Short Communication: Nematodes associated with Robusta coffee plantations in Malang District, East Java, Indonesia

HAGUS TARNO1,*, EYIK WIDYANSYAFIKA MARSUDI2, TITA WIDJAYANTI1, YOGO SETIAWAN1
1Department Plant Pest and Disease, Faculty of Agriculture, Universitas Brawijaya. Jl. Veteran, Malang 65145, East Java, Indonesia.
2PT. BISI International, Tbk. Jl. Raya Pare-Wates Km 13, Sumber Agung, Plosoklaten, Kediri 64175, East Java, Indonesia

Abstract. Tarno H, Marsudi EW, Widjyawati T, Setiawan Y. 2021. Short Communication: Nematodes associated with Robusta coffee plantations in Malang District, East Java, Indonesia. Biodiversitas 22: 3306-3312. Coffee (Coffea spp.) is an important commodity in Indonesia. Nematodes have different roles, such as plant parasites and non-parasites, and are commonly found in the soil of coffee plantations. This research determined the ecological role, diversity, and abundance of nematodes in three coffee plantations in Malang District, East Java. We used a Whitehead tray to extract and isolate nematodes from the soil and root samples. Nematodes were identified based on their morphological characteristics. Analysis of variance and diversity indices were used to identify the differences among three coffee plantations. We identified eight nematode genera in the Ngantang sub-district site. In the Jatikerto Agrotechnopark District, East Java. We used a Whitehead tray to extract and isolate nematodes from the soil and root samples. Nematodes were identified based on their morphological characteristics. Analysis of variance and diversity indices were used to identify the differences among three coffee plantations. We identified eight nematode genera in the Ngantang sub-district site. In the Jatikerto Agrotechnopark and University of Brawijaya Forest sites, six genera were identified. Criconemoides, Pratylenchus, Xiphinema, Helicotylenchus are plant-parasitic nematodes, and Mononchus, Dorylaimus, Rhabdilus, and Aphanolaimus are non-plant parasitic nematodes. Non-plant parasitic nematodes were more abundant than plant-parasitic nematodes in all sites. Non-plant parasitic nematode, Dorylaimus was the dominant genus in this study (272 individuals), ca. 35% of the total nematodes collected. In this study, the differences between coffee plantations and soil pH influence nematode abundance. The nematode abundance increases when the soil pH is lower.

Keywords: Coffea canephora, coffee plantations, diversity, ecological role, nematode abundance

INTRODUCTION

Coffee crops that are widespread in tropical areas (Adhikari et al. 2020), provide income sources for farmers, materials for industrial production, a foreign exchange commodity, and employment, trading, and marketing activities (Sarirahayu and Aprianingsih 2018). Arabica (Coffea arabica) and Robusta (C. canephora) species have the highest economic value (Dias and Benassi 2015). Coffea arabica (ca. 75% of global coffee exports) is produced in more than 60 countries. Central and South America produce the most C. arabica (Krishnan 2017), more than 40% of all Arabica coffee is produced in Brazil (Zullo et al. 2011), and Robusta is produced mostly in West Africa and South Asia (Byrareddy et al. 2019). In Indonesia, Robusta, Arabica, and Liberica (C. liberica) are the commonly cultivated coffee plants (Byrareddy et al. 2019). The optimum environment for growing Robusta coffee is 300–800 meters above sea level (masl) (Adem et al. 2017). Most Robusta coffee is produced in the provinces of South Sumatra (29.3%), East Java (5.5%), and Central Java (3.5%) (Nurhakim 2015).

Soil provides a habitat for various macro and microorganisms, including nematodes. Some nematode species are free-living (non-plant parasitic) fungivores, bacterivores, predators, and omnivores (Hossain et al. 2016), while others parasitize plants, attacking their roots (Lazarova et al. 2021). Several parasitic nematode species cause damage to their hosts, which can include trees, grasses, foliage plants, and agriculture crops (Matute et al. 2012). Meloidogyne (root-knot nematodes), Radopholus (root-cavity nematodes), Pratylenchus (root-lesion nematodes), Rotylenchulus, and Helicotylenchus are the main parasitic nematode genera threatening agricultural crops. Several genera of nematodes are associated with coffee plants, and in many countries (Brazil and Mexico in particular), Meloidogyne spp. nematodes are causing significant damage to coffee crops, resulting in huge economic losses (Jones and Fosu-Nyarko 2014). Parasitic nematodes have been cited as substantial limiting factors in coffee plantations and coffee-producing areas worldwide (Asyiah et al. 2020).

