Topiramate-induced acute angle closure (TiAAC) is a potentially vision-threatening side effect of topiramate (TPM) use. The purpose of this article is to review demographic characteristics, clinical features, and management options of TiAAC. A systematic literature search of all reported cases and case series of TiAAC was conducted in the following search engines: PubMed, Web of Science, Google Scholar, Elsevier, and EBSCO. Seventy-three publications describing 77 cases were included. 58 (75.3%) patients were female, and the mean age was 34.88 ± 11.21 years (range, 7–57). The most commonly reported indication of TPM use was migraine headache (59.7%), and the mean duration from starting treatment until the onset of angle closure was 14.1 ± 31.5 days. All cases were managed by immediate cessation of TPM and topical therapy. In addition, systemic medications (carbonic anhydrase inhibitors, hyperosmotic agents, and steroids) were used in 51 patients (66.2%). A laser and/or surgical intervention was performed in 10 patients (13%). After commencement of treatment, the mean duration until the resolution of TiAAC was 3.9 ± 3.6 days (range, 1–18). The findings of our study present a summary of the current body of evidence provided by case reports and case series on TiAAC. In conclusion, the onset of angle closure following TPM use peaks at 2 weeks after initiating treatment, and in most cases, successful management can be achieved by discontinuing TPM and initiating appropriate medical therapy.

Key words: Angle-closure, glaucoma, topiramate

Topiramate (TPM) is a sulfamate-substituted monosaccharide and an antiepileptic drug that was approved by the United States Food and Drug Administration for its efficacy in treating epilepsy and preventing migraine headache. The drug exerts its effect through several mechanisms of action, including sodium and L-type calcium channels blockade, enhancement of gamma-aminobutyric acid (GABA) receptors, α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) and kainite current suppression, and carbonic anhydrase inhibition.[1] Following its widespread use, several systemic adverse effects were documented following treatment with TPM, such as weight loss,[2] cognitive dysfunction,[3] and kidney stones.[4] In addition, TPM can also lead to a wide range of ophthalmologic side effects such as acute angle closure, acute onset myopia, uveitis, scleritis, visual field defects, suprachoroidal effusions, oculargry crisis, and retinal hemorrhage.[5]

TPM-induced acute angle closure (TiAAC) is a potentially vision-threatening side effect of TPM use. It occurs secondary to a drug-induced ciliochoroidal effusion that is associated with a forward movement of the lens-iris diaphragm which subsequently leads to acute angle closure.[6] The exact mechanism underlying ciliary body effusion is not clearly understood; however, it is thought to be related to pharmacological stimulation of prostaglandins release leading to vasodilation and increased permeability in the ciliary body.[7] The literature describing TiAAC primarily consists of a large number of case reports, making it difficult to review such reports and draw clinically relevant conclusions. In this article, we conducted a systematic review of these case reports in an attempt to summarize the current body of evidence on clinical features, management options, and prognosis of TiAAC.

Methods

Protocol

This review was written per Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines.[8]

Inclusion criteria comprised of published case reports and case series reporting original data of confirmed acute angle closure secondary to the use of TPM in either adult or pediatric patients. Exclusion criteria were as follows: articles written in a language other than English, research papers on non-human subjects, studies other than case reports and case series, and reports of other TPM-related side effects.

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

For reprints contact: WKHLRPMedknow_reprints@wolterskluwer.com

Cite this article as: Al Owaifeer AM, AlSultan ZM, Badawi AH. Topiramate-induced acute angle closure: A systematic review of case reports and case series. Indian J Ophthalmol 2022;70:1491-501.
Information sources
A literature search of the following search engines was conducted: PubMed, Web of Science, Google Scholar, Elsevier, and EBSCO was performed on January 2021.

Search strategy
The search was conducted using the term “topiramate” combined with either “glaucoma” OR “acute” OR “angle closure”. Search filters were used to narrow the results down to meet the inclusion criteria. The same strategy was used to search all the aforementioned online databases.

Study selection
Two investigators independently screened the search results for papers that meet the required inclusion criteria in two steps: First, the screening was focused on the titles and abstracts of the seemingly relevant articles; then, the full-text articles of the initially selected papers were retrieved, independently reviewed, and ultimately decided for compatibility according to the inclusion criteria. Disagreements were discussed and resolved between the two investigators.

Data collection process
The extracted data included patient demographics (age and gender), the indication of TPM use, dosage, duration of usage until the onset of clinical manifestations, presenting symptoms, ophthalmic examination findings, treatment modalities, and the period until the intraocular pressure (IOP) was controlled. An electronic form was used to facilitate data collection from the selected case reports and series.

Summary measures
The extracted data was revised, coded, and entered into IBM SPSS, Version 22 (SPSS, Inc. Chicago, IL) for analysis. Descriptive analysis was performed for all variables in which categorical data were presented as frequencies and percentages and continuous variables were presented as mean ± SD.

Results
Study selection
Our search through online databases yielded 537 citations. Furthermore, two additional citations were added through manual search. After removing duplicate records, 472 citations remained; 349 of these were excluded after the initial screening of titles and abstracts. After that, the full text of 123 citations was screened for inclusion criteria. Of these, 50 studies were excluded due to lack of full text (n = 2), duplicate population (n = 31), and failure to meet inclusion criteria (n = 17). Finally, a total of 73 articles (77 patients) were included in the review [Fig. 1].

Study characteristics
The years of publication ranged from 2001 to 2020. Tables 1 and 2 present a summary of the baseline and clinical characteristics of the 77 patients included in this review.

Demographics
Out of the 77 patients, 58 (75.3%) were female. The mean age of patients was 34.88 ± 11.21 years (range, 7–57).

TPM usage
The most common indication for TPM usage was migraine headache (59.7%) followed by epilepsy (10.4%) and weight loss (9.1%). Other less common indications were alcohol use disorder, bipolar affective disorder, cluster headache, anxiety, and pain control. In the cases that reported TPM dosage, the daily dose ranged from 12.5 to 200 mg/day. The mean time that elapsed from the initiation of TPM therapy until the onset of TiAAC was 14.1 ± 31.5 days (range, 0–262).

