ON CLASSIFICATION OF MODULAR CATEGORIES BY RANK

PAUL BRUILLARD, SIU-HUNG NG, ERIC C. ROWELL, AND ZHENGHAN WANG

ABSTRACT. The feasibility of a classification-by-rank program for modular categories follows from the Rank-Finiteness Theorem. We develop arithmetic, representation theoretic and algebraic methods for classifying modular categories by rank. As an application, we determine all possible fusion rules for all rank=5 modular categories and describe the corresponding monoidal equivalence classes.

1 Introduction

Modular categories arise in a variety of mathematical subjects including topological quantum field theory [30], conformal field theory [22], representation theory of quantum groups [1], von Neumann algebras [15], and vertex operator algebras [19]. They are quantum analogues of finite groups as illustrated by the Cauchy and Rank-Finiteness theorems [6]. Classification of low-rank modular categories is a first step in a structure theory for modular categories parallel to group theory. Besides the intrinsic mathematical aesthetics, another motivation for pursuing a classification of modular categories comes from their application in topological phases of matter and topological quantum computation [34, 33]. A classification of modular categories is literally a classification of certain topological phases of matter [32, 7].

The first success of the classification program was the complete classification of unitary modular categories up to rank=4 in [27]. That such a program is theoretically feasible follows from the Rank-Finiteness Theorem (which we proved for modular categories in [6], and extended to pre-modular categories in [4, Appendix]); there are only finitely many inequivalent modular categories of a given rank \(r \). In this paper, we develop arithmetic, representation theoretic and algebraic tools for a classification-by-rank program. As an application we complete a classification of all modular categories of rank=5 (up to monoidal equivalence) in Section 4.

A modular category \(C \) is a non-degenerate ribbon fusion category over \(\mathbb{C} \) [30, 1]. Let \(\Pi_C \) be the set of isomorphism classes of simple objects of the modular category \(C \). The rank of \(C \) is the finite number \(r = |\Pi_C| \). Each modular category \(C \) leads to a \((2 + 1)\)-dimensional topological quantum field theory \((\mathcal{V}_C, \mathcal{Z}_C) \), in particular colored framed link invariants [30]. The invariant \(\{d_a\} \) for the unknot colored by the label \(a \in \Pi_C \) is called the quantum dimension of the label. The invariant of the Hopf link colored by \(a, b \) will be denoted as \(S_{ab} \). The link invariant of the unknot with a right-handed kink colored by \(a \) is \(\theta_a \cdot d_a \) for some root of unity \(\theta_a \), which is called the topological twist of the label \(a \). The topological twists form a diagonal matrix

Date: March 23, 2016.
Key words and phrases. Modular categories.
PNNL Information Release: PNNL-SA-111550.

The first, third and fourth authors were partially supported by NSF grant DMS1108725, and the second author was partially supported by NSF grants DMS1001566, DMS1303253, and DMS1501179. This project began at a workshop at the American Institute of Mathematics, whose support and hospitality are gratefully acknowledged. It is a pleasure to thank Vladimir Turaev and Pavel Etingof for valuable comments.
$T = (\delta_{ab}\theta_a), a, b \in \Pi_C$. The S-matrix and T-matrix together lead to a projective representation of the modular group $\text{SL}(2, \mathbb{Z})$ by sending the generating matrices

$$S = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \quad t = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

to S, T, respectively [30, 1]. Amazingly, the kernel of this projective representation of C is always a congruence subgroup of $\text{SL}(2, \mathbb{Z})$ [24]. The S-matrix determines the fusion rules through the Verlinde formula, and the T-matrix is of finite order $\text{ord}(T)$ by Vafa’s theorem [1]. Together, the pair S, T are called the modular data of the category C.

Modular categories are fusion categories with additional braiding and pivotal structures [14, 30, 1]. These extra structures endow them with some “abelian-ness” which makes the classification of modular categories easier. The abelian-ness of modular categories first manifests itself in the braiding: the tensor product is commutative up to functorial isomorphism. But a deeper sense of abelian-ness is revealed in the Galois group of the number field \mathbb{K}_C obtained by adjoining all matrix entries of S to \mathbb{Q}: \mathbb{K}_C is an abelian extension of \mathbb{Q} [8, 27]. Moreover, its Galois group is isomorphic to an abelian subgroup of the symmetric group \mathfrak{S}_r, where r is the rank of C. This profound observation permits the application of deep number theory to the classification of modular categories.

The content of the paper is as follows. Section 2 is a collection of necessary results on fusion and modular categories. We define admissible modular data as a pair of matrices S, T satisfying algebraic constraints with an eye towards the characterization of realizable modular data.

In Section 3 we develop general arithmetic constraints on admissible modular data. One improvement to the approach in [27] is the combining of Galois symmetry of S, T matrices with the knowledge of the representation theory of $\text{SL}(2, \mathbb{Z})$. An important observation is:

Lemma 3.18 Let C be a modular category of rank r and $\rho : \text{SL}(2, \mathbb{Z}) \to \text{GL}(r, \mathbb{C})$ a modular representation of C, i.e. a lifting of projective representation of C. Then ρ cannot be isomorphic to a direct sum of two representations with disjoint t-spectra.

Finally in Section 4, we combine the analysis of Galois action on the S-matrix and $\text{SL}(2, \mathbb{Z})$ representation to determine all possible fusion rules for all rank=5 modular categories and describe their classification up to monoidal equivalence.

Our main result is:

Theorem 4.1 Suppose C is a modular category of rank 5. Then C is Grothendieck equivalent to one of the following:

(i) $SU(2)_4$
(ii) $SU(2)_9/\mathbb{Z}_2$
(iii) $SU(5)_1$
(iv) $SU(3)_4/\mathbb{Z}_3$

In this paper we only classify these modular categories up to monoidal equivalence, but a complete list of all modular categories with the above fusion rules as done in [27] is possible. However, the details are not straightforward, so we will leave it to a future publication.
A complete classification of the low-rank cases provides general insight for structure theory of modular categories. Such a classification is also very useful for the theory of topological phases of matter, and could shed light on the open problem that whether or not there are exotic modular categories, i.e., modular categories that are not closely related to the well-known quantum group construction [18]. However, complete classification beyond rank=5 seems to be very difficult.

Topological phases of matter are phases of matter that lie beyond Landau’s symmetry breaking and local order parameter paradigm for the classification of states of matter. Physicists propose to use the S, T matrices as order parameters for the classification of topological phases of matter [21]. Therefore, a natural question is if the S, T matrices determine the modular category. We believe they do. The S, T matrices satisfy many constraints, and a pair of matrices S, T with those constraints are called admissible modular data. It is interesting to characterize admissible modular data that can be realized by modular categories.

Modular categories form part of the mathematical foundations of topological quantum computation. The classification program of modular categories initiated in this paper will lead to a deeper understanding of their structure and their enchanting relations to other fields, thus pave the way for applications to a futuristic field anyonics broadly defined as the science and technology that cover the development, behavior, and application of anyonic devices.

2 Modular Categories

We follow the same conventions for modular categories as in [6]. Most of the results below can be found in [30, 1, 14, 26, 25, 24, 6] and the references therein. All fusion and modular categories are over the complex numbers \mathbb{C} in this paper unless stated otherwise.

2.1 Basic Invariants

2.1.1 Grothendieck Ring and Dimensions

The Grothendieck ring $K_0(C)$ of a fusion category C is the \mathbb{Z}-ring generated by Π_C with multiplication induced from \otimes. The structure coefficients of $K_0(C)$ are obtained from:

$$V_i \otimes V_j \cong \bigoplus_{k \in \Pi_C} N_{i,j}^k V_k$$

where $N_{i,j}^k = \dim(\text{Hom}_C(V_k, V_i \otimes V_j))$. This family of non-negative integers $\{N_{i,j}^k\}_{i,j,k \in \Pi_C}$ is called the fusion rules of C.

In a braided fusion category, $K_0(C)$ is a commutative ring and the fusion rules satisfy the symmetries:

$$N_{i,j}^k = N_{j,i}^k = N_{i,k,s}^j = N_{i,s,j}^k, \quad N_{i,j}^0 = \delta_{i,j,s}.$$ \hspace{1cm} (2.1)

The fusion matrix N_i associated to V_i, defined by $(N_i)_{k,j} = N_{i,j}^k$, is an integral matrix with non-negative entries. In the braided fusion setting, these matrices are normal and mutually commuting. The largest real eigenvalue of N_i is called the Frobenius-Perron dimension of V_i and is denoted by FPdim(V_i). Moreover, FPdim can be extended to a \mathbb{Z}-ring homomorphism from $K_0(C)$ to \mathbb{R} and is the unique such homomorphism that is positive (real-valued) on Π_C (see [14]). The Frobenius-Perron dimension of C is defined as

$$\text{FPdim}(C) = \sum_{i \in \Pi_C} \text{FPdim}(V_i)^2.$$
Definition 2.1. A fusion category \(\mathcal{C} \) is said to be

(i) **weakly integral** if \(\text{FPdim}(\mathcal{C}) \in \mathbb{Z} \).

(ii) **integral** if \(\text{FPdim}(V_j) \in \mathbb{Z} \) for all \(j \in \Pi_\mathcal{C} \).

(iii) **pointed** if \(\text{FPdim}(V_j) = 1 \) for all \(j \in \Pi_\mathcal{C} \).

Furthermore, if \(\text{FPdim}(V) = 1 \), then \(V \) is **invertible**.

Let \(\mathcal{C} \) be a pivotal category. It follows from [14, Prop. 2.9] that \(d^\ell(V^*) = d(V) \) is an algebraic integer for any \(V \in \mathcal{C} \). The **global dimension** of \(\mathcal{C} \) is defined by

\[
D^2 = \sum_{i \in \Pi_\mathcal{C}} |d^\ell(V_i)|^2.
\]

By [23, 14], a pivotal structure of a fusion category \(\mathcal{C} \) is spherical if, and only if, \(d^\ell(V) \) is real for all \(V \in \mathcal{C} \). In this case, \(d^\ell(V) = d(V) \) and we simply write \(d(V) \) to refer to the dimension of \(V \). Furthermore for \(i \in \Pi_\mathcal{C} \), we adopt the shorthand \(d_i = d(V_i) \).

A fusion category \(\mathcal{C} \) is called **pseudo-unitary** if \(D^2 = \text{FPdim}(\mathcal{C}) \). For a pseudo-unitary fusion category \(\mathcal{C} \), it has been shown in [14] that there exists a unique spherical structure of \(\mathcal{C} \) such that \(d(V) = \text{FPdim}(V) \) for all objects \(V \in \mathcal{C} \).

2.1.2 Spherical and Ribbon Structures

The set of isomorphism classes of invertible objects \(G(\mathcal{C}) \) in a fusion category \(\mathcal{C} \) forms a group in \(K_0(\mathcal{C}) \) where \(i^{-1} = i^* \) for \(i \in G(\mathcal{C}) \). For modular categories \(\mathcal{C} \), the group \(G(\mathcal{C}) \) parameterizes pivotal structures on the underlying braided fusion category. Under such a correspondence, the inequivalent spherical structures of \(\mathcal{C} \) map onto the maximal elementary abelian 2-subgroup, \(\Omega_2 G(\mathcal{C}) \), of \(G(\mathcal{C}) \) [6].

In any ribbon fusion category \(\mathcal{C} \) the associated ribbon structure, \(\theta \), has finite order. This celebrated fact is part of Vafa’s Theorem (see [31, 1]) in the case of modular categories. However, any ribbon category embeds in a modular category (via Drinfeld centers, see [23]) so the result holds generally. Observe that, \(\theta V_i = \theta_i \text{id}_V \) for some root of unity \(\theta_i \in \mathbb{C} \). Since \(\theta_1 = \text{id}_1 \), \(\theta_0 = 1 \).

The **T-matrix** of \(\mathcal{C} \) is defined by \(T_{ij} = \theta_i \theta_j \) for \(i, j \in \Pi_\mathcal{C} \). The **balancing equation**:

\[
\theta_i \theta_j S_{ij} = \sum_{k \in \Pi_\mathcal{C}} N_{i,j,k}^k \theta_k \quad (2.2)
\]

is a useful algebraic consequence, holding in any premodular category. The pair \((S, T)\) of \(S \) and \(T \)-matrices will be called the **modular data** of a given modular category \(\mathcal{C} \).

2.1.3 Modular Data and \(\text{SL}(2, \mathbb{Z}) \) Representations

Definition 2.2. For a pair of matrices \((S, T)\) for which there exists a modular category with modular data \((S, T)\), we will say \((S, T)\) is **realizable modular data**.

The fusion rules \(\{N_{i,j,k}^k\}_{i,j,k \in \Pi_\mathcal{C}} \) of \(\mathcal{C} \) can be written in terms of the \(S \)-matrix, via the **Verlinde formula** [1]:

\[
N_{i,j}^k = \frac{1}{D^2} \sum_{a \in \Pi_\mathcal{C}} \frac{S_{ia} S_{ja} S_{ka} S_{0a}}{S_{0a}} \quad \text{for all } i, j, k \in \Pi_\mathcal{C} \quad (2.3)
\]
The modular data \((S, T)\) of a modular category \(\mathcal{C}\) satisfy the conditions:
\[
(ST)^3 = p^+ S^2, \quad S^2 = p^+ p^- C, \quad CT = TC, \quad C^2 = \text{id},
\]
(2.4)
where \(p^\pm = \sum_{i \in \Pi_\mathcal{C}} d_i^2 \theta_i^\pm - 1\) are called the Gauss sums, and \(C = (\delta_{ij}^*)_{i, j \in \Pi_\mathcal{C}}\) is called the charge conjugation matrix of \(\mathcal{C}\). In terms of matrix entries, the first equation in (2.4) gives the twist equation:
\[
p^+ S_{jk} = \theta_j \theta_k \sum_i \theta_i S_{ij} S_{ik}.
\]
(2.5)
The quotient \(\frac{D^+}{p^+}\), called the anomaly of \(\mathcal{C}\), is a root of unity, and
\[
p^+ p^- = D^2.
\]
(2.6)
Moreover, \(S\) satisfies
\[
S_{ij} = S_{ji} \quad \text{and} \quad S_{ij}^* = S_{i^* j}
\]
(2.7)
for all \(i, j \in \Pi_\mathcal{C}\). These equations and the Verlinde formula imply that
\[
S_{ij}^* = \overline{S_{ij}} \quad \text{and} \quad \frac{1}{D^2} \sum_{j \in \Pi_\mathcal{C}} S_{ij} \overline{S_{jk}} = \delta_{ik}.
\]
(2.8)
In particular, \(S\) is projectively unitary.

A modular category \(\mathcal{C}\) is called self-dual if \(i = i^*\) for all \(i \in \Pi_\mathcal{C}\). In fact, \(\mathcal{C}\) is self-dual if and only if \(S\) is a real matrix.

Let \(D\) be the positive square root of \(D^2\). The Verlinde formula can be rewritten as
\[
SN_i S^{-1} = D_i \quad \text{for} \quad i \in \Pi_\mathcal{C}
\]
where \((D_i)_{ab} = \delta_{ab} \frac{S_{ia}}{S_{0a}}\). In particular, the assignments \(\phi_a: i \mapsto \frac{S_{ia}}{S_{0a}}\) for \(i \in \Pi_\mathcal{C}\) determine (complex) linear characters of \(K_0(\mathcal{C})\). Since \(S\) is non-singular, \(\{\phi_a\}_{a \in \Pi_\mathcal{C}}\) is the set of all the linear characters of \(K_0(\mathcal{C})\). Observe that \(\text{FPdim}\) is a character of \(K_0(\mathcal{C})\), so that there is some \(a \in \Pi_\mathcal{C}\) such that \(\text{FPdim} = \phi_a\). By the unitarity of \(S\), we have that \(\text{FPdim}(\mathcal{C}) = D^2/(d_a)^2\).

As an abstract group, \(\text{SL}(2, \mathbb{Z}) \cong \langle s, t \mid s^4 = 1, (st)^3 = s^2 \rangle\). The standard choice for generators is:
\[
s := \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \quad \text{and} \quad t := \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}.
\]
Let \(\eta: \text{GL}(\Pi_\mathcal{C}, \mathbb{C}) \to \text{PGL}(\Pi_\mathcal{C}, \mathbb{C})\) be the natural surjection. The relations (2.4) imply that
\[
\overline{\eta}_C: s \mapsto \eta(S) \quad \text{and} \quad t \mapsto \eta(T)
\]
(2.9)
defines a projective representation of \(\text{SL}(2, \mathbb{Z})\). Since the modular data is an invariant of a modular category, so is the associated projective representation type of \(\text{SL}(2, \mathbb{Z})\). The following arithmetic properties of this projective representation will play an important role in our discussion (cf. [24]). Recall that \(\mathbb{Q}_N := \mathbb{Q}(\zeta_N)\), where \(\zeta_N\) is a primitive \(N\)th root of unity.

Theorem 2.3. Let \((S, T)\) be the modular data of the modular category \(\mathcal{C}\) with \(N = \text{ord}(T)\). Then the entries of \(S\) are algebraic integers of \(\mathbb{Q}_N\). Moreover, \(N\) is minimal such that the projective representation \(\overline{\eta}_C\) of \(\text{SL}(2, \mathbb{Z})\) associated with the modular data can be factored through \(\text{SL}(2, \mathbb{Z}/N\mathbb{Z})\). In other words, \(\ker(\overline{\eta}_C)\) is a congruence subgroup of level \(N\).
Definition 2.4. A modular representation of \mathcal{C} (cf. [24]) is a representation ρ of $\text{SL}(2,\mathbb{Z})$ which satisfies the commutative diagram:

$$
\begin{array}{ccc}
\text{SL}(2,\mathbb{Z}) & \xrightarrow{\rho} & \text{GL}(\Pi_C,\mathbb{C}) \\
\downarrow{\pi_C} & & \downarrow{\eta} \\
\text{PGL}(\Pi_C,\mathbb{C}). & & \\
\end{array}
$$

Let $\zeta \in \mathbb{C}$ be a fixed 6-th root of the anomaly $\frac{p^+}{p^-}$. For any 12-th root of unity x, it follows from (2.4) that the assignments

$$
\rho_x^\zeta : s \mapsto \frac{\zeta^3}{x^3p^+}S, \quad t \mapsto \frac{x}{\zeta}T
$$

(2.10)
define a modular representation of \mathcal{C}. Moreover, $\{\rho_x^\zeta \mid x^{12} = 1\}$ is the complete set of modular representations of \mathcal{C} (cf. [11, Sect. 1.3]). Since $D^2 = p^+p^-$, we have $\zeta^3/p^+ = \gamma/D$, where $\gamma = \pm 1$. Thus, one can always find a 6-th root of unity x so that $\rho_x^\zeta : s \mapsto S/D$. For the purpose of this paper, we only need to consider the modular representation ρ of \mathcal{C} which assigns $s \mapsto S/D$. Note also that $\rho_x^\zeta(s)$ and $\rho_x^\zeta(t)$ are matrices over a finite abelian extension of \mathbb{Q}. Therefore, modular representations of any modular category are defined over the abelian closure \mathbb{Q}_{ab} of \mathbb{Q} in \mathbb{C} (cf. [24]).

