Electron Paramagnetic Resonance and Oxygen Binding Studies of α-Nitrosyl Hemoglobin

A NOVEL OXYGEN CARRIER HAVING NO-ASSISTED ALLOSTERIC FUNCTIONS*

(Received for publication, March 12, 1998, and in revised form, May 8, 1998)

Takashi Yonetani‡, Antonio Tsuneshige, Yuxiang Zhou§, and Xuesi Chen
From the Department of Biochemistry and Biophysics, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania 19194-6089

β-Nitrosyl hemoglobin, α(Fe-NO)2β(Fe)2, which is frequently observed upon reaction of deoxy hemoglobin with limited quantities of NO in vitro as well as in vivo, has been synthetically prepared, and its reaction with O2 has been investigated by EPR and thermodynamic equilibrium measurements. α-Nitrosyl hemoglobin is relatively stable under aerobic conditions and undergoes reversible O2 binding at the heme sites of its β-subunits. Its O2 binding is coupled to the reversible cleavage of the heme Fe-proximal His bonds in the α(Fe-NO) subunits and is sensitive to allosteric effectors, such as protons, 2,3-bisphosphoglycerate, and inositol hexaphosphate. In fact, α(Fe-NO)2β(Fe)2 is exceptionally sensitive to protons, as it exhibits a highly enhanced Bohr effect. The total Bohr effect of α-nitrosyl hemoglobin is comparable to that of normal hemoglobin, despite the fact that the oxygenation process involves only two ligation steps. All of these structural and functional evidences have been further confirmed by examining the reactivity of the sulfhydryl group of the Cys163 toward 4,4′-dipyridyl disulfide of several α-nitrosyl hemoglobin derivatives over a wide pH range, as a probe for quaternary structure. Despite the halved O2-carrying capacity, α-nitrosyl hemoglobin is fully functional (cooperative and allosterically sensitive) and could represent a versatile low affinity O2 carrier with improved features that could deliver O2 to tissues effectively even after NO is sequestered at the heme sites of the α-subunits. It is concluded that the NO bound to the heme sites of the α-subunits of hemoglobin acts as a negative allosteric effect of HB and thus might play a role in O2/CO2 transport in the blood under physiological conditions.

When deoxy hemoglobin (Hb) is exposed to less-than-stoichiometric amounts of NO ([NO]/[heme] < 0.5) in solution (1–3) and in the erythrocytes (4–6), the predominant species formed upon equilibrium are α-nitrosyl Hbs, i.e. α(Fe-NO)α(Fe-β(Fe)2) or α(Fe-NO)β(Fe)2β(Fe)2. Such compounds were readily identified by their EPR spectra with a set of sharp triplet 14N hyperfine structures (A = 17 Gauss) around gz = 2.009, which is derived from the 5-coordinate nitrosyl hemes in the α-subunits. When rats or mice had been exposed to doses of lipopolysaccharide, tumor necrosis factor, nitroglycerin, nitrite, or NO (7–12), their plasma concentration of NO was known to increase. Venous bloods from the treated animals invariably exhibited EPR spectra with distinct triplet hyperfine signals. Such EPR spectra cannot be expected from tetranitrosyl Hb, α(Fe-NO)3β(Fe-NO)2, in the absence of IHP at a physiological pH of 7.4 (13). Therefore, it is obvious that the primary nitrosyl products formed upon reaction of deoxy Hb with NO under physiological conditions, where [NO] < [heme], are α-nitrosyl Hbs (6, 12, 14, 15). In order to assess physiological roles of such compounds, we have investigated its O2 binding properties and O2 binding measurements as well as the reactivity of Cys163 toward 4-PDS as a probe for the quaternary structure. We have found that its oxygenation characteristics and allosteric functions make α(Fe-NO)2β(Fe)2 a unique cooperative low affinity O2 carrier with full allosteric sensitivity that could deliver O2 to tissues efficiently under physiological conditions. This study has also provided a new insight into the molecular mechanism of cooperativity and allosteric regulation in Hb, particularly the major role of the α-heme Fe-F helix linkage in the quaternary structural transition, and the mode of interaction of Hb with NO.

EXPERIMENTAL PROCEDURES

Reagents—2,3-Bisphosphoglycerate, IHP, pMB, 4-PDS, Tris, bis-Tris, bis-Tris propane, dithiothreitol, catalase, superoxide dismutase (Sigma), and argon (grade 5 gas; BOC gases, Murray Hill, NJ) were used without further purification. Nitric oxide (99.00% pure; MG Industries, Malvern, PA) was purified by passing through a series of gas-bubble washing bottles containing 1 M NaOH and deoxygenated distilled water and another bottle containing deoxygenated distilled water. Purified NO gas was used under strict anaerobic conditions. Anaerobic conditions were obtained by removing O2 from the media with repeated evacuation and flushing with water-saturated argon gas or by continuous flushing with water-saturated argon gas over the surface of stirred reaction media. The use of dithionite as reductant was avoided as much as possible to prevent inducing unknown side reactions.

Preparation of α(Fe-NO)β(Fe-O2)2—All preparation procedures were carried out at 4 °C. Freshly outdated adult human Hb was obtained from a local branch of the American Red Cross; it was purified according to the method of Drabkin (16) and stripped from organic phosphates by the method of Berman et al. (17). The Hb solution was stored in the CO form, and no further attempt was made to strip Hb from its minor components.

α- and β-chains from Hb in the CO form were separated according to the method of Bucci and Fronticelli (18) using the pMB treatment with modifications. After overnight incubation, the pMB-treated Hb solution was purified by electrophoresis on acrylamide gel.
was passed through a Sephadex G-25 with 20 mM Tris buffer, pH 8.5, and the eluent was loaded onto a Macro-Prep HighQ (Bio-Rad) column equilibrated with the same buffer. Elution of isolated chains was achieved by applying a salt gradient using a ConSep LC 100 liquid chromatography system (Millipore Corp., Bedford, MA). The pMB-treated chains were first detected at 10 kHz and then extracted at 20 kHz. The concentration of native hemes was calculated based on an extinction coefficient of 16.3 mM⁻¹ cm⁻¹ at 247 nm and pH 7.0.

For oxygen derivatives, 2 ml of the derivative (40 µM heme) in 50 mM bis-Tris-propane buffer containing 0.1 M Cl⁻, was placed in a quartz cuvette thermostatted at 15 °C and containing a small stirring bar. An amount of 4-PDS equivalent to a final concentration of 160 µM was added to the solution and the reaction was monitored with a Hewlett-Packard 8452A diode array spectrophotometer by measuring the absorbance increase at 324 nm. Data points were collected at a rate of one per s. The dead time of the reaction was 2 s. For deoxy derivatives, a long-neck anaerobic quartz cuvette sealed with a stopper was used.

