Role of RANKL (TNFSF11)-Dependent Osteopetrosis in the Dental Phenotype of Msx2 Null Mutant Mice

Beatriz Castaneda1,2, Yohann Simon1, Didier Ferbus1, Benoît Robert3, Julie Chesneau4,5, Christopher Mueller6, Ariane Berdal1,3, Frédéric Lézot1,4,5,9

1 INSERM, UMR 872, Centre de Recherche des Cordeliers, Laboratoire de Physiopathologie Orale Moléculaire, Equipe 5, Paris, F-75006 France; Université Paris-S, Paris, F-75006; Université Paris-6, Paris, F-75006 France; Université Paris-7, Paris, F-75006 France, 2 Department of Basic Studies, Faculty of Odontology, University of Antioquia, Medellin, Colombia; 3 CNRS, URA 2578, Institut Pasteur, Unité de Génétique Moléculaire de la Morphogénèse, Paris, F-75015 France, 4 INSERM UMR 957, Equipe Ligue Contre le Cancer 2012, Nantes, F-44035 France, 5 Université de Nantes, Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses primitives, EA3622, Nantes, F-44035 France, 6 CNRS, UPR 9021, Institut de Biologie Moléculaire et Cellulaire (IBMC), Laboratoire Immunologie et Chimie Thérapeutiques, Université de Strasbourg, Strasbourg, F-67084 France

Abstract

The Msx2 homeoprotein is implicated in all aspects of craniofacial skeletal development. During postnatal growth, Msx2 is expressed in all cells involved in mineralized tissue formation and plays a role in their differentiation and function. Msx2 null (Msx2−/−) mice display complex craniofacial skeleton abnormalities with bone and tooth defects. A moderate form osteoporotic phenotype is observed, along with decreased expression of RANKL (TNFSF11), the main osteoclast-differentiating factor. In order to elucidate the role of such an osteopetrosis in the Msx2−/− mouse dental phenotype, a bone resorption rescue was performed by mating Msx2−/− mice with a transgenic mouse line overexpressing RANK (Tnfsf11a). Msx2−/− Rank−/− mice had significant improvement in the molar phenotype, while incisor epithelium defects were exacerbated in the enamel area, with formation of massive osteolytic tumors. Although compensation for RANKL loss of function could have potential as a therapy for osteopetrosis, but in Msx2−/− mice, this approach via RANK overexpression in monocyte-derived lineages, amplified latent epithelial tumor development in the peculiar continuously growing incisor.

Materials and Methods

Animal generation and sampling

Ethics statement: the Consultative Bioethics Committee for Health and Life Science has specifically approved the present study (CEEA-2011-32). Staff trained to perform in vivo studies did all of the experiments.

Msx2 knockout (KO) mice were generated by replacing the entire coding sequence of Msx2 with the bacterial LacZ gene [3]. Rank transgenic mice were generated by heterologous recombination of a cassette containing 3.2 kb of the human myeloid related
protein 8 (MRP8, also known as S100A8) gene promoter and the coding DNA sequence of the mouse Rank gene. Approximately 30 copies were inserted in tandem in the transgenic line [9].

Males that were heterozygous for the Msx2 gene mutation and overexpressed Rank were mated with females heterozygous for the Msx2 gene mutation in order to generate all possible Msx2 and Rank genotypes. The genetic background of all of the mice was CD1 Swiss. Mice were studied at 2, 3, 4, 8, 10, and 16 weeks, with at least three animals in each experimental group for a total of 147 animals.

