Partitioning surface ligands on nanocrystals for maximal solubility

Zhenfeng Pang\(^1,2\), Jun Zhang\(^1,2\), Weicheng Cao\(^1\), Xueqian Kong\(^1\) & Xiaogang Peng\(^1\)

A typical colloidal nanoparticle can be viewed as a nanocrystal-ligands complex with an inorganic single-crystalline core, the nanocrystal, bonded with a monolayer of organic ligands. The surface chemistry of nanocrystal-ligands complexes is crucial to their bulk properties. However, deciphering the molecular pictures of the nonperiodic and dynamic organic-inorganic interlayer is a grand technical challenge, and this hampers the quantitative perception of their macroscopic phenomena. Here we show that the atomic arrangement on nanocrystal surface and ligand-ligand interactions can be precisely quantified through comprehensive solid-state nuclear magnetic resonance (SSNMR) methodologies. The analyses reveal that the mixed ligands of n-alkanoates on a CdSe nanocrystal segregate in areal partitions and the unique arrangement unlocks their rotational freedom. The mathematical model based on the NMR-derived ligand partition and dynamics successfully predicts the unusual solubility of nanocrystal-ligands complexes with mixed ligands, which is several orders of magnitude higher than that of nanocrystal-ligands complexes with pure ligands.
M任何天然和人工的材料都是层间相互作用的节点，它们通过共价键作用于结构面具有不同的特征和无限制的多样性。例如，表面配体是纳米晶体-配体复合物的一个重要组成部分，并且显著地影响其性质，如光学性能、稳定性和生物相容性。此外，溶液可加工性对于器件制造至关重要。

对于纳米晶体-配体复合物来说，它们的分子内核的尺寸及其分布对于多种参数，如发光效率、电子和光学特性和溶液可加工性，都是决定性的。因此，控制和预测这些纳米晶体-配体复合物的性质变得至关重要。在最近的研究中，概念化的新熵配体被引入，它们可以显著提高纳米晶体-配体复合物的溶解度，并且可以用光学和电子光学技术来打印电子和光电元件。重要的是，熵配体的可用性及其在合成和处理中的作用，为纳米晶体-配体复合物提供了新的途径，可以显著提高它们的溶解度。通过混合不同类型和长度的碳氢链配体，可以显著提高纳米晶体-配体复合物的溶解度，并且可以完全分散在0.8 mL的氯仿中，而单配体纳米晶体-配体复合物很难溶解。

在纳米晶体-配体复合物中，不同类型的配体和长短不一的碳氢链配体具有简单、通用和易于处理的性质，可用于纳米晶体-配体复合物的合成和处理。在解决溶解度问题时，熵配体的作用是至关重要的。熵配体的概念可以定义为一种适用于多种无机配体的通用策略。例如，通过将单种类型的n-烷基酸配体与不同链长的邻近配体混合，可以显著提高纳米晶体-配体复合物的溶解度。

为了说明表面配体的混合作用，我们使用了固体NMR序列，称为中心-带只检测交换（CODEX）29，在其中，13C-13C横向弛豫超快，可以通过13C-13C偶合网络来观察配体的表面分布。具体来说，我们通过编码序列来观察纳米晶体-配体复合物中纯配体的溶解度，以及带有不同比例的熵配体的纳米晶体-配体复合物的溶解度。通过这种方法，我们可以观察到纳米晶体-配体复合物中不同配体的表面分布。
methodology for probing nanoscale atomic distribution. Compared to other methods, the spin-labeling is chemically non-disruptive and the sensitive dipolar interaction is much more amendable for quantitative modeling.

