Association of the TNF-α-C-857T Polymorphism with Resistance to the Cholesterol-Lowering Effect of HMG-CoA Reductase Inhibitors in Type 2 Diabetic Subjects

Running Title: TNF-α-C-857T polymorphism, LDL-cho & statins

TORU TAKAHASHI, MD¹, KAZUMA TAKAHASHI, MD, PHD¹, MITSUHIRO YAMASHINA, MD, PHD¹, CHIHAYA MAESAWA, MD, PHD², TAKASHI KAJIWARA, MD¹, HARUHITO TANEICHI, MD¹, NORIKO TAKEBE, MD, PHD¹, YOSHIHITO KANEKO, MD, PHD¹, TOMOYUKI MASUDA, MD, PHD² AND JO SATOH, MD, PHD¹

¹Division of Diabetes and Metabolism, Department of Internal Medicine, and ²Department of Pathology, Iwate Medical University School of Medicine

Address correspondence to:
Jo Satoh, MD, PhD
Email: jsatoh@iwate-med.ac.jp

This is an uncopy edited electronic version of an article accepted for publication in Diabetes Care. The American Diabetes Association, publisher of Diabetes Care, is not responsible for any errors or omissions in this version of the manuscript or any version derived from it by third parties. The definitive publisher-authenticated version will be available in a future issue of Diabetes Care in print and online at http://care.diabetesjournals.org.
Objective: An association of the C-857T polymorphism of TNF-α gene promoter region with LDL-cholesterol (LDL-C) levels has been reported. This study is designed to evaluate the relationship between TNF-α-C-857T polymorphism and LDL-C levels according to statin treatment in subjects with type 2 diabetes.

Research Design and Methods: DNA was obtained from 322 Japanese subjects (160 males and 162 females) with type 2 diabetes and TNF-α-C-857T polymorphisms were determined by direct sequencing. Serum LDL-C was measured by a direct method.

Results: Although serum LDL-C levels were significantly higher in the T carriers (C/T+T/T) than those in the non-T carriers (C/C) (3.14 ± 0.86 vs. 2.89 ± 0.75 mmol/l, P<0.05), there was no difference in LDL-C levels between the non-T-carriers and the T carriers in the statin-untreated subjects (2.87 ± 0.73 vs. 2.89 ± 0.76 mmol/l, NS), whereas, in the statin-treated subjects, LDL-C levels were more significantly higher in subjects with the T carriers than the non-T-carriers (3.43 ± 0.89 vs. 2.90 ± 0.78 mmol/l, P = 0.0007). There were no differences in HDL-C and triglyceride levels between the non-T carriers and the T-carriers both in the statin-treated and untreated subjects. Percent decrease in LDL-C levels after administration of statins was significantly smaller in the T-carriers as compared with the non-T-carriers (27.6 vs. 36.4%, P = 0.031).

Conclusions: The mutant allele of the C-857T promoter polymorphism of the TNF-α gene may predispose to resistance to the LDL-C-lowering effect of statins, and could be one of markers to predict the efficacy of statins.
Tumor necrosis factor-α (TNF-α) is a potent immunomodulator and proinflammatory cytokine with multiple functions and plays a variety of roles in pathological and physiological conditions. There have been many reports on relationships between TNF-α gene polymorphisms and various diseases including infectious and metabolic disorders (1, 2). As to lipid metabolism, there have been few reports on an association of TNF-α gene polymorphism with serum lipids including cholesterol levels, the most potent risk factor for cardiovascular diseases (3, 4, 5). Shiau et al. have shown that TNF-α-G-238A is associated with LDL-cholesterol (LDL-C) levels in Taiwanese patients with type 2 diabetes (4). We have recently reported that TNF-α-C-857T, a functional TNF-α gene promoter polymorphism with higher transcriptional activity (6), was associated with higher LDL-C levels and carotid plaques in Japanese subjects with type 2 diabetes mellitus (5). In the course of this study, our preliminary analysis indicated that an association of TNF-α-C-857T with higher LDL-C levels was observed only in subjects treated with the 3-hydroxy-3-methyl-glutaryl-CoA reductase inhibitors (HMG Co-A reductase inhibitors, statins), but not in those without statin treatment (7), implying the resistance of this polymorphism to the effect of statins. We hereby performed a study to confirm the C-857T promoter polymorphism of the TNF-α gene is associated with resistance to the cholesterol-lowering effect of statins in type 2 diabetic subjects.

