Immune-related prognosis biomarkers associated with osteosarcoma microenvironment

Weifeng Hong¹,۴†, Hong Yuan²,۴†, Yujun Gu³†, Mouyuan Liu¹, Yayun Ji¹, Zifang Huang³, Junlin Yang³* and Liheng Ma¹*†

Abstract

Background: Osteosarcoma is a highly aggressive bone tumor that most commonly affects children and adolescents. Treatment and outcomes for osteosarcoma have remained unchanged over the past 30 years. The relationship between osteosarcoma and the immune microenvironment may represent a key to its undoing.

Methods: We calculated the immune and stromal scores of osteosarcoma cases from the Target database using the ESTIMATE algorithm. Then we used the CIBERSORT algorithm to explore the tumor microenvironment and analyze immune infiltration of osteosarcoma. Differentially expressed genes (DEGs) were identified based on immune scores and stromal scores. Search Tool for the Retrieval of Interacting Genes Database (STRING) was utilized to assess protein–protein interaction (PPI) information, and Molecular Complex Detection (MCODE) plugin was used to screen hub modules of PPI network in Cytoscape. The prognostic value of the gene signature was validated in an independent GSE39058 cohort. Gene set enrichment analysis (GSEA) was performed to study the hub genes in signaling pathways.

Results: From 83 samples of osteosarcoma obtained from the Target dataset, 137 DEGs were identified, including 134 upregulated genes and three downregulated genes. Functional enrichment analysis and PPI networks demonstrated that these genes were mainly involved in neutrophil degranulation and neutrophil activation involved in immune response, and participated in neuroactive ligand–receptor interaction and staphylococcus aureus infection.

Conclusions: Our study established an immune-related gene signature to predict outcomes of osteosarcoma, which may be important targets for individual treatment.

Keywords: Osteosarcoma, Immune-related genes, Microenvironment

Background

Osteosarcoma is the primary malignant bone cancer that most commonly affects children, adolescents, and young adults [1]. For patients who have metastatic disease at diagnosis or who relapse, the 5-year survival rate is below 30% [2]. Osteosarcoma exhibits a predilection to occur in the metaphysis of long bones, and most commonly occurs in the distal femur (43%), proximal tibia (23%), or humerus (10%) [3]. Clinical outcomes and treatment modalities for osteosarcoma have not changed for more than 30 years. EURAMOS-1 study investigating whether
intensified postoperative chemotherapy for high-grade patients failed to improve survival [4, 5], underscoring a critical need for new treatment strategies. The high morbidity and mortality burden in osteosarcoma necessitates additional research to characterize and understand the underlying mechanisms [6, 7].

Tumor microenvironment (TME) was the cellular environment including immune cells, mesenchymal cells, endothelial cells, inflammatory mediators and extracellular matrix molecules. The osteosarcoma bone microenvironment consists of osteoclasts, osteoblasts and hematopoietic cells from which monocytes/macrophages derive [8–10]. All of these cells release multiple growth factors and cytokines with contrasting effects. It is widely considered that the microenvironment plays a significant role in tumor development [11]. Therefore, the comprehensive analysis of the correlation between immune-related gene signatures and overall survival may shed light on pathogenesis of osteosarcoma.

In our study, we calculated immune and stromal scores based on the ESTIMATE algorithm to detect the correlation between immune/stromal scores and clinical parameters. We also calculated the percentage of every kind of immune cells according to the CIBERSORT algorithm to explore the relationship between immune score and immune cells. The above two algorithms can be applied to predict the immune microenvironment of osteosarcoma and better understand the immune characteristics of osteosarcoma.

Our study aimed to construct an immune-related gene signature to predict the prognosis of osteosarcoma patients. We found that 137 genes were dysregulated in 83 osteosarcoma samples, including 134 upregulated genes and three downregulated genes. Two hub genes, SIGLEC7 and SP140, were positively associated with outcomes in osteosarcoma patients. Additionally, the prognostic power of the genes was verified in another independent Gene Expression Omnibus (GEO) dataset.

Methods
Data preparation
Clinical information of osteosarcoma patients was downloaded from the Target database (https://ocg.cancer.gov/programs/target). For validation, the gene expression profiles of GSE39058 cohort were downloaded from GEO database (https://www.ncbi.nlm.nih.gov/geo/) [12–14].

