So far, the annotation of translation initiation sites (TISs) has been based mostly upon bioinformatics rather than experimental evidence. We adapted ribosomal footprinting to puromycin-treated cells to generate a transcriptome-wide map of TISs in a human monocytic cell line. A neural network was trained on the ribosomal footprints observed at previously annotated AUG translation initiation codons (TICs), and used for the ab initio prediction of TISs in 5602 transcripts with sufficient sequence coverage. Functional interpretation suggested 2974 novel upstream open reading frames (uORFs) in the 5′ UTR, 4106 uORFs overlapping with the coding sequence, and 546 N-terminal protein extensions.

The TIS detection method was validated on the basis of previously published alternative TISs and uORFs. Among pri-mates, TICs in newly annotated TISs were significantly more conserved than control codons, both for AUGs and near-cognate codons. The transcriptome-wide map of novel candidate TISs derived as part of the study will shed further light on the way in which human proteome diversity is influenced by alternative translation initiation and regulation.

[Supplemental material is available for this article.]
As regards the analysis of the transcriptome, the advent of systematic cDNA sequencing has facilitated an experimental assessment of the extent and origin of mRNA variation (Tomb et al. 1997). Recently, a ribosomal footprinting technique based upon high-throughput DNA sequencing has been developed that allows systematic monitoring of protein translation in yeast and mammalian cells (Ingolia et al. 2009; Guo et al. 2010). This technique was successfully adapted to the specific identification of translation-initiating ribosomes and was used for this purpose in mouse embryonic stem cells, employing harringtonine as the peptide elongation inhibitor (Ingolia et al. 2011). In the present study, we pretreated a human monocyte cell line with puromycin (Allen and Zamecnik 1962; Nathans 1964) and subsequently applied cycloheximide in order to release peptide-elongating ribosomes from the respective transcripts and to block elongation during the first steps after initiation. Compared with harringtonine (Ingolia et al. 2011), puromycin may yield a less precise localization of TISs but at the same time allows better detection of non-AUG TICs because it does not interfere with the assembly of the elongation complex at near-cognate TICs (Ingolia et al. 2011). Our approach to identifying human TISs was then validated using previously published N-terminal protein extensions and uORFs that were established by classical experimental methodology. As a bottom line, the present study provides a transcriptome-wide map of TISs that may further highlight the role of alternative translation initiation in generating and regulating human proteome diversity.

Results

Ribosomal footprint library enrichment for TISs by puromycin treatment

Ribosomal footprint libraries from THP-1 cells were enriched for TISs through puromycin treatment, leading to the release of peptide-elongating ribosomes, followed by the arrest of elongation using cycloheximide (Methods; Supplemental Fig. 1A). Sucrose gradient fractionation of lysates revealed a loss of polysomal peaks in the ribosomal profile of puromycin-treated cells, compared with native cells, thereby providing indirect evidence for the successful release of peptide-elongating ribosomes (Supplemental Fig. 1B). Ribosomal footprints were then generated in triplicate using the standard cycloheximide protocol (Guo et al. 2010) either alone or in combination with prior puromycin treatment. The pooled read length distribution in cycloheximide- and puromycin-treated samples peaked at 30 bp, as was described before for mammalian ribosomal footprints (Supplemental Fig. 1C; Guo et al. 2010). Reads were aligned against the human genome assembly (hg19), and unique matches to annotated RefSeq sequences were observed for 5–18 million reads per sample (Supplemental Table 1). Sequence-derived ribosomal binding patterns were found to be highly reproducible over biological replicates, as was confirmed by both visual inspection (Supplemental Fig. 2A) and statistical analysis. In particular, the pairwise correlation coefficients of the read coverage per nucleotide ranged from 0.82 to 0.84 in the case of puromycin-treated cells (Supplemental Fig. 2B). Read data were therefore pooled over replicates for further analysis.

An enrichment of the ribosomal footprints with genuine TISs after puromycin treatment was confirmed using annotated AUG TICs from human RefSeq sequences, as is exemplified in Figure 1A for the TPP1 gene. Inspection of the pooled read density for the 500 most abundantly translated transcripts also corroborated the TIS-enriching effect of puromycin (Fig. 1B). Moreover, a 3-bp periodicity of the read coverage became apparent at the 5’ end of the analyzed coding sequences (CDS), which provides additional evidence for an enrichment with TISs of the aligned reads (Fig. 1C). However, the observed coverage distribution also highlights the fact that hindrance of peptide elongation by puromycin is less than perfect and that some ribosomes will have undergone a few steps of protein synthesis before elongation of the nascent peptide was stopped.

Detection of TISs using a neural network

Since the above experiments were intended to detect novel uORFs and N-terminal protein extensions, only the 5’ UTR and the first 30 bp of the CDS of the analyzed RefSeq sequences were considered.

