Automorphy of $\text{Symm}^5(\text{GL}(2))$ and base change

Luis Dieulefait*
Universitat de Barcelona
e-mail: ldieulefait@ub.edu

*a mi hijita Luana: Bienvenida al tercer planeta! Ojalá que sus maravillas, naturales o imaginadas, nunca dejen de sorprenderte.

Abstract

We prove that for any Hecke eigenform f of level 1 (i.e., an eigenform on the complex upper-half plane with respect to $\text{SL}_2(\mathbb{Z})$) and arbitrary weight there is a self-dual cuspidal automorphic form π of $\text{GL}_6(\mathbb{A}_\mathbb{Q})$ corresponding to $\text{Symm}^5(f)$, i.e., such that the system of Galois representations attached to π agrees with the 5-th symmetric power of the one attached to f.

We also improve the base change result that we obtained in a previous work: for any newform f, and any totally real number field F (no extra assumptions on f or F), we prove the existence of base change relative to the extension F/\mathbb{Q}.

Finally, we combine the previous results to deduce that base change also holds for $\text{Symm}^5(f)$: for any Hecke eigenform f of level 1 and any totally real number field F, the automorphic form corresponding to $\text{Symm}^5(f)$ can be base changed to F.

Résumé

*Research partially supported by MICINN grant MTM2012-33830 and by an ICREA Academia Research Prize
On démontre que pour tout forme propre de Hecke f de niveau 1 et poids quelconque il existe un forme automorphe cuspidale autodual π de $GL_6(\mathbb{A}_\mathbb{Q})$ qui correspond à $\text{Symm}^5(f)$, c’est à dire que le système de représentations Galoisiennes attachées à π coïncide avec la puissance symétrique 5-ème de celui attaché à f.

On obtien aussi un amélioration du résultat de changement de base qu’on avait démontré dans un travail antérieur : pour toute forme nouvelle f et tout corps de nombres F totalement réel (aucun hypothèse sur f et F) on démontre l’existence de changement de base pour l’extension F/\mathbb{Q}.

Pour conclure, on combine ces résultats pour démontrer que changement de base est aussi vrai pour $\text{Symm}^5(f)$: pour tout forme propre de Hecke f de niveau 1 et tout corps de nombres totalement réel F la forme automorphe correspondant à $\text{Symm}^5(f)$ admit un changement de base à F.

Keywords: automorphic forms, Galois representations, Langlands functoriality
MSC (2010): 11F80, 11F11, 11R39, 11F33

1 Introduction

After completion of our previous work on base change for GL(2) (cf. [Di12a]), while explaining the result at a few conferences we stressed that “by modifying a bit the proof it should follow that every pair of newforms can be connected to each other by a safe chain”. Moreover, we predicted that such a result should have important consequences, since it should allow to propagate nice modularity properties (such as base change) from a single newform to the rest of them.

In this paper, we give a detailed proof of the existence of such safe chains and we give the first applications of this to Langlands functoriality.

The definition of safe chain is context-dependent, in all cases it refers to a series of congruences between two different newforms (it is actually better to work with the equivalent notion of congruences between the attached Galois representations), in (a priori) arbitrary characteristics, having as initial and final elements the two given newforms. Actually, the congruences are up to twist by finite order characters, and in this paper (reusing an idea already appearing in [Di09]) we also allow replacing a newform by a Galois conjugate
of it as a valid *move*.

The important thing about safe chains is that (at each congruence in the chain) they should preserve automorphy of some derived objects: *soit* the restrictions to the Galois group of some number field of the given pair of modular Galois representations, *soit* some symmetric power Symm^n of them. By “preserving automorphy” we mean that some available Automorphy Lifting Theorem (A.L.T.) should apply, so as to ensure that IF one of the representations (2-dimensional or $n + 1$-dimensional, depending on the case) is automorphic, so is the other. Sometimes (as in [Di12a]) this is needed to work only in one of the two directions (and this can be thought as some sort of inductive process propagating modularity from objects of small “invariants” to those of higher “invariants”), but in this paper we will need this to work in both directions (in order to apply a transitivity argument). Therefore, the conditions imposed at each link (i.e., congruence) in the chain that makes it *safe* depend on the A.L.T. available: typically we should impose some local condition (specially at the residual characteristic p) at both sides of the congruence, and we should ensure that the residual image is sufficiently large.

We allow “congruences up to twist” because the effect of twisting a 2-dimensional Galois representation on its n-th symmetric power is again a twist, and twists are known to preserve automorphy, and they are harmless because all the technical conditions required in the A.L.T. that we will apply (local conditions, size of residual image) are known to be preserved by twisting by a finite order character. One of the standard uses of twisting (used for example in [KW]) is to reduce the Serre weight of a residual mod p representation to the range $2 \leq k \leq p + 1$ by twisting by a suitable power of the mod p cyclotomic character: we will use this trick repeatedly (observe that such a twist does not affect the Serre’s level, i.e., the prime-to-p part of the conductor, of the residual representation). We also allow Galois conjugation because the n-th symmetric powers of two conjugated Galois representations are themselves conjugated to each other and Galois conjugation obviously preserves automorphy.

The main result in this paper concerns the application of this machinery to deduce automorphy of $\text{Symm}^5(f)$ for all level 1 cuspforms f. The result follows from the construction of a suitable *safe chain*, it suffices to prove two things:

1) base case: there exists a level 1 cuspform f_0 such that $\text{Symm}^5(f_0)$ is auto-
morphic.

2) safe chain: every pair of level 1 cuspforms \(f \) and \(f' \) can be linked by a chain such that the corresponding chain of 6-dimensional representations linking Symm\(^5(f) \) with Symm\(^5(f') \) is a safe chain in both directions, in such a way that via suitable A.L.T. we can conclude that Symm\(^5(f) \) is automorphic if and only if Symm\(^5(f') \) is automorphic.

Observe that for the 6-dimensional Galois representations to be residually irreducible (this is part of the requirements for the application of all A.L.T.) one should avoid working in characteristics 2, 3 or 5 at all steps.

For part (1), we will consider a cuspform \(f_0 \) having, in some large characteristic \(p \), residual image projectively isomorphic to \(A_5 \), and we will show how to deduce from this residual automorphy of Symm\(^5(f_0) \), and then automorphy via a suitable A.L.T.

For part (2), we need to construct a series of congruences linking each given pair of level 1 cuspforms, making sure that at all steps the residual characteristic is greater than 5 and residual images are “large” or even “6-extra large” (even after restriction to \(\mathbb{Q}(\zeta_p) \)): see the precise definition of these notions at the end of this introduction. Thanks to the results in [GHTT] and in Guralnick’s Appendix A to this paper, this is enough to ensure that the 5-th symmetric powers of these representations (restricted to \(\mathbb{Q}(\zeta_p) \)) have residually adequate image, a condition needed to apply the two main A.L.T. in [BLGGT], theorems 4.2.1 and 2.3.1. In fact, we are relying on a slight strengthening of theorem 4.2.1 of loc. cit. which is proved in Appendix B (written jointly with T. Gee). Thanks to this improvement the assumption\(^1\) \(\ell \geq 2(n+1) \) (which is part of condition (4) of this theorem, cf. [BLGGT]) can be replaced by the standard condition of adequacy of the (restriction of) the residual image, as in condition (5) of theorem 2.3.1 in loc. cit.

We also need to make sure that at each step the 5-th symmetric power of both \(p \)-adic Galois representations being considered satisfy (locally at \(p \)) the local condition needed to apply some A.L.T. in both directions. We will see that in our process they are either both “potentially diagonalizable” or both ordinary, allowing us to apply theorems 4.2.1 (its variant in Appendix B)

\(^1\)just for this line, we use the notation of [BLGGT]: the residual characteristic is \(\ell \), and the dimension of the Galois representations is \(n \)
and 2.3.1 in loc. cit., respectively. The reader should also notice that these A.L.T. are stated in loc. cit. and in Appendix B for representations of imaginary CM fields, but a standard argument using quadratic base change allows an extension to the case of totally real fields, where representations are now essentially self-dual and automorphy is stated in terms of RAESDC automorphic representations, see for example [CHT].

The fact that our chains are reversible, i.e., that they can be used to propagate automorphy in both directions, is crucial for us, since the way that we proceed to link any pair of level 1 cuspforms is through an inductive process, combined with transitivity. More precisely, we are able to link any pair of level 1 cuspforms f and f' by linking both of them to two newforms in the same orbit, i.e., to two conjugated newform g and g^σ. Since Galois conjugation is a valid move (because it preserves automorphy), this implies that the two given newforms are linked to the same g, thus by transitivity they are linked to each other: just concatenate the two chains! Thus, if automorphy is known for $\text{Symm}^5(f')$, it is propagated to $\text{Symm}^5(f)$ passing through $\text{Symm}^5(g)$ somewhere in the chain. It is clear then that A.L.T. should work in both directions, since we need them to propagate automorphy (starting at f') “down” until we reach g, and then “up” until we reach f.

Let us stress that the orbit of g is unique and independent of the given forms f and f'; it is a universal step appearing in all safe chains. The inductive argument linking any level 1 cuspform f with g will be described in detail in the paper, and it consists of a series of safe congruences that finally lead to a space of newforms of small level and weight, and fixed (up to conjugation) nebentypus, where computations show that there is a unique orbit of newforms.

The construction of this safe chain borrows some key ideas from [Di12a] and [Di09], but they have to be modified and generalized in order to be applied in this new context.

Using this safe chain, together with the techniques of “ramification swapping” (as in [Di12a], also used in [Di12b]) and “killing ramification” (as in [Di12a]), we will also be able to obtain an improved proof of base change for $\text{GL}(2)$. This time the safe chain will connect any cuspform to a CM form, and now “safe” will refer to the fact that Modularity Lifting Theorems (M.L.T.) for the restrictions of the 2-dimensional Galois representations to the Galois group of a totally real number field do apply in both directions at each step.
of the chain.
We are relying again, for the ramification swapping process, on the two main A.L.T. in [BLGGT] and the improvement in Appendix B, this time for 2-dimensional Galois representations, and the important feature of these theorems that the required local conditions are preserved under arbitrary base change allows us to work over arbitrary totally real fields F, not needing to impose any local condition. For the “killing ramification” process, we will need to apply the M.L.T. of Kisin in [K-1], which requires the residual characteristic p to be split in F, but since this step will take place at a point where the prime p to be killed is a suitable auxiliary prime, we just have to check that such primes can be chosen to be split in F (a similar process took place in [Di12a]).

In order to cover the case of newforms of even level we will also apply a 2-adic M.L.T. of Kisin in [K-2] together with some ideas taken from [KW].

We also prove a base change result for the automorphic forms corresponding to $\text{Symm}^5(f)$, which follows easily by combining previous results.

We conclude this introduction by warning the reader that the proof of the main result (the construction of the safe chain) is full of twists and turns, and at several places the path is so full of obstacles that it seems there is no way to continue, and it is only by some completely new trick, or by an unexpected generalization/combination of results in some of our previous works that one manages to keep going. It is a road full of miracles, including a fascinating generalization of Maeda’s conjecture that motivates the choice of the “small single orbit space” of newforms at the bottom of the road. The tricks of “good-dihedral primes”, “micro good-dihedral primes” (for short, MGD primes), “Sophie Germain primes”, “weight reduction via Galois conjugation”, are basic to build the safe chain.

Both appendices are also of key importance: without them we would have been forced to work only on characteristics $p > 13$, and just from the computational point of view (to say nothing of the theoretical complications) it would have been impossible to complete the “low part” of the chain.

Let us now record the two main theorems proved in this paper: in sections 2,3, and 4, and in section 6 for the extension to other fields, we prove:

Theorem 1.1 Let f be a level 1 cuspform. Then if we call ρ an ℓ-adic Ga-
lois representation attached to f, the 6-dimensional Galois representation $\text{Symm}^5(\rho)$ is automorphic, namely, there is a cuspidal self-dual automorphic representation π of $\text{GL}_6(\mathbb{A}_Q)$ (a RAESDC in the notation of [CHT]) such that the ℓ-adic Galois representation attached to π is isomorphic to $\text{Symm}^5(\rho)$. Moreover, if we restrict this 6-dimensional Galois representation to any totally real number field F, it is still automorphic, meaning that it is isomorphic to the ℓ-adic Galois representation attached to a cuspidal self-dual automorphic representation of $\text{GL}_6(\mathbb{A}_F)$.

In section 5 we prove base change for classical cuspidal modular forms in full generality:

Theorem 1.2 Let f be a newform of arbitrary level and weight $k \geq 2$. Let F be any totally real number field. Then, f can be lifted to F, i.e., there is a Hilbert newform f' over F whose attached ℓ-adic Galois representations are isomorphic to the restriction to G_F of those attached to f.

Remark: The (safe) chain constructed in this paper connecting any pair of newforms to each other has been applied in a sequel to this paper to prove automorphy of m-fold tensor products of level 1 cuspforms for any m (assuming regularity of the tensor product). See [Di12c] for details.

Acknowledgments: My greatest thanks are due to R. Guralnick for his immediate response to my S.O.S. asking for better results on adequate groups, and for writing these results in Appendix A, and to R. Taylor for kindly helping me through discussions to check some parts of this proof, and for kindly having me as guest at the I.A.S. for a period of three weeks during which some of the most important advances in this proof were made. I also want to thank T. Gee for providing the key insights needed for the proof of the result in Appendix B (and for pointing out a slight inaccuracy in a previous version of this work), P. Tsaknias for some vital computations that he was kind enough to do for me on MAGMA, and the Number Theory Group of The Department of Mathematics of the University of Luxembourg for providing him the required computers. For some useful conversations, remarks, explanations, and corrections on previous versions, I also want to thank M. Dimitrov, J.-P. Serre, M. Kisin, Bao Le Hung and F. Herzig. Finally, I want to give special thanks to the referee, whose suggestions have greatly improved the presentation and readability of this paper.
We finish this section with some definitions and notations.

Notation: In this paper, F will always denote a totally real number field. For every number field K, we will denote by G_K the absolute Galois group of K. We will write ζ_p for a primitive p-th root of unity. We will denote by χ the p-adic or mod p cyclotomic character. The value of p, and whether it is the p-adic or the mod p character, will always be clear from the context. We will denote by ω a Teichmuller lift of the mod p cyclotomic character. Given a Galois representation σ, we will denote by $\mathbb{P}(\sigma)$ its projectivization.

Definitions: Let K be a number field. Let $\bar{\rho}_p$ be a two-dimensional, odd, representation of G_K with values on a finite extension of \mathbb{F}_p.

1. We say that the image of $\bar{\rho}_p$ is **large** if $p \geq 7$ and the image contains $\text{SL}(2, \mathbb{F}_p)$, or $p = 3$ or 5 and the image contains $\text{SL}(2, \mathbb{F}_{p^r})$ for some $r \geq 2$. If this is the case, it is easy to see that the image of $\mathbb{P}(\bar{\rho}_p)$ is isomorphic to one of the following two groups: $\text{PSL}(2, \mathbb{F}_{p^r})$ or $\text{PGL}(2, \mathbb{F}_{p^r})$, for some r (and $r \geq 2$ if $p = 3, 5$). This implies in particular that large images are non-solvable, and also that they are adequate subgroups of $\text{GL}(2, \bar{\mathbb{F}}_p)$, see theorem 5 and remark 6 (3) in Appendix A and the main result of [GHTT].

2. We say that the image of $\bar{\rho}_p$ is **6-extra large** if $p = 11$ or 13 and the image contains $\text{SL}(2, \mathbb{F}_{p^r})$ for some $r \geq 2$. For $p = 7$ or $p \geq 17$ we say that the image of $\bar{\rho}_p$ is **6-extra large** if it is large. This technical condition is needed to ensure that the 5-th symmetric power of $\bar{\rho}_p$ has adequate image (for $p \geq 17$ this is just an application of the main result in [GHTT], for $p = 7$ it follows from remarks 6 (1) and 6 (3) in Appendix A, and for $p = 11$ and $p = 13$ it follows from theorem 5 combined with remark 6 (3) in Appendix A).

Remark: Observe that since large and 6-extra large images correspond to almost simple projective images, these conditions are preserved if we restrict the representation to a cyclic extension of K, such as $K(\zeta_p)$.

8
3. We say that the image of $\bar{\rho}_p$ is dihedral when the image of $\mathbb{P}(\bar{\rho}_p)$ is a dihedral group of order at least 4.

4. We say that the image of $\bar{\rho}_p$ is bad-dihedral when it is dihedral, $p > 2$, and the restriction of $\bar{\rho}_p$ to the absolute Galois group of $K(\sqrt{\pm p})$ becomes reducible, where the sign is $(-1)^{(p-1)/2}$.

2 Construction of the safe chain: a general description

This is the code description of what is needed to make the safe chain. Recall that this is just “half” of the chain, the full chain is obtained just by concatenation of two of these safe chains, which makes sense because both end up in the same orbit, and are reversible.

At each step we describe the nature of the movements to be performed, and the output. References are to indicate where some of these tricks first appeared.

We start with a cuspform f of level 1 and weight $k \geq 12$:

1) Introduce Good-Dihedral prime [KW]: level raises to q^2.
2) Weight reduction via Galois conjugation [Di09]: weight reduces to $2 < k \leq 14$ (k even).
3) Ad hoc tricks to make the small weight congruent to 2 mod 3 (Sophie Germain primes, Hida families...): end up with $k \equiv 2 \pmod{3}$ and $k < 43$.
4) Introduce MGD prime 43 using the pivot primes 7 and 11 [Di12a]: end up with newform of weight 2 and level $43^2 \cdot q^2$.
5) Remove the Good-Dihedral prime (in two moves): end up with a newform of weight $q+1$ and level 43^2.
6) Again weight reduction via Galois conjugation but this time “highly improved”, because we need to ensure large residual image at each step using just the MGD prime. Weight reduces to $2 < k \leq 14$ (k even).
7) Ad hoc tricks to make weight smaller than 17 and divisible by 4 (Sophie Germain primes, Khare’s weight reduction, non-dihedrality due to class field theory of real quadratic field...): end up with a newform of weight 16 and level 43^2.
8) Introduce nebentypus at 17 of order 8: end up with a newform of weight 2, level $43^2 \cdot 17$, with nebentypus.
9) Remove the MGD prime modulo 11 via an *ad hoc* Lemma to ensure residual irreducibility: get congruence (maybe using level-raising) with a newform Steinberg at 43, of weight 2 and level $43 \cdot 17$, with nebentypus of order 8 at 17.

