Modular Multilevel Converter With Sensorless Diode-Clamped Balancing Through Level-Adjusted Phase-Shifted Modulation

Nima Tashakor, Student Member, IEEE, Muhammet Kilictas, Ehsan Bagheri, Member, IEEE, and Stefan Goetz, Member, IEEE

Abstract—Cascaded H-bridge and modular multilevel converters (MMC) are on the rise with emerging applications in renewable energy generation, energy storage, and electric motor drives. However, their well-known advantages come at the price of complicated balancing, high-bandwidth isolated monitoring, and numerous sensors that can prevent MMCs from expanding into highly cost-driven markets. Therefore, an obvious trend in research is developing control and topologies that depend less on measurements and benefit from simpler control. Diode-clamped topologies are considered among the more applicable solutions. The main problem with a diode-clamped topology is that it can only balance the module voltages of a string in one direction; therefore, it cannot provide a completely balanced operation. This article proposes an effective balancing technique for the diode-clamped topology. The proposed solution exploits the dc component of the arm current by introducing a symmetrically level-adjusted phase-shifted modulation scheme, and ensures the balancing current flow is always in the correct direction. The advantages of this method are sensorless operation, reduced computation, and control effort, lower communication requirement, removing the voltage sensors, and low overall cost. Analysis and detailed simulations provide insight into the operation of the new balancing technique and the experimental results confirm the provided discussions.

Index Terms—Diode-clamped circuit, modular multilevel converter, voltage balancing.

Manuscript received July 22, 2020; revised October 27, 2020; accepted November 16, 2020. Date of publication December 1, 2020; date of current version March 5, 2021. This work was supported by the Federal Ministry of Transport and Digital Infrastructure of Germany by the program “5x5G-Strategic” under Project V85GFKAISE. Recommended for publication by Associate Editor F. W. Fuchs. (Corresponding author: Nima Tashakor.)

Nima Tashakor is with the Department of Electrical and Computer Engineering, Kaiserslautern University of Technology, 67663 Kaiserslautern, Germany (e-mail: tashakor@eit.uni-kl.de).

Muhammet Kilictas is with the Department of Electrical and Computer Engineering, Kaiserslautern, 67663 Kaiserslautern, Germany (e-mail: muhammet.kilictas@gmail.com).

Ehsan Bagheri is with the Shiraz University, Shiraz 71557-13876, Iran (e-mail: bagheri.ehsan72@gmail.com).

Stefan Goetz is with the Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA, and also with the Department of Engineering, University of Cambridge, CB2 1PZ Cambridge, U.K (e-mail: stefan.goetz@duke.edu; sung84@cam.ac.uk). Color versions of one or more of the figures in this article are available at https://doi.org/10.1109/TPEL.2020.3041599.

Digital Object Identifier 10.1109/TPEL.2020.3041599

I. INTRODUCTION

MODULAR multilevel converters (MMCs) are the preferred voltage source inverter topology in most high-voltage applications, with high expectations for many new applications in the near future [1]. Modularity, scalability, high power quality, and flexibility are main features that distinguish MMCs from other multilevel converters [2]. With high expectations for MMCs, a large body of research focuses on the barriers for MMCs further expansion, particularly in cost-driven applications [3], [4]. Imbalance of module voltages, complex and expensive monitoring systems, and complicated control algorithms are among the main hindrances for MMCs' expansion [5], [6].

Parameter spread, parasitics, discretization delay, or uneven use and associated aging of arm modules can lead to voltage imbalance in the modules and ultimately failure of the whole system [7]. The typical solution for the voltage balancing is sorting the modules from lowest to highest voltages and activate them in order [8]–[10]. However, tracking the module voltages is a prerequisite that can involve a costly monitoring system with an isolated high-bandwidth interface and computationally demanding algorithms [11]–[14].

Many have attempted to simplify the cell-sorting methods. Deng et al. [15] proposed to control the current of each module independently in a decentralized approach, while Wang et al. [16] suggested a lower frequency sorting algorithm combined with a phase-shifted carrier (PSC) modulation. Although such approaches are to some degrees successful in reducing the computation, they depend on voltage measurement and suffer from expensive and isolated monitoring requirements [17], [18].

Another research direction aims at reducing the cost of monitoring through online estimation of the module voltages. Kalman filter and sliding-mode techniques are among the most popular choices [11], [19]–[22]. Generally, estimation methods trade a lower cost in the monitoring subsystem with even more computation. Additionally, susceptibility to model uncertainty and cumulative measurement errors can lead to divergence, even though accurate models may be successful in short periods [11]. Furthermore, in some applications balancing may be safety relevant to avoid failure or electric shock, which sets exceptional constraints on software (components of control).
Another class of voltage balancing techniques use cyclic switching patterns [23]–[26]. These techniques assume identical modules in each arm and then attempt to use a fixed-switching pattern to evenly distribute the load among them through cyclic permutations. However, they cannot guarantee convergence of the module voltages to a tight boundary when mismatches between module parameters exist and/or in case of an unpredictable fluctuation load.

Another alternative is modifying the topology of the MMC arm or modules to provide a balancing path with simpler control algorithms and fewer sensory data [4], [22], [27], [28]. Full-bridge or dual full-bridge with additional parallel mode between two modules are examples of such approaches that provide a balancing path via the parallel connection [12], [29]–[31]. Yet, the extra cost incurred by the higher number of individual semiconductors and drivers as well as a more complex structure can prevent many of these topologies from an application in high-voltage applications [32].