Immune scores and stromal scores were calculated based on the ESTIMATE algorithm [15]. We divided osteosarcoma patients into high vs. low score groups according to the median value of immune/stromal scores. Based on their scores, we constructed Kaplan–Meier survival curves, and analyzed the association between immune/stromal scores and clinicopathologic parameters.

We calculated the relative percentage of immune cell types in each osteosarcoma sample according to the CIBERSORT algorithm [16]. The proportion of immune cells in high- and low-immune score groups was depicted in the heatmap. We further applied the Wilcoxon test to compare the differences in microenvironment between high and low immune score groups. Using Spearman correlation analysis, we confirmed the relationship between immune cells and immune/stromal scores. All analyses were carried out by R version 3.5.2.

Identification of differentially expressed genes (DEGs) and UpSet plot
We divided osteosarcoma samples into high vs. low immune-score and stromal-score groups according to the median value. Data analysis was performed using package limma [17]. Fold change >1.5 and adj. p < 0.05 were set as the cutoffs to screen for DEGs.

Intersections between different groups of osteosarcoma were investigated by UpSet R [18]. UpSet R is a novel R package which provides intersecting sets using matrix design, along with visualizations of several common sets, element, and attribute related tasks.

Enrichment analysis of DEGs
Functional enrichment analysis of DEGs was performed by clusterProfiler R [19] to identify Gene ontology (GO) categories by biological processes (BP), molecular functions (MF), or cellular components (CC) [20]. Pathway enrichment analysis of DEGs was also performed by clusterProfiler R. False discovery rate (FDR) < 0.05 was used as the cut-off. Then, the most significant top 30 pathways were chosen for visualization.

Human protein–protein interaction (PPI) analysis
Human PPIs were deposited in the search tool for the retrieval of interacting genes (STRING) database (http://string-db.org/) [21], from which we performed a comprehensive analysis and annotation of functional interactions of genes. The STRING database integrates multiple databases that provide information sufficient for the prediction of candidate protein interaction relationships. Cytoscape (http://cytoscape.org/) was used to visualize the PPI network [22, 23]. The hub genes were calculated and identified by using CytoHubba. Molecular Complex Detection (MCODE) plugin was then used to identify gene modules [24]. Enrichment analysis of genes in the top two significant modules was performed by using GO and KEGG.
Survival analysis
Clinical information of the osteosarcoma cohort with 83 patients was available in the Target database. The patients were divided into two groups according to gene expression value. Kaplan–Meier survival curves were performed using R/Bioconductor (version 3.5.2) [25].

Gene set enrichment analysis (GSEA)
In the Target cohort, osteosarcoma samples were divided into two groups according to the expression level of two hub genes, respectively. GSEA analysis was performed to identify the potential function of selected hub genes [26]. P value < 0.05 was set as the cutoff to visualize significantly pathways.

Fig. 1 Immune scores and stromal scores are associated with osteosarcoma overall survival and their pathological location. **a** Osteosarcoma cases were divided into two groups based on high and low immune scores. As shown in the Kaplan–Meier survival curve, median overall survival of the high score group is longer than the low score group, as indicated by the log-rank test, \(p = 0.002 \). **b** Similarly, osteosarcoma patients were divided into high and low stromal score groups. The median overall survival of the high score group is longer than the low score group by the log-rank test, \(p = 0.01 \). **c** Distribution of immune scores of osteosarcoma pathological location. Box-plot shows that there is significant association between osteosarcoma pathological location and the level of immune scores (\(n = 83, \ p = 0.025 \)). **d** Distribution of stromal scores of osteosarcoma pathological location. Box-plot shows that there is no significant difference between osteosarcoma pathological location and the level of stromal scores (\(n = 83, \ p = 0.611 \)).
Results

Immune scores and stromal scores are associated with osteosarcoma clinical status

We downloaded gene expression profiles and clinical information of all 83 osteosarcoma patients with initial pathologic diagnosis from the Target database. To find out the potential correlation of overall survival with immune scores and/or stromal scores, we divided the 83 osteosarcoma cases into top and bottom halves (high vs. low score groups) based on their scores. Kaplan–Meier survival curves (Fig. 1a) showed that median overall survival of cases with the high score group of immune scores and/or stromal scores, we divided the 83 osteosarcoma cases into top and bottom halves (high vs. low score groups) based on their scores. Kaplan–Meier survival curves (Fig. 1a) showed that median overall survival of cases with the high score group of immune scores is longer than the cases in the low score group (p = 0.002). Consistently, cases with higher stromal scores also showed longer median overall survival compared to patients with lower stromal scores (Fig. 1b, p = 0.01).

