Another proof for the removable singularities of the heat equation

Kin Ming Hui
Institute of Mathematics, Academia Sinica,
Nankang, Taipei, 11529, Taiwan, R. O. C.
Sept 2, 2009

Abstract
We give two different simple proofs for the removable singularities of the heat equation in \((\Omega \setminus \{x_0\}) \times (0, T)\) where \(x_0 \in \Omega \subset \mathbb{R}^n\) is a bounded domain with \(n \geq 3\). We also give a necessary and sufficient condition for removable singularities of the heat equation in \((\Omega \setminus \{x_0\}) \times (0, T)\) for the case \(n = 2\).

Key words: removable singularities, heat equation
Mathematics Subject Classification: Primary 35B65 Secondary 35K55, 35K05, 35K20

Singularities of solutions of partial differential equations appear in many problems. For example singularities appears in the study of the solutions of the harmonic map [13] and the harmonic map heat flow [3]. In [14] S. Sato and E. Yanagida studied the solutions for a semilinear parabolic equation with moving singularities. Singularities of solutions also appears in the study of hyperbolic partial differential equations [15] and in the study of the touchdown behavior of the micro-electromechanical systems equation [4], [5], [6].

It is interesting to find the necessary and sufficient condition for the solutions of the equations to have removable singularities. In [8] S.Y. Hsu proved the following theorem.

Theorem 1. Let \(n \geq 3\) and let \(0 \in \Omega \subset \mathbb{R}^n\) be a domain. Suppose \(u\) is a solution of the heat equation

\[
 u_t = \Delta u
\]

in \((\Omega \setminus \{0\}) \times (0, T)\). Then \(u\) has removable singularities at \(\{0\} \times (0, T)\) if and only if for any \(0 < t_1 < t_2 < T\) and \(\delta \in (0, 1)\) there exists \(B_{R_0}(0) \subset \Omega\) depending on \(t_1, t_2\) and \(\delta\), such that

\[
 |u(x, t)| \leq \delta|x|^{2-n}
\]
for any $0 < |x| \leq R_0$ and $t_1 \leq t \leq t_2$.

The proof in [8] is based on the Green function estimates of [9] and a careful analysis of the behavior of the solution near the singularities using Dehnelian principle. In this paper we will use the Schauder estimates for heat equation [2, 12], and the technique of [11] and [17] to give two different simple proofs of the above result. We also obtain the following result for the solution of the heat equation in 2-dimension.

Theorem 2. Let $0 \in \Omega \subset \mathbb{R}^2$ be a domain. Suppose u is a solution of the heat equation in $(\Omega \setminus \{0\}) \times (0, T)$. Then u has removable singularities at $\{0\} \times (0, T)$ if and only if for any $0 < t_1 < t_2 < T$ and $\delta \in (0, 1)$ there exists $\overline{B_{R_0}}(0) \subset \Omega$ depending on t_1, t_2 and δ, such that

$$ |u(x, t)| \leq \delta (\log(1/|x|))^{-1} \tag{3} $$

for any $0 < |x| \leq R_0$ and $t_1 \leq t \leq t_2$.

Remark 3. Note that the function $\log |x|$ satisfies the heat equation in $(\mathbb{R}^2 \setminus \{0\}) \times (0, \infty)$ but it has non-removable singularities on $\{0\} \times (0, \infty)$ and it does not satisfy (3). Hence (3) is sharp.

We start with some definitions. For any set A we let χ_A be the characteristic function of the set A. Let $0 \in \Omega \subset \mathbb{R}^n$ be a bounded domain. We say that a solution u of the heat equation (1) in $(\Omega \setminus \{0\}) \times (0, T)$ has removable singularities at $\{0\} \times (0, T)$ if there exists a classical solution v of (1) in $\Omega \times (0, T)$ such that $u = v$ in $(\Omega \setminus \{0\}) \times (0, T)$. For any $R > 0$ let $B_R = B_R(0) = \{x : |x| < R\} \subset \mathbb{R}^n$.

Proof of Theorem 1: Suppose u has removable singularities at $\{0\} \times (0, T)$. By the same argument as the proof in section 3 of [8] for any $0 < t_1 < t_2 < T$ and $\delta \in (0, 1)$ there exists $\overline{B_{R_0}} \subset \Omega$ depending on t_1, t_2 and δ, such that (2) holds.

