Mitochondrial junctions with cellular organelles: Ca$^{2+}$ signalling perspective

Alexei V. Tepikin

Received: 7 June 2018 / Revised: 27 June 2018 / Accepted: 29 June 2018 / Published online: 7 July 2018
© The Author(s) 2018

Abstract
Cellular organelles form multiple junctional complexes with one another and the emerging research area dealing with such structures and their functions is undergoing explosive growth. New research journal named “Contact” has been recently established to facilitate the development of this research field. The current consensus is to define an organellar junction by the maximal distance between the participating organelles; and the gap of 30 nm or less is considered appropriate for classifying such structures as junctions or membrane contact sites. Ideally, the organellar junction should have a functional significance, i.e. facilitate transfer of calcium, sterols, phospholipids, iron and possibly other substances between the organelles (Carrasco and Meyer in Annu Rev Biochem 80:973–1000, 2011; Csordas et al. in Trends Cell Biol 28:523–540, 2018; Phillips and Voeltz in Nat Rev Mol Cell Biol 17:69–82, 2016; Prinz in J Cell Biol 205:759–769, 2014). It is also important to note that the junction is not just a result of a random organelle collision but have active and specific formation, stabilisation and disassembly mechanisms. The nature of these mechanisms and their role in physiology/pathophysiology are the main focus of an emerging research field. In this review, we will briefly describe junctional complexes formed by cellular organelles and then focus on the junctional complexes that are formed by mitochondria with other organelles and the role of these complexes in regulating Ca$^{2+}$ signalling.

Keywords Endoplasmic reticulum · Mitochondria · Organellar junctions · Membrane contact sites · Ca$^{2+}$ signalling · Reactive oxygen species

Junctions between cellular organelles

The prominent role of junctions between the endoplasmic reticulum (ER) and the plasma membrane (PM) in the regulation of Ca$^{2+}$ signalling and lipid transport has been recently identified (reviewed in [19, 125]). The discovery that a fundamental signalling process—store operated Ca$^{2+}$ entry (SOCE) (reviewed in [69, 99, 128, 132]) requires the direct interaction of two relatively small proteins (STIM and Orai) anchored in different organelar membranes (the ER membrane and the PM membrane [45, 101, 105, 142]) attracted considerable interest from cell physiologists and stimulated interest in the formation of the platforms for such interactions, i.e. ER-PM junctions. SOCE is vital for Ca$^{2+}$ reloading of the ER and for maintaining Ca$^{2+}$ signalling (reviewed in [128]). Other recently identified, specific functions of Ca$^{2+}$ signalling microdomains generated in the ER-PM junctions (e.g. [81]) further highlighted the importance of these signalling platforms.

cAMP signalling is another signalling modality operating in the ER-PM junctions; studies from the A. Hofer laboratory recently defined a novel mechanism of cAMP signalling SOcAMPS (store-operated cAMP signalling) which is activated by ER Ca$^{2+}$ store depletion and involves the activation of adenyl cyclase 3 by STIM [97, 107]. Another form of interplay between Ca$^{2+}$ and cAMP signalling in the ER-PM junctions was extensively characterised in a number of elegant papers by D. Willoughby and colleagues from D. Cooper laboratory. This mechanism involves the direct interaction of adenyl cyclase 8 and Orai1 [169, 170]. In addition to serving as platforms for SOCE and SOcAMPS, the ER-PM junctions play important

Alexei V. Tepikin
a.tepikin@liv.ac.uk

1 Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
roles in the transport of phospholipids (e.g. [21, 25, 152]) and sterols [56, 146].

The molecular mechanism of ER-PM junction formation was first discovered and characterised in yeasts where three groups of proteins Ist2, tricalbin proteins Tcb1–3 and Scs2/Scs2 contribute to the tethering of the organelles ([102, 110] reviewed in [135]). Extended synaptotagmins (mammalian analogues of tricalbins) were later shown to mediate the formation of ER-PM junctions in mammalian cells [22, 60]. The ER is a particularly prominent organelle in its ability to form junctions.

ER junctions with endosomes have been described and are important for the regulation of dynamics and fission of these organelles [51, 143, 174]. It is also likely that the ER-endosomal/lysosomal junctional complexes are important for the coordination of Ca\(^{2+}\) signalling between these organelles [84, 85, 103, 104, 118]). ER junctions with Golgi are essential for the transfer of lipids between the two organelles [114, 115]. Recent study utilising advanced optical spectral microscopy revealed that ER is the preferred interacting organelle for Golgi, peroxisomes and lipid droplets (LDs) in mammalian cells [159].

Membrane tethering between ER and Golgi is mediated by the oxysterol-binding protein (OSBP), which also serves as a conduit for the transfer of sterols and phospholipids between these two organelles [114, 115].

Direct non-vesicular lipid transfer operates between the ER and peroxisomes [138]. Tethers between these organelles have been visualised in the 80s of the previous century [173]. Recently, the proteins responsible for tethering ER and peroxisomes (Pex3p and Inp1p) have been identified in yeasts [88]. This function in mammalian cells is mediated by ACBD5 and VAPB [28].

Interaction between the ER and LDs is important for the lipid transfer to LDs; a complex consisting of fatty acid transport protein 1 (FATP1) and diacylglycerol O-acyltransferase 2 (DGAT2) have been identified as important for both ER-LD interaction and the lipid loading of LDs [172]. Another protein seipin was recently shown to be important for the ER-LD contacts as well as being involved in lipid and protein delivery from ER to LD [144].

ER contacts with phagosomes generate highly localised Ca\(^{2+}\) signals important for phagocytosis [124]. Both juncata and STIM1 are involved in the formation of the junctions between the ER and phagosomes and, interestingly, support different forms of localised Ca\(^{2+}\) responses [62, 124].

Junctions between the ER and other cellular organelles are probably the most numerous inter-organelar junctions. However, junctions formed by other organelles have also been described and include contacts of LDs with peroxisomes and lysosomes (reviewed in [54]), and contacts of lysosomes with peroxisomes [24]. Importantly for the purposes of this review many organelles also form contacts with mitochondria.

Mitochondrial contacts with other cellular organelles

Mitochondria interact and form junctions with LD [6]. Perilipin 5 was shown to be important for this organellar linkage [167]. Another study indicates the importance of mitofusin 2 and perilipin 1 in mediating the interaction between mitochondria and LD [14]. Interestingly, the composition of peridroplet mitochondria and their bioenergetics capacity was shown to be different from their cytoplasmic neighbours [6].

The components of the contact sites between mitochondria and peroxisomes have been characterised using a genome-wide screen in yeast. Pex11 and Mdm34 have been identified as interacting partners involved in the formation of junctions between these cellular organelles [112].

Contacts between mitochondria and Golgi have been described in experimental papers utilising optical microscopy [38, 159]. Interestingly, triple contacts between mitochondria, ER and the Golgi apparatus have been recently identified [159]. Golgi-mitochondrial contacts could be important for Ca\(^{2+}\) signalling in both organelles [38].

