Responses of Herbivorous Fishes on Coral Reef Cover in Outer Island Indonesia (Study Case: Natuna Island)

Risandi Dwirama Putra¹, Ani Suryanti², Dedi Kurniawan³, Arif Pratomo¹, Henky Irawan³, Tengku Said Raja¹, Rika Kurniawan¹, Ginanjar Pratama², and Jumsurizal⁵

¹ Marine Science Departement, Faculty of Marine Science and Fisheries, Raja Ali Haji Maritime University, Jl. Politeknik, Senggarang 29111, Tanjungpinang, Indonesia
² Sosio-Economic Departement, Faculty of Marine Science and Fisheries, Raja Ali Haji Maritime University, Jl. Politeknik, Senggarang 29111, Tanjungpinang, Indonesia
³ Aquatic Resources Management Departement, Faculty of Marine Science and Fisheries, Raja Ali Haji Maritime University, Jl. Politeknik, Senggarang 29111, Tanjungpinang, Indonesia
⁴ Aquaculture Departement, Faculty of Marine Science and Fisheries, Raja Ali Haji Maritime University, Jl. Politeknik, Senggarang 29111, Tanjungpinang, Indonesia
⁵ Fisheries Products Technology Departement, Faculty of Marine Science and Fisheries, Raja Ali Haji Maritime University, Jl. Politeknik, Senggarang 29111, Tanjungpinang, Indonesia

Abstract. Coral reefs are one of the most highly productive marine ecosystems, with the largest transfer of energy attributed to the trophic interaction between herbivores and algae. Rapid demographic growth, leading to transmigration to small islands such as Natuna Island where located on outer Island Indonesia. The aim of the present study is to test for significant associations between herbivore fish species traits and Habitat complexity was derived from coral reef cover. Method to record each observed herbivore fish species with UVC (Underwater Visual Census) using SCUBA diving equipment along modification line transects. A total of 39 different fish species belonging to 3 families’ herbivore fish were identified. Total biomass of herbivorous fish correlated with Dead Coral Algae (DCA). Biplot of the first two axes for the nonmetric multidimensional a scaling (NMDS) analysis for family and grazer showed the dominance of herbivore fish grazer.

1 Introduction

Coral reefs are one of the richest and diverse and ecologically important marine ecosystems [1,2,3,4] and their feature has extraordinary biodiversity and a complex structure of interconnections between organisms and their environment [5,6] Among reef habitats, the richest and diverse coral reef ecosystem is found in the tropics in Indo-West Pacific region with the highest level of biodiversity particular around the islands of the Indonesia, Philippines, and Papua New Guinea [7,8,9] Unfortunately, the richest and

¹ Corresponding author: yanti.ajb@umrah.ac.id

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).
diverse this marine ecosystem, coral reef are also among the most threatened ecosystem [10] with uncertain future [6]. The degradation of coral reef habitats of marine ecosystem has become a worldwide trend [1,11,12,13], many coral reefs have lost their typical community [14] and increasingly degraded due to anthropogenic threats and stressors on global scale [15,16,17].

A root cause of coral reef degradation due to anthropogenic threat is demographic growth worldwide [10]. Demographic growth cause increasing rapid growth in coastal areas. coastal areas become the main consideration in the placement of residence status from demographic worldwide due to the natural highly diverse coral reef ecosystem service such as coastal protection, food for coastal communities and income from tourism [18], and this consideration becomes worse without any strict regulation of the sustainability of coral reef ecosystems that through disturbance to coastal zones associated with coral environments [10].

The degradation coral reef ecosystem due to rapid demographic growth also occurs in Indonesia and the worse effect occurs in Small Island. Rapid demographic growth, leading to transmigration to small islands such as Natuna Island where located on outer Island Indonesia. Monitoring and controlling outer island area is limited, this condition can cause increasing threatening and degrade on the coral reef ecosystem. Threats to Indonesia's coral reef resources can be divided into two main types: acute threats; and chronic stresses [19] and most numerous incident threatening in coral reef ecosystem in outer island was acute threats by destructive fishing including the use of bombs, cyanide poison [20], coral mining and sand mining [21]. Acute threats from destructive fishing practice and sand mining cause dramatic damage and declining water clarity and quality have been associated with increased presence of macro algae growth [2,8] and in the long term, this effect will also cause phase shift on coral reef ecosystem. Shifts are characterized by the passage from a stage of coral dominance to alternative stages of coral depletion and increased cover of algae [16]. Increasing in algae cover is harmful coral growth because the relationship between non-endosymbiotic algae and corals is reciprocally negative [16] There are several varieties of increasing the shift from live coral to algal dominance as a major concern in assessments of outer island coral reef health; overfishing, pollution and coastal community that give impact pollution and nutrient enrichment [10] and all these varieties are suspected In small Islands Indonesia such as Natuna Island.

Evidence over the last 40 years has revealed a widespread loss of coral cover in tropical coastal waters of the Indo-West Pacific. In some areas, entire coral reefs have resulted in significant modification of the structure and functioning of an exploited ecosystem [22,23]. Coral reef has been overgrown and killed by fast-growing species of macro algae [24] and algal cover jumped from being slightly higher than corals [14], this condition linear correlation with destructive fishing practice and overfishing can cause degrade herbivore fish abundance very fast [25] and resulting in decrease in total biomass [26,17]. Abundance and biomass each functional species of the herbivorous reef fish group was also used as an indicator of the potential for coral reef recovery [20]. Herbivorous fish play a critical role and critical functional groups (CFGs) for maintaining coral reefs in the recovery of coral assemblages by limiting and control growth of algae communities [15] that are competing with reef-building corals such as for space and light [16,27,28,29]. Generally, coral reefs are a good example of understanding how herbivores control algae biomass and growth [15] which prevents algae from taking over [5].

Many studies in tropical areas such as in Indonesia water show how grazers from herbivore fish play the main role limiting and controlling the abundance of epilithic algal (EA) [4,30] and how overfishing can lead to trophic cascade effects driving ecosystem shifts [31]. The EA is one of the most nutritious food resources on coral reefs with high productivity rates that support a diverse and abundant assemblage of herbivore fish grazers.
[32]. All goods and services that coral reef ecosystems provide rely on the status of their herbivore fish habitats [15] and spatial feeding patterns, herbivore fish can move between reefs and are less likely to feed at the same place [14].