Suppose (2) holds. Then for any $0 < t_1 < t_2 < T$ and $\delta \in (0, 1)$ there exists $\overline{B_{R_0}} \subset \Omega$ depending on t_1, t_2 and δ, such that (2) holds for any $0 < |x| \leq R_0$ and $t_1 \leq t \leq t_2$.

For any $0 < |x| \leq R_0$, let

$$ w(y, s) = u(|x|y, |x|^2s) \quad \forall 0 < |y| \leq R_0/|x|, t_1/|x|^2 \leq s \leq t_2/|x|^2. \tag{4} $$

Then w is a solution of (1) in $(\overline{B_1} \setminus \{0\}) \times (|x|^{-2}t_1, |x|^{-2}t_2)$. By (2),

$$ |w(y, s)| \leq \delta(|x||y|)^{2-n} \quad \forall 0 < |y| \leq R_0/|x|, t_1/|x|^2 \leq s \leq t_2/|x|^2. \tag{5} $$

Let $t_1 < t_3 < t_2$. Then

$$ \frac{t_3}{|x|^2} - \frac{t_1}{|x|^2} \geq \frac{t_3 - t_1}{R_0^2} \tag{6} $$
By the parabolic Schauder estimates \([2], [12], (5)\) and \((6)\), there exists a constant \(C_1 > 0\) such that
\[
|\nabla w(y, s)| \leq C_1 \sup_{|x|^{-2} t_1 \leq \tau \leq |x|^{-2} t_2} w(z, \tau) \leq C_2 \delta |x|^{2-n}
\] (7)
holds for any \(2/3 \leq |y| \leq 3/4\), \(t_3/|x|^2 \leq s \leq t_2/|x|^2\) where \(C_2 = 2^{n-2} C_1\). By \((4)\) and \((7)\),
\[
|\nabla u(z, t)| \leq C_2 \delta |z|^{1-n} \quad \forall |z| = \frac{3}{4} |x|, 0 < |x| \leq R_0, t_3 \leq t \leq t_2
\]
\[
\Rightarrow |\nabla u(z, t)| \leq C_2 \delta |z|^{1-n} \quad \forall |z| \leq \frac{3}{4} R_0, t_3 \leq t \leq t_2.
\] (8)

Let \(R_1 = 3/(4R_0)\). We will now use a modification of the proof of Lemma 2.3 of \([1]\) and Lemma 2.1 of \([7]\) to complete the argument. We will first show that \(u\) satisfies \((1)\) in \(\Omega \times (t_1, t_2)\) in the distribution sense. Since \(u\) satisfies \((1)\) in \((\Omega \setminus \{0\}) \times (0, T)\), for any \(0 < \varepsilon < R_1\) and \(\eta \in C_0^\infty(\Omega \times (0, T))\) we have
\[
\int_{\Omega \setminus B_\varepsilon} w \eta dx \bigg|_{t_3}^{t_2} = \int_{t_3}^{t_2} \int_{\Omega \setminus B_\varepsilon} w \eta \, dx \, dt - \int_{t_3}^{t_2} \int_{\Omega \setminus B_\varepsilon} \nabla u \cdot \nabla \eta \, dx \, dt
\]
\[
- \int_{t_3}^{t_2} \int_{\partial B_\varepsilon} \eta \frac{\partial u}{\partial n} \, d\sigma \, dt
\] (9)
where \(\partial u/\partial n\) is the derivative of \(u\) with respect to the unit outward normal at \(\partial B_\varepsilon\). By \((8)\),
\[
\limsup_{\varepsilon \to 0} \left| \int_{t_3}^{t_2} \int_{\partial B_\varepsilon} \eta \frac{\partial u}{\partial n} \, d\sigma \, dt \right| \leq C_2 \delta (t_2 - t_3) |\partial B_1| \|\eta\|_{L^\infty}
\]
Since \(\delta > 0\) is arbitrary, there holds
\[
\lim_{\varepsilon \to 0} \int_{t_3}^{t_2} \int_{\partial B_\varepsilon} \eta \frac{\partial u}{\partial n} \, d\sigma \, dt \, dx \, dt = 0.
\] (10)
By \((8)\) and the Lebesgue dominated convergence theorem,
\[
\lim_{\varepsilon \to 0} \int_{t_3}^{t_2} \int_{\Omega \setminus B_\varepsilon} \nabla u \cdot \nabla \eta \, dx \, dt = \int_{t_3}^{t_2} \int_{\Omega} \nabla u \cdot \nabla \eta \, dx \, dt
\] (11)
Letting \(\varepsilon \to 0\) in \((9)\), by \((10)\) and \((11)\) there holds
\[
\int_{\Omega} w \eta \, dx \bigg|_{t_3}^{t_2} = \int_{t_3}^{t_2} \int_{\Omega} w \eta \, dx \, dt - \int_{t_3}^{t_2} \int_{\Omega} \nabla u \cdot \nabla \eta \, dx \, dt \quad \forall t_3 \in (t_1, t_2).
\] (12)
Hence u is a distribution solution of (1) in $\Omega \times (t_1, t_2)$. By (2) for any $1 \leq p < \frac{n}{n-2}$ there exists a constant $C'_p > 0$ such that
\[
\sup_{t_1 \leq t \leq t_2} \int_{B_{R_0}} u(x, t)^p \, dx \leq C'_p \tag{13}
\]

