Emerging roles of non-coding RNAs in gastric cancer: Pathogenesis and clinical implications

Shan-Shan Xie, Juan Jin, Xiao Xu, Wei Zhuo, Tian-Hua Zhou

Gastric cancer is a leading cause of cancer-related deaths. However, the mechanisms underlying gastric carcinogenesis remain largely unclear. The association of non-coding RNAs (ncRNAs) with cancer has been widely studied during the past decade. In general, ncRNAs have been classified as small ncRNAs, including microRNAs (miRNAs), and long non-coding RNAs (lncRNAs). Emerging evidence shows that miRNAs and lncRNAs play key roles in the formation and progression of many cancers. In this review, we focus on the regulation of miRNAs and lncRNAs in gastric cancer. miRNAs and lncRNAs appear to be involved in gastric tumor growth, invasion, and metastasis and in establishment of the gastric tumor microenvironment through various mechanisms. Furthermore, we also discuss the possibilities of establishing miRNAs and lncRNAs as potential biomarkers and therapeutic targets for gastric cancer. Taken together, we summarize the emergent roles of ncRNAs in gastric cancer development and their possible clinical significance.

Key words: microRNAs; Long non-coding RNAs; Gastric cancer; Cancer invasion; Metastasis

© The Author(s) 2016. Published by Baishideng Publishing Group Inc. All rights reserved.
Core tip: Non-coding RNAs (ncRNAs) are recognized as an important player in multiple physiological and pathological processes through diverse mechanisms. This review summarizes the current knowledge on dysregulation of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in gastric tumor growth, invasion and metastasis. Moreover, the possibilities of targeting miRNAs and lncRNAs in gastric cancer diagnosis, prognosis and treatment are also discussed.

INTRODUCTION

Gastric cancer is one of the leading causes of cancer-related deaths worldwide, with an estimated 951600 new cases and 723100 deaths in 2012[14]. The development of medical and surgical therapy has improved the survival rate of gastric cancer patients. However, survival remains unsatisfactory with < 25% overall 5-year survival rates[2]. The high mortality of gastric cancer is mainly attributed to delayed diagnosis due to the lack of appropriate biomarkers and specific early symptoms. Therefore, it is important to elucidate the mechanisms of gastric carcinogenesis and explore new biomarkers and therapeutic targets for gastric cancer.

The human genome sequencing project revealed that < 2% of the human genome expresses protein-coding RNAs[14]. However, several studies have shown that > 90% of the genome is actively transcribed to a diversity of RNAs[5,6]. These RNAs without protein-coding capacity are defined as non-coding RNAs (ncRNAs). Generally, ncRNAs are classified as long ncRNAs (lncRNAs) (> 200 nt) and small ncRNAs (< 200 nt). Recent studies showed there are many types of small ncRNAs, including microRNAs (miRNAs), small interfering RNAs, piwi-interacting RNAs, small nuclear RNAs and small nucleolar RNAs[7].

ncRNAs contribute to many biological processes, such as cell proliferation, migration, signaling, development and differentiation. Therefore, they are implicated in the pathogenesis of various diseases, including cancers[6,8]. Increasing data demonstrate that dysregulation of miRNAs and lncRNAs is involved in the development of many human cancers, such as breast, colorectal, lung, liver and gastric cancer[10-12]. Here, we outline our current understanding of the role of miRNAs and lncRNAs in gastric carcinogenesis and highlight their potential clinical value.

MIRNAS AND GASTRIC CANCER

miRNAs are 20-22 nt members of the ncRNA family that regulate genes by triggering mRNA degradation or by translational repression via perfect or imperfect base matching between miRNAs and their target mRNAs (Figure 1). Each miRNA has been shown to target up to 200 mRNAs and therefore they influence many cellular processes, such as cell proliferation, apoptosis, migration, invasion and metabolism[13].

Many studies have demonstrated that dysregulation of miRNAs is associated with the pathogenesis of various cancers, including gastric cancer, through promoting tumor growth, invasion and metastasis (Supplemental Table 1).

miRNAs promote tumor growth

In 2011, Hanahan and Weinberg summarized the hallmarks of cancer[14]. Some hallmarks, including sustaining proliferative signaling, evasion of growth suppressors, resistance of cell death, and enabling replicative immortality, appear to promote tumor growth[13]. In gastric cancer, the activity of numerous miRNAs has been shown to enhance tumor growth through stimulation of these hallmark processes.

The first studies on the role of miRNAs in gastric cancer were on Let-7a, which is downregulated in gastric cancer tissues. Let-7a directly targets RAB40C, which is a member of the small GTPase RAS family, and downregulation of Let-7a results in the suppression of cell proliferation in vitro and tumor growth in vivo through regulation of RAB40C[15,16]. Our group and others found that expression of another miRNA, miR-375, is frequently decreased in gastric cancer tissues[17,19]. miR-375 plays a crucial role in gastric cancer growth by inhibiting Janus kinase (JAK)2[14]. In gastric cancer, the activity of numerous miRNAs has been shown to enhance tumor growth through stimulation of these hallmark processes.