Let ρ be any modular representation of the modular category \mathcal{C}, and set $s = \rho(s)$ and $t = \rho(t)$.

It is clear that a representation ρ is uniquely determined by the pair (s, t), which will be called a normalized modular pair of \mathcal{C}. In view of the preceding paragraph, there exists a root of unity y such that $(S/D, T/y)$ is a normalized modular pair of \mathcal{C}.

2.1.4 Galois Symmetry

Observe that for any choice of a normalized modular pair (s, t), we have $\frac{s_{ia}}{s_{0a}} = \frac{S_{ia}}{S_{0a}} = \phi_a(i)$. For each $\sigma \in \text{Aut}(\mathbb{Q}_{ab})$, $\sigma(\phi_a)$ given by $\sigma(\phi_a)(i) = \sigma \left(\frac{s_{ia}}{s_{0a}} \right)$ is again a linear character of $K_0(\mathcal{C})$ and hence $\sigma(\phi_a) = \phi_{\sigma(a)}$ for some unique linear character $\sigma \in \text{Sym}(\Pi_C)$. That is,

$$
\sigma \left(\frac{s_{ia}}{s_{0a}} \right) = \frac{s_{i\sigma(a)}}{s_{0\sigma(a)}} \quad \text{for all } i, a \in \Pi_C.
$$

(2.11)

Moreover, there exists a function $\epsilon_{\sigma} : \Pi_C \to \{\pm 1\}$, which depends on the choice of s, such that:

$$
\sigma(s_{ij}) = \epsilon_{\sigma}(i)s_{i\sigma(j)} = \epsilon_{\sigma}(j)s_{i\sigma(j)} \quad \text{for all } i, j \in \Pi_C
$$

(2.12)

(cf. [3, App. B], [10] or [14, App.]). The group $\text{Sym}(\Pi_C)$ will often be written as \mathfrak{S}_r where $r = |\Pi_C|$ is the rank of \mathcal{C}.

The following theorem will be used in the sequel:

Theorem 2.5. Let \mathcal{C} be a modular category of rank r, with T-matrix of order N. Suppose (s, t) is a normalized modular pair of \mathcal{C}. Set $t = (\delta_{ij}t_i)$ and $n = \text{ord}(t)$. Then:

(a) $N \mid n \mid 12N$ and $s, t \in \text{GL}_r(\mathbb{Q}_n)$. Moreover,

(b) (Galois Symmetry) for $\sigma \in \text{Gal}(\mathbb{Q}_n/\mathbb{Q})$, $\sigma^2(t_i) = t_{\sigma(i)}$.

Part (a) of Theorem 2.5 is proved in [24], whereas part (b) is proved in [11, Thm. II(iii)].

In the sequel, we will denote by \mathbb{F}_A the field extension over \mathbb{Q} generated by the entries of a complex matrix A. If \mathbb{F}_A/\mathbb{Q} is Galois, then we write $\text{Gal}(A)$ for the Galois group $\text{Gal}(\mathbb{F}_A/\mathbb{Q})$.

In this notation, if (S, T) is the modular data of \mathcal{C}, then $\mathbb{F}_T = \mathbb{Q}_N$, where $N = \text{ord}(T)$, and we have $\mathbb{F}_S \subseteq \mathbb{F}_T$ by Theorem 2.3. In particular, \mathbb{F}_S is an abelian Galois extension over \mathbb{Q}.

For any normalized modular pair (s, t) of \mathcal{C} we have $\mathbb{F}_t = \mathbb{Q}_n$, where $n = \text{ord}(t)$. Moreover, by Theorem 2.3 $\mathbb{F}_S \subseteq \mathbb{F}_s \subseteq \mathbb{F}_t$. In particular, the field extension \mathbb{F}_s/\mathbb{Q} is also Galois. The kernel of the restriction map $\text{res} : \text{Gal}(t) \to \text{Gal}(S)$ is isomorphic to $\text{Gal}(\mathbb{F}_t/\mathbb{F}_S)$.

The following important lemma is proved in [11, Prop. 6.5].

Lemma 2.6. Let \mathcal{C} be a modular category with modular data (S, T). For any normalized modular pair (s, t) of \mathcal{C}, $\text{Gal}(\mathbb{F}_s/\mathbb{F}_S)$ is an elementary 2-group.

2.1.5 Frobenius-Schur Indicators

Higher Frobenius-Schur indicators are indispensable invariants of spherical categories introduced in [26]. For modular categories the Frobenius-Schur indicators can be explicitly computed from the modular data, which we take as a definition here:

$$\nu_n(V_k) = \frac{1}{D^2} \sum_{i,j \in \Pi_C} N_{i,j}^k d_i d_j \left(\frac{\theta_i}{\theta_j}\right)^n$$

(2.13)

for all $k \in \Pi_C$ and positive integers n. There is a minimal N so that $\nu_N(V_k) = d_k$ for all $k \in \Pi_C$ called the Frobenius-Schur exponent $\text{FSexp}(\mathcal{C})$. For modular categories we have $\text{ord}(T) = \text{FSexp}(\mathcal{C})$.

2.1.6 Modular Data

Definition 2.7. Let $S, T \in \text{GL}_r(\mathbb{C})$ and define constants $d_j := S_{0j}$, $\theta_j := T_{jj}$, $D^2 := \sum_j d_j^2$ and $p_{\pm} = \sum_{k=0}^{r-1} (S_{0,k})^2 \theta_k^{\pm 1}$. The pair (S, T) is an admissible modular data of rank r if they satisfy the following conditions:

(i) $d_j \in \mathbb{R}$ and $S = S^t$ with $SS^t = D^2 \text{Id}$. $T_{i,j} = \delta_{i,j} \theta_i$ with $N := \text{ord}(T) < \infty$.

(ii) $(ST)^3 = p^+ S^2$, $p^+ p_-$ is D^2 and $\frac{p^+}{p_-}$ is a root of unity.

(iii) $N_{i,j}^k := \frac{1}{D^2} \sum_{a=0}^{r-1} \frac{S_{a,i} S_{a,j} \theta_a}{\theta_a} \in \mathbb{N}$ for all $0 \leq i, j, k \leq (r - 1)$.

(iv) $\theta_i \theta_j S_{ij} = \sum_{k=0}^{r-1} N_{i,j}^k d_k \theta_k$ where i^* is the unique label such that $N_{i,i^*}^0 = 1$.

(v) Define $\nu_n(k) := \frac{1}{D^2} \sum_{i,j=0}^{r-1} N_{i,j}^k d_i d_j \left(\frac{\theta_i}{\theta_j}\right)^n$. Then $\nu_2(k) = 0$ if $k \neq k^*$ and $\nu_2(k) = \pm 1$ if $k = k^*$. Moreover, $\nu_n(k) \in \mathbb{Z}[e^{2\pi i/N}]$ for all n, k.

(vi) $\mathbb{F}_S \subseteq \mathbb{F}_T = \mathbb{Q}_N$, $\text{Gal}(\mathbb{F}_S/\mathbb{Q})$ is isomorphic to an abelian subgroup of \mathfrak{S}_r and $\text{Gal}(\mathbb{F}_T/\mathbb{F}_S) \cong (\mathbb{Z}/2\mathbb{Z})^\ell$ for some integer ℓ.

(vii) (Cauchy Theorem, [4, Theorem 3.9]) The prime divisors of D^2 and N coincide in $\mathbb{Z}[e^{2\pi i/N}]$.

3 Arithmetic Properties of Modular Categories

3.1 Galois Action on Modular Data

In this subsection we derive some consequences of the results in Subsection 2.1.4.

Let \mathcal{C} be a modular category with admissible modular data (S, T). The splitting field of $K_0(\mathcal{C})$ is $\mathbb{K}_C = \mathbb{Q} \left(\frac{S_{ij}}{S_{0j}} \mid i, j \in \Pi_C \right) = \mathbb{F}_S$, and we define $\text{Gal}(\mathcal{C}) = \text{Gal}(\mathbb{K}_C/\mathbb{Q}) = \text{Gal}(S)$. We denote by $\mathbb{K}_j = \mathbb{Q} \left(\frac{S_{ij}}{S_{0j}} \mid i \in \Pi_C \right)$ for $j \in \Pi_C$. Obviously, \mathbb{K}_j is generated by the subfields \mathbb{K}_j, $j \in \Pi_C$.

As in Subsection 2.1.4 there exists a unique $\hat{\sigma} \in \text{Sym}(\Pi_C)$ such that

$$
\sigma \left(\frac{S_{ij}}{S_{0j}} \right) = \frac{S_{i\hat{\sigma}(j)}}{S_{0\hat{\sigma}(j)}}
$$

for all $i, j \in \Pi_C$. In particular the map $\sigma \to \hat{\sigma}$ defines an isomorphism between $\text{Gal}(\mathcal{C})$ and an (abelian) subgroup of the symmetric group $\text{Sym}(\Pi_C)$. We will often abuse notation and identify $\text{Gal}(\mathcal{C})$ with its image in $\text{Sym}(\Pi_C)$, and the $\text{Gal}(\mathcal{C})$-orbit of $j \in \Pi_C$ is simply denoted by $\langle j \rangle$.

Complex conjugation corresponds to the permutation $i \mapsto i^*$ for $i \in \Pi_C$. In view of (2.8), $j \in \Pi_C$ is self-dual if, and only if, \mathbb{K}_j is real subfield.

Remark 3.1. Since \mathbb{K}_j is Galois over \mathbb{Q}, for any Galois extension \mathbb{A} over \mathbb{K}_j in \mathcal{C}, the restriction $\text{res} : \text{Aut}(\mathbb{A}) \to \text{Gal}(\mathcal{C})$ defines a surjective group homomorphism. Therefore, the group $\text{Aut}(\mathbb{A})$ acts on Π_C via the restriction maps onto $\text{Gal}(\mathcal{C})$, and so the $\text{Aut}(\mathbb{A})$-orbits are the same as the $\text{Gal}(\mathcal{C})$-orbits. Again, we denote by $\hat{\sigma}$ the associated permutation of $\sigma \in \text{Aut}(\mathbb{A})$. Then we have $\hat{\sigma} = \text{id}_{\Pi_C}$ if, and only if, $\sigma \in \text{Gal}(\mathbb{A}/\mathbb{K}_j)$.

Lemma 3.2. For $j \in \Pi_C$ and $\sigma \in \text{Aut}(\mathbb{Q})$, $\mathbb{K}_{\hat{\sigma}(j)} = \mathbb{K}_j$. Moreover, $|\mathbb{K}_j : \mathbb{Q}| = |\langle j \rangle| \leq |\Pi_C|$. If j is self-dual, then every class in the orbit $\langle j \rangle$ is self-dual. In particular, every class in the orbit $\langle 0 \rangle$ is self-dual.

Proof. As we have seen, $\phi_j : K_0(\mathcal{C}) \to \mathbb{K}_C$, $\phi_j(i) = \frac{S_{ij}}{S_{0j}}$, defines a linear character of $K_0(\mathcal{C})$. Therefore,

$$
\frac{S_{sj}}{S_{0j}} \frac{S_{bj}}{S_{0j}} = \sum_{c \in \Pi_C} N_{ab}^C \frac{S_{cj}}{S_{0j}}.
$$

Thus, the \mathbb{Q}-linear span of $\{S_{ij}/S_{0j} \mid i \in \Pi_C\}$ is field, and hence equals to \mathbb{K}_j. Since \mathbb{K}_j is a subfield of \mathbb{K}_C, \mathbb{K}_j/\mathbb{Q} is a normal extension. Therefore,

$$
\mathbb{K}_j = \sigma(\mathbb{K}_j) = \mathbb{Q} \left(\sigma \left(\frac{S_{ij}}{S_{0j}} \right) \mid i \in \Pi_C \right) = \mathbb{Q} \left(\frac{S_{i\hat{\sigma}(j)}}{S_{0\hat{\sigma}(j)}} \mid i \in \Pi_C \right) = \mathbb{K}_{\hat{\sigma}(j)}.
$$

Let \mathbb{A}/\mathbb{Q} be any finite Galois extension containing \mathbb{K}_j, and H the kernel of the restriction map $\text{res} : \text{Gal}(\mathbb{A}/\mathbb{Q}) \to \text{Gal}(\mathbb{K}_j/\mathbb{Q})$. Then $\sigma \in H$ if, and only if,

$$
S_{ij}/S_{0j} = \sigma(S_{ij}/S_{0j}) = S_{i\hat{\sigma}(j)}/S_{0\hat{\sigma}(j)}
$$

for all $i \in \Pi_C$. Thus, H is equal to the stabilizer of j, and hence

$$
|\mathbb{K}_j : \mathbb{Q}| = |\text{Gal}(\mathbb{K}_j/\mathbb{Q})| = |\text{Aut}(\mathbb{A})/H| = |\langle j \rangle|.
$$

The last assertion follows immediately from the fact that j is self-dual if, and only if, \mathbb{K}_j is a real abelian extension over \mathbb{Q}. □

Lemma 3.3. Let \mathcal{C} be a modular category with modular data (S, T).
Lemma 3.5. The following results will be useful in Section 4.

Remark 3.4. C example if the rank of \(\sigma \) is odd) then \(\epsilon_\sigma(j) = \epsilon_\sigma(\hat{\sigma}(j)) \) and \(S_{ij} = \epsilon_\sigma(i)\epsilon_\sigma(j)S_{\hat{\sigma}(i)\hat{\sigma}(j)} \)

Proof. The pseudo-unitarity condition is: \(\sum_{j \in \Pi_C} d_j^2 = \sum_{j \in \Pi_C} \text{FPdim}(V_j)^2 \), and \(|d_i| \leq \text{FPdim}(V_i) \) so pseudo-unitarity fails if and only if \(|d_i| < \text{FPdim}(V_i) \) for some \(i \). This proves (i).

For (ii), first observe that \(|\langle 0 \rangle| = 1 \) if and only if \(d_i \in \mathbb{Z} \) for all \(i \) proving the second equivalence in (ii). By [14, Prop. 8.24] weakly integral fusion categories are pseudo-unitary. Applying (i) we see that \(d_i \in \mathbb{Z} \) if \(\text{FPdim}(V_i) \in \mathbb{Z} \). On the other hand, if \(d_i \in \mathbb{Z} \) for all \(i \) we have \(D^2 = \sum d_i^2 \in \mathbb{Z} \) and \(\text{FPdim}(V_i) = S_{i,j}/d_j \in \mathbb{R} \) for some \(j \). Since \(\sum_i (S_{i,j})^2 = D^2 \in \mathbb{Z} \), \(d_i^2 \sum_i (\text{FPdim}(V_i))^2 \in \mathbb{Z} \), and in particular \(\text{FPdim}(C) \in \mathbb{Q} \). But \(\text{FPdim}(\mathcal{C}) \) is an algebraic integer, so we see that in this case \(\mathcal{C} \) is weakly integral, and hence pseudo-unitary.

We have \(\text{FPdim}(V_i) = S_{i,j}/d_j = \phi_j(i) \) for some \(j \). If \(|\langle j \rangle| = 1 \) then \(S_{i,j}/d_j \in \mathbb{Z} \) for \(i \in \Pi_C \), and so \(\mathcal{C} \) is pseudo-unitary. If \(|\langle j \rangle| > 1 \), then \(j \in \langle 0 \rangle \) by assumption. Let \(\sigma \in \text{Aut}(\mathcal{C}) \) such that \(\hat{\sigma}(0) = j \) (which exists by definition). We consider a Galois conjugate modular category \(\mathcal{C}' \) with the (realizable) modular data \((\sigma(S), \sigma(T)) \). It is immediate to see that \(\mathcal{C}' \) is pseudo-unitary since \(\sigma(\phi_j) \) is the first row/column of \(\sigma(S) \). This completes the proof of (iii). \(\square \)

Note that, by Lemma [32] a modular category which satisfies the condition (c) of the preceding lemma must be self-dual.

Now we consider a normalized modular pair \((s, t)\) of \(\mathcal{C} \). Since \(\frac{s_{ij}}{s_{ij}} = \frac{s_{ij}}{s_{ij}} \), we have

\[
\mathbb{K}_j = \mathbb{Q} \left(\frac{s_{ij}}{s_{ij}} \mid i \in \Pi_C \right) \quad \text{and} \quad \mathbb{K}_C = \mathbb{Q} \left(\frac{s_{ij}}{s_{ij}} \mid i, j \in \Pi_C \right).
\]

For any \(\sigma \in \text{Aut}(\mathcal{Q}) \), (2.12) implies that

\[
S_{ij} = \epsilon_\sigma(i)\epsilon_{\sigma^{-1}}(j)S_{\hat{\sigma}(i)\hat{\sigma^{-1}}(j)}.
\]

for some sign function \(\epsilon_\sigma : \Pi_C \to \{ \pm 1 \} \) depending on \(s \).

Remark 3.4.

(i) Observe that while \(\epsilon_\sigma(i) \) depends on the choice of the normalized pair \((s, t)\), the quantity \(\epsilon_\sigma(i)\epsilon_{\sigma^{-1}}(j) \) does not.

