DAUGAVET- AND DELTA-POINTS IN ABSOLUTE SUMS OF BANACH SPACES

R. HALLER, K. PIRK, AND T. VEEORG

Abstract. A Daugavet-point (resp. ∆-point) of a Banach space is a norm one element x for which every point in the unit ball (resp. element x itself) is in the closed convex hull of unit ball elements that are almost at distance 2 from x. A Banach space has the well-known Daugavet property (resp. diametral local diameter 2 property) if and only if every norm one element is a Daugavet-point (resp. ∆-point). This paper complements the article “Delta- and Daugavet-points in Banach spaces” by T. A. Abrahamsen, R. Haller, V. Lima, and K. Pirk, where the study of the existence of Daugavet- and ∆-points in absolute sums of Banach spaces was started.

1. Introduction

Let X be a real Banach space. We denote its closed unit ball by B_X, unit sphere by S_X, and dual space by X^*. Following [1] we say that

1. an x in S_X is a Daugavet-point if $B_X \subset \text{conv} \Delta_\varepsilon(x)$ for every $\varepsilon > 0$,
2. an x in S_X is a ∆-point if $x \in \text{conv} \Delta_\varepsilon(x)$ for every $\varepsilon > 0$,

where

$$\Delta_\varepsilon(x) = \{ y \in B_X : \|x - y\| \geq 2 - \varepsilon \}.$$

In the definition of Daugavet- and ∆-point one can equivalently use the set $\{ y \in S_X : \|x - y\| \geq 2 - \varepsilon \}$ instead of $\Delta_\varepsilon(x)$.

The concepts of Daugavet-point and ∆-point originate from the observation in [9] and [2], on one hand that a Banach space X has the Daugavet property (i.e. for every rank-1 bounded linear operator T: $X \to X$ we have $\|Id + T\| = 1 + \|T\|$), if and only if every $x \in S_X$ is a Daugavet-point (see [3]); and on the other hand that a Banach space X has the diametral local diameter 2 property if and only if every $x \in S_X$ is a ∆-point (see [2]).

In this paper we clarify which absolute sums of Banach spaces have Daugavet- and ∆-points. Recall that a norm N on \mathbb{R}^2 is called absolute if $N(a, b) = N(|a|, |b|)$.
for all \((a, b) \in \mathbb{R}^2\), and normalised if \(N(1, 0) = N(0, 1) = 1\). Given two Banach spaces \(X\) and \(Y\), and an absolute normalised norm \(N\) on \(\mathbb{R}^2\), we write \(X \oplus_N Y\) to denote the direct sum \(X \oplus Y\) with the norm \(\| (x, y) \|_N = N(\|x\|, \|y\|)\) and we call this Banach space the absolute sum of \(X\) and \(Y\). Standard examples of absolute normalised norms are the \(\ell_p\)-norms on \(\mathbb{R}^2\) for every \(p \in [1, \infty]\).

It is known that among all absolute sums only \(\ell_1\)-sum and \(\ell_\infty\)-sum can have Daugavet property (see [3]). In contrast, Daugavet- and \(\Delta\)-points may exist in various absolute sums. Some preliminary results, regarding this matter, were obtained in [1], let us first recall two of them about Daugavet-points.

Proposition 1.1 (see [1, Propositions 4.3 and 4.6]). Let \(X\) and \(Y\) be Banach spaces and \(N\) an absolute normalised norm on \(\mathbb{R}^2\).

(a) The absolute sum \(X \oplus_N Y\) does not have any Daugavet-points, whenever \(N\) has the following property:

\[
\text{for all nonnegative reals } a, b \text{ with } N(a, b) = 1, \text{ there exist } \varepsilon > 0 \text{ and a neighbourhood } W \text{ of } (a, b) \text{ with}
\]

\[
\sup_{(c,d) \in W} c < 1 \quad \text{or} \quad \sup_{(c,d) \in W} d < 1,
\]

such that \((c,d) \in W\) for all nonnegative reals \(c\) and \(d\) with

\[
N(c, d) = 1 \quad \text{and} \quad N((a, b) + (c, d)) \geq 2 - \varepsilon.
\]

(b) The absolute sum \(X \oplus_N Y\) has Daugavet-points, whenever both \(X\) and \(Y\) have Daugavet-points, and \(N\) has the following property:

\[
\text{there exist nonnegative reals } a \text{ and } b \text{ with } N(a, b) = 1 \text{ such that}
\]

\[
N((a, b) + (0, 1)) = 2 \quad \text{and} \quad N((a, b) + (1, 0)) = 2.
\]

More precisely, if \(x\) and \(y\) are Daugavet-points in \(X\) and \(Y\), respectively, and \((a, b)\) is from \((\beta)\), then \((ax, by)\) is a Daugavet-point in \(X \oplus_N Y\).

It is easy to see that properties \((\alpha)\) and \((\beta)\) exclude each other. However, there are absolute normalised norms that have neither property \((\alpha)\) nor property \((\beta)\) (see discussion in [1]). This motivated us, in part, for further research to clarify the existence of Daugavet-points for all absolute sums (see Section 2).

Concerning \(\Delta\)-points, however, one can easily construct \(\Delta\)-points in any absolute sum \(X \oplus_N Y\), given that both \(X\) and \(Y\) have \(\Delta\)-points (see discussion after Lemma 4.1 in [1]). In this paper, our particular aim is to describe the reverse situation, that is the existence of \(\Delta\)-points in the summands, by assuming that there are \(\Delta\)-points in the absolute sum.

