Large difference but high correlation between creatinine and cystatin C estimated glomerular filtration rate in Mesoamerican sugarcane cutters

Axel Andersson,1,2 Erik Hansson,1,2 Ulf Ekström,2,3 Anders Grubb,3 Magnus Abrahamson,3 Kristina Jakobsson,1,4 Yiyi Xu1

ABSTRACT

Objectives To explore the relationship between creatinine and cystatin C based estimated glomerular filtration rate (eGFR) in actively working sugarcane cutters.

Methods This cohort study included 458 sugarcane cutters from Nicaragua and El Salvador. Serum samples were taken before and at end of harvest seasons and analysed for creatinine and cystatin C. Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) formulas were used to calculate eGFRs based on creatinine (eGFR$_{cr}$), cystatin C (eGFR$_{cys}$) and both creatinine and cystatin C (eGFR$_{cys}$) at each time point. Bland-Altman plots and paired t-tests were used to compare the difference between eGFR$_{cr}$ and eGFR$_{cys}$, and the difference in eGFRs between before and at end of the harvest seasons.

Results The mean eGFR$_{cr}$ was higher than eGFR$_{cys}$ in both cohorts; absolute difference 22 mL/min/1.73 m2 (95% CI 21 to 23) in Nicaragua and 13 mL/min/1.73 m2 (95% CI 11 to 15) in El Salvador. Correlations between eGFR$_{cr}$ and eGFR$_{cys}$ were high, with r = 0.69, 0.77 and 0.67 in Nicaragua at pre-harvest, end-harvest and cross-harvest, and r = 0.89, 0.89 and 0.49 in El Salvador.

Conclusions Creatinine increases among heat-stressed workers reflect reduced glomerular filtration as estimated using eGFR$_{cr}$, a marker independent of muscle mass and metabolism. The discrepancy between eGFR$_{cr}$ and eGFR$_{cys}$ may indicate reduced glomerular filtration of larger molecules and/or systemic bias in CKD-EPI performance in this population.

INTRODUCTION

Chronic Kidney Disease of Non-Traditional Origin (CKDnT) has led to the premature death of tens of thousands in Mesoamerica, predominantly male agricultural workers.1 Hypotheses on CKDnT aetiology have focused on recurrent heat stress, but pesticide use, metal toxicity and infections have also been suspected.2 The heat stress hypothesis has been studied among harvest workers at several sugarcane mills, finding frequent and substantial serum creatinine increases both across the work shift and harvest season.3–6 Studies on CKDnT have hitherto, with very few exceptions, reported estimated glomerular filtration rate based on serum creatinine (eGFR$_{cr}$). Serum creatinine is heavily dependent on muscle mass, which could be problematic when manual labourers are evaluated, with more muscle mass or muscle degradation leading to higher levels.7 Cystatin C, another biomarker for kidney function, is independent from muscle mass.8 However, analysis of cystatin C is more expensive and less accessible than creatinine in most countries, but has been recommended as a possible addition in prevalence studies.9 Comparisons between eGFR$_{cr}$ and cystatin C based eGFR (eGFR$_{cys}$) have been performed mainly in North American, European and Asian populations. Some studies show good agreement between
measured GFR and Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) calculated eGFR_{cre} and eGFR_{cys} while other studies showed systematically higher eGFR_{cre} than eGFR_{cys}. We are only aware of one study reporting lower eGFR_{cre} than eGFR_{cys}, but the difference was small. This variation between studies may be a consequence of variations in the rate of production and excretion of creatinine and cystatin C, but also laboratory analytical variation.

There are very limited studies in Mesoamerica that have reported cystatin C or eGFR_{cys}, which could be of interest to understand the mechanism of deteriorating kidney function and CKDnT in this population.

