Weil-Petersson volume of moduli spaces, Mirzakhani’s recursion and matrix models

B. Eynard1, N. Orantin2

Service de Physique Théorique de Saclay,
F-91191 Gif-sur-Yvette Cedex, France.

Abstract
We prove that Mirzakhani’s recursions for the volumes of moduli space of Riemann surfaces are a special case of random matrix recursion relations, and therefore we confirm again that Kontsevich’s integral is a generating function for those volumes. As an application, we propose a formula for the Weil-Petersson volume $\text{Vol}(\mathcal{M}_{g,0})$.

1 Introduction

Let

$$V_{g,n}(L_1, \ldots, L_n) = \text{Vol}(\mathcal{M}_{g,n})$$

$$= \sum_{d_0 + \ldots + d_n = 3g - 3 + n} \left(\prod_{i=0}^{n} \frac{1}{d_i!} \right) \langle \kappa_{1}^{d_0} \tau_{d_1} \ldots \tau_{d_n} \rangle_{g,n} L_1^{2d_1} \ldots L_n^{2d_n}$$

$$(1 - 1)$$

denote the volume of the moduli space of curves of genus g, with n geodesic boundaries of lengths L_1, \ldots, L_n, measured with the Weil-Petersson metrics. Using Teichmuller pants decomposition and hyperbolic geometry, M. Mirzakhani [4] has found a recursion relation among the $V_{g,n}$’s, which allows to compute all of them in a recursive manner. It was then observed [5] that this recursion relation is equivalent to Virasoro constraints.

1 E-mail: bertrand.eynard@cea.fr
2 E-mail: orantin@cea.fr
In fact, Mirzakhani’s recursion relation takes a form\[3\] which is amazingly similar to the recursion relation obeyed by matrix models correlation functions\([1, 2]\) and which were indeed initially derived from loop equations\([1]\), i.e. Virasoro constraints.

Here we make this observation more precise, and we prove that after Laplace transform, Mirzakhani’s recursion is \textbf{identical} to the recursion of\([2]\) for the Kontsevich integral with times (Kontsevich’s integral depends only on odd times):

\[
Z(t_k) = \int dM e^{-N \text{Tr} \left[\frac{M^3}{3} + \Lambda M^2 \right]} , \quad t_{2k+3} = \frac{1}{N} \text{Tr} \Lambda^{-(2k+3)} = \frac{(2\pi)^{2k} (-1)^k}{(2k+1)!} + 2\delta_{k,0}.
\]

(1-2)

2 Laplace transform

Define the Laplace transforms of the \(V_{g,n}\)’s:

\[
W^g_n(z_1, \ldots, z_n) = 2^{-m_{g,n}} \int_0^\infty dL_1 \ldots dL_n e^{-\sum_i z_i L_i} \prod_{i=1}^n L_i \ V_{g,n}(L_1, \ldots, L_n)
\]

\[
= 2^{-m_{g,n}} \sum_{d_0 + \ldots + d_n = 3g - 3 + n} \left(\prod_{i=0}^n \frac{1}{d_i!} \right) \left(\kappa_{d_0, d_1, \ldots, d_n} \right)_{g,n} \frac{(2d_1 + 1)!}{z_1^{2d_1 + 2}} \ldots \frac{(2d_n + 1)!}{z_n^{2d_n + 2}}
\]

(2 - 1)

where (see\[4\]) \(m_{g,n} = \delta_{g,1} \delta_{n,1}\).

Since the \(V_{g,n}\)’s are even polynomials of the \(L_i\)’s, of degree \(2d_{g,n}\) where

\[
d_{g,n} = \dim \mathcal{M}_{g,n} = 3g - 3 + n
\]

(2-2)

the \(W^g_n\)’s are even polynomials of the \(1/z_i\)’s of degree \(2d_{g,n} + 2\). Let us also define:

\[
W^0_1 = 0
\]

(2-3)

\[
W^0_2(z_1, z_2) = \frac{1}{(z_1 - z_2)^2}
\]

(2-4)

and

\[
dE_u(z) = \frac{1}{2} \left(\frac{1}{z - u} - \frac{1}{z + u} \right)
\]

(2-5)

We prove the following theorems:

Theorem 2.1 For any \(2g - 2 + n + 1 > 0\), the \(W^g_{n+1}\) satisfy the recursion relation

\[
W^g_{n+1}(z, K) = \text{Res}_{u \to 0} \pi dE_u(z) \left[\sum_{h=0}^{g} \sum_{J \subset K} W^{h}_{1+|J|}(u, J) W^{g-h}_{1+n-|J|}(-u, K/J) + W^{g-1}_{n+2}(u, -u, K) \right]
\]

