Rare variants in SOX17 are associated with pulmonary arterial hypertension with congenital heart disease

Na Zhu1,2†, Carrie L. Welch1†, Jiayao Wang1,2, Philip M. Allen1, Claudia Gonzaga-Jauregui3, Lijiang Ma1, Alejandra K. King3, Usha Krishnan1, Erika B. Rosenzweig1,4, D. Dunbar Ivy1, Eric D. Austin1, Rizwan Hamid6, Michael W. Pauciulo7,8, Katie A. Lutz2, William C. Nichols7,8, Jeffrey G. Reid3, John D. Overton3, Aris Baras3, Frederick E. Dewey3, Yufeng Shen2,9 and Wendy K. Chung1,4,10,11*

Abstract

Background: Pulmonary arterial hypertension (PAH) is a rare disease characterized by distinctive changes in pulmonary arterioles that lead to progressive pulmonary arterial pressures, right-sided heart failure, and a high mortality rate. Up to 30% of adult and 75% of pediatric PAH cases are associated with congenital heart disease (PAH-CHD), and the underlying etiology is largely unknown. There are no known major risk genes for PAH-CHD.

Methods: To identify novel genetic causes of PAH-CHD, we performed whole exome sequencing in 256 PAH-CHD patients. We performed a case-control gene-based association test of rare deleterious variants using 7509 gnomAD whole genome sequencing population controls. We then screened a separate cohort of 413 idiopathic and familial PAH patients without CHD for rare deleterious variants in the top association gene.

Results: We identified SOX17 as a novel candidate risk gene (p = 5.5e−7). SOX17 is highly constrained and encodes a transcription factor involved in Wnt/β-catenin and Notch signaling during development. We estimate that rare deleterious variants contribute to approximately 3.2% of PAH-CHD cases. The coding variants identified include likely gene-disrupting (LGD) and deleterious missense, with most of the missense variants occurring in a highly conserved HMG-box protein domain. We further observed an enrichment of rare deleterious variants in putative targets of SOX17, many of which are highly expressed in developing heart and pulmonary vasculature. In the cohort of PAH without CHD, rare deleterious variants of SOX17 were observed in 0.7% of cases.

Conclusions: These data strongly implicate SOX17 as a new risk gene contributing to PAH-CHD as well as idiopathic/familial PAH. Replication in other PAH cohorts and further characterization of the clinical phenotype will be important to confirm the precise role of SOX17 and better estimate the contribution of genes regulated by SOX17.

Keywords: Pulmonary hypertension, Congenital heart disease, Exome sequencing, Genetic association study

Background

Pulmonary arterial hypertension (PAH[MIM:178600]) is a rare disease characterized by distinctive changes in pulmonary arterioles that lead to progressive pulmonary arterial pressures, right-sided heart failure and a high mortality rate. Up to 30% of adult- [1, 2] and 75% of pediatric-onset PAH cases [3] are associated with congenital heart disease (PAH-CHD), and due to improved treatments, the number of adults with PAH-CHD is rising [1, 4]. Congenital heart defects can result in left-to-right (systemic-to-pulmonary) shunts leading to increased pulmonary blood flow and risk of PAH. However, not all patients are exposed to prolonged periods of increased pulmonary flow. PAH may persist following surgical repair of cardiac defects or recur many years after repair. Thus, the underlying etiology is heterogeneous and may include increased pulmonary blood flow,
pulmonary vasculature abnormalities, or a combination. In addition to environmental factors, genetic factors likely play an important role in PAH-CHD although no major risk gene has been identified to date [1].

Genetic studies of PAH alone have identified 11 known risk genes for PAH [5–8]. Several of the risk genes encode members of the transforming growth factor beta/bone morphogenetic protein (TGF-β/BMP) signaling pathway, important in both vasculogenesis and embryonic heart development. For example, mutations in bone morphogenetic protein receptor type 2 (BMPR2) are found in approximately 70% of familial and 10–40% of idiopathic PAH cases. Estimates of the frequency of BMPR2 mutations in PAH-CHD are considerably lower than for PAH alone [9–11]. Mutations in other TGFβ family member genes—activin A, receptor type II-like 1 (ACVRL1), endoglin (ENG), BMP receptor type 1A (BMPR1A) and type 1B (BMPR1B)—as well as caveolin-1 (CAV1), eukaryotic initiation translation factor 2 alpha kinase 4 (EIF2AK4), potassium two-pore-domain channel subfamily K member 3 (KCNK3), SMAD family members 4 and 9 (SMAD4 and SMAD9), and T-box4 (TBX4) have all been identified as less frequent or rare causes of PAH [5–8]. The genetics of CHD are complex and no single major risk gene accounts for more than 1% of cases [12, 13]. Aneuploidies and copy number variations underlie up to 23% of CHD cases [14, 15]. Rare, inherited, and de novo variants in hundreds of genes encoding transcription factors, chromatin regulators, signal transduction proteins, and cardiac structural proteins have been implicated in ~10% of CHD cases [12, 16–19].

To identify novel genetic causes of PAH-CHD, we performed exome sequencing in a patient cohort of PAH-CHD. Association analysis using population controls identified SOX17, a member of the SRY-related HMG-box family of transcription factors, as a new candidate risk gene.

Methods
An overview of the experimental design and workflow is provided in Additional file 1: Figure S1.

Patients
PAH-CHD patients were recruited from the pulmonary hypertension centers at Columbia University and Children’s Hospital of Colorado (via enrollment in the PAH Biobank at Cincinnati Children’s Hospital Medical Center). Patients were diagnosed according to the World Health Organization (WHO) pulmonary hypertension group I classification [20]. The diagnosis of PAH-CHD was confirmed by medical record review including right heart catheterization and echocardiogram to define the cardiac anatomy. The cohort included 15 familial cases, 160 singletons with no family history of PAH, 61 trios (proband and two unaffected biological parents), and 20 duos (proband and one unaffected parent). Written informed consent (and assent when appropriate) was obtained under a protocol approved by the institutional review board at Columbia University Medical Center or Children’s Hospital of Colorado.

