EDITORIAL

Natural toxins: environmental contaminants calling for attention

Hans Christian Bruun Hansen1*, Klara Hilscherova2 and Thomas D. Bucheli3

Abstract
Biosynthetic toxic compounds from plants and cyanobacteria constitute a chemically diverse family of at least 20,000 compounds. Recent work with natural toxin databases and toxin characterization shows that the majority of natural toxins are polar and mobile, with toxicity ranging from low to very high, while persistence is highly variable. Natural toxins may be produced in high quantities—some exceeding 10 g/m²/year—resulting in high environmental loads. Recent phytotoxin monitoring indicates that one or more natural toxin is always present in a surface water sample, but that concentrations are highly variable often with pulses during rain events. Phytotoxins belong to many classes, but often with flavonoids and alkaloids dominating. Likewise, advanced monitoring discovers a wide spectrum of cyanobacterial metabolites that are released directly into surface waters during water blooms. Except of the few known cyanobacterial toxins, we have very limited info regarding their environmental fate and toxicity.

The 16 papers in this article collection present examples of natural toxin occurrence, properties, fate and toxicity. The overarching conclusion is that natural toxins should be monitored and characterized regarding their risk potential, and that natural toxins of greatest expected risk should be evaluated as thoroughly as industrial xenobiotics. Cyanotoxins are well known water contaminants that should be removed for producing drinking water, while for phytotoxins the current knowledge base is very limited. We advocate to intensify research on natural toxins, and to address the evident knowledge gaps on natural toxin analysis/monitoring, physical–chemical properties and degradation/pathways, transport modelling, and toxicity. The complex and dynamic interplays between biotic and site conditions such as vegetation, toxic plant densities, climate, soil types, nutrients and radiation, play decisive roles for both biotoxin formation and fate. Environmental and toxicological research in biosynthesized compounds extends beyond natural toxins, with important perspectives for risk assessment of biopesticides, growth regulators and biomedicine (or biologicals collectively) produced by plants and microorganisms.

Poisonous food
We are picky with what we eat and drink—for good reasons. We wisely avoid death cap mushroom, castor beans, and poison hemlock. Drinking water from a lake tainted green by cyanobacteria is a no-go. We will even be careful with green potatoes, non-cooked chickpeas, beans and cassava due to their contents of glycoalkaloids, lectins and cyanogenic glycosides. These and many other organisms produce secondary metabolites that are strong poisons, also to humans. Ames et al. [1] estimated that 99.99% of dietary “pesticides” were of natural origin. There are more than 20,000 natural bioactive compounds that are toxic to humans covering a wide range of modes of action [2]. Some show low acute toxicity like the glycoalkaloids in potato or isoflavones in clover, medium toxicity as linamarin in cassava and coniin in poisonous hemlock, while some are very toxic like ricin in castor beans and the cyanotoxin saxitoxin produced by blue-green algae (Table 1). Many of these compounds may have or have had a function as natural defense chemicals in order for the toxin producing organism to compete with other species,

*Correspondence: haha@plen.ku.dk
1 Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
Full list of author information is available at the end of the article

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Hansen et al. Environ Sci Eur (2021) 33:112
https://doi.org/10.1186/s12302-021-00543-6
and to protect itself against herbivoric and pathogenic attacks and other stressors [3, 4].

High loads

Many natural toxins are produced in remarkably high quantities with biomass contents up to several mass percent (Table 1). If plants occur as dense stands or in monocultures the production and hence the potential load per land area unit can be massive and much higher than seen for other land applied chemicals like pesticides. For instance a clover crop may produce isoflavones up to 220 kg per hectare annually [5], while quinolizidine alkaloids in lupin may reach annual production of 800 kg per hectare [6]. Bracken—a fern with invasive character—has been estimated to produce more than 20 kg of its carcinogenic illudane glycosides per hectare of land during a growing season [7]. The surface scums during massive cyanobacterial bloom events have been shown to reach maximum values over 100 mg/L of cyanotoxins microcystin [8].

