LIFTING TO CLUSTER-TILTING OBJECTS IN HIGHER CLUSTER CATEGORIES

PIN LIU

Abstract. Let $d > 1$ be a positive integer. In this note, we consider the d-cluster-tilted algebras, the endomorphism algebras of d-cluster-tilting objects in d-cluster categories. We show that a tilting module over such an algebra lifts to a d-cluster-tilting object in this d-cluster category.

1. Introduction

Let k be an algebraically closed field and H be a finite-dimensional hereditary algebra. The associated cluster category \mathcal{C}_H was introduced and studied in [3], and also in [6] for algebras H of Dynkin type A_n. The cluster category \mathcal{C}_H is the orbit category $D^b(H)/\tau^{-1}S$, where S denotes the suspension functor and τ is the Auslander-Reiten translation in the bounded derived category $D^b(H)$. This is a certain 2-Calabi-Yau triangulated category which was invented in order to model some ingredients in the definition of cluster algebras introduced and studied by Fomin-Zelevinsky and Berenstein-Fomin-Zelevinsky in a series of articles [9, 10, 11]. For this purpose, a tilting theory was developed in the cluster category. This further led to the theory of cluster-tilted algebras initiated in [4].

For a positive integer $d > 1$, a certain $d + 1$-Calabi-Yau category, the d-cluster category $\mathcal{C}_d = D^b(H)/\tau^{-1}S^d$ was considered by Keller in [16]. This category is showed in [20] that it encodes the combinatorics of the d-clusters of Fomin and Reading [8] in a fashion similar to the way the cluster category encodes the combinatorics of the clusters of Fomin and Zelevinsky. For this reason, as a generalization of cluster categories, the d-cluster category and their (cluster-)tilting objects have been studied in [3, 15, 17, 20, 21, 22, 23] and so on.

It is an interesting problem to know the algebras derived equivalent to the cluster-tilted algebras. The study of their tilting modules is a step in this direction. In [19], a tilting module over a cluster-tilted algebra has been proved to lift to a cluster-tilting object in the cluster category. And in [7], the authors prove that this result holds generally in the 2-Calabi-Yau triangulated category, that is, a tilting module over the endomorphism algebra of a cluster-tilting object in a 2-Calabi-Yau triangulated category lifts to a cluster-tilting object in this 2-Calabi-Yau triangulated category. The aim of current note is to get similar result of identifying tilting modules over cluster-tilted algebras corresponding to the higher cluster category by using the $d + 1$-Calabi-Yau property. Namely, we prove the following.

Theorem. For a positive integer $d > 1$, let \mathcal{C}_d be a d-cluster category and T a d-cluster-tilting object, and let Γ be the endomorphism algebra of T. Then a tilting Γ-module L lifts to a d-cluster-tilting object in \mathcal{C}_d.

1991 Mathematics Subject Classification. 18E30, 16D90.

Key words and phrases. d-cluster category, Calabi-Yau category, tilting modules, cluster-tilting objects.
We point out here that the methods used in this note are different from the ones used in the case of 2-Calabi-Yau category (where $d = 1$). Some descriptions on the relation between cluster and classical tilting are given in [12].

Acknowledgments. The author would like to thank Changjian Fu for helpful discussions. He is grateful to Idun Reiten and Bin Zhu for valuable suggestions and comments. Thanks also to David Smith for his interest.

2. Preliminaries

2.1. Tilting modules. Let k be an algebraically closed field and A be a finite-dimensional algebra. Let $\operatorname{mod}A$ be the category of finite-dimensional right A-modules. For an A-module T, let $\operatorname{add}T$ denote the full subcategory of $\operatorname{mod}A$ with objects all direct summands of direct sums of copies of T. Then T is called a tilting module in $\operatorname{mod}A$ if
\begin{itemize}
 \item $\operatorname{pd}_A T \leq 1$,
 \item $\operatorname{Ext}^1_A(T, T) = 0$,
 \item there is an exact sequence $0 \to A \to T^0 \to T^1 \to 0$, with T^0, T^1 in $\operatorname{add}T$.
\end{itemize}
This is the original definition of tilting modules from [13], and it was proved in [2] that the third axiom can be replaced by the following:
\begin{itemize}
 \item the number of indecomposable direct summands of T (up to isomorphism) is the same as the number of simple A-modules.
\end{itemize}

2.2. d-Calabi-Yau categories and higher cluster categories. Let k be an algebraically closed field and C be a Krull-Schmidt triangulated k-linear category with split idempotents and suspension functor S. We suppose that all Hom-spaces of C are finite-dimensional and that C admits a Serre functor Σ, cf. [18]. Let $i \geq 1$ be an integer. When we say that C is Calabi-Yau of CY-dimension i (or simply i-Calabi-Yau), we mean that there is an isomorphism of triangle functors
$$S^i \cong \Sigma.$$
For $X, Y \in C$ and $n \in \mathbb{Z}$, we put as usual
$$\operatorname{Ext}^n_C(X, Y) = \operatorname{Hom}_C(X, S^n Y).$$

