Supporting Information

for

Phylogenomic analyses and distribution of terpene synthases among *Streptomyces*

Lara Martín-Sánchez, Kumar Saurabh Singh, Mariana Avalos, Gilles P. van Wezel, Jeroen S. Dickschat and Paolina Garbeva

Beilstein J. Org. Chem. **2019**, 15, 1181–1193. doi:10.3762/bjoc.15.115

Additional figures and tables
Table of content

Figures

Figure	Description
S1	Whole-genome phylogenetic analyses of *Streptomyces* species with outgroups
S2	Distribution of dN-dS over individual sites
S3	DTL analyses of geosmin synthases
S4	DTL analyses of 2-methylisoborneol synthases
S5	DTL analyses of *epi*-isozizaene synthases
S6	DTL analyses of geosmin synthases
S7	DTL analyses of 2-methylisoborneol synthases
S8	DTL analyses of *epi*-isozizaene synthases

Tables

Table	Description
S1	Summary on orthologue analysis based on 93 *Streptomyces* genomes using OrthoFinder
S2	*Streptomyces* genomes used for constructing the phylogenetic trees in Figure 1 and Supplementary Figure S1
S3	List of geosmin synthases used to build the phylogenetic tree in Figure 3
S4	List of 2-methylisoborneol synthases used to build the phylogenetic tree in Figure 4
S5	List of *epi*-isozizaene synthases used to build the phylogenetic tree in Figure 5
S6	List of geosmin synthases used to build the DTL tree in Figure S2
S7	List of 2-methylisoborneol synthases used to build the DTL tree in Figure S3
S8	List of *epi*-isozizaene synthases used to build the DTL tree in Figure S4
S9	Habitats of the *Streptomyces* species represented in the whole genome-based phylogenetic tree
Figure S1. Whole-genome phylogenetic analyses of *Streptomyces* species with outgroups.

Rooted maximum likelihood phylogeny of 93 *Streptomyces* species and 5 non-*Streptomyces* species as outgroups, with fully sequenced genomes based on 575 conserved single copy orthologues. All the tools from multiple sequence alignment to consensus tree generation were implemented in OrthoFinder [1]. The species separated in three main groups indicated by different colour-shaded areas. The GenBank accession numbers of the sequences are provided in Supplementary Table S2.
Figure S2. Distribution of dN-dS over individual sites, based on SLAC, for A) geosmin synthase B) *epi*-isozizaene and C) 2-methylisoborneol synthase.
Figure S3. Comparison of the *Streptomyces* species whole genome-based phylogenetic tree with the phylogenetic tree of the geosmin synthases. Confronted linearised versions of the phylogenetic trees in Figure 1 (*Streptomyces* species genomes) and Figure 3 (geosmin synthases). The only species not containing a geosmin synthase is shown in black on the species tree on the left. Discrepancies between both trees are indicated with connecting lines.
Figure S4. Comparison of the *Streptomyces* species whole genome-based phylogenetic tree with the phylogenetic tree of the 2-methylisoborneol (2-MIB) synthases. Confronted linearised versions of the phylogenetic trees in Figure 1 (*Streptomyces* species genomes) and Figure 4 (2-MIB synthases). The species that do not contain a 2-MIB synthase are shown in black on the species tree on the left. Most of the 2-MIB synthases show discrepancies compared to the species tree. Examples of discrepancies between groups of 2-MIB synthases are shown with connecting lines.
Figure S5. Comparison of the *Streptomyces* species whole genome-based phylogenetic tree with the phylogenetic tree of the *epi*-isozizaene synthases. Confronted linearised versions of the phylogenetic trees in Figure 1 (*Streptomyces* species genomes) and Figure 5 (*epi*-isozizaene synthases). Only one of the clades of the species tree is shown (indicated as the green clade in Figure 1); none of the species from the other two clades harbour an *epi*-isozizaene synthase. The only species not containing an *epi*-isozizaene synthase is shown in black on the species tree on the left. Discrepancies between both trees are indicated with connecting lines.
Figure S6. DTL analyses of geosmin synthases. T, Transfer node. Blue square, Speciation node. Node labels in grey indicate that there was gene loss and node labels in black (bold) indicate that there was congruence between the enzyme tree and the species tree. The names on the node labels refer to a particular enzyme and the species harbouring it (see Table S6).
Figure S7. DTL analyses of 2-methylisoborneol synthases. T, Transfer node. Blue square, Speciation node. Node labels in grey indicate that there was gene loss and node labels in black (bold) indicate that there was congruence between the enzyme tree and the species tree. The names on the node labels refer to a particular enzyme and the species harbouring it (see Table S7).
Figure S8. **DTL analyses of epi-isoizaene synthases.** T, Transfer node. Blue square, Speciation node. Node labels in grey indicate that there was gene loss and node labels in black (bold) indicate that there was congruence between the enzyme tree and the species tree. The names on the node labels refer to a particular enzyme and the species harbouring it (see Table S8).
Table S1: Summary on orthologue analysis based on 93 *Streptomyces* genomes using OrthoFinder.

Properties	Value
Number of genes	676554
Number of genes in orthogroups	659764
Number of unassigned genes	16829
Percentage of genes in orthogroups	97.5
Percentage of unassigned genes	2.5
Number of orthogroups (gene families)	19980
Number of species-specific orthogroups	100
Number of genes in species-specific orthogroups	230
Percentage of genes in species-specific orthogroups	0.0
Mean orthogroup size	33
Median orthogroup size	8.0
G50 (assigned genes)	93
G50 (all genes)	93
O50 (assigned genes)	2400
O50 (all genes)	2491
Number of orthogroups with all species present	1156
Number of single-copy orthogroups	575
Table S2: *Streptomyces* genomes used for constructing the phylogenetic trees in Figure 1 and Figure S1.

