Evolution of the multi-tRNA synthetase complex and its role in cancer

Do Young Hyeon1,*, Jong Hyun Kim2,3,*, Tae Jin Ahn4, Yeshin Cho1, Dahee Hwang1,5,#, and Sunghoon Kim2,3,#

From 1Center for Plant Aging Research, Institute for Basic Science, DGIST, Daegu 711-873, Republic of Korea; 2Medicinal Bioconvergence Research Center and 3Department of Molecular Medicine and Biopharmaceutical Sciences, College of Pharmacy and Graduate School of Convergence Technologies, Seoul National University, Seoul 151-742, Republic of Korea; 4Handong Global University, Nehemiah 316, Handong-ro 558, Pohang, Republic of Korea; and 5Department of New Biology, DGIST, Daegu 711-873, Republic of Korea.

Running title: The Multi-tRNA Synthetase Complex in Cancer

*These authors equally contributed to this work.

#To whom correspondence should be addressed:

Medicinal Bioconvergence Research Center and Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea. Phone: 82-2-880-8180; Fax: 82-2-875-2621; E-mail: sungkim@snu.ac.kr;

Department of New Biology and Center for Plant Aging Research, Institute of Basic Science, DGIST, 333 Techno jungang-daero, Hyeonpung-myeon, Dalseong-gun, Daegu 711-873, Republic of Korea, Phone: 82-53-785-1840; Fax: 82-53-785-1809; E-mail: dhwang@dgist.ac.kr

Keywords: aminoacyl-tRNA synthetases, multi-tRNA synthetase complex, cancer, disease, protein synthesis, translation, evolution, protein-protein interaction, gene ontology, network analysis

ABSTRACT

Aminoacyl-tRNA synthetases (ARSs) are enzymes that ligate their cognate amino acids to tRNAs for protein synthesis. However, recent studies have shown that their functions are expanded beyond protein synthesis through the interactions with diverse cellular factors. In this review, we discuss how ARSs have evolved to expand and control their functions by forming protein assemblies. We particularly focus on a macromolecular ARS complex in eukaryotes, named multi-tRNA synthetase complex (MSC), which is proposed to provide a channel through which tRNAs reach bound ARSs to receive their cognate amino acid and transit further to the
translation machinery. Approximately half of the ARSs assemble into the MSC through cis-acting noncatalytic domains attached to their catalytic domains and trans-acting factors. Evolution of the MSC included its functional expansion, during which the MSC interaction network was augmented by additional cellular pathways present in higher eukaryotes. We also discuss MSC components that could be functionally involved in the pathophysiology of tumorigenesis. For example, the activities of some trans-acting factors have tumor-suppressing effects or maintain DNA integrity and are functionally compromised in cancer. On the basis of Gene Ontology analyses, we propose that the regulatory activities of the MSC-associated ARSs mainly converge on five biological processes, including mTOR and DNA repair pathways. Future studies are needed to investigate how the MSC-associated and free ARSs interact with each other and other factors in the control of multiple cellular pathways, and how aberrant or disrupted interactions in the MSC can cause disease.

In light of their integral catalytic roles that link the genetic code to protein (1-3), ARSs are thought to have ancient origins and to have evolved to meet the demands of accurate protein synthesis and complex system development. During evolution, the ARSs have progressively adopted additional domains that mediate interactions with cellular factors involved in functions beyond protein synthesis, while keeping their catalytic domains relatively well conserved (4-6). Thus, these acquired domains appear to be responsible for the functional expansion of the attached enzymes.

Eukaryotic ARSs fall into two groups based on their capability to associate with a multi-tRNA synthetase complex (MSC) or to remain free (7, 8). The mammalian MSC consists of nine cytoplasmic ARSs (glutamyl-prolyl-, isoleucyl-, leucyl-, methionyl-, glutaminyl-, lysyl-, arginyl-, aspartyl-tRNA synthetase) and three non-enzyme components, the ARS-interacting multi-functional proteins (AIMPs) 1-3 (9, 10). Herein, we will refer to the MSC components as “MSC-ARSs” and those ARSs not localized to the MSC as “Free-ARSs.” The formation of the MSC appears to facilitate specific amino acid charging to the incoming tRNAs (11, 12) and delivery of the charged tRNAs to the protein synthesis machinery (13-15).

ARSs first bind adenosine triphosphate (ATP) and their corresponding amino acid to form an aminoacyl-adenylate, releasing inorganic pyrophosphate (PP\(_i\)). The aminoacyl-adenylate-enzyme complex then binds the substrate tRNA and the amino acid is transferred from the aa-AMP to either the 2’-OH or the 3’-OH at the 3’-end of tRNA. Once the tRNA is charged, the amino acid is transferred from the tRNA to ribosome onto a growing peptide, guided by the genetic code.

Although the structure and function of the mammalian MSC in its entirety remain enigmatic, a few sub-complex structures recently have been revealed (16, 17). Interestingly, the MSC components dissociate from the complex upon various stresses and stimuli and interact with cellular factors to delineate their non-catalytic functions (5, 6).

While the MSC is not present in prokaryotes, a primitive form of the complex consisting of glutamyl- (ERS) and methionyl-tRNA synthetase (MRS) and an auxiliary factor (Arc1p) has been detected in \(S.\ cerevisiae\) (18). These findings suggest an evolutionary expansion in the size of the MSC and the interaction network among its components throughout evolution. In addition to tRNA charging, the MSC components have been shown to play crucial roles in fundamental biological processes such as transcription, translation, DNA repair, and various signaling pathways in extra- as well as intracellular space (19-21). In this review, we describe some of the MSC components that have been previously shown to positively or negatively control tumorigenesis in different pathways. We also
present an evolutionary analysis of the MSC from yeast to mammals to gain a more systematic view of the MSC’s role in the control of cancer-related pathways. Considering the significance of the mTOR and DNA-repair pathways in cancer, our review also highlights additional MSC components that could be involved in the regulation of these pathways.

Formation of the MSC

Several ARSs assemble to form the MSC through cis-acting non-catalytic domains attached to their catalytic domains as well as the three trans-acting factors, AIMP1, 2 and 3 (22-26). For instance, GST-homology domains were inserted to EPRS (glutamyl-prolyl-tRNA synthetase), MRS, AIMP2 and AIMP3, while WHEP domains were embedded in EPRS and MRS. Leucine zipper motifs are found in the N-terminal regions of RRS, AIMP1 and AIMP2 (Fig. 1A). N-terminal helical motifs were also added to KRS and DRS. Unique additional domains were attached to the N-terminal end of QRS and the C-terminal ends of IRS and LRS. These appended domains are involved in MSC formation, interaction with other proteins, and mediation of new function. Among trans-acting factors, AIMP2 appears to serve as a critical nucleation factor, mediating multiple interactions with many ARS components (27, 28). For this reason, depletion of AIMP2 triggers a massive disintegration of the MSC (29).

