Carbon monoxide (CO) is the primary tracer for interstellar clouds where stars form, but it has never been detected in galaxies in which the oxygen abundance relative to hydrogen is less than 20 per cent of that of the Sun, even though such 'low-metallicity' galaxies often form stars. This raises the question of whether stars can form in dense gas without molecules, cooling to the required near-zero temperatures by atomic transitions and dust radiation rather than by molecular line emission; and it highlights uncertainties about star formation in the early Universe, when the metallicity was generally low. Here we report the detection of CO in two regions of a local dwarf irregular galaxy, WLM, where the metallicity is 13 per cent of the solar value. We use new submillimetre observations and archival far-infrared observations to estimate the cloud masses, which are both slightly greater than 100,000 solar masses. The clouds have produced stars at a rate per molecule equal to 10 per cent of that in the local Orion nebula cloud. The CO fraction of the molecular gas is also low, about 3 per cent of the Milky Way value. These results suggest that in small galaxies both star-forming cores and CO molecules become increasingly rare in molecular hydrogen clouds as the metallicity decreases.

Wolf–Lundmark–Melotte (WLM) is an isolated dwarf galaxy at the edge of the Local Group. It has a low star-formation rate because of its small size and, like other dwarf irregular (dIrr) galaxies, shows no previous evidence for the molecular gas that always accompanies young stars in larger galaxies. One problem with the detection of molecules is that the dominant tracer of such gas is CO, and dIrr galaxies have low carbon and oxygen abundances relative to hydrogen. No galaxy with an O/H abundance less than 20 per cent has been detected using CO as a tracer. Far more abundant is molecular hydrogen (H₂), but this does not have an observable state of excitation at the low temperatures (~10–30 K) required for star formation.

To search for star-forming gas, we surveyed WLM for CO(J = 3–2) emission in rotational state J and for continuum dust emission at 345 GHz using the Atacama Pathfinder Experiment (APEX) telescope at Llano de Chajnantor, Chile, with the Swedish Heterodyne Facility Instrument and the Large APEX Bolometer Camera (LABOCA). We also used a map of dust emission at 160 μm from the Spitzer Local Volume Legacy Survey and a map of atomic hydrogen re-reduced from the archives of the Jansky Very Large Array radio telescope. The dust measurements can be converted to a dust temperature and a dust mass, and, after applying a suitable gas-to-dust ratio, to a gas mass from which the H I mass can be subtracted to give the H₂ mass for comparison with CO.

Figure 1 shows WLM and the two regions, designated A and B, where we detected CO(3–2) emission, along with H I, far-infrared (FIR) and submillimetre images. Observed and derived parameters are listed in Tables 1 and 2, respectively. The peak CO brightness temperature in each detected region is ~0.01–0.015 K and the line-width is ~12 km s⁻¹ (full-width at half-maximum). Previous efforts to detect CO(J = 1–0) in WLM partly overlapped region A with a 45″ aperture and determined a 5σ upper limit to the CO(J = 1–0) intensity of 0.18 K km s⁻¹. Our observation with an 18″ aperture yields an intensity of 0.200 ± 0.046 K km s⁻¹ for CO(3–2) in the same region. The difference arises because the CO cloud is unresolved even by our 18″ beam—we did not detect comparable CO(3–2) intensities in our searches adjacent to region A. The previous upper limit corresponds to a maximum CO(J = 1–0) luminosity of 8,300 K km s⁻¹ pc⁻² inside 45″ (which corresponds to a beam diameter of 215 pc at WLM), whereas the cloud we detect has a CO(3–2) luminosity ~6 times smaller (1,500 K km s⁻¹ pc⁻²). Likewise, the previous null detection of CO(J = 2–1) claimed a 5σ upper limit that is about the same as our CO(3–2) detection, but their closest pointing differed from region A by ~70 pc (14″), or half the beam diameter for CO(2–1), which could have been enough to take it off the CO cloud.

