Article

PyunBBX18 Is Involved in the Regulation of Anthocyanins Biosynthesis under UV-B Stress

Qin Zhang¹,2,†, Dongxiao Ma¹,2,†, Zhixu Hu¹,2, Dan Zong¹,2,3,* and Chengzhong He¹,2,3

¹ College of Life Sciences, Southwest Forestry University, Kunming 650224, China
² Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China
³ Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming 650224, China
* Correspondence: zdkathy@163.com
† These authors contributed equally to this work.

Abstract: (1) Background: Populus yunnanensis Dode (P. yunnanensis) grows in the low-latitude and high-altitude areas of southwest China. In low-latitude and high-altitude areas, plants suffer from the high intensity of UV-B (ultraviolet-b) radiation, and they have a complete regulation system to adapt to the environment of the high UV-B radiation. As natural antioxidants, anthocyanins play an important role in scavenging free radicals. BBX (B-box) genes are involved in anthocyanins biosynthesis. (2) Methods: By exploring the gene structure and motifs of PyunBBX genes (genes of P. yunnanensis BBX family) and the evolutionary relationship between PyunBBX genes and other species BBX genes, six PyunBBX genes that responded to UV-B and participated in anthocyanins biosynthesis were screened. BBX, with the potential to regulate anthocyanins biosynthesis, was further investigated by anthocyanins content determination and RT-qPCR (real-time quantitative polymerase chain reaction); (3) Results: After 7 days of UV-B treatment, anthocyanins were significantly accumulated, and the expression of PyunBBX18 was up-regulated for 7 days. The expression of PyunBBX12 was inhibited by UV-B treatment. By analyzing the RNA-seq data of leaves and bark of P. yunnanensis, we found that PyunBBX18 was highly expressed in leaves and young bark; (4) Conclusions: These results showed that PyunBBX18 and PyunBBX12 may be involved in the response process of UV-B stress, in which PyunBBX18 may regulate the anthocyanins biosynthesis to resist UV damage.

Keywords: BBX; Populus yunnanensis; UV stress; anthocyanins; gene family; B-box

1. Introduction

Transcription factors (TFs) play an important role in plant growth and development and stress defense. BBX is a kind of TF containing a zinc finger structure that mediates and regulates many biological processes in plants, including photomorphogenesis, flowering regulation, and response to biological and abiotic stresses [1]. The N-terminal of the BBX protein contains one B-box-conserved domain or two B-box-conserved domains, namely B-box1 and B-box2. Some BBX have a CCT (CONSTANS, CO-like, and TOC1) domain at the C-terminal. The B-box conserved domain is involved in protein interaction and transcriptional regulation, while the CCT domain is mainly involved in nuclear transport and transcriptional regulation [2,3].

Over the years, research has shown that the majority of BBX gene family members can interact with HY5 (ELONGATED HYPOCOTYL5, an important TF of light signal) or regulate transcription of HY5, thereby regulating photomorphogenesis and anthocyanins biosynthesis in plants [4–10]. For instance, AtBBX21 binds to T/G-box in the Athy5 promoter through its second B-box domain, thereby regulating the expression of Athy5 and HY5-regulated genes to promote photomorphogenesis in plants [5]. Under UV-B treatment, the module SIBBX20/21-SIHY5 could activate the transcription of SIHY5, and the excessive
accumulation of SIHY5 protein inhibited its transcription, forming a negative feedback loop to maintain the level of SIHY5 in plants, thus regulating the photomorphogenesis of tomato [11]. PtrBBX23 showed a high expression response in *Populus trichocarpa* (*P. trichocarpa*) after different treatments, including high light, blue light, and UV-B radiation. The interaction experiment proved that the transcription of *MYB115/I19* and structural genes (*CHS, F3H*), which are associated with anthocyanins biosynthesis, was activated by *PtrBBX23* bound to their promoters directly, and the interaction between *PtrBBX23* and HY5 enhanced the activation activity of *PtrBBX23*, thus promoting the accumulation of proanthocyanidins and anthocyanins [12]. *MdBBX22* can enhance the binding of HY5 with *MdMYB10* and *MdCHS* by interacting with HY5, thereby promoting anthocyanins biosynthesis of apple fruit response to UV-B signal [13], and a similar mechanism exists in *PpBBX16* [10] and *MdBBX20* [14].

Anthocyanins are plant pigment with natural activity, and it is a kind of secondary metabolite produced in plants. It is distributed in flowers, leaves, fruits, and other organs. Biosynthesis and accumulation of anthocyanins play an important role in plant adaptation and resistance to harsh environment and can enhance plant resistance to biological and abiotic stresses [15–24]. Anthocyanin accumulation is not only affected by plants’ own factors but also by external environmental factors, among which light signal is one of the most important environmental factors affecting anthocyanins biosynthesis [25].

P. yunnanensis is an endemic *Tacamahaca* in China and a representative species of *Populus* in low-latitude and high-altitude areas of southwest China. It is mainly distributed in high-altitude mountains from 1600 to 3200 m, which have suitable characteristics of strong adaptability, rapid growth, and easy rooting, and it plays an important role in forestry production, afforestation, and environmental protection [26]. Previous studies have shown that the UV-B radiation intensity will increase by 10–16% in every 1000 m rise in altitude [27]. So, in high-altitude areas, *P. yunnanensis* suffers from the high intensity of UV-B radiation, and it has a complete regulation system to adapt to the environment of the UV-B radiation. As natural antioxidants, anthocyanins play an important role in scavenging free radicals. It can protect plant tissues from excessive UV-B radiation, and enhanced UV-B can promote and induce the biosynthesis of anthocyanins [28–30]. However, the fundamental research on molecules of *P. yunnanensis* in response to UV-B stress is limited. Therefore, further molecular studies are needed to explain the underlying mechanism of adaptation to UV-B radiation in *P. yunnanensis*. In this study, we identified 43 *PyunBBX* genes and investigated their structural domains and the effects of UV-B irradiation on the BBX gene expression and anthocyanins content in *P. yunnanensis*. This work will be helpful for future studies of BBX gene functions under UV-B radiation stress in *P. yunnanensis*.

2. Materials and Methods

2.1. Identification of BBX Gene Family Members in *P. yunnanensis*

The genome at the chromosome level of *P. yunnanensis* was obtained from our laboratory group (Southwest Forestry University, Kunming 6500224, China). In order to identify the BBX in *P. yunnanensis* genome, firstly, the 32 members of BBX proteins sequences in *Arabidopsis thaliana* (*A. thaliana*) genome were downloaded from the TAIR 10 (https://www.arabidopsis.org/, accessed on 1 December 2021) database [3]. The 32 proteins sequences were used to search the BBX family members in *P. yunnanensis* genome by Blastp (E-value < 1E-05) [31]. The profile of the hidden Markov model (HMM) for the B-box domain (Pfam00643) and CCT domain (Pfam06203) was obtained from Pfam (https://pfam.xfam.org/, accessed on 2 December 2021) [32]. The hmmsearch program of the HMMER 3.0 software was used to search for the putative BBX gene family members in the *P. yunnanensis* genome, and the E-value was set to 1E-05 [33]. If a gene had multiple transcripts, the longest transcript was selected as the representative protein sequence for further analysis. After removing the duplicate for candidate BBX gene family members, the reserved protein sequences of BBX gene family members were submitted to the SMART database (http://smart.embl-heidelberg.de/, accessed on 3 December 2021) [34], CDD (Conserved
Domain Database, https://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml, accessed on 3 December 2021) [35], and InterPro database (http://www.ebi.ac.uk/interpro/, accessed on 3 December 2021) [36] in order to analyze whether it contained unique B-box conservative domain structure. The B-box conservative domain structure of candidate genes was identified as the BBX gene family members of *P. yunnanensis*.