10) Move from weight 2 to weight 44 by reducing modulo 43: irreducibility checked by hand.

11) Generalized Maeda in weight 44, level 17, nebentypus of order 8: check that this space has a unique orbit.

Several steps use tricks appearing in the referred paper, and they will be easy to follow for those who have read these papers. Steps (3) and (7) are painful and technical: the weight has been made small, BUT we require some technical condition on it to be able to perform the next step (i.e., steps (4) and (8)): step (3) is done because at step (4) we want $k \equiv 2 \pmod{3}$ because the prime 43 is not truly a Sophie Germain prime, there is a 3 dividing $43 - 1$, thus when we take a modular weight 2 lift in characteristic 43 IF WE KNOW that $k \equiv 2 \pmod{3}$, the nebentypus, which is ω^{k-2}, will be a character of order 7, and this allows us to work with 43 “as if it were a Sophie Germain prime”, and using this character of order 7, and later the factor 11 | $43 + 1$, we manage to introduce 43 as a MGD prime (compare with the introduction of 7 as a MGD prime in [Di12a]). Step (7) is done because before moving to characteristic 17 in step (8) with a weight k smaller than 17 to take a modular weight 2 lift, since we want the character ω^{k-2} to be of order 8, we NEED to ENSURE that k is divisible by 4.

Both in steps (3) and (7), in order to “reduce” to weights satisfying the required conditions, we make a few technical moves that allow “magically” to control the weight and force it to satisfy them.

Step (6) is perhaps the best technical innovation in the paper: we need to perform the weight reduction to inductively go from an arbitrarily large weight k to $k \leq 14$, we do this using the method of [Di09] as in step (2), but this time the level contains just the MGD prime 43, and still we need to ensure that in the whole process of weight reduction all residual images are going to be large! We succeed thanks to an extra degree of freedom, previously unexploited, in Galois conjugations: there is not a unique conjugation that reduces the weight, there are at least two completely different choices (this we prove), and we can show that for at least one of them the residual representation will have large image.

Step (9), if it were performed by direct computation, will not be surprising.
But since the level at this step is $17 \cdot 43^2$ and the nebentypus of order 8, computations seem out of reach. We prove irreducibility modulo 11 (recall that ramification at 43 being of order 11, at this step one is losing the MGD prime from the level) by using in a non-trivial way information on the ramification at 17 and on the trace at 43 of the residual representation, assumed reducible, to derive a contradiction.

The final step (11) is a direct computation to check that certain space has a unique orbit, but this does not come out of the blue: we “knew” that there should be a unique orbit there by a precise generalization to arbitrary level of Maeda’s conjecture (cf. [DT]).

3 The eleven steps of the safe chain

Before describing each step of the chain, let us make some general remarks. First of all, let us stress that in all steps we are always working in residual characteristic $p \geq 7$. This is necessary because we want the symmetric 5-th power to be residually irreducible (any 2-dimensional representation over a field of characteristic up to p has a reducible symmetric p-th power).

At each step, we will introduce several congruences between modular Galois representations. Since we want to apply the two main A.L.T. in [BLGKT], Theorems 4.2.1 (its variant in Appendix B) and 2.3.1, in both directions, to the 5-th symmetric powers of these representations, at each of the congruences introduced we need to ensure that both 6-dimensional representations are “potentially diagonalizable” (PO-DI) or that they are both ordinary. Observe that both of these local properties are preserved by taking symmetric powers, so we just have to check them at the level of the modular 2-dimensional Galois representations (for the PO-DI property, just observe that if two points in a local deformation ring $R_{D,p}$ are in the same irreducible component, when we switch to a larger deformation ring $R'_{D',p}$, i.e., with the latter ring projecting into the former one, the corresponding points in the larger ring are also in the same irreducible component: this property is already applied in [BLGKT], page 531, to show that this notion is preserved by base change, i.e., when one restricts the Galois representations. Of course, we are also using the elementary fact that a symmetric power of a sum of crystalline characters is again a sum of crystalline characters). This will also be useful when we address, in latter sections, the problem of base change,
since for that case we are going to rely on the same A.L.T. most of the time, but this time applied to 2-dimensional Galois representations.

Most of the congruences that we will perform involve taking weight 2 modular lifts, for a residual representation in some odd characteristic p having Serre’s weight $2 < k < p + 1$, and the congruence will be between a potentially Barsotti-Tate representation and a crystalline representation in the Fontaine-Laffaille range (i.e., of weight $k \leq p$). Since in both cases (by the results of Kisin in [K-BT] in the first case, as proved in [GK], and by [BLGGT] and [GL] in the other) such representations are known to be PO-DI, the local conditions needed to apply Theorem 4.2.1 in [BLGGT] and its strengthening in Appendix B are satisfied.

The second (and last) case that we will encounter in our chain is when one of the representations is semistable at p of weight 2, and the other one is crystalline at p of weight $p + 1$. In this case, both representations are known to be ordinary (in fact, they live in the same Hida family), thus again we can apply an A.L.T. in [BLGGT], this time Theorem 2.3.1, the one for ordinary representations (see [Ge] for the definition of ordinary representations). At one step (step 3) there is a small variant of this: we consider a congruence between a weight 2 semistable representation and a crystalline representation whose weight is actually larger than $p + 1$: we take a suitable specialization of the Hida family at a larger weight $k \equiv 2 \pmod{p - 1}$. Again, this is known to be an ordinary representation, so this A.L.T. applies.

The reader can check (this is automatic) that in the 11 steps that follow we will always be in one of the two cases above, thus from now on we are not going to insist anymore on this point: the local conditions required to apply the A.L.T. to the 5-th symmetric powers of our representations are satisfied. Also, when in latter sections we discuss base change, since these local properties are preserved by base change, both for the 2-dimensional representations and for their symmetric powers, the local conditions to apply the A.L.T. over any totally real number field F are satisfied.

The other obstacle to apply the A.L.T. in [BLGGT] (recall once again that concerning theorem 4.2.1 in loc. cit., we are relying on the improvement that we prove on Appendix B) is the condition that residual images should always be adequate. We will check that in our chain residual images will always be 6-extra large (this is not so at the “base case”, but in this case the image is known to be adequate, too), a condition that is preserved after restriction to the Galois group of $\mathbb{Q}(\zeta_p)$, and this implies that the images of these restrictions are adequate, thanks in particular to the results in Appendix A.
The required condition on the residual images will be obtained, at most steps, by using some ramification information. This will be particularly easy when a Good-Dihedral prime is in the level, and at the very bottom of the chain, when no significant ramification is preserved, will be checked partly by hand. In any case, let us stress that in what follows we are just required to indicate two things at each step:

i) how the chain is built, and

ii) how it is checked that the residual images are 6-extra large

Observe that since 6-extra large implies large, when we re-use this chain for base chain, we at least know that it is built with large residual images (and we will just have to check that this largeness is preserved by base change).

3.1 Step 1

We start with f of level 1 and weight $k \geq 12$. At this step we introduce a Good-Dihedral prime. This is done just as in [Di12a] (and also in [KW] where the idea first appeared), so we will be brief. We first choose a prime $r > 13$ larger than k where the residual image is large (such a prime exists because of the main result in [Ri85]), thus 6-extra large, and reducing modulo r we switch to a weight 2 situation (this can be done for example by applying theorem 5.1- (2) in [KW] combined with a suitable M.L.T., such as theorem 4.1 in loc.cit.). Here we are introducing a nebentypus at r, to be removed later. More precisely, we have now a newform in $S_2(\Gamma_1(r))$ with nontrivial nebentypus (this more refined information also follows from theorem 5.1 - (2) in [KW]). Then, we take primes t and q larger than r as in Lemma 3.3 of [Di12a], and as in the discussion thereafter: by working modulo t, where the image is GL(2, F_t), thus 6-extra large, we produce a congruence with a newform f_2 of weight 2 with q^2 in the level, such that ramification at q is given by a character of order a power of t, and t divides $q + 1$. Let us stress that there exist infinitely many primes q satisfying the conditions of Lemma 3.3 of loc. cit. The prime q is a supercuspidal prime for f_2. Before choosing t and q, a large bound B is fixed, greater than k, $2 \cdot r$, and than any other auxiliary prime that one will use (such as $p = 11, 43$) and t and q are chosen to be larger than B. We take $B > 68$ because we are going to need this in Step 3.

These two primes are also asked to satisfy:

$t \equiv 1 \pmod{4}$, $q \equiv 1 \pmod{8}$, and also, for every prime $p \leq B$, we require
that $q \equiv 1 \pmod{p}$. In the following steps, up to step 4 (included), we are going to work all the time in characteristic $p \leq B$, and this implies that the local ramification at q will be preserved through these steps. This, together with the above conditions on q implies, and this is the main point about Good-Dihedral primes (see “A very important remark” in page 1023 of [Di12a]), that the residual images will be large. Moreover, since we are taking $t > B > 2 \cdot r > 13$ and the residual projective images contain an element of order t (given by the image of the inertia group at q) it is obvious that if we are in characteristic 11 or 13 (and trivially in any other characteristic $7 \leq p \leq B$) the residual image will also be 6-extra large.

We conclude the first step by moving back to characteristic r. We take a mod r Galois representation attached to f_2 and we lift it to a modular representation attached to a newform f_3 without r in the level. As explained in the introduction, we freely twist when necessary, so we are assuming that the Serre’s weight of this residual representation is at most $r - 1$ (and greater than 2 because the nebentypus of f_2 at r was not trivial), and f_3 is taken to be of this weight. Therefore, we end up with f_3 of level q^2, Good-Dihedral at q, and weight $2 < k < B/2$.

At a referee’s suggestion, we produce here a picture of the congruences just described linking the given f with f_3. The superscript q-GD means that the prime q is a Good-Dihedral prime for a newform, and the symbol \ast denotes that two residual representations are isomorphic after twisting by some power of χ:

\[
\begin{align*}
(\rho_{f_1,p})_p & \equiv \rho_{f_1,t} & (\rho_{f_2,p})_p & \equiv \rho_{f_2,r} & (\rho_{f_3,p})_p \\
 f \equiv_r f_1 & \in \mathcal{S}_2(\Gamma_1(r)) & f_2 & \in \mathcal{S}_2^{q-GD}(\Gamma_1(q^2)) & f_3 & \equiv_r \bar{\rho}_{f_3,r} =^* \rho_{f_3,r} & f_3 & \in \mathcal{S}_k^{q-GD}(\Gamma_1(q^2))
\end{align*}
\]

3.2 Step 2

At this step we perform the Weight Reduction via Galois Conjugation (WRGC), exactly as in [Di09] (except that when the weight is 10, we are not reducing it because we don’t need to), so as to reduce to the case $k \leq 14$.

As explained in the previous step, since we are going to work in character-
istics \(p \leq B \) and we have a large Good-Dihedral prime in the level, residual images are all going to be 6-extra large.

Observe that since \(k < B/2 \), we are allowed to work with primes larger than \(k \) as long as they satisfy \(p < 2 \cdot k < B \), and this is the case in the process of WRGC.

We also note for the reader’s convenience that, together with Galois Conjugations (an allowed move, see the introduction), this weight reduction involves congruences between potentially Barsotti-Tate and Fontaine-Laffaille type Galois representations, exclusively.

Since the process is described in [Di09], we are going to be very brief:

Suppose \(k > 14 \) (if \(2 < k \leq 14 \) we can go directly to step 3). It is perhaps worth recalling that through all this process weights are going to be even, and always larger than 2.

Let \(p \) be the smallest prime larger than \(k \), except in the case \(k = 32 \) where we take \(p = 43 \).

Consider the mod \(p \) Galois representation attached to \(f_3 \), and take a modular weight 2 lift of it, corresponding to a newform \(f_4 \) having nebentypus at \(p \) given by \(\omega^{k-2} \), a character of order \(m = (p - 1)/d \), where \(d = (p - 1, k - 2) \).

As in Step 1, this is done by applying theorem 5.1 - (2) of [KW] (in combination with a suitable M.L.T., such as theorem 4.1 in loc. cit.). Let us call \(a = (k - 2)/d \).

The level at \(p \) of \(f_4 \) is \(p \) and it is principal series at \(p \), with inertia Weil-Deligne parameter of the attached \(\ell \)-adic Galois representations at \(p \) (and the same for the \(p \)-adic Galois representation) being given by \(\omega^{k-2} \oplus 1 \).

Let us assume (this will be proved later) that \(m > 6 \), and let us consider \(t \) to be the smallest integer greater than \(m/2 \) and relatively prime to \(m \).

Warning: this integer has no relation with the prime \(t \) giving the order of ramification at the Good-Dihedral prime \(q \) used in Step 1. We hope that the use of the same letter to denote both objects will not be a cause of confusion because they live in different worlds.

Observe that the difference \(t - m/2 \) is at most 2, and that \(t < m - 1 \).

The Galois conjugation is meant to change the nebentypus: we take an element \(\gamma \) in the Galois group of \(m \)-th root of unity corresponding to raising to the \(a^{-1} \cdot t \), where the inverse of \(a \) is taken modulo \(p - 1 \). This changes the nebentypus (and the local type at \(p \)) from \(\omega^{k-2} = (\omega^d)^a \) to \((\omega^d)^t \).

Now we consider the mod \(p \) Galois representation attached to the conjugated newform \(f_4^\gamma \). Its Serre’s weight can be shown to be (after suitable twisting) either \(k_1 = dt + 2 \), or \(k_2 = p + 1 - dt \), two values whose sum is \(p + 3 \) (cf. [Sa],
Corollary 6.15).
Let us observe that \(k_2 < k_1 \): this inequality, appearing already in [Di09], is due to the fact that \(k_1 > (p + 3)/2 \), which follows easily from the fact that we are taking \(t > m/2 \).

The idea is that because of a strong version of Bertrand’s postulate \(p \) will be “near” \(k \), and this will imply that \(k_1 \) and \(k_2 \) are smaller than \(k \): in fact, since \(k_2 < k_1 \), it is enough to check this for \(k_1 \), and since \(k_1 \) is approximately \(d \cdot t \), and this is approximately \((d \cdot m)/2 \), and this is approximately \(p/2 \), it is clear that having \(p \) near \(k \) the new weight \(k_1 \) or \(k_2 \) will be smaller than the given \(k \).

More precisely: for \(k \geq 38 \), it is known that if we consider the primes nearest \(k \): \(p_n < k < p_{n+1} \), it holds:

\[
p_{n+1}/p_n < 1.144. \quad (\ast)
\]

And also its obvious consequence:

\[
(p_{n+1} - 1)/(p_n - 1) < 1.15.
\]

From this, calling again \(p = p_{n+1} \) the first prime after \(k \), we have:

\[
(p - 1)/(k - 2) < 6/5
\]

and this implies that the order \(m \) of the nebentypus \(\omega^{k-2} \) is greater than 6 (this we had assumed before, now we are proving it for \(k > 36 \)).

Having this, we define \(t \) as above and Galois conjugate using it as above and easily deduce that for the any of the two possible Serre’s weights \(k' = k_1 \) or \(k_2 \) of the Galois conjugated residual representation it holds: \(p/k' > 1.144 \).

In fact, since \(k_2 < k_1 \) it is enough to check this for \(k' = k_1 \), and then it reads: \(p/k' = p/(dt + 2) = (md + 1)/(dt + 2) \). That this is larger than 1.144 can be easily checked once the precise value of \(t \) is introduced: there are three cases, depending on whether \(m \) is 0 or 2 modulo 4, or odd, but in any case the above quotients give increasing functions (increasing with \(m \)) that already satisfy the inequality for the smallest values of \(m \) (8, 10 and 7, respectively) and for every \(d \), thus we conclude that the inequality holds in general.

Because of (\(\ast \)), this implies: \(k' < p_n \), thus in particular \(k' < k \). Thus the induction works.

If \(14 < k \leq 36 \), it can be checked by hand that the above process also works, exactly as described, and always gives a smaller Serre’s weight \(k' \) (and it is
easy to see that it always gives even values, and that they are always greater than 2).
The only subtle point is that for $k = 32$ one should take $p = 43$.
Let us include here, for the reader’s convenience, four examples, including the one of weight 32:

- $k = 16, p = 17$: $d = 2, m = 8, t = 5, dt = 10$; thus: $k' = 12$ or 8.
- $k = 18, p = 19$: $d = 2, m = 9, t = 5, dt = 10$; thus: $k' = 12$ or 10.
- $k = 30, p = 31$: $d = 2, m = 15, t = 8, dt = 16$; thus $k' = 18$ or 16.
- $k = 32, p = 43$: $d = 6, m = 7, t = 4, dt = 24$; thus $k' = 26$ or 20.

This concludes the weight reduction, by iterating the above procedure we end up this step with a newform f_5 of level q^2, Good-Dihedral at q, of weight $2 < k \leq 14$.

Remark: the inequality $k > 2$ follows from the fact that the nebentypus at p of the newforms we are considering is non-trivial. In fact, observe that from the formula for k_1 and k_2 that we are using it follows that if any of them were equal to 2 then the nebentypus must be ω^0 or ω^{p-1}, i.e., the trivial character.

At a referee’s suggestion, we include a picture describing the congruences involved in this step (see end of section 3.1 for notation):

\[
\begin{align*}
\rho_{f_4,p}^g & \cong \rho_{f_4,p} \\
\text{suitable } p > k & \quad f_4 \in S_{q-\text{GD}}^p(\Gamma_1(q^2)) \\
\tilde{\rho}_{f_3,p} & \quad f_3 \in S_{q-\text{GD}}^p(\Gamma_1(q^2)) \\
\end{align*}
\]

If the weight k' of f_2 is larger than 14, we repeat the process until we end up with f_5 having weight $2 < k \leq 14$.

