Research Article

Long noncoding RNA HEIH promotes melanoma cell proliferation, migration and invasion via inhibition of miR-200b/a/429

Haiying Zhao1, Guoping Xing2, Yingying Wang3, Zengxiang Luo4, Guoyan Liu4 and Huijuan Meng4

1Department of Dermatology, Binzhou Central Hospital, Binzhou, Shandong 251700, China; 2Department of Neurology, Weifang People’s Hospital, Weifang, Shandong 261041, China; 3Department of Oncology, Binzhou Central Hospital, Binzhou, Shandong 251700, China; 4Department of Dermatology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, China

Correspondence: Zengxiang Luo (lzxxgp@163.com)

Long noncoding RNAs (IncRNAs) are frequently dysregulated and have important roles in many diseases, particularly cancers. IncRNA-HEIH was first identified in hepatocellular carcinoma (HCC). The expression, clinical significance and roles of IncRNA-HEIH in melanoma are still unknown. In the present study, we found that IncRNA-HEIH is highly expressed in melanoma tissues and cell lines, associated with advanced clinical stages, and predicts poor outcomes in melanoma patients. Functional assays showed that ectopic expression of IncRNA-HEIH promotes melanoma cell proliferation, migration and invasion. Knockdown of IncRNA-HEIH inhibits melanoma cell proliferation, migration and invasion. Mechanistically, we revealed that IncRNA-HEIH directly binds to miR-200b/a/429 promoter and represses miR-200b/a/429 transcription. The expression of miR-200b is inversely associated with IncRNA-HEIH in melanoma tissues. Furthermore, overexpression of miR-200b/a/429 abrogates melanoma cell proliferation, migration and invasion enhanced by IncRNA-HEIH.

In conclusion, we identified IncRNA-HEIH as a key oncogene in melanoma via transcriptional inhibition of miR-200b/a/429. Our data suggested that IncRNA-HEIH may serve as a promising prognostic biomarker and therapeutic target for melanoma.

Introduction

Melanoma, derived from pigment cells, is the most malignant skin cancer and accounts for the majority of skin cancer related deaths worldwide [1,2]. Currently, the estimated new cases of melanoma are 160000, and the estimated deaths caused by melanoma are 48000 each year [1,3]. Unfortunately, the incidence and mortality of melanoma has increased rapidly during the recent years and will continue to increase [4,5]. Despite that primary melanoma could be cured by surgical resection, melanoma is highly likely to metastasize, and the metastatic melanoma has high mortality and poor prognosis [6]. Therefore, uncovering the molecular mechanisms driving melanoma tumorigenesis and progression, identifying biomarkers for early diagnosis of melanoma and developing effective melanoma therapeutic strategies are urgently needed [7].

With the development of high-throughput RNA sequencing technology, approximately 70–90% of human genome is revealed to be transcribed into RNA, but over 68% of transcripts are classified as noncoding RNAs [8,9]. Formerly, the few observed noncoding RNAs were regarded as dark matters and transcribed noise of the genome. However, increasing evidence revealed that noncoding RNAs play important roles in various pathophysiological processes and are frequently dysregulated in many diseases [10-15]. The huge number and important functions of noncoding RNAs prompt us to re-evaluate and further explore these noncoding RNAs in human diseases.
According to the length, noncoding RNAs are classified into long noncoding RNAs (lncRNAs) (>200 nts) and small noncoding RNAs (<200 nts) [16-20]. To date, only a few lncRNAs have been studied in melanomas. lncRNAs SAMMSON, MHENCR, SLNCR1, PVT1 and MALAT1 are increased and have pro-oncogenic functions in melanoma [21-25]. lncRNA NKILA is decreased and have tumour suppressing functions in melanoma [26]. The expressions and functions of other lncRNAs need further investigation in melanoma. lncRNA-HEIH was first reported to be up-regulated in hepatocellular carcinoma (HCC), indicating poor outcome of HCC patients and promotes cell-cycle progression of HCC cells [27]. However, the expression, clinical significances and biological roles of lncRNA-HEIH in melanoma are still unknown.

In the present study, we investigated the expression of lncRNA-HEIH in melanoma, explored the correlation between lncRNA-HEIH expression and clinicopathological features and prognosis of melanoma patients, assessed the roles of lncRNA-HEIH in melanoma cell proliferation, migration and invasion, and studied the molecular mechanisms underlying the roles of lncRNA-HEIH in melanoma.

Materials and methods

Clinical tissue samples

The Ethics Committee of the Affiliated Hospital of Weifang Medical University reviewed and approved the use of clinical tissues samples. Sixty-six melanoma issues and 42 benign nevi were obtained from patients who underwent surgical resection at the Affiliated Hospital of Weifang Medical University. None of the patients received preoperative adjuvant treatment. The tissue specimens were diagnosed by pathological examination. All the patients signed written informed consents prior to the study.

