Global existence and asymptotic behavior for a viscoelastic Kirchhoff equation with a logarithmic nonlinearity, distributed delay and Balakrishnan-Taylor damping terms

Abdelbaki Choucha1,2, Salah Boulaaras3,* and Asma Alharbi3

1 Laboratory of Operator Theory and PDEs: Foundations and Applications, Department of Mathematics, Faculty of Exact Sciences, University of El Oued, Algeria
2 Department of Mathematics, Faculty of Sciences, Amar Teledji Laghouat University, Algeria
3 Department of Mathematics, College of Sciences and Arts, ArRass, Qassim University, Saudi Arabia

* Correspondence: Email: S.Boularas@qu.edu.sa.

Abstract: A nonlinear viscoelastic Kirchhoff-type equation with a logarithmic nonlinearity, Balakrishnan-Taylor damping, dispersion and distributed delay terms is studied. We establish the global existence of the solutions of the problem and by the energy method we prove an explicit and general decay rate result under suitable hypothesis.

Keywords: Kirchhoff equation; exponential decay; distributed delay term; viscoelastic term; logarithmic nonlinearity
Mathematics Subject Classification: 35B40, 35L20, 35L70, 93D20

1. Introduction and preliminaries

Let $\mathcal{H} = \Omega \times (\tau_1, \tau_2) \times (0, \infty)$, in the present work, we consider the following Kirchhoff equation

$$
\begin{cases}
|u_t|^p u_{tt} - \left(\xi_0 + \xi_1 \|\nabla u\|_2^2 + \sigma(\nabla u, \nabla u_t)_{L^2(\Omega)}\right)\Delta u(t) - \Delta u_t(t) \\
+ \int_0^t h(t - \varphi)\Delta u(\varphi)d\varphi + \beta_1 |u_t(t)|^{m-2} u_t(t) \\
+ \int_{\tau_1}^{\tau_2} |\beta_2(s)||u_t(t-s)|^{m-2} u_t(t-s)ds = u \ln |u|^k.
\end{cases}
$$

(1.1)

\begin{align*}
&u(x,0) = u_0(x), \quad u_t(x,0) = u_1(x), \quad \text{in} \quad \Omega \\
&u_t(x,-t) = f_0(x,t), \quad \text{in} \quad \Omega \times (0, \tau_2) \\
&u(x,t) = 0, \quad \text{in} \quad \partial \Omega \times (0, \infty),
\end{align*}
where $\Omega \in \mathbb{R}^N$ is a bounded domain with sufficiently smooth boundary $\partial \Omega$. $\zeta_0, \zeta_1, \sigma, \beta_1, k$ are positive constants, β_2 is a real number. $p \geq 0$ for $N = 1, 2$, and $0 \leq p \leq \frac{4}{N-2}$ for $N \geq 3$, and $m \geq 1$ for $N = 1, 2$, and $1 < m \leq \frac{N+2}{N-2}$ for $N \geq 3$, $\tau_1 < \tau_2$ are non-negative constants and $\beta_2 : [\tau_1, \tau_2] \to \mathbb{R}$ is a bounded function, h is a positive function.

Physically, the relationship between the stress and strain history in the beam inspired by Boltzmann theory called viscoelastic damping term, where the kernel of the term of memory is the function h (See [8, 13, 15–22, 25]. In [3], Balakrishnan and Taylor they proposed a new model of damping called it the Balakrishnan-Taylor damping, as it relates to the span problem and the plate equation. For more depth, here are some papers that focused on the study of this damping [3, 6, 10, 16, 30].

The effect of the delay often appear in many applications and piratical problems and turns a lot of systems into different problems worth studying. Recently, the stability and the asymptotic behavior of evolution systems with time delay especially the distributed delay effect has been studied by many authors [1, 9, 12–14, 24, 25, 27–29, 31, 32, 34]. The great importance of the logarithmic nonlinearity in physics is that they appear in several issues and theories, including symmetry, cosmology, quantum mechanics, as well as nuclear physics. It is also used in many applications such as optical, nuclear and even subterranean physics. Many researchers also touched on this type of problem in several different issues, where the global existence of solutions, stability and blow-up of solutions were studied. For more information, the reader is referred to [4, 5, 7].

Based on all of the above, the combination of these terms of damping (Memory term, Balakrishnan-Taylor damping, logarithmic nonlinearity and the distributed delay terms) in one particular problem with the addition of the distributed delay term ($\int_{\tau_1}^{\tau_2} |\beta_2(s)||u_t(t-s)|^{m-2}u_t(t-s)ds$) we believe that it constitutes a new problem worthy of study and research, different from the above that we will try to shed light on.

Our paper is divided into several sections: in the next section we lay down the hypotheses, concepts and lemmas we need. In the section 3, we state the global existence and in the section 4, we prove the general decay of solutions. Finally, we put a general conclusion.

For studying our problem, in this section we will need some materials. Firstly, introducing the following hypothesis for k, β_2 and h:

(A1) $h : \mathbb{R}_+ \to \mathbb{R}_+$ are non-increasing C^1 functions satisfying

$$h(t) > 0, \quad \zeta_0 - \int_0^\infty h(\varrho)d\varrho = l > 0.$$ (1.2)

(A2) $\exists \theta : \mathbb{R}_+ \to \mathbb{R}_+$ is a non-increasing C^1 function, and a constant $1 \leq \theta < \frac{3}{2}$ satisfying

$$\theta(t)h^\theta(t) + h'(t) \leq 0, \quad \forall t \geq 0.$$ (1.3)

(A3) $\beta_2 : [\tau_1, \tau_2] \to \mathbb{R}$ is a bounded function satisfying

$$\int_{\tau_1}^{\tau_2} |\beta_2(s)|ds < \beta_1.$$ (1.4)

(A4) The constant k in (1.1) is satisfying

$$0 < k < k_0 := 2\ln e^3.$$ (1.5)
Let us introduce
\[(h \circ \psi)(t) := \int_{\Omega}^t \int_0 h(t - \theta) \psi(t) - \psi(\theta)^2 d\theta d\lambda.
\]
and
\[M(t) := \left(\xi_0 + \xi_1 ||\nabla u||_2^2 + \sigma(\nabla u(t), \nabla u_t)_{L^2(\Omega)}\right).
\]

Lemma 1. (Sobolev-Poincare inequality [2]). Let \(2 \leq q < \infty(n = 1, 2)\) or \(2 \leq q < \frac{2n}{n-2}(n \geq 3)\). Then, \(\exists c_1 = c(\Omega, q) > 0\) such that
\[||u||_q \leq c_1 ||\nabla u||_2, \forall u \in H_0^1(\Omega).
\]

As in [33], taking the following new variables
\[y(x, \rho, s, t) = u_t(x - s \rho),
\]
which satisfy
\[
\begin{align*}
&\{ sy\y(x, \rho, s, t) + y_s(x, \rho, s, t) = 0, \\
&y(x, 0, s, t) = u_t(x, t).
\end{align*}
\]
(1.6)
So, problem (1.1) can be written as
\[
\begin{align*}
&\{ ||u||^p u_t - \left(\xi_0 + \xi_1 ||\nabla u||_2^2 + \sigma(\nabla u, \nabla u_t)_{L^2(\Omega)}\right)\Delta u(t) \\
&+ \int_0^t h(t - \theta) \Delta u(\theta) d\theta - \Delta u_t(t) + \beta_1 ||u_t(t)||^{m-2} u_t(t) \\
&+ \int_{|s\geq 1} \beta_2(s) ||y(x, 1, s, t)||^m y(x, 1, s, t) ds = u \ln |u|^k.
\end{align*}
\]
(1.7)
\[
\begin{align*}
&y(x, \rho, s, t) + y_s(x, \rho, s, t) = 0, \\
u(x, 0) = u_0(x), \quad u_t(x, 0) = u_1(x), \quad \text{in} \ \Omega \\
y(x, \rho, s, 0) = f_0(x, \rho s), \quad \text{in} \ \Omega \times (0, 1) \times (0, \tau_2) \\
u(x, t) = 0, \quad \text{in} \ \partial \Omega \times (0, \infty),
\end{align*}
\]
where
\[(x, \rho, s, t) \in \Omega \times (0, 1) \times (\tau_1, \tau_2) \times (0, \infty).
\]
Now, we give the energy functional.

