A preliminary survey of zoantharian endosymbionts shows high genetic variation over small geographic scales on Okinawa-jima Island, Japan

Hatsuko Noda 1, John E Parkinson 1,2, Sung-Yin Yang 1,3, James D Reimer Corresp. 1, 4

1 Molecular Invertebrate Systematics and Ecology Laboratory, Department of Biology, Chemistry and Marine Sciences, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa, Japan
2 Department of Integrative Biology, Oregon State University, Corvallis, Oregon, USA
3 Microbiology and Biochemistry of Secondary Metabolites Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
4 Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, Japan

Corresponding Author: James D Reimer
Email address: jreimer@sci.u-ryukyu.ac.jp

Symbiotic dinoflagellates (genus Symbiodinium) shape the responses of their host reef organisms to environmental variability and climate change. To date, the biogeography of Symbiodinium has been investigated primarily through phylogenetic analyses of the ribosomal internal transcribed spacer 2 (ITS2) region. Although the marker can approximate species-level diversity, recent work has demonstrated that faster-evolving genes can resolve otherwise hidden species and population lineages, and that this diversity is often distributed over much finer geographical and environmental scales than previously recognized. Here, we use the noncoding region of the chloroplast psbA gene (psbA ncr) to examine genetic diversity among clade C Symbiodinium associating with the common reef zoantharian Palythoa tuberculosa on Okinawa-jima Island, Japan. We identify four closely related Symbiodinium psbA ncr lineages including one common generalist and two potential specialists that appear to be associated with particular microhabitats. The sea surface temperature differences that distinguish these habitats are smaller than those usually investigated, suggesting that future biogeographic surveys of Symbiodinium should incorporate fine scale environmental information as well as fine scale molecular data to accurately determine species diversity and their distributions.
A preliminary survey of zoantharian endosymbionts shows high genetic variation over small geographic scales on Okinawa-jima Island, Japan

Hatsuko Noda¹, John Everett Parkinson¹,², Sung-Yin Yang¹,³, James Davis Reimer¹,⁴*

¹Molecular Invertebrate Systematics and Ecology Laboratory, Department of Biology, Chemistry and Marine Sciences, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa, Japan;
²Department of Invertebrate Biology, Oregon State University, Corvallis, Oregon, USA;
³Microbiology and Biochemistry of Secondary Metabolites Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan; ⁴Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, Japan

*corresponding author: jreimer@sci.u-ryukyu.ac.jp phone: +81-98-895-8542 fax: +81-98-895-8576
Abstract

Symbiotic dinoflagellates (genus *Symbiodinium*) shape the responses of their host reef organisms to environmental variability and climate change. To date, the biogeography of *Symbiodinium* has been investigated primarily through phylogenetic analyses of the ribosomal internal transcribed spacer 2 (ITS2) region. Although the marker can approximate species-level diversity, recent work has demonstrated that faster-evolving genes can resolve otherwise hidden species and population lineages, and that this diversity is often distributed over much finer geographical and environmental scales than previously recognized. Here, we use the noncoding region of the chloroplast psbA gene (psbA\textsubscript{ncr}) to examine genetic diversity among clade C *Symbiodinium* associating with the common reef zoantharian *Palythoa tuberculosa* on Okinawa-jima Island, Japan. We identify four closely related *Symbiodinium* psbA\textsubscript{ncr} lineages including one common generalist and two potential specialists that appear to be associated with particular microhabitats. The sea surface temperature differences that distinguish these habitats are smaller than those usually investigated, suggesting that future biogeographic surveys of *Symbiodinium* should incorporate fine scale environmental information as well as fine scale molecular data to accurately determine species diversity and their distributions.
Introductions

Symbiodinium is an important genus of dinoflagellate photosymbionts found in tropical and subtropical marine ecosystems. These ‘zooxanthellae’ transfer energy to their invertebrate hosts in nutrient-poor environments, enhancing the growth of reef-building corals and other reef organisms such as zoantharians (Muscatine and Cernichiari 1969; Baker 2003). They also serve a key role in establishing the thermal tolerance of coral colonies and shaping the adaptive response of reef organisms to climate change (Sampayo et al. 2008; Thornhill et al. 2014). As climate change intensifies and diversity patterns are expected to alter, it is increasingly important to map marine species distributions on scales both large (McClanahan et al. 2014; Reimer et al. 2017) and small (Mieszkowska and Lundquist 2011).

The biogeography of *Symbiodinium* is determined by many factors, including host species distributions and environmental parameters (LaJeunesse et al. 2004). To determine *Symbiodinium* biogeography, it is critical to use DNA markers with the resolving power to delineate between and among species (LaJeunesse and Thornhill 2011). Our ability to discern different lineages of *Symbiodinium* has improved in tandem with the resolution of the molecular
markers used to identify them. Originally, highly divergent lineages or ‘clades’ designated A-I were confirmed via the sequencing of 18S and 28S ribosomal DNA (Rowan and Powers 1991; Pochon and Gates 2010), followed by the delineation of numerous subclades via phylogenetic analyses of the internal transcribed spacer regions (e.g. ITS2; LaJeunesse 2001). More recently, sequences from domain V of the chloroplast large subunit (cp23S) ribosomal DNA (Santos et al. 2003; Kirk et al. 2009; LaJeunesse and Thornhill 2011; LaJeunesse et al. 2012) and the non-coding region of the plastid minicircle (psbA \text{ ncr}; Takishita et al. 2003; LaJeunesse and Thornhill 2011) have provided even greater resolution, often corresponding to the species level (e.g. LaJeunesse et al. 2012). Microsatellite markers have also been developed to investigate fine-scale diversity in \textit{Symbiodinium} (e.g. Pettay and LaJeunesse 2007; Grupstra et al. 2017).