Environmental contaminants

Natural toxins are biosynthesized and released within or in close proximity to surface water and groundwater reservoirs (Fig. 1). Thus, cyanobacterial blooms cause direct water contamination due to toxic secondary metabolites, while exudation from plants and rain wash off transfer toxins to soils from where they leach to surface waters and groundwater. A high fraction of natural toxins are polar and even charged, with octanol–water partition coefficients, log K_{ow}, typically in the range from -5 to 3 [9, 10]. Hence, they are highly mobile in soils and sediments (Table 1). In a pioneering work, Günthardt et al. [11] created a database of plants and their toxins for Central Europe. Starting with a set of 844 plants and 1586 toxins, the authors found that about a third of the toxins would classify as persistent, mobile and toxic (PMT) based on QSAR estimated properties. This work also showed that alkaloids make up the dominating class of plant PMT compounds. The Janssen group compiled a database for secondary metabolites from cyanobacteria with more than 2000 entries classified into 13 classes [12]. Cyanotoxins are not only microcystins but can cover a high variation in chemical diversity and share similar PMT properties as plant toxins. Work with the databases has demonstrated an embarrassing lack of experimental data on physical chemical properties, environmental fate and toxicity for most natural toxins, and points to the need of reference materials and analytical methods.

They make it to the water

With the large masses of toxins being produced combined with their inherent PMT properties, natural toxins are expected to be frequently observed in streams, rivers and lakes. Some cyanotoxins have been widely monitored showing their frequent occurrence in waterbodies with cyanobacterial blooms. The most commonly studied and detected cyanotoxin microcystin occurs on average in up to tens of ug/L levels in pelagic water outside scums, but its concentrations can be up to several orders of magnitude higher in surface blooms and scums [8, 13]. Isoflavones originating from red clover or soybean dominated agricultural land occurred regularly in Swiss and US rivers in concentrations up to 217 ng/L [14, 15]. Mycotoxins,
produced by *Fusarium* spp. that attack small grain cereals during cultivation, were equally found in these surface waters [16–18]. More recently, a growing body of evidence for the presence of a larger number of phytotoxins from various classes of secondary plant metabolites in ground- and surface water was presented by various researchers in dedicated experimental field studies or surface water monitoring campaigns [6, 19–22]. Likewise, other types of natural compounds emitted primarily by the anthroposphere, such as food ingredients and personal care products, as well as human hormones are equally present in surface and groundwaters. Thus, caffeine, nicotine, estrogens, piperine, steroids and morphine occur frequently in screening studies of surface and groundwaters, e.g., [23–27].

Little is known on toxin transfer from plant to soil; passive and active release may take place both from above- and below-ground parts. Field studies indicate that fast and substantial release of toxins may occur during rain events generating pulses of toxins that propagates through soils to drainage and creek waters [5, 28, 29]. Hence, natural toxin concentrations and exposure in surface waters and in upper groundwater may be highly variable over time. This in turn calls for rain-event and flow-proportional sampling as random sampling may not lead to precise estimates of environmental loads. The multitude of toxin producing organisms predicts that natural toxins in freshwaters should be found as mixtures with likely fingerprints of the dominating toxin producers in the catchment or the water reservoir [19]. Climate-induced change incropping patterns, fast migration of new (invasive) species, faster development of cyanobacterial blooms and appearance of new toxin varieties add to the complexity, e.g., [30].

Regulation, land management and water cleaning

Natural toxins are not currently part of general drinking water assessment and regulation; only the cyanotoxin microcystin LR has been considered for inclusion in the EU Drinking Water Regulative [31], while WHO recently has published guideline values for cyanotoxins in drinking water and recreational exposure scenarios [32]. This is in strong contrast to food and feed where more natural toxins are regulated and regularly monitored, for instance pyrrolizidine alkaloids in tea and honey and aflatoxins in nuts and seeds [33–35]. More monitoring, fate and toxicological data are needed for risk assessment of natural toxins in drinking water, and to lay the foundation of a regulation.

