Transcriptomic profiling of cotton leaves in response to cotton aphid damage

Xiao Zhong¹ ² · Yazhen Yang¹ · Pei Feng¹ · Qiqi Ma¹ · Qi Su¹ · Xiangping Wang¹ · Jianmin Zhang¹

Received: 1 June 2020 / Revised: 11 May 2022 / Accepted: 26 August 2022 / Published online: 1 September 2022
© The Author(s) under exclusive licence to Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków 2022

Abstract
Cotton aphid (*Aphis gossypii* Glover) is regarded as one of the most harmful insect pests for cotton production. They are usually capable of causing severe yield loss through sucking plant sap, secreting honeydew and transmitting plant viral diseases. However, the molecular mechanism of the interaction between cotton and cotton aphids remains unclear currently. Therefore, the RNA-Seq study of cotton leaves was performed in response to cotton aphid damage at different time points (0 h, 6 h, 12 h, 24 h, 48 h and 72 h). A total of 9, 103 new genes were identified, and 7, 510 of them were annotated functionally. Based on the comparison results, the gene expression was analyzed according to the expression amount of genes in different samples. 24,793 differentially expressed genes (DEGs) were authenticated in all and their functional annotation and enrichment analysis were conducted. Compared with 0 h (without aphid damage, CK), the amount of down-regulated DEGs was largely more than that of the up-regulated DEGs at different time points under cotton aphid attack except for 48 h. As revealed by the functional annotation of DEGs, these genes are involved in all kinds of plant biological processes, including various resistance to abiotic and biotic stress, hormone metabolism, signaling transduction and transcriptional regulation. The results revealed the molecular mechanism of the interaction between cotton and cotton aphids and would facilitate the development of plant aphid-resistant cultivars.

Keywords *Gossypium hirsutum* · *Aphis gossypii* Glover · RNA-Seq · Differentially expressed genes · Transcription factors · Aphid resistant genes

Abbreviations
- DEG: Differentially expressed gene
- TF: Transcription factor
- RNA-Seq: RNA sequencing
- qPCR: Real-time quantitative polymerase chain reaction
- FPKMs: Fragments per kilo-base of exon per million fragments
- ROS: Reactive oxygen species
- GST: Glutathione S transferases
- FDR: False Discovery Rate

Introduction
Aphids are one of the common pests on almost all crops. They feed on plant phloem sap with their piercing-sucking mouthparts, which can have a direct impact on the normal growth and development of crops and eventually cause a severe loss of crop yield and quality. Compared with chewing insects, aphid feeding only causes relatively little mechanical injury to crops. However, the everlasting feeding of a large quantity of aphids usually consumes a large amount of plant resources. Secondly, a lot of aphid species have the potential to spread plant viruses. For them, the detrimental effects caused by virus transmission are likely to outweigh the direct effects of aphid feeding. In addition, sooty mould grows on honeydew secreted by aphids on the leaf surface to constrain leaf photosynthesis (Züst and Agrawal 2016; Ng and Perry 2004). To counter
these damages, plants have developed a series of intricate mechanisms to combat against aphids. Plenty of studies have indicated that various changes occur in plants damaged by aphids, such as protein phosphorylation, calcium flux, reactive oxygen species (ROS) generation and phytohormone changes, which result in relevant transcriptional regulation in the early response to aphids. Finally, plants are capable of producing various defense compounds, including nutrient compounds, glutathione S transferases (GSTs), peroxidases, and secondary metabolites for the sake of self-defense (Douglas 2018). Overall, plant susceptibility or resistance to aphids is reliant on their ability to recognize aphid feeding and rapidly initiate defense response (Will et al. 2013).

Plant resistance is considered as one of the most effective ways of achieving plant health management at present and in the near future (Li et al. 2019). Therefore, constantly exploring new aphid-resistant genes has been a long-standing hot topic for scientists. Mi-1.2 from the tomato was discovered to contribute to resistance to Macrosiphum euphorbiae and Bemisia tabaci (Rossi et al. 1998; Nombela et al. 2003). The melon gene Vat was reported to safeguard against virus aphid transmission (Aphis gossypii Glover) (Villada et al. 2009). Both of them are the earlier known aphid resistance genes and fall into NBS-LRR family, indicating that NBS-LRR family members perform a significant part in plant aphid resistance. Lectins have also been proven to perform resistance to aphids. For instance, the Galanthus nivalis agglutinin (GNA) gene encoding a monocot mannose-binding was extensively and clearly documented to confer resistance to Myzus persicae (Hilder et al. 1995). Amaranthus caudatus agglutinin (ACA) gene conferred resistance to Aphis gossypii and Myzus persicae (Wu et al. 2006; Guo et al. 2004). In addition, the other aphid-resistant genes, including rag, chitinase, α-amylase and on the likes, are researched actively and widely (Yates and Michel 2018).

RNA-Seq is a robust technology for analyzing transcriptome and excavating new functional genes. Therefore, it is used in many fields including plant defense response to phytophagous insects (Rai et al. 2018). For instance, the changes in gene expression in the whole genome of the cucumber aphid-resistant cultivar ‘EP6392’ were monitored using an Illumina Genome Analyzer platform (Liang et al. 2015). Furthermore, a comprehensive insect resistance response mechanism in cotton infested by the phloem-feeding insect Bemisia tabaci was discovered through transcriptome analysis (Li et al. 2016). In addition, the transcriptome analyses of Gossypium hirsutum at 24 h and 48 h in response to aphid and whitefly were conducted comparatively (Dubey et al. 2013). However, compared to other research areas, RNA-Seq analyses of plant defense response to phytophagous insects have been relatively sporadic up to now.