Recently, we and another group discovered that miR-215 is upregulated in gastric cancer tissues and induces cell proliferation by binding tumor suppressor gene retinoblastoma 1; a key cell cycle regulator[20,21]. Expression of another miRNA, miR-106a, is also elevated in gastric cancer tissues. miR-106a significantly enhances gastric cancer cell proliferation and prevents apoptosis through interference with the FAS-mediated apoptotic pathway[22,23]. Finally, it...
has been shown that miR-1182 is downregulated in gastric cancer tissues\(^2\)\(^4\). miR-1182 targets telomerase reverse transcriptase (hTERT). Telomeres are able to promote replicative immortality, which is controlled by hTERT. In turn, overexpression of hTERT facilitates cell immortality, which increases cell proliferation. Taken together, these studies indicate that, in gastric cancer, aberrant expression of miRNAs results in the promotion of tumor growth through evasion of growth suppressors, resistance of cell death and enabling of replicative immortality.

miRNAs enhance tumor invasion and metastasis
Recent studies indicated that miRNAs are involved in activating tumor invasion and metastasis. These studies showed that miR-21 expression is frequently elevated in gastric cancer tissues compared with corresponding non-cancerous gastric tissues\(^2\)\(^4\)-\(^2\)\(^7\). Furthermore, miRNA-21 is significantly associated with tumor invasion and metastasis. miR-21 apparently promotes gastric tumor invasion by targeting phosphatase and tensin homolog (PTEN)\(^2\)\(^7\). Several studies showed that miR-148a is downregulated in gastric cancer tissues and that the expression of miR-148a is significantly correlated with TNM stages, lymph node metastasis, and poor prognosis of gastric cancer patients\(^2\)\(^8\)-\(^3\)\(^1\). Furthermore, ectopic expression of miR-148a suppresses gastric cancer cell migration and invasion \textit{in vitro} and lung metastasis \textit{in vivo} by targeting ROCK1 (rho-associated, coiled-coil-containing protein kinase 1)\(^2\)\(^8\). miR-148a represses the expression of DNA methyltransferase (DNMT)1, whereas ectopic expression of DNMT1 results in the silencing of miR-148a through hypermethylation of its promoter region\(^2\)\(^9\),\(^3\)\(^0\). These results suggest the existence of a miR-148a/DNMT1 circuit in gastric cancer. In addition, matrix metalloproteinase (MMP)7 and p27, which may contribute to gastric cancer invasion, are also targeted by miR-148a\(^2\)\(^9\),\(^3\)\(^1\).

Some miRNAs stimulate the development of gastric cancer through multiple pathways. Our group previously demonstrated that miR-375 is not only involved in tumor growth, but also influences gastric cancer invasion\(^3\)\(^4\). Moreover, miR-375 expression is negatively regulated by Snail, which binds directly to the putative promoter of miR-375. Snail is a key transcription factor for metastasis.

miRNAs and the tumor microenvironment
The crosstalk between cancer cells and their neighboring stroma is required for invasive tumor growth, metastasis, modulation of inflammation and angiogenesis\(^4\)\(^4\). miRNAs have been shown to play important roles in gastric carcinogenesis induced by \textit{Helicobacter pylori}.
Table 1 Dysregulation of IncRNAs in gastric cancer

IncRNAs	Expression	Biological processes	Targets	Ref.
ABHDH11-AS1	Up	Unknown	Unknown	[41]
ACIC38128.1	Up	Unknown	Unknown	[42]
AK058003	Up	Promote migration and invasion	γ-Synuclein	[3]
ANRIL	Up	Promote proliferation and tumorigenesis	miR-99a/miR-449a	[44]
CARLo-5	Up	Promote proliferation	Unknown	[45]
CCAT1	Up	Promote proliferation and migration	Unknown	[46,47]
CCAT2	Up	Unknown	Unknown	[48]
GACAT3	Up	Unknown	Unknown	[49,50]
GAPLINC	Up	Promote proliferation, invasion and tumorigenesis	CD44	[51]
GHE1T1	Up	Promote proliferation and tumorigenesis	c-myc	[52]
H19	Up	Promote proliferation and suppress apoptosis; enhance metastasis	p53, miR-675/RUX1, CALN1	[53-55]
HIF1A-AS2	Up	Unknown	unknown	[56]
HOTAIR	Up	Promote migration, invasion, EMT and metastasis	Snail, MMP1, MMP3, HER2, SUZ12	[57-62]
HULC	Up	Promote proliferation, invasion and EMT; suppress apoptosis	Unknown	[63]
linc08152	Up	Unknown	Unknown	[64]
linc-LINC1	Up	Promote proliferation and invasion	Unknown	[65]
LSINCT5	Up	Promote proliferation	Unknown	[66]
MALAT1	Up	Promote proliferation	SF2/ASF	[67]
MRUL	Up	Promote MDR	ABCB1	[68]
PVT1	Up	Promote cell proliferation	p15, p16	[69]
SPRY4-IT1	Up	Promote tumorigenesis	Unknown	[70]
TINCR	Up	Regulate cell proliferation and apoptosis	KLF2	[71]
UCA1	Up	Unknown	Unknown	[72]
LEIGC	Down	Inhibit migration and EMT	Unknown	[73]
FENDRR	Down	Suppress migration, invasion and metastasis	FNI	[74]
AA174084	Down	Unknown	Unknown	[75]
BM742401	Down	Suppress migration, invasion and metastasis	Unknown	[76]
FER1L4	Down	Unknown	miR-10a-5p	[77,78]
GACAT1	Down	Unknown	Unknown	[79,80]
GACAT2	Down	Unknown	Unknown	[80,81]
GASS	Down	Inhibit proliferation and tumorigenesis	E2F1, p21	[82]
LET	Down	Unknown	Unknown	[83]
MEG3	Down	Inhibit proliferation and promote apoptosis	p53	[54,85]
ncRuPAR	Down	Unknown	PAR1	[86]

pylori (H. pylori) infections. **H. pylori** infections are a critical risk factor for gastric cancer development. It has previously been shown that downregulation of miR-375 results in the activation of JAK2-signal transducer and activator of transcription (STAT)3 signaling, which promotes **H. pylori**-mediated inflammation. This in turn facilitates gastric cancer progression[35]. Another miRNA, miR-874, is also downregulated in gastric cancer tissues. Downregulation of miR-874 contributes to tumor angiogenesis through the STAT3/vascular endothelial growth factor-A pathway[36,37]. These results indicate that miRNAs are versatile and involved in the regulation of the tumor microenvironment.

