Investigate Dynamic Performance of a New Non-isolated High Step-Up Dc-Dc Quadratic Boost Converter

Muhammad Zeeshan Malik1*, Amjad Ali2, Ahmed N. Abdalla3
1 Faculty of Automation, Huaiyin Institute of Technology, Huai’an, Jiangsu, PR China.
2 Center of Research Excellence in Renewable Energy, King Fahad University of Petroleum and Minerals Saudi Arabia.
3 Faculty of Electronic Information Engineering, Huaiyin Institute of Technology, Huai’an, Jiangsu, PR China.

* Corresponding author. Tel.: 13115256515; email: malik4one@yahoo.com, 12180003@hyit.edu.cn
Manuscript submitted September 04, 2019; accepted December 02, 2019.
doi: 10.17706/ijcee.2020.12.1.22-30

Abstract: High step-up dc-dc boost converters are an essential element in many new energy generation technologies such as wind generation system, photovoltaic or solar systems etc. The conventional Dc-Dc converter typically used with high voltage transformation ratio which to increase the cost of magnetic transformer components. Several transformer-less topologies have been failing to achieve a high step-up ratio with a better dynamic performance at lower price and size. In this paper, high voltage gain modules based on new quadratic Dc-Dc boost converter topology. The detail of the structure and perform basic mathematical analysis of the proposed converters are presented. Expressions for the conduction and switching losses of the semiconductors have been derived. The performance of the proposed converter tested using Matlab simulation and laboratory experimental setup where 10V is given as the input voltage and the output voltage of the proposed converter is around 110V attained. The voltage stress across for the proposed converter and traditional quadratic boost converter is 60 volt and 61 volts respectively. The proposed converter has a high voltage gain at the output, and the voltage stress across the switch is lower than the output voltage without working at the extremely duty cycle.

Keywords: Dc-Dc boost converter, low duty cycle, voltage stress, high voltage gain module.

1. Introduction

With the increasing environmental pollution, renewable energy sources such as photovoltaic power generation and fuel cells have been rapidly developed. In the micro-grid, the output voltage of photovoltaic panels (usually between 25 and 45 V) is raised to the grid-connected inverse [1]. The converter design problem becomes more complicated in order to address the design issues of the high-voltage with pre-specified parasitic [2], [3]. For high dc voltage conversion ratio, these converters operate with an extreme value of duty cycle. This operating mode results in increasing the losses associated with the circuit components degrading the efficiency the extreme duty cycle may even cause malfunction of the semiconductor switches due to the very short conduction time [4]. In [5], [6] proposed transformer-less dc-dc converters with large conversion ratios. They also proposed a family of quadratic dc-dc converters which achieve high conversion ratios at high efficiencies with lower switching stresses as compared to classical buck-boost and buck-boost converters. For high voltage and high power applications, these converters would require high voltage valves of series active switches, high voltage capacitors and have no modular
structure. In [7], a comparative theoretical study of three dc-dc topologies shows that the voltage-fed full-bridge converter can be attractive from the energy efficiency point of view. The limitation is that this topology incorporates an isolation transformer and requires snubber capacitors to achieve soft switching and also needs an output inductor which creates high voltage spikes on the diodes of the output bridge. In [8], [9], Introduce a dc-dc step-up converter with the extended cell, but the drawback of this topology consists many semiconductor switches which cause the losses across the switches, and the voltage gain of this topology is not high enough in most application. If we increase the switching frequency to attain the high voltage gain the overall losses of the semiconductor component will increase, and efficiency will decrease. In [10], [11], the dc-dc boost converter with voltage lift cell technics is discussed; the main disadvantage of this kind of boost converter is that the surface of semiconductor switches has high transit current, which causes to increase the conduction losses. In [12]–[14], a step-up dc-dc boost converter with coupling inductors is introduced; the main drawback of these type of boost converters is complicated to design because the adjust the turn ratio of coupling inductors is complex, and the voltage stress across the semiconductor switches is equal to the output voltage. In [15]–[18], a number of an isolated step-up dc-dc boost converter present however isolated types of boost converter can give high voltage gain, but on the other hand the cost of isolated converter is high, and size increased because of transformer; also efficiency of isolated converter is low because transformer losses are much higher as compare to non-isolated converters. Furthermore, using the technique switched-inductors to replace traditional inductors, some non-isolated high step-up converters have been introduced in [19]. Similarly, [20], [21] introduce a switched capacitor techniques can also be utilized in Dc-Dc converter topologies to achieve high voltage gain. In [14], [21]–[23], the traditional dc-dc quadratic boost converter is introduced; however, the main disadvantage of the traditional quadratic boost converter is losses across the semiconductor switch is equal to total voltage gain [24]–[27].