Abbreviation	Accession number	Species name
S.act_ATCC25421	GCA_003208035.1	*S. actuosus* ATCC 25421
S.alb_J1074	GCA_000359525.1	*S. albidoflavus* J1074
S.albi_MDJK11	GCA_002192455.1	*S. albireticuli* MDJK11
S.albo_MDJK44	GCA_002189675.2	*S. alboflavus* MDJK44
S.albu_NK660	GCA_000695235.1	*S. albus* NK660
S.albu_ZPM	GCA_000963515.1	*S. albus* ZPM
S.alb_BK325	GCA_001753425.1	*S. albus* BK3-25
S.alb_DSM41398	GCA_000827005.1	*S. albus* DSM 41398
S.alb_SM254	GCA_001577385.1	*S. albus* SM254
S.alf_ACCC40021	GCA_001975025.1	*S. alfalfae* ACCC40021
S.amb_ATCC23877	GCA_001267885.1	*S. ambofaciens* ATCC 23877
S.amb_DSM40697	GCA_001632865.1	*S. ambofaciens* DSM 40697
S.aut_CGMCC0516	GCA_001983975.1	*S. autolyticus* CGMCC0516
S.ave_MA4680	GCA_000009765.2	*S. avermitilis* MA-4680
S.bin_BCW1	GCA_00092385.1	*S. bingchenggensis* BCW-1
S.cat_NRRL8057	GCA_000237305.1	*S. cattleya* NRRL 8057 = DSM 46488
S.cha_NRRL3882	GCA_000236475.1	*S. chartreusis* NRRL 3882
S.cla_F6131	GCA_001693675.1	*S. clavuligerus* F613-1
S.coe_A3(2)	GCA_000203835.1	*S. coelicolor* A3(2)
S.col_Tü365	GCA_000444875.1	*S. collinus* Tü 365
S.cya_nonNMWT1	GCA_000931445.1	*S. cyaneogriseus subsp. noncyanogenus* NMWT 1
S.for_KY5	GCA_002556545.1	*S. formicae* KY5
S.ful_DSM40593	GCA_000385945.1	*S. fulvissimus* DSM 40593
S.gil_F607	GCA_002082195.1	*S. gilvosporeus* F607
S.gla_GLAO	GCA_000761215.1	*S. glaucescens* GLA.O
S.glo_C1027	GCA_000261345.2	*S. globisporus* C-1027
S.glo_THF56	GCA_003147545.1	*S. globisporus* THF56
S.gri_ATCC14511	GCA_001542625.2	*S. griseochromogenes* ATCC 14511
S.gr_NBRC13350	GCA_00010605.1	*S. griseus subsp. griseus* NBRC 13350
Accession	GCA_000245355.1	S. hygroscopicus subsp. jinggangensis 5008
-----------	------------------	---
Accession	GCA_000340845.1	S. hygroscopicus subsp. jinggangensis TL01
Accession	GCA_001447075.1	S. hygroscopicus subsp. limoneus KCTC 1717
Accession	GCA_002021875.1	S. hygroscopicus XM201
Accession	GCA_002355495.1	S. lauritii ATCC 31255
Accession	GCA_002803845.1	S. lavendulae subsp. lavendulae CCM 3239
Accession	GCA_001013905.1	S. leeuwenhoekii C34
Accession	GCA_001685355.1	S. lincolnensis NRRL 2936
Accession	GCA_001729485.1	S. lividans TK24
Accession	GCA_000759135.1	S. lunaelactis MM109
Accession	GCA_001792945.1	S. lydicus 103
Accession	GCA_000952035.2	S. lydicus A02
Accession	GCA_002591335.1	S. malaysiensis DSM 4137
Accession	GCA_002009175.1	S. niveus SCSIO 3406
Accession	GCA_001704275.1	S. noursei ATCC 11455
Accession	GCA_002055225.1	S. pactum ACT12
Accession	GCA_001767375.1	S. pactum KLBMP 5084
Accession	GCA_000176115.2	S. pratensis ATCC 33331
Accession	GCA_001278075.1	S. pristinaespiralis HCCB 10218
Accession	GCA_001735805.1	S. puniciscabiei TW1S1
Accession	GCA_001511815.1	S. reticuli Tü 45
Accession	GCA_001750785.1	S. rubrolavendulae MJM4426
Accession	GCA_000991305.1	S. scabiei 87.22
Accession	GCA_000772045.1	S. sp. CCM_MD2014
Accession	GCA_001484565.1	S. sp. CdTB01
Strain	Accession	Description
-------------	-------------	----------------------
S.sp_CFMR7	GCA_001278095.1	S. sp. CFMR 7
S.sp_CLI2509	GCA_002288075.1	S. sp. CLI2509
S.sp_CMBStM0423	GCA_002847285.1	S. sp. CMB-StM0423
S.sp_CNQ509	GCA_001011035.1	S. sp. CNQ-509
S.sp_fd1xmd	GCA_002007685.1	S. sp. fd1-xmd
S.sp_FR008	GCA_001431765.1	S. sp. FR-008
S.sp_HNM0039	GCA_003097515.1	S. sp. HNM0039
S.sp_M56	GCA_002812405.1	S. sp. M56
S.sp_Mg1	GCA_000412265.2	S. sp. Mg1
S.sp_MOE7	GCA_002090335.1	S. sp. MOE7
S.sp_NEAUS7GS2	GCA_003173275.1	S. sp. NEAU-S7GS2
S.sp_P3	GCA_003032475.1	S. sp. P3
S.sp_PAMC26508	GCA_000364805.1	S. sp. PAMC 26508
S.sp_S10(2016)	GCA_001611795.1	S. sp. S10(2016) (S. qaidamensis S10(2016))
S.sp_8	GCA_002094995.1	S. sp. S8
S.sp_SAT1	GCA_001654495.1	S. sp. SAT1
S.sp_SCSIO03032	GCA_002128305.1	S. sp. SCSIO 03032
S.sp_Sge12	GCA_002080455.1	S. sp. Sge12
S.sp_SirexAA	GCA_000177195.2	S. sp. SirexAA-E
S.sp_SM17	GCA_002910725.2	S. sp. SM17
S.sp_SM18	GCA_002910775.2	S. sp. SM18
S.sp_TN58	GCA_001941845.1	S. sp. TN58
S.sp_Tü6075	GCA_001931635.1	S. sp. Tü 6075
S.sp_WAC00288	GCA_002943895.1	S. sp. WAC00288
S.sp_XZHGG99	GCA_002946835.1	S. sp. XZHGG99 (S. dengpaensis XZHGG99)
S.spo_HNM0071	GCA_003122365.1	S. spongiicola HNM0071
S.ven_ATCC15439	GCA_001443625.1	S. venezuelae ATCC 15439
S.ven_NRRLB65442	GCA_001886595.1	S. venezuelae NRRL B-65442
S.vie_GIM40001	GCA_000830005.1	S. vietnamensis GIM4.0001
S.vio_S21	GCA_002082175.1	S. violaceoruber S21
S.viol_Tü4113	GCA_000147815.3	S. violaceusniger Tü 4113
S.xia_318	GCA_000993785.2	S. xiamenensis 318
Outgroups

	Accession	Scientific Name
B.sub_168	GCF_000009045.1	*Bacillus subtilis subsp. subtilis* strain 168
M.tub_H37Rv	GCF_000195955.2	*Mycobacterium tuberculosis* H37Rv
E.col_K12	GCF_000005845.2	*Escherichia coli* K12 substr. MG1655
N.pun_PCC73102	GCF_000020025.1	*Nostoc punctiforme* PCC 73102
M.xan_DK1622	GCF_000012685.1	*Myxococcus xanthus* DK1622
Table S3: List of geosmin synthases used to build the phylogenetic tree in Figure 3.

Abbreviation	Accession number	Species name	amino acids
S.act_ATCC25421	WP_110632077	*S. actuosus* ATCC 25421	719
S.alb_J1074	WP_003951048	*S. albidoflavus* J1074	724
S.albi_MDJK11	WP_087929697	*S. albireticuli* MDJK11	758
S.albo_MDJK44	WP_087886527	*S. alboflavus* MDJK44	738
S.albu_NK660	WP_038526177	*S. albulus* NK660	746
S.albu_ZPM	WP_037632171	*S. albulus* ZPM	746
S.alb_BK325	WP_040246537	*S. albus* BK3-25	737
S.alb_DSM41398	WP_040246537	*S. albus* DSM 41398	737
S.alb_SM254	WP_079055460	*S. albus* SM254	724
S.alf_ACCC40021	WP_076683988	*S. alfalfae* ACCC40021	721
S.amb_ATCC23877	WP_053138925	*S. ambofaciens* ATCC 23877	726
S.amb_DSM40697	WP_063483426	*S. ambofaciens* DSM 40697	726
S.aut_CGMCC0516	WP_079258182	*S. autolyticus* CGMCC0516	787
S.ave_MA4680	WP_010983603	*S. avermitilis* MA-4680	725
S.bin_BCW1	WP_014174668	*S. bingchenggensis* BCW-1	751
S.cat_NRRL8057	WP_014143690	*S. cattleya* NRRL 8057	741
S.cha_NRRL3882	WP_010034221	*S. chartreusis* NRRL 3882	720
S.cla_F613-1	ANW21593	*S. clavuligerus* F613-1	724
S.coe_A3(2)	WP_011030632	*S. coelicolor* A3(2)	726
S.col_Tü365	WP_020942918	*S. collinus* Tü 365	720
S.cya_nonNMWT1	WP_044385074	*S. cyaneogriseus subsp. noncyanogenus* NMWT 1	735
S.for_KY5	WP_098245470	*S. formicaceae* KY5	721
S.ful_DSM40593	WP_015606689	*S. fulvissimus* DSM 40593	737
S.gil_F607	WP_083106597	*S. gilvosporeus* F607	749
S.gla,GLAO	WP_043504863	*S. glaucescens* GLAO	725
S.glo_C1027	WP_058953825	*S. globisporus* C-1027	737
S.glo_THF56	WP_044369842	*S. globisporus* TFH56	737
S.gri_ATCC14511	WP_067302609	*S. griseochromogenes* ATCC 14511	729
S.gr_NBRC13350	WP_012382258	*S. griseus subsp. griseus* NBRC 13350	737