3.3 Step 3

As it will be clear in Step 4, before introducing the Micro-Good-Dihedral (MGD) prime 43 in the level, we need to reduce to a situation in which the
weight not only is small (smaller than 43 will be enough) but also is congruent to 2 modulo 3. Here we combine some ad hoc tricks that allow us to do so.

The ideas in this step are the following: (in logical order, which, as usual, does not coincide with the final ordering on the paper):

If one happens to have some weight k satisfying $k \equiv 2 \pmod{3}$ and you believe that there is a prime $p > k$ "near" k such that $p \equiv 1 \pmod{3}$, then you can check (it works in the few applications that we are going to do now, because it always works!) that if you do weight reduction using p, as in Step 2, the new (smaller) values of the Serre's weight, k_1 and k_2, will both be again congruent to 2 modulo 3 (it makes sense because they sum up $p + 3$ and this is congruent to 1 (mod 3)).

Thus, the strategy is the following: we use the Sophie Germain trick, taken from [Di12b], this allows you to, given a pair $p_1, p_2 = 2p_1 + 1$ of Sophie Germain primes, reduce all cases of even weights $2 < k < p_2$ to a single case, namely, to the case of weight $p_2 + 1$. Unfortunately, because we are forced to take $p_1 \neq 3$ (we are not allowed to work on characteristics ≤ 5), this is not satisfactory because $p_2 + 1$ will never be congruent to 2 modulo 3, but moving to a weight higher than $p_2 + 1$ (using Hida families) we will remedy this problem. After this step, we will end up with a unique weight, it will be congruent to 2 modulo 3, and we will complete the step by reducing it, as indicated above, in such a way that the mod 3 property on the weight is preserved.

We are going to work all the time in characteristics $p \leq 67$ (and, as usual, $p > 5$) and with weights $k \leq 68$, thus since $68 < B < t < q$ the Good-Dihedral prime in the level will ensure that residual images are 6-extra large at each step.

Remark: the value $k = 68$ appears here because for the pair of Sophie Germain primes $(p_1, p_2) = (11, 23)$ that we are going to use the smallest value of a weight $k > 2$ such that k is congruent to 2 modulo 3 and congruent to 2 modulo $p_2 - 1$ is 68 (see below for an explanation of why the second of these congruential conditions is important).

The Sophie Germain pair that we consider is given by $p_1 = 11, p_2 = 23$. As in [Di12b], since the weight of f_5 satisfies $2 < k \leq 14$, we move to characteristic 23, reduce mod 23, and take a modular weight 2 lift, having a nebentypus ω^{k-2} ramified at $p_2 = 23$ of order 11. Then we move to characteristic 11, reduce mod 11, and take another modular weight 2 lift, where we have changed the type at 23. Since ramification at 23 was given by a character of order
11, we know that the residual representation will either be unramified at 23 or will have semistable (i.e., unipotent) ramification at 23. Moreover, in the first case it can be checked (a similar situation can be found in [Di12a]) that Steinberg level-raising at 23 can be performed. It is important to remark that this follows from the fact that this residual representation is the reduction of a representation with ramification at 23 given by a character of order 11. Thus we conclude that in any case we can take a modular weight 2 lift of this mod 11 representation that it semistable at 23 (i.e., the ramification group at 23 is pro-unipotent), which corresponds to the fact that the modular form is Steinberg at 23 (this is either an application of Ribet’s level raising to add the prime 23 or a minimal lift).

In the usual Sophie Germain trick, at this step, reducing modulo 23 one manages to create a congruence with another newform of weight 24. But since such a weight is not useful for our purposes, we take another specialization of the ordinary Hida family containing this semistable weight 2 representation: we take \(k = 68 \). Since \(68 \equiv 2 \pmod{22} \) we know that there is an ordinary Galois representation attached to a newform of this weight and level \(q^2 \) which is congruent modulo 23 with the given weight 2 representation.

We include a proof of the fact that at weight 68 (and with the same argument, at all weights \(k > 2 \) such that \(k \) is congruent to 2 modulo 22) the specialization of this Hida family gives a newform without 23 in its level. This is well-known, but the referee asked us to include a proof, for example, the one that he provided: let us call \(f \) the weight 2 newform that is Steinberg at 23 and let us consider the ordinary Hida family containing the 23-adic Galois representation attached to \(f \). We specialize this Hida family to weight \(68 = 2 + 3(23 - 1)^{2-1} \) to get a form \(g \) of tame level \(q^2 \) (not necessarily exact level \(q^2 \)) such that \(\pi_{g,23} \) is a (possibly ramified) principal series \(\pi(\chi_1, \chi_2) \) where one of the \(\chi_i \) has to be unramified or Steinberg. Observe that the central character of \(g \) at 23 is given by \(\omega_{23} \cdot \omega_{23}^{1-68} = \omega_{23}^{66} = 1 \). Hence \(\pi_{g,23} \) must be an unramified principal series otherwise the central character would be non-trivial. This proves that \(g \) has exact level \(q^2 \).

Remark: we insist on the fact that our main goal is to manage to reduce the set of possible weights to values that are all greater than 2 and congruent to 2 modulo 3. This will be essential on Step 4 because thanks to this property on the weights and the fact that the nebentypus at 43 will be \(\omega^{k-2} \) we see that the nebentypus has prime order \(42/6 = 7 \), and this will be required. For this reason, in this Hida family we skip the value \(k = 46 \) and we choose \(k = 68 \) instead.
At this point, we have reduced the case of weight up to 14 (greater than 2) to the case of weight 68. Since $68 \equiv 2 \pmod{3}$, let us try our weight reduction. We must work only with primes that are congruent to 1 modulo 3. Our first try is $p = 73$, using it we manage to reduce the weight but we get stuck in the next step (with $k' = 44$; no primes congruent to 1 mod 3 show up “nearby”!), so let us try with $p = 79$ instead.

We reduce modulo 79, and we take a modular weight 2 lift, with nebentypus $\omega_{66} = (\omega^6)^{11}$, of order $m = 13$.

Galois conjugation is done as in Step 2, using $t = (m + 1)/2 = 7$, i.e., exponentiating to the $11^{-1} \cdot 7$ in the cyclotomic field of 13-th roots of unity, but this leads us to a value of $k_1 = dt + 2 = 6 \cdot 7 + 2 = 44$ where, again, we get stuck.

Luckily, this is not the only possible Galois conjugation (this extra degree of freedom will be exploited more systematically at Step 6), so let us try with other value of t, always prime to 13 of course. Taking $t = 8$ the values we obtain are $k_1 = 50$ and $k_2 = 32$. Observe that both values are again congruent to 2 modulo 3 (as we explained, it is easy to see a priori that this will hold, due to our careful choice of the prime p).

Since the first of these two values is too big (our goal includes the condition $k < 43$), assuming we end up with $k = 50$ we iterate the process. We take $p = 61$, reduce mod 61, and this time the nebentypus of the modular weight 2 lift is $\omega^{48} = (\omega^{12})^4$, whose order is 5.

Remark: in Step 2 we always had $m > 6$, but $m = 5$ is also fine for the Galois conjugation trick because it also satisfies $\phi(m) > 2$ (compare with [Di09], where in the case of $k = 10$ weight reduction was done with nebentypus of order 5. On the other hand, it is easy to see that if $m = 6$ or $m < 5$ since $\phi(m) \leq 2$ the method can not work).

Taking $t = 3$ for the Galois conjugation, we easily compute $k_1 = 12 \cdot 3 + 2 = 38$ and $k_2 = 26$.

The conclusion is that we have linked the given newform f_5 of small weight, to another newform with the same level q^2, Good-Dihedral at q, whose weight is equal to 26, 32 or 38.

The three values are congruent to 2 modulo 3, and are smaller than 43.

Remark: the referee asks if this process can be continued to produce weights that are even smaller. The answer is that this is very likely to be the case (according to the referee’s computations, we can for example reduce to $k = 20, 26, 32$) but since we already have a set of weights that are all smaller than 43 and congruent to 2 modulo 3 we do not need to continue the weight
reduction.

At a referee’s suggestion, we include a picture describing the congruences involved in this step (see end of section 3.1 for notation):

Remark: g_1 has nebentypus of conductor p_2 and order p_1.
Having g_3, an application of WRGC (the technique explained in section 3.2) reduces to a newform g_4 of weight 32 or 50, and then another application of WRGC reduces the case of weight 50 to weight 26 or 38. In any case, we finish this step with a newform $g_5 \in S_{26,32,38}^{q-GD}(\Gamma_1(q^2))$.

3.4 Step 4

Let us begin by giving the definition of Micro Good-Dihedral prime (as the referee points out, this notion has been used in [Di12a] but a formal definition is not given there):

Definition: Let f be a Hecke eigenform of weight $k \geq 2$ and level divisible by an odd prime w. We say that w is a Micro Good-Dihedral (MGD for short) for f if the local type of f at w is supercuspidal and the ramification of the compatible system of Galois representations attached to f at w is given by a character (of the unramified quadratic extension of \mathbb{Q}_w) of order $s^\alpha \geq 7$ where s is a prime dividing $w + 1$.

Remark: If the prime s is odd, since s can not divide $(w - 1) \cdot w$ it is clear that the nebentypus of f (equivalently, the determinant of the compatible system attached to f) can not ramify at w.
Thanks to the tricks in the previous step, we can incorporate 43 as a MGD prime, exactly as we did in [Di12a] to incorporate the MGD prime 7. Recall (cf. [Di12a]) that given a prime \(p \) that is the large one in a Sophie Germain pair, if we call \(\hat{p}_0 = (p - 1)/2 \), assumed prime, and we take another prime \(p_1 \) dividing \(p + 1 \), starting with an even weight \(2 < k < p \), we had devised a procedure to introduce \(p \) as a MGD prime in the level, in other words, to link through a chain of congruences the given modular representation with another one, this time having \(p \) as a supercuspidal prime in the level, with ramification given by a character of order \(p_1 \), and having weight 2.

This is explained in detail in [Di12a], it exploits different known cases of congruences between principal series, Steinberg, and supercuspidal modular forms. First via a modular weight 2 lift in characteristic \(p \) we introduce nebentypus at \(p \) of order \(\hat{p}_0 \) (as we did in the previous step with the pair 11 and 23), then in characteristic \(\hat{p}_0 \) we transform this into Steinberg ramification at \(p \) (again, as in the previous step), and finally, moving to characteristic \(p_1 \) we can create a non-minimal lift that transform the type at \(p \) into supercuspidal with ramification of order \(p_1 \). As with Good-Dihedral primes, recall that this is useful because for a compatible system of Galois representations attached to a modular form containing such a local parameter, the residual representations in characteristics \(\ell \neq p, p_1 \) are going to be irreducible (because they are so locally at \(p \)).

This is almost exactly what we do to introduce the MGD prime \(p = 43 \), using the auxiliary primes \(p_0 = 7 \) and \(p_1 = 11 \), to end up with supercuspidal ramification of order 11 at 43. The only difference is that 43 is not Sophie Germain, i.e., \((43 - 1)/2 = 21\) is not a prime. But this is precisely why we have made Step 3. The Sophie Germain trick, devised in the first place to introduce Steinberg ramification at \(p \), is based on the fact that, after making a modular weight 2 lift in characteristic \(p \) the nebentypus \(\omega^{k-2} \) has order \(\hat{p}_0 \), a prime if we are in a true Sophie Germain situation (observe that we have, as will always be the case in this paper, even weights all through the weight reduction process). Since we have forced the weight \(k \) to be congruent to 2 modulo 3 (this is what Step 3 is about), we can work “as if 43 was Sophie Germain”, the only important think is that the nebentypus \(\omega^{k-2} \) must have prime order, and this is satisfied because since \(k - 2 \) is divisible by 6, this nebentypus has order exactly \(42/6 = 7 \) (and, luckily, 7 is a prime!), thus all the process of introducing the MGD prime can be done exactly as in [Di12a] thanks to the extra information on the weight.

Another key fact that allows us to do this step is that at the end of Step 3
the three possible values of the weight are all smaller than 43 and larger than 2: recall that the first thing we do in this step is to move to characteristic 43, consider the residual representation and apply [KW], Theorem 5.1 - (2) to take a weight 2 lift of this residual representation. The condition \(k < 43 \) is required to be in a Fontaine-Laffaille situation, so that the Serre’s weight of the residual representation is known to be exactly this weight 2 < \(k < 43 \).

We stress that all auxiliary primes must be taken to be greater than 5: this is the reason why we have not been able to find a reasonable small true Sophie Germain prime that is good for our purposes.

As in previous sections, the Good-Dihedral prime \(q \) with \(q > t > B > 68 > 43 \) is enough to guarantee that all residual images in the above process are 6-extra large.

After these manipulations, we end up with a newform \(f_6 \) having weight 2 and level \(43^2 \cdot q^2 \), Good-Dihedral at \(q \), and having 43 as a MGD prime.

At a referee’s suggestion, we include a picture describing the congruences involved in this step (see end of section 3.1 for notation):

\[
\begin{align*}
\rho_{g_5,43} &\rightarrow g_5 \in S^q_{26,32,38}(\Gamma_1(q^2)) \quad \text{Thm 5.1 - (2)} \\
\rho_{g_6,7} &\rightarrow g_6 \in S^q_{1}(\Gamma_1(43q^2)) \\
\rho_{g_7,11} &\rightarrow g_7 \in S^q_{2}(\Gamma_1(43q^2)) \\
\rho_{g_8,11} &\rightarrow f_6 \in S^{q-x}_{2}(\Gamma_1(43q^2)) \quad \text{Thm 5.1 - (4)}
\end{align*}
\]

We explain for the reader’s convenience the arrow labelled \((\ast)\) (observe also that a similar situation already occurred in Step 3): since the nebentypus of \(g_6 \) is a character ramified at 43 of order 7, the residual representation \(\rho_{g_6,7} \) will be either unramified or with semistable (i.e., unipotent) ramification at 43, and in both cases it was proved in [Di12a] that a lift that is Steinberg at 43 exists. This will either be a case of Ribet’s level raising (if the residual representations is unramified at 43) or a minimal lift.
3.5 Step 5

At this step we are going to remove the Good-Dihedral prime q from the level.

At the referee’s request, let us explain why the prime q is still a Good-Dihedral prime for f_6 as it was for f_2, i.e., with ramification given by a character of the same order t and with respect to the same bound B. As in [KW] or in [Di12a] this follows from the definition of Good-Dihedral prime as long as one observes that in all congruences going from f_2 to f_6 the following conditions have been satisfied: all congruences are in characteristics smaller than B; whenever a prime z has been added to the level in a congruence, it always was a prime satisfying $z < B$ and, finally, in all congruences the local parameter at q was not changed (all the lifts considered were minimal locally at q). Because of these conditions, we know that all congruences in the chain going from f_2 to f_6 had large residual image, this being forced by their local behavior at the Good-Dihedral prime q.

In order to remove the Good-Dihedral prime from the level, we are first going to move to characteristic t, and then to characteristic q. Precisely because we are leaving the safety zone of characteristics up to B we must be careful because in both cases, and in all the steps of the chain that follows, we need to check that the residual images are 6-extra large: we don’t have any longer the Good-Dihedral prime to ensure this.

Moreover, when reducing modulo t we are losing the supercuspidal ramification at q, so we need other arguments even to justify that this residual representation, and those in the next steps of the chain, are irreducible.

On the other hand, we have also introduced the MGD prime 43 in the level, and as we already mentioned, as long as we avoid working in characteristics 43 and 11, the local information at 43 is enough to guarantee that residual images are (absolutely) irreducible. As the reader can easily check, in this step, and also in Steps 6,7 and 8, we are going to avoid these two characteristics, so residual irreducibility is guaranteed by the MGD prime in these four steps.

Also, ramification at 43 has order 11, and it gives an element of order 11 also in the image of the projective representation, thus the exceptional cases in Dickson’s classification of maximal subgroups of $\text{PSL}(2,\mathbb{F})$, where \mathbb{F} is a finite field of characteristic p, are ruled out for the images of the residual representations appearing in the chain, as long as the MGD prime stays in the level (again, this will be the case in Steps 5,6,7 and 8).
Therefore, in this step and the next three steps, because of Dickson’s classification and thanks to the MGD prime, in order to ensure that a residual image is large all that we will have to check is that it is not dihedral.

Moreover, since we are NOT going to work in characteristic 11 during these four steps, and using again the fact that we have an element of order 11 in the projective image, we know that if the residual image is large, it will also be 6-extra large (this is a non-empty statement only for \(p = 13 \)).

This being said, let us proceed to remove the Good-Dihedral prime from the level, checking that residual images are not dihedral.

We start with the newform \(f_6 \), we move to characteristic \(t \) and we reduce modulo \(t \).

It is important to stress that, as happened in [KW], this is the exact moment in which the Good-Dihedral prime \(q \) is lost: since the ramification at \(q \) was given by a character of order \(t \) and there are no elements of order \(t \) in the multiplicative group of any finite extension of \(F_t \), it is clear that this character is killed when reducing mod \(t \). Moreover, it is known (see [KW] and [Di12a] where the same situation occurred) that the residual mod \(t \) representation will be either unramified or having semistable ramification at \(q \) (and the two cases can occur, as proved in [KW], Thm 5.1 - (4)).

Suppose that the residual representation is dihedral, and let \(K \) be the quadratic number field such that the restriction to \(G_K \) becomes reducible. The only ramified primes for the residual representation are \(t, q \) and 43 (at most). Having reduced modulo \(t \), the ramification at \(q \) will be either trivial or semistable (unipotent). In either case, clearly \(K \) can not ramify at \(q \) (moreover, from the assumption of dihedral image we can conclude that the residual representation is unramified at \(q \)). On the other hand, the order of ramification at 43 is odd, thus clearly \(K \) can not ramify at 43. We conclude that \(K \) is the quadratic number field ramified only at \(t \), in other words, that the residual representation is bad-dihedral.

