Cysteinyl-leukotrienes in the regulation of β_2-adrenoceptor function: an in vitro model of asthma

G Enrico Rovati*1, Michele Baroffio†2, Simona Citro†1, Lorenzo Brichetto2, Saula Ravasi1, Manlio Milanese2, Emanuele Crimi2 and Vito Brusasco2

Address: 1Laboratory of Molecular Pharmacology, Section of Eicosanoid Pharmacology, Dept. of Pharmacological Sciences, University of Milan, Italy and 2Respiratory Pathophysiology Unit, Dept. of Internal Medicine, University of Genoa, Italy

Email: G Enrico Rovati* - Genrico.Rovati@unimi.it; Michele Baroffio - Michele.Baroffio@unige.it; Simona Citro - Simona.Citro@unimi.it; Lorenzo Brichetto - l.brichetto@alice.it; Saula Ravasi - Saula.Ravasi@unimi.it; Manlio Milanese - Manlio.Milanese@unige.it; Emanuele Crimi - Emanuele.Crimi@unige.it; Vito Brusasco - Vito.Brusasco@unimi.it

Abstract

Background: The response to β_2-adrenoceptor agonists is reduced in asthmatic airways. This desensitization may be in part due to inflammatory mediators and may involve cysteinyl-leukotrienes (cysteinyl-LTs). Cysteinyl-LTs are pivotal inflammatory mediators that play important roles in the pathophysiology of asthma, allergic rhinitis, and other inflammatory conditions. We tested the hypothesis that leukotriene D_4 (LTD4) and allergen challenge cause β_2-adrenoceptor desensitization through the activation of protein kinase C (PKC).

Methods: The isoproterenol-induced cAMP accumulation was evaluated in human airway smooth muscle cell cultures challenged with exogenous LTD4 or the PKC activator phorbol-12-myristate-13-acetate with or without pretreatments with the PKC inhibitor GF109203X or the CysLT1R antagonist montelukast. The relaxant response to salbutamol was studied in passively sensitized human bronchial rings challenged with allergen in physiological salt solution (PSS) alone, or in the presence of either montelukast or GF109203X.

Results: In cell cultures, both LTD4 and phorbol-12-myristate-13-acetate caused significant reductions of maximal isoproterenol-induced cAMP accumulation, which were fully prevented by montelukast and GF109203X, respectively. More importantly, GF109203X also prevented the attenuating effect of LTD4 on isoproterenol-induced cAMP accumulation. In bronchial rings, both montelukast and GF109203X prevented the rightward displacement of the concentration-response curves to salbutamol induced by allergen challenge.

Conclusion: LTD4 induces β_2-adrenoceptor desensitization in human airway smooth muscle cells, which is mediated through the activation of PKC. Allergen exposure of sensitized human bronchi may also cause a β_2-adrenoceptor desensitization through the involvement of the CysLT1R-PKC pathway.
Background
Inhaled β₂-adrenoceptor (β₂-AR) agonists represent a first-line treatment of bronchial asthma. However, a reduced response to β₂-AR agonists has been observed in asthmatic subjects and it has been suggested to play a role in airway hyperresponsiveness [1,2]. Although genetic factors may influence responses to β-agonists [3,4], it is believed that the reduced response of β₂-AR may result from use of β₂-agonists leading to receptor desensitization [5,6]. Moreover, β₂-AR desensitization can be induced in human airway smooth muscle cells (HASMC) by exposure to inflammatory mediators that are likely to be present in the asthmatic airways [7,8]. In allergic asthma, several products are released from either resident or circulating inflammatory cells or even from the HASMC themselves [9] upon exposure to allergen. Among these mediators, cysteinyl-leukotrienes (cysteinyl-LTs) are long known to play an important role in asthma [10,11]. Cysteinyl-LTs originate from the oxidative metabolism of arachidonic acid through 5-lipoxygenase in different inflammatory cells and are released upon exposure to sensitizing allergens [12,13]. Cysteinyl-LTs exert a variety of effects with relevance to the etiology of asthma [14], like smooth muscle contraction [15-17] and proliferation [18,19], eosinophil recruitment into the airways [20], increased microvascular permeability [21], enhanced mucus secretion and decreased mucus transport [12,22]. Furthermore, in passively sensitized human bronchi, the response to β₂-AR agonists is reduced after allergen exposure, and this can be prevented by either a cell membrane stabilizer or a leukotriene receptor antagonist, suggesting a role for cysteinyl-LTs released by resident inflammatory cells regulating β₂-AR function [23]. Consistent with this hypothesis is the clinical observation that concurrent administration of salbutamol and the CysLT₁ receptor (CysLT₁R) antagonist montelukast affords greater protection against exercise- and hyperventilation-induced asthma than salbutamol alone [24].

