Novel Approach of Designing of a Low-Cost Artificial Ventilators

M Narendra1*, T Sabhanayagam2, J Martin Sahayaraj3, T Senthil Kumar4

1Department of Information Technology, CMR Engineering College, Hyderabad, Telangana, India
2Department of Software Engineering, School of Computing, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
3Department of Electronics and Communication Engineering, Sri Indu College of Engineering and Technology, Sheriguda, Telangana, India
4Department of Electronics and Communication Engineering, Siddharth Institute of Engineering and Technology, Puttur, Andhra Pradesh, India

Email: 1narendramupparaju06@gmail.com, 2sabhanat@srmist.edu.in, 3josemartin2k6@gmail.com, 4thiru.senthilkumarphd@gmail.com

Abstract. In addition to expected ventilator scarcity, induced by the disease outbreak of COVID-19, several organizations have Low-cost emergency breathing apparatuses been developed. Pressure-cycled pneumatic ventilators are some of these devices that are easy to be using. The signaling or alert features are produced but often not included, on industrial ventilators. This article reports a simplified, simple electronic pressure-cycled respirator sensor & alert device that measures theoretically efficient parameters such as strain & respiratory rate & sounds of alarm; when the respirator malfunctions. A signal processing is for low complexity. A set of time-varying recursive envelope trackers are used in the algorithm to Signal control from a wired digital pressure sensor Trachea of the client. Measurements on each specimen such that it can operate on virtually every test on a microcontroller.

Keywords: Microcontroller; Low-cost Ventilators; ARM architecture.

1. Introduction
The COVID-19 problem will trigger respiratory deficiencies that are meant to help patients with extreme breathing symptoms [1]. Acute respiratory failure may occur in patients with COVID-19. Anxiety Syndrome (ARDS), which induces severe difficulties Breathing due to leaked blood into the lungs. The ventilation system can aid in these patients' care by supplying when the underlying disease goes through its course, oxygen [2]. Adequate oxygen supply is a base for emergency care & COVID virus will reduce ARDS injuries & hypoxemia deaths.

Since the increasing number of cases of COVID-19 can surpass the number of respirators available, hundreds of firms, Emergency ventilators have been developed by academic testing teams & other organizations under specific regulatory authorizations [3].

This paper presents an acquisition concept in the following sections: Literature Review followed by Section 3 Proposed system, Hardware & Software tools, Section 4 Results & Discussions and Finally Section 5 Conclusions.
2. Literature Review

In this article, using powerful modeling software to use a condensed ventilator model as a basic tool in normal ventilation is proposed. Ventilator Feedback Volume Function Parameters [4]. The primary input ventilation mode with pause time configuration. Our model's environment. We also plan to focus on adherence with the lungs [5]. Setting of respiratory function in our research lung module Testing and verifying our respiratory model's efficacy in the case of worse or worse medical disease (0.5C, 2R) Typically found in ICU patients. The primary ventilation waveforms are provisional to obtain this updated model to Demonstrate an appropriate approach to any conformity & opposition difference [6]. New practitioners can use them as a standard procedure. For further study, another simple mode of airflow & setting and patient triggering settings can be added to PCV, IMV, and PEEP shortly [7].

Tools is built for heavy needs for use in the diagnosis of respiratory insufficiency is known as mechanical ventilators. [8] Mechanical ventilators that imitate the exchanging of gas, In between organ systems of the respiratory tract & the environment, various methodologies are vital instruments for medical treatment that allow them to retain breathing processes, the person [9]. In this analysis, a review of the model mechanical ventilation system was designed to move among medical facilities with critical care children. The respirator version is planned for use as a CPAP, Neonatal (Continuous Positive Airway Pressure) system Reanimation if needed. Prototyping analysis was performed keeping safety measures & sensitivity into consideration, the specifications defined in the applicable neonatal standards Fans breathing apparatuses [10]. It is possible to use the ventilator under pressure and Regulation of volume.