The 160-μm, 870-μm and H I peaks are slightly offset from the CO positions, indicating variations in temperature and molecular fraction. A large H I and FIR cloud that surrounds region A, designated region A1, was used to measure the dust temperature, Teff ~ 15 K, which was assumed to be the same throughout the region (the 160-μm observation does not resolve region A, and so a more localized temperature measurement is not possible). We determined Teff from the 870-μm and 160-μm fluxes corrected for the CO(3–2) line and broadband free-free–free–free emission (Table 1), assuming a modified black-body function with dust emissivity proportional to frequency to the power β. Local measurements suggest that β = 1.78 ± 0.08, although a range is possible depending on grain temperature and properties. The 870-μm flux was also corrected for an unexplained FIR and submillimetre excess that is commonly observed in other low-metallicity galaxies. An alternate

Table 1 | Observations of WLM

Source	Region	Right ascension	Declination	Beam diameter (″)	Flux
CO(3–2)	A	0h 1 min 57.32 s	−15° 26’ 49.5″	18	0.200 ± 0.046 K km s⁻¹
H I	A	0h 1 min 57.32 s	−15° 26’ 49.5″	22	7.74 ± 40 mJy km s⁻¹
870 μm	A	0h 1 min 57.32 s	−15° 26’ 49.5″	22	2.66 ± 0.53 mJy (0.11, 0.02)*
H I	A1	0h 1 min 56.93 s	−15° 26’ 40.84″	45	4.170 ± 82 mJy km s⁻¹
870 μm	A1	0h 1 min 56.93 s	−15° 26’ 40.84″	45	15.2 ± 3.0 mJy (0.11, 0.06)*
160 μm	A1	0h 1 min 56.93 s	−15° 26’ 40.84″	45	136.2 ± 13.6 mJy (0.05)*
CO(3–2)	B	0h 2 min 1.68 s	−15° 27’ 52.5″	18	0.129 ± 0.032 K km s⁻¹

* Quantities in parentheses are the CO(3–2) flux and the free-free emission, both in mJy, that were subtracted from the source flux before calculating the dust flux.
† Quantities in parentheses is the free-free emission, in mJy, that was subtracted from the source flux before calculating the dust flux.
©2013 Macmillan Publishers Limited. All rights reserved
with no correction for this excess, the units of H_2 are A_6^7.
Gas H_2 in the Milky Way6, and for $CO(3–2)$ the aperture was $18''$
(circles) and the resolution was 0.11 km s^{-1}, although the $CO(3–2)$
spectra shown in the figure were smoothed to a resolution of 2.2 km s^{-1}.
The CO detections are labelled; their exposure times were 218 min (region A) and 248 min (region B).
Other regions searched with exposure times shorter by factors of 2 to 6 are indicated by plus signs; the presence of comparable CO mass
in some of these other regions cannot be ruled out.

b. Spectra of the two detections: velocities are relative to the local standard of rest; CO labels main-beam brightness temperature, T_{mb}
in kelvin; H I labels flux in Jy.

Table 2 | Derived quantities for WLM

Source	Region	T (K)	Σ^* (M_\odot pc$^{-2}$)	Mass (M_\odot)
Dust	A	$14.7 \pm 0.7^\dagger$	0.053 ± 0.014	$(4.6 \pm 1.2) \times 10^{2}$
Gas	A	$(58 \pm 15)\alpha_{CO}$	$(1.51 \pm 1.3) \times 10^{2}\alpha_{CO}$	$(2.4 \pm 0.1) \times 10^{2}$
H I	A	27.3 ± 1.4	$(1.8 \pm 0.8) \times 10^{2}$	$(1.2 \pm 0.6) \times 10^{2}$
H_2	A	31 ± 15	$(1.5 \pm 0.5) \times 10^{2}$	$(0.5 \pm 0.3) \times 10^{2}$
H_2^\dagger	B	20 ± 10	$(0.3 \pm 0.3) \times 10^{2}$	$(0.3 \pm 0.3) \times 10^{2}$
Dust	B	$13.6 \pm 0.6^\dagger$	0.087 ± 0.022	$(7.5 \pm 1.9) \times 10^{2}$
Gas	A	$(95 \pm 24)\alpha_{CO}$	$(8.3 \pm 2.1) \times 10^{2}\alpha_{CO}$	$(3.9 \pm 1.4) \times 10^{2}$
H_2	A	67 ± 24	$(3.9 \pm 1.4) \times 10^{2}$	$(2.5 \pm 0.9) \times 10^{2}$