(2-6)
where the RHS includes all possible W_k, including $W_1^0 = 0$ and W_2^0, and where

$$K = \{z_1, \ldots, z_n\}$$

is a set of n variables.

proof:

This relation is merely the Laplace transform of Mirzakhani’s recursion. See the appendix for a detailed proof. □

Corollary 2.1 W_n^g are the invariants defined in [2] for the curve:

$$\begin{cases} x(z) = z^2 \\ -2y(z) = \frac{\sin(2\pi z)}{2\pi} = z - 2\pi^2/3z^3 + 2\pi^4/15z^5 - 4\pi^6/315z^7 + 2\pi^8/2835z^9 + \ldots \end{cases}$$

which is a special case of Kontsevich’s curve:

$$Z(t_k) = \int dM e^{-N\text{Tr}[\frac{M^3}{3} + \Lambda M^2]} , \quad t_k = \frac{1}{N} \text{Tr} \Lambda^{-k} = \frac{(2\pi)^k - \sin (\pi k/2)}{(k-2)!}$$

For instance we have:

$$\ln Z(t_k) = \sum_{g=0}^{\infty} N^{2-2g} W_0^g$$

(W_0^g is often noted $-F_g$ in the literature).

proof:

Eq. 2-6 is precisely the definition of the invariants of [2] for the curve

$$\begin{cases} x(z) = z^2 \\ -2y(z) = \frac{\sin(2\pi z)}{2\pi} = z - 2\pi^2/3z^3 + 2\pi^4/15z^5 - 4\pi^6/315z^7 + 2\pi^8/2835z^9 + \ldots \end{cases}$$

And it was proved in [2] that this curve is a special case of Kontsevich’s curve:

$$\begin{cases} x(z) = z^2 \\ y(z) = z - \frac{1}{2} \sum_{j=0}^{\infty} t_{j+2} z^j \end{cases}$$

which corresponds to the computation of the topological expansion of the Kontsevich integral:

$$Z(t_k) = \int dM e^{-N\text{Tr}[\frac{M^3}{3} + \Lambda M^2]} , \quad t_k = \frac{1}{N} \text{Tr} \Lambda^{-k}$$

$$\ln Z(t_k) = -\sum_{g=0}^{\infty} N^{2-2g} F_g$$

□
Theorem 2.2 For any \(2g - 2 + n > 0\) we have:

\[
(2g - 2 + n) W_n^g(K) = \frac{1}{4\pi^2} \operatorname{Res}_{u \to 0} \left(u \cos (2\pi u) - \frac{1}{2\pi} \sin (2\pi u) \right) W_{n+1}^g(u, K) \tag{2-15}
\]

or in inverse Laplace transform:

\[
(2g - 2 + n) V_{g,n}(K) = \frac{1}{2i\pi} V_{g,n+1}'(K, 2i\pi) \tag{2-16}
\]

where ' means the derivative with respect to the \(n + 1\)th variable.

proof:

This is a mere application of theorem 4.7. in [2], as well as its Laplace transform. □

In particular with \(n = 0\) we get:

\[
V_{g,0} = \operatorname{Vol}(\mathcal{M}_{g,0}) = \frac{1}{2g - 2} \frac{V_{g,1}'(2i\pi)}{2i\pi} \tag{2-17}
\]

for instance for \(g = 2\):

\[
V_{2,0} = \frac{43\pi^6}{2160} \tag{2-18}
\]

2.1 Examples

From [4] we get:

\[
W_3^0 = \frac{1}{z_1^2 z_2^2 z_3^2} \tag{2-19}
\]

\[
W_1^1 = \frac{1}{8z_1^4} + \frac{\pi^2}{12z_1^2} \tag{2-20}
\]

\[
W_4^0 = \frac{1}{z_1^2 z_2 z_3 z_4^2} \left(2\pi^2 + 3 \left(\frac{1}{z_1^2} + \frac{1}{z_2^2} + \frac{1}{z_3^2} + \frac{1}{z_4^2} \right) \right) \tag{2-21}
\]

\[
W_2^1 = \frac{1}{z_1^2 z_2^2} \left(\frac{\pi^4}{4} + \frac{\pi^2}{2} \left(\frac{1}{z_1^2} + \frac{1}{z_2^2} \right) + \frac{5}{8z_1^4} + \frac{5}{8z_2^4} + \frac{3}{8z_1^2 z_2^2} \right) \tag{2-22}
\]