Cell culture

The human epidermal melanocyte HEMa-LP was purchased from Invitrogen (Carlsbad, CA, U.S.A.). The melanoma cell lines SK-MEL-28, A375, A2058 and SK-MEL-2 were obtained from American Type Culture Collection (ATCC). HEMa-LP was cultured in Medium 254 and Human Melanocyte Growth Supplement-2 (Invitrogen). SK-MEL-28 and SK-MEL-2 were cultured in Eagle’s minimum essential medium (Invitrogen). A375 and A2058 were cultured in Dulbecco’s modified Eagle’s medium (Invitrogen). All the cells were cultured in medium containing 10% FBS (Gibco BRL, Gaithersburg, MD, U.S.A.) at 37°C with 5% CO2 and saturated humidity.

RNA extraction and quantitative real-time PCR

TRIzol reagent (Invitrogen) was used to extract RNA from tissues and cells in accordance with the manufacturer’s instructions. After the removal of genomic DNA using DNase I, reverse transcription was carried out using equal amounts of RNA and M-MLV Reverse Transcriptase (Invitrogen) to generate the first-strand cDNA. Quantitative real-time PCR (qRT-PCR) was carried out using SYBR® Premix Ex TaqTM II (TaKaRa Biotechnology Ltd., Dalian, China) on StepOne Plus Real-Time PCR System (Applied Biosystems, Foster City, CA, U.S.A.) in accordance with the manufacturer’s instructions. β-actin was used as an endogenous control for lncRNAs. The primers sequences are as follows: for lncRNA-HEIH: 5’-CTCTTTGCCCTTTTCTT-3’ (sense) and 5’-ATGGCTTTCTCGCATCCTAT-3’ (antisense); for β-actin, 5’-GGGAAATCGTGCAGCATTAA-3’ (sense) and 5’-TGTGGCGTACGCTTGGT-3’ (antisense). For miRNAs detection, qRT-PCR was carried out using TaqMan miRNA assays (Applied Biosystems) in accordance with the manufacturer’s instructions. U6 was used as an endogenous control for miRNAs. The comparative Ct method was performed to calculate the expression of target genes.

Vectors construction and transfection

Full-length lncRNA-HEIH was PCR amplified with the Phusion Flash High-Fidelity PCR Master Mix (Thermo Fisher, Waltham, MA, U.S.A.) and inserted into the KpnI and XbaI sites of pcDNA3.1 (Invitrogen), termed pcDNA3.1-HEIH. The primers sequences are as follows: 5’-GGTACCGTCCCCCTGTGCTG-3’ (forward) and 5’-GCTCTAGAAGGTGAAATTCCACTTTAC-3’ (reverse). Two independent shRNAs specifically targeting lncRNA-HEIH were designed and synthesized by GenePharma (Shanghai, China), termed as shRNA-HEIH-1 and shRNA-HEIH-2. The shRNA sequences are as follows: for shRNA-HEIH-1: 5’-TGGCCCTTTCTCTCTTAACCTTAATCGAGATTTAGGTTAGGAAGGAGGCGCTTTT-3’; for shRNA-HEIH-2: 5’-TGGCAAGATGACGTCTGAAATCTTACAGAGATTTGCTGCTGCTGCTGCTTTTCTTTCT-3’. A scrambled shRNA was used as a negative control (NC) for shRNA-HEIH-1 and shRNA-HEIH-2, termed as shRNA-NC.
The double-stranded miRNAs mimics and NC (miR-NC) were purchased from GenePharma. The vectors and miRNAs were transfected into melanoma cells using Lipofectamine 3000 (Invitrogen) in accordance with the manufacturer's instructions.

Establishment of IncRNA-HEIH stably overexpressed and knocked down melanoma cells
To obtain IncRNA-HEIH stably overexpressed and control A375 cells, pcDNA3.1-HEIH or pcDNA3.1 was transfected into A375 cells. Then, the cells were selected with 800 μg/ml neomycin for 4 weeks. To obtain IncRNA-HEIH stably depleted and control A2058 cells, shRNA-HEIH-1, shRNA-HEIH-2, or shRNA-NC was transfected into A2058 cells. Then the cells were selected with 80 μg/ml neomycin for 4 weeks. The overexpression and knockdown efficiencies of the stable cells were confirmed by qRT-PCR.

Cell proliferation assays
Glo cell viability assays and ethynyl deoxyuridine (EdU) incorporation assays were carried out to assess cell proliferation potential. For Glo cell viability assays, a total of approximately 2000 melanoma cells/well were seeded in 96-well plate. After culturing for 24, 48 and 72 h, cell viability was assessed using the CellTiter-Glo® Luminescent Cell Viability Assay (Promega, Madison, WI, U.S.A.) in accordance with the manufacturer’s instructions. EdU incorporation assays were carried out with an EdU kit (Roche, Mannheim, Germany) also in accordance with the manufacturer’s instructions.

