Percutaneous Transhepatic Flexible Ureteroscope-Guided Frequency-Doubled Dual Pulse ND:YAG Laser Lithotripsy for Refractory Choledocholithiasis

Wei Wang
The Second Hospital, Cheeloo college of medicine, Shandong University

Wujie Wang
The Second Hospital, Cheeloo college of medicine, Shandong University

Yunming Jia
Zibo City Linzi District People's Hospital

Chao Chen
The Second Hospital, Cheeloo college of medicine, Shandong University

Shilin Tian
The Second Hospital, Cheeloo college of medicine, Shandong University

Chunchun Shao
The Second Hospital, Cheeloo college of medicine, Shandong University

Yongzheng Wang
The Second Hospital, Cheeloo college of medicine, Shandong University

Yuliang Li (lyl.pro@sdu.edu.cn)
The Second Hospital, Cheeloo college of medicine, Shandong University

https://orcid.org/0000-0001-8117-4317

Technical advance

Keywords: flexible ureteroscope, percutaneous transhepatic balloon dilation (PTPBD), frequency-doubled dual pulse ND:YAG laser lithotripsy (FREDDY), refractory choledocholithiasis.

DOI: https://doi.org/10.21203/rs.3.rs-208723/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Objectives

To evaluate the safety and efficiency of percutaneous transhepatic flexible ureteroscope-guided frequency-doubled dual pulse ND:YAG laser lithotripsy (PTFU-FREDDY) for refractory choledocholithiasis.

Methods

From December 2017 to October 2018, 24 refractory choledocholithiasis patients with large common bile duct stones, anatomic variations, multiple stones or stones at difficult locations (impacted, above a biliary stricture) were admitted to two centers. Four patients were considered intolerant to surgery or endoscopic retrograde cholangiopancreatography (ERCP), and 2 had ERCP failure, the others refused. All patients underwent PTFU-FREDDY. Clinical success rate, recurrence of calculus, laser safety, and related complications, such as fever, haematoma, and local thermal damage were recorded.

Results

Patients’ mean age was 66.0±12.1 (43-89) years. Sex ratio was 1:1.2 (male: female). The mean diameter of stones was 21.8±2.4 mm. All stones were successfully broken and pushed into the duodenum. The mean lithotripsy frequency and procedure time of Bilirubin stones was higher than cholesterol stones, and the mixed were in middle; P<0.01. One patient had 4.2% haemobilia, requiring immediate transarterial embolisation with 100mg 300-500um gelatin sponge particles. No pancreatitis, sepsis, or serious local thermal damage, such as bile duct perforation, was observed. The rates of Grade A/B of fever, abdominal pain, nausea, and vomiting were 12.5%, 12.5%, 8.3%, and 4.2% during follow-up, respectively. The recurrence was none at the endpoint of 12 months.

Conclusion

PTFU-FREDDY is a safe and effective alternative treatment for refractory choledocholithiasis, especially when traditional treatments fail or are difficult to perform.

Key Points

- Percutaneous transhepatic flexible ureteroscope-guided frequency-doubled dual pulse ND:YAG laser lithotripsy was a safe and effective alternative treatment for refractory choledocholithiasis.
- The mean lithotripsy frequency for FREDDY of different types of common bile duct stones were different.
- The lithotripsy model of 120 mJ single pulse and 5 Hz of FREDDY was enough for most common bile duct stones.

Introduction

The common bile duct stones (CBDs) are present in 10%-20% of individuals with symptomatic cholecystolithiasis. Clinical presentations that warrant investigation for CBDs include right upper quadrant or epigastric pain, especially if accompanied with jaundice and/or fever. In patients with acute pancreatitis, CBDs should also be considered, because gallstones or intrahepatic stones also move to the CBD. Laparoscopic duct exploration, supplemented by endoscopic papillary balloon dilation with prior sphincterotomy, mechanical lithotripsy or cholangioscopy, are considered to be the first-line treatments with high success rates in moving CBDs. In patients in whom the previously described techniques failed or are difficult, percutaneous transhepatic balloon dilation (PTPBD) or combination with basket retrieval is considered an alternative. Regardless of the type of method, the procedure may be difficult to perform in patients with large CBDs, anatomic variation, multiple stones, and stones at difficult locations (impacted, above a biliary stricture). With the widespread use of laser lithotripsy for urinary calculus, Himanshu Verma et al. first reported a novel technical method, flexible ureteroscope-guided laser lithotripsy to successfully remove the CBDs after other methods failed. The present study first tried to combine PTPBD with novel laser lithotripsy-frequency-doubled dual pulse ND:YAG laser lithotripsy (FREDDY) to manage these complicated cases, considering that it could shorten lithotripsy time, improve stone removal rate, and help avoid unnecessary surgeries. This study aimed to evaluate the efficacy and safety of PTPBD with FREDDY, which were renamed as percutaneous transhepatic flexible ureteroscope-guided frequency-doubled dual pulse ND:YAG laser lithotripsy (PTFU-FREDDY), for removal of refractory CBDs in patients with large CBDs (>15mm), anatomic variations, multiple stones, and lesions at difficult locations (impacted, above a biliary stricture).