Based on their foraging behavior, herbivorous reef fish can be differentiated into four main groups; which are scrapers/small excavators, large excavators/borders, grazers/detritivores, and browsers. Each category plays different and complementary roles in coral resilience in terms of how they feed benthic algae, what algae they consume, and their impact on the underlying substratum (i.e. hard corals). Moreover, the availability of stable substrates such as rock, dead coral, and coralline algae also plays an important role in providing a surface for coral planula to settle and grow [27,33]. Algae are involved in the bio-construction of coral reefs and can, therefore, be considered as bio-indicator of health for coral reefs as with hard corals [10]. In this research, we use dead coral with algae (DCA) cover as an indicator of coral reef health depending herbivore fish biomass as an indicator as well as biodiversity in outer island regional scale. The aim of the present study is to test for significant associations between herbivore fish species traits and Habitat complexity was derived from coral reef cover.

2 Methodology

2.1. Study area

Sampling for the present study occurred from Augustus - September 2016 distributed on reef location of the north (N) to the southwest (SW) located in one of outer island Indonesia, Natuna Island (3°56′31.74" N, 108°12′27.18" E). A total of eleven survey sites reef were studied in 2016. In general, there are five sites in South Natuna (SW: 4 sites, SE: 1 site) and six sites in North Natuna (NE: 3 sites, N: 1 site, NW: 2 sites).

Site ID	Longitude	Latitude	Location	Direction from central Natuna Island
CR.001	108°0′11.52" E	3°47′23.28" N	Sedanau Island	Southwest (SW)
CR.002	108°5′18.24" E	3°43′49.08" N	Sedanau Timur	Southwest (SW)
CR.003	108°6′22.68" E	3°40′22.48" N	Pulau Tiga	Southwest (SW)
CR.004	108°4′45.84" E	3°34′43.68" N	Sabang Mawang	Southwest (SW)
CR.005	108°25′59.52" E	3°52′18.48" N	Cemaga	Southeast (SE)
CR.006	108°21′25.85" E	4°0′10.08" N	Sepempang	Northeast (NE)
CR.007	108°20′12.12" E	4°2′28.68" N	Tanjung	Northeast (NE)
CR.008	108°18′25.38" E	4°3′35.54" N	Kelanga	Northeast (NE)
CR.009	108°13′47.28" E	4°13′28.92" N	Pengadah	North (N)
CR.010	108°9′13.68" E	4°9′55.44" N	Kelarik Utara	Northwest (NW)

Tabel 1. Location and direction of the study sites.
2.2. Characterization of habitat complexity

Habitat complexity was derived from benthic cover based on the following substrate: hard coral (HC), dead coral (DC) and dead coral with algae (DCA). A principal focus of percent cover from 3 standard benthic categories HC, DC and DCA of its functional roles as a key builder of reef structure and a key provider of complex, rigid habitat for much another reef biodiversity especially for herbivore fish diversity [25,34]. Cover by substrate type was evaluated from 11 sites underwater photographic transects (UPT) [35,36,37] of 50 m length. The digital photograph was taken parallel on quadrat transect modification by [38] with dimension 58 x 44 cm at a height of 1.20 m, with approximately 1 m of distance between each photo. The UPT using Nikon D90 underwater digital camera mounted, for a total of 50 photos per site and 550 total photos for this study. The analysis of each photo...
was carried out using the software CPCe 4.1 (Coral Point Count with excel extension) [39] to estimate the percent cover of dominant benthic categories at each reef sites (live coral, dead coral with algae, and recently dead coral) [37].

2.3. Reef fish community structure

To record fish species diversity, abundance, and their size length to estimate biomass, performed diurnal. Diurnal increase in temperature, as a result of heating, and dissolved oxygen, as a result of photosynthesis on the reef, seem most likely amongst environmental variables in diurnal condition correlate with the feeding activity patterns and herbivore fish abundance [39]. Method to record each observed herbivore fish species with UVC (Underwater Visual Census) using SCUBA diving equipment along modification line transects based on [41,42,43] with 70 m long at 5 – 10 m depth. The observer within 5 m on either side of transect was identified herbivore fishes. The UVC method is a nondestructive, capture-independent method, superior to collection techniques diversity and abundance of reef fishes although underwater visual censuses require little post-processing, whereas collections take many hours to complete [44]. This study was used three families herbivore fish that are most easily and rapidly identifiable by underwater visual census methods (Siganidae, Scaridae, and Acanthuridae) [10,45,41]. Herbivore fish species were characterized based on their diet information and feeding behavior, obtain from extensive published data [27] This study focuses on four functional groups of herbivorous reef fishes that each play different and complementary roles in coral reef resilience: scrapers/small excavators, large excavators/bio-erodes, grazers/detritivores, and browsers. For the herbivore fish community: diversity (number of species), abundance (number of individuals) and biomass per transect, was calculated using the length-weight relationship by [10,20].

\[
W = a LT^b
\]

(1)

Where W is the weight (g), LT the fork length of herbivore fish (cm) and a and b are coefficients specific to each species from FishBase data [27]. The total biomass for each station corresponds to the total weight of all fish per unit area (g/m²)

2.4. Statistical Analysis

2.4.1. Herbivore fish Indices

In the present study, the data herbivore fish were analyzed followed by [46] using Shannon-Wiener Index (\(H'\)), Margalef richness index (d), Pielou’s evenness (\(J'\)) index and Simpson’s dominance index (D).

2.4.2. Cluster analysis

Cluster analysis was used to discriminate between herbivore fish species and the similarity between sites. The zero adjusted Bray-Curtis Dissimilarity index was chosen for the analysis, as it the most appropriate distance matrix for non-binary ecology abundance data [47]. The transformed abundance matrix was then converted to a Bray-Curtis coefficient similarity matrix and a resultant dendrogram was generated with of similar quadrat groupings was based on sites dominant location (North Natuna and South Natuna) location and used to characterize zones that were predicted (a priori) to correlate with herbivores fish abundance. Bray-Curtis coefficient of similarity analysis which is more
robust than techniques using maximum or minimum distances between sites. Cluster
dendrogram provides two types of \(p \)-value: AU (Approximately Unbiased) and BP
(Bootstrap Probability) for assessing the uncertainty in hierarchical cluster analysis for
location habitat.

