The universal expression for the amplitude square in quantum electrodynamics

K. S. Karplyuk and O. O. Zhmudskyy

1Department of Radiophysics, Taras Shevchenko University, Academic Glushkov prospect 2, building 5, Kyiv 03122, Ukraine
2Department of Physics, University of Central Florida, 4000 Central Florida Blvd. Orlando, FL, 32816 Phone: (407)-823-4192

The universal expression for the amplitude square $|\bar{u}_f M u_i|^2$ for any matrix of interaction M is derived. It has obvious covariant form. It allows the avoidance of calculation of products of the Dirac’s matrices traces and allows easy calculation of cross-sections of any different processes with polarized and unpolarized particles.

PACS numbers: 12.20.-m

INTRODUCTION

Amplitude square $|\bar{u}_f M u_i|^2$ calculations are necessary in order to find probability transactions for any processes in quantum electrodynamics. The interaction matrix M is the combination of the Dirac matrices and their products. This circumstance causes very labor-intensive calculation even if the Feynman technique of trace of matrix products calculation is used\cite{1}. Especially labor-intensive calculations are when polarization of in- and out- particles is taken into account. That is why the such calculations often do not take particle polarization into account.

However, all interaction matrices have the same structure and set of permissible matrices is restricted. Any 4×4 matrix can be represented as

\[M = \hat{I} + V_\alpha \gamma^\alpha + W_\alpha \pi^\alpha + \frac{1}{2} F_{\alpha\beta} \sigma^{\alpha\beta} + J_i. \]

(1)

Here \hat{I} — unit matrix, γ^α — four Dirac’s matrices, $i = \gamma^0, \gamma^1, \gamma^2, \gamma^3$, π^α = $\gamma^0 \gamma^\alpha$, $\sigma^{\alpha\beta} = \frac{1}{2}(\gamma^\alpha \gamma^\beta - \gamma^\beta \gamma^\alpha)$, I and J — scalar and pseudoscalar, V_α and W_α — vector and pseudovector, $F_{\alpha\beta}$ — anti-symmetrical tensor.

In- and out- fermions are represented by Dirac’s bispinors of the same type:

\[u = \sqrt{p_0 + mc} \left(\frac{1 + p_0 \sigma^0}{p_0 + mc} \right)^{\frac{1}{2}} \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix}. \]

(2)

Here $p_\alpha = p_\sigma \sigma^\alpha + p_i \sigma^0$, $n_\alpha = n_\sigma \sigma^\alpha + n_i \sigma^0$, $n_\sigma = n_x \sigma^2 + n_y \sigma^3 + n_z \sigma^1$, $n_i = -n_x, n_2 = -n_y, n_3 = -n_z$. In particle’s own reference frame it’s linear momentum is zero. For the bispinor u the relativistically covariant normalization $\bar{u}u = mc$ is used.

Thus the possible choices for $|\bar{u}_f M u_i|^2$ are restricted. So, for all of them $|\bar{u}_f M u_i|^2$ can be calculated and a universal expression can be derived. This expression can be used for all possible interaction matrices. Such an expression was derived in\cite{2} but $|\bar{u}_f M u_i|^2$ is expressed through the three dimensional quantities in laboratory reference frame. In most cases it is preferable to have Lorentz’s covariant expression which is derived below.

COVARIANT EXPRESSION FOR AMPLITUDE SQUARE

Let us write $|\bar{u}_f M u_i|^2$ as $(\bar{u}_f M u_i)(\bar{u}_f M u_i)^*$ and use the equality:

\[(\bar{u}_f M u_i)^* = (\bar{u}_f M u_i)^\dagger = u_i^\dagger M^\dagger \gamma_{0i} u_f = u_i^\dagger \gamma_{0i} M u_f. \]

(3)

Here

\[\gamma_{0i} M = M^\dagger \gamma_{0i} = \gamma_{0i} (I^* \hat{I} + V_\alpha \gamma^\alpha - W_\alpha \pi^\alpha - \frac{1}{2} F_{\alpha\beta} \sigma^{\alpha\beta} + J^* i). \]

(4)

Which leads to:

\[|\bar{u}_f M u_i|^2 = (\bar{u}_f M u_i)(\bar{u}_f M u_i) = Sp_0 u_f \bar{u}_f M u_i M. \]

(5)

Let us take into account that for the bispinor (2)

\[uu = mc \left(\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right)^2 = \frac{mc}{4} \left(\frac{1 + p_0 \sigma^0}{mc} \right)^2 (1 - is_\alpha \pi^\alpha) = \frac{mc}{4} \left(\frac{1 + p_0 \sigma^0}{mc} - is_\alpha \pi^\alpha - i \frac{1}{2} \sigma^{\alpha\beta} \sigma_{\alpha\beta} \right). \]

(6)

Here s_α — spin pseudo-vector n_α coordinates in the reference frame where a fermion has momentum p_α. Vector s^α has coordinates

\[s^0 = 0, \quad s^1 = n_x, \quad s^2 = n_y, \quad s^3 = n_z, \quad n \cdot n = 1 \]

(7)

in the fermion’s reference frame, where it is at rest.

