Spatiotemporal variation of the epifaunal assemblages associated to *Sargassum muticum* on the NW Atlantic coast of Morocco

Zahira Belattmania1 · Abdellatif Chaouti1 · Aschwin H. Engelen2 · Ester A. Serrao2 · Margarida Machado2 · Abdeltif Reani1 · Brahim Sabour 1

Received: 28 October 2019 / Accepted: 22 June 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract

Epifaunal assemblages inhabiting the non-indigenous macroalga *Sargassum muticum* (Yendo) Fensholt were investigated on two physically distinct intertidal rocky (S1) and sandy (S2) sites along the Atlantic coast of Morocco. The objective of this study was to test whether the habitat-forming marine alga *S. muticum* invasive in these sites supported different epifaunal assemblages under different environmental conditions and through time. The gastropods *Steromphala umbilicalis*, *S. pennanti*, and *Rissoa parva* and the isopod *Dynamene bidentata* were the most contributive species to the dissimilarity of epifaunal assemblage structure between both sites throughout seasons. SIMPER analysis showed a dissimilarity of 58.3–78.5% in the associated species composition of *S. muticum* between study sites with respect to sampling season. Species diversity and total abundance were significantly higher at the rocky site compared to the sandy site. PERMANOVA analyses showed significant differences of associated epifaunal assemblage structure for the season and site interaction. Accordingly, site and season were determinant factors conditioning the role of habitat in structuring epifaunal assemblages.

Keywords *Sargassum muticum* · Associated epifauna · Variability · Interactions · Environmental conditions · Substrate · Intertidal · Atlantic shores · Morocco

Introduction

Marine macroalgae can be relevant as biogenic structures. They are known among the true autogenic epibenthic ecosystem engineers and some species are referred to as “foundation species” that have strong effects on local community structure through the mechanisms of environment stabilization, provision of critical food resources, and/or creation of biogenic habitat (Ellison et al. 2005; Jones and Thornber 2010; Ramus et al. 2017; Metzger et al. 2019). Marine macroalgae perform various functions and have a major effect on the structure of marine communities (Stachowicz 2001; Cacabelos et al. 2010). They offer refuge from predation and competition (Ware et al. 2019). They provide shelter and food (generating in situ detritus and nutrients after decomposition) and spawning and nursery grounds for many organisms, especially the earliest life stages (Buschmann 1990; Taylor 1998; Fredriksen et al. 2005). They increase space for settlement and protect the organisms from physical stress including wave action, heat, and desiccation (Hicks 1980; Wikström and Kautsky 2004; Cacabelos et al. 2010). They may modify the hydrodynamism near the sea floor, with potentially significant ecological effects on sedimentation.

Interactions between macroalgae and their associated fauna can be influenced by physical (i.e., wave action, aerial exposure, irradiance, temperature ranges and time available for nutrient exchange, accumulation of sediments, and desiccation) and biological (i.e., grazing) factors (Bertness et al. 1999; Mueller et al. 2015; Umanzor et al. 2017). Macrobenthic fauna distribution patterns are eventually the result of a complex interaction of various processes operating both within the water column as well as the sedimentary environment (Bolam et al. 2008). At large spatial scales for
example, gradients such as temperature, salinity, and depth generally produce changes in species distributions and in structure, organization, and functioning of the assemblage, while changes in habitat characteristics (e.g., sediment granulometry, and type of substratum) are thought to greatly influence assemblage structure at more local scales (Gray 2001; Giberto et al. 2004; Bremner et al. 2006; Labrunet al. 2007). Spatial variability of epifaunal assemblages among and within habitats may be shaped by temporal variation at different scales ranging from weeks to months (Taylor 1998; Cacabélos et al. 2010; Jones and Thormber 2010). On a similar line, modifications in coastal habitat-forming macroalgae might induce changes in the abundance, richness, or composition of faunal assemblages, and consequently may have great repercussions on the ecosystems (Engelen et al. 2013).

The introduction of non-indigenous macroalgae causes many serious ecological impacts affecting native marine communities, eroding biodiversity and modifying and/or disrupting the normal functioning of ecosystems (Schaffelke and Hewitt 2007; Bedini et al. 2015; Smith 2016). However, in some cases, the effects are not detectable or even positive (Thomsen 2010; Guerra-Garcia et al. 2012; Thomsen et al. 2013). For example, some invasive habitat formers may be considered as sources of valuable ecosystem functions where native foundation species have been lost (Ramus et al. 2017).

Sargassum muticum (Yendo) Fensholt is a habitat-forming brown alga native from south-east Asia and recorded in Morocco since 2011 (Sabour et al. 2013). However, it has received very little attention despite being common in rocky intertidal habitats in the region of El Jadida (Belattmania et al. 2018a, b). S. muticum thalli can grow to lengths of up to 5 m (Sabour et al. 2013), and they are composed of two distinct parts: a perennial part, which contains the holdfast and one or more short main axes; and an annual part, consisting of variably sized secondary axes. S. muticum has a pseudo-perennial life cycle comprising a winter phase with a moderate growth rate and a faster growth phase during spring (Wernberg et al. 2004).

This algal species has been introduced in Europe in the early 1970s and is currently widespread in numerous regions worldwide (Engelen et al. 2015). S. muticum has many characteristics that make it a successful invader, including high growth rates; rapid colonization of space; tolerance to temperatures between ~1 °C and 30 °C and survival in salinities below 10‰; high photosynthetic rates; copious reproduction, including asexual and self-fertilization strategies and efficient multiple dispersal mechanisms due to floating and drifting fertile thalli; and high habitat complexity (Norton 1976, 1977a, b; Critchley 1983; Hales and Fletcher 1989; Viejo 1997). The low tolerance of S. muticum to desiccation precludes colonization of regularly emerged littoral areas (Norton 1977a). The optimal tidal zone for S. muticum establishment is the extreme lower shore and shallow sublittoral fringe (Harries et al. 2007). S. muticum rarely occurs deeper than a few meters and the subtidal range is thought to be linked to water clarity and the availability of sufficient light for growth (Norton 1977a; Thomsen et al. 2006). Strong wave action induces the plant breakage and fragmentation, and populations are unable to establish in wave-exposed locations (Viejo et al. 1995). Thus, S. muticum colonizes mainly the sheltered shores where it often forms dense monospecific beds, whereas it is largely restricted to rock pools on exposed shores (Critchley 1983; Critchley et al. 1983; Fernández et al. 1990; Andrew and Viejo 1998a, b; Harries et al. 2007). S. muticum can establish on a variety of substrata, including bedrock to pebbles, shell fragments scattered on the sediment surface (Harries et al. 2007), wood, mooring lines, and wharves (Curiel et al. 1998) that provide an attachment point for the holdfast.