(ii) Observe that \(G : \text{Aut}(\mathcal{Q}) \to GL(\Pi_C, \mathbb{Z}), \sigma \mapsto G_\sigma := \sigma(s)s^{-1} \), defines a group homomorphism. If \(G_\sigma \) is a diagonal matrix or, equivalently, \(\hat{\sigma} = \text{id}_{\Pi_C} \), then \(\sigma(s_{ij}) = \epsilon_\sigma(i)s_{ij} = \epsilon_\sigma(j)s_{ij} \) for all \(i, j \in \Pi_C \). In particular, \(\epsilon_\sigma(j)s_{ij} = \epsilon_\sigma(0)s_{ij} \). Since \(s_{ij} \neq 0 \) for all \(j \in \Pi_C \), \(\epsilon_\sigma(j) = \epsilon_\sigma(0) = \pm 1 \) for all \(j \in \Pi_C \). Therefore, \(G_\sigma = \pm I \) if \(\hat{\sigma} = \text{id}_{\Pi_C} \) (cf. [2, Lem. 5]). Therefore, \(\text{im} G \) is either isomorphic to Gal(\(\mathcal{C} \)) or an abelian extension of Gal(\(\mathcal{C} \)) by \(\mathbb{Z}_2 \).

The following results will be useful in Section 4.

Lemma 3.5. If \(\hat{\sigma} \) is an order 2 permutation in \(\sigma \in \text{Aut}(\mathcal{Q}) \), such that \(\hat{\sigma} \) has a fixed point (for example if the rank of \(\mathcal{C} \) is odd) then \(\epsilon_\sigma(j) = \epsilon_\sigma(\hat{\sigma}(j)) \) and

\[
S_{ij} = \epsilon_\sigma(i)\epsilon_\sigma(j)S_{\hat{\sigma}(i)\hat{\sigma}(j)}.
\]
for all $i, j \in \Pi_C$. In particular,
\[S_{ii} = S_{\hat{\sigma}(i)\hat{\sigma}(i)} \]
for all $i \in \Pi_C$.

Proof. Let ℓ be a fixed point of $\hat{\sigma}$. Thus $\sigma^2(s_{0\ell}) = s_{0\ell}$ and so $\epsilon_{\sigma^2}(\ell) = 1$. Since G_{σ^2} is diagonal and the ℓ-th diagonal entry is 1, $G_{\sigma^2} = \text{id}$ by Remark \[3.3\]. Thus,
\[s_{0j} = \sigma^2(s_{0j}) = \epsilon_{\sigma}(j)\epsilon_{\sigma}(\hat{\sigma}(j))s_{0j} \]
for all j. Therefore, $\epsilon_{\sigma}(j) = \epsilon_{\sigma}(\hat{\sigma}(j))$ for all j. On the other hand, we always have $\epsilon_{\sigma}(j)\epsilon_{\sigma^{-1}}(\hat{\sigma}(j)) = 1$, we find $\epsilon_{\sigma} = \epsilon_{\sigma^{-1}}$. Thus, by \[3.1\], we have
\[S_{ij} = \epsilon_{\sigma}(i)\epsilon_{\sigma^{-1}}(j)S_{\hat{\sigma}(i)\hat{\sigma}^{-1}(j)} = \epsilon_{\sigma}(i)\epsilon_{\sigma}(j)S_{\hat{\sigma}(i)\hat{\sigma}(j)} . \]
\[\square \]

Lemma 3.6. If \mathcal{C} is a rank $r \geq 5$ modular category with modular data (S, T) such that $\text{Gal}(\mathcal{C}) = \langle (0 1) \rangle$ then:

(i) $d_1 > 0$,

(ii) $\frac{1}{d_1} + d_1, D^2/d_1, \text{ and } d_2^2/d_1$ are rational integers for $i \geq 2$.

(iii) Defining $\epsilon_j = \frac{S_{ij}}{d_j}$ for each $j \geq 2$ we have

(a) $\epsilon_j \in \{\pm 1\}$.

(b) There exist i, j such that $\epsilon_i = -\epsilon_j$, and in this case $S_{ij} = 0$.

Proof. By Lemma \[3.5\] we see that $S_{11} = 1$. Since $\sigma = (0 1)$ interchanges d_1 and $1/d_1$, the trace of d_1 is $d_1 + 1/d_1$ and the norm of d_i for $i \geq 2$ is d_i^2/d_1 so these must be integers. This implies that $D^2/d_1 = d_1 + 1/d_1 + \sum_{i=2}^{r-1} d_i^2/d_1 \in \mathbb{Z}$.

If the Frobenius-Perron dimension were a multiple of column j for some $j > 1$ then $\text{FPdim}(V_i) = S_{ij}/d_j$ is an integer for all i as $|\langle j \rangle| = 1$. Then \mathcal{C} would be integral, and so $d_i \in \mathbb{Z}$ by Lemma \[3.3\](ii) for all i. However, this contradicts the fact that $|\langle 0 \rangle| = 2$. So the FP-dimension must be a scalar multiple of one of the first two columns. In any of these two cases, we find $d_1 > 0$.

By \[3.1\], we have $S_{1j} = \pm S_{0j}$ for $j \geq 2$, so $\epsilon_j = \frac{S_{1j}}{d_j} = \pm 1$ proving (iii)(a). Now orthogonality of the first two rows of S gives us: $2d_1 + \sum_{j \geq 2} \epsilon_j d_j^2 = 0$ or $2 = -\sum_{j \geq 2} \epsilon_j d_j^2/d_1$, a sum of integers. Since $r \geq 5$ and $d_2^2/d_1 > 0$ we see that it is impossible for all of the ϵ_j to have identical signs. On the other hand we have $\epsilon_j d_j = S_{1j} = \epsilon_{\sigma}(1)\epsilon_{\sigma}(j)S_{0j}$ for each $j \geq 2$, so $\epsilon_j = \epsilon_{\sigma}(1)\epsilon_{\sigma}(j)$. If $\epsilon_i = -\epsilon_j$ then $\epsilon_{\sigma}(i) = -\epsilon_{\sigma}(j)$ so that $S_{ij} = \epsilon_{\sigma}(i)\epsilon_{\sigma}(j)S_{\hat{\sigma}(i)\hat{\sigma}(j)} = -S_{ij}$ by Lemma \[3.5\]. Hence $S_{ij} = 0$. \square

Lemma 3.7. Suppose \mathcal{C} is a modular category of odd rank $r \geq 5$. Then $(0 1)(2 \cdots r - 1) \notin \text{Gal}(\mathcal{C})$.

Proof. Suppose $\hat{\sigma} = (0 1)(2 \cdots r - 1)$ for some $\sigma \in \text{Gal}(\mathcal{C})$. Since $S_{ij} = \pm S_{\hat{\sigma}(i)\hat{\sigma}^{-1}(j)}$ and r odd, $S_{11} = \epsilon$ and $S_{ij} = \epsilon_{ij}S_{02} = \epsilon_{ij}d_2$

for all $0 \leq i \leq 1, 2 \leq j \leq r - 1$, where $\epsilon_{ij} \epsilon_{ij}$ are ± 1. In particular, the first two rows of the matrix S are real, $\sigma(d_2) = \epsilon_{12}d_2/d_1$, and $\frac{S_{1j}}{S_{0j}} = \frac{\epsilon_{ij}}{\epsilon_{0j}} \in \mathbb{Z}$ for all $j \geq 2$. Thus
\[\frac{\epsilon_{1j}}{\epsilon_{0j}} = \frac{S_{1j}}{S_{0j}} = \sigma \left(\frac{S_{1j}}{S_{0j}} \right) = \frac{S_{1\hat{\sigma}(j)}}{S_{0\hat{\sigma}(j)}} \text{ for all } j \geq 2, \]
and hence \(\frac{S_{ij}}{S_{0j}} = \frac{c_i}{c_{0j}} = \epsilon'\) for \(j \geq 2\). By orthogonality of the first two rows of \(S\), we find
\[
0 = d_1(1 + \epsilon) + \sum_{j \geq 2} S_{1j} S_{0j} = d_1(1 + \epsilon) + \epsilon' \sum_{j \geq 2} S_{0j}^2 = d_1(1 + \epsilon) + \epsilon'(r - 2)d_2^2.
\]

Since \(r - 2 \neq 0\), \(\epsilon = 1\) and \(2 = -\epsilon'(r - 2)d_2^2/d_1\). Note that both \(d_2/d_1\) and \(d_2\) are algebraic integers. The equation implies \(d_2^2/d_1 \in \mathbb{Z}\) and so \((r - 2) \mid 2\). This is absurd as \(r - 2 \geq 3\). \(\Box\)

Lemma 3.8. Suppose \(\mathcal{C}\) is a modular category of odd rank \(r \geq 5\). If the isomorphism classes \(r - 2, r - 1\) are self-dual, then
\[
(0 \cdots r - 3)(r - 2 \ r - 1) \not\in \text{Gal}(\mathcal{C}).
\]

Proof. Suppose \(\hat{\sigma} = (0 \cdots r - 3)(r - 2 \ r - 1) \in \text{Gal}(\mathcal{C})\). Since \(S_{ij} = \pm S_{\hat{\sigma}(i) \hat{\sigma}^{-1}(j)}\) and \(r\) odd,
\[
S_{r-1,r-1} = \epsilon S_{r-2,r-2}\text{ and } S_{i,j} = \epsilon_{ij} S_{0,r-2} = \epsilon_{ij} d_{r-2}
\]
for all \(0 \leq i \leq r - 3, r - 2 \leq j \leq r - 1\), where \(\epsilon, \epsilon_{ij}\) are \(\pm 1\). Therefore, for \(0 \leq i \leq r - 3\),
\[
\frac{S_{i,r-1}}{d_{r-1}} = \sigma \left(\frac{S_{r-2}}{d_{r-2}} \right) = \frac{S_{i,r-1}}{d_{r-2}}.
\]
Since the last two columns are real and orthogonal, we find
\[
0 = S_{r-1,r-2} S_{r-1,r-1}(1 + \epsilon) + \sum_{i=0}^{r-3} S_{i,r-2} S_{i,r-1} = S_{r-1,r-2} S_{r-1,r-1}(1 + \epsilon) + (r - 2)d_{r-1} d_{r-2}.
\]
Since \((r - 2)d_{r-1} d_{r-2} \neq 0\) we must have \(\epsilon = 1\), therefore \(2 \frac{S_{r-1,r-2}}{d_{r-2}} \frac{S_{r-1,r-1}}{d_{r-1}} = r - 2\). Since \(\frac{S_{r-1,r-2}}{d_{r-2}} \frac{S_{r-1,r-1}}{d_{r-1}}\) is an algebraic integer, the equation implies it is a rational integer and so \(r - 2\) is even, a contradiction. \(\Box\)

For weakly integral modular categories, a positive dimension function is constant on the orbits of the Galois action on \(\Pi_{\mathcal{C}}\) (via \(\sigma \to \hat{\sigma}\)):

Lemma 3.9. Let \(\mathcal{C}\) be a weakly integral modular in which \(d_a > 0\) for all \(a \in \Pi_{\mathcal{C}}\). Then we have \(d_{\hat{\sigma}(a)} = d_a\) for all \(\sigma \in \text{Gal}(\mathcal{C})\) and \(a \in \Pi_{\mathcal{C}}\).

Proof. Since \(\mathcal{C}\) is weakly integral, \(d_a^2/D^2 \in \mathbb{Q}\). Consider the Galois group action on the normalized \(S\)-matrix \(s = \frac{1}{D} S\). We find \(d_a^2/D^2 = \sigma(d_a^2/D^2) = d_{\hat{\sigma}(a)}^2/D^2\) for all \(\sigma \in \text{Gal}(\mathcal{C})\) and \(a \in \Pi_{\mathcal{C}}\), and so the result follows. \(\Box\)

3.2 Modularity Admissible Fields

The abelian number fields \(F_t, F_T, F_s, F_S\) described in Section 2.1.4 (see also \[11, 27\]) have the lattice relations

\[
\begin{align*}
F_t & \quad F_T \\
F_s & \quad F_S
\end{align*}
\]

(3.2)

Moreover, by Lemma 2.6, the Galois group \(\text{Gal}(F_t/F_S)\) is an elementary 2-group. This implies all the subextensions among these fields will satisfy the same condition. We will call the extension \(L/K\) **modularly admissible** if \(L\) is a cyclotomic field and \(\text{Gal}(L/K)\) is an elementary 2-group,
i.e. \(L \) is a multi-quadratic extension of \(K \). In this section we will describe the conductor of a cyclotomic field \(L \) when \(L/K \) is modularly admissible and \([K:Q] \) is a prime power.

Remark 3.10. If \(L/K \) is modularly admissible, then \(L'/K' \) is also modularly admissible for any subextensions \(K' \subseteq L' \) of \(K \) in \(L \). In particular, \(Q_\ell/K \) is modularly admissible where \(\ell := \ell(K) \) is the conductor of \(K \), i.e. the smallest integer \(n \) such that \(K \) embeds into \(Q_n \).

A restatement of [11, Prop. 6.5] in this terminology is:

Proposition 3.11. If \(Q_n/K \) is modularly admissible and \(\ell \) is the conductor of \(K \), then

\[
\begin{align*}
(\text{i}) & \quad \ell \mid 24 \text{ and } \gcd(\frac{\ell}{\ell}, f) \mid 2 \text{ and } \\
(\text{ii}) & \quad \text{Gal}(Q_n/Q_{\ell}) \text{ is subgroup of } (\mathbb{Z}/2\mathbb{Z})^3.
\end{align*}
\]

Recall that \(\text{Gal}(Q_n/Q) \cong (\mathbb{Z}/n\mathbb{Z})^\times \) and that for any subfield \(K \) of \(Q_n \), we have the exact sequence

\[
1 \to \text{Gal}(Q_n/K) \to \text{Gal}(Q_n/Q) \to \text{Gal}(K/Q) \to 1.
\]

(3.3)

In addition, if \(Q_n/K \) is modularly admissible, then \(\text{Gal}(Q_n/Q) \) is isomorphic to a subgroup of the maximal elementary 2-subgroup, \(\Omega_2(\mathbb{Z}/n\mathbb{Z})^\times \), of \((\mathbb{Z}/n\mathbb{Z})^\times\). In particular, \(\frac{(\mathbb{Z}/n\mathbb{Z})^\times}{\Omega_2(\mathbb{Z}/n\mathbb{Z})} \) is a Sylow 2-subgroup of \(\text{Gal}(K/Q) \).

Lemma 3.12. If \(Q_n/K \) is modularly admissible and \([K:Q] \) is odd, then \(\text{Gal}(K/Q) \cong \frac{(\mathbb{Z}/n\mathbb{Z})^\times}{\Omega_2(\mathbb{Z}/n\mathbb{Z})} \) and \(q \equiv 3 \mod 4 \) for any odd prime \(q \mid n \). If, in addition, \([K:Q] \) is a power of an odd prime \(p \), then every prime factor \(q \neq 3 \) of \(n \) is a simple factor of the form \(q = 2p^r + 1 \) for some integer \(r \geq 1 \). Moreover, if \(p > 3 \), then \(r \) must be odd and \(p \equiv 2 \mod 3 \).

Proof. It follows from the exact sequence (3.3) that \(\text{Gal}(Q_n/K) \) is a Sylow 2-subgroup of \(\text{Gal}(Q_n/Q) \) and hence \(\text{Gal}(Q_n/K) = \Omega_2\text{Gal}(Q_n/Q) \). Therefore, we obtain the isomorphism \(\text{Gal}(K/Q) \cong \frac{(\mathbb{Z}/n\mathbb{Z})^\times}{\Omega_2(\mathbb{Z}/n\mathbb{Z})} \). Suppose \(q > 3 \) is a prime factor of \(n \) and \(\ell \) is the integer such that \(q^\ell \mid n \). Then, by the Chinese Remainder Theorem \((\mathbb{Z}/q^\ell\mathbb{Z})^\times \) is a direct summand of \((\mathbb{Z}/n\mathbb{Z})^\times\), and hence \(\frac{(\mathbb{Z}/q^\ell\mathbb{Z})^\times}{\Omega_2(\mathbb{Z}/q^\ell\mathbb{Z})} \) is isomorphic to a subgroup of \(\text{Gal}(K/Q) \). In particular, \(\varphi(q^\ell)/2 = q^\ell \left(\frac{q^{\ell-1} - 1}{2} \right) \) is odd, and this implies \(q \equiv 3 \mod 4 \).

If, in addition, \([K:Q] = p^h \) for some \(h \geq 0 \), then \(q^{\ell-1} \left(\frac{q^{\ell-1} - 1}{2} \right) \mid p^h \) when \(q > 3 \). This forces \(\ell = 1 \) and \(q = 2 \cdot p^r + 1 \) for some positive integer \(r \leq h \). Furthermore, if \(p > 3 \), then \(q = 2 \cdot p^r + 1 \equiv 0 \mod 3 \) whenever \(r \) is even or if \(p = 1 \mod 3 \). The last statement then follows. \(\square \)

When the abelian number field \(K \) has a prime power degree over \(Q_n \), more refined statements on a modularly admissible extension \(Q_n/K \) can now be stated as

Proposition 3.13. Let \(Q_n/K \) be a modularly admissible extension and

\[
\text{Gal}(K/Q) \cong \mathbb{Z}/p^r_1 \mathbb{Z} \times \cdots \times \mathbb{Z}/p^r_m \mathbb{Z}
\]

for some prime \(p \) and \(0 < r_1 \leq \cdots \leq r_m \), and set \(q_j = 2 \cdot p^r_j + 1 \) for \(j = 1, \ldots, m \). Then:

(\i) If \(p > 3 \), then \(n \) admits the factorization \(n = f \cdot q_1 \cdots q_m \) where \(f \mid 24 \) and \(q_1, \ldots, q_m \) are distinct primes. In particular, \(r_1, \ldots, r_m \) are distinct odd integers and \(p \equiv 2 \mod 3 \).

(\ii) For \(p = 3 \), one of the following two statements holds.

(\a) \(9 \nmid n \) and \(n = f \cdot q_1 \cdots q_m \) where \(f \mid 24 \) and \(q_1, \ldots, q_m \) are distinct primes.
(b) \(9 \mid n\), and there exists \(i \in \{1, \ldots, m\}\) such that \(\{q_j \mid j \neq i\}\) is a set of \(m-1\) distinct primes and \(n = f \cdot 3^{r+1} \cdot q_1 \cdot q_{r+1} \cdot q_{r+2} \cdot \cdots \cdot q_m\) where \(f \mid 8\).

(iii) For \(p = 2\), \(n = 2^a \cdot p_1 \cdots p_l\) where \(p_1, \ldots, p_l\) are distinct Fermat primes and \(a\) is a non-negative integer.