Recent studies suggested that a relatively lower eGFR_{cys} than eGFR_{cre} strongly predict mortality in several groups such as cardiovascular patients, healthy seniors and other adult patients. Owing to the difference in size between creatinine (molar mass 113 Da) and cystatin C (13.3 kDa), a lower eGFR_{cys} than eGFR_{cre} may reflect a selectively decreased elimination of relatively large molecules. This phenomenon has been described in the literature as ‘Shrunken Pore Syndrome’ (SPS). The mechanism for increased disease risk has been suggested to be due to reduced elimination of pro-atherogenic and inflammatory proteins.

The aims of this study were first to compare the levels of eGFR_{cre} and eGFR_{cys}, second to evaluate how cross-harvest changes in eGFR_{cys} correspond to the change in the more widely used eGFR_{cre}, in Mesoamerican sugarcane cutters at risk of CKDnT.

METHODS AND MATERIALS

Study population

This study included two different cohorts from two sugarcane mills, Ingenio San Antonio in Chinandega, Nicaragua, situated on the lowland Pacific coast, and Ingenio El Ángel in Apopa, El Salvador, with operations both in the coastal lowlands and in the inland, 450 m above sea level. Both mills have participated in interventions aiming at reducing heat stress by improved access to water, rest and shade (WRS-intervention). Evaluations of the cohorts and the interventions have been reported in detail elsewhere. Although both cohorts include Mesoamerican sugarcane workers, there are differences in climate and working conditions, implementation of the WRS-intervention, general living conditions and home conditions between the two cohorts. We predetermine the larger Nicaraguan cohort as the main

Basic characteristics of study participants (male sugarcane cutters) from Nicaragua and El Salvador	Nicaragua	El Salvador
Burned cane cutters, n (%)	200 (56)	98 (100)
Seed cutters, n (%)	160 (44)	0 (0)
Age, median (IQR)	28 (23–33)	32 (25–39)
Weight in kg, median (IQR)	64 (59–71)	65 (57–75)
Height in cm, median (IQR)	166 (161–171)	165 (162–170)
Serum creatinine mg/ dl, median (IQR)	1.00 (0.88–1.12)	0.84 (0.78–0.96)
Serum cystatin C mg/L, median (IQR)	1.10 (1.00–1.25)	0.92 (0.82–1.10)
eGFR_{cre} < 60 mL/min/1.73 m², n (%)	3 (1)	9 (3)
eGFR_{cys} < 60 mL/min/1.73 m², n (%)	55 (15)	14 (14)
eGFR_{cre} < 60 mL/min/1.73 m², n (%)	15 (4)	10 (10)

eGFR_{cre}, estimated glomerular filtration rate based on creatinine; eGFR_{cys}, estimated glomerular filtration rate based on both creatinine and cystatin C; eGFR_{cys}, estimated glomerular filtration rate based on cystatin C.

![Figure 1](http://oem.bmj.com)
Exposure assessment

The present study included 360 male burned cane cutters and seed cutters from Nicaragua, investigated 2018–2019, and 98 male burned cane cutters from El Salvador, investigated 2015–2016. The Nicaraguan workers had passed a pre-employment screening formally requiring them to have a serum creatinine value \(\leq 1.3 \text{ mg/dL} \) and absence of dysregulated diabetes, hypertension or hyperuricaemia. No pre-employment screening existed at the mill in El Salvador.

Fifty-nine workers dropped out during harvest in Nicaragua, and 31 dropped out in El Salvador, many of them due to decreasing kidney function. Drop out in El Salvador was also related to security problems during the study period.