Mitochondria-lysosome contacts have also been described in mammalian cells [167, 171]. In another study, mitochondria-lysosomal contacts were systematically investigated using a plethora of microscopy and molecular biology techniques. The observed contacts were tight (approximately 10 nm between the membranes of the participating organelles) and were associated with mitochondrial fission [171]. Two proteins, mitochondrial FIS1 and lysosomal RAB7, were reported to regulate the formation and dissolution of the contacts. Specifically, GTP-bound RAB7 induced the formation of contacts, whilst GDP bound RAB7 dissolved contacts. Conversion from GTP bound to GDP bound forms of RAB7 was facilitated by the GTPase-activating protein TBC1D15, recruited to the contact sites by interaction with FIS1 [171]. Notably, the involvement of a RAB GTPase in the formation of the junctions between the vacuole (lysosome-like structure) and mitochondria was earlier demonstrated in yeasts [70].

Direct contact between endosomes and mitochondria is utilised for the iron transfer from transferrin receptor-containing endosomes to the mitochondria [33, 149]. Interestingly, most of the interactions between these two organelles were short-lived (<0.5 s), illustrating the notion that organellar junctions do not need to be stable or long-lasting to fulfill physiologically important roles [33].

Mitochondrial junctions with other cellular organelles are schematically illustrated on Fig. 1.

ER-mitochondria junctions

Early indications of connections between these two organelles have been published in the 1950s of the previous century [9,
Considering the short distance (< 30 nm) between cellular organelles that should be bridged by tethers to form the junctions, electron microscopy (EM) technique is the preeminent methodology in this rapidly developing research field. The contacts between mitochondria and the ER have been indeed visualised by EM (an example is shown on the Fig. 2); furthermore, tethers between the two organelles were also documented in experiments utilising electron tomography [29]. The length of the tethers between strands of smooth ER and mitochondria was approximately 10 nm, whilst the distance bridged by the tethers connecting rough ER and mitochondria was approximately 25 nm [29]. This and other EM studies complemented biochemical observations that a specific fraction of the ER is associated with mitochondria. This fraction is termed MAM (mitochondria-associated membranes). It is important for phospholipid synthesis and the transport of phospholipids between the ER and mitochondria, including the transfer of phosphatidylserine from the ER to mitochondria and of phosphatidylethanolamine from mitochondria to the ER (early evidence [161], recent reviews [98, 132, 162]).

The specific biochemical procedures involved in the isolation of MAMs are described in a recent review by J. Vance [162]. Importantly, in most cell types, MAMs are identified/characterised by proteins that are not unique in MAMs but are enriched in MAMs [162]. These proteins include phosphatidylserine synthase-1 and synthase-2 [153], Sigma1 receptor [65], Mitofusin 2 [34] and, importantly for this review, inositol trisphosphate receptors (IP3R) [140, 154].

Recently, there was considerable progress in the characterisation of the molecular composition of the tethers linking ER with the outer mitochondrial membrane (OMM). In yeasts, a complex termed ERMES (ER-mitochondria encounter

Fig. 1 Mitochondrial junctions/interactions with other cellular organelles. Abbreviations in this figure: plasma membrane (PM), endoplasmic reticulum (ER), smooth ER (SER); rough ER (RER); lipid droplet (LD); peroxisome (PRX); endosomes/lysosomes (E/L); Golgi (G). The tethers linking the organelles are indicated by short black bars. Two types of mitochondrial junctions with the SER are included in the figure. The lower mitochondrial-SER junction (SER strand approaches perpendicularly to the mitochondrial outer membrane) illustrates the interaction involved in mitochondrial fission [20, 50, 90]). The upper mitochondrial-SER junction (membranes of the organelles are running parallel to one another) is involved in signalling and lipid transfer between the organelles but not in mitochondrial fission. Note the difference in the length of the tethers between the mitochondrial-SER junctions and mitochondrial-RER junctions (see [29]). A number of triple organelar junctions have been reported (e.g. [159]); in this diagram, we show a putative triple mitochondria-PM-ER junction. Two or three types of tethers could be formed in the triple junctions (two types is the minimal requirement); in this diagram, we show the three types of tethers for illustrative purposes. The strand of ER approaching the PM in the proximity of the ER-PM junction could be SEM [126] or REM [106] but only ribosome-free ER membranes have been shown to form junctions with PM [106, 126]. The properties of the ER and PM in the triple contact regions with mitochondria require further investigations.
A structure (has been identified by exceptionally elegant experiments combining expression of artificial tether linking ER with mitochondria and analysis of mutations in yeasts colonies. These experiments identified components of ERMES on the basis that mutations or deletions of these components result in growth deficiency that could be rescued by the expression of the artificial tether [89]. The identified in these experiments proteins Mmm1/Mdm10/Mdm12/Mdm34 form ERMES. Two proteins forming ERMES (Mdm34 and Mdm10) are anchored in OMM; whereas Mmm1 is an ER membrane resident and Mdm12 is a cytosolic protein recruited to ERMES complex ([89] reviewed in [95]). A recent study by S. Kawano and colleagues reported that the Mmm1-Mdm12 complex is sufficient for the transfer of phospholipids between membranes [82]. Notably, in yeasts, there is a redundancy of both lipid ER-mitochondria tethering and lipid transfer mechanisms; in particular, conserved EMC (endoplasmic reticulum membrane protein complex) has been identified and suggested to mediate both tethering and lipid transfer functions [94] (reviewed in [119]). Another redundancy is based on the functional substitution of ER-mitochondrial junctions in ERMES impaired yeasts with junctions formed between vacuole and mitochondria termed vCLAMP (vacuole-mitochondria contact patches) [44, 70]. Impairment of ERMES results in the expansion of vCLAMP and vice versa, whereas the elimination of both structures is lethal. Vps39 was shown to be important for vCLAMP formation [44, 70]. Recent studies from the B. Kornmann laboratory indicated that endosomal protein Vps13 and mitochondrial protein Mcp1 mediate the functions of vCLAMP [75, 96].

ERMES complex/components are not retained in metazoa and other types of proteins are responsible for the formation of ER-mitochondria junctions in animal cells. Linkers

Fig. 2 Mitochondria can be found in close proximity to the endoplasmic reticulum and the plasma membrane in pancreatic acinar cells. *a* Images of mitochondria in live pancreatic acinar cells (adapted with modifications from [165]). Mitochondria were loaded with the ΔΨ indicator TMRM (tetramethylrhodamine methyl ester). SP-M indicates subplasmalemmal mitochondria (see also parts *c* and *d* of this figure and [76, 129]). PG-M indicates perigranular mitochondria. In this cell type, PG-M can be found in close proximity to Golgi, ER strands and secretory granules (see [38, 76, 129, 158]). Scale bar corresponds to 4 μm. *b* Example of a mitochondrion located in a close proximity to a rough ER strand (adapted with modifications from [76]). Ri indicates ribosome. ER-L indicates the ER lumen. Scale bar represents 100 nm. *c* ER-PM junctions (indicated by arrowheads) with associated mitochondrion (m). The image is adapted with modifications from [106]). The lumens of ER strands approaching the plasma membranes are highlighted by asterisks. This image is an example of a triple organellar junction in a primary mammalian cell. Scale bar represents approximately 50 nm. *d* Subplasmalemmal mitochondrion (SP-M) shown with associated plasma membrane (PM) region. Note the strands of the rough ER in close proximity to the mitochondrion on the other side from the PM. Scale bar corresponds to approximately 100 nm. The figure was adapted with modifications from [76].
formed by OMM protein VDAC1 (voltage-dependent anion channel 1), IP3R (located in the ER) and a molecular chaperone glucose-regulated protein 75 (grp75) was suggested by G. Szabadkai and colleagues from R. Rizzuto laboratory [154].

