Molecular Docking Approach of Bryophyllum Pinnatum Compounds as Atherosclerosis Therapy by Targeting Adenosine Monophosphate-Activated Protein Kinase and Inducible Nitric Oxide Synthase

Yuyun Yuniwati1, Mokhamad Fahmi Rizki Syaban2, Salsabila Ghina Anoraga2, Faradilah Lukmana Sabila2

1Department of Radiology, Saiful Anwar General Hospital-Faculty of Medicine, Brawijaya University, Malang, Indonesia
2Faculty of Medicine, Brawijaya University, Malang, Indonesia

Corresponding author: Yuyun Yuniwati, Professor, Department of Radiology, Saiful Anwar General Hospital-Faculty of Medicine, Brawijaya University, Malang, Indonesia, Jakarta Agung Suprapto No.2, Klojen, Malang, East Java, Phone, yuyun@ub.ac.id, E-mail: yuyun@ub.ac.id. ORCID ID: https://orcid.org/0000-0001-9932-2015.

doi: 10.5455/aim.2022.30.91-95
ACTA INFORM MED. 2022 JUN 30(2): 91-95
Received: May 03, 2022
Accepted: Jun 02, 2022

© 2022 Yuyun Yuniwati, Mokhamad Fahmi Rizki Syaban, Salsabila Ghina Anoraga, Faradilah Lukmana Sabila

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Background: Bryophyllum pinnatum is a herbal medicine from Indonesia which has an anti-inflammatory effect. Adenosine monophosphate-activated protein kinase (AMPK) and inducible nitric oxide synthase (iNOS) play a function in thickening and inflammation in atherosclerosis disease. Objective: This research aims to conduct the potential of Bryophyllum pinnatum as a therapy for atherosclerosis by targeting AMPK and iNOS. Methods: We employed a molecular docking technique to interact active compounds of Bryphylum pinnatum with AMPK and iNOS, which were retrieved on the protein databank. Molecular docking analysis utilizing tools such as Pyrx 9.5, Pymol, and Discovery Studio, to support the interaction between the compound and protein. Molecular Dynamic (MD) simulation also performed using CABS-FLEX 2.0 server to know the stability interaction. Results: Bryophyllin B was an active compound that possesses significant binding to AMPK and iNOS. It had the same binding pocket as the native ligand, and Bryophyllin B has a stronger interaction with AMPK. Based on the RMSF, the interaction binding complex Bryophyllin B with AMPK and iNOS were stable. Conclusion: Bryophyllin B was predicted to have potential therapy for atherosclerosis disease.

Keywords: Bryophyllum pinnatum, AMPK, iNOS, In Silico, Herbal medicine.

1. BACKGROUND

Atherosclerosis is the main cause of vascular disease worldwide, such as ischemic stroke, peripheral arterial disease, and cardiovascular disease. Cardiovascular disease grows disproportionately in middle-low countries over the world with a mortality rate of 80%, and day by day predicted 23.6 million people would die (1, 2).

Obviously, this concept of atherosclerosis over quarter-century inflammation being a primordial role in atherogenesis. Based on Virchow’s theory tells that atherosclerosis is a process of thrombus formation that action occurs in blood vessels through fatty degeneration, which directly also increases the inflammatory reaction in cells. This happens continuously, which it’s impossible to regard as simply passive processes, resulting in a transformation due to inflammation (3).

The growth of atherosclerosis is linked to the vascular inflammation that is involved by iNOS and AMPK pathways. iNOS has a role as an endogenous vasoconstrictor, formation of vascular lesion, and play infiltration of inflammatory cells (4) 28.1% in non-diabetic CAD patients and 12% in controls. The T allele frequency was higher in the non-diabetic CAD group (14%). AMPK has a major role in homeostasis involving intracellular activities, activity for reuptake of glucose, and the oxidation of fatty acid (5).