Clinical presentation
The visual acuity at presentation widely ranged from light perception to 20/20. The mean IOP at presentation was 41.04 ± 15.76 mmHg (range, 8–88) in the right eye and 41 ± 15.3 mmHg (range, 6–82) in the left eye. The amount of refractive error at presentation was reported in 42 cases (54.5%), and the mean spherical equivalent in these patients was -5.37 ± 2.32 diopters (range, (-13)–(-0.75)) in the right eye and -5.31 ± 2.18 diopters (range, (-13)–(-0.75)) in the left eye. Only a few cases had further biometric measurements (anterior chamber depth (ACD) reported in 15 cases (19.5%), and axial length (AL) reported in 7 cases (9.1%)). The mean ACD was 1.65 ± 0.63 mm (range, 0.8–2.64) in the right eye and 1.64 ± 0.6 mm (range, 0.8–2.53) in the left eye, whereas the mean AL was 22.32 ± 1.15 mm (range, 20.2–23.8) in the right eye and 22.31 ± 0.98 mm (range, 20.7–23.78) in the left eye. In addition to acute angle closure, other ophthalmologic features reported include ciliochoroidal effusion in 43 cases (55.8%) [Figs. 2 and 3], uveitis in 8 cases (10.4%), exudative retinal detachment in 2 cases (2.6%), and papilledema in 1 case (1.3%).

Medical management
All cases were managed initially by immediately discontinuing TPM. In addition, topical IOP-lowering medications, cycloplegics, and steroids were used. Some patients were also given systemic medications such as oral carbonic anhydrase inhibitors (CAIs) in 40 cases (51.9%), hyperosmotic agents in 28 cases (36.4%), and steroids in 12 cases (15.6%).

Interventions
The majority of cases were managed medically without the need for laser and/or surgical intervention. Of the few cases that underwent an intervention, laser peripheral iridotomy (LPI) was performed in 8 cases (10.4%), anterior chamber paracentesis in 2 cases (2.6%), laser iridoplasty in 1 case (1.3%), choroidal drainage in 1 case (1.3%), and trabeculectomy in 1 case (1.3%).

Resolution of TiAAC
Following initiation of treatment, control of IOP associated with the resolution of TiAAC occurred in half of the cases (50.6%) during the first three days. The mean duration from presentation until the resolution of TiAAC was 3.9 ± 3.6 days (range, 1–18). Our analysis showed that the use of an intravenous hyperosmotic agent was significantly associated with a shorter period of recovery (4.4 ± 3.9 days vs 2.7 ± 2.1 days, P = 0.0261).

Discussion
Summary of evidence
The current review describes the demographic and clinical findings of the 77 TiAAC case reports described in scientific literature during the searched period. For the vast majority of cases, the condition was successfully managed by prompt identification of the underlying cause, discontinuing TPM, and initiating appropriate medical therapy. Further surgical
intervention was only required in two refractory cases that could not be managed medically.\[^{51,56}\] Below we present a brief discussion of salient findings in our review that are important to physicians involved in the prescription of TPM or the management of TiAAC.

A great proportion of reported patients with TiAAC were females (75.3%); however, this does not necessarily imply that females are at a higher risk of TiAAC. A possible explanation of the higher incidence among females is that migraine headaches, the most common indication of TPM usage in our review, predominantly affects women.\[^{85}\] The majority of cases (93.5%) were adults above the age of 18 years, and only a small proportion of cases were children, with the youngest patient in our review being a 7-year-old girl who was prescribed TPM for seizures and headache.\[^{57}\] Although TiAAC usually occurs during the first two weeks after initiating TPM therapy, the onset of angle closure may occur after that time frame. In our review, Czyz CN, et al.\[^{23}\] reported a case of delayed-onset TiAAC 262 days after starting TPM. The authors speculate that the advancement of a subclinical angle closure could be the causal mechanism behind this delayed presentation.
Table 1: A summary of baseline characteristics

SN	Reference	Age	Sex	Indication	Drug Dose (mg/day)	Duration of Use Prior to Onset
1	Agarwal et al. [10]	25	F	weight loss	23	11 days
2	Aminlari et al. [21]	48	F	pain control	-	2 weeks
3	Aminlari et al. [21]	53	M	cluster headache	-	6 weeks
4	Arun et al. [32]	25	F	migraine headache	50	1 week
5	Baloch et al. [30]	20	F	migraine headache	-	-
6	Banta et al. [34]	51	M	bipolar affective disorder	150	2 weeks
7	Behl et al. [80]	20	F	migraine headache	50	8 days
8	Bhattacharyya et al. [76]	40	F	migraine headache	25	4 days
9	BMR DEO et al. [116]	29	F	weight loss	100	-
10	Boentert et al. [80]	23	F	epilepsy	50	6 days
11	Boonyaleephan et al. [81]	23	F	migraine headache	25	1 week
12	Braganza et al. [79]	19	M	migraine headache	50	2 weeks
13	Caglar et al. [17]	36	F	migraine headache	25	1 day
14	Chalam et al. [12]	34	F	migraine headache	100	1 week
15	Cole et al. [33]	56	F	migraine headache	50	-
16	Craig et al. [14]	25	F	epilepsy and depression	100	1 week
17	Craig et al. [14]	45	F	epilepsy	50	10 days
18	Czyz et al. [15]	40	F	migraine headache	100	262 days
19	Desai et al. [17]	36	F	migraine headache	25	10 days
20	Diaz-Cespedes et al. [18]	45	M	headache	50	2 weeks
21	Giuliani et al. [19]	13	F	migraine headache	-	1 week
22	Grewal et al. [20]	39	F	weight loss	23	1 week
23	Guier et al. [29]	27	F	migraine headache	50	2 weeks
24	Joshi et al. [24]	47	M	migraine headache	25	10 days
25	Kamal et al. [25]	32	F	migraine headache	50	-
26	Katsimpris et al. [26]	36	F	migraine headache	100	2 weeks
27	Kulkarni et al. [27]	25	F	migraine headache	25	3 days
28	Kumar et al. [29]	25	F	headache and insomnia	100	2 weeks
29	Kumar et al. [29]	18	F	headache	100	-
30	Lan et al. [29]	43	F	weight loss	50	1 month
31	Lan et al. [29]	34	F	weight loss	25	3 weeks
32	Latini et al. [30]	13	F	headache	25	1 week
33	Levy et al. [21]	35	F	migraine headache	100	1 week
34	Lin et al. [33]	41	F	migraine headache	50	1 week
35	Mahendaradas et al. [34]	36	F	migraine headache	100	5 days
36	Mansoor et al. [35]	51	F	migraine headache	25	1 week
37	Mazumdar et al. [36]	38	M	migraine headache	25	1 week
38	Medeiros et al. [37]	44	M	bipolar affective disorders	-	3 days
39	Mita et al. [38]	31	F	migraine headache	25	1 week
40	Morales-Leon et al. [36]	25	F	lack of satiety (side effect of olanzapine)	25	10 days
41	Natesh et al. [39]	23	M	migraine headache	25	5 days
42	Nizamani et al. [40]	24	F	migraine headache	25	A few hours
43	Osaba et al. [41]	45	F	migraine headache	-	1 week
44	Paciuc-Bega et al. [42]	39	F	migraine headache	50	1 week
45	Pai et al. [44]	40	M	alcohol use disorders	100	1 week
46	Palomares et al. [45]	29	F	migraine headache	-	1 week
47	Parikh et al. [46]	51	M	epilepsy	50	15 days
48	Pikkel et al. [47]	45	M	weight loss	50	1 week
49	Prakash et al. [48]	34	M	alcohol use disorders	50	1 week
50	Quagliato et al. [49]	55	F	migraine headache	25	1 week

