Article

Recovery, Molecular Characterization, and Ampelographic Assessment of Marginal Grapevine Germplasm from Southern Umbria (Central Italy)

Alessandra Zombardo 1,*, Paolo Storchi 1, Paolo Valentini 1, Alice Ciofini 1, Daniele Migliaro 2 and Manna Crespan 2

1 Council for Agricultural Research and Economics, Research Centre for Viticulture and Enology, Viale Santa Margherita 80, 52100 Arezzo, AR, Italy; paolo.storchi@crea.gov.it (P.S.); paolo.valentini@crea.gov.it (P.V.); alice.ciofini@crea.gov.it (A.C.)
2 Council for Agricultural Research and Economics, Research Centre for Viticulture and Enology, Viale 28 April 26, 31015 Conegliano, TV, Italy; daniele.migliaro@crea.gov.it (D.M.); manna.crespan@crea.gov.it (M.C.)
* Correspondence: alessandra.zombardo@crea.gov.it; Tel.: +39-0575-353021

Abstract: The protection of grapevine biodiversity and the safeguarding of genetic variability are certainly primary and topical objectives for wine research, especially in territories historically devoted to viticulture. To assess the autochthonous germplasm of three different districts of Southern Umbria (Central Italy), the plant material of 70 grapevines retrieved from reforested land plots or old vineyards was collected, and their genetic identity was investigated using 13 microsatellite markers (SSR). The results revealed the presence of 39 unique genotypes, divided into 24 already-known cultivars and 15 never-reported SSR profiles. Most of the grapevine accessions were then vegetatively propagated and cultivated in a vineyard collection both to be protected from extinction and to be evaluated at the ampelographic level. Overall, this work emphasizes the need for recovering the threatened genetic variability that characterizes minor neglected grapevine cultivars or biotypes of Southern Umbria germplasm, and the requirement to revalue and exploit the more valuable genetic resources to enhance the local agri-food economy.

Keywords: Vitis vinifera; germplasm recovery; genetic identification; SSR markers; ampelography

1. Introduction

Umbria is one of the smallest regions in the central part of the Italian Peninsula and is characterized by a landlocked landscape of rolling hills. Because of its pivotal position, Umbria always had important historical roles, often being a territory of disputes between the different neighboring domains, but above all, it was a key hub for major commercial routes and agricultural trades, in both north–south (from and to Rome) and east–west directions (between the Adriatic and Tyrrhenian Seas). Umbria has developed a well-established winemaking tradition that dates to the Etruscan period and persists to this day due to its favorable climate [1]. Until the recent past, wine production in this region was exclusively for family use and was primarily represented by mixed viticulture [2]. Throughout the 1950s, in fact, the most common training system still used was “viti maritate” (or “arbusti” according to Plinio il Vecchio), in which the vines are grown on other supporting trees (e.g., poplars) within a promiscuous cropping system [3]. Afterward, starting from the 1960s, there was a decisive change that oriented viticulture towards intensive monoculture and quality winemaking, thanks to the adoption of modern agronomic and oenological techniques [4].
Currently, the wine-growing acreage of Umbria is about 12,000 hectares [5] with two denomination of controlled and guaranteed origin (DOCG) and 13 denomination of controlled origin (DOC) wines, which are rather appreciated on the national and international markets. The main cultivated variety is Sangiovese (20% of the total area), followed by Trebbiano Toscano (12%), Grechetto (11%), Merlot (10%), Sagrantino (7%), and Cabernet Sauvignon (4%). Despite the limited availability of autochthonous cultivars in the official productive panorama, the Umbrian viticulture retains a huge biodiversity heritage [6]. As a matter of fact, several minor grapevine varieties (belonging to known genotypes or showing a unique fingerprinting) can easily be found in abandoned reforested land plots or in old vineyards, and some historical documents describe certain spontaneous vines varieties in wooded areas called “Viticultura” [7]. Moreover, there is evidence that several autochthonous varieties are still grown locally, although unnamed and neither identified nor described [8]. The real origins of the different grapevine varieties historically cultivated in Umbria are still unclear, and the presence of sparse wild vines (as *Vitis vinifera* L. subsp. *sylvestris*) is reported [9].

In the period 2013–2020, a research project funded by the Umbria Region was developed to protect the traditional germplasm of Umbria. Several inspections were carried out in 12 municipalities included in Alto Orvietano (south-west), Colli Martani (south-central), and Valnerina (southeast) territories of both the provinces of Perugia and Terni in Southern Umbria (Figure 1) to find vines of possible interest in private farms, in old and abandoned vineyards, or in wooded areas no longer devoted to agriculture. This work aimed to search, identify, rescue from genetic erosion, and revive some local grapevine varieties belonging to fragile and disadvantaged agricultural districts that are slowly recovering thanks to the economic boost of food and wine tourism [10].

![Map of Southern Umbria](image)

Figure 1. Geographical location and list of the 12 municipalities of Southern Umbria where the 70 grapevine samples included in the study were recovered. The color refers to the three territories considered: Alto Orvietano (in red), Colli Martani (in green), and Valnerina (in light blue). In brackets: abbreviation of the two provinces of Umbria, PG = Perugia; TR = Terni.

2. Results

2.1. Genetic Characterization of Grapevine Germplasm

The molecular analyses were performed on 70 grapevine samples collected in three different districts located in Southern Umbria (Alto Orvietano, Colli Martani, and
Valerina). Thirty-nine genotypes were found (Table 1), with 52 samples belonging to 24 known grapevine varieties and 18 samples showing 15 never-reported SSR profiles (Table 2).

Table 1. List of the 70 grapevine samples grouped by their genotype. Original locations (municipality and province), berry color, true-to-type prime name, SSR profile ID number, and Vitis International Variety Catalogue [11] code are reported. In brackets: Italian common synonyms of some grapevine cultivars, according to the Italian Catalogue of Grapevine Varieties [12].