By (12) and (13) and an argument similar to the proof of [11] and section 1 of [10] $u \in L^\infty_{loc}(B_{R_0} \times (t_1, t_2))$. We now let v be the solution of

\[
\begin{cases}
 v_t = \Delta v & \text{in } B_{R_1} \times (t_3, t_2) \\
 \frac{\partial v}{\partial n}(x, t) = \frac{\partial u}{\partial n}(x, t) & \text{on } \partial B_{R_1} \times (t_3, t_2) \\
 v(x, t_3) = u(x, t_3) & \text{in } B_{R_1}.
\end{cases} \tag{14}
\]

For any $0 \leq h \in C_0^\infty(B_{R_1})$ and $t_3 < t \leq t_2$ let η be the solution of

\[
\begin{cases}
 \eta_t + \Delta \eta = 0 & \text{in } B_{R_1} \times (t_3, t) \\
 \frac{\partial \eta}{\partial n}(x, t) = 0 & \text{on } \partial B_{R_1} \times (t_3, t) \\
 \eta(x, t) = h(x) & \text{in } B_{R_1}.
\end{cases} \tag{15}
\]

By the maximum principle,
\[
0 \leq \eta \leq \|h\|_{L^\infty} \quad \text{in } B_{R_1} \times (t_3, t). \tag{16}
\]

Then by (14) and (15),
\[
\int_{B_{R_1} \setminus B_\varepsilon} (u - v) \eta \, dx \bigg|_{t_3}^{t} = \int_{t_3}^{t} \int_{B_{R_1} \setminus B_\varepsilon} [(u - v)\eta_t + (u - v)\eta] \, dx \, dt
\]
\[
= \int_{t_3}^{t} \int_{B_{R_1} \setminus B_\varepsilon} [(u - v)\eta_t + \Delta(u - v)\eta] \, dx \, dt
\]
\[
= \int_{t_3}^{t} \int_{B_{R_1} \setminus B_\varepsilon} (u - v)(\eta_t + \Delta \eta) \, dx \, dt - \int_{t_3}^{t} \int_{\partial B_\varepsilon} \eta \frac{\partial (u - v)}{\partial n} \, d\sigma \, dt
\]
\[
+ \int_{t_3}^{t} \int_{\partial B_\varepsilon} (u - v) \frac{\partial \eta}{\partial n} \, d\sigma \, dt
\]
\[
= -\int_{t_3}^{t} \int_{\partial B_\varepsilon} \eta \frac{\partial (u - v)}{\partial n} \, d\sigma \, dt + \int_{t_3}^{t} \int_{\partial B_\varepsilon} (u - v) \frac{\partial \eta}{\partial n} \, d\sigma \, dt. \tag{17}
\]

By (2),
\[
\left| \int_{t_3}^{t} \int_{\partial B_\varepsilon} (u - v) \frac{\partial \eta}{\partial n} \, d\sigma \, dt \right| \leq C \varepsilon \rightarrow 0 \quad \text{as } \varepsilon \rightarrow 0. \tag{18}
\]
By (8) and (16),
\[\limsup_{\varepsilon \to 0} \left| \int_{t_3}^{t_1} \int_{\partial B_{\varepsilon}} \eta \frac{\partial}{\partial n}(u - v) \, ds \right| dt \leq C\delta. \] (19)