Among these interactions is the KRS (lysyl-tRNA synthetase) dimer’s anchorage to the N-terminal peptide region of AIMP2 within the MSC (16) (Fig. 1B, left). Also, AIMP1 specifically interacts with the non-catalytic N-terminal extensions of RRS (arginyl-tRNA synthetase) and QRS (glutaminyl-tRNA synthetase) to form a heterotrimeric complex (30) (Fig. 1B, middle). AIMP3 and MRS are connected through their GST-homology domains (17) (Fig. 1B, right). This complex is further extended to form a stable heterotetramer with the GST-homology domains embedded in EPRS and AIMP2 (17).

These sub-complexes are further connected to form the whole MSC (Fig. 1C). For instance, the KRS-AIMP2 sub-complex is linked to the MRS-AIMP3-EPRS-AIMP2 sub-complex via the shared GST-homology domains. There is a report showing that IRS can be anchored to EPRS via its C-terminal added domain (31), and IRS, LRS and EPRS are interdependent for their cellular stability (32), implying that these three largest enzyme components may be positioned in proximity. The whole complex containing all the components of MSC can form symmetrically duplicated via homodimerization of DRS and PRS. One of the potential arrangements of the MSC components is schematically shown in Fig. 1C.

The MSC is thought to provide a channel through which tRNAs transit to the bound ARSs for aminoacylation and also to the translation machinery for protein synthesis. For instance, AIMP1, which is anchored to the N-terminal extension of RRS, can facilitate the delivery of the substrate tRNA to the catalytic cleft of RRS (33). AIMP3, which is specifically bound to MRS, relays the methionylated initiator tRNA to the initiator complex (11).

The MSC is also hypothesized to facilitate the delivery of amino acids to the corresponding enzymes within the complex (12, 34). Elucidation of the detailed mechanisms for the delivery of tRNAs and amino acids awaits further in-depth analysis.

Pathophysiological Implications of the MSC in Cancer

To explore the evidence linking ARSs with human diseases, we surveyed research articles focusing on the association of ARSs and human diseases published within the past 50 years. Since 1970, reports describing the association of ARSs with cancer are most frequent, implying the potential significance of ARSs in cancer biology (Fig. S1). In recent years, the number of
studies implicating ARS with other diseases has rapidly increased as well.

While the MSC components appear to work together as a complex for protein synthesis, components of the complex can dissociate in response to specific signals and translocate to various cellular locations, where they interact with other proteins to regulate biological processes beyond protein synthesis (4, 35). Among diverse signaling pathways involving MSC components, some of the representative pathways that are functionally related to cancer are schematically shown in Fig. 2A (see figure legend for more details). For instance, AIMP2 exerts a potent tumor suppressive activity through its interactions with key factors in the TGF-β, TNF-α, Wnt and p53 pathways (36-39). Moreover, cancer cells produce a splicing variant of AIMP2 lacking exon 2 that compromises AIMP2’s tumor suppressive activities (40). For these activities, loss of a single AIMP2 allele enhances the cell and in vivo cancer susceptibility (41). AIMP1 plays multiple roles in both the intracellular and extracellular space. Relevant to tumorigenesis, secreted AIMP1 not only stimulates immune responses but also suppresses tumor vascularization (42, 43). Thus, systemic administration of purified AIMP1 exerts a potent tumor suppressive activity (44, 45).

Deletion of AIMP3 both in embryonic and adult stages induces severe and lethal DNA damage (46, 47), suggesting the vital role of AIMP3 for maintaining the integrity of cellular DNA. AIMP3 is normally tightly bound to the N-terminal GST-homology domain of MRS via its similar domain and serves as a conduit for the passage of the methionine-charged tRNA to initiation complex, as mentioned earlier (11) (Fig. 2B). However, it is dissociated from MRS upon DNA damage due to the conformational change of MRS that is phosphorylated by GCN2 at serine 662 (48). The phosphorylated MRS becomes catalytically inactive because it cannot bind tRNAMet anymore. Thus, MRS appears to work as a crucial regulator of translational initiation together with eIF2α as a substrate of GCN2. The AIMP3 dissociated from MRS is then mobilized to the nucleus to activate p53 through ataxia telangiectasia mutated (ATM) and ATM and RAD3-related (ATR) proteins (21, 49). Thus, the MRS-AIMP3 axis functionally coordinate the nuclear DNA replication and repair process with cytosolic protein synthesis.

While AIMP shows tumor suppressive activities through their unique mechanisms, specific ARSs in the complex also appear to control cancer-associated pathways. For instance, LRS (leucyl-tRNA synthetase) stimulates the activity of the mammalian target of rapamycin (mTOR) by interacting with Ras-related GTP-binding protein D (RagD) to promote cellular protein synthesis and proliferation upon leucine treatment (50-52) (Fig. 2A). KRS is translocated to the nucleus where it mediates transcriptional control (53), and to the cell membrane where it augments laminin-dependent cell migration, which leads to cancer metastasis (54, 55). KRS is also secreted from cancer cells to attract immune cells (56).

Another example of ARS involvement in cancer-associated pathways is MRS, which is translocated to the nucleus to stimulate rRNA synthesis upon growth signals (15). It can also bind and stabilize CDK4 to promote the cell cycle (57). QRS binds to apoptosis signal-regulating kinase 1 (ASK1) to regulate apoptosis in a glutamine-dependent manner (58), and EPRS can repress VEGF-A synthesis at translational suppression of its mRNA (59, 60) (Fig. 2A).

To test the extent to which expression levels of ARSs are relevant to the survival of cancer patients, we estimated the expression levels of the MSC components from the mRNA-sequencing data generated from 26 types of human cancers available in The Cancer Genome Atlas (TCGA). For each MSC component, we aligned them based on the expression levels in the individual types of cancers (Table S1), and then divided the patients into the top 25% and bottom 25% expression groups and compared the two groups for survival. Interestingly, ARS and AIMP expression levels appear to
significantly affect cancer patient survival although the relationship varies depending on the type of ARS/AIMPs and cancer. Among the MSC components, reduced survival is correlated with IRS overexpression in liver hepatocellular carcinoma, MRS overexpression in breast invasive carcinoma, and AIMP1 overexpression in head and neck squamous cell carcinoma (Fig. S2). These data strongly suggest the pathological significance of ARS and AIMP expression for tumorigenesis.