LncRNAs and Gastric Cancer

The first lncRNA, H19, was reported by Brannan and colleagues in 1990[38]. To date, the ENCODE project has identified tens of thousands of IncRNAs[5]. According to their locations and characteristics, IncRNAs can be grouped into five categories: sense, antisense, bidirectional, intronic or intergenic (Figure 2)[39]. Increasing data show that IncRNAs may regulate gene expression through diverse mechanisms, including gene activation and suppression, chromatin modification and remodeling, splicing modulation, miRNA sponges and translation (Figure 3).

Research over the last 10 years has accumulated evidence that IncRNAs are important regulators in cell proliferation, apoptosis, migration and differentiation[40]. Similar to miRNAs, IncRNAs are associated with many processes in gene regulation, therefore it may not be surprising that dysregulation of IncRNAs results in tumor growth, invasion and metastasis (Table 1)[41-86].

IncRNAs involved in tumor growth

H19 is a paternally imprinted gene that is highly expressed during embryogenesis but almost completely downregulated shortly after birth[87,88]. Previous studies have shown that H19 is upregulated in gastric cancer and that it is significantly correlated with poor prognosis of gastric cancer patients[53-55]. Furthermore, H19 has been shown to promote gastric cancer cell proliferation, invasion and metastasis through various mechanisms, including processing into miR-675. miR-675 has many targets, such as c-myc and tumor suppressor runt domain transcription factor 1[54,55].

Accumulating evidence indicates that a number of IncRNAs, including antisense ncRNA in the INK4 locus
Figure 2 Categories of lncRNAs. lncRNAs are usually classified into five categories: (1) sense; or (2) antisense, when overlapping one or more exons of another transcript on the same, or opposite strand; (3) bidirectional, when the expression of lncRNA and a neighboring coding transcript on the opposite strand is initiated in close genomic proximity; (4) intronic, when lncRNA is derived wholly from within an intron; and (5) intergenic, when lncRNA lies within the genomic interval between two genes.

Figure 3 Functions of lncRNAs. Individual lncRNA transcription occurs at a specific time and place to integrate developmental cues, interpret cellular context, or respond to diverse stimuli. A number of lncRNAs bind to and titrate away transcription factors to activate or suppress gene expression (1, 2); some lncRNAs guide site-specific recruitment of chromatin-modifying complexes to genomic sites to induce epigenetic changes and regulate gene expression (3); several lncRNAs serve as scaffolds for chromatin-modifying complexes (4); some lncRNAs specifically interact with complementary mRNAs that modulate various processes of post-transcription, such as splicing, translation and degradation (5-7). A number of lncRNAs are able to alter protein localization, regulate protein activity, or act as components of protein complex (8-10). Some lncRNAs appear to generate small RNA precursors or function as miRNA sponges (11, 12).
(ANRIL), gastric carcinoma high expressed transcript 1 (GHE1T1), metastasis associated lung adenocarcinoma transcript 1 (MALAT1), PVT1 oncogene (PVT1) and SPRY4 intronic transcript 1 (SPRY4-IT1), are significantly upregulated in gastric cancer tissues compared with paired non-cancerous tissues, and they are therefore associated with the prognosis of gastric cancer patients.[44,52,67,69,70]. ANRIL enhances gastric cancer cell proliferation by silencing miR-99a/miR-449a via binding to polycomb repressive complex 2.[44]. Ectopic expression of ANRIL increases the expression of transcription factor E2F1 through repression of miR-449a. Simultaneously, E2F1 promotes ANRIL expression, thus forming a positive feedback loop. GHE1T1 has been demonstrated to increase the stability of c-myc mRNA by enhancing the physical interaction between c-myc mRNA and insulin-like growth factor 2 mRNA binding protein 1. Stabilization of c-myc mRNA was shown to promote gastric cancer cell growth.[52]. MALAT1, an lncRNA associated with metastasis of many cancers, facilitates gastric cancer cell proliferation by recruiting SF2/ASF (serine/arginine-rich splicing factor 1).[67]. PVT1 represses the expression of tumor suppressor genes p15 and p16, which promotes gastric cancer cell proliferation via binding to the zeste homolog 2 enhancer.[69]. Finally, SPRY4-IT1 has been found to increase the proliferation, colony formation, and invasion of gastric cancer cells, partially by increasing the expression of MMP-related genes and cyclin D.[70].

Other lncRNAs, such as growth arrest-specific transcript (GAS)5 and maternally expressed gene (MEG)3, are frequently downregulated in gastric cancer tissues. They are correlated with poor prognosis of gastric cancer patients.[82,84,85]. Ectopic expression of GAS5 decreases gastric cancer cell proliferation and induces apoptosis, partially via regulating E2F1 and p21 expression.[83]. Expression of MEG3 is regulated by miR-148a via DNMT1, which inhibits gastric cancer cell proliferation.[84,85].

lncRNAs regulate invasion and metastasis

Several studies have shown that lncRNAs are involved in the regulation of tumor invasion and metastasis. The lncRNA Hox transcript antisense intergenic RNA (HOTAIR) is elevated in human cancers, including gastric cancer, and enhances tumor invasion and metastasis.[57-62,89]. Knockdown of HOTAIR reverses the epithelial-mesenchymal transition (EMT) process and inhibits invasion by suppressing the expression of MMP1 and MMP3.[57]. Furthermore, HOTAIR functions as a competing endogenous RNA and effectively represses HER2 expression through competition for miR-331-3p binding in gastric cancer.[59].