Our main tools are the following two lemmas that use slices to describe Daugavet- and \(\Delta\)-points. These lemmas are easily derived from the Hahn–Banach separation theorem. By a slice of the unit ball \(B_X\) of \(X\) we mean a set of the form

\[
S(B_X, x^*, \alpha) = \{ y \in B_X : x^*(y) > 1 - \alpha\},
\]
where \(x^* \in S_{X^*} \) and \(\alpha > 0 \).

Lemma 1.2 ([1] Lemma 2.2). Let \(X \) be a Banach space and \(x \in S_X \). Then the following assertions are equivalent:

(i) \(x \) is a Daugavet-point;

(ii) for every slice \(S \) of \(B_X \) and every \(\varepsilon > 0 \) there exists \(u \in S \) such that \(\|x - u\| \geq 2 - \varepsilon \).

Lemma 1.3 ([1] Lemma 2.1). Let \(X \) be a Banach space and \(x \in S_X \). Then the following assertions are equivalent:

(i) \(x \) is a \(\Delta \)-point;

(ii) for every slice \(S \) of \(B_X \), with \(x \in S \), and every \(\varepsilon > 0 \) there exists \(u \in S \) such that \(\|x - u\| \geq 2 - \varepsilon \).

In the following, we present our main results regarding both Daugavet- and \(\Delta \)-points. In Section 2, we generalise part (b) of Proposition 1.1 to all absolute normalised norms that do not have property (\(\alpha \)), which completes the research about the existence of Daugavet-points in the absolute sum, given that component spaces have Daugavet-points (see Theorem 2.2).

In Section 3, we consider the existence of Daugavet-points in component spaces, assuming that the absolute sum has Daugavet-points. In this case, we prove that at least one component space has Daugavet-points (see Theorems 3.1 and 3.2).

In Section 4, we deal with the existence of \(\Delta \)-points in component spaces of an absolute sum with \(\Delta \)-points. For absolute normalised norms that differ from \(\ell_\infty \)-norm the results are similar to the case of Daugavet-points, i.e. at least one of the component spaces has \(\Delta \)-points (see Theorem 4.1). However, the point \((x, y)\) with \(\|x\| = \|y\| = 1 \) in the absolute sum equipped with \(\ell_\infty \)-norm can surprisingly be a \(\Delta \)-point even if neither \(x \) nor \(y \) is a \(\Delta \)-point in the respective component space (see Example 4.3 and Proposition 4.4).

2. DAUGAVET-POINTS FROM SUMMANDS TO ABSOLUTE SUMS

In this section we focus on absolute sums inheriting Daugavet-points from component spaces. As pointed out in Introduction, the absolute sum with a norm \(N \) satisfying property (\(\alpha \)), does not have any Daugavet-points (see part (a) of Proposition 1.1). However, if both component spaces have Daugavet-points, then the absolute sum equipped with a norm \(N \) satisfying property (\(\beta \)) also has Daugavet-points (see part (b) of Proposition 1.1). We complete this direction by specifying the situation for all the other absolute normalised norms besides the ones with properties (\(\alpha \)) or (\(\beta \)).

Definition 2.1. Let \(X \) be a Banach space and \(A \subset S_X \). We say that the norm on \(X \) is \(A \)-octahedral (\(A \)-OH) if for every \(x_1, \ldots, x_n \in A \) and every \(\varepsilon > 0 \) there exists \(y \in S_X \) such that \(\|x_i + y\| \geq 2 - \varepsilon \) for every \(i \in \{1, \ldots, n\} \).
It is evident that the octahedrality of a norm in its usual sense (see [6] and [8, Proposition 2.4]) means that the norm is S_X-OH. We use this more general term, A-octahedrality, to describe absolute sums, or more precisely absolute normalised norms, for which the absolute sums possess Daugavet-points. The name, A-octahedrality, is justified by the fact that property (β) has also been called positive octahedrality in [7]. Note that absolute normalised norm N on \mathbb{R}^2 with property (β) is exactly $\{(0,1), (1,0)\}$-OH.

Consider an absolute normalised norm N on \mathbb{R}^2. We now define a specific set A that is considered from here on until the end of Section 3. Set $c = \max_{N(e,1)=1} e$ and $d = \max_{N(i,f)=1} f$, (*) and define

$$A = \{(c, 1), (1, d)\}.$$

Suppose that the norm N is A-OH. By Definition 2.1 there exists $(a, b) \in \mathbb{R}^2$ with the following property:

$$a, b \geq 0, \quad N(a, b) = 1, \quad \text{and} \quad N((a, b) + (c, 1)) = 2 \quad \text{and} \quad N((a, b) + (1, d)) = 2.$$

(\text{**})

It is easy to see that, firstly, as mentioned above, the norms with property (β) are A-OH (for the specified A as well), and secondly, A-OH norms do not have property (α). Moreover, part (b) of Proposition 1.1 can be extended for A-OH norms N as well.

Theorem 2.2. Let X and Y be Banach spaces, $x \in S_X$, $y \in S_Y$, and let N be an A-OH norm with (a, b) as in (\text{**}). If x and y are Daugavet-points in X and Y, respectively, then (ax, by) is a Daugavet-point in $X \oplus_N Y$.

