of the regulatory roles of MYC in the RGC and other gene sets, we used the publicly available ChIP-seq data for MYC.
from the HepG2 hepatocellular carcinoma cell line (GEO 1D GSM822291; see Supporting information: ChIP-seq analysis).

3. Results

3.1. Identification of common prognostic genes in PT and AT samples and their specific biological characteristics

We retrospectively analyzed the clinical data and the hepatic tissue samples from 125 HCC patients (Singapore cohort) collected after surgical treatment. The clinicopathological characteristics of the HCC patients are presented in Tables 1 and S1.

Figure 1A shows a conventional data analysis schema to identify prognostic biomarkers when a subset of survival significant genes is selected only in either PT or AT to identify diagnostic and prognostic biomarkers. This method may also use DEGs in the set of survival significant genes is selected only in schema to identify prognostic biomarkers when a sub-

Next, we applied a FA/GO analysis using DAVID, version 6.7 (da Huang et al., 2009a) to shortlist the most significantly enriched biological processes and pathways, probably related to the most biologically or pathologically essential CPG subsets (Fig. S2). We identified the gene subsets of the survival significant pro-oncogenic (e.g. Figs 1E and S3A,B) and tumor suppressor-like (e.g. Fig. S3C,D) CPGs. We intended to use a sample size-balanced and multicriteria approach to select unbiased, specific and robust prognostic variables. The 1000 top most significant genes in each CPG subset have been selected. We did this because of a probable effect of sample disbalance: different gene list sizes may lead to a bias in the enrichment analysis test. This sample disbalance also may
affect the ranking of large-sized GO categories, making it difficult to compare gene categories in the gene lists (da Huang et al., 2009b).

For the pro-oncogenic CPG subset, using DAVID, version 6.7, we found that most confidence biological process GO terms are determined by the genes encoding translational elongation proteins \((P = 2.8 \times 10^{-25}) \) and ribosome \((P = 5.2 \times 10^{-19}) \). We also found the moderately enriched term for mitochondrion \((P = 0.01) \) (Fig. 1F). Figure 1E shows the results of the survival prediction analysis for the CPG RPS3A, the TER gene co-expressed in PT and AT samples. In each tissue type, RPS3A showed a pro-oncogenic prognostic pattern. The proportion of agreement between the PT and AT stratifications was 0.731 at the 95% confidence interval (CI) \((0.587 - 0.84)\). Interestingly, no significant FA/GO terms were observed among the top 1000 survival significant tumor suppressor-like CPGs. Figure S3 shows two examples of the pro-oncogenic ribosomal CPG RPL3 and the tumor...
suppressor-like \(SPOP \) CPG according to the 1-D DDg analysis. Typically, the survival patterns predicted by CPG in PT-AT pairs were significantly concordant. For example, the proportion of agreement predicted by CPG in PT-AT pairs were significantly different compared to the 1-D DDg analysis. Typically, the survival patterns predicted by CPG in PT-AT pairs were significantly concordant. For example, the proportion of agreement predicted by CPG in PT-AT pairs were significantly different compared to the 1-D DDg analysis.

We also analyzed the top 1000 significantly DEGs up-regulated in PT compared to AT \((t\text{-test } q < 0.05; 115 \text{ PT versus } 52 \text{ AT samples, respectively}) \) (Fig 1B). By contrast to the pro-oncogenic CPG subset, the list of the top 1000 DEGs up-regulated in PT compared to AT, included, as expected, cell cycle, cell division and mitosis gene enrichment; the FA/GO terms essentially predominated over the other FA/GO terms, including TER genes (Fig 1F) (i.e. the FA/GO terms ‘GO:0000278–mitotic cell cycle’ with \(P = 3.7 \times 10^{-38} \) and ‘GO:0006414–translational elongation’ with \(P = 2.9 \times 10^{-9} \)). Independently, PANTHER (Thomas et al., 2006) identified similar highly enriched and significant FA/GO terms (Fig S4).

Thus, these findings suggest that, in AT, the genes encoding translation elongation, ribosome machinery components and ribosomal biogenesis in general might pre-exist in malignant predisposition (e.g. pre-cancer tissue initiated by mutations, viral, metabolic or epigenetic reprogramming) and/or PT-activated ‘cancerization’ behaviors. In both cases, pro-tumorigenic cellular/tissue behavior in AT may be the result of potential non-malignant tissue clinical biomarkers for malignancy diagnostics, the prognosis of tumor aggressiveness and ‘anti-cancerization’ tissue therapeutic targeting.

3.2. RGC: identification, robustness and reproducibility across cohorts

Using Singapore cohort gene expression and patient’s survival data, we tested the utility of the identified CPGs as multigene prognostic HCC biomarkers. Based on the previous steps of the workflow (Fig S2), ‘GO:0006412–translational elongation’ displayed the strong term enrichment \(P \)-values among the other CPG GO terms (Figs. 1F and S4). We used the 44 gene symbols under this term, referred to as ‘TER genes (Singapore)’ (Table S3). The 44 gene subset includes two translational elongation genes (\(EEFL1A1 \) and \(EEFL1B2 \)); the other 42 genes were specified by cellular component category as ‘GO:0058554–ribosome’. By using the same method as we applied in Singapore cohort, we identified stratification cut-off values of individual genes and selected pro-oncogenic CPGs in the LGI cohort PT – AT paired samples. We also carried out GO enrichment analysis. As result, we identified 60 CPGs (Table S4) specified the highest enriched gene term ‘GO:0006412-translational elongation’ (Fig S5A). The next most significant GO term was ‘GO:0005840–ribosome’. Remarkably, an independent identification of the pro-oncogenic CPGs in the Singapore and LCI cohorts led to a highly significant overlapping between the CPGs identified in the LCI and Singapore cohorts (hypergeometric test, \(P = 1.5 \times 10^{-50} \); Fig S5B). Next, we applied 1-D DDg to the 115 available PT samples in Singapore cohort as a discovery dataset and selected the CPGs satisfying the Wald statistics cut-off value at \(P < 0.05 \). As result of SWVg implementation (see Methods), the 24 most prognostically significant ribosome genes were selected from the PT TER genes (Singapore) and formed our HCC prognostic model (Table S5A). Table 2 provides an annotation of these 24 ribosomal genes. The integrated SWVg risk score was calculated for each individual patient. The SWVg scores for all patients were refitted to the survival data, and the optimal SWVg score cut-off value for patient stratification was determined (cut-off = 1.42; Fig 2A). The classifier successfully stratified the Singapore HCC patients using either PT (Fig 2C) or AT (Fig 3A) microarray data sets: \(P = 9.3 \times 10^{-6} \), hazard ratio = 3.74 (3.24–20.8) for PT-based prognostic stratification and \(P = 0.03 \), hazard ratio = 4.97 (1.21–20.35) for AT-based prognostic stratification. We referred to this new CPG-based HCC classifier as the RGC.

Next, to test the reproducibility and robustness of the RGC, we performed a validation analysis of the classifier using data from an independent HCC cohort.
In the contexts of robustness and reproducibility of the potential RGC predictors, we carried out a comparison of the 1D DDg results obtained in Singapore and LGI datasets. Our results, presented in Table S5 suggest a high probability of occurrence of the same survival significant genes in PT of LGI cohort and ability to use Singapore PT data as a training set to develop multi-gene prognostic signature(s) (see also Supporting information: Comparison of 1D DDg results obtained in the Singapore and LGI datasets). The individual stratification gene expression cut-off values obtained from the 1-D DDg and the SWVg risk score cut-off value ($T = 1.42$) in the Singapore cohort were used for LCI patient stratification (Fig. 2B). The strict fixation of the pro-oncogenic type of prognosis variables and parameter values in the 1-D DDg and SWVg procedures in the Singapore cohort (training) enabled a prognosis prediction blinded to the survival data (defined by overall survival, OS) in the validation (LCI) cohort ($P = 0.004$) (Fig. 2D). The stratification results in two datasets Singapore and LCI (Fig. 2C,D) can be represented by the fractions of patients within each cohort of particular interest, such as HR. This event is represented in the Singapore and LCI cohorts with the proportions $38/115 = 0.33$ and $53/206 = 0.26$, respectively. We found that the 95% CI for the difference between these proportions was not significant, which suggests subpopulation similarity across different cohorts. Independently, the inter-cohort subgroups agreement analysis using the Sub-Map algorithm (Hoshida et al., 2007) revealed that the ordered HR_T and LR_T subgroups based on the results of patient stratification displayed significant agreement between the Singapore and LCI cohorts (Fig. 2E).