Figure 2a shows the CODEX decay of the nanocrystal-ligands complexes with pure myristate ligands, which provides the basis for our analysis. The double exponential feature can be described by a non-uniform distribution of small bundles consisting of ~4–6 ligands considering the structural heterogeneity of nanoparticles. The revealed ligand bundles corroborates the earlier report which described the islands of myristates, which provides the basis for our analysis. The double exponential feature can be described by a non-uniform distribution of small bundles consisting of ~4–6 ligands considering the structural heterogeneity of nanoparticles (See Supplementary methods, Supplementary Fig. 4). As we can see, each of the patterns are highly distinctive by their width and shape, e.g., the positions of their edges and horns. In general, the more flexible the sites are, the narrower the patterns would be. Deuterium 2H NMR quadrupolar pattern is a versatile probe to identify different modes of segmental reorientation of organic molecules. Figure 3a shows the respective 2H patterns (under 2 kHz MAS) of an individual CD$_2$ site which undergoes different dynamic modes probable for surface ligands, namely static, trans-gauche$^+$-gauche$^-$ (tgg) rotation, and cone diffusion (described in Supplementary methods, Supplementary Fig. 4).

To model our mixed-ligand systems, we invoked two general ligand partition schemes with fundamentally distinct features, namely ligands distributed in random (Random, Fig. 2c) and areal segregation of either myristates or hexanoates (Areal, Fig. 2d). Matching of experimental CODEX curves for different hexanoate fractions clearly identified the areal partition of surface ligands. Therefore, our NMR investigation successfully realized a geometric classification of surface morphology of nanocrystal-ligands complexes with mixed ligands.

Revealing the dynamic picture of surface ligands. Though the partition of ligands may have profound implications on the ligand–ligand interactions, it is still a steady (or average) picture and the sites are, the narrower the patterns would be. Deuterium 2H NMR quadrupolar pattern is a versatile probe to identify different modes of segmental reorientation of organic molecules. Figure 3a shows the respective 2H patterns (under 2 kHz MAS) of an individual CD$_2$ site which undergoes different dynamic modes probable for surface ligands, namely static, trans-gauche$^+$-gauche$^-$ (tgg) rotation, and cone diffusion (described in Supplementary methods, Supplementary Fig. 4). As we can see, each of the patterns are highly distinctive by their width and shape, e.g., the positions of their edges and horns. In general, the more flexible the sites are, the narrower the patterns would be.

We carried out 2H NMR measurements under variable temperatures on nanocrystal-ligands complexes with fully deuterated myristates and protonated hexanoates. Figure 3b shows two sets of representative 2H patterns obtained at 245 and 300 K (other temperatures in Supplementary Fig. 3a). Evidently,
the differences in chain flexibility between different types of nanocrystal-ligands complexes are more pronounced at the lower temperature.

We deconvoluted each of the patterns in Supplementary Fig. 4 into the three dynamic modes described above with relative populations corresponding to the number of methylene units. Accordingly, we obtained the histograms of flexibility along the myristate ligand at different temperatures, based on the deconvolutions of 2H patterns. The blue, green and gray bars represent static deuterium, tgg rotation and cone diffusion, respectively.

As a step further, we pursued site-specific quantification of ligand dynamics with the DIPSHIFT method, a two-dimensional NMR sequence resolving the 1H–13C heteronuclear dipolar coupling of each carbon resonance. The averaging effect of 1H–13C coupling is a quantitative reference for the segmental

![Fig. 3 2H NMR line shapes and chain flexibility.](image)

Fig. 3 2H NMR line shapes and chain flexibility. **a** The three distinct dynamic modes of methylene units and the corresponding 2H NMR patterns under 2 kHz magic-angle spinning. These dynamic modes could present in a hydrocarbon chain at different temperatures or at different positions, e.g., the middle segment or the free end. **b** 2H NMR patterns for nanocrystal-ligands complexes with pure ligands ($f_{He} = 0$) and nanocrystal-ligands complexes with mixed ligands ($f_{He} = 0.68$) with fully deuterated myristates at 245 and 300 K. **c** The histograms of methylene flexibility along the myristate ligand at variable temperatures, based on the deconvolutions of 2H patterns. The blue, green and gray bars represent static deuterium, tgg rotation and cone diffusion, respectively.
motion of surface ligands. The DIPSHIFT sequence takes advantage of favorable 13C spectral resolution and does not require isotope enrichment. Figure 4a shows the theoretical DIPSHIFT curves for different 1H–13C coupling strengths in the fast motion regime. The observed coupling strength, i.e., the residual dipolar coupling, can be converted into the opening angles of cone diffusion model (Supplementary Fig. 5c). A shallower dip corresponds to a weaker coupling, and therefore a larger opening angle.38

