Parathyroid hormone-related protein enhances human β-cell proliferation and function with associated induction of cyclin-dependent-kinase 2 and cyclin E expression

Nagesha Guthalu Kondegowda, PhD, Sheela Joshi-Gokhale, MD, George Harb, PhD, Katoura Williams, MSc, Xiao Ying Zhang, PhD, Karen K. Takane, PhD, Pili Zhang, PhD, Donald K. Scott, PhD, Andrew F. Stewart, MD, Adolfo Garcia-Ocaña, PhD, and Rupangi C. Vasavada, PhD

Division of Endocrinology, University of Pittsburgh, Pittsburgh, PA.

N. G. K. and S. J-G. Contributed equally to this work

Running Title: PTHrP and the human β-cell.

To whom correspondence should be addressed:
Rupangi C. Vasavada, PhD
E-mail: vasavada@pitt.edu

Submitted 9 December 2009 and accepted 8 September 2010.

Additional information for this article can be found in an online appendix at http://diabetes.diabetesjournals.org

This is an uncopyedited electronic version of an article accepted for publication in Diabetes. The American Diabetes Association, publisher of Diabetes, is not responsible for any errors or omissions in this version of the manuscript or any version derived from it by third parties. The definitive publisher-authenticated version will be available in a future issue of Diabetes in print and online at http://diabetes.diabetesjournals.org.
Objective: Inducing human β-cell growth while enhancing function is a major goal in the treatment of diabetes. Parathyroid hormone-related protein (PTHrP) enhances rodent β-cell growth and function through the parathyroid hormone-1 receptor (PTH1R). Based on this, we hypothesize that PTH1R is expressed in human β-cells and that PTHrP has the potential to enhance human β-cell proliferation and/or function.

Research design and methods: PTH1R expression, β-cell proliferation, glucose-stimulated insulin secretion (GSIS), and expression of differentiation and cell cycle genes were analyzed in human islets transduced with adenoviral-PTHrP constructs or treated with PTHrP peptides. The effect of overexpression of late G1/S cell cycle molecules was also assessed on human β-cell proliferation.

Results: We found that human β-cells express PTH1R. More importantly, overexpression of PTHrP causes a significant approximately three-fold increase in human β-cell proliferation. Furthermore, the amino-terminus PTHrP(1-36) peptide is sufficient to increase replication, as well as expression of the late G1/S cell cycle proteins cyclin E and cyclin-dependent-kinase 2 (cdk2) in human islets. Notably, PTHrP(1-36) also enhances GSIS. Finally, overexpression of cyclin E alone, but not cdk2, augments human β-cell proliferation; and when both molecules are expressed simultaneously there is a further marked synergistic increase in replication.

Conclusions: PTHrP(1-36) peptide enhances human β-cell proliferation as well as function, with associated upregulation of two specific cell cycle activators, which together can induce human β-cell proliferation several-fold. The future therapeutic potential of PTHrP(1-36) for the treatment of diabetes is especially relevant given the complementary therapeutic efficacy of PTHrP(1-36) in post-menopausal osteoporosis.

Loss of functional pancreatic β-cells is the ultimate cause of both type 1 and type 2 diabetes. Therefore, finding ways to maintain or increase pancreatic β-cell growth and function is essential in the long-term treatment of this disease. Many studies over the last decades have shown that adult human β-cells retain the capacity to proliferate, in vivo (1) and in vitro (2,3), providing impetus to search for factors that can further enhance β-cell proliferation without negatively impacting their function. Although several growth factors enhance rodent β-cell proliferation and function (4), very few have been tested on adult human β-cells. In this regard, PTHrP, an autocrine/paracrine factor that is expressed in almost every tissue in the body, including the endocrine pancreas (5), has beneficial effects on both β-cell growth and function in rodents. PTHrP overexpression in the β-cell of transgenic mice leads to increased β-cell proliferation, β-cell hyperplasia with concomitant hyperinsulinemia and hypoglycemia, improved glucose tolerance and enhanced GSIS (6-8).

PTHRP is directed into the secretory pathway through its signal peptide (SP) and can be targeted to the nucleus through its nuclear localization signal. It undergoes post-translational processing to form amino-terminus (1-36), mid-region (38-94) and C-terminal (107-171) fragments. PTHrP mutants that lack SP fail to be secreted. PTHrP signals through a seven transmembrane G-protein coupled receptor, PTH1R, which recognizes...
the amino-terminus PTHrP peptide (9). PTH1R is expressed in rodent β-cells, and also in rodent β-cell lines (8,10,11). Several in vitro studies have shown that the amino-terminal PTHrP(1-36) peptide, through its receptor, is sufficient to enhance rodent β-cell proliferation, as well as insulin expression and GSIS (8,11,12). Thus, PTHrP enhances both replication and function in primary rodent β-cells.

