A new tumour suppression mechanism by p27^{Kip1}: EGFR down-regulation mediated by JNK/c-Jun pathway inhibition

Yong FANG*†, Yihong WANG‡, Yulei WANG†, Yan MENG†, Junlan ZHU†, Honglei JIN†, Jingxia LI†, Dongyun ZHANG†, Yonghui YU†, Xue-Ru WUS∥ and Chuanshu HUANG†

*Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
†Nelson Institute of Environmental Medicine, New York University School of Medicine, New York, NY 10016, U.S.A.
‡Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
∥Veterans Affairs New York Harbor Healthcare System, Manhattan Campus, New York, NY 10010, U.S.A.

† To whom correspondence should be addressed (email chuanshu.huang@nyumc.org).

p27^{Kip1} is a potent inhibitor of cyclin-dependent kinases that drive G₁-to-S cell-cycle transition. Reduced p27^{Kip1} expression is prevalent in a wide range of human tumours; however, the exact mechanism(s) of p27^{Kip1}-mediated tumour suppression remains obscure. In the present study, we identified a close inverse relationship between p27^{Kip1} and EGFR (epidermal growth factor receptor) expression: the parental T24 human bladder cancer cells had high p27^{Kip1} expression but low EGFR expression and, in striking contrast, the metastatic derivative of T24 (T24T) had low p27^{Kip1} expression but high EGFR expression. This relationship was also found in various human cancer tissues, and was not only just correlative but also causal: depletion of p27^{Kip1} in MEF (mouse embryonic fibroblast) cells resulted in markedly elevated EGFR expression, a result reproducible in cultured cells, p27^{Kip1} causes G₁ arrest, thereby inhibiting cell growth and, conversely, depletion of p27^{Kip1} accelerates G₁ exit [2], promoting cell proliferation [3]. In accordance with these in vitro attributes, loss of p27^{Kip1}, along with additional genetic alterations or carcinogen exposure, predisposes mice to a wide range of tumours of both epithelial [4] and mesenchymal [5] origins. Perhaps not surprisingly, reduced expression of p27^{Kip1}, as a result of transcriptional down-regulation, post-translational phosphorylation, elevated ubiquitination or nuclear-to-cytoplasmic translocation, is found in many human malignancies [6]. A decreased p27^{Kip1} protein level, in particular the nuclear fraction, also correlates well with more advanced disease stages and poorer clinical outcomes than a normal level of p27^{Kip1} in various cancers [7]. Both mouse and human data therefore strongly support the notion that p27^{Kip1} acts as a tumour suppressor [8]. Nonetheless, there have been suggestions that p27^{Kip1} is an ‘unconventional’ tumour suppressor as mutations affecting the CDKN1B gene are rare in human cancers [9]. However, recent identification of p27^{Kip1} mutations in breast cancer [10] and multiple endocrine neoplastic syndromes [11] raises an interesting new possibility that mutational inactivation of p27^{Kip1} in other tumour types cannot be completely ruled out [12].

Although p27^{Kip1} is a tumour suppressor and its down-regulation in tumour cells takes place on multiple levels, much less is known about precisely how p27^{Kip1} deficiency leads to disturbances in downstream effectors that are pivotal for tumorigenesis [13]. Aside from its CDK-dependent functions in tumour suppression, p27^{Kip1} has been suggested to exert CDK-independent activities [14]. A notable example is the ability of this protein to modulate the actin cytoskeleton via the regulation of RhoA activation [15]. In so doing, p27^{Kip1} can affect, albeit indirectly, cancer cell motility and migration, and in turn their propensity for invasion and metastasis [15,16]. p27^{Kip1} has also been shown to be involved in apoptosis and autophagy, although whether it is stimulatory or inhibitory might be dependent on context and experimental conditions [17]. In spite of the long-held assumption of its role, robust evidence of CDK-independent activities of p27^{Kip1} in the context of tumour initiation and promotion remains scarce.
Our group has a longstanding interest in delineating the molecular signals and pathways that distinguish advanced tumours from an early stage [18,19]. It has been proven that p27Kip1 could suppress arsenite-induced Hsp (heat-shock protein) 27/Hsp70 expression through inhibiting JNK (c-Jun N-terminal kinase) 2/c-Jun- and HSF-1 (heat-shock factor 1)-dependent pathways [18]. By profiling gene and protein expression of the human T24 bladder cancer cell compared with its metastatic derivative T24T, we found a striking inverse relationship between p27Kip1 and EGFR (epidermal growth factor receptor) expression. The relationship between p27Kip1 and EGFR expression remains unclear. To the best of our knowledge, this is the first demonstration that p27Kip1 regulates EGFR expression and that it does so by influencing JNK/c-Jun transactivation. The results of the present study expand the existing repertoire of CDK-independent activities of p27Kip1, and suggest that the increased cell-cycle transition due to p27Kip1 deficiency can synergize with increased expression of growth-promoting signals (e.g. EGFR) to accelerate tumour progression.

EXPERIMENTAL

Plasmids, antibodies and other reagents

The dominant-negative mutant of c-Jun (TAM67) [19] and the dominant-negative mutant of JNK (DN-JNK) [20] have been described in our previous studies [19,20]. The PRL-TK-luciferase expression vector and pSUPER vector were purchased from Promega and have been used in our previous studies [21]. Adenovirus-driven GFP (Ad-GFP) and Adenovirus-driven-GFP–p27Kip1 (Ad-GFP–p27) plasmids were constructed and have been used in our previous studies [18]. Constructs expressing *Egfr* promoter-driven luciferase reporter and its various deletions as indicated in Figure 2(D) were a gift from Dr D.T. Smoot (Department of Medicine and Cancer Center, Howard University, Washington, DC, U.S.A.). Antibodies against c-Jun, EGFR, GAPDH (glyceraldehyde-3-phosphate dehydrogenase), histone H3, JNK1/2, p-c-Jun Ser63, p-c-Jun Ser81 and p-JNK were purchased from Cell Signaling Technology. Antibodies against c-Fos, Fra-1, SP1 (specificity protein 1) and c-Myc were from Santa Cruz Biotechnology. The antibody against p27Kip1 was obtained from Abcom Biochemicals.