In this paper, a modified topology of the non-isolated Dc-Dc boost converter with high step-up modules is presented. The structure and working method of the proposed converter are presented in detail. Mathematical analysis of the proposed converters was carried out. The proposed topology proved theoretically, and experimental in term of getting high voltage gain and voltage stress across the switch is lower than the output voltage as compared to the traditional quadratic boost converter.

2. Related Work

The most popular and widely used dc-dc converters are the buck, boost, buck-boost converters. The underlying concept of these circuits depends on chopping the input dc voltage with a specific duty cycle to generate a desired output voltage level. The switching frequency is usually maintained at a constant value, and the pulse width (on state duration) is modulated. Fig. 1 shows the Dc-Dc boost converter circuits. This circuits is simple in construction but suffer from limitations preventing their use on high-power and high-voltage applications.

![Fig. 1. The quadratic Boost Converter circuit.](image)

Fig. 1 shows the conventional quadratic boost converter consists one switch, three Diodes \(D_1, D_2, D_0 \), two
capacitors C_2, C_0 and two inductors L_1, L_2. The conventional quadratic boost converter voltage stresses are according to Eq. (1) are equal to the output voltage. However, the disadvantage quadratic boost converter is step-up switching structure not suitable because there are not energy storing elements [28].

$$M = \frac{1}{(1-D)} V_i$$

$$V_{s\text{-Stress}} = V_0$$

Here

M: Voltage gain, D: Duty cycle, V_i: Input Voltage, V_0: Output Voltage, $V_{s\text{-stress}}$: Stress on the semiconductor switch.

3. Proposed Method

Fig. 2 shows the proposed dc-dc boost converter with high voltage gain module.

![Proposed converter](image)

3.1. State-I

In state-I when semiconductor switch S (ON), diodes $D_1, D_6,$ and D_5 are off mode and diode’s D_2, D_3 have remained forward biased. Inductor L_1 energized by source voltage which is equal to capacitor C_2 voltage, inductor L_2 energized from C_1 voltage, in this state the series connection of C_3 and C_4 resulting voltage around $2V_{c2}=C_3+C_4$. Inductor L_3 energized by capacitors C_1 and C_2 respectively. Inductor’s current L_1, L_2, and L_3 increased by $V_s/L_1, Vc_1/L_2$ and $2V_{c2}-V_0/L_3$ respectively. In this state the proposed converter mathematical equations of derived as follows.

$$V_{L_1} = V_{c_2} = V_s$$

$$V_{L_2} = V_{c_1}$$

$$V_{L_3} = 2V_{c_2}-V_0$$

3.2. State-II

In this state, when the semiconductor switch S remain turned OFF, diodes D_2, D_3 are reverse biased and D_1, D_6, D_5 are in conducting mode. Inductors $L_1, L_2,$ and L_3 are in discharging mode and their current fall with a slope of $V_s-Vc_1/L_1, Vc_1+Vc_2/L_2$ and Vc_3-V_0/L_3 respectively. In this state voltages equation of V_{L_1}, V_{L_2} and V_{L_3} derived below.

$$V_{L_2} = V_{c_1} = V_s$$

$$V_{L_2} = V_{c_1} + V_{c_2}$$
Fig. 3 shows the steady-state waveform of the proposed converter, where we can easily understand the waveform of ripple current and ripple voltages in each state.

\[V_{L2} = V_{c3} - V_0 \] \hspace{1cm} (8)

The proposed topology voltage gain \((M)\) is derived by solving the above Equations (3 to 8) as follows,

\[
M = \frac{2-D+D^2}{(1-D)^2}
\] \hspace{1cm} (9)

Eq.(10) obtained for voltage stress across the semiconductor switch \(S\),

\[
V_{S\text{-Stress}} = \frac{V_2 - V_{c2}}{1+D}
\] \hspace{1cm} (10)

3.3. \textbf{DC Conversion Ratio}

The proposed topology voltage gain \((M)\) is derived by solving the above Equations (3 to 8) as follows,

\[
M = \frac{2-D+D^2}{(1-D)^2}
\] \hspace{1cm} (9)