PTHrP is also expressed in human islets and in almost 100% of human insulinomas (5,13,14). However, whether PTH1R is expressed in human islets or on the human β-cell is not known. More importantly, it is unknown whether PTHrP can have beneficial effects on human β-cells. Based on extensive studies in rodent islets we hypothesize that the PTHrP/PTH1R system has potential to enhance proliferation and/or function in human islets. Examining the therapeutic potential for PTHrP in human islets is especially significant, given that PTHrP(1-36) is well established as a skeletal anabolic agent for the treatment of osteoporosis (15,16), demonstrating the safety of this peptide as a future therapeutic agent.

MATERIALS AND METHODS

Human islets, cell culture and transduction with adenovirus (Ad): Human islets were obtained from donors of both genders, of ages ranging from ~5-70 years, with a majority being in the 20-50 year range, and purity ranging from 50-95%, through the ICR and JDRF Basic Science Islet Distribution Programs. Human kidney cell lines, HKC8 and 293 human PTH1R cDNA, were used as controls for PTH1R expression. Ad constructs with cDNAs were generated (8) including for beta-galactosidase (LacZ), Cre-recombinase (Cre) or green fluorescent protein (GFP), used as controls.

Proliferation: For cell cycle analysis, human islets transduced with Ad-constructs for 72hr, were dispersed into single cells and 10,000 cells were analyzed on a BD LSR II flow cytometer (Becton Dickinson Biosciences, San Jose, CA). Data analysis was performed using Modfit LT 3.0 software (Verity Software House, Topsham, ME). β-cell proliferation was analyzed on either Ad-transduced or peptide-treated dispersed human islet cultures stained for DAPI, bromodeoxyuridine (BrdU) and insulin using Olympus Fluoview Confocal or Olympus Provis Fluorescence microscopes (8).

Insulin release and content: Insulin release from uninfected, PTHrP(1-36) treated and Ad-transduced islets was measured in triplicate from human islets either transduced with Ad-constructs for 24h, or treated with 100nM of PTHrP(1-36) for 24h for insulin content or 30min for GSIS (8). Briefly, uninfected or islets transduced with Ad for 24h were pre-incubated in Krebs-Ringer bicarbonate buffer (KRBB) supplemented with 10mM HEPES, 1% BSA and 5mM glucose for 1h at 37°C in a 5% CO2 incubator. After washing the islets once with the same solution, groups of 15 IEQs for each condition were incubated in 1 ml of fresh KRBB plus 1% BSA and 5.5 or 22mM glucose. PTHrP peptide or vehicle was added to the islets at the same time as the glucose, and incubated for 30 min, after which buffer was removed and frozen at −20°C until insulin measurement by RIA (Linco Research, St. Louis, MO). Islets were then digested overnight in NaOH at 37°C and protein was measured by the Bradford method after neutralization with HCl. Results are expressed as a percentage of insulin concentration obtained with uninfected islets incubated at 5.5mM glucose. Insulin content was measured by RIA on acid-ethanol extracts of human islets either transduced with Ad-control or Ad-PTHrP or treated with vehicle or 100nM of PTHrP(1-36) peptide for 24h (8,19).

Gene expression: in whole islets was analyzed by real time PCR performed on an
ABI 7300 System and western blot analysis on 20-50μg extracts using the Image J program (NIH) for quantitative densitometry (8). PTHrP(1-36) was quantitated using an immunoradiometric assay or an enzyme immunoassay (Peninsula Laboratories Inc, San Carlos, CA).

Statistical Analysis: The data are expressed as the mean ± standard error. Statistical significance considered at P < 0.05, was determined by unpaired two-tailed Student’s t test or a one-way ANOVA with Tukey’s HSD Post-Hoc test. Additional details are available in the online appendix available at http://diabetes.diabetesjournals.org.

RESULTS

PTH1R and PTHrP expression in human islets. PTHrP mRNA and protein are expressed in human islets and insulinomas (5,13,14). However, whether the receptor for PTHrP, PTH1R, is expressed in human islets is unknown. We analyzed the expression of PTH1R mRNA, by real time PCR in human islets, using HKC8, a human kidney cell line with high PTH1R expression, as a positive control, and 293 cells which lack PTH1R expression as a negative control. PTH1R mRNA is clearly detectable in human islets (Figure 1A), as is PTH1R protein, measured by western blot (Figure 1B). Importantly, PTH1R is expressed in human β-cells, demonstrated by co-staining of human islet cell cultures for PTH1R and insulin (Figure 1C).