**Microradiographs, histological analyses, tartrate-resistant acid phosphatase (TRAP) activity assays, and keratin 14 immunohistochemistry**

After anesthesia of the mice, intracardiac perfusions were performed with a fixative solution containing 4% paraformaldehyde (Sigma, la Verpillière, France) in phosphate-buffered saline (PBS) pH 7.4. Complete fixation was ensured by immersion of the heads in fixative solution overnight at 4°C. After rinsing in PBS, the head halves (cut along the sagittal axis) were microradiographed on High Resolution Film SO-343 (Kodak Professional, Paris, France) with a microfocal X-ray generator (Tubix, Paris, France) at a focal distance of 36 cm for 20 min (power setting: 12 mA and 15 kV). The head halves were then processed for histology by decalcification at 4°C for up to 2 months (depending on the age of the samples) in a pH 7.4 PBS solution that contained 4% EDTA (Sigma) and 0.2% paraformaldehyde. After extensive washing in PBS, the samples were dehydrated in increasing concentrations of ethanol and toluene and were finally embedded in paraﬃn (Paraplast plus, Sigma). Serial frontal sections of the heads were prepared (slice thickness 25 μm), deparaffinized and rehydrated before being either stained according to a modiﬁed van Gieson protocol [9], assayed for tartrate-resistant acid phosphatase (TRAP) activity as previously described [9], or immunolabeled for cytokeratin-14. Briefly, after saturation for 1 h (with 10% horse serum in 1× PBS), sections were incubated overnight at 4°C with anti-keratin-14 rabbit primary antibody (PRB-155P; Covance, Paris, France). After washing in 1× PBS, an anti-rabbit biotinylated secondary antibody (BA-1100; Vector Laboratories, Burlingame, CA, USA) was applied for 1 h. Sections were then washed, treated with streptavidin–alkaline phosphatase conjugate (Roche, Meylan, France), and stained with nitro-blue tetrazolium and 5-bromo-4-chloro-3’-indolyolphosphate (NBT/BCIP, Roche).

**Micro-computed tomography scanner imaging**

A micro-CT scanner (desktop Skyscan 1172; Skyscan, Aartselaar, Belgium) was used to provide three-dimensional images of mouse mandibles. This system is based on a cone-beam X-ray source. A spatial resolution that produced voxels that measure 6.7 μm per side was used. Acquisition parameters were 80 kV anode voltage and 100 mA for an exposition time of 4 s. A 0.25° rotation step was performed between two exposures. A total of five exposures were obtained for each angle, and means were calculated. For each mode, a 0.5-mm aluminum filter was installed in the beam path to block the softest X-rays and to increase the accuracy of the beam-hardening correction (BHC). Cross-sectional images were reconstructed with a classical Feldkamp cone-beam algorithm with NRecon (Skyscan). Three-dimensional reconstructions were achieved with the software package CTAn (Skyscan). A threshold between 40 and 140 was selected, because it provided the best image of the mandible and suppressed artifacts.

**RT-PCR and TaqMan array RT-qPCR analyses**

Dissections of 2-week-old mouse mandibles (ﬁve mice per group) were performed under a stereomicroscope in order to collect alveolar bones and incisor epithelia, as previously described [5]. Tissues were directly immersed in RNA extraction solution (Tri-Reagent; Euromedex, Souffléweyerheim, France), and the extraction was performed according to the manufacturer’s instructions. For classical RT-PCR, reverse transcription was performed on 1 μg of total RNA with SuperScript II (Gibco, Cergy-Pontoise, France) and hexanucleotide random primers (Gibco), and PCRs were done with Eurobioqia (Eurobio, Courtaboeuf, France), following the manufacturer’s instructions. The following sets of primers chosen in different exons were used: RankTg-Fw ATG TGT CTT GTG AGC TGT CTT; RankTg-Rv GCT CAT AAT GGC TCT CCT G; Rank-Fw CTG GAC CAG CTG GAA TGA AGA AG; Rank-Rv AGG GCC TTC GCC GTA TC; Rank-Fw CAG CAT GCC TCT CCT GTT GT; Rank-Rv TCG TGC TCC CTC TCT TCA TC; Opg-Fw TGA TGA GTG TGT GTA TTG CAG C; Opg-Rv CCG AGG CAA ACT GTG CAC CAA; Rumx-Fw GGA GCA GGG AAC TTT ATC AC; Rumx-Rv TGC CCT GCC ATG TGC AA; Ocn-Fw CTG ACT CTG GTG GCC CTG; Ocn-Rv CCG TAG ATG CTG TTG TAG GC; CD11b-Fw ACT GCC CAT GCC TCT TAA A; CD11b-Rv TCC CCA GAC CCC TCA TGT T; CD11b-Fw TGG GCA GGT GGA GCC TTC CT; CD11b-Rv TAC ATC CAC CAG TTC TCA ACA G; F4/80-Fw AAA CCG CTA CCA CAT CCA AG; F4/80-Rv GCT CAT AAT GCC TCT CCT TTA. PCR products were separated by 2% agarose gel electrophoresis and were photographed with a Bio-Rad Gel Doc XR camera (Bio-Rad, Marnes-la-Coquette, France).