4. \textbf{Experimental Prototype}

The experimental prototype of the proposed converter is implemented with 110W scaled down a system running on terminal voltages of 10V, 110V. In contrast to iron core inductors, this inductor has low core losses (25 W or 0.5% at full load) for the parameters shown in Table 1. In contrast to air-core inductors, this inductor uses less amount of copper to give the same dc resistance. The inductor has a dc resistance of 15 mΩ and uses Litz wire to minimize the skin and proximity effects. The inductor’s dc resistance contributes to 0.6 % of the converter’s losses at full load. The capacitors used are SCRN245R which has film-paper dielectric. Each capacitor unit has a capacitance of 10 µF and rated for 100A RMS, 6.5 KVA.
Table 1. Parameters of Proposed Converter

Parameter	Symbol	Value
Output Power	P_0	110W
Input Voltage	V_s	10VDC
Output Voltage	V_0	110VDC
Load Resistance	R_L	100Ω
Frequency	F_S	100kHz
Inductor’s	L	200uH
Capacitor’s	C	10uF
Duty cycle	D	0.6

5. Experimental Results and Discussions

The simulation and experimental results of the proposed converter performed according to parameters in Table 1. Proper matching is observed between the experimental waveforms and theoretical ones as depicted in Fig. 4.

Fig. 4. Experimental and simulation results of the proposed converter.
Fig. 4 (a) PWM signal of semiconductor switch S is depicted. Fig. 4 (b) shows the source voltage of the proposed converter, which is 10V. Fig. 4(c) shows the voltage gain of the proposed converter, which is very high and very near according to voltage gain Eq. (9), which verify the advantage of using the new topology compared to the conventional converter. For the same input source voltage, the output voltage was, 10V and 61.25V for the standard quadratic boost converter and proposed topology respectively according to Eq.(1). Fig. 4 (d) shows the waveform of voltage stress across the switch S which is 62.5 volt. Fig. 4 (e, f, g, h) shows the voltage of the capacitor of V_{C_1}, V_{C_2}, V_{C_3}, and V_{C_4} respectively, which are very near 25V, 10V, 72.25V and 72.25V. Thus from experimental results, it is verified that the proposed topology has many advantages over conventional quadratic boost converter, such as from proposed topology we can get high voltage gain without working at extremely duty cycle and voltage stress across the switch in proposed topology is almost half of the output voltages.

Fig. 5 depicted the voltage gain of the proposed converter and conventional quadratic boost converter at a different duty cycle. Where we can easily observe that at any duty cycle, the suggested converter output voltage is almost double as compared to the conventional quadratic boost converter.

Table 2, comparison results carried out at the same input voltage 10VDC is given to all the other five topologies and including the proposed topology, where output voltages are given, where it can be observed that the output voltage of the proposed topology is higher at 110VDC as compare to other output results. In addition, clearly, show that the proposed quadratic boost converter with voltage multiplier cell (VMC) is higher than other modified converters. The output voltages of the proposed converter are 110V, and the output voltage of traditional boost converter is 25V, the conventional quadratic boost converter is 62.5V, boost converter with voltage lift cell is 50V, the modified quadratic boost converter is 31.5V and boost converter with extension module is 35V.

Topology Name	Vs	V0	Voltage Gain
Proposed topology	10VDC	110V	11%
Conventional quadratic boost converter[28]	10VDC	62.5V	6.25%
Boost converter with voltage lift cell[22]	10VDC	50V	5%
Boost converter with extension cell[26]	10VDC	35V	3.5%
Three level quadratic boost converter[12]	10VDC	31.5V	3.15%
Traditional boost converter[27]	10VDC	25V	2.5%

6. Conclusions

In this paper, a new topology of quadratic boost converter has been proposed for high voltage gain
applications. The proposed converters do not contain isolation transformers or coupled inductor and can be designed for single or double pole dc systems. The converters operate only in DCM with self-current commutation and the potential use of thyristors as active switches. Active switches turn-off at zero voltage, and turn-on at zero current to reduce switching losses. Experimental prototyping was implemented, and it is concluded that the conduction losses are much higher than switching losses and have a significant impact on the efficiency of the proposed converters, this is due to the higher average current in the active switches of the step-up converters. The above combination of features is not available in any other dc-dc converter topologies to date. The proposed topology is beneficial to the renewable energy system, Photovoltaic (PV) system, and so forth.