Contd...
Visual acuity at presentation was widely variable ranging from cases that had a vision as poor as light perception to patients with 20/20 vision. In patients with poor vision at presentation, it was mainly attributed to severe corneal edema induced by extremely high IOP. Most reported cases had high IOP at presentation as a result of the induced angle closure; however, five cases had normal IOP that was explained by the usage of IOP-lowering medications before presentation, concomitant use of furosemide which is known to lower the IOP, and early presentation prior to an impending attack.

Table 1: Contd...

SN	Reference	Age	Sex	Indication	Drug Dose (mg/day)	Duration of Use Prior to Onset
51	Raj et al[50]	37	F	weight loss	25	2 weeks
52	Rajjoub et al[51]	36	F	migraine headache	-	-
53	Rapoport et al[52]	7	F	epilepsy and headache	25	2 weeks
54	Reis et al[53]	40	F	alcohol use disorders	50	10 days
55	Rewri et al[50]	43	F	migraine headache	50	9 days
56	Rhee et al[57]	35	F	migraine headache	50	2 months
57	Rhee et al[50]	43	F	migraine headache	-	1 day
58	Rosenberg et al[59]	29	F	depression, anxiety, obesity, and migraine headache	-	1 week
59	Sachi et al[60]	33	F	migraine headache	25	3 weeks
60	Saffra et al[61]	36	F	migraine headache	25	1 week
61	Salim[62]	14	M	migraine headache	12.5	1 week
62	Santos‑Nevarez et al[63]	34	M	substance abuse‑associated anxiety	100	10 days
63	Sbeity et al[64]	59	F	migraine headache	100	11 days
64	Senthil et al[65]	28	F	migraine headache	50	4 days
65	Senthilkumar et al[66]	42	F	vascular headache	50	1 week
66	Sierra‑Rodríguez et al[67]	29	F	epilepsy	50	9 days
67	Singh et al[68]	33	F	migraine headache	50	-
68	Sorkhabi et al[70]	35	F	epilepsy	200	2 weeks
69	Spaccapelo et al[71]	34	M	migraine headache	100	1 week
70	Stangier et al[72]	40	F	migraine headache	-	10 days
71	Tambe et al[73]	54	F	pain control	-	2 weeks
72	Vahdani et al[74]	26	F	migraine headache	25	2 weeks
73	van Issum et al[23]	34	M	epilepsy	-	2 weeks
74	Verma et al[75]	17	M	migraine headache	25	10 days
75	Viet Tran et al[77]	57	M	bipolar affective disorders	50	1 week
76	Willett et al[76]	39	M	migraine headache	50	1 week
77	Ybarra et al[78]	47	F	migraine headache	100	-

SN, serial number; M, male; F, female

Figure 2: B‑scan ultrasonography of a patient with topiramate‑induced acute angle closure showing choroidal effusion (arrows)

Figure 3: Ultrasound biomicroscopy of a patient with topiramate‑induced acute angle closure showing an edematous, anteriorly displaced ciliary process (arrow) and uveal effusion (asterisk)
Table 2: A summary of clinical characteristics

