Abstract

For the treatment and/or prevention of HIV (human immunodeficiency virus) and HBV (hepatitis B virus) infections, 15 tenofovir-containing drug preparations have been commercialized: TDF (tenofovir disoproxil fumarate) and TAF (tenofovir alafenamide) for the therapy of HIV and HBV infections; TDF (or TAF) plus emtricitabine for the prophylaxis of HIV infections; TDF (or TAF) plus emtricitabine plus rilpivirine for the therapy of HIV infections; and several other tenofovir-containing drug combinations have been approved for the therapy of HIV infections: TDF (or TAF) plus emtricitabine plus elvitegravir plus cobicistat; TDF plus emtricitabine plus efavirenz; TAF plus emtricitabine plus bictegravir; TAF plus emtricitabine plus darunavir plus cobicistat; and TDF plus lamivudine with or without efavirenz or doravirine.

Keywords: HIV therapy; HIV prophylaxis; HBV therapy; Tenofovir disoproxil fumarate (TDF); Tenofovir alafenamide (TAF)
Table 1: Tenofovir in different commercial anti-HIV drug preparations.

Composition	Brand Names
TDF	Viread®
TDF + Emtricitabine (Emtriva®)	Truvada®
TDF + Emtricitabine + Efavirenz (Sustiva®, Stocrin®)	Atripla®
TDF + Emtricitabine + Rilpivirine (Edurant®)	Complera®, Evipla®
TDF + Emtricitabine + Elvitegravir + Cobicistat	Stribild®
TAF : Tenofovir alafenamide	Vemlidy®
TAF + Emtricitabine	Descovy®
TAF + Emtricitabine + Rilpivirine	Odefsey®
TAF + Emtricitabine + Elvitegravir + Cobicistat	Genvoya®
TAF + Emtricitabine + Bictegravir	Biktarvy®
TAF + Emtricitabine + Darunavir + Cobicistat	Symtuza®
TDF + Lamivudine	Cimduo™
TDF + Lamivudine + Efavirenz (600 mg)	Symfi™
TDF + Lamivudine + Efavirenz (400 mg)	Symfi Lo™
TDF + Lamivudine + Doravirine	Delstrigo™
(Atripla®) was not replaced. The advantage of TAF over TDF was that it could be given at a much lower dose (25 mg) as compared to 300 mg for TDF and that, concomitantly, TAF had a much lower risk for nephrotoxicity (tubular nephropathy) and bone toxicity (demineralization).

Dolutegravir combined with emtricitabine and TAF

For the treatment of HIV infection, either bictegravir or dolutegravir could be combined with TAF/emtricitabine [14-16], which means that efavirenz should be replaced by dolutegravir and TDF by TAF [16]. In fact, more weight gain was observed with dolutegravir than with efavirenz (400 mg) [17]. The combination of dolutegravir, emtricitabine and TDF gave similar efficacy and tolerability as the combination of elvitegravir, cobicistat, emtricitabine and TDF [18]. The benefits of tenofovir, lamivudine and dolutegravir in the treatment of HIV infections in sub-Saharan Africa substantially outweighed their risks [19].

Whether a three-drug regimen (dolutegravir + lamivudine + TDF) could be advantageously reduced to a two-drug regimen (dolutegravir + lamivudine) [20, 21], just in a drug-sparing attempt, is a debatable approach as it certainly violates the principles that the combination anti-HIV therapy was originally based upon: synergism, reduced risk of resistance development and lowering the drug dosages (and toxicities).

Cimduo, Symfi and Symfi Lo

The Medical Letter of 14 January 2019 reported that...
the US FDA had approved three new once-daily fixed-dose antiretroviral drug combinations for the treatment of HIV-1 infection: Cimduo™ (Mylan), which contains lamivudine (300 mg) and TDF (300 mg), was approved for use in combination with other antiretroviral drugs. Symfi™ (Mylan) and Symfi Lo™ (Mylan) contain TDF (300 mg), lamivudine (300 mg) and efavirenz (600 mg in Symfi or 400 mg in Symfi Lo, respectively), were approved as complete antiretroviral drug regimens.