To overexpress PTHrP in human islets, an Ad construct containing hemagglutinin (HA)-tagged human PTHrP cDNA was transduced into islets. Ad-PTHrP-transduced human islets display increased PTHrP expression relative to uninfected and Ad-LacZ-transduced islets as demonstrated by western blot using PTHrP antibody (Figure 1D). Furthermore, PTHrP overexpression did not result in down-regulation of PTH1R expression in human islets (Figure 1B, lanes P) compared to uninfected or Ad-LacZ-transduced islets (Figure 1B, lanes U,L). Since PTHrP is a secreted protein, we measured its concentration in medium from human islets transduced with Ad-PTHrP or Ad-LacZ. There was significant accumulation of PTHrP, ~600pM, in medium from Ad-PTHrP-infected islets versus Ad-LacZ-infected islets (4pM) (Figure 1E). Finally, PTHrP is expressed in β-cells of Ad-PTHrP-transduced human islet cell cultures demonstrated by co-immunostaining with HA and insulin antibodies (Figure 1F).

PTHrP increases human β-cell proliferation without causing dedifferentiation. We examined the effect of PTHrP overexpression on human β-cell proliferation by co-staining human islet cell cultures transduced with Ad-PTHrP or Ad-control with BrdU and insulin antibodies (Figure 2A). There was a significant approximately three-fold increase in human β-cell proliferation induced by PTHrP compared to Ad-control-transduced or uninfected human islet cell cultures (Figure 2B).

Based on studies in rodent β-cells, we evaluated whether secreted PTHrP is required for human β-cell proliferation by transducing human islets with Ad-ΔSP, a HA-tagged non-secretory PTHrP mutant that lacks the SP. As expected, secreted PTHrP levels in the medium were much lower in Ad-ΔSP (22pM), versus Ad-PTHrP-transduced (600pM) human islets (Figure 1E). However, PTHrP levels in islet extracts from Ad-ΔSP were at least comparable to Ad-PTHrP-transduced human islets (Figure 1D). Moreover, PTHrP was expressed in the β-cells of Ad-ΔSP-transduced human islet cultures as shown by HA and insulin co-staining (Figure 1F). Despite abundant intracellular PTHrP, Ad-ΔSP did not stimulate proliferation of human β-cells relative to uninfected and Ad-control-infected islet cells (Figure 2B), demonstrating that
secreted PTHrP is important for mediating human β-cell proliferation.

To determine which specific secretory form of PTHrP induces human β-cell proliferation, human islet cultures were treated for 24 hr with 100nM of either amino-terminal PTHrP(1-36), or mid-region PTHrP(38-94), peptide. There was a significant two-fold increase in human β-cell proliferation only with PTHrP(1-36), but not with PTHrP(38-94) (Figure 2B). The concentration of PTHrP(1-36) remaining in the culture medium of Ad-transduced and peptide-treated human islet cell cultures was measured at the end of the experiments. Cells treated with vehicle or Ad-control had undetectable PTHrP(1-36), whereas Ad-PTHrP-transduced cells had 469.8±57.4 pg/ml (~117.5pM) and PTHrP(1-36)-treated cells had 245.1±20.6 ng/ml (~61.25nM) of PTHrP(1-36) in the culture media (n=4-5 human islet cultures).

Since induction of proliferation of human β-cells can lead to their dedifferentiation (17), we examined mRNA transcripts encoding differentiation markers in human islets treated with vehicle or PTHrP(1-36). There was no change in transcripts encoding islet hormones (insulin, glucagon, somatostatin), glucose sensors (Glut-2, glucokinase), or transcription factors important for β-cell differentiation and function (Pdx1, MafA, MafB, Nkx6.1, Nkx2.2, NeuroD, Isl1) with PTHrP(1-36) treatment (Figure 2C), suggesting that PTHrP does not cause dedifferentiation of human β-cells. We also examined the effect of PTHrP on insulin content in human islets. Either transduction with Ad-PTHrP or treatment with PTHrP(1-36) for 24hr did not affect the insulin content in islets (Fig 2D).

