Article

A Satellite-Based Land Use Regression Model of Ambient NO\textsubscript{2} with High Spatial Resolution in a Chinese City

Lina Zhang 1, Changyuan Yang 1, Qingyang Xiao 2, Guannan Geng 2, Jing Cai 1, Renjie Chen 1, Xia Meng 1,3,* and Haidong Kan 1 1

1 Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, School of Public Health, Fudan University, Shanghai 200032, China; 1911020024@fudan.edu.cn (L.Z.); bslk1980@163.com (C.Y.); jingcai@fudan.edu.cn (J.C.); chenrenjie@fudan.edu.cn (R.C.); kanh@fudan.edu.cn (H.K.)

2 State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; qingyang_xiao18@163.com (Q.X.); guannangeng@tsinghua.edu.cn (G.G.)

3 Shanghai Key Laboratory of Meteorology and Health, Shanghai Typhoon Institute/CMA, Shanghai 200030, China

* Correspondence: mengxia@fudan.edu.cn

Abstract: Previous studies have reported that intra-urban variability of NO\textsubscript{2} concentrations is even higher than inter-urban variability. In recent years, an increasing number of studies have developed satellite-derived land use regression (LUR) models to predict ground-level NO\textsubscript{2} concentrations, though only a few have been conducted at a city scale. In this study, we developed a satellite-derived LUR model to predict seasonal NO\textsubscript{2} concentrations at a city scale by including satellite-retrieved NO\textsubscript{2} tropospheric column density, population density, traffic indicators, and NO\textsubscript{2} emission data. The R^2 of model fitting and 10-fold cross validation were 0.70 and 0.61 for the satellite-derived seasonal LUR model, respectively. The satellite-based LUR model captured seasonal patterns and fine gradients of NO\textsubscript{2} variations at a 100 m \times 100 m resolution and demonstrated that NO\textsubscript{2} pollution in winter is 1.46 times higher than that in summer. NO\textsubscript{2} concentrations declined significantly with increasing distance from roads and with increasing distance from the city center. In Suzhou, 84\% of the total population lived in areas with NO\textsubscript{2} concentrations exceeding the annual-mean standard at 40 μg/m3 in 2014. This study demonstrated that satellite-retrieved data could help increase the accuracy and temporal resolution of the traditional LUR models at a city scale. This application could support exposure assessment at a high resolution for future epidemiological studies and policy development pertaining to air quality control.

Keywords: satellite-based; NO\textsubscript{2}; land use regression; exposure assessment

1. Introduction

Nitrogen dioxide (NO\textsubscript{2}) is not only a primary pollutant mainly from fossil fuel emissions but also a secondary pollutant arising in large part from a photochemical conversion combining NO with O\textsubscript{3} \cite{1,2}. It is a common indicator for traffic-related air pollution and proven to be associated with a myriad of adverse health effects. NO\textsubscript{2} has been positively linked to lung cancer mortality in California by the American Cancer Society Cancer Prevention II Study \cite{3}. In China, short-term exposure to NO\textsubscript{2} was significantly associated with total natural causes mortality and cardiorespiratory disease mortality across 272 cities \cite{4}. Even at or below the current European Air quality limit values, the associations between NO\textsubscript{2} exposure and adverse effects have been found for both short-term and long-term exposure in Europe \cite{5}. In previous epidemiological studies, exposure to NO\textsubscript{2} was mostly evaluated using ground-based fixed monitoring data, interpolation methods, or land use regression (LUR) models \cite{6,7}.
The concentrations of NO\textsubscript{2} may decline at a distance of several hundred meters from emission sources [8], and the spatial distributions of NO\textsubscript{2} differ significantly between, and especially within, cities [9,10]. In Canada, variations in NO\textsubscript{2} concentrations within a city further showed a stronger association with cause-specific mortality than that between cities [11]. Thus, it is an essential issue to evaluate intra-urban NO\textsubscript{2} concentrations with a high spatial resolution for epidemiological studies. The LUR models are one of the most common assessment methods used to capture spatial variability of NO\textsubscript{2} with a high spatial resolution, and have been applied in NO\textsubscript{2}-related cohort studies in Europe and the United States [9,12–15]. Land use regression models also have been developed for predicting NO\textsubscript{2} concentrations in Chinese cities, including Shanghai, Tianjin, and Wuhan [16–18]. Traditional LUR models highly depend on land use data and have lower temporal resolution, but these do not satisfy the flexible requirements of exposure assessment in epidemiological studies.

Satellite data have been proven to be one of the key predictors for estimating ambient NO\textsubscript{2} concentrations with a high temporal resolution [19–21]. Specifically, a study in Western Europe indicated that the adjusted R2 of LUR models with satellite data was increased by 0.02–0.06 compared to the models without satellite data with the R2 of 0.48–0.56 [22]. Other studies showed that the satellite-based LUR models could expand the temporal resolution of traditional LUR models for predicting air pollutants’ concentrations, from annual level to monthly or seasonal scales [19,23–25]. NO\textsubscript{2} column density from the Ozone Monitoring Instrument (OMI) aboard satellite Aura is the most commonly used dataset for establishing satellite-based LUR or machine learning models [26–28]. The satellite-based LUR models not only expanded the temporal resolution of traditional ones [19], but also simultaneously helped improve model performance [22,29,30]. However, in China, most of these studies were conducted at regional or national scales [21,31]; whether satellite data can improve the resolution and model performance of LUR models at a city scale, has not been fully evaluated. In addition, the row anomaly of OMI led to a large amount of missing data at the daily level [32], hence OMI NO\textsubscript{2} column density data might be inappropriate to be directly used to assess NO\textsubscript{2} exposure levels within a city at a daily scale, and some studies resampled the data at a seasonal scale [33].

Therefore, in this study, we developed a satellite-derived LUR model, in a Chinese metropolis, to capture intra-urban NO\textsubscript{2} temporal variations at a seasonal level with a high spatial resolution. This model with a high spatial resolution is expected to capture the finer gradients of NO\textsubscript{2} variations within a city at a higher temporal resolution than that of the traditional LUR model, which could provide more accurate exposure assessment for epidemiological studies.