S15
Species Code	Accession	Description	Entry No
S.hyg_jing5008	WP_014675700	*S. hygroscopicus subsp. jinggangensis* 5008	717
S.hyg_jingTL01	WP_014675700	*S. hygroscopicus subsp. jinggangensis* TL01	717
S.hyg_limKCTC1717	WP_058082416	*S. hygroscopicus subsp. limoneus* KCTC 1717	717
S.hyg_XM201	WP_078647520	*S. hygroscopicus* XM201	767
S.lau_ATCC31255	BAU81127	*S. laurentii* ATCC 31255	732
S.lav_CCM3239	WP_030234522	*S. lavendulae subsp. lavendulae* CCM 3239	745
S.lee_C34	WP_047121662	*S. leeuwenhoekii* C34	736
S.lin_NRRL2936	WP_067441821	*S. lincolnensis* NRRL 2936	716
S.liv_TK24	WP_003972847	*S. lividans* TK24	726
S.lun_MM109	WP_108147039	*S. lunaelactis* MM109	736
S.lyd_103	WP_069572885	*S. lydicus* 103	745
S.lyd_A02	WP_046926865	*S. lydicus* A02	745
S.mal_DSM4137	WP_099016999	*S. malaysiensis* DSM 4137	798
S.niv_SCSIO3406	WP_078076350	*S. niveus* SCSIO 3406	771
S.nou_ATCC11455	WP_079143472	*S. noursei* ATCC 11455	724
S.pac_ACT12	WP_055419631	*S. pactum* ACT12	727
S.par_2297	WP_064730371	*S. parvulus* 2297	732
S.peu_ATCC27952	ABY50951	*S. peucetius subsp. caesius* ATCC 27952	732
S.plu_MUSC135	WP_039648506	*S. pluripotens* MUSC 135	720
S.plu_MUSC137	WP_039648506	*S. pluripotens* MUSC 137	720
S.pra_ATCC33331	WP_014158016	*S. pratensis* ATCC 33331	747
S.pri_HCCB10218	WP_005321403	*S. pristinaespiralis* HCCB 10218	734
S.pun_TW1S1	WP_069778096	*S. puniciscabiei* TW1S1	720
S.ret_Tü45	WP_059253583	*S. reticuli* Tü45	720
S.rub_MJM4426	WP_069975090	*S. rubrolavendulae* MJM4426	753
S.sca_8722	WP_012999852	*S. scabiei* 87.22	735
S.sp_452	WP_108709220	*S. sp. 452* (S. nigra 452)	720
S.sp_4F	WP_058917193	*S. sp. 4F*	718
S.sp_769	WP_039641183	*S. sp. 769*	740
S.sp_CCMMD2014	WP_061441960	*S. sp. CCM_MD2014	733
S.sp_CdTB01	WP_058922365	*S. sp. CdTB01	718
S.sp_CFMR7	WP_053562493	*S. sp. CFMR 7*	737
S.sp_CLI2509	WP_095682396	S. sp. CLI2509	826
S.sp_CMBSM0423	WP_101425785	S. sp. CMB-StM0423	755
S.sp_CNQ509	WP_052770207	S. sp. CNQ509	756
S.sp_fd1-xmd	WP_078095378	S. sp. fd1-xmd	743
S.sp_FR008	WP_075986266	S. sp. FR-008	724
S.sp_HNM0039	WP_108908415	S. sp. HNM0039	751
S.sp_M56	WP_100806825	S. sp. M56	787
S.sp_Mg1	WP_008743400	S. sp. Mg1	738
S.sp_MOE7	WP_084772522	S. sp. MOE7	745
S.sp_NEAUS7GS2	WP_109891303	S. sp. NEAU-S7GS2	744
S.sp_P3	WP_107446227	S. sp. P3	723
S.sp_PAMC26508	WP_015575862	S. sp. PAMC26508	747
S.sp_S10(2016)	WP_062929741	S. sp. S10(2016) (S. qaidamensis S10(2016))	722
S.sp_8	WP_084996823	S. sp. S8	737
S.sp_SAT1	WP_064535845	S. sp. SAT1	727
S.sp_SCSIO03032	WP_086159477	S. sp. SCSIO 03032	761
S.sp_Sge12	WP_081522109	S. sp. Sge12	738
S.sp_SirexAA	WP_014044184	S. sp. SirexAA-E	745
S.sp_SM17	WP_030308315	S. sp. SM17	724
S.sp_SM18	WP_103493052	S. sp. SM18	745
S.sp_TN58	WP_075971290	S. sp. TN58	741
S.sp_Tü6075	WP_075268060	S. sp. Tü 6075	737
S.sp_WAC00288	WP_062757268	S. sp. WAC00288	731
S.sp_XZHGG99	WP_099498889	S. sp. XZHGG99 (S. dengpaensis XZHGG99)	717
S.spo_HNM0071	WP_109297326	S. spongiicola HNM0071	751
S.ven_ATCC15439	WP_055645174	S. venezuelae ATCC 15439	732
S.ven_NRRLB65442	WP_015031476	S. venezuelae NRRL B-65442	728
S.vie_GIM40001	WP_041127665	S. vietnamensis GIM4.0001	732
S.vio_S21	WP_083191937	S. violaceorubus S21	744
S.viol_Tü4113	WP_014061818	S. violaceusniger Tü 4113	758
S.xia_318	WP_030731770	S. xiamenensis 318	748
Table S4: List of 2-MIB synthases used to build the phylogenetic tree in Figure 4.

Abbreviation	Accession number	Species name	amino acids
S. albu_NK660	WP_038524797	S. albulus NK660	352
S. albu_ZPM	WP_020930496	S. albulus ZPM	352
S. amb_ATCC23877	WP_053126184	S. ambofaciens ATCC 23877	440
S. amb_DSMM40697	WP_063481016	S. ambofaciens DSM 40697	440
S. aut_GMCC0516	WP_079256828	S. autolyticus GMCC0516	431
S. bin_BCW1	WP_043488086	S. bingchenggensis BCW-1	402
S. cla_F6131	ANW17109	S. clavuligerus F613-1	400
S. coe_A3(2)	NP_733742	S. coelicolor A3(2)	440
S. col_Tü365	WP_020938197	S. collinus Tü 365	350
S. gil_F607(1)	WP_083108965	S. gilvosporeus F607	442
S. gil_F607(2)	WP_083103453	S. gilvosporeus F607	382
S. gri_ATCC14511(1)	WP_067309437	S. griseochromogenes ATCC 14511	388
S. gri_ATCC14511(2)	WP_067310286	S. griseochromogenes ATCC 14511	350
S. gr_NBRC13350	WP_012371802	S. griseus subsp. griseus NBRC 13350	437
S. hyg_XM201	WP_078645903	S. hygroscopicus XM201	442
S. lau_ATCC31255	BAU87358	S. laurentii ATCC 31255	441
S. lav_CCM3239	WP_078950304	S. lavendulae subsp. lavendulae CCM 3239	436
S. liv_TK24	WP_011031839	S. lividans TK24	440
S. lyd_103	WP_069571074	S. lydicus 103	352
S. lyd_A02(1)	WP_046924697	S. lydicus A02	431
S. lyd_A02(2)	WP_078984193	S. lydicus A02	445
S. mal_DSMM4137	WP_099012977	S. malaysiensis DSM 4137	389
S. niv_SCSIO3406	WP_078079412	S. niveus SCSIO 3406	382
S. nou_ATCC11455	WP_079143205	S. noursei ATCC 11455	394
S. par_2297	WP_064725957	S. parvulus 2297	352
S. pra_ATCC33331	WP_014157663	S. pratensis ATCC 33331	439
S. pun_TW1S1	WP_069782778	S. puniciscabiei TW1S1	356
S. sca_8722(1)	WP_041668842	S. scabiei 87.22	454
S. sca_8722(2)	WP_037726550	S. scabiei 87.22	354
S. sp_769(1)	WP_039628838	S. sp. 769	400
Sample Name	Accession	Description	Length
------------------------	-------------	--------------------------	--------
S. sp_769(2)	WP_078876140	S. sp. 769	352
S. sp_CMBStM0423	WP_101423704	S. sp. CMB-StM0423	400
S. sp_CNQ509	WP_047016550	S. sp. CNQ-509	402
S. sp_fd1xmd	WP_078095811	S. sp. fd1-xmd	462
S. sp_M56	WP_100807892	S. sp. M56	437
S. sp_Mg1	WP_047960430	S. sp. Mg1	426
S. sp_MOE7	WP_084775022	S. sp. MOE7	352
S. sp_NEAUS7GS2	WP_109889928	S. sp. NEAU-S7GS2	353
S. sp_P3	WP_107448681	S. sp. P3	451
S. sp_PAMC26508	WP_015576150	S. sp. PAMC 26508	439
S. sp_SAT1	WP_064537133	S. sp. SAT1	424
S. sp_Sge12	WP_081521483	S. sp. Sge12	455
S. sp_TN58	WP_075971735	S. sp. TN58	436
S. sp_Tü6075	WP_075263486	S. sp. Tue 6075	457
S. sp_WAC00288	WP_062750724	S. sp. WAC00288	415
S. ven_ATCC15439	WP_055645320	S. venezuelae ATCC 15439	423
S. vie_GIM40001	WP_041132328	S. vietnamensis GIM4.0001	464
S. vio_Tü4113	WP_014058647	S. violaceusniger Tü 4113	432
Abbreviation	Accession number	Species name	amino acids
----------------	------------------	---------------------------------------	-------------
S.act_ATCC25421	WP_110630412	S. actuosus ATCC 25421	365
S.albo_MDJK44	WP_087885793	S. alboflavus MDJK44	371
S.alb_BK325	WP_107071290	S. albus BK3-25	363
S.alb_DSM41398	WP_107071290	S. albus DSM 41398	363
S.alb_J1074	WP_008415715	S. albidoflavus J1074	324
S.alb_SM254	WP_030765460	S. albus SM254	324
S.alf_ACCC40021	APY90801	S. alfalfa ACCC40021	343
S.amb_ATCC23877	WP_079030788	S. ambofaciens ATCC 23877	363
S.amb_DSM40697	WP_079155896	S. ambofaciens DSM 40697	363
S.ave_MA4680	WP_107083301	S. avermitilis MA-4680	361
S.cha_NRRL3882	WP_029181723	S. chartreusis NRRL 3882	361
S.coe_A3(2)	NP_629369	S. coelicolor A3(2)	361
S.col_Tü365	AGS71733.1	S. collinus Tü365	337
S.cya_nonNMWT1	WP_044388300	S. cyaneogriseus subsp. noncyanogenus	362
S.form_KY5	WP_098244686	S. formicarum KY5	370
S.gla_GLAO	WP_099052949	S. glaucescens GLA.O	358
S.gri_ATCC14511	WP_099053013	S. griseochromogenes ATCC 14511	360
S.hygr_jing5008	WP_086011574	S. hygroscopicus subsp. jinggangensis	348
S.hygr_jingTL01	WP_086011574	S. hygroscopicus subsp. jinggangensis TL01	348
S.hygr_limKCTC1717	ALO96063	S. hygroscopicus subsp. limoneus KCTC 1717	361
S.lee_C34	WP_047122496	S. leeuwenhoekii C34	362
S.lin_NRRL2936	WP_107406875	S. lincolnensis NRRL 2936	361
S.liv_TK24	AIJ13444	S. lividans TK24	337
S.pact_ACT12	WP_079160747	S. pactum ACT12	363
S.pact_KLBMP5084	WP_078535684	S. pactum KLBMP 5084	361
S.par_2297	WP_064731961	S. parvulus 2297	361
S.plu_MUSC135	WP_086083749	S. pluripotens MUSC 135	361
S.plu_MUSC137	WP_086083749	S. pluripotens MUSC 137	361
S.pun_TW1S1	WP_099055058	S. panicisabiei TW1S1	361
Code	Accession	Description	Source
--------------------	---------------	--	------------
S.ret_Tü45	WP_107118101	*S. reticuli* Tü 45	337
S.sp_452	WP_108710823	*S. sp.* 452 (*S. nigra* 452)	361
S.sp_4F(1)	OSC69340	*S. sp.* 4F	363
S.sp_4F(2)	WP_058917971	*S. sp.* 4F	361
S.sp_CCMMD2014	WP_061446904	*S. sp.* CCM MD2014	361
S.sp_CdTB01	WP_107416269	*S. sp.* CdTB01	361
S.sp_CLI2509	WP_095682130.1	*S. sp.* CLI2509	353
S.sp_FR008	WP_030765460	*S. sp.* FR-008	324
S.sp_P3	WP_107441985	*S. sp.* P3	353
S.sp_S10(2016)	WP_107308381	*S. sp.* S10(2016) (*S. qaidamensis* S10(2016))	350
S.sp_SAT1	WP_107440814	*S. sp.* SAT1	367
S.sp_SM17	AWL34654	*S. sp.* SM17	324
S.sp_XZHG99	WP_099500021	*S. sp.* XZHG99 (*S. dengpaensis* XZHG99)	361
Table S6: List of geosmin synthases used to build the DTL tree in Figure S6.