As an essential economic crop, the recent research on cotton transcriptome characterization is focused on comparative transcriptomic analysis at different growth stages and under all sorts of stresses. For instance, many new genes of cotton fiber were extensively analyzed from different angles using RNA-Seq method (Yoo and Wendel 2014; Naoumkinia et al. 2015; Yang et al. 2006; Liu et al. 2016; Ma et al. 2016). Furthermore, cotton RNA-Seq data were also analyzed under various abiotic stress, such as salt stress (Peng et al. 2014; Shu et al. 2017; Zhang et al. 2016; Zhu et al. 2018), dry stress (Bowman et al. 2013; Fracasso et al. 2016), and high-temperature stress (Min et al. 2014). Cotton is also attacked by all kinds of biotic factors, such as cotton Verticillium wilt. As one of the most destructive cotton diseases, the study on cotton Verticillium wilt using RNA-Seq is concerned widely. For example, RNA-Seq transcriptional analysis and histo-chemistry have illustrated that lignin metabolism plays an important role in the cotton resistance to Verticillium dahlia (Xu et al. 2011). The gene families of resistance gene analogues in cotton and their response to Verticillium wilt were also studied (Chen et al. 2015). The analysis of sea-island cotton and upland cotton in response to the damage of Verticillium dahliae was conducted using RNA-Seq (Sun et al. 2013). However, RNA-Seq has rarely been applied to research the interaction between cotton and herbivorous insects.

It is well known that using cotton aphid resistance to control aphids is more effective and eco-friendly. Therefore, the analysis of the transcriptome dynamics of cotton defense response to cotton aphid damage was conducted using the RNA-Seq method for a better understanding of cotton aphid resistance mechanism. Our research will lay a solid foundation for further research into the molecular mechanism of the interaction between cotton and aphids, searching for new cotton aphid-resistant genes and developing new cotton aphid-resistant varieties.

Materials methods

Plant materials and growth conditions

Red-leaf cotton (Gossypium hirsutum), an aphid-resistant cotton cultivar, was provided by the Institute of Cotton from the Chinese Academy of Agricultural Sciences. Cotton seeds were sown directly in 30-cm-diameter plastic pots filled with nutrient soil until the seedling grew to 4 leaves in a growth room (25 ℃, 16 h light/8 h dark). 30 adults of cotton aphids (Aphis gossypii) were transferred to the top leaves with a small soft brush, and the double-sided adhesive tape was used to wind the petioles of the top leaves to prevent aphids from escaping. The top leaves were collected, respectively, without cotton aphid damage (0 h, CK) and different plants, respectively, at 6, 12, 24, 48 and 72 h under the attack of...
cotton aphids, transferred quickly into liquid nitrogen for 1 min, and stored in the ultra-low temperature freezer.

Library construction and sequencing

Total RNA from each sample was isolated using the Trizol method. 1.5 μg RNA from each sample was used as input material for the removal of rRNA utilizing the Ribo-Zero rRNA Removal Kit (Epicentre, Madison, WI, USA). The libraries for sequencing were established with NEBNext Ultra Directional RNA Library Prep Kit for Illumina (NEB, Ipswich, USA). The index codes were appended to attribute sequences to each sample. The quality of the library was estimated using the Agilent Bioanalyzer 2100 and qPCR method. The clustering of each index-coded sample was executed on acBot Cluster Generation System using TruSeq PE Cluster Kitv3-cBot-HS (Illumia). After cluster generation, the library preparations were sequenced on an Illumina Hiseq platform and 150–200 paired-end reads were derived.

Transcriptome assembly

Raw reads were pre-processed for quality filtering where reads including that (1) unknown (N) bases are more than 10%, (2) contain adaptor sequences, and (3) contain low-quality bases (Q ≤ 20) more than 50% were removed through in-house perl scripts. According to the reference genome originated from the CottonGen database (http://www.cottongen.org), the mapped reads were assembled using Cufflinks software. The original unannotated transcription area was searched using BLAST software that was used to conduct sequence alignment with databases of NR, swiss-prot, GO, COG and KEGG. To obtain the annotation information about the new genes, the reference *Gossypium hirsutum* genome and the annotation files were downloaded from the CottonGen database (http://www.cottongen.org). Gene Ontology (GO) enrichment analysis of DEGs was implemented by the topGO R packages. KOBAS software was used to test the statistical enrichment of DEGs in KEGG pathways.

Quantitative real-time PCR

To ascertain the expression levels of ten genes, quantitative real-time PCR (qPCR) was carried out based on the manufacturer’s guides for the Bio-Rad CFX 96 Real-Time Detection System (Bio-Rad, Hercules, CA, USA) and the SYBR premix ex Taq II system (Takara perfect real time). Cotton leaves were firstly collected without cotton aphid damage (0 h, CK) and at 6, 12, 24, 48, and 72 h under cotton aphid attack at the four-leaf stage. Total RNA was isolated from each sample and reversely transcribed into cDNA as qPCR template. The expression profiles of the relative genes were examined through qPCR method. All reactions were conducted in triplicate, and controls were included. The 2^−ΔΔCt method was applied to the calculation of relative gene expression values (Pfaffl 2001). The prime sequence was presented in Table S1. The difference between each treatment (6, 12, 24, 48 or 72 h) and the control (0 h) was statistically analyzed with the t test for independent samples for qPCR data. Two significance levels were used (*, P < 0.05 and **, P < 0.01).