Sample Name	Original Location: Municipality (Province)	Berry Color	True-To-Type Prime Name	SSR Profile ID	VIVC Code
KNOWN GRAPEVINE CULTIVARS					
Cerasuolo Montegabbione (TR)	San Venanzo (TR)	white	Verdicchio Bianco	1	12963
Fontana Montegabbione (TR)	San Venanzo (TR)	white	Trebbiano Toscano	2	12628
Pisano 28 Montegabbione (TR)	San Venanzo (TR)	white	Sangiovese	3	10680
Scarzuola 6 Montegabbione (TR)	San Venanzo (TR)	white	Trebbiano Perugino	4	12624
Scarzuola 7 Montegabbione (TR)	San Venanzo (TR)	white	Famoso Marchigiano	5	
Terracavata 24 Montegabbione (TR)	San Venanzo (TR)	white	Montonico Bianco	6	7960
Terracavata 23 Montegabbione (TR)	San Venanzo (TR)	white	Cannella Nera	7	
Casevecchie 1 Montegabbione (TR)	San Venanzo (TR)	white	Zunek	8	17739
Fontesecca 1 *	Monteleone d’Orvieto (TR)	black	Lambrusca di Alessandria	9	6688
Cantagallina 2 *	Monteleone d’Orvieto (TR)	black	Cabernet Sauvignon	10	1929
Montarala Testa 2 Montegabbione (TR)	San Venanzo (TR)	white	Malvasia Bianca Lunga	11	7262
	Grape Name	Color	Description	Accession	berry color
----------------	-----------------------------	-------------	--	-----------	-------------
Monteleone	Monteleone d’Orvieto (TR)	white	Malvasia Bianca	12	7256
Scarzuola 1	Montegabbione (TR)	black	Muscat Rouge de Madère	13	8249
Scarzuola 4	Montegabbione (TR)	black	Barbera Nera	14	974
Cerqueto 1	Marsciano (PG)	white	Pignoletto	15	9254
Terracava 25*	Montegabbione (TR)	white	Cargiello (Canaiolo Bianco or Drupeggio)	16	2092
Scarzuola 5	Montegabbione (TR)	white	Villard Blanc	17	13081
Pobeto 2	Montegabbione (TR)	black	Morellino del Valdarno	18	8457
Casevecchie 3*	Montegabbione (TR)	black	Primitivo	19	9703
Uva Palazza	Todi (PG)	white	Bellone	20	1114
Lugliolo Manni	Todi (PG)	white	Agostenga (Prié Blanc)	21	107
Lugliolo Leonucci	Massa Martana (TR)	white	Csaba Gyoengye (Perla di Csaba)	22	9166
Bacarello	Acquasparta (TR)	white	Sgranarella	23	26656
Rosaro	Acquasparta (TR)	black	Maiolica	24	7136
UNKNOWN GRAPEVINE CULTIVARS					
Casevecchie 2*	Montegabbione (TR)	black	Unknown 01	25	
Terracava 22	Montegabbione (TR)	nyd	Unknown 02	26	
Pian del sette*	Montegabbione (TR)	black	Unknown 03	27	
Porrilas *	San Venanzo (TR)	black	Unknown 04	28	
Rantola 34*	San Venanzo (TR)	black	Unknown 05	29	
Scatolla 20*	Montegabbione (TR)	white	Unknown 06	30	
Verdone 1*	Vallo di Nera (PG)	white	Unknown 07	31	
Verdone 2*	Vallo di Nera (PG)	white	Unknown 07	31	
Uva genia 1*	Vallo di Nera (PG)	white	Unknown 07	31	
Uva genia 2*	Vallo di Nera (PG)	white	Unknown 07	31	
Cerqueto 4	Marsciano (PG)	nyd	Unknown 08	32	
Pianello	Montegabbione (TR)	black	Unknown 09	33	
Castel di Fiori*	Montegabbione (TR)	white	Unknown 10	34	
Francescame	Montegabbione (TR)	nyd	Unknown 11	35	
Pisano 33	Fabro (TR)	black	Unknown 12	36	
Uva propria	Todi (PG)	white	Unknown 13	37	
Sciuttarella	Todi (PG)	white	Unknown 13	37	
Montenero	Todi (PG)	nyd	Unknown 14	38	
Rantola 32*	San Venanzo (TR)	black	Unknown 15	39	

The sample names in bold correspond to the 53 vine accessions currently present in the experimental vineyard. The asterisks (*) indicate 38 accessions with already adult vines (over 3 years old) that were subjected to ampelographic description according to OIV primary descriptor priority list [13]. Nyd = not yet determined berry color.
Table 2. List of 39 unique genetic profiles obtained at 13 SSR loci.

SSR Profile ID	Grapevine Variety	VVS2	VVMD5	VVMD7	VVMD25	VVMD27	VVMD28	VVMC6E1	VVMC6F1	VVMC6G1	VVMC6G9
1	Verdicchio Bianco	133	155	230	242	239	247	241	241	241	180
2	Trebbiano Toscano	133	143	228	234	249	253	241	255	180	184
3	Sangiovese	133	133	228	238	239	263	241	241	180	186
4	Trebbiano Perugio	133	155	228	238	249	253	241	255	180	192
5	Famoso Marchigiano	133	155	228	230	239	249	241	255	192	195
6	Montonico Bianco	143	145	234	234	239	249	241	255	180	186
7	Cannella Nera	133	133	228	228	239	247	239	241	184	186
8	Zunek	133	137	228	242	239	247	241	241	180	184
9	Lambrusca di Alessandria	143	151	228	242	253	255	249	255	180	195
10	Cabernet Sauvignon	139	151	234	242	239	239	249	249	176	190
11	Malvasia Bianca Lunga	145	145	228	242	239	253	239	241	180	180
12	Malvasia Bianca	133	133	228	228	239	253	241	255	180	184
13	Muscat Rouge de Madère	133	133	228	230	247	249	241	241	180	184
14	Barbera Nera	133	135	228	228	249	253	259	255	186	190
15	Pignoletto	133	145	228	248	249	263	241	241	186	190
16	Cargarello	133	145	240	242	239	249	241	241	182	184
17	Villard Blanc	133	143	234	238	237	251	241	245	182	190
18	Morellino del Valdarno	133	143	242	237	249	241	255	186	190	244
19	Primitivo	133	143	238	247	249	239	239	239	180	182
20	Bellone	135	145	230	234	239	247	239	239	180	180
21	Agostenga	133	155	230	240	233	247	239	249	186	190
22	Csaba Gyöngye	133	155	238	238	240	247	249	241	180	182
23	Sgranarella	133	133	228	248	239	249	241	241	195	195
24	Maiolica	133	151	228	238	239	249	241	241	180	192
25	Unknown 01	133	155	234	242	247	247	241	255	184	192
26	Unknown 02	133	151	230	230	237	256	241	255	192	234
27	Unknown 03	133	155	230	230	239	249	241	255	192	234
28	Unknown 04	133	135	238	240	239	249	241	261	190	190
29	Unknown 05	133	133	228	248	239	249	259	241	186	195
30	Unknown 06	133	145	228	234	239	243	241	241	186	190
31	Unknown 07	143	151	228	234	239	243	241	241	186	190
32	Unknown 08	133	133	228	228	239	253	241	241	180	186
33	Unknown 09	133	143	228	242	239	247	241	255	180	190
34	Unknown 10	133	143	228	242	249	249	241	255	195	195
35	Unknown 11	145	155	234	248	247	263	241	255	190	190
Allele lengths are expressed in base pairs. Allele lengths for VVS2, VVMD5, VVMD7, VVMD25, VVMD27, VVMD28, VVMD32, VrZAG62, and VrZAG79 are provided using the VIVC allele sizing. Md = missing data.
2.2. Statistics for SSR Data.