Whole exome sequencing (WES)
Familial cases were screened for BMPR2 and ACVRL1 mutations by Sanger sequencing and multiplex ligation-dependent probe amplification (MLPA). Familial cases without mutations in the two risk genes and all other samples were exome sequenced. DNA was extracted from peripheral blood leukocytes using Puregene reagents (Gentra Systems Inc., Minnesota, USA). Exome sequencing was performed in collaboration with the Regeneron Genetics Center (RGC) or at the Children’s Hospital of Cincinnati. In brief, genomic DNA processed at the RGC was prepared with a customized reagent kit from Kapa Biosystems and captured using the SeqCap VCRome 2 exome capture reagent or xGen lockdown probes. Patient DNA samples sequenced at the PAH Biobank/Cincinnati Children’s Hospital Medical Center were prepared with the Clontech Advantage II kit and enriched using the SeqCap EZ exome V2 capture reagent. All samples were sequenced on the Illumina HiSeq 2500 platform, generating 76-bp paired-end reads. Read-depth coverage was ≥15× in ≥95% of targeted regions for all exome sequencing samples.

WES data analysis
The workflow is outlined in Additional file 1: Figure S1A. We used a previously established bioinformatics procedure [18] to process and analyze exome sequence data. Specifically, we used BWA-MEM (Burrows-Wheeler Aligner) [21] to map and align paired-end reads to the human reference genome (version GRCh37/hg19), Picard MarkDuplicates to identify and flag PCR duplicate reads, GATK HaplotypeCaller (version 3) [22, 23] to call genetic variants, and GATK variant quality score recalibration (VQSR) to estimate accuracy of variant calls. We used heuristic filters to minimize potential technical artifacts, excluding variants that met any of the following conditions: missingness > 10%, minimum read depth < 8 reads, allele balance < 20% [24], genotype quality < 30, mappability < 1 (based on 150 bp fragments), or GATK VQSR < 99.6. Only variants with FILTER “PASS” in gnomAD WGS and restricted to the captured protein coding region were kept.

We used ANNOVAR [25] to annotate the variants and aggregate information about allele frequencies (AF) and in silico predictions of deleteriousness. We used population AF from public databases: Exome Aggregation Consortium (ExAC) [26] and Genome Aggregation Database (gnomAD). Rare variants were defined by AF < 0.01% in both ExAC and gnomAD WES datasets. We employed multiple in silico
prediction algorithms including PolyPhen 2, metaSVM [27], Combined Annotation Dependent Depletion (CADD) [28], and REVEL (rare exome variant ensemble learner) [29]. We noted that REVEL outperformed other ensemble methods in pathogenicity prediction in a recent comparison using clinical genetic prediction [30]. We performed further evaluation of the prediction toolkits using de novo missense variants published in a recent CHD study [19] and published de novo variants of unaffected siblings of Simons Simplex Collection [31] as controls. We observed that REVEL-predicted damaging missense de novo variants reached the highest enrichment [31] as controls. We observed that REVEL-predicted damaging missense de novo variants of unaffected siblings of Simons Simplex Collection (Figure S1B). Thus, we ultimately used REVEL to define damaging missense variants (D-mis, REVEL > 0.5) in this study.

We identified de novo variants in a set of 60 PAH-CHD trios using methods described previously [18, 32], and manually inspected all candidate de novo variants using the Integrative Genomics Viewer (IGV) [33] to exclude potential false positives.

Identification of rare, deleterious variants in established risk genes
We screened for variants in 11 known risk genes for PAH [5–8]: ACVRL1, BMPRIA, BMPR1B, BMPR2, CAV1, EIF2AK4, ENG, KCNK3, SMAD4, SMAD9, and TBX4. We also screened for variants in the recently curated list of 253 candidate risk genes for CHD [19]. Variants identified in the PAH-CHD cohort were compared to mutations reported in the literature and in genetic databases (Online Mendelian Inheritance in Man database, Human Genome Mutation Database [34] and ClinVar [35]). We defined deleterious variants as likely gene-disrupting (LGD) (including premature stopgain, frameshift indels, canonical splicing variants, and deletion of exons) or damaging missense with REVEL score > 0.5 (D-mis). Insertion/deletion variants in known risk genes were confirmed with Sanger sequencing and tested for disease segregation when family DNA samples were available.

Statistical analysis
To identify novel candidate risk genes, we performed a case-control association test comparing frequency of rare deleterious variants in each gene in PAH-CHD cases with gnomAD whole genome sequencing (WGS) subjects as population controls. To control for ethnicity, we selected cases of European ancestry (n = 144) using principal components analysis (PCA) (Peddy software package) [36] (Additional file 1: Figure S1C) and gnomAD subjects of non-Finnish European (NFE) ancestry (n = 7509). Since cases and controls were sequenced using different platforms, we assessed the batch effect based on the burden of rare synonymous variants, a variant class that is mostly neutral with respect to disease status. We observed that the frequency of rare synonymous variants in cases and controls was virtually identical (enrichment rate = 1.01, p value = 0.4) (Additional file 1: Table S3a). The analysis of disease-associated genes was confined to gene-specific enrichment of rare, deleterious variants (AF < 0.01%, LGD or D-mis). We assumed that under the null model, the number of rare deleterious variants observed in cases should follow a binomial distribution, given the total number of such variants in cases and controls, and a rate determined by fraction of cases in total number of subjects (cases and controls). The enrichment rate was then determined by the average number of variants in cases over the sum of average number of variants in cases and controls. The statistical significance of enrichment was tested using binom.test in R. We defined the threshold for genome-wide significance by Bonferroni correction for multiple testing (n = 17,701, threshold p value = 2.8e−6). We used the Benjamini-Hochberg procedure to estimate false discovery rate (FDR) by p.adjust in R. All SOX17 variants reported herein were confirmed with Sanger sequencing and inheritance determined when parental DNA samples were available.