Proof. Assume that x and y are Daugavet-points. Set $Z = X \oplus_N Y$ and fix $f = (x^*, y^*) \in S_{Z^*}$, $\alpha > 0$, and $\varepsilon > 0$. Choose $\delta > 0$ to satisfy $\delta N(1, 1) < \varepsilon$. By Lemma 2.1 we obtain $u \in B_X$ and $v \in B_Y$ such that

$$x^*(u) \geq \left(1 - \frac{\alpha}{2}\right)\|x^*\| \quad \text{and} \quad y^*(v) \geq \left(1 - \frac{\alpha}{2}\right)\|y^*\|$$

and

$$\|x - u\| \geq 2 - \delta \quad \text{and} \quad \|y - v\| \geq 2 - \delta.$$

By the properties of absolute normalised norms (see [5], p 317) and A-OH norms, there exist $k, l \geq 0$ such that

$$N(k, l) = 1, \quad N((a, b) + (k, l)) = 2, \quad \text{and} \quad k\|x^*\| + l\|y^*\| = 1.$$

Therefore $(ku, lv) \in S(B_Z, f, \alpha)$, because

$$f(ku, lv) = kx^*(u) + ly^*(v) \geq \left(1 - \frac{\alpha}{2}\right)(k\|x^*\| + l\|y^*\|) > 1 - \alpha.$$
On the other hand, from $\|x - u\| \geq 2 - \delta$ and $\|y - v\| \geq 2 - \delta$, we get that $\|ax - ku\| \geq a + k - \delta$ and $\|by - lv\| \geq b + l - \delta$.

In conclusion we have that

\[
\| (ax, by) - (ku, lv) \|_N = N(\|ax - ku\|, \|by - lv\|) \\
\geq N(a + k - \delta, b + l - \delta) \\
\geq N(a + k, b + l) - N(\delta, \delta) \\
= N((a, b) + (k, l)) - \delta N(1, 1) \\
> 2 - \varepsilon,
\]

which means that (ku, lv) satisfies the necessary conditions such that according to Lemma 1.2 (ax, by) is a Daugavet-point.

In order to have Daugavet-points in the absolute sum it is enough, for some A-OH norms, to assume that only one summand has a Daugavet-point. The following two propositions describe these special occasions, we drop the proofs since they are similar to the previous one.

Proposition 2.3. Let X and Y be Banach spaces, $x \in S_X$ and $y \in S_Y$, and let N be an A-OH norm with (a, b) as in (**) .

(a) If $b = 0$ and x is a Daugavet-point in X, then $(ax, by) = (x, 0)$ is a Daugavet-point in $X \oplus N Y$.

(b) If $a = 0$ and y is a Daugavet-point in Y, then $(ax, by) = (0, y)$ is a Daugavet-point in $X \oplus N Y$.

Proposition 2.4. Let X and Y be Banach spaces, $x \in S_X$ and $y \in S_Y$.

(a) If x is a Daugavet-point in X, then (x, by) is a Daugavet-point in $X \oplus \infty Y$ for every $b \in [0, 1]$.

(b) If y is a Daugavet-point in Y, then (ax, y) is a Daugavet-point in $X \oplus \infty Y$ for every $a \in [0, 1]$.

With this we have widened the class of absolute sums inheriting Daugavet-points from the component spaces (see also the discussion after Remark 5.9 in [1]). At this point, it is still not clear, though, whether all absolute normalised norms are covered, since there could be other absolute normalised norms 'in between' the norms with property (α) and A-OH norms. We will prove now that actually this is not the case, all absolute normalised norms are either with property (α) or A-OH.

It is not hard to see that in the definition of property (α), we can relax the condition $\varepsilon > 0$ and let $\varepsilon = 0$. The corresponding reformulation of property (α) is the following:
property that

Proof. We prove only the first statement, the second can be proved similarly. Suppose that $x \neq 0$. Fix $x^* \in S_{X^*}$, $\alpha > 0$, and $\varepsilon > 0$. We will find $u \in S(B_X, x^*, \alpha)$

(α) for all nonnegative reals a and b with $N(a, b) = 1$, there exists a neighbourhood W of (a, b) with

$$
\sup_{(c, d) \in W} c < 1 \quad \text{or} \quad \sup_{(c, d) \in W} d < 1,
$$

such that $(c, d) \in W$ for all nonnegative reals c and d with

$$
N(c, d) = 1 \quad \text{and} \quad N((a, b) + (c, d)) = 2.
$$

Proposition 2.5. Every absolute normalised norm on \mathbb{R}^2 is either with property (α) or A-OH.

Proof. Let N be an absolute normalised norm that does not have property (α). Then there exist $a, b \geq 0$ with $N(a, b) = 1$ such that for every (a, b)-neighbourhood W which satisfies either $\sup_{(c, d) \in W} c < 1$ or $\sup_{(c, d) \in W} d < 1$, there exist $c, d \geq 0$ with $N(c, d) = 1$ such that $(c, d) \notin W$ and $N((a, b) + (c, d)) = 2$. To show that N is A-OH, we need to find $c, d \geq 0$ satisfying

$$
N(c, 1) = N(1, d) = 1 \quad \text{and} \quad N((a, b) + (c, 1)) = N((a, b) + (1, d)) = 2.
$$

If $a = 1$ ($b = 1$, respectively), then take $d = b$ ($c = a$, respectively). However, if $a \neq 1$, then for every $n \in \mathbb{N}$ large enough $(a < 1 - 1/n)$, by taking $W_n = \{(x, y) : x \leq 1 - 1/n\}$, we can find $c_n, d_n \geq 0$ with $N(c_n, d_n) = 1$ such that $(c_n, d_n) \notin W_n$ and $N((a, b) + (c_n, d_n)) = 2$. Passing to a subsequence if necessary, we can assume that $(c_n, d_n) \to (1, d)$ for some $d \geq 0$. Obviously $N(1, d) = 1$ and $N((a, b) + (1, d)) = 2$. It can be proved similarly that if $b \neq 1$, then there exists $c \geq 0$ with $N(c, 1) = 1$ and $N((a, b) + (c, 1)) = 2$. Combining these facts we have that N is A-OH. \hfill \square

3. Daugavet-points from absolute sums to summands

In [1] the authors stated a question about the existence of Daugavet-points in Banach spaces X and Y, given that the absolute sum $X \oplus_N Y$ has Daugavet-points (see [1] Problem 1). In this section we give an answer to that question. Recall that this question is open only for A-OH norms N, whereas for norms N with property (α) we do not have any Daugavet points in $X \oplus_N Y$.