Many actions can be taken to control the production of natural toxins and their concentrations in water reservoirs. Reducing eutrophication and algal blooms in river, lake and coastal waters via control of nitrate and phosphorus discharges from agriculture and with wastewater has high priority for reduction of cyanobacterial blooms, and remains as one of the major global sustainability goals [36]. Crops can be bred to produce less toxic varieties as for alkaloids in lupin, cyanogenic glycosides in cassava, isoflavones in red clover, and glucosinolates in rape seed, e.g., [37–39], which however also could make plants more susceptible to pathogenic attacks. Toxin producing plants...
in forests, grasslands and other non-cropped areas can be fought by burning, biological or chemical control or physically as practiced for bracken, ragwort, giant hogweed and Scotch broom, e.g., [40–42]. Finally, when natural toxins are already present in the water, they may be removed by water treatment at water works, e.g., by means of hydrolysis, microbial degradation in sand filters or advanced oxidation methods [43–45]. The major challenge is here for private and small scale water abstraction utilities that use water from smaller reservoirs and upper groundwaters, and employ no or very simple water treatment [46].

Focus on safe water supply—papers in this article collection

In 2020 an on-line conference “Natural Toxins—Environmental Fate and Safe Water Supply” was conducted to address knowledge gaps within the field of natural toxins and water quality (https://natoxaq.ku.dk/news/news-2016/final-conference/). The conference was organized as part of the EU Marie Curie ITN project “Natural toxins and drinking water quality—from source to tap” (NaToxAq) (see Box). The present ESEU article collection comprises 16 papers almost equally distributed between cyanotoxins and plant toxins. A short introduction to the papers is given below.

Cyanotoxins

The papers concerned with cyanobacterial metabolites focus on the characterization of their mixtures in surface water bodies, their fate and stability in the environment, toxicity and hazard characterization as well as strategies for their mitigation. They bring novel information on a wide spectrum of compounds, including many understudied cyanobacterial peptides or retinoids produced by cyanobacterial water blooms.

Li et al. [47] assessed cyanobacterial risk in 108 Swedish lakes based on long term monitoring data. They documented that nutrients are main drivers for the higher cyanobacterial occurrence and also multispecies dominated water blooms in the affected lakes. They suggest to set nutrient targets to protect safe water supply and recreation. The study of Filatova et al. [48] documents a wide diversity of cyanopeptides in three freshwater reservoirs serving as drinking water resources in the U.K. The 28 identified cyanopeptides included microcystins, anabaenopeptins, aeruginosins, cyanopeptolins, microginins, some of them reported in UK waters for the first time. Natumi et al. [49] characterized environmental stability and photochemical fate of these, and also other cyanopeptides (54 total) from common water-bloom forming cyanobacteria under environmental conditions. Some of them were shown to be relatively stable and thus could potentially pose risk in drinking water resources.

Two studies bring information relevant for hazard assessment of selected cyanobacterial metabolites. Lovin et al. [50] observed species-specific responses in two of the most common larval fish models (zebrafish and fathead minnow) after exposure to neurotoxin anatoxin-a, with more pronounced sublethal effects in fathead minnows at environmentally relevant concentrations. Kubickova et al. [51] conducted an extensive review focused on retinoid compounds that can be also produced by cyanobacterial blooms. They summarized their sources, modes of action and potential adverse effects and discussed their implication for risk assessment. This paper also introduces the concept of cyanobacterial metabolites as anthropo-natural compounds, since they are produced by natural organisms, but anthropogenic impact causes their high concentrations.

Keliri et al. [52] investigated a methodology for bloom control by comparing the treatment efficiency of collected cyanobacterial bloom samples with liquid hydrogen peroxide or metallic peroxide granules slowly releasing oxidants. They emphasize the importance of correct dosing and timing of the treatment to avoid undesirable side-effects, including potential release of cyanotoxins into the waterbody. A comprehensive

NaToxAq—fact box

- Marie Curie ITN consortium 2017—2021 comprising 22 public and private partners in 7 European countries addressing water contamination by phyto- and phyco-toxins.
- 16 Early Stage Researchers (ESRs)
- Work content:
 - Analysis: target, non-target analysis, suspect screening, effect-directed analysis.
 - Monitoring: sampling, groundwater/surface water, source allocation, toxin fingerprints, invasive species.
 - Toxin phys-chem properties: sorption, degradation kinetics, metabolites, QSAR estimation, databases.
 - Risk assessment and reduction: human toxicity, environmental modelling, risk communication, water treatment.
- Outputs and further information: –> https://natoxaq.ku.dk/. “Toxin of the week”, 45 research papers, databases of phytotoxins/metabolites, reports and outreach.
review by Schneider and Blaha [53] focuses on the appli-
cability of advanced oxidation processes (AOP) during
water treatment for removal of known cyanotoxins. It
provides an overview of different AOP techniques that
can be used for cyanotoxins degradation and the impact
of technical parameters, toxin properties and water qual-
ity on its efficacy.