Lemma 2. The energy functional \(E\), defined by
\[
E(t) = \frac{1}{p + 2} ||u||_{p+2}^{p+2} + \frac{1}{2} \left(\xi_0 - \int_0^t h(\theta) d\theta\right) ||\nabla u(t)||_2^2
\]
\[
+ \frac{1}{2} ||\nabla u_t(t)||_2^2 + \frac{\xi_1}{4} ||\nabla u(t)||_2^4 + \frac{1}{2} (h \circ \nabla u)(t) - \frac{1}{2} \int_{\Omega} u^2 \ln |u|^k dx
\]
\[
+ \frac{k}{4} ||u(t)||_2^2 + \frac{m - 1}{m} \int_{\tau_1}^{\tau_2} s \beta_2(s) ||y(x, \rho, s, t)||_m^{m} ds d\rho,
\]
(1.8)
satisfies
\[
E'(t) \leq -\eta_0 ||u_t(t)||_m^m + \frac{1}{2} (h' \circ \nabla u)(t)
\]
\[-\frac{1}{2} h(t) \| \nabla u(t) \|^2 - \frac{\sigma}{4} \left(\frac{d}{dt} \| \nabla u(t) \|^2 \right)^2 \leq 0, \]
\hspace{1cm} (1.9)

where \(\eta_0 = \beta_1 - \int_{t_1}^{t_2} |\beta_2(s)| ds > 0. \)

Proof. Taking the inner product of (1.7) \(_1\) with \(u_t \), then integrating over \(\Omega \), we find

\[
\begin{align*}
(\|u_t\|^p u_t(t), u_t(t))_{L^2(\Omega)} - (M(t) \Delta u(t), u_t(t))_{L^2(\Omega)} - (\Delta u_t(t), u_t(t))_{L^2(\Omega)} \hspace{1cm} & \\
+ \left(\int_0^t h(t - \varrho) \Delta u(t) d\varrho, u_t(t) \right)_{L^2(\Omega)} + \beta_1 (|u_t|^{m-2} u_t, u_t)_{L^2(\Omega)} \hspace{1cm} & \\
+ \int_{t_1}^{t_2} |\beta_2(s)| (|y(x, 1, s, t)|^{m-2} y(x, 1, s, t), u_t(t))_{L^2(\Omega)} ds \hspace{1cm} & \hspace{1cm} \\
- (ku \ln |u|, u_t(t))_{L^2(\Omega)} = 0. \hspace{1cm} & \hspace{1cm} (1.10)
\end{align*}
\]

A calculation direct, gives

\[
\begin{align*}
(\|u_t\|^p u_t(t), u_t(t))_{L^2(\Omega)} &= \frac{1}{p + 2} \frac{d}{dt} \left(\| u_t(t) \|^{p+2} \right), \hspace{1cm} (1.11) \\
-(\Delta u_t(t), u_t(t))_{L^2(\Omega)} &= \frac{1}{2} \frac{d}{dt} \left(\| \nabla u_t(t) \|^2 \right). \hspace{1cm} (1.12)
\end{align*}
\]

by integration by parts, we find

\[
\begin{align*}
-(M(t) \Delta u(t), u_t(t))_{L^2(\Omega)} &= - \left(\zeta_0 + \zeta_1 \| \nabla u(t) \|^2 + \sigma (\nabla u(t), \nabla u_t(t))_{L^2(\Omega)} \right) \Delta u(t), u_t(t)_{L^2(\Omega)} \\
&= \left(\zeta_0 + \zeta_1 \| \nabla u(t) \|^2 + \sigma (\nabla u(t), \nabla u_t(t))_{L^2(\Omega)} \right) \int_{\Omega} \nabla u(t), \nabla u_t(t) dx \\
&= \left(\zeta_0 + \zeta_1 \| \nabla u(t) \|^2 + \sigma (\nabla u(t), \nabla u_t(t))_{L^2(\Omega)} \right) \frac{d}{dt} \left\{ \int_{\Omega} |\nabla u(t)|^2 dx \right\} \\
&= \frac{d}{dt} \left\{ \frac{1}{2} \left(\zeta_0 + \frac{\zeta_1}{2} \| \nabla u(t) \|^2 \right) \| \nabla u(t) \|^2 \right\} + \frac{\sigma}{4} \frac{d}{dt} \left\{ \| \nabla u(t) \|^2 \right\}^2, \hspace{1cm} (1.13)
\end{align*}
\]

and we have

\[
\begin{align*}
\left(\int_0^t h(t - \varrho) \Delta u(t) d\varrho, u_t(t) \right)_{L^2(\Omega)} &= \int_0^t h(t - \varrho)(\Delta u(t), u_t(t))_{L^2(\Omega)} d\varrho \\
&= - \int_0^t h(t - \varrho) \left[\int_{\Omega} \nabla u(x, \varrho) \nabla u(x, t) dx \right] d\varrho, \hspace{1cm} (1.14)
\end{align*}
\]

and

\[
- \nabla u(x, \varrho) . \nabla u(x, t) = \frac{1}{2} \frac{d}{dt} \left\{ |\nabla u(x, \varrho) - \nabla u(x, t)\|^2 \right\} - \frac{1}{2} \frac{d}{dt} \left\{ |\nabla u(x, t)|^2 \right\}, \hspace{1cm} (1.15)
\]
then

\[-\int_0^t h(t-\varnothing)(\nabla u(\varnothing), \nabla u(t))_{L^2(\Omega)} d\varnothing\]

\[= -\int_0^t h(t-\varnothing) \int_\Omega \left[\frac{1}{2} \frac{d}{dt} \left(|\nabla u(x, \varnothing) - \nabla u(x, t)|^2 \right) \right] \, dx \, ds.
\]

\[-\int_0^t h(t-\varnothing) \int_\Omega \left[\frac{1}{2} \frac{d}{dt} \left(|\nabla u(x, t)|^2 \right) \right] \, dx \, d\varnothing \]

\[= \frac{1}{2} \int_0^t h(t-\varnothing) \left[\frac{d}{dt} \left(\int_\Omega |\nabla u(x, t) - \nabla u(x, \varnothing)|^2 \, dx \right) \right] \, d\varnothing
\]

\[= \frac{1}{2} \int_0^t h(t-\varnothing) \left[\frac{d}{dt} \left(\int_\Omega \nabla u(x, t) - \nabla u(x, \varnothing) \right)^2 \, dx \right] \, d\varnothing.
\]

(1.16)

We use (1.2), we obtain

\[\frac{1}{2} \int_0^t h(t-\varnothing) \left[\frac{d}{dt} \left(\int_\Omega |\nabla u(x, t) - \nabla u(x, \varnothing)|^2 \, dx \right) \right] \, d\varnothing
\]

\[= \frac{1}{2} \frac{d}{dt} \left(\int_\Omega |\nabla u(x, t) - \nabla u(x, \varnothing)|^2 \, dx \right)
\]

\[= \frac{1}{2} \int_\Omega \nabla u(x, t) - \nabla u(x, \varnothing) \right)^2 \, dx\, d\varnothing
\]

(1.17)

and

\[-\frac{1}{2} \int_0^t h(t-\varnothing) \left[\frac{d}{dt} \left(\|\nabla u(t)\|^2 \right) \right] \, dx \, d\varnothing
\]

\[-\frac{1}{2} \left(\int_0^t (h(t-\varnothing) h(t-\varnothing)) \left(\frac{d}{dt} \left(\|\nabla u(t)\|^2 \right) \right) \, dx \right)
\]

\[-\frac{1}{2} \left(\int_0^t h(\varnothing) h(t) \left(\frac{d}{dt} \left(\|\nabla u(t)\|^2 \right) \right) \, dx \right)
\]

\[-\frac{1}{2} \frac{d}{dt} \left(\int_0^t h(\varnothing) h(t) \left(\|\nabla u(t)\|^2 \right) \, dx \right)
\]

\[-\frac{1}{2} h(\varnothing) h(t) \|\nabla u(t)\|^2 + \frac{1}{2} h(t) \|\nabla u(t)\|^2.
\]

(1.18)

By substituting (1.17) and (1.18) into (1.16), gives

\[\left(\int_0^t h(t-\varnothing) \Delta u(\varnothing) d\varnothing, u(t) \right)_{L^2(\Omega)}
\]

\[= \frac{d}{dt} \left(\frac{1}{2} \int_\Omega \nabla u(t) - \nabla u(t) \right)^2 \, dx
\]

\[-\frac{1}{2} (h' \circ \nabla u)(t) + \frac{1}{2} h(t) \|\nabla u(t)\|^2.
\]

(1.19)

and we have

\[-(k u \ln |u|, u(t))_{L^2(\Omega)} = \frac{d}{dt} \left(\|u(t)\|^2 - \frac{1}{2} \int_\Omega u^2 \ln |u| \, dx \right).
\]

(1.20)
Now, multiplying the Eq (1.7) by $-y\beta_2(s)$, and integrating over $\Omega \times (0, 1) \times (\tau_1, \tau_2)$, and using (1.6)_2, we get

$$
\frac{d}{dt} \left(\frac{m-1}{m} \int_0^1 \int_{\tau_1}^{\tau_2} s|\beta_2(s)| |y(x, p, s, t)|^{m-1} \, ds \, dp \, dx \right) = -\left(\frac{m-1}{m} \right) \int_0^1 \int_{\tau_1}^{\tau_2} |\beta_2(s)| \left(\frac{d}{dp} |y(x, p, s, t)|^{m} \right) \, ds \, dx
$$

and by Young's inequality, we have

$$
\int_{\tau_1}^{\tau_2} |\beta_2(s)| \left(|y(x, 1, s, t)|^{m-2} y(x, 1, s, t), u_r(t) \right)_{L^2(\Omega)} \, ds \leq \frac{1}{m} \left(\int_{\tau_1}^{\tau_2} |\beta_2(s)| \, ds \right) \|u_r(t)\|_{m}^m + \frac{m-1}{m} \int_{\tau_1}^{\tau_2} |\beta_2(s)| \|y(x, 1, s, t)\|_{m}^m \, ds.
$$

By replacement (1.11)–(1.13) and (1.19)–(1.22) into (1.10), we find (1.8) and (1.9). Hence, by (1.4), we get the function E is a non-increasing. This completes of the proof. \hfill \square

Lemma 3. Let $\epsilon_0 \in (0, 1)$. Then, $\exists \epsilon_0 > 0$ such that

$$
|\ln v| \leq |v|^2 + d_{\epsilon_0}|v|^{1-\epsilon_0}, \quad \forall v > 0.
$$

