A BROWNIAN MOTION ON $\text{Diff}(S^1)$

MANG WU*

Abstract. Let $\text{Diff}(S^1)$ be the group of orientation preserving C^∞ diffeomorphisms of S^1. In [13] P. Malliavin and then in [5] S. Fang constructed a canonical Brownian motion associated with the $H^{3/2}$ metric on the Lie algebra $\text{diff}(S^1)$. The canonical Brownian motion they constructed lives in the group Homeo(S^1) of Hölderian homeomorphisms of S^1, which is larger than the group $\text{Diff}(S^1)$. In this paper, we present another way to construct a Brownian motion that lives in the group $\text{Diff}(S^1)$, rather than in the larger group Homeo(S^1).

1. Introduction

Let $\text{Diff}(S^1)$ be the group of orientation preserving C^∞-diffeomorphisms of S^1, and let $\text{diff}(S^1)$ be the space of C^∞-vector fields on S^1. The space $\text{diff}(S^1)$ can be identified with the space of C^∞-functions on S^1. Therefore, $\text{diff}(S^1)$ carries a natural Fréchet space structure. In addition $\text{diff}(S^1)$ is an infinite dimensional Lie algebra: for any $f, g \in \text{diff}(S^1)$, the Lie bracket is given by $[f, g] = f'g - fg'$. Thus the group $\text{Diff}(S^1)$ associated with the Lie algebra $\text{diff}(S^1)$ becomes an infinite dimensional Fréchet Lie group [14]. Our goal in this paper is to construct a Brownian motion in the group $\text{Diff}(S^1)$.

In general, to construct a Brownian motion in a Lie group, one might solve a Stratonovich stochastic differential equation (SDE) on such a group. The method is best illustrated for a finite dimensional compact Lie group.

Let G be a finite dimensional compact Lie group. Denote by \mathfrak{g} the Lie algebra of G identified with the tangent space T_eG to the group G at the identity element $e \in G$. Let $L_g : G \to G$ be the left translation of G by an element $g \in G$, and let $(L_g)_* : \mathfrak{g} \to T_gG$ be the differential of L_g. If we choose a metric on \mathfrak{g} and let W_t be the standard Brownian motion on \mathfrak{g} corresponding to this metric, we can develop the Brownian motion W_t onto G by solving a Stratonovich stochastic differential equation

$$\delta \tilde{X}_t = (L_{\tilde{X}_t})_* \delta W_t$$

where δ stands for the Stratonovich differential. The solution \tilde{X}_t is a Markov process on G with the generator being the Laplace operator on G. We call \tilde{X}_t the Brownian motion on the group G [11, 12].

2000 Mathematics Subject Classification. Primary 60H07; Secondary 58J65, 60J65.

Key words and phrases. $\text{Diff}(S^1)$, Brownian motion, stochastic differential equations.

* This research was partially supported by NSF Grant DMS-0706784.
In case when G is an infinite dimensional Hilbert Lie group, one can solve Equation (1.1) by using the theory of stochastic differential equations in Hilbert spaces as developed by G. DaPrato and J. Zabczyk in [4]. Using this method, M. Gordina [6, 7, 8] and M. Wu [10] constructed a Brownian motion in several Hilbert-Schmidt groups. The construction relied on the fact that these Hilbert-Schmidt groups are Hilbert Lie groups.

In the present case, we would like to replace G by Diff (S^1) and g by diff (S^1) and solve Equation (1.1) correspondingly. But because the group Diff (S^1) is a Fréchet Lie group, which is not a Hilbert Lie group, Equation (1.1) does not even make sense as it stands. First, we need to interpret the Brownian motion W_t in the Fréchet space diff (S^1) appropriately. Second, we are lacking a well developed stochastic differential equation theory in Fréchet spaces to make sense of Equation (1.1).

In 1999, P. Malliavin [13] first constructed a canonical Brownian motion on Homeo (S^1), the group of Hölderian homeomorphisms of S^1. In 2002, S. Fang [5] gave a detailed construction of this canonical Brownian motion on the group Homeo (S^1). Their constructions were essentially by interpreting and solving the same Equation (1.1) on the group Diff (S^1).

To define the Brownian motion W_t in Equation (1.1), P. Malliavin and S. Fang chose the $H^{3/2}$ metric of the Lie algebra diff (S^1). Basically, this metric uses the set

$$\{n^{-3/2} \cos(n\theta), m^{-3/2} \sin(m\theta)|m, n = 1, 2, 3, \cdots\}, \quad (1.2)$$

which is a subset of the Lie algebra diff (S^1), as an orthonormal basis to form a Hilbert space $H^{3/2}$. Then they defined W_t to be the cylindrical Brownian motion in $H^{3/2}$ with the covariance operator being the identity operator on $H^{3/2}$. But since the coefficients $n^{-3/2}$ and $m^{-3/2}$ do not decrease rapidly enough, the Hilbert space $H^{3/2}$ is not contained in the Lie algebra diff (S^1). Therefore, the Brownian motion W_t they defined on $H^{3/2}$ does not live in diff (S^1) either. This is the essential reason why the canonical Brownian motion they constructed lives in a larger group Homeo (S^1), but not in the group Diff (S^1).

To interpret and solve Equation (1.1), S. Fang treated it as a family of stochastic differential equations on S^1: for each $\theta \in S^1$, S. Fang considered the equation

$$\delta \tilde{X}_{\theta,t} = (L_{\tilde{X}_{\theta,t}}) \cdot \delta W_{\theta,t}, \quad (1.3)$$

which is a stochastic differential equation on S^1. By solving Equation (1.3) for each $\theta \in S^1$, S. Fang obtained a family of solutions $\tilde{X}_{\theta,t}$ parameterized by θ. Then he used a Kolmogorov type argument to show that the family $\tilde{X}_{\theta,t}$ is Hölderian continuous in the variable θ. Using this method, he proved that for each $t \geq 0$, $\tilde{X}_{\theta,t}$ is a Hölderian homeomorphism of S^1. Thus, he constructed the canonical Brownian motion on the group Homeo (S^1). But this Kolmogorov type argument cannot be pushed further to show that $\tilde{X}_{\theta,t}$ is differentiable in θ. Therefore, S. Fang’s method does not seem to be suitable to construct a Brownian motion that lives in the group Diff (S^1), rather than in Homeo (S^1).
In the current paper, our goal is to construct a Brownian motion that lives in the group $\text{Diff}(S^1)$. To achieve this, we need another way to interpret and solve Equation (1.1).

First, instead of the $H^{3/2}$ metric that P. Malliavin and S. Fang used, we choose a very “strong” metric on the Lie algebra $\text{diff}(S^1)$: let $\{\lambda(n)\}_{n=1}^{\infty}$ be a sequence of rapidly decreasing positive numbers. We use the set

$$\{\lambda(n) \cos(n\theta), \lambda(m) \sin(m\theta)|m, n = 1, 2, 3, \cdots\},$$

which is a subset of the Lie algebra $\text{diff}(S^1)$, as an orthonormal basis to form a Hilbert space H_{λ}. Then we define the Brownian motion W_t to be the cylindrical Brownian motion in H_{λ} with the covariance operator being the identity operator on H_{λ}. Because the coefficients $\lambda(n)$ are rapidly decreasing, the Hilbert space H_{λ} is a subspace of the Lie algebra $\text{diff}(S^1)$. Therefore, the Brownian motion W_t lives in the Lie algebra $\text{diff}(S^1)$, and the solution of Equation (1.1) has a better chance to live in the group $\text{Diff}(S^1)$.

Second, in contrast to Fang’s method of interpreting Equation (1.1) “pointwise” as a family of stochastic differential equations on S^1, we interpreted it as a sequence of stochastic differential equations on a sequence of “Hilbert” spaces. To do this, we embed the group $\text{Diff}(S^1)$ into an affine space $\widetilde{\text{diff}}(S^1)$ that is isomorphic to the Lie algebra $\text{diff}(S^1)$. Let H^k be the kth Sobolev space over S^1. It is a separable Hilbert space. Let \widetilde{H}^k be the corresponding affine space that is isomorphic to H^k. For the precise definition of the space $\text{diff}(S^1)$ and \widetilde{H}^k, see Section 2. It is well known that the space $\text{diff}(S^1)$ is the intersection of the Sobolev spaces H^k. Similarly, $\widetilde{\text{diff}}(S^1)$ is the intersection of the affine spaces \widetilde{H}^k. Now we have the embedding

$$\text{Diff}(S^1) \subseteq \widetilde{\text{diff}}(S^1) \subseteq \widetilde{H}^k, \quad k = 1, 2, 3, \cdots$$

Thus, we can interpret Equation (1.1) as a sequence of stochastic differential equations on the sequence of affine spaces $\{\widetilde{H}^k\}_{k=1}^{\infty}$ each of which is isomorphic to the Hilbert space H^k. These stochastic differential equations can be solved by DaPrato and Zabczyk’s method [4].