Let H be a hereditary algebra and the number of simple H-modules be n. Let $D = D^b(H)$ be the bounded derived category of H with suspension functor S and the Auslander-Reiten translate τ. For a positive integer $d > 1$, the higher cluster category, d-cluster category is the orbit category $C_d = D/\tau^{-1}S^d$. It is shown in [16] that C_d is a triangulated category and the canonical functor $D \to C$ is a triangle functor. We denote therefore by S the suspension in C_d. The d-cluster category is also Krull-Schmidt and is Calabi-Yau of CY-dimension $d + 1$. That is, for any X, Y in C_d,
$$\operatorname{Hom}(X, Y) \cong D \operatorname{Hom}(Y, S^{d+1} X),$$
or equivalently
$$\operatorname{Ext}^1(X, Y) \cong D \operatorname{Ext}^d(Y, X).$$

We recall the notation of d-cluster-tilting object from [17] [20] [22] [15]. This notation shares the same meaning as "maximal d-orthogonal subcategory" in the sense of Iyama [14]. Let C be a $d + 1$-Calabi-Yau category. An object X in C is called rigid if
$$\operatorname{Ext}^i_C(X, X) = 0, \quad \text{for all } 1 \leq i \leq d.$$
A rigid object T is called d-cluster-tilting if it satisfies the property: if $X \in C_d$ satisfies $\operatorname{Ext}^i_C(X, T) = 0$ for all $1 \leq i \leq d$, then $X \in T = \operatorname{add}T$.

Let \mathcal{C} be a $d+1$-Calabi-Yau category with a d-cluster-tilting object T. Let Γ be the endomorphism algebra of T. For classes \mathcal{U}, \mathcal{V} of objects, we denote by $\mathcal{U} \ast \mathcal{V}$ the full subcategory of all objects X of \mathcal{C} appearing in a triangle
\[U \rightarrow X \rightarrow V \rightarrow SU. \]
Let $F : \mathcal{C} \rightarrow \text{mod} \Gamma$ be the functor which sends X to $\text{Hom}_\mathcal{C}(T, X)$. There is an essential result in [17] as following.

Theorem 2.1. For each module $M \in \text{mod} \Gamma$, there is a triangle
\[T_0 \rightarrow T_1 \rightarrow X \rightarrow ST_0 \]
such that FX is isomorphic to M. The functor F induces an equivalence
\[T \ast ST/(ST) \sim \rightarrow \text{mod} \Gamma. \]

Thus when we say that a Γ-module L lifts to the higher cluster category, we mean its preimage under the equivalence.

We need the following theorem which is shown in [22].

Theorem 2.2. Let X be a rigid object in the d-cluster category \mathcal{C}_d, then X is a d-cluster-tilting object if and only if X has n indecomposable summands, up to isomorphism.

3. Proof of the main result

First we prove the following crucial proposition.

Proposition 3.1. Let \mathcal{C} be a $d+1$-Calabi-Yau category with a d-cluster-tilting object T and let Γ be the endomorphism algebra of T. Let M, N be two objects in $T \ast ST$ and $FM, FN \in \text{mod} \Gamma$ be their images under the functor F. If FM and FN are of projective dimension at most one and satisfy $\text{Ext}^1_\Gamma(FM, FN) = 0$ and $\text{Ext}^1_\Gamma(FN, FM) = 0$, then $\text{Ext}^i_\mathcal{C}(M, N) = 0$ and $\text{Ext}^i_\mathcal{C}(N, M) = 0$ for all $0 < i < d + 1$.

Proof. We only need to show that the result holds for M, N indecomposable. Since FM is of projective dimension at most 1, we have the following exact sequence
\[0 \rightarrow P_1^M \rightarrow P_0^M \rightarrow FM \rightarrow 0. \]
As the assumption, $\text{Ext}^1_\Gamma(FM, FN) = 0$. By the definition of Ext^1, we have the following commutative diagram in $\text{mod} \Gamma$.

\[\begin{array}{cccc}
P_1^M & \rightarrow & P_0^M & \rightarrow \quad FM & \rightarrow \quad 0. \\
\downarrow \exists f & & \downarrow \exists g & & \\
FN & \rightarrow & M & \rightarrow & ST_1^M.
\end{array} \]

Using the equivalence $T \ast ST/(ST) \sim \rightarrow \text{mod} \Gamma$ and because $\text{Hom}_\mathcal{C}(T, ST) = 0$, we have the following in \mathcal{C}.

\[\begin{array}{cccc}
T_1^M & \rightarrow & T_0^M & \rightarrow \quad M & \rightarrow \quad ST_1^M. \\
\downarrow \exists j & & \downarrow \exists g & & \\
N & \rightarrow & T_1^M & \rightarrow & ST_1^M.
\end{array} \]

That is, for any $f : T_1^M \rightarrow N$, there exists $g : T_0^M \rightarrow N$ such that f factors through g.