SN	BCVA OD	BCVA OS	IOP (mmHg) OD	IOP (mmHg) OS	SE (D) OD	SE (D) OS	ACD (mm) OD	ACD (mm) OS	AL (mm) OD	AL (mm) OS	Associated Findings	Systemic Medications	Interventions	Time Until IOP Control
1	20/125	20/200	42	44	-	-	-	-	-	-	ciliochoroidal effusion	-	-	2 weeks
2	20/50	20/50	67	78	-	-	-	-	-	-	-	Hyperosmotic agent	-	1 week
3	20/400	20/400	72	68	-	-	-	-	-	-	ciliochoroidal effusion	-	Hyperosmotic agent, CAI	-
4	20/800	20/400	56	38	-	-	0.9	0.9	-	-	ciliochoroidal effusion	Hyperosmotic agent, CAI	LPI OU	3 days
5	20/30	20/30	14	14	-6.5	-6.5	-	-	-	-	-	Hyperosmotic agent, CAI	LPI OD	-
6	20/200	20/200	32	38	-	-	0.9	0.9	-	-	ciliochoroidal effusion	Hyperosmotic agent, CAI	-	4 days
7	LP	LP	64	48	-	-	-	-	-	-	ciliochoroidal effusion	-	Hyperosmotic agent, steroids	1 day
8	-	-	22	20	-6	-5.5	-	-	-	-	ciliochoroidal effusion	Hyperosmotic agent	-	5 days
9	20/50	20/50	32	32	-7	-7	2.64	2.55	-	-	-	-	-	2 days
10	20/20	20/25	50	50	-6	-4.5	-	-	-	-	ciliochoroidal effusion	CAI	-	18 days
11	CF	CF	33	32	-7.5	-7.5	-	-	-	-	ciliochoroidal effusion	Hyperosmotic agent, CAI	-	5 days
12	20/400	20/400	40	42	-	-	-	-	-	-	ciliochoroidal effusion	CAI, steroids	-	3 days
13	20/400	20/400	68	70	-6	-6	1.75	1.72	22.21	22.31	ciliochoroidal effusion	Hyperosmotic agent, CAI	-	3 days
14	CF	CF	49	51	-	-	-	-	-	-	ciliochoroidal effusion	-	LPI OU	5 days
15	20/50	20/70	70	70	-	-	-	-	-	-	-	Hyperosmotic agent, CAI, steroids	-	-
16	20/40	20/40	40	39	-5.75	-5.25	2	1.8	-	-	ciliochoroidal effusion	-	-	1 week
17	20/20	20/20	14	14	-2.75	-2	2.1	2	-	-	ciliochoroidal effusion	-	-	-
18	CF	CF	38	37	-6.5	-7.5	-	-	-	-	-	-	-	-
19	20/20	20/20	19	20	-4.5	-5	-	-	-	-	ciliochoroidal effusion	-	-	-
20	HM	20/160	36	32	-	-	-	-	-	-	ciliochoroidal effusion	Hyperosmotic agent	-	8 hours
21	20/20	20/20	45	45	-	-	-	-	-	-	papilledema	CAI	-	1 day
22	20/25	20/25	50	52	-3.5	-3.5	-	-	-	-	ciliochoroidal effusion	Hyperosmotic agent, steroids	-	1 day
23	20/30	20/25	33	26	-5.5	-4.5	-	-	-	-	ciliochoroidal effusion	-	-	1 day
24	20/100	20/100	50	50	-5	-5	-	-	-	-	ciliochoroidal effusion	Hyperosmotic agent, steroids	-	3 days
25	20/400	20/800	37	43	-	-	1.22	1.16	-	-	ciliochoroidal effusion	Hyperosmotic agent, CAI	-	1 day
26	20/400	20/400	60	60	-	-	-	-	-	-	ciliochoroidal effusion	-	-	5 days
27	20/400	20/400	34	32	-	-	-	-	-	-	-	CAI	-	1 day
28	20/20	20/20	10	6	-5	-5	-	-	-	-	ciliochoroidal effusion	CAI	-	-
29	20/20	20/20	25	25	-4.5	-4.5	-	-	-	-	ciliochoroidal effusion	-	-	-

Contd...
Table 2: Contd...

SN	BCVA OD	BCVA OS	IOP (mmHg) OD	IOP (mmHg) OS	SE (D) OD	SE (D) OS	ACD (mm) OD	ACD (mm) OS	AL (mm) OD	AL (mm) OS	Associated Findings	Systemic Medications	Interventions	Time Until IOP Control
30	CF	CF	56	60	-	-	2.02	1.94	23.13	23.12	ciliochoroidal effusion	Hyperosmotic agent, CAI	-	<1 day
31	20/20	20/20	26	23	-	-	2.33	2.3	22.86	22.76	-	CAI	-	<1 day
32	20/20	20/20	24	26	-8.5	-7.5	-	-	-	-	-	-	-	2 days
33	20/200	20/200	57	56	-	-	2.2	2.2	23.8	23.78	ciliochoroidal effusion	Hyperosmotic agent, CAI	-	5 days
34	20/20	20/20	44	49	-5.25	-4.75	0.8	0.8	-	-	ciliochoroidal effusion	Hyperosmotic agent	-	2 days
35	20/30	20/30	28	30	-5	-4.75	-	-	-	-	-	uveitis	steroids	1 week
36	CF	CF	38	44	-	-	-	-	-	-	-	uveitis	CAI	1 day
37	20/20	20/20	38	40	-5	-5	-	-	-	-	ciliochoroidal effusion, exudative RD	-	LPI OU	4 days
38	20/100	20/80	60	60	-	-	-	-	-	-	ciliochoroidal effusion	-	CAI	4 days
39	20/20	20/20	28	32	-3.75	-3.25	-	-	-	-	-	CAI	-	1 day
40	20/400	20/400	32	33	-9.15	-7.75	-	-	-	-	-	-	-	30 min
41	20/20	20/20	24	24	-6	-6	-	-	-	-	ciliochoroidal effusion	-	-	1 day
42	CF	CF	32	32	-	-	-	-	-	-	-	Hyperosmotic agent, CAI	LPI OU	4 days
43	20/50	20/50	40	45	-	-	-	-	-	-	uveitis	CAI	-	-
44	20/70	20/70	36	40	-1.87	-2	0.9	1.1	21.8	21.8	ciliochoroidal effusion	CAI	-	1 day
45	20/80	20/60	48	46	-	-	-	-	-	-	-	CAI	-	1 day
46	20/200	20/200	32	30	-7	-7	-	-	-	-	-	CAI	-	1 day
47	HM	HM	57	57	-	-	-	-	-	-	ciliochoroidal effusion	Hyperosmotic agent, CAI, steroids	AC paracentesis	2 weeks
48	20/100	20/100	70	64	-	-	-	-	-	-	ciliochoroidal effusion, uveitis	Hyperosmotic agent, CAI, steroids	-	1 week
49	20/400	20/400	47	43	-8	-9	-	-	-	-	-	CAI, steroids	-	3 days
50	20/25	20/40	48	48	-2	-2	-	-	-	-	-	Hyperosmotic agent, CAI	LPI OU	2 hours
51	20/50	20/50	50	56	-4.37	-4.5	1.9	1.9	-	-	-	Hyperosmotic agent	-	1 week
52	20/30	CF	31	53	-	-	-	-	-	-	-	LPI OU	AC paracentesis	OS, trabeculectomy OS
53	20/20	20/20	40	41	-	-	-	-	-	-	-	CAI	-	8 days
54	CF	20/400	30	30	-	-	-	-	-	-	-	CAI	-	2 days
55	CF	CF	28	18	-	-	0.8	0.9	20.2	20.7	ciliochoroidal effusion	CAI	-	-
56	20/100	20/100	88	82	-3.5	-3.5	-	-	-	-	ciliochoroidal effusion	Hyperosmotic agent, CAI, steroids	-	1 day
57	20/20	20/20	29	30	-5	-5	-	-	-	-	-	Hyperosmotic agent, CAI	LPI OU	5 days
58	HM	HM	40	40	-	-	-	-	-	-	exudative RD	Hyperosmotic agent	LPI OU	1 day