Thus, these results suggest that the RGC enables the identification of the robust predicting system for HCC inter-cohort prognosis.

Finally, we also addressed the question of whether the highly enriched DEGs differentiating PT and AT could provide a reproducible prognostic signature of HCC. Using Singapore data, we selected the DEG subset identified under the three most highly enriched FA/GO terms (‘GO:0000278~mitotic cell cycle’, ‘GO:0051301~cell division’ and ‘GO:0007067~mitotic nuclear division’) (Fig. 1F). These genes were further processed using 1-D DDg, as described in the Materials and methods. We further selected the genes that displayed significant Wald P-values ($P < 0.05$) in the Kaplan–Meier survival analysis (Table S6). Next, SWVg analysis generated a 41-gene prognostic signature represented by mitosis/cell cycle genes (Table S6). The 41-gene prognostic signature displayed significant HCC patient partitioning in the Singapore cohort (Fig. S6A).

Table 2. Pro-oncogenic ribosomal genes of the 24-gene HCC prognostic classifier.

Number	Host gene symbol	Illumina probe ID	RNA ID	Host gene description (UCSC genome browser)	Chromosome band
1	RPL9	ILMN_1750507	NM_001024921	Ribosomal protein L9	4p13
2	RPL12	ILMN_216366	NM_000976	Ribosomal protein L12	9q34
3	RPL26	ILMN_173546	NM_000987	Ribosomal protein L26	17p13
4	RPL37	ILMN_219634	NM_000997	Ribosomal protein L37	5p13.1
5	RPL31	ILMN_1754195	NM_000993	Ribosomal protein L31	2q11.2
6	RPL41	ILMN_2331890	NM_001035267	Ribosomal protein L41	12q13
7	RPL30	ILMN_1754303	NM_000989	Ribosomal protein L30	8q22
8	RPS9	ILMN_1749447	NM_001013	Ribosomal protein S9	19q13.4
9	RPS15A	ILMN_1767949	NM_001030009	Ribosomal protein S15a	16p12.3
10	RPS25	ILMN_1746516	NM_001026	Ribosomal protein S25	11q23.3
11	RPS11	ILMN_1740587	NM_001015	Ribosomal protein S11	19q13.3
12	RPS4X	ILMN_2166831	NM_001007	Ribosomal protein S4, X-linked	Xq13.1
13	RPL19	ILMN_1701832	NM_000981	Ribosomal protein L19	17q12
14	RPL32	ILMN_2400143	NM_001007073	Ribosomal protein L32	3q13.3-21
15	RPS55	ILMN_1707810	NM_001009	Ribosomal protein S5	19q13.4
16	RPL34	ILMN_1706873	NM_000995	Ribosomal protein L34	4q25
17	RPL3	ILMN_2319994	NM_001033853	Ribosomal protein L3	22q13
18	RPL36	ILMN_1685088	NM_033643	Ribosomal protein L36	19p13.2
19	RPS2	ILMN_2218277	NM_002952	Ribosomal protein S2	16p13.3
20	RPL15	ILMN_1762747	NM_002948	Ribosomal protein L15	3p24.1
21	RPS13	ILMN_1777344	NM_001017	Ribosomal protein S13	11p
22	RPL18A	ILMN_2141452	NM_000989	Ribosomal protein S18	19p13.11
23	RPS12	ILMN_1782621	NM_001016	Ribosomal protein S12	6q23
24	RPL17	ILMN_1655422	NM_000985	Ribosomal protein L17	18q21
However, this signature failed in validation in the LCI cohort (using the same procedure as that used for the RGC described above) (Fig. S6B). Non-significant result we also observed in AT of LCI cohort (Fig. S5D versus Fig. S5C). The lack of reproducibility could be explained by the relatively high inter-cohort variation in the environmental, ethnic, clinical and pathological parameters that are relevant to cell cycle/mitotic gene expression and relevant pathways.

By contrast, the RGC signature (based on the CPG model; Table S5A) led to reproducible predictions and consistent results for individual predictor genes (see Tables 2 and S5A) and their multigene classifier (Fig. 2C,D; Table S5A).

Altogether, these results indicate the relatively high robustness of the prognostic model to inter-cohort variations in environmental, ethnic, clinical and pathological parameters to CPGs expression and relevant pathways.

3.3. RGC is an independent prognostic factor for HCC progression

The list of clinicopathological parameters available for analysis in Singapore and LCI cohorts is presented in Table 1. For many of these parameters, we detected significant differences in distributions between Singapore and LCI cohorts (Table 1; see also the Supporting information: Comparison of standard clinicopathological parameters between the Singapore and LCI cohorts). Such differences between the cohorts could probably be explained by the differences in the environmental factors, healthcare systems and non-identical study design between LCI (Roessler
et al., 2010) and various accepted HCC patient diagnoses and treatment guidelines between LCI and Singapore cohorts (Han et al., 2011). We used univariate and multivariate Cox regression analyses to compare the prognostic performance of the RGC with these clinical factors (Table 3).

In the Singapore cohort, the parameters metastasis and extra-hepatic invasion were excluded from the analysis as a result of their low informativeness. HCV status was excluded because of a substantial amount of missing data in the Singapore and LCI cohorts (Table 1).

Univariate analysis shows that in addition to albumin expression \((P = 0.03)\), tumor, node and metastasis (TNM) staging \((P = 0.007)\) and Barcelona clinic liver cancer (BCLC) staging \((P = 0.002)\), the RGC classification was a significant indicator for OS \((P = 9.4 \times 10^{-6})\) in the Singapore cohort. In the LCI cohort, significant prognostic powers were observed for the RGC \((P = 0.004)\), tumor size \((P = 0.01)\), multiple/solitary tumor formation \((P = 0.02)\) and cirrhosis status \((P = 0.04)\). The TNM and BCLC staging displayed the best prognostic performances \((P = 4.0 \times 10^{-7} \text{ and } P = 1.4 \times 10^{-8}, \text{ respectively})\). In the univariate analysis, combining the overall data for the training and validation cohorts revealed the following prognostically significant variables: AFP level \((P = 0.02)\), tumor size \((P = 0.03)\), multiple/solitary tumors \((P = 0.009)\), liver cirrhosis status \((P = 0.02)\), TNM staging \((P = 6.6 \times 10^{-7})\), BCLC staging \((P = 2.1 \times 10^{-10})\) and the RGC \((P = 1.6 \times 10^{-6})\). Interestingly, in additional association analyses of RGC with clinical phenotypes (Table S7), we detected its significant association with AFP levels \((P = 1.8 \times 10^{-7})\) and BCLC classification \((P = 0.004)\) in the LCI cohort and with AFP level \((P = 1.0 \times 10^{-7})\), multinodular tumors \((P = 0.03)\).

Figure 3. RGC-based stratification in AT and PT. (A, B) Training and cross-cohort validation of the RGC in AT. Kaplan–Meier survival curves for integrated patient partitions in the Singapore and LCI HCC cohorts, correspondingly. (C) Contingency table for HCC patient stratification in PT and AT in the LCI cohort. The combined LR subgroup LR_{T&A} included the patients stratified only as LR using gene expression information from PT and AT (blue). The HR subgroup HR_{T&A} included the remaining patients (pink). (D) Combined stratification (cohort validation model) using information from PT and AT in the LCI cohort.
Table 3. Univariate and multivariate analyses of clinical, pathological and molecular variables for overall survival in the training, validation and overall cohorts.