But since the newform \(f_6 \) has weight 2 and \(t \) is not in its level, the Serre’s weight of the residual representation is \(k = 2 \), and then the residual representation can not be bad-dihedral because \(t > 3 \) (cf. [Ri97]). The result of Ribet that we are applying here, a result that is part of the proof of “generically large images for modular non-CM Galois representations” (cf. [Ri85]), and is explained in detail in [Ri97] for the case of weight 2, but holds in general with the same proof, is going to be required several times in the following sections, so let us record it here.
Lemma 3.1 Let $\bar{\rho}$ be an irreducible representation in characteristic p, for a prime $p > 2$, that is attached to some newform f. Suppose that the Serre’s weight k of $\bar{\rho}$ satisfies $2 \leq k \leq p + 1$. Suppose that $\bar{\rho}$ is bad-dihedral, or, more generally, that it is dihedral and induced from a quadratic number field that ramifies at p.

Then it must hold: $p = 2k - 1$ or $p = 2k - 3$. Moreover, in the first case the representation is reducible locally at p, while in the second case it is, locally at p, induced from a ramified character of the unramified quadratic extension \mathbb{Q}_p^2 of \mathbb{Q}_p.

This result of Ribet, that has been used many times in the literature (for example in [DM], or in [Kh]), can be easily proved by observing that in the case under consideration, the projective image of the inertia group at p must have order 2. The result follows easily from this and the definition of Serre’s weight. The assumption on the size of k is not serious, because it is known that by suitable twisting it is always satisfied (cf. [E]), and we always do apply this twisting to reduce to this situation, in all steps of the proof.

We have shown that the mod t reduction of f_6 has 6-extra large image. On the other hand, we know that it is either unramified or semistable locally at q. Moreover, in the first case, due to the existence of the lift given by f_6 which is supercuspidal at q it is easy to see that the well-known necessary condition for Steinberg level-raising is satisfied. Thus, in both cases, doing level-raising if necessary, we consider a lift of this mod t representation corresponding to a newform f_7 of weight 2, level $43^2 \cdot q$, Steinberg at q.

Now we move to characteristic q, and we reduce modulo q. Using once again the MGD prime 43 in the level, we know that the residual image will be 6-extra large provided that it is not dihedral. Again, if it where dihedral, it can not be induced from a quadratic field K ramified at 43 because the order of ramification at this prime is odd, thus it should be bad-dihedral. But since q is a Steinberg prime in the level, the Serre’s weight k of this mod q representation is either $q + 1$ or 2, and this in any case by applying Lemma 3.1 we know contradicts the fact that the representation is bad-dihedral. We thus conclude that the residual representation can not be dihedral, and thus that it has 6-extra large image.
Since f_7 has weight 2 and is Steinberg at q, we can consider the ordinary Hida family containing the q-adic representation attached to f_7. We now specialize this family at weight $q + 1$ to get a newform f_8 which is ordinary at q and congruent to f_7 modulo q, this newform f_8 of weight $q + 1$ and level 43^2 (see Section 3.3 for an explanation of why in a situation like this whenever one specializes to a weight congruent to 2 modulo $q - 1$ and larger than 2 the level is prime to q).

3.6 Step 6

At this step we need again to perform the WRGC as in Step 2, in order to reduce the (very large) weight $k = q + 1$ of f_8 to a weight $k \leq 14$.

In this process, we are going to avoid characteristics 43 and 11, so that to ensure that the MGD prime 43 is preserved. But we need to ensure that images are 6-extra large in the whole process. In Step 2 this was ensured by the Good-Dihedral prime in the usual way (cf. [KW], [Di12b], [Di12a]), but now we only have the MGD prime in the level.

As explained in the previous section, thanks to the MGD prime, all that we need to check is that residual images are not dihedral. Moreover, in this process of WRGC, we will always work with mod p Galois representations ramified only at p and at 43, and since the order of ramification at 43 is odd, the only possible dihedral case is the bad-dihedral case.

Thus, we have to perform WRGC, perhaps with some modifications with respect to the classical version given in Step 2, in such a way that we can guarantee that at each congruence the residual image is not bad-dihedral. The process of weight reduction will follow a similar pattern as in Step 2: we have a newform f of weight k and level 43^2, such that 43 is a MGD prime, and assuming that $k \geq 16$, we take p to be the first prime larger than k, except for $k = 42$ where, since 43 is forbidden, we are going to specify later what prime to take, and also for $k = 32$ where in Step 2 we choose $p = 43$ and here, again, we are going to have to choose another prime.

We reduce modulo p, and since it is easy to check (by hand for small values of k, and because of the strong version of Bertrand’s postulate used in Step 2 for $k > 36$) that we always have $p \neq 2k - 1, 2k - 3$ we apply Lemma 3.1 and conclude that this mod p representation is not bad-dihedral.

The problem is after doing the Galois conjugation: we can try formally to proceed exactly as in Step 2. With the same notation and same reasonings, we can take a modular weight 2 lift of the mod p Galois representation, we
know that the order m of the nebentypus ω^{k-2} is greater than 6, and we can take t as before, the first number greater than $m/2$ relatively prime to m, and use it to Galois conjugate. The problem is that after doing so, the new Serre’s weight of the mod p reduction will be (after suitable twisting) equal to $k_1 = dt + 2$ or to $k_2 = p + 1 - dt$ (both smaller than the given k, as shown is Step 2), and in some cases it WILL BE THE CASE that some of these two values, call it k', will satisfy $p = 2k' - 1$ or $p = 2k' - 3$, thus we can not apply Ribet’s Lemma to rule out the bad-dihedral case.

We are going to solve this problem using the combination of two completely different tricks: first, we will prove another Lemma that will allow us to eliminate the case $p = 2k' - 3$, we will prove that, with our ramification conditions, such a bad-dihedral case can not happen. Then, once we are reduced to control the bad-dihedral case with $p = 2k' - 1$, since this case can sometimes happen, we will isolate those cases where this equality is satisfied, and for such cases we will prove that there is another Galois conjugation, given by $t' > t$ the first prime to m integer after t, such that by using this exponent to conjugate the new weights k_1 and k_2 are again smaller than the given k, and the equality $p = 2k' - 1$ can not be satisfied by any of these two values (recall that we are assuming that it was satisfied by some of the corresponding values for t). In other words: it is not possible that using both conjugations, the one corresponding to t and the one corresponding to t', both give bad-dihedral cases. Thus, this extra conjugation will allows us to ensure that there is always a way to conjugate in order to reduce the weight, avoiding the bad-dihedral case.

The main difficulty is to show that t' is still sufficiently small with respect to m, so as to imply that after this conjugation the new Serre’s weights are smaller than the given one.

So, the first thing to do is to prove the result that allows us to get rid of the $p = 2k' - 3$ case. The following result is proved in [Kh] for the level 1 case, but we are going to apply it in a more general situation, where it can be seen that it still holds applying the exact same reasoning:

Lemma 3.2 Let $\bar{\rho}$ be an irreducible representation in characteristic p, for a prime $p > 2$, that is attached to some newform f. Suppose that the Serre’s weight k of $\bar{\rho}$ satisfies $2 \leq k \leq p + 1$. Suppose that for every prime w different from p where $\bar{\rho}$ is ramified, the order of the image of the inertia group at w is odd. Then, the bad-dihedral case with $p = 2k - 3$ can not occur.
Remark: With the stronger assumption that the residual representation ramifies only at p, this is Lemma 6.2 (i) in [Kh], and the proof given there extends to our case. For the reader convenience, let us briefly recall the argument. Suppose that the image of the representation is dihedral, i.e., we consider the projectivization $\mathbb{P}(\bar{\rho})$, and if we call L the fixed field of its kernel, L is a Galois number field with dihedral Galois group D_{2t} of order $2t$, $t > 1$. It follows from the hypothesis that the only quadratic number field K that can be contained in L is the quadratic number field unramified outside p (in any other case, the image of inertia at some other prime would be even). From this, it follows that t is odd, because for even t dihedral groups are known to have more than one index two subgroup (even if in general only one of them is cyclic), therefore if t were even L would contain more than one quadratic field.

This is enough to rule out the case $p = 2k - 3$, because in such a case locally at p the image of the projective representation is a dihedral group of order 4, but D_{2t} can not contain a subgroup of order 4 since we have shown that t is odd.

Now we resume the process of WRGC: recall that we start with a representation of some weight $k > 16$ and level 43^2, and we pick the first prime p greater than k, except for $k = 32$ and $k = 42$ where the value of p will be specified later. In particular, we are always taking $p \neq 43$.

As in Step 2, the reduction process will be guaranteed by certain inequalities that hold for $k > 36$ due to a strong version of Bertrand’s postulate, and for $16 < k \leq 36$ and $k = 42$ it will be checked by hand (see Step 2).

Let us start with the case $k > 36$, $k \neq 42$. We move to characteristic p and reduce modulo p. As we already explained, Lemma 3.1 implies that this residual representation is not bad-dihedral because p is near k, more precisely: $p/k < 1.144$.

We take a modular weight 2 lift (as usual, using [KW] Theorem 5.1 - (2) combined with a suitable M.L.T. such as Thm 4.1 in loc. cit.), whose nebentypus $\omega^{k-2} = (\omega^d)^a$ is a character of order $m = (p - 1)/d > 6$, where $d = (p - 1, k - 2)$. Observe that the exponent a is prime to $p - 1$. By choosing some t relatively prime to m, $m/2 < t < m - 1$, which exists because $m > 6$, we consider the Galois conjugate of this representation having nebentypus $(\omega^d)^t$. As in Step 2, from the fact that $k - 2$ is near $p - 1$ (and thus dividing by d, the integer a is near m) it follows that if t is taken sufficiently near $m/2$, thus sufficiently away from m, the largest possible Serre’s weight of the
residual conjugated representation, $k_1 = dt + 2$, will be smaller than k. In Step 2 we took t to be the smallest possible number satisfying the above conditions. Now we need to be more careful, because we want to ensure that the residual conjugated representation is not bad-dihedral. We can apply Lemma 3.2, because the only prime other than p where this residual representation ramifies is 43, and ramification at 43 is of order 11, thus we conclude that the bad-dihedral case with Serre’s weight satisfying $p = 2k' - 3$ can not happen. Therefore, we only have to deal with the case $p = 2k' - 1$. Observe that in all this process the Serre’s weights are going to be even, because the determinant is unramified outside p, and modular Galois representations are odd. Then, in particular, if $p \equiv 1 \pmod{4}$, since $2k' - 1 \equiv 3 \pmod{4}$ we are already safe and we know that the bad-dihedral case can not happen. Later when we check by hand the weight reduction process for $k < 38$ this will be very important: whenever we choose the prime $p \equiv 1 \pmod{4}$ then bad-dihedral cases can not occur (in this weight reduction).

Unfortunately, it is not clear that for any gigantic k one can find a prime $p \equiv 1 \pmod{4}$ larger than k sufficiently near k, so we still have to deal with the problem of bad-dihedral cases. The good thing is that we can restrict to the case $p \equiv 3 \pmod{4}$. With this restriction in mind, since $d = (p-1,k-2)$ is always even, we see that $m = (p-1)/d$ is odd.

Let us first use the same Galois conjugation that we used in Step 2, where t is the first integer larger than $m/2$ coprime to m. Since in our current situation m is odd, this gives $t = (m+1)/2$.

Remark: in what follows, since we are restricted to the case m odd, $m \geq 7$, we have $\frac{1}{2}\phi(m) \geq 3$. This implies that there exists an integer t' prime to m with:

$$m/2 < t = (m+1)/2 < t' < m - 1.$$

We conjugate using t, we compute the two possible values of the Serre’s weight k' of the residual conjugated representation: $k_1 = dt+2$, $k_2 = p+3-k_1$, and let us check what are exactly the cases where one of these two values satisfies $p = 2k' - 1$. First, recall that $k_1 + k_2 = p + 3$ and $k_1 > k_2$ (see Section 3.2). Thus, we have $2k_1 - 1 > 2k_1 - 3 > p$, and this implies that $k_2 = p + 1 - dt$, the smallest of the two values of the Serre’s weight, is the only one that can give a bad-dihedral case.

So, let us suppose that we have:

$$p = 2k_2 - 1 = 2(p + 1 - dt) - 1.$$
Or equivalently:

\[p + 1 - 2dt = 0. \]

Using \(p = md + 1, m = 2t - 1 \), and expanding, we see that this is equivalent to:

\[((2t - 1)d + 1) + 1 - 2dt = 0. \]

and this is equivalent to:

\[d = 2. \]

Therefore, we see that the (possibly) bad-dihedral case occurs exactly when \(p \equiv 3 \pmod{4}, t = (m + 1)/2 \) and \(d = (p - 1, k - 2) = 2 \).

We stress that except in this specific case, the process of WRGC is done exactly as in Step 2 using the value of \(t \) as defined there, and what follows is an alternative Galois conjugation to be applied specifically in this case.

So, suppose that \(p \equiv 3 \pmod{4}, d = (p - 1, k - 2) = 2 \). Then, \(m = (p - 1)/2 \) is odd, and as in Step 2 we know that \(m > 6 \).

As we remarked, the following integer exists: let \(t' \) be the smallest integer prime to \(m \) satisfying \(t = (m + 1)/2 < t' < m - 1 \). Let us use this value for conjugation instead of \(t \). First of all, it is clear that using \(t' \) we are not going to be in a bad-dihedral case, precisely because we are assuming that using \(t \) we are in such a bad case. In fact, if both things happen at the same time we would have that in both cases \(k_2 \) satisfies: \(p = 2k_2 - 1 \), thus the value of \(k_2 \) would be the same for both conjugated residual representations. Replacing by the values of these weights we would obtain the equality (recall that we are assuming that \(d = 2 \))

\[p + 1 - 2t = p + 1 - 2t' \]

contradicting the fact that \(t \neq t' \).

The key important fact, which remains to be checked, is that induction works also when one uses this new way of conjugating, i.e., that by conjugating using \(t' \), the new Serre’s weights are smaller than the given weight \(k \), and it is of course enough to check this for the largest of the two values, \(k_1 = 2t' + 2 \).

In order to see this, we begin by proving the following elementary Lemma:

Lemma 3.3 Let \(m \) be an odd integer satisfying \(m \geq 7 \).

Let \(p' \) be the smallest odd prime not dividing \(m \). Then, it holds:

\[p' < 0.6 \cdot m \]
Proof: we divide the proof in four cases:

i) $3 \nmid m$: in this case, $p' = 3$, and since $m \geq 7$ the Lemma follows because $3 < 0.6 \cdot 7 = 4.2$.

ii) $3 \mid m$ but $5 \nmid m$: in this case $p' = 5$ and since $m \geq 9$ the Lemma follows because $5 < 0.6 \cdot 9 = 5.4$.

iii) $15 \mid m$ but $7 \nmid m$: in this case $p' = 7$ and since $m \geq 15$ the Lemma follows because $7 < 0.6 \cdot 15 = 9$.

iv) $105 \mid m$: Let us denote by p_i the (positive) prime numbers in \mathbb{Z}, in its usual ordering. In this case if we have $p' = p_{r+1}$ it holds: $r \geq 4$ and m is divisible by the $r-1$ first odd primes p_2, p_3, \ldots, p_r. Then, because by Bertrand’s postulate $p' < 2 \cdot p_r$ we obtain:

$$p' < 9 \cdot p_r = 0.6 \cdot 3 \cdot 5 \cdot p_r = 0.6 \cdot p_2 \cdot p_3 \cdot p_r \leq 0.6 \cdot p_2 \cdot p_3 \cdot \ldots \cdot p_r \leq 0.6 \cdot m$$

and this concludes the proof.

We have defined t' to be the smallest integer that is prime to m and larger than $(m + 1)/2$. Then, it is easy to see that if we define p' as in the Lemma above, it holds:

$$t' = (m + p')/2.$$

Therefore, applying Lemma 3.3 we conclude that $t' < 0.8 \cdot m$.

From this, we have: $k_1 = 2t' + 2 < 1.6m + 2$, and since $m = (p - 1)/2$ this gives:

$$k_1 < 0.8 \cdot (p - 1) + 2 = 0.8 \cdot p + 1.2.$$

On the other hand, we are assuming that $k > 36$ in order to use, as in Step 2, the validity of a strong version of Bertrand’s postulate that gives: $p < 1.144 \cdot k$ (see formula (*) in section 3.2, where now we are calling p the prime that was called p_{n+1} there, this gives $p < 1.144 \cdot p_n$ which is stronger that what we want since $p_n < k$). Combining this inequality with the previous one we obtain:

$$k_1 < 0.8 \cdot 1.144 \cdot k + 1.2 = 0.9152 \cdot k + 1.2.$$

Also, since $k > 36$, it is easy to see that $0.9152 \cdot k + 1.2 < k$ and then we conclude that $k_1 < k$ giving the proof of the induction, for $k > 36$ and $k \neq 42$.

It remains to see that for the remaining values of k either t defined as in Step 2 or t' as defined above makes the induction work. We will list all cases, starting from the special values $k = 42$ and $k = 32$.

In all cases $p \neq 43$, $p \neq 2k - 1$, and also $k_1, k_2 < k$. Moreover, since we are using t' instead of t precisely in those cases where $p \equiv 3 \pmod{4}$ and $d = 2$.

32
the equality $p = 2k' - 1$ for $k' = k_1$ or k_2 is never satisfied:

- $k = 42, p = 47 : d = 2, m = 23, t' = 13, k_1 = 28, k_2 = 22$
- $k = 32, p = 47 : d = 2, m = 23, t' = 13, k_1 = 28, k_2 = 22$
- $k = 36, p = 37 : d = 2, m = 18, t = 11, k_1 = 24, k_2 = 16$
- $k = 34, p = 37 : d = 4, m = 9, t = 5, k_1 = 22, k_2 = 18$
- $k = 30, p = 31 : d = 2, m = 15, t' = 11, k_1 = 24, k_2 = 10$
- $k = 28, p = 29 : d = 2, m = 14, t = 9, k_1 = 20, k_2 = 12$
- $k = 26, p = 29 : d = 4, m = 7, t = 4, k_1 = 18, k_2 = 14$
- $k = 24, p = 29 : d = 2, m = 14, t = 9, k_1 = 20, k_2 = 12$
- $k = 22, p = 23 : d = 2, m = 11, t' = 7, k_1 = 16, k_2 = 10$
- $k = 20, p = 23 : d = 2, m = 11, t' = 7, k_1 = 16, k_2 = 10$
- $k = 18, p = 19, d = 2, m = 9, t' = 7, k_1 = 16, k_2 = 6$
- $k = 16, p = 17 : d = 2, m = 8, t = 5, k_1 = 12, k_2 = 8$

This concludes the WRGC process, and we end up with a newform f_9 of level 43^2 and weight $2 < k \leq 14$, k even.