As a result of the development and implementation of finer resolution molecular markers, it is apparent that the extent of \textit{Symbiodinium} diversity may be much greater than previously recognized based on studies using only internal transcribed spacer regions. For example, in examinations of \textit{Symbiodinium} within the common reef zoantharian \textit{Palythoa tuberculosa} (Esper, 1805) across a latitudinal gradient of 800 km in the northern Red Sea, \text{psb}A_{\text{ncr}} sequences revealed up to four unique lineages, despite ITS2 results showing only one
single “subclade” lineage (Reimer et al. 2017). The distribution of these individual psbAncr lineages strongly correlated with sea surface temperature differences of approximately 1°C. Such results demonstrate a need to re-examine previously reported Symbiodinium diversity with high-resolution markers, as fine scale, ecologically important differences may have been missed.

In biogeography, isolation by distance (IBD) generally refers to how genetic differences between individuals or populations increase with increasing geographical distance due to limitations on dispersal. In Symbiodinium species, other factors in addition to IBD that may act as drivers of evolution include host species associations (LaJeunesse et al. 2004), UV light levels (correlates of turbidity or chlorophyll-\textit{a} concentrations; LaJeunesse et al. 2010; Tonk et al. 2014), and ocean temperatures (LaJeunesse et al. 2010; Tonk et al. 2014). Correspondingly, differences in Symbiodinium associations have been noted over large oceanic or latitudinal gradients (LaJeunesse and Trench 2000; LaJeunesse et al. 2004; Reimer et al. 2017), within different host species (Frade et al. 2008a; Thornhill et al. 2014), at different light levels (Frade et al. 2008b; Sampayo et al. 2008; Kamezaki et al. 2013), and in areas of extremely high (Hume et al. 2013) or low ocean temperatures (Chen et al. 2003).

Okinawa-jima Island is \textasciitilde1200 km2 in area, just over 100 km in length, and 3-30 km in
Although it is not ‘large’ when compared to oceanic or regional scales, the surrounding marine environment encompasses a variety of ecosystems including large bays, muddy tidal flats, patch reefs within lagoons, and fringing reefs (Fujita et al. 2015). Additionally, recent population genetic studies on scleractinian corals (Shinzato et al. 2015), sea cucumbers (Soliman et al. 2016), and amphipods (White et al. 2016) have described unexpected genetic structure among locations around Okinawa-jima Island, particularly between the Kuroshio-influenced west coast and the more isolated east coast.

Based on ITS2 sequence analyses of *Symbiodinium* within *P. tuberculosa* in southern Japan (including Okinawa), we previously reported that subclade C1 or closely related types are dominant (Reimer et al. 2006). Here we use psbA^ncr^ sequences to re-examine how much variation exists within *Symbiodinium* C1 associating with *P. tuberculosa*, specifically focusing on Okinawa-jima Island’s shallow coral reef environments. We additionally explore potential associations between observed diversity and the environment. This study is intended to complement our recent work in the Red Sea (Reimer et al. 2017) by focusing on the same host species and describing the extent of symbiont diversity on a much smaller geographical and environmental scale.
Materials and Methods

Environmental data

Satellite-derived sea surface temperature (SST) and chlorophyll-\(a\) (chl-\(a\)) data for the waters around Okinawa-jima Island and nearby Amami Oshima Island were acquired from National Aeronautic and Space Administration Giovanni database (http://gdata1.sci.gsfc.nasa.gov/; Acker and Leptoukh 2007), developed and maintained by the NASA Goddard Earth Sciences Data and Information Services Center. Error ranges of the MODIS Aqua data were approximately ±0.25°C for SST, and ±40% for chl-\(a\). Yearly average SST (SST\(^\text{avg}\)) and chl-\(a\) data and maps used in this study were derived from 4 km resolution data from the Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua database. These generated maps provided the basis for estimating annual average SST and chl-\(a\) at each sampling location. Data from Feb-2000 to May-2015 were used for SST\(^\text{avg}\) analyses, and from Jul-2002 to May-2015 for chl-\(a\). To examine yearly winter minimum (SST\(^\text{min}\)) and summer maximum SSTs (SST\(^\text{max}\)), we averaged monthly data from February and from August, respectively (2000-2014, n=14 each).
Specimen collection

The zooxanthellate cnidarian species *Palythoa tuberculosa* is the most common zoantharian on coral reefs surrounding Okinawa-jima Island (Irei et al. 2011), and is easily identifiable (Hibino et al. 2014). Previous work in southern Japan has also ascertained that the taxon does not contain cryptic species (Reimer et al. 2007), making it a simple and reliable species for research and citizen science (Parkinson et al. 2016).

Specimens of *P. tuberculosa* were collected from Jan-2012 to Nov-2015 from eight locations around Okinawa-jima Island and one location on Amami Oshima Island, Kagoshima, to the north of Okinawa in the Middle Ryukyus (Table 1). All specimens were collected from the low intertidal zone (0-2 m depths depending on tides) via snorkeling. Small portions of colonies were collected and fixed in 70-99.5% ethanol for further molecular analyses. The collections were limited by the low numbers of *P. tuberculosa* present at some sites (n = 3-11).