Concentrations of Hb samples and 4-PDS were the same as for oxygen derivatives. Deoxygenation was carried out at 4 °C by flushing pure argon into the cuvette. Once the deoxygenation of the sample was confirmed by spectrophotometry, the anaerobic cuvette was then transferred to the temperature-controlled cell holder of the spectrophotometer. As soon as the solutions in the cuvette reached 15 °C, the reaction was initiated by injecting with a gas-tight syringe through the stopper an aliquot of a deoxygenated 4-PDS solution. The dead time in this case was approximately 5 s.

RESULTS

Temperature Dependence of the Met Hb Formation of Nitrosyl Hb Derivatives—Native oxy Hb, (Fe-NO)₂β-O₂₂β₂ and tetranitrosyl Hb were slowly oxidized to respective met forms under aerobic conditions. Both nitrosyl Hb derivatives were less stable than native oxy Hb, and tetranitrosyl Hb was the least stable of the species. Half-life times at 37 °C were 15 h, 2 h, and 41 min for oxy Hb, (Fe-NO)₂β-O₂₂β₂, and tetranitrosyl Hb, respectively. However, these values increased to 42 h, 22 h, and 16 h, respectively, at 15 °C. Accordingly, all experiments were conducted at this temperature.

Coordination States of Nitrosyl Hemes as Measured by EPR—Isolated (Fe-NO) and (β-Fe-NO) subunits exhibited EPR spectra around g = 2.0 of the 6-coordinate nitrosyl hemes at pH 7.4, as shown in Fig. 1A, in agreement with previous reports (14, 15, 24). However, the overall line shape of their EPR spectra was distinctly different from one to the other: the EPR spectrum of (Fe-NO) subunits (Fig. 1A, dotted line) showed a more rhombohedrally distorted line shape than the isolated (β-Fe-NO) subunits (solid line). These spectra were independent of pH in a range from pH 6.0 to pH 9.0. The EPR spectrum of tetranitrosyl Hb (solid line) was essentially a sum of those of the isolated (Fe-NO) and (β-Fe-NO) subunits, as previously reported (14, 15, 24) and did not change significantly over a pH range from 7.0 to 9.0. The EPR spectrum of the α-deoxy, β-nitrosyl hybrid, (α-Fe)β(Fe-NO)₂β, was reported to be practically identical with that of isolated β(Fe-NO)₂β subunits (spectrum B...
were dissolved in 0.1 M bis-Tris propane buffer, pH 7.4, at 15 °C prior to the stepwise deoxygenation process at pH 7.4 and 15 °C. The EPR spectra transition was attained at pO2 of 1.65 mm Hg at 15 °C. The direction of spectral changes during deoxygenation. The midpoint of freeze at 77K for EPR measurements.

The 5- → 6-coordination equilibrium of α(Fe-NO) subunits of α-nitrosyl Hb as a function of pH and O2 saturation at 15 °C in the presence and absence of IHP. The percentage of the 5-coordinate α(Fe-NO) subunits was calculated using spectra A and C of Fig. 1B as standards for 100% and 0% 5-coordinate α(Fe-NO), respectively. The pH dependence of midpoints (open and closed circles) of the coordination transition at fixed pH in the presence and absence of 3 mM IHP, respectively, is related to the Bohr effect of O2 equilibrium of α-nitrosyl Hb.

in Fig. 1A) (14, 24) and was pH-independent over a pH range from 6.0 to 9.0. The α-nitrosyl, β-deoxy hybrid, α(Fe-NO)β(Fe)2, on the other hand, exhibited an EPR spectrum of mixed 5- and 6-coordinate nitrosyl hemes at pH 7.4, as indicated by the appearance of a sharp triplet hyperfine structure (A1 = 17 Gauss at gz = 2.009) of the 5-coordinate nitrosyl heme (spectrum B in Fig. 1B). This implied that the α-heme Fe-His (F8) bonds were partially cleaved in α(Fe-NO)β(Fe)2 under these conditions (15, 25–27). The EPR spectrum of α(Fe-NO)β(Fe)2 was pH-dependent. The 6-coordinate state was favored at higher pH, whereas the proportion of the 5-coordinate state increased at acidic pH (Fig. 2, open rectangles). Upon addition of stoichiometric amounts of CO or saturating concentrations of O2, the 5- → 6-coordination equilibrium of the α-nitrosyl hemes of α(Fe-NO)β(Fe)2 shifted in favor of the 6-coordinate state as a function of pH (Fig. 2, closed rectangles). The α-nitrosyl hemes of α(Fe-NO)β(Fe-CO)2 (not shown) and α(Fe-NO)β(Fe-O2)2 (Fig. 1B, spectrum C, and Fig. 2, closed rectangle at pH 9.0) were estimated to be essentially 100% 6-coordinate at pH 9.0. The EPR spectral changes, which were induced by the oxygenation at the β-hemes, were smaller at acidic extremes and most pronounced at around pH 7.4. Inositol hexaphosphate shifted the 5- → 6-coordination equilibrium of the α-nitrosyl hemes of α(Fe-NO)β(Fe)2 in favor of the 5-coordinate state (Fig. 2). The EPR spectral changes, induced by the oxygenation at the β-hemes in the presence of IHP, were larger at higher pH values. Its EPR spectrum indicated that its α-nitrosyl hemes were essentially 100% 5-coordinate at and below pH 5.0 in the presence of IHP and the absence of O2 (Fig. 1B, spectrum A, and Fig. 2, open rectangle at pH 4.9). The effect of BPG on the coordination equilibrium of the α-nitrosyl hemes of α(Fe-NO)β(Fe)2 and α(Fe-NO)β(Fe-O2)2, as measured by EPR (not shown), were also in favor of the 5-coordinate state, but less pronounced than that observed with IHP (Fig. 2). The degree of saturation with O2 of the β-hemes in α(Fe-NO)β(Fe)2 was readily controlled by adjusting the concentration of O2 in the medium, which was in turn regulated by the atmospheric partial pressure of O2 (pO2). A series of EPR spectra of α(Fe-NO)β(Fe)2 at numbers of fixed pO2 values at 15 °C during the course of deoxygenation at pH 7.4 (Fig. 1C) shows reasonable isosbestic points, indicating that the observed spectral changes were derived from the two-component system of the 5- → 6-co-
ordination equilibrium in the α-nitrosyl hemes. This further indicated that undesirable side reactions, such as formation of met heme, transfer of NO from α- to β-subunits, and release of NO from Hb, were practically negligible during the course of measurements. It should be pointed out that these spectra changes were reversible upon reoxygenation. The 5-7 coordinate equilibrium of the α-nitrosyl hemes of \(\text{Fe(NO)}_2 \beta(\text{Fe})_2 \) was shifted in a predictable manner toward the 5-coordinated state upon deoxygenation as a function of pH (Fig. 2). The apparent pH dependence of the midpoints of the EPR spectral transition (Fig. 2, open and closed circles) is a measure of the Bohr effect of the \(\text{O}_2 \) binding in \(\text{Fe(NO)}_2 \beta(\text{Fe})_2 \). Its \(\text{O}_2 \) affinity decreases (or its \(P_{50} \) value increases) continuously at lower pHs, even below neutral pH, where the Bohr effect of \(\text{O}_2 \) binding of native Hb is leveled off. However, because EPR data obtained at 77 K may not represent true pH and \(\text{O}_2 \) equilibrium values of \(\text{Fe(NO)}_2 \beta(\text{Fe})_2 \) measured at 15 °C, caution is warranted in interpreting the EPR data too quantitatively.

