Synthesis and properties of photocatalytic active composite materials based on TiO$_2$ and modified by Ag and SiO$_2$

A A Buzaev, A O Rogacheva, O S Khalipova, A S Brichkov and V V Kozik
Faculty of Chemistry, National Research Tomsk State University, 36 Lenin Street, Tomsk 634050, Russian Federation

E-mail: buzaev92@icloud.com

Abstract. Nowadays air and water pollutions are becoming a serious problem for urban environment. One of the efficient methods of purifying water and air is photocatalysis on TiO$_2$ films. In this work, we obtained composite materials based on TiO$_2$ and modified by Ag and SiO$_2$ on the surface of the fiberglass material (Ag/SiO$_2$/TiO$_2$/FGM) by a sol-gel method. Complex studies were carried out to identify the phase compositions, morphology and textural characteristics of obtained samples by X-ray diffractometry, scanning electron microscopy, micro-X-ray spectral analyses and analysis of N$_2$ adsorption-desorption isotherms. Surface area and average pore size of this sample is 8.2 m2/g and 11.4 nm respectively. Prepared composite Ag(0.5%)/SiO$_2$(3%)/TiO$_2$/FGM material revealed photocatalytic activity in model reaction of methyl orange azo dye photodegradation under UV-irradiation.

1. Introduction
Titanium dioxide (TiO$_2$) is one of the widely used semiconducting metal oxides. Titanium dioxide exhibits unique physicochemical properties such as close thermodynamic parameters of polymorphic structures, high strength Ti-O bonds, relatively low cost, non-toxicity, chemical stability, stable optical properties. These advantages make materials based on TiO$_2$ very attractive for researchers. Polyfunctional materials based on titanium dioxide are promising candidates for application as self-cleaning surfaces, solar and fuel cells, protective and optical coatings [1].

The photocatalytic activity of TiO$_2$ is one of its most interesting features. Photocatalysis is a recognized highly efficient method of purifying water and air, which has obvious advantages over traditional methods, including chlorination. Scientists all over the world are actively searching the effective photocatalytic materials, which can become a key to important environmental problems, including the elimination of organic pollutants contained in sewages. Nowadays filters based on TiO$_2$ powders are used for photocatalytic purification of water and air from toxic organic impurities [2, 3]. Thin films based on TiO$_2$ also can be used as photocatalyst [4]. The photocatalytic activity of TiO$_2$ is largely determined by properties such as specific surface area, porosity, degree of crystallinity and the ratio of anatase and rutile crystalline phase [5]. One of the route to change these characteristics and improve photocatalytic activity is realized by addition of the other metal such as Ag [6–8].

The sol-gel synthesis using film-forming solutions (FFS) is one of the recognized methods to obtain functional composite oxide films with the required properties [9]. In this technique, the properties and composition of the initial sol significantly influence the obtaining of uniform oxide coatings. In the previous work [1] was shown that fiberglass materials of silicate origin are promising materials as a substrate for deposition TiO$_2$ film. However, to create a homogeneous coating of TiO$_2$ is
difficult, because fiberglass is hydrophobic. It was found, that the introduction of tetraethoxysilane into the sol composition made it possible to obtain uniform oxide coatings on substrates of various types [10, 11]. Moreover, it has been reported, that the presence of silica in SiO$_2$-TiO$_2$ materials contributes to the formation of the anatase phase [12].

In the present study, composite Ag/SiO$_2$/TiO$_2$ coatings on the surface of the fiberglass were prepared and thoroughly characterized. The prepared material revealed a catalytic activity in a model reaction of methyl orange oxidation under UV irradiation.