Theorem 3.1. Let X and Y be Banach spaces, $x \in B_X$, $y \in B_Y$, and let N be an absolute normalised norm on \mathbb{R}^2, different from ℓ_∞-norm. Assume that (x, y) is a Daugavet-point in $X \oplus_N Y$.

(a) If $x \neq 0$, then $x/\|x\|$ is a Daugavet-point in X.

(b) If $y \neq 0$, then $y/\|y\|$ is a Daugavet-point in Y.

Proof. We prove only the first statement, the second can be proved similarly. Suppose that $x \neq 0$. Fix $x^* \in S_{X^*}$, $\alpha > 0$, and $\varepsilon > 0$. We will find $u \in S(B_X, x^*, \alpha)$
such that \(\|x/\|x\| - u\| \geq 2 - \varepsilon\). Set \(f = (x^*, 0)\) and \(Z = X \oplus_N Y\). Then \(f \in S_{Z^*}\). Choose \(\delta > 0\) such that, for every \(p, q, r \geq 0\), if
\[
2 - \delta \leq N(p, q) \leq N(r, q) \leq 2
\]
and \(q < 2 - \delta\), then \(|p - r| < \|x\|\varepsilon/2\). There is no loss of generality in assuming that \(\delta \leq \varepsilon/2\), \(\delta \leq \alpha\), and \((1 - \delta)N(1, 1) > 1\) (here we use the fact that \(N(1, 1) > 1\), i.e. \(N\) is not \(\ell_\infty\)-norm).

Since \((x, y)\) is a Daugavet-point in \(Z\), there exists \((u, v) \in S(B_Z, f, \delta)\) such that \(\|(x, y) - (u, v)\|_{N} \geq 2 - \delta\). Consequently,
\[
x^*(u) = f(u, v) > 1 - \delta \geq 1 - \alpha,
\]
which gives us that \(u \in S(B_X, x^*, \alpha)\) and \(\|u\| > 1 - \delta\). We also conclude that \(\|v\| < 1 - \delta\), because otherwise
\[
N(\|u\|, \|v\|) \geq N(1 - \delta, 1 - \delta) = (1 - \delta)N(1, 1) > 1,
\]
a contradiction. In addition we have that
\[
2 - \delta \leq N(\|x - u\|, \|y - v\|) \leq N(\|x\| + \|u\|, \|y - v\|) \leq 2
\]
and
\[
\|y - v\| \leq \|y\| + \|v\| < 1 + 1 - \delta = 2 - \delta.
\]
Hence, by the choice of \(\delta\), we have that
\[
\|x - u\| - (\|x\| + \|u\|) < \|x\|\varepsilon/2.
\]
Thus \(\|x - u\| > \|x\| + \|u\| - \|x\|\varepsilon/2\), and therefore,
\[
\left\| \frac{x}{\|x\|} - u \right\| = \left\| \frac{1}{\|x\|}(x - u) - \left(u - \frac{1}{\|x\|}u \right) \right\|
\geq \frac{1}{\|x\|}\|x - u\| - \left(\frac{1}{\|x\|} - 1 \right)\|u\|
\geq \frac{1}{\|x\|}\left(\|x\| + \|u\| - \frac{\|x\|\varepsilon}{2} \right) - \frac{\|u\|}{\|x\|} + \|u\|
= 1 + \|u\| - \frac{\varepsilon}{2}
> 1 + 1 - \delta - \frac{\varepsilon}{2}
\geq 2 - \varepsilon.
\]
According to Lemma [1,2], the element \(x/\|x\|\) is a Daugavet-point in \(X\) \(\Box\).

Let us now move on to the case of \(\ell_\infty\)-norm. Recall that if \(x\) is a Daugavet-point in \(X\), then \((x, y)\) is a Daugavet-point in \(X \oplus_\infty Y\) for every \(y \in B_Y\) (see Proposition [2,4]). This means that if \(\ell_\infty\)-sum of two Banach spaces has a Daugavet-point, then both summands need not have a Daugavet-point. However, in the following we prove that at least one of the summands has a Daugavet-point.
Theorem 3.2. Let X and Y be Banach spaces, $x \in B_X$, $y \in B_Y$. Assume that (x, y) is a Daugavet-point in $X \oplus_\infty Y$. Then x is a Daugavet-point in X or y is a Daugavet-point in Y.

Proof. Firstly, look at the case, where only one of x and y has norm 1, and the other has norm less than 1. Assume that $\|x\| < 1$ and let us prove that x is a Daugavet-point in X. (The statement, if $\|x\| < 1$, then y is a Daugavet-point in Y, can be proved similarly.) Choose $\delta > 0$ such that $\delta \leq \varepsilon$ and $\|y\| < 1 - \delta$. Fix $x^* \in S_{X^*}$, $\alpha > 0$ and $\varepsilon > 0$. Set $Z = X \oplus_\infty Y$ and $f = (x^*, 0) \in S_{Z^*}$. Since (x, y) is a Daugavet-point then there exists $(u, v) \in S(Z, f, \alpha)$ such that $\|(x, y) - (u, v)\|_\infty \geq 2 - \delta$. Therefore, $x^*(u) = f(u, v) > 1 - \alpha$, i.e. $u \in S(B_X, x^*, \alpha)$ and

$$\|y - v\| \leq \|y\| + \|v\| < 1 - \delta + 1 = 2 - \delta.$$

Combining this with the fact that

$$\|(x, y) - (u, v)\|_\infty = \max\{\|x - u\|, \|y - v\|\} \geq 2 - \delta,$$

we get that $\|x - u\| \geq 2 - \delta \geq 2 - \varepsilon$. Thus, x is a Daugavet-point in X.