Abbreviation	Accession number	Species name	
Geos1_Strep1	WP_011030632	*S. coelicolor* A3(2)	
Geos2_Strep2	WP_003972847	*S. lividans* TK24	
Geos3_Strep3	WP_061441960	*S. sp.* CCM_MD2014	
Geos4_Strep5	WP_064730371	*S. parvulus* 2297	
Geos5_Strep6	WP_063483426	*S. ambofaciens* DSM 40697	
Geos6_Strep7	WP_053138925	*S. ambofaciens* ATCC 23877	
Geos7_Strep8	WP_055419631	*S. pactum* ACT12	
Geos8_Strep9	WP_047121662	*S. leuwenhoekii* C34	
Geos9_Strep10	WP_044385074	*S. cyaneogriseus subsp. noncyanogenus* NMWT 1	
Geos10_Strep11	WP_010034221	*S. chartreusis* NRRL 3882	
Geos11_Strep12	WP_062929741	*S. sp.* S10(2016)	
Geos12_Strep13	WP_058917193	*S. sp.* 4F	
Geos13_Strep14	WP_043504863	*S. glaucescens* GLA.O	
Geos14_Strep15	WP_110632077	*S. actuosus* ATCC 25421	
Geos15_Strep16	WP_058922365	*S. sp.* CdTB01	
Geos16_Strep17	WP_067441821	*S. lincolnensis* NRRL 2936	
Geos17_Strep18	WP_107446227	*S. sp.* P3	
Geos18_Strep19	WP_108709220	*S. sp.* 452	
Geos19_Strep20	WP_014675700	*S. hygroscopicus subsp. jinggangensis* 5008	
Geos20_Strep21	WP_014675700_1	*S. hygroscopicus subsp. jinggangensis* TL01	
Geos21_Strep22	WP_058082416	*S. hygroscopicus subsp. limoneus* KCTC 1717	
Geos22_Strep23	WP_059253583	*S. reticuli* Tü45	
Geos23_Strep24	WP_069778096	*S. pluripotens* MUSC 135	
Geos24_Strep25	WP_039648506	*S. pluripotens* MUSC 137	
Geos25_Strep26	WP_039648506_1	*S. collinus* Tü 365	
Geos26_Strep27	WP_020942918	*S. griseochromogenes* ATCC 14511	
Geos27_Strep28	WP_067302609	*S. sp.* SAT1	
Geos28_Strep29	WP_064535845	*S. avermitilis* MA-4680	
Geos30_Strep31	WP_099498889	S. sp. XZH99	
Geos31_Strep32	WP_012999852	S. scabiei 87.22	
Geos32_Strep33	WP_076683988	S. alfalfa ACCC40021	
Geos33_Strep34	WP_098245470	S. formicae KY5	
Geos34_Strep35	WP_087886527	S. alboflavus MDJK44	
Geos35_Strep36	WP_040246537	S. albus BK3-25	
Geos36_Strep37	WP_040246537_1	S. albus DSM 41398	
Geos37_Strep38	WP_075986266	S. sp. FR-008	
Geos38_Strep39	WP_003951048	S. albus J1074	
Geos39_Strep40	WP_079055460	S. albus SM254	
Geos40_Strep41	WP_030308315	S. sp. SM17	
Geos41_Strep42	WP_095682396	S. sp. CLI2509	
Geos42_Strep43	WP_044369842	S. globisporus TFH56	
Geos43_Strep44	WP_058953825	S. globisporus C-1027	
Geos44_Strep45	WP_075268060	S. sp. Tü 6075	
Geos45_Strep46	WP_012382258	S. griseus subsp. griseus NBRC 13350	
Geos46_Strep47	WP_083191937	S. violaceoruber S21	
Geos47_Strep48	WP_053562493	S. sp. CFMR 7	
Geos48_Strep49	WP_084996823	S. sp. S8	
Geos49_Strep50	WP_015606689	S. fulvissimus DSM 40593	
Geos50_Strep51	WP_014044184	S. sp. SirexAA-E	
Geos51_Strep52	WP_103493052	S. sp. SM18	
Geos52_Strep53	WP_014158016	S. pratensis ATCC 33331	
Geos53_Strep54	WP_015575862	S. sp. PAMC26508	
Geos54_Strep55	WP_078076350	S. niveus SCSIO 3406	
Geos55_Strep56	ABY50951	S. peucetius subsp. caesius ATCC 27952	
Geos56_Strep57	WP_005321403	S. pristinaespiralis HCCB 10218	
Geos57_Strep58	WP_108147039	S. lunaelactis MM109	
Geos58_Strep59	ANW21593	S. clavuligerus F613-1	
Geos59_Strep60	WP_108908415	S. sp. HNM0039	
Geos60_Strep61	WP_109297326	S. spongiicola HNM0071	
Geos61_Strep62	WP_055645174	S. venezuelae ATCC 15439	
Sample Alias	Accession	Species Name	Strain Ref.
--------------	-----------	--------------	-------------
Geos62_Strep63	WP_015031476	S. venezuelae NRRL B-65442	
Geos63_Strep64	WP_041127665	S. vietnamensis GIM4.0001	
Geos64_Strep65	WP_062757268	S. sp. WAC00288	
Geos65_Strep66	BAU81127	S. laurentii ATCC 31255	
Geos66_Strep67	WP_069975090	S. rubrolavendulae MJM4426	
Geos67_Strep68	WP_078095378	S. sp. fd1-xmd	
Geos68_Strep69	WP_075971290	S. sp. TN58	
Geos69_Strep70	WP_081522109	S. sp. Sge12	
Geos70_Strep71	WP_008743400	S. sp. Mg1	
Geos71_Strep72	WP_030234522	S. lavendulae subsp. lavendulae CCM 3239	
Geos72_Strep73	WP_084772522	S. sp. MOE7	
Geos73_Strep74	WP_069572885	S. lydicus 103	
Geos74_Strep75	WP_109891303	S. sp. NEAU-S7GS2	
Geos75_Strep76	WP_083106597	S. gilvosporeus F607	
Geos76_Strep77	WP_046926865	S. lydicus A02	
Geos77_Strep78	WP_039641183	S. sp. 769	
Geos78_Strep79	WP_079143472	S. noursei ATCC 11455	
Geos79_Strep80	WP_038526177	S. albulus NK660	
Geos80_Strep81	WP_037632171	S. albulus ZPM	
Geos81_Strep82	WP_099016999	S. malaysiensis DSM 4137	
Geos82_Strep83	WP_079258182	S. autolyticus CGMCC0516	
Geos83_Strep84	WP_100806825	S. sp. M56	
Geos84_Strep85	WP_014061818	S. violaceusniger Tü 4113	
Geos85_Strep86	WP_078647520	S. hygroscopicus XM201	
Geos86_Strep87	WP_014174668	S. bingchenggensis BCW-1	
Geos87_Strep88	WP_087929697	S. albireticuli MDJK11	
Geos88_Strep89	WP_030731770	S. xiamensis 318	
Geos89_Strep90	WP_086159477	S. sp. SCSIO 03032	
Geos90_Strep91	WP_101425785	S. sp. CMB-StM0423	
Geos91_Strep92	WP_052770207	S. sp. CNQ509	
Geos92_Strep93	WP_014143690	S. cattleya NRRL 8057	
Table S7: List of 2-methylisoborneol synthases used to build the DTL tree in Figure S7.