Materials And Methods

Patients

This retrospective observational study was approved by the ethics committee of the Second Hospital of Shandong University. At the beginning of this retrospective analysis, the patients who could be contacted provided written informed consent; patients who could not provide informed consent were excluded from the study.

The inclusion criteria were as follows: trans-abdominal ultrasound combined with enhanced computed tomography (CT) or magnetic resonance cholangiopancreatography (MRCP) and endoscopic ultrasound (EUS)-confirmed CBDs (Fig 1); refractory CBDs including large CBDs, anatomic variations,
multiple stones or stones at difficult locations (impacted, above a biliary stricture); patients between 18 and 90 years old; the Karnofsky performance score is no less than 70.

Exclusion criteria were severe as follows: coagulation disorder (prothrombin time prolonged more than 6s) that was difficult to correct; cachexia or other serious organ disorders with life expectancy of <3 months; concurrent multiple intrahepatic calculi; pregnancy or Breast-Feeding Women.

The study analysed a total of 106 patients with CBDS who were admitted to two centers from December 2017 to October 2018. Refractory CBDS was detected in 30 patients, of these, 5 patients concurrent multiple intrahepatic calculi. Of the residual 25 patients, one was diagnosed with local advanced gastric carcinoma whose life expectancy was considered to be less than 3 months who accepted biliary drainage alone. Therefore, there were 24 eligible patients.

Procedure

PTFU-FREDDY

Pre-procedural preparations included the administration of sensitive antibiotics (levofloxacin or cephalosporin) and intravenous anaesthesia (dexametomidine or fentanyl). Percutaneous transhepatic biliary access was obtained, preferably through right-sided access, and a 12Fr sheath (Olympus, Japan) was used with a safety wire through the ampulla(Fig 2A). After dilation of the papilla with a 40mm x 10mm balloon(Blat, France), the 9.8Fr flexible ureteroscope (Olympus, Japan) with an U100plus laser ber (W.O.M, German) in its biopsy hole was inserted into the bile duct tree through the 12-F sheath(Fig 2B). The flexible ureteroscope was maneuvered until its terminal end was against the CBDS (Fig 2C). Laser lithotripsy at 120 mJ single pulse and 5 Hz was chosen to break the stone under the scope, although the setting of 160 mJ and 10 Hz was more efficient for stiff and large stones(Fig 2D). During laser lithotripsy, the bile was replaced by a saline solution, because fluid was required for the generation of shock waves, and plasma was formed by the 532-nm laser (Fig 2E). Repeat lithotripsy was performed until all fragments were small enough (mostly <6 mm) to get through the papilla. The access site was flushed again through the sheath to ensure all small fragments flowed to the duodenum. Repeat scope check and cholangiography were performed to ensure all stones were pushed into the duodenum and no residual calculi were left. A 10.2-F external drainage catheter was placed into the CBD through the existing access to prevent pancreatitis and reserve a channel for repeat PTPBD when residual calculi occurred, and was removed if no residual calculi were observed during the repeat cholangiography 1 week later(Fig 2F).

Concurrent gallbladder stones

For concurrent gallbladder stones, patients were treated with routine PTFU-FREDDY to deal with CBD stones, followed by a 1 week later percutaneous transcyst access PTFU-FREDDY, which was performed as before.

Stone analysis

The diameter of stone was determined according to the cholangiography imaging, combined with contrast CT or MRCP when difficult. Stone chemical and structural analyses were performed using the Attenuated Total internal Reflectance Fourier Transform Infrared spectroscopy (ATR-FTIR, Spectrum 100 equipped with an attenuated total reflection sampling universal accessory, Perkin-Elmer, USA). The reflectance mode was selected.

Post-procedural management

Liver-protecting drugs and the second generation cephalosporin antibiotics, might be changed according to susceptibility testing, were administered for 1 week. Oral ursodeoxycholic acid (250 mg, Losan Pharma GmbH, Germany) was recommended for all patients after the procedure. The prescribed dose was 250 mg three times a day. Routine analysis of blood, liver function, and serum amylase was performed. One week after the procedure, repeat cholangiography via the existing drainage catheter was performed, and the catheter was removed when no residual calculi were present; otherwise, a repeat PTPBD was performed. Somatostatin (3mg q12h) was continually recommended to prevent choleperitonitis for at least 24 hours from 1 h before the drainage catheter was removed. During repeat cholangiography, if the contrast agent overflows to the enterocoelia, access coil embolisation was recommended to prevent choleperitonitis.

Follow-up

All patients were generalizational followed for 1 year at 3-month intervals and underwent clinical assessment, physical examination, laboratory test, and imaging evaluation (Fig 3). For pure cholesterol stones, ultrasound was the first choice, and MRCP was recommended. Complete absence of CBD was the optimal result and referred to as technical success, and the secondary result was medical success, which was defined as the absence of symptoms regardless of the presence or absence of residual stones.