According to that pathways, Bryophyllum pinnatum leaves extract consists of the active compounds that had a role in anti-inflammatory agents (6). These compounds generate anti-inflammatory products implicated in every stage of atherosclerosis, from the initiation of atheroma to stabilization. Recently study about herbal medicine was highly concerned. The research about the effect of active compounds...
Molecular Docking Approach of Bryophyllum Pinnatum Compounds

Table 1. Target Protein Structural Information.

Name	PDB ID	Visualization Method	Resolution	Atom count	Weight (kDa)	Chain	Sequence Length
AMPK	3AQV	X-ray diffraction	2.08 Å	2301	31.97	1	276
iNOS	4NOS	X-ray diffraction	2.25 Å	15317	201.82	1	427

Table 2. Binding Affinity interaction.

Ligand	Binding Affinity (Kcal/mol)
AMPK	
iNOS	

of Bryophyllum pinnatum on atherosclerosis is still not yet. Molecular docking study is the technique for screening the potential compounds as a drug for a disease. By molecular docking study, we screened the active compound of Bryophyllum pinnatum to be atherosclerosis therapy.

2. OBJECTIVE

The aim of the study was to investigate the potential of Bryophyllum pinnatum as a therapy for atherosclerosis by targeting AMPK and iNOS.

3. MATERIAL AND METHODS

Ligands and Protein Preparation

Bryophyllum pinnatum contains the active compounds Bryophyllin A, Bryophyllin B, and Bryotoxin A, Bryotoxin B from our previous study. The chemical compounds were downloaded from PubChem database as sdf file. Besides, protein samples for AMPK and iNOS were generated using the RCSB database (https://www.rcsb.org/). Native ligands are also obtained on the web protein data bank, which is utilized as a comparison of interactions with the active chemical Bryophyllum pinnatum (7).

Anti-inflammation Bioactivity Prediction

The anti-inflammation bioactivity prediction of each compound was performed using the Way2Drug PASS Online web server (http://www.pharmaexpert.ru/passonline/) with entered SMILE code for each compound. The result was Pa (Probability Activity) and Pi (Probability inhibition). Pa must be more than 0.3, whereas Pi (Probability Inhibition) must not exceed Pa.

Ligands and Protein Interactions

Molecular interactions on molecular complexes produced by docking simulations were analyzed using the Discovery Studio software version 16.1.0. This allowed us to discover the chemical bonds that had been formed. In two-dimensional structures, a wide variety of chemical linkages were shown, such as hydrogen, hydrophobic, and electrostatic interaction (11, 12). PyMol structural selection and coloring software was used to represent the difficult three-dimensional structure of the mooring simulation results, which were obtained by simulation. Sticks, cartoons, ribbons, spheres, and surfaces served as the basis for the software’s interface (13).

4. RESULTS

All samples were aligned in the laboratory using the X-ray method, and then the protein had A chains with a maximum length of 400 mer, and a minimum length of 260 mer for each target protein was sequenced. AMPK structure had obtained with the code (3aqv) and iNOS (4nos). AMPK structure had a resolution of 2.08 Å, and iNOS had a resolution of 2.25 Å, as shown in Table 1. Meanwhile, in silico protein resolution refers to the clarity of the atomic distance between amino acid residues when presented in software; the greater the value, the more detailed the molecular visualization (14). AMPK is composed of a catalytic subunit alpha and two regulatory subunits, beta and gamma (15). In humans, there are two -subunit isoforms, 1 and 2, which share 90% and 61% of their amino acid sequences inside the catalytic domain and the remaining C-terminal half area, respectively. Compound C ([6-[4-(2-piperidin-1-yl-ethoxy)-phenyl]-3-pyridin-4-yl-pyrazolo[1,5-a]pyrimidine] is a selective inhibitor of AMPK (16). While, The crystallized iNOS oxygenase domain (INOx) consists of the complete catalytic domain complexed with iron protoporphyrin IX (heme), BH4, and a single structural zinc atom (17).

