OPERATOR LIPSCHITZ FUNCTIONS ON BANACH SPACES

JAN ROZENDAAL, FEDOR SUKOCHEV, AND ANNA TOMSKOVA

ABSTRACT. Let X, Y be Banach spaces and let $L(X, Y)$ be the space of bounded linear operators from X to Y. We develop the theory of double operator integrals on $L(X, Y)$ and apply this theory to obtain commutator estimates of the form

$$
\|f(B)S - Sf(A)\|_{L(X,Y)} \leq \text{const} \|BS - SA\|_{L(X,Y)}
$$

for a large class of functions f, where $A \in L(X)$, $B \in L(Y)$ are scalar type operators and $S \in L(X, Y)$. In particular, we establish this estimate for $f(t) := |t|$ and for diagonalizable operators on $X = \ell_p$ and $Y = \ell_q$, for $p < q$ and $p = q = 1$, and for $X = Y = c_0$. We also obtain results for $p \geq q$.

We study the estimate above in the setting of Banach ideals in $L(X, Y)$. The commutator estimates we derive hold for diagonalizable matrices with a constant independent of the size of the matrix.

1. INTRODUCTION

Let X be a Banach space and let $L(X)$ be the space of all bounded linear operators on X. Let $A, B \in L(X)$ be scalar type operators (see Definition 3.1 below) on X. Let $f : \text{sp}(A) \cup \text{sp}(B) \to \mathbb{C}$ be a bounded Borel function, where $\text{sp}(A)$ (resp. $\text{sp}(B)$) is the spectrum of the operator A (resp. B). We are interested in Lipschitz type estimates

$$
\|f(B) - f(A)\|_{L(X)} \leq \text{const} \|B - A\|_{L(X)},
$$

where $\|\cdot\|_{L(X)}$ is the uniform operator norm on the space $L(X)$, and more generally in commutator estimates

$$
\|f(B)S - Sf(A)\|_{L(X,Y)} \leq \text{const} \|BS - SA\|_{L(X,Y)}
$$

for Banach spaces X and Y, scalar type operators $A \in L(X)$ and $B \in L(Y)$, and $S \in L(X, Y)$. This problem is well known in the special case where $X = Y$ is a separable Hilbert space, such as ℓ_2, and A and B are normal operators on X. In this paper we study such estimates in the Banach space setting, and specifically for $X = \ell_p$ and $Y = \ell_q$ with $p, q \in [1, \infty]$.

In the special case where A, B are self-adjoint bounded operators on a Hilbert space H the estimate

$$
\|f(B) - f(A)\|_{L(H)} \leq \text{const} \|B - A\|_{L(H)}
$$

was established by Peller [24, 26] (see also [10]) for $f : \mathbb{R} \to \mathbb{R}$ in the Besov class $\mathcal{B}_{p, q}^1(\mathbb{R})$ (for the definition of $\mathcal{B}_{p, q}^1(\mathbb{R})$ see Section 3.3). This result extended a long line of results from [6] - [7], in which the theory of double operator integration

\textbf{Date:} January 15, 2015.

2010 Mathematics Subject Classification. Primary 47A55, 47A56; secondary 47B47.

The first-named author is supported by NWO-grant 613.000.908 “Applications of Transference Principles”.

1
was developed to study the difference $f(B) - f(A)$ (see also \cite{[8]}). This theory was revised and extended in various directions, including the Banach space setting, in \cite{[11]}. However, until now the results in the general setting were much weaker than in the Hilbert space setting. In this paper we show that for scalar type operators on Banach spaces one can obtain results matching those on Hilbert spaces.

In Corollary 6.15 below we prove that \eqref{1.4} holds when $A, B \in \mathcal{L}(X)$ are scalar type operators with real spectrum and $f \in \dot{B}_{\infty,1}^1(\mathbb{R})$. It is immediate from the definition of a scalar type operator that every normal operator on H is of scalar type. Therefore, Corollary 6.15 extends \eqref{1.3} to the Banach space setting. More generally, \eqref{1.2} holds for $f \in \dot{B}_{\infty,1}^1(\mathbb{R})$ and for all $S \in \mathcal{L}(X,Y)$ (see Corollary 4.8).

If f is the absolute value function then $f \notin \dot{B}_{\infty,1}^1(\mathbb{R})$ and the results mentioned above do not apply. Moreover, the techniques which we used to obtain \eqref{1.1} for $f \in \dot{B}_{\infty,1}^1(\mathbb{R})$ cannot be applied to the absolute value function (see Remark 8.4). However, the absolute value function is very important in the theory of matrix analysis and perturbation theory (see \cite{[5]} Sections VII.5 and X.2).

In the case where H is an infinite-dimensional Hilbert space, it was proved by Kato \cite{[17]} that the function $t \mapsto |t|$, $t \in \mathbb{R}$ does not satisfy \eqref{1.3}. An earlier example of McIntosh \cite{[22]} showed the failure in general of the commutator estimate \eqref{1.2} for this function, in the case $X = Y = H$. Later, it was proved by Davies \cite{[9]} that for $1 \leq p \leq \infty$ and the Schatten von-Neumann ideal S_p with the corresponding norm $\| \cdot \|_{S_p}$, the estimate

$$\| |B| - |A| \|_{S_p} \leq \text{const} \| B - A \|_{S_p}$$

holds for all $A, B \in S_p$ if and only if $1 < p < \infty$. Commutator estimates for the absolute value function and different Banach ideals in $\mathcal{L}(H)$ have also been studied in \cite{[13]}. The proofs in \cite{[9],[11],[14]} are based on Macaev’s celebrated theorem (see \cite{[16]}) or on the UMD-property of the reflexive Schatten von-Neumann ideals. However, the spaces $\mathcal{L}(X,Y)$ are not UMD-spaces, and therefore the techniques used in \cite{[9],[11],[14]} do not apply to them. To study \eqref{1.2} for $X = \ell_p$ and $Y = \ell_q$, we use completely different methods from those of \cite{[9],[11],[14]}. Instead, we use the theory of Schur multipliers on the space $\mathcal{L}(\ell_p, \ell_q)$ developed by Bennett \cite{[3],[4]}.

Let $p, q \in [1, \infty]$ with $p < q$, $p = q = 1$ or $p = q = \infty$. In Section 6 we show (see Theorem 6.7) that, for diagonalizable operators (for the definition see Section 5) $A \in \mathcal{L}(\ell_p)$ and $B \in \mathcal{L}(\ell_q)$, and for the absolute value function f,

$$\| f(B)S - SF(A) \|_{\mathcal{L}(\ell_p, \ell_q)} \leq \text{const} \| BS - SA \|_{\mathcal{L}(\ell_p, \ell_q)}$$

holds for all $S \in \mathcal{L}(\ell_p, \ell_q)$ (where ℓ_{∞} should be replaced by c_0). In particular,

$$\| f(B) - f(A) \|_{\mathcal{L}(\ell_1)} \leq \text{const} \| B - A \|_{\mathcal{L}(\ell_1)}$$

and

$$\| f(B) - f(A) \|_{\mathcal{L}(c_0)} \leq \text{const} \| B - A \|_{\mathcal{L}(c_0)}$$

for diagonalizable operators on ℓ_1 respectively c_0. Therefore we show that, even though \eqref{1.4} fails for $p = q = 2$, and in particular \eqref{1.4} fails for $X = \ell_2$ and f the absolute value function, one can obtain commutator estimates for $p < q$ and Lipschitz estimates \eqref{1.1} for $X = \ell_1$ or $X = c_0$.

We also obtain results for $p \geq q$. In particular, for $p = q = 2$ we prove (see Corollary 6.15) that for each $c \in (0, 1]$ there exists a constant $C \geq 0$ such that
that (1.3) holds for a general Banach ideal I where denote the identity operator on X

\[AU^{-1} = \sum_{j=1}^{\infty} \lambda_j P_j \quad \text{and} \quad BV^{-1} = \sum_{j=1}^{\infty} \mu_j P_j, \]

where $\{\lambda_j\}_{j=1}^{\infty}$ and $\{\mu_j\}_{j=1}^{\infty}$ are sequences of real numbers and the $P_j \in \mathcal{L}(\ell_2)$, for $j \in \mathbb{N}$, are the basis projections corresponding to the standard basis of ℓ_2. Then

\[\|B - A\|_{\mathcal{L}(\ell_2)} \leq C \min \left(\|V(B - A)U^{-1}\|_{\mathcal{L}(\ell_2, \ell_2 - \varepsilon)}, \|V(B - A)U^{-1}\|_{\mathcal{L}(\ell_2, \ell_2 - \varepsilon)} \right) , \]

where we let the right-hand side equal infinity if $V(B - A)U^{-1} \notin \mathcal{L}(\ell_2, \ell_2 - \varepsilon) \cup \mathcal{L}(\ell_2 + \varepsilon, \ell_2)$.

We note that the constants which appear in our results depend on the spectral constants of A and B from Section 3.1, and in (1.4), (1.5) and (1.6) on the diagonalizability constants of A and B from (5.5). These quantities are independent of the norms of A and B, and to obtain constants which do not depend on A and B in any way one merely has to restrict to operators with a sufficiently bounded spectral or diagonalizability constant. This is already done implicitly on Hilbert spaces by considering normal operators, for which the quantities involved are equal to 1. For example, in (1.7) the constant C does not depend on A or B in any way. Our results therefore truly extend the known estimates on Hilbert spaces, the main difference between Hilbert spaces and general Banach spaces being that on Hilbert spaces one has a large and easily identifiable class of operators with spectral constant 1 or which are diagonalizable by an isometry.

We study the commutator estimate in (1.2) in the more general form

\[\|f(B)S - SF(A)\|_{\mathcal{I}} \leq \text{const} \quad \|BS - SA\|_{\mathcal{I}}, \]

where \mathcal{I} is an operator ideal in $\mathcal{L}(X, Y)$. For example, we prove in Corollary 4.8 that (1.3) holds for a general Banach ideal \mathcal{I} in $\mathcal{L}(X)$ with the strong convex compactness property (for definitions see Section 3.2), with respect to the norm $\|\cdot\|_{\mathcal{I}}$.

We also present (see Theorem 1.3) an example of a Banach ideal $(\mathcal{I}, \|\cdot\|_{\mathcal{I}})$ in $\mathcal{L}(l_p, \ell_p)$, for $1 < p < \infty$ and $\frac{1}{p} + \frac{1}{p'} = 1$, namely the ideal of p-summing operators, such that any Lipschitz function f (in particular, the absolute value function) satisfies (1.8).

In the final section we apply our results to finite-dimensional spaces, and obtain commutator estimates for diagonalizable matrices. Any diagonalizable matrix is a scalar type operator, hence estimates (1.4)-(1.8) hold for diagonalizable matrices A and B with a constant independent of the size of the matrix.

2. Notation and terminology

All vector spaces are over the complex number field. Throughout, X and Y denote Banach spaces, the space of bounded linear operators from X to Y is $\mathcal{L}(X, Y)$, and $\mathcal{L}(X) := \mathcal{L}(X, X)$. We identify the algebraic tensor product $X^* \otimes Y$ with the space of finite rank operators in $\mathcal{L}(X, Y)$ via $\langle x^* \otimes y \rangle (x) := \langle x^*, x \rangle y$ for $x \in X$, $x^* \in X^*$ and $y \in Y$. The spectrum of $A \in \mathcal{L}(X)$ is $\text{sp}(A)$, and by $I_X \in \mathcal{L}(X)$ we denote the identity operator on X. Throughout the text we use the abbreviations SOT and WOT for the strong and weak operator topology, respectively.
The Borel σ-algebra on a Borel measurable subset $\sigma \subseteq \mathbb{C}$ will be denoted by \mathcal{B}_σ, and $\mathcal{B} := \mathcal{B}_\mathbb{C}$. For measurable spaces (Ω_1, Σ_1) and (Ω_2, Σ_2) we denote by $\Sigma_1 \otimes \Sigma_2$ the σ-algebra on $\Omega_1 \times \Omega_2$ generated by all measurable rectangles $\sigma_1 \times \sigma_2$ with $\sigma_1 \in \Sigma_1$ and $\sigma_2 \in \Sigma_2$. If (Ω, Σ) is a measurable space then $\mathcal{B}(\Omega, \Sigma)$ is the space of all bounded Σ-measurable complex-valued functions on Ω, a Banach algebra with the supremum norm

$$\|f\|_{\mathcal{B}(\Omega, \Sigma)} := \sup_{\omega \in \Omega} |f(\omega)| \quad (f \in \mathcal{B}(\Omega, \Sigma)).$$

We simply write $\mathcal{B}(\Omega) := \mathcal{B}(\Omega, \Sigma)$ and $\|f\|_{\infty} := \|f\|_{\mathcal{B}(\Omega, \Sigma)}$ when little confusion can arise.

If μ is a complex Borel measure on a measurable space (Ω, Σ) and X is a Banach space, then a function $f : \Omega \to X$ is μ-measurable if there exists a sequence of X-valued simple functions converging to f μ-almost everywhere. For Banach spaces X and Y and a function $f : \Omega \to L(X,Y)$, we say that f is strongly measurable if $\omega \mapsto f(\omega)x$ is a μ-measurable mapping $\Omega \to Y$ for each $x \in X$.

If μ is a positive measure on a measurable space (Ω, Σ) and $f : \Omega \to [0, \infty]$ is a function, we let

$$\int_{\Omega} f(\omega) \, d\mu(\omega) := \inf \int_{\Omega} g(\omega) \, d\mu(\omega) \in [0, \infty],$$

where the infimum is taken over all measurable $g : \Omega \to [0, \infty]$ such that $g(\omega) \geq f(\omega)$ for $\omega \in \Omega$.

The Hölder conjugate of $p \in [1, \infty]$ is denoted by p^* and is defined by $\frac{1}{p} + \frac{1}{p^*} = 1$. The indicator function of a subset σ of a set Ω is denoted by 1_σ. We will often identify functions defined on σ with their extensions to Ω by setting them equal to zero off σ.

3. Preliminaries

3.1. Scalar type operators.

In this section we summarize some of the basics of scalar type operators, as taken from [15].

Let X be a Banach space. A spectral measure on X is a map $E : \mathcal{B} \to \mathcal{L}(X)$ such that the following hold:

- $E(\emptyset) = 0$ and $E(\mathbb{C}) = 1_X$;
- $E(\sigma_1 \cap \sigma_2) = E(\sigma_1)E(\sigma_2)$ for all $\sigma_1, \sigma_2 \in \mathcal{B}$;
- $E(\sigma_1 \cup \sigma_2) = E(\sigma_1) + E(\sigma_2) - E(\sigma_1)E(\sigma_2)$ for all $\sigma_1, \sigma_2 \in \mathcal{B}$;
- E is σ-additive in the strong operator topology.