The cyanotoxin papers in this article collection bring
novel information on some known cyanotoxins and miti-
gation of their presence, but also document that cyano-
bacterial metabolites comprise a much wider spectrum of
compounds that can be released into surface waters dur-
ing cyanobacterial water blooms. In contrast to relatively
extensive literature on the few known cyanobacterial
toxins, such as microcystsins, we have only very limited
information on many of the recently detected cyanobac-
terial metabolites. As documented by the included ar-
ticles, some of them can be frequently present and highly
relevant, but information on their occurrence, fate in the
environment, stability and toxicity is largely missing.

Plant toxins
The papers presented in this issue on phytotoxins cover
most of the well-established research domains in envi-
ronmental chemistry. They range from investigations of
specific environmental distribution and fate processes
under laboratory conditions, over dedicated field experi-
ments and monitoring campaigns in the real environ-
ment to effect studies and risk assessment.

Wu et al. [54] compared the stability of ptaquiloside
in natural groundwater under environmentally relevant
conditions with laboratory-based models and found a
good agreement under slightly acid to neutral pH. Under
such conditions, ptaquiloside was found to prevail for
months. Schönsee et al. [55] quantified sorption coef-
ficients to clays and found that for cationic phytotoxins,
in particular, a high proportion in soils may be attributed
to these minerals. Field studies on production and occu-
rence of quinolizidine alkaloids and indole alkaloids from
lupin, and of ptaquiloside from bracken fern were con-
ducted by Hama and Strobel [56], and Garcia-Jorgensen
et al. [7], respectively. Both types of phytotoxins were
produced in considerable amounts, and could be quanti-
fied in soil pore waters in concentrations up to 4.8 µg/L.
Nanusha and co-workers screened German and Danish
river waters for phytotoxins by both non-target and tar-
get analysis. They found thousands of overlapping peaks
between water and plants from local vegetation [57], and
detected 12 of 150 [58], and 27 out of 160 [59] tar-
gets (mostly for the secondary plant metabolite classes
of alkaloids, coumarins and flavonoids), in concentra-
tions up to 3 µg/L. Groundwater monitoring with a focus
on illudane glycosides (including again ptaquiloside)
was carried out by Skrbic et al. [60]. No residues were
found in deep groundwater wells, but for the first time,
these compounds were detected in some private shallow
wells. The fact that some phytotoxins are produced in
high amounts, can be stable for months, mobile, and are
found in soil pore water, river waters and drinking water
resources asks for effect studies and (eco-)toxicologi-
cal risk assessment. Griffiths et al. [61] contribute to the
hitherto still very limited data and report EC₅₀ values of
alkaloids lupin and ragwort on Daphnia magna. Accord-
ing to them, there is a potential risk for aquatic organ-
isms in stagnant pond water in vicinity of corresponding
vegetation.

In summary, the compilation of papers presented here
on phytotoxins in the environment adds considerably to
the currently still rather limited literature. Their authors
convincingly show that the topic is relevant, and that we
may expect surface water samples in many situations to
contain one or more natural toxins. Natural toxins show a
high and fascinating diversity in terms of origin, environ-
mental chemistry and (eco-)toxicology that goes beyond
our traditional notion of (anthropogenic) environmental
micropollutants. As such, they finally have truly emerged!

The way forward
In our strive to supply safe drinking water, to provide
healthy recreational space, and to ensure stability and
functioning of both cropped and non-cropped eco-
systems, we should look at all relevant contaminants.
Anthropogenic contaminants monitored in water qual-
ity assessments often have been found to add little to
explain the toxicity profiles of natural water samples [62,
63]. Obviously, natural toxins add to the toxicity profiles
but they are seldomly included among the compounds
analysed. Thus, future water quality monitoring should
include selected natural toxins/classes [64, 65]. The fast
development of high-throughput non-target analytical
techniques as well as effect-directed screening may help
to accelerate more comprehensive monitoring schemes.
Monitoring for natural toxins calls for more work on
development of analytical methods and sample pretreat-
ment, availability of reference substances and mass spec-
tra as well as databases for toxin prioritization.