The present work aims at (i) identifying the main environmental drivers shaping spatial dynamics of the non-indigenous brown alga S. muticum along the El Jadida shoreline (northwestern Atlantic coast of Morocco); (ii) discussing about the observed distribution patterns of macro-epifauna associated with this habitat-forming macroalga; (iii) exploring potential differences of associated epifaunal assemblages between sandy and rocky intertidal sites situated at different elevations and also differing for substrate, hydrodynamics, and exposition; and (iv) raising hypotheses to explain the question whether S. muticum-associated epifauna assemblages between two intertidal sites under dissimilar environmental conditions are distinct and their differences would be reflected in differences in diversity, abundance, and taxonomic composition, and whether site and season influence the structure of these communities.

Material and methods

Study areas

The sampling sites (S1 and S2) are located along the El Jadida shoreline on the northwestern Atlantic coast of Morocco (Fig. 1). In this area, the tide is semidiurnal with an average period of around 745 min (12 h and 25 min) and defined by a semidiurnal tidal cycle, consisting of two high and two low tides of different entity. The average tide amplitude is 4 m during spring tides and 2 m for neap tides. The Moroccan Atlantic coast is generally exposed to a strong energy characterized by swells from the north Atlantic mainly of west to northwest origin, but the most dominant swells are those of the north-northwest and north-eastern dial west. The first site S1 (33° 14’ 47.5” N; 8° 32’ 31.9” W) oriented north-westard is a fully wave-exposed coastal area. The S1 consists of an intertidal platform of rocky substratum (bedrock) with a marked roughness and sheltered shallow areas protected against the strong wave action by artificial reefs called “Bechkiras”
These rockpools host a diverse macroalgal community (intermixed species) dominated by the invasive *S. muticum* showing persistent, dense, and extensive canopy, especially during periods of optimal growth. The second site S2 (33° 15’ 11.5” N; 8° 29’ 54.1” W) facing northeast is moderately protected from the wave action. The S2 consists of a sandy beach with shallow intertidal soft bottoms and few patches of outcropping rocks providing hard substrates. In

Fig. 1 Geographical position and location of sampling sites (S1 and S2)

Fig. 2 Intertidal area profile in sites S1 (a) and S2 (b) with a schematic illustration of *Sargassum muticum* thalli
this area, *S. muticum* thalli are restricted to bedrock covered by sand and they constitute scattered stands with large thalli constantly submerged by a body of water whose depth at low tide always exceeds 1 m (Fig. 2b).

Sampling design and sample processing

To test the hypothesis that the structure of epifaunal assemblages inhabiting *S. muticum* differ between physically distinct intertidal shores, thalli of the macroalga were sampled from two sites (separated by six kilometers) under different environmental conditions on the El Jadida coastline. Sampling was conducted at low tides (0.3–0.5 m) on a monthly basis over a 1-year period from January to December 2015. Three random replicates (separated by 5 m) per site were collected. For each replicate five individual thalli were carefully detached from the substratum, enclosed in a plastic bag,

![Graph](image-url)

Fig. 3 Physicochemical variables measured in sites S1 and S2. N, nitrite + nitrate; PO$_4^{3-}$, orthophosphates; Ta, air temperature; Tw, water temperature; DO, dissolved oxygen; SM, suspended matter

© Springer
fixed in 5% buffered formalin-seawater solution, and brought to the laboratory for sorting. In the laboratory, each replicate was washed in tap water. The latter was subsequently sieved using a 0.5-mm mesh screen to recover released macro-epifauna specimens. The macroalga thalli were also examined to pick and individually remove specimens remained entangled in the algal fronds. Hereafter, all collected organisms were preserved in 70% ethanol until sorted, counted, and identified to the lowest possible taxonomic level (usually species) using a binocular stereo microscope. The thalli were dried in a stove at 60 °C for 72 h then weighed to measure macroalgal dry weight (DW).

The environmental variables measured during monthly sampling over the study period (January to December 2015) included air temperature (Ta), seawater temperature (Tw), salinity, pH, dissolved oxygen (DO), nitrogen (as NO₂⁻ and NO₃⁻), phosphates (as PO₄³⁻), and suspended matter (SM). Ta was recorded with a stick thermometer, salinity and Tw with a WTW LF340 thermostalinometer, pH with a portable pHScan WP ½ pH-meter, DO with a portable HANA, and HI 9142 oxygen meter; nitrogen, phosphates, and SM analyses were made in the laboratory. Seawater samples were collected using polyethylene sampling bottles and enclosed in a coolbox at 4 °C. In the laboratory, samples were filtered through Whatman® glass microfiber filters (GF/C 47 mm diameter, 1.2 μm pore size) to assess the SM and to measure the nutrient contents (NO₂⁻ + NO₃⁻ and PO₄³⁻) according to the methodology described by Aminot and Chaussepied (1983). Values of environmental variables were seasonally averaged.

Data analysis

Data about associated epifauna were analyzed through several univariate measures including species richness, i.e., number of taxa (S), abundance (N), diversity (as Shannon-Wiener’s H’ (Shannon and Weaver 1963), and evenness (as Pielou’s J’) (Pielou 1966). All biological indices were calculated per replicate and were then rescaled to 10 g of macroalga dry weight.

Two-way ANOVA was applied to test for the effects of sampling site and time on the epifauna abundance, species richness and diversity, and on environmental variables considering sampling site (S1 and S2) and season (winter, spring, summer, autumn) as fixed factors. Whenever significant effects of the main factors or their interactions were found, the source of difference was identified using the pairwise comparisons based on a post hoc test (Tukey’s honestly significant difference “HSD” test) set at the 5% significance level.