Variables	Patients (n)	Hazard ratio	95% CI	Wald P-value	Variables	Patients (n)	Hazard ratio	95% CI	Wald P-value
Training cohort (Singapore) n = 115									
RGC (R1)	115	8.2	3.23-20.8	9.4 x 10^{-6}	RGC (R1)	115	6.4	2.38-17.19	0.0002
Age (> 50 years)	115	1.0	0.96-1.04	0.8					
Sex (female)	115	0.81	0.18-3.54	0.8					
	115	1.49	0.65-3.45	0.3					
AFP (> 300 ng·mL^{-1})									
HBV status	96	1.74	0.71-4.27	0.23					
Tumor size (> 5 cm)	115	1.33	0.75-3.31	0.5					
Multiple tumors	115	1.71	0.69-4.20	0.24					
Total nodules	115	1.36	0.80-2.30	0.25					
Microvascular invasion	115	1.69	0.74-3.84	0.21					
Albumin child pointsb	115	1.95	1.07-3.57	0.03					
Bilirubin Child pointsb	115	0.68	0.096-0.59	0.70					
Cirrhosis	115	1.55	0.66-3.66	0.32					
Child statusb	115	2.02	0.58-6.96	0.26					
Milan criteriab	115	0.81	0.29-2.24	0.68					
Edmondson tumor gradeb	112	0.93	0.52-1.65	0.79					
Presence of tumor capsule	106	1.03	0.41-2.57	0.9					
Portal vein invasion	110	0.90	0.12-6.66	0.9					
Platelet score	115	0.67	0.08-5.08	0.7					
Positive tumor margins	115	3.07	0.98-9.51	0.05					
TNM stagingc	115	1.72	1.16-2.56	0.007					
BCLC stagingd	115	2.50	1.39-4.49	0.002					
Validation cohort (LCI) n = 206									
RGC (R1)	206	1.94	1.23-3.08	0.004					
Age (> 50 years)	206	0.99	0.97-1.01	0.32					
Sex (female)	206	0.95	0.55-1.68	0.8					
	205	1.66	1.07-2.60	0.03					
AFP (> 300 ng·mL^{-1})									
HBV status	191	1.62	0.23-11.68	0.6					
Tumor size (> 5 cm)	205	1.75	1.12-2.72	0.01					
Multiple tumors	206	1.76	1.08-2.88	0.02					
Cirrhosis	206	4.35	1.07-17.72	0.04					
TNM stagingc	191	1.81	1.44-2.27	4.01 x 10^{-7}					
BCLC stagingd	191	2.14	1.65-2.79	1.4 x 10^{-8}					

Notes:
- a: HBV status
- b: Albumin child points
- c: TNM staging
- d: BCLC staging
- e: Presence of tumor capsule
- f: Portal vein invasion
- g: Positive tumor margins
- h: Lipid points
- i: Albumin child points
- j: TNM staging
- k: BCLC staging
- l: Positive tumor margins
- m: Presence of tumor capsule
- n: Lipid points
- o: Albumin child points
- p: TNM staging
- q: BCLC staging
- r: Positive tumor margins
- s: Presence of tumor capsule
- t: Lipid points
- u: Albumin child points
- v: TNM staging
- w: BCLC staging
- x: Positive tumor margins
- y: Presence of tumor capsule
- z: Lipid points

References:
- Molecular Oncology 12 (2018) 84–113 © 2017 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.
Table 3. (Continued).

Variables	Patients (n)	Hazard ratio	95% CI	Wald P-value	Variables	Patients (n)	Hazard ratio	95% CI	Wald P-value
Overall (Training + Validation cohorts) (n = 321)					RGC	302	2.48	1.59-3.85	5.5E–05
Age (> 50 years)	321	1.02	0.64-1.50	0.9	Age (> 60 years)	–	–	–	–
Sex	321	0.66	0.33-1.31	0.24	Sex	–	–	–	–
AFP (> 300 ng.mL⁻¹)	318	1.44	1.06-1.96	0.02	AFP (> 300 ng.mL⁻¹)	302	0.96	0.71-1.36	0.9
HBV status*	287	1.48	0.71-3.08	0.3	HBV status*	–	–	–	–
HCV status*	56	0.61	0.13-2.90	0.5	HCV status*	–	–	–	–
Tumor size (> 5 cm)	320	1.54	1.045-2.28	0.03	Tumor size (> 5 cm)	302	0.93	0.57-1.53	0.8
Multiple tumors	321	1.77	1.15-2.73	0.009	Multiple tumors	302	0.7	0.42-1.17	0.17
Cirrhosis	321	2.08	1.11-3.89	0.02	Cirrhosis	302	1.69	0.85-3.35	0.13
TNM staging*	306	1.80	1.47-2.19	6.6 x 10⁻⁹	TNM staging*	302	1.37	1.03-1.82	0.03
BCLC staging*	306	2.19	1.72-2.78	2.1 x 10⁻¹⁰	BCLC staging*	302	1.70	1.20-2.42	0.003

*H BV and HCV status was based on serology and/or documented history.

Total nodules, based on histology report, including satellite nodules; total nodules are binned as: 1 = 1 nodule; 2 = 2–7 nodules; 3 = 7 or more nodules. Albumin Child points were binned according to Child-Pugh Category score: 1 point = > 35 g.L⁻¹; 2 points = 28–35 g.L⁻¹; 3 points = < 28 g.L⁻¹; Bilirubin Child points, Child-Pugh Category score: 1 point = < 34.2 μmol.L⁻¹; 2 points = 34.2–51.3 μmol.L⁻¹; 3 points = > 51.3 μmol.L⁻¹; Edmondson tumor grade binning: 1 = Grade 1; 2 = Grade 2; 3 = Grade 3; 4 = Grade 4; Child status binning: 1 = Child A; 2 = Child B; 3 = Child C; Platelets score binning: 1 = ≤ 100; 2 = > 100; Milan criteria binning: 1 = beyond; 2 = within.

TNM staging binning: 1 = Stage I (T1, N0, M0); 2 = Stage II (T2, N0, M0); 3 = Stage IIIA (T3a, N0, M0); 4 = Stage IIIB (T3b, N0, M0); Stage IIIC (T4, N0, M0); Stage IVa (Any T, N1, M0), Stage IVb (Any T, Any N, M1).

BCLC staging binning: 1 = Stage 0; 2 = Stage A; 3 = Stage B; 4 = Stage C. NA, data not available. –, excluded from the analysis. OS was used as the endpoint in all analyses.
and BCLC staging \((P = 0.005)\) in the overall cohort (Table S7). However, in the multivariate analysis (Table 3), the RGC classification retained its independent prognostic value \((P = 0.0002)\) in Singapore cohort, \(P = 0.04\) in the LCI cohort and \(P = 5.5 \times 10^{-5}\) compared to TNM staging \((P = 0.03)\) and BCLC staging \((P = 0.003)\), in the overall cohort (Table 3). These analyses suggest that the RGC could be considered an independent prognostic factor for HCC.

3.4. The PT RGC prognostic pattern is reproducible in AT data

We tested the performance of the RGC using the AT expression data of the Singapore (training) and LCI cohorts (validation). For prognosis using AT data, we implemented the same stratification algorithm as implemented for the discovery of RGC in the analysis of PT data (Fig. 2). The use of AT data for RGC training resulted in a significant Singapore HCC patient stratification (the HR_A and LR_A subgroups, Wald \(P < 0.05)\) (Fig. 3A). Additionally, the difference between the agreement scores of the HR proportions between PT and AT was not significant, suggesting a similarity of stratification between the PT and AT using RGCs in the Singapore cohort. The strict fixation of the pro-oncogenic type of prognosis variables and parameter values in the 1-D DDg and SWVg procedures in the Singapore cohort (training) enabled a prognosis prediction blinded to the survival data in the validation (LCI) cohort (at Wald \(P = 0.03\)) (Fig. 3B).

Notably, the 41-gene signature based on cell cycle genes generated from DEGs between PT and AT (Table S6) failed in cross-cohort validation in AT (Fig. S6C,D) and would have questionable clinical utility.