DNA extraction, PCR, and phylogenetic analyses

DNA was extracted from preserved colony samples using a DNeasy Blood and Tissue Kit (Qiagen, Tokyo, Japan) following the manufacturer’s protocol. We amplified two *Symbiodinium* DNA markers; the internal transcribed spacer 2 (ITS2) in the ribosomal DNA
array, and a portion of the plastid minicircle non-coding region (psbAnccr). ITS2 sequences were obtained to place our new specimens within the phylogenetic framework of this well reported marker, and with past research on *Symbiodinium* within *P. tuberculosa* in southern Japan (Reimer et al. 2006), while psbAnccr sequences were obtained to examine finer scale phylogenetic patterns (e.g. Reimer et al. 2017). ITS2 was amplified using the primers zlITSf (5’-CCG GTG AAT TAT TCG GAC TGA CGC AGT-3’) and ITS4 (5’-TCC TCC GCT TAT TGA TAT GC-3’) (White et al. 1990; Rowan and Powers 1992; Hunter et al. 1997). psbAnccr was amplified using the primers 7.4-Forw (5’-GCA TGA AAG AAA TGC ACA CAA CTT CCC-3’) and 7.8-Rev (5’-GGT TCT CTT ATT CCA TCA ATA TCT ACT G-3’) (LaJeunesse and Thornhill 2011).

Reaction mixes contained 1.0 μl of genomic DNA, 7.0 μl of Milli-Q water, 10.0 μl of HotStarTaq Plus Master Mix, and 1.0 μl of each primer (10 pmol). Thermocycler conditions were as follows: for ITS2: 95.0°C for 5 min; 35 cycles of 94.0°C for 30 s, 51.0°C for 45 s, and 72.0°C for 2 min; 72.0°C for 10 min; and for psbAnccr: 95.0°C for 5 min; 40 cycles of 94.0°C for 10 s, 55.0°C for 30 s, and 72.0°C for 2 min; 72.0°C for 10 min. Products were directly sequenced by Fasmac (Kanagawa, Japan). Novel sequences are deposited in GenBank under Accession Numbers XXXXX-XXXXX.
The nucleotide sequences for ITS2 and psbA\textsubscript{ncr} were separately aligned within Geneious v9.1.3 (Biomatters Limited, Auckland, New Zealand). Alignments were inspected manually, and primer regions and short sequences were excluded. Because the long plastid non-coding region rarely sequenced completely, we used only the forward psbA\textsubscript{ncr} reads. The ITS2 alignment contained 21 sequences of 216 bp, while the psbA\textsubscript{ncr} forward alignment contained 61 sequences of 300 bp. Previously reported sequences from GenBank were incorporated into the ITS2 alignment for reference (DQ480631, DQ480639, DQ889741, DQ889743 - all *Symbiodinium* subclade C1 or closely related from *P. tuberculosa* from southern Japan; and AB207184 - *Symbiodinium* subclade C15 related from *Zoanthus* sp. in southern Japan), while the psbA\textsubscript{ncr} alignment contained only novel sequences (no previously reported sequences bore strong similarity).

Both alignments were analyzed using maximum likelihood (ML), neighbor-joining (NJ), maximum parsimony (MP), and Bayesian inference (BI) methods. ML analyses for both datasets were performed using PhyML (Guindon et al. 2010) with input trees generated by NJPlot (Perriere and Gouy 1996) under automatic model selection by smart model selection with Akaike Information Criterion. Both datasets were analyzed under the HKY85 model (Hasegawa...
et al. 1985) with the transition/transversion ratio estimated, the proportion of invariable sites fixed at 0.0, and the number of substitution rate categories as 1. PhyML bootstrap trees were made using the same parameters as the individual ML tree. The distances were calculated using a Kimura’s two-parameter model (Kimura 1980). NJ analyses for both alignments were run within Geneious on default settings under the HKY85 model. MP analyses were performed in Paup* 4.0a147 (Swofford 2000) with indels included as a fifth character state. All trees were run with 1000 bootstraps. Bayesian posterior probabilities were calculated with the software Mr. Bayes (Huelsenbeck and Ronquist 2001) using the HKY85 substitution model and default parameters (chain length = 1,000,000; burn-in = 250,000). Genetic distances between and within lineages were calculated in MEGA6 (Tamura et al. 2013) using the Maximum Composite Likelihood Model (Tamura et al. 2004).

Results

Environmental data

Yearly average SST (SSTavg) showed southern sites to be warmer than northern sites, with a difference of 0.95°C between Wase on Amami Oshima Island (24.6°C) compared to Kyan
and Odo on the southern tip of Okinawa-jima Island (25.35°C) (Table 1). For summer maximum SST (SST$_{\text{max}}$), Wase was lowest (28.88±0.93°C) while Uken on the east coast of Okinawa-jima Island was highest (29.43±0.76°C) (Table 1). For winter minimum SST (SST$_{\text{min}}$), Wase (20.35±0.43°C) was coldest, with highest SST$_{\text{min}}$ at Odo (21.42±0.60°C). The highest observed SST in any year was at Uken (30.9°C in 2001), and the lowest was at Bise (18.7°C in 2015) and Oku (18.7°C in 2008) on the northwest and north coasts of Okinawa-jima Island, respectively (Table 1). Yearly average chl-a concentration values were generally low at all sampling sites, ranging from a low of 0.08 mg/m3 at Odo to a high of 0.50 mg/m3 at Uken (Table 1).