RESEARCH DESIGN AND METHODS

Subjects: After obtaining approval from the ethics committee of the Iwate Medical University, and informed consents from all subjects, blood samples were collected from 322 type 2 diabetic subjects (160 males and 162 females). All subjects were Japanese. The present study was performed in accordance with the guidelines expressed in the Declaration of Helsinki.

Identification Of Polymorphisms: Genomic DNAs were obtained from peripheral blood leukocytes by standard phenol-chloroform extraction and ethanol precipitation methods or by the Biomek 3000 Laboratory Automation System (Beckman Coulter Fullerton, CA, USA). The 5’-flanking region of the TNF-α gene, spanning from -188 to -1229, relative to the TNF-α transcription start site, was amplified by polymerase chain reaction (PCR) using a GeneAmp PCR System 9700 (Applied Biosystems, Foster City, CA, USA). The PCR primers were as follows (6): sense: 5’-GCTTGTGTGTTGTGTGTCTGG-3’; anti-sense: 5’-GGACACACAAGCATCAAGG-3’. PCR conditions were as follows (6): denaturing at 94°C for 1 min, annealing at 55°C for 2 min, extension at 72°C for 3 min, for 40 cycles, final incubation at 72°C for 10 min and cooling to 4°C. The PCR products were purified using NucleoSpin Extract (Macherey-Nagel, Duren, Germany). Sequence analysis was carried out using a BigDye Terminator v3.1 Cycle Sequencing Kit (Perkin-Elmer, Norwalk, CT, USA) with the sequence primer 5’-TGTGGCCATATCTTCTTAAA-3’ to analyze the sequence from -782 to -1209 for polymorphisms at -857, -863, -1031. Finally, the cycle sequencing products were purified again with Dye Terminator Removal Kit (ABgene House, Epsom, Surrey, UK) and analyzed by an Applied Biosystems Prism 3100 Genetic Analyzer (Applied Biosystems, Foster City, CA, USA), according to the manufacturer’s instructions.

Laboratory examinations: For all subjects, blood was obtained after fasting for 12 hours or longer, and blood cell counts, fasting plasma glucose (FPG) levels, fasting insulin (immunoreactive insulin: IRI) levels, HbA1c, total cholesterol (TC), triglyceride
TNF-α-C-857T polymorphism, LDL-cho & statins

(TG), high density lipoprotein-cholesterol (HDL-C) and low density lipoprotein-cholesterol (LDL-C) were measured at the Central Laboratory in our hospital.

Statistics: The data are expressed as means ± standard deviation (SD). Statistical significance was analyzed by unpaired t-test and χ²-test using StatView-J5.0 (Abacus Concepts, Inc., Berkeley, CA, USA). The level of significance was considered at P < 0.05.

RESULTS

Serum LDL-C levels are higher in diabetic subjects with the T allele of the TNF-α-C-857T promoter gene polymorphism than those with the C allele: The frequencies of C and T alleles of TNF-α-C-857T were 85.1% and 14.9%, respectively, which are not significantly different from ones reported in the Japanese population (5, 6, 8). Hardy-Weinberg’s equilibrium was maintained in this population. We reconfirmed our previous observation (5) for double the number of cases that the T carriers (C/T, T/T) displayed significantly higher serum LDL-C levels than the non-carriers (C/C) (3.14 ± 0.86 vs. 2.89 ± 0.75 mmol/l, P<0.05) (Table 1). Clinical backgrounds, such as gender and age distributions, physiques, blood pressures, HbA1c, and serum lipid levels other than LDL-C showed no difference between these groups (Table 1), as well as the baseline characteristics of medication for dyslipidemia, diabetes, and hypertension (Table 2). Other promoter polymorphisms of the TNF-α gene, including C-863A, and T-1031C, were not associated with the serum LDL-C levels (data not shown).