Comparison of ARS Networks among Different Species

Evolution of the MSC included its functional expansion by augmenting the MSC interaction network with additional cellular pathways present in higher eukaryotes. To understand the expansion of the MSC interaction network, we investigated the characteristics of ARS interaction networks in five different species. From 10 interactome databases, we collected protein-protein interaction (PPI) data for ARSs and AIMPs in *S. cerevisiae* (1718 PPIs), *C. elegans* (567 PPIs), *D. melanogaster* (1308 PPIs), *M. musculus* (497 PPIs), and *H. sapiens* (1963 PPIs) (Table S2). The numbers of ARS/AIMP interactors that participate in these PPIs were 710, 177, 736, 155, and 958 for *S. cerevisiae*, *C. elegans*, *D. melanogaster*, *M. musculus* and *H. sapiens*, respectively (Fig. 3A). The numbers of PPIs and ARS/AIMP interactors in *C. elegans* and *M. musculus* were smaller than expected, perhaps due to the smaller amount of PPI data available for these species.

MSC- and Free-ARSs showed a relatively similar number of interactors in most of the species and shared some interacting partners (Fig. 3A). Among MSC-ARSs, EPRS showed a higher number of interactors compared to other components (Fig. 3B). EPRS is a unique, bifunctional tRNA synthetase consisting of the two different catalytic units that ligate Glu and Pro to cognate tRNAs. The two catalytic domains are joined by a non-catalytic linker containing three tandem WHEP domains (31, 61). The large EPRS polypeptide containing the two catalytic units with GST domain (12) and three WHEP domains (62-64) appears to accommodate many cellular interactors (59-61, 65, 66).

The network size and density of the MSC increases from yeast to mammals, suggesting that the MSC might play a role in the system development of complex organisms (Fig. 3C). We assessed the extent to which each ARS and AIMP pair shared interactors in each species, using the connection specificity index (CSI) measure as previously described (67, 68). Among the five species, the MSC components in higher eukaryotes (*D. melanogaster*, *M. musculus* and *H. sapiens*) showed a higher degree of shared interactors relative to the Free ARSs (Fig. 3D), suggesting that they could work in more coordinated manner.

Functional Expansion of the MSC Throughout Evolution

To understand how the MSC- and Free-ARSs have expanded their functions beyond their catalytic roles in the five species, we performed enrichment analysis of gene ontology biological processes (GOBPs) for the ARS interactors. Based on the enrichment significances (*p*-values), the following five cellular processes were significantly (*p* < 0.05) enriched by the interactors of MSC-ARSs in *H. sapiens* (Fig. 4A and B). Those include DNA replication (DNA repair and replication), RNA processing (tRNA modification and RNA processing), protein homeostasis (translation, protein localization and proteolysis), intracellular signaling (mTOR, Wnt, MAPK and NF-κB signaling), and immune responses (defense response, phagocytosis and viral process). Interestingly, these processes were similarly enriched by the interactors of Free-ARSs in *H. sapiens*, although Free-ARSs showed relatively less shared interactors, compared to MSC-ARSs (Fig. 3D). In the other eukaryotes, fewer processes were enriched by the interactors of the MSC- or Free-ARSs with the similar enrichment patterns across the
species (Fig. 4A), and the enrichment scores were less significant than those in *H. sapiens* (Fig. 4B and C). These data suggest that the MSC- and Free-ARS have not separately evolved for different functions (Fig. 4A). Combined together, it appears that non-catalytic functions of the MSC- and Free-ARS appear to have commonly expanded toward the five biological processes (Fig. 4A and B) and this conclusion is most apparent in *H. sapiens*.

Implications of the MSC in mTOR Signaling and DNA Repair

Among the aforementioned five cellular processes, we focused on further examining the mTOR and DNA repair pathways, since these processes are known to play crucial roles in tumorigenesis, and some of the MSC components have been shown to be involved in their control (Fig. 2A). Previously, leucyl-tRNA synthetase (LRS) has been shown to interact with the RagD GTPase to activate the mTORC1 pathway (50, 51). Using the human ARS interactome, we built a network model describing interactions of the MSC components with the factors involved in the mTOR pathway. For each interacting pair of the MSC component and the factor, we further evaluated the correlations between mRNA levels and patient survival (shown in Fig. S2) and considered the interaction to be potentially active when both interactors have significant mRNA-survival correlations in at least one of 26 cancer types tested. The network model further suggests that in addition to LRS, DRS, RRS, IRS, KRS, QRS and EPRS also showed potential active interactions with different factors in the MAPK and PI3K-AKT pathways, which are upstream of the mTOR pathway (Fig. 5A). The network model also suggests that IRS and QRS have potential active interactions with downstream molecules in the mTOR pathway (Fig. 5A). In addition, the data revealed active interactions of AIMP3, DRS, and EPRS with different components of the vacuolar H(+)-ATPases that localize to the phagosome, late endosome or lysosome membranes (Fig. 5A).

We also built a network model describing interactions of the MSC components with molecules involved in DNA repair (Fig. 5B). Among various DNA repair mechanisms, we focused on the homologous recombination (HR)-based DNA repair pathway since it included the largest number of the ARS interactors. AIMP3 was shown to facilitate DNA repair through homologous DNA recombination (46, 47), although its additional role in non-homologous DNA recombination is not excluded. The network model revealed four instances in which MSC-ARSs/AIMPs interact with core molecules in the HR-based DNA repair pathway (Fig 5B). For example, LRS, AIMP2, DRS, QRS, or EPRS showed potential active interactions with H2AFX, MRE11A, RAP1/2/3, or XRCC3 throughout the HR-based DNA repair pathway, as well as ABL1 or ATR, the modulators of the pathway. Together, these data suggest that the MSC components are functionally linked to the mTORC1 and HR-based DNA repair pathways, systematically interacting with the core, upstream, downstream, and/or modulating factors in the pathways. The detailed working mechanisms for the individual interactions in the network models need further investigation.

ARS and Disease

Having been equipped with both the catalytic activities for protein synthesis and additional arms to mediate diverse molecular interactions, ARSs are uniquely positioned to be coordinators of system development, intrinsic defense mechanisms, and homeostasis. As much as their functional significance, aberrant expression, mutations, splicing variant formation and secretion of ARSs can result in diverse pathologic symptoms. For instance, mutations in GRS (glycyl-tRNA synthetase), YRS (tyrosyl-tRNA synthetase), AlaRS (alanyl-tRNA synthetase), HRS (histidyl-tRNA synthetase), KRS, and MRS are associated with Charcot-Marie-Tooth (CMT) disease, a
peripheral neuropathy (69-77). The uncontrolled extracellular localization of several different ARSs can elicit the formation of autoantibodies that provokes the immune system, resulting in antisynthetase syndrome, an autoimmune disease (78-84).