Another lncRNA, fetal-lethal noncoding developmental regulatory RNA (FENDRR), is downregulated in gastric cancer tissues. FENDRR inhibits gastric cancer cell migration and invasion via repressing the expression of fibronectin 1 and MMP2/MMP9. Reduced FENDRR expression is significantly correlated with metastasis, TNM stages and poor prognosis of gastric cancer patients.[74].

CLINICAL IMPLICATIONS OF lncRNAs IN GASTRIC CANCER

The high mortality of gastric cancer is mainly attributed to failure of early detection and the lack of an effective therapy. Early gastric cancer is either asymptomatic or presented with non-specific symptoms. Also, endoscopic screening is not a common practice in less-developed countries.[90]. The current diagnostic biomarkers, including the serological markers carbohydrate antigen (CA)19-9 and carcinoembryogenic antigen (CEA), have a low specificity and sensitivity for gastric cancer diagnosis. Thus, there is an urgent need for the discovery of new biomarkers for non-invasive early detection.

lncRNAs and gastric cancer diagnosis

Emerging data indicate that gastric cancer patients have different lncRNA serum profiles compared with the healthy controls.[91-94]. These profiles appear to be specific in cancer patients and show a higher sensitivity than conventional tumor biomarkers such as CEA and CA19-9. A signature of five specific serum miRNAs (miR-1, miR-20a, miR-27a, miR-34 and miR-423-5p) was able to detect gastric cancer with a sensitivity of 80% and a specificity of 81%. Furthermore, a profile of the three serum lncRNAs CUDR (cancer up-regulated drug resistant), LSINCT-5 (long stress-induced non-coding transcript 5) and PTENP1 (phosphatase and tensin homolog pseudogene 1) showed a better diagnostic accuracy [area under the curve (AUC): 0.92, 95% CI: 0.807-0.974] compared with CEA (AUC: 0.574, 95% CI: 0.432-0.708) and CA19-9 (AUC: 0.580, 95% CI: 0.438-0.713).[94]. These data indicate that lncRNAs may be promising new targets for the development of gastric cancer diagnostic tools.

lncRNAs and gastric cancer prognosis

The expression levels of lncRNAs have been significantly associated with gastric cancer clinical features such as tumor size, invasion and metastasis. For instance, elevated expression of miRNAs such as miR-27a, miR-335, miR-196a and miR-142-5p is associated with a high frequency of recurrence and poor survival of gastric cancer patients.[95-98]. Similarly, expression levels of the lncRNAs H19, ANRIL, GHE1T1, HOTAIR, GAS5, LET, GAPLINC and FENDRR are significantly correlated with the 5-year survival rate of gastric cancer patients.[54,44,52,58,82,83,51,74]. Therefore, lncRNAs may be good indicators in gastric cancer prognosis.

lncRNAs and gastric cancer treatment

Several studies have reported that lncRNAs could affect...
the resistance of gastric cancer to chemotherapy. For instance, inhibition of miR-21 and miR-223 markedly suppresses gastric cancer cell proliferation by increasing cisplatin sensitivity[99,100]. Furthermore, knockdown of multidrug-resistance-related and upregulated lncRNA increases chemosensitivity of multidrug-resistant gastric cancer cell sublines by facilitating the expression of ABCB1 (ATP-binding cassette, subfamily B, member 1)[68]. Therefore, ncRNAs may be valuable new targets to include in future gastric cancer treatments.

CONCLUSION AND FUTURE PERSPECTIVES

In the last decade, increasing numbers of ncRNAs, including miRNAs and IncRNAs, have been documented to affect gastric cancer. These ncRNAs are aberrantly expressed in gastric cancer tissues, play critical roles in the gastric carcinogenesis, and have potential applications in the diagnosis, prognosis or treatment of gastric cancer. Since tumor progression is a complex and multistep process, several hallmarks have been described that enable normal cells to become tumorigenic and malignant during tumor pathogenesis[14]. A large number of miRNAs and IncRNAs are involved in the regulation of these hallmarks (Figure 4). Aberrant expression of some ncRNAs, including miR-375, ANRIL, miR-106a, miR-1182 and miR-374a, results in gastric cancer growth by promoting hallmark processes such as sustaining proliferative signaling, evasion of growth suppressors, resistance of cell death, enabling replicative immortality and deregulation of cellular energetics. Other ncRNAs, such as miR-328, miR-874 and let-7b, are involved in the interaction between gastric cancer cells and their neighboring stroma and activate invasion and metastasis by facilitating tumor-promoting inflammation, inducing angiogenesis and avoiding immune destruction. Furthermore, genome instability and mutations appear to drive or exacerbate these hallmarks in gastric cancer.

Even though aberrant expression of a number of ncRNAs has been described to stimulate gastric cancer, the underlying molecular mechanisms on the function of these ncRNAs in gastric carcinogenesis are not well understood. Most of the current studies on ncRNAs in gastric cancer focus on their expression profiles. The role of mutations in ncRNAs involved in gastric carcinogenesis should be determined in future studies. New technologies, such as next-generation DNA sequencing and CRISPR-Cas9 genome editing, will...
further help us to find and characterize the exact role of ncRNAs in gastric cancer.

Clinical applications for ncRNAs in gastric cancer are also in their infancy. Although some ncRNAs may show potential as therapeutic targets, many obstacles, including stability, reliable delivery systems and off-target effects, have to be overcome before clinical trials could commence.

ACKNOWLEDGMENTS

We are grateful to Stijn van der Veen for help with editing the language of our manuscript.

