IP_3R2 levels dictate the apoptotic sensitivity of diffuse large B-cell lymphoma cells to an IP_3R-derived peptide targeting the BH4 domain of Bcl-2

H Akī, G Monaco, R. La Rovere, S. Mikeš, H. De Smedt, and G. Bultynck

Disrupting inositol 1,4,5-trisphosphate (IP_3) receptor (IP_3R)/B-cell lymphoma 2 (Bcl-2) complexes using a cell-permeable peptide (stabilized TAT-fused IP_3R-derived peptide (TAT-IDP^2)) that selectively targets the BH4 domain of Bcl-2 but not that of B-cell lymphoma 2-extra large (Bcl-Xl) potentiated pro-apoptotic Ca^{2+} signaling in chronic lymphocytic leukemia cells. However, the molecular mechanisms rendering cancer cells but not normal cells particularly sensitive to disrupting IP_3R/Bcl-2 complexes are poorly understood. Therefore, we studied the effect of TAT-IDP^2 in a more heterogeneous Bcl-2-dependent cancer model using a set of ‘primed to death’ diffuse large B-cell lymphoma (DL-BCL) cell lines containing elevated Bcl-2 levels. We discovered a large heterogeneity in the apoptotic responses of these cells to TAT-IDP^2 with SU-DHL-4 being most sensitive and OCI-LY-1 being most resistant. This sensitivity strongly correlated with the ability of TAT-IDP^2 to promote IP_3R-mediated Ca^{2+} release. Although total IP_3R-expression levels were very similar among SU-DHL-4 and OCI-LY-1, we discovered that the IP_3R2-protein level was the highest for SU-DHL-4 and the lowest for OCI-LY-1. Strikingly, TAT-IDP^2-induced Ca^{2+} rise and apoptosis in the different DL-BCL cell lines strongly correlated with their IP_3R2-protein level, but not with IP_3R1-, IP_3R3- or total IP_3R-expression levels. Inhibiting or knocking down IP_3R2 activity in SU-DHL-4-reduced TAT-IDP^2-induced apoptosis, which is compatible with its ability to dissociate Bcl-2 from IP_3R2 and to promote IP_3R-induced pro-apoptotic Ca^{2+} signaling. Thus, certain chronically activated B-cell lymphoma cells are addicted to high Bcl-2 levels for their survival not only to neutralize pro-apoptotic Bcl-2-family members but also to suppress IP_3R hyperactivity. In particular, cancer cells expressing high levels of IP_3R2 are addicted to IP_3R/Bcl-2 complex formation and disruption of these complexes using peptide tools results in pro-apoptotic Ca^{2+} signaling and cell death.

Cell Death and Disease (2013) 4, e632; doi:10.1038/cddis.2013.140; published online 16 May 2013

Subject Category: Cancer

B-cell lymphoma 2 (Bcl-2) as an anti-apoptotic protein has a central role in regulating cell death and survival. Altered Bcl-2 biology has been implicated in a large number of cancer cells, including B-cell lymphomas like diffuse large B-cell lymphoma (DL-BCL) and chronic lymphocytic leukemia (CLL). In many cases, Bcl-2 is upregulated, increasing the resistance of the cancer cell toward pro-apoptotic signals like oncogenic stress or genomic instability and thus promoting their survival. Bcl-2, however, also indirectly protects against mitochondrial-mediated apoptosis by targeting the endoplasmic reticulum (ER) Ca^{2+} store. Although Bcl-2 might lower ER Ca^{2+} levels, there is now strong evidence that Bcl-2 directly binds and inhibits inositol 1,4,5-trisphosphate (IP_3) receptors (IP_3Rs). Recently, we found that Bcl-2 suppresses IP_3R activity through its BH4 domain, preventing the pro-apoptotic Ca^{2+} flux from the ER into mitochondria. We identified the Bcl-2-binding site on the IP_3R and developed a peptide corresponding to this binding site (indicated here as TAT-IDP for TAT-conjugated IP_3R-derived peptide). This peptide disrupted Bcl-2 binding and severely enhanced
IP3R-mediated Ca\(^{2+}\) signals with pro-apoptotic properties.\(^{20}\) As a result, TAT-IDP-treated T lymphocytes displayed an increased sensitivity toward pro-apoptotic stimuli (like strong T-cell-receptor stimulation). Furthermore, we also developed a stabilized, protease-resistant form of the peptide (TAT-IDP\(^{22,49}\), which will be further indicated as TAT-IDPS\(^{5}\)). TAT-IDPS\(^{5}\) provoked pro-apoptotic Ca\(^{2+}\) signals in CLL patient cells.\(^{21}\) Hence, in contrast to normal cells, which were resistant to TAT-IDPS\(^{5}\) by itself but displayed enhanced sensitivity toward apoptotic triggers, CLL patient cells underwent apoptotic cell death in the presence of the peptide alone. This raises the question whether cancer cells, in particular Bcl-2-dependent malignancies, displayed altered Ca\(^{2+}\)-signaling properties that turned these cells into vulnerable targets toward peptides disrupting Bcl-2-mediated suppression of apoptotic IP3R activity. Importantly, these peptides selectively target the BH4 domain of Bcl-2, but not that of Bcl-X\(_L\).\(^{22}\) 

Here, we studied a set of cell lines derived from DL-BCL tumors, a disease characterized by its heterogeneity in gene expression, oncogenic aberrations, intrinsic apoptotic escape routes, and response to chemotherapy.\(^{23-25}\) In particular, we focused on BH3-profiled ‘primed to death’ DL-BCL cell lines that are dependent on Bcl-2 upregulation.\(^{26}\) We found that the relative IP3R2-expression level was an important determinant for the apoptotic response of these cells, and correlated with the ability of TAT-IDPS\(^{5}\) to trigger pro-apoptotic IP3R-mediated Ca\(^{2+}\) release. We found that disrupting Bcl-2 binding to IP3Rs was particularly effective in cancer cells with high levels of IP3R2. The presence of IP3R2 rendered these cells vulnerable toward ongoing IP3 signaling, for example, like during chronic activation, whereas cells expressing relatively low levels of IP3R2 were much less sensitive. Such a correlation was not observed for the other two IP3R isoforms (IP3R1 and IP3R3). Hence, this is the first study to reveal a prominent role for the type of IP3R isoform as a determinant for the sensitivity to cell death in Bcl-2-dependent cancer cell lines.