To guard against spurious association results due to population differences or batch effects inherent to the use of publicly available gnomAD data, we repeated the association analysis using a set of 1319 European control subjects with individual level data obtained from the same analytical pipeline and called jointly with the PAH-CHD cases. These controls were comprised of unrelated, unaffected European parents from the Pediatric Cardiac Genomics Consortium [18]. The data were captured using NimbleGen V2.0. We performed principle components analysis of ethnicity with cases and controls together.

To estimate the burden of de novo variants in cases, we calculated the background mutation rate using a previously published tri-nucleotide change table [32, 37] and calculated the rate in protein-coding regions that are uniquely mappable. We assumed that the number of de novo variants of various types (e.g., synonymous, missense, LGD) expected by chance in gene sets or all genes followed a Poisson distribution [32]. For a given type of de novo variant in a gene set, we set the observed number of cases to m1, the expected number to m0, estimated the enrichment rate by (m1/m0), and tested for significance using an exact Poisson test (poisson.test in R) with m0 as the expectation.

Results
Characteristics of the PAH-CHD cohort are shown in Table 1. The cohort included 15 familial and 241 sporadic cases, including 61 parent-child trios and 20 duos. The majority of cases (56%) had an age of PAH onset < 18 years (pediatric-onset). There were more females among both pediatric-onset (n = 91/53, 1.7:1 female-to-male ratio)
and adult-onset (n = 88/24, 3.7:1) patients, with a significant ~2-fold enrichment of females for adult- compared to pediatric-onset PAH (p = 0.009) (Table 1). Fifty-six percent of the patients were of European ancestry, 26% Hispanic, and 5–7% each of African, East Asian, or South Asian. The most common cardiac defects were atrial and ventricular septum defects; however, more severe defects were more frequent in pediatric-onset cases.

Rare deleterious variants in known PAH and CHD risk genes

We screened for rare, predicted deleterious variants in 11 known risk genes for PAH and 253 candidate risk genes for CHD (Additional file 1: Table S1). PAH risk gene variants were identified in only 6.4% (16/250) of sporadic PAH-CHD cases and four of 15 familial cases (Additional file 1: Table S2). Of these cases, the majority had pediatric-onset disease (17/144 pediatric vs 3/112 adult, p = 0.0085 Fisher's exact test). Most of the rare deleterious variants were identified in **BMPR2** (n = 7, 6 pediatric) and **TBX4** (n = 7, all pediatric) with a few variants in **BMPRIA** (n=1), **BMPRIB** (1), **CAVI** (1), **ENG** (1), and **SMAD9** (2). Parental DNA samples were available for a subset of the cases and three **TBX4** variants were confirmed to be de novo: c.C293Gp.P98R, c.537_546del:p.1801 fs*45, and c.669_671del:p.223_224delF.

We performed enrichment analysis for the PAH gene set in all PAH-CHD individuals of European ancestry (n = 143), using NFE gnomAD WGS subjects (n = 7509) as population controls. Similar frequencies of synonymous variants in cases and controls indicated that potential batch effects were minimal between the two independent datasets (Additional file 1: Table S3a). For the known PAH gene set, we observed a 5.7-fold enrichment of rare deleterious (LGD or D-mis) variants in PAH-CHD (P = 0.001) (Additional file 1: Table S3b). In contrast, there was no enrichment of rare deleterious variants in CHD risk genes in cases compared to controls (Additional file 1: Table S3b; Additional file 2: Table S4), indicating that overall these variants contribute little to PAH-CHD risk.

Association analysis identifies transcription factor SOX17 as a new candidate PAH-CHD risk gene

To identify novel risk genes for PAH-CHD, we performed an association analysis comparing per-gene rate of rare deleterious variants in European cases and NFE gnomAD WGS controls. We used a binomial test to assess the significance in 17,701 genes and found **SOX17** to be associated with PAH-CHD with genome-wide significance (5/143, 3.3% of cases vs 5/7509, 0.07% of controls; enrichment rate = 52, p value = 5.5e−07) (Fig. 1). Analysis of the depth of coverage in the targeted **SOX17** region indicated nearly 100% of gnomAD samples and a slightly lower percentage of PAH-CHD samples attained read depths of at least 10 (Additional file 1: Figure S2), excluding the possibility that the association is driven by coverage difference between cases and population data. No other genes reached the threshold for genome-wide significance. The top associations with a Benjamini-Hochberg FDR < 1.0 are listed in Fig. 1b. Notably, three of these genes (**BZW2**, **FTS3**, **BAZIB**) encode putative **SOX17** downstream targets [38] and two have been implicated in CHD (**BAZIB** [39]) or cardiac defects associated with syndromic intellectual ability (**THOC3** [40]). Similar results were obtained using a smaller cohort of European controls with individual-level data, called and annotated together with the PAH-CHD cases (Additional file 1: Figure S3). Based on the different frequencies between cases and population controls, we estimate that rare deleterious variants in **SOX17** contribute to about 3.2% of European PAH-CHD patients.

