Aquaporins in development – a review
Huishu Liu1 and E Marelyn Wintour*2

Address: 1Guangzhou Obstetric and Gynecology Institute, Second Municipal Hospital of Guangzhou, Guangzhou Medical College, Guangzhou, PR China and 2Department of Physiology, Monash University, Clayton, Victoria, 3800, Australia
Email: Huishu Liu - huishuliu@hotmail.com; E Marelyn Wintour* - mwc@med.monash.edu.au
* Corresponding author

Abstract
Water homeostasis during fetal development is of crucial physiologic importance. It depends upon maternal fetal fluid exchange at the placenta and fetal membranes, and some exchange between fetus and amniotic fluid can occur across the skin before full keratinization. Lungs only grow and develop normally with fluid secretion, and there is evidence that cerebral spinal fluid formation is important in normal brain development. The aquaporins are a growing family of molecular water channels, the ontogeny of which is starting to be explored. One question that is of particular importance is how well does the rodent (mouse, rat) fetus serve as a model for long-gestation mammals such as sheep and human? This is particularly important for organs such as the lung and the kidney, whose development before birth is very much less in rodents than in the long-gestation species.

Introduction
There are, at present, eleven known members of the mammalian aquaporin gene family, which encode proteins which function as membrane channels, for water alone (AQP0,1,2,4,5,8,10), or for water plus small molecules, mostly glycerol and urea (AQP 3, 7, 9), or nitrate (AQP 6) [1-5]. In some cases the aquaporin is constitutively present in the cell membrane (e.g. AQP1,3 in red cell membrane, AQP1 kidney). However, in other cases the aquaporin resides in intracellular vesicles, and is trafficked to the membrane upon appropriate stimulation e.g. AQP 2 in collecting duct cells, after vasopressin exposure [6]; AQP1 in cholangiocytes with secretin stimulation [7]; AQP 8 in hepatocytes, after glucagon treatment [8,9]; aquaporin 5 in rat parotid, with muscarinic stimulation [10]. These aquaporins subserve the rapid transport of fluid across epithelial and endothelial cells, but are also found in other tissue types, such as muscle and nerve cells. In general the water channels are ‘open’ but there is some evidence that ‘closure’ can be induced by a specific treatment.

During development there are some unique fluid compartments (amniotic, allantoic fluids, lung liquid) and the functions of some organs, such as the kidney, differ from the function in the adult, as discussed below. Although some insights into the developmental roles of aquaporins might be obtained from the study of mice with deletions of various aquaporin genes, this is complicated by the facts that either much of normal organ development occurs postnatally in the rodent, rather than prenatally in the human (e.g.kidney), chick (brain) or the ontogeny of aquaporins differs significantly in the rodent organ (e.g.lung) from that in long-gestation species such the sheep [11]. In addition, the fetus contains a higher percentage of water than does the adult, and organs such as the brain are more vulnerable to excess water loss which might occur in the premature neonate, due either to
immaturity of the skin permeability barrier, or to immaturity of the water-retaining functions of the kidney. The role of aquaporins in fluid balance during fetal development is beginning to be explored.

Placenta and fetal fluid compartments

Amniotic fluid surrounds the developing fetus and is essential for normal morphological development. Inputs into amniotic fluid include the dilute fetal urine and the isotonic lung liquid, and pathways of exit of fluid include fetal swallowing, and transmembrane fluxes [12,13]. Thus abnormalities of amniotic fluid volume (oligo- and polyhydramnios) can result from abnormalities in fetal renal function, and oligohydramnios can be corrected, to some extent, by increase in maternal hydration [14,15]. Under normal circumstances the fetal fluid osmolality follows that of the mother, and fluid exchange occurs across the placenta, as well as across the amnion/chorion [16].

Before implantation the conceptus develops into a blastocyst, composed of the inner cell mass, and a fluid filled cavity surrounded by trophoectoderm epithelium. In the mouse aquaporins 3, 8, and 9 have been found to be expressed at this time, AQP3 and AQP8 being predominantly in the basolateral membranes of the trophoectoderm, and AQP9 in the apical membrane [17]. The trophoectoderm gives rise to the placenta and chorion; aquaporins 1, 3, 8 and 9 are water channel genes previously reported to be in the placenta and/or chorion of the human and sheep [18-21]. AQP1 has also been reported to be in the chick chorioallantoic membrane [22]. AQP1 is in the vasculature and AQP3 and 9 are in the apical membranes of human and ovine term placenta and chorion. The polarity of the AQP 8 has not yet been determined [18-20]. Recently we reported that AQP8 mRNA was also found in the ovine placenta [23].

From 45 d gestation (term is ~150 days), AQP3, functioning both as a water and urea channel, and expressed in the trophoblast epithelial cells, is the major AQP, which increases throughout gestation, and is quantitatively the most highly expressed AQP gene in the ovine placenta. The permeability of the ovine placenta to urea increases markedly after ~100 days of gestation, coordinately with a sharp increase of AQP3 expression in the placenta at this time.

Similarly, AQP8, which is expressed in the trophoblast epithelial cells and membrane epithelial cell [24], is also present at significant levels from 45 d gestation.