Lemma 4. (Logarithmic Sobolev inequality) Let $u \in H^1_0(\Omega)$ and $a > 0$. Then

$$
\int_{\Omega} u^2 \ln |u| \, dx \leq \frac{1}{2} \|u\|_2^2 \ln \|u\|_2^2 + \frac{a^2}{2\pi} \|\nabla u\|_2^2 - (1 + \ln a)\|u\|_2^2.
$$

Theorem 1. Suppose that (1.2)–(1.5) are satisfied. Then, for any $u_0, u_1 \in H^1_0(\Omega) \cap L^2(\Omega)$, and $f_0 \in L^2(\Omega, (0, 1), (\tau_1, \tau_2))$, there exists a weak solution u of problem (1.7) such that

$$
\begin{align*}
&u \in C([0, T], H^1_0(\Omega)) \cap C^1([0, T], L^2(\Omega)), \\
u_r \in C([0, T], H^1_0(\Omega)) \cap L^2([0, T], L^2(\Omega, (0, 1), (\tau_1, \tau_2))).
\end{align*}
$$
2. Global existence

In this section, under smallness condition the global existence result is proved. Introducing the following functionals

\[
J(u) = \frac{1}{2} \left(\zeta_0 - \int_0^t h(\varrho) d\varrho \right) \|\nabla u(t)\|_2^2 + \frac{1}{2} \|\nabla u(t)\|_2^2 - \frac{1}{2} \int_\Omega u^2 \ln |u|^k dx
+ \frac{1}{2} (h \circ \nabla u)(t) + \frac{\zeta_1}{4} \|\nabla u(t)\|_4^4 + \frac{k}{4} \|u(t)\|_4^2
+ \frac{m-1}{m} \int_0^1 \int_{\tau_1}^{\tau_2} s|\beta_2(s)||y(x, \rho, s, t)||^m_m dsd\rho,
\]

and

\[
I(u) = \left(\zeta_0 - \int_0^t h(\varrho) d\varrho \right) \|\nabla u(t)\|_2^2 + \|\nabla u(t)\|_2^2
- 3 \int_\Omega u^2 \ln |u|^k dx + (h \circ \nabla u)(t).
\]

Hence

\[
E(t) = \frac{1}{p+2} \|u_t\|_{p+2}^{p+2} + J(u),
\]

and

\[
J(u) = \frac{1}{6} \left\{ \left(\zeta_0 - \int_0^t h(\varrho) d\varrho \right) \|\nabla u(t)\|_2^2 + \|\nabla u(t)\|_2^2 + (h \circ \nabla u)(t) \right\}
+ \frac{\zeta_1}{4} \|\nabla u(t)\|_4^4 + \frac{m-1}{m} \int_0^1 \int_{\tau_1}^{\tau_2} s|\beta_2(s)||y(x, \rho, s, t)||^m_m dsd\rho
+ \frac{k}{4} \|u(t)\|_4^2 + \frac{1}{3} I(u).
\]

First, suppose that

\[
e^{-\frac{3}{2}} < a < \sqrt{\frac{2l}{k}},
\]

and we define

\[
C_1 := k \left(\frac{3}{2} + \ln a \right), \quad \omega_* := e^{-\frac{2C_1}{k}},
\]

the condition (2.5) makes \(C_1 > 0\).

Lemma 5. The following inequalities hold

\[
k \int_\Omega u^2 \ln |u| dx \leq k c_p^3 \|\nabla u\|_2^3, \quad \forall u \in H_0^1(\Omega),
\]

and

\[
\left(\int_\Omega |u|^3 dx \right)^{1/3} \leq c_p \|\nabla u\|_2, \quad \forall u \in H_0^1(\Omega),
\]

where \(c_p\) is the smallest embedding constant of \(H_0^1(\Omega)\) in \(L^\infty(\Omega)\).
Proof. Let
\[\Omega_1 = \{ u \in \Omega : |u| > 1 \}, \quad \Omega_2 = \{ u \in \Omega : |u| \leq 1 \}. \]
So, by (2.8) and (1.23), gives
\[
k \int_\Omega u^2 \ln |u| \, dx = k \int_{\Omega_1} u^2 \ln |u| \, dx + k \int_{\Omega_2} u^2 \ln |u| \, dx
\leq k \int_{\Omega_1} u^3 \, dx + k \int_{\Omega_2} |u|^3 \, dx
\leq kc^2_0 \|
abla u\|^2_2.
\]

\[\square \]

Lemma 6. Suppose that (1.2), (2.5) and \(u_0, u_1 \in H^1_0(\Omega) \cap L^2(\Omega), \) and \(f_0 \in L^2(\Omega, 0, 1) \) hold, \(\| u \|_2 < \omega, \) and
\[
0 < E(0) < \min \left\{ E_1, \frac{\ell(2\pi l - ka^2)}{36k^2 \pi c^6_\rho}, \frac{\pi l e^2}{4} \right\}.
\]
Then,
\[
I(u) \geq 0, \quad \forall t \in [0, T).
\]

Proof. By (1.2), (2.3) and (1.24), we have
\[
E(t) \geq J(u(t))
\geq \frac{1}{2} \|
abla u(t)\|^2_2 + \frac{1}{2} \|\nabla u_0(t)\|^2_2 - \frac{1}{2} \int_\Omega u^2 \ln |u| \, dx
+ \frac{1}{2}(h \circ \nabla u)(t) + \frac{\ell}{4} \|\nabla u(t)\|^2_2 + \frac{k}{4} \| u(t) \|_2^2
+ \frac{m-1}{m} \int_0^t \int_{\Omega_1} s|\beta_2(s)|||y(x, \rho, s, t)||_m^m \, ds \, dp
\geq \frac{1}{2} \left(1 - \frac{ka^2}{2\pi} \right) \|
abla u(t)\|^2_2 + \frac{k}{4} \frac{3}{2} + \ln a - \frac{1}{2} \ln \| u \|^2_2 \| u \|^2_2.
\]
Then, by (2.5) and (2.6), gives
\[
E(t) \geq \mathcal{F}(\omega) := \frac{1}{2} C_1 \omega^2 - \frac{k}{4} \omega^2 \ln \omega^2,
\]
where \(\omega = \| u \|_2. \) After studying the function \(\mathcal{F}, \) we conclude that exist \(\omega_* > 0 \) in which \(\mathcal{F} \) is increasing on \((0, \omega_*), \) and deceasing on \((\omega_*, \infty). \) Furthermore, we have \(\lim_{\omega \to +\infty} = -\infty. \) and from him
\[
\max_{0 < \omega < +\infty} \mathcal{F}(\omega) = \frac{1}{2} C_1 \omega_*^2 - \frac{k}{4} \omega_*^2 \ln \omega_*^2 := E_1.
\]
Suppose \(\| u \|_2 < \omega_* \) is not true in \([0, T). \) Hence, by continuity of \(u(t), \) it follows that there exists \(0 < t_0 < T \) satisfying \(\| u(x, t_0) \|_2 = \omega_* \). From (2.12) give
\[
E(t_0) \geq \mathcal{F}(\omega_*) = E_1. \quad \text{But this is impossible because } E(t) \leq E(0) < E_1, \quad \forall t \geq 0.
\]
Now, from (2.11), we get
\[
E(t) \geq J(u(t)) \geq \frac{1}{2} \left(1 - \frac{ka^2}{2\pi} \right) \|
abla u(t)\|^2_2 > 0,
\]
which implies
\[\|\nabla u(t)\|_2^2 \leq \left(\frac{4\pi}{2\pi l - ka^2} \right) E(t) \leq \left(\frac{4\pi}{2\pi l - ka^2} \right) E(0). \] (2.14)

Hence, by (2.2), (2.7) and (2.14), we get
\[I(t) \geq l \|\nabla u(t)\|_2^2 - 3 \int_\Omega u^2 \ln |u|^k \, dx \geq \left\{ l - 3ke^3 \left(\frac{4\pi}{2\pi l - ka^2} E(0) \right)^{1/2} \right\} \|\nabla u(t)\|_2^2, \] (2.15)

According (2.5), (2.9) and (2.15), we obtain
\[I(t) \geq 0. \] (2.16)

This completes the proofs. □

3. General decay

In this section, we state and prove the asymptotic behavior of the system (1.7). For this goal, we set
\[\Psi(t) := \frac{1}{p+1} \int_\Omega u(t)|u|^p u_t \, dx + \frac{\sigma r}{4} \|\nabla u(t)\|_2^4 + \int_\Omega \nabla u(t) \nabla u_t \, dx, \] (3.1)

and
\[\Phi(t) := \int_\Omega \left(\Delta u_t - \frac{1}{p+1} |u|^p u_t \right) \int_0^t h(t-\tau) (u(t) - u(\tau)) \, d\tau \, dx, \] (3.2)

and
\[\Theta(t) := \int_0^1 \int_{r_1}^{r_2} se^{-rp} |\beta_2(s)||y(x, \rho, s, t)||_{\rho s}^\rho \, ds \, d\rho. \] (3.3)

Lemma 7. The functional \(\Psi(t) \) defined in (3.1) satisfies, for any \(\varepsilon > 0 \)
\[\Psi'(t) \leq \frac{1}{p+1} \|u_t\|_{p+2}^{p+2} - \left(\frac{l}{2} - \varepsilon(c_1 + c_2) \right) \|\nabla u\|_2^2 - \zeta_1 \|\nabla u\|_2^4 \]
\[+ c(h \circ \nabla u)(t) + \|\nabla u_t\|_2^2 + k \int_\Omega u^2 \ln |u| \, dx \]
\[+ c(e) \left\{ \|u_t\|_{\rho s} + \int_{r_1}^{r_2} |\beta_2(s)||y(x, 1, s, t)||_{\rho s}^\rho \, ds \right\}. \] (3.4)