We then searched for **SOX17** variants in the non-European cases in the PAH-CHD cohort, and an additional cohort of 413 idiopathic and familial PAH patients without CHD (IPAH/HPAH) [41]. We identified two additional rare LGD and three additional rare D-mis variants in the PAH-CHD cohort, and one additional rare LGD (Table 2) and two rare D-mis variants in the IPAH/HPAH cohort. Variant c.C398T:p.133L, from a European

Table 1 PAH-CHD patient population

Primary cardiac defect, %	Pediatric	Adult
Atrial septal defect (ASD)	33.8	55.7
Ventricular septal defect (VSD)	22.5	17.7
ASD + VSD	13.8	7.6
Atrioventricular canal defect	7.5	6.3
Tetralogy of Fallot	5.6	1.3
Transposition of the great vessels	3.8	3.8
Hypoplastic left heart syndrome	1.3	0
Coarctation of the artery	0.6	0
Other/complex	11.3	7.6

Fisher's exact test, p = 0.009, indicating a higher female-to-male ratio in adult-onset cases compared to pediatric-onset cases
patient, was not included in the initial association analysis due to in silico quality control failure but was later confirmed by Sanger sequencing. Frameshift variant c.489_510del/p.Q163fs was observed in three unrelated patients of European or Hispanic ancestry. Closer examination of the sequence revealed a 10-bp repeat, once at the start of the deletion and once just downstream (data not shown), suggesting that a replication error may explain the recurrence. Among these three c.489_510del/p.Q163fs mutations, one was a de novo variant and another inherited from an asymptomatic parent (Table 2). Five of the six missense mutations occur within a highly conserved DNA-binding HMG-box domain (Fig. 2a). Three-dimensional modeling indicates that three of these mutations (M76V, N95S, W106L) localize within the DNA binding pocket (Fig. 2b). Comparative sequence analysis shows that all six of the missense variants are in sites highly conserved between species, including vertebrates and invertebrates (Fig. 2c).

We hypothesized that deleterious variants in SOX17 confer PAH-CHD risk through dysregulation of SOX17 target genes and some of these genes may contribute to PAH-CHD risk directly, independent of SOX17. Therefore, we tested for enrichment of rare variants in 1947 putative SOX17 target genes identified by genome-wide ChIP-X experiments [38] in European cases compared to NFE gnomAD WGS subjects. We observed a moderate but significant enrichment of rare missense variants (enrichment rate = 1.16, p value = 3.4e−4) (Additional file 1: Table S5). Since there are 618 rare missense variants in these genes in 143 cases, even a moderate enrichment suggests a large number

Fig. 1 Significant association of SOX17 with PAH-CHD. a Quantile-quantile plot showing results of test of rare variant association in 17,701 genes, using 143 cases of European ancestry and 7509 gnomAD whole genome sequencing subjects of non-Finnish European ancestry. The association of SOX17 is genome-wide significant following Bonferroni correction for multiple testing. b Table of all genes with p value < 0.001 in the association tests. False discovery rate (FDR) was estimated using Benjamini-Hochberg procedure. LGD, likely gene-disrupting; D-mis, damaging missense defined as REVEL score > 0.5.
of rare variants in SOX17-regulated genes may contribute to PAH-CHD risk. Using publicly available gene expression data for developing heart [17] and adult pulmonary artery endothelial cells (ENCODE RNA-seq data, ENCBS024RNA), we found that the majority of the SOX17 target genes with rare deleterious variants are expressed in one or both of these tissue/cell types, with 28% (42/149) having top quartile expression in both tissue/cell types, with 28% (42/149) having top quartile expression in both tissue/cell types (Additional file 1: Table S6). Based on 100,000 simulations, the number of observed genes in the top quartile of developing heart and PAEC expression in the SOX17 targets (42 out of 149) is significantly larger than expectation by chance ($p \leq 10^{-5}$) (Additional file 1: Figure S4b), supporting functional relevance of these SOX17 target genes. Pathway enrichment analysis using Reactome 2016 [42, 43] through Enrichr (amp.pharm.mssm.edu/Enrichr/enrich) showed that the SOX17 target genes with deleterious variants are over-represented (FDR-adjusted p value $<$ 0.05) in (1) developmental processes, (2) transmembrane transport of small molecules and ion homeostasis, and (3) extracellular matrix interactions (Additional file 1: Table S7).

Contribution of de novo mutations to PAH-CHD

We have previously reported an enrichment of de novo predicted deleterious variants in a CHD cohort ascertained without considering PAH [17, 18]. We tested for a role of de novo mutations in PAH-CHD in 60 cases with WES data of biological parents (“trios”). The complete list of 60 rare de novo variants is provided in Additional file 1: Table S8. As mentioned previously, three de novo variants were identified in PAH risk gene TBX4 and one variant each in CHD risk genes NOTCH1 and PTPN11. However, testing for enrichment of all rare de novo variants in PAH-CHD trio probands compared to an estimated background mutation rate indicated no overall enrichment, likely due to the small sample size.

Discussion

Exome sequencing in our cohort of 256 PAH-CHD patients indicated that the genetic contribution of known/candidate risk genes for PAH or CHD alone is minimal. An unbiased, gene-based association analysis of rare deleterious variants identified SOX17 as a novel PAH-CHD candidate risk gene, explaining up to 3.2% of cases. A recent study of 1038 PAH cases (not including PAH-CHD) also found an association of SOX17 with IPAH but with a smaller effect size (relative risk \sim 2.9) [44]. The observed frequency of rare variants was \sim 0.9% of PAH cases [44], similar to our observation of SOX17 variants in \sim 0.7% of IPAH/HPAH patients without CHD. Of note, no rare deleterious SOX17 variants were identified in a recently published cohort of 1200 patients with CHD [18]. Additionally, we observed an enrichment of rare variants in putative target genes of SOX17. There was no

Table 2 Rare deleterious SOX17 variants identified in 258 PAH-CHD and 413 IPAH/HPAH samples

