The effects of icariine concentration on osteoclasts bone resorption induced by titanium particles in vitro

Yiyuan Zhang*, Yu Lin, Lili Xiao, Eryou Feng, Wulian Wang, Liqiong Lin

Joint Surgery Department, the Second Hospital of Fuzhou Affiliated to Xiamen University, Fuzhou 350007, China

*Correspondence address. Joint Surgery Department, the Second Hospital of Fuzhou Affiliated to Xiamen University, Fuzhou 350007, China. Tel: +86-13905052511; Fax: +86-0591-88039039; E-mail: zhangyiyuan1964@163.com

Received 21 January 2015; revised 12 March 2015; accepted on 14 March 2015

Abstract

In artificial joint replacement, osteoclast bone resorption induced by wear debris of the implant is a main reason for aseptic loosening. To extend the life of the prosthesis, detailed mechanisms of aseptic loosening and the ways to prevent it should be explored. The aim of this study was to investigate the in vitro effect of icariine on the bone resorption of osteoclasts induced by titanium particles. Macrophage colony stimulating factor (M-CSF) and receptor activator of NF-kB ligand (RANKL) were used to generate osteoclasts from RAW264.7 precursors. The proliferation of RAW264.7 precursors in the presence of different doses of icariine was evaluated by MTT assay. The cells were treated with titanium particles, titanium particles with icariine and culture medium only (control), respectively. At 48 h after treatment, the expression level of receptor activator of NF-kB (RANK) was detected by ELISA, and messenger RNA (mRNA) levels of tartrate-resistant acid phosphatase (TRAP), matrix metalloproteinase 9 (MMP-9), carbonic anhydrase II (CAII) and Cathepsin K (CtsK) were determined by real-time polymerase chain reaction. Western blot was applied to analyze the expression levels of TRAP, RANK and CtsK. In addition, bone chips were cultured in the above conditions, and Toluidine blue staining was then employed to calculate the number and area of resorption pits in the bone chips. After treatment with icariine, expression level of RANK was significantly decreased in the RAW264.7 cell that induced by titanium particle and its cultural medium only (control), respectively. At 48 h after treatment, the expression level of receptor activator of NF-kB (RANK) was detected by ELISA, and messenger RNA (mRNA) levels of tartrate-resistant acid phosphatase (TRAP), matrix metalloproteinase 9 (MMP-9), carbonic anhydrase II (CAII) and Cathepsin K (CtsK) were determined by real-time polymerase chain reaction. Western blot was applied to analyze the expression levels of TRAP, RANK and CtsK. In addition, bone chips were cultured in the above conditions, and Toluidine blue staining was then employed to calculate the number and area of resorption pits in the bone chips. After treatment with icariine, expression level of RANK was significantly decreased in the RAW264.7 cell that induced by titanium particle and its cultural medium, mRNA and protein levels of TRAP, CAII, MMP-9 and CtsK were reduced as well. In addition, the numbers of bone resorption pits and areas on bone slices were both reduced by icariine challenging. Icariine could inhibit bone resorption of osteoclast induced by titanium particle, and it might be used as a promising drug for treating of aseptic loosening.

Keywords: icariine; titanium particle; osteoclast; bone resorption; aseptic loosening

Introduction

Artificial joint can reconstruct the joint function with lesions. However, with the extended use of artificial joints, revision renovation gradually increased for various reasons. Many studies have focused on the mechanism and effective prevention of prosthetic loosening to extend the service life of prostheses. The main reason for aseptic loosening is wear particle-induced osteolysis [1]. In the use of artificial joint, wear debris is produced [2], which can elevate a series of inflammatory cytokines, leading to an increased osteoclast activity, bone resorption induction, osteoblast apoptosis induction and osteolysis acceleration [3, 4]. Titanium alloy is one of the most commonly used metal materials for manufacturing artificial joint, and the artificial joint made of titanium alloy also produce wear debris in clinical applications [5]. In the past, aseptic loosening was generally considered to be caused by wear debris produced from ultra high-molecular-weight polyethylene [6]; however, recent studies suggested that the metal wear debris is also an important reason for aseptic loosening of metal implants [7, 8]. Investigations have demonstrated that wear debris surrounding the prosthesis could loosen the prosthesis by activating the osteoclasts differentiation pathway, which can lead to bone resorption [9].
Materials and Methods

