Quantitative Resilience of Linear Systems*

Jean-Baptiste Bouvier and Melkior Ornik

Abstract—Actuator malfunctions may have disastrous consequences for systems not designed to mitigate them. We focus on the loss of control authority over actuators, where some actuators are uncontrolled but remain fully capable. To counteract the undesirable outputs of these malfunctioning actuators, we use real-time measurements and redundant actuators. In this setting, a system that can still reach its target is deemed resilient. To quantify the resilience of a system, we compare the shortest time for the undamaged system to reach the target with the worst-case shortest time for the malfunctioning system to reach the same target, i.e., when the malfunction makes that time the longest. Contrary to prior work on driftless linear systems, the absence of analytical expression for time-optimal controls of general linear systems prevents an exact calculation of quantitative resilience. Instead, relying on Lyapunov theory we derive analytical bounds on the nominal and malfunctioning reach times in order to bound quantitative resilience. We illustrate our work on a temperature control system.

I. INTRODUCTION

Redundancy is the most effective remedy to actuator malfunctions, but it is also the most onerous [1], which leads to our questions of interest: can the system still reach its target even after an actuator malfunction? If so, by how much can it delay the system at reaching its target? We focus on the malfunction consisting in the loss of control authority over actuators [2]. These malfunctioning actuators do not respond to the controller, but they produce uncontrollable and possibly undesirable inputs within their full range of actuation. A system is resilient if it can reach its target despite such a malfunction [3].

Robust control, which aims to drive the system to its target despite small disturbances, generally cannot synthesize an appropriate controller because we consider undesirable inputs that can have the same magnitude as the controls [3], [4]. In order to identify and counteract the faulty actuators, the controller relies on sensors measuring in real-time the outputs of each actuators [5].

The resilience of systems with undesirable inputs has been studied in [6], [7] under the name max-min controllability. Because these papers limit their theory to unbounded sets of control inputs, their elegant resilience conditions have limited applications. The work [8] addresses this issue and shows that bounding the inputs levies a death sentence to the simple max-min controllability condition of [6]. Similarly, the approaches of [8]–[10] all lead to overly complex conditions for resilience of control systems. A simpler approach to resilience comes from differential games theory with Hájek’s duality theorems [11]. Based on these results and with the controllability conditions of [12], we establish straightforward resilience conditions for general linear systems.

However, resilience only guarantees that the target is reachable despite the malfunction. It does not say how much longer the malfunctioning system needs to reach the target compared to the nominal undamaged system. If this delay is excessive, resilience becomes useless in practice. To measure the delay, quantitative resilience was introduced for driftless linear systems in [13], [14] as the maximal ratio of the minimal times required to reach a target for the nominal and malfunctioning systems. However, the geometric approach developed for those works [15] does not translate to general linear systems. Instead, in this paper we will use Lyapunov theory [16].

To calculate quantitative resilience, we first need to determine the fastest time for a linear system to reach its target. Relying on Pontryagin’s Maximum Principle [17] numerous authors have established algorithms to determine time-optimal control signals [18]–[23]. Indeed, it is in general impossible to find an analytical expression for time-optimal control signals [24].

We also need to determine the fastest time for the malfunctioning system to reach its target under the undesirable input making that time the longest. The study of optimal controls of perturbed linear systems was initiated by LaSalle [25] and pursued by Babunashvili [26]. The most fruitful approach to our second question comes once again from differential games [27], as it considers specifically the worst undesirable input instead of a generic perturbation.

Using these algorithms, we can evaluate the ratio of minimal times for the nominal and malfunctioning systems to reach a target x_{goal} from an initial state x_0. Quantitative resilience was introduced in [13] as the maximum of this ratio over all pairs (x_0, x_{goal}). As testing every possible pair is not meaningful, and the specific geometric structure of driftless systems considered in [13] vanishes for general linear systems, we instead establish analytical bounds on the minimal reach times to approximate quantitative resilience. We are mostly interested by determining a lower bound b to quantitative resilience, as in the worst case the malfunctioning system will need less than $1/b$ times longer than the nominal system to reach x_{goal}.

The main contributions of this work are twofold. Firstly, we establish simple necessary and sufficient conditions to verify the resilience of linear systems. Secondly, relying...
on Lyapunov theory, we establish analytical bounds on the quantitative resilience of linear systems.

The remainder of this paper is organized as follows. In Section III building on previous work, we derive necessary and sufficient resilience conditions. In Section IV, we establish analytical bounds on the quantitative resilience of linear systems. The application of our work on a temperature control system is presented in Section V.

Notation: For a set $X \subseteq \mathbb{R}^n$, $co(X)$ denotes its convex hull, ∂X its boundary and $int(X)$ its interior. The Pontryagin difference [11] between two sets $X, Y \subseteq \mathbb{R}^n$ is denoted by $Z := X - Y = \{z \in X : z + y \in X \text{ for all } y \in Y\}$. For a set $Z \subseteq \mathbb{C}$, we say that $Re(Z) \leq 0$ (resp. $Re(Z) = 0$) if the real part of each $z \in Z$ verifies $Re(z) \leq 0$ (resp. $Re(z) = 0$). The set of eigenvalues of a matrix A is $\lambda(A)$. If $\lambda(A) \subseteq \mathbb{R}$, then λ_{min} and λ_{max} are the minimal and maximal eigenvalues.

We now generalize this metric to any control system. For a target $x_{\text{goal}} \in \mathbb{R}^n$, the nominal reach time introduced in [13] becomes

$$T^*_N(x_0, x_{\text{goal}}) := \inf_{\bar{u}() \in \bar{U}} \left\{ T > 0 : x(T) = x_{\text{goal}} \text{ following } (1) \right\},$$

the malfunctioning reach time becomes

$$T^*_M(x_0, x_{\text{goal}}) := \sup_{w(.) \in W} \left\{ \inf_{u(.) \in \bar{U}} \left\{ T > 0 : x(T) = x_{\text{goal}} \text{ following } (2) \right\} \right\},$$

and the quantitative resilience

$$r_q(x_{\text{goal}}) := \inf_{x_0 \in \mathbb{R}^n} \frac{T^*_N(x_0, x_{\text{goal}})}{T^*_M(x_0, x_{\text{goal}})}.$$

(5)

If $x_0 = x_{\text{goal}}$, then $T^*_N = T^*_M = 0$ and we take the convention that their ratio is 1. By definition, if (2) is resilient, then T^*_M is finite and the sup, inf in (4) become max, min achieved with optimal signals w^* and u^*. In that case, T^*_N is also finite and inf becomes min in (3). We focus on the classical case $x_{\text{goal}} = 0$, so we write T^*_N, T^*_M and r_q without their argument x_{goal}.

