Adjacent-possible ecological niche: growth of *Lactobacillus* species co-cultured with *Escherichia coli* in a synthetic minimal medium

Kouhei Mizuno1, Mamiko Mizuno2, Mio Yamauchi1, Aya J. Takemura3, Veronica Medrano Romero2 & Kazuya Morikawa4

In certain conditions, members of the *Lactobacillus* genus are auxotrophs that have fastidious requirements for growth. Notably, *Lactobacillus* cannot grow in M9 medium, a minimal synthetic medium used for *Escherichia coli*. However, we found that some *Lactobacillus* strains can be grown in M9 when co-cultured with *E. coli* K-12. In the co-culture, *L. casei* proliferates exponentially, reaching cell densities of 10^8 CFU (colony-forming unit) ml$^{-1}$ in 6 h and dominating *E. coli* in the late growth phase. Spent medium from *E. coli* grown overnight lacked this growth-promoting effect on *L. casei*. Similarly, the effect was not observed when the species were separated by a 0.4-µm membrane. Microscopic observations showed that *L. casei* are embedded in the micro-scale clusters of *E. coli* in the early growth phase. This study describes for the first time the ability of a *Lactobacillus* species to grow in minimal medium when in close proximity with co-cultured bacteria.

Lactobacillus is a group of lactic acid bacteria (LAB) that ferment hexose sugars to produce primarily lactic acid. Some species have been widely used in fermented foods and are recognized as health-promoting ingredients (probiotics). Demonstrated probiotic effects include direct antagonism against pathogens1, immunomodulatory properties2, and indirect effects (via the fermented products) in reducing blood pressure3. Some probiotic strains like *L. rhamnosus*, *L. casei*, and *L. johnsonii* potentially have therapeutic effects on chronic inflammatory bowel diseases4,5. Despite such health-promoting and therapeutic relevance, information on the physiology of LAB is still lacking. Indeed, LAB constitutes only a small fraction (≤0.1% among microbiota) of the autochthonous colonizers of the human intestine, and continuous intake of probiotics is necessary to sustain transient LAB at high levels (up to several percent of microbiota) in this environment6–8.

In certain conditions, members of the *Lactobacillus* genus are auxotrophs8. Intensive studies on synthetic media9–11 and recent genomic data reveal that lactobacilli often lack the capacity to synthesize amino acids, vitamins, purines, or fatty acids12–14. *L. johnsonii*, *L. acidophilus*, and *L. gasseri*, commonly found in the human gastrointestinal tract, are auxotrophic for all or the majority of physiologically relevant amino acids15. The diversity of *Lactobacillus* auxotrophy is assumed to reflect their adaptation to ecological niches such as gastrointestinal tracts, protein-rich foods, and plant materials16,17.

It has been shown that lactobacilli employ multiple strategies for ecological adaptation, including amino acid transport18, mucus adherence19–21, adhesion to Peyer’s patches22, and cell surface-associated proteinases23,24. Another ecological aspect of *Lactobacillus* auxotrophy is their inter-species interactions with other microbiota. For instance, interaction between LAB and yeast has been observed in fermented foods and has long been a topic of study25–27. Auto- and co-aggregation have been reported for various *Lactobacillus* species, including *L. crispatus*, *L. gasseri*, *L. reuteri*, and *L. coryniformis*28; these phenomena have been shown to involve several aggregation-promoting factors such as Apf29 and Cpf28. Recently, we reported the co-aggregation of *L. casei*...
Results

Eleven LAB from distinct sources, such as fermented foods, and two S. aureus strains, which are partly auxotrophic for amino acids and are close relatives of Lactococcus from a genome-wide viewpoint, were tested for their growth in co-culture with E. coli K-12. Aside from K-12 itself, none of these strains could grow in mono-culture in M9 minimal medium. We found that the CFU values of 6 of the tested Lactobacillus strains, including 3 belonging to the L. casei-group and 3 strains of L. plantarum, increased in the presence of E. coli (Fig. 1). In contrast, co-culture with E. coli did not increase the CFU values of L. fermentum, Leuconostoc mesenteroides, Pediococcus acidilactici, L. sakei, or Lactococcus lactis. Similarly, E. coli did not support the growth of the S. aureus strains. Thus, the growth support by E. coli was specific for LAB of the L. casei-group and L. plantarum.