Cell lines and compounds

RAW264.7 (Mouse leukemic monocyte macrophage cell line) was obtained from Guangzhou Jennio Biotec Co., Ltd. Icariine was purchased from Shaanxi Huike Plant Development Co., Ltd (purity: 98%, lot no: EP20070615).

Main reagents and instruments

Macrophage colony stimulating factor (M-CSF) and receptor activator of NF-KB ligand (RANKL) factor were obtained from Sigma (St Louis, MO). Titanium particle was supplied by Nonferrous Metals Company (Beijing, China) with a mean diameter of 91 μm. Trizol was purchased from Invitrogen (Carlsbad, CA). RANK ELISA kit was obtained from Xitang Biology Sci-tech Co., Ltd (Shanghai, China). The primers for tartrate-resistant acid phosphatase (TRAP), CA II, matrix metalloproteinase 9 (MMP-9), Cathepsin K (CtsK) and GAPDH were supplied by Sangon Biotechnology Co., Ltd (Shanghai, China). The primers for tartrate-resistant acid phosphatase (TRAP), CA II, matrix metalloproteinase 9 (MMP-9), Cathepsin K (CtsK) and GAPDH were supplied by Sangon Biotechnology Co., Ltd (Shanghai, China).

Preparation of titanium particles

The particles were baked at 300°C for 6h, suspended in 25 ml of 75% alcohol/100 ml particles and vortexed for 24h at 200r/min. After centrifugation, the particles were suspended in 75% alcohol and were stirred for 24h. They were then washed three times with PBS and were dried by UV curing. The cell toxicity was detected using Endotoxin Detection Kit, which showed that the concentration of endotoxin adhesion endotoxin was less than 0.10 EU/ml on particles (nontoxic to the cells) [14]. The particles were washed with a mixture of 25% nitric acid and 0.1mol/l NaOH several times. They were then resuspended in PBS to a final concentration of 5 wt% Ti and were autoclaved. A total of 4.5×10⁷ particles were included in 1 ml of 0.1% (v/v) titanium particle suspensions. This solution was sonicated for 10 min before being applied for cell treatment to prevent adhesion.

Preparation of bone chips

Fresh bovine cortical bone was used to obtain the bone chips with the size of 0.5×0.5×0.2 cm (L×W×T) using a wire saw and grindstone. They were sonicated for 10min in distilled water, and the sonication was repeated three times. After being immersed in 75% alcohol for 24h, the bone chips were air dried and treated on each side with 4h of ultraviolet radiation, after which they were stored at -20°C.

Osteoclast validation

The RAW264.7 cells were seeded into the plates overnight. They were then induced with the addition of a medium including 30 ng/ml M-CSF and 30 ng/ml RANKL. The cell growth morphology was observed under microscopy. After 6 days of incubation, the osteoclasts were verified by TRAP and toluidine blue staining of the bone resorption pits.

Proliferative effects of icariine on RAW264.7

To validate the proliferation effect on RAW264.7 by different concentrations of icariine and to explore the optimum concentration of icariine, cell culture medium with different concentration of icariine was prepared by dissolving the icariine in dimethyl sulfoxide (Sigma-Aldrich Co. LLC.) and then diluted with DMEM containing 10% fetal bovine serum (FBS) to different concentrations (0.1, 0.5, 1, 5, 10, 15, and 20 mg/ml). The RAW264.7 cells were plated at a density of 1×10⁵ cells/ml in 96-well plates. After being cultured overnight, cells were treated with different concentration of icariine, eight wells for each concentration. After 72 h, 10μl of alamar Blue was added and the plates were incubated in the dark for 4h. The supernatant was collected and read at 590 and 560 nm using spectrophotometer.