Our resilience framework assumes that the controller has only access to the past and current values of w, but not to their future. Then, the optimal control u^* of (4) cannot anticipate a random undesirable input w^*, and T^*_M is not likely to be time-optimal as required by Definition 2.4 of [13].

The only way to calculate u^* without any future knowledge of w^* is to solve the intractable Isaac’s main equation [28]. This equation is the differential games counterpart of the Hamilton-Jacobi-Bellman (HJB) equation. According to the review [29], Isaac’s main equation is even more difficult to solve than the HJB equation, which usually results in intractable partial differential equations [17]. Hence, [28] determines only suboptimal solutions in this setting, the paper itself concludes that its practical contribution is minimal.

Instead, we adopt the setting of [27], where u^* and w^* are unique, bang-bang [30], and make the transfer from x_0 to x_{goal} time-optimal. The controller knows that w^* will be chosen to make T^*_M the longest. Thus, u^* is chosen to react optimally to this worst undesirable input. Then, w^* is chosen, and to make T^*_M the longest, it is the same as the controller had predicted. Hence, from an outside perspective it appears as if the controller built u^* knowing w^* in advance, as reflected by (4). Then, T^*_M is time-optimal and can be compared with T^*_N, leading to the following problem.

Problem 2: Evaluate the quantitative resilience of system (2).

III. PRELIMINARIES

Following [11], we introduce the dual system to (2)

$$\dot{y}(t) = Ay(t) + z(t), \quad y(0) = x_0, \quad z(t) \in \mathbb{Z},$$

(6)

where $\mathbb{Z} := BL(-(-C)) = \{z \in BL : z - Cw \in BL \text{ for all } w \in W\}$. If $0 \in W$, then $z \in \mathbb{Z}$ if and only if for all $w \in W$, there exists $u \in \bar{U}$ such that $z - Cw = Bu$. Informally, z represents the control available after counteracting any undesirable input.

System (6) is related to Problem 1 through the following duality theorem of [11], whose proof is extended to non-zero states x_{goal} in [30], and reformulated in [9].
Theorem 1 (Hájek Duality theorem): The state of (2) can be driven to x_{goal} at time T by control signal ϕ for all $w(\cdot) \in \mathcal{W}$, if and only if the state of (2) can be driven to x_{goal} at time T by a control signal $z(\cdot) \in \mathcal{Z}$. Furthermore, $\phi(w(t)) = B\epsilon(t) = z(t) - Cw(t)$.

Theorem 1 transforms the problem of resilient reachability to one of bounded controllability. Using Corollary 3.7 of [12] we thus trivially obtain the following resilience condition.

Theorem 2: If $0 \in \mathcal{Z}$ and int(co(\mathcal{Z})) $\neq \emptyset$, then system (2) is resilient if and only if $Re(\lambda(A)) \leq 0$ and there is no real eigenvector v of A^{T} satisfying $v^{T}z \leq 0$ for all $z \in \mathcal{Z}$.

The first two conditions of Theorem 2 ensure that the controls can move the system in any direction of the state space. For any target to be resiliently reachable, the controls need to be always able to overcome the drift term, so the eigenvalues of A must have a zero real part. Let us deduce a simpler condition for resilience.

Corollary 1: If $0 \in \mathcal{Z}$ and $Re(\lambda(A)) = 0$, then system (2) is resilient.

Proof: Obviously $0 \in \mathcal{Z}$ and int(co(\mathcal{Z})) $\neq \emptyset$ because $\mathcal{Z} \subseteq$ co(\mathcal{Z}). Let v be an eigenvector of A^{T}. Since $0 \in \mathcal{Z}$, there exists $\epsilon > 0$ such that $B_{0}(\epsilon) \subseteq \mathcal{Z}$. Take $z = \epsilon \frac{v}{\|v\|}$, then $v^{T}z = \epsilon \|v\| > 0$. Then, all the conditions of Theorem 2 are satisfied, so system (2) is resilient.

Corollary 1 states that if the controls are stronger than all undesirable inputs, and if the drift does not increase exponentially, then the system is resilient. For driftless systems, as studied in [13] and [14], Corollary 1 simplifies to

Corollary 2: Let $A = 0$ and assume that $0 \in \mathcal{Z}$ (Then, driftless system (2) is resilient.

Similarly, if a driftless system is resilient, then $-CW \subseteq B\mathcal{U}$ and $rank(B) = n$. We show that this condition is also sufficient for resilience due to the compactness of \mathcal{U}.

Proposition 1: If $-CW \subseteq B\mathcal{U}$ and $rank(B) = n$, then $0 \in \mathcal{Z}$.

Proof: The compactness of \mathcal{U} implies that of $\overline{\mathcal{U}}$ and \mathcal{W}, as well as of $B\mathcal{U}$ and CW by assumption. $-CW$ and $\partial B\mathcal{U}$ are disjoint. Since they are both compact, there is a positive distance between them [31], in the sense that there exists $\delta > 0$ such that $(-CW) + B_{0}(\delta) \subseteq B\mathcal{U}$, because $rank(B) = n$. Thus, for all $w \in \mathcal{W}$ and all $z \in B_{0}(\delta)$, $-CW + z \in B\mathcal{U}$, i.e., $z \in \mathcal{Z}$. Then, $B_{0}(\delta) \subseteq \mathcal{Z}$, i.e., $0 \in \mathcal{Z}$.

Proposition 1 simplifies Corollary 1 as the set \mathcal{Z} is more difficult to characterize than $B\mathcal{U}$ and CW. The price of this simplification is that the system needs full actuation. We will now focus on the classical case of resilience to $x_{goal} = 0$, as in [27].

Definition 3: System (2) is resiliently stabilizable if for all $x_{0} \in \mathbb{R}^{n}$ and all piecewise continuous $w(\cdot) \in \mathcal{W}$, there exists $T > 0$ and piecewise continuous $u(\cdot) \in \mathcal{U}$ such that the solution to (2) exists, is unique and $x(T) = 0$.