Transwell assays
Transwell assays were carried out to assess cell migration potential. Briefly, indicated melanoma cells suspended in serum-free medium with 1 μg/ml mitomycin C were plated in the upper chamber of a 24-well transwell insert (Mil-lipore, Bedford, MA, U.S.A.). For invasion assays, Matrigel (Gibco) was used to coat the upper chamber of transwell insert. The lower chamber was filled with medium containing 10% FBS. After incubation for 24 h, cells remaining on the upper surface of the insert were scraped off with a cotton swab, and cells on the lower surface were fixed with methanol, stained with Crystal Violet and counted using Zeiss Axiopt microscope (Carl Zeiss, Oberkochen, Germany).

Chromatin isolation by RNA purification
Chromatin isolation by RNA purification (ChIRP) assays were carried out using the EZ-Magna ChIRP RNA Interactome Kits (No. 17-10495, Millpore, Bedford, MA, U.S.A.) in accordance with the manufacturer's instructions. Biotin-labelled antisense oligodeoxynucleotide probes complementary to IncRNA-HEIH were designed and synthesized by Biosearch Technologies (Petaluma, CA, U.S.A.). The probes’ sequences are as follows: 1: 5′-GAGGGAAACCTTCCGGACAC-3′; 2: 5′-ACAAACAGACTAGGGCGG-3′; 3: 5′-AAATACTACCTTCAGTGTC-3′; 4: 5′-TGAGGGCGGAATACCTACCT-3′; 5: 5′-GGTATGTGATGGAGCGACAG-3′; 6: 5′-CCTTAAACGATGCTTGTGTC-3′; 7: 5′-GTACTCAATGGAGGGG3′; 8: 5′-ATCCCACTTTAATCCAGTG-3′. Retrieved DNA and RNA was quantified by qRT-PCR as described above. The primers sequences for miR-200b/a/429 promoter are as follows: 5′-CTCGTCCACCCGGTTGG-3′ (forward) and 5′-ACAACCTCGCGCTCTCGTG-3′ (reverse).

Statistical analysis
The GraphPad Prism Software was used to analyse the statistical differences. For comparisons among groups, Mann–Whitney test, log-rank test, Student's t test and Pearson correlation analysis were carried out as indicated. P <0.05 was considered as statistically significant.

Results
IncRNA-HEIH is highly expressed in melanoma and predicts poor outcome in melanoma patients
qRT-PCR was performed to detect the expression of IncRNA-HEIH in 66 melanoma issues and 42 benign nevi. The results showed that IncRNA-HEIH is highly expressed in melanoma tissues than in benign nevi (Figure 1A). Analyses of the association between IncRNA-HEIH expression and clinicopathological characteristics of these 66 melanoma patients showed that IncRNA-HEIH is highly expressed in melanoma tissues with advanced clinical stages than in
Figure 1. Expression of IncRNA-HEIH in melanoma and its association with melanoma patients’ outcomes

(A) IncRNA-HEIH expression levels in 66 melanoma issues and 42 benign nevi were detected by qRT-PCR. Results are shown as median with interquartile range. ***(P<0.001 by Mann–Whitney test. (B) IncRNA-HEIH expression levels in melanoma tissues with different clinical stages were detected by qRT-PCR. Results are shown as median with interquartile range. ***(P<0.001 by Mann–Whitney test. (C) Kaplan–Meier survival analyses of the correlation between IncRNA-HEIH expression level and overall survival of melanoma patients. The median expression level of IncRNA-HEIH was used as the cutoff, P=0.0259 by log-rank test. (D) IncRNA-HEIH expression levels in human epidermal melanocyte HEMa-LP and melanoma cell lines SK-MEL-28, A375, A2058 and SK-MEL-2 were detected by qRT-PCR. Results are shown as mean ± S.D. from three independent experiments. ***(P<0.001 by Student’s t test.

early stages (Figure 1B). In addition, Kaplan–Meier survival analysis showed that high IncRNA-HEIH expression in melanoma tissues indicates poor overall survival (Figure 1C). The expression of IncRNA-HEIH in human epidermal melanocyte HEMa-LP and melanoma cell lines SK-MEL-28, A375, A2058 and SK-MEL-2 were measured. The results showed that IncRNA-HEIH is highly expressed in melanoma cell lines than in melanocyte (Figure 1D). Collectively, these data showed that IncRNA-HEIH is highly expressed in melanoma, correlated with advanced clinical stages and predicts poor outcome in melanoma patients.

Ectopic expression of IncRNA-HEIH promotes melanoma cell proliferation, migration and invasion

To explore the biological effects of IncRNA-HEIH on melanoma, we constructed IncRNA-HEIH stably overexpressed A375 cells by transfecting IncRNA-HEIH expressing plasmid pcDNA3.1-HEIH. The expression of IncRNA-HEIH was confirmed by qRT-PCR (Figure 2A). The effects of IncRNA-HEIH on A375 cell proliferation were evaluated by Glo cell viability assay and EdU incorporation assays. The growth curves determined by Glo cell viability assays revealed that ectopic expression of IncRNA-HEIH promotes A375 cell proliferation (Figure 2B). EdU incorporation assays also revealed that ectopic expression of IncRNA-HEIH increases the number of EdU-positive cells (Figure 2C). Next, the effects of IncRNA-HEIH on A375 cell migration and invasion were evaluated by transwell assays. The results demonstrated that ectopic expression of IncRNA-HEIH significantly promotes A375 cell migration and
Figure 2. The effects of lncRNA-HEIH overexpression on melanoma cell proliferation, migration and invasion