† Mass column density of gas or dust.
‡ The dust temperature in region A is assumed to be the same as the measured dust temperature in region A.
$^\wedge$ The gas-to-dust ratio, R_{gas}, is normalized by the solar value and scaled to the metallicity of WLM. Lowering R_{gas} lowers ΣCO, but this does not seem reasonable; data suggests that the gas-to-dust mass ratio is $\sim 5,000$ for $12 + \log(O/H) = 7.8$ (ref. 27), and this implies larger values of ΣCO (~ 4.5) and ΣCO. The gas mass and resulting ΣCO value also depend on the assumed correction factor of 1.7 for submillimetre excess. With no correction for this excess, ΣCO increases for all β values at $\beta = 1.8$, $\Sigma CO = 370$. Solutions with no submillimetre excess correction and lower β values can be found in Supplementary Information. In addition, ΣCO depends on the assumed value of $CO(3–2)/CO(1–0)$, which was taken to be 0.8 in Table 2; a value of $CO(3–2)/CO(1–0) = 1$ increases ΣCO to 155 for $\beta = 1.8$.

The H_I mass column density is corrected for helium and heavy elements.

Figure 1 | Observations of the galaxy WLM. WLM is a small, gas-rich galaxy 985 ± 33 kpc from the Milky Way4. It contains $1.6 \times 10^7 M_\odot$ of stars4, compared with $(6.4 \pm 0.6) \times 10^9 M_\odot$ in the Milky Way6, and it forms new stars at a rate2 of $0.006 M_\odot \text{ yr}^{-1}$, which is 12 times higher per unit stellar mass than the Milky Way6. a. Colour composite image: red, H_α; green, V band; blue, GALEX far-ultraviolet. For H_α the aperture was $7.6''$ and the resolution was 2.6 km s^{-1}, and for $CO(3–2)$ the aperture was $18''$
circles and the resolution was 0.11 km s^{-1}, although the $CO(3–2)$ spectra shown in the figure were smoothed to a resolution of 2.2 km s^{-1}.

The CO detections are labelled; their exposure times were 218 min (region A) and 248 min (region B). Other regions searched with exposure times shorter by factors of 2 to 6 are indicated by plus signs; the presence of comparable CO mass in some of these other regions cannot be ruled out.

b. Spectra of the two detections: velocities are relative to the local standard of rest; CO labels main-beam brightness temperature, T_{mb} in kelvin; H_I labels flux in Jy. c. False-colour image of the 870-μm observations made with LABOCA on APEX. d. False-colour Spitzer 160-μm image obtained from Spitzer archives. In c and d, the images show the same field of view and the small circles ($22''$ diameter, the resolution of LABOCA) show where CO was detected. The large circle is $45''$ in diameter and surrounds a large H_I and FIR cloud (region A) where the dust temperature was measured.
metallicity galaxy, the SMC22 (where O/H which is a more direct analogy with our observations. Dividing these rates into the CO-associated molecular mass using time (for converting gas into stars) of 4.6–3.8 Gyr for region A. In

The integral under the CO(3–2) line from region A is I_{CO} a $5 \log(O/H)$ value. The total gas mass column density in a 22 pc is (3.9–4.8) M_{\odot} km s$^{-1}$, ranging from 1.5 to 12.6 M_{\odot} km s$^{-1}$ in the Milky Way8, where the metallicity7 12 + log(O/H) = 8.69, down to the previous CO detection limit8 in the SMC, where $x_{\text{CO}} \approx 70 M_{\odot}$ pc$^{-2}$ K$^{-1}$ km s$^{-1}$ at 12 + log(O/H) = 8.0. Our observations of WLM2 at a metallicity of 12 + log(O/H) = 7.8 continue this trend.