Statistical analysis

All statistical analyses were performed using SPSS Statistics 24×0 (IBM, USA). Categorical variables were presented as number and percentage. The normal distribution of continuous variables was evaluated by Kolmogorov-Smirnov test. Continuous data with normal distribution were expressed as mean±standard deviation; if with non-normal distribution, data were expressed by the median and range. Paired t-tests were used to compare the indices at 1 week and 1 month after PTPBD with those before the procedure. A P-value <0.05 was considered statistically significant.
Results

Population information

Among the consecutive 106 patients with CBDs admitted during the study period, 24 patients were included, and the other patients underwent conventional PTPBD, ERCP or laparoscopic common bile duct exploration and stone extraction. Sex ratio was 1:1.2 (male: female), and the mean age was (66.0±12.1, 43-89) years. Among all patients, 4 were considered intolerant to ERCP or surgery because of cardiopulmonary insufficiency, anaesthesia contraindication, upper gastrointestinal stenosis, acute pharyngitis or tonsillitis. Two patients had ERCP failure because of impacted stones with anatomic variation, and the other 18 refused ERCP or surgery. The mean diameter of the biggest stone was (21.8±2.4) mm, which was determined according imaging or cholangiography. The reasons for stones difficult to removal included smaller common bile duct/stone diameter ratio (29.2%), strictures distal to the stones(20.8%), large diameter(20.8%), impacted stone(16.7%) and anatomic variations(12.5%). The demographic and baseline clinical characteristics are presented in Table 1.

Lithotripsy

All patients underwent PTFU-FREDDY. The most common laser lithotripsy model (18/24,75%) was 120 mJ single pulse and 5 Hz. The mean frequency of Cholesterol, mixed, Bilirubin and all types stones were 776.2, 956.5, 1550.4 and 1240.5 (P<0.01), respectively. The mean procedure time in Cholesterol, mixed, Bilirubin and all types stones were 65.0±9.2 min, 82.5±3.5 min, 104±13.8 min, 94.3±20.5 min (P<0.05). Complete stone fragmentation using PTFU-FREDDY was achieved in all 24 patients. Treatment information is shown in Table 2.

Laboratory test changes

The changes in the laboratory data pre- and post-intervention are shown in Table 3. Alanine transaminase, total bilirubin (TBIL), and white blood cell (WBC) count normalised after the procedure. There was no significant statistical difference in the serum amylase and haemoglobin levels before and after the procedure (P>0.05).

Complication

All complications details per SIR standards are shown in Table 4. One patient had haemobilia, because of the formation of bile duct and hepatic artery fistula during the 12-F 35-cm-long sheath insertion into the intrahepatic bile duct. Immediate transcatheter arterial embolisation was performed with 100mg 300-500um gelatin sponge particles (Gelpart; Nippon Kayaku, Tokyo, Japan). No other major complications, such as bile duct or duodenum perforation and procedure-related perioperative death, occurred.

According to the SIR guidelines, the occurrence rate of Grade A/B complications of fever, abdominal pain, nausea, and vomiting were 12.5% (3/24), 12.5% (3/24), 8.3%(2/24), and 4.2%(1/24), respectively. Pancreatitis severer than Grade C was not observed, and only one patient had increased amylase levels at 3 days after the procedure with normal imaging findings, which normalised after somatostatin treatment. No cholangitis and stone recurrence was observed at the endpoint of 12 months.

Discussion

Complete stone removal by using traditional, less invasive methods such as endoscopic Retrograde Cholangiopancreatography (ERCP), endoscopic papillary balloon dilation (EPBD), and percutaneous transhepatic balloon dilation (PTPBD) were challenging in refractory choledocholithiasis, especially when CBDs bigger than 15mm was impacted. The authors showed their experiences of the advantages of combination of FREDDY and PTPBD to manage these complicated cases and verified its efficacy and safety in the present study.

European Society of Gastrointestinal Endoscopy (ESGE) recommended stone extraction for all patients with CBDs, symptomatic or not, who were fit enough to tolerate the intervention. Multiple studies showed that larger stones were inversely correlated with successful biliary clearance during ERCP.

Biliary sphincterotomy with a balloon dilation time of 30 s could significantly increase stone extraction and reduce the frequency of post-ERCP pancreatitis.

Mechanical bile stone lithotripsy on difficult bile duct stones could produce around 90% successful rate with minimal complications. But a randomized study showed that Mechanical lithotripsy had a significantly lower stone clearance rate in the first session compared with laser lithotripsy (63% vs. 100%; P< 0.01). Extra-corporeal shock wave lithotripsy (ESWL) also could be an alternative in difficult common bile duct stones (DCBDS), with a success rate greater than 90%, and a recurrence rate of 20% over a median follow-up of 4 years. stenting for immediate and definitive stone treatment, papillary large balloon dilation

In 1986, Hochberger et al. reported performing the first successful endoscopic retrograde laser lithotripsy in humans using a flash lamp-pulsed millisecond meodymium:YAG laser. With the development of microsecond-pulsed dye laser systems that allowed the formation of plasma-induced shock waves, laser lithotripsy has become a commonly accepted modality for the treatment of difficult CBDs.