Aminoacyl-tRNA biosynthesis has been shown to be highly upregulated in cancer metabolism (85), perhaps because of the increased demand for protein synthesis in cancer. Accordingly, higher activities of ARSs are expected to be present in cancer, and indeed, increased expression of ARSs is frequently observed in many types of cancers. While ARSs can be catalytically involved in protein synthesis and cancer metabolism, each ARS or AIMP may be specifically involved in a certain type of cancer through non-catalytic mechanisms. Mutations in the ARS/AIMP-encoding genes have not been found as frequently as those in the well-known oncogenes. Nonetheless, the proline 42 to alanine mutation of human cytoplasmic GRS was found in nearly 40% of adenoid cystic carcinoma patients (86), although whether these mutations are causal awaits further investigation. Cancer-specific variant formation and protein-protein interactions of ARSs and AIMPs also deserve attention. As mentioned earlier, AIMP2-DX2, a splicing variant that lacks exon 2 of AIMP2, is expressed in various cancers, compromising the tumor suppressive activities of AIMP2 (40, 41). In p16-negative cancers, MRS appears to bind and stabilize CDK4, resulting in the promotion of the cell cycle (57). In light of the ARSs connection to cancer, their cancer-specific expression, variant formation, and protein-protein interactions represent promising novel targets for developing anti-cancer therapeutics. Moreover, the immune modulation activities of the secreted ARSs and AIMPs suggest they may serve as a novel resource for cancer immunotherapy and vaccines.

Perspectives

Despite the MSC’s significant role in protein synthesis and system control, understanding its structural features and dynamic nature is still in its infancy. In light of the multi-dimensional functionality of the MSC components, the tight regulation of their catalytic and non-catalytic activities is critical to prevent pathogenesis resulting from uncontrolled behaviors. In this context, MSC formation provides an effective mechanism for tight yet dynamic control of its components, which are constitutively expressed and ubiquitous in all cells. While still working in protein synthesis as catalysts, a subset of ARSs can exist within the MSC where they are poised for rapid response to incoming stresses and stimuli.

The network analysis of ARSs revealed intriguing features of the MSC. First, although MSC components are more tightly bound to each other than Free-ARSs, they may communicate with Free-ARSs (Fig. 3C). Second, MSC-ARSs interact with the same cellular factors to a higher degree than with Free-ARSs (Fig. 3D). Third, beyond their catalytic roles in protein synthesis, the regulatory activities of MSC-ARSs mainly converge on five biological processes (Fig. 4A): DNA repair, RNA processing, protein homeostasis, intracellular signaling, and immune responses. Interestingly, these processes are positively or negatively implicated in tumorigenesis. Fourth, the MSC components may be involved in these processes as components of sub-complexes or modules involving multiple components rather than as a single regulatory factor. Future in-depth and systematic investigations will be necessary to understand how the MSC components communicate with each other and with Free-ARSs and diverse cellular factors.

Acknowledgments

This work was supported by the Global Frontier Project grant (NRF-M1AXA002-2010-0029785) and the Institute for Basic Science (IBS-R013-G1) funded by Korean Ministry of Science, ICT, and Future Planning. We thank Dr. Bum Sik Kang at Kyungbook National University for kind help to make the whole MSC model.
Conflict of interest statement

The authors declare that they have no conflicts of interest with the contents of this article.

References

1. McClain, W.H. (1993) Rules that govern tRNA identity in protein synthesis. *J Mol Biol* **234**, 257-280. 10.1006/jmbi.1993.1582

2. Swanson, R. *et al.* (1998) Accuracy of in vivo aminoacylation requires proper balance of tRNA and aminoacyl-tRNA synthetase. *Science* **242**, 1548-1551. 10.1126/science.3144042

3. Delarue, M. (1995) Aminoacyl-tRNA synthetases. *Curr Opin Struct Biol.* **5**, 48-55. 10.1016/0959-440X(95)80008-O

4. Kim, S., You, S., and Hwang, D. (2011) Aminoacyl-tRNA synthetases and tumorigenesis: more than housekeeping. *Nat Rev Cancer* **11**, 708-718. 10.1038/nrc3155

5. Lee SW, Cho BH, Park SG, and Kim S. (2004) Aminoacyl-tRNA synthetase complexes: beyond translation. *J Cell Sci.* **117**, 3725-3734. 10.1242/jcs.01342

6. Guo, M., Yang, X.L., and Schimmel, P. (2010) New functions of tRNA synthetases beyond translation. *Nat Rev Mol Cell Biol.* **11**, 668-674. 10.1038/nrm2956

7. Quevillon, S. and Mirande, M. (1996) The p18 component of the multisynthetase complex shares a protein motif with the beta and gamma subunits of eukaryotic elongation factor 1. *FEBS Lett.* **395**, 63-67. 10.1016/0014-5793(96)01005-8

8. Cerini, C., *et al.* (1991) A component of the multisynthetase complex is a multifunctional aminoacyl-tRNA synthetase. *EMBO J.* **10**, 4267-4277. 10.1002/j.1460-2075.1991.tb05005.x

9. Rho, S.B., *et al.* (1999) Genetic dissection of protein-protein interactions in multi-tRNA synthetase complex. *Proc Natl Acad Sci U S A* **96**, 4488-4493. 10.1073/pnas.96.8.4488

10. Kaminska, M. *et al.* (2009) Dynamic Organization of Aminoacyl-tRNA Synthetase Complexes in the Cytoplasm of Human Cells. *J Biol Chem.* **284**, 13746-13754. 10.1074/jbc.M900480200

11. Kang, T. *et al.* (2012) AIMP3/p18 controls translational initiation by mediating the delivery of charged initiator tRNA to initiation complex. *J Mol Biol.* **423**, 475-481. 10.1016/j.jmb.2012.07.020

12. Eswarappa, S.M. and Fox, PL. (2013) Citric acid cycle and the origin of MARS. *Trends Biochem Sci.* **38**, 222-228. 10.1016/j.tibs.2013.01.005

13. Nathanson, L., and Deutscher, M.P. (2000) Active aminoacyl-tRNA synthetases are present in nuclei as a high molecular weight multienzyme complex. *J Biol Chem.* **275**, 31559-31562. 10.1074/jbc.C000385200
14. Kyriacou, S.V., and Deutscher, M.P. (2008) An important role for the multienzyme aminoacyl-tRNA synthetase complex in mammalian translation and cell growth. Mol Cell. 29, 419-427. 10.1016/j.molcel.2007.11.038

