An Observational Study of the Effect of Hemoglobinopathy, Alpha Thalassemia and Hemoglobin E on P. Vivax Parasitemia

Suparak Para¹, Punchalee Mungkalasut¹, Makamas Chanda², Issarang Nuchprayoon³, Srivicha Krudsood⁴ and Chalisa Louicharoen Cheepsunthorn⁵*.

¹ Medical Biochemistry Program, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand.
² Biomedical Sciences Program, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand.
³ Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand.
⁴ Department of Tropical Hygiene and Clinical Malaria Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.
⁵ Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand.

Competing interests: The authors have declared that no competing interests exist.

Abstract. Background: The protective effect of α-thalassemia, a common hematological disorder in Southeast Asia, against Plasmodium falciparum malaria has been well established. However, there is much less understanding of the effect of α-thalassemia against P. vivax. Here, we aimed to investigate the proportion of α-thalassemia including the impact of α-thalassemia and HbE on the parasitemia of P. vivax in Southeast Asian malaria patients in Thailand.

Methods: A total of 210 malaria patients, admitted to the Hospital for Tropical Diseases, Thailand during 2011-2012, consisting of 159 Myanmeses, 13 Karens, 26 Thais, 3 Mons, 3 Laotians, and 6 Cambodians were recruited. Plasmodium spp. and parasite densities were determined. Group of deletion mutation (−SEA, −α₃.₇, −α₄.₂ deletion) and substitution mutation (HbCS and HbE) were genotyped using multiplex gap-PCR and PCR-RFLP, respectively.

Results: In our malaria patients, 17/210 homozygous and 74/210 heterozygous −α₃.₇ deletion were found. Only 3/210 heterozygous −α₄.₂ and 2/210 heterozygous−−SEA deletion were detected. HbE is frequently found with 6/210 homozygotes and 35/210 heterozygotes. The most common thalassemia allele frequencies in Myanmar population were −α₃.₇ deletion (0.282), followed by HbE (0.101), HbCS (0.013), −α₄.₂ deletion (0.009), and −−SEA deletion (0.003). Only density of P. vivax in α-thalassemia trait patients (−α₃.₇/−α₃.₇, −−SEA/aa, −α₃.₇/−α₄.₂) but not in silent α-thalassemia (−α₃.₇/aa, −α₄.₂/aa, aa/aa) were significantly higher compared with non-α-thalassemia patients (p=0.027). HbE did not affect P. vivax parasitemia. The density of P. falciparum significantly increased in heterozygous HbE patients (p=0.046).

Conclusions: Alpha-thalassemia trait is associated with high levels of P. vivax parasitemia in malaria patients in Southeast Asia.

Keywords: Silent alpha-thalassemia, Alpha-thalassemia trait, HbE, Malaria, Southeast Asian.

Citation: Para S., Mungkalasut P., Chanda M., Nuchprayoon I., Krudsood S., Cheepsunthorn C.L. An observational study of the effect of hemoglobinopathy, alpha thalassemia and hemoglobin E on P. vivax parasitemia. Mediterr J Hematol Infect Dis 2018, 10(1): e2018015, DOI: http://dx.doi.org/10.4084/MJHID.2018.015

Published: February 16, 2018 Received: February 3, 2018 Accepted: August 23, 2017

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by-nc/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Correspondence to: Chalisa Louicharoen Cheepsunthorn. Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Rd., Pathumwan, Bangkok 10330, Thailand. Tel: +66(0)22564482 ext. 4123, Fax: +66(0)22564482. E-mail address: chalisa1@chula.ac.th
Introduction. Malaria is the most prevalent parasitic disease worldwide where 214 million patients suffer due to *Plasmodium vivax* and *Plasmodium falciparum* infection, and more than 400,000 people die annually. Both *P. vivax* and *P. falciparum* have been the main causes of malaria on the Thailand-Myanmar border for many years. In Thai villagers, *P. vivax* infection has recently become the largest proportion of cases in patients. The result of selective malaria pressure on recent human genome evolution is presented in the form of high frequencies of genetic disorders of hemoglobin including thalassemias and hemoglobinopathies in populations living in historically malarious regions. Such malaria-protective properties have since been demonstrated in glucose 6-phosphate dehydrogenase (G6PD) deficiency, α-thalassemia, hemoglobin C, hemoglobin S and hemoglobin E. The protective effect of thalassemia against *P. falciparum* malaria has been well established. However, the impact of thalassemia on *P. vivax* is not well understood yet. Alpha-thalassemia is caused by the deletion of a number of α-globin genes resulting in an imbalance of α- and β-globin. There are several types of α-thalassemia; silent α-thalassemia, α-thalassemia trait and HbH, which depleted one, two, and three copy of α-globin genes, respectively. The -α and -α deletions are most common forms of silent α-thalassemia in Southeast Asians. Clinical symptoms of α-thalassemia traits are mild anemia with hypochromic erythrocytes, whereas heterozygotes are asymptomatic. The meta-analysis demonstrated the protective effect of silent α-thalassemia against *P. falciparum*. A case-control study in Africa and Papua New Guinea (PNG) found that silent α-thalassemia protects against *P. falciparum*. Alpha-thalassemia trait --SEA deletion was commonly found in Thailand and Southeast Asia (SEA). The --SEA allele has been identified as the recent balancing selected allele triggered by malaria. However, several studies failed to detect the association of α-thalassemia traits and parasitemia of *P. vivax*. Hemoglobin E (HbE) is the most common β-hemoglobinopathies in Southeast Asia. Several studies have found that HbE confers protection against *P. falciparum*. However, HbE has been found to be more prone to *P. vivax*. This study aimed to investigate the proportion of α-thalassemia and HbE and to clarify the effect of α-globin gene numbers and HbE genotype on the parasitemia in Southeast Asian malaria patients in Thailand.

Materials and Methods.
Study subjects and sample collection. The study protocol was reviewed and approved by the Institutional Review Board of the Faculty of Medicine, Chulalongkorn University (Bangkok, Thailand) (COA No. 040/2013 IRB No. 459/55). Malaria patients in this cohort study were referred from many malaria-endemic provinces including borders of Thailand: Tak (Maesod District), Kanchanaburi (Sangkhlaburi District), Phetchaburi (Kaeng Krachan District), Suphanburi (Dan Chang District), Ranong, Sisaket (Kantharalak District) and Chonburi (Figure 1). Before enrolment in the study, all patients gave written informed consent. Patients who were slide-positive for *Plasmodium* malaria with no history of antimalarial drug treatment within the preceding 2 weeks, and were admitted to the Hospital for Tropical Diseases in Thailand during 2011-2012, were recruited. G6PD deficiency, an enzymopathy involved in protecting against malaria, which may interfere with interpretation of the effect of α-thalassemia and HbE, was excluded.

Identify *Plasmodium* spp. infection and parasite density. All blood samples from finger pricks were Giemsa stained for thick and thin blood films. Blood smears were tested every 12 hours from initiation of treatment until they were negative on two consecutive occasions; after that, blood smears were daily tested until patients were discharged. Parasite densities (asexual parasite/microliter of blood) were examined by counting the number per 200 leukocytes (thick film) or per 1,000 erythrocytes (thin film). In interpretation the *Plasmodium* spp., blood smear films were read under microscope by an independent parasitologist at the Hospital for Tropical Diseases. The species was confirmed by polymerase chain reaction (PCR)-based analysis.

Measurement of G6PD activity. G6PD activity assays were performed prior to treatment and weekly repeated until patients were discharged. Quantitative test for G6PD activity was performed using G6PD kit assay (Trinity Biotech, Bray, County Wicklow, Ireland), which measured
NADPH production at wavelength of 340 nm. All samples were run parallel with positive and negative control. Hemoglobin for calculation of G6PD activity was measured using Hb201 (HemoCue, Sweden). G6PD activity <1.5 IU/g Hb classified as G6PD deficient was excluded from the study. Leftover blood samples were kept at -20°C for molecular typing.

Detection of α-thalassemia. Genomic DNA was extracted from peripheral blood using phenol-chloroform method. Alpha-globin gene variants including α-thalassemia trait (−SEA deletion) and silent α-thalassemia (−α3.7, −α4.2 deletion) were investigated by multiplex gap-polymerase chain reaction (multiplex gap-PCR). HbCS and HbE were genotyped using PCR-restriction fragment length polymorphism (PCR-RFLP).

Statistical analysis. All statistical analyses were performed using the SPSS version 22.0. The main outcomes of interest were parasite densities of *P. falciparum* and *P. vivax* malaria before treatment. Parasite density that was not normally distributed was log-transformed prior to analysis. Parasitemia of α-thalassemia and HbE patients were compared with that of non-thalassemia (HbA) using unpaired T-test. In all statistical analyses, significance levels were set at the 95% confidence interval (CI) (*P*<0.05).

Results.

Characteristics of the study population. A total of 210 patients (201 males and 9 females) including 159 Myanmese, 13 Karens, 26 Thais, 3 Mons, 3 Laotians, and 6 Cambodians were recruited for the study. Patients were from Myanmar (N= 159), Tak (Maesod district, N= 127), Kanchanaburi (Sangkhlaburi district, N= 9), Ranong (N= 1), Thailand-Myanmar border (N= 15), Thailand-Cambodia border (N= 1, Figure 1) and missing data (N= 6). The average age of all subjects was 28.0±10.0 (range 14-60) years. Eighty-five had *P. falciparum*, while 122 had *P. vivax* infection, two had mixed infection of *P. falciparum* and *P. vivax* and one had *P. malariae*.

In this study, 17 homozygous and 74 heterozygous -α3.7 deletion were found among 210 patients, while only three heterozygous -α4.2 and two heterozygous −SEA deletion were detected.

Figure 1 Distribution of malaria patients cohort along Thailand and borders during 2011-2012 (Missing geographic data in 19 cases) (*Pf.*, *Pv.*, *Pm.*, and *Pf.+Pv.* represent *P. falciparum*, *P. vivax*, *P. malariae*, and mixed infection of *P. falciparum* and *P. vivax*, respectively.)
HbE was also highly prevalent, with six homozygotes and 35 heterozygotes. For HbCS, five heterozygous were detected (Table 1). The Myanmese was the major ethnic group in this study accounting for 75% of all patients. Among these, the proportion of α-thalassemia was 48.4% (77/159), including 45.9% (73/159) of \(-\alpha^{3.7} \) deletion, 1.8% (3/159) \(-\alpha^{4.2} \) deletion, 0.6% (1/159) \(-SEa \) deletion, and 2.5% (4/159) \(aa^CS \) whereas HbE was 20.8% (29/159). Allele frequencies were calculated for the major population. The most common was \(-\alpha^{3.7} \) deletion (0.282), followed by HbE (0.101), HbCS (0.013), \(-\alpha^{4.2} \) deletion (0.009), and \(-SEa \) deletion (0.003) (Table 1). Thalassemia and hemoglobinopathies were not found in 3 patients with \(P. \) \textit{malariae} and mixed infection patients.

Association of α-globin gene dosage, HbE, and parasitemia. To assess the effect of α-globin gene presence and HbE genotype on the parasitemia of \(P. \) \textit{vivax} and \(P. \) \textit{falciparum}, the number of parasites in the blood of α-thalassemia and HbE genotypes were compared with that of non-thalassemia (HbA). The results found that \(P. \) \textit{vivax} density in patients with α-thalassemia trait (\(-\alpha^{3.7}/\alpha\alpha \), \(-SEa/\alpha\alpha \), \(-\alpha^{3.7}/\alpha^{4.2} \)) was 4.21±0.32 log\(_{10}\) value/μl, which was significantly higher than HbA patients (3.89±0.71 log\(_{10}\) value/μl) (\(p=0.027 \)) (Table 2). Whereas, \(P. \) \textit{vivax} parasitemia was not significantly different in patients who depleted only one α-globin gene or had silent α-thalassemia (\(-\alpha^{3.7}/aa \), \(-\alpha^{4.2}/aa \), \(aa^CS/aa \)) (3.94±0.66 log\(_{10}\) value/μl) (\(p=0.707 \)) (Table 2). Nevertheless, HbH patient (\(-\alpha^{3.7}/-SEa \)) had low level of \(P. \) \textit{vivax} parasitemia compared with HbA (2.08 log\(_{10}\) value/μl). However, there was no significant effect of the number of alpha globin gene deletions on \(P. \) \textit{falciparum} parasitemia.

However, significant increases of \(P. \) \textit{falciparum} density in heterozygous HbE patients was detected (4.45±0.66 log\(_{10}\) value/μl) (\(p=0.046 \)) (Table 2). On the other hand, \(P. \) \textit{falciparum} parasitemia was reduced in homozygous HbE patient (3.00 log\(_{10}\) value/μl) (Table 2). Nevertheless, this study could not find the effect of HbE on \(P. \) \textit{vivax} parasitemia.

Discussion. Our study is an association study between α-thalassemia and \(P. \) \textit{vivax} density in Southeast Asia. The proportion of \(P. \) \textit{vivax} infection in this study was higher than \(P. \) \textit{falciparum} infection with a ratio of 1.4:1, which corresponds to the WHO World Malaria Report in 2015 which reported that \(P. \) \textit{vivax} (54%) was detected more frequently than \(P. \) \textit{falciparum} (38%) in Thailand. The distribution of \(P. \) \textit{vivax} in Thailand is predominantly along the western region; Tak Province or the Thailand-Myanmar border (Figure 1), which had the highest malaria incidence. Since all patients in the study, who were referred to the Hospital for Tropical Diseases after malaria infection, were immigrant laborers,

Table 1. Proportion of thalassemia and hemoglobinopathies in malaria patients, divided by Plasmodium spp. infection and ethnicity.

Mutation	Genotype	Plasmodium spp.(N)	Ethnic group(N)	Total number						
		Plasmodium falciparum	Plasmodium vivax							
		Myanmar	Karen	Thai	Mon	Laotian	Cambodian			
HbA*	αα/αα	45	68	84	9	16	2	0	5	116
\(-\alpha^{3.7} \)	\(-\alpha^{3.7}/\alpha\alpha \)	31	43	57	4	8	1	3	1	74
	\(-\alpha^{3.7}/-\alpha^{3.7} \)	9	8	16	0	1	0	0	0	17
Allele frequency	0.282	0.154	0.192	0.250	0.500	0.083				
\(-\alpha^{4.2} \)	\(-\alpha^{4.2}/\alpha\alpha \)	1	2	3	0	0	0	0	0	3
Allele frequency	0.009	0.000	0.000	0.000	0.000	0.000				
\(-SEa \)	\(-SEa/\alpha\alpha \)	0	2	1	0	1	0	0	0	2
Allele frequency	0.003	0.000	0.019	0.000	0.000	0.000				
HbCS	\(aa^CS/\alpha\alpha \)	3	2	4	0	1	0	0	0	5
Allele frequency	0.013	0.000	0.019	0.000	0.000	0.000				
HbE	\(\beta^F/\beta^F \)	17	18	26	0	6	0	2	1	35
	\(\beta^F/\beta^E \)	1	5	3	0	2	0	0	1	6
Allele frequency	0.101	0.000	0.192	0.000	0.333	0.250				

HbA* 2 cases were mixed infection of \(P. \) \textit{falciparum} and \(P. \) \textit{vivax} and 1 had \(P. \) \textit{malariae}.

www.mjhid.org Mediterr J Hematol Infect Dis 2018; 10; e2018015

Pag. 4 / 7
the ratio of males was much higher than female malaria patients. Since a more numerous population of men had been working outdoors, it was exposed to a higher chance of malaria infection.

The overall frequencies of α-thalassemia and HbE in Myanmar villagers living in malaria-endemic regions of Myanmar were 37.5% (343/916) and 20.3% (186/916), respectively. Our study is comparable to a previous study and may reflect real prevalence. From our finding and the report of Than, α-thalassemia especially -α3.7 deletion and HbE are highly frequent in both malarial and non-malarial infected Myanmar populations. While it is difficult to demonstrate the protective effect of α-thalassemia and HbE when conducting a study only in malaria patients, our findings of high prevalence of thalassemia traits among malaria patients supports the conclusion that malaria infection risk is not reduced in people with α-thalassemia and HbE. In line with this finding, an increased frequency of uncomplicated malaria was found in people with α*-thalassemia in the Vanuatu study. The high prevalence of α-thalassemia and HbE in Southeast Asia remains unexplained.

In contrast to the Haldane hypothesis, where α-thalassemia is expected to protect from malaria, we observed higher levels of P. vivax parasitemia among people with α-thalassemia trait. Similarly, a study in Papua New Guinea also showed higher P. vivax parasitemia (but not P. falciparum) in α*-thalassemia heterozygous and homozygous children. In addition, the study in Kenya also showed that α*-thalassaemia neither protected against symptomatic malaria nor reduced parasitemia. However, α*-thalassaemia appeared to reduce the rate of severe anemia in falciparum malaria and had lower hospitalization. The contrasting effects may be explained by the lack of P. vivax in African population, while both P. vivax and P. falciparum are prevalent in Southeast Asian region.

Despite the dosage effect of P. vivax density where two alpha gene deletions have higher levels of parasitemia than one gene deletion, the single case of HbH (3 genes deletion) had an unexpectedly lower rather than higher level of parasitemia. We could not make a meaningful conclusion from this one case as it could have occurred by chance. It was possible that this patient was referred early, so parasitemia was still low. It is hypothesized that people with α-thalassemia have more baseline erythropoiesis, resulting in a high proportion of reticulocytes which is the susceptible stage for P. vivax infection. This hypothesis, however, is unlikely as there is no evidence of reticulocytosis in people with α*-thalassemia heterozygous.

Table 2. Association between α-globin gene dosage, HbE genotype and number of Plasmodium vivax and Plasmodium falciparum parasitemia.

Genotype	Plasmodium falciparum	Plasmodium vivax				
	Patient (N)	Parasitemia (log10 value/µl)	P-value	Patient (N)	Parasitemia (log10 value/µl)	P-value
α-globin dosage						
HbA (aa/aa)	40	4.06±0.89	Reference group for αα globin gene dosage	62	3.89±0.71	Reference group for αα globin gene dosage
Silent α-thal (-α3.7/aa, -α3.7/aa, αα/aa, αα/aa)	30	4.18±1.06	0.631	42	3.94±0.66	0.707
α-thal trait (-α3.7/-α3.7, -α3.7/aaCS, - aa/aa, -α3.7/-α3.7)	10	3.96±1.14	0.740	10	4.21±0.32	0.027
HbH (-α3.7/-SEA)	0	-	-	1	2.08	There is not enough statistical evidence.
HbE genotype						
ββ/β	64	4.02±1.03	Reference group for HbE	94	3.94±0.65	Reference group for HbE
ββ/β	17	4.45±0.66	0.046	17	3.83±0.94	0.662
ββ/β	1	3.00	There is not enough statistical evidence.	5	3.75±0.55	0.512
Our results showed increased parasitemia of *P. falciparum* in heterozygous HbE, but also a decrease in one single case of homozygote. Our finding is in line with a previous study in Myanmar population. In vitro studies reveal conflicting results. Nagel et al. demonstrated impairment of the growth of *P. falciparum* in homozygous HbE, but an average growth in heterozygous HbE. Whereas, Chotivanich et al. found in vitro a reduction in RBC invasion in HbAE heterozygotes, associated with a 4-fold increase in the selectivity index compared the other hemoglobin types studied and in particular the EE homozygotes suggesting that in heterozygote individuals with AE hemoglobin, the EE homozygotes in the Myanmar population. Our results showed increased parasitemia of *P. vivax* in HbE patients had been previously observed but did not reach significant difference. The effect of HbE on *P. vivax* parasitemia was not found in this study. Nevertheless, O'Donnell and colleagues showed that HbE patients might be more susceptible for malaria infection, especially *P. vivax* because their malarial antibodies were significantly increased than non-thalassemia children, which reflected in their clinical severity. Although limited by a small number of patients, one strength of our study is that G6PD deficiency was excluded, which has been well known to confer protection against *vivax* malaria.

Acknowledgments. We thank all study participants and staff at Hospital for Tropical Diseases, Faculty of Tropical Medicine, Mahidol University. All authors have no conflict of interest. This work was granted by the 90th anniversary of Chulalongkorn University Fund (Ratchadapiseksomphot Endowment Fund) and Ratchadapiseksomphot Fund, Faculty of Medicine, Chulalongkorn University (Grant No. RA57/006).

References:

1. WHO. World malaria report 2015. Geneva: WHO and UNICEF 2015.
2. Thailand malaria report 2016. Bangkok: Bureau of Vector Borne Diseases Department of Disease Control, Ministry of Public Health. http://www.thaivbd.org. Accessed 26 Oct 2016.
3. De Sanctis V., Kattamis C., Canadan D., Soliman A. T., Eldsfy H., Karimi M., Dar S., Wali Y., Yassin M., Soliman N., Sobti P., Al Jaoumi S., El Kholy M., Ficsina B., Angastinis M. β-thalassemia distribution in the old world: an ancient disease seen from a historical standpoint. Mediterr J Hem 2017; 9(1): e2017018, DOI: http://dx.doi.org/10.4894/MJHID.2017.018.
4. Flint J, Hill AV, Bowen DK, Oppenheim SJ, Sill PR, Serjeantson SW, Bana-Korj I, Bhatia K, Alpers MP, Boyce AJ, Weatherall DJ, Clegg JB. High frequencies of alpha-thalassaemia are the natural result of selection by malaria. Nature. 1986;321:744–50 https://doi.org/10.1038/321744a0 PMid:3713863.
5. Kwiatkowski DP. How malaria has affected the human genome and what human genetics can teach us about malaria. Am J Hum Genet. 2005;77:171–92 https://doi.org/10.1086/432519 PMid:16013616 PMCid:PMC1245252.
6. Verra F, Mangano VD, Modiano D. Genetics of susceptibility to Plasmodium falciparum: from classical malaria resistance genes towards genome-wide association studies. Parasite Immunol. 2009;31:234–53 https://doi.org/10.1111/j.1365-3024.2009.01108.x PMid:19388945.
7. Louicharoen C., Jaouni S., El Kholy M., Fiscina B., Angastiniotis M., De Sanctis V., Kattamis C., Canatan D., So W, Bana-Korj I, Bhatia K, Alpers MP, Boyce AJ, Weatherall DJ, Clegg JB. High frequencies of alpha-thalassaemia are the result of natural selection by malaria. Nature. 1986;321:744–50 https://doi.org/10.1038/321744a0 PMid:3713863.
8. Williams TN, Wambua S, Uyoga S, Macharia A, Mwacharo JK, Newton CR, Maitland K. Both heterozygous and homozygous alpha+ thalassemias protect against severe and fatal Plasmodium falciparum malaria in Southeast Asians. Science. 2009;326:1546–49 https://doi.org/10.1126/science.1178849 PMid:20007901.
9. Williams TN, Wambua S, Uyoga S, Macharia A, Mwacharo JK, Newton CR, Maitland K. Both heterozygous and homozygous alpha+ thalassemias protect against severe and fatal Plasmodium falciparum malaria on the coast of Kenya. PLoS Med. 2006;3:158 https://doi.org/10.1371/journal.pmed.0030158 PMid:16605300 PMCid:PMC1435778.
10. Agarwal A, Guindo A, Cissoko Y, Taylor JG, Coulhaly D, Koné A, Kayentao K, Djimde A, Plowe CV, Dumboo O, Willems TE, Diallo D. Hemoglobin C associated with protection from severe malaria in the Dogon of Mali, a West African population with a low prevalence of hemoglobin S. Blood. 2000;96:2358–63 PMid:11001883.
11. Modiano D, Luoni G, Sirima BS, Simporé J, Verra F, Konaté A, Rastrelli E, Oliveri A, Calissano C, Paganotti GM, D’Urbano L, Sanou I, Sawadogo A, Modiano G, Coluzzi M. Haemoglobin C protects against clinical Plasmodium falciparum malaria. Nature. 2001;414:305–8 https://doi.org/10.1038/35104556 PMid:11713529.
12. Cabrera G, Cot M, Migot-Nabias F, Kremsner PG, Deloron P, Luty AJ. The sickle cell trait is associated with enhanced immunoglobulin G antibody responses to Plasmodium falciparum variant surface antigens. J Infect Dis. 2005;191:1631–38 https://doi.org/10.1086/429832 PMid:15838789.
13. Chotivanich K, Udomsangpeth R, Pattanapanyasat K, Chierakul W, Simpson J, Looaresuwan S, White N. Hemoglobin E: a balanced polymorphism protective against high parasitemias and thus severe P. falciparum malaria. Blood. 2002;106:1172–76 PMid:12149194.
14. Taylor SM, Paroek CM, Painhurst RM. Haemoglobinopathies and the clinical epidemiology of malaria: a systematic review and meta-analysis. Lancet Infect Dis. 2012;12:457–68 https://doi.org/10.1016/S1473-3099(12)70055-5 PMid:22818411.
15. Chen YL, Shiht CJ, Ferrance J, Chang YS, Chang JG, Wu SM. Genotyping of alpha-thalassaemia deletions using multiplex polymerase chain reactions and gold nanoparticle-filled capillary electrophoresis. J Chromatogr A. 2009;126:1206–12 https://doi.org/10.1016/j.chroma.2008.12.027 PMid:19128803.
16. Fucharoen S, Winichagoon P. Haemoglobinopathies in Southeast Asia. Indian J Med Res. 2011;134:498–506 PMid:22086141 PMCid:PMC3237250.
17. Rosanas-Urgell A, Senn N, Ranrau P, Aponte JJ, Reeder JC, Siba PM, Michon P, Mueller I. Lack of association of a+ thalassaemia with the risk of Plasmodium falciparum infection and disease in a cohort of children aged 3-21 months from Papua New Guinea. Int J Parasitol. 2012;1:1107–13 https://doi.org/10.1016/j.ijpara.2012.10.001 PMid:23085147.
18. Mockenhaupt FP, Ehrhardt S, Gellerst S, Otchwemah RN, Dietz E, Anemana SD, Biensze U. Alpha+ thalassaemia protects African children from severe malaria. Blood. 2004;104:3033–3036 https://doi.org/10.1182/blood-2003-11-4090 PMid:15198952.
19. Allen SJ, O'Donnell A, Alexander ND, Alpers MP, Peto TE, Clegg JB, Weatherall DJ. alpha+–thalassemia protects children against disease caused by other infections as well as malaria. Proc Natl Acad Sci USA. 1997;94:14736-41. https://doi.org/10.1073/pnas.94.26.14736

20. May J, Evans JA, Timmann C, Ehmen C, Busch W, Thye T, Agbenyega T, Horstmann RD. Hemoglobin variants and disease manifestations in severe falciparum malaria. JAMA. 2007;297:2220-26. https://doi.org/10.1001/jama.297.20.2220 PMid:17519411

21. Opoku-Okrah C, Gوردge M, KwekuNakuа E, Agbenyega T, Parry M, Robertson C, Smith C. An investigation of the protective effect of alpha+–thalassemia against severe Plasmodium falciparum amongst children in Kumasi, Ghana. Int J Lab Hematol. 2014;36:62-70. https://doi.org/10.1111/ijlh.12122 PMid:23837700

22. O’Donnell A, Premawardhena A, Arambepola M, Samaranyake R, Allen SJ, Peto TE, Fisher CA, Cook J, Corran PH, Olivieri NF, Weatherall DJ. Interaction of malaria with a common form of severe thalassaemia in an Asian population. Proc Natl Acad Sci USA. 2009;106:18716-21. https://doi.org/10.1073/pnas.0910142106 PMid:19841268 PMCId:PMC2774006

23. Williams TN, Mattland K, Bennett S, Ganczakowski M, Peto TEA, Newbold CI, Bowden DK, Weatherall DJ, Clegg JB. High incidence of malaria in a+–thalassaemic children. Nature. 1996;383:522-25. https://doi.org/10.1038/383522a0 PMid:8849722

24. Williams TN, Mattland K, Bennett S, Ganczakowski M, Peto TEA, Newbold CI, Bowden DK, Weatherall DJ, Clegg JB. High incidence of malaria in a+–thalassaemic children. Nature. 1996;383:522-25. https://doi.org/10.1038/383522a0 PMid:8849722

25. Williams TN, Mattland K, Bennett S, Ganczakowski M, Peto TEA, Newbold CI, Bowden DK, Weatherall DJ, Clegg JB. High incidence of malaria in a+–thalassaemic children. Nature. 1996;383:522-25. https://doi.org/10.1038/383522a0 PMid:8849722

26. Williams TN, Mattland K, Bennett S, Ganczakowski M, Peto TEA, Newbold CI, Bowden DK, Weatherall DJ, Clegg JB. High incidence of malaria in a+–thalassaemic children. Nature. 1996;383:522-25. https://doi.org/10.1038/383522a0 PMid:8849722

27. Chong SS, Boehm CD, Higgs DR, Cutting GR. Single-tube multiple-PCR screen for common deletional determinants of alpha-thalassemia. Blood. 2000;95:360-62. PMid:10607725

28. Makonkawyooon L, Sanguansermri T, Asato T, Nakashima Y, Takei H. Rapid detection of chain termination mutations in the alpha 2 globin gene. Blood. 1993;82:3503-04 PMid:8241518

29. Tachavanich K, Viprakasit V, Chinchang W, Glomglao W, Pung-Annrit P, Tanphachitr VS. Clinical and hematological phenotype of homozygous hemoglobin E: revisit of a benign condition with hidden reproductive risk. Southeast Asian J Trop Med Public Health. 2009;40:306-16 PMid:19323016

30. Kuesap J, Chaijaroenkul W, Rungsihirunrat K, Pongsajprasit K, Na-Bangchang K. Coexistence of Malaria and Thalassemia in Malaria Endemic Areas of Thailand. Korean J Parasitol. 2015;53: 265-70. https://doi.org/10.3347/kjp.2015.53.3.265 PMid:26174819 PMCId:PMC4510677

31. Williams TN, Mattland K, Bennett S, Ganczakowski M, Peto TEA, Newbold CI, Bowden DK, Weatherall DJ, Clegg JB. High incidence of malaria in a+–thalassaemic children. Nature. 1996;383:522-25. https://doi.org/10.1038/383522a0 PMid:8849722

32. Williams TN, Mattland K, Bennett S, Ganczakowski M, Peto TEA, Newbold CI, Bowden DK, Weatherall DJ, Clegg JB. High incidence of malaria in a+–thalassaemic children. Nature. 1996;383:522-25. https://doi.org/10.1038/383522a0 PMid:8849722

33. Williams TN, Mattland K, Bennett S, Ganczakowski M, Peto TEA, Newbold CI, Bowden DK, Weatherall DJ, Clegg JB. High incidence of malaria in a+–thalassaemic children. Nature. 1996;383:522-25. https://doi.org/10.1038/383522a0 PMid:8849722