Abbreviation	Accession number	Species name	
Strep1_Mib1	NP_733742	*S. coelicolor* A3(2)	
Strep2_Mib2	WP_011031839	*S. lividans* TK24	
Strep5_Mib3	WP_064725957	*S. parvulus* 2297	
Strep6_Mib4	WP_063481016	*S. ambofaciens* DSM 40697	
Strep7_Mib5	WP_053126184	*S. ambofaciens* ATCC 23877	
Strep18_Mib6	WP_107448681	*S. sp.* P3	
Strep24_Mib7	WP_069782778	*S. puniciscabiei* TW1S1	
Strep27_Mib8	WP_020938197	*S. collinus* Tü 365	
Strep28_Mib9	WP_067309437	*S. griseochromogenes* ATCC 14511(1)	
Strep28_Mib10	WP_067310286	*S. griseochromogenes* ATCC 14511(2)	
Strep29_Mib11	WP_064537133	*S. sp.* SAT1	
Strep32_Mib12	WP_041668842	*S. scabiei* 87.22(1)	
Strep32_Mib13	WP_037726550	*S. scabiei* 87.22(2)	
Strep45_Mib14	WP_075263486	*S. sp.* Tü 6075	
Strep46_Mib15	WP_012378420	*S. griseus subsp. griseus* NBRC 13350	
Strep53_Mib16	WP_014157663	*S. pratensis* ATCC 33331	
Strep54_Mib17	WP_015576150	*S. sp.* PAMC26508	
Strep55_Mib18	WP_078079412	*S. niveus* SCSIO 3406	
Strep59_Mib19	ANW17109	*S. clavuligerus* F613-1	
Strep62_Mib20	WP_055645320	*S. venezuelae* ATCC 15439	
Strep64_Mib21	WP_041132328_1	*S. vietnamensis* GIM4.0001	
Strep65_Mib22	WP_062750724	*S. sp.* WAC00288	
Strep66_Mib23	BAU87358	*S. laurentii* ATCC 31255	
Strep68_Mib24	WP_078095811	*S. sp.* fd1-xmd	
Strep69_Mib25	WP_075971735	*S. sp.* TN58	
Strep70_Mib26	WP_081521483	*S. sp.* Sge12	
Strep71_Mib27	WP_047960430	*S. sp.* Mg1	
Strep72_Mib28	WP_078950304	*S. lavendulae subsp. lavendulae* CCM 3239	
Strep73_Mib29	WP_084775022	*S. sp.* MOE7	
Strep	Mib	Accession	Species
-------	-----	-------------	------------------------
Strep74	Mib30	WP_069571074	*S. lydicus* 103
Strep75	Mib31	WP_109889928	*S. sp.* NEAU-S7GS2
Strep76	Mib32	WP_083108965	*S. gilvosporeus* F607(2)
Strep76	Mib33	WP_083103453	*S. gilvosporeus* F607(1)
Strep77	Mib34	WP_046924697	*S. lydicus* A02(1)
Strep77	Mib35	WP_078984193	*S. lydicus* A02(2)
Strep78	Mib36	WP_039628838	*S. sp.* 769(1)
Strep78	Mib37	WP_078876140	*S. sp.* 769(2)
Strep79	Mib38	WP_079143205	*S. noursei* ATCC 11455
Strep80	Mib39	WP_038524797	*S. albulus* NK660
Strep81	Mib40	WP_020930496	*S. albulus* ZPM
Strep82	Mib41	WP_099012977	*S. malaysiensis* DSM 4137
Strep83	Mib42	WP_079256828	*S. autolyticus* CGMCC0516
Strep84	Mib43	WP_100807892	*S. sp.* M56
Strep85	Mib44	WP_014058647	*S. violaceusniger* Tü 4113
Strep86	Mib45	WP_078645903	*S. hygroscopicus* XM201
Strep87	Mib46	WP_043488086	*S. bingchenggensis* BCW-1
Strep91	Mib47	WP_101423704	*S. sp.* CMB-StM0423
Strep92	Mib48	WP_047016550	*S. sp.* CNQ-509
Table S8: List of *epi*-isozizaene synthases used to build the DTL tree in Figure S8.

Abbreviation	Accession number	Species name
Strep1_Epi1	NP_629369	*S. coelicolor* A3(2)
Strep2_Epi2	AIJ13444	*S. lividans* TK24
Strep3_Epi3	WP_061446904	*S. sp.* CCM MD2014
Strep4_Epi4	WP_078535684	*S. pactum* KLBMP 5084
Strep5_Epi5	WP_064731961	*S. parvulus* 2297
Strep6_Epi6	WP_079155896	*S. ambofaciens* DSM 40697
Strep7_Epi7	WP_079030788	*S. ambofaciens* ATCC 23877
Strep8_Epi8	WP_079160747	*S. pactum* ACT12
Strep9_Epi9	WP_047122496	*S. leeuwenhoekii* C34
Strep10_Epi10	WP_044388300	*S. cyaneogriseus subsp. noncyanogenus* NMWT 1
Strep11_Epi11	WP_029181723	*S. chartreusis* NRRL 3882
Strep12_Epi12	WP_107308381	*S. sp.* S10(2016)
Strep13_Epi13	OSC69340	*S. sp.* 4F(1)
Strep14_Epi14	WP_058917971	*S. sp.* 4F(2)
Strep14_Epi15	WP_099052949	*S. glaucescens* GLA.O
Strep15_Epi16	WP_110630412_1	*S. actuosus* ATCC 25421
Strep16_Epi17	WP_107416269	*S. sp.* CdTB01
Strep17_Epi18	WP_107406875	*S. lincolnensis* NRRL 2936
Strep18_Epi19	WP_107441985	*S. sp.* P3
Strep19_Epi20	WP_108710823	*S. sp.* 452
Strep30_Epi31	WP_107083301	*S. avermitilis* MA-4680
Strep31_Epi32	WP_099500021	*S. sp.* XZHG99
Strep33_Epi33	APY90801	*S. alfalfa* ACCC40021
Strep34_Epi34	WP_098244686	*S. formicae* KY5
Strep35_Epi35	WP_087885793_2	*S. albiflavus* MDJK44
Strep36_Epi36	WP_107071290	*S. albus* BK3-25
Strep37_Epi37	WP_107071290_2	*S. albus* DSM 41398
Strep38_Epi38	WP_030765460	*S. albus* SM254
Strep39_Epi39	WP_008415715	*S. albus* J1074
Sample Name	Barcode	Species Description
-------------------	-----------------	---------------------
Strep40_Epi40	WP_030765460_2	S. sp. FR-008
Strep41_Epi41	AWL34654	S. sp. SM17
Strep42_Epi42	WP_095682130_1	S. sp. CL12509
Table S9. Habitats of the *Streptomyces* species represented in the whole genome-based phylogenetic tree. The species are separated according to the three phylogenetic clades (green, blue and red) shown in the phylogenetic tree in Figure 1.