Cell culture and transfection

Immortalized p27Kip1+/− and p27Kip1−/− MEF (mouse embryonic fibroblast) cell lines have been described in our previous studies [19,22,23]. These cells and their stable transfectants were maintained at 37°C in a 5% CO2 incubator with DMEM (Dulbecco’s modified Eagle’s medium) supplemented with 10% FBS, 2 μM L-glutamine and 25 μg/ml gentamycin. The monolayer growth of human bladder cancer T24 cells and its derived metastatic T24T cells were a gift from Dr Dan Theodorescu (University of Colorado, Denver, CO, U.S.A.) [24]. Both T24 and T24T cell lines were maintained in DMEM-F12 (1:1) (Invitrogen), supplemented with 5% heat-inactivated FBS, 2 μM L-glutamine and 25 μg/ml gentamycin. Stable cell transfectants were established by co-transfection of the indicated expression construct together with the pSUPER vector and/or the PRL-TK-luciferase expression vector using PolyJet™ DNA In Vitro Transfection Reagent (SignaGen Laboratories) by antibiotic selection, and surviving cells in each well were pooled as the stable mass transfectant as described in our previous studies [19,21,25,26].

Egfr promoter-driven luciferase reporter activity assay

The *Egfr* promoter-driven luciferase reporter stable transfectant was seeded into each well of 96-well plates. Cells were collected as indicated, and then extracted with lysis buffer [25 mmol/l Tris-phosphate (pH 7.8), 2 mmol/l-EDTA, 1% Triton X-100 and 10% glycerol] for the luciferase activity assay using the luciferase assay system (Promega) together with a microplate luminometer (Microplate Luminometer LB 96V, Berthold) as described in our previous studies [27].

IHC (immunohistochemistry) of human cancer specimens

A total of 120 patients with lung adenocarcinoma, colon cancer and bladder cancer (40 patients each) from Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, were included in the present study. All participants gave written informed consent and the study was approved by an Ethics Committee Institutional Review Board of the hospital. The mean age of the patients was 54.5 years (range from 32.5 to 72.3 years); 74 cases were male. Paraffin-embedded surgery specimens were sectioned at 5 μm thickness, and mounted on to Fisher brand Super frost plus slides (Fisher Scientific). After antigen retrieval, sections were incubated overnight at 4°C with monoclonal mouse antibodies against *Egfr* (Abcam) or p27Kip1 (Zymed). IHC was carried out by using the DAB (diaminobenzidine) Map Kit (Pierce), based on the avidin–biotin complex immunoperoxidase technique. Positively stained cells were evaluated using image analysis (Image-Pro Plus, version 4.5.1, Media Cybernetics) to reduce observer variation. The expression of *Egfr* and p27Kip1 was scored based on the intensity of immunostaining as follows: count 300 cells and score ‘0’ for negative staining of the considered cells, whereas scores 1–3 present <25%, 25–50% and >50% positive staining of the considered cells respectively.

Anchorage-independent growth assay

Anchorage-independent growth in soft agar (soft agar assay) was carried out as described in our previous studies [23]. Briefly, 1×10⁴ cells mixed with or without the JNK inhibitor SP600125 (25 μmol/l) in 10% FBS BME (basal medium Eagle) containing 0.33% soft agar, was seeded over the bottom layer of 0.5% agar in 10% FBS BME in each well of six-well plates. The plates were incubated in a 5% CO2 incubator at 37°C for 21 days. Colonies were visualized under a microscope and photographed. Colonies consisting of over 32 cells were counted and presented [25,28].

Preparation of nuclear extracts

Nuclear extracts were prepared as previously described [21]. Briefly, p27Kip1+/− and p27Kip1−/− MEFs were plated into 10-cm culture dishes and cultured until 80% confluence. The nuclear and cytosolic proteins were extracted according to the protocol of the Nuclear/Cytosol Fractionation kit (BioVison Technologies). Protein was quantified using a protein quantification assay kit (Bio-Rad Laboratories) and then subjected to Western blot analysis.

Western blot analysis

T24 cells, T24T cells, MEFs and their transfectants were seeded in six-well plates and cultured in normal medium containing 10% FBS until 70–80% confluence. Cells were extracted with cell lysis buffer [10 mM Tris/HCl (pH 7.4), 1% SDS and 1 mM...
sodium orthovanadate). Cell extracts were subjected to Western blot analysis as described previously [18,21].

RT (reverse transcription)–PCR

Total RNA was extracted with TRizol® reagent (Invitrogen) and cDNAs were synthesized with the Thermo-Script RT-PCR system (Invitrogen). The amount of mRNA present in the cells was determined by semi-quantitative RT–PCR. Primers used were: 5′-GAGAGGAGAAGCTGCCAGA-3′ and 5′-GTAGCTTATTGGAAGAAGT-3′ for the human and mouse Egfr gene (450 bp), 5′-ATCAAGAAGGTGTTGAACGCGCA-3′ and 5′-TCTCTTGCTCAGTGTTCCCTTGCGG-3′ for the mouse Gapdh gene (281 bp), and 5′-AGAAAGCTGGGCTCATTTG-3′ and 5′-AGGGGCACTCCACAGTCTTC-3′ for the human GAPDH gene (258 bp). PCR products were separated on 2% agarose gels and stained with ethidium bromide. The results were imaged with the Alpha Innotech SP image system as described previously [29].