3.7 Step 7

This step is meant to reduce to cases where $k < 17$ and divisible by 4. This last condition will be required in Step 8. We start with f_9 and the idea is, as in Step 3, to unify the value of the weight using the Sophie Germain trick and then, since the weight obtained is too big, to perform some extra weight reductions, in a controlled way. This time we will apply Khare’s method of weight reduction (cf. [Kh]).

To preserve the MGD prime 43 in the level, we are going to avoid characteristics 11 and 43 at this Step. Once again, as explained at the beginning of Step 5, in order to ensure that residual images are 6-extra large it is enough to check that they are not dihedral.

So, let us first choose the pair of Sophie Germain primes 23 and 47. We consider a mod 47 Galois representation attached to f_9. Since ramification at 43
has odd order, the only possible dihedral case is the bad-dihedral case. Since the residual Serre’s weight satisfies $2 < k \leq 14$ and $p = 47$ it follows from Lemma 3.1 that the representation can not be bad-dihedral, thus it can not be dihedral.

We take a modular weight 2 lift, with nebentypus ω^{k-2} of conductor 47 and order 23, $2 < k \leq 14$, we move to characteristic 23, and we reduce mod 23. Observe that this residual representation has Serre’s weight 2 and is ramified at most at 47, 23 and 43. Since we are reducing mod 23 a character of order 23, the ramification at 47 can either be trivial or unipotent. In any case, if we suppose that the residual representation has dihedral image, it must be unramified at 47. Again, since 43 is a MGD prime, the only possible dihedral case is the bad-dihedral case, which is ruled out by Lemma 3.1 because $k = 2$.

We take a lift of weight 2 of this residual representation, corresponding to a newform that is Steinberg locally at 47 (if the residual representation is ramified at 47 this is just a minimal lift, and in case the residual representation is unramified at 47, we are applying Ribet’s level raising: as in step 3, it is easy to see that the necessary condition for level raising is satisfied). We move to characteristic 47 and we reduce mod 47. This residual representation can only have dihedral image if it has bad-dihedral image (the only ramified prime other than 47 being the MGD prime 43), which is ruled out again by Lemma 3.1 because the Serre’s weight is $k = 48$ or $k = 2$.

In any case, we can take an ordinary lift of this residual representation of weight 48 and level 43^2: the specialization at $k = 48$ of the Hida family containing the weight 2, Steinberg at 47 newform (as in Section 3.3, we know a priori that at weight 48 we specialize to a form of tame level 43^2, but since 48 is congruent to 2 modulo $47 - 1 = 46$ and is greater than 2, we conclude that the form has exact level 43^2). Thus, we have been able to reduce to a case of weight 48. Even if 48 is divisible by 4, it is too big for our purposes, so let us continue by linking this representation with some other representation of smaller weight.

At this point, we apply a particular case of Khare’s weight reduction: we pick a prime p larger than k, we reduce modulo p and take a modular weight 2 lift, and we also select an auxiliary prime r dividing $p - 1$ so that by reducing modulo r the order of the nebentypus changes. This way, one can take a lift of this mod r representation with a different type at p, in our case we are taking a lift that is minimal at p, and going back to characteristic p the value of the residual Serre’s weight will be different than the initial one (see [Kh], section 9, for details).
We have a newform of weight 48 (and level 43^2), and we choose $p = 53$. We reduce mod 53 (as usual, the residual image is not dihedral because of Lemma 3.1) and take a modular weight 2 lift (whose existence follows from [KW], Thm. 5.1 - (2) combined with a suitable M.L.T. such as Thm. 4.1 in loc. cit.) with nebentypus ω^{46} of conductor 53 and order 26.

We move to $r = 13$ and we reduce modulo 13 to kill a part of the ramification at 53 given by the character ω^{46}. This residual representation has Serre’s weight 2, and it possibly ramifies at 13, 43 and 53. Since ramification at 43 has odd order, and applying Lemma 3.1, we conclude that if the image is dihedral, it must be the case that the representation is induced from the quadratic number field ramified only at 53.

Luckily, the MGD prime 43 is a square modulo 53, then we can argue as with Good-Dihedral primes (this is the argument used to obtain large images with Good-Dihedral primes, as in [KW], Lemma 6.3) to get a contradiction. For the reader’s convenience, let us recall the argument. Let $K = \mathbb{Q}(\sqrt{53})$. Suppose that the residual representation is induced from a character of G_K, in which case its restriction to G_K is reducible. Since 43 is split in K, the image of the decomposition group at 43 is contained in the restriction to G_K of the representation, and this gives a contradiction since the first one is irreducible because 43 is a MGD prime and the latter is reducible.

This proves that the mod 13 representation can not have dihedral image.

Before reducing modulo 13, recall that we had a nebentypus at 53 of order 26. Thus, if we take a minimal lift of this mod 13 representation (applying [KW], Thm. 5.1 - (3) combined with a suitable M.L.T. such as Thm. 4.1. in loc. cit.), it will correspond to a weight 2 newform of level $43^2 \cdot 53$ but this time ramification at 53 will be given by a character of order 26/13 = 2, namely, ω^{26}.

We go back to characteristic 53, and the possible values for the Serre’s weight of this residual representation are $26 + 2 = 28$, or $53 + 3 - 28 = 28$, so $k = 28$. This implies that the image is not bad-dihedral even if $53 = 2 \cdot 28 - 3$, because we can apply Lemma 3.2 (the only prime in the level is the MGD prime 43). Therefore, the residual image is is not dihedral.

So far, we have reduced to the case of a newform of weight $k = 28$ and level 43^2. Now we apply again Khare’s weight reduction, taking $p = 29$. We reduce mod 29 (thanks to Lemma 3.1 the residual image is not dihedral) and take a modular weight 2 lift (using [KW], Thm. 5.1 - (2) combined with Thm. 4.1 in loc. cit.), whose nebentypus is ω^{26}, a character of conductor 29 and order 14.
We move to $r = 7$ and reduce modulo 7 to kill a part of the ramification at 29 that was given by ω^{26}, and obtain a mod 7 representation $\bar{\rho}$ of weight 2 ramified at 7, 43 and 29. If we suppose that this representation is dihedral, induced from a character of G_K for some quadratic number field K, then due to lemma 3.1 we know that K cannot ramify at 7, and since 43 is a MGD prime we conclude that it must be $K = \mathbb{Q}(\sqrt{29})$.

It will take some effort to show that this is not possible: in fact after reduction modulo 7 ramification at 29 is given by a character of order $14/7 = 2$, so a priori $\bar{\rho}$ could be induced from K. Notice, however, that the restriction $\bar{\rho}|_{G_K}$ will be unramified at 29.

Suppose that the image of $\bar{\rho}$ is dihedral. Let μ_1, μ_2 be the two mod 7 characters whose sum is isomorphic to the restriction to G_K of $\bar{\rho}$. Each of these two characters is possibly ramified at 43 and 7. We denote by \mathcal{O}_K the ring of integers of K and by v_1, v_2 the two places of K above 7. Let $\chi_{v_i}, i = 1, 2$, be the composition $\mathcal{O}_K/v_i \xrightarrow{\sim} (\mathbb{Z}/7\mathbb{Z})^\times \xrightarrow{\chi_7} \mathbb{F}_7^\times$ where χ_7 denotes the mod 7 cyclotomic character. Choose a generator τ in $\text{Gal}(K/\mathbb{Q})$. Then $\chi_{v_1}^\tau = \chi_{v_2}$.

Since the image of μ_i is in characteristic 7 and the conductor of $\bar{\rho}$ at 43 is 43^2, by class field theory we know that μ_i factors through $(\mathcal{O}_K/v_1 \cdot v_2 \cdot 43)^\times = (\mathbb{Z}/7\mathbb{Z})^\times \times (\mathbb{Z}/7\mathbb{Z})^\times \times \mathbb{F}_7^\times$.

Let us call ψ_i the character of conductor v_i appearing on the second component of μ_i, so that μ_i can be written as:

$$\mu_1 = \chi_{v_1}^{i_1} \psi_1^{j_1} \phi_1, \quad \mu_2 = \psi_2^{j_2} \chi_{v_2}^{i_2} \phi_2,$$

where $0 \leq i_1, i_2, j_1, j_2 \leq 6$ and ϕ_i is a character with conductor dividing $43\mathcal{O}_K$.

We fix an isomorphism of decomposition groups $D_{v_i} \xrightarrow{\sim} D_7$, sending Frob_{v_i} to Frob_7. Note that $D_{v_2} = D_{v_1}^{\tau} = \tau^{-1} D_{v_1} \tau$. In this situation, by local information at 7, since $\bar{\rho}$ has Serre’s weight 2 we have: $(\mu_1 \oplus \mu_2)|_{v_1} = \chi_{v_1} \oplus 1$ and $(\mu_1 \oplus \mu_2)|_{v_2} = 1 \oplus \chi_{v_2}$. Thus we must have

$$\mu_1 = \chi_{v_1} \phi_1, \quad \mu_2 = \chi_{v_2} \phi_2.$$

Observe also that since the representation $\bar{\rho}$ was obtained from a newform with 43 as a MGD prime in its level, its determinant (as well as the nebentypus of the newform) is unramified at 43 (see remark after the definition of MGD prime in section 3.4). Thus, since K has class number 1, we deduce that $\phi_2 \cdot \phi_1 = 1$. Thus, if c denotes complex conjugation, we have $\phi_1(c) = \phi_2(c)^{-1} = \phi_2(c)$ (because the image of c has order at most 2).
On the other hand, \(\chi_{\psi_2}(c) = \chi_{\psi_1}^*(c) = \chi_{\psi_1}(c) = -1 \). From this we conclude that \(\mu_1(c) = \mu_2(c) \) and therefore (recall that \(K \) is real, so \(c \in G_K \)) that the determinant of \(\bar{\rho}(c) \) is 1, contradicting the fact that modular Galois representations are odd.

This concludes the proof that the image of the representation \(\bar{\rho} \) can not be dihedral.

Remark: In a previous version of this paper, we gave a different proof which uses also some computations of ray class fields performed with Pari GP. In particular, these computations implied that the characters \(\psi_i \) appearing in the first formula for the \(\mu_i \) above have order at most 2. The proof we have included above, proposed by the referee, does not use this extra information.

We now proceed as in the previous reduction: we take a modular minimal lift of this residual representation (applying [KW], Thm. 5.1 - (3) combined with Thm. 4.1 of loc. cit.), observing that now the ramification at 29 is given by the quadratic character \(\omega_{14} \).

We go back to characteristic 29, where the residual Serre’s weight is \(14 + 2 = 16 \) or \(29 + 3 - 16 = 16 \), and the residual image is not bad-dihedral (thus not dihedral) due to Lemma 3.2.

We end up this step with a newform \(f_{10} \) of weight 16 and level \(43^2 \).

3.8 Step 8

This is a very elementary step, we have isolated this move just because of its conceptual importance.

Since the weight of \(f_{10} \) is 16, we can move to characteristic 17 and produce (applying [KW], Thm. 5.1 - (2) combined with Thm. 4.1 in loc. cit.) a congruence with a weight 2 newform \(f_{11} \) of level \(43^2 \cdot 17 \), whose ramification at 17 is given by the character \(\omega_{14} \) of order 8, a character that is also the nebentypus of this newform.

In this congruence, the residual representation has Serre’s weight 16 and \(p = 17 \), then an application of Lemma 3.1 together with the fact that 43 is a MGD prime (where ramification has an odd order) proves that the residual image is not dihedral. Due to the MGD prime in the level, this is enough to conclude that the residual image is 6-extra large (see discussion at beginning of Step 5).

This Step concludes with \(f_{11} \), a weight 2 newform with nebentypus of order 37.
8 at 17 and the MGD prime 43 in the level.

3.9 Step 9

At this step we are going to remove the MGD prime 43 from the level of f_{11}, more precisely we will transform it into a Steinberg prime via a modulo 11 congruence. The problem is that since we are losing the MGD prime it is not clear a priori that the residual image will be irreducible in this congruence. Moreover, the space of newforms of weight 2 and level $43^2 \cdot 17$ seems to be too big for computations, so we would not be able to check by hand that a mod 11 representation attached to f_{11} is irreducible. Luckily, the local information of the 11-adic Galois representation at the ramified primes 43 and 17 is enough to deduce that the residual representation is irreducible, as proved in the following:

Lemma 3.4 Consider the weight 2 newform f_{11}, whose level is $43^2 \cdot 17$, with nebentypus ψ of order 8 ramified at 17 and such that 43 is a MGD prime with ramification at 43 having order 11. Then, any modulo 11 residual representation attached to f_{11} is irreducible.

Proof: Let $\bar{\rho}$ be a residual representation in characteristic 11 attached to f_{11}. Suppose that $\bar{\rho}$ is reducible, and let us call μ_1, μ_2 the two characters in the diagonal. Since 43 was a supercuspidal prime, and ramification at 43 was given by a character of order 11, it is well-known that this residual representation will either be unramified or have unipotent ramification at 43. In any case, it is clear that the characters μ_1 and μ_2 are unramified at 43. From now on, we consider the semi-simplification of the residual representation, which is isomorphic to the direct sum $\mu_1 \oplus \mu_2$. Using the information on the ramification at 17, and the fact that the newform is of weight 2 and level prime to 11, we conclude that there are just two possibilities for this direct sum: it must be either $\chi \psi \oplus 1$ or $\chi \oplus \psi$. Here we are applying the usual principle that in a Fontaine-Laffaille situation (residual characteristic $p = 11 > k = 2$, p not in the level) the residual Serre’s weight equals the weight of the modular form, combined with the fact that we know the local inertial type at 17 to be given by ψ. On the other hand, the 11-adic lift of $\bar{\rho}$ provided by f_{11} is, locally at 43, induced from a character of the unramified quadratic extension of \mathbb{Q}_{43}, and

38
therefore the residual representation must satisfy the trace 0 condition which is necessary for the existence of such a lift: in terms of the characters μ_i, the condition is:

$$\mu_1(43) + \mu_2(43) = 0$$

(recall that this is an equality in characteristic 11).

Here we have used the fact that $\bar{\rho}(\text{Frob}_{43})$ must correspond to the action of $\text{Gal}(\mathbb{Q}_{43^2}/\mathbb{Q}_{43})$, hence has the form

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

giving trace 0.

Observe that $\chi(43) = -1$. We plug into the previous formula the two possible values for the characters μ_i and in both cases we obtain (again in characteristic 11):

$$\psi(43) = 1.$$

Since ψ is a character ramified at 17 of order 8, if we take a prime w which is a primitive root modulo 17 the value $\psi(w)$ will be an element of order 8 in some extension of \mathbb{F}_{11}. An easy computation shows that the order of 43 modulo 17 is 8, thus $43 \equiv w^2 \pmod{17}$ for some primitive root w. Therefore, $\psi(43) = \psi(w^2) = \psi(w)^2$ gives an element of order 4 in some extension of \mathbb{F}_{11}. But this clearly contradicts (\@), and this concludes the proof that $\bar{\rho}$ is irreducible.

We have thus seen that the mod 11 representation $\bar{\rho}$ attached to f_{11} is irreducible. Let us check, using once again Dickson’s classification, that its image is large. First of all, the projective image can not be an exceptional group because the image of ramification at 17 gives an element having, even after projectivization, order 8.

Since the Serre’s weight is 2, it follows from Lemma 3.1 that, if the image is dihedral, it must be induced from a quadratic field K ramifying at most at 17 and 43. But ramification at 43 of the residual representation is either trivial or unipotent (thus in both cases of odd order), so K can only ramify at 17.

To show that this case can not occur, we argue as in the proof of Lemma 3.1. We are now considering ramification at a prime different from the residual characteristic, but nevertheless the same reasoning on dihedral groups applies: If we assume that the image of $\bar{\rho}$ is dihedral induced from $K = \mathbb{Q}(\sqrt{17})$, using the fact that at the ramified prime $r = 17$ the image of the inertia group is given by a cyclic group of projective order greater than 4, we obtain a contradiction.
Thus, we conclude that the residual image can not be dihedral. Therefore, from Dickson’s classification we see that the image is large. Moreover, since \(\text{PGL}(2, \mathbb{F}_{11}) \) does not contain elements of order 8, we see (using a generator of the inertia group at 17) that the image is 6-extra large.

As we have already remarked, the residual representation \(\bar{\rho} \) will have either trivial or unipotent ramification at 43. Moreover, in the unramified case, the existence of the lift given by \(f_{11} \), which is supercuspidal at 43, is enough to ensure that Ribet’s level raising can be applied to construct a lift that is Steinberg at 43. In fact, since \(43 \equiv -1 \pmod{11} \), the condition to apply Ribet’s result reads

\[
\bar{\rho}(\text{Frob}_{43}) \equiv 0 \equiv 43 + 1 \pmod{11},
\]

and we have already stressed during the proof of Lemma 3.4 that this is satisfied. In any case, so it by Steinberg level-raising, so it by taking a minimal lift, we conclude that there is a modular lift of \(\bar{\rho} \) corresponding to a weight 2 newform \(f_{12} \) of level \(43 \cdot 17 \), which is Steinberg at 43 and has a nebentypus of order 8 at 17.

3.10 Step 10

What we do now is to move to characteristic 43 and consider the residual representation attached to \(f_{12} \) in this characteristic. In order to show that this residual representation is irreducible, we perform a computation using MAGMA in the full space of newforms of weight 2 and level \(43 \cdot 17 \), with nebentypus given by any character \(\psi \) of order 8 ramified at 17 and trivial at 43. The output of this computation is that any residual representation in characteristic 43 attached to any of these newforms is irreducible.