Proband ID	Gender	Age at dx (years)	Disease class	Heart defecta	Ancestry	SOX17 exonb	Nucleotide change	AA change	Inheritance	Allele frequency (gnomAD)	CADD scorec	REVEL scorec
JM0016	M	5	PAH-CHD	ASD	European	2	c.C398T	p.P133L	Paternal	32.0	0.91	
JM0025	M	7 months	PAH-CHD	VSD	European	2	c.A489_S10del	p.Q163fs	De novo	33	N/A	
JM1277	F	30	PAH-CHD	ASD	Asian	2	c.1203delC	p.D401fs	Unknown	24.1	N/A	
JM1417	F	3	PAH-CHD	ASD	European	2	c.A489_S10del	p.Q163fs	Paternal	33	N/A	
JM174	F	14	PAH-CHD	ASD	European	2	c.344delG	p.R115fs	Maternal	35	N/A	
JM654	M	1	PAH-CHD	ASD	Hispanic	2	c.A284G	p.N955	Unknown	24.7	0.93	
JM673	M	34	PAH-CHD	ASD	European	2	c.C388T	p.Q130X	Unknown	39.0	N/A	
JM887	F	3	PAH-CHD	ASD	European	1	c.A226G	p.M76V	Unknown	28.7	0.97	
JM951	M	9	PAH-CHD, ASD	ASD	Hispanic	2	c.C664G	p.P222A	Unknown	26.1	0.57	
SPH1070E5480	F	38	PAH-CHD	Unknown	Hispanic	2	c.A392G	p.N131G	Unknown	22.4	0.89	
SPH831K5173	F	32	IPAH	N/A	European	2	c.G317T	p.W106L	Unknown	28.4	0.4	
JM1363	F	5	IPAH	N/A	Hispanic	2	c.A489_S10del	p.Q163fs	Maternal	33	N/A	
FPPH126-01	M	3	HPAH	N/A	European	1	c.727_76del	p.M24fs	Unknown	33	N/A	

a ASD, atrial septal defect; PDA, patent ductus arteriosus; VSD, ventricular septal defect; AV, atrioventricular

b SOX17 variants identified from transcript NM_022454

c Rare, deleterious variants defined as gnomAD AF $<$ 0.01% and REVEL $>$ 0.5
enrichment of de novo mutations in this cohort, possibly due to the relatively small number of available trios.

SOX17 is a member of the conserved SOX family of transcription factors widely expressed in development, and the subgroup of SOXF genes (including SOX7, SOX17, and SOX18) participate in vasculogenesis and remodeling [45]. In the embryonic vasculature, SOX17 is selectively expressed in arterial endothelial cells [46–48]. Early studies of Sox17 knock-out mice did not find obvious abnormalities in embryonic vasculature [49, 50], at least partially explained by functional redundancy and compensatory roles of Sox17 and Sox18 [50, 51]. Subsequent genetic studies revealed that gene compensation and phenotypic effects were dependent on strain background [52]. Recent endothelial-specific inactivation of Sox17 in murine embryo or postnatal retina led to impaired arterial specification and embryonic death or arterial-venous malformations, respectively [46]. SOX17 has also been associated with intracranial aneurysms in genome-wide association studies [53–55], and endothelial-specific Sox17 deficiency was subsequently shown to induce intracranial aneurysm pathology in an angiotensin II infusion mouse model [56]. Finally, conditional deletion of Sox17 in mesenchymal progenitor cells demonstrated that SOX17 is required for normal pulmonary vasculature morphogenesis in utero and deficiency results in postnatal cardiac defects [57].

Cardiogenesis occurs in a highly conserved and regulated manner in the developing embryo [58]. Precise temporal and spatial control of gene expression is controlled by master transcription factors such as GATA4, MEF2C, TBX5, and NKX2–5 [59]. In addition, signaling pathways, including canonical and non-canonical WNT/
β-catenin [60, 61] and NOTCH [62] signaling cascades, drive cardiac morphogenesis and differentiation. SOX17
is a direct transcriptional target of GATA4, giving rise to
SOX17-positive endoderm from embryonic stem cells [63]
and the two proteins co-localize in the primitive
endoderm [64, 65]. SOX17 induction inhibits WNT/
β-catenin signaling by direct protein interaction with
β-catenin through a carboxyl terminal domain of SOX17
required for transactivation of target genes [66, 67].
NOTCH1 has recently been shown to be a direct tran-
scriptional target of SOX17 in early arterial develop-
ment [68]. Thus, it is possible that impaired functional interac-
tions between these molecules during embryogenesis
could provide an underlying mechanism for the develop-
ment of CHD in some PAH-CHD patients.

SOX17 is a highly constrained gene depleted of LGD and
missense variants in a large population data set (ExAC pLI
= 0.87, missense Z-score = 3.25) [26]. About half of the ob-
served rare, deleterious variants in cases are LGD variants,
and most of the missense variants are located in a conserved
HMG box domain. The HMG box is a 79-amino acid do-
main that binds in a sequence-specific manner within the
minor groove of DNA causing bending and facilitating as-
sembly of nucleoprotein complexes [45]. Localization of
the five HMG box missense variants within a three-dimen-
sional model of the protein domain interacting with DNA in-
dicated that three of the patient missense mutations (M76V,
N95S, W106L) localize to the DNA binding pocket (Fig. 2b).
Previously reported site-directed mutagenesis studies indi-
cated that similar point mutations within this region (M76A,
G103R) can impair both direct DNA binding [69] and com-
plex nucleoprotein interactions, including SOX17/β-catenin
protein complexes, at target gene promoters [70, 71].
This suggests that haploinsufficiency with loss of function alleles
is the likely mechanism of SOX17 risk in PAH-CHD.