ChIP assay

The EZ-ChIP kit (Millipore Technologies) was used to carry out the ChIP assay according to the manufacturer’s instructions and as described previously [30]. Briefly, p27Kip1+/+ and p27Kip1−/− MEFs were treated with 1% formaldehyde for 10 min at room temperature. Cells were then pelleted, resuspended in lysing buffer and sonicated to generate 200- to 500-bp chromatin DNA fragments. After centrifugation (13 000 g for 10 min at 4°C), a 10-fold dilution of the supernatants were incubated with an anti-c-Jun antibody or the control rabbit IgG at 4°C overnight. The immune complex was captured with Protein G–agarose-saturated beads with salmon sperm DNA and then reverse cross-linked overnight. The immune complex was captured with Protein G–agarose gels and stained with ethidium bromide, and the results were analysed using Fisher’s exact and Pearson’s (χ²) tests. The EZ-ChIP kit (Millipore Technologies) was used to carry out the ChIP assay according to the manufacturer’s instructions and as described previously [30]. Briefly, p27Kip1+/+ and p27Kip1−/− MEFs were treated with 1% formaldehyde for 10 min at room temperature. Cells were then pelleted, resuspended in lysing buffer and sonicated to generate 200- to 500-bp chromatin DNA fragments. After centrifugation (13 000 g for 10 min at 4°C), a 10-fold dilution of the supernatants were incubated with an anti-c-Jun antibody or the control rabbit IgG at 4°C overnight. The immune complex was captured with Protein G–agarose-saturated beads with salmon sperm DNA and then reverse cross-linked overnight. The immune complex was captured with Protein G–agarose gels and stained with ethidium bromide, and the results were imaged with the Alpha Innotech SP image system as described previously [29].

Statistical methods

Relationships between the expression of p27Kip1 and EGFR were analysed using Fisher’s exact and Pearson’s (χ²) tests. The Spearman test was performed to evaluate the relationship between EGFR and p27Kip1 expression in the IHC test. Student’s t test was used to determine the significance of differences of Egfr promoter activities between groups. The differences were considered to be significant at P < 0.05.

RESULTS

EGFR expression was inversely related to p27Kip1 expression in the T24 cell line compared with its metastatic derivative T24T cell line

Although EGFR is overexpressed and p27Kip1 is down-regulated in many human cancer types [31], the molecular interplay between the growth promoter and the tumour suppressor has not been explored [7,32]. In an effort to identify new signalling pathways that were essential for tumour progression, we first analysed diverging signalling molecules between a pair of established cell lines, e.g. T24, originally from a high-grade human bladder cancer, and T24T, a T24 derivative that has acquired the ability to metastasize [24]. Of the differentially expressed proteins, we found EGFR and p27Kip1 to be among the most prominent. p27Kip1 expression was dramatically down-regulated in T24T cells compared with its parental T24 cells, whereas EGFR was exactly the opposite, i.e. low expression in T24 cells and high in T24T cells (Figure 1A). Overexpression of EGFR in T24T cells was found to occur at the mRNA level as analysed RT–PCR (Figure 1B), a result extended by the Egfr promoter-driven luciferase reporter assay (Figure 1C), indicating that the differential expression of EGFR between T24 and T24T cells was regulated at the transcriptional level.

Inverse correlation of p27Kip1 and EGFR expression in human cancer specimens

To further extend our findings to specimens obtained from human cancer patients, we evaluated the expression of both p27Kip1 and EGFR in human cancer specimens using IHC staining. As shown in Figure 1(D) and Table 1, p27Kip1 expression showed a significant inverse correlation with EGFR expression in lung adenocarcinoma specimens (Spearman correlation: r₁ = −0.360; P = 0.019), colorectal cancer specimens (Spearman correlation: r₁ = −0.359; P = 0.018) and bladder cancer specimens (Spearman correlation: r₁ = −0.337; P = 0.039), strongly suggesting that p27Kip1 expression might be involved in the regulation of EGFR expression.

EGFR expression was up-regulated in p27Kip1-knockout cells compared with their wild-type counterparts

The fact that p27Kip1 down-regulation in T24T cells led to EGFR overexpression strongly suggests that p27Kip1 plays an important role in negatively regulating EGFR expression. To establish this relationship more directly, we evaluated the effects of genetically disrupting p27Kip1 on EGFR expression in MEFs. As shown in Figures 2(A) and 2(B), knockout of p27Kip1 (p27Kip1−/−) resulted in increased EGFR expression at both the mRNA and protein level in comparison with p27Kip1+/+ cells. A similar effect occurred at the transcriptional level as evidenced by the Egfr promoter-driven luciferase reporter assay comparing p27Kip1+/+ with p27Kip1−/− MEFs (Figure 2C). It is therefore clear that p27Kip1 has a strong inhibitory effect on EGFR transcription.