The challenge of icariine

The RAW264.7 cells were seeded into 6-well plates overnight, 30 ng/ml M-CSF and 50 ng/ml RANKL were added to the cells, followed by a 6-day culture. On the 7th day, cells were treated with icariine in the presence or absence of titanium particles, followed by a 48-h incubation. They were divided into three groups and cultured with different growth media as follows: control group: DMEM with 10% FBS; Ti particle group: 0.1vol% Ti particles + DMEM with 10% FBS; Ti + icariine group: 0.1vol% Ti particles + the optimum concentration of icariine + DMEM with 10% FBS.

ELISA assay to detect the expression level of RANK

The medium was collected after 48h incubation. Sample, sample diluent and standard sample were added to each well. After incubation for 30 min at 37°C, 50 μl of coupling fluid, substrate and termination agent were added into each well to determine the OD value at 450 nm.
The mRNA level of TRAP, MMP-9, CAII and CtsK in osteoclasts

Cells were cultured for 48 h and the total RNA was extracted with TRIZOL. Total RNA from each sample was applied to agarose gels to determine the RNA purity and quantity by ethidium bromide staining, which was analyzed by gel imaging analysis system. The OD260 of the prepared total RNA was measured with spectrophotometer and then used to determine the RNA concentration. For cDNA synthesis, total RNA (500 ng) was used in each sample according to cDNA reverse transcription kits. The PCR amplification was performed in ABI7500 instrument, and primers for the genes are listed in Table 1. The threshold cycle (Ct) values were calculated, and amplification curves were obtained to evaluate the messenger RNA (mRNA) level of the genes. Each experiment was performed three times. The 7500 system SDS software was used for result analysis.

The protein level of TRAP, MMP-9, CAII and CtsK in osteoclasts

Cells were harvested for total protein extraction. Protein concentrations were determined by bicinchoninic acid method. A total of 30 μg of protein was loaded from each sample in 12% polyacrylamide gel. Proteins were electrophoretically separated and transferred to the PVDF membranes. For immunoblotting, the membranes were blocked with blocking buffer for 30 min. Antibodies were diluted 1:5000, and the membranes were incubated with them for 1 h. After being washed with 40 ml of washing buffer for six times (1, 20 and 5 min, twice for each), the blots were incubated with secondary horseradish peroxidase conjugated antibody for 30 min at room temperature. The blots were washed as before, the resulting immunoblots were visualized using ECL substrate. The quantification of protein expression was accomplished by using Phoretix 1D analysis software.

Bone resorption pits were counted and the surface area was measured

The RAW264.7 cells were seeded into a 12-well plate, with one bone chip in each well. The medium with M-CSF and RANKL was added later and it was incubated for 6 days. On the 7th day, the medium containing titanium particles with or without icariine was added into the cells, while the medium alone was used as the control. After incubation for another 6 days, the bone chips were used for Alamar Blue staining analysis. The pits were counted in the whole piece of bone through a 100× microscope, and the results were demonstrated as pit/bone. Bone resorption areas were counted from bone pit images by the image processing software.

Statistical analysis

The results were expressed as mean ± standard deviation of these experiments. F test was performed for statistical analysis using the SPSS 13.0 package. Statistical significance was set at P < 0.05.

Table 1. The list of the primers

Gene name	Upstream primer	Downstream primer
GAPDH	CCGAGAATGGGAAGCTTGTC	AAGCACCAACGAGAGGAGAA
TRAP	CTCTGTGGGACATCAACGAAA	TTAGGGAGACAGGACCTC
MMP-9	CTCCGTTGTCCTGTAATCTGC	TCTGACCTGAACCATACCCCA
CAII	AGGGAGCCCATTACTAG	ATCCAAATTACCCAGCCGT
CtsK	TCGGAATAAGAACAACGCCTG	AAGCACCAACGAGAGGAGAA

Figure 2. RAW264.7 cells co-cultured with Ti, bar = 100 μm (a: titanium particles, b: RAW264.7 cells).