Proof. For \(p = 2\), the exact sequence (3.3) implies that \(\text{Gal}(\mathbb{Q}_n/\mathbb{Q})\) is a 2-group and so \(\varphi(n)\) is a power of 2. Hence, (iii) follows.

For any odd prime \(p\), it follows from Lemma 3.12 that \(n = 2^a3^bq_1 \cdots q_i\) for some integers \(a, b \geq 0\) and odd primes \(q_1 < \cdots < q_i\) of the form \(q_j = 2p^{a_j}\) for some integer \(a_j \geq 1\). Therefore,

\[
\text{Gal}(\mathbb{K}/\mathbb{Q}) \cong \frac{(\mathbb{Z}/n\mathbb{Z})^\times}{\Omega_2(\mathbb{Z}/n\mathbb{Z})^\times} \cong \frac{(\mathbb{Z}/2^a\mathbb{Z})^\times}{\Omega_2(\mathbb{Z}/2^a\mathbb{Z})^\times} \times \frac{(\mathbb{Z}/3^b\mathbb{Z})^\times}{\Omega_2(\mathbb{Z}/3^b\mathbb{Z})^\times} \times \mathbb{Z}/p^{a_1}\mathbb{Z} \times \cdots \times \mathbb{Z}/p^{a_\ell}\mathbb{Z}. \tag{3.4}
\]

For \(p > 3\), \((\mathbb{Z}/2^a\mathbb{Z})^\times \times (\mathbb{Z}/3^b\mathbb{Z})^\times\) must be an elementary 2-group otherwise the power \(\frac{(\mathbb{Z}/n\mathbb{Z})^\times}{\Omega_2(\mathbb{Z}/n\mathbb{Z})^\times}\) has a factor of 2 or 3. Therefore, \(0 \leq a \leq 3\), \(0 \leq b \leq 1\) (or equivalently, \(f = 2^a3^b\) is a divisor of 24), and

\[
\text{Gal}(\mathbb{K}/\mathbb{Q}) \cong \mathbb{Z}/p^{a_1}\mathbb{Z} \times \cdots \times \mathbb{Z}/p^{a_\ell}\mathbb{Z}.
\]

By the uniqueness of invariant factors, \(l = m\) and \(a_j = r_j\) for \(j = 1, \ldots, m\). The last statement of (i) follows directly from Lemma 3.12.

For \(p = 3\) and \(9 \mid n\), the argument for the case \(p > 3\) can be repeated here to arrive at the same conclusion (iii(a)). For \(p = 3\) and \(9 \mid n\), \(b \leq 2\) and so

\[
\text{Gal}(\mathbb{K}/\mathbb{Q}) \cong \frac{(\mathbb{Z}/2^a\mathbb{Z})^\times}{\Omega_2(\mathbb{Z}/2^a\mathbb{Z})^\times} \times \mathbb{Z}/3^{b-1}\mathbb{Z} \times \mathbb{Z}/p^{a_1}\mathbb{Z} \times \cdots \times \mathbb{Z}/p^{a_\ell}\mathbb{Z}.
\]

Therefore, \((\mathbb{Z}/2^a\mathbb{Z})^\times\) is an elementary 2-group, or \(0 \leq a \leq 3\). By the uniqueness of invariant factors \(l = m - 1\), \(b - 1 = r_i\) for some \(i\) and \((a_1, \ldots, a_{m-1}) = (r_1, \ldots, r_i, \ldots, r_m)\). This proves (iii)(b).

Corollary 3.14. If \(\mathbb{Q}_n/\mathbb{K}\) is modularly admissible and \(\mathbb{K}/\mathbb{Q}\) is a multi-quadratic extension, then \(n \mid 240\).

Proof. Since \(\text{Gal}(\mathbb{Q}_n/\mathbb{K})\) and \(\text{Gal}(\mathbb{K}/\mathbb{Q})\) are elementary 2-groups, in view of (3.3), \(\text{Gal}(\mathbb{Q}_n/\mathbb{Q})\) is an abelian 2-group whose exponent \(e \mid 4\). By Proposition 3.13 (iii), \(n = 2^a p_1 \cdots p_l\) where \(a \geq 0\) and \(p_1 < \cdots < p_l\) are Fermat primes. If \(p_i > 5\), then \(\text{Gal}(\mathbb{Q}_n/\mathbb{Q})\) has a cyclic subgroup of order \(p_i - 1 > 4\); this contradicts \(e \mid 4\). On the other hand, if \(a \geq 5\), \(\text{Gal}(\mathbb{Q}_n/\mathbb{Q})\) has a cyclic subgroup of order 8 which is also absurd. Therefore, \(n\) must be a factor of \(2^4 \cdot 3 \cdot 5 = 240\).

These techniques combined with the Cauchy Theorem [6, Theorem 3.9] can be used to classify low rank integral modular categories with a given Galois group. For example:

Lemma 3.15. There are no rank 7 integral modular categories satisfying \(\text{Gal}(\mathbb{C}) \cong \mathbb{Z}/5\mathbb{Z}\).

Proof. We may assume \(d_a > 0\) for all \(a \in \Pi_C\), by Lemma 3.3. By applying Lemma 3.9 we see that the dimensions are \(1, d_1\) (with multiplicity 5) and \(d_2\) (with multiplicity 1). In this case Proposition 3.13(i) and the Cauchy Theorem imply that the prime divisors of \(d_1, d_2\) and \(D_2^2\) lie in \(\{2, 3, 11\}\). Moreover, \(D \in \mathbb{Z}\) since \(|\text{Gal}(\mathbb{C})|\) is odd (recall that \(\text{Gal}(\mathbb{C}) = \text{Gal}(S)\)). Examining the dimension equation \(D^2 = 1 + d_1^2 + 5d_2^2\) modulo 5 we obtain \(D^2 = 1 + d_1^2\). The non-zero squares modulo 5 are \(\pm 1\), so \(D^2, d_1^2 \in \{\pm 1\}\) which give no solutions.
3.3 Representation Theory of SL(2, ℤ)

Definition 3.16. Let \(\rho : \text{SL}(2, \mathbb{Z}) \to GL(r, \mathbb{C}) \) be a representation of \(\text{SL}(2, \mathbb{Z}) \).

(i) \(\rho \) is said to be non-degenerate if the \(r \) eigenvalues of \(\rho(t) \) are distinct.

(ii) \(\rho \) is said to be admissible if there exists modular category \(\mathcal{C} \) over \(\mathbb{C} \) of rank \(r \) such that \(\rho \) is a modular representation of \(\mathcal{C} \) relative to certain ordering of \(\Pi_\mathcal{C} = \{ V_0, V_1, \ldots, V_{r-1} \} \) with \(V_0 \) the unit object of \(\mathcal{C} \). In this case, we say that \(\rho \) can be realized by the modular category \(\mathcal{C} \).

(iii) \(\overline{\text{Rep}}(\text{SL}(2, \mathbb{Z})) \) denotes the set of all complex admissible \(\text{SL}(2, \mathbb{Z}) \)-representation.

By [11], an admissible representation \(\rho : \text{SL}(2, \mathbb{Z}) \to GL(r, \mathbb{C}) \) must factor through \(SL(2, \mathbb{Z}/n\mathbb{Z}) \) where \(n = \text{ord} \rho(t) \), and \(\rho \) is \(\overline{\mathbb{Q}}_p \)-rational. In particular admissible representations are completely reducible. It follows from [13, Lem. 1] that each non-degenerate admissible representation of \(\text{SL}(2, \mathbb{Z}) \) is absolutely irreducible. Moreover, by [29], any irreducible representation of \(\text{SL}(2, \mathbb{Z}) \) of dimension at most 5 must be non-degenerate.

Lemma 3.17. Let \(\rho \) be a degree \(r \) non-degenerate admissible representation of \(\text{SL}(2, \mathbb{Z}) \) with \(t = \rho(t) \) and \(s = \rho(s) \). Suppose \(\rho' \in \overline{\text{Rep}}(\text{SL}(2, \mathbb{Z})) \) is equivalent to \(\rho \) with \(t' = \rho'(t) \) and \(s' = \rho'(s) \). Then \(\rho'(g) = U^{-1} \rho(g)U \) for a signed permutation matrix \(U \in GL(r, \mathbb{C}) \) of the permutation \(\varsigma \) on \(\{0, \ldots, r-1\} \) defined by \(t'_{\varsigma(i)} = t_i \).

If, in addition, \(t_0 = t'_0 \), then \(\varsigma \) defines an isomorphism of fusion rules associated to \(\rho \) and \(\rho' \).

Proof. Since \(\rho \) and \(\rho' \) are equivalent, \(t \) and \(t' \) have the same eigenvalues. By the non-degeneracy of \(\rho \), there exists a unique permutation \(\varsigma \) on \(\{0, \ldots, r-1\} \) defined by \(t'_{\varsigma(i)} = t_i \). Let \(D_\varsigma = [d_{\varsigma(i)j}]_{i,j} \) be the permutation matrix of \(\varsigma \). Then \(\rho'' = D_\varsigma \rho D_\varsigma^{-1} \) is equivalent to \(\rho \) and \(\rho''(t) = t \). There exists \(Q \in GL(r, \mathbb{C}) \) such that \(Q \rho'' = \rho Q \). Since \(Qt = tQ \) and \(t \) has distinct eigenvalues, \(Q \) is a diagonal matrix. Suppose \(Q = [q_{ij}]_{i,j} \in \Pi_\mathcal{C} \). Then

\[
\begin{aligned}
Q_i Q_j s_{ij} &= Q_j Q_i s_{ij} = Q_i Q_j s_{ij}.
\end{aligned}
\]

Both \(s \) and \(s' \) are symmetric, and so we have

\[
\begin{aligned}
Q_0 Q_{s_{0j}} &= Q_j Q_{s_{0j}} = Q_{s_{0j}} Q_j = Q_{s_{0j}} Q_j.
\end{aligned}
\]

Since \(s_{0j} \neq 0 \), \(\frac{Q_i}{Q_0} = \pm 1 \). Let \(Q' = \frac{Q_0}{Q} \) and \(U = Q' D_\varsigma \). Then \(Q'^2 = I \), \(U \) is a signed permutation matrix of \(\varsigma \), and \(s' = U s U \). Since there are finitely many signed permutation matrices in \(GL(r, \mathbb{C}) \), the equivalence class of admissible representations of \(\rho \) is finite.

If, in addition, \(t_0 = t'_0 \), then \(\varsigma(0) = 0 \). Let \((s')^{-1} = [s'_{i'j'}]_{i',j'\in \Pi_\mathcal{C}} \) and \(s^{-1} = [s_{ij}]_{i,j\in \Pi_\mathcal{C}} \). By the Verlinde formula,

\[
\begin{aligned}
N_{\varsigma(i)\varsigma(j)}^{\varsigma(k)} = \sum_{a=0}^{r-1} \frac{s'_{\varsigma(i)\varsigma(a)} s'_{\varsigma(j)\varsigma(a)} \varsigma'_{\varsigma(k)\varsigma(a)}}{s'_{\varsigma(a)\varsigma(a)}} = Q'_l Q'_j Q'_k \sum_{a=0}^{r-1} \frac{s_{ia} s_{ja} \varsigma_{ka}}{s_{0a}} = Q'_l Q'_j Q'_k N_{ij}^k.
\end{aligned}
\]

Thus, \(Q'_l Q'_j Q'_k = 1 \) whenever \(N_{ij}^k \neq 0 \). Moreover, \(\varsigma \) defines an isomorphism between the fusion rules of \(\mathcal{C} \) and \(\mathcal{C}' \). \(\square \)
Let \(\rho : SL(2, \mathbb{Z}) \to GL(n, \mathbb{C}) \) a representation. The set of eigenvalues of \(\rho(t) \) is called the \(t \)-spectrum of \(\rho \). The minimal \(N > 1 \) such that \(\rho \) factors over \(SL(2, \mathbb{Z}/N\mathbb{Z}) \) is called the level of \(\rho \).

Lemma 3.18. Let \(\mathcal{C} \) be a modular category of rank \(r \), and \(\rho : SL(2, \mathbb{Z}) \to GL(r, \mathbb{C}) \) a modular representation of \(\mathcal{C} \). Then \(\rho \) cannot be isomorphic to a direct sum of two representations with disjoint \(t \)-spectra. In particular, if \(\rho \) is non-degenerate, then it is absolutely irreducible.

Proof. Let \(s = \rho(s) \) and \(t = \rho(t) \). Then \(\frac{\omega_0}{\omega_0} \) is the quantum dimension of the simple object \(j \). In particular, every entry of the first row of \(s \) is non-zero. Thus, for any permutation matrix \(Q \), there exists a row of \(Q^{-1}sQ \) which has no zero entry.

Suppose \(\rho \) is isomorphic a direct sum of two matrix representations \(\rho_1, \rho_2 \) of \(SL(2, \mathbb{Z}) \) with disjoint \(t \)-spectra. Since \(\rho(t) \) has finite order, and so are \(\rho_i(t), i = 1, 2 \). Without loss of generality, we can assume \(\rho_1(t) \) and \(\rho_2(t) \) are diagonal matrices. There exists a permutation matrix \(Q \) such that \(Q^{-1}tQ = \begin{bmatrix} \rho_1(t) & 0 \\ 0 & \rho_2(t) \end{bmatrix} \). Since the representation \(\rho_t : SL(2, \mathbb{Z}) \to GL(k, \mathbb{C}) \), \(s \mapsto Q^{-1}sQ, t \mapsto Q^{-1}tQ \) is also equivalent to \(\rho_1 \oplus \rho_2 \), there exists \(\rho \) such that \(\rho_t \) is diagonal. There exists a permutation matrix \(Q \) such that \(\rho_t = Q^{-1}sQ, t \mapsto Q^{-1}tQ \).

Since \(\rho_1 \) and \(\rho_2 \) have disjoint \(t \)-spectra, \(P \) must be of the block form \(\begin{bmatrix} P_1 & 0 \\ 0 & P_2 \end{bmatrix} \). This implies every row of \(Q^{-1}sQ \) has at least one zero entry, a contradiction. \(\square \)

Corollary 3.19. Suppose \(\mathcal{C} \) is a modular category of rank \(r > 2 \), and \(\rho \) is a modular representation of \(\mathcal{C} \). Then:

(i) \(\rho \) cannot be a direct sum of 1-dimensional representations of \(SL(2, \mathbb{Z}) \).

(ii) If \(\rho_1 \) is a subrepresentation of degree \(r - 2 \), then the \(t \)-spectrum of \(\rho_1 \) must contain a 120-th root of unity.

Proof. The statement (i) was proved in \([13]\) using a simpler version of Lemma 3.18.

Suppose \(\rho_1 \) is a degree \(r - 2 \) subrepresentation of \(\rho \) such that \(\omega^{120} \neq 1 \) for all eigenvalues \(\omega \) of \(\rho_1(t) \). Then there exists a 2-dimensional representation \(\rho_2 \) of \(SL(2, \mathbb{Z}) \) such that \(\rho \cong \rho_1 \oplus \rho_2 \).

If \(\rho_2 \) is a sum of 1-dimensional subrepresentations, then \(\rho_2(t)^{120} = 1 \). If \(\rho_2 \) is irreducible, then applying the Chinese remainder theorem we obtain \(\rho_2 \cong \xi \otimes \phi \) for some linear character \(\phi \), and an irreducible representation \(\xi \) of prime power level. It follows from \([12]\), Table A1) that \(\rho_2(t)^{120} = 1 \). Thus, for both cases, \(\rho_1 \) and \(\rho_2 \) have disjoint \(t \)-spectra. However, this contradicts Lemma 3.18. \(\square \)

For any representation \(\rho \) of \(SL(2, \mathbb{Z}) \), we say that \(\rho \) is even (resp. odd) if \(\rho(s)^2 = 1 \) (resp. \(\rho(s)^2 = -1 \)). We denote the set of primitive \(q \)-th roots of unity by \(\mu_q \), the set of all \(q \)-th roots of unity by \(\mu_{q\mathbb{N}} \), and \(\mu_{qs} = \bigcup_{n \in \mathbb{N}} \mu_{qns} \).

Remark 3.20. If \(\rho \) is even, then the linear representation \(\det \rho \) of \(SL(2, \mathbb{Z}) \) is also even, and so \(\det \rho(t) \in \mu_4 \). In general, a representation of \(SL(2, \mathbb{Z}) \) may neither even nor odd. However, if \(\mathcal{C} \) is a self-dual modular category, then \(\mathcal{C} \) admits an even modular representation given by the
normalized modular pair \((\frac{1}{D} S, \frac{1}{T})\) for any 3-rd root \(\zeta\) of \(\frac{D}{p}\). Let \(\rho\) be a modular representation of \(\mathcal{C}\). Then for any linear character \(\chi\) of \(\text{SL}(2, \mathbb{Z})\), there exists a modular representation \(\rho' \cong \rho \otimes \chi\) as representations of \(\text{SL}(2, \mathbb{Z})\). In addition, if \(\rho\) and \(\chi\) are even, then so is \(\rho'\).

Lemma 3.21. Suppose \(\mathcal{C}\) is a self-dual modular category of rank \(r\), and \(\rho\) is an even modular representation of \(\mathcal{C}\). If \(\rho \cong \phi_1 \oplus (\phi_2 \otimes \xi)\) for some degree 1 representations \(\phi_1, \phi_2\) and a degree \(r - 1\) non-degenerate irreducible representation \(\xi\) of \(\text{SL}(2, \mathbb{Z})\) with odd level, then \(\phi_1, \phi_2\) and \(\xi\) are all even.

Proof. Let \(\omega_1 = \phi_1(t)\) and \(\omega_2 = \phi_2(t)\). Note that \(\phi_i(s) = \omega_i^{-3}\) for all \(i = 1, 2\), and \(\omega_1^{12} = 1\). Since \(\rho\) is even, \(\phi_1\) and \(\phi_2 \otimes \xi\) are even. In particular, \(\omega_1^6 = 1\). Since \(\rho\) is reducible and \(\xi\) is non-degenerate, by Lemma 3.18 \(\omega_1 \omega_2^{-1}\) must be in the spectrum of \(\xi(t)\). Therefore, \(\omega_1 \omega_2^{-1}\) is of odd order, and hence \(\omega_2^3 = 1\). Therefore, \(\phi_2\) is even. Since \(\phi_2 \otimes \xi\) is even, \(\xi\) is also even. \(\square\)

Remark 3.22. If \(\rho\) is a modular representation of a modular category \(\mathcal{C}\), then the order of its T-matrix is equal to the projective order of \(\rho(t)\), i.e. the small positive integer \(N\) such that \(\rho(t)^N\) is a scalar multiple of the identity.