**Results**

Some types of ‘primed to death’ DL-BCL cells are sensitive to TAT-IDPS\(^{5}\). In a primary screening, we investigated five well-characterized and ‘primed to death’ DL-BCL lines, previously BH3 profiled by the laboratory of Dr. A. Letai (KARPAS422, TOLEDO, PFEIFFER, SU-DHL-4, and OCI-LY-1).\(^{5,12}\) KARPAS422, TOLEDO, SU-DHL-4, and OCI-LY-1 display upregulated Bcl-2 levels and high amounts of Bcl-2/Bim complexes, rendering these cells particularly sensitive toward the BH3-mimetic drug ABT-737,\(^{12}\) whereas PFEIFFER displayed relatively high levels of Bfl-1 and myeloid-cell leukemia 1 (Mcl-1) levels making this cell line more resistant to ABT-737.\(^{12}\) Strikingly, we found remarkable differences in the response of these DL-BCL cells toward TAT-IDPS\(^{5}\) exposure (10 \(\mu M\), 24 h) in cell-death experiments based on annexin V-FITC/propidium iodide (PI) staining and FACS analysis (Figures 1a and b). Indeed, in contrast to its scrambled counterpart, TAT-Ctrl (Supplementary Figure 1), TAT-IDPS\(^{5}\) triggered apoptotic cell death in four out of five DL-BCL cells (KARPAS422, TOLEDO, PFEIFFER, and SU-DHL-4), but not in OCI-LY-1. The latter was not due to a general defect in the apoptotic program in OCI-LY-1, because these cells were very sensitive toward more general apoptotic inducers, like staurosporine (Figure 1c).

**TAT-IDPS\(^{5}\) effectively provokes cell death in SU-DHL-4 but not in OCI-LY-1.** Next, we decided to elucidate the underlying mechanisms for the different responses toward TAT-IDPS\(^{5}\) treatment. We focused on comparing SU-DHL-4 and OCI-LY-1, because these cells are both germinal-center DL-BCL cells and are very similar in cell size (Figure 2a). Furthermore, both cell lines expressed similar total amounts of IP3R proteins (Figure 2b), whereas displaying the most divergent response to TAT-IDPS\(^{5}\). We first determined a concentration-response curve for both cells toward TAT-IDPS\(^{5}\)-induced cell death (Figure 2c). We found that TAT-IDPS\(^{5}\) killed SU-DHL-4 cells with an IC\(_{50}\) of about 10 \(\mu M\), whereas OCI-LY-1 cells were resistant to TAT-IDPS\(^{5}\)-induced cell death, even at 30 \(\mu M\), which killed about 90% of the SU-DHL-4 cells. Using FITC-labeled TAT-IDPS\(^{5}\), we also confirmed that both cell lines accumulated the peptide to similar extents (Supplementary Figure 2).