Using Corollary 3.6 of [12] we trivially transform Theorem 1 into the following resilient stability condition.

Theorem 3: If $0 \in \mathcal{Z}$ and int(co(\mathcal{Z})) $\neq \emptyset$, then system (2) is resiliently stabilizable if and only if $Re(\lambda(A)) \leq 0$ and there is no real eigenvector v of A^{T} satisfying $v^{T}z \leq 0$ for all $z \in \mathcal{Z}$.

As before, a simpler sufficient condition can be derived with an analogous proof.

Corollary 3: If $0 \in \mathcal{Z}$ and $Re(\lambda(A)) \leq 0$, then system (2) is resiliently stabilizable.

We have now established several conditions to verify the resilience of a linear system: Problem 1 is solved. We now proceed to the more challenging question of the quantitative resilience of our system.

IV. QUANTITATIVE RESILIENCE

We consider unit bounded controls, $\mathcal{U} = [-1,1]^{m+p}$, in line with previous works [19–23], [25], [32]. Note that scaling column i of \hat{B} enables a straightforward extension to symmetric input sets: $\hat{u}_{i}(t) \in [-\hat{u}_{max}, \hat{u}_{max}]$.

Unlike with driftless systems [13], the nominal and malfunctioning reach times T_{N}^{α} and T_{N}^{α} are not homogeneous in x_{0}, i.e., $T_{N}^{\alpha}(\alpha x_{0}) \neq |\alpha|T_{N}^{\alpha}(x_{0})$ for $\alpha \in \mathbb{R}$. Indeed, in the driftless case $x(T) = x_{0} + T\hat{B}u$ for a constant \hat{u}, while for general linear systems $x(T) = e^{T\hat{A}}x_{0} + \int_{0}^{T} e^{(T-t)\hat{A}}\hat{B}u(t)dt$ is not linear in T. Thus, the optimization domain of the infimum in (5) cannot be scaled down to \mathbb{S} as in [13].

The loss of homogeneity in x_{0} makes the determination of r_{q} a much harder task than in the driftless case, which already required considerable amounts of calculations [14], [15]. We start by investigating the nominal reach time.

A. Nominal reach time

In order to calculate r_{q}, we need $T_{N}^{\alpha}(x_{0})$ for all $x_{0} \in \mathbb{R}^{n}$. However, $T_{N}^{\alpha}(x_{0})$ has no general closed-form solution [24], and it cannot be computed for all $x_{0} \in \mathbb{R}^{n}$. Thus, we establish analytical bounds on T_{N}^{α} so that we can approximate r_{q}.

Proposition 2: If (1) is stabilizable and A is Hurwitz, then

$$T_{N}^{\alpha}(x_{0}) \geq \frac{2\lambda_{max}^{P}}{\lambda_{min}^{Q}} \ln \left(1 + \lambda_{max}^{Q} \frac{\|x_{0}\|_{P}}{2\lambda_{min}^{P} b_{max}^{P}}\right),$$

for any $P > 0$ and $Q > 0$ such that $PA + A^{T}P = -Q$ and with $b_{max}^{P} := \max \{\|\hat{B}\|_{P} : \hat{u} \in \mathcal{U}\}$.

Proof: Since A is Hurwitz, by the Lyapunov theorem [16], for any $Q > 0$ there is $P > 0$ such that $PA + A^{T}P = -Q$. Let us consider any such pair (P,Q). We define the Lyapunov function $V(x) := x^{T}Px = \|x\|^{2}_{P}$. Then,

$$\dot{V}(x) = x^{T}Px + x^{T}P\hat{e} = x^{T}(A^{T}P + PA)x + 2x^{T}P\hat{B}u = -x^{T}Qx + 2x^{T}P\hat{B}u.$$

Since $P > 0$, there exists $M \in \mathbb{R}^{n \times n}$ such that $P = M^{T}M$ [33]. Then, $x^{T}PBu = (Mx)^{T}MB\hat{u} \geq -\|Mx\|_{2}\|MB\hat{u}\|_{2}$, by the Cauchy-Schwarz inequality [33]. Note that $\|Mx\|_{2}^{2} = x^{T}M^{T}Mx = x^{T}Px = \|x\|^{2}_{P}$. Similarly, $\|MB\hat{u}\|_{2} = \|B\hat{u}\|_{P}$.

The maximum in b_{max}^{P} exists since \mathcal{U} is compact and the map $: \hat{u} \mapsto \|\hat{B}\|_{P}$ is continuous. Since $Q > 0$, we have
$x^TQx \leq \frac{\lambda_0}{2\lambda_{\max}}\|x\|^2 \text{ and } \|x\|^2 \leq \|x\|^2/\lambda_{\min}$, because $P \succ 0$.

Finally, for $x \neq 0$ we obtain

$$
\dot{V}(x) = \frac{d}{dt}\|x\|^2 \geq -\frac{\lambda_{\max}}{\lambda_{\min}}\|x\|^2 - 2b_{\max}\|x\|^p.
$$

(8)

Let $y := \|x\|^p$, $\alpha := \frac{\lambda_0}{2\lambda_{\max}} > 0$ and $\beta := b_{\max} > 0$. We divide (8) by $2y$ so that $\dot{y} \geq \alpha y - \beta$. Then, inspired from the proof of the Bihari inequality in [34], for $r \geq r_0 := \frac{-\beta}{\alpha r}$, define

$$
G(r) := \int_{r_0}^r \frac{ds}{\alpha s + \beta} = -\frac{1}{\alpha} \left[\ln(\alpha s + \beta) \right]_{r_0}^r
$$

$$
= -\frac{1}{\alpha} \ln \left(\frac{\alpha r + \beta}{\alpha r_0 + \beta} \right).
$$

The integral is well-defined since $\alpha s + \beta > 0$ for $s \in [r_0, r]$. Note that $\frac{d}{dr}G(y(r)) = \frac{y(1)}{\alpha y(r) + \beta} \leq 1$ because $y(r) \geq \alpha y(r) + \beta$ and $w(y(r)) < 0$ since $\alpha > 0$ and $\beta > 0$. Thus, for any $T > 0$,

$$
\frac{d}{dt}G(y(T)) - G(y(0)) \leq \int_0^T \frac{dt}{\alpha (y(t) + \beta)} \leq \int_0^T dt = T. \quad (9)
$$