For TaqMan quantitative RT-PCR arrays, reverse transcription was performed on 1 μg of total RNA with the High Capacity cDNA reverse transcription kit (Applied Biosystems, Foster City, CA, USA) and PCR was performed with a 7900HT Fast system real-time PCR apparatus using Taqman mouse immune arrays (Applied Biosystems) according to the manufacturer’s instructions.

**Statistical analyses**

Data were analyzed using a one-factor analysis of variance to assess the effects of genotype. As appropriate, post-hoc testing was performed using Fisher’s Protected Least Significant Difference (PLSD). Differences were considered signiﬁcant at p≤0.05. Data are presented as means ± standard error of the mean (S.E.M).

**Results and Discussion**

Analyses of Msx2−/− mouse molars revealed delayed tooth eruption and shortened roots (Fig. 1a, d, g) [3,9]. RANK overexpression on an Msx2−/− background (Msx2−/− RankTg) resulted in significant recovery of all molar eruption and root elongation processes, as revealed by the relative positions of the teeth and alveolar bone crests (arrows in Fig. 1a–e), full eruption of the third molar (square in Fig. 1g–h), and the greater length of the molar roots at day 14 comparatively to Msx2−/− mouse molar (square in Fig. 1d–f; Fig. 2a, b; Fig. S4c). Measures of Msx2−/−, Msx2−/− RankTg and WT mouse mandible first molar mesial root length and width at 2 and 3 weeks, performed on histological
sections (three animals by group) using Image-J software, confirmed that, at 2 weeks, roots are significantly longer \((p<0.05)\) in \(\text{Msx2}^{-/-}\ \text{Rank}^{Tg}\) molars comparatively to \(\text{Msx2}^{-/-}\) molars but remained shorter \((p<0.05)\) than WT molars (Fig. 1J). Moreover, the root width was significantly reduced in \(\text{Msx2}^{-/-}\ \text{Rank}^{Tg}\) molars comparatively to \(\text{Msx2}^{-/-}\) molars \((p<0.01)\) as previously described [9] but was superior \((p<0.01)\) to WT molars (Fig. 1J).

At 3 weeks, mandible first molar mesial root length and width were not significantly different \((p>0.5)\) in \(\text{Msx2}^{-/-}\ \text{Rank}^{Tg}\) and \(\text{Msx2}^{-/-}\) mice (Fig. 1j) but were respectively significantly lower \((p<0.001)\) and higher \((P<0.05)\) than WT mouse ones (Fig. 1j).

RANK overexpression resulted in a significant \((p=0.0014)\) increased osteoclast numbers at 2 weeks (Fig. 2), a better commitment of HERS cells in the labial area (Fig. 3g, h, j, k), and a normalization in the size (volume measured using Image-J software) of most of the epithelial cell rests of Malassez (Fig. 3a, c, d, f, Fig. S1). However, the root morphology of \(\text{Msx2}^{-/-}\) mice was not completely restored. The roots remained shorter than in wild-type (WT) mice (Fig. 1g-j) [9]. Moreover, epithelial cyst-like structures that were occasionally observed in the lingual area of the mandibular first molar root in \(\text{Msx2}^{-/-}\) mice (Fig. S2a) were also present in the \(\text{Msx2}^{-/-}\ \text{Rank}^{Tg}\) mutants (asterisk in Fig. 2d), at an approximately similar frequency, suggesting that the origin of these cyst-like structures was associated with MSX2 loss.