Parasitic nematode infections can be difficult to identify because they attack the below-ground parts of the plant. Early symptoms of nematode attacks can include wilting, slow declines of plant growth, and yellowing foliage (Khan 2020), followed by stunting, flower loss, and, eventually, death. In general, plants affected by nematodes wither easily during the day, especially during the dry season. Nematode attacks in conjunction with pathogenic fungi or bacterial infection can cause more severe crop damage (Mitiku 2018). Apart from parasitic nematodes, several genera of non-plant parasitic nematodes, such as the omnivorous genus Dorylaimus, are associated with coffee plants (Renco et al. 2019). In addition, predatory nematodes play an important role in nematode
communities, acting as agents of biological control and bio-indicators of ecological change (Cock et al. 2012). Ecological factors, such as altitude, plant diversity, precipitation, and temperature, affect nematode distribution, diversity, and abundance (Nisa et al. 2021). Soil abiotic factors, including temperature, pH, waterholding capacity, and mineral composition, also influence nematode abundance and communities (Sholeha et al. 2017; Van Den Hoogen et al. 2019). Low soil pH can affect soil communities and food webs (Matute et al. 2012; Kalinkina et al. 2019), and 5 to 7 of pH is ideal for the growth of both parasitic and free-living nematodes (Knox et al. 2020). The addition of inorganic and organic fertilizers can alter soil pH, as well as porosity and texture, increasing the distribution, diversity, and abundance of nematodes in soil habitats (Mahmood et al. 2017). The diversity of nematodes is not often studied in coffee plantations in Malang District. This research investigated the ecological role, diversity, and abundance of nematodes in coffee plantations in Malang District, East Java.

MATERIALS AND METHODS

Sampling area

Soil sampling was conducted at three coffee plantation areas located at different altitudes in Malang District, East Java, Indonesia: Jatikerto Agrotechnopark, Kromengan sub-district; Ngantang sub-district; and University of Brawijaya (UB) Forest, Karangploso sub-district (Figure 1 and Table 1). The sampling location had the different soil properties are shown in Table 1. At the Jatikerto Agrotechnopark, Kromengan sub-district site, the crops were composed by Robusta coffee, jumbie bean (Leucanea spp.), banana (Musa spp.), and ginger (Zingiber officinale). Robusta coffee, durian (Durio zibethinus), pineapple (Ananas comosus), banana, and bamboo (Bambusoidae) were identified at the Ngantang sub-district site. Finally, vegetation in the UB Forest consisted of Robusta coffee and pine (Pinus merkustii).

Sampling procedures

Soil and root samples were collected from ten randomly selected coffee trees at each location (Widowati et al. 2014). Soil and root samples were dug from the root area using a hoe at approximately 20-cm depth in April 2019. Soil properties (soil temperature, organic matter, soil texture, soil moisture, and pH) and coffee cultivation systems were determined at each sampled location.

Nematode extraction and isolation

A Whitehead tray was used to extract and isolate nematodes from the soil and plant root samples. This method was modified from the Baermann funnel method (Cesarz et al. 2019). Soil (100 g) and root (10 g) samples were spread on tissue paper on top of a coarse filter and watered until fully soaked. The samples were incubated on the tray for 24 hours before the nematodes were extracted by sieving and decanting (Senthilkumar et al. 2021). Nematode extraction was repeated five times (ca. 24 hours for each). After decanting, the sediment was transferred onto a 365-mesh sieve placed on a petri dish (90-mm diameter). The suspension was homogenized using a syringe, and approximately 5 ml was poured into the counting dish. The number of nematodes was counted under a stereomicroscope. The nematodes were subsequently fixed in anhydrous glycerin and mounted on slides using a paraffin ring for identification (Ryss 2017). Nematode counts were calculated by multiplying the average number of individuals in each genus in 5 ml to reach the total volume of the sample (Rahman et al. 2014).