Proof. A differentiation of (3.1) and using (1.7), gives
\[\Psi'(t) = \frac{1}{p+1} \|u_t\|_{p+2}^{p+2} + \int_\Omega |u_t|^p u_t \, dx + \sigma \|\nabla u\|_2^2 \int_\Omega \nabla u_t \nabla u \, dx \]
Combining (3.6)–(3.8) and (3.5), we get

\[+ \int_\Omega \nabla u(t) \nabla u(t) dx + \| \nabla u \|_2^2 \]

\[= \frac{1}{p + 1} \| u \|_{p+2}^{p+2} - \zeta_0 \| \nabla u \|_2^2 - \zeta_1 \| \nabla u \|_2^2 \]

\[- \beta_1 \int_\Omega |u|^{m-2} u u dx \]

\[+ \int_\Omega \nabla u(t) \int_0^t h(t - s) \nabla u(s) ds dx + \| \nabla u \|_2^2 + k \int_\Omega u^2 \ln |u| dx \]

\[- \int_\Omega \int_{t_1}^{t_2} |\beta_2(s)||y(x, 1, s, t)|^{m-2} y(x, 1, s, t) u ds dx . \]

(3.5)

We estimate the last 3 terms of the RHS of (3.5). Applying Hölder’s, Sobolev-Poincare and Young’s inequalities, (1.2) and (1.8), we find

\[J_1 \leq e \beta_m \| u \|_m^m + c(\varepsilon) \| u \|_m^m \]

\[\leq e \beta_m c_m \| \nabla u \|_2^2 + c(\varepsilon) \| u \|_m^m \]

\[\leq e \beta_m c_p \left(\frac{E(0)}{l} \right)^{(m-2)/2} \| \nabla u \|_2^2 + c(\varepsilon) \| u \|_m^m \]

\[\leq e c_1 \| \nabla u \|_2^2 + c(\varepsilon) \| u \|_m^m , \]

(3.6)

and

\[J_2 \leq (\zeta_0 - l) \| \nabla u \|_2^2 + \frac{E_4}{2} \| \nabla u \|_2^2 + \frac{c}{\epsilon_4} (h \circ \nabla u) (t) \]

\[\leq (\zeta_0 - l + \frac{E_4}{2}) \| \nabla u \|_2^2 + \frac{c}{\epsilon_4} (h \circ \nabla u) (t) , \]

by letting \(\epsilon_4 = l \), we get

\[J_2 \leq (\zeta_0 - l) \| \nabla u \|_2^2 + c(h \circ \nabla u) (t) . \]

(3.7)

Similarly to \(J_1 \), we have

\[J_3 \leq e c_2 \| \nabla u \|_2^2 + c(\varepsilon) \int_{t_1}^{t_2} \beta_2(s) \| y(x, 1, s, t) \|_m^m ds. \]

(3.8)

Combining (3.6)–(3.8) and (3.5), we get

\[\Psi(t) \leq \frac{1}{p + 1} \| u \|_{p+2}^{p+2} - \left(\frac{l}{2} - e(c_1 + c_2) \right) \| \nabla u \|_2^2 - \zeta_1 \| \nabla u \|_2^2 \]

\[+ k \int_\Omega u^2 \ln |u| dx + \| \nabla u \|_2^2 + c(h \circ \nabla u) (t) \]

\[+ c(\varepsilon) \left(\| u \|_m^m + \int_{t_1}^{t_2} \beta_2(s) \| y(x, 1, s, t) \|_m^m ds \right) . \]

\[\square \]
Lemma 8. The functional $\Phi(t)$ defined in (3.37) satisfies, for any $\delta > 0$

$$\Phi'(t) \leq -\frac{1}{p+1} \left(\int_0^t h(\varphi) d\varphi \right) ||u_t||_{p+2}^p + \frac{\zeta_1 \delta}{2} ||\nabla u||_2^2 + \frac{\delta \sigma E(0)}{t} \left(\frac{1}{2} \frac{d}{dt} ||\nabla u||_2^2 \right)^2$$

$$+ 2c(\delta + \frac{1}{\delta}) \left(h \circ \nabla u \right)(t) + c(\varepsilon_0, \delta) (h \circ \nabla u)^{1/(1+\varepsilon_0)}(t)$$

$$+ c(\delta) \left[||u_t||_m^m + \int_{t_1}^{t_2} |\beta_2(s)||y(x, 1, s, t)||_m^m ds \right]$$

$$+ \frac{\delta_1 (1 + c(E(0))\rho - \int_0^t h(\varphi) d\varphi) \parallel \nabla u_t \parallel_2^2}{4 \delta_1}$$

$$- \frac{h(0)c_p^2}{p+1} + c(\delta_1) \left(h' \circ \nabla u \right)(t). \quad (3.9)$$

Proof. A differentiation of (3.37) and using (1.7), gives

$$\Phi'(t) = \int_\Omega \left(\Delta u_t - u_t ||u_t||_p^p \right) \int_0^t h(t - \varphi)(u(t) - u(\varphi)) d\varphi dx$$

$$+ \int_\Omega \left(\Delta u_t - \frac{1}{p+1} ||u_t||_p^p u_t \right) \int_0^t h'(t - \varphi)(u(t) - u(\varphi)) d\varphi dx$$

$$- \frac{1}{p+1} \left(\int_0^t h(\varphi) d\varphi \right) ||u_t||_{p+2}^p - \left(\int_0^t h(\varphi) d\varphi \right) ||\nabla u_t||_2^2$$

$$= - (\zeta_0 + \zeta_1 ||\nabla u||_2^2) \int_\Omega \nabla u \int_0^t h(t - \varphi)(\nabla u(t) - \nabla u(\varphi)) d\varphi dx$$

$$- \sigma \int_\Omega \nabla u \int_0^t h(t - \varphi)(\nabla u(t) - \nabla u(\varphi)) d\varphi dx$$

$$+ \int_\Omega \left(\int_0^t h(t - \varphi) \nabla u(\varphi) d\varphi \right) \left(\int_0^t h(t - \varphi)(\nabla u(\varphi) d\varphi) \right) dx$$

$$+ \beta_1 \int_\Omega ||u_t||_m^m u_t \left(\int_0^t h(t - \varphi)(u(t) - u(\varphi)) d\varphi \right) dx$$

$$+ \int_\Omega \int_{t_1}^{t_2} |\beta_2(s)||y(x, 1, s, t)||_m^m \int_0^t h(t - \varphi)(u(t) - u(\varphi)) d\varphi ds dx$$

$$- \frac{1}{p+1} \int_\Omega ||u_t||_p^p ||u_t||_p^p \int_0^t h'(t - \varphi)(u(t) - u(\varphi)) d\varphi dx$$
Similarly, we have
\[
\begin{align*}
\left| J_1 \right| & \leq (\zeta_0 + \zeta_1)\|\nabla u\|^2_2 + (\zeta_0 - l)\|h \circ \nabla u\|_0, \\
& \leq \delta\zeta_0\|\nabla u\|^2_2 + \delta\zeta_1\|\nabla u\|^2_2 + \left(\frac{\zeta_0 - l}{4\delta} + \frac{\zeta_1(\zeta_0 - l)E(0)}{4l\delta}\right)\|h \circ \nabla u\|_0, \\
& \leq \left(\delta + \frac{1}{\delta}\right)(h \circ \nabla u)(t),
\end{align*}
\]
and
\[
\begin{align*}
\left| J_2 \right| & \leq \delta\sigma \left(\int_{\Omega} \nabla u \nabla u_t \right)^2 \|\nabla u\|^2_2 + \frac{\sigma(\zeta_0 - l)}{4\delta} \|h \circ \nabla u\|_0 \\
& \leq \frac{\delta\sigma E(0)}{l} \left(\frac{1}{2} \frac{d}{dt} \|\nabla u\|^2_2 \right)^2 + \frac{\sigma(\zeta_0 - l)}{4\delta} \|h \circ \nabla u\|_0,
\end{align*}
\]
\[
\begin{align*}
\left| J_3 \right| & \leq \delta \int_{\Omega} \left(\int_0^t h(t - \varrho)(|\nabla u(t) - \nabla u\| - |\nabla u(t)|)d\varrho \right)^2 dx \\
& \quad + \frac{1}{4\delta} \int_{\Omega} \left(\int_0^t h(t - \varrho)(\nabla u(t) - \nabla u\|)d\varrho \right)^2 dx \\
& \leq 2\delta(\zeta_0 - l)^2\|\nabla u\|^2_2 + \left(\delta + \frac{1}{\delta} \right)(h \circ \nabla u)(t),
\end{align*}
\]
\[
\begin{align*}
\left| J_4 \right| & \leq c(\delta)\|u\|_m^m + \delta\beta_1^m \left(\int_{\Omega} \left(\int_0^t h(t - \varrho)(u(t) - u\|)d\varrho \right)^m \right) dx \\
& \leq c(\delta)\|u\|_m^m + \delta\beta_1^m(\zeta_0 - l)^{m-1}c_p \left(\int_0^t h(t - \varrho)\|\nabla u(t) - \nabla u\|_m d\varrho \right)^m \\
& \leq \left(\delta + \frac{1}{\delta} \right) \left(\beta_1^m(\zeta_0 - l)^{m-1}c_p \left(\frac{E(0)}{l} \right)^{(m-2)/2} \right)(h \circ \nabla u)(t),
\end{align*}
\]
Similarly, we have
\[
\begin{align*}
\left| J_5 \right| & \leq c(\delta) \int_{r_1}^{r_2} |\beta_2(s)|\|y(x, s, t)|_m^m ds + \delta c_4(h \circ \nabla u)(t).
\end{align*}
\]
By exploiting the Sobolev embedding, we have

$$|J_8| \leq \frac{1}{p + 1} \left(\delta_1 \|u\|_{L^2(p+1)}^2 \right) + \frac{c}{\delta_1} \int_0^t \int_{\Omega} (-h'(t - \varphi))|u(t) - u(\varphi)|^2 d\varphi dx \leq c \delta_1 (E(0))^p \|\nabla u\|^2_2 - c(\delta_1)(h' \circ \nabla u)(t),$$

and

$$|J_7| \leq \frac{\delta_1 \|\nabla u\|^2_2}{4\delta_1} (h' \circ \nabla u)(t).$$