Some variants in SOX17 downstream target genes may be
predicted to mimic some of the consequences of SOX17
loss of function mutations or haploinsufficiency. We identi-
fied 163 rare deleterious variants (131 D-mis and 32 LGD)
in 149 putative target genes. Using published gene expres-
sion data, we found that most of these genes are expressed in
developing heart and/or pulmonary artery endothelial
cells, with significant enrichment of top quartile expression
in both tissue/cell types compared to randomly selected
sets of genes carrying deleterious variants in European
PAH-CHD cases. Additionally, we showed that these target
genes are overrepresented in pathways related to develop-
mental biology, ion transport/homeostasis, and extracellular
matrix interactions. A wide range of transmembrane small
molecule transporters/channels/pumps are expressed in de-
vloping heart and pulmonary vasculature, and some have
been shown to be differentially expressed in lung tissue
from PAH patients compared to non-disease controls or
PH with interstitial fibrosis [72]. As key regulators of
vascular tone, some of these molecules function as targets of
vasodilatory pharmacotherapy [73]. We recently identi-
fied the potassium channel gene, KCNK3, as a risk gene for
PAH using exome sequencing [74]. Extracellular matrix
proteins, including laminins, play key roles in embryonic
development of both pulmonary vasculature and heart [75].
Thus, it is likely that mutations in SOX17, and possibly
downstream target genes, may increase risk for PAH-CHD
via multiple pathways.

The striking clinical finding was that nine out of 13 pa-
ients had pediatric-onset disease. The mean age of PAH
onset for all patients with rare SOX17 variants was
14.2 years. Most of the congenital heart defects were simple
(i.e., atrial septal defect, ventricular septal defect, or patent
ductus arteriosus). However, most of the patients had
severe PAH with systemic or suprasystemic resting pul-
monary arterial pressures, right ventricular hypertrophy
with diminished right ventricular function, and requiring
chronic intravenous vasodilator treatment. Severe PAH was
observed in all patients carrying variants in the HMG-box
domain or the recurrent c.489_510del/ p.Q163fs variant.

Conclusions
Together, these data strongly implicate SOX17 as a new
risk gene contributing to ~ 3% of PAH-CHD cases and
suggest that rare variants in genes regulated by SOX17
also contribute to PAH-CHD. Expansion of the number
of PAH-CHD patients assessed and characterization of
the clinical phenotypes will be important to confirm the
role of SOX17 in PAH-CHD and IPAH, and more pre-
cisely estimate the contribution of genes regulated by
SOX17 and de novo mutations.

Additional files

Additional file 1: Figure S1. Study overview. Figure S2. Depth of
sequencing coverage for SOX17. Figure S3. Gene-based association analysis
using in-house controls. Figure S4. SOX17 target gene expression in murine
E14.5 developing heart and human adult pulmonary arterial endothelial cells.
Figure S5. Gene ontology analysis of SOX17 target genes harboring PAH-
CHD patient-derived rare deleterious variants. Table S1. List of known PAH
and CHD candidate risk genes. Table S2. Variants in known PAH risk genes.
Table S3. Enrichment analyses in European cases and controls. Table S5.
Enrichment analysis for SOX17 target genes. Table S6. SOX17 target gene
variants and gene expression rank. Table S7. De novo variants. Table S8.
List of all rare de novo variants in pediatric-onset PAH-CHD trios (n=60).
(DDOCX 2.05 mb)

Additional file 2: Table S4. Variants in known CHD risk genes. (XLSX 46 kb)

Abbreviations
ACVR1L: Activin A receptor-like 1; AF: Allele frequency; BMPR1A: Bone
morphogenetic protein receptor type 1A; BMPR1B: Bone morphogenetic
protein receptor type 1B; BMPR2: Bone morphogenetic protein receptor type
2; bp: Base pair; BWA-MEM: Burrows-Wheeler Aligner; CADD: Combined
Annotation Dependent Depletion; CAV1: Caveolin-1; CHD: Congenital heart
disease; D-mis: Damaging missense variants; EIF2AK4: Eukaryotic initiation
translation factor 2 alpha kinase 4; ENG: Endoglin; ExAC: Exome Aggregation
Consortium; FDR: False discovery rate; gnomAD: Genome Aggregation
Database; IGV: Integrative Genomics Viewer; IPAH: Idiopathic pulmonary
artrial hypertension; KCNQ: Potassium two-pore-domain channel subfamily K member 3; LGD: Likely gene-disrupting; MLPA: Multiplex ligation-dependent probe amplification; NFE: Non-Finnish Europeans; NOTCH1: Notch (Drosophila) homolog 1; PAH: Pulmonary arterial hypertension; PAH-CHD: Pulmonary arterial hypertension associated with congenital heart disease; PCA: Principal components analysis; PTPN11: Protein tyrosine phosphatase non-receptor type 11; REVEl: Rare exome variant ensemble learner; RGC: Regeneron Genetics Center; SMAD4: SMAD family member 4; SMAD9: SMAD family member 9; SRY: Sex determining region Y-box family member 17; TBX4: T-box 4; TGF-B/BMP: Transforming growth factor beta/bone morphogenetic protein, VQSR: Variant quality score recalibration; WES: Whole exome sequencing; WGS: Whole genome sequencing; WHO: World Health Organization

Acknowledgements
We thank the patients and their families for their generous contribution. Robyn Barst and Jane Morse were critical members of the team to enroll and clinically characterize patients. Patricia Lanzano provided oversight of the Columbia biorepository. Hongjian Qi provided helpful discussions on bioinformatics analysis of WES data.

Funding
Funding support was provided by NHLBI HL060056 (to WKC), NIH/NCATS Colorado Clinical and Translational Science Award UL1 TR001082 (DDI), and The Jayden de Luca Foundation (DDI). Funding for the PAH Biobank was provided by NHLBI R24HL105333 (WCN). Y.S. was partly supported by NIH grant R01GM120609.

Availability of data and materials
The datasets used and/or analyzed in the current study are available from the corresponding author upon request. The variants in known PAH risk genes (included in Additional file 1) are deposited in ClinVar, accession numbers SCV000784722–SCV000784741.

Authors’ contributions
WKC conceived and designed the study. NZ, YS, WKC, CW, JW, and PMA provided the WES data and clinical information. JDO, AKK, JGR, and AB provided the WES data and clinical information. JDO, AKK, JGR, and AB provided the WES data. All authors contributed to and discussed the results and critically reviewed the manuscript. All authors read and approved the final manuscript.