Table 2

Country	eGFR before harvest (95% CI)	eGFR at end of harvest (95% CI)	Difference eGFR (95% CI)	% change (95% CI)	P value**
Nicaragua	101 (99 to 103)	88 (85 to 89)	−3 (−5 to −2)	−3 (−5 to −2)	<0.001
El Salvador	105 (99 to 111)	98 (92 to 105)	−4 (−6 to −2)	−4 (−6 to −2)	<0.001

*Significance evaluated with paired t-test.

eGFR, estimated glomerular filtration rate; eGFR\(_{\text{cr}}\), estimated glomerular filtration rate based on creatinine; eGFR\(_{\text{cys}}\), estimated glomerular filtration rate based on cystatin C; eGFR\(_{\text{cr}+\text{cys}}\), estimated glomerular filtration rate based on both creatinine and cystatin C; eGFR\(_{\text{mean}}\), mean between creatinine and cystatin C based estimated glomerular filtration rate.
Data collection and biomarker analysis
In both cohorts, questionnaire data and morning blood samples were collected immediately before and at end of harvest (November and April, respectively). Blood samples were drawn by phlebotomists. Serum was separated, frozen at −77°C and shipped to Lund, Sweden, for analysis. Creatinine and cystatin C were analysed in serum at the Department of Clinical Chemistry of the Skåne University Hospital in Lund, Sweden, using the Cobas 701-instrument (Roche Diagnostics, Basel, Switzerland). Creatinine was measured using an IDMS-calibrated, enzymatic colorimetric method. Cystatin C was measured using a particle enhanced immunoturbidimetric assay, which was standardised against the international reference material ERM-DA471/IFCC. Samples from before and end of harvest from each cohort were analysed in the same session, in order to eliminate analysis batch effects introducing spurious cross-harvest eGFR changes. All analyses were performed in the same laboratory for both the Nicaraguan and Salvadoran samples but at different time points. The laboratory is accredited according to ISO 15189. The details of analysis were also reported previously.6 24 25

Statistical methods
The CKD-EPI equations were used to calculate eGFRcr, eGFRcys and eGFR based on both creatinine and cystatin C (eGFRcrcys) from creatinine and cystatin C in serum.26 All subjects were classified as ‘non-blacks’. The absolute differences of eGFRcr and eGFRcys was calculated as eGFRcr − eGFRcys and the ratio was calculated as eGFRcrcys/eGFRcr. The mean eGFR (eGFRmean) was calculated as the average of eGFRcr, and eGFRcys.

Paired t-test was used to analyse the difference between eGFRcrcys and eGFRcr, and to make cross-harvest comparisons of eGFRcrcys and eGFRcys. The correlation between eGFRcr, and eGFRcrcys cross-harvest change was analysed using Pearson’s correlation test. Two outlier workers (one in each population) with physiologically implausible increases in eGFRcys across harvest (>40 mL/min/1.73 m2) were excluded from cross-harvest correlation coefficient analyses. Bland-Altman plots were used to illustrate the difference between eGFRcr, and eGFRcys. All the statistical analyses were performed in each cohort separately, using IBM SPSS 26.0.

RESULTS
The basic characteristics of the study population are described in table 1. In Nicaragua, 200 of the 360 sugarcane cutters worked as burned cane cutters, and the rest as seed cutters. In El Salvador, all workers were burned cane cutters. The two populations had similar disadvantaged socioeconomic characteristics, but the Salvadoran cutters were slightly older (median 32 vs 28 years).

The different eGFR equations yielded different estimates of the proportion of workers with eGFR <60 mL/min/1.73 m2 in Nicaragua and El Salvador. 15% and 20% of Nicaraguans had eGFRcr <60 mL/min/1.73 m2 before and at end of harvest, respectively, while only 1% and 3% had eGFRcys <60 mL/min/1.73 m2 at the same times. In the Salvadoran cutters, the proportion with eGFRs <60 mL/min/1.73 m2 were more similar, both before (14% for eGFRcr vs 9% for eGFRcys) and at end of harvest (19% vs 13%).