Table 1 Two-way ANOVA analysis testing the effect of site and season on physicochemical parameters

Source of variation	df	F	p
Nitrogen (nitrate + nitrite)			
Site	1	14.086	0.002
Season	3	4.350	0.020
Site × season	3	1.501	0.252
Orthophosphates			
Site	1	1.928	0.184
Season	3	5.588	0.008
Site × season	3	0.752	0.537
Air temperature			
Site	1	1.505	0.238
Season	3	6.934	0.003
Site × season	3	0.957	0.437
Water temperature			
Site	1	0.810	0.381
Season	3	8.579	0.001
Site × season	3	0.887	0.469
pH			
Site	1	0.814	0.373
Season	3	1.413	0.276
Site × season	3	0.415	0.744
Dissolved oxygen			
Site	1	0.810	0.381
Season	3	8.579	0.001
Site × season	3	0.887	0.469
Suspended matter			
Site	1	2.393	0.141
Season	3	2.573	0.090
Site × season	3	2.133	0.136
Salinity			
Site	1	6.688	0.179
Season	3	12.995	0.000
Site × season	3	0.633	0.605

Significant p values are in italics

Source of variation	df	F	p
Site	1	0.814	0.373
Season	3	1.413	0.276
Site × season	3	0.415	0.744
Nitrogen (nitrate + nitrite)			
Site	1	14.086	0.002
Season	3	4.350	0.020
Site × season	3	1.501	0.252
Orthophosphates			
Site	1	1.928	0.184
Season	3	5.588	0.008
Site × season	3	0.752	0.537
Air temperature			
Site	1	1.505	0.238
Season	3	6.934	0.003
Site × season	3	0.957	0.437
Water temperature			
Site	1	0.810	0.381
Season	3	8.579	0.001
Site × season	3	0.887	0.469
pH			
Site	1	0.814	0.373
Season	3	1.413	0.276
Site × season	3	0.415	0.744
Dissolved oxygen			
Site	1	0.810	0.381
Season	3	8.579	0.001
Site × season	3	0.887	0.469
Suspended matter			
Site	1	2.393	0.141
Season	3	2.573	0.090
Site × season	3	2.133	0.136
Salinity			
Site	1	6.688	0.179
Season	3	12.995	0.000
Site × season	3	0.633	0.605

Significant p values are in italics

Table 2 Tukey’s honestly significant difference (HSD) test coupled with two-way ANOVA applied to significant effects of study site and season on physicochemical parameters

Seasons	N	PO₄³⁻	Ta	Tw	DO	Salinity
Winter/spring	0.816	0.544	0.116	0.027	0.327	0.006
Winter/summer	0.403	0.007	0.002	0.001	0.972	0.000
Winter/autumn	0.279	0.062	0.356	0.263	0.150	0.004
Spring/summer	0.024	0.100	0.199	0.343	0.561	0.175
Spring/autumn	0.750	0.520	0.892	0.592	0.005	0.999
Summer/autumn	0.015	0.697	0.056	0.038	0.069	0.220

Significant p values are in italics

Ta, air temperature; Tw, water temperature; DO, dissolved oxygen; N, nitrite + nitrate; PO₄³⁻, orthophosphates
Assumptions for homogeneity of variance (Levene’s test) and normality (Kolmogorov-Smirnov test) were checked for prior to ANOVA analyses; and transformations were made when necessary (if the assumption to meet homogeneity failed) to remove heteroscedasticity (Underwood 1997). These statistical analyses were carried out in SPSS v11.5 software.

Differences in the epifaunal assemblage structure between both sampling sites (fixed factor: 2 levels, S1 and S2) and among seasons (fixed factor: 4 levels, winter, spring, summer, autumn) were explored using non-parametric permutational multivariate analysis of variance (PERMANOVA) (Anderson 2001; Anderson et al. 2008) on the basis of Bray-Curtis similarity matrix constructed from square root-transformed data. Only significant effects ($p < 0.05$) were further investigated through a series of a posteriori multiple pairwise comparisons used to test for differences between/within groups for pairs of levels of the selected factors (i.e., site and season). Permutational test of multivariate dispersions (PERMDISP, Anderson 2004; Anderson et al. 2008) was undertaken to check for homogeneity of dispersions between sites and among seasons. Non-metric multidimensional scaling (nMDS) analysis (Clarke and Warwick 2001) was performed to visualize on ordination plots differences in the multivariate patterns in epifaunal assemblages. The SIMPER procedure (Clarke 1993) was applied to identify the percentage contribution of each taxon and to detect species contributing mostly to the observed Bray-Curtis dissimilarities and differences revealed by PERMANOVA. In each comparison carried out, taxa were considered among the most discriminating epifauna species if their contribution to percentage dissimilarity was $\geq 5\%$. Multivariate analyses were performed by means of PRIMER v6.1 software package (Plymouth Marine Laboratory).

Environmental data

The physicochemical parameters measured in sites S1 and S2 during the study period are reported in Fig. 3. The nitrogen ($\text{NO}_3^- + \text{NO}_2^-$) values showed a significant spatiotemporal heterogeneity ($p < 0.05$; Table 1) between summer and spring and between summer and autumn ($p < 0.05$; Table 2). In S1, nitrogen rate increased from winter to spring and strongly decreased in summer. In S2, nitrogen contents decreased between winter and summer, and rose in autumn (Fig. 3). Generally, waters seemed to be more concentrated in nitrogen in S1 compared to S2. The PO_4^{3-} values were comparable in both sites ($p > 0.05$) but differed significantly at seasonal scale ($p < 0.01$) with a relevant increase in summer (Fig. 3). Temperatures generally exceeded 15 °C on average in both sites, showing a clear and significant seasonal variability ($p < 0.01$) with the highest values recorded in summer ($\geq 20 °C$) (Fig. 3). The pH values not exceeded 8.32 (Fig. 3) indicating neither inter-season nor inter-site heterogeneity ($p > 0.05$; Table 1) with low standard errors not exceeding 0.1 (Fig. 3). Dissolved oxygen levels varied from 1.89 to 25.05 mM (Fig. 3) with significant variation among seasons, particularly between spring and autumn ($p < 0.01$; Tables 1 and 2) without any significant spatial variability ($p > 0.05$; Table 1). The suspended matter did not show any clear trend within sites and no significant ($p > 0.05$) spatiotemporal heterogeneity was detected. Salinity values ranged from 34.04 to 38.69 PSU (Fig. 3) and exhibited significant ($p < 0.01$; Tables 1 and 2) temporal variability tending to increase during warm seasons in both studied sites.