2. Experimental part

2.1. Materials and experimental procedure.
A fiberglass material (FGM) manufactured by JSC “Stekloplastik” (Russia) was used [1]. The composite Ag/SiO$_2$/TiO$_2$/FGM materials on the fiberglass were prepared using sol-gel method. At the first stage, to prepare the film-forming solution, three components were mixed: butanol-1 (99.9%, Ekos-1, Russia) as a solvent, bidistilled water as an initiator of alkoxide hydrolysis reaction, and HNO$_3$ (UralPromDelivery, Russia). After, the tetrabutoxytitanium (TBT, extrapurity, Acros, USA), (TEOS, extrapurity, Ekos-1 , Russia) and AgNO$_3$ (99.9%, Len Reactive, Russia) were added to the C$_2$H$_5$OH–H$_2$O–HNO$_3$ mixture. The content of AgNO$_3$ and TEOS was based on the need to obtain composite TiO$_2$/FGM, Ag(0.5%)/TiO$_2$/FGM, Ag(1%)/TiO$_2$/FGM, Ag(1.5%)/TiO$_2$/FGM, Ag(2%)/TiO$_2$/FGM, SiO$_2$(1%)/TiO$_2$/FGM, SiO$_2$(2%)/TiO$_2$/FGM, SiO$_2$(3%)/TiO$_2$/FGM, Ag(0.5%)/SiO$_2$(3%)/TiO$_2$/FGM materials, respectively (in the work molar percentages are given). Freshly prepared solutions were kept at room temperature for three days. At the second stage, the deposition of film-forming solutions on the surface of fiberglass substrate was performed by impregnation technique. Thermal treatment was performed in two stages: drying at 60 °C for 1 h and calcination at 600 °C for 1 h at a heating rate of the muffle furnace 5 °C/min. The calcination temperatures of samples were chosen using previous studies [10, 11] and literature [13] data.

2.2. Research methods.

The morphology of the prepared samples was investigated by scanning electron microscopy (SEM) on a TM-3000 (Hitachi, Japan) operated at an accelerating voltage of 15 kV. The X-ray microanalyzer (Shift ED 3000) was used for energy-dispersive X-ray (EDX) spectroscopic analysis.

The phase composition of the samples was determined by X-ray diffraction (XRD) on a Rigaku MiniFlex 600 diffractometer (Japan) with CuKα source in the range of reflection angles (2θ) from 10 to 80°. Interpretation of the obtained XRD patterns of samples was performed using the international data bank PDF-2.

BET surface area, pore volume and pore size distribution was determined by N$_2$ adsorption-desorption method using a TriStarII automatic gas-adsorption analyzer and Micromeritics3Flex(USA) instrument. Prior to adsorption-desorption measurements, the samples were degassed for 2 h at 200 °C in a vacuum (10$^{-2}$Torr).

Prepared materials after calcination were used as photocatalyst for the model reaction of methyl orange azo dye photodegradation. Stock solution methyl orange was prepared by dissolving required amount of methyl orange in distilled water (concentration 1.5-10$^{-4}$ mol/L). For all the experiments, photocatalysts with the same size were added to 50 ml aqueous methyl orange. Then the reactor was irradiated by UV light with a radiation power of 20 mW/cm2. All the experiments were performed in presence of air at atmospheric pressure and constant magnetic stirring condition. The concentration of the dye was monitored directly in course of the photocatalytic reaction by use photoelectric concentration colorimeter, at a wavelength of $\lambda =$ 463 nm. Measurements were performed every 30 min. Resulting dependencies of dye concentration on the duration of UV-irradiation were used further as a measure of photocatalytic activity of samples.
3. Results and Discussion

The structure parameters for all prepared materials are presented in Table 1. Pure fiberglass is a non-porous system with very low surface area (0.3 m²/g) as reported in the previous work [1]. Deposition of TiO₂, SiO₂/TiO₂, Ag/TiO₂ and Ag/SiO₂/TiO₂ on fiberglass surface results in increase in pore volume. The presence of a hysteresis loop in nitrogen adsorption-desorption isotherms indicates the presence of mesopores in these samples. According to the results of the BET study all the samples have low surface area since fiberglass is the main component.

The increase of Ag content leads to decrease the surface area from 7.9 to 6.6 m²/g, total pore volume and average size of composite Ag/TiO₂/FGM materials (Table 1). The maximum of structural parameters are observed for Ag(0.5%)/TiO₂/FGM sample. The surface area, total pore volume and average size of SiO₂/TiO₂/FGM materials increases with the growth of SiO₂ content. The maximum value of structural parameters are observed for SiO₂(3%)/TiO₂/FGM sample (Table 1). According to the results of the BET study (Table 1) the composite material based on TiO₂ and modified SiO₂(3%) and Ag(0.5%) on the fiberglass was chosen for future investigation. The specific surface area of the Ag/SiO₂/TiO₂/FGM sample is 8.2 m²/g, that is 27 times higher than that of pure fiberglass.