Nematode identification

Nematodes were identified using pictorial keys and identification books (Goodey and Goodey 1963; Tarjan et al. 1977; Mai 1988). The morphological characteristics used for identification were the lip shape, style shape, esophageal shape, reproductive organ type, knob shape, tail shape, and body length.

Data analysis

Nematodes population counts at each location were analyzed using Analysis of Variance (ANOVA) followed by Duncan’s Multiple Range Test (DMRT). The Shannon–Wiener index (H'), Simpson’s dominance index (1-D), and evenness index (E) (Krebs 1999; Tarno et al. 2016) were adopted to evaluate nematode diversity at each location. All data were analyzed using the vegan package in R version 3.3.3 (Oksanen 2015; R Core Development Team 2019). Results were considered statistically significant at \(P < 0.05\).

Locations	pH	Soil moisture (%)	Soil temp. (°C)	Soil texture	Organic matter (%)	Latitude	Longitude	Altitude (masl)*
Jatikerto Agrotechnopark	5.4	52.50	28.00	Silty clay	3.05	8°07'31.0"S	112°31'47.1"E	340
Ngantang	5.8	98.70	22.14	Clay loam	4.60	7°50'08.7"S	112°22'34.8"E	761
UB Forest	6.0	73.50	25.60	Silty clay loam	3.80	7°49'28.2"S	112°34'44.7"E	1,237

Note: *m asl is meters above sea level
RESULTS AND DISCUSSION

The ecological roles of nematodes in coffee plantations in Malang District

In Jatikerto Agrotechnopark, six genera of nematodes were identified: Criconemoides, Pratylenchus, Mononchus, Dorylaimus, Aphanolaimus, and Rhabditis. In Ngantang sub-district, eight genera were identified: Xiphinema, Criconemoides, Helicotylenchus, Pratylenchus, Dorylaimus, Mononchus, Rhabditis, and Aphanolaimus. Six genera, Criconemoides, Pratylenchus, Mononchus, Helicotylenchus, Rhabditis, and Dorylaimus, were collected in UB Forest (Table 2). All identified genera were classified into three orders, Tylenchida, Dorylaimida, and Rhabditida. The nematodes collected in this study play various ecological roles. Criconemoides, Pratylenchus, Xiphinema, and Helicotylenchus genera are plant-parasitic nematodes (Swibawa 2010). Pratylenchus spp. were the dominant plant-parasitic nematodes (95 individuals), accounting for 12.22% of all nematodes collected. Criconemoides, Xiphinema, and Helicotylenchus are ectoparasitic nematodes. Dorylaimus spp., which are non-plant parasitic nematodes, were the dominant species collected, accounting for 35% (272 individuals) of the total nematodes in the soil and roots. Mononchus, Dorylaimus, Rhabditis, and Aphanolaimus genera are all classified as free-living nematodes (Mirsam et al. 2020). The ecological roles of Mononchus and Dorylaimus are predatory and omnivorous, respectively; Rhabditis and Aphanolaimus are bacterivorous (Mirsam et al. 2020).

The abundances of nematode genera in each ecological role varied among the three sampling locations. The
number of Rhabditis individuals was higher in Jatikerto Agrotechnopark compared to the other locations. The 65 known species of Rhabditis are bacterivores and fungivores that decompose soil (Ronn et al. 2012). At the Ngantang sub-district location, Mononchus dominated the community and was found in greater numbers than at the other locations. The abundance of the Mononchus spp. may be influenced by the presence of prey. Widowati et al. (2014) stated that as predators of other nematodes, the Mononchus genus is typically found in areas where other nematodes are present, especially plant-parasitic nematodes. Predatory nematodes contribute to nitrogen mineralization in integrated agricultural systems and conventional agriculture (Yadav et al. 2018). At the UB Forest site, Dorylaimus species were more abundant than in other locations. Species belonging to the Dorylaimus genus are omnivorous nematodes (Eskandari et al. 2016). McSorley (2012) reported that several genera of omnivorous nematodes, such as Aporcelaimellus, Euodorlaimus, and Mesodorylaimus, are found in nearly all successions, often reaching the greatest numbers at the succession stage. Individuals of the Pratylenchus genus were present in all three locations in this study as plant-parasitic nematodes. Huyen et al. (2020) reported that the most common nematode species found in coffee plants is Pratylenchus coffeae. Pratylenchus species are the most commonly studied nematodes on coffee plants, as they are destructive pests (Thiep et al. 2019). Pratylenchus coffeae, initially described as attacking coffee plantations in Java, is among the most widely distributed species of root-lesion nematodes in coffee plantations worldwide (Budiman et al. 2019). Fanelli et al. (2018) reported that Pratylenchus nematodes are migratory endoparasites, commonly called root-wound or root-lesion nematodes.