A high abundance of natural toxins in natural water
samples may call for revision of current regulative water
quality criteria with more emphasis on the total spectrum
of contaminants in the samples and their inherent toxic-
ities (incl. mixture toxicity) rather than working with fixed
cut-off criteria for a defined set of anthropogenic chemi-
cals, e.g., as used in the EU Drinking Water Regulative.

Natural bioactive compounds have a long history as
(bio)pesticides and (bio)medicine (traditional medi-
cine) or as templates for synthetic compounds [66,
Examples of biopesticides comprise pyrethrins extracted from chrysanthemum, the isoflavonoid rotenone from roots of certain legumes, and nicotine and strychnine alkaloids used as insecticide and molluscicide, respectively [68–71]. Plant-incorporated-protectants such as Bacillus thuringiensis (Bt) toxin in GMO crops have been successfully implemented but followed by numerous studies of environmental fate and effects of the Bt toxin on non-target organisms [72]. We are currently seeing a strong interest in use of natural bioactive compounds—or biologicals—as sustainable, low risk and climate-proof alternatives to synthetic chemicals. While biologicals are less regulated today, this is to come. This in turn will create a very strong push for further work on analysis, monitoring, fate, toxicity, and modelling of these myriads of bioactive natural compounds to ensure that proper risk assessments can be performed, but also to quantify the bioactivity, modes of actions and longevity of the biologicals in soils and other environmental compartments.

Acknowledgements

We would like to acknowledge Angelika Lene Rasmussen for her work with typing and retrieving literature for the paper, and Westring, Copenhagen, for others. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 722493 (NaToVAq).

Authors’ contributions

KH: commented on the layout, contributed to some sections of the manuscript, revised the text. TDB: assisted in the layout, contributed individual sections of the manuscript, revised the text. HCBH: Draft of the paper, outline of tables and figures, references and final editing. All authors read and approved the final manuscript.

Availability of data and materials

Not applicable.

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details

1. Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark. 2. Faculty of Science, RECETOX, Masaryk University, Brno, Czech Republic. 3. Environmental Analytics, Agroscope, Switzerland.

Accepted: 11 August 2021
Published online: 29 September 2021

References

1. Ames BN, Profet M, Gold LS (1990) Dietary pesticides (99.99% all natural). Proc Natl Acad Sci 87(19):7777–7781. https://doi.org/10.1073/pnas.87.19.7777

2. Teuscher E, Lindequist U (2010) Biogene Gifte: Biologie-Chemie-Phar- makologie-Toxikologie, 3rd edn. Wissenschaftliche Verlagsgesellschaft mbH, Stuttgart, p 962

3. Hickman DT, Rasmussen A, Ritz K, Birkett MA, Neve P (2020) Review: allelochemicals as multi kingdom plant defence compounds: towards an integrated approach. Pest Manag Sci 77:1121–1131. https://doi.org/10.1002/ps.6076

4. Mithofer A, Maffei ME (2017) General mechanisms of plant defence and plant toxins. In: Gopalakrishnakone P, Carlini C, Ligabue-Braun R (eds) Plant toxins. Springer, Dordrecht, pp 1–22. https://doi.org/10.1007/978-94-007-6576-2_1

5. Hoerger CC, Wettstein FE, Bachmann HJ, Hungerbühler K, Bucheli TD (2011) Occurrence and mass balance of isoflavones and coumestrol on an experimental grassland field. Environ Sci Technol 45(16):6752–6760. https://doi.org/10.1021/es200567b

6. Hama JR, Strobel BW (2021) Occurrence of pyrrolizidine alkaloids in ragwort plants, soils and surface waters at the field scale in grassland. Sci Total Environ 755:142822. https://doi.org/10.1016/j.scitotenv.2020.142822

7. Garcia-Jorgensen DB, Diamantopoulos E, Kiselius V, Rosenfield M, Rasmussen LH, Strobel BW, Hansen HCB (2021) Bracken growth, toxin production and transfer from plant to soil: a 2-year monitoring study. Environ Sci Eur. https://doi.org/10.1186/s12302-021-00494-0