Note that these conditions imply that E is projection-valued. Moreover, by [15] Corollary XV.2.4 there exists a constant K such that

$$\|E(\sigma)\|_{\mathcal{L}(X)} \leq K \quad (\sigma \in \mathcal{B}).$$

An operator $A \in \mathcal{L}(X)$ is a spectral operator if there exists a spectral measure E on X such that $AE(\sigma) = E(\sigma)A$ and $\text{sp}(A, E(\sigma)X) \subseteq \sigma$ for all $\sigma \in \mathcal{B}$, where $\text{sp}(A, E(\sigma)X)$ denotes the spectrum of A in the space $E(\sigma)X$. For a spectral operator A, we let $\upsilon(A)$ denote the minimal constant K occurring in (3.1) and call $\upsilon(A)$ the spectral constant of A. This is well-defined since the spectral measure E associated with A is unique, cf. [15] Corollary XV.3.8. Moreover, E is supported on $\text{sp}(A)$ in the sense that $E(\text{sp}(A)) = 1_X$ [15] Corollary XV.3.5. Hence we can define an integral with respect to E of bounded Borel measurable functions on $\text{sp}(A)$, as
follows. For \(f = \sum_{j=1}^{n} a_j 1_{\sigma_j} \) a finite simple function with \(a_j \in \mathbb{C} \) and \(\sigma_j \subseteq \text{sp}(A) \) Borel for \(1 \leq j \leq n \), we let

\[
\int_{\text{sp}(A)} f \, dE := \sum_{j=1}^{n} a_j E(\sigma_j).
\]

(3.2)

This definition is independent of the representation of \(f \), and

\[
\left\| \int_{\text{sp}(A)} f \, dE \right\|_{\mathcal{L}(X)} = \sup_{\|x\|_{X^*}=1} \left| \sum_{j=1}^{n} a_j x^* E(\sigma_j) x \right|
\leq \sup_j |a_j| \sup_{\|x\|_{X^*}=1} \|x^* E(\cdot) x\|_{\text{var}}
\leq 4 \|f\|_{\mathcal{B}(\text{sp}(A))} \sup_{\|x\|_{X^*}=1} \sup_{|\sigma| \subseteq \text{sp}(A)} \|x^* E(\sigma) x\|
\leq 4\nu(A) \|f\|_{\mathcal{B}(\text{sp}(A))},
\]

where \(\|x^* E(\cdot) x\|_{\text{var}} \) is the variation norm of the measure \(x^* E(\cdot) x \). Since the simple functions lie dense in \(\mathcal{B}(\text{sp}(A)) \), for general \(f \in \mathcal{B}(\text{sp}(A)) \) we can define

\[
\int_{\text{sp}(A)} f \, dE := \lim_{n \to \infty} \int_{\text{sp}(A)} f_n \, dE \in \mathcal{L}(X)
\]

if \(\{f_n\}_{n=1}^{\infty} \subseteq \mathcal{B}(\text{sp}(A)) \) is a sequence of simple functions with \(\|f_n - f\|_{\infty} \to 0 \) as \(n \to \infty \). This definition is independent of the choice of approximating sequence and

\[
\left\| \int_{\text{sp}(A)} f \, dE \right\|_{\mathcal{L}(X)} \leq 4\nu(A) \|f\|_{\mathcal{B}(\text{sp}(A))}.
\]

(3.3)

It is straightforward to check that

\[
\int_{\text{sp}(A)} (af + g) \, dE = a \int_{\text{sp}(A)} f \, dE + \int_{\text{sp}(A)} g \, dE,
\]

\[
\int_{\text{sp}(A)} fg \, dE = \left(\int_{\text{sp}(A)} f \, dE \right) \left(\int_{\text{sp}(A)} g \, dE \right)
\]

for all \(a \in \mathbb{C} \) and simple \(f, g \in \mathcal{B}(\text{sp}(A)) \), and approximation extends these identities to general \(f, g \in \mathcal{B}(\text{sp}(A)) \). Moreover, \(\int_{\text{sp}(A)} 1 \, dE = E(\text{sp}(A)) = I_X \). Hence the map \(f \mapsto \int_{\text{sp}(A)} f \, dE \) is a continuous morphism \(\mathcal{B}(\text{sp}(A)) \to \mathcal{L}(X) \) of unital Banach algebras. Since the spectrum of \(A \) is compact, the identity function \(\lambda \mapsto \lambda \) is bounded on \(\text{sp}(A) \) and \(\int_{\text{sp}(A)} \lambda \, dE(\lambda) \in \mathcal{L}(X) \) is well defined.

Definition 3.1. A spectral operator \(A \in \mathcal{L}(X) \) with spectral measure \(E \) is a scalar type operator if

\[
A = \int_{\text{sp}(A)} \lambda \, dE(\lambda).
\]

The class of scalar type operators on \(X \) is denoted by \(\mathcal{L}_s(X) \).

For \(A \in \mathcal{L}_s(X) \) with spectral measure \(E \) and \(f \in \mathcal{B}(\text{sp}(A)) \) we define

\[
f(A) := \int_{\text{sp}(A)} f \, dE.
\]

(3.4)
Then, as remarked above, \(f \mapsto f(A) \) is a continuous morphism \(B(\sp(A)) \to \mathcal{L}(X) \) of unital Banach algebras with norm bounded by \(4\nu(A) \). Note also that

\[
\langle x^*, f(A)x \rangle = \int_{\sp(A)} f(\lambda) \, d\langle x^*, E(\lambda)x \rangle
\]

for all \(f \in B(\sp(A)), x \in X \) and \(x^* \in X^* \). Indeed, for simple functions this follows from (3.2), and by taking limits one obtains (3.5) for general \(f \in B(\sp(A)) \).

Finally, we note that a normal operator \(A \) on a Hilbert space \(H \) is a scalar type operator with \(\nu(A) = 1 \), and in this case (3.3) improves to

\[
\left\| \int_{\sp(A)} f \, dE \right\|_{\mathcal{L}(H)} \leq \|f\|_{B(\sp(A))},
\]

as known from the Borel functional calculus for normal operators.

3.2. Spaces of operators

In this section we discuss some properties of spaces of operators that we will need later on.

First we provide a lemma about approximation by finite rank operators. Recall that a Banach space \(X \) has the **bounded approximation property** if there exists \(M \geq 1 \) such that, for each \(K \subseteq X \) compact and \(\epsilon > 0 \), there exists \(S \in X^* \otimes X \) with \(\|S\|_{\mathcal{L}(X)} \leq M \) and \(\sup_{x \in K} \|Sx - x\|_X < \epsilon \).

Lemma 3.2. Let \(X \) and \(Y \) be Banach spaces such that \(X \) is separable and either \(X \) or \(Y \) has the bounded approximation property. Then each \(T \in \mathcal{L}(X,Y) \) is the SOT-limit of a norm bounded sequence of finite rank operators.

Proof. Fix \(T \in \mathcal{L}(X,Y) \). By [21 Proposition 1.e.14] there exists a norm bounded net \(\{T_j\}_{j \in J} \subseteq X^* \otimes Y \) having \(T \) as its SOT-limit. It is straightforward to see that the strong operator topology is metrizable on bounded subsets of \(\mathcal{L}(X,Y) \) by

\[
d(S_1, S_2) := \sum_{k=1}^{\infty} 2^{-k} \|S_1 x_k - S_2 x_k\|_Y \quad (S_1, S_2 \in \mathcal{L}(X,Y)),
\]

where \(\{x_k\}_{k \in \mathbb{N}} \subseteq X \) is a countable subset that is dense in the unit ball of \(X \). Hence there exists a subsequence of \(\{T_j\}_{j \in J} \), with \(T \) as its SOT-limit. \(\Box \)

Let \(X \) and \(Y \) be Banach spaces and let \(Z \) be a Banach space which is continuously embedded in \(\mathcal{L}(X,Y) \). Following [36] (in the case where \(Z \) is a subspace of \(\mathcal{L}(X,Y) \), we say that \(Z \) has the **strong convex compactness property** if the following holds. For any finite measure space \((\Omega, \Sigma, \mu) \) and any strongly measurable bounded \(f : \Omega \to Z \), the operator \(T \in \mathcal{L}(X,Y) \) defined by

\[
T_x := \int_\Omega f(\omega)x \, d\mu(\omega) \quad (x \in X),
\]

belongs to \(Z \) with \(\|T\|_Z \leq \int_\Omega \|f(\omega)\|_Z \, d\mu(\omega) \). By the Pettis Measurability Theorem, any separable \(Z \) has this property. Indeed, if \(Z \) is separable then combining Propositions 1.9 and 1.10 in [36] shows that any strongly measurable \(f : \Omega \to Z \) is \(\mu \)-measurable as a map to \(Z \). If \(f \) is bounded as well, then (3.7) defines an element of \(Z \) with

\[
\|T\|_Z \leq \int_\Omega \|f(\omega)\|_Z \, d\mu(\omega).
\]
It is shown in [36] and [31] that the compact and weakly compact operators have the strong convex compactness property, but not all subspaces of \(\mathcal{L}(X, Y) \) do. Moreover, if \(\mathcal{N} \) is a semifinite von Neumann algebra on a separable Hilbert space \(H \), with faithful normal semifinite trace \(\tau \), and \(F \) is a rearrangement invariant Banach function space with the Fatou property, then \(E = \mathcal{N} \cap F(N, \tau) \) has the strong convex compactness property [2] Lemma 3.5.

Lemma 3.3. Let \(X \) and \(Y \) be separable Banach spaces and \(Z \) a Banach space continuously embedded in \(\mathcal{L}(X, Y) \). If \(B_Z := \{ z \in Z \mid \|z\| \leq 1 \} \) is SOT-closed in \(\mathcal{L}(X, Y) \), then \(Z \) has the strong convex compactness property.

Proof. The proof follows that of [2] Lemma 3.5. First we show that \(Z \) is a Polish space in the strong operator topology. As in the proof of Lemma 3.2 bounded subsets of \(\mathcal{L}(X, Y) \) are SOT-metrizable. The finite rank operators are SOT-dense in \(\mathcal{L}(X, Y) \), hence \(\mathcal{L}(X, Y) \) is SOT-separable. Therefore \(B_Z \) is SOT-separable and metrizable. By assumption, \(B_Z \) is complete.

Now let \((\Omega, \mu)\) be a finite measure space and let \(f : \Omega \to Z \) be bounded and strongly measurable. Without loss of generality, we may assume that \(f(\Omega) \subseteq B_Z \) and that \(\mu \) is a probability measure. For each \(y^* \in Y^* \) and \(x \in X \), the mapping \(B_Z \to [0, \infty), T \mapsto \|\langle y^*, Tx \rangle\| \) is continuous. The collection of all these mappings, for \(y^* \in Y^* \) and \(x \in X \), separates the points of \(B_Z \). Moreover, \(\omega \mapsto \|\langle y^*, f(\omega) x \rangle\| \) is a measurable mapping \(\Omega \to [0, \infty) \) for each \(y^* \in Y^* \) and \(x \in X \). By [36] Propositions 1.9 and 1.10, \(f \) is the \(\mu \)-almost everywhere SOT-limit of a sequence of \(B_Z \)-valued simple functions \(\{f_k\}_{k=1}^\infty \). Let \(T_n := \int_\Omega f_n d\mu \in B_Z \). By the dominated convergence theorem, \(T_n(x) \to T(x) := \int_\Omega f(\omega) x d\mu(\omega) \) as \(n \to \infty \), for all \(x \in X \). By assumption, \(T \in B_Z \).

Now let \(g : \Omega \to [0, \infty) \) be measurable such that \(1 \geq g(\omega) \geq \|f(\omega)\|_Z \) for \(\omega \in \Omega \), and define \(h(\omega) := \frac{f(\omega)}{g(\omega)} \) and \(d\nu(\omega) := \frac{g(\omega)}{\int_\Omega g(\eta) d\mu(\eta)} d\mu(\omega) \) for \(\omega \in \Omega \). By what we have shown above, \(x \mapsto \int_\Omega h(\omega) x d\nu(\omega) \) defines an element of \(B_Z \). Since \(Tx = \int_\Omega f(\omega) x d\mu(\omega) = \int_\Omega g(\omega) d\mu(\omega) \int_\Omega h(\omega) x d\nu(\omega) \), we obtain \(\|T\|_Z \leq \int_\Omega g(\omega) d\mu(\omega), \) as remained to be shown. \(\square \)

Remark 3.4. Note that the converse implication does not hold. Indeed, if \(X \) is a Hilbert space (or more generally, a Banach space with the metric approximation property) then the finite rank operators of norm less than or equal to 1 are SOT-dense in the unit ball of \(\mathcal{L}(X) \). Therefore the compact operators of norm less than or equal to 1 are not SOT-closed in \(\mathcal{L}(X) \) if \(X \) is infinite-dimensional. However, by [36] Theorem 1.3, the space of compact operators on \(X \) has the strong convex compactness property.

Let \(X \) and \(Y \) be Banach spaces and \(I \) a Banach space which is continuously embedded in \(\mathcal{L}(X, Y) \). We say that \((I, \cdot \cdot \cdot \cdot) \) is a Banach ideal in \(\mathcal{L}(X, Y) \) if

- For all \(R \in \mathcal{L}(Y) \), \(S \in I \) and \(T \in \mathcal{L}(X) \), \(RST \in I \) with \(\|RST\|_I \leq \|R\|_\mathcal{L}(Y) \|S\|_I \|T\|_\mathcal{L}(X) \),
- \(X^* \otimes Y \subseteq I \) with \(\|x^* \otimes y\|_I = \|x^*\|_{X^*} \|y\|_Y \) for all \(x^* \in X^* \) and \(y \in Y \).

By Lemma 3.3 and [12] Proposition 17.21 (using that the SOT and WOT closures of a convex set coincide), for separable \(X \) and \(Y \), any maximal Banach ideal (for the definition see e.g. [27]) in \(\mathcal{L}(X, Y) \) has the strong convex compactness property. This includes a large class of operator ideals, such as the ideal of absolutely \(p \)-summing operators, the ideal of integral operators, etc. [12] p. 203.
3.3. Algebras of functions. In this section we discuss some algebras of functions that will be essential in later sections.

Let $\sigma_1, \sigma_2 \subseteq \mathbb{C}$ be Borel measurable subsets and let $\mathcal{A}(\sigma_1 \times \sigma_2)$ be the class of Borel functions $\varphi : \sigma_1 \times \sigma_2 \to \mathbb{C}$ such that

$$\varphi(\lambda_1, \lambda_2) = \int_{\Omega} a_1(\lambda_1, \omega) a_2(\lambda_2, \omega) \, d\mu(\omega)$$

for all $(\lambda_1, \lambda_2) \in \sigma_1 \times \sigma_2$, where (Ω, Σ, μ) is a finite measure space and $a_1 \in \mathcal{B}(\sigma_1 \times \Omega, \mathcal{B}_{\sigma_1} \otimes \Sigma)$, $a_2 \in \mathcal{B}(\sigma_2 \times \Omega, \mathcal{B}_{\sigma_2} \otimes \Sigma)$. For $\varphi \in \mathcal{A}(\sigma_1 \times \sigma_2)$ let

$$\|\varphi\|_{\mathcal{A}(\sigma_1 \times \sigma_2)} := \inf_{\lambda_1, \lambda_2} \int_{\Omega} \|a_1(\cdot, \omega)\|_{\mathcal{B}(\sigma_1)} \|a_2(\cdot, \omega)\|_{\mathcal{B}(\sigma_2)} \, d\mu(\omega),$$

where the infimum runs over all possible representations of φ (it is straightforward to show that the map $\omega \mapsto \|a_1(\cdot, \omega)\|_{\mathcal{B}(\sigma_1)} \|a_2(\cdot, \omega)\|_{\mathcal{B}(\sigma_2)}$ is measurable).

Lemma 3.5. For all $\sigma_1, \sigma_2 \subseteq \mathbb{C}$ measurable, $\mathcal{A}(\sigma_1 \times \sigma_2)$ is a unital Banach algebra which is contractively included in $\mathcal{B}(\sigma_1 \times \sigma_2)$.

Proof. That $\mathcal{A}(\sigma_1 \times \sigma_2)$ is a vector space is straightforward, and that it is normed algebra is shown in [28, Lemma 3] for $\sigma_1 = \sigma_2 = \mathbb{R}$ (the proof in our setting is identical). The completeness of $\mathcal{A}(\sigma_1 \times \sigma_2)$ follows by showing that an absolutely convergent series of elements in $\mathcal{A}(\sigma_1 \times \sigma_2)$ converges in $\mathcal{A}(\sigma_1 \times \sigma_2)$. This is done by considering a direct sum of the measure spaces involved. \hfill \Box

We now state sufficient conditions for a function to belong to \mathcal{A}. The first will be used in the proof of Proposition 5.6. Let $W^{1,2}(\mathbb{R})$ be the space of all $g \in L^2(\mathbb{R})$ with weak derivative $g' \in L^2(\mathbb{R})$, endowed with the norm $\|g\|_{W^{1,2}(\mathbb{R})} := \|g\|_{L^2(\mathbb{R})} + \|g'\|_{L^2(\mathbb{R})}$ for $g \in W^{1,2}(\mathbb{R})$.

Lemma 3.6. [28, Theorem 9] Let $g \in W^{1,2}(\mathbb{R})$ and let

$$\psi_g(\lambda_1, \lambda_2) := \begin{cases} g(\log(\lambda_1/\lambda_2)) & \text{if } \lambda_1, \lambda_2 > 0 \\ 0 & \text{otherwise} \end{cases}.$$

Then $\psi_g \in \mathcal{A}(\mathbb{R}^2)$ with $\|\psi_g\|_{\mathcal{A}(\mathbb{R}^2)} \leq \sqrt{2} \|g\|_{W^{1,2}(\mathbb{R})}$.