Nematode diversity and abundance in coffee plantations in Malang District

The Shannon–Wiener diversity index in the Jatikerto Agrotechnopark, Ngantang sub-district, and UB Forest were 1.39, 1.28, and 1.31, respectively (Figure 2). The index values, which range from 1 to 3, were categorized as moderate diversity and moderate species distribution (Tarno et al. 2016) at all three sites. The evenness values in the Jatikerto Agrotechnopark, Ngantang sub-district, and UB Forest were 0.75, 0.61, and 0.73, respectively, indicating moderate evenness (Tarno et al. 2016). The Simpson’s dominant index values in the Jatikerto Agrotechnopark, Ngantang sub-district, and UB Forest were 0.30, 0.33, and 0.34, respectively. According to Krebs (1999), values less than 0.5 indicate no dominance in genera and species.

The total number of individual nematodes collected in the UB Forest sample (112 individuals) was significantly lower ($F = 4.36$, $P = 0.03$) than in Jatikerto Agrotechnopark (350 individuals) and Ngantang sub-district (315 individuals) samples (Figure 3). The vegetation at each location also had different plant species. The UB Forest site only had coffee plants and pine trees, representing lower vegetative diversity than the Jatikerto Agrotechnopark and Ngantang sub-district sites. This finding suggests that the lower plant diversity may have affected the nematode populations at the UB Forest site. Nematode abundance is strongly influenced by plant communities and diversity (Sohlenius et al. 2011; Vikeloff and Sohlenius 2011; Wang et al. 2019). Yan et al. (2020) reported that declining plant diversity decreases the abundance of nematodes in the soil. Other factors that influence nematode abundance include soil temperature, moisture, organic matter, and pH. Our analysis showed that soil moisture ($r = -0.08$, $P = 0.829$), temperature ($r = 0.03$, $P = 0.993$), and organic matter ($r = -0.12$, $P = 0.762$) were not correlated with nematode abundance. However, soil pH was negatively correlated with nematode abundance ($r = -0.84$, $P < 0.001$). Siepel et al. (2019) reported that increased pH (soil acidity) can induce faster reproduction in some nematode genera and species. Matute et al. (2012) also reported that the abundance of nematodes associated with Brassica rapa (fungivores, bacteriovorous, predatory, and plant-parasitic) was negatively correlated to soil pH. Soils with acidic pH increase nematode reproduction and enhance soil microbes (Nisa et al. 2021).

Table 2. Numbers of individuals in each nematode genera collected from coffee plantations in Malang District, East Java, Indonesia

Genera	Number of nematodes (Individuals/100 ml suspensions)	Total no. of individuals (N)	(% of N total)	Ecological role		
	Jatikerto	Ngantang	UB Forest			
Dorylaimus	118	100	54	272	35.00	Omnivorous
Rhabditis	138	33	21	192	24.71	Bacterivorous
Mononchus	50	132	8	190	24.45	Predatory
Pratylenchus	24	46	25	95	12.22	Plant Parasite
Criconemoides	14	1	1	16	2.05	Plant Parasite
Aphanolaimus	6	1	0	7	0.90	Bacterivorous
Helicotylenchus	0	1	3	4	0.51	Plant Parasite
Xiphinema	0	1	0	1	0.12	Plant Parasite
Total no. of individuals	350	315	112	777	100	
Total no. of genera	6	8	6			
Figure 2. Shannon–Weiner, Evenness, and Simpson’s indices for total nematodes collected in three coffee plantation locations in Malang District, East Java. (Shannon–Weiner Diversity index: < 1, low diversity, 1–3, moderate diversity, >3, high diversity. Species evenness index: 0.00 < E < 0.50, low evenness; 0.50 < E < 0.75, medium evenness; 0.75 < E < 1.00, high evenness. Simpson’s dominance index: 0 < D ≤ 0.5, no dominance; 0.5 > D ≥ 1, dominance.)