The ENCORE 1 study had indicated that a reduced dose of 400 mg efavirenz was non-inferior to the standard dose of 600 mg when combined with TDF (300 mg) and emtricitabine (200 mg) as the initial HIV therapy in antiretroviral-naive adults for a period of 48 weeks [22] and 96 weeks [23]. Whether the dosing of 400 mg for efavirenz could be globally advocated, i.e. during pregnancy and antituberculosis treatment, remains to be determined [24].

Delstrigo™

Delstrigo™ contains 100 mg doravirine (Pifeltro™), 300 mg lamivudine and 300 mg TDF. It has been approved in both the US and EU as a once-daily fixed-dose antiretroviral drug combination for the treatment of adults with HIV-1 infection. It represents a complete regimen for the treatment of HIV-1 infection in adults without past or present evidence of viral resistance to doravirine, lamivudine or tenofovir [25].

In HIV-1 treatment-naive adults, Delstrigo™ demonstrated non-inferior efficacy to the combination of efavirenz (600 mg), emtricitabine (200 mg) and TDF (300 mg) at week 48 (DRIVE-AHEAD Trial) [26]. Switching to once-daily Delstrigo™ maintained HIV-1 virological suppression through 48 weeks in the DRIVE-SHIFT Trial [27].

Pre-Exposure Prophylaxis (PrEP) of HIV-1 Infection

A TDF-based PrEP has proven highly effective for the prevention of HIV infection [28-32]. The combination of emtricitabine with TDF (Truvada®) was approved on 16 July 2012 by the US FDA for the prophylaxis of HIV-1 infection. It was later approved worldwide for this indication. Its successor, Descovy® (combination of emtricitabine 200 mg with TAF 25 mg) has been approved by the US FDA for HIV pre-exposure prophylaxis in at-risk adults and adolescents weighing at least 35 kg who are HIV-negative, excluding individuals at risk from receptive vaginal sex (because effectiveness in this population has not been evaluated) [33]. PrEP with oral TDF or TDF/emtricitabine was associated with decreased risk of acquiring HIV infection compared with placebo or no PrEP [34], but, on the other hand, PrEP for HIV increased the incidence of other sexually transmitted infections (STIs) such as chlamydia, gonorrhea or syphilis [35]. The success of PrEP for HIV obviously depends on the uptake of PrEP following its roll-out [36].

In the context of topical PrEP, various drug formulations have been devised to ensure the vaginal delivery of tenofovir [37-38].

Long-lasting Anti-HIV Activity

As originally shown for cabotegravir, a strand-transfer integrase inhibitor, monthly (intramuscular) shots may replace daily anti-HIV pills [39,40]. Such long-acting injectable administration of cabotegravir may also be acceptable in the prevention of HIV infection [41]. As shown for 4’-ethynyl-2-fluoro-2’-deoxyadenosine (EFDa, MK-8591), subcutaneous implants may sustain efficacious plasma levels for 6 months or even longer [42-44].

For cabotegravir and rilpivirine, long-acting implants for the treatment and prevention of HIV have already proceeded to phase 2 clinical trials, and for TAF and MK-8591 they have been evaluated in animals [45]. Long-acting anti-HIV activity has been noted with rilpivirine, dapivirine, MK-8591 and cabotegravir formulations [46].

It is obvious that such long-lasting performance could be expected from tenofovir (or TAF)-containing implants as well. In fact, the long-acting PrEP potency of subcutaneously administered TAF and emtricitabine loaded nanoparticles in the prevention of HIV-1 vaginal transmission has been demonstrated in humanized mice [47].

Tenofovir (TDF, TAF) for Prevention or Therapy of HBV Infections

Both TDF (Viread®) and TAF (Vemlidy®) have been formally approved by the US FDA for the treatment of hepatitis B virus (HBV) infections [9]. In a real-world setting, TDF was found to prevent HBV transmission in mothers with high viral load [48]. Also, in a real-world study, long-term TDF monotherapy showed non-inferior antiviral efficacy compared with TDF-based combination therapy in patients with multidrug-resistant chronic HBV infection [49]. In HBeAg-positive chronic HBV patients, combination therapy of TDF with entecavir provided a higher virus inhibition than TDF monotherapy [50].