The second condition involves the Besov space $\dot{B}^{1}_{\infty,1}(\mathbb{R})$. Following [25], let $\{\psi_k\}_{k \in \mathbb{Z}}$ be a sequence of Schwartz functions on \mathbb{R} such that, for each $k \in \mathbb{Z}$, the Fourier transform $\mathcal{F}\psi_k$ of ψ_k is supported on $[2^{k-1}, 2^{k+1}]$ and $\mathcal{F}\psi_{k+1}(x) = \mathcal{F}\psi_k(2x)$ for all $x > 0$, and such that $\sum_{k=-\infty}^{\infty} \mathcal{F}\psi_k(x) = 1$ for all $x > 0$. Let ψ_k be defined by $\mathcal{F}\psi_k^*(x) = \mathcal{F}\psi_k(-x)$ for $k \in \mathbb{Z}$ and $x \in \mathbb{R}$. If f is a distribution on \mathbb{R} such that $\{2^k \|f * \psi_k\|_{L^\infty(\mathbb{R})}\}_{k \in \mathbb{Z}} \in \ell_1(\mathbb{Z})$ and $\{2^k \|f * \psi_k^*\|_{L^\infty(\mathbb{R})}\}_{k \in \mathbb{Z}} \in \ell_1(\mathbb{Z})$, then f admits a representation

$$f = \sum_{k \in \mathbb{Z}} f * \psi_k + \sum_{k \in \mathbb{Z}} f * \psi_k^* + P,$$

where P is a polynomial.

1This might seem problematic from a set-theoretic viewpoint. The problem can be fixed by choosing an equivalence class of such a representation for each $r \in \mathbb{R}$ which can occur in the infimum.
We let the **homogeneous Besov space** \(\dot{B}^1_{\infty,1}(\mathbb{R}) \) consist of all distributions as above for which \(P = 0 \). Then \(\dot{B}^1_{\infty,1}(\mathbb{R}) \) is a Banach space when equipped with the norm

\[
\|f\|_{\dot{B}^1_{\infty,1}(\mathbb{R})} := \sum_{k=-\infty}^{\infty} 2^k \|f * \varphi_k\|_{L^\infty(\mathbb{R})} + \sum_{k=-\infty}^{\infty} 2^k \|f * \varphi_k\|_{L^\infty(\mathbb{R})} \quad (f \in \dot{B}^1_{\infty,1}(\mathbb{R})).
\]

For \(f \in \dot{B}^1_{\infty,1}(\mathbb{R}) \) define \(\psi_f : C^2 \to C \) by

\[
\psi_f(\lambda_1, \lambda_2) := \begin{cases}
\frac{f(\lambda_1) - f(\lambda_2)}{\lambda_2 - \lambda_1} & \text{if } (\lambda_1, \lambda_2) \in \mathbb{R}^2 \text{ and } \lambda_1 \neq \lambda_2, \\
\frac{f'(\lambda_1)}{\lambda_2 - \lambda_1} & \text{if } \lambda_1 = \lambda_2 \in \mathbb{R}.
\end{cases}
\]

Lemma 3.7. There exists a constant \(C \geq 0 \) such that \(\|\psi_f\|_{\mathcal{A}(\mathbb{R}^2)} \) for each \(f \in \dot{B}^1_{\infty,1}(\mathbb{R}) \), with

\[
\|\psi_f\|_{\mathcal{A}(\mathbb{R}^2)} \leq C \|f\|_{\dot{B}^1_{\infty,1}(\mathbb{R})}.
\]

Proof. Let \(f \in \dot{B}^1_{\infty,1}(\mathbb{R}) \). In [25 Theorem 2] (see also [26, p. 535]) it is shown that \(\psi_f \) has a representation

\[
\psi_f(\lambda_1, \lambda_2) = \int_{\Omega} a_1(\lambda_1, \omega) a_2(\lambda_2, \omega) \, d\mu(\omega)
\]

for \((\lambda_1, \lambda_2) \in \mathbb{R}^2 \), where \((\Omega, \mu) \) is a measure space and \(a_1 \) and \(a_2 \) are measurable functions on \(\mathbb{R} \times \Omega \) such that

\[
\int_{\Omega} \|a_1(\cdot, \omega)\|_{\infty} \|a_2(\cdot, \omega)\|_{\infty} \, d|\mu|(\omega) \leq C \|f\|_{\dot{B}^1_{\infty,1}(\mathbb{R})}
\]

for some constant \(C \geq 0 \) independent of \(f \). The desired conclusion now follows by replacing \(a_1(\lambda_1, \omega) \) and \(a_2(\lambda_2, \omega) \) by \(\frac{a_1(\lambda_1, \omega)}{\|a_1(\cdot, \omega)\|_{\infty}} \) respectively \(\frac{a_2(\lambda_2, \omega)}{\|a_2(\cdot, \omega)\|_{\infty}} \), and \(d\mu(\omega) \) by \(\|a_1(\cdot, \omega)\|_{\infty} \|a_2(\cdot, \omega)\|_{\infty} \, d\mu(\omega) \). \(\square \)

In [25 Theorem 3] Peller also states a condition on a function \(f \) on \(\mathbb{R} \) which is necessary in order for \(\psi_f \in \mathcal{A}(\mathbb{R}^2) \) to hold, and this condition is only slightly weaker than \(f \in \dot{B}^1_{\infty,1}(\mathbb{R}) \).

4. **Double operator integrals and Lipschitz estimates**

4.1. **Double operator integrals.** Fix Banach spaces \(X \) and \(Y \), scalar type operators \(A \in \mathcal{L}_s(X) \) and \(B \in \mathcal{L}_s(Y) \) with spectral measures \(E \) respectively \(F \), and \(\varphi \in \mathcal{A}(\text{sp}(A) \times \text{sp}(B)) \). Let a representation [3.8] for \(\varphi \) be given, with corresponding \((\Omega, \mu) \) and \(a_1 \in B(\text{sp}(A) \times \Omega), a_2 \in B(\text{sp}(B) \times \Omega) \). For \(\omega \in \Omega \), let \(a_1(A, \omega) := a_1(\cdot, \omega)(A) \in \mathcal{L}(X) \) and \(a_2(B, \omega) := a_2(\cdot, \omega)(B) \in \mathcal{L}(Y) \) be defined by the functional calculus for \(A \) respectively \(B \) from Section 5.1.

Lemma 4.1. Let \(S \in \mathcal{L}(X, Y) \) have separable range. Then, for each \(x \in X, \omega \mapsto a_2(B, \omega) Sa_1(A, \omega)x \) is a weakly measurable map \(\Omega \to Y \).

Proof. Fix \(x \in X \). If \(a_1 = 1_{\sigma} \) for some \(\sigma \subseteq \text{sp}(A) \times \Omega \) then it is straightforward to show that \(a_1(x^*, a_1(A, \cdot)x) \) is measurable for each \(x^* \in X^* \). As \(S \) has separable range, \(Sa_1(A, \cdot)x \) is \(\mu \)-measurable. If \(a_2 \) is an indicator function as well, the same argument shows that \(a_2(B, \cdot)y \) is weakly measurable for each \(y \in Y \). General arguments, approximating \(Sa_1(A, \cdot)x \) by simple functions, show that \(a_2(B, \cdot)Sa_1(A, \cdot)x \) is weakly measurable. By linearity this extends to simple \(a_1 \) and \(a_2 \), and for general \(a_1 \) and \(a_2 \) let \(\{f_k\}_{k \in \mathbb{N}}, \{g_k\}_{k \in \mathbb{N}} \) be sequences of simple functions such that
$a_1 = \lim_{k \to \infty} f_k$ and $a_2 = \lim_{k \to \infty} g_k$ uniformly. Then $a_1(A, \omega) = \lim_{k \to \infty} f_k(A)$ and $a_2(B, \omega) = \lim_{k \to \infty} g_k(B)$ in the operator norm, for each $\omega \in \Omega$. The desired measurability now follows.

Now suppose that Y is separable, that \mathcal{I} is a Banach ideal in $L(X, Y)$ and let $S \in L(X, Y)$. By (3.5),

$$
(4.1) \quad \|a_2(B, \omega) S a_1(A, \omega)\|_\mathcal{I} \leq 16 v(A) v(B) \|S\|_\mathcal{I} \|a_1(\cdot, \omega)\|_{B(\text{sp}(A))} \|a_2(\cdot, \omega)\|_{B(\text{sp}(B))}
$$

for $w \in \Omega$. Since \mathcal{I} is continuously embedded in $L(X, Y)$, by the Pettis Measurability Theorem, Lemma 4.1 and (4.1) we can define the double operator integral

$$
(4.2) \quad T^{A, B}_\varphi (S)x := \int_\Omega a_2(B, \omega) S a_1(A, \omega)x \, d\mu(\omega) \in Y \quad (x \in X).
$$

Throughout, we will use T_φ for $T^{A, B}_\varphi$ when the operators A and B are clear from the context.

Proposition 4.2. Let X and Y be separable Banach spaces such that X or Y has the bounded approximation property, and let $A \in L_s(X), B \in L_s(Y),$ and $\varphi \in \mathfrak{A}(\text{sp}(A) \times \text{sp}(B))$. Let \mathcal{I} be a Banach ideal in $L(X, Y)$ with the strong convex compactness property. Then (4.2) defines an operator $T^{A, B}_\varphi \in L(\mathcal{I})$ which is independent of the choice of representation of φ in (3.8), with

$$
(4.3) \quad \left\|T^{A, B}_\varphi \right\|_{L(\mathcal{I})} \leq 16 v(A) v(B) \|\varphi\|_{\mathfrak{A}(\text{sp}(A) \times \text{sp}(B))}.
$$

Proof. By (4.1) and the strong convex compactness property, $T_\varphi(S) \in L(\mathcal{I})$ for all $S \in \mathcal{I}$, with

$$
\|T_\varphi(S)\|_{\mathcal{I}} \leq 16 v(A) v(B) \|S\|_{\mathcal{I}} \int_\Omega \|a_1(\cdot, \omega)\|_{B(\text{sp}(A))} \|a_2(\cdot, \omega)\|_{B(\text{sp}(B))} \, d\mu(\omega).
$$

Clearly T_φ is linear, hence the result follows if we establish that T_φ is independent of the representation of φ. For this it suffices to let $\varphi \equiv 0$. Now, first consider $S = x^* \otimes y$ for $x^* \in X^*$ and $y \in Y$, and let $x \in X, y^* \in Y^*$ and $w \in \Omega$. Recall that E and F are the spectral measures of A and B, respectively. Then

$$
\langle y^*, a_2(B, \omega) S a_1(A, \omega)x \rangle = \int_{\text{sp}(B)} a_2(\eta, \omega) \, d\langle y^*, F(\eta) S a_1(A, \omega)x \rangle
$$

$$
= \int_{\text{sp}(B)} a_2(\eta, \omega) \langle x^*, a_1(A, \omega)x \rangle \, d\langle y^*, F(\eta)y \rangle
$$

$$
= \int_{\text{sp}(B)} \int_{\text{sp}(A)} a_1(\lambda, \omega) a_2(\eta, \omega) \, d\langle x^*, E(\lambda)x \rangle \, d\langle y^*, F(\eta)y \rangle
$$

by (3.8). Now Fubini’s Theorem and the assumption on φ yield $T_\varphi(S) = 0$. By linearity, $T_\varphi(S) = 0$ for all $S \in X^* \otimes Y$. By Lemma 5.2 a general $S \in \mathcal{I}$ is the SOT-limit of a bounded (in $L(X, Y)$) sequence $\{S_n\}_{n \in \mathbb{N}} \subseteq X^* \otimes Y$. The dominated convergence theorem shows that $T_\varphi(S)x = \lim_{n \to \infty} T_\varphi(S_n)x = 0$ for all $x \in X$, which implies that T_φ is independent of the representation of φ and concludes the proof.
Note that, if \(A \) and \(B \) are normal operators on separable Hilbert spaces \(X \) and \(Y \), then (4.3) improves to

\[
\left\| T_{\varphi}^{A,B} \right\|_{\mathcal{L}(I)} \leq \| \varphi \|_{\mathfrak{A}(\text{sp}(A) \times \text{sp}(B))},
\]

by appealing to (3.6) instead of (3.3) in (4.1).

Remark 4.3. Let \(H \) be an infinite-dimensional separable Hilbert space and \(\mathcal{S}_2 \) the ideal of Hilbert-Schmidt operators on \(H \). There is a natural definition (see [8]) of a double operator integral \(T_{\varphi}^{A,B} \in \mathcal{L}(\mathcal{S}_2) \) for all \(\varphi \in \mathcal{B}(C^2) \) and normal operators \(A, B \in \mathcal{L}(H) \), such that \(T_{\varphi}^{A,B} = T_{\varphi}^{A,B} \) if \(\varphi \in A(\text{sp}(A) \times \text{sp}(B)) \). One could wonder whether Proposition 4.2 can be extended to a larger class of functions than \(\mathfrak{A}(\text{sp}(A) \times \text{sp}(B)) \) using an extension of the definition of \(T_{\varphi}^{A,B} \) in (4.2) which coincides with \(T_{\varphi}^{A,B} \) on \(\mathcal{S}_2 \). But it follows from [24, Theorem 1] that \(T_{\varphi}^{A,B} \) extends to a bounded operator on \(I = \mathcal{L}(H) \) if and only if \(\varphi \in \mathfrak{A}(\text{sp}(A) \times \text{sp}(B)) \). Hence Proposition 4.2 cannot be extended to a larger function class than \(\mathfrak{A}(\text{sp}(A) \times \text{sp}(B)) \) in general. However, for specific Banach ideals, e.g. ideals with the UMD property, results have been obtained for larger classes of functions [11, 29].

Remark 4.4. The assumption in Proposition 4.2 that \(X \) or \(Y \) has the bounded approximation property is only used, via Lemma 3.2, to ensure that each \(S \in I \) is the SOT-limit of a bounded (in \(\mathcal{L}(X,Y) \)) net of finite-rank operators. Clearly this is true for general Banach spaces \(X \) and \(Y \) if \(I \) is the closure in \(\mathcal{L}(X,Y) \) of \(X^* \circ Y \). In [20] the authors consider an assumption on \(X \) and \(I \), called condition \(c_\alpha \), which guarantees that each \(S \in I \) is the SOT-limit of a bounded net of finite-rank operators. It is shown in [20] that this condition is strictly weaker than the bounded approximation property, for certain non-trivial ideals. In the results throughout the paper where we assume that \(X \) has the bounded approximation property, one may assume instead that \(X \) has satisfies condition \(c_\alpha \) for \(I \) for some \(\alpha \geq 1 \).

4.2. Commutator and Lipschitz estimates

Let \(p_1 : p_2 : C^2 \rightarrow C \) be the coordinate projections \(p_1(\lambda_1, \lambda_2) := \lambda_1, p_2(\lambda_1, \lambda_2) := \lambda_2 \) for \((\lambda_1, \lambda_2) \in C^2 \). Note that \(f \circ p_1, f \circ p_2 \in \mathfrak{A}(\sigma_1 \cup \sigma_2) \) for all \(\sigma_1, \sigma_2 \subset C \) Borel and \(f \in \mathcal{B}(\sigma_1 \cup \sigma_2) \). For \(A \) and \(B \) selfadjoint operators on a Hilbert space and \(I \) a non-commutative \(L_p \)-space, the following lemma is [28, Lemma 3].

Lemma 4.5. Under the assumptions of Proposition 4.2, the following hold:

1. The map \(\varphi \mapsto T_{\varphi}^{A,B} \) is a morphism \(\mathfrak{A}(\text{sp}(A) \times \text{sp}(B)) \rightarrow \mathcal{L}(I) \) of unital Banach algebras.
2. Let \(f \in \mathcal{B}(\text{sp}(A) \cup \text{sp}(B)) \) and \(S \in \mathcal{L}(X,Y) \). Then \(T_{f \circ p_1}(S) = SF(A) \) and \(T_{f \circ p_2}(S) = f(B)S \). In particular, \(T_{p_1}(S) = SA \) and \(T_{p_2}(S) = BS \).

Proof. The structure of the proof is the same as that of [28, Lemma 3]. Linearity in (1) is straightforward. Fix \(\varphi_1, \varphi_2 \in \mathfrak{A}(\text{sp}(A) \times \text{sp}(B)) \) with representations as in (3.8), with corresponding measure spaces \((\Omega_j, \mu_j) \) and bounded Borel functions \(a_{1,j} \in \mathcal{B}(\text{sp}(A) \times \Omega_j) \) and \(a_{2,j} \in \mathcal{B}(\text{sp}(B) \times \Omega_j) \) for \(j \in \{1,2\} \). Then \(\varphi := \varphi_1 \varphi_2 \) also has a representation as in (3.8), with \(\Omega = \Omega_1 \times \Omega_2, \mu = \mu_1 \times \mu_2 \) the product measure and \(a_1 = a_{1,1}a_{1,2}, a_2 = a_{2,1}a_{2,2} \). By multiplicativity of the functional...
calculus for A,
\[
 a_1(A, (\omega_1, \omega_2)) = (a_{1,1}(\cdot, \omega_1) a_{1,2}(\cdot, \omega_2)) (A) = a_{1,1}(A, \omega_1) a_{1,2}(A, \omega_2)
\]
for all $(\omega_1, \omega_2) \in \Omega$, and similarly for $a_2(B, (\omega_1, \omega_2))$. Applying this to (4.2) yields
\[
 T_\phi(S)x = \int_\Omega a_2(B, \omega) S a_1(A, \omega)x \, d\mu(\omega)
\]
\[
= \int_\Omega a_{2,1}(B, \omega_1) T_{\varphi_2}(S) a_{1,1}(A, \omega_1)x \, d\mu_1(\omega_1)
\]
\[
= T_{\varphi_1}(T_{\varphi_2}(S))x
\]
for all $S \in \mathcal{I}$ and $x \in X$, which proves (1). Part (2) follows from (4.2) and the fact that T_ϕ is independent of the representation of φ.