Diodes are inherently cheaper and simpler than their fully controlled counterparts. Therefore, diode-clamped topologies can be considered as the simpler and cheaper solution to a self-balancing MMC topology. However, they cannot guarantee convergence of the module voltages to a tight boundary when mismatches between module parameters exist and/or in case of an unpredictable fluctuation load.

To solve the unidirectional current-flow limitation, Gao et al. [4] use a high-voltage dc/dc converter that transfers energy from the first module in a string to the last. However, a high-voltage switching transformer, which has to isolate the entire string voltage, defeats the purpose of diode-clamped topologies to simplify balancing and reduce cost. Furthermore, the extra power conversion stages can reduce the balancing efficiency. In another solution, Gao et al. [27] used two strings in parallel in each arm with opposite balancing directions, where each string shares half of the load current. Although sharing the load reduces the cost of high-current semiconductors, the overall cost and complexity are still much higher than that of a normal MMC topology.

As a promising approach, Liu et al. [34] proposed a feedback control that measures the voltage of the top module in a diode-clamped topology \(u_{C_{i}} \) and control its modulation index to achieve a balanced state at all times. A relatively similar approach is proposed in [35]. These methods use the simplest diode-clamped topology and a PID controller. However, these methods require constant voltage monitoring of the top module in each arm and adjust its target module voltage until it is lower than all others. However, the top module is the only actuated one that is balancing other modules by discharging them through the diode backbone instead of actively charging up negative outliers. Therefore, this method is limited by the weakest link and tends to suffer from large loss. As in conventional MMCs, voltage sensors here require high-voltage isolation, particularly since the first module is at the highest electrical potential in the arm.

This article proposed a simple balancing technique for the diode-clamped topology through a so-called level-adjusted phase-shifted carrier (LAPSC) modulation. The novel control approach efficiently causes the system to drive the diode-clamped cascade H-bridges into balance without direct access to module voltages by introducing a new degree of freedom into the PSC. Specifically, the key significance aspects of the proposed method are as follows:

1) providing stable open-loop balancing operation;
2) reducing the cost of fast voltage measurement sensors and associated galvanic isolation;
3) reducing computational load by avoiding cell sorting and extensive scheduling subroutines; and
4) simplifying the monitoring system by omitting any communication between the central controller and the modules for balancing purposes.

The remainder of this article is organized as follows: Section II studies the diode-clamped MMC topology. Section III explains the balancing principle of the proposed technique and discusses the balancing power loss. Section IV provides a general comparison between other state-of-the-art balancing techniques. Section V presents simulation and experiment results. Finally, Section VI concludes the article.

II. PRINCIPLE OPERATION OF A DIODE-CLAMPED CIRCUIT

This section describes the working principle of the diode-clamped circuit depicted in Fig. 1. In addition to the conventional MMC circuit, \(N − 1 \) series clamping units connect the positive terminal of each module’s dc-link to the next through a diode and an inductor.

A. Clamping Operation

Based on the numbering convention in Fig. 1, the \(j \)th clamping path connects the \(j \)th and \((j+1) \)th modules. The voltage across the diode depends on the control signal of the \((j+1) \)th switch. With \(S_{(j+1)2} : \text{off} \) and \(S_{(j+1)1} : \text{on} \), diode \(D_{j} \) is reverse biased with \(−u_{Cj} \). However, when \(S_{(j+1)2} : \text{on} \) and \(S_{(j+1)1} : \text{off} \), the voltage across diode \(D_{j} \) is the voltage difference between \(C_{j+1} \)}
Fig. 2. Diode clamping current path.

Fig. 3. Typical representation of the balancing process.

and \(C_j \) per

\[
 u_{D_j} = \begin{cases}
 -u_C j & \text{if } S_{(j+1)^2} : \text{OFF} \\
 u_{C_{j+1}} - u_{C_j} & \text{if } S_{(j+1)^2} : \text{ON}
 \end{cases}
\]

Hence, when \(S_{(j+1)^2} \) is \text{ON}, if \(u_{C_{j+1}} > u_{C_j} + V_{di} \), the diode and the inductor can form a parallel connection between \(C_j \) and \(C_{j+1} \). The balancing current can flow from \(C_{j+1} \) to \(C_j \) through the clamping circuit as shown in Fig. 2(a). The role of \(L_j \) is to protect the components from large current spikes by limiting the balancing current. When switch \(S_{(j+1)^2} \) is turned \text{OFF} again, the corresponding clamping diode is reverse biased and the inductor current decays with the rate of \(\frac{di}{dt} = -\frac{(u_{C_j} + V_{di})}{L_j} \) [see Fig. 2(b)]. This procedure is repeated until \(u_{C_{j+1}} \approx u_{C_j} \). A result of suppressing the voltage difference, the inductor current stays zero. Fig. 3 provides the voltage and current waveforms during the balancing operation.

Regardless of the initial values of \(u_{C_j} \) and \(u_{C_{j+1}} \), the final relation between the two capacitor voltages would be \(u_{C_j} \geq u_{C_{j+1}} \). A similar analysis can be performed for the whole arm and the result follows:

\[
 u_{C_1} \geq u_{C_2} \geq \cdots \geq u_{C_N},
\]

where \(N \) is the total number of modules in one arm.