To explore the potential correlation between immune/stromal scores and clinical information, we divided osteosarcoma patients according to tumor location, age, gender, metastasis status and race. Based on the ESTIMATE algorithm, the average immune scores of lower extremity cases ranked the highest of all, followed by upper extremity and pelvis clinical (Fig. 1c, p = 0.025). Similarly, the rank order of stromal scores across pathological location from highest to lowest is lower extremity > pelvis clinical > upper extremity (Fig. 1d, p = 0.611), indicating that immune scores are meaningful in the correlation of pathological location classification. While, there was no statistical difference based on other clinical information classification (Additional file 1: Figure S1).

Difference of immune cell subsets between high immune score and low immune score groups

To further analyze the relationship between immune score and immune cells, we used the CIBERSORT algorithm to calculate the percentage of each type of immune cells in osteosarcoma cases (n = 83). When deconvoluted into individual immune cell types, 72 (out of the original 83) samples had CIBERSORT deconvolution p-value less than 0.05. The 22 immune cell proportions of osteosarcoma were observed in Fig. 2a. Macrophages M0, macrophages M2, T cells CD4 memory resting, T cells CD4 naïve, and B cells naïve account for a large proportion of osteosarcoma immune cell infiltration. Figure 2b showed distinct immune cell profiles of cases belong to high immune score (n = 38) vs. low immune score (n = 34) groups. Many differential immune cell types existed between high immune score and low immune score groups (Fig. 2c). Immune score and macrophages M1 showed the strongest positive correlation (Pearson correlation = 0.55), while stromal score and macrophages M2 showed positive correlation (Pearson correlation = 0.28) in the Target database at a CIBERSORT p < 0.05 (Fig. 2d). Of these samples, the least variable immune cell type was eosinophils (0%).

Fig. 2 Performance of CIBERSORT across immune cells. a The mean proportion of 22 immune cells in the Target dataset. b Correlation analysis between high/low immune scores and percentage of 22 immune cells is summarized in the heatmap. c Violin plot of high immune score and low immune score groups for the Target cohort, red for high immune score group and blue for low immune score group. The p values showed different infiltration types of immune cells by Wilcoxon test. d Correlation matrix of 21 immune cell proportions and immune/stromal score in the Target datasets. Variables have been ordered by average linkage clustering. For comparison, immune/stromal score has been rescaled to range between zero and one separately in each study.
Analysis of differentially expressed genes

To reveal the correlation of gene expression profiles with immune score and/or stromal score, we compared 83 osteosarcoma cases obtained in the Target database. Heatmaps in Fig. 3a, b showed distinct gene expression profiles of cases belong to high vs. low immune/stromal score groups. For comparison based on immune scores, 459 genes were upregulated and 111 genes were downregulated in the high immune score group than the low score group (fold change > 1.5, p < 0.05). Similarly, based

Fig. 3 Comparison of gene expression profile with immune and stromal scores of osteosarcoma. a, b Heatmap of significantly differentially expressed genes based on immune and stromal scores. Red indicates genes with higher expression and blue indicates genes with lower expression. c UpSet diagram analysis of aberrantly expressed genes based on immune and stromal scores. d Top 30 GO terms was analyzed by clusterProfiler package. e KEGG analysis of immune-related pathways
on stromal scores, there were 645 upregulated genes and 29 downregulated genes in the high stromal score group (fold change > 1.5, p < 0.05) (Fig. 3c). Moreover, UpSet plot (Fig. 3c) showed that 134 genes were upregulated in the high score groups, and three genes were downregulated.

To outline the potential function of the DEGs, we performed functional enrichment analysis of the 134 upregulated genes and three downregulated genes (Table 1). GO terms and pathways were indicated by GO and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Top GO terms identified included regulation of leukocyte activation, external side of plasma membrane, and peptitide binding (Fig. 3d). The results suggested that these genes were enriched in staphylococcus aureus infection and tuberculosis (Fig. 3e).