The intracellular mechanisms through which cysteinyl-LTs may cause β₂-AR desensitization in asthmatic airways have not been fully investigated. In the present study, we tested the hypothesis that cysteinyl-LTs may cause β₂-AR desensitization through the activation of protein kinase C (PKC). For this purpose, the isoproterenol-induced cAMP production was first studied in HASMC pre-incubated with exogenous LTD₄ or the PKC activator phorbol-12-myristate-13-acetate (PMA). Then, the effects of montelukast and the specific PKC inhibitor GF109203X were compared in LTD₄-challenged HASMC. Possible effects of LTD₄ on protein kinase A (PKA) or adenylyl-cyclase were assessed by treatments with the PKA inhibitor H89 or forskolin. The hypothesis that the LTD₄-PKC pathway may also be involved for allergen-induced β₂-AR desensitization was tested by assessing the effects of montelukast and GF109203X in passively sensitized human bronchial rings challenged with allergen.

Methods
Materials
Smooth muscle cells from human bronchi were purchased from Invitrogen-Cambrex (Walkersville, MD). Cell culture supplies, forskolin, PMA, isobutylmethylxanthine (IBMX) and isoproterenol were purchased from Sigma Chemical Co (St. Louis, MO); LTD₄, cAMP EIA kit from Cayman Chemical Co. (Ann Arbor, MI); montelukast was a gift from Merck & Co. (West Point, PA). GF109203X and H89 were from Calbiochem (La Jolla, CA). DC™Protein assay from Bio-Rad Laboratories (Richmond, CA). Bronchial rings for functional studies were obtained from 6 non-asthmatic patients undergoing thoracotomy for lung cancer.

HASMIC studies
Monolayers of HASMC from human bronchi were grown in Minimum Essential Medium supplemented with 10% FBS, 100-U/ml penicillin, and 100-μg/ml streptomycin, as previously described in detail [25]. Cells were used between 3rd and 8th passage at a 1:3 ratio in 75-cm² culture flasks. At least two different cell line have been used.

Accumulation of cAMP was measured in cells grown to confluence in 12-well plates and serum-starved for 24 h. Cells were incubated at 37°C for 10 min in 1-mL PBS containing 3 × 10⁻³ M ascorbic acid and 10⁻³ M isobutylmethyl-xanthine. Reactions were stopped by placing the plates on ice, cells were then washed once with cold PBS and 150 μL of 10⁻¹ M HCl was added to each well. After 20-min incubation, cells were scraped and centrifuged 12000 × g for 10 min. Supernatant solutions were first assayed for protein concentration and then for cAMP content using a cAMP EIA-kit following manufacturer’s instructions. cAMP concentrations of unknown samples were determined by computer-assisted interpolation from a standard curve.

Concentration-response curves of cAMP accumulation in response to isoproterenol (10⁻⁶ M to 10⁻⁴ M) were obtained in HASMC at control (vehicle treated) or after exposure to LTD₄ (10⁻⁶ M for 30 min), with or without 30-min pre-incubation with 10⁻⁶ M GF109203X. The increase of cAMP above baseline in response to 10⁻⁵ M isoproterenol was studied in HASMC at control and after 30-min exposure to 10⁻⁴ M LTD₄ or 5 × 10⁻⁷ M PMA, with or without 10⁻⁶ M montelukast, GF109203X, or H89. The effect of 10⁻⁶ M forskolin was studied by 10-min incubation after 30-min exposure to either vehicle or LTD₄.
Bronchial tissue studies

