Pressure effects on the electronic properties of the undoped superconductor ThFeAsN

N. Barbero, S. Holenstein, T. Shang, Z. Shermadini, F. Lochner, I. Eremin, C. Wang, G.-H. Cao, R. Khasanov, H.-R. Ott, J. Mesot, and T. Shiroka

1Laboratorium für Festkörperphysik, ETH Zürich, CH-8093 Zurich, Switzerland
2Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
3Physik-Institut der Universität Zürich, Wihnterturerstrasse 190, CH-8057, Zurich, Switzerland
4Institute of Condensed Matter Physics, EPFL Lausanne, CH-1015 Lausanne, Switzerland
5Max-Planck-Institut für Eisenforschung, D-40237 Düsseldorf, Germany
6Theoretische Physik III, Ruhr-Universität, D-44801 Bochum, Germany
7Department of Physics, Shandong University of Technology, Zibo 255049, China
8Department of Physics and State Key Lab of Silicon Materials, Zhejiang University, Hangzhou 310027, China
9Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China

The recently synthesized ThFeAsN iron-pnictide superconductor exhibits a T_c of 30 K, the highest of the 1111-type series in absence of chemical doping. To understand how pressure affects its electronic properties, we carried out microscopic investigations up to 3 GPa via magnetization, nuclear magnetic resonance, and muon-spin rotation experiments. The temperature dependence of the 75As Knight shift, the spin-lattice relaxation rates, and the magnetic penetration depth suggest a multi-band s^\pm-wave gap symmetry in the dirty limit, while the gap-to-T_c ratio Δ/k_BT_c hints at a strong-coupling scenario. Pressure modulates the geometrical parameters, thus reducing T_c, as well as τ_m, the temperature where magnetic-relaxation rates are maximized, both at the same rate of approximately -1.1 K/GPa. This decrease of T_c with pressure is consistent with band-structure calculations, which relate it to the deformation of the Fe 3d$_{xz,yz}$ orbitals.

Introduction. The doping-induced superconductivity below $T_c = 26$ K in LaFeAsO$_{1-x}$F$_x$ triggered long-term research interests towards iron-based superconductors (FeSC), further boosted by the $T_c = 55$ K of SmFeAsO$_{1-x}$As$_x$. Recently, we reported on superconducting properties of ThFeAsN, an undoped FeSC with a remarkable T_c of 30 K. Our data indicate that Fermi-surface modifications due to structural distortions and correlation effects may be as effective as doping in suppressing the antiferromagnetic order in favor of the formation of a superconducting phase. This is in contrast with most other REFeAsO-type compounds (RE = rare earth), where the quaternary parent compounds usually order magnetically and superconductivity is established via P-doping or H-doping. Due to strong electron correlations (compared with kinetic energy), iron pnictides are immediately coupled systems. For this reason, the experimental values of T_c are distinctly higher than those calculated by assuming the electron-phonon coupling mechanism, which claims T_c values below 1 K. Among the strong-correlation effects, antiferromagnetic (AFM) spin fluctuations are widely accepted to mediate the SC pairing but the detailed interaction model and an unequivocal identification of the gap symmetry are still being debated.

In an attempt to establish (i) what causes the suppression of AFM order in nominally undoped FeSC compounds, (ii) why they become superconductors, and (iii) what determines their T_c values, we investigated ThFeAsN under applied hydrostatic pressure using different local probes. Hydrostatic and/or chemical pressure modify the structure and thus tune the T_c of iron-based superconductors, such as FeSe, whose original $T_c = 8.5$ K increases to 36.7 K at 8.9 GPa. In particular, hydrostatic pressure is regarded as a clean tuning parameter for studying the effects of structural distortions on the electronic properties. A dependence of T_c on the crystallographic As-Fe-As bond angle or on the anion height above the iron layers implies an h_{pn} (see Fig. 1 in Mizuguchi et al.) has previously been noted. With $a = 4.037$ Å and $c = 8.526$ Å, the tetragonal (P4/nmm) structure of ThFeAsN implies an $h_{pn} = 1.305(4)$ Å, lower than the optimum anion height $h_{pn}^{\text{opt}} = 1.38$ Å. Hence, in the case of ThFeAsN, structural deformations induced by hydrostatic pressure would invariably lower T_c, in contrast to the above mentioned FeSe case. To test this hypothesis and understand how pressure affects the electronic properties of an undoped 1111 superconducting compound, we performed magnetization-, nuclear magnetic resonance (NMR) and muon-spin rotation (μSR) measurements on ThFeAsN under applied pressures up to 3 GPa.