The c-Jun-binding region in the Egfr promoter was crucial for p27Kip1 suppression of Egfr transcription

The fact that p27Kip1 inhibits Egfr gene transcription prompted us to perform bioinformatic profiling of the putative transcription-factor-binding motifs within the Egfr gene promoter using the TFSEARCH software (version 1.3). We found that the mouse Egfr proximal promoter contained putative DNA-binding sites for c-Jun, c-Fos, HSF-1, c-Myc, Fra-1 and SP1. To test the functional importance of these sites in p27Kip1-regulated Egfr gene transcription, we engineered truncated Egfr promoter regions to drive a luciferase reporter and then transfected these constructs (Figure 2D) into p27Kip1−/− cells. As shown in Figure 2(E), transcriptional activity of pER9, pER10 and pER15 was significantly impaired as compared with that with pER4 and pER6, whereas there was no significant difference among transfectants pER9, pER10 and pER15. These data suggest that
Table 1 The correlation between EGFR and p27 expression in human cancer specimens

p27Kip1 protein expression	EGFR protein expression	Cases	r_s value	P value	
Lung adenocarcinoma					
−	23	5	6	6	0.360 0.019
+	7	4	1	1	
++	6	2	2	1	0.359 0.018
+++	4	3	1	0	
Colorectal adenocarcinoma					
−	20	7	3	6	0.350 0.039
+	8	5	2	1	
++	7	4	2	1	0.337 0.039
+++	5	2	2	1	
Bladder cancer					
−	26	6	5	6	0.384 0.039
+	6	3	1	1	
++	5	2	2	1	0.350 0.039
+++	3	1	1	1	

Figure 1 Inverse correlation of p27Kip1 and EGFR expression in human bladder cancer cell lines and human cancer tissues

(A) Western blotting analysis of p27Kip1 and EGFR protein levels in T24 cells and their derived metastatic T24T human bladder cancer cells. GAPDH was used as loading control. (B) Egfr mRNA expression levels in T24 and T24T cells were determined by RT–PCR. Gapdh was used as loading control. (C) Egfr promoter luciferase reporter was stably transfected into T24 and T24T bladder cancer in combination with pRL-TK used as an internal control. The results were presented as Egfr promoter activity in T24T cells relative to that in T24 cells. Values are means ± S.D. for triplicate assay wells. (D) Inverse correlation of p27Kip1 and EGFR expression in clinical tumour specimens detected with IHC, including in lung adenocarcinoma (n = 40), colon cancer (n = 40) and bladder cancer (n = 40) (original magnification ×200).

the −771 to −384 Egfr promoter region contains transcription-factor-binding site(s) important for Egfr transcription. As shown in Figure 2(F), the Egfr promoter region between −771 and −384 contained exclusively the AP-1-binding sites, suggesting that AP-1 was an important transcription factor downstream of p27Kip1 for p27Kip1-mediated transcriptional inhibition of EGFR expression. Consistently, other transcription factors and c-Jun target proteins, including COX-2 and FosB, in p27Kip1+/− and p27Kip1−/− MEFs were also significantly enhanced in p27Kip1−/− MEFs (Figure 2G). These data show that p27Kip1 inhibited EGFR expression by suppressing the activation of the JNK/c-Jun pathway.

p27Kip1 inhibited EGFR expression by suppressing activation of JNK/c-Jun

Since the Egfr proximal promoter contains an AP-1 site whose presence is indispensable for Egfr up-regulation in
p27Kip1−/− cells, and since c-Jun is a major AP-1 component, we determined whether c-Jun and its upstream kinase JNK were regulated by p27Kip1. As shown in Figure 3(A), although there was no noticeable difference in JNK protein expression and its location between p27Kip1+/+ and p27Kip1−/− cells, JNK phosphorylation was markedly up-regulated in p27Kip1−/− cells, and all phosphorylated JNK was present in the cytosolic fraction. Both c-Jun phosphorylation and protein expression were elevated in p27Kip1−/− cells. Phosphorylated c-Jun was only present in the nuclear fraction, whereas non-phosphorylated c-Jun was mainly associated with the cytosolic fraction (Figure 3A).

The phosphorylation of JNK and c-Jun therefore paralleled EGFR expression in p27Kip1+/+ compared with p27Kip1−/− cells, suggesting that the JNK/c-Jun pathway might participate in p27Kip1 regulation of EGFR expression. In contrast with JNK and c-Jun, we observed no difference between p27Kip1+/+ and p27Kip1−/− cells in the level, intracellular location or phosphorylation status of other transcription factors, including ATF-2 (activating transcription factor-2), HSF-1, Jun-B, Jun-D, NFAT3 (nuclear factor of activated T-cells 3) and SP1 (Figure 2G). To determine the role of JNK activation in EGFR expression in p27Kip1−/− cells, we then tested a chemical inhibitor (SP600125), a dominant-negative mutant for JNK (DN-JNK), shRNA JNK and TAM67. Inhibition of JNK activation by SP600125, a dominant-negative mutant for JNK (DN-JNK), suppression of EGFR by p27 via the JNK/c-Jun pathway

Down-regulation of p27Kip1 induced JNK/c-Jun phosphorylation, EGFR up-regulation and anchorage-independent growth elevation

Compared with T24 cells, there was a reduction in p27Kip1 expression and up-regulation of EGFR expression in T24T cells (Figures 1A and 1B). To understand the biological consequences of p27Kip1-regulated EGFR expression, we also compared c-Jun and JNK activation as well as the anchorage-independent growth between T24 and T24T cells. As shown in Figure 5(A), the phosphorylation of JNK and c-Jun are both up-regulated in T24T cells. Consistently, an increase in anchorage-independent growth in T24T cells was also observed as compared with T24 cells (Figures 5B and 5C). Inhibition of JNK activation by pretreatment of T24T cells with the JNK inhibitor SP600125 blocked both c-Jun phosphorylation at Ser63/Ser73 and anchorage-independent growth of T24T cells (Figures 5D–5F). To provide direct evidence that p27Kip1-regulated EGFR expression via the JNK/c-Jun axis plays a role in cancer cell growth, we infected T24T cells with an adenovirus-driven-GFP–p27Kip1 and adenosivirus-driven GFP as a negative control. Enforced expression of GFP–p27Kip1 in T24T cells dramatically inhibited the activation of JNK and c-Jun, expression of EGFR and anchorage-independent growth (Figures 6A and 6B). Moreover, knockdown of p27Kip1 in T24 cells led to an increased EGFR expression and anchorage-independent growth with induction of JNK and c-Jun activation (Figures 6C and 6D). Our results demonstrate that p27Kip1 down-regulation plays a key role in up-regulating the JNK/c-Jun pathway, leading to increased EGFR expression and anchorage-independent growth and endowing these cancer cells with a new metastatic potential.