2.2. Analysis of Basic Physicochemical and Subcellular Localization of PyunBBX Genes

The molecular weight (kDa) and isoelectric point (PI) of each BBX protein were predicted by ExPASy (http://www.expasy.org/tools/, accessed on 4 December 2021) [37]. The online software Plant-mPLoc (http://www.csbio.sjtu.edu.cn/bioinf/plant-multi/, accessed on 4 December 2021) was used to predict the subcellular localization of *PyunBBX* genes [38].

2.3. Gene Structure and Motif Analysis of PyunBBX Genes

The length and location of exons and introns of *PyunBBX* genes were obtained from the *P. yunnanensis* genome for further analysis. Each sequence of *PyunBBX* genes was submitted to MEME (https://meme-suite.org/meme/tools/meme, accessed on 18 December 2021) [39]. In the conservative base sequence analysis, the maximum was set to 10, the mode was selected as zoops, and the default values of other parameters were used. Finally, the results were visualized by TBtools [40] and WebLogo (http://weblogo.berkeley.edu/logo.cgi, accessed on 20 December 2021).

2.4. Cis-Acting Elements Analysis

The promoter-upstream region (~2000 bp) sequences were extracted from the genomic DNA sequence of *P. yunnanensis*, and the sequences were submitted to the PlantCARE website (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/, accessed on 2 January 2022) [41] for cis-acting element prediction. Excel was used to sort out and simplify the analysis results, and the cis-acting elements with the same biological functions were labeled with the same label notes.

2.5. Chromosomal Location, Gene Duplication, and Synteny Analysis

The chromosome location image of the *PyunBBX* genes was drawn using the TBtools software according to the physical positions of *PyunBBX* genes on the *P. yunnanensis* chromosomes. All the BBX amino acid sequences of *A. thaliana*, *P. trichocarpa*, and *P. yunnanensis* were included in a local database using DIAMOND [42]. The *P. trichocarpa* genome (version = 3.0) was derived from the Phytozome database (https://phytozome-next.jgi.doe.gov/info/Ptirchocarpa_v3_0, accessed on 15 March 2022). The BBX protein sequences of *P. yunnanensis* were used as queries to search the above-mentioned database with an E-value of 1E-05. The blast results were analyzed by the MCScanX (Multiple Collinear Scan Kit) [43] and TBtools to determine and analyze the duplication and synteny of BBX genes. The Ks (synonymous substitution rate) and Ka (nonsynonymous substitution rate) values of collinearity pairs in *PyunBBX* genes were estimated by the KaKs_calculator [44] procedure in TBtools. The divergence time was calculated with the formula $T = Ks/2r$, with Ks being the synonymous substitutions per site and r being the rate of divergence for nuclear genes from plants. The r was taken to be 1.5×10^{-8} synonymous substitutions per site per year for dicotyledonous plants [45].

2.6. Evolutionary Analysis of BBX Gene Family Members

The molecular evolutionary genetic analysis tool MEGA (Molecular Evolutionary Genetics Analysis) version 7.0.20 [46] was used for multiple sequence alignment and evolutionary analysis. The ClustalW program of MEGA was firstly used for multi-sequence alignment of the BBX amino acid sequences. Then, the gaps were manually sheared, and conservative region sequences were reserved. The maximum likelihood (ML) method was selected to construct the phylogenetic tree for *PyunBBX* genes, and the neighbor-joining
(NJ) method constructed a phylogenetic tree for BBX genes of multispecies. Bootstrap was set to 1000.

2.7. Plant Materials, Growth Conditions, and UV Treatment

The plant material was from the branches of *P. yunnanensis* that had grown for one year in the greenhouse of Southwest Forestry University. They were pruned into cuttings of about 15 cm, and cuttings were made in March 2022. The cuttings were induced when they had reached 5–6 leaves. The cuttings of the same growth were placed in the constant temperature incubator (temperature: 25°C, humidity: 70%, light intensity: 90 µmol·m⁻²·s⁻¹, photoperiod: 12 h light/12 h dark) for cultivation, a UV lamp (Telipu, Beijing Zhongyi Boteng Technology Company, power: 8 W, radiation intensity: 68 µW/cm², wavelength: 280–320 nm) was placed 35 ± 1 cm above the cuttings, and UV irradiation was carried out for 12 h every day under normal light treatment. The cottage seedlings were sampled after UV treatment for 12 h, and the sampling time was 0, 1, 2, 3, 5, and 7 days. The control group was cottage seedlings that grew under normal light. The sampling sites were the second and third fully extended leaves. The samples were frozen with liquid nitrogen and immediately stored in the −80°C refrigerator.

2.8. Total RNA Isolation and cDNA Synthesis

Total RNA was isolated from the leaf of *P. yunnanensis* using the E.Z.N.A.® Plant RNA kit (Omega Bio-tek Inc., Norcross, USA) according to its manual. The quality of RNA was evaluated with K5800C (KAIAO, Beijing, China). A total of 500 ng RNA of each sample was used for 1st strand cDNA synthesis using Hifair® III Reverse Transcriptase (YEASEN, Shanghai, China) according to the manufacturer’s protocols. cDNA was diluted 8-fold for RT-qPCR analysis.

2.9. Quantitative Real-Time PCR

Primers were designed based on CDS sequences for real-time PCR by using NCBI primer-blast (Table S1). The internal reference gene was HIS (histone) [47]. Real-time PCR application was carried out in a LightCycler® 96 Real-Time PCR Detection System (Roche, Hercules, Switzerland) with Hieff UNICON® Universal Blue qPCR SYBR Green Master Mix (YEASEN, Shanghai, China). A total of 20 µL reaction system contained 10 µL Blue qPCR SYBR Green Master Mix, 1 µL cDNA samples, 0.4 µL of each primer (1 µM), and 8.2 µL ddH2O. The PCR thermal cycle conditions were as follows: denaturation at 95 °C for 2 min, 45 cycles of 95 °C for 10 s, and 56 °C for 30 s. Fluorescence intensities were measured for RT-qPCR at the end of each cycle. A melting curve (1 cycle of 95 °C for 10 s, 65 °C for 10 s, and 97 °C for 1 s) was performed directly to check for specific amplification. The relative gene expression was calculated by using the 2⁻△△Ct method [48], and the experiments were performed in triplicate technological repeats.