First, we confirm experimentally the expected reduction of T_c with pressure. Then, on account of the T_c-dependence of the NMR Knight-shifts and spin-lattice relaxation rates, as well as μSR relaxation rates, we argue that the energy gap Δ of superconducting ThFeAsN adopts the s^\pm symmetry, which persists up to at least 1.47 GPa. In the same pressure region, the ratio Δ/k_BT_c is reduced continuously from 2.16(3) at ambient pressure to 1.82(3) at 2.48(2) GPa, thus exceeding the BCS weak-coupling value of 1.76. The moderate variation of T_c with pressure is corroborated by results of band-structure calculations which imply only tiny changes in the electronic excitation spectrum around E_F. The abrupt quenching of magnetic excitations, as indicated by a cusp in $1/T_c(T)$ at T_m > T_c, persists upon increasing pressure and T_m is reduced at the same rate as T_c.

Synthesis and preliminary characterization. The polycrystalline ThFeAsN sample was synthesized via high-temperature solid-state reaction, as reported in Ref. 16. X-ray diffraction and energy-dispersive x-ray measurements confirmed the absence of spurious phases (within $\sim 1\%$).

Magnetization measurements under applied pressure. The magnetization measurements were performed with a superconducting quantum interference device (SQUID) MPMS XL magnetometer. Preliminary measurements at ambient pressure revealed the presence of a tiny quantity of impurities ($\sim 0.18\%$, assuming that they are of ferromagnetic nature). This, along with a broad drop-down in $M(T)$ data below T_c, related to defect-induced disorder, suggest that ThFeAsN in the SC phase should be described by models in the dirty limit. Hydrostatic pressures up to 3.1 GPa were achieved by means of a home-made diamond-anvil cell with a beryllium-copper (BeCu) body. We chose Daphne Oil 7575 as the pressure-transmitting medium and a piece of lead to monitor the pressure. For the magnetometry mea-
The magnetic response was of the order of 1.5–3 10^{-6} emu. The line represents a T^5 behavior of relaxation, with the exponent decreasing down to 3.6 at 1.47 GPa. To improve the readability of the plot, we are not indicating the location of T_m and T_c values, but we report them in Fig. 2. (c) Temperature dependence of 75As NMR Knight-shift at three selected pressures. Uncertainties are of the order of the marker size. Inset: the 75As NMR signal measured at 1.47 GPa, 7.06 T, and 25 K.

Fig. 1. (a) Temperature-dependence of magnetization for selected applied pressures, measured at $\mu_0 H = 2$ mT. (b) 75As NMR $1/T_1(T)$ data at ambient- and at selected hydrostatic pressures. The inset shows the temperature dependence of $1/T_1(T)$ at ambient pressure, highlighting the maximum at T_m and a kink at T_c. Recently, a similar but broader feature in $1/T_1(T)$ of ReSe was attributed to a pseudogap behavior.18 Note that for ThFeAsN $T_m \sim 1.2 T_c$, at least up to 1.47 GPa.

Fig. 2. Pressure dependence of T_m and T_c as determined via magnetometry and NMR measurements. T_m (green diamonds) refers to the temperature where the electronic relaxation rates are maximized. The inset shows the temperature dependence of $1/T_1(T)$ at ambient pressure, highlighting the maximum at T_m and a kink at T_c. Recently, a similar but broader feature in $1/T_1(T)$ of ReSe was attributed to a pseudogap behavior.18 Note that for ThFeAsN $T_m \sim 1.2 T_c$, at least up to 1.47 GPa.

measurements we used a tiny piece of ThFeAsN ($m \sim 40 \mu g$), whose magnetic response was of the order of 1.5–3 μemu. Because of the tiny signal, each measurement was performed with a background-subtraction procedure. Typical magnetization data at different applied pressures are shown in Fig. 5(a). The linearly decreasing trend of T_c, as determined from magnetization data, is shown in Fig. 2 (red squares) and agrees well with the prediction of a reduced T_c at lower anion heights. A linear fit within the explored pressure range gives a slope of $\partial T_c/\partial p = -1.12 \pm 0.02$ K/GPa, similar to -1.5 K/GPa found in LiFeAs,19 another iron-based superconductor without doping.