3.5. RGC power can be improved by combining PT and AT gene expression data

Next, we proposed that the grouping of common LR patients from relatively low-risk LR_T and LT_A prognosis subgroups identified in PT and AT could improve the stratifying power of the RGC. We combined personalized RGC data from the PT and AT datasets and constructed HR_T&A and LR_T&A subgroups (Fig. 3C). Using LCI data as an example, we observed a positive interaction effect. The Wald \(P\)-value in the combined classifier was \(P = 1.2 \times 10^{-4}\) (Fig. 3D) compared to \(P = 0.003\) and \(P = 0.03\) in the PT-based (Fig. 2D) and AT-based (Fig. 3B) stratification prognostic models, respectively. We also tested the other combination scenario, alternative to that shown in Fig. 3C, stratifying common HR patients from HR_A and HR_T subgroups as a combined HR_T&A patient subgroup. However, an imbalanced stratification into risk subgroups (i.e. \(n = 196\) in the LR subgroup and \(n = 10\) in the HR subgroup) was observed that limits predictive power (not shown data). We concluded that the prognostic power of the original PT-based RGC can be improved using RGC obtained from AT.

3.6. The RGC-based stratification of HCC patients reveals deregulated pathways in PT and AT

The deregulated pathway associated with RGC-defined HCC patient risk subgroups might be useful for designing new molecular targets and developing therapies for RGC-stratified HCC patients. Using DAVID software, the FA/GO enrichment analysis of the up-regulated DEGs observed in the HR subgroups (HR_T and HR_A) revealed FA/GO terms related to ribosomes, translation and the cell cycle in both the PT and AT, although the high enrichment of terms related to cytoplasmic vesicles was only observed in AT (Fig. 4A). The DEGs down-regulated in the HR_T and HR_A subgroups displayed various common enriched terms, including deregulated liver metabolism [FA/GO terms ‘lipid metabolism,’ ‘carboxylic acid metabolic process’ (SP_PIR_KEYWORDS)] and mitochondrial dysfunction [e.g. FA/GO terms ‘GO:0005739– mitochondrion’ and ‘oxidoreductase’ (SP_PIR_KEYWORDS)] (Fig. 4A).

Exclusively in PT (Fig. S7A), MetaCore Pathway Maps Analysis identified the deregulation of the genes involved in the WNT pathway (Fig. S7B). DKK1, DVL3, \(\beta\)-catenin (CTNNB1), casein kinase II (CSNK2A1 and CSNK2A2) and LEF1 were significantly up-regulated, whereas GSK3-\(\beta\) (GSK3B) was significantly down-regulated (Fig. S8). These gene expression alterations are characteristic of WNT pathway deregulation (Tannock and Hill, 2013).

TGFBR2 and MYC were significantly overexpressed in the up-regulated DEGs of both HR_T and HR_A patient subgroups (Tables S8 and S9). Our results, shown in Fig. 5 and Supporting information (section: MYC as a key regulator of ribosomal pathway in HCC PT and AT), provide the evidences that MYC is a key positive transcription regulator of the RGC and TER genes in PT and AT. MetaCore identified MYC as the most significant transcription factor interactor among the DEGs in the both PT and AT (Fig. 5D and Tables S8 and S9). Furthermore, combining gene expression correlation, FA/GO and ChIP-seq analyses revealed that MYC might be the primary positive transcription regulator of the genes involved.
in the TER pathway (Fig. 5; Tables S3 and S10) in both PT and AT cells (Figs 5C and S9; see also the Supporting information: MYC as a key regulator of ribosomal pathway in HCC PT and AT).

MetaCore Pathway Map analysis suggested that DNA double-strand break repair was characteristic of the PT but not AT (Fig. S7B). In both PT and AT, we identified the enrichment for cell cycle, cytoskeleton remodeling, and vascular endothelial growth factor and transforming growth factor-β receptor signaling. The ‘GO localization’ category identified common GO terms for PT and AT for extracellular vesicles and exosomes, cell adherence junctions, focal adhesions and ribosomes (Fig. 4B), which suggested a deregulation of extracellular exosomal transport in the HR_T and HR_A HCC subgroups. For the PT-specific gene subset, we found no association with extracellular vesicles. However, the AT-specific subset was additionally associated with extracellular exosomes and endosomes. In the common PT and AT gene subset, 15 RGC genes were annotated under the MetaCore term ‘extracellular exosome’ (Fig. S7C). In the AT-specific subset, at least eleven genes annotated under the term ‘endosome’ have previously been associated with endosome-specific functions (Fig. S7C and Table S11).

Within the up-regulated AT-specific DEGs subset, we identified multiple enriched Pathway Maps, indicating an activated immune response in the AT (Fig. S7B).
Importantly, the comparison between nonstratified PT and AT in the Singapore and LCI cohorts revealed global systematic differences in the gene expression profiles between these tissue types for common PT and AT prognostic pathways (Fig. 6A,B). However, after RGC-based stratification, the representative common prognostic pathways (TER, cell cycle/cell division, extracellular exosome, focal adhesion and liver metabolism) (Table S12) displayed distinct characteristic gene expression patterns within the PT and AT (Fig. 6C,D).

3.7. Validation of the RGC and RGC-associated genes using quantitative RT-PCR in the Singapore cohort

We assessed the reproducibility of the gene expression measurements in the microarray platform with quantitative RT-PCR experiments using RNA samples from the Singapore cohort. We selected eight representative ribosomal genes from the RGC, seven representative up-regulated WNT pathway genes and
five representative down-regulated genes involved in liver metabolism in the HR\textsubscript{T} subgroups in both cohorts. For the eight tested RGC genes (\textit{RPL9}, \textit{RPL12}, \textit{RPL26}, \textit{RPL31}, \textit{RPL41}, \textit{RPS9}, \textit{RPS25} and \textit{RPS4X}) and four tested up-regulated WNT pathway genes (\textit{MYC}, \textit{ENC1}, \textit{CTNNBI} and \textit{LEF1}), we observed a strong and significant correlation with the microarray results (Fig. S10). We also tested the consistency in differential gene expression in these samples by comparing patients from the HR\textsubscript{T} and LR\textsubscript{T} subgroups originally classified using microarray gene expression data (Fig. S11). The quantitative RT-PCR analysis indicated that the 15 up-regulated genes from the HR\textsubscript{T} subgroup (based on the microarray data, Fig. S11A,B) were up-regulated in randomly selected patients from the HR\textsubscript{T} subgroup compared to the LR\textsubscript{T} subgroup (Fig. S11D); the five down-regulated genes from the HR\textsubscript{T} subgroup (based on the microarray data) (Fig. S11C) were down-regulated in randomly selected patients from the HR\textsubscript{T} subgroup compared to the LR\textsubscript{T} subgroup (Fig. S11D).

Finally, the RGC stratification power using the quantitative RT-PCR expression data was comparable to that of the microarray expression data (Fig. S11E versus Fig. 2C). In total, we analyzed PT from 92 HCC patients from Singapore cohort. The patients were selected at random. Patient’s stratification was
carried out according to the microarray identified RGC genes, detected in PT samples by the qRT-PCR (Fig. 2C). The quantitative RT-PCR based risk stratification analysis results (Fig. S11E) suggest the applicability of our prognostic model for quantitative stratification of the LR and HR HCC patients.

3.8. DKK1 is a potential prognostic factor and drug target

DKK1 was found to be the most up-regulated gene in the HR_T subgroups after whole transcriptome screening. We thus also tested whether DKK1 gene expression was associated with the RGC-based classification at the protein level in the Singapore HCC cohort. First, we selected six representative HCC patients from the Singapore cohort (three HR_T and three from LR_T subgroups). Second, we analyzed liver tumor FFPE section images (Methods, Supporting information: Image based analysis of immunohistochemistry slides) using a training and cross-validation protocol for the SVR system (Smola and Vapnik, 1997). We tested all possible pairs of the HR_T versus LR_T patients (nine pairs) by measuring the SVR scores of the corresponding tumor tissue images. As expected, the average predicted DKK1 SVR score of the LR_T patient images was significantly less than that of the HR_T patient images of the nine pairs (Fig. S12). We proposed DKK1 as a potential prognostic factor and drug target for a preclinical study of anti-DKK1 therapy in HCC.

