Abstracts

mains largely incurable. While immunotherapies have been highly effective in some types of cancer, the disappointing results from clinical trials for GBM immunotherapy represent continued challenges. GBM is the most aggressive and resistant human cancer because of glioma cells escaping from immune surveillance by reprogramming the tumor microenvironment (TME). However, understanding the mechanisms of immune evasion by GBM remains elusive. Based on unbiased approaches, we have found that Chitinase-3-like-1 (CHI3L1), a well known as an immunosuppressive cytokine, is highly expressed in GBM, which is regulated by the CHI3L1-P13K/Akt/mTOR signaling in a positive feedback loop. Gain- and loss-function studies reveal that CHI3L1 plays a predominant role in regulating an immunosuppressive microenvironment by reprogramming tumor-associated macrophages (TAMs). Using the liquid chromatography-mass spectrometry and orthogonal structure-based screening, we found that G-MSC-binding protein (Gal3BP) and its binding partner, Galectin-3 (Gal3), can interact competitively with the same binding motif on CHI3L1, leading to selective migration of M2-like versus M1-like bone marrow-derived macrophages (BMDMs) and resident microglia (MG). Mechanistically, the CHI3L1-Gal3 protein complex governs a transcriptional program of NFκB/CEBPβ to control the protumor phenotype of BMDMs, leading to inhibition of T cell infiltration and activation in the GBM TME. However, Gal3BP can reverse CHI3L1-Gal3 induced signaling pathway activation and subsequent protumor phenotype in TAMs. Based on protein binding motifs, a newly developed Gal3BP mimetic peptide can attenuate immune suppression and tumor progression in the syngeneic GBM mouse models, including decreasing M2-like TAMs and increasing M1-like TAMs and T cell infiltration. Together, these results shed light on the role of CHI3L1 protein complex in immune evasion by glioblastoma and as a potential immunotherapeutic target for this devastating disease.

OTME-21. THE ROLE OF GLIOBLASTOMA ASSOCIATED MESENCHYMAL STEM CELLS IN IMMUNE SUPPRESSION
Sanam Sahjirah Dharma, Tara Barone, Sheila Figel, Meaghan Birkermeier, Yali Zhang, Robert Fenstermaker, Michael Ciesielski; Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA

Glioblastoma (GBM) is an aggressive brain cancer, with an overall survival of 14.6 months. The tumor microenvironment in GBM plays major roles in immunosuppression and modulation of the response to therapies. GBM patients with higher levels of mesenchymal stem cells like cells (G-MSC) show poor overall survival as compared to patients with lower G-MSC levels. Our lab found that levels of G-MSC correlate with CD4+ T cells in human and murine models of GBM, and with immunosuppressive molecules like PTGS2, the gene for cyclooxygenase 2. To investigate the mechanism by which G-MSCs promote immunosuppression, we isolated G-MSCs from an orthotopic mouse model of GBM and subjected them to RNAseq analysis to obtain an unbiased picture of transcriptomic changes occurring upon activation. We identified changes in multiple immune modulating pathways including antigen presentation, leukocyte migration and activation, and immune checkpoints. Our findings indicate that G-MSCs represent a key immune modulating factor in the microenvironment. Further dissection of the role of these cells in immune modulation will aid us in understanding the biology of the brain tumor microenvironment and identifying potential combination therapies.

OTME-22. BIOINFORMATICAL EVALUATION OF ECM MOLECULES AND ANGIogenic ASSOCIATE GENES IN DIFFUSE MEDULLARY GLIOMA (DMG): MAPPING THE TUMOUR MICROENVIRONMENT
Nikita Kozhushko, Malwina Jedrysk, Helen Fillmore; University of Portsmouth, Portsmouth, UK

Paediatric Diffuse Intrinsic Pontine Glioma (DIPG) is a devastating cancer of an extremely aggressive nature, located in the pontine area of the brain. DIPG primarily affects children, with the average age of diagnosis between 6 and 7 years. Unfortunately, the outlook and overall survival remains bleak. We have previously shown that gliomas can be invasive and not restricted to and drive DIPG growth; there remains several gaps in understanding the DIPG microenvironment landscape. The focus of this study is to begin to examine mRNA expression of genes associated with blood vessel development, angiogenesis, and extracellular matrix molecules (ECM) in normal brain and DIPG and to generate publicly available ginging using bioinformatic approaches. In-depth bioinformatics from GSE26576 dataset included differential expression and gene ontology (GO) with KEGG pathway analyses using Gene Expression Omnibus (GEO) and DAVID, which have revealed a number of differentially upregulated genes that may affect DIPG angiogenesis processes (p<0.05). 38 of such genes from 9 different GO terms were then included in a protein-to-protein interaction network that revealed a surprising connection between MMP16, CSPG4 and COL1A1. Subsequently, using R2 genomic visualisation platform from publicly available single cell RNAseq data we showcased the difference in their individual expression based on the molecular subtypes of DIPG histone 3 (H3) mutation (K27M, wild type and two additional subtypes). Interestingly, during normal paediatric development such genes showed consistent expression, suggesting their potential complications in DIPG angiogenesis. Overall, this bioinformatic approach has led to the identification of a set of potential new in vivo and in vitro targets. This study will add to the documentation of the host/tumour microenvironment landscape and our plan is to continue to explore this map to spatial and temporal expression of these genes.