REFERENCES

1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin 2015; 65: 87-108. [PMID: 25651789 DOI: 10.3322/caac.212623]
2. Saka M, Morita S, Fukagawa T, Kati H. Present and future status of gastric cancer surgery. Jpn J Clin Oncol 2011; 41: 307-313. [PMID: 21242182 DOI: 10.1036/j.jcc.2011.07.040]
3. Stein LD. Human genome: end of the beginning. Nature 2004; 431: 915-916. [PMID: 15496902]
4. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 2012; 489: 57-74. [PMID: 22955616 DOI: 10.1038/nature11247]
5. Birney E. Stamatoyannopoulos JA, Dutta A, Guigó R, Gingeras TR, Margulies EH, Birney E. Non-coding RNAs in human disease. Nature 2007; 447: 799-816. [PMID: 17513546]
6. Kapranov P, Cheng J, Dike S, Nix DA, Duttagupta R, Willingam AT, Stadler PF, Hertel J, Hackemüller J, Hofacker IL, Bell I, Cheung E, Drenkow J, Duminas E, Patel S, Gosh G, Shigenobu S, Piccolo S, Arentsen K, Kamburova V, Tammana H, Gingeras TR. RNA expression. Nat Rev Genet 2007; 8: 17-29. [DOI: 10.1038/nrg1804]
7. He L, Lühn GM. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 2004; 5: 522-531. [PMID: 15111354]
8. Di Gesualdo F, Carinci P, Lulli M. A pathophysiological view of the long non-coding RNA world. Oncotarget 2014; 5: 10976-10996. [PMID: 25428918]
9. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116: 281-297. [PMID: 14744438]
10. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144: 646-674. [PMID: 21376230 DOI: 10.1016/j.cell.2011.02.013]
11. Zhang HH, Wang XJ, Li GX, Yang E, Yang NM. Detection of let-7a microRNA by real-time PCR in gastric carcinoma. World J Gastroenterol 2007; 13: 2883-2888. [PMID: 17569129 DOI: 10.3748/wjg.v13.i20.2883]
12. Yang Q, Jie Z, Cao H, Greenlee AR, Yang C, Zou F, Jiang Y. Low-level expression of let-7a and its correlation with tumor invasion in gastric cancer. Cancer Gene Ther 2010; 22: 291-301. [PMID: 25998522 DOI: 10.1038/cgt.2015.19]
13. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116: 281-297. [PMID: 14744438]
15. Ding L, Xu Y, Zhang W, Deng Y, Si M, Du Y, Yao H, Liu X, Ke Y, Si J, Zhou T. MiR-375 frequently downregulated in gastric cancer inhibits cell proliferation by targeting JAK2. Cell Res 2010; 20: 784-793. [PMID: 20548334 DOI: 10.1038/cr.2010.79]
16. Tsukamoto Y, Nakada C, Noguchi T, Tanigawa M, Nakada Y, Chiba T, Nishiya A, Fujishima K, Sugita M, Miyamori M. MicroRNA-375 is downregulated in gastric carcinomas and regulates cell survival by targeting PDK1 and 14-3-3-zeta. Cancer Res 2010; 70: 2339-2349. [PMID: 20215506 DOI: 10.1158/0008-5472.CAN-09-2777]
17. Shen ZY, Zhang ZZ, Liu H, Zhao EH, Cao H. miR-375 inhibits the proliferation of gastric cancer cells by repressing ERBB2 expression. Exp Ther Med 2014; 7: 1757-1761. [PMID: 24926380]
miR-375 inhibits migration and invasion through targeting aquaporin-3 in gastric cancer. Oncotarget 2015; 6: 1605-1617 [PMID: 25596740]

Braeman C, Does EC, Ingram RS, Tilghman SM. The product of the H19 gene may function as an RNA. Mol Cell Biol 1990; 10: 28-36 [PMID: 1688465]

Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, Guernec G, Martin D, Merkel A, Knowles DG, Lagarde J, Veeravalli L, Ruan X, Ruan Y, Lassmann T, Carinci P, Brown JB, Lipovich L, Gonzalez JM, Thomas M, Davis CA, Shiekhattar R, Gingeras TR, Hubbard TJ, Notredame C, Harrow J, Guigo R. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 2012; 22: 1755-1789 [PMID: 22955988 DOI: 10.1101/gr.132199.111]

Ponjing CP, Oliver PL, Reik W. Evolution and functions of long non-coding RNAs. Cell 2009; 136: 629-641 [PMID: 19239858 DOI: 10.1016/j.cell.2009.02.006]

Lin X, Yang M, Xia T, Guo J. Increased expression of long non-coding RNA ABHD11-A51 in gastric cancer and its clinical significance. Med Oncol 2014; 31: 42 [PMID: 24984296]

Chen X, Sun J, Song Y, Gao P, Zhao J, Huang X, Liu B, Xu H, Wang Z. The novel long non-coding RNA AC138128.1 may be a predictive biomarker in gastric cancer. Med Oncol 2014; 31: 262 [PMID: 25260808 DOI: 10.1007/s12032-014-0262-7]

Wang Y, Liu X, Zhang H, Sun L, Zhou Y, Jin H, Zhang H, Liu H, Liu G, Nie Y, Wu K, Fan D, Zhang H, Liu L. Hypoxia-inducible lncRNA-AK058003 promotes gastric cancer metastasis by targeting γ-synuclein. Neoplasia 2014; 16: 1094-1106 [PMID: 25499222 DOI: 10.1016/j.neo.2014.10.008]

Zhang EB, Kong R, Yin DD, You LH, Sun M, Han L, Xu TP, Xia R, Yang JS, De W, Chen JF. Long noncoding RNA ANRIL indicates a poor prognosis of gastric cancer and promotes tumor growth by epigenetically silencing of miR-99a/miR-494. Oncotarget 2014; 5: 2276-2292 [PMID: 24810364]

