Draft genomic sequence of a chromate- and sulfate-reducing \textit{Alishewanella} strain with the ability to bioremediate Cr and Cd contamination

Xian Xia1, Jiahong Li1, Shuijiao Liao1,2, Gaoting Zhou1,2, Hui Wang1, Liqiong Li1, Biao Xu1 and Gejiao Wang1

Abstract

\textit{Alishewanella} sp. WH16-1 (= CCTCC M201507) is a facultative anaerobic, motile, Gram-negative, rod-shaped bacterium isolated from soil of a copper and iron mine. This strain efficiently reduces chromate (Cr$^{6+}$) to the much less toxic Cr$^{3+}$. In addition, it reduces sulfate (SO$^{4-}$) to S$^{2-}$. The S$^{2-}$ could react with Cd$^{2+}$ to generate precipitated CdS. Thus, strain WH16-1 shows a great potential to bioremediate Cr and Cd contamination. Here we describe the features of this organism, together with the draft genome and comparative genomic results among strain WH16-1 and other \textit{Alishewanella} strains. The genome comprises 3,488,867 bp, 50.4 % G+C content, 3,132 protein-coding genes and 80 RNA genes. Both putative chromate- and sulfate-reducing genes are identified.

Keywords: \textit{Alishewanella}, Chromate-reducing bacterium, Sulfate-reducing bacterium, Cadmium, Chromium

Abbreviation: PGAP, Prokaryotic Genome Annotation Pipeline

Introduction

The genus \textit{Alishewanella} was established by Vogel et al., in 2000 with \textit{Alishewanella fetalis} as the type species. It belongs to the family \textit{Alteromonadaceae} of the class \textit{Gammaproteobacteria} [1]. So far, \textit{Alishewanella} contains six species: \textit{A. fetalis}, \textit{Alishewanella astroyarrii}, \textit{Alishewanella jeotgali}, \textit{Alishewanella agri} and \textit{Alishewanella tabrizica} and \textit{Alishewanella solinquinati} [1–6]. The common characteristics of the genus \textit{Alishewanella} are Gram-negative, rod-shaped and positive for oxidase and catalase [1–6]. Some \textit{Alishewanella} strains were able to degrade pectin which is applicable in bioremediation of food industrial wastes [7–11]. Three \textit{Alishewanella} strains (\textit{A. astroyarrii} B11T, \textit{A. jeotgali} KCTC 22429T and \textit{A. agri} BL06T) have been sequenced and the pectin degradation pathway was found in their genomes [8–11]. Some strains of \textit{Alishewanella} were reported to tolerate arsenic [12, 13], but the ability of \textit{Alishewanella} strains to resist or transform other heavy metal(loids) have not been reported.

\textit{Alishewanella} sp. WH16-1 was isolated from mining soil in 2009. This strain could resist to multiple heavy metals. During cultivation, it could efficiently reduce the toxic chromate (Cr$^{6+}$) to the much less toxic and less bioavailable Cr$^{3+}$. It could also reduce sulfate (SO$^{4-}$) to S$^{2-}$. When Cd$^{2+}$ was present, the S$^{2-}$ reacted with Cd$^{2+}$ and precipitated as CdS. These characteristics made strain WH16-1 a great potential for bioremediate Cr and Cd contamination. In pot experiments of rice, tobacco and Chinese cabbage, with the addition of the bacterial culture, the amount of Cr and Cd in the plants decreased significantly [14]. Sequencing the genome of WH16-1 and comparing its attributes with the other \textit{Alishewanella} genomes would provide a means of establishing the molecular determinants required for chromate/sulfate reduction, heavy metal resistance and pectin degradation, and for better application of these strains. Here we report the high quality draft genomic information of strain WH16-1 and compare it to the three sequenced \textit{Alishewanella} genomes.
Organism information

Classification and features

Phylogenetic analysis was performed by the neighbor-joining method based on 16S rRNA gene sequences. Strain WH16-1 is closely related to *A. agri* BL06T (99.7 %) and *A. fetalis* CCUG 30811T (99.1 %) (Fig. 1). A similar result was obtained based on gyrase B gene (*gyrB*) sequences (Additional file 1: Figure S1). The *gyrB* sequences has been successfully used to establish phylogenetic relatedness in *Alishewanella* [1], *Pseudomonas* [15], *Acinetobacter* [16], *Vibrio* [17], *Bacillus* [18] and *Shewanella* [19].