2.10. Extraction and Determination of Anthocyanins

Determination of anthocyanins content used ethanol/hydrochloric acid assay [49]. Fresh leaves were cut into pieces and weighed with 0.1 g, placed in a 10 mL centrifuge tube, and 10 mL hydrochloric acid ethanol (0.1 mol/L) solution was added to the tube. It was warmed at 60 °C for 30 min in a water bath. Then, the supernatant was transferred to a 25 mL volumetric flask after cooling. Then, 5 mL hydrochloric acid ethanol solution was added to the tube and continued water bath for 15 min. This step was repeated three times, and the supernatant was combined. Finally, the volume was fixed to 25 mL, and the absorbance value (Abs) was measured at 530 nm. Substitute the measured results into the following formula for calculation:

\[
C = 958^{-1} \times A \times V \times m^{-1} \times 10^3
\]
C: anthocyanins content (mg/100 g), A: Abs (nm), V: metered volume (mL), m: mass (g), 958: empirical coefficient of Abs conversion into mass volume ratio, 10^{3}: unit conversion coefficient.

2.11. Expression Patterns of BBX Family Members in *P. yunnanensis* by Rna-seq Data

Transcriptome data of leaves (PRJNA505895) and bark (PRJNA542544) at different mature sites (PRJNA506110) were downloaded from NCBI (National Center for Biotechnology Information). For raw data, fastQC (Version = 0.11.9) was used for quality inspection. Fastp (Version = 0.19.4) further filtered low-quality reads. The obtained high-quality clean reads were compared to the genome of *P. yunnanensis* using Hisat2 (version = 2.1.0). FeaturCounts (Version = 2.0.1) normalized FPKM (fragments per kilobase of exon model per million mapped fragments) values were obtained in the R language for expression pattern analysis. Heatmap (Version = 2.8.0) was used to draw the heat map of gene expression.

2.12. Data Analysis

Adobe Photoshop CS6 was used for image processing, and Adobe Illustrator 2020 was used for chart layout. The data obtained from the experiment were plotted and analyzed by Graphpad Prism 8.0.2 software.

3. Results

3.1. Analysis of The Basic Characteristics of *PyunBBX* Genes

Totally, 43 *PyunBBX* genes were identified from the *P. yunnanensis* genome. They were named *PyunBBX1* to *PyunBBX43* in the order of their position on chromosomes. They had different sequence lengths, resulting in different isoelectric points and molecular weights (Table 1). Amino acid sequences ranged in length from 184 aa (*PyunBBX10*) to 513 aa (*PyunBBX1*). The predicted molecular weight of the BBX gene was 12.11 kDa (*PyunBBX5*) to 59.46 kDa (*PyunBBX9*), and the theoretical isoelectric point was 4.12 (*PyunBBX30*) to 9.26 (*PyunBBX29*). Subcellular prediction showed that all of the *PyunBBX* genes were located in the nucleus.

Table 1. Basic characteristic of BBX family members in *P. yunnanensis*.

Gene ID	Chromosomal Location	Amino Acid Length (aa)	Isoelectric Point (pI)	Molecular Weight (kDa)	Subcellular Localization
PyunBBX1	Chr01: 5,540,646–5,543,961	513	5.75	56.51	Nucleus
PyunBBX2	Chr01: 36,111,780–36,114,290	430	5.54	48.42	Nucleus
PyunBBX3	Chr01: 43,995,595–43,999,866	297	5.68	31.88	Nucleus
PyunBBX4	Chr01: 44,107,170–44,111,390	297	5.99	31.88	Nucleus
PyunBBX5	Chr01: 47,801,948–47,803,497	271	4.31	29.56	Nucleus
PyunBBX6	Chr02: 1,909,069–1,910,516	311	6.05	34.36	Nucleus
PyunBBX7	Chr02: 19,567,193–19,571,319	362	5.7	40.72	Nucleus
PyunBBX8	Chr02: 20,923,421–20,934,900	416	5.68	45.58	Nucleus
PyunBBX9	Chr03: 20,261,596–20,265,145	541	6.19	59.46	Nucleus
PyunBBX10	Chr04: 1,800,513–1,801,998	184	4.15	20.32	Nucleus
PyunBBX11	Chr04: 1,805,089–1,811,255	236	4.67	25.65	Nucleus
PyunBBX12	Chr04: 11,046,033–11,048,035	369	5.92	40.86	Nucleus
PyunBBX13	Chr04: 20,203,185–20,203,893	206	5.72	22.9	Nucleus
PyunBBX14	Chr04: 20,382,296–20,384,272	203	5.98	22.75	Nucleus
PyunBBX15	Chr05: 9,739,681–9,741,476	193	7.56	21.42	Nucleus
PyunBBX16	Chr05: 25,453,505–25,455,163	311	6.2	34.34	Nucleus
PyunBBX17	Chr06: 18,887,979–18,889,903	384	6.23	42.36	Nucleus
PyunBBX18	Chr06: 28,508,368–28,511,098	346	6.09	37.58	Nucleus
PyunBBX19	Chr07: 1,484,594–1,486,875	192	6.49	21.18	Nucleus
PyunBBX20	Chr07: 16,742,283–16,744,039	433	5.26	47.03	Nucleus
Gene ID	Chromosomal Location	Amino Acid Length (aa)	Isoelectric Point (pI)	Molecular Weight (kDa)	Subcellular Localization
----------	----------------------	------------------------	------------------------	------------------------	--------------------------
PyunBBX21	Chr07: 17,319,158–17,322,042	235	4.8	26.05	Nucleus
PyunBBX22	Chr08: 292,896–293,927	250	8.66	27.54	Nucleus
PyunBBX23	Chr08: 8,052,050–8,054,730	444	5.58	49.27	Nucleus
PyunBBX24	Chr08: 8,604,637–8,611,266	500	5.81	56.13	Nucleus
PyunBBX25	Chr08: 8,669,884–8,676,275	500	7.88	56.09	Nucleus
PyunBBX26	Chr09: 12,288,823–12,289,560	217	6.24	24.06	Nucleus
PyunBBX27	Chr09: 12,435,516–12,440,014	238	7.05	26.38	Nucleus
PyunBBX28	Chr10: 156,680,74–15,670,342	447	5.1	48.93	Nucleus
PyunBBX29	Chr10: 24,419,560–24,421,322	263	9.26	28.89	Nucleus
PyunBBX30	Chr11: 4,714,212–4,714,775	217	6.24	24.06	Nucleus
PyunBBX31	Chr11: 15,010,674–15,015,143	238	7.05	26.38	Nucleus
PyunBBX32	Chr10: 17,403,770–17,405,035	447	5.1	48.93	Nucleus
PyunBBX33	Chr11: 4,714,212–4,714,775	217	6.24	24.06	Nucleus

On 19 chromosomes of the *P. yunnanensis* genome, there were no *PyunBBX* genes on chromosomes 12, 13, and 19, and the other chromosomes (chromosomes 1–11 and chromosomes 14–18) had *PyunBBX* genes (Figure 1).