15. Ko, Y.G. et al. (2000) Nucleolar localization of human methionyl-tRNA synthetase and its role in ribosomal RNA synthesis. J Cell Biol. 149, 567-574. 10.1083/jcb.149.3.567

16. Ofir-Birin, Y. et al. (2013) Structural switch of lysyl-tRNA synthetase between translation and transcription. Mol Cell. 49, 30-42. 10.1016/j.molcel.2012.10.010

17. Cho, H.Y. et al. (2015) Assembly of multi-tRNA synthetase complex via heterotetrameric glutathione transferase-homology domains. J Biol Chem. 290, 29313-29328. 10.1074/jbc.M115.690867

18. Galani, K., Grosshans H., Deinert, K., Hurt, E.C., and Simos, G. (2001) The intracellular location of two aminoacyl-tRNA synthetases depends on complex formation with Arc1p. EMBO J. 20, 6889-6898. 10.1093/emboj/20.23.6889

19. Park, S.G., Schimmel, P., and Kim, S. (2008) Aminoacyl tRNA synthetases and their connections to disease. Proc Natl Acad Sci U S A. 105, 11043-11049. 10.1073/pnas.0802862105

20. Yannay-Cohen, N. et al. (2009) LysRS serves as a key signaling molecule in the immune response by regulating gene expression. Mol Cell. 34, 603-611. 10.1016/j.molcel.2009.05.019

21. Park, B.J. et al. (2005) The haploinsufficient tumor suppressor p18 upregulates p53 via interactions with ATM/ATR. Cell 120, 209-221. 10.1016/j.cell.2004.11.054

22. Kim, J.Y. et al. (2002) p38 is essential for the assembly and stability of macromolecular tRNA synthetase complex: implications for its physiological significance. Proc Natl Acad Sci U S A. 99, 7912-7916. 10.1073/pnas.122110199

23. Kaminska, M., Shalak, V. and Mirande, M. (2001) The appended C-domain of human methionyl-tRNA synthetase has a tRNA-sequestering function. Biochemistry 40, 14309-14316. 10.1021/bi015670b

24. Francin, M., Kaminska, M., Kerjan, P. and Mirande, M. (2002) The N-terminal domain of mammalian lysyl-tRNA synthetase is a functional tRNA-binding domain. J. Biol. Chem. 277, 1762-1769. 10.1074/jbc.M109759200

25. Francin, M. and Mirande, M. (2003) Functional dissection of the eukaryotic-specific tRNA-interacting factor of lysyl-tRNA synthetase. J. Biol. Chem. 278, 1472-1479. 10.1074/jbc.M208802200

26. Kim, S., Landro, J. A., Gale, A. J. and Schimmel, P. (1993) C-terminal peptide appendix in a class I tRNA synthetase needed for acceptor-helix contacts and microhelix aminoacylation. Biochemistry 32, 13026-13031. 10.1021/bi00211a011

27. Kaminska, M. et al. (2009) Dissection of the structural organization of the aminoacyl-tRNA synthetase complex. J Biol Chem. 284, 6053-6060. 10.1074/jbc.M809636200
28. Quevillon, S., Robinson, J.C., Berthonneau, E., Siatecka, M. and Mirande, M. (1999) Macromolecular assemblage of aminoacyl-tRNA synthetases: identification of protein-protein interactions and characterization of a core protein. *J. Mol. Biol.* **285**, 183-195. 10.1006/jmbi.1998.2316

29. Kim, J.Y. *et al.* (2002) p38 is essential for the assembly and stability of macromolecular tRNAsynthetase complex: implications for its physiological significance. *Proc Natl Acad Sci U S A.* **99**, 7912-7916. 10.1073/pnas.122110199

30. Fu, Y. *et al.* (2014) Structure of the ArgRS-GlnRS-AIMP1 complex and its implications for mammalian translation. *Proc Natl Acad Sci U S A.* **111**, 15084-15089. 10.1074/jbc.M605211200

31. Rho, S.B. *et al.* (1998) A multifunctional repeated motif is present in human bifunctional tRNA synthetase. *J Biol Chem.* **273**, 11267-11273. 10.1074/jbc.273.18.11267

32. Han, J.M. *et al.* (2006) Hierarchical network between the components of the multi-tRNA synthetase complex: implications for complex formation. *J Biol Chem.* **281**, 38663-38667. 10.1074/jbc.M605211200

33. Park, S.G. *et al.* (1999) Precursor of pro-apoptotic cytokine modulates aminoacylation activity of tRNA synthetase. *J Biol Chem.* **274**, 16673-16676. 10.1074/jbc.274.24.16673

34. Eswarappa, S.M., Potdar, A.A., Sahoo, S., Sankar, S., and Fox, P.L., (2018) Metabolic origin of the fused aminoacyl tRNA synthetase, glutamyl-prolyl tRNA synthetase. *J Biol Chem.* **293**, 19148-19156 10.1074/jbc.M605211200

35. Kim, J.H., Han, J.M., and Kim, S., (2014) Protein-protein interactions and multi-component complexes of aminoacyl-tRNA synthetases. *Top Curr Chem.* **344**, 119-144. 10.1007/128_2013_479

36. Kim, M.J. *et al.* (2003) Downregulation of FUSE-binding protein and c-myc by tRNA synthetase cofactor p38 is required for lung cell differentiation. *Nat Genet.* **34**, 330-336. 10.1038/ng1182

37. Choi, J.W. *et al.* (2009) AIMP2 promotes TNFα-dependent apoptosis via ubiquitin-mediated degradation of TRAF2. *J Cell Sci.* **122**, 2710-2715. 10.1242/jcs.049767

38. Yum, M.K. *et al.* (2016) AIMP2 Controls Intestinal Stem Cell Compartments and Tumorigenesis by Modulating Wnt/β-Catenin Signaling. *Cancer Res.* **76**, 4559-4568. 10.1158/0008-5472.CAN-15-3357

39. Han, J.M. *et al.* (2008) AIMP2/p38, the scaffold for the multi-tRNA synthetase complex, responds to genotoxic stresses via p53. *Proc Natl Acad Sci U S A.* **105**, 11206-11211. 10.1073/pnas.0800297105

40. Choi, J.W. *et al.* (2011) Cancer-associated splicing variant of tumor suppressor AIMP2/p38: pathological implication in tumorigenesis. *PLoS Genet.* **7**, e1001351. 10.1371/journal.pgen.1001351

41. Choi, J.W. *et al.* (2009) Multidirectional tumor-suppressive activity of AIMP2/p38 and the enhanced susceptibility of AIMP2 heterozygous mice to carcinogenesis. *Carcinogenesis.* **30**, 1638-1644. 10.1093/carcin/bgp170
42. Park, S.G. et al. (2002) Dose-dependent biphasic activity of tRNA synthetase-associating factor, p43, in angiogenesis. *J Biol Chem.* **277**, 45243-45248. 10.1074/jbc.M207934200

43. Liang, D. et al. (2018) AIMp1 Potentiates T\(_\text{H}1\) Polarization and Is Critical for Effective Antitumor and Antiviral Immunity. *Front Immunol.* **8**, 1801. 10.3389/fimmu.2017.01801

44. Lee, Y.S. et al. (2006) Antitumor activity of the novel human cytokine AIMP1 in an in vivo tumor model. *Mol Cells.* **21**, 213-217.