Analyzed results from the probability effect of Bryo-
Bryophyllum pinnatum as an anti-inflammatory agent shown in Figure 1. Bryophyllin A had the highest inflammatory effect, following with Bryophyllin B. The higher probability value shown, the greater possibility effect given (18). If Pa >0.7, the compound predicted has the same activity in the experiment. If 0.5<Pa>0.7, the drug is more likely to display the activity in an experiment, but the probability is lower. If Pa is less than 0.5, it is improbable that the drug will display the same activity as the experiment (19). However, true experimental is needed to know the anti-inflammatory activity of each compound.

Bond strength was predicted using a grid box with the center coordinates and dimensions shown below. The coordinates were chosen based on the location of a novel ligand-binding pocket identified in the literature research. Coordinates and dimensions for AMPK (X: -4.767 Y: 47.767 Z: 8.615; X: 23 Y: 23, Z: 23), and iNOS (X: 0.694 Y: 96.553 Z: 19.798; X: 23, Y:23, Z:23).

5. DISCUSSION

In this study, Bryophyllin B formed the strongest interaction with AMPK and iNOS than other compounds. Bryophyllin B had a -9.9 Kcal/mol binding affinity with AMPK and iNOS. Bryophyllin B had a stronger binding affinity than native ligand, but not stronger than iNOS native ligand. This binding inhibited AMPK activity, which is involved in the invasion and accumulation of white blood cells (WBC), hence inhibiting arterial wall thickening and vascular remodeling. Besides, Bryophyllin B bonds with iNOS, which will impede vasoconstrictor activity, vascular lesions development, and inflammatory cell infiltration. The same binding to the control ligand will cause the same biological impact, so the form of contact link between the molecules created is very important to decide the resulting action potential (20, 21).

Comparing protein dynamics requires selecting one or more features that define protein dynamics and comparing their dissimilarity. Several characteristics and dissimilarity measurements have been described to capture protein dynamics conservation. The atomic root mean square fluctuations are the most basic (RMSF) (22). The results of the molecular dynamic analysis revealed a substantial change in RMSF in the absence of Bryophyllin B binding to AMPK and iNOS. The interaction between Bryophyllin B and AMPK exhibited an RMSF of 0-2 before binding (Figure 2A), but increased to 2-4 after binding (Figure 2B). This indicates that Bryophyllin B binding to the target protein domain is still stable and has biological activity. The interaction between Bryophyllin B and iNOS is more stable than the interaction of AMPK (Figure 2C, 2D). RMSF is caused by atoms interacting with peptide and protein residues at a specified distance. When the resultant distance is smaller than 4, the interaction complex is considered to be stable (23).

As seen in Figure 3, Bryophyllin B was attached to the same binding pocket site as the control, implying that it will have the same effect. The images of the ligand-protein molecular interaction in Figures 4 illustrate the binding mechanism of Bryophyllin B at the active site of AMPK and iNOS, respectively. Bryophyllin B has 2 hydrogen bonds and 4 hydrophobic bonds. Hydrogen interactions were Asp166 and Lys107. Besides, Bryophyllin B and iNOS interaction has 2 hydrogen bonds and 5 hydro-
phobic bonds. Bryophyllin B formed molecular interaction at Gly 371, Trp 372, Cys 200, Ala 197, Val 352, and Arg 199. The data above demonstrate that the Bryophyllin B compound in Bryophyllum Pinnatum had the potential to inhibit AMPK and iNOS. In our previously study, Bryophyllum pinnatum had anti-flamatory in Systemic Lupus Erythematosus (SLE) mice model (24). AMPK has been examined utilizing numerous substances such as Bicalin, Curcumin and Gingerol (5). However, compared with our findings, Bryophyllin B has more negative bond energy, meaning that it has a stronger bond than previous research. While, iNOS over expression in atherosclerosis can be upregulated in macrophage tissues in response to inflammatory signals. Its promote pro-inflammatory activity on cell (25, 26). So, inhibition of iNOS is key role for the target therapy for atherosclerosis disease progression. However, additional study is required to assess the usefulness and toxicity of these compounds in the therapy of atherosclerosis.