2.4.3. Meta Data Analysis.

Meta-analysis show effect sizes and confidence intervals from herbivore fish species
community, as well as grazer type overall, mean effects and confidence intervals from its
abundant. Forest plots from this studies used the meta-analytic equivalent of error bar or
confidence interval plots, and are useful for showing mean effect size and variation among
herbivore fish from grazer type [48]. Meta-analysis forest plots are drawn with the
dependent qualitative from abundant herbivore fish species (Y) axis horizontal, while the
vertical axis is no quantitative from herbivore fish grazer (Excavator, Grazer, and Scraper)
[49].

2.4.4 Nonmetric multidimensional scaling (nMDS) Analysis

Visuals spatial and temporal patterns in the herbivore fish family community
(Acanthuriade, Siganidae, and Scaridae) and grazer type (Excavator, Grazer, and Scraper)
datasheet were used Non-metric multidimensional scaling (nMDS) solutions [50]. nMDS
was performed for each site separately, as well as on spatially and temporally averaged
datasets in herbivore fish communities and grazer types. Both herbivore fish and grazer
type datasets were converted to relative diversity (i.e. row standardized) prior to analyses.
Two dimensions were chosen in the nMDS and in all ordinations, stress values were less
than 0.5. To identify herbivore family that was principally responsible for determining the
grazer type dissimilarities. Herbivore fish family scores were calculated as weighted
averages of the grazer scores. The weighted averages were ‘expanded’ so that their biased
weighted variance was equal to the biased weighted variance of the corresponding grazer
type [50].

2.4.4 Corresponding Analysis (CA)

Corresponding analysis has been applied to indicate the main herbivore fish family
variable (total biomass and density) factor in coral reef habitat benthic (Hard Coral, Dead
Coral, Dead Coral Algae) of the study area considering the variable load size and the
relationship between variable and the sampling point partition based on modification from
[51]. Corresponding analysis is a robust multivariate statistical method of study of
relationships between variables and relationship between. This analysis is a method to
analyze many complicated variables, on this studies herbivore fish abundance in every
family based on grazer type and coral reef habitat benthic. This variable can be compressed
into two principal component variables. Subsequently, the relationships between herbivore
fish abundance and coral reef habitat benthic can be easily analyzed and explained [51,52].

2.4.6 Regression Analysis (RA)

Linear regression was used to investigate the effect on the relation between herbivore
fish total biomass on sampling sites and coral reef benthic habitat after analyzed from the
corresponding analysis (CA). Regression analysis has a function to determine the effect of
herbivore fish on total biomass recorded at each site and the main component type of coral reef habitat benthic [53].

3 Result and Discussion

We found 21 species from Scaridae family, 6 species from Acanthuridae, and 9 species from Siganidae family on 11 sites in Natuna Island. Daisy parrotfish (*Chlororus sordidus*) from Scaridae had the highest mean density in the Natuna Island coral reef ecosystem (17.45 ± 8.93). Other species with significantly higher density including Java Parrotfish (*Scarus hypselopterus*) and Barrhead Spinefoot (*Siganus virgatus*) have significant mean density difference (12.27 ± 7.20) and (11.78 ± 7.12) respectively. The highest biomass herbivore fish in Natuna Island are Daisy parrotfish (*Chlororus sordidus*) (with highest mean density) (2.159 ± 1.535). Orange-blotch Parrotfish (*Chlororus bowersi*) have different IUCN status in coral reef ecosystem habitat with category NT (Near Threatened), another herbivore fish species categorized as LC (Least-Concerned). The lowest biomass herbivore fish in Natuna Island are Steephead Parrotfish (*Chlorurus michrohinos*) and Scribbled Rabbitfish (*Siganus spinus*) with biomass (0.002 ± 0.007) and (0.003 ± 0.008) respectively.
Family	Species	Grazer type	Common Name	IUCN Status	Mean Density (Ind/area*)	Biomass (kg/area*)
Scaridae	Cetoscarus bicolor (Ruppel, 1829)	Excavator	Bicolour parrotfish	LC	2.67 ± 0.58	0.065 ± 0.116
Chlorurus capistratoides (Bleeker, 1847)	Scaper/small excavator	Pink-margined parrotfish	LC	2.67 ± 2.08	0.089 ± 0.154	
Chlorurus spilurus (Valenciennes, 1840)	Scaper/small excavator	Bullethead Parrotfish	LC	2.20 ± 1.30	0.189 ± 0.309	
Chlorurus bleekeri (de Beaufort, 1940)	Scaper/small excavator	Bleeker's Parrotfish	LC	7.20 ± 5.12	1.003 ± 0.889	
Chlorurus bowersi (Snyder, 1909)	Scaper/small excavator	Orange-blotch Parrotfish	NT	3.00 ± 2.88	0.130 ± 0.159	
Chlorurus sordidus (Forsskål, 1775)	Scaper/small excavator	Daisy Parrotfish	LC	17.45 ± 8.93	2.159 ± 1.535	
Chlorurus microurhos (Bleeker, 1854)	Excavator	Steehead Parrotfish	LC	2.67 ± 0.58	0.002 ± 0.007	
Scarus schlegeli (Bleeker, 1861)	Scaper/small excavator	Yellowband parrotfish	LC	1.75 ± 0.96	0.107 ± 0.208	
Scarus dimidiatus (Bleeker, 1859)	Scaper/small excavator	Yellowbarred Parrotfish	LC	2.55 ± 3.08	0.118 ± 0.148	
Scarus forsteni (Bleeker, 1861)	Scaper/small excavator	Big belly Parrotfish	LC	2.00 ± 0.00	0.055 ± 0.127	
Scarus frenatus (Lacepède, 1802)	Scaper/small excavator	Bridled Parrotfish	LC	1.75 ± 0.96	0.230 ± 0.416	
Scarus ghobban (Forsskål, 1775)	Scaper/small excavator	Blue-barred parrotfish	LC	3.17 ± 1.17	0.501 ± 0.722	
Scarus globiceps (Valenciennes, 1840)	Scaper/small excavator	Globehead parrotfish	LC	9.50 ± 10.61	0.088 ± 0.261	
Scarus hypselocephalus (Bleeker, 1853)	Scaper/small excavator	Java Parrotfish	LC	12.27 ± 7.20	0.370 ± 0.248	
Scarus niger (Forsskål, 1775)	Scaper/small excavator	Dusky Parrotfish	LC	8.71 ± 4.50	0.650 ± 0.905	
Scarus oviceps (Valenciennes, 1840)	Scaper/small excavator	Dark Capped Parrotfish	LC	4.80 ± 3.63	0.225 ± 0.381	
Scarus sannigluvula (Bleeker, 1853)	Scaper/small excavator	Red Parrotfish	LC	0.09 ± 0.30	0.012 ± 0.038	
Scarus prismognathus (Valenciennes, 1840)	Scaper/small excavator	Blue-faced Parrotfish	LC	2.50 ± 2.12	0.041 ± 0.092	
Scarus quoyi (Valenciennes, 1840)	Scaper/small excavator	Green-blotched Parrotfish	LC	6.88 ± 3.72	0.459 ± 0.497	