(A) lncRNA-HEIH expression levels in lncRNA-HEIH stably overexpressed and control A375 cells were detected by qRT-PCR. (B) Cell viabilities of lncRNA-HEIH stably overexpressed and control A375 cells at 0, 24, 48 and 72 h were detected by Glo cell viability assays. The data were normalized to viability at 0 h. (C) Cell proliferation of lncRNA-HEIH stably overexpressed and control A375 cells was detected by EdU incorporation assays. The red colour represents EdU-positive nuclei. Scale bars =200 μm. (D) Cell migration of lncRNA-HEIH stably overexpressed and control A375 cells was detected by transwell assays. Scale bars =100 μm. (E) Cell invasion of lncRNA-HEIH stably overexpressed and control A375 cells was detected by transwell assays with matrigel. Scale bars =100 μm. Results as shown as mean ± S.D. from three independent experiments. **P<0.01, ***P<0.001 by Student’s t test.

Collective, these data showed that ectopic expression of lncRNA-HEIH promotes melanoma cell proliferation, migration and invasion.

Knockdown of lncRNA-HEIH inhibits melanoma cell proliferation, migration and invasion

To further confirm the biological effects of lncRNA-HEIH on melanoma, we constructed lncRNA-HEIH stably knocked down A2058 cells by transfecting two independent lncRNA-HEIH-specific shRNAs. The knockdown efficiencies of these two lncRNA-HEIH shRNAs were confirmed by qRT-PCR (Figure 3A). The growth curves determined by Glo cell viability assays revealed that knockdown of lncRNA-HEIH inhibits A2058 cell proliferation (Figure 3B). EdU incorporation assays also revealed that knockdown of lncRNA-HEIH significantly decreases the number of EdU-positive cells (Figure 3C). Next, the effects of lncRNA-HEIH knockdown on A2058 cell migration and invasion were evaluated by transwell assays. The results demonstrated that knockdown of lncRNA-HEIH inhibits A2058 cell migration and invasion (Figure 3D,E). Collectively, these data showed that knockdown of lncRNA-HEIH inhibits melanoma cell proliferation, migration and invasion.

lncRNA-HEIH binds to miR-200b/a/429 promoter and inhibits miR-200b/a/429 transcription

lncRNA-HEIH has been reported to interact with enhancer of zeste homologue 2 (EZH2), change the genomic occupation of EZH2 on its target genes’ promoters and modulate the expression of EZH2 target genes in HCC [27].
Furthermore, the critical tumour suppressors miR-200b/a/429 have been reported to be EZH2 target genes in cervical cancer and HCC [28,29]. To investigate whether IncRNA-HEIH regulates miR-200b/a/429 in melanoma cells, we first detected whether IncRNA-HEIH binds to miR-200b/a/429 promoter using ChIRP assays with biotin-labelled antisense oligodeoxynucleotide probes complementary to IncRNA-HEIH. The results showed that the probes not only pull down IncRNA-HEIH, but also miR-200b/a/429 promoter in A375 cells (Figure 4A,B). The same results were acquired with A2058 cells (Figure 4C,D). These results suggested that IncRNA-HEIH has a significant genomic occupancy on miR-200b/a/429 promoter. qRT-PCR results showed that ectopic expression of IncRNA-HEIH inhibits miR-200b/a/429 expression, while knockdown of IncRNA-HEIH up-regulates miR-200b/a/429 expression (Figure 4E,F). Collectively, these data demonstrated that IncRNA-HEIH directly binds to miR-200b/a/429 promoter and further inhibits miR-200b/a/429 expression.

The expression of miR-200b is inversely associated with IncRNA-HEIH in melanoma tissues

To explore whether the regulation of miR-200b/a/429 by IncRNA-HEIH also exists in clinical tissue samples, we measured the expression of miR-200b and analysed its correlation with IncRNA-HEIH in the same melanoma issues as shown in Figure 1A. qRT-PCR results showed that miR-200b is expressed lower in melanoma tissues than that in benign nevi (Figure 5A). Pearson's correlation analyses showed that miR-200b expression is inversely associated with IncRNA-HEIH in melanoma tissues \(r = -0.655, P < 0.001 \) (Figure 5B), supporting the regulation of miR-200b by IncRNA-HEIH in melanoma tissues.
Figure 4. lncRNA-HEIH binds to miR-200b/a/429 promoter and suppresses miR-200b/a/429 expression

