RESEARCH ARTICLE

Differences in medical services in Nordic general practice: a comparative survey from the QUALICOPC study

Torunn Bjerve Eide, Jørund Straanda, Cecilia Björkelund, Elise Kosunenc,d, Ofeigur Thorgeirsson,e
Peter Vedstedf and Elin Olaug Rosvolda

aDepartment of General Practice, Institute of Health and Society, University of Oslo, Oslo, Norway;
bDepartment of Primary Health Care, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden;
cSchool of Medicine, University of Tampere, Tampere, Finland; dCentre of General Practice, Pirkanmaa Hospital District, Pirkanmaa, Finland; eGrafarvogur Primary Care Centre, Reykjavik, Iceland; fResearch Unit for General Practice, Aarhus University, Aarhus, Denmark

ABSTRACT

Objective: We aim to describe medical services provided by Nordic general practitioners (GPs), and to explore possible differences between the countries.

Design and setting: We did a comparative analysis of selected data from the Nordic part of the study Quality and Costs of Primary Care in Europe (QUALICOPC).

Subjects: A total of 875 Nordic GPs (198 Norwegian, 80 Icelandic, 97 Swedish, 212 Danish and 288 Finnish) answered identical questionnaires regarding their practices.

Main outcome measures: The GPs indicated which equipment they used in practice, which procedures that were carried out, and to what extent they were involved in treatment/follow-up of a selection of diagnoses.

Results: The Danish GPs performed minor surgical procedures significantly less frequent than GPs in all other countries, although they inserted IUDs significantly more often than GPs in Iceland, Sweden and Finland. Finnish GPs performed a majority of the medical procedures more frequently than GPs in the other countries. The GPs in Iceland reported involvement in a more narrow selection of conditions than the GPs in the other countries. The Finnish GPs had more advanced technical equipment than GPs in all other Nordic countries.

Conclusions: GPs in all Nordic countries are well equipped and offer a wide range of medical services, yet with a substantial variation between countries. There was no clear pattern of GPs in one country doing consistently more procedures, having consistently more equipment and treating a larger diversity of medical conditions than GPs in the other countries. However, structural factors seemed to affect the services offered.

Background

General practitioners (GPs) are usually considered key service providers in primary care [1]. There is varying organisation of general practice both within and between countries, and the organisational framework is of significance to the services offered [2–4]. Available appropriate medical equipment is positively correlated with the quality of medical performance [5], and GPs with good access to basic diagnostic tests both diagnose, treat and refer patients more appropriately [6].

In 1993, the European Task Profile Study investigated service provision for GPs in 30 European countries [2]. Finland and Iceland scored higher than the Scandinavian countries when it came to application of medical techniques and procedures. With regard to comprehensive disease management in Nordic general practice, Norway scored the highest and Finland the lowest. Norwegian GPs’ available equipment was described in an extensive report from 1981 [7], but both the organisation of the primary health care system and the available diagnostic and therapeutic equipment has changed significantly since then. A study from 2001 explored differences in consultation rates and diagnoses given by Nordic GPs [8]. Some more recent studies from other European countries describe the spectrum of medical equipment in the respective countries [9,10]. It remains unknown how this compares with the situation in the Nordic countries. Updated and systematic knowledge about available technical equipment, tests, medical procedures

CONTACT Torunn Bjerve Eide t.b.eide@medisin.uio.no Department of General Medicine, Institute of Health and Society, University of Oslo, PB 1130, Blindern, 0318 Oslo, Norway

© 2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
and conditions primarily handled in Nordic general practices is needed.

Health systems in the Nordic countries

The Nordic countries (Norway, Denmark, Finland, Sweden and Iceland) have comparable political structures, and health care systems are based on the Nordic welfare model, aiming for equal access to health care services for all residents. However, when it comes to primary care and general practice, there are important organisational differences (Box 1).

Aim

The aim of this study is to describe services provided by Nordic GPs in terms of available diagnostic and therapeutic equipment, tests and procedures in the GPs’ offices. We also aim to describe differences between Nordic GPs’ clinical involvement in treatment and follow-up for a selection of diagnoses.