For $f : \text{sp}(A) \cup \text{sp}(B) \to \mathbb{C}$ define
\[
\varphi_f(\lambda_1, \lambda_2) := \frac{f(\lambda_2) - f(\lambda_1)}{\lambda_2 - \lambda_1}
\]
for $(\lambda_1, \lambda_2) \in \text{sp}(A) \times \text{sp}(B)$ with $\lambda_1 \neq \lambda_2$.

Theorem 4.6. Let X and Y be separable Banach spaces such that X or Y has the bounded approximation property, and let \mathcal{I} be a Banach ideal in $\mathcal{L}(X, Y)$ with the strong convex compactness property. Let $A \in \mathcal{L}_s(X)$ and $B \in \mathcal{L}_s(Y)$, and let $f \in B(\text{sp}(A) \cup \text{sp}(B))$ be such that φ_f extends to an element of $\mathcal{A}(\text{sp}(A) \times \text{sp}(B))$. Then
\[
 \|f(B)S - Sf(A)\|_\mathcal{I} \leq 16 v(A) v(B) \|\varphi_f\|_{\mathcal{A}(\text{sp}(A) \times \text{sp}(B))} \|BS - SA\|_\mathcal{I}
\]
for all $S \in \mathcal{L}(X, Y)$ such that $BS - SA \in \mathcal{I}$.

In particular, if $X = Y$ and $B - A \in \mathcal{I}$,
\[
 \|f(B) - f(A)\|_\mathcal{I} \leq 16 v(A) v(B) \|\varphi_f\|_{\mathcal{A}(\text{sp}(A) \times \text{sp}(B))} \|B - A\|_\mathcal{I}.
\]

Proof. Note that $(p_2 - p_1) \varphi_f = f \circ p_2 - f \circ p_1$. By Lemma 4.5
\[
 f(B)S - Sf(A) = T_{f \circ p_2}(S) - T_{f \circ p_1}(S) = T_{(p_2 - p_1) \varphi_f}(S) = T_{p_2 \varphi_f}(S) - T_{p_1 \varphi_f}(S)
\]
\[
= T_{\varphi_f}(T_{p_2}(S) - T_{p_1}(S)) = T_{\varphi_f}(BS - SA)
\]
for each $S \in \mathcal{I}$. Proposition 4.2 now concludes the proof.

Letting X and Y be Hilbert spaces and A and B normal operators, we generalize results from [8][28] to all Banach ideals with the strong convex compactness property. As mentioned in Section 3.2, this includes all separable ideals and the so-called maximal operator ideals, which in turn is a large class of ideals containing the absolutely (p, q)-summing operators, the integral operators, and more [12, p. 203]. Note that, for normal operators, we can improve the estimate in (4.6) by appealing to (4.4) instead of (4.3).

Corollary 4.7. Let $A \in \mathcal{L}(X)$ and $B \in \mathcal{L}(Y)$ be normal operators on separable Hilbert spaces X and Y. Let \mathcal{I} be a Banach ideal in $\mathcal{L}(X, Y)$ with the strong convex compactness property, and let $f \in B(\text{sp}(A) \cup \text{sp}(B))$ be such that φ_f extends to an element of $\mathcal{A}(\text{sp}(A) \times \text{sp}(B))$. Then
\[
 \|f(B)S - Sf(A)\|_\mathcal{I} \leq \|\varphi_f\|_{\mathcal{A}(\text{sp}(A) \times \text{sp}(B))} \|BS - SA\|_\mathcal{I}
\]
for all \(S \in \mathcal{L}(X,Y) \) such that \(BS - SA \in \mathcal{I} \). In particular, if \(X = Y \) and \(B - A \in \mathcal{I} \),
\[
\|f(B) - f(A)\|_{\mathcal{I}} \leq \|\varphi_f\|_{\Delta(\text{sp}(A) \times \text{sp}(B))} \|B - A\|_{\mathcal{I}}.
\]

Combining Theorem 4.6 with Lemma 3.7 yields the following, a generalization of [25, Theorem 4].

Corollary 4.8. There exists a universal constant \(C \geq 0 \) such that the following holds. Let \(X \) and \(Y \) be separable Banach spaces such that \(X \) or \(Y \) has the bounded approximation property, and let \(\mathcal{I} \) be a Banach ideal in \(\mathcal{L}(X,Y) \) with the strong convex compactness property. Let \(f \in B_{1,1}^{\infty}(\mathbb{R}) \), and let \(A, B \in \mathcal{L}_s(X) \) and \(B \in \mathcal{L}_s(Y) \) be such that \(\text{sp}(A) \cup \text{sp}(B) \subseteq \mathbb{R} \). Then
\[
(4.7) \quad \|f(B)S - Sf(A)\|_{\mathcal{I}} \leq C\nu(A)\nu(B) \|f\|_{B_{1,1}^{\infty}(\mathbb{R})} \|BS - SA\|_{\mathcal{I}}
\]
for all \(S \in \mathcal{L}(X,Y) \) such that \(BS - SA \in \mathcal{I} \). In particular, if \(X = Y \) and \(B - A \in \mathcal{I} \),
\[
\|f(B) - f(A)\|_{\mathcal{I}} \leq C\nu(A)\nu(B) \|f\|_{B_{1,1}^{\infty}(\mathbb{R})} \|B - A\|_{\mathcal{I}}.
\]

In the case where the Banach ideal \(\mathcal{I} \) is the space \(\mathcal{L}(X,Y) \) of all bounded operators from \(X \) to \(Y \), we obtain the following corollary.

Corollary 4.9. There exists a universal constant \(C \geq 0 \) such that the following holds. Let \(X \) and \(Y \) be separable Banach spaces such that either \(X \) or \(Y \) has the bounded approximation property. Let \(f \in B_{1,1}^{\infty}(\mathbb{R}) \), and let \(A, B \in \mathcal{L}_s(X) \) be such that \(\text{sp}(A) \cup \text{sp}(B) \subseteq \mathbb{R} \). Then
\[
(4.8) \quad \|f(B)S - Sf(A)\|_{\mathcal{L}(X,Y)} \leq C\nu(A)\nu(B) \|f\|_{B_{1,1}^{\infty}(\mathbb{R})} \|BS - SA\|_{\mathcal{L}(X,Y)}
\]
for all \(S \in \mathcal{L}(X,Y) \). In particular, if \(X = Y \) then
\[
\|f(B) - f(A)\|_{\mathcal{L}(X)} \leq C\nu(A)\nu(B) \|f\|_{B_{1,1}^{\infty}(\mathbb{R})} \|B - A\|_{\mathcal{L}(X)}.
\]

Remark 4.10. Corollaries 4.8 and 4.9 yield global estimates, in the sense that (4.7) and (4.8) hold for all scalar type operators \(A \) and \(B \) with real spectrum, and the constant in the estimate depends only on \(A \) and \(B \) through their spectral constants \(\nu(A) \) and \(\nu(B) \). Local estimates follow if \(f \in B(\mathbb{R}) \) is contained in the Besov class \(B_{1,1}^{\infty}(\mathbb{R}) \). More precisely, given scalar type operators \(A \in \mathcal{L}_s(X) \) and \(B \in \mathcal{L}_s(Y) \) with real spectrum, suppose there exists \(g \in B_{1,1}^{\infty}(\mathbb{R}) \) with \(g(s) = f(s) \) for all \(s \in \text{sp}(A) \cup \text{sp}(B) \). Then (with notation as in Corollary 4.8)
\[
(4.9) \quad \|f(B)S - Sf(A)\|_{\mathcal{I}} \leq C\nu(A)\nu(B) \|g\|_{B_{1,1}^{\infty}(\mathbb{R})} \|BS - SA\|_{\mathcal{I}}
\]
for all \(S \in \mathcal{L}(X,Y) \) such that \(BS - SA \in \mathcal{I} \). This follows directly from Theorem 4.6.

5. **Spaces with an unconditional basis**

In this section we prove some results for specific scalar type operators, namely operators which are diagonalizable with respect to an unconditional Schauder basis. These results will be used in later sections. In this section we assume all spaces to be infinite-dimensional, but the results and proofs carry over directly to finite-dimensional spaces. This will be used in Section 8.1.
5.1. **Diagonalizable operators.** Let \(X \) be a Banach space with an unconditional Schauder basis \(\{e_j\}_{j=1}^{\infty} \subseteq X \). For \(j \in \mathbb{N} \), let \(P_j \in \mathcal{L}(X) \) be the projection given by
\[
 P_j(x) := x e_j \quad \text{for all } x = \sum_{k=1}^{\infty} x_k e_k \in X.
\]

Assumption 5.1. For simplicity, we assume in this section that \(\left\| \sum_{j \in N} P_j \right\|_{\mathcal{L}(X)} = 1 \) for all non-empty \(N \subseteq \mathbb{N} \). This condition is satisfied in the examples we consider in later sections, and simplifies the presentation. For general bases one merely gets additional constants in the results.

An operator \(A \in \mathcal{L}(X) \) is diagonalizable (with respect to \(\{e_j\}_{j=1}^{\infty} \)) if there exists \(U \in \mathcal{L}(X) \) invertible and a sequence \(\{\lambda_j\}_{j=1}^{\infty} \in \ell_{\infty} \) of complex numbers such that
\[
 UAU^{-1} x = \sum_{j=1}^{\infty} \lambda_j P_j x \quad (x \in X),
\]
where the series converges since \(\{e_k\}_{k=1}^{\infty} \) is unconditional, cf. [32, Lemma 16.1]. In this case \(A \) is a scalar type operator, with point spectrum equal to \(\{\lambda_j\}_{j=1}^{\infty} \cap \text{sp}(A) \) and spectral measure \(E \) given by
\[
 E(\sigma) = \sum_{\lambda_j \in \sigma} U^{-1} P_j U
\]
for \(\sigma \subseteq \mathbb{C} \) Borel. The set of all diagonalizable operators on \(X \) is denoted by \(\mathcal{L}_d(X) \).

We do not explicitly mention the basis \(\{e_j\}_{j=1}^{\infty} \) with respect to which an operator is diagonalizable, since this basis will be fixed throughout. Often we write \(A \in \mathcal{L}_d(X, \{\lambda_j\}_{j=1}^{\infty}, U) \) in order to identify the operator \(U \) and the sequence \(\{\lambda_j\}_{j=1}^{\infty} \) from above. For \(A \in \mathcal{L}_d(X, \{\lambda_j\}_{j=1}^{\infty}, U) \) and \(f \in B(\mathbb{C}) \), it follows from (3.4) that
\[
 f(A) = U^{-1} \left(\sum_{j=1}^{\infty} f(\lambda_j) P_j \right) U.
\]

Since any Banach space with a Schauder basis is separable and has the bounded approximation property, we can apply the results from the previous section to diagonalizable operators, and we obtain for instance the following.

Corollary 5.2. There exists a universal constant \(C \geq 0 \) such that the following holds. Let \(X \) and \(Y \) be Banach spaces with unconditional Schauder bases, and let \(\mathcal{I} \) be a Banach ideal in \(\mathcal{L}(X, Y) \) with the strong convex compactness property. Let \(f \in B^{1}_{\infty,1}(\mathbb{R}) \), and let \(A \in \mathcal{L}_d(X) \) and \(B \in \mathcal{L}_d(Y) \) be such that \(\text{sp}(A) \cup \text{sp}(B) \subseteq \mathbb{R} \). Then
\[
 \|f(B)S - Sf(A)\|_{\mathcal{I}} \leq C v(A) v(B) \|f\|_{B^{1}_{\infty,1}(\mathbb{R})} \|BS - SA\|_{\mathcal{I}}
\]
for all \(S \in \mathcal{L}(X, Y) \) such that \(BS - SA \in \mathcal{I} \). In particular, if \(X = Y \) and \(B - A \in \mathcal{I} \),
\[
 \|f(B) - f(A)\|_{\mathcal{I}} \leq C v(A) v(B) \|f\|_{B^{1}_{\infty,1}(\mathbb{R})} \|B - A\|_{\mathcal{I}}.
\]

Since this result does not apply to the absolute value function (and neither does the more general Theorem [4.6]), and because of the importance of the absolute value function, we now study Lipschitz estimates for more general functions.

Let \(Y \) be a Banach space with an unconditional Schauder basis \(\{f_k\}_{k=1}^{\infty} \subseteq Y \), and let the projections \(Q_k \in \mathcal{L}(Y) \) be given by
\[
 Q_k(y) := y_k f_k \quad \text{for all } y = \sum_{i=1}^{\infty} y_i f_i \in Y.
\]
and \(k \in \mathbb{N} \). Let \(\lambda = \{\lambda_j\}_{j=1}^{\infty} \) and \(\mu = \{\mu_k\}_{k=1}^{\infty} \) be sequences of complex numbers, and let \(\varphi : \mathbb{C}^2 \to \mathbb{C} \). For \(n \in \mathbb{N} \), define \(T^{\lambda,\mu}_{\varphi} \in \mathcal{L}(\mathcal{L}(X,Y)) \) by

\[
T^{\lambda,\mu}_{\varphi}(S) := \sum_{j,k=1}^{n} \varphi_{f}(\lambda_j, \mu_k) Q_k SP_j \quad (S \in \mathcal{L}(X,Y)).
\]

Note that \(T^{\lambda,\mu}_{\varphi} \in \mathcal{L}(I) \) for each Banach ideal \(I \) in \(\mathcal{L}(X,Y) \).

Let \(f \in \mathcal{B}(\mathbb{C}) \) and extend the divided difference from (4.5), given by

\[
\varphi_{f}(\lambda_1, \lambda_2) := \frac{f(\lambda_2) - f(\lambda_1)}{\lambda_2 - \lambda_1}
\]

for \((\lambda_1, \lambda_2) \in \mathbb{C}^2 \) with \(\lambda_1 \neq \lambda_2 \), to a function \(\varphi_{f} : \mathbb{C}^2 \to \mathbb{C} \).

Lemma 5.3. Let \(X \) and \(Y \) be Banach spaces with unconditional Schauder bases, and let \(I \) be a Banach ideal in \(\mathcal{L}(X,Y) \). Let \(\lambda = \{\lambda_j\}_{j=1}^{\infty} \) and \(\mu = \{\mu_k\}_{k=1}^{\infty} \) be sequences of complex numbers, and let \(A \in \mathcal{L}(X,\lambda, I) \), \(B \in \mathcal{L}(Y,\mu, I) \), \(f \in \mathcal{B}(\mathbb{C}) \) and \(n \in \mathbb{N} \). Then

\[
\|f(B)S_n - S_nf(A)\|_I \leq \|U\|_{\mathcal{L}(X)}\|V^{-1}\|_{\mathcal{L}(Y)}\|T^{\lambda,\mu}_{\varphi}(V(BS-SA)U^{-1})\|_I
\]

for all \(S \in I \) such that \(BS-SA \in I \), where \(S_n := \sum_{j,k=1}^{n} V^{-1} Q_k VSU^{-1} P_j U \).