Contd...
of angle closure.13,25 New-onset myopia was another clinical feature reported in association with TiAAC. It is thought to be a result of the forward movement of the lens-iris diaphragm. Another postulated mechanism is a disturbance in the osmotic state of the lens leading to swelling and subsequently a change in the refractive lens power.63 Future studies including specific measurements of the lens thickness during and after the attack would be useful to support this mechanism. Uveitis, exudative retinal detachment, and papilledema were three other clinical signs reported in a few patients. The mechanism underlying uveitis is presumed to be an idiosyncratic reaction to TPM in which drug metabolites bind with intraocular proteins leading to a complex that is recognized as a foreign body stimulating an immune reaction,84 whereas the occurrence of retinal detachment is thought to be related to a TPM-induced effusion of fluids into the subretinal space.80 Finally, in the case that had TiAAC associated with papilledema, the patient was later diagnosed with pseudotumor cerebri to which the papilledema was attributed.27

Management of TiAAC is primarily medical consisting of IOP-lowering medications, cycloplegia, and steroids. The use of CAIs was controversial between studies. Around half of cases (51.9%) were treated with a systemic CAI to provide a further reduction in IOP, whereas CAIs were avoided in the remaining cases to prevent the occurrence of an idiosyncratic reaction that may lead to progression of the chorio-retinal effusion and subsequently a paradoxically increased IOP.84 Although systemic hyperosmotic therapy was only used in slightly above one-third of cases (36.4%), our analysis showed a faster resolution of TiAAC with the use of hyperosmotic treatment ($P = 0.0261$). Therefore, we recommend the use of a systemic hyperosmotic agent in TiAAC especially in refractory cases with high IOP and impending flat anterior chamber.

Table 2: Contd...

SN	BCVA	IOP (mmHg)	SE (D)	ACD (mm)	AL (mm)	Associated Findings	Systemic Medications	Interventions	Time Until IOP Control						
59	20/200	20/200	55	34	-2.75	-3.5	2.14	2.28	22.21	22.31	ciliochoroidal effusion	CAI	-	3 days	
60	20/30	20/40	24	25	-6.25	-5.5	-	-	-	-	ciliochoroidal effusion	steroids	-	1 day	
61	20/20	20/20	29	29	-9	-9	-	-	-	-	ciliochoroidal effusion	-	-	-	
62	20/20	20/20	56	38	-4.5	-4.5	-	-	-	-	ciliochoroidal effusion	CAI	Hyperosmotic agent, CAI	1 week	
63	20/30	20/100	45	43	-	-	-	-	-	-	ciliochoroidal effusion	-	-	-	
64	20/30	20/30	34	34	-5	-5	-	-	-	-	ciliochoroidal effusion	-	-	3 days	
65	20/80	20/100	60	64	-	-	-	-	-	-	ciliochoroidal effusion, uveitis	-	-	2 weeks	
66	CF	CF	38	38	-13	-13	-	-	-	-	ciliochoroidal effusion	Hyperosmotic agent	-	a few hours	
67	LP	LP	48	48	-	-	-	-	-	-	-	Hyperosmotic agent	-	-	3 days
68	20/30	20/30	29	31	-0.75	-0.75	1.1	1	-	-	ciliochoroidal effusion	CAI	-	1 week	
69	CF	20/400	40	38	-5.5	-5	-	-	-	-	ciliochoroidal effusion	CAI	Hyperosmotic agent, CAI	-	2 days
70	CF	CF	55	53	-4.5	-	-	-	-	-	ciliochoroidal effusion	-	-	3 days	
71	20/20	30	30	-5	-4	-	-	-	-	-	ciliochoroidal effusion	-	-	1 day	
72	20/20	20/20	34	40	-6	-6	-	-	-	-	ciliochoroidal effusion	CAI	-	5 days	
73	20/140	20/80	28	28	-3.5	-2.75	-	-	-	-	ciliochoroidal effusion, uveitis	-	-	-	
74	20/100	20/100	70	70	-	-	-	-	-	-	ciliochoroidal effusion	Hyperosmotic agent, CAI, steroids	-	1 week	
75	20/200	20/100	36	38	-	-	-	-	-	-	-	-	-	2 hours	

SN, serial number; BCVA, best corrected visual acuity; IOP, intraocular pressure; SE, spherical equivalent; ACD, anterior chamber depth; AL, axial length; OD, right eye; OS, left eye; OU, both eyes; CF, counting fingers; HM, hand movement; LP, light perception; RD, retinal detachment; CAI, carbonic anhydrase inhibitor; LPI, laser peripheral iridotomy; AC, anterior chamber.
Given that the mechanism of TiAAC does not involve pupillary block, there is no theoretical justification for performing a LPI. Despite that, eight cases (10.4%) in our review underwent LPI during the course of treatment for various reasons. Chalam K. V., et al.[8] Aminlari A., et al.[11] and Banta J. T., et al.[14] performed LPI because they presumed that a relative pupillary block mechanism was present. Secondly, Rosenberg K., et al.[9] proceeded with LPI in their patient since visual acuity did not improve despite IOP control; however, as it eventually turned out, the patient had comitant macular neurosensory retinal detachment that explained the visual decline. Thirdly, a plateau iris configuration was noted in the case reported by Rajjoub L. Z., et al.[8] for which LPI was performed. Fourthly, the choice of LPI in the cases presented by Nizamani N. B., et al.[6] and Quagliato L. B., et al.[15] was justified by attempting to provide further IOP lowering and prevent synchiae formation, consecutively. Finally, the case reported by Mazumdar S., et al.[12] underwent LPI before establishing a diagnosis of TiAAC as the patient was initially thought to have acute angle closure. In our opinion, LPI does not provide any benefit in cases with an established diagnosis of TiAAC and treatment should be targeted toward managing the underlying ciliary effusion. In the presence of an untreated effusion, an LPI would neither be expected to provide further IOP lowering nor will it prevent synchiae formation.

