Prevention of adverse events of interferon γ gene therapy by gene delivery of interferon γ-heparin-binding domain fusion protein in mice

Mitsuru Ando¹, Yuki Takahashi¹, Takuma Yamashita¹, Mai Fujimoto¹, Makiya Nishikawa¹, Yoshihiko Watanabe² and Yoshinobu Takakura¹

Sustained gene delivery of interferon (IFN) γ can be an effective treatment, but our previous study showed high levels of IFNγ-induced adverse events, including the loss of body weight. These unwanted events could be reduced by target-specific delivery of IFNγ after in vivo gene transfer. To achieve this, we selected the heparin-binding domain (HBD) of extracellular superoxide dismutase as a molecule to anchor IFNγ to the cell surface. We designed three IFNγ derivatives, IFNγ-HBD1, IFNγ-HBD2, and IFNγ-HBD3, each of which had 1, 2, or 3 HBDS, respectively. Each plasmid-encoding fusion proteins was delivered to the liver, a model target in this study, by hydrodynamic tail vein injection. The serum concentration of IFNγ-HBD1 and IFNγ-HBD2, after gene delivery was lower than that of IFNγ or IFNγ-HBD1. Gene delivery of IFNγ-HBD3, but not of IFNγ-HBD1, effectively increased the mRNA expression of IFNγ-inducible genes in the liver, suggesting liver-specific distribution of IFNγ-HBD2. Gene delivery of IFNγ-HBD3-suppressed tumor growth in the liver as efficiently as that of IFNγ with much less symptoms of adverse effects. These results indicate that the adverse events of IFNγ gene transfer can be prevented by gene delivery of IFNγ-HBD3, a fusion protein with high cell surface affinity.

Molecular Therapy — Methods & Clinical Development (2014) 1, 14023; doi:10.1038/mtm.2014.23; published online 18 June 2014

INTRODUCTION

Interferon (IFN)γ is a type II IFN that exhibits a variety of biological activities, such as antiviral activity, antitumor activity, and regulatory functions on the immune system.¹⁻³ IFNγ is expected to be useful as a therapeutic agent to treat a variety of diseases, such as immune disorders, viral infections, and cancer.⁶ However, the short half-life of IFNγ limits its clinical application. It has been reported that the half-life of IFNγ in humans is about 30 minutes and 4.5 hours after intravenous and intramuscular injection, respectively.⁷

IFNγ gene therapy is a viable approach to maintain the concentration of IFNγ for a long period. In the previous studies, we demonstrated that the duration of transgene expression can be extended by reducing the number of unmethylated CpG dinucleotides in the plasmid DNA (pDNA) backbone⁸⁻⁹ or by selecting a human ROSA26 promoter or other sustainable promoters.¹⁰ We also showed that sustained IFNγ expression effectively inhibited tumor metastasis¹¹⁻¹² and reduced the development and progression of atopic dermatitis in mouse models.¹¹⁻¹³

The ubiquitous expression of IFNγ receptors also greatly limits the therapeutic application of IFNγ but controlling the tissue distribution of IFNγ could solve this problem. We demonstrated in a previous study that genetically fusing murine serum albumin (MSA) to IFNγ greatly increased the retention of IFNγ in the systemic circulation.¹³ The use of any proteins, protein domains, or peptides that have high affinity for target cells for the design of IFNγ fusion protein would be a promising approach to reduce the adverse effects of IFNγ.

Designing IFNγ fusion proteins with a high affinity for cell surface glycosaminoglycans will limit their distribution close to the cells transduced and reduce the level of IFNγ in the systemic circulation. Some proteins are anchored to the cell surface through the interaction with heparan sulfate and the heparin-binding domain (HBD) of such proteins. For example, murine extracellular superoxide dismutase (EC-SOD) has an HBD of the amino acid sequence RKKRRR on the C-terminal and binds to the extracellular matrix through the interaction with glycosaminoglycans, such as heparin and heparan sulfate.¹⁴ In this study, we selected the HBD of EC-SOD and designed IFNγ fusion proteins with one to three HBDS (IFNγ-HBD) to limit their distribution to the region near the site of gene transfer. To prove the availability and usefulness of this strategy, we constructed plasmids encoding IFNγ-HBD fusion proteins and delivered them to mouse liver by the hydrodynamic gene transfer method. The therapeutic and adverse effects of gene delivery of IFNγ-HBD were assessed by examining hepatic metastasis of cancer cells, and loss of body weight and the production of interleukin (IL) 12, respectively.
RESULTS

IFNγ-HBD fusion proteins bind to the cell surface after being secreted from transfected cells

One, two, or three repeats of the HBD of EC-SOD (RKKRRR) were genetically fused to the C-terminal of IFNγ to obtain IFNγ-HBD1, IFNγ-HBD2, and IFNγ-HBD3, respectively. We used the pcDNA3 plasmid backbone to construct plasmid vectors expressing IFNγ-HBD1 (n = 1, 2, 3) for in vitro studies. Figure 1a shows the schematic images of plasmids encoding IFNγ or IFNγ-HBDs. African green monkey kidney COS-7 cells were transfected with each plasmid, and the amounts of IFNγ and IFNγ-HBDs in culture media and cell lysates were measured 24 hours after transfection. The concentration of IFNγ-HBD fusion proteins in the culture media of the cells transfected with pcCMV-IFNγ-HBD1, pcCMV-IFNγ-HBD2, or pcCMV-IFNγ-HBD3, was much lower than the concentration of IFNγ in the media of the cells transfected with pcCMV-IFNγ (Figure 1b). Western blot analysis of the culture media of the cells transfected with pcCMV-IFNγ-HBD1, pcCMV-IFNγ-HBD2, or pcCMV-IFNγ-HBD3, showed a band with a molecular weight slightly higher than 35 kDa (Figure 1c, lanes 2–4), suggesting that the fusion proteins designed are expressed in the cells after transfection.