24 bronchial rings from surgical specimens were passively sensitized against dust mites by an overnight incubation (18 h) at room temperature with serum pooled from three atopics subjects diluted 1:9 in aerated (95% O₂, 5% CO₂) PSS of the following composition (mM): NaCl 110.5, KCl 3.4, CaCl₂ 2.4, MgSO₄ 0.8, KH₂PO₄ 1.2, NaHCO₃ 25.7, and dextrose 5.6, as previously described in details [26]. The serum specific concentrations of specific IgE for Dermatophagoides Pteronyssinus and D. Farinae were larger than 13.2 Phadebas RAST units/ml (Pharmacia, Uppsala, Sweden) and the total serum concentration was 180 ± 33 international units/ml. Nineteen sensitized rings were incubated with montelukast (10⁻⁷M, n = 5 and 10⁻⁶M, n = 5), or GF109203X (10⁻⁷M, n = 2 and 10⁻⁶M, n = 1), or PSS (n = 6) for 30 min and then challenged by a 60-min incubation with 200 AU/ml of Dermatophagoides mix at 37°C. Challenged rings incubated with PSS alone served as control (n = 6). Rings were then suspended in water-jacketed 25-ml tissue baths containing aerated PSS at 37°C using two stirrups connected to a fixed hook at the bottom of the tissue bath and to a force transducer via a silk string, respectively. Rings were gradually stretched until a steady reference length of 1 gr was achieved. PSS was changed every 20 min. All rings were contracted with 10⁻⁶M carbachol and, after a steady contraction was achieved, relaxed with salbutamol added cumulatively from 10⁻⁹M to 10⁻⁶M with half-Log increments. Each concentration-response curve was fitted by sigmoid least-square interpolation between extreme values constrained at 100% (maximal carbachol-induced force) and 0 (minimal force at 10⁻⁴M salbutamol).

Statistical analysis and experimental design

All curves shown were analyzed by Prism-4 software using the four parameters logistic equation and parameters compared using the extra sum of square principle [27]. Parameter errors are expressed as percentage coefficient of variation (%CV) and calculated by simultaneous analysis of at least two different and independent experiments performed in duplicate or triplicate (for HASMC). One-way independent or two-way repeated-measure analysis of variance (ANOVA) were used whenever appropriate with Dunnett or Bonferroni post-hoc tests for multiple comparisons. P values < 0.05 were considered statistically significant. Data are expressed as means ± S.E.M.

Results

Isoproterenol-induced cAMP accumulation in HASMC culture

Increasing concentrations of isoproterenol caused a concentration-dependent accumulation of cAMP in all experiments.

After challenge with LTD₄ (Fig. 1A) the maximum cAMP accumulation was significantly (P < 0.05) reduced (33%) from 4109 pmol/mg prot (CV 10%) to 2760 pmol/mg prot (CV 13%), whereas EC₅₀ was substantially unaffected (from 0.68 μM, CV 59% to 0.69 μM, CV 82%). In montelukast-treated and LTD₄-challenged HASMC (Fig. 1B), isoproterenol-induced cAMP accumulation was not significantly different from unchallenged HASMC and significantly greater than in untreated LTD₄-challenged HASMC (P < 0.01).

After challenge with PMA (Fig. 1C), the maximum isoproterenol-induced cAMP accumulation was significantly (P < 0.01) reduced to 52% ± 12 SEM of the maximal stimulation, suggesting that PKC plays a pivotal role in the regulation of β₂-AR in HASMC. In GF109203X-treated and PMA-challenged HASMC, isoproterenol-induced cAMP accumulation was not significantly different from unchallenged HASMC and significantly greater than in untreated PMA-challenged HASMC (P < 0.01).

More importantly, in GF109203X-treated and LTD₄-challenged HASMC (Fig. 2) the maximal isoproterenol-induced cAMP accumulation was 3417 pmoles/mg prot (CV 5%), significantly (P < 0.01) greater than 2464 pmoles/mg prot (CV 7%) in untreated LTD₄-challenged HASMC and insignificantly different from 3632 pmol/mg prot (CV 5%) in unchallenged HASMC, confirming a critical role for PKC in the LTD₄-induced β₂-AR desensitization.