DISCUSSION

A principal finding we made in the present study is that p27Kip1 deficiency leads to a marked transcriptional up-regulation of EGFR expression. This finding is based on several independent lines of experimental evidence. First, an inverse relationship exists between p27Kip1 and EGFR levels, i.e. the T24 cell line that expresses a high level of p27Kip1 has a low level of EGFR, and the isogenic T24T cell that expresses a low level of p27Kip1 has a high level of EGFR. Secondly, an inverse correlation of p27 and EGFR expression was observed in clinical human cancer tissues. Thirdly, depletion of p27Kip1 in p27Kip1-expressing
Suppression of EGFR by p27 via the JNK/c-Jun pathway

Figure 5 Low p27 Kip1 expression in T24T cells mediated JNK/c-Jun phosphorylation, EGFR up-regulation and increased anchorage-independent growth

(A) Total cell lysates from T24 and T24T bladder cancer cells were subjected to Western blotting as indicated. β-Actin was used as a protein loading control. (B and C) Anchorage-independent growth of T24 and T24T cells was determined by soft agar assay. Colonies were photographed and counted, and values are means ± S.D. for triplicate assays. (D) T24T cells were pretreated with or without SP600125, and then extracted for determination of protein expression by Western blotting. (E and F) T24T cells were pretreated with 25 μM SP600125 for 4 h and then subjected to anchorage-independent growth. Colonies were photographed and counted. The asterisk (*) indicates a significant decrease in anchorage-independent growth of T24T pretreated with SP600125 compared with T24T cells pretreated with 0.1 % DMSO control (P < 0.01).

MEFs results in a dramatic up-regulation of EGFR expression, suggesting that p27Kip1-regulated EGFR expression is not only operative in bladder cancer cells, but also in non-bladder cancer and non-cancer cells. Fourthly, the levels of phosphorylation and nuclear translocation of the JNK and c-Jun transcriptional axis, whose interaction with the proximal promoter of the Egfr gene is essential for its gene transcription, are significantly higher in p27Kip1−/− cells than in p27Kip1+/+ cells. Chemical inhibitors and dominant-negative mutants of JNK and c-Jun specifically repress the transcription of the Egfr gene in p27Kip1−/− deficient cells, and the recruitment of c-Jun to the Egfr proximal promoter in the absence of these inhibitors is much greater in p27Kip1−/− cells than in p27Kip1+/+ cells. Finally, reintroduction of p27Kip1 into p27Kip1−/− deficient T24T cells markedly represses the activation of JNK and c-Jun and reduces EGFR expression. Taken together, these data firmly establish a signalling cascade linking p27Kip1 deficiency to EGFR overexpression through JNK/c-Jun transcriptional activation.

The results of the present study have important clinical implications on several fronts. The first relates to an improved understanding of the cellular functions of p27 Kip1 in tumour suppression that are independent of its canonical role in CDK inhibition [33]. In normal resting cells, p27 Kip1, expressed at high levels, hypo-phosphorylated and localized primarily in the nuclei, binds to CDK4–cyclin D and CDK2–cyclin E/A–CDK2 complexes, thereby functionally inactivating CDKs [34]. This is commensurate with the role of p27Kip1 in G1 arrest and tumour suppression [1,6,35]. Indeed, mice globally lacking p27Kip1 are significantly heavier than their wild-type counterparts because of multi-organ hyperplasia [35,36]. Although spontaneous tumours are uncommon in the p27Kip1−/− mice [36], they are highly prone to tumorigenesis when exposed to chemical carcinogens [37]. These and other data from mouse models are therefore strongly supportive of the CDK-dependent activities of p27Kip1 in suppressing tumour formation in vivo [38]. Whether p27Kip1 exerts other tumour suppressive effects that can account for the phenotypes observed in the knockout mice has not been carefully addressed. Interestingly, there was a report showing that ablating the CDKs in p27Kip1-deficient cells does not completely abolish the proliferative ability of the host cells [39], raising the possibility that p27Kip1 can regulate a broader spectrum of downstream targets beyond the CDKs. On the basis of the recent characterization of gene-knockout mice, c-Jun remains at the centre stage of a complex molecular network, c-Jun interacting with many signalling pathways, some of which are yet to be
which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited. This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC-BY) (http://creativecommons.org/licenses/by/3.0/) © 2014 The Author(s)

Blotting for determination of p27 knockdown in regulating JNK, p-c-Jun and EGFR expression, as cells were stably transfected with shRNA p27 and the cell extracts were subjected to Western shRNA p27 compared with T24 cells transfected with pLKO (P indicates a significant increase in anchorage-independent growth of T24 cells transfected with pLKO, *P<0.01). D) T24 cells were stably transfected with shRNA p27 and the cell extracts were subjected to Western blotting for determination of p27 knockdown in regulating JNK, p-c-Jun and EGFR expression, as compared with those transfected with control vector plKO. D) T24 cells were stably transfected with shRNA p27 or plKO and then subjected to anchorage-independent growth. The asterisk (*) indicates a significant increase in anchorage-independent growth of T24 cells transfected with shRNA p27 compared with T24 cells transfected with plKO (P<0.01).