Results

Environmental data

Month	Thallus length (cm)	Density (thallus/m2)	Fertility	
	S1	S2	S1	S2
January	45.00 ± 1.15	60.00 ± 2.08	44.33 ± 3.28	21.33 ± 1.20
February	51.00 ± 2.08	73.33 ± 2.03	44.00 ± 2.08	19.00 ± 1.15
March	49.00 ± 2.08	131.33 ± 3.53	47.67 ± 4.63	16.33 ± 0.33
April	71.00 ± 2.08	180.67 ± 4.33	44.33 ± 0.67	13.33 ± 0.88
May	94.00 ± 2.65	210.00 ± 6.08	44.33 ± 0.88	10.00 ± 0.58
June	113.00 ± 4.73	261.67 ± 3.53	43.00 ± 6.24	5.00 ± 0.58
July	63.33 ± 6.01	53.67 ± 7.51	35.00 ± 1.73	5.00 ± 0.58
August	38.67 ± 2.73	29.67 ± 3.28	23.33 ± 0.88	4.33 ± 0.67
September	15.00 ± 1.73	11.00 ± 2.08	21.00 ± 1.53	3.33 ± 0.33
October	11.67 ± 0.88	1.67 ± 1.76	24.67 ± 1.76	
November	25.67 ± 1.76	21.67 ± 2.33	22.00 ± 2.52	6.67 ± 0.33
December	36.00 ± 2.65	32.33 ± 2.33	25.00 ± 0.58	10.00 ± 0.58

*Presence of the receptacles

Table 3 Monthly variations in length, density, and fertility of Sargassum muticum populations in study sites

Table 3 Monthly variations in length, density, and fertility of Sargassum muticum populations in study sites

Month	Thallus length (cm)	Density (thallus/m2)	Fertility	
	S1	S2	S1	S2
January	45.00 ± 1.15	60.00 ± 2.08	44.33 ± 3.28	21.33 ± 1.20
February	51.00 ± 2.08	73.33 ± 2.03	44.00 ± 2.08	19.00 ± 1.15
March	49.00 ± 2.08	131.33 ± 3.53	47.67 ± 4.63	16.33 ± 0.33
April	71.00 ± 2.08	180.67 ± 4.33	44.33 ± 0.67	13.33 ± 0.88
May	94.00 ± 2.65	210.00 ± 6.08	44.33 ± 0.88	10.00 ± 0.58
June	113.00 ± 4.73	261.67 ± 3.53	43.00 ± 6.24	5.00 ± 0.58
July	63.33 ± 6.01	53.67 ± 7.51	35.00 ± 1.73	5.00 ± 0.58
August	38.67 ± 2.73	29.67 ± 3.28	23.33 ± 0.88	4.33 ± 0.67
September	15.00 ± 1.73	11.00 ± 2.08	21.00 ± 1.53	3.33 ± 0.33
October	11.67 ± 0.88	1.67 ± 1.76	24.67 ± 1.76	
November	25.67 ± 1.76	21.67 ± 2.33	22.00 ± 2.52	6.67 ± 0.33
December	36.00 ± 2.65	32.33 ± 2.33	25.00 ± 0.58	10.00 ± 0.58

*Presence of the receptacles
Table 4 Total list of macro-epifauna species associated to Sargassum muticum at the studied sites on the El Jadida shoreline

Taxa	S1	S2
Nemertea	+	
Polychaeta	+	
Branchiopontia sp. 1	+	+
Eutalia viridis (Linnaeus, 1767)	+	
Eunicella vittata (Delle Chiaie, 1828)	+	+
Eupolyphia nesidensis (Delle Chiaie, 1828)	+	
Lepidoponos clava (Montagu, 1808)	+	
Platynereis cf. dumerilli (Audoun & Milne Edwards, 1834)	+	+
Rissoa parva (da Costa, 1778)	+	+
Chasvetia breunnea (Donovan, 1804)	+	
Fusinus sp. 1	+	
Littorina saxatilis (Olivi, 1792)	+	
Melarhyne neritoides (Linnaeus, 1758)	+	
Mitrella alvarela Rolán & Luque, 2002	+	
Monopordus perversus (Linnaeus, 1758)	+	
Nasmaria sp. 1	+	
Octebrina sp. 1	+	
Omologrya sp. 1	+	
Rissoa parva (da Costa, 1778)	+	+
Steromphala pennanti (Philippe, 1846)	+	
Steromphala umbilicalis (da Costa, 1778)	+	+
Tricula pulvis (Linnaeus, 1758)	+	
Mollusca Bivalvia	+	
Musculus costulatus (Riso, 1826)	+	
Pycnogonida	+	
Ammophilidae undetermined	+	
Crustacea Amphipoda	+	
Ampelisca lusitania Bellan-Santini & Marques, 1987	+	
Amphiphilina conicaulis (Stebbing, 1874)	+	+
Ampitheat sp. 1	+	
Amphipodeae undetermined	+	
Acrasa spinicornis Afonso, 1976	+	
Apherusa cf. ovalipes Norman & Scott, 1906	+	+
Apolochoes neapolitanus (Della Vallee, 1893)	+	
Calliopiideae undetermined	+	
Caprella acanthifera Leach, 1814	+	
Elasmopus vichoni Mateus & Mateus, 1966	+	+
Eridenchius sp. 1	+	
Lysianassidae undetermined	+	
Crustacea Isopoda	+	
Cleantis sp. 1	+	
Dynamene bidentata (Adams, 1800)	+	
Paranthura nigrinpunctata (Lucas, 1846)	+	
Stenosoma sp. 1	+	
Stenosoma capitos (Rathke, 1837)	+	
Stenosoma sp. 1	+	
Crustacea Decapoda	+	
Hippolyte varis Leach, 1814	+	
Hyas cf. courestatus Leach, 1816	+	
Crustacea Tanaideaceae	+	
Chondrochela savignyi (Kroyer, 1842)	+	
Echinodermata	+	
Amphipolitis squamata (Delle Chiaie, 1828)	+	
Asterina gibbosa (Pennant, 1777)	+	
Chordata	+	
Opeotogenus cadieni Briggs, 1957	+	
Synagnostus acus Linnaeus, 1758	+	