Composition	Average pore size, nm	Total pore volume, cm³/g	S_BET, m²/g
TiO₂/FGM	11.21	0.27	8.3
Ag(0.5%)/TiO₂/FGM	10.16	0.22	7.9
Ag(1%)/TiO₂/FGM	9.67	0.18	7.1
Ag(1.5%)/TiO₂/FGM	7.43	0.14	6.6
Ag(2%)/TiO₂/FGM	8.36	0.17	7.4
SiO₂(1%)/TiO₂/FGM	12.23	0.31	8.8
SiO₂(2%)/TiO₂/FGM	13.88	0.36	9.1
SiO₂(3%)/TiO₂/FGM	14.82	0.42	9.5
Ag(0.5%)/SiO₂(3%)/TiO₂/FGM	11.44	0.29	8.2

Figure 1 presents the XRD patterns of prepared samples. XRD patterns of all composites are characterized by intense and narrow reflexes indicating a high crystallinity of the samples. The XRD pattern of TiO₂ cleary shows well resolved and sharp peaks at 25.29° and 27.54°, 37.93°, 41.35°, 54.53° which confirm the presence of two different crystalline phases: anatase (tetragonal) and rutile (tetragonal) (PDF-2 Map No. 00-21-1276). The XRD patterns of SiO₂/TiO₂/FGM, Ag/TiO₂/FGM and Ag/SiO₂/TiO₂/FGM samples have a similar appearance (Figure 2). X-ray analysis of these samples showed the absence of signals related to anatase and the presence of the main peaks at 27.54°, 37.93°, 41.35°, 54.53° corresponding to rutile structural phase. It should be noted that for TiO₂ samples, the intensity of main signal related to rutile is 732 a.u. at an angle of 2θ = 41.35°. The intensity of this peak for Ag(0.5%)/TiO₂/FGM (Figure 3), SiO₂(3%)/TiO₂/FGM (Figure 4) and Ag(0.5%)/SiO₂(3%)/TiO₂/FGM composites are 956, 844 and 1197 a.u. respectively. This confirms that addition of SiO₂ and Ag contributes to formation of titanium dioxide in the rutile modification.

The XRD patterns of SiO₂/TiO₂/FGM, Ag/TiO₂/FGM and Ag/SiO₂/TiO₂/FGM samples showed no peaks that can be attributed to the silver or silicon dioxide. We suggest that SiO₂ and Ag content is below the instrument detection limit (less 5 wt. %).
Figure 1. XRD patterns of samples:

a – TiO$_2$/FGM; b – Ag(0.5%)/TiO$_2$/FGM; c – SiO$_2$(3%)/TiO$_2$/FGM; d – Ag(0.5%)/SiO$_2$(3%)/TiO$_2$/FGM.

The results of a qualitative (Figure 2) X-ray spectral microanalysis confirm the presence of the the silver and silicon in the composition of final TiO$_2$/SiO$_2$(3%)/Ag(0.5%)/FGM sample. According to previous studies [10, 11], literature [13] and obtained results of EDX analysis, we assume the formation of Ag and SiO$_2$. The results of the quantitative EDX analysis show that the content of silicon compound in the obtained sample is less than 3 wt. % and silver content is less than 1 wt.%. This result agrees with the XRD data.

Figure 2. EDX images of Ag(0.5%)/SiO$_2$(3%)/TiO$_2$/FGM sample.
SEM images of TiO$_2$/FGM, SiO$_2$/TiO$_2$/FGM, Ag/TiO$_2$/FGM and Ag/SiO$_2$/TiO$_2$/FGM samples have a similar appearance. The morphology of the obtained composite Ag/SiO$_2$/TiO$_2$/FGM material is presented in Figure 3. It can be seen that the composite is attached to the surface of glass fibers. Each fiber is covered by Ag/SiO$_2$/TiO$_2$ films. As shown in Figure 3, Ag/SiO$_2$/TiO$_2$ film was not uniformly. There are some regions with cracks.