Figure 6 Inhibitory effect of p27Kip1 on JNK/c-Jun phosphorylation, EGFR expression and anchorage-independent growth in T24 and T24T cells

(A) T24T cells were infected with Ad-GFP or Ad-GFP-p27, and then extracted for determination of protein expression by Western blotting. (B) T24T cells were infected with Ad-GFP or Ad-GFP-p27, and then subjected to determination of anchorage-independent growth in soft agar assay. The asterisk (*) indicates a significant decrease in anchorage-independent growth of T24T cells infected with Ad-GFP-p27 compared with those infected with Ad-GFP (P<0.01). (C) T24 cells were stably transfected with shRNA p27 and the cell extracts were subjected to Western blotting for determination of p27 knockdown in regulating JNK, p-c-Jun and EGFR expression, as compared with those transfected with control vector plKO. (D) T24 cells were stably transfected with shRNA p27 or plKO and then subjected to anchorage-independent growth. The asterisk (*) indicates a significant increase in anchorage-independent growth of T24 cells transfected with shRNA p27 compared with T24 cells transfected with plKO (P<0.01).

discovered. As we have demonstrated in the present study, one such CDK-independent p27Kip1-regulated downstream target is EGFR.

EGFR is a key member of the receptor tyrosine kinase family, and is activated in response to growth stimulators such as growth factors, cytokines and growth hormones [41]. It plays a diverse role in cell proliferation, angiogenesis, motility, invasion and metastasis, and overexpression of EGFR is therefore considered oncogenic for many cell types [42]. Different deubiquitinating enzymes may be critical in balancing c-Cbl and SMURF2 activity [43], thus tightly regulating EGFR protein stability, alteration of which during oncogenesis leads to EGFR overexpression. However, there is no significant difference between c-Cbl and SMURF2 in p27Kip1+/− and p27Kip1−/− MEFs (results not shown), suggesting that EGFR protein stability could be regulated independently of c-Cbl and SMURF2. Further to demonstrating the link between p27Kip1 and EGFR, we propose that the deficiency in p27Kip1 can lead to a synergistic effect on cell proliferation, one via the loss of CDK-dependent cell-cycle inhibition and another via EGFR overexpression. This is another example where a tumour suppressor can intersect with an oncogenic event to drive tumour formation although, in this case, the deficiency of one protein can lead to the dual effects. With respect to tumour progression, we wish to point out that EGFR overexpression only occurs in p27Kip1-deficient metastatic T24T cells, but not in the parental T24 cells which express p27Kip1 and are incapable of metastasizing. Although the role of EGFR overexpression in cancer progression is well established [44], the role of p27Kip1 is much less clear. In fact, increased cytoplasmic translocation of p27Kip1 has been associated with increased cell motility and invasion [45]. It has previously been reported that inhibiting Ser10 phosphorylation of p27 led to p27 accumulation in the nucleus and enhanced erlotinib-mediated cytotoxicity in breast cancer [46]. Therefore the net effect of p27Kip1 loss and EGFR overexpression on cancer cell metastasis needs to be further investigated [47].

Inhibition of JNK activation by pretreatment of T24T cells with the JNK inhibitor SP600125 blocked c-Jun phosphorylation at Ser63/Ser73 and anchorage-independent growth of T24T cells. This is consistent with the report by Cáceres et al. [48] that pretreatment with either SP600125 or the expression of a dominant-negative mutant JNK leads to down-regulation of EGFR phosphorylation and inhibits the invasive capacity of cancer cells. This notion is also supported by the results of Li et al. [49] which suggest that EGFR is involved in constitutive JNK activation in diffuse gliomas and that the ability to inhibit JNK activation might confer increased sensitivity to therapeutic modalities targeting this pathway.

A key point is how p27Kip1 might inhibit JNK activity. Our previous work indicated that p27Kip1 might target the Akt pathway which contributes to deactivation of the MKK7 (MAPK kinase 7)/JNK pathway [18]. It should be noted that overexpression of EGFR occurs in a wide range of human tumour tissues and, as with a reduced p27Kip1, is strongly associated with late-stage tumours and poor prognosis [5,50]. Thus far, few studies have examined the concordance between reduced p27Kip1 expression and increased EGFR expression, a topic that should be explored based on the information provided by present work [51]. Similarly, it will be interesting to revisit whether EGFR is overexpressed in p27Kip1−/− deficient mice and whether EGFR inhibition will render these mice resistant to tumorigenesis even after carcinogen treatment. Finally, the fact that p27Kip1−/− deficient cells overexpress EGFR raises the interesting possibility that tumours deficient in either or both tumour suppressors could benefit from a therapeutic approach combining chemotherapeutics with EGFR inhibitors [46]. The present study has demonstrated that p27Kip1 suppresses JNK/c-Jun activation and EGFR expression in mouse MEFs and human bladder cancer cells, and the results obtained are consistent with those from human cancer specimens. The results provide new insight into p27Kip1 suppressing cancer cell growth, migration and metastasis.

AUTHOR CONTRIBUTION

Yong Fang and Chuanshu Huang conceived and designed the experiments. Yong Fang, Xue-Ru Wu and Chuanshu Huang wrote the paper. Yihong Wang performed pathology and IHC experiments. Yan Meng, Yulei Wang, Jingxia Li, Junlan Zhu, Honglei Jin, Dongyun Zhang and Yonghui Yu helped with molecular experiments and preparation of related samples.