In accordance with the notations used by DaPrato and Zabczyk in [4], in the rest of this paper, we will denote the operator $(L_{\widetilde{X}})_*$ in Equation (1.1) by $\widetilde{\Phi}(\widetilde{X}_t)$. The operator $\widetilde{\Phi}$ will be discussed in detail in Section 2. After adding the initial condition, we can now re-write Equation (1.1) as

$$\delta \widetilde{X}_t = \widetilde{\Phi}(\widetilde{X}_t) \delta W_t, \quad \widetilde{X}_0 = id$$

where id is the identity element in $\text{Diff}(S^1)$.

Equation (1.6) is interpreted as a stochastic differential equation in each “Hilbert” space \widetilde{H}^k. To use DaPrato and Zabczyk’s method to solve this equation, we need to establish the Lipschitz condition of the operator $\widetilde{\Phi}$. In Section 2, it turns out that the operator $\widetilde{\Phi}$ is locally Lipschitz. So the explosion time of the solution needs to be discussed.

After solving Equation (1.6) in \widetilde{H}^k for each k, it is relatively easy to prove that the solution lives in the affine space $\text{diff}(S^1)$ (Proposition 3.17). By the embedding
In general, to prove a process lives in a group rather than in an ambient space, one needs to construct an inverse process. To construct the inverse process, usually one needs to solve another stochastic differential equation – the SDE for the inverse process \[6, 10\]. In our case, we have derived the SDE for the inverse process:

\[
\delta \tilde{Y}_t = \tilde{\Psi}(\tilde{Y}_t) \delta W_t
\] (1.7)

where \(\tilde{\Psi}\) is an operator such that for \(\tilde{g} \in \text{Diff}(S^1)\) and \(f \in \text{diff}(S^1)\), \(\tilde{\Psi}(\tilde{g})f = D\tilde{g} \cdot f\), where \(D = d/d\theta\) and \(\cdot\) is the pointwise multiplication of two functions. Because the operator \(D\) causes loss of one degree of smoothness, we cannot interpret Equation (1.7) in \(\widetilde{H}^k\) as we did for Equation (1.6), and we were forced to give up this method.

But we managed to get around this problem. We first observed that an element \(\tilde{f} \in \text{diff}(S^1)\) belongs to Diff\((S^1)\) if and only if \(\tilde{f}'(\theta) > 0\) for all \(\theta \in S^1\). Based on this observation, we showed that the solution is contained in the group Diff\((S^1)\) up to a stopping time. Then we can “concatenate” this small piece of solution with another small piece of solution to make a new solution up to a longer stopping time. The key idea is Proposition (3.14) and the following remark (Remark 3.15). Finally, we were able to prove the following theorem (Theorem 3.19):

Theorem 1.1. There is a unique \(\widetilde{H}^k\)-valued solution with continuous sample paths to Equation (1.6) for all \(k = 0, 1, 2, \cdots\). Furthermore, the solution is non-explosive and lives in the group Diff\((S^1)\).

Acknowledgement. The author would like to thank Maria Gordina for her advising throughout the preparation of the paper. The author would like to thank Alexander Teplyaev for pointing out the important idea which helped us to prove Theorem 1.1. The author also would like to thank Matt Cecil for many helpful discussions.

2. An interpretation of Equation (1.6)

2.1. The group Diff\((S^1)\) and the Lie algebra diff\((S^1)\). Let Diff\((S^1)\) be the group of orientation preserving \(C^\infty\) diffeomorphisms of \(S^1\), and diff\((S^1)\) be the space of \(C^\infty\) vector fields on \(S^1\). We have the following identifications for the space diff\((S^1)\):

\[
diff(S^1) \cong \{ f : S^1 \to \mathbb{R} : f \in C^\infty \}
\]

\[
\cong \{ f : \mathbb{R} \to \mathbb{R} : f \in C^\infty, f(x) = f(x + 2\pi), \text{ for all } x \in \mathbb{R} \}
\] (2.1)

Using this identification, we see that the space diff\((S^1)\) has a Fréchet space structure. In addition, this space has a Lie algebra structure, namely, for \(f, g \in \text{diff}(S^1)\) the Lie bracket is given by

\[
[f, g] = f'g - fg',
\] (2.2)

where \(f'\) and \(g'\) are derivatives with respect to the variable \(\theta \in S^1\). Therefore, the group Diff\((S^1)\) is a Fréchet Lie group as defined in [13].
Notation 2.1. Using the above identification, we also have an identification for $\text{Diff}(S^1)$

$$\text{Diff}(S^1) \cong \{ \hat{f} : \mathbb{R} \to \mathbb{R} : \hat{f} = \text{id} + f, f \in \text{diff}(S^1), \hat{f}' > 0\}, \quad (2.3)$$

where id is the identity function from \mathbb{R} to \mathbb{R}. We note that the set on the right hand side of the above identification is a group with the group multiplication being composition of functions. We require that for $\hat{f}, \hat{g} \in \text{Diff}(S^1)$, $f\hat{g} = \hat{g} \circ \hat{f}$. Under this identification, the left translation of $\text{Diff}(S^1)$ is given by $L_\hat{g} \hat{f} = \hat{g} \circ \hat{f}$.

Denote

$$\tilde{\text{diff}}(S^1) = \{ \hat{f} : \mathbb{R} \to \mathbb{R} | \hat{f} = \text{id} + f, f \in \text{diff}(S^1)\} \quad (2.4)$$

The space $\tilde{\text{diff}}(S^1)$ is an affine space which is isomorphic to the vector space $\text{diff}(S^1)$. We denote the isomorphism by \sim, that is, $\sim : \text{diff}(S^1) \to \tilde{\text{diff}}(S^1)$, $f \mapsto \hat{f} = \text{id} + f$. Comparing (2.3) and (2.4), we have the embedding

$$\text{Diff}(S^1) \subseteq \tilde{\text{diff}}(S^1). \quad (2.5)$$

With this embedding, the differential of a left translation $L_\hat{g}$ becomes $(L_\hat{g})_* : \text{diff}(S^1) \to \tilde{\text{diff}}(S^1)$, and is given by $(L_\hat{g})_* f = f \circ \hat{g}$ for $f \in \text{diff}(S^1)$.

The following proposition is an immediate observation from the identification (2.3) and definition of $\text{diff}(S^1)$ given by (2.4). Yet, it plays a key role in proving the main theorem Theorem 1.1.

Proposition 2.2. An element $\hat{f} \in \tilde{\text{diff}}(S^1)$ belongs to $\text{Diff}(S^1)$ if and only if $\hat{f}' > 0$, or equivalently $f' > -1$.

2.2. The Hilbert space H_λ and the Brownian motion W_t. To define the Brownian motion W_t in Equation (1.4), we need to choose a metric on the Lie algebra $\text{diff}(S^1)$. Comparing with the $H^{3/2}$ metric that P. Malliavin and S. Fang chose, the metric we choose here is a very “strong” metric.

Definition 2.3. Let S be the set of even functions $\lambda : \mathbb{Z} \to (0, \infty)$ such that $\lim_{n \to \infty} |n|^k \lambda(n) = 0$ for all $k \in \mathbb{N}$. For $\lambda \in S$, let $e_n^\lambda = e_n^\lambda(\lambda) \in \text{diff}(S^1)$ be defined by

$$e_n^\lambda(\theta) = \begin{cases} \lambda(n) \cos(n \theta), & n \geq 0 \\ \lambda(n) \sin(n \theta), & n < 0 \end{cases} \quad (2.6)$$

Let H_λ be the Hilbert space with the set $\{e_n^\lambda\}_{n \in \mathbb{Z}}$ as an orthonormal basis.

Note that the function λ is rapidly decreasing, therefore the Hilbert space H_λ defined above is a proper subspace of $\text{diff}(S^1)$. We also remark that $\text{diff}(S^1) = \bigcup_{\lambda \in S} H_\lambda$.