Phylogenetic analyses

Two different Symbiodinium ITS2 types were detected. The first type (n=17) matched 100% with previously reported Symbiodinium subclade C1 from P. tuberculosa in southern Japan (DQ889743; DQ889741) (Fig. 1a). The other type (n=5) differed by one base pair and was also 100% identical to previously reported Symbiodinium from P. tuberculosa in southern Japan (DQ480639). This second type formed a subclade within C1 (ML=99%, NJ=74%, MP=61%, BI=0.90) (Fig. 1a). These two types formed a large, moderately supported clade separate from
subclade C3 (ML=69%, NJ=83%, MP=64%, BI=0.70), so we considered all of our sequences to be subclade C1 or ‘C1-related’ (Fig. 1a; Electronic Supplementary Material Table S1).

Sixty-three unique *Symbiodinium* psbA*ncr* forward sequences were recovered. Two sequences were too short to be included in the final alignment but were long enough to identify to lineage (described below, Electronic Supplementary Material Table S1). The resulting psbA*ncr* ML tree showed 33 specimens within a large, well-supported clade (ML=100%, NJ=100%, MP=100%, BI=1.00) that we designated as ‘lineage 1’ (Fig. 1b). Specimens belonging to lineage 1 (n = 33) were recovered from all 9 locations. Another 19 specimens from Oku, Teniya, and Mizugama formed a separate monophyly (‘lineage 2’; ML=76%, NJ=93%, MP=100%, BI=0.98). Additionally, 7 specimens from Wase, Nerome, Bise, Mizugama and Odo formed a monophyly (‘lineage 3’; ML=75%, NJ=100%, MP=100%, BI=0.77). Finally, 2 specimens from Bise and Nerome formed another monophyly (‘lineage 4’; ML=100%, NJ=100%, MP=100%, BI=1.00).

The between-lineage molecular distances for psbA*ncr* ranged from 0.105-0.256, while the within-lineage distances were much smaller, ranging from 0.003-0.021 (Table 2).

Lineage distributions
We next examined the distribution of *Symbiodinium* lineages across locations (Fig. 2). Wase, Amami Oshima Island was dominated by lineage 1 (4/5 *P. tuberculosa* colonies), as was Bise (9/11), Uken (3/3), Kyan (4/4), and Odo (6/7). Lineage 2 was dominant at Oku (8/10), Teniya (5/7), and Mizugama (6/8), while lineage 3 was dominant at Nerome (5/8) and also appeared at Bise (2/7). Lineage 4 members only appeared in one colony each at Wase, Mizugama, and Odo.

Finally, we examined the range of environments in which each lineage could be found (Fig. 3). *Symbiodinium* lineage 1 appeared at all sites and thus all environments in this study (SST$^{avg} =$ 24.6°C-25.35°C; SST$^{max} =$ 29.43°C; SST$^{min} =$ 20.35°C; chl-a 0.08 mg/m3 - 0.50 mg/m3). Lineage 2 was only observed at Oku, Teniya, and Mizugama, where SSTavg ranged between 24.95°C to 25.15°C, with SSTmin of 20.69°C (Oku) and SSTmax of 29.16°C (Teniya, Mizugama), and chl-a ranged between 0.08 mg/m3 to 0.25 mg/m3. Lineage 3 was only found at Bise and Nerome, with SSTavg of 24.85°C-24.95°C, SSTmin of 20.47°C, SSTmax of 29.33°C (both Nerome), and chl-a of 0.15 mg/m3 to 0.30 mg/m3. Lineage 4 members were only observed once each at three locations, but these stretched across the geographic range of this study (Wase, Mizugama, Odo).

Discussion
Using the high-resolution \textit{psbA}^{ncr} marker, we identify four \textit{Symbiodinium} lineages associated with \textit{Palythoa tuberculosa} on Okinawa-jima Island. The lineages feature surprisingly unique distributions over a small geographic scale, and would be considered at most two entities based on lower-resolution ITS2 data (Fig. 1). Because the between-lineage molecular distances for \textit{psbA}^{ncr} (0.105-0.256; Table 2) are greater than those reported between the \textit{psbA}^{ncr} sequences of two divergent \textit{Symbiodinium} ITS2 types (~0.045 for C26a vs. C31; LaJeunesse and Thornhill 2011), these lineages likely represent reproductively isolated species rather than populations within a species.

Lineage 1 appears to be a widely distributed generalist, at least over the range of this study in the Central Ryukyus (Fig. 2). It is found at all sites and often occupies the majority of colonies at a given site. Lineage 3 is observed only at the two sites on the northwestern coast of Okinawa-jima Island, and thus appears to have narrow geographical and environmental components to its distribution ($\text{SST}^{\text{avg}} = 24.85^\circ\text{C}-24.95^\circ\text{C}$; chl-$a = 0.15-0.30 \text{ mg/m}^3$) (Fig. 3). Lineage 4 is present in very low numbers ($n=3$) across the latitudinal range of the study, making it difficult to infer its environmental niche.

Lineage 2 has a somewhat restricted range, found at only three locations (where it also
occupied the majority of colonies: Oku, Teniya, and Mizugama. These three sites are located near river outflows, suggesting this *Symbiodinium* lineage may be able to tolerate changes in salinity more effectively than the others. Unfortunately, fine-scale salinity data are not yet available to investigate this trend further. Chl-a levels at these sites are generally low (< 0.25 mg/m³), while the SST$_{avg}$ range is intermediate (24.95°C - 25.15°C). Lineage 2 is absent at other locations within this SST$_{avg}$ range; for example, at Bise and Nerome, where only lineages 1 and 3 are present, and at Uken, where only lineage 1 is detected. Although Uken’s SST$_{avg}$ is firmly in the middle of the SST range investigated in this study, Uken’s SST$_{min}$ and SST$_{max}$ are generally more extreme than those at other sites (Table 1) due to Uken’s position within shallow southern Kin Bay, which is isolated from the stabilizing temperature effects of the open ocean (Montani 1996). Additionally, chl-a levels at Uken are higher than those of all other locations (0.50 mg/m³).