Proof. Let \(S \in I \) be such that \(BS-SA \in I \). For the duration of the proof write \(P_j := U^{-1} P_j U \in \mathcal{L}(X) \) and \(Q_k := V^{-1} Q_k V \in \mathcal{L}(Y) \) for \(j, k \in \mathbb{N} \). By (5.3), and using that \(P_j P_k = 0 \) and \(Q_j Q_k = 0 \) for \(j \neq k \),

\[
f(B)S_n - S_nf(A) = \sum_{k=1}^{\infty} f(\mu_k) Q_k \left(\sum_{i,j=1}^{n} Q_i SP_j \right) - \sum_{j=1}^{n} f(\lambda_j) \left(\sum_{i,j=1}^{n} Q_i SP_j \right) P_j
\]

\[
= \sum_{j,k=1}^{n} \left(f(\mu_k) - f(\lambda_j) \right) Q_k SP_j
\]

\[
= \sum_{j,k=1}^{n} \sum_{\mu_k \neq \lambda_j} \frac{f(\mu_k) - f(\lambda_j)}{\mu_k - \lambda_j} (\mu_k Q_k SP_j - \lambda_j Q_k SP_j)
\]

\[
= \sum_{j,k=1}^{n} \varphi_f(\lambda_j, \mu_k) Q_k \left(\left(\sum_{i=1}^{\infty} \mu_i Q_i \right) S - S \left(\sum_{i=1}^{\infty} \lambda_i P_i \right) \right) P_j
\]

\[
= \sum_{j,k=1}^{n} \varphi_f(\lambda_j, \mu_k) Q_k (BS-SA) P_j
\]

\[
= V^{-1} T^{A,B}_{\varphi}(V(BS-SA)U^{-1}) U
\]

where we have used that \(BS-SA \in M_n \). Now use the ideal property of \(I \) to conclude the proof. \(\square \)

For a sequence \(\lambda \) of complex numbers and \(A \in \mathcal{L}(X,\lambda, I) \), define

\[
K_A := \inf \left\{ \|U\|_{\mathcal{L}(X)}\|U^{-1}\|_{\mathcal{L}(X)} \mid A \in \mathcal{L}(X,\lambda, I) \right\}
\]

We will call \(K_A \) the diagonalizability constant of \(A \). Using the unconditionality of the Schauder basis of \(X \) and Assumption 5.1, one can show that \(K_A \) does not depend on the specific ordering of the sequence \(\lambda \). Since the sequence \(\lambda \) is, up to ordering,
uniquely determined by \(A \) (it is the point spectrum of \(A \)), \(K_A \) only depends on \(A \). Moreover, by Assumption 5.1 and 5.2, \(\|E(\sigma)\|_{\mathcal{L}(X)} \leq \|U^{-1}\|_{\mathcal{L}(X)} \|U\|_{\mathcal{L}(X)} \) for all \(\sigma \subseteq C \) Borel and \(U \in \mathcal{L}(X) \) such that \(A \in \mathcal{L}_{d}(X, \lambda, U) \), where \(E \) is the spectral measure of \(A \). Hence

\[
(5.6) \quad \nu(A) \leq K_A,
\]

where \(\nu(A) \) is the spectral constant of \(A \) from Section 3.1.

We now derive commutator estimates for \(A \) and \(B \) in the operator norm, under a boundedness assumption which will be verified for specific \(X \) and \(Y \) in later sections.

Proposition 5.4. Let \(X \) and \(Y \) be Banach spaces with unconditional Schauder bases, \(A \in \mathcal{L}_{d}(X, \lambda, U) \), \(B \in \mathcal{L}_{d}(Y, \mu, V) \) and \(f \in B(C) \). Suppose that

\[
(5.7) \quad C := \sup_{n \in \mathbb{N}} \left\| T_{\psi_n^f,\mu} \right\|_{\mathcal{L}(X,Y)} < \infty.
\]

Then

\[
\|f(B)S - Sf(A)\|_{\mathcal{L}(X,Y)} \leq CK_A K_B \|BS - SA\|_{\mathcal{L}(X,Y)}
\]

for all \(S \in \mathcal{L}(X, Y) \).

Proof. Let \(S \in \mathcal{L}(X, Y) \) and let \(S_n \in \mathcal{L}(X, Y) \) be as in Lemma 5.3 for \(n \in \mathbb{N} \). It is straightforward to show that, for each \(x \in X \), \(S_n x \to Sx \) as \(n \to \infty \). Hence \(f(B)S_n x - S_n f(A)x \to f(B)Sx - Sf(A)x \) as \(n \to \infty \), for each \(x \in X \). Lemma 5.3 and (5.7) now yield

\[
\|f(B)S - Sf(A)\|_{\mathcal{L}(X,Y)} \leq \limsup_{n \to \infty} \|f(B)S_n - S_n f(A)\|_{\mathcal{L}(X,Y)}
\]

\[
\leq C \|U\| \|V^{-1}\| V(BS - SA)U^{-1} \|_{\mathcal{L}(X,Y)}
\]

\[
\leq C \|U\| \|U^{-1}\| \|V\| \|V^{-1}\| \|BS - SA\|_{\mathcal{L}(X,Y)}.
\]

Taking the infimum over \(U \) and \(V \) concludes the proof. \(\square \)

Remark 5.5. Proposition 5.4 also holds for more general Banach ideals in \(\mathcal{L}(X, Y) \). Indeed, let \(\mathcal{I} \) be a Banach ideal in \(\mathcal{L}(X, Y) \) with the property that, if \(\{S_m\}_{m=1}^{\infty} \subseteq \mathcal{I} \) is an \(\mathcal{I} \)-bounded sequence which SOT-converges to some \(S \in \mathcal{L}(X, Y) \) as \(m \to \infty \), then \(S \in \mathcal{I} \) with \(\|S\|_{\mathcal{I}} \leq \limsup_{m \to \infty} \|S_m\|_{\mathcal{I}} \). With notation as in Proposition 5.4 if

\[
C := \sup_{n \in \mathbb{N}} \left\| T_{\psi_n^f,\mu} \right\|_{\mathcal{L}(\mathcal{I})} < \infty
\]

then

\[
\|f(B)S - Sf(A)\|_{\mathcal{I}} \leq CK_A K_B \|BS - SA\|_{\mathcal{I}}
\]

for all \(S \in \mathcal{L}(X, Y) \) such that \(BS - SA \in \mathcal{I} \). This follows directly from the proof of Proposition 5.4.
5.2. Estimates for the absolute value function. It is known that Lipschitz estimates for the absolute value function are related to estimates for so-called triangular truncation operators. For example, in [18] and [14] it was shown that the boundedness of the standard triangular truncation on many operator spaces is equivalent to Lipschitz estimates for the absolute value function. We prove that, in our setting, triangular truncation operators are also related to Lipschitz estimates for f the absolute value function. We do so by relating the assumption in (5.7) to so-called triangular truncation operators associated to sequences. We will then bound the norms of these operators in later sections for specific X and Y.

Let $\lambda = \{\lambda_j\}_{j=1}^{\infty}$ and $\mu = \{\mu_k\}_{k=1}^{\infty}$ be sequences of real numbers, and let X and Y be as before. For $n \in \mathbb{N}$ define $T_{\lambda,\mu}^{\Delta,n} \in \mathcal{L}(\mathcal{L}(X,Y))$ by

$$T_{\lambda,\mu}^{\Delta,n}(S) := \sum_{j,k=1}^{n} Q_j S P_j \quad (S \in \mathcal{L}(X,Y)).$$

We call $T_{\Delta}^{A,B}$ the triangular truncation associated to λ and μ.

For $f(t) := |t|$ for $t \in \mathbb{R}$, define $\varphi_f : C^2 \to C$ by

$$\varphi_f(\lambda_1, \lambda_2) := \begin{cases} \frac{|\lambda_1| - |\lambda_2|}{\lambda_1 - \lambda_2} & \text{if } \lambda_1 \neq \lambda_2 \\ 1 & \text{otherwise} \end{cases}.$$

The following result relates the norm of $T_{\lambda,\mu}^{\Delta,n}(S)$ to that of $T_{\Delta,n}^{\lambda,\mu}$.

Proposition 5.6. There exists a universal constant $C \geq 0$ such that the following holds. Let X and Y be Banach spaces with unconditional Schauder bases and let I be a Banach ideal in $\mathcal{L}(X,Y)$ with the strong convex compactness property. Let λ and μ be bounded sequences of real numbers. Let $f(t) := |t|$ for $t \in \mathbb{R}$. Then

$$\|T_{\varphi_f,n}^{\lambda,\mu}(S)\|_I \leq C \left(\|S\|_I + \|T_{\Delta,n}^{\lambda,\mu}(S)\|_I \right)$$

for all $n \in \mathbb{N}$ and $S \in I$. In particular, if $\sup_{n \in \mathbb{N}} \|T_{\Delta,n}^{\lambda,\mu}(S)\|_{\mathcal{L}(X,Y)} < \infty$ then (5.7) holds.

Proof. Let $n \in \mathbb{N}$ and $S \in I$, and write $\lambda = \{\lambda_j\}_{j=1}^{\infty}$ and $\mu = \{\mu_k\}_{k=1}^{\infty}$. Throughout the proof we will only consider λ_j and μ_k for $1 \leq j, k \leq n$, but to simplify the presentation we will not mention this explicitly from here on. We can decompose $T_{\varphi_f,n}^{\lambda,\mu}(S)$ as

$$T_{\varphi_f,n}^{\lambda,\mu}(S) = \sum_{\lambda_j, \mu_k \geq 0} Q_j S P_j - \sum_{\mu_k < 0, \lambda_j} \frac{\mu_k + \lambda_j}{\mu_k - \lambda_j} Q_k S P_j + \sum_{\lambda_j < 0, \mu_k} \frac{\mu_k + \lambda_j}{\mu_k - \lambda_j} Q_k S P_j - \sum_{\lambda_j, \mu_k \leq 0} Q_k S P_j + \sum_{\lambda_j, \mu_k = 0} Q_k S P_j.$$

Note that some of these terms may be zero. By the ideal property of I and Assumption [5.1],

$$\left\| \sum_{\lambda_j, \mu_k \geq 0} Q_k S P_j \right\|_I \leq \left\| \sum_{\mu_k \geq 0} Q_k \right\|_{\mathcal{L}(Y)} \left\| S \right\|_I \left\| \sum_{\lambda_j \geq 0} P_j \right\|_{\mathcal{L}(X)} \leq \left\| S \right\|_I.$$

Similarly, \(\left\| \sum_{\lambda_j, \mu_k \leq 0} Q_k S \mathcal{P}_j \right\|_I \) and \(\left\| \sum_{\lambda_j, \mu_k = 0} Q_k S \mathcal{P}_j \right\|_I \) are each bounded by \(\| S \|_I \). To bound the other terms it is sufficient to show that
\[
\left\| \sum_{\lambda_j, \mu_k > 0} \frac{\mu_k - \lambda_j}{\mu_k + \lambda_j} Q_k S \mathcal{P}_j \right\|_I \leq C' \left(\| S \|_I + \left\| T_{\lambda,\mu}^{\mathcal{H}}(S) \right\|_I \right)
\]
for some universal constant \(C' > 0 \). Indeed, replacing \(\lambda \) by \(-\lambda \) and \(\mu \) by \(-\mu \) then yields the desired conclusion. Let
\[
\Phi(S) := \sum_{\lambda_j, \mu_k > 0} \frac{\mu_k - \lambda_j}{\mu_k + \lambda_j} Q_k S \mathcal{P}_j
\]
and define \(g \in W^{1,2}(\mathbb{R}) \) by \(g(t) := \frac{2}{e^{|t|} + 1} \) for \(t \in \mathbb{R} \). Note that \(\Phi(S) \) is equal to
\[
\sum_{0 < \mu_k \leq \lambda_j} \left(g \left(\log \frac{\lambda_j}{\mu_k} \right) - 1 \right) Q_k S \mathcal{P}_j + \sum_{0 < \lambda_j < \mu_k} \left(1 - g \left(\log \frac{\lambda_j}{\mu_k} \right) \right) Q_k S \mathcal{P}_j.
\]
Now let \(\psi_S : C^2 \to C \) be as in (3.9), and let \(A := \sum_{j=1}^\infty \lambda_j \mathcal{P}_j \in \mathcal{L}(X) \) and \(B := \sum_{k=1}^\infty \mu_k Q_k \in \mathcal{L}(Y) \). Let \(T_{\psi_S}^{\mathcal{B}} \) be as in (4.2). One can check that
\[
\Phi(S) = T_{\psi_S}^{\mathcal{B}}(T_{\lambda,\mu}^\mathcal{H}(S)) - \sum_{\lambda_j, \mu_k > 0} Q_k T_{\lambda,\mu}^\mathcal{H}(S) \mathcal{P}_j + \sum_{\lambda_j, \mu_k > 0} Q_k(S - T_{\lambda,\mu}^\mathcal{H}(S)) \mathcal{P}_j - T_{\psi_S}^{\mathcal{B}}(S - T_{\lambda,\mu}^\mathcal{H}(S)).
\]
Any Banach space with a Schauder basis is separable and has the bounded approximation property, hence Lemma 3.6 and Proposition 4.2 yield
\[
\left\| T_{\psi_S}^{\mathcal{B}}(T_{\lambda,\mu}^\mathcal{H}(S)) \right\|_I \leq 16\sqrt{2} \| \psi \|_{W^{1,2}(\mathbb{R})} \left\| T_{\lambda,\mu}^\mathcal{H}(S) \right\|_I.
\]
By (5.6), \(v(A) = v(B) = 1 \). Similarly,
\[
\left\| T_{\psi_S}^{\mathcal{B}}(S - T_{\lambda,\mu}^\mathcal{H}(S)) \right\|_I \leq 16\sqrt{2} \| \psi \|_{W^{1,2}(\mathbb{R})} \left(\left\| S \right\|_I + \left\| T_{\lambda,\mu}^\mathcal{H}(S) \right\|_I \right).
\]
By the same arguments as in (5.10),
\[
\left\| \sum_{\lambda_j, \mu_k > 0} Q_k T_{\lambda,\mu}^\mathcal{H}(S) \mathcal{P}_j \right\|_I + \left\| \sum_{\lambda_j, \mu_k > 0} Q_k(S - T_{\lambda,\mu}^\mathcal{H}(S)) \mathcal{P}_j \right\|_I \leq 2 \left\| S \right\|_I + \left\| T_{\lambda,\mu}^\mathcal{H}(S) \right\|_I.
\]
Combining all these estimates yields
\[
\left\| \Phi(S) \right\|_I \leq \left(2 + 32\sqrt{2} \| \psi \|_{W^{1,2}(\mathbb{R})} \right) \left(\left\| S \right\|_I + \left\| T_{\lambda,\mu}^\mathcal{H}(S) \right\|_I \right),
\]
as desired. \(\Box \)

6. The absolute value function on \(\mathcal{L}(\ell_p, \ell_q) \)

In this section we study the absolute value function on the space \(\mathcal{L}(\ell_p, \ell_q) \). We show that the absolute value function is operator Lipschitz on \(\mathcal{L}(\ell_p, \ell_q) \) for \(p < q < \infty \), on \(\mathcal{L}(\ell_1) \) and on \(\mathcal{L}(c_0) \). We also obtain results for \(p \geq q \).

The key idea of the proof is entirely different from the techniques used in [9], [11], [14] and [18], which are based on a special geometric property of the reflexive Schatten von Neumann ideals (the UMD-property), a property which \(\mathcal{L}(\ell_p, \ell_q) \)
does not have. Instead, we prove our results by relating estimates for the operators from \([5, 8]\) to the standard triangular truncation operator, defined in \((6.1)\) below. For this we use the theory of Schur multipliers on \(\mathcal{L}(\ell_p, \ell_q)\) developed in \([1]\). We then appeal to results from \([3]\) about the boundedness of the standard triangular truncation on \(\mathcal{L}(\ell_p, \ell_q)\).

6.1. Schur multipliers.

For \(p \in [1, \infty)\), let \(\{e_j\}_{j=1}^\infty\) be the standard Schauder basis of \(\ell_p\), with the corresponding projections \(P_j(x) := x_j e_j\) for \(x = \sum_{k=1}^\infty x_k e_k\) and \(j \in \mathbb{N}\). We consider this basis and the corresponding projections on all \(\ell_p\)-spaces simultaneously, for simplicity of notation. Note that Assumption \((5.1)\) is satisfied for this basis. For \(q \in [1, \infty)\), any operator \(S \in \mathcal{L}(\ell_p, \ell_q)\) can be represented by an infinite matrix \(\tilde{S} = \{s_{jk}\}_{j,k=1}^\infty\), where \(s_{jk} := (S(e_j), e_j)\) for \(j, k \in \mathbb{N}\). For an infinite matrix \(M = \{m_{jk}\}_{j,k=1}^\infty\) the product \(M * \tilde{S} := \{m_{jk}s_{jk}\}\) is the Schur product of the matrices \(M\) and \(\tilde{S}\). The matrix \(M\) is a Schur multiplier if the mapping \(\tilde{S} \mapsto M * \tilde{S}\) is a bounded operator on \(\mathcal{L}(\ell_p, \ell_q)\). Throughout, we identify Schur multipliers with their corresponding operators.

