FUNCTIONAL EQUATIONS FOR ZETA FUNCTIONS OF F_1-SCHEMES

OLIVER LORSCHIED

ABSTRACT. For a scheme X whose \mathbb{F}_q-rational points are counted by a polynomial $N(q) = \sum a_i q^i$, the \mathbb{F}_1-zeta function is defined as $\zeta_X(s) = \prod (s - i)^{-a_i}$. Define $\chi = N(1)$. In this paper we show that if X is a smooth projective scheme, then its \mathbb{F}_1-zeta function satisfies the functional equation $\zeta_X(n-s) = (-1)^\chi \zeta_X(s)$. We further show that the \mathbb{F}_1-zeta function $\zeta_G(s)$ of a split reductive group scheme G of rank r with N positive roots satisfies the functional equation $\zeta_G(r + N - s) = (-1)^\chi (\zeta_G(s))^r$.

1. INTRODUCTION

In recent years around a dozen different suggestion of what a scheme over \mathbb{F}_1 should be appeared in literature (cf. [6]). The common motivation for all these approaches is to provide a framework in which Deligne’s proof of the Weyl conjectures can be transfered to characteristic 0 in order to proof the Riemann hypothesis. Roughly speaking, \mathbb{F}_1 should be thought of as a field of coefficients for \mathbb{Z}, and \mathbb{F}_1-schemes X should have a base extension $X_{\mathbb{Z}}$ to \mathbb{Z} which is a scheme in the usual sense.

Though it is not clear yet whether one of the existing \mathbb{F}_1-geometries comes close to this goal, and thus in particular it is not clear what the appropriate notion of an \mathbb{F}_1-scheme should be, the zeta function $\zeta_X(s)$ of such an elusive \mathbb{F}_1-scheme X is determined by the scheme $X = X_{\mathbb{Z}}$.

Namely, let X be a variety of dimension n over \mathbb{Z}, i.e. a scheme such that X_k is an \mathbb{F}-variety of dimension n for any field k. Assume further that X has a counting polynomial $N(q)$, i.e. the number of \mathbb{F}_q-rational points is counted by $\#X(\mathbb{F}_q) = N(q)$ for every prime power q. If X descents to an \mathbb{F}_1-scheme \mathcal{X}, i.e. $\mathcal{X}_{\mathbb{Z}} \simeq X$, then \mathcal{X} has the zeta function $\zeta_{\mathcal{X}}(s) = \lim_{q \to 1} \left(q - 1 \right)^N \zeta_X(q, s)$ where $\zeta_X(q, s) = \exp \left(\sum_{r \geq 1} N(q^r) q^{-sr}/r \right)$ is the zeta function of $X \otimes \mathbb{F}_q$ if q is a prime power and $\chi = N(1)$ is the order the pole of $\zeta_X(q, s)$ in $q = 1$ (cf. [9]). This expression comes down to

$$\zeta_{\mathcal{X}}(s) = \prod_{i=0}^n (s - i)^{-a_i}.$$ \[9, Lemme 1\]

From this it is clear that $\zeta_{\mathcal{X}}(s)$ is a rational function in s and that its zeros (resp. poles) are at $s = i$ of order $-a_i$ for $i = 0, \ldots, n$. The only statement from the Weyl conjectures which is not obvious for zeta functions of \mathbb{F}_1-schemes is the functional equation.

I like to thank Takashi Ono for drawing my attention to the symmetries occuring in the counting polynomials of split reductive group schemes, and I like to thank Markus Reineke for his explanations on the comparision theorem for liftable smooth varieties.
2. The functional equation for smooth projective \(\mathbb{F}_1 \)-schemes

Let \(X \) be an (irreducible) smooth projective variety of dimension \(n \) with a counting polynomial \(N(q) \). Let \(b_0, \ldots, b_{2n} \) be the Betti numbers of \(X \), i.e. the dimensions of the singular homology groups \(H_0(X_{\mathbb{C}}), \ldots, H_{2n}(X_{\mathbb{C}}) \). By Poincaré duality, we know that \(b_{2n-i} = b_i \).

As a consequence of the comparision theorem for smooth liftable varieties and Deligne’s proof of the Weil conjectures, we know that the counting polynomial is of the form

\[
N(q) = \sum_{i=0}^{n} b_{2i} q^i
\]

and that \(b_i = 0 \) if \(i \) is odd (cf. \cite{2} and \cite{8}). Thus \(\chi = \sum_{i=0}^{n} b_{2i} \) is the Euler characteristic of \(X_{\mathbb{C}} \) in this case (cf. \cite{4}).