Applying (1.24) for \(\nu = |u| \), using the embedding of \(H^1_0(\Omega) \) in \(L^\infty(\Omega) \) and performing the same calculations as before, we get, for any \(\varepsilon > 0 \) and any \(\varepsilon_0 \in (0, 1) \),

$$|J_8| \leq k \int_\Omega (u^2 + d_\varepsilon |u|^{1-\varepsilon_0}) \left| \int_0^t h(t - \varphi)(u(t) - u(\varphi)) d\varphi \right| dx$$

$$\leq c \int_\Omega u^2 \int_0^t h(t - \varphi)(u(t) - u(\varphi)) d\varphi dx + \varepsilon_5 \int_\Omega u^2 dx$$

$$+ c(\varepsilon_0, \varepsilon_5) \int_\Omega \left(\int_0^t \int_0^t h(t - \varphi)(u(t) - u(\varphi)) d\varphi \right) \int_0^t \int_0^t h(t - \varphi)(u(t) - u(\varphi)) d\varphi dx$$

$$\leq c \varepsilon_5 \|\nabla u\|^2_2 + \frac{c}{\varepsilon_5} \int_\Omega \left(\int_0^t h(t - \varphi)(u(t) - u(\varphi)) d\varphi \right) \int_0^t h(t - \varphi)(u(t) - u(\varphi)) d\varphi dx$$

then, by letting \(\varepsilon_5 = \frac{\delta}{c} \) and using Hölder’s inequality, we get

$$|J_8| \leq \delta \|\nabla u\|^2_2 + \frac{c}{\delta} (h \circ \nabla u)(t) + c(\varepsilon_0, \delta) (h \circ \nabla u)^{\frac{1}{1+\varepsilon_0}}(t).$$

According (3.11)–(3.18) and (3.10), we get (3.9).

\(\square \)

Lemma 9. The functional \(\Theta(t) \) defined in (3.3) satisfies

$$\Theta'(t) \leq -\eta_1 \int_0^t \int_{\tau_1}^{\tau_2} s|\beta_2(s)|.|\gamma(x, \rho, s, t)|^m ds dp$$

$$- \eta_1 \int_{\tau_1}^{\tau_2} |\beta_2(s)|.|\gamma(x, 1, s, t)|^m ds + \beta_1 \|u(t)\|_m^n.$$

Proof. By differentiating of \(\Theta(t) \), and using (1.7), gives

$$\Theta'(t) = -m \int_\Omega \int_0^t \int_{\tau_1}^{\tau_2} e^{-sp} |\beta_2(s)|.|\gamma|^{m-1}_p (x, \rho, s, t) ds dp dx$$

$$= - \int_\Omega \int_0^t \int_{\tau_1}^{\tau_2} se^{-sp} |\beta_2(s)|.|\gamma(x, \rho, s, t)|^m ds dp dx$$

$$- \int_\Omega \int_{\tau_1}^{\tau_2} |\beta_2(s)| \left[e^{-s}|\gamma(x, 1, s, t)|^m - |\gamma(x, 0, s, t)|^m \right] ds dx.$$
Applying \(y(x, 0, s, t) = u_i(x, t) \), and \(e^{-s} \leq e^{-\rho s} \leq 1 \), for any \(0 < \rho < 1 \), and we set \(\eta_i = e^{-\tau_2} \), we obtain

\[
\Theta'(t) \leq -\eta_i \int_\Omega \int_0^1 \int_{\tau_1}^{\tau_2} s|\beta_2(s)||y(x, \rho, s, t)|^m dsdpdx
- \eta_i \int_\Omega \int_0^1 \int_{\tau_1}^{\tau_2} |\beta_2(s)||y(x, 1, s, t)|^m dsdx + \int_{\tau_1}^{\tau_2} |\beta_2(s)|ds \int_\Omega |u_i|^m dx,
\]

using (1.4), we find (3.19).

\[\square\]

Now, we introduce the functional

\[
G(t) := E(t) + \varepsilon_1 \Psi(t) + \varepsilon_2 \Phi(t) + \varepsilon_3 \Theta(t),
\]

for some positive constants \(\varepsilon_i, i = 1, 2, 3 \) to be determined.

Lemma 10. There exist \(\mu_1, \mu_2 > 0 \), such that

\[
\mu_1 E(t) \leq G(t) \leq \mu_2 E(t).
\]

Proof. From (3.1), by using Hölder inequality (for \(q_1 = \frac{p+2}{p+1}, q_2 = p + 2 \), Young’s inequality (for \(\kappa > 0 \), and embedding \(H^1_0 \hookrightarrow L^{2(p+1)} \)), \(\|u_i\|_{p+2}^p \leq [(p + 2)E(0)]^{\frac{p}{2(p+1)}} \), we find

\[
\Psi(t) \leq \frac{1}{p+1} \|u_i(t)\|_{p+2}^p \|u_i(t)\|_{p+2}^p + \frac{1}{2} \left(\|\nabla u_i(t)\|_2^2 + \|\nabla \Phi(t)\|_2^2 \right)
\]

\[
\leq \frac{\kappa}{2(p+1)^2} \|u_i(t)\|_{p+2}^{2(p+1)} + \frac{1}{2\kappa} \|u_i(t)\|_{p+2}^2
+ \frac{1}{2} \left(\|\nabla u_i(t)\|_2^2 + \|\nabla \Phi(t)\|_2^2 \right)
\]

\[
\leq \frac{\kappa}{2(p+1)^2} \|u_i(t)\|_{p+2}^p \|u_i(t)\|_{p+2}^p + \frac{1}{2\kappa} \|u_i(t)\|_{p+2}^2
+ \frac{1}{2} \left(\|\nabla u_i(t)\|_2^2 + \|\nabla \Phi(t)\|_2^2 \right)
\]

\[
\leq \frac{\kappa [(p+2)E(0)]^{\frac{p}{2(p+1)}}}{2(p+1)^2} \|u_i(t)\|_{p+2}^p + c(\kappa) \|\nabla u(t)\|_2^2 + \frac{1}{2} \|\nabla u_i(t)\|_2^2,
\]

where \(c(\kappa) = \left(\frac{C_0}{\sqrt{\kappa}} + \frac{1}{5} \right) \), with \(C_0 \) comes from the embedding \(H^1_0 \hookrightarrow L^{2(p+1)} \).

According to the relations (3.22), (3.37)–(3.39) and by using Hölder, Young’s and poincare inequalities, we get

\[
|G(t) - E(t)| \leq \varepsilon_1 \left(\frac{\kappa [(p+2)E(0)]^{\frac{p}{2(p+1)}}}{2(p+1)^2} \|u_i(t)\|_{p+2}^p + c(\kappa) \|\nabla u(t)\|_2^2 \right)
+ (\varepsilon_1 + \varepsilon_2) \frac{1}{2} \|\nabla u_i(t)\|_2^2 + \varepsilon_1 \frac{\sigma}{4} \|\nabla u(t)\|_2^2.
\]
By using the relation (1.9) with the results of Lemmas 7, 8 and 9, let
Lemma 11.

We pick \(\kappa = 1 \) and choosing \(\varepsilon_1, \varepsilon_2 \) and \(\varepsilon_3 \) sufficiently small, then (3.21) follows from (3.24).

\[|G(t) - E(t)| \leq C(\varepsilon_1, \varepsilon_2, \varepsilon_3, \kappa)E(t). \] (3.24)

Lemma 11. Suppose that (1.2)–(1.5), (2.5) and (2.9) hold, let \(\varepsilon_0 \in (0, 1) \). There exist \(k_1, k_2, t_0 > 0 \) satisfying

\[G'(t) \leq -k_1E(t) + k_2(h \circ \nabla u)(t) + c(\varepsilon_0)(h \circ \nabla u)^{1/(1+\varepsilon_0)}(t), \quad t \geq t_0. \] (3.25)

Proof. Since the function \(h \) is a positive and continuous, for all \(t_0 > 0 \), we have

\[\int_0^t h(\varphi)d\varphi \geq \int_0^{t_0} h(\varphi)d\varphi := h_0, \quad \forall t \geq t_0. \]

