Supporting Information for

Parker Solar Probe observations of solar wind energetic proton beams produced by magnetic reconnection in the near-Sun heliospheric current sheet

T. D. Phan1, J. L. Verniero2, D. Larson1, B. Lavraud3,4, J. F. Drake5, M. Øieroset1, J. P. Eastwood6, S. D. Bale1,7, R. Livi1, J. S. Halekas8, P. L. Whittlesey1, A. Rahmati1, D. Stansby9, M. Pulupa1, R. J. MacDowall2, P. A. Szabo2, A. Koval2,10, M. Desai11, S. A. Fuselier11, M. Velli12, M. Hesse13, P. S. Pyakure1, K. Maheshwari1, J. C. Kasper14, J. M. Stevens15, A. W. Case15, and N. E. Raouafi16

1SSL, University of California, Berkeley, CA 94720, USA; \url{phan@ssl.berkeley.edu}

2NASA Goddard Space Flight Center, Greenbelt, MD, USA

3Laboratoire d'Astrophysique de Bordeaux, Univ. Bordeaux, France

4IRAP, CNRS, CNES, Université de Toulouse, France

5University of Maryland, College Park, MD, USA

6The Blackett Laboratory, Imperial College London, London, UK

7Physics Department, University of California, Berkeley, CA 94720-7300, USA

8University of Iowa, Iowa City, IA 52242, USA

9Mullard Space Science Laboratory, University College London, Dorking, UK

10University of Maryland, Baltimore County, Baltimore, MD, USA

11Southwest Research Institute, San Antonio TX, USA

12University of California, Los Angeles, Los Angeles, CA, US

13NASA Ames Research Center, Mountain View, CA, USA

14Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI, USA
Current Sheet Coordinate System

The data in this paper is displayed in the RTN coordinate system for simplicity, because it is extremely close to the current sheet coordinate system. Here we provide details of the determination of the current sheet XYZ coordinate system for Encounters 07 and 08.

The current sheet normal points along Z, X along the anti-parallel magnetic field direction and $Y = Z \times X$ in the out-of-plane (‘X-line’) direction. The XYZ coordinates for E08 were determined using the minimum variance analysis of the magnetic field (Sonnerup and Cahill, 1967) on the interval 2021-04-29/08:13:32 - 2021-04-29/08:28:56 UT, obtaining $X = (0.991, 0.041, 0.127)_{RTN}$, $Y = (-0.043, 0.999, -0.013)_{RTN}$ and $Z = (-0.126, -0.019, 0.992)_{RTN}$.

For E07, a hybrid method (Gosling and Phan, 2013) was used on the interval 2021-01-17/13:10 - 2021-01-17/13:36 to obtain $X = (0.989, -0.079, 0.099)_{RTN}$, $Y = (0.081, 0.994, -0.023)_{RTN}$ and $Z = (-0.097, 0.031, 0.995)_{RTN}$.