The notion of a Schur multiplier is a discrete version of a double operator integral (for details see e.g. \([30], [33]\)). Schur multipliers on the space \(\mathcal{L}(\ell_p, \ell_q)\) are also called \((p, q)\)-multipliers. We denote by \(\mathcal{M}(p, q)\) the Banach space of \((p, q)\)-multipliers with the norm

\[
\|M\|_{(p, q)} := \sup \left\{ \|M * \tilde{S}\|_{\mathcal{L}(\ell_p, \ell_q)} \mid \|\tilde{S}\|_{\mathcal{L}(\ell_p, \ell_q)} \leq 1 \right\}.
\]

Remark 6.1. We will also consider \((p, q)\)-multipliers \(M\) for \(p = \infty\) and \(q \in [1, \infty)\). Any operator \(S \in \mathcal{L}(c_0, \ell_q)\) corresponds to an infinite matrix \(\tilde{S} = \{s_{jk}\}_{j,k=1}^\infty\), and \(M\) is said to be a \((\infty, q)\)-multiplier if the mapping \(\tilde{S} \mapsto M * \tilde{S}\) is a bounded operator on \(\mathcal{L}(c_0, \ell_q)\), and we define the Banach space \(\mathcal{M}(\infty, q)\) in the obvious way. Below we will often not explicitly distinguish the case \(p = \infty\) from \(1 \leq p < \infty\), in order to keep the presentation simple. The reader should keep in mind that for \(p = \infty\) the space \(\ell_p\) should be replaced by \(c_0\).

Remark 6.2. It is straightforward to see that \(\|M\|_{(p, q)} \geq \sup_{j,k \in \mathbb{N}} |m_{jk}|\) for all \(p, q \in [1, \infty)\) and \(M \in \mathcal{M}(p, q)\).

For \(p, q \in [1, \infty)\) and \(S \in \mathcal{L}(\ell_p, \ell_q)\), define

\[
T_\Delta(S) := \sum_{j \leq r} P_j SP_j,
\]

which is a well-defined element of \(\mathcal{L}(\ell_r, \ell_q)\) for suitable \(r, s \in [1, \infty)\), by Proposition \((6.3)\) below. The operator \(T_\Delta\) is the (standard) triangular truncation. This operator can be identified with the following Schur multiplier. Let \(T'_\Delta = \{t'_{jk}\}_{j,k=1}^\infty\) be a matrix given by \(t'_{jk} = 1\) for \(k \leq j\) and \(t'_{jk} = 0\) otherwise. It is clear that \(T'_\Delta\) extends to a bounded linear operator on \(\mathcal{L}(\ell_p, \ell_q)\) if and only if \(T'_\Delta\) is a \((p, q)\)-multiplier. For \(n \in \mathbb{N}\) and \(r, s \in [1, \infty)\) we will consider the operators \(T_{\Delta,n} \in \mathcal{L}(\ell_p, \ell_q), \mathcal{L}(\ell_r, \ell_s)\), given by

\[
T_{\Delta,n}(S) := \sum_{1 \leq j \leq n} P_j SP_j \quad (S \in \mathcal{L}(\ell_p, \ell_q)).
\]

The dependence of the \((p, q)\)-norm of \(T_\Delta\) on the indices \(p\) and \(q\) was determined in \([3]\) and \([19]\) (see also \([34]\)), and is as follows.
Proposition 6.3. Let $p, q \in [1, \infty]$. Then the following statements hold.

(i) \cite[Theorem 5.1]{1} If $p < q$, $1 = p = q$ or $p = q = \infty$, then $T_{\Delta} \in \mathcal{M}(p, q)$.

(ii) \cite[Proposition 1.2]{3} If $1 \neq p \geq q \neq \infty$, then there is a constant $C > 0$ such that

$$
\|T_{\Delta,n}\|_{\mathcal{L}(\ell(p), \ell(q))} \geq C \ln n
$$

for all $n \in \mathbb{N}$.

(iii) \cite[Theorem 5.2]{1} If $1 \neq p \geq q \neq \infty$, then for each $s > q$ and $r < p$,

$$
T_{\Delta} : \mathcal{L}(\ell_p, \ell_q) \to \mathcal{L}(\ell_p, \ell_s) \quad \text{and} \quad T_{\Delta} : \mathcal{L}(\ell_p, \ell_q) \to \mathcal{L}(\ell_r, \ell_q)
$$

are bounded.

We will also need the following result, a generalization of \cite[Theorem 4.1]{4}. For a matrix $M = \{m_{jk}\}_{j,k=1}^\infty$, let $\tilde{M} = \{\tilde{m}_{jk}\}_{j,k=1}^\infty$ be obtained from M by repeating the first column, i.e., $\tilde{m}_{jk} = m_{j1}$ and $\tilde{m}_{jk} = m_{j(k-1)}$ for $j \in \mathbb{N}$ and $k \geq 2$.

Proposition 6.4. Let $p, q, r, s \in [1, \infty]$ with $r \leq p$. Let $M = \{m_{jk}\}_{j,k=1}^\infty$ be such that $S \mapsto M \ast S$ is a bounded mapping $\mathcal{L}(\ell_p, \ell_q) \to \mathcal{L}(\ell_r, \ell_s)$. Then $S \mapsto \tilde{M} \ast S$ is also a bounded mapping $\mathcal{L}(\ell_p, \ell_q) \to \mathcal{L}(\ell_r, \ell_s)$, with

$$
\|M\|_{\mathcal{L}(\ell(p), \ell(q)), \mathcal{L}(\ell(r), \ell(s))} = \|\tilde{M}\|_{\mathcal{L}(\ell(p), \ell(q)), \mathcal{L}(\ell(r), \ell(s))}.
$$

In particular, if $M \in \mathcal{M}(p, q)$ then $\tilde{M} \in \mathcal{M}(p, q)$ with $\|M\|_{(p,q)} = \|\tilde{M}\|_{(p,q)}$.

Proof. The proof is almost identical to that of \cite[Theorem 4.1]{4}, and the condition $r \leq p$ is used to ensure that $|x_1|^p + |x_2|^p \leq (|x_1|^r + |x_2|^r)^{p/r}$ for all $x_1, x_2 \in C$ (with the obvious modification for $p = \infty$ or $r = \infty$).

Remark 6.5. By considering the transpose M' of a matrix M, and using that $M' : \mathcal{L}(\ell_q^*, \ell_p^*) \to \mathcal{L}(\ell_s^*, \ell_r^*)$ with

$$
\|M'\|_{\mathcal{L}(\ell_q^*, \ell_p^*), \mathcal{L}(\ell_s^*, \ell_r^*)} = \|M\|_{\mathcal{L}(\ell_p, \ell_q), \mathcal{L}(\ell_r, \ell_s)},
$$

as is straightforward to check, one obtains from Proposition 6.4 that for $q^* \geq s^*$, that is, for $s \leq q$, row repetitions do not alter the $\|\cdot\|_{\mathcal{L}(\ell_p, \ell_q), \mathcal{L}(\ell_r, \ell_s)}$-norm of a matrix. Moreover, since $\|S\|_{\mathcal{L}(\ell_p, \ell_q)}$ is invariant under permutations of the columns and rows of $S \in \mathcal{L}(\ell_p, \ell_q)$, rearrangement of the rows and columns of $M \in \mathcal{L}(\ell_p, \ell_q)$, and $\mathcal{L}(\ell_r, \ell_s)$) does not change the norm $\|M\|_{\mathcal{L}(\ell_p, \ell_q), \mathcal{L}(\ell_r, \ell_s)}$.

The following lemma is crucial to our main results.

Lemma 6.6. Let $p, q, r, s \in [1, \infty]$ with $r \leq p$ and $s \leq q$. Let $\lambda = \{\lambda_j\}_{j=1}^\infty$ and $\mu = \{\mu_k\}_{k=1}^\infty$ be sequences of real numbers. Then

$$
\left\|T_{\Delta,n}^{(\lambda, \mu)}\right\|_{\mathcal{L}(\ell(p), \ell(q)), \mathcal{L}(\ell(r), \ell(s))} \leq \left\|T_{\Delta,n}\right\|_{\mathcal{L}(\ell(p), \ell(q)), \mathcal{L}(\ell(r), \ell(s))}
$$

for all $n \in \mathbb{N}$.
Proof. Note that $T^{\lambda_1,\mu} S = M S$ for all $S \in \mathcal{L}(\ell_p, \ell_q)$, where $M = \{m_{jk}\}_{k=1}^n$ is such that $m_{jk} = 1$ if $1 \leq j, k \leq n$ and $\mu_k \leq \lambda_j$, and $m_{jk} = 0$ otherwise. It suffices to prove that $\|M\|_{\mathcal{L}(\ell_p,\ell_q)} \|M_{\mathcal{L}(\ell_p,\ell_q)} \| \leq \|T\|_{\mathcal{L}(\ell_p,\ell_q)} \|M_{\mathcal{L}(\ell_p,\ell_q)} \|$. Assume that M is non-zero, otherwise the statement is trivial. By Remark 6.5 rearrangement of the rows and columns of M does not change its norm. Hence, we may assume that $\{\lambda_j\}_{j=1}^n$ and $\{\mu_k\}_{k=1}^n$ are decreasing. Now M has the property that, if $m_{jk} = 1$, then $m_{il} = 1$ for all $1 \leq j$ and $k \leq l \leq m_2$. By Proposition 6.4 and Remark 6.5, we may omit repeated rows and columns of M, and doing this repeatedly reduces M to $T_{\Delta,N}$ for some $1 \leq N \leq n$. Noting that $\|T_{\Delta,N}\|_{\mathcal{L}(\ell_p,\ell_q)} \|T_{\Delta,N}\|_{\mathcal{L}(\ell_p,\ell_q)} \| \leq \|T_{\Delta,N}\|_{\mathcal{L}(\ell_p,\ell_q)} \|T_{\Delta,N}\|_{\mathcal{L}(\ell_p,\ell_q)}$ concludes the proof. □

6.2. The cases $p < q$, $p = q = 1$, $p = q = \infty$. We now combine the theory from the previous sections to deduce our main results. Throughout this section let $f(t) := |t|$ for $t \in \mathbb{R}$.

Theorem 6.7. Let $p, q \in [1, \infty]$ with $p < q$, $p = q = 1$ or $p = q = \infty$. Then there exists a constant $C \geq 0$ such that the following holds (where ℓ_{∞} should be replaced by c_0). Let $A \in \mathcal{L}_d(\ell_p)$ and $B \in \mathcal{L}_d(\ell_q)$ have real spectrum. Then

$$\|f(B)S - Sf(A)\|_{\mathcal{L}(\ell_p,\ell_q)} \leq CK_A K_B \|BS - SA\|_{\mathcal{L}(\ell_p,\ell_q)}$$

for all $S \in \mathcal{L}(\ell_p, \ell_q)$.

Proof. Simply combine Propositions 5.4 and 6.6 and Lemma 6.6 with Proposition 6.8. □

We single out the specific case in Theorem 6.7 where $p = q = 1$ or $p = q = \infty$ and S is the identity operator.

Corollary 6.8. There exists a universal constant $C \geq 0$ such that

$$\|f(B) - f(A)\|_{\mathcal{L}(\ell_1)} \leq CK_A K_B \|B - A\|_{\mathcal{L}(\ell_1)}$$

for all $A, B \in \mathcal{L}_d(\ell_1)$ with real spectrum.

Corollary 6.9. There exists a universal constant $C \geq 0$ such that

$$\|f(B) - f(A)\|_{\mathcal{L}(c_0)} \leq CK_A K_B \|B - A\|_{\mathcal{L}(c_0)}$$

for all $A, B \in \mathcal{L}_d(c_0)$ with real spectrum.

In the case of Theorem 6.7 where $p = 2$ or $q = 2$, we can apply our results to compact self-adjoint operators. By the spectral theorem, any compact self-adjoint operator $A \in \mathcal{L}(\ell_2)$ has an orthonormal basis of eigenvectors, and therefore $A \in \mathcal{L}_d(\ell_2, \lambda, U)$ for some sequence λ of real numbers and an isometry $U \in \mathcal{L}(\ell_2)$. Thus Theorem 6.7 yields the following corollaries.

Corollary 6.10. Let $p \in [1, 2)$. Then there exists a constant $C \geq 0$ such that the following holds. Let $A \in \mathcal{L}_d(\ell_p)$ and let $B \in \mathcal{L}(\ell_2)$ be compact and self-adjoint. Then

$$\|f(B)S - Sf(A)\|_{\mathcal{L}(\ell_p,\ell_2)} \leq CK_A \|BS - SA\|_{\mathcal{L}(\ell_p,\ell_2)}$$

for all $S \in \mathcal{L}(\ell_p, \ell_2)$.
Corollary 6.11. Let \(q \in (2, \infty] \). Then there exists a constant \(C \geq 0 \) such that the following holds (where \(\ell_\infty \) should be replaced by \(c_0 \)). Let \(A \in \mathcal{L}(\ell_2) \) be compact and self-adjoint, and let \(B \in \mathcal{L}_d(\ell_q) \). Then
\[
\|f(B)S - Sf(A)\|_{\mathcal{L}(\ell_2, \ell_q)} \leq CKB\|BS - SA\|_{\mathcal{L}(\ell_2, \ell_q)}
\]
for all \(S \in \mathcal{L}(\ell_2, \ell_q) \).

Remark 6.12. Corollaries 6.8 and 6.9 show that the absolute value function is operator Lipschitz on \(\ell_1 \) and \(c_0 \), in the following sense. For fixed \(M \geq 1 \), there exists a constant \(C \geq 0 \) such that
\[
\|f(B) - f(A)\| \leq C\|B - A\|
\]
for all diagonalizable operators \(A \) and \(B \) such that \(K_A, K_B \leq M \), and \(C \) is independent of \(A \) and \(B \).

For \(p < q \) a similar statement holds. Restricting \(B \in \mathcal{L}_d(\ell_q) \) and \(f(B) \in \mathcal{L}(\ell_q) \) to operators from \(\ell_p \) to \(\ell_q \), and letting \(S \) be the inclusion mapping \(\ell_p \hookrightarrow \ell_q \) in Theorem 6.7, one can suggestively write
\[
\|f(B) - f(A)\|_{\mathcal{L}(\ell_p, \ell_q)} \leq C\|B - A\|_{\mathcal{L}(\ell_p, \ell_q)},
\]
for all \(A \in \mathcal{L}_d(\ell_p) \) and \(B \in \mathcal{L}_d(\ell_q) \) with \(K_A, K_B \leq M \). This also applies to Corollaries 6.10 and 6.11.

6.3. The case \(p \geq q \). We now examine the absolute value function \(f \) on \(\mathcal{L}(\ell_p, \ell_q) \) for \(p \geq q \), and obtain the following result.

Proposition 6.13. Let \(p, q \in (1, \infty) \) with \(p \geq q \). Then for each \(s < q \) there exists a constant \(C \geq 0 \) such that the following holds (where \(\ell_\infty \) should be replaced by \(c_0 \)). Let \(A \in \mathcal{L}_d(\ell_p, \lambda, U) \) and \(B \in \mathcal{L}_d(\ell_q, \mu, V) \) have real spectrum, and let \(S \in \mathcal{L}(\ell_p, \ell_q) \) be such that \(V(BS - SA)U^{-1} \in \mathcal{L}(\ell_p, \ell_q) \). Then
\[
\|f(B)S - Sf(A)\|_{\mathcal{L}(\ell_p, \ell_q)} \leq C\|U\|_{\mathcal{L}(\ell_p)}\|V^{-1}\|_{\mathcal{L}(\ell_q)}\|V(BS - SA)U^{-1}\|_{\mathcal{L}(\ell_p, \ell_q)}.
\]
In particular, if \(p = q \) and \(V(B - A)U^{-1} \in \mathcal{L}(\ell_p, \ell_q) \), then
\[
\|f(B) - f(A)\|_{\mathcal{L}(\ell_p)} \leq C\|U\|_{\mathcal{L}(\ell_p)}\|V^{-1}\|_{\mathcal{L}(\ell_q)}\|V(B - A)U^{-1}\|_{\mathcal{L}(\ell_p, \ell_q)}.
\]

Proof. Let \(R := V(BS - SA)U^{-1} \). With notation as in Lemma 5.3
\[
\|f(B)S - Sf(A)\|_{\mathcal{L}(\ell_p, \ell_q)} \leq \|U\|_{\mathcal{L}(\ell_p)}\|V^{-1}\|_{\mathcal{L}(\ell_q)}\|T^{\lambda, \mu}_{\phi, \eta}(R)\|_{\mathcal{L}(\ell_p, \ell_q)}
\]
for each \(n \in \mathbb{N} \). Proposition 5.6 Lemma 6.6 (with \(p = r \) and with \(q \) and \(s \) interchanged) and Proposition 6.3 (iii) (with \(q \) and \(s \) interchanged) yield a constant \(C' \geq 0 \) such that
\[
\|T^{\lambda, \mu}_{\phi, \eta}(R)\|_{\mathcal{L}(\ell_p, \ell_q)} \leq C' \left(\|R\|_{\mathcal{L}(\ell_p, \ell_q)} + \|R\|_{\mathcal{L}(\ell_p, \ell_q)} \right).
\]
Since \(\mathcal{L}(\ell_p, \ell_q) \hookrightarrow \mathcal{L}(\ell_p, \ell_q) \) contractively,
\[
\|f(B)S - Sf(A)\|_{\mathcal{L}(\ell_p, \ell_q)} \leq C\|U\|_{\mathcal{L}(\ell_p)}\|V^{-1}\|_{\mathcal{L}(\ell_q)}\|V(BS - SA)U^{-1}\|_{\mathcal{L}(\ell_p, \ell_q)}
\]
for all \(n \in \mathbb{N} \), where \(C = 2C' \). Finally, as in the proof of Proposition 5.4 one lets \(n \) tend to infinity to conclude the proof. \(\square \)
In the same way, appealing to the second part of Proposition 6.3 (iii), one deduces the following result.