According to (2), balanced operation is ensured under the condition that the required balancing current flows from the bottom to the top of the arm. Therefore, the inequality relation in (2) becomes an equality neglecting the small voltage drop on the diodes (\(u_{C_1} \approx u_{C_2} \approx \cdots \approx u_{C_N} \)).

\[
 \delta_1 \geq \delta_2 \geq \cdots \geq \delta_j \geq \cdots \geq \delta_N
\]

B. Proposed Level-Adjusted Phase-Shifted Carrier Modulation

The PSC modulation compares a reference waveform with multiple phase-shifted carriers to generate control signals of the modules. In a conventional PSC modulation, each carrier corresponds to one module in the arm and the phase-shift between two consecutive carriers is \(\frac{2\pi}{N} \). Neglecting nonideal conditions, PSC can achieve a relatively stable operation in high-switching frequencies, which is investigated in [7]. However, as the switching frequency falls or as parasitics and mismatch between parameters increase, the system becomes more unstable and starts to gradually diverge from the intended operation point when the module voltages are not actively maintained within their operation boundaries [36].

A diode-clamped circuit can ensure that condition (2) is always maintained, but to change (2) to an equality, we must ensure that the imbalance always leans toward increasing the voltages of the lower modules. Therefore, the required balancing current would flow from bottom to the top of the arm. To that end, we introduce a small vertical displacement to the normally inline phase-shifted carriers, resulting in level-adjusted phase-shifted carrier modulation. Fig. 4 shows an intuitive representation of the suggested level and phase shifts for upper and lower arms of each phase.

A negative vertical shift in a carrier waveform increases the duration that its corresponding module is connected in series, while a positive displacement increases the duration that the module is in the bypass state. Fig. 5 provides a visual representation of how the displacement can affect the modules. Since the arm current has a positive dc component, a negative displacement in a carrier leads to gradual increase in the voltage of the corresponding module. Similarly, a reverse effect is expected from a positive displacement in a carrier. Consequently, we can control the balancing direction and current by controlling the vertical displacements of the carriers. To ensure the balancing direction is always from the bottom to the top of the arm, the displacements of carriers in one arm must follow

\[
 \delta_1 \geq \delta_2 \geq \cdots \geq \delta_j \geq \cdots \geq \delta_N
\]
where \(\delta_j \) is the vertical displacement of the \(j \)th carrier.

The added displacement changes the modulation of each module slightly. The modulation of the \(j \)th module in the upper arm would be

\[
m_j = \frac{1 - m_a \sin(\omega t)}{2} - \delta_j
\]

where \(m_a \) is the modulation index of phase \(a \).

Averaging the modulation waveforms of all the modules results in an effective arm modulation waveform per

\[
m_p = \frac{\sum_j m_{pj}}{N} = \frac{1 - m_a \sin(\omega t)}{2} + \frac{\sum_j \delta_j}{N}.
\]

Therefore, for identical output as a normal MMC, the second term in (5) should be equal to zero (\(\sum_j \delta_j = 0 \)), resulting in

\[
m_p = \frac{1 - m_a \sin(\omega t)}{2}.
\]

According to (3) and (6), we can ensure a balanced operation in the arm by controlling \(\delta_j \), while keeping the output identical to a normal MMC. Hence, the added displacements should be set as following:

\[
\begin{cases}
\delta_1 \geq \delta_2 \geq \cdots \geq \delta_j \geq \cdots \geq \delta_N \\
\sum_j \delta_j = 0.
\end{cases}
\]

(7)

We propose \(\delta_j \) to be calculated with respect to the total displacement value per

\[
\delta_j = \Delta_a \left(\frac{1}{2} - \frac{j - 1}{N - 1} \right)
\]

where \(\Delta_a \) is the total displacement between the first and last carriers of an arm in phase \(a \).

Defining displacements according to (8) increases the overall symmetry since the displacement difference between every two neighboring modules is \(\Delta_a \). Furthermore, (8) satisfies the conditions of (7).

The procedure for the lower arm is identical; however, the phase-shift orders of the carriers in the upper and the lower arms are reversed, i.e., if \(\phi_{\text{upper}} = [0, \frac{\pi}{N}, \frac{2\pi}{N}, \ldots, \frac{2\pi(N-1)}{N}]^T \) is the vector of the carrier phase shifts in the upper arm, the vector of the carrier phase shifts in the lower arm is \(\phi_{\text{lower}} = [\frac{2\pi}{N}, \frac{2\pi(N-1)}{N}, \ldots, 0]^T \). It would ensure that the total displacement of the modules connected at each instance is also zero.

Because of the existing symmetry in the carrier displacements of one arm, we can only analyze the required displacement to balance the first and last modules in the arm (similarly, the second and the one before the last module can be balanced together and so on). Considering a mismatch between the capacitances of the first and last modules, the increase of voltage difference in one switching cycle when \(C_N > C_1 \) is calculated per

\[
\Delta V = \frac{1}{2f_1} \left(\frac{1}{C_1} - \frac{1}{C_N} \right) I_{\text{imbalance}}
\]

where \(f_1 \) is the fundamental frequency of the output voltage, \(I_{\text{imbalance}} \) is the imbalance current caused by parameter mismatch and/or discretization delay [7].