NMR measurements under applied pressure. NMR measurements up to 1.47 GPa were performed using a BeCu piston-clamped high-pressure cell. The 75As NMR investigations included line- and spin-lattice relaxation time (T_1) measurements in a magnetic field of 7.06 T.20 T_1 values measured at both peaks of the central-transition line via inversion recovery resulted identical. Pressure was monitored \textit{in situ} by using the nuclear quadrupolar resonance signal of 65Cu in Cu$_2$O.21

A typical 75As NMR line at 7.06 T is shown in the inset of Fig. 5(c). Due to the large quadrupole moment of 75As ($Q = 31.4 \text{ fm}^2$), we considered only the central component of the NMR spectrum, which exhibits a typical second-order powder pattern with dipolar broadening. For temperatures from 4 to 295 K and hydrostatic pressures from zero up to 1.47 GPa, the central-line transition exhibits minor changes in shape and position. The spectra were fitted using the quadrupolar exact software (QUEST),22 assuming no planar anisotropy ($\eta = 0$, as from experimental observations) and obtaining typical quadrupolar frequencies ν_Q of ~ 5.6 MHz. The full width at half maximum (not shown) is negligibly affected by temperature or pressure, thus confirming the absence3,23 of AFM long-range order, which would otherwise result in a remarkable broadening of the spectral lines starting at the onset of the transition.

Figure 5(c) shows the Knight shift $K_n(T) = (\gamma - \nu_Q)/\nu_Q$ values as a function of temperature. At all the applied pressures, $K_n(T)$ exhibits a linearly decreasing trend below T_c, compatible with an s^\pm-wave scenario.12 In fact, $K_n(T) \sim \text{Re} \chi''(q = 0, \omega \rightarrow 0)$, i.e., in the uniform susceptibility limit ($q = 0$), the inter-band scattering is suppressed and the Knight-shift value includes only the independent contributions from the hole- and electron bands.12,24 In the clean limit, this implies an exponential temperature-dependence for $K_n(T)$ in the s^\pm-wave case. However, as confirmed by magnetization data, our sample is not free of impurities. As reported in the literature,24–27 impurity self-energies form resonance states inside the SC gap and, thereby, affect the functional form of $K_n(T)$. The results of these calculations are compatible with the linear trend we observe. From the Knight-shift perspective, a dirty s^\pm-wave superconductor exhibits the features of a clean d-wave SC, but the latter inter-
We observe that pressure reduces the distance between
the peaks. This implies a slight symmetry enhancement
upon increasing pressure, resulting in $eq = V_{zz} = 2I(2I - 1)h\nu_0/(3eQ)$. Here V_{zz} is obtained from the qua-
rupole splitting frequency via

$$\Delta f = \frac{29}{16} \frac{I(I + 1) - \frac{3}{2}}{\nu_0}.$$

We find a power-law behavior of $1/T$ in monotonously by
$1.45 \pm 0.1 K / \text{GPa}$, i.e., virtually with the
same slope as T_{c2}. Although we
confirmed the earlier findings28 and were used as reference
to analyze the high-pressure data. The muon fraction stop-
ing in the pressure cell ($f_{\text{cell}} = 60\%$) was determined by
fitting a zero-field (ZF) spectrum with the cell relaxation
rate fixed to the GPS value, hence leaving the muon
fraction fixed to the GPS value, T_{c1}, and
the muon stopping fraction as the only free parameter. The absence of
significant changes with temperature in the ZF relaxation
rate of the sample, even at the highest pressure, rule out
a possible pressure-induced magnetic order. Thus, we focused
on the TF measurements in the SC region, carried
out at 70 mT. The data were analyzed using:

$$A(t)/A_0 = (1 - f_{\text{cell}})\cos(\gamma_B B_{\text{cell}} t + \phi) \exp(-\lambda_{\text{sc}} t - \alpha_{\text{cell}} t^2/2) + f_{\text{cell}}\cos(\gamma_B B_{\text{cell}} t + \phi) \exp(-\lambda_{\text{cell}} t - \sigma_{\text{cell}} t^2/2),$$

where A_0 is the initial asymmetry, γ_B the muon gyromagnetic
ratio, B the local field at the muon stopping site, ϕ the initial phase, and λ and σ the exponential and Gaussian
relaxation rates, whose subscript labels denote the parameters
for muons stopping in the sample and the cell, respecti-
vely. To ensure a robust fit, the change of B_{cell} and σ_{cell}
was related to the field shift in the sample relative to B_{ext}:28

$$B_{\text{cell}}(T) = B_{\text{ext}} + c_1 [B_{\text{ext}} - B_{\text{sc}}(T)],$$

$$\sigma_{\text{cell}}(T) = \sigma_{\text{cell}}^0 (T > T_c) + c_2 [B_{\text{ext}} - B_{\text{sc}}(T)].$$