Figure 1. Enrichment of THP-1 cell ribosomal footprint data for TISs, following puromycin treatment. (A) Polysome profile of the TPP1 gene in control and puromycin-treated THP-1 cells. (B) Pooled read coverage for the 500 most highly expressed genes. Transcript-specific coverage values were normalized to the total number of reads for each gene and the transcript length was scaled to 1000 bp for all RefSeq sequences. (C) Pooled read coverage around the annotated AUG TICs of the 500 most highly expressed genes in puromycin-treated cells.
for further study. Moreover, to ensure sufficient sequence data quality, at least one nucleotide position with at least 20-fold ("20×") coverage was required in the region of interest, a criterion met by a total of 5062 transcripts. In order to facilitate systematic searching for potential TISs in the ribosomal footprint data, a neural network was trained on a manually curated set of 604 annotated AUG TICs. The latter were chosen so as to reflect the whole range of read coverage pertinent to the available sequencing data, namely 158 AUGs with 100–8390× coverage, 250 AUGs with 30–99× coverage, and 196 AUGs with 10–29× coverage. Ten neural networks were trained on different random selections of two thirds of each data set, and the corresponding ROC curves were derived from the remaining third (Supplemental Fig. 3). In order to attenuate the possible effects of chance overtraining, the neural network with the median ROC (AUC 0.97) was selected for further analysis. With this network, a signal of 0.001 (from the possible range of values between 0 and 1) was used as a cutoff for TIS identification ("positive signal"). As a result, 93% of the true TISs in the validation set were predicted correctly (i.e., the sensitivity equaled 93%) whereas 1.4% of the controls yielded a false positive signal (specificity: 98.6%).

TIS identification by means of the neural network thus gave binary, nucleotide position-specific results ("positive" or "negative"), and in order to reduce both noise and redundancy, positive TIS signals were also merged over adjacent nucleotides, combining up to two base-pair positions at a time.

The neural network was next applied to the complete ribosomal footprint data from puromycin-treated cells, including the transcripts of the respective training set. In total, 14,464 individual positive TIS signals and 10,386 merged positive TIS signals were obtained (Supplemental Table 2). Following the original experimental design, putative TISs downstream from the annotated TIC were not considered further, leading to a total of 8710 merged positive TIS signals for further analysis (Supplemental Table 2). To validate the use of the pooled puromycin data set, the neural network was next applied to all three replicates individually. In this analysis, 1720 transcripts met the minimum expression criteria (20× coverage for at least one nucleotide in the region of interest) in at least one replicate. A total of 3336 TISs were identified in these transcripts (Supplemental Table 3), 2365 of which (71%) were also detected in the pooled data. Only 13 of the 1639 TISs (0.8%) that were identified in all three replicates were not found in the pooled data. Similarly, only 20 of the 2385 TISs identified in the pooled data (0.8%) were not found in at least one replicate (Supplemental Table 3). The individual analyses are provided as separate annotation tracks electronically (http://gengastro.1med.uni-kiel.de/suppl/footprint/).

Functional interpretation of neural network-predicted TISs

No TIS was predicted by the neural network in 698 transcripts (14%; Fig. 3A, see below). Translation of these sequences may have initiated at downstream TISs not covered by the present study. In the remaining 4364 RefSeq sequences, neural network-predicted TISs were next classified according to their position in the actual transcript sequence (Fig. 2). First, those network-predicted TISs that were located within 3 bp of an annotated TIC (N = 2305) were interpreted as indicators of the corresponding translation-initiating ribosome. Then other AUGs followed by near-cognate TICs were considered iteratively in the vicinity (i.e., ±3 bp) of network-defined TISs upstream of annotated TISs, each time starting with the TIS with the highest aligned sequence count among the
remaining unclassified putative TIS for each transcript. Neither an AUG nor a near-cognate codon was present in the vicinity of 220 network-predicted TISs, a figure that further highlights the specificity of the network prediction tool (Supplemental Table 4). Unclassified TISs occurred in combination with all transcript categories in Table 1, and 42 transcripts only contained unclassified TIS.

As the overall result, 2305 of the 7251 classified network-predicted TISs (31%) coincided with an annotated TIS (Figs. 2, 3B). Another 2994 putative TISs (40%) predicted in the 5’ UTR were associated with a downstream stop codon and were therefore classified as defining a uORF (Figs. 2, 3B). Yet another 1406 putative TISs (19%) were interpreted as belonging to a uORF overlapping with the respective CDS, because the TIS was out of frame with the annotated ORF but was associated with a downstream stop codon within the CDS. A minority comprising 546 putative TISs (7%) was classified as leading to an N-terminal extension of the encoded protein. Additional, downstream network-predicted TISs within the newly annotated N-terminal protein extensions or uORFs were interpreted as evidence of ribosomal pausing and/or incomplete suppression of elongation by puromycin. They were thus assigned to the respective annotated sequence feature and not classified independently (N = 1239).

The read coverage around newly identified TISs displayed a pronounced 3-bp periodicity, irrespective of their classification, which lent additional support to the presence of true TICs at these positions (Supplemental Figs. 4, 5). A higher read coverage of the second codon at TISs with an AUG TIC rather than a near-cognate codon was observed in the vicinity of 220 putative TISs, a figure that further highlights the specificity of the network prediction tool (Supplemental Fig. 6; Ingolia et al. 2011).

A transcript-based analysis revealed that all possible combinations of functional TIS classification occurred (Table 1; Supplemental Fig. 7). A TIS was predicted exclusively at the annotated TIC for 1320 (30.3%) of the 4364 transcripts that harbored at least one neural network-predicted TIS. Exclusive translation of one or more uORFs in the 5’ UTR was predicted for 976 transcripts (22.4%), with initiation occurring at AUG for 601 uORFs and at a near-cognate codon for 375 uORFs. N-terminal protein extensions alone were predicted for 152 transcripts, with putative translation starting at AUGs in four cases and at near-cognate codons in 159 cases. Sequences surrounding the newly identified TISs showed no particular enrichment of the Kozak consensus or any alternative consensus sequence, suggesting that these sites may be subject to more complex initiation mechanisms (Supplemental Figs. 8, 9).