Subsequent co-culture experiments focused on L. casei NBRC 3831 as a representative LAB. Mono-culture of L. casei in M9 showed little increase in CFU numbers (Fig. 2A), whereas co-culture with E. coli supported growth in this medium, with co-cultured L. casei reaching a density of 10^6 CFU ml^-1 after 6 h (Fig. 2C). During log-phase growth in the co-culture, the specific growth rate was 0.396 h^-1, approximately 67% that of the mono-culture in MRS (µ = 0.6 h^-1). After 24 h of co-culturing (Fig. 2B), L. casei dominated over E. coli.

Next, we monitored carbon consumption and metabolites of these two strains to evaluate metabolic activities during cell proliferation. The concentrations of glucose and of D- and L-lactate in the co-culture were measured (Fig. S3). During mono-culture in M9, L. casei consumed glucose and produced L-lactate (despite the lack of increase in CFU number) (Fig. S3A,B). These results showed that L. casei is metabolically active even under conditions that are insufficient for cell proliferation, which might provide a useful insight into persistency of health-promoting effects in terms of probiotics. During co-culture, L-lactate production was higher than in the mono-culture, probably due to the increase in CFU number of L. casei (Fig. S3B,C). E. coli, which is known to be a D-lactate producer, started to produce D-lactate after 10 h of mono-culture in M9; the same pattern was observed in the co-culture in this medium.

We next tested whether the spent medium or the cell-free extract obtained from mono-culture of E. coli in LB would support the growth of L. casei in the absence of co-culture (Fig. 3A,B). The spent medium from E. coli had no effect when provided at concentrations of 10 to 40% (percent volume equivalent) in M9 medium. These results demonstrated that the growth-supporting factor is not provided by the spent medium obtained from mono-culture of E. coli in LB. These observations also excluded the possibility that residual soluble factors carried over from the initial E. coli pre-culture supported L. casei growth during co-culture. In contrast, cell-free extract at 30% supported the growth of L. casei as well as that of L. sakei NBRC 3541 (Fig. 3C), a LAB species that was not able to grow when co-cultured with an E. coli in minimal medium. Since the E. coli spent medium was insufficient to support the growth of L. casei in M9, we hypothesized that growth effects on L. casei require close proximity with E. coli cells. To test this theory, we used a membrane culture system wherein L. casei and E. coli were separated by a membrane (pore size, 0.4 µm). No growth support was observed...
observed for *L. casei* placed in M9 in a compartment adjacent to a parallel *E. coli* culture. Addition of *L. casei* to the *E. coli* compartment did not affect this result (Fig. 4, L+E vs. L). Thus, direct interaction with, or close proximity to, *E. coli* cells is required to permit the observed growth-supporting effect on *L. casei* growing in minimal medium (Fig. 4).

As noted above, we previously showed that fimbriae and LPS are essential mediators of some co-aggregation processes. We postulated that the same might apply to the co-culture phenomenon described in the present work. Therefore, we evaluated the growth-supporting effect of *E. coli* using strains deleted for either *fimA* (the structural gene of the type I fimbriae) or *rfaC* (yielding a deep-rough LPS mutant with a truncated core LPS oligosaccharide). Notably, both of these *E. coli* mutants were able to support the growth of *L. casei* upon co-culture (Fig. 5), demonstrating that the contact/proximity-based co-culture effect observed in the present work does not depend on fimbriae or LPS.

In the above co-culture experiments, the initial inoculum ratio was 10:1 (*L. casei* : *E. coli*). We wanted to test if the growth support could be observed even when *L. casei* existed as a minority component of the co-culture. As shown in Fig. 6, growth was robust even when the culture was initiated using *L. casei* at 10^4 CFU ml\(^{-1}\), that is, at an initial inoculum ratio of 1:100 (*L. casei* : *E. coli*). This result suggested that the retrieval of the growth-supporting factor(s) from *E. coli* does not rely on having high initial density of LAB, in contrast to other systems, for instance, as in the induction of LAB bacteriocins by quorum sensing.