Taking the H$_2$ column density from the residual between the dust-derived total and the H I column density, 31 $\pm 15 M_{\odot}$ pc$^{-2}$, and dividing by the inferred CO(1–0) line integral of 0.25 km s$^{-1}$, we obtain $x_{\text{CO}} = 124 \pm 60 M_{\odot}$ pc$^{-2}$ K$^{-1}$ km s$^{-1}$ including helium and heavy elements, with a range in x_{CO} from 34 to 271 as β varies from 1.6 to 2. The corresponding factor, X_{CO} for conversion from I$_{\text{CO}}$ to H$_2$ column density would be (5.8 \pm 2.8) $\times 10^{21}$ cm$^{-2}$ K$^{-1}$ km s$^{-1}$, ranging from 1.5 $\times 10^{21}$ to 1.3 $\times 10^{22}$ as β varies between 1.6 and 2. There is a large uncertainty because of the unknown dust properties (β, κ, x_{CO} and the submillimetre excess) and molecular excitation (CO(3–2)/CO(1–0)) in dIrr galaxies.

The star-formation rate based on the H$_2$ and far-ultraviolet23 fluxes within an 18$^\prime$ aperture centred on cloud A is (3.9–4.8) $\times 10^{-3} M_{\odot}$ yr$^{-1}$. Dividing these rates into the CO-associated molecular mass using $x_{\text{CO}} = 124 M_{\odot}$ pc$^{-2}$ K$^{-1}$ km$^{-1}$ s$^{-1}$ gives a CO molecular consumption rate (for converting gas into stars) of 4.6–3.8 Gyr for region A. In region B, the star-formation rate from H$_2$ and far-ultraviolet fluxes is (1.7–12.6) $\times 10^{-3} M_{\odot}$ yr$^{-1}$ and the CO molecular consumption time is 6.7–1.5 Gyr. These times are only slightly larger than the average value in spiral galaxies21, which is 2 Gyr, but they are ten times larger than the rate per molecule in local giant molecular clouds25, which is a direct analog with our observations.

The detection of CO in WLM suggests that star formation continues to occur in dense molecular gas even at lower metallicities than previously observed. The similarity between the metallicities of dIrr galaxies such as WLM and those of larger galaxies at high redshift26 implies that we should be able to study star formation in young galaxies using the usual techniques.

Received 24 October 2012; accepted 23 January 2013.

1. Krumholz, M. R. Star formation in atomic gas. Astrophys. J. 759, 9 (2012).

2. Lee, H., Skillman, E. D. & Venn, K. A. Investigating the possible anomaly between nebular and stellar oxygen abundances in the dwarf irregular galaxy WLM. Astrophys. J. 620, 223–237 (2005).

3. Asplund, M., Grevesse, N., Sauval, A. J. & Scott, P. The chemical composition of the sun. Annu. Rev. Astron. Astrophys. 47, 481–522 (2009).

4. Leaman, R. et al. The resolved structure and dynamics of an isolated dwarf galaxy: a VLT and Keck spectroscopic survey of WLM. Astrophys. J. 750, 33 (2012).

5. Taylor, C. L., Klein, U. A search for CO in the Local Group dwarf irregular galaxy WLM. Astron. Astrophys. 366, 811–816 (2001).

6. Bigiel, F. et al. A constant molecular gas depletion time in nearby disk galaxies. Astrophys. J. 730, L13 (2011).

7. Taylor, C. L., Kobulnicky, H. A. & Skillman, E. D. CO emission in low-luminosity, H II-rich galaxies. Astron. J. 116, 2746–2756 (1998).

8. Leroy, A. K. et al. The CO-to-H$_2$ conversion factor from infrared dust emission across the Local Group. Astron. J. 137, 12 (2011).