8. Fastner J, Humpage A (2021) Hepatotoxic cyclic peptides—microcys-tins and nodularins. In: Chorus I, Welker M (eds) Toxic cyanobacteria in Water, 2nd edn. CRC Press, Boca Raton, pp 21–52

9. Schönsee CD, Bucheli TD (2020) Experimental determination of octanol-water partition coefficients of selected natural toxins. J Chem Eng Data 65(4):1946–1953. https://doi.org/10.1021/acs.jced.9b01129

10. Schönsee CD, Wettstein FE, Bucheli TD (2021) Disentangling mecha-nisms in natural toxin sorption to soil organic carbon. Environ Sci Technol 55(8):4762–4771. https://doi.org/10.1021/acs.est.0c06634

11. Günhardt BF, Hollender J, Hungerbühler K, Scheringer M, Bucheli TD (2018) Comprehensive toxic plants-phytotoxins database and its application in assessing aquatic micropollution potential. J Agric Food Chem 66(29):7577–7588. https://doi.org/10.1021/acs.jafc.8b01639

12. Jones MR, Pinto E, Torres MA, Dörre F, Mazur-Marzec H, Szubert K, Tart-aglione L, Dell’Aversano C, Miles CO, Beach DG, McCarron P, Sivonen K, Fewer DP, Jokela J, Janssen EM-L (2020) Comprehensive database of secondary metabolites from cyanobacteria. Water Res 196:117017. https://doi.org/10.1016/j.watres.2021.117017

13. Paerl HW, Otten TG (2013) Harmful cyanobacterial blooms: causes, consequences, and controls. Microb Ecol 65:995–1010. https://doi.org/10.1007/s00248-012-0159-y

14. Hoerger CC, Wettstein FE, Hungerbühler K, Bucheli TD (2009) Occur-rence and origin of estrogenic isoflavones in Swiss river waters. Environ Sci Technol 43(16):6151–6157. https://doi.org/10.1021/es901034u

15. Kolpin DW, Hoerger CC, Meyer MT, Wettstein FE, Hubbard LE, Bucheli TD (2010) Phytoestrogens and mycotoxins in Iowa streams: an examination of under-investigated compounds in agricultural basins. J Environ Qual 39:2089–2099. https://doi.org/10.2134/jeq2010.0121

16. Bucheli TD, Wettstein FE, Hartmann N, Erbs M, Vogelsgang S, Forrer HR, Schwarzenbach RP (2008) Fusarium mycotoxins: overlooked aquatic micropollutants? J Agric Food Chem 56(3):1029–1034. https://doi.org/10.1021/jf073082k

17. Kolpin DW, Schenzel J, Meyer MT, Phillips PJ, Hubbard LE, Scott TM, Bucheli TD (2014) Mycotoxins: diffuse and point source contributions of natural contaminants of emerging concern to streams. Sci Total Environ 470–471:669–676. https://doi.org/10.1016/j.scitotenv.2013.09.062

18. Schenzel J, Hungerbühler K, Bucheli TD (2012) Mycotoxins in the environment: II. Occurrence and origin in Swiss river waters. Environ Sci Technol 46(24):13076–13084. https://doi.org/10.1021/es301558v

19. Günhardt BF, Wettstein FE, Hollender J, Singier H, Häari J, Hungerbühler K, Scheringer M, Bucheli TD (2021) Retrospective HRMS screening and dedicated target analysis reveal a wide exposure to pyrrolizidine alkaloids in small streams. Environ Sci Technol 55(2):1036–1044. https://doi.org/10.1021/acs.est.0c03641

20. Hama JR, Strobel BW (2019) Pyrrolizidine alkaloids quantified in soil and water using UPLC-MS/MS. RSC Adv. 9:30350–30357. https://doi.org/10.1039/c9ra05301h
58. Nanusha MY, Krauss M, Schönsee CD, Günthardt BF, Bucheli TD, Brack W (2020) Target screening of plant secondary metabolites in river waters by liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS). Environ Sci Eur 32:142. https://doi.org/10.1186/s12302-020-00399-2