Lemma 3.23. Let \(\mathcal{C}\) be a fusion category such that \(G(\mathcal{C})\) is trivial and \(K_0(\mathcal{C}) \otimes \mathbb{Z} \mathbb{Z}_N\) is isomorphic to \(K_0(\text{SU}(N)_k)\) for some integer \(k\) relatively prime to \(N\). Then \(\mathcal{C}\) is monoidally equivalent to a Galois conjugate of \(\text{SU}(N)_k/\mathbb{Z}_N\).

Proof. Let \(\mathcal{S}\) be a rank \(N\) fusion category with fusion rules \(\mathbb{Z}_N\) (or \(\text{Vec}(\mathbb{Z}_N)\)). Now, we have
\[
K_0(\mathcal{C} \boxtimes \mathcal{S}) \cong K_0(\mathcal{C}) \otimes K_0(\mathcal{S}) \cong K_0(\text{SU}(N)_k)
\]
as based rings. By the classification in [20], \(\mathcal{C} \boxtimes \mathcal{S}\) is monoidally equivalent to \(\mathcal{D} \boxtimes \text{Vec}(\mathbb{Z}_N, \omega)\) for some 3-cocycle \(\omega\) of \(\mathbb{Z}_N\) and Galois conjugate \(\mathcal{D}\) of \(\text{SU}(N)_k/\mathbb{Z}_N\) (i.e. a choice of a root of unity). As these categories are \(\mathbb{Z}_N\)-graded and the adjoint subcategories (\(\mathcal{C}\) and \(\mathcal{D}\)) are the 0-graded components we have that \(\mathcal{C}\) is monoidally equivalent to \(\mathcal{D}\). \(\square\)

Recall from Section 3.1 that \(\mathbb{K}_0\) is the extension of \(\mathbb{Q}\) generated by the dimensions of the simple objects in \(\mathcal{C}\).

Theorem 3.24. Let \(\mathcal{C}\) be a modular category such that \(|\Pi| = [\mathbb{K}_0 : \mathbb{Q}] = p\) is a prime. Then:

(i) Every modular representation of \(\mathcal{C}\) is non-degenerate and hence absolutely irreducible.

(ii) \(q = 2p + 1\) is a prime.

(iii) \(\text{FExp}(\mathcal{C}) = q\).

(iv) The underlying fusion category of \(\mathcal{C}\) is monoidally equivalent to a Galois conjugate of \(\text{SU}(2)_{2p-1}/\mathbb{Z}_2\).

Proof. The cases \(p = 2, 3\) follow from the classification in [27, pp. 375–377]. We may assume \(p > 3\).

Let \(\rho\) be a modular representation of \(\mathcal{C}\), and set \(s = \rho(s)\), \(t = \rho(t)\) and \(n = \text{ord}(t)\). By Lemma \(3.22\) \(|\langle 0 \rangle| = [\mathbb{K}_0 : \mathbb{Q}] = |\Pi|\). Thus, \(\mathbb{K}_C = \mathbb{K}_0\) and so \(|\text{Gal}(\mathcal{C})| = p\). Thus, \(\text{Gal}(\mathcal{C}) \cong \mathbb{Z}_p\). Let \(\sigma \in \text{Gal}(\mathbb{Q}_n/\mathbb{Q})\) such that \(\sigma|_{\mathbb{K}_C}\) is a generator of \(\text{Gal}(\mathcal{C})\), and hence \(\hat{\sigma} = (0, \hat{\sigma}(0), \hat{\sigma}^2(0), \ldots, \hat{\sigma}^{p-1}(0))\). By Theorem 2.5 \(t_{\hat{\sigma}}(0) = \sigma^3(0)\). Thus, \(\mathbb{Q}_n = \mathbb{Q}(t_0)\). Suppose \(t_{\hat{\sigma}^i}(0) = t_{\hat{\sigma}^j}(0)\) for some non-negative integers \(i < j \leq p - 1\). Then \(\sigma^{2(j-i)}(t_0) = t_0\) and so \(\sigma^{2(j-i)} = \text{id}\). This implies \(\sigma^{2l} = \text{id}\)

\(^1\text{See Section 4 for notation.}\)
for some positive integer $l \leq p - 1$, and hence $p \mid 2l$, a contradiction. Therefore, $t_{\tilde{\sigma}^i(0)} \neq t_{\tilde{\sigma}^j(0)}$
for all non-negative integers $i < j \leq p - 1$, and hence ρ is non-degenerate. By Lemma 3.18, ρ is
absolutely irreducible.

Note that (F_S, F_t) is a modularly admissible, and $F_S = K_C$ and $F_t = \mathbb{Q}_n$. Since $[K_0 : \mathbb{Q}] = |\langle 0 \rangle| = |\Pi_C|$, $K_0 = K_C$. By Proposition 3.13 (since $p > 3$) we have
$q = 2p + 1$ is a prime and $q \mid n \mid 24q$.

Since $(q, 24) = 1$, by the Chinese Remainder Theorem, $\rho \cong \chi \otimes R$ for some irreducible representations χ and R of levels n/q and q respectively. Since $\rho(t)^q = \chi(t)^q \otimes \text{id}$, $\text{FSexp}(\mathcal{C}) \mid q$ by Remark 3.22 and hence $\text{FSexp}(\mathcal{C}) = q$.

Since $\text{FSexp}(\mathcal{C}) = q$ is odd, there exists a modular representation ρ of \mathcal{C} with level q by [11, Lem. 2.2]. There is a dual pair of such irreducible representations of $SL(2, \mathbb{Z}/q\mathbb{Z})$. Realizations can be obtained from the modular data for $\mathcal{D} = SU(2)_{2p-1}/\mathbb{Z}_2$ (see e.g. [1]):

$$S_{i,j} = \frac{\sin \left(\frac{(2i+1)(2j+1)\pi}{q} \right)}{\sin \left(\frac{\pi}{q} \right)}$$

$$\theta_j = e^{2\pi i (j^2 + j)}$$

where $0 \leq j \leq (p - 1) = \frac{q - 3}{2}$. Since the θ_j are distinct and the T-matrix has order q, we can normalize (S_D, T_D) to a pseudo-unitary modular pair (\tilde{s}, \tilde{t}) corresponding to a degree p and level q irreducible representation of $SL(2, \mathbb{Z})$. Complex conjugation gives the other inequivalent such representation, and both have the first column a multiple of the Frobenius-Perron dimension.

By Lemma 3.3(iii) we may replace the modular data (S_C, T_C) by an admissible pseudo-unitary modular data (S', T'). After normalizing and taking the complex conjugates (if necessary) we can assume that the resulting pair (s', t') is conjugated to (\tilde{s}, \tilde{t}) by a signed permutation ς, by Lemma 3.17 The first row/column of both s' and \tilde{s} are projectively positive. The first column of s' is mapped to the first column of \tilde{s} under ς. In particular ς fixes the label 0 (as the Frobenius-Perron dimension is the unique projectively positive column of any S-matrix) so the last part of Lemma 3.17 implies that the fusion rules coincide. Now, statement (iv) follows from Lemma 3.23 as there are exactly N invertible objects in $SU(N)_k$, labeled by weights at the corners of the Weyl alcove. \qed

Lemma 3.25. Let $p > 3$ be a prime. Then the unique degree p irreducible representation ψ of $SL(2, \mathbb{Z}/p\mathbb{Z})$ is not admissible.

Proof. The result was established in [12] by using the integrality of fusion rules and Verlinde formula. Here we provide another proof by using the rationality of modular representations of any modular category. Suppose there exists a modular category \mathcal{C} of rank p which admits a modular representation ρ equivalent to ψ as representations of $SL(2, \mathbb{Z})$. The representation ψ
is given by
\[\psi(t)_{jk} = \delta_{jk} e^{\frac{2\pi i k}{p}} \]
\[\psi(s)_{00} = -\frac{1}{p} \]
\[\psi(s)_{0k} = \psi(s)_{k0} = \frac{\sqrt{p+1}}{p} \text{ for } 0 < k < p, \]
\[\psi(s)_{jk} = \frac{1}{p} \sum_{a=1}^{p-1} e^{\frac{2\pi i}{p} (a_j + a^{-1}k)} \text{ for } 0 < j, k < p. \]

In particular, \(\rho \) is non-degenerate and \(\psi(s) \not\in GL(p, \mathbb{Q}_p) \) since \(\sqrt{p+1} \not\in \mathbb{Q}_p \) for \(p > 3 \). By Lemma 3.17 there exists a signed permutation matrix \(U \) such that \(U\rho(s)U^{-1} = \psi(s) \). By Theorem 2.5, \(\rho(s) \in GL(p, \mathbb{Q}_p) \), and so is \(\psi(s) \), a contradiction. \(\square \)

4 Applications to Classification

4.1 Rank 5 Modular Categories

In this section we will classify modular categories of rank 5 as fusion subcategories of twisted versions of familiar categories associated to quantum groups of type \(A \).

Fix two integers \(N \geq 2 \) and \(\ell > N \). For any \(q \) such that \(q^2 \) is a primitive \(\ell \)th root of unity we obtain a modular category \(\mathcal{C}(\mathfrak{sl}_N, q, \ell) \) as a subquotient of the category of representations of \(U_q\mathfrak{sl}_N \). See [28] for a survey on the construction of such categories, which were first constructed as braided fusion categories by Andersen and collaborators and as modular categories by Turaev and Wenzl (see the references of [28]). The fusion rules of \(\mathcal{C}(\mathfrak{sl}_N, q, \ell) \) do not depend on the choice of \(q \), i.e. for fixed \(N \) and \(\ell \) the categories \(\mathcal{C}(\mathfrak{sl}_N, q, \ell) \) are all Grothendieck equivalent.

We will denote by \(SU(N)_k \) the modular category obtained from the choice \(q = e^{\frac{i \pi}{N+k}} \), i.e. \(SU(N)_k = \mathcal{C}(\mathfrak{sl}_N, e^{\frac{i \pi}{N+k}}, N+k) \) where \(k \geq 1 \). When \(\ell \) and \(N \) are relatively prime the category \(\mathcal{C}(\mathfrak{sl}_N, q, \ell) \) factors as a (Deligne) product of two modular categories, one of which (the maximal pointed modular subcategory) of rank \(N \) with fusion rules like the group \(\mathbb{Z}_N \). For \(SU(N)_k \) we will denote the corresponding quotient (modular) category by \(SU(N)_k/\mathbb{Z}_N \).

We will prove:

Theorem 4.1. Suppose \(\mathcal{C} \) is a modular category of rank 5. Then \(\mathcal{C} \) is Grothendieck equivalent to one of the following:

(i) \(SU(2)_4 \),
(ii) \(SU(2)_9/\mathbb{Z}_2 \),
(iii) \(SU(5)_1 \), or
(iv) \(SU(3)_4/\mathbb{Z}_3 \).

Proof. This follows from Lemma 4.4 and Propositions 4.5, 4.7, 4.9, 4.10, 4.11, 4.12. \(\square \)

Remark 4.2. Although this result only classifies rank 5 modular categories up to fusion rules, a classification up to equivalence of monoidal categories can be obtained using [20]. Indeed, by loc. cit. Theorem \(A_\ell \) modular categories with fusion rules as in (i) resp. (iii) are monoidally

\[* \] This notation is conventional in conformal field theory where the term orbifold is used.
equivalent to a Galois conjugate of $SU(2)_4$ followed by a twist of the associativities, resp. a Galois conjugate of $SU(5)_1$ (the non-trivial twists of $SU(5)_1$ have no modular structure). Modular
categories Grothendieck equivalent to $SU(2)_9/\mathbb{Z}_2$ (resp. $SU(3)_4/\mathbb{Z}_3$) are monoidally equivalent
to a Galois conjugate of $SU(2)_9/\mathbb{Z}_2$ (resp. $SU(3)_4/\mathbb{Z}_3$) by Lemma 3.23. By [20, Thm. A] there are at most $N\varphi(2(k+N))$ (Euler-φ) inequivalent fusion categories that are
grothendieck equivalent to $SU(N)_k$ and at most $\varphi(2(k+N))$ for $SU(N)_k/\mathbb{Z}_N$. The factor
of N comes from twisting the associativities that is trivial on the quotient $SU(N)_k/\mathbb{Z}_N$ and the
$\varphi(2(k+N))$ factor corresponds to a choice of a primitive $2(k+N)$th root of unity. We do not know
how many distinct modular categories with these underlying fusion categories there are.

We first reduce to the case where C is non-integral and self-dual by the following:

Proposition 4.3. [17, Thms. 3.1 and 3.7] Suppose C is a rank 5 modular category. Then

(a) if C is integral then C is grothendieck equivalent to $SU(5)_1$;

(b) if C is non-integral and not self-dual then C is Grothendieck equivalent to $SU(3)_4/\mathbb{Z}_3$.

We therefore assume C is a non-integral, self-dual modular category of rank 5 with Frobenius-
Schur exponent N, and ρ is an even modular representation of level n. In particular the S-
matrix has real entries and is projectively in $SO(5)$. Next we enumerate the possible Galois
groups $Gal(C)$ for rank 5 modular categories C.

Lemma 4.4. Suppose C is a self-dual non-integral modular category of rank 5. Then up to
reordering the isomorphism classes of simple objects we have $Gal(C)$ is cyclic and generated by
one of the following: $(0\ 1)$, $(0\ 1\ 2)$, $(0\ 1\ 2\ 3\ 4\ 5)$, $(0\ 1\ 2\ 3)$; or it is a Klein 4 group
given by either $\langle(0\ 1), (2\ 3)\rangle$, or $\langle(0\ 1\ 2\ 3), (0\ 2\ 1\ 3)\rangle$

Proof. Since we have assumed C is not integral, Lemma 3.3 implies 0 is not fixed by $Gal(C)$.
Relabeling the simple objects if necessary we arrive at a list of possible groups. The groups
$\langle(0\ 1\ 2\ 3\ 4)\rangle$ and $\langle(0\ 1\ 2\ 3\ 4)\rangle$ can be excluded by Lemmas 3.7 and 3.8. \qed

First observe that the case $Gal(C) \cong \mathbb{Z}_5 \cong (0\ 1\ 2\ 3\ 4)$ has been considered in Theorem 3.24.

Proposition 4.5. If C is a rank 5 modular category with $(0\ 1\ 2\ 3\ 4) \in Gal(C)$ then C is equivalent
to $SU(2)_9/\mathbb{Z}_2$ as fusion categories.

Next we will consider the case that $Gal(C) = \langle(0\ 1)\rangle$. The following lemma will be useful.

Lemma 4.6. Let a, b be non-zero rational integers. Suppose

$$0 = a + bi + c_\alpha \alpha + c_\beta \beta$$

for some non-zero rational integers c_α, c_β and roots of unity α, β with $\text{ord}(\alpha) \leq \text{ord}(\beta)$. Then

$a = \pm 1$, $\beta = \pm i$ and

$$a + \alpha c_\alpha = 0, \quad b - i\beta c_\beta = 0$$

Proof. If $\alpha, \beta \in \mathbb{Q}(i)$, then α, β are fourth roots unity. The \mathbb{Q}-linear independence of $\{1, i\}$
implies that $\alpha = \pm 1$ and $\beta = \pm i$. Thus, the remainder equalities follow immediately. Therefore,
it suffices to show that $\alpha, \beta \in \mathbb{Q}(i)$.

Suppose that α or β is not in $\mathbb{Q}(i)$. Then (4.1) implies that $[\mathbb{Q}(i, \alpha) : \mathbb{Q}(i)] = [\mathbb{Q}(i, \beta) : \mathbb{Q}(i)]$.
Hence, both α, β are not in $\mathbb{Q}(i)$. Note that α, β are $\mathbb{Q}(i)$-linearly independent otherwise $\alpha, \beta \in$
\(\mathbb{Q}(i) \). By [8, Thm. 1], there exist \(x, y \in \{ \alpha, \beta \} \) such that \(x, y/i \) have squarefree orders, and
\[
a + c_2x = 0, \quad ib + c_yy = 0.
\]
These equations force \(\alpha = x = \pm 1 \) and \(\beta = y = \pm i \), and hence \(\alpha, \beta \in \mathbb{Q}(i) \), a contradiction. \(\square \)

We have:

Proposition 4.7. If \(\text{Gal}(\mathcal{C}) = \langle (0 \ 1) \rangle \) then \(\mathcal{C} \) is Grothendieck equivalent to \(SU(2)_4 \).

Proof. Suppose \(\mathcal{C} \) is a rank 5 modular category with \(\text{Gal}(\mathcal{C}) = \langle (0 \ 1) \rangle \). By (3.1) and Lemma 3.6, the \(S \)-matrix is of the form
\[
S = \begin{bmatrix}
1 & d_1 & d_2 & d_3 & d_4 \\
d_1 & 1 & e_2d_2 & e_3d_3 & e_4d_4 \\
d_2 & e_2d_2 & S_{22} & S_{23} & S_{24} \\
d_3 & e_3d_3 & S_{32} & S_{33} & S_{34} \\
d_4 & e_4d_4 & S_{42} & S_{43} & S_{44}
\end{bmatrix}
\]
where \(\epsilon_i = \pm 1 \) and \((\epsilon_2, \epsilon_3, \epsilon_4) \neq (-1, -1, -1) \) or \((1, 1, 1) \). After renumbering, we may therefore assume that \((\epsilon_2, \epsilon_3, \epsilon_4) \in \{(1, 1, -1), (1, -1, 1), (1, -1, -1), (-1, 1, 1)\} \).