2. Materials and Methods

2.1. Study Area

Suzhou is a city located in southeastern Jiangsu Province of East China (Figure 1). It includes five urban districts (Gusu, Huqiu, Wuzhong, Xiangcheng, and Wujiang) and four satellite cities (Changshu, Taicang, Kunshan, and Zhangjiagang). Suzhou is one of five urban locations in the China Kadoorie Biobank (CKB) cohort that have focused on common chronic diseases since 2004 [34]. We developed a satellite-derived LUR model in Suzhou as a case study to establish the methodology for the assessment of exposure to NO\textsubscript{2} of the CKB cohort study to support the next phase of air pollution-related epidemiological studies. Suzhou covered 8488.42 km2 in 2018 and about 42.5% of the total area was covered by waterbody. The total registered population in Suzhou reached 7.04 million by the end of 2018 (http://tjj.suzhou.gov.cn/sztjj/tjnj/2019/zk/indexce.htm). Suzhou is located in a subtropical monsoon climate zone with four distinct seasons.
2.2. Data

The database included data on NO$_2$ monitoring, NO$_2$ tropospheric column density from the OMI instrument, population density, road network, land use parameters, and NO$_x$ emissions.

2.2.1. Monitoring Data

Daily NO$_2$ monitoring data of 20 fixed air quality stations were obtained from the National Environmental Monitoring Network, and the locations of the stations are shown in Figure 1. In accordance with the Chinese Ambient Air Quality Standard (GB3095-2012), at least 20 hourly measurements were included to calculate the daily NO$_2$ concentration; at least 27 daily values were needed to calculate monthly concentrations (25 daily values for February); at least 324 daily values were needed to calculate the annual concentration. Most of the fixed stations were located in areas with a relatively high population density to represent the averaged exposure levels for public health.

2.2.2. Satellite Data

The OMI instrument is on board the National Aeronautics and Space Administration (NASA) Aura satellite that was launched in 2004. It measures radiances across 270–500 nm of the ultraviolet and visible waveband. Global tropospheric vertical column NO$_2$ density data of OMI level 2 (OMNO$_2$) product, with a spatial resolution of 13 km × 24 km at nadir [35], are available online at a daily time step and were downloaded from NASA Goddard Earth Sciences Data and Information Services Center (https://earthdata.nasa.gov/). Cloud cover and a dynamic row anomaly problem of OMI were responsible for a significantly high rate of missing values of daily data. The “row anomaly” occurred due to the technical issues of the OMI, which has produced invalid data in the center-right part of each swath of observations since 2008 [32]. Within a city, the high missing rate...
might cause low availability of OMI NO$_2$ tropospheric column density data at a daily level. Therefore, seasonal resampling was done by averaging all daily OMI NO$_2$ tropospheric column density data falling inside a 40 km \times 40 km grid to fill the gap caused by missing data and smooth the noise [33]. The satellite data were then interpolated to the fixed monitoring stations using an inverse distance weighted (IDW) method.

2.2.3. Other Predictors
Land Use Parameters

Land use data (agricultural, forest, grassland, waterbody, urban and built up, and unused land) from 2014 were interpreted from the Landsat TM5 dataset (https://earthexplorer.usgs.gov/) with a 30 m spatial resolution (Figure 2). Specifically, agricultural land included dry land and paddy fields; forest land included dense forests, shrub forests, loose forests, and other forests; grassland included highly-covered grassland; waterbody included rivers, lakes, beaches, bottomlands, and reservoirs; urban and built up land included urban and rural settlements and other built-up land; unused land included bare rock and sand. In Suzhou, the major land use types were urban and built-up land, agricultural land, and waterbody; and agricultural land mainly consisted of paddy fields. To optimize the correlation between NO$_2$ measurements and land use predictors, different buffer distances were applied, from 100 m to 5000 m, at 100-m intervals, around the 20 fixed monitoring sites [10,17,36]. The areas of each land use type were then calculated within these buffer zones separately.

Figure 2. The spatial distribution of types of land use in this study in Suzhou in 2014.
Road Network

Lengths of major roads and distances to the nearest major road were calculated as indicators of traffic emissions. Types of roads included expressways, national roads, provincial roads, urban expressways, county roads, town roads, and other roads. Then, expressways, national roads, provincial roads, and urban expressways were merged as major roads. Within the buffers from 100 m to 5000 m (at 100 m intervals) around the 20 fixed monitoring sites, the lengths of major roads were then calculated \[6,17\]. Distance from monitoring sites to the nearest major road, inverse of the distance, and logarithmic transformation of the inverse distance were also calculated as indicators of traffic emissions \[6,10\].

Population Density

Population density data were obtained from the Oak Ridge National Laboratory (ORNL)’s LandScan 2014 global database at 30” × 30” resolution in raster format (http://www.ornl.gov/sci/landscan/), which were then interpolated to the NO\textsubscript{2} monitoring stations using the IDW method. The population data, with an ESRI binary raster format, is approximately at a 1 km × 1 km resolution and each grid represents an average population number within the grid at an annual level (https://landscan.ornl.gov/documentation). Figure 3 shows the spatial distribution of the population in Suzhou in 2014, suggesting that more people tended to live in the center of five urban districts and four satellite cities in Suzhou.

![Figure 3. The distribution of population and major roads in Suzhou.](image-url)
NO\textsubscript{x} Emissions

NO\textsubscript{x} emission inventory data were collected from the Multiresolution Emission Inventory of China (MEIC, http://www.meicmodel.org) at a spatial resolution of 1 km × 1 km. The industrial NO\textsubscript{2} emissions from power plants and non-power plants were computed separately within buffer zones of 1 km to 10 km, at 1-km intervals, around each monitoring site.