Organism name	Isolated from	Habitat	Ref	Terpene synthases*
S. coelicolor A3(2)	Soil	Terrestrial	[2]	● ○ ●
S. lividans TK24	Soil	Terrestrial	[3]	● ○ ●
S. sp. CCM MD2014	Soil	Terrestrial	[4]	● ● ●
S. pactum KLBMP 5084	Halophyte plant endophyte	Terrestrial	[5]	● ● ●
S. parvulus 2297	Laboratory (derivative of *S. parvulus* ATCC 12434; soil)	Terrestrial	[6-7]	● ○ ● ●
S. ambofaciens DSM 40697	Soil	Terrestrial	[8]	● ○ ● ●
S. ambofaciens ATCC 23877	Soil	Terrestrial	[9]	● ○ ● ●
S. pactum ACT12	Soil	Terrestrial	[10-11]	● ● ● ●
S. leeuwenhoekii C34	Soil (desert)	Terrestrial	[12]	● ● ● ●
S. cyaneogriseus subsp. noncyanogenus NMWT 1	Soil (sand)	Terrestrial	[13]	● ● ● ●
S. chartreusis NRRL 3882	Soil	Terrestrial	[14]	● ● ● ●
S. sp. S10(2016) (*S. gaidamensis* S10(2016))	Soil (sand)	Terrestrial	[15]	● ● ● ●
S. sp. 4F	Saline lake	Aquatic	[16]	● ● ● ●
S. glaucescens GLA.O	Soil	Terrestrial	[17]	● ● ● ●
S. actuoso ATCC 25421	Soil	Terrestrial	[18]	● ● ● ○
S. sp. CdTB01	Soil (heavy metals contaminated)	Terrestrial	[19]	● ● ○ ●
S. lincolnensis NRRL 2936	Soil	Terrestrial	[20]	● ● ○ ○
S. sp. P3	Potato scab diseased tubers	Terrestrial	[21]	● ○ ○
S. sp. 452 (*S. nigra* 452)	Mangrove soil	Aquatic	[22]	● ● ○
S. hygrosopicus subsp. jinggangensis 5008	Soil	Terrestrial	[23]	● ● ○ ○
S. hygrosopicus subsp. jinggangensis TL01	Laboratory (derivative of strain 5008; soil)	Terrestrial	[24]	● ● ○ ○
S. hygrosopicus subsp. limoneus KCTC 1717	Soil	Terrestrial	[25]	● ○ ○ ●
S. reticuli Tü 45	Soil	Terrestrial	[26]	● ○ ○ ●
S. puniciscabiei TW1S1	Soil (acidic)	Terrestrial	[27]	● ○ ○ ●
S. pluripotens MUSC 137	Mangrove soil	Aquatic	[28]	● ○ ○ ●
S. pluripotens MUSC 135	Mangrove soil	Aquatic	[28]	● ○ ○ ●
S. collinus Tü 365	Soil	Terrestrial	[29]	● ○ ○ ●
Organism name	Isolated from	Habitat	Ref	Terpene synthases*
-------------------------------------	--------------------------------	------------	------	--------------------
S. griseochromogenes ATCC 14511	Soil	Terrestrial	[30]	
S. sp. SAT1	Plant endophyte	Terrestrial	[31]	
S. avermitilis MA-4680	Soil	Terrestrial	[32]	
S. sp. XZHG99 (S. dengpaensis XZHG99)	Desert soil	Terrestrial	[33]	
S. scabiei 87.22	Plant pathogen	Terrestrial	[34]	
S. alfae ACCC40021	Soil (alfalfa rhizosphere)	Terrestrial	[35]	
S. formicae KY5	Plant ant Tetraponera penzigi	Terrestrial	[36]	
S. alboflavus MDJK44	Soil (peony rhizosphere)	Terrestrial	[37]	
S. albus BK3-25	Soil	Terrestrial	[38]	
S. albus DSM 41398	Soil	Terrestrial	[38]	
S. sp. FR-008	Laboratory (derivative of S. hygroscopicus var. yingchengensis; soil)	Terrestrial	[39]	
S. albus J1074 (S. albidoflavus J1074)	Laboratory (derivative of S. albus DSM 41398; soil)	Terrestrial	[40]	
S. albus SM254	Soil (iron mine)	Terrestrial	[41]	
S. sp. SM17	Sponges	Marine	[42]	
S. sp. CL12509	Bracket fungus	Terrestrial	[43]	
S. globisporus THF56	Tomato flower	Terrestrial	[44]	
S. globisporus C-1027	Soil	Terrestrial	[45]	
S. sp. Tü 6075	Soil	Terrestrial	[46]	
S. griseus subsp. griseus NBRC 13350	Soil	Terrestrial	[47]	
S. violaceoruber S21	Seabed sludge	Marine	[48]	
S. sp. CFMR 7	Rubber tree	Terrestrial	[49]	
S. sp. S8	Soil (turfgrass)	Terrestrial	[50]	
S. fulvissimus DSM 40593	unknown	unknown	[51]	
S. sp. SirexAA-E	Woodwasp Sirex noctilio	Terrestrial	[52]	
S. sp. SM18	Marine Sponge Haliclonia simulans	Marine	[42]	
S. pratensis ATCC 33331	Soil	Terrestrial	[53]	
S. sp. PAMC 26508	Antarctic lichen Cladonia borealis	Terrestrial	[54]	
S. niveus SCSIO 3406	Deep sea sediment	Marine	[55]	
S. peucetius subsp. caesium ATCC 27952	Soil	Terrestrial	[56]	
Organism name	Isolated from	Habitat	Ref	Terpene synthases*
---------------	---------------	--------------	------	--------------------
S. pristinaespiralis HCCB 10218	Laboratory (derivative of S. pristinaespiralis ATCC 25486)	unknown [57]	●	
S. lunaelactis MM109	Cave moonmilk deposits	Terrestrial [58]	●	
S. clavuligerus F613-1	Laboratory (derivative of S. clavuligerus ATCC 27064; soil)	Terrestrial [59-60]	● ○	
S. sp. HNM0039	Marine sponge	Marine [61]	●	
S. spongicola HNM0071	Marine sponge	Marine [62]	●	
S. venezuelae ATCC 15439	Soil	Terrestrial [63]	● ○	
S. venezuelae NRRL B-65442	Laboratory (origin unknown)	unknown [64]	●	
S. vietnamensis GIM4.0001	Soil (tropical forest)	Terrestrial [65]	● ○	
S. sp. WAC00288	Soil	Terrestrial [66]	● ○	
S. laurerti ATCC 31255	Soil	Terrestrial [67]	● ○	
S. rubrolavendulae MJM4426	Soil	Terrestrial [68]	● ○	
S. sp. fd1-xmd	Soil	Terrestrial [69]	● ○	
S. sp. TN58	Soil	Terrestrial [70]	● ○	
S. sp. Sge12	Soil (forest)	Terrestrial [71]	● ○	
S. sp. Mg1	Soil	Terrestrial [72]	● ○	
S. lavendulae subsp. lavendulae CCM 3239	unknown	unknown [73]	● ○	

S. sp. MOE7	Soil (agriculture)	Terrestrial [74]	● ○
S. lydicus 103	Soil	Terrestrial [75]	● ○
S. sp. NEAU-S7GS2	Soil	Terrestrial [76]	● ○
S. gilvosporeus F607	Laboratory (derivative of S. gilvosporeus TCC 13326; soil)	Terrestrial [77]	● ○
S. lydicus A02	Soil	Terrestrial [78]	● ○
S. sp. 769	Soil	Terrestrial [79]	● ○
S. soursei ATCC 11455	Soil (dairy farm)	Terrestrial [80]	● ○
S. albuls NK660	Soil	Terrestrial [81]	● ○
S. albuls ZPM	Soil	Terrestrial [82]	● ○
S. malaysiensis DSM 4137	Soil	Terrestrial [83]	● ○ ○ ●
S. autolyticus CGMCC 0516	Soil	Terrestrial [84]	● ○ ○ ●
S. sp. M56	Termites nest	Terrestrial [85]	● ○ ○ ●
S. violaceusniger Tü 4113	Soil	Terrestrial [86]	● ○ ○ ●
Strain Code	Soil Type	Environment	Ref.
S. hygroscopicus XM201	Soil	Terrestrial	[87]
S. bingchenggensis BCW-1	Soil	Terrestrial	[88]
S. albireticuli MDJK11	Soil (peony rhizosphere)	Terrestrial	[37]
S. xiamenensis 318	Mangrove sediment	Aquatic	[89]
S. sp. SCSIO 03032	Marine sediment	Marine	[90]
S. sp. CMB-StM0423	Beach sand	Terrestrial	[91]
S. sp. CNQ-509	Marine sediment	Marine	[92]
S. cattleya NRRL 8057 = DSM 46488	Soil	Terrestrial	[93]