Statistics on the analyzed 13 SSRs are shown in Table 3. One hundred and fifteen alleles were detected, with a mean of 8.8 alleles per locus and a mean number of effective alleles of 4.9. The mean H_o and mean H_e were 0.831 and 0.789, respectively.

Table 3. Statistics on the 13 SSR markers analyzed.

Locus	LG	No. of Obs	N_a Alleles	N_e Alleles	H_o	H_e	PIC	HW	F(Null)	P_{ID}	P_{ID} SIBS
VVS2	11	39	9	4	0.795	0.732	0.696	NS	-0.0565	1.0 × 10⁻³	4.1 × 10⁻¹
VVMD5	16	39	7	5	0.769	0.81	0.774	ND	0.0177	7.4 × 10⁻²	3.8 × 10⁻¹
VVMD7	7	39	12	5	0.897	0.817	0.781	ND	-0.0583	5.9 × 10⁻²	3.6 × 10⁻¹
VVMD25	11	39	6	3	0.769	0.657	0.599	NS	-0.0935	1.9 × 10⁻¹	4.8 × 10⁻¹
VVMD27	5	39	8	6	0.821	0.837	0.804	ND	0.0014	5.0 × 10⁻²	3.5 × 10⁻¹
VVMD28	3	39	11	6	0.897	0.851	0.820	ND	-0.0316	4.7 × 10⁻²	3.4 × 10⁻¹
VVMD32	4	39	8	6	0.897	0.843	0.811	ND	-0.0408	4.6 × 10⁻²	3.4 × 10⁻¹
VrZAG62	7	39	10	6	0.897	0.841	0.809	ND	-0.0388	5.1 × 10⁻²	3.5 × 10⁻¹
VrZAG79	5	39	11	4	0.769	0.783	0.754	NS	0.0098	7.3 × 10⁻²	3.8 × 10⁻¹
VMC6E1	14	39	10	6	0.949	0.843	0.812	ND	-0.0694	4.8 × 10⁻²	3.5 × 10⁻¹
VMC6F1	2	34	7	3	0.765	0.658	0.586	NS	-0.095	1.9 × 10⁻¹	4.7 × 10⁻¹
VMC6G1	11	39	5	4	0.692	0.76	0.705	ND	0.0421	1.1 × 10⁻¹	4.1 × 10⁻¹
VMCNG4b9	6	39	11	6	0.897	0.833	0.802	ND	-0.0452	5.0 × 10⁻²	3.5 × 10⁻¹
Total		115	64								
Mean values	8.8	4.9	0.831	0.789	0.750				1.6 × 10⁻¹⁵	3.4 × 10⁻⁶	

LG = linkage group; No. of obs = number of genotypes analyzed to calculate the statistics; No alleles = number of different alleles; Ne alleles = effective number of alleles; Ho, He = observed and expected heterozygosity; PIC = polymorphic information content; HW = Hardy–Weinberg equilibrium; NS = not significant; ND = not done; F (Null) = probability of null alleles; P_{ID} and P_{ID} SIBS = identity probability between two unrelated individuals and between two hypothetical full siblings.

2.3. Genetic Similarity

The dendrogram of genetic similarity is shown in Figure 2. Cutting the dendrogram around nine on the X scale, nine groups were obtained. The main group (A) encompassing 20 genotypes (around half of the total genotypes found) includes varieties grown in the nearby Marche Region, such as Sgranarella and Famoso Marchigiano, and predominant Italian varieties such as Sangiovese, Trebbiano Toscano, and Montonico Bianco. Two pairs of varieties are grouped in B, i.e., Malvasia Bianca Lunga and Primitivo, likely of Balkan origin [14]; another two cultivars are in C, i.e., Muscat Rouge de Madère (also called Moscato Violetto) and Csaba Gyoengye (Perla di Csaba), both with muscat flavor and related to Muscat à Petits Grains Blancs as offspring and grandchild, respectively. Lambrusca di Alessandria is the only cultivar in group D. Agostenga groups with Unknown 2 in E. Interestingly, Verdicchio Bianco clusters with three unknown genotypes (Unknown 13, Unknown 3, and Unknown 14) (F); looking at SSR data, the three unknown genotypes share at least one allele per locus with Verdicchio Bianco, therefore they could be parent–offspring (PO) related. Likewise, Pignoletto could be PO-related with Unknown 11 in group G.
Figure 2. Dendrogram of genetic similarity of 38 genotypes with 12 SSR markers. The optimal tree was inferred using the UPGMA method [15] and MEGA X software [16]. The tree is drawn to scale, with branch lengths in the same units as those of the genetic distances used to infer the tree. The genetic distances were computed using GenAlEx software.

Even if collected in a small area, unknown genotypes were shown to be overall highly different and did not group together in the tree. Interestingly, Unknown 1 (H) and Cabernet Sauvignon (I) seem to be outsiders.

2.4. Vineyard Collection Establishment and Ampelographic Descriptions

After genetic identification, a first group of 38 samples was vegetatively multiplied by grafting a wood branch on the same rootstock (1103 Paulsen); an experimental vineyard of Southern Umbria germplasm was started in 2015 with the rooted cuttings
obtained; in the following years, additional accessions were added to the collection. Currently, the repository hosts 53 grapevine accessions out of the 70 vines considered in this study (Table 1, sample names in bold). In particular, they correspond to 29 different genotypes and, among them, 17 are already known varieties, while 12 are unknown genotypes.

For 38 accessions with already adult vines (over three years old, grape-producing plants), the ampelographic descriptions were performed following the recommended OIV—International Organisation of Vine and Wine methodology, based on the primary descriptor priority list [13]. These 38 accessions (marked with asterisks in Table 1) belong to 20 different genotypes, eight never described before, and 12 already known cultivars. Among the known cultivars, eight are already included in the Italian Catalogue of Grapevine Varieties [12] (i.e., Verdicchio Bianco, Trebbiano Toscano, Sangiovese, Montonico Bianco, Malvasia Bianca Lunga, Cargarello/Canaiolo Bianco, Lambrusca di Alessandria, and Primitivo) and four are not yet enrolled (i.e., Trebbiano Perugino, Famoso Marchigiano, Cannella Nera, and Zunek).

Ampelographic data of the eight unknown genotypes (11 accessions) are presented in Table 4, while those of the 12 already known varieties (27 accessions) are shown in Supplementary file S1. In addition to the 14 characters included in the primary descriptor priority list, we also detected the character OIV 151, related to the sexual organs of the flowers. As reported in Table 4, Casevecchie 2 (Unknown 01) has male flowers with fully developed stamens and reduced gynoecium; consequently, this accession produces very loose bunches with few fully developed berries.
Table 4. Ampelographic descriptions of 11 grapevine accessions belonging to eight different unknown genotypes present in the vineyard germplasm collection at Castello di Montegiove Estate, municipality of Montegabbione (TR). The set of 14 standardized OIV primary descriptor (PDs) plus OIV 151, grouped according to each target vine organ (young shoot: OIV 001, 004; shoot: OIV 016; young leaf: OIV 051; mature leaf: OIV 067, 068, 070, 076, 079, 081-2, 084, 087; berry: OIV 223, 225; flower: OIV 151), are shown for each SSR profile.