Protein–protein interactions among DEGs

To better understand the interplay among the identified DEGs, we obtained PPI networks using the STRING tool. The network was made up of five modules, which included 277 intersections and 94 nodes (coincidence interval ≥ 0.7, Fig. 4a). The relationship and function of DEGs were revealed using the PPI network (Fig. 4b). The top 30 genes with the most weight were visualized, which meant they had more connections with other DEGs (Fig. 4c). Figure 4d showed top 30 hub genes based on CytoHubba MCC algorithm by Cytoscape (version 3.7.1). MCODE plugin was used to analyze significant modules in the PPI network, and two modules that had the highest degree were stood out. In the module 1 (Fig. 4e), 45 edges involving 10 nodes were formed in the network. CXCR6, FPR1, ADORA3, CCCR5, LPAR5, C3AR1, C5AR1, S1PR4, FPR3, and P2RY13 were the remarkable nodes, as they had the most connections with other members of the module. There were 14 nodes and 33 edges in the module 2 (Fig. 4f). FCER1G, ITGAM, and PFAFR occupied the center of the module. Moreover, genes in the module 1 and module 2 were identified with GO and KEGG analysis. p value < 0.05 and q value < 0.05 were set as the cutoffs to visualize significantly pathways. We found that these genes were mainly involved in neutrophil degranulation and neutrophil activation involved in immune response, and participated in neuroactive ligand–receptor interaction and staphylococcus aureus infection (Fig. 4g, h).

Validation in the GEO database

To verify that the genes identified from the Target database were also significant in additional osteosarcoma cases, we downloaded and analyzed a cohort of osteosarcoma cases from the GEO database (n = 65), an independent osteosarcoma dataset (Accession number GSE39058). In all, 42 of 65 samples were enrolled for

Table 1 Gene list of 134 up-regulated and three down-regulated genes

Gene	Regulation
CYBB	Up
ZAP70	Up
CD5	Up
FCGR2A	Up
SRIFG	Up
SIGLEC1	Up
LCP2	Up
LTB	Up
PCED1B	Up
APOE	Up
FPR1	Up
TLR4	Up
ITGAM	Up
PLEK	Up
SIGLEC8	Up
IL2RA	Up
CD69	Up
HSP90	Up
TIGIT	Up
P2RY6	Up
GJA4	Up
VMO1	Up
FASLG	Up
TNF5F13B	Up
CXorf21	Up
PTPRC	Up
APOC1	Up
CTSS	Up
HPGDS	Up
C1OC	Up
XCL2	Up
CCR5	Up
FCMR	Up
GIMAP1	Up
FPR3	Up
SLAMF8	Up
CSF2R8	Up
CD300LB	Up
SIGLEC7	Up
GIMAP6	Up
M54A6A	Up
VSIG4	Up
LGALS9	Up
DOCK2	Up
CLEC11	Up
MFNG	Up
FUT7	Up
SIGLEC5	Up
OSM	Up
A total of 70 genes were shown to significantly predict overall survival (Additional file 2: Table S1), of which two genes were associated with better outcomes in osteosarcoma patients (Fig. 5a, b, Target database; c, d, GEO dataset).
GSEA analysis

We confirmed that there existed six significant KEGG pathways based on GSEA analysis, including B cell receptor signaling pathway, leukocyte transendothelial migration, lysosome, nod like receptor signaling pathway, primary immunodeficiency, and leishmania infection (Fig. 6).

Discussion

Osteosarcoma is a rare bone cancer which mainly affects adolescents and young adults. Current standard treatment consists of neoadjuvant chemotherapy, surgical resection of the primary tumor, and adjuvant chemotherapy [27]. Although immunotherapy has heralded much promise for osteosarcoma [28, 29], no biomarkers to stratify patients to distinct therapeutic options currently exist. Moreover, the combination of osteosarcoma genome complexity with the low incidence of these tumors is an obstacle to thorough investigation of osteosarcoma genome biology [30]. Therefore, we sought to identify immune-related prognostic genes that contributed to patients’ overall survival by investigating the TME.