* Terpene synthases:
 - geosmin
 - 2-methylisoborneol-1
 - 2-methylisoborneol-2
 - 2-methylisoborneol-3
 - epi-isozizaene
 - 7-epi-α-eudesmol
 - epi-cubenol
 - caryolan-1-ol
 - cyclooct-9-en-7-ol
 - isoafricanol
 - pentalenene
 - α-amorphene
The pattern of selection in terpene synthase family

To understand the selective pressures that have shaped the distribution of the terpene synthases, we tested evolutionary models implemented in HyPhy, individually with the geosmin, 2-MIB and epi-isozizaene synthases. After discarding redundant sequences, gene sequences encoding geosmin, 2-MIB and epi-isozizaene synthases were aligned. Recombinant regions and regions with long stretches of gaps were detected using RDP (recombinant detection program, [94]) and further trimmed from the sequence alignments. The selection intensity was analysed separately for the three different gene categories. For epi-isozizaene, 27% of sites (116 out of 419 sites) in the coding sequence alignment had dN/dS values lower than 1.0 indicating that they are under negative or purifying selection (p-value threshold of 0.01). This suggests that substitutions in 27% of sites in the coding sequence of the epi-isozizaene synthase gene are being purged and not being maintained. Similarly, 17% of sites (96 out of 559 sites) in the 2-MIB group were also found under negative or purifying selection. On the contrary, for the geosmin synthase gene, a small percentage of the sites were found to be under positive selection. Some sites (54 out of 962, 5.6%) are under positive or diversifying selection (substitutions in these sites are being maintained) and only 0.5% of sites are under negative selection (5 out of 962) (Figure S2). Other evolutionary models (implemented in HyPhy like FUBAR and ABSREL) were also tested. For gene categories epi-isozizaene and 2-MIB, FUBAR detected 156 and 155 sites respectively under negative or purifying selection (with posterior probability of 0.99). In the case of geosmin synthase, FUBAR detected 92 sites under positive or diversifying selection (with posterior probability of 0.99). This suggests that the domains of the geosmin synthase and the function they determine are targeted by selection. A remarkable cluster of codon positions in the N-terminal
domain of geosmin synthases were detected under positive selection. In accordance with this, the N-terminal part of geosmin synthase was shown to be highly conserved among *Streptomyces* and essential for the conversion of FPP to germacradienol and germacrene [95].

Phylogeny of terpene synthases does not correspond to species-level taxonomy

NOTUNG analyses [96] were performed to reconcile an associate tree with a reference tree. Under the cost matrix for duplications, transfers, and losses as used by TreeFix, NOTUNG recovered most parsimonious scenarios with 25 putative transfers and 13 corresponding losses in the geosmin synthase category. However, NOTUNG failed to infer any events in *epi*-isozizaene and 2-MIB categories. This can be explained by inherent topological errors in the maximum-likelihood (ML) trees for *epi*-isozizaene and 2-MIB synthases. Treefix-DTL (duplication-transfer-loss) was used to correct topological inconsistencies in all available terpene synthase trees, including the geosmin synthase tree. The DTL-reconciliation problem is typically solved in a parsimony framework, where costs are assigned to DTL events and the goal is to find reconciliation with minimum total cost [97]. For the individual categories, treefix-DTL minimised the DTL cost and generated trees with minimum reconciliation cost among all the associated trees that have likelihood statistically equivalent to that of the ML trees (Figures S6-S8). Accordingly, the subsequent NOTUNG analysis successfully recovered a minimal number of events in all the three categories. NOTUNG inferred a total of 19 transfers and 10 losses while reconciling the geosmin synthase tree with the *Streptomyces* species whole genome-based tree. Similarly, the number of transfer/loss in *epi*-isozizaene-species tree reconciliation
were 7/4 and with 2-MIB the counts were 22/11. The reconciled trees are available in the Supporting Information (Figures S6–S8).
References

1. Emms, D. M.; Kelly, S. Genome Biol. 2015, 16, 157.2. Bentley, S. D.; Chater, K. F.; Cerdeno-Tarraga, A. M.; Challis, G. L.; Thomson, N. R.; James, K. D.; Harris, D. E.; Quail, M. A.; Kieser, H.; Harper, D.; Bateman, A.; Brown, S.; Chandra, G.; Chen, C. W.; Collins, M.; Cronin, A.; Fraser, A.; Goble, A.; Hidalgo, J.; Hornsby, T.; Howarth, S.; Huang, C. H.; Kieser, T.; Larke, L.; Murphy, L.; Oliver, K.; O’Neil, S.; Rabinowitsch, E.; Rajandream, M. A.; Rutherford, K.; Rutter, S.; Seeger, K.; Saunders, D.; Sharp, S.; Squares, R.; Squares, S.; Taylor, K.; Warren, T.; Wietzorrek, A.; Woodward, J.; Barrell, B. G.; Parkhill, J.; Hopwood, D. A. Nature 2002, 417 (6885), 141-147.

2. Bentley, S. D.; Chater, K.; Cerdeno-Tarraga, A. M.; Challis, G. L.; Oliver, K.; O'Neil, S.; Rabinowitsch, E.; Rajandream, M. A.; Rutherford, K.; Rutter, S.; Seeger, K.; Saunders, D.; Sharp, S.; Squares, R.; Squares, S.; Taylor, K.; Warren, T.; Wietzorrek, A.; Woodward, J.; Barrell, B. G.; Parkhill, J.; Hopwood, D. A. Nature 2002, 417 (6885), 141-147.

3. Ruckert, C.; Albersmeier, A.; Busche, T.; Jaenicke, S.; Winkler, A.; Friethjonsson, O. H.; Hreggviethsson, G. O.; Lambert, C.; Badcock, D.; Bernaerts, K.; Anne, J.; Economou, A.; Kalinowski, J.; J. Biotechnol. 2015, 199, 21-2.

4. Mariita, R. M.; Bhatnagar, S.; Hanselmann, K.; Hossain, M. J.; Korlach, J.; Boitano, M.; Roberts, R. J.; Liles, M. R.; Moss, A. G.; Leadbetter, J. R.; Newman, D. K.; Dawson, S.; Thibessard, A.; Haas, D.; Gerbaud, C.; Aigle, B.; Lautru, S.; Pernodet, J. L.; Leblond, P. J. Biotechnol. 2015, 214, 117-8.

5. Qin, S.; Feng, W. W.; Wang, T. T.; Ding, P.; Xing, K.; Jiang, J. H. Plant and Soil 2017, 416 (1-2), 117-132.

6. Nishizawa, T.; Miura, T.; Harada, C.; Guo, Y.; Narisawa, K.; Ohta, H.; Takahashi, H.; Shirai, M. Genome Announc. 2016, 4 (4).

7. Kirby, R.; Hopwood, D. A. Microbiology 1977, 98 (1), 239-252.

8. Thibessard, A.; Leblond, P. Genome Announcements 2016, 4 (3), e00470-16.

9. Thibessard, A.; Haas, D.; Gerbaud, C.; Aigle, B.; Lautru, S.; Pernodet, J. L.; Leblond, P. J. Biotechnol. 2015, 214, 117-8.

10. Zhao, J. X., Quan-Hong; Wang, Ling-Na; Duan, Chun-Mei; Xue, Lei; Mao, Ning. Chinese Journal of Eco-Agriculture 2011, 19, 394-398.

11. Cao, S.; Wang, W.; Wang, F.; Zhang, J.; Wang, Z.; Yang, S.; Xue, Q. Environ Sci Pollut Res Int 2016, 23 (15), 14898-907.

12. Busarakam, K.; Bull, A. T.; Girard, G.; Labeda, D. P.; van Wezel, G. P.; Goodfellow, M. Antonie Van Leeuwenhoek 2014, 105 (5), 849-61.

13. Wang, H.; Li, C.; Zhang, B.; He, H.; Jin, P.; Wang, J.; Zhang, J.; Wang, X.; Xiang, W. J. Biotechnol. 2015, 204, 1-2.

14. Doroghazi, J. R.; Ju, K. S.; Brown, D. W.; Labeda, D. P.; Deng, Z.; Metcalf, W. W.; Chen, W.; Price, N. P. J. Bacteriol. 2011, 193 (24), 7021-2.

15. Zhang, B.; Tang, S.; Chen, X.; Zhang, G.; Zhang, W.; Chen, T.; Liu, G.; Li, S.; Dos Santos, L. T.; Castro, H. C.; Facey, P.; Hitchings, M.; Dyson, P. J. Antibiot. (Tokyo) 2018, 71 (10), 880-886.

