Experimental characterization of Raman overlaps between mode-groups

Erik N. Christensen*, Jacob G. Koefoed*, Søren M. M. Friis, Mario A. Usuga Castaneda & Karsten Rottwitt

Mode-division multiplexing has the potential to further increase data transmission capacity through optical fibers. In addition, distributed Raman amplification is a promising candidate for multi-mode signal amplification due to its desirable noise properties and the possibility of mode-equalized gain. In this paper, we present an experimental characterization of the intermodal Raman intensity overlaps of a few-mode fiber using backward-pumped Raman amplification. By varying the input pump power and the degree of higher order mode-excitation for the pump and the signal in a 10 km long two-mode fiber, we are able to characterize all intermodal Raman intensity overlaps. Using these results, we perform a Raman amplification measurement and demonstrate a mode-differential gain of only 0.25 dB per 10 dB overall gain. This is, to the best of our knowledge, the lowest mode differential gain achieved for amplification of mode division multiplexed signals in a single fiber.

During the past decade, the increase in data capacity per fiber has slowed relative to the rapid progress in the 1990’s while, at the same time, the demand for capacity continues to grow exponentially. Current methods for signal multiplexing, i.e. wavelength-, polarization-, time-, and quadrature-division multiplexing, are approaching their fundamental limits so new means of multiplexing are needed. Space-division multiplexing in the form of multi-core fibers has already been used to achieve new heights in data capacity from a single laser source; in single-core fibers supporting multiple spatial modes, long-distance propagation of optical signals has been demonstrated; and, recently, data transmission in a few-mode multi-core fiber was presented. One important challenge of mode-division multiplexing (MDM) systems is building multi-mode optical amplifiers, that have mode-equalized amplification of all spatial modes, to compensate for example for distributed fiber loss; it is desirable for a multi-mode amplifier to avoid mode-dependent gain (MDG) in order to maximize capacity. As for traditional single-mode systems, discrete Erbium-doped fiber amplifiers have been applied to multi-mode systems as well and low MDG has been achieved for some of the modes in fibers with specially designed Erbium-doping profiles.

Another approach to counter-balance fiber losses is distributed Raman amplification, which is also widely used already in single-mode networks due to its superior noise properties in the backward-pumped configuration. Furthermore, it has been shown theoretically that minimal MDG is possible by coupling pump power into a specific combination of spatial modes, or by optimizing fiber design, which makes Raman amplifiers a promising candidate for realizing low-loss, multi-mode transmission links over large distances.

Earlier work has demonstrated Raman gain between higher-order modes with the pump in only one mode. Besides the obvious challenges related to exciting the pump in a specific combination of modes, it may often also prove difficult to determine the exact mode combination that leads to the lowest possible MDG because the required fiber data are unavailable from the fiber supplier. In this paper, we present an experimental characterization of the intermodal Raman intensity overlap of the guided modes of a two-moded (6 modes counting polarization and LP_{11a} and LP_{11b}) few-mode fiber (FMF) using mechanically induced long-period gratings (LPGs) to excite the higher-order modes. Using the obtained results, we demonstrate backward pumped Raman amplification of a continuous wave (CW) signal through 10 km of a two-moded fiber with a very low MDG of 0.25 dB per 10 dB gain by pumping in a combination of the LP_{01} and LP_{11} modes. The mode-differential gain obtained required no prior knowledge about the Raman intensity overlaps of the fiber.

Department of Photonics Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark. *These authors contributed equally to this work. Correspondence and requests for materials should be addressed to E.N.C. (email: ench@fotonik.dtu.dk)
Results

The purpose of the present work is to characterize the intermodal Raman overlaps and use them to achieve a minimal MDG in a backward-pumped Raman fiber amplifier. This is done by coupling the pump light into the fiber in the correct combination of the LP_{01}- and LP_{11}-modes. As will be discussed in the Methods section below, due to strong mode-coupling, the two-fold quasi-degenerate LP_{01}-modes and four-fold quasi-degenerate LP_{11}-modes are simply considered as two distinct groups of modes. We carry out two measurements: Firstly, the Raman gain of a undepleted pump approximation, we arrive at an expression for the on/off gain

\begin{equation}
G_{c} = \exp \left(\frac{\gamma R L_{eff} \left(\sum_{j} F_{i,j} p_{i,j}^{P_{i,j}}(0) + \sum_{j} F_{i,j} p_{i,j}^{P_{j}^{+,-}}(L) \right)}{1 - \alpha_{s} L_{eff}} \right),
\end{equation}