It is possible to express the capacitance values in dependence of the rated capacitance (\(C \)) of the modules as \(C_1 = (1 - \frac{N-2}{2}\varepsilon)C \) and \(C_N = (1 + \frac{N-1}{2}\varepsilon)C \), where \(\varepsilon \) depends on the average tolerance of the module capacitances throughout the arm, e.g., with the maximum tolerance of \(\pm 15\% \), \(\varepsilon = \frac{0.3}{N} \).

Substituting the capacitance values in (9) results in

\[
\Delta V_{1,N} = \frac{1}{2f_1} \left(\frac{1}{1 - \frac{N-1}{2}\varepsilon} - \frac{1}{1 + \frac{N-1}{2}\varepsilon} \right) I_{\text{imbalance}}.
\]

The exact value of maximum imbalance current can be only derived through numeric methods. However, since it depends on the module mismatch, system parameters, and arm current, we can approximate it by \(I_{\text{imbalance}} \approx \varepsilon I_{dc} \). Assuming lossless analysis, the upper arm current can be written based on the phase current as

\[
i_{\text{arm, } p} = \frac{I_p}{2} \left(\frac{1}{k} + \sin(\omega t - \varphi) \right)
\]

where \(I_p \) is the amplitude of the phase current, \(\varphi \) is the load angle, and \(k = \frac{2}{m_a \cos \varphi} \).

Substituting the dc component of the arm current in (10) and after some mathematical manipulation, the average voltage difference after one cycle of output voltage emerges as

\[
\Delta V_{1,N} = \frac{I_p}{4kf_1 C} \left(\frac{(N-1)\varepsilon}{1 - \frac{N-1}{2}\varepsilon} \right) \left(\frac{1 + \frac{N-1}{2}\varepsilon}{1 + \frac{N-1}{2}\varepsilon} \right).
\]

The compensated voltage difference between first and last modules due to the added displacement is

\[
\Delta V_{\Delta a} = \frac{I_p \Delta_a}{4kf_1 C} \left(\frac{2}{1 - \frac{N-1}{2}\varepsilon} \right) \left(\frac{1 + \frac{N-1}{2}\varepsilon}{1 + \frac{N-1}{2}\varepsilon} \right).
\]

As long as \(\Delta V_{\Delta a} \geq \Delta V_{1,N} \), the clamping circuit will be able to keep the system in balance. Therefore, the minimum required displacement for balancing capacitor mismatches is

\[
\Delta_a > \frac{(N-1)\varepsilon^2}{2}.
\]

The actual displacement should be slightly higher to also account for the discretization delay [7].
III. Design Considerations and System Analysis

This section analyzes the clamping circuit, provides guidelines for the component selection, and investigates the balancing loss.

A. Circuit Analysis

With a parallel connection between the two modules as shown in Fig. 2, the equivalent electrical circuit is a series RLC circuit, where \(C_r = \frac{1}{2} C_j \), \(C_j = \frac{1}{2} C_{j+1} \), \(u_{diff} = u_{C_{j+1}} - u_{C_j} - V_{d} - V_{sw} \), and \(R = 2r_C + r_d + r_s + r_L \). The second-order differential equation governing this circuit is

\[
\frac{d^2 u_{diff}}{dt^2} + \frac{R}{L_j} \frac{du_{diff}}{dt} + \frac{1}{L_j C_e} u_{diff} = 0. \tag{15}
\]

Solving the second-order equation leads to two roots

\[
P_{1,2} = -\frac{R}{2L_j} \pm \sqrt{\frac{R^2}{4L_j^2} - \frac{1}{L_j C_e}}. \tag{16}
\]

The equivalent resistance of the balancing path is relatively small \((R < 2 \sqrt{L_j / C_e})\) and the system should demonstrate damped oscillations with damped frequency \(\sqrt{L_j C_e} - \frac{R^2}{4L_j^2}\). However, because of the presence of the diode, no oscillations occur in the clamping current since the inductor current cannot be negative. When switch \(S_{(j+1)2}\) is ON, the voltage difference charges the inductor with a rate of \(-u_{C_j} - 2V_{d} / L_j\), and when \(S_{(j+1)2}\) is turned OFF, the inductor discharges into \(C_j\) with a rate of \(-u_{C_j} / L_j\), until it reaches zero. In a normal operation, \(u_{C_j} \gg u_{diff}\) and the inductor current decays to zero almost imidiatley. When \(S_{(j+1)2}\) is turned ON, the balancing current is

\[
i(t) = \begin{cases} Ae^{-\alpha t} \sin(\omega_d t), & 0 \leq \omega_d t \leq \pi \\ 0, & \omega_d t > \pi \end{cases}
\]

where \(\alpha = \frac{R}{L_j} \), \(\omega_0 = \frac{1}{\sqrt{L_j C_e}}\), \(\omega_d = \sqrt{\omega_0^2 - \alpha^2}\), and \(i(0) = \frac{u_{diff}}{L_j}\). Therefore, the peak value that the inductor current can reach is estimated using

\[
I_{peak,1} < \frac{U_{diff,max}}{\sqrt{L_j / C_e} \sqrt{R^2 / 4 - \frac{R^2}{4}}} \tag{18}
\]

where \(U_{diff,max}\) is the maximum permissible voltage difference. However, when \(\frac{1}{\alpha} \tan^{-1} \frac{\alpha}{\omega} < DT_{sw}\), the inductor current never reaches its peak value (because \(S_{(j+1)2}\) is turned OFF) and the maximum inductor current is approximated according to

\[
I_{peak,2} < Ae^{-\alpha D_{max} T_{sw}} \sin(\omega_d D_{max} T_{sw}) \tag{19}
\]

where \(0 \leq D_{max} \leq 1\) is the maximum duty cycle of \(S_{(j+1)2}\), and \(T_{sw}\) is the switching cycle. In the worst-case scenario, \(D_{max}\) is equal to one.