Ethics approval and consent to participate
Written informed consent (and assent when appropriate) was obtained from the corresponding author upon request. The variants in known PAH risk genes (included in Additional file 1) are deposited in ClinVar, accession numbers SCV000784722–SCV000784741.

Consent for publication
Written informed consent for publication was obtained at enrollment.

Competing interests
CG-J, AKK, JGR, JDO, AB, and FD are full time employees of Regeneron Pharmaceuticals Inc. and receive stock options as part of compensation. The remaining authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1Department of Pediatrics, Columbia University Medical Center, New York, NY, USA. 2Department of Systems Biology, Columbia University Medical Center, New York, NY, USA. 3Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown, New York, USA. 4Department of Medicine, Columbia University Medical Center, New York, NY, USA. 5Department of Pediatric Cardiology, Children’s Hospital Colorado, Denver, CO, USA. 6Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, USA. 7Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA. 8Department of Pediatrics, University of CincinnatiCollege of Medicine, Cincinnati, OH, USA. 9Department of Biomedical Informatics, Columbia University, New York, NY, USA. 10Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA. 11New York, USA.

Received: 29 January 2018 Accepted: 9 July 2018
Published online: 20 July 2018

References
1. van Dissel AC, Mulder BJ, Bouma BJ. The changing landscape of pulmonary arterial hypertension in the adult with congenital heart disease. J Clin Med. 2017;6(4).
2. Dimopoulos K, Wort SJ, Gatzoulis MA. Pulmonary hypertension related to congenital heart disease: a call for action. Eur Heart J. 2014;35(11):691–700.
3. Li L, Jick S, Breitenstein S, Hernandez G, Michel A, Vezzaya D. Pulmonary arterial hypertension in the USA: An epidemiological study in a large insured pediatric population. Pulm Circ. 2017;7(1):126–38.
4. Marelli AJ, Ionescu-Iftu R, Mackie AS, Guo L, Denda K, Naoe M. Lifetime prevalence of congenital heart disease in the general population from 2000 to 2010. Circulation. 2014;130(9):749–56.
5. Best DH, Austin ED, Chung WK, Elliott CG. Pulmonary genetics. Curr Opin Cardiol. 2014;29(6):520–7.
6. Chida A, Shintani M, Nakayama T, Futakami Y, Hayama E, Inai K, et al. Missense mutations of the BMPR1B (ALK1) gene in childhood idiopathic pulmonary arterial hypertension. Circ J. 2012;76(9):1501–8.
7. Nasim MT, Ogo T, Ahmed M, Randall R, Chowdhury HM, Snape KM, et al. Molecular genetic characterization of SMAD signaling molecules in pulmonary arterial hypertension. Hum Mutat. 2011;32(12):1385–9.
8. Kerstjens-Frederikse WS, Bongers EMHF, Roofthooft MTR, Letter EM, Douwes JM, Van Dijk A, et al. TBX4 mutations (small patella syndrome) are associated with childhood-onset pulmonary arterial hypertension. J Med Genet. 2013;50(8):500–6.
9. Roberts KE, McElroy JJ, Wong WP, Yen E, Widlitz A, Barst RJ, et al. BMPR2 mutations in pulmonary arterial hypertension with congenital heart disease. Eur Respir J. 2014;43(3):714–24.
10. Pfarr N, Fischer C, Ehlen N, Becker-Grunig T, Lopez-Gonzalez V, Gorenflo M, et al. Hemodynamic and genetic analysis in children with idiopathic, heritable, and congenital heart disease associated pulmonary arterial hypertension. Respir Res. 2013;14:13.
11. Levy M, Eyrjes M, Szepesvari I, Ladouceur M, Nadaud S, Bonnet D, et al. Genetic analyses in a cohort of children with pulmonary hypertension. Eur Respir J. 2016;48(4):1118–26.
12. Vecchi P, Pulignani S, Foffa A, Andreassi MG. Congenital heart disease: the crossroads of genetics, epigenetics and environment. Curr Genomics. 2014;15(5):390–9.
13. Zaidi S, Bruceph M. Genetics and genomics of congenital heart disease. Circ Res. 2017;120(6):923–40.
14. Soemeredi R, Wilson U, Bentham J, Darlay R, Topof A, Zeleznika D, et al. Contribution of global rare copy-number variants to the risk of sporadic congenital heart disease. Am J Hum Genet. 2012;91(3):489–501.
15. Glessner JT, Bick AG, Ito K, Homysy J, Rodriguez-Murillo L, Fromer M, et al. Increased frequency of de novo copy number variants in congenital heart disease by integrative analysis of single nucleotide polymorphism array and exome sequence data. Circ Res. 2014;115(10):894–96.
16. Fahed AC, Gelb BD, Seidman JC, Seidman CE. Genetics of congenital heart disease: the glass half empty. Circ Res. 2013;112(4):707–20.
17. Zaidi S, Choc M, Wakimoto H, Ma L, Jiang J, Overton JD, et al. De novo mutations in histone-modifying genes in congenital heart disease. Nature. 2013;498(7453):220–3.
18. Homysy J, Zaidi S, Shen Y, Ware JS, Samocha KE, Karzwecki KJ, et al. De novo mutations in congenital heart disease with neurodevelopmental and other congenital anomalies. Science. 2015;350(6265):1262–6.
19. Jin SC, Homysy J, Zaidi S, Lu Q, Morton S, DePalma SR, et al. Contribution of rare inherited and de novo variants in 2,871 congenital heart disease probands. Nat Genet. 2017;49(11):1593–601.
20. Simonneau G, Robbins IM, Beghetti M, Channick RN, Delcroix M, Denton CP, et al. Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol. 2009;54(1 Suppl):S43–54.
21. Li H, Ruan J, Dubin R. Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res. 2008;18(11):1851–8.
22. DePristo MA, Banks E, Poplin R, Giramella KV, Maguire JR, Hart C, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011;43(5):491–8.