\[
W_5^0 = \frac{1}{z_1^2 z_2 z_3 z_4 z_5^2} \left(10\pi^4 + 18\pi^2 \sum_i \frac{1}{z_i^2} + 15 \sum_i \frac{1}{z_i^4} + 18 \left(\sum_{i<j} \frac{1}{z_i^2 z_j^2} \right) \right) \tag{2-23}
\]

\[
W_1^2 = \frac{1}{192z_1^4} \left(29\pi^8 + 338\pi^6 + \frac{139\pi^4}{z_1^2} + \frac{203\pi^2}{z_1^4} + \frac{315}{2z_1^6} \right) \tag{2-24}
\]
Those functions are the same as those which appear in section 10.4.1 of \([2]\), for the Kontsevich curve with times:

\[
t_3 - 2 = 1, t_5 = -\frac{2\pi^2}{3}, t_7 = \frac{2\pi^4}{15}, t_9 = -\frac{4\pi^6}{315}, t_{11} = \frac{2\pi^8}{2835}, \ldots
\]

(2-25)
i.e. the rational curve:

\[
E_K = \{ \begin{align*}
 x(z) &= z^2 \\
 -2y(z) &= \sin\left(\frac{2\pi z}{3}\right) = z - 2\frac{\pi^2}{3} z^3 + 2\frac{\pi^4}{15} z^5 - 4\frac{\pi^6}{315} z^7 + 2\frac{\pi^8}{2835} z^9 + \ldots
\end{align*}\}
\]

(2-26)

It is to be noted that those \(t_k\)'s are closely related to the \(\beta_k\)'s of \([5, 3]\).

3 Conclusion

We have shown that, after Laplace transform, Mirzakhani’s recursions are nothing but the solution of loop equations (i.e. Virasoro constraints) for the Kontsevich integral with some given set of times. It would be interesting to understand what the invariants of \([2]\) compute for an arbitrary spectral curve (for instance for other Kontsevich times).

Acknowledgements

This work is partly supported by the Enigma European network MRT-CT-2004-5652, by the ANR project Géométrie et intégrabilité en physique mathématique ANR-05-BLAN-0029-01, by the Enrage European network MRTN-CT-2004-005616, by the European Science foundation through the Misgam program, by the French and Japanese governments through PAI Sakura, by the Quebec government with the FQRNT.

Appendix A Laplace transform of the equations

Let us write:

\[
L_K = \{L_1, \ldots, L_n\}
\]

(1-1)

\[
H^g_n(x, y, L_K) = xy V_{g-1,n+2}(x, y, L_K) + \sum_{h=0}^{g} \sum_{J \in K} xV_{h,1+|J|}(x, L_J) yV_{g-h,n+1-|J|}(y, L_{K/J})
\]

(1-2)

where all the \(V_{h,k}\) terms in the RHS are such that \(2h + k - 2 > 0\) (i.e. stable curves only), as well as their laplace transform:

\[
\tilde{H}^g_n(z, z', L_K) := \int_0^\infty dx \int_0^\infty dy e^{-zx} e^{-z'y} H^g_n(x, y, L_K).
\]

(1-3)
Mizakhani’s recursion reads:

\[
2L V_{g,n+1}(L, L_K) = \int_0^L dt \int_0^\infty dx \int_0^\infty dy K(x+y,t) H_n^g(x,y,L_K) + \sum_{m=1}^\infty \int_0^L dt \int_0^\infty dx (K(x,t+L_m) + K(x,t-L_m)) x V_{g,n-1}(x, \hat{L}_m)
\]

where

\[
K(x,t) = \frac{1}{1+e^{\frac{x+t}{2}}} + \frac{1}{1+e^{\frac{L_L}{2}}}
\]

and \(\hat{L}_m = L_K / \{L_m \} \).

Let \(H_n^g \) be the Laplace transform of \(H_n^g \) with respect to \(x \) and \(y \).