Conflict of Interest

The authors confirm that there are no known conflicts of interest associated with this publication, and there has been no significant financial support for this work that could have influenced its outcome.

Author Contributions

All authors are equally contributed.

Acknowledgement

This work is supported by the 12180001 (JAS2018020).

References

[1] Ranjana, M. S. B., Reddy, N. S., & Kumar, R. K. P. (2014). A novel high gain floating output DC-DC multilevel boost converter for fuelcell applications. Proceedings of the 2014 International Conference on Circuits, Power and Computing Technologies [ICCPCT-2014] (pp. 291–295).

[2] Choudhury, T. R., & Nayak, B. (2016). Comparative steady state analysis of boost and cascaded boost converter with inductive esr losses & capacitor current behaviour. Int. J. Power Electron. Drive Syst., 7(1), 159.

[3] Leyva-Ramos, J., Mota-Varona, R., Ortiz-Lopez, M. G., Diaz-Saldivia, L. H., & Langarica-Cordoba, D. (2017). Control strategy of a quadratic boost converter with voltage multiplier cell for high-voltage gain. IEEE J. Emerg. Sel. Top. Power Electron., 5(4), 1761–1770.

[4] Maalandish, M., Hosseini, S. H., Ghasemzadeh, S., Babaei, E., Alishah, R. S., & Jalilzadeh, T. (2017). Six-phase interleaved boost dc/dc converter with high-voltage gain and reduced voltage stress. IET Power Electron., 10(14), 1904–1914.

[5] Nejad, M. L., Poorali, B., Adib, E., & Birjandi, A. A. M. (2016). New cascade boost converter with reduced losses. IET Power Electron., 9(6), 1213–1219.

[6] Bhaskar, M. S., Padmanaban, S., Kulkarni, R., Blaabjerg, F., Seshagiri, S., & Hajizadeh, A. (2016). Novel LY Converter Topologies for High Gain Transfer Ratio-A New Breed of XY Family.

[7] Ardi, H., Ajami, A., Kardan, F., & Avilagh, S. N. (2016). Analysis and implementation of a nonisolated bidirectional DC–DC converter with high voltage gain. IEEE Trans. Ind. Electron., 63(8), 4878–4888.

[8] Mahajan, S. B., Sanjeevikumar, P., Wheeler, P., Blaabjerg, F., Rivera, M., & Kulkarni, R. (2016). XY converter family: A new breed of buck boost converter for high step-up renewable energy applications. Proceedings of the 2016 IEEE International Conference on Automatica (ICA-ACCA) (pp. 1–8).

[9] Lee, S.-W., & Do, H.-L. (2018). High step-up coupled-inductor cascade boost DC–DC converter with lossless passive snubber. IEEE Trans. Ind. Electron., 65(10), 7753–7761.

[10] Kim, T., Feng, D., Jang, M., & Agelidis, V. G. (2016). Common mode noise analysis for cascaded boost
converter with silicon carbide devices. *IEEE Trans. Power Electron.*, 32(3), 1917–1926.

[11] Zhang, G., *et al.* An impedance network boost converter with a high-voltage gain. (2017). *IEEE Trans. Power Electron.*, 32(9), 6661–6665.

[12] Naderi, A., & Abbassadeh, K. (2016). High step-up DC–DC converter with input current ripple cancellation. *IEEE Power Electron.*, 9(12), 2394–2403.

[13] Sahoo, M., & Kumar, K. S. (2014). High gain step up DC-DC converter for DC micro-grid application. *Proceedings of the 7th International Conference on Information and Automation for Sustainability* (pp. 1–5).

[14] Farooq, A., Malik, Z., Sun, Z., & Chen, G. (2015). A review of non-isolated high step-down Dc-Dc Converters. *Int. J. Smart Home*, 9(8), 133–150.

[15] Freitas, A. A. A., Tofoli, F. L., Júnior, E. M. S., Daher, S., & Antunes, F. L. M. (2015). High-voltage gain dc–dc boost converter with coupled inductors for photovoltaic systems. *IET Power Electron.*, 32(9), 6661–6665.

[16] Malik, M. Z., Ali, A., & Kumar, D. A Two Cascaded Boost Converter with High Voltage Gain Module.