Pre-treatment with H89 did not alter the effect of LTD₄ challenge on isoproterenol-induced maximal cAMP accumulation (Fig. 3A), suggesting that LTD₄-induced β₂-AR desensitization does not involve PKA activation. Moreover, LTD₄ challenge did not affect the forskolin-induced maximal cAMP accumulation (Fig. 3B), suggesting that the adenylyl cyclase was not directly affected by LTD₄.

Relaxant responses to salbutamol in human bronchial rings

The mean weight of the 24 bronchial rings was 91 ± 5 mg. The mean resting force and the mean normalized-response to carbachol were 0.83 ± 0.05 g and 14 ± 2 gr/gr of tissue, without significant differences between sensitized, challenged, and treated rings Table 1.

Salbutamol relaxed bronchial rings significantly (P < 0.01) in a concentration-dependent manner (Fig. 4). The salbutamol concentration-response curve of challenged rings was significantly (P < 0.01) shifted to the right of the dose response curve of sensitized unchallenged rings, with significant differences (P < 0.01) at salbutamol concentrations from 10⁻⁵M to 10⁻⁴M. Pre-treatment with either 10⁻⁶M or 10⁻⁷M montelukast displaced significantly (P <
0.01) to the left of the concentration-response curves of challenged rings, with significant differences (P < 0.05) at salbutamol concentrations from 10^{-6}M to 10^{-5}M.

The mean values for IC_{50} of challenged rings was $-5.49 \pm 0.12 \text{ Log M}$ significantly (P < 0.05) higher than $-6.07 \pm 0.15 \text{ Log M}$ of sensitized untreated rings (Fig. 5). The IC_{50} values of challenged rings treated with 10^{-6}M and 10^{-7}M montelukast were -6.05 ± 0.03 and 5.96 ± 0.19, respectively, which were not significantly different from those of sensitized untreated rings. The IC_{50} values of challenged rings treated with montelukast were lower than those of challenged rings (P < 0.05 for 10^{-6}M and P = 0.07 for 10^{-7}M).

In challenged rings treated with either 10^{-7}M or 10^{-6}M GF109203X, the concentration-response curves to salbutamol were significantly (P < 0.01) shifted to the left of the concentration-response curve of challenged rings (Fig. 6).

Discussion

The major findings of the present study can be summarized as follows: 1) In HASMC, exogenous LTD_{4} caused a reduction of isoproterenol-induced cAMP accumulation similar to that caused by direct activation of PKC, 2) this effect of LTD_{4} was prevented not only by the CysLT_{1}R antagonist montelukast, but also by direct inhibition of PKC, and 3) both montelukast and direct PKC inhibition
prevented the reduction of response to salbutamol caused by allergen challenge of passively sensitized human bronchi.

Comments on methodology

We first constructed concentration response curves of isoproterenol-induced cAMP accumulation in HASMC utilizing a non-cumulative protocol. A maximum effect was clearly observed at isoproterenol concentration of 10^{-5}M, and this was therefore used for subsequent single-concentration experiments. Isoproterenol was used in cAMP accumulation experiments because, as a full β_2-AR agonist, is more suited for the desensitization studies. The β_2-AR selective partial agonist salbutamol was used for bronchial rings studies because it is the reference drug generally used for clinical studies. However, in two separate experiments we found that the effect of salbutamol on cAMP accumulation was much weaker than that of isoproterenol, while the relative reduction caused by LTD$_4$ challenge was similar to that observed using isoproterenol, being even slightly more pronounced (Fig. 7). Therefore, we are confident that the results of our HASMC and bronchial rings studies are comparable.

Furthermore, the fact that after LTD$_4$ challenge in HASMC only the maximal cAMP accumulation was reduced, whereas only the IC$_{50}$ of salbutamol-induced relaxation was reduced might be explained by the fact that the relaxing effect of a β_2 agonist is a far more downstream response than a second messenger (i.e. cAMP) production, and certainly involve the activation of other components downstream of the receptor, while the β_2-AR may perform functions other than adenylyl cyclase activation [28], yet equally involved in bronchial relaxation.