Figure 3. The total number of nematodes collected in root and soil samples from coffee plantations in Jatikerto Agrotechnopark, Ngantang sub-district, and UB Forest. Different lowercase letters denote significant differences at $P < 0.05$ (ANOVA; DMRT).

In conclusion, nematodes belonging to eight genera were identified in the Ngantang sub-district and six genera in the Jatikerto Agrotechnopark and UB Forest. *Criconemoides*, *Pratylenchus*, *Xiphinema*, and *Helicotylenchus* are plant-parasitic nematodes, and *Mononchus*, *Dorylaimus*, *Rhabditis*, *Aphanolaimus* are non-plant parasitic nematodes. Non-plant parasitic nematodes were more abundant than plant-parasitic nematodes. The omnivorous *Dorylaimus* genus was most dominant (ca. 35% of all nematodes collected). Plant diversity and soil pH are the influence factors on the abundance of nematodes in this study. Nematode abundance increased with lower pH. The plant-parasitic nematodes in each location can potentially damage coffee plants.
ACKNOWLEDGEMENTS

Thank to Laboratory of Biological Control, Department of Plant Pest and Disease, University of Brawijaya, Indonesia which given permission and providing facilities to conduct this research.

REFERENCES

Adem MW, Meulenaer B, Duchateau L, Boeckx P. 2017. Effect of altitude on biochemical composition and quality of green arabica coffee beans can be affected by shade and postharvest processing methods. Food Res Int 105: 278-285. DOI: 10.1016/j.foodres.2017.11.016.

Adhikari M, Isaac RRM, Maslin MA. 2020. A review of potential impacts of climate change on coffee cultivation and mycotoxigenic fungi. Microorganisms 8 (10): 1-12. DOI: 10.3390/microorganisms8101025.

Asyiah IN, Mudakir I, Hoesain M, Pradana AP, Djuanda A et al. 2020. Functional variation of two novel hsp-90, in Coffea canephora (Sapindaceae). Indian J Agric Sci 80: 293-310. DOI: 10.1163/15685411-00002960.

Budiman A, Supramana S, Giyanto G. 2019. Morphological and molecular characteristics of Pratylenchus coffeae from the origin of Robusta coffee plantation in Malang, East Java. J Perlindungan Tanam Indoensia 23(2): 211. DOI: 10.22146/jptl.42481. [Indonesian]

Byrareddy V, Koudgio L, Mushtaq S, Stone R. 2019. Sustainable production of Robusta coffee under a changing climate: A 10-year monitoring of fertilizer management in coffee farms in Vietnam and Indonesia. Agronomy 9 (9): 499. DOI: 10.3390/agronomy9090499.

Cesarz S, Eva S A, Beugnon R, Eisenhauer N. 2019. Testing soil nematode extraction efficiency using different variations of the Baermann-funnel method. Soil Org 91 (2): 61-72. DOI: 10.25674/sor91201.

Cock MJW, Bijsmeijer JC, Cannon RJ, Gerard PJ, Gillespie D, Jimenez JJ, Raina SK. 2012. The positive contribution of invertebrates to sustainable agriculture and food security. CAB Rev 7(043): 1-27. DOI: 10.1097/PAVSNR21270943.

Dias R, Benassi M. 2015. Discrimination between Arabica and Robusta coffees using Hydrolysoluble Compounds: Is the Efficiency of the parameters dependent on the roast degree? Beverages 1 (3): 127-139. DOI: 10.3390/beverages10300127.

Eskandari A, Clau S, Rappazzo G, Asghari R, Vinciguerra M. 2016. Description and molecular characterisation of two new species of Dorylaimidae (Dorylaimida: Nematoda) from Iran, with a compendium of all the nominal species of Dorylaimus djuardin, 1845. Nematology 18: 293-310. DOI: 10.1163/15685411-00002960.

Fanelli E, Troccoli A, De Luca F. 2018. Functional variation of two novel cellulases, Pve-5g and Pve-8g, and the Heat Shock 90 Gene, Pve-hsp90, in Pratylenchus vulnus and their expression in response to different temperature stress. Intl J Mol Sci 20(1): 107. DOI: 10.3390/ijms20010107.