In the Nicaraguan cane cutters, eGFRcys was much lower than eGFRcr, with a mean difference of −22 mL/min/1.73 m2 (95% CI −23 to −21), and an eGFRcrcys/eGFRcr-ratio of 0.79 (95% CI 0.78 to 0.80) (figure 1). In the Salvadoran cutters, the difference was −13 mL/min/1.73 m2 (95% CI −15 to −11) and the ratio 0.87 (95% CI 0.86 to 0.89). Bland-Altman plots showed triangular patterns with the largest differences in eGFRcrcys−eGFRcr, and eGFRcrcys/eGFRcr at eGFRcr and eGFRcys mean values of approximately 90 mL/min/1.73 m2 in both study groups (figure 2).

Overall, all eGFR calculations (eGFRcr, eGFRcrcys, eGFRcys and eGFRmean) showed a similar decrease from before to end of

Figure 3 Correlation between cross-harvest change in eGFRcys and eGFRcr in male sugarcane workers from Nicaragua (left; n=360) and El Salvador (right; n=98). Grey dots indicate individuals with a creatinine increase by 0.3 mg/dL or 50% over harvest season. Two outliers with extreme increases in eGFRcys (>40 mL/min/1.73 m2) are not shown. eGFRcrcys estimated glomerular filtration rate based on cystatin C; eGFRcr estimated glomerular filtration rate based on creatinine.
The harvest of about 3% (table 2). A similar pattern was seen in El Salvador, with a decrease of about 4%.

The correlation between the eGFRcr and eGFRcys among the Nicaraguan cane cutters before the harvest was 0.69 and at end of harvest 0.77. For the Salvadoran cutters, the correlation was 0.89 before and also at the end of harvest. The correlations between the cross-harvest differences for eGFRcr and eGFRcys were slightly lower, 0.67 for Nicaraguan cane cutters, and 0.49 for Salvadoran cutters (figure 3).

DISCUSSION
We found that Mesoamerican sugarcane cutters, a population at high risk of CKDnT, had generally lower eGFRcr than eGFRcys, but the two GFR estimations were highly correlated.

Both eGFRcr and eGFRcys showed an average 3%–4% decrease over the harvest season. The correlations between cross-harvest eGFRcr and eGFRcys change were moderate to high, strongly indicating that creatinine increase among sugarcane cutters during harvest season does not merely reflect increased release of creatinine from muscles secondary to harvest work but reflects a true reduced glomerular filtration. Specifically, we found that workers with a creatinine increase of 0.3 mg/dL, which previously has been considered indicative of kidney injury, also had substantially reduced eGFRcr and increased risk of markers of acute tubular injury in urine. This finding strengthens the use of serum creatinine increase as a potentially useful intermediary marker of kidney injury. Therefore, to protect the young, working Mesoamerican population who are most at risk of CKDnT, had generally lower eGFRcys than eGFRcr, but the two GFR estimations were highly correlated.

The reasons behind the difference between eGFRcr and eGFRcys in our study are unclear. First, the validity of CKD-EPI equations varies both by ethnicity/race and region of residency. The CKD-EPI estimating equations were developed in North American and European populations and have, to our knowledge, not been validated against measured GFR in Mesoamerica. As the disparity between eGFR equations shown in this study may be due to poorly adapted eGFR equations for the Mesoamerican population, our observations call for future studies to validate or update the existing eGFR equations, through measured GFR, so that GFR can be estimated more accurately in this population. Second, CKD-EPI estimating equations have limited performance at early stages of reduced glomerular filtration, where we found a larger difference between eGFRcr and eGFRcys. Notably, a lower eGFRcr than eGFRcys may also reflect a selectively decreased elimination of relatively large molecules, denoted ‘shrunken pore syndrome’ (SPS), which might be an intermediary marker of kidney injury. Therefore, to protect the young, working Mesoamerican population who are most at risk of CKDnT, further understanding of the difference between eGFRs are needed. Consequently, identification and selection of the best biomarker (creatinine, cystatin C or both in combination) for eGFR estimation are highly relevant for disease screening. Again, studies investigating associations between measured GFR, eGFRcr and eGFRcys in Mesoamerican sugarcane cutters at GFR level intervals indicative of early disease stages (ie, CKD stage 2–3) are needed to inform patients, clinicians and researchers about the relevance of eGFRcr and eGFRcys, and whether there is a benefit in measuring eGFRcr instead of, or in addition to, eGFRcys. Given cystatin C is not regularly measured in some low-income countries due to the higher cost and lower availability in laboratories, the knowledge about the agreement between measured GFR and eGFRs, together with a cost–benefit analysis, are crucial for evaluating the importance and necessity of using cystatin C in Mesoamerican sugarcane workers and for guiding policy making and implementation.