We used Gram staining to observe cells after 3 h of co-culturing (Fig. 7A,B). The *L. casei* cells formed long chains. Individual *L. casei* cells were observed embedded in clusters of *E. coli* cells. To exclude a possible artifact during the fixation and Gram-staining procedure, an unfixed sample from 3-h co-culture of *L. casei* and *E. coli* was directly observed by fluorescence microscopy. In addition to the free *E. coli* cells (expressing GFP), clusters carrying embedded *L. casei* cells were observed (compare Fig. 7D). The viability of cells was analyzed by PI staining (Fig. 7C–E). PI is an intercalating DNA stain that penetrates injured membranes; thus, PI staining is indicative of dead cells. Notably, cells located within micro-scale clusters were often positive for PI staining (Fig. 7D) and were presumably dead. In *E. coli* mono-cultures, PI-positive cells were rare, though not undetectable (Figs 7E and S4). Considered together, these results indicate that *L. casei* has the ability to interact with *E. coli* cells and form micro-scale clusters accumulating PI-positive cells, which could explain how *L. casei* uptakes certain growth-supporting factors from *E. coli* during co-culture.

Discussion

This study demonstrated for the first time that LAB, which are strictly auxotrophic, can interact with co-cultured *E. coli* to proliferate in what would otherwise be nutrient-limiting conditions. Such growth ability was found to be specific for some *Lactobacillus* species, but the reason for the observed specificity remains to be clarified. This
specificity is not simply attributable to the diversity of the nutrient auxotrophies among LAB species, because non-co-cultur able species (such as \(L. \) sakei) were able to grow when cultured on minimal medium supplemented with an \(E. \) coli cell extract. It is also unlikely that the observed growth results from genetic reversion of auxotrophy by mutation\(^{33}\), given that a starting inoculum as small as \(10^4 \) CFU ml\(^{-1}\) yielded a swift growth during co-culture. Secreted molecules such as antimicrobial peptides and chemotactants would be among the candidates responsible for the observed strain specificity, however the spent medium of a mono-culture of \(L. \) casei NBRC 3831 in MRS did not induce PI-positive \(E. \) coli cells (Fig. S5). In this regard, it might be important to note that \(E. \) coli tended to assemble around \(L. \) casei NBRC 3831 in co-culture. For instance, CO\(_2\), necessary for growth of lactobacilli\(^{34}\), might be associated with the cell-cell contact or close proximity. It might be also important to note that growth simulation analysis of a co-culture of LAB and \(E. \) coli predicted that some \(E. \) coli-derived factors could improve LAB growth, although it was in a condition in which LAB can grow in the absence of \(E. \) coli\(^{35}\).

Macro-scale co-aggregation requires acidic conditions (below pH 5.0)\(^{36}\), whereas the pH in the exponential growth phase of the co-culture in this study was above 6.0 (Fig. 2D). This result suggested that the co-clusters observed in the present study are based on a mechanism distinct from the fimbria- or LPS-mediated mechanism used for macro-scale co-aggregation. Thus, we propose that the growth support observed concomitantly with the formation of micro-scale co-clusters relies on a mechanism distinct from the previously reported macro-scale co-aggregation.

It was not elucidated in the present study whether the micro-scale co-cluster itself is essential for the growth support. However, it is a new finding that \(L. \) casei can proliferate only when this LAB is provided with cell-cell contact or close proximity to \(E. \) coli, providing us a new ecological viewpoint of how an auxotrophic minority in a microbiota can exploit its ecological niche. Here, we would term such an ecological concept as an ‘adjacent-possible ecological niche (APEN)’. The ‘adjacent-possible’ concept itself was previously proposed by the theoretical biologist Stuart Kauffman not only in the context of biology but also in a broad range of scientific fields, including economics\(^{36,37}\). Considering LAB as the minority (\(<0.1\%\)) in the dense colonic microbiota \((10^{10}–10^{12} \text{ cells/g})\(^{38}\) as well as in the microbiome of fermented food, an ecological viewpoint of such an adjacency