In sheep, the placenta ceases growth close to mid-gestation, despite the dramatic increase in the fetal weight during the last half of gestation [25]. To maintain fetal growth, there is a requirement for increased fluid transfer to the conceptus. The presence of substantial expression of water channel proteins in the placenta correlates well with the placental transfer of fluid. It was not possible to compare expression at the protein level as large quantities of AQP1 and AQP3 protein, in the maternal red cell membranes present in the haemophagous zone of the ovine placenta [26]. Thus comparison at the mRNA level is the only feasible one that can be made.

Kidney function in the fetus

The fetal metanephric kidney produces a relatively large volume of dilute urine, essential for the maintenance of amniotic and (in some species) allantoic fluid volumes. In the most common animal model (sheep) used for the study of fetal renal function it has been shown that the volume of urine production is 0.3 l/kg/d compared with 0.02 l/kg/d in the adult sheep. This occurs in spite of a glomerular filtration rate which is approximately one third of adult values, and is due to both a decrease in total sodium reabsorption (95 % in the fetus vs 99% in the adult) and to absence of significant concentration of the urine. In the unstressed ovine fetus the urine osmolality is always less than 200 mosmoles.kg water, and may be as low as 60 [27].

Aquaporins in development – kidney

In the adult kidney the bulk of the filtrate (81%) is reabsorbed in the proximal tubule and descending limb of the loop of Henle, where AQP 1 is expressed. AQP1 is also expressed in the nonfenestrated descending vasa recta which are thought to be important for the establishment of the hypertonic environment of the medulla. In the mouse with the AQP1 gene deleted there is a lowered capacity to maximally concentrate urine [28]. However, the major concentration of urine depends on the presence of aquaporin 2 in the apical membranes of the principal cells of the collecting duct. This water channel protein resides in sub-membraneous vesicles in the absence of action of circulating vasopressin. Under the stimulus of increased vasopressin second messenger systems are activated which result in the phosphorylation of the vesicular AQP2 and transport and insertion into the apical membranes. Without this water channel it is impossible to reabsorb water in the medulla, even when an adequate osmotic gradient exists [2]. In many situations in which polyuria/concentrating defect occurs (potassium deficiency, lithium levels greater than 0.3 mmol/l, hypercalcaemia, low protein diet among others) it can be linked to low levels of AQP2 [2]. The water absorbed via AQP2 in the apical membrane leaves the cell via aquaporins 3 and 4 which are constitutively expressed in the basolateral membranes of these cells [2]. In mice lacking expression of the AQP1 gene there is polyuria, and failure to be able to concentrate urine normally [28], and a similar urinary concentrating defect is seen in the rare humans who lack
Aquaporin 2 (AQP2) is low at birth in the rat, but plateaus by 4 weeks post-partum [40]. Later studies showed it was present by Day 18 of fetal life and started increasing by day 3 post-natally [41]. In the sheep, at the beginning of the last third of gestation (100/150 d), the level of AQP2 mRNA is 17% of the adult, and near term it is still only ~40% of the adult [42]. This correlates with reduced sensitivity of the fetal kidney to infused arginine vasopressin – at 100 days the plasma AVP concentration has to be raised to 16 pg/ml to achieve negative free water clearance, whereas close to term a level of 2 pg/ml is effective [43]. This is still a much higher level than required in the human, or 6 weeks in the sheep.

The low level of AQP2 expression, however, seems to be the major factor in allowing the production of a large volume of hypotonic urine to be formed, and this is essential for the maintenance of adequate volumes of amniotic fluid.

Lung liquid

During fetal life, the future airways of the lung are filled with a liquid that plays a crucial role in the growth and development of the lungs by maintaining them in an expanded state. Lung liquid is secreted across the pulmonary epithelium into the lung lumen due to the osmotic gradient established by the net movement of Cl⁻ in the same direction. It is not known exactly when lung liquid secretion begins, but fluid is present by mid-gestation in fetal sheep and is secreted at 2–4 ml/kg/h between 120 days of gestation and term (~150 d). Fetal lung liquid exits the lungs via the trachea, whereby it is either swallowed (approximately 50%) or passes directly into the amniotic sac, where it contributes to amniotic fluid volume [49].

If the fetal trachea is obstructed, which prevents the outward flow of lung liquid, the fetal lung expands with accumulated liquid. This is a potent stimulus for fetal lung growth and also greatly reduces the proportion of type-II alveolar epithelial cells (AECs). Lung liquid drainage on the other hand, deflates the lung, causes lung growth to cease, but increases the proportion of type II AECs, possibly via type-I to type-II cell differentiation [50]. As a result it is now widely recognized that the degree to which the fetal lungs are expanded by lung liquid, determines the growth and structural development of the lung, as well as the differentiated state of type-I and type-II AECs [49].

Despite the importance that lung liquid plays in the development of the lung, the factors controlling the movement of liquid across the pulmonary epithelium have not been fully explored. Furthermore, the effective clearance of lung liquid at birth is vital to allow the entry of air into the lungs with the onset of respiratory gas exchange. This process is largely dependent on the capability of the epithelium to reabsorb large quantities of water.
Aquaporins in development – lung

At least four AQPs (AQP 1, 3, 4 and 5) are expressed in the lungs of various species, including humans, rats, mice and rabbits, although some discrepancies exist in the specific sites of distribution of these proteins. (Table 1 near here) In all species described so far (human, rat, mouse), AQP1 is expressed in the apical and basolateral membrane of the microvascular endothelium and decreased pulmonary vascular permeability has been shown in AQP1-null humans [3]. AQP3 is expressed in the apical and basolateral membrane of the microvascular endothelium and decreased pulmonary vascular permeability has been shown in AQP1-null humans [3]. AQP3 is expressed in the basolateral membrane of basal cells of the tracheal epithelium and in submucosal gland cell membranes in rodents, but is also found in bronchioles (apical membrane) and type-II alveolar epithelial cells of adult humans [51]. AQP4 is present in the basolateral membrane of columnar cells in bronchi and trachea of rats but is also found in type-I AECs in humans. AQP5 is expressed in the apical membrane of type-I AECs and the apical plasma membranes of the secretory epithelium in upper airway and salivary glands [3]; it has also been detected in type-II AECs in mice [52]. These data are summarized in Table 2.