Strain WH16-1 is Gram-negative, facultatively anaerobic, motile and rod-shaped (0.3–0.5 × 1.2–2.0) (Fig. 2). Colonies are white, circular and raised on LB agar plate. Growth occurs at 4–40 °C, in 0–8 % (w/v) NaCl and at pH 4–11. Optimal growth occurs at 37 °C, 1 % (w/v) NaCl and at pH 6.0–8.0 (Table 1). It can grow in LB, trypticase soy broth and R2A medium. API 20NE test (bioMérieux) in combination of traditional classification methods were used to analyze the physiological and biochemical characteristics. Strain WH16-1 is positive for oxidase and catalase activities and is able to reduce nitrate to nitrite. It is positive for aesculine, gelatinase, arginine dihydrolase and urease but is negative for indole and β-galactosidase. It can use D-sucrose and maltose as the sole carbon sources. It cannot assimilate D-glucose, L-arabinose, D-mannose, D-mannitol, N-acetylglucosamine, gluconate, capric acid, adipic acid, malic acid, trisodium citrate or phenylacetic acid. Most of these biochemical characteristics are similar to the other *Alishewanella* strains [1–6]. However, unlike some *Alishewanella* strains [8–11], strain WH16-1 cannot degrade pectin.

Interestingly, the strain could reduce 1 mmol/L Cr$_{6}^{3+}$ (added as K$_2$CrO$_4$) in 36 h and remove 60 μmol/L Cd$_{2}^{+}$ (added as CdCl$_2$) in 60 h (by the production of precipitated CdS [20] in LB liquid medium) (Fig. 3). In addition, this strain is tolerant to multi-metal(loids). The minimal inhibition concentration tests for different heavy metals were carried out on LB agar plates and...
Table 1 Classification and general features of *Alishewanella* sp. WH16-1 [47]

MIGS ID	Property	Term	Evidence code
	Classification	Domain *Bacteria*	TAS [48]
		Phylum *Proteobacteria*	TAS [49, 50]
		Class *Gammaproteobacteria*	TAS [51–53]
		Order *Alteromonadales*	TAS [52–54]
		Family *Alteromonadaceae*	TAS [55]
		Genus *Alishewanella*	TAS [1]
	Species *Alishewanella* sp.	Strain WH16-1	
	Gram stain	negative	IDA
	Cell shape	rod	IDA
	Motility	motile	IDA
	Sporulation	non-sporulating	NAS
	Temperature range	4–40 °C	IDA
	Optimum temperature	37 °C	IDA
	pH range; Optimum	4–11; 6–8	IDA
	Carbon source	maltose, D-sucrose	IDA
MIGS-6	Habitat	soil	IDA
MIGS-6.3	Salinity	0–8 % NaCl (w/v), optimal at 1 %	IDA
MIGS-22	Oxygen requirement	facultative anaerobic	IDA
MIGS-15	Biotic relationship	free-living	IDA
MIGS-14	Pathogenicity	non-pathogen	NAS
MIGS-4	Geographic location	Huangshi city, Hubei province, China	IDA
MIGS-5	Sample collection	2009	IDA
MIGS-4.1	Latitude	N29°40′–30°15′	IDA
MIGS-4.2	Longitude	E114°31′–115°20′	IDA
MIGS-4.4	Altitude	not reported	

These evidence codes are from the Gene Ontology project [56]

IDA Inferred from Direct Assay, TAS Traceable Author Statement (i.e., a direct report exists in the literature), NAS Non-traceable Author Statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence)

* Evidence codes

Fig. 3 Cr$^{6+}$ and Cd$^{2+}$ removed by *Alishewanella* sp. WH16-1. Control stands for null LB medium. Strain WH16-1 was incubated until OD$_{600}$ reach 1.0, and then amended with K$_2$Cr$_2$O$_7$ (1 mmol/L) and CdCl$_2$ (0.06 mmol/L), respectively. The cultures were removed at 12 h intervals. After centrifuging at 12,000 rpm for 2 min, the supernatant was used to determine the residual concentration of Cr$^{6+}$ and Cd$^{2+}$. The concentration of Cr$^{6+}$ and Cd$^{2+}$ were measured by the UV spectrophotometer (DU800, Beckman, CA, USA) with the colorimetric diphenylcarbazide (DPC) method [46] and the atomic absorption spectrometry AAS, respectively.
incubated at 37 °C for 2 days. The MICs for K₂CrO₄, CdCl₂, PbCl₂, CuCl₂ and Na₃AsO₃ are 45, 0.08, 10, 1 and 1 mmol/L, respectively.