Figure 3. Growth of \(L. \) casei or \(L. \) sakei in supplemented M9 media. (A) \(L. \) casei supplemented with culture supernatant from \(E. \) coli or (B) cell-free extract. (C) \(L. \) casei and \(L. \) sakei in M9 media with and without 30% (vol) \(E. \) coli cell-free extract. The values in the horizontal axis represent the concentration (vol%) of each supplement. Cultures were grown for 24 h and the optical density was measured. The 40% (vol) of the cell-free extract consists of 6 ml fresh M9 medium and 4 ml cell-free extract in total of 10 ml.
would have relevance in the context of LAB physiology. The better understanding of APEN may permit us to expand our scope beyond the one currently limited to a narrow set of interactions between LAB and yeasts or cheese-isolated \textit{E. coli} and between \textit{L. bulgaricus} and \textit{Streptococcus thermophilus}. The species specificities and overall relevance of APENs to the LAB lifestyle, as well as the bacterial strategies targeting APENs, are intriguing questions that will need be addressed in future studies.

In conclusion, \textit{L. casei} group and \textit{L. plantarum} strains became culturable in M9 medium when co-cultured with \textit{E. coli} K-12. This growth support did not reflect “carry-over” of soluble nutrients from the pre-culture supernatant or the leakage of compounds from the mono-cultured \textit{E. coli} cells. The growth of \textit{L. casei} NBRC 3831 required cell-cell contact or close proximity to \textit{E. coli} cells, suggesting that \textit{L. casei} NBRC 3831 uptakes growth-supporting factor(s) from nearby \textit{E. coli} cells.

\textbf{Figure 4.} Growth of \textit{L. casei} and \textit{E. coli} in a membrane culture system. (A) Schematic diagram of the membrane culture system, where the two compartments were separated by a 0.4-\mu m membrane. “L”, “E”, and “L + E” represent \textit{L. casei} mono-culture, \textit{E. coli} mono-culture, and co-culture, respectively. (B, C) Upper side of the membrane. (D, E) Bottom side. (B, D) Optical density after 24 h. (C, E) CFU values for 72 h.

\textbf{Figure 5.} Growth of co-cultured \textit{L. casei} NBRC 3831 with (A) \textit{E. coli} ΔfimA, (B) \textit{E. coli} ΔrfaC.

Note: The diagrams and graphs are not rendered here. They should be drawn or referenced from the original source.
Methods

Strains and culture conditions. The strains used in this study are listed in Table 1. The parent wild-type strain E. coli K-12 and the deletion strains ΔfimA (JW4277) and ΔrfaC (JW3596) of the KEIO collection were obtained from the National Institute of Genetics (Shizuoka, JAPAN). Lactobacillus strains were statically cultured in 10 ml of de Man, Rogosa, and Sharpe (MRS) medium (Oxoid, Hampshire, England) (10 g proteose peptone, 10 g beef extract, 5 g yeast extract, 20 g glucose, 1 g polysorbate, 2 g ammonium citrate, 5 g sodium acetate, 0.1 g

Figure 6. Effect of the initial inoculum number of L. casei in co-culture with E. coli. The initial inoculum numbers of E. coli are 10^6 cells ml^{-1}. The specific growth rates (μ) of L. casei (3–6 h) inoculated from the initial cell numbers 10^4, 10^5, 10^6, and 10^7 were 0.311, 0.370, 0.177, 0.102, and 0.302 h^{-1}, respectively.

Figure 7. Microscopic analysis of micro-scale clusters from a 3-h co-culture of L. casei NBRC 3831 and E. coli. (A–D) L. casei NBRC 3831 and E. coli (BW25113-GFP) co-culture. (E) E. coli mono-culture. (A, B) are Gram-stained images. The box in (A) shows the region magnified in (B). (C–E) DIC and merged GFP and PI pictures. GFP and PI images are overlaid confocal images of 15–30 slices, 5–25μm depths. Bars = 10μm.
To determine the viable cell number, serial dilutions of the cultures were inoculated onto agar plates, and the CFUs (colony-forming units) were determined. CFU values are presented as the means ± standard errors of 3 independent experiments.

In order to determine the viable cell number from co-culture, we used LB agar medium for *E. coli* and pH modified MRS agar medium to specifically detect *Lactobacillus* colonies. The pH of the MRS agar was adjusted to 6.0 with acetate, which has an inhibitory effect on colonies. The pH of the MRS agar was adjusted to 7.0 with deionized water containing 2 mM MgSO₄ and 0.1 mM CaCl₂) supplemented with 2% glucose. For the time course analysis, 10 ml co-culture was statically cultured for 72 h at 37 °C. The necessity of cell-cell contact was tested in co-culture conditions.