Because \tilde{U} is compact and convex, and (11) is stabilizable, there exists a time-optimal control signal $\tilde{u}(\cdot) \in \tilde{U}$ driving the state from x_0 to the origin in time $T_N(x_0)$ [17]. Then, applying (9) to this trajectory yields

$$
T_N(x_0) \geq \frac{1}{\alpha} \ln \left(\frac{\|x_0\|}{\alpha r_0 + \beta} \right) + \frac{1}{\alpha} \ln \left(\frac{\|x_0\|/\alpha}{\alpha r_0 + \beta} \right)
$$

$$
\geq \frac{1}{\alpha} \ln \left(\frac{1}{\alpha} \frac{\|x_0\|/\alpha}{\alpha r_0 + \beta} \right) = 2\frac{\lambda_{\min}}{\lambda_{\max}} \ln \left(1 + \frac{\|x_0\|^p}{2\lambda_{\min}^2 b_{\max}^p} \right). \quad (10)
$$

We now want to find an upper bound to $T_N(x_0)$ following a similar procedure.

Proposition 3: If rank(\tilde{B}) = n and A is Hurwitz, then

$$
T_N(x_0) \leq 2\frac{\lambda_{\max}}{\lambda_{\min}} \ln \left(1 + \frac{\|x_0\|^p}{2\lambda_{\max}^2 b_{\min}^p} \right),
$$

(11)

for any $P \succ 0$ and $Q \succ 0$ such that $PA + A^TP = -Q$ and with $b_{\min} := \min \{ ||\tilde{B}\tilde{u}|| : \tilde{u} \in \partial \tilde{U} \}$.

Proof: Since A is Hurwitz, by the Lyapunov theorem, for any $Q > 0$ there exists $P > 0$ such that $PA + A^TP = -Q$. Let $V(x) := x^TPx$. As in the proof of Proposition 2, $V(x) = -x^TQx + x^TP\tilde{B}\tilde{u}$. The minimum in b_{\min} exists since the map $\bar{u} \mapsto ||\tilde{B}\bar{u}||_p$ is continuous and $\partial \tilde{U}$ is compact. Because rank(\tilde{B}) = n, we can choose $\tilde{B}\tilde{u}(t) = -\frac{x(t)}{\lambda_{\max}^2 p_{\min}^p}$ for $x(t) \neq 0$. Indeed, assume for contradiction purposes that $\tilde{u} \notin \tilde{U}$. Then, $||\tilde{u}||_p > 1$. Let $\hat{u} := \frac{x}{||x||}$, then, $||\tilde{u}||_p = 1$, so $\bar{u} \in \partial \tilde{U}$, but $||\tilde{B}\bar{u}||_p = ||\tilde{B}\tilde{u}||_p = b_{\min} < b_{\max}$, which is a contradiction. Hence, the proposed control signal is admissible. However, it is not always time-optimal and thus only leads to an upper bound of $T^*_N(x_0)$. We obtain $2x^TP\tilde{B}\tilde{u} = -2b_{\min}||x||_p^p$, so that

$$
\frac{d}{dt}\|x\|^p = V(x) \leq -\frac{\lambda_{\min}}{\lambda_{\max}} ||x||^2 - 2b_{\min}||x||_p^p. \quad (12)
$$

Let $y := \|x\|^p$, $\alpha := \frac{\lambda_0}{2\lambda_{\max}} > 0$ and $\beta := b_{\max} > 0$. For $x \neq 0$, dividing (11) by $2y$, we obtain $\dot{y} \leq -\alpha y - \beta$. Then, $w(y(0)) \leq 0$, and similarly as in the proof of Proposition 2, we obtain $G(y(T)) - G(y(0)) \geq \int_0^T dt = T$ for any $T > 0$.

We need to prove that our control law ensures a finite time convergence to 0. Note that $V \leq -2\alpha V + 2\beta \sqrt{V} = 0$, and

$$
\tilde{v} = \frac{e^{-2\alpha t}}{\alpha y(t)} \leq \sqrt{V} \geq \frac{1}{\alpha} \ln \left(1 + \frac{\|x_0\|^p}{\lambda_{\min}} \right),
$$

Then, $\dot{y} = -\alpha y - \beta$. We have $\dot{y}(v(T)) = -\alpha y - \beta$. Thus, according to Proposition 1 of [35], x converges in a finite time to 0. Now, that we have bounded the nominal reach time T_N, we can investigate the malfunctioning reach time T_M.

B. Malfunctioning reach time

In this section we will bound T_M following similar methods we applied to T_N. The difference is that T_N is solution to a minmaxification (3), while T_M is solution of a maximin optimization (4).

Proposition 4: If \bar{u} is resiliently stabilizable and A is Hurwitz, then

$$
T_M(x_0) \geq 2\frac{\lambda_{\max}}{\lambda_{\min}} \ln \left(1 + \frac{\|x_0\|^p}{2\lambda_{\max}^2 z_{\max}} \right), \quad (12)
$$

for any $P \succ 0$ and $Q \succ 0$ such that $PA + A^TP = -Q$ and with $z_{\max} := \max \{ ||z|| : z \in \bar{U} \}$.

Proof: Since $\bar{B}l$ and \bar{C} are compact, \bar{U} is compact [37], so z_{\max} exists. Since A is Hurwitz, for $Q \succ 0$ there exists $P \succ 0$ such that $A^TP + PA = -Q$. Let $V(x) := x^TPx$. Then, $\dot{V}(x) = -x^TQx + 2x^TP(Bu + Cw)$. Since \bar{u} is resiliently stabilizable, we can take $w^*(\cdot)$ and $u^*(\cdot)$ to be the optimizers in (3). For $w^*(\cdot) \in W$, the control signal $Bu^*(\cdot) \in \bar{U}$ drive the state of (2) to 0. Then, according to Theorem 1, $z(\cdot) = Cw^*(\cdot) + Bu^*(\cdot) \in \bar{U}$.

$$
\|Cw^*(t) + Bu^*(t)\|_p \leq z_{\max},
$$

which yields

$$
\dot{V}(x) \geq -\frac{\lambda_{\max}}{\lambda_{\min}} ||x||^2 - 2\frac{\lambda_{\max}}{\lambda_{\min}^2 z_{\max}^2} ||x||_p^p.
$$

We now proceed as in the second half of the proof of Proposition 2 to obtain (13).