The aligned reads, the network-predicted TIS positions, and their classification are available as UCSC style online material at http://gengastro.1med.uni-kiel.de/suppl/footprint/. An example is provided in Figure 4.

Table 1. Putative functional classification and TIC usage in neural network-predicted TISs

Putative TIS categories pertaining to transcript	Annotated TIS	uORF	CDS-overlapping uORF	N-terminal protein extension
Annotated TIS only	1320 (30.25%)	0	0	0
uORFs only	976 (22.36%)	0	0	0
CDS-overlapping uORFs only	454 (10.4%)	0	0	0
N-terminal protein extension only	152 (3.3%)	0	0	0
Annotated TIS, uORFs	383 (8.8%)	0	0	0
Annotated TIS, CDS-overlapping uORFs	305 (7.0%)	0	0	0
Annotated TIS, N-terminal protein extension	106 (2.43%)	0	0	0
Annotated TIS, uORFs, N-terminal protein extension	116 (2.66%)	0	0	0
Annotated TIS, uORFs, CDS-overlapping uORFs	41 (0.94%)	0	0	0
Annotated TIS, uORFs, N-terminal protein extension	30 (0.69%)	0	0	0
All categories	4 (0.1%)	0	0	0
uORFs, CDS-overlapping uORFs	264 (6.05%)	0	78	288
uORFs, N-terminal protein extension	108 (2.47%)	0	27	142
CDS-overlapping uORFs, N-terminal protein extension	45 (1.0%)	0	0	0
uORFs, CDS-overlapping uORFs	18 (0.4%)	0	3	25
No TIS predicted	42 (0.96%)	0	0	0
Total	4364	2299	6	924

N = 7251, N = 4364, 85%, with AUG being the most frequent TIC (N = 3345, 47%) (Fig. 3C). At the level of the individual functional category, usage of AUG in uORFs, CDS-overlapping uORFs, and N-terminal protein extensions equaled 30%, 8%, and 1%, respectively (Fig. 3C, top row). Interestingly, when only near-cognate (i.e., non-AUG) codons were considered, a very similar TIC usage was observed in all three functional categories (Fig. 3C, bottom row). Comparison of the codon usage at identified TICs and in the analyzed 5’ UTRs as a whole, considering all three reading frames, revealed an enrichment of CUG and GUG, and a depletion of AGG and AAG, among TICs (Fig. 3D). A similar pattern of TIC usage as observed for humans in our study was also evident in the previously published murine data (Supplemental Fig. 6; Ingolia et al. 2011).
Literature-based validation of neural network-predicted TISs

Read coverage peaks in ribosomal footprint data provide experimental evidence for ribosome binding during translation initiation at the respective sites. However, both the original laboratory experiments and the subsequent TIS prediction by a neural network are potentially prone to errors, and therefore their joint outcome requires validation. To this end, we focused upon those genes for which experimental evidence for functional uORFs or non-AUG-initiated N-terminal protein extension has been reported before. We used information from the published literature (Tikole and Sankararamakrishnan 2006; Ivanov et al. 2011) and from the “database of mRNA sequences with non-AUG start codons” (http://bioinfo.iitk.ac.in/).

Of the 28 human genes for which the occurrence of N-terminal protein extension had been experimentally verified before,
18 genes were not sufficiently translationally active in the THP-1 cell line studied here (Supplemental Table 5). Another gene (SP3) was not represented in our data set by the appropriate isoform because, for each RefSeq sequence, we consistently analyzed only the mRNA splice variant with the longest 5' extent (Supplemental Table 5). For six of the remaining nine genes (Table 2), namely BAG1, DDX17, EIF4G2, GTF3A, MYC, and NPW, our combined experimental and in silico approach correctly predicted the previously reported N-terminal protein extension. The apparent non-AUG TICs in the TEAD4 and HCK genes may have been silenced or obscured in our ribosomal footprinting experiment by the uORFs that were predicted by the neural network. Finally, while a previously verified CUG TIC in the WT1 gene (Bruening and Pelletier 1996) was not predicted, the neural network identified a putative upstream ACG TIC instead, activation of which would result in a WT1 protein isoform that is extended by an additional 20-amino acid residues.

Sequence conservation at neural network-predicted TICS

Many functional uORFs are conserved between different species (Zimmer et al. 1994; Göpfer et al. 2003). To assess the level of recent evolutionary conservation pertinent to the TICs of neural network-predicted TIS, their orthologous positions in nine nonhuman primate species (chimpanzee, gorilla, orangutan, rhesus macaque, baboon, marmoset, tarsier, mouse lemur, bushbaby) were extracted from the PhastCons46Primates track in the UCSC Genome Browser (Pollard et al. 2010). The corresponding conservation score provided by UCSC for the predicted TICs was compared with that of control codons taken from the 5' UTR of the analyzed RefSeq sequences (Supplemental Table 6), matched for their annotated nucleotide position. As was to be expected, annotated AUG TICs were highly conserved, with a mean conservation score
of 0.58 compared with 0.20 in controls (t-test $P < 10^{-10}$). However, the TICs of neural network-predicted TISs were also found to be significantly more conserved than control codons, both overall (ANOVA controlling for codon type: $P < 10^{-10}$) and when stratified by codon type (AUG: t-test $P < 10^{-10}$; non-AUG: ANOVA $P = 3.8 \times 10^{-3}$). The degree of TIC conservation varied significantly between different codons and between different functional TIS categories. The most highly conserved TICs were AUG and AUA, with significant conservation observed in both the uORF and the CDS-overlapping uORF categories (Fig. 5; Supplemental Table 6). The most consistent intra-category conservation across codons was observed for uORFs (Fig. 5; Supplemental Table 6). Generally similar results were