By using the relation (1.9) with the results of Lemmas 7, 8 and 9, then, for \(t \geq t_0 \), we get

\[
G'(t) := E'(t) + \varepsilon_1\Omega'(t) + \varepsilon_2\Phi'(t) + \varepsilon_3\Theta'(t)
\leq \left\{ \frac{1}{p+1}(\varepsilon_1 - \varepsilon_2h_0) \right\} ||u||^{p+2}_{L^2} + \left\{ \varepsilon_2\varepsilon_1\delta - \varepsilon_1\xi_1 \right\} ||\nabla u||^4_{L^2} \\
+ \left\{ \varepsilon_2\varepsilon_1(\varepsilon_0 - \varepsilon_1 - \varepsilon_1\varepsilon_2) \right\} ||\nabla u||^2_{L^2} \\
+ \left\{ \varepsilon_1 + \varepsilon_2[\delta(1 + c(E(0))) - h_0] \right\} ||\nabla u||^2_{L^2} \\
+ \left\{ \delta \left(\frac{\varepsilon_2\varepsilon_1(1 + c(E(0))) - h_0}{I} \right) + \frac{\varepsilon_2\varepsilon_1cE(0)}{I} - \frac{\varepsilon_2\varepsilon_1cE(0)}{I} \right\} ||\nabla u||^2_{L^2} \\
+ \left\{ \varepsilon_1 + \varepsilon_2\delta \right\} (h \circ \nabla u)(t) + c(\varepsilon_0, \delta)(h \circ \nabla u)^{1/(1+\varepsilon_0)}(t) \\
+ \left\{ \varepsilon_1c(\varepsilon) + \varepsilon_2\varepsilon_1\xi_1 - \eta_0 \right\} ||u||^m_{L^m} + k\varepsilon_1 \int_\Omega u^2 \ln |u|dx \\
+ \left\{ \varepsilon_1c(\varepsilon) + \varepsilon_2\varepsilon_1\xi_1 - \eta_0 \right\} \int_{r_1}^{r_2} |\beta_2(s)||y(x, 1, s, t)||^m_{L^m}ds \\
- \eta_1 \varepsilon_3 \int_0^{r_1} |\beta_2(s)||y(x, \rho, s, t)||^m_{L^m}d\rho . \] (3.26)
Using (1.8), we obtain, for any $\gamma > 0$,

$$
\mathcal{G}'(t) \leq -\gamma E(t) + \frac{1}{p + 1} \left(\varepsilon_1 - \varepsilon_2 h_0 + \frac{\gamma (p + 1)}{p + 2} \right) \| u_t \|_{p+2}^{p+2}
+ \left\{ \varepsilon_2 \varepsilon_1 \delta - \varepsilon_1 \varepsilon_1 + \frac{\gamma \varepsilon_1}{4} \right\} \| \nabla u \|_2^4
+ \left\{ \varepsilon_2 \delta (\varepsilon_0 + 2(\varepsilon_0 - \eta_0) + 1) - \varepsilon_1 (\gamma + \varepsilon (c_1 + c_2)) \right\} \| \nabla u \|_2^2
+ \left\{ \varepsilon_1 + \varepsilon_2 [\delta_1 (1 + c(E(0))^p) - h_0] + \frac{\gamma}{2} \right\} \| \nabla u \|_2^2
+ \varepsilon_2 \delta \left(\frac{\sigma E(0)}{l} - \sigma \right) \left(\frac{1}{2} \frac{d}{dt} \| \nabla u \|_2^2 \right)^2
+ \left\{ \varepsilon_1 c(\varepsilon) + \varepsilon_2 c(\delta) + \varepsilon_3 \varepsilon_1 - \eta \right\} \| u_t \|_m^m + k(\varepsilon_1 - \frac{\gamma}{2}) \int_\Omega u^2 \ln |u| dx
+ \left\{ \varepsilon_1 c(\varepsilon) + \varepsilon_2 c(\delta) - \eta_1 \varepsilon_1 \right\} \int_{\tau_1}^{T_2} \| \beta_2(s) \|_{\mathcal{Y}(x, \eta, \varepsilon, s)} \| u_t \|_m^m ds
\left\{ - \eta_1 \varepsilon_1 + \frac{\gamma (m - 1)}{m} \right\} \int_0^1 \int_{\tau_1}^{T_2} \| \beta_2(s) \|_{\mathcal{Y}(x, \rho, \varepsilon, s)} \| u_t \|_m^m ds dp.
$$

(3.27)

Using the Logarithmic Sobolev inequality (1.24), we get

$$
\mathcal{G}'(t) \leq -\gamma E(t) + \frac{1}{p + 1} \left(\varepsilon_1 - \varepsilon_2 h_0 + \frac{\gamma (p + 1)}{p + 2} \right) \| u_t \|_{p+2}^{p+2}
+ \left\{ \varepsilon_2 \varepsilon_1 \delta - \varepsilon_1 \varepsilon_1 + \frac{\gamma \varepsilon_1}{4} \right\} \| \nabla u \|_2^4
+ \left\{ \varepsilon_2 \delta (\varepsilon_0 + 2(\varepsilon_0 - \eta_0) + 1) - \varepsilon_1 (\gamma + \varepsilon (c_1 + c_2)) \right\} \| \nabla u \|_2^2
+ \varepsilon_2 \delta \left(\frac{\sigma E(0)}{l} - \sigma \right) \left(\frac{1}{2} \frac{d}{dt} \| \nabla u \|_2^2 \right)^2
+ \left\{ \varepsilon_1 c(\varepsilon) + \varepsilon_2 c(\delta) + \varepsilon_3 \varepsilon_1 - \eta \right\} \| u_t \|_m^m
+ \left\{ \varepsilon_1 c(\varepsilon) + \varepsilon_2 c(\delta) - \eta_1 \varepsilon_1 \right\} \int_{\tau_1}^{T_2} \| \beta_2(s) \|_{\mathcal{Y}(x, \eta, \varepsilon, s)} \| u_t \|_m^m ds
\left\{ - \eta_1 \varepsilon_1 + \frac{\gamma (m - 1)}{m} \right\} \int_0^1 \int_{\tau_1}^{T_2} \| \beta_2(s) \|_{\mathcal{Y}(x, \rho, \varepsilon, s)} \| u_t \|_m^m ds dp.
$$

(3.27)
\[
\begin{align*}
\left\{ -\eta_1\varepsilon_3 + \frac{\gamma(m-1)}{m} \right\} & \int_0^1 \int_{\tau_1}^{\tau_2} |\beta_2(s)||\gamma(x, \rho, s, t)||_{m} \, ds \, d\rho \\
- \frac{k}{2} \left(\varepsilon_1 - \frac{\gamma}{2} \right) \left(2(1 + \ln a) - \ln \|u\|^2 \right) - \frac{\gamma}{2} \|u\|^2.
\end{align*}
\] (3.28)

Using (1.9), (2.1), (2.4), and (2.10), we find
\[
\ln \|u\|^2 \leq \ln \left(\frac{4}{k} J(t) \right) \leq \ln \left(\frac{4}{k} E(t) \right) \leq \ln \left(\frac{4}{k} E(0) \right).
\] (3.29)

According (2.9) and (3.29), we have
\[
2(1 + \ln a) - \ln \|u\|^2 > 0.
\]

Next, we carefully choose our constants.
Letting \(\delta_1 = \frac{h_0}{2(1 + \varepsilon(E(0))^{\frac{p}{2}}) \eta} \), and we choose \(\varepsilon \) small enough such that
\[
\frac{l}{2} - \varepsilon(c_1 + c_2) > 0.
\]

Then, we pick \(\delta \) small enough such that
\[
\delta < \min \left\{ \frac{h_0(\frac{l}{2} - \varepsilon(c_1 + c_2))}{2(\zeta_0 + 2(\zeta_0 - l)^2 + 1)}, \frac{h_0}{2} \right\}.
\]

For any fixed \(\delta_1, \delta \) and \(\varepsilon \), we select \(\varepsilon_1, \varepsilon_2 \) and \(\varepsilon_3 \) so small satisfying
\[
\frac{h_0}{2} \varepsilon_2 < \varepsilon_1 < h_0 \varepsilon_2.
\]

and
\[
\mu_3 := -\varepsilon_2 \delta(\zeta_0 + 2(\zeta_0 - l)^2 + 1) + \varepsilon_1 \left(\frac{l}{2} - \varepsilon(c_1 + c_2) \right) > 0,
\]

Finally, we choose \(\gamma, k \) small enough such that
\[
\varepsilon_1 - \varepsilon_2 h_0 + \frac{\gamma(p + 1)}{p + 2} < 0, \quad \varepsilon_1 - \frac{\gamma}{2} > 0,
\]
\[
\varepsilon_2 \delta - \varepsilon_1 + \frac{\gamma}{4} < 0, \quad -\eta_1 \varepsilon_3 + \frac{\gamma(m-1)}{m} < 0,
\]
\[
-\mu_3 + \frac{\gamma}{2}(\zeta_0 - h_0) + (\varepsilon_1 - \frac{\gamma}{2}) \frac{k \epsilon \rho \sigma^2}{2\pi} < 0,
\]

AIMS Mathematics Volume 7, Issue 3, 4517–4539.
\[\varepsilon_1 - \varepsilon_2 [h_0 - \delta_1 (1 + c(E(0))^a)] + \frac{\gamma}{2} < 0, \]
\[(\varepsilon_1 - \frac{\gamma}{2}) \left(2(1 + \ln a) - \ln \|u\|_2^2 \right) - \frac{\gamma}{2} > 0. \]

Therefore, (3.28) becomes, for positive constants \(k_i, i = 1, 2 \)
\[\mathcal{G}'(t) \leq -k_1 E(t) + k_2 (h \circ \nabla u)(t) + c(\varepsilon_0)(h \circ \nabla u)^{1/(1+\varepsilon_0)}(t), \quad \forall t \geq t_0. \]

\[\square \]