45. Han, J.M., Myung, H., and Kim, S., (2010) Antitumor activity and pharmacokinetic properties of ARS-interacting multi-functional protein 1 (AIMP1/p43). *Cancer Lett.* **287**, 157-164. 10.1016/j.canlet.2009.06.00

46. Kim, S.M. et al. (2018) AIMP3 depletion causes genome instability and loss of stemness in mouse embryonic stem cells. *Cell Death Dis.* **9**, 972. 10.1038/s41419-018-1037-4

47. Kim, D. et al. (2018) AIMP3 Deletion Induces Acute Radiation Syndrome-like Phenotype in Mice. *Sci Rep.* **8**, 15025. 10.1038/s41598-018-33303-3

48. Kwon, N.H. et al. (2011) Dual role of methionyl-tRNA synthetase in the regulation of translation and tumor suppressor activity of aminoacyl-tRNA synthetase-interacting multifunctional protein-3. *Proc Natl Acad Sci U S A.* **108**, 19635-19640. 10.1073/pnas.1103922108

49. Park, B.J. et al. (2006) AIMP3 haploinsufficiency disrupts oncogene-induced p53 activation and genomic stability. *Cancer Res* **66**, 6913-6918. 10.1093/carcin/bgp170

50. Han, J.M. et al. (2012) Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway. *Cell.* **149**, 410-424. 10.1016/j.cell.2012.02.044

51. Bonfils, G. et al. (2012) Leucyl-tRNA synthetase controls TORC1 via the EGO complex. *Mol Cell.* **46**, 105-110. 10.1016/j.molcel.2012.02.009

52. Kim, J.H. et al. (2017) Control of leucine-dependent mTORC1 pathway through chemical intervention of leucyl-tRNA synthetase and RagD interaction. *Nat Commun.* **8**, 732. 10.1038/s41467-017-00785-0

53. Lee, Y.N. et al. (2004) The function of lysyl-tRNA synthetase and Ap4A as signaling regulators of MITF activity in Fc epsilon RI-activated mast cells. *Immunity.* **20**, 145-151. 10.1016/S1074-7613(04)0020-2

54. Kim, D.G. et al. (2012) Interaction of two translational components, lysyl-tRNA synthetase and p40/37LRP, in plasma membrane promotes laminin-dependent cell migration. *FASEB J.* **26**, 4142-4159. 10.1096/fj.12-207639

55. Kim, D.G. et al. (2014) Chemical inhibition of prometastatic lysyl-tRNA synthetase-laminin receptor interaction. *Nat Chem Biol.* **10**, 29-34. 10.1038/nchembio.1381
56. Kim, S.B. et al. (2017) Caspase-8 controls the secretion of inflammatory lysyl-tRNA synthetase in exosomes from cancer cells. J Cell Biol. 216, 2201-2216. 10.1083/jcb.201605118

57. Kwon, N.H. et al. (2018) Stabilization of Cyclin-Dependent Kinase 4 by Methionyl-tRNA Synthetase in p16 INK4a-Negative Cancer. ACS Pharmacol. Transl. Sci. 1, 21-31. 10.1021/acsptscin.8b00001

58. Ko, Y.G. et al. (2001) Glutamine-dependent anti-apoptotic interaction of human glutaminyl-tRNA synthetase with apoptosis signal-regulating kinase 1. J Biol Chem. 276, 6030-6036. 10.1074/jbc.M006189200

59. Yao, P. et al. (2012) Coding region polyadenylation generates a truncated tRNA synthetase that counters translation repression. Cell. 149, 88-100. 10.1016/j.cell.2012.02.018

60. Arif, A. et al. (2011) Phosphorylation of glutamyl-prolyl tRNA synthetase by cyclin-dependent kinase 5 dictates transcript-selective translational control. Proc Natl Acad Sci U S A. 108, 1415-1420. 10.1073/pnas.1011275108

61. Jia, J., Arif, A., Ray, P.S., and Fox, P.L. (2008) WHEP domains direct noncanonical function of glutamyl-prolyl tRNA synthetase in translational control of gene expression. Mol Cell. 29, 679-690. 10.1016/j.molcel.2008.01.010

62. Jeong, E.J. et al. (2000) Structural analysis of multifunctional peptide motifs in human bifunctional tRNA synthetase: identification of RNA-binding residues and functional implications for tandem repeats. Biochemistry. 39, 15775-15782. 10.1021/bi001393h

63. Ray, P.S., and Fox, P.L., (2014) Origin and evolution of glutamyl-prolyl-tRNA synthetase WHEP domains reveal evolutionary relationships within holozoa. PLoS One. 9, e98493. 10.1371/journal.pone.0098493

64. Ray, P.S. et al. (2011) Evolution of function of a fused metazoan tRNA synthetase. Mol Biol Evol. 28, 437-447. 10.1371/journal.pone.0098493

65. Arif, A. et al. (2009) Two-site phosphorylation of EPRS coordinates multimodal regulation of noncatalytic translational control activity. Mol Cell 35, 164-180. 10.1016/j.molcel.2009.05.028

66. Arif A. et al. (2017) EPRS is a critical mTORC1-S6K1 effector that influences adiposity in mice. Nature. 542, 357-361. 10.1038/nature21380

67. Green, R.A. et al. (2011) A high-resolution C. elegans essential gene network based on phenotypic profiling of a complex tissue. Cell. 145, 470-482. 10.1016/j.cell.2011.03.037

68. Fuxman Bass, J.I. et al. (2013) Using networks to measure similarity between genes: association index selection. Nat Methods 10, 1169-1176. 10.1038/nmeth.2728

69. Seburn, K.L., Nangle, L.A., Cox, G.A., Schimmel, P., and Burgess, R.W. (2006) An active dominant mutation of glycyl-tRNA synthetase causes neuropathy in a Charcot-Marie-Tooth 2D mouse model. Neuron 51, 715-726. 10.1016/j.neuron.2006.08.027
70. Antonellis, A. et al. (2003) Glycyl-tRNA synthetase mutations in Charcot-Marie-Tooth disease type 2D and distal spinal muscular atrophy type V. *Am J Hum Genet.* **72**, 1293-1299. [10.1086/375039](http://dx.doi.org/10.1086/375039)