Ontogeny of lung AQPs

In mice very low levels of AQP5 mRNA were detected before birth [53,54]. The ontogeny of the AQPs has also been described throughout development in rats, but only AQP1 and a small amount of AQP4 were detected before birth [55-58]. Furthermore, little is known of the physiological factors controlling AQP1 mRNA expression before birth, although its expression (and protein levels) is increased in the lungs of fetal and neonatal rats following treatment with synthetic glucocorticoids [55,58]. In one study [58], but not in another [55], AQP4 was increased by corticosteroids. In the same study [58], β-adrenergic agents also increased AQP4. Although AQP5 protein was almost undetectable in lung tissue homogenates at E21 and PN1, a strong signal was detected at PN2 [55], indicating that the accumulation of AQP5 protein in the rat lung is predominantly postnatal. Indeed, AQP5 protein levels in lung tissue increased twenty-fold to PN14 and then increased a further ten-fold from PN14 to adult. In contrast to AQP1, AQP5 is not influenced by corticosteroids in rats, which is consistent with the finding that AQP5 protein predominantly accumulates in the lung postnatally. Similarly, AQP3 protein levels were undetectable in fetal lung tissue and then were only detected in the trachea of postnatal animals well after the time of birth. AQP4 protein seemed to be present transiently at PN2 in peripheral lung membranes and only appeared by PN12 in the trachea of rats.

In a recent study we have shown that the mRNAs for at least four AQPs (1, 3, 4 and 5), as well as their respective proteins, are present in the ovine fetal lung well before birth [11]. For AQP1 and AQP5, the level of mRNA expression in the fetal lung exceeded that of the adult lung. Furthermore, we have shown that cortisol infusions significantly up-regulated the expression of AQPs 1 and 5, whereas increases in fetal lung expansion, induced by tracheal obstruction (TO), significantly decreased AQP5 mRNA levels in fetal lung tissue. Although AQP5 protein levels did not appear to decrease with TO, measurable changes in AQP5 levels in whole lung tissue is likely to be complicated by the localisation of this protein to multiple cell types within the lung. These findings indicate that factors known to regulate fetal lung growth and maturation as well as fluid secretion, also regulate the expression of AQPs 1 and 5. This suggests that there are physiological roles for some lung aquaporins before birth.

In conclusion, we have shown that the lung of a long-gestation species, such as sheep, expresses both the mRNA and protein of the four typical lung AQPs, beginning well

Table 1: Species variations in Aquaporin Distribution in Lung

Species	Sheep	Human	Rat	Mouse
Bronchus	AQP1,3,4,5	AQP1,3,4	AQP1,3,4,5	AQP1,3,4,5
Bronchioles	AQP1,3,4	AQP1,3	?	?
Alveoli	AQP1,5	AQP1,3,4,5	AQP1,3	AQP1,3

Table 2: Aquaporins in lung cell types

Bronchus	Superficial Epithelium	AQP5 (Apical), AQP4 (Basolateral)
	Basal Cells	AQP3
Submucosal Glands	AQP5 (Apical), AQP3,4 (Basolateral)	
Bronchioles	Pseudostratified	AQP3 (Apical), AQP4 (Basolateral)
Alveolar Cells	Type I	AQP5 (Apical), AQP4 (Human only--?)
	Type II	AQP5 (Mouse only, apical)
		AQP3 (Human only, basolateral)
before the expected time of birth. Furthermore, we found that the expression of some, particularly AQP5, is altered by factors known to regulate fetal lung growth and development and parallel changes in fetal lung liquid secretion rates in different animal models. Our findings suggest that gene knock-out studies in mice, in which there is little lung expression of AQPs in fetal life, might not give a realistic picture of the role of AQPs during fetal life in long-gestation species. We predict that these AQPs are also expressed well before birth in the human fetal lung and are also differentially regulated by factors known to influence fetal lung development. As lung liquid is secreted, at least in part, into amniotic fluid, the lung aquaporins are also then implicated in amniotic fluid regulation.

Skin

The skin of the adult 70 kg man normally contains about 7 l of fluid, about 50% of which is interstitial [59]. The fluid is stored in the dermis associated with hyaluronic acid, glycosaminoglycans and proteoglycans, and helps to determine the turgor, distensibility and elasticity of the skin. The major barrier to water loss from the skin is the superficial stratum corneum – flattened dead corneocytes [60]. Below this are the keratinocytes, which express the gene for aquaporin 3, particularly in the basal and intermediate layers [61-63]. Aquaporin 3 is a membrane protein which increases the permeability to water, urea and glycerol. When the gene is deleted in the mouse the skin has decreased hydration but grossly normal morphology [62]. The reduction in skin elasticity, as well as the delay in recovery of barrier function after tape stripping, were thought to be related to the deficiency in glycerol transport which occurred in the AQP3 deficient mice [64]. This was further supported by the reversal of these deficits by glycerol replacement [65].