Similarly, we upper bound the malfunctioning reach time.

Proposition 5: If $0 \in \int(\bar{U})$ and A is Hurwitz, then

$$
T^*_M(x_0) \leq 2\frac{\lambda_{\max}}{\lambda_{\min}} \ln \left(1 + \frac{\|x_0\|^p}{2\lambda_{\max}^2 \lambda_{\min}^2} \right), \quad (13)
$$
for any $P \succ 0$ and $Q \succ 0$ such that $PA + A^TP = -Q$ and with $z_{P_{\text{min}}}^\ast := \min \{ \|z\|_P : z \in \mathcal{Z}_p \}$.

Proof: Since \mathcal{Z} is compact, so is $\partial \mathcal{Z}$, and thus $z_{P_{\text{min}}}^\ast$ exists. Since A is Hurwitz, for $Q \succ 0$ there exists $P \succ 0$ such that $A^TP + PA = -Q$. Let $V(x) := x^TPx$. Then, $\dot{V}(x) = -x^TQx + 2x^TP(Bu + Cw)$. Let $w^\ast(\cdot)$ be the argument of the supremum in (4), which is a maximum since the system is resiliently stabilizable according to Corollary 3.

Because $0 \in \text{int}(\mathcal{Z}) \neq \emptyset$, we have $\mathbb{B}_n \cap (0) \subseteq \mathcal{Z}$. Then, we can choose the control signal $z(t) := \frac{-x(t)}{\|x(t)\|_P} P_{\text{min}}^\ast \in \mathcal{Z}$. By definition of \mathcal{Z}, for any $w^\ast(\cdot) \in \mathcal{W}$ and thus for $w^\ast(\cdot) \in \mathcal{W}$ there exists $u^\ast(\cdot) \in \mathcal{U}$ such that $z(t) = Cw^\ast(t) + Bu(t)$. Then, applying w^\ast and u^\ast will lead to an upper bound of T_{M}^\ast as the control is not necessarily optimal, while the undesirable input is optimal. Then, $T_{M}^\ast(x_0) \leq \frac{\lambda Q_{\text{max}}^\ast \lambda Q_{\text{min}}^\ast}{\lambda Q_{\text{max}}^\ast \lambda Q_{\text{min}}^\ast}$, (13)

We now proceed as in the second half of the proof of Proposition 5 to obtain (13). ■

We are now able to bound $T_{N}^\ast(x_0)/T_{M}^\ast(x_0)$ for all x_0 and thus obtain an approximate of quantitative resilience.

C. Bounding Quantitative Resilience

As mentioned in Section I, we are primarily interested in determining a lower bound to quantitative resilience. Indeed, $r_q \geq b$ implies that in the worst case, the malfunctioning system will take less than $1/b$ times longer than the nominal system to reach the origin from the same initial state.

Theorem 4: If $0 \in \text{int}(\mathcal{Z})$ and A is Hurwitz, then $r_q \geq \max \left(\frac{\lambda P_{\text{max}}^\ast \lambda Q_{\text{min}}^\ast}{\lambda P_{\text{max}}^\ast \lambda Q_{\text{min}}^\ast}, \frac{z_{P_{\text{min}}}^\ast}{\lambda Q_{\text{max}}^\ast} \right)$, (14)

for any $P \succ 0$ and $Q \succ 0$ such that $A^TP + PA = -Q$.

Proof: Since $\text{int}(\mathcal{Z})$ is not empty in \mathbb{R}^n, $\text{dim}(\mathcal{Z}) = n$. Because $\mathcal{Z} \subseteq \mathbb{B}_n \subseteq \mathbb{R}^n$, we also have $\text{rank}(B) = n$, hence $\text{rank}(B) = n$. With A being Hurwitz, system (1) is then stabilizable. Thus, we can use Propositions 2 and 5. For $x_0 \in \mathbb{R}^n$, $x_0 \neq 0$, (7) and (13) yield $T_{N}^\ast(x_0)/T_{M}^\ast(x_0) \leq \frac{\lambda P_{\text{max}}^\ast \lambda Q_{\text{min}}^\ast}{\lambda P_{\text{max}}^\ast \lambda Q_{\text{min}}^\ast} \ln \left(\frac{1 + \frac{\lambda Q_{\text{max}}^\ast}{\lambda P_{\text{max}}^\ast}}{1 + \frac{\lambda Q_{\text{max}}^\ast}{\lambda P_{\text{min}}^\ast}} \right) := g(\|x_0\|_P)$.

Then, according to (5), $r_q \geq \inf_{x_0 \in \mathbb{R}^n} f(\|x_0\|_P)$. To alleviate the notation, we define the positive constants $a := \frac{\lambda P_{\text{max}}^\ast \lambda Q_{\text{min}}^\ast}{\lambda P_{\text{max}}^\ast \lambda Q_{\text{max}}^\ast}$, $b := \frac{\lambda Q_{\text{max}}^\ast}{\lambda P_{\text{max}}^\ast}$ and $c := \frac{\lambda Q_{\text{max}}^\ast}{\lambda P_{\text{max}}^\ast}$, so that $f(s) = a \ln(1 + bs)$. If $b = c$, then $f(s) = a$ for all $s \geq 0$, so $r_q \geq a$. If $b > c$, then f is increasing in s, so $\inf \{ f(s) : s \geq 0 \} = \lim_{s \to 0} f(s)$. Using the first order expansion of \ln for small s, we have $f(s) = a \frac{\ln(1 + bs)}{\ln(1 + cs)} \approx \frac{bs + o(s)}{cs + o(s)} = \frac{b}{c} + o(1)$.

Then, $f(0) = a \frac{\lambda Q_{\text{max}}^\ast}{\lambda P_{\text{max}}^\ast} > a$. If $b > c$, then f is decreasing, so $\inf \{ f(s) : s \geq 0 \} = \lim_{s \to 0} f(s)$. Note that $\frac{\ln(1 + bs)}{\ln(1 + cs)} \to 1$ as $s \to +\infty$.