Oxygen Binding Characteristics of \(\text{Fe(NO)}_2 \beta(\text{Fe})_2 \)—Results obtained from spectrophotometric \(\text{O}_2 \) equilibrium measurements are shown in Fig. 3. At pH 5.8 (Fig. 3A), α-nitrosyl Hb showed a strikingly diminished \(\text{O}_2 \) affinity, virtually absent cooperativity, and decreased effect of BPG and IHP. In the absence of organic phosphates, the lower asymptote of the Hill plot for α-nitrosyl Hb matched that for Hb, indicating that despite α-nitrosyl Hb having both the α-subunits ligated with NO, the \(\text{O}_2 \) affinity of the complementary β-subunits remained.

Fig. 3. Oxygen equilibrium curves for α-nitrosyl Hb (closed symbols), compared with those for native HbA (open symbols), at pH 5.8 (A), 7.4 (B), and 8.2 (C). Circles, no organic phosphates; squares, \(+ \) 2 mM BDPG; triangles, \(+ \) 2 mM IHP. Plotted points correspond to one every three data points. Experimental conditions: sample concentration was 120 µM heme in 50 mM bis-Tris-propane buffer, containing 0.1 M Cl\(^{-}\) and small amounts of catalase and superoxide dismutase. Measurements were carried out at 15 °C.
as low as at initial ligation stages of native Hb. In the presence of IHP, the lower asymptote for the α-nitrosyl Hb was also similar to that of Hb under the same conditions. On the other hand, at pH 8.2 (Fig. 3C), the upper asymptote of the curve for α-nitrosyl Hb approached that for Hb. This indicates that the affinity for O₂ of this derivative increased with pH, while showing a trend of being comparable but not completely equaling the O₂ affinity at the last oxygenation steps of Hb under similar conditions. In other words, α-nitrosyl Hb at this pH exhibited characteristics of a high affinity species. Inositol hexaphosphate, as well as BPG, to a lesser degree, had the effect on this derivative of shifting the curve to the right. Cooperativity was present and comparable to that for a Hb species with two binding sites. At pH 7.4 (Fig. 3B), the oxygenation curve for α-nitrosyl Hb shifted toward the upper asymptote of that for Hb, that is, the high affinity side. However, BPG and IHP decreased its O₂ affinity by shifting the curve toward the low affinity side.

A comparative view of the effect of organic phosphates on the O₂ affinities of Hb and α-nitrosyl Hb at different pH values can be clearly visualized in their Bohr effects (Fig. 4, A and B, respectively). In the presence of organic phosphates, α-nitrosyl Hb (Fig. 4B) showed a greatly enhanced Bohr effect. Around pH 7, the Bohr coefficients, estimated as ΔP₅₀/ΔpH, were −0.5 and −0.9 Bohr protons for Hb and α-nitrosyl Hb, respectively. In the presence of BPG and IHP, the Bohr effect increased in the case of Hb due to the major effect these phosphates had on lowering the O₂ affinity on the acidic side, in agreement with previous works (28). Bohr coefficients were −0.7 and −0.8 in presence of BPG and IHP, respectively. However, in the case of α-nitrosyl Hb, organic phosphates reduced the O₂ affinity on both acidic and alkaline regions. Bohr coefficients in the presence of BPG or IHP were approximately −0.9 and did not differ from the condition without organic phosphates. The magnitude of the effects of BPG and IHP on lowering the O₂ affinity can be expressed as the ratio of partial pressure of O₂ at 50% saturation (P₅₀) in the presence and absence of the organic phosphate (i.e. P₅₀⁻PHOSPHATE/P₅₀⁻NONE). For Hb, the enhanced effect of organic phosphates on the acidic side was reflected as an increased ratio of 1.9 and 5.4 at pH 5.8 versus ratios 1.2 and 1.6 at pH 9, for BPG and IHP, respectively. The maximum effects of BPG and IHP occurred between pH 7 and 7.4, and the values were 3.6 and 7.6 for BPG and IHP, respectively. In the case of α-nitrosyl Hb, these organic phosphates exerted a dramatic effect on its O₂ affinity. The maximum effect was registered at pH 7.4, and the ratios were 6.6 and 23.9 for BPG and IHP, respectively. The equally effective ability of BPG and IHP to lower the O₂ affinity of α-nitrosyl Hb over both sides of the pH range is reflected in a rather symmetric bell-shape curve (not shown). The pH dependence of the O₂ equilibrium constants for the third and fourth binding steps, K₃ and K₄, in the absence and presence of IHP, is shown in Fig. 5A. Curves were smoothed by fixing only the upper and lower asymptotes. The lowest K₃ and highest K₄ values were obtained by extrapolating curves for log K₃ in the presence of IHP at low pH values and log K₄ in the absence of IHP at high pH values, respectively. Values for lowest K₃ and highest K₄ thus obtained were 0.011 and 7.23 mm Hg⁻¹, respectively. The number of protons released at the ith oxygenation step, ΔHᵢ, (i = 3, 4), were then obtained from the slope of the curves in the absence and presence of IHP and are shown in Fig. 5, B and C, respectively. The total Bohr effect, expressed as ΔH total, was calculated as the sum of ΔH 3 and ΔH 4 and is equal to the total Bohr protons released upon oxygenation of one molecule of α-nitrosyl Hb. ΔH total values were 1.67 at pH 6.6 in the absence of IHP and 1.71 at pH 8.6 in the presence of IHP. The average number of released protons, ΔH AV, can be obtained by dividing ΔH total by the number of ligation steps (2 in this case), which yielded values of −0.84 and −0.86 protons per ligation. This is in agreement with the overall values of approximately −0.9, estimated from Fig. 4B. Cooperativity for α-nitrosyl Hb, as expressed by n max, was found to vary considerably with pH. In either the presence or absence of IHP, cooperativity was minimal under acidic conditions, approaching values of 1 (noncooperative) as pH was decreased. In the absence of IHP, n max reached values around 1.4 above pH 6.6. In the presence of
IHP, cooperativity increased at more alkaline conditions (pH above 7), although \(n_{\text{max}} \) values were apparently higher (\(n_{\text{max}} \); 1.5 around pH 8.2) than those obtained in the absence of IHP.