Let $\alpha, \lambda \in S$ be defined by $\lambda(n) = |n| \alpha(n)$, and let H_α and H_λ be the corresponding Hilbert subspaces of $\text{diff}(S^1)$. Then we have $H_\alpha \subset H_\lambda$, and the inclusion map $\iota : H_\alpha \hookrightarrow H_\lambda$ that sends $e_n^{\alpha(\lambda)}$ to $e_n^{\alpha} = \frac{1}{|n|} e_n^\alpha$ is a Hilbert-Schmidt operator. The adjoint operator $\iota^* : H_\lambda \to H_\alpha$ that sends e_n^{λ} to $\frac{1}{|n|} e_n^{\alpha}$ is also a Hilbert-Schmidt operator. The operator $Q_\lambda = \iota^* : H_\lambda \to H_\lambda$ is a trace class operator on H_λ, and $H_\alpha = Q_\lambda^{1/2} H_\lambda$.
Definition 2.4. Let \(W_t \) be a Brownian motion defined by

\[
W_t = \sum_{n \in \mathbb{Z}} B_{t}^{(n)} \hat{e}_n = \sum_{n \in \mathbb{Z}} \frac{1}{|n|} B_{t}^{(n)} \hat{e}_n
\] (2.7)

where \(\{B_{t}^{(n)}\}_n \) are mutually independent standard \(\mathbb{R} \)-valued Brownian motions.

We see that \(W_t \) is a cylindrical Brownian motion on \(H_\alpha \) with the covariance operator being the identity operator on \(H_\alpha \). Also, \(W_t \) is a Brownian motion on \(H_\lambda \) with the covariance operator being the operator \(Q_\lambda \).

2.3. The Sobolev space \(H^k \) and the affine space \(\tilde{H}^k \). Now we turn to the Sobolev spaces over \(S^1 \). Let us first recall some basic properties of the Sobolev spaces over \(S^1 \) found for example in [1].

Let \(k \) be a non-negative integer. Denote by \(C^k \) the space of \(k \)-times continuously differentiable real-valued functions on \(S^1 \), and denote by \(H^k \) the \(k \)th Sobolev space on \(S^1 \). Recall that \(H^k \) consists of functions \(f : S^1 \to \mathbb{R} \) such that \(f^{(k)} \in L^2 \), where \(f^{(k)} \) is the \(k \)th derivative of \(f \) in distributional sense. The Sobolev space \(H^k \) has a norm given by

\[
\|f\|_{H^k}^2 = \|f\|_{L^2}^2 + \|f^{(k)}\|_{L^2}^2
\] (2.8)

The Sobolev space \(H^k \) is a separable Hilbert space, and \(C^k \) is a dense subspace of \(H^k \). We will make use of the following standard properties of the spaces \(H^k \).

Theorem 2.5 ([1]). Let \(m, k \) be two non-negative integers.

1. If \(m \leq k \) and \(f \in H^k \), then \(\|f\|_{H^m} \leq \|f\|_{H^k} \).
2. If \(m < k \) and \(f \in H^k \), then there exists a constant \(c_k \) such that \(\|f^{(m)}\|_{L^\infty} \leq c_k \|f\|_{H^k} \).
3. \(H^{k+1} \subseteq H^k \) for all \(k = 0, 1, 2, \ldots \), and \(\text{diff}(S^1) = \bigcap_{k=0}^\infty H^k \).

An element \(f \in H^k \) can be identified with a \(2\pi \)-periodic function from \(\mathbb{R} \) to \(\mathbb{R} \). Define

\[
\tilde{H}^k = \{ \tilde{f} : \mathbb{R} \to \mathbb{R} : \tilde{f} = \text{id} + f, f \in H^k \}
\] (2.9)

Then \(\tilde{H}^k \) is an affine space that is isomorphic to the Sobolev space \(H^k \). We denote the isomorphism by \(\sim \), that is, \(\sim : H^k \to \tilde{H}^k, f \mapsto \tilde{f} = \text{id} + f \). The image of \(C^k \) under the isomorphism, denoted by \(\tilde{C}^k \), is a dense subspace of the affine space \(\tilde{H}^k \). An element \(\tilde{f} \in \tilde{H}^k \) can be identified as a function from \(S^1 \) to \(S^1 \). By item (3) in Theorem 2.5 we have \(\tilde{H}^{k+1} \subseteq \tilde{H}^k \) and \(\text{diff}(S^1) = \bigcap_{k=0}^\infty \tilde{H}^k \).

Now we have the following embeddings:

\[
\text{Diff}(S^1) \subseteq \text{diff}(S^1) \subseteq \cdots \subseteq \tilde{H}^3 \subseteq \tilde{H}^2 \subseteq \tilde{H}^1,
\] (2.10)

and we can interpret Equation (1.6) as a sequence of stochastic differential equations on the sequence of affine spaces \(\{\tilde{H}^k\}_{k=1}^\infty \).
2.4. The operator $\tilde{\Phi}$ and Φ. For $\tilde{g} \in \text{Diff}(S^1)$, let $(L_{\tilde{g}})_*$ be the differential of the left translation. In accordance with the notation used by DaPrato and Zabczyk in [11], we denote $(L_{\tilde{g}})_*$ by $\tilde{\Phi}(\tilde{g})$.

Initially, $\tilde{\Phi} : \text{Diff}(S^1) \to (\text{Diff}(S^1) \to \text{Diff}(S^1))$, which means $\tilde{\Phi}$ takes an element $\tilde{g} \in \text{Diff}(S^1)$ and becomes a linear transformation $\tilde{\Phi}(\tilde{g})$ from $\text{Diff}(S^1)$ to $\text{Diff}(S^1)$ (see subsection 2.1). Because we want to interpret Equation (1.6) as an SDE on H and use DaPrato and Zabczyk's theory [4], we need the operator Φ to be extended as $\tilde{\Phi} : \tilde{H}^k \to (H_{\lambda} \to \tilde{H}^k)$, which means $\tilde{\Phi}$ takes an element $\tilde{g} \in \tilde{H}^k$ and becomes a linear transformation $\tilde{\Phi}(\tilde{g})$ from H_{λ} to \tilde{H}^k [4].

Let $L(H_{\lambda}, H^k)$ be the space of linear transformations from H_{λ} to H^k. Define a mapping

$$\tilde{\Phi} : \tilde{C}^k \to L(H_{\lambda}, H^k)$$

(2.11)

such that if $\tilde{f} \in \tilde{C}^k$, $g \in H_{\lambda}$, then $\tilde{\Phi}(\tilde{f})(g) = g \circ \tilde{f}$. The mapping $\tilde{\Phi}$ is easily seen to be well defined. Sometimes, it is easier to work with the vector space C^k. So we similarly define a mapping

$$\Phi : C^k \to L(H_{\lambda}, H^k)$$

(2.12)

such that if $f \in C^k$, $g \in H_{\lambda}$, then $\Phi(f)(g) = g \circ \tilde{f}$, where $\tilde{f} = id + f$ is the image of f under the isomorphism \sim.

Let $L^2(H_{\lambda}, H^k)$ denote the space of Hilbert-Schmidt operators from H_{λ} to H^k. The space $L^2(H_{\lambda}, H^k)$ is a separable Hilbert space. For $T \in L^2(H_{\lambda}, H^k)$, the norm of T is given by

$$\|T\|_{L^2(H_{\lambda}, H^k)} = \sum_{n \in \mathbb{Z}} \|T e_n^{(\lambda)}\|_{H^k}^2$$

where $e_n^{(\lambda)}$ is defined in Definition (2.3).

To use DaPrato and Zabczyk’s theory [4], we need Φ to be $\tilde{\Phi} : \tilde{H}^k \to L^2(H_{\lambda}, H^k)$ or equivalently, we need Φ to be $\Phi : H^k \to L^2(H_{\lambda}, H^k)$. We will also need some Lipschitz condition of $\tilde{\Phi}$ and Φ. These are proved in proposition (2.7) and (2.8). Both propositions need the Faà di Bruno’s formula for higher derivatives of a composition function.