As in our previous studies [23,26,29-31], human bronchial rings were passively sensitized by using a pool of sera containing high levels of specific IgEs but low levels of total IgE. With this method of passive sensitization and allergen challenge, followed by repeated washouts, the force generation capacity of airway smooth muscle was not altered [23], which makes us confident that the reference force of 1 g and the level of pre-contraction induced by carbachol 10^{-6}M were similar in all experimental conditions. Furthermore, the relaxant responses to either theophylline [26] or forskolin [30] remained unaltered in previous studies using the same methodology. Therefore,
the use of sensitized unchallenged rings as a control seems justified and any difference in response to salbutamol can be attributed to changes in the β_2-AR pathway.

For relaxation studies, bronchial rings were pre-contracted with the non-selective muscarinic agonist carbachol, thus activating both M_3 and M_2 receptors on smooth muscle cell membrane. M_2 receptors are coupled to G_i-protein, which inhibits adenylyl cyclase. Thus, had sensitization or allergen challenge changed G_i-protein expression or activity, the response to a β_2-agonist would have been affected. In this model, however, both expression and activity of G_i-protein were similar in sensitized and challenged rings [29].

In bronchial tissue studies, the effects of allergen challenge were presumably due to mediator release from resident inflammatory cells [23]. Thus, it cannot be excluded

Table 1: Physical and mechanical characteristics of the human bronchial rings used for different experiments.

condition	n	muscle weight, g	resting force	CCh response, g/g of tissue
sensitized	5	72 ± 4	0.72 ± 0.04	12 ± 3
challenged	6	77 ± 4	0.73 ± 0.11	12 ± 3
MLK 10^{-5}M	5	102 ± 14	0.91 ± 0.05	19 ± 5
MLK 10^{-4}M	5	109 ± 9	0.84 ± 0.15	14 ± 3
GFX 10^{-7}M	2	116; 99	0.96; 1.23	31; 10
GFX 10^{-6}M	1	96	1.05	8

Data are mean ± s.e.m. or individual values.
that the protective effects of GFX and montelukast against \(\beta_2 \)-AR dysfunction were in part due to inhibition of mediator release. However, the observation that GFX and montelukast also protected against \(\beta_2 \)-AR dysfunction in HASMC does suggest that airway smooth muscle PKC was directly involved.

Comments on results

The response to \(\beta_2 \)-AR has been found to be reduced in Airways from subjects with fatal asthma [32]. A reduced \(\beta_2 \)-AR responsiveness in asthma may be the result of activation of the \(\beta_2 \)-AR by specific agonists (homologous desensitization) or activation of other receptors by the inflammatory mediators, which are present in the asthmatic Airways (heterologous desensitization) [33]. \(\beta_2 \)-AR desensitization induced by agents that increase cAMP levels, such as bradykinin [34] and some cytokines [35] acting through the elevation of prostaglandin E\(_2\) [36], is probably regulated by PKA [6,33]. On the contrary, muscarinic agonists [37], phorbol esters, and other inflammatory mediators may attenuate responses to \(\beta \)-agonists through the activation of PKC [38], as also recently suggested in bovine tracheal smooth muscle preparations [39,40]. However, it appears that these mechanisms of desensitization are cell-type specific [41] and may depend on kinase expression levels [42].

Among the inflammatory mediators involved in asthma, cysteinyl-LTs seem to play a key role in the bronchoconstrictor response to allergen [15-17] through activation of CysLT\(_1\)R. Though preferentially coupled to \(G_q/11 \)-Protein, constitutively expressed CysLT\(_1\) also activates pertussis toxin (PTX)-sensitive and -insensitive G-proteins [43,44]. In HASMC, we have previously found that CysLT\(_1\) stimu-
lation activates PKC [25] and mitogen-activated protein kinases ERK1/2 through mechanisms that involve a PTX-sensitive G-protein [19]. Thus, it is possible that cysteinyl-LTs may contribute to β_2-AR desensitization not only by a PKC-dependent mechanism, but also by modulating the adenyl cyclase-PKA pathway.