PTHrP enhances GSIS in human islets. Whether PTHrP affects human β-cell function was evaluated by measuring insulin secretion from human islets transduced for 24 hr with Ad-PTHrP or treated for 30 min with PTHrP(1-36) peptide. There was no change in basal insulin secretion at 5.5mM glucose, and there was a small (27%) but not significant increase in insulin secretion at 22mM glucose from Ad-PTHrP versus Ad-control-transduced islets (Figure 2E), suggesting that Ad-PTHrP does not negatively impact human β-cell function. On the other hand, PTHrP(1-36) peptide caused a significant increase in insulin secretion at 5.5mM glucose (36%), with a further enhancement at 22mM glucose (67%) over control islets (Figure 2F). Thus, PTHrP(1-36) enhances insulin secretion in human islets at both physiological and pathophysiological glucose concentrations.

PTHrP increases expression of the late G1/S cell cycle activators, cyclin E and cdk2 in human islets at the post-transcriptional level. To begin to assess the molecular mechanisms of PTHrP-induced human β-cell proliferation, we measured expression of the G1/S cell cycle regulators. There was no significant change in the level of mRNA expression of any of the cyclins (cyclin D1-3, E1-2, A1-2), cdkks (1,2,4,6), CIP/KIP (p21, p27, p57) or the INK (p16, p18, p19) family of inhibitors examined with PTHrP(1-36) treatment (Figure 3A).

However, as cell cycle molecules could be regulated post-transcriptionally, we examined the effect of PTHrP(1-36) on the expression of G1/S cell cycle proteins by western blot. There was no change in expression of the early G1/S cell cycle activators, cyclins D1/3 or cdk4/6, or in the INK and CIP/KIP inhibitors, p16, p18, p21, p27 and p57 (Figure 3B). In contrast, the late G1/S cell cycle activator proteins, cyclin E (Figure 3B,C) and cdk2 (Figure 3B,D), were significantly increased by two-fold in PTHrP-treated human islets.

Overexpression of cyclin E and cdk2 enhances human β-cell proliferation. To ascertain whether expression of cyclin E and/or cdk2 per se can drive human β-cell proliferation, these proteins were overexpressed in human islets by transduction with Ad-cdk2/Ad-cyclin E, relative to
uninfected and Ad-control-transduced islets (Figure 4A). Proliferation measured by flow cytometry (Figure 4B) revealed a significant 2.5-fold increase in the percentage of cells in S-phase of the cell cycle in Ad-cdk2/Ad-cyclin E-transduced whole human islets compared to uninfected or Ad-control-transduced human islets (Figure 4C), demonstrating increased islet cell proliferation.

To independently confirm these observations, and to demonstrate whether human \(\beta \)-cell proliferation was induced by cyclin E and/or cdk2, staining for insulin, BrdU and DAPI was performed on human islet cultures (Figure 4D). Expression of cdk2 alone did not increase human \(\beta \)-cell proliferation. However, expression of cyclin E alone caused a significant 5-fold increase in human \(\beta \)-cell proliferation, compared to control cells. Cyclin E and cdk2 together caused a substantive synergistic 16-fold increase in human \(\beta \)-cell proliferation over cells transduced with equivalent multiplicity of infection (MOI) of control virus, and also a significant increase over cells transduced with Ad-cdk2 or Ad-cyclin E alone (Figure 4E).

DISCUSSION

This study documents for the first time that PTHrP can enhance human \(\beta \)-cell growth and function. The major novel findings of this study are that: (i) the PTHrP receptor is present in human \(\beta \)-cells; (ii) overexpression of PTHrP causes a significant three-fold increase in human \(\beta \)-cell proliferation without negatively impacting function; (iii) the secreted amino-terminus 1-36 peptide of PTHrP is sufficient to induce proliferation, without causing significant dedifferentiation of human \(\beta \)-cells; (iv) PTHrP(1-36) not only increases proliferation but simultaneously enhances human \(\beta \)-cell function, as evidenced by a significant increase in insulin secretion at both physiological (5.5mM) and pathophysiological (22mM) glucose concentrations; (v) PTHrP(1-36) specifically increases expression of the late G1/S cell cycle activators, cyclin E and cdk2, at the post-transcriptional level in human islets; (vi) overexpression of cyclin E, but not cdk2, significantly increases human \(\beta \)-cell replication; and, (vii) more importantly, the combination of these two molecules has a substantive synergistic effect on human \(\beta \)-cell proliferation.