Remark 1. By (1.2), (2.3), (2.4) and (2.10), we have
\[E(t) \geq J(t) \geq l_6 \|\nabla u(t)\|_2^2, \quad (3.30) \]
then, by (1.9)
\[\|\nabla u\|_2^2 \leq \frac{6}{7} E(0). \quad (3.31) \]

Hence, using (1.9) and Young's inequality, gives
\[|E'(t)| \leq -\eta_0 \|u(t)\|_m^m + \frac{1}{2} (h' \circ \nabla u)(t) - \frac{1}{2} h(t) \|\nabla u(t)\|_2 \]
\[\leq \frac{\sigma}{4} \left(\frac{d}{dr} \left(\|\nabla u(t)\|_2^2 \right) \right)^2 \]
\[\leq \frac{1}{2} (h' \circ \nabla u)(t) - \frac{1}{2} h(t) \|\nabla u(t)\|_2^2 \]
\[\leq \int_\Omega \int_0^t h'(-\varrho)(\|\nabla u(\varrho)\|_2^2 + \|\nabla u(\varrho)\|_2^2) d\varrho dx - \frac{1}{2} h(t) \|\nabla u(t)\|_2^2 \]
\[\leq \frac{6}{7} \left(2h(0) - \frac{3}{2} h(t) \right) E(0) \]
\[\leq c E(0). \quad (3.32) \]

Corollary 1. Suppose that (1.2)–(1.5) hold, let \(u \) is a solution of (1.7). Then
\[\vartheta(t)(h \circ \nabla u)(t) \leq c \left(\frac{1}{2} E'(t) \right)^{1/(2\theta - 1)}, \quad (3.33) \]
and, for all \(\varepsilon_0 \in (0, 1) \)
\[\vartheta(t)(h \circ \nabla u)^{1/(1+\varepsilon_0)}(t) \leq c(\varepsilon_0) \left(\frac{1}{2} E'(t) \right)^{1/(2\theta - 1)(1+\varepsilon_0)}. \quad (3.34) \]

Theorem 2. Suppose that (1.2)–(1.5) are satisfied, let \((u_0, u_1, f_0)\) satisfy (2.9), \(\varsigma \in (0, 2\theta - 1) \). Then, for \(k \) small enough, \(\exists \Gamma > 0 \) such that the solution of (1.7) satisfies
\[E(t) \leq \Gamma \left(1 + \int_0^t \vartheta^{2\theta - 1 + \varsigma}(\varrho) d\varrho \right)^{-1/(2\theta - 2 + \varsigma)}, \quad \forall t \geq t_0. \quad (3.35) \]
Hence, if there exist $\xi_1 \in (0, 2\theta - 1)$ and $t_0 > 0$ such that
\[
\int_{t_0}^{\infty} \left(1 + \int_{t_0}^{t} \vartheta^{2\theta - 1 + \xi_1}(\vartheta)\,d\vartheta\right)^{-1/(2\theta - 2 + \xi_1)}\,dt < \infty. \tag{3.36}
\]
Then, for all $r \in (0, \theta)$ and $t_0 > 0$, $\exists \Gamma > 0$ such that the solution of (1.7) satisfies
\[
E(t) \leq \Gamma \left(1 + \int_{t_0}^{t} \vartheta^{\theta + r}(\vartheta)\,d\vartheta\right)^{-1/(\theta + r)}, \quad \forall t \geq t_0. \tag{3.37}
\]

Proof. Multiplying (3.25) by $\vartheta(t)$, using Corollary 1 and (3.32), we find
\[
\vartheta(t)G'(t) \leq -k_1 \vartheta(t)E(t) + c(-E'(t))^{1/(2\theta - 1)} + c(-E'(t))^{1/(2\theta - 1)(1 + \epsilon_0)}
\leq -k_1 \vartheta(t)E(t) + c(-E'(t))^{\eta_1/(2\theta - 1)(1 + \epsilon_0)}(-E'(t))^{1/(2\theta - 1)(1 + \epsilon_0)}
+ c(-E'(t))^{1/(2\theta - 1)(1 + \epsilon_0)}
\leq -k_1 \vartheta(t)E(t) + c(-E'(t))^{1/(2\theta - 1)(1 + \epsilon_0)}, \quad \forall t \geq t_0. \tag{3.38}
\]
Multiply (3.38) by $\vartheta^q(t)E^q(t)$, with $q = (2\theta - 1)(1 + \epsilon_0) - 1$, and using the fact that $\vartheta' \leq 0$ to get
\[
\vartheta^{q+1}(t)E^q(t)G'(t) \leq -k_1 \vartheta^{q+1}(t)E^{q+1}(t) + c(\vartheta E^q(t)(-E'(t))^{1/(q+1)}).
\]
By using Young’s inequality, with $q = \eta + 1$ and $q^* = (\eta + 1)/\eta$, gives, for all $\epsilon' > 0$,
\[
\vartheta^{q+1}(t)E^q(t)G'(t) \leq -k_1 \vartheta^{q+1}(t)E^{q+1}(t) + c(\epsilon'\vartheta^{q+1}(t)E^{q+1}(t) - c(\epsilon')E'(t))
= -(k_1 - c\epsilon')\vartheta^{q+1}(t)E^{q+1}(t) - c(\epsilon')E'(t), \quad \forall t \geq t_0.
\]
We select $0 < \epsilon' < \frac{k_1}{c}$ and recalling $\vartheta' \leq 0$ and $E' \leq 0$, to find, for $k_3 = k_1 - \epsilon'c$
\[
(\vartheta^{q+1}E^qG)(t) \leq \vartheta^{q+1}(t)E^q(t)G'(t) \leq -k_3 \vartheta^{q+1}(t)E^{q+1}(t) - cE'(t), \quad \forall t \geq t_0,
\]
which implies
\[
(\vartheta^{q+1}E^qG + cE)'(t) \leq -k_3 \vartheta^{q+1}(t)E^{q+1}(t), \quad \forall t \geq t_0.
\]
Let
\[
\mathcal{Y}(t) := (\vartheta^{q+1}E^qG + cE)(t) \sim E(t), \tag{3.39}
\]
we obtain
\[
\mathcal{Y}'(t) \leq -c\vartheta^{q+1}(t)\mathcal{Y}(t) = -c\vartheta^{1/(2\theta - 1)(1 + \epsilon_0)}\vartheta^{1/(2\theta - 1)(1 + \epsilon_0)}(t), \quad \forall t \geq t_0. \tag{3.40}
\]
Integrating of (3.40) over (t_0, t) and using (3.39), we get (3.35) with $\zeta = (2\theta - 1)\epsilon_0$.

Remark 2. Using (3.35) and (3.36), we can easily show that
\[
\int_{0}^{\infty} E(t)\,dt < \infty. \tag{3.41}
\]
At this point, to prove (3.37), let the functional
\[
\varphi(t) := \int_0^t (\|\nabla u(t) - \nabla u(t - \varrho)\|_2^2) \, d\varrho,
\]
by using (3.31), (3.35), (3.36) and (3.41), we find
\[
\varphi(t) \leq 2 \int_0^t (\|\nabla u(t)\| + \|\nabla u(t - \varrho)\|_2^2) \, d\varrho \\
\leq \frac{12}{l} \int_0^t (E(t) + E(t - \varrho)) \, d\varrho \\
\leq \frac{24}{l} \int_0^\infty E(\varrho) \, d\varrho \leq 24 l \int_0^\infty E(\varrho) \, d\varrho < \infty.
\]
Hence
\[
\sup_{t > 0} \varphi^{1/(1/\theta)}(t) < \infty.
\]
Suppose that \(\varphi(t) > 0\). Then, since \(\vartheta\) is non-increasing, we get
\[
\vartheta(t)(h \circ \nabla u)(t) \leq \frac{\varphi(t)}{\varphi(t)} \int_0^t (\vartheta(\varrho) h(\varrho))^{1/\theta}(\|\nabla u(t) - \nabla u(t - \varrho)\|_2^2) \, d\varrho,
\]
by Jensen’s inequality to obtain
\[
\vartheta(t)(h \circ \nabla u)(t) \leq \varphi(t) \left(\frac{1}{\varphi(t)} \int_0^t \vartheta(\varrho) h(\varrho)(\|\nabla u(t) - \nabla u(t - \varrho)\|_2^2) \, d\varrho \right)^{1/\theta}.
\]
Hence, by (1.3) and (3.44) we find
\[
\vartheta(t)(h \circ \nabla u)(t) \leq \varphi(t) \left(\frac{1}{\varphi(t)} \int_0^t \vartheta(\varrho) h(\varrho)(\|\nabla u(t) - \nabla u(t - \varrho)\|_2^2) \, d\varrho \right)^{1/\theta}
\leq c(-h' \circ \nabla u)^{1/\theta}(t).
\]
From (1.9), we have
\[
\vartheta(t)(h \circ \nabla u)(t) \leq c(-E'(t))^{1/\theta}(t).
\]
Since \(\vartheta\) is non-increasing function, we get
\[
\vartheta(t)(h \circ \nabla u)^{1/(1+\varepsilon_0)}(t) \leq \left(\vartheta(0) \vartheta(t)(h \circ \nabla u)(t) \right)^{1/(1+\varepsilon_0)}
\leq \left(\vartheta(0) \vartheta(t)(h \circ \nabla u)(t) \right)^{1/(1+\varepsilon_0)}
\leq c(\vartheta(t)(h \circ \nabla u)(t))^{1/(1+\varepsilon_0)}
\leq c(-E'(t))^{1/(\theta(1+\varepsilon_0))}(t).
\]
If \(\varphi(t) = 0\), then \(\varrho \rightarrow \nabla u(\varrho)\) is a constant function on \([0, t]\). Therefore
\[
(h \circ \nabla u)(t) = 0,
\]
and hence (3.45) and (3.46) hold. At this point, multiplying (3.25) by $\vartheta(t)$ and we use (3.32), (3.45) and (3.46) to obtain, for any $t \geq t_0$ (as for (3.38))

$$\vartheta(t)G'(t) \leq -k_1 \vartheta(t)E(t) + c(-E'(t))^{1/(2\theta-1)(1+\varepsilon_0)}, \quad \forall t \geq t_0. \quad (3.47)$$

Inequality (3.32) with $2\theta−1$ replaced by θ is exactly (3.47). Then, the proof of (3.37) can be completed as for the one of (3.35) (by taking $\eta = \theta(1 + \varepsilon_0) − 1$ and $\varsigma = \theta \varepsilon_0$). The proof is complete. □

4. Conclusions

The purpose of this work was to study the global existence of the solutions for a nonlinear viscoelastic Kirchhoff-type equation with a logarithmic nonlinearity, Balakrishnan-Taylor damping, dispersion and distributed delay terms, and by the energy method we prove an explicit and general decay rate result under suitable hypothesis. This type of problem is frequently found in some mathematical models in applied sciences.