**TAT-IDPS\(^{5}\) triggers IP3R-mediated cytosolic [Ca\(^{2+}\)] rises in SU-DHL-4 but not in OCI-LY-1.** Next, we monitored cytosolic Ca\(^{2+}\) signals in response to acute TAT-IDPS\(^{5}\) exposure in a Ca\(^{2+}\)-free extracellular medium (Figure 3). After Fura2-AM loading of SU-DHL-4 and OCI-LY-1, cytosolic [Ca\(^{2+}\)] measurements were performed in cell populations using an automated fluorescence plate reader. We found that TAT-IDPS\(^{5}\) (10 \(\mu M\)), but not TAT-Ctrl, caused an accelerated increase in the cytosolic [Ca\(^{2+}\)] in SU-DHL-4, whereas this was not observed in OCI-LY-1 (Figure 3a). The increase in cytosolic [Ca\(^{2+}\)] could be counteracted by using the selective IP3R antagonist xestospongin B (XeB),\(^{27}\) indicating a major role for IP3Rs in mediating the TAT-IDPS\(^{5}\)-induced [Ca\(^{2+}\)] rise in SU-DHL-4 (Figure 3b). Indeed, XeB reduced the slope of the TAT-IDPS\(^{5}\)-induced [Ca\(^{2+}\)] rise by about 40%. These observations were underpinned by additional experiments in which the ER Ca\(^{2+}\) content was assessed using 10 \(\mu M\) thapsigargin, a potenti and selective inhibitor of the ER Ca\(^{2+}\) ATPases (SERCA)\(^{28}\) together with EGTA for chelating extracellular Ca\(^{2+}\). The magnitude of the thapsigargin-induced [Ca\(^{2+}\)] rise (area under the peak) is a measure of the amount of Ca\(^{2+}\) stored in the ER. We found that pretreating the cells with TAT-IDPS\(^{5}\), but not TAT-Ctrl, severely reduced the thapsigargin-induced [Ca\(^{2+}\)] rise in SU-DHL-4. In contrast, TAT-IDPS\(^{5}\) pretreatment had only a slight effect on the thapsigargin-induced [Ca\(^{2+}\)] rise in OCI-LY-1 as compared with SU-DHL-4 (Figure 3c). Importantly, all these measurements were done well before apoptotic cell death was observed, indicating that the acute rise of [Ca\(^{2+}\)] was not due to ongoing apoptotic processes, but was rather a very proximal event in the induction of apoptosis. This is supported by the fact that treating SU-DHL-4 with BAPTA-AM (10 \(\mu M\)), a cell-permeable Ca\(^{2+}\) chelator, reduced TAT-IDPS\(^{5}\)-induced cell death by \(~75\%\) (Figure 4a). Similar results were observed for XeB (2.5 \(\mu M\)), which inhibits IP3R-mediated Ca\(^{2+}\) release. Indeed, a 2-h pre-treatment of SU-DHL-4 with XeB reduced the number of apoptotic cells (i.e., annexin V-FITC-positive cells) in response to TAT-IDPS\(^{5}\) by about 40% in comparison to SU-DHL-4 treated with TAT-
Figure 1  TAT-IDP\textsuperscript{S}-induced apoptosis in DL-BCL cell lines. (a) Representative dot plots from flow cytometry analysis of apoptosis using annexin V-FITC/PI-stained KARPAS422, OCI-LY-1, SU-DHL-4, TOLEDO, and PFEIFFER, either untreated or treated with 10 \(\mu\text{M}\) TAT-IDP\textsuperscript{S} for 24 h or with 1 \(\mu\text{M}\) staurosporine for 6 h (10,000 cells per analysis). The apoptotic population was identified as the annexin V-FITC-positive fraction (Q2 + Q4). (b, c) Quantitative analysis of four independent experiments of the (b) TAT-IDP\textsuperscript{S} and (c) staurosporine-induced apoptosis (\(\Delta\) apoptotic fraction = apoptotic population in treated cells - apoptotic population in untreated cells). Data are expressed as the average \(\pm\) S.D.
levels of Bcl-2, and HT cells ectopically and stably over-expressing Bcl-2 (HT-Bcl-2). We found that both SU-DHL-4 and OCI-LY-1 displayed similar levels of Bcl-XI (Figure 5a) and Mcl-1 (Figure 5b). These levels were also similar to the levels found in HT and HT-Bcl-2, although Bcl-XI was slightly higher in both SU-DHL-4 and OCI-LY-1. For Bcl-2, we also found a high expression in both SU-DHL-4 and OCI-LY-1. Its level was in the range of the Bcl-2-overexpressing HT (Figure 5c). However, Bcl-2 levels were significantly higher in OCI-LY-1 than in SU-DHL-4.

We also probed IP$_3$R isoform-expression levels by qRT-PCR and by western blot analysis using isoform-specific antibodies. We also found that both SU-DHL-4 and OCI-LY-1 displayed similar levels of IP$_3$R1, which were slightly higher than the ones observed in HT and HT-Bcl-2 (Figure 5d). However, SU-DHL-4 and OCI-LY-1 displayed a very different profile for IP$_3$R2 (Figure 5e) and IP$_3$R3 (Figure 5f). Indeed, SU-DHL-4 displayed a strong upregulation of IP$_3$R2-mRNA and -protein levels as compared with the other cell lines, whereas OCI-LY-1 displayed the highest IP$_3$R3-mRNA and -protein levels.

**TAT-IDP$^S$-induced apoptosis is suppressed in SU-DHL-4 by IP$_3$R2 knockdown and boosted in OCI-LY-1 by IP$_3$R2 overexpression.** Bcl-2 levels were higher in OCI-LY-1 than in SU-DHL-4 (Figure 5c). Thus, we examined whether the resistance of OCI-LY-1 to TAT-IDP$^S$-induced apoptosis was due to a higher anti-apoptotic Bcl-2 reserve of these cells. Using two independent siRNA probes (siBcl-2(1) and siBcl-2(2)), we successfully knocked down Bcl-2 in OCI-LY-1 by about 30% and 90%, respectively, in comparison to mock- or siCtrl-transfected OCI-LY-1, while not affecting Bcl-XL levels (Supplementary Figure 3, blots). Strikingly, Bcl-2 knockdown did not significantly increase the apoptotic response toward TAT-IDP$^S$ treatment (Supplementary Figure 3, bottom panel). This result showed that the higher expression of Bcl-2 in OCI-LY-1 in comparison to SU-DHL-4 was not responsible for the resistance of OCI-LY-1 to TAT-IDP$^S$-induced apoptosis.

Given the striking difference in IP$_3$R-expression profile and the distinct sensitivity of these isoforms toward IP$_3$, we wondered whether high IP$_3$R2 expression was underlying the sensitivity of DL-BCL cells toward TAT-IDP$^S$ exposure. Importantly, IP$_3$R2 and IP$_3$R3 have very distinct ligand sensitivity: IP$_3$R2 is the IP$_3$R isoform most sensitive toward IP$_3$, whereas IP$_3$R3 is the IP$_3$R isoform least sensitive toward IP$_3$. Therefore, we developed a siRNA probe selectively targeting IP$_3$R2 and a non-targeting control siRNA probe (siCtrl). This siRNA probe (siIP$_3$R2) effectively knocked down IP$_3$R2-protein levels in transfected SU-DHL-4 cells by about 60% in comparison to mock-transfected or siCtrl-transfected SU-DHL-4 cells (Figure 6a, blots). IP$_3$R2 knockdown correlated with an increased resistance toward TAT-IDP$^S$ treatment (Figure 6a, bottom panels). Indeed, the siIP$_3$R2 probe significantly reduced the number of apoptotic cells in TAT-IDP$^S$-treated SU-DHL-4 in comparison to mock-transfected or siCtrl-transfected SU-DHL-4 (Figure 6a, bottom panel).