3.2. Gene Structure and Characteristics of Conserved Sequences of *PyunBBX* Gene Family Members

The amino acid sequences of 43 members of the *P. yunnanensis* BBX gene family were analyzed, and the 3 most significant conserved sequences were extracted, namely B-box1, B-box2, and CCT (Figures 2, 3 and S1). B-box1 and B-box2 have a high similarity, with the structure of C2-X2-C7-8-C-X7-C-X2-C-D-Xn-H. Besides *PyunBBX5*, each of them has five conserved cysteine (Cys, C) residues adjacent to aspartic acid (Asp, D). Moreover, the Cys on both sides are (Leu, L) linked. Such a structure can combine with Zn$^{2+}$ and form a “finger” structure through self-folding. It can be further combined with RNA, DNA, and protein to carry out gene regulation at the level of transcription and translation. Some BBX members also have a CCT domain, which is R-X5-R-Y-X4-R-Y-X3-K-X2-R-Y-X1-K-X2-R-R-X2-R-X2-G, containing a large number of arginine (Arg, R), followed by conservative tyrosine (Tyr, Y) and lysine (Lys, K), participating in the nuclear localization of the protein [50].

The structure of *PyunBBX* genes is shown in Figure 3. The results showed that most *PyunBBX* genes contained at least one intron and up to five introns. *PyunBBX* genes could be divided into five groups. It was consistent with the classification of other species. The first group contains 12 *PyunBBX* genes with 2 B-box domains and 1 CCT domain. The second group contains six *PyunBBX* genes with two B-box domains and one CCT domain. The third group contains three *PyunBBX* genes with a B-box domain and a CCT structure. The fourth group contains 14 members of *PyunBBX* genes with 2 B-box domains. The fifth group contains eight *PyunBBX* genes with a B-box domain. In addition, some *PyunBBX* genes (*PyunBBX*12/17/21/37/38/41/42/43) also have a VP motif, and the VP peptide motif in the gene can bind to the WD40 domain of *COP1* (CONSTITUTIVE PHOTOMORPHOGENIC 1) and interact with it to participate in the light response [51].
Figure 1. Chromosomes location of *PyunBBX* genes. The scale on the left is in megabases (Mb). The yellow lines within each chromosome represent gene density.
3.3. Collinearity Analysis

The high sequence similarity between repetitive gene pairs indicated that they were likely involved in regulating similar biological processes. MCScanX was used to analyze the collinear blocks and gene duplication type. There were 14 gene pairs of PyunBBX genes, which were PyunBBX1/9, PyunBBX15/19, PyunBBX13/26, PyunBBX14/27, PyunBBX18/42, PyunBBX23/28, PyunBBX22/29, PyunBBX4/31, PyunBBX34/35, PyunBBX21/37, PyunBBX20/39, PyunBBX12/41, and PyunBBX17/43, and they belong to segmental in duplicated type (Figure 4, Table 2). The Ka/Ks values of 14 pairs of collinear blocks were all less than 1, indicating that these members may have been affected by purification selection in evolution. By calculating the divergence time of collinear blocks, the result showed that the average differentiation time of PyunBBX genes was 2.3 Mya (millions of years ago). Moreover, PyunBBX22 and PyunBBX29 differentiated at 3.92 Mya that they had the longest time of differentiation, and PyunBBX34 and PyunBBX35 differentiated at 0.24 Mya that they diverged more recently (Table 2).
We constructed comparative syntenic maps between *P. yunnanensis* and the other two species (*P. trichocarpa* and *A. thaliana*) to analyze the similarities of the BBX gene among species. Syntenic maps revealed that 86 pairs of homologous genes were found between *P. trichocarpa* and *P. yunnanensis*, and 46 pairs of homologous genes were found between *P. yunnanensis* and *A. thaliana* (Figure 5).

Figure 3. The phylogenetic tree and gene structures of *PyunBBX* genes. ML method with 1000 bootstrap replications to construct a phylogenetic tree. Starting from the left, the first scale below represents the number of amino acids (aa), and the second scale represents the number of bases (b).

3.4. Cis-Acting Elements of *PyunBBX* Genes Analysis

The promoter-upstream region (~2000 bp) sequences were extracted from the genomic DNA sequence of *PyunBBX* genes. The cis-elements of the *PyunBBX* gene family promoters were analyzed by using the PlantCARE database (Figure 6, Table S2). Each promoter of *PyunBBX* genes contains abiotic and biotic stress response elements (such as ARE, GC-motif, MBS, LTR, TC-motif, DRE-core, STRE, WUN-motif, and WRE3), phytohormone...
correlation (such as as-1, TCA-element, W box, CGTCA-motif, TGACG-motif, ABRE, AAGAA-motif, ERE, p-box, GARE-motif, TATC-box, AuxRR-core, and TGA-element), and light responsiveness (such as G-Box, MRE, GT1-motif, Sp1, ACE, 3-AF1 binding site, and AAAC-motif). Some PyunBBX genes had the cis-acting elements of the MYB binding site involved in light responsiveness, flavonoid biosynthetic genes regulation, and drought-inducibility (Table S2). This showed the functional diversity of the PyunBBX genes.

Figure 4. Gene duplication and synteny analysis of PyunBBX genes. The purple circles represent chromosomes. The outermost circle represents gene density, and the scale represents the number of bases (Mb). The 14 putative segmental-duplicated pairs of PyunBBX genes are linked by red lines, and the gene names are shown in the same color. The gray blocks represent replication events that occur on the chromosome of P. yunnanensis.
Table 2. Analysis of evolutionary selection pressure on co-linear members of *PyunBBX* genes.

Syntenic Gene Pairs	Method	Ks	Ka	Ka/Ks	Duplicated Type	Divergence Time (Mya.)
PyunBBX22-PyunBBX29	MA	0.117574	0.350705	0.335249	Segmental	3.92
PyunBBX15-PyunBBX19	MA	0.0944959	0.335761	0.281438	Segmental	3.15
PyunBBX13-PyunBBX26	MA	0.0922884	0.265914	0.347061	Segmental	3.08
PyunBBX1-PyunBBX9	MA	0.0828391	0.301719	0.274557	Segmental	2.76
PyunBBX23-PyunBBX28	MA	0.0735978	0.217724	0.338032	Segmental	2.45
PyunBBX4-PyunBBX31	MA	0.0733725	0.226066	0.324562	Segmental	2.45
PyunBBX14-PyunBBX27	MA	0.0726848	0.378882	0.19184	Segmental	2.42
PyunBBX20-PyunBBX39	MA	0.0677018	0.192095	0.35244	Segmental	2.26
PyunBBX17-PyunBBX43	MA	0.0672206	0.355935	0.188856	Segmental	2.24
PyunBBX12-PyunBBX41	MA	0.0653516	0.3069	0.212941	Segmental	2.18
PyunBBX6-PyunBBX16	MA	0.0542511	0.285174	0.190239	Segmental	1.81
PyunBBX21-PyunBBX37	MA	0.0530882	0.237577	0.223457	Segmental	1.77
PyunBBX18-PyunBBX42	MA	0.0426761	0.358764	0.118953	Segmental	1.42
PyunBBX34-PyunBBX35	MA	0.0071796	0.0300601	0.238847	Segmental	0.24

* Model averaging.

Figure 5. Synteny analysis between *P. yunnanensis* and the other two species. The putative collinear genes between *P. yunnanensis* and the other two species are marked in gray, while the syntenic BBX gene pairs are marked in red.