Most studies on laser lithotripsy for CBDs removal involved endoscopic guidance, but sometimes it might be difficult to perform this procedure. Himanshu Verma et al. reported a case of a 91-year-old woman with a medical history of gallstone ileus and prior ERCP who experienced several failed treatments, such as ERCP with spyglass cholangioscopy, Holmium laser lithotripsy, and cholangioscopy with percutaneous transhepatic cholangiography access to
help position the stone for laser lithotripsy, for removing large CBDS; finally, the stone was successfully removed through percutaneous transhepatic cholangiography combined with flexible ureteroscope-guided laser lithotripsy.

The present study presented experience of percutaneous transhepatic flexible ureteroscope-guided FREDDY laser lithotripsy for refractory choledocholithiasis with a technical successful rate of 100%, low incidence of haemobilia which need correction, and absence of other Grade C or severer procedure-related adverse effects, such as perioperative death or intestinal and bile duct perforation.

The percutaneous access to the biliary tree was established by a 12-F 35-cm-long sheath, which was specifically suitable for the flexible ureteroscope to get through. One laser-related instrument complication was ureteroscope damage, which occurred during the initial application of the technique. Accurate positioning, complete view of the working area, and close coordination of ureteroscope and laser were useful to avoid this.

The selected pulse energy usually was 120 mJ, and the pulse frequency was 5 Hz. Higher energy and frequencies could crush the stones more efficiently, but these could shorten the service life. The usual selection was enough, except for stiff cholelithiasis. In addition to impact stones, the composition of choledocholithiasis was another influencing factor of lithotripsy. In this study, the ratio of bilirubin stones was significantly higher than usual, which usually require more lithotripsy frequency or higher energy and pulse frequency because of its rigidity.

For refractory choledocholithiasis, in the present study, none pancreatitis occurred. The main reason for this might be the smaller size of stones after lithotripsy, and a small-sized balloon might be capable of pushing the stones into the duodenum.

Although several studies have shown that endoscopic sphincterotomy plus balloon dilation was safe and effective for large CBDS removal, owing to the improvements of laser technology, more and more endoscopists preferred lithotripsy plus balloon dilation. Peroral cholangioscopy-guided lithotripsy achieved a technical success rate of 80%-86% in a single procedure, and was significantly more likely indicated for stones ≤30 mm in size than for stones with >30 mm in size. In the present study, no CBDS had a size of >30 mm, and the technical success rate was 100%. However, there were no cases of recurrence at 1 year, indicating that the PTFU-FREDDY was better than the simple PTPBD procedure we reported before, and ERCP alone, similar to cholecodochoscopy-guided laser lithotripsy, but with less complications. Digital single-operator cholangioscopy with electrohydraulic and laser lithotripsy is also effective in removing difficult biliary stones, but the procedural injury is larger than that of PTFU-FREDDY. A 10-year retrospective study showed that multiple CBDS (≥2), cholesterol stone, and sharp bile duct angulation (<145°) are associated with recurrent CBDS after cholecystectomy. To prevent recurrence, ursodesoxycholic acid was administered in this study, and a prospective cholelithiasis-related bile acid metabolomics have been initiated in multiple centers.

Large difficult CBDS also can be managed either by open surgery or laparoscopically with comparable and acceptable outcomes and without the need for multiple ERCP sessions due to their related morbidities. Open choledocoscopy was considered to be more suitable for stone clearance than a T-tube.

For concurrent gallbladder and CBD stones, Liu et al. introduced a novel technique, which they referred to as sequential percutaneous transhepatic balloon dilation (PTBD) and percutaneous transhepatic extraction and balloon dilation (PTEBD). In the present study, patients were treated with routine PTFU-FREDDY, followed by percutaneous transcyst access PTFU-FREDDY.

Recently, a retrospective analysis study reported the outcomes of percutaneous transhepatic biliary laser lithotripsy for intrahepatic cholelithiasis, which achieved a 100% success rate in fragmenting the target stones. Eleven (92%) out of the 12 patients had successful first pass extraction of target stone fragments, and two patients (2/12; 17%) required repeat lithotripsy. In this study, the authors exclude the CBDS with concurrent multiple intrahepatic cholelithiasis, considering that it was difficult to ensure complete intrahepatic calculi fragmentation and discharge. In the following research, these patients would be prioritized for admission and treatment, and a special report would be presented.

The limitation of this study includes its small sample size and retrospective nature. More prospective, multicenter, randomised controlled trials are necessary to confirm the results of this study.

In conclusion, PTFU-FREDDY is a safe and efficient alternative treatment for refractory choledocholithiasis, especially when traditional treatments are difficult to perform or failed.

Declarations

Acknowledgements

Wei Wang, Wujie Wang, Yongzheng Wang and Yuliang Li had full access to all the data in the study. They took responsibility for the integrity of the data and the accuracy of the data analysis. The authors thank the patients and institutions involved in this study.

Funding sources

This work was supported by grants from the Shandong province key research and development plan (Grant NO.2019GSF108105) and National Natural Science Foundation of China (NSFC, Grant NO.6167276, 11971269). The study is part of the Shandong province integrated traditional Chinese and western medicine special disease prevention project (Grant NO.S190009280000), funded by the Shandong provincial government. The funding sources...
Declarations of interest

The authors who have taken part in this study declare that they do not have anything to disclose regarding conflicts of interest concerning this manuscript.