The results of the present study show that the cAMP accumulation in response to isoproterenol is reduced in HASMC treated with exogenous LTD$_4$ or the PKC activator PMA and the relaxant response to salbutamol is reduced in human bronchi challenged with the sensitizing allergen. The effects of LTD$_4$ in HASMC and allergen challenge in bronchial rings were prevented by the CysLT$_1$R antagonist montelukast and the PKC specific inhibitor GF109203X. Altogether, these findings strongly suggest that in the models used in the present study β_2-AR desensitization was the result of PKC activation by LTD$_4$.

In HASMC, exogenous LTD$_4$ did not alter the cAMP accumulation induced by forskolin, thus excluding that the reduced response of β_2-AR to isoproterenol was due to adenyl cyclase dysfunction. The PKA inhibitor H89 also failed to prevent the LTD$_4$-induced β_2-AR desensitization in HASMC, thus ruling out the possibility of the involvement of this protein kinase. Indeed, H89 tended to enhance the response to isoproterenol both in LTD$_4$-challenged and -unchallenged HASMC, suggesting the presence of the well known Gs/Gi switch phenomenon of β_2-AR coupling due to PKA phosphorylation [45], which was not enhanced by LTD$_4$. This finding suggests that the β_2-AR function is independently modulated by PKA and PKC mechanisms and it is consistent with the observations by Penn et al. [6] who showed that inhibition of PKC did not alter β_2-AR desensitization induced by PKA activation.
In human bronchi, allergen challenge may cause β_2-AR desensitization through different mechanisms involving inflammatory mediators other than LTs, thus possibly involving PKA. However, in previous studies we found that the reduction of relaxant response to salbutamol in allergen-challenged rings was not prevented by inhibition of prostaglandins [23], IL-1β, or TNFα [30], which are known to cause β_2-AR dysfunction/desensitization through the activation of PKA [6,33,35,36].

Conclusion

In conclusion, taken together these data suggest that cysteinyl-LTs cause desensitization of β_2-AR in both HASMC and isolated human bronchi through an acute mechanism involving PKC but not PKA, and that this desensitization might be prevented by the CysLT$_1$R antagonist montelukast. If cysteinyl-LTs released from resident or circulating inflammatory cells or even from the smooth muscle cell itself are the major responsible for β_2-AR desensitization in asthma, then the concurrent administration of CysLT$_1$R antagonists may represent a useful tool to improve the response to β_2-AR agonists in this disease. Clinical trials are necessary to assess the efficacy of the association between CysLT$_1$R antagonists and β_2-AR agonists in bronchial asthma.

Competing interests

GER received a research grant in 2005 from Merck, Sharpe & Dohme for in vitro studies on montelukast.

MB declare no competing interests.

SC declare no competing interests.

LB declare no competing interests.

SR declare no competing interests.

MM declare no competing interests

EC declare no competing interests

VB received a research grant in 2004 from Merck, Sharpe & Dohme for in vitro studies on montelukast.

Authors’ contributions

GER conceived and designed the study, coordination and manuscript preparation. MB was involved in isolated human bronchial ring experiments and helped in manuscript preparation.

SC participated in the design of the experiments, was involved in HASMC culture, performed in vitro cAMP studies and helped in the manuscript preparation.

LB participated in the design of the experiments and was involved in isolated human bronchial ring experiments.

SR participated to the in vitro studies.

MM was involved in isolated human bronchial ring experiments.

EC participated in the design and coordination of the experiments.

VB conceived and designed the study and participated to the manuscript preparation.

Acknowledgements

This study was supported by grants from Merck Sharp & Dome, Italian Ministry of University and Research (MIUR PRIN 2003 prot. 2003062507 and 2005 prot. 2005069290), and GALEN.
References

1. Emala C, Black C, Curry C, Levine MA, Hirshman CA: Impaired beta-adrenergic receptor activation of adenylyl cyclase in airway smooth muscle in the basenji-greyhound dog model of airway hyperresponsiveness. Am J Respir Cell Mol Biol 1993, 8(6):665-675.

2.尼尔森CP, 克劳利JJ, 范特利RE, 康诺利MJ: Impaired beta-adrenergic receptor function, increased leukocyte respiratory burst, and bronchial hyperresponsiveness. J Allergy Clin Immunol 1999, 103(2):338-348.