Conversely, when we increased the expression of IP$_3$R2 in OCI-LY-1 cells by the transfection of an IP$_3$R2-expression plasmid, OCI-LY-1 became more sensitive toward apoptotic death. (a) Average-size measurement of SU-DHL-4 and OCI-LY-1 viable cells with a Tali Image-Based Cytometer using trypan-blue staining. Average viable-cell size for OCI-LY-1 is 11.2 ± m and for SU-DHL-4 is 11.5 ± m. (b) A representative western blot showing the IP$_3$R-expression level in SU-DHL-4 and OCI-LY-1. The expression level of GAPDH protein was used as control for equal loading. (c) Dose-response curves comparing viability of SU-DHL-4 and OCI-LY-1 based on flow cytometric quantification of PI exclusion 24 h after adding TAT-IDPS. Data are expressed as the average ± S.D.; n = 4.

Both SU-DHL-4 and OCI-LY-1 display upregulated Bcl-2, but express different IP$_3$R isoforms. We quantified the expression levels of a variety of anti-apoptotic Bcl-2-family members and IP$_3$R isoforms in both SU-DHL-4 and OCI-LY-1 at the mRNA level using specific probes (Figure 5, bar graphs), and at the protein level using specific and validated antibodies (Figure 5, blots). As reference cell lines, we used HT cells, a DL-BCL cell line, which has very low endogenous

---

**Figure 2** SU-DHL-4 and OCI-LY-1 cells have differential TAT-IDP$^S$-induced cell death. (a) Average-size measurement of SU-DHL-4 and OCI-LY-1 viable cells with a Tali Image-Based Cytometer using trypan-blue staining. Average viable-cell size for OCI-LY-1 is 11.2 ± m and for SU-DHL-4 is 11.5 ± m. (b) A representative western blot showing the IP$_3$R-expression level in SU-DHL-4 and OCI-LY-1. The expression level of GAPDH protein was used as control for equal loading. (c) Dose-response curves comparing viability of SU-DHL-4 and OCI-LY-1 based on flow cytometric quantification of PI exclusion 24 h after adding TAT-IDPS. Data are expressed as the average ± S.D.; n = 4.
cell death. Transfection with the plasmid increased the IP₃R₂-protein level in OCI-LY-1 by more than 50% in comparison to empty vector-transfected OCI-LY-1 (Figure 6b, blots). The exogenous IP₃R₂ expression significantly increased the spontaneous apoptosis in the transfected cells from 5 to 20%. It also increased the number of apoptotic cells in TAT-IDPS-treated OCI-LY-1 cells in comparison to mock-transfected or empty vector-transfected OCI-LY-1 from 10 to 30% (Figure 6b, bottom panels).

**IP₃R₂-protein levels correlate with the sensitivity toward the TAT-IDPS-induced apoptotic [Ca²⁺] rise in DL-BCL cells.** Next, we monitored cytosolic Ca²⁺ signals in response to acute TAT-IDPS exposure in the Bcl-2-dependent cell lines (Figure 7). After Fura2-AM loading of SU-DHL-4, KARPAS422, TOLEDO, and OCI-LY-1, cytosolic [Ca²⁺] measurements were performed in cell populations. We found that TAT-IDPS (10 μM) caused a differential increase in cytosolic [Ca²⁺] in the different DL-BCL cell lines (Figure 7a, left panel). We plotted the slope of the cytosolic [Ca²⁺] increase as a function of the TAT-IDPS-induced apoptosis in the different DL-BCL cell lines. A positive linear correlation (r² = 0.97) existed between the TAT-IDPS-induced [Ca²⁺] rise and its apoptotic effect (Figure 7a, right panel). We also performed an IP₃R-profile analysis for the four DL-BCL cell lines using a pan-IP₃R antibody recognizing all three IP₃R isoforms and using isoform-specific antibodies (Figure 7b, blots, left panels). Plotting the apoptotic responses (Figure 7b, central panels) and [Ca²⁺] responses (Figure 7b, right panels) to TAT-IDPS as a function of the different IP₃R isoforms and total IP₃R-protein levels for the different DL-BCL cell lines revealed that only IP₃R₂-protein levels, but not IP₃R₁, IP₃R₃, nor total IP₃R, correlated with TAT-IDPS-induced apoptosis (r² = 0.7) or with
TAT-IDPS-induced \([\text{Ca}^{2+}]\) rises \((r^2 = 0.99)\). TOLEDO and KARPAS422 displayed intermediate IP3R2-protein levels, correlating with intermediate apoptotic and \([\text{Ca}^{2+}]\) responses to TAT-IDPS exposure. In a next series of experiments, we examined whether TAT-IDPS differently affected IP3R/Bcl-2 complexes in SU-DHL-4 and OCI-LY-1 (Figures 8a and b). We have previously shown that the Bcl-2-binding site is conserved among all three IP3R isoforms.22 At least in \textit{in vitro} surface–plasmon–resonance experiments, recombinantly expressed and purified fragments covering the proposed Bcl-2-binding site of IP3R1, IP3R2, and IP3R3 were able to interact with the synthetic BH4 domain of Bcl-2.22 Thus, we examined whether this was also valid in a cellular context, and whether Bcl-2 co-immunoprecipitated with IP3R from SU-DHL-4 and OCI-LY-1 cell lysates. Immunoprecipitation of IP3R2 indeed caused the co-immunoprecipitation of Bcl-2 in both SU-DHL-4 and OCI-LY-1 lysates. However, despite the fact that OCI-LY-1 displayed higher levels of Bcl-2 than SU-DHL-4, the amount of Bcl-2 that was specifically co-immunoprecipitated with IP3R2 in OCI-LY-1 was extremely low. Importantly, we found that pretreatment of SU-DHL-4 with TAT-IDPS reduced the amount of Bcl-2 co-immunoprecipitating with IP3R2 (Figure 8a). A similar band was observed in OCI-LY-1, but due to the much lower levels of Bcl-2 binding to IP3R2 it was just above the detection level and this was despite the very high Bcl-2 levels in these cells. For IP3R3, we found that only in OCI-LY-1, but not in SU-DHL-4, Bcl-2 co-immunoprecipitated with IP3R3. Pretreatment with TAT-IDPS only slightly reduced Bcl-2 levels in the IP3R3 co-immunoprecipitated samples (Figure 8b). Hence, these experiments indicate that in SU-DHL-4 Bcl-2 was recruited to a large extent by IP3R2, and Bcl-2 could be...
displaced at least partially from this isoform using TAT-IDPS. This was not observed in OCI-LY-1 with respect to the predominant IP3R3 isoform in these cells. This could mean that the Bcl-2/IP3R3 interaction is less pronounced in a cellular context or alternatively that Bcl-2 in these cells is mainly bound to other proteins such as Bim and Bax. Thus, these observations suggest that the TAT-IDPS-induced $[Ca^{2+}]$ rise and cell death are linked to the disruption of the IP$_3$/Bcl-2 interaction, particularly in cells expressing relatively high levels of IP$_3$R2.