16. Cornell, C. R.; Marasini, D.; Fakhr, M. K. Front. Microbiol. 2018, 9, 2282.

17. Ortseifen, V.; Winkler, A.; Albersmeier, A.; Wendler, S.; Puhler, A.; Kalinowski, J.; Ruckert, C. J. Biotechnol. 2015, 194, 81-3.

18. Dosch, D. C. S., William R; Floss, Heinz G. Biochem. Biophys. Res. Commun. 1988, 156 (1), 517-523.

19. Zhou, G.; Yang, H.; Zhou, H.; Wang, C.; Fu, F.; Yu, Y.; Lu, X.; Tian, Y. J. Biotechnol. 2016, 229, 42-3.

20. Meng, S. C., Enhancement of antibiotic productions by engineered nitrateutilization in actinobacteria. GenBank, 2016.

21. Kang, M. K. P., Duck Hwan Korean J. Microbiol. 2018, 54 (2), 158-160.

22. Chen, C., Streptomyces nigra sp. nov. is a Novel Actinobacterium Isolated from Mangrove Soil and a Potential Inhibitor of Human Cancer Cell Lines. GenBank, 2018.

23. Yu, Y.; Bai, L.; Minagawa, K.; Jian, X.; Li, L.; Li, J.; Chen, S.; Cao, E.; Mahmud, T.; Floss, H. G.; Zhou, X.; Deng, Z. Appl. Environ. Microbiol. 2005, 71 (9), 5066-76.
53. Rong, X.; Doroghazi, J. R.; Cheng, K.; Zhang, L.; Buckley, D. H.; Huang, Y. *Syst. Appl. Microbiol.* **2013**, *36* (6), 401-7.
54. Shin, S. C. P., H.; Genome sequence of *Streptomyces* sp. PAMC26508, isolated from Antarctic lichen *Cladonia borealis*. https://www.pacb.com/wp-content/uploads/Poster_GenomeSequencing_EndosymbioticBacteriaStreptomyces_AntarcticLichen_SMRTTechnology.pdf.
55. Song, Y.; Huang, H.; Chen, Y.; Ding, J.; Zhang, Y.; Sun, A.; Zhang, W.; Ju, J. *J. Nat. Prod.* **2013**, *76* (12), 2263-8.
56. Stutzman-Engwall, K. J. H., R. *Proc. Natl. Acad. Sci. USA* **1989**, 86, 3135-3139.
57. Huang, H.; Zheng, G.; Jiang, W.; Hu, H.; Lu, Y. *Acta Biochim. Biophys. Sin.* **2015**, 61 (4), 231-43.
58. Maciejewska, M.; Pessi, I. S.; Arguelles-Arias, A.; Noirfalise, P.; Luis, G.; Ongena, M.; Barton, H.; Carnol, M.; Rigali, S. *Antonie Van Leeuwenhoek* **2015**, *107* (2), 519-31.
59. Cao, G.; Zhong, C.; Zong, G.; Fu, J.; Liu, Z.; Zhang, G.; Qin, R. *Genome Announc.* **2016**, *4* (5).
60. Li, J.; Zhao, Z.; Zhong, W.; Zhong, C.; Zong, G.; Fu, J.; Cao, G. *3 Biotech.* **2018**, *8* (11), 472.
61. Huang, X. Z., S., Complete genome sequence of sponge-derived *Streptomyces* sp. **2018**.
62. Ho, L. K. N., J. R., *Streptomyces* sp. WAC00288 complete genome. **2018**.
63. Cheng, J.; Park, S. B.; Kim, S. H.; Yang, S. H.; Suh, J. W.; Lee, C. H.; Kim, J. G. *J. Appl. Microbiol.* **2016**, *120* (4), 975-85.
64. Yu, Y.; Tang, B.; Dai, R.; Zhang, B.; Chen, L.; Yang, H.; Zhao, G.; Ding, X. *Appl. Microbiol. Biotechnol.* **2018**, *102* (6), 2621-2633.
65. Najah, S.; De Leon, K. B.; Amin, M. A.; Hussein, M. M. D.; Ali, A. E.; Wall, J. *D. Genome Announc.* **2017**, *5* (34), e00828-17.
66. Jia, N.; Ding, M. Z.; Luo, H.; Gao, F.; Yuan, Y. *J. Sci. Rep.* **2017**, *7*, 44786.
67. Huang, S.-X. W., Xiang-Jing; Yan, Yijun; Wang,Ji-Dong; Zhang, Ji; Liu, Chong-Xi; Xiang, Wen-Sheng; Shen, Ben. *Org. Lett.* **2012**, *14* (5), 1254-1257.
68. Zong, G.; Zhong, C.; Fu, J.; Zhao, Z.; Cao, G. *Genome Announc.* **2018**, *6* (1), e01402-17.
79. Du, Q. W., Q.; Li, Q.; Wang, L.; Zhang, Z.; Ren, J.; Wang, J.; Wang, M.; Complete Genome Sequence of *Streptomyces gongzhulingensis*. 2012.
80. Ruckert, C.; Albersmeier, A.; Winkler, A.; Zotchev, S.; Kalinowski, J.; Complete genome sequence of *Streptomyces noursei* ATCC 11455, a producer of the medically important antifungal antibiotic nystatin. 2015.
81. Gu, Y.; Yang, C.; Wang, X.; Geng, W.; Sun, Y.; Feng, J.; Wang, Y.; Quan, Y.; Che, Y.; Zhang, C.; Gong, T.; Zhang, W.; Gao, W.; Zuo, Z.; Song, C.; Wang, S. *Genome Announc.* 2014, 2 (3).
82. Wang, L.; Gao, C.; Tang, N.; Hu, S.; Wu, Q. *Sci. Rep.* 2015, 5, 9201.
83. Rabe, P.; Samborskyy, M.; Leadlay, P. F.; Dickschat, J. S. *Org. Biomol. Chem.* 2017, 15 (11), 2353-2358.
84. Yin, M.; Jiang, M.; Ren, Z.; Dong, Y.; Lu, T. *J. Biotechnol.* 2017, 252, 27-31.
85. Kim, K. H.; Ramadhar, T. R.; Beemelmanns, C.; Cao, S.; Poulsen, M.; Currie, C. R.; Clardy, J. *Chem. Sci.* 2014, 5 (11), 4333-4338.
86. Höltzel, A.; Kempter, C.; Metzger, J. W.; Jung, G. *J. Antimicrob. Chemother.* 1998, 51 (8), 699-707.
87. Wang, X.; Ning, X.; Zhao, Q.; Kang, Q.; Bai, L. *Biotechnol. J.* 2017, 12 (11).
88. Wang, X. J.; Yan, Y. J.; Zhang, B.; An, J.; Wang, J. J.; Tian, J.; Jiang, L.; Chen, Y. H.; Huang, S. X.; Yin, M.; Zhang, J.; Gao, A. L.; Liu, C. X.; Zhu, Z. X.; Xiang, W. S. *J. Bacteriol.* 2010, 192 (17), 4526-7.
89. Xu, M. J.; Wang, J. H.; Bu, X. L.; Yu, H. L.; Li, P.; Ou, H. Y.; He, Y.; Xu, F. D.; Hu, X. Y.; Zhu, X. M.; Ao, P.; Xu, J. *Sci. Rep.* 2016, 6, 18977.
90. Ma, L.; Zhang, W.; Zhu, Y.; Zhang, G.; Zhang, H.; Zhang, Q.; Zhang, L.; Yuan, C.; Zhang, C. *Appl. Microbiol. Biotechnol.* 2017, 101 (15), 6123-6136.
91. Khalil, Z. G.; Cruz-Morales, P.; Licona-Cassani, C.; Marcellin, E.; Capon, R. J. *ISME J.* 2018.
92. Ruckert, C.; Leipoldt, F.; Zeyhle, P.; Fenical, W.; Jensen, P. R.; Kalinowski, J.; Heide, L.; Kaysser, L. *J. Biotechnol.* 2015, 216, 140-1.
93. Li, P.; Tai, C.; Deng, Z.; Gan, J.; Oggioni, M. R.; Ou, H. Y. *Sci Rep* 2016, 6, 32047.
94. Martin, D. P.; Murrell, B.; Golden, M.; Khoosal, A.; Muhire, B. *Virus Evol.*, 2015, 1, vev003.
95. Jiang, J.; He, X.; Cane, D. E. *Nat. Chem. Biol.*, 2007, 3, 711-715.
96. Darby, C. A.; Stolzer, M.; Ropp, P. J.; Barker, D.; Durand, D. *Bioinformatics*, 2017, 33, 640-649.
97. Bansal, M. S.; Wu, Y.-C.; Alm, E. J.; Kellis, M. *Bioinformatics*, 2015, 31, 1211-1218.