The number of coronavirus diseases in 2019 Cases (COVID-19) started to climb in the US Health centre staff rose in the initial days of March alarm of an impending lack of respirators Offer patients care [11]. On March 30, 2020, Ford Motor Corporation confirmed proposals for the manufacture of 50,000 ventilators out of 100 Days, & on April 8 General Motors soon followed, indicating that 6,000 ventilators will be delivered by the At the end of May & a further 24,000 by August [12].

Medical expenses for ventilator-dependent patients It is a huge responsibility not just for their families but also for their families. In particular, hospital systems. Using high-frequency, recently, it has been demonstrated that ventilators lower lung damage risk [13] by way of reduced airflow. However, the equipment used now stay bulky, pricey, and used only in clinical settings to offer patients with intermediary therapy between hospitalization & final discharge, a gentle, compact and an immediate requirement is an elevated ventilator [15]. This paper introduces the concept of an elevated portable ventilator & an analysis of the practicality of it for additional clinical medical uses. By incorporating advanced electronics & mechanical technologies, we develop a compact high-frequency ventilator, with a reconfigurable flow rate of blood, friction applied, & air volume for specific patients' wishes. Figure 1 represents the phases of transition in gas in the lungs and the atmosphere environmental changes.

![Figure 1: Phases of transition in gas in the lungs & the atmosphere Environmental changes](image-url)
3. Proposed System

Figure 2 illustrates the suggested block diagram of the system. It constitutes of Microcontroller, LCD Display, Pressure Sensor, Buzzer, Buttons and Solenoid valve are the hardware devices and modules used in the proposed system. Figure 3 represents pneumatic schematic of the proposed ventilator[4].

3.1. Pneumatic system
The ventilator device pneumatic system requires Injectors & regulators that limit & produces the high pressure (3 - 6 Bar) of the medical gas mixture which enters the system. A stable standard can be extended to the patient. Upon collection Pneumatic sections, ranges of pressure & flow, response Times and limitations of alarm defined in international standards will be followed.

3.2. Embedded system
LPC2148 & LPC17688 are ARM-based architecture in Embedded systems corresponding to NXP(manufacturers) were used as a GUI processor & primary controller. The Sensors of flow & pressure used for reviews are chosen from a wide range of sensors capable of working on medical gases. Favoring things while choosing sensors is based on the standards prescribed in the relevant standards, which has finite periods in the applicable specifications.

The ventilator prototype's software architecture was implemented using the C programming language in the KeiluVision IDE. The program includes two parts, which are the main control & Software for GUls. The graphical user interface makes it easier for you to alter Respiratory support
parameters & observe improvements in the patient's nasal airways. The primary control program uses data from sensors for pressure & flow to control the flow of gas to the patient.

4. Results and Discussion
Unique in order is into fulfilling the purposes of ventilation therapy. It is important to apply ventilation approaches to groups of adults, patients of physiologically distinct neonates & patients with breathing suffering symptoms. The proportion of people with breathing issues should be given high priorities while designing the strategies of ventilators. Physiological development of the lungs can be like other organs, which can be easily damaged. There is still the possibility of circumstances that could put lives at risk if respiratory treatment is not given rightly. Figure 4 represents hardware implementation of the proposed system.

Figure 4: Hardware Implementation of the Proposed System

![Figure 4](image1)

Figure 5 represent the Inter-Circuits of the proposed system. For these purposes, ventilator systems with specialized equipment of Hardware units & breathing modes for people with breathing suffocations are the areas where therapy equipment is used in fields requiring special skills, such as Intensive Neonatal Care Units. The ventilator system is fitted with hardware that comprises components for electrical, pneumatic & mechanical use. The elements in an electronic device consisting of a GUI, valve drivers, lithium-ion battery, sensor circuitry & power supply unit.
5. Conclusion

The proposed system & warning system would boost the pressure-cycled emergency ventilators, but this is not as reliable as a fully functional consumer ventilator. The device gives critical control characteristics that are not accessible solely to mechanical ventilators. The recursive function of the coding part in a micro-controller helps the machine track breathing, quantify & diagnose mishaps with only a few parameters: evaluations & a little memory footprint per specimen. The unit can then be assembled quickly, utilizing practically every reduced controller and a few other electrical components, the unit can then be assembled quickly.