Some reports have applied the ESTIMATE algorithm to several cancers [31–33], demonstrating the effectiveness of the algorithm when applied to expression data. Using the ESTIMATE algorithm, Vincent et al. [31] calculated the purity of breast cancer and demonstrated that differences between tumors and cell lines were attributed to the loss of stromal and immune components in vitro. To understand the microenvironment of osteosarcoma, we utilized the ESTIMATE algorithm to obtain immune and stromal scores. In our study, immune scores were correlated with tumor location of osteosarcoma. In addition, patients with high immune and stromal scores had longer overall survival, suggesting that tumor microenvironment was closely associated with clinical outcomes.

In several studies, the CIBERSORT algorithm was used to examine the relative proportion of infiltrating immune cell subsets in each tumor sample [34–36]. Our work revealed that immune score was positively correlated with macrophage M1, and stromal score was positively associated with macrophages M2. Zhao et al. [35] found that mast cells, natural killer cells, and dendritic cells using CIBERSORT conferred improved distant metastasis-free survival (DMFS), whereas macrophages and T-cells conferred worse DMFS. Whereas, there was no significant correlation between M1-like macrophage or CD8 cell proportion by CIBERSORT with improved DMFS in another study [37]. The results based
on CIBERSORT algorithm will need to be compared with other methods such as single-cell RNA sequencing, which might provide a more detailed analysis of the immune cell infiltrates.

Then we divided tumor samples into high and low immune-score and stromal-score groups to identify DEGs. Through GO and KEGG analysis we found that many of them were involved in tumor microenvironment, such as regulation of leukocyte activation, positive regulation of cytokine production, and regulation of lymphocyte activation (Fig. 3). The results were consistent with previous studies that immune cells and extracellular matrix molecules were interrelated in building osteosarcoma microenvironment [38, 39]. Moreover, we constructed protein–protein interaction modules to reveal the relationship and function of DEGs (Fig. 4). Nodes with a high connectivity degree in the modules were related to immune/inflammation response.

Finally, we performed overall survival analysis of 137 DEGs and identified that 70 genes were associated with outcomes in osteosarcoma patients from the Target database. By cross-validation with the GEO dataset, an independent cohort of 42 osteosarcoma cases, we identified two prognostic immune-related genes (Siglec7, SP140) consistent with the Target database. Both genes have not previously been reported in relation to osteosarcoma, indicating potential prognostic biomarkers for further study [40–42].

Depicting a comprehensive landscape of osteosarcoma microenvironment may help to interpret the responses
of osteosarcoma to immunotherapies and provide new treatment strategies for patients. The results of our study should be further validated in a prospective cohort of patients receiving immunotherapy. As not all patients have greater benefit from immunotherapy, more clinical factors should be incorporated to construct prediction models.

Several limitations should be considered when interpreting the results. Firstly, owing to the small sample size of the cohort, further verification with big data was necessary. Secondly, due to heterogeneity of osteosarcoma, DEGs identified at the population level may not accurately describe individual tumor sample well. Further experiments were needed to directly determine the specific cell type and proportion of immune infiltration. Thirdly, as the limited availability of osteosarcoma samples, the integration of data from multiple datasets has become a key source of data to study osteosarcoma. However, this method is highly influenced by batch effects due to the lack of statistical controls.

In summary, immune scores and stromal scores calculated based on the ESTIMATE and CIBERSORT algorithms could facilitate the quantification of the immune and stromal components in each tumor sample. Then according to their immune/stromal scores, we categorized osteosarcoma cases in the Target database into high and low score groups, and identified DEGs. Functional enrichment analysis and protein–protein interaction networks further showed that these genes mainly participated in immune/inflammation response. Finally, we validated these genes in an independent osteosarcoma cohort from the GEO database. Thus, we obtained a list of tumor microenvironment-related genes that predicted better prognosis in osteosarcoma patients.

Conclusions
Our study established an immune-related gene signature to predict overall survival of osteosarcoma, which may help in clinical decision making for targeted molecular therapies.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.1186/s12935-020-1165-7.

Additional file 1: Figure S1. The correlation between the immune/stromal scores and osteosarcoma clinical information. (A) Distribution of immune scores for age <15/>25 and 15–25 osteosarcoma cases (p = 0.974). (B) Distribution of stromal scores for age <15/>25 and 15–25 osteosarcoma cases (p = 0.837). (C) Distribution of immune scores for female and male osteosarcoma cases (p = 0.147). (D) Distribution of stromal scores for female and male osteosarcoma cases (p = 0.123). (E) Distribution of immune scores for metastatic and non-metastatic osteosarcoma cases (p = 0.218). (F) Distribution of stromal scores for metastatic and non-metastatic osteosarcoma cases (p = 0.203). (G) Distribution of immune scores for Asian, Black or African American, and White osteosarcoma cases (p = 0.061).

Additional file 2: Table S1. Gene list of 70 survival-related DEGs. P value <0.05 was used as the cut-off.

Abbreviations
TME: Tumor microenvironment; GEO: Gene Expression Omnibus; DEGs: Differential expressed genes; GO: Gene Ontology; BP: Biological process; MF: Molecular function; CC: Cellular component; FDR: False discovery rate; PPI: Protein–protein interaction; STRING: Search Tool for the Retrieval of Interacting Genes Database; MCODE: Molecular Complex Detection; GSEA: Gene set enrichment analysis; KEGG: Kyoto Encyclopedia of Genes and Genomes; DMFS: Distant metastasis-free survival.

Acknowledgements
Not applicable.

Authors’ contributions
WFH contributed to conception, design, acquisition, analysis, and interpretation of data. HY contributed to the acquisition of data and manuscript preparation. YJG contributed to the conception, analysis, and interpretation
of data. MYL, YJJ and ZFH contributed to the acquisition and interpretation of data. LHM and JLY conducted the study, and revised the manuscript critically. All the authors participated in the discussion and editing of the manuscript. All authors read and approved the final manuscript.

Funding
This work was supported by the National Science Foundation of Guangdong Province, China (2017ZC0202), Shanghai Anticancer Association EYAS PROJECT (SACA-CY19C19).

Availability of data and materials
The original data of the present study can be found at Target database (https://ocg.cancer.gov/programs/target) and GEO dataset (https://www.ncbi.nlm.nih.gov/geo/).

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Author details
1 Department of Medical Imaging, The First Affiliated Hospital of Guangdong Pharmaceutical University, No.19, Nong Lin Xia Road, Yuexiu District, Guangzhou 510030, Guangdong, China. 2 Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. 3 The First Affiliated Hospital of Sun Yat-sen University, No.58, Zhongshan Second Road, Yuyue District, Guangzhou 510030, Guangdong, China. 4 Morning Star Academic Cooperation, Shanghai, China.