3. Israel E, 马森JM, 利吉特SB, 布赛希HA, 克尼希克CM, 镶贴VM, 库珀DM, 菲尔VJ, 费德JG, et al.: Effect of polymorphism of the beta(2)-adrenergic receptor on response to regular use of albuterol in asthma. Int Arch Allergy Immunol 2001, 124(1-3):183-186.

4. 戈特达DA, 格雷NK, 方G, 布朗KM, 利吉特SB: Hierarchy of polymorphic variation and desensitization permutations relative to beta 1- and beta 2-adrenergic receptor signaling. J Biol Chem 2002, 277(12):10784-10789.

5. 欧欤DFS, 卡农MG, 里克FJ: 转换的信号:beta-adrenergic receptor function. FASEB J 1990, 4(11):2881-2889.

6. 柏梅RB, 鲍伯蒂亚RA, 罗比克N, 努萨吉尔FR, 纳莫伊PF, 里克FC: Effects of cysteinyl leukotrienes in airway smooth muscle. Clin Exp Pharmacol Physiol 2002, 29(10):859-866.

7. 伊奇ST: Regulation of airway smooth muscle cell immunomodulatory function: role in asthma. Respir Physiol Neurobiol 2003, 137(2-3):309-326.

8. 马森JM, 奥森KF: Leukotrienes and airway responses. Am Rev Respir Dis 1987, 136:985-998.

9. 尼科西SA, 卡普拉V, 罗瓦蒂GE: Leukotrienes as mediators of asthma. Palm Pharmacol Ther 2001, 14(1):3-19.

10. 梅尔B: Leukotrienes: mediators of immediate hyper-sensitivity reactions and inflammation. Science 1983, 220:568-575.

11. 马森SE, 汉松G, 利维P, 毕尔克T, 格兰斯特E, 马森B: Allergen challenge of lung tissue from asthmatics elicits bronchial contraction that correlates with the release of leukotrienes C4, D4 and E4. Proc Natl Acad Sci USA 1983, 80:1712-1716.

12. 马森SE, 利维P, 哈马斯特R, 桑贝尔B: Leukotrienes are potent cocontractors of human bronchi. Nature 1980, 288:484-486.

13. 韦斯JW, 马森JM, 科尔N, 麦肯德非jer, 沃尔P, 科雷J, 李威RA, 马森KF: Bronchoconstrictor effects of leukotriene C4 in humans. Science 1982, 216(4542):196-198.

14. 艾德勒特O, 杜里MM, 哈格雷夫E, 欧非IMA: Airway responsiveness to leukotrienes C4 and D4 and to methacholine in patients with asthma and normal controls. N Engl J Med 1986, 315(8):480-484.

15. 班内蒂亚RA, 卡普拉E, 马修R, 麦克J: Novel leptin receptors in airway smooth muscle function, and remodeling. J Allergy Clin Immunol 2003, 111(1B):S18-S36.

16. 马森SE, 利维P, 哈马斯特R, 桑贝尔B: Leukotrienes are potent cocontractors of human bronchi. Nature 1980, 288:484-486.

17. 柏森R, 柏森T, 柏森R: Bronchoconstrictor effects of leukotriene C4 in humans. Science 1982, 216(4542):196-198.

18. 马森SE, 汉松G, 梅里EM, 埃特曼MA, 里森TB, 贝L: Effects of LTD4 on human airway smooth muscle cell proliferation, matrix expression, and contraction. J Clin Invest 2006, 117(1):41-51.

19. 里奇SS, 克里SH, 马斯P, 霍尔G: The anti-inflammatory effects of leukotriene-modifying drugs and their use in asthma. Chest 2001, 119(5):1533-1546.

20. 马森SE, 维克J, 利维P, 阿弗LS, 哈马斯特R, 梅里J, 萨尔维B, 利克FJ: Leukotrienes promote plasma leakage and leukocyte adhesion in postcapillary venules: in vivo effects with relevance to the acute inflammatory response. Proc Natl Acad Sci USA 1981, 78:3887-3891.

21. 马森J: Leukotriene receptor function and clinical implications. Allergy Asthma Proc 2004, 25(1):37-42.