Results

RNA-Seq outline of cotton leaves in response to cotton aphid attack

The damage caused by cotton aphids is rated as serious at the seedling stage during the growth and development of cotton. Therefore, the cotton leaves at the four-leaf stage were selected as the research materials. To excavate the crucial genes at the transcriptional level in cotton defense response to cotton aphid damage, the whole-transcriptome RNA sequencings of cotton leaves at 0 (without aphid damage, CK), 6, 12, 24, 48 and 72 h under sustained cotton aphid attack were performed, respectively. After filtering is determined through the p-value correction of different significance.
out reads containing adapter or ploy-N, and low-quality sequences, there were 60.05, 58.70, 57.74, 65.73, 59.80, and 60.26 million clean reads with pair-end (Q30 > 85.03%, GC% = 41.3–42.9%), respectively, produced by RNA-Seq in all the six libraries (Table S2). For the clean reads according to the single-end, 89.94–90.78% of them were mapped to the cotton reference genome sequences (Table S3). The mapped reads were assembled with Cufflinks software, and compared with the original genome annotation information to explore the original unannotated transcription area and excavate the new transcripts and new genes. A total of 79,581 unigenes were identified by filtering out sequences that were comprised of less than 150 bp or only a single exon. To obtain the annotation information of the new genes, the databases were analyzed using a combination of BLAST (Altschul et al. 2017), NR, GO, KEGG, COG and Swiss-Prot. A total of 9,103 new genes were discovered, of which 7,510 were functionally annotated (Table 1). The normalized FPKM was used to quantify the gene expression level (Trapnell et al. 2010). The transcript expression level (FPKM) in this study ranged from \(10^{-2}\) to \(10^{4}\), which was found to be coherent with most of the RNA-Seq results (Fig. 1a). FPKM box plot analysis demonstrated that the gene transcript expression levels varied in the six RNA-Seq data to some extent (Fig. 1b).

Differentially expressed genes from cotton leaves under cotton aphid attack

As gene expression has time specificity, it is quite significant to study the cotton differentially expressed genes (DEGs) at different time points under cotton aphid attack. Each sample damaged by cotton aphids was compared with the control (0 h) to identify differentially expressed genes (6 h vs. control, 12 h vs. control, 24 h vs. control, 48 h vs. control and 72 h vs. control). Fold change ≥ 2 and FDR < 0.05 were taken as the screening criteria. From these pairwise comparisons drawn with the control sample, we identified 5,790 (2,580 up- and 3,210 down-regulated), 9,726 (3,452 up- and 6,274 down-regulated), 5,279 (1,836 up- and 3,443 down-regulated), 4,549 (2,477 up- and 2,072 down-regulated) and 8,683 (2,769 up- and 5,914 down-regulated).

Table 1 The number and percentage of annotated new genes against the six databases

Annotated databases	Number	Percent (%)
1 COG_annotation	1263	14
2 GO_annotation	3352	37
3 KEGG_annotation	2044	22
4 KOG_annotation	4308	47
5 Pfam_annotation	2836	31
6 Swissprot_annotation	4286	47
7 eggNOG_annotation	6279	69
8 nr_annotation	7482	82
All_annotated unigenes	7510	83
Total new genes	9103	100

![Fig. 1 FPKM analysis in six sample RNA-Seq. a Comparison of FPKM density distribution. b FPKM box plot. L01: 0 h; L02: 6 h, L03: 12 h, L04: 24 h, L05: 48 h, L06: 72 h](image)

© Springer
DEGs, respectively, after 6 h, 12 h, 24, 48 h, and 72 h under cotton aphid attack (Fig. 2a, Table S4). The differentially expressed genes were analyzed using hierarchical clustering, and the genes with the same or similar expression patterns were clustered (Fig. 2b). In addition, it was discovered that the DEGs between cotton aphid attack (48 h) and CK (0 h) is distinct from the other treats. The amount of up-regulated genes was higher than that of down-regulated genes between cotton aphid attack (48 h) and CK (0 h) (Fig. 3a, b).

DEG functional classification

The DEGs between cotton aphid attack (6 h, 12 h, 24 h, 48 h, and 72 h) and CK (0 h) were subjected to GO term enrichment analysis, involving cellular component, molecular function and biological function. The results indicated that plenty of DEGs were associated with biotic or abiotic stress, including response to salt stress (1734), response to chitin (1245), defense response to bacterium (1230), response to cold (1199), response to fungi (1196), response to wounding (1194), response to water deprivation (1349), response to abscisic acid (1292), and response to cadmium ion (1496) (Fig. 4a, Table S5). Additionally, it is noteworthy that two genes in the “response to insect (GO: 0,009,625)” and “defense response to insect (GO: 0,002,213)” were enriched during the biological process. To carry out a further investigation into the biological functions performed by these DEGs, pathway-based analysis was conducted using KEGG. Totally 126 pathways were identified that were significantly enriched in comparisons of cotton aphid attack (6 h, 12 h, 24 h, 48 h, and 72 h) versus CK (0 h), such as plant hormone signal transduction (378), starch and sucrose metabolism (244), ribosome (236), carbon metabolism (307), biosynthesis of amino acids (275), pyruvate metabolism (125), carbon fixation in photosynthetic organisms (123), endocytosis (114), glutathione metabolism (119), pyrimidine metabolism (117), pentose and glucoronate interconversions (99), RNA degradation (94), fatty acid metabolism (93), arginine and proline metabolism (98), mRNA surveillance pathway (97), glycerophospholipid metabolism (98), RNA transport (103), cysteine and methionine metabolism (100), glyoxylate and dicarboxylate metabolism (106), phagosome (104), glycine, serine and threonine metabolism (104), peroxisome (103), photosynthesis (191), plant – pathogen interaction (176), Purine metabolism (169), amino sugar and nucleotide sugar metabolism (168), phenylpropanoid biosynthesis (141), oxidative phosphorylation (155), protein processing in endoplasmic reticulum (156), and glycolysis / gluconeogenesis (155) (Fig. 4b). In conclusion, these results suggested that cotton's defense response to the damage of cotton aphids involved multiple genes and metabolic pathways, and cotton plants end up showing a comprehensive defense potential against the attack of cotton aphids.