Material and methods

Our material originates from the study Quality and Costs of Primary Care in Europe (QUALICOPC) [11]. A set of four questionnaires was developed by the QUALICOPC Partner Consortium, led by the Netherlands Institute for Health Services Research (NIVEL). The construction of the questionnaires, as well as a detailed account of their contents, is extensively described elsewhere [12], as are the details concerning the implementation of the QUALICOPC study [11]. The development of the questionnaires was based on existing, validated questionnaires. Participating GPs completed a questionnaire reporting information about their individual practices.

Sample

In Sweden and Denmark, random national samples of GPs were invited to participate. In Iceland, the entire GP population was invited. In Norway, there was a mixed procedure of random sampling plus selected GPs. In Norway, there was convenience sampling within formal and informal GP networks. Based on calculations in previous research [11], the study aimed to realize a response of 220 GPs from each participating country except Iceland (aim 75 GPs). Inclusion stopped when a satisfying number of responders was reached, or when no further recruitment was considered feasible. In Denmark and Norway, the GPs received an economic incentive for participation, and in Iceland participants were invited to a seminar [13]. In Sweden and Finland, no incentives for participation were offered. All questionnaires were answered anonymously. Data collection took place from 2011 to 2013.

Measures

We recorded the following demographic variables: GP’s gender and age, solo or partnership practice,

Box 1. Organisation of general practice in the Nordic countries
GP employment
Norway 5.2 mill inhab. GDP €49 200 (2013)*
Sweden 9.8 mill inhab. GDP €32 700 (2013)*
Denmark 5.6 mill inhab. GDP €32 100 (2013)*
Finland 5.4 mill inhab. GDP €37 559 (2014)*
Iceland 329100 inhab. GDP €30 000 (2013)*

*Information from the Nordic co-operation www.norden.org/en/fakta-om-norden-1/the-nordic-countries-the-faroe-islands-greenland-and-aaland (January 2017).
whether the GPs were self-employed or employees, and size of patient list. The GPs estimated how many face-to-face patient contacts they had on a normal working day, usual length of a consultation in their office and the distance to the nearest hospital.

The GPs indicated from predefined lists which equipment was in use by themselves or their staff, which procedures that were carried out by themselves or their staff as opposed to referring to secondary care specialists, and to what extent they were involved in the treatment and follow-up of patients with a listed selection of diagnoses. The eligible selection of equipment, procedures and diagnoses is indicated in Tables 2, 3 and 4, respectively. All questions focused on regular practice and not the situation in out-of-hours care.

The GPs were given four possible answers concerning to what extent they performed the indicated procedures, and to what extent they were involved in treatment and follow-up of the given diagnosis: 1. (Almost) always; 2. Usually; 3. Occasionally; and 4. Seldom/never. These were merged into two categories during analysis: always/usually (1 + 2) and occasionally/never (3 + 4).

Statistics

We present descriptive statistics with numbers, percent, min–max intervals and 95% confidence intervals (95%CI). To identify differences between countries, we used binary logistic regression adjusting for GPs’ sex

Table 1. Demographics of participating GPs in the Nordic part of the QUALICOPC study.

	Norway	Denmark	Sweden	Finland	Iceland
Total N	198	212	97	288	80
Female (%)					
Age mean (range)					
Practices with distance to hospital >20 km (%)					
Share practice with other GPs (%)					
Self-employed (%)					
Number of consultations per daya Mean (range)					
Duration of regular consultation in minutes.a Mean (range)					
aEstimated by the GPs.					

Table 2. Medical equipment in GP practices in the Nordic countriesa.