Sample Name	Casevecchie 2	Pian del Sette	Pornellesi	Rantola 34	Scatolla 20	Verdone 1	Verdone 2	Uva genia 1	Uva genia 2	Castel di Fiori	Rantola 32
SSR profile ID	Unknown 01	Unknown 03	Unknown 04	Unknown 05	Unknown 06	Unknown 07	Unknown 10	Unknown 15			
PDS	OIV Code	Characteristic	Note; Description								
1		Opening of the shoot tip	5; fully open								
4		Density of prostrate hairs on the shoot tip	5; medium	5; medium	5; medium	3; low	3; low	4; between low and medium	5; medium	7; high	
16		Number of consecutive tendrils	1; 2 or less								
51		Color of upper side of blade (4th leaf)	3; bronze	3; bronze	1; green	1; green	2; yellow	3; bronze	1; green	1; green	
67		Shape of blade	2; wedge-shaped	3; pentagonal	2; wedge-shaped	2; wedge-shaped	3–4; pentagonal-circular	3; pentagonal	4; circular	3; pentagonal	
68		Number of lobes	3; five	3; five	3; five	3; five	4; seven	3; five	3; five	3; five	
70		Area of anthocyanin coloration of main veins on upper side of blade	1; absent	3; up to the 1st bifurcation	1; absent	1; absent	1; absent	3; up to the 1st bifurcation	1; absent	1; absent	
76		Shape of teeth	5; mixture between both sides straight and both sides convex	3; both sides convex	5; mixture between both sides straight and both sides convex	3; both sides convex	5; mixture between both sides straight and both sides convex	5; mixture between both sides straight and sides straight and both sides convex	5; mixture between both sides convex both sides convex both sides convex	3; both sides convex	
79		Degree of opening/overlapping of petiole sinus	3; open	5; closed	3; open	3; open	3; open	3; open	5; closed	5; closed	
081-2		Petiole sinus base limited by vein	1; not limited	2; on one side	1; not limited	2; on one side	1; not limited				
	Density of prostrate hairs between main veins on lower side of blade	Density of erect hairs on main veins on lower side of blade	Berry Shape	Berry Color of skin	Flower Sexual organs						
---	---	---	---	---	---						
84	5; medium	3; low	2; globose	2; globose	2; fully developed stamens and reduced gynoecium						
87	3; low	1; none or very low	6; blue black	6; blue black	3; fully developed stamens and fully developed gynoecium						
	1; none or very low	1; none or very low	3; broad ellipsoid	1; green yellow	3; fully developed stamens and fully developed gynoecium						
	1; none or very low	1; none or very low	2; globose	1; green yellow	3; fully developed stamens and fully developed gynoecium						
	1; none or very low	1; none or very low	2; globose	1; green yellow	3; fully developed stamens and fully developed gynoecium						
	5; medium	1; none or very low	5; medium	5; medium	3; fully developed stamens and fully developed gynoecium						

Plants 2021, 10, 1539

11 of 18
3. Discussion

To explore the biodiversity of autochthonous grapevine from Southern Umbria, samples from 70 vines were collected in marginal vineyards not subjected to renewal in the last decades or in wooded areas where they were found as isolated relic plants. Genotyping was applied using a set of 13 SSR markers encompassing the nine SSR markers recommended by the European project GrapeGen06 [17]. The addition of VMC6E1, VMC6F1, VMC6G1 [18], and VMCNG4b9 [19] is a routine methodological approach of our laboratory that increases the resolution of the results and offers additional information to grapevine genotyping [20]. The screening by the internationally recognized microsatellite markers method permitted accurate and univocal identification of 39 different genetic profiles (24 known varieties and 15 unknown genotypes), giving an objective varietal classification [21]. The SSR profiles obtained also allowed the comparison of the Umbrian grapevine germplasm with literature data and molecular databases, searching for synonyms in neighboring countries.

Among the 70 grapevine samples retrieved, Verdicchio Bianco was the most common genotype (nine samples); this variety is rather widespread in Central and Northeastern Italy; in particular, it is one of the most prized white grapes of Marche [22], a region of the Adriatic coast bordering Umbria. Verdicchio Bianco has some officially recognized synonyms [23]: Trebbiano di Soave (appellation mainly used in several provinces of Veneto region), Verdello (the synonym used in Umbria), Verduschia or Duropersico (in Tuscany), and Trebbiano Verde (in Latium). Trebbiano Toscano (or Ugri Bianc) was also commonly recovered, as well as Sangiovese (8 and 7 samples, respectively); they are certainly the major white and red grape cultivar, and historically ubiquitous in the viticultural areas under investigation [24]. Many other recovered genotypes demonstrate the eclectic nature of the viticultural heritage of southern Umbria, which originates from the strategic importance of these territories in the trade routes of the past.

Trebbiano Perugino is not a very common variety and is often confused with Trebbiano Toscano. The Trebbiano Perugino origin is unknown, but it is counted in ampelographic treatises as early as 1600 and then in the following centuries [25]. In the past, it was mainly present in the province of Perugia. Trebbiano Perugino has a remarkable vigor, and gives abundant and constant grape yields; it is characterized by elongated, large clusters and medium-small golden-yellow berries [25].

Montonico Bianco is an interesting, but now declining, cultivar, used both for wine and as a table grape. It is very resistant to late cold and has medium resistance of leaves and grapes to downy and powdery mildew [26]. Montonico Bianco is grown under a profusion of different names in the Italian Adriatic regions of Abruzzo, Marche, Apulia, but also in Tuscany, Umbria, and Calabria, suggesting a former wide distribution throughout Central and Southern Italy [27,28].

Famoso Marchigiano, different from Famoso from Emilia–Romagna, is a minor variety recently recovered in the Marche region [22]. Sgranarella is a white-berried variety also originating from Marche. It is mentioned in various ampelographic treatises of the past [29] and has recently been enrolled in the Italian Catalogue of Grapevine Varieties (2019) [12]. Both varieties are parent–offspring related with Crepolino/Visparola, one of the main founders of Italian grapevine germplasm [22].

Two “Cornacchione” samples from Valnerina showed an SSR profile different from the Cornacchione reported in the paper of [8] about the ancestral germplasm of Umbria and turned out to correspond to Cannella Nera [30], sometimes listed with the synonym Panfinone, a rare black-berried variety counted in the VIVC [11] and lacking any other bibliographic information.