Vector s^α has the following coordinates in the reference frame in which the fermion has linear momentum p_α

\[s^0 = \frac{n \cdot p}{mc}, \quad s = n + \frac{p}{p_0 + mc} n \cdot p. \]

(8)

Spin tensor

\[\epsilon^{\alpha\beta} = \epsilon^{\alpha\beta\mu\nu} \frac{p_\mu s_\nu}{mc} \]

(9)
has coordinates in the fermion’s reference frame:
\[\zeta^0 = \zeta^1 = \zeta^0 = 0, \quad \zeta^2 = n_1, \quad \zeta^3 = n_2, \quad \zeta^4 = n_3. \]
Here \(\epsilon^{\alpha \beta \mu \nu} \) — entirely anisymmetric tensor, \(\epsilon^{0123} = 1 \).

the same tensor \(\epsilon_{0123} = -1 \). Note that
\[\frac{1}{2} \epsilon_{\alpha \beta} \sigma^{\alpha \beta} = \frac{p_\alpha \gamma^\alpha}{mc} s_\beta \pi^\beta. \]
(11)

For the \(|\bar{u}_f M u_i|^2 \) with a help of (5) and (6) we have:

\[
|\bar{u}_f M u_i|^2 \left(\frac{2}{mc} \right)^2 = \\
= \left[\left(\frac{p_i \cdot p_J}{(mc)^2} - (s_i \cdot s_f) + \frac{1}{2} \epsilon_{\alpha \beta} \gamma^\alpha \right) (I \bar{I}^* + [1 - s_i \cdot s_f] \frac{(p_i \cdot p_J)}{(mc)^2} - 1) \frac{\epsilon_{\alpha \beta} \gamma^\alpha}{2} \right] J^J + \\
+ \left(\frac{p_i \cdot p_J}{(mc)^2} - (s_i \cdot s_f) - \frac{1}{2} \epsilon_{\alpha \beta} \gamma^\alpha - 1 \right) J^J + \\
+ \left\{ \left(\frac{p_i \cdot p_J}{(mc)^2} - \frac{1}{2} \epsilon_{\alpha \beta} \gamma^\alpha - 1 \right) J^J + \right\}
\]
(12)

This product contains 400 terms. The trace of most of them is zero. Calculations with the rest of the 164 terms leads to:

\[
|\bar{u}_f M u_i|^2 \left(\frac{2}{mc} \right)^2 = \\
= \left[\left(\frac{p_i \cdot p_J}{(mc)^2} - (s_i \cdot s_f) + \frac{1}{2} \epsilon_{\alpha \beta} \gamma^\alpha \right) (I \bar{I}^* + [1 - s_i \cdot s_f] \frac{(p_i \cdot p_J)}{(mc)^2} - 1) \frac{\epsilon_{\alpha \beta} \gamma^\alpha}{2} \right] J^J + \\
+ \left(\frac{p_i \cdot p_J}{(mc)^2} - (s_i \cdot s_f) - \frac{1}{2} \epsilon_{\alpha \beta} \gamma^\alpha - 1 \right) J^J + \\
+ \left\{ \left(\frac{p_i \cdot p_J}{(mc)^2} - \frac{1}{2} \epsilon_{\alpha \beta} \gamma^\alpha - 1 \right) J^J + \right\}
\]
(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)
Here $\xi_{\alpha\beta}$ is the tensor dual to the $\zeta_{\alpha\beta}$ tensor

$$\zeta_{\alpha\beta} = \frac{1}{2} \varepsilon_{\alpha\beta\mu\nu} a^\mu a^\nu = \frac{1}{mc} (s_{\alpha p_{\beta}} - s_{\beta p_{\alpha}}).$$

Also usual designation for the dot product is used $(a\cdot b) = a^\alpha b^\alpha$. Expression (13)-(27) determines the amplitude square $|\tilde{u}_f M u_i|^2$ for any quantum electrodynamics process with polarized particles. It has obviously Lorentz's covariant form. This expression helps to get rid of the time-consuming necessity of trace matrices products calculation for different processes. Results of such calculations are already included into (13)-(27). The only thing we need to do is to substitute specific coefficients $I, V_\alpha, W_\alpha, F_\alpha, B, J$ for the interaction matrix M into (13)-(27). It is essentially reducing and simplifying calculations especially for the polarized particles. Expression (13)-(27) is very cumbersome. This is our price for it’s universality. Note that for the specific processes many of the quantities $I, V_\alpha, W_\alpha, F_\alpha, B, J$ are zero so that only some fragments of the (13)-(27) are used. These fragments are marked by different numbers in (13)-(27). In each particular case expression (13)-(27) becomes much simpler. As an example of such simplification let us use (13)-(27) for calculation of $|\tilde{u}_f M u_i|^2$ for an electron-muon collision.