Construction of pRIT-Pldh-gfp and recombinant strains. The promoter region of the *Listeria monocytogenes ldh* (lactate dehydrogenase) gene was amplified with primers V25 (5′-TAAGTCGACTTTCTTGCCTCGTCCACAG-3′) and V19 (5′-CTAGTCGACTTTGCCTCGTCCACAG-3′) from the genome of *Listeria monocytogenes* EGDe (http://genolist.pasteur.fr/ListiList/index.html). The resulting fragment was digested with SalI and then cloned into the SalI site of pRIT-Pldh-gfp, thereby replacing the Pldh gene in the plasmid. The resulting plasmid, designated pRIT-Pldh-gfp, was transformed into *E. coli* K-12 BW25113 and JW4277 using a standard electroporation protocol.

Co-culture conditions. Strains were individually pre-cultured as described above, and inoculated (at 1:100) alone or together into M9 medium (12.8 g Na₂HPO₄·7H₂O, 3 g KH₂PO₄, 0.5 g NaCl, and 1 g NH₄Cl per liter of deionized water containing 2 mM MgSO₄ and 0.1 mM CaCl₂) supplemented with 2% glucose. For the time course analysis, 10 ml co-culture was statically cultured for 72 h at 37 °C. The necessity of cell-cell contact was tested in co-culture conditions.

Evaluation of the specific growth rate of L. casei NBRC 3831. The specific growth rate (μ) in the mid-exponential growth phase (3–6 h) of *L. casei* NBRC 3831 in MRS mono-culture and M9 co-culture was calculated by the following equation:

\[\ln X_t = \ln X_{t0} + \mu t \]

where \(X_t \) is the CFU value at hour \(t \), and \(X_{t0} \) is the initial CFU value.

Strain	Description	Reference
Escherichia coli	Parent strain of the mutants, Δ(araD-araB)/S67, ΔlacZ4877(rmaB-3), lambda Δrph-1, Δ(thsA-thsB)/S588, hsdR514	45
BW25113		
JW5396	LPS deletion mutant, ΔserC	46
JW4277	Type I fimbriae deletion mutant, ΔfimA	46
BW25113-GFP	BW25113 carrying pRIT-Pldh-gfp	This study

Table 1. Strains used in this study.

- *Lactobacillus casei* subsp. *rhamnosus* NBRC 3831: Isolated from the brewing process of Japanese sake
- *Lactobacillus paracasei* subsp. *paracasei* NBRC 3533: “Hiochi bacterium” in Japanese sake
- *Lactobacillus casei* NBC 15883: Isolated from cheese
- *Lactobacillus plantarum* NBC 15891: Isolated from pickled cabbage
- *Lactobacillus plantarum* NBC 106468: Isolated from fermented cassava roots
- *Lactobacillus plantarum* NBC 101975: Isolated from non-salted fermented vegetable

Strain	Description	Reference
Leuconostoc mesenteroides IAM 1046	Dextran producer	
Pediococcus acidilactici NBC 3076	Bacitracin producer	
Lactococcus lactis subsp. *lactis* NBC 12007	Bacitracin producer	
Lactococcus sakei NBC 3541	Isolated from sake-moto	
Lactobacillus fermentum NBC 15885	Isolated from fermented beets	

magnesium sulfate, 0.05 g manganese sulfate, and 2 g dipotassium phosphate per liter of deionized water) for 24 h at 37 °C. *E. coli* was cultured in 10 ml of lysogeny (Luria) broth (LB) medium (5 g yeast extract, 10 g peptone, and 10 g NaCl per liter of deionized water) in a reciprocal shaker at 180 rpm for 18–20 h at 37 °C. Two laboratory model strains of *Staphylococcus aureus*, MW2 and N315, were cultured in Brain Heart Infusion (BHI) medium (Becton Dickinson, New Jersey, USA) on a reciprocal shaker at 180 rpm for 18–20 h at 37 °C.
Preparation of spent medium and cell-free extract from E. coli pre-culture. The cells and spent medium from a 10 ml E. coli pre-culture were separated by centrifugation at 1,500 g for 20 min at 4 °C. The supernatant was filter sterilized (0.2-μm cellulose membrane) and used for further analysis ("spent medium"). The collected cells were washed 3 times with phosphate-buffered saline (PBS, pH 7.0), re-suspended in 1.5 ml of PBS, and disrupted with sterile glass beads (diameter, 0.1 mm) using a cell disruptor (Disruptor Genie, Scientific Industries, NY, USA): a 2-ml tube containing 1.4 g beads and the cell suspension was mixed for 20 min with intervals to cool the tube in an ice-water bath. Following disruption, the volume of the mixture was raised to a total volume of 10 ml using PBS and centrifuged at 10,000 g for 20 min at 4 °C. The resulting supernatant was filtrated (0.2-μm cellulose membrane) and used as a cell-free extract for further analysis.