Genome sequencing information

Genome project history

Strain WH16-1 was selected for genome sequencing based on its ability to reduce Cr⁶⁺ and SO₄²⁻ and preliminary application for soil Cr and Cd bioremediation. Since 2009, this strain has been used in both basic and bioremediation studies and the results are very promising. It was sequenced by Majorbio Bio-pharm Technology Co., Ltd, Shanghai, China. The genome sequencing and assembly information of the project is given in Table 2. The final genome consists of 133 scaffolds with approximately 345.3 x coverage. The draft genome sequence was annotated by NCBI PGAP. The genome sequence is available in DDBJ/EMBL/GenBank under accession number LCWL00000000.

Growth conditions and genomic DNA preparation

A single colony of strain WH16-1 was incubated into 50 ml LB medium and grown aerobically at 37 °C for 36 h with 150 rpm shaking. The cells were collected by centrifugation. The DNA was extracted, concentrated and purified using the QiAamp kit (Qiagen, Germany). A NanoDrop Spectrophotometer 2000 was used to determine the quality and quantity of the DNA. Six micrograms of DNA was sent to Majorbio Bio-pharm Technology Co., Ltd (Shanghai, China) for sequencing.

Genome sequencing and assembly

The genome sequencing of strain WH16-1 was performed on an Illumina Hiseq2000 [21] and assembled by Majorbio Bio-pharm Technology Co., Ltd, Shanghai, China. An Illumina standard shotgun library was constructed and sequenced, which generated 12,683,662 reads totaling 1,281,049,862 bp. All original sequence data can be found at the NCBI Sequence Read Archive [22]. The following steps were performed for removing low quality reads: (1) removed the adapter o reads; (2) cut the 5’ end bases which were not A, T, G, C; (3) filtered the reads which have a quality score lower than 20; (4) filtered the reads which contained N more than 10 %; and (5) removed the reads which have the length less than 25 bp after processed by the previous four steps. The reads were assembled into 156 contigs using SOAPdenovo v1.05 [23]. A total of 149 contigs were obtained after removing the contigs < 200 bp. The total size of the genome is 3,488,867 bp and the final assembly is based on 1,205 Mbp of Illumina data which provides a coverage of 345.3 x .

Genome annotation

The draft genome of WH16-1 was annotated through the NCBI PGAP, which combines the gene caller GeneMarkS+ [24] with the similarity-based gene detection approach. Protein function classification was performed by WebMGA [25] with E-value cutoff of 1-e10. The transmembrane helices were predicted by TMHMM v. 2.0 [26]. Signal peptides in the genome were predicted by SignalP 4.1 [27]. The translations of the predicted CDSs were also used to search against the Pfam protein family database with E-value cutoff of 1-e5 [28] and the KEGG database [29]. Internal gene clustering was performed by OrthoMCL using Match cutoff of 50 % and E-value Exponent cutoff of 1-e5 [30, 31].

Genome properties

The whole genome of strain WH16-1 is 3,488,867 bp in length, with an average G + C content of 50.4 %, and is distributed in 149 contigs (>200 bp). The genome properties and statistics are summarized in Table 3. There are 80 predicted RNA including 73 tRNA, 5 rRNAs and 2 ncRNA. In addition, a total of 3,132 protein-coding reads.
Table 3 Nucleotide content and gene count levels of the genome

Attribute	Genome (total)	% of total
Genome size (bp)	3,488,867	100.00
DNA coding (bp)	3,117,033	89.34
DNA G+C (bp)	1,759,785	50.44
DNA scaffolds	133	100.00
Contigs	149	100.00
Total genes*	3,282	
RNA genes	80	
Pseudo genes	73	
Protein-coding genes	3,132	100.00
Genes in internal clusters	1,190	37.99
Genes with function prediction	2,388	76.25
Genes assigned to COGs	2,249	71.81
Genes with Pfam domains	2,710	86.53
Genes with signal peptides	367	11.72
Genes with transmembrane helices	1,101	35.15
CRISPR repeats	1	

*The total is based on either the size of the genome in base pairs or the total number of protein coding genes in the annotated genome.