![Fig. 2](image-url) Analysis of differentially expressed genes of cotton leaves between cotton aphid damage and CK (L01) at the different time points. a Analysis of the number of differentially expressed genes. b The cluster diagram of differentially expressed genes. Different columns in the b represent different samples, and different rows represent different genes. Color represents the level of gene expression in the sample. The color value is log₂(FPKM + 1). L01: CK, L02: 6 h, L03: 12 h, L04: 24 h, L05: 48 h, L06: 72 h.
Differentially expressed transcription factors involved in response to cotton aphid stress

Transcription factors (TFs) are specific DNA-binding protein that has regulatory functions at the transcription level and performs an essential role in plant growth and development. In this study, a total of 945 differentially expressed transcription factors were identified from cotton leaves between cotton aphid damage (48 h) and CK (0 h). The green dots represent down-regulated differentially expressed genes, the red dots represent up-regulated differentially expressed genes, and the black dots represent non-differentially expressed genes.

Fig. 3 Analysis of differentially expressed genes of cotton leaves between cotton aphid damage (48 h) and CK (0 h). **a** The Volcano plot. **b** MA plot. The green dots represent down-regulated differentially expressed genes, the red dots represent up-regulated differentially expressed genes, and the black dots represent non-differentially expressed genes.

Fig. 4 Analyses of DEGs under cotton attack at different time points. **a** GO-rich clustering class diagram of the total differentially expressed genes. Red indicates high expression functional classification, while blue indicates relatively low expression. The parenthesis after each term label is the number of genes containing significant differences for that term. **b** The KEGG rich cluster class diagram of the total differentially expressed genes. Red indicates high expression functional classification, while blue indicates relatively low expression metabolic pathways. The color value is log2(FPKM + 1). Each metabolic pathway is labeled with the number of genes containing significant differences within the metabolic pathway in parentheses.
leaf response to cotton aphids. They were classed into 27 TF families, respectively (Table S6). A large majority of them encoded the members of the bHLH, MYB, WRKY, ERF, bZIP, TCP and NAC TF families (Fig. 5a). The bHLH family with 199 DEGs was rated as the largest TF family in cotton leaf response to cotton aphid stress. In addition, a total of 152 DEGs were identified to belong to the MYB family. The expression levels for many of the differentially expressed TFs were up-regulated under cotton aphid attack, especially at 48 and 72 h under cotton aphid attack. However, the transcripts of some differentially expressed TFs were down-regulated, indicating that the functions carried out by cotton TFs were complex in cotton response to cotton aphid attack (Fig. 5b).

Differentially expressed aphid-resistant genes involved in response to cotton aphid stress

Aphid damage often triggers the differentially expressed genes related to plant resistance, involving plant morphological resistance, phytoprotective enzyme and SA, JA and ethylene signal pathway. Plenty of cotton aphid resistance genes were identified at first in this study. For example, 39 differentially expressed genes of the NBS-LRR family were identified and 10 genes of them were reported at first. They were associated closely with the detection of bacteria, viruses, fungi, nematodes, insects and oomycetes (Table S7). 106 DEGs of leucine-rich repeat receptor-like protein kinase were also found and 6 genes of them were novel (Table S8). Besides, 10 genes of 140 DEGs related to lectins were regarded as cotton new genes. Compared to the expression levels without cotton aphid attack (0 h), the expression levels of most lectin genes were up-regulated at 6, 12, 24, 48 and 72 h, and only transcription of two lectin genes was down-regulated (Fig. 6a, b, Table S9). Additionally, in the functional analyses of differentially expressed genes, we also obtained many new other genes related to cotton aphid resistance, including 3 genes related to callose (Table S10), 3 genes related to trichomes (Table S11), 3 genes related to waxes (Table S12), 7 genes related to Ca²⁺ (Table S13), 1 gene related to peroxidase (Table S14) and 1 related to Phenylalanine ammonialyase (Table S15). 1 NPR1 gene and 2 NPR3 genes related to SA signaling pathway, 13 lipoxygenase genes related to JA signaling pathway, 13 phenylalanine ammonialyase genes related to JA signaling pathway, and 101

![Number distribution and expression of differentially expressed transcription factors from different families.](image-url)

Fig. 5 Number distribution and expression of differentially expressed transcription factors from different families. **a** Number distribution of the differentially expressed transcription factors. **b** Expression values of differentially expressed transcription factors that were more than 30. Their expression values are presented as FPKM-normalized log2-transformed counts. L01: CK, L02: 6 h, L03: 12 h, L04: 24 h, L05: 48 h, L06: 72 h
Verification of RNA-Seq data by qPCR

To validate the results of the RNA-Seq, ten random DEGs including five up-regulated and five down-regulated genes were selected to perform qPCR. The selected genes were successfully amplified and the products were of the expected size, indicating the reliability of the assembly work. The qPCR results demonstrated that the relative expression levels of ten selected genes were consistent with the results of RNA-Seq despite the differential expression folds, suggesting that the RNA-Seq data were highly reliable (Fig. 7).