Biological data analysis

The monitoring of some parameters of phenology and life cycle of the invader S. muticum in the two sites is illustrated on the Table 3. S. muticum has two distinct growth phases: the first one with a slower growth in winter followed by a second phase characterized by faster growth during spring-early summer. The elongation of the thalli in S2 reached a maximum value of 261.67 cm in June, whereas in S1 the maximum size of the alga not exceeded 115 cm.

S. muticum population in S1 showed densities ranging from 21 to 47 ind.m⁻²; the greatest densities were recorded during winter to early summer, subsequently, densities not exceed 25 ind.m⁻² (Table 3). In S2, density values of 14 to 21 ind.m⁻² were recorded during winter and early spring before decreasing in June (Table 3). S. muticum thalli developed receptacles on the tertiary branches earlier in S1 site (starting from March) than in S2 site (April).

A total of 48 taxa of epifauna associated with S. muticum were recovered and recorded over the duration of the sampling period (Table 4) with 21 species common to both studied sites. However, some species (i.e., the Polychaeta Eulalia viridis, Eupolyhipia nisidensis, and Lepidoponos clava; the gastropods Bittium reticulatum and Monopordus perversus; the amphipods Apolochoes neapolitanus and Ampelisca lusitania; and the isopod Paranthura nigrinpunctata) were exclusively found in S1. The gastropods Steromphala umbilicalis (52% of all individuals of all taxonomic groups), Rissoa parva (15%), and Steromphala pennanti (10%) were the most abundant associated species at the sandy site S2, while the isopod Dynamene bidentata (37%) and the gastropods S. umbilicalis (20%) and S. pennanti (12%) dominated the S. muticum-associated epifauna communities in the site S1. D. bidentata, R. parva, S. umbilicalis, and S. pennanti exhibited seasonal changes in abundance as well as spatial discrimination between the two sites. Crustaceans and gastropods had the highest number of individuals and were the most species-rich taxonomic groups accounting for 77 and 82% of the total number of species in S1 and S2, respectively (Fig. 4).

The mean seasonal values of community structure attributes (abundance, number of species, and diversity indices H’ and J’) of the associated epifauna at both sites are reported in the Figs. 5 and 6. The abundance differed significantly between S1 and S2 (p < 0.05; Table 5). Generally, S. muticum seemed to host on average more individuals in the rocky site compared to S2, particularly, during winter and spring (Fig. 5a). The number of epifaunal species associated to S. muticum showed comparable values between sites (Fig. 5b) with no significant differences within site and season (Fig. 5b) and no interaction effect between both factors (p > 0.05; Table 5). Significant spatiotemporal variability was detected for Shannon-Wiener’s index (p < 0.05; Tables 5 and 6).
with higher values in S1 than S2 (Fig. 6a). Shannon-Wiener’s index showed synchronous dynamics between both sites, and exhibited the highest values during cold periods (Fig. 6a). Pielou’s J’ depicted similar trends on both sites (Fig. 6b) without any significant differences between sites and among seasons ($p > 0.05$; Table 5).

PERMANOVA analysis pointed out significant differences in the structure of epifaunal assemblages between both sites and among seasons (Table 7). PERMDISP tests indicated no significant heterogeneity of dispersions for the factor ‘site’ suggesting a homogeneous dispersion between sites (PERMDISP, $F = 0.046$; P (perm) = 0.854). However, there was no homogeneity of multivariate dispersion ($F = 7.069$; P (perm) = 0.001) in the season effect. This was essentially due to the noteworthy variation of species structure between the cold season (winter) and warm seasons (spring and summer) (PERMDISP pairwise comparisons; P (perm) from 0.010 to 0.024). The two-dimensional nMDS plot (Fig. 7)
mainly due to the variation in abundance of the most dissimilar distribution of species between S1 and S2 was. Individuals in S2 in both summer and autumn S. umbilicalis, S. pennanti, and the gastropods S. muticum, D. bidentata, and the gastropods S. umbilicalis, S. pennanti, and R. parva were the most important contributive species to the observed dissimilarity of macro-epifaunal assemblages between S1 and S2 throughout all seasons. D. bidentata was more abundant in the S1 site than in S2 during all sampling seasons. Both species of the genus Steromphala showed higher abundance in S1 during spring, whereas they were represented by more individuals in S2 during summer. R. parva displayed more individuals in S2 in both summer and autumn. In general, the dissimilar distribution of species between S1 and S2 was mainly due to the variation in abundance of the most common taxa.

Discussion

The present paper highlights the ecological role of the introduced alga S. muticum by harboring abundant and diverse epifaunal assemblages, as expected for an engineer species. However, differences have been detected between the two analyzed sites with the rocky biotope (S1) hosting more diversified and abundant epibiont associations throughout seasons except for summer when the macroalgae seems to support more epifaunal individuals in the sandy biotope (S2). This would be related to a slight time shift of the annual life cycle of this alga between the two sites. This shift is presumably linked to the local morphology, bottom nature, and hydrodynamism characterizing the two sampling sites. On the rocky site, the shallow rockpools limit the length and the apical growth of S. muticum thalli that are continually truncated at the growing tips of their primary axes level with the surface of the pool under the wave action. This promotes the production of lateral secondary and tertiary branches and, consequently, the earlier appearance of the receptacles (at the beginning of March). After the reproductive period, lateral branches start to degenerate in summer. On the sandy site, with water depths beyond 1 m at low tide, the alga undergoes its highest vegetative growth from winter to early summer with thallus lengths exceeding 2.60 m. The elongation of thalli seems to take over the vegetative growth, causing a delay of the fertility, thus restricting the earlier degeneration of the thalli in summer.

