Bacillus phytases: Current status and future prospects

Mohamed Ali Borgi1, Samira Boudebbouze2, Héla Mkaouar2, Emmanuelle Maguin2, and Moez Rhimi2,*

1Faculty of Sciences of Gafsa - Unit of Macromolecular Biochemistry and Genetic; Department of Life Sciences; Zarroug, Gafsa, Tunisia; 2INRA, UMR 1319 Micalis; Jouy-en-Josas, France

Phytases catalyze the hydrolysis of phytic acid in a stepwise manner to lower inositol phosphates, myo-inositol (having important role in metabolism and signal transduction pathways), and inorganic phosphate. These enzymes have been widely used in animal feed in order to improve phosphorus nutrition and to decrease pollution in animal waste. Compared to previously described phytases, the phytase (PhyL) from Bacillus licheniformis ATCC 14580 has attractive biochemical properties which can increase the profitability of several biotechnological procedures (animal nutrition, human health...etc). Due to its amino acid sequence with critical substitutions, the PhyL could be a model to enhance other phytases features, in terms of thermal stability and high activity. Otherwise, an engineered PhyL, with low pH optimum, will represent a challenge within the class of β-propeller phytases.

The phytate-hydrolysing enzyme has many applications in food industries. It has a potential for producing low phytin bread. Addition of phytase improves also the nutritional value of bread through the reduction of phytate content and enhances the activation of endogenous alpha-amylase by making more calcium available. Phytase can also be added for the production of phytate-free soymilk. Phytase plays a crucial role for various inositol phosphate preparations, especially in immobilized forms. The myo-inositol phosphates have various beneficial effects on health, as enzyme stabilizers, inhibitors of enzymes and thus as potential drug blockers. In animal nutrition, phytases are used in aquaculture feed and additive to ensure proper degradation of the phytate present in animal diets during digestion in the stomach. For improved phosphorus utilization in animal agriculture, several transgenic plants overexpressing bacterial phytases were generated, including alfalfa, soybean, potato, rice and wheat.

Given that phytases deliver economic benefits through their ability to replace added inorganic phosphorus, many works...
were undertaken with the aim to improve phytase features and make it more suitable for industrial uses. Several studies were focused on the enhancement of thermal stability to preserve the enzyme activity during the heat step of feed pelleting under high temperature. In this field, the PhyL is well suited due to its remarkable thermal stability. According to Farhat-Khemakhem et al. (2013), it seems to be interesting to substitute the residue Ala 257 into Pro inside PhyL. This mutation should enhance more and more the thermal stability of PhyL.

The phytase of \textit{Bacillus licheniformis} ATCC 14580 gathers the best features to be involved in animal feed formulation. Its high specific activity toward phytic acid is a major parameter to be used for myo-inositol phosphates production.

Unlike other phytases from \textit{Bacillus} strains, the low Ca2+ requirement of PhyL for its optimal activity seems to be explained by the fact that Ca2+ ions are not involved alone even if they maintain the enzyme leading to an active state.

Due to their atypical features compared to other phytases, the phyL from \textit{Bacillus licheniformis} ATCC14580 could be promising to overcome the inhibitory effect of phytic acid and polyphenols as they chelate minerals in feeds. Such fact was demonstrated to be useful to limit zinc deficiency and avoid the fortification process of cereals staples with zinc. Supplementation of phyl in feeds should improve growth performance and nutrient digestibility as well as the increase of gene expression encoding for the peptide transporter. In the same context, Zeng et al. (2014) described the use of higher phytase amount produced from \textit{E. coli} (having lesser interests then PhyL) to further improved mineral use, protein use and performance of young pigs.

Otherwise, the high thermal stability of PhyL compared to phytases from Bacteria, Fungi and Yeast (Table 1) is especially of interest for pelleting purposes. In fact, Park et al. (2003) demonstrated the suitability of the phytase from \textit{Bacillus amyloliquefaciens} (which is less thermostable compared to PhyL) in this field. Thereby, we believe that using PhyL in pelleting process is an attractive strategy.

On the basis on the works of Sanz-Penella et al. (2009) and Haros et al. (2007), it will be interesting to explore the PhyL genes within \textit{Bifidobacteria} for bread fermentation technology. Taking into account the high specific activity of PhyL, such feature constitutes a promising way to reduce the content of InsP(6) in rich fiber products for human consumption, in favor of InsP(3) production. Dephosphorylation of other phosphorylated molecules could also be performed by using PhyL.