Goodey T, Goodey JB. 1963. Soil and Freshwater Nematodes: Rewritten by J.B. Goodey. Methuen, London. DOI: 10.1007/978-1-4684-9016-9_5.

Hossain M, Moens M, Sutter N. 2016. Nematode feeding types in communities of soil nematodes associated with maize rhizosphere in Malakai Highland, South Sulawesi, Indonesia. Biodiversitas 21 (6): 2654-2661. DOI: 10.13057/biodiv210637.

Huyen LT, Nguyen T, Nguyen D, Nguyen H, Pham N et al. 2020. Occurrence of endophytic bacteria in Vietnamese Robusta coffee beans can be affected by shade and postharvest processing methods. Food Res Int 105: 278-285. DOI: 10.1016/j.foodres.2017.11.016.

Jones M, Fosu-Nyarko J. 2014. Molecular biology of root-lesion nematodes (Pratylenchus spp.) and their interaction with host plants. Ann Appl Biol 164. DOI: 10.1111/aab.12105.

Kalininka DS, Suschuk AA, Matveeva EM, Zenkova IV. 2019. Communities of soil nematodes in the sub crown areas of trees introduced on the territory of the Polar—Alpine Botanical Garden. Contemp Probl Ecol 12(1): 59-70. DOI: 10.1134/S1995439819010074.

Khan MR. 2020. Nematode infestation, a potential threat to Indian forests. Indian Phytomath 73 (3): 397-414. DOI: 10.1007/s43260-020-00228-9.
Swihowa IG, Aeny TN. 2010. Nematode diversity in a range of land use types in Jambi Benchmark Indonesia. J Hama dan Penyakit Tumbuh Trop 10 (2): 162-171. DOI: 10.23960/j.hptt.210162-171. [Indonesian]
Tarjan A, Robert PE, Shih LC. 1977. Interactive Diagnostic Key to Plant Parasitic, Free-living and Predaceous Nematodes. J Water Pollut Control Fed 49: 2318-2337.
Tarno H, Septia ED, Aini LQ. 2016. Microbial community associated with Ambrosia beetle, *Euplatypus parallelus* on Sonokembang, *Pterocarpus indicus* in Malang. Agrivita J Agric Sci 38(81): 312-320. DOI: 10.17503/agrivita.v38i3.628.
Thiep NV, Soytong K, Oanh NTK, Hung PM. 2019. Study on nematodes (*Pratylenchus* spp.) on Arabica coffee in Northwestern Vietnam. Intl J Agric Technol 15(4): 675-684.
van den Hoogen J, Geisen S, Routh D, et al. 2019. Soil nematode abundance and functional group composition at a global scale. Nature 572: 194-198. DOI: 10.1038/s41586-019-1418-6.
Viketoft M, Sohlenius B. 2011. Soil nematode populations in a grassland plant diversity experiment run for seven years. Appl Soil Ecol 48(2): 174-184. DOI: 10.1016/j.apsoil.2011.03.008.
Wang M, De Deyn GB, Bezemer TM. 2019. Separating effects of soil microorganisms and nematodes on plant community dynamics. Plant Soil 441 (1): 455-467. DOI: 10.1007/s11104-019-04137-3.
Widowati R, Indarti S, Rahayu B. 2014. Distribution of non plant parasitic nematodes genera in Arabica coffee. J Perlindungan Tanam. Indonesia 18 (1): 24-32. DOI: 10.22146/jpti.15572. [Indonesian]
Yadav S, Patil J, Kanwar R. 2018. The role of free-living nematode population in the organic matter recycling. Intl JCurr Microbiol Appl Sci 7: 2726-2734. DOI: 10.20546/ijcmas.2018.706.321.
Yan J, Youzheng Z, Crawford K, Chen X, Yu S et al. 2020. Plant genotypic diversity effects on soil nematodes vary with trophic level. New Phytol 229: 1-10. DOI: 10.1111/nph.16829.
Zullo JJ, Pinto H, Assad E, Avila A. 2011. Potential for growing Arabica coffee in the extreme south of Brazil in a warmer world. Clim Change 109: 535-548. DOI: 10.1007/s10584-011-0058-0.