First, we claim that $\text{Hom}_\mathcal{C}(M, SN) = 0$.
In fact, consider the following two triangles
\[T_1^M \to T_0^M \xrightarrow{p_0^M} M \to ST_1^M \]
and
\[ST_1^N \to ST_0^N \to SN \xrightarrow{\omega} S^2T_1^N. \]
Let \(\alpha \) be any morphism from \(M \) to \(SN \). Since \(T \) is a \(d \)-cluster-tilting object in \(C \), the composition
\[\omega \cdot \alpha \cdot p_0^M \in \text{Hom}_C(T_0^M, S^2T_1^N) = 0. \]
Therefore there exists a morphism from \(T_0^M \) to \(ST_0^N \) which makes the following diagram of triangles commutative.

\[\begin{CD}
T_1^M @>>> T_0^M @>>> M @>>> ST_1^M \\
@VVV @VV{p_0^M}V @V{\alpha}VV \\
ST_1^N @>>> ST_0^N @>>> SN @>>> S^2T_1^N
\end{CD} \]

Thus we get
\[\alpha \cdot p_0^M = 0 \]
for the reason that \(\text{Hom}_C(T_0^M, ST_0^N) = 0 \). So there exist \(\beta : ST_1^M \to SN \) such that \(\alpha \) factors through \(\beta \). As described above, we get \(\gamma : ST_0^M \to SN \) such that
\[\beta = \gamma \cdot h. \]
That is, we have the following commutative diagram

\[\begin{CD}
T_1^M @>>> T_0^M @>>> M @>>> ST_1^M \\
@VVV @VV{p_0^M}V @V{h}VV @VV{\beta}V \\
ST_1^N @>>> ST_0^N @>>> SN @>>> S^2T_1^N
\end{CD} \]

where
\[\alpha = \beta \cdot u = \gamma \cdot h \cdot u = 0. \]
This implies \(\text{Hom}_C(M, SN) = 0 \). Dually one can prove that \(\text{Hom}_C(N, SM) = 0 \).

Now let \(1 < i < d \). As before, suppose that \(\alpha : M \to S^iN \). Here we consider the following two triangles
\[T_1^M \to T_0^M \xrightarrow{p_0^M} M \to ST_1^M \]
and
\[S^iT_1^N \to S^iT_0^N \to S^iN \xrightarrow{\omega} S^{i+1}T_1^N. \]
Again because \(T \) is a \(d \)-cluster-tilting object and \(i + 1 \leq d \), we have
\[\omega \cdot \alpha \cdot p_0^M \in \text{Hom}_C(T_0^M, S^{i+1}T_1^N) = 0. \]
Thus there exists morphism from \(T_0^M \) to \(S^iT_1^N \), which is zero for the same reason that \(T \) is a \(d \)-cluster-tilting object, makes the diagram commutative.

\[\begin{CD}
T_1^M @>>> T_0^M @>>> M @>>> ST_1^M \\
@VVV @VV{p_0^M}V @V{\omega}VV @V{\alpha}VV \\
S^iT_1^N @>>> S^iT_0^N @>>> S^iN @>>> S^{i+1}T_1^N
\end{CD} \]

That is \(\alpha \cdot p_0^M = 0 \), so there exists \(\beta : ST_1^M \to S^iN \) such that \(\alpha \) factors through \(\beta \). Note that
\[\omega \cdot \beta \in \text{Hom}_C(ST_1^M, S^{i+1}T_1^N), \]
which is zero since T is a d-cluster-tilting object and $i > 1$. So there exists $\gamma : ST_1^M \rightarrow S^iT_0^N$ such that β factors through γ. But
\[
\text{Hom}_C(ST_1^M, S^iT_0^N) = 0
\]
for the reason that T is a d-cluster tilting object and $i > 1$. This is to say that γ is zero, further more β is zero and so is α.

Thus $\text{Hom}_C(M, S^iN) = 0$.

When $i = d$, thanks to the $d + 1$-CY property, we have
\[
\text{Hom}_C(M, S^dN) = D \text{Hom}_C(N, SM) = 0.
\]
Dually one can prove $\text{Ext}^i_C(N, M) = 0$ for all $0 < i < d + 1$.

