Denoising-based Vector AMP

Philip Schniter∗, Sundeep Rangan†, and Alyson Fletcher‡

* Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH. † Department of Electrical and Computer Engineering, New York University, Brooklyn, NY. ‡ Departments of Statistics, Mathematics, and Electrical Engineering, University of California, Los Angeles, CA.

Abstract

The D-AMP methodology, recently proposed by Metzler, Maleki, and Baraniuk, allows one to plug in sophisticated denoisers like BM3D into the AMP algorithm to achieve state-of-the-art compressive image recovery. But AMP diverges with small deviations from the i.i.d.-Gaussian assumption on the measurement matrix. Recently, the VAMP algorithm has been proposed to fix this problem. In this work, we show that the benefits of VAMP extend to D-V AMP.

Consider the problem of recovering a (vectorized) image \(x_0 \in \mathbb{R}^N \) from compressive (i.e., \(M \ll N \)) noisy linear measurements

\[
y = \Phi x_0 + w \in \mathbb{R}^M,
\]

known as “compressive imaging.” The “sparse” approach to this problem exploits sparsity in the coefficients \(v_0 \equiv \Psi x_0 \in \mathbb{R}^N \) of an orthonormal wavelet transform \(\Psi \). The idea is to rewrite [1] as

\[
y = A v_0 + w \quad \text{for} \quad A \equiv \Phi \Psi^T,
\]

recover an estimate \(\hat{v} \) of \(v_0 \) from \(y \), and then construct the image estimate as \(\hat{x} = \Psi^T \hat{v} \).

Although many algorithms have been proposed for sparse recovery of \(v_0 \), a notable one is the approximate message passing (AMP) algorithm from [1]. It is computationally efficient (i.e., one multiplication by \(A \) and \(A^T \) per iteration and relatively few iterations) and its performance, when \(M \) and \(N \) are large and \(\Phi \) is zero-mean i.i.d. Gaussian, is rigorously characterized by a scalar state evolution.

A variant called “denoising-based AMP” (D-AMP) was recently proposed [2] for direct recovery of \(x_0 \) from [1]. It exploits the fact that, at iteration \(t \), AMP constructs a pseudo-measurement of the form \(v_0 + \mathcal{N}(0, \sigma_t^2 I) \) with known \(\sigma_t^2 \), which is amenable to any image denoising algorithm. By plugging in a state-of-the-art image denoiser like BM3D [3], D-AMP yields state-of-the-art compressive imaging.

AMP and D-AMP, however, have a serious weakness: they diverge under small deviations from the zero-mean i.i.d. Gaussian assumption on \(\Phi \), such as non-zero mean or mild ill-conditioning. A robust alternative called “vector AMP” (VAMP) was recently proposed [4]. VAMP has similar complexity to AMP and a rigorous state evolution...
that holds under right-rotationally invariant Φ—a much larger class of matrices. Although VAMP needs to know the variance of the measurement noise w, an auto-tuning method was proposed in [5].

In this work, we integrate the D-AMP methodology from [2] into auto-tuned VAMP from [5], leading to “D-VAMP” (For a matlab implementation, see http://dsp.rice.edu/software/DAMP-toolbox).

To test D-VAMP, we recovered the 128×128 lena, barbara, boat, fingerprint, house, and peppers images using 10 realizations of Φ. Table I shows that, for i.i.d. Gaussian Φ, the average PSNR and runtime of D-VAMP is similar to D-AMP at medium sampling ratios. The PSNRs for ν-based indirect recovery, using Lasso (i.e., “ℓ_1”)-based AMP and VAMP, are significantly worse. At small sampling ratios, D-VAMP behaves better than D-AMP, as shown in Fig. 1.

To test robustness to ill-conditioning in Φ, we constructed $\Phi = JSPFD$, with D a diagonal matrix of random ± 1, F a (fast) Hadamard matrix, P a random permutation matrix, and $S \in \mathbb{R}^{M \times N}$ a diagonal matrix of singular values. The sampling rate was fixed at $M/N = 0.1$, the noise variance chosen to achieve SNR=32 dB, and the singular values were geometric, i.e., $s_i/s_{i-1} = \rho \ \forall i > 1$, with ρ chosen to yield a desired condition number. Table II shows that (D-)AMP breaks when the condition number is ≥ 10, whereas (D-)VAMP shows only mild degradation in PSNR (but not runtime).

![Fig. 1. PSNR versus iteration at several sampling ratios M/N for i.i.d. Gaussian A.](image)

TABLE I	AVERAGE PSNR AND RUNTIME FROM MEASUREMENTS WITH I.I.D. GAUSSIAN MATRICES AND ZERO NOISE AFTER 30 ITERATIONS									
sampling ratio	10% PSNR time	10% runtime	20% PSNR time	20% runtime	30% PSNR time	30% runtime	40% PSNR time	40% runtime	50% PSNR time	50% runtime
ℓ_1-AMP	17.7	0.5s	20.2	1.6s	22.4	1.6s	24.6	2.3s	27.0	3.1s
ℓ_1-VAMP	17.6	0.5s	20.2	0.9s	22.4	1.4s	24.8	1.8s	27.2	2.3s
BM3D-AMP	25.2	10.1s	30.0	8.8s	32.5	8.6s	35.1	9.1s	37.4	9.8s
BM3D-VAMP	25.2	10.4s	30.0	8.5s	32.5	8.2s	35.2	8.5s	37.7	8.8s
TABLE II
AVERAGE PSNR AND RUNTIME FROM MEASUREMENTS WITH DHT-BASED MATRICES AND SNR=32 DB AFTER 10 ITERATIONS

condition no.	PSNR time				
ℓ₁-AMP	17.3 0.02	<0 <0	<0 <0	<0 <0	<0 <0
ℓ₁-VAMP	17.4 0.04	17.4 0.04	15.6 0.03	14.7 0.03	14.4 0.03
BM3D-AMP	24.8 5.2s	8.0 —	7.2 —	7.1 —	7.2 —
BM3D-VAMP	24.8 5.4s	24.3 5.5s	22.6 5.3s	21.4 4.9s	20 4.5s

REFERENCES

[1] D. L. Donoho, A. Maleki, and A. Montanari, “Message passing algorithms for compressed sensing,” Proc. Nat. Acad. Sci., vol. 106, no. 45, pp. 18,914–18,919, Nov. 2009.

[2] C. A. Metzler, A. Maleki, and R. G. Baraniuk, “From denoising to compressed sensing,” IEEE Trans. Inform. Theory, vol. 62, no. 9, pp. 5117–5144, 2016.

[3] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3-D transform-domain collaborative filtering,” IEEE Trans. Image Process., vol. 16, no. 8, pp. 2080–2095, 2007.

[4] S. Rangan, P. Schniter, and A. K. Fletcher, “Vector approximate message passing,” arXiv:1610.03082, 2016.

[5] A. K. Fletcher and P. Schniter, “Learning and free energies for vector approximate message passing,” arXiv:1602.08207, 2016.