Note: *Area of study is 350m² from UVC method with 70 m long line transect within 5 m on either side of the transect. Mean density and Biomass from 11 (eleven) survey sites.
Common Name	Scientific Name	Grazer type	Red List Category	Density (Ind/m²)	Biomass (kg/m²)
Zebrasoma scopus	(Cuvier, 1829)	Grazers	LC	3.80 ± 0.70	0.278 ± 0.30
Acanthurus lineatus	(Linnaeus, 1758)	Detritivore	LC	2.67 ± 0.58	0.003 ± 0.01
Acanthurus nigrofuscus	(Forsskål, 1775)	Detritivore	LC	5.00 ± 0.70	0.012 ± 0.05
Ctenochaetus striatus	(Quoy & Gaimard, 1825)	Detritivore	LC	3.67 ± 0.45	0.326 ± 0.20
Naso lituratus	(Forster, 1801)	Browsers	LC	4.00 ± 0.50	0.190 ± 0.15
Siganus corallinus	(Valenciennes, 1835)	Detritivore	LC	3.67 ± 0.50	0.012 ± 0.05
Siganus argenteus	(Quoy & Gaimard, 1825)	Detritivore	LC	4.00 ± 0.50	0.012 ± 0.05
Siganus doliatus	(Guérin-Méneville, 1829)	Detritivore	LC	1.00 ± 0.00	0.027 ± 0.08
Siganus guttatus	(Bloch, 1787)	Detritivore	LC	3.50 ± 0.50	0.083 ± 0.15
Siganus punctassianus	(Fowler & Bean, 1929)	Detritivore	LC	1.50 ± 0.70	0.045 ± 0.14
Siganus puellus	(Schlegel, 1852)	Detritivore	LC	4.00 ± 0.50	0.012 ± 0.05
Siganus spinus	(Linnaeus, 1758)	Detritivore	LC	1.50 ± 0.70	0.003 ± 0.01
Siganus Virgatus	(Valenciennes, 1835)	Detritivore	LC	11.78 ± 7.12	0.812 ± 0.73
Siganus Vulpinus	(Schlegel & Müller, 1845)	Detritivore	LC	1.50 ± 0.70	0.003 ± 0.01

Note: *Area of study is 350 m² from UVC method with 70 m long line transect within 5 m on either side of the transect. Mean density and Biomass from 11 (eleven) survey sites reef. IUCN status from http://www.iucnredlist.org based on Red List Category & Criteria: (LC-Least Concern, NT-Near Threatened). Grazer type of herbivore fish (Scaridae, Siganidae, and Acanthuridae) from data (Green and Bellwood 2009; Froese and Pauly, 2012). Format the table modification based on (Jayaprabha, Purusothaman, and Srinivasan 2018).
Table 3. Sites variation of diversity indices calculated for herbivore fish in Natuna Island (2016)

Sites	Herbivore fish indices	Diversity (n/350m²)	Abundance (Ind/350m²)	m ± Sd
CR1	2.499 0.882 0.093 7.916 17 105			2.838 ± 4.776
CR2	2.380 0.840 0.112 7.557 17 131			3.541 ± 6.619
CR3	2.486 0.877 0.106 7.793 17 113			3.054 ± 5.553
CR4	1.971 0.856 0.148 4.392 10 112			3.027 ± 6.685
CR5	1.916 0.872 0.162 4.413 9 65			1.757 ±4.159
CR6	2.118 0.920 0.117 5.444 10 45			1.216 ± 2.485
CR7	2.525 0.891 0.092 7.682 17 121			3.270 ± 5.440
CR8	2.711 0.938 0.062 9.343 18 66			1.784 ±2.440
CR9	2.432 0.858 0.113 7.966 17 102			2.757 ±5.236
CR10	1.987 0.828 0.164 5.092 11 92			2.486 ±5.867
CR11	2.523 0.910 0.080 8.305 16 64			1.730 ±2.765

Note: H' – Shannon Wiener index; J' – Evenness; D - Simpson’s dominance index; d' – Margalef index

Fig 2. Dendrogram showing similarity in herbivore fish composition of coral reef sites recorded in AU/BP

Dendrogram analysis indicated that the herbivore fish species mainly responsible for the dissimilarity in abundance between the sampling sites (Fig. 2). Fishing has major effects both directly and indirectly on the environment, diversity, and productivity of communities. The average similarity of dendrogram in clustering sites sample showed three group clustering similarity (group 1, CR6-CR10; CR5-CR7, group 2, CR4-CR9, group 3 CR1-CR11). Similarity on herbivore fish abundance and diversity each site with Approximately Unbiased and Bootstrap Probability (AU/BP) to group 1 showed CR6-CR10 and CR5-CR7 have AU/BP (92/51) % and (96/46) % respectively. Group 2 similarity on clustering
sampling CR5-CR7 showed AU/BP value (95/53) % and group 3 to CR1-CR11 with AU/BP value (96/70) %

Fig. 3. Forest plots used the meta-analytic equivalent of density herbivore fishes based on the type of grazing on a coral reef in 11 sites