Table 2. Literature-based validation of neural network-predicted, non-AUG-initiated N-terminal protein extension

RefSeq ID	Gene	Alternative TIC	Protein extension (in amino acids)	TIS predicted?	Additional alternative TISs predicted? (TIC if yes)	Additional uORFs predicted? (TIC if yes)	Reference
NM_004323	BAG1	CUG	71	yes	no	1(CUG)	Packham et al. (1997)
NM_001098504	DDX17	CUG	79	yes	no	1(CUG)	Uhlmann-Schiffler et al. (2002)
NM_001172705	EIF4G2	CUG	206	yes	no	2(CUG)1(UUG)	Imataka et al. (1997)
NM_002097	GTF3A	CUG	235	yes	no	2(CUG)	Ivanov et al. (2011)
NM_002110	HCK	CUG	21	no	1(CUG)		Lock et al. (1991)
NM_002467	MYC	CUG	15	yes	2(CUG)1(UUG)		Hann et al. (1988)
NM_001099456	NPW	CUG	52	yes	no	1(CUG)1(ACG)	Tanaka et al. (2003)
NM_003213	TEAD4	UUG	73	no	1(CUG)1(ACG)		Stewart et al. (1996)
NM_0024426	WT1	CUG	68	no	yes (ACG)		Bruening and Pelletier (1996)

Only RefSeq sequences meeting the minimum read coverage criterion of the present study were included. Genes were selected from the “database of mRNA sequences with non-AUG start codons” (http://bioinfo.iitk.ac.in/).

Table 3. Literature-based validation of neural network-predicted functional uORFs in human genes

RefSeq ID	Gene	uORF TIC	uORF position	uORF length	Annotated TIS extension predicted?	N-terminal protein extension predicted?	Additional uORF predicted? (TIC if yes)	Reference
NM_000671	ADHS	AUG	−65	20	no	yes	no	Kwon et al. (2001)
NM_001634	AMD1	AUG	−35	10	no	yes	no	Mize et al. (1998)
NM_001675	ATF4	AUG	−860	1	yes	no	no	Harding et al. (2000)
NM_012068	ATFS	AUG	−978	3	yes	no	no	Watatani et al. (2008)
NM_01122957	BCKDK	AUG	−177	19	yes	no	no	Muller and Danner (2004)
NM_000633	BCL2	AUG	−119	11	yes	no	2(AUG)1(UUG)1(AUG)	Hargai et al. (1996)
NM_004364	CEBPA	AUG	−25	5	yes	no	no	Lincoln et al. (1998)
NM_006079	CITED2	AUG	−82	3	yes	yes	1(AUC)	van den Beucken et al. (2007)
NM_001195056	DDIT3	AUG	−341	34	yes	no	no	Jousse et al. (2001)
NM_002017	FLJ	AUG	−41	25	no	yes	1(CUG)	Sarrazin et al. (2000)
NM_005336	HDBP	AUG	−37	17	no	yes	no	Rohwedel et al. (2003)
NM_002111	HTT	AUG	−125	21	yes	no	no	Lee et al. (2002)
NM_002392	MDM2	AUG	−231	14	yes	no	no	Brown et al. (1999); Jin et al. (2003)
NM_000254	MTR	AUG	−97	14	no	yes	1(AAG)	Col et al. (2007)
NM_0017458	MVP	AUG	−78	18	no	yes	1(GUG)	Holzmann et al. (2001); Ivanov et al. (2008); Pegg (2006)
NM_002539	ODC1	AUG	−161	10	yes	yes	no	Lee et al. (2009)
NM_014330	PPP1R15A	AUG	−206	22	yes	no	no	Lee et al. (2009)
NM_003045	SLCL7A	AUG	−107	5	no	yes	1(CUG)	Fernandez et al. (2002)
NM_003111	SP3	AUG	−378	110	no	yes	1(CUG)1(UUG)	Sapetschnig et al. (2004)
NM_003355	UCP2	AUG	−47	9	yes	no	no	Hurtaud et al. (2006); Pecqueur et al. (2001)

Genes with known functional uORFs were identified from the report by Calvo et al. (2009).
obtained with SiPhy (Garber et al. 2009), which nevertheless revealed stronger conservation of AUG in the uORF categories and less conservation of near-cognate codons (Supplemental Table 7).

To further analyze the degree of conservation of TICs across species, the human data set reported here was compared with experimentally defined TICs in mouse embryonic stem cells (Ingolia et al. 2011). In total, 2141 of the 3294 TICs that could be mapped from the human to the mouse genome (64%), and 4458 (60.3%) of the 7391 reciprocally “mappable” TICs in mice (60%), were conserved. Not surprisingly, 98% of the canonical TISs were found to be conserved between the two species whereas uORFs, overlapping uORFs, and N-terminal extensions showed less conservation (Supplemental Table 8). When comparing the TICs of the 1490 TISs that were shared between human and mouse, an almost identical TIC usage became evident (Supplemental Tables 9–11; Supplemental Fig. 6).