Then, $\lim_{s \to +\infty} f(s) = a > a^\ast$, so $\inf f(s) = \max(a, a^\ast)$. ■

We can upper bound r_q using a similar approach

Theorem 5: If $\text{rank}(B) = n$, (2) is resiliently stabilizable and A is Hurwitz, then $r_q \leq \max \left(\frac{\lambda P_{\text{max}}^\ast \lambda Q_{\text{min}}^\ast}{\lambda P_{\text{max}}^\ast \lambda Q_{\text{min}}^\ast}, \frac{z_{P_{\text{min}}}^\ast}{\lambda Q_{\text{max}}^\ast} \right)$, (15)

for any $P \succ 0$ and $Q \succ 0$ such that $A^TP + PA = -Q$.

Proof: Following our assumptions, we are allowed to use Propositions 3 and 4. For $x_0 \in \mathbb{R}^n$, $x_0 \neq 0$, combining (10) and (12) yields $T_{N}^\ast(x_0)/T_{M}^\ast(x_0) \leq \frac{\lambda P_{\text{max}}^\ast \lambda Q_{\text{min}}^\ast}{\lambda P_{\text{max}}^\ast \lambda Q_{\text{min}}^\ast} \ln \left(\frac{1 + \frac{\lambda Q_{\text{max}}^\ast}{\lambda P_{\text{max}}^\ast}}{1 + \frac{\lambda Q_{\text{max}}^\ast}{\lambda P_{\text{min}}^\ast}} \right) := g(\|x_0\|_P)$.

Then, according to (5), $r_q \leq \inf_{x_0 \in \mathbb{R}^n} f(\|x_0\|_P)$. To alleviate the notation, we define the positive constants $a := \frac{\lambda P_{\text{max}}^\ast \lambda Q_{\text{min}}^\ast}{\lambda P_{\text{max}}^\ast \lambda Q_{\text{max}}^\ast}$, $b := \frac{\lambda Q_{\text{max}}^\ast}{\lambda P_{\text{max}}^\ast}$ and $c := \frac{\lambda Q_{\text{max}}^\ast}{\lambda P_{\text{max}}^\ast}$, so that $g(s) = a \ln(1 + bs)$. This function g is similar to f in the proof of Theorem 4 and thus $r_q \leq \inf_{x_0 \in \mathbb{R}^n} g(\|x_0\|_P) = \max(a, a^\ast)$ yields (15). ■

Note that we used the same pair (P, Q) to bound both T_N^* and T_M^*. Employing different pairs (P_N, Q_N) and (P_M, Q_M) would make f depend on both $\|x_0\|_{P_N}$ and $\|x_0\|_{P_M}$. Then, we would need to take $x_0 \in \mathbb{R}^n$ instead of $\|x_0\|_P \in \mathbb{R}^+$ as the argument of f, which would significantly complicate the minimum search. We leave this more convoluted approach for possible future work.

V. NUMERICAL RESULTS

We illustrate our work on a room temperature control system motivated by [38] and schematized in Figure 1.

![Figure 1: Scheme of the rooms and of the heat transfers. The heater q_h and AC transfers q_{AC} are not shown for clarity.](image-url)

The objective is to make the rooms 1, 2 and 3 reach the target temperature T_{goal}, which is the temperature of the two neighboring rooms as represented on Figure 1. There
are several ways to control the temperature. The central conditioning unit controls the heater q_h and the AC q_{AC} in all the rooms. Outside of work hours, the controller can also incrementally open doors q_d and windows q_w for room specific adjustments. Because each room is fitted with large windows and blinds, one can also use solar heating q_s. The heat loss through the outside wall is q_i and the heat transfer between rooms i and j is q_{ij}. Following [38], the temperature dynamics of the rooms are

$$mC_p \dot{T}_1 = (q_h - q_{AC}) + (q_{d1} - q_{w1}) + (q_{s1} - q_{i1}) + q_{g1} + q_{12},$$

$$mC_p \dot{T}_2 = (q_h - q_{AC}) + (q_{d2} - q_{w2}) + (q_{s2} - q_{i2}) - q_{12} + q_{23},$$

$$mC_p \dot{T}_3 = (q_h - q_{AC}) + (q_{d3} - q_{w3}) + (q_{s3} - q_{i3}) - q_{23} + q_{3},$$

with m the mass of air in each room, C_p is the specific heat capacity of air, $q_{gi} = aU_{gi}(T_{goal} - T_i)$, $q_{ij} = aU_{ij}(T_j - T_i)$, with a the area of the wall between rooms and U_{ij} the overall heat transfer coefficient between rooms i and j. This coefficient depends on the wall materials, which are made of concrete and wood.

Since most of the heat transfers cannot be modeled with symmetric inputs, we combine them in pairs: $q_h - q_{AC} = : Q_{hAC}$ and $q_{di} - q_{wi} = : Q_{di}U_{di}$, and $q_{Si} - q_{li} = : Q_{Si}U_{li}$ with $U_{hiAC} \subseteq [-1,1]$, $U_{di} \subseteq [-1,1]$, $U_{Si} \subseteq [-1,1]$ and $i \in \{1,2,3\}$. The numerical values used in our calculations are gathered in Table [I].

\begin{table}[htb]
\centering
\caption{Numerical values for the simulation, based on [38].}
\begin{tabular}{llllllll}
\hline
Parameter & Value & Unit & Parameter & Value & Unit & Parameter & Value & Unit \\
\hline
a & 12 & m^2 & mC_p & 42186 & K^{-1} & U_{g1} & 6.27 & $W \cdot K^{-1}$ \\
U_{g2} & 5.41 & $W \cdot K^{-1}$ & U_{g3} & 6.27 & $W \cdot K^{-1}$ & Q_{hAC} & 350 & W \\
Q_{Si} & 200 & W & Q_{dw} & 300 & W & T_{goal} & 293 & K \\
\hline
\end{tabular}
\end{table}

We write the dynamics as $\dot{T} = AT + B\bar{u} + DT_{goal}$, with $A = \frac{1}{mC_p} \begin{pmatrix} -U_{g1} - U_{12} & U_{12} & 0 \\ U_{12} & -U_{12} - U_{23} & U_{23} \\ 0 & U_{23} & -U_{23} - U_{3g} \end{pmatrix}$, $B = \frac{1}{mC_p} \begin{pmatrix} Q_{Sl} & 0 & 0 & 0 & 0 & 0 \\ 0 & Q_{Si} & 0 & 0 & 0 & 0 \\ 0 & 0 & Q_{dw} & 0 & 0 & 0 \end{pmatrix}$, $\bar{u}^T = (u_{Sl}^1, u_{Sl}^2, u_{Sl}^3, u_{dw}^1, u_{dw}^2, u_{dw}^3, u_{hAC})$, $T = \begin{pmatrix} T_1 \\ T_2 \\ T_3 \end{pmatrix}$ and $D = \frac{1}{mC_p} \begin{pmatrix} U_{g1} \\ 0 \\ U_{3g} \end{pmatrix}$.