2.3. Model Development and Evaluation

A traditional LUR model was developed, as the first step, to select the most optimized predictors from all parameters with a linear regression model [6,10,20,36]. Since the OMI NO\textsubscript{2} tropospheric column density was aggregated at a seasonal level to fill the gap caused by the high missing rate of the satellite data [32], this model was developed at a seasonal level [37,38]. First, we set every potential variable a prior direction. Second, manual backward supervised regression was conducted based on NO\textsubscript{2} seasonal concentrations to select the most optimized predictor variables. Predictors were kept in the model if they satisfied the criteria proposed by previous studies [6,10,17]: (1) the variables improved the model R2 by at least 1%; (2) the effect directions of the variables were consistent with the prior directions; (3) the variables that were already in the model did not change their effect directions; (4) the variable would be excluded from the model if the \(p \) value was less than 0.1. This process continued until there were no more variables meeting the criteria. Variance inflation factors (VIFs) were calculated as an indicator of multicollinearity. Variables with VIF values greater than three were removed from the satellite-based LUR model and this step was repeated.

In the second step, a linear mixed effects model was developed (see Equation (1)) by involving random effects of OMI NO\textsubscript{2} tropospheric column density [23,37]. The advantage of employing this model was to include the variability of associations between NO\textsubscript{2} concentrations and OMI NO\textsubscript{2} tropospheric column density over time. Similar satellite-based models had been developed for predicting PM\textsubscript{2.5} concentrations in a national assessment [37] and PM\textsubscript{10} concentrations within a city in Shanghai [23]. In this model, the OMI NO\textsubscript{2} tropospheric column density had both random effect and fixed effect coefficients, which represented seasonal variability in the association between NO\textsubscript{2} measurements and OMI NO\textsubscript{2} tropospheric column density and the average effect of satellite measurements on the ground NO\textsubscript{2} measurements for the whole year, respectively [23,37]. The model structure can be summarized as:

\[
\text{NO}_{2,\text{st}} = (\beta_0 + \beta_0') + (\beta_1 + \beta_1') \text{OMI}_{\text{st}} + \beta_{1s}X_{1s} + \epsilon_{\text{st}}
\]

where \(\text{NO}_{2,\text{st}} \) indicates the mean observed NO\textsubscript{2} concentrations (µg/m3) at the fixed station \(s \) in season \(t \); OMI\textsubscript{st} is the only independent variable with both fixed and random effects, which represents OMI NO\textsubscript{2} tropospheric column density data at the fixed station \(s \) in season \(t \); \(\beta_0 \) and \(\beta_0' \) are the intercepts of the fixed and season-specific random effects for the model, respectively; \(\beta_1 \) and \(\beta_1' \) indicate the fixed and season-specific random slopes for OMI\textsubscript{st}, respectively; \(X_{1s} \) represents a series of predictors, which are selected by satisfying the criteria from the first step; and \(\beta_{1s} \) represents the fixed slope for predictor \(i \) at the fixed station \(s \); and \(\epsilon_{\text{st}} \) is the error term at the fixed station \(s \) in season \(t \).

In the third step, 10-fold cross validation (CV) was applied to evaluate the model performance [17,37]: 90% of the data were randomly selected for model development, which was used to predict NO\textsubscript{2} concentrations of the remaining 10% of the data; and this process was repeated 10 times. Root mean squared error (RMSE) was calculated as the standard deviation of the residuals. RMSE and R2 were used to evaluate the model’s performance by comparing measured and predicted NO\textsubscript{2} concentrations during model development and 10-fold CV, respectively. The relative prediction error (RPE, defined as RMSE divided by the mean NO\textsubscript{2} measurements) from 10-fold CV was then calculated to evaluate prediction accuracy.
In the fourth step, seasonal prediction maps of NO$_2$ concentrations in Suzhou were produced based on the satellite-derived LUR models, at a 100 m \times 100 m resolution at a seasonal timescale. In addition, we further calculated annual-mean and seasonal-mean population-weighted NO$_2$ concentrations in Suzhou [39] (see Equation (2)).

$$C_{\text{Pop}} = \sum \text{Pop}_i \times C_i / \sum \text{Pop}_i$$

(2)

where C_{Pop} indicates the annual-mean or seasonal-mean population-weighted NO$_2$ exposure concentrations in Suzhou; Pop_i represents the population density of grid i; and C_i indicates the estimated annual-mean or seasonal-mean NO$_2$ concentrations of grid i.

Figure 4 shows the workflow for the development of the satellite-derived LUR model in our study. Statistical analyses were performed with nlme packages (https://www.rdocumentation.org/packages/nlme/versions/3.1-151/topics/nlme) of R3.6.1.

Figure 4. Workflow for the development of the satellite-derived LUR model.
3. Results

3.1. Descriptive Statistics Analyses

In 2014, the annual-mean NO$_2$ was 46.23 µg/m3 in Suzhou, with the lowest concentration of 36.52 µg/m3 recorded in summer and the highest concentration of 53.22 µg/m3 in winter, as measured at fixed monitoring sites. Among all predictors, the Pearson’s correlation coefficient between seasonal OMI NO$_2$ tropospheric column density and seasonal NO$_2$ measurements was highest with the value of 0.65.

3.2. Model Development and Evaluation

After variable selection, as the results of the first step, the satellite-derived LUR model included four predictors: NO$_2$ tropospheric column density from OMI, population density, log transformed inverse of nearest distances to major roads (Log_distance), and NO$_2$ non-power plants emissions within a 10-km buffer zone (Table 1). The R^2 and RMSE of this model were 0.63 and 5.76 µg/m3, respectively. The R^2 and RMSE of the 10-fold CV were 0.59 and 6.09 µg/m3, respectively. The VIFs of the four variables were all less than 2, showing weak multicollinearity among them.

Table 1. The traditional land use regression (LUR) model for predicting NO$_2$ concentrations.

Variables	β	SE	p Value
Intercept	33.57	5.13	<0.001
NO$_2$ tropospheric column density	0.85	0.11	<0.001
Population density	0.00016	0.0001	0.043
Log_distance	2.92	1.38	0.038
Non-power emissions within 10 km buffer zone	0.0001	0.00003	0.002

The results of the second step, including the estimated coefficients of fixed effects of the four predictor variables, are shown in Table 2. All predictors were positively and significantly associated with measured NO$_2$ concentrations, with p values less than 0.05. The absolute contribution (IQR \times β), for each influencing predictor, was calculated as the regression coefficient (β) of fixed effects multiplied by the inter-quartile range (IQR) of the corresponding predictor. The results indicated that the non-power emissions within a 10-km buffer zone and OMI NO$_2$ tropospheric column density contributed most to NO$_2$ concentrations, because they had higher IQR \times β values (Table 2).