Zhang Y, Ma M, Liu W, Ding W, Yu H. Enhanced expression of long non-coding RNA CARLo-5 is associated with the development of gastric cancer. Int J Clin Exp Pathol 2014; 7: 8471-8479 [PMID: 25674211]

Yang F, Xue X, Bi J, Zheng L, Zhi K, Gu Y, Fang G. Long non-coding RNA CCAT1, which could be activated by e-Myc, promotes the progression of gastric cancer. J Cancer Res Clin Oncol 2013; 139: 437-445 [PMID: 23143645 DOI: 10.1007/s00432-012-1324-x]

Mizrahi I, Mazeh H, Grinstein Y, Yankielow D, Gure AO, Halle D, Nissim A. Colon Cancer Associated Transcript-1 (CCAT1) Expression in Adenocarcinoma of the Stomach. J Cancer 2015; 6: 110-115 [PMID: 25561974 DOI: 10.7150/jca.10568]

Wang CY, Hua L, Yao KH, Chen JT, Zhang JJ, Hu JH. Long non-coding RNA CCAT2 is up-regulated in gastric cancer and associated with poor prognosis. Int J Exp Pathol 2015; 8: 779-785 [PMID: 25755774]

Xu C, Shao Y, Xia T, Yang Y, Dai J, Luo L, Zhang X, Sun W, Song H, Xiao B, Guo J. Intron-AC130710 targeting by miR-129-5p is upregulated in gastric cancer and associated with poor prognosis. Tumour Biol 2014; 35: 9701-9706 [PMID: 24969565 DOI: 10.1007/s13277-014-2274-5]

Chen S, Li P, Xiao B, Guo J. Long non-coding RNA HMlinRNA717 and AC130710 have been officially named as gastric cancer associated transcript 2 (GACAT2) and GACAT3, respectively. Tumour Biol 2014; 35: 8351-8352 [PMID: 25077925 DOI: 10.1007/s13277-014-2273-y]

Hu Y, Wang J, Qian J, Kong X, Tang J, Wang Y, Chen H, Hong J, Zou W, Chen Y, Xu J, Fan JY. Long noncoding RNA GAPLINC regulates CD44-dependent cell invasiveness and associates with poor prognosis of gastric cancer. Cancer Res 2014; 74: 6890-6902 [PMID: 25277524 DOI: 10.1185/000708-5472]

Yang F, Xue X, Zheng L, Bi J, Zhou Y, Zhi K, Gu Y, Fang G. Long non-coding RNA GHET1 promotes gastric carcinoma cell proliferation by increasing e-Myc mRNA stability. FEBS J 2014;
Xie SS et al. Non-coding RNAs and gastric cancer

281: 802-813 [PMID: 24397586 DOI: 10.1111/febs.12625]

53 Yang F, Bi J, Xue X, Zheng L, Zhi K, Hua J, Fang G. Up-regulated long non-coding RNA H19 contributes to proliferation of gastric cancer cells. FEBS J 2012; 279: 3159-3165 [PMID: 22772625 DOI: 10.1111/j.1742-4658.2012.08694.x]

54 Li H, Yu B, Li J, Su L, Yan M, Zhu Z, Liu B. Overexpression of lncRNA H19 enhances carcinogenesis and metastasis of gastric cancer. Oncotarget 2014; 5: 2318-2329 [PMID: 24810858]

55 Zhuan M, Gao W, Xu J, Wang P, Shu Y. The long non-coding RNA H19-derived miR-675 modulates human gastric cancer cell proliferation by targeting tumor suppressor RUNX1. Biochem Biophys Res Commun 2014; 448: 315-322 [PMID: 24388988 DOI: 10.1016/j.bbrc.2013.12.126]

56 Chen WM, Huang MD, Kong R, Xu TP, Zhang EB, Xia R, Sun M, De W, Shu YQ. Antisense Long Noncoding RNA HIFIA-AS2 Is Upregulated in Gastric Cancer and Associated with Poor Prognosis. Dig Dis Sci 2015; 60: 1655-1662 [PMID: 25686741 DOI: 10.1007/s00269-015-3524-0]

57 Xu ZY, Yu QM, Du YA, Yang LT, Dong RZ, Huang L, Yu PF, Cheng XD. Knockdown of long non-coding RNA HOTAIR suppresses tumor invasion and reverses epithelial-mesenchymal transition in gastric cancer. Int J Biol Sci 2013; 9: 587-597 [PMID: 23847441 DOI: 10.7150/ijbs.6339]

58 Endo H, Shiroki T, Nakagawa T, Yokoyama M, Tamai K, Yamamani H, Fujita T, Sato I, Yamaguchi K, Tanaka N, Iijima K, Shimosegawa T, Sugamura K, Sato H. Enhanced expression of long non-coding RNA HOTAIR is associated with the development of gastric cancer. Plus One 2013; 8: e77070 [PMID: 24103873 DOI: 10.1371/journal.pone.0077070]

59 Liu XH, Sun M, Nie FQ, Ge YB, Zhang EB, Yin DD, Kong R, Xia T, Liu R, Lu KH, LI JH, De W, Wang KM, Wang ZX. Lnc RNA HOTAIR functions as a competing endogenous RNA to regulate HER2 expression by sponging miR-331-3p in gastric cancer. Mol Cancer 2014; 13: 92 [PMID: 24777512 DOI: 10.1186/1471-2407-13-92]

60 Emadi-Andani E, Nikpour P, Emadi-Baygi M, Bidmeshkipour L, Wang XJ, Xia R, Guo Q, Chen J, Hu J, Wang S, Sun Y. Role of long non-coding RNA associated-competing endogenous RNAs in gastric cancer and FENDRR regulates gastric cancer cell metastasis by affecting fibronectin expression. J Hematol Oncol 2014; 7: 63 [PMID: 25167886 DOI: 10.1186/s13045-014-0063-7]