Thirty-nine herbivore evaluations were included (11 coral reef sites and 3 grazer types). Overall form meta-data analysis there was no statistically significant grazer type’s bias for included herbivore evaluations (Fig 3). Only two species from Siganidae Family - *Siganus virgatus* (mean = 3.68, 95% CI [0.92, 6.43]) and Scaridae family – *Scarus niger* (mean = 0.85, 95% CI [0.02, 1.68]) reported differences in two species fish population for herbivore fish grazer type that were *Siganus vulpinus* (mean = -2.74, 95% CI [-5.51, 0.03]) and *Scarus oviceps* (mean = -3.04, 95% CI [-5.78, -0.31]) .The grand mean (Fig 1.), mean = 0.01, 95% CI [-0.15,0.17] and mean effect size for herbivore fish grazer. *Chlorurus bleekeri, Chlorurus bowersi, Scarus hypselopterus* have higher abundant from herbivore fish population in 11 sites with meta-analysis evaluation (mean = -0.08, 95% CI [-0.45, -0.29]), (mean = -0.12, 95% CI [-0.53, -0.29]), and (mean = -0.16, 95% CI [-0.26, -0.59]) respectively

Species(s) and Grazing	Density Ratio [95% CI]
Cetoscarus bicolor, Excavator	0.59 [-1.44, 2.55]
Chlorurus capistranoides, Scaper/small excavator	-0.41 [-2.22, 1.71]
Chlorurus spilurus, Scaper/small excavator	-1.39 [-4.64, 1.86]
Chlorurus bleekeri, Scaper/small excavator	-0.12 [-0.45, 0.29]
Chlorurus bowersi, Scaper/small excavator	0.02 [-0.23, 0.58]
Chlorurus micronesus, Excavator	0.03 [-0.52, 0.52]
Scopus chlagon, Scaper/small excavator	-0.61 [-1.79, 0.73]
Scopus dimidiatus, Scaper/small excavator	-2.92 [-6.63, -0.21]
Scopus forsteni, Scaper/small excavator	0.00 [-0.77, 0.77]
Scopus frenatus, Scaper/small excavator	-1.10 [-3.63, 1.43]
Scopus ghobban, Scaper/small excavator	0.61 [-1.51, 2.54]
Scopus gibbiceps, Scaper/small excavator	-2.89 [-6.25, 0.47]
Scopus hypselopterus, Scaper/small excavator	-0.08 [-0.32, 0.16]
Scopus nigripinnis, Scaper/small excavator	-1.04 [-5.78, 3.71]
Scopus propinqueus, Scaper/small excavator	0.55 [-0.51, 1.61]
Scopus riggini, Scaper/small excavator	-0.07 [-0.57, 0.42]
Acanthurus lineatus, Grazer/Detritivore	1.28 [-1.14, 3.70]
Acanthurus triostegus, Grazer/Detritivore	0.00 [-2.27, 2.77]
Acanthurus nigrofuscus, Grazer/Detritivore	-0.06 [-2.27, 2.23]
Cheticthys actuatus, Grazer/Detritivore	0.00 [-5.78, 5.69]
Naso lituratus, Browsers	-1.10 [-5.15, 2.93]
Zebrasoma scopus, Grazer/Detritivore	0.00 [-2.77, 2.77]
Siganus corallinus, Grazer/Detritivore	-0.03 [-1.36, 1.29]
Siganus argenteus, Grazer/Detritivore	0.01 [-1.17, 1.16]
Siganus olivarius, Grazer/Detritivore	0.00 [-2.77, 2.77]
Siganus guttatus, Grazer/Detritivore	0.00 [-3.77, 3.77]
Siganus punctatus, Grazer/Detritivore	-1.32 [-3.32, 0.68]
Siganus puellarus, Grazer/Detritivore	0.00 [-2.27, 2.27]
Siganus spinus, Grazer/Detritivore	-0.04 [-2.27, 2.23]
Siganus virgatus, Grazer/Detritivore	2.80 [-0.95, 6.55]
Siganus vulpinus, Grazer/Detritivore	-2.47 [-5.51, 0.55]

RE Model 0.01 [-0.15, 0.17]
nMDS ordination of herbivore fish community showed there is no clear separation of grazer types. Ellipse representing the standard deviation of grazer types from herbivore fish family. There was significant overlap in every grazer type. This overlap deviation showed similarity component of variance due to sites location and habitat between herbivore fish communities could be attributed to the similarity of paired grazer types. nMDS ordination of herbivore fish community and grazer types revealed a gradient in the structure of herbivore fish on coral ecosystem across his habitat consume alga on a coral reef (Fig. 4). Generally, Grazer/Detritivore was more similar to Scraper/small excavator types of herbivore fish abundance on coral reef habitat. However, some herbivore fish family within a particular grazer type were just as dissimilar to each other as they were to reefs site in another coral reef ecosystem habitat type such Excavator. These herbivore fish family similar related to grazer type so that herbivore fish diversity within each coral reef site sampling were generally more similar to each other grazer type although one species form Scaridae Family Chlorurus micrhohinos has different grazer type. This pattern was consistent for ordinations of herbivore fish its grazer type.

Fig. 4. Biplot of the first two axes for the nonmetric multidimensional a scaling (NMDS) analysis for Herbivore fish grazer
The biplot of the first two axes for the nonmetric multidimensional scaling (NMDS) analysis for herbivore fish grazer nMDS ordination of herbivore fish community showed there is no clear separation of grazer types. Ellipse representing the standard deviation of grazer types from herbivore fish family. There was significant overlap in every grazer type. This overlap deviation showed similarity component of variance due to sites location and habitat between herbivore fish communities could be attributed to the similarity of paired grazer types. nMDS ordination of herbivore fish community and grazer types revealed a gradient in the structure of these herbivore fish on coral ecosystem across their habitat consuming algae on a coral reef (Fig. 4). Generally, Grazer/Detritivore was more similar to Scraper/small excavator types of herbivore fish abundance on coral reef habitat. However, some herbivore fish family within a particular grazer type were just as dissimilar to each other as they were to reefs sites in another coral reef ecosystem habitat type such as Excavator. These herbivore family similar related to grazer type so that herbivore fish diversity within each coral reef site sampling were generally more similar to each other grazer type although one species from Scaridae Family Chlorurus micrhohinos has different grazer type. This pattern was consistent for ordinations of herbivore fish its grazer type.