Reactivity of the Sulfhydryl Group of Cys b

In the presence of excess of 4-PDS, reactions were first-order with respect to concentrations of Hb derivatives. The apparent rate constants (\(k_{\text{app}} \)) for both oxy and deoxy Hb increased monotonically above pH 7. Moreover, rate constants for oxy Hb were about 10 times those corresponding to deoxy Hb at any pH studied (not shown). To ease comparison, the relative reactivity of a derivative at any pH was normalized with respect to rate constants for deoxy Hb corresponding to the same pH, as shown in Fig. 6. Thus, rate constants for deoxy Hb were equal to 1, and those for oxy Hb were approximately 10. In the same figure, reactivity profiles for various derivatives of \(\alpha \)-nitrosyl Hb were included.

Sulfhydryl reactivities of all \(\alpha \)-nitrosyl Hb species, including \(\beta \)-ligated derivatives, were strongly pH-dependent and varied from that characteristic of deoxy Hb to that of oxy Hb when solution conditions changed from acidic to alkaline, respectively. Moreover, the transition from one state to the other seemed to be related to the degree of the affinity of the ligand toward the \(\beta \)-subunits and the presence of organic phosphate, such as IHP. \(\alpha(\text{Fe-NO})_2\beta(\text{Fe-O}_2)_2 \) underwent a transition between pH 6 and 7 in the absence of IHP, whereas this transition occurred under more alkaline conditions (between pH 7 and 8) in the presence of IHP. In the same manner, \(\alpha(\text{Fe-NO})_2\beta(\text{Fe-CO})_2 \) showed rate constants that were shifted toward those of an “oxy-like” derivative because even under acidic conditions, rate constants were intermediate to those of the “oxy-like” and “deoxy-like” conformations. However in the presence of IHP and under acidic conditions, the rate constants resembled those of \(\alpha(\text{Fe-NO})_2\beta(\text{Fe-O}_2)_2 \) in the absence of IHP, indicating that the transition to a “deoxy-like” conformation had taken place. Sulfhydryl reactivities above pH 7.4 in the presence of IHP for all \(\alpha \)-nitrosyl Hb derivatives were indistinguishable from those obtained in the absence of IHP. This is consistent with the fact that IHP interacts more strongly with Hb under acidic than alkaline conditions by shifting the allosteric equilibrium toward the low affinity state.

DISCUSSION

Stability of \(\alpha \)-Nitrosyl Hb—Nitrosyl derivatives of Hb are less stable than native Hb under aerobic conditions. Their
oxidative decomposition leads to the formation of fully and partially met Hbs and NO\textsubscript{2}-. α-Nitrosyl Hb was converted to met Hb more rapidly than native Hb but more slowly than tetranitrosyl Hb. Moreover, the rate for all derivatives diminished as the temperature was reduced. At 15 °C, the half-life time for α-nitrosyl Hb was 16 h; this time span was reasonably long enough for all experiments to be conducted on this derivative without the concern of formation of significant amounts of met Hb. This rather moderate stability of α-nitrosyl Hb derivative upon exposure to air might conflict with common expectation. We have observed, however, that α-nitrosyl Hb formed within intact and fully functional erythrocytes was much more rapidly decomposed at 37 °C (\(t_{1/2} \approx 21\) min) than in solution conditions.2 This could explain why this derivative has been seldom found in vivo under normal conditions, but only observed when large amounts of NO were produced in the blood, such as in shock, in inflammation, or upon administration of cytokines, nitrite, and organic nitrates (7–12). Under such conditions, steady-state concentrations of α-nitrosyl hemes so formed could reach several percent of the total hemes of Hb, which corresponds to steady-state intra-erythrocyte concentrations of over 400 \(\mu\text{M}\) α-nitrosyl heme. This indicates an active role of Hb in removing NO from the plasma and sequestering/concentrating NO as α-nitrosyl hemes, as plasma concentrations of NO range only from \(\sim 10^{-7}\) to \(\sim 10^{-5}\) \(\text{M}\).

Another matter of concern in the present work was the stability of the ligation within samples because it has been reported the ability of NO bound to heme under levels below saturation to redistribute among Hb subunits (1–3). This implies migration of NO molecules already bound to hemes, from α-subunits to β-subunits, and vice versa. It has to be pointed out that the α-nitrosyl Hb was always kept, unless indicated, in its oxygenated form, α(Fe-NO)\(_2\)β(Fe-O\(_2\))\(_2\). In fact, no variation in the percentage of the NO-bound α subunits in α-nitrosyl Hb for the time span of the measurements was detected by EPR under any of our experimental conditions.

We have found that the affinity of NO for the α-hemes of Hb is more than 100-fold stronger than that for the β-hemes under physiological conditions. This was reflected principally in their dissociation rate constants: \(k_{\text{off}}(\alpha) < 10^{-5}\) s\(^{-1}\) versus \(k_{\text{off}}(\beta) \approx 10^{-3}\) s\(^{-1}\) at acidic pH and 15 °C, particularly in the presence of organic phosphate effectors (29).2 Of course, it is likely that these values increase substantially at physiological temperature of 37 °C. Therefore, the primary product of the reaction of deoxy Hb with NO at equilibrium would be α-nitrosyl, β-deoxy Hb, α(Fe-NO)β(Fe)β(Fe\(_2\)) and/or α(Fe-NO)\(_2\)β(Fe\(_2\)), when [NO]/[heme] \(< 0.5\), as evidenced by in vitro experiments in solution (1–3) and in erythrocytes (4–6) as well as in vivo results in the blood (7–12). These two types of α-nitrosyl Hbs are indistinguishable from one to the other by EPR or spectrophotometry. Furthermore, the former can exist only in dynamic equilibrium and cannot be isolated without chemical manipulation such as intersubunit cross-linking. Therefore, we have prepared in the present work the latter in pure state and examined its characteristics in detail.