Aquaporins in development – skin

In the human fetus there is a double layer of epidermal cells by 4 weeks; the stratum corneum begins to develop by 24 weeks, and is generally well developed by 34 weeks. [60]. Barrier function, which is conferred by the stratum corneum, of cornified cells and extracellular lipid, can be measured by transepidermal water loss (TEWL), and generally forms late in gestation in mice, rats, rabbits and humans [66,67]. Amniotic fluid, particularly early in pregnancy, is very similar in composition to fetal extracellular fluid, and it is quite likely that here is fairly free exchange across the fetal skin, particularly in the first half of gestation [68]. Even in species such as the sheep, which develop substantial wool covering in the last third of gestation, there is substantial exchange of fluid and electrolyte across the skin until relatively late in development [69]. There is also substantial expression of AQP3 in mid-gestation ovine fetal skin. Preterm infants are at risk of dehydration because of very large TEWL [70]. In fetal rats the TEWL is high at day E18, and there are higher levels of AQP3 mRNA in the fetal than in the adult skin [71].

Aquaporins in the heart – changes with intrauterine growth retardation (IUGR)

Aquaporin 1 mRNA was found in rat heart [72,73]. Most of the AQP1 expression was thought to be in the blood vessels, although the there was a substantial amount in a sub-sarcolemmal caveolar membrane in the rat heart, and changes in the osmotic environment caused reversible changes in the membrane localization of AQP1 [74]. Recently it was found that the human heart contained both AQP1 and AQP4, but not AQP8 [75]. AQP1 co-localised with vinculum, a t-tubule component, and caveolin 3, whereas AQP4 was found in the nuclear membrane of human cardiac myocytes.

Caveolin-3 is a marker for the caveolae – the specialised areas of cell membrane in which a number of receptors cluster [76]. Some of these receptors are known to play a role in the proliferation of cardiac myocytes in the embryonic and early post-natal life [77-80].

Based on studies in isolated rabbit hearts, it was concluded that water permeability values were much lower than expected if a functioning aquaporin were present [81]. In a more recent study of the osmotic transient responses of isolated adult rabbit hearts [82] it was estimated that 28% of the transcapillary water flux going to form lymph was through aquaporin channels in the capillaries, but they did not make any histological studies on the cardiocytes. It would have been very interesting to have had immunohistochemistry for AQP1, at least, on these hearts.

During development AQP1 was found in the endocardium of the sheep fetal heart at a very early stage [83]. Later in gestation one report suggested that total cardiac AQP1 levels reflected predominantly vascular sites, and that the total amount could be increased by fetal anemia [84].

Using RNase protection assay only AQP1 (but not AQPs 2,3,4,5) was detected in rat heart [72], however with RT-PCR some AQP8 mRNA was detected in mouse heart [85]. AQP 1 was reported to be present in fetal rat hearts from day E14 with lower level present in the myocardium than in the endothelial cushions, primordial valves, and septa [35]. Cardiac expression of AQP1 decreased, but did not disappear, after birth [35].

In a recent study we showed that the small hearts of late gestation growth-retarded ovine fetuses had significantly reduced expression of AQPs 1,3,4 but not AQP8 [86]. It was not possible to ascertain the different contributions of...
well established as a component of skeletal fast-twitch muscle. AQP 4 is a pure water channel, including in the brain, paradoxically, providing the potassium channel, Kir4.1 and AQP4 levels [114], and the level of AQP4 is decreased by muscle denervation [100]. In mice which are dystrophic due to dystrophin gene knock-out (mdx mice) AQP4 mRNA levels remain the same as controls, but the protein levels decrease by 90% [101]. However, in patients with Duchenne muscular dystrophy both the mRNA and protein of AQP4 are reduced in myofibers [102]. Taken together it is attractive to propose that AQP’s play a role in the cardiac myocyte contraction allowing therefore normal cardiac function.

Brain-central, nervous system, eye, ear-fluid compartments

In the adult brain fluid balance is critical, as the inflexible bony skull does not permit big variations in total brain volume without risking severe damage. The extracellular fluid of the brain is specialized as cerebrospinal fluid, with a composition different from that of normal extracellular fluid, as a result of the development of the ‘Blood-brain barrier’. There is now increasing evidence that cerebrospinal fluid plays an important part in the correct development of the brain [103,104]. Specialised fluid compartments are also vital to the normal functioning of the sensory organs – the eye and the ear [105,106]. In the eye fluid movements are important for the regulation of intraocular pressure, the maintenance of transparency of the lens, and retinal signal transduction [106]. The fluids of the inner ear, endolymph and perilymph, have at least two roles – to transduce the signal to the cochlear and vestibular hair cells, and to participate in the ionic exchanges between fluid and hair cells [106]. The endolymph is a potassium-rich extracellular fluid, whereas the perilymph has a composition closer to that of extracellular fluid [107]. It is well-known that vestibular functions can be altered by a number of peptide e.g arginine vasopressin, and steroid hormones [108-110], which act by changing composition, and maybe the volume, of the endolymph.