(A) ChIRP assays in A375 cells were carried out with biotin-labelled antisense oligodeoxynucleotide probes complementary to lncRNA-HEIH or LacZ (NC), and the retrieved RNA was detected by qRT-PCR to measure lncRNA-HEIH. (B) ChIRP assays in A375 cells were carried out with biotin-labelled antisense oligodeoxynucleotide probes complementary to lncRNA-HEIH or LacZ (NC), and the retrieved DNA was detected by qPCR to measure miR-200b/a/429 promoter. (C) ChIRP assays in A2058 cells were carried out with biotin-labelled antisense oligodeoxynucleotide probes complementary to lncRNA-HEIH or LacZ (NC), and the retrieved RNA was detected by qRT-PCR to measure lncRNA-HEIH. (D) ChIRP assays in A2058 cells were carried out with biotin-labelled antisense oligodeoxynucleotide probes complementary to lncRNA-HEIH or LacZ (NC), and the retrieved DNA was detected by qPCR to measure miR-200b/a/429 promoter. (E) miR-200b/a/429 expression levels in lncRNA-HEIH stably overexpressed and control A375 cells were detected by qRT-PCR. (F) miR-200b/a/429 expression levels in lncRNA-HEIH stably knocked down and control A2058 cells were detected by qRT-PCR. Results are shown as mean ± S.D. from three independent experiments. **P<0.01, ***P<0.001 by Student’s t test.

Figure 5. miR-200b expression is inversely associated with lncRNA-HEIH in melanoma tissues

(A) miR-200b expression level in 66 melanoma issues and 42 benign nevi were detected by qRT-PCR. Results are shown as median with interquartile range. ***P<0.001 by Mann–Whitney test. (B) The correlation between IncRNA-HEIH and miR-200b expression levels in melanoma tissues was detected by Pearson’s correlation analysis.
Figure 6. Overexpression of miR-200b/a/429 abrogates the effects of lncRNA-HEIH on melanoma cell proliferation, migration and invasion

(A) After transfection of the mix of miR-200b/a/429 mimics into lncRNA-HEIH stably overexpressed A375 cells, cell viabilities at 0, 24, 48 and 72 h were detected by Glo cell viability assays. The data were normalized to viability at 0 h. (B) After transfection of the mix of miR-200b/a/429 mimics into lncRNA-HEIH stably overexpressed A375 cells, cell proliferation was detected by EdU incorporation assays. The red colour represents EdU-positive nuclei. Scale bars = 200 μm. (C) After transfection of the mix of miR-200b/a/429 mimics into lncRNA-HEIH stably overexpressed A375 cells, cell migration was detected by transwell assays. Scale bars = 100 μm. (D) After transfection of the mix of miR-200b/a/429 mimics into lncRNA-HEIH stably overexpressed A375 cells, cell invasion was detected by transwell assays with matrigel. Scale bars = 100 μm. Results are shown as mean ± S.D. from three independent experiments. **P < 0.01, ***P < 0.001 by Student’s t test.

miR-200b/a/429 mediate the roles of lncRNA-HEIH on melanoma cell proliferation, migration and invasion

To investigate whether miR-200b/a/429 mediate the biological roles of lncRNA-HEIH on melanoma cell proliferation, migration and invasion, we transfected the mix of miR-200b mimics, miR-200a mimics and miR-429 mimics into lncRNA-HEIH stably overexpressed A375 cells. The growth curves determined by Glo cell viability assays revealed that ectopic expression of miR-200b/a/429 abrogates the pro-proliferative roles of lncRNA-HEIH in A375 cells (Figure 6A). EdU incorporation assays further revealed that ectopic expression of miR-200b/a/429 abrogates the increase in EdU-positive cells number caused by lncRNA-HEIH overexpression (Figure 6B). Transwell assays revealed that ectopic expression of miR-200b/a/429 abrogates the promigratory and proinvasive roles of lncRNA-HEIH in A375 cells (Figure 6C,D). Collectively, these data showed that the roles of lncRNA-HEIH on melanoma cell proliferation, migration and invasion are mediated by miR-200b/a/429.
Discussion

With great advances in the understanding of molecular mechanisms underlying melanoma tumorigenesis and development, the immunotherapy and molecular targeted therapies have successfully extended the survival of melanoma patients [30,31]. However, most of these patients suffer recurrence and deaths due to this malignant disease [32,33] therefore a more complete understanding of mechanisms and developing novel efficient targeted therapies would greatly improve the outcomes of melanoma patients [34].

Accumulating evidence revealed that most of the human transcriptomes are noncoding RNAs [35,36]. However, the attention of melanoma was mainly focused on the protein-coding genes. Uncovering the critical roles of IncRNAs may offer new insights into and therapeutic opportunities for melanoma. IncRNA-HEIH is a recently identified IncRNA in HCC [27]. In the present study, we found that IncRNA-HEIH is up-regulated in melanoma tissues and cell lines. Increased expression of IncRNA-HEIH is associated with advanced clinical stages of melanoma. Moreover, high expression of IncRNA-HEIH predicts poor outcomes in melanoma patients. Our data suggest that IncRNA-HEIH may serve as a prognostic biomarker for melanoma. Gain-of-function and loss-of-function assays showed that ectopic expression of IncRNA-HEIH promotes melanoma cell proliferation, migration and invasion, while knockdown of IncRNA-HEIH inhibits melanoma cell proliferation, migration and invasion. These data suggest that IncRNA-HEIH has pro-oncogenic roles in melanoma.