Higher LDL-C level in the T carriers of the TNF-α-C-857T polymorphism is observed in subjects treated with statins, but not in those without statins: Because the statins affect LDL-C levels, we divided subjects according to the statin treatment, and compared the serum LDL-C levels between the T carriers and the non-T carriers in those with and without statin treatment. As shown in Table 1, the T carriers with statins displayed significantly higher LDL-C levels than the non-T carriers (3.43 ± 0.89 vs. 2.90 ± 0.78 mmol/l, P=0.0007), whereas in subjects without statins the LDL-C levels did not differ irrespective of genotype. Other clinical characteristics did not differ between the T carriers and non-T carriers in both statin-treated and -untreated subjects (Table 1). The distribution of use of statin subclasses including atorvastatin, pitavastatin, pravastatin, fluvastatin, and rosuvastatin was not different between the T carriers and non-T carriers in the statin-treated subjects (data not shown).

The T carriers of the TNF-α-C-857T polymorphism are more resistant to the LDL-C-lowering effect of statin-treatment than the non-T carriers:

Table 1 implies a possibility of a difference in LDL-C-lowering effect of statins between the T-carriers and the non-T-carriers. To see whether the T carriers are resistant to the statin-treatment, we retrospectively analyzed the LDL-L levels before and 3-6 months after statin-administrations among a subset of the diabetic subjects complicated with hypercholesterolemia, whose complete data sets were available for analysis. As shown in Fig. 1, % reduction in LDL-C levels after the statin-administration was significantly smaller in the T-carriers than in the non-T carriers (-27.6% vs -36.4%, P=0.031).

CONCLUSIONS

In this clinical observation, our data implies for the first time that the C-857T polymorphism in the promoter region of TNF-α gene is associated with serum LDL-C levels in statin-treated subjects with type 2 diabetes and the T carrier is resistant to statin
We have confirmed that the T-carriers displayed higher serum LDL-C levels consistent with our previous report (5), after doubling the number of the subjects. The T allele of TNF-α-C-857T generates significantly higher transcriptional promoter activity than the C allele does, possibly leading to elevated TNF-α production (6, 9). The administration of TNF-α in rodents is followed by an increase in serum concentrations of total cholesterol and hepatic cholesterol synthesis (10), probably by stimulating the activity of HMG-CoA reductase (11). However, in our human cases, the increase in HMG-CoA reductase activity is not a mechanism of the increased serum LDL-C in the T-carriers of TNF-α-C-857T, because there was no difference in LDL-C levels between the T-carriers and non-T carriers, who were not treated with statins (Table 1).

A further analysis revealed that the C-857T promoter polymorphism affected the cholesterol lowering effect of statins, but not directly on the cholesterol synthesis. The T carriers displayed significantly higher serum LDL-C levels only in those taking statins, but not in those without (Table 1), indicating that TNF-α productivity possibly affects sensitivity to the LDL-C-lowering effects of statins. Indeed, the T carriers exhibited a significantly smaller LDL-C lowering rate in response to statin treatment than the non-T carriers (Fig. 1). Fibrates, another drug affecting lipid profile, may have not influenced our results, because very few cases were treated with fibrates (Table 2).