Now our main result is an easy corollary.

Theorem. For a positive integer $d > 1$, let C_d be a d-cluster category and T a d-cluster-tilting object, and let Γ be the endomorphism algebra of T. Then a tilting Γ-module L lifts to a d-cluster-tilting object in C_d.

Proof. The tilting Γ-module L lifts to a rigid object in C_d by the proposition above. Note that the number of indecomposable direct summands of L (up to isomorphism) is the same as the number of simple Γ-modules or equivalently the number of indecomposable summands of T, which is n by Theorem 2.2. Thus L lifts to a d-cluster-tilting object by Theorem 2.2 again.

References

[1] A. Berenstein, S. Fomin and A. Zelevinsky, *Cluster algebras III. Upper bounds and double Bruhat cells*, Duke Math. J. 126 (2005), no. 1, 1-52.

[2] K. Bongartz, *Tilted algebras*, Representations of algebras (Puebla,1980), Lecture Notes in Math. 903, Springer, Berlin-New York, (1981), 26-38.

[3] A. B. Buan, R. J. Marsh, M. Reineke, I. Reiten and G. Todorov, *Tilting theory and cluster combinatorics*, Adv. Math. 204 (2006), 572-618.

[4] A. B. Buan, R. J. Marsh and I. Reiten, *Cluster-tilted algebras*, Trans. Amer. Math. Soc. 359 (2007), no. 1, 323-332.

[5] A. B. Buan and H. Thomas, *Coloured quiver mutation for higher cluster categories*, preprint, arXiv:math/0809.0691v3.

[6] P. Caldero, F. Chapoton and R. Schiffler, *Quivers with relations arising from clusters (A_n case)*, Trans. Amer. Math. Soc. 358 (2006), no. 3, 1347-1364.

[7] C. Fu and P. Liu, *Lifting to cluster-tilting objects in 2-Calabi-Yau triangulated categories*, preprint, arXiv: 0712.2370v3, to appear in Comm. Algebra

[8] S. Fomin and N. Reading, *Generalized cluster complexes and Coxter combinatorics*, Int. Math. Res. Notices 44 (2005), 2709-2757.

[9] S. Fomin and A. Zelevinsky, *Cluster algebras I. Foundations*, J. Amer. Math. Soc. 15 (2002), no. 2, 497-529(electronic).

[10] S. Fomin and A. Zelevinsky, *Cluster algebras II. Finite type classification*, Invent. Math. 154 (2003), no. 1, 63-121.

[11] S. Fomin and A. Zelevinsky, *Cluster algebras IV. Coefficients*, Compos. Math. 143 (2007), 112-164.

[12] T. Holm and P. Jørgensen, *On the relation between cluster and classical tilting*, preprint, arXiv:math/0810.0411v1.

[13] D. Happel and C. M. Ringel, *Tilted algebras*, Trans. Amer. Math. Soc. 274 (1982), no. 2, 399-443.

[14] O. Iyama, *Higher dimensional Auslander-Reiten theory on maximal orthogonal subcategories*, Adv. Math. 210 (2007), 22-50.
[15] O. Iyama and Y. Yoshino, *Mutation in triangulated categories and rigid Cohen-Macaulay modules*, Inv. Math. **172** (2008), no. 1, 117-168.

[16] B. Keller, *On triangulated orbit categories*, Doc. Math. **10** (2005), 551-581.

[17] B. Keller and I. Reiten, *Cluster-tilted algebras are Gorenstein and stably Calabi-Yau*, Adv. Math. **211** (2007), no. 1, 123-151.

[18] I. Reiten and M. Van den Bergh, *Noetherian hereditary abelian categories satisfying Serre duality*, J. Amer. Math. Soc. **15** (2002), no. 2, 295-366.

[19] D. Smith, *On tilting modules over cluster-tilted algebras*, preprint, arXiv: 0710.4329, to appear in Illinois J. Math.

[20] H. Thomas, *Defining an m-cluster category*, J. Algebra **318** (2007), no. 1, 37-46.

[21] A. Wraalsen, *Rigid objects in higher cluster categories*, preprint, arXiv: 0712.2970

[22] B. Zhu, *Generalized cluster complexes via quiver representations*, J. Alge. Comb. **27** (2008), no. 1, 35-54.

[23] Y. Zhou and B. Zhu, *Cluster combinatorics of d-cluster categories*, preprint, arXiv: 0712.1381v1

DEPARTMENT OF MATHEMATICS, SICHUAN UNIVERSITY, 610064 CHENGDU, P.R.CHINA

DEPARTMENT OF MATHEMATICS, SOUTHWEST JIAOTONG UNIVERSITY, 610031 CHENGDU, P.R.CHINA

E-mail address: pinliu@yahoo.cn