ACKNOWLEDGEMENTS

We thank Dr D.T. Smoot (Department of Medicine and Cancer Center, Howard University, Washington, DC, U.S.A.) for providing the Egfr promoter-driven luciferase reporter, and...
Suppression of EGFR by p27 via the JNK/c-Jun pathway

18 Liu, J., Zhang, D., Mi, X., Xia, Q., Yu, Y., Zuo, Z., Guo, W., Zhao, X., Cao, J., Yang, Q. et al. (2010) TNF-α induction by nickel compounds is specific through ERKs/Sp1-1-dependent pathway in human bronchial epithelial cells. Curr. Drug Target 9, 81–90 CrossRef PubMed

19 Huang, C., Li, J., Ma, W. Y. and Dong, Z. (1999) JNK activation is required for JBE cell transformation induced by tumor necrosis factor α but not by 12-O-tetradecanoylphorbol-13-acetate. J. Biol. Chem. 274, 29672–29676 CrossRef PubMed

21 Fang, Y., Yu, Y., Hou, Q., Zheng, X., Zhang, D., Li, J., Xu, W. R. and Huang, C. (2012) The Chinese herb isolate isorhapontigenin induces apoptosis in human cancer cells by downregulating overexpression of antiapoptotic protein XIAP. J. Biol. Chem. 287, 35234–35243 CrossRef PubMed

22 Huang, C., Ma, W. Y., Li, J. and Dong, Z. (1999) Arsenic induces apoptosis through a c-Jun NH2-terminal kinase-dependent, p53-independent pathway. Cancer Res. 59, 3053–3058 PubMed

23 Zhang, D., Li, J., Costa, M., Gao, J. and Huang, C. (2010) JNK1 mediates degradation HIF-1α by a VHL-independent mechanism that involves the chaperones Hsp90/Hsp70. Cancer Res. 70, 813–822 CrossRef PubMed

24 Wu, Y., McRoberts, K., Berr, S. S., Frizzell, Jr., H. F., Conaway, M. and Theodorescu, D. (2007) Neurenomed is U regulated by the metastasis suppressor RhoGDI2 and is a novel promoter of tumor formation, lung metastasis and cancer cachexia. Oncogene 26, 765–773 CrossRef PubMed

25 Fang, Y., Cao, Z., Hou, Q., Ma, C., Yaqiu, C. L., Li, J., Xu, W. R. and Huang, C. (2013) Cyclin D1 downregulation contributes to anticancer effect of isorhapontigenin on human bladder cancer cells. Mol. Cancer Ther. 12, 1492–1503 CrossRef PubMed

26 Yu, J., Zhang, D., Li, J., Li, J., Yu, Y., Xu, W. R. and Huang, C. (2012) RhoGDI SUMOylation at Lys-138 increases its binding activity to Rho GTPase and its inhibiting cancer cell motility. J. Biol. Chem. 287, 13752–13760 CrossRef PubMed

27 Ouyang, W., Zhang, D., Li, J., Verma, U. N., Costa, M. and Huang, C. (2009) Soluble and insoluble nickel compounds exert a differential inhibitory effect on cell growth through IKKα/β-dependent cyclin D1 down-regulation. J. Cell. Physiol. 218, 205–214 CrossRef PubMed

28 Zhang, D., Li, J., Gao, J. and Huang, C. (2009) c-Jun/Sp1-pathway-mediated cyclin D1 expression participates in low dose arsenite-induced transformation in mouse epidermal JB6 Cl41 cells. Toxicol. Appl. Pharmacol. 235, 18–24 CrossRef PubMed

29 Ouyang, W., Ma, Q., Li, J., Li, J., Yu, Y., Xu, W. R. and Huang, C. (2005) Cyclin D1 induction through b-catenin is a vital factor of a pathway responsible for arsenite-induced increased cell cycle G1-S phase transition in human keratinocytes. Cancer Res. 65, 9297–9293 CrossRef PubMed

30 Song, L., Gao, M., Dong, W., Hu, M., Li, J., Shi, X., Hao, Y., Li, Y. and Huang, C. (2011) p53/5 mediates p53 K70 acetylation by p300 and regulates its promoter-specific transactivicity in the cellular UVB response. Oncogene 30, 1360–1371 CrossRef PubMed

31 Hu, X., Stabile, L. P., Guishu, C. T., Gooding, W. E., Grandis, J. R. and Siegfried, J. M. (2011) Dual blockade of EGFR and c-Met abrogates redundant signaling and proliferation in head and neck carcinoma cells. Clin. Cancer Res. 17, 4425–4438 CrossRef PubMed

32 Brunn, A., Verdorfer, I., Prelog, M., Mayer, C., Mikulic, G. and Tanakov, A. (2008) Large-scale analysis of cell cycle regulators in urorhabdoidal bladder cancer indentifies p16 and p27 as potentially useful prognostic markers. Pathobiology 75, 25–33 CrossRef PubMed

33 Martin, A., Odajima, J., Hunt, S. L., Dubus, P., Ortega, S., Malumbres, M. and Barba, M. (2005) Cdk2 is dispensable for cell cycle inhibition and tumor suppression mediated by p27(Skip) and p21(Cip1). Cell Cancer 7, 591–598 CrossRef PubMed

34 Itahachi, H., Yoshida, T., Walker, C. L., Bartholomeusz, C. A., Okai, D., Ishihara, H., Suzuki, N., Kigawa, J., Terakawa, N. and Unno, N. T. (2011) Novel mechanism of reduced proliferation in ovarian clear cell carcinoma cells: cytoplasmic sequestration of CDK2 by p27. Gynecol. Oncol. 122, 641–647 CrossRef PubMed