Results

Osteoclast induction and characterization

After induction for 4 days, the RAW264.7 cells were observed to begin differentiating (Figs. 2 and 3). The formation of large, multinucleated cells was observed with more pseudopods. Multinucleated cells with more than three nuclei appeared on the 5th day. On the 6th day, the number of multinuclear cells increased and more pseudopods appeared. The TRAP staining showed a reddish brown precipitation at the cytoplasmic area of the cells. They were negative for nuclear stain, and multinuclearity was observed (Fig. 4). A blue-purple ellipse and sausage-type staining were observed for bone resorption pits after toluidine blue staining (Fig. 5).

The bone chip was stained by toluidine blue, the bone resorption pit numbers were counted and the area was analyzed. It demonstrated that both the number and the area of the bone resorption pits were increased for the titanium particle treatment group when compared with that of the titanium particle and icariine treatment group (Table 2). However, the number and the area of the bone resorption pits were higher in both of these groups when compared with that of the control group (Table 2). There was a significant difference in the multiple comparison test among the three groups as presented in Table 2 (P < 0.05).

Icariine-induced RAW264.7 cell proliferation

The MTT assay was used to determine the proliferation of RAW264.7 cells. It showed that Icariine improved the proliferation of RAW264.7 cells in a dose-dependent manner. Maximum improvement in cell proliferation was observed at a concentration of 10 mg/ml. Therefore, the concentration of 10 mg/ml of icariine was chosen for the rest of the studies (Fig. 6).
The levels of RANK expression in the cells were analyzed. The results showed that the expression level of RANK by Ti treatment was significantly higher than that of the Ti- and icariine-treated group \((P < 0.05)\). Moreover, the RANK expression level was significantly higher in both of them when compared with that of the control \((P < 0.05, \text{Fig. 7})\).

The mRNA level of TRAP, MMP-9, CAII and CtsK in osteoclasts
Real-time PCR results demonstrated that gene expression of TRAP, carbonic anhydrase (CAII), MMP-9 and CtsK were all significantly increased after treatment with Ti or Ti with icariine \((P < 0.01)\). In addition, these gene levels were all higher in Ti-treated group with \(P < 0.01\) (Table 3).

The protein expression level of RANK, MMP-9 and CtsK in osteoclasts
Western blot results showed that the expression levels of RANK, MMP-9 and CtsK in osteoclasts were significantly increased after treatment with Ti or Ti with icariine \((P < 0.05)\). Moreover, the protein of RANK, MMP-9 and CtsK by Ti treatment was significantly higher than that of the Ti- and icariine-treated group \((P < 0.05)\) (Fig. 8, Table 4).

Discussion
After joint replacement, the prosthesis components such as metal, polyethylene, bone cement and surface coating could produce wear debris due to the corrosion and collision of the materials. Wear debris could migrate into the interface between the bone and the implant components, which could induce macrophages to generate inflammation factors, superoxide, metastasis suppressors and metalloproteases [15]. This could in turn induce an intracellular cascade to stimulate cell proliferation, osteoclastogenesis and bone resorption by macrophages and osteoclasts [16]. Wear debris could also improve the proliferation of osteoclasts and osteolysis [17].
Recent studies have shown that the wear eroding osteoclasts (bone resorption), leading to bone deformity and between the bone-forming osteoblasts (bone formation) and the bone
disturb the dynamic homeostasis be-
mimated by osteoclasts [24], while RANK is produced by osteoclasts progenitor or osteo-
cells. The wear debris co-cultured with OPCs could lead to a high expression of RANK in the OPCs [25]. The interaction be-
through the RANKL/RANK system. Thereafter, macrophages were in-
duced to block this process has become an active research emphasis to pro-
and bone resorption might have been mediated through the