By focusing on a very small area of the northwest Pacific, and by using a rapidly evolving molecular marker, we could resolve a much finer scale of *Symbiodinium* biogeography than has previously been recognized in the region. Some psbAncr lineages appear to be partitioned on the basis of temperature (SST$_{max}$) differences on the scale of 0.1~0.3°C, much
lower than the 0.7°C-1.0°C observed in previous studies (Baums et al. 2014; Reimer et al. 2017).

It also appears SST stability (e.g. differences between SST$_{\text{max}}$ and SST$_{\text{min}}$), as well as fine scale salinity differences (not measured here) may play an important role in the distribution of Symbiodinium diversity. Chl-a levels are generally low at all locations, although it should be noted that only generalist lineage 1 is found in Uken (although n=3), the site with the highest chl-a levels. Overall, the contribution of chl-a (a proxy for turbidity) is not clear, as all P. tuberculosa specimens were collected from very shallow waters (0-2 m).

It is surprising that such biogeographic patterns could be uncovered given the low numbers of host P. tuberculosa at some locations. However, these low numbers also caution that the symbiont species’ distributions are unlikely to have been completely resolved. Another issue is that the fine-scale environmental variation among sites falls below the margin of error in the satellite datasets; future research of this nature must utilize more precise instrumentation. We did not examine host P. tuberculosa population genetics, and it remains to be seen if fine-scale host structure may also play a role in the observed patterns. Previous studies indicate cnidarian host and symbiont genetic structure can be mismatched (e.g. Baums et al. 2014; Leydet and Hellberg 2016), although clear cases of matching genetic structure have also been observed (e.g.
As our ability to discern between different lineages of *Symbiodinium* has increased, so too has our understanding of the complexity and nuances of *Symbiodinium* diversity and distribution. The present work supports previous studies that show *Symbiodinium* evolution is driven largely by specialization to different environmental niches (e.g. Frade et al. 2008b; LaJeunesse et al. 2010; Kamezaki et al. 2013; Reimer et al. 2017), and that specialization may occur on much finer micro-environmental scales than usually addressed. Further characterization of the *Symbiodinium—Palythoa tuberculosa* symbiosis within the Ryukyus or comparable island chains should be carried out to confirm similar symbiont structuring based on fine-scale environmental heterogeneity.

The *Symbiodinium* diversity patterns on Okinawa-jima Island highlight three major considerations for future investigations of this kind. First, it is advantageous for researchers to obtain fine-scale environmental data of the study area if available, so as to better characterize niches that might otherwise be deemed homogenous. Second, researchers should refrain from considering pooled specimens or results from different nearby locations as representative of a larger area without thoroughly checking for fine scale environmental patterns. Third, as has been
suggested elsewhere (e.g. LaJeunesse and Thornhill 2011; Reimer et al. 2017), researchers should incorporate both ITS2 data (to tie to past work) as well as rapidly evolving markers (to uncover hidden diversity) when investigating *Symbiodinium* biogeography, as a failure to address fine-scale niche adaptation could lead to a misinterpretation of results. These suggestions should improve the design of *Symbiodinium* studies on all geographic scales, from local to regional to global.

Acknowledgements

We would like to thank M. Mizuyama and I. Kawamura for research assistance, and O. Takama, S. Kunihiro, and M. Sakurai for help with specimen collection.

References

Acker JG, Leptoukh G (2007) Online analysis enhances use of NASA earth science data. Eos Trans Amer Geophys Union 88:14-17 doi: 10.1029/2007EO020003
Baker AC (2003) Flexibility and specificity in coral-algal symbiosis: diversity, ecology, and biogeography of *Symbiodinium*. Annu Rev Ecol Evol S 34:661-689 doi: 10.1146/annurev.ecolsys.34.011802.132417

Baums IB, Devlin-Durante MK, LaJeunesse TC (2014) New insights into the dynamics between reef corals and their associated dinoflagellate endosymbionts from population genetic studies. Mol Ecol 23:4203-4215 doi: 10.1111/mec.12788

Bongaerts P, Riginos C, Ridgway T, Sampayo EM, van Oppen MJ, Englebert N, Vermeulen F, Hoegh-Guldberg O (2010) Genetic divergence across habitats in the widespread coral *Seriatopora hystrix* and its associated *Symbiodinium*. PLoS One e10871 doi: 10.1371/journal.pone.0010871

Chen CA, Lam KK, Nakano Y, Tsai W-S. (2003) A stable association of the stress-tolerant zooxanthellae, *Symbiodinium* clade D, with the low-temperature-tolerant coral, *Oulastrea crispata* (Scleractinia: Faviidae) in subtropical non-reefal coral communities. Zool Stud 42:540-550
Frade PR, De Jongh F, Vermeulen F, Van Bleijswijk J, Bak RPM (2008a) Variation of symbiont distribution between closely related coral species over large depth ranges. Mol Ecol 17:691–703 doi: 10.1111/j.1365-294X.2007.03612.x

Frade PR, Englebert N, Faria J, Visser PM, Bak RPM (2008b) Distribution and photobiology of Symbiodinium types in different light environments for three colour morphs of the coral Madracis pharensis: is there more to it that total irradiance? Coral Reefs 27:913–925 doi: 10.1007/s00338-008-0406-3

Fujita K, Arakaki T, Denda D, Hidaka M, Hirose E, Reimer JD (eds) (2015) Nature in the Ryukyu Archipelago: coral reefs, biodiversity, and the natural environment. University of the Ryukyus, Nishihara.