Figure 1. Effect of transgenic Rank on lower molar growth in \(\text{Msx2}^{-/-}\) mice. Microradiographs were taken at 2 (a–c), 3 (d–f), and 10 (g–i) weeks for \(\text{Msx2}^{-/-}\) mice overexpressing (b, e, and h) or not expressing (a, d, and g) transgenic Rank, and for WT mice (c, f, and i). At 2 and 3 weeks, eruption of the first and second molars was more advanced in \(\text{Msx2}^{-/-}\ \text{Rank}^{Tg}\) mice than in \(\text{Msx2}^{-/-}\) mice, as shown by their positions relative to the vestibular bone crest (arrows in a, b, d, and e). At 3 weeks, the most significant feature of the progression in second molar growth was the more advanced root elongation in \(\text{Msx2}^{-/-}\ \text{Rank}^{Tg}\) mice compared to \(\text{Msx2}^{-/-}\) mice (squares in e versus d). However, the root lengths did not match those of WT mice (square in f). At 10 weeks, while the third molars of \(\text{Msx2}^{-/-}\) mice were completely surrounded by and indistinguishable from bone on the microradiograph (square in g), the third molars of \(\text{Msx2}^{-/-}\ \text{Rank}^{Tg}\) mice were fully erupted and functional (square in h). Measures of the first molar mesial root length and width at the median position (in \(\mu\text{m}\)) were performed on histological sections and presented in a table form (j). A higher length and lower width were observed at 2 weeks for \(\text{Msx2}^{-/-}\ \text{Rank}^{Tg}\) molar root comparatively to \(\text{Msx2}^{-/-}\) molar root. However, \(\text{Msx2}^{-/-}\ \text{Rank}^{Tg}\) molar root length and width remained respectively lower and superior to those observed for WT molar root. At 3 weeks, no significant difference of length and width was observed between \(\text{Msx2}^{-/-}\ \text{Rank}^{Tg}\) and \(\text{Msx2}^{-/-}\) molar roots.

doi:10.1371/journal.pone.0080054.g001
of function in epithelial cells. Keratin-14 immunostaining showed that these structures were associated with apparent continuity between dental and oral epithelia (Fig. 3j) and the formation of a periodontal pocket (square in Fig. 3j enlarged in 3l). Interestingly, cyst-like structures were only observed in the lingual part of the root. This asymmetrical localization may be associated with a labial-lingual gradient of transcription and growth factor expression during tooth morphogenesis and initial histogenesis [10–11]. Indeed, MSX2 loss may affect the expression or function of other factors; for example, DLX2 is known to be a key MSX2 partner [12].

Another defect observed in the lingual root of Msx2−/− mice, independent of RANK overexpression, was the presence of a lacuna-like structure in the dentine at the crown-root transition site (squares in Fig. 3a, d enlarged in 3b, c, respectively). These structures were maintained in the adult (asterisks in Fig. S2b, c).

Similar to the molars, the defect in the root analog region of the incisors was improved by RANK overexpression, as reflected by a better commitment of HERS cells and the more typical size of the epithelial cell rests of Malassez (Fig. 3m–r). Strikingly, however, by 2 weeks, in the crown equivalent area of all incisors, the dental epithelium had converted into a massive osteolytic tumor (Fig. 4a–h). The tumor caused a deformation in the dentin (double arrows in Fig. 4f–h) and was associated with substantial resorption of the surrounding bone, as shown by the increased osteoclast numbers (Fig. 4b, f). The tumor caused total destruction of the mandible within 4 months (Fig. 5c). The increased osteoclasts around the incisor seemed to have a positive impact on tumor growth. This scenario is reminiscent of a previously described amplification loop between tumor cells and osteoclasts, which may occur in bone metastasis of several tumor types [13].