Equipment	Norway, N = 198	Sweden, N = 97	Denmark, N = 212	Finland, N = 288	Iceland, N = 80
Hemoglobinometer	195	95	97.9	201	94.8
Blood glucose test	197	95	95.9	205	96.7
Cholesterol meter	19	9.6	32.0	8	3.8
Blood cell counter	81	40.9	34.0	36	17.0
Ophthalmoscope	197	99.5	79	131	61.8
Proctoscope	153	72.3	97	76	35.8
Otoscope	198	100.0	96	210	99.1
Gastroscope	2	1.0	0.0	1	0.5
Sigmoidoscope	7	3.5	5.2	0	0.0
X-ray	11	5.6	3.1	0	0.0
Ultrasound	33	16.7	4.1	24	11.3
Microscope	125	63.1	61	153	72.2
Audiometer	89	44.9	71	118	55.7
Bicycle ergometer	4	2.0	7	7.2	1.0
Eye tonometer	160	80.8	36	37.1	3
Peak flow meter	161	81.3	96	36.9	3
Spirometer	197	99.5	95	97.9	206
Electrocardiograph	196	99	97	100.0	175
Blood pressure monitor	197	99.5	96	99.0	209
Infusion set	116	58.6	64	66.0	86
Doctor’s bag	167	84.3	94	96.9	208
Urine catheter	179	90.4	91	93.8	186
Coagulometer	134	67.7	60	61.9	157
Set for minor surgery	194	98.0	95	97.9	206
Suture set	195	98.5	96	99.0	210
Defibrillator	129	65.2	94	96.9	79
Disposable syringes	195	98.5	94	96.9	210
Disposable gloves	198	100.0	96	99.0	211
Refrigerator for medicines	198	100.0	96	99.0	212
Resuscitation equipment	166	83.8	84	86.6	193

aQuestion: please tick the equipment used in your practice by yourself or your staff.
and age, number of consultations per day and distance to the nearest hospital. We compared each country to all other countries in four separate regression models. To adjust for this multiple testing, we used the Bonferroni correction, giving a significance level of $p \leq 0.0125$ for the logistic regression analyses. For all other analyses, the significance level was set to $p \leq 0.05$. Odds ratios (OR) are given with 95% CI. Analyses were done in IBM SPSS Statistics 22 (SPSS Inc., Chicago, IL).

Results

Demographics

Responses from 875 Nordic GPs (Norway 198, Sweden 97, Denmark 212, Finland 288 and Iceland 80) were included in the analyses. Characteristics of the GPs are found in Table 1.

Medical equipment

Table 2 shows details concerning the equipment available to the GPs. Basic medical equipment was available in virtually all practices. A selection of point-of-care laboratory equipment was available in all countries, but the details vary. In Iceland, hardly any of the GPs had a coagulometer (3.8%), and this was also less common in Finland (26.8%) than in the other countries. In Norway and Denmark, cholesterol meters were uncommon (respectively 9.6% and 3.8%).

Basic technical equipment like blood pressure monitors and otoscopes were available in more than 92% of GP practices in all countries. Electrocardiographs were present in more than 95% of all practices in all countries except Denmark (83%). More advanced technical equipment was almost exclusively present at Finnish GPs' offices: X-ray (62.7%), gastroscopy (29.2%), sigmoidoscope (29.2%) and bicycle ergometer (31%). Abdominal ultrasounds were available for over 50% of Finnish GPs, whereas only 4% of the Swedish GPs had this equipment. Microscopes were present in 62–73% of practices in all countries except Finland (23%). Defibrillators were very common in Sweden (96.9%), Finland (95.7%) and Iceland (96.3%), less so in Denmark (37.3%) and Norway (65.2%).

Treatment and follow up of patients with listed diagnoses

The GPs indicated from a predefined list the different medical conditions in which they always or usually were involved in treatment and/or follow-up (Table 3).

Association with demographic factors (crude numbers, not shown in table): GPs with practices located $\leq\!20\!\text{km}$.