Statins are substrates of several drug transporters (12), including the influx transporter solute carrier organic anion transporter family, member 1B1 (SLCO1B1, previously known as OATP1B1/ OATP-C/OATP2/LST-1) (13, 14, 15). It is reasonable to assume that impaired function or expression of the transporters would result in reduced hepatic uptake of statins, and then in reduced cholesterol-lowering efficacy due to lower intracellular statin concentrations of hepatocytes. TNF-α reportedly suppressed protein expression and transport activity of SLCO1B1 (16), which is located on the sinusoidal membrane of hepatocytes (17). This molecule plays a pivotal role as a major transporter of various statins, including atorvastatin, simvastatin, pitavastatin, pravastatin, fluvastatin, and rosuvastatin (13, 14, 15), from the portal blood into hepatocytes. In fact, a retrospective study in caucasian subjects suggested a weaker effect of pravastatin on inhibition of cholesterol synthesis among carriers of the SLCO1B1*17 haplotype, which is associated with impaired OATP1B1 function and/or expression (18). Therefore, T alleles of the TNF-α-C-857T polymorphism with the higher promoter transcriptional activities (6, 9) possibly results in a reduced LDL-C-lowering effect of statins, which may be in line with our present observation. However, serum concentration of TNF-α was not significantly higher in the T carriers of the C-857T than the non-T carriers (5), probably because of dilution of TNF-α in circulation as compared with those in local region. The lower hepatic statin concentrations in the T carriers associated with defective function and/or expression of OATP1B1 remains to be proven. We could not find differences in proportion of the medicines used such as hydrophilic (pravastatin and rosuvastatin) and lipophilic (atorvastatin, simvastatin, pitavastatin, and fluvastatin) statins, or statins with weak or strong cholesterol-lowering effect between the T carriers and non-T carrier, although the number of cases was small (data not shown).

Although it is possible as mentioned above that the TNF-α gene polymorphism is involved in the sensitivity to the LDL-C-lowering effect of statins via TNF-α productivity, other possibilities including linkage disequilibrium of this polymorphism...
with a susceptibility gene to statin’s effect are not ruled out.

In conclusion, these results strongly suggest that the mutant allele of the C-857T promoter polymorphism of the TNF-α gene may predispose to resistance to the LDL-C-lowering effect of statins, and then could be one of markers to predict the efficacy of statins.

ACKNOWLEDGEMENTS
This research was supported by “Open Research Center” Project for Private Universities: matching fund subsidy from MEXT (Ministry of Education, Culture, Sports, Science and Technology, Japan), 2004-2008, and by a research fund from Iwate Prefecture. No potential conflicts of interest relevant to this article were reported.

This study was presented at the 68th Annual Scientific Meeting of American Diabetes Association held in Chicago.

The authors would like to thank Dr. Paul Langman for assistance with English usage.

Legend:

Figure1. % Reduction of serum LDL-C levels after statin treatment according to the TNF-α-C-857T polymorphism. % Reduction = ([LDL-C levels before statin treatment] – [LDL-C levels 3-6 months after statin treatment]) / [LDL-C levels before statin treatment] x 100