The presence of IP3Rs was later observed in proximity-labelling assays designed to reveal the proteome of ER-mitochondrial junctions [23]. The composition of such linker is clearly beneficial for the Ca\(^{2+}\) transfer from the ER to mitochondria. Mitofusin 2 was suggested as the linker between the ER and mitochondria [34]. This notion has been challenged (e.g. [27, 46]) and the debate currently continues [47, 48, 121, 122].

Recently, a number of ER proteins interacting with mitochondrial proteins and therefore capable, in principle, to serve as tethers have been reported; they include: vesicle-associated membrane protein-associated protein B (VAPB) interacting with mitochondrial protein tyrosine phosphatase interacting protein 51 (PTPPIP51) [36]; oxysterol-binding proteins (OSBP)-related proteins ORP5 and ORP8 that also interact with PTPPIP51 [52]; Bap31 that interact with mitochondria-located Fission 1 [174] and ribosome-binding protein 1 (RRBP1) with its mitochondrial binding partner Synaptotagmin-2-binding protein (SYNJ2BP) [73].

Among the regulators of ER-mitochondrial junctions are ER-shaping proteins reticulons, which were identified as a result of ascorbate peroxidase proximity labelling [23]. The ability of reticulons (specifically of RTN1A, RTN2B, and RTN3B) to increase ER-mitochondria interaction was determined by split luciferase assay [23]. Similar technique was used to ascertain the role of receptor expression-enhancing protein 1 (REEP1) in potentiating ER-mitochondria interaction [100]. Another regulator of ER-mitochondrial junctions is the endoplasmic-reticulum-associated E3 ubiquitin ligase Gp78, which is particularly important for rough ER-mitochondria contacts [168].

Mitochondrial fission requires the formation of specific contacts between mitochondrial membrane and the ER. Dynamin related protein 1 (Drp1) is essential for mitochondrial fission (e.g. [92, 151] reviewed in [160]). A study by J. Friedman and colleagues from the G. Voelz laboratory reported that the location of mitochondrial division is determined by contact with the ER tubule, which is formed before the recruitment of Drp1 to the inter-organellar contact and induces mitochondria constriction at the contact region [50]. The ER in the junction is enriched with inverted formin 2 (INF2) which induces actin filament formation in the junction [90]. Notably, INF2-induced actin recruitment is important for the formation of contacts between the ER and mitochondria [20].

ER-mitochondria junctions as signalling nanodomains

Ca\(^{2+}\) signalling is an important signalling modality operating in the ER-mitochondria junctions. Many biological properties of mitochondrial Ca\(^{2+}\) influx and extrusion have been characterised in the second part of the twentieth century. In particular it was established that the mitochondrial Ca\(^{2+}\) influx system operates as “uniporter” (i.e. does not involve accompanying transfer of other ions for charge compensation) and that it can be efficiently inhibited by Ruthenium Red (RuRed). The mitochondrial Ca\(^{2+}\) export system was characterised as Na\(^+\)/Ca\(^{2+}\) exchanger, which can also transport Ca\(^{2+}\) when Na\(^+\) is substituted by Li\(^+\) and can be inhibited by CGP-37157. These crucially important early discoveries are reviewed in [18].

Development of mitochondria specific bioluminescent probes by R. Rizzuto, T. Pozzan and their colleagues has given considerable impetus to the advancement of this research field [139]. Important studies defining the physiological and pathophysiological role of mitochondrial Ca\(^{2+}\) have also been conducted in the last three decades of the twentieth century. R. Denton’s group defined an important role of mitochondrial Ca\(^{2+}\) in the regulation of the Krebs cycle (reviewed in [37, 113]). At the cellular level, changes in the activity of the Krebs cycle can be visualised by recording NAD(P)H and FAD fluorescence (reviewed in [42]).

Clear correlation between cytosolic Ca\(^{2+}\), mitochondrial Ca\(^{2+}\) and NADH responses has been indeed recorded (e.g. [63, 164]). The upregulation of Krebs cycle and other Ca\(^{2+}\)-dependent mitochondrial reactions underpins the regulation of mitochondrial ATP production required for efficient stimulating metabolism coupling (e.g. [77, 157, 166], reviewed in [55, 156]).

The role of Ca\(^{2+}\) microdomains and the importance of the contacts between the ER and mitochondria for mitochondrial Ca\(^{2+}\) influx was emphasised by studies from the T. Pozzan laboratory [140, 141]. The importance of the microdomains and organellar contacts was attributed to the relatively low affinity of the mitochondrial uniporter to the cytosolic Ca\(^{2+}\) [140, 141]. The recent rapid development of this research area provided mechanistic explanation to this phenomenon. The direct electrophysiological recordings of the MCU current were reported by Y. Kirichok and colleagues from the D. Clapham laboratory [86]. In 2011, two laboratories independently identified the protein mediating mitochondrial Ca\(^{2+}\) entry and termed it mitochondrial calcium uniporter (MCU) [4, 35]. Approximately 1 year earlier, F. Perocchi and colleagues from the V. Mootha laboratory discovered an important regulator of mitochondrial Ca\(^{2+}\) import, MICU1 [131]. This research area underwent rapid development in the next few years and a number of other regulators of MCU have been discovered including MICU2 [134] and EMRE [145]. Both MICU1 and MCU2 are EF hand-containing Ca\(^{2+}\)-binding proteins [131, 134]. An important role of MICU1 and MICU2 in the MCU complex is to form and regulate the threshold of cytosolic Ca\(^{2+}\), which allows efficient Ca\(^{2+}\) entry into the mitochondria.
(e.g. [31, 78, 80, 109, 130] for review see [79] and the paper by C. Mammucari and colleagues in the current issue). A resting mitochondrial membrane potential (ΔΨ) of approximately −160 mV is sufficient to drive Ca2+ entry into the mitochondria even at low resting cytosolic Ca2+ concentrations. Increased Ca2+ threshold for the mitochondrial Ca2+ entry is beneficial for the cell since it prevents or reduces Ca2+ entry into the mitochondria at low (resting or near-resting) cytosolic Ca2+ levels. This prevents futile Ca2+ cycle and the associated bioenergetics costs required to maintain acceptably low mitochondrial Ca2+ concentration. Such futile Ca2+ cycle and ATP expenditure were recently demonstrated in cells harbouring MICU1 mutation by G. Bhosale and colleagues from M. Duchen’s laboratory [10]. Threshold created by MICU1 and MICU2 is an important mechanism for reducing the signal-to-noise ratio for the communication between Ca2+ signalling and mitochondria. Importantly, it works in conjunction with Ca2+ signalling microdomains formed in the ER-mitochondrial junctions, which further increase the difference between bulk cytosolic Ca2+ rise and the Ca2+ rise in the proximity to the Ca2+-releasing channels and OMM region located in the junctional complex. Direct measurements of Ca2+ increases in the ER-Mitochondrial junctions have been conducted by G. Csordas and colleagues from the G. Hajnoczky laboratory by placing Ca2+ indicators into the junctions [30]. This study reported high amplitude IP3-induced Ca2+ responses (> 9 μM) in the junctions (substantially higher than the bulk cytosolic Ca2+ increase) and the relative insensitivity of the junctional Ca2+ transients to slow Ca2+ buffering by EGTA [30]. The substantial difference between local Ca2+ signals in the junction and the rest of the cytosol enhances the signal-to-noise ratio for mitochondrial transfer of Ca2+ signals and facilitates this form of stimulus—metabolism coupling. The findings reported by G. Csordas and colleagues were consistent with results reported by M. Giacomello and colleagues who targeted Ca2+ indicator to the OMM and reported the appearance of Ca2+ hot spots where the Ca2+ concentration was found to be more than 5 times higher than that of the bulk cytosolic concentration [57]. The presence of IP3Rs in MAMs and their suggested role as a component of the junctional complex [154] are also in agreement with these findings.