Theorem 2.6 (Faà di Bruno’s formula [11]).

$$f(g(x))^{(n)} = \sum_{k=0}^{n} f^{(k)}(g(x)) B_{n,k}(g'(x), g''(x), \ldots, g^{(n-k+1)}(x)), \quad (2.13)$$

where $B_{n,k}$ is the Bell polynomial

$$B_{n,k}(x_1, \ldots, x_{n-k+1}) = \sum_{j_1! \cdots j_{n-k+1}!} \frac{n!}{j_1! \cdots j_{n-k+1}!} \left(\frac{x_{j_1}}{1!}\right)^{j_1} \cdots \left(\frac{x_{n-k+1}}{(n-k+1)!}\right)^{j_{n-k+1}},$$

and the summation is taken over all sequences of $\{j_1, \ldots, j_{n-k+1}\}$ of nonnegative integers such that $j_1 + \cdots + j_{n-k+1} = k$ and $j_1 + 2j_2 + \cdots + (n-k+1)j_{n-k+1} = n$.

We remark that after expanding expression (2.13), $f(g(x))^{(n)}$ can be viewed as a summation of several terms, each of which has the form

$$f^{(j)}(g(x))m(g', g'', \ldots, g^{(n)}).$$
where \(j \leq n \) and \(m(g', g'', \cdots, g^{(n)}) \) is a monomial in \(g', g'', \cdots, g^{(n)} \). Also observe that, the only term that involves the highest derivative of \(g \) is \(f'(g(x))g^{(n)}(x) \).

Proposition 2.7. For any \(f \in C^k, k = 0, 1, 2, \cdots \), \(\Phi(f) \in L^2(H, H^k) \).

Proof.

\[
\|\Phi(f)\|_{L^2(H, H^k)}^2 = \sum_{n \in \mathbb{Z}} \|\Phi(f)(\hat{e}_n)\|_{H^k}^2 \\
= \sum_{n \in \mathbb{Z}} \|\hat{e}_n(id + f)\|_{L^2}^2 + \|\hat{e}_n(id + f)^{(k)}\|_{L^2}^2,
\]

where \(\hat{e}_n \) is defined in Definition 2.3 and we have suppressed the index \(\lambda \) here. \(\hat{e}_n(id + f) \) denotes the function \(\hat{e}_n \) composed with \(id + f \), and \(\hat{e}_n(id + f)^{(k)} \) is the \(k \)th derivative of \(\hat{e}_n(id + f) \).

First, we have

\[
\|\hat{e}_n(id + f)\|_{L^2}^2 \leq \lambda(n)^2.
\]

We apply Faà di Bruno’s formula (2.13) to \(\hat{e}_n(id + f)^{(k)} \), and then expand it to a summation of several terms. We are going to deal with the terms with and without \(f^{(k)} \), the highest derivative of \(f \), separately. So we write the summation as

\[
\hat{e}_n(id + f)^{(k)} = \ldots \text{ terms without } f^{(k)}\ldots + \hat{e}_n(id + f)f^{(k)},
\]

where each term without \(f^{(k)} \) has the form

\[
\hat{e}_n^{(j)}(id + f)m(f', f'', \cdots, f^{(k-1)})
\]

with \(j \leq k \) and \(m(f', f'', \cdots, f^{(k-1)}) \) a monomial in \(f', f'', \cdots, f^{(k-1)} \). Let \(d \) be the degree of the monomial \(m(f', f'', \cdots, f^{(k-1)}) \). Then from Faà di Bruno’s formula we see that \(d \leq k \) for all monomials.

By Definition 2.3 of \(\hat{e}_n \) and using item 4 in Theorem 2.5 we have

\[
\|\hat{e}_n^{(j)}(id + f)m(f', f'', \cdots, f^{(k-1)})\|_{L^2} \\
\leq \|\hat{e}_n^{(j)}(id + f)\|_{L^\infty}\|m(f', f'', \cdots, f^{(k-1)})\|_{L^\infty} \\
\leq \lambda(n)|n|^k c_k^m \|f\|_{H^k}^k.
\]

For the last term in expression (2.14), we have

\[
\|\hat{e}_n'(id + f)f^{(k)}\|_{L^2} \leq \|\hat{e}_n'(id + f)\|_{L^\infty}\|f^{(k)}\|_{L^2} \\
\leq \lambda(n)|n|\|f\|_{H^k} \leq \lambda(n)|n|^k c_k^m \|f\|_{H^k}^m.
\]

By (2.15) and (2.16), we have

\[
\|\hat{e}_n(id + f)^{(k)}\|_{L^2}^2 \leq K\lambda(n)^2|n|^{2k}c_k^{2k} \|f\|_{H^k}^{2k},
\]

where \(K \) is the number of terms in expression (2.14), which depends on \(k \) but does not depend on \(n \). Therefore,

\[
\|\Phi(f)\|_{L^2(H, H^k)}^2 \leq \sum_{n \in \mathbb{Z}} (\lambda(n)^2 + K\lambda(n)^2|n|^{2k}c_k^{2k} \|f\|_{H^k}^{2k})
\]
Because $\lambda(n)$ is rapidly decreasing (Definition 2.3), $\sum_{n \in \mathbb{Z}} \lambda(n)^2|n|^{2k} < \infty$. Therefore, we have

$$\|\Phi(f)\|_{L^2(H_\lambda, H^k)}^2 < \infty$$

Now Φ can be viewed as a mapping $\Phi : C^k \to L^2(H_\lambda, H^k)$. Similarly, $\tilde{\Phi}$ can be viewed as a mapping $\tilde{\Phi} : \tilde{C}^k \to L^2(H_\lambda, H^k)$. To use DaPrato and Zabczyk’s theory [4], we will need the Lipschitz condition of Φ and $\tilde{\Phi}$. It turns out that they are locally Lipschitz. Let us recall the concept of local Lipschitzness: Let A and B be two normed linear spaces with norm $\| \cdot \|_A$ and $\| \cdot \|_B$ respectively. A mapping $f : A \to B$ is said to be locally Lipschitz if for $R > 0$, and $x, y \in A$ such that $\|x\|, \|y\| \leq R$, we have

$$\|f(x) - f(y)\|_B \leq C_R \|x - y\|_A,$$

where C_R is a constant which in general depends on N.

Proposition 2.8. For any $k = 0, 1, 2, \cdots$, $\Phi : C^k \to L^2(H_\lambda, H^k)$ is locally Lipschitz.

Proof. Let $R > 0$, and $f, g \in C^k$ be such that $\|f\|_{H^k}, \|g\|_{H^k} \leq R$. We have

$$\|\Phi(f) - \Phi(g)\|_{L^2(H_\lambda, H^k)}^2 = \sum_{n \in \mathbb{Z}} \|\Phi(f) - \Phi(g)\|^2_{H_\lambda} = \sum_{n \in \mathbb{Z}} \|\hat{e}_n(id + f) - \hat{e}_n(id + g)\|^2_{H_\lambda}$$

$$= \sum_{n \in \mathbb{Z}} \|\hat{e}_n(id + f) - \hat{e}_n(id + g)\|^2_{L^2} + \|\hat{e}_n(id + f)(k) - \hat{e}_n(id + g)(k)\|^2_{L^2},$$

where \hat{e}_n is defined in Definition 2.3 and we have suppressed the index λ here. $\hat{e}_n(id + f)$ and $\hat{e}_n(id + g)$ denote the function \hat{e}_n composed with $id + f$ and $id + g$ respectively. $\hat{e}_n(id + f)(k)$ and $\hat{e}_n(id + g)(k)$ are the kth derivatives of $\hat{e}_n(id + f)$ and $\hat{e}_n(id + g)$ respectively.