Suppose that \((\epsilon_2, \epsilon_3, \epsilon_4) = (1, 1, -1) \). We first use Lemma 3.6 to conclude that \(S_{24} = S_{34} = 0 \) and orthogonality of the first and last columns of \(S \) to obtain \(S_{44} = d_1 - 1 \). Then we use the twist equation (2.5) for \((j, k) = (2, 4), (0, 4) \) and (4, 4) to obtain
\[
0 = p^+ S_{24} = \theta_2 \theta_4 (d_2 d_4 - \theta_1 d_2 d_4),
\]
\[
p^+ d_4 = \theta_4 (d_4 - \theta_1 d_1 d_4 + \theta_4 d_4(d_1 - 1)),
\]
\[
p^+ (d_1 - 1) = \theta_4^2 (d_1^2 + \theta_1 d_4^2 + \theta_4 d_4(d_1 - 1)^2).
\]
It follows immediately from (4.2) that \(\theta_1 = 1 \) and hence, by (4.3),
\[
p^+ = (d_1 - 1) \theta_4 (\theta_4 - 1).
\]

Therefore,
\[
D^2 = 2(d_1 - 1)^2 (1 - \text{Re}(\theta_4)) \quad \text{and} \quad d_1 \notin \mathbb{Q}.
\]
Since \(S_{44} \) is an algebraic integer fixed by \(\text{Gal}(\mathcal{C}) \), \(\frac{S_{44}}{d_4} \in \mathbb{Z} \) for all \(i \). In particular,
\[
n_{44} = \frac{d_1 - 1}{d_4} \in \mathbb{Z}.
\]
and
\[
D^2 = (2 + n_{44}^2 d_4^2).
\]
It follows from (4.4) that
\[
p^+ = (d_1 - 1)(\frac{2}{n_{44}^2} \theta_4^2 + \theta_4^3)
\]
and this implies \(\frac{2}{n_{44}^2} \theta_4^2 + \theta_4^3 = \theta_4 (\theta_4 - 1) \) or
\[
\theta_4^2 + \left(\frac{2}{n_{44}^2} - 1 \right) \theta_4 + 1 = 0.
\]
Thus, \([\mathbb{Q}(\theta_4) : \mathbb{Q}] \leq 2\) and so \(\theta_4 \in \overline{\mathbb{Q}}_4 \cup \overline{\mathbb{Q}}_6\). Note that \(\frac{2}{n_{44}} - 1 \notin \{0, -1, \pm 2\}\). Therefore, \(\theta_4 \notin \overline{\mathbb{Q}}_4 \cup \overline{\mathbb{Q}}_6\). Thus, \(\theta_4 \in \mu_3\) and \(n_{44} = \pm 1\). Now, we find \(D = \sqrt{3}|d_1 - 1|\), \(p^+ = -2i\text{Im}(\theta_4)(d_1 - 1) = \pm i\sqrt{3}(d_1 - 1)\). Since the S-matrix is real, \(\mathcal{C}\) is self-dual. So by [27, Thm. 2.7(5)], \(D \in \mathbb{K}_C\) and so \(\sqrt{3} \in \mathbb{K}_C\). Since \([\mathbb{K}_C : \mathbb{Q}] = 2\), \(\mathbb{K}_C = \mathbb{Q}(\sqrt{3})\).

We now return to the equation
\[
p^+ = 1 + d_1^2 + (d_1 - 1)^2\theta_4 + \theta_2 d_2^2 + \theta_3 d_3^2. \tag{4.5}
\]
Multiplying this equation by \(2/d_1\), using \(p^+ = -(\theta_4 - \overline{\theta}_4)(d_1 - 1)\) and \(\theta_4 + \overline{\theta}_4 + 1 = 0\) we can reexpress equation (4.5) by
\[
0 = 2 + \text{Tr}(d_1) + 2i\text{Im}(\theta_4)(d_1 - 1/d_1) + 2\theta_2 N(d_2) + 2\theta_3 N(d_3), \tag{4.6}
\]
where \(N(d_i) = d_i^2/d_i\) for \(i = 2, 3\), and \(\text{Tr}(d_1) = d_1 + 1/d_1\). Note that \(2 + \text{Tr}(d_1), N(d_2)\) and \(N(d_3)\) are non-zero integers. Since \(\mathbb{Z}[\sqrt{3}]\) is the ring of algebraic integers in \(\mathbb{Q}(\sqrt{3})\), \(2i\text{Im}(\theta_4)(d_1 - 1/d_1)\) is also a non-zero integer. We may simply assume \(\text{ord}(\theta_2) \leq \text{ord}(\theta_4)\). By Lemma 3.6 \(\theta_2 = \pm 1\) and
\[
2 + \text{Tr}(d_1) + 2\theta_2 N(d_2) = 0.
\]
Since \(2 + \text{Tr}(d_1)\) and \(2N(d_2)\) are positive, \(\theta_2 = -1\) and \(2d_2^2 = (d_1 + 1)^2\). Thus, \(\sqrt{2} = \pm \frac{d_1 + 1}{d_2} \in \mathbb{Q}(\sqrt{3})\), a contradiction.

Therefore we must have \((\epsilon_2, \epsilon_3, \epsilon_4) = (1, -1, -1)\) and, by Lemma 3.6
\[
S = \begin{bmatrix}
1 & d_1 & d_2 & d_3 & d_4 \\
d_1 & 1 & d_2 & -d_3 & -d_4 \\
d_2 & d_2 & S_{22} & 0 & 0 \\
d_3 & -d_3 & 0 & S_{33} & S_{34} \\
d_4 & -d_4 & 0 & S_{34} & S_{44}
\end{bmatrix}.
\]

By the orthogonality of the columns of \(S\), \(S_{22} = -(d_1 + 1)\). Since \(\frac{S_{22}}{d_2}\) is fixed by \(\text{Gal}(\mathcal{C})\),
\[
n_{22} = \frac{S_{22}}{d_2} = \frac{-(d_1 + 1)}{d_2} \in \mathbb{Z}.
\]

By Lemma 3.3 the vector of FP-dimensions is in one of the first two rows, so \(d_1, d_2 > 0\) and \(n_{22} < 0\). We now apply the twist equation (2.5) for \((j, k) = (2, 0), (2, 2)\) and \((2, 3)\) to obtain
\[
p^+ d_2 = \theta_2(d_2 + \theta_1 d_1 d_2 - \theta_2 d_2(d_1 + 1)), \tag{4.7}
\]
\[
-p^+(d_1 + 1) = \theta_2^2 d_2^2 + \theta_1 d_2^2 + \theta_2(d_1 + 1)^2, \tag{4.8}
\]
\[
0 = p^+ S_{23} = \theta_2 d_3(d_2 d_3 - \theta_1 d_2 d_3). \tag{4.9}
\]

The equation (4.9) implies \(\theta_1 = 1\), and so equations (4.7), (4.8) become
\[
\frac{p^+}{d_1 + 1} = \theta_2(1 - \theta_2), \tag{4.10}
\]
\[
-\frac{p^+}{d_1 + 1} = \theta_2^2\left(\frac{2}{n_{22}^2} - 1\right) + \theta_2. \tag{4.11}
\]

Thus, \(\theta_2\) satisfies the quadratic equation
\[
\theta_2^2 + \left(\frac{2}{n_{22}^2} - 1\right) \theta_2 + 1 = 0.
\]
Since \(n_{22}\) is a negative integer, \(\frac{2}{n_{22}} - 1 \neq 0, -1, \pm 2\). Therefore, \(\theta_2 \in \mu_3\), \(n_{22} = -1\) and \(d_2 = d_1 + 1\). Moreover,
\[
p^+ = 2iIm(\theta_2)(d_1 + 1) = \pm i\sqrt{3}(d_1 + 1), \quad \text{and} \quad D^2 = 3(d_1 + 1)^2.
\]
In particular, \(D = \sqrt{3}(d_1 + 1)\). Since \(C\) is self-dual, by [27, Thm. 2.7(5)], \(\sqrt{3} \in \mathbb{K}_C\) and hence \(\mathbb{K}_C = \mathbb{Q}(\sqrt{3})\).

We now return to the equation
\[
p^+ = 1 + d_1^2 + (d_1 + 1)^2\theta_2 + \theta_3d_2^3 + \theta_4d_4^2 \tag{4.12}
\]
which can be rewritten (in a similar way as in eqn. (4.5)) as
\[
0 = -2 + \text{Tr}(d_1) + 2iIm(\theta_2)(d_1 - 1/d_1) + 2\theta_3 \frac{d_2^3}{d_1} + 2\theta_4 \frac{d_4^2}{d_1}. \tag{4.13}
\]
Without loss of generality, we may simply assume \(\text{ord}(\theta_3) \leq \text{ord}(\theta_4)\). We first prove that \(d_1 \in \mathbb{Q}\).

Suppose not. Since \(-2 + \text{Tr}(d_1), 2iIm(\theta_2)(d_1 - 1/d_1), \frac{d_2^3}{d_1}\) and \(\frac{d_4^2}{d_1}\) are non-zero integers, by Lemma 4.6, we find \(\theta_3 = \pm 1\) and
\[
-2 + \text{Tr}(d_1) + 2\theta_3 \frac{d_2^3}{d_1} = 0.
\]
Since \(-2 + \text{Tr}(d_1), \frac{d_2^3}{d_1} > 0\), \(\theta_3 = -1\) and \(2d_2^3 = (d_1 - 1)^2\). However, this implies \(\sqrt{2} = \pm \frac{d_4 - 1}{d_3} \in \mathbb{Q}(\sqrt{3})\), a contradiction. Therefore \(d_1 \in \mathbb{Q}\).

Since \(1/d_1\) is a Galois conjugate of \(d_1\), \(d_1 = 1\). Now, (4.13) becomes \(0 = \theta_3 \frac{d_2^3}{d_1} + \theta_4 \frac{d_4^2}{d_1}\) or
\[
\theta_3/\theta_4 = -\frac{d_2^3/d_1}{d_4^2/d_1} \in \mathbb{Q}.
\]
This forces \(\theta_3 = -\theta_4\) and \(d_2^3 = d_4^2\). Since
\[
12 = D^2 = 1 + 1 + 2^2 + 2d_2^3,
\]
we obtain \(d_3 = \pm \sqrt{3}\).

Suppose \(d_3 = \nu_1 \sqrt{3}\) and \(d_4 = \nu_1' \sqrt{3}\) for some signs \(\nu_1, \nu_1'\). The fusion rule \(N_{23}^3 = \nu_1 \nu_1'\) implies \(\nu_1 = \nu_1'\). It follows from the orthogonality of the \(S\)-matrix that
\[
0 = S_{33} + S_{34} = S_{34} + S_{44} = 6 + (S_{33} + S_{44})S_{34}, \quad S_{33}^2 + S_{34}^2 = 6 = S_{34}^2 + S_{44}^2.
\]

Therefore,
\[
S_{33} = S_{44} = -\nu_2 \sqrt{3}, \quad S_{34} = \nu_2 \sqrt{3}
\]
for any sign \(\nu_2\). We find
\[
S = \begin{bmatrix}
1 & 1 & 2 & \nu_1 \sqrt{3} & \nu_1 \sqrt{3} \\
1 & 1 & 2 & -\nu_1 \sqrt{3} & -\nu_1 \sqrt{3} \\
2 & 2 & -2 & 0 & 0 \\
\nu_1 \sqrt{3} & -\nu_1 \sqrt{3} & 0 & -\nu_2 \sqrt{3} & \nu_2 \sqrt{3} \\
\nu_1 \sqrt{3} & -\nu_1 \sqrt{3} & 0 & \nu_2 \sqrt{3} & -\nu_2 \sqrt{3}
\end{bmatrix}.
\]

One can check directly the four possible \(S\)-matrices of \(C\) generate the same fusion rules using the Verlinde formula. These fusion rules coincide with those of \(SU(2)_4\).
We return to the twist equation (2.5) with \((j, k) = (0, 3)\) to obtain

\[
\theta_3^2 = -\nu_2 2i \text{Im}(\theta_2)/\sqrt{3} = -\nu_2 \nu_3 i
\]

where \(\nu_3 = \pm 1\) is determined by \(\theta_2 = e^{2\pi i/3}\). One can check directly that for any \(\theta_2 \in \mu_3\) and \(\theta_3 \in \mu_8\) satisfying the above equation, the twist equation will hold for \(T = \text{diag}(1, 1, \theta_2, \theta_3, -\theta_3)\). Thus, there are 16 possible pairs of \(S\) and \(T\)-matrices for \(\mathcal{C}\).

Remark 4.8. Each of the 16 possible pairs of \(S\) and \(T\) matrices are realized. By applying a Galois automorphism we may assume \(\nu_3 = 1\), that is, \(d_i = \text{FPdim}(V_i)\) for all \(i\). Then the 8 pairs \((S, T)\) with \(\nu_1 = 1\) lead to 4 distinct modular categories after relabeling the last two objects, which all appear in [16, Example 5D].

Next we show

Proposition 4.9. If \(\mathcal{C}\) is a self-dual modular category of rank 5, then \(\text{Gal}(\mathcal{C}) \neq \mathbb{Z}_3\).

Proof. Suppose that \(\text{Gal}(\mathcal{C}) \cong \mathbb{Z}_3\) and \(\rho\) is an even level \(n\) modular representation of \(\mathcal{C}\) (cf. Remark 3.20). Since \((\mathbb{K}_C, \mathbb{Q}_n)\) is admissible, by Proposition 3.13 we have either \(7 \mid n \mid 24 \cdot 7\) or \(9 \mid n \mid 8 \cdot 9\). We will eliminate these two possibilities.

Suppose \(7 \mid n \mid 24 \cdot 7\). Then \(\rho\) has an irreducible subrepresentation \(\rho_1\) of level \(7f\) where \((7, f) = 1\) and \(7f \mid n\). Thus, \(\rho_1 \cong \xi \otimes \phi\) for some irreducible representations \(\xi\) and \(\phi\) of levels 7 and \(f\) respectively. By [13, Table 1], \(\deg \xi = 3, 4\) and hence \(\deg \phi = 1\).

If \(\deg \xi = 3\), then, by Table A.1 its \(t\)-spectrum is a subset of \(\mu_7\). This is not possible by Corollary 3.19. If \(\deg \xi = 4\), then by Table A.1 \(\xi\) is odd; this contradicts Lemma 3.21.

Now suppose \(9 \mid n \mid 8 \cdot 9\). Then \(\rho\) has an irreducible subrepresentation \(\rho_1\) of level \(9f\) where \((3, f) = 1\) and \(9f \mid n\). Thus, \(\rho_1 \cong \xi \otimes \phi\) for some irreducible representations \(\xi\) and \(\phi\) of levels 9 and \(f\) respectively. By [13, Table 2], \(\deg \xi = 4\) and hence \(\deg \phi = 1\). Thus, \(\rho \cong \phi' \oplus (\phi \otimes \xi)\) for some degree 1 representation \(\phi'\).

By Lemma 3.21 \(\xi, \phi', \phi\) are all even. Therefore, \((\phi')^* \otimes \rho \cong \chi_0 \oplus ((\phi')^* \otimes \phi \otimes \xi)\) where \(\chi_0\) is the trivial representation of \(\text{SL}(2, \mathbb{Z})\). Note that \((\phi')^* \otimes \rho\) is isomorphic to another even modular representation \(\rho'\) of \(\mathcal{C}\).

Let \(\rho_1 = ((\phi')^* \otimes \phi \otimes \xi)\). By Lemma 3.18, \(\rho_1(t)\) has an eigenvalue 1 and so \(((\phi')^* \otimes \phi)^3 = \chi_0\). Therefore, \(\rho_1\) is a level 9 irreducible representation of \(\text{SL}(2, \mathbb{Z})\). By [13, Table A3], \(\rho_1\) is isomorphic to \(R\) or \(R^*\) defined by

\[
R(s) := \frac{2}{3} \begin{bmatrix}
1 & s_5 & s_7 & s_6 \\
0 & s_5 & s_7 & -s_1 \\
0 & -s_1 & s_5 & -s_6 \\
0 & s_6 & s_6 & -s_6
\end{bmatrix}, \quad R(t) := \text{diag}(\zeta, \zeta^7, \zeta^4, 1)
\]

with \(s_j = \sin(\pi j/18)\) and \(\zeta = \exp(2\pi i/9)\). Note that \(R(s) = R^*(s)\).

Since \(\rho' \cong \rho_1 \oplus \chi_0\), \(\rho\) is of level 9 and \(\rho'(s)\) is a matrix over \(\mathbb{Q}_9\). Let \(R' = R \oplus \chi_0\). Then, there exists a permutation matrix \(P\) and a unitary matrix \(U\) such that

\[
P^{-1} \rho'(t) P^{-1} = R'(t) = \text{diag}(\omega_1, \omega_2, \omega_3, 1, 1) = U^{-1} R'(t) U,
\]

where \(\omega_1, \omega_2, \omega_3\) are distinct 9-th roots of unity. Moreover,

\[
P^{-1} \rho'(s) P^{-1} = U^{-1} R'(s) U, \quad R' \rho'(s) P^{-1} = U^{-1} R'(s) U.
\]
This implies that U is of the form

$$
\begin{bmatrix}
u_1 & 0 & 0 & 0 & 0 \\
0 & \nu_2 & 0 & 0 & 0 \\
0 & 0 & \nu_3 & 0 & 0 \\
0 & 0 & 0 & a & b \\
0 & 0 & 0 & -b & a
\end{bmatrix}
$$

where $|u_1| = |u_2| = |u_3| = 1$ and $|a|^2 + |b|^2 = 1$. We can further assume that $u_1 = 1$. Since $P\rho(s)P^{-1}$ is symmetric, u_1, u_2 are ± 1 and a, b are real. Thus, the $(1,4)$ and $(1,5)$ entries of $P\rho(s)P^{-1}$ are $\frac{a}{\sqrt{3}}$ and $\frac{b}{\sqrt{3}} \in \mathbb{Q}_9$. This implies $ab \in \mathbb{Q}_9$ and $\frac{1}{3} + \frac{2ab}{3\sqrt{3}} = (\frac{a}{\sqrt{3}} + \frac{b}{\sqrt{3}})^2 \in \mathbb{Q}_9$. Hence, $\sqrt{3} \notin \mathbb{Q}_9$ but this contradicts that the conductor of $\sqrt{3}$ is 12. \qed

Proposition 4.10. If \mathcal{C} is a self-dual non-integral modular category of rank 5 then $\text{Gal}(\mathcal{C}) \neq \mathbb{Z}_4$.

Proof. Assume to the contrary. Let ρ be a level n even modular representation of \mathcal{C} (see Remark 3.20), and $\sigma \in \text{Gal}(\mathbb{Q}_n/\mathbb{Q})$ be such that $\hat{s} = (0 1 2 3) \in \mathcal{G}_5$ is a generator of the image of $\text{Gal}(\mathcal{C})$ in \mathcal{G}_5. It follows from Proposition 3.13 that the level n of ρ satisfies one of the following cases:

(i) $5 \mid n \mid 24 \cdot 5$,

(ii) $16 \mid n \mid 3 \cdot 16$,

(iii) $32 \mid n \mid 3 \cdot 32$.