In a comparison of 2216 transcripts from humans and mice, the majority of canonical TISs in human were also found to be used in mouse embryonic stem cells. Usage of uORFs and overlapping uORFs seemed to be more conserved than usage of N-terminal extensions (Supplemental Table 12).

Discussion

In the present study, we derived the first transcriptome-wide map of alternative TISs in humans, using an adaption of a recently described ribosomal footprinting technique (Ingolia et al. 2009; Guo et al. 2010) to puromycin-treated cells. The newly annotated TISs will shed new light on the complexity of human proteome composition and regulation. For instance, novel uORFs were predicted for >44% of RefSeq sequences, and 28% of the analyzed transcripts were found to contain putative uORFs overlapping the respective CDS. This observation corroborates recent data on mouse embryonic stem cells where most of the newly identified TISs indeed mapped to uORFs and CDS-overlapping uORFs. Our results are also in agreement with bioinformatic analyses suggesting that ~50% of human RefSeq sequences contain uORFs, although these analyses defined uORFs on the basis of sequence features alone, rather than experimental evidence for translation (Iacono et al. 2005; Matsui et al. 2007; Calvo et al. 2009). Individual analyses of the three biological replicates in our study provided compelling evidence for the robustness of the predicted TISs. Nevertheless, 1697 newly detected TISs were predicted in some, but not all, replicates. While one possible explanation for these less robust predictions may be lower read coverage, they may also point toward a combination of programmed initiation and stochastic positioning of ribosome binding.

The annotated TIS was also ascertained by our combined experimental and in silico approach for 2305 of the 4364 analyzed RefSeq transcripts (53%). In 1694 transcripts (39%), the annotated TIS has likely been silenced by the activation of uORFs because ribosome binding in these transcripts was only detected experimentally at uORFs and CDS-overlapping uORFs. This observation highlights the likely regulatory role of uORFs in the control of translation of the canonical CDS (Calvo et al. 2009).

While an abundance of sequence reads at predicted albeit not yet annotated TISs provides experimental evidence for the presence of translation-initiating ribosomes, independent validation of such TISs seemed necessary. We therefore screened the literature and public databases for reports of experimentally verified non-canonical TISs and uORFs. The number of such sites was found to be very limited: Only 28 N-terminal protein extensions and 50 functional uORFs could be found probably reflecting the lack of...
systematic means of experimental analysis before the establishment of ribosomal footprinting (Ingolia et al. 2009; Guo et al. 2010). The number of sites available for validation was reduced further by a lack of expression of the respective gene or by missing data for the reported isoforms. However, for eight out of nine instances of N-terminal protein extension, the outcome of our ribosomal footprint analysis was compatible with that of previous reports. Similarly, 14 out of 19 known human uORFs were confirmed by our approach. Only the annotated TISs were predicted in the remaining six cases, and this less-than-perfect coincidence may reflect that other cell lines and/or functional cellular states were investigated here compared with previous studies.

Ribosomal footprint cDNA libraries were enriched for TISs in the present study by the use of elongation termination agent puromycin. Elongation termination by puromycin is based upon the structural similarity of the latter to aminoacyl-tRNAs, which normally binds to the ribosome and expedites protein synthesis. Binding of puromycin, in contrast, disrupts elongation of the nascent peptide chain and leads to the release of the ribosome from the transcript (Allen and Zamecnick 1962; Nathans 1964). In a previous study geared to identifying alternative TISs, harringtonine was used to arrest ribosomes at the TIS (Ingolia et al. 2011). Harringtonine is known to bind free 60S ribosomal subunits and to inhibit elongation of ribosomes after joining of harringtonine-bound 60S subunits to an 80S ribosome (Fresno et al. 1977; Robert et al. 2009), leading to well-defined signals in ribosome-profiling experiments. The combined use of puromycin and cycloheximide in our study resulted in somewhat less sharply defined read coverage peaks, with elongation leakage downstream from the initiation site (Fig. 1C). However, puromycin has the advantage of a potentially better detection of near-cognate codons because harringtonine is resistant to near-cognate codons under certain circumstances (Ingolia et al. 2011). While any analysis of downstream translation initiation would have been affected seriously by this possible type of error, our specific goal was the identification of TISs upstream of the annotated TIS, and for this purpose, puromycin is a valid and potentially superior experimental agent.

Interestingly, the newly identified putative TISs showed significant evolutionary conservation of the respective TIC among primates, both for AUG and for near-cognate codons. Moreover, trans-species mapping of newly identified and annotated TICs in human and mice, respectively, suggests that this conservation may even extend to primates and rodents. Bearing in mind that conservation analysis of candidate TIS has been used in previous bioinformatics-based identifications of novel uORFs and TISs (Iacono et al. 2005), the strong level of conservation observed here provides further, albeit indirect evidence, for the validity of the newly predicted TISs. Moreover, the different degree of conservation seen for different TIC types and functional classes of TIS may be a direct consequence of the molecular mechanisms underlying TIS recognition, thereby providing a basis for future functional studies. A particularly interesting example in this respect is the different frequency of AUG TICs as observed in different classes of protein-coding sequences and uORFs, for which the pattern of near-cognate codon usage was virtually identical (Fig. 3C). In addition, transcripts containing a uORF in humans were shown to also contain a uORF in mouse in 57% of cases. Although a direct comparison between the two species and studies was difficult due to the differential developmental and metabolomics stages analyzed, and the difficulties of mapping human transcripts onto the mouse genome and vice versa, we found strong evidence for a shared TIC usage in the two species (Supplemental Tables 8–11; Ingolia et al. 2011).