Microscopic analysis. Gram staining was conducted using a commercial kit (Nissui Co., Tokyo, Japan); the stained samples were observed using a FSX100 inverted microscope (Olympus, Tokyo, Japan). Cell viability in a co-aggregate was evaluated in a 3- to 5-h co-culture of L. casei and GFP-expressing E. coli. The cells were stained with 3.5 μM propidium iodide (PI) 46. Fluorescence microscopy was performed using a Leica TCS SP5 confocal laser microscopic system (Leica Microsystems Co., Wetzlar, Germany). The excitation wavelengths used were: 395 nm for GFP and 488 nm for PI. The emission was observed at 509 nm and 633 nm, respectively. Images were acquired and analyzed using Leica LAF software, version 2.6.0.

Determination of glucose and lactate concentrations. Glucose and lactic acids concentrations were measured using commercial kits according to the manufacturer’s instructions. Glucose consumption was determined by the Glucose Test Kit Wako (Wako Chemical Co. Japan), and the production of L- (+)- and D- (−)-lactic acids was measured by a colorimetric method using the F-kit (Roche, Basel, Switzerland).

Statistical Analysis. All experiments were conducted in triplicate. Values represent the mean ± SEM of three independent experiments. To compare two groups, student’s test was used and P < 0.05 was considered as statistically significant.

References
1. Savino, F. et al. Antagonistic effect of Lactobacillus strains against gas-producing coliforms isolated from colicky infants. BMC Microbiol. 11, 157 (2011).
2. Borchers, A. T. et al. Probiotics and immunity. J. Gastroenterol. 44, 26–46 (2009).
3. Yamamoto, N., Akino, A. & Takano, T. Anti-hypertensive effect of the peptides derived from casein by an extracellular proteinase from Lactobacillus helveticus CP790. J. Dairy Sci. 77, 917–922 (1994).
4. Mileti, E. et al. Comparison of the immunomodulatory properties of three probiotic strains of lactobacilli using complex culture systems: prediction for in vivo efficacy. PLoS ONE 4(9), e7056 (2009).
5. Verna, E. C. Use of probiotics in gastrointestinal disorders: what to recommend? Therap. Adv. Gastroenterol. 3, 307–319 (2010).
6. Walter, J. Ecological role of Lactobacilli in the gastrointestinal tract: implications for fundamental and biomedical research. Appl. Environ. Microbiol. 74, 4985–4996 (2008).
7. Marteau, P. et al. Comparative study of bacterial groups within the human cecal and fecal microbiota. Appl. Environ. Microbiol. 67, 4939–4942 (2001).
8. Reuter, G. The Lactobacillus and Bifidobacterium microflora of the human intestine: composition and succession. Curr. Issues Intest. Microbiol. 2, 43–53 (2001).
9. Morishita, T., Fukada, T., Shirota, M. & Yura, T. Genetic basis of nutritional requirements in Lactobacillus casei. J. Bacteriol. 120, 1078–1084 (1974).
10. Mørenro, T., Hagen, B. F. & Axelsson, L. A new, completely defined medium for meat lactobacilli. J. Appl. Microbiol. 85, 715–722 (1998).
11. Elii, M. et al. Iron requirement of Lactobacillus spp. in completely chemically defined growth media. J. Appl. Microbiol. 88, 695–703 (2000).
12. Pridmore, B. D. et al. The genome sequence of the probiotic intestinal bacterium Lactobacillus johnsonii NCC 533. Proc. Natl. Acad. Sci. USA 101, 2512–2517 (2003).
13. Makarova, K. et al. Comparative genomics of the lactic acid bacteria. Proc. Natl. Acad. Sci. USA 103, 15611–15616 (2006).
14. Cai, H. et al. Genome sequence and comparative genome analysis of Lactobacillus casei. insights into their niche-associated evolution. Genome Biol. Evol. 1, 239–257 (2009).
15. Hertzberger, R. Y. et al. Oxygen relieves the CO2 and acetate dependency of Lactobacillus johnsonii NCC 533. PLoS ONE 8(2), e57235 (2013).
16. Ruiz-Barja, J. I. & Jiménez-Díaz, R. Vitamin and amino acid requirements of Lactobacillus casei. J. Bacteriol. 186, 305–355 (1994).
17. Juntunen, M. et al. Adherence of probiotic bacteria to human intestinal mucus in healthy infants and during rotavirus infection. Clin. Diagn. Lab. Immunol. 8, 293–296 (2001).
18. Lebeer, S. et al. Impact of environmental and genetic factors on biofilm formation by the probiotic strain Lactobacillus rhamnosus GG. Appl. Environ. Microbiol. 73, 6768–6773 (2007).
19. Maclas-Rodriguez, M. E. et al. Lactobacillus fermentum BCS87 expresses mucus- and mucin-binding proteins on the cell surface. J. Appl. Microbiol. 107, 1866–1874 (2009).
20. Kang, S. S. & Conway, P. L. Characteristics of the adhesion of PCCs Lactobacillus fermentum VR1 003 to Peyer’s patches. FEMS Microbiol. Lett. 261, 19–24 (2006).
21. Pritchard, G. G. & Coolbear, T. The physiology and biochemistry of the proteolytic system in lactic acid bacteria. FEMS Microbiol. Rev. 12, 179–206 (1993).
22. Courtin, P., Monnet, V. & Rul, F. Cell-wall proteinases PrtS and PrtB have a different role in Streptococcus thermophiles/Lactobacillus bulgaricus mixed cultures in milk. Microbiology 148, 3413–3421 (2002).
23. Chalimont, S. W. & Rose, A. H. Interrelationships between a yeast and a bacterium when growing together in defined medium. Nature 174, 877–878 (1954).
24. Kawarai, T., Furukawa, S., Ogihara, H. & Yamasaki, M. Mixed-species biofilm formation by lactic acid bacteria and rice wine yeasts. Appl. Environ. Microbiol. 73, 4673–4676 (2007).
25. Mendes, F. et al. Transcriptome-based characterization of interactions between Saccharomyces cerevisiae and Lactobacillus delbrueckii subsp. bulgaricus in lactose-grown chemostat cocultures. Appl. Environ. Microbiol. 79, 5949–5961 (2013).
26. Schachtseck, M., Hammes, W. P. & Hertel, C. Characterization of Lactobacillus casei ssp. rhamnosus DSM 20001[®] surface protein Cpf mediating coaggregation with and aggregation among pathogens. *Appl. Environ. Microbiol.* **70**, 7078–7085 (2004).

27. Reniero, R., Coccozzone, P., Bottazzi, V. & Morelli, L. High frequency of conjugation in *Lactobacillus* mediated by an aggregation-promoting factor. *J. Gen. Microbiol.* **138**, 763–768 (1992).

28. Mizuno, K. et al. Fimbriae and lipopolysaccharides are necessary for co-aggregation between *Lactobacillus* and *Escherichia coli*. *Biochim. Biophys. Acta* **78**, 1626–1628 (2014).

29. Kuroda, M. et al. Whole genome sequencing of methicillin-resistant *Staphylococcus aureus*. *Lancet* **357**, 1225–1240 (2001).

30. Low, D. B. & Van der Woude, M. Fimbriae in *Escherichia coli* and *Salmonella*: *Cellular and Molecular Biology* 2nd edition (ed. Neidhardt, F. C. et al.) chapter 11 (ASM Press, 1996).

31. Nikaido, H. Outer membrane in *Escherichia coli* and *Salmonella: Cellular and Molecular Biology* 2nd edition (ed. Neidhardt, F. C. et al.) chapter 5 (ASM Press, 1996).

32. Cheigh, C. I. & Pyun, Y. R. Nisin biosynthesis and its properties. *Biotechnol. Biochem.* **78**, 1641–1648 (2005).

33. Morishita, T. et al. Multiple nutritional requirements of lactobacilli: genetic lesions affecting amino acid biosynthetic pathways. *J. Bacteriol.* **148**, 64–71 (1981).

34. Bringel, F. & Hubert, J. C. Extent of genetic lesions of the arginine and pyrimidine biosynthetic pathways in *Lactobacillus plantarum*, *L. paraplanarum*, *L. pentosus*, and *L. casei*: Prevalence of CO₂-dependent auxotrophs and characterization of deficient arg genes in *L. plantarum*. *Appl. Environ. Microbiol.* **69**, 2674–2683 (2003).

35. Acaci, P. et al. Modelling and predicting the simultaneous growth of *Escherichia coli* and lactic acid bacteria in milk. *Food Sci. Technol. Int.* **22**, 475–484 (2015).

36. Koppl, R., Kaufmann, S., Felin, T. & Longo, G. Economics for a creative world. *Journal of Institutional Economics* **11**, 1–31 (2015).

37. Kaufman, S. A creative universe: No entailing laws, but enablement in the evolution of the biosphere. In: *In: Humanity in a creative universe*. Oxford University Press, New York, Part I, chapter4 (2016).

38. Macpherson, A. J. & Harris, N. L. Interactions between commensal intestinal bacteria and the immune system. *Nat. Rev. Immun.* **4**, 478–485 (2004).

39. Suzuki, I. et al. Growth of *Lactobacillus bulgaricus* in milk. 1. Cell elongation and the role of formic acid in boiled milk. *Journal of Dairy Science* **69**, 311–320 (1986).

40. Morikawa, K. et al. Expression of a cryptic secondary sigma factor gene unveils natural competence for DNA transformation in *Staphylococcus aureus*. *PLoS Pathogens* **8**(11), e1003003 (2012).

41. Shi, L. et al. Limits of propidium iodide as a cell viability indicator for environmental bacteria. *Cytometry part A* **71**, 592–598 (2007).

42. Shi, L. et al. Expression of a cryptic secondary sigma factor gene unveils natural competence for DNA transformation in *Staphylococcus aureus*. *PLoS Pathogens* **8**(11), e1003003 (2012).

43. Green, M. R. & Simonsen, P. DNA cloning: A laboratory manual 4th ed. Cold spring harbor laboratory Press, New York, chapter 3 (2012).

44. Roe, A. J., O’Byrne, C., McLaggan, D. & Booth, I. R. Inhibition of *Escherichia coli* growth by acetic acid: a problem with methionine biosynthesis and homocysteine toxicity. *Microbiology* **148**, 2215–2222 (2002).

45. Muyzer, G., de Waal, E. C. & Uitterlinden, A. G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. *Appl. Environ. Microbiol.* **59**, 695–700 (1993).

46. Shi, L. et al. Limits of propidium iodide as a cell viability indicator for environmental bacteria. *Cytometry part A* **71**, 592–598 (2007).

47. Shi, L. et al. Expression of a cryptic secondary sigma factor gene unveils natural competence for DNA transformation in *Staphylococcus aureus*. *PLoS Pathogens* **8**(11), e1003003 (2012).

48. Baba, T. et al. Construction of *Escherichia coli* K-12 in-frame, single-gene knockout mutants: the Keio collection. *Mol. Syst. Biol.* **2**, 2006.0008 (2006).

49. Baba, T. et al. Genome and virulence determinants of high virulence community-acquired MRSA. *Lancet* **359**, 1819–1827 (2002).

50. Nakagawa, T. et al. Detection of alcohol-tolerant hiochi bacteria by PCR. *Appl. Environ. Microbiol.* **60**, 637–640 (1994).

Acknowledgements

We thank Dr. Soichi Furukawa for his inspiring discussions, and dedicate this paper to his memory.

Author Contributions

Experimental design, K. Mizuno and K. Morikawa: Experiments, all authors; Manuscript, K. Mizuno, V.M.R., and K. Morikawa. All authors discussed the results and commented on the manuscript.

Additional Information

Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-017-12894-3.

Competing Interests: The authors declare that they have no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2017