An overview on low mass scalars at future lepton colliders

Tania Robens

Rudjer Boskovic Institute

based on Universe 8 (2022) 286

Higgs 2022
10. November ’22
new scalars ⇒ models with scalar extensions
many possibilites: introduce new $SU(2) \times U(1)$ singlets, doublets, triplets, ...
unitarity ⇒ important sum rule*

\[
\sum_i g_i^2 (h_i) = g_{SM}^2
\]

for coupling g to vector bosons
many scenarios ⇒ signal strength poses strong constraints

* modified in presence e.g. of doubly charged scalars, see Gunion, Haber, Wudka, PRD 43 (1991) 904-912.
Possible production modes and rates

$$e^+ e^- \rightarrow Z^* \rightarrow Zh, \quad e^+ e^- \rightarrow \nu \bar{\nu} h (VBF)$$

Cross section for light SM-like scalar at $e^+ e^-$, $\sqrt{s}=250$ GeV

[cross sections for $e^+ e^-$ at $\sqrt{s} = 250$ GeV using Madgraph5;

LO analytic expressions e.g. in Kilian ea, Phys.Lett.B 373 (1996) 135-140]

- rule of thumb: rescaling $\lesssim 0.1$
- \Rightarrow maximal production cross sections around 50 fb
- $\sim 10^5$ events using full luminosity
Models

typical content:
singlet extensions \Rightarrow additional CP-even/odd mass eigenstates
2HDMs, 3HDMs: add additional charged scalars

- e.g. 2 real scalars \Rightarrow 3 CP-even neutral scalars
- 2HDM \rightarrow 2 CP-even, one CP odd neutral scalar, and charged scalars
- ...

Tania Robens
Low mass at lepton colliders
Higgs 2022, 10.11.'22
Typical processes at Higgs factories

various production modes possible

1) **easiest example:** $e^+ e^- \rightarrow Z h_1$, onshell production interesting up to $m_1 \sim 160 \text{ GeV}$

2) in **models with various scalars:** e.g. also $e^+ e^- \rightarrow h_1 h_2$ (e.g. from 2HDMs); example processes and bounds from LEP in Eur.Phys.J.C 47 (2006) 547-587
 again: for onshell production, $\sum_i m_i \leq 250 \text{ GeV}$

3) another (final) option: **look at** $e^+ e^- \rightarrow h_i Z$, $h_i \rightarrow h_j h_k$

already quite a few studies for 1), 3) available
Projections for additional scalar searches

[P. Drechsel, G. Moortgat-Pick, G. Weiglein, Eur.Phys.J.C 80 (2020) 10, 922]

estimate of ILC sensitivity based on validation using LEP results

ILC: $\sqrt{s} = 250$ GeV, $\int \mathcal{L} = 2 \text{ab}^{-1}$; S95: rescaling limit
Projections for additional scalar searches

[Y. Wang, M. Berggren, J. List, arXiv:2005.06265]

additional scalar, \(\sin \theta \) rescaling wrt SM prediction,
comparison of different detector models
recoil method

Tania Robens Low mass at lepton colliders Higgs 2022, 10.11.’22
The 96 GeV LEP resonance

[S. Heinemeyer, C. Li, F. Lika, G. Moortgat-Pick, S. Paasch, Phys.Rev.D 106 (2022) 7, 075003]

[see also T. Biekoetter, M. Chakraborti, S. Heinemeyer, Eur.Phys.J.C 80 (2020) 1, 2]

Various BSM models, rates using $\int \mathcal{L} = 2 \text{ ab}^{-1}$

N2HDM/ 2HDMS: 2HDM extended by real (complex) singlet, various symmetries imposed, fit to LEP/ CMS data [within/ outside 1 σ]

Tania Robens

Low mass at lepton colliders

Higgs 2022, 10.11.'22
Current constraints for the $h_{125} \rightarrow s s$ searches at LHC

[M. Cepeda, S. Gori, V. Martinez Outschoorn, J. Shelton, arXiv:2111.12751]

bound on decays into lighter scalars from current searches

Tania Robens
Low mass at lepton colliders
Higgs 2022, 10.11.'22
low mass region allowed; however, HZZ typically suppressed by $\cos(\beta - \alpha) \lesssim 0.25$