Engineered PhyL with low pH optimum can constitute a remarkable perspective since the obvious drawback of phytase from \textit{Bacillus} is their inability to act at acidic conditions. Even so, no truly reliable methods for modifying the pH activity profile of an enzyme are yet available and the decrease of the pH optimum of phytases from \textit{Bacillus} became a challenge. In this context, different strategies could be applied in order to modify the enzyme pH feature. The first is the mutation of ionizable groups that are implicated in substrate binding or catalysis by nonionizable ones or by amino acids having different charge or pK values. The second is the replacement of residues interacting with Alanin residues by forming hydrogen bonds and/or salt bridges. Substitution of such residues may disturb the hydrogen-bonding network in the active site or alter the electronic environment of Alanine residues. The third is the modification of the enzyme surface charge, which can be achieved by chemical modification of residues located at the protein surface. In fact, making the surface more positively charged lowers the pKa values of ionizable groups and, thus the pH optimum. Such fact is favoured at low ionic strength.

Phytase source	Optimal temperature (ºC)	pH optimum	Specific activity (U.mg-1)	Molecular weight (kDa)	Ca2+ demand (mM)	Reference
\textit{Bacillus}						
\textit{B. licheniformis} ATCC 14580	75/40% at 4ºC	6.5–7.0	316	42	0.6	24
\textit{B. subtilis} US417	55/50% at 37ºC	7.5	25	41	1.0	40
\textit{B. subtilis} 168	55–6% at 25ºC	7.0	36.9	44	5.0	37
\textit{B. licheniformis}	65/–10% at 25ºC	7.0	23.6	47	5.0	37
\textit{B. subtilis} VTT E-68013	55/20% at 37ºC	7.0	88	43	1.0	41
\textit{B. sp MD2}	67–73%	6–7	39	47.5	2.0–5.0	38
\textit{B. laevolacticus}	70/30% at 30ºC	7.0–8.0	12.69	46	5.0	42
\textit{B. sp KHU-10}	60/20% at 20ºC	6.5–8.5	36	44	10.0	43
\textit{Fungi}						
\textit{Buttiuxella} sp. GC21	55/40% at 30ºC	4.5	1180	45	No effect	44
\textit{Aspergillus} \textit{fiscum} NTG-23	67/40% at 30ºC	1.3	150.1	65.5	No effect	45
\textit{Yeasts}						
\textit{Hansenula} \textit{fabianii} J640	50/–20% at 20ºC	4.5	25.67	49	No effect	46
\textit{Kodamaea} \textit{ohmeri} BG3	65/–20% at 30ºC	5.0	16.5	51	No effect	47
\textit{S. cerevisiae} CY	40/–20% at 20ºC	3.6	71.06	55	Inhibited	48
\textit{Debaryomyces} \textit{castellii} CBS 2923	60	4.0–4.5	182	51.2	—	49

*relative activity is indicated.
The inspection of the Phyl amino acid sequence in comparison with previously reported phytases from Bacillus genus showed some original substitutions. It was found that more than 40 substitutions were encountered inside the Phyl, compared to the most related phytase from *B. licheniformis* previously characterized by Tye et al. (2002).\(^3^7\) In spite of their high sequence homology, the two phytases have significant differences in their specific activity, thermostability and efficiency at low temperature and requirement of Ca\(^{2+}\) ions. Among the 40 substitutions the N86/K, N139/S, N239/D, G251/D, D302/E could impact the performance of Phyl. Site-directed mutagenesis, crystallization and enzyme modeling procedures should certainly shed light on the role of these substitutions. These observations increasingly confirmed by the works of Tran et al. (2010)\(^3^8\), which introduced the E229V and S283R mutations in phytase from *Bacillus* sp. MD2 and the recent work of Xu et al. (2015)\(^3^9\) who concluded that the mutations D148E and S197E increased activity and thermostability of the phytase of *Bacillus amyloliquefaciens* DSM 1061. It is worthy to note that all newly introduced residues already existed or had their homologous ones inside Phyl amino acid sequence. Finally, amino acid sequence originality of Phyl gave it better physicochemical and kinetic properties, compared to phytases derived from bacterial, fungal and yeast species.\(^4^0-4^9\)