λ_{sc} and σ_{cell} are proportionality constants. Since λ_{cell}
varies with temperature, its intrinsic T-dependence was
determined by requiring that the zero-pressure GPS measure-
ments reproduce the GPS results, from which we evalu-
ated an average penetration depth $\lambda_{\text{ab}}(0 \text{K}) = 255(1) \text{ nm}$. As can be seen from the temperature dependence of the

Transverse-field (TF) μSR measurements under high pres-
sure. The μSR investigations were performed at the GPS
(ambient pressure) and the GPD (high-pressure) spectrom-
eters of the Paul Scherrer Institute, Villigen. Since the high-
pressure measurements require a relatively large sample mass ($\sim 2 \text{ g}$), a new polycrystalline sample with $T_c = 27 \text{ K}$ was prepared. The lower T_c is due to a different prepara-
tion protocol. The GPS measurements on the new batch
confirmed the earlier findings28 and were used as reference
to analyze the high-pressure data. The muon fraction stop-
ing in the pressure cell ($f_{\text{cell}} = 60\%$) was determined by
fitting a zero-field (ZF) spectrum with the cell relaxation
rates fixed to their literature values27 and the sample relaxation rate fixed to the GPS value, hence leaving the muon
stopping fraction as the only free parameter. The absence of
significant changes with temperature in the ZF relaxation
rate of the sample, even at the highest pressure, rule out
a possible pressure-induced magnetic order. Thus, we focused
on the TF measurements in the SC region, carried
out at 70 mT. The data were analyzed using:

$$A(t)/A_0 = (1 - f_{\text{cell}})\cos(\gamma_B B_{\text{cell}} t + \phi) \exp(-\lambda_{\text{sc}} t - \alpha_{\text{cell}} t^2/2) + f_{\text{cell}}\cos(\gamma_B B_{\text{cell}} t + \phi) \exp(-\lambda_{\text{cell}} t - \sigma_{\text{cell}} t^2/2),$$

where A_0 is the initial asymmetry, γ_B the muon gyromagnetic
ratio, B the local field at the muon stopping site, ϕ the initial phase, and λ and σ the exponential and Gaussian
relaxation rates, whose subscript labels denote the parameters
for muons stopping in the sample and the cell, respecti-
vely. To ensure a robust fit, the change of B_{cell} and σ_{cell}
was related to the field shift in the sample relative to B_{ext}:

$$B_{\text{cell}}(T) = B_{\text{ext}} + c_1 [B_{\text{ext}} - B_{\text{sc}}(T)],$$

$$\sigma_{\text{cell}}(T) = \sigma_{\text{cell}}^0 (T > T_c) + c_2 [B_{\text{ext}} - B_{\text{sc}}(T)].$$

where c_1 and c_2 are proportionality constants. Since λ_{cell}
varies with temperature, its intrinsic T-dependence was
determined by requiring that the zero-pressure GPS measure-
ments reproduce the GPS results, from which we evalu-
ated an average penetration depth $\lambda_{\text{ab}}(0 \text{K}) = 255(1) \text{ nm}$. As can be seen from the temperature dependence of the
Upon increasing pressure, the latter being closer to ab initio we resorted to the Vienna explanation. As the key reason to prevent AFM order is confirmed by both NMR and zero-field even at the highest pressures suggests that the reduction of

\[\text{superconducting } T_c \]

at 0.06(1) GPa to 3.8(1) meV at 2.48(2) GPa

implies a reduction of the gap value is suppressed faster than \(\frac{\partial T_c}{\partial p} = -1.12(2) \text{ K/GPa} \) and weakens the pairing interaction, as measured by the ratio \(\frac{\Delta(0)}{k_B T_c} \). Interestingly, \(T_m(p) \) too is reduced by pressure at the same rate of \(T_c \), confirming that magnetic excitations which reflect AFM spin fluctuations, while competing with superconductivity, play an essential role in the pairing process. Finally, our experimental data and DFT calculations indicate an \(s^\pm \) SC order parameter independent of pressure and suggest that intrinsic disorder plays a key role in suppressing antiferromagnetism in ThFeAsN.