[aligned flavour structure: $Y_{d,\ell} = \varsigma_{d,\ell} M_{d,\ell}$, $Y_u = \varsigma_u^* M_u$]
... and in terms of mixing angle... [Thanks to V. Miralles]
Singlet extensions [TR, arXiv:2203.08210 and Universe 8 (2022) 286]

TRSM: 2 real singlets [TR, T. Stefaniak, J. Wittbrodt, Eur.Phys.J.C 80 (2020) 2, 151]

- **low-low:** both additional scalars below 125 GeV; **high-low:** one new scalar above 125 GeV
N2HDM example

[H. Abouabid, A. Arhrib, D. Azevedo, J. El Falaki, P. M. Ferreira, M. Muehlleitner, R. Santos, JHEP 09 (2022) 011]

N2HDM: 2HDM+ real singlet
Conclusions

- Many new physics models predict one/ several scalars below 125 GeV.
- Typical decays into $b\bar{b}$, $\tau^+\tau^-$.
- Cross sections could reach up to 50 fb from Zh production.
- Decays of $h_{125} \rightarrow ss$ also within reach.
- Important connection to EWSB/ EW phase transitions.

Still space for more studies!
Appendix
Decays of light SM-like scalars

![Graph showing BR(hSM→XX) as a function of M_h (GeV) for different decay modes.]

- $b\bar{b}$
- $c\bar{c}$
- $\tau\bar{\tau}$
- $g\bar{g}$
- $W^+ W^-$
- ZZ

[from YREP 4/ HDecay]

Tania Robens
Low mass at lepton colliders
Higgs 2022, 10.11.'22
Lepton-specific IDM

[X.-F. Han, T. Li, H.-X. Wang, L. Wang, Y. Zhang, Phys.Rev.D 104 (2021) 11, 115001]

Inert Doublet Model, with \mathbb{Z}_2 breaking terms coupling to leptons

various constraints (including agreement with $g_\mu - 2$);
squares: allowed, bullets: forbidden
Scalar triplet model

[P.M. Ferreira, B.L. Gonçalves, F.R. Joaquim, JHEP 05 (2022) 105]

5 neutral, 3 singly charged, 2 doubly charged scalars
Singlet extension, with connection to strong first-order electroweak phase transition

[J. Kozaczuk, M. Ramsey-Musolf, J. Shelton, Phys.Rev.D 101 (2020) 11, 115035]

blue band = strong first-order electroweak phase transition

comment: current constraints lead to prediction $\lesssim 10^{-1}$

[invisible BR, signal strength, assumes SM-like decay to bs]
[projections taken from Z. Liu, L.-T. Wang, and H. Zhang, Chin. Phys. C 41, 063102 (2017)]

Tania Robens
Low mass at lepton colliders

Higgs 2022, 10.11.’22
Singlet extension, spontaneous Z_2 breaking, with connection to strong first-order electroweak phase transition

[M. Carena, Z. Liu, Y. Wang, JHEP 08 (2020) 107]
$h \rightarrow 4j/4b/4c$ final states

[Z. Liu, L.-T. Wang, H. Zhang, Chin.Phys.C 41 (2017) 6, 063102]

Branching ratio vs m_X (GeV)

$95\% \text{ CL bounds}, \sqrt{s} = 240 \text{ GeV}, \int \mathcal{L} = 5 \text{ ab}^{-1}$
Exotic decays - $h \rightarrow ss \rightarrow 4\tau$

[J. Shelton, D. Xu, arXiv:2110.13225]

$[m_s = 7.5 \text{ GeV}; \text{ background mainly from } h \rightarrow jj]$

ε_{tk}: tracking efficiency

95% C.L. limit on the Higgs exotic branching fraction

$\sigma \times BR(h \rightarrow ss + 4\tau) / \sigma(e^+e^- \rightarrow Z)$

$\sqrt{s} = 240 \text{ GeV @ 5 ab}^{-1}$

comment: **current constraints lead to prediction $\lesssim 10^{-3}$**

[invisible BR, signal strength, assumes SM-like decay to τs]
Type X 2HDM, 4τ final state via $\tau\tau A$ production

[E. J. Chun, T. Mondal, Phys. Lett. B 802 (2020) 135190]

one doublet couples to quarks, other to fermions; CP violation

Searches for light A in 2HDMX at ILC250

- The channel $Z \rightarrow h_{SM} A$ is not possible since the relevant coupling is proportional to $\cos(\beta - \alpha)$.
- At ILC250, $Z \rightarrow HA$ may not be feasible when H is heavier than 200 GeV.
- Possible option: $Z \rightarrow \tau\tau \rightarrow \tau\tau A \rightarrow 4\tau$. So called Yukawa production.