The spatial variation of epifaunal assemblages inhabiting S. muticum along the El Jadida coast is probably linked to the degree of cover of S. muticum populations in each study site. Larger macrophyte beds are known to host greater species richness than small beds (Källén et al. 2012). It has been reported that the epifaunal diversity declines with reducing patch size of kelps, and epifaunal assemblages occurring on low-density kelp reefs are different from those recorded in high-density kelp reef (Shelamoff et al. 2019, 2020). Reasons for such variations may be related to the species-area relationship, linking the number of species to the surface available for colonization (Anderson 1998; Hirst and Attrill 2008; Källén et al. 2012). Alternatively, small patches can offer a refuge for species that are poorer competitors, and hence loosers in larger areas (Anderson 1998), whereas larger beds provide more microhabitats and niches, promoting colonization of several species (Anderson 1998; Hirst and Attrill 2008; Källén et al. 2012).

The S. muticum population is well established at the rocky site, where the alga stands maintain high densities from winter to late spring. In contrast, this alien is not able to develop dense populations on the sandy beach (S2). The low density seems caused by the detachment of the S. muticum’s thalli feebly attached to the shallow intertidal bedrock covered with sand. Although the length of S. muticum thalli is favored by the depth of the water column, the density of this invader

Season	p values
Winter/spring	0.023
Winter/summer	0.032
Winter/autumn	0.820
Spring/summer	0.998
Spring/autumn	0.151
Summer/autumn	0.195

Significant p values are in italics
appears to be mainly affected by the substrate type as a forcing factor acting at local scale. This alien species commonly prefers hard substrates (Norton 1977b; North 1973; Fletcher and Fletcher 1975) but may occasionally grow on mixed substrates containing sand, gravel, and stones (den Hartog 1997). According to Thomsen et al. (2006), stones < 10 cm in diameter are considered as inappropriate substrates for *S. muticum* settlement. This alga could unsuccessfully settle on sandy substrates, where it is also prone to tissue loss produced by sand abrasion (Morrell and Farnham 1982). The establishment of a sustained vegetation cover of *S. muticum* on the studied rocky biotope could also dependent on the availability of nutrients (high nitrogen content in S1 compared to S2). In coastal ecosystems, the generally high nutrient content facilitates the establishment of invasive macroalgae (Ceccherelli and Cinelli 1997; Steen 2003; Sánchez and Fernández 2006). The spread of *S. muticum* in northern Spain has been modeled by the interaction between nutrient enrichment and the availability of space including the lack of native canopy algae resisting *S. muticum* establishment.

Table 7 PERMANOVA analysis testing for differences in the epifaunal assemblage structure between sites (S1 vs. S2) and seasons

Source	df	Pseudo-F	P (perm)
Site	1	8.468	0.001
Season	3	3.6864	0.001
Site × season	3	2.2505	0.002

Pairwise tests

	Winter							
	T	P (perm)						
S1/S2	1.863	0.001	1.453	0.034	1.936	0.036	2.341	0.003

Significant *p* values are in italics.

Fig. 7 Non-metric multidimensional scaling (nMDS) ordinations of macro-epifauna assemblages associated to *Sargassum muticum* in site S1 and S2 during winter (a), spring (b), summer (c), and autumn (d)
(Sánchez and Fernández 2006). In addition, it has been reported that S. muticum finds a refugium in wave-protected tide pools and that it cannot develop under severe hydrodynamic conditions (Andrew and Viejo 1998b). In exposed locations, strong wave action causes plant fragmentation and populations are unable to recover to their former ecological stage in such locations (Viejo et al. 1995). Consequently, the hydrodynamic conditions and the absence of a suitable substratum could also be regarded as a limiting factor for S. muticum occurrence in the sandy site.

The structure of the macro-epifauna associated with S. muticum differed significantly between the two study sites. Similar results have been highlighted by Buschbaum et al. (2006) who reported how the community structure and species composition associated to S. muticum varied significantly between a rocky shore of the island of Helgoland and a soft sediment environment near the island of Sylt (North Sea, German Bight). The spatial distribution of epifaunal communities is influenced not only by the algae as habitat but also by the hydrodynamic conditions of the environment (Guerra-García et al. 2011). Several studies have revealed major differences in the epiphytic invertebrate composition on various species of macroalgae across gradients of wave exposure (e.g., Beckley and McLachlan 1979; Tararam and Wakabara 1981; Edgar 1983; Moore 1972, 1985; De Felice and Parrish 2001). Taxonomic richness, abundance, and diversity of invertebrate assemblages showed significant negative relationships with exposure to wave energy at Hanalei Bay, Kauai, Hawaii (De Felice and Parrish 2001). In this study, the presence of rocky pools and breakwater structures in S1 provide protection to thalli and their associated organisms from wave action. This could partly explain the relatively high epifauna diversity recorded from this site. The substratum type, otherwise, would not be considered a forcing/key factor for the spatial patterns of the epifauna composition associated to S. muticum along the El Jadida coastline.

Some species found exclusively within the shallow rocky pools in S1 were previously recorded in sandy and/or muddy biotopes (Watson 1886; Marques and Bellan-Santini 1987; Martínez et al. 2007; Scipione and Zupo 2010).