Two patients (2.6%) in our review required a surgical intervention to control their condition. The first patient[8] required trabeculectomy with mitomycin in the left eye to achieve adequate IOP control. Surgical intervention was chosen because the patient had uncontrolled IOP despite maximum medical therapy associated with clinically evident glaucomatous disc damage. Furthermore, the patient had a history of intermittent headache prior to starting TPM and upon examination, a plateau iris configuration was noted. These findings suggest that this patient might have had pre-existing angle closure before developing TiAAC. In the second patient, choroidal drainage was performed in the right eye because the patient progressed to a flat anterior chamber and corneal edema that necessitated urgent surgical intervention to drain the effusion and reform the anterior chamber.[31]

Limitations

Our review has some limitations. First, given that case reports only capture short periods of follow-up, our review lacks long-term clinical findings that may occur after an attack of TiAAC, such as persistent corneal edema and cataract. Second, the quality of reporting certain biometric measurements in the cited articles was low. Only a few papers presented data on ACD and AL measurements. Furthermore, the refractive error at presentation was only reported in 54.5% of cases. The presence of such information would have provided more insight into the mechanisms underlying TiAAC. Finally, given the anecdotal nature of case reports, our systematic review could not provide data on the frequency of angle closure among patients treated with TPM.

Conclusion

In conclusion, our systematic review provides an updated summary on the reported cases of TiAAC. Practitioners involved in prescribing TPM (e.g., neurologists, psychiatrists) should be alert to this possible adverse effect, especially during the first two weeks of therapy. From an ophthalmologic perspective, TiAAC should be ruled out in any patient presenting with acute angle closure by inquiring about their drug history. If diagnosed, TiAAC can be successfully managed by stopping TPM and instituting appropriate medical treatment. Surgical intervention is rarely needed as the majority of cases can be managed medically and resolved within the first few days.

Acknowledgment

The authors would like to acknowledge Dr. Ohoud Owaidhah for providing the clinical images used in the manuscript.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