Csaba Gyoengye (also called Perla di Csaba) is an early-ripening white grape variety, not surprisingly called by the keepers “Lugliolo”, namely “grapes that ripen in the month of July”. Csaba Gyoengye, a cross between Madeleine Angevine and Muscat Fleur d’Oranger [31], is widespread, especially in Northern Europe, and is traditionally grown as a table grape for fresh consumption; however, in Hungary, the country of origin, it is
also used for winemaking [32]. Some enological trials on Csaba Gyoengye grapes were recently carried out in the territory of Colli Martani, giving interesting perspectives (unpublished data). Thus, based on these results, this cultivar was very recently approved by the Ministry of Agriculture for dual use in Italy, as well [12].

Villard Blanc is a *Vitis* interspecific crossing (Seibel 6468 X Seibel 6905 or Subéreux) of French origin, selected for its resistance to fungal diseases. In fact, it has the Rpo 3.1 gene in its genome (located in chromosome 18), which confers tolerance to downy mildew [33]. During the last century, direct-producer hybrids were commonly grown, trying to successfully obtain pest tolerance [34], and Villard Blanc was rather widely cultivated in some Italian regions (Veneto, for example). However, since the 1970s, its presence has dropped drastically, and the use of vines with non-*Vitis vinifera* DNA was even banned.

Originally from Slovenia, Zunek is known as Uva Sacra in Italy, where it is produced for table grapes [35]. Within this research, two different accessions from different wine-growing districts of southern Umbria (Alto Orvietano and Valnerina) turned out to be Zunek/Uva Sacra. The relic plants discovered were both capable of producing white grapes, in huge clusters with large and juicy berries, suitable for fresh consumption.

Morellino del Valdarno is a minor Tuscan cultivar native to the province of Arezzo which displayed a first-degree genetic relationship with Sangiovese [36] and showed interesting characteristics in monovarietal enological trials [37]. Since Morellino del Valdarno was also found in the territory under study, it can be considered a variety worth being monitored and safeguarded from the risk of genetic erosion.

Lambrusca di Alessandria is a cultivar native to Piedmont, as deducible from its name: the Alessandria province was indeed the largest growing area [38]. The name (as for Lambrusco) can be traced back to the Latin term *Labruscae* that designates wild grapevines and refers to the typical characteristics of the grapes, with a high content of tannins and anthocyanins. It was recently discovered that Lambrusca di Alessandria had a prominent genetic role as a parent, showing several presumed descendant cultivars [14,39]. Today it is considered as a variety with tiny commercial importance and is widespread exclusively in the oldest vineyards. To our knowledge, its presence in Central Italy is reported here for the first time.

Barbera is another grape variety from Piedmont that we retrieved in Umbria. It is a historical vine, already described in the very first treatises on ampelography; in the 1970s, it was the most common black-berried grape variety in Italy, probably due to its rusticity and ability to tolerate overseas parasites [40]. Currently, the cultivation area is much smaller than in the past and is limited to the suitable areas of Northwest Italy [40]. In the literature, the presence of Barbera and other “new vines introduced from outside that spread in a not indifferent way” is mentioned in the territory of Gubbio (PG), already at the end of the nineteenth century [41]; in Umbria, nowadays, Barbera is used for monovarietal vinification by a few local winegrowers only, for example in Valnerina.

Agostenga is an early-ripening cultivar (as can be guessed from the reference to the month of August in its name) also of Piedmont origin, but it is no longer present there. It is better called Prié Blanc or Blanc de Morgex in Aosta Valley (Northwest Italy), where it is cultivated almost exclusively today [29]. It grows at nearly prohibitive altitudes at the foot of Mont Blanc (900–1200 m above sea level), where there is no phylloxera pressure, therefore it does not require grafting on resistant rootstocks [42]. A few years ago, the synonymy with a geographically distant Spanish cultivar called Legiruela was established, as its SSR profile (34 loci) exhibited a perfect match with Agostenga/Prié Blanc [43].

Other varieties, quite common in Central Italy vineyards, were found: Malvasia Bianca Lunga and Malvasia Bianca, the first more and the second less widespread, respectively; Cargarello or Canaiolo Bianco/Drupeggio, an ancient minor variety part of the viticultural tradition of Tuscany and Umbria [44], currently poorly spread and poorly propagated in nurseries; Pignoletto, so-called in Emilia Romagna but grown as Grechetto Gentile in Umbria; Maiolica, a black-berried ancient cultivar grown in the near Marche
region and in Tuscany (where it is given the synonym of Sanforte), offspring of the prolific Cascarello/Vispolarola and one of the parents of the Apulian Negroamaro [14]; Muscat Rouge de Mâdère or Moscato Violetto, a pleasant Muscat variety, sporadically present in Tuscany, offspring of Muscat à Petits Grains Blanches and Sciaccarello [14,45]; the Apulian Primitivo, an international black wine variety that probably originated in Montenegro, where it is mainly called Kratošija [46,47], and successfully grown in California as Zinfandel; Bellone, a white variety typical of Latium.

As common in germplasm assessment studies, one prominent “international grape variety” was found, Cabernet Sauvignon, which is grown worldwide thanks to its phenotypic plasticity and adaptability to the environment.

Concerning the 15 unknown genotypes, Rantola 32 accession recovered in San Venanzo (TR) was classified as Unknown 15; this genotype was already found in the province of Arezzo (Tuscany) in 2005 (unpublished data). As for Morellino del Valdarno, in this case we also tracked down, in South Umbria, some grapevines already present in Tuscan winegrowing areas, perhaps widespread vegetatively propagated cultivars in the past, now almost extinct. Casevecchie 2 (Unknown 01) showed the most divergent genotype among those here analyzed (except for Cabernet Sauvignon). The particularity of flowers with fully developed stamens and reduced gynoecium suggests a link with local Vitis sylvestris vines.

Alongside the genetic identification of the plant materials found, the propagation and the subsequent cultivation of most of the retrieved vines in a vineyard collection (as a repository) allowed us not only to safeguard several genotypes from extinction and to preserve the already known cultivars as a source of intravarietal diversity, but also to plan the evaluation of the grapes in terms of yields and quality.

4. Materials and Methods

4.1. Plant Materials

Young leaves of 70 vines were collected in situ in 12 different municipalities in the provinces of Perugia and Terni, covering a total area of about 1100 km² (Figure 1), through various samplings that took place in the time frame of 2013–2019. The vines (mostly seedlings or not-grafted relic plants) were cataloged with a denomination given by local winegrowers or according to the place of discovery (Table 1). In any plant materials recovered, putative variety and grape characteristics (e.g., berry color) were neither already known nor assumed.