- This is the equivalent to ttH searches at LHC. Independent probe of Yukawa structure.
- At the ILC all the 4 τ s can be reconstructed using collinear approximation.
- This enables to measure mass of the light particle.
Type X 2HDM, 4 τ final state via $\tau \tau A$ production

[E. J. Chun, T. Mondal, Phys.Lett.B 802 (2020) 135190]
scNMSSM, $h \rightarrow s s \rightarrow$ various final states
[sc=semi-constrained, aka NUHM]

[S. Ma, K. Wang, J. Zhu, Chin.Phys.C 45 (2021) 2, 023113]
Light charged scalars, 3HDM, $H^+ \rightarrow c\bar{b}$ final state

[A.G. Akeroyd, S. Moretti, M. Song, Phys. Rev. D 101 (2020) 3, 035021]

$BR(H^+ \rightarrow c\bar{b} = 0.05)$, e_c: charm tagging efficiency

$e^+ e^- \rightarrow H^+ H^-, \sqrt{s} = 240 \text{ GeV}$
Current constraints on alignment in 2HDMs

[ATLAS-CONF-2021-053]
2HDM parameter space

[F. Kling, S. Su, W. Su, JHEP 06 (2020) 163]
Another recent 2HDM study

[O. Atkinson, M. Black, C. Englert, A. Lenz, A. Rusov, J. Wynne, arXiv:2202.08807]

2HDM Type I, direct searches, signal strength, and flavour constraints
Models
ILC studies
Possible models
Appendix

scNMSSM parameter space

[K. Wang, J. Zhu, JHEP 06 (2020) 078]
Parameter space for light scalar

[S. Heinemeyer, talk at ILCX 2021 workshop]

4. Direct detection of "light" BSM Higgs bosons

Example for discovery potential for new light states:
Sensitivity at 250 GeV with 500 fb$^{-1}$ to a new light Higgs

\[
\left(\frac{g_{hZZ}}{g_{H^{SM}ZZ}} \right)^2
\]

Indirect LHC sensitivity from measurements of the Higgs at 125 GeV

Higgs factory sensitivity:
Recoil method

\[M_h/\text{GeV} \]

Higgs factory at 250 GeV will explore a large untested region!

[Taken from G. Weiglein '18]
N2HDM (2HDM + singlet) type II, $h_1 \to b\bar{b}$

[S. Heinemeyer, talk at ILCX 2021 workshop]

ILC production of the light scalar in the N2HDM type II:

[T. Biekötter, S.H., G. Weiglein – PRELIMINARY]

\Rightarrow new state easily in the reach of the ILC \Rightarrow coupling measurements

Sven Heinemeyer, ILCX workshop, 28.10.2021
Type X 2HDM with vector-like leptons

[E. J. Chun, T. Mondal, JHEP 11 (2020) 077]

... including connection to $g_\mu - 2$
Scalar triplet model

[P.M. Ferreira, B.L. Gonçalves, F.R. Joaquim, arXiv:2109.13179]

Mass spectrum	CP-Conserving	CP-Violating
Neutral		
h_0^0	Massless - Goldstone boson	
h_2^0	SM Higgs-like	Light
h_3^0	Decoupled	SM Higgs-like
h_4^0		
h_5^0	Decoupled	Decoupled
h_6^0		
Singly-charged		
H_1^+	Massless - Goldstone boson	
H_2^+	Decoupled	Electroweak
H_3^+	Decoupled	Decoupled
Doubly-charged		
H_1^{++}	Decoupled	Electroweak
H_2^{++}	Decoupled	Decoupled