6. CONCLUSION

In Sum, Bryophyllin B is a chemical found in Bryophyllum pinnatum that have potential as therapy for atherosclerosis by suppressing AMPK and iNOS activity. Additional study is required to evaluate the effectiveness and toxicity of Bryophyllin B as an atherosclerosis disease therapy.

REFERENCES

1. Sakakura K, Nakano M, Otsuka F, Ladich E, Kolodgie FD, Virmani R. Corrigendum to ‘Pathophysiology of Atherosclerosis Plaque Progression’ [Heart, Lung and Circulation (2013) 399–411]. Heart Lung Circ. 2014 Apr; 23(4): 387.
2. Herrington W, Lacey B, Sherliker P, Armitage J, Lewington S. Epidemiology of Atherosclerosis and the Potential to Reduce the Global Burden of Atherothrombotic Disease. Circ Res. 2016 Feb 19; 118(4): 535–546.
3. Libby P. Inflammation in Atherosclerosis. Arterioscler Thromb Vasc Biol. 2012 Sep; 32(9): 2045–2051.
4. Saini V, Bhatnagar MK, Bhattacharjee J. Endothelial nitric oxide synthase Ghu298Asp (G894T) gene polymorphism in coro-
Molecular Docking Approach of Bryophyllum Pinnatum Compounds

1. Nuryadi, Dantara TW, Syaban MFR, Mustafa SA, Ikhsani H, Syafitri FE, et al. Effect of Bryophyllum pinnatum Leaves Ethanol Extract in TNF-α and TGF-β as Candidate Therapy of SLE in Pristane-Induced SLE BALB/c Mice Model. Res J Pharm Technol. 2021 Feb 16; 14(2): 1069–1072.

2. Syaban MFR, Erwan NE, Syamsuddin MRR, Zahra FA, Sabila FL. Molecular Docking Approach of Viscosin as Antibacterial for Methicillin-resistant Staphylococcus Aureus Via β-Lactamase Inhibitor Mechanism. Clin Res J Intern Med. 2021 Nov 8; 2(2): 187–192.

3. Yueniarty S, Syaban MFR, Faratisha IFD, Yunita KC, Putra GFA, Kurniawan DB, et al. Molecular Docking Approach of Natural Compound from Herbal Medicine in Java against Severe Acute Respiratory Syndrome Coronavirus-2 Receptor. 2021; 6.

4. Nugraha RYB, Faratisha IFD, Mardhiyyah K, Ariel DG, Putri FF, Nafisatuzzamrudah, et al. Antimalarial Properties of Isoquinoline Derivative from Streptomyces hygroscopicus: An In Silico Approach. BioMed Res Int. 2021 Feb 16; 14(2): 1069–1072.

5. Dhea Kharisma V, Nur Muhammad Anor rif, Hermawan Widyananda M, Luia Utami S, PateraNugraha A. Molecular Simulation : The Potency of Conserved Region on E6 HPV-16 as a Binding Target of Black Tea Compounds Against Cervical Cancer. .9.

6. Fuglebakk E, Echave J, Reuter N. Measuring and comparing structural fluctuation patterns in large protein datasets. Bioinformatics. 2000 Aug 1; 16(8): 747–748.

7. Fischmann TO, Hruza A, Niu XD, Fossetta JD, Lunn CA, Dolphin E, et al. Structural characterization of nitric oxide synthase isoforms reveals striking active-site conservation. Nat Struct Biol. 1999; 6(3): 10.

8. Syaban MFR, Rachman HA, Arrahman AD, Hudayana N, Purna J, Pratama FA. Allium sativum as Antimalaria Agent via Falcipain Protease-2 Inhibitor Mechanism: Molecular Docking Perspective. 2021; 02(1): 6.

9. Handa N, Takagi T, Saijo S, Kishishita S, Takaya D, Toyama M, et al. Structural basis for compound C inhibition of the human AMP-activated protein kinase α2 subunit kinase domain. Acta Crystallogr D Biol Crystallogr. 2011 May 1; 67(5): 480–487.

10. Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest. 2001 Oct 15; 108(8): 1167–1174.