The current study, together with previous work (6-8,10-12), establishes PTHrP as a factor that enhances proliferation as well as function in primary \(\beta \)-cells from both rodent as well as human islets. While in some instances activation of human \(\beta \)-cell replication may induce dedifferentiation (17), in others, for example, in this study, and with overexpression of cdk6/cyclin D1 or constitutively active Akt (18,19), induction of human \(\beta \)-cell proliferation maintains or even augments \(\beta \)-cell function. Based on studies in rodent islets (12), it is likely that PTHrP(1-36) may enhance insulin secretion in human islets through activation of the cAMP pathway.

PTHrP enhances proliferation in numerous cell types. This mitogenic activity is associated with changes in cyclin D1 transcription, activation of cyclin E/cdk2 kinase activity, or reduction of p57 or p27 inhibitors (20-22). In human \(\beta \)-cells we found that PTHrP(1-36) is sufficient to induce proliferation, causing an increase in expression at the post-transcriptional level of two activators of the late phase of the G1/S cell cycle check point, cdk2 and cyclin E. PTHrP regulates the stability of p27 in smooth muscle cells, and the androgen receptor in prostate cancer cells, through the proteosomal degradation pathway (21,23). Cyclin E protein is also tightly regulated through proteasome-mediated degradation by the E3 ubiquitin ligases (24). Whether PTHrP affects cyclin E stability through this pathway in human \(\beta \)-cells requires further investigation.
There is ample evidence that activators of the early phase of the cell cycle, cyclin Ds and cdk4/cdk6, regulate rodent β-cell proliferation, and can induce human β-cell proliferation (25,18). However, whether activators of the late phase of the cell cycle, cyclin E and cdk2, are important for, and can induce, human β-cell proliferation is not known. Now, we demonstrate for the first time that cyclin E, both alone and together with cdk2, significantly enhances human β-cell proliferation, suggesting that cyclin E may be one of the limiting factors in proliferation of human β-cells. Understanding the regulation of, and elucidating therapeutic mechanisms to enhance, human β-cell proliferation and function is critical for the long-term treatment of diabetes. This study shows that a small amino-terminal peptide of PTHrP is capable of enhancing both proliferation and function in human β-cells in vitro. Further, it identifies two cell cycle activators as likely downstream targets of PTHrP. Cyclin E and cdk2 together have pronounced effects on human β-cell proliferation, and therefore, have the potential to be harnessed to enhance human β-cell growth ex vivo. The promise for PTHrP(1-36) as a therapeutic agent for diabetes is especially attractive, given that this peptide has been shown to be both safe and effective for the treatment of osteoporosis (15,16), and, that PTHrP(1-36) in the 100pM range, a concentration that is likely transiently induced in humans treated with tolerable doses of PTHrP and the human β-cell.

Author contributions: N.G.K., S.J-G and G.H. researched data; contributed to discussion; reviewed/edited manuscript. K.W., X.Y.Z., K.K.T. and P.Z. researched data; contributed to discussion. D.K.S., A.F.S. contributed to discussion, reviewed/edited manuscript. A.G.-O. researched data; contributed to discussion, reviewed/edited manuscript. R.C.V. researched data; contributed to discussion, wrote manuscript.

ACKNOWLEDGEMENTS
This work was supported by grants from the National Institutes of Health (DK078060 and DK072264 to RCV; DK055023 and DK07052-32 to AFS) and JDRF Research Awards (1-2008-46 to RCV; 1-2008-39 and 34-2008-630 to AFS). We are grateful to Drs. Irene Cozar-Castellano and Nathalie Taesch (University of Pittsburgh) for sharing their expertise on the cell cycle; to Darinka Sipula, Taylor Rosa, Jeffrey Kleinberger and Fatimah Salim (University of Pittsburgh) for superb technical assistance. We acknowledge the ICR and JDRF Basic Science Islet Distribution Programs for supplying human islets.

Disclosures: Andrew F. Stewart is a member of Osteotrophin LLC.

REFERENCES
1) Meier JJ, Butler AE, Saisho Y, Monchamp T, Galasso R, Bhushan A, Rizza RA, Butler PC. Beta-cell replication is the primary mechanism subserving the postnatal expansion of beta-cell mass in humans. Diabetes 2008;57:1584-1594
2) Hayek A, Beattie GM, Cirulli V, Lopez AD, Ricordi C, Rubin JS. Growth factor/matrix-induced proliferation of human adult beta-cells. Diabetes 1995; 44:1458-1460.
3) Efrat S. Ex-vivo Expansion of Adult Human Pancreatic Beta-Cells. Rev Diabet Stud. 2008;5:116-122
4) Vasavada RC, Gonzalez-Pertusa JA, Fujinaka Y, Fiaschi-Taesch N, Cozar-Castellano I, Garcia-Ocaña A. Growth factors and beta cell replication. Int J Biochem Cell Biol. 2006;38:931-950
5) Drucker DJ, Asa SL, Henderson J, Goltzman D. The parathyroid hormone-like peptide gene is expressed in the normal and neoplastic human endocrine pancreas. Mol Endocrinol. 1989;3:1589-1595