It took us only a few minutes to check this, because we used some theoretical information to speed the computation. In fact, all we did was to compute the Hecke polynomial \(P_2(x) \) of the Hecke operator \(T_2 \) in the above mentioned space (this is a polynomial with coefficients in \(\mathbb{Z} \)). In fact, and this will be clear in the explanation that follows, we only need to know the value of this polynomial modulo 43, and this is what we computed. For the reader’s convenience, we include some data of this polynomial. It has degree 256 and:

\[
P_2(x) \equiv x^{256} + 8x^{255} + 32x^{254} + \ldots + 33x + 21 \pmod{43}.
\]
Then, we studied what are the possible characters that would appear in the reducible case, i.e., if the residual representation is assumed to be reducible, we call μ_1 and μ_2 the characters in the diagonal, and using local information we conclude that their sum will be either $\chi \psi \oplus 1$ or $\chi \oplus \psi$, as in the previous step. This follows from the fact that since f_{12} has weight 2 and is Steinberg at 43, its attached 43-adic Galois representation is ordinary and has residual Serre's weight 2 or $43 + 1 = 44$. We evaluate this sum of characters at the prime 2 in the two possible cases and we consider $Q(x)$ to be the minimal polynomial of the value obtained. Using the fact that 2 is a square modulo 17, we see that the value $\psi(2)$ has order 4. Thus, the two different values for $Q(x)$ that we obtain are:

$$(x - 2)^4 - 1, \quad \text{and} \quad (x - 1)^4 - 2^4$$

To conclude, we simply check using resultants that the polynomials $P_2(x)$ and $Q(x)$ (we consider here the two possible values of the latter) do not have any common root modulo 43 (observe that knowing only the value of $P_2(x)$ modulo 43 is enough).

Knowing that the modulo 43 representation is irreducible, let us check that its image is 6-extra large. Again, the ramification at 17 makes easy to see that the image can not be exceptional, and for the dihedral case we just observe that since the Serre’s weight is either 2 or 44 it can not be dihedral corresponding to a field K ramifying at 43 due to Lemma 3.1, and as in the previous step we also eliminate the case where K ramifies at 17 because the image of the ramification group at 17 contains an element of projective order 8.

We conclude from Dickson’s classification that the image is 6-extra large. We consider a modular lift of this residual representation, corresponding to a newform g of weight 44 and level 17, with nebentypus at 17 given by a character ψ of order 8. Observe that both f_{12} and g are ordinary at 43, they live in the same Hida family.

3.11 Step 11

This step consists just on a computation performed using MAGMA on the space of newforms of weight 44 and level 17, with any nebentypus of order 8 at 17. Recall that g, the final output of our chain, lives in this space. In agreement with some expectations based on generalizations of Maeda’s conjecture.
(work in progress of P. Tsaknias jointly with the author), we conjectured that this space contains a unique orbit of Galois conjugated newforms. This was confirmed by our MAGMA computation. This was computed by P. Tsaknias using the MAGMA command NewformDecomposition, it took 14 hours in a CPU Intel Xeon E7-4850, 2GHz, with 192GB RAM. The computer used was the server of the Number theory Group of The Department of Mathematics of the University of Luxembourg.

For details on the computations involved and for the statement of the generalization of Maeda’s conjecture, see [DT]. Therefore, we have managed to link any given level 1 cuspform f with the orbit of g, and the chain constructed is safe, in the sense that current A.L.T. (including the result in Appendix B) can be applied in both directions, at any link, to the 5-th symmetric powers of the Galois representations considered. In particular, by transitivity, together with the fact that Galois conjugation is a valid move (so that we can move freely in the orbit of g), any given pair of level 1 cuspforms can be linked to each other in a safe way. Thus, using our chain, we conclude that automorphy of $\text{Symm}^5(f)$ will hold for any level 1 cuspform f provided that we can prove it for a single example.

4 The base case for the automorphy of $\text{Symm}^5(\text{GL}(2))$

For the base case, we start by considering an example of a weight 1 cuspform with projective image A_5 studied in [KiW]. This example consists on a cuspform f'_0 of prime level 2083, weight 1, and quadratic nebentypus $\epsilon = \omega^{1041}$ corresponding to $\mathbb{Q}(\sqrt{-2083})/\mathbb{Q}$. We can consider this complex representation as taking values on a finite field of characteristic 2083, and the obtained residual representation will have Serre’s level 1 and Serre’s weight 1042 since

$$\bar{\rho}_{f'_0,2083}|_{I_{2083}} = \left(\begin{array}{cc} \epsilon & 0 \\ 0 & 1 \end{array} \right),$$

so we know that there is a level 1 cuspform f_0 of weight 1042 such that this residual representation is attached to it. Our goal is to prove automorphy for $\text{Symm}^5(f_0)$, by exploiting its congruence with $\text{Symm}^5(f'_0)$.

Using results of Kim and Wang (cf. [Kim], [W]), it is known that $\text{Symm}^5(f'_0)$ is automorphic and cuspidal. If we call ρ the complex Galois representation attached to f'_0, this uses the identity:

$$\text{Symm}^5(\rho) \cong \text{Symm}^2(\rho') \otimes \rho \quad (\ast)$$

42
where ρ' denotes the Galois conjugate representation of ρ, which has trace defined over $\mathbb{Q}(\sqrt{5})$.

But this is not enough to conclude residual automorphy of the 2083-adic Galois representation attached to f_0, in the sense required for the application of A.L.T., because the automorphic form attached to $\text{Symm}^5(f'_0)$ is clearly not regular.

In order to solve this problem we first consider $\overline{\rho}$ and $\overline{\rho'}$, the mod 2083 representations obtained from ρ and ρ', and we replace them in formula (*).

Observe that since 2083 does not divide the order of the image the formula in characteristic 2083 is still an equality between irreducible Galois representations. We now consider lifts of the residual representations $\overline{\rho}$ and $\overline{\rho'}$ attached to cuspforms of weights greater than 1. More precisely, we know that we can take a 2083-adic Galois representation attached to f_0, a cuspform of weight 1042, as a lift of $\overline{\rho}$, and we can take some 2083-adic Galois representation attached to a weight 2 newform f_1 minimally lifting $\overline{\rho'}$ (it exists because any mod p odd, irreducible, representation has a weight 2 minimal modular lift, in the sense of [KW]). Moreover, since $\overline{\rho'}$ has ramification at 2083 given by a quadratic character, it is clear that f_1 has level 2083 and that its 2083-adic Galois representations are potentially Barsotti-Tate (this modular lift is given for example by [KW], Thm. 5.1 - (2) combined with Thm. 4.1 in loc. cit.).

By plugging the representations attached to f_0 and f_1 into the right hand side of formula (*), and the one attached to f_0 on the left hand side, we conclude that there is a modulo 2083 congruence between the Galois representations attached to $\text{Symm}^5(f_0)$ and to $\text{Symm}^2(f_1) \otimes f_0$.

As in the work of Kim and Wang, we can deduce from known cases of Langlands functoriality (the $\text{Symm}^2(\text{GL}(2))$ case due to Gelbart and Jacquet in [GJ] and the $\text{GL}(2) \times \text{GL}(3)$ case due to Kim and Shahidi in [KS]) that the latter tensor product is cuspidal automorphic (cuspidality follows from the criterion given in section 2 of [W]). Moreover, from our choice of the weights of f_0 and f_1 it is clear that its attached Galois representations are regular, and using the fact that for f_0 the prime 2083 is not in the level and is in the Fontaine-Laffaille range and that f_1 is potentially Barsotti-Tate at 2083 we see that the 2083-adic Galois representation attached to the automorphic form $\text{Symm}^2(f_1) \otimes f_0$ is potentially diagonalizable (PO-DI). Here we are using the fact that being PO-DI is a property that is preserved by tensor products (this follows easily from remark 5 in page 530 of [BLGGT], together with the fact that being PO-DI is a property that is preserved by arbitrary base
change, as remarked in page 531 of loc. cit.) and also by symmetric powers (this, as we already explained at the beginning of section 3, follows from the same argument that gives preservation of being PO-DI by base change).

On the other hand, we also know that the 2083-adic Galois representation attached to $\text{Symm}^5(f_0)$ is potentially diagonalizable (again, because 2083 is in the Fontaine-Laffaille range for f_0). Finally, observe that the residual projective image in the congruence between 6-dimensional Galois representations that we are considering is irreducible and isomorphic to A_5, thus clearly the residual representation will stay irreducible over any cyclotomic extension, thus it follows from the main result in [GHTT] (cf. Thm. 9 in loc. cit.) that its image is adequate even after restriction to a cyclotomic field.

We have all the ingredients to apply the main A.L.T. in [BLGGT] (Thm 4.2.1 in loc. cit.) to deduce automorphy of $\text{Symm}^5(f_0)$ from this mod 2083 congruence, because both 6-dimensional Galois representations are regular and potentially diagonalizable, and the residual image satisfies the required condition. Therefore, the automorphy of $\text{Symm}^2(f_1) \otimes f_0$ implies that of $\text{Symm}^5(f_0)$. This concludes the proof of the base case and, due to the results of the previous section, we also conclude automorphy of $\text{Symm}^5(f)$ for any given level 1 cuspform f.

5 Application to base change

A “straightforward” concatenation of the safe chain constructed in Section 3 with the process of “killing ramification” (preceded by ramification swapping) as used in section 3 of the paper [Di12a] gives a new proof of base change for $\text{GL}(2)$, for any newform of odd level, this time without local conditions on the totally real number field F. We do not even assume that F is a Galois number field. Thus, this proof works in much more general situations than the one given in [Di12a].

Moreover, applying the 2-adic Modularity Lifting Theorem in [K-2] together with an adaptation of ideas from [KW] we can extend the proof of base change to newforms of arbitrary level by killing ramification at 2 without increasing the weight.

We begin by explaining the proof for newforms of odd level, we will explain the case of even level at the end of this section.
5.1 The case of odd level

We start as in [Di12a] with a non-CM newform f of odd level N and weight $k \geq 2$ and a given totally real number field F where we want to base change f. The assumption of being non-CM is harmless since it is well-known that base change holds for CM modular forms.

5.1.1 How to get rid of the level: reusing the method in “fase uno” of [Di12a]

We go through all the process described in section 3 (called “fase uno”) of [Di12a], so as to safely link f with a newform f' of level q^2 and some weight k', with q as a Good-Dihedral prime with respect to a bound B and $k' < B$. This prime q is added to the level in the same way as we did in section 3.1. Let us recall, for the reader’s convenience, the main features of this chain. This safe chain (cf. [Di12a], section 3) consists of three main parts:

(i) modulo an auxiliary prime $3 < r_0 < B$ chosen to be split in F we move to a weight 2 situation, and then working modulo a prime $t > B$ a Good-Dihedral prime q is added to the level (this step is similar to what we did in section 3.1, except that we do not conclude by increasing the weight again modulo r_0), this step ends with a newform f_2 of level $N \cdot r_0 \cdot q^2$ and weight 2, with q a Good-Dihedral prime.

(ii) “ramification swapping” (cf. [Di12a], page 1024 to page 1027, line 6) is performed to safely link the newform f_2 to a newform f_3 of level $N' \cdot r_0 \cdot q^2$ and weight 2, where N' is relatively prime to Nq, in fact, N' is equal to the product of a set of odd primes $b_1, b_2, ..., b_z$ which are auxiliary primes chosen to be all split in F, larger than N, and smaller than the bound B (the primes b_i, the prime r_0 and the bound B are specified in advance, see [Di12a], page 1020).

(iii) “killing ramification” is performed: after certain manipulations that are required to ensure that the A.L.T. in [K-1] can be applied (in fact, such manipulations are no longer required: see the remark at the end of this sub-section), by moving to each characteristic b_i and r_0 and simply reducing modulo b_i (r_0, respectively) and taking a minimal lift, all the primes b_i and r_0 are removed from the level and we end with a newform f' of level q^2 and some weight $k' < B$.

This chain is safe in the sense that, after restricting to G_F, at all the congruences a suitable A.L.T. applies in both directions. Let us explain why this is
Concerning residual images, the main point is that all residual images are large, as follows from the introduction of a Good-Dihedral prime q by the same arguments we have used several times in section 3. It remains to prove that being large is a property that is preserved when restricting to G_F, because since large implies non-solvable, it is then preserved when restricting to $G_{F(\zeta_p)}$, and also largeness implies adequacy. But the proof that largeness is preserved when restricting to G_F follows exactly as in the proof of Lemma 3.2 in [Di12a]: even if our current definition of large differs from the one in loc. cit. and we want to include the case $p = 3$ the exact same argument applies (also note that now we are not assuming that F is Galois, but since the Galois closure \hat{F} of F is still totally real the proof applies to the restriction to $G_{\hat{F}}$ thus a fortiori to the restriction to G_{F}).

Concerning the local conditions, for item (iii) recall that an A.L.T. of Kisin was applied in [Di12a] precisely at this point, and it was checked that the conditions to apply this theorem over F were satisfied (see also the remark at the end of this subsection for a simplified argument using an improved result). For item (i), the situation is as in Section 3.1, where the local conditions to apply the A.L.T. in [BLGGT] are satisfied over \mathbb{Q}, and also over F (this is what we really need) because such conditions are preserved by arbitrary base change.

As for item (ii), the ramification swapping step, by the time the paper [Di12a] was written, the results in this step were proved under the assumption that 3 and 5 are split in F (conditions only required in case any of these primes is in the level). But this is due to limitations inherent to the A.L.T. that were applied there: if we use instead the A.L.T. from [BLGGT], and the one in our Appendix B, we see that no local assumption is required. In fact, in each congruence either both representations are ordinary or they are both potentially diagonalizable, the latter case involving potentially Barsotti-Tate and crystalline Fontaine-Laffaille representations, as in previous sections (except when the residual Serre’s weight of a potentially Barsotti-Tate representation happens to be $p + 1$: in this case a minimal crystalline lift of weight $p + 1$ is considered and this lift falls outside the Fontaine-Laffaille range, but is known to be ordinary as proved in [BLZ], thus again potentially diagonalizable). Thus, as it happened in Section 3, at each congruence we are either in the ordinary case or in the potentially diagonalizable case, and these conditions are preserved by arbitrary base change, thus either Theorem 2.3.1 in [BLGGT] or the one in our Appendix B applies.
We conclude that thanks to the strength of current A.L.T., no local assumption on the field F (nor the fact that F is Galois) is required and still we can apply what is done in section 3 of [Di12a] to safely link with a newform of level q^2, with q as Good-Dihedral prime.

Remark: due to a recent improvement obtained in [HT] to the A.L.T. of Kisin (the main result of [K-1]) that we have applied in the killing ramification process, the safe chain constructed in section 3 of [Di12a] not only does not require any local assumption but also can be simplified. In fact, using the improved version (cf. [HT]) of this A.L.T., item (iii) above does not require any longer the tricks that were applied in [Di12a]; after completing item (ii) we can now go directly to each characteristic b_i or r_0 (observe that all these primes are greater than 3), reduce modulo b_i (r_0, respectively) and take a minimal lift, thus killing these primes from the level in a very elementary way. The only conditions required to apply this improved A.L.T. are that the residual image has to be irreducible even after restriction to $G_{F(\zeta_{b_i})}$ (since large implies non-solvable, we know that this holds), and the residual characteristic has to be larger than 3 and split in F, which holds by construction.

5.1.2 Using the chain from section 3, starting at Step 2

At this point, we have already reduced the proof of base change, at least for odd level, to the construction we performed in Section 3: once f is safely linked to a newform f' of level q^2, we can start from f' and apply all the construction described in Section 3 except that we start now from Step 2 (Section 3.2) because the Good-Dihedral prime is already in the level.

There is only one caveat: the newform f' has level q^2 and weight $k' \geq 2$, and the problem is that we do not know how to eliminate the possibility that when finishing the killing ramification process we end up with $k' = 2$, and the condition $k' > 2$ is required to go on in Step 2 (see Section 3.2). This can easily be remedied by acting as if the Good-Dihedral prime q in the level were not a Good-Dihedral prime, then choosing and adding another prime q' much bigger such that it is Good-Dihedral for all characteristics up to some bound B' larger than q. Then, removing q from the level in two steps (as done in Section 3.5), we know that we will end up with a newform of weight $q + 1 > 2$ and level q'^2, good-dihedral at q' (compare with section 3.5, where after removing q from the level in two steps, first working mod t and then mod q, we end up with the newform f_{8} of weight $q + 1$). It is clear that in
these steps the A.L.T. in [BLGGT] can be applied to check that automorphy propagates well among the restrictions to G_F (as in the previous subsection, the key points are that the required local conditions and largeness of residual images are both preserved by base changing to F). We conclude that by a simple iteration of the argument we can assume “without loss of generality” that after the completion of the killing ramification step the weight obtained is greater than 2.

Thanks to this trick, we can go through the process in Sections 3.2 to 3.11 and thus we obtain a safe chain linking f', and therefore also f, to the single orbit space computed at section 3.11. Observe that all that we are taking from section 3 is also safe in this new context, because by base changing to $G_{F(\mathfrak{p})}$ large residual images stay large (as we explained in the previous subsection) and are thus adequate, and the local conditions in the A.L.T. that we are applying (Theorem 2.3.1 in [BLGGT] and the one in our Appendix B) are preserved by base change.