Procedure/Condition	Norway, $N=198$	Sweden, $N=97$	Denmark, $N=212$	Finland, $N=288$	Iceland, $N=80$							
	n	%	95% CI									
Wedge resection	127	64.1	57–71	91	94.8	91–99	36	17.2	12–22	257	91.5	89–95
Wound suturing	186	94.4	91–97	95	99.0	97–100	141	66.8	61–73	258	91.8	89–95
Removal sebaceous cyst	144	73.1	67–79	84	87.5	81–95	118	55.9	49–63	226	80.4	75–85
Excision wart	163	82.3	77–87	30	31.9	23–41	135	64.0	58–70	175	62.9	57–69
Insertion IUD	177	89.8	86–94	19	19.8	12–28	182	86.3	81–91	195	69.6	65–75
Fundoscopy	151	76.3	70–82	53	55.8	46–66	10	4.7	2–8	206	73.3	68–78
Joint injection	109	55.1	48–62	87	90.6	85–97	106	50.2	43–57	267	95.7	94–98
Strapping ankle	80	40.4	33–47	83	86.5	80–94	169	80.1	75–85	203	72.5	68–78
Cryotherapy warts	167	84.3	79–89	14	14.7	8–22	141	66.8	61–73	153	54.4	48–60
IV infusion	52	26.4	20–32	37	38.9	29–49	7	3.3	1–5	178	63.3	57–69

NA: not applicable due to separation of the material.

a Question: To what extent are the following activities carried out in your practice population by you (or your staff) and not by a medical specialist (practice population means: people who normally apply to you for primary medical care)?

b Question: To what extent are you involved in the treatment and follow-up of patients in your practice population with the following diagnoses?

Table 3. Number and valid percentages (95% CI) of GPs who reported that they usually or always performed the listed procedures, or were involved in treatment/follow-up of the listed diagnoses.

Norway, $N=198$	Sweden, $N=97$	Denmark, $N=212$	Finland, $N=288$	Iceland, $N=80$
\% 95% CI				
----------------	----------------	----------------	----------------	--------------
---	---	---	---	---
Wedge resection	127	64.1	57–71	91
Wound suturing	186	94.4	91–97	95
Removal sebaceous cyst	144	73.1	67–79	84
Excision wart	163	82.3	77–87	30
Insertion IUD	177	89.8	86–94	19
Fundoscopy	151	76.3	70–82	53
Joint injection	109	55.1	48–62	87
Strapping ankle	80	40.4	33–47	83
Cryotherapy warts	167	84.3	79–89	14
IV infusion	52	26.4	20–32	37

NA: not applicable due to separation of the material.

a Question: To what extent are the following activities carried out in your practice population by you (or your staff) and not by a medical specialist (practice population means: people who normally apply to you for primary medical care)?

b Question: To what extent are you involved in the treatment and follow-up of patients in your practice population with the following diagnoses?
from the nearest hospital were less likely to be involved in the treatment and follow-up of Parkinson’s disease, OR 0.6 (0.4–0.8); peritonsillar abscess, OR 0.6 (0.4–0.8); and myocardial infarction, OR 0.6 (0.4–0.9). Male GPs were more likely than female GPs to be involved in the treatment of peritonsillar abscess, OR 1.4 (1.4–2.0); Parkinson’s disease, OR 2.1 (1.5–2.9); rheumatoid arthritis, OR 1.5 (1.1–2.1); and myocardial infarction, OR 1.5 (1.02–2.1).

Differences on country level: Differences between countries are shown in Table 4. Between 95 and 100% of the GPs in all five countries indicated that they were involved in treatment or follow-up of chronic obstructive pulmonary disease (COPD), pneumonia, and type-2 diabetes.

Icelandic GPs were significantly less involved in the treatment of myocardial infarction, heart failure and peritonsillar abscesses than the GPs in all other countries. The Norwegian and Finnish GPs were significantly more involved in the treatment of rheumatoid arthritis than the GPs in the other countries. Norwegian GPs were significantly more involved in the treatment of Parkinson’s disease than GPs in Denmark and Iceland.

Procedures

The procedures performed by the GPs are shown in Table 3.