3.5. Expression Patterns of *PyunBBX* Genes in Leaf and Bark of *P. yunnanensis* by RNA-seq Data

The expression patterns of *PyunBBX* genes in leaf and bark were analyzed using RNA-seq data of leaves and bark in NCBI. Compared to the bark, *PyunBBX12/15/18/29/36/37/38* expression quantity is relatively high in the leaves. The expression level of *PyunBBX13* was very low in bark, with almost no expression (average of FPKM = 0.014062), while it was expressed in leaves (average of FPKM = 4.59). Compared with the leaves, *PyunBBX3/4/6/8/14/16/27/28/31/32/40* expressed in the bark of the organization’s quantity is relatively high (Figure 7). The expression patterns of *PyunBBXs* in bark tissues at different locations showed that the expression patterns of most *PyunBBXs* were basically consistent, indicating that they performed the same function in bark tissues at different locations (Figure S2) [52]. The expression level of *PyunBBX16/36/42* in the younger bark position (EU, Figure S2) was lower than that of other bark tissues, and the expression level of *PyunBBX18* in EU was higher than that of other bark tissues (Figure 8).
ARE, GC-motif, MBS, LTR, TC-motif, DRE-core, STRE, WUN-motif, and WRE3), phytohormone correlation (such as TCA-element, W-box, CGTCA-motif, TGACG-motif, ABRE, GARE-motif, ERE, G-box, TIE-box, TAACRR-box, TGAC-element, MRE, GTI-motif, Sp1, ACTI, ACT, and AAAC-motif).

Some PyunBBX genes had the cis-acting elements involved in light responsiveness, flavonoid biosynthetic genes regulation, and drought-inducibility (Table S2). This showed the functional diversity of the PyunBBX genes.

Figure 6. Analysis of cis-acting elements of *PyunBBX* genes promoters in *P. yunnanensis*. The number in the box represents the number of cis-acting elements. The shade of the color block depends on the number of cis-acting elements, and the deeper color, the more.
Figure 7. Expression patterns of 43 PyunBBX genes in leaf and bark. The FPKMs of 43 PyunBBX genes are taken as the logarithm with base 10 for standardization; the color patches of different colors indicate the expression levels of PyunBBX genes in the leaf and bark of P. yunnanensis. LC1/2/3: three biological repeats of leaves, BU1/2/3: three biological repeats of bark. The connecting lines on the left represent cluster analysis.

3.6. Expression Patterns of Six PyunBBXs under UV Treatment by RT-qPCR Analysis

In order to determine the PyunBBX genes in response to UV, we picked out the highly expressed PtrBBXs of P. trichocarpa under the UV-B treatment (PtrBBX1/2/5/8/23/24/25/29). Based on the relationship of homology and collinearity (Figure 9), PyunBBXs with high homology to these eight genes were selected from the BBX gene family of P. yunnanensis [12]. A total of 12 PyunBBX genes were obtained. In order to determine whether these 12 PyunBBX genes interact with MYB, PyunBBX genes with MYB binding sites were screened according to PlantCARE results, and finally, six PyunBBX genes were determined (Figure S3, Table S2). Under UV treatment, the results of RT-qPCR showed that the six PyunBBX genes showed different expression patterns (Figure 10), and the relative expression level of PyunBBX3/4/29 increased compared with the control group. The expression of PyunBBX12 was inhibited, suggesting that PyunBBX12 may be involved in the negative feedback regulatory pathway.
The expression level of *PyunBBX18* was up-regulated on day 7, which was consistent with anthocyanins accumulation observed on day 7 (Figure 11), indicating that *PyunBBX18* may be directly involved in regulating the anthocyanins biosynthesis pathway. Compared with the control group, the expression level of *PyunBBX13* showed a high–low–high trend under UV treatment, indicating the complexity of *PyunBBX13* response to UV.
indicating that PyunBBX18 may be directly involved in regulating the anthocyanins biosynthesis pathway. Compared with the control group, the expression level of PyunBBX13 showed a high–low–high trend under UV treatment, indicating the complexity of PyunBBX13 response to UV.

Figure 9. A rooted phylogenetic tree representing the relationships in *P. yunnanensis*, *A. thaliana*, and *P. trichocarpa*. We used the neighbor-joining (NJ) method with 1000 bootstrap replications to construct a phylogenetic tree. The BBX genes of a species are shown by genes name in the same colors and the same shapes in same colors (genes name in green and stars in red: PyunBBX genes of *P. yunnanensis*; genes name in orange and circles in yellow: PtrBBX genes of *P. trichocarpa*; genes name in purple and triangles in blue: AtBBX genes of *A. thaliana*).
Figure 10. Relative expression analysis of six *PyunBBX* genes. CK: control check; UV: UV treatment; *: significant correlation at the 0.05 probability level; **: significant correlation at the 0.01 probability level; ***: significant correlation at the 0.001 probability level. Error bars indicate the SD of three independent biological and technical replicates. Time (d): days after UV treatment for 12 h a day.
was found that PyunBBX5 (Figure S1). Therefore, *P. yunnanensis* plant hormones, such as ABA (abscisic acid), JA (jasmonic acid), IAA (indoleacetic acid), GA (gibberellic acid), ethylene, etc. Their functions in *P. yunnanensis* that fragment duplication is involved in the expansion of PyunBBX tandem and segmental duplication events to study the evolutionary path of gene family members in the genome during evolution [53]. In this study, we analyzed further verified. The promoter regions of 43 PyunBBX genes were not clustered strictly according to the combination (Figure 7) of *P. yunnanensis*, *P. trichocarpa*, and *A. thaliana*, it was found that BBX family genes were not clustered strictly according to the combination of conserved domains, and the uneven distribution may be due to a large number of genes or slight differences in domain organization in plant species.

In the phylogenetic tree (Figure 7) of *P. yunnanensis*, *P. trichocarpa*, and *A. thaliana*, it was found that BBX family genes were not clustered strictly according to the combination of conserved domains, and the uneven distribution may be due to a large number of genes or slight differences in domain organization in plant species.

In order to identify the UV-responsive *PyunBBX* genes under UV stress, we selected the up-regulated BBX genes of *P. trichocarpa* under UV treatment [12]. According to

4. Discussion

4.1. Identification and Analysis of PyunBBX Gene Family Members in *P. yunnanensis*

In this study, 43 BBX gene family members were identified from the genome of *P. yunnanensis*, which can be divided into five types (Figure 3). They all have typical B-box structures, but the B-box1 structure of PyunBBX5 lacks the amino acid sequence of C-X$_2$-C (Figure S1). Therefore, *PyunBBX5* is a type of BBX-like gene, and its functions need to be further verified.

The process of segmental and tandem duplication is crucial for the amplification of gene family members in the genome during evolution [53]. In this study, we analyzed tandem and segmental duplication events to study the evolutionary path of BBX genes in *P. yunnanensis*. We found only segmental duplication in BBX genes (Table 2), suggesting that fragment duplication is involved in the expansion of *PyunBBX* genes.

In the phylogenetic tree (Figure 7) of *P. yunnanensis*, *P. trichocarpa*, and *A. thaliana*, it was found that BBX family genes were not clustered strictly according to the combination of conserved domains, and the uneven distribution may be due to a large number of genes or slight differences in domain organization in plant species.