Discussion

The major findings of this study are that (i) IP$_3$R2 is a determinant of the sensitivity of Bcl-2-dependent 'primed to death' DL-BCL cells toward the apoptotic effect of TAT-IDPS, and (ii) Bcl-2-dependent cancer cells may be addicted to high levels of Bcl-2 to suppress aberrant pro-apoptotic $Ca^{2+}$ signals. In particular, cancer cells expressing the most sensitive IP$_3$R isoform (IP$_3$R2) likely are very vulnerable toward tonic IP$_3$ signaling.
Figure 6  Manipulation of IP₃R2-expression levels in OCI-LY-1 and SU-DHL-4. (a) Western-blots analysis of IP₃R2 and IP₃R1 proteins in siCtrl- and siIP₃R2-transfected SU-DHL-4 is shown in the upper panel. Representative dot plots from flow cytometry analysis of apoptosis induced by 2 h treatment without or with 10 µM TAT-IDPS in mock-, siCtrl-, and siIP₃R2-transfected SU-DHL-4 are shown in the middle panel. Quantitative analysis of three independent experiments of the TAT-IDPS-induced apoptosis is shown in the bottom panel. (b) Western-blots analysis of IP₃R2 and IP₃R1 proteins in empty vector- and IP₃R2-expressing plasmid-transfected OCI-LY-1 is shown in the upper panel. Representative dot plots from flow cytometry analysis of apoptosis induced by 2 h treatment without or with 10 µM TAT-IDPS in mock-, empty vector-, and IP₃R2-expressing plasmid-transfected OCI-LY-1 cells are shown in the middle panel. Quantitative analysis of three independent experiments of the TAT-IDPS-induced apoptosis is shown in the bottom panel. Results are shown as average ± S.D.
Figure 7  TAT-IDP5-induced apoptosis depends on the IP3R2-expression level. (a) Left panel: representative traces from fluorimetric analysis of the TAT-IDP5-induced Ca2+ responses in SU-DHL-4, KARPAS422, TOLEDO, and OCI-LY-1 using the ratiometric Ca2+ indicator Fura2-AM in the presence of 1 mM EGTA. Right panel: linear fitting of the TAT-IDP5-induced apoptosis identified as the annexin V-FITC-positive fraction as a function of the slope of the [Ca2+] rises induced by TAT-IDP5 for SU-DHL-4, KARPAS422, TOLEDO, and OCI-LY-1. (b) Left panel: Western blots analyzing the protein expression levels of IP3R1, IP3R2, IP3R3, and total IP3R in SU-DHL-4, KARPAS422, TOLEDO, and OCI-LY-1. Microsomes from CHO cells were used as a standard positive control for protein quantification. The blots are representative of more than four independent experiments. Central panel: linear fitting of the TAT-IDP5-induced apoptosis as a function of the IP3R1, IP3R2, IP3R3, and total IP3R relative protein levels in SU-DHL-4 (1), KARPAS422 (2), TOLEDO (3), and OCI-LY-1 (4). The levels are expressed relative to the level in SU-DHL-4. Right panel: linear fitting of the TAT-IDP5-induced Ca2+ response as a function of the IP3R1, IP3R2, IP3R3, and total IP3R relative protein levels in SU-DHL-4 (1), KARPAS422 (2), TOLEDO (3), and OCI-LY-1 (4).
Peptide tools selectively targeting BH4-Bcl-2 are effective in DL-BCL cancer cells expressing high levels of IP3R2. Our study is the first to provide a prominent role for distinct IP3R isoforms in cell death and survival processes in malignant cells. The higher IP3 sensitivity of IP3R2 could render cells sensitive to very low levels of IP3. In that respect, TAT-IDP5 may trigger Ca2+-release events by disrupting Bcl-2/IP3R2 interactions, in conditions of low-level stimulation and close to basal cellular IP3 concentrations. These events may not be sufficient to trigger activation of the least sensitive IP3R isoform, the IP3R3. This would render cancer cells expressing mainly IP3R3 resistant to TAT-IDP5. At the molecular level, the sensitivity toward TAT-IDP5 is reflected in the presence of different Bcl-2-protein complexes. Indeed, the very sensitive SU-DHL-4 displayed high levels of IP3R/Bcl-2-complex formation, whereas this was not the case for the resistant OCI-LY-1, although this cell line expressed even higher levels of Bcl-2 than SU-DHL-4. Our observation is fully in line with a previous report showing that OCI-LY-1 displayed high levels of Bcl-2/Bax complex formation, which was not the case for SU-DHL-4. Hence, it seems that dependent on the apoptotic escape route cells may be addicted to high levels of Bcl-2 either to suppress aberrant IP3R activity (like in the case of IP3R2-expressing cancer cells, e.g., SU-DHL-4) or to suppress aberrant Bax activity (like in the case of IP3R3-expressing cancer cells, e.g., OCI-LY-1). Indeed, although both IP3R isoforms may interact with Bcl-2 in vitro, the occurrence and significance of these interactions may be very different in a cellular context. Therefore, it may be less critical for cancer cells to use Bcl-2 for suppressing the activity of IP3R3, because this isoform is the least sensitive to IP3 and thus to ongoing B-cell receptor (BCR) signaling. In contrast, cancer cells expressing high levels of IP3R2 will be addicted to high levels of Bcl-2 to suppress the pro-apoptotic activity of the hypersensitive IP3R2 in response to ongoing IP3 signaling. Interestingly, it has been shown that DL-BCL cells have a chronically active BCR.32 Moreover, SU-DHL-4 and OCI-LY-1 are reported to have a similar moderate activation of PLCg2.33 This may indicate that cancer cells may suppress the downstream effects of chronic BCR signaling by either Bcl-2/IP3R interactions to inhibit IP3 signaling or alternatively by switching to the less sensitive IP3R3 isoform. From our immunoprecipitation experiments, it was evident that TAT-IDP5 did not completely disrupt the binding of Bcl-2 to IP3Rs. This may be due to the fact that other Bcl-2 domains may contribute to IP3R binding.34 Yet, alternative mechanisms could be involved in the differential role of different IP3R isoforms in cell death. It has recently been shown that the phosphorylation of IP3R3 by Akt leads to diminished Ca2+ transfer to mitochondria and protection from apoptosis, suggesting an additional level of cell death regulation mediated by Akt.35 Therefore, we cannot exclude an implication of Akt-induced phosphorylation of IP3R3 in the resistance of cells that highly express IP3R3 (OCI-LY-1) toward TAT-IDP5 induction of apoptotic Ca2+ signals, rendering Bcl-2 proteins redundant for recruitment to the IP3R3 channels.