A number of aquaporins have been found in the central nervous system – AQP 1, 4, 5, 9 [111,112]. AQP1 is found on the apical membrane of the epithelial cells of the choroid plexus. AQP 4, 5, and 9 are found on glia/astrocytes particularly in the region of subpial vessels and near the ventricles. Of these it seems that AQP4 provides the principal route for water transport in astrocytes [113]. Glial cells are indispensable for regulating ionic homeostasis, particularly in aspirating the excess extracellular potassium which occurs after neural excitation [107]. It is of interest that in the specialized glial Müller cells of the eye, there is a close correlation between concentrations of the potassium channel, Kir4.1 and AQP4 levels [114], and retinal function is mildly impaired in mice lacking AQP4 [115]. The absence of AQP4, in the brain, paradoxically, in the genetically-engineered ‘knock-out’ mouse, reduces...
the swelling seen with hyponatremia [116]. The distribution of AQP4 protein is disrupted in the dystrophin-deficient mdx mouse, in which a 60% reduction occurs in the amount of AQP4 in the perivascular glial processes, which are swollen and contain debris [101,104]. In these mice the there is a marked reduction in the amount of AQP4 in the astroglial feet surrounding capillaries, and at the glial-limitants, and a significant delay in the in the development of brain edema induced by systemic hyponatremia [117]. The protein, alpha syntrophin, is associated with the dystrophin, and also important for the anchoring of the AQP4 in the cell membrane [118]. In mice lacking the alpha-syntrophin gene there is also a marked loss of AQP4 from perivascular and subpial membranes, but no decrease in other membrane domains, and brain edema was attenuated when transient ischemia was induced [119]. All of this evidence suggests that any inhibitor of AQP4 expression may have therapeutic benefits in the treatment of brain edema [111,112].

The ontogeny of AQP4 in the cerebellum coincides with the development of the blood brain barrier in rat and chick. [120,121]. In the rat brain there is no AQP4 before birth [122] and only 2% of the adult level one week after birth. The level doubles in the next week, and reaches 63% of adult levels by nine weeks. In contrast, the chick brain, has a much better level of AQP4 at birth and a more mature blood-brain barrier [121]. This has not yet been studied in the human, but one would expect that the very premature baby would have little barrier protection.

In the ear of the adult rat mRNA for aquaporins 1,2,3,4,5,6 have been found [109], whereas AQP7 and AQP9 were also detected in the adult mouse, but at relatively low levels [122]. Aqp1 is strongly expressed in the non-epithelial stria vascularis [123] and can be up-regulated, in a dose-dependent fashion, by intra-tympanic injections of dexamethasone [109]. AQP1 was detected at the earliest day studied, E14, in mice but in much lower concentrations than those found in the adult ear [122].

AQP2 mRNA, at 10% of the levels found in kidney, is found in rat and mouse ear [124]. It is in structures bordering the endolymph – Reissner’s Membrane, Organ of Corti, sulcus cells, and spiral limbus. Treatment of rats with arginine vasopressin caused a doubling of AQP2 mRNA in the cochlea and endolymphatic sac [125,126], and the authors suggested that overexpression of AQP2 might be involved in the formation of endolymphatic hydrops. During development of the ear in the mouse AQP2 was expressed diffusely in the early otocyst at embryonic days 12,13 but the expression became more restricted by days 15–18 [127].

Quantitatively the most important aquaporin expressed in the ear is AQP4, and it is expressed in Hensen’s cells and inner sulcus cells and Claudius cells, which are all supporting cells of the Organ of Corti [128]. In the vestibular end organs it was in the cristae and maculae. It also occurred in the central part of the cochlear and vestibular nerves. In mice lacking AQP4 expression there is a moderate impairment of hearing [129], but no conduction abnormality was detected in neural signals [130]. AQP4 was detected by E14 in the developing mouse ear, and the level was increased ~100 fold during after birth and continued to increase through post-natal day 15 and even further in the adult [122].

AQP3 was found by one group [122] in the spiral ligation of the mouse cochlea, near where the basilar membrane anchors, and in cells bordering the inner spiral tunnel. In the vestibular system it was in sub-epithelial fibrocytes in the saccule, but not in the utricle. There was a moderate increase in AQP3 from day E14 to adult.

All these results in rodents are tantalizing, and it will be very interesting to see the ontogeny of brain and sensory organ aquaporins in the primate/human. It is expected that significant expression of these water channels will be seen well before birth, as is the case for the lung in long-gestation species [111].

Conclusion
Much information on the role of various members of the mammalian aquaporin family of water channels has been gained in the relatively short time since Peter Agre and his colleagues described the Channel-forming integral membrane protein of the red blood cell of 28 kD (CHIP28), [1], and justifiably earned the 2003 Nobel Prize for Chemistry. Some exciting new studies are suggesting that AQP1 may have roles hitherto unsuspected – evidence has been obtained supporting a role for AQP1 in angiogenesis, particularly in wound healing, organ regeneration and possibly in tumour spread [131]. The limited information that exists on the ontogeny of these proteins in various organs and tissues suggests that there are many more important findings to be made on their roles in the development of the embryo and fetus.