First, by the mean value theorem we have

$$\|\hat{e}_n(id + f) - \hat{e}_n(id + g)\|_{L^2} = \|\hat{e}'_n(id + \xi)(f - g)\|_{L^2} \leq \lambda(n)|\xi| \|f - g\|_{H^k}$$

(2.17)

We apply Faà di Bruno’s formula (2.18) to $\hat{e}_n(id + f)(k)$, and then expand it to a summation of several terms. We are going to deal with the terms with and without $f^{(k)}$, the highest derivative of f, separately. So we write the summation as

$$\hat{e}_n(id + f)(k) = \cdots \text{ terms without } f^{(k)} \cdots + \hat{e}_n(id + f)f^{(k)},$$

(2.19)

where each term without $f^{(k)}$ has the form

$$\hat{e}^{(j)}_n(id + f)m(f', f'', \cdots, f^{(k-1)})$$

with $j \leq k$ and $m(f', f'', \cdots, f^{(k-1)})$ a monomial in $f', f'', \cdots, f^{(k-1)}$. Let d be the degree of the monomial $m(f', f'', \cdots, f^{(k-1)})$. Then from Faà di Bruno’s formula we see that $d \leq k$ for all monomials. By replacing f with g in (2.19), we obtain

$$\hat{e}_n(id + g)(k) = \cdots \text{ terms without } g^{(k)} \cdots + \hat{e}_n(id + g)g^{(k)}$$

(2.20)
Next, we need a simple observation: suppose $A_1A_2A_3\ldots$ and $B_1B_2B_3\ldots$ are two monomials with the same number of factors. By telescoping, we can put $A_1A_2A_3\ldots - B_1B_2B_3\ldots$ into the form

$$(A_1 - B_1)A_2A_3\ldots + B_1(A_2 - B_2)A_3\ldots + B_1B_2(A_3 - B_3)\ldots + \cdots$$

Using this observation, we can put $\hat{e}_n(id + f)^{(k)} - \hat{e}_n(id + g)^{(k)}$ into the form

$$\hat{e}_n(id + f)^{(k)} - \hat{e}_n(id + g)^{(k)} = \ldots \text{terms without } f^{(k)} \text{ and } g^{(k)} \ldots$$ (2.21)

$$+ (\hat{e}'_n(id + f) - \hat{e}'_n(id + g)) f^{(k)} + \hat{e}'_n(id + g) \left(f^{(k)} - g^{(k)}\right)$$

In expression (2.21), there are two types of terms without $f^{(k)}$ and $g^{(k)}$. One type has the form

$$\left(\hat{e}'_n(id + f) - \hat{e}'_n(id + g)\right) m_A(f', \ldots, f^{(k-1)}, g', \ldots, g^{(k-1)}), \quad (2.22)$$

where $j \leq k$ and m_A is a monomial in $f', \ldots, f^{(k-1)}, g', \ldots, g^{(k-1)}$. We denote such a term by A. Another type has the form

$$\hat{e}'_n(id + g) \left(f^{(j)} - g^{(j)}\right) m_B(f', \ldots, f^{(k-1)}, g', \ldots, g^{(k-1)}) \quad (2.23)$$

where $i, j \leq k$ and m_B is a monomial in $f', \ldots, f^{(k-1)}, g', \ldots, g^{(k-1)}$. We denote such a term by B.

Now we want to find an L^2 bound of each term in (2.21). For the term A, by the mean value theorem we have

$$[\hat{e}'_n(id + f) - \hat{e}'_n(id + g)] = \hat{e}'_n(id + \xi)(f - g).$$

By Definition 2.3 of \hat{e}_n, and using Item 1 and 2 in Theorem 2.4 we have

$$\|A\|_{L^2} \leq \|\hat{e}'_n(id + \xi)\|_{L^\infty} \|m_A\|_{L^\infty} \|f - g\|_{L^2} \leq \lambda(n)|n|^{k+1} |c_k| \|f - g\|_{H^k}. \quad (2.24)$$

For the term B, we have

$$\|B\|_{L^2} \leq \|\hat{e}'_n(id + g)\|_{L^\infty} \|m_B\|_{L^\infty} \|f^{(j)} - g^{(j)}\|_{L^2} \leq \lambda(n)|n|^{k+1} |c_k| \|f - g\|_{H^k}. \quad (2.25)$$

For the last two terms in expression (2.21), using Item 1 and 2 in Theorem 2.5 again, we have

$$\|\hat{e}'_n(id + f) - \hat{e}'_n(id + g)f^{(k)}\|_{L^2} = \|\hat{e}'_n(id + \xi)(f - g)f^{(k)}\|_{L^2} \leq \|\hat{e}'_n(id + \xi)\|_{L^\infty} \|f - g\|_{L^\infty} \|f^{(k)}\|_{L^2} \leq \lambda(n)|n|^k |c_k| \|f - g\|_{H^k} \quad (2.26)$$

and

$$\|\hat{e}'_n(id + g)[f^{(k)} - g^{(k)}]\|_{L^2} \leq \lambda(n)|n|\|f - g\|_{H^k}. \quad (2.27)$$

By (2.24) - (2.27), we see that $\lambda(n)|n|^{k+1} |c_k| \|f - g\|_{H^k}$ is a common L^2 bound for all terms in (2.21). So,

$$\|\hat{e}_n(id + f)^{(k)} - \hat{e}_n(id + g)^{(k)}\|_{L^2} \leq K\lambda(n)|n|^{k+1} |c_k| \|f - g\|_{H^k} \quad (2.28)$$
where K is the number of terms in expression (2.21), which depends on k but does not depend on n.

Finally,

$$
\|\Phi(f) - \Phi(g)\|_{L^2(H_\lambda, H^k)}^2 \\
\leq \sum_{n \in \mathbb{Z}} \lambda(n)^2 |n|^2 \|f - g\|^2_{H^k} + K^2 \lambda(n)^2 |n|^{2k+2} c_k^2 R^{2k} \|f - g\|_{H^k}^2
$$

$$
\leq Kc_k^2 R^k \|f - g\|_{H^k} \left(\sum_{n \in \mathbb{Z}} \lambda(n)^2 |n|^{2k+2} \right)^{1/2}
$$

Let

$$
C_R = \left(\sum_{n \in \mathbb{Z}} \lambda(n)^2 |n|^2 + K^2 \lambda(n)^2 |n|^{2k+2} c_k^2 R^{2k} \right)^{1/2},
$$

Because $\lambda(n)$ is rapidly decreasing (Definition 2.9), $\sum_{n \in \mathbb{Z}} \lambda(n)^2 |n|^{2k} < \infty$. So C_R is a finite number that depends on R and k. Therefore,

$$
\|\Phi(f) - \Phi(g)\|_{L^2(H_\lambda, H^k)} \leq C_R \|f - g\|_{H^k}. \tag{2.29}
$$

By the above proposition, $\Phi : C^k \to L^2(H_\lambda, H^k)$ is locally Lipschitz. So Φ is uniformly continuous on C^k. But C^k is a dense subspace of H^k (see subsection 2.3). Therefore, we can extend the domain of Φ from C^k to H^k, and obtain a mapping $\Phi : H^k \to L^2(H_\lambda, H^k)$. Similarly, we can also extend the domain of $\bar{\Phi}$ from \tilde{C}^k to \tilde{H}^k, and obtain a mapping $\bar{\Phi} : \tilde{H}^k \to L^2(H_\lambda, H^k)$. After extension, Φ and $\bar{\Phi}$ are still locally Lipschitz.

Definition 2.9. Define $\tilde{\Phi} : \tilde{H}^k \to L^2(H_\lambda, H^k)$ to be the extension of $\bar{\Phi} : \tilde{C}^k \to \tilde{H}^k$ to \tilde{H}^k, and $\tilde{\Phi} : H^k \to L^2(H_\lambda, H^k)$ to be the extension of $\Phi : C^k \to L^2(H_\lambda, H^k)$ from C^k to H^k. By the remark in the previous paragraph, Φ and $\tilde{\Phi}$ are still locally Lipschitz.

3. The main result

In this section, we fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ equipped with a filtration $\mathcal{F}_t = \{\mathcal{F}_t, t \geq 0\}$ that is right continuous and such that each \mathcal{F}_t is complete with respect to \mathbb{P}.

Equation (1.6) is now interpreted as a Stratonovich stochastic differential equation on \tilde{H}^k for each $k = 0, 1, 2, \ldots$. Let us fix such a k.