As to limitations of the study, it is relevant to note that it was performed among male manual cane cutters, working full-time in a manually demanding job, and very few subjects had serum creatinine levels corresponding to eGFRcr below 60 mL/min/1.73 m² at the time of sampling. This is a limitation with respect to generalisation of the findings. Our results are not necessarily valid for women and for subjects with more markedly reduced glomerular function.

We believe several strengths in this study should be noted. First, sampling was systematically done before the workday to avoid the daily cross-shift increase of creatinine found in sugarcane workers. Second, the potential risk of measurement bias was mediated by analysing the samples in the same laboratory, with baseline and end of harvest samples in the same batch. Third, similar findings in two independent cohorts, sampled and analysed separately, indicate a lesser risk of reporting chance findings.

At the Nicaraguan mill, cross-harvest eGFR change comparisons were performed in workers having passed a mid-harvest creatinine examination, which eliminated some workers from the cohort due to having a creatinine value above the pre-employment criteria of 1.3 mg/dL. Consequently, the eGFR change (especially eGFRcr change) found in our Nicaraguan population was underestimated since workers with more severe increase in creatinine, thus possible larger reduction in eGFRcr, were excluded. Indeed, 11 out of 59 workers dropping out in the Nicaragua group said that they had left work due to kidney disease/creatinine elevation. Similar underestimated eGFR change may be the case in the Salvadoran workers too, since a number of cutters dropped out before end of harvest.

In additional to a mid-harvest creatinine examination, there was a pre-employment screening at the Nicaraguan mill, but not at the mill in El Salvador. The screening procedure may have contributed to the large difference in proportion with eGFRcr <60 mL/min/1.73 m² between eGFRcr and eGFRcys in workers from Nicaragua and El Salvador, as workers with eGFRcr <60 mL/min/1.73 m² are selectively removed from the Nicaraguan workforce. It should also be noted that the climate is hotter in the lowlands than in the inland, resulting in higher work-related heat stress in all the Nicaraguan cane cutters, and in the lowland Salvadorian cutters, while other Salvadorian cutters were from the inland. In summary, to find differences in eGFR between the cohorts is to be expected.

In conclusion, our repeated findings of decreased eGFRcr over one harvest season in two cohorts of sugarcane cutters provides further evidence of a true reduction of glomerular filtration. However, the large difference between eGFRcr and eGFRcys in the Mesoamerican sugarcane cutters indicates currently insufficient knowledge on the true GFR and its estimations in this population. Our study highlights the need to validate the current estimation equations of eGFRs by using measured GFR in the target population, and the need for longitudinal studies to understand which GFR estimate provides most information on kidney disease prognosis in the population at high risk of CKDnT.
Acknowledgements We acknowledge La Isla Network, and its Work Health and Efficiency (WE) and Adelante Programmes. Without the local field teams, the participating sugarcane workers and support from the sugar mills this study had not been possible.

Contributors AA and YX conceived the initial study design and statistical methods. AA ran all the analyses. AA prepared the manuscript with continuous feedback from YX, EH and KJ. The final manuscript was further revised by UE, AG and MA, yielding essential input. All authors provided intellectual content and have read and approved the final version. KJ is responsible for the overall content as guarantor.