References
1. King LS, Kozono D, Agre P. From structure to disease: the evolving tale of aquaporin biology. Nature Rev. Molecular, Cell Biol 2004, 5:687-698.
2. Nielsen S, Frokiaer J, Marples D, Kwon TH, Agre P, Knepper MA: Aquaporins in the kidney: from molecules to medicine. Physical Rev 2002, 82:205-244.
3. King LS, Yasui M: Aquaporins and disease: lessons from mice to humans. Trends Endocrinol Metab 2002, 13:355-360.
4. Verkman AS: Physiological importance of aquaporin water channels. Ann Med 2002, 34:192-200.
5. Ikeda M, Beitz E, Kozono D, Guggino WB, Agre P, Yasui M: Characterization of aquaporin-6 as a nitrate channel in mammalian
cells. Requirement of pore-lining residue threonine 63. J Biol Chem 2002, 277:39873-39879.

6. Knepper MA, Brace RA: Regulation of aquaporin-2 water channel trafficking by vasopressin.Curr Opin Cell Biol 1997, 9:560-564.

7. Marinelli RA, Pham L, Agre P, LaRuss NF: Secretin promotes osmotic water transport in rat cholangiocytes by increasing aquaporin-1 water channels in plasma membrane. Evidence for a secretin-induced vesicular translocation of aquaporin-1. J Biol Chem 1997, 272:12984-12988.

8. Garcia F, Kierbel A, Larocca MC, Gradilone SA, Splinter P, LaRuss NF, Marinelli RA: The water channel aquaporin-8 is mainly intracellular in rat hepatocytes, and its plasma membrane insertion is stimulated by cyclic AMP. J Biol Chem 2001, 276:12147-12152.

9. Gradilone SA, Garcia F, Huebert RC, Tietz PS, Larocca MC, Kierbel A, Carreras FJ, Larusso NF, Marinelli RA: Glucagon induces the plasma membrane insertion of functional aquaporin-8 water channel in isolated rat hepatocytes. Hepatology 2003, 37:1435-1441.

10. Ishikawa Y, Skowronska MT, Inoue N, Ishida H: alpha(1)-adrenergic receptor-induced trafficking of aquaporin-5 to the apical plasma membrane of rat parotid cells. Biochem Biophys Res Commun 1999, 258:551-555.

11. Liu H, Hooper SB, Armugam A, Dawson N, Ferraro T, Jeyaseelan K, Thiel A, Koukoulas I, Wintour EM: Aquaporin gene expression and regulation in the ovine fetal lung. J Physiol 2003, 551:503-514.

12. Ross MG, Brace RA: National Institute of Child Health and Development Conference summary: amniotic fluid biology—basic and clinical aspects. J Matern Fetal Med 2001, 10:2-19.

13. Daneshmand SS, Cheung CY, Brace RA: Regulation of amniotic fluid volume by intramembranous absorption in sheep: role of passive permeability and vascular endothelial growth factor. Am J Obstet Gynecol 2003, 188:786-793.

14. Magann EF, Nielsen J, Masilamani S, Hager H, Knepper MA, Frokiaer J, Nielsen S: Regulation of collecting duct AQP3 expression: response to mineralocorticoid. Am J Physiol Renal Physiol 2002, 283:F1403-21.

15. Schreiber R, Nitschke R, Gregor R, Kunzelmann K: The cystic fibrosis transmembrane conductance regulator activates aquaporin 3 in airway epithelial cells. J Biol Chem 1999, 274:11811-11816.

16. Bondy C, Chin E, Smith BL, Preston GM, Agre P: Developmental gene expression and tissue distribution of the CHIP28 water channel gene. Proc Natl Acad Sci U S A 1993, 90:4500-4504.

17. Yamamoto T, Sasaki S, Fushimi K, Ishibashi K, Yaoita E, Kawasaki K, Fujinaka H, Marumo F, Kihara I: Expression of AQP family in rat kidneys during development and maturation. Am J Physiol 1997, 272:F198-204.

18. Kim J, Kim WY, Han KH, Knepper MA, Nielsen S, Madsen KM: Developmental expression of aquaporin 1 in the rat renal vasculature. Am J Physiol 1999, 276:F498-509.

19. Devuyst O, Burrow CR, Smith BL, Agre P, Knepper MA, Wilson PD: Expression of aquaporins -1 and -2 during nephrogenesis and in autosomal dominant polycystic kidney disease. Am J Physiol 1996, 271:F169-83.

20. Wintour EM, Earnest L, Alcorn D, Butkus A, Shandley L, Jeyaseelan K: Urinary excretion of aquaporin-2 in term and preterm newborns. J Physiol 2003, 547:F1461-8.

21. Baum MA, Ruddy MK, Hosselet CA, Harris HW: The perinatal expression of aquaporin-2 and aquaporin-3 in developing kidney. Pediatr Res 1998, 43:783-790.

22. Yang B, Knepper MA, Nielsen S, Aperia A: Development of urinary concentrating capacity: role of aquaporin-2. Am J Physiol 1996, 271:F461-8.

23. Baum MA, Ruddy MK, Hosselet CA, Harris HW: The perinatal expression of aquaporin-2 and aquaporin-3 in developing kidney. Pediatr Res 1998, 43:783-790.

24. Butkus A, Earnest L, Jeyaseelan K, Moritz K, Johnston H, Tenis N, Wintour EM: Aquaporin-2: cDNA cloning, ontogeny, and control of renal gene expression. Pediatr Nephrol 1999, 13:379-390.

25. Wintour EM, Congiu M, Hardy JK, Hennessy DP: Regulation of urine osmolality in fetal sheep. J Exp Physiol 1982, 67:427-435.