Author contributions

Study concept and design: Wang Wei, Wang Wujie and Li Yuliang; study supervision and guarantor of the article: Wang Yongzheng and Li Yuliang; data collection: Wang Wei, Wang Wujie, Tian Shilin, Jia Yunming and Wang Yongzheng; statistical analysis: Shao Chunchun; data analysis and interpretation: Wang Wei, Shao Chunchun and Li Yuliang; report drafting, review, and approval: Wang Wei, Wang Wujie, Jia Yunming, and Li Yuliang; drafting the first version of the manuscript: Wang Wei and Wang Wujie; critical revision of the manuscript for relevant intellectual content: Wang Yongzheng, and Li Yuliang; approval of the submitted final draft: Wang Wei, Wang Wujie, Tian Shilin, Shao Chunchun, Jia Yunming, Wang Yongzheng and Li Yuliang.

References

1. Williams E, Beckingham I, El Sayed G, et al. Updated guideline on the management of common bile duct stones (CBDs). Gut. May 2017;66(5):765-782.

2. Toh SK, Phillips S, Johnson CD. A prospective audit against national standards of the presentation and management of acute pancreatitis in the South of England. Gut. Feb 2000;46(2):239-243.

3. Liu S, Fang C, Tan J, Chen W. A Comparison of the Relative Safety and Efficacy of Laparoscopic Choledochotomy with Primary Closure and Endoscopic Treatment for Bile Duct Stones in Patients with Cholelithiasis. Journal of laparoendoscopic & advanced surgical techniques. Part A. Feb 26 2020.

4. Testoni PA, Mariani A, Aabakken L, et al. Papillary cannulation and sphincterotomy techniques at ERCP: European Society of Gastrointestinal Endoscopy (ESGE) Clinical Guideline. Endoscopy. Jul 2016;48(7):657-683.

5. Kedia P, Tamasky PR. Endoscopic Management of Complex Biliary Stone Disease. Gastrointestinal endoscopy clinics of North America. Apr 2019;29(2):257-275.

6. Chang HY, Wang CJ, Liu B, et al. Ursodeoxycholic acid combined with percutaneous transhepatic balloon dilation for management of gallstones after elimination of common bile duct stones. World journal of gastroenterology. Oct 21 2018;24(39):4489-4498.

7. Fejeh MP, Thaker AM, Kim S, Muthusamy VR, Sedaratz A. Cholangioscopy-guided retrieval basket and snare for the removal of biliary stones and retained prostheses. VideoGIE : an official video journal of the American Society for Gastrointestinal Endoscopy. May 2019;4(5):232-234.

8. Trikudanathan G, Arain MA, Attam R, Freeman ML. Advances in the endoscopic management of common bile duct stones. Nature reviews. Gastroenterology & hepatology. Sep 2014;11(9):535-544.

9. Matlaga BR, Chew B, Eisner B, et al. Ureteroscopic Laser Lithotripsy: A Review of Dusting vs Fragmentation with Extraction. Journal of endourology. Jan 2018;32(1):1-6.

10. Verma H, Hammerich K, Mandeville J, Flacke S, Sterling M. Refractory choledocholithiasis treated with combination of ERCP and percutaneous biliary laser lithotripsy with flexible ureteroscope. Gastrointestinal endoscopy. Oct 2015;82(4):758-759; discussion 759-760.

11. Lei J, Wang J, Li Q, et al. Laparoscopic Transcystic Common Bile Duct Exploration: T-Shaped Incision of Cystic Duct with FREDDY Laser Lithotripsy. Journal of laparoendoscopic & advanced surgical techniques. Part A. Aug 2016;26(8):646-651.

12. Magnusson I, Einarsson K, Angelin B, Nyberg B, Bergstrom K, Thulin L. Effects of somatostatin on hepatic bile formation. Gastroenterology. Jan 1989;96(1):206-212.

13. Manes G, Paspatsis G, Aabakken L, et al. Endoscopic management of common bile duct stones: European Society of Gastrointestinal Endoscopy (ESGE) guideline. Endoscopy. May 2019;51(5):472-491.

14. Li JS, Zou DW, Jin ZD, et al. Predictive factors for extraction of common bile duct stones during endoscopic retrograde cholangiopancreatography in Billroth II anatomy patients. Surgical endoscopy. Aug 2 2019.

15. Aujla UI, Ladep N, Dwyer L, Hood S, Stem N, Sturgess R. Endoscopic papillary large balloon dilatation with sphincterotomy is safe and effective for biliary stone removal independent of timing and size of sphincterotomy. World journal of gastroenterology. Dec 28 2017;23(48):8597-8604.

16. Meng W, Leung JW, Zhang K, et al. Optimal dilatation time for combined small endoscopic sphincterotomy and balloon dilatation for common bile duct stones: a multicentre, single-blinded, randomised controlled trial. The lancet. Gastroenterology & hepatology. Jun 2019;4(6):425-434.

17. Ogura T, Higuchi K. A review of treatment options for bile duct stones. Expert review of gastroenterology & hepatology. Nov 2016;10(11):1271-1278.