where \(\alpha_{s} \) and \(\alpha_{p} \) are loss coefficients for signal and pump wavelengths \(\lambda_{s} \) and \(\lambda_{p} \), and \(g_{R} \) is related to the spontaneous Raman scattering cross section. Note that \(\gamma_{R} \) and \(\alpha_{p,s} \) are assumed mode-independent. The intensity overlap integrals are defined as

\begin{equation}
F_{i,j} = \frac{\int I_{i} I_{j} \, dA}{\int I_{i} \, dA \int I_{j} \, dA},
\end{equation}

with \(I_{i} \) being the intensity of mode \(i \) integrated over the entire fiber cross section. Solving (1) and (2) using the undepleted pump approximation, we arrive at an expression for the on/off gain

\begin{equation}
G_{i} = \exp \left(\gamma R L_{eff} \left(\sum_{j} F_{i,j} p_{i,j}^{P_{i,j}}(0) + \sum_{j} F_{i,j} p_{i,j}^{P_{j}^{+,-}}(L) \right) \right),
\end{equation}

for the signal in mode \(i \), where \(\eta_{p} \) is the degree of conversion of the pump from LP_{01} to LP_{11} (\(\eta_{p} = 0 \) when all the pump power is in LP_{01}, and \(\eta_{p} = 1 \) when all the pump power is in LP_{11}). Using the setup which is described in the methods section below, 65 measurements were carried out with 5 different conversion degrees and 13 different pump power levels varying from 0 to 1200 mW for each conversion degree. From the expected form of the gain, Eq. (5), we fitted a function of the form

\begin{equation}
G_{b1}^{DB} = (c_{1} + c_{2} \eta_{p}) P_{p},
\end{equation}

to the data, where \(c_{1} \) and \(c_{2} \) are fitting parameters. The result is presented in Fig. 1a where data and fitting lines are shown at the five different values of \(\eta_{p} \). The obtained values for the fitting parameters are \(c_{1} = 8.50 \, dB/W \) and \(c_{2} = -4.48 \, dB/W \). The theoretical expression is in excellent agreement with the obtained data with these values of the fitting parameters. From these values the ratio of the Raman intensity overlaps between the LP_{01}-LP_{01}-modes and LP_{01}-LP_{11}-modes is obtained

\begin{equation}
\frac{F_{01,11}}{F_{01,01}} = 1 + \frac{c_{2}}{c_{1}} = 0.47,
\end{equation}

by comparing (5) and (6). This result agrees well with the value of 0.48 obtained from simulated mode-profiles provided by the fiber supplier.

Subsequently, the signal was coupled to the LP_{11}-mode with the highest attainable efficiency, \(\eta_{c} > 0.99 \), and the pump was converted to the LP_{11}-mode with an efficiency of \(\eta_{p} = 0.925 \), see the Methods section for details, and the Raman gain of the LP_{11}-signal was measured as the input pump power. A linear function of the type

\begin{equation}
G_{11}^{DB} = c_{3} P_{p},
\end{equation}

was fitted to the obtained data, yielding \(c_{3} = 9.12 \, dB/W \). This fits the obtained data well over the range of pump powers measured. From the fitting parameters of the two functions (5) and (6), it was possible to determine the ratio of the undepleted pump on LP_{01} and LP_{11} modes, \(\frac{P_{01}^{LP_{01}}}{P_{11}^{LP_{11}}} = 0.01 \).
was fitted to the data. From this the ratio \(F_{11,11}/F_{01,01} \) is calculated, taking into account the pump conversion degree. The slope obtained from the fit to the LP11-LP11-data was \(c_3 = 4.74 \text{ dB/W} \). We assume wavelength independence of the overlap integrals (i.e. that the LP01-LP11 and LP11-LP01 overlaps are nearly identical). By comparison of Eqs (8) and (6) to (5) we note that \(c_1 = k F_{01,11} \) and \(c_3 = k (F_{11,11} - F_{01,11}) \) with \(k = 10 \log_{10}(e) \gamma_{R} L_{df} \). Using Eq. (7) for the ratio \(F_{01,11}/F_{01,01} \), these two expressions can be rearranged to give

\[
\frac{F_{11,11}}{F_{01,01}} = \frac{c_3}{c_1} \frac{1 - \eta_p}{\eta_p} \left(1 + \frac{c_2}{c_1} \right) = 0.56. \tag{9}
\]

This is compared to the simulated values for LP11a-LP11a and LP11a-LP11b of 0.72 and 0.24, respectively. The measured overlap is, as expected, an intermediate value that depends on the mode-coupling within the LP11 mode-group. In Table 1 the measured overlaps are summarized, and in Table 2 the simulated overlaps are shown. Notice that the overlaps are normalized so that the LP01-LP01-overlap equals one.

Mode-equalized Gain Based on Measured Overlaps

Since the LP11-LP11 and LP01-LP01 intensity overlaps often turn out to be very similar in FMs, relatively low differential gain can be obtained by simply launching the pump completely into LP11. This was experimentally verified by R. Ryf et al.\(^6\) where a differential gain of 0.5 dB per 10 dB of gain was observed. For the fiber used in this work, such a scheme results in a differential gain of 1 dB per 10 dB of gain as obtained from the data shown in Fig. 2b (the differential gain in the figure is slightly lower since the pump is only converted 95% into LP11). Using our knowledge of the intensity overlap integrals, the condition for equal signal gain across the two signal-modes, \(G_{11} = G_{01} \), can be written as

\[
\eta_p F_{11,11} + (1 - \eta_p) F_{01,11} = \eta_p F_{01,11} + (1 - \eta_p) F_{01,01}. \tag{10}
\]

This equation can be solved, using the experimentally obtained values for the ratios \(F_{11,11}/F_{01,01} \) and \(F_{01,11}/F_{01,01} \), to obtain an equal-gain pump conversion of

Figure 1. (a) Measured Raman gain vs. input pump power for five different pump conversion degrees, \(\eta_p \); the lines result from the two-parameter fit evaluated at each conversion degree. (b) Measurements of Raman gain for signal and pump in LP11. For comparison is shown the measurement with pump in LP11 and signal in LP01.

LP01-LP01	LP01-LP1a	LP11-LP01	
Measurement	1	0.47	0.56

Table 1. Measured values for overlap integrals relative to the LP01-LP01 overlap.

LP01	LP1a	LP1b
LP01	1	0.48
LP01a	0.48	0.72
LP11	0.48	0.24

Table 2. Simulated overlap integrals for all modes.
In Fig. 2a the results of measuring a signal launched first completely in LP01 and then completely in LP11 with a pump conversion of \(\eta_p = 0.83 \), i.e. slightly below the optimal value, are shown. From the figure it is clear that very little mode-dependent gain remains (compare with Fig. 1b). The mode-differential gain as a function of the mean gain is seen in Fig. 2b, showing a residual MDG of only 0.25 dB per 10 dB of Raman gain as obtained from the fitted lines. This differential mode gain is, to the best of our knowledge, the lowest that has so far been experimentally demonstrated. The reason for the fluctuation in MDG is most likely due to mode coupling between LP11a and LP11b. The LPG preferentially couples to the LP01 mode that we detect in the optical spectrum analyzer (OSA), as explained in the Methods section. This means that any mode coupling between LP11a and LP11b shows up as a small variation in the measured amplified signal. In the \(\eta_p = 0.83 \) (blue dot) measurement the back coupling is slightly more unstable compared to the \(\eta_p = 0.95 \) (red circle). This is due to the different configuration of the back coupling LPG.

Methods

The intermodal Raman gain is measured using the experimental setup shown in Fig. 3. The setup is a distributed backwards pumped multi-mode Raman amplifier with a CW laser operated at 1550 nm as the signal source, and an unpolarized 1455 nm Raman fiber laser used for optical pumping. The characterized fiber is a 10 km, 2-moded graded-index fiber.

Higher-Order Mode excitation. The excitation of higher-order modes is achieved by use of mechanically induced LPGs, which are created by pressing the fiber between a periodically grooved aluminum block and a rubber pad. This creates a periodic perturbation in the fiber index, which induces mode coupling if the pitch of the induced gratings matches the difference in propagation constants of the modes.

Using a broadband supercontinuum source at the signal input the mode-converted wavelengths are observed in the OSA, as a drop in the power spectrum due to the FMF to single mode fiber splice working as a mode filter. The effective pitch of the LPG is changed by adjusting the angle of the grooves with respect to the fiber, until maximum mode-conversion is achieved at the signal wavelength. The use of a supercontinuum source for calibration is not strictly necessary if the difference in propagation constant for the modes of interest is known, but it facilitates...
the excitation process. Based on the knowledge of the propagation constants the pitch for the pump wavelength was calculated to be 527 μm, which is in excellent agreement with the 523 μm pitch experimentally observed at maximum conversion. The LPGs are polarization dependent, so a polarization controller (PC) is used to optimize conversion of the polarized signal source. After propagation through the fiber the signal is converted back to the fundamental mode using a second LPG.

From standard mode-coupling theory the coupling strength between the modes in a step-index fiber is given by

\[K(z) = \frac{\pi}{\lambda n_{\text{core}}} \frac{\int \Delta\epsilon(r, \phi, z) \psi_1^*(r, \phi) \psi_2(r, \phi) \, dA}{\int \psi_1^2(r, \phi) \, dA} \]

(12)

where \(\psi_{1,2} \) are the scalar mode profiles of the fiber. Since the grooves of the mechanical block are only applied to the fiber from one direction, the perturbation \(\Delta\epsilon(r, \phi, z) \) is asymmetric with respect to this direction. Since the LP01 mode is a circularly symmetric mode, we expect that mainly the LP11 mode which is spatially asymmetric with respect to the perturbation direction is excited in the induced grating. However, since we use an unpolarized pump, both polarizations of this spatial mode are excited resulting in an almost equal excitation of the four full-vectorial modes (TE01, TM01, HE21, HE11) that constitute the pseudo-LP11 modes. The strong coupling between these modes is expected to quickly smooth out any difference in the excitation. Thus, following a similar approach as Antonelli et al., we only consider the excitation of the quasi-degenerate groups of modes, LP01 and LP11, consisting of two and four nearly degenerate modes, respectively. In this regard, the measured overlaps are essentially an average over these groups.

Characterization of fiber under test. For all measurements the signal power launched is 0.4 mW, and the launched pump power is varied from 0 to 1200 mW. For each pump power the on/off gain is measured by OSA2. The ratio of the LP01-LP01 and LP01-LP11 overlaps is found with the signal in LP01 and the pump in varying mixtures of both LP11 and LP00 by adjusting LPG2 to the desired pump mode conversion.

For the LP11-LP11 gain measurement LPG1 and PC1 were adjusted to obtain more than 99% signal conversion, and LPG2 was adjusted to obtain a maximum of \(\eta_p = 0.92 \) pump conversion; The lower pump conversion is due to the pump being unpolarized. The LPG1 conversion bandwidth is large enough such that, by optimizing PC2, 12 dB of the signal is converted back to LP01. The back conversion is necessary due to the mode-filtering effect of the single-mode to multi-mode fiber splice. The gain of the back converted signal is the LP11-LP11 gain.

Equal modal gain measurement. To equalize the modal gain, we first adjust LPG1, so that we are pumping in a combination of the LP11 and LP01 modes very close to the optimal value 85% conversion as obtained from the previous measurements, see Eq. (11). We then first adjust LPG1 and PC1 to maximize signal conversion (\(\eta_p > 0.99 \)) and measure the gain of this mode. Then LPG1 is lifted so that the signal is a pure LP01-mode and the gain for this mode is measured. The difference in the gain for these two signal-modes then gives the mode-differential gain.

Conclusion

We have experimentally characterized the intermodal Raman overlaps in a few-mode fiber by varying the launched pump power and the conversion efficiencies of the pump and signal using mechanically induced long-period gratings for mode excitation. The overlap integrals (relative to the LP01-LP01 overlap) for all modal combinations were obtained in this way for a specific few-mode fiber. By use of the obtained overlaps, it was further demonstrated how a mode-differential gain of only 0.25 dB per 10 dB overall gain is obtained by pumping in a specific combination of the LP11 and LP01 modes. In the specific few-mode fiber under test, the differential gain was shown to be significantly lower when pumping in the determined combination of modes compared to when pumping only in LP11.

References

1. Essiambre, R. J. & Tkach, R. W. Capacity trends and limits of optical communication networks. Proceedings of the IEEE 100, 1035–1055 (2012).
2. Richardson, D. J., Fini, J. M. & Nelson, L. E. Space-division multiplexing in optical fibres. Nature Photonics 7, 354–362 (2013).
3. Zhu, B. et al. Seven-core multicore fibre transmissions for passive optical network. Optics Express 18, 11117–11122 (2010).
4. Hu, H. et al. Single Source 5-dimensional (Space-, Wavelength-, Time-, Polarization-, Quadrature-) 45 Tbit/s Data Transmission of 6 SDM × 6 WDM × 2.7 Tbit/s Nyquist-OTDM-PDM-QPSK. In CLEO Postdeadline Pap. ThH3B.10 (2014).
5. Ryf, R. et al. Mode-division multiplexing over 96 km of few-mode fiber using coherent 6 × 6 MIMO processing. Journal of Lightwave Technology 30, 521–531 (2012).
6. Ryf, R. et al. Mode-multiplexed transmission over a 209-km DGD-compensated hybrid few-mode fiber span. IEEE Photonics Technology Letters 24, 1965–1968 (2012).
7. van Uden, R. G. H. et al. Ultra-high-density spatial division multiplexing with a few-mode multicore fibre. Nature Photonics 8, 865–870 (2014).
8. Winzer, P. J. & Foschini, G. J. MIMO capacities and outage probabilities in spatially multiplexed optical transport systems. Optics Express 19, 16680 (2011).
9. Le Cocq, G. et al. Modeling and characterization of a few-mode EDFA supporting four mode groups for mode division multiplexing. Optics Express 20, 27051–61 (2012).
10. Ip, E. et al. 1464 x 6 x 19-Gbaud wavelength-mode-dimension multiplexed transmission over 10 x 50-km spans of few-mode fiber with a gain-equalized few-mode EDFA. Journal of Lightwave Technology 32, 790–797 (2014).
11. Jung, Y. et al. First demonstration of cladding pumped few-mode EDFA for mode division multiplexed transmission. Conference on Optical Fiber Communication, Technical Digest Series 22, 29008–29013 (2014).
12. Islam, M. N. Raman amplifiers for telecommunications. IEEE Journal on Selected Topics in Quantum Electronics 8, 548–559 (2002).
13. Zhou, J. An analytical approach for gain optimization in multimode fiber Raman amplifiers. Optics Express 22, 21393 (2014).
14. Weng, Y., Wang, T. & Pan, Z. Optimization of mode-dependent gain efficiency based on intermodal Raman scattering for few-mode distributed Raman amplifier. In Conference on Lasers and Electro-Optics, SW1P5 (Optical Society of America, 2016).
15. Trabold, B. M., Abdolvand, a., Euser, T. G., Walser, a. M. & Russell, P. S. J. Amplification of higher-order modes by stimulated Raman scattering in H2-filled hollow-core photonic crystal fiber. Optics Letters 38, 600–2 (2013).
16. Rottwitt, K. & Povlsen, J. H. Analyzing the fundamental properties of Raman amplification in optical fibers. Journal of Lightwave Technology 23, 3597–3605 (2005).
17. Ryf, R., Essiambre, R. J., von Hoyningen-Huene, J. & Winzer, P. J. Analysis of Mode-Dependent Gain in Raman Amplified Few-Mode Fiber. In OFC/NFOEC Tech. Dig. (2012).
18. Savin, S., Digonnet, M. J., Kino, G. S. & Shaw, H. J. Tunable mechanically induced long-period fiber gratings. Optics Letters 25, 710–712 (2000).
19. Okamoto, K. Fundamentals of Optical Waveguides (Elsevier, 2006), second edn.
20. Antonelli, C., Mecozzi, A. & Shtaif, M. Raman amplification in multimode fibers with random mode coupling. Optics letters 38, 1188–90 (2013).

Acknowledgements
The authors acknowledge financial supported for the research by The Danish Council for Independent Research, research grant: DFF – 4184-00433, and InnovationsFonden for funding the e-space project (#0603-00514B) and also the center of excellence: Silicon Photonics for Optical Communications granted by the Danish National Research Foundation (DNRF123).

Author Contributions
E.N.C. and J.G.K. performed experiments and wrote the manuscript. S.M.M.F., M.A.U.C. and K.R. contributed to theory and conceiving experiments. All authors reviewed and revised the manuscript.

Additional Information
Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Christensen, E. N. et al. Experimental characterization of Raman overlaps between mode-groups. Sci. Rep. 6, 34693; doi: 10.1038/srep34693 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

© The Author(s) 2016