Let $x^T := (x_1, x_2, x_3) = T - T_{goal}$. Then, $\dot{x} = Ax + B\bar{u} + DT_{goal} + AT_{goal} = Ax + B\bar{u}$ and $x_{goal} = (0 \ 0 \ 0)$. Since $\lambda(A) = \{-0.052, -0.033, -0.010\} \subseteq \mathbb{R}^-$, A is Hurwitz. Then, according to Theorem 2, the system cannot be resilient to the loss of any actuator, but it can be resiliently stabilizable by Theorem 3. Note that for the loss of any one column C, we have rank $(B) = 3$ and we can numerically verify that $-CW \subseteq \text{int}(BL)$. Then, following Proposition 1 and Corollary 3 we know that the system is resiliently stabilizable.

We consider a situation where a worker remains in their room after hours and manually opens or closes their door and window, thus overriding the controller. Let us quantify the resilience of the system to the loss of control over the door and window in room 1, i.e., over u_{dw}^1.

To use the upper and lower bounds derived in Section IV we need to choose positive definite matrices P and Q solving the Lyapunov equation $A^T P + PA + Q = 0$. The simplest approach is to generate a stochastic $Q \succ 0$ and to solve the equation for $P \succ 0$. Another approach relies on the fact that for y small, $\ln(1 + y) \approx y$. Thus, the lower bound of T_M in [12] can be approximated by $\frac{\|x_0\|F}{\text{Smax}}$. To maximize this lower bound, we minimize $\sigma_{max} = \max \{\|z\|_F : z \in \mathbb{Z}\}$, i.e., we choose $P \succ 0$ generating the tightest ellipsoid outer approximation of \mathbb{Z}. Similarly, to minimize the upper bound [13], we need P to generate the largest ellipsoid inside \mathbb{Z}. Then, we take $Q = -A^T P - PA$, but there is no guarantee that $Q \succ 0$.

Since we shifted the coordinate system by $T_{goal} = 20^\circC$, an initial state slightly warmer than desired can be $x_0^T = (0.8^\circC \ 0.7^\circC \ 0.9^\circC)$. We compute $T_M(x_0)$ with Eaton’s algorithm [19] and its lower and upper bounds with (7) and (10): $35.5^\circC \leq T_M(x_0) \leq 42.5^\circC \leq 54.1^\circC$. We compute $T_M(x_0)$ with Sakawa’s algorithm [27] and its lower and upper bounds with (12) and (13): $53^\circC \leq T_M(x_0) \leq 110.5^\circC \leq 135^\circC$.

Then, the room temperatures can take up to $T_M^*(x_0) / T_M^*(x_0) = 2.6$ times longer to all reach T_{goal} after the loss of control authority over the door and window in room 1. Our bounds lead to a worst-case time increase by a factor of up to 3.8. As can be seen on Figure 2, the bounds generated with the tight ellipsoidal approximations of \mathbb{Z} are better than the bounds obtained with stochastic pairs (P, Q).

![Fig. 2. Bounds on the malfunctioning reach time $T_M^*(x_0)$ represented by the red line. The green and black dots are the lower bounds (12) and the upper bounds (13) for 1000 randomly generated solution pairs (P, Q). The green and black line are the lower and upper bounds (12) and (13) generated with the ellipsoidal approximations of \mathbb{Z}.

Using Theorem 4 and 5 we can also bound the resilience of the system starting from any initial condition x_0 and we
obtain $0.097 \leq r_q \leq 2.79$. The lower bound means that the loss of control over u_{dw} can make the damaged system up to $1/0.097 = 10.3$ times slower than the nominal system to reach T_{goal} in the worst case. Since the upper bound is larger than 1, it does not convey any information.

If the system loses control authority over the central heating/AC unit, i.e., u_{hAC}, the rooms can take as much as $T_{M}(x_0)/T_{hAC}(x_0) = 4.7$ times longer to reach T_{goal} from the same initial temperature, while our bound predicts a ratio of up to 9.3. These ratios are larger than for the loss of control over the window and door of room 1 because $Q_{hAC} > Q_{dw}$ and the central heating/AC affects directly all 3 rooms.

VI. CONCLUSION

This paper explores and quantifies the resilience of control systems to the loss of control authority over some of their actuators. We established novel necessary and sufficient conditions for the resilience of general linear systems. Based on Lyapunov theory and differential inequalities we derived analytical bounds on the nominal and malfunctioning reach times, allowing to approximate quantitative resilience of general linear systems.

There are several avenues of future work. We want to investigate thoroughly how to determine the pair of matrices (P, Q) that generate the best bounds on the reach times T_{opt} and T_{M} and on the quantitative resilience r_q. We also desire to extend our resilience theory to nonlinear systems and to more complex and more natural scenarios where the system must visit a succession of targets. Ensuring the safety of critical systems by preventing them from visiting dangerous locations while completing their mission even after enduring a loss of control is also among our future objectives.

REFERENCES

[1] R. C. Suich and R. L. Patterson, “How much redundancy: Some cost considerations, including examples for spacecraft systems,” NASA Technical Memorandum 103197, Lewis Research Center, Cleveland, Ohio, Tech. Rep., 1990. [Online]. Available: https://wwwosti.gov/biblio/5894363

[2] J.-B. Bouvier, M. Ornik, “Resilient reachability for linear systems,” in 21st IFAC World Congress, 2020, pp. 4409 – 4414.

[3] ——, “Designing resilient linear driftless systems,” IEEE Transactions on Automatic Control, submitted. [Online]. Available: https://arxiv.org/abs/2006.13820

[4] L. Y. Wang and J.-F. Zhang, “Fundamental limitations and differences of robust and adaptive control,” in 2001 American Control Conference, vol. 6, 2001, pp. 4802 – 4807.

