Dirichlet draws are sparse with high probability

Matus Telgarsky

Abstract

This note provides an elementary proof of the folklore fact that draws from a Dirichlet distribution (with parameters less than 1) are typically sparse (most coordinates are small).

1 Bounds

Let $\text{Dir}(\alpha)$ denote a Dirichlet distribution with all parameters equal to α.

Theorem 1.1. Suppose $n \geq 2$ and $(X_1, \ldots, X_n) \sim \text{Dir}(1/n)$. Then, for any $c_0 \geq 1$ satisfying $6c_0 \ln(n) + 1 < 3n$,

$$\Pr\left[\left\{|i : X_i \geq \frac{1}{n^{c_0}}\right| \leq 6c_0 \ln(n)\right\} \geq 1 - \frac{1}{n^{c_0}}.$$

The parameter is taken to be $1/n$, which is standard in machine learning. The above theorem states that (with high probability) as the exponent on the sparsity threshold grows linearly ($n^{-1}, n^{-2}, n^{-3}, \ldots$), the number of coordinates above the threshold cannot grow faster than linearly ($6 \ln(n), 12 \ln(n), 18 \ln(n), \ldots$).

The above statement can be parameterized slightly more finely, exposing more tradeoffs than just the threshold and number of coordinates.

Theorem 1.2. Suppose $n \geq 1$ and $c_1, c_2, c_3 > 0$ with $c_2 \ln(n) + 1 < 3n$, and $(X_1, \ldots, X_n) \sim \text{Dir}(c_1/n)$; then

$$\Pr\left[\left|\{i : X_i \geq n^{-c_3}\}\right| \leq c_2 \ln(n)\right] \geq 1 - \frac{1}{e^{1/3}} \left(\frac{1}{n}\right)^{\frac{c_2}{c_1 - c_3}} - \frac{1}{e^{4/9}} \left(\frac{1}{n}\right)^{\frac{4c_2}{9}}.$$

The natural question is whether the factor $\ln(n)$ is an artifact of the analysis; simulation experiments with Dirichlet parameter $\alpha = 1/n$, summarized in Figure 1a, exhibit both the $\ln(n)$ term, and the linear relationship between sparsity threshold and number of coordinates exceeding it.

The techniques here are loose when applied to the case $\alpha = o(1/n)$. In particular, Figure 1b suggests $\alpha = 1/n^2$ leads to a single nonsmall coordinate with high probability, which is stronger than what is captured by the following theorem.

Theorem 1.3. Suppose $n \geq 3$ and $(X_1, \ldots, X_n) \sim \text{Dir}(1/n^2)$; then

$$\Pr\left[\left|\{i : X_i \geq n^{-2}\}\right| \leq 5\right] \geq 1 - e^{2/e - 2} - e^{-8/3} \geq 0.64.$$

Moreover, for any function $g : \mathbb{Z}_{++} \to \mathbb{R}_{++}$ and any n satisfying $1 \leq \ln(g(n)) < 3n - 1$,

$$\Pr\left[\left|\{i : X_i \geq n^{-2}\}\right| \leq \ln(g(n))\right] \geq 1 - e^{2/e - 1/3} \left(\frac{1}{g(n)}\right)^{1/3} - e^{-4/9} \left(\frac{1}{g(n)}\right)^{4/9}.$$

(Take for instance g to be the inverse Ackermann function.)
Figure 1: For each Dirichlet parameter choice \(\alpha \in \{n^{-1}, n^{-2}\} \) and each number of dimensions \(n \) (horizontal axis), 1000 Dirichlet distributions were sampled. For each trial, the number of coordinates exceeding each of 4 choices of threshold were computed. In the case of \(\alpha = n^{-1} \), these counts were then scaled by \(\ln(n) \) to better coordinate with the suggested trends in Theorems 1.1 and 1.2. Finally, these counts values (for each \((n, \epsilon)\)) were converted into quantile curves (25%–75%).