RyRs form another group of intracellular Ca2+-releasing channels particularly prominent in the sarcoplasmic reticulum (a specialised form of the endoplasmic reticulum present in muscle cells). There is now a sufficient body of evidence supporting the formation of SR-mitochondrial junctions and privileged local Ca2+ transfer from RyR into the mitochondria. Electron microscopy imaging revealed close contacts between mitochondrial and SR membranes (e.g. [66]). High Ca2+ concentration hot-spots (> 20 μM) have been recorded on the OMM of cardiomyocytes [39]. Mitochondrial Ca2+ increase following RyRs activation occurs in the presence of cytosolic calcium buffer in cardiac [148, 155] and skeletal [150] muscle cells, confirming the existence of functionally coupled organelar junctions. The Ca2+ transfer by this mechanism is therefore important for stimulus-metabolism coupling in muscle cells ([16, 155] reviewed in [43]).

Mitochondrial Ca2+ transfer in the junctional complexes is important not only for the stimulus-metabolism coupling. A recent study by R. Chakrabarti and colleagues highlighted the importance of Ca2+ influx in ER-mitochondrial junction and Ca2+ entry into the mitochondria via MCU for mitochondrial fission [20].

Mitochondrial Ca2+ is important for the opening of the mitochondrial permeability transition pore (MPTP). MPTP is a high conductance mitochondrial channel permeable to molecules with molecular weight up to 1.5 kDa [40]. The exact role of mitochondrial Ca2+ as permissive or initiating factor in physiological/pathophysiological settings involving MPTP is debated (see [8]). Permissive or inducing, the mitochondrial Ca2+ is important for MPTP opening and therefore for the associated cell/tissue damage. Considering the importance of MPTP in pathophysiology of cardiovascular system (reviewed in [64]) and nervous system (reviewed in [41]), and the significance of ER-Mitochondrial junctional complexes for mitochondrial Ca2+ transfer, one can expect that the role of junctional complexes in pathophysiological conditions will gain considerable attention in the next few years. This process has already began: e.g. a study by L. Hedskog and colleagues suggested the link between the increase in the number of the ER-mitochondrial contacts and the pathophysiology of Alzheimer disease [67], whilst X. Qiao and colleagues highlighted the importance of PTP1P51 (protein regulating ER-mitochondria junction) for ischemia/reperfusion injury [136]. It is safe to predict that the study of the structure, dynamics and role of junctional complexes in diseases will be an important subfield in modern biomedical research.

ER-mitochondrial junctions are also sites of localised H2O2 nanodomains that were recently directly measured and reported by D. Booth and colleagues [12]. In this elegant study from the G. Hajnoczky laboratory, the authors targeted the H2O2 sensor HyPer [5] to the inducible linkers between the ER and mitochondria, and observed Ca2+-dependent redox nanodomains in the junctions between the organelles [12]. Interestingly, H2O2 transients potentiated ER Ca2+ release [12]. Redox regulation of IP3Rs is well documented (e.g. [2, 13] reviewed in [1]) and junctional complexes involving the ER with a ROS producing organelle (i.e. mitochondrion) is prime location for such regulation. Importantly, RyR are also redox sensitive channels (reviewed in [68]) and important sensitivity adjustment of this channel could take place in SR-mitochondrial junctions by locally produced ROS.
Mitochondria-PM junctions and Ca2+ signalling

The mechanisms tethering mitochondria to the plasma membrane have been characterised in yeasts, where the Num1/Mdm36 anchors ER-mitochondria complex to the plasma membrane [87, 93, 133]. Subplasmalemmal mitochondrial groups have been reported in a number of mammalian cell types (e.g. [49, 76, 129, 137] see also Fig. 2) but the mechanism involved in the formation of tethers between the mitochondria and the plasma membrane in mammalian cells is currently unknown.

Using Ca2+ indicators targeted to OMM and the cytosol, Giacomello and colleagues established that mitochondria adjacent to the plasma membrane did not show preferential Ca2+ uptake upon activation of store operated Ca2+ entry [57]. Furthermore, Ca2+ entry via SOCE was ineffective in producing Ca2+ hot spots on the OMM. Nevertheless, Ca2+ entry into the mitochondria was recorded in these experiments and the peak mitochondrial Ca2+ concentration was approximately one order of magnitude higher than in the cytosol [57]. The absence of privilege communication between STIM–Orai channels and mitochondria was also observed in COS-7 cells by M. Korzeniowski and colleagues from the A. Spat laboratory [91].

On the other hand, a study by P. Varadi and colleagues demonstrated that the re-localisation of mitochondria from the plasma membrane results in a clearly resolvable decrease of store operated Ca2+ entry and reduction in mitochondrial Ca2+ responses [163]. This is consistent with the findings by A. Quintana and colleagues from the M. Hoth laboratory which revealed the prominent role of mitochondria in the immunological synapse. In this highly specialised signalling region, essential for T cell activation, mitochondria regulate store operated Ca2+ entry [137]. Importantly, this is achieved by a specialised group of subplasmalemmal mitochondria. The authors concluded that the local subplasmalemmal mitochondria prevent calcium-dependent inactivation of ORAI channels in the immunological synapse and therefore extend/amplify Ca2+ responses. This is achieved as a result of a local coordination of STIM/Orai channels, mitochondria and Ca2+ pumps of the plasma membrane. This study extends previous findings of the importance of mitochondria in the regulation of SOCE and its electrophysiological manifestation Ca2+ release-activated Ca2+ (CRAC) current (ICRAC) ([3, 53, 58, 59, 61, 71, 72, 108, 111] and specifically about the role of mitochondrial Ca2+ buffering in the regulation of ICRAC inactivation [127]). It is conceivable that mitochondria could regulate SOCE/ICRAC not only via local Ca2+ uptake but also by releasing products of mitochondrial metabolism in the proximity to the Ca2+ channel. In particular, it was shown that ATP released from subplasmalemmal mitochondria can facilitate SOCE by providing local Ca2+ buffering [116]. Notably, subplasmalemmal ATP microdomains have been recorded [83]. The authors of this study also suggested that a specific peripheral group of mitochondria is responsible for such microdomains.