[5] J. Davidson, F. Lallman, and T. Bundick, “Real-time adaptive control allocation applied to a high performance aircraft,” in 5th SIAM Conference on Control and Its Applications, 2001.

[6] M. Heymann, M. Pachter, and R. Stern, “Max-min control problems: A system theoretic approach,” IEEE Transactions on Automatic Control, vol. 21, no. 4, pp. 455 – 463, 1976.

[7] ——, “Weak and strong max-min controllability,” IEEE Transactions on Automatic Control, vol. 21, no. 4, pp. 612 – 613, 1976.

[8] W. Schmitendorf and B. Elenbogen, “Constrained max-min controllability,” IEEE Transactions on Automatic Control, vol. 27, no. 3, pp. 731 – 733, 1982.

[9] W. Schmitendorf and B. Barmish, “Null controllability of linear systems with constrained controls,” SIAM Journal on Control and Optimization, vol. 18, no. 4, pp. 327 – 345, 1980.

[10] M. C. Delfour and S. K. Mitter, “Reachability of perturbed systems and min sup problems,” SIAM Journal on Control and Optimization, vol. 7, no. 4, pp. 521 – 533, November 1969.

[11] O. Hájek, “Duality for differential games and optimal control,” Mathematical Systems Theory, vol. 8, no. 1, pp. 1 – 7, 1974.

[12] R. F. Branner, “Controllability in linear autonomous systems with positive controllers,” SIAM Journal on Control, vol. 10, no. 2, pp. 339 – 353, 1972.

[13] J.-B. Bouvier, K. Xu, and M. Ornik, “Quantitative resilience of linear driftless systems,” in SIAM Conference on Control and Its Applications, 2021, pp. 32 – 39.

[14] ——, “Quantitative resilience of generalized integrators,” Automatica, submitted. [Online]. Available: https://arxiv.org/pdf/2111.04163.pdf

[15] J.-B. Bouvier and M. Ornik, “The maximax minimax quotient theorem,” Journal of Optimization Theory and Applications, 2022.

[16] R. E. Kalman and J. E. Bertram, “Control system analysis and design via the “second method” of Lyapunov: continuous-time systems,” Journal of Basic Engineering, vol. 82, no. 2, pp. 371 – 393, 1960.

[17] D. Liberzon, Calculus of Variations and Optimal Control Theory: a Concise Introduction., Princeton University Press, 2011.

[18] L. W. Neustadt, “Synthesizing time optimal control systems,” Journal of Mathematical Analysis and Applications, vol. 1, no. 4, pp. 484 – 493, 1960.

[19] J. H. Eaton, “An iterative solution to time-optimal-control,” Journal of Mathematical Analysis and Applications, vol. 5, no. 2, pp. 329 – 344, 1962.

[20] Y.-C. Ho, “A successive approximation technique for optimal control subject to saturation,” Journal of Basic Engineering, pp. 33 - 37, 1962.

[21] T. Fujisawa and Y. Yasuda, “An iterative procedure for solving the time-optimal regulator problem,” SIAM Journal on Control, vol. 5, no. 4, pp. 501 – 512, 1967.

[22] F. Groggward and R. Sepulchre, “Global analysis of a continuous-time flow which computes time-optimal switchings,” in 40th IEEE Conference on Decision and Control, 2001, pp. 3826 – 3831.

[23] ——, “Computation of time-optimal switchings for linear systems with complex poles,” in 2003 European Control Conference, 2003, pp. 2190 – 2195.

[24] M. Athans, “The status of optimal control theory and applications for deterministic systems,” IEEE Transactions on Automatic Control, vol. 11, no. 3, pp. 580 – 596, 1966.

[25] J. LaSalle, “Time optimal control systems,” Proceedings of the National Academy of Sciences of the United States of America, vol. 45, no. 4, pp. 573 – 577, 1959.

[26] T. Babunashvili, “The synthesis of optimal linear systems,” Journal of the Society for Industrial and Applied Mathematics, Series A: Control, vol. 2, no. 2, pp. 261 – 265, 1964.

[27] Y. Sakawa, “Solution of linear pursuit-evasion games,” SIAM Journal on Control, vol. 8, no. 1, pp. 100 – 112, 1970.

[28] W. Borgest and P. Varaiya, “Target function approach to linear pursuit problems,” IEEE Transactions on Automatic Control, vol. 16, no. 5, pp. 449 – 459, 1971.

[29] Y.-C. Ho, “Review of the book Differential Games by R. Isaacs,” IEEE Transactions on Automatic Control, vol. 10, no. 501 – 503, 1965.

[30] E. Rechtschaffen, “Equivalences between differential games and optimal controls,” Journal of Optimization Theory and Applications, vol. 18, no. 1, pp. 73 – 79, 1976.

[31] S. Axler, Measure, Integration & Real Analysis. Springer Nature, 2020.

[32] M. Romano and F. Curti, “Time-optimal control of linear time invariant systems between two arbitrary states,” Automatica, vol. 120, p. 109151, 2020.

[33] G. H. Golub and C. F. Van Loan, Matrix Computations. The Johns Hopkins University Press, 2013.

[34] B. G. Pachpatte, Inequalities for Differential and Integral Equations. Elsevier, 1997.

[35] V. T. Haimo, “Finite time controllers,” SIAM Journal on Control and Optimization, vol. 24, no. 4, pp. 760 – 770, 1986.

[36] S. Das, A. Nandy, and S. Sarvottamananda, “Radius, diameter, incensor, circumcenter, width and minimum enclosing cylinder for some polyhedral distance functions,” Discrete Applied Mathematics, vol. 305, pp. 311 – 328, 2020.

[37] I. Kolmanovsky and E. G. Gilbert, “Theory and computation of disturbance invariant sets for discrete-time linear systems,” Mathematical Problems in Engineering, vol. 4, no. 4, pp. 317 – 367, 1998.

[38] S. H. Trapnes, “Optimal Temperature Control of Rooms,” Master’s thesis, Norwegian University of Science and Technology, 2012.
This figure "admire.png" is available in "png" format from:

http://arxiv.org/ps/2201.12278v2