Since \(\delta > 0 \) is arbitrary, by (19) there holds
\[\lim_{\varepsilon \to 0} \left| \int_{t_3}^{t_1} \int_{\partial B_{\varepsilon}} \eta \frac{\partial}{\partial n}(u - v) \, ds \right| = 0. \] (20)

Letting \(\varepsilon \to 0 \) in (17), by (18) and (20),
\[\int_{B_{R_1}} (u - v)(x, t) \, h(x) \, dx = \int_{B_{R_1}} (u - v)(x, t_3) \eta(x, t_3) \, dx = 0. \] (21)

We now choose a sequence of functions \(h_i \in C_{0}^{\infty}(B_{R_1}) \) converging to \(\chi_{\{u > v\}} \) a.e. \(x \in B_{R_1} \) as \(i \to \infty \). Putting \(h = h_i \) in (21) and letting \(i \to 0 \),
\[\int_{B_{R_1}} (u - v)(x, t) \, dx = 0 \quad \forall t_3 < t \leq t_2. \] (22)

By interchanging the role of \(u \) and \(v \) we get
\[\int_{B_{R_1}} (v - u)(x, t) \, dx = 0 \quad \forall t_3 < t \leq t_2. \] (23)

Hence by (22) and (23),
\[\int_{B_{R_1}} |v - u|(x, t) \, dx = 0 \quad \forall t_3 < t \leq t_2 \]
\[\Rightarrow \quad u(x, t) = v(x, t) \quad \forall 0 < |x| \leq R_1, t_3 < t \leq t_2. \] (24)

Hence \(u \) has removable singularities on \(\{0\} \times (t_3, t_2) \). Since \(0 < t_1 < t_3 < t_2 < T \) is arbitrary, \(u \) has removable singularities on \(\{0\} \times (0, T) \) and the theorem follows.

Proof of Theorem 2: Theorem 2 follows by an argument very similar to the proof of Theorem 1 but with (3) replacing (2) in the argument.

An alternate proof of Theorems 1 and 2: We will show that when (2) (respectively (3)) holds, then \(u \) has removable singularities at \(\{0\} \times (0, T) \). Suppose (2) holds if \(n \geq 3 \) and (3) holds if \(n = 2 \). We first observe that by the previous argument for any \(0 < t_1 < t_2 < T \) \(u \) satisfies (12) and \(u \in L_{loc}^{\infty}(\Omega \times (0, T)) \). Let \(\overline{B}_{R_1} \subset \Omega \) and let \(w \) be the solution of
\[
\begin{cases}
 & w_t = \Delta w \quad \text{in} \ B_{R_1} \times (t_1, t_2) \\
 & w = u \quad \text{on} \ \overline{B}_{R_1} \times \{t_1\} \cup \partial B_{R_1} \times (t_1, t_2).
\end{cases}
\]

By the maximum principle,
\[\|w\|_{L^{\infty}} \leq \|u\|_{L^{\infty}(B_{R_1} \times (t_1, t_2))} < \infty. \] (25)
For any $\varepsilon > 0$, let
\[
 w_\varepsilon = \begin{cases}
 w - u + \varepsilon |x|^{2-n} & \text{if } n \geq 3 \\
 w - u + \varepsilon \log(R_1/|x|) & \text{if } n = 2.
 \end{cases}
\]

Then w_ε satisfies
\[
 \begin{cases}
 w_{\varepsilon,t} = \Delta w_\varepsilon & \text{in } (B_{R_1} \setminus \{0\}) \times (t_1, t_2) \\
 w_\varepsilon \geq u & \text{on } \partial B_{R_1} \times (t_1, t_2) \cup \overline{B_{R_1}} \times \{t_1\}.
 \end{cases}
\]