Table 2. The fixed effects of the satellite-derived LUR model for predicting NO$_2$ concentrations.

Variables	β	SE	p Value	IQR \times β
Intercept	39.617	7.348	<0.001	4.389
NO$_2$ tropospheric column density	0.618	0.293	0.039	4.389
Population density	0.00016	0.0001	0.029	1.976
Log_distance	3.240	1.272	0.013	1.546
Non-power emissions within 10-km buffer zone	0.0001	0.00003	<0.001	4.792

1 represents the regression coefficient (β) of fixed effects multiplied by the inter-quartile range (IQR) for each predictor at 20 monitoring sites.

The R^2 and RMSE of the seasonal satellite-derived LUR model were 0.70 and 5.24 µg/m3, respectively. The R^2 and RMSE of the 10-fold CV were 0.61 and 5.91 µg/m3, respectively, for the seasonal model (Figure 5). The RPE from 10-fold CV was 12.78%, which indicated a relatively high predicting accuracy at the seasonal level. The linear mixed effects model performed better than the traditional linear regression model, suggesting the importance of considering the seasonal variability of the association between ground NO$_2$ measurements and OMI NO$_2$ tropospheric column density.
indicated a relatively high predicting accuracy at the seasonal level. The linear mixed effects model performed better than the traditional linear regression model, suggesting the importance of considering the seasonal variability of the association between ground NO2 measurements and OMI NO2 tropospheric column density.

![Scatter plots of measured and predicted NO2 concentrations from model fitting (left), and 10-fold cross validation (right), respectively, for the satellite-derived linear mixed effects model at a seasonal timescale.](image)

3.3. Spatiotemporal Trends of Predicting NO2 Concentrations

Predictive maps of NO2 concentrations with a spatial resolution of 100 m × 100 m were produced at a seasonal timescale (Figure 6). The seasonal pattern of predicted NO2 concentrations agreed well with field measurements. Mean NO2 concentration was highest in winter (47.3 µg/m³) in Suzhou, which was 1.46 times higher than that in summer. The spatial patterns of NO2 predictions were similar at different seasons throughout the year. Maps with high spatial resolution showed that severe NO2 pollution occurred along the major roads and declined significantly with increasing distance from the road. Urban centers with high population density and an intensive road network also experienced higher NO2 concentrations than that of the rural areas (Figure 6). For example, in summer, the maximum NO2 concentration (58.99 µg/m³) that occurred in urban areas was 2.77 times higher than the minimum value (21.33 µg/m³) in rural areas; and in winter, the maximum concentration (76.93 µg/m³) was 2.03 times higher compared to the lowest value (37.91 µg/m³) in rural areas. The results indicated that the NO2 concentration was generally higher in urban areas than that in rural areas both in winter and summer.

The population-weighted annual mean NO2 concentration in 2014 was 44.94 µg/m³ in Suzhou, higher than the annual-mean predicted concentration of 41.4 µg/m³ and also higher than the annual-mean NO2 standard of 40 µg/m³ defined in the Chinese National Ambient Air Quality Standards (GB 3095-2012). In winter, 99% of the total population lived in areas with NO2 concentrations exceeding 40 µg/m³ in Suzhou (Table 3).

Parameter	Annual	Spring	Summer	Autumn	Winter
Population-weighted concentration (µg/m³)	44.94	46.33	35.64	46.59	51.21
Proportion (%) *	84	92	22	96	99

* Proportion: Proportion of population living in areas with NO2 concentrations exceeding 40 µg/m³.
Figure 6. NO$_2$ spatial distribution at the seasonal level in Suzhou, 2014.

4. Discussion

Our study built a satellite-derived LUR model with OMI NO$_2$ tropospheric column density data to predict NO$_2$ concentrations at seasonal timescales with a high spatial resolution (100 m × 100 m) in Suzhou. The R^2 values of model fitting and 10-fold CV were 0.70 and 0.61 at seasonal timescales, respectively, reflecting the relatively high stability of the model.

Our seasonal satellite-derived LUR model performance was comparable with previous satellite-based LUR models on NO$_2$ concentration assessment at global, national, and regional scales. For the global satellite-based LUR model, the R^2 and MAE (mean absolute error) for the model were 0.54 and 3.7 ppb at a 100 m × 100 m resolution, respectively [20]. The adjusted R^2 values of models with satellite data were 0.48–0.58 in 17 contiguous countries of Western Europe [22]. The R^2 of the model fitting and CV were 0.79 and 0.77 of the national satellite-derived LUR in the United States, respectively [19]. Similarly, in China, Xu et al. and Yang et al. developed satellite-derived LUR models at national and regional scales, respectively [21,31]. The R^2 of 10-fold cross-validation (CV) was 0.78 for the national model in 2015 [31], and the R^2 of model fitting was 0.61 for the regional model [21]. Although increasing studies have used machine learning methods with satellite
Remote Sens. 2021, 13, 397

11 of 15
data to evaluate NO\textsubscript{2} concentrations based on a large number of measurements from fixed
monitors at regional or national scales [40–43], the training data may be insufficient to
develop machine learning models within a city because of the limited number of fixed
stations in this study. The comparison suggested that our satellite-derived LUR model,
including satellite-retrieved NO\textsubscript{2} tropospheric column density, population density, traffic
indicators, and NO\textsubscript{x} emission data, predicted ground NO\textsubscript{2} concentrations with relatively
high accuracy based on the fixed stations in Suzhou.