Secondly, consider the case, where both x and y are of norm 1, and neither of them is a Daugavet-point. Then we can fix slices $S(B_X, x^*, \alpha)$ and $S(B_Y, y^*, \alpha)$, and $\varepsilon > 0$ such that $S(B_X, x^*, \alpha) \cap \Delta_\varepsilon(x) = \emptyset$ and $S(B_Y, y^*, \alpha) \cap \Delta_\varepsilon(y) = \emptyset$. There is no loss of generality in assuming that $\alpha < \varepsilon < 1$. Set $f = 1/2(x^*, y^*)$ and $Z = X \oplus_\infty Y$, and consider the slice $S(B_Z, f, \alpha/2)$. Note that

$$S(B_Z, f, \alpha/2) \subset S(B_X, x^*, \alpha) \times S(B_Y, y^*, \alpha).$$

Let $(u, v) \in S(B_Z, f, \alpha/2) \cap S_Z$ be arbitrary. Then

$$\|u\| > 1 - \alpha > 0 \quad \text{and} \quad \|v\| > 1 - \alpha > 0,$$

and

$$u/\|u\| \in S(B_X, x^*, \alpha) \quad \text{and} \quad v/\|v\| \in S(B_Y, y^*, \beta).$$

Therefore

$$\|(u, v) - (x, y)\|_\infty = \max\{\|u - x\|, \|v - y\|\}$$

$$\leq \max\left\{\left\|u - \frac{u}{\|u\|} x\right\| + \left\|\frac{u}{\|u\|} - x\right\|, \left\|v - \frac{v}{\|v\|} y\right\| + \left\|\frac{v}{\|v\|} - y\right\|\right\}$$

$$< \alpha + 2 - \varepsilon$$

$$= 2 - (\varepsilon - \alpha).$$

As a result, $S(B_Z, f, \alpha/2) \cap \Delta_{\varepsilon - \alpha}(x, y) = \emptyset$, which by Lemma \ref{lemma:daugavet} implies that (x, y) is not a Daugavet-point. \qed
4. Delta-points from direct sums to summands

As mentioned in Introduction, \(\Delta \)-points pass from component spaces to the absolute sum for every absolute normalised norm. In fact, this observation let the authors of [1] conclude that \(\Delta \)-points are indeed different from Daugavet-points. In this section, we clarify the existence of \(\Delta \)-points in the component spaces, given that the absolute sum has \(\Delta \)-points. Surprisingly, the case of \(\Delta \)-points is different from the case of Daugavet-points even for \(\ell_\infty \)-norm (see Proposition 4.4).

From here on, we consider arbitrary absolute normalised norms \(N \). Firstly, we show that, as expected, for most absolute normalised norms \(N \) the component spaces have \(\Delta \)-points, given the absolute sum has \(\Delta \)-points.

Theorem 4.1. Let \(X \) and \(Y \) be Banach spaces, \(x \in S_X \), \(y \in S_Y \), \(N \) an absolute normalised norm on \(\mathbb{R}^2 \), and \(a, b \geq 0 \) such that \(N(a, b) = 1 \). Assume that \((ax, by) \) is a \(\Delta \)-point in \(X \oplus_N Y \).

(a) If \(b \neq 1 \), then \(x \) is a \(\Delta \)-point in \(X \).
(b) If \(a \neq 1 \), then \(y \) is a \(\Delta \)-point in \(Y \).

Proof. We prove only the first statement, the second can be proved similarly. Assume that \(b \neq 1 \). Note that then \(a \neq 0 \). Let \(c, d \geq 0 \) be such that \(N^*(c, d) = 1 \) and \(ac + bd = 1 \).

Suppose that \(x \) is not a \(\Delta \)-point in \(X \). Then, by Lemma 1.3, there exist \(x^* \in S_{X^*} \), \(\alpha > 0 \), and \(\varepsilon > 0 \) such that

\[
 x \in S(B_X, x^*, \alpha) \quad \text{and} \quad S(B_X, x^*, \alpha) \cap \Delta_\varepsilon(x) = \emptyset.
\]

Let \(y^* \in S_{Y^*} \) be such that \(y^*(y) = 1 \) and let \(f = (cx^*, (1 - \alpha)dy^*) \). Then

\[
 f(ax, by) = acx^*(x) + (1 - \alpha)bdy^*(y) > (1 - \alpha)(ac + bd) = 1 - \alpha.
\]

Choose \(\beta, \gamma > 0 \) such that \(\beta < a\varepsilon \) and \(\beta < \gamma \varepsilon \), and

\[
 f(ax, by) > 1 - (\alpha - \gamma).
\]