6) Vasavada RC, Cavaliere C, D'Ercole AJ, Dann P, Burris WJ, Madlener AL, Zawalich K, Zawalich W, Philbrick WM, Stewart AF. Overexpression of parathyroid hormone-related protein in the pancreatic islets of transgenic mice causes islet hyperplasia, hyperinsulinemia, and hypoglycemia. J Biol Chem 1996;271:1200-1208

7) Porter SE, Sorenson RL, Dann P, Garcia-Ocana A, Stewart AF, Vasavada RC. Progressive pancreatic islet hyperplasia in the islet-targeted, parathyroid hormone-related protein-overexpressing mouse. Endocrinology 1998;139:3743-3751

8) Vasavada RC, Wang L, Fujinaka Y, Takane KK, Rosa T, Mellado-Gil JM, Garcia-Ocaña A. Protein kinase C-ζ markedly enhances β-cell proliferation: An essential role in growth factor-mediated β-cell mitogenesis. Diabetes 2007;56:2732-2743

9) Philbrick WM, Wysolmerski JJ, Galbraith S, Holt E, Orloff JJ, Yang KH, Vasavada RC, Weir EC, Broads AE, Stewart AF. Defining the roles of parathyroid hormone-related protein in normal physiology. Physiological Reviews 1996;76:127-173

10) Fujinaka Y, Sipula D, Garcia-Ocaña A, Vasavada RC. Characterization of mice doubly transgenic for parathyroid hormone-related protein and murine placental lactogen: a novel role for placental lactogen in pancreatic beta cell survival. Diabetes 2004;53:3120-3130

11) Villanueva-Penacarrillo ML, Cancelas J, de Miguel F Redondo A, Valin A, Valverde I, Esbrit P. Parathyroid hormone-related peptide stimulates DNA synthesis and insulin secretion in pancreatic islets. J Endocrinol. 1999;163:403-408

12) Zhang B, Hosaka M, Sawada Y, Torii S, Mizutani S, Ogata M, Izumi T, Takeuchi T. Parathyroid hormone-related protein induces insulin expression through activation of MAP kinase-specific phosphatase-1 that dephosphorylates c-Jun NH(2)-terminal kinase in pancreatic β-cells. Diabetes 2003;52:2720-2730

13) Asa SL, Henderson J, Goltzman D, Drucker DJ. Parathyroid hormone-like peptide in normal and neoplastic human endocrine tissues. J Clin Endocrinol Metab. 1990;71:1112-1118

14) Sawada Y, Kameya T, Aizama T, Izumi T, Takeuchi T. Proprotein-processing endoprotease furin and its substrate parathyroid hormone-related protein are coexpressed in insulinoma cells. Endocr Pathol. 2000;11:31-39

15) Henry JG, Mitnick M, Dann PR, Stewart AF. Parathyroid hormone-related protein-(1-36) is biologically active when administered subcutaneously to humans. J Clin Endocrinol Metab. 1997;82:900-906

16) Horwitz MJ, Tedesco MB, Garcia-Ocaña A, Sereika SM, Prebhalal L, Bisello A, Hollis BW, Gundberg CM, Stewart AF. Parathyroid hormone-related protein for the treatment of postmenopausal osteoporosis: Defining the maximal tolerable dose. J Clin Endocrinol Metab. 2010;95:1279-1287

17) Beattie GM, Cirulli V, Lopez AD, Hayek A. Ex vivo expansion of human pancreatic endocrine cells. J Clin Endocrinol Metab 1997;82:1852-1856

18) Fiaschi-Taesch N, Bigatel TA, Sicari B, Takane KK, Salim F, Velazquez-Garcia S, Harb G, Selk K, Cozar-Castellano I, Stewart AF. Survey of the human pancreatic beta-cell G1/S proteome reveals a potential therapeutic role for cdk-6 and cyclin D1 in enhancing human beta-cell replication and function in vivo. Diabetes. 2009;58:882-893

19) Rao P, Roccisana J, Takane KK, Bottino R, Zhao A, Trucco M, Garcia-Ocaña A. Gene transfer of constitutively active Akt markedly improves human islet transplant outcomes in diabetic severe combined immunodeficient mice. Diabetes. 2005;54:1664-1675