Proposition 6.14. Let \(p, q \in [1, \infty) \) with \(p \geq q \). Then for each \(r > p \) there exists a constant \(C \geq 0 \) such that the following holds (where \(\ell_\infty \) should be replaced by \(c_0 \)). Let \(A \in L_\ell(\ell_p, \lambda, U) \) and \(B \in L_\ell(\ell_q, \mu, V) \) have real spectrum, and let \(S \in L(\ell_p, \ell_q) \). Then

\[
\|f(B)S - SF(A)\|_{L(\ell_p, \ell_q)} \leq C\|U\|_{L(\ell_p)}\|V^{-1}\|_{L(\ell_q)}\|V(BS - SA)U^{-1}\|_{L(\ell_p, \ell_q)}.
\]

In particular, if \(p = q \) and \(V(B - A)U^{-1} \in L(\ell_p, \ell_q) \), then

\[
\|f(B) - f(A)\|_{L(\ell_p)} \leq C\|U\|_{L(\ell_p)}\|V^{-1}\|_{L(\ell_q)}\|V(B - A)U^{-1}\|_{L(\ell_p, \ell_q)}.
\]

We single out the case where \(p = q = 2 \). Here we write \(f(A) = |A| \) for a normal operator \(A \in L(\ell_2) \), since then \(f(A) \) is equal to \(|A| := \sqrt{A^*A} \). Note also that the following result applies in particular to compact self-adjoint operators. For simplicity of the presentation we only consider \(\epsilon \in (0, 1] \), it should be clear how the result extends to other \(\epsilon > 0 \).

Corollary 6.15. For each \(\epsilon \in (0, 1] \) there exists a constant \(C \geq 0 \) such that the following holds. Let \(A \in L_\ell(\ell_2, \lambda, U) \) and \(B \in L_\ell(\ell_2, \mu, V) \) be self-adjoint, with \(U \) and \(V \) unitaries, and let \(S \in L(\ell_2) \). If \(V(BS - SA)U^{-1} \in L(\ell_2, \ell_{2-\epsilon}) \), then

\[
\|B|S - |S|A\|_{L(\ell_2)} \leq C\|V(BS - SA)U^{-1}\|_{L(\ell_2, \ell_{2-\epsilon})}
\]

and if \(V(BS - SA)U^{-1} \in L(\ell_{2+\epsilon}, \ell_2) \) then

\[
\|B|S - |S|A\|_{L(\ell_2)} \leq C\|V(BS - SA)U^{-1}\|_{L(\ell_{2+\epsilon}, \ell_2)}.
\]

In particular, if \(V(B - A)U^{-1} \in L(\ell_2, \ell_{2-\epsilon}) \), then

\[
\|B - |A|\|_{L(\ell_2)} \leq C\|V(B - A)U^{-1}\|_{L(\ell_2, \ell_{2-\epsilon})}
\]

and if \(V(B - A)U^{-1} \in L(\ell_{2+\epsilon}, \ell_2) \), then

\[
\|B - |A|\|_{L(\ell_2)} \leq C\|V(B - A)U^{-1}\|_{L(\ell_{2+\epsilon}, \ell_2)}.
\]

7. **Lipschitz estimates on the ideal of \(p \)-summing operators**

Let \(H \) be a separable infinite-dimensional Hilbert space. It was shown in [11] that a matrix \(M = \{m_{jk}\}_{j,k=1}^\infty \) is a Schur multiplier on the Hilbert-Schmidt class \(S_2 \subseteq L(H) \) if and only if \(\sup_{j,k} |m_{jk}| < \infty \). By [23], \(S_2 \) coincides with the Banach ideal \(\Pi_p(H) \) of all \(p \)-summing operators (see the definition below) for all \(1 \leq p < \infty \). Hence a matrix \(M = \{m_{jk}\}_{j,k=1}^\infty \) is a Schur multiplier on \(\Pi_p(H) \) if and only if \(\sup_{j,k} |m_{jk}| < \infty \). In Lemma 7.2 we show that the same statement is true for the Banach ideal \(\Pi_p(\ell_p, \ell_p) \in L(\ell_p, \ell_p) \), for all \(1 < p < \infty \). As a corollary we obtain operator Lipschitz estimates on \(\Pi_p(\ell_p', \ell_p) \) for each Lipschitz function \(f \) on \(C \).

Let \(X \) and \(Y \) be Banach spaces and \(1 \leq p < \infty \). An operator \(S : X \to Y \) is \(p \)-absolutely summing if there exists a constant \(C \) such that for each \(n \in \mathbb{N} \) and each collection \(\{x_j\}_{j=1}^n \subseteq X \),

\[
(\sum_{j=1}^n \|S(x_j)\|_Y^p)^{\frac{1}{p}} \leq C \sup_{\|x^*\|_{X^*} \leq 1} \left(\sum_{j=1}^n |\langle x^*, x_j \rangle|^p \right)^{\frac{1}{p}}.
\]

(7.1)
The smallest such constant is denoted by \(\pi_p \), and \(\Pi_p(X,Y) \) is the space of \(p \)-absolutely summing operators from \(X \) to \(Y \). We let \(\Pi_p(X) := \Pi_p(X,X) \). By Propositions 2.3, 2.4 and 2.6 in [13], \(\Pi_p(X,Y), \pi_p(\cdot) \) is a Banach ideal in \(\mathcal{L}(X,Y) \).

Below we consider \(p \)-absolutely summing operators from \(\ell_p^r \) to \(\ell_p \). We first present the following result.

Lemma 7.1. Let \(1 < p < \infty \) and \(S = \{ s_{jk} \}_{j,k=1}^{\infty} \). Then \(S \in \Pi_p(\ell_p^r,\ell_p) \) if and only if
\[
c_p := \left(\sum_{j=1}^{\infty} \sum_{k=1}^{\infty} |s_{jk}|^p \right)^{\frac{1}{p}} < \infty.
\]
In this case, \(\pi_p(S) = c_p \).

Proof. In [13] Example 2.11 it is shown that, if \(c_p < \infty \), then \(S \in \Pi_p(\ell_p^r,\ell_p) \) with \(\pi_p(S) \leq c_p \). For the converse, let \(n \in \mathbb{N} \) and let \(x_j := e_j \in \ell_p^r \) for \(1 \leq j \leq n \). By (7.1) (with \(X = \ell_p^r \) and \(Y = \ell_p \)),
\[
\left(\sum_{k=1}^{n} \sum_{j=1}^{\infty} |s_{jk}|^p \right)^{\frac{1}{p}} \leq \pi_p(S).
\]
Letting \(n \) tend to infinity concludes the proof. \(\square \)

For the following corollary of Lemma 7.1, recall that a matrix \(M \) is said to be a Schur multiplier on a subspace \(I \subseteq \mathcal{L}(\ell_p,\ell_q) \) if \(S \mapsto M \ast S \) is a bounded map on \(I \). Recall also the definition of the standard triangular truncation \(T_\Delta \) from (6.1).

Corollary 7.2. Let \(p \in (1,\infty) \) and let \(M = \{ m_{jk} \}_{j,k=1}^{\infty} \) be a matrix. Then \(M \) is a Schur multiplier on \(\Pi_p(\ell_p^r,\ell_p) \) if and only if \(\sup_{j,k} |m_{jk}| < \infty \). In this case,
\[
\| M \|_{\mathcal{L}(\Pi_p(\ell_p^r,\ell_p))} = \sup_{j,k} |m_{jk}|.
\]
In particular, \(T_\Delta \in \mathcal{L}(\Pi_p(\ell_p^r,\ell_p)) \) with \(\| T_\Delta \|_{\mathcal{L}(\Pi_p(\ell_p^r,\ell_p))} = 1 \).

Observe that \(T_\Delta \notin \mathcal{L}(\ell_p^r,\ell_p) \) for \(p^* \geq p \), by Proposition 6.3 (ii). Nevertheless, \(T_\Delta \) is bounded on the ideal \(\Pi_p(\ell_p^r,\ell_p) \subset \mathcal{L}(\ell_p^r,\ell_p) \) for all \(p \in (1,\infty) \).

For a Lipschitz function \(f : \mathbb{C} \to \mathbb{C} \), write
\[
\| f \|_{\text{Lip}} := \sup_{z_1,z_2 \in \mathbb{C}, z_1 \neq z_2} \frac{|f(z_1) - f(z_2)|}{|z_1 - z_2|}.
\]
Moreover, let \(\varphi_f : \mathbb{C}^2 \to \mathbb{C} \) be given by
\[
\varphi_f(\lambda_1,\lambda_2) := \begin{cases}
\frac{|\lambda_1| - |\lambda_2|}{\lambda_1 - \lambda_2} & \text{if } \lambda_1 \neq \lambda_2 \\
0 & \text{otherwise}
\end{cases}.
\]

We now prove our main result concerning commutator estimates on \(\Pi_p(\ell_p^r,\ell_p) \).

Theorem 7.3. Let \(p \in (1,\infty) \), \(A \in \mathcal{L}_d(\ell_p^r) \) and \(B \in \mathcal{L}_d(\ell_p) \). Let \(f : \mathbb{C} \to \mathbb{C} \) be Lipschitz. Then
\[
\pi_p(f(B)S - Sf(A)) \leq K_A K_B \| f \|_{\text{Lip}} \pi_p(\langle BS - SA \rangle)
\]
for all \(S \in \mathcal{L}(\ell_p^r,\ell_p) \) such that \(BS - SA \in \Pi_p(\ell_p^r,\ell_p) \).
Proof. Let \(\lambda = \{ \lambda_j \}_{j=1}^{\infty} \) and \(\mu = \{ \mu_k \}_{k=1}^{\infty} \) be sequences such that \(A \in \mathcal{L}_d(\ell_p, \lambda, U) \) and \(B \in \mathcal{L}_d(\ell_p, \mu, V) \) for certain \(U \in \mathcal{L}(\ell_p^*) \) and \(V \in \mathcal{L}(\ell_p) \).

It follows directly from (7.1) that, if \(\{ S_m \}_{m=1}^{\infty} \subseteq \Pi_p(\ell_p^*, \ell_p) \) is a \(\pi_p \)-bounded sequence which SOT-converges to some \(S \in \mathcal{L}(X, Y) \), then \(S \in \Pi_p(\ell_p^*, \ell_p) \) with \(\pi_p(S) \leq \limsup_{n \to \infty} \pi_p(S_m) \). Hence, by Remark 5.4 it suffices to prove that

\[
\sup_{n \in \mathbb{N}} \| T_{\psi, \mu}^n(S) \|_{\mathcal{L}(\ell_p^*, \ell_p)} \leq \| f \|_{\text{Lip}},
\]

where

\[
T_{\psi, \mu}^n(S) = \sum_{j,k=1}^{n} \psi_f(\lambda_j, \mu_k) \mathcal{P}_j \mathcal{P}_k \quad (S \in \Pi_p(\ell_p^*, \ell_p))
\]

for \(n \in \mathbb{N} \). Fix \(n \in \mathbb{N} \) and note that \(T_{\psi, \mu}^n(S) = M \ast S \) for \(S \in \Pi_p(\ell_p^*, \ell_p) \), where \(M = \{ m_{jk} \}_{j,k=1}^{\infty} \) is the matrix given by \(m_{jk} = \psi_f(\lambda_j, \mu_k) \) for \(1 \leq j,k \leq n \), and \(m_{jk} = 0 \) otherwise. Then

\[
\sup_{j,k} |m_{jk}| \leq \sup_{j,k} |\psi_f(\lambda_j, \mu_k)| \leq \| f \|_{\text{Lip}}.
\]

Corollary 7.2 now concludes the proof. \(\square \)

Problem 7.4. Let \(p,q,r \in [1,\infty] \) be such that \(q \geq 2 \) and \(\frac{1}{q} - \frac{1}{p} < \frac{1}{r} \) and \(\frac{1}{q} + \frac{1}{r} = \frac{1}{p} - \frac{1}{q} + \frac{1}{2} \). Then the Schatten class \(\mathcal{S}_r \) coincides with the Banach ideal \(\Pi_{p,q}(\ell_2) \) of \((p,q) \)-summing operators on \(\ell_2 \) (for the definition of \((p,q) \)-summing operators see [13]). Hence, by [14], the standard triangular truncation is bounded on \(\Pi_{p,q}(\ell_2) \) for these indices. For which \(r_1, r_2 \in [1,\infty] \) is the standard triangular truncation bounded on \(\Pi_{p,q}(\ell_{r_1}, \ell_{r_2}) \) ? Are there other non-trivial ideals \(\mathcal{I} \) in \(\mathcal{L}(\ell_p, \ell_q) \) such that the standard triangular truncation is bounded on \(\mathcal{I} \)? As shown in Theorem 7.3 (and the rest of this paper), answers to these questions are linked to commutator estimates for diagonalizable operators.

8. Matrix estimates

In this section we apply the theory developed in Sections 4, 5 and 6 to finite-dimensional spaces, and in doing so we obtain Lipschitz estimates which are independent of the dimension of the underlying space. The results from Section 7 in particular Theorem 7.3 also yield dimension-independent estimates on finite-dimensional spaces, but we leave the straightforward derivation of these results to the reader.

8.1. Finite-dimensional spaces. Let \(n \in \mathbb{N} \) and let \(X \) be an \(n \)-dimensional Banach space with basis \(\{ e_1,\ldots,e_n \} \subset X \). For \(1 \leq k \leq n \), let \(\mathcal{P}_k \in \mathcal{L}(X) \) be the projection given by \(\mathcal{P}_k(x_1 e_1 + \ldots + x_n e_n) := x_k e_k \) for \((x_1,\ldots,x_n) \in \mathbb{C}^n \). Recall that an operator \(A \in \mathcal{L}(X) \) is diagonalizable if there exists \(U \in \mathcal{L}(X) \) invertible such that

\[
UAU^{-1} = \sum_{k=1}^{n} \lambda_k \mathcal{P}_k
\]

for some \((\lambda_1,\ldots,\lambda_n) \in \mathbb{C}^n \). In this case we write \(A \in \mathcal{L}_d(X, \{ \lambda_j \}_{j=1}^{n}, U) \). Recall also the definition of spectral and scalar type operators from Section 5.1

Lemma 8.1. Each \(A \in \mathcal{L}(X) \) is a spectral operator. Furthermore, \(A \) is a scalar type operator if and only if \(A \) is diagonalizable. If \(A \in \mathcal{L}_d(X, \{ \lambda_j \}_{j=1}^{n}, U) \) then the spectral
measure E of A is given by $E(U) = 0$ if $U \cap \text{sp}(A) = \emptyset$, and $E(\{\lambda\}) = \sum_{\lambda_j = \lambda} U^{-1} P_j U$ for $\lambda \in \text{sp}(A)$.

Proof. It was already remarked in Section 5 that any diagonalizable operator is a scalar type operator, with spectral measure as specified. By [15, Theorem XV.4.5], an operator $T \in \mathcal{L}(Y)$ on an arbitrary Banach space Y is a spectral operator if and only if $T = S + N$ for a scalar type operator $S \in \mathcal{L}(Y)$ and a generalized nilpotent operator $N \in \mathcal{L}(Y)$ such that $NS = SN$, and this decomposition is unique. Combining this with the Jordan decomposition for matrices yields that each $A \in \mathcal{L}(X)$ is a spectral operator. If A is a scalar type operator, then the Jordan decomposition yields a commuting diagonalizable S and a nilpotent N such that $A = S + N$. By the uniqueness of such a decomposition [15, Theorem XV.4.5], $N = 0$ and $A = S$ is diagonalizable.