The Action of NO on the α-Hemes of Hb—The tenet of the cooperative mechanism of Hb is that the quaternary structural equilibrium of deoxy Hb in the T (low affinity) state (1 < L < \(\infty\)) reversibly shifts toward the R (high affinity) state upon successive binding of four ligands to its heme groups (30, 31), as schematically illustrated in Fig. 7. (L is an allosteric parameter defined as \([T_L]/[R_0]\) or a ratio of molar concentrations of deoxy Hb in the T- and R-states, respectively (31).) The stronger the affinity of the ligand, the more effective is the shift of the equilibrium toward the R state. Such a homotropic (or positively allosteric) property of ligand has been unequivocally proven for diatomic ligands like O\(_2\) and CO. Low concentrations of CO, which has more than 10-fold higher affinity than O\(_2\), effectively compete with O\(_2\) for the hemes of deoxy Hb under physiological conditions. In addition, its binding shifts the quaternary structure of Hb toward the R (high affinity) state, so that partial binding of CO renders Hb ineffective in its delivery of O\(_2\) to tissues, which is the primary cause of CO poisoning. The United States Environmental Protection Agency sets the Federal occupational limits of CO to be 8 and 35 ppm for 9-h and 1-h inhalation, respectively (32). Such a homotropic behavior has been generally assumed for NO, another diatomic ligand, which has an extremely high affinity of \(\sim 10^{-12}\) M for deoxy Hb (33). Thus NO has more than 10\(^3\)-fold stronger affinity for deoxy Hb than CO. However, several doses of 1-h inhalation of \(\sim 80\) ppm NO have been successfully prescribed for clinical treatments of persistent pulmonary hypertension for the newborn and other pulmonary distress syndrome for the adult with no apparent adverse effect (34). Therefore, one must wonder why there have been neither observation nor report of NO poisoning.

The present work has demonstrated that NO behaves quite differently from other diatomic ligands (O\(_2\) and CO) toward Hb. The principal difference between them lies in the difference in their coordination chemistry with heme (35–40), as summarized in Table I. The binding of O\(_2\) and CO favors the 5-coordinate heme over the 5-coordinate heme. Thus, the affinity of O\(_2\) or CO toward heme increases synergistically with the affinity of the trans-axial imidazole ligand. In contrast, the affinity of NO toward heme is stronger in a 5-coordinate state than in a 6-coordinate state. Thus, binding of NO to heme tends to weaken the Fe-axial imidazole bond as much as \(\sim 10^{-3}\)-fold, or sometimes to cleave the bond. Such a trans-axial bond cleavage upon ligation of NO has been observed in the cases of α-hemes of Hb in the presence of IHP (13–15, 26, 27), α(Fe-NO)\(_2\)β(Fe\(_2\)) even in the absence of IHP (Refs. 1, 3, 14, and 15, and this paper), and the heme group in the regulatory subunit of soluble guanylyl cyclase (41). These heme–Fe–His bonds were known to be constrained or distorted and thus susceptible to cleavage (30, 42). The ligation of NO could cause the trans-axial bond cleavage under appropriate conditions as demonstrated here. This is the reason why only NO, a simple diatomic molecule, but not O\(_2\) and CO, can act as a paracrine inducer of conformation changes in certain hemoproteins.

Effect of Cleavage/Elongation of the α-Heme—F Helix Linkage on the Quaternary Structure of Hb—Several years ago, we demonstrated that the weakening/cleavage of the α-heme–His (F8) bonds causes the permanent shift of the quaternary structure of Hb to a T- (low affinity extreme) state (43), where \(L \approx \infty\) (31), as exemplified by α(5′-p)2β(Fe\(_2\)) (43), Hb\(_\text{NI}^{\text{water}}\) (His\(_{146}^{-}\)→ Tyr) (44), and HbM\(_\text{Boston}\) (His\(_{148}^{-}\)→ Tyr) (45). The recently reported recombinant Hb (His\(_{147}^{-}\)→ Gly) (46) probably belongs to this category. The α(Ni)\(_2\)β(Fe\(_2\)) hybrid, the α(Ni) subunits of which are predominantly in a 4-coordinate state, having Ni bonding with neither a distal ligand nor the His\(_{147}^{-}\) residue (47), shows similar structural and functional characteristics (47).3 Therefore, it can also be considered to belong to this category as well.3 These artificial and natural hybrid Hbs exhibit the lowest O\(_2\) affinity attainable for the β-subunits of Hb with no or substantially diminished cooperativity and allosteric responses toward proton and organic phosphates, characteristics associated with the T- (low affinity extreme)

2 T. Yonetani, A. Tsuneshige, Y. Zhou, and X. Chen, unpublished results.

3 A. Tsuneshige and T. Yonetani, unpublished results.
state with $L = \infty$ (Fig. 7). The common structural denominator among these hybrid Hbs is the cleaved α-heme Fe-proximal bonds or an extended linkage between the α-heme Fe and the α-carbon of the F8 residue (43). This permanent quaternary structural shift is surprisingly independent of the nature/oxidation state of the porphyrin metal ion, the presence and absence of the porphyrin metal ion, and/or the presence and absence of distal ligation. It solely depends upon the geometry (distance/orientation) of the proximal linkage between the α-porphyrin metal and F helix. This might imply that the F helices in the α-subunits of Hb have an inherent tendency to move away from the α-heme planes. Thus, if the α-heme-F helix linkage is removed, Hb would shift its quaternary structure to the energetically more stable T- (low affinity extreme) state with $L = \infty$. The presence of this linkage might be constraining and preventing Hb to settle into such a stable state with $L = \infty$ (in nonequilibrium) and keeping deoxy Hb at the energetically more dynamic T- (low affinity) state and thus, is noncooperative and nonallosteric. The ligation of two molecules of NO to the α-hemes of Hb transforms the quaternary functional state of Hb toward the T- (low affinity state). However, this shift is reversibly modulated by ligation in the β-hemes, pH, and organic phosphates. Therefore, the O_2 binding of $\alpha(\text{Fe-NO})_2\beta(\text{Fe})_2$ occurs between T- (low affinity extreme) and R- (high affinity) states and, thus, is cooperative and allosterically sensitive.

Whether the α-heme-F helix linkage plays such an important role in the actual mechanisms of trigger and cooperativity in native Hb may be debatable. There is no clear evidence for the reversible cleavage of the α-heme Fe-F-helix linkage during the reversible ligation of O_2 and CO to Hb. However, the excessively out-of-the-plane position of the α-heme Fe observed in deoxy Hb in the T-state may be a subtle indication of such an inherent pull by the F helix of deoxy Hb in the energetically more dynamic T- (low affinity) state with $1 < L < \infty$ (Fig. 7). One wonders whether it is technically feasible to test such a hypothesis by measuring the effect of artificial cleavage of the α-heme Fe–His (F8) bonds on the atomic (quaternary) structure of a stable R-state, ligated Hb such as tetracarbonmonoxy Hb by an energy-minimization technique. The widely held hypothesis that the out-of-plane movement of the α-heme Fe (high spin) in deoxy Hb pushes the F helix away from the α-heme plane (30) does not adequately explain why $\alpha(\text{porphyrin})_2\beta(\text{Fe})_2$ settles into the T- (low affinity extreme) state in the absence of the α-porphyrin-F helix linkage. The distal ligation-induced movement of the α-heme Fe toward the in-plane position would pull the F helix back toward the α-heme plane and thus might contribute in part to the triggering and the shift in the quaternary structure from the T- (low affinity) state toward the R- (high affinity) state. It may be possible that such a general mechanism of the cooperativity of Hb is more exaggeratedly revealed in α-nitrosyl Hb by the unique coordination characteristics of NO, namely, its ability to trans-axially cleave the α-heme Fe-His (F8) bonds. Stereochemically speaking, this ability is due to a shorter interatomic
TABLE I
Affinities (equilibrium constant, K_E, in M$^{-1}$) of heme diatomic ligands (CO and NO) and an imidazole base
Data have been compiled from Refs. 35–40.