Funding The present study was funded by the Swedish Research Council for Health, Working Life and Welfare, grant 2019-01548, and by in-kind funding from University of Gothenburg, Sweden and from Lund University, Sweden. The data collection in Nicaragua was funded by Adelante Initiative, which in itself was funded by the German Investment Corporation (DEG), the German Ministry of Economic Development and Cooperation (BMZ) and the sugar mill Ingenio San Antonio (ISA) via the DEG’s technical support program for loan recipients and the joint BMZ and DEG DevelopPPP programme. In El Salvador, the data collection was funded by the Dutch National Postcode Lottery to Solidaridad, with support from the sugar mill El Ángel. None of these entities had a role in study design, data collection, data analyses, data interpretation or writing of the report.

Competing interests None declared.

Patient consent for publication Not applicable.

Ethics approval This study involves human participants and was approved by Comité de Ética para Investigaciones Biomédicas in UNAN-León in Nicaragua, Comité Nacional de Ética de Investigación de Salud in El Salvador, Regional Ethical Review Board in Lund, Sweden. Participants gave informed consent to participate in the study before taking part.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement The Nicaraguan data will be available upon reasonable request, while the Salvadorian data may be obtained from a third party. Contact the corresponding author for more information.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made. See: https://creativecommons.org/licenses/by/4.0/.

ORCID iDs
Axel Andersson http://orcid.org/0000-0002-1215-8433
Erik Hansson http://orcid.org/0000-0002-9779-6820