The peak value of the inductor current determines the current ratings of diode \(D_j\) [34]. Therefore, selecting the maximum current rating of \(D_j\), the clamping inductor value follows:

\[
L_j \geq \min \left(\left[\frac{U_{diff,max}}{I_{D,max}} + \frac{R}{2} \right]^2 + \frac{R^2}{4} \right) C_e, \frac{U_{diff,max} T_{sw}}{I_{D,max}} \tag{20}
\]

Smaller inductor values increase the speed of balancing at the cost of a higher diode current, whereas a larger inductor reduces the speed of balancing, but allows for a smaller diode [32].

Equation (20) limits the lower boundary of the inductance, while the displacement as well as switching and fundamental frequencies of the system bound the upper limit. The inductor should be low enough that it can balance the added displacement current in one cycle of the arm current. The minimum amplitude of the average balancing current based on the displacement is

\[
I_{\Delta_a,min} = I_{dc,min} \delta_j = \frac{I_{p,min} \Delta_a}{2k(N-1)}. \tag{21}
\]

The modules are balanced when \(S_{(j+1)2}\) is ON and the average duration that \(S_{(j+1)2}\) is ON follows:

\[
T_{S_{(j+1)2}} = \frac{0.5}{f_{sw}}. \tag{22}
\]

The average achievable current of the inductor should be higher than the average displacement current per

\[
\frac{U_{diff,max} T_{S_{(j+1)2}}}{L_i} = \frac{I_p \Delta_a}{2k(N-1)} \tag{23}
\]

and the upper boundary of the clamping inductance is

\[
L_i \leq \frac{\Delta_a \times I_{p,min}}{T_{S_{(j+1)2}} U_{diff,max}} (N-1). \tag{24}
\]

Therefore, after determination of the maximum permissible diode current, (20) and (24) determine the required inductor value. It should be also noted that the parasitic inductance of the diode can be considered part of the clamping path inductance. Furthermore, the turn ON and reverse recovery of the diode would not affect the level-adjustment limit or the required inductor value. However, in ultra-high-voltage applications, the reverse recovery of the diode can require a snubber to prevent any voltage spikes on the diode.

B. Power Loss Analysis

This section investigates the power losses and provides some insight into the balancing loss due to the added displacement. In Section II, we showed that the displacement does not change the system behavior in the arm and phase level. Furthermore, the total number of switches/diodes that are conducting throughout the arm remain constant because the displacements and phase-shifts are defined in a complementary manner (see Fig. 3). Therefore, we can estimate the power loss due to the arm current similar to conventional MMCs using numerical methods and independent of the displacement value [37]. Alternatively, we can derive simpler approximations based on the average and rms values of the arm current, assuming identical conduction loss for power switches and diodes (i.e., \(V_{sw} = V_{d} = V_{0}\) and \(r_{sw} = r_{d} = r\).
The switch–diode rms current, capacitor rms current, and the switch/diode average current are

\[I_{\text{rms,cap}} = \frac{I_p}{4} \sqrt{\frac{m_a^2 + 2 - 4km_a \cos(\varphi)}{2k^2} + \frac{4m_a^2 + 4 - m^2 \cos(\varphi)}{8}} \]

(25)

\[I_{\text{rms,arm}} = \frac{I_p}{2} \sqrt{\frac{1}{k^2} + \frac{1}{2}} \]

(26)

\[I_{\text{avg,arm}} = \frac{I_p}{2k} \]

(27)

The power loss in one arm is

\[P_{\text{loss}} = NI_{\text{avg}} V_0 + Nr I_{\text{rms,arm}}^2 + Nr I_{\text{rms,cap}}^2 + 2Nf_{sw} \left(\frac{1}{2} V_m I_{\text{avg,sw}} (t_{\text{on}} + t_{\text{off}}) \right) \]

(28)

where \(t_{\text{on}} \) and \(t_{\text{off}} \) are turn-ON and turn-OFF durations, respectively, and \(V_m \) is the nominal voltage of one module.

The power loss calculated in (28) does not include the balancing loss, and one should calculate it separately. In general, the exact value of the balancing loss can only be calculated using detailed numerical simulations. However, it is possible to approximate the maximum additional power loss.

The added displacement generates a circulating current between the modules. Using the symmetry between the module displacements, the extra power loss due to the added circulating current between the \(j \)th and the \((N - j) \)th modules is

\[E_{\text{loss}}^{j,N-j} = \left(\frac{I_{\text{rms,arm}} \Delta a}{(N - 1)} \right)^2 (N - 2j + 1)^2 (r_L + 2r) \]

(29)

The total balancing loss of one arm is summation of the energy lost between all the modules and is calculated as

\[P_{\text{balancing}} = \left(\frac{I_{\text{rms,arm}} \Delta a}{(N - 1)} \right)^2 (r_L + 2r) \sum_{j=1}^{N} (N - 2j + 1)^2 + \left(\frac{I_{\text{rms,arm}} \Delta a}{(N - 1)} \right) V_0 \sum_{j=1}^{N} (N - 2j + 1) \]

(30)

Based on (30), the balancing loss increase as load current and/or displacement increase.