By [13, Table 7], the smallest irreducible representation of level 32 is 6-dimensional. Therefore, case (iii) is impossible.

In cases (i) and (ii) we find that $\mathbb{Z}_n^* = \text{Gal}(\mathbb{Q}_n/\mathbb{Q})$ has exponent 4, so that $\sigma^4 = \text{id}$. Applying Theorem 3.2(iii) we find that $\rho(t) = t = \text{diag}(z, \sigma^2(z), z, \sigma^2(z), w)$ where $w \in \mathbb{P}_{24}$ and z is a root of unity such that $5 \mid \text{ord}(z) \mid 24 \cdot 5$ or $16 \mid \text{ord}(z) \mid 3 \cdot 16$. By [29] ρ cannot have an irreducible subrepresentation of dimension more than 3. Moreover, ρ cannot have 1-dimensional subrepresentations: z cannot be the image of t in a 1-dimensional $\text{SL}(2, \mathbb{Z})$-representation as $z^2 \neq 1$, and by Lemma 3.18 w cannot be the image of t in a 1-dimensional representation either, since w is distinct from z and $\sigma^2(z)$.

We can therefore conclude that ρ is a direct sum of even irreducible representations ρ_2 and ρ_3 of degrees 2 and 3 respectively. The corresponding partition of the t-spectrum of ρ is $\{(z, \sigma^2(z)), \{z, \sigma^2(z), w\}\}$. In particular, the levels of these representations are multiple of $\text{ord}(z)$. If $16 \mid n \mid 48$, then $16 \mid \text{ord}(z)$ and there must be an irreducible representation of level 16 and 2. By Table A.1 this is not possible and we conclude that $5 \mid n \mid 24 \cdot 5$.

The representation $\rho_3 \cong \psi \otimes \chi$ for some irreducible representations ψ of degree 3 and level 5, and χ of degree 1. By Table A.1 ψ is even, and so must be χ. Thus, the spectrum of $\rho_3(t)$ is $\{w\zeta, w/\zeta, w\}$ for some $\zeta \in \mu_5$ and $w \in \mathbb{P}_6$. This forces the t-spectrum of ρ_2 to $\{w\zeta, w/\zeta\}$ and so $\rho_2 \cong \psi' \otimes \chi$ for some irreducible representations ψ' of degree 2 and level 5. By Table A.1, ψ' is odd, and so must be ρ_2. This contradicts that ρ is even. \qed

Proposition 4.11. If \mathcal{C} is a self-dual non-integral modular category of rank 5 then $\text{Gal}(\mathcal{C}) \neq \langle (0 1), (2 3) \rangle$

Proof. Suppose $\text{Gal}(\mathcal{C}) = \langle \sigma, \tau \rangle$ such that $\hat{s} = (0 1)$ and $\hat{\tau} = (2 3)$. For notational convenience we set $\delta_i = \epsilon_\tau(i)$ and $\epsilon_i = \epsilon_\sigma(i)$. Galois symmetry (with respect to σ) applied to $S_{i,(i+1)}$ gives
us the following condition for each $i \geq 2$: either $S_{i,(i+1)} = 0$ or $e_i = e_{i+1}$. Similarly, Galois symmetry with respect to τ applied to $S_{0i} = d_i$ gives us: $\delta_0 = \delta_1 = d_4$ and $\delta_2 = \delta_3$. With this in mind we set $e_1 = e_0 e_2$, $e_2 = e_0 e_3$, $e_3 = e_0 e_4$ and $a = \delta_0 \delta_2$. Applying σ and τ we obtain:

\[
S = \begin{bmatrix}
1 & d_1 & d_2 & ad_2 & d_4 \\
d_1 & 1 & e_1 d_2 & e_2 ad_2 & e_3 d_4 \\
ed_2 & e_1 d_2 & S_{22} & S_{23} & S_{24} \\
ad_2 & e_2 ad_2 & S_{23} & S_{22} & aS_{24} \\
d_4 & e_3 d_4 & S_{24} & aS_{24} & S_{44}
\end{bmatrix}.
\]

Since $\sigma(d_2) = e_1 d_2/d_1 = e_2 d_2/d_1$ we immediately see that $e_2 = e_1$. Orthogonality then implies that either $S_{24} = 0$ or $e_1 = e_3$, and

\[
\{d_1 + 1/d_1, d_2^2/d_1, d_4^2/d_1, (S_{22} + a S_{23})/d_2, S_{22} S_{23}/d_2^2\} \subset \mathbb{Z}.
\]

We claim that $S_{24} = 0$. If $e_i = 1$ for all i then orthogonality of the first two rows gives: $2 = -2d_2^2/d_1 - d_4^2/d_1$ with d_1 negative. If $e_i = -1$ for each i then orthogonality of the first two rows gives us: $2 = 2d_2^2/d_1 + d_4^2/d_1$. In either case, we have: $2 = 2x + y$ for some $x, y \geq 1$, which is absurd.

So we may assume that $S_{24} = 0$ and $-e_3 = e_1 = e_2$. In particular, the FP-dimension must be one of the first two rows. Therefore, $a = 1$ and $d_1 > 0$. Orthogonality now implies:

\[
\begin{align*}
1 + e_3 &= 0, \\
1 + e_1 d_1 + S_{22} + S_{23} &= 0, \\
1 + e_3 d_1 + S_{44} &= 0.
\end{align*}
\]

Thus $e_2 = e_1 = 1 = -e_3$, $S_{44} = d_1 - 1$ and $1 + d_1 + S_{22} + S_{23} = 0$. Note that this implies $M = (1 + d_1)/d_2 \in \mathbb{Z}$.

Using the twist equation \([2.5]\) we proceed as in the proof of Proposition \([4.7]\) to obtain: $d_4 = \pm (d_1 - 1)$, $p^+ = \pm i \sqrt{3}(d_1 - 1)$ and $p^+/p^- = -1$ and $\theta_4 \in \mu_3$. Thus, we have

\[
p^+ + p^- = 2(1 + d_1^2) + 2d_1^2 Re(\theta_2 + \theta_3) - (d_1 - 1)^2 = 0
\]

or $2Re(\theta_2 + \theta_3) = -M^2$. Setting $N = d_4^2/d_1$, we obtain the Diophantine equation $(M^2 - 2)N = 6$ from orthogonality of the first two rows (i.e. $d_1^2 - 4d_1 + 1 = 2d_4^2$). Since each of M and N are positive integers we obtain $(M, N) = (2, 3)$ as the only solution. Therefore, $Re(\theta_2 + \theta_3) = -2$. Hence $\theta_2 = \theta_3 = -1$, and $\mathbb{F}_T = \mathbb{Q}_3$. However, we also find $d_1 = 5 + 2\sqrt{6} \not\in \mathbb{Q}_3$ which contradicts Theorem \([2.3]\) \(\Box\)

Two cases remain: either $\text{Gal}(C)$ is generated by $\sigma = (0 \ 1 \ 2 \ 3)$, or contains $\hat{\sigma}$ and is isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$ acting transitively on $\{0, 1, 2, 3\}$ fixing the label 4. In either case, $\exp(\text{Gal}(C)) = 2$ so \mathbb{K}_C is a multi-quadratic extension of \mathbb{Q}.

Proposition 4.12. There is no self-dual non-integral modular category \mathcal{C} of rank 5 such that every non-trivial element of $\text{Gal}(\mathcal{C})$ is a product of two disjoint transpositions.

Proof. In the following series of reductions, we will show that $\text{FSExp}(\mathcal{C})$ can only be $2, 3, 4, 6$. In particular, \mathcal{C} is integral by \([3, \text{Thm. 3.1}]\), a contradiction.

Let ρ be an even modular representation of \mathcal{C} of level n. Without loss of generality we may assume that $\hat{\sigma} = (0 \ 1)(2 \ 3) \in \text{Gal}(\mathcal{C})$ for some $\sigma \in \text{Gal}(\mathbb{Q}_n/\mathbb{Q})$. By Theorem \([2.5]\) (Galois
symmetry),
\[\rho(t) = t = \text{diag}(t_0, \sigma^2(t_0), t_2, \sigma^2(t_2), t_4). \]
Moreover, \(s = \rho(s) \) is a real symmetric matrix in \(GL(5, \mathbb{Q}_n) \) of order 2. Since \(\tau^2(t_4) = t_{\overline{4}} = t_4 \) and \(\tau(s_{44}/s_{04}) = s_{44}/s_{04} \) for all \(\tau \in \text{Aut}(\mathbb{Q}_{ab}) \), \(t_4 \in \mathbb{F}_{24} \) and \(s_{44}/s_{04} \in \mathbb{Z} \) for all \(i = 0, \ldots, 4 \).

By Corollary 3.14, \(n \mid 240 \). We first show that \(n \mid 48 \), i.e., \(5 \nmid n \).

Suppose \(5 \mid n \). Then \(\rho \cong (\xi_5 \otimes \chi) \oplus \rho_1 \) where \(\rho_1 \) is an even subrepresentation of \(\rho \), \(\xi_5 \) and \(\chi \) are irreducible representations of \(SL(2, \mathbb{Z}/5\mathbb{Z}) \) and \(SL(2, \mathbb{Z}/4\mathbb{Z}) \) respectively, and \(\xi_5 \) is of level 5. Since \(\deg \xi_5 \geq 2 \), \(\deg \chi \leq 2 \). However, if \(\deg \chi = 2 \), then \(\deg \xi_5 = 2 \) and \(\deg \rho_1 = 1 \). By Table A.1, the t-spectrum of \(\xi_5 \) is \(\{ \zeta, \overline{\zeta} \} \) for some \(\zeta \in \mu_5 \). Thus the orders of the eigenvalues of \(\xi_5 \otimes \chi \) are multiple of 5, and so the t-spectra of \(\xi_5 \otimes \chi \) and \(\rho_1 \) are disjoint; this contradicts Lemma 3.18.

Therefore, \(\chi \) is linear.

Now, we set \(\rho' \) be the modular representation of \(\mathcal{C} \) equivalent to \(\chi^{-1} \otimes \rho \) and \(\rho'_1 = \chi^{-1} \otimes \rho_1 \). Then \(\rho' \cong \xi_5 \otimes \rho'_1 \).

If \(\deg \xi_5 = 5 \), then \(\xi_5 \cong \rho'_1 \), but this contradicts Lemma 3.25. Therefore, \(\deg \xi_5 < 5 \).

If \(\deg \xi_5 = 4 \), then the t-spectrum of \(\xi_5 \) is equal to \(\mu_5 \) but \(\rho'_1 \) is linear. Thus, \(\xi_5 \) and \(\rho'_1 \) have disjoint t-spectra. Therefore, \(\deg \xi_5 = 4 \) is not possible.

If \(\deg \xi_5 = 3 \), then \(\xi_5 \) is odd and the t-spectrum of \(\xi_5 \) is \(\{ \omega, \overline{\omega} \} \) for some \(\omega \in \mu_5 \). Thus, \(\chi \) is odd and so are \(\rho' \) and \(\rho'_1 \). If \(\rho'_1 \) is reducible, then \(\rho'_1 \cong \rho'_2 \oplus \rho'_3 \) for some representations \(\rho'_2 \) and \(\rho'_3 \). We may assume \(\deg \rho'_3 = 1 \). By Lemma 3.18, the t-spectrum of \(\rho'_2 \) must contain \(\omega \) or \(\overline{\omega} \). Therefore, \(\rho' \) is also irreducible and has the same t-spectrum \(\xi_5 \). However, this means \(\rho'_3 \) and \(\xi_5 \otimes \rho'_2 \) have disjoint t-spectra. Therefore, \(\rho_1 \) must be irreducible and the t-spectra of \(\rho'_1 \) and \(\xi_5 \) are not disjoint. This implies \(\rho'_1 \) is of level 5, and it must be even, a contradiction. Therefore, \(\deg \xi_5 \neq 2 \).

If \(\deg \xi_5 = 3 \), then \(\xi_5 \) is even and so are \(\chi \) and \(\rho' \). We may assume \(\rho \cong \xi_5 \oplus \rho_1 \) by replacing \(\rho \) with \(\rho' \) if necessary. The t-spectrum of \(\xi_5 \) is \(\{ \omega, \overline{\omega}, 1 \} \) for some \(\omega \in \mu_5 \).

If \(\rho_1 \) is reducible, then \(\rho_1 \) is a direct sum \(\chi_1 \oplus \chi_2 \) of linear characters. In view of Lemma 3.18, both of \(\chi_1 \) and \(\chi_2 \) are the trivial character and so \(\rho \) is of level 5. If \(\rho_1 \) is irreducible, then the t-spectrum of \(\rho_1 \) cannot contain \(\omega \) or \(\overline{\omega} \) for otherwise \(\rho_1 \) is the level 5 degree 2 irreducible representation which is odd. Thus, 1 is an eigenvalue of \(\rho_1(t) \) and so \(\rho_1 \) is the level 2 degree 2 irreducible representation with t-spectrum \(\{ 1, -1 \} \). In particular, \(\rho \) is of level 10. Hence, by (4.17), we find
\[\rho(t) = t = \text{diag}(\omega, \overline{\omega}, 1, 1, \pm 1) \text{ or } \text{diag}(1, 1, \omega, \overline{\omega}, \pm 1) \]
for both cases of \(\rho_1 \). Moreover, \(\mathbb{F}_t = \mathbb{Q}_5 \) and \(\mathbb{F}_s \) is a real subfield of \(\mathbb{F}_t \). Therefore, \(\mathbb{F}_s = \mathbb{Q}(\sqrt{5}) \).

Since both generators of \(\text{Gal}(\mathbb{Q}_5/\mathbb{Q}) \) have the same non-trivial restriction on \(\mathbb{Q}(\sqrt{5}) \), we can assume \(\sigma : \omega \mapsto \omega^2 \) and \(\tilde{\sigma} = (0, 1)(2, 3) \). By the twist equation (2.25), we find
\[s_{44} = s_{04}^2t_0 + s_{14}^2t_1 + s_{24}^2t_2 + s_{34}t_3 + s_{44}^2t_4. \]
(4.18)

Note that \(s_{24}^2 \) is fixed by \(\sigma \) for all \(i \), and \(s_{24}^2 = s_{34}^2, s_{04}^2 = s_{14}^2 \). By applying \(\sigma \) to (4.18),
\[\sigma(s_{44}) = \epsilon_\sigma(4)s_{44}, \quad \sigma(s_{44}) = s_{44}^2t_0^2 + s_{14}^2t_1^2 + s_{24}^2t_2^2 + s_{34}t_3^2 + s_{44}^2t_4. \]
(4.19)

These equations imply
\[(1 - \epsilon_\sigma(4))s_{44} = s_{44}^2((t_0 + t_1) - (t_0^2 + t_1^2)) + s_{24}^2(t_2 + t_3 - (t_2^2 + t_3^2)). \]
(4.20)
If \(t = \text{diag}(\omega, \overline{\omega}, 1, \pm 1) \), then \((1 - \epsilon_\sigma(4))s_{44} = s_{40}^2(\omega + \omega^4) - (\omega^2 + \omega^3)\). Since the right hand side of this equation is non-zero, \(s_{44} \neq 0 \) and \(\epsilon_\sigma(4) = -1 \). Thus, we obtain
\[
0 = s_{40}^2(\omega + \omega^4 + \omega^2 + \omega^3) + 4s_{24}^2 + 2s_{44}^2t_4
= -s_{40}^2 + 4s_{24}^2 + 2s_{44}^2t_4
\]
and hence
\[
1 = 2 \left(\frac{s_{24}^2}{s_{04}} + \frac{s_{44}^2}{s_{04}}t_4 \right).
\]
Since \(s_{34}/s_{04} \in \mathbb{Z} \) for all \(i \), we find \(2 \mid 1 \), a contradiction. Therefore, \(t = \text{diag}(1, 1, \omega, \overline{\omega}, \pm 1) \) and the equation (4.20) becomes
\[
(1 - \epsilon_\sigma(4))s_{44} = s_{40}^2((\omega + \omega^4) - (\omega^2 + \omega^3)).
\]

If \(s_{24} \neq 0 \), then \(s_{44} \neq 0 \) and \(\epsilon_\sigma(4) = -1 \). By the same argument
\[
\left(\frac{s_{24}}{s_{04}} \right)^2 = 4 + 2 \left(\frac{s_{44}}{s_{04}} \right)^2 t_4.
\]
The integral equation forces \(t_4 = 1 \) and so \(s_{24}^2/2 = 2s_{04}^2 + s_{44}^2 \). By the unitarity of \(s \), we also have
\[
1 = 2s_{24}^2 + 2s_{04}^2 + s_{44}^2 = \frac{5}{2}s_{24}^2.
\]
This implies \(s_{24} = \pm \sqrt{\frac{2}{5}} \in \mathbb{Q}(\sqrt{5}) \) and hence \(\sqrt{2} \in \mathbb{Q}(\sqrt{5}) \), a contradiction. Therefore, \(s_{24} = 0 \) and hence \(s_{34} = 0 \). Now, the equation (4.18) becomes \(s_{44} = 2s_{04}^2 + s_{24}^2t_4 \). In particular, the integer \(s_{44}/s_{04} \) is a root of \(t_4X^2 - X + 2 = 0 \). This forces \(t_4 = -1 \) and \(s_{44}/s_{04} = 1 \) or \(-2\). By the unitarity of \(s \) again, \(1 = 3s_{04}^2 \) or \(1 = 6s_{04}^2 \). Both equations imply \(\sqrt{3} \in \mathbb{Q}(\sqrt{5}) \), a contradiction. Now, we can conclude that \(5 \nmid n \), so that \(n \nmid 48 \).

Next we show that \(n \mid 24 \), i.e. \(16 \nmid n \).