The mechanisms underlying the roles of IncRNAs are complex [37]. IncRNAs could directly bind to proteins, mRNAs, miRNAs or DNA, and then modulate the expression, function or localization of their target genes [38-43]. In this study using ChIRP assays, we found that IncRNA-HEIH directly binds to miR-200b/a/429 promoter and inhibits miR-200b/a/429 expression. miR-200b, miR-200a and miR-429 belong to the miR-200 family. The miR-200 family has well-known tumour suppressors and modulates cell proliferation, migration, invasion, epithelial–mesenchymal transition, drug resistance etc. in many cancers, including melanoma [44-47]. In the present study, we also found that overexpression of miR-200b/a/429 inhibits cell proliferation, migration and invasion promoted by IncRNA-HEIH. An inverse correlation between miR-200b expression and IncRNA-HEIH was also observed in melanoma tissues. Collectively, these data suggest that IncRNA-HEIH promotes melanoma cell proliferation, migration and invasion via inhibiting miR-200b/a/429. IncRNA-GIHCG is reported to repress miR-200b/a/429 expression via physically associating with and recruiting EZH2 and DNMT1 to miR-200b/a/429 promoter and increasing histone H3K27 trimethylation and DNA methylation levels on miR-200b/a/429 promoter [29]. Interestingly, in HCC cells, IncRNA-HEIH was reported to be associated with EZH2 and repress EZH2 target genes, including p15, p16, p21 and p57 [27]. Whether or not the epigenetic modification enzymes, the histone and DNA methylation changes are required for the inhibition of miR-200b/a/429 by IncRNA-HEIH need further investigation.

Taken together, our data revealed that IncRNA-HEIH is highly expressed in melanoma, associated with advanced clinical stages, indicates poor prognosis in melanoma patients and promotes melanoma cell proliferation, migration and invasion. Mechanistically, IncRNA-HEIH directly binds to miR-200b/a/429 promoter and inhibits miR-200b/a/429 transcription. Our findings indicate that IncRNA-HEIH serve as a key regulator in melanoma and may be a promising target in melanoma treatment.

Competing interests
The authors declare that there are no competing interests associated with the manuscript.

Funding
No funding was declared by the authors of this manuscript.

Author contribution
Z.L. and H.Z. conceived and designed the study. H.Z., G.X., Y.W. and H.M. performed the experiments. Z.L., H.Z. and G.L. analysed the data. Z.L. wrote the manuscript. All authors read and approved the final submitted manuscript.

Abbreviations
ChIRP, chromatin isolation by RNA purification; EdU, ethynyl deoxyuridine; EZH2, enhancer of zeste homologue 2; HCC, hepatocellular carcinoma; IncRNA, long noncoding RNA; NC, negative control; qRT-PCR, quantitative real-time PCR.

References
1 Torre, L.A., Bray, F., Siegel, R.L., Ferlay, J., Lortet-Tieulent, J. and Jemal, A. (2015) Global cancer statistics, 2012. CA Cancer J. Clin. 65, 87–108