Table 8

SIMP analysis of the macro-epifauna associated to *Sargassum muticum* in S1 and S2 sites during sampling seasons

Species	S1 Average abundance	S2 Average abundance	Average Dissimilarity	Dissimilarity contribution (%)
Winter (75.22)				
Dynamene bidentata	2.66	0.62	14.56	19.35
Apherusa cf. ovalipes	0.77	0.29	5.22	6.94
Steromphala umbilicalis	1.07	0.83	5.09	6.77
Chaetetia brunnea	0.60	0.06	4.74	6.31
Aora spinicornis	0.67	0.00	4.67	6.21
Erichthonius sp.	0.86	0.00	4.53	6.02
Steromphala pennanti	0.66	0.49	4.52	6.01
Rissoa parva	0.37	0.48	3.56	4.93
Spring (58.34)				
Dynamene bidentata	3.23	1.28	16.48	28.24
Steromphala umbilicalis	2.44	1.44	9.86	16.89
Steromphala pennanti	1.14	0.88	8.86	15.19
Summer (59.09)				
Steromphala umbilicalis	2.40	4.36	13.05	22.11
Steromphala pennanti	0.85	1.51	7.78	13.19
Dynamene bidentata	1.11	1.09	7.07	11.98
Rissoa parva	0.71	1.04	5.94	10.06
Tricola pullus	0.00	0.93	5.19	8.80
Bittium reticulatum	0.70	0.00	4.30	7.29
Autumn (78.53)				
Rissoa parva	0.00	2.47	18.17	23.13
Dynamene bidentata	1.70	0.42	11.29	14.37
Steromphala umbilicalis	1.15	1.00	7.79	9.92
Hippolyte varians	0.16	0.81	6.41	8.16
Steromphala pennanti	0.76	0.39	6.26	7.98
Opeatogenys cadenati	0.09	0.64	4.38	5.58

Average dissimilarities for site comparison during each season are shown in parentheses
S. muticum is a pseudo-perennial alga. Thus, associated epifaunal assemblages are lost after the natural detachment of the lateral branches in late summer. An annual recolonisation of the alga is necessary because only a few species remain attached to the basal fixation system, maintaining their presence during winter (Norton and Benson 1983; Jephson and Gray 1977; Buschbaum et al. 2006). Therefore, recolonisation of S. muticum by the epifaunal organisms could be potentially ruled by other macroalgal species present at each study sites. Actually, most of algal species colonizing the site S1 (mainly represented by the brown algae belonging to Fucales, Dictyotales, Sphacelariales, Laminariales, and Tilopteridales, and some red algae belonging to Gelidiales, Gigartinales, and Gracilariales) are absent from the site S2 which is characterized by the dominance of red algae (Rhodymeniales, Ceramiales, Gigartinales, Gracilariales, Halymeniales, Plocamiales, and Nemaliales) with only some species of brown algae (mainly Dictyotales) and green algae (Bryopsidales).

The selection of seaweed hosts by marine invertebrate epifauna based on internal (such as cell structure and cell wall components, energetic storage products, and defensive biochemistry) and external features (morphology) of seaweeds; yet, thallus form has been shown to be a stronger regulator of invertebrate epifauna than palatability or defensive chemistry (Dean and Connell 1987; Nordehau 2004).

The observations of invertebrate richness across algal morphology, generally, tend to follow common perceptions about relationships between algal thallus complexity and invertebrate diversity (Chemello and Milazzo 2002; Bates 2009; Veiga et al. 2014). Specifically, the complexly branching corticated algae in S1 (like Cystoseira humilis, C. tamariscifolia, Fucus guiryi, Sargassum vulgare, Gelidium pulchelum, and Gelidium spinulosum) could have the most associated invertebrates providing a more diverse source for the annual recolonisation of S. muticum, whereas algae with simple morphology in S2 (like Grateloupia lanceolata, Laurencia obtusa, Osmundea pinnatifida, Gymnogongrus patens, Codium decorticatum, and C. tomentosum) could host the fewest associated invertebrates.

In conclusion, the present investigation revealed that the macro-epifauna associated with the invasive S. muticum is more diverse and abundant in the rocky site than in the sandy site throughout seasons except for summer. Furthermore, the structure of epifaunal assemblages associated with this alien macroalga differed significantly between the two study sites. The orientation of the shoreline, the topographic and bottom morphology, and the type of substrate of each beach in addition to the hydrodynamic factors (waves, swells, currents) and the local occurrence of anthropogenic artifacts seem to influence the establishment and the development of S. muticum, generating a shift in the life cycle (growth, reproduction, and degeneration periods) between the two sites. This determines, albeit indirectly, the spatiotemporal variability in composition and abundance of the associated macro-epifauna.

Acknowledgements The authors are grateful to the anonymous reviewers for providing useful comments and suggestions that improved the manuscript.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Ethical approval All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