26. Reidy L, Quigley R, Satlin L: Maturational changes in renal tubular transport. Curr Opin Nephrol Hypertens 2003, 12:521-526.

27. Tsuchihara H, Hata I, Sekine K, Kanda K, Hata K, Miura M, Muzsizima A, Marumo F, Sasaki S: Urinary excretion of aquaporin-2 water channel protein in human and rat. J Am Soc Nephrol 1997, 8:1357-1362.

28. Yang B, Knepper MA, Nielsen S: Urinary aquaporin-2 excretion in preterm and full-term neonates. Biol Neonate 2002, 82:17-21.

29. Wang NL, Tsui J, Knepper MA, Nielsen S: Aquaporin-2 expression at the inner medullary collecting duct of the rat. Metabolism 2003, 52:290-295.

30. Harding R, Hooper SB: Lung development and maturation. In Fetal medicine: Basic science and clinical practice Edited by: Rodeck CH and Whittle MJ; Churchill Livingstone, London; 1999:181-196.
50. Flecknoe SJ, Wallace MJ, Harding R, Hooper SB: Determination of alveolar epithelial cell phenotypes in fetal sheep: evidence for the involvement of basal lung expansion. J Physiol 2002, 542:245-253.

51. Kreda SM, Gynn MC, Fenstermacher DA, Boucher RC, Gabriel SE: Expression and localization of epithelial aquaporins in the adult human lung. Am J Respir Cell Mol Biol 2001, 24:224-234.

52. Krane CM, Fortner CN, Hand AR, McGraw DW, Lorenz JN, Wert SE, Towne JE, Paul RJ, Whisette JA, Menon AG: Aquaporin 5-deficient mouse lungs are hyperresponsive to cholinerger stimulation. Proc Natl Acad Sci U S A 2001, 98:14114-14119.

53. Liu C, Morrissey EE, Whisette JA: GATA-6 is required for matura
tion of the lung in late gestation. Am J Physiol Lung Cell Mol Physiol 2002, 283:L468-75.

54. Torday JS, Rehan VK: Testing for fetal lung maturation: a bio-
chemical "window" to the developing fetus. Clin Lab Med 2003, 23:361-383.

55. King LS, Nielsen S, Apre G: Aquaporins in complex tissues. I. Developmental patterns in respiratory and glan
dular tissues of rat. Am J Physiol 1997, 273:C1541-8.

56. Rudy MK, Drazen JM, Pitkanen OM, Rafii B, O’Brodovich HM, Harris HV: Modulation of aquaporin 4 and the amiloride-inhibitable sodium channel in neonatal rat lung epithelial cells. Am J Physiol 1997, 274:L1066-72.

57. Umeshishi F, Carter EP, Yang B, Oliver B, Matthey MA, Verkman AS: Sharp increase in rat lung water channel expression in the perinatal period. Am J Respir Cell Mol Biol 1996, 15:673-679.

58. Yasiu M, Serschus E, Logfren M, Neben R, Nielsen S, Apers A: Per
natal changes in expression of aquaporin-4 and other water and ion transporters in rat lung. J Physiol 1997, 505:3-11.

59. Eisenbeiss C, Wielze J, Eichler W, Klitz K: Influence of body water distribution on skin thickness: measurements using high-fre
quency ultrasound. Br J Dermatol 2001, 144:947-951.

60. Cartlidge P: The epidermal barrier. Semin Neonatol 2000, 5:273-280.

61. Matsuzaki T, Suzuki T, Koyama H, Tanaka S, Takaka K: Water channel protein AQP3 is present in epithelia exposed to the envi
ronment of possible water loss. J Histochem Cytochem 1999, 47:1275-1286.

62. Ma T, Hara M, Sougrat R, Verbavatz JM, Verkman AS: Impaired stratum corneum hydration in mice lacking epidermal water channel aquaporin-3. J Biol Chem 2002, 277:17147-17153.

63. Sougrat R, Morand M, Gondran C, Barre P, Gobin R, Bonte F, Dumas M, Verbavatz JM: Functional expression of AQP3 in human skin epidermis and reconstructed epidermis. J Invest Dermatol 2002, 118:678-685.

64. Hara M, Ma T, Verkman AS: Selectively reduced glycerol in skin of aquaporin-3-deficient mice may account for impaired skin hydration, elasticity, and barrier recovery. J Biol Chem 2002, 277:46616-46621.

65. Hara M, Verkman AS: Glycerol replacement corrects defective skin hydration, elasticity, and barrier function in aquaporin-
3-deficient mice. Proc Natl Acad Sci U S A 2003, 100:7360-7365.

66. Hardman MJ, Sisi P, Banbury DN, Byrne C: Patterned acquisition of skin barrier function during development. Development 1998, 125:1541-1552.

67. Hardman MJ, Moore L, Ferguson MW, Byrne C: Barrier formation in the human fetus is patterned. J Invest Dermatol 1999, 113:1106-1113.

68. Seeds AE: Current concepts of amniotic fluid dynamics. Am J Obstet Gynecol 1980, 138:575-586.

69. Bhat NM, Karapinar T, Hamzadi T, Edguer E, Kis M: Role of fetal skin in circulation of amniotic fluid. Arch Int Physiol Biochem 1970, 78:69-78.