Discussion

RNA-Seq presents an effective way for the identification of DEGs and their regulatory mechanisms at the transcriptome level (Wang et al. 2009). It could provide new insights into the molecular basis for plant response to all kinds of abiotic and biotic stress (Sjokvist et al. 2019; Ashoub et al. 2018; Janiak et al. 2018).

RNA-Seq in cotton response to cotton aphid damage

Aphids are the largest group of phloem-feeding insects and often cause severe economic loss in crop production. However, the mechanism for the interplay between plants and aphids remains unclear at the moment (Züst and Agrawal 2016). Therefore, there is great significance for understanding their interaction mechanism to study the cotton response to cotton aphid damage using RNA-Seq method. Dubey et al. (2013) carried out comparative transcriptome analysis of Gossypium hirsutum in response to aphids and whiteflies (Dubey et al. 2013). However, only the transcriptomes of cotton infested with aphids and whiteflies for 2 h and 24 h were sequenced and analyzed. In this study, the RNA-Seq data of cotton leaves at 0, 6, 12, 24, 48, and 72 h under the attack of cotton aphids were analyzed. The sequencing results suggested that a total of 9,103 new genes were discovered and 7,510 were annotated functionally at different time points. Based on the comparison results, the gene

Fig. 6 Expression of differentially expressed lectins at different time points under cotton aphid attack. a Expression analysis of all differentially expressed lectins. b Expression values of 10 differentially expressed new lectins. Their expression values are presented as FPKM-normalized log2-transformed counts.
expression was analyzed in accordance with the expression amount of genes in different samples. 24,793 DEGs were authenticated in all and their functional annotation and enrichment analysis were performed. The number of down-regulated DEGs was found out to be largely higher than that of the upregulated genes at a different time under cotton aphid attack, which was in line with the previous studies that infestations of whiteflies and aphids drove transcriptional suppression over induction (Dubey et al. 2013; Vos et al. 2005). However, the number of down-regulated DEGs was slightly smaller than that of the upregulated genes at 48 h under cotton aphid attack in this study. Functional annotation of DEGs led to a finding that these genes involved in a lot of plant biological processes, including all sorts of resistance to abiotic and biotic stress, hormone metabolism, signaling transduction and transcriptional regulation. However, only two genes in the “response to insect (GO: 0,009,625)” and the “defense response to insect (GO: 0,002,213)” were enriched in the biological process, which suggested that the study of biological information on plant response to insects should be enforced. In addition, the study on cotton transcriptome in response to the damage of aphids and whiteflies displayed significant enrichment of the amino acid biosynthesis pathway (Dubey et al. 2013). We got similar results in our study, suggesting the amino acid biosynthesis pathway was important very much.

Plant aphid-resistant genes

Plant defenses against aphids are initiated at various levels of their interplay with aphids (Douglas 1998). Firstly, the plant surface is the first barrier of aphid feeding and activities, such as thorn and glandular trichomes on the surface of the plant (Wójcicka 2015; Stoner 1990; Ellis et al. 1996). In our study, 3 new DEGs (Protein WAX2 or Protein WAX2 -like protein) were identified, and these DEG expressed levels varied at 6, 12, 24, 48 and 72 h after cotton aphid attack in comparison with the CK Control (0 h). Trichomes on the surface of plants could also exert impacts on aphid activities by hindering aphid movement. Furthermore, glandular
trichomes are usually the origin of sugar esters and secondary metabolites that are harmful to insects (Glas et al. 2012; Goffreda et al. 1990). Some glandular trichomes even have the potential to release the aphid alarm pheromone, such as (E)-β-farnesene (Gibson and Pickett 1990). Our data analysis showed that a total of 3 differentially expressed genes on trichomes were identified at first, suggesting that trichomes were crucial to plant aphid resistance. In addition, plants inhibit the afflux of phloem inclusion into the aphid by facilitating sieving element occlusion (SEO). SEO includes two processes: a rapid formation of proteinaceous plugs that transiently seal sieve plates and a slower callose deposition that causes long-term occlusion of sieve tubes (Verma and Hong 2001). A total of 3 new DEGs on callose deposition were identified in this study. These results indicated that callose involved in cotton response to cotton aphid attack.

Some loci with specific aphid resistance have been stated in many plants, but only the Mi-1.2 gene from tomato and the Vat gene from melon have been cloned. They contribute to resistance against Macrosiphum euphorbiae and Aphis gossypii, respectively (Rossi et al. 1998; Vos et al. 1998; Dogimont et al. 2014). They belong to coiled-coil nucleotide-binding site-leucine-rich repeat type proteins (CC-NBS-LRR). In our study, 10 new NBS-LRR DEGs were found and 6 Leucine-rich repeat receptor-like protein kinase were identified at first. The carbohydrate-binding protein lectins exist in many plants and perform important functions in guarding plants against insect pests. At the moment, many lectin genes from plants have been transferred to plants to improve resistance to many phloem insects (Duan et al. 2018). The agglutinin gene is the most widely studied for plant resistance to aphids as carbohydrate-binding proteins currently. 10 genes were considered as cotton new lectin genes in our RNA-Seq data. In addition, Plenty of other aphid-resistant genes also involved in this study, including peroxidase, phenylalanine ammonialase, polyphenol oxidase and the likes.