In summary, we provide a transcriptome-wide map of previously non-annotated candidate TISs in a human monocytic cell line. The results, together with the underlying alignments and functional classification (http://genagastro.1med.uni-kiel.de/suppl/footprint/), will add another detail to our understanding of the translational regulation of human proteome diversity.

Methods

Cell culture

Human monocytic cell line THP-1 was obtained from the German Resource Center for Biological Material (DSMZ). Cells were maintained in RPMI 1640 (PAA Laboratories GmbH) supplemented with 10% (v/v) fetal calf serum (Biochrom AG) at 37°C under 5% CO₂. Cells were seeded on 15-cm dishes and four plates were pooled for each subsequent biological replicate of the ribosome profiling experiment.

Ribosome profiling and cDNA library preparation

Ribosome footprint cDNA libraries were prepared as previously described with minor modifications (Ingolia et al. 2009; Guo et al. 2010). Release of elongating ribosomes was achieved by the addition of puromycin 48 h after seeding to a final concentration of 100 μg/mL and incubation for 15 min at 37°C. Translation-initiating ribosomes were arrested by subsequent treatment with cycloheximide at a final concentration of 100 μg/mL and subsequent incubation at 37°C. Treatment with puromycin was omitted in the control samples. Cells were washed two times in ice-cold PBS supplemented with cycloheximide (100 μg/mL) and resuspended in 1 mL ice-cold polysome lysis buffer (20 mM Tris pH 8.0, 140 mM KCl, 35 mM MgCl₂, 1% [v/v] Triton X-100), supplemented with one Complete ULTRA Tablet (Roche) per 10 mL, and incubated for 10 min on ice after homogenization by pipetting the lysate mixture 10 times through a 19 gauge needle. After centrifugation for 8 min at 1300g, the supernatant was digested with 2000 units RNaseI (Ambion) for 60 min at 30°C with gentle mixing. The digested extracts and control samples were layered onto a 10%–50% sucrose density gradient, and centrifuged at 110,000g for 3 h at 4°C. After ultracentrifugation, the gradients were fractionated using an Isco gradient fractionation system (Teledyne Isco) by continually fractionation system (Teledyne Isco) by continually freezing in 500 μL fractions. The ultracentrifuge was used to separate ribosomes and polysomes. Fractions were pooled and concentrated using Ultra-4 centrifugal filters (Millipore). The filtrate was treated and RNA extracted as previous described (Guo et al. 2010).

Sequence analysis

Libraries were sequenced on an Illumina HiSeq 2000 instrument using primer oNTI202, 5′-CGACAGGTTCCAGATTTCTAGG1CTACAGTGCAAGTCTAC, to give ~20 million single-end reads of 50 bp. The resulting FASTQ files were mapped by simultaneous elimination of adaptor sequences using the short-read alignment software Novoalign V2.07.13 (Novocraft). First, the contaminating reads from rRNA reads were removed by mapping the reads against RefSeq sequences NR_023371, NR_003287, NR_003286, NR_003285, and NR_023363. The remaining reads were aligned to the human reference genome (UCSC GRCh37/hg19 release) and splice junctions from the UCSC RefSeq track. The position of the footprint in the ribosome was determined by adding 12 nucleotides (nt) to the 5′ end of the read. When the first nucleotide of the read failed to align to the reference sequence, 13 nt were added.
TIS prediction and interpretation
For the ab initio detection of TIS, a set of reference transcripts with one transcript per gene was compiled. If more than one transcript per gene was available, the transcript with the most 5’ location of the annotated TIS and the longest 5’ UTR was chosen. All subsequent analyses were limited to a region comprising the 5’ UTR and the first 30 bp downstream from the TIC of the annotated TIS of each RefSeq sequence. The number of aligned reads per nucleotide position was normalized for each transcript by the highest number observed in the above-mentioned region. Ten neural networks with five input neurons, three hidden layers with 11 neurons each, and one output neuron were then trained and validated on the normalized read coverage per nucleotide position from puromycin ribosomal footprints of a manually curated set of 604 transcripts. The different training sets comprised 403 randomly chosen transcripts per network, and network-specific ROC curves were estimated from the remaining 201 transcripts. The training and validation sets contained the annotated TISs of transcripts with different expression levels (see Results section) and the sites surrounding positions −6, −3, +3, +15, +21, +45, +90, +180, +300, and +480, relative to the annotated TIC, as negative controls. The neural network that yielded the median area under the curve of 0.97 (Supplemental Fig. 3) was used for further analysis. After determining a threshold for the network-emitted signal, TIS identification gave binary, nucleotide position-specific results (“positive signal” or “negative signal”), and in order to reduce both noise and redundancy, positive signals were also merged over adjacent nucleotides, covering 2 bp at a time. The TISs predicted by the neural network were finally classified into one of four presumptive functional categories: “annotated TIS,” “N-terminal protein extension,” “upstream ORF,” or “CDS-overlapping uORF” (Fig. 2).