4.2. SSR Genotyping

Thirteen SSR markers were used for genotyping: the nine proposed as common grape markers for international use within the framework of the Grapegen06 European project (VVS2, VVMD5, VVMD7, VVMD25, VVMD27, VVMD28, VVMD32, VrZAG62, VrZAG79) [17], plus VMC6E1, VMC6F1, VMC6G1 [18], and VMCNG4b9 [19]. The SSR analyses were performed following the protocol detailed in [20]; two internationally required SSR markers (VVMD25 and VVMD32) [17] were also added and the set of 13 SSR markers were analyzed by two multiplex PCRs using fluorescent primers and an ABI3130xl genetic analyzer (Applied Biosystems, CA, USA). The presence of PCR products was assessed by electrophoresis in a 1.5% agarose gel and quantified by comparison with a MassRuler DNA ladder mix (Thermo Fisher Scientific, MA, USA). PCR products (0.5 μL) were mixed with 9.35 μL of formamide and 0.15 μL of the GeneScan™ 500 LIZ Size Standard (Life Tech, CA, USA). Capillary electrophoresis was conducted in an ABI 3130xl Genetic Analyzer (Life Tech, CA, USA). Allele calling was performed with GeneMapper 5.0, using the 500 LIZ size standard as an internal ladder and a homemade bin set built with reference varieties. Allele sizes were recorded in bp (using the VIVC allele sizing [11]), and genotypes showing a single peak at a given locus were considered homozygous.
Identifications were performed by comparing the obtained SSR profiles with the CREA Viticulture and Enology molecular database (which currently contains about 5000 unique profiles, and is constantly updated), literature information, and the Vitis International Variety Catalogue [11]. In detail, Famoso Marchigiano, Morellino del Valdarno, Drupeggio, and Cannella Nera were identified referring to [22,30,36,44], respectively; ZuneK, Csaba Gyongye, Villard Blanc, and Muscat Rouge de Madère were identified through the VIVC [11]; Trebbiano Perugino using the CREA-VE molecular database; all the remaining varieties using the molecular database of the Italian Catalogue of Grapevine Varieties [12].

4.3. Statistics on SSR Markers

Cervus 3.0 software [48] and GenAlEx 6.5 software [49] were used to determine the number of different alleles (Nₐ alleles), effective number of alleles (Nₑ alleles), observed (Hₒ), expected heterozygosity (Hₑ), polymorphic information content (PIC), Hardy–Weinberg equilibrium (HW), probability of null alleles (F(null)), and identity probability between two unrelated individuals and between two hypothetical full siblings (Pₛₛₑₐₜ) and Pₑₛₑₐₜ.

4.4. Dendrogram of Genetic Similarities

Genetic distances were computed using GenAlEx 6.5 software [49,50] and a dendrogram of genetic similarity was computed using 38 genotypes (Villard Blanc was excluded for being a hybrid) and 12 SSR markers (VMC6F1 was excluded due to missing data). The optimal tree was inferred using the UPGMA method [15] and MEGA X software [16].

4.5. Grapevine Germplasm Collection

An experimental germplasm collection of 2000 m² was set up from 2015 until 2020 at Castello di Montegiove Estate in the municipality of Montegabbione (province of Terni, Umbria, Italy; 44°91′80″ N, 12°15′66″ E). The vines, grafted on 1103 Paulsen rootstock, were planted with an east–west orientation; planting distances were 0.90 m within rows and 2.80 m between rows. The vines were trained on upward vertical shoot positioned trellis, with spur cordon pruning and an average of 10 buds per vine. Over the years, the vineyard was conducted with homogeneous agronomic conditions, and pest management was scheduled with calendar sprays at 10-day intervals. For each of the 53 accessions actually present (sample names in bold in Table 1), there are at least 30 vines; Sangiovese and Trebbiano Toscano were added as reference cultivars for Central Italy grapevine germplasm.

4.6. Ampelographic Description

The ampelographic description of the main grapevine morphological traits was carried out in the experimental vineyard in Montegabbione (TR, Italy) during the vegetative season of 2019 on adult vines (over 3 years old), according to the set of 14 standardized OIV primary descriptor priority list [13]: young shoot (OIV 001, 004), shoot (OIV 016), young leaf (OIV 051), mature leaf (OIV 067, 068, 070, 076, 079, 081-2, 084, 087), berry (OIV 223, 225); as reputed interesting, the OIV 151 characteristic about flower sexual organs was added to the list.

5. Conclusions

The present study made it possible to explore a small part of the grapevine biodiversity of Southern Umbria by highlighting the hypothetical composition of the autochthonous germplasm that survived the phylloxera epidemics of the late 1800s and the widespread diffusion of the most common international varieties from the second half of the 20th century.
The 15 unknown genotypes recovered thanks to the present research work will soon be officially added to the VIVC [11], and the evaluations of their ampelographic, agronomic, and oenological characteristics are underway. Once enough data is collected, we plan to compare the available literature information about the old grapevine germplasm of Umbria to attribute the potential identity to any vines historically present in the districts under investigation.

The rediscovery and preservation of indigenous endangered grapevine cultivars or biotypes, especially in marginal areas such as the districts of Southern Umbria considered (Alto Orvietano, Colli Martani, and Valnerina), can give benefits to the local wine industry providing the basis for niche wines, an added value that can definitely help to relaunch the local economy in the territory of origin.

Supplementary Materials: The following are available online at www.mdpi.com/article/10.3390/plants10081539/s1: Supplementary file S1: Ampelographic descriptions of 27 grapevine samples belonging to twelve different known genotypes present in the vineyard germplasm collection at Castello di Montegiove Estate, municipality of Montegabbione (TR, Italy). Sangiovese and Trebbiano Toscano were added as reference cultivars. The tables contain the set of 14 standardized OIV primary descriptors plus OIV 151, grouped according to each target vine organ (young shoot: OIV 001, 004; shoot: OIV 016; young leaf: OIV 051; mature leaf: OIV 067, 068, 070, 076, 081-2, 084, 087; berry: OIV 223, 225, flower: OIV 151) for each SSR profile.

Author Contributions: Conceptualization, P.S. and P.V.; methodology, P.S., M.C., A.Z., P.V., and D.M.; data curation, A.Z., A.C., and D.M.; validation, A.Z. and D.M.; formal analysis, A.Z., D.M., and M.C.; writing—original draft preparation, A.Z.; writing—review and editing, A.Z., M.C., P.S., and D.M.; visualization, A.Z. and M.C.; supervision, P.S. and M.C.; funding acquisition, P.S. and P.V.; project administration, P.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research was partially funded by Regione Umbria—Servizio sviluppo rurale e agricoltura sostenibile through the project “VIVIUMBRIA: Progetto di recupero e valorizzazione del germplasma viticolo autoctono dell’Alto Orvietano – Città della Pieve”.

Data Availability Statement: The original data presented in this research work are stored in the databases of CREA—Research Centre for Viticulture and Enology.

Acknowledgments: The authors are grateful to the winemakers belonging to “Associazione Terre della Viciuta” and Castello di Montegiove Estate for the essential role in the experimental vineyard management. Moreover, the authors thank the colleagues of CREA—Research Centre for Viticulture and Enology of Arezzo for their help in field surveys, sampling of plant materials, and laboratory analyses. This research was also supported by the Service for grapevine identification of CREA—Research Centre for Viticulture and Enology of Conegliano (TV).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

References.