IV. General Comparison and Discussion

Table I presents an overview of the balancing solutions based on topology modification and compares them with the proposed method. The main advantages of the proposed solution include the following:

1. with only one extra diode and sensorless balancing, the proposed topology has the minimum extra components;
2. the topology can achieve stable operation without any control requirement for balancing the module voltages;
3. the proposed method can achieve a good efficiency, which the presented power loss analysis in Section III-B and the simulation results in Section V confirm;
4. the proposed balancing has no adverse effect on the output of the system.

Whereas ultra-high-voltage grid applications, such as HVdc, are not as cost driven, the situation notably changes in lower voltage and -power applications, to which MMCs are expanding, due to a different cost structure, packaging and robustness.
TABLE II

Proposed Method	Sensor-based method
Diode (SS110-HF)	0.04 €
Small Magnetic Core (MP1710MDGC)	0.87 €
—	Isolated Power Supply Circuit (PCN2-S5-D15-S) 3.6 €
—	Isolated ADC (AMC1303M2510DVR) 2.8 €
—	Digital Multiplexer (SY54017ARMG) 1.88 €

All prices are per piece for at least 10 000 pieces.

TABLE III

Circuit Parameters	Simulation	Experiment
Number of SMs	40	8
dc voltage	24 kV	180 V
dc Capacitor	15 mF	5.5 mF
Grid frequency	50 Hz	50 Hz
Modulation index	0.95	0.95–0.75
Switching frequency	5 kHz	5 kHz
Arm inductor	10 mH	2 mH
Clamping inductor	10 μH	7.5 μH

TABLE IV

Modified Simulation Parameters	Modification
Parallel resistance with SM_{LU}	32 kΩ
Parallel resistance with SM_{LU}	28 kΩ
Parallel resistance with SM_{LU}	24 kΩ
Parallel resistance with SM_{LU}	20 kΩ
Parallel resistance with SM_{LU}	16 kΩ
Parallel resistance with SM_{LU}	12 kΩ
Parallel resistance with SM_{LU}	8 kΩ
Parallel resistance with SM_{LU}	4 kΩ

Modified Experiment Parameters

Capacitors of SM_{LU} and SM_{UL}	3.5 mF
Parallel resistance with SM_{LU}	68 kΩ
Parallel resistance with SM_{LU}	4.5 kΩ

Fig. 6. Output voltages in different scenarios.

TABLE V

Condition	THD_{V}
Identical modules, \(\Delta_a = 0 \% \)	0.74 %
Identical modules, \(\Delta_a = 0.1 \% \)	0.74 %
Identical modules, \(\Delta_a = 2 \% \)	0.77 %
Modules with different capacitances, \(\Delta_a = 2 \% \)	0.77 %
Modules with different Self-discharge, \(\Delta_a = 2 \% \)	0.78 %
the displacement each time; the system is able to return the voltage of the modules to nominal value with displacement values higher than 0.9%, which confirms the analysis in Section II. However, the convergence speed is further decreased as we reduce the displacement. In a real application, the convergence speed does not present an issue since the system is always operated with the constant displacement. In the last scenario, we changed the self-discharge rate of some of the modules to simulate different leakage and aging for different modules. Fig. 8(b) illustrates the module voltages during this scenario. Although there is severe mismatch between the modules, all the voltages start to converge to the rated value at $t = 7\, \text{s}$, when we increase the displacement from 0% to 2%.

Fig. 9 shows the power loss of a balanced system while the displacement keeps rising. According to the analysis in the last two sections, the minimum required displacement value in a real-life application is approximately 0.001 to 0.003 and based on Fig. 9, the added power loss is around 0.01%.

B. Experiment

The parameters of the testbench are listed in Table III. Equations (20) and (24) limit the clamping inductor range to $3\, \mu\text{H} - 10\, \mu\text{H}$. Passing a wire through a toroidal ferrimagnetic core results in approximately $7\, \mu\text{H}$ with negligible resistance, which is within the calculated boundary [46]. The modules include low ESR ceramics and around 4.5 mF electrolytes. Labview in combination with an FPGA development board from National Instruments controls the system and generates the switching pulses.

PSC modulation can achieve a five-level output voltage with four modules in each arm. Fig. 10 displays the output voltages and currents for a normal system (with capacitance spread of ±15%). Additionally, Fig. 11 shows the plotted measurements from the testbench with severely imbalanced modules. The level
adjusment for both figures is $\Delta_a = 0.02$. Table IV lists the modified parameters of the modules for the second condition. There are no discernible differences between the output and behavior of a system with identical modules and one that is severely imbalanced. During all the experiments, the maximum difference of capacitor voltages stayed below 2%. The THD value of the output scales with the number of modules and can be easily quantified [47].

Furthermore, Fig. 12(a) shows the balancing performance with modules that are identical but have initial voltage imbalance. The voltages converge to the rated value after starting the system with $\Delta_a = 0.015$. The balancing operation with a voltage spread of 50% lasts less than 800 ms. Increasing the displacement caused faster convergence and the minimum disposition that resulted in a continuously stable operation was 0.4%. The average diode current is typically less than 1% of the load current. As a consequence, the change of efficiency with a displacement (Δ_a) below 0.01 (normal operating point of the system) was lower than our measuring accuracy of 0.1%. However, we observed a reduction of 0.3% in efficiency with $\Delta_a = 0.05$.