5.1.3 A CM form as base case

As in the proof of automorphy for Symm5(GL(2)), we see that all that is required to complete the argument is a base case, i.e., if there is a newform f_0 satisfying base change, then since both f and f_0 can be safely linked to the same single orbited space, then base change propagates from one to the other. A priori, we were only considering non-CM forms, and this was useful to have generically large residual image. However, we will pick as f_0 a CM form, which is very convenient since for such an f_0 arbitrary base change is well-known, let us see how we can make one single congruence to transform such an f_0 into a non-CM form f_0' in such a way that this congruence is safe in our context so that existence of base change for f_0 implies the same for f_0'. After having done this, base change is propagated from f_0' to f by the argument already explained, and in particular in a way that all congruences involved will have large residual image (the chain linking f to f_0' is just a concatenation of the two chains that link both forms with the single orbit space described in section 3.11). So let us pick a suitable base case. It is easy to see that given any form f_0 attached to a CM elliptic curve E of odd conductor, if we call K the field such that E has CM by an order of K, f_0 can be base changed to any totally real number field F (as it is well-known, since K can not be contained in F the restrictions to G_F of the ℓ-adic Galois
representations attached to f_0 are absolutely irreducible). Also, given F we easily see that there is a prime $p > 5$ (depending on F) not in the level of f_0 such that the residual mod p representation attached to f_0 (it is of course dihedral) will be irreducible even after restriction to $F(\zeta_p)$ (we just need to ensure that $\hat{F}(\zeta_p)$ does not contain K, where \hat{F} denotes the Galois closure of F, but it is easy to see that this can only fail for finitely many primes).

Then, modulo such a prime p the first thing that we do is to apply Ribet’s level-raising to add a Steinberg odd prime w to the level (keeping the weight equal to 2). As it is well-known, it follows from Cebotarev’s density theorem that such a prime exists. At this mod p congruence, it follows from the main result in [GHTT] that the residual image restricted to $F(\zeta_p)$ is adequate (and both representations are Barsotti-Tate), thus it follows from the A.L.T. in our Appendix B that modularity over F propagates well. After introduction of the Steinberg prime we already have a non-CM weight 2 newform f'_0 of odd level with generically large residual images (cf. [Ri85]), and we can proceed to introduce the Good-Dihedral prime to the level and go on with all the known process (ramification swapping, killing ramification and so on) to safely link it with the single orbit space in Section 3.11, thus also with the given newform f. Except at this first step where the residual image is dihedral (but not bad-dihedral), all the residual representations in the rest of the chain will be large.

This concludes the the proof of base change for odd level newforms where, thanks to the fact that the local conditions in the A.L.T. in [BLGGT] and in Appendix B are preserved by base change, we do not need to impose any local condition on the field F.

5.2 The case of even level

Let us now focus on the case of a newform f of even level. As usual, we assume that f is a non-CM form. The idea to prove base change for such a newform is to eliminate the prime 2 from the level as in [KW], relying on the 2-adic M.L.T in [K-2], thus reducing the proof to the odd level case, already solved.

First of all, since we are going to need the 2-adic M.L.T. over F, let us observe that we are going to apply Theorem 0.9 in [K-2], but with the local condition at the prime 2, numbered as condition (3) in loc. cit., replaced by the condition:
Let v be any prime of F dividing 2 such that the representation ρ restricted to the decomposition group at v is ordinary (in the sense of [Ge]). Then the 2-adic representation ρ_h, which is attached to a Hilbert newform h and is congruent to ρ modulo 2, is also ordinary locally at v.

The fact that Theorem 0.9 in loc. cit. holds with this modification can be seen by inspecting its proof (the same happens with the M.L.T. in odd residual characteristics proved in [K-BT], where a version of the main theorem with this more general condition is recorded), it could have been stated this way.

We proceed with f as we did in the odd level case, the only difference is that at some point we are going to eliminate the prime 2 from the level. The right moment for this is after the swapping ramification process (applied to all ODD primes in the level), and before starting the killing ramification. At this point the newform, let us call it f', contains in its level the prime 2, plus a set of relatively large auxiliary primes b_i and r_0, and a very large prime q, the good-dihedral prime, where ramification has order a power of t, another very large prime number. Observe also that at this point of the argument f' has weight 2 (cf. [Di12a]).

Because of the Good-Dihedral prime, we know that if we work modulo a small odd characteristic the residual image will be adequate. Also, as in [KW] or [Di12a], the prime q is supposed to satisfy certain conditions with respect to the prime 2, and the prime t is taken greater than 5, and using this it follows (cf. [KW]) that if we work modulo 2 the residual projective images will be non-solvable and not isomorphic to A_5.

Let us also assume, as in [Di12a], that the prime q splits in the Galois closure \hat{F} of F, this way after restricting to G_F a 2-adic Galois representation we know that the residual projective image is still absolutely irreducible and contains an element of order t, and from this we conclude, as in [Di12a], Lemma 3.4, that the image of this restriction is again non-solvable and not isomorphic to A_5. We easily conclude that the same holds for the image of the restriction to G_F.

Let us now indicate the moves, taken from [KW], that will allow us to link the compatible system attached to f' with another corresponding to a newform of odd level, in such a way that, after restricting to G_F, modularity propagates well from the latter to the former.

We divide in two cases:

(i) the 2-adic Galois representation attached to f' is potentially Barsotti-Tate,

(ii) the 2-adic Galois representation attached to f' is potentially semistable.
of weight 2 and it is not potentially Barsotti-Tate.

Let us start with case (ii). In this case, we can twist the representation by a suitable character in order to reduce to the semistable (non-crystalline) case (this can be deduced, thanks to compatibility with the local Langlands correspondence, from the fact that even for \(p = 2 \) it is only in the Steinberg or twist of Steinberg cases that the corresponding local Galois representation fails to be potentially crystalline), so let us assume that the 2-adic representation attached to \(f' \) is semistable. As in [KW], section 9, we reduce modulo 3 to change the local type at 2, preserving the weight and the ramification at all other primes (this is based on Theorem 5.1 - (3) of loc. cit.); since 3 is not in the level of \(f' \) (the primes \(b_i \) and \(r_0 \) are large primes) this is just a congruence between Galois representations that are both Barsotti-Tate at 3, and because of the good-dihedral prime the residual image is large, thus adequate, therefore we know from the A.L.T. in our Appendix B that the new Galois representation we are creating is also modular, attached to certain newform \(f_2 \). This new Galois representation constructed in [KW] has a different type at 2, \(f' \) was Steinberg while \(f_2 \) is principal series at 2 (ramification being given by characters of order 3). It is important to observe that the 2-adic Galois representation attached to \(f_2 \) is potentially Barsotti-Tate. Moreover, it is shown in [KW] that the residual modulo 2 Galois representation attached to \(f_2 \) has Serre’s weight 2. Therefore, applying again Theorem 5.1 of loc. cit. (recall that we know that the projective residual image is non-solvable and not an \(A_5 \)) we can take a lift of this mod 2 representation corresponding to a newform \(f_3 \) of weight 2 and odd level. More precisely, the lift is constructed using Theorem 5.1 - (1) in loc. cit., and its modularity follows from Theorem 4.1 in loc. cit.

Since \(f_3 \) has odd level, we know that it can be base changed to \(F \). Let us now explain why the chain we have just constructed linking \(f \) to \(f_3 \) is safe, in the sense that it allows to propagate modularity for the restrictions to \(G_F \), backwards. It is enough to concentrate on the part of the chain that goes from \(f' \) to \(f_3 \), because we have already explained (when dealing with the odd level case) that the part linking \(f \) to \(f' \) is safe (the fact that now the prime 2 is in the level does not affect the argument).

The restrictions to \(G_F \) of the modular Galois representations being considered have residual images that are adequate, even after restriction to \(G_{F(\overline{\wp})} \), when the residual characteristic is \(p = 3 \), and non-solvable and not projectively \(A_5 \) when \(p = 2 \). For the mod 3 congruence between \(f' \) and \(f_3 \), we easily see that the A.L.T. in our Appendix B applies over \(F \). Thus, it remains to
check that in the mod 2 congruence modularity over \(F \) propagates from \(f_3 \) to \(f_2 \), applying the modification of Theorem 0.9 in [K-2] discussed above. Conditions (1) (residual modularity and non-solvable residual image) and (2) (potentially Barsotti-Tate at primes above 2) of this theorem are satisfied by the restriction to \(G_F \) of the 2-adic representation attached to \(f_2 \), and concerning condition (3'), if we assume that the 2-adic Galois representation attached to \(f_2 \) satisfies this potential ordinarity condition, then it is known that this can only happen if it is nearly-ordinary at 2 (cf. [H], Prop. 3.3), but this implies that the residual mod 2 representation is ordinary, thus that the Barsotti-Tate representation attached to \(f_3 \) is ordinary at 2.

We conclude that the 2-adic M.L.T. of Kisin applies, thus that modularity propagates well over \(F \), from \(f_3 \) to \(f_2 \).

Let us now treat case (i). This time we move directly to characteristic 2 and we reduce modulo 2. If the residual Serre’s weight is 2, we take a lift corresponding to an odd level, weight 2 modular form \(f_2 \) (the existence of which follows from Theorems 4.1 and 5.1 - (1) of [KW]), and we see as in the previous paragraph that the 2-adic M.L.T. of Kisin allows to propagate modularity over \(F \) from \(f_2 \) to \(f' \). If the residual Serre’s weight is 4, we take a lift, whose existence is guaranteed by Theorems 4.1 and 5.1 - (2) of loc. cit., corresponding to a newform \(f_2 \) of weight 2 and even level whose level is strictly divisible by 2 and the prime 2 is Steinberg. Since \(f_2 \) falls in case (ii), we have already shown that it can be base changed to \(F \). It remains to check that the 2-adic M.L.T. of Kisin can be applied to propagate modularity over \(F \) from \(f_2 \) to \(f' \), and again condition (3') is the only non-trivial one. But since \(f_2 \) is semistable at 2 and has weight 2, it is also ordinary at 2, so condition (3') holds automatically.

We conclude that, in any case, we can construct a safe chain linking \(f \) with an odd level newform, and in particular, that \(f \) can also be base changed to \(F \).

6 Base change for \(\text{Symm}^5(\text{GL}(2)) \)

For any newform \(f \) of level 1 we have shown automorphy of \(\text{Symm}^5(f) \), let us see that by combining this with the base change result in the previous section we can also deduce that \(\text{Symm}^5(f) \) can be base-changed to any totally real number field \(F \).

This follows by considering the same chain constructed in section 3, and the
proof of automorphy for the base case given in section 4, and checking that all the construction can be base changed to \(F \). The fact that the safe chain also works well over \(F \) is automatic, if we argue as in the previous section: the local conditions for the A.L.T are preserved by base change, and after restriction to \(G_F \) a residual image that is 6-extra large remains 6-extra large. Concerning the base case, the projective residual image \(A_5 \) is not changed by restriction to \(G_F \) (again, you can use the fact that the projective image of the restriction to \(G_F \) is not trivial because the representation is odd and the Galois closure \(\hat{F} \) of \(F \) is totally real, therefore since \(A_5 \) is simple the projective image of the restriction to \(G_F \) does not change, thus clearly for the restriction to \(G_F \) the same holds). The rest of the proof of automorphy for the base case, this time over \(F \), goes exactly as in section 4, just notice that \(f_0 \) and \(f_1 \) can be base changed to \(F \) because of the result in the previous section, and that the known cases of Langlands functoriality applied to conclude that \(\text{Symm}^2(f_1) \otimes f_0 \) is automorphic are also known to hold when \(f_0 \) and \(f_1 \) are Hilbert newforms over \(F \).

7 Final Comments

Around the same period of time where the results in this paper were obtained (summer 2012), Clozel and Thorne developed a different, yet related, approach to prove functoriality of some symmetric powers of \(GL(2) \), using an A.L.T. proved by Thorne that works in residually reducible situations. With this technique they managed to deduce automorphy of \(\text{Symm}^5(GL(2)) \) and \(\text{Symm}^7(GL(2)) \) for classical modular forms of arbitrary level, and also for many Hilbert newforms. Their approach shares several similarities with ours (for example, the use of Good-Dihedral primes, the use of the main A.L.T. from [BLGGT] and the use of the criteria taken from our Appendix A to guarantee adequacy of certain residual images). The fundamental difference is that they have new, powerful tools, at their disposal (an A.L.T. working in the residually reducible case, together with new “level-raising” results) so they can consider a case of small characteristic that we were forced to avoid. The interested reader should consult [CT].
8 Bibliography

[BLGGT] Barnet-Lamb, T., Gee, T., Geraghty, D., Taylor, R., Potential automorphy and change of weight, Ann. Math. 179 (2014) 501-609
[BLZ] Berger, L., Li, H., Zhu, J., Construction of some families of 2-dimensional crystalline representations, Math. Ann. 329 (2004), 365-377
[CHT] Clozel, L., Harris, M., Taylor, R., Automorphy for some ℓ-adic lifts of automorphic mod ℓ representations, Pub. Math. IHES 108 (2008), 1-181
[CT] Clozel, L., Thorne, J., Level-raising and symmetric power functoriality, II, Ann. Math. 181 (2015) 303-359
[Di09] Dieulefait, L., The level 1 case of Serre’s conjecture revisited, Rendiconti Lincei - Mat. e Appl. 20 (2009), 339-346
[Di12a] Dieulefait, L., Langlands base change for GL(2), Ann. Math. 176 (2012) 1015-1038
[Di12b] Dieulefait, L., Remarks on Serre’s modularity conjecture, Manuscripta Math. 139 (2012) 71-89
[Di12c] Dieulefait, L., Automorphy of m-fold tensor products of GL(2), preprint; available at www.arxiv.org
[DM] Dieulefait, L., Manoharmayum, J., Modularity of rigid Calabi-Yau threefolds over Q, Calabi-Yau Varieties and Mirror Symmetry. N. Yui, J. Lewis et al. (eds.). Fields Institute Communications vol. 38; (2003) AMS, 159-166
[DT] Dieulefait, L., Tsaknias, P., On the generalized Maeda’s conjecture and its relation to local types, in preparation
[E] Edixhoven, B., The weight in Serre’s conjectures on modular forms, Invent. Math. 109 (1992) 563-594
[GL] Gao, H., Liu, T., A note on potential diagonalizability of crystalline representations, Math. Ann., to appear
[GK] Gee, T., Kisin, M., The Breuil-Mezard conjecture for potentially Barsotti-Tate representations, Forum of Math., Pi, to appear
[GJ] Gelbart, S., Jacquet, H., A relation between automorphic representations of GL(2) and GL(3), Ann. Scient. Ecole. Norm. Sup. 11 (1979) 471-542
[Ge] Geraghty, D., Modularity lifting theorems for ordinary Galois representations, preprint
[GHTT] Guralnick, R., Herzig, F., Taylor, R., Thorne, J., Adequate subgroups, appendix to “On the automorphy of ℓ-adic Galois representations with small residual image” by J.Thorne, J. Inst. Math. Jussieu 11 (2012) 855-920
[H] Hida, H., A finiteness property of abelian varieties with potentially ordinary good reduction, J. Amer. Math. Soc. 25 (2012) 813-826
[HT] Hu, Y., Tan, F., *The Breuil-Mezard conjecture for non-scalar split residual representations*, Ann. Sci. ENS, to appear

[Kim] Kim, H., *An example of non-normal quintic automorphic induction and modularity of symmetric powers of cusp forms of icosahedral type*, Invent. Math. **156** (2004), 495-502

[KS] Kim, H., Shahidi, F., *Functorial products for GL(2) × GL(3) and the symmetric cube for GL(2)*, Annals of Math. **155** (2002) 837-893

[KiW] Kisting, I., Wang, X., *Examples of 2-dimensional odd Galois representations of A5-type over Q satisfying the Artin conjecture*, in “On Artin’s Conjecture for odd 2-dimensional representations”, G. Frey (Ed.), LNM 1585, (1994) Springer-Verlag

[K-BT] Kisin, M., *Moduli of finite flat group schemes, and modularity*, Annals of Math. **170** (2009) 1085-1180

[K-1] Kisin, M., *The Fontaine-Mazur conjecture for GL2*, J.A.M.S **22** (2009) 641-690

[K-2] Kisin, M., *Modularity of 2-adic Barsotti-Tate representations*, Invent. Math. **178** (2009) 587-634

[Kh] Khare, C., *Serre’s modularity conjecture: The level one case*, Duke Math. J. **134** (2006) 557-589

[KW] Khare, C., Wintenberger, J-P., *Serre’s modularity conjecture (I)*, Invent. Math. **178** (2009) 485-504

[Ri85] Ribet, K., *On ℓ-adic representations attached to modular forms. II*, Glasgow Math. J. **27** (1985) 185-194

[Ri97] Ribet, K., *Images of semistable Galois representations*, Pacific J. Math. **181** (1997)

[Sa] Savitt, D., *On a Conjecture of Conrad, Diamond, and Taylor*, Duke Math. J. **128** (2005) 141-197

[W] Wang, S. *On the symmetric powers of cusp forms on GL(2) of icosahedral type*, Int. Math. Res. Not. (2003), 2373-2390.
Appendix A: Adequacy of Representations of Finite Groups of Lie Type, by Robert Guralnick

A.1 Adequacy

Let $\rho : G \to \text{GL}(V) = \text{GL}(n, k)$ be a faithful irreducible representation of a group G over an algebraically closed field k of characteristic $p > 0$.

We recall [15] that ρ is called adequate if it satisfies the following conditions:

1. p does not divide $\dim V$;
2. $H^1(G, k) = 0$;
3. $\text{Ext}^1_G(V, V) = 0$; and
4. the linear span of $\{\rho(g) | g \in G, \rho(g) \text{ is semisimple}\}$ is $\text{End}(V)$.

This concept was introduced by Thorne as a weakening of the notion of big representations used by Taylor and Wiles (see [6]). Thorne [15] shows that adequacy can often allow one to prove certain representations are automorphic or potentially automorphic. See also [7]. If ρ is not necessarily faithful but has a finite kernel of order not divisible by the characteristic, then it makes no difference in any of the 4 conditions whether we consider V as kG-module or a $k\rho(G)$-module and we will make no distinction. In particular, it suffices to consider the simply connected groups of Lie type.

In [4], it was shown that if G is finite and $p > 2\dim V + 2$, then ρ is always adequate (actually a weaker condition suffices). See [8, 10, 11, 16] for some further results on adequacy. In particular, there is now an analog for the case that p does divide the dimension. In this appendix, we consider the finite groups of Lie type and show that the dimension condition can be weakened considerably.

We point out the following criterion for when a finite group of Lie type has the same invariant subspaces as the algebraic group.