Interestingly, the T.Pozzan group demonstrated privilege communication between mitochondria and voltage-gated Ca2+ channels. This study reported that the subplasmalemmal mitochondria are exposed to higher Ca2+ concentrations and show stronger Ca2+ responses than mitochondria located in the deeper regions of the cytoplasm [57]. Similar conclusion was reached in the study by Montero and colleagues that demonstrated very strong Ca2+ increases (hundreds of μM) in a subgroup of mitochondria upon activation of voltage-gated Ca2+ channels [117]. Interestingly, this study suggests a triple functional interaction between voltage-gated Ca2+ channels, RyR and mitochondria [117]. A recent study by A. Valm and colleagues, utilising high-resolution optical microscopy, identified a number of close contacts formed by ERMCss (ER mitochondria contact sites) with other organelles [159]. The structure-function relationships of such triple organelar junctions will probably form an exciting avenue for further development in this research subfield.

Subplasmalemmal mitochondria regulate not only Ca2+ channels but also Ca2+ pumps. This coordinated regulation is probably needed to ensure balance between Ca2+ signalling and Ca2+ homeostasis. The important role of subplasmalemmal mitochondrial group in the regulation of both SOCE- and PMCA-mediated Ca2+ fluxes was reported M. Frieden and colleagues [49].

Mitochondria are an important source of reactive oxygen species (reviewed in [15, 120, 147]). Both Ca2+ extrusion by PMCA and Ca2+ entry via STIM/Orai channels are redox sensitive processes (e.g. ([11, 17], see also [123]). Recently, mitochondrial ROS was implicated in the regulation of SOCE [7]). Subplasmalemmal mitochondria would be particularly suitable organelles for this form of regulation.

Concluding remarks

One can observe clear indications of the emergence of a new research field focused on the mechanisms contributing to the formation of junctions between cellular organelles and determining functions of the interorganellar complexes. The development of this field is facilitated by the rapid advances in super-resolution microscopy and correlative optical-electron microscopy. This emerging field has already facilitated the development of new molecular biology techniques (e.g. introduction of artificial tethers/linkers that can bridge cellular organelles and can be decorated with sensors of signalling molecules). Development of techniques for selective labelling of junctional proteins and consequently identification of junctional proteomes should provide further impetus to this
research area. It is likely that ER-mitochondrial junctions and mitochondria-PM junctions serve as important elements in stimulus-metabolism coupling and that this and other physiological functions of the junctional complexes will be actively investigated in the near future. Understanding the mechanisms involved in the formation and functioning of junctional complexes (and particularly of mitochondrial junctions with other cellular organelles) will be beneficial for elucidating the pathophysiological implications of the disruption of these important transport/signalling platforms.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Appenzeller-Herzog C, Simmen T (2016) ER-luminal thiol/selenol-mediated regulation of Ca2+ signalling. Biochem Soc Trans 44:452–459
2. Bansagi S, Golenar T, Madesh M, Csordas G, RamachandraRao S, Sharma K, Yule DJ, Joseph SK, Hajnoczky G (2014) Isoform and species-specific control of inositol 1,4,5-triphosphate (IP3) receptors by reactive oxygen species. J Biol Chem 289:8170–8181
3. Barrow SL, Voronina SG, da Silva Xavier G, Chvanov MA, Longbottom RE, Gerasimenko OV, Petersen OH, Rutter GA, Tepikin AV (2008) ATP depletion inhibits Ca2+ release, influx and extrusion in pancreatic acinar cells but not pathological Ca2+ responses induced by bile. Pflugers Arch 455:1025–1039
4. Baughman JM, Perocchi F, Girgis HS, Plovanich M, Belcher-Chandran J, Bogorad RL, Koteliansky V, Mootha VK (2011) Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476:341–345
5. Belousov VV, Fradkov AF, Lukyanov KA, Staroverov DB, Tepikin A V (2008) ATP depletion inhibits Ca2+ release, influx and extrusion in pancreatic acinar cells but not pathological Ca2+ responses induced by bile. Pflugers Arch 455:1025–1039
6. Benador IY, Veliova M, Boccuzzi M, Belcher-Timme CA, Sancak Y, Bao XR, Strittmatter L, Goldberger O, Longbottom RE, Koteliansky V, Mootha VK (2011) Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476:341–345
7. Belousov VV, Fradkov AF, Lukyanov KA, Staroverov DB, Tepikin A V (2008) ATP depletion inhibits Ca2+ release, influx and extrusion in pancreatic acinar cells but not pathological Ca2+ responses induced by bile. Pflugers Arch 455:1025–1039
8. Bernardi P, Di Lisa F (2015) The mitochondrial permeability transition pore: molecular nature and role as a target in cardioprotection. J Mol Cell Cardiol 78:100–106
9. Bernhard W, Rouiller C (1956) Close topographical relationship between mitochondria and ergastoplasm of liver cells in a definite phase of cellular activity. J Biophys Biochem Cytol 2:73–78
10. Bhosale G, Sharpe JA, Koh A, Kouli A, Szabadkai G, Ducheu MR (2017) Pathological consequences of MICU1 mutations on mitochondrial calcium signalling and bioenergetics. Biochim Biophys Acta 1864:1009–1017
11. Bogeski I, Kummerow C, Al-ansary D, Schwarz EC, Koehler R, Kozai D, Takahashi N, Peintelt C, Griesemer D, Bozem M, Mori Y, Hoth M, Niemeyer BA (2010) Differential redox regulation of ORAI ion channels: a mechanism to tune cellular calcium signalling. Sci Signal 3:ra24
12. Booth DM, Enyedi B, Geiszt M, Varnai P, Hajnoczky G (2016) Redox nanodomains are induced by and control calcium signalling at the ER-mitochondrial interface. Mol Cell 63:240–248
13. Boothman MD, Taylor CW, Berri[193]idge MJ (1992) The thiol reagent, thimerosal, evokes Ca2+ spikes in HeLa cells by sensitizing the inositol 1,4,5-triphosphate receptor. J Biol Chem 267:25113–25119
14. Bontaut M, Kulkarni SS, Joffraud M, Ratajczak J, Valera-Alberni M, Combe R, Zorzano A, Canto C (2017) Mfn2 is critical for brown adipose tissue thermogenic function. EMBO J 36:1543–1558
15. Brand MD (2010) The sites and topology of mitochondrial superoxide production. Exp Gerontol 45:466–472
16. Brandes R, Bers DM (1997) Intracellular Ca2+ increases the mitochondrial NADH concentration during elevated work in intact cardiac muscle. Circ Res 80:82–87
17. Bruce JD, Elliott AC (2007) Oxidant-impaired intracellular Ca2+ signaling in pancreatic acinar cells: role of the plasma membrane Ca2+-ATPase. Am J Physiol Cell Physiol 293:C938–C950
18. Carafoli E (2012) The interplay of mitochondria with calcium: an historical appraisal. Cell Calcium 52:1–8
19. Carrasco S, Meyer T (2011) STIM proteins and the endoplasmic reticulum-plasma membrane junctions. Annu Rev Biochem 80:973–1000
20. Chakrabarti R, Ji WK, Stan RV, de Juan Sanz J, Ryan TA, Higgs WN (2018) INF2-mediated actin polymerization at the ER stimulates mitochondrial calcium uptake, inner membrane constriction, and division. J Cell Biol 217:251–268
21. Chang CL, Liu J (2015) Phosphatidylinositol 4,5-bisphosphate homeostasis regulated by Nip2 and Nip3 proteins at endoplasmic reticulum-plasma membrane junctions. J Biol Chem 290:14289–14301
22. Chang CL, Hsieh TS, Yang TT, Rothberg KG, Azizoglu DB, Volk E, Liao JC, Liu J (2013) Feedback regulation of receptor-induced Ca2+ signaling mediated by E-Syt1 and Nip3 at endoplasmic reticulum-plasma membrane junctions. Cell Rep 5:813–825
23. Cho IT, Adelmant G, Lim Y, Marto JA, Cho G, Golden JA (2017) Ascorbate peroxidase proximity labeling coupled with biochemical fractionation identifies promoters of endoplasmic reticulum-mitochondrial contacts. J Biol Chem 292:16382–16392
24. Chu BB, Liao YC, Qi W, Xie C, Du X, Wang J, Yang H, Mao HH, Li BL, Song BL (2015) Cholesterol transport through lysosome-peroxisome membrane contacts. Cell 161:291–306
25. Chung J, Torta F, Masai K, Lucast L, Czapla H, Tanner LB, Narayanaswamy P, Wenz MR, Nakatsu F, De Camilli P (2015) INTRACELLULAR TRANSPORT (2015) P14/P phosphatidylserine countertransport at ORP5- and ORP8-mediated ER-plasma membrane contacts. Science 349:428–432
26. Copeland DE, Dahan AJ (1959) An association between mitochondria and the endoplasmic reticulum in cells of the pseudobranch gland of a teleost. J Biophys Biochem Cytol 5:393–396
27. Cosson P, Marchetti A, Ravazzola M, Orci L (2012) Mitofusin-2 independent juxtaposition of endoplasmic reticulum and mitochondria: an ultrastructural study. PLoS One 7:e46293
28. Costello JL, Castro IG, Hacker C, Schrader TA, Metz J, Zeuschnner D, Azadi AS, Godinho LF, Costina V, Fediesen P, Manner A,
Islinger M, Schrader M (2017) ACBD5 and VAPB mediate membrane associations between peroxisomes and the ER. J Cell Biol 216:331–342