The RANKL/RANK/OPG system has been shown to play an im-
portant role in osteoclasts differentiation [22, 23]. RANKL is mainly
produced in periprosthetic osteoblasts and bone marrow stromal cells [24], while RANK is produced by osteoclasts progenitor or os-
Reduced the expression of OPG and induced the osteoblasts prolifera-
tion and differentiation, which led to bone formation [28]. Moreover, icariine improved the transforming growth factor,
inhibited the expression of TNF-α and RANK-RANKL, which could
increase osteoclastogenesis, inhibit bone resorption and increase Ca2+ level in the osteoblasts cells. This could result in retraction of actin, reduction of superoxide anion radicals and reduction of the bone resorption pit area [29–31]. Recently, it was reported that icariine has inhibitory effect on inflammatory osteoclastogenesis induced by Ti micro-particles [32]. However, only the optimum order-of-magnitude of icariine concentration was investigated, while the best concentration was not specified [32]. In our study, the ma-
ture of RAW264.7 and the bone resorption induced by RANKL were decreased by icariine treatment, and the exact best concentra-
tion of the icariine has been found out. In addition, both the number and the area of the bone resorption pits were reduced, the expression level of OPG and RANK was reduced, as well as the mRNA and ex-
expression level of TRAP, MMP-9, CAIL and CtsK were increased. These results indicated that the improvement of osteoclasts
differentiation by Ti might have been mediated through the

In summary, osteolysis induced by wear debris appeared to play
critical roles in the long-term failure of total joint replacement. How
to block this process has become an active research emphasis to pro-
prot the aseptic loosening. Our study demonstrated the inhibitory ef-
efect of icariine on osteolysis induced by wear debris. However, this
was a short-term result from an in vitro study. To investigate the
long-term effect of osteolysis surrounding the hip prosthesis and to un-
relate the detailed mechanism of RANKL/RANK system, further

Meanwhile, they could inhibit the proliferation and differentiation of osteoblasts, which could disturb the dynamic homeostasis be-
tween the bone-forming osteoblasts (bone formation) and the bone-
1.052 ± 0.028* 1.406 ± 0.017** 1.235 ± 0.012**
1.106 ± 0.015* 1.328 ± 0.008** 1.262 ± 0.013**
0.993 ± 0.025* 1.335 ± 0.011** 1.139 ± 0.016**

* * P < 0.01 compared with control.

** P < 0.01 compared with control.
Funding
This work was supported by grants from Natural Science Foundation of China (81302986), Young Foundation of Fujian Province Health Department, China (no. 2007-2-37) and Bureau of Science and Technology, Fuzhou (no. 2009-G-104).

Conflict of interest statement. None declared.

References
1. Abu-Amr Y, Darwech I, Clohisy JC. Aseptic loosening of total joint replacements: mechanisms underlying osteolysis and potential therapies. Arthritis Res Ther 2007;9(Suppl 1):S6.
2. Jiang Y, Jia T, Wooley PH, et al. Characterization of wear debris and wear particles from a metal-on-metal total hip implant. Acta Orthop Belg 2013;79:1–9.
3. Mishra PK, Wu W, Rozo C, et al. Micrometer-sized titanium particles can induce potent Th2-type responses through TLR4-independent pathways. J Immunol 2011;187:6491–8.
4. Sobieraj MC, Rimnac CM. Ultra high molecular weight polyethylene: mechanisms of particulate-induced aseptic implant loosening. Acta Pharm Sin B 2013;3:76–85.
5. Ren K, Dusad A, Zhang Y, et al. Therapeutic intervention for wear debris-induced aseptic implant loosening. J Mech Behav Biomed Mater 2014;3:103:709–17.
6. Grosse S, Haugland HK, Lilleng P, et al. Wear particles and ions from cemented and uncemented titanium-based hip prostheses—a histological and chemical analysis of retrieval material. J Biomed Mater Res B Appl Biomater 2014;103:709–17.
7. Botolin S, Merritt C, Erickson M. Aseptic loosening of pedicle screw as a result of metal wear debris in a pediatric patient. Spine (Phila Pa 1976) 2013;38:E38–42.
8. Allen DJ, Beaulieu PE. Rationale for metal-on-metal total hip replacement. J Surg Orthop Adv 2008;17:6–11.
9. Ming LG, Chen KM, Xian CJ. Functions and action mechanisms of flavonoids genistein and icariin in regulating bone remodeling. J Cell Physiol 2013;228:513–21.
10. Guo D, Wang J, Wang X, et al. Double directional adjusting estrogenic effect of naringin from Rhizoma drynariae (Ginsu). J Ethnopharmacol 2011;138:451–7.
11. Yin XX, Chen ZQ, Liu Zj, et al. Icariin stimulates proliferation and differentiation of human osteoblasts by increasing production of bone morphogenetic protein 2. Chin Med J (Engl) 2007;120:204–10.
12. Ding HL, Wu YS, Lin Y, et al. Changes with age and effect of icariin on genetic expression of RANKL-OPG in rat’s osteoblasts. J Tradit Chin Orthop Traumatol 2010;22:7–10.
13. Lin Y, Wu Y, He J, et al. Effects of ginsenosides rgl1 on osteoblasts cultured with Ti particles. Biomol Ther (Seoul) 2012;20:75–80.
14. Yan MN, Dai KR, Jia QW. The abstraction and analysis of wear particles in osteolysis tissue surrounding the prosthesis. J Clin Orthop 2005;8:70–3.
15. Kaufman AM, Alabre CI, Rubash HE, et al. Human macrophage response to UHMWPE, TiAlV, CoCr, and alumina particles: analysis of multiple cytokines using protein arrays. J Biomed Mater Res A 2008;84:464–74.
16. Rozo C, Wu W, Cheng J, et al. Prophylactic and therapeutic effect of icariin from Rhizoma drynariae on osteolysis induced by metal wear debris. J Tradit Chin Med 2009;29:271–3.
17. Chen BL, Xie DH, Wang ZW, et al. Effect of total flavone of epimedium on expression of bone OPG, OPGl mRNA in ovariectomized rats. J Tradit Chin Med 2008;28:664–74.
18. Feng SF, Wang X, Bu Y, et al. Icariin and its main monomers inhibit osteoclasts and osteoclastogenic signaling by interleukin-6 and interferon-gamma. J Cell Physiol 2007;213:186–194.
19. Sun QL, Tu Y, Sun A, et al. Correlation of E-selectin gene polymorphisms with risk of ischemic stroke—a meta-analysis. Neurology 2012;79:695–6.
20. Suryaprasad AG, Prindiville T. The biology of TNF blockade. Autoimmun Rev 2003;2:346–57.
21. Rakshit DS, Ly K, Sengupta TK, et al. Wear debris inhibition of anti-osteoclastogenic signaling by interleukin-6 and interferon-gamma. J Biomech Mater Res 2009;79:841–8.
22. Zhu S, Chen K, Lan Y, et al. Alendronate protects against articular cartilage erosion by inhibiting subchondral bone loss in ovariectomized rats. Bone 2013;53:340–9.
23. Zhou DW, Zhang HY, Zang HM, et al. An in vitro study on neuroprotective effects of Gengnianchun decoction and its main monomers against amyloid beta protein-induced cellular toxicity. J Chin Integr Med 2010;8:67–73.
24. Cui J, Zhu Z, Zhu S, et al. Inhibitory effect of icariin on Ti-induced inflammatory osteoclastogenesis. J Surg Res 2014;192:447–53.