2Guralnick was partially supported by the NSF grants DMS-1001962, DMS-1303886, and Simons Foundation fellowship 224965.
Lemma 1 Let G be a semisimple algebraic group over the algebraically closed field k of characteristic $p > 0$. Let F be an endomorphism of G with G^F finite. Let V be a finite dimensional rational G-module. Let T be a maximal torus of T such that distinct weights for T on V remain distinct for T^F. Then any G^F-submodule of V is also a G-submodule.

Proof: Let H be the Zariski closure of $\langle T, G^F \rangle$. We claim that $H = G$. Clearly, we may reduce to the case that G is simple.

We sketch two proofs. The first is to note that H has connected component generated by T and some collection of root subgroups (with respect to T) corresponding to a quasi-closed system of roots. It is straightforward to see that no such group contains G^F (since the centralizer of G^F in G is the center of G, it follows easily that the connected component of H is semisimple of the same rank as G and there is short list of possible such subgroups – e.g., for groups of type A, there are none).

Alternatively, if W is any restricted module for G, then G^F also acts irreducibly on W. In particular, let W be the collection of nontrivial irreducible composition factors of the adjoint module (usually there is just one). By inspection we see that no proper positive dimensional subgroup acts irreducibly on all $W \in W$ while G^F does (see [12] for the structure of the Lie algebra as a module for G and G^F).

Now suppose that W is a G^F-invariant subspace of V. In particular, it is a direct sum of T^F-weight spaces, whence it is also T-invariant and so also invariant under $H = G$.

It is more convenient to deal with simply connected simple algebraic groups G. All such groups can be defined over \mathbb{F}_p and we fix such an \mathbb{F}_p-structure. In particular, if F is the q-Frobenius map on G, then we write $G(q) = G^F$.

We can now easily show:

Theorem 2 Let G be a simply connected simple algebraic group over an algebraically closed field of characteristic $p > 0$ with $\rho : G \to \text{GL}(V)$ with V a nontrivial irreducible rational module. Assume that p does not divide $\dim V$.

1. ρ is adequate; and

2. If $q = p^a$ is sufficiently large, then $\rho : G(q) \to \text{GL}(V)$ is adequate.
Proof: It follows by [13, p. 182] that $\text{Ext}_G^1(V, V) = 0$. Of course, $\text{End}(V)$ is the linear span of all $\rho(g)$ and since semisimple elements in G are dense, it follows that (A4) holds. By assumption (A1) holds and since G is perfect (A2) holds.

We now prove (2). Note for a sufficiently large, we have that:

(i) $G(p^a)$ is perfect;

(ii) V is irreducible for $G(p^a)$;

(iii) $\text{Ext}_{G(p^a)}^1(V, V) = 0$ (by [5]); and

(iv) If T_0 is a split torus of $G(p^a)$ contained in a maximal torus T of G, then the eigenspaces of T and T_0 are the same on $\text{End}(V)$ (and so also on V).

Thus, (A1), (A2) and (A3) hold for $q = p^a$. It follows by (1) that any G-submodule of $\text{End}(V)$ containing the elements of T is all of $\text{End}(V)$. The eigenvalue condition tells us that the span of the elements of T is the same as T_0. By Lemma 1, any G-invariant submodule of $\text{End}(V)$ is also $G(q)$-invariant, whence the the span of the $G(q)$-conjugates of T_0 is all of $\text{End}(V)$.

\[\blacksquare \]

If in addition we assume that all weight spaces of T are 1-dimensional, the same proof shows that ρ is big for the algebraic group and if a is sufficiently large, then ρ is big for $G(p^a)$ as well. The proof goes through verbatim for semisimple groups as well.

The result also holds for the twisted finite groups with essentially the same proof.

Before we make the result more precise for SL_2 (which includes the result needed in [7]), we digress slightly to show that one can deduce adequacy for a group G from the adequacy of a normal subgroup H. First we point out a well known and elementary fact.

Lemma 3 Let H be a normal subgroup of G. Let k be a field and W a finite dimensional kG-module such that $H^0(H, W) = H^1(H, W) = 0$. Then $H^1(G, W) = 0$.

Proof: This follows from the usual sequences in cohomology but we give an elementary proof. Suppose that $H^1(G, W) \neq 0$. Then there exists a short exact
sequence $0 \rightarrow W \rightarrow D \rightarrow k \rightarrow 0$ that is not split for G. Since $H^1(H, W) = 0$, this does split for H and so $D = W \oplus W'$ where W' is a 1-dimensional trivial H-module. Since $H^0(H, W) = 0$, we see that $W' = H^0(H, D)$ is unique. Since G normalizes H, W' is G-invariant, whence $D = W \oplus W'$ as G-modules, a contradiction.

Lemma 4 Let $\rho : G \rightarrow GL(n, k) = GL(V)$ be a finite dimensional representation over the algebraically closed field k of characteristic p. Let H be a normal subgroup of G and assume that $\rho : H \rightarrow GL(V)$ is adequate. If $H^1(G, k) = 0$ (eg. if G/H has order prime to p), then $\rho : G \rightarrow GL(n, k)$ is adequate.

Proof: Since the representation is adequate for H, p does not divide $\dim V$. By assumption, $H^1(G, k) = 0$. Since (A4) holds for H, it obviously holds for G. It remains only to show that $\Ext^1_G(V, V) \cong H^1(G, V^* \otimes V) = 0$.

Since p does not divide $\dim V$ and since V is absolutely irreducible for H (and so G), it follows that $V^* \otimes V = W \oplus k$ where $H^0(H, W) = 0$. Since $H^1(G, k) = 0$, it follows by Lemma 3 that $H^1(G, W) = 0$ and the result follows.

See also [2, A.1.3].

Theorem 5 Let p be a prime, k an algebraically closed field of characteristic p and $V(1)$ the natural 2-dimensional module for $SL_2(k)$. If $a < p$, let $V(a)$ denote that ath symmetric power of $V(1)$ (in particular, $V(a)$ is irreducible of dimension $a + 1$). If $a < p - 1$, then $V := V(a)$ is adequate for $SL_2(p^b)$ for any $b > 1$.

Proof: By assumption $\dim V = a + 1 < p$. By [1], $\Ext^1_{SL_2(p^b)}(V, V) = 0$. Since $SL_2(p^b)$ is perfect, $H^1(SL_2(p^b), k) = 0$. Let T_0 be a maximal split torus of $SL_2(p^b)$ with T a maximal torus of $SL_2(k)$ containing T_0. It is straightforward to see that distinct T-eigenspaces on $V \otimes V$ are also distinct T_0 eigenspaces. Let X the linear span of all $SL_2(p^b)$ conjugates of T_0 in $\End(V)$.

By Lemma 1, X is $SL_2(k)$ invariant. Since the linear span of the elements of T is the same as that of T_0 (because of the eigenspace condition), it follows that X contains the linear span of all semisimple elements of $SL_2(k)$ and so $X = \End(V)$. This verifies the last condition needed for adequacy.

Remarks 6 1. If \(p = 7 \) and \(a = 5 \), a computer calculation (done by Frank Lübeck) shows that \((A4)\) holds for \(\text{SL}_2(7) \) acting on \(V(5) \). The first two conditions are clear and the third follows by \cite{1}, whence \(V(5) \) is adequate for \(\text{SL}_2(7) \).

2. If \(p = 11 \) and \(a = 5 \), then in fact \(\text{Ext}^1_{\text{SL}_2(11)}(V,V) \) is 1-dimensional \cite{1}. Thus, \(V(5) \) is not adequate for \(\text{SL}_2(11) \). By the theorem, it is adequate for \(\text{SL}_2(11b) \) for any \(b > 1 \).

3. By Lemma 4, if \(V(a) \) is adequate for \(G := \text{SL}_2(p^b) \), it is adequate for any overgroup of \(G \) in \(\text{GL}(V(a)) \) normalizing \(G \).

4. It does seem plausible that the linear span of the semisimple elements of \(\text{SL}_2(p) \) is all of \(\text{End}(V) \) for any restricted \(\text{SL}_2(p) \)-module. Indeed, we know of no example of an irreducible module \(V \) in characteristic \(p \) of dimension not a multiple of \(p \) for a finite simple group \(G \) where the \(p' \)-elements do not span \(\text{End}(V) \). In fact, the only example we know is for \(G = 2F_4(2)' \) with \(\dim V = 2048 \) and \(p = 2 \). In this case, the number of odd order elements in \(G \) is less than \((\dim V)^2 \).

5. Since typically (but not always), \(\text{Ext}^1_{S}(V,V) = 0 \) for \(S \) a quasi-simple finite group of Lie type with \(V \) an irreducible module in the natural characteristic, it seems as though very many absolutely irreducible \(S \)-modules of dimension not a multiple of \(p \) are adequate.

6. There are many examples constructed of absolutely irreducible modules for finite groups where \((A4)\) fails (and indeed \((A1)\), \((A2)\) and \((A3)\) hold) but aside from the case \(G = 2F_4(2)' \), the modules are all induced modules. See \cite{8}.

One can prove \cite[Cor. 2.5.4]{6} on big representations of \(\text{SL}_2 \) with essentially the same proof as above.

Lemma 7 Let \(p \) be a prime, \(k \) an algebraically closed field of characteristic \(p \) and \(V(1) \) the natural 2-dimensional module for \(\text{SL}_2(k) \). If \(a < p \), let \(V(a) \) denote that \(a \)th symmetric power of \(V(1) \) (in particular, \(V(a) \) is irreducible of dimension \(a + 1 \)).

1. If \(p > 2a + 3 \), then \(V(a) \) is big for \(\text{SL}_2(p) \).

2. If \(p > a + 1 \), then \(V(a) \) is big for \(\text{SL}_2(p^b) \) for any \(b > 1 \).
Proof: It follows by [1] that for $G = \text{SL}_2(p^h)$ under the conditions described above we have $\text{Ext}^1_G(V(a), V(a)) = 0$. Under the hypotheses above, all weight space of a maximal torus T of G are 1-dimensional and that the weight spaces on $V \otimes V$ are the same as for a maximal torus $S \geq T$ of the algebraic group. Now argue as above.

If p is large, we can prove a somewhat more precise result. We only prove this for the split form of G. One could prove a variant for the other forms.

Theorem 8 Let G be a simple algebraic group over the algebraically closed field k of characteristic $p \geq 4(h - 1)$ where h is the Coxeter number of G. Let r be a positive integer. Let λ be a dominant weight for G that is p^r restricted. Let $V := V(\lambda)$ be the irreducible G-module with high weight λ. If $s > r$, then V is adequate for $G(p^s)$ if and only if p does not divide $\dim V$.

Proof: It suffices to assume that p does not divide $\dim V$ and show that V is adequate for $G(p^s)$. There is no loss of generality in assuming that G is simply connected.

By [4, Thm. 3.4], $\text{Ext}^1_{G(p^r)}(V, V) = 0$. By [14, Lem. 2.1(d)], it follows that every composition factor of $V \otimes V^*$ is p^{s+1}-restricted (and so in particular is irreducible for $G(p^s)$).

Let T_0 be a maximal split torus of $G(p^s)$ with T a maximal torus of G containing T_0. We claim that for any two distinct weights α, β of T on $V \otimes V^*$, $\alpha - \beta$ is not $p^{s+1} - 1$ times a weight. This follows by [14, Lem. 2.1] since $p \geq 4(h - 1)$. Thus, $\alpha \neq \beta$ on T_0.

By Lemma 1, it follows that $G(p^s)$ and G have the same invariant subspaces on $\text{End}(V) = V^* \otimes V$. Since the linear span of the elements of T_0 is the same as for T, it follows that $\text{End}(V)$ is the linear span of the p'-elements in $G(p^s)$. Thus (A4) holds. Since $G(p^s)$ is perfect, the result holds.

Note that since the Coxeter number of SL_2 is 2, Theorem 8 includes Theorem 5.

We thank Frank L"ubeck for his computer calculations and Dan Nakano and Len Scott for very helpful comments. We also thank Florian Herzig and Richard Taylor for comments on earlier drafts of the paper.
References

[1] H. Andersen, J. Jørgensen, P. Landrock, The projective indecomposable modules of SL(2, p^n), Proc. London Math. Soc. 46 (1983), 38-52.

[2] T. Barnet-Lamb, T. Gee, D. Geraghty, Serre weights for rank two unitary groups, preprint.

[3] C. Bendel, D. Nakano, C. Pillen, Extensions for finite Chevalley groups. II, Trans. Amer. Math. Soc., 354 (2002), 4421–4454.

[4] C. Bendel, D. Nakano, C. Pillen, Extensions for finite Chevalley groups I, Advances in Mathematics 183 (2004), 380–408.

[5] E. Cline, B. Parshall, L. Scott , W. van der Kallen, Rational and Generic Cohomology, Inventiones math. 39 (1977), 143–163.

[6] L. Clozel, M. Harris, R. Taylor, Automorphy for some l-adic lifts of automorphic mod l Galois representations. With Appendix A, summarizing unpublished work of Russ Mann, and Appendix B by Marie-France Vignéras. Publ. Math. Inst. Hautes Études Sci. No. 108 (2008), 1–181.

[7] L. Dieulefait, Automorphy of Symm^5(GL(2)) and base change, preprint.

[8] R. Guralnick, Adequate Subgroups II, Bull. Math. Sci. 2 (2012), 193–203.

[9] R. Guralnick, F. Herzig, R. Taylor, J. Thorne, Adequate subgroups. J. Inst. Math. Jussieu, appendix to ”On the automorphy of ℓ-adic Galois representations with small residual image” by J.Thorne, J. Inst. Math. Jussieu 11 (2012) 855–920.

[10] R. M. Guralnick, F. Herzig, and Pham Huu Tiep, Adequate groups of low degree, Algebra & Number Theory (to appear).

[11] R. Guralnick, F. Herzig, and Pham Huu Tiep, Adequate subgroups and indecomposable modules, J. Europ. Math. Soc. (to appear).

[12] G. Hiss, Die adjungierten Darstellungen der Chevalley-Gruppen, Arch. Math. (Basel) 42 (1984), 408-416.
A Appendix B: Automorphy lifting for small ℓ, by Luis Dieulefait and Toby Gee3

In this appendix we prove a slight generalization of Theorem 4.2.1 of [2]. It strengthens loc. cit. in that it weakens the assumption that $\ell \geq 2(n + 1)$ to an adequacy hypothesis (which is automatic if $\ell \geq 2(n + 1)$ by the main result of [4]).

This theorem can be proved by a straightforward modification of the proof of Theorem 4.2.1 of [2], using Lemma A.3.1 of [1] (which was proved by Richard Taylor during the writing of [2]). In order to make the proof straightforward to read, rather than explaining how to modify the proof of Theorem 4.2.1 of [2] using this Lemma, we combine Theorem A.4.1 of [1] (which is an improvement on Theorem 4.3.1 of [2] in exactly the same way that Theorem 9 below is an improvement on Theorem 4.2.1 of [2]) with Theorem 2.3.1 of [2] (which is essentially Theorem 7.1 of [5]).

We freely use the notation and terminology of [2] without comment. We would like to thank Florian Herzig for his helpful comments on an earlier version of this appendix.

Theorem 9 Let F be an imaginary CM field with maximal totally real subfield F^+ and let c denote the non-trivial element of $\text{Gal}(F/F^+)$. Suppose that ℓ is an odd prime, and that (r, μ) is a regular algebraic, irreducible, n-dimensional, polarized representation of G_F. Let $\overline{\mathfrak{F}}$ denote the semi-simplification of the reduction of r. Suppose that (r, μ) enjoys the following properties:

3The second author was supported in part by a Marie Curie Career Integration Grant.
1. \(r|_{G_{F_v}}\) is potentially diagonalizable (and so in particular potentially crystalline) for all \(v|\ell\).

2. The restriction \(\pi(G_{F(\zeta_{\ell})})\) is adequate, and \(\zeta_{\ell} \notin F\).

3. \((\pi, \overline{\mu})\) is either ordinarily automorphic or potentially diagonalizably automorphic.

Then \((r, \mu)\) is potentially diagonalizably automorphic (of level potentially prime to \(\ell\)).

Proof: By Lemma 2.2.2 of [2] (base change) it is enough to prove the theorem after replacing \(F\) by a soluble CM extension which is linearly disjoint from \(F^{ker \tau}(\zeta_{\ell})\) over \(F\). Thus we can and do suppose that all primes dividing \(\ell\) and all primes at which \(r\) ramifies are split over \(F^+\).

Suppose firstly that we are in the case that \((\pi, \overline{\mu})\) is ordinarily automorphic. Then by Hida theory we may reduce to the potentially diagonalizably automorphic case, because by (for example) Lemma 3.1.4 of [3] and Lemma 1.4.3(1) of [2], every Hida family passes through points for which the associated \(\ell\)-adic Galois representation is potentially diagonalizable at all places dividing \(\ell\).

Suppose now that we are in the case that \((\pi, \overline{\mu})\) is potentially diagonalizably automorphic. Applying Theorem A.4.1 of [1] (with \(F = F', \) and the \(\rho_v\) being \(r|_{G_{F_v}}\), we see that there is a regular algebraic, cuspidal, polarized automorphic representation \((\pi, \chi)\) of level potentially prime to \(\ell\), such that

\[r_{\ell, \chi}(\pi)|_{G_{F_v}} \sim r|_{G_{F_v}} \]

for each finite place \(v\) of \(F\). The result then follows immediately from Theorem 2.3.1 of [2].

\[\blacksquare\]

References

[1] T. Barnet-Lamb, T. Gee, D. Geraghty, Serre weights for rank two unitary groups, Math. Annalen, to appear.

[2] T. Barnet-Lamb, T. Gee, D. Geraghty, R. Taylor, Potential automorphy and change of weight, Ann. Math. 179 (2014) 501–609.
[3] T. Gee, D. Geraghty, Companion forms for unitary and symplectic groups, Duke Math. J. 161 (2012) 247–303.

[4] R. Guralnick, F. Herzig, R. Taylor, J. Thorne, Adequate subgroups, J. Inst. Math. Jussieu, appendix to [5]

[5] J. Thorne, On the automorphy of ℓ-adic Galois representations with small residual image, J. Inst. Math. Jussieu 11 (2012) 855–920.