3.9. RGC-based HCC stratification outperformed several known multigene HCC classifiers

The validation analyses of RGC in PT or AT HCC samples and univariate and multivariate analyses of the RGC suggest its robustness and reproducibility across HCC patient cohorts. We compared the prognostic power, robustness and reproducibility of the RGC with those of several published prognostic HCC multigene signatures. The comparison of the RGC with the 65-gene risk signature (Kim et al., 2012), the 16-gene G1–G6 signature (Boyault et al., 2007), the vascular invasion gene signature (Minguez et al., 2011) and the 186-gene survival signature proposed for the analysis in AT (Hoshida et al., 2008) revealed the prognostic outperformance of the RGC in PT or AT in the cohorts under investigation (see Supporting information: RGC-based HCC stratification performance). Briefly, in the combined overall HCC group, the first three gene signatures displayed nonsignificant prognostic power: 65-gene risk signature, \(P = 0.12 \), hazard ratio = 0.73 (95% CI = 0.50–1.09); the 16-gene G1–G6 signature, \(P = 0.3 \), hazard ratio = 1.24 (95% CI = 0.84–1.84); vascular invasion gene signature, \(P = 0.3 \), hazard ratio = 1.27 (95% CI = 0.86–1.87) (not shown). The 5-gene risk score signature proposed by Nault et al. (2013) was the only gene signature showing a significant prognostic value in PT, comparable with the RGC: 5-gene risk score, \(P = 3.1 \times 10^{-6} \), hazard ratio = 2.57 (95% CI = 1.73–3.81) versus RGC, \(P = 1.6 \times 10^{-6} \), hazard ratio = 2.63 (95% CI = 1.77–3.92), respectively (Fig. S13A,B). Comparison of the patients stratified in the RGC-derived HR_T subgroups with the HR patients, identified using the 5-gene score signature in the two HCC groups, revealed substantial differences in their stratification: more than 50% of patients from HR_T subgroup were stratified using the 5-gene score signature as a LR subgroup (Fig. S13C).

The RGC displayed stronger prognostic power compared to the 186-gene survival signature in AT [RGC: \(P = 4.7 \times 10^{-3} \), hazard ratio = 2.01 (95% CI = 1.24–3.26); 186-gene signature: \(P = 0.01 \), hazard ratio = 1.77 (95% CI = 1.13–2.77)] (Fig. S13D,E). Interestingly, the combined use of the 186-gene signature with the RGC substantially improved the prognostic power [Wald \(P = 8.6 \times 10^{-4} \), hazard ratio = 2.43 (95% CI = 1.42–3.87)] (Fig. S13F).

Finally, the RGC retained its prognostic power in multivariate analysis in PT compared to the 5-gene risk score [RGC, \(P = 3.2 \times 10^{-4} \), hazard ratio = 2.15 (95% CI = 1.42–3.25) versus 5-gene risk score signature \([P = 5.7 \times 10^{-4} \), hazard ratio = 2.07 (95% CI = 1.37–3.14)] and in AT compared with the 186-gene survival signature [RGC, \(P = 0.02 \), hazard ratio = 1.80 (95% CI = 1.10–2.95) versus 186-gene survival signature \([P = 0.04 \), hazard ratio = 1.62 (95% CI = 1.02–2.56)] (Fig. S13G).

These results showed the superiority or independent prognostic power of the RGC compared to other proposed multigene prognostic signatures.

4. Discussion

Previous studies have identified the pathobiological pathways and clinically relevant HCC prognostic classifiers that utilized PT; PT with the AT serving as a negative control; or AT alone (Hoshida et al., 2008). However, increasing evidence indicates the presence of common co-regulatory processes, signaling pathways and molecular mechanisms that drive PT and AT compartments (Polyak et al., 2009), resulting in their interconnection and complex regulatory patterns.
In the present study, we developed a prognostic stratification approach to identify common oncogenic pathways and survival significant prognostic variables in the PT and AT of HCC patients with resectable PT. This methodological approach revealed common co-expression patterns for multiple PT- and AT-associated TER pathway genes that are reproducibly associated with aggressive HCC. Further analysis suggested that this might reflect the pathophysiological mechanics of the TER pathway in HCC progression.

We identified 24-ribosomal gene classifier (termed RGC) that displayed the significant PT-associated prognostic power in the studied HCC patient cohorts. The RGC was clinically (Fig. 2C, D) and genetically reproducible in a large independent HCC patient dataset. The RGC retained its significant and independent prognostic power in a multivariate analysis compared to the traditional clinicopathological parameters of HCC (Table 3). A comparison of RGC with the 65-gene risk signature (Kim et al., 2012), the 16-gene G1–G6 signature (Boyault et al., 2007) and the vascular invasion gene signature (Minguez et al., 2011), previously proposed for prognosis in PT, demonstrated the outperforming prognostic power of the RGC. The RGC displayed comparable and independent prognostic potential (i.e. clinical reproducibility) compared to the 5-gene score signature of Nault et al. (2013) (Fig. S13A–C), which was also developed for HCC patients with curative resection. However, in contrast to the RGC, the genetic reproducibility of the 5-gene score signature remains unclear because it has not been tested (Nault et al., 2013). Notably, the alternative proliferative 41-gene cell cycle gene signature generated from DEGs between PT and AT failed in cross-cohort validation (Fig. S6), indicating the limitations of cell cycle-based DEG approach(s) for generating a reproducible HCC prognostic classifier.

RGC could be considered for prognosis using gene expression information not only from PT, but also from AT in the same HCC patients (Fig. 4A–B). Comparison of the RGC with the 186-gene survival signature, previously developed for prognosis in AT (Hoshida et al., 2008), revealed a stronger and independent prognostic value for the RGC in the studied cohorts (see Materials and methods; Fig. S13; see also the Supporting information: RGC-based HCC stratification performance). Thus, the RGC could potentially be used for pre-surgery prognostic patient stratification using AT biopsy tissue samples. The AT-based RGC stratification could minimize the risks of post-biopsy tumor dissemination and intrahepatic metastasis. Interestingly, the combined use of the RGC with the 186-gene survival signature (Fig. S13F) or the RGC alone in both PT and AT (Fig. 3D) can significantly improve the post-surgical prognostic power of the RGC.

The tumor suppressor genes FBPI and SPOP and their products acting as CPGs in HCC livers may also be important diagnostic and prognostic biomarkers and therapeutic targets.

The data analysis of DEGs in the RGC-derived HR patient subgroups in the PT revealed the deregulation of key WNT pathway-associated genes, including DKK1, MYC, CTNNB1 and LEF1. Therefore, the RGC prognostic stratification in the PT reflects the deregulation of the upstream regulatory molecular machinery towards the WNT-β-catenin-MYC axis.

DKK1 has previously been demonstrated as a promising diagnostic and prognostic factor of HCC (Shen et al., 2012; Yu et al., 2009). After RGC-based stratification, DKK1 was the most up-regulated DEG between the HR and LR subgroups (PT) in both LCI and Singapore cohorts (Table S8) and was found to be a pro-oncogenic prognostic factor (Fig. S12A, B). This finding was validated using quantitative RT-PCR (Fig. S11), strongly confirming the results of previous reports. Additionally, quantitative DKK1 immunostaining demonstrated a significant association between DKK1 overexpression and the RGC classification (Fig. S12; see the Supporting information: Image based analysis of immunostaining slides). Because DKK1 has been demonstrated to be a pathologically essential and strong prognostic factor in several studies, including ours, DKK1 could be a potential candidate for a future preclinical study of anti-DKK1 therapy in HCC, as described for myeloma (Fulciniti et al., 2009) and osteosarcoma (Goldstein et al., 2016).

The results of the present study suggest that the subset of TER pathway genes (including the RGC genes) and multiple DEGs associated with alterations of this pathway might simultaneously be controlled by MYC in the PT and AT cells of HCC patients (Fig. 5A–E). By contrast to PT, we did not observe a significant enrichment of deregulated WNT pathway genes in AT (Fig. S7B), indicating that other factors, such as progression of viral HBV and/or chronic liver disease (Chan et al., 2004), may deregulate AT-associated MYC expression and TER pathway genes during HCC progression. Interestingly, the HBx HBV viral protein can cooperate with MYC to support ribosome biogenesis in HCC cell lines (Shukla and Kumar, 2012).

CPG-based prognostic biomarker preselection resulted in the detection of enriched FA/GO terms, where the enrichment for TER genes substantially
predominated over the enrichment for cell cycle/cell division genes (Figs 1F and S4; see also the Supporting information: MYC as a key regulator of ribosomal pathway in HCC PT and AT).