OTME-23. SINGLE-CELL TRANSCRIPTOMIC AND EPIDEMIC IMMUNE LANDSCAPE OF ISOCITRATE DEHYDROGENASE STRATIFIED HUMAN GLIOMAS
Pravesh Gupta1*, Minghao Dang2,11, Dapeng Hao2,11, Krishna Bojava1, Tuan M. Tran1, Huma Shehwana4, Carlos Kamiya-Matsuoka4, Jianzhuo Li1, Alessandra Audia1, Cynthia Kassab2, Martina Ott3, Joy Gummi5, Sanazarljan Alenazy6, Alicia Goldman6, Sahil A. Seth4, Atul Maheshwarai1, Veerakumar Balasubramaniyan4, Brian Vailant7, John F. de Groot9, Frederick E. Lang10, Antonio lavarone10, Nicholas E. NAVi,13, Amy B. Heimberger11, Linghua Wang12,12, Krishna P. Bhat2
1Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; 2Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; 3Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; 4Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; 5Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; 6Department of Neurology and Neuroscience, Baylor College of Medicine, Houston, TX, USA; 7Department of Surgery and Biomedical Sciences, The University of Texas at Austin, TX, USA; 8Institute for Cancer Genetics, Department of Pathology and Cell Biology, Department of Neurology, Herbert Irving Comprehensive Cancer Center, Columbia University Mead’s Center, New York, NY, USA; 9Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; 10Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; 11Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; 12Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; 13Department of Neuro-Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA

The brain tumor immune microenvironment (TIME) continuously evolves during glioma progression, but a comprehensive characterization of the glioma-immune cell repertoire beyond a priori cell states is uncharted. In this study, we performed single-cell RNA-sequencing (scRNA-seq) and single-cell-- Assay for Transposase-Accessible Chromatin using sequencing (sc-ATAC-seq) on ~100,000 tumor-associated immune cells from seventeen isocitrateg dehydrogenase (IDH) mutation classified primary and recurrent human gliomas and non-glioma brains (NGBs). Our analyses revealed sixty-two transcriptionally distinct myeloid and lymphoid cell states within and across glioma subtypes and we noted increased disease severity concomitant with invading monocyte-derived cells and lymphocytes. Specifically, certain microglial and monocyte-derived subpopulations were associated with antigen presentation gene modules, akin to cross-presenting dendritic cells (DCs). We identified cytotoxic T cells with poly-functional cytolytic states mostly in recurrent IDH-wt gliomas. Furthermore, ligand-receptor interaction analyses showed a preponderance of antigen presentation and phagocytosis over the checkpoint axis in IDH-wt compared to IDH-mut gliomas. Additionally, our sc-ATAC-seq analyses revealed differences in regulatory networks in NGBs, IDH-mut and IDH-wt glioma associated immune cells. In particular, we noted abundant usage of inflammatory transcription factors (TFs) as exemplified by Nuclear factor kappa B and Activator Protein-1 family in IDH-wt microglia when compared with microglia from IDH-mut and NGBs. Unique features such as amplification of 11- Zinc Finger Protein accessibility were restricted to monocyte derived cells and were not observed in microglia. Finally, sc-ATAC-seq profiles of CD8+ exhausted T cells from IDH-wt showed strong enhancer accessibility on Cytotoxic T-lymphocyte-associated protein 4, Layinglin and Hepatitis A Virus Cellular Receptor 2 but no enrichment on PDCD1 (gene encoding Programmed cell death protein 1) was seen. In summary, our study provides unprecedented granular detail of transcriptionally defined glioma- specific immune contexture that can be exploited for immunotherapy applications.

This study in K.B. laboratory was supported by the generous philanthropic contributions to the University of Texas (UT) MD Anderson Cancer Center (MDACC) Moon Shots Program™, Marine Rose Foundation, NIH grants: R21 CA222992 and R01CA225963. This study was partly supported by the UT MDACC startup research fund to L.W. and CPRIT Single Core grant RP180684 to N. E. N.