20) Datta NS, Pettway GJ, Chen C, Koh AJ, McCauley LK. Cyclin D1 as a target for the proliferative effects of PTH and PTHrP in early osteoblastic cells. J Bone Miner Res. 2007;22:951-964
21) Fiaschi-Taesch N, Sicari BM, Ubriani K, Bigatel T, Takane KK, Cozar-Castellano I, Bisello A, Law B, Stewart AF. Cellular mechanism through which parathyroid hormone-related protein induces proliferation in arterial smooth muscle cells: definition of an arterial smooth muscle PTHrP/p27kip1 pathway. Circ Res. 2006;99:933-942
22) MacLean HE, Guo J, Knight MC, Zhang P, Cobrinik D, Kronenberg HM. The cyclin-dependent kinase inhibitor p57(Kip2) mediates proliferative actions of PTHrP in chondrocytes. J Clin Invest. 2004;113:1334-1343
23) DaSilva J, Gioeli D, Weber MJ, Parsons SJ. The neuroendocrine-derived peptide parathyroid hormone-related protein promotes prostate cancer cell growth by stabilizing the androgen receptor. Cancer Res. 2009;69:7402-7411
24) Shumway SD, Xiong Y. Twice primed: Cyclin E is phosphorylated and isomerized before being ubiquitinated. Molecular Cell 2006;23:149-153
25) Cozar-Castellano I, Fiaschi-Taesch N, Bigatel TA, Takane KK, Garcia-Ocaña A, Vasavada R, Stewart AF. Molecular control of cell cycle progression in the pancreatic beta-cell. Endocr Rev. 2006;27:356-370

FIGURE LEGENDS:

Figure 1: PTH1R and PTHrP expression in human islets. (A) PTH1R mRNA expression measured by real time PCR in three human islet preps (H1-H3), HKC8, a human kidney proximal tubule cell line, used as positive control, and the human embryonic kidney cell line 293, used as negative control. Quantitation is shown as log of Ct using actin as the housekeeping control gene. (B) Western blot analysis of PTH1R and actin expression in a positive (+) control line (293 cells stably transfected with human PTH1R cDNA), and two human islet preps (H1, H2) uninfected (U) or transduced with Ad-LacZ (L) or Ad-PTHrP (P). The line divides samples run on two different gels. (C) Photomicrograph of human islet cell cultures co-stained for nuclear DAPI (blue), PTH1R (green) and insulin (red). (D) Representative western blot analysis of PTHrP and actin in human islets either uninfected (U) or transduced with Ad-LacZ (L), Ad-PTHrP (P) or Ad-ΔSP mutant (S). The line divides samples from different regions run on the same gel. (E) Quantitation of PTHrP(1-36) by immunoradiometric assay in medium collected after 48 hours of transduction of human islets with adenoviral constructs containing LacZ, PTHrP, or ΔSP sequences (n=2 islet preparations). (F) Representative images of human islet cell cultures transduced with Ad-LacZ, Ad-PTHrP or Ad-ΔSP and co-stained for DAPI (blue), insulin (green) and HA (red).

Figure 2: PTHrP increases human β-cell proliferation and function without causing dedifferentiation. (A) Representative confocal images of human islet cell cultures transduced with Ad-control (I) or Ad-PTHrP (II-IV) and co-stained for insulin (green, panels b), BrdU (red, panels c) and DAPI (blue, panels d). The merged images of all three stainings are shown in panels a, merge for DAPI and BrdU in panels e, and merge for insulin and BrdU in panels f. (B) Quantitation of the percentage of BrdU-positive β-cells from human islet cell cultures uninfected (U) or transduced with the Ad constructs control (ctrl), PTHrP or ΔSP for 72 hrs, or treated with 100nM of either 1-36 or 38-94 PTHrP peptides for 24h. There was a significant 2- to 3-fold increase in β-cell proliferation in PTHrP-transduced and 1-36-treated versus Ad-control-transduced or U1 control islet cells. Basal rate of β-cell proliferation in U1 controls was 0.08±0.03%. (n=4-11 individual human islet preps at least in duplicate) * p<0.05 versus U1 or Ad-control by student’s t-test; # p<0.001 versus Ad-control or Ad-ΔSP and & p<0.01 versus U1 or 38-94 by one-way ANOVA. (C) Expression of differentiation markers by real time PCR from human islets treated for 24h with vehicle (Ctrl, black bar) or PTHrP(1-36) peptide (grey bars).
PCR cycles for each gene were compared to actin used as an internal control. The graph is depicted as fold-over control, with values from vehicle-treated islets taken as one (n=4-7 human islet preparations in duplicate). (D) Insulin content per islet equivalent (IEQ) in extracts of human islets treated with vehicle (veh) or 100nM of PTHrP(1-36) peptide or transduced with Ad-control (ctrl) or Ad-PTHrP for 24h (n=5 human islet preparations in triplicate). (E,F) Insulin secretion measured at 5.5 and 22mM glucose from human islets (E) transduced with Ad-control or Ad-PTHrP for 24 hr and (F) treated with vehicle or 100nM of PTHrP(1-36) peptide for 30 min. Insulin secretion is depicted as percentage of vehicle-treated control at 5.5mM glucose, which was 455.4±109.3 pg/μg protein in 30 min. (n=7-8 human islet preparations in triplicate) (* p<0.05 versus insulin secretion at 5.5mM glucose with the same treatment; # p<0.05 versus insulin secretion at equivalent glucose concentrations of control).