Furthermore, we found that HR patient HCC subgroups after RGC stratification were characterized by a predominance of up-regulated TER genes and a subset of down-regulated liver metabolism genes (Fig. 4). In this respect, an interesting study (Coulouarn et al., 2006) described a comparison of the global gene expression profiles of liver pre-neoplastic nodules in three transgenic mouse models with the over-expression of c-Myc alone, E2f1 alone, and both E2f1/c-Myc, respectively. Interestingly, the gene expression profiles for the liver pre-neoplastic nodules detected in the c-Myc over-expression mouse model were specifically characterized by induction of the genes involved in protein synthesis and the repression of the genes regulating liver metabolism. Noteworthy, the gene expression patterns observed in HR1 and HR2 subgroups (Fig. 4) displayed a remarkable similarity with that of the transgenic Myc mouse model of pre-neoplastic liver nodules. We suggest that the results and RGC-based prognostic model developed in the present study probably reflect the essential pathobiological processes in early-stage MYC-driven malignization in liver tissue. In this context, uncontrolled cell cycle and cell division, as major features of malignancy and progression drivers distinguishing PT from AT (Fig. 1F), may be considered just as another component of the entire pathobiology process.

Details of the molecular mechanisms underlying the co-expression of pro-oncogenic TER genes in PT and AT are not understood; this could be the subject of future studies. However, this does not exclude the possibility that the TER (and many other RGC-associated genes, some of which were described and considered in the present study) is responsible for the cross-tissue interactions between PT and AT during HCC progression. For example, TGFBR2, a key extracellular signaling regulator in multiple cancers (Morris et al., 2012), was significantly overexpressed in the HR RGC subgroups in both the PT and AT. The TER pathway genes were significantly associated with genes encoding extracellular vesicular and exosomal components, focal adhesions and adherence junctions (Fig. 4), assuming the hypothetical transfer of ribosomal mRNAs and proteins between the PT and AT as the potential cellular reprogramming/malignization factors. Notably, the mRNAs of multiple TER pathway-associated genes and rRNAs are often abundant in microvesicles/exosomes secreted by cancer cells (Janjaroenpun et al., 2013; Van Deun et al., 2014).

Thus, we propose the HCC-liver tissue interaction model (Fig. 5F) in which the up-regulation of ribosomal CPGs expression could support tumor cell growth and proliferation in PT by enhancing protein synthesis and additionally inducing similar ribosome biogenesis pathways in AT via the extra-ribosomal functions. In addition, CPG products could be involved in tumorigenic signaling pathways through activated extracellular exosomal trafficking (Fig. 5F).

The HR patient subgroups identified using the RGC in PT and AT (Figs 2 and 3) would have wide-ranging targeted treatment options throughout a single molecular cascade (Figs 4 and S8), thus enabling the further identification of novel and efficient drugs for patient subgroups with poor clinical outcomes (see also the Supporting information: Potential therapeutic intervention strategies after RGC-based HCC risk stratification). Finally, the simultaneous targeting of common prognostic genes and pathways in PT and AT may be considered as an alternative approach for potentially reducing post-surgery disease relapse.

The RGC stratification is comparatively simple (24 prognostic genes) and robust, yielding biologically consistent and reproducible patient stratification (Fig. 2) with a thoroughly characterized pathway deregulation (Figs 4 and S8) for use as a practical HCC prognostic assay.

There are limitations associated with the present study. First, the tissues and clinical data were collected retrospectively. Thus, this prognostic model needs further validation in a prospective study. Second, the present study only included HCC patients who underwent surgical resection; they are a selected group and some of our results may be not automatically extrapolated to other clinical HCC groups. For example, the RGC was cross-cohort validated in the LCI cohort, which predominantly includes HBV-related HCC patients (91%) with liver cirrhosis (92%); the RGC prognostic utility for non-HBV-related HCC patients and/or those without liver cirrhosis needs to be confirmed in another study.
In summary, our predictor selection and survival prediction analysis identified the ribosome biogenesis genes co-expressed in PT and AT from 321 HCC patients. The 44 TER CPGs could be considered as perspective HCC malignancy and prognostic biomarkers and targets for therapeutic implementations. We proposed that the PT-induced ribosomal biogenesis associated with the activation of TER pathways leads to extracellular signaling and ‘assimilation’ of a pro-tumorigenic state in AT cells. In PT and AT, we introduced the 24-ribosome gene-based prognostic classifier suggesting a pathophysiological role of the ribosome biogenesis in both tissues.

Acknowledgements

We thank Dr Antonis Giannakakis and Professor John Carson Allen Jr for critical comments and discussions, as well as Dr Sergey Pintus for assistance with the microarray data normalization. OG thanks Dr Igor Kurochkin for fruitful discussions concerning the results and also for guidance with the experimental design. We thank intern students Ms Jacqueline Tai Fei Li and Mr Liu Chong for help with the bioinformatics analysis. This work was supported by the Biomedical Research Council of A*STAR (Agency for Science, Technology and Research), Singapore. The funding agency had no role in the study design, data collection and analysis, preparation of the manuscript or the decision to publish.

Author contributions

VAK, PC, OG and SPY were responsible for the study concept and design. PC and KL were responsible for acquisition of clinical and immunohistochemistry data. PC was responsible for liver tissue samples. KHL was responsible for quality control and verification of histological data. MS, HKL, SPY, OG and VAK were responsible for immunohistochemistry quantitative image analysis and its interpretation. OG and VAK were responsible for statistical and bioinformatics analyses. VAK, OG, SPY and PC were responsible for experimental design. SPY and RI were responsible for RNA sample collection, microarrays production and the wet-lab study. OG, SPY, HKL, PC and VAK were responsible for the discussion of the experimental results and their interpretation. OG, VAK, SPY and MS were responsible for the drafting of the article. OG and VAK were responsible for the final version of the manuscript submitted for publication.

Ethics statement

SingHealth has approved this study centralized Institutional Review Board. Protocol title: An integrative genomic approach for molecular classification of HCC and correlations with the clinical outcomes. Institutional Review Board Ref: 2013/788/B.

Data accessibility

Research data pertaining to this article have been deposited at figshare.com: https://dx.doi.org/10.6084/m9.figshare.5616250.

References

Arai E, Ushijima S, Gotoh M, Ojima H, Kosuge T, Hosoda F, Shibata T, Kondo T, Yokoi S, Imoto I et al. (2009) Genome-wide DNA methylation profiles in liver tissue at the precancerous stage and in hepatocellular carcinoma. *Int J Cancer* 125, 2854–2862.
Ashatri S, Pourouseinghili MA, Sharifian A and Zali MR (2015) Hepatocellular carcinoma in Asia: prevention strategy and planning. *World J Hepatol* 7, 1708–1717.
Boyault S, Rickman DS, de Reynies A, Balabaud C, Rebouissou S, Jeannot E, Heralta A, Saric J, Belghiti J, Franco D et al. (2007) Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets. *Hepatology* 45, 42–52.
Bruix J, Reig M and Sherman M (2016) Evidence-based diagnosis, staging, and treatment of patients with hepatocellular carcinoma. *Gastroenterology* 150, 835–853.
Bruix J and Sherman M (2011) Management of hepatocellular carcinoma: an update. *Hepatology* 53, 1020–1022.
Chan KL, Guan XY and Ng IO (2004) High-throughput tissue microarray analysis of c-myc activation in chronic liver diseases and hepatocellular carcinoma. *Hum Pathol* 35, 1324–1331.
Chan XH, Nama S, Gopal F, Rizk P, Ramasamy S, Sundaram G, Ow GS, Ivshina AV, Tanavde V, Haybaeck J et al. (2012) Targeting glioma stem cells by functional inhibition of a prosurvival oncomiR-138 in malignant gliomas. *Cell Rep* 2, 591–602.
Chen L, Jenjaroenpun P, Pillai AM, Ivshina AV, Ow GS, Efthimios M, Zhiqun T, Tan TZ, Lee SC, Rogers K et al. (2017) Transposon insertional mutagenesis in mice identifies human breast cancer susceptibility genes and signatures for stratification. *Proc Natl Acad Sci U S A* 114, E2215–E2224.
Chow PK, ChooSP Ng DC, Lo RH, Wang ML, Toh HC, Tai DW, Goh BK, Wong JS, Tay KH et al. (2016) National cancer centre Singapore consensus...
guidelines for hepatocellular carcinoma. *Liver Cancer* 5, 97–106.