Suppose \(X \) has an elusive model \(X \) over \(\mathbb{F}_1 \). Then \(X \) has the zeta function \(\zeta_X(s) = \prod_{i=0}^{n} (s - i)^{-b_{2i}} \).

Theorem 1. The zeta function \(\zeta_X(s) \) satisfies the functional equation

\[
\zeta_X(n - s) = (-1)^{\chi} \zeta_X(s)
\]

and the factor equals \(-1\) if and only if \(n \) is even and \(b_n \) is odd.

Proof. We calculate

\[
\zeta_X(n - s) = \prod_{i=0}^{n} ((n - s) - i)^{-b_{2i}}
\]

\[
= \prod_{i=0}^{n} (-1)^{b_{2i}} (s - (n - i))^{-b_{2i}}
\]

\[
= (-1)^{\chi} \prod_{i=0}^{n} (s - (n - i))^{-b_{2n-2i}}
\]

where we used \(b_{2n-2i} = b_{2i} \) in the last equation. If we now substitute \(i \) by \(n - i \) in this expression, we obtain

\[
\zeta_X(n - s) = (-1)^{\chi} \prod_{i=0}^{n} (s - i)^{-b_{2i}} = (-1)^{\chi} \zeta_X(s).
\]

If \(n \) is odd, then there is an even number of non-trivial Betti numbers and \(\chi = 2b_0 + 2b_2 + \cdots + 2b_{n-1} \) is even. If \(n \) is odd, then \(\chi = 2b_0 + 2b_2 + \cdots + 2b_{n-2} + b_n \) has the same parity as \(b_n \). Thus the additional statement.

Remark. Note the similarity with the functional equation for motivic zeta functions as in \cite{3, Thm. 1}. Amongst other factors, also \((-1)^{\chi(M)}\) appears in the functional equation of the zeta function of a motive \(M \) where \(\chi(M) \) is the (positive part of the) Euler characteristic of \(M \).

3. The functional equation for reductive groups over \(\mathbb{F}_1 \)

The above observations imply further a functional equation for reductive group schemes over \(\mathbb{F}_1 \). Note that Soule’s and Connes and Consani’s approaches towards \(\mathbb{F}_1 \)-geometry indeed succeeded in descending split reductive group schemes from \(\mathbb{Z} \) to \(\mathbb{F}_1 \) (cf. \cite{11}, \cite{5}, \cite{7}).
Let G be a split reductive group scheme of rank r with Borel group B and maximal split torus $T \subset B$. Let N be the normalizer of T in G and $W = N(\mathbb{Z})/T(\mathbb{Z})$ be the Weyl group. The Bruhat decomposition of λ where λ is the number of induced by the subscheme inclusions $BwB \to G$, which has the property that it induces a bijection between the k-rational points for every field k. We have $B \simeq G^r_{\mathbb{A}} \times \mathbb{A}^N$ as schemes where N is the number of positive roots of G, and $BwB \simeq G^r_{\mathbb{A}} \times \mathbb{A}^{N+\lambda(w)}$ where $\lambda(w)$ is the length of $w \in W$. With this we can calculate the counting polynomial of G as

$$N(q) = \# \prod_{w \in W} BwB(\mathbb{F}_q) = (q - 1)^r q^N \sum_{w \in W} q^{\lambda(w)}.$$

The quotient variety G/B is a smooth projective scheme of dimension N with counting function $N_{G/B}(q) = ((q - 1)^r q^N)^{-1} N(q) = \sum_{w \in W} q^{\lambda(w)}$. Let b_0, \ldots, b_{2N} be the Betti numbers of G/B, then we know from the previous section that $N_{G/B}(q) = \sum_{l=0}^{2N} b_{2l} q^l$ and that $b_{2N-2l} = b_{2l}$.

Thus we obtain for the counting polynomial of G that

$$N(q) = q^N \left(\sum_{k=0}^{r} (-1)^{r-k} \binom{r}{k} q^k \right) \cdot \left(\sum_{l=0}^{N} b_{2l} q^l \right)$$

$$= \sum_{i=0}^{d} \left(\sum_{k+l=i-N} (-1)^{r-k} \binom{r}{k} b_{2l} \right) q^i$$

where $d = r + 2N$ is the dimension of G and with the convention that $\binom{i}{k} = 0$ if $k < 0$ or $k > r$. Denote by $a_i = \sum_{k+l=i-N} (-1)^{r-k} \binom{r}{k} b_{2l}$ the coefficients of $N(q)$.