Now choose \(\delta > 0 \) such that, for every \(p, q, r \geq 0 \), if

\[
 2 - \delta \leq N(p, q) \leq N(r, q) \leq 2 \quad \text{and} \quad q < 2 - \delta,
\]

then \(|p - r| < \beta \). There is no loss of generality in assuming that \(b < 1 - \delta \). There exists \((u, v) \in B_Z\), where \(Z = X \oplus_N Y \), such that

\[
 f(u, v) > 1 - (\alpha - \gamma) \quad \text{and} \quad \|(ax, by) - (u, v)\|_N \geq 2 - \delta.
\]
Then
\[cx^*(u) + (1 - \alpha)d\|v\| \geq cx^*(u) + (1 - \alpha)dy^*(v) \]
\[= f(u, v) \]
\[> 1 - (\alpha - \gamma) \]
\[> 1 - \alpha \]
\[\geq (1 - \alpha)(c\|u\| + d\|v\|), \]
which yields
\[cx^*(u) > (1 - \alpha)c\|u\|, \]
i.e. \(x^*(u/\|u\|) > 1 - \alpha \). Since \(S(B_X, x^*, \alpha) \cap \Delta_s(x) = \emptyset \), we know now that \(\|x - u/\|u\|| < 2 - \varepsilon \). We now show that \(\|ax - u\| < a + \|u\| - \beta \). Let us consider two cases. If \(\|u\| \geq a \), then
\[\|ax - u\| \leq \|ax - a\frac{u}{\|u\|}\| + \|a\frac{u}{\|u\|} - u\| \]
\[\leq a(2 - \varepsilon) + |a - \|u\|| \]
\[= a + \|u\| - a\varepsilon \]
\[< a + \|u\| - \beta. \]
On the other hand, if \(a \geq \|u\| \), we have
\[c\|u\| + (1 - \alpha)d\|v\| \geq cx^*(u) + (1 - \alpha)dy^*(v) \]
\[= f(u, v) \]
\[> 1 - \alpha + \gamma \]
\[\geq (1 - \alpha)d\|v\| + \gamma, \]
from which we conclude \(\|u\| \geq c\|u\| > \gamma \). Now we see that
\[\|ax - u\| \leq \|ax - \|u\|x\| + \|\|u\|x - u\| \]
\[\leq a - \|u\| + \|u\|(2 - \varepsilon) \]
\[= a + \|u\| - \|u\|\varepsilon \]
\[< a + \|u\| - \gamma\varepsilon \]
\[< a + \|u\| - \beta. \]
That gives us the following:
\[2 - \delta \leq \|(ax, by) - (u, v)\|_N = N(\|ax - u\|, \|by - v\|) \]
\[\leq N(a + \|u\| - \beta, b + \|v\|) \]
and therefore
\[2 - \delta \leq N(a + \|u\| - \beta, b + \|v\|) \leq N(a + \|u\|, b + \|v\|) \leq 2. \]
Since $b + \|v\| < 2 - \delta$, we have by the choice of δ that $\left| (a + \|u\| - \beta) - (a + \|u\|) \right| < \beta$, i.e. $\beta < \beta$, a contradiction. Hence x is a Δ-point in X. \hfill \Box

Theorem 4.1 does not cover the case $a = b = 1$ (for ℓ_∞-norm). Our original assumption was that if (x, y) is a Δ-point in $X \oplus_\infty Y$ for some $x \in S_X$ and $y \in S_Y$, then either x or y must also be a Δ-point (respectively in X or Y), similarly to the case of Daugavet-points. However, we show that in this case our intuition was wrong. Moreover, we introduce the conditions that $x \in S_X$ and $y \in S_Y$ must satisfy in order for (x, y) to be a Δ-point in $X \oplus_\infty Y$. These results rely heavily on the concept of another type of unit sphere elements similar to Δ-points (compare with Lemma 1.3).

Definition 4.2. Let X be a Banach space, $x \in S_X$, and $k > 1$. We say that x is a Δ_k-point in X, if for every $S(B_X, x^*, \alpha)$ with $x \in S(B_X, x^*, \alpha)$ and for every $\varepsilon > 0$ there exists $u \in S(B_X, x^*, \alpha k)$ such that $\|x - u\| \geq 2 - \varepsilon$.

Every Δ-point is obviously a Δ_k-point for every $k > 1$. In contrast, the reverse does not hold, since the upcoming example shows the existence of a Δ_k-point that is not a Δ-point, which proves that the concepts of Δ-point and Δ_k-point do not coincide.

Example 4.3. Let X and Y be Banach spaces, $x \in S_X$ and $y \in S_Y$, and let $k > 1$. Set $Z = X \oplus_1 Y$ and $z = ((1 - 1/k)x, y/k)$. Assume that x is not a Δ-point in X and y is a Δ-point in Y. Then, according to Theorem 4.1, z is not a Δ-point in Z.

Fix $f = (x^*, y^*) \in S_{Z^*}$ and $\alpha > 0$, such that $f(z) > 1 - \alpha$, and fix $\varepsilon > 0$. Then

$$1 - \frac{1}{k} + \frac{1}{k} y^*(y) \geq \left(1 - \frac{1}{k}\right) x^*(x) + \frac{1}{k} y^*(y) = f(z) > 1 - \alpha.$$

It follows that $y^*(y) > 1 - \alpha k$. Since y is a Δ-point, there exists $v \in B_Y$ such that $y^*(v) > 1 - \alpha k$ and $\|y - v\| \geq 2 - \varepsilon$.

Then $f(0, v) = y^*(v) > 1 - \alpha k$, i.e. $(0, v) \in S(B_Z, f, \alpha k)$, and

$$\left\| \left(\left(1 - \frac{1}{k}\right)x, \frac{1}{k}y\right) - (0, v) \right\|_1 = \left(1 - \frac{1}{k}\right) \|x\| + \frac{1}{k} \|y - v\|$$

$$\geq \left(1 - \frac{1}{k}\right) + \|y - v\| - \left(1 - \frac{1}{k}\right) \|y\|$$

$$\geq 2 - \varepsilon.$$

This proves that z is a Δ_k-point.