Figure 4b presents the 13C spectra of ligands of nanocrystal-ligands complexes with either pure myristate or mixed ligands, where resolvable signals are assigned to the segments of

Hexanoate fraction	0	0.05	0.68
Hexanoate fraction	0	0.05	0.68
Dissolution enthalpy $\Delta^{m}H_{NC}$ (kJ mol$^{-1}$)	308	304	265
Dissolution entropy $\Delta^{m}S_{NC}$ (J mol$^{-1}$K$^{-1}$)	874	892	916
Melting point, $T_m = \Delta^{m}H_{NC}/\Delta^{m}S_{NC}$ (K)	354	343	291
Total interaction energy E_{tot} (kJ mol$^{-1}$)	305	304	278
Ligand-ligand interaction energy E_{ligand} (kJ mol$^{-1}$)	303	302	274
Inter-particle interaction energy E_{core} (kJ mol$^{-1}$)	1.5	1.5	3.9

Table 1 The thermodynamic parameters of nanocrystal-ligands complexes obtained via light scattering (top panel) and via NMR-based calculations (bottom panel)
n-alkanoates (inset, Fig. 4b). From head to tail along the hydrocarbon chain, the depth of the dip decreases gradually, confirming an increasing flexibility towards the end of methyl group (Fig. 4c). After theoretical conversion of the measured 1H-13C coupling, the opening angles of each myristate segment were obtained for different ligand fractions. Figure 4d shows that the opening angles of myristates on nanocrystal-ligands complexes with mixed ligands ($f_{He} = 0.68$) were found to be much wider than those on nanocrystal-ligands complexes with pure ligands ($f_{He} = 0$), confirming substantially weakened ligand–ligand interaction and significantly enhanced chain dynamics.

Predicting the solubility based on ligand–ligand interactions. Our earlier work based on macroscopic measurements revealed that the dissolution of nanocrystal-ligands complexes is equivalent to a two-step process. In the first step, the solid is melted, which is accompanied by dramatic changes in the enthalpy and intramolecular entropy. In the second step, the melted solid and solvent, two liquids, are mixed, which involves mostly the ideal entropy change of mixing. As long as the inorganic core is relatively small (<5 nm) and the hydrocarbon chain is reasonably long, the enthalpy of dissolution ($\Delta^m H_{NC}$) of the entire process is dominated by the destruction of ligand–ligand interactions. At the same time, a large amount of intramolecular conformational entropy ($\Delta^m S_{NC}$) would be released (Table 1).

Based on the molecular pictures revealed by our NMR studies, we would like to show that the macroscopic solubility of nanocrystal-ligands complexes can be predicted directly from their molecular partition and dynamics. We first predicted the interaction energy (E_{ligand}) using the dispersion energy model for hydrocarbon chains. Such calculations were grounded on the fact that the free volume of each methylene unit (Fig. 5a) can be quantified by the opening angle determined by DIPSHIFT experiments. In addition, the calculation considered the interparticle interaction of nanocrystal cores (E_{core}) although it makes up a relatively small contribution to the total interaction energy (E_{tot}). The results (described in Supplementary methods, Supplementary Fig. 6) showed that the total interaction energy is largely equivalent to dissolution enthalpy (Table 1). Our calculation ultimately predicted the solubility values for a range of nanocrystal-ligands complexes with mixed ligands at the room temperature, which agree well with the measured values (Fig. 5b).