18. Chang WH, Chu CH, Wang TE, Chen MJ, Lin CC. Outcome of simple use of mechanical lithotripsy of difficult common bile duct stones. World journal of gastroenterology. Jan 28 2005;11(4):593-596.

19. Angsuwatcharakon P, Kulpatcharapong S, Ridtitid W, et al. Digital cholangioscopy-guided laser versus mechanical lithotripsy for large bile duct stone removal after failed papillary large-balloon dilation: a randomized study. Endoscopy. Nov 2019;51(11):1066-1073.
20. Muratori R, Mandolesi D, Pierantoni C, et al. Ductal stones recurrence after extracorporeal shock wave lithotripsy for difficult common bile duct stones: Predictive factors. *Digestive and liver disease: official journal of the Italian Society of Gastroenterology and the Italian Association for the Study of the Liver*. Oct 2017;49(10):1128-1132.

21. Anselmi M, Acuña JC, Del Valle A, Gemmato AM. [Endoscopic biliary stents for the temporary management of choledocholithiasis]. *Revista medica de Chile*. Jun 2006;134(6):721-725.

22. Zulli C, Grande G, Tontini GE, et al. Endoscopic papillary large balloon dilation in patients with large biliary stones and periampullary diverticula: Results of a multicentric series. *Digestive and liver disease: official journal of the Italian Society of Gastroenterology and the Italian Association for the Study of the Liver*. Aug 2018;50(8):828-832.

23. Lux G, Eil C, Hochberger J, Muller D, Demling L. The first successful endoscopic retrograde laser lithotripsy of common bile duct stones in man using a pulsed neodymium-YAG laser. *Endoscopy*. Jul 1986;18(4):144-145.

24. Garg PK, Tandon RK, Ahuja V, Makharia GK, Batra Y. Predictors of unsuccessful mechanical lithotripsy and endoscopic clearance of large bile duct stones. *Gastrointestinal endoscopy*. May 2004;59(6):601-605.

25. Ramana Ramya J, Thanigai Arul K, Eppe M, et al. Chemical and structural analysis of gallstones from the Indian subcontinent. *Materials science & engineering. C, Materials for biological applications*. Sep 1 2017;78:878-885.

26. Dong SQ, Singh TP, Zhao Q, Li JJ, Wang HL. Sphincterotomy plus balloon dilation versus sphincterotomy alone for choledocholithiasis: a meta-analysis. *Endoscopy*. Aug 2019;51(8):763-771.

27. Liu P, Lin H, Chen Y, Wu YS, Tang M, Lai L. Comparison of endoscopic papillary large balloon dilation with and without a prior endoscopic sphincterotomy for the treatment of patients with large and/or multiple common bile duct stones: a systematic review and meta-analysis. *Therapeutics and clinical risk management*. 2019;15:91-101.

28. Hakuta R, Kogure H, Nakai Y. Endoscopic papillary large balloon dilation without sphincterotomy for users of antithrombotic agents: A multicenter retrospective study. May 2019;31(3):316-322.

29. Maydeo AP, Rerknimitr R, Lau JY, et al. Cholangioscopy-guided lithotripsy for difficult bile duct stone clearance in a single session of ERCP: results from a large multinational registry demonstrate high success rates. *Endoscopy*. Jun 27 2019.

30. Anderloni A, Aurienma F, Fugazza A, et al. Direct peroral cholangioscopy in the management of difficult biliary stones: a new tool to confirm common bile duct clearance. Results of a preliminary study. *Journal of gastrointestinal and liver diseases : JGLD*. Mar 2019;28(1):89-94.

31. Li YL, Geng JL, Jia YM, et al. [Clinical study of percutaneous transhepatic balloon dilation:a novel procedure for common bile duct stone]. *Zhonghua yi xue za zhi*. Dec 3 2013;93(45):3586-3589.

32. Sauer BG, Cerence M, Swartz DC, et al. Safety and efficacy of laser lithotripsy for complicated biliary stones using direct choledochoscopy. *Digestive diseases and sciences*. Jan 2013;58(1):253-256.

33. Brewer Gutierrez OI, Bekkali NLH, Raiman I, et al. Efficacy and Safety of Digital Single-Operator Cholangioscopy for Difficult Biliary Stones. *Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association*. Jun 2018;16(6):918-926.e911.

34. Yoo ES, Yoo BM, Kim JH, et al. Evaluation of risk factors for recurrent primary common bile duct stone in patients with cholecystectomy. *Scandinavian journal of gastroenterology*. Apr 2018;53(4):466-470.

35. Gad EH, Zakaria H, Kamel Y, et al. Surgical (Open and laparoscopic) management of large difficult CBD stones after different sessions of endoscopic failure: A retrospective cohort study. *Annals of medicine and surgery* (2012). Jul 2019;43:52-63.

36. Liu B, Geng J, Li Y, et al. [Clinical study of trans-T tube duodenal papilla balloon dilatation: a novel procedure for postsurgical residual common bile duct stone]. *Zhonghua yi xue za zhi*. Mar 24 2015;95(11):853-856.