The promoter regions of 43 *PyunBBX* genes also contain cis-acting elements of various plant hormones, such as ABA (abscisic acid), JA (jasmonic acid), IAA (indoleacetic acid), GA (gibberellic acid), ethylene, etc. Their functions in *P. yunnanensis* deserve further study.

In order to identify the UV-responsive *PyunBBX* genes under UV stress, we selected the up-regulated BBX genes of *P. trichocarpa* under UV treatment [12]. According to

Figure 11. Anthocyanins content in leaves of *P. yunnanensis* in the six time periods. CK: control check; UV: UV treatment; **: significant correlation at the 0.01 probability level; Error bars indicate the SD of three independent biological and technical replicates. Time (d): days after UV treatment for 12 h a day.
homology, we obtained 12 candidate PyunBBX genes. Finally, six PyunBBX genes were identified by the cis-acting elements of the promoter. The results of RT-qPCR showed that only the expression of PyunBBX3/4/18/42 was increased under UV treatment, while the expression of PyunBBX12 was inhibited. Moreover, PyunBBX13 showed functional complexity. The above shows that homologous genes of near-origin species may have similarities and differences in performing functions.

There is a VP motif binding to COP1 on the C segment of PyunBBX18, indicating that it interacts with COP1. In addition, PyunBBX12/42 also has a VP motif, revealing that they are important factors involved in light signal transduction and regulatory pathways.

4.2. BBX Is Involved in Anthocyanins Biosynthesis

Structural genes encoding key enzymes in anthocyanins biosynthesis are regulated by transcription factors. Widely studied TFs include the MYB gene family, bHLH gene family, WD40 gene protein, etc., which regulate anthocyanins biosynthesis by combining with functional elements in the promoter region of structural genes. For example, overexpression of SIMYB75 in tomatoes can increase anthocyanin content in fruits [54]. MYB TFs Aft can negatively regulate anthocyanins biosynthesis by binding to the promoter of negative regulator SIMYBATV [55]. Two bHLH TFs, JAF13 and AN1, in petunias can directly or indirectly bind with MYB transcription factor AN2 to activate DFR expression and promote anthocyanins biosynthesis [56,57]. The expression level of the SlWD40 gene in potatoes was significantly up-regulated in red and purple tubers, suggesting that the up-regulated expression level of WD40 could promote anthocyanins accumulation [58].

Studies have shown that UV-B light can induce anthocyanin accumulation in plants. In apples, both MdHY5 and MdBBX22 could independently increase anthocyanin accumulation in the callus of apples under UV-B induction, and further investigation revealed that MdBBX22 and MdHY5 had interaction to jointly promote anthocyanin accumulation. In addition, both MdBBX24 and MdBBX33 interact with MdHY5 to regulate anthocyanins biosynthesis [13], suggesting that BBX-HY5 interaction is a universal regulatory module [8,59]. Recent studies have revealed that the interaction between HY5 and the BBX TF family affects anthocyanin accumulation, and B-box proteins respond to light induction and assist HY5 proteins in participating in transcriptional regulation of anthocyanin biosynthesis in plants [60]. Therefore, whether PyunBBX18 interacts with HY5 to affect anthocyanin accumulation of P. yunnanensis under UV-B stress requires further experimental verification.

Flavonoids are usually accumulated in leaves, roots, and bark [61,62]. By analyzing RNA-seq data of leaves and bark of P. yunnanensis, PyunBBX18 was found to be highly expressed in leaves and young bark, suggesting that PyunBBX18 may be involved in the synthesis of flavonoids. According to PlantCARE prediction results, the promoter of PyunBBX18 has three MYB binding sites (Figure S3), so it may interact with MYB TFs to regulate the synthesis of flavonoids.

5. Conclusions

In this study, 43 PyunBBX genes were identified and analyzed at the genome-wide level. They were distributed unevenly on 15 chromosomes, and their evolutionary relationships, physical and chemical properties, gene structure, and conserved motifs were analyzed. Collinearity analysis revealed that there were 14 pairs of homologous genes in the P. yunnanensis BBX gene family, and these genes were purified and selected. In addition, RNA-seq showed that PyunBBX18 was highly expressed in leaves and younger bark. The results showed that PyunBBX18 may be a key gene in UV-induced anthocyanin biosynthesis through the determination of anthocyanins content and the expression of genes.