Our work reached a revealing conclusion that the exceptional solubility of nanocrystal-ligands complexes with entropic ligands is quantitatively dictated by the dynamic behavior of ligands along with their partition on the surface of a nanocrystal. The molecular picture established in this work serves as a theoretical blueprint for the flourish of entropic ligands in the field of colloidal nanocrystals. Moreover, our NMR methodology will be applicable to diverse disordered and dynamic nanostructures and could provide crucial guidance for the dedicated regulation of their surface properties.

Methods

Synthesis of CdSe-ligands complexes. The synthesis of CdSe nanocrystals was performed by injecting a 1.0 mL Se-octadecene suspension (0.2 mol L$^{-1}$) into a hot (250 °C) mixture of CdO, myristic acid and 1-octadecene in a 50 mL three-neck flask. Needle-tip aliquots were taken for UV–vis and photoluminescence measurements to monitor the reaction until the desired size has been reached. The reaction mixture of the CdSe-ligands complexes was further purified according to the procedures described in Supplementary methods, and infrared measurement verified that remaining ODE and free acids had been fully removed.

Preparation of nanocrystal-ligands complexes with mixed ligands. Ten milligram purified complexes with pure myristate ligands were dissolved in 0.5 mL chloroform in a 4 mL vial and kept at 50 °C as a clear solution. Hexanoic acid with molar ratios ranging from 0.1 to 2 relative to bonded myristate ligands was added into solution for 2 h. The resulting nanocrystal-ligands complexes with mixed ligands were purified, and the solids have been vacuumed for 12 h to remove residual solvents.

Measurement of ligand fractions. The fraction of hexanoate on nanocrystal-ligands complexes with mixed ligands (Supplementary Table 1) was determined by gas chromatography. The measurements were carried out on samples digested by saturated hydrochloric acid. The molar ratio of hexanoic acid to myristic acid in the digested solution is assumed to be the same as the ratio of those two ligands on nanocrystal surface.

Surface density of ligands. The hydrogen and carbon mass fractions of nanocrystal-ligands complexes were determined by elemental analysis of purified samples. The surface density of nanocrystal-ligands complexes with pure ligands was determined to be ~135 ligands per crystal according to the formula provided in the Supplementary methods. The ligand densities for nanocrystal-ligands complexes with mixed ligands are about the same as their pure-ligand precursors as shown in Supplementary Table 1.

Solubility measurement. The solubility at room temperature was determined by the UV–vis absorbance of saturated solutions of CdSe complexes. The solubility of complexes at various temperatures was measured by the scattering method, in which a known concentration of dissolved complexes in chloroform was slowly cooled down from a relatively high temperature. The scattering intensity of 750 nm...
laser shows a sudden jump when the concentration reaches the solubility at the specific temperature.

NMR experiments. 13C CODEX experiments were carried out on a Bruker Avance III HD 600 MHz spectrometer using a 1.3 mm triple channel magic-angle spinning (MAS) probe. The spinning speed was 8 kHz and 13C chemical shift was referenced to the adamantane signal at 38.5 ppm on the tetramethylsilane (TMS) scale. The 13C experiments were performed on a Bruker Avance III HD 600 MHz spectrometer using the solid echo pulse sequence under 2 kHz MAS or under static conditions. The 3H-11C-H DIPSHIFT experiments were carried out on a Bruker Avance III HD 400 MHz spectrometer using a 3.2 mm triple channel MAS probe with a spinning speed of 4431 Hz (calculated from the 1H homonuclear decoupling strength). Typical radio frequency fields strengths were 62.5 kHz for 13C, 100 kHz for 2H and 100–115 kHz for 11C. The magic angle and field homogeneity of the spectrometers were optimized with KBr and adamantane, respectively. The temperature of NMR experiments was controlled by the Bruker BCU II unit.

Modelling of ligand partition and interactions. The detailed analysis of CODEX and DIPSHIFT experiments and the methods for numerical modelling are described in the Supplementary methods.