Table 4 Number of genes associated with the 25 general COG functional categories

Code	Value	% of total	Description
J	175	5.59	Translation
A	1	0.03	RNA processing and modification
K	153	4.89	Transcription
L	141	4.50	Replication, recombination and repair
B	2	0.06	Chromatin structure and dynamics
D	34	1.09	Cell cycle control, mitosis and meiosis
Y	0	0.00	Nuclear structure
V	56	1.79	Defense structure
T	216	6.90	Signal transduction mechanisms
M	156	4.98	Cell wall/membrane biogenesis
N	87	2.78	Cell motility
Z	0	0.00	Cytoskeleton
W	0	0.00	Extracellular structures
U	77	2.46	Intracellular trafficking and secretion
O	116	3.70	Posttranslational modification, protein turnover, chaperones
C	157	5.01	Energy production and conversion
G	90	2.87	Carbohydrate transport and metabolism
E	207	6.61	Amino acid transport and metabolism
F	62	1.98	Nucleotide transport and metabolism
H	132	4.21	Coenzyme transport and metabolism
I	85	2.71	Lipid transport and metabolism
P	148	4.73	Inorganic ion transport and metabolism
Q	41	1.31	Secondary metabolites biosynthesis, transport and catabolism
R	244	7.79	General function prediction only
S	202	6.45	Function prediction only
-	885	28.26	Not in COGs

The total is based on the total number of protein coding genes in the annotated genome.

Insights from the genome sequence

Strain WH16-1 has the genes for a complete \(\text{SO}_4^{2-} \) reduction pathway according to the KEGG analysis, including CysPUWA, CysN, CysD, CysC, CysH and CysIJ (Additional file 1: Figure S2; Additional file 2: Table S1). This pathway contained several steps: 1) the \(\text{SO}_4^{2-} \) is uptaken by the putative CysPUWA into the cell [32]; 2) the intracellular \(\text{SO}_4^{2-} \) is acetylated to adenylylsulphate (APS) by sulfate adenylyltransferases CysN and CysD [33]; 3) the APS is phosphorylated to phosphoadenylylsulphate (PAPS) by APS reductase CysC [33] and, 4) the PAPS is reduced to sulfite (\(\text{SO}_3^{2-} \)) by PAPS reductase CysH [33] and, 5) the \(\text{SO}_3^{2-} \) is finally reduced to sulfide (\(\text{S}_2^{2-} \)) by sulfite reductase CysIJ [33]. Strain WH16-1 was able to remove \(\text{Cd}^{2+} \) most probably due to the reaction between \(\text{S}_2^{2-} \) and \(\text{Cd}^{2+} \) to form the precipitated \(\text{CdS} \) [20]. For \(\text{Cr}^{6+} \) reduction, a putative chromate reductase YieF was found (Additional file 2: Table S1). YieF was reported to responsible for the reduction of \(\text{Cr}^{6+} \) in cytoplasm [34]. An individual chromate transport gene chrA and a chromate resistance cluster including chrBAC, hp1, chrf, lppy/lpqo, hp2 and ABC transport permease gene are found in the genome (Additional file 2: Table S2) [35, 36]. Currently, we have disrupted the chrA (AAY72_02075) and the ABC transport permease genes, respectively. The chromate resistance levels were both decreased significantly in the chrA and ABC transport permease gene mutant strains (data not shown).

In addition, various heavy metal transformation and resistance determinants are identified in the genome of strain WH16-1. Several transporters (MntH, CzcA and ZntA) that might be involved in the efflux of \(\text{Cd}^{2+} \), \(\text{Pb}^{2+} \) and \(\text{Zn}^{2+} \) are found [37–39]. \(\text{Cu}^{2+} \), As\(^{3+} \) and Hg\(^{2+} \) resistance determinants are also present, such as \(\text{Cu} \) transporter ATPase [40], \(\text{Cu}^{2+} \) resistance system CopABCD [41], Ars [42] and Pst [43] systems for arsenic resistance and MerT-PADE system for mercury resistance [44] (Additional file 2: Table S2).