22. 马森P, 里森E, 马森M, 里森J, 阿尔克R, 布拉索V: Anti-inflammatory agents and allergen-induced beta2-receptor dysfunction in isolated human bronchi. Am J Respir Crit Care Med 1998, 158(6):1809-1814.

23. 科伦O, 西德N, 西德E, 埃克F, 麦克F: Bronchoprotective effects of single doses of salmeterol combined with montelukast in thermally induced bronchospasm. Chest 2005, 127(5):1572-1578.

24. 科伦O, 马森J, 费吉T, 马森A, 博拉M, 福加格利F, 帕里安尼S, 萨尔维R, 阿弗LS, et al.: Leukotriene D4-induced activation of smooth-muscle cells from human bronchi is partly Ca2+-independent. Am J Respir Crit Care Med 2001, 163(1):266-272.

25. 柏森P, 布米亚N, 里森E, 阿尔克R, 布拉索V: Allergic challenge of passively sensitized human bronchi alters M2 and beta2 receptor function. Am J Respir Crit Care Med 1997, 155(4):1230-1234.

26. 柏森NR, 史密斯H: Applied regression analysis. New York, Wiley, 1966.

27. 马森FJ: G-protein-coupled receptors. III. New roles for receptor kinases and beta-arrestins in receptor signaling and desensitization. J Biol Chem 1998, 273(30):18677-18680.

28. 马森P, 布米亚N, 里森E, 尤奇E, 阿尔克R, 布拉索V: Beta(2)-adrenergic receptor function in allergen-challenged human isolated passively sensitized bronchi. Am J Physiol Lung Cell Mol Physiol 2000, 279(2):L209-215.

29. 布里切托L, 布米亚N, 索金P, 帕特里尼M, 布米亚E, 布拉索V, 德卡西L, 里森N, 博拉F, 索金C, 博拉F, 布拉索V, 里森C: Beclomethasone rapidly ablates allergen-induced beta(2)-adrenoceptor dysfunction, possibly by induction of cytokine inhibition. Am J Physiol Lung Cell Mol Physiol 2003, 284(1):L133-139.

30. 博拉F, 布米亚N, 罗马洛E, 法尼V, 布里切托L, 布拉索V, 奕西L, 博拉F, 博拉F, 布拉索V, 里森C: CANONICA: A GW: A model of allergen-driven human airway contraction: beta2 pathway dysfunction without cytokine involvement. Am J Respir Allergy Immunol 2005, 92(2):273-278.

31. 贝尔TR: Abnormalities in airway smooth muscle in fatal asthma. Am Rev Respir Dis 1990, 141(3):552-557.

32. 马森M, 马森N, 马森E, 卡里E, 罗西P, 里森A: Oligodeoxynucleotides antisense to anti-IL8 receptor A: Modulation of airway smooth muscle beta-adrenoceptor function by a muscarinic agonist. Life Sci 1994, 54(3):185-191.

33. 佩奇J, 罗西E, 卡尔C, 卡罗J, 里克F, 依赫J: Leukotrienes: mediators of the acute inflammatory response. Proc Natl Acad Sci USA 1981, 78:3887-3891.
specific roles in agonist-induced desensitization. *Proc Natl Acad Sci USA* 1994, 91(25):12193-12197.

42. McGraw DW, Liggett SB: Heterogeneity in beta-adrenergic receptor kinase expression in the lung accounts for cell-specific desensitization of the beta2-adrenergic receptor. *J Biol Chem* 1997, 272(11):7338-7344.

43. Capra V, Accomazzo MR, Ravasi S, Parenti M, Macchia M, Nicosia S, Rovati GE: Involvement of prenylated proteins in calcium signaling induced by LTD4 in differentiated U937 cells. *Prostaglandins Other Lipid Mediat* 2003, 71(3-4):235-251.

44. Capra V, Ravasi S, Accomazzo MR, Parenti M, Rovati GE: CysLT1 signal transduction in differentiated U937 cells involves the activation of the small GTP-binding protein Ras. *Biochem Pharmacol* 2004, 67(8):1569-1577.

45. Daaka Y, Luttrell LM, Lefkowitz RJ: Switching of the coupling of the beta2-adrenergic receptor to different G proteins by protein kinase A. *Nature* 1997, 390(6655):88-91.