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

Received: 5 November 2018 Accepted: 1 May 2019

Published online: 05 June 2019

References

1. Barth, J. V., Costantini, G. & Kern, K. Engineering atomic and molecular nanostructures at surfaces. *Nature* 437, 671 (2005).
2. Yin, Y. & Alivisatos, A. P. Colloidal nanocrystal synthesis and the organic–inorganic interface. *Nature* 437, 664 (2005).
3. Chen, O. et al. Compact high-quality CdSe–CdS core–shell nanocrystals with narrow emission linewidths and suppressed blinking. *Nat. Mater.* 12, 445 (2013).
4. Pu, C. et al. Synthetic control of excitation behavior in colloidal quantum dots. *J. Am. Chem. Soc.* 139, 3302 (2017).
5. Talapin, D. V. & Murray, C. B. PbSe nanocrystal solids for n- and p-channel thin film field–effect transistors. *Science* 310, 86 (2005).
6. Zhu, H. M., Brown, S. P., Baluvić, V. & Bawendi, M. G. Improved performance and stability in quantum dot solar cells through band alignment engineering. *Nat. Mater.* 13, 796 (2014).
7. Dolzhnikov, D. S. et al. Composition-matched molecular “solders” for semiconductors. *Science* 347, 425 (2015).
8. Yang, Y. et al. Entropic ligands for nanocrystals: from unexpected solution properties to outstanding processability. *Nano Lett.* 16, 2133 (2016).
9. Al-Johani, H. et al. The structure and binding mode of citrate in the stabilization of gold nanoparticles. *Nat. Chem.* 9, 890 (2017).
10. michalet_m. et al. Quantum dots for live cells, in vivo imaging, and therapeutic applications. *J. Am. Chem. Soc.* 134, 17734–17742 (2012).
11. Nel, A. E. et al. Understanding biophysicochemical interactions at the nano–bio interface. *Nat. Mater.* 8, 543 (2009).
12. Dai, X. et al. Solution-processed, high-performance light-emitting diodes based on quantum dots. *Nature* 515, 96 (2014).
13. Yang, Y., Qin, H. & Peng, X. Intramolecular entropy and size-dependent solution properties of nanocrystal–ligand complexes. *Nano Lett.* 16, 2127 (2016).
14. Dai, X., Deng, Y., Peng, X. & Jin, Y. Quantum-dot light-emitting diodes for large-area displays: towards the dawn of commercialization. *Adv. Mater.* 29, 1607022 (2017).
15. Lin, L., Chen, M., Qin, H. & Peng, X. Ag nanocrystals with nearly ideal optical quality: synthesis, growth mechanism, and characterizations. *J. Am. Chem. Soc.* 140, 17734–17742 (2018).
16. Zhou, J., Zhu, M., Meng, R., Qin, H. & Peng, X. Ideal CdSe/CdS core/shell nanocrystals enabled by entropic ligands and their core size-, shell thickness-, and ligand-dependent photoluminescence properties. *J. Am. Chem. Soc.* 139, 16556–16567 (2017).
17. Lai, R., Pu, C. & Peng, X. On-surface reactions in the growth of high-quality CdSe nanocrystals in nonpolar solutions. *J. Am. Chem. Soc.* 140, 9174–9183 (2018).
18. Owen, J. The coordination chemistry of nanocrystal surfaces. *Science* 347, 615 (2015).
19. Zherebetskyy, D. et al. Hydroxilation of the surface of PbS nanocrystals passivated with oleic acid. *Science* 344, 1380 (2014).
20. Protesescu, L. et al. Atomicistic description of thiolate–naptate–capped CdSe nanocrystals: retention of four-coordinate SnS4 motif and preservation of Cd-rich stoichiometry. *J. Am. Chem. Soc.* 137, 1862 (2015).
21. Protesescu, L. et al. Strategies in the design of nanoparticles for therapeutic applications. *Nat. Rev. Drug Discov.* 9, 615 (2010).
22. Podsiadlo, P. et al. Ultrastrong and stiff layered polymer nanocomposites. *Science* 318, 80 (2007).