Surprisingly (x, y) with $\|x\| = \|y\| = 1$ can be a Δ-point in $X \oplus_\infty Y$ even if neither x nor y is a Δ-point in X and Y, respectively. This is immediate from Example 4.3 and following Proposition 4.4.

Proposition 4.4. Let X and Y be Banach spaces, $x \in S_X$ and $y \in S_Y$. Let $p, q > 1$ satisfy $1/p + 1/q = 1$.
(a) If \(x \) is a \(\Delta_p \)-point in \(X \) and \(y \) is a \(\Delta_q \)-point in \(Y \), then \((x, y)\) is a \(\Delta \)-point in \(X \oplus \infty Y \).

(b) If \(x \) is not a \(\Delta_p \)-point in \(X \) and \(y \) is not a \(\Delta_q \)-point in \(Y \), then \((x, y)\) is not a \(\Delta \)-point in \(X \oplus \infty Y \).

In fact, Proposition 4.4 gives equivalent condition for \((x, y)\) being a \(\Delta \)-point in \(X \oplus \infty Y \) where neither \(x \) nor \(y \) is a \(\Delta \)-point in \(X \) and \(Y \), respectively (see Proposition 4.3 below).

Proof of Proposition 4.4. (a) Assume that \(x \) is a \(\Delta_p \)-point in \(X \) and \(y \) is \(\Delta_q \)-point in \(Y \). Set \(Z = X \oplus \infty Y \). Fix \(f = (x^*, y^*) \in S_Z \) and \(\alpha > 0 \) such that \((x, y) \in S(B_Z, f, \alpha)\), and fix \(\varepsilon > 0 \). Then

\[
x^*(x) + y^*(y) = f(x, y) > 1 - \alpha
\]

from what we get

\[
x^*(x) > 1 - (\alpha + y^*(y)) = \|x^*\| - (\alpha + y^*(y) - \|y^*\|).
\]

We now show that there exists \((u, v) \in S(B_Z, f, \alpha)\) such that

\[
\|(x, y) - (u, v)\|_\infty \geq 2 - \varepsilon.
\]

Let us consider two cases. If \(\alpha + y^*(y) - \|y^*\| \leq \alpha/p \), then \(x^*(x) > \|x^*\| - \alpha/p \) and therefore, since \(x \) is a \(\Delta_p \)-point, there exists \(u \in B_X \) such that \(x^*(u) > \|x^*\| - \alpha \) and \(\|x - u\| \geq 2 - \varepsilon \). Let \(v \in B_Y \) be such that

\[
f(u, v) = x^*(u) + y^*(v) > \|x^*\| - \alpha + \|y^*\| = 1 - \alpha.
\]

Then also \(\|(x, y) - (u, v)\|_\infty = \max\{\|x - u\|, \|y - v\|\} \geq 2 - \varepsilon \).

If \(\alpha + y^*(y) - \|y^*\| > \alpha/p \), then

\[
y^*(y) > \|y^*\| - \alpha + \frac{\alpha}{p} = \|y^*\| - \frac{1}{q}\alpha
\]

and analogically, using the fact that \(y \) is a \(\Delta_q \)-point, we can find \((u, v) \in S(B_Z, f, \alpha)\) such that \(\|(x, y) - (u, v)\|_\infty \geq 2 - \varepsilon \). Therefore \((x, y)\) is a \(\Delta \)-point.

(b) Assume that \(x \) is not a \(\Delta_p \)-point in \(X \) and \(y \) is not a \(\Delta_q \)-point in \(Y \). By definition there exist \(x^* \in S_X^* \), \(y^* \in S_Y^* \), and \(\alpha_1, \alpha_2, \varepsilon > 0 \), with \(x \in S(B_X, x^*, \alpha_1) \) and \(y \in S(B_X, y^*, \alpha_2) \) such that for every \(u \in S(B_X, x^*, p\alpha_1) \) and for every \(v \in S(B_Y, y^*, q\alpha_2) \) we have

\[
\|x - u\| < 2 - \varepsilon \quad \text{and} \quad \|y - v\| < 2 - \varepsilon.
\]

Set \(Z = X \oplus \infty Y \). Let \(\lambda \in (0, 1) \) satisfy \((1 - \lambda)/\lambda = (p\alpha_1)/(q\alpha_2)\), let \(\alpha = \lambda\alpha_1 + (1 - \lambda)\alpha_2 \) and let \(f = (\lambda x^*, (1 - \lambda)y^*) \in S_Z \). Then

\[
f(x, y) = \lambda x^*(x) + (1 - \lambda)y^*(y)
\]

\[
> \lambda(1 - \alpha_1) + (1 - \lambda)(1 - \alpha_2)
\]

\[
= 1 - \alpha.
\]
Therefore \(u, v \in S(B_Z, f, \alpha) \). From

\[
1 - \alpha < f(u, v) = \lambda x^*(u) + (1 - \lambda)y^*(v) \leq \lambda x^*(u) + 1 - \lambda
\]

we get that

\[
x^*(u) > 1 - \frac{\alpha}{\lambda} = 1 - \left(\alpha_1 + \frac{1 - \frac{\alpha}{\lambda}}{2} \right) = 1 - p \left(\frac{\alpha_1}{p} + \frac{\alpha_2}{q} \right) = 1 - p\alpha_1.
\]