59. Nanusha MY, Krauss M, Strobel BW, Sørensen BG, Schulze T, Brack W (2021) Occurrence of plant secondary metabolite fingerprints in river waters from Eastern Jutland, Denmark. Environ Sci Eur 33:25. https://doi.org/10.1186/s12302-021-00464-4

60. Škrbic N, Kiselius V, Pedersen A-K, Christensen SCB, Hedegaard MJ, Hansen HCB, Rasmussen LH (2020) Occurrence of carcinogenic illudane glycosides in drinking water wells. Environ Sci Eur 33:44. https://doi.org/10.1186/s12302-021-00486-y

61. Griffiths MR, Strobel BW, Hama JR, Cedergreen N (2021) Toxicity and risk of plant-produced alkaloids to Daphnia magna. Environ Sci Eur 33:10. https://doi.org/10.1186/s12302-020-00452-0

62. Escher BI, van Daal E, Dutt M, Tang JYM, Altenburger R (2013) Most oxidative stress response in water samples comes from unknown chemicals: the need for effect-based water quality trigger values. Environ Sci Technol 47(13):7002–7011. https://doi.org/10.1021/es403793h

63. Tousova Z, Oswald P, Sobodnik J, Blaha L et al (2017) European demonstration project on the effect-based and chemical identification and monitoring of organic pollutants in European surface waters. Sci Total Environ 601–602:1849–1868. https://doi.org/10.1016/j.scitotenv.2017.06.032

64. Altenburger R, Brack W, Burgess RM, Busch W, Escher BI, Focks A, Hewitt LM et al (2019) Future water quality monitoring: improving the balance between exposure and toxicity assessments of real-world pollutant mixtures. Environ Sci Eur 31:12. https://doi.org/10.1186/s12302-019-0193-1

65. Brack W, Aissa SA, Backhaus T, Dulio V, Escher BI, Faust M, Hilscherová K et al (2017) European demonstration program on the effect-based and chemical identification for the assessment of the effect of rotenone on selected non-target aquatic fauna. PLoS ONE 10(11):e0142140. https://doi.org/10.1371/journal.pone.0142140

66. Duke SO (2014) Natural compounds as next-generation herbicides. Plant Phys 166(3):1090–1105. https://doi.org/10.1111/ppp.1239061

67. Dalu T, Wasserman RJ, Jordaan M, Froneman WP, Weyl OLF (2015) An ecological assessment of Microcystis aeruginosa (blue-green algae, cyanobacteria). Bot Mag Tokyo 104:49–57. https://doi.org/10.1007/s12302-015-99340-3

68. Velzeboer RMA, Baker PD, Rositano J, Hersztyn T, Codd GA, Raggett SL (2000) Geographical patterns of occurrence and composition of saxitoxins in the cyanobacterial genus Anabaena (Nostocales, Cyanophyta) in Australia. Physiol 39:395–407. https://doi.org/10.2122/1618-8884-39-5-3951

69. Medjakovic S, Jungbauer A (2008) Red clover isoflavones biochanin A and formononetin are potent ligands of the human aryl hydrocarbon receptor. J Steroid Biochem Mol Biol 108(1–2):171–177. https://doi.org/10.1016/j.jsbmb.2007.10.001

70. WHO (2020) Cyanobacterial toxins: saxitoxins. Background document for the development of WHO Guidelines for drinking-water quality and guidelines for safe recreational water environments. WHO, Geneva, p 24

71. He X, McMahon S, Henderson TD II, Griffee SM, Cheng LW (2010) Ricin toxicon-kinetics and its sensitive detection in mouse sera or feces using immuno-PCR. PLoS ONE 5(9):e12858. https://doi.org/10.1371/journal.pone.0012858

72. Lee ST, Green BT, Welsh KD, Pfister JA, Panter KE (2008) Stereoselective potencies and relative toxicities of coniine enantiomers. Chem Res Toxicol 21(10):2016–2064. https://doi.org/10.1021/tx800229w

73. Medjagovic S, Jungbauer A (2008) Red clover isoflavones biochanin A and formononetin are potent ligands of the human aryl hydrocarbon receptor. J Steroid Biochem Mol Biol 108(1–2):171–177. https://doi.org/10.1016/j.jsbmb.2007.10.001

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.