In terms of NO\textsubscript{2} concentration, our results exhibited significant spatial variability
within a city at a fine spatial resolution (100 m × 100 m), and found a distinctive decline
with increasing distance from the roads and significant differences between urban and
rural areas. The high variability within a city suggested that exposure assessments of
NO\textsubscript{2} might be inaccurate if they just depended on measurements of a limited number
of fixed monitoring sites. This high spatial heterogeneity may be mainly dependent
on NO\textsubscript{2} pollution-related sources, such as traffic and industrial emissions. Traffic and
industrial emissions are known as the main sources of NO\textsubscript{2}, contributing to the high
spatial heterogeneity of NO\textsubscript{2} concentrations along roads and within a city. On one hand,
NO\textsubscript{2} is emitted as a primary pollutant from these sources. On the other hand, NO\textsubscript{2} is
also a secondary pollutant [1,2]. In our study, NO\textsubscript{2} concentrations were significantly
higher along roads and declined gradually with increased distance from roads in Suzhou,
consistent with previous results of NO\textsubscript{2} spatial heterogeneity along roads [8]. The variables
indicating traffic-related sources in our study were also frequently used in the previous LUR
models for NO\textsubscript{2} concentrations assessment [6,17,36]. Additionally, industrial emissions, an
important influencing predictor for NO\textsubscript{2} assessment in our model, had also been found to
be an important variable in the previous LUR models to predict ground NO\textsubscript{2} concentrations
within cities such as in Shanghai and Tianjin [16,17]. A recent study observed a notable
decrease of NO\textsubscript{2} concentrations during the Chinese New Year holiday in 2020 led by the
novel coronavirus (COVID-19) lockdown compared to those before or after this period
in Suzhou [44]. A sharp decline in traffic emissions and a slight reduction in industry
emissions caused by the shut-down policies might be the main contributors to the decrease
of NO\textsubscript{2} concentrations during the lockdown period in Suzhou [44], suggesting that both
traffic and industrial emissions are crucial sources of NO\textsubscript{2} in Suzhou. Additionally, our
results found that mean NO\textsubscript{2} concentrations were higher in winter compared to that in
summer. This was consistent with the previous studies on the seasonal pattern of NO\textsubscript{2}
concentrations in China [24,45]. In winter, NO\textsubscript{2}-related emissions are stronger due to
more emissions from coal combustion for heating; while meteorological conditions are less
favorable and could impede the dispersion and transportation of NO\textsubscript{2} pollution [44,46,47].
Both of these might be contributors to the higher NO\textsubscript{2} concentrations in winter [44,46,47].
Our results in Figure 6 showed an approximately lower ratio between urban and rural
NO\textsubscript{2} concentrations in winter compared to those in summer. This might be due to more
carbon combustion for the heating of houses in rural areas in winter compared to that in
urban areas [48].

As another influencing factor for NO\textsubscript{2} spatial heterogeneity, the spatial pattern of pop-
ulation density was highly consistent with that of NO\textsubscript{2} predictions in Suzhou, suggesting
that population density can be used as an indicator of anthropogenic emissions that reflects
a series of emissions including traffic, industrial process, and heating sources [6]. High
population density not only intensified the NO\textsubscript{2} pollution, but also resulted in an increased
exposure of populations to high NO\textsubscript{2} levels. In this study, 84% of the population were
exposed to higher NO\textsubscript{2} levels than the national annual-mean NO\textsubscript{2} standards (40 \(\mu \text{g}/\text{m}^3\))
in Suzhou in 2014; while the proportion of the population exposed to concentrations ex-
ceeding the World Health Organization (WHO) annual NO\textsubscript{2} standards (40 \(\mu \text{g}/\text{m}^3\)) was
only 8% in Western Europe [39], which was much smaller than that in Suzhou. This might
be because a high population density and high concentrations of air pollution coexist
in Chinese cities. For example, many residential buildings are located along major roads
for the convenience of transportation, and residents living in these buildings might be
both influenced by the traffic-related emissions and housing heating emissions, especially during winter in the rural areas. Our results suggested that policy makers should take effective interventions for these areas of higher NO$_2$ concentrations, especially for urban regions with the higher population density, which is an urgent need for the public health.

The satellite-based LUR model also expanded the temporal resolution and improved the accuracy of seasonal NO$_2$ predictions. Land use data, including land cover, road network, and population data, used in traditional LUR models commonly have lower temporal resolution, whereas the NO$_2$ tropospheric column density data could represent temporal variability of NO$_2$ concentration with a strong correlation with ground NO$_2$ concentration. Previous studies mostly employed satellite data to expand the temporal resolution of the LUR model for the assessment of NO$_2$ concentrations to seasonal or monthly timescales at national or regional scales [19,21,30]; however, few satellite-based LUR models on NO$_2$ concentrations assessment have been developed at a city scale considering the local influencing factors with a flexible timescale in China. In this study, we developed a satellite-based LUR model in Suzhou to capture the fine gradients of NO$_2$ concentrations at a spatial resolution of 100 m \times 100 m. More importantly, our predictions captured the significant seasonal variability of NO$_2$ concentrations within a city, which could not be achieved by traditional LUR models. These findings suggested that the satellite-derived model could provide exposure assessment of NO$_2$ concentrations at a flexible timescale for epidemiological studies and scientific evidence for protecting residents from NO$_2$ pollution.

Our study has several limitations. First, the OMI NO$_2$ tropospheric column density for spatial prediction was relatively coarse (13 km \times 24 km). Satellite-based NO$_2$ data with a higher spatial resolution could help improve the model performance in the future when they are available. Second, our model was developed at a seasonal level rather than a daily level. The cloud cover and row anomaly problem of OMI lead to missing data at a daily level within a city; therefore, we resampled OMI data at a seasonal level to fill the gap. Satellite-based NO$_2$ data with a lower missing rate might help improve the temporal resolution of our model in the future. Third, traffic counts are an ideal predictor to identify the traffic emissions, but these were not accessible for this study. We used major road lengths and distance to the nearest major road as surrogates of traffic counts to indicate the influence of traffic emissions on NO$_2$ concentrations. This was also applied as a traffic variable in NO$_2$ LUR models in the European Study of Cohorts for Air Pollution Effects (ESCAPE) project and other studies of the development of NO$_2$ LUR models [6,36].