References

[1].Sanpanich,A.,Techaikoal,P.,Kajornepredanon,Y.,Sroykhalam,W.,Petsaarb,K.,Phairoah,C.,& Angk hananuwaat, W. (2019). A model of ventilator output checking for comprehension of ventilation signal. 12th Biomedical Engineering International Conference (BMEiCON), 1-5. IEEE

[2]. Erdalerwin, H., &Sayin, F. S. (2018). A manual ventilator architecture, simulation, prototyping & closed-loop monitoring for newborns.

[3]. Louiz, M., &Ambert, L. (2020). Fast thinking makes low-cost respirators turn out to be. IEEE pulse,11(3), 31-34.

[4]. Wang,L.,Shao-Ji-Yung. H, Linn,H. L.,Hosu-Taah,K.,Chiaen-Liang, W., Waen-Jui, W., &Yuh-W Teh, L. (2019). A compact high-frequency design & analysis medical technology ventilator. 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2353-2356. IEEE.

[5]. Grimme,C.A.(2020, April). Reacting to the COVID-19 pandemic, treatment outcomes.

[6]. Alhazani,W.,Møaller,M. H.,Arabie,Y. M., Loeb, M.,Yumena,M.,N., Gong, E.,Rudeza, F. S.,Ockaowski, Leviz,M. M.,Dzaera, A. (2020). Surviving sepsis campaign: Recommendations for the treatment of people with coronavirus disease seriously ill in 2019 (COVID-19).Intensive Care Medicine, 1-34.

[7]. Zhaang,J.,Litvinovia,M.,Waang,W.,Wanng,Y.,Daeng,X.,Chenn, X., Liu,M.,&Zhueng,W.2020. Changing coronavirus infection epidemiology & dissemination dynamics 2019 beyond Central China, China: A descriptive & modelling review.The Lancet Infectious Diseases.

[8]. Grassaelli, G.,Zangrilloe,A.,Zanaella,A.,Antonellie,M.,Caberini,L.,Castaelli, A., Caereda, D.,&Coluccello, A. (2020) Baseline features & results of 1591 SARS-CoV-2 hospitalized individuals admitted to ICUs in the Lombardy Zone, Italy, JAMA, 323(16), 1574-1581.

[9]. Mathay,M. A.,Aldriche,J. M.,&Gottis,J. E. (2020).Treatment for COVID-19 extreme acute respiratory failure disorder.The Lancet Respiratory Medicine, 8(5), 433-434.

[10]. WANG, Haoyu, Ying CHEN, Yanzi MIAO, and Bingguan CHEN. "A fault diagnosis system of mine main ventilator." Industry and Mine Automation (2017): 06.

[11]. Khan, M. S., ur Rahman, M. F., Khan, M. Y., & Pasha, S. Project Title: IoT Based Low-Cost Smart Ambu-Bag Compressing Machine for Low Cost Ventilators.

[12]. Angkara, J. A., Setyawan, R. A., &Maulana, E. (2021). IMPLEMENTASI IOT UNTUK SISTEM MONITORING VENTILATOR TRANSPORT DARURAT BERBASIS WEB. JurnalMahasiswa TEUB, 8(5).

[13]. Hidayat, K. W., Supriyadi, S., &Buranuddin, A. (2020). RANCANG BANGUN PROTOTYPE VENTILATOR MEKANIK BERBASIS IOT (INTERNET OF THINGS). In Science and Engineering National Seminar (Vol. 5, No. 1, pp. 652-660).
[14]. Paszkiewicz, A., Bolanowski, M., Budzik, G., Sowa, P., Pisz, T., Oleksy, M., & Przeszlowski, Ł. (2020). Remote design and manufacture through the example of a ventilator. Applied Sciences, 10(12), 4235.

[15]. Kumar, S., Raut, R. D., & Narkhede, B. E. (2020). A proposed collaborative framework by using artificial intelligence-internet of things (AI-IoT) in COVID-19 pandemic situation for healthcare workers. International Journal of Healthcare Management, 13(4), 337-345.