Lemma. We have $a_0 = \cdots = a_{N-1} = 0$ and $a_{d-1} = (-1)^r a_{i+N}$.

Proof. The first statement follows from the fact that $N(q)$ is divisible by q^N. For the second statement we use the symmetries $\binom{i}{k} = \binom{r}{r-k}$ and $b_{2N-2l} = b_{2l}$ to calculate

$$a_{d-i} = \sum_{k+l=d-i-N} (-1)^{r-k} \binom{r}{k} b_{2l}$$

$$= \sum_{k+l=d-i-N} (-1)^r (-1)^k \binom{r}{r-k} b_{2N-2l}.$$

When we substitute k by $r - k$ and l by $N - l$ in this equation and use $d = r + 2N$, then we obtain

$$a_{d-i} = (-1)^r \sum_{k+l=(i+N)-N} (-1)^{r-k} \binom{r}{k} b_{2l},$$

which is the same as $(-1)^r a_{i+N}$. \hfill \square

Suppose G has an elusive model \mathcal{G} over \mathbb{F}_1. Then \mathcal{G} has the zeta function $\zeta_{\mathcal{G}}(s) = \prod_{i=0}^{d} (s - i)^{-a_i}$. Let $\chi = N(1) = \sum_{i=0}^{d} a_i$.

Theorem 2. The zeta function $\zeta_{\mathcal{G}}(s)$ satisfies the functional equation

$$\zeta_{\mathcal{G}}(r + N - s) = (-1)^{\chi} \left(\zeta_{\mathcal{G}}(s) \right)^{(-1)^r}.$$
Proof. We use of the previous lemma and \(r + N = d - N \) to calculate that

\[
\zeta_G(r + N - s) = \prod_{i=0}^{n} (r + N - s - i)^{-a_i}
\]

\[
= \prod_{i=0}^{n} (d - N - s - i)^{(-1)^r a_d - N - i}.
\]

After substituting \(i \) by \(d - N - i \), we find that

\[
\zeta_G(d - N - s) = \prod_{i=0}^{n} (i - s)^{(-1)^r a_i}
\]

\[
= (-1)^{\chi} \left(\sum_{i=0}^{n} \frac{n!}{\prod_{i=0}^{n} (s - i)^{-a_i}} \right)^{-1}.
\]

\[\square\]

Remark. Kurokawa calculates the \(\mathbb{F}_1 \)-zeta functions of \(\mathbb{P}^n \), \(\text{GL}(n) \) and \(\text{SL}(n) \) in [4]. One can verify the functional equation for these examples immediately.

REFERENCES

[1] A. Connes and C. Consani. On the notion of geometry over \(\mathbb{F}_1 \). Preprint, arXiv:0809.2926 2008.
[2] A. Deitmar. Remarks on zeta functions and \(K \)-theory over \(\mathbb{F}_1 \). Proc. Japan Acad. Ser. A Math. Sci., vol. 82, 2006.
[3] B. Kahn. Motivic zeta functions of motives. Pure and Applied Mathematics Quarterly 5, 1 (2009) 507–570
[4] N. Kurokawa. Zeta functions over \(\mathbb{F}_1 \). Proc. Japan Acad. Ser. A Math. Sci. 81 (2005), no. 10, 180–184.
[5] J. Lópex Peña and O. Lorscheid. Torified varieties and their geometries over \(\mathbb{F}_1 \). Online first at Mathematische Zeitschrift, 2009.
[6] J. Lópex Peña and O. Lorscheid. Mapping \(\mathbb{F}_1 \)-land: an overview over geometries over the field with one element. To be published in the proceeding of the conferences on \(\mathbb{F}_1 \), arXiv:0909.0069 2009.
[7] O. Lorscheid. Algebraic groups over the field with one element, arXiv:0907.3824 2009.
[8] M. Reineke. Moduli of representations of quivers. Trends in representation theory of algebras and related topics, EMS Ser. Congr. Rep. (2008), 589–637.
[9] C. Soulé. Les variétés sur le corps à un élément. Mosc. Math. J. 4 (2004), 217–244.