% Reduction in C/C and (C/T, T/T) was -36.4% and -27.6%, respectively (P=0.031).
REFERENCES
1. Sookoian SC, González C, Pirola CJ. Meta-analysis on the G-308A tumor necrosis factor alpha gene variant and phenotypes associated with the metabolic syndrome. Obes Res 2005;13:2122-2131
2. Elahi MM, Asotra K, Matata BM, Mastana SS. Tumour necrosis factor alpha-308 gene locus promoter polymorphism: An analysis of association with health and disease. Biochim Biophys Acta 2009 [Epub ahead of print].
3. Fontaine-Bisson B, Wolever TM, Chiasson JL, Rabasa-Lhoret R, Maheux P, Josse RG, Leiter LA, Rodger NW, Ryan EA, El-Sohemy A. Tumor necrosis factor alpha -238G>A genotype alters postprandial plasma levels of free fatty acids in obese individuals with type 2 diabetes mellitus. Metabolism 2007;56:649-655
4. Shiau MY, Wu CY, Huang CN, Hu SW, Lin SJ, Chang YH. TNF-α polymorphisms and type 2 diabetes mellitus in Taiwanese patients. Tissue. Antigens 2003;61: 393-397
5. Yamashina M, Kaneko Y, Maesawa C, Kajiwara T, Ishii M, Fujiiwara F, Taneichi H, Takebe N, Ishida W, Takahashi K, Masuda T, Satoh J. Association of TNF-alpha gene promoter C-857T polymorphism with higher serum LDL cholesterol levels and carotid plaque formation in Japanese patients with type 2 diabetes. Tohoku J Exp Med 2007;211:251-258
6. Higuchi T, Seki N, Kamizono S, Yamada A, Kimura A, Kato H, Itoh K. Polymorphism of the 5'-flanking region of the human tumor necrosis factor (TNF)-alpha gene in Japanese. Tissue Antigens 1998;51:605-612
7. Takahashi T, Yamashina M, Maesawa C, Honma H, Kakino S , Ishii M, Fujiiwara F, Kajiwara T, Takebe N, Taneichi H, Miura M, Ishida W, Takahashi K, Kaneko Y, Masuda T, Satoh J. Subjects with Type 2 Diabetes with TNF-α-C-857T Polymorphism is resistant to cholesterol-lowering effect of statin. Diabetes 2008;57 Supple(1): A25
8. Negoro K, Kinouchi Y, Hiwatashi N, Takahashi S, Takagi S, Satoh J, Shimosegawa T, Toyota T. Crohn's disease is associated with novel polymorphisms in the 5'-flanking region of the tumor necrosis factor gene. Gastroenterology 1999;117:1062-1068
9. Hohjoh, H. & Tokunaga K. Allele-specific binding of the ubiquitous transcription factor OCT-1 to the functional single nucleotide polymorphism (SNP) sites in the tumor necrosis factor-alpha gene (TNFA) promoter. Genes Immun 2001;2:105-109
10. Grunfeld C, Soued M, Adi S, Moser AH, Dinarello CA, Feingold KR. Evidence for two classes of cytokines that stimulate hepatic lipogenesis: relationships among tumor necrosis factor, interleukin-1 and interferon-alpha. Endocrinology 1990;127:46–54
11. Nishimura F, Taniguchi A, Yamaguchi-Morimoto M, Soga Y, Iwamoto Y, Kokeguchi S, Kuroe A, Fukushima M, Nakai Y, Seino Y. Periodontal infection and dyslipidemia in type 2 diabetics: association with increased HMG-CoA reductase expression. Horm Metab Res 2006;38:530-535
12. Neuvonen PJ, Niemi M, Backman JT. Drug interactions with lipid-lowering drugs: mechanisms and clinical relevance. Clin Pharmacol Ther. 2006;80:565-581
13. Hermann M, Asberg A, Christensen H, Holdaas H, Hartmann A, Reubsaet JL. Substantially elevated levels of atorvastatin and metabolites in cyclosporine-treated renal transplant recipients. Clin Pharmacol Ther 2004;76:388-391
14. Matsushima S, Maeda K, Kondo C, Hirano M, Sasaki M, Suzuki H, Sugiyama Y. Identification of the hepatic efflux transporters of organic anions using double-transfected Madin-Darby canine kidney II cells expressing human organic anion-transporting polypeptide
TNF-α-C-857T polymorphism, LDL-cho & statins