Received: 27 November 2019 Accepted: 4 March 2020

Published online: 16 March 2020

References
1. Pingping B, Yuhong Z, Weiqi L, Chunxiao W, Chunfang W, Yuanjue S, Chenping Z, Jianru X, Jade L, Lin K, et al. Incidence and mortality of sarcomas in Shanghai, China, during 2002–2014. Front Oncol. 2019;9:662.
2. Sayles LC, Breese MR, Koehne AL, Leung SG, Lee AG, Liu HY, Spillinger A, Shah AT, Tanasa B, Strasser K, et al. Genome-informed targeted therapy for osteosarcoma. Cancer Discov. 2019;9(1):46–63.
3. Isakoff MS, Bielack SS, Meltzer P, Gorlick R. Osteosarcoma: current treatment and a collaborative pathway to success. J Clin Oncol. 2015;33(27):3029–35.
4. Marina NM, Smeland S, Bielack SS, Bernstein M, Jovic G, Hook LM, et al. Comparison of MAPIE versus MAP in patients with a poor response to preoperative chemotherapy for newly diagnosed high-grade osteosarcoma (EURAMOS-1): an open-label, international, randomised controlled trial. Lancet Oncol. 2016;17(10):1396–408.
5. Smeland S, Bielack SS, Whelan J, Bernstein M, Hogendoorn P, Kralj M, Gorlick R, Janeway KA, Ingleby FC, Anninga J, et al. Survival and prognostic with osteosarcoma: outcomes in more than 2000 patients in the EURAMOS-1 (European and American Osteosarcoma Study) cohort. Eur J Cancer. 2010;46:36–50.
6. Jin Z, Liu S, Zhu P, Tang M, Wang Y, Tian Y, Li D, Zhu X, Yan D, Zhu Z. Cross-species gene expression analysis reveals gene modules implicated in human osteosarcoma. Front Genet. 2019;10:697.
7. Zhang H, Guo L, Zhang Z, Sun Y, Kang H, Song C, Liu H, Lei Z, Wang J, MA B, et al. Co-expression network analysis identified gene signatures in osteosarcoma as a predictive tool for lung metastasis and survival. J Cancer. 2019;10(16):3706–16.
8. Galon J, Pages F, Marincola FM, Thurnin M, Trinchieri G, Fox BA, Gajewski TF, Ascierto PA. The immune score as a new possible approach for the classification of cancer. J Transl Med. 2012;10:1.
9. Sambabaoglu Y, Jegeon RS, Winer AG, Liu M, Van Allen EM, de Velasco G, Alao D, Ostrovnyaya I, Drill E, Luna A, et al. Tumor immune microenviron- ment characterization in clear cell renal cell carcinoma identifies prognostic and immunotherapeutically relevant messenger RNA signatures. Genome Biol. 2016;17(1):231.
10. Winslow S, Lindquist KE, Edso J, Larsson C. The expression pattern of matrix-producing tumor stroma is of prognostic importance in breast cancer. BMC Cancer. 2016;16(1):381.
11. Gomez-Brouchet A, Ilic C, Gihodes J, Bouvier C, Aupert S, Guinebretiere JM, Marie B, Lanousserie F, Entz-Werle N, de Pinieux G, et al. CD163-positive tumor-associated macrophages and CD8-positive cytotoxic lymphocytes are powerful diagnostic markers for the therapeutic stratification of osteosarcoma patients: an immunohistochemical analysis of the biopsies from the French OS2006 phase 3 trial. Oncoimmunology. 2017;6(9):e131193.
12. Zhang J, Lan Q, Lin J. Identification of key gene modules for human osteosarcoma by co-expression analysis. World J Surg Oncol. 2018;16(1):89.
13. Liu X, Hu AX, Zhao JL, Chen FL. Identification of key gene modules in human osteosarcoma by co-expression analysis weighted gene co-expression network analysis (WGCNA). J Cell Biochem. 2017;118(11):3953–9.
14. Dai Z, Tang H, Yan Y, Chen J, Li Y, Zhu J. Gene expression profiles and pathway enrichment analysis of human osteosarcoma cells exposed to sorafenib. FEBS Open Bio. 2018;8(5):860–7.
15. Yoshihara K, Shamaradgoli M, Martinez E, Vegesna R, Kim H, Torres-Garcia W, Trevino V, Shen H, Laird PW, Levine DA, et al. Infiltrating tumour purity and stromal and immune cell admixture from expression data. Nat Commun. 2013;4:2612.
16. Newman AM, Liu CL, Green MR, Gents J, Feng W, Xu Y, Hoang CD, Diehn M, Alizadeh AA. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015;12(5):453–7.
17. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47.
18. Lex A, Gehlenborg N, Strobelt H, Vuillemot R, Pfister H. UpSet: visualization of intersecting sets. IEEE Trans Vis Comput Graph. 2014;20(12):1983–92.
19. Yu G, Wang LG, Han Y, He QY, clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16(5):284–7.
20. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25(1):25–9.
21. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic acids Res. 2015;43(Database issue):D447–52.
22. Shannon P, Mewes W, Pellegrini M, Sutcliffe S, Tannier D, Frith M, Wyler C, et al. Cytoscape 2.8: new features and major enhancements. Nucleic acids Res. 2011;39(1):101–5.
23. Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T. Cytoscape (MCODE) improves detection of subendocardial myocardial infarction by late gadolinium enhancement cardiovascular magnetic resonance: a clinical validation study. J Cardiovasc Magn Reson. 2012;14:83.
24. Bandettini WP, Kellman P, Breitbart EJ, Heissig B, Noll ED, Arnett FC, et al. Multicontrast delayed enhancement cardiovascular magnetic resonance imaging: a clinical validation study. J Cardiovasc Magn Reson. 2003;13(11):2498–504.
25. Diehn M, Alizadeh AA. Clonal hematopoiesis and somatic genetics of the aging human hematopoietic system. Genome Med. 2017;9(1):30.
26. Subramanian A, Mori M, Pinkert CA, Wang X, Schmitt AM, Arai AE. Multicontrast delayed enhancement cardiovascular magnetic resonance integrated models of biomolecular interaction networks. J Cardiovasc Magn Reson. 2005;7(1):109.
27. Gianferante DM, Mirabello L, Savage SA. Germline and somatic genetics of osteosarcoma—connecting aetiology, biology and therapy. Nat Rev Endocrinol. 2017;13(8):480–91.
28. Dyson KA, Stover BD, Grippin A, Mendez-Gomez HR, Lagmay J, Mitchell DA, Sayour EJ. Emerging trends in immunotherapy for pediatric sarcomas. J Hematol Oncol. 2019;12(1):78.