3.1. Changing Equation (1.6) into the Itô form

To solve Equation (1.6), we first need to change it into the Itô form. Here we follow the treatment of S. Fang in [5]. In Definition 2.21, $W_t = \sum_{n \in \mathbb{Z}} B^{(n)}_t e^{(n)}_n$, where α is a rapidly decreasing function as described in Definition 2.9. Using the definition of $\tilde{\Phi}, W_t$, and $e^{(n)}_n$, we can write Equation (1.6) as

$$
\delta \tilde{X}_t = \alpha(0) + \sum_{n=1}^\infty \alpha(n) \cos(n \tilde{X}_t) \delta B^{(n)}_t + \sum_{m=1}^\infty \alpha(m) \sin(m \tilde{X}_t) \delta B^{(m)}_t. \tag{3.1}
$$
Using the stochastic contraction of \(dB^{(n)}_t \cdot dB^{(m)}_t = \delta_{mn} dt \), we have:

\[
\alpha(n) d \cos(n \tilde{X}_t) \cdot dB^{(n)}_t = -\alpha(n)^2 \sin(n \tilde{X}_t) \cos(n \tilde{X}_t) dt \\
\alpha(n) d \sin(m \tilde{X}_t) \cdot dB^{(m)}_t = \alpha(m)^2 \sin(m \tilde{X}_t) \cos(m \tilde{X}_t) dt
\]

So the stochastic contraction of the right hand side of (3.1) is zero. Therefore Equation (3.1) can be written in the following Itô form:

\[
d\tilde{X}_t = \alpha(0) + \sum_{n=1}^{\infty} \alpha(n) \cos(n \tilde{X}_t) dB^{(n)}_t + \sum_{m=1}^{\infty} \alpha(m) \sin(m \tilde{X}_t) dB^{(m)}_t \tag{3.2}
\]

Using the definition of \(W_t \) and \(\tilde{\Phi} \) again, Equation (3.2) becomes

\[
d\tilde{X}_t = \tilde{\Phi}(\tilde{X}_t) dW_t \tag{3.3}
\]

Therefore, Equation (3.3) is equivalent to the following Itô stochastic differential equation

\[
d\tilde{X}_t = \tilde{\Phi}(\tilde{X}_t) dW_t, \quad \tilde{X}_0 = 0 \tag{3.4}
\]

This equation is considered in the affine space \(\tilde{H}^k \).

If we write \(\tilde{X}_t = id + X_t \) with \(X_t \) a process with values in the Sobolev space \(H^k \) and use the definition of \(\Phi \) (see subsection 2.4), Equation (3.4) is equivalent to the following equation

\[
dX_t = \Phi(X_t) dW_t, \quad X_0 = 0 \tag{3.5}
\]

This equation is considered in the Sobolev space \(H^k \).

3.2. Truncated stochastic differential equation

By Proposition (2.3) the operator \(\Phi \) is locally Lipschitz. To use G. DaPrato and J. Zabczyk’s theory [4], we need to “truncate” the operator \(\Phi \): Let \(R > 0 \). Let \(\Phi_R : H^k \rightarrow L^2(H_\alpha, H^k) \) be defined by

\[
\Phi_R(x) = \begin{cases}
\Phi(x), & \|x\|_{H^k} \leq R \\
\Phi(Rx/\|x\|_{H^k}), & \|x\|_{H^k} > R
\end{cases} \tag{3.6}
\]

Then \(\Phi_R \) is globally Lipschitz. Let us consider the following “truncated” stochastic differential equation

\[
dX_t = \Phi_R(X_t) dW_t, \quad X_0 = 0 \tag{3.7}
\]

in the Sobolev space \(H^k \). The following definition is in accordance with G. DaPrato and J. Zabczyk’s treatments (p.182 in [4]).

Definition 3.1. Let \(T > 0 \). An \(\mathcal{F}_t \)-adapted \(H^k \)-valued process \(X_t \) with continuous sample paths is said to be a mild solution to Equation (3.7) up to time \(T \) if

\[
\int_0^T \|X_s\|_{H^k}^2 ds < \infty, \quad \mathbb{P}\text{-a.s.}
\]

and for all \(t \in [0, T] \), we have

\[
X_t = X_0 + \int_0^t \Phi_R(X_s) dW_s, \quad \mathbb{P}\text{-a.s.}
\]

For Equation (3.7), a strong solution is the same as a mild solution. The solution \(X_t \) is said to be unique up to time \(T \) if for any other solution \(Y_t \), the two processes
X_t and Y_t are equivalent up to time T, that is, the stopped processes X_{t\wedge T} and Y_{t\wedge T} are equivalent.

Remark 3.2. In the above definition, we require a solution to have continuous sample paths.

Proposition 3.3. For each $T > 0$, there is a unique solution $X^{(T)}$ to Equation (3.7) up to time T.

Proof. The proof is a simple application of Theorem 7.4, p.186 from [4]. We need to check the conditions to use Theorem 7.4 from [4]. By definition of Φ_R, we see that Φ_R satisfies the following growth condition:

$$\|\Phi_R(x)\|_{L^2(H_n, H_k)}^2 \leq C(1 + \|x\|_{H_k}^2), \quad x \in H_k$$

for some constant C. All other conditions to use Theorem 7.4 from [4] are easily verified. Therefore, we have the conclusion.

Let us choose a sequence \{T_n\}_{n=1}^{\infty} such that $T_n \uparrow \infty$, and let each $X^{(T_n)}$ be the unique solution to Equation (3.7) up to time T_n. By the uniqueness of the solution, and by the continuity of sample paths, for $1 \leq i < j$, the sample paths of $X^{(T_i)}$ coincide with the sample paths of $X^{(T_j)}$ up to time T_i almost surely. To be precise, we have, for almost all $\omega \in \Omega$,

$$X^{(T_i)}(t, \omega) = X^{(T_j)}(t, \omega), \quad \text{for all } t \in [0, T_i]$$

Therefore, we can extend the sample paths to obtain a process X^R: For almost all $\omega \in \Omega$, let

$$X^R(t, \omega) = \lim_{n \to \infty} X^{(T_n)}(t, \omega) \quad \text{for all } t \in [0, \infty)$$

Then the process X^R is a unique solution with continuous sample paths to Equation (3.7) up to time T for all $T > 0$.

Remark 3.4. The above construction of the process X^R is independent of the choice of the sequence \{T_n\}_{n=1}^{\infty}. Let \{S_n\}_{n=1}^{\infty} be another sequence such that $S_n \uparrow \infty$. Let Y^R be the process constructed as above but using the sequence \{S_n\}_{n=1}^{\infty}. Then X^R and Y^R are equivalent up to T for all $T > 0$. Therefore, they are equivalent.

Definition 3.5. For every $R > 0$, we define X^R to be the H^k-valued process with continuous sample paths as constructed above. Define

$$\tau_R = \inf\{t : \|X^R(t)\|_{H^k} \geq R\} \quad (3.8)$$

3.3. Solutions up to stopping times

Let us consider Equation (3.5) in the Sobolev space H^k. The following definition is in accordance with E. Hsu’s treatments in [11].

Definition 3.6. Let τ be an \mathcal{F}_τ-stopping time. An \mathcal{F}_τ-adapted process X_t with continuous sample paths is said to be a solution to Equation (3.5) up to time τ if for all $t \geq 0$

$$X_{t\wedge \tau} = X_0 + \int_0^{t\wedge \tau} \Phi(X_s)dW_s$$
The solution X_t is said to be unique up to τ if for any other solution Y_t, the two processes X_t and Y_t are equivalent up to τ, that is, the stopped processes $X_{t\wedge\tau}$ and $Y_{t\wedge\tau}$ are equivalent.

Remark 3.7. We can similarly define an \mathcal{H}^k-valued process being the unique solution to Equation (3.5) up to a stopping time τ. Clearly, we have the following: If X_t is the solution to Equation (3.5) up to a stopping time τ, then the \mathcal{H}^k-valued process $\widetilde{X}_t = id + X_t$ is the solution to Equation (3.5) up to time τ and vice versa.

Remark 3.8. If X_t is a solution to Equation (3.5) up to τ, then it is also a solution up to σ for any \mathcal{F}_s-stopping time σ such that $\sigma \leq \tau$ a.s.

Proposition 3.9. Let $R > 0$. Let X^R and τ_R be defined as in Definition (3.5). Then X^R is the unique solution to Equation (3.5) up to τ_R.

Proof. Because X^R is the unique solution to Equation (3.7) up to T for all $T > 0$, we have

$$X^R_t = \int_0^t \Phi_R(X^R_s)dW_s$$

for all $t \geq 0$. By the definition of Φ_R, we have $\Phi_R(X^R_s) = \Phi(X^R_s)$ for $s \leq \tau_R$. So,

$$X^R_{t\wedge\tau_R} = \int_0^{t\wedge\tau_R} \Phi_R(X^R_s)dW_s = \int_0^{t\wedge\tau_R} \Phi(X^R_s)dW_s$$

Therefore, X^R is a solution to Equation (3.5) up to τ_R.