Association with demographic factors (crude numbers, not shown in table): The following procedures were carried out less frequently when the distance to hospital was ≤20 km compared with >20 km: wound sutures, OR 0.2 (0.1–0.5); removal of sebaceous cysts, OR 0.5 (0.3–0.7); insertion of intruterine devices (IUDs), OR 0.5 (0.3–0.8); joint injections, OR 0.4 (0.3–0.6); strapping of ankle, OR 0.6 (0.4–0.9); and intra-venous infusion, OR 0.3 (0.2–0.5).

Male GPs inserted IUDs less often than female GPs, OR 0.4 (0.3–0.6). However, wound sutures, OR 1.67 (1.1–6.7); wedge resection of toenails, OR 2.2 (1.4–3.3); removal of sebaceous cyst, OR 1.8 (1.3–2.6); wart excisions, OR 1.5 (1.1–2.0); fundoscopy, OR 1.5 (1.02–2.2); strapping of ankles, OR 1.5 (1.04–2.04); and joint injections, OR 1.9 (1.3–2.8) were done significantly more often by male GPs.

Differences on country level: Table 5 shows the inter-country differences in performed procedures. Danish and Norwegian GPs were significantly more likely to insert IUDs than GPs in all other countries. Danish GPs did removal of sebaceous cysts, wedge resection of toenails, fundoscopy and intravenous infusion less often than GPs in all other countries, and less wound...
Table 5. Associations (odds ratio (95% CI)) between country and procedures performed by the GPs or their staff. Logistic regression adjusted for sex, age, number of consultations per day and distance to hospital.

Model	Suture	IUD	Fundoscopy	Joint injection	Strapping of ankle	Cryotherapy of warts	Intravenous infusion	wedge resection toenail	Removal of sebaceous cyst	Wart excision				
1. Ref Norway														
Sweden	0.02	0.3	(0.2–0.6)	11.6	11.5	0.04	1.6 (0.9–3.0)	14.9	3.9 (1.8–8.4)	0.2 (0.1–0.3)				
Denmark	0.1 (0.0–0.2)	0.1	0.7 (0.4–1.1)	5.2 (3.2–8.5)	0.3 (0.2–0.6)	0.1	(5.4–41.0)	0.09	0.4 (0.2–0.6)	0.3 (0.2–0.4)				
Finland	1.2 (0.5–2.8)	0.2	1.1 (0.7–1.8)	32.1 (15.4–66.7)	0.3 (0.2–0.4)	5.1 (3.1–8.4)	10.7	2.6 (1.5–4.3)	0.7 (0.4–1.2)					
Iceland	0.3 (0.1–0.8)	0.2	0.9 (0.01–0.2)	4.4 (2.2–9.0)	3.1 (1.7–5.8)	8.3	(1.9–36.4)	4.8	0.9 (0.5–1.8)	1.5 (0.7–3.1)				
2. Ref Finland														
Sweden	0.1 (0.1–0.2)	0.3	0.4 (0.1–0.9)	2.2 (1.1–4.3)	0.2 (0.1–0.3)	0.3 (0.2–0.5)	1.4 (0.5–3.8)	1.5 (0.8–3.1)	0.2 (0.1–0.4)					
Denmark	0.1 (0.03–0.2)	0.2	0.02 (0.01–0.02)	1.0 (0.6–1.8)	1.3 (0.8–2.2)	0.02	(0.04–0.02)	0.01	0.1 (0.1–0.3)	0.4 (0.2–0.7)				
Iceland	0.3 (0.1–0.6)	0.1	0.1 (0.1–0.3)	0.6 (0.3–1.1)	31.2	0.2 (0.1–0.4)	0.5 (0.2–1.0)	0.4 (0.2–0.7)	2.1 (1.1–4.1)					
3. Ref Denmark														
Sweden	0.04	36.9	(0.02–0.1)	14.9 (9.18)	16.9	2.2 (1.0–4.9)	0.1 (0.1–0.2)	19.1	174.9	11.3	0.6			
Iceland	3.7 (1.7–8.2)	0.03	8.9	(0.01–0.1)	3.5–23.0	6.4	(3.0–13.9)	0.6 (0.3–1.2)	24.2	12.9	11.7	2.7 (1.3–5.3)	5.6	(2.6–12.0)
4. Ref Sweden														
Iceland	0.9 (0.4–2.1)	0.2	0.4 (0.1–0.5)	0.3 (0.1–0.6)	213.5	0.7 (0.3–1.4)	0.3 (0.1–1.0)	0.2 (0.1–0.5)	10.1	(4.8–21.3)				