The MSX2 homeoprotein is a critical factor for epithelial cell commitment in various organs, including skin and skin appendages [3,14]. MSX2 misexpression was reported in tumors of these epithelial tissues in the context of bone metastasis [15] and osteolysis [16]. During bone resorption, MSX2 may positively regulate RANKL expression, as suggested by a reduction in Rankl expression in the dental epithelium of Msx2−/− mice (Fig. 6a)

**Figure 2.** Rank overexpression stimulates alveolar bone osteoclastogenesis. TRAP activity assays were performed on frontal sections of the mandibles of 2 (a, b) and 3 (c–f) week-old mice to determine the effect of Rank overexpression on osteoclast numbers. At 2 weeks, the number of TRAP-positive cells was significantly increased around the first molar root in Msx2−/− RankTg mice (b, e). The root appeared longer but thinner in Msx2−/− RankTg than in Msx2−/− mice, and advanced eruption was also clearly visible. At 3 weeks, no significant difference in the number of TRAP-expressing cells was observed (c, d, e). While the length of the first molar roots of Msx2−/− mutants expressing or not expressing Rank was similar, it remained thinner in Msx2−/− RankTg mice (c, d). Asterisk in (d): Epithelial cyst on the lingual part of the root of a Msx2−/− RankTg mouse. M1, first molar; I, incisor. (e) Numbering of the TRAP positive cells in the alveolar bone surface performed on 7 μm thick sections (n>8) and presented as a table with statistical analyses. doi:10.1371/journal.pone.0080054.g002
This regulation is of particular importance, because increased RANKL expression in tumor cells is directly correlated with hyperactive bone resorption [18]. To further elucidate how RANK overexpression promotes the conversion of Msx2−/− mouse incisor epithelium into massive tumors, expression levels of Rankl, Opg (Tnfrsf11b), Rank, and various inflammation markers were comparatively analyzed in the epithelium of 14-day-old WT and Msx2−/− mice that lacked or expressed the Rank transgene (Fig. 6a, b). Rankl, Rank, and Opg expression were detected in WT mouse incisor epithelium. In contrast, in Msx2−/− mice overexpressing Rank, Rank and Rank expression decreased but Opg expression increased (Fig. 6a), in accordance with the previously described osteopetrotic phenotype [3]. In Rank2/2 mouse incisor epithelium, Rank and Opg expression was increased and Rankl expression decreased compared to WT epithelium (Fig. 6a), as previously reported [9]. These variations are explained by the more advanced stage of tooth eruption [9]. In the Msx2−/− RankTg mouse epithelium, Rankl and Rank expression was increased and Opg expression decreased compared to Msx2−/− mice (Fig. 6a). These variations are consistent with the observed augmentation in the surrounding alveolar bone resorption at 2 weeks (Fig. 2a, b). Interestingly, transgene expression was observed only in Msx2−/− RankTg mouse epithelium (Fig. 6a), suggesting that cells within the tumor mass were expressing the transgene; these cells might correspond to monocyte-derived cells. To further characterize the immune cells infiltrating the epithelial tumor, TaqMan inflammation/cancer array analyses were performed. Elevated signals for Pgf1, Nos2, and Tbx21 (Fig. 6b; Fig. S3) are indicative of intra-tumoral T helper type 1 cytotoxic cells, in