© 2017 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution Licence 4.0 (CC BY).
2 Richtig, G., Richtig, E., Massone, C. and Hofmann-Wellenhof, R. (2014) Analysis of clinical, dermoscopic and histopathological features of primary melanomas of patients with metastatic disease—a retrospective study at the Department of Dermatology, Medical University of Graz, 2000-2010. J. Eur. Acad. Dermatol. Venereol. 28, 1776–1781
3 Siegel, R.L., Miller, K.D. and Jamal, A. (2017) Cancer statistics, 2017. CA Cancer J. Clin. 67, 7–30
4 Eggermont, A.M., Spatz, A. and Robert, C. (2014) Cutaneous melanoma. Lancet 383, 816–827
5 Strouse, J.J., Fears, T.R., Tucker, M.A. and Wayne, A.S. (2005) Pediatric melanoma: risk factor and survival analysis of the surveillance, epidemiology and end results database. J. Clin. Oncol. 23, 4735–4741
6 Shoshan, E., Mobley, A.K., Braeuer, R.R., Kamiya, T., Huang, L., Vasquez, M.E. et al. (2015) Reduced adenosine-to-inosine miR-455-5p editing promotes melanoma growth and metastasis. Nat. Cell Biol. 17, 311–321
7 Kourtis, N., Moubarak, R.S., Aranda-Orgilles, B., Lui, K., Aydin, I.T., Trimarchi, T. et al. (2015) FBXW7 modulates cellular stress response and metastatic potential through HSF1 post-translational modification. Nat. Cell Biol. 17, 322–332
8 Iyer, M.K., Niknafs, Y.S., Malik, R., Singhal, U., Sahu, A., Hosono, Y. et al. (2015) The landscape of long noncoding RNAs in the human transcriptome. Nat. Genet. 47, 199–208
9 ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74
10 Yuan, J.H., Yang, F., Wang, F., Ma, J.Z., Guo, Y.J., Tao, Q.F. et al. (2014) A long noncoding RNA activated by TGF-beta promotes the invasion-metastasis cascade in hepatocellular carcinoma. Cancer Cell 25, 666–687
11 Ponting, C.P., Oliver, P.L. and Reik, W. (2009) Evolution and functions of long non-coding RNAs. Nature 458, 48–52
12 Schmitt, A.M. and Chang, H.Y. (2016) Long noncoding RNAs in cancer pathways. Cancer Cell 29, 452–463
13 Wang, F., Ni, H., Sun, F., Li, M. and Chen, L. (2016) Overexpression of IncRNA AFAP1-AS1 correlates with poor prognosis and promotes tumorigenesis in colorectal cancer. Biomed. Pharmacother. 81, 152–159
14 Liu, X., Xiao, Z.D., Han, L., Zhang, J., Lee, S.W., Wang, W. et al. (2016) LncRNA NBR2 engages a metabolic checkpoint by regulating AMPK under energy stress. Nat. Cell Biol. 18, 431–442
15 Lin, A., Li, C., Xing, Z., Hu, Q., Liang, K., Han, L. et al. (2016) The LINK-A IncRNA activates normoxic HIF1alpha signalling in triple-negative breast cancer. Nat. Cell Biol. 18, 213–224
16 Wei, T., Folkerssen, L., Ehrenborg, E. and Gabrielsen, A. (2016) MicroRNA 486-3P as a stability marker in acute coronary syndrome. Biosci. Rep. 36, e00351
17 Gonsalves, C.S., Li, C., Malik, P., Tahara, S.M. and Kaira, V.K. (2015) Peroxisome proliferator-activated receptor-alpha-mediated transcription of miR-301a and miR-454 and their host gene SKA2 regulates endothelin-1 and PAI-1 expression in sickle cell disease. Biosci. Rep. 35, e00275
18 Li, C., Wang, S., Xing, Z., Lin, A., Liang, K., Song, J. et al. (2017) A ROR1-HER3-IncRNA signalling axis modulates the Hippo-YAP pathway to regulate bone metastasis. Nat. Cell Biol. 19, 106–119
19 Xu, N., Wang, F., Lv, M. and Cheng, L. (2015) Microarray expression profile analysis of long non-coding RNAs in human breast cancer: a study of Chinese women. Biomed. Pharmacother. 69, 221–227
20 Zhu, X.T., Yuan, J.H., Zhu, T.T., Li, Y.Y. and Cheng, X.Y. (2016) Long noncoding RNA glypican 3 (GPC3) antisense transcript 1 promotes hepatocellular carcinoma progression via epigenetically activating GPC3. FEBS J. 283, 3739–3754
21 Leucci, E., Vendramin, R., Spinazzi, M., Laurette, P., Fiers, M., Wouters, J. et al. (2016) Melanoma addiction to the long non-coding RNA SAMMSON. Nature 531, 518–522
22 Chen, X., Dong, H., Liu, S., Yu, L., Yan, D., Yao, X. et al. (2017) Long noncoding RNA MHCNR promotes melanoma progression via regulating miR-425/489-mediated PI3K-Akt pathway. Am. J. Transl. Res. 9, 90–102
23 Schmidt, K., Joyce, C.E., Buquicchio, F., Brown, A., Ritz, J., Distel, R.J. et al. (2016) The IncRNA SLNCR1 mediates melanoma invasion through a conserved SRAI-like region. Cell Rep. 15, 2025–2037
24 Chen, X., Gao, G., Liu, S., Yu, L., Yan, D., Yao, X. et al. (2017) Long noncoding RNA PVT1 as a novel diagnostic biomarker and therapeutic target for melanoma. Biosci. Res. Int. 2017, 7038579
25 Sun, L., Sun, P., Zhou, Q.Y., Gao, X. and Han, Q. (2016) Long noncoding RNA MALAT1 promotes uveal melanoma cell growth and invasion by silencing miR-140. Am. J. Transl. Res. 8, 3939–4001
26 Bian, D., Gao, C., Bao, K. and Song, G. (2017) The long non-coding RNA NKILA inhibits the invasion-metastasis cascade of malignant melanoma via the regulation of NF-kB. Am. J. Cancer Res. 7, 28–40
27 Yang, F., Zhang, L., Huo, X.S., Yuan, J.H., Xu, D., Yuan, S.X. et al. (2011) Long noncoding RNA high expression in hepatocellular carcinoma facilitates tumor growth through enhancer of zeste homolog 2 in humans. Hepatology 54, 1679–1689
28 Zhang, S., Zhang, G. and Liu, J. (2016) Long noncoding RNA PVT1 promotes cervical cancer progression through epigenetically silencing miR-200b. APMIS 124, 649–658
29 Sui, C.J., Zhou, Y.M., Shen, W.F., Dai, B.H., Lu, J.J., Zhang, M.F. et al. (2016) Long noncoding RNA GHCG promotes hepatocellular carcinoma progression through epigenetically regulating miR-200b/a-429. J. Mol. Med. (Berl.) 94, 1281–1296
30 Hodi, F.S., Chesney, J., Pavlick, A.C., Robert, C., Grossmann, K.F., McDermott, D.F. et al. (2016) Combined nivolumab and ipilimumab versus ipilimumab alone in patients with advanced melanoma: 2-year overall survival outcomes in a multicentre, randomised, controlled, phase 2 trial. Lancet Oncol. 17, 1558–1568
31 Bhatia, S. and Thompson, J.A. (2014) Melanoma: immune checkpoint blockade story gets better. Lancet 384, 1078–1079
32 Burki, T.K. (2016) Resistance to PD-1 blockade in melanoma. Lancet Oncol. 17, e376
33 Dror, S., Sander, L., Schwartz, H., Sheinboim, D., Barzilai, A., Dishon, Y. et al. (2016) Melanoma miRNA trafficking controls tumour primary niche formation. Nat. Cell Biol. 18, 1006–1017
34 Pan, M., Reid, M.A., Lowman, X.H., Kulkarni, R.P., Tran, T.O., Liu, X. et al. (2016) Regional glutamine deficiency in tumours promotes dedifferentiation through inhibition of histone demethylation. *Nat. Cell Biol.* **18**, 1090–1101