The Laplace transform of the first term in eq[1-4] is:

\[
\sum_{\epsilon=\pm 1} \int_0^\infty dt \int_0^\infty dL e^{-zL} \int_0^L dx \int_0^\infty dy \frac{1}{1+e^{\frac{L_L}{2}}} H_n^g(x,y,L_K)
\]

\[
= \sum_{\epsilon=\pm 1} \int_0^\infty dt \int_0^\infty dL e^{-zL} \int_0^\infty dx \int_0^\infty dy \frac{1}{1+e^{\frac{L_L}{2}}} H_n^g(x,y,L_K)
\]

\[
= \sum_{\epsilon=\pm 1} \frac{1}{z} \int_0^\infty dt \int_0^\infty dL e^{-zL} \int_0^\infty dx \int_0^\infty dy \frac{1}{1+e^{\frac{L_L}{2}}} H_n^g(x,y,L_K)
\]

\[
= -\sum_{j=1}^\infty \frac{1}{z} \int_0^\infty dt \int_0^\infty dL e^{-zL} \int_0^\infty dx \int_0^\infty dy \frac{(-1)^j e^{-\frac{t}{2} (x+y+t)}}{1+e^{\frac{L_L}{2}}} H_n^g(x,y,L_K)
\]

\[
+ \sum_{j=0}^\infty \frac{1}{z} \int_0^\infty dx \int_0^\infty dy \int_0^\infty dt e^{-zL} (-1)^j e^{\frac{1}{2} (x+y-t)} H_n^g(x,y,L_K)
\]

\[
- \sum_{j=1}^\infty \frac{1}{z} \int_0^\infty dx \int_0^\infty dy \int_0^\infty dt e^{-zL} (-1)^j e^{\frac{1}{2} (x+y+t)} H_n^g(x,y,L_K)
\]

\[
= -\sum_{j=1}^\infty \frac{1}{z} \int_0^\infty dx \int_0^\infty dy \frac{(-1)^j e^{-\frac{t}{2} (x+y)}}{z+\frac{1}{2}} H_n^g(x,y,L_K)
\]

\[
+ \sum_{j=0}^\infty \frac{1}{z} \int_0^\infty dx \int_0^\infty dy \frac{(-1)^j e^{-z(x+y)}}{z+\frac{1}{2}} H_n^g(x,y,L_K)
\]

\[
- \sum_{j=1}^\infty \frac{1}{z} \int_0^\infty dx \int_0^\infty dy \frac{(-1)^j e^{-\frac{z}{2} (x+y)}}{z-\frac{1}{2}} (1-e^{-\frac{z}{2} (x+y)}) e^{-\frac{1}{2} (x+y)} H_n^g(x,y,L_K)
\]

\[
= -2 \sum_{j=1}^\infty \frac{(-1)^j}{z^2 - (\frac{j}{2})^2} \tilde{H}_n^g(j\frac{j}{2}, L_K) + \frac{1}{z^2} \tilde{H}_n^g(z, z, L_K)
\]

\[
+ 2 \sum_{j=1}^\infty \frac{(-1)^j}{z^2 - (\frac{j}{2})^2} \tilde{H}_n^g(z, z, L_K)
\]

\[
= -2 \sum_{j=1}^\infty \frac{(-1)^j}{z^2 - (\frac{j}{2})^2} \tilde{H}_n^g(j\frac{j}{2}, L_K) + \frac{2\pi}{z \sin 2\pi z} \tilde{H}_n^g(z, z, L_K)
\]
the Laplace transform of the second term in eq.1-4 is:

\[
\begin{align*}
&= \left(\text{Res} + \sum_{j=1}^{\infty} \text{Res} \right) \frac{du}{u - z} \frac{2\pi}{u - z \sin(2\pi u)} \hat{H}_n^q(u, u, L_K) \\
&= \text{Res} \frac{du}{z - u} \frac{2\pi}{u \sin(2\pi u)} \hat{H}_n^q(u, u, L_K) \\
&= \text{Res} \frac{2\pi du}{u \sin(2\pi u)} dE_u(z) \hat{H}_n^q(u, u, L_K) \\
&= (1-6)
\end{align*}
\]

Using the notation

\[
R(x, t, L_m) := (K(x, t + L_m) + K(x, t - L_m)),
\]

the Laplace transform of the second term in eq.1-4 is:

\[
\begin{align*}
&= \int_0^\infty dL_m e^{-z m L_m} \int_0^\infty dL e^{-z L} \int_0^L dt \int_0^\infty dx \int_0^\infty dx R(x, t, L_m) x V_{g,n-1}(x, \hat{L}_m) \\
&= \frac{1}{z} \int_0^\infty dx \int_0^\infty dL_m e^{-z m L_m} \int_0^\infty dt e^{-zt} R(x, t, L_m) x V_{g,n-1}(x, \hat{L}_m) \\
&= \frac{1}{z} \int_0^\infty dx \int_0^\infty dL_m e^{-z m L_m} \int_0^\infty dt e^{-zt} (t-L_m) K(x, t) x V_{g,n-1}(x, \hat{L}_m) \\
&= \frac{1}{z} \int_0^\infty dx \int_0^\infty dL_m e^{-z m L_m} \int_0^\infty dt e^{-zt} (tz-L_m) K(x, t) x V_{g,n-1}(x, \hat{L}_m) \\
&= \frac{1}{z} \int_0^\infty dx \int_0^\infty dt e^{-zt} \int_0^L dL_m e^{-(z-(z-1)L_m)} K(x, t) x V_{g,n-1}(x, \hat{L}_m) \\
&= \frac{1}{z} \int_0^\infty dx \int_0^\infty dt \frac{e^{-zt} - e^{-z m t}}{z_m - z} K(x, t) x V_{g,n-1}(x, \hat{L}_m) \\
&= \frac{1}{z} \int_0^\infty dx \int_0^\infty dt \frac{e^{-zt} + e^{-z m t}}{z_m + z} K(x, t) x V_{g,n-1}(x, \hat{L}_m) \\
&= \frac{1}{z} \int_0^\infty dx \int_0^\infty dt \left(\frac{e^{-zt} - e^{-z m t}}{z_m - z} + \frac{e^{-zt} + e^{-z m t}}{z_m + z} \right) K(x, t) x V_{g,n-1}(x, \hat{L}_m) \\
&= \frac{1}{z} \int_0^\infty dx \int_0^\infty dt \frac{2 z m e^{-zt} - 2 z e^{-z m t}}{z_m - z} \frac{1}{1 + e^{-\frac{zt}{2}}} x V_{g,n-1}(x, \hat{L}_m) \\
&= \frac{1}{z} \int_0^\infty dx \int_0^\infty dt \frac{2 z m e^{-zt} - 2 z e^{-z m t}}{z_m - z} \frac{1}{1 + e^{-\frac{zt}{2}}} x V_{g,n-1}(x, \hat{L}_m) \\
&= \sum_{j=1}^{\infty} (-1)^j \int_0^\infty dx \int_0^\infty dt \frac{2 z m e^{-zt} - 2 z e^{-z m t}}{z_m - z} e^{-\frac{1}{2}(x+t)} x V_{g,n-1}(x, \hat{L}_m)
\end{align*}
\]
\begin{align*}
- \sum_{j=1}^{\infty} \frac{(-1)^j}{z} & \int_{0}^{\infty} dx \int_{0}^{x} dt \frac{2z_{m}e^{-zt} - 2ze^{-zm}t}{(z_{m}^2 - z^2)} e^{-\frac{t}{2}(x-t)} xV_{g,n-1}(x, \hat{L}_m) \\
+ \sum_{j=0}^{\infty} \frac{(-1)^j}{z} & \int_{0}^{\infty} dx \int_{x}^{\infty} dt \frac{2z_{m}e^{-zt} - 2ze^{-zm}t}{(z_{m}^2 - z^2)} e^{-\frac{t}{2}(x-t)} xV_{g,n-1}(x, \hat{L}_m) \\
= \sum_{j=1}^{\infty} \frac{(-1)^j}{z} & \int_{0}^{\infty} dx \frac{2 \gamma - \gamma^2}{(z_{m}^2 - z^2)} e^{-\frac{\gamma}{2}x} xV_{g,n-1}(x, \hat{L}_m) \\
- \sum_{j=1}^{\infty} \frac{(-1)^j}{z} & \int_{0}^{\infty} dx \int_{x}^{\infty} dt \frac{2 \gamma e^{-\frac{\gamma}{2}x} - 2ze^{-z_{m}\gamma}}{z_{m}^2 - z^2} xV_{g,n-1}(x, \hat{L}_m) \\
+ \sum_{j=0}^{\infty} \frac{(-1)^j}{z} & \int_{0}^{\infty} dx \int_{x}^{\infty} dt \frac{2 \gamma e^{-\frac{\gamma}{2}x} - 2ze^{-z_{m}\gamma}}{z_{m}^2 - z^2} xV_{g,n-1}(x, \hat{L}_m) \\
= -2 \sum_{j=1}^{\infty} \frac{(-1)^j}{z} \frac{\gamma + z_{m} + \frac{j}{2}}{(z_{m} + z)(z + \frac{j}{2})} W_{g,n-1}(\frac{j}{2}, \hat{L}_m) \\