29. Csordas G, Renken C, Varnai P, Walter L, Weaver D, Buttle KF, Balla T, Mannella CA, Hajnoczky G (2006) Structural and functional features and significance of the physical linkage between ER and mitochondria. J Cell Biol 174:915–921

30. Csordas G, Varnai P, Golenar T, Roy S, Parkins G, Schneider TG, Balla T, Hajnoczky G (2010) Imaging interorganelle contacts and local calcium dynamics at the ER-mitochondrial interface. Mol Cell 39:121–132

31. Csordas G, Golenar T, Seifert EL, Kamer KJ, Sancak Y, Perochini F, Moffat C, Weaver D, de la Fuente Perez S, Bogorad R, Koteliyanis V, Adijanto J, Mootha VK, Hajnoczky G (2013) MICU1 controls both the threshold and cooperative activation of the mitochondrial Ca(2+) uniporter. Cell Metab 17:976–987

32. Reference [32] was provided in the reference list; however, this was not mentioned or cited in the manuscript. As a rule, all references given in the list of references should be cited in the main body. Please provide its citation in the body text.

33. Das A, Nag S, Mason AB, Barroso MM (2016) Endosome-mitochondria tethers. Mol Biol Cell 24:831–845

34. De Stefani D, Raffaello A, Teardo E, Szabo I, Rizzuto R (2011) A forty-kilodalton protein of the inner membrane is the mitochondrial protein PTPIP51 to regulate calcium homeostasis. J Cell Biol 214:831–840

35. Denton RM (2009) Regulation of mitochondrial dehydrogenases by calcium ions. Biochim Biophys Acta 1787:1309–1316

36. Dolman NJ, Gerasimenko JV, Gerasimenko OV, Voronina SG, Petersen OH, Tepikin AV (2005) Stable Golgi-mitochondria complexes and formation of Golgi Ca(2+)-gradients in pancreatic acinar cells. J Biol Chem 280:15794–15799

37. De Stefani D, Raffaello A, Teardo E, Szabo I, Rizzuto R (2011) A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 456:605–610

38. De Stefani D, Raffaello A, Teardo E, Szabo I, Rizzuto R (2011) A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 456:605–610

39. De Stefani D, Raffaello A, Teardo E, Szabo I, Rizzuto R (2011) A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 456:605–610

40. Denton RM (2009) Regulation of mitochondrial dehydrogenases by calcium ions. Biochim Biophys Acta 1787:1309–1316

41. De Stefani D, Raffaello A, Teardo E, Szabo I, Rizzuto R (2011) A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 456:605–610

42. De Stefani D, Raffaello A, Teardo E, Szabo I, Rizzuto R (2011) A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 456:605–610

43. De Stefani D, Raffaello A, Teardo E, Szabo I, Rizzuto R (2011) A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 456:605–610

44. De Stefani D, Raffaello A, Teardo E, Szabo I, Rizzuto R (2011) A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 456:605–610

45. De Stefani D, Raffaello A, Teardo E, Szabo I, Rizzuto R (2011) A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 456:605–610

46. De Stefani D, Raffaello A, Teardo E, Szabo I, Rizzuto R (2011) A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 456:605–610

47. Filadi R, Greotti E, Turacchio G, Luini A, Pozzan T, Pizzo P (2016) Presenilin 2 modulates endoplasmic reticulum-mitochondria coupling by tuning the antagonistic effect of mitofusin 2. Cell Rep 15:2226–2238

48. Filadi R, Greotti E, Turacchio G, Luini A, Pozzan T, Pizzo P (2017) On the role of Mitofusin 2 in endoplasmic reticulum-mitochondria tethering. Proc Natl Acad Sci U S A 114:E2266–E2267

49. Frieden M, Arnaudeau S, Castelbou C, Damaurex N (2005) Subplasmalemmal mitochondria modulate the activity of plasma membrane Ca2+-ATPases. J Biol Chem 280:43198–43208

50. Friedman JR, Lackner LL, West M, DiBenedetto JR, Nunnari J, Voeltz GK (2011) ER tubules mark sites of mitochondrial division. Science 334:358–362

51. Friedman JR, DiBenedetto JR, West M, Rowland AA, Voeltz GK (2013) Endoplasmic reticulum-endosome contact in neutrophils as endosomes traffic and mature. Mol Biol Cell 24:1030–1040

52. Galmes R, Houcine A, van Vliet AR, Agostinis P, Jackson CL, Giordano F (2016) ORP5/ORP8 localize to endoplasmic reticulum-mitochondria contacts and are involved in mitochondrial function. EMBO Rep 17:800–810