**Figure 8** TAT-IDP5 disturbs Bd-2/IP3R complexes. Representative immunoprecipitation (IP3R2 and IP3R3) and co-immunoprecipitation experiment of Bcl-2 with IP3R2 and IP3R3 from lysates of (a) SU-DHL-4 and (b) OCI-LY-1 pretreated for 2h without or with 10µM TAT-IDP5. IgG = negative control and lysate = positive control. The blots are representative of three independent experiments. The double lines on the blots indicate that lanes from another part of the same gel and exposure time were merged.

**Novel functions for IP3R2 in cancer cells beyond its canonical function in exocrine glands.** This study also reveals a novel isoform-specific function for IP3R2. Although IP3R2 is expressed at very low levels in most tissues, it is highly expressed in organs with exocrine functions, correlating with its importance for the physiological exocrine function of these organs.36 IP3R2 cooperates with IP3R3 in nutrient digestion and enzymatic secretion, correlating with severely impaired Ca2+ signaling in double knock outs in acinar cells of the salivary glands and of the pancreas and in olfactory mucus secretion and function. In acinar cells, IP3R2 expression levels have been linked to the sensitivity toward metabolic stress, as IP3R2 is the most sensitive toward ATP regulation and determines the influence of ATP depletion on intracellular Ca2+ signaling.39 Here, we describe for the first time a prominent role for IP3R2 for the pathophysiology of B-cell lymphoma malignant cells. The aberrant IP3R2 upregulation in some B-cell cancer cells may be an additional component in their addiction to high levels of Bcl-2 to suppress toxic Ca2+ signals in response to chronic BCR signaling, adding another level of heterogeneity of these cancer cells toward dysregulation of apoptosis-signaling cascades. The mechanism underlying IP3R2 upregulation is not clear, but clearly is a transcriptionally regulated event.
Also, the benefit for cancer cells to upregulate IP$_3$R2 is not clear. Nevertheless, given the central role of constitutive IP$_3$/Ca$^{2+}$ signaling in regulating mitochondrial bio-energetics, IP$_3$R2 upregulation may enhance mitochondrial function and energy production to accommodate for the higher metabolic activity and the induced proliferation of cancer cells.

**Conclusion**

Our findings highlight the importance of targeting Bcl-2’s BH4 domain in Bcl-2-dependent cancers. Although we previously showed that CLL may be targeted using IP$_3$R-derived peptides, we now provide (i) evidence that this strategy is applicable in other cancer cells like DL-BCL, and (ii) mechanistic insights in the underlying signaling pathways revealing a prominent role for IP$_3$R2. This strategy may be helpful to sensitize cancer cells to BH3-mimetic drugs, including cancer cells that are resistant to TAT-IDPS itself. It also seems that exploiting the adaptive response of cancer cells toward higher metabolic needs putatively underlaying IP$_3$R2 upregulation may provide a novel way to target these cells through Ca$^{2+}$-signaling dysregulation.

**Materials and Methods**

**Cells.** SU-DHL-4, KARPAS422, PFEIFFER, TOLEDO, HT, and HT-Bcl-2 (HT ectopically expressing Bcl-2) DL-BCL cell lines were cultured in suspension in RPMI-1640 media. The OCl-1/Y1 DL-BCL cell line was cultured in suspension in Iscove modified Dulbecco medium (Invitrogen, Merelbeke, Belgium). All media were supplemented with 10% heat-inactivated fetal bovine serum, &-lactamine (100 &- GlutaMAX, Gibco/Invitrogen, 35050) and penicillin and streptomycin (100 &- Pen/strep, Gibco/Invitrogen, 15070-063) at 37 °C and 5% CO$_2$.