Therefore \(u \in S(B_X, x^*, p\alpha_1) \) and analogically \(v \in S(B_Y, y^*, q\alpha_2) \). It follows that

\[
\|x - u\| < 2 - \varepsilon \quad \text{and} \quad \|y - v\| < 2 - \varepsilon.
\]

Consequently

\[
\|(x, y) - (u, v)\|_\infty = \max\{\|x - u\|, \|y - v\|\} < 2 - \varepsilon
\]

and thus, \((x, y)\) is not a \(\Delta \)-point. \(\square \)

Proposition 4.5. Let \(X \) and \(Y \) be Banach spaces and \(x \in S_X \) and \(y \in S_Y \). Assume that neither \(x \) nor \(y \) is a \(\Delta \)-point in \(X \) and \(Y \), respectively. Then the following statements are equivalent:

(i) there exist \(p, q > 1 \) with \(1/p + 1/q = 1 \) such that \(x \) is \(\Delta_p \)-point in \(X \) and \(y \) is \(\Delta_q \)-point in \(Y \);

(ii) for every \(p, q > 1 \) with \(1/p + 1/q = 1 \) either \(x \) is \(\Delta_p \)-point in \(X \) or \(y \) is \(\Delta_q \)-point in \(Y \).

Proof. (i) \(\Rightarrow \) (ii). Assume that (i) holds. Let \(p, q > 1 \) be such that \(1/p + 1/q = 1 \). According to (a) \(x \) is \(\Delta_p' \)-point in \(X \) and \(y \) is \(\Delta_q' \)-point in \(Y \) for some \(p', q' > 1 \) with \(1/p' + 1/q' = 1 \). Then \(p' \geq p \) or \(q' \geq q \) and therefore \(x \) is \(\Delta_{p'} \)-point in \(X \) or \(y \) is \(\Delta_{q'} \)-point in \(Y \), hence (ii) holds.

(ii) \(\Rightarrow \) (i). Assume that (ii) holds. Define

\[
A = \{ k \in [1, \infty) : x \text{ is } \Delta_k \text{-point in } X \}
\]

and

\[
B = \{ k \in [1, \infty) : y \text{ is } \Delta_k \text{-point in } Y \}.
\]

Firstly, let us examine the case where set \(A \) is nonempty. Let \(a = \inf A \). We show that \(a \in A \). Fix \(x^* \in S_X \), \(\alpha > 0 \) and \(\varepsilon > 0 \) such that \(x \in S(B_X, x^*, \alpha) \). Let \(\gamma > 0 \) be such that \(x^*(x) > 1 - (\alpha - \gamma) \) and let \(k = a\alpha/(\alpha - \gamma) \). Then \(k > a \) and therefore \(k \in A \). Since \(x \in S(B_X, x^*, \alpha - \gamma) \), there exists \(u \in S(B_X, x^*, k(\alpha - \gamma)) = S(B_X, x^*, a\alpha) \) such that \(\|x - u\| \geq 2 - \varepsilon \). From that we get \(a \in A \). Analogically we can show that if \(B \) is nonempty, then \(b = \inf B \in B \).

It is not hard to see that neither \(A \) nor \(B \) can be empty. Indeed, if \(A = \emptyset \) (the case \(B = \emptyset \) is analogical), then by assumption \((1, \infty) \subset B \). However, according to the previous argumentation we now get that \(1 \in B \), i.e. \(y \) is a \(\Delta \)-point, which is a contradiction. Therefore, \(A = [a, \infty) \) and \(B = [b, \infty) \). From the assumption we can easily see that \(1/a + 1/b \geq 1 \), hence there exist \(p, q > 1 \) that satisfy \(1/p + 1/q = 1 \) such that \(p \in A \) and \(q \in B \). \(\square \)
References

1. T. A. Abrahamsen, R. Haller, V. Lima, and K. Pirk, Delta- and Daugavet-points in Banach spaces, to appear in Proc. Edinb. Math. Soc., arXiv:1812.02450 [math.FA].
2. J. Becerra Guerrero, G. López-Pérez, and A. Rueda Zoca, Diametral Diameter Two Properties in Banach Spaces, J. Convex Anal. 25 (2018), no. 3, 817–840.
3. D. Bilik, V. M. Kadets, R. Shvidkoy, and D. Werner, Narrow operators and the Daugavet property for ultraproduts, Positivity 9 (2005), no. 1, 45–62.
4. Y. Ivakhno and V. M. Kadets, Unconditional sums of spaces with bad projections, Visn. Khark. Univ., Ser. Mat. Prykl. Mat. Mekh. 645 (2004), no. 54, 30–35.
5. J.-D. Hardtke, Absolute sums of Banach spaces and some geometric properties related to rotundity and smoothness, Banach J. Math. Anal. 8 (2014), no. 1, 295–334.
6. G. Godefroy, Metric characterization of first Baire class linear forms and octahedral norms, Studia Math. 95 (1989), no. 1, 1–15.
7. R. Haller, J. Langemets, and R. Nadel, Stability of average roughness, octahedrality, and strong diameter 2 properties of Banach spaces with respect to absolute sums, Banach J. Math. Anal. 12 (2018), no. 1, 222–239.
8. R. Haller, J. Langemets ja M. Põldvere, On duality of diameter 2 properties, J. Convex Anal. 22 (2015), no. 2, 465–483.
9. D. Werner, Recent progress on the Daugavet property, Irish Math. Soc. Bull., 46 (2001), 77–97.

Institute of Mathematics and Statistics, University of Tartu, J. Liivi 2, 50409 Tartu, Estonia
E-mail address: rainis.haller@ut.ee, katriin.pirk@ut.ee, triinu.veeorg@gmail.com