Fig. 12(b) shows the voltages of the arm modules for a system with mismatched modules. Although the convergence is understandably slower, the system can achieve balanced operation with $\Delta_a = 0.02$ and the maximum voltage difference is limited to less than 1.5%. Higher level-adjustments result in faster convergence, but they do not affect the maximum voltage difference. Only the switching frequency and the degree of imbalance among the modules determine the maximum voltage difference. Additionally, Fig. 13 shows the clamping diode current and voltage when the modules have a large voltage difference. The diode current decays to almost zero, when the voltage difference is compensated. During normal operation, the voltage difference of the modules is always below 1.5% and the average balancing current is lower than 1%.
method can maintain the module voltages of an imbalanced system within a 3\% boundary in case of simulation and 1.5\% boundary in case of experiments. The results suggest that the convergence speed is dependent on the degree of imbalance as well as the displacement value. However, a relatively low displacement value (in most cases less than 0.3\%) can prevent any imbalance accumulation.

REFERENCES

[1] R. Marquardt, “Modular multilevel converters: State of the art and future progress,” *IEEE Power Electron. Mag.*, vol. 5, no. 4, pp. 24–31, Dec. 2018.

[2] A. Dekka, B. Wu, R. L. Fuentes, M. Perez, and N. R. Zargari, “Evolution of topologies, modeling, control schemes, and applications of modular multilevel converters,” *IEEE J. Emerg. Sel. Topics Power Electron.*, vol. 5, no. 4, pp. 1631–1656, Dec. 2017.

[3] M. Priya, P. Ponnambalam, and K. Murakikamar, “Modular-multilevel converter topologies and applications—A review,” *IET Power Electron.*, vol. 12, no. 2, pp. 170–183, 2019.

[4] C. Gao, X. Jiang, Y. Li, Z. Chen, and J. Liu, “A DC-link voltage self-balance method for a diode-clamped modular multilevel converter with minimum number of voltage sensors,” *IEEE Trans. Power Electron.*, vol. 28, no. 5, pp. 2125–2139, May 2013.

[5] M. Liu, J. Hu, R. Zeng, W. Li, and L. Lin, “Imbalance mechanism and balanced control of capacitor voltage for a hybrid modular multilevel converter,” *IEEE Trans. Power Electron.*, vol. 33, no. 7, pp. 5686–5696, Jul. 2018.

[6] P. Hu and D. Jiang, “A level-increased nearest level modulation method for modular multilevel converters,” *IEEE Trans. Power Electron.*, vol. 30, no. 4, pp. 1836–1842, Apr. 2015.

[7] C. Wang, L. Xiao, C. Wang, M. Xin, and H. Jiang, “Analysis of the unbalance phenomenon caused by the PWM delay and modulation frequency ratio related to the CPS-PWM strategy in an MMC system,” *IEEE Trans. Power Electron.*, vol. 34, no. 4, pp. 3067–3080, Apr. 2019.

[8] D. Ronanki and S. S. Williamson, “Modular multilevel converters for transportation electrification: Challenges and opportunities,” *IEEE Trans. Transp. Electrific.*, vol. 4, no. 2, pp. 399–407, Jun. 2018.

[9] G. Chen, H. Peng, R. Zeng, Y. Hu, and K. Ni, “A fundamental frequency sorting algorithm for capacitor voltage balance of modular multilevel converter with low-frequency carrier phase shift modulation,” *IEEE J. Emerg. Sel. Topics Power Electron.*, vol. 6, no. 3, pp. 1595–1604, Sep. 2018.

[10] H. Yang and M. Saeedifard, “A capacitor voltage balancing strategy with minimized AC circulating current for the DC–DC modular multilevel converter,” *IEEE Trans. Ind. Electron.*, vol. 64, no. 2, pp. 956–965, Feb. 2017.

[11] A. Taffese, E. De Jong, S. D’Arco, and E. Tedeschi, “Online parameter adjustment method for arm voltage estimation of the modular multilevel converter,” *IEEE Trans. Power Electron.*, vol. 34, no. 12, pp. 12491–12503, Dec. 2019.

[12] Z. Li, R. Lizzana, A. V. Peterchev, and S. M. Goetz, “Distributed balancing control for modular multilevel series/parallel converter with capability of sensorless operation,” in *Proc. IEEE Energy Convers. Congr. Expo.*, 2017, pp. 1787–1793.

[13] P. M. Meshram and V. B. Borghate, “A simplified nearest level control (NLC) voltage balancing method for modular multilevel converter (MMC),” *IEEE Trans. Power Electron.*, vol. 30, no. 1, pp. 450–462, Jan. 2015.

[14] A. Dekka, B. Wu, N. R. Zargari, and R. L. Fuentes, “Dynamic voltage balancing algorithm for modular multilevel converter: A unique solution,” *IEEE Trans. Power Electron.*, vol. 31, no. 2, pp. 952–963, Feb. 2016.

[15] F. Deng, C. Liu, Q. Wang, R. Zhu, X. Cai, and Z. Chen, “A currentless submodule individual voltage balancing control for modular multilevel converters,” *IEEE Trans. Ind. Electron.*, vol. 67, no. 11, pp. 9370–9382, Nov. 2020.