Residuals:

	Min	IQ	Median	3Q	Max
	-12.8421	-8.7734	-0.8998	6.3413	19.7209

Coefficients:

| | Estimate | Std. Error | t value | Pr(>|t|) |
|---------------------|----------|------------|---------|---------|
| (Intercept) | 60.4902 | 9.2323 | 6.552 | 0.000105 *** |
| Total.biomass | -1.413 | 0.9168 | -1.541 | 0.157637 |

Residual standard error: 10.43 on 9 degrees of freedom
Multiple R-squared: 0.2088, Adjusted R-squared: 0.1209
F-statistic: 2.376 on 1 and 9 DF, p-value: 0.1576

Fig. 5. Corresponding Analysis Herbivore Fish variable data (Biomass and Density) according to Coral Benthic Substrate type (Hard Coral, Dead Coral and Dead Coral with Algae), Regression analysis (RA) Total biomass herbivore fish according to Dead Coral Algae (DCA)

Corresponding Analysis herbivore fish variable data (Total biomass and density) according to the coral benthic substrate (DCA, DC, and HC) showed establishes repeatable relationships between Dead Coral Algae (DCA) and Biomass herbivore (Fig 5a) as well as between density herbivore fish and DC. This both relationships showed opposite correlation. Dead Coral Algae on coral reef benthic decrease with increasing total biomass on herbivore fish family (Fig 5b). From regression analysis showed multiple R-squared from this analysis 0.2088 with Adjusted R-squared 0.1209.

References

1. Draisma, G.A. Stefano, F.W.P Reine, M.C. Sekar, Herandarudewi, and B.W. Hoeksema. Macroalgal Diversity along an Inshore-Offshore Environmental Gradient in the Jakarta Bay” Thousand Islands Reef Complex, Indonesia.” [https://doi.org/10.1016/j.ecss.2017.11.010]. Estuarine, Coastal and Shelf Science.
200, 258–69 (2018)

2 Kench, S. Paul, S.D. Owen. Coral Reef Systems and the Complexity of Hazards. Coastal and Marine Hazards, Risks, and Disasters. [https://doi.org/10.1016/B978-0-12-396483-0.00015-7]. Elsevier Inc. (2014)

3 S. Schmidt-Roach, P. Lundgren, K.J. Miller, G. Gerlach, A.M.E. Noreen, N. Andreakis. Assessing Hidden Species Diversity in the Coral Pocillopora Damicornis from Eastern Australia.. [https://doi.org/10.1007/s00338-012-0959-z]. Coral Reefs 321, 161–72 (2013)

4 Marshell, Alyssa, P.J. Mumby. The Role of Surgeonfish (Acanthuridae) in Maintaining Algal Turf Biomass on Coral Reefs. [https://doi.org/10.1016/j.jembe.2015.09.002]. Journal of Experimental Marine Biology and Ecology. 473, 152–60 (2015)

5 Kubicek, Andreas, and Hauke Reuter. Mechanics of Multiple Feedbacks in Benthic Coral Reef Communities. [https://doi.org/10.1016/j.ecolmodel.2016.02.018]. Ecological Modelling 329, 29–40 (2016)

6 R. Sebastián, Carlos, T.R. McClanahan. Description and Validation of Production Processes in the Coral Reef Ecosystem Model CAFFE (Coral-Algae-Fish-Fisheries Ecosystem Energetics) with a Fisheries Closure and Climatic Disturbance. [https://doi.org/10.1016/j.ecolmodel.2013.05.012]. Ecological Modelling 263, 326–48 (2013)

7 Roberts, Callum M., Colin J. McClean, John E.N. Veron, Julie P. Hawkins, Gerald R. Allen, Don E. McAllister, Cristina G. Mittermeier. Marine Biodiversity Hotspots and Conservation Priorities for Tropical Reefs. [https://doi.org/10.1126/science.1067728] Science. 295, 1280–84 (2002)

8 Z. Dubinsky. Coral Reef Ecosystems. Edited by Robert A. Meyers. New York: Springer. (1990)

9 E.L. Peñaflor, W.J. Skirving, A.E. Strong, S.F. Heron, L.T. David. Sea-Surface Temperature and Thermal Stress in the Coral Triangle over the Past Two Decades. [https://doi.org/10.1007/s00338-009-0522-8]. Coral Reefs. 28, 841–50 (2009)

10 P.Chabanet, L. Bigot, J.B. Nicet, P. Durville, L. Massé, T. Mulochau, C. Russo, E. Tessier, D. Obura. Coral Reef Monitoring in the Iles Eparses, Mozambique Channel (2011-2013). [https://doi.org/10.1016/j.actao.2015.10.010]. Acta Oecologica. 72, 62–71 (2016)

11 C.B Edwards, A.M Friedlander, A.G Green, M.J Hardt, E. Sala, H.P Sweatman, I.D Williams, B. Zgliczynski, S.A. Sandin, J.E. Smith. Global Assessment of the Status of Coral Reef Herbivorous Fishes : Evidence for Fishing Effects Global Assessment of the Status of Coral Reef Herbivorous Fishes : Evidence for Fishing Effects. Proc. R. Soc. B. 7–11. (2014)

12 Bruno, F. John, E.R. Selig. Regional Decline of Coral Cover in the Indo-Pacific: Timing, Extent, and Subregional Comparisons. [https://doi.org/10.1371/journal.pone.0000711.15]. PLoS ONE. 2 (2007)

13 M. Nystrom, C. Folke, F. Moberg. Coral Reef Disturbance and Resilence in a Human-Dominated Environment. [https://doi.org/doi:10.1016/S0169-5347(00)01948-0]. Trends in Ecology & Evolution. 15, 413–17 (2000)
14 Victoria-Salazar, Israel, A. Héctor Hernández-Arana, J.A. Meave, Miguel A. Ruiz-Zárate, A. Vega-Zepeda, J.P. Carricart-Ganivet, H. López-Adame. Did the Community Structure of a Coral Reef Patch Affected by a Ship Grounding Recover after 15 Years? Merging Historical and Recent Data Sets. [https://doi.org/10.1016/j.ocecoaman.2017.04.009]. Ocean and Coastal Management 144, 59–70 (2017)

15 G.Fernández, C.D. Paulo, E.A. Serrão, A.H. Engelen. Limited Differences in Fish and Benthic Communities and Possible Cascading Effects inside and Outside a Protected Marine Area in Sagres (SW Portugal). [https://doi.org/10.1016/j.marenvres.2015.12.003]. Marine Environmental Research 114, 12–23 (2016)