Conclusion. In ThFeAsN, the Knight shift \(K(T) \), the spin-lattice relaxation times \(T_1(T) \), and the London penetration depth \(\lambda(T) \) indicate that pressure reduces \(T_c \) \(\frac{\partial T_c}{\partial p} = -1.12(2) \text{ K/GPa} \) and weakens the pairing interaction, as measured by the ratio \(\frac{\Delta(0)}{k_B T_c} \). Interestingly, \(T_m(p) \) too is reduced by pressure at the same rate of \(T_c \), confirming that magnetic excitations which reflect AFM spin fluctuations, while competing with superconductivity, play an essential role in the pairing process. Finally, our experimental data and DFT calculations indicate an \(s^\pm \) SC order parameter independent of pressure and suggest that intrinsic disorder plays a key role in suppressing antiferromagnetism in ThFeAsN.

ACKNOWLEDGMENTS

The authors thank H. Luetkens for useful discussions. This work was financially supported in part by the Schweizerische Nationalfonds zur Förderung der Wissenschaftlichen Forschung (SNF) and by the SNF fund 200021-159736.
M. Gooch, B. Lv, J. H. Tapp, Z. Tang, B. Lorenz, A. M. Guloy, A. Eiling and J. S. Schilling, “Pressure and temperature dependence of electrical resistivity of Pb and Sn from 1–300 K and 0–230 GPa,” Phys. Rev. B 83, 054013 (2010).

C. Wang, Z.-C. Mei, Y.-X. Li, L. Li, Z.-T. Tang, Y. Liu, P. Zhang, H.-F. Zhai, Z.-A. Xu, and G.-H. Cao, “A new ZrCuSiAlS-type superconductor: ThFeAsN,” J. Am. Chem. Soc. 138, 2170 (2016).

A. Eilling and J. S. Schilling, “Pressure and temperature dependence of electrical resistivity of Pb and Sn from 1–300 K and 0–10 GPa’s as a function of pressure: superconductivity under pressure in Pb, Sn and In,” J. Phys. F: Metal Physics 11, 632 (1981).

A. Shi, T. Arai, S. Kitagawa, T. Yamanaka, K. Ishida, A. E. Böhmer, C. Meingast, T. Wolf, M. Hirata, and T. Sasaki, “Pseudo-gap behavior of the nuclear spin–lattice relaxation rate in FeSe probed by 77Se-NMR,” J. Phys. Soc. Jpn. 87, 013704 (2018).

M. Gooch, B. Lv, J. H. Tapp, Z. Tang, B. Lorenz, A. M. Guloy, and P. C. W. Chu, “Pressure shift of the superconducting T_c of LiFeAs,” Europhys. Lett. 85, 27005 (2009).

77As, with spin $I = 3/2$ and Larmor frequency $v_L = 51.523$ MHz at 7.06 T, was chosen because it occupies a single site and is sensitive to the structural- and electronic variation in the FeAs layers under pressure. The 77As NMR spectra were obtained via fast Fourier transformation of spin-echo signals generated by $\pi/2-\pi$ rf pulses of 2 and 4 μs, respectively, with recycle delays ranging from 0.1 s at room temperature up to 6 s at 5 K and echo times of 50 μs. Given the long rf-pulse length, frequency sweeps in 40-kHz steps were used to cover the spectrum central transition (~1 MHz wide).

A. P. Reyes, E. T. Ahrens, R. H. Heffner, P. C. Hammel, and J. D. Thompson, “Cuprous oxide manometer for high pressure magnetic resonance experiments,” Rev. Sci. Instr. 63, 3120–3122 (1992).

F. A. Perras, M. W. Cory, and D. L. Bryce, “QUEST – Qubitauradop Exact Software: A fast graphical program for the exact simulation of NMR and NQR spectra for quadrupolar nuclei,” Sol. St. Nucl. Magn. Res. 45–46, 36–44 (2012).

M. A. Albedah, F. Nejadattari, Z. M. Stadnik, Z.-C. Wang, C. Wang, and G.-H. Cao, “Absence of the stripe antiferromagnetic order in the new 30 K superconductor ThFeAsN,” J. Alloys Compd. 695, 1128–1136 (2017).