Grupstra CG, Coma R, Ribes M, Leydet KP, Parkinson JE, McDonald K, Catllà M, Voolstra CR, Hellberg ME, Coffroth MA (2017) Evidence for coral range expansion accompanied by reduced diversity of Symbiodinium genotypes. Coral Reefs:1-5 doi: 10.1007/s00338-017-1589-2
Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307-321 doi: 10.1093/sysbio/syq010

Hasegawa M, Kishino H, Yano T (1985) Dating the human-ape split by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174 doi: 10.1007/BF02101694

Hibino Y, Todd PA, Yang S-Y, Benayahu Y, Reimer JD (2014) Morphological and molecular evidence for conspecificity of two common Indo-Pacific species of Palythoa (Cnidaria: Anthozoa). Hydrobiologia 733:31-43 doi: 10.1007/s10750-013-1587-5

Huelsenbeck J, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

Hume B, D’Angelo C, Burt J, Baker AC, Riegl B, Wiedenmann J (2013) Corals from the Persian/Arabian Gulf as models for thermotolerant reef-builders: prevalence of clade C3 Symbiodinium, host fluorescence and ex situ temperature tolerance. Mar Poll Bull 72:313–322 doi: 10.1016/j.marpolbul.2012.11.032

Hunter CL, Morden CW, Smith CM (1997) The utility of ITS sequences in assessing the relationships among zooxanthellae and corals. Proc 8th Int Coral Reef Symp 2:1599-1602
Irei Y, Nozawa Y, Reimer JD (2011) Distribution patterns of five zoanthid species at Okinawa Island, Japan. Zool Stud 50:426-433

Kamezaki M, Higa M, Hirose M, Suda S, Reimer JD (2013) Different zooxanthellae types in populations of the zoanthid Zoanthus sansibaricus along depth gradients in Okinawa, Japan. Mar Biodivers 43:61-70 doi: 10.1007/s12526-012-0119-2

Kirk NL, Andras JP, Harvell CD, Santos SR, MA Coffroth (2009) Population structure of Symbiodinium sp. associated with the common sea fan, Gorgonia ventalina, in the Florida Keys across distance, depth, and time. Mar Biol 156:1609-1623 doi: 10.1007/s00227-009-1196-z

LaJeunesse TC (2001) Investigating the biodiversity, ecology, and phylogeny of endosymbiotic dinoflagellates in the genus Symbiodinium using the ITS region: in a search of a “species” level marker. J Phycol 37:866-880 doi: 10.1046/j.1529-8817.2001.01031.x

LaJeunesse TC, Trench RK (2000) Biogeography of two species of Symbiodinium (Freudenthal) inhabiting the intertidal sea anemone Anthopleura elegantissima (Brandt). Biol Bull 199:126-134 doi: 10.2307/1542872
LaJeunesse TC, Thornhill DJ (2011) Improved resolution of reef-coral endosymbiont endosymbiont (\textit{Symbiodinium}) species diversity, ecology and evolution through psbA non-coding region genotyping. PLoS One 6:e29013 doi: 10.1371/journal.pone.0029013

LaJeunesse TC, Parkinson JE, Reimer JD (2012) A genetics-based description of \textit{Symbiodinium minutum} sp. nov. and \textit{S. psygmophilum} sp. nov. (Dinophyceae), two dinoflagellates symbiotic with Cnidaria. J Phycol 48:1380-1391 doi: 10.1111/j.1529-8817.2012.01217.x

LaJeunesse TC, Bhagooli R, Hidaka M, DeVantier L, Done T, Schmidt GW, Fitt WK, Hoegh-Guldberg O (2004) Closely related \textit{Symbiodinium} spp. differ in relative dominance in coral reef host communities across environmental, latitudinal and biogeographic gradients. Mar Ecol Prog Ser 284:147-161 doi: 10.3354/meps284147

LaJeunesse TC, Pettay DT, Sampayo EM, Phongsuwan N, Brown B, Obura DO, Hoegh-Guldberg O, Fitt WK (2010) Long-standing environmental conditions, geographic isolation and host-symbiont specificity influence the relative ecological dominance and genetic diversity of coral endosymbionts in the genus \textit{Symbiodinium}. J Biogeo 37:785-800 doi: 10.1111/j.1365-2699.2010.02273.x
Leydet KP, Hellberg ME (2016) Discordant coral–symbiont structuring: factors shaping geographical variation of *Symbiodinium* communities in a facultative zooxanthellate coral genus, *Oculina*. Coral Reefs doi: 10.1007/s00338-016-1409-0

McClanahan TR, Ateweberhan M, Darling ES, Graham NAJ, Muthiga NA (2014) Biogeography and change among regional coral communities across the Western Indian Ocean. PLoS One 9:e93385 doi: 10.1371/journal.pone.0093385

Mieszkowska N, Lundquist CJ (2011) Biogeographical patterns in limpet abundance and assemblage composition in New Zealand. J Exp Mar Biol Ecol 400: 155-166 doi: 10.1016/j.jembe.2011.02.019

Montani S (1996) Chapter 1 Seto Inland Sea’s environment and fisheries relationship. In: Okaichi T, Komori S, Nakanishi H (eds) Seto Inland Sea’s biological resources and the environment - for the future. Kouseisha Kouseikaku, Tokyo, pp. 9-11 (in Japanese).