16 Ramos, C.A. Colaço, R.K.P. de Kikuchi, F.D. Amaral, J.E. Fauth. A Test of Herbivory-Mediated Coral-Algae Interaction on a Brazilian Reef during a Bleaching Event. [https://doi.org/10.1016/j.jembe.2014.03.005]. Journal of Experimental Marine Biology and Ecology. 456, 1–7 (2014)

17 S.R Floeter. B.S. Halpern, C.E.L. Ferreira. Effects of Fishing and Protection on Brazilian Reef Fishes. [https://doi.org/10.1016/j.biocon.2005.10.005]. Biological Conservation. 128, 391–402 (2006)

18 Powell, Abigail, D. Pelletier, T. Jones, D. Mallet. The Impacts of Short-Term Temporal Factors on the Magnitude and Direction of Marine Protected Area Effects Detected in Reef Fish Monitoring. [https://doi.org/10.1016/j.gecco.2016.09.006]. Global Ecology and Conservation 8, 263–76 (2016)

19 Edinger, N. Evan, J. Jompa, G.V. Limmon, W. Widjatmoko, M.J. Risk. Reef Degradation and Coral Biodiversity in Indonesia: Effects of Land-Based Pollution, Destructive Fishing Practices and Changes over Time. [https://doi.org/10.1016/S0025-326X(98)00047-2]. Marine Pollution Bulletin. 36, 617–30 (1998)

20 Putra, M.I. Herwata, S. Afatta, J. Wilson, A. Muljadi, I. Yusidarta. Coral Reef Resilience in 17 Islands Marine Recreation Park, Riung – An Assessment of Functional Groups of Herbivorous Fish and Benthic Substrate. [https://doi.org/10.1016/j.proenv.2015.01.035]. Procedia Environmental Sciences 23, 230–39 (2015)

21 Cleary, Daniel F.R. Linking Fish Species Traits to Environmental Conditions in the Jakarta Bay-Pulau Seribu Coral Reef System. [https://doi.org/10.1016/j.marpolbul.2017.06.054]. Marine Pollution Bulletin. 122, 259–62 (2017)

22 Dulvy, K. Nicholas, R.P. Freckleton, N.V.C Polunin. Coral Reef Cascades and the Indirect Effects of Predator Removal by Exploitation. [https://doi.org/10.1111/j.1461-0248.2004.00593.x]. Ecology Letters 7, 410–162004. “

23 Mora, Camilo, O. Aburto-Oropeza, A. Ayala-Bocos, P.M. Ayotte, S. Banks, A.G. Bauman, M. Beger. Global Human Footprint on the Linkage between Biodiversity and Ecosystem Functioning in Reef Fishes. [https://doi.org/10.1371/journal.pbio.1000606]. PLoS Biology 9 (2011)

24 D.F.R. Cleary, A.R.M. Polónia, W. Renema, B.W. Hoeksema, P.G. Rachello-Dolmen, R.G. Moolenbeek, A. Budiyanto. Variation in the Composition of Corals, Fishes, Sponges, Echinoderms, Ascidians, Molluscs, Foraminifera and Macroalgae across a Pronounced in-to-Offshore Environmental Gradient in the Jakarta Bay–Thousand
Islands Coral Reef Complex. [https://doi.org/10.1016/j.marpolbul.2016.04.042]. Marine Pollution Bulletin. 110, 701–17 (2016)

25 C.A. Sánchez-Caballero, J.M. Borges-Souza, G.De La Cruz-Agüero, S.C.A. Ferse. Links between Fish Community Structure and Habitat Complexity of a Rocky Reef in the Gulf of California Threatened by Development: Implications for Mitigation Measures. [https://doi.org/10.1016/j.ocecoaman.2016.12.013]. Ocean and Coastal Management 137, 96–106 (2017)

26 S.J. Campbell, and S. T. Pardede. Reef Fish Structure and Cascading Effects in Response to Artisanal Fishing Pressure.” [https://doi.org/10.1016/j.fishres.2005.12.015]. Fisheries Research. 79, 75–83 (2006)

27 Green, L. Alison, D.R Bellwood. Monitoring Functional Groups of Herbivorous Reef Fishes as Indicators of Coral Reef Resilience A Practical Guide for Coral Reef Managers in the Asia Pacific Region.. [http://cmsdata.iucn.org/downloads/resilience_herbivorous_monitoring.pdf]. Science,. 7, 70 (2009)

28 Hughes, Terence P., Maria J. Rodrigues, David R. Bellwood, Daniela Ceccarelli, Ove Hoegh-Guldberg, Laurence McCook, Natalie Motschaniwskyj, Morgan S. Pratchett, Robert S. Steneck, and Bette Willis. Phase Shifts, Herbivory, and the Resilience of Coral Reefs to Climate Change.. https://doi.org/10.1016/j.cub.2006.12.049. Current Biology. 17, 360–65 (2007)

29 D.R.Bellwood, T.P. Hughes, C. Folke, M Nystrom, M. Nyström. Confronting the Coral Reef Crisis. [https://doi.org/10.1038/nature02691]. Nature 429 (June) 827–33 (2004)

30 Russ, G R. Grazer Biomass Correlates More Strongly with Production than with Biomass of Algal Turfs on a Coral Reef. [https://doi.org/10.1007/s00338-003-0286-5]. Coral Reefs. 22, 63–67 (2003)

31 Jompa, Jamaluddin, L.J. McCook. Effects of Competition and Herbivory on Interactions between a Hard Coral and a Brown Alga. https://doi.org/10.1016/S0022-0981(02)00040-0. Journal of Experimental Marine Biology and Ecology. 271, 25–39 (2002)

32 Miller, J. Robert, D.C. Reed, M.A. Brzezinski. Community Structure and Productivity of Subtidal Turf and Foliose Algal Assemblages.[https://doi.org/10.3354/meps08131]. Marine Ecology Progress Series. 388, 1–11 (2009)

33 Syms, Craig, G.P. Jones. Soft Corals Exert No Direct Effects on Coral Reef Fish Assemblages. [https://doi.org/10.1007/s004420000617]. Oecologia. 127, 560–71 (2001)