5. Conclusions

In summary, the satellite-derived LUR model could predict seasonal NO$_2$ concentrations at a 100 m \times 100 m resolution with relatively high accuracy, at a city scale. This model could capture the fine gradients both along the road and within the urban-rural areas for each season based on the satellite data. According to the predictions, we found that 84% of the city’s total population lived in areas with NO$_2$ concentrations exceeding the national annual standard of NO$_2$ of 40 μg/m3 in Suzhou in 2014. Hence, reducing NO$_2$ concentrations is urgently needed, especially for urban areas with a higher population density. This model and its predictions could support policy developments in the control of air quality and accurate exposure assessment for future epidemiological studies.

Author Contributions: Conceptualization, L.Z., Q.X., G.G., J.C., R.C., X.M., and H.K.; methodology, C.Y., Q.X., G.G., J.C., R.C., and X.M.; software, L.Z., and X.M.; validation, L.Z., and X.M.; formal analysis, L.Z., and X.M.; investigation, C.Y.; resources, C.Y., and X.M.; data curation, C.Y.; writing—original draft preparation, L.Z.; writing—review and editing, L.Z., and X.M.; visualization, L.Z.; supervision, L.Z., and X.M.; project administration, H.K.; funding acquisition, H.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (91843302, 91643205 and 82003413) and the National Key Research and Development Program of China (2016YFC0206504).
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Publicly available datasets were analyzed in this study. These data can be found here: https://earthexplorer.usgs.gov/(OMI NO2 tropospheric column density data and Landsat TM5 dataset), http://www.oms.gov/sci/landsca/(population density data).

Acknowledgments: Thanks to Qiang Zhang, University of Tsinghua, for providing the NOx emission inventory data.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Casquero-Vera, J.A.; Lyamani, H.; Titos, G.; Borras, E.; Olmo, F.J.; Alados-Arboledas, L. Impact of primary NOX emissions at different urban sites exceeding the European NO standard limit. Sci. Total Environ. 2019, 646, 1117–1125. [CrossRef]
2. Anttila, P.; Tuovinen, J.-P.; Niemi, J.V. Primary NOX emissions and their role in the development of NO2 concentrations in a traffic environment. Atmos. Environ. 2011, 45, 986–992. [CrossRef]
3. Jerrett, M.; Burnett, R.T.; Beckerman, B.S.; Turner, M.C.; Krewski, D.; Thurston, G.; Martin, R.V.; van Donkelaar, A.; Hughes, E.; Shi, Y.; et al. Spatial analysis of air pollution and mortality in California. Am. J. Respir. Crit. Care Med. 2013, 188, 593–599. [CrossRef] [PubMed]
4. Chen, R.; Yin, P.; Meng, X.; Wang, L.; Liu, C.; Niu, Y.; Lin, Z.; Liu, Y.; Liu, J.; Qi, J.; et al. Associations Between Ambient Nitrogen Dioxide and Daily Cause-specific Mortality: Evidence from 272 Chinese Cities. Epidemiology 2018, 29, 482–489. [CrossRef] [PubMed]
5. WHO Regional Office for Europe. Review of Evidence on Health Aspects of Air Pollution—REVIIAAP Project: Technical Report; WHO Regional Office for Europe: Copenhagen, Denmark, 2013. Available online: https://www.ncbi.nlm.nih.gov/books/NBK361805/(accessed on 13 November 2020).
6. Beelen, R.; Hoek, G.; Vienneau, D.; Eeftens, M.; Dimakopoulou, K.; Pedeli, X.; Tsi, M.-Y.; Künzli, N.; Schikowski, T.; Marcon, A.; et al. Development of NO2 and NOx land use regression models for estimating air pollution exposure in 36 study areas in Europe—The ESCAPE project. Atmos. Environ. 2013, 72, 10–23. [CrossRef]
7. Son, J.Y.; Bell, M.L.; Lee, J.T. Individual exposure to air pollution and lung function in Korea: Spatial analysis using multiple exposure approaches. Environ. Res. 2010, 110, 739–749. [CrossRef] [PubMed]
8. Karner, A.A.; Eisinger, D.S.; Niemeier, D.A. Near-roadway air quality: Synthesizing the findings from real-world data. Environ. Sci. Technol. 2010, 44, 5334–5344. [CrossRef] [PubMed]
9. Cyrys, J.; Eeftens, M.; Heinrich, J.; Ampe, C.; Armengaud, A.; Beelen, R.; Bellander, T.; Beregszaszi, T.; Birk, M.; Cesaroni, G.; et al. Variation of NO2 and NOX concentrations between and within 36 European study areas: Results from the ESCAPE study. Atmos. Environ. 2012, 62, 374–390. [CrossRef]
10. Lee, J.H.; Wu, C.F.; Hoek, G.; de Hoogh, K.; Beelen, R.; Brunekreef, B.; Chan, C.C. Land use regression models for estimating individual NO2 and NOX exposures in a metropolis with a high density of traffic roads and population. Sci. Total Environ. 2014, 472, 1163–1171. [CrossRef]
11. Crouse, D.L.; Peters, P.A.; Villeneuve, P.J.; Proux, M.O.; Shin, H.H.; Goldberg, M.S.; Johnson, M.; Wheeler, A.J.; Allen, R.W.; Atari, D.O.; et al. Within- and between-city contrasts in nitrogen dioxide and mortality in 10 Canadian cities; a subset of the Canadian Census Health and Environment Cohort (CanCHEC). J. Expo. Sci. Environ. Epidemiol. 2015, 25, 482–489. [CrossRef]
12. de Hoogh, K.; Gulliver, J.; Donkelaar, A.v.; Martin, R.V.; Marshall, J.D.; Bechle, M.J.; Cesaroni, G.; Pradas, M.C.; Dedele, A.; Eeftens, M.; et al. Development of West-European PM2.5 and NOx land use regression models incorporating satellite-derived and chemical transport modelling data. Environ. Res. 2016, 151, 1–10. [CrossRef] [PubMed]
13. Fischer, P.H.; Marra, M.; Ameling, C.B.; Hoek, G.; Beelen, R.; de Hoogh, K.; Breugelmans, O.; Kruize, H.; Janssen, N.A.; Houthuijs, D. Air Pollution and Mortality in Seven Million Adults: The Dutch Environmental Longitudinal Study (DUELS). Environ. Health Perspect. 2015, 123, 697–704. [CrossRef] [PubMed]
14. Foraster, M.; Basagana, X.; Aguilera, I.; Rivera, M.; Agis, D.; Bouso, L.; Deltell, A.; Marrugat, J.; Ramos, R.; Sunyer, J.; et al. Association of long-term exposure to traffic-related air pollution with blood pressure and hypertension in an adult population-based cohort in Spain (the REGICOR study). Environ. Health Perspect. 2014, 122, 404–411. [CrossRef] [PubMed]
15. Ohlwein, S.; Klumper, C.; Vossoughi, M.; Sugiri, D.; Stolz, S.; Vierkotter, A.; Schikowski, T.; Kara, K.; Germing, A.; Quass, U.; et al. Air pollution and diastolic function in elderly women—Results from the SALIA study cohort. Int. J. Hyg. Environ. Health 2016, 219, 356–363. [CrossRef] [PubMed]
16. Chen, L.; Wang, Y.; Li, P.; Ji, Y.; Kong, S.; Li, Z.; Bai, Z. A land use regression model incorporating data on industrial point source pollution. J. Environ. Sci. 2012, 24, 1251–1258. [CrossRef]
17. Meng, X.; Chen, L.; Cai, J.; Zhou, B.; Wu, C.-F.; Fu, Q.; Zhang, Y.; Liu, Y.; Kan, H. A land use regression model for estimating the NO2 concentration in Shanghai, China. Environ. Res. 2015, 137, 308–315. [CrossRef]
18. Xu, G.; Jiao, L.M.; Zhao, S.L.; Yuan, M.; Li, X.M.; Han, Y.Y.; Zhang, B.; Dong, T. Examining the Impacts of Land Use on Air Quality from a Spatio-Temporal Perspective in Wuhan, China. Atmosphere 2016, 7, 62. [CrossRef]
Remote Sens. 2021, 13, 397