Muscatine L, Cernichiari E (1969) Assimilation of photosynthetic products of zooxanthellae by a reef coral. Biol Bull 137:506-523 doi: 10.2307/1540172
Parkinson JE, Yang SY, Kawamura I, Byron G, Todd P, Reimer J (2016) A citizen science approach to monitoring bleaching in the zoantharian *Palythoa tuberculosa*. PeerJ 4:e1815 doi: 10.7717/peerj.1815

Perriere G, Gouy M (1996) WWW-query: an on-line retrieval system for biological sequence banks. Biochimie 78:364-369 doi: 10.1016/0300-9084(96)84768-7

Pettay DT, LaJeunesse TC (2007) Microsatellites from clade B *Symbiodinium* spp. specialized for Caribbean corals in the genus *Madracis*. Mol Ecol Res 7:1271-1274 doi: 10.1111/j.1471-8286.2007.01852.x

Pochon X, Gates R (2010) A new *Symbiodinium* clade (Dinophyceae) from soritid foraminifera in Hawai`i. Mol Phylogen Evol 56:492-497 doi: 10.1016/j.ympev.2010.03.040

Prada C, McIlroy SE, Beltrán DM, Valint DJ, Ford SA, Hellberg ME, Coffroth MA (2014) Cryptic diversity hides host and habitat specialization in a gorgonian – algal symbiosis. Mol Ecol 23:3330-3340 doi: 10.1111/mec.12808

Reimer JD, Takishita K Maruyama T (2006) Molecular identification of symbiotic dinoflagellates (*Symbiodinium* spp.) from *Palythoa* spp. (Anthozoa: Hexacorallia). Coral Reefs 25:521-527 doi: 10.1007/s00338-006-0151-4
Reimer JD, Takishita K, Ono S, Maruyama T (2007) Diversity and evolution in the zoanthid genus *Palythoa* (Cnidaria: Hexacorallia) utilizing nuclear ITS-rDNA. Coral Reefs 26: 399-410 doi: 10.1007/s00338-007-0210-5

Reimer JD, Herrera M, Gatins R, Roberts MB, Parkinson JE, Berumen ML (2017) Latitudinal variation in the symbiotic dinoflagellate *Symbiodinium* of the common reef zoantharian *Palythoa tuberculosa* on the Saudi Arabian coast of the Red Sea. J Biogeo 44:661-673 doi: 10.1111/jbi.12795

Rowan R, Powers DA (1991) A molecular genetic classification of zooxanthellae and the evolution of animal-algal symbioses. Science 251:1348-1351

Rowan R, Powers DA (1992) Ribosomal RNA sequences and the diversity of symbiotic dinoflagellates (zooxanthellae). Proc Nat Acad Sci USA 89:3639–3643 doi: 10.1073/pnas.89.8.3639

Sampayo EM, Ridgway T, Bongaerts P, Hoegh-Guldberg O (2008) Bleaching susceptibility and mortality of corals are determined by fine-scale differences in symbiont type. Proc Nat Acad Sci USA 105:10444-10449 doi: 10.1073/pnas.0708049105
Santos SR, Gutierrez-Rodriguez C, Coffroth MA (2003) Phylogenetic of symbiotic dinoflagellates via length heteroplasmy in domain V of chloroplast large subunit (cp23s) ribosomal DNA sequences. Mar Biotech 5:130-140 doi: 10.1007/s10126-002-0076-z

Shinzato C, Mungpakdee S, Arakaki N, Satoh N (2015) Genome-wide SNP analysis explains coral diversity and recovery in the Ryukyu Archipelago. Sci Rep 5:18211 doi: 10.1038/srep18211

Soliman T, Fernandez-Silva I, Reimer JD (2016) Genetic population structure and low genetic diversity in the over-exploited sea cucumber Holothuria edulis Lesson, 1830 (Echinodermata: Holothuroidea) in Okinawa Island. Cons Gen 17:811-821 doi: 10.1007/s10592-016-0823-8

Swofford D (2000) PAUP*, Phylogenetic Analysis Using Parsimony (*and other methods), version 4.0b10. Sinauer Associates, Sunderland, Massachusetts

Takishita K, Ishikura M, Koike K, Maruyama T (2003) Comparison of phylogenies based on nuclear-encoded SSU rDNA and plastid-encoded psbA in the symbiotic dinoflagellate genus Symbiodinium. Phycologia 42:285-291 doi: 10.2216/i0031-8884-42-3-285.1
Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Nat Acad Sci USA 101:11030-11035 doi: 10.1073/pnas.0404206101

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol Biol Evol 30:2725–2729 doi: 10.1093/molbev/mst197

Thornhill DJ, Lewis AM, Wham DC, LaJeunesse TC (2014) Host-specialist lineages dominate the adaptive radiation of reef coral endosymbionts. Evolution 68:352-367 doi: 10.1111/evo.12270

Tonk L, Sampayo EM, LaJeunesse TC, Schrameyer V, Hoegh-Guldberg O (2014) Symbiodinium (Dinophyceae) diversity in reef-invertebrates along an offshore to inshore reef gradient near Lizard Island, Great Barrier Reef. J Phycol 50:552–563 doi: 10.1111/jpy.12185

White KN, Reimer JD, Lorion J (2016) Preliminary analyses reveal strong genetic structure in populations of Leucothoe vulgaris (Crustacea: Amphipoda: Leucothoidae) from Okinawa, Japan. Syst Biodiv 14:55-62 doi: 10.1080/14772000.2015.1078856

White TJ, Bruns T, Lee S, Taylor WJ (1990) Amplification and direct sequencing of fungal ribosomal genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, TJ White TJ
(eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322
Figure 1. Phylogenies of clade C Symbiodinium isolated from Palythoa tuberculosa around Okinawa-jima Island and Amami Oshima Island, Japan.