References

Aminot A, Chaussepid M (1983) Manuel des analyses chimiques en milieu marin. CNEXO, Brest
Anderson MJ (1998) Effects of patch size on colonisation in estuaries: revisiting the species-area relationship. Oecologia 118:87–98
Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46
Anderson MJ (2004) PERMDISP: a FORTRAN computer program for permutational analysis of multivariate dispersions (for any two-factor ANOVA design) using permutation tests. University of Auckland, Auckland
Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA+ for PRIMER: guide to software and statistical methods. PRIMER-E, Plymouth
Andrew NL, Viejo RM (1998a) Effects of wave exposure and intraspecific density on the growth and survivorship of Sargassum muticum (Sargassaceae: Phaeophyta). Eur J Phycol 33:251–258
Andrew NL, Viejo RM (1998b) Ecological limits to the invasion of Sargassum muticum in northern Spain. Aquat Bot 60:251–263
Bates CR (2009) Host taxonomic relatedness and functional-group affiliation as predictors of seaweed–invertebrate epifaunal associations. Mar Ecol Prog Ser 387:125–136
Beckley LE, McLachlan A (1979) Studies on the littoral seaweed epifauna of St. Croix Island. I. Physical and biological features of the littoral zone. S Afr J Zool 14(4):175–182
Bedini R, Bedini M, Bonechi L, Piazzri L (2015) Effects of non-native turf-forming Rhodophyta on mobile macro-epifaunal assemblages in the north–western Mediterranean Sea. Mar Biol Res 11(4):430–437
Belattmania Z, Chaouti A, Reani A, Machado M, Engelen AH, Serrão EA, Sabour B (2018a) Similar epiphytic macrofoua inhabiting non-native Sargassum muticum and native fucoids on the Atlantic coast of Morocco. Cryptogam Algal 39(3):269–292
Belattmania Z, Chaouti A, Reani A, Engelen AH, Machado M, Serrão EA, Sabour B (2018b) The introduction of Sargassum muticum modifies epifaunal patterns in a Moroccan seagrass meadow. Mar Ecol 39:e12507
Bertness MD, Leonard GH, Levine JM, Schmidt PR, Ingraham AO (1999) Testing the relative contribution of positive and negative interactions in intertidal communities. Ecology 808(2711–2726
Bolam SG, Egleton J, Smith R, Mason C, Vanstaen K, Rees H (2008) Spatial distribution of macrofaunal R. assemblages along the English Channel. J Mar Biol Assoc UK 88(4):675–687
Bremner J, Rogers SL, Frid CLJ (2006) Matching biological traits to environmental conditions in marine benthic ecosystems. J Mar Syst 60:302–316
Norderhaug KM (2004) Use of red algae as hosts by kelp-associated amphipods. Mar Biol 144:225–230
North WJ (1973) Regulating marine transplantation. Science 179(4079):1181
Norton TA (1976) Why is Sargassum muticum so invasive? Br Phycol J 11:197–198
Norton TA (1977a) Ecological experiments with Sargassum muticum. J Mar Biol Assoc UK 57:33–43
Norton TA (1977b) The growth and development of Sargassum muticum (Yendo) Fensholt. J Exp Mar Biol Ecol 26:41–53
Norton TA, Benson MR (1983) Ecological interactions between the brown seaweed Sargassum muticum and its associated fauna. Mar Biol 75:169–177
Pieau EC (1966) Shannon’s formula as a measure of specific diversity: its use and measure. Am Nat 100:463–465
Ramus AP, Silliman BR, Thomsen MS, Long ZT (2017) An invasive foundation species enhances multifunctionality in a coastal ecosystem. PNAS 114(32):8580–8585
Sabour B, Reani A, EL Magouri H, Haroun R (2013) Ramus AP, Silliman BR, Thomsen MS, Long ZT (2017) An invasive foundation species enhances multifunctionality in a coastal ecosystem. PNAS 114(32):8580–8585
Sánchez I, Fernández C (2006) Resource availability and invasibility in an intertidal macroalgal assemblage. Mar Ecol Prog Ser 313:85–94
Schaffelke B, Hewitt CL (2007) Impact of introduced seaweeds. Bot Mar 50:397–417
Scipione MB, Zupo V (2010) Crustacean amphipods from the seagrasses Zostera marina, Cymodocea nodosa and Posidonia oceanica in the Adriatic Sea (Italy): a first comparison. Zool Baetica 21:15–32
Shannon C, Weaver W (1963) The mathematical theory of communication. University Illinois Press, Urbana
Shelamoff V, Layton C, Tatsumi M, Cameron MJ, Wright JT, Johnson CR (2019) Patch size and density of canopy-forming kelp modify influences of ecosystem engineering on understory algal and sessile invertebrate assemblages. Mar Ecol Prog Ser 632:59–79
Shelamoff V, Layton C, Tatsumi M, Cameron MJ, Edgar GJ, Wright JT, Johnson CR (2020) Kelp patch size and density influence secondary productivity and diversity of epifauna. Oikos 129(3):331–345
Smith JR (2016) The putative impacts of the non-native seaweed Sargassum muticum on native communities in tidepools of Southern California and investigation into the feasibility of local eradication. Mar Ecol 37:645–667
Stachowicz JJ (2001) Mutualism, facilitation, and the structure of ecological communities. Bioscience 51:235–246
Steen H (2003) Intraspecific competition in Sargassum muticum (Phaeophyceae) gemlings under various density, nutrient and temperature regimes. Bot Mar 46:36–43
Tararam AS, Wakabaray Y (1981) The mobile fauna - especially Gammaridea - of Sargassum cymosum. Mar Ecol Prog Ser 5:157–163
Taylor RB (1998) Seasonal variation in assemblages of mobile epifauna inhabiting three subtidal brown seaweeds in northeastern New Zealand. Hydrobiologia 361:25–35
Thomsen MS (2010) Experimental evidence for positive effects of invasive seaweed on native invertebrates via habitat-formation in a seagrass bed. Aquat Invasions 5(4):341–346
Thomsen MS, Wernberg T, Stiehr PA, Pedersen MF (2006) Spatio-temporal distribution patterns of the invasive macroalga Sargassum muticum within a Danish Sargassum–bed. Helgel Mar Res 60:50–58
Thomsen MS, Stiehr PA, Nejrup L, Schiel DR (2013) Effects of the invasive macroalga Gracilaria vermiculophylla on two co-occurring foundation species and associated invertebrates. Aquat Invasions 8(2):133–145
Umanzor S, Ladah L, Calderon-Aguilera LE, Zertuche-González JA (2017) Intertidal macroalgae influence macroinvertebrate distribution across stress scenarios. Mar Ecol Prog Ser 584:67–77
Underwood AJ (1997) Experiments in ecology: their logical design and interpretation using analysis of variance. Cambridge University Press, Cambridge
Veiga P, Rubal M, Sousa-Pinto I (2014) Structural complexity of macroalgae influences epifaunal assemblages associated with native and invasive species. Mar Environ Res 101:115–123
Viejo RM (1997) The effects of colonization by Sargassum muticum on tidepool macroalgal assemblages. J Mar Biol Assoc UK 77:325–340
Viejo RM, Arrontes J, Andrew NL (1995) An experimental evaluation of the effect of wave action on the distribution of Sargassum muticum in northern Spain. Bot Mar 38:437–444
Ward C, Dijkstra JA, Mello K, Stevens A, O’Brien B, Ikedo W (2019) A novel three dimensional analysis of functional-architecture that describes the properties of macroalgae as refuge. Mar Ecol Prog Ser 608:93–103
Watson RB (1886) Report on the Scaphopoda and Gasteropoda collected by H.M.S. Challenger during the years 1873–1876. Zoology 15:1–761
Wernberg T, Thomsen MS, Stiehr PA, Pedersen MF (2004) Epibiota communities of the introduced and indigenous macroalgal relatives Sargassum muticum and Halidrys siliquosa in Limfjorden (Denmark). Helgel Mar Res 58:154–161
Wikström SA, Kautsky L (2004) Invasion of a habitat-forming seaweed: effects on associated biota. Biol Invasions 6:141–150

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.