![Image](58x206)[3–5] and similar expression in odontogenic tumors [17]. This regulation is of particular importance, because increased RANKL expression in tumor cells is directly correlated with hyperactive bone resorption [18]. To further elucidate how RANK overexpression promotes the conversion of Msx2−/− mouse incisor epithelium into massive tumors, expression levels of Rankl, Opg (Tnfrsf11b), Rank, and various inflammation markers were comparatively analyzed in the epithelium of 14-day-old WT and Msx2−/− mice that lacked or expressed the Rank transgene (Fig. 6a, b). Rankl, Rank, and Opg expression were detected in WT mouse incisor epithelium. In contrast, in Msx2−/− mice overexpressing Rank, Rank and Rank expression decreased but Opg expression increased (Fig. 6a), in accordance with the previously described osteopetrotic phenotype [3]. In Rank2/2 mouse incisor epithelium, Rank and Opg expression was increased and Rankl expression decreased compared to WT epithelium (Fig. 6a), as previously reported [9]. These variations are explained by the more advanced stage of tooth eruption [9]. In the Msx2−/− RankTg mouse epithelium, Rankl and Rank expression was increased and Opg expression decreased compared to Msx2−/− mice (Fig. 6a). These variations are consistent with the observed augmentation in the surrounding alveolar bone resorption at 2 weeks (Fig. 2a, b). Interestingly, transgene expression was observed only in Msx2−/− RankTg mouse epithelium (Fig. 6a), suggesting that cells within the tumor mass were expressing the transgene; these cells might correspond to monocyte-derived cells. To further characterize the immune cells infiltrating the epithelial tumor, TaqMan inflammation/cancer array analyses were performed. Elevated signals for Pgf1, Nos2, and Tbx21 (Fig. 6b; Fig. S3) are indicative of intra-tumoral T helper type 1 cytotoxic cells, in
Figure 4. Effect of Rank overexpression on lower incisors of Msx2^{−/−} mice. Mandibular microradiographs (a, e) and TRAP activity assays (b, f) or van Gieson histology staining (c, d, g, h) of mandibular frontal sections were performed to characterize the effect of Rank overexpression on the lower incisors of 2-week-old Msx2^{−/−} mice. Substantial enlargement of the area between the basal bone and the dentin was observed in Msx2^{−/−} RankTg mice (e) compared to Msx2^{−/−} mice not expressing RankTg (a). This enlarged area, which corresponds to the incisor epithelial compartment, was associated with abnormal curvature in both basal bone (red dotted line) and dentin (D). Mandibular frontal sections through the first (M1), second (M2), and third (M3) molar planes revealed that the enlargement corresponds to an epithelial hypertrophy with the presence of an internal necrosis-like area (asterisks in f–h). In Msx2^{−/−} incisors, no hypertrophy of the epithelium was visible, but this tissue was disorganized and lacked the ameloblastic palisade structure (arrows in b–d). There was also a substantial increase in the number of osteoclasts around the incisors of Msx2^{−/−} RankTg mice (f) compared to Msx2^{−/−} mice not expressing RankTg (b). Moreover, the thickness of the mandibular basal bone in the Msx2^{−/−} RankTg mutants appeared highly reduced compared to Msx2^{−/−} mice not expressing RankTg (arrowheads in f–h versus b–d).

doi:10.1371/journal.pone.0080054.g004

Figure 5. Combined effects of loss of Msx2 and Rank overexpression on mouse mandibular bone phenotype. Microradiographs and scans of 16-week-old WT (a), Msx2^{−/−} (b), and Msx2^{−/−} RankTg (c) mouse skulls were performed to compare characteristics of the bone of the mandible. While the Msx2^{−/−} mouse mandibular features (b) presented no major alterations compared to WT animals (a), Msx2^{−/−} RankTg mice had marked disruptions in the architecture of the mandibular bone (c). These disruptions were either mono- or bilateral and were associated with conversion of the incisor epithelium toward massive osteolytic tumors (asterisks in c). Basal bone around these tumors was thinner (arrows in c), porous (arrow in c), and displaced, as seen in the upper view of the mandibular scan (c).

doi:10.1371/journal.pone.0080054.g005
addition to monocyte-derived cells that are likely recruited and maintained by CSF1 (Fig. 6b). Cytotoxic cells may also be natural killer (NK) cells, which would correspond with the observed unaltered CD8α expression levels (Fig. S3) and increased transcription of genes encoding factors such as IL12A and CXCL10 (Fig. 6b; Fig. S3), which are known to stimulate NK cell chemotaxis and differentiation [19]. In response, NK cells produce IFNG, TNF, CSF2, CCL3, and CCL5 [19], which are all up-regulated in Msx2²⁻⁻ RankTg mouse epithelium (Fig. 6b; Fig. S3). Further studies will be necessary to unravel the mechanistic relationship between inflammatory cell recruitment and epithelial tumor activation, and the relationship between tumor growth and RANKL expression. Keeping in mind that cells of the monocyte/macrophage lineage were present in the epithelial tumor (Fig. 6a), the recent finding that monocytes control NK cell differentiation in the context of antitumor immunity [20] constitutes an interesting basis for future studies.