11. Lagunin A, Filimonov D, Poroikov V. Multi-Targeted Natural Products Evaluation Based on Biological Activity Prediction with PASS. Curr Pharm Des. 2010 May 1; 16(15): 1703–1717.

12. Lagunin A, Stepanchikova A, Filimonov D, Poroikov V. PASS: prediction of activity spectra for biologically active substances. Bioinformatics. 2000 Aug 1; 16(8): 747–748.

13. Syaban MFR, Rachman HA, Arrahman AD, Hudayana N, Purna J, Pratama FA. Allium sativum as Antimalaria Agent via Falcipain Protease-2 Inhibitor Mechanism: Molecular Docking Perspective. 2021; 02(1): 6.

14. Fuglebakk E, Echave J, Reuter N. Measuring and comparing structural fluctuation patterns in large protein datasets. Bioinformatics. 2012 Oct 1; 28(19): 2431–2440.

15. Rantam FA, Kharisma VD, Sumartono C, Nugraha J, Wijaya AY, Susilowati H, et al. Molecular docking and dynamic simulation of conserved B cell epitope of SARS-CoV-2 glycoprotein Indonesian isolates: an immunoinformatic approach. F1000Research. 2021 Aug 16; 10: Chem Inf Sci-813.

16. Fischmann TO, Hruza A, Niu XD, Fossetta JD, Lunn CA, Dolphin E, et al. Structural characterization of nitric oxide synthase isoforms reveals striking active-site conservation. Nat Struct Biol. 1999; 6(3): 10.

17. Lagunin A, Filimonov D, Poroikov V. Multi-Targeted Natural Products Evaluation Based on Biological Activity Prediction with PASS. Curr Pharm Des. 2010 May 1; 16(15): 1703–1717.

18. Lagunin A, Stepanchikova A, Filimonov D, Poroikov V. PASS: prediction of activity spectra for biologically active substances. Bioinformatics. 2000 Aug 1; 16(8): 747–748.

19. Syaban MFR, Rachman HA, Arrahman AD, Hudayana N, Purna J, Pratama FA. Allium sativum as Antimalaria Agent via Falcipain Protease-2 Inhibitor Mechanism: Molecular Docking Perspective. 2021; 02(1): 6.

20. Fuglebakk E, Echave J, Reuter N. Measuring and comparing structural fluctuation patterns in large protein datasets. Bioinformatics. 2012 Oct 1; 28(19): 2431–2440.

21. Rantam FA, Kharisma VD, Sumartono C, Nugraha J, Wijaya AY, Susilowati H, et al. Molecular docking and dynamic simulation of conserved B cell epitope of SARS-CoV-2 glycoprotein Indonesian isolates: an immunoinformatic approach. F1000Research. 2021 Aug 16; 10: Chem Inf Sci-813.

22. Fuglebakk E, Echave J, Reuter N. Measuring and comparing structural fluctuation patterns in large protein datasets. Bioinformatics. 2012 Oct 1; 28(19): 2431–2440.

23. Rantam FA, Kharisma VD, Sumartono C, Nugraha J, Wijaya AY, Susilowati H, et al. Molecular docking and dynamic simulation of conserved B cell epitope of SARS-CoV-2 glycoprotein Indonesian isolates: an immunoinformatic approach. F1000Research. 2021 Aug 16; 10: Chem Inf Sci-813.

24. Fuglebakk E, Echave J, Reuter N. Measuring and comparing structural fluctuation patterns in large protein datasets. Bioinformatics. 2012 Oct 1; 28(19): 2431–2440.

25. Aktan F. iNOS-mediated nitric oxide production and its regulation. Life Sci. 2004 Jun 25; 75(6): 639–653.

26. Zhong HJ, Liu LJ, Chong CM, Lu L, Wang M, Chan DSH, et al. Discovery of a Natural Product-Like iNOS Inhibitor by Molecular Docking with Potential Neuroprotective Effects In Vivo. PLOS ONE. 2014 Apr 1;9(4): e92905.