Coulouarn C, Gomez-Quiroz LE, Lee JS, Kaposi-Novak P, Conner EA, Goldina TA, Onishchenko GE, Factor VM, Thorgeirsson SS (2006) Oncogene-specific gene expression signatures at preneoplastic stage in mice define distinct mechanisms of hepatocarcinogenesis. *Hepatology* 44, 1003–1011.

Degli Esposti D, Hamelin J, Bosselut N, Saffroy R, Sebagh M, Pommier A, Martel C and Lemoine A (2012) Mitochondrial roles and cytoprotection in chronic liver injury. *Biochem Res Int* 2012, 387626.

Fulciniti M, Tassone P, Hideshima T, Vallet S, Nanjappa P, Ettenberg SA, Shen Z, Patel N, Tai YT, Chauhan D et al. (2009) Anti-DKK1 mAb (BHQ880) as a potential therapeutic agent for multiple myeloma. *Blood* 114, 371–379.

Goh BK, Teo JY, Chan CY, Lee SY, Jeyaraj P, Cheow PC, Chow PK, Ooi LL and Chung AY (2016) Importance of tumor size as a prognostic factor after partial liver resection for solitary hepatocellular carcinoma: implications on the current AJCC staging system. *J Surg Oncol* 113, 89–93.

Goldstein SD, Trucco M, Bautista W, Hayashi M and Loeb DM (2016) A monoclonal antibody against the Wnt signaling inhibitor dickkopf-1 inhibits osteosarcoma metastasis in a preclinical model. *Oncotarget* 7, 21114–21123.

Grinchuk OV, Motakis E, Yenamandra SP, Ow GS, Jenjaroenpun P, Tang Z, Yarmishyn AA, Ivshina AV and Kuznetsov VA (2015) Sense-antisense gene-pairs in breast cancer and associated pathological pathways. *Oncotarget* 6, 42197–42221.

Han KH, Kudo M, Ye SL, Choi JY, Poon RT, Seong J, Park JW, Ichida T, Chung JW, Chow P et al. (2011) Asian consensus workshop report: expert consensus guideline for the management of intermediate and advanced hepatocellular carcinoma in Asia. *Oncology* 81 (Suppl. 1), 158–164.

Hirata H, Sugimachi K, Komatsu H, Ueda M, Masuda T, Uchi R, Sakimura S, Nambara S, Saito T, Shinden Y et al. (2016) Decreased expression of fructose-1,6-bisphosphatase associates with glucose metabolism and tumor progression in hepatocellular carcinoma. *Cancer Res* 76, 3265–3276.

Hoshida Y, Brunet JP, Tamayo P, Golub TR and Mesirov JP (2007) Subclass mapping: identifying common subtypes in independent disease data sets. *PLoS One* 2, e1195.

Hoshida Y, Moeini A, Alsinet C, Kojima K and Villanueva A (2012) Gene signatures in the management of hepatocellular carcinoma. *Semin Oncol* 39, 473–485.

Hoshida Y, Villanueva A, Kobayashi M, Peix J, Chiang DY, Camargo A, Gupta S, Moore J, Wrobel MJ, Lerner J et al. (2008) Gene expression in fixed tissues and outcome in hepatocellular carcinoma. *N Engl J Med* 359, 1995–2004.

da Huang W, Sherman BT and Lempicki RA (2009a) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. *Nat Protoc* 4, 44–57.

da Huang W, Sherman BT and Lempicki RA (2009b) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. *Nucleic Acids Res* 37, 1–13.

International Working Party (1995) Terminology of nodular hepatocellular lesions. *Hepatology* 22, 983–993.

Jenjaroenpun P, Kremenska Y, Nair VM, Kremenskoy M, Joseph B and Kurochkin IV (2013) Characterization of RNA in exosomes secreted by human breast cancer cell lines using next-generation sequencing. *PeerJ* 1, e201.

Kauffmann A, Gentleman R and Huber W (2009) arrayQualityMetrics–a bioconductor package for quality assessment of microarray data. *Bioinformatics* 25, 415–416.

Kim SM, Leem SH, Chu IS, Park YY, Kim SC, Kim SB, Park ES, Lim JY, Heo J, Kim YJ et al. (2012) Sixty-five gene-based risk score classifier predicts overall survival in hepatocellular carcinoma. *Hepatology* 55, 1443–1452.

Kim JH, You KR, Kim IH, Cho BH, Kim CY and Kim DG (2004) Over-expression of the ribosomal protein L36a gene is associated with cellular proliferation in hepatocellular carcinoma. *Hepatology* 39, 129–138.

Kuznetsov VA, Senko OV, Miller LD and Ivshina AV (2006) Statistically weighted voting analysis of microarrays for molecular pattern selection and discovery cancer genotypes. *Int J of Comput Sci Netw Secur* 6, 73–83.

Lee HJ, Kang HJ, Kim KM, Yu ES, Kim KH, Kim SM, Kim TW, Shim JH, Lim YS, Lee HC et al. (2015) Fibroblast growth factor receptor isotype expression and its association with overall survival in patients with hepatocellular carcinoma. *Clin Mol Hepatol* 21, 60–70.

Lindstrom MS (2009) Emerging functions of ribosomal proteins in gene-specific transcription and translation. *Biochem Biophys Res Commo* 379, 167–170.

Llovet JM, Di Bisceglie AM, Bruix J, Kramer BS, Lencioni R, Zhu AX, Sherman M, Schwartz M, Lotze M, Talwalkar J et al. (2008a) Design and endpoints of clinical trials in hepatocellular carcinoma. *J Natl Cancer Inst* 100, 698–711.

Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, de Oliveira AC, Santoro A, Raoul JL, Forner A et al. (2008b) Sorafenib in advanced hepatocellular carcinoma. *N Engl J Med* 359, 378–390.

Llovet JM, Schwartz M and Mazzaferro V (2005) Resection and liver transplantation for hepatocellular carcinoma. *Semin Liver Dis* 25, 181–200.
Lou C, Du Z, Yang B, Gao Y, Wang Y and Fang S (2009) Aberrant DNA methylation profile of hepatocellular carcinoma and surgically resected margin. *Cancer Sci* **100**, 996–1004.

Mah WC, Thurnherr T, Chow PK, Chung AY, Ooi LL, Toh HC, Teh BT, Saunthararajah Y and Lee CG (2014) Methylation profiles reveal distinct subgroup of hepatocellular carcinoma patients with poor prognosis. *PLoS One* **9**, e104158.

McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M and Clark GM (2005) Reporting recommendations for tumor marker prognostic studies (REMARK). *J Natl Cancer Inst* **97**, 1180–1184.

Minguez B, Hoshida Y, Villanueva A, Toffanin S, Cabellos L, Thung S, Mandeli J, Sia D, April C, Fan JB et al. (2011) Gene-expression signature of vascular invasion in hepatocellular carcinoma. *J Hepatol* **55**, 1325–1331.

Morris SM, Baek JY, Koszarek A, Kanneganti S, Knoblaugh SE and Grady WM (2012) Transforming growth factor-beta signaling promotes hepatocarcinogenesis induced by p53 loss. *Hepatology* **55**, 121–131.

Motakis E, Ishina AV and Kuznetsov VA (2009) Data-driven approach to predict survival of cancer patients: estimation of microarray genes’ prediction significance by Cox proportional hazard regression model. *IEEE Eng Med Biol Mag* **28**, 58–66.

Nault JC, De Reyynes A, Villanueva A, Calderaro J, Reboissou S, Couchy G, Decaens T, Franco D, Imbeaud S, Rousseau F et al. (2013) A hepatocellular carcinoma 5-gene score associated with survival of patients after liver resection. *Gastroenterology* **145**, 176–187.

Newcombe RG (1998) Two-sided confidence intervals for the single proportion: comparison of seven methods. *Stat Med* **17**, 857–872.