35 Yan, X., Hu, Z., Feng, Y., Hu, X., Yuan, J., Zhao, S.D. et al. (2015) Comprehensive genomic characterization of long non-coding RNAs across human cancers. *Cancer Cell* **28**, 529–540

36 Chen, J., Fu, Z., Ji, C., Gu, P., Xu, P., Yu, N. et al. (2015) Systematic gene microarray analysis of the IncRNA expression profiles in human uterine cervix carcinoma. *Biomed. Pharmacother.* **72**, 83–90

37 Holoch, D. and Moazed, D. (2015) RNA-mediated epigenetic regulation of gene expression. *Nat. Rev. Genet.* **16**, 71–84

38 Cao, S., Wang, Y., Li, J., Lv, M., Niu, H. and Tian, Y. (2016) Tumor-suppressive function of long noncoding RNA MALAT1 in gloma cells by suppressing miR-155 expression and activating FBXW7 function. *Am. J. Cancer Res.* **6**, 2561–2574

39 Zhang, L., Yang, F., Yuan, J.H., Yuan, S.X., Zhou, W.P., Huo, X.S. et al. (2013) Epigenetic activation of the miR-200 family contributes to H19-mediated metastasis suppression in hepatocellular carcinoma. *Carcinogenesis* **34**, 577–586

40 Zheng, J., Dong, P., Mao, Y., Chen, S., Wu, X., Li, G. et al. (2015) lincRNA-p21 inhibits hepatic stellate cell activation and liver fibrogenesis via p21. *FEBS J.* **282**, 4810–4821

41 Li, P., Xue, W.J., Feng, Y. and Mao, Q.S. (2016) Long non-coding RNA CASC2 suppresses the proliferation of gastric cancer cells by regulating the MAPK signaling pathway. *Am. J. Transl. Res.* **8**, 3522–3529

42 Guo, Q., Qian, Z., Yan, D., Li, L. and Huang, L. (2016) LncRNA-MEG3 inhibits cell proliferation of endometrial carcinoma by repressing Notch signaling. *Biomed. Pharmacother.* **82**, 589–594

43 Bi, H.S., Yang, X.Y., Yuan, J.H., Yang, F., Xu, D., Guo, Y.J. et al. (2013) H19 inhibits RNA polymerase II-mediated transcription by disrupting the hnRNP U-actin complex. *Biochim. Biophys. Acta* **1830**, 4899–4906

44 Yuan, J.H., Yang, F., Chen, B.F., Lu, Z., Huo, X.S., Zhou, W.P. et al. (2011) The histone deacetylase 4/SP1/microRNA-200a regulatory network contributes to aberrant histone acetylation in hepatocellular carcinoma. *Hepatology* **54**, 2025–2035

45 Ming, J., Zhou, Y., Du, J., Fan, S., Pan, B., Wang, Y. et al. (2015) Identification of miR-200a as a novel suppressor of connexin 43 in breast cancer cells. *Biosci. Rep.* **35**, e00251

46 van Kempen, L.C., van den Hurk, K., Lazar, V., Michiels, S., Winnepenningckx, V., Stas, M. et al. (2012) Loss of microRNA-200a and c, and microRNA-203 expression at the invasive front of primary cutaneous melanoma is associated with increased thickness and disease progression. *Virchows Arch.* **461**, 441–448

47 Liu, S., Tetzlaff, M.T., Cui, R. and Xu, X. (2012) miR-200c inhibits melanoma progression and drug resistance through down-regulation of BMI-1. *Am. J. Pathol.* **181**, 1823–1835