Strain WH16-1 has a genome size (3.49 Mbp), similar to A. jeotgali KCTC 22429\(^T \) (3.84 Mbp), A. aestuarii
B11T (3.59 Mbp) and A. agri BL06T (3.49 Mbp) [8–10] (Fig. 4). The G + C content of strain WH16-1 (50.4 %) is also consistent with the other Alishewanella strains (A. jeotgali KCTC 22429T, 50.7 %, A. aestuarii B11T, 51 % and A. agri BL06T, 50.6 %). Strain WH16-1 shares 2,474 proteins with the other three Alishewanella genomes and has 217 strain-specific proteins (Fig. 5). The 2,474 core genes include yieF, chrA, the ten genes in the whole sulfate reduction pathway and most of the heavy metal resistance genes (Additional file 2: Table S1-S2). Strain WH16-1 possesses the higher number of chromatin resistance genes compared to the other three strains.

In addition, A. agri BL06T, A. jeotgali KCTC 22429T and A. aestuarii B11T were all reported to have the ability of degrading pectin and possess pectin degradation genes [8–11]. However, unlike strains BL06T, KCTC 22429T and B11T, strain WH16-1 was unable to degrade pectin and the pectin degradation genes are not found in its genome. Since strain WH16-1 was isolated from a heavy metal rich environment, it may be more relevant for bioremediation of heavy metal contamination. The pectin degradation genes may be lost during the evolution.
Conclusions
The genomic results of *Alishewanella* sp. WH16-1 reveal correlation between the gene types and some phenotypes. The strain harbors various genes responsible for sulfate transport and reduction, chromate reduction and resistance of multi-heavy metals. These observations provide insights into understanding the molecular mechanisms of heavy metals. In addition, all of the analyzed *Alishewanella* genomes have putative sulfate and chromate reduction genes, which indicates that sulfate and chromate reduction may be the important characters of the *Alishewanella* strains. Thus, these strains have a great potential for application in bioremediation of heavy metal or other industrial wastes.

Additional files

Additional file 1: Figure S1. Phylogenetic relationships of *Alishewanella* sp. WH16-1 based on gyrB sequences. The analysis was performed by MEGA 6.0 [5] with NJ algorithm and 1,000 bootstrap replications were computed to estimate the reliability of the tree. The gyrB gene of strain WH16-1 is the gene sequence coding for AA72_14980. **Figure S2.** The putative sulfate transport and reduction pathway in *Alishewanella* sp. WH16-1. APS stands for adenylylsulphate, PAPS stands for phosphoadenylylsulphate. The locus tag numbers of the predicted proteins (CysS, CysU, CysW, CysX, CysN, CysD, CysC, CysH CysJ and CysI) are AA72_14980, AA72_14885, AA72_14880, AA72_14875, AA72_03865, AA72_03870, AA72_07290, AA72_07265, AA72_07255 and AA72_07260, respectively. (DOCX 355 kb)

Additional file 2: Table S1. Putative proteins involved in sulfate and chromate reduction. **Table S2.** Putative proteins involved in heavy metal resistance. (XLSX 14 kb)

Acknowledgments
This work was supported by the National Natural Science Foundation of China (31470226).

Authors' contributions
XX carried out biochemical tests, sequence analysis and preparation of the draft. JL participated in the metal resistance test and phylogenetic analysis. GZ and LL did metal removal tests. HW and BX conducted strain isolation. GW and SL participated in research design and helped to draft the manuscript. All authors read and approved the final manuscript.

Competing interests
The abilities to reduce Cr(III) and immobilize Pb(II) and Cd(II) of strain WH16-1 have a great potential for application in bioremediation of heavy metal. All the authors of this paper and the inventors of the patent [14] declare that they have no commercial or non-commercial competing interests.

Author details
1State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People’s Republic of China. 2College of Basic Sciences, Huazhong Agricultural University, Wuhan 430070, People’s Republic of China.

Received: 19 December 2015 Accepted: 22 July 2016
Published online: 05 August 2016

References
1. Vogel BF, Venkateswaran K, Christensen H, Falsen E, Christiansen G, Gram L. Polyphasic taxonomic approach in the description of *Alishewanella fetais* gen. nov, sp. nov, isolated from a human foetus. Int J Syst Evol Microbiol. 2000;50:1133–42. PMID: 10840355.
24. Besemer J, Lomsadze A, Borodovsky M. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res. 2001;29(12):2607–18. PMID: 11410670.