**Reagents.** For immunoblot, antibodies were: anti-GAPDH (Sigma-Aldrich, Munich, Germany, G8795), anti-Bcl-Xl (Santa Cruz Biotechnologies, Heidelberg, Germany, l-19, sc-1041), anti-Mcl-1 (Santa Cruz Biotechnologies, s-19, sc819), and anti-Bcl-2 (Santa Cruz Biotechnologies, Franklin Lakes, NJ, USA, c-2, sc7382). Anti-IP$_3$R1, anti-IP$_3$R2, and anti-pan-IP$_3$R were Rbt03, 41 Rbt0241 and Rbt475 42, respectively. Anti-IP$_3$R-3 was purchased from BD Biosciences (610312, Franklin Lakes, NJ, USA). For immunoprecipitations, antibodies against IP$_3$R2 (Santa Cruz Biotechnologies, sc-7278) or IP$_3$R3 (Santa Cruz Biotechnologies, sc-7277) were used.

**Real-time qPCR.** Total cellular RNA was isolated using the High Pure RNA Isolation Kit (Roche, Basel, Switzerland, 1 11 828 665 001). For cDNA synthesis, 1 & of RNA was reverse transcribed with High Capacity cDNA Reverse Transcription kit (Applied Biosystems, Foster City, CA, USA). The cDNA was obtained by using specific primers and fluorescent w-Endo RT primers and SYBR Green on an Applied Biosystems 7900HT instrument using specific primers and fluorescent probes.

**Statistical analysis.** Results are expressed as average ± S.D., and n refers to the number of independent experiments. Significance was determined using a two-tailed paired Student’s t-test. Differences were considered significant at P<0.05.

**Conflict of Interest**

The authors declare no conflict of interests.

**Acknowledgements.** We thank Marina Crabbe´, Anja Florizoone, and Tomas Luyten for excellent technical help and Dr. Marc Hoylaerts, Dr. Alexandre Kauskot, and Dr. Raf Ponsaerts for interesting discussions. This work was supported by the Research Foundation-Flanders (FWO; grants G.0604.07N to HDS, G.0788.11N to GM, and G.0819.13N to GB and HDS), by the Research Council of the KU Leuven via the Concerted Actions program (GOA/09/012) and via the Interuniversity Attraction Poles Program (Belgian Science Policy; P9/28 to HDS, JBP, LM, and GB and P7/13 to JBP, LM, and GB), by the Royal Flemish Academy of Belgium for Science and the Arts (Research Award from the Octaaf Dupont Foundation 2010 to GB), and by the National Institutes of Health RO1 CA058804 (to CWD). HA and GM were, respectively, supported by a postdoctoral and a PhD fellowship from the Research Foundation-Flanders (FWO).

We are very grateful to Dr. Anthony Letai (Dana-Farber Cancer Institute, Boston, MA) for providing the collection of BH3-profiled DL-BCL cell lines.