2 Proofs

Theorems 1.1 to 1.3 are established via the following lemma.

Lemma 2.1. Let reals \(\epsilon \in (0, 1] \) and \(\alpha > 0 \) and positive integers \(k, n \) be given with \(k + 1 < 3n \). Let \((X_1, \ldots, X_n) \sim \text{Dir}(\alpha)\). Then

\[
\Pr [\{|i : X_i \geq \epsilon| \leq k\}] \geq 1 - e^{-n\alpha} e^{-(k+1)/3} - e^{-4(k+1)/9}.
\]

The proof avoids dependencies between the coordinates of a Dirichlet draw via the following alternate representation. Throughout the rest of this section, let Gamma(\(\alpha \)) denote a Gamma distribution with parameter \(\alpha \).

Lemma 2.2. (See for instance Balakrishnan and Nevzorov [2003, Equation 27.17].) Let \(\alpha > 0 \) and \(n \geq 1 \) be given. If \((X_1, \ldots, X_n) \sim \text{Dir}(\alpha)\) and \(\{Y_i\}_{i=1}^n \) are \(n \) i.i.d. copies of Gamma(\(\alpha \)), then

\[
(X_1, \ldots, X_n) \overset{d}{=} \left\{ \frac{Y_i}{\sum_{i=1}^n Y_i} \right\}.
\]

Before turning to the proof of Lemma 2.1, one more lemma is useful, which will allow a control of the Gamma distribution’s cdf.

Lemma 2.3. For any \(\alpha > 0, \ c \geq 0, \) and \(z \geq 1, \)

\[
\Pr[\text{Gamma}(\alpha) \leq cz] \leq z^\alpha \Pr[\text{Gamma}(\alpha) \leq c].
\]
\textbf{Proof. } Since \(e^{-zx} \leq e^{-x}\) for every \(x \geq 0\) and \(z \geq 1,\)
\[
\Pr[\text{Gamma}(\alpha) \leq z] = \frac{1}{\Gamma(\alpha)} \int_0^z e^{-x} x^{\alpha-1} dx
= \frac{1}{\Gamma(\alpha)} \int_0^\infty e^{-zx} (zx)^{\alpha-1} zdx
\leq z^{\alpha} \frac{1}{\Gamma(\alpha)} \int_0^\infty e^{-x} x^{\alpha-1} dx
= z^{\alpha} \Pr[\text{Gamma}(\alpha) \leq c].
\]

\textbf{Proof of Lemma }2.1. Since \(z \mapsto \Pr[\text{Gamma}(\alpha) \geq z] \) is continuous and has range \([0, 1],\) choose \(c \geq 0\) so that
\[
\Pr[\text{Gamma}(\alpha) > c] = \Pr[\text{Gamma}(\alpha) \geq c] = \frac{k+1}{3n}, \tag{2.4}
\]
where \((k + 1)/(3n) < 1.\) By this choice and Lemma 2.3
\[
\Pr[\text{Gamma}(\alpha) \leq c/\epsilon] \leq \epsilon^{-\alpha} \Pr[\text{Gamma}(\alpha) \leq c] = \epsilon^{-\alpha} \left(1 - \frac{k+1}{3n}\right) \leq \epsilon^{-\alpha} e^{-(k+1)/(3n)}. \tag{2.5}
\]

Now let \(\{Y_i\}_{i=1}^n\) be \(n\) i.i.d. copies of \(\text{Gamma}(\alpha).\) Define the events
\[
A := [\exists i \in [n] \cdot Y_i \geq c/\epsilon] \quad \text{and} \quad B := [\{|i \in [n] : Y_i \leq c\} \geq n - k].
\]
The remainder of the proof will establish a lower bound on \(\Pr(A \land B).\) To see that this finishes the proof, define \(S := \sum_i Y_i;\) since event \(A\) implies that \(S \geq c/\epsilon,\) it follows that \(Y_i \leq c\) implies \(Y_i/S \leq \epsilon.\) Consequently, events \(A\) and \(B\) together imply that \(Y_i/S \leq \epsilon\) for at least \(n - k\) choices of \(i.\) By Lemma 2.2 it follows that \(\Pr(A \land B)\) is a lower bound on the event that a draw from \(\text{Dir}(\alpha)\) has at least \(n - k\) coordinates which are at most \(\epsilon.\)