70. Ager J, Sjors G, Sedin G: Transepidermal water loss in infants born at 24 and 25 weeks of gestation. Acta Paediatr 1998, 87:1185-1190.

71. Ager J, Zelenin S, Hakansson M, Elkol AC, Aperia A, Nejsum LN, Nielsen S, Sedin G: Transepidermal water loss in developing rats: role of aquaporins in the immature skin. Pediatr Res 2003, 53:558-565.

72. Umeshishi F, Verkman AS, Gropper MA: Quantitative analysis of aquaporin mRNA expression in rat tissues by RNase protec
tion assay. DNA Cell Biol 1996, 15:475-480.
95. Rizzo G, Capponi A, Rinaldi D, Arduini D, Romanini C: Ventricular ejection force in growth-retarded fetuses. Ultrasound Obstet Gynecol 1992, 2:185-215.

96. Yun MK, Park EY, Kim CR, Hwang JH: Alterations in irregular and fractal heart rate behavior in growth restricted fetuses. Eur J Obstet Gynecol Reprod Biol 2001, 94:51-58.

97. Hu XW, Levy A, Hart EJ, Nolan LA, Dalton GR, Levi AJ: Intra-uterine growth retardation results in increased cardiac arrhythmias and raised diastolic blood pressure in adult rats. Cardiovasc Res 2000, 48:233-243.

98. Machlit A, Wauer RR, Chaoui R: Longitudinal observation of deterioration of Doppler parameters, computerized cardiotocogram, and clinical course in a fetus with growth restriction. J Pediatr Med 2001, 29:71-76.

99. Frigeri A, Nicchia GP, Verbavatz JM, Valenti G, Svelto M: Expression of aquaporin-4 in fast-twitch fibers of mammalian skeletal muscle. J Clin Invest 1998, 102:695-703.

100. Kim T, Wakiyama Y, Jimi T, Inoue M, Kojima H, Murashashi M, Kumagai T, Yamashita S, Hara H, Shibuya S, Reduced aquaporin 4 expression: a vital role for cerebrospinal fluid. Can J Physiol Pharmacol 2003, 81:317-328.

101. Nico B, Frigeri A, Nicchia GP, Corsi P, Ribatti D, Quondamatteo F, Nico B, Frigeri A, Nicchia GP, Corsi P, Ribatti D, Quondamatteo F, Barletta M, Miccoli R, Roncali L: Severe alterations of endothelial and glial cells in the blood-brain barrier of dystrophic mdx mice. J Neurosci 2003, 23:23133-23137.

102. Takumi Y, Nagelhus EA, Eidet J, Matsubara A, Usami S, Shinkawa H, Takeda S, Kitaoka H, Suzuki M, Kakigi A: Aquaporin-1 (AQP1) is expressed in the stria vascularis of rat cochlea. Hear Res 2003, 181:15-19.

103. Sawada S, Takeda T, Kitano H, Takeuchi S, Kumagai T, Suzuki M, Kakigi A, Azuma H: Aquaporin-2 regulation by vasopressin in the rat inner ear. J Biol Chem 2001, 276:1925-1930.

104. Takumi Y, Nagelhus EA, Eidet J, Matsubara A, Usami S, Shinkawa H, Nielsen S, Ottersen OP: Select types of supporting cell in the inner ear express aquaporin-4 water channel protein. J Neurosci 2003, 23:23133-23137.

105. Verkman AS: Role of aquaporin water channels in eye function. Invest Ophthalmol Vis Sci 2000, 41:1071-1083.

106. Ferrary E, Sterkers O: Mechanisms of endolymph secretion. Kidney Int Suppl 1989, 25:S98-103.

107. Horio Y: Potassium channels of glial cells: distribution and function. Jpn J Pharmacol 2001, 87:1-6.

108. Sawada S, Takeda T, Kitano H, Takeuchi S, Okada T, Ando M, Suzuki M, Kakigi A: Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Biochem Biophys Res Commun 2002, 297:987-996.

109. Sawada S, Takeda T, Kitano H, Takeuchi S, Kakigi A, Azuma H: Aquaporin-2 expression patterns in the inner ear. Eur J Neurosci 2002, 13:1127-1129.

110. Li J, Verkman AS: Impaired hearing in mice lacking aquaporin-4 water channels. J Biol Chem 2001, 276:31233-31237.

111. Mhatre AN, Stern RE, Li J, Lalwani AK: Aquaporin-4 deficiency in skeletal muscle and brain delays the development and integrity of the blood-brain barrier. J Cell Sci 2001, 114:1297-1307.

112. Manley GT, Oshlack I, Kerbel R, Markert R, Chou T, Verkman AS: Impaired hearing in mice lacking aquaporin-4 water channel protein. Proc Natl Acad Sci U S A 2001, 98:14108-14113.

113. Vajda Z, Pedersen M, Bollen AW, Chan P, Sir Paul Nurse, Cancer Research UK: Your research papers will be:

- available free of charge to the entire biomedical community
- peer reviewed and published immediately upon acceptance
- cited in PubMed and archived on PubMed Central
- yours — you keep the copyright

Submit your manuscript here: http://www.biomedcentral.com/info/publishing_adv.asp

Publish with BioMed Central and every scientist can read your work free of charge

BioMed Central will be the most significant development for disseminating the results of biomedical research in our lifetime. *Sir Paul Nurse, Cancer Research UK*