Suppose to the contrary that \(16 \mid n \). Then \(\rho \cong (\xi_{16} \otimes \chi) \oplus \rho_1 \) for some subrepresentation \(\rho_1 \) of \(\rho \), an irreducible representations \(\xi_{16} \) of level 16, and an irreducible representation \(\chi \) of \(SL(2, \mathbb{Z}/3\mathbb{Z}) \). Then \(\deg \xi_{16} = 3 \), and \(\deg \chi = 1 \) and hence they are both even. By tensoring with \(\chi^{-1} \), we may assume \(\rho \cong \xi_{16} \oplus \rho_1 \) for some even subrepresentation \(\rho_1 \) of \(\rho \). The t-spectrum of \(\xi_{16} \) is \(\{ \omega, -\omega, \gamma \} \) for some \(\omega \in \mu_16 \) and \(\gamma \in \mu_8 \). Since \(\deg \rho_1 = 2 \), the level of \(\rho_1 \) cannot be 16 and so \(\pm \omega \) are not in the t-spectrum of \(\rho_1 \). Therefore, \(\gamma \) must be an eigenvalue of \(\rho_1(t) \) and hence \(\rho_1 \) is an irreducible representation of level 8. Thus, the t-spectrum of \(\rho_1 \) is \(\{ \gamma, -\gamma \} \) (cf. Table A.1). In particular, \(\rho \) is of level \(n = 16 \). In view of (1.17),
\[
\rho(t) = t = \text{diag}(\gamma, \gamma, \omega, -\omega, -\gamma) \text{ or } \text{diag}(\omega, -\omega, \gamma, -\gamma).
\]

By the (2.5), we find
\[
s_{44} = \sigma^2(s_{04}^2t_0 + s_{14}^2t_1 + s_{24}^2t_2 + s_{34}^2t_3 - s_{44}^2) \\
= s_{04}^2(t_0 + t_1) + s_{24}^2(t_2 + t_3) + s_{44}^2\gamma.
\]

If \(t = \text{diag}(\gamma, \gamma, \omega, -\omega, -\gamma) \), then \(s_{44} = 2s_{04}^2\gamma + s_{44}^2\gamma \). The imaginary parts of both sides of this equation imply \(2s_{04}^2 = s_{44}^2 \). Therefore, \(s_{44}/s_{04} = \pm \sqrt{2} \) is not an integer, a contradiction.

If \(t = \text{diag}(\omega, -\omega, \gamma, \gamma', \gamma) \), then \(s_{44} = 2s_{04}^2\gamma + s_{44}^2\gamma \). If \(s_{24} \neq 0 \), then by the same argument as the preceding case we will arrive the conclusion that \(s_{44}/s_{24} \notin \mathbb{Q} \). However, this is absurd as
both s_{04} and s_{04} are integers. Therefore, $s_{24} = 0$ and hence $s_{34} = s_{44}$. Orthogonality of s and the action σ imply

$$s_{04} = \pm \frac{1}{\sqrt{2}}, \quad s_{14} = -\epsilon_\sigma(0)s_{04}, \quad s_{1j} = \epsilon_\sigma(0)s_{0j}$$

for $j = 0, \ldots, 3$. In particular, $s_{12}^2 = s_{02}^2$. Consider the twist equation

$$s_{22} = \gamma^2(s_{20}^2\omega - s_{21}^2\omega + (s_{22}^2 + s_{23}^2)\gamma) = (s_{22}^2 + s_{23}^2)\gamma^3.$$

This implies $s_{22} = s_{23} = 0$ and hence $s_{33} = 0$. Consequently, the third and the fourth rows of s are multiples of $(1, \epsilon_\sigma(0), 0, 0, 0)$. This contradicts that s is invertible.

Next we show that $n \mid 12$, i.e. $8 \nmid n$. In particular $\text{Gal}(\mathbb{C}) \cong \mathbb{Z}/2$.

Since $n \mid 24$, $\text{Gal}(\mathbb{Q}_n/\mathbb{Q})$ has exponent 2. Galois symmetry and (4.17) imply

$$t = \text{diag}(t_0, t_0, t_2, t_2, t_4).$$

(4.21)

In particular, t has at most 3 distinct eigenvalues. By [29], every irreducible subrepresentation of ρ has degree ≤ 3. Thus, if $\xi \otimes \chi$ is isomorphic to an irreducible subrepresentation of ρ for some representations ξ, χ of $\text{SL}(2, \mathbb{Z})$, then ξ or χ must be linear.

Suppose that $8 \mid n$. Then $\rho \cong (\xi_8 \otimes \chi) \oplus \rho_1$ for some representations ξ_8, χ and ρ_1 of $\text{SL}(2, \mathbb{Z})$ such that ξ_8 is irreducible of level 8, χ is irreducible of level 1 or 3, and ρ_1 is even. Since $\deg \xi_8 \geq 2$, $\deg \chi = 1$. Therefore, χ is even, and so is ξ_8. By tensoring with χ^{-1}, we may assume $\rho \cong \xi_8 \oplus \rho_1$.

Suppose $\deg \xi_8 = 3$. Then the eigenvalues of $\xi_8(t)$ are $\{\omega, -\omega, \gamma\}$ for some $\omega \in \mu_8$ and $\gamma \in \mu_4$ (cf. Table A.1). In view of (4.21), the t-spectrum of ρ_1 is $\{\omega, -\omega\}$. In particular, $\det \rho_1(t) = \pm i$ which contradicts that ρ_1 is even (cf. Remark 3.20). Therefore, $\deg \xi_8 = 2$, and the t-spectrum of ξ_8 is $\{\gamma, -\bar{\gamma}\}$ for some $\gamma \in \mu_8$. Since $\rho_1(t)$ and ξ_8 must have a common eigenvalue, the level of ρ_1 is also a multiple of 8. By the preceding argument, $\rho_1 = \xi_8' \oplus \rho_2$ for some degree 2 irreducible representation of level 8, ξ_8', and a degree 1 even representation ρ_2. However, ρ_2 and $\xi_8 \oplus \xi_8'$ have disjoint t-spectra, a contradiction. Therefore, $n \nmid 12$

Finally we will show that the Frobenius-Schur exponent N must be 2, 3, 4 or 6. Since $N \mid n \mid 12$, it is enough to show $4 \nmid n$.

Suppose $4 \mid n$. We claim that ρ admits a subrepresentation isomorphic to $\xi_4 \otimes \chi$ for some irreducible representations ξ_4 of level 4 and degree > 1 and $\chi \in \text{Rep}(\text{SL}(2, \mathbb{Z}/3\mathbb{Z}))$. Assume the contrary. Since any linear subrepresentation of ρ can only have a level dividing 6, ρ admits an irreducible subrepresentation ρ' of degree > 1 and level a multiple of 4. Then $\rho' \cong \xi_4 \otimes \chi$ for some level 4 degree 1 representation ξ_4 and an irreducible representation $\chi \in \text{Rep}(\text{SL}(2, \mathbb{Z}/3\mathbb{Z}))$. Then χ must be odd since ξ_4 is odd. This forces χ to be of level 3 and degree 2. In particular, ρ' is of level 12 and the t-spectrum of ρ' is a subset of μ_{4*}. Now, $\rho \cong \rho' \oplus \rho_1$ for some even representation ρ_1 of degree 3. By Lemma 3.13 the level of ρ_1 is also a multiple of 4. Following the same reason, ρ_1 admits a degree 2 level 12 even irreducible subrepresentation ρ'' with its t-spectrum a subset of μ_{4*}. Now, $\rho \cong \rho' \oplus \rho'' \oplus \rho_2$ for some degree 1 even representation ρ_2. However, ρ_2 and $\rho' \oplus \rho''$ have disjoint t-spectra, a contradiction. This completes the proof. \square
A Irreducible Representations of Degree \(\leq 4 \)

The 12 degree one representations \(C_j \) of \(\text{SL}(2, \mathbb{Z}) \), \(j = 0, 1, \ldots, 11 \) are defined by \(C_j(z) = e^{2\pi i j/12} \). Thus, \(C_j \) is even if, and only if, \(j \) is even which is equivalent to the fact that \(\text{ord}(C_j) | 6 \). The \(\tau \)-spectra of irreducible representations of degree \(\leq 4 \) and of level \(p^\lambda \) are illustrated in the following table.

degree	parity	level	\(\tau \)-spectra
2	even	2	\{1, -1\}
	odd	3	\{e^{2\pi i/3}, e^{-2\pi (r+1)i/3}\}, \(r = 0, 1, 2 \)
	odd	4	\{i, -i\}
	odd	5	\{e^{2\pi i/5}, e^{-2\pi i/5}\}, \{e^{4\pi i/5}, e^{-4\pi i/5}\}
	even	6	\{e^{3\pi i/4}, e^{\pi i/4}\}, \{e^{3\pi i/4}, e^{\pi i/4}\}
	odd	7	\{e^{3\pi i/4}, e^{5\pi i/4}\}, \{e^{7\pi i/4}, e^{\pi i/4}\}
3	even	3	\{e^{2\pi i(r+1)/3}, e^{2\pi i(r+2)/3}, e^{2\pi i/3}\}, \(r = 0, 1, 2 \)
	odd	4	\{i, -1, 1\}, \{i, 1, -1\}
	even	5	\{1, e^{2\pi i/5}, e^{-2\pi i/5}\}, \(r = 1, 2 \)
	even	6	\{e^{4\pi i/7}, e^{2\pi i/7}, e^{8\pi i/7}\}, \{e^{-4\pi i/7}, e^{-2\pi i/7}, e^{-8\pi i/7}\}
	odd	8	\{1, e^{\pi i/4}, -e^{\pi i/4}\}, \{1, e^{-\pi i/4}, e^{\pi i/4}\}
	even	8	\{i, e^{\pi i/4}, e^{-\pi i/4}\}, \{1, e^{3\pi i/4}, e^{-3\pi i/4}\}
	odd	16	\{e^{\pi i/4}, e^{\pi i/8}, e^{-\pi i/8}\}, \{e^{\pi i/4}, -e^{\pi i/8}, e^{\pi i/8}\}
	even	16	\{e^{3\pi i/4}, e^{5\pi i/8}, e^{-3\pi i/8}\}, \{e^{3\pi i/4}, -e^{3\pi i/8}, e^{5\pi i/8}\}
4	odd	5	\{e^{2\pi i/5}, e^{4\pi i/5}, e^{6\pi i/5}, e^{8\pi i/5}\}
	even	5	\{e^{2\pi i/5}, e^{4\pi i/5}, e^{6\pi i/5}, e^{8\pi i/5}\}
	odd	7	\{1, e^{2\pi i/7}, e^{8\pi i/7}, e^{4\pi i/7}\}
	odd	7	\{1, e^{2\pi i/7}, e^{8\pi i/7}, e^{4\pi i/7}\}
	odd	8	\{e^{\pi i/4}, e^{3\pi i/4}, e^{5\pi i/4}, e^{7\pi i/4}\}
	even	8	\{e^{\pi i/4}, e^{3\pi i/4}, e^{5\pi i/4}, e^{7\pi i/4}\}
	odd	9	\{e^{2\pi i(1/5 + 1/7)}, e^{2\pi i(1/5 + 1/7)}, e^{2\pi i(1/5 + 1/7)}\}, \(r = 0, 1, 2 \)
	even	9	\{e^{2\pi i(1/5 + 1/7)}, e^{2\pi i(1/5 + 1/7)}, e^{2\pi i(1/5 + 1/7)}\}, \(r = 0, 1, 2 \)
References

[1] B. Bakalov and A. Kirillov Jr. *Lectures on Tensor Categories and Modular Functors*. Vol. 21. University Lecture Series. Amer. Math. Soc., 2001.

[2] P. Bantay. “The Kernel of the Modular Representation and the Galois Action in RCFT”. In: *Comm. Math. Phys.* 233 (3 2003), pp. 423–438.

[3] J. de Boer and J. Goeree. “Markov Traces and II_1 Factors in Conformal Field Theory”. In: *Commun. Math. Phys.* 139 (1991), pp. 267–304.

[4] P.Bruillard. “Rank 4 Premodular Categories”. In: (). eprint: arXiv:1204.4836.

[5] P. Bruillard and E. Rowell. “Modular Categories, Integrality and Egyptian Fractions”. In: *Proc. Amer. Math. Soc.* 140.4 (2012), pp. 1141–1150.

[6] P. Bruillard, S.-H. Ng, E. C. Rowell, and Z. Wang. “Rank-finiteness for modular categories”. In: *J. Amer. Math. Soc.* to appear (2012). DOI: 10.1090/jams/842 eprint: arXiv:1310.7050.

[7] F. J. Burnell, X. Chen, L. Fidowski, and A. Vishwanath. “Exactly Soluble Models of a 3D Symmetry Protected Topological Phase of Bosons with Surface Topological Order”. In: (2013). eprint: arXiv:1302.7072v1[cond-mat.str-el].

[8] J. M. Burns and B. Goldsmith. “Maximal Order Abelian Subgroups of Symmetric Groups”. In: *Bull. London Math. Soc.* 21 (1980), pp. 70–72.

[9] J. H. Conway and A. J. Jones. “Trigonometric Diophantine equations (On vanishing sums of roots of unity)”. In: *Acta Arith.* 30.3 (1976), pp. 229–240. ISSN: 0065-1036.

[10] A. Coste and T. Gannon. “Remarks on Galois symmetry in rational conformal field theories”. In: *Phys. Lett. B* 323.3-4 (1994), pp. 316–321. ISSN: 0370-2693.

[11] C. Dong, X. Lin, and S.-H. Ng. “Congruence Property in Conformal Field Theory”. In: *Algebra Number Theory* 9.9 (2015), 2121–2166. DOI: 10.2140/ant.2015.9.2121 eprint: arXiv:1201.6644.

[12] W. Eholzer. “Fusion algebras induced by representations of the modular group”. In: *Internat. J. Modern Phys. A* 8.20 (1993), pp. 3495–3507. ISSN: 0217-751X. DOI: 10.1142/S0217751X93001405 URL: http://dx.doi.org/10.1142/S0217751X93001405.

[13] W. Eholzer. “On the Classification of Modular Fusion Algebras”. In: *Comm. Math. Phys.* 172.3 (1995), pp. 623–659.

[14] P. Etingof, D. Nikshych, and V. Ostrik. “On Fusion Categories”. In: *Ann. of Math.* 162.2 (2005), pp. 581–642.

[15] D. E. Evans and Y. Kawahigashi. *Quantum symmetries on operator algebras*. Oxford Mathematical Monographs. Oxford Science Publications. New York: The Clarendon Press Oxford University Press, 1998, pp. xvi+829. ISBN: 0-19-851175-2.

[16] S. Gelaki, D. Naidu, and D. Nikshych. “Centers of Graded Fusion Categories”. In: *Algebra Number Theory* 3.8 (2009), pp. 959–990.

[17] S.-M. Hong and E. Rowell. “On the Classification of the Grothendieck Rings of Non-Self Dual Modular Categories”. In: *J. Algebra* 324.5 (2010), pp. 1000–1015.

[18] S.-M. Hong, E. Rowell, and Z. Wang. “On Exotic Modular Tensor Categories”. In: *Commun. Contemp. Math.* 10.1 (2008), pp. 1049–1074.

[19] Y.-Z. Huang. “Vertex operator algebras, the Verlinde conjecture, and modular tensor categories”. In: *Proc. Natl. Acad. Sci. USA* 102.15 (2005), 5352–5356 (electronic). ISSN: 1091-6490. DOI: 10.1073/pnas.0409901102 URL: http://dx.doi.org/10.1073/pnas.0409901102.

[20] D. Kazhdan and H. Wenzl. “Reconstructing monoidal categories”. In: *Adv. in Soviet Math.* 16 (1993), pp. 111–136.

30
[21] F. Liu, Z. Wang, Y.-Z. You, and X.-G. Wen. “Quantum fidelity, modular transformations, and topological orders in two dimensions”. In: (2013). eprint: arXiv:1303.0829.

[22] G. Moore and N. Seiberg. “Classical and quantum conformal field theory”. In: Comm. Math. Phys. 123.2 (1989), pp. 177–254. ISSN: 0010-3616. URL: http://projecteuclid.org/getRecord?id=euclid.cmp/1104178762.

[23] M. Müger. “From Subfactors to Categories and Topology II: The Quantum Doubles of Tensor Categories and Subfactors”. In: J. Pure Appl. Algebra 180.1–2 (2003), pp. 159–219.

[24] S.-H. Ng and P. Schauenburg. “Congruence Subgroups and Generalized Frobenius-Schur Indicators”. In: Comm. Math. Phys. 300.1 (2010), pp. 1–46.

[25] S.-H. Ng and P. Schauenburg. “Frobenius-Schur Indicators and Exponents of Spherical Categories”. In: Adv. Math. 211.1 (2007), pp. 34–71.

[26] S.-H. Ng and P. Schauenburg. “Higher Frobenius-Schur indicators for pivotal categories”. In: Hopf algebras and generalizations. Vol. 441. Contemp. Math. Providence, RI: Amer. Math. Soc., 2007, pp. 63–90.

[27] E. Rowell, R. Stong, and Z. Wang. “On Classification of Modular Tensor Categories”. In: Comm. Math. Phys. 292.2 (2009), pp. 343–389.

[28] E. C. Rowell. “From Quantum Groups to Unitary Modular Tensor Categories”. In: Contemp. Math. 413 (2006).

[29] I. Tuba and H. Wenzl. “Representations of the braid group B_3 and SL(2, Z)”. In: Pacific J. Math. 197 (2001), pp. 491–510.

[30] V. Turaev. Quantum Invariants of Knots and 3-Manifolds. De Gruyter Studies in Mathematics. Walter de Gruyter, 1994.

[31] C. Vafa. “Toward classification of conformal theories”. In: Phys. Lett. B 206.3 (1988), pp. 421–426. ISSN: 0370-2693.

[32] K. Walker and Z. Wang. “(3+1)-TQFTS and Topological Insulators”. In: Front. Phys. 7.2 (2012), pp. 150–159.

[33] Z. Wang. “Quantum Computing: A Quantum Group Approach”. In: Symmetries and groups in contemporary physics—Proceedings of the XXIX International Colloquium on Group-Theoretical Methods in Physics. Tianjin, China, 2012, pp. 41–50.

[34] Z. Wang. Topological Quantum Computation. CBMS Regional Conference Series in Mathematics 112. Amer. Mathematical Society, 2010.

E-mail address: pjb2357@gmail.com

Department of Mathematics, Texas A&M University, College Station, TX U.S.A.

Current address: Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA U.S.A

E-mail address: rng@math.lsu.edu

Department of Mathematics, Louisiana State University, Baton Rouge, LA U.S.A.

E-mail address: rowell@math.tamu.edu

Department of Mathematics, Texas A&M University, College Station, TX U.S.A.

E-mail address: zhenghwa@microsoft.com