Ligand Affinity	5-Coordinate ΔK_E	6-Coordinate ΔK_E
CO	2×10^4	2×10^4
NO	4×10^2	10^2

Base Affinity	5-Coordinate ΔK_E	6-Coordinate ΔK_E
Gly	3×10^4	2×10^4
His	6×10^8	10^3
Hemin	3×10^3	10^{-15}

The β-heme Fe-F helix linkage, on the other hand, does not seem to have such a critical role in defining the quaternary/functional structure of Hb (43). For example, it has been shown that $\alpha(Fe)_{2β}(porphyrin)_{2}$, which has no direct linkage between β-porphyrin and F helix, exhibits a cooperative O_2 binding at the α-subunits (43). Therefore, an alternate mechanism must be considered for the quaternary transition induced by the β-ligation.

Effect of Ligation of NO at the α-Hemes on the Tertiary and Quaternary Structural Equilibria and O_2 Binding Characteristics of Hb—It is, therefore, obvious from the preceding discussion that the NO-induced cleavage of the α-heme Fe-His (F8) bonds would transform $\alpha(Fe-NO)_{2β}(Fe)_{2}$ into a T- (low affinity extreme) state, despite ligation of two molecules of a high affinity ligand (NO) per tetramer. In other words, two NO molecules bound to the α-hemes act as a negative allosteric ligand rather than as a homotropic (or positive allosteric) ligand by breaking the α-heme Fe-His (F8) bonds and thus, shifting the quaternary structural equilibrium from the T- (low affinity) state with $1 < L < 10^2$ (in equilibrium) toward the far end of the T-state, i.e., the α-heme Fe-His (F8) bond, which has no direct linkage between β-porphyrin and F helix, exhibits a cooperative O_2 binding at the α-subunits (43). Therefore, an alternate mechanism must be considered for the quaternary transition induced by the β-ligation.

Shifts in the 5-→ 6-coordination equilibrium of the α-nitrosyl hemes in $\alpha(Fe-NO)_{2β}(Fe)_{2}$ upon ligation at the β-hemes have been observed previously (12, 14, 15). However, the interaction of $\alpha(Fe-NO)_{2β}(Fe)_{2}$ with O_2, the physiologically most important ligand of Hb, has not been investigated in detail, probably on the assumption that NO and O_2 could not be mixed and that $\alpha(Fe-NO)_{2β}(Fe)_{2}$ might be readily oxidized to met Hb in the presence of O_2. The present work demonstrates that the intersubunit transfer of structural information in Hb occurs in both directions (α-subunits \leftrightarrow β-subunits): ligation of NO to the α-hemes induces the trans-axial breakage of the α-heme Fe-His (F8) bonds, followed by the quaternary structural shift toward the T- (low affinity extreme) state, which in turn lowers the ligand affinity of the β-subunits in $\alpha(Fe-NO)_{2β}(Fe)_{2}$. Conversely, binding of ligand (CO, O_2, or NO) to the β-hemes shifts the quaternary structure of $\alpha(Fe-NO)_{2β}(Fe)_{2}$ toward the R- (high affinity) state, which in turn causes the reformation of the α-heme Fe-His (F8) bonds, resulting in the significant decrease in the affinity of α-hemes for NO. In the 6-coordinate state, the affinity of Hb for NO is known to decrease as much as 103-fold from that in the 5-coordinate heme in the case of model heme systems (Table I). Therefore, the coordination equilibria of the α-nitrosyl hemes in $\alpha(Fe-NO)_{2β}(Fe)_{2}$ as measured by EPR (Fig. 2) could serve a convenient EPR probe.
to assess the quaternary structural equilibrium as well as the
O\textsubscript{2} binding equilibrium of \(\alpha(\text{Fe-NO})\beta(\text{Fe})\). The \(\alpha\)-nitrosoyl heme-His (F8) coordination complex not only acts as a signal transducer of the quaternary structural and functional changes but also may behave as a Bohr group in \(\alpha\)-nitrosyl Hb. Therefore \(\alpha\)-nitrosoyl Hb can mimic allosteric functions of native Hb remarkably well. Although its O\textsubscript{2} binding function is a two-step process, \(\alpha\)-nitrosoyl Hb can modulate the \(O_2\) affinity of its \(\beta(\text{Fe})\) subunits as much as 700-fold (Fig. 5A), the magnitude comparable with that observed in the (Fe)-subunits of native Hb.