37. Liu B, Wu DS, Cao PK, et al. Percutaneous transhepatic extraction and balloon dilation for simultaneous gallbladder stones and common bile duct stones: A novel technique. *World journal of gastroenterology*. Sep 7 2018;24(33):3799-3805.

38. Lamanna A, Maingard J, Tai J, Ranatunga D, Goodwin M. Percutaneous transhepatic Laser lithotripsy for intrahepatic cholelithiasis. *Diagnostic and interventional imaging*. Jun 27 2019.

Tables

Table 1. Baseline characteristics of the study participants
Characteristics	Total (N=139170)	Male (N=78176)	Female (N=60994)	MAFLD (N=36306)	Non-MAFLD (N=102864)	p-value	MAFLD (N=27684)	Non-MAFLD (N=50492)	p-value	MAFLD (N=8622)	Non-MAFLD (N=52372)	p-value	p-value†
Age (years)	47±1912	42(21)	<0.001	45±1812	43±2212	<0.001	54±1912	41(20)	<0.001	41(20)	<0.001	<0.001	<0.001
Gender, male (%)	27684 (76.3)	50492 (49.1)	<0.001										
BMI (Kg/m²)	26.18±3.411	22.27(3.69)	<0.001	26.35±3.241	23.05±3.431	<0.001	25.59±3.701	21.48(3.35)	<0.001	<0.001			
Waist circumference (cm)	89±9	78(12)	<0.001	91±9	82±10	<0.001	84±9	73(9)	<0.001	<0.001			
Systolic pressure (mmHg)	130±24	117(22)	<0.001	130±22	121±21	<0.001	132±28	112(21)	<0.001	<0.001			
Diastolic pressure (mmHg)	81±15	72(14)	<0.001	82±15	75±15	<0.001	78±16	69(13)	<0.001	<0.001			
Fasting glucose (mmol/L)	5.5±1.00	5.1(0.7)	<0.001	5.5±1.00	5.2±0.6	<0.001	5.6(1.0)	5.1(0.6)	<0.001	<0.001			
Total cholesterol (mmol/L)	5.02±1.22	4.64(1.16)	<0.001	4.98±1.20	4.68±1.13	<0.001	5.13±1.30	4.61(1.18)	<0.001	<0.001			
Triglyceride (mmol/L)	2.04±1.43	1.10(0.72)	<0.001	2.12±1.50	1.26±0.83	<0.001	1.79(1.13)	0.97(0.58)	<0.001	<0.001			
HDL-C (mmol/L)	1.20±0.36	1.47(0.45)	<0.001	1.15±0.32	1.34±0.39	<0.001	1.35(0.39)	1.60(0.43)	<0.001	<0.001			
LDL-C (mmol/L)	3.30±1.07	2.83(1.05)	<0.001	3.29±1.03	2.97±1.03	<0.001	3.32(1.14)	2.70(1.04)	<0.001	0.001			
Albumin (g/L)	47±4	47(4)	<0.001	48±4	47±3	<0.001	46±4	46(3)	<0.001	<0.001			
Total bilirubin (µmol/L)	12.3±5.9	12.2(5.8)	0.022	12.8±6.1	13.3±6.3	<0.001	10.8±4.7	11.3(5.0)	<0.001	<0.001			
ALT (U/L)	32±24	18(13)	<0.001	35±26	22(15)	<0.001	24±16	15(8)	<0.001	<0.001			
AST (U/L)	24±10	20(7)	<0.001	25±10	22(8)	<0.001	22±8	19(6)	<0.001	<0.001			
BUN (mmol/L)	5.1±1.6	4.9(1.7)	<0.001	5.2±1.6	5.2(1.7)	0.024	5.0(1.7)	4.6(1.6)	<0.001	<0.001			
Creatinine (µmol/L)	73±19	66(23)	<0.001	77±15	78(15)	<0.001	56±12	56(12)	0.059	<0.001			
Uric acid (µmol/L)	393±121	313±115	<0.001	414±110	368(96)	<0.001	323(89)	268(73)	<0.001	<0.001			
WBC (x10⁹/L)	6.55(1.97)	5.89±1.85	<0.001	6.64±1.96	6.09±1.88	<0.001	6.29±1.94	5.71(1.79)	<0.001	<0.001			
RBC (x10¹²/L)	5.09(0.62)	4.77±0.70	<0.001	5.20±0.49	5.12±0.50	<0.001	4.60±0.44	4.49(0.43)	<0.001	<0.001			
Hemoglobin (g/L)	155(18)	144±22	<0.001	159±14	157±13	<0.001	138±11	134(12)	<0.001	<0.001			
Platelet count (x10⁵/L)	211(75)	210±73	<0.001	207±72	200±69	<0.001	226±82	219(76)	<0.001	<0.001			
HCT (%)	45.8(4.8)	43.1±6.0	<0.001	46.8±3.6	46.3±3.7	<0.001	41.5±3.3	40.6(3.3)	<0.001	<0.001			
MS (%)	19310±53.2	10340±10.1	<0.001	14013±50.6	5675±11.2	<0.001	5297(61.4)	4665(8.9)	<0.001	<0.001			
Dyslipidemia (%)	29027±80.0	42854±41.7	<0.001	22600±81.6	24797(49.1)	<0.001	6427(74.5)	18057(34.5)	<0.001	<0.001			
Hyperuricemia (%)	16325±45.0	17314±16.8	<0.001	13605±49.1	13175(26.1)	<0.001	2720±31.5	4139(7.9)	<0.001	<0.001			

†The p-value were calculated from the comparision between the group of Male with MAFLD (27684) and Female with MAFLD (8622).