23. Bennett, T. D., Cheetham, A. K., Fuchs, A. H. & Coudert, F.-X. Interplay between defects, disorder and flexibility in metal-organic frameworks. *Nat. Chem.* 9, 11 (2017).
24. Davies, E. et al. Citrate bridges between mineral platelets in bone. *Proc. Natl Acad. USA* 111, E1354–E1355 (2014).
25. Yu, W. W., Qu, L., Guo, W. & Peng, X. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. *Chem. Mater.* 15, 2854–2860 (2003).
26. Li, J., Chen, J., Shen, Y. & Peng, X. Extinction coefficient per CdE (E = Se or S) unit for zinc-blende CdE nanocrystals. *Nano Res.* 11, 3991–4004 (2018).
27. Schmidt-Rohr, K. & Spiess, H. W. Multidimensional Solid-State NMR and Polymers (Academic Press, Cambridge, MA, 1994).
28. Hu, B. et al. Very-long-distance correlations in proteins revealed by solid-state NMR spectroscopy. *Chem. Phys. Chem.* 13, 3585–3588 (2012).
29. de Kevedo, E. R., Hu, W. G., Bonangama, T. J. & Schmidt-Rohr, K. Centerband-only detection of exchange: efficient analysis of dynamics in solids by NMR. *J. Am. Chem. Soc.* 121, 8411 (1999).
30. Harkness, K. M., Balinski, A., McLean, J. A. & Cliffel, D. E. Nanoscale phase segregation of mixed thiolates on gold nanoparticles. *Angew. Chem. Int. Ed.* 50, 10534 (2011).
31. Guarino, G., Rastrelli, S., Scrimin, P. & Mancin, F. Lanthanide-based NMR: a tool to investigate component distribution in mixed-monolayer-protected nanoparticles. *J. Am. Chem. Soc.* 134, 7200 (2012).
32. Liu, X., Yu, M., Kim, H., Mameli, M. & Stellacci, F. Determination of monolayer-protected gold nanoparticle ligand–shell morphology using NMR. *Nat. Commun.* 3, 1182 (2012).
33. Lovigiood, D. D. & Achey, R. Trivalent metal–organic framework reconstruction in CdSe QDs evidenced by 77Se(1H) CP-MAS NMR spectroscopy. *J. Am. Chem. Soc.* 132, 3344–3354 (2010).
34. Sachlgb, J. R. et al. NMR studies of the surface structure and dynamics of semiconductor nanocrystals. *Chem. Phys. Lett.* 198, 431–436 (1992).
35. Wang, J., Dixon, R. & Kollman, P. A. Ranking ligand binding affinities with avidin: a molecular dynamics-based interaction energy study. *Proteins 34*, 69–81 (1999).
36. Milette, J., Yim, C. T. & Reven, L. DNMR study of hydrophilic and hydrophobic silica dispersions in EBBA liquid crystals. *J. Phys. Chem. B* 112, 3322–3327 (2008).
37. Munowitz, M. G., Grifflfl, R. G., Bandoola, G. & Huang, T. H. Two-dimensional rotational spin–echo nuclear magnetic resonance in solids: correlation of chemical shift and dipolar interactions. *J. Am. Chem. Soc.* 103, 2529–2533 (1981).
38. Hong, M., Gross, J. D. & Griffin, R. G. Site-resolved determination of peptide torsion angle ϕ from the relative orientations of backbone N–H and C–H bonds by solid-state NMR. *J. Phys. Chem. B* 101, 5869 (1997).
39. Israelachvili, J. N. *Intermolecular and Surface Forces, Third Edition* (Academic Press, Cambridge, MA, 2011).
40. Talapin, D. V., Shevchenko, E. V., Murray, C. B., Titov, A. V. & Král, P. Dipole–dipole interactions in nanoparticle superlattices. *Nano Lett.* 7, 1213 (2007).
41. Pu, C. et al. Highly reactive, flexible yet green Se precursor for metal selenide nanocrystals: Se–octadecane suspension (Se–SUS). *Nano Res.* 6, 652 (2013).
Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-019-10389-5.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

Journal peer review information: Nature Communications thanks Luming Peng and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2019