Transcription factors involved in response to cotton aphid stress

Some transcription factors in plants have been validated to act as a key role in the face of attack by herbivorous insects. For example, overexpressing CmMYB19 improved aphid tolerance in Chrysanthemum by facilitating lignin production (Wang et al. 2017). Similarly, three MYB genes were related to the wheat defense against English grain aphid (Zhai et al. 2017). In addition, overexpression of GsMYB15 from the wild Soybean R2R3 enhanced resistance to Helicoverpa Armigera in Arabidopsis (Shen et al. 2018). However, myb102 from Arabidopsis increased plant susceptibility to aphids by substantial activation of ethylene biosynthesis (Zhu et al. 2018). A total of 152 DEGs belonging to the MYB family were identified in this study and their functions need to further be verified through relative experiments. Some members of the WRKY family are reported for aphid resistance. For instance, the overexpression of a chrysanthemum WRKY transcription factor enhanced aphid resistance (Li et al. 2015). However, AtWRKY22 from Arabidopsis increased Arabidopsis susceptibility to aphids and modulated SA and JA signaling (Kloth et al. 2016). In addition, the rice WRKY53 suppressed herbivore-induced defenses by acting as a negative feedback modulator of map kinase activity (Hu et al. 2015). In short, the functions of transcription factors in plant response to aphids are relatively complex. Studies of cotton transcription factors are primarily focused on fiber development and the response to all kinds of abiotic stress at present. Therefore, studies of their aphid resistance should be performed continuously in the future.

Plant defense signaling in cotton response to cotton aphids

The plant hormones (salicylic acid, jasmonic acid, ethylene and abscisic acid) lead to signaling related to plant-aphid interaction. Despite the aphid effectors remain to be identified, important advances have been acquired in comprehending the signaling machinery related to Mi-1.2 in tomato. Some genes in ETI to microbes are also required for Mi-1.2-conferred resistance to Macrosiphum euphorbiae. Such as Heat shock protein 90 and Suppressor of G-two allele of Skp1 (Bhattarai et al. 2007). A receptor-like kinase encoded by the tomato SERK1, a mitogen-activated protein kinase cascade and the transcription factors WRKY70 and WRKY72 are also required for Mi-1.2 resistance to aphids (Atamian et al. 2012; Bhattarai et al. 2010; Mantelin et al. 2011). Ca²⁺ functions as a secondary messenger in eukaryotes. It is universally thought that Ca²⁺ could influence callose deposition, promote phloem protein aggregation and result in phloem occlusion (Vincent et al. 2017; Aidemark et al. 2009; Furch et al. 2009). 7 new DEGs on Ca²⁺ were identified in this study, suggesting that Ca²⁺ was essential in cotton response to cotton aphids. However, aphids conquered this defense by secreting Ca²⁺-binding protein, which suggested that the interaction between plants and aphids was relatively complicated (Dubey et al. 2013).

Conclusions

In the present study, RNA-Seq was applied to the detection of the global transcriptional changes in seedling cotton leaves in response to cotton aphid attack. A total of 9, 103 new genes were identified and 7, 510 were annotated functionally. Crucially, 24,793 DEGs were commonly identified in response to cotton aphids, suggesting that there were
plenty of common and unique molecular mechanisms in relation to the response to cotton aphid stress cotton. This study extends the understanding of the molecular mechanisms for cotton leaf resistance to cotton aphids in the seedling stage and facilitates the development of plant aphid-resistant cultivars.

Author contribution statement ZJM and YYZ conceived and designed the research. ZX, FP, MQQ performed the experiments, ZJM analyzed the data and wrote the manuscript. SQ and WXP revised the manuscript. All the authors have read and approved this current manuscript.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s11738-022-03438-y.

Acknowledgements This work was supported by grants from the National Natural Science Foundation of China (Grant No. 31471783), and the preprint (https://doi.org/10.21203/rs.2.10118/v1) of its study results has been published on the research gate platform.

Declarations

Conflict of interest All the authors have no conflict of interest to declare.

Human and animal rights Our study has not involved human and animal rights.

References

Aidemark M, Andersson CJ, Rasmusson AG, Widnell S (2009) Regulation of callose synthase activity in situ in alamethicin-permeabilized Arabidopsis and tobacco suspension cells. BMC Plant Biol 9(27):1–12

Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman D (2017) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

Apweiler R, Bairoch A, Wu CH, Barker WC, Boeckmann B, Ferro S, Gasteiger E, Huang HZ, Lopez R, Magrane M, Martin MJ, Natale DA, O’Donovan C, Redaschi N, Yeh LL (2004) UniProt: the universal protein knowledgebase. Nucleic Acids Res 32:115–119

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25–29

Ashoub A, Müller N, Jiménez-Gómez JM, Brüggemann W (2018) Prominent alterations of wild barley leaf transcriptome in response to individual and combined drought acclimation and heat shock conditions. Physiol Plantarum 163:18–29

Atamian HS, Eulgem T, Kaloshian I (2012) SIWRKY70 is required for Mi-1-mediated resistance to aphids and nematodes in tomato. Planta 235:299–309

Bhattarai KK, Li Q, Liu Y, Dinesh-Kumar SP, Kaloshian I (2007) The Mi-1-mediated pest resistance requires Hsp90 and Sgt1. Plant Physiol 144:312–323