Data were described by medians (interquartile range) and proportions (%). p-values were derived from Mann-Whitney U test or chi-square test.
Table 2. Proportions of abnormal metabolic features and elevated liver enzymes among 139170 participants

Characteristics	Total (N=139170)	Non-obese subjects (N=97079)	Obese with MAFLD (N=25163)	P-value	P-value†					
	With MAFLD (n [%])	Without MAFLD (n [%])	Non-obese with MAFLD (n [%])	Without MAFLD (n [%])	Non-obese without MAFLD (n [%])	Non-obese with MAFLD (n [%])	Without MAFLD (n [%])	Non-obese without MAFLD (n [%])	P-value	P-value†
Elevated waist circumference	23038(63.5%)	18840(18.3%)	3337(29.9%)	8238(9.6%)	<0.001	<0.001				
Elevated systolic pressure	18610(51.3%)	25477(24.8%)	4999(44.9%)	18163(21.1%)	<0.001	13611(54.1%)	<0.001	<0.001		
Elevated diastolic pressure	13487(37.1%)	14824(14.4%)	3334(29.9%)	10153(40.3%)	<0.001	<0.001				
Elevated triglyceride	23574(64.9%)	20044(19.5%)	7182(64.5%)	14143(16.5%)	<0.001	16392(65.1%)	0.204	0.359		
Reduced HDL-C	10042(27.7%)	12336(12.0%)	3046(27.3%)	9301(10.8%)	<0.001	6996(27.8%)	0.073	0.073		
Elevated fasting glucose	17165(47.3%)	21259(20.7%)	5347(48.0%)	15835(18.4%)	<0.001	11818(47.0%)	0.073	0.073		
Elevated total cholesterol	15287(42.1%)	28121(27.3%)	4885(43.8%)	22537(26.2%)	<0.001	10402(41.3%)	<0.001	<0.001		
Elevated LDL-C (mmol/L)	16386(45.1%)	25548(24.8%)	51144(45.9%)	19641(22.9%)	<0.001	11272(44.8%)	0.052	0.052		
Elevated ALT	15426(42.5%)	11443(11.1%)	3816(34.2%)	8032(9.3%)	<0.001	11610(46.1%)	<0.001	<0.001		
Elevated AST	3443(9.5%)	2593(2.5%)	774(6.9%)	1963(2.3%)	<0.001	2669(10.6%)	<0.001	<0.001		

†The P-value were calculated from the comparation between the group of Obese with MAFLD (25163) and Non-obese with MAFLD (11143).

Data were described by proportions (%). P-values were derived from chi-square test.

Elevated waist circumference: ≥90 cm for men and ≥80 cm for women. Elevated systolic pressure: ≥130 mm Hg. Elevated diastolic pressure: ≥85 mm Hg. Elevated triglyceride: ≥1.70 mmol/L. Reduced HDL-C: < 1.0 mmol/L. Elevated fasting glucose: ≥5.6 mmol/L. Elevated total cholesterol: ≥5.2 mmol/L. Elevated LDL-C: ≥3.4 mmol/L. Elevated ALT: > 35IU/L. Elevated AST: > 40IU/L.

MAFLD, Metabolic dysfunction-associated fatty liver disease; HDL-C, high-density lipoprotein cholesterol; LDL, low-density lipoprotein cholesterol; ALT, alanine aminotransferase; AST, aspartate aminotransferase.

Table 3. The prevalence of MAFLD in people with different number of MS components

Number of MS risk components	Total population	People with MAFLD	Prevalence (%)
0	45255	1471	3.3
1	36339	5218	14.4
2	27926	10307	36.9
3	18353	10758	58.6
4	9033	6685	74.0
5	2264	1867	82.5

MAFLD, Metabolic associated fatty liver disease; MS, metabolic syndrome.
Table 4. Results of binary logistic regression of MAFLD and the tested variables

Variable	P-value	OR	95 % CI of OR
Age (years)	0.015	1.018	1.001-1.033
BMI (Kg/m²)	0.000	1.476	1.320-1.660
Waist circumference (cm)	0.006	1.057	1.017-1.102
ALT (U/L)	0.009	1.023	1.002-1.043
Triglyceride (mmol/L)	0.000	1.776	1.238-2.257
Fasting glucose (mmol/L)	0.000	1.403	1.116-1.839
Uric acid (μmol/L)	0.001	1.003	1.001-1.006
Platelet count (×10⁹/L)	0.014	1.004	1.000-1.007

OR, odds ratio; CI, confidence interval; MAFLD, Metabolic associated fatty liver disease; BMI, body mass index; ALT, alanine aminotransferase.