The epithelial tumor growth resulted in marked resorption of the surrounding alveolar bone, likely due to increased osteoclast numbers (Fig. 4f). Interestingly, Runx2 and osteocalcin transcripts remained stable, indicating unaltered bone apposition (Fig. 6c). The rise in osteoclast numbers is likely the result of the marked increase in Rankl expression (Fig. 6c). Analysis of different immune cell-lineage markers (Fig. 6e) suggested that cells of the myeloid lineage were increased in Msx2²⁻⁻ RankTg mouse alveolar bone. There also appeared to be an increase in the cytotoxic T lymphocyte population, as suggested by increased CD8α and CD10 expression (Fig. 6d, e). These data and the high expression levels of Ifnγ, Il6, Il7, Cxcl5, Cxcl4, and Cxcl7 (Fig. 6d) provide evidence for enhanced bone loss through inflammation, as described in other pathologies [21]. CXCL10 functions as a chemoattractant for monocytes and is implicated in osteoclastogenesis [22–25], with possible crosstalk with RANKL [24]. Thus, CXCL10 production may constitute a key element in the massive osteolytic epithelial tumor development observed in Msx2²⁻⁻ RankTg mice by fostering an amplification cycle between tumor growth and alveolar bone resorption. CXCL11 was shown to inhibit osteoclastogenesis by a mechanism independent of its CXCR3 receptor [26]. CXCL11 should therefore interfere with increased bone resorption and tumor growth. On the other hand, CXCL11 is also known to activate T lymphocytes [27], which could amplify inflammation of the bone environment and adjacent epithelia, where increased Cxcr3 transcriptional activity was observed (Fig. S3).

In addition to above described effects of RANK over-expression on Msx2²⁻⁻ dental phenotype, benefic effects of such over-expression have also been observed in other skeleton sites known

Figure 6. Gene signature induced by Rank overexpression in the dental epithelium and alveolar bone of Msx2²⁻⁻ mice. RT-PCR of total RNA extracted from dental epithelium (a) and alveolar bone (c, e) revealed Rank expression in the epithelium and alveolar bone of Msx2²⁻⁻ RankTg mice. Increased Rankl expression was associated with Rank overexpression in Msx2²⁻⁻ mice (a, c). In Msx2²⁻⁻ mice, Rank overexpression induced a decrease in Opg transcriptional activity in the epithelium, while in alveolar bone, expression of Opg increased slightly (a, c). Expression levels of Runx2 and Ocn in alveolar bone were unaffected by Rank overexpression (c), but expression of the T lymphocyte marker Cd3e and the monocyte and macrophage markers Csfr1, F4/80 and Cd11b were increased (e). Also shown are 4-fold or higher increases in gene expression in Msx2²⁻⁻ RankTg mice compared to Msx2²⁻⁻ mice not expressing RankTg, as quantified by RT-qPCR TaqMan arrays in dental epithelium (b) and alveolar bone (d). doi:10.1371/journal.pone.0080054.g006
to be affect in Msx2−/− mouse (Fig. S4). For instance, the characteristic open foramen of Msx2−/− mouse skull was partly closed in RANK over-expressing mutant (Fig. S4a). Similarly, the Msx2−/− mouse tibia that presented features of soft osteosclerosis switched to rather osteogenic bone in RANK over-expressing mutant (Fig. S4b). Nevertheless, other skeleton defects associated to MSX2 lost were poorly improved by RANK over-expression as the tibia length that remained shorter than WT mouse one (Fig. S4b).