1. Melelli, A.; Moretti, M. La fama del vino di Orvieto nel tempo - The Orvieto wine reputation over the time. In L’Orvieto. Studio per la caratterizzazione vitivinicola dell’area a D.O.C. “Orvieto classico” [The Orvieto. Study for the Wine Production Characterization of the “Orvieto Classico” D.O.C. Area]; Arusia: Città di Castello, Italy, 2004; pp. 13–30.
2. Castagnoli, D. The wine-producing territory of Orvieto. J. Wine Res. 2013, 24, 253–263, doi:10.1080/09571264.2013.846851.
3. Desplanques, H. Campagne umbre. Contributo allo studio dei paesaggi rurali nell’Italia centrale; Quattroemme: Perugia, Italy, 1975; ISBN 9788889398166.
4. Unwin, T. Wine and the Vine: An Historical Geography of Viticulture and the Wine Trade; Routledge-Taylor & Francis Group: London, UK; New York, NY, USA, 1991; ISBN 0203013263.
5. Gismondi, R. ISTAT Working Papers. Available online: www.istat.it/it/files/2021/01/IWP_8-2020.pdf.
6. Baldeschi, G. I vitigni e i vini dell’Umbria. In Annuario Generale per la Viticultura e l’Enologia-Anno II; Circolo Enofilo Italiano: Rome, Italy, 1893; pp. 26–38.
7. Mattesini, E.; Ugociioni, N. Vocabolario del dialetto del territorio Orvietano; Opera del vocabolario dialettale umbro; Perugia, Italy, 1992.
8. Panara, F.; Petoumenou, D.; Calderini, O.; D’Onofrio, C.; Bedini, L.; Palliotti, A. Ampelographic and genetic characterisation of ancestral grapevines (Vitis vinifera L.) accessions present in the Umbria Region (Central Italy). J. Hortic. Sci. Biotechnol. 2013, 88, 525–530, doi:10.1080/14620316.2013.11531001.

9. Anzani, R.; Failla, O.; Scienza, A.; Canpostrini, F. Wild grapevine (Vitis vinifera var. silvestris) in Italy: Distribution, characteristics and germplasm preservation: 1989 report. Vitus 1990, 97–112, doi:10.5073/vitis.199029.special-issue-97-112.

10. Gregori, L. Soft Economy: Il Paesaggio del Vino in Umbria come Risorsa Geo-Turistica-Sof Economy: “The Wine Landscape” in the Umbria Region as a Geologic-Tourist Resource. Boll. A.I.C. 2006, 185–202.

11. Vitis International Variety Catalogue VIVC. Available online: https://www.vivc.de/.

12. Italian Catalogue of Grapevine Varieties-Catalogo Nazionale delle Varietà di Vite. Available online: http://catalogoviti.politicheagricole.it/catalogo.php.

13. OIV-International Organisation of Vine and Wine. Second Edition of the OIV Descriptor List for Grape Varieties and Vitis Species. Available online: www.oiv.int/public/medias/2274/code-2e-edition-finale.pdf.

14. D’Onofrio, C.; Tumino, G.; Gardiman, M.; Crespan, M.; Bignami, C.; de Palma, L.; Barbagallo, M.G.; Muganu, M.; Morcia, C.; Novello, V.; et al. Parentage Atlas of Italian Grapevine Varieties as Inferred From SNP Genotyping. Front. Plant. Sci. 2021, 11, 1–16, doi:10.3389/fpls.2020.605934.

15. Sneath, P.H.A.; Sokal, R.R. Numerical Taxonomy, The Principles and Practice of Numerical Classification; WH Freeman and Company: San Francisco, CA, USA, 1973; ISBN 0-7167-0697-0.

16. Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549, doi:10.1093/molbev/msy096.

17. Maul, E.; Sudharma, K.N.; Kecke, S.; Marx, G.; Müller, C.; Audeguin, L.; Boselli, M.; Boursiquot, J.M.; Bucchetti, B.; Cabello, F.; et al. The European vitis database (www.eu-vitis.de)—A technical innovation through an online uploading and interactive modification system E. Vitis J. Grapevine Res. 2012, 51, 79–85, doi:10.5073/vitis.2012.51.79-85.

18. Crespan, M. The parentage of Muscat of Hamburg. Vitus 2003, 42, 193–197, doi:10.5073/vitis.2003.42.193-197.

19. Welter, I.J.; GökTürk-Baydar, N.; Akkurt, M.; Maul, E.; Eibach, R.; Töpfer, R.; Zyprian, E.M. Genetic mapping and localization of quantitative trait loci affecting fungal disease resistance and leaf morphology in grapevine (Vitis vinifera L.). Mol. Breed. 2007, 20, 359–374, doi:10.1007/s10032-007-0907-7.

20. Migliaro, D.; Moreale, G.; Gardiman, M.; Landolfo, S.; Crespan, M. Direct multiplex PCR for grapevine genotyping and varietal identification. Plant Genet. Resour. Characterisation Util. 2013, 11, 182–185, doi:10.147926121000433.

21. Pelay, F. Molecular and cellular mechanisms of diversity within grapevine varieties. Heredity (Edinb) 2010, 104, 331–340, doi:10.1038/hdy.2009.161.

22. Crespan, M.; Migliaro, D.; Larger, S.; Pindo, M.; Palmisano, M.; Manni, A. Grapevine (Vitis vinifera L.) varietal assortment and evolution in the Marche region (central Italy). OENO One 2021, 3, 17–37, doi:10.20870/oeno-one.2021.55.3.4628.

23. Crespan, M.; Armanni, A.; Da Rold, G.; De Nardi, B.; Gardiman, M.; Migliaro, D. ‘Verdello’, ‘Verdicchio’ and ‘Verduschia’: An example of integrated multidisciplinary study to clarify grapevine cultivar identity. Adv. Hortic. Sci. 2013, 26, 92–99, doi:10.13128/abs-12743.

24. Pifeire, M.V. Storia regionale della vite e del vino in Italia: Umbria; Volumnia; Perugia, Italy, 2012.

25. Cosmo, I.; Bruni, B. Trebbiano Perugino in Principali Vitigni da Vino Coltivati in Italia; Ministero dell’Agricoltura e delle Foreste: Rome, Italy, 1965.

26. Cosmo, I. Montonico Bianco. In Principali Vitigni da Vino Coltivati in Italia; Ministero dell’Agricoltura e delle Foreste: Rome, Italy, 1965.

27. Crespan, M.; Storchi, P.; Migliaro, D. Grapevine cultivar montonico bianco is the second parent of the Sicilian Catarratto. Am. J. Enol. Vitic. 2017, 68, 258–262, doi:10.3344/ajev.2016.16068.