References

1. Minton GC, Miller AD, Bookstaver PB, Love BL. Topiramate: Safety and efficacy of its use in the prevention and treatment of migraine. J Cent Nerv Syst Dis 2011;3:155-68.
2. Verrotti A, Scaparrotta A, Agostinelli S, Di Fillo S, Chiarelli F, Grosso S. Topiramate-induced weight loss: A review. Epilepsy Res 2011;95:189-99.
3. Fritz N, Glogau S, Hoffmann J, Rademacher M, Elger CE, Helmstaedter C. Efficacy and cognitive side effects of tiagabine and topiramate in patients with epilepsy. Epilepsy Behav 2005;6:373-81.
4. Mahmoud AAH, Rizk T, El-Bakri NK, Riaz M, Dannawi S, Al Tannir M. Incidence of kidney stones with topiramate treatment in pediatric patients. Epilepsia 2011;52:1890-3.
5. Abtahi MA, Abtahi SH, Fazel F, Roomizadeh P, Etemadifar M, Jenab K, et al. Topiramate and the vision: A systematic review. Clin Ophthalmol 2012;6:117-31.
6. Bovino JA, Marcus DF. The mechanism of transient myopia induced by sulfonamide therapy. Am J Ophthalmol 1982;94:99-102.
7. Krieg PH, Schipper I. Drug-induced ciliary body oedema: A new theory. Eye 1996;10:121-6.
8. Moher D, Liberati A, Tetzlaff J, Altman DG, Altman D, Antes G, et al. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med 2009;6:e1000097.
9. Adrian B, Heda A, Kharbanda V, Shetty R. Topiramate induced bilateral simultaneous angle closure glaucoma in a steroid responder. Clin Ophthalmol Res 2015;1:00-3.
10. Agarwal A, Ciliochoroidal effusion in topiramate-induced bilateral acute angle closure glaucoma. Indian J Ophthalmol 2019;67:1466-7.
11. Aminlari A, East M, Wei W, Quillen D. Topiramate induced acute angle closure glaucoma. Open Ophthalmol J 2008;2:46-7.
12. Arun V, Sirohi Y, Dixit Y. Topiramate-induced angle closure glaucoma in a case of chronic migraine. Med J Dr DY Patil Univ 2017;10:482-4.
13. Baloch M, Siddiqui MAR. Topiramate and the vision: A systematic review. Eye 1996;10:121-6.
14. Al Owaifeer, et al.: Topiramate-angle closure: A systematic review
17. Boentert M, Areth H, Ludemann P. Acute myopia and angle-closure glaucoma induced by topiramate. Neurology 2003;61:1306.
18. Boonyaleephan S. Bilateral acute onset myopia and angle closure glaucoma after oral topiramate: A case report. J Med Assoc Thail 2008;91:1904-8.
19. Caglar C, Yasar T, Ceyhan D. Topiramate induced bilateral angle-closure glaucoma: Low dosage in a short time. J Ocul Pharmacol Ther 2012;28:205-7.
20. Chalam KV, Tillis T, Syed F, Agarwal S, Brar VS. Acute bilateral simultaneous angle closure glaucoma after topiramate administration: A case report. J Med Case Rep 2008;2:1.
21. Cole KL, Wang EE, Arowald RM. Bilateral acute angle-closure glaucoma in a migraine patient receiving topiramate: A case report. J Emerg Med 2012;43:89-91.
22. Craig JE, Ong TJ, Louis DL, Wells JM. Mechanism of topiramate-induced acute-onset myopia and angle closure glaucoma. Am J Ophthalmol 2004;137:193-5.
23. Czyz CN, Clark CM, Justice JD, Pokabla MJ, Weber PA. Delayed topiramate-induced bilateral angle-closure glaucoma. J Glaucoma 2014;23:577-8.
24. DE Oliveira BMR, Ferrari PV, Herrerias BT, Hirai FE, Gracitelli CPB. The use of topiramate for weight loss causing acute glaucoma: A case report and literature review. Med Hypothesis Discov Innov Ophthalmol 2019;18:116-20.
25. Desai C, Ramchandani S, Bhopale S, Ramchandani S. Acute myopia and angle closure caused by topiramate, a drug used for prophylaxis of migraine. Indian J Ophthalmol 2006;54:195-7.
26. Díaz-Cespedes RA, Toro-Giraldo D, Olate-Perez A, Hervas-Ontiveros A, Garcia-Delpech S, Udaondo-Mirete P. Contribution of the Visante® OCT and B-scan ultrasound in the diagnosis and follow up of a topiramate-induced bilateral ciliochoroidal effusion syndrome. Arch Soc Esp Oftalmol 2019;94:391-5.
27. Giulieri GP, Banda RM, Vann VR, Gonzalez VH, McMillin RB. Closed-angle glaucoma after topiramate therapy for migraine in a patient with undiagnosed pseudotumor cerebri. Can J Ophthalmol 2008;43:371.
28. Grewal DS, Goldstein DA, Khatana AK, Tanna AP. Bilateral angle closure following use of a weight loss combination agent containing topiramate. J Glaucoma 2015;24:e132-6.
29. Guier CP. Elevated intraocular pressure and myopic shift linked to topiramate use. Optom Vis Sc 2007;84:E1070-3.
30. Issum C van, Mavrakas N, Schutz JS, Shaarawy T. Topiramate-induced acute bilateral angle closure and myopia: Pathophysiology and treatment controversies. Eur J Ophthalmol 2011;21:404-9.
31. Joshi AK, Pathak AH, Patwardhan SD, Kulkarni AN. A rare case of topiramate induced secondary acute angle closure glaucoma. J Clin Diagnos Res 2017;11:ND01-3.
32. Kamal S, Yadava U, Kumar S, Goel R. Topiramate-induced angle-closure glaucoma: Cross-sensitivity with other sulphonamide derivatives causing anterior uveitis. Int Ophthalmol 2014;34:345-9.
33. Katsimpris JM, Katsimpris A, Theoulakis PE, Lepidas J, Petropoulos IK. Bilateral severe anterior uveitis and acute angle-closure glaucoma following topiramate use for migraine crisis. Klin Monbl Augenheilkd 2014;231:439-41.
34. Kulkarni C, Chaudhuri UR, Jagathesan A. Bilateral acute angle-closure glaucoma following treatment with topiramate for headache. Neurrol Ther 2013;2:57-62.
35. Kumar M, Kesarwani S, Rao A, Garnaik A. Macular folds: An unusual association in topiramate toxicity. Clin Exp Optom 2012;95:449-52.
36. Lan YW, Hsieh JW. Bilateral acute angle closure glaucoma and myopic shift by topiramate-induced ciliochoroidal effusion: Case report and literature review. Int Ophthalmol 2018;38:2639-48.
37. Latini MF, Romano LM. Topiramate-induced acute myopia with MRI contrast enhancement. Acta Neurol Belg 2012;112:81-4.
38. Levy J, Yagev R, Petrova A, Lifshitz T. Topiramate-induced bilateral angle-closure glaucoma. Can J Ophthalmol 2006;41:221-5.
39. Lin CC, Tseng PC, Chen CC, Woung LC, Liou SW. Topiramate-induced bilateral secondary angle closure and myopia shift. Taiwan J Ophthalmol 2014;4:45-8.
40. Mahendradas P, Parab S, Sasikumar R, Kawali A, Shetty B. Topiramate-induced acute angle closure with severe panuveitis: A challenging case report. Indian J Ophthalmol 2018;66:1342-4.
41. Mansoor Q, Jain S. Bilateral angle-closure glaucoma following oral topiramate therapy. Acta Ophthalmol Scand 2005;83:627.
42. Mazumdar S, Tripathy K, Sarma B, Agarwal N. Acquired myopia followed by acquired hyperopia due to serous neurosensory retinal detachment following topiramate intake. Eur J Ophthalmol 2019;29:NP21-4.
43. Medeiros FA, Zhang XY, Bernd AS, Weinreb RN. Angle-closure glaucoma associated with ciliary body detachment in patients using topiramate. Arch Ophthalmol 2003;121:282-5.
44. Mitra A, Ramakrishnan R, Kader MA. Anterior segment optical coherence tomography documentation of a case of topiramate induced acute angle closure. Indian J Ophthalmol 2014;62:619-22.
45. Natesh S, Rajashekhara S, Rao A, Shetty B. Topiramate-induced angle closure with acute myopia, macular straie. Oman J Ophthalmol 2010;3:26.
46. Nizamani NB, Talpur KL. Idiosyncratic topiramate-induced high myopic shift with angle closure glaucoma. Pak J Ophthalmol 2012;28:224-6.
47. Osaba M, Reviglio VE. Case report: The role of OCT in examination of a patient with topiramate-induced acute angle closure, acute myopia and macular straie. Oxf Med Case Reports 2018;2018:omy030.
48. Paciuc-Beja M, Retchkiman-Bret M, Velasco-Barona CF, Galicia-Alfaro VH. Secondary bilateral angle closure glaucoma due to topiramate. Case Rep Ophthalmol Med 2011;2011:1-3.
49. Pai K, Rajashekaran P. Glaucoma: Adverse event on use of topiramate in alcohol de-addiction. Indian J Psychiatry 2011;53:163-5.
50. Palomares P, Amselem L, Diaz-Llopis M. Optical coherence tomography for diagnosis and monitoring of angle-closure glaucoma induced by topiramate. Can J Ophthalmol 2007;42:633-4.
51. Parikh R, Parikh S, Das S, Thomas R. Choroidal drainage in the management of acute angle closure after topiramate toxicity. J Glaucoma 2007;16:691-3.
52. Pikkel YY. Acute bilateral glaucoma and panuveitis as a side effect of topiramate for weight loss treatment. BMJ Case Rep 2014;2014;bcr2014203767.
53. Prakash J, Prabhu HRA, Srivastava K, Bhat PS, Kumar RS. Acute myopia and secondary angle closure glaucoma following topiramate medication. Delhi Psychiatry J 2010;13:159-61.
54. Quagliato LB, Barella K, Neto JMA, Quagliato EMAB. Topiramate-associated acute, bilateral, angle-closure glaucoma: Case report. Arq Bras Oftalmol 2013;76:48-9.
55. Raj R, Raj A. Topiramate-induced bilateral acute angle closure glaucoma and myopic shift. Int J Basic Clin Pharmacol 2014;3:562-5.
56. Rajoub LZ, Chadha N, Belyea DA. Intermittent acute angle closure glaucoma and chronic angle closure following topiramate use with plateau iris configuration. Clin Ophthalmol 2014;8:1351-4.
57. Rapoport Y, Benegas N, Kuchey RW, Joos KM. Acute myopia and angle closure glaucoma from topiramate in a seven-year-old: A case report and review of the literature. BMC Pediatr 2014;14:96.
58. Reis GMSM, Lau OCF, Samarawickrama C, Heydon P,
Goldberg I. Utility of ultrasound biomicroscopy in the diagnosis of topiramate-associated ciliochoroidal effusions causing bilateral acute angle closure. Clin Exp Ophthalmol 2014;42:500-1.