Orimo T, Ojima H, Hiraoka N, Saito S, Kosuge T, Kakisaka T, Yokoo H, Nakanishi K, Kamiyama T, Todo S et al. (2008) Proteomic profiling reveals the prognostic value of adenomatous polyposis coli-end-binding protein 1 in hepatocellular carcinoma. *Hepatology* **48**, 1851–1863.

Polyak K, Haviv I and Campbell IG (2009) Co-evolution of tumor cells and their microenvironment. *Trends Genet* **25**, 30–38.

Reich M, Liefeld T, Gould J, Lerner J, Tamayo P and Mesirov JP (2006) GenePattern 2.0. *Nat Genet* **38**, 500–501.

Roessler S, Jia HL, Budhu A, Forgues M, Ye QH, Lee JS, Thorgeirsson SS, Sun Z, Tang ZY, Qin LX et al. (2010) A unique metastasis gene signature enables prediction of tumor relapse in early-stage hepatocellular carcinoma patients. *Cancer Res* **70**, 10202–10212.

Roessler S, Long EL, Budhu A, Chen Y, Zhao X, Ji J, Walker R, Jia HL, Ye QH, Qin LX et al. (2012) Integrative genomic identification of genes on 8p associated with hepatocellular carcinoma progression and patient survival. *Gastroenterology* **142**(957–966), e912.

Shapot VS and Potapova GI (1986) Methodological approaches to the study of tumor and body tissue metabolism in vitro and in vivo. *Eksph Onkol* **8**, 3–9.

Shapot VS, Vornovitskaya GI, Gorozhanskaya EG, Davydova SY, Zhubanova AA, Kretchova GD and Chudinova IA (1972) Notes on some peculiarities of enzymic processes in malignant tumours and tissues of the host. *Neoplasma* **19**, 335–340.

Shen Q, Fan J, Yang XR, Tan Y, Zhao W, Xu Y, Wang N, Niu Y, Wu Z, Zhou J et al. (2012) Serum DKK1 as a protein biomarker for the diagnosis of hepatocellular carcinoma: a large-scale, multicentre study. *Lancet Oncol* **13**, 817–826.

Shukla SK and Kumar V (2012) Hepatitis B virus X protein and c-Myc cooperate in the upregulation of ribosome biogenesis and in cellular transformation. *FEBS J* **279**, 3859–3871.

Simon RM, Paik S and Hayes DF (2009) Use of archived specimens in evaluation of prognostic and predictive biomarkers. *J Natl Cancer Inst* **101**, 1446–1452.

Skill NJ, Scott RE, Wu J and Maluccio MA (2011) Hepatocellular carcinoma associated lipid metabolism reprogramming. *J Surg Res* **169**, 51–56.

Smola A and Vapnik V (1997) Support vector regression machines. *Adv Neural Inf Process Syst* **9**, 155–161.

Stumpf CR, Moreno MV, Oshen AB, Taylor BS and Ruggero D (2013) The translational landscape of the mammalian cell cycle. *Mol Cell* **52**, 574–582.

Tannock IF and Hill RP (2013) The basic science of oncology, 5th ed. McGraw-Hill, New York, NY.

Thomas PD, Kejarival A, Guo N, Mi H, Campbell MJ, Muruganujan A and Lazareva-Ulitsky B (2006) Applications for protein sequence-function evolution data: mRNA/protein expression analysis and coding SNP scoring tools. *Nucleic Acids Res* **34**, W645–W650.

Van Deun J, Mestdagh P, Sormunen R, Coquot V, Vermaelen K, Vandesompele J, Bracke M, De Wever O and Hendrix A (2014) The impact of disparate isolation methods for extracellular vesicles on downstream RNA profiling. *J Extracell Vesicles* **3**, 24858.

Vauthey JN, Walsh GL, Vlastos G and Lauwers GY (2000) Importance of field cancerisation in clinical oncology. *Lancet Oncol* **1**, 15–16.

Wang C, Cigliano A, Jiang L, Li X, Fan B, Pilo MG, Liu Y, Gui B, Sini M, Smith JW et al. (2015b) 4EBP1/ eIF4E and p70S6K/4E/B5 axes play critical and distinct roles in hepatocarcinogenesis driven by AKT and N-Ras proto-oncogenes in mice. *Hepatology* **61**, 200–213.

Wang J, Su H, Han X and Xu K (2014) Inhibition of fibroblast growth factor receptor signaling impairs...
metastasis of hepatocellular carcinoma. *Tumour Biol* **35**, 11005–11011.

Wang J, Zuo Y, Man YG, Avital I, Stojadinovic A, Liu M, Yang X, Varghese RS, Tadesse MG and Ressom HW (2015a) Pathway and network approaches for identification of cancer signature markers from omics data. *J Cancer* **6**, 54–65.

Yang J, Jin X, Yan Y, Shao Y, Pan Y, Roberts LR, Zhang J, Huang H and Jiang J (2017) Inhibiting histone deacetylases suppresses glucose metabolism and hepatocellular carcinoma growth by restoring FBP1 expression. *Sci Rep* **7**, 43864.

Yu B, Yang X, Xu Y, Yao G, Shu H, Lin B, Hood L, Wang H, Yang S, Gu J et al. (2009) Elevated expression of DKK1 is associated with cytoplasmic/nuclear beta-catenin accumulation and poor prognosis in hepatocellular carcinomas. *J Hepatol* **50**, 948–957.

Supporting information

Additional Supporting Information may be found online in the supporting information tab for this article:

Fig. S1. 1D-DDg method stratifies patients onto LR and HR subgroups based on ‘tumor suppressor-like’ and ‘pro-oncogenic’ prognostic gene expression patterns.

Fig. S2. Workflow of data analysis and validation.

Fig. S3. Survival analysis for RPL3 (ribosomal protein L3) and SPOP (speckle-type POZ protein) CPGs.

Fig. S4. FA/GO analysis of TER genes using PANTHER bioinformatics software.

Fig. S5. Identification of TER gene set in the LCI cohort and comparison with the TER gene set from the Singapore cohort.

Fig. S6. Training and cross-cohort validation of the 41-gene cell cycle gene signature.

Fig. S7. Up-regulated DEGs after RGC-stratification: MetaCore Pathway Maps and GO localization analyses.

Fig. S8. Deregulated WNT pathway in HR T subgroups revealed after the RGC stratification of HCC patients in Singapore and LCI cohorts.

Fig. S9. MYC as a key regulator of genes involved in TER pathway in HCC PT and AT.

Fig. S10. Concordance analysis between expression data from microarray and quantitative RT-PCR experiments in 12 representative genes.

Fig. S11. Quantitative RT-PCR validation of 20 representative genes either involved in the RGC or genes differentially expressed in HR T and LR T subgroups.

Fig. S12. Results of the testing of DKK1 relative expression in IHC liver tumor tissue images (PT) in six representative HCC patients using the SVR approach.

Fig. S13. Comparison of RGC prognostic power with other prognostic gene signatures.

Table S1. The flow of HCC patients and variables used in the present study.

Table S2. Checklist of REMARK guidelines in the present study.

Table S3. GO term ‘Translational elongation’ genes and their prognostic characteristics in Singapore dataset.

Table S4. GO term ‘Translational elongation’ genes and their prognostic characteristics in LCI dataset.

Table S5. The 24-ribosome gene prognostic classifier and the 1-D DDg-derived characteristics used in validation analysis.

Table S6. 41-gene prognostic signature defined by the cell cycle genes differentiating PT and AT samples. Data include Illumina and Affymetrix microarray probes annotation support.

Table S7. Clinical phenotypes associated with the RGC clinical subgroups in PT.

Table S8. The common differentially expressed genes between HR T and LR T prognostic subgroups derived by the RGC in PT.

Table S9. Common differentially expressed genes between HR A and LR A prognostic subgroups derived by the RGC in AT.

Table S10. Unique overlaps of ChIP-seq binding regions with gene proximal promoters in various gene sets.

Table S11. Literature support of the selected genes involved in endosome functions.

Table S12. Common differentially expressed genes in HR RGC prognostic subgroups in both PT and AT.

Table S13. Oligoprimers used for quantitative RT-PCR validation of the selected genes.