Bhattarai KK, Atamian HS, Kaloshian I, Eulgem T (2010) WRKY72-type transcription factors contribute to basal immunity in tomato and Arabidopsis as well as gene for-gene resistance mediated by the tomato R gene Mi-1. Plant J 63:229–240

Bowman MJ, Park W, Bauer PJ, Udall JA, Page JT, Raney J, Scheffer Jones DC, Campbell BT (2013) RNA-Seq transcriptome profiling of upland cotton (Gossypium hirsutum L.) root tissue under water-deficit stress. PLoS ONE 8:1–28

Chen JY, Huang QJ, Li NY, Ma XF, Wang JL (2015) Genome-wide analysis of the gene families of resistance gene analogues in cotton and their response to Verticillium wilt. BMC Plant Biol 15:1–15

De Vos M, Van Oosten VR, Van Poecke RM, Van Pelt JA, Pozo MJ, Mueller MJ, Buchala AJ, Métraux J, Van Loon LC, Dicke M, Piet erse CMJ (2005) Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Mol Plant Microbe Interact 18:923–937

Deng YJ, Li QJ, Wu SF, Zha YP, Chen YW, He FC (2006) Integrated nr database in protein annotation system and its localization. Comput En 32:71–74

Dogimont C, Chevolon V, Pauque J, Boualem A, Bendahmane A (2014) The Vat locus encodes for A CC-NBS-LRR protein that confers resistance to Aphis gossypii infestation and A. gossypii-mediated virus resistance. Plant J 80:993–1004

Douglas A (1998) Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera. Annu Rev Entomol 43:17–37

Douglas AE (2018) Strategies for enhanced crop resistance to insect pests. Annu Rev Plant Biol 69:637–660

Duan X, Hou Q, Liu G, Pang X, Niu Z, Wang X (2018) Expression of Pinellia pedatisecta lectin gene in transgenic wheat enhances resistance to wheat aphids. Molecules 23:1–10

Dubey NK, Goel R, Ranjan A, Idris A, Singh SK, Bag SK, Chandr shekar K, Deo Pandey K, Singh K, Sawant SV (2013) Comparative transcriptome analysis of Gossypium hirsutum L. in response to sap sucking insects: aphid and whitefly. BMC Genom 14:1–20

Ellis PR, Singh R, Pink DAC, Lynn JR, Saw PL (1996) Resistance to Brevicoryne brassicae in horticultural brassicas. Euphytica 88:85–96

Fracasso A, Trindade LM, Amaducci S (2016) Drought stress tolerance strategies revealed by RNA-Seq in two sorghum genotypes with contrasting WUE. BMC Plant Biol 16(1–18):115

Furch AC, van Bel AJ, Fricker MD, Felle HH, Fuchs M, Hafke JB (2009) Sieve element Ca2+ channels as relay stations between contrasting WUE. BMC Plant Biol 16(1–18):115

Gibson RW, Pickett JA (1990) Wild potato repels aphids by release of alarm pheromone. Nature 302:608–609

Gläss J, Schimmel B, Alba J, Escobar-Bravo R, Schuurink R, Kant M (2012) Plant glandular trichomes as targets for breeding or engineering of resistance to herbivores. Int J Mol Sci 13:17077–17103

Goffreda JC, Steffens JC, Mutschler MA (1990) Association of epicuticular sugars with aphid resistance in hybrids with wild tomato. J Am Soc Hort Sci 115:161–165

Guo HN, Jia YT, Zhou YG, Zhang ZS, Ouyang Q, Jiang Y, Tian YC (2004) Effects of transgenic tobacco plants expressing ACa gene from Amaranthus caudatus on the population development of Myzus persicae. Acta Bot Sin 46:1100–1105

Hilder VA, Powell KS, Gatehouse AMR, Gatehouse JA, Gatehouse LN, Shi Y, Hamilton WDO, Merryweather A, Newell CA, Timans JC, Peumans WJ, van Damme E, Boulter D (1995) Expression of snowdrop lectin in transgenic tobacco plants results in added protection against aphids. Trans Res 4:18–25
Li Z, Davis JA, Swale DR (2019) Chemical inhibition of Kir channels.

Janiak A, Kwasniewski M, Sowa M, Gajek K, Żmuda K, Kościelniak J, Szarejko I (2018) No time to waste: transcriptome study reveals that drought tolerance in barley may be attributed to stressed-like expression patterns that exist before the occurrence of stress. Front Plant Sci 8:1–25

Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M (2004) The KEGG resource for deciphering the genome. Nucleic Acids Res 32:277–280

Kloth KJ, Wiegers GL, Busscher-Lange J, van Haarst JC, Kruijer W, Bouwmeester HJ, Dicke M, Jongsma MA, Notes A (2016) AnWRKY22 promotes susceptibility to aphids and modulates salicylic acid and jasmonic acid signalling. J Exp Bot 67:3383–3396

Leng N, Dawson JA, Thomson JA, Ruotti V, Rissman AI, Smits BM, Janiak A, Kwasniewski M, Sowa M, Gajek K, Żmuda K, Kościelniak J, Szarejko I (2018) No time to waste: transcriptome study reveals that drought tolerance in barley may be attributed to stressed-like expression patterns that exist before the occurrence of stress. Front Plant Sci 8:1–25