59. Rewri P, Rao N, Lingam V. Topiramate-induced secondary angle closure. J Heal Spec 2014;2:26-7.

60. Rhee DJ, Goldberg MJ, Parrish RK. Bilateral angle-closure glaucoma and ciliary body swelling from topiramate. Arch Ophthalmol 2001;119:1721-3.

61. Rhee DJ, Ramos-Esteban JC, Nipper KS. Rapid resolution of topiramate-induced angle-closure glaucoma with methylprednisolone and mannitol. Am J Ophthalmol 2006;141:1133-4.

62. Rodríguez AG, Patiño LR, Enriquez ER, Morales-León J-E. Angle closure and myopic shift after topiramate used for appetite control. Pan-American J Ophthalmol 2017;16:57-60.

63. Rosenberg K, Maguire J, Benevento J. Topiramate-induced macular neurosensory retinal detachment. Am J Ophthalmol Case Rep 2017;7:31-7.

64. Sachin D, Vijaya L. Topiramate induced secondary angle closure glaucoma. J Postgrad Med 2006;52:72-3.

65. Saffra N, Smith SN, Seidman CJ. Topiramate-induced refractive change and angle closure glaucoma and its ultrasound biomicroscopy findings. BMJ Case Rep 2012;2012:bcr2012006509.

66. Salim SF. A case of bilateral acute onset myopia and angle closure glaucoma following migraine therapy in a teenager. Univ J Surg Surg Spec 2018;4. Available from: http://ejournal-tmgmrmu.ac.in/index.php/surgery/article/view/7480.

67. Santos-Nevarez V, Cantrell J, Grusso P, Miller J, Culotta-Glynn T. Topiramate-induced acute bilateral angle closure glaucoma and transient myopia: A teaching case report. J Optom Educ 2015;40:1-8.

68. Sbeity Z, Gvozdyuk N, Amde W, Liebmann JM, Ritch R. Argon laser peripheral iridoplasty for topiramate-induced bilateral acute angle closure. J Glaucoma 2009;18:269-71.

69. Senthilkumar V, Garudaddi C, Rao H, Maheshwari R. Bilateral simultaneous acute angle closure caused by sulphonamide derivatives: A case series. Indian J Ophthalmol 2010;58:248-52.

70. Senthilkumar V, Rajendrababu S. Aftermath of topiramate: An interesting case report and literature review. TNOA J Ophthalmic Sci Res 2019;57:240-2.

71. Sierra-Rodriguez MA, Rodriguez-Vicente L, Chavarri-García JJ, del Rio-Mayor JL. Acute narrow-angle glaucoma induced by topiramate with acute myopia and macular striae: A case report. Arch Soc Esp Oftalmol 2019;94:130-3.

72. Singh SK, Thapa SS, Badhu BP. Topiramate induced bilateral angle-closure glaucoma. Kathmandu Univ Med J 2007;5:234-6.

73. Sorkhabi R, Taheri N. Topiramate induced bilateral angle-closure glaucoma. Iran J Ophthalmol 2008;20:49-52.

74. Spacappelo L, Leschiutta S, Aurelia R, Ferrari A. Topiramate-associated acute glaucoma in a migraine patient receiving concomitant citalopram therapy: A case-report. Cases J 2009;2:87.

75. Stangler F, Prietsch RF, Filho JBF. Bilateral acute angle closure glaucoma in a young patient receiving oral topiramate: Case report. Arq Bras Oftalmol 2007;70:133-6.

76. Tambe V, Goodman A, Tambe A, Hess M. Topiramate-associated acute angle closure glaucoma with myopic shift. Am J Ther 2020;27:e537-8.

77. Vahdani K, Easto R, Shah A, Habib N. Topiramate-induced acute glaucoma. Pract Neurol 2016;16:323-5.

78. Verma N, Kumar A. Acute onset myopia and angle closure glaucoma after topiramate administration. Delhi J Ophthalmol 2011;21:38-9.

79. Viet Tran H, Ravinet E, Schnyder C, Reichhart M, Guex-Crosier Y, Guex-Crosier Y. Blood-brain barrier disruption associated with topiramate-induced angle-closure glaucoma of acute onset. Klin Monbl Augenheilkd 2006;223:425-7.

80. Willett MC, Edward DP. Refractory topiramate-induced angle-closure glaucoma in a man: A case report. J Med Case Rep 2011;5:33.

81. Ybarra M, Rosenbaum T. Typical migraine or ophthalmologic emergency? Am J Emerg Med 2012;30:831.e3-5.

82. Lipton RB, Stewart WF, Diamond S, Diamond ML, Reed M. Prevalence and burden of migraine in the United States: Data from the American migraine study II. Headache 2001;41:646-57.

83. Sen HA, O'Halloran HS, Lee WB. Case reports and small case series: Topiramate-induced acute myopia and retinal striae. Arch Ophthalmol 2001;119:775-7.

84. Pathak-Ray V, Chandran P. Acetazolamide-associated idiosyncratic simultaneous bilateral angle closure and cross-sensitivity. Am J Ther 2020;27:e680-2.