[17] Ahmad, B., Kyyra, J., & Martinez, W. (2019). Efficiency optimisation of an interleaved high step-up converter. *J. Eng.*, 2019(17), 4167–4172.

[18] Wang, H., & Li, Z. (2017). A PWM LLC type resonant converter adapted to wide output range in PEV charging applications. *IEEE Trans. Power Electron.*, 33(5), 3791–3801.

[19] Wu, H., Zhan, X., & Xing, Y. (2016). Interleaved LLC resonant converter with hybrid rectifier and variable-frequency plus phase-shift control for wide output voltage range applications. *IEEE Trans. Power Electron.*, 32(6), 4246–4257.

[20] Thenathayalan, D., Lee, C., & Park, J.-H. (2015). High-order resonant converter topology with extremely low-coupling contactless transformers. *IEEE Trans. Power Electron.*, 31(3), 2347–2361.

[21] Tomaszuk, A., & Krupa, A. (2013). Step-up DC/DC converters for photovoltaic applications—theory and performance. *Electr. Rev.*, 89, 51–57.

[22] Malik, M. Z., Ali, A., Xu, Q., & Chen, G. (2016). A new quadratic boost converter with voltage multiplier cell: An analysis and assessment. *Int. J. Smart Home*, 10(8), 281–294.

[23] Richelli, A., Colalongo, L., Tonoli, S., & Kovacs-Vajna, Z. M. (2009). A 0.2$\cdot\hbox{1.2}$ V DC/DC boost converter for power harvesting applications. *IEEE Trans. Power Electron.*, 24(6), 1541–1546.

[24] Malik, M. Z., Farooq, A., Ali, A., & Chen, G. (2016). A DC-DC boost converter with extended voltage gain. *MATEC Web of Conferences*, 40, 7001.

[25] García-Sánchez, J. R., *et al.* (2019). A robust differential flatness-based tracking control for the ‘MIMO DC/DC boost converter–inverter–DC motor’ system: Experimental results. *IEEE Access*, 7, 84497–84505.

[26] Malek, S. (2015). A new nonlinear controller for DC-DC boost converter fed DC motor. *Int. J. Power Electron.*, 7(1–2), 54–71.

[27] Farooq, A., Malik, Z., Qu, D., Sun, Z., & Chen, G. (2015). A three-phase interleaved floating output boost converter. *Adv. Mater. Sci. Eng.*, 2015.

[28] Malik, M. Z., Xu, Q., Farooq, A., & Chen, G. (2016). A new modified quadratic boost converter with high voltage gain. *IEICE Electron. Express*, 13–20161176.

Copyright © 2020 by the authors. This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (*CC BY 4.0*).
Muhammad Zeeshan Malik received his master degree in electrical engineering from Chongqing University China in 2012, and the PhD degree in the Department of Electrical Engineering from Zhejiang University Hangzhou China in 2017. Currently, he is working as an assistant professor in Faculty of Automation, Huaiyin Institute of Technology, Huai’an, Jiangsu, P.R. China. His main research interest includes renewable energy, power system protection and power electronics design, control nonlinear control theory & its application in power systems.

Amjad Ali obtained his B.Sc. degree in electronics from the University of Sindh Pakistan, 2002. He received his M.Sc. degrees from the COMSATS University Islamabad (CUI) 2010 in energy management, and University of Sindh, Pakistan 2003 in electronics and his PhD degree from Zhejiang University Hangzhou in 2016 in electrical engineering. Currently, he is working as a research engineer in the Center of Research Excellence in Renewable Energy, Research Institute, King Fahad University of Petroleum and Minerals Saudi Arabia. His main research interest includes Renewable energy, power system protection and power electronics design, control nonlinear control theory & its application in power systems.

Ahmed N. Abdalla received his Bachelor of Science degree in general electrical engineering and Master of Science degree in electrical engineering from the University of Technology, Baghdad, Iraq, in 1997 and 2002, respectively, and the Ph.D. degree in electrical engineering from the Huazhong University of Science and Technology, Wuhan, China, in 2007. He is a professor with Huaiyin Institute of Technology, Huai’an, China, and the former dean of the Workshop and Training Center, University of Technology. He has authored or co-authored numerous papers published in several SCI-indexed journals with an impact factor. His research outcomes have been exhibited and have been bestowed high recognitions internationally. His expertise areas included, system modelling and parameter identification, sensors design and its application, and application of intelligent techniques.