Sjokvist E, Lemcke R, Kamble M, Turner F, Blaxter M, Havis NH, Lyngkjær MF, Radoutoiu S (2019) Dissection of Ramularia leaf spot disease by integrated analysis of barley and Ramularia colocygni transcriptome responses. Mol Plant Microbe in 32:176–193

Stoner KA (1990) Glossy leaf wax and plant resistance to insects in Brassica oleracea under natural infestation. Environ Entomol 19:730–739

Sun Q, Jiang H, Zhu X, Wang W, He X (2013) Analysis of sea-island cotton and upland cotton in response to Verticillium dahliae infection by RNA sequencing. BMC Genom 14:1–13

Tatusov RL, Galperin MY, Natale DA, Koonin EV (2000) The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 28:33–36

Trappe C, Williams BA, Perea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BI, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515

Verma DPS, Hong Z (2001) Plant callose synthase complexes. Plant Mol Biol 47:693–701

Villadá ES, González EG, López-Sesé AI, Castiel AF, Gómez-Guil- lamón ML (2009) Hypersensitive response to Aphis gossypii Glover in melon genotypes carrying the Vat gene. J Exp Bot 60:3269–3277

Vincent TR, Avramova M, Canham J, Higgins P, Bilkey N, Mugford ST, Pitino M, Toyota M, Gilroy S, Miller AJ, Hogenhout SA, Sanders D (2017) Interplay of plasma membrane and vacuolar ion channels, together with BAK1, elicits rapid cytosolic calcium elevations in Arabidopsis during aphid feeding. Plant Cell 29:1460–1479

Vos P, Simons G, Jesse T, Wijbrandi J, Heinen L, Rogers R, Frijters A, Groenendijk J, Diergaardt P, Reijans M, Fierens-Onstenk J, de Both N, Peelman J, Liharska T, Hontelez J, Zabeau M (1998) The tomato Mi-gene confers resistance to both root-knot nematodes and potato aphids. Nat Biotechnol 16:1365–1369

Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

Wang Y, Sheng L, Zhang H, Du X, An C, Xiao X, Xia XL, Chen FD, Jiang JF, Chen SM (2017) CmMYB19 over-expression improves aphid tolerance in Chrysanthemum by promoting lignin synthesis. Int J Mol Sci 18:1–13

Will T, Furch AC, Zimmermann MR (2013) How phloem-feeding insects face the challenge of phloem-located defenses. Front Plant Sci 4:1–2

Wójcicka A (2015) Surface waxes as a plant defense barrier towards grain aphid. Acta Biol Cracoviensia S Bot 57:95–103

Wu J, Luo X, Guo H, Xiao J, Tian Y (2006) Transgenic cotton, expressing Amaranthus caudatus agglutinin, confers enhanced resistance to aphids. Plant Breed 125:390–394

Xu L, Zhu L, Tu L, Liu L, Yuan D, Jin L, Jin L, Long L, Zhang XL (2011) Lignin metabolism has a central role in the resistance of cotton to the wilt fungus Verticillium dahliae as revealed by profiling of anterior cruciate ligament tears. J Orthop Res 36:484–497

Rossi M, Goggin FL, Milligan SB, Kaloshian I, Ullman DE, Williamson VM (1998) The nematode resistance gene Mi of tomato confers resistance against the potato aphid. Proc Natl Acad Sci USA 95:9750–9754

Shen XJ, Yang YY, Zhang YX, Guo W, Jiao YQ, Zhou XA (2018) Overexpression of the wild soybean R2R3-MYB transcription factor GmMYB15 enhances resistance to salt stress and Helicoverpa armigera in transgenic Arabidopsis. Int J Mol Sci 19:3958

Shu HM, Guo SQ, Song GY, Jiang L, Zhu JW, Ni WC (2017) RNA-seq analysis reveals a key role of brassinolide-regulated pathways in NaCl-stressed cotton. Biol Plantarum 61:667–674

Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 29:45–45

Rai MF, Tycksen ED, Sandell LJ, Brophy RH (2018) Advantages of RNA-seq compared to RNA microarrays for transcriptome
RNA-Seq-dependent transcriptional analysis and histochemistry. J Exp Bot 62:5607–5621

Yang SS, Cheung F, Lee JJ, Ha M, Wei NE, Sze S (2006) Accumulation of genome-specific transcripts, transcription factors and phytohormonal regulators during early stages of fiber cell development in allotetraploid cotton. The Plant J 47:761–775

Yates AD, Michel A (2018) Mechanisms of aphid adaptation to host plant resistance. Curr Opin Insect Sci 26:41–49

Yoo MJ, Wendel JF (2014) Comparative evolutionary and developmental dynamics of the cotton (Gossypium hirsutum) fiber transcriptome. Plos Genet 10:1–19

Zhai Y, Li P, Mei Y, Chen M, Chen X, Xu H, Zhou X, Dong H, Zhang CL, Jiang WH (2017) Three MYB genes co-regulate the phloem-based defence against English grain aphid in wheat. J Exp Bot 68:4153–4169

Zhang F, Zhu G, Du L, Shang X, Cheng C, Yang B (2016) Genetic regulation of salt stress tolerance revealed by RNA-Seq in cotton diploid wild species, Gossypium Davidsonii. Sci Reports 6:1–15

Zhu G, Li W, Zhang F, Guo W (2018) RNA-seq analysis reveals alternative splicing under salt stress in cotton, Gossypium davidsonii. BMC Genom 19:1–15

Züst T, Agrawal AA (2016) Mechanisms and evolution of plant resistance to aphids. Nat Plants 2:1–9

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.