In a retrospective analysis of 29,350 patients with chronic HBV infection in China, treatment with TDF was associated with a lower risk of hepatocellular carcinoma (HCC) than treatment with entecavir over a median follow-up time of 3.6 years [51]. Switching from TDF to TAF therapy of HBV infection allowed the maintenance
of the antiviral activity and recovery of renal dysfunction [52].

Conflict of Interest

The author is co-inventor of tenofovir.

Acknowledgments

I thank Mrs. Myriam Cornelis for her proficient editorial assistance.

References

1. Balzarini J, Holy A, Jindrich J, Naesens L, Snoeck R, Schols D, De Clercq E. Differential antitherpesvirus and antiretrovirus effects of the (S) and (R) enantiomers of acyclic nucleoside phosphonates: potent and selective in vitro and in vivo antiretrovirus activities of (R)-9-(2-phosphonomethoxypropyl)-2, 6-diaminopurine. Antimicrobial Agents and Chemotherapy. 1993 Feb 1;37(2):332-8.

2. Tsai CC, Follis KE, Sabo A, Beck TW, Grant RF, Bischofberger N, Benveniste RE, Black R. Prevention of SIV infection in macaques by (R)-9-(2-phosphonylmethoxypropyl) adenine. Science. 1995 Nov 17;270(5239):1197-9.

3. Robbins BL, Srinivas RV, Kim C, Bischofberger N, Fridland A. Anti-human immunodeficiency virus activity and cellular metabolism of a potential prodrug of the acyclic nucleoside phosphate 9-R-(2-phosphonomethylpropyl) adenine. Antimicrobial agents and chemotherapy. 1998 Mar 1;42(3):612-7.

4. Naesens L, Bischofberger N, Augustijns P, Annaert P, Van den Mooter G, Kim CU, De Clercq E. Antiretroviral efficacy and pharmacokinetics of oral bis (isopropylxymethyl) PMPA, bis (isopropylxymethylcarbonyl) PMPA. Antimicrobial agents and chemotherapy. 1998 Jul 1;42(7):1568-73.

5. De Clercq E. Where rilpivirine meets with tenofovir, the start of a new anti-HIV drug combination era. Biochemical pharmacology. 2012 Aug 1;84(3):241-8.

6. De Clercq E. Tenofovir: quo vadis anno 2012 (where is it going in the year 2012)?. Medicinal research reviews. 2012 Jul;32(4):765-85.

7. Lee WA, He GX, Eisenberg E, Cihlar T, Swaminathan S, Mulato A, et al. Selective intracellular activation of a novel prodrug of the human immunodeficiency virus reverse transcriptase inhibitor tenofovir leads to preferential distribution and accumulation in lymphatic tissue. Antimicrobial agents and chemotherapy. 2005;49(5):1898-1906.

8. De Clercq E. Tenofovir alafenamide (TAF) as the successor of tenofovir disoproxil fumarate (TDF). Biochemical pharmacology. 2016 Nov 1;119:1-7.

9. De Clercq E. Role of tenofovir alafenamide (TAF) in the treatment and prophylaxis of HIV and HBV infections. Biochemical pharmacology. 2018 Jul 1;153:2-11.

10. Kityo C, Hagins D, Koenig E, Avihingsanon A, Chetchotisakd P, Supparatpinyo K, Gankina N, Pokrovsky V, Voronin E, Stephens JL, DeJesus E. Switching to Fixed-Dose Bictegravir, Emtricitabine, and Tenofovir Alafenamide (B/F/TAF) in Virologically Suppressed HIV-1 Infected Women: A Randomized, Open-Label, Multicenter, Active-Controlled, Phase 3, Noninferiority Trial. JAIDS Journal of Acquired Immune Deficiency Syndromes. 2019 Nov 1;82(3):321-8.

11. Crauwels HM, Baugh B, Van Landuyt E, Vanveggel S, Hijken A, Opsomer M. Bioequivalence of the Once-Daily Single-Tablet Regimen of Darunavir, Cobicistat, Emtricitabine, and Tenofovir Alafenamide Compared to Combined Intake of the Separate Agents and the Effect of Food on Bioavailability. Clinical pharmacology in drug development. 2019 May;8(4):480-91.

12. Maggiolo F, Rizzardini G, Raffi F, Pulido F, Mateo-Garcia MG, Molina JM, Ong E, Shao Y, Piontkowsky D, Das M, McNicholl I. Bone mineral density in virologically suppressed people aged 60 years or older with HIV-1 switching from a regimen containing tenofovir disoproxil fumarate to an elvitegravir, cobicistat, emtricitabine, and tenofovir alafenamide single-tablet regimen: a multicentre, open-label, phase 3b, randomised trial. The Lancet HIV. 2019 Oct 1;6(10):e655-66.

13. Gomez M, Seybold U, Roder J, Harter G, Bogner JR. A retrospective analysis of weight changes in HIV-positive patients switching from a tenofovir disoproxil fumarate (TDF)-to a tenofovir alafenamide fumarate (TAF)-containing treatment regimen in one German university hospital in 2015–2017. Infection. 2019 Feb 7;47(1):95-102.

14. Sax PE, Pozniak A, Montes ML, Koenig E, DeJesus E, Stellbrink HJ, Antinori A, Workowski K, Slim J, Reyes J, Garner W. Coformulated bictegravir, emtricitabine, and tenofovir alafenamide versus dolutegravir with emtricitabine and tenofovir alafenamide, for initial treatment of HIV-1 infection (GS-US-380–1490): a randomised, double-blind, multicentre, phase 3, non-inferiority trial. The Lancet. 2017 Nov 4;390(10107):2073-82.

De Clercq E. Tenofovir at the Crossroad of the Therapy and Prophylaxis of HIV and HBV Infections. J Cell Immunol. 2020; 2(1): 23-30.
15. Stellbrink HJ, Arribas JR, Stephens JL, Albrecht H, Sax PE, Maggiolo F, Creticos C, Martorell CT, Wei X, Acosta R, Collins SE. Co-formulated bictegravir, emtricitabine, and tenofovir alafenamide versus dolutegravir with emtricitabine and tenofovir alafenamide for initial treatment of HIV-1 infection: week 96 results from a randomised, double-blind, multicentre, phase 3, non-inferiority trial. The Lancet HIV. 2019 Jun 1;6(6):e364-72.

16. Venter WD, Moorhouse M, Sokhela S, Fairlie L, Mashabane N, Masenya M, Serenata C, Akpomiemie G, Qavi A, Chandiwana N, Norris S. Dolutegravir plus two different prodrugs of tenofovir to treat HIV. New England Journal of Medicine. 2019 Aug 29;381(9):803-15.

17. NAMSAL ANRS 12313 Study Group. Dolutegravir-based or low-dose Efavirenz-based regimen for the treatment of HIV-1. New England Journal of Medicine. 2019 Aug 29;381(9):816-26.

18. Baldin G, Ciccullo A, Capetti A, Rusconi S, Sterrantino G, Cossu MV, Giacomelli A, Lati L, Taglia N, Bagella P, De Luca A. Efficacy and safety of switching to dolutegravir plus emtricitabine/tenofovir disoproxil fumarate (TDF) or elvitegravir/cobicistat/emtricitabine/TDF in virologically suppressed HIV-infected patients in clinical practice: results from a multicentre, observational study. HIV medicine. 2019 Feb;20(2):164-7.

19. Phillips AN, Venter F, Havlir D, Pozniak A, Kuritzkes D, Wensing A, Lundgren JD, De Luca A, Pillay D, Mellors J, Cambiano V. Risks and benefits of dolutegravir-based antiretroviral drug regimens in sub-Saharan Africa: a modelling study. The Lancet HIV. 2019 Feb 1;6(2):e116-27.

20. Cahn P, Madero JS, Arribas JR, Antinori A, Ortiz R, Clarke AE, Hung CC, Rockstroh JK, Girard PM, Sievers J, Man C. Dolutegravir plus lamivudine versus dolutegravir plus tenofovir disoproxil fumarate and emtricitabine in antiretroviral-naive adults with HIV-1 infection (GEMINI-1 and GEMINI-2): week 48 results from two multicentre, double-blind, randomised, non-inferiority, phase 3 trials. The Lancet. 2019 Jan 12;393(10167):143-55.

21. Kroidl A, Eberle J. A two-drug regimen for antiretroviral therapy. The Lancet. 2018;393:106-108.

22. ENCORE1 Study Group. Efficacy of 400 mg efavirenz versus standard 600 mg dose in HIV-infected, antiretroviral-naive adults (ENCORE1): a randomised, double-blind, placebo-controlled, non-inferiority trial. The Lancet. 2014 Apr 26;383(9927):1474-82.

23. ENCORE1 Study Group. Efficacy and safety of efavirenz 400 mg daily versus 600 mg daily: 96-week data from the randomised, double-blind, placebo-controlled, non-inferiority ENCORE1 study. The Lancet Infectious Diseases. 2015 Jul 1;15(7):793-802.

24. Boffito M, Lamorde M, Watkins M, Pozniak A. Antiretroviral dose optimization: the future of efavirenz 400 mg dosing. Current Opinion in HIV and AIDS. 2017 Jul 1;12(4):339-42.

25. CADTH Common Drug Reviews. Common Drug Review New Combination Product: Doravirine/Lamivudine/Tenofovir Disoproxil Fumarate Fixed-Dose Combination (Delstrigo): Merck Canada Inc Indication: A complete regimen for the treatment of human immunodeficiency virus-1 (HIV-1) infection in adults without past or present evidence of viral resistance to doravirine, lamivudine, or tenofovir. Ottawa (ON): Canadian Agency for Drugs and Technologies in Health. 2019;pp1-52.

26. Orkin C, Squires KE, Molina JM, Sax PE, Wong WW, Sussmann O, Kaplan R, Lupinacci L, Rodgers A, Xu X, Lin G. Doravirine/Lamivudine/Tenofovir Disoproxil Fumarate is Non-inferior to Efavirenz/Emtricitabine/Tenofovir Disoproxil Fumarate in Treatment-naive Adults With Human Immunodeficiency Virus–1 Infection: Week 48 Results of the DRIVE-AHEAD Trial. Clinical Infectious Diseases. 2018 Aug 31;68(4):535-44.

27. Johnson M, Kumar P, Molina JM, Rizzardini G, Cahn P, Bickel M, Mallolas J, Zhou Y, Morais C, Kumar S, Sklar P. Switching to doravirine/lamivudine/tenofovir disoproxil fumarate (DOR/3TC/TDF) maintains HIV-1 virologic suppression through 48 weeks: results of the DRIVE-SHIFT trial. JAIDS Journal of Acquired Immune Deficiency Syndromes. 2019 Aug 1;81(4):463-72.

28. Grant RM, Lama JR, Anderson PL, McMahan V, Liu AY, Vargas L, Goicochea P, Casapia M, Guanira-Carranza JV, Ramirez-Cardich ME, Montoya-Herrera O. Preexposure chemoprophylaxis for HIV prevention in men who have sex with men. New England Journal of Medicine. 2010 Dec 30;363(27):2587-99.

29. Baeten JM, Donnell D, Ndase P, Mugo NR, Campbell JD, Wangisi J, Tapper JW, Bukusi EA, Cohen CR, Katabira E, Eron J. Antiretroviral prophylaxis for HIV prevention in heterosexual men and women. New England Journal of Medicine. 2012 Aug 2;367(5):399-410.

30. Thigpen MC, Kebaabetswe PM, Paxton LA, Smith DK, Rose CE, Segolodi TM, Henderson FL, Pathak SR, Soud FA, Chillag KL, Mutanhaurwa R. Antiretroviral preexposure prophylaxis for heterosexual HIV transmission in Botswana. New England Journal of Medicine. 2012 Aug 2;367(5):423-34.

31. Molina JM, Capitant C, Spire B, Pialoux G, Cotte L, Charreau I, Tremblay C, Le Gall JM, Cua E, Pasquet A,
Raffi F. On-demand preexposure prophylaxis in men at high risk for HIV-1 infection. New England Journal of Medicine. 2015 Dec 3;373(23):2237-46.

32. McCormack S, Dunn DT, Desai M, Dolling DI, Gafos M, Gilson R, Sullivan AK, Clarke A, Reeves I, Schembri G, Mackie N. Pre-exposure prophylaxis to prevent the acquisition of HIV-1 infection (PROUD): effectiveness results from the pilot phase of a pragmatic open-label randomised trial. The Lancet. 2016 Jan 2;387(10013):53-60.

33. https://www.gilead.com/news-and-press/press-room/press-releases/2019/10/gilead-presents-new-data-from-the-companys-hiv-clinical-development-program-and-latest-findings-on-the-impact-of-hiv-preexposure-prophylaxis-prep.

34. Traeger MW, Cornelisse VJ, Asselin J, Price B, Roth NJ, Willcox J, Tee BK, Fairley CK, Chang CC, Armishaw J, Vujovic O. Association of HIV preexposure prophylaxis with incidence of sexually transmitted infections among individuals at high risk of HIV infection. Jama. 2019 Apr 9;321(14):1380-90.

35. Chou R, Evans C, Hoverman A, Sun C, Dana T, Bougatsos C, Grusding S, Korthuis PT. Preexposure prophylaxis for the prevention of HIV infection: evidence report and systematic review for the US Preventive Services Task Force. Jama. 2019 Jun 11;321(22):2214-30.

36. Vuylsteeke B, Reyniers T, Lucet C, Nöstlinger C, Deblonde J, Libois A, Sauvage AS, Deprez E, Goffard JC, Allard SD, Florence E. High uptake of pre-exposure prophylaxis (PrEP) during early roll-out in Belgium: results from surveillance reports. Sexual health. 2018;16(1):80-3.

37. Martin-Illana A, Cazorla-Luna R, Notario-Pérez F, Bedoya LM, Ruiz-Caro R, Veiga MD. Freeze-dried bioadhesive vaginal bigels for controlled release of Tenofovir. European Journal of Pharmaceutical Sciences. 2019 Jan 15;127:38-51.

38. Cautela MP, Moshe H, Sosnik A, Sarmento B, das Neves J. Composite films for vaginal delivery of tenofovir disoproxil fumarate and emtricitabine drug combination: A comparative pre-exposure prophylaxis efficacy study against HIV-1 vaginal transmission. Journal of Controlled release. 2019 Jan 28;294:216-25.

39. Wang M, Bian Q, Zhu Y, Pang Q, Chang L, Li R, Tiongson BC, Zhang H, Pan CQ. Real-world study of tenofovir disoproxil fumarate to prevent hepatitis B transmission in mothers with high viral load. Alimentary Pharmacology & Therapeutics. 2019 Jan 28;294:216-25.

40. Lee HW, Park JY, Lee JW, Yoon KT, Kim CW, Park H, Kim YS, Paik SK, Lee JI, Kim BK, Han KH. Long-term efficacy of tenofovir disoproxil fumarate monotherapy for multidrug-resistant chronic HBV infection. Clinical Gastroenterology and Hepatology. 2019 Jun 1;17(7):1348-55.
positive chronic hepatitis patients with partial virological response to entecavir. Journal of medical virology. 2019 Oct 14.

51. Yip TC, Wong VW, Chan HL, Tse YK, Lui GC, Wong GL. Tenofovir is associated with lower risk of hepatocellular carcinoma than entecavir in patients with chronic HBV infection in China. Gastroenterology. 2020 Jan 1;158(1):215-25.

52. Kaneko S, Kurosaki M, Tamaki N, Itakura J, Hayashi T, Kirino S, Osawa L, Watakabe K, Okada M, Wang W, Shimizu T. Tenofovir alafenamide for hepatitis B virus infection including switching therapy from tenofovir disoproxil fumarate. Journal of gastroenterology and hepatology. 2019 Apr 24.