Y. Bang and H.-Y. Choi, “Possible pairing states of the Fe-based superconductors,” Adv. Mater. 28, 134523 (2016).

A. Kawabata, S. C. Lee, T. Moyoshi, Y. Kobayashi, and M. Sato, “Superconductivity of LaFe$_{1-x}$Co$_x$As$_{1-y}$F$_y$: type II superconductor,” J. Phys. Soc. Jpn. 77, 103704 (2008).

K. Matano, Z. A. Ren, X. L. Dong, L. L. Sun, X. Z. Xiao, and G. Zheng, “Spin-singlet superconductivity with multiple gaps in PrFeAsO$_{1-x}$F$_{x}$,” Europhys. Lett. 83, 57001 (2008).

Y. Nakai, T. Iye, S. Kitagawa, K. Ishida, S. Kasahara, T. Shibauchi, Y. Matsuda, and T. Terashima, 31P and 129I NMR evidence for a residual density of states at zero energy in superconducting BaFe$_2$(As$_{0.6}$O$_{0.4}$)$_{15-y}$,” Phys. Rev. B 81, 020503 (2010).

See Supplemental Material at [URL will be inserted by publisher] for the plot of the T’-derivative of the 1/T’(T) curve and the definitions of T_1 and T_2.

S. Kawasaki, K. Shimada, G. F. Chen, J. L. Luo, N. L. Wang, and G. Q. Zheng, “Two superconducting gaps in LaFeAsO$_{1-y}$F$_{y}$ revealed by 75As nuclear quadrupole resonance,” Phys. Rev. B 78, 224506 (2008).

H. Mukuda, N. Terasaki, N. Tamura, H. Kinouchi, M. Yashima, Y. Kitaoka, K. Miyazawa, P. M. Shirage, S. Suzuki, S. Miyasaka, S. Tajima, H. Kito, H. Eisaki, and A. Iyo, “Doping dependence of normal-state properties in iron-based oxypnictide superconductor LaFe$_{1-x}$Co$_x$As$_{1-y}$F$_y$ probed by 57Fe-NMR and 75As-NMR,” J. Phys. Soc. Jpn. 78, 084717 (2009).

H. Ding, P. Richard, K. Nakayama, K. Sugawara, T. Arakane, Y. Sekiba, A. Takayama, S. Souma, T. Sato, T. Takahashi, Z. Wang, X. Dai, Z. Fang, G. F. Chen, J. L. Luo, and N. L. Wang, “Observation of Fermi-surface–dependent nodeless superconducting gaps in Ba$_2$K$_x$Fe$_2$As$_2$,” Europhys. Lett. 83, 47001 (2008).

W. Ziegler, D. Poilblanc, R. Preuss, W. Hanke, and D. J. Scalapino, “T-matrix formulation of impurity scattering in correlated systems,” Phys. Rev. B 53, 8704–8707 (1996).

T. Oka, Z. Li, S. Kawasaki, G. F. Chen, N. L. Wang, and G. Q. Zheng, “Antiferromagnetic spin fluctuations above the dome-shaped and flat-gap superconducting states of LaFeAsO$_{1-y}$F$_y$: a critical test on the magnetic penetration depth of YBa$_2$Cu$_3$O$_x$,” Europhys. Lett. 108, 047001 (2012).

Y. Bang, H.-Y. Choi, and H. Won, “Impurity effects on the s^\pm-wave state of the iron-based superconductors,” Phys. Rev. B 79, 054529 (2009).

K. Matano, Z. Li, G. L. Sun, D. L. Sun, C. T. Lin, M. Ichioka, and G. Zheng, “Anisotropic spin fluctuations and multiple superconducting gaps in hole-doped Ba$_{1-x}$K$_x$Fe$_2$As$_2$: NMR in a single crystal,” Europhys. Lett. 87, 27012 (2009).

D. Ardroja, B. Bhattacharyya, P. K. Biswas, M. Smidman, A. D. Hillier, H. Mao, H. Luo, G.-H. Cao, Z. Wang, and C. Wang, “Multigap superconductivity in ThAsF6 investigated using μSR measurements,” Phys. Rev. B 96, 144502 (2017).

R. Khosanov, Z. Guguchia, A. Maisuradze, D. Andreica, M. Elen- der, A. Raselli, Z. Shermadini, T. Goko, F. Knecht, E. Morenzoni, and A. Amato, “High pressure research using muons at the Paul Scherrer Institute,” High Press. Res. 36, 140–166 (2016).