By (2), (3), and (25) there exists a constant $0 < r_0 < R_1$ such that
\[
 w_\varepsilon \geq 0 \quad \text{on } \partial B_{r_1} \times [t_1, t_2]
\]
for all $0 < r_1 \leq r_0$. By the maximum principle in $(B_{R_1} \setminus B_{r_1}) \times (t_1, t_2)$,
\[
 w_\varepsilon \geq 0 \quad \text{in } (B_{R_1} \setminus B_{r_1}) \times (t_1, t_2)
\]
\[
 \Rightarrow \begin{cases}
 w - u + \varepsilon |x|^{2-n} \geq 0 & \forall r_1 \leq |x| \leq R_1, t_1 \leq t \leq t_2 \quad \text{if } n \geq 3 \\
 w - u + \varepsilon \log(R_0/|x|) \geq 0 & \forall r_1 \leq |x| \leq R_1, t_1 \leq t \leq t_2 \quad \text{if } n = 2
 \end{cases}
\]
\[
 \Rightarrow w \geq u \quad \forall 0 < |x| \leq R_1, t_1 \leq t \leq t_2 \quad \text{as } r_1 \to 0, \varepsilon \to 0. \tag{26}
\]

Similarly by considering the function
\[
 v_\varepsilon = \begin{cases}
 w - u - \varepsilon |x|^{2-n} & \text{if } n \geq 3 \\
 w - u - \varepsilon \log(R_1/|x|) & \text{if } n = 2
 \end{cases}
\]
and applying the maximum principle and letting $\varepsilon \to 0$ we get
\[
 w \leq u \quad \forall 0 < |x| \leq R_1, t_1 \leq t \leq t_2. \tag{27}
\]

By (26) and (27) we get (24) and Theorem 2 and Theorem 3 follows.

References

[1] B.E.J. Dahlberg and C. Kenig, Non-negative solutions of generalized porous medium equations, Revista Matemática Iberoamericana 2 (1986), 267–305.

[2] A. Friedman, Partial differential equations of parabolic type, Prentice-Hall, Inc., Englewood Cliffs, N.J., U.S.A., 1964.

[3] M. Guan, S. Gustafson and T.P. Tsai, Global existence and blow-up for harmonic map heat flow, J. Differential Equations 246 (2009), no. 1, 1–20.
[4] N. Ghoussoub and Y.J. Guo, *On the partial differential equations of electrostatic MEMS devices II: dynamic case*, NoDEA Differential Equations Appl. 15 (2008), no. 1-2, 115–145.

[5] N. Ghoussoub and Y.J. Guo, *On the partial differential equations of electrostatic MEMS devices III: refined touchdown behavior*, J. Diff. Eqns. 244 (2008), no. 9, 2277–2309.

[6] N. Ghoussoub and Y.J. Guo, *Estimates for the quenching time of a parabolic equation modeling electrostatic MEMS*, Methods Appl. Anal. 15 (2008), 361–376.

[7] S.Y. Hsu, *Asymptotic behavior of solutions of the equation $u_t = \Delta \log u$ near the extinction time*, Advances in Differential Equations 8 (2003), no. 2, 161–187.

[8] S.Y. Hsu, *Removable singularities of semilinear parabolic equations*, preprint, to appear in Advances in Differential Equations.

[9] K.M. Hui, *A Fatou Theorem for the solution of the heat equation at the corner points of a cylinder*, Trans. A.M.S. 333 (1992), no. 2, 607–642.

[10] K.M. Hui, *Existence of solutions of the equation $u_t = \log u$*, Nonlinear Analysis TMA 37 (1999), no. 7, 875–914.

[11] S. Kuang and Q.S. Zhang, *A gradient estimate for all positive solutions of the conjugate heat equation under Ricci flow*, J. Funct. Anal. 255 (2008), no. 4, 1008–1023.

[12] O.A. Ladyzenskaya, V.A. Solonnikov, and N.N. Uraltceva, *Linear and quasilinear equations of parabolic type*, Transl. Math. Mono. Vol 23, Amer. Math. Soc., Providence, R.I., U.S.A., 1968.

[13] J. Sacks and K. Uhlenbeck, *The existence of minimal immersions of 2-spheres*, Ann. of Math. 113 (1981), no. 1, 1–24.

[14] S. Sato and E. Yanagida, *Solutions with moving singularities for a semilinear parabolic equation*, J. Differential Equations 246 (2009), no. 2, 724–748.

[15] J. Smoller, *Shock waves and reaction-diffusion equations*, Springer-Verlag, New York, 1994.