71. Jordanova, A. et al. (2006) Disrupted function and axonal distribution of mutant tyrosyl-tRNA synthetase in dominant intermediate Charcot-Marie-Tooth neuropathy. *Nat Genet* **38**, 197-202. [10.1038/ng1727](http://dx.doi.org/10.1038/ng1727)

72. Nangle LA, Zhang W, Xie W, Yang XL, and Schimmel P. (2007) Charcot-Marie-Tooth disease-associated mutant tRNA synthetases linked to altered dimer interface and neurite distribution defect. *Proc Natl Acad Sci USA* **104**, 11239-11244. [10.1073/pnas.0705055104](http://dx.doi.org/10.1073/pnas.0705055104)

73. McLaughlin, H.M. et al. (2012) A recurrent loss-of-function alanyl-tRNA synthetase (AARS) mutation in patients with Charcot-Marie-Tooth disease type 2N (CMT2N). *Hum Mutat.* **33**, 244-253. [10.1002/humu.21635](http://dx.doi.org/10.1002/humu.21635)

74. Vester, A. et al. (2013) A loss-of-function variant in the human histidyl-tRNA synthetase (HARS) gene is neurotoxic in vivo. *Hum Mutat.* **34**, 191-199. [10.1002/humu.22210](http://dx.doi.org/10.1002/humu.22210)

75. Abbott, J.A. et al. (2018) Substrate interaction defects in histidyl-tRNA synthetase linked to dominant axonal peripheral neuropathy. *Hum Mutat.* **39**, 415-432. [10.1002/humu.23380](http://dx.doi.org/10.1002/humu.23380)

76. McLaughlin, H.M. et al. (2010) Compound heterozygosity for loss-of-function lysyl-tRNA synthetase mutations in a patient with peripheral neuropathy. *Am J Hum Genet.* **87**, 560-566. [10.1016/j.ajhg.2010.09.008](http://dx.doi.org/10.1016/j.ajhg.2010.09.008)

77. Gonzalez, M. et al. (2013) Inherited Neuropathy Consortium. Exome sequencing identifies a significant variant in methionyl-tRNA synthetase (MARS) in a family with late-onset CMT2. *J Neurol Neurosurg Psychiatry.* **84**, 1247-1249. [10.1136/jnnp-2013-305049](http://dx.doi.org/10.1136/jnnp-2013-305049)

78. Witt, L.J., Curran, J.J. and Strek, M.E. (2016) The Diagnosis and Treatment of Antisynthetase Syndrome. *Clin Pulm Med.* **23**, 218-226. [10.1097/CPM.0000000000000171](http://dx.doi.org/10.1097/CPM.0000000000000171)

79. Nishikai, M., and Reichlin, M. (1980) Heterogeneity of precipitating antibodies in polymyositis and dermatomyositis. Characterization of the Jo-1 antibody system. *Arthritis Rheum.* **23**, 881-888. [10.1002/art.1780230802](http://dx.doi.org/10.1002/art.1780230802)

80. Targoff, I.N. (1990) Autoantibodies to aminoacyl-transfer RNA synthetases for isoleucine and glycine. Two additional synthetases are antigenic in myositis. *J Immunol.* **144**, 1737-1743.

81. Hirakata, M. et al. (1999) Anti-KS: identification of autoantibodies to asparaginyl-transfer RNA synthetase associated with interstitial lung disease. *J Immunol.* **162**, 2315-2320

82. Betteridge, Z., Gunawardena, H., North, J., Slinn, J. and McHugh, N., (2007) Anti-synthetase syndrome: a new autoantibody to phenylalanyl transfer RNA synthetase (anti-Zo) associated with polymyositis and interstitial pneumonia. *Rheumatology* **46**, 1005-1008. [10.1093/rheumatology/kem045](http://dx.doi.org/10.1093/rheumatology/kem045)
83. Hashish, L., Trieu, E.P., Sadanandan, P. and Targoff, I.N. (2005) Identification of autoantibodies to tyrosyl-tRNA synthetase in dermatomyositis with features consistent with anti-synthetase syndrome. Arthritis Rheum. 52, s312.

84. Labirua-Iturburu, A. et al. (2012) Anti-PL-7 (anti-threonyl-tRNA synthetase) antisynthetase syndrome: clinical manifestations in a series of patients from a European multicenter study (EUMYONET) and review of the literature. Medicine. 91, 206-211. 10.1097/MD.0b013e318260977c

85. Hu, J. et al. (2013) Heterogeneity of tumor-induced gene expression changes in the human metabolic network. Nat Biotechnol. 31, 522-529. 10.1038/nbt.2530

86. Stephens, P.J. et al. (2013) Whole exome sequencing of adenoid cystic carcinoma J Clin Invest. 123: 2965-2968. 10.1167/iovs.16-21097

Figure legends

Figure 1. MSC and Sub-MSC Structures and Signaling Network Functionally Related to Cancer

(A) Human MSC component have several appended domains or motifs. The conserved catalytic domains and tRNA recognition domains are shown in dark or light gray boxes. Glutathion S-Transferase-like domain (GST) are shown in the EPRS, MRS AIMP2 and AIMP3, while WHEP domains are shown in ERPS, MRS. Leucine-zipper motif is also observed in AIMP1, AIMP2, and RRS. AIMP1 has an EMAPII domain which is involved in several cellular response. While DRS and KRS have the lysine-rich domains in the N-terminal region, LRS and IRS have the appended sequences. QRS also has the appended sequences in the C-terminal regions. (B) Known sub-MSC complex structures. The KRS homodimer (light and dark green) is anchored to the N-terminal peptide region of AIMP2 within the MSC (left) (16). The N-terminal helix of AIMP1 forms the ternary complex with the non-catalytic N-terminal extensions of RRS and the C-terminal core of QRS to assemble a heterotrimeric complex (center) (30). The MRS, AIMP3, EPRS, and AIMP2 are tightly linked through their GST-homology domains (right) (17). (C) Bisymmetrical model describing one of the possible arrangements of the MSC-ARS/AIMPs is shown as bisymmetrical model, based on the sub-complex and interaction data (17). In this model, homodimerization of DRS and PRS contributes to the bilateral symmetry of the whole complex.