19. Bechle, M.J.; Millet, D.B.; Marshall, J.D. National Spatiotemporal Exposure Surface for NO2: Monthly Scaling of a Satellite-Derived Land-Use Regression. 2000–2010. Environ. Sci. Technol. 2015, 49, 12297–12305. [CrossRef]

20. Larkin, A.; Geddes, J.A.; Martin, R.V.; Xiao, Q.; Liu, Y.; Marshall, J.D.; Brauer, M.; Hystad, P. Global Land Use Regression Model for Nitrogen Dioxide Air Pollution. Environ. Sci. Technol. 2017, 51, 6957–6964. [CrossRef]

21. Yang, X.; Zheng, Y.; Geng, G.; Liu, H.; Man, H.; Lv, Z.; He, K.; de Hoogh, K. Development of PM2.5 and NO2 models in a LUR framework incorporating satellite remote sensing and air quality model data in Pearl River Delta region, China. Environ. Pollut. 2017, 226, 143–153. [CrossRef]

22. Vienneau, D.; de Hoogh, K.; Bechle, M.J.; Beelen, R.; van Donkelaar, A.; Martin, R.V.; Millet, D.B.; Hoek, G.; Marshall, J.D. Western European land use regression incorporating satellite- and ground-based measurements of NO2 and PM10. Environ. Sci. Technol. 2013, 47, 13555–13564. [CrossRef] [PubMed]

23. Meng, X.; Fu, Q.; Ma, Z.; Chen, L.; Zou, B.; Zhang, Y.; Xue, W.; Wang, J.; Wang, D.; Kan, H.; et al. Estimating ground-level PM10 in a Chinese city by combining satellite data, meteorological information and a land use regression model. Environ. Pollut. 2016, 208, 177–184. [CrossRef] [PubMed]

24. Ma, X.; Jia, H.; Sha, T.; An, J.; Tian, R. Spatial and seasonal characteristics of particulate matter and gaseous pollution in China: Implications for control policy. Environ. Sci. Technol. 2019, 53, 421–428. [CrossRef] [PubMed]

25. Zhang, Z.; Wang, J.; Hart, J.E.; Laden, F.; Zhao, C.; Li, T.; Zheng, P.; Li, D.; Ye, Z.; Chen, K. National scale spatiotemporal land-use regression model for PM2.5, PM10 and NO2 concentration in China. Atmos. Environ. 2018, 192, 48–54. [CrossRef]

26. Hoek, G.; Eeftens, M.; Beelen, R.; Fischer, P.; Brunekeeff, B.; Boersma, K.F.; Veekind, P. Satellite NO2 data improve national land use regression models for ambient NO2 in a small densely populated country. Atmos. Environ. 2015, 105, 173–180. [CrossRef]

27. Novotny, E.V.; Bechle, M.J.; Millet, D.B.; Marshall, J.D. National Satellite-Based Land-Use Regression: NO2 in the United States. Environ. Sci. Technol. 2011, 45, 4407–4414. [CrossRef]

28. Zhan, Y.; Luo, Y.; Deng, X.; Zhang, K.; Zhang, M.; Grieneisen, M.L.; Di, B. Satellite-Based Estimates of Daily NO2 Exposure in China Using Hybrid Random Forest and Spatiotemporal Kriging Model. Environ. Sci. Technol. 2018, 52, 4180–4189. [CrossRef]

29. Knibbs, L.D.; Coorey, C.P.; Bechle, M.J.; Marshall, J.D.; Hewson, M.G.; Jalaludin, B.; Morgan, G.G.; Barnett, A.G. Long-term nitrogen dioxide exposure assessment using back-extrapolation of satellite-based land-use regression models for Australia. Environ. Res. 2018, 163, 16–25. [CrossRef]

30. Knibbs, L.D.; Hewson, M.G.; Bechle, M.J.; Marshall, J.D.; Barnett, A.G. A national satellite-based land-use regression model for air pollution exposure assessment in Australia. Environ. Res. 2014, 135, 204–211. [CrossRef]