23. Van der Auwera GA, Carneiro MO, Hart C, Poplin R, Del Angel G, Levy-Moonshine A, et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinformatics. 2013;43:11 1–33.

24. Krumm N, Turner TN, Baker C, Vives L, Mohajeri K, Witterspoon K, et al. Excess of rare, inherited truncating mutations in autism. Nat Genet. 2015; 47(6):582–8.

25. Dong C, Wei P, Jan X, Gibbs R, Boerwinkle E, Wang K, et al. Comparison and integration of deleteriousness prediction methods for nonsynonymous SNVs in whole exome sequencing studies. Hum Mol Genet. 2015;24(8):2125–37.

26. Kircher M, Witten DM, Jain P, O’Roak BJ, Sanders SJ, Fennell T, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016; 536(7616):285–91.

27. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010; 38(1):e164.

28. Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al. Exome sequencing identifies likely benign and likely deleterious variants. Nat Genet. 2016; 48(9):1259–61.

29. Amos JS, Huang L, Thevenon J, Kariminedjad A, Beaulieu CL, Masurel-Paulet B, et al. REVEL: an ensemble method for predicting the pathogenicity of rare missense variants. Am J Hum Genet. 2016;99(4):877–85.

30. Ghosh RO, Oak N, and Plon, S.E. Evaluation of in silico algorithms for use in the interpretation of de novo coding mutations to autism spectrum disorder. Nature. 2014;515(7526):216–21.

31. Samocha KE, Robinson EB, Sanders SJ, Stevens C, Sabo A, McGrath LM, et al. A framework for the interpretation of de novo mutation in human disease. Nat Genet. 2014;46(9):944–50.

32. Dong C, Wei P, Jian X, Gibbs R, Boerwinkle E, Wang K, et al. Comparison and integration of deleteriousness prediction methods for nonsynonymous SNVs in whole exome sequencing studies. Hum Mol Genet. 2015;24(8):2125–37.

33. Thorvaldsdottir H, Robinson JT, Mesirov JP. Integrative genomics viewer. Nat Biotechnol. 2009;27(6):577–8.

34. Stenson PD, Ball EV, Mort M, Phillips AD, Shiel JA, Thomas NS, et al. Human Gene Variation Database (HGVD): 2003 update. Hum Mutat. 2003;21(6):577–81.

35. Landrum MJ, Lee JM, Riley GR, Jang W, Rubinstein WS, Church DM, et al. ClinVar: public archive of relationships among sequence variation and disease. Nat Genet. 2014;46(12):1259–61.

36. Pedersen BS, Quinlan AR. Who’s who? Detecting and resolving sample anomalies in human DNA sequencing studies with Peddy. Am J Hum Genet. 2017;100(3):406–13.

37. Ware JS, Samocha KE, Horsley J, Daly MJ. Interpretation de novo variation in human disease using denovolift. Curr Protoc Hum Genet. 2015;87:7.25.1–7.15, editorial board. Jonathan L Haines [et al]

38. Stenson PD, Ball EV, Mont M, Phillips AD, Shef JA, Thomas NS, et al. Human Gene Mutation Database (HGMD): 2003 update. Hum Mutat. 2003;21(6):577–81.

39. Lange AW, Haitchi HM, DeLaCruz TD, Sridharan A, Monea M, Kurokawa K, et al. Genome-wide association study of intracranial aneurysm identifies three new risk loci. Nat Genet. 2010;42(5):420–5.

40. DePristo MA, Banks E, Poplin R, Giramella KV, Maguire JR, Hart C, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011;43(5):491–8.

41. Zhu N, Gonzaga-Jauregui C, Welch CL, Ma L, Qi H, King AK, et al. Exome sequencing in children with pulmonary arterial hypertension identifies differences compared with adults. Circ Res. 2011;108(10):e188–97.

42. Croft D, Mundo AF, Haw R, Millacic M, Weiser J, Wu G, et al. The Reactome pathway knowledgebase. Nucleic Acids Res. 2014;42(Database issue):D472–7.

43. Fabregat A, Sidopolous K, Viteri G, Forner O, Marin-Garcia P, Arnau V, et al. Reactome pathway analysis: a high-performance in-memory approach. BMC Bioinformatics. 2017;18(1):142.

44. Graf S, Haimel M, Hladunova C, Southgate L, Li W, et al. Identification of rare sequence variation underlying heritable pulmonary arterial hypertension. Nat Commun. 9(1):2018; 1416.

45. Francois M, Koopman P, Beltrame M. Sox: genes key players in the development of the cardiovascular system. Int J Biochem Cell Biol. 2010; 42(3):445–8.
71. Banerjee A, Ray S. Structural insight, mutation and interactions in human beta-catenin and SOX17 protein: a molecular-level outlook for organogenesis. Gene. 2017;610:118–26.

72. Rajkumar R, Konishi K, Richards TJ, Ishizawar DC, Wiechert AC, Kaminski N, et al. Genomewide RNA expression profiling in lung identifies distinct signatures in idiopathic pulmonary arterial hypertension and secondary pulmonary hypertension. Am J Physiol Heart Circ Physiol. 2010;298(4):H1235–48.

73. Olschewski A, Papp R, Nagaraj C, Olschewski H. Ion channels and transporters as therapeutic targets in the pulmonary circulation. Pharmacol Ther. 2014;144(3):349–60.

74. Piovan E, Yu J, Tosello V, Herranz D, Ambesi-Impiombato A, Da Silva AC, et al. Direct reversal of glucocorticoid resistance by AKT inhibition in acute lymphoblastic leukemia. Cancer Cell. 2013;24(6):766–76.

75. Durbeej M. Laminins. Cell Tissue Res. 2010;339(1):259–68.