9. Schruba, A. et al. Low CO luminosities in dwarf galaxies. Astron. J. 143, 138 (2012).

10. Vassilev, V. et al. A Swedish heterodyne facility instrument for the APEX telescope. Astron. Astrophys. 490, 1157–1163 (2008).

11. Siringo, G. et al. The Large APEX Bolometer Camera LABOCA. Astron. Astrophys. 497, 945–962 (2009).

12. Dale, D. A. et al. The Spitzer Local Volume Legacy: survey description and infrared photometry. Astrophys. J. 703, 517–556 (2009).

13. Planck Collaboration et al. Planck early results. XXV. Thermal dust in nearby molecular clouds. Astron. Astrophys. 536, A25 (2011).

14. Draine, B. T. Interstellar dust grains. Annu. Rev. Astron. Astrophys. 41, 241–289 (2003).

15. Galametz, M. et al. Mapping the cold dust temperatures and masses of nearby KINGFISH galaxies with Herschel. Mon. Not. R. Astron. Soc. 425, 763–787 (2012).

16. Cepa, P. et al. Low temperature FIR and submillimetre mass absorption coefficient of interstellar silicate dust analogues. Astron. Astrophys. 535, A124 (2011).

17. Galametz, M. et al. Probing the dust properties of galaxies up to submillimetre wavelengths. II. Dust-to-gas mass ratio trends with metallicity and the submm excess in dwarf galaxies. Astron. Astrophys. 532, A56 (2011).

18. Verdugo, C. Sub-Millimetre Studies of Cold Dust and Gas in the Magellanic Clouds. MSc thesis, Univ. Chile (2012).

19. Planck Collaboration, Planck early results. XVII. The origin of the submillimetre excess dust emission in the Magellanic Clouds. Astron. Astrophys. 536, A17 (2011).

20. Draine, B. T. et al. Dust masses, PAH abundances, and starlight intensities in the SINGS galaxy sample. Astrophys. J. 663, 866–894 (2007).

21. Nicolò, S., Garay, G., Rubin, M. & Johansson, L. E. B. CO and CS in the Magellanic Clouds: a γ-analysis of multitransitional data based on the MEP radiative transfer model. Astron. Astrophys. 474, 561–571 (2007).

22. Dufour, R. J. The composition of H II regions in the Magellanic Clouds. IAU Sympos. 108, 353–360 (1984).

23. Hunter, D. A., Elmegreen, B. G. & Ludke, B. C. GALEX ultraviolet imaging of dwarf irregular galaxies and star formation rates. Astron. J. 139, 447–475 (2010).

24. Leroy, A. K. et al. The star formation efficiency in nearby galaxies: measuring where gas forms stars effectively. Astron. J. 136, 2782–2845 (2008).

25. Lada, C. J., Forbrich, J., Lombardi, M. & Alves, J. F. Star formation rates in molecular clouds and the nature of the extragalactic scaling relations. Astrophys. J. 745, 190 (2012).

26. Mannucci, F. et al. LSD: Lyman-break galaxies, stellar populations and dynamics – I. Mass, metallicity and gas at – 3. Mon. Not. R. Astron. Soc. 398, 1915–1931 (2009).

27. Engelbracht, C. W. et al. Metallicity effects on dust properties in starbursting galaxies. Astrophys. J. 678, 827–837 (2008).

28. Zhang, H.-X., Hunter, D. A., Elmegreen, B. G., Gao, Y. & Schruba, A. Outside-in shrinking of the star-forming disks of dwarf irregular galaxies. Astron. J. 143, 47 (2012).

29. McMillan, P. J. Mass models of the Milky Way. Mon. Not. R. Astron. Soc. 414, 2446–2457 (2011).

30. Chomiuk, L. & Povich, M. S. Toward a unification of star formation rate determinations in the Milky Way and other galaxies. Astron. J. 142, 197 (2011).

Supplementary Information is available in the online version of the paper.