Statistical analysis
All statistical analyses were performed with R version 2.13.2 (www.r-project.org; R Development Core Team 2011). Control TISs from the 5’ UTRs of the analyzed transcripts were matched by both codon and annotated position, and were selected with the sample() function of R using a weighting scheme according to the spatial distribution of network-identified TISs in the respective 5’ UTRs. Pairwise differences between TIC categories in terms of their Evolutionary Conservation Scores (Pollard et al. 2010) were tested for statistical significance using the Student t-test. (Function t.test().) Differences in Conservation Score across TIC categories were tested for statistical significance using ANOVA as implemented in R function aov().

Data access
The sequence data from this study have been submitted to the NCBI Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo) under accession number GSE39561.

Acknowledgments
This study was supported by the BMBF (German Federal Ministry of Education and Research) through the Colon Cancer Network (grant no. 01GS08182) and the “Virtual Liver” project (grant no. 0315763), and by the German Research Council (DFG) through the “LABIMI/F” archiving project (grant no. RI 1000/2-1).

References
Allen DW, Zamecnik PC. 1962. The effect of puromycin on rabbit reticulocyte ribosomes. Biochim Biophys Acta 55: 865–874.

Bazikyn GA, Kochetov AV. 2011. Alternative translation start sites are conserved in eukaryotic genomes. Nucleic Acids Res 39: 567–577.

Brä G, Yassour M, Friedman N, Regev A, Ingolia NT, Weissman JS. 2012. High-resolution view of the yeast mitotic program revealed by ribosome profiling. Science 335: 835–837.

Brown CY, Mize GJ, Pineda M, George DL, Morris DR. 1999. Role of two upstream open reading frames in the translational control of oncosine mdm2. Oncogene 18: 5631–5637.

Bruning W, Pelletier J. 1996. A non-AUG translational initiation event generates novel WT1 isoforms. J Biol Chem 271: 8646–8654.

Calvo SE, Pagliarini DJ, Mootha VK. 2009. Upstream open reading frames cause widespread reduction of protein expression and are polymorphic among humans. Proc Natl Acad Sci USA 106: 7507–7512.

Carnini F, Kasukawa T, Katayama’s, Gough J, Frith MC, Maeda N, Oyama R, Ravasi T, Lenhard B, Wells C, et al. 2005. The transcriptional landscape of the mammalian genome. Science 309: 1559–1563.

Col B, Oltean S, Banerjee R. 2007. Translational regulation of human methionine synthase by upstream open reading frames. Biochim Biophys Acta 1769: 532–540.

Fernandez J, Yamam I, Merrick WC, Koromilas A, Wek RC, Sood R, Hensold J, Hatzoglou M. 2002. Regulation of internal ribosome entry site-mediated translation by eukaryotic initiation factor-2a phosphorylation and translation of a small upstream open reading frame. J Biol Chem 277: 2050–2058.

Fernandez-Miragall O, Ramos R, Ramajo J, Martinez-Salas E. 2006. Evidence of reciprocal tertiary interactions between conserved motifs involved in organizing RNA structure essential for internal initiation of translation. RNA 12: 233–243.

Fresco M, Jiménez A, Vázquez D. 1977. Inhibition of translation in eukaryotic systems by harringtonine. Eur J Biochem 72: 323–330.

Garber M, Guttman M, Clamp M, Zody MC, Friedman N, Xie X. 2009. Identifying novel constrained elements by exploiting biased substitution patterns. Bioinformatics 25: 54–62.

Gopfert U, Kullmann M, Hengst L. 2003. Cell cycle-dependent translation of p27 involves a responsive element in its 5’-UTR that overlaps with a uORF. Hum Mol Genet 12: 1767–1779.

Guo H, Ingolia NT, Weissman JS, Bartel DP. 2010. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466: 835–840.

Hann SR, King MW, Bentley DL, Anderson CW, Eisenman RN. 1988. A non-AUG translational initiation in c-myc exon 1 generates an N-terminally distinct protein whose synthesis is disrupted in Burkitt’s lymphomas. Cell 52: 185–195.

Harding HP, Novoa L, Zhang Y, Zeng H, Wek R, Schapira M, Ron D. 2000. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell 6: 1099–1108.

Harigai M, Miyashita T, Hanada M, Reed JC. 1996. A new translational regulator with sequence similarity to the mammalian mTOR homologs. EMBO J 15: 1780–1789.

Iacono M, Mignone F, Pesole G. 2005. uAUG and uORFs in human and rodent 5’ untranslated mRNAs. Gene 349: 97–105.

Imataka H, Olsen HS, Sonenberg N. 1997. A new translational regulator with homology to eukaryotic translation initiation factor 4G. EMBO J 16: 817–825.

Ingolia NT, Ghaemmaghami S, Newman JRS, Weissman JS. 2009. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324: 218–223.

Ingolia NT, Lareau LF, Weissman JS. 2010. Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell 147: 789–802.

Ivanov IP, Loughran G, Atkins JF. 2008. uORFs with unusual translational start codons autoregulate expression of eukaryotic methionine carboxylase homologs. Proc Natl Acad Sci USA 105: 10079–10084.