28. De Lorenzois, G.; Mercati, F.; Bergaminis, C.; Cardone, M.F.; Lupini, A.; Mauceri, A.; Caputo, A.R.; Abbate, L.; Barbagallo, M.G.; Antonacci, D.; et al. Vitis Biotechnology genotyping elucidates the genetic diversity of Magra Graecia grapevine germplasm and its historical origin and dissemination. BMC Plant Biol. 2019, 19, 1–15, doi:10.1186/s12870-018-1576-y.

29. Di Rovasenda, G. Saggio di un’ampelografia universale; Loecher; Torino, Italy, 1877.

30. De Palma, L.; D’Onofrio, C.; De Michele, M.; Limosani, P.; Scalabrelli, G. Cannella Nera. Available online: http://vittisd.b.it/varieties/show/1423.

31. Lacombe, T.; Boursiquot, J.M.; Laucou, V.; Di Vecchi-Staraz, M.; Péros, J.P.; This, P. Large-scale parentage analysis in an extended set of grapevine cultivars (Vitis vinifera L.). Theor. Appl. Genet. 2013, 126, 401–414, doi:10.1007/s00122-012-1988-2.

32. Constantinescu, G. Ampelografia; Ministerul Agriculturii si Silviculturii, Editura Agro-Silvica de Stat: Bucharest, Romania, 1958.

33. Bellin, D.; Peressotti, E.; Merdinooglu, D.; Wiedemann-Merdinooglu, S.; Adam-Blondon, A.F.; Cipriani, G.; Morgante, M.; Testolin, R.; Di Gaspero, G. Resistance to Plasmodara viticola in grapevine “Bianca” is controlled by a major dominant gene causing localised necrosis at the infection site. Theor. Appl. Genet. 2009, 120, 163–176, doi:10.1007/s00122-009-1167-2.

34. Pacifico, D.; Giatti, F.; Giust, M.; Tomasi, D. Performance of interspecific grapevine varieties in north-east Italy. Agric. Sci. 2013, 04, 91–101, doi:10.4236/as.2013.42015.

35. Alba, V.; Bergamini, C.; Genghi, R.; Gasparro, M.; Perniola, R.; Antonacci, D. Ampelmometric Leaf Trait and SSR Loci Selection for a Multivariate Statistical Approach in Vitis vinifera L. Biodiversity Management. Mol. Biotechnol. 2015, 57, 709–719, doi:10.1007/s12033-015-9862-5.
36. Crespan, M.; Calò, A.; Giannetto, S.; Sparacio, A.; Storchi, P.; Costacurta, A. “Sangiovese” and “Garganega” are two key varieties of the Italian grapevine assortment evolution. *Vitis J. Grapevine Res.* **2008**, *47*, 97–104, doi:10.5073/vitis.2008.47.97-104.

37. Armanni, A., Baldi, M., Epifani, A.M., Giannetti, F. Contributo alla valorizzazione del germplasma viticolo: Valutazione di vitigni minori della provincia di Arezzo. *Infowine Internet J. Vitic. Enol.* **2012**, *2/3*, 1–7.

38. Cosmo, I.; Dell'Olio, G.; Macaluso, R.; Ricci, P. Lambrusca di Alessandria. In *Principali Vitigni da Vino Coltivati in Italia*; Ministero dell’Agricoltura e delle Foreste: Rome, Italy, 1965.

39. Raimondi, S.; Tumino, G.; Ruffa, P.; Bocci, P.; Gambino, G.; Schneider, A. DNA-based genealogy reconstruction of Nebbiolo, Barbera and other ancient grapevine cultivars from northwestern Italy. *Sci. Rep.* **2020**, *10*, 1–16, doi:10.1038/s41598-020-72799-6.

40. Novello, V. Lo Stato Delle Conoscenze Viticole Sul ‘Barbera’. *Infowine Internet J. Vitic. Enol.* **2005**, *2/2*, 1–15.

41. De Bosis, F. Lavori eseguiti dalla Commissione Ampelografica della provincia di Ravenna. In *Bollettino Ampelografico*; 1879.

42. Tartarotti, P.; Benciolini, L. Il vino più alto d’Europa: L’influenza della geologia e del clima nella coltura della vite in Valle d’Aosta. *Boll. della Soc. Geol. Ital. Suppl.* **2006**, *6*, 107–114.

43. Schneider, A.; Marinoni, D.T.; Andrés, M.T. De; Raimondi, S.; Cabello, F.; Ruffa, P.; García-Muñoz, S.; Munoz-Organero, G. Prié Blanc and Legruela: A unique grape cultivar grown in distant european regions. *J. Int. des Sci. la Vigne du Vin* **2010**, *44*, 1–7, doi:10.20870/eno-one.2010.44.1.1460.

44. Storchi, P.; Armanni, A.; Randellini, L.; Giannetto, S.; Meneghetti, S.; Crespan, M. Investigations on the identity of “Canaiolo bianco” and other white grape varieties of central Italy. *Vitis J. Grapevine Res.* **2011**, *50*, 59–64, doi:10.5073/vitis.2011.50.59-64.

45. Di Vecchi Staraz, M.; Bandinelli, R.; Boselli, M.; This, P.; Boursiquot, J.M.; Laucou, V.; Lacombe, T.; Varès, D. Genetic structuring and parentage analysis for evolutionary studies in grapevine: Kin group and origin of the cultivar sangiovese revealed. *J. Am. Soc. Hortic. Sci.* **2007**, *132*, 514–524, doi:10.21273/jashs.132.4.514.

46. Maraš, V.; Bozovic, V.; Giannetto, S.; Crespan, M. SSR molecular marker analysis of the grapevine germplasm of montenegro. *J. Int. des Sci. la Vigne du Vin* **2014**, *48*, 87–97, doi:10.20870/eno-one.2014.48.2.1562.

47. Maraš, V.; Tello, J.; Gazivoda, A.; Mugoša, M.; Perišić, M.; Račić, J.; Štajner, N.; Ocate, R.; Božović, V.; Popović, T.; et al. Population genetic analysis in old Montenegrin vineyards reveals ancient ways currently active to generate diversity in *Vitis vinifera*. *Sci. Rep.* **2020**, *10*, 1–13, doi:10.1038/s41598-020-71918-7.

48. Kalinowski, S.T.; Taper, M.L.; Marshall, T.C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. *Mal. Ecol.* **2007**, *16*, 1099–1106, doi:10.1111/j.1365-294X.2007.03089.x.

49. Peakall, R.; Smouse, P.E. GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. *Mal. Ecol. Notes* **2006**, *6*, 288–295, doi:10.1111/j.1471-8286.2005.01155.x.

50. Huff, D.R.; Peakall, R.; Smouse, P.E. RAPD variation within and among natural populations of outcrossing buffalograss [Buchloë dactyloides (Nutt.) Engelm.]. *Theor. Appl. Genet.* **1993**, *86*, 927–934, doi:10.1007/BF00211043.