61 Shao Y, Ye J, Wu D, Wu P, Chen Z, Chen J, Gao S, Huang J. LEIGC long non-coding RNA acts as a tumor suppressor in gastric carcinoma by inhibiting the epithelial-to-mesenchymal transition. BMC Cancer 2014; 14: 932 [PMID: 25496320 DOI: 10.1186/1471-2407-14-932]

62 Xu TP, Huang MD, Xia R, Liu XX, Sun M, Yin L, Chen WM, Han L, Zhang EB, Kong R, De W, Shu YQ. Decreased expression of the long non-coding RNA FENDRR is associated with poor prognosis in gastric cancer and FENDRR regulates gastric cancer cell metastasis by affecting fibronectin expression. J Hematol Oncol 2014; 7: 63 [PMID: 25167886 DOI: 10.1186/s13045-014-0063-7]

63 Peng W, Wu G, Fan H, Wu J, Feng J. Long noncoding RNA SPRY4-IT1 predicts poor patient prognosis and promotes tumorigenesis in gastric cancer. Tumour Biol 2015; 36: 6751-6758 [PMID: 25859573]

64 Liao Q, Jiang X, Sheng WQ, Zhou XY, Du X. Long non-coding RNA LSINCT5 promotes the oncogenic activity in gastric cancer. Oncol Rep 2013; 30: 2552-2647 [PMID: 24523021 DOI: 10.1007/s13277-014-1709-3]

65 Hu Y, Pan J, Wang Y, Li L, Huang Y. Long noncoding RNA linc-UBC1 is negative prognostic factor and exhibits tumor progression activity in gastric cancer. Int J Clin Exp Pathol 2015; 8: 594-600 [PMID: 25755750]

66 Xu MD, Qi P, Weng WW, Shu YQ, Ni SJ, Dong L, Huang D, Tan C, Sheng WQ, Zhou XY, Du X. Long non-coding RNA LINCNT5 predicts negative prognosis and exhibits oncogenic activity in gastric cancer. Medicine (Baltimore) 2014; 93: e303 [PMID: 25526476 DOI: 10.1097/MD.0000000000000303]

67 Wang J, Lu S, Chen X, Li P, Cai Y, Bu B, Liu B, Wu W, Zhu Z. MALAT1 promotes cell proliferation in gastric cancer by recruiting SF2/ASF. Biomed Pharmacother 2014; 68: 557-564 [PMID: 24857172 DOI: 10.1016/j.biopha.2014.04.007]

68 Wang Y, Zhang D, Wu K, Zhao Q, Nie Y, Fan D. Long noncoding RNA MRUL promotes ABCB1 expression in multidrug-resistant gastric cancer cell sublines. Mol Cell Biol 2014; 34: 3182-3193 [PMID: 24958102 DOI: 10.1128/MCB.01580-13]

69 Kong R, Zhang EB, Yin DD, You LH, Xu TP, Chen WM, Xia R, Wan L, Sun M, Wang ZX, De W, Zhang ZH. Long noncoding RNA PVT1 indicates a poor prognosis of gastric cancer and promotes cell proliferation through epigenetically regulating p15 and p16. Mol Cancer 2015; 14: 82 [PMID: 25909711 DOI: 10.1186/s12943-015-0555-8]

70 Peng W, Wu G, Fan H, Wu J, Feng J. Long noncoding RNA SPRY4-IT1 predicts poor patient prognosis and promotes tumorigenesis in gastric cancer. Tumour Biol 2015; 36: 6751-6758 [PMID: 25859573]
long non-coding RNA LET is associated with poor prognosis in gastric cancer. *Int J Clin Exp Pathol* 2014; 7: 8893-8898 [PMID: 25674261]

84 Sun M, Xia R, Jin F, Xu T, Liu Z, De W, Liu X. Downregulated long noncoding RNA MEG3 is associated with poor prognosis and promotes cell proliferation in gastric cancer. *Tumour Biol* 2014; 35: 1065-1073 [PMID: 24006224 DOI: 10.1007/s13277-013-1142-z]

85 Yan J, Guo X, Xia J, Shan T, Gu C, Liang Z, Zhao W, Jin S. MiR-148a regulates MEG3 in gastric cancer by targeting DNA methyltransferase 1. *Med Oncol* 2014; 31: 879 [PMID: 24515776 DOI: 10.1007/s12302-014-0879-6]

86 Liu L, Yan B, Yang Z, Zhang X, Gu Q, Yue X. nRapAR inhibits gastric cancer progression by down-regulating protease-activated-receptor-1. *Tumour Biol* 2014; 35: 7821-7829 [PMID: 24817013 DOI: 10.1007/s13277-014-2042-6]

87 Poirier F, Chan CT, Timmons PM, Robertson EJ, Evans MJ, Rigby PW. The murine H19 gene is activated during embryonic stem cell differentiation in vitro and at the time of implantation in the developing embryo. *Development* 1991; 113: 1105-1114 [PMID: 1811930]

88 Tabano S, Colapietro P, Cetin I, Grati FR, Zanutto S, Mando C, Antonazzo P, Pileri P, Rossella F, Larizza L, Sirchia SM, Miozzo M. Epigenetic modulation of the IGF2/H19 imprinted domain in human embryonic and extra-embryonic compartments and its possible role in fetal growth restriction. *Epigenetics* 2010; 5: 313-324 [PMID: 20416677]