1B1 (OATP1B1)/multidrug resistance-associated protein 2, OATP1B1/multidrug resistance 1, and OATP1B1/breast cancer resistance protein. J Pharmacol Exp Ther 2005;314:1059-1067
15. Ho RH, Tirona RG, Leake BF, Glaeser H, Lee W, Lemke CJ, Wang Y, Kim RB. Drug and bile acid transporters in rosuvastatin hepatic uptake: function, expression, and pharmacogenetics. Gastroenterology 2006;130:1793-1806
16. Vee ML, Lecureur V, Stieger B, Fardel O. Regulation of drug transporter expression in human hepatocytes exposed to the proinflammatory cytokines tumor necrosis factor-alpha or interleukin-6. Drug Metab Dispos 2009;37:685-693
17. König J, Cui Y, Nies AT, Keppler D. A novel human organic anion transporting polypeptide localized to the basolateral hepatocyte membrane. Am J Physiol Gastrointest Liver Physiol 2000;278:156-164
18. Niemi M, Neuvonen PJ, Hofmann U, Backman JT, Schwab M, Lütjohann D, von Bergmann K, Eichelbaum M, Kivistö KT. Acute effects of pravastatin on cholesterol synthesis are associated with SLCO1B1 (encoding OATP1B1) haplotype *17. Pharmacogenet Genomics 2005;15:303-309
Table 1. Comparison of clinical characteristics of diabetic subjects according to the TNF-α-C-857T polymorphism and statin treatment.

	Whole subjects	Statin (-)	Statin (+)			
	C/C	C/T,T/T	C/C	C/T,T/T	C/C	C/T,T/T
Gender (male/female)	116 / 115	44 / 47	77 / 59	28 / 20	40 / 56	15 / 27
Age (year)	62.9 ± 10.9	62.2 ± 13.6	62.3 ± 11.7	62.3 ± 15.8	63.4 ± 9.6	61.9 ± 11.0
Height (cm)	158.6 ± 8.8	156.7 ± 15.4	159.3 ± 9.2	159.1 ± 8.7	157.5 ± 8.4	156.3 ± 8.7
Body weight (kg)	62.5 ± 11.8	61.5 ± 12.4	61.2 ± 11.6	60.9 ±12.6	63.4 ± 13.9	62.5 ± 12.4
BMI (kg/m²)	24.8 ± 4.0	24.1 ± 3.5	23.8 ± 4.1	23.8 ± 3.6	25.9 ± 4.2	24.8 ± 3.4
SBP (mmHg)	134.8 ± 19.9	134.1 ± 17.7	136.2 ± 21.5	132.3 ± 18.1	134.9 ± 18.1	136.8 ± 17.6
DBP (mmHg)	78.0 ± 13.3	74.9 ± 11.6	78.8 ± 13.9	73.4 ± 10.6	76.1 ± 12.4	76.5 ± 12.9
HbA1c (%)	7.64 ± 1.73	7.39 ± 1.65	7.72 ± 1.91	7.52 ± 1.70	7.59 ± 1.46	7.30 ± 1.60
TC (mmol/l)	5.05 ± 0.92	5.21 ± 1.02	4.95 ± 0.82	4.83 ± 0.86	5.18 ± 1.05	5.68 ± 1.01*
TG (mmol/l)	1.51 ± 0.95	1.52 ± 0.83	1.39 ± 0.94	1.34 ± 0.88	1.51 ± 0.84	1.58 ± 0.68
HDL-C (mmol/l)	1.45 ± 0.45	1.48 ± 0.45	1.44 ± 0.46	1.46 ± 0.49	1.46 ± 0.43	1.53 ± 0.40
LDL-C (mmol/l)	2.89 ± 0.75	3.14 ± 0.86*	2.87 ± 0.73	2.89 ± 0.76	2.90 ± 0.78	3.43 ± 0.89**

*P < 0.05 (vs. C/C), **P < 0.0001 (vs. C/C)
Table 2. Comparison of medications in diabetic subjects between the TNF-α-C-857T polymorphism.

	C/C	C/T, T/T	P
Statins (- / +)	136 / 95	49 / 42	NS
Fibrates (- / +)	229 / 3	90 / 1	NS
OAD (- / +)	50 / 181	22 / 69	NS
Insulin (- / +)	136 / 95	49 / 42	NS
Hypotensive drugs (- / +)	115 / 72	26 / 29	NS

OAD: oral hypoglycemic drugs
NS: not significant

Figure 1.

![Graph showing % Reduction of Serum LDL-C](image)

- C/C (N=49)
- C/T, T/T (N=13)

P=0.031