Suppose Y_t is another solution to Equation (3.5) up to τ_R. Then Y_t is also a solution to Equation (3.7) up to τ_R. But X^R_t is the unique solution to Equation (3.7) up to T for all $T > 0$. Therefore, Y_t and X^R_t are equivalent up to τ_R. \square

Let us choose a sequence $\{R_n\}_{n=1}^{\infty}$ such that $R_n \uparrow \infty$, and let X^{R_n} and τ_{R_n} be defined as in Definition (3.5). For $1 \leq i < j$, we have $\Phi_{R_i}(x) = \Phi_{R_j}(x)$ for $\|x\|_{H^k} \leq R_i$. Thus, X^{R_j} is also a solution to Equation (3.7) up to τ_R. Therefore, by the uniqueness of solution and by the continuity of sample paths of solution, the sample paths of X^{R_j} coincide with the sample paths of X^{R_i} almost surely. To be precise, we have, for almost all $\omega \in \Omega$,

$$X^{R_i}(t, \omega) = X^{R_j}(t, \omega), \quad \text{for all } t \in [0, \tau_{R_j}(\omega)]$$

Consequently, $\{\tau_{R_n}\}_{n=1}^{\infty}$ is an increasing sequence of stopping times. Let

$$\tau_{\infty} = \lim_{n \to \infty} \tau_{R_n} \quad (3.9)$$

Now we can extend the sample paths of X^{R_n} to obtain a process X^{∞}: For almost all $\omega \in \Omega$, let

$$X^{\infty}(t, \omega) = \lim_{n \to \infty} X^{R_n}(t, \omega) \quad \text{for all } 0 \leq t < \tau_\infty(\omega)$$

Then the process X^{∞} is a unique solution with continuous sample paths to Equation (3.5) up to time τ_R for all $R > 0$. Also, the stopping time τ_R defined in Definition (3.5) is realized by the process X^{∞}:

$$\tau_R = \inf\{t : \|X^{\infty}(t)\|_{H^k} \geq R\}$$
Remark 3.10. The above constructions of the process X^∞ and the stopping time τ_∞ are independent of the choice of the sequence $\{R_n\}_{n=1}^\infty$: Let $\{S_n\}_{n=1}^\infty$ be another sequence such that $S_n \uparrow \infty$. Let σ_∞ be the stopping time and Y^∞ be the process constructed as above but using the sequence $\{S_n\}_{n=1}^\infty$. First, we can combine the two sequences $\{R_n\}_{n=1}^\infty$ and $\{S_n\}_{n=1}^\infty$ to form a new sequence $\{K_n\}_{n=1}^\infty$ such that $K_n \uparrow \infty$. Let γ_∞ be the stopping time constructed as above but using the sequence $\{K_n\}_{n=1}^\infty$. Then $\tau_\infty = \sigma_\infty = \gamma_\infty$. Also, X^∞ and Y^∞ are equivalent up to τ_{R_n} and τ_{S_n} for all $n = 1, 2, \cdots$. Therefore, they are equivalent up to τ_∞.

Definition 3.11. We define X^∞ to be the H^k-valued process and τ_∞ to be the stopping time as constructed above. We call τ_∞ the explosion time of the process X^∞. We also define the \tilde{H}^k-valued process \tilde{X}^∞ to be $\tilde{X}^\infty = id + X^\infty$.

We can slightly extend Definition (3.10) and make the following definition:

Definition 3.12. Let τ be an \mathcal{F}_τ-stopping time. An \mathcal{F}_τ-adapted process X_t with continuous sample paths is said to be a solution to Equation (3.15) up to time τ if there is an increasing sequence of \mathcal{F}_τ-stopping time $\{\tau_n\}_{n=1}^\infty$ such that $\tau_n \uparrow \tau$ and X_t is a solution to Equation (3.15) up to time τ_n in the sense of Definition (3.11) for all $n = 1, 2, \cdots$. The solution X_t is said to be unique up to τ if it is unique up to τ_n for all $n = 1, 2, \cdots$.

We have proved the following proposition:

Proposition 3.13. Let k be a non-negative integer. The process X^∞ as defined in Definition (3.11) is the unique solution with continuous sample paths to Equation (3.11) up to the explosion time τ_∞.

3.4. The main result. In this subsection, we will prove that the explosion time τ_∞ defined in Definition (3.11) is infinity almost surely. We will also prove that the process \tilde{X}^∞ defined in Definition (3.11) lives in the group Diff(S^1). The key idea to both proofs is the following proposition:

Proposition 3.14. Let \tilde{X}_t be an \mathcal{F}_t-adapted \tilde{H}^k-valued process with continuous sample paths and τ an \mathcal{F}_τ-stopping time. If \tilde{X}_t is a solution to
\[
d\tilde{X}_t = \tilde{\Phi}(\tilde{X}_t)dW_t, \quad \tilde{X}_0 = id
\]
up to τ, then $\tilde{X}_t \circ \xi$ is a solution to
\[
d\tilde{X}_t = \tilde{\Phi}(\tilde{X}_t)dW_t, \quad \tilde{X}_0 = \xi
\]
up to τ, where ξ is a bounded \tilde{H}^k-valued random variable and "\circ" is the composition of two functions.

Proof. By assumption
\[
\tilde{X}_{t\wedge \tau} = id + \int_0^{t\wedge \tau} \tilde{\Phi}(\tilde{X}_s)dW_s
\]
By definition of the operator $\tilde{\Phi}$ (see subsection 2.4), this can be written as
\[
\tilde{X}_{t\wedge \tau} = id + \int_0^{t\wedge \tau} dW_s \circ \tilde{X}_s
\]
So
\[\tilde{X}_{t \land \tau} \circ \tilde{\xi} = \tilde{\xi} + \int_0^{t \land \tau} dW_s \circ \tilde{X}_s \circ \tilde{\xi} \]
that is
\[\tilde{X}_{t \land \tau} \circ \tilde{\xi} = \tilde{\xi} + \int_0^{t \land \tau} \tilde{\Phi}(\tilde{X}_s \circ \tilde{\xi}) dW_s \]
Therefore, \(\tilde{X} \circ \tilde{\xi} \) is a solution to
\[d\tilde{X}_t = \tilde{\Phi}(\tilde{X}_t) dW_t, \quad \tilde{X}_0 = \tilde{\xi} \]
up to \(\tau \).

\[\square \]

Remark 3.15. (Concatenating procedure.) Let \(R > 0 \). Let \(\tilde{\xi} = \tilde{X}_\infty(\tau_R) \). Then \(\tilde{\xi} \) is an \(\tilde{H}^k \)-valued bounded random variable. Let \(W'_t = W_{t+t_R} - W_{t_R} \). By the strong Markov property of the Brownian motion \(W_t \), we have \(W'_t = W_t \) in distribution for all \(t \geq 0 \). Therefore, similar to the construction of \(X_\infty \) and \(\tilde{X}_\infty \), we can construct \(Y_\infty \) and \(\tilde{Y}_\infty \) with \(\tilde{Y}_\infty \) a solution to the following equation
\[d\tilde{X}_t = \tilde{\Phi}(\tilde{X}_t) dW'_t, \quad \tilde{X}_0 = \tilde{\xi} \]
up to stopping time
\[\tau'_R = \inf\{ t : ||Y_\infty(t)||_{H^k} \geq R \} \]
Using the strong Markov property of the Brownian motion \(W_t \) again, we see that \(\tau_R = \tau'_R \) in distribution, and they are independent with each other. By Proposition (3.14), \(Y_\infty \circ \tilde{\xi} \) is the solution up to time \(\tau'_R \) to the following equation
\[d\tilde{X}_t = \tilde{\Phi}(\tilde{X}_t) dW'_t, \quad \tilde{X}_0 = \tilde{\xi} \]
Because \(\tilde{\xi} = \tilde{X}_\infty(\tau_R) \), we can concatenate the two processes \(X_\infty \) and \(\tilde{Y}_\infty \) to form a new process \(\tilde{Z}_\infty \) as follows:
\[\tilde{Z}_t = \begin{cases} \tilde{X}_t, & \text{for } t \leq \tau_R \\ \tilde{Y}_t \circ \tilde{\xi}, & \text{for } t > \tau_R \end{cases} \quad (3.10) \]
By the choice of \(W'_t \), we see that the process \(\tilde{Z}_\infty \) is a solution to Equation (3.4) up to time \(\tau_R + \tau'_R \). By the uniqueness of solution, \(\tilde{Z}_\infty \) is equivalent to \(\tilde{X}_\infty \) up to time \(\tau_R + \tau'_R \).

We can carry out this “concatenating” procedure over and over again. Thus, for any \(n \in \mathbb{N} \), we can construct a process \(\tilde{Z}_\infty \) which is a solution to Equation (3.4) and is equivalent to \(\tilde{X}_\infty \) up to time \(\tau_R + \tau'_R + \cdots + \tau_R^{(n)} \) with \(\tau_R, \tau'_R, \cdots \) being identical in distribution and mutually independent with each other.