Figure 3: PTHrP increases expression of cyclin E and cdk2 proteins but not mRNA in human islets. (A) Expression of G1/S cell cycle regulators by real time PCR from human islets treated for 24h with vehicle (Ctrl, black bar) or PTHrP(1-36) peptide (grey bars). PCR cycles for each gene were compared to actin used as an internal control. The graph is depicted as fold-over control, with values from vehicle-treated islets taken as one (n=4-7 human islet preparations in duplicate). (B) Representative western blot analysis of the G1/S cell cycle activators and inhibitors from human islets treated for 24h with vehicle (veh) or PTHrP(1-36) using actin or tubulin as the internal housekeeping (HK) gene control. Quantitation of the ratio of (C) cyclin E/HK and (D) cdk2/HK protein shows a significant increase in both these proteins in PTHrP(1-36) treated islets versus control (veh), depicted as 100% * p<0.05 (n=4-9 human islet preparations).

Figure 4: Overexpression of cyclin E and cdk2 enhances human β-cell proliferation. (A) Western blot analysis of human islets uninfected (UI) or transduced with Ad-control (ctrl) or a combination of Ad-cdk2/Ad-cyclin E (cdk2/cyc E) for expression of cdk2, cyclin E and actin as an internal control. The line divides samples from different regions on the same gel. (B) Representative cell cycle phase distribution profiles and (C) Percentage of cells in S-phase of the cell cycle of uninfected (UI), Ad-control (ctrl) or Ad-cdk2/Ad-cyclin E (cdk2/cyc E)-transduced human islet cells analyzed using flow cytometry. The percentage of cells in G1-phase was reduced, although not significantly, in Ad-cdk2/Ad-cyclin E-transduced (G1: 91.1±1.0%, G2/M: 5.4±1.2%) versus uninfected (G1: 93.0±1.3%, G2/M: 5.4±1.2%), and Ad-control-transduced (G1: 94.0±1.0%, G2/M: 4.6±0.9%) human islets, whereas the percentage of cells in S-phase of the cell cycle in Ad-cdk2/Ad-cyclin E-transduced human islets was significantly greater compared to UI or Ad-control-transduced human islets (n=10 human islet preparations). (D) Representative images of human islet cell cultures transduced with 100 MOI of Ad-control (Ctrl), 50 MOI of Ad-ctrl plus 50 MOI of Ad-cdk2 (cdk2) or 50 MOI of Ad-cyclin E (cyc E), and 50 MOI each of Ad-cdk2 and Ad-cyclin E (cdk2/cyc E) and co-stained for DAPI (blue), insulin (green) and BrdU (red). Arrows indicate BrdU and insulin-positive cells. (E) Quantitation of the percentage of BrdU-positive β-cells from human islet cell cultures transduced with the Ad constructs described above in C. There was a significant 5-fold and a 16-fold increase in β-cell proliferation in cyc E- and cdk2/cyc E- versus Ad-ctrl-transduced islet cells, respectively. Basal rate of β-cell proliferation in controls was 0.17±0.06%, taken as 100%. (n=9, 3 human islet preparations in triplicate) * p<0.01 versus ctrl by student’s t-test; # p<0.001 versus the other three groups by one-way ANOVA.
Figure 1

A

B

C

D

E

F

PTHrP and the human β-cell.
Figure 2

A

B

D

C

E

F

PTHRP and the human β-cell.
Figure 3

A

B

Activators

Inhibitors

C

D

PTHrP and the human β-cell.
Figure 4

A

B

C

D

E

PTHrP and the human β-cell.