Maximum Likelihood (ML) trees are depicted for (a) the internal transcribed spacer 2 (ITS2) and (b) the chloroplast psbA noncoding region (psbA\text{ncr}). Sequences from previous studies are included with GenBank accession numbers, host species, location, and subclade names \textit{sensu} LaJeunesse (2001). Values at nodes represent ML, neighbour joining (NJ), and maximum parsimony (MP) bootstrap percentages, as well as Bayesian inference (BI) posterior probabilities, respectively. Specimen abbreviations are as in Electronic Supplementary Material Table S1.
Figure 2

Map of Amami Oshima Island (A) and Okinawa-jima Island (B) with average sea surface temperature (SST$_{avg}$) and *Symbiodinium* psbAncr lineage ratios at each site investigated.

Map of Amami Oshima Island (A) and Okinawa-jima Island (B) with average sea surface temperature (SST$_{avg}$) and *Symbiodinium* psbAncr lineage ratios at each site investigated. Note thermal distortions near coastlines were ignored in all SST analyses as these are generated by influence of terrestrial portions of islands within the 4-km resolution of satellite data.
Figure 3. *Symbiodinium* psbA^{ncr} lineage distribution by environment.

Distributions are represented as (a) proportions of each lineage in each sampling site; or as ranges (dotted lines) with respect to (b) SST_{avg} values, (c) SST_{max} values, (d) SST_{min} values, and (e) chl-a values. All colors correspond to sample site designations in (a).
Table 1 (on next page)

Sites from which *Palythoa tuberculosa* specimens were collected in this study to examine *Symbiodinium* spp., and information on numbers of specimens, sea surface temperature (SST), and chlorophyll-a (chl-a) concentrations.
Table 1. Sites from which *Palythoa tuberculosa* specimens were collected in this study to examine *Symbiodinium* spp., and information on numbers of specimens, sea surface temperature (SST), and chlorophyll-a (chl-a) concentrations.

Site name	Latitude, longitude	# of specimens	SST\(^{\text{avg}}\) (°C)\(^1\)	SST\(^{\text{max} \pm SD}\) (°C)\(^2\)	SST\(^{\text{min} \pm SD}\) (°C)\(^3\)	High August SST (year(s))	Low February SST (year)	Chl-a (mg/m\(^3\))\(^4\)
Wase (Amami)	28°17'37'' N, 129°28'27'' E	5	24.60	28.88±0.93	20.35±0.43	30.10 (2001, 2013)	19.50 (2009)	0.15
Oku	26°50'53'' N, 128°17'14'' E	10	24.95	29.08±0.60	20.69±0.73	30.30 (2001)	18.70 (2008)	0.08
Nerome	26°41'36'' N, 128°6'28'' E	8	24.85	29.33±0.53	20.47±0.59	30.45 (2001)	19.10 (2008)	0.30
Bise	26°42'39'' N, 127°52'52'' E	11	24.95	29.21±0.54	20.68±0.46	30.30 (2001)	19.80 (2015)	0.15
Teniya	26°33'51'' N, 128°8'28'' E	7	25.15	29.16±0.57	20.82±0.50	30.15 (2001)	20.25 (2002, 2009)	0.15
Uken	26°22'46'' N, 127°52'47'' E	3	25.05	29.43±0.76	20.39±0.45	30.90 (2001)	19.55 (2011)	0.50
Mizugama	26°21'35'' N, 127°44'19'' E	8	25.15	29.16±0.51	21.21±0.42	30.15 (2001)	20.70 (2015)	0.25
Kyan	26°5'40'' N, 127°39'10'' E	4	25.35	29.18±0.58	21.29±0.62	30.15 (2001)	20.40 (2015)	0.24
Odo	26°5'11'' N, 127°42'37'' E	7	25.35±	29.23±0.51	21.42±0.60	30.15 (2001)	20.60 (2011)	0.08
1. Generated by Giovanni data (see Materials and Methods), average of all SST measurements taken May 2000 – May 2015; value from generated map (standard deviation not available).

2. Average of highest SST observed in August each year (2000-2014).

3. Average of lowest SST observed in February each year (2000-2015).

4. Generated by Giovanni data (see Materials and Methods), average of all chl-a measurements taken July 2002 – May 2015; value generated from generated map (standard deviation not available).
Table 2 (on next page)

Pairwise genetic distances among *Symbiodinium psbA^ncr* lineages

Pairwise genetic distances among *Symbiodinium psbA^ncr* lineages isolated from *Palythoa tuberculosa* in southern Japan. Shaded diagonal values represent within-lineage distances.
Table 2. Pairwise genetic distances among *Symbiodinium* psbA^{ncr} lineages isolated from *Palythoa tuberculosa* in southern Japan.

Shaded diagonal values represent within-lineage distances.

	Lineage 1	Lineage 2	Lineage 3	Lineage 4*
Lineage 1	0.003			
Lineage 2	0.137	0.005		
Lineage 3	0.184	0.128	0.021	
Lineage 4*	0.256	0.198	0.105	0.000*

Lineage 4 was represented by two identical sequences.