Let $A \in \mathcal{L}_d(X, \{\lambda_j\}_{j=1}^n, U)$. As in (5.3),

$$f(A) = U^{-1}\left(\sum_{k=1}^n f(\lambda_k) P_k\right) U.$$

Let Y be a finite-dimensional Banach space. A norm $\|\cdot\|$ on $\mathcal{L}(X,Y)$ is symmetric if

- $\|RST\| \leq \|R\|_{\mathcal{L}(Y)} \|S\|_{\mathcal{L}(X)} \|T\|_{\mathcal{L}(Y)}$ for all $R \in \mathcal{L}(Y)$, $S \in \mathcal{L}(X,Y)$ and $T \in \mathcal{L}(X)$;
- $\|x^* \otimes y\| = \|x^*\|_X \|y\|_Y$ for all $x^* \in X^*$ and $y \in Y$.

Clearly $(\mathcal{L}(X,Y), \|\cdot\|)$ is a Banach ideal in the sense of Section 3.2 if and only if $\|\cdot\|$ is symmetric.

The following result extends inequalities which were known for self-adjoint operators on finite-dimensional Hilbert spaces and unitarily invariant norms (see e.g. [18] and [5, Chapter X]), to diagonalizable operators on finite-dimensional Banach spaces and symmetric norms. Note that, for general finite-dimensional Banach spaces X and Y, a symmetric norm on $\mathcal{L}(X,Y)$ is not unitarily invariant. Let $\mathfrak{A} := \mathfrak{A}(C \times C)$ be as in Section 3.3 and for $f \in B(C)$ let $\varphi_f(\lambda_1, \lambda_2) := \frac{f(\lambda_2) - f(\lambda_1)}{\lambda_2 - \lambda_1}$ for $(\lambda_1, \lambda_2) \in \mathbb{C}^2$ with $\lambda_1 \neq \lambda_2$, as in (4.5). Recall the definition of the spectral constants $\nu(A)$ and $\nu(B)$ from Section 3.1 The following is a direct corollary of Theorem 4.6 since $\mathcal{L}(X,Y)$ has the strong convex compactness property.

Theorem 8.2. Let $f \in B(C)$ be such that φ_f extends to an element of \mathfrak{A}. Let X and Y be finite-dimensional Banach spaces, $\|\cdot\|$ a symmetric norm on $\mathcal{L}(X,Y)$, and let $A \in \mathcal{L}_d(X)$ and $B \in \mathcal{L}_d(Y)$. Then

$$\|f(B) S - S f(A)\| \leq 16 \nu(A) \nu(B) \|\varphi_f\|_{\mathfrak{A}} \|BS - SA\|$$

for all $S \in \mathcal{L}(X,Y)$. In particular, if $X = Y$,

$$\|f(B) - f(A)\| \leq 16 \nu(A) \nu(B) \|\varphi_f\|_{\mathfrak{A}} \|B - A\|. \quad (8.2)$$

Corollary 8.3. There exists a universal constant $C \geq 0$ such that the following holds. Let X and Y be finite-dimensional Banach spaces and $\|\cdot\|$ a symmetric norm on $\mathcal{L}(X,Y)$. Let $f \in B_{\text{loc}}^1(\mathbb{R})$, and let $A \in \mathcal{L}_d(X)$ and $B \in \mathcal{L}_d(Y)$ be such that $\text{sp}(A) \cup \text{sp}(B) \subseteq \mathbb{R}$. Then

$$\|f(B) S - S f(A)\| \leq C \nu(A) \nu(B) \|f\|_{B_{\text{loc}}^1(\mathbb{R})} \|BS - SA\|$$
for all \(S \in \mathcal{L}(X,Y) \). In particular, if \(X = Y \),

\[
\|f(B) - f(A)\| \leq C \nu(A) \nu(B) \|f\|_{B_1(1)}\|B - A\|.
\]

Remark 8.4. Let \(\sigma_1, \sigma_2 \subset \mathbb{C} \) be finite sets. Then any \(\varphi : \sigma_1 \times \sigma_2 \to \mathbb{C} \) belongs to \(\mathfrak{A}(\sigma_1 \times \sigma_2) \). Indeed, one can find a representation as in (3.8) by letting \(\Omega \) be finite and solving a system of linear equations. Therefore Theorem 8.2 immediately yields the following result. It shows that, although the dimension-independent estimate as in (8.2) does not hold for all self-adjoint operators on all finite-dimensional Hilbert spaces [5, (X.25)]. Hence \(\varphi_f \) does not extend to an element of \(\mathfrak{A} \), and one cannot expect to obtain Theorem 8.2 or Corollary 8.3 for all bounded Borel functions on \(\mathbb{C} \).

8.2. The absolute value function.

We now apply the results for the absolute value function from previous sections to finite-dimensional spaces. Throughout this section, let \(f(t) := |t| \) for \(t \in \mathbb{R} \).

First note that Lemma 5.3 and Proposition 5.4 relate commutator estimates to estimates for triangular truncation operators for general symmetric norms on matrix spaces.

For \(n \in \mathbb{N} \) and \(p \in [1, \infty) \) let \(\ell^p_n \) denote \(\mathbb{C}^n \) with the \(p \)-norm

\[
\|(x_1, \ldots, x_n)\|_p := \left(\sum_{j=1}^{n} |x_j|^p \right)^{1/p}, \quad ((x_1, \ldots, x_n) \in \mathbb{C}^n),
\]

and let \(\ell^\infty_n \) be \(\mathbb{C}^n \) with the norm

\[
\|(x_1, \ldots, x_n)\|_\infty := \max_{1 \leq j \leq n} |x_j|, \quad ((x_1, \ldots, x_n) \in \mathbb{C}^n).
\]

Theorem 6.7 immediately yields the following result. It shows that, although the Lipschitz estimate

\[
\|f(B) - f(A)\|_{\mathcal{L}(\ell^p_n, \ell^q_n)} \leq \text{const} \|B - A\|_{\mathcal{L}(\ell^p_n, \ell^q_n)}
\]

does not hold with a constant independent of the dimension \(n \) for \(f \) the absolute value function, \(p = q = 2 \) and all self-adjoint operators on \(\ell^2_n \), one can nevertheless obtain such estimates for \(p < q, p = q = 1 \) or \(p = q = \infty \) by considering diagonalizable operators \(A \) and \(B \) for which \(K_A, K_B \leq M \), for some fixed \(M \geq 1 \). For \(A \) a diagonalizable operator, recall the definition of \(K_A \) from (5.5).

Theorem 8.5. Let \(p, q \in [1, \infty) \) with \(p < q \), \(p = q = 1 \) or \(p = q = \infty \). Then there exists a constant \(C \geq 0 \) such that the following holds. Let \(n \in \mathbb{N} \) and let \(A \in \mathcal{L}_d(\ell^p_n) \) and \(B \in \mathcal{L}_d(\ell^q_n) \) have real spectrum. Then

\[
\|f(B)S - Sf(A)\|_{\mathcal{L}(\ell^p_n, \ell^q_n)} \leq CK_AK_B \|BS - SA\|_{\mathcal{L}(\ell^p_n, \ell^q_n)}
\]

for all \(S \in \mathcal{L}(\ell^p_n, \ell^q_n) \). In particular,

\[
\|f(B) - f(A)\|_{\mathcal{L}(\ell^p_n, \ell^q_n)} \leq CK_AK_B \|B - A\|_{\mathcal{L}(\ell^p_n, \ell^q_n)}.
\]
Of course Corollaries 6.10 and 6.11 imply that for \(p = 2 \) or \(q = 2 \) and \(A \) or \(B \) self-adjoint, the estimates in Theorem 5.5 simplify.

For \(p \geq q \), Propositions 6.13 and 6.14 yield dimension-independent estimates. We state the estimates which follow from Proposition 6.13, the analogous result that follows from Proposition 6.14 should be obvious.

Proposition 8.6. Let \(p, q \in (1, \infty) \) with \(p \geq q \). For each \(s < q \) there exists a constant \(C \geq 0 \) such that the following holds. Let \(n \in \mathbb{N} \), and let \(A \in \mathcal{L}_d(\ell^n_p, \lambda, U) \) and \(B \in \mathcal{L}_d(\ell^n_q, \mu, V) \) have real spectrum. Then

\[
\|f(B)S - SF(A)\|_{\mathcal{L}(\ell^n_p, \ell^n_q)} \leq C\|U\|_{\mathcal{L}(\ell^n_q)}\|V^{-1}\|_{\mathcal{L}(\ell^n_q)}\|V(BS - SA)U\|_{\mathcal{L}(\ell^n_q, \ell^n_q)}
\]

for all \(S \in \mathcal{L}(\ell^n_q, \ell^n_q) \). In particular,

\[
\|f(B) - f(A)\|_{\mathcal{L}(\ell^n_p, \ell^n_q)} \leq C\|U\|_{\mathcal{L}(\ell^n_q)}\|V^{-1}\|_{\mathcal{L}(\ell^n_q)}\|V(B - A)U\|_{\mathcal{L}(\ell^n_q, \ell^n_q)}.
\]

In the case \(p = q = 2 \), Corollary 6.15 implies the following. Again we only consider \(\epsilon \in (0, 1] \), for simplicity, but the result extends in an obvious manner to other \(\epsilon > 0 \). We write \(f(A) = |A| = \sqrt{A^*A} \) for a normal operator \(A \) on \(\ell^n_2 \).

Corollary 8.7. For each \(\epsilon \in (0, 1] \) there exists a constant \(C \geq 0 \) such that the following holds. Let \(n \in \mathbb{N} \) and let \(A \in \mathcal{L}_d(\ell^n_2, \lambda, U) \) and \(B \in \mathcal{L}_d(\ell^n_2, \mu, V) \) be self-adjoint operators, with \(U \) and \(V \) unitaries. Then

\[
\||B| - |A|\|_{\mathcal{L}(\ell^n_2)} \leq C\min\left(\|V(B - A)U^{-1}\|_{\mathcal{L}(\ell^n_2, \ell^n_2)}, \|V(B - A)U^{-1}\|_{\mathcal{L}(\ell^n_2, \ell^n_2)}\right).
\]

We note that (8.3) in turn yields, for instance, the following estimate:

\[
\||B| - |A|\|_{\mathcal{L}(\ell^n_2)} \leq C\|B - A\|_{\mathcal{L}(\ell^n_2)}\min\left(\|U^{-1}\|_{\mathcal{L}(\ell^n_2, \ell^n_2)}, \|V\|_{\mathcal{L}(\ell^n_2, \ell^n_2)}\right).
\]

Acknowledgements. Most of the work on this article was performed during a research visit of the first-named author to the University of New South Wales. We would like to thank UNSW and its faculty, in particular Michael Cowling, for their wonderful hospitality. We are indebted to many colleagues in Delft and at UNSW for their suggestions and ideas. In particular, we would like to mention Ian Doust, Ben de Pagter, Denis Potapov and Dmitriy Zanin. We also thank Albrecht Pietsch for useful comments and references concerning \(p \)-summing operators.

References

[1] J. Arazy. Certain Schur-Hadamard multipliers in the spaces \(C_p \). *Proc. Amer. Math. Soc.*, 86(1):59–64, 1982.

[2] N. A. Azamov, A. L. Carey, P. G. Dodds, and F. A. Sukochev. Operator integrals, spectral shift, and spectral flow. *Canad. J. Math.*, 61(2):241–263, 2009.

[3] G. Bennett. Unconditional convergence and almost everywhere convergence. *Z. Wahrscheinlichkeitstheorie und Verw. Gebiete*, 34(2):135–155, 1976.

[4] G. Bennett. Schur multipliers. *Duke Math. J.*, 44(3):603–639, 1977.

[5] R. Bhatia. *Matrix analysis*, volume 169 of *Graduate Texts in Mathematics*. Springer-Verlag, New York, 1997.

[6] M. Š. Birman and M. Z. Solomjak. Double Stieltjes operator integrals. In *Probl. Math. Phys., No. 1, Spectral Theory and Wave Processes (Russian)*, pages 33–67. Izdat. Leningrad. Univ., Leningrad, 1966.

[7] M. Š. Birman and M. Z. Solomjak. Double Stieltjes operator integrals. III. In *Problems of mathematical physics, No. 6 (Russian)*, pages 27–53. Izdat. Leningrad. Univ., Leningrad, 1973.

[8] M. Sh. Birman and M. Solomyak. Double operator integrals in a Hilbert space. *Integral Equations Operator Theory*, 47(2):131–168, 2003.
[9] E. B. Davies. Lipschitz continuity of functions of operators in the Schatten classes. J. London Math. Soc. (2), 37(1):148–157, 1988.
[10] B. de Pagter and F. A. Sukochev. Differentiation of operator functions in non-commutative L_p-spaces. J. Funct. Anal., 212(2):28–75, 2004.
[11] B. de Pagter, H. Witvliet, and F. A. Sukochev. Double operator integrals. J. Funct. Anal., 192(1):52–111, 2002.
[12] A. Defant and K. Floret. Tensor norms and operator ideals, volume 176 of North-Holland Mathematics Studies. North-Holland Publishing Co., Amsterdam, 1993.
[13] J. Diestel, H. Jarchow, and A. Tonge. Absolutely summing operators, volume 43 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1995.
[14] P. G. Dodds, T. K. Dodds, B. de Pagter, and F. A. Sukochev. Lipschitz continuity of the absolute value and Riesz projections in symmetric operator spaces. J. Funct. Anal., 148(1):28–69, 1997.
[15] N. Dunford and J. T. Schwartz. Linear operators. Part III: Spectral operators. Interscience Publishers [John Wiley & Sons, Inc., New York-London-Sydney, 1971. With the assistance of William G. Bade and Robert G. Bartle, Pure and Applied Mathematics, Vol. VII.
[16] I. C. Gohberg and M. G. Kre˘ın. Theory and applications of Volterra operators in Hilbert space. Translated from the Russian by A. Feinstein. Translations of Mathematical Monographs, Vol. 24. American Mathematical Society, Providence, R.I., 1970.
[17] T. Kato. Continuity of the map $S \mapsto |S|$ for linear operators. Proc. Japan Acad., 49:157–160, 1973.
[18] H. Kosaki. Unitarily invariant norms under which the map $A \mapsto |A|$ is Lipschitz continuous. Publ. Res. Inst. Math. Sci., 28(2):299–313, 1992.
[19] S. Kwapie ´n and A. Pełczy ´nki. The main triangle projection in matrix spaces and its applications. Studia Math., 34:43–68, 1970.
[20] S. Lassalle and P. Turco. The weak bounded approximation property for A. Online at http://arxiv.org/abs/1410.5670, 2014.
[21] J. Lindenstrauss and L. Tzafriri. Classical Banach spaces. I. Springer-Verlag, Berlin, 1977. Sequence spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 92.
[22] A. McIntosh. Counterexample to a question on commutators. Proc. Amer. Math. Soc., 29:337–340, 1971.
[23] A. Pełczyński. A characterization of Hilbert-Schmidt operators. Studia Math., 28:355–360, 1966/1967.
[24] V. V. Peller. Hankel operators in the theory of perturbations of unitary and selfadjoint operators. Funktsional. Anal. i Prilozhen., 19(2):37–51, 96, 1985.
[25] V. V. Peller. Hankel operators in the perturbation theory of unbounded selfadjoint operators. In Analysis and partial differential equations, volume 122 of Lecture Notes in Pure and Appl. Math., pages 529–544. Dekker, New York, 1990.
[26] V. V. Peller. Multiple operator integrals and higher operator derivatives. J. Funct. Anal., 233(2):515–544, 2006.
[27] A. Pietsch. Operator ideals, volume 20 of North-Holland Mathematical Library. North-Holland Publishing Co., Amsterdam-New York, 1980. Translated from German by the author.
[28] D. Potapov and F. Sukochev. Operator-Lipschitz functions in Schatten-von Neumann classes. Acta Math., 207(2):375–389, 2011.
[29] D. Potapov and F. Sukochev. Operator-Lipschitz functions in Schatten-von Neumann classes. Acta Math., 207(2):375–389, 2011.
[30] N. N. Vakhania, V. I. Tarieladze, and S. A. Chobanyan. Probability distributions on Banach spaces, volume 14 of Mathematics and its Applications (Soviet Series). D. Reidel Publishing Co., Dordrecht, 1987. Translated from the Russian and with a preface by Wojbor A. Woyczynski.
[31] J. Voigt. On the convex compactness property for the strong operator topology. Note Mat., 12:259–269, 1992.
DELFt INSTITUTE OF APPLIED MATHEMATICS, MEKELWEG 4, 2628CD DELFT, THE NETHERLANDS
E-mail address: janrozendaalmath@gmail.com

SCHOOL OF MATHEMATICS & STATISTICS, UNIVERSITY OF NSW, KENSINGTON NSW 2052 AUSTRALIA
E-mail address: f.sukochev@unsw.edu.au

E-mail address: a.tomskova@unsw.edu.au