Figure 2. Signaling network of the MSC components related to protein synthesis and cancer

(A) The cancer-related signaling network mediated by the MSC-forming ARSs and AIMPs. LRS functioning as a leucine sensor interacts with the RagD GTPase to stimulate the mTOR pathway (50, 51). KRS forms a metastasis-promoting interaction with the 67-kDa laminin receptor in the cell membrane (54, 55). Caspase-8 cleaves the N-terminal 12aa of KRS, exposing its PDZ-binding motif at the C-terminus. Syntenin binds to the exposed PDZ-binding motif of KRS and facilitates the exosome-mediated secretion of MSC-dissociated KRS (56). Induced by growth stimuli, MRS is translocated to the nucleoli to stimulate rRNA synthesis (15). MRS binds to and stabilizes CDK4 to promote the cell cycle in p16-negative cancers (57). QRS binds to apoptosis signal-regulating kinase 1 (ASK1) to regulate apoptosis in a glutamine-dependent manner (58). EPRS forms the GAIT (IFNγ-Activated
Inhibitor of Translation) complex with other cell factors to regulate the expression of VEGF-A mRNA (59). AIMP2 is one of three non-enzymatic factors, and it works as a potent tumor suppressor through multiple pathways including TGF-β- (36), TNF-α- (37), Wnt- (38), and p53- (39) mediated pathways. AIMP3 is mobilized to the nucleus by DNA damage (46, 47) or via an oncogenic stimulus (21) to activate p53 via ATM/ATR for DNA repair. (B) MRS forms a complex with AIMP3 via their GST-homology domains (17). AIMP3 relays methionylated tRNA to initiation factor to facilitate protein synthesis (11). However, upon DNA damage, MRS is phosphorylated by the activated GCN2 at serine 662 residue that blocks tRNA_{Met} binding, leading to the inhibition of protein synthesis (48). The dissociated AIMP3 is translocated into nucleus and activates ATM and ATR for DNA repair (21).

Figure 3. Comparative Interactome Analysis of ARSs in Five Species

(A) Protein-protein interactions of ARSs and AIMPs. The identified ARS interactors were grouped as those specifically interacting with MSC-ARSs/AIMPs (MSC-only), with Free-ARSs (Free-only) and with both MSC-ARSs/AIMPs and Free-ARSs (Common). (B) The number of interactors for individual MSC-ARSs/AIMPs (pink circles) and Free-ARSs (purple circles). The circle sizes (see box) represent the interactome size of each ARS or AIMP in five species from yeast (top) to human (bottom). (C) Networks describing protein-protein interactions (gray edges) among ARSs and AIMPs are shown in five species. Pink and purple nodes denote MSC-ARSs/AIMPs and Free-ARSs, respectively. (D) Hierarchical clustering of ARSs and AIMPs using their scores, called connection specificity indexes (CSIs), which represent the degrees of shared interactors between the pairs of ARSs and AIMPs in each of the five species. Ward linkage and Euclidean distance as the similarity measure were used for the clustering (67, 68). The color bar represents the gradient of CSI scores. MSC-ARSs/AIMPs and Free-ARSs were labeled in red and black, respectively.

Figure 4. Comparative Functional Enrichment Analysis of ARS Interactomes in Five Species

(A) GOBPs enriched by the interactors of MSC-ARSs/AIMPs and Free-ARSs in S. cerevisiae, C. elegans, D. melanogaster, M. musculus, and H. sapiens. The five enriched cellular processes are labeled in different colors: 1) DNA replication (DNA repair and replication; green), 2) RNA processing (tRNA modification and RNA processing; orange), 3) protein homeostasis (translation, protein localization, and proteolysis; purple), 4) intracellular signaling (Wnt, MAPK, mTOR and NF-κB signaling; blue) and 5) immune response (defense response, phagocytosis and viral process; brown). The color bar represents the gradient of –log₁₀ (p-value) where the p-value is the significance of the GOBPs being enriched by the interactors, which was computed from DAVID software. For visualization, hierarchical clustering was performed for each group of cellular processes using Ward linkage and Euclidean distance as the similarity measure. (B) Enrichment scores of the indicated representative processes (DNA repair, RNA processing, protein localization-proteolysis, immune response-viral process, and intracellular signaling) for the five groups of cellular processes enriched by MSC-ARS/AIMP (top) and Free-ARS interactors (bottom) in the five species. (C) Distributions of the enrichment scores of the representative processes by MSC-ARS/AIMP (pink) and Free-ARS interactors (purple) in the five species are shown using boxplots. Z > 2.33, * p < 0.05 and *** p < 0.001, two-way ANOVA with Bonferroni’s post-hoc correction. See supplemental information for methodological details.
Figure 5. Systematic Association of the MSC Components with mTOR and DNA Repair Pathways

Network models describing interactions of MSC-ARS/AIMPs with molecules involved in the mTOR signaling (A) and HR-based DNA repair pathways (B) in *H. sapiens*. Pink diamonds and orange circles represent MSC-ARS/AIMPs and their interactors in the pathways, respectively. Pink lines are the interactions between MSC-ARS/AIMPs and their interactors in the two pathways. Gray lines indicate the known interactions among the cellular factors in the pathways. Known activation (arrows) and inhibition (inhibition symbols) information obtained from Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database and the previous literature are denoted with black lines. Solid and dashed lines are direct and indirect interactions between the molecules, respectively. Active interactions between the pairs of MSC-ARS/AIMPs and the molecules in the pathways with significant mRNA expression-survival correlations are highlighted with thick pink lines. See supplemental information for methodological details. ATP6V1A/B2/D/E1/F are the components of ATPases in phagosomes or lysosomes (A). QRS interacts with MRE11, a component of MRN complex involved in the initial processing of double-strand DNA breaks before HR-based DNA repair. EPRS and DRS interact with RPA1/2/3 that prevent single-stranded DNA from winding back before HR-based DNA repair. QRS, LRS, and AIMP3 interact with H2AFX, ABL1 and ATR, respectively, which are involved in RAD51-mediated heteroduplex formation during HR-based DNA repair. QRS interacts with XRCC3 and DDX1 involved in DNA extension during HR-based DNA repair (B).
Figure 2

A

B

Protein synthesis

DNA repair

AtM/ATR

Dissociation

S662

Protein synthesis

GST

MRS

AIMP3

tRNA^ Met

DNAm damage

GCN2

P

Protein synthesis

DNA repair

AtM/ATR

Dissociation

S662

Protein synthesis

GST

MRS

AIMP3

tRNA^ Met

DNAm damage

GCN2

P
Evolution of the multi-tRNA synthetase complex and its role in cancer
Do Young Hyeon, Jong Hyun Kim, Tae Jin Ahn, Yeshin Cho, Dahee Hwang and Sunghoon Kim

J. Biol. Chem. published online February 19, 2019

Access the most updated version of this article at doi: 10.1074/jbc.REV118.002958

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts