ON THE DE RHAM COMPLEX OF MIXED TWISTOR \mathcal{D}-MODULES

TERESA MONTEIRO FERNANDES AND CLAUDE SABBAH

Abstract. Given a complex manifold S, we introduce for each complex manifold X a t-structure on the bounded derived category of \mathbb{C}-constructible complexes of \mathcal{O}_S-modules on $X \times S$. We prove that the de Rham complex of a holonomic $\mathcal{D}_{X \times S/S}$-module which is \mathcal{O}_S-flat as well as its dual object is perverse relatively to this t-structure. This result applies to mixed twistor \mathcal{D}-modules.

1. Introduction

Given a vector bundle V of rank $d \geq 1$ with an integrable connection $\nabla : V \to \Omega^1_X \otimes V$ on a complex manifold X of complex dimension n, the sheaf of horizontal sections $V^h = \ker \nabla$ is a locally constant sheaf of d-dimensional \mathbb{C}-vector spaces, and is the only nonzero cohomology sheaf of the de Rham complex $\text{DR}_{X}(V, \nabla) = (\Omega^\bullet_X \otimes V, \nabla)$. Assume moreover that (V, ∇) is equipped with a harmonic metric in the sense of [19, p. 16]. The twistor construction of [20] produces then a holomorphic bundle \mathcal{V} on the product space $\mathcal{X} = X \times \mathbb{C}$, where the factor \mathbb{C} has coordinate z, together with a holomorphic flat z-connection. By restricting to $\mathcal{X}^* := X \times \mathbb{C}^*$, giving such a z-connection on $\mathcal{V}^* := \mathcal{V}|_{\mathcal{X}^*}$ is equivalent to giving a flat relative connection ∇ with respect to the projection $p : \mathcal{X}^* \to \mathbb{C}^*$. Similarly, the relative de Rham complex $\text{DR}_{\mathcal{X}^*/\mathbb{C}^*}(\mathcal{V}^*, \nabla)$ has cohomology in degree zero at most, and $(\mathcal{V}^*)^h := \ker \nabla$ is a locally constant sheaf of locally free $p^{-1}\mathcal{O}_{\mathbb{C}^*}$-modules of rank d.

Holonomic \mathcal{D}_X-modules generalize the notion of a holomorphic bundle with flat connection to objects having (possibly wild) singularities, and a well-known theorem of Kashiwara [2] shows that the solution complex of such a holonomic \mathcal{D}_X-module has \mathbb{C}-constructible cohomology, from which one can deduce that the de Rham complex is of the same kind and more precisely that both are \mathbb{C}-perverse sheaves on X up to a shift by $\dim X$.

The notion of a holonomic \mathcal{D}_X-module with a harmonic metric has been formalized in [14] and [10] under the name of pure twistor \mathcal{D}-module (this
generalizes holonomic \mathcal{D}_X-modules with regular singularities), and then in [13] and [11] under the name of wild twistor \mathcal{D}-modules (this takes into account arbitrary irregular singularities). More recently, Mochizuki [12] has fully developed the notion of a mixed (possibly wild) twistor \mathcal{D}-module. When restricted to X^*, such an object contains in its definition two holonomic $\mathcal{D}_{X^*/\mathbb{C}}$-modules, and we say that both underlie a mixed twistor \mathcal{D}-module.

The main result of this article concerns the de Rham complex and the solution complex of such objects.

Theorem 1.1. The de Rham complex and the solution complex of a $\mathcal{D}_{X^*/\mathbb{C}}$-module underlying a mixed twistor \mathcal{D}-module are perverse sheaves of $p^{-1}\mathcal{O}_{\mathbb{C}}$-modules (up to a shift by $\dim X$).

In Section 2, we define the notion of relative constructibility and perversity. This applies to the more general setting where $p : X^* \to \mathbb{C}^*$ is replaced by a projection $p_X : X = X \times S \to S$, where S is any complex manifold. We usually set $p = p_X$ when X is fixed. On the other hand, we call holonomic any coherent $\mathcal{D}_{X \times S/S}$-module whose relative characteristic variety in $T^*(X \times S/S) = (T^*X) \times S$ is contained in a variety $\Lambda \times S$, where Λ is a conic Lagrangian variety in T^*X. We say that a $\mathcal{D}_{X \times S/S}$-module is strict if it is $p^{-1}\mathcal{O}_S$-flat.

Theorem 1.2. The de Rham complex and the solution complex of a strict holonomic $\mathcal{D}_{X \times S/S}$-module whose dual is also strict are perverse sheaves of $p^{-1}\mathcal{O}_S$-modules (up to a shift by $\dim X$).

A $\mathcal{D}_{X^*/\mathbb{C}}$-module \mathcal{M} underlying a mixed twistor \mathcal{D}-module is strict and holonomic (see [12]). Moreover, Mochizuki has defined a duality functor on the category of mixed twistor \mathcal{D}-modules, proving in particular that the dual of \mathcal{M} as a $\mathcal{D}_{X^*/\mathbb{C}}$-module is also strict holonomic. Therefore, these results together with Theorem 1.2 imply Theorem 1.1.

Note that, while our definition of perverse objects in the bounded derived category $\mathbb{D}^b(p^{-1}\mathcal{O}_S)$ intends to supply a notion of holomorphic family of perverse sheaves, we are not able, in the case of twistor \mathcal{D}-modules, to extend this notion to the case when the parameter $z \in \mathbb{C}^* = S$ also achieves the value zero, and to define a perversity property in the Dolbeault setting of [19] for the associated Higgs module.

2. **Relative constructibility in the case of a projection**

We keep the setting as above, but X is only assumed to be a real analytic manifold. Given a real analytic map $f : Y \to X$ between real analytic manifolds, we will denote by $f_!S$ (or f if the context is clear) the map $f \times \text{id}_S : Y \times S \to X \times S$.

2.1. **Sheaves of \mathbb{C}-vector spaces and of $p^{-1}\mathcal{O}_S$-modules.** Let $f : Y \to X$ be such a map. There are functors $f^{-1}, f_!, Rf_!, Rf_!$ between $\mathbb{D}^b(C_{X \times S})$ and $\mathbb{D}^b(C_{Y \times S})$, and functors $f_S^{-1}, f_S_!, Rf_S_!, Rf_S_!$ between $\mathbb{D}^b(p^{-1}\mathcal{O}_S)$ and
D^b(p^{-1}_X \mathcal{O}_S). These functors correspond pairwise through the forgetful functor $D^b(p^{-1}_X \mathcal{O}_S) \to D^b(C_{X \times S})$. Indeed, this is clear except for f'_S and f'. To check it, one decomposes f as a closed immersion and a projection. In the first case, the compatibility follows from the fact that both are equal to $f^{-1}Rf_!(\mathcal{F})$ (see [5 Prop. 3.1.12]) and for the case of a projection one uses [5 Prop. 3.1.11 & 3.3.2]. We note also that the Poincaré-Verdier duality theorem [5 Prop. 3.1.10] holds on $D^b(p^{-1}_X \mathcal{O}_S)$ (see [5 Rem. 3.1.6(i)]). From now on, we will write f^{-1}, etc. instead of f_S^{-1}, etc.

The ring $p^{-1}_X \mathcal{O}_S$ is Noetherian, hence coherent (see [3 Prop. A.14]). For each $s_0 \in S$ let us denote by \mathfrak{m}_{s_0} the ideal of sections of \mathcal{O}_S vanishing at s_0 and by $i^*_{s_0}$ the functor

$$\text{Mod}(p^{-1}_X \mathcal{O}_S) \longrightarrow \text{Mod}(\mathbb{C}_X)$$

$$F \longrightarrow F \otimes_{p^{-1}_X \mathcal{O}_S} p^{-1}_X(\mathcal{O}_S/\mathfrak{m}_{s_0}).$$

This functor will be useful for getting properties of $D^b(p^{-1}_X \mathcal{O}_S)$ from well-known properties of $D^b(\mathbb{C}_X)$.

Proposition 2.1. Let F and F' belong to $D^b(p^{-1}_X \mathcal{O}_S)$. Then, for each $s_0 \in S$ there is a well-defined natural morphism

$$Li^*_{s_0}(R\mathcal{H}om_{p^{-1}(\mathcal{O}_S)}(F, F')) \to R\mathcal{H}om_{\mathbb{C}_X}(Li^*_{s_0}(F), Li^*_{s_0}(F'))$$

which is an isomorphism in $D^b(\mathbb{C}_X)$.

Proof. Let us fix $s_0 \in S$. The existence of the morphism follows from [3] (A.10). Moreover, since $p^{-1}_X \mathcal{O}_S$ is a coherent ring as remarked above and $p^{-1}_X(\mathcal{O}_S/\mathfrak{m}_{s_0})$ is $p^{-1}_X \mathcal{O}_S$-coherent, we can apply the argument given after (A.10) in loc. cit. to show that it is an isomorphism. q.e.d.

Proposition 2.2. Let F and F' belong to $D^b(p^{-1}_X \mathcal{O}_S)$ and let $\phi : F \to F'$ be a morphism. Assume the following conditions:

1. for all $j \in \mathbb{Z}$ and $(x, s) \in X \times S$, $\mathcal{H}^j(F)_{(x, s)}$ and $\mathcal{H}^j(F')_{(x, s)}$ are of finite type over $\mathcal{O}_{S,s}$,
2. for all $s_0 \in S$, the natural morphism

$$Li^*_{s_0}(\phi) : Li^*_{s_0}(F) \to Li^*_{s_0}(F')$$

is an isomorphism in $D^b(\mathbb{C}_X)$.

Then ϕ is an isomorphism.

Proof. It is enough to prove that the mapping cone of ϕ is quasi-isomorphic to 0. So we are led to proving that for $F \in D^b(p^{-1}_X \mathcal{O}_S)$, if $\mathcal{H}^j(F)_{(x, s)}$ are of finite type over $\mathcal{O}_{S,s}$ for all $(x, s) \in X \times S$, and $Li^*_{s_0}(F)$ is quasi-isomorphic to 0 for each $s_0 \in S$, then F is quasi-isomorphic to 0.

We may assume that S is an open subset of \mathbb{C}^n with coordinates s^1, \ldots, s^n and we will argue by induction on n. Assume $n = 1$. For such an F, for each $s_0 \in S$ and any $j \in \mathbb{Z}$ the morphism $(s^1 - s^1_0) : \mathcal{H}^j(F) \to \mathcal{H}^j(F)$ is an isomorphism, hence $\mathcal{H}^j(F)/(s^1 - s^1_0)\mathcal{H}^j(F) = 0$ and by Nakayama’s Lemma, for any $x \in X$, $\mathcal{H}^j(F)_{(x, s_1)} = 0$ and the result follows. For $n \geq 2$,
the cone F' of the morphism $(s^n - s^n_o) : F \to F$ also satisfies $Li_{s_o}^* F' = 0$ for any $s'_o = (s^1_o, \ldots, s^{n-1}_o)$, hence is zero by induction, so we can argue as in the case $n = 1$. q.e.d.

2.2. S-locally constant sheaves. We say that a sheaf F of \mathbb{C}-vector spaces (resp. $p_X^{-1} \mathcal{O}_S$-modules) on $X \times S$ is S-locally constant if, for each point $(x, s) \in X \times S$, there exists a neighbourhood $U = V_x \times T_s$ of (x, s) and a sheaf $G^{(x, s)}$ of \mathbb{C}-vector spaces (resp. \mathcal{O}_S-modules) on T_s, such that $F|_U \simeq p_U^{-1} G^{(x, s)}$. The category of S-locally constant sheaves is an abelian full subcategory of that of sheaves of $\mathbb{C}_{X \times S}$-vector spaces (resp. $p^{-1} \mathcal{O}_S$-modules), which is stable by extensions in the respective categories, by $\mathcal{H}om$ and tensor products. Moreover, if $\pi : Y \times X \times S \to Y \times S$ is the projection, with X contractible, then, if F' is S-locally constant on $Y \times X \times S$,

- $\pi_* F'$ is S-locally constant on $Y \times S$,
- $R^k \pi_* F' = 0$ if $k > 0$,
- $F' \simeq \pi_* \pi^* F'$.

Applying this to $Y = \{pt\}$, we find that, if F is S-locally constant, then for each $x \in X$ there exists a connected neighbourhood V_x of x and a \mathcal{O}_S-module (resp. \mathcal{O}_S-module) $G^{(x)}$ such that $F = p_{V_x}^{-1} G^{(x)}$, and one has $G^{(x)} = p_{V_x} F|_{V_x \times S} = F|_{\{x\} \times S}$. We shall also denote by $\mathcal{D}^{b}_c(p_X^{-1} \mathcal{O}_S)$ (resp. $\mathcal{D}^{b}_c(p_X^{-1} \mathcal{O}_S)$) the bounded triangulated category whose objects are the complexes having S-locally constant cohomology sheaves. Similarly, for such a complex F we have $F|_{V_x \times S} \simeq p_{V_x}^{-1} R p_{V_x} F|_{V_x \times S} \simeq p_{V_x}^{-1} F|_{\{x\} \times S}$.

We conclude from the previous remarks, by using the natural forgetful functor $\mathcal{D}^{b}(p_X^{-1} \mathcal{O}_S) \to \mathcal{D}^{b}(\mathbb{C}_{X \times S})$:

Lemma 2.3.

1. An object F of $\mathcal{D}^{b}(p_X^{-1} \mathcal{O}_S)$ belongs to $\mathcal{D}^{b}_c(p_X^{-1} \mathcal{O}_S)$ if and only if, when regarded as an object of $\mathcal{D}^{b}(\mathbb{C}_{X \times S})$, it belongs to $\mathcal{D}^{b}_c(p_X^{-1} \mathcal{O}_S)$.

2. For any object F of $\mathcal{D}^{b}_c(p_X^{-1} \mathcal{O}_S)$ and for any $s_0 \in S$, $Li_{s_0}^* F$ belongs to $\mathcal{D}^{b}_c(\mathcal{O}_X)$.

2.3. S-weakly \mathbb{R}-constructible sheaves. As long as the manifold X is fixed, we shall write p instead of p_X.

Definition 2.4. Let $F \in \mathcal{D}^{b}(\mathbb{C}_{X \times S})$ (resp. $F \in \mathcal{D}^{b}(p^{-1} \mathcal{O}_S)$). We shall say that F is S-weakly \mathbb{R}-constructible if there exists a subanalytic μ-stratification (X_α) of X (see [2] Def. 8.3.19]) such that, for all $j \in \mathbb{Z}$, $\mathcal{H}^j(F)|_{X_\alpha \times S}$ is S-locally constant.

This condition is independent of the choice of the μ-stratification and characterizes a full triangulated subcategory $\mathcal{D}^{b}_{w, \mathbb{R}}(p^{-1} \mathcal{C}_S)$ (resp. $\mathcal{D}^{b}_{w, \mathbb{R}}(p^{-1} \mathcal{O}_S)$) of $\mathcal{D}^{b}(\mathbb{C}_{X \times S})$ (resp. $\mathcal{D}^{b}(p^{-1} \mathcal{O}_S)$). Due to Lemma 2.3, an object F of $\mathcal{D}^{b}(p^{-1} \mathcal{O}_S)$ is in $\mathcal{D}^{b}_{w, \mathbb{R}}(p^{-1} \mathcal{O}_S)$ if and only if F is $\mathcal{D}^{b}_{w, \mathbb{R}}(p^{-1} \mathcal{O}_S)$ when considered as an object of $\mathcal{D}^{b}(\mathbb{C}_{X \times S})$. By mimicking for $\mathcal{D}^{b}_{w, \mathbb{R}}(p^{-1} \mathcal{C}_S)$ the proof of [1] Prop. 8.4.1] and according to the previous remark for $\mathcal{D}^{b}_{w, \mathbb{R}}(p^{-1} \mathcal{O}_S)$, we obtain:
Proposition 2.5. Let F be S-weakly \mathbb{R}-constructible on X and let $X = \bigsqcup_{\alpha} X_{\alpha}$ be a μ-stratification of X adapted to F. Then the following conditions are equivalent:

1. for all $j \in \mathbb{Z}$ and for all α, $\mathcal{H}^j(F)|_{X_{\alpha} \times S}$ is S-locally constant.
2. $SS(F) \subset (\bigsqcup_{\alpha} T^*_{X_{\alpha}} X) \times T^* S$.
3. There exists a closed conic subanalytic Lagrangian subset Λ of $T^* X$ such that $SS(F) \subset \Lambda \times T^* S$.

Proposition 2.6. Let $F \in D^b_{w-R-c}(p^{-1}\Theta_S)$ and let $s_0 \in S$. Then $L_i^* s_0(F) \in D^b_{w-R-c}(\mathbb{C}_X)$.

Proof. Let $i_\alpha : X_{\alpha} \hookrightarrow X$ denote the locally closed inclusion of a stratum of an adapted stratification (X_{α}). It is enough to observe that, for each α, we have $i_\alpha^{-1} L_i^* s_0(F) \simeq L_i^* s_0(i_\alpha^{-1} F)$, and to apply Lemma 2.3(2) q.e.d.

Let now Y be another real analytic manifold and consider a real analytic map $f : Y \to X$. The following statements for objects of $D^b_{w-R-c}(p^{-1}\Theta_S)$ are easily deduced from Proposition 2.5 similarly to the absolute case treated in [3], as consequences of Theorem 8.3.17, Proposition 8.3.11, Corollary 6.4.4 and Proposition 5.4.4 of loc.cit. In order to get the same statements for objects of $D^b_{w-R-c}(p^{-1}\Theta_S)$, one uses Lemma 2.3(1) together with [2.4]. We will not distinguish between f and f_S.

Proposition 2.7.

1. If F is S-weakly \mathbb{R}-constructible on X, then so are $f^{-1}(F)$ and $f^!(F)$.
2. Assume that F^* is S-weakly \mathbb{R}-constructible on Y and that f is proper on $\text{Supp}(F^*)$. Then $Rf_*(F^*)$ is S-weakly \mathbb{R}-constructible on X.

Given a closed subanalytic subset $Y \subset X$, we will denote by $i : Y \times S \hookrightarrow X \times S$ the closed inclusion and by j the complementary open inclusion.

Corollary 2.8. Assume that F^* is S-weakly \mathbb{R}-constructible on $X \setminus Y$. Then the objects $Rj_!F^*$ and Rj_*F^* are also S-weakly \mathbb{R}-constructible on X.

Proof. The statement for Rj_*F^* is obvious. Then Proposition 2.7 implies that $i^!Rj_!F^*$ is S-weakly \mathbb{R}-constructible. Conclude by using the distinguished triangle

$$Ri_*i^!Rj_!F^* \to Rj_!F^* \to Rj_*F^* \xrightarrow{+1}$$

and the S-weak \mathbb{R}-constructibility of the first two terms. q.e.d.

Proposition 2.9. An object $F \in D^b(\mathbb{C}_{X \times S})$ (resp. $F \in D^b(p^{-1}(\Theta_S))$) is S-weakly \mathbb{R}-constructible with respect to a μ-stratification (X_{α}) if and only if, for each α, $i_\alpha^! F$ has S-locally constant cohomology on X_{α}.

Proof. Assume that F is S-weakly \mathbb{R}-constructible with respect to a μ-stratification (X_{α}) of X. Then $i_\alpha^! F$ has S-locally constant cohomology on X_{α}. Indeed the estimation of the micro-support of [5] Cor. 6.4.4(ii)] implies that $SS(i_\alpha^! F)$ (like $SS(i_\alpha^* F)$) is contained in $T^*_{X_{\alpha}} X_{\alpha} \times T^* S$, so $i_\alpha^! F$ has locally constant cohomology on X_{α} for each α, according to Proposition 2.5.
Conversely, if \(\iota^{i}_{\alpha}F \) is locally constant for each \(\alpha \), then \(F \) is \(S \)-weakly \(\mathbb{R} \)-constructible. Indeed, we argue by induction and we denote by \(X_k \) the union of strata of codimension \(\leq k \) in \(X \). Assume we have proved that \(F_{|X_{k-1} \times S} \) is \(S \)-weakly \(\mathbb{R} \)-constructible with respect to the stratification \((X_{\alpha})\) with codim \(X_{\alpha} \leq k - 1 \). We denote by \(j_{k} : X_{k-1} \hookrightarrow X_k \) the open inclusion and by \(i_{\alpha} \) the complementary closed inclusion. According to Corollary 2.8, \(Rj_{k*}j_{k}^{-1}F \) is \(S \)-weakly \(\mathbb{R} \)-constructible with respect to \((X_{\alpha})|X_{k} \). Now, by using the exact triangle \(\iota^{1}_{k}F \to \iota^{-1}_{k}F \to i^{-1}_{k}Rj_{k*}j_{k}^{-1}F \overset{\alpha}{\longrightarrow} \), we conclude that \(\iota^{-1}_{k}F \) is locally constant, hence \(F_{|X_k \times S} \) is \(S \)-weakly \(\mathbb{R} \)-constructible.\[\text{q.e.d.} \]

Corollary 2.10. Let \(F, F' \in D^{b}_{w,\mathbb{R},c}(p^{-1}_{X}\mathcal{O}_{S}) \). Then \(R\mathcal{H}\text{om}_{p^{-1}_{X}\mathcal{O}_{S}}(F, F') \) also belongs to \(D^{b}_{w,\mathbb{R},c}(p^{-1}_{X}\mathcal{O}_{S}) \).

Proof. In view of Proposition 2.9, it is sufficient to prove that for each \(\alpha \), \(\iota^{i}_{\alpha}R\mathcal{H}\text{om}_{p^{-1}_{X}\mathcal{O}_{S}}(F, F') \) belongs to \(D^{b}_{\mathbb{R}}(p^{-1}_{X}\mathcal{O}_{S}) \). We have:

\[
i^{i}_{\alpha}R\mathcal{H}\text{om}_{p^{-1}_{X}\mathcal{O}_{S}}(F, F') \simeq R\mathcal{H}\text{om}_{p^{-1}_{X}\mathcal{O}_{S}}(\iota^{-1}_{\alpha}F, \iota^{i}_{\alpha}F').
\]

Since both \(\iota^{-1}_{\alpha}F \) and \(\iota^{i}_{\alpha}F' \) belong to \(D^{b}_{\mathbb{R}}(p^{-1}_{X}\mathcal{O}_{S}) \), according to Proposition 2.9, we have locally on \(X_{\alpha} \) isomorphisms \(\iota^{-1}_{\alpha}F = p^{-1}_{\alpha}G_{\alpha} \) and \(\iota^{i}_{\alpha}F' = p^{-1}_{\alpha}G'_{\alpha} = p^{1}_{\alpha}G'_{\alpha}(-\dim_{\mathbb{R}}X_{\alpha}) \) for some \(\mathcal{O}_{S} \)-modules \(G_{\alpha} \) and \(G'_{\alpha} \). Then

\[
R\mathcal{H}\text{om}_{p^{-1}_{\alpha}\mathcal{O}_{S}}(\iota^{-1}_{\alpha}F, \iota^{i}_{\alpha}F') = R\mathcal{H}\text{om}_{p^{-1}_{\alpha}\mathcal{O}_{S}}(p^{-1}_{\alpha}G_{\alpha}, p^{1}_{\alpha}G'_{\alpha}(-\dim_{\mathbb{R}}X_{\alpha}))
\]
\[
\simeq p^{i}_{\alpha}R\mathcal{H}\text{om}_{\mathcal{O}_{S}}(G_{\alpha}, G'_{\alpha})(-\dim_{\mathbb{R}}X_{\alpha})
\]
\[
= p^{-1}_{\alpha}R\mathcal{H}\text{om}_{\mathcal{O}_{S}}(G_{\alpha}, G'_{\alpha}).
\]

The following lemma will be useful in the next section. Assume that \(X = Y \times Z \) and that the \(\mu \)-stratification \((X_{\alpha})\) of \(X \) takes the form \(X_{\alpha} = Y \times Z_{\alpha} \), where \((Z_{\alpha}) \) is a \(\mu \)-stratification of \(Z \). We denote by \(q : X \to Y \) the projection. Let \(z_{o} \in Z \), let \(U \supseteq z_{o} \) be a coordinate neighbourhood of \(z_{o} \) in \(Z \) and, for each \(\varepsilon > 0 \) small enough, let \(B_{\varepsilon} \subseteq U \) be the open ball of radius \(\varepsilon \) centered at \(z_{o} \) and let \(\overline{B}_{\varepsilon} \) be the closed ball and \(S_{\varepsilon} \) its boundary. For the sake of simplicity, we denote by \(q_{\varepsilon}, q_{\varepsilon}, q_{\varepsilon} \) the corresponding projections.

We set \(Z^{*} = Z \setminus \{z_{o}\} \) and \(X^{*} = Y \times Z^{*} \). We denote by \(i : Y \times \{z_{o}\} \hookrightarrow Y \times Z \) and by \(j : Y \times Z^{*} \to Y \times Z \) the complementary closed and open inclusions.

Lemma 2.11. Let \(F^{*} \in D^{b}_{w,\mathbb{R},c}(p^{-1}_{X}\mathcal{O}_{S}) \) (resp. \(F^{*} \in D^{b}_{w,\mathbb{R},c}(p^{-1}_{X}\mathcal{O}_{S}) \)) be adapted to the previous stratification. Then there exists \(\varepsilon_{o} > 0 \) such that, for each \(\varepsilon \in (0, \varepsilon_{o}) \), the natural morphisms

\[
Rq_{\varepsilon,!*}F^{*}_{Y \times S_{\varepsilon} \times S} \leftarrow Rq_{\varepsilon,!*}Rj_{*}F^{*} \to Rq_{\varepsilon,!*}Rj_{*}F^{*} \to i^{-1}_{*}Rj_{*}F^{*}
\]

are isomorphisms.

Proof. We note that, according to Corollary 2.8, \(F := Rj_{*}F^{*} \) is \(S \)-weakly \(\mathbb{R} \)-constructible, and is adapted to the stratification \((Y \times Z_{\alpha})\). On the other hand, according to (2.7), it is enough to consider the case where \(F^{*} \) is an object of \(D^{b}_{w,\mathbb{R},c}(p^{-1}_{X}\mathcal{O}_{S}) \).

Let us start with the right morphisms. We can argue with any object \(F \in D^{b}_{w,\mathbb{R},c}(p^{-1}_{X}\mathcal{O}_{S}) \), not necessarily of the form \(Rj_{*}F^{*} \). Recall that we have
an adjunction morphism $\varepsilon_{\varepsilon}^{-1}Rq_{\varepsilon,*} \rightarrow \text{id}$ and thus $i^{-1}q_{\varepsilon}^{-1}Rq_{\varepsilon,*} \rightarrow i^{-1}$. Since $q_s \circ i = \text{id}_{Y \times S}$, we get the second right morphism. The first one is the restriction morphism.

According to [5, Prop. 8.3.12 and 5.4.17], there exists $\varepsilon_o > 0$ such that, for $\varepsilon^i < \varepsilon$ in $(0, \varepsilon_o)$, the restriction morphisms $Rq_{\varepsilon^i,*}F \rightarrow Rq_{\varepsilon,*}F \rightarrow Rq_{\varepsilon^i,*}F$ are isomorphisms. In particular, the first right morphism is an isomorphism.

Let us take a q-soft representative of F, that we still denote by F. The inductive system $q_{\varepsilon,*}F (\varepsilon \rightarrow 0)$ has limit $\hat{i}^{-1}F$ and all morphisms of this system are quasi-isomorphisms. Hence the second right morphism is a quasi-isomorphism.

Remark 2.12. A similar argument gives an isomorphism $\hat{i}F \sim Rq_{\varepsilon^i}F$, by using [5, Prop. 5.4.17(c)].

For the left morphism, we take a q-soft representative of F^* that we still denote by F^*. For $\varepsilon_- < \varepsilon < \varepsilon_+$, we denote by $B_{\varepsilon_- \varepsilon_+}$ the open set $B_{\varepsilon_- \varepsilon_+}$ and by $q_{\varepsilon_- \varepsilon_+}$ the corresponding projection. We have $q_{\varepsilon_- \varepsilon_+}F^* = \lim_{\rightarrow} q_{\varepsilon_- \varepsilon_+}^*F^*$. On the other hand, the morphisms of this inductive system are all quasi-isomorphisms, according to [5, Prop. 5.4.17]. Fixing $\varepsilon^i \in (\varepsilon, \varepsilon_o)$ we find a quasi-isomorphism $q_{\varepsilon^i,*}F^* \rightarrow q_{\varepsilon,*}F^*$. On the other hand, from the first part we have $q_{\varepsilon^i,*}F^* \sim q_{\varepsilon,*}F^*$, hence the result.

q.e.d.

2.4. S-coherent local systems and S-\mathbb{R}-constructible sheaves.

Notation 2.13. We shall denote by $D^b_{\text{lc coh}}(p_X^{-1}\mathcal{O}_S)$ the full triangulated subcategory of $D^b(\mathcal{O}_S)$ whose objects satisfy, locally on X, $F \simeq p_X^{-1}G$ with $G \in D^b_{\text{coh}}(\mathcal{O}_S))$. Equivalently, for each $x \in X$, $F|_{(x)\times S} \in D^b_{\text{coh}}(\mathcal{O}_S)$ (see the remarks before Lemma 2.3).

Definition 2.14. Given $F \in D^b_{w,\mathbb{R}-c}(p_X^{-1}\mathcal{O}_S)$, we say that F is \mathbb{R}-constructible if, for some μ-stratification of X, $X = \bigsqcup X_\alpha$, for all $j \in \mathbb{Z}$, $\mathcal{H}^j(F)|_{X_\alpha \times S} \in D^b_{\text{coh}}(p_{X_\alpha}^{-1}\mathcal{O}_S)$. This condition characterizes a full triangulated subcategory of $D^b_{w,\mathbb{R}-c}(p_X^{-1}\mathcal{O}_S)$ which we denote by $D^b_{\mathbb{R}-c}(p_X^{-1}\mathcal{O}_S)$.

Similarly to Proposition 2.6 we have:

Proposition 2.15. Let $F \in D^b_{\mathbb{R}-c}(p_X^{-1}\mathcal{O}_S)$ and let $s_0 \in S$. Then $Li^{s_0}_*(F) \in D^b_{\mathbb{R}-c}(\mathbb{C}_X)$.

Remark 2.16. An object of $D^b_{w,\mathbb{R}-c}(p_X^{-1}\mathcal{O}_S)$ is in $D^b_{\mathbb{R}-c}(p_X^{-1}\mathcal{O}_S)$ if and only if, for any $x \in X$, $F|_{(x)\times S}$ belongs to $D^b_{\text{coh}}(\mathcal{O}_S)$.

A straightforward adaptation of [5, Prop. 8.4.8] gives:

Proposition 2.17. Let $f : Y \rightarrow X$ be a a morphism of manifolds and let $F \in D^b_{\mathbb{R}-c}(p_Y^{-1}\mathcal{O}_S)$. Assume that f_S is proper on $\text{Supp}(F)$. Then

$$Rf_{S,*}F \in D^b_{\mathbb{R}-c}(p_X^{-1}\mathcal{O}_S).$$

We can also characterize $D^b_{\mathbb{R}-c}(p_X^{-1}\mathcal{O}_S)$ as in Corollary 2.9.
Corollary 2.18. An object $F \in D^b(p_X^{-1}O_S)$ is in $D^b_{\mathbb{R}-c}(p_X^{-1}O_S)$ if and only if, for some subanalytic Whitney stratification (X_α) of X, the complexes $i_*^! F$ belong to $D^b_{\mathbb{R}-coho}(p_X^{-1}O_S)$.

Proof. Assume F is in $D^b_{\mathbb{R}-c}(p_X^{-1}O_S)$. We need to prove the coherence of $i_*^! F$. We argue by induction as in Corollary 2.10, with the same notation. Since the question is local on X_k, by the Whitney property of the stratification (X_α) we can assume that $X_{k-1} = Z \times Y_k$ and there exists a Whitney stratification (Z_α) of Z such that $X_\alpha = Z_\alpha \times Y_k$ for each α such that $X_\alpha \subset X_{k-1}$ (see e.g. [11 §1.4]). Proving that $i_*^! F$ is $p^{-1}O_S$-coherent is equivalent to proving that $i_*^{-1}Rj_k^*j_k^{-1}F$ is so, since we already know that $i^{-1} F$ is so. According to Lemma 2.11, $i_*^{-1}Rj_k^*j_k^{-1}F$ is computed as Rq_∂^*F, and since q_∂ is proper, we can apply Proposition 2.17 to get the coherence.

Conversely, Corollary 2.9 already implies that F is an object of $D^b_{w-\mathbb{R}-c}(p_X^{-1}O_S)$. We argue then as above: since we know by assumption that $i_*^! F$ is coherent, it suffices to prove that $i_*^{-1}Rj_k^*j_k^{-1}F$ is so, and the previous argument applies. q.e.d.

2.5. S-weakly \mathbb{C}-constructible sheaves and S-\mathbb{C}-constructible sheaves. Let now assume that X is a complex analytic manifold.

Definition 2.19.

(1) Let $F \in D^b_{w-\mathbb{R}-c}(p_X^{-1}C_S)$ (resp. $F \in D^b_{w-\mathbb{R}-c}(p_X^{-1}O_S)$). We shall say that F is S-weakly \mathbb{C}-constructible if $SS(F)$ is \mathbb{C}^*-conic. The corresponding categories are denoted by $D^b_{w-\mathbb{R}-c}(p_X^{-1}C_S)$ (resp. $F \in D^b_{w-\mathbb{R}-c}(p_X^{-1}O_S)$).

(2) If F belongs to $D^b_{w-\mathbb{R}-c}(p_X^{-1}O_S)$, we say that F is S-\mathbb{C}-constructible if $F \in D^b_{w-\mathbb{R}-c}(p_X^{-1}C_S)$, and we denote by $D^b_{\mathbb{C}-c}(p_X^{-1}O_S)$ the corresponding category, which is full triangulated sub-category of $D^b(p_X^{-1}O_S)$.

The following properties are obtained in a straightforward way, by using [3 Th. 8.5.5] in a way similar to [3 Prop. 8.5.7].

Properties 2.20.

(1) An object F of $D^b(p_X^{-1}O_S)$ belongs to $D^b_{w-\mathbb{R}-c}(p_X^{-1}O_S)$ if and only if it belongs to $D^b_{w-\mathbb{R}-c}(p_X^{-1}C_S)$.

(2) Remark 2.16 applies to $D^b_{w-\mathbb{R}-c}(p_X^{-1}O_S)$ and $D^b_{\mathbb{C}-c}(p_X^{-1}O_S)$.

(3) Proposition 2.7 applies to $D^b_{w-\mathbb{R}-c}$.

(4) Propositions 2.15, 2.17 and Corollary 2.18 apply to $D^b_{\mathbb{C}-c}(p_X^{-1}O_S)$.

(5) Corollary 2.10 applies to $D^b_{w-\mathbb{C}-c}$, $D^b_{\mathbb{R}-c}$ and $D^b_{\mathbb{C}-c}$.

2.6. Duality. According to the syzygy theorem for the regular local ring $O_{S,s}$ (for any $s \in S$) and e.g. [3 Prop. 13.2.2(ii)] (for the opposite category), any object of $D^b_{coho}(O_S)$ is locally quasi-isomorphic to a bounded complex of locally free O_S-modules of finite rank L^\star. As a consequence, the local duality functor

$$D : D^b_{coho}(O_S) \to D^b_{coho}(O_S), \quad D(\mathcal{F}) := R\mathcal{H}om_{O_S}(\mathcal{F}, O_S)$$
Lemma 2.21. Let \(G \) be an object of \(\mathcal{D}^{b,c}_{\text{coh}}(\mathcal{O}_S) \). Assume that \(\mathcal{D}G \) belongs to \(\mathcal{D}^{b,c}_{\text{coh}}(\mathcal{O}_S) \). Then \(G \) belongs to \(\mathcal{D}^{b,\geq 0}_{\text{coh}}(\mathcal{O}_S) \).

Proof. Setting \(G' = \mathcal{D}G \), the biduality isomorphism makes it equivalent to proving that \(\mathcal{D}G' \) belongs to \(\mathcal{D}^{b,c}_{\text{coh}}(\mathcal{O}_S) \). The question is local on \(S \) and we may therefore replace \(G' \) with a bounded complex \(L' \) as above. Moreover, \(L' \) is quasi-isomorphic to such a bounded complex, still denoted by \(L' \), such that \(L^k = 0 \) for \(k > 0 \). Indeed, note first that the kernel \(K \) of a surjective morphism of locally free \(\mathcal{O}_S \)-modules of finite rank is also locally free of finite rank (being \(\mathcal{O}_S \)-coherent and having all its germs \(K_s \) free over \(\mathcal{O}_{S,s} \), because they are projective and \(\mathcal{O}_{S,s} \) is a regular local ring). By assumption, we have \(\mathcal{R}^j(L') = 0 \) for \(j > 0 \). Let \(k > 0 \) be such that \(L^k \neq 0 \) and \(L^\ell = 0 \) for \(\ell > k \), and let \(L^{k-1} = \ker[L^k \rightarrow L^k] \). Then \(L' \) is quasi-isomorphic to \(L' \) defined by \(L'_j = L_j \) for \(j < k-1 \) and \(L'_{j+k} = 0 \) for \(j \geq k \). We conclude by induction on \(k \).

Now it is clear that \(\mathcal{D}G' \simeq \mathcal{D}L' \) is a bounded complex having terms in nonnegative degrees at most, and thus is an object of \(\mathcal{D}^{b,\geq 0}_{\text{coh}}(\mathcal{O}_S) \). q.e.d.

Remark 2.22. Let \(G \) be an object of \(\mathcal{D}^{b,c}_{\text{coh}}(\mathcal{O}_S) \). Assume that \(G \) and \(\mathcal{D}G \) belong to \(\mathcal{D}^{b,c}_{\text{coh}}(\mathcal{O}_S) \). Then \(G \) and \(\mathcal{D}G \) are \(\mathcal{O}_S \)-coherent sheaves, hence \(G \) and \(\mathcal{D}G \) are \(\mathcal{O}_S \)-locally free.

We now set \(\omega_{X,S} = p_{X}^{-1} \mathcal{O}_S[2 \dim X] = p_{X}^{-1} \mathcal{O}_S \).

Proposition 2.23. The functor \(\mathcal{D} : \mathcal{D}^{b}(p_{X}^{-1} \mathcal{O}_S) \rightarrow \mathcal{D}^{+}(p_{X}^{-1} \mathcal{O}_S) \) defined by \(\mathcal{D}F = R\mathcal{H}\text{om}_{p_{X}^{-1} \mathcal{O}_S}(F, \omega_{X,S}) \) induces an involution \(\mathcal{D}^{b,c}(p_{X}^{-1} \mathcal{O}_S) \rightarrow \mathcal{D}_{c}(p_{X}^{-1} \mathcal{O}_S) \) and \(\mathcal{D}_{c}(p_{X}^{-1} \mathcal{O}_S) \rightarrow \mathcal{D}_{c}(p_{X}^{-1} \mathcal{O}_S) \).

We will also set \(\mathcal{D}^{+} = R\mathcal{H}\text{om}_{p_{X}^{-1} \mathcal{O}_S}(F, p_{X}^{-1} \mathcal{O}_S) \).

Proof. Let us first show that, for \(F \) in \(\mathcal{D}^{b,c}_{\text{w-\text{str}}}(p_{X}^{-1} \mathcal{O}_S) \), the dual \(\mathcal{D}F \) also belongs to \(\mathcal{D}^{b,c}_{\text{w-\text{str}}}(p_{X}^{-1} \mathcal{O}_S) \). Let \((X_\alpha) \) be a \(\mu \)-stratification adapted to \(F \). According to Corollary 2.29, it is enough to show that \(i_\alpha^{i} \mathcal{D}F \) has locally constant cohomology for each \(\alpha \). One can use [3] Prop. 3.1.13] in our setting and get

\[
i_\alpha^{i} \mathcal{D}F = R\mathcal{H}\text{om}_{p_{X}^{-1} \mathcal{O}_S}(i_\alpha^{i} F, \omega_{X_\alpha,S}).
\]

Locally on \(X_\alpha \), \(i_\alpha^{i} F = p_{X}^{-1} G \) for some \(G \) in \(\mathcal{D}^{b}(\mathcal{O}_S) \) or \(\mathcal{D}^{b}(\mathcal{O}_S) \). Then, locally on \(X_\alpha \),

\[
i_\alpha^{i} \mathcal{D}F \simeq R\mathcal{H}\text{om}_{p_{X}^{-1} \mathcal{O}_S}(p_{X}^{-1} G, p_{X}^{-1} \mathcal{O}_S) = p_{X}^{i} R\mathcal{H}\text{om}_{\mathcal{O}_S}(G, \mathcal{O}_S) = p_{X}^{i} (\mathcal{D}G)[2 \dim X_\alpha].
\]
The proof for F in $D_{w-c}^{b}(p_{X}^{-1} \mathcal{O}_{S})$ is similar. Moreover, by using Corollary 2.18 instead of Corollary 2.9 one shows that D sends $D_{w-c}^{b}(p_{X}^{-1} \mathcal{O}_{S})$ to itself and, according to Properties 2.20, $D_{c-c}^{b}(p_{X}^{-1} \mathcal{O}_{S})$ to itself.

Let us prove the involution property. We have a natural morphism of functors $\text{id} \to DD$. It is enough to prove the isomorphism property after applying $Li_{s_{0}^{*}}$ for each $s_{0} \in S$, according to Proposition 2.22. On the other hand, Proposition 2.14 implies that $Li_{s_{0}^{*}}$ commutes with D, so we are reduced to applying the involution property on $D_{c-c}^{b}(C_{X})$, according to the \mathbb{C}-analogue of Proposition 2.15 which is known to be true (see e.g. [5]). q.e.d.

Remark 2.24. By using the biduality isomorphism and the isomorphism $i_{x}^{1*}DF \simeq D_{x}^{-1}F$ for F in $D_{w-c}^{b}(p_{X}^{-1} \mathcal{O}_{S})$ or $D_{c-c}^{b}(p_{X}^{-1} \mathcal{O}_{S})$, where $i_{x} : \{x\} \times S \hookrightarrow X \times S$ denotes the inclusion, we find a functorial isomorphism $i_{x}^{1*}DF \simeq D_{x}^{1}F$.

2.7. Perversity

We will now restrict to the case of $S-$\textbf{C}-constructible complexes, which is the only case which will be of interest for us, although one could consider the case of $S-$\textbf{R}-constructible complexes as in [5 §10.2].

We define the category $pD_{c-c}^{\leq 0}(p_{X}^{-1} \mathcal{O}_{S})$ as the full subcategory of $D_{c-c}^{b}(p_{X}^{-1} \mathcal{O}_{S})$ whose objects are the $S-$\textbf{C}-constructible bounded complexes F such that, for some adapted μ-stratification (X_{α}) (i_{z} is as above),

$$(\text{Supp}) \quad \forall \alpha, \forall x \in X_{\alpha}, \forall j > - \dim X_{\alpha}, \quad H^{j}i_{x}^{-1}F = 0.$$

Similarly, $pD_{c-c}^{\geq 0}(p_{X}^{-1} \mathcal{O}_{S})$ consists of objects F such that

$$(\text{Cosupp}) \quad \forall \alpha, \forall x \in X_{\alpha}, \forall j < - \dim X_{\alpha}, \quad H^{j}i_{x}^{1}F = 0.$$

In the preceding situation in view of Corollary 2.14 we have, similarly to [3 Prop.10.2.4]:

Lemma 2.25.

1. $F \in pD_{c-c}^{\leq 0}(p_{X}^{-1} \mathcal{O}_{S})$ if and only if for any α and $j > - \dim X_{\alpha}$,

 $$H^{j}(i_{\alpha}^{-1}F) = 0.$$

2. $F \in pD_{c-c}^{\geq 0}(p_{X}^{-1} \mathcal{O}_{S})$ if and only if for any α and $j < - \dim X_{\alpha}$,

 $$H^{j}(i_{\alpha}^{1}F) = 0.$$

Namely, if $F \in pD_{c-c}^{\leq 0}(p_{X}^{-1} \mathcal{O}_{S})$ and Z is a closed analytic subset of X such that $\dim Z = k$, then $i_{Z}^{-1}F$ is concentrated in degrees $\leq -k$, and if $F' \in pD_{c-c}^{\geq 0}(p_{X}^{-1} \mathcal{O}_{S})$, then $i_{Z}^{1}F'$ is concentrated in degrees $\geq -k$. We have the following variant of [3 Prop.10.2.7]:

Proposition 2.26. Let F be an object of $pD_{w-c}^{\leq 0}(p_{X}^{-1} \mathcal{O}_{S})$ and F' an object of $pD_{w-c}^{\geq 0}(p_{X}^{-1} \mathcal{O}_{S})$. Then

$$H^{j}R\mathcal{H}om_{p_{X}^{-1} \mathcal{O}_{S}}(F, F') = 0, \quad \text{for } j < 0.$$

Proof. Let (X_{α}) be a μ-stratification of X adapted to F and F'. By assumption, for each α, $i_{\alpha}^{-1}H^{j}F = H^{j}i_{\alpha}^{-1}F = 0$ for $j > - \dim X_{\alpha}$. Similarly, $H^{j}i_{\alpha}^{1}F' = 0$ for $j < - \dim X_{\alpha}$.
Let X_α be a stratum of maximal dimension such that
\[i_\alpha^{-1} \mathcal{H}^j \mathcal{H}\text{om}_{p_X^{-1}\mathcal{O}_S}(F, F') \neq 0 \text{ for some } j < 0. \]

Let V be an open neighbourhood of X_α in X such that $V \smallsetminus X_\alpha$ intersects only strata of dimension $\geq \dim X_\alpha$, and let $j_\alpha : (V \smallsetminus X_\alpha) \times S \hookrightarrow V \times S$ be the inclusion. Then the complex $i_\alpha^{-1} R j_\alpha_* j_\alpha^{-1} R \mathcal{H}\text{om}_{p_X^{-1}\mathcal{O}_S}(F, F')$ has nonzero cohomology in nonnegative degrees only: indeed, by the definition of X_α, this property holds for $j_\alpha^{-1} R \mathcal{H}\text{om}_{p_X^{-1}\mathcal{O}_S}(F, F')$, hence it holds for $R j_\alpha_* j_\alpha^{-1} R \mathcal{H}\text{om}_{p_X^{-1}\mathcal{O}_S}(F, F')$, and then clearly for the complex $i_\alpha^{-1} R j_\alpha_* j_\alpha^{-1} R \mathcal{H}\text{om}_{p_X^{-1}\mathcal{O}_S}(F, F')$. From the distinguished triangle
\[i_\alpha^{-1} \mathcal{H}^j \mathcal{H}\text{om}_{p_X^{-1}\mathcal{O}_S}(F, F') \to i_\alpha^{-1} R \mathcal{H}\text{om}_{p_X^{-1}\mathcal{O}_S}(F, F') \to i_\alpha^{-1} R j_\alpha_* j_\alpha^{-1} R \mathcal{H}\text{om}_{p_X^{-1}\mathcal{O}_S}(F, F') \to i_\alpha^{-1} \mathcal{H}^j \mathcal{H}\text{om}_{p_X^{-1}\mathcal{O}_S}(F, F') \]
we conclude that $\mathcal{H}^j i_\alpha^{-1} \mathcal{H}\text{om}_{p_X^{-1}\mathcal{O}_S}(F, F') \to \mathcal{H}^j i_\alpha^{-1} \mathcal{H}\text{om}_{p_X^{-1}\mathcal{O}_S}(F, F') = i_\alpha^{-1} \mathcal{H}^j \mathcal{H}\text{om}_{p_X^{-1}\mathcal{O}_S}(F, F')$ is an isomorphism for all $j < 0$. Therefore, we obtain, for this stratum X_α and for any $j < 0$,
\[i_\alpha^{-1} \mathcal{H}^j \mathcal{H}\text{om}_{p_X^{-1}\mathcal{O}_S}(F, F') \simeq \mathcal{H}^j i_\alpha^{-1} \mathcal{H}\text{om}_{p_X^{-1}\mathcal{O}_S}(F, F') \]
\[\simeq \mathcal{H}^j \mathcal{H}\text{om}_{p_X^{-1}\mathcal{O}_S}(i_\alpha^{-1} F, i_\alpha^{-1} F'). \]

Since $i_\alpha^{-1} F$ has nonzero cohomology in degrees $\leq - \dim X_\alpha$ at most and $i_\alpha^{-1} F'$ in degrees $\geq - \dim X_\alpha$ at most, $\mathcal{H}^j \mathcal{H}\text{om}_{p_X^{-1}\mathcal{O}_S}(i_\alpha^{-1} F, i_\alpha^{-1} F') = 0$ for $j < 0$, a contradiction with the definition of X_α. q.e.d.

Theorem 2.27. $p \mathcal{D}^{<0}_{C_c}(p_X^{-1}\mathcal{O}_S)$ and $p \mathcal{D}^{\geq0}_{C_c}(p_X^{-1}\mathcal{O}_S)$ form a t-structure of $\mathcal{D}^{0}_{C_c}(p_X^{-1}\mathcal{O}_S)$, whose heart is denoted by $\text{Perv}(p_X^{-1}\mathcal{O}_S)$.

Sketch of proof. We have to prove:

1. $p \mathcal{D}^{<0}_{C_c}(p_X^{-1}\mathcal{O}_S) \subseteq p \mathcal{D}^{<1}_{C_c}(p_X^{-1}\mathcal{O}_S)$ and $p \mathcal{D}^{\geq0}_{C_c}(p_X^{-1}\mathcal{O}_S) \supset p \mathcal{D}^{\geq1}_{C_c}(p_X^{-1}\mathcal{O}_S)$
2. For $F \in p \mathcal{D}^{<1}_{C_c}(p_X^{-1}\mathcal{O}_S)$ and $F' \in p \mathcal{D}^{\geq1}_{C_c}(p_X^{-1}\mathcal{O}_S)$, $\text{Hom}_{p \mathcal{D}^{<0}_{C_c}(p_X^{-1}\mathcal{O}_S)}(F, F') = 0$.
3. For any $F \in p \mathcal{D}^{\geq0}_{C_c}(p_X^{-1}\mathcal{O}_S)$ there exist $F' \in p \mathcal{D}^{<0}_{C_c}(p_X^{-1}\mathcal{O}_S)$ and $F'' \in p \mathcal{D}^{<1}_{C_c}(p_X^{-1}\mathcal{O}_S)$, giving rise to a distinguished triangle $F' \to F \to F'' \oplus 1$.

Then, following the line of the proof of \[\text{Lemma 2.21}\], one cannot expect that the previous t-structure is interchanged by duality when $\dim S \geq 1$. However we have:

Proposition 2.28. Let F be an object of $p \mathcal{D}^{<0}_{C_c}(p_X^{-1}\mathcal{O}_S)$ such that DF also belongs to $p \mathcal{D}^{<0}_{C_c}(p_X^{-1}\mathcal{O}_S)$. Then F and DF are objects of $\text{Perv}(p_X^{-1}\mathcal{O}_S)$.
Proof. Let us fix $x \in X_\alpha$. We have $i_x^* F \simeq D(i_x^{-1} DF)$, as already observed in Remark 2.24. By assumption $G := i_x^{-1} DF$ belongs to $D^{b, \leq -\dim X_\alpha}(\mathcal{O}_S)$, and Lemma 2.21 suitably shifted and applied to DG implies that DG belongs to $D^{b, \geq \dim X_\alpha}(\mathcal{O}_S)$, which is the cosupport condition (Cosupp) for F. q.e.d.

Assume $F \in \Perv(p_X^{-1}\mathcal{O}_S)$. The description of the dual standard t-structure on $D^{b, \bullet}_{\coh}(\mathcal{O}_S)$ given in [4] §4 supplies the following refinement to (Supp) and (Cosupp) when DF is also perverse.

Corollary 2.29. Let $F \in \Perv(p_X^{-1}\mathcal{O}_S)$ and assume that $DF \in \Perv(p_X^{-1}\mathcal{O}_S)$. Let (X_α) be a stratification adapted to F. Then for each α, each $x \in X_\alpha$ and each closed analytic subset $Z \subset S$, we have

\[(\text{Cosupp}+) \quad \mathcal{H}^k(i_Z^* (i_x^* F)) = 0, \quad \forall k < \text{codim}_S Z + \dim X_\alpha.\]

(The perversity of F only gives the previous property when $Z = S$.)

3. The de Rham complex of a holonomic $\mathcal{D}_{X \times S/S}$-module

In what follows X and S denote complex manifolds and we set $n = \dim X$, $\ell = \dim S$. We shall keep the notation of the preceding section. Let $\pi : T^*(X \times S) \to T^* X \times S$ denote the projection and let $\mathcal{D}_{X \times S/S}$ denote the subsheaf of $\mathcal{D}_{X \times S}$ of relative differential operators with respect to p_X (see [18, §2.1 & 2.2]).

Recall that $p_X^{-1}\mathcal{O}_S$ is contained in the center of $\mathcal{D}_{X \times S/S}$. With the same proof as for Proposition 2.1 we obtain:

Proposition 3.1. Let $s_\alpha \in S$ be given. Let \mathcal{M} and \mathcal{N} be objects of $D^b(\mathcal{D}_{X \times S/S})$. Then, there is a well-defined natural morphism

\[Li_{s_\alpha}^!(R\mathcal{H}om_{\mathcal{D}_{X \times S/S}}(\mathcal{M}, \mathcal{N})) \to R\mathcal{H}om_i(i_{s_\alpha}^!(\mathcal{D}_{X \times S/S}))(Li_{s_\alpha}^!(\mathcal{M}), Li_{s_\alpha}^!(\mathcal{N}))\]

which is an isomorphism in $D^b(\mathcal{C}_X)$.

3.1. Duality for coherent $\mathcal{D}_{X \times S/S}$-modules. We refer for instance to [3] Appendix for the coherence properties of the ring $\mathcal{D}_{X \times S/S}$. The classical methods used in the absolute case, i.e., for coherent \mathcal{D}_X-objects (see for instance [3] Prop. 2.1.16), [9] Prop. 2.7-3]) apply here:

Proposition 3.2. Let \mathcal{M} be a coherent $\mathcal{D}_{X \times S/S}$-module. Then \mathcal{M} locally admits a resolution of length at most $2n + \ell$ by free $\mathcal{D}_{X \times S/S}$-modules of finite rank.

Proposition 3.2 and [6] Prop. 13.2.2(ii)] (for the opposite category) imply:

Corollary 3.3. Let $\mathcal{M} \in D^{b, \bullet}_{\coh}(\mathcal{D}_{X \times S/S}).$ Let us assume that \mathcal{M} is concentrated in degrees $[a, b]$. Then, in a neighborhood of each $(x, z) \in X \times S$, there exist a complex \mathcal{L}^\bullet of free $\mathcal{D}_{X \times S/S}$-modules of finite rank concentrated in degrees $[a - 2n - \ell, b]$ and a quasi-isomorphism $\mathcal{L}^\bullet \to \mathcal{M}$.

We set $\Omega^n_{X \times S/S} = \Omega^n_{X \times S/S}$, where $\Omega^n_{X \times S/S}$ denotes the sheaf of relative differential forms of degree $n = \dim X$.

Definition 3.4. The duality functor $D(\cdot) : D^b(\mathcal{D}_{X \times S}) \to D^b(\mathcal{D}_{X \times S})$ is defined as:

$$M \mapsto D M = R\mathcal{H}om_{\mathcal{D}_{X \times S}}(M, \mathcal{D}_{X \times S} \otimes_{\mathcal{O}_{X \times S}} \Omega_{X \times S}^{\leq -1})[n].$$

We also set $D' M := R\mathcal{H}om_{\mathcal{D}_{X \times S}}(M, \mathcal{D}_{X \times S}) \in D^b(\mathcal{D}_{X \times S}^{\text{opp}})$.

By Proposition 3.2, $\mathcal{D}_{X \times S}$ has finite cohomological dimension, so (A.11) gives a natural morphism in $D^b(\mathcal{D}_{X \times S})$:

$$M \mapsto D' D M \simeq D D M.$$

Moreover, in view of Corollary 3.3, if $M \in D^b_{\text{coh}}(\mathcal{D}_{X \times S})$, then $D' M \in D_{\text{coh}}^b(\mathcal{D}_{X \times S}^{\text{opp}})$. Indeed, we may choose a local free finite resolution L^\bullet of M, so that $D' M$ is quasi isomorphic to the transposed complex $(L^\bullet)^t$ whose entries are free.

By the same argument we deduce that (1) is an isomorphism whenever $M \in D^b_{\text{coh}}(\mathcal{D}_{X \times S})$.

Again by Proposition 3.2, $\mathcal{D}_{X \times S}$ has finite flat dimension so we are in conditions to apply [3, (A.10)]: given $M, N \in D^b(\mathcal{D}_{X \times S})$ there is a natural morphism:

$$D'M \otimes_{\mathcal{D}_{X \times S}} N \to R\mathcal{H}om_{\mathcal{D}_{X \times S}}(M, N)$$

which an isomorphism provided that M or N belong to $D^b_{\text{coh}}(\mathcal{D}_{X \times S})$. When $M, N \in D^b_{\text{coh}}(\mathcal{D}_{X \times S})$, composing (2) with the biduality isomorphism (1) gives a natural isomorphism

$$R\mathcal{H}om_{\mathcal{D}_{X \times S}}(M, N) \simeq R\mathcal{H}om_{\mathcal{D}_{X \times S}}(D N, D M).$$

3.2. Characteristic variety. Recall (see [17, §III.1.3]) that the characteristic variety $\text{Char} M$ of a coherent $\mathcal{D}_{X \times S}$-module M is the support in $T^*X \times S$ of its graded module with respect to any (local) good filtration. One has (see [17, Prop. III.1.3.2])

$$\text{Char}(\mathcal{D}_{X \times S} \otimes_{\mathcal{D}_{X \times S}} M) = \pi^{-1} \text{Char} M,$$

$$\text{Char} M = \pi(\text{Char}(\mathcal{D}_{X \times S} \otimes_{\mathcal{D}_{X \times S}} M)).$$

One may as well define the characteristic variety of an object $M \in D^b_{\text{coh}}(\mathcal{D}_{X \times S})$ as the union of the characteristic varieties of its cohomology modules. By the flatness of $\mathcal{D}_{X \times S}$ over $\mathcal{D}_{X \times S}$, (4) holds for any object of $D^b_{\text{coh}}(\mathcal{D}_{X \times S})$.

Proposition 3.5 ([18, Prop. 2.5]). For $M \in D^b_{\text{coh}}(\mathcal{D}_{X \times S})$ we have

$$\text{Char}(M) = \text{Char}(D M).$$

3.3. The de Rham and solution complexes. For an object M of $D^b(\mathcal{D}_{X \times S})$ we define the functors

$$\text{DR} M := R\mathcal{H}om_{\mathcal{D}_{X \times S}}(\mathcal{D}_{X \times S}, M),$$

$$\text{Sol} M := R\mathcal{H}om_{\mathcal{D}_{X \times S}}(M, \mathcal{D}_{X \times S})$$
which take values in $D^b(p_X^{-1}\mathcal{O}_S)$. If \mathcal{M} is a $\mathcal{D}_{X\times S/S}$-module, that is, a $\mathcal{O}_{X\times S}$-module equipped with an integrable relative connection $∇ : \mathcal{M} \rightarrow \Omega^1_{X\times S/S} \otimes \mathcal{M}$, the object $\text{DR}(\mathcal{M})$ is represented by the complex $(\Omega_{X\times S/S}^* \otimes \mathcal{O}_{X\times S}, \nabla)$. Noting that $R\text{Hom}_{\mathcal{D}_{X\times S/S}}(\mathcal{O}_{X\times S}, \mathcal{D}_{X\times S/S}) \simeq \Omega_{X\times S/S}[-\dim X]$ we get

$$D\mathcal{O}_{X\times S} \simeq \mathcal{O}_{X\times S}.$$

For $\mathcal{N} = \mathcal{O}_{X\times S}$, (3) implies a natural isomorphism, for $\mathcal{M} \in D^b_{\text{coh}}(\mathcal{D}_{X\times S/S})$:

$$\text{Sol.}\mathcal{M} \simeq \text{DR}\mathcal{M}.$$

3.4. Holonomic $\mathcal{D}_{X\times S/S}$-modules. Let \mathcal{M} be a coherent $\mathcal{D}_{X\times S/S}$-module. We say that it is holonomic if its characteristic variety $\text{Char}\mathcal{M} \subset T^*X \times S$ is contained in $\Lambda \times S$ for some closed conic Lagrangian complex analytic subset of T^*X. We will say that a complex μ-stratification (X_α) is adapted to \mathcal{M} if $\Lambda \subset \bigcup_\alpha T_{X_\alpha}X$. Similar definitions hold for objects of $D^b_{\text{hol}}(\mathcal{D}_{X\times S/S})$.

An object $\mathcal{M} \in D^b_{\text{hol}}(\mathcal{D}_{X\times S/S})$ is said to be holonomic if its cohomology modules are holonomic. We denote the full triangulated category of holonomic complexes by $D^b_{\text{hol}}(\mathcal{D}_{X\times S/S})$.

Corollary 3.6 (of Prop. 3.5). If \mathcal{M} is an object of $D^b_{\text{hol}}(\mathcal{D}_{X\times S/S})$, then so is $D\mathcal{M}$.

Theorem 3.7. Let \mathcal{M} be an object of $D^b_{\text{hol}}(\mathcal{D}_{X\times S/S})$. Then $\text{DR}(\mathcal{M})$ and $\text{Sol.}\mathcal{M}$ belong to $D^b_{\text{c-c}}(p_X^{-1}\mathcal{O}_S)$.

Proof. Firstly, it follows [5 Prop. 11.3.3], that $\text{Sol.}(\mathcal{M})$ and $\text{DR}(\mathcal{M})$ have their micro-support contained in $\Lambda \times T^*S$ (see [18 p. 11 & Th. 2.13]) and, according to Proposition 2.5 these complexes are objects of $D^b_{\text{w-c-c}}(p_X^{-1}\mathcal{O}_S)$.

Let $x \in X$. In order to prove that $i_x^{-1}\text{DR}\mathcal{M}$ has \mathcal{O}_S-coherent cohomology, we can assume that x is a stratum of a stratification adapted to $\mathcal{D}\mathcal{M}$ and we use Lemma 2.11 to get $i_x^{-1}\text{DR}\mathcal{M} \simeq R\mathcal{p}_{S*}(\mathbb{C}_{B_x \times S} \otimes \mathcal{O}_S)\text{DR}(\mathcal{M})$ for ε small enough, where B_ε is a closed ball of radius ε centered at x. One then remarks that $(\mathbb{C}_{B_x \times S}, \mathcal{M})$ forms a relative elliptic pair in the sense of [18], and Proposition 4.1 of loc. cit. gives the desired coherence.

The statement for $\text{Sol.}\mathcal{M}$ is proved similarly. q.e.d.

Lemma 3.8 (see [14 Prop. 1.2.5]). For \mathcal{M} in $D^b_{\text{hol}}(\mathcal{D}_{X\times S/S})$ with adapted stratification (X_α) and for any $s_0 \in S$, $L_i s_0\mathcal{M}$ is \mathcal{D}_X-holonomic and (X_α) is adapted to it.

Corollary 3.9. For $\mathcal{M} \in D^b_{\text{hol}}(\mathcal{D}_{X\times S/S})$, there is a natural isomorphism $D^b\text{Sol.}\mathcal{M} \simeq \text{DR}\mathcal{M}$.

Proof. We consider the canonical pairing

$$\text{DR}\mathcal{M} \otimes p_X^{-1}\mathcal{O}_S \rightarrow \text{Sol.}\mathcal{M} \rightarrow p_X^{-1}\mathcal{O}_S$$

which gives a natural morphism

$$\text{DR}\mathcal{M} \rightarrow D^b\text{Sol.}\mathcal{M}.$$
in $\mathcal{D}_{\mathbb{C},c}^b(p_X^{-1}\mathcal{O}_S)$. We have for each $s_o \in S$, by Proposition 3.11

$$L_i s_o(\text{DR.}\mathcal{M}) \simeq \text{DR} L_i s_o(\mathcal{M}),$$

$$L_i s_o(\text{Sol.}\mathcal{M}) \simeq \text{Sol} L_i s_o(\mathcal{M}).$$

Since $L_i s_o(\mathcal{M}) \in \mathcal{D}_{\mathbb{C}}^b(\mathcal{D}_X)$ by Lemma 3.8 we have

$$\text{DR} L_i s_o(\mathcal{M}) \simeq D' \text{Sol} L_i s_o(\mathcal{M}),$$

so by Proposition 3.11 and Proposition 2.2

$$D' \text{Sol} L_i s_o(\mathcal{M}) \simeq D' L_i s_o(\text{Sol.}\mathcal{M}) \simeq L_i s_o(D' \text{Sol.}\mathcal{M}).$$

The assertion then follows by Proposition 2.2. q.e.d.

In the following proposition, the main argument is that of strictness, which is essential. We will set $\mathcal{P}_{\text{DR.}\mathcal{M}} := \text{DR.}\mathcal{M}^{[\dim X]}$ and $\mathcal{P}_{\text{Sol.}\mathcal{M}} = \text{Sol.}\mathcal{M}^{[\dim X]}$.

Proposition 3.10. Let \mathcal{M} be a holonomic $\mathcal{D}_{X \times S/S'}$-module which is strict, i.e., which is $p^{-1}\mathcal{O}_{S'}$-flat. Then $\mathcal{P}_{\text{DR.}\mathcal{M}}$ satisfies the support condition (Supp) with respect to a μ-stratification adapted to \mathcal{M}.

Proof. We prove the result by induction on $\dim S$. Since it is local on S, we consider a local coordinate s on S and we set $S' = \{s = 0\}$. The strictness property implies that we have an exact sequence

$$0 \to \mathcal{M} \xrightarrow{\phi} \mathcal{M} \to i^*_{S'} \mathcal{M} \to 0,$$

and $i^*_{S'} \mathcal{M}$ is $\mathcal{D}_{X \times S'/S'}$-holonomic and $p^{-1}\mathcal{O}_{S'}$-flat. We deduce an exact sequence of complexes $0 \to \mathcal{P}_{\text{DR.}\mathcal{M}} \xrightarrow{\phi} \mathcal{P}_{\text{DR.}\mathcal{M}} \to \mathcal{P}_{i^*_{S'} \mathcal{M}} \to 0$.

Let X_α be a stratum of a μ-stratification of X adapted to \mathcal{M} (hence to $i^*_{S'} \mathcal{M}$, after Lemma 3.8). For $x \in X_\alpha$, let k be the maximum of the indices j such that $\mathcal{H}^j i^{-1}_x \mathcal{P}_{\text{DR.}\mathcal{M}} \neq 0$. For any S' as above, we have a long exact sequence

$$\cdots \to \mathcal{H}^k i^{-1}_x \mathcal{P}_{\text{DR.}\mathcal{M}} \xrightarrow{\phi} \mathcal{H}^k i^{-1}_x \mathcal{P}_{\text{DR.}\mathcal{M}} \to \mathcal{H}^k i^{-1}_x \mathcal{P}_{i^*_{S'} \mathcal{M}} \to 0.$$

If $k > -\dim X_\alpha$, we have $\mathcal{H}^k i^{-1}_x \mathcal{P}_{i^*_{S'} \mathcal{M}} = 0$, according to the support condition for $i^*_{S'} \mathcal{M}$ (inductive assumption), since (X_α) is adapted to it. Therefore, $s : \mathcal{H}^k i^{-1}_x \mathcal{P}_{\text{DR.}\mathcal{M}} \to \mathcal{H}^k i^{-1}_x \mathcal{P}_{\text{DR.}\mathcal{M}}$ is onto. On the other hand, by Theorem 3.11, $\mathcal{H}^k i^{-1}_x \mathcal{P}_{\text{DR.}\mathcal{M}}$ is $\mathcal{O}_{S'}$-coherent. Then Nakayama’s lemma implies that $\mathcal{H}^k i^{-1}_x \mathcal{P}_{\text{DR.}\mathcal{M}}$ is strict, hence the assertion.

q.e.d.

Proof of Theorem 1.2. It is a direct consequence of the following.

Theorem 3.11. Let \mathcal{M} be an object of $\mathcal{D}_{\mathbb{C}}^b(\mathcal{D}_{X \times S/S})$ and let $\mathcal{D}_i \mathcal{M}$ be the dual object. Then there is an isomorphism $\mathcal{P}_{\text{DR.}\mathcal{M}} \simeq D^\mathcal{P}_{\text{DR.}\mathcal{M}}$.

Indeed, with the assumptions of Theorem 1.2, $\mathcal{D}_i \mathcal{M}$ is holonomic since \mathcal{M} is so (see Corollary 3.6), and both \mathcal{M} and $\mathcal{D}_i \mathcal{M}$ are strict. Then both $\mathcal{P}_{\text{DR.}\mathcal{M}}$ and $\mathcal{P}_{\text{DR.}\mathcal{M}}$ satisfy the support condition, according to Proposition 3.10. Hence, according to Theorem 3.11 and Proposition 2.2, $\mathcal{P}_{\text{DR.}\mathcal{M}}$ satisfies the cosupport condition.
Similarly, $\text{Sol}_M \simeq D^{\text{pDR}} M$ and $D(\text{Sol}_M) \simeq \text{pDR}_M$ both satisfy the support condition, hence $\text{Sol}_M[\dim X]$ is a perverse object. q.e.d.

Proof of Theorem 3.11 Combining (3) with [5] Ex.II.24 (iv) (with $f = \text{id}$, $\mathcal{A} = \mathcal{D}_{X\times S/S}$ and $\mathcal{B} = p_X^{-1}\mathcal{O}_S$) entails, for any $\mathcal{N} \in D^b_{\text{coh}}(\mathcal{D}_{X\times S/S})$, a natural morphism

$$R\mathcal{H}\text{om}_{\mathcal{D}_{X\times S/S}}(\mathcal{N}, M) \to R\mathcal{H}\text{om}_{p_X^{-1}\mathcal{O}_S}(D\mathcal{M}, D\mathcal{N}).$$

When $\mathcal{N} = \mathcal{O}_{X\times S}$, we obtain a natural morphism

$$D\text{DR}_M \to D' D\text{DR}_M, \quad \text{that is,} \quad \text{pDR}_M \to D\text{pDR}_M D_M.$$

Suppose now that $M \in D^b_{\text{hol}}(\mathcal{D}_{X\times S/S})$. Recall that $D\mathcal{M} \in D^b_{\text{hol}}(\mathcal{D}_{X\times S/S})$, so $\text{pDR}_M D\mathcal{M} \in D^b_{\text{c-c}}(p_X^{-1}\mathcal{O}_S)$.

Hence, by biduality, we get a morphism

$$D\text{pDR}_M \leftarrow \text{pDR}_M D_M. \quad (6)$$

On the other hand, since $L^{\ast}_{s_0}(M) \in D^b_{\text{hol}}(\mathcal{D}_X)$ for each $s_0 \in S$, the morphisms above induce isomorphisms

$$L^{\ast}_{s_0}(D\text{pDR}_M) \simeq \text{pDR} D L^{\ast}_{s_0}(M)$$

according to Proposition 2.4 and Proposition 3.11 where in the right hand side we consider the duality for holonomic \mathcal{D}_X-modules. Thus (3) is an isomorphism by Proposition 2.2 and the local duality theorem for holonomic \mathcal{D}_X-modules (see [13] and the references given there). q.e.d.

Example 3.12. Let X be the open unit disc in \mathbb{C} with coordinate x and let S be a connected open set of \mathbb{C} with coordinate s. Let $\varphi : S \to \mathbb{C}$ be a non constant holomorphic function on S and consider the holonomic $\mathcal{D}_{X\times S/S}$-module $\mathcal{M} = \mathcal{D}_{X\times S/S} / \mathcal{D}_{X\times S/S} \cdot P$, with $P = x\partial_x - \varphi(s)$. It is easy to check that \mathcal{M} has no \mathcal{O}_S-torsion and admits the resolution

$$0 \to \mathcal{D}_{X\times S/S} \xrightarrow{P} \mathcal{D}_{X\times S/S} \to \mathcal{M} \to 0,$$

so that the dual module $D\mathcal{M}$ has a similar presentation and is also \mathcal{O}_S-flat. The complex pSol_M is represented by

$$0 \to \mathcal{O}_{X\times S} \xrightarrow{P} \mathcal{O}_{X\times S} \to 0 \quad (\text{terms in degrees } -1 \text{ and } 0).$$

Consider the stratification $X_1 = X \setminus \{0\}$ and $X_0 = \{0\}$ of X. Then $\mathcal{H}^{\ast-1}\text{pSol}_M|_{X_1}$ is a locally constant sheaf of free $p_X^{-1}\mathcal{O}_S$-modules generated by a local determination of $x^{\varphi(s)}$, and $\mathcal{H}^{\ast 0}\text{pSol}_M|_{X_1} = 0$. On the other hand, $\mathcal{H}^{\ast-1}\text{pSol}_M|_{X_0} = 0$ and $\mathcal{H}^{\ast 0}\text{pSol}_M|_{X_0}$ is a skyscraper sheaf on $X_0 \times S$ supported on $\{s \in S \mid \varphi(s) \in \mathbb{Z}\}$.

For each x_0 we have

$$i_0^{-1}(\text{pSol}_M) \simeq i_0^{-1}R\mathcal{H}\text{om}_{\mathcal{D}_{X\times S}}(\mathcal{D}_{X\times S} \otimes_{\mathcal{O}_{X\times S/S}} \mathcal{M}, R\Gamma_{\{x_0\} \times S}|X \times S \mathcal{O}_{X\times S})[\dim X] \simeq i_0^{-1}R\mathcal{H}\text{om}_{\mathcal{D}_{X\times S}}(\mathcal{D}_{X\times S} \otimes_{\mathcal{O}_{X\times S/S}} \mathcal{M}, B_{\{x_0\} \times S}|X \times S)$$.
where $B_{\{x_0\} \times S|X \times S} := \mathcal{M}_{\{x_0\} \times S}(\mathcal{O}_X \times S)$ denotes the sheaf of holomorphic hyperfunctions (of finite order) along $x = x_0$ (cf. [10]). The second isomorphism follows from the fact that $\mathcal{D}_X \otimes \mathcal{D}_{X/S} \mathcal{M}$ is regular specializable along the submanifold $x = x_0$ (cf. [7]).

Recall that the sheaves $B_{\{x_0\} \times S|X \times S}$ are flat over $p_X^{-1} \mathcal{O}_S$ because locally they are inductive limits of free $p_X^{-1} \mathcal{O}_S$-modules of finite rank.

Since $i_{x_0}^! (p\mathcal{S}ol \mathcal{M})$ is quasi isomorphic to the complex

$$0 \to B_{\{x_0\} \times S|X \times S} \xrightarrow{F} B_{\{x_0\} \times S|X \times S} \to 0$$

it follows that the flat dimension over \mathcal{O}_S of $i_{x_0}^! (p\mathcal{S}ol \mathcal{M})$ in the sense of [4] §4 is ≤ 0 for any x_0. Moreover, $\mathcal{H}^0 i_{x_0}^! (p\mathcal{S}ol \mathcal{M}) = 0$ and, if $x_0 \neq 0$, $\mathcal{H}^1 i_{x_0}^! (p\mathcal{S}ol \mathcal{M})$ is locally free \mathcal{O}_S-module of rank 1. Hence the flat dimension of $i_{x_0}^! (p\mathcal{S}ol \mathcal{M})$ is ≤ 1. This shows explicitly that $p\mathcal{S}ol \mathcal{M}$ satisfies the condition (Cosupp+) of Corollary 2.29.

4. Application to mixed twistor \mathcal{D}-modules

Let $\mathcal{R}_{X \times \mathbb{C}}$ be the sheaf on $X \times \mathbb{C}$ of z-differential operators, locally generated by $\partial_x \otimes z \partial_z$, in local coordinates (x_1, \ldots, x_n) on X. When restricted to $X \times \mathbb{C}^*$, the sheaf $\mathcal{R}_{X \times \mathbb{C}^*}$ is isomorphic to $\mathcal{D}_{X \times \mathbb{C}^*/\mathbb{C}^*}$.

A mixed twistor \mathcal{D}-module on X (see [12]) is a triple $\mathcal{I} = (\mathcal{M}', \mathcal{M}'', C)$, where $\mathcal{M}', \mathcal{M}''$ are holonomic $\mathcal{R}_{X \times \mathbb{C}}$-modules and C is a certain pairing with values in distributions, that we will not need to make precise here. Such a triple is subject to various conditions. We say that a $\mathcal{D}_{X \times \mathbb{C}^*/\mathbb{C}^*}$-module \mathcal{M} underlies a mixed twistor \mathcal{D}-module \mathcal{I} if \mathcal{M} is the restriction to $X \times \mathbb{C}^*$ of \mathcal{M}' or \mathcal{M}''.

Theorem 1.1 is now a direct consequence of the following properties of mixed twistor \mathcal{D}-modules, since they imply that \mathcal{M} satisfies the assumptions of Theorem 1.2. If \mathcal{M} underlies a mixed twistor \mathcal{D}-module, then

- there exists a locally finite filtration $W_\bullet \mathcal{M}$ indexed by \mathbb{Z} by $\mathcal{R}_{X \times \mathbb{C}}$-submodules such that each graded module underlies a pure polarizable twistor \mathcal{D}-module; then each $gr^W_1 \mathcal{M}$ is strict and holonomic (see [14] Prop. 4.1.3] and [11] §17.1.1)], and thus so is \mathcal{M};
- the dual of \mathcal{M} as a $\mathcal{R}_{X \times \mathbb{C}^*}$-module also underlies a mixed twistor \mathcal{D}-module, hence is also strict holonomic (see [12] Th.12.9]); using the isomorphism $\mathcal{R}_{X \times \mathbb{C}^*} \simeq \mathcal{D}_{X \times \mathbb{C}^*/\mathbb{C}^*}$, we see that the dual $D_{\mathcal{M}}$ as a $\mathcal{D}_{X \times \mathbb{C}^*/\mathbb{C}^*}$-module is strict and holonomic.

q.e.d.

References

[1] M. Goresky and R.D. MacPherson, *Stratified Morse theory*, Ergebnisse der Mathematik und ihrer Grenzgebiete, Folge 3 Band 14, Springer-Verlag, Berlin, Heidelberg, New York, 1988.
[2] M. Kashiwara, *On the maximally overdetermined systems of differential equations*, Publ. RIMS, Kyoto Univ. 10 (1975), 563–579.
[3] --------, *D-modules and microlocal calculus*, Translations of Mathematical Monographs, vol. 217, American Mathematical Society, Providence, RI, 2003.
[4] ________, t-Structure on the derived categories of \mathcal{D}-modules and \mathcal{O}-modules, Moscow Math. J. 4 (2004), no. 4, 847–868.

[5] M. Kashiwara and P. Schapira, Sheaves on Manifolds, Grundlehren der mathematischen Wissenschaften, vol. 292, Springer-Verlag, 1990.

[6] ________, Categories and sheaves, Grundlehren der mathematischen Wissenschaften, vol. 332, Springer-Verlag, 2006.

[7] Y. Laurent and T. Monteiro Fernandes, Systèmes différentiels fuchsiens le long d’une sous-variété, Publ. RIMS, Kyoto Univ. 24 (1988), no. 3, 397–431.

[8] Z. Mebkhout, Le formalisme des six opérations de Grothendieck pour les \mathcal{D}-modules cohérents, Travaux en cours, vol. 35, Hermann, Paris, 1989.

[9] ________, Le théorème de positivité, le théorème de comparaison et le théorème d’existence de Riemann, Éléments de la théorie des systèmes différentiels géométriques, Séminaires & Congrès, vol. 8, Société Mathématique de France, Paris, 2004, pp. 165–310.

[10] T. Mochizuki, Asymptotic behaviour of tame harmonic bundles and an application to pure twistor \mathcal{D}-modules, vol. 185, Mem. Amer. Math. Soc., no. 869-870, American Mathematical Society, Providence, RI, 2007, arXiv: math.DG/0312230 & math.DG/0402122

[11] ________, Wild harmonic bundles and wild pure twistor \mathcal{D}-modules, Astérisque, vol. 340, Société Mathématique de France, Paris, 2011.

[12] ________, Mixed twistor \mathcal{D}-Module, arXiv: 1104.3366 2011.

[13] L. Narváez Macarro, The local duality theorem in \mathcal{D}-module theory, Éléments de la théorie des systèmes différentiels géométriques, Séminaires & Congrès, vol. 8, Société Mathématique de France, Paris, 2004, pp. 59–87.

[14] C. Sabbah, Polarizable twistor \mathcal{D}-modules, Astérisque, vol. 300, Société Mathématique de France, Paris, 2005.

[15] ________, Wild twistor \mathcal{D}-modules, Algebraic Analysis and Around: In Honor of Professor M. Kashiwara’s 60th Birthday (Kyoto, June 2007), Advanced Studies in Pure Math., vol. 54, Math. Soc. Japan, Tokyo, 2009, pp. 293–353, arXiv: 0803.0287

[16] M. Sato, T. Kawai, and M. Kashiwara, Microfunctions and pseudo-differential equations, Hyperfunctions and pseudo-differential equations (Katata, 1971), Lect. Notes in Math., vol. 287, Springer-Verlag, 1973, pp. 265–529.

[17] P. Schapira, Microdifferential systems in the complex domain, Grundlehren der mathematischen Wissenschaften, vol. 269, Springer-Verlag, 1985.

[18] P. Schapira and J.-P. Schnieder, Index theorem for elliptic pairs, Astérisque, vol. 224, Société Mathématique de France, Paris, 1994.

[19] C. Simpson, Higgs bundles and local systems, Publ. Math. Inst. Hautes Études Sci. 75 (1992), 5–95.

[20] ________, Mixed twistor structures, Prépublication Université de Toulouse & arXiv: math.AG/9705006 1997.

(T. Monteiro Fernandes) Centro de Matemática e Aplicações Fundamentais da Universidade de Lisboa, Complexo 2, 2 Avenida Prof. Gama Pinto, 1699 Lisboa, Portugal

E-mail address: tmf@ptmat.fc.ul.pt

(C. Sabbah) Centre de Mathématiques Laurent Schwartz, UMR CNRS 7640, École Polytechnique, 91128 Palaiseau cedex, France

E-mail address: sabbah@math.polytechnique.fr