1. Brunelle JK, Letai A. Control of mitochondrial apoptosis by the Bcl-2 family. J Cell Sci 2003; 122(Pt 4): 437–441.
2. Reed. Bcl-2 family proteins and hematologic malignancies: history and future prospects. Blood 2008; 111: 3322–3330.
3. Yip KW, Reed JC. Bcl-2 family proteins and cancer. Oncogene 2008; 27: 6398–6406.
4. Llambi F, Green DR. Apoptosis and oncogenesis: give and take in the BCL-2 family. Curr Opin Genet Dev 2011; 21: 12–20.
5. Chiquet JE, Moldeuans T, Llambi F, Parsons MJ, Green DR. The BCL-2 family reunion. Mol Cell 2004; 15: 357–368.
6. Letai AG. Diagnosing and exploiting cancer’s addiction to blocks in apoptosis. Nat Rev Cancer 2008; 8: 121–132.
7. Letai AG. How do BCL-2 proteins induce mitochondrial outer membrane permeabilization? Trends Cell Biol’2008; 18: 157–164.
8. Tait SW, Green DR. Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol 2010; 11: 621–632.
9. Certo M, Del Gaizo Moore V, Nishino M, Wei G, Korosey S, Armstrong SA et al. Mitochondria primed by death signals determine cellular antitumour activity to BCL-2 family members. Cancer Cell 2006; 9: 351–365.
10. Del Gaizo Moore V, Brown JR, Certo M, Liao Y, Novina CD, Letai A. Chronic lymphocytic leukemia requires BCL-2 to sequester prodeath BIM, explaining sensitivity to BCL2 antagonist ABT-737. J Clin Invest 2007; 117: 112–121.
11. Del Gaizo Moore V, Schlis KD, Sallan SE, Armstrong SA, Letai A. BCL-2 dependence and ABT-737 sensitivity in acute lymphoblastic leukemia. Blood 2008; 111: 2300–2309.
12. Deng J, Carlson N, Takeyama K, Dal Cin P, Shaprio JT, Shaprio GR et al. BH3 profiling identifies three distinct classes of apoptotic blocks to predict response to ABT-377 and conventional chemotherapeutic agents. Cancer Cell 2007; 12: 171–185.
13. Scorrano L, Oakes SA, Opterman JT, Cheng EH, Sorcinelli MD, Pozzan T et al. BAX and BAK regulation of endoplasmic reticulum Ca2+ - a control point for apoptosis. Science 2003; 300: 135–138.
14. Oakes SA, Lin SS, Bassik MC. The control of endoplasmic reticulum-initiated apoptosis by the BCL-2 family of proteins. Curr Mol Med 2006; 6: 99–109.
15. Rong Y, Distelhorst CW. Bcl-2 protein family members: versatile regulators of calcium signaling in cell survival and apoptosis. Annu Rev Physiol 2008; 70: 73–91.
16. Pinton P, Rizzuto R. Bcl-2 and Ca2+ - homeostasis in the endoplasmic reticulum. Cell Death Differ 2006; 13: 1409–1418.
17. Oakes SA, Scorrano L, Opterman JT, Bassik MC, Nishino M, Pozzan T et al. Proapoptotic BAX and BAK regulate the type I isostopic trisphosphate receptor and calcium leak from the endoplasmic reticulum. Proc Natl Acad Sci USA 2006; 103: 105–110.
18. Distelhorst CW, Bootman MD. Bcl-2 interaction with the isostopic 1,4,5-trisphosphate receptor: role in Ca2+ - signaling and disease. Cell Calcium 2010; 53: 234–243.
19. Rong YP, Buttycnik G, Aramolran AS, Zhong F, Panyo JB, De Smedt H et al. The BH4 domain of Bcl-2 inhibits ER calcium release and apoptosis by binding the regulatory and coupling domain of the IP3 receptor. Proc Natl Acad Sci USA 2009; 106: 14397–14402.
20. Rong YP, Aramolran AS, Buttycnik G, Zhong F, Li X, McIvor K et al. Targeting Bcl-2/1p3 receptor interaction to reverse Bcl-2’s inhibition of apoptotic calcium signals. Mol Cell 2008; 31: 255–265.
21. Zhong F, Harr MW, Buttycnik G, Monaco G, Panyo JB, De Smedt H et al. Induction of Ca2+ - driven apoptosis in chronic lymphocytic leukemia cells by peptide-mediated disruption of Bcl-2/p3 receptor interaction. Blood 2011; 117: 2924–2934.
22. Monaco G, Decroix E, Akh H, Ponsart R, Verlet V, Lytren T et al. Selective regulation of IP3-receptor-mediated Ca2+ signaling and apoptosis by the BH4 domain of Bcl-2 versus Bcl-Xl. Cell Death Differ 2012; 19: 295–309.
23. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A et al. Distinct types of diffuse large B-cell lymphomas. Proc Natl Acad Sci USA 2000; 97: 135–142.
24. Bai M, Skyrlas A, Agnantis NJ, Kamina S, Papoudou-Bai A, Kitsoulis P et al. Bcl-2 family of proteins. Curr Mol Med 2006; 6: 2232–2234.
25. Fukuda N, Shiraiwa M, Sato K, Ebisu E, Touhara K, Mikoshiba K. Decreased mitochondrial cytochrome c and nasopharyngeal mouse to type I and II p3 receptors. Eur J Neurosci 2008; 27: 2665–2675.
26. Panyo JB, De Smedt H et al. Profiling of the Bcl-2/Bcl-X, binding sites on type I p3 receptor. Biochem Biophys Res Commun 2008; 369: 42–35.
27. Marchi S, Marinello M, Bononi A, Bonora M, Giorgi C, Rimensi A et al. Selection module of subtype III p3R by Akt regulates ER Ca2+ release and apoptosis. Cell Death Differ 2012; 3: e604.
28. Yamamoto-Hino M, Miyawa A, Segawa A, Adachi E, Yamashina S, Fujimoto T et al. Apical vesicles bearing isostopic 1,4,5-trisphosphate receptors in the Ca2+ -initiation site of ducial epithelium of submandibular gland. J Cell Biol 1998; 141: 135–142.
29. Futatsugi A, Nakamura T, Yamada MK, Ebisu E, Nakamura K, Uchida K et al. IP3 receptor types 2 and 3 mediate excocrine secretion underlying energy metabolism. Science 2005; 309: 2232–2234.
30. Caronno C, Miller RA, Smith I, Bui T, Molgo J, Muller M et al. Essential regulation of cell bioenergetics by constitutive IP3 receptor Ca2+ transfer to mitochondria. Cell 2010; 142: 28–33.
31. Parys JB, de Smedt H et al. Basophilic leukemia cells as model system for isostopic 1,4,5-trisphosphate receptor IV, a receptor of the type II family: functional comparison and immunological detection. Cell Calcium 1996; 17: 239–249.
32. Buttycnik G, Schützk K, Kazni NN, Assela Z, Callewaert G et al. Thimerosal stimulates Ca2+ -flux through isostopic 1,4,5-trisphosphate receptor type 1, but not type 3, via modulation of an isoform-specific Ca2+ -dependent intramolecular interaction. Biochem J 2004; 381(Pt 1): 87–96.
33. Matsu-ura T, Michikawa T, Inoue T, Miyawa K, Yoshida M, Mikoshiba K. Cytosolic isostopic 1,4,5-trisphosphate dynamics during intracellular calcium oscillations in liver cells. J Cell Biol 2006; 173: 755–765.
34. Imai M, Tateishi Y, Hatton M, Mitzuari A, Nakamura T, Futatsugi A et al. Molecular cloning of mouse type 2 and type 3 isostopic 1,4,5-trisphosphate receptors and identification of a novel type 2 receptor splice variant. J Biol Chem 2005; 280: 10305–10317.
35. De Smedt F, Missaian L, Parys JB, Vanweyenberg V, De Smedt H et al. Mucosally generated human brain type I isostopic 1,4,5-trisphosphate 5-phosphatase controls Ca2+ -oscillations induced by ATP in Chinese hamster ovary cells. J Biol Chem 1997; 272: 17367–17375.

Supplementary Information accompanies this paper on Cell Death and Disease website (http://www.nature.com/cddis)