**Conclusion**

In conclusion, resiping bone resorption in Msx2−/− mice by overexpressing RANK in the osteoclastic lineage allowed for the correction of a substantial portion of the molar abnormalities, most likely by counteracting the decrease in RANKL expression, which is correlated with Msx2−/− osteopetrosis. From a more general viewpoint, our results indicate that functional compensation may be a promising approach for the treatment of osteopetrosis. However, in this mouse model, in which Msx2 was not expressed and RANK was overexpressed, and which features continuously growing incisors, precocious formation of a massive and osteolytic odontogenic epithelial tumor was observed.

**Supporting Information**

**Figure S1** Comparative analysis of epithelial rest of Malassez sizes in roots of wild type, Msx2−/− and Msx2−/− RANKTg mice. Whatever the age considered, the RANK over-expression in the Msx2−/− mouse normalized the size of the rest of Malassez. Measures were realized as previously described [5] using Image-J software. (TIF)

**Figure S2** Van Gieson staining of Msx2−/− mouse mandible first molar frontal sections at 3, 4 and 16 weeks. The presence of a cyst-like structure at the root lingual surface was observed at 3 weeks (a). At 4 and 16 weeks lacunae in the dentin area facing the site of transition between crown and root epithelium was present (asterisk in b–c). D: dentine; PDL: periodontal ligament; P: pulp. (TIF)

**Author Contributions**

Conceived and designed the experiments: BC CM AB FL. Performed the experiments: BC YS DF FL. JC. Analyzed the data: BC CM AB FL. Contributed reagents/materials/analysis tools: DF BR CM. Wrote the paper: BC AB FL.

**References**

1. Cohen MM Jr (2006) The new bone biology, molecular, and clinical correlates. Am J Med Genet A 140(23): 2616–2706.
2. Suda N, Kitahara Y, Ohyama K (2006) A case of amelogenesis imperfecta, cleft lip and palate and polycystic kidney disease. Orthod Craniofac Res 9(1): 52–56.
3. Asoub M, Lezot F, Molla, C, Castaneda B, Robert B, et al. (2007) Msx-2 and /Msx2 mouse skull was partly closed in RANK over-expressing mutant (Fig. S4). Similarly, the Msx2−/− mouse tibia that presented features of soft osteosclerosis switched to rather osteogenic bone in RANK over-expressing mutant (Fig. S4b). Nevertheless, other skeleton defects associated to MSX2 lost were poorly improved by RANK over-expression as the tibia length that remained shorter than WT mouse one (Fig. S4b).
substrate: molecular and immunocytochemical evidence of high levels of CXCL10 and CXCL12. Histochem Cell Biol 120: 391–400.

23. Lee Y, Chittezhath M, André V, Zhao H, Poidinger M, et al. (2012) Protumoral role of monocytes in human B-cell precursor acute lymphoblastic leukemia: involvement of the chemokine CXCL10. Blood 119: 227–237.

24. Kwak HB, Ha H, Kim HN, Lee JH, Kim HS, et al. (2008) Reciprocal cross-talk between RANKL and interferon-gamma-inducible protein 10 is responsible for bone-erosive experimental arthritis. Arthritis Rheum 58: 1332–1342.

25. Lei SF, Wu S, Li LM, Deng FY, Xiao SM, et al. (2009) An in vivo genome wide gene expression study of circulating monocytes suggested GBP1, STAT1 and CXCL10 as novel risk genes for the differentiation of peak bone mass. Bone 44(5): 1010–1014.

26. Coelho LF, Magno de Freitas Almeida G, Mermechet FJ, Blangy A, Uze G (2005) Interferon-α and –β differentially regulate osteoclastogenesis: Role of differential induction of chemokine CXCL11 expression. Proc Natl Acad Sci USA 102: 11917–11922.

27. Heise CE, Pahuja A, Hudson SC, Mistry MS, Putnam AL, et al. (2005) Pharmacological characterization of CXC chemokine receptor 3 ligands and a small molecule antagonist. J Pharmacol Exp Ther 313(3): 1263–1271.