*Bold figures: p < 0.0125. NA: not applicable due to separation of the material.
*aComparison with Norway in model 1.
*bComparisons with Norway and Finland in models 1 and 2, respectively.
cComparisons with Norway, Finland and Denmark in models 1, 2 and 3, respectively.
sutures than GPs in Iceland and Finland. Finnish GPs administered intravenous infusion more frequently than GPs in any of the other countries.

Discussion
We found several differences between the services provided by GPs in the Nordic countries. Danish GPs performed several procedures significantly less frequently than GPs in all other countries, although they inserted IUDs significantly more often than GPs in Sweden, Iceland and Finland. Finnish GPs performed a majority of the medical procedures more frequently than GPs in the other countries.

GPs in Iceland reported involvement in a more narrow selection of the medical conditions than GPs in the other countries. Finnish GPs had more advanced technical medical equipment than GPs in all other countries.

It was otherwise difficult to identify obvious patterns in the differences between the countries; there was no clear indication of GPs in one country doing consistently more procedures, having consistently more equipment and treating a larger diversity of medical conditions than GPs in the other countries.

Strengths and weaknesses
Our material allows for international comparison, as we used the same questionnaire in all countries during the same period. In Norway, Finland, Denmark and Iceland, GPs were recruited nationwide. The distribution of the GPs’ age and gender was representative for the countries [13].

Finland and Iceland obtained the required number of GPs, whereas Norway obtained 90% and Denmark 96%. This was deemed sufficient for the use in statistical analysis. In Sweden, only 97 GPs (44% of goal) took part in the study, in spite of several reminders. The Swedish results must, therefore, be interpreted with care.

The questionnaires were designed and validated for an international study [12]. Thus, the questions were not specifically designed to map general practice in the Nordic countries. For Nordic circumstances, some of the items in the predefined tick-off lists may be construed as redundant or irrelevant (e.g. disposable gloves, refrigerator), whereas others were missed (e.g. dermatoscope, CRP measurement).

We used distance to hospital as a marker of an urban/rural location. However, in the QUALICOPC questionnaire, ‘> 20 km to the nearest hospital’ was the maximum distance indicated. In a Nordic context, many practices will be situated considerably further away from a hospital.

Our data give information about daytime general practice, the situation in out-of-hours care is not covered by our study. All information was based on the GPs self-reporting. We have no reason to believe that the differences are due to unreliable answers from the doctors.

Interpretation of results and comparison with other studies
In 2014, the Nordic Council of Ministers for Health and Social Affairs released a common strategy [14] that stressed the importance of working together to enhance quality and safety in health services. However, international comparisons of services can be challenging, as different countries have different allocation of tasks within the health care system.

In 1993, the European Task Profile Study investigated the range of services offered by GPs in 30 European countries, showing a strong position of primary care in the Scandinavian countries (Norway, Denmark and Sweden) [2]. When comparing data from 1993 with the QUALICOPC data from 2013, a relative increase in the GPs’ participation in disease management was found in all the Nordic countries [3]. For performance of minor technical procedures, Iceland, Denmark and Finland showed a relative decrease in the same period, whereas there was an increase in Sweden and Norway.

Geographical location may affect the service provision in general practice. Lower referral rates in rural areas have previously been found in Canada [15], and the use of outpatient specialist care was lower in smaller and more distant municipalities communities in Norway [16]. In Denmark, the distance to the nearest specialist or hospital is often considerably shorter than in sparsely populated areas such as large parts of Norway, Finland and Sweden. In areas with long travel-distance to the nearest specialist, it is likely that the GPs will offer more diagnostic and therapeutic procedures irrespective of remuneration systems. An association with distance to hospital was found for several procedures in our study.

In Denmark and Norway, fee-for-service remuneration (public reimbursement and, in Norway, patient co-payment) constitutes an estimated 70% of the direct income for the GPs [17,18]. The services offered by the GPs in these countries may be influenced by the remuneration for the procedures in relation to the GPs expenses. This may explain some of the differences seen in our study. Wedge resections of toenails were
less commonly done in Norway and Denmark than in the other countries. Time-consuming surgical procedures may be deprioritised if not considered sufficiently reimbursed.

Some differences in equipment can be explained by organisational variations. The Finnish GPs had a rather different profile than the other countries, with high availability of advanced technical equipment. This may in part be because some Finnish health centres used to be small local hospitals, and as such have a tradition of offering more specialised services. Still, only 66% of the Finnish GPs had spirometers, whereas this was available to more than 95% of GPs in all other countries. The service is in Finland traditionally offered in other locations than the primary care centres. In Denmark, only 1% of the GPs had eye tonometers, probably reflecting that the Danish patients can go directly to the ophthalmologist without referral.

In our results, we see a possible effect of gate-keeping. In Iceland, where there is effectively no gate-keeping, the GPs treated conditions such as rheumatoid arthritis, Parkinson’s disease, heart failure and myocardial infarction significantly less often than in the other Nordic countries. We assume that Icelandic patients with these conditions are followed by relevant specialists.

Treatment traditions and habits also seem to affect the services provided in general practice. In Norway, the procedure ‘strapping of ankle’ was performed less often than in all other countries. This may not necessarily be considered a doctor’s task; it is quite common to instruct the patients to do this themselves.

Conclusion and implications

GPs in the Nordic countries were generally well equipped, performed a wide spectrum of medical procedures and were involved in the follow-up of a wide selection of diagnosis. There are, however, differences that may be associated with variations in remuneration systems, geographical variations and other organisational factors.

If GPs are to take on an increased amount of tasks, a better understanding of what is at present offered in general practice is imperative. Experiences from other countries can be valuable. Differences should be investigated as a political and organisational as much as a medical issue.

Ethics

The QUALICOPC study was presented to the relevant ethic committees in the Nordic countries. The study was approved by the Danish Data Agency, the Ethical Committee of the Pirkanmaa Hospital District in Finland, the Regional Ethical Review Board of Linköping in Sweden (Dnr 2011/481-31; Dnr 2013/120-32) and the Icelandic National Bioethics Committee. The Regional Committee for Medical and Health Research Ethics in South-Eastern Norway concluded that their approval was not required for this study.

Acknowledgements

The authors are grateful to all the participating GPs of the QUALICOPC study in the Nordic countries. We also wish to thank the coordinating QUALICOPC Consortium members for their role throughout the study. PhD Ibrahimu Mdala at the University of Oslo provided valuable assistance in planning the statistical analyses.

Disclosure statement

The authors report no conflicts of interest.

Funding

The study was conducted as part of the European QUALICOPC project. QUALICOPC was co-funded by the European Commission Seventh Framework Program (FP7/2007–2013) under grant agreement 242141. TBE received funding from The Norwegian Committee on Research in General Practice and the Norwegian Research Fund for General Practice.

Notes on contributors

Torunn Bjerre Eide is a GP specialist and PhD student at the Department of General Practice, Institute of Health and Society, at the University of Oslo, Norway.

Jørund Straand is a professor and Head of Department at the Department of General Practice, Institute of Health and Society, at the University of Oslo, Norway.

Cecilia Björkelund is a professor at the Department of Primary Health Care, Institute of Medicine, University of Gothenburg, Sweden.

Elise Kosunen is a professor at the Department of General Practice, University of Tampere, Finland.

Ofeigur Thorgeirsson is a GP at the Grafarvogur Primary Care Centre, Reykjavik, Iceland.

Peter Vedsted is a professor of Primary Care at the Research Unit for General Practice, and Professor of Innovative Patient Pathways at Silkeborg Diagnostic Centre, Aarhus University, Denmark.

Elin Olaug Rosvold is a professor at the Department of General Practice, Institute of Health and Society, at the University of Oslo, Norway, and Head of the Norwegian Research School in General Practice.
References

[1] Starfield B, Shi L, Macinko J. Contribution of primary care to health systems and health. Milbank Q. 2005;83:457–502.
[2] Boerma WG, van der Zee J, Fleming DM. Service profiles of general practitioners in Europe. European GP Task Profile Study. Br J Gen Pract. 1997;47:481–486.
[3] Schafer WL, Boerma WG, Spreeuwember P, et al. Two decades of change in European general practice service profiles: conditions associated with the developments in 28 countries between 1993 and 2012. Scand J Prim Health Care. 2016;34:97–110.
[4] Eide TB, Straand J, Melbye H, et al. Patient experiences and the association with organizational factors in general practice: results from the Norwegian part of the international, multi-centre, cross-sectional QUALICOPC study. BMC Health Serv Res. 2016;16:9.
[5] Ram P, Grol R, van den Hombergh P, et al. Structure and process: the relationship between practice management and actual clinical performance in general practice. Fam Pract. 1998;15:354–362.
[6] Wenghofer EF, Williams AP, Klass DJ. Factors affecting physician performance: implications for performance improvement and governance. Healthcare Policy = Politiques De Sante 2009;5:e141–e160.
[7] Rutle O. Primærlegen ut av skyggen – analyse av situasjonen i dag, tanker om morgenåten. [The general doctor out of the shadows – analysis of the current situation, thoughts about the future]. Norges allmenvitenskapelige forskningsråds gruppe for helsetjenesteforskning; 1981.
[8] Grimsmo A, Hagman E, Faiko E, et al. Patients, diagnoses and processes in general practice in the Nordic countries. An attempt to make data from computerised medical records available for comparable statistics. Scand J Prim Health Care. 2001;19:76–82.
[9] Bourke J, Bradley CP. Factors associated with staffing provision and medical equipment acquisition in Irish general practice. Ir Med J. 2012;105:338–340.
[10] Cohidon C, Cornuz J, Senn N. Primary care in Switzerland: evolution of physicians’ profile and activities in twenty years (1993–2012). BMC Fam Pract 2015;16:107.
[11] Schafer WL, Boerma WG, Kringos DS, et al. QUALICOPC, a multi-country study evaluating quality, costs and equity in primary care. BMC Fam Pract. 2011;12:115.
[12] Schafer WL, Boerma WG, Kringos DS, et al. Measures of quality, costs and equity in primary health care instruments developed to analyse and compare primary care in 35 countries. Qual Prim Care. 2013;21:67–79.
[13] Groenevegen PP, Gress S, Schafer W. General practitioners’ participation in a large, multicountry combined general practitioner–patient survey: recruitment procedures and participation rate. Int J Family Med. 2016;2016:4929432.
[14] Nordisk samarbejde på social- og sundhedsområdet: Strategi for social- og sundhedsområdet 2013 og frem. [Nordic co-operation on social affairs and health. Strategy for the social affairs and health sector 2013 and onwards]. København: Nordic Council of Ministers; 2014.
[15] Chan BT, Austin PC. Patient, physician, and community factors affecting referrals to specialists in Ontario, Canada: a population-based, multi-level modelling approach. Med Care. 2003;41:500–511.
[16] Deraas TS, Berntsen GR, Hasvold T, et al. Is a high level of general practitioner consultations associated with low outpatients specialist clinic use? A cross-sectional study. BMJ Open. 2013;3.
[17] Pedersen KM, Andersen JS, Sondergaard J. General practice and primary health care in Denmark. J Am Board Fam Med. 2012;25 Suppl 1:S34–S38.
[18] Ringard ASA, Saunes IS, Lindahl AK. Norway – Health System Review. Health Systems in Transition: The Norwegian Knowledge Centre for the Health Services, 2013.