-2 \sum_{j=1}^{\infty} \frac{(-1)^j}{z} \frac{\gamma + z_{m} - \frac{j}{2}}{(z_{m} + z)(z - \frac{j}{2})} W_{g,n-1}(\frac{j}{2}, \hat{L}_m) \\
+2 \sum_{j=1}^{\infty} \frac{(-1)^j}{z} \frac{z_{m}}{(z - \frac{j}{2})(z_{m}^2 - z^2)} W_{g,n-1}(z, \hat{L}_m) \\
-2 \sum_{j=1}^{\infty} \frac{(-1)^j}{z} \frac{1}{(z_{m} - \frac{j}{2})(z_{m}^2 - z^2)} W_{g,n-1}(z_{m}, \hat{L}_m) \\
+2 \sum_{j=1}^{\infty} \frac{(-1)^j}{z} \frac{1}{(z + \frac{j}{2})(z_{m}^2 - z^2)} W_{g,n-1}(z, \hat{L}_m) \\
-2 \sum_{j=0}^{\infty} \frac{(-1)^j}{z} \frac{1}{(z_{m} + \frac{j}{2})(z_{m}^2 - z^2)} W_{g,n-1}(z_{m}, \hat{L}_m) \\
= -4 \sum_{u \to \pm j} \frac{\text{Res}}{u} \frac{\pi du}{\sin(2\pi u)} \frac{1}{z} \frac{z + z_{m} + u}{(z_{m} + z)(z + u)(z_{m} + u)} W_{g,n-1}(u, \hat{L}_m) \\
+4 \frac{z_{m} \pi}{z \sin(2\pi z)(z_{m}^2 - z^2)} W_{g,n-1}(z, \hat{L}_m) \\
-4 \frac{\pi du}{\sin(2\pi z_{m})(z_{m}^2 - z^2)} W_{g,n-1}(z_{m}, \hat{L}_m) \\
= -4 \sum_{u \to \pm j} \frac{\text{Res}}{u} \frac{\pi du}{\sin(2\pi u)} \frac{z_{m}}{(z^2 - u^2)(z_{m}^2 - u^2)} W_{g,n-1}(u, \hat{L}_m) \\
-4 \frac{\pi du}{\sin(2\pi u)} \frac{z_{m}}{(z^2 - u^2)(z_{m}^2 - u^2)} W_{g,n-1}(u, \hat{L}_m) \\
= 4 \frac{\pi du}{\sin(2\pi u)} \frac{z_{m}}{(z^2 - u^2)(z_{m}^2 - u^2)} W_{g,n-1}(u, \hat{L}_m) \\
= 2 \frac{\text{Res}}{u \to 0} \frac{\pi du}{2u \sin(2\pi u)} \left(\frac{1}{z - u} - \frac{1}{z + u} \right) \left(\frac{1}{z_{m} - u} + \frac{1}{z_{m} + u} \right) W_{g,n-1}(u, \hat{L}_m) \end{align*}
\[= 4 \text{Res}_{u \to 0} \frac{\pi du}{2u \sin 2\pi u} \left(\frac{1}{z - u} - \frac{1}{z + u} \right) \frac{1}{z_m - u} W_{g,n-1}(u, \hat{L}_m) \]

(1 - 8)

After taking the derivative with respect to \(z_m \) that gives the expected term:

\[\text{Res}_{u \to 0} \frac{2\pi du}{u \sin 2\pi u} dE_u(z) \left(2 W_2^0(u, z_m) W_{g,n-1}(u, \hat{L}_m) \right) \]

(1-9)

and therefore the Laplace transform of Eq. (1-4) gives the relation Eq. (2-6).

References

[1] B. Eynard, “Topological expansion for the 1-hermitian matrix model correlation functions”, JHEP/024A/0904, hep-th/0407261.

[2] B.Eynard, N.Orantin, “Invariants of algebraic curves and topological expansion”, math-ph/0702045.

[3] K. Liu, H. Xu, “A simple proof of Mirzakhani’s recursion formula of Weil-Petersson volumes”, math.AG/0705.2086.

[4] M. Mirzakhani, “Simple geodesics and Weil-Petersson volumes of moduli spaces of bordered Riemann surfaces”, Invent. Math. 167, 179-222 (2007).

[5] M. Mulase, B. Safnuk, “Mirzakhani’s recursion relations, Virasoro constraints and the KdV hierarchy”, math.AG/0101147.