In the next work, we will try to using the same method with same problem. But in added of other damping terms.

Acknowledgments

The researcher would like to thank the Deanship of Scientific Research, Qassim University for funding publication of this project.

Conflict of interest

All authors declare no conflict of interest.

References

1. A. M. Alghamdi, S. Gala, C. Qian, M. A. Ragusa, The anisotropic integrability logarithmic regularity criterion for the 3D MHD equations, *Electron. Res. Arch.*, 28 (2020), 183–193. https://doi.org/10.3934/era.2020012
2. R. Adams, J. Fourier, Sobolev space, New York: Academic Press, 2003.
3. A. V. Balakrishnan, L. W. Taylor, Distributed parameter nonlinear damping models for flight structures, In: *Proceedings: Damping*, Washington: Flight Dynamics Lab and Air Force Wright Aeronautical Labs, 1989.
4. J. D. Barrow, P. Parsons, Inflationary models with logarithmic potentials, *Phys. Rev. D*, 52 (1995), 5576–5587. https://doi.org/10.1103/PhysRevD.52.5576
5. K. Bartkowski, P. Gorka, One-dimensional Klein-Gordon equation with logarithmic nonlinearities, *J. Phys. A: Math. Theor.*, 41 (2008), 355201.
6. R. W. Bass D. Zes, Spillover nonlinearity, and flexible structures, In: *NASA. Langley Research Center, Fourth NASA Workshop on Computational Control of Flexible Aerospace Systems, Part 1*. Washington: NASA Conference Publication, 1991.
7. I. Bialynicki-Birula, J. Mycielski, Wave equations with logarithmic nonlinearities, *Bull. Acad. Pol. Sci., Ser. Sci., Math., Astron. Phys.*, **23** (1975), 461–466.

8. D. R. Bland, *The theory of linear viscoelasticity*, Mineola: Courier Dover Publications, 2016.

9. S. Boulaaras, A. Choucha, D. Ouchenane, B. Cherif, Blow up of solutions of two singular nonlinear viscoelastic equations with general source and localized frictional damping terms, *Adv. Differ. Equ.*, **2020** (2020), 310. https://doi.org/10.1186/s13662-020-02772-0

10. S. Boulaaras, A. Draifia, K. Zennir, General decay of nonlinear viscoelastic Kirchhoff equation with Balakrishnan-Taylor damping and logarithmic nonlinearity, *Math. Method. Appl. Sci.*, **42** (2019), 4795–4814. https://doi.org/10.1002/mma.5693

11. H. Chen, P. Luo, G. W. Liu, Global solution and blow-up of a semilinear heat equation with logarithmic nonlinearity, *J. Math. Anal. Appl.*, **422** (2015), 84–98. https://doi.org/10.1016/j.jmaa.2014.08.030

12. L. Shen, Sign-changing solutions to a N-Kirchhoff equation with critical exponential growth in \mathbb{R}^N, *Bull. Malays. Math. Sci. Soc.*, **44** (2021), 3553–3570. https://doi.org/10.1007/s40840-021-01127-6

13. S. Boulaaras, A well-posedness and exponential decay of solutions for a coupled Lamé system with viscoelastic term and logarithmic source terms, *Appl. Anal.*, **100** (2021), 1514–1532. https://doi.org/10.1080/00036811.2019.1648793

14. A. Choucha, D. Ouchenane, S. Boulaaras, Well posedness and stability result for a thermoelastic laminated timoshenko beam with distributed delay term, *Math. Method. Appl. Sci.*, **43** (2020), 9983–10004. https://doi.org/10.1002/mma.6673

15. A. Choucha, D. Ouchenane, S. Boulaaras, Blow-up of a nonlinear viscoelastic wave equation with distributed delay combined with strong damping and source terms, *J. Nonlinear Funct. Anal.*, **2020** (2020), 31. https://doi.org/10.23952/jnfa.2020.31

16. A. Choucha, S. Boulaaras, D. Ouchenane, S. Beloul, General decay of nonlinear viscoelastic Kirchhoff equation with Balakrishnan-Taylor damping, logarithmic nonlinearity and distributed delay terms, *Math. Method. Appl. Sci.*, **44** (2021), 5436–5457. https://doi.org/10.1002/mma.7121

17. A. Choucha, S. M. Boulaaras, D. Ouchenane, B. B. Cherif, M. Abdalla, Exponential stability of swelling porous elastic with a viscoelastic damping and distributed delay term, *J. Funct. Spaces*, **2021** (2021), 5581634. https://doi.org/10.1155/2021/5581634

18. B. D. Coleman, W. Noll, Foundations of linear viscoelasticity, *Rev. Mod. Phys.*, **33** (1961), 239. https://doi.org/10.1103/RevModPhys.33.239

19. K. Enqvist, J. McDonald, Q-balls and baryogenesis in the MSSM, *Phys. Lett. B*, **425** (1998), 309–321. https://doi.org/10.1016/S0370-2693(98)00271-8

20. B. W. Feng, A. Soufyane, Existence and decay rates for a coupled Balakrishnan-Taylor viscoelastic system with dynamic boundary conditions, *Math. Method. Sci.*, **43** (2020), 3375–3391. https://doi.org/10.1002/mma.6127

21. B. Gheraibia, N. Boumaza, General decay result of solution for viscoelastic wave equation with Balakrishnan-Taylor damping and a delay term, *Z. Angew. Math. Phys.*, **71** (2020), 198. https://doi.org/10.1007/s00033-020-01426-1

22. P. Gorka, Logarithmic Klein-Gordon equation, *Acta Phys. Pol. B.*, **40** (2009), 59–66.
23. L. Gross, Logarithmic Sobolev inequalities, *Amer. J. Math.*, **97** (1975), 1061–1083. https://doi.org/10.2307/2373688

24. M. Khodabakhshi, S. M. Vaezpour, M. R. H. Tavani, Existence results for a Kirchhoff-type problem with singularity, *Miskolc Math. Notes*, **22** (2021), 351–362. https://doi.org/10.18514/MMN.2021.3429

25. G. Kirchhoff, Vorlesungen uber Mechanik, Leipzig: Tauber, 1883.

26. W. J. Liu, B. Q. Zhu, G. Li, D. H. Wang, General decay for a viscoelastic Kirchhoff equation with Balakrishnan–Taylor damping, dynamic boundary conditions and a time-varying delay term, *Evol. Equ. Control The.*, **6** (2017), 239–260. https://doi.org/10.3934/eect.2017013

27. F. Mesloub, S. Boulaaras, General decay for a viscoelastic problem with not necessarily decreasing kernel, *J. Appl. Math Comput.*, **58** (2018), 647–665. https://doi.org/10.1007/s12190-017-1161-9

28. N. Doudi, S. Boulaaras, Global existence combined with general decay of solutions for coupled Kirchhoff system with a distributed delay term, *RACSAM*, **114** (2020), 204. https://doi.org/10.1007/s13398-020-00938-9

29. N. Mezouar, S. Boulaaras, Global existence and decay of solutions for a class of viscoelastic Kirchhoff equation, *Bull. Malays. Math. Sci. Soc.*, **43** (2020), 725–755. https://doi.org/10.1007/s40840-018-00708-2

30. N. Mezouar, S. Boulaaras, Global existence and exponential decay of solutions for generalized coupled non-degenerate Kirchhoff system with a time varying delay term, *Bound. Value. Probl.*, **2020** (2020), 90. https://doi.org/10.1186/s13661-020-01390-9

31. C. L. Mu, J. Ma, On a system of nonlinear wave equations with Balakrishnan-Taylor damping, *Z. Angew. Math. Phys.*, **65** (2014), 91–113. https://doi.org/10.1007/s00033-013-0324-2

32. S. Nicaise, C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks, *SIAM J. Control Optim.*, **45** (2006), 1561–1585. https://doi.org/10.1137/060648891

33. S. Nicaise, C. Pignotti, Stabilization of the wave equation with boundary or internal distributed delay, *Differ. Integral Equ.*, **21** (2008), 935–958.

34. D. Ouchenane, S. Boulaaras, F. Mesloub, General decay for a viscoelastic problem with not necessarily decreasing kernel, *Appl. Anal.*, **98** (2019), 1677–1693. https://doi.org/10.1080/00036811.2018.1437421

©2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)