The Automated Mapping of Plans for Plan Recognition

Marcus J. Huber, Edmund H. Durfee, Michael P. Wellman

Artificial Intelligence Laboratory
The University of Michigan
1101 Beal Avenue
Ann Arbor, Michigan 48109-2110
{ marcush, durfee, wellman } @engin.umich.edu

May 26, 1994

Abstract

To coordinate with other agents in its environment, an agent needs models of what the other agents are trying to do. When communication is impossible or expensive, this information must be acquired indirectly via plan recognition. Typical approaches to plan recognition start with a specification of the possible plans the other agents may be following, and develop special techniques for discriminating among the possibilities. Perhaps more desirable would be a uniform procedure for mapping plans to general structures supporting inference based on uncertain and incomplete observations. In this paper, we describe a set of methods for converting plans represented in a flexible procedural language to observation models represented as probabilistic belief networks, and we outline issues in applying the resulting probabilistic models of agents when coordinating activity in physical domains.

1 Introduction

Decisions about what to do should be based on knowledge of the current situation and expectations about possible future actions and events. Anticipating the actions that others might take requires models of their decision-making strategies, including models of goals that they are pursuing. Unfortunately, ascertaining the goals of others can be problematic. In competitive situations, agents may forfeit some advantage by revealing their true goals. Even in cooperative situations, explicit dialogue about goals can be impossible or undesirable given possible failures, restrictions, costs, or risks.

*This research was sponsored in part by NSF grant IRI-9158473, DARPA contract DAAE-07-92-C-R012, and AFOSR grant F49620-94-1-0027.
Agents that function in environments where explicit communication about goals is often impractical need alternative means to ascertain each others’ goals, such as recognizing the plans and goals of other agents by observing their actions. To perform plan recognition, an observing agent needs a model of the observed agent’s possible goals and plans, and what actions the observed agent could take to accomplish those plans and goals. We focus on the case of collaborative agents, where efficient and effective team coordination requires good models of each team participant’s goals and plans. If we assume that team participants will either be designed or trained similarly, then they will have similar or identical knowledge for planning actions to achieve goals. Unfortunately, however, knowledge of the plan structures of the other agents does not, by itself, permit the agent to perform plan recognition.

To perform plan recognition, therefore, an agent needs to reason from the evidence provided by observations of other agents’ activities. An agent’s actions are, in general, applicable toward a number of different goals, so that observation of any single action will not provide enough evidence to disambiguate the goal that motivated the agent’s choice of action. Sequences of actions will tend to disambiguate the intentions of other agents, as the hypotheses that are consistent with all (or many) of the observed agents’ actions gain more and more support.

An agent therefore needs to be able to take the plan structures that it has for another agent and convert them to a model that relates plans to observable actions. In this paper, we describe a method that takes plans as generated by a planning system, and creates a belief network model in support of the plan recognition task.

2 Related Work

An issue common to all plan recognition systems is the source and availability of the plan structure, which defines the relationships among goals, subgoals, and primitive actions. Many different plan structures have been utilized, including hierarchies of varying forms (plan spaces [CLM84]), action taxonomies [KA86], AND/OR trees [Cal89], context models [Car90], plan libraries [LG91]), associative networks [CC91], SharedPlans [LGS90], plan schemas [GL90], and multi-agent templates [AFH89]. All of these structures were designed specifically to support the plan recognition task. The direct output of a planning system, in contrast, is an object designed to be executed, not recognized. For the most part, prior work has not addressed the problem of how the plan recognition structures are (or could be) derived from executable plans as generated by planning systems.

In our research, we start from a language designed (not by us) for plan specification, as opposed to plan recognition. The particular language we have adopted is PRS [IGR92, IG90], though any standard plan language would serve just as well. PRS was chosen for a number of reasons, including that it supports all of the standard planning constructs such as conditional branching, context, iteration\(^1\), subgoaling, etc. PRS also has a hierarchically structured plan representation which we exploit to create belief networks that are organized in a similar, hierarchical manner.

\(^1\)Our methodology does not currently support iteration, although this is being investigated.
From a PRS plan, we generate a model that directly serves plan recognition by relating potential observations to the candidate plans. The model we generate is in the form of a probabilistic belief network (henceforth: belief network) [Pea88], which expresses probabilistically the causal relations among underlying goals, intentions, and the resulting observable actions.\(^2\)

Our research bears the strongest resemblance to Goldman and Charniak’s prior work on plan recognition using belief networks [CG93]. Like ours, their system generates a belief network dynamically to solve a plan recognition problem. There are several significant differences, however. First, the plan language they employ is a predicate-calculus-like representation based on collections of actions with slot fillers with hierarchical action descriptions. This representation seems well suited for modeling part-subpart relationships (goal/subgoal and is-a), and their target domain of story understanding and may have influenced this. Our plan language is based upon PRS, which has a very different set of structural primitives, including explicit sequencing, conditionalization, iteration and context. PRS is a general purpose planner, with a representation that is intended to permit any form of plan structure.

Second, Goldman and Charniak first translate plan knowledge into an associative network (their term) by using a set of generic rules for instantiating (unifying) the network with the plan knowledge. It is these instantiated rules from which they dynamically generate a belief network for a given sequence of observations (i.e. bottom-up). Our system, on the other hand, generates a belief network from the plan representation itself, and before receiving any observations (i.e. top-down). We foresee the top-down approach having the characteristic of being able to prune (perhaps significant) portions of the resulting belief network based upon the context in which the plan recognition system finds itself. We believe these approaches are complementary, both in addressing separate sets of plan-language issues, and in emphasizing different forms of dynamism in model generation.

Finally, this work is related to a growing body of other work in the the dynamic generation of belief networks [Bre92, WBG92]. Although our methods are specifically geared to plan recognition (like Goldman and Charniak’s), techniques for generating probabilistic models from other forms of knowledge may have wider applicability.

3 PRS and Belief Networks

In this section, we give a basic description of the PRS plan representation, from which we start, with and belief networks, the target representation for performing plan recognition.

3.1 The Procedural Reasoning System (PRS)

[IGR92, IG90] specifies plans as collections of actions organized into Knowledge Areas, or KAs. PRS KAs specify how plans are selected given the current goal (its purpose) and situation (its context). PRS KAs also specify a procedure, called the KA body, which it follows while

2The issue of probabilistic plan recognition is orthogonal to the issue of probabilistic planning (cf. BURIDAN [KHW93], for example) and hence the representations created for planning under uncertainty are not inherently any more conducive to the plan recognition process.
attempting to accomplish its intended goal. This procedure is represented as a directed graph in which nodes represent states in the world and arcs represent actions or subgoals. Actions may consist of primitive operations (indicated by * in KA diagrams), goals to achieve (!), goals to maintain (#), goals to be tested (?), or conditions to be waited upon (^). KA actions may also assert facts (→), or retract them (←). Branches in the graph may be of type AND or OR, indicating, respectively, that all or only one of the branches must be completed successfully in order to satisfy the KA’s purpose. See [IGR92, IG90] for a more detailed description.

3.2 Belief Networks

A belief network is a directed acyclic graph \((F, X)\) representing the dependencies \(F\) among a set of random variables \(X\). Each random variable \(x_i \in X\) ranges over a domain of outcomes \(\Omega_i\), with a conditional probability distribution \(\Pi_i\) specifying the probabilities for \(x_i = \omega_i\) for all \(\omega_i \in \Omega_i\), given all combinations of outcome values for the predecessors of \(x_i\) in the network. For a more thorough account of belief networks, see, for example, [Pea88] or [Nea90]. To avoid confusion, we refer to the action and goal nodes in a KA as nodes, and the nodes of a belief network as (random) variables.

4 The Mapping Method

We now describe our method for mapping plans into belief networks, first with simple sequences of actions and then with more complex plan structures. The resulting procedures a broad class of plans, including those with conditional branching and subgoaling. Two notable features that we do not cover, however, are iteration (or recursion), and plan variables. Both are left for future work.

In the remainder of the section, we discuss the basic operations involved in mapping PRS KAs to belief networks. Our description is illustrated with an example military reconnaissance task, in which two (or more) cooperative agents pass through a sequence of locations, alternately navigating (also called bounding) or protectively watching (overwatching) while concealed from view.

4.1 Single, non-branching plans

Figure 1(a) depicts an example PRS plan consisting of a simple sequence of primitive actions. This KA says that in order to achieve the goal of accomplishing a “bound” goal, the operations of moving to the next location (the via point) and finding a place of concealment must be accomplished. Knowing this, if an observer were to see an agent moving toward a grove of trees, the observer might predict that the observed agent was about to enter the grove. We would like the belief network generated from this KA to support this sort of inference.

The first step in creating the belief network is to create a variable representing the goal to be achieved by the KA. The remaining variables, connections, and probabilities all provide evidence for or against the proposition that this is the goal being pursued by the observed
agent. In our figures, we use the KA’s name for the variable in the belief network representing the KA’s goal.

We now create a new random variable for each action in the KA. The state space for each variable is determined by whether the action is a goal—with a state space of {Inactive, Active, Achieved}, or a primitive action (a basic, non-decomposable behavior of the agent)—with a state space of {Performed, NotPerformed}. Each of these new variables is dependent upon the KA’s goal variable because it is the adoption of this goal that causes the performance of these actions in this particular sequence. To model the temporal relationship between move_to_next_viapt and find_cover, we create an arc between these variables.

Because we are constructing the belief network in order to perform plan recognition, it is important to model the uncertainty associated with observations [HD93]. For example, detecting the exact movements of another agent might be error-prone, while it might be easy to ascertain when the agent enters a grove of trees. Yet whether this entry represents a concealment action may be relatively less certain. To capture these differences, we add evidence variables to represent the relation between an observation and our belief that the observed event is an instance of the corresponding action. Evidence variables also provide a way to account for features that, while not corresponding to actions directly, provide some information regarding whether the action was performed. This indirect evidence is often all we have, as some fundamental actions may be inherently unobservable. In Figure 1(b), we indicate evidence variables by drawing them with heavy outlines.

A typical KA also specifies the context in which it is useful, which restricts its applicability for the associated goal. For example, the “bounding overwatch” technique of travel between locations might only be necessary when enemy forces are in the vicinity. To capture these constraints in the belief network, we add one new variable for each condition in the KA’s context, and include a dependency link from the goal to each context variable. The belief network constructed for the KA shown in Figure 1(a) is shown in Figure 1(b).

The last task is to determine the probability distributions for each of the random variables.

3In our depiction of belief networks, we distinguish among the various sources of dependency graphically by line type: subgoal/subaction arcs are normal-weight solid lines, inhibitory arcs are normal-weight dashed lines, temporal dependency arcs are heavy dashed lines, and context arcs are heavy solid lines.

4To apply this technique for a plan language supporting partially ordered actions, we would simply omit the temporal dependency arcs between steps in plans that are unordered.

5In subsequent figures, for simplicity, we treat evidence implicitly by depicting the pair of action and evidence as a single variable.
Unfortunately, information about the degree of uncertainty in these relationships is not inherent in the executable plan description, and no planning system provides this probabilistic knowledge as a matter of course. We could specify this information separately based on our own subjective assessment of the domain, or it could be estimated syntactically by analyzing the frequency of occurrence of particular actions among all those that achieve particular goals. Alternately, the probabilities might be determined through empirical study of the frequency of occurrence of goals and actions during the execution of the plans in actual situations. If there is no available probabilistic information, a default assignment of equiprobability among alternatives can be used to indicate this lack of knowledge. This would permit a belief network to be fully specified in the presence of incomplete modeling information while perhaps still providing useful inferences based upon the part of the model that was specified.

Some of the dependencies of the constructed belief network are generically specifiable, however. For example, the relation between goal and context variables (if they represent true constraints) are partially deterministic, as the goal cannot be active unless the context condition is satisfied.

The procedure for subgoaling plans is essentially the same as that for the single-level case, with the extension that subgoals need to be expanded into their constituent KA procedure. This requires treating the subgoal as a goal variable in Section 4.1. An example multi-level KA is shown in Figure 2(a), and Figure 2(b) depicts its corresponding belief network. Notice that the belief network structure beneath the move_to_next_viapl variable has the same form as that of perform_bound in Figure 1(b).

4.2 Conditional plans

For plans with conditional branches, the KA’s goal is again the root variable for the belief network. Each action in the KA body becomes a random variable in the network as in the mapping specified in Section 4.1. However, in the conditional case, not all actions are linked. For instance, an OR branching in a KA means that an agent need only successfully execute one of those branches. We assume that one branch is executed (either successfully or unsuccessfully) before another one is tried, so that only one sequence of actions will be active at one time. Therefore, the action variables within a branch are linked temporally as in a non-branching plan, and the variables representing the first actions in each of the disjunctive branches are linked with inhibitory arcs representing their exclusivity. The effect of this arc is that positive belief that the agent is pursuing one of the branches will inhibit belief in the
alternative branch(es). For AND branches, we can similarly assume either independence (our default), or a positive mutual reinforcement among branches. An example of a KA with an OR branch, and the resulting belief network, are shown in Figure 3(a) and Figure 3(b), respectively. If the branch were an AND instead, the same belief network would result, minus the arc between \textit{find_concealing_foliage} and \textit{find_concealing_object}.

4.3 Multiple goals, multiple plans

Quite often, there are several top-level goals that an agent may be pursuing. To represent the interdependencies between multiple top-level goals, we adopt the convention of always creating an arc between the top-level goal variables and modeling the dependence (or independence) through the conditional probabilities associated with these variables. An example of a mapping for this type of plan to a belief network is shown in Figures 4 and 5.

Thus far we have assumed that an agent being observed is pursuing only a single approach (KA) to satisfy each of its goals. However, there are often multiple KAs for any goal. The

\footnotesize
\textit{The assumption of exclusivity can be relaxed by suitable assignments of inhibitory probabilities. Or, we could alternately have chosen to assume that pursuit of the alternate branches are independent, in which case the inhibitory dependencies would be unnecessary.}

\footnotesize
4.3 Multiple goals, multiple plans

Quite often, there are several top-level goals that an agent may be pursuing. To represent the interdependencies between multiple top-level goals, we adopt the convention of always creating an arc between the top-level goal variables and modeling the dependence (or independence) through the conditional probabilities associated with these variables. An example of a mapping for this type of plan to a belief network is shown in Figures 4 and 5.

Thus far we have assumed that an agent being observed is pursuing only a single approach (KA) to satisfy each of its goals. However, there are often multiple KAs for any goal. The

\footnotesize
\textit{The assumption of exclusivity can be relaxed by suitable assignments of inhibitory probabilities. Or, we could alternately have chosen to assume that pursuit of the alternate branches are independent, in which case the inhibitory dependencies would be unnecessary.}

\footnotesize
4.3 Multiple goals, multiple plans

Quite often, there are several top-level goals that an agent may be pursuing. To represent the interdependencies between multiple top-level goals, we adopt the convention of always creating an arc between the top-level goal variables and modeling the dependence (or independence) through the conditional probabilities associated with these variables. An example of a mapping for this type of plan to a belief network is shown in Figures 4 and 5.

Thus far we have assumed that an agent being observed is pursuing only a single approach (KA) to satisfy each of its goals. However, there are often multiple KAs for any goal. The

\footnotesize
\textit{The assumption of exclusivity can be relaxed by suitable assignments of inhibitory probabilities. Or, we could alternately have chosen to assume that pursuit of the alternate branches are independent, in which case the inhibitory dependencies would be unnecessary.}
5 An Example

The following example illustrates the entire process, mapping PRS plan structures to a belief network, and using the result for plan recognition.

5.1 Mapping to belief network

Figure 8 depicts four KAs relevant to the bounding overwatch task. The !bound_performed KA shows that the agent must first move to its next via point before looking for a suitable place from which to watch over the other agent. There are two KAs for dealing with an enemy agent, both conditioned on the context of an enemy agent having been sighted. Hiding, however, can consist of either moving into foliage or moving behind some concealing object. Furthermore, moving to a via point requires the agent to first accomplish !moved_to_next_viapt, the rightmost KA in Figure 8, which consists of a simple, non-branching sequence of operations.

Using the methods described in Section 4, the system begins mapping this collection...
of KAs into a belief network, starting with the top-level goals of `bound_performed` and `deal_with_enemy`. The system finds that the first action in the `bound_performed` KA is the goal `moved_to_next_viapt` and recurses. The `moved_to_next_viapt` KA is straightforwardly added and the mapping of `bound_performed` resumes. The system then proceeds to map `deal_with_enemy`. As `deal_with_enemy` has two potentially applicable KAs, the methodology of Section 4.3 is used, where each KA is processed individually and then joined by an abstract goal variable representing both KAs. In addition, the OR branch in the `hide` KA complicates the construction a bit by introducing additional dependencies (as discussed above in Section 4.2). To complete the mapping, the system creates an inhibitory link between the two top-level goals (`bound_performed` and `deal_with_enemy`) to indicate that only one OR the other of these goals can be achieved at the same time. The finished belief network structure is shown in Figure 9. The marginal and conditional probabilities are then loaded into the network (as mentioned in Section 4). We now show how the new representation permits an agent to infer the plans and goals of another agent based on its observed behavior.

5.2 Plan recognition

Suppose that Agent A is watching Agent B as they perform a reconnaissance task. Agent A and Agent B are in the military so of course there are standard operating procedures for everything. In this case the agents are using bounding-overwatch for reconnaissance, which means that one agent moves while the other agent watches for danger while concealed, with the two agents alternating between roles. These procedures are represented by the KAs in Figure 8, which get mapped into the belief network structure shown in Figure 9. Agent A observes the actions taken by Agent B, and, whenever an action is performed that fits into the model, Agent A adds this information to the belief network. After the evidence is propagated, the resulting probability distributions represent Agent A’s beliefs about Agent B’s goals posterior to the evidence.

Starting with a belief network without any applied evidence, suppose Agent A notices...
that Agent B moves in the direction of, and arrives at, the next stop in the reconnaissance route. Agent A interprets this as having completed \textit{moved_to_next_viapt} (an example of the ability to make observations at a higher level than the “primitive” action level) and propagates this evidence through the network. This results in distributions of \textit{perform_bound}: Inactive 0.19; Active 0.69, Achieved 0.11, and \textit{deal_with_enemy}: Inactive 0.41; Active 0.49; Achieved 0.09. The relatively high level of belief in the \textit{deal_with_enemy} goal is due to its having a high prior. This evidence alone suggests to Agent A that Agent B might be involved with performing the bounding role of the reconnaissance task, but it is not entirely clear at this point. Agent A determines, based upon its beliefs, that it should continue to watch for enemy agents. Continuing, if Agent A later observes Agent B moving into cover, Agent A now strongly believes that Agent B is finishing its bound process with beliefs of \textit{perform_bound}: Inactive 0.0; Active 0.17, Achieved 0.83, and \textit{deal_with_enemy}: Inactive 0.62; Active 0.32; Achieved 0.06. Agent A reasons that everything is going according to plan and maintains its own position until Agent B has established itself in an overwatch position.

However, if instead of moving to a via point as above, Agent B moves in some other direction and moves into a growth of foliage, Agent A, through the plan recognition system, realizes that Agent B established a goal of \textit{hide} (Inactive 0.03, Active 0.51, Achieved 0.46) since Agent B has detected an enemy (Performed 0.64, NotPerformed 0.36) and that Agent A should therefore come to its aid. Agent A and Agent B might then go one to use their respective plan recognition systems to individually infer the goal(s) of the enemy agent and to determine what each other are intending to do so as to coordinate an attack or defense against the enemy agent.

\footnote{Until Agent B actually arrives at the via point, its movements might be ambiguous enough that it is unclear which of the move-type observations should be instantiated. In this case, evidence for \textit{all} of them might be instantiated and the resulting beliefs used, providing Agent A with at least some information.}
This above simple example illustrates how the plan recognition system can aid an agent in coordinating its own activities with another, observed agent (be it friend or foe). Of course, this can be done without any, perhaps dangerous, explicit communication between the agents. One of the issues that must be faced by an agent relying upon coordinating through plan recognition, however, is determining whether to take action based on the observations, or whether to wait and gather more observations.

6 Commitment

In order to get a feel for how an agent might reason with plan recognition belief networks, we performed a series of experiments (one of which is detailed here) where we explored this issue. For, unlike coordination approaches involving communication, where agents explicitly declare their goals/plans to each other, coordination involving plan recognition involves uncertainty in whether plans have been correctly identified. Because uncertainty often decreases as an agent gathers more information, a tradeoff exists between acting in a timely manner (by not waiting) and ensuring a correct action (by waiting). That is, if the agent commits too early, when beliefs are low and somewhat ambiguous concerning the other agent’s goals, the agent might waste effort on actions that are inappropriate, redundant, etc. On the other hand, if the agent waits until there is little or no ambiguity before it acts (when the belief in one goal is much higher than any other), a great amount of time (or some other resource) might have been wasted.

We explored this tradeoff before we developed the transformation method in this paper, using hand-constructed belief networks for several robotic navigation scenarios. A hand-constructed belief network for an extremely simple scenario is shown in Figure 10. This belief network represents the simple behavior of moving directly to a destination location (goal) from the robot’s current location. The PRS KA from which something like this might result is shown in Figure 11\(^8\). Note, however, that the belief network in Figure 10 is not the network that would actually result from our methodology. This is shown in Figure 12(a), with Figure 12(b) being the identical belief network simply renamed for comparison purposes with the simplistic labels used in our hand-constructed network. The differences between the networks are not important to the general implications of our research on commitment, which we summarize here (for more details regarding the specifics of the belief network shown in Figure 10, see [HD92].) We do, however, plan on performing experiments similar to those found in this section on belief networks actually generated by our methodology.

The setting for our commitment experiments is a simple simulated grid world in which exist two agents, one of which observes the other and attempts to determine the observed agent’s destination. A small set (10) of the grid locations in the grid “world” are given as possible destinations. After the agents are started in random initial locations, one agent moves to a prespecified destination while the other agent observes and performs plan recognition. The observing agent’s task was to either rendezvous with the observed agent or move to the

\(^8\)The ‘vfH’ in the primitive function vfH-move-to-xy stands for Vector Field Histogram, an algorithm for obstacle avoidance while navigating [BK91].
destination location furthest from the observed agent’s goal. The observing agent was told which strategy to use for each experiment. Then, in each experiment, we kept track of the following variables:

Ave End Time: The average time step at which the simulation ended. The criterion for this was the time at which all agents arrived at their final destinations.

Ave Last Move Time: The average time step at which the observing agent performed its last movement action.

Ave Total Moves: The average number of moves made by the observing agent throughout the experiment.

Because we wanted to get an understanding of the tradeoffs of time versus effort as commitment changed, we established a threshold of belief. Only when the overwatching agent held belief in a potential destination location above this threshold would it commit to the appropriate destination location. In the results shown in Figure 13, where the destinations are distributed randomly throughout the “world”, the tradeoff between time and effort is clearly seen. It is evident that, as the watching agent waits for higher levels of belief before committing to action, the watching agent saves in the total number of moves that it has to make (on the average). In this scenario, the agent saves approximately two moves if it waits until it is absolutely sure which destination the agent that it is watching is going to. The extra time spent waiting, six time steps, might be quite costly relative to the cost of motion, however, and would have to be considered within the constraints of the domain. Another observation from these results is that there seems to be little affect of having a threshold below 0.3 or 0.4. It appears that beliefs below this level indicate that the overwatching agent is still pretty confused about the final destination of the other agent.

More extreme results resulted from changing the destination distribution and assigning the “move to opposite” task to the observing agent. The results are shown in Figure 14. Here we see a sharp and very large decrease (approximately twenty) in the total number of moves. Most notable, however, is the decrease in the simulation times. This “worst-case” illustrates and example of an environment in which actions are very costly. In other words, early commitment to an incorrect final destination, resulting in subsequently switching to the correct destination later in the simulation, led to movement on the part of the observing agent that took it pretty much in the opposite direction of where it eventually wanted to go. The decrease in the simulation times for large thresholds results from not moving in the wrong direction, which would require later backtracking. And, of general note, is the relatively high
Figure 11: Possible PRS KA for belief network.

Figure 12: Belief network resulting from using our automatic construction methods.

values for all of the variables in this environment. This is an indication that it is a very
difficult environment in which to operate, with a high cost associated with mistakes based on
early commitment.

7 Conclusions

We have described methods by which plans in their executable form can be automatically
mapped to belief networks. The examples of the implemented system illustrate that, at

Figure 13: Results with random destination distribution.
least for the simple plans so far explored, our methods yield belief networks that facilitate coordination by allowing agents to recognize the plans of other agents. In the near future we plan to extend our methodology to deal with iteration and recursion, and to implement this system on physically embodied agents (robots) that will use plan recognition as part of their coordination mechanism. Based on our preliminary experiments in simulation, plan recognition represents a promising tool for improving agent’s knowledge for coordination, but raises important issues in deciding when and how to act given uncertain models of other agents.

While much work yet remains, we see these methods as important steps toward knowledge re-use, where automating the mapping process allows the same knowledge to be used for both planning and plan recognition. Moreover, just as concerns about storing all possible plans for all possible combinations of goals and worlds led to algorithms for dynamically constructing plans on the fly, so too do concerns about building unwieldy models of agents’ actions in all possible worlds lead to a desire for dynamically constructing belief network models for situation-specific plan recognition activities. Our methods represent some initial steps in this direction.

8 Acknowledgements

We would like to acknowledge the reviewers for their insightful and helpful comments on this paper. We have addressed their concerns as best we can given time and space constraints.

References

[AFH89] J. Azarewicz, G. Fala, and C. Heithecker. Template-based multi-agent plan recog-
nition for tactical situation assessment. In *Proceedings of the Sixth Conference on Artificial Intelligence Applications*, pages 247–254, 1989.

[BK91] Johann Borenstein and Yoram Koren. The Vector Field Histogram for fast obstacle-avoidance for mobile robots. *IEEE J. Robotics and Automation*, 7(3), 1991.

[Bre92] John Breese. Construction of belief and decision networks. *Computational Intelligence*, 8(4):624–647, 1992.

[Cal89] Randall J. Calistri. A modified A* algorithm for robust plan recognition. In *IEEE Workshop on Tools for AI Architectures, Languages, and Algorithms*, pages 36–42, Fairfax, VA, October 1989. IEEE Computer Society.

[Car90] Sandra Carberry. Incorporating default inferences into plan recognition. In *Proceedings of the Eighth National Conference on Artificial Intelligence*, pages 471–478, Boston, MA, July 1990.

[CC91] Glenn Carroll and Eugene Charniak. A probabilistic analysis of marker-passing techniques for plan-recognition. In *Proceedings of the Seventh Conference on Uncertainty in Artificial Intelligence*, pages 69–76, Los Angeles, CA, July 1991.

[CG93] E. Charniak and R. P. Goldman. A Bayesian model of plan recognition. *Artificial Intelligence*, 64(1):53–79, November 1993.

[CLM84] Norman F. Carver, Victor R. Lesser, and Daniel L. McCue. Focusing in plan recognition. In *Proceedings of the National Conference on Artificial Intelligence*, pages 42–48, Austin, Texas, August 1984.

[GL90] Bradley A. Goodman and Diane J. Litman. Plan recognition for intelligent interfaces. In *Proceedings of the Sixth Conference on Artificial Intelligence Applications*, pages 297–303, 1990.

[HD92] Marcus J. Huber and Edmund H. Durfee. Plan recognition for real-world autonomous agents: Work in progress. In *Working Notes: Applications of Artificial Intelligence to Real-World Autonomous Mobile Robots*, AAAI Fall Symposium, pages 68–75, Boston, MA, October 1992. American Association for Artificial Intelligence.

[HD93] Marcus J. Huber and Edmund H. Durfee. Observational uncertainty in plan recognition among interacting robots. In *Working Notes: Workshop on Dynamically Interacting Robots*, pages 68–75, Chambery, France, August 1993.

[IG90] Francois. F. Ingrand and Michael P. Georgeff. Managing deliberation and reasoning in real-time AI systems. In *Proceedings of the 1990 DARPA Workshop on Innovative Approaches to Planning, Scheduling, and Control*, pages 284–291, Santa Diego, CA, November 1990.
[IGR92] Francois Ingrand, Michael Georgeff, and Anand Rao. An architecture for real-time reasoning and system control. *IEEE Expert*, 7(6):34–44, December 1992.

[KA86] H.A. Kautz and J.F. Allen. Generalized plan recognition. In *Proceedings of the Fifth National Conference on Artificial Intelligence*, pages 32–37, Philadelphia, PA, August 1986.

[KHW93] Nicholas Kushmerick, Steve Hanks, and Daniel Weld. An algorithm for probabilistic planning. Technical Report 93-06-3, The University of Washington, Seattle, Washington, June 1993.

[LG91] Dekang Lin and Randy Goebel. A message passing algorithm for plan recognition. In *Proceedings of the Twelfth International Joint Conference on Artificial Intelligence*, pages 280–285, Sydney, Australia, August 1991.

[LGS90] K. Lochbaum, B. Grosz, and C. Sidner. Models of plans to support communication: An initial report. In *Proceedings Eighth National Conference on Artificial Intelligence*, Boston, MA, 1990. AAAI.

[Nea90] Richard E. Neapolitan. *Probabilistic Reasoning in Expert Systems*. John Wiley and Sons, 1990.

[Pea88] Judea Pearl. *Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference*. Morgan Kaufmann, San Mateo, CA, 1988.

[WBG92] Michael P. Wellman, John S. Breese, and Robert P. Goldman. From knowledge bases to decision models. *Knowledge Engineering Review*, 7(1):35–53, 1992.