34 T.R. McClanahan, B.A. Cokos, E. Sala. Algal Growth and Species Composition under Experimental Control of Herbivory, Phosphorus and Coral Abundance in Golvers Reef, Belize. [https://doi.org/10.1016/S0025-326X(02)00051-6]. Marine Pollution Bulletin. 44, 441–51 (2002)

35 P.L. Jokiel, K.S. Rodgers, E.K. Brown, J.C. Kenyon, G. Aeby, W.R. Smith, F. Farrell. Comparison of Methods Used to Estimate Coral Cover in the Hawaiian Islands. . [https://doi.org/10.7717/peerj.954]. PeerJ. 3: e954 (2015)

36 J.S. Hannak, S. Kompatscher, M. Stachowitsch, J. Herler. Snorkelling and Trampling
in Shallow-Water Fringing Reefs: Risk Assessment and Proposed Management Strategy. https://doi.org/10.1016/j.jenvman.2011.06.012. Journal of Environmental Management. 92, 2723–33 (2011)

37 R.E. Grizzle, K.M. Ward, R.M.S. AlShihi, J.A. Burt. Current Status of Coral Reefs in the United Arab Emirates: Distribution, Extent, and Community Structure with Implications for Management. https://doi.org/10.1016/j.marpolbul.2015.10.005. Marine Pollution Bulletin. 105, 515–23 (2016)

38 C. Sherman, W. Schmidt, R. Appeldoorn, Y. Hutchinson, H. Ruiz, M. Nemeth, I. Bejarano, J. J.Cruz Motta, and H. Xu. Sediment Dynamics and Their Potential Influence on Insular-Slope Mesophotic Coral Ecosystems. [https://doi.org/10.1016/j.csr.2016.09.012]. Continental Shelf Research. 129, 1–9 (2016)

39 K.E. Kohler, S. M. Gill. Coral Point Count with Excel Extensions (CPCe): A Visual Basic Program for the Determination of Coral and Substrate Coverage Using Random Point Count Methodology. [https://doi.org/10.1016/j.cageo.2005.11.009]. Computers and Geosciences. 32, 1259–69 (2006)

40 N.V.C. Polunin, D.W. Klumpp. Ecological Correlates of Foraging Periodicity in Herbivorous Reef Fishes of the Coral Sea. [https://doi.org/10.1016/0022-0981(89)90121-4]. Journal of Experimental Marine Biology and Ecology 126, 1–20 (1989)

41 S.M. Lewis, P.C. Wainwright. Herbivore Abundance and Grazing Intensity on a Caribbean Coral Reef. https://doi.org/10.1016/0022-0981(85)90206-0. Journal of Experimental Marine Biology and Ecology. 87, 215–28 (1985)

42 Rotjan, Randi D., and Sara M. Lewis. Parrotfish Abundance and Selective Corallivory on a Belizean Coral Reef. [https://doi.org/10.1016/j.jembe.2006.03.015]. Journal of Experimental Marine Biology and Ecology. 335, 292–301 (2006)

43 Wen, C.K. Chang, K.S.Chen, H.J. Hsieh, C.M. Hsu, C.A. Chen. High Coral Cover and Subsequent High Fish Richness on Mature Breakwaters in Taiwan. [https://doi.org/10.1016/j.marpolbul.2013.04.031]. Marine Pollution Bulletin 72, 55–63 (2013)

44 Pinault, Mathieu, Claire Bisseroy, Gilles Gassiole, Hélène Magalon, Jean Pascal Quod, and René Galzin. Fish Community Structure in Relation to Environmental Variation in Coastal Volcanic Habitats. [https://doi.org/10.1016/j.jembe.2014.06.005]. Journal of Experimental Marine Biology and Ecology. 460, 62–71 (2014)

45 Williams, D.McB. Patterns.Processes in the Distribution of Coral Reef Fishes. The Ecology of Fishes on Coral Reefs. [https://doi.org/10.1016/B978-0-08-092551-6.50021-0]. Academic Press, Inc (1991)

46 N. Jayaprabha, S. Purusothaman, M. Srinivasan. Biodiversity of Coral Reef Associated Fishes along Southeast Coast of India. [https://doi.org/10.1016/j.rsma.2017.12.010]. Regional Studies in Marine Science. 18, 97–105 (2018)

47 EK. Eastwood, D.G. Clary, D.J. Melnick. Coral Reef Health and Management on the Verge of a Tourism Boom: A Case Study from Miches, Dominican Republic.” [https://doi.org/10.1016/j.ocecoaman.2017.01.023]. Ocean and Coastal Management 138, 192–204 (2017)
48 Lortie, J. Christopher, J. Lau, M.J Lajeunesse. Graphical Presentation of Results. https://doi.org/10.1515/9781400846184-023. Handbook of Meta-Analysis in Ecology and Evolution. 339–47 (2013)

49 B.L. Gilby, T. Stevens. Meta-Analysis Indicates Habitat-Specific Alterations to Primary Producer and Herbivore Communities in Marine Protected Areas. [https://doi.org/10.1016/j.gecco.2014.10.005]. Global Ecology and Conservation. 2, 289–99 (2014)

50 Burgess, Scott C., Kate Osborne, and M. Julian Caley. Similar Regional Effects among Local Habitats on the Structure of Tropical Reef Fish and Coral Communities. [https://doi.org/10.1111/j.1466-8238.2009.00516.x.]. Global Ecology and Biogeography. 19, 363–75 (2010)

51 X. Jiang, W.X. Lu, H.Q. Zhao, Q.C. Yang, Z. P. Yang. Potential Ecological Risk Assessment and Prediction of Soil Heavy-Metal Pollution around Coal Gangue Dump. [https://doi.org/10.5194/nhess-14-1599-2014]. Natural Hazards and Earth System Sciences. 14, 1599–1610 (2014)

52 Y. Sagawa, S. Armand, A. Lubbeke, P. Hoffmeyer, D. Fritschy, D. Suva, K. Turcot. Associations between Gait and Clinical Parameters in Patients with Severe Knee Osteoarthritis: A Multiple Correspondence Analysis. Clinical Biomechanics. 28 (3): 299–305. https://doi.org/10.1016/j.clinbiomech.2013.01.008 (2013)

53 J.O. Bell, R. Galzin. Influence of Live Coral Cover on Coral-Reef Fish Communities. [https://doi.org/10.3354/meps015265]. Marine Ecology Progress Series 15, 265–74 (1984)