53. Galmes R, Houcine A, van Vliet AR, Agostinis P, Jackson CL, Giordano F (2016) ORP5/ORP8 localize to endoplasmic reticulum-mitochondria contacts and are involved in mitochondrial function. EMBO Rep 17:800–810
105. Luik RM, Wu MM, Buchanan J, Lewis RS (2006) The elementary unit of store-operated Ca2+ entry: local activation of CRAC channels by STIM1 at ER-plasma membrane junctions. J Cell Biol 174:815–825

106. Lur G, Haynes LP, Prior IA, Gerasimenko OV, Feske S, Petersen OH, Burgoyne RD, Tepikin AV (2009) Ribosome-free terminals of rough ER allow formation of STIM1 puncta and segregation of STIM1 from IP(3) receptors. Curr Biol 19:1648–1653

107. Maieullaro I, Letkimmingais K, Moyer MP, Curei S, Hofer AM (2012) Termination and activation of store-operated cyclic AMP production. J Cell Mol Med 16:2715–2725

108. Malli R, Frieden M, Osibow K, Zoratti C, Mayer M, Damaurex N, Graier WF (2003) Sustained Ca2+ transfer across mitochondria is essential for mitochondrial Ca2+ buffering, store-operated Ca2+ entry, and Ca2+ store refilling. J Biol Chem 278:44769–44779

109. Mallilankaraman K, Dooman P, Cardenas C, Chandramoorthy HC, Muller M, Miller R, Hoffman NE, Gandhirajan RK, Molgo J, Birnbaum MJ, Rothberg BS, Mak DO, Foskett JK, Madens M (2012) MICU1 is an essential gatekeeper for MCU-mediated mitochondrial Ca2+ uptake that regulates cell survival. Cell 151:630–644

110. Manford AG, Stefan CJ, Yuan HL, Macgurn JA, Enir SD (2012) ER-to-plasma membrane tethering proteins regulate cell signaling and ER morphology. Dev Cell 23:1129–1140

111. Marriott I, Mason MJ (1995) ATP depletion inhibits capacitative Ca2+ entry in rat thymic lymphocytes. Am J Phys 269:C766 and ER morphology. Dev Cell 23:1129

112. Mattiazzi Usaj M, Brloznik M, Kaferle P, Zitnik M, Wolinski H, Leitner F, Kohlwein SD, Zupan B, Petrovic U (2015) Genome-wide localization study of yeast Pex11 identifies peroxisome-mitochondria interactions through the ERMES complex. J Mol Biol 427:2072–2087

113. McCormack JG, Halestrap AP, Denton RM (1990) Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol Rev 70:391–425

114. Mesmin B, Bigay J, Moser von Filseck J, Lacas-Gervais S, Drin M, Antonny B (2013) A four-step cycle driven by PI(4)P hydrolysis directs sterol/PI(4)P exchange by the ER-Golgi tether OSBP. Cell 155:830–843

115. Mesmin B, Bigay J, Polidori J, Jamecna D, Lacas-Gervais S, Antonny B (2017) Sterol transfer, PI4P consumption, and control of membrane lipid order by endogenous OSBP. EMBO J 36:3156–3174

116. Montalvo GB, Artales AR, Gilabert JA (2006) ATP from subplasmalemmal mitochondria controls Ca2+-dependent inactivation of CRAC channels. J Biol Chem 281:35616–35623

117. Montero M, Alonso MT, Cuchillo-Ibanez I, Albillos M, Hernandez-Alvarez MI, Zorzano A, De Stefani D, Dorn GW (2012) Critical reactivation confirma that Mitofusin 2 is an endoplasmic reticulum-mitochondria tether. Proc Natl Acad Sci U S A 113:11249–11254

118. Naon D, Zaninello M, Giacometto M, Varanita T, Gregsi F, Lakshminaranayan S, Serafini A, Semenzato M, Herkenne S, Hernandez-Alvarez MI, Zorzano A, De Stefani D, Dorn GW (2017) Reply to Filadi et al.: Does Mitofusin 2 tether or separate endoplasmic reticulum and mitochondria? Proc Natl Acad Sci U S A 114:E2268–E2269

119. Nunes P, Damaurex N (2014) Redox regulation of store-operated Ca2+ entry. Antioxid Redox Signal 21:915–932

120. Nunes P, Corum D, Bochet V, Hasler U, Oh-Hora M, Waldburger JM, Damaurex N (2012) STIM1 juxtaposes ER to phagosomes, generating Ca(2+)(+) hotspots that boost phagocytosis. Curr Biol 22:1990–1997

121. Okeke E, Dingsdale H, Parker T, Voronina S, Tepikin AV (2016) Endoplasmic reticulum-plasma membrane junctions: structure, function and dynamics. J Physiol 594:2837–2847

122. Orci L, Ravazzola M, Le Caodic M, Shen WW, Damaurex N, Cosson P (2009) From the cover: STIM1-induced preocytical and cortical subdomains of the endoplasmic reticulum. Proc Natl Acad Sci U S A 106:19358–19362

123. Parekh AB (2003) Store-operated Ca2+ entry: dynamic interplay between endoplasmic reticulum, mitochondria and plasma membrane. J Physiol 547:333–348

124. Parekh AB, Putney JW Jr (2005) Store-operated calcium channels. Physiol Rev 85:757–810

125. Park MK, Ashby MC, Erdemli G, Petersen OH, Tepikin AV (2001) Perinuclear, perigranular and sub-plasmalemmal mitochondria have distinct functions in the regulation of cellular calcium transport. EMBO J 20:1863–1874

126. Paton M, Checchetto V, Raffaello A, Teardo E, Vellcio Reane D, Mantoan M, Granatiero V, Szabo I, De Stefani D, Rizzuto R (2014) MICU1 and MICU2 finely tune the mitochondrial Ca2+ unipor to exerting opposite effects on MCU activity. Mol Cell 53:726–737

127. Perocchi F, Gohil VM, Girgis HS, Bao XR, McCombs JE, Palmer AE, Mootha VK (2010) MICU1 encodes a mitochondrial EF hand protein required for Ca(2+) uptake. Nature 467:291–296

128. Phillips MJ, Voelz G (2016) Structure and function of ER membrane contact sites with other organelles. Nat Rev Mol Cell Biol 17:69–82

129. Ping HA, Kraft LM, Chen W, Nilles AE, Lackner LL (2016) Num1 anchors mitochondria to the plasma membrane via two domains with different lipid binding specificities. J Cell Biol 213:513–524

130. Plovanich M, Bogorad RL, Sancak Y, Kamer KJ, Strittmatter L, Li AA, Girgis HS, Kuchimanchi S, De Groot J, Speciner L, Taneja N, Oshea J, Kotelianicky V, Mootha VK (2013) MICU2, a paralog of MICU1, resides within the mitochondrial unipor complex to regulate calcium handling. PLoS One 8:e55785

131. Prinz WA (2014) Bridging the gap: membrane contact sites in signaling, metabolism, and organelle dynamics. J Cell Biol 205:759–769

132. Qiao X, Jia S, Ye J, Fang X, Zhang C, Cao Y, Xu C, Zhao L, Zhu Y, Wang L, Zheng M (2017) PTP1P51 regulates mouse cardiac mitochondrial Ca2+ transients. Sci Rep 7:45379