Figure 3. SEM images of Ag(0.5%)/SiO$_2$(3%)/TiO$_2$/FGM sample:
a – magnification x100; b – increase x500

Methyl orange was used as a representative organic pollutant to evaluate the photocatalytic activity of the prepared composites. Figure 6 represents the photodegradation of methyl orange as a function of irradiation time over different samples.

Figure 4. Changes in the concentration of methyl orange in time on photocatalysts.

After the UV irradiation for 30 min, the photodegradation of methyl orange on TiO$_2$/FGM sample was 40%. Photodegradation of the dye on the modified samples proceeds more efficiently. For the Ag(0.5%)/SiO$_2$(3%)/TiO$_2$/FGM sample the photodegradation efficiency reached 50% for the same period of illumination. Solutions were completely discolored after the irradiation for 2 hours.
4. Conclusion
The immersion of fiberglass material in the film-forming solution prepared by tetrabutoxytitanium, tetraethoxysilane, silver nitrate, and butanol, and subsequent heat treatment resulted in formation of the composite Ag/SiO$_2$/TiO$_2$/FGM materials. The formation of TiO$_2$ phases and presence of the Ag and SiO$_2$ phases were confirmed by X-ray powder diffraction data and qualitative X-ray spectral microanalysis. XRD confirmed that the addition of SiO$_2$ and Ag contributes to formation of titanium dioxide in the rutile modification. It was shown that each glass fiber was covered by composite Ag(0.5%)/SiO$_2$(3%)/TiO$_2$/FGM film, which led to an increase in the total surface area of material from 0.3 to 8.2 m2/g, and the appearance of pores with an average size of 11.4 nm. Prepared composite Ag(0.5%)/SiO$_2$(3%)/TiO$_2$/FGM materials revealed photocatalytic activity in model reaction of methyl orange azo dye photodegradation under UV-irradiation and showed the best degradation effect among Ag/TiO$_2$/FGM, SiO$_2$/TiO$_2$/FGM and unmodified TiO$_2$/FGM samples. Obtained results confirm promising use of composite Ag/SiO$_2$/TiO$_2$/FGM materials as photocatalysts.

Acknowledgments
The results were obtained within the framework of the state task of the Ministry of Education and Science of the Russian Federation, project No.10.2281.2017/4.6.

References
[1] Shamsutdinova A N, Brichkov A S, Paukshtis E A, Larina T V, Cherepanova S V, Glazneva T S and Kozik V V 2017 Catalysis Communications 89 64–68
[2] Sadovnikov A A, Baranchikov A E, Zuhavichus Y V., Ivanova O S, Murzin V Y, Kozik V V and Ivanov V K 2015 Journal of Photochemistry and Photobiology A: Chemistry 303-304 36–43
[3] Selishchev D and Kozlov D 2014 Molecules 19 21424–41
[4] Gerasimenko Yu V, Logacheva V A and Hoviv A M 2010 Condensed media and interphase boundaries 12 113–118
[5] Kittisakmontrree P, Yoshida H, Fujita Sh, Arai M and Panpranot J 2015 Catalysis Communications 58 70–75
[6] Deshmanea V G, Owena S L, Abrokwahc R Y and Kuila D 2015 Journal of Molecular Catalysis A: Chemical 408 202–213
[7] Wang X, Xue J, Wang X and Liu X 2017 PLOS ONE 12 1–16
[8] Ahmad W, Noor T and Zeeshan M 2017 Catalysis Communications 89 19–24
[9] Vinogradov A V, Vinogradov V V, Gerasimova T V and Agafonov A V 2012 Journal of Alloys and Compounds 543 172–175
[10] Kozik V V, Brichkov A S, Brichkova V Y, Tolbanov O P, Ivanov V K, Ogorodnikov V D and Tret'yakov Y D 2012 Dokl Chem 445 155–158
[11] Khalipova O S, Kuznetsova S A and Kozik V V 2014 J Inorg Chem 59 913–917.
[12] Houmard M, Riassietto D, Roussel F, Bourgeois A, Berthome G, Joud JC and Langlet M 2007 Appl Surf Sci 254 1405–1414
[13] Vahryshev A Yu, Gorbunova V V, Boytsova T B and Starogarov V M 2016 Russian Journal of General Chemistry 86 603–608