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

References

1. Cheryan M, Rakjis J. Phytic acid interactions in food systems. Crit Rev Food Sci Nutr 1980; 13:297-335; PMID:7002470; http://dx.doi.org/10.1080/1040839009527921.
2. Boling SD, Douglas MW, Johnson ML, Wang X, Parsons CM, Koelkebeck KW, et al. The effects of dietary microbial phytase, citric acid and crude protein level on Mineral utilisation by *Rohu*, *Labro rabita* (Hamilton). Juveniles. J World Aquacul Soc 2007; 38:238-49; http://dx.doi.org/10.1111/j.1474-7347.2007.00092.x.
3. Kosa M, Strachan AK, McKay HS, Becker K. Dietary roles of phytate and phytase in human nutrition: A review. Food Chem 2010; 120:945-59; http://dx.doi.org/10.1016/j.foodchem.2009.11.052.
4. Simmel M, Turunen M, Pironen J, Vaara T. 1989. Feed and food. Applicable Subject in Industrial Applications of Enzymes, Barcelona (Spain).
5. Haefner S, Knietsch A, Scholten E, Braun J, Lohscheidt J. The section of the *phyA* gene in alfalfa produces a stable phytase. Biochim Biophys Acta 1994; 1209:193-98.
6. Kim OH, Kim YO, Shim JH, Jung YS, Jung WJ, Choi WC, Lee H, Lee SJ, Kim KK, Auh JH, Kim H, Kim JW, Oh TK, Oh BC. *B. subtilis* C193 modification of the optimum pH of enzyme catalytic activity. *Biol Chem* 2001; 382-391; http://dx.doi.org/10.1007/s002170100396.
7. Karle SK, Jha K, Gupta MN. Entrainment of yeast phytase in polyacrylamide gel and its application in soy milk phytate hydrolysis. *Biotechnol Appl Biochem* 1994; 19:193-98.
8. Kumar V, Sinha AK, Makkar HPS, Becker K. Dietary and food applications of phytase. Lecture. 3rd Meet. Ind. Applications of Enzymes, Barcelona (Spain).
9. Adema AL, Groeneweg M, van Loon APGM. The phytase subfamily of acid histidine phosphatases: isolation of genes for two novel phyA homologues from *Aspergillus terreus* and *Bacillus amyloliquefaciens* ATCC 15697. *Int J Food Microbiol* 2007; 117:76-83; PMID:17092656; http://dx.doi.org/10.1016/j.ijfoodmicro.2007.02.021.
10. Kerovuo J, Tynkkynen S. Expression of Bacillus subtilis phytase in *Lactobacillus plantarum* 755. Lett Appl Microbiol 2000; 30:325-9; PMID:10792656; http://dx.doi.org/10.1046/j.1472-675x.2000.00660.x.
11. Brinch-Pedersen H, Olesen A, Rasmussen SK, Holm JV. Improvements in growth performance, bone mineral status and nutrient digestibility in pigs following the dietary inclusion of phosphatase accompanied by modifications in intestinal nutrient transporter gene expression. Br J Nutrit 2014; 7:1-10; PMID:24989284.
12. Kim ZW,Dang P,Xiao JS,PE,Zhang HY,Shi CX, Yu SK. Effects of adding super DosePhytase the phos- phosphate-deficient diet of young pigs on growth perfor- mance, bone quality, minerals and amino acids digestibilities. Asian-Australas J Anim Sci 2014; 27:25-47; PMID:25049948; http://dx.doi.org/10.5713/ajas.2013.13.3870.
13. Park SC, Oh BC, Rhee MH, jeong KS, Lee KW, Song JC, Oh TK. The enzyme activity of a novel phytase from *Bacillus amyloliquefaciens* DS11 and its potential use as a feed pellet. *J Gen Microbiol Appl Biochem* 2003; 49:31-39; PMID:12779818; http://dx.doi.org/10.1016/j.biopha.2002.09.078.
14. Haros M, Bielecka M, Honke J, Sanz Y. Myo-inositol-hexakisphosphate degradation by *Bifidobacterium infantis* ATCC 15697. *Int J Food Microbiol* 2007; 117:76-84; PMID:17462768; http://dx.doi.org/10.1016/j.ijfoodmicro.2007.02.021.
15. Myers M, AHealy MJ, Oakeshott JG. Effects of the resi- duate adjacent to the reactive serine on the substrate interactions of *Drosophila esterase 6*. *Biochem Genet* 1993; 31:259-78; PMID:8274134; http://dx.doi.org/10.1007/BF0055317.
16. Mantafounis D, Pitts J. Protein engineering of chymo- sin: modification of the optimum pH of enzyme cataly- sis. Prot Eng; 5:605-9; PMID:2217154; http://dx.doi.org/10.1093/protein/3.7.605.
17. Sokola I, Imamura T. Cloning and sequencing of the gene coding for alcohol dehydrogenase of *Bacillus star- reomorphus* and rational shift of the optimum pH. *J Bacteriol*; 174:197-402; PMID:1769727.
18. Rashid MH, Siddiqui KS. Carbonyl group modification: high temperature activation of charge-neutralized and charge-reversed-glucosidases from *Apergillus niger*. *Bio- technol Appl Biochem* 1998; 27:231-7; PMID:9664679.
19. Siddiqui KS, Lovtny-Anderton T, Rajanarajan M, Har- ley BS. Arthrobacter D-xylose isomerase: chemical modification of carbonyl groups and protein engineering.
of pH optimum. Biochem J 1993; 296:685-91; PMID:7904154
37. Tye AJ, Siu FKY, Leung TYC, Lim BL. Molecular cloning and the biochemical characterization of two novel phytases from *B. subtilis* 168 and *B. licheniformis*. Appl Microbiol Biotechnol 2002; 59:190-7; PMID:12111145; http://dx.doi.org/10.1007/s00253-002-1033-5
38. Tran TT, Mamo G, Mattiasson B, Hatt-Kaul R. A thermostable phytase from *Bacillus* sp. MD2: cloning, expression and high-level production in *Escherichia coli*. J Indast Microbiol Biotechnol 2010; 37:279-87; PMID:19997958; http://dx.doi.org/10.1007/s10295-009-0671-3
39. Xu W, Shao R, Wang Z, Yan X. Improving the Neutral Phytase Activity from *Bacillus amyloliquefaciens* DSM 1061 by Site-Directed Mutagenesis. Appl Biochem Biotechnol 2007; 159:949-55; PMID:17919857; http://dx.doi.org/10.1007/s12010-006-0171-7
40. Farhat A, Chouayekh H, Ben Farhat M, Bouchaala K, Bejar S. Gene Cloning and Characterization of a Thermostable Phytase from *Bacillus subtilis* US417 and Assessment of its Potential as a Feed Additive in Comparison with a Commercial Enzyme. Mol Biotechnol 2008; 40:127-35; PMID:18543132; http://dx.doi.org/10.1007/s12033-008-9068-1
41. Kerovuo J, Lauraeus M, Nurminen P, Kallkinen N, Apajalahti J. Isolation, characterization, molecular gene cloning, and sequencing of a novel phytase from *Bacillus subtilis*. Appl Environ Microbiol 1998; 64:2079-85; PMID:9603817
42. Gulati HK, Chadha BS, Saini HS. Production and characterization of thermostable alkaline phytase from *Bacillus licheniformis* isolated from rhizosphere soil. J Indast Microbiol Biotechnol 2007; 34:91-8; PMID:16967265; http://dx.doi.org/10.1007/s10295-006-0171-7
43. Choi YM, Suk HI, Kim JM. Purification and Properties of Extracellular Phytase from *Bacillus sp.* KHU-10. J Prot Chem 2001; 20:287-92; PMID:11594462; http://dx.doi.org/10.1023/A:1010945416862
44. Shi P, Huang H, Wang Y, Luo H, Wu B, Meng K, Yang P, Yao B. A novel phytase gene appA from *Bacillus teuticus* sp. CC21 isolated from grass carp intestine. Aquaculture 2008; 275:70-5; http://dx.doi.org/10.1016/j.aquaculture.2008.01.021
45. Zhang GQ, Dong XF, Wang ZH, Zhang Q, Wang HX, Tong JM. Purification, characterization, and cloning of a novel phytase with low pH optimum and strong proteolysis resistance from *Aspergillus ficuum* NTG-23. Biorec Bioeng 2010; 101:4125-31; PMID:20144543; http://dx.doi.org/10.1006/jbio.2010.01.001
46. Watanabe T, Ikeda H, Masaki K, Fuji T, Ierfuji H. Cloning and characterization of a novel phytase from wastewater treatment yeast *Hanunula fabani* J640 and expression in *Pichia pastoris*. J Biosci Bioeng 2009; 108:225-30; PMID:19664557; http://dx.doi.org/10.1016/j.jbiosc.2009.03.021
47. Li X, Liu Z, Chi Z, Li J, Wang X. Molecular cloning, characterization, and expression of the phytase gene from marine yeast *Kodamaea ohmeri* BG3. Mycol Res 2009; 113:24-32; PMID:18672057; http://dx.doi.org/10.1016/j.mycre.2008.07.003
48. In MJ, Seo SW, Oh NS. Fermentative production and application of acid phytase by *Saccharomyces cerevisiae* CY strain. Afr J Biotechnol 2008; 17:3115-20.
49. Ragon M, Neupont-Rous V, Chemardin P, Moulin G, Boze H. Molecular gene cloning and overexpression of the phytase from *Debaryomyces castellii* CBS 2923. Prot Exp Purificat 2008; 58:275-83; PMID:18242101; http://dx.doi.org/10.1016/j.pep.2007.12.003