ELECTRON-MUON COLLISION

The electron-muon system transition probability per unit time from the initial state to the final state can be calculated in the usual way:

$$w_{fi} = \frac{|S_{fi}|^2}{T} =$$

$$= \frac{1}{(2\pi\hbar)^2} \frac{|\tilde{u}_f a^\alpha u_i|^2}{|p_f - p_i|^2} \frac{V^2 p_{f0} p_{f1}^3}{p_{f0} p_{f0} p_{f0}^3} \rho(E).$$

Here $\rho(E)$ is the density of states. In (29)-(30) for electron (muon) quantities lower-case (upper-case) letters are used. Expression $|\tilde{u}_f a^\alpha u_i|^2$ can be written as $|\tilde{u}_f a^\alpha u_i|^2$ or $|v^\alpha U_\alpha a^\alpha u_i|^2$, where $V_\alpha = U_\alpha a^\alpha U_i$ or $v^\alpha = U_\alpha a^\alpha u_i$. Amplitude square $|\tilde{u}_f a^\alpha u_i|^2$ can be obtained using only fragment (15) from (13)-(27). The following quantities are zero: $I = 0, W_\alpha = 0, F_\alpha = 0, J = 0$. Then we need to contract tensor coefficient in front of the $V^\alpha V^\beta$, calculated for the electron, with the similar tensor coefficient calculated for the muon. Note that the real parts of these coefficients are symmetrical tensors and the imaginary parts are anti-symmetrical tensors. That is why we must contract them separately and add the contraction results:
If moreover the muon is at rest
\[P_i = P_f = 0, \quad |P_i| = |P_f| = p, \quad P_{\alpha 0} = P_{f 0} = M_c, \]
for this case we get
\[
|\bar{u}_f \gamma^\alpha u_i \bar{U}_f \gamma_\alpha U_i|^2 = (M_c)^2 \rho_0^2 + (p_i \cdot p_f) + (mc)^2 = (M_c)^2 \rho_0^2 \left(1 - \frac{v^2}{c^2} \sin^2 \frac{\theta}{2} \right),
\]
Expression (29)-(31) determines the transaction probability per unit time for the scattering of polarized electrons and muons. For the unpolarized particles one must average (31) by the initial polarizations of the particles and summing by the final polarizations of electrons and muons. It can be easily done in expression (31): all terms with $s_{i f}^\alpha, S_{i f}^\alpha, \eta_{i f}^\alpha, \Sigma_{i f}^\alpha \eta$ must be omitted and the result must be multiplied by 4 (2 for the electrons and 2 for the muons).

\[
\begin{align*}
|\bar{u}_f \gamma^\alpha u_i \bar{U}_f \gamma_\alpha U_i|^2 &= \frac{(mc)^2(M_c)^2}{16} \left\{ \left[(s^\alpha_i s^\alpha_f + \frac{p_i^\alpha p_f^\alpha}{(mc)^2} - \zeta^\alpha_i \zeta^\alpha_f) (\eta_{i a} \eta_{f a} + \eta_{i b} \eta_{f b}) + [1 - (s_i \cdot s_f)] - \frac{(p_i \cdot p_f)}{(mc)^2} + \frac{1}{2} \zeta_{i a} \zeta_{f a} \right] \right. \\
&+ \left. \left[(S_i P_f + \frac{P_i \cdot P_f}{(mc)^2} - \Sigma_{i \alpha} \Sigma_{f \alpha}) (\eta_{i a} \eta_{f a} + \eta_{i b} \eta_{f b}) + [1 - (S_i \cdot S_f)] - \frac{(P_i \cdot P_f)}{(mc)^2} + \frac{1}{2} \Sigma_{i \alpha} \Sigma_{f \alpha} \right] \right. \\
&+ \left. 2 \left[\frac{(p_f - p_i) \cdot (P_f - P_i)}{mcM_c} \right] \right. \\
&\left. \left[(s_f + s_i) \cdot (S_f + S_i) \right] - \frac{[(p_f - p_i) \cdot (S_f + S_i)] [(P_f - P_i) \cdot (s_f + s_i)]}{M_c} \right\}. \quad (31)
\end{align*}
\]

\[
\rho(E) = \frac{V}{c} \frac{p_0 p}{(2\pi \hbar)^3} d\Omega, \quad |p_f - p_i|^4 = (2p \sin \frac{\theta}{2})^4,
\]

\[
w_{fi} = \frac{(\alpha \hbar)^2}{4} \frac{c}{V} \frac{p_0 p}{(p \sin \frac{\theta}{2})^4} \left(1 - \frac{v^2}{c^2} \sin^2 \frac{\theta}{2} \right) d\Omega. \quad (33)
\]

Here θ — angle between p_i and p_f. Divide (33) by the electron beam density $\frac{V}{c}$ and obtain the well-known result — Mott cross-section [3]:

\[
\frac{d\sigma}{d\Omega} = \frac{(\alpha \hbar)^2}{4} \frac{c}{p_0^2} \left(1 - \frac{v^2}{c^2} \sin^2 \frac{\theta}{2} \right) \frac{(p \sin \frac{\theta}{2})^4}{(\frac{\theta}{2} \sin \frac{\theta}{2})^3} \left(1 - \frac{v^2}{c^2} \right). \quad (34)
\]

Here $r_0 = \alpha \hbar / mc$ — classical electron radius. As we can see using expression (13)-(27) allows us to easily obtain process cross-section without a calculation of the trace of the matrix products.