29. Le Cesne A, Marec-Berard P, Blay JY, Gaspar N, Bertucci F, Penel N, Bompas E, Cousin S, Tourloumonde M, Beissede A, et al. Programmed cell death 1 (PD-1) targeting in patients with advanced osteosarcomas: results from the PEMBROSARC study. Eur J Cancer (Oxford, England : 1990). 2019;119:151–7.

30. Chen X, Bahrami A, Pappo A, Easton J, Dalton J, Hedlund E, Ellison D, Shurtleff S, Wu G, Wei L, et al. Recurrent somatic structural variations contribute to tumorigenesis in pediatric osteosarcoma. Cell Rep. 2014;7(1):104–12.

31. Vincent KM, Findlay SD, Postovit LM. Assessing breast cancer cell lines as tumour models by comparison of mRNA expression profiles. Breast Cancer Res. 2015;17:114.

32. Jia D, Li S, Li D, Xue H, Yang D, Liu Y. Mining TCGA database for genes of prognostic value in glioblastoma microenvironment. Aging (Albany NY). 2018;10(4):592–605.

33. Xu WH, Xu Y, Wang J, Wan FN, Wang HK, Cao DL, Shi GH, Qu YY, Zhang HL, Ye DW. Prognostic value and immune infiltration of novel signatures in clear cell renal cell carcinoma microenvironment. Aging (Albany NY). 2019;11(7):6999–7020.

34. Newman AM, Steen CB, Liu CL, Gentles AJ, Chaudhuri AA, Scherer F, Khodadoust MS, Esfahani MS, Luca BA, Steiner D, et al. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat Biotechnol. 2019;37(7):773–82.

35. Zhao SG, Leheer J, Chang SL, Das R, Etho N, Liu Y, Sjostrum M, Den RB, Freedland SJ, Klein EA, et al. The immune landscape of prostate cancer and nomination of PD-L2 as a potential therapeutic target. J Natl Cancer Inst. 2019;111(3):301–10.

36. Stahl D, Gentles AJ, Thiele R, Gütgemann I. Prognostic profiling of the immune cell microenvironment in Ewing’s Sarcoma Family of Tumors. Oncoimmunology. 2019;8:e1674113.

37. Waks AG, Stover DG, Gueniero JL, Dillon D, Barry WT, Gjini E, Hartl C, Lo W, Savoie J, Brock J, et al. The immune microenvironment in hormone receptor-positive breast cancer before and after preoperative chemotherapy. Clin Cancer Res. 2019;25(15):4644–55.

38. Cortini M, Avnet S, Baldini N. Mesenchymal stroma: role in osteosarcoma progression. Cancer Lett. 2017;405:90–9.

39. Gambera S, Abarategi A, Gonzalez-Camacho F, Morales-Molina A, Roma J, Alfarcena A, Garcia-Castro J. Clonal dynamics in osteosarcoma defined by RGB marking. Nat Commun. 2018;9(1):3094.

40. Song Y, Pan Y, Liu J. The relevance between the immune response-related gene module and clinical traits in head and neck squamous cell carcinoma. Cancer Manag Res. 2019;11:7455–72.

41. Varchetta S, Mele D, Lombardi A, Oliviero B, Mantovani S, Tinelli C, Spreafico M, Prati D, Ludovisi S, Ferraioli G, et al. Lack of Siglec-7 expression identifies a dysfunctional natural killer cell subset associated with liver inflammation and fibrosis in chronic HCV infection. Gut. 2016;65(12):1998–2006.

42. Fraschilla I, Pillai S. Viewing Siglecs through the lens of tumor immunology. Immuno Rev. 2017;276(1):178–91.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.