[16] K. Wang, Y. Deng, H. Peng, G. Chen, G. Li, and X. He, “An improved CPS-PWM scheme-based voltage balancing strategy for MMC with fundamental frequency sorting algorithm,” *IEEE Trans. Ind. Electron.*, vol. 66, no. 3, pp. 2387–2397, Mar. 2019.

[17] A. Dekka, B. Wu, N. R. Zargari, and R. L. Fuentes, “A space-vector PWM-based voltage-balancing approach with reduced current sensors for modular multilevel converter,” *IEEE Trans. Ind. Electron.*, vol. 63, no. 5, pp. 2734–2745, May 2016.

VI. CONCLUSION

This article proposes a simple and efficient balancing solution for a diode-clamped MMC topology. It introduces a level- and phase-shifted carrier modulation, which uses the dc component of the arm current to achieve balancing. Through analysis, simulation, and experiments, we confirm that the proposed method has a negligible effect on the output and can achieve open-loop sensorless operation. Furthermore, we demonstrate that the proposed method benefits from relatively low balancing loss. Based on simulations and experiments, the proposed

Fig. 12. Experimental results. (a) Module voltages with identical modules but initial voltage imbalance. (b) Module voltages with severely mismatched modules.

Fig. 13. Experimental measurements of the clamping-diode voltage and current during the balancing operation.
[18] L. Angquist, A. Antonopoulos, D. Siemaszko, K. Ilves, M. Vasilidiotis, and H.-P. Nee, “Open-loop control of modular multilevel converters using estimation of stored energy,” IEEE Trans. Ind. Appl., vol. 47, no. 6, pp. 2516–2524, Nov./Dec. 2011.

[19] M. D. Islam, R. Razzaghi, and B. Bahrani, “Arm-sensorless sub-module voltage estimation and balancing of modular multilevel converters,” IEEE Trans. Power Del., vol. 35, no. 2, pp. 957–967, Apr. 2020.

[20] F. Rong, X. Gong, X. Li, and S. Huang, “A new voltage measure method for MMC based on sample delay compensation,” IEEE Trans. Power Electron., vol. 33, no. 7, pp. 3712–3723, Jul. 2018.

[21] G. S. da Silva, R. P. Vieira, and C. Rech, “Discrete-time sliding-mode observer for capacitor voltage control in modular multilevel converters,” IEEE Trans. Ind. Electron., vol. 65, no. 1, pp. 876–886, Jan. 2018.

[22] Z. Li, R. L. F., Z. Yu, S. Sha, A. V. Peterchev, and S. M. Goetz, “A modular multilevel series/parallel converter for a wide frequency range operation,” IEEE Trans. Power Electron., vol. 34, no. 10, pp. 9854–9865, Oct. 2019.

[23] K. Ilves, A. Antonopoulos, S. Norrga, and H.-P. Nee, “A new modulation method for the modular multilevel converter allowing fundamental switching frequency,” IEEE Trans. Power Electron., vol. 27, no. 8, pp. 3482–3494, Aug. 2012.

[24] Y. Liu and F. Z. Peng, “A modular multilevel converter with self voltage balancing—Part I: Mathematical proof,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 8, no. 2, pp. 1117–1125, Jun. 2019.

[25] A. Ghanzafri and Y. A. I. Mohamed, “A hierarchical permutation cyclic coding strategy for sensorless capacitor voltage balancing in modular multilevel converters,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 4, no. 2, pp. 576–588, Jun. 2016.

[26] Y. Liu and F. Z. Peng, “A modular multilevel converter with self voltage balancing—Part II: Y-matrix modulation,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 4, no. 2, pp. 576–588, Jun. 2016.

[27] C. Gao and J. Lv, “A new parallel-connected diode-clamped modular multilevel converter with voltage self-balancing,” IEEE Trans. Power Del., vol. 32, no. 3, pp. 1616–1625, Jun. 2017.

[28] S. Du, B. Wu, K. Tian, N. R. Zargari, and Z. Cheng, “An active cross-connected modular multilevel converter (AC-MMC) for a medium-voltage motor drive,” IEEE Trans. Ind. Electron., vol. 63, no. 8, pp. 4707–4717, Aug. 2016.

[29] S. M. Goetz, Z. Li, X. Liang, C. Zhang, S. M. Lukic, and A. V. Peterchev, “Control of modular multilevel converter with parallel connectivity—Application to battery systems,” IEEE Trans. Power Electron., vol. 32, no. 11, pp. 8381–8392, Nov. 2017.

[30] Z. Li, R. Lizana, S. Sha, Z. Yu, A. V. Peterchev, and S. Goetz, “Module implementation and modulation strategy for sensorless balancing in modular multilevel converters,” IEEE Trans. Power Electron., vol. 34, no. 9, pp. 8405–8416, Sep. 2019.

[31] J. Xu, J. Zhang, J. Li, L. Shi, X. Jia, and C. Zhao, “Series-parallel HBSM and two-port FBSM based hybrid MMC with local capacitor voltage self-balancing capability,” Int. J. Elect. Power Energy Syst., vol. 103, pp. 203–211, 2018.

[32] Y. Jin et al., “A novel submodule voltage balancing scheme for modular multilevel cascade converter—Double-star chopper-cells (MMCC-DSCC) based STATCOM,” IEEE Access, vol. 7, pp. 83058–83073, 2019.