25. Wu S, Zhu Z, Fu L, Niu B, Li W. WebMGA: a customizable web server for fast metagenomic sequence analysis. BMC Genomics. 2011;12:444. doi:10.1186/1471-2164-444. PMID: 21899761.

26. Krogh A, Larsson BE, Von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001;305:567–80. PMID: 11152613.

27. Petersen TN, Brunak S, Heijne GV, Nielsen H. SignAl 4.0: discriminating signal peptides from transmembrane regions. Nat Methods. 2011;8:705–6. doi:10.1038/nmeth.1701. PMID: 21959151.

28. Finn RD, Bateman A, Cerruti L, Coggill P, Eddy SR, Eberhardt RY, et al. Pfam: the protein families database. Nucleic Acids Res. 2014;42:222–30. doi:10.1093/nar/gkt1223. PMID: 24288371.

29. Kaneshia M, Goto S, Kawashima S, Okuno Y, Hattori M. The KEGG resource for deciphering the genome. Nucleic Acids Res. 2004;32:D227–D80. PMID: 14681412.

30. Li L, Stoeckert Jr CJ, Roos DS. OrthoMCL: identification of ortholog groups for euukaryotic genomes. Genome Res. 2003;13:2178–89. PMID: 12952885.

31. Fischer S, Brunk B, Chen F, Gao X, Harb OS, Iodice JB, et al. Using OrthoMCL to assign proteins to OrthoMCL-DB groups or to cluster proteins into new orthologous groups. Curc Proto Bioinformatics. 2011;6:12. doi:10.1002/tupj.201100773. PMID: 21901743.

32. Sirko A, Zatyka M, Sadowsy E, Hulanicka D. Sulfate and thiosulfate transport in Escherichia coli K12: evidence for a functional overlapping of sulfate- and thiosulfate-binding proteins. J Bacteriol. 1995;177(14):4134–6. PMID: 7609289.

33. Sekowska A, Kung HF, Danchin A. Sulfur metabolism in Escherichia coli and related bacteria facts and fiction. J Mol Microbiol Biotechnol. 2000;3(2):145–75. PMID: 10939241.

34. Ackerley DF, Gonzalez CF, Park CH, Blake R, Keyhan M, Matin A. Chromate-reducing properties of soluble flavoproteins from Pseudomonas putida and Escherichia coli. Appl Environ Microbiol. 2004;70(2):873–82. PMID: 14766067.

35. Bianco R, Chong AP, Johnston T, Gurel V, Morais P, Zhikhovitch A. The chromate-inducible chrABCDEF operon from the transposable element TnCrCh confers resistance to chromium (VI) and superoxide. J Bacteriol. 2008;190:6966–7003. doi:10.1128/JB.00289-08. PMID: 18776016.

36. Henne KL, Nakatsu CH, Thompson DK, Konopka AE. High-level chromate resistance in Arthrobacter sp. strain FB24 requires previously uncharacterized accessory genes. BMC Microbiol. 2009;9:199. doi:10.1186/1471-2180-9-199. PMID: 19758450.

37. Maku H, Roig E, Cole ST, Helmann JD, Gros P, Cellier MF. Identification of the Escherichia coli K12 NrmA orthologue (MntH) as a selective divalent metal ion transporter. Mol Microbiol. 2000;35(5):1065–78. PMID: 10712688.

38. Nies DH, Nies A, Chu L, Silver S. Expression and nucleotide sequence of a Zn (II)-translocating P-type ATPase. Proc Natl Acad Sci U S A. 1997;94(26):14326–31. PMID: 9405611.

39. Odermatt A, Suter H, Krapf R, Solioz M. Primary structure of two P-type metal ion transporters from the copper-sensitive pseudomonas putida strain. Mol Microbiol. 2000;35(5):1065–78. PMID: 10712688.

40. Kruger MC, Bertin PN, Heipieper HJ, Arsène-Ploetze F. Bacterial metabolism of environmental arsenic–mechanisms and biotechnological applications. Appl Microbiol Biotechnol. 2013;97(9):3827–41. doi:10.1007/s00253-013-4838-5. PMID: 23546422.