Ivanov IP, Firth AE, Michell AM, Atkins JF, Baronov PV. 2011. Identification of evolutionarily conserved non-AUG-initiated N-terminal extensions in human coding sequences. Nucleic Acids Res 39: 4220–4234.

Iv ano v I P, F irt h A E, M ich e l A M, A tkin s J F, B ar a n o v P V. 2011. Alternative translation start sites are conserved in eukaryotic genomes. Nucleic Acids Res 39: 567–577.
Jin X, Turcott E, Englehardt S, Mize Gregory J, Morris David R. 2003. The two upstream open reading frames of oncogene mdm2 have different translational regulatory properties. J Biol Chem 278: 25716–25721.

Jousse C, Brhuat A, Carraro V, Uranjo F, Ferrara M, Ron D, Fafournoux P. 2001. Inhibition of CHOP translation by a peptide encoded by an open reading frame localized in the 5’-UTR. Nucleic Acids Res 29: 4341–4351.

Kochetov AV. 2008. Alternative translation start sites and hidden coding potential of eukaryotic mRNAs. Bioessays 30: 683–691.

Komar AA, Lesnik T, Reiss C. 1999. Synchronous codon substitutions affect ribosome traffic and protein folding during in vitro translation. FEBS Lett 462: 387–391.

Kooistra M. 2005. Regulation of translation via mRNA structure in prokaryotes and eukaryotes. Gene 361: 13–37.

Kwon HS, Lee DK, Lee JJ, Edenberg HJ, Ahn YH, Hur MW. 2001. Posttranscriptional regulation of human ADHS/PHD and Myf6 gene expression by upstream AUG codons. Arch Biochem Biophys 386: 163–171.

Lee J, Park EH, Couture G, Harvey L, Garneau P, Pelletier J. 2002. An upstream open reading frame impedes translation of the huntingtin gene. Nucleic Acids Res 30: 5110–5119.

Lee Y-Y, Cevallos RC, Jan E. 2009. An upstream open reading frame regulates translation of GADD34 during cellular stresses that induce elf2a phosphorylation. J Biol Chem 284: 6661–6673.

Lincoln AJ, Monczak Y, Williams SC, Johnson PF. 1998. Inhibition of the inhibitory upstream open reading frame in the 5’-untranslated region. J Biol Chem 273: 9552–9560.

Lock P, Ralph S, Stanley E, Boulet I, Ramsay R, Dunn AR. 1991. Two isoforms of murine hck, generated by utilization of alternative translational initiation codons, exhibit different patterns of subcellular localization. Mol Cell Biol 11: 4363–4370.

Lorsch JR, Dever TE. 2010. Molecular view of 43 S complex formation and start site selection in eukaryotic translation initiation. J Biol Chem 285: 21203–21207.

Matsui M, Yachie N, Okada Y, Saito R, Tomita M. 2007. Bioinformatic analysis of post-transcriptional regulation by uORF in human and mouse. FEBS Lett 581: 4184–4188.

Miyasaka H, Kanai S, Tanaka S, Akiyama H, Hirano M. 2002. Statistical analysis of the relationship between translation initiation AUG context and gene expression level in humans. Biocoi Techniobiomol Biochem 66: 667–669.

Mize GJ, Ruan H, Low JJ, Morris DR. 1998. Inhibition of CCAT/enhancer-binding protein α and β translation by upstream open reading frames. J Biol Chem 273: 9552–9560.

Neafsey DE, Galagan JE. 2007. Dual modes of natural selection on upstream open reading frames in Fli-1 mRNA. Mol Cell Biol 27: 2595–2599.

Reigadas S, Pacheco A, Ramajo J, López de Quinto S, Martínez-Salas E. 2005. Specific interference between two unrelated internal ribosome entry site elements impairs translation efficiency. FEBS Lett 579: 6803–6808.

Robert F, Carrier M, Rawe S, Chen S, Lowe S, Pelletier J. 2009. Altering chemosensory by modulating translation elongation. PLoS ONE 4: e5428. doi: 10.1371/journal.pone.0005428.

Pollard KS, Hubisz MJ, Rosenberg BR. 2010. Expansion of the eukaryotic proteome by alternative splicing. Genomics 95: 68–76.

Pollard KS, Hubisz MJ, Rosenberg BR. 2009. Regulation of translation initiation in eukaryotes: Mechanisms and biological targets. Cell 136: 731–745.

Sarrazin S, Starck J, Gouet P, Morle F. 2000. Characterization of a family of endogenous neuropeptide ligands for the G protein-coupled receptors GP78 and GP88. Proc Natl Acad Sci USA 97: 6251–6256.

Tikóe S, Sankaraarumakrishnan R. 2006. A survey of mRNA sequences with a non-AUG start codon in ReSeq database. J Biomol Struct Dyn 24: 33–42.

Tomb JF, White O, Kerlavage AR, Clayton RA, Fleischmann RD, Ketchum KA, Nelson KE, Gill S, Glass JM, et al. 1997. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388: 539–547.

Wouters BG. 2007. Regulation of Cited2 expression provides a functional link between translational and transcriptional responses during hypoxia. Radiatother Oncol 83: 346–352.

Zimmer AM, Reynolds K. 1994. Tissue specific expression of the 5’-noncoding region of the 5’-noncoding region. J Cell Biol 127: 1111–1119.

Received February 22, 2012; accepted in revised form August 8, 2012.