89 Kogo R, Shimamura T, Mimo K, Kawahara K, Imoto S, Sudo T, Tanaka F, Shibata K, Suzuki A, Komune S, Miyano S, Mori M. Long noncoding RNA HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers. *Cancer Res* 2011; 71: 6320-6326 [PMID: 21862635 DOI: 10.1158/0008-5472.CAN-11-1021]

90 di Mario F, Cavallaro LG. Non-invasive tests in gastric diseases. *Dig Liver Dis* 2008; 40: 523-530 [PMID: 18439884 DOI: 10.1016/j.dld.2008.02.028]

91 Shiotani A, Murao T, Kimura Y, Matsumoto H, Kamada T, Kusunoki H, Inoue K, Uedo N, Ishii H, Haruma K. Identification of serum miRNAs as novel non-invasive biomarkers for detection of high risk for early gastric cancer. *Br J Cancer* 2013; 109: 2323-2330 [PMID: 24104965 DOI: 10.1038/bjc.2013.596]

92 Song MY, Pan KF, Su HJ, Zhang L, Ma JL, Li JY, Yuasa Y, Kang CH, Kao HW, Fang WL, Huang KH, Lin WC. Aberrant expression of hsa-miR-335 as a prognostic signature in gastric cancers and correlation with recurrence. *Gastroenterology* 2014; 147: 1105-1114 [PMID: 24909401]

93 Chung SM, Hwang CH, Kao HW, Fang WL, Huang KH, Lin WC. Abrupt expression of miR-196a in gastric cancers and correlation with recurrence. *Gastroenterology* 2012; 143: 394-401 [PMID: 22420049 DOI: 10.1016/j.gastro.2012.04.049]

94 Zhang X, Yan Z, Zhang J, Gong L, Li W, Cui J, Liu Y, Gao Z, Li J, Shen L, Lu Y. Combination of hsa-miR-375 and hsa-miR-142-5p as a predictor for recurrence risk in gastric cancer patients following surgical resection. *Ann Oncol* 2012; 22: 2257-2266 [PMID: 21343777 DOI: 10.1016/annonc/mdq758]

95 Yang SM, Huang C, Li XF, Yu MZ, He Y, Li J. miR-21 confers cisplatin resistance in gastric cancer cells by regulating PTEN. *Toxicology* 2013; 306: 162-168 [PMID: 23466500 DOI: 10.1016/j.tox.2013.02.014]

96 Zhou X, Jin W, Jia H, Yan J, Zhang G. MiR-223 promotes the cisplatin resistance of human gastric cancer cells via regulating cell cycle by targeting FBXW7. *J Exp Clin Cancer Res* 2015; 34: 28 [PMID: 25888377 DOI: 10.1186/s13046-015-0415-6]

97 Xu X, Wang W, Su N, Zhu X, Yao J, Gao W, Hu Z, Sun Y. miR-374a promotes cell proliferation, migration and invasion by targeting SRCIN1 in gastric cancer. *FEBS Lett* 2015; 589: 407-413 [PMID: 25554419 DOI: 10.1016/j.febslet.2014.12.027]

98 Lu Y, Lu P, Zha Z, Xu H, Zhu X. Loss of imprinting of insulin-like growth factor 2 is associated with increased risk of lymph node metastasis and gastric corpus cancer. *J Exp Clin Cancer Res* 2009; 28: 125 [PMID: 19737423 DOI: 10.1186/1756-9966-28-125]

99 Song P, Zhu H, Zhang D, Chu H, Wu D, Kang M, Wang M, Gong W, Zhou J, Zhang Z, Zhao Q. A genetic variant of miR-148a binding site in the SCRNI 3'-UTR is associated with susceptibility and prognosis of gastric cancer. *Sci Rep* 2014; 4: 7080 [PMID: 25399950 DOI: 10.1038/srep07080]

100 Zheng Y, Li S, Ding Y, Wang Q, Luo H, Shi Q, Hao Z, Xiao G, Tong S. The role of miR-18a in gastric cancer angiogenesis. *Hepatogastroenterology* 2013; 60: 1809-1813 [PMID: 24624454]

101 Ishimoto T, Izumi D, Watanabe M, Yoshida N, Hidaka K, Miyake K, Sugihara H, Sawayama H, Imamura Y, Iwatsuki M, Igawami S, Baba Y, Horlad H, Komohara Y, Takeya M, Baba H. Chronic inflammation with Helicobacter pylori infection is implicated in CD44 overexpression through miR-328 suppression in the gastric mucosa. *J Gastroenterol* 2015; 50: 751-757 [PMID: 25479940]

102 Chen L, Liu LB, Wang Z, Hao NB, Fan HY, Wu YW, Yang SM, Xie R, Fang DC, Zhang H, Hu CJ, Yang SM. miR-1207-5p and miR-1266 suppress gastric cancer growth and invasion by targeting telomerase reverse transcriptase. *Cell Death Dis* 2014; 5: e1034 [PMID: 24481448 DOI: 10.1038/cddis.2013.553]

103 Oertli M, Engler DB, Kohler E, Koch M, Meyer TF, Müller A. MicroRNA-155 is essential for the T cell-mediated control of Helicobacter pylori infection and for the induction of chronic Gastritis and Colitis. *J Immunol* 2011; 187: 3578-3586 [PMID: 21880981 DOI: 10.4049/jimmunol.1101772]

104 Teng GG, Wang WH, Dai Y, Wang SJ, Chu YY, Li J. Let-7b is involved in the inflammation and immune responses associated with Helicobacter pylori infection by targeting Toll-like receptor 4. *PLoS One* 2013; 8: e56709 [PMID: 23437218 DOI: 10.1371/journal.pone.0056709]

P- Reviewer: De Re V, Kleef J, Wei QZ E- Editor: Kerr C L- Editor: Liu XM