The Enhanced Bohr Effect in \(\alpha\)-Nitrosyl Hb—The enhanced Bohr effect, namely, an increased pH effect on the \(O_2\) affinity of the \(\beta\)-subunits observed in \(\alpha\)-nitrosoyl Hb (Fig. 4) is striking, where only the two-step ligation was involved. Its Bohr coefficient, \(\Delta H^+\), around physiological pH of 7.4 in the absence of organic phosphates (Fig. 4) is almost double that for native Hb, which involves the four-step ligation. This indicates that the ligation-linked Bohr groups of \(\alpha\)-nitrosoyl Hb ionize more easily than in native Hb, or that additional groups such as His87 are involved in the process. In the presence of IHP, the alkaline Bohr effect was similar to that in the absence of IHP, except that the curve was shifted toward the alkaline side about 1.5 pH units. Comparable features were also detected in EPR experiments. Because the top and bottom on each bar (Fig. 2, open and closed rectangles, respectively) are roughly related to \(K_a\) and \(K_d\), respectively, estimated from oxygenation experiments, a midpoint between these two extremes (Fig. 2, open and closed circles) could be a convenient way to indicate qualitatively the \(O_2\) affinity. It should be remarked here that there is no attempt to imply any strict correlation between these parameters. Note that the curve connecting the midpoints does not follow a linear dependence over pH. The shape of this curve reflects how the ligation-linked allosteric transition takes place in the \(\alpha\)-nitrosoyl Hb by varying pH and indirectly reflects its Bohr effect. Under acidic conditions, the enhanced effect of protons on the trans-axial bond cleavage in the \(\alpha\)-subunits is such that the molecule shifts to the extreme side of the T- (low affinity) conformation, i.e., the T- (low affinity extreme) state with \(L \rightarrow \infty\) (Fig. 7). This makes its quaternary structure and functions virtually insensitive to any allosteric effectors (such as homotropic ligation in the \(\beta\)-subunits and/or negatively allosteric organic phosphates). Under alkaline conditions, where the \(\alpha\)-heme Fe–His (F8) bond is partially restored, the cooperativity between two \(\beta\)-subunits seems to be re-established. It becomes then evident that the overall \(O_2\) affinity in Hb is closely related to the coordination equilibrium of the \(\alpha\)-heme Fe–His (F8) bonds in \(\alpha\)-nitrosoyl Hb and consequently to its quaternary state. For \(\alpha\)-nitrosoyl Hb, all allosteric effectors studied in the present work have proved to trigger this transition. The breakage of the \(\alpha\)-heme Fe–His (F8) bonds implies the ionization of the His87 side chains; this could cause a change in pH values of other Bohr groups, or rather be the consequence of these alterations. More stretched/tilted or even absent \(\alpha\)-heme Fe–His (F8) bonds promote the transition of the molecule to T-states, either (low affinity) or (low affinity extreme) (43). Earlier resonance Raman studies (42, 49) suggested that that the protein control of \(O_2\) binding in Hb is regulated by the state of the heme Fe-proximal His bonds without specifying the identity of the subunits involved.

The Mode of Reaction of Hb with NO—The fact that NO reacts with the \(\alpha\)-hemes of Hb as a negative allosteric ligand rather than as a high affinity, homotropic ligand explains the previously unexplained puzzle that although \(\alpha(\text{Fe-NO})\beta(\text{Fe})\) is in the T- (low affinity extreme) state, the NO in the \(\alpha(\text{Fe-NO})\) subunits is very tightly bound, because it is in a 5-coordinate state (Table I). Nitric oxide binds to the \(\beta\)-hemes of Hb as a conventional homotropic ligand in a 6-coordinate state, so that it is released readily from the \(\beta(\text{Fe-NO})\) subunits of Hb in the T- (low affinity) state, as the two-state model predicts under acidic conditions. In other words, the interaction of two molecules of NO with the \(\beta\)-hemes of \(\alpha(\text{Fe-NO})\beta(\text{Fe})\) involves a quaternary structural transition between T- (low affinity extreme) and R- (high affinity) states and thus conforms quite well to a two-state model under acidic conditions. However, a simple two-state model cannot adequately explain the four-step reaction of deoxy Hb with NO at acidic and/or neutral pH, because the first two molecules of NO act as a negative allosteric ligand and the subsequent two molecules of NO behave as a positive allosteric ligand. Therefore, NO present in low concentrations in the blood would react with deoxy Hb only as a negative allosteric effector. Thus, NO is not detrimental to the physiological functions of Hb as an \(O_2/CO_2\) transporter in the blood, although the \(O_2\)-carrying capacity of Hb would decline as much as 50% by ligation of NO at the \(\alpha\)-heme sites.

Physiological Scavenging of NO by Hb—The NO present in the blood is synthesized primarily by NO synthases, particularly those in the endothelial cells of blood vessels throughout the circulatory system upon local chemical and physical stimulation. It activates soluble guanylyl cyclases in adjacent cells as a paracrine signal transducer. Excess NO so produced in the rapidly moving blood must be scavenged as quickly as possible in order to prevent its action at unintended locations elsewhere downstream. Low concentrations of NO in the blood (\(\sim 10^{-7}\) M < [NO] < \(\sim 10^{-5}\) M) can be effectively (\(K_D < 10^{-12}\) M) and rapidly (\(k_{\text{on}} = 10^7\) M\(^{-1}\) s\(^{-1}\)) sequestered by Hb through eventual coordination at its \(\alpha\)-hemes. The \(\alpha(\text{Fe-NO})\beta(\text{Fe})\) thus formed becomes a cooperative, low affinity \(O_2\) carrier that can deliver \(O_2\) to tissues as efficiently as native Hb under physiological conditions, although it can carry only two molecules of \(O_2\) per tetramer. In contrast, the partially CO-bound Hb, which enters a higher-affinity state, is less effective in delivery of \(O_2\) to tissues. The \(\alpha\)-nitrosyl hemes in \(\alpha(\text{Fe-NO})\beta(\text{Fe})\) are eventually oxidized by \(O_2\) to met hemes and \(NO_2\) ions at reasonable rates (\(t_1/2 \sim 21\) min in erythrocytes at 37 °C).\(^2\) The partially met Hb thus formed will be effectively reduced to deoxy Hb by Hb reductase in the erythrocytes to complete the process of NO scavenging. We have shown that during the scavenging of NO through binding at the \(\alpha\)-subunits, Hb transforms itself into \(\alpha\)-nitrosyl Hb, a cooperative, low affinity \(O_2\) carrier. Thus, the ability of effective \(O_2\) delivery to tissues of Hb would not be impaired in the presence of low concentrations of NO. To put simply, Hb will not be poisoned in the presence of low concentrations of NO. This may explain in part why NO causes no acute adverse effect on newborn infants during clinical treatments with inhaled NO (34), even though NO has a substantially higher (\(>10^5\)-fold) affinity for Hb than CO. Thus, we find Hb to be much more agile than we have previously assumed. Hemoglobin can function simultaneously as a NO sequestering agent as well as an efficient \(O_2\) carrier in the hostile environment of the blood, where NO, a high affinity ligand, is always present in low concentrations.

Amounts of \(\alpha\)-nitrosyl Hb formed in vivo are rather small, less than several percent of the intra-erythrocyte concentrations of Hb (12). Therefore, its impact on and contribution toward the overall \(O_2\) affinity (\(P_{50}\)) of the erythrocytes are negligible. It has been recently reported that the \(O_2\) binding curves of the blood of nitroglycerin-treated rats were shifted to the right by \(\sim 10\) mm Hg at 37 °C (50). Although the observed, apparent right shift was attributed solely to low affinity \(\alpha\)-nitrosyl Hb (50), it is theoretically impossible that such a degree of the right shift could be effected by such low concentrations of \(\alpha\)-nitrosyl Hb present (only several percent of the total Hb in
the blood at most). The observed change, therefore, must be attributed to some unknown causes other than the low \(O_2 \) affinity of \(\alpha \)-nitrosyl Hb.