To confirm whether IFNγ-HBD fusion proteins bound to heparan sulfate, IFNγ-HBD fusion proteins were added to the heparan-sulfate, IFNγ-treated media of the cells transfected with pcCMV-IFNγ-HBD1, pcCMV-IFNγ-HBD2, or pcCMV-IFNγ-HBD3, and IFNγ-HBD fusion proteins were examined in the cells after transfection.

To visualize the cellular localization of IFNγ and IFNγ-HBD fusion proteins, immunofluorescent staining of COS-7 cells was performed using anti-IFNγ antibody (Figure 2a). To detect IFNγ and IFNγ-HBD fusion proteins both inside and outside the cells, cells were treated with 0.1% Triton X-100 to permeabilize the cell membrane. Strong IFNγ signals were observed in all the cells transfected with any plasmid. When the cells were not treated with 0.1% Triton X-100, no significant signals were detected in the cells transfected with pcCMV-IFNγ, whereas positive signals were detected in the cells transfected with pcCMV-IFNγ-HBD1, pcCMV-IFNγ-HBD2, or pcCMV-IFNγ-HBD3. In addition, these localization of IFNγ-HBDs on cell surface were observed in other two types of cells, mouse embryonic fibroblast cell line NIH 3T3 and human hepatocellular carcinoma cell line HepG2 (data not shown).

To quantitatively evaluate the amount of IFNγ-HBD fusion proteins on the cell surface, flow cytometry was performed after the transfection with pcCMV-IFNγ or pcCMV-IFNγ-HBD, (Figure 2b). As a result, finding similar to the immunofluorescent staining experiment was obtained by flow cytometry. When the cells were not treated with 0.1% Triton X-100, the fluorescence-positive cells were 5.25, 8.49, 12.8, and 14.3% for the cells transfected with pcCMV-IFNγ, pcCMV-IFNγ-HBD1, pcCMV-IFNγ-HBD2, and pcCMV-IFNγ-HBD3, respectively. These results suggested that they bound to the cell surface after secretion.

IFNγ-HBD fusion proteins activate the GAS-dependent luciferase activity in cultured cells

The biological activity of the IFNγ-HBD fusion proteins was examined using mouse melanoma B16-BL6 cells transfected with pGAS-Luc, a plasmid-encoding firefly luciferase under the control of the GAS element. To quantitatively evaluate the amount of IFNγ-HBD fusion proteins in the media of COS-7 cells, ELISA was performed. The concentration of IFNγ-HBDs in the culture medium of COS-7 cells transfected with pcCMV-IFNγ-HBD1, pcCMV-IFNγ-HBD2, or pcCMV-IFNγ-HBD3, was much lower than the concentration of IFNγ in the media of the cells transfected with pcCMV-IFNγ (Figure 1b).

To quantify the amount of IFNγ-HBD fusion proteins on the cell surface, flow cytometry was performed after the transfection with pcCMV-IFNγ or pcCMV-IFNγ-HBD, (Figure 2b). As a result, finding similar to the immunofluorescent staining experiment was obtained by flow cytometry. When the cells were not treated with 0.1% Triton X-100, the fluorescence-positive cells were 5.25, 8.49, 12.8, and 14.3% for the cells transfected with pcCMV-IFNγ, pcCMV-IFNγ-HBD1, pcCMV-IFNγ-HBD2, and pcCMV-IFNγ-HBD3, respectively. These results suggested that they bound to the cell surface after secretion.

IFNγ-HBD fusion proteins activate the GAS-dependent luciferase activity in cultured cells

The biological activity of the IFNγ-HBD fusion proteins was examined using mouse melanoma B16-BL6 cells transfected with pGAS-Luc, a plasmid-encoding firefly luciferase under the control of the GAS element.

Figure 1 Characteristics of IFNγ-HBD fusion proteins. (a) Schematic representation of wild-type and cell surface-interacted interferonγ (IFNγ) genes encoding IFNγ and IFNγ-HBD1, IFNγ-HBD2, and IFNγ-HBD3. (b) The concentration of IFNγ in the culture medium of COS-7 cells (open column) and cell lysates (solid column) 24 hours after transfection of pcG-IFNγ and pCpG-IFNγ (0.3 μg/well). Results are expressed as mean ± SEM (n = 3). (c) Western blotting analysis of IFNγ-HBD fusion proteins. Lane 1, IFNγ; lane 2, IFNγ-HBD1; lane 3, IFNγ-HBD2; and lane 4, IFNγ-HBD3. (d) Heparan sulfate-coating plate was incubated with serial dilutions of IFNγ (solid circles), IFNγ-HBD1, IFNγ-HBD2, and IFNγ-HBD3 (open circles). IFNγ, IFNγ-HBD1, IFNγ-HBD2, and