35 Guan, X., Wang, Y., Xie, R., Chen, L., Bai, J. and Ku, M. T. (2010) p27(Skip) as a prognostic factor in a broad cancer: a systematic review and meta-analysis. J. Cell. Mol. Med. 14, 944–953 CrossRef PubMed

36 Nakayama, K., Ishida, N., Shirane, M., Imotama, A., Inoue, T., Shishido, N., Hiroi, I., Loh, D. Y. and Nakayama, K. (1996) Mice lacking p27(Kip1) display increased body size, multiple organ hyperplasia, renal dysplasia, and pituitary tumors. Cell 85, 707–720 CrossRef PubMed

37 Garcia-Fernandez, R. A., Garcia-Palencia, P., Sanchez, M. A., Gil-Gomez, G., Sanchez, B., Rollin, E., Martin-Caballero, J. and Flores, J. M. (2011) Combined loss of p21(waf1/cip1) and p27kip1 enhances tumorigenesis in mice. Lab. Invest. 91, 1634–1642 CrossRef PubMed

38 Molotoreva, S., Kiermayer, E., Jung, C. B., Lee, M., Pulz, E., Hiftler, H., Atkinson, M. J. and Pellegrato, N. S. (2010) Characterization of a naturally-occurring p27 mutation predisposing to multiple endocrine tumors. Mol. Cancer 9, 116–127 CrossRef PubMed

39 Blain, S. W. (2008) Switching cyclin D-Cdk4 kinase activity on and off. Cell Cycle 7, 892–896 CrossRef PubMed
Schnidar, H., Eberl, M., Klingler, S., Mangelberger, D., Kasper, M., Hauser-Kronberger, C., Regl, G., Kroismayr, R., Morighl, R., Sibilia, M. and Aberger, F. (2009) Epidermal growth factor receptor signaling synergizes with Hedgehog/GLI in oncogenic transformation via activation of the MEK/ERK/JUN pathway. Cancer Res. 69, 1284–1292

41 Soria, J. C., Mok, T. S., Cappuzzo, F. and Jänne, P. A. (2012) EGFR-mutated oncogene-addicted non-small cell lung cancer: current trends and future prospects. Cancer Treat. Rev. 38, 416–4130

42 Jamal-Hanjani, M. and Spicer, J. (2012) Epidermal growth factor receptor tyrosine kinase inhibitors in the treatment of epidermal growth factor receptor-mutant non-small cell lung cancer metastatic to the brain. Clin. Cancer Res. 18, 938–944

43 Ray, D., Ahsan, A., Helman, A., Chen, G., Hegde, A., Gurjar, S. R., Zhao, L., Kiyokawa, H., Beer, D. G., Lawrence, T. S. and Nyati, M. K. (2011) Regulation of EGFR protein stability by the HECT-type ubiquitin ligase SMURF2. Neoplasia 13, 570–578

44 Pandhare-Dash, J., Martini, C. K., Gong, Y., Chen, Z. and Dash, C. (2012) XMRV accelerates cellular proliferation, transformational activity, and invasiveness of prostate cancer cells by downregulating p27Kip1. Prostate 72, 886–897

45 Baldassarre, G., Belletti, B., Nicoloso, M. S., Schiappacassi, M., Vecchione, A., Spessotto, P., Morrione, A., Canzonieri, V. and Colombatti, A. (2005) p27Kip1-stathmin interaction influences sarcoma cell migration and invasion. Cancer Cell 7, 51–63

46 Zhang, D., Tari, A. M., Akar, U., Arun, B. K., LaFortune, T. A., Nieves-Alicea, R., Hortobagyi, G. N. and Ueno, N. T. (2010) Silencing kinase-interacting stathmin gene enhances erlotinib sensitivity by inhibiting SerThr p27 phosphorylation in epidermal growth factor receptor-expressing breast cancer. Mol. Cancer Ther. 9, 3090–3099

47 Jin, X., Jin, X., Sohn, Y. W., Yin, J., Kim, S. H., Yoshikawa, K., Nam, D. H., Nakano, I. and Kim, H. (2013) Blockade of EGFR signaling promotes glioma stem-like cell invasiveness by abolishing D3-mediated inhibition of p27Kip1 and MMP3 expression. Cancer Lett. 328, 235–242

48 Cáceres, M., Tobar, N., Guerrero, J., Smith, P. C. and Martínez, J. (2008) c-jun-NH2, JNK mediates invasive potential and EGFR activation by regulating the expression of HB-EGF in a urokinase-stimulated pathway. J. Cell. Biochem. 103, 986–993

49 Li, J. Y., Wang, H., May, S., Song, X., Fuego, J., Fuller, G. N. and Wang, H. (2008) Constitutive activation of c-Jun N-terminal kinase correlates with histologic grade and EGFR expression in diffuse gliomas. J. Neurooncol. 88, 11–17

50 Borriello, A., Bencivenga, D., Criscuolo, M., Califarelli, I., Coccia, V., Tramontano, A., Borgia, A., Spina, A., Oliva, A., Naviglio, S. and DellaRocchia, F. (2011) Targeting p27Kip1 protein: its relevance in the therapy of human cancer. Expert Opin. Ther. Targets 15, 677–693

51 Fiano, V., Ghimenti, C., Imarisio, S., Silengo, L. and Schiffer, D. (2004) Pak1, cyclin D1 and p27Kip1 in glioblastomas with and without EGFR amplification and PTEN mutation. Anticancer Res. 24, 2643–2647