Supplementary Materials: The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/genes13101811/s1, Figure S1: Amino acid sequences of conserved domains (B-box1/B-box2, CCT, and VP) of BBX genes family in P. yunnanensis; Figure S2: Sampling positions on the cuttings of P. yunnanensis. Figure S3: Cis-acting elements of six PyunBBX genes; Table S1: Primers for RT-qPCR; Table S2: The results of PlantCARE for PyunBBX genes.
Author Contributions: Conceptualization, Q.Z.; Data curation, C.H.; Formal analysis, D.M.; Funding acquisition, C.H.; Investigation, Z.H.; Methodology, Q.Z., Z.H. and D.M.; Project administration, C.H.; Software, Q.Z.; Supervision, D.Z. and C.H.; Validation, Q.Z.; Visualization, Q.Z.; Writing—original draft, Q.Z. and D.M.; Writing—review and editing, Q.Z. and D.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (31860219), Yunnan Provincial Expert Workstation (20200AF150020), and the Postgraduate Fund Project of Yunnan Education Department (2022Y590).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Genomic data of *P. yunnanensis* can be obtained by contacting the corresponding author. The data that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Gangappa, S.N.; Botto, J.F. The BBX family of plant transcription factors. *Trends Plant Sci.* 2014, 7, 460–470. [CrossRef]
2. Griffiths, S.; Dunford, R.P.; Coupland, G.; Laurie, D.A. The evolution of CONSTANS-like gene families in barley, rice, and Arabidopsis. *Plant Physiol.* 2003, 131, 1855–1867. [CrossRef] [PubMed]
3. Khanna, R.; Kronmiller, B.; Maszle, D.R.; Coupland, G.; Holm, M.; Mizuno, T.; Wu, S. The *Arabidopsis* B-Box Zinc Finger Family. *Plant Cell* 2009, 21, 3416–3420. [CrossRef]
4. Xu, D.; Jiang, Y.; Li, J.; Lin, F.; Holm, M.; Deng, X.W. BBX21, an *Arabidopsis* b-box protein, directly activates HY5 and is targeted by COP1 for 26S proteasome-mediated degradation. *Proc. Natl. Acad. Sci. USA* 2016, 113, 7655–7660. [CrossRef] [PubMed]
5. Xu, D.; Jiang, Y.; Li, J.; Holm, M.; Deng, X.W. The B-Box Domain Protein BBX21 promotes photomorphogenesis. *Plant Physiol.* 2018, 176, 2365–2375. [CrossRef] [PubMed]
6. Job, N.; Yadukrishnan, P.; Bursch, K.; Datta, S.; Johansson, H. Two B-Box Proteins Regulate Photomorphogenesis by Oppositely Modulating HY5 through their Diverse C-Terminal Domains. *Plant Physiol.* 2018, 176, 2963–2976. [CrossRef]
7. Heng, Y.; Lin, F.; Jiang, Y.; Ding, M.; Yan, T.; Lan, H.; Zhou, H.; Zhao, X.; Xu, D.; Deng, X.W. B-Box Containing Proteins BBX30 and BBX31, Acting Downstream of HY5, Negatively Regulate Photomorphogenesis in *Arabidopsis*. *Plant Physiol.* 2019, 180, 497–508. [CrossRef]
8. Bai, S.; Tao, R.; Yin, L.; Ni, J.; Yang, Q.; Yan, X.; Yang, F.; Guo, X.; Li, H.; Teng, Y. Two b-box proteins, PpBBX18 and PpBBX21, antagonistically regulate anthocyanin biosynthesis via competitive association with *Pyrus pyrifolia* ELOGANTE HYPOCOTYL 5 in the peel of pear fruit. *Plant J.* 2019, 100, 1208–1223. [CrossRef]
9. Gangappa, S.N.; Crocco, C.D.; Johansson, H.; Datta, S.; Hettiarachchi, C.; Holm, M.; Botto, J.F. The *Arabidopsis* B-BOX protein BBX25 interacts with HY5, negatively regulating BBX22 expression to suppress seedling photomorphogenesis. *Plant Cell* 2013, 25, 1243–1257. [CrossRef]
10. Bai, S.; Tao, R.; Tang, Y.; Yin, L.; Ma, Y.; Ni, J.; Yan, X.; Yang, Q.; Wu, Z.; Zeng, Y.; et al. BBX16, a b-box protein, positively regulates light-induced anthocyanin accumulation by activating MYB10 in red pear. *Plant Biotechnol. J.* 2019, 17, 1985–1997. [CrossRef]
11. Yang, G.; Zhang, C.; Dong, H.; Liu, X.; Guo, H.; Tong, B.; Fang, F.; Zhao, Y.; Yu, Y.; Liu, Y.; et al. Activation and negative feedback regulation of SIHY5 transcription by the SIBBX20/21–SIHY5 transcription factor module in UV-B signaling. *Plant Cell* 2022, 34, 2038–2055. [CrossRef]
12. Li, C.; Pei, J.; Yan, X.; Cui, X.; Tsuruta, M.; Liu, Y.; Lian, C. A poplar B-box protein PtrBBX23 modulates the accumulation of anthocyanins and proanthocyanidins in response to high light. *Plant Cell Environ.* 2021, 44, 3015–3033. [CrossRef] [PubMed]
13. An, J.; Wang, X.; Zhang, X.; Bi, S.; You, C.; Hao, Y. MdBX22 regulates UV-B-induced anthocyanin biosynthesis through regulating the function of MdHY5 and is targeted by MdBT2 for 26S proteasome-mediated degradation. *Plant Biotechnol. J.* 2019, 17, 2231–2233. [CrossRef] [PubMed]
14. Fang, H.; Dong, Y.; Yue, X.; Hu, J.; Jiang, S.; Xu, H.; Wang, Y.; Su, M.; Zhang, J.; Zhang, Z.; et al. The B-box zinc finger protein MdBX20 integrates anthocyanin accumulation in response to ultraviolet radiation and low temperature. *Plant Cell Environ.* 2019, 42, 2090–2104. [CrossRef]
15. Zhuang, W.B.; Liu, T.Y.; Shu, X.C.; Shen-Chun, Q.U.; Zhai, H.H.; Wang, T.; Zhang, F.J.; Wang, Z. The molecular regulation mechanism of anthocyanin biosynthesis and coloration in plants. *Plant Physiol.* 2018, 11, 1630–1644. [CrossRef]
16. Xie, Y.; Tan, H.; Ma, Z.; Huang, J. DELLA Proteins Promote Anthocyanin Biosynthesis via Sequestering MYBL2 and JAZ Suppressors of the MYB/bHLH/WD40 Complex in Arabidopsis thaliana. *Mol. Plant* 2016, 9, 711–721. [CrossRef] [PubMed]
17. Mahmood, K.; Xu, Z.; El-Kereamy, A.; Casaretto, J.A.; Rothstein, S.J. The Arabidopsis Transcription Factor ANAC032 Represses Anthocyanin Biosynthesis in Response to High Sucrose and Oxidative and Abiotic Stresses. Front. Plant Sci. 2016, 7, 1548. [CrossRef]
18. Pradeep, S.; Oleg, F.; Dalia, M.; Noam, A. Improved Cold Tolerance of Mango Fruit with Enhanced Anthocyanin and Flavonoid Contents. Molecules 2018, 23, 1832. [CrossRef]
19. Cui, Z.; Bi, W.; Hao, X.; Li, P.; Duan, Y.; Walker, M.A.; Xu, Y.; Wang, Q. Drought Stress Enhances Up-Regulation of Anthocyanin Biosynthesis in Grapevine leafroll-associated virus 3-Infected in vitro Grapevine (Vitis vinifera) Leaves. Plant Dis. 2017, 101, 1605–1615. [CrossRef]
20. Bi, H.; Guo, M.; Wang, J.; Qu, Y.; Du, W.; Zhang, K. Transcriptome analysis reveals anthocyanin acts as a protectant in Begonia semperflorens under low temperature. Acta Physiol. Plant. 2018, 40, 10. [CrossRef]
21. Roberts, J.A.; Evan, D.; Mcmanus, M.T.; Rose, J.K.C. Annual Plant Reviews. Functions of Flavonoid and Betalain Pigments in Abiotic Stress Tolerance in Plants. Annu. Plant Rev. Online 2018, 1, 1–41. [CrossRef]
22. Zhang, T.; Chow, W.S.; Liu, X.; Zhang, P.; Liu, N.; Peng, C. A magic red coat on the surface of young leaves: Anthocyanins distributed in trichome layer protect Castanopsis fissa leaves from photoinhibition. Tree Physiol. 2016, 36, 1296–1306. [CrossRef]
23. Zhang, X.; Zheng, X.; Sun, B.; Peng, C.; Chow, W.S. Over-expression of the CHS gene enhances resistance of Arabidopsis leaves to high light. Environ. Exp. Bot. 2018, 154, 33–43. [CrossRef]
24. Ahmed, N.U.; Park, J.; Jung, H.; Yang, T.; Hur, Y.; Nou, I. Characterization of dihydroflavonol 4-reductase (DFR) genes and their association with cold and freezing stress in Brassica rapa. Gene 2014, 550, 46–55. [CrossRef]
25. Hong, Y.; Wu, Y.; Song, X.; Li, M.; Dai, S. Molecular mechanism of light-induced anthocyanin biosynthesis in horticultural crops. Acta Hort. Sin. 2021, 48, 1983–2000. [CrossRef]
26. Li, X.; Yang, Y.; Sun, X.; Lin, H.; Chen, J.; Ren, J.; Hu, X.; Yang, Y. Comparative Physiological and Proteomic Analyses of Poplar (Populus yunnanensis) Plantlets Exposed to High Temperature and Drought. PLoS ONE 2014, 9, e107605. [CrossRef] [PubMed]
27. Schmucki, D.A. Ultraviolet radiation in the Alps: The altitude effect. Proc. Spie 2002, 41, 3090–3095. [CrossRef]
28. Costa, D.; Galvão, A.M.; Di Paolo, R.E.; Freitas, A.A.; Lima, J.C.; Quina, F.H.; Maçanita, A.L. Photochemistry of the hemiketal form of anthocyanins and its potential role in plant protection from UV-B radiation. Tetrahedron 2015, 71, 3157–3162. [CrossRef]
29. Tsurunaga, Y.; Takahashi, T.; Katsube, T.; Kudo, A.; Kuramitsu, O.; Ishiwata, M.; Matsumoto, S. Effects of UV-B irradiation on the metabolism and photosystem-II of medicinal plant Withania somnifera Dunal. J. Med. Plant Res. 2013, 7, 3112–3120. [CrossRef]
30. Kalidhasan, N.; Bhagavan, N.B.; Dhiraviam, K. Ultraviolet B (280-320 nm) enhanced radiation induced changes in secondary metabolites and photosystem-II of medicinal plant Withania somnifera Dunal. J. Med. Plant Res. 2013, 7, 3112–3120. [CrossRef]
31. Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and applications. BMC Bioinform. 2009, 10, 421. [CrossRef]
32. Mistry, J.; Chuguransky, S.; Williams, L.; Qureshi, M.; Salazar, G.A.; Sonnhammer, E.L.L.; Tosatto, S.C.E.; Paladin, L.; Raj, S.; Richardson, L.J.; et al. Pmfam: The protein families database in 2021. Nucleic Acids Res. 2021, 49, D412–D419. [CrossRef] [PubMed]
33. Söding, J. Protein homology detection by HMM–HMM comparison. Bioinformatics 2005, 21, 951–960. [CrossRef] [PubMed]
34. Dunal. 2009, 259–263. [CrossRef]
35. P. Gene 2005, 21, 421. [CrossRef] [PubMed]
36. The protein families database in 2021. Nucleic Acids Res. 2021, 49, D412–D419. [CrossRef] [PubMed]
37. Wilkins, M.R.; Gasteiger, E.; Bairoach, A.; Sanchez, J.; Williams, K.L.; Appel, R.D.; Hochstrasser, D.F. Protein Identification and detection and evolutionary analysis of gene synteny and collinearity. Genom. Proteom. Bioinform. 2006, 4, 259–263. [CrossRef]
45. Huang, Z.; Duan, W.; Song, X.; Tang, J.; Wu, P.; Zhang, B.; Hou, X. Retention, Molecular Evolution, and Expression Divergence of the Auxin/Indole Acetic Acid and Auxin Response Factor Gene Families in Brassica Rapa Shed Light on Their Evolution Patterns in Plants. *Genome Biol. Evol.* 2016, 8, 302–316. [CrossRef]

46. Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. *Mol. Biol. Evol.* 2015, 33, 1870–1874. [CrossRef] [PubMed]

47. Shuai, P.; Liang, D.; Tang, S.; Zhang, Z.; Ye, C.; Su, Y.; Xia, X.; Yin, W. Genome-wide identification and functional prediction of novel and drought-responsive lincRNAs in Populus trichocarpa. *J. Exp. Bot.* 2014, 65, 4975–4983. [CrossRef]

48. Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR. *Nucleic Acids Res.* 2001, 29, e45. [CrossRef]

49. Fan, G.; Han, Y.; Gu, Z.; Chen, D. Optimizing conditions for anthocyanins extraction from purple sweet potato using response surface methodology (RSM). *LWT Food Sci. Technol.* 2008, 41, 155–160. [CrossRef]

50. Strayer, C. Cloning of the *Arabidopsis* Clock Gene TOC1, an Autoregulatory Response Regulator Homolog. *Science* 2000, 289, 768–771. [CrossRef]

51. Lau, K.; Podolec, R.; Chappuis, R.; Ulm, R.; Hothorn, M. Plant photoreceptors and their signaling components compete for COP1 binding via VP peptide motifs. *EMBO J.* 2019, 38, e102140. [CrossRef]

52. Zhou, A.; Gan, F.; Zong, D.; Fei, X.; Zhong, Y.; Li, S.; Yu, J.; He, C. Bark tissue transcriptome analyses of inverted *Populus trichocarpa* cuttings reveal the crucial role of plant hormones in response to inversion. *PeerJ* 2019, 7, e7740. [CrossRef]

53. Cannon, S.B.; Mitra, A.; Baumgarten, A.; Young, N.D.; May, G. The roles of segmental and tandem gene duplication in the evolution of large gene families in *Arabidopsis thaliana*. *BMC Plant Biol.* 2004, 4, 10. [CrossRef]

54. Mathews, H.; Clendennen, S.K.; Caldwell, C.G.; Liu, X.L.; Wagner, D.R. Activation tagging in tomato identifies a transcriptional regulator of anthocyanin biosynthesis, modification, and transport. *Plant Cell* 2003, 15, 1689–1703. [CrossRef]

55. Yan, S.; Chen, N.; Huang, Z.; Li, D.; Zhi, J.; Yu, B.; Liu, X.; Cao, B.; Qiu, Z. Anthocyanin Fruit encodes an R2R3-MYB transcription factor, SIAN2-like, activating the transcription of SIMYBATV to fine-tune anthocyanin content in tomato fruit. *New Phytol.* 2020, 225, 2048–2063. [CrossRef]

56. Quattrocchio, F.; Wing, J.F.; van der Woude, K.; Mol, J.N.; Koes, R. Analysis of bHLH and MYB domain proteins: Species-specific regulatory differences are caused by divergent evolution of target anthocyanin genes. *Plant J. Plant Mol. Biol.* 1998, 13, 475–488. [CrossRef] [PubMed]

57. Spelt, C.; Quattrocchio, F.; Joseph, N.M.M.; Koes, R. Anthocyanin1 of Petunia Encodes a Basic Helix-Loop-Helix Protein That Directly Activates Transcription of Structural Anthocyanin Genes. *Plant Cell* 2000, 12, 1619–1631. [CrossRef]

58. Payyavula, R.S.; Singh, R.K.; Navarre, D.A. Transcription factors, sucrose, and sucrose metabolic genes interact to regulate potato phenylpropanoid metabolism. *J. Exp. Bot.* 2013, 64, 5115–5131. [CrossRef] [PubMed]

59. Gangappa, S.N.; Botto, J.F. The Multifaceted Roles of HY5 in Plant Growth and Development. *Mol. Plant* 2016, 9, 1353–1365. [CrossRef]

60. Yadav, A.; Ravindran, N.; Singh, D.; Rahul, P.V.; Datta, S. Role of *Arabidopsis* BBX proteins in light signaling. *J. Plant Biochem. Biot.* 2020, 29, 623–635. [CrossRef]

61. Gourlay, G.; Ma, D.; Schmidt, A.; Constabel, C.P. MYB134-RNAi poplar plants show reduced tannin synthesis in leaves but not roots, and increased susceptibility to oxidative stress. *J. Exp. Bot.* 2020, 71, 6601–6611. [CrossRef]

62. Yoshida, K.; Ma, D.; Constabel, C.P. The MYB182 protein down-regulates proanthocyanidin and anthocyanin biosynthesis in poplar by repressing both structural and regulatory flavonoid genes. *Plant Physiol.* 2015, 167, 693–710. [CrossRef]