133. Quintana A, Pasche M, Junker C, Al-Ansary D, Rieger H, Rettig J, Niemeyer BA, Hoth M (2011) Calcium microdomains at the immunological synapse: how ORAI channels, mitochondria and calcium pumps generate local calcium signals for efficient T-cell activation. EMBO J 30:3895–3912

134. Raychaudhuri S, Prinz WA (2008) Nonvesicular phospholipid transfer between peroxisomes and the endoplasmic reticulum. Proc Natl Acad Sci U S A 105:15785–15790

135. Rizzuto R, Simpson AW, Brini M, Pozzan T (1992) Rapid changes of mitochondrial Ca2+ revealed by specifically targeted recombinant aequorin. Nature 358:325–327
140. Rizzuto R, Brini M, Murgia M, Pozzan T (1993) Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. Science 262:744–747

141. Rizzuto R, Pinton P, Carrington W, Fay FS, Fogarty KE, Lifshitz LM, Tuft RA, Pozzan T (1998) Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280:1763–1766

142. Roos J, DiGregorio PJ, Yeromin AV, Ohlsen K, Lioudyno M, Stone SJ, Vance J (2000) Phosphatidylserine synthase-1 and -2. EMBO J 19:435–445

143. Rowland AA, Chitwood PJ, Phillips MJ, Voeltz GK (2014) ER contact sites define the position and timing of endosome fission. Cell 159:1027–1041

144. Salo VT, Belevich I, Li S, Karhinene L, Vihinen H, Viguouroux C, Magre J, Thiele C, Holta-Vuori M, Jokitalo E, Ikonen E (2016) Seipin regulates ER-lipid droplet contacts and cargo delivery. EMBO J 35:2699–2716

145. Sancak Y, Markhard AL, Kitami T, Kovacs-Bogdan E, Kamer KJ, Udeshi ND, Carr SA, Chaudhuri D, Clapham DE, Li AA, Calvo SE, Goldberger O, Mootha VK, Udeshi ND, Carr SA, Chaudhuri D, Clapham DE, Li AA, Calvo SE, Goldberger O, Mootha VK (2013) EMRE is an essential component of the mitochondrial calcium uniporter complex. Science 342:1379–1382

146. Schulz TA, Choi MG, Raychaudhuri S, Mears JA, Ghirlando R, Sancak Y, Markhard AL, Kitami T, Kovacs-Bogdan E, Kamer KJ, Udeshi ND, Carr SA, Chaudhuri D, Clapham DE, Li AA, Calvo SE, Goldberger O, Mootha VK, Udeshi ND, Carr SA, Chaudhuri D, Clapham DE, Li AA, Calvo SE, Goldberger O, Mootha VK (2013) EMRE is an essential component of the mitochondrial calcium uniporter complex. Science 342:1379–1382

147. Schulz TA, Choi MG, Raychaudhuri S, Mears JA, Ghirlando R, Hinshaw JE, Prinz WA (2009) Lipid-regulated sterol transfer between closely apposed membranes by oxysterol-binding protein homologues. J Cell Biol 187:889–903

148. Sena LA, Chandel NS (2012) Physiological roles of mitochondrial reactive oxygen species. Mol Cell 48:158–167

149. Sharma VK, Ramesh V, Franzini-Armstrong C, Sheu SS (2000) Transport of Ca2+ from sarcoplasmic reticulum to mitochondria in rat ventricular myocytes. J Bioenerg Biomembr 32:97–104

150. Sheltel AD, Zhang AS, Brown C, Shirihai OS, Fronk P (2007) Direct interorganellar transfer of iron from endosome to mitochondria. Blood 110:125–132

151. Shkryl VM, Shirokova N (2006) Transfer and tunneling of Ca2+ from sarcoplasmic reticulum to mitochondria in skeletal muscle. J Biol Chem 281:1547–1554

152. Smimova E, Griparic L, Shurland DL, van der Bieke AM (2001) Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol Biol Cell 12:2245–2256

153. Sohn M, Korzeniowski M, Zewe JP, Wills RC, Hammond GRV, Hupplerocikova Z, Vrzal L, Chalupska D, Veverka V, Faim GD, Bouna E, Balla T (2018) Ptd(4,5)P2 controls plasma membrane PI4P and PS levels via ORP5/8 recruitment to ER-PM contact sites. J Cell Biol 217:1797–1813

154. Stone SJ, Vance JE (2000) Phosphatidylinerse synthase-1 and -2 are localized to mitochondria-associated membranes. J Biol Chem 275:34534–34540

155. Szabadkai G, Bianchi K, Varnai P, De Stefani D, Wieckowski MR, Cavagna D, Nagy AI, Balla T, Rizzuto R (2006) Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J Cell Biol 175:901–911

156. Szabadkai G, Cserm C, Hantash BM, Thomas AP, Hajnoczyk G (2000) Calcium signal transmission between ryanodine receptors and mitochondria. J Biol Chem 275:15305–15313

157. Tarasov AI, Griffiths EJ, Rutter GA (2012) Regulation of ATP production by mitochondrial Ca2+. Cell Calcium 52:28–35

158. Tarasov AI, Sempli F, Li D, Rizzuto R, Rafter MA, Gilpin P, Rutter GA (2013) Frequency-dependent mitochondrial Ca(2+) accumulation regulates ATP synthesis in pancreatic beta cells. Pflugers Arch 465:543–554

159. Tarasov AI, Sempli F, Li D, Rizzuto R, Rafter MA, Gilpin P, Rutter GA (2013) Frequency-dependent mitochondrial Ca(2+) accumulation regulates ATP synthesis in pancreatic beta cells. Pflugers Arch 465:543–554

160. Tarasov AI, Griffiths EJ, Rutter GA (2014) Regulation of mitochondrial Ca2+ by mitochondrial Ca2+ accumulation regulates ATP synthesis in pancreatic beta cells. Pflugers Arch 465:543–554

161. Tarasov AI, Griffiths EJ, Rutter GA (2015) Regulation of mitochondrial Ca2+ by mitochondrial Ca2+ accumulation regulates ATP synthesis in pancreatic beta cells. Pflugers Arch 465:543–554

162. Tarasov AI, Griffiths EJ, Rutter GA (2016) Regulation of mitochondrial Ca2+ by mitochondrial Ca2+ accumulation regulates ATP synthesis in pancreatic beta cells. Pflugers Arch 465:543–554

163. Tarasov AI, Griffiths EJ, Rutter GA (2017) Regulation of mitochondrial Ca2+ by mitochondrial Ca2+ accumulation regulates ATP synthesis in pancreatic beta cells. Pflugers Arch 465:543–554

164. Tarasov AI, Griffiths EJ, Rutter GA (2018) Regulation of mitochondrial Ca2+ by mitochondrial Ca2+ accumulation regulates ATP synthesis in pancreatic beta cells. Pflugers Arch 465:543–554

165. Tarasov AI, Griffiths EJ, Rutter GA (2019) Regulation of mitochondrial Ca2+ by mitochondrial Ca2+ accumulation regulates ATP synthesis in pancreatic beta cells. Pflugers Arch 465:543–554