Proposition 3.16. Let \(\tau_\infty \) be the explosion time of the process \(X_\infty \) defined as in Definition (3.11). Then \(\tau_\infty = \infty \) almost surely.

Proof. We can carry out the above “concatenating” procedure as many times as we want. Thus, for any \(n \in \mathbb{N} \), we can construct a process \(\tilde{Z}_\infty \) which is a solution to Equation (3.4) and is equivalent to \(\tilde{X}_\infty \) up to time \(\tau_R + \tau'_R + \cdots + \tau_R^{(n)} \).
By the triangle inequality in H^k, we have
\[\tau_R + \tau'_R + \cdots + \tau^{(n)}_R \leq \tau_{Rn} \leq \tau_\infty, \]
On the other hand, because τ_R, τ'_R, \cdots have the same distributions and are mutually independent with each other,
\[\lim_{n \to \infty} \tau_R + \tau'_R + \cdots + \tau^{(n)}_R = \infty \ a.s. \]
Therefore, the explosion time $\tau_\infty = \infty$ almost surely.

Proposition 3.17. Let X^∞ be the H^k-valued process defined in Definition (3.11). Then X^∞ actually lives in the space $\text{diff}(S^1)$.

Proof. The construction of X^∞ in subsection 3.3 is for a fixed k. But the method is valid for all $k = 0, 1, 2, \cdots$. Let us denote by $X^{k, \infty}$ the H^k-valued process as constructed in subsection 3.3. Because Equation (3.5) takes the same form in each space H^k, $k = 0, 1, 2, \cdots$, also, $H^{k+1} \subseteq H^k$, we see that the H^{k+1}-valued process $X^{k+1, \infty}$ is also a solution to Equation (3.5) in the space H^k. By uniqueness of the solution, $X^{k+1, \infty}$ is equivalent to $X^{k, \infty}$. Therefore, we can also say the solution $X^{k, \infty}$ to Equation (3.5) in the space H^k is also the solution to Equation (3.5) in the space H^{k+1}. By induction, the solution $X^{k, \infty}$ actually lives in H^{k+i} for all $i = 0, 1, 2, \cdots$. Therefore it lives in $\bigcap_{i=0}^{\infty} H^{k+i} = \text{diff}(S^1)$.

By the above proposition, the \tilde{H}^k-valued process \tilde{X}^∞ lives in the affine space $\text{diff}(S^1)$. In the next proposition we will prove that \tilde{X}^∞ actually lives in the group $\text{Diff}(S^1)$. The key to the proof is Proposition (2.2) together with the “concatenating” procedure (remark 3.13).

Proposition 3.18. The process \tilde{X}^∞ defined in Definition (3.11) lives in the group $\text{Diff}(S^1)$.

Proof. Let us fix a $k \geq 2$. Suppose $\tilde{f} \in \tilde{H}^k$. By item (2) in Theorem 2.5, $\|f'\|_{L^\infty} \leq c_k \|f\|_{H^k}$. Thus, by controlling the H^k-norm of f we can control the L^∞-norm of f'. When $\|f'\|_{L^\infty} < 1$, we have $f' > -1$, or equivalently, $\tilde{f}' > 0$. If we also know that \tilde{f} is C^∞, then by Proposition (2.2), we can conclude that \tilde{f} is actually a diffeomorphism of S^1.

The process X^∞ has values in the R-ball
\[B(0, R) = \{ x \in H^k : \|x\|_{H^k} \leq R \} \]
up to time τ_R. Let us choose R so that $f \in B(0, R)$ implies $\|f'\|_{L^\infty} < 1$. Then up to τ_R, the first derivative $\|X^\infty(t, \omega)(1)\|_{L^\infty} < 1$ almost surely. So up to τ_R, $X^\infty(t, \omega)(1) > -1$, or equivalently $\tilde{X}^\infty(t, \omega)(1) > 0$ almost surely. Also by Proposition (3.17), \tilde{X}^∞ lives in the affine space $\text{diff}(S^1)$, which means: every element $\tilde{X}^\infty(t, \omega)$ is C^∞. Therefore, by Proposition (2.2), \tilde{X}^∞ lives in the group $\text{Diff}(S^1)$ up to time τ_R.

In the “concatenating” procedure (remark 3.13), the process \tilde{Y}^∞ lives in the group $\text{Diff}(S^1)$ up to time τ'_R for the same reason. Because $\xi = \tilde{X}^\infty(\tau_R)$, it is
now a \(\text{Diff}(S^1) \)-valued random variable. So we have \(\tilde{Y}^\infty \circ \tilde{\xi} \) lives in \(\text{Diff}(S^1) \) up to time \(\tau_R' \). By concatenation, the process \(\tilde{Z}^\infty \) lives in \(\text{Diff}(S^1) \) up to time \(\tau_R + \tau_R' \). Because \(\tilde{X}^\infty \) is equivalent to \(\tilde{Z}^\infty \) up to time \(\tau_R + \tau_R' \), we have the process \(\tilde{X}^\infty \) lives in \(\text{Diff}(S^1) \) up to time \(\tau_R + \tau_R' \). We can carry out this “concatenating” procedure over and over again. Therefore, the process \(\tilde{X}^\infty \) lives in \(\text{Diff}(S^1) \) up to the explosion time \(\tau_\infty \) which is infinity by Proposition (3.16).

\[\square \]

Putting together Propositions (3.13), (3.16) and (3.18), we have proved the main result of the paper:

Theorem 3.19. There is a unique \(\tilde{H}^k \)-valued solution with continuous sample paths to Equation (3.4) for all \(k = 0, 1, 2, \ldots \). Furthermore, the solution is non-explosive and lives in the group \(\text{Diff}(S^1) \).

References

1. R. Adams, *Sobolev spaces*, Academic Press, 1975.
2. H. Airault, and P. Malliavin, *Regularized Brownian motion on the Siegel disk of infinite dimension*, Ukr. Mat. Zh., **52** (2000), 1158–1165.
3. H. Airault, and P. Malliavin, *Quasi-invariance of Brownian measures on the group of circle homeomorphisms and infinite-dimensional Riemannian geometry*, Journal of Functional Analysis, **241** (2006), 99–142.
4. G. DaPrato and J. Zabczyk, *Stochastic Equations in Infinite Dimensions*, Cambridge University Press, Encyclopedia of mathematics and its applications, 1992.
5. S. Fang, *Canonical Brownian motion on the diffeomorphism group of the circle*, Journal of Functional Analysis, **196** (2002), 162–179.
6. M. Gordina, *Holomorphic functions and the heat kernel measure on an infinite-dimensional complex orthogonal group*, Potential Anal., **12** (2000), 325–357.
7. M. Gordina, *Hilbert-Schmidt groups as infinite-dimensional Lie groups and their Riemannian geometry*, Journal of Functional Analysis, **227** (2005), 245–272.
8. M. Gordina, *Heat kernel analysis on infinite dimensional groups*, Infinite dimensional harmonic analysis III, World Scientific Publishing Co., (2005), 71–81.
9. W. Johnson, *The curious history of Faà di Bruno’s formula*, American Mathematical Monthly, **109** (2002), 217–234.
10. M. Gordina, and M. Wu, *Diffeomorphisms of the circle and Brownian motions on an infinite dimensional symplectic group*, Commun. Stoch. Anal., **2** 2008, 71–95.
11. E. Hsu, *Stochastic Analysis on Manifolds*, American Mathematical Society, 2002.
12. H. Kunita, *Stochastic differential equations and stochastic flows of diffeomorphisms*, Lecture Notes in Mathematics (vol. 1097), Springer, 1984.
13. P. Malliavin, *The canonic diffusion above the diffeomorphism group of the circle*, C. R. Acad. Sci. Paris, v329, **4** 1999, 325–329.
14. J. Milnor, *Remarks on infinite-dimensional Lie groups*, Relativity, groups and topology, **II** (Les Houches, 1983), 1007–1057, North-Holland, Amsterdam, 1984.
15. G. Segal, *Unitary representations of Some Infinite Dimensional Groups*, Commun. Math. Phys., **80** (1981), 301–341.
16. M. Wu, *The lower bound of the Ricci curvature of the group Sp(∞)*, preprint.

E-mail address: mwu@math.uconn.edu