The most outstanding feature of NO among diatomic gases as a biological signal transducer is its extremely high affinity for ferrous hemes and its ability to trans-axially break the heme-proximal His bond in its receptors, such as soluble guanylyl cyclase and Hb, causing conformation changes in the receptors. The latter feature is absent in other diatomic ligands, such as \(O_2 \) and CO (Table I). The free radical nature and chemical reactivity of NO at submicromolar concentrations do not seem to play major roles in a wide range of NO-induced biochemical, cellular, and physiological responses in which soluble guanylyl cyclase is involved.

REFERENCES

1. Taketa, F., Antholine, W. E., and Chean, J. Y. (1978) J. Biol. Chem. 253, 5448–5451
2. Huang, T.-H. (1979) J. Biol. Chem. 254, 11467–11474
3. Hille, R., Olson, J. S., and Palmer, G. (1979) J. Biol. Chem. 254, 12110–12120
4. Kruszyna, R., Kruszyna, H., Smith, R. P., and Wilcox, D. E. (1988) Toxicol. Appl. Pharmacol. 94, 458–465
5. Eriksson, L. E. G. (1994) Biochem. Biophys. Res. Commun. 203, 176–181
6. Tsuneshige, A., and Yonetani, T. (1998) Biochem. J. 345, 1–6
7. Oda, H., Kusumoto, S., and Nakajima, T. (1975) Arch. Environ. Health 30, 453–456
8. Wang, Q., Jacobs, J., DeLeo, J., Kruszyna, H., Kruszyna, R., Smith, R., and Wilcox, D. E. (1991) Life Sci. 49, PL55–PL60
9. Cantilena, L. R., Jr., Smith, R. P., Frasur, S., Kruszyna, H., Kruszyna, R., and Wilcox, D. E. (1992) J. Lab. Clin. Med. 120, 902–907
10. Huest, A. E., Kruszyna, H., Kruszyna, R., Smith, R. P., and Hacker, M. P. (1992) Biochem. Biophys. Res. Commun. 182, 151–157
11. Chamulkitrat, W., Jordan, S. J., and Nasun, R. P. (1994) Mol. Pharmacol. 46, 391–397
12. Kosaka, H., Sawai, Y., Sakaguchi, H., Kumura, E., Harada, N., Watanabe, M., and Shiga, T. (1994) Am. J. Physiol. 266, C1400–C1405
13. Reznik, M., Ristau, J., and Scheller, W. (1972) FEBS Lett. 24, 24–26
14. Henry, Y., and Banerjee, R. (1973) J. Mol. Biol. 73, 469–482
15. Nagai, K., Horii, H., Yashida, S., Sakamoto, H., Morimoto, H. (1978) Biochem. Biophys. Acta 552, 17–28
16. Drabkin, D. L. (1946) J. Biol. Chem. 164, 703–723
17. Berman, M., Benesch, R., and Benesch, R. E. (1971) Arch. Biochem. Biophys. 145, 236–239
18. Bucci, E., and Fradisetti, C. (1965) J. Biol. Chem. 240, PC551–PC552
19. Tsuneshige, A., Zhou, Y., and Yonetani, T. (1993) J. Biol. Chem. 268, 23031–23040
20. Graselli, D. R., and Murray, J. F., Jr. (1967) Arch. Biochem. Biophys. 119, 41–49
21. Amplekhi, R. S., Aver, V. E., and Morell, S. A. (1969) Anal. Biochem. 32, 163–169
22. Imai, K., Hamilton, H. B., Miyaji, T., and Shibata, S. (1972 Biochemistry 11, 114–121
23. Shiga, T., Huang, K.-J., and Yawata, T. (1969) Biochemistry 8, 378–383
24. Wayland, B. B., and Olson, L. W. (1974) J. Am. Chem. Soc. 96, 6057–6041
25. Kon, H. (1975) Biochem. Biophys. Acta 379, 103–113
26. Szabo, A., and Perutz, M. F. (1976) Biochemistry 15, 4427–4428
27. Imao, K. (1982) in Allotopic Effects on Haemoglobin, Cambridge Press
28. Chen, X., Tsuneshige, A., and Yonetani, T. (1998) Biochem. J. 345, 1–19
29. Perutz, M. F. (1970) Nature 282, 726–739
30. Monod, J., Wyman, J., and Changeux, J.-P. (1965) J. Mol. Biol. 12, 88–118
31. Raff, J. (1995) Sci. News 148, 247
32. Gibson, Q. H., and Routon, F. J. W. (1965) Proc. R. Soc. Lond. B. Biol. Sci. 163, 197–205
33. Peppe-Zabo, J., Higendottmann, W. A., Dinh-Xuan, T. A., Stone, D., and Wallwork, J. (1991) Lancet 338, 1173–1174
34. Yoshimura, T. (1997) Cardiovascular Dis. Grand Round 3, 1–26
35. Traylor, T. G., and Sharma, V. S. (1992) Biochemistry 31, 2847–2849
36. Shimizu, M., Basalo, F., Vallejo, M. N., Baldwin, J. E. (1984) Inorg. Chem. Acta 19, 210–255
37. Rose, E. J., and Hoffman, B. M. (1983) J. Am. Chem. Soc. 105, 2966–2973
38. Imao, K., and Yonetani, T. (1982) Biochem. Biophys. Res. Commun. 97, 17–21
39. Omberg, R. W., and Kassner, F. J. (1970) Biochemistry 18, 5837–5392
40. Stone, J. R., Sands, R. H., Dunham, W. R., and Marletta, M. A. (1995) Biochem. Biophys. Res. Commun. 207, 572–575
41. Nagai, K., and Kidagawa, H. (1986) Proc. Natl. Acad. Sci., U S A. 77, 2033–2037
42. Fujii, M., Hori, H., Miyazaki, G., Morimoto, H., and Yonetani, T. (1993) J. Biol. Chem. 268, 15396–15399
43. Hayashi, A., Suzuki, T., and Kikuchi, G. (1996) J. Biol. Chem. 241, 79–84
44. Suzuki, G., Motokawa, Y., and Yamamura, Y. (1965) Biochem. Biophys. Res. Commun. 18, 681–685
45. Barrick, D., Ho, N. T., Simplaceanu, V., Dahlquist, F. W., and Ho, C. (1997) Nat. Struct. Biol. 4, 78–83
46. Shihaya, N., Inubushi, T., Morimoto, H., and Yonetani, T. (1987) Biochemistry 26, 2194–2201
47. Scheidt, W. R., and Lee, Y. J. (1987) Struc. Bonding 64, 1–70
48. Friedman, J. M., Scott, T. W., Stephens, R. A., Ikeda-Saito, M., and Yonetani, T. (1983) J. Biol. Chem. 258, 10564–10572
49. Kosaka, H., and Seiyama, A. (1996) Biochem. Biophys. Res. Commun. 218, 749–752