A. Maisuradze, A. Shengelaya, A. Amato, E. Pommajushina, and H. Keller, “Muon spin rotation investigation of the pressure effect on the magnetic penetration depth in YBa$_2$Cu$_3$O$_x$,” Phys. Rev. B 84, 184523 (2011).
We recall that the transport and magnetic properties of ThFeAsN are similar to those of LaFeAsO$_{1-\delta}$, which indicates that the absence of a long-range magnetic order in the nominally undoped ThFeAsN can be due to intrinsic disorder. It is known that the long-range antiferromagnetic order in the iron-based superconductors can be even destroyed by nonmagnetic impurities, despite the electron-band structure remaining unchanged with respect to the undoped case.

The resulting phase diagram is similar to that obtained by introducing extra holes or electrons in the FeAs layers. Theoretically, this can be understood as a result of the stronger effect of nonmagnetic impurities on the AFM order than on the multiband s^\pm-wave superconductivity. While both the intra- and the interband impurity scattering are destructive for the long-range AFM order, only the interband scattering is pair-breaking for an s^\pm superconducting state.

V. Brouet, F. Bertran, A. Forget, and D. Colson, “Significant reduction of electronic correlations upon isovalent Ru substitution of BaFe$_2$As$_2$,” Phys. Rev. Lett. 105, 087001 (2010).

R. S. Dhaka, Chang Liu, R. M. Fernandes, Rui Jiang, C. P. Strethlow, Takeshi Kondo, A. Thaler, Jörg Schmalian, S. L. Bud’ko, P. C. Canfield, and Adam Kaminski, “What controls the phase diagram and superconductivity in Ru-substituted BaFe$_2$As$_2$?” Phys. Rev. Lett. 107, 267002 (2011).

M. G. Vavilov and A. V. Chubukov, “Phase diagram of iron pnictides if doping acts as a source of disorder,” Phys. Rev. B 84, 214521 (2011).

G. Lang, L. Veyrat, U. Gräfe, F. Hammerath, D. Paar, G. Behr, S. Wurmehl, and H.-J. Grafe, “Spatial competition of the ground states in 1111 iron pnictides,” Phys. Rev. B 94, 014514 (2016).

G. Prando, Th. Hartmann, W. Schottenhamel, Z. Guguchia, S. Sanna, F. Ahn, I. Nekrasov, C. G. F. Blum, A. U. B. Wolter, S. Wurmehl, R. Khasanov, I. Eremin, and B. Büchner, “Mutual independence of critical temperature and superfluid den-

sity under pressure in optimally electron-doped superconducting LaOFeAsO$_{1-\delta}$, F$_x$,” Phys. Rev. Lett. 114, 247004 (2015).

A. Charnukha, D. V. Evrutsinsky, C. E. Matt, N. Xu, M. Shi, B. Büchner, N. D. Zhigadlo, B. Batlogg, and S. V. Borisenko, “High-temperature superconductivity from fine-tuning of Fermi-surface singularities in iron oxypnictides,” Sci. Rep. 5, 18273 (2015).

I. SUPPLEMENTAL MATERIAL

We include the accurate description of the methods used to determine the values of T_s and T_m from the magnetization (see Fig. 1a) and the NMR data (see Fig. 1b). The resulting metadata are plotted as a function of pressure in Fig. 2 of the manuscript.

T_c was evaluated from the magnetization data at the onset value, resulting from the crossing of two lines, i.e. the linear fit of the neighboring regions below ($0.8 < T/T_c < 1$) and above ($1 < T/T_c < 1.2$) the critical temperature, respectively at each applied pressure.

In the case of the NMR data, we plotted (see Fig. 1 of the Supplemental Material) the T-derivative of $1/T_1 T$ and identified T_s as maximum [inflection point in $1/T_1 (T(T))$] and T_m as zero of the function [maximum in $1/T_1 (T(T))$].

Fig. 5. From the 75As NMR T_1 values, we show the T-derivative of the $1/T_1 (T)$ curve for the four applied hydrostatic pressures. The decreasing trend for both T_s and T_m values upon increasing pressure is highlighted by two horizontal arrows. The dotted lines are a guide to the eye. Since the datasets are noisy, we empirically enhanced the accuracy in estimating the T_s and T_m values, by fitting these data with shape-preserving splines.