31. Xu, H.; Bechle, M.J.; Wang, M.; Szpiro, A.A.; Vedal, S.; Bai, Y.; Marshall, J.D. National PM2.5 and NO2 exposure models for China based on land use regression, satellite measurements, and universal kriging. Sci. Total Environ. 2019, 655, 423–433. [CrossRef]

32. McPeters, R.D.; Frith, S.; Labow, G.J. OMI total column ozone: Extending the long-term data record. Atmos. Meas. Tech. 2015, 8, 4845–4850. [CrossRef]

33. Xiao, Q.; Chang, H.T.; Geng, G.; Liu, Y. An Ensemble Machine-Learning Model to Predict Historical PM2.5 Concentrations in China from Satellite Data. Environ. Sci. Technol. 2019, 52, 13260–13269. [CrossRef] [PubMed]

34. Chen, Z.; Chen, J.; Collins, R.; Guo, Y.; Peto, R.; Wu, F.; Li, L. China Kadoorie Biobank of 0.5 million people: Survey methods, baseline characteristics and long-term follow-up. Int. J. Epidemiol. 2011, 40, 1652–1666. [CrossRef] [PubMed]

35. Levetl, P.F.; van den Oord, G.H.J.; Dobber, M.R.; Malik, A.; Hüb, V.; Johan de, V.; Stammes, P.; Lundell, J.O.V.; Saari, H. The ozone monitoring instrument. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1093–1101. [CrossRef]

36. Hoek, G.; Beelen, R.; de Hoogh, K.; Vienneau, D.; Gulliver, J.; Fischer, P.; Briggs, D. A review of land-use regression models to assess spatial variation of outdoor air pollution. Atmos. Environ. 2008, 42, 7561–7578. [CrossRef]

37. Ma, Z.; Hu, X.; Sayer, A.M.; Levy, R.; Zhang, Q.; Xue, Y.; Tong, S.; Bi, J.; Huang, L.; Liu, Y. Satellite-Based Spatiotemporal Trends in PM2.5 Concentrations: China, 2004–2013. Environ. Health Perspect. 2016, 124, 184–192. [CrossRef]

38. Saucy, A.; Roosli, M.; Kunzli, N.; Tsai, M.-Y.; Sieber, C.; Olaniyan, T.; Bajtles, R.; Jeebhay, M.; Davey, M.; Fluckiger, B.; et al. Land Use Regression Modelling of Outdoor NO2 and PM2.5 Concentrations in Three Low Income Areas in the Western Cape Province, South Africa. Int. J. Environ. Res. Public Health 2018, 15, 1452. [CrossRef]

39. de Hoogh, K.; Chen, J.; Gulliver, J.; Hoffmann, B.; Hertel, O.; Ketzel, M.; Bauwelinck, M.; van Donkelaar, A.; Hvidtfeldt, U.A.; Katsouyanni, K.; et al. Spatial PM2.5, NO2, O3 and BC models for Western Europe—Evaluation of spatiotemporal stability. Environ. Int. 2018, 120, 81–92. [CrossRef]

40. Chen, Z.Y.; Zhang, R.; Zhang, T.H.; Ou, C.Q.; Guo, Y. A kriging-calibrated machine learning method for estimating daily ground-level NO2 in mainland China. Sci. Total Environ. 2019, 690, 556–564. [CrossRef]

41. Di, Q.; Amini, H.; Shi, L.; Klooig, I.; Silvern, R.; Kelly, J.; Sabath, M.B.; Choirat, C.; Koutrakis, P.; Lyapustin, A.; et al. Assessing NO2 Concentration and Model Uncertainty with High Spatiotemporal Resolution across the Contiguous United States Using Ensemble Model Averaging. Environ. Sci. Technol. 2020, 54, 1372–1384. [CrossRef]

42. Li, T.; Wang, Y.; Yuan, Q. Remote Sensing Estimation of Regional NO2 via Space-Time Neural Networks. Remote Sens. 2020, 12, 2514. [CrossRef]

43. Zhang, T.; He, W.; Zheng, H.; Cui, Y.; Song, H.; Fu, S. Satellite-based ground PM2.5 estimation using a gradient boosting decision tree. Chemosphere 2020, 128801. [CrossRef] [PubMed]
44. Wang, H.; Miao, Q.; Shen, L.; Yang, Q.; Wu, Y.; Wei, H. Air pollutant variations in Suzhou during the 2019 novel coronavirus (COVID-19) lockdown of 2020: High time-resolution measurements of aerosol chemical compositions and source apportionment. *Environ. Pollut.* 2020, 271, 116298. [CrossRef] [PubMed]

45. Kuerban, M.; Waili, Y.; Fan, F.; Liu, Y.; Qin, W.; Dore, A.J.; Peng, J.; Xu, W.; Zhang, F. Spatio-temporal patterns of air pollution in China from 2015 to 2018 and implications for health risks. *Environ. Pollut.* 2020, 258, 113659. [CrossRef] [PubMed]

46. Ye, S.; Ma, T.; Duan, F.; Li, H.; He, K.; Xia, J.; Yang, S.; Zhu, L.; Ma, Y.; Huang, T.; et al. Characteristics and formation mechanisms of winter haze in Changzhou, a highly polluted industrial city in the Yangtze River Delta, China. *Environ. Pollut.* 2019, 253, 377–383. [CrossRef]

47. Shen, Y.; Jiang, F.; Feng, S.; Zheng, Y.; Cai, Z.; Lyu, X. Impact of weather and emission changes on NO$_2$ concentrations in China during 2014–2019. *Environ. Pollut.* 2021, 269, 116163. [CrossRef]

48. Shen, G.; Ru, M.; Du, W.; Zhu, X.; Zhong, Q.; Chen, Y.; Shen, H.; Yun, X.; Meng, W.; Liu, J.; et al. Impacts of air pollutants from rural Chinese households under the rapid residential energy transition. *Nat. Commun.* 2019, 10, 3405. [CrossRef]