REFERENCES
1 Wasseling C, Glaser J, Rodríguez-Guzmán J, et al. Chronic kidney disease of non-traditional origin in Mesoamerica: a disease primarily driven by occupational heat stress. Rev Panam Salud Publica 2020;44:e15:1.
2 González-Quiroz M, Pearce N, Capín B, et al. What do epidemiological studies tell us about chronic kidney disease of undetermined cause in Meso-America? A systematic review and meta-analysis. Clin Kidney J 2018;11:496–506.
3 Hansson E, Glaser J, Weiss I, et al. Workload and cross-harvest kidney injury in a Nicaraguan sugarcane worker cohort. Occup Environ Med 2019;76:118–126.
4 Butler-Dawson J, Krissher L, Asensio C, et al. Risk factors for declines in kidney function in sugarcane workers in Guatemala. J Occup Environ Med 2018;60:548–58.
5 Sorensen CJ, Butler-Dawson J, Dally M, et al. Risk factors and mechanisms underlying Cross-Shift decline in kidney function in Guatemalan sugarcane workers. J Occup Environ Med 2019;61:239–50.
6 Bodin T, García-Trabancito R, Weiss I, et al. Intervention to reduce heat stress and improve efficiency among sugarcane workers in El Salvador: phase 1. Occup Environ Med 2016;73:409–16.
7 Lopez-Giacomani S, Madero M. Biomarkers in chronic kidney disease, from kidney function to kidney damage. World J Nephrol 2015;4:57–73.
8 Grubb A. Cystatin C is indispensable for evaluation of kidney disease. EJIFCC 2017;28:268–76.
9 Capín B, Jakobsson K, Glaser J, et al. International Collaboration for the Epidemiology of eGFR in Low and Middle Income Populations - Rationale and core protocol for the Disadvantaged Populations eGFR Epidemiology Study (DEGREE). BMC Nephrol 2017;18:1.
10 Lim WH, Lewis JR, Wong G, et al. Comparison of estimated glomerular filtration rate by the chronic kidney disease epidemiology collaboration (CKD-EPI) equations with and without cystatin C for predicting clinical outcomes in elderly women. PloS One 2014;9:e106734.
11 Kilbridge HS, Stevens PE, Eaglestone G, et al. Accuracy of the MDRD (modification of diet in renal disease) study and CKD-EPI (CKD epidemiology collaboration) equations for estimation of GFR in the elderly. Am J Kidney Dis 2013;61:57–66.
12 Zhang M, Chen Y, Tang L, et al. Applicability of chronic kidney disease epidemiology collaboration equations in a Chinese population. Nephrol Dial Transplant 2014;29:580–6.
13 Te X, Wei L, Pei X, et al. Application of creatinine- and/or cystatin C-based glomerular filtration rate estimation equations in elderly Chinese. Clin Exp Nephrol 2017;21:236–46.
14 Yang M, Xu G, Ling L, et al. Performance of the creatinine and cystatin C-based equations for estimation of GFR in Chinese patients with chronic kidney disease. Clin Exp Nephrol 2017;21:236–46.
15 Barr EL, Maple-Brown LJ, Barzi F, et al. Comparison of creatinine and cystatin C based eGFR in the estimation of glomerular filtration rate in Indigenous Australians: the KEGG study. Clin Biochem 2017;50:301–8.
16 Bukabau JB, Yayo E, Gionisahé A, et al. Performance of creatinine- or cystatin C-based equations to estimate glomerular filtration rate in sub-Saharan African populations. Kidney Int 2019;95:1181–9.
17 Alaini A, Malhotra D, Rondon-Berrios H, et al. Establishing the presence or absence of chronic kidney disease: uses and limitations of formulas estimating the glomerular filtration rate. World J Methodol 2017;7:73–92.
18 González-Quiroz M, Smokou E-F, Silverwood RJ, et al. Decline in kidney function among apparently healthy young adults at risk of Mesoamerican nephropathy. J Am Soc Nephrol 2018;29:2200–12.
19 Wijkström J, González-Quiroz M, Hernandez M, et al. Renal morphology, clinical findings, and progression rate in Mesoamerican nephropathy. Am J Kidney Dis 2017;69:626–36.
20 Zhou H, Yang M, He X, et al. eGFR, cystatin C and creatinine in shrunken pore syndrome. Clin Chim Acta 2019;498:1–5.
21 Grubb A, Lindström Y, Jonsson M, et al. Reduction in glomerular pore size is not restricted to pregnant women. Evidence for a new syndrome: ‘Shrunken pore syndrome’. Scand J Clin Lab Invest 2015;75:333–40.
22 Grubb A. Shrunken pore syndrome – a common kidney disorder with high mortality. Diagnosis, prevalence, pathophysiology and treatment options. Clin Biochem 2020;83:12–20.
23 Almén MS, Björk J, Nyman U, et al. Shrunken pore syndrome is associated with increased levels of Atherosclerosis-Promoting proteins. Kidney Int Rep 2019;4:67–79.
24 Wegman DH, Apelqvist J, Bottal M, et al. Intervention to diminish dehydration and kidney damage among sugarcane workers. Scand J Work Environ Health 2018;44:16–24.
25 Glaser J, Hansson E, Weiss I, et al. Preventing kidney injury among sugarcane workers: promising evidence from enhanced workplace interventions. Occup Environ Med 2020;77:327–34.
26 KDIGO. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int 2013: 1–150.
27 Grubb A, Ramirez-Rubio O, Amador JJ, et al. Acute kidney injury in sugarcane workers at risk for Mesoamerican nephropathy. Am J Kidney Dis 2018;72:475–82.
28 Hansson E, Wegman DH, Wasseling C, et al. Markers of kidney tubular and interstitial injury and function among sugarcane workers with cross-harvest serum creatinine elevation. Occup Environ Med 2021. doi:10.1136/oemed-2021-107990. [Epub ahead of print: 31 Dec 2021].
29 Stevens LA, Clayton MA, Schmid CH, et al. Evaluation of the chronic kidney disease epidemiology collaboration equation for estimating the glomerular filtration rate in multiple ethnicities. Kidney Int 2011;79:555–62.
30 Inker LA, Schmid CH, Tighiouart H, et al. Estimating glomerular filtration rate from serum creatinine and cystatin C. N Engl J Med 2012;367:20–9.