Returning to task, note that
\[
\Pr(A \land B) = 1 - \Pr(\neg A \lor \neg B) \geq 1 - \Pr(\neg A) - \Pr(\neg B). \tag{2.6}
\]
To bound the first term, by eq. (2.5),
\[
\Pr(\neg A) = \Pr[\forall i \in [n] \cdot Y_i < c/\epsilon] = \Pr[Y_1 \leq c/\epsilon]^n \leq e^{-\alpha} e^{-(k+1)/3}. \tag{2.7}
\]
For the second term, define indicator random variables \(Z_i := [Y_i > c],\) whereby
\[
\mathbb{E}(Z_i) = \Pr[Z_i = 1] = \Pr[Y_i > c] = \Pr[Y_i \geq c] = \frac{k+1}{3n}.
\]
Then, by a multiplicative Chernoff bound \cite{Kearns and Vazirani 1994 Theorem 9.2},
\[
\Pr(\neg B) = \Pr[\{|i \in [n] : Y_i > c\} \geq k+1] = \Pr\left[\sum_i Z_i \geq 3n\mathbb{E}(Z_i)\right] \leq \exp(-4n\mathbb{E}(Z_i)/3). \tag{2.8}
\]
Inserting (2.7) and (2.8) into the lower bound on \(\Pr(A \land B)\) in (2.6),
\[
\Pr(A \land B) \geq 1 - \epsilon^{-\alpha} e^{-(k+1)/3} - e^{-4(k+1)/9}.
\]

\textbf{Proof of Theorem }1.2. Instantiate Lemma 2.1 with \(k = c_2 \ln(n),\) \(\alpha = c_1/n,\) and \(\epsilon = n^{-c_3}.\)

3
Proof of Theorem 1.1. Instantiate Theorem 1.2 with $c_1 = 1$, $c_2 = 6c_0$, $c_3 = c_0$, and note

\[\frac{1}{e^{1/3}} \left(\frac{1}{n} \right)^{c_0} + \frac{1}{e^{4/9}} \left(\frac{1}{n} \right)^{2c_0} \leq \frac{1}{n^{c_0}} \left(\frac{1}{e^{1/3}} + \frac{1}{e^{4/9}} \right) \leq \frac{1}{n^{c_0}}. \]

Proof of Theorem 1.3. Define the function $f(z) := z^{-2}$ over $(0, \infty)$. Note that $f'(z) = -(\ln(z) + 1)z^{-2}$, which is positive for $z < 1/e$, zero at $z = 1/e$, and negative thereafter; consequently, $\sup_{z \in (0, \infty)} f(z) = f(1/e) = e^{1/e}$. As such, instantiating Lemma 2.1 with $\epsilon = n^{-2}$, $\alpha = n^{-3}$, and any $k < 3n - 1$ gives

\[
\Pr[|\{i : X_i \geq n^{-2}\}| \leq k] \geq 1 - n^{2/n}e^{-(k+1)/3} - e^{-4(k+1)/9} \\
\geq 1 - e^{2/n}e^{-(k+1)/3} - e^{-4(k+1)/9}.
\]

Plugging in $k \in \{5, \ln(g(n))\}$ gives the two bounds.

Acknowledgement

The author thanks Anima Anandkumar and Daniel Hsu for relevant discussions.

References

N. Balakrishnan and V. B. Nevzorov. *A primer on statistical distributions*. Wiley-Interscience, 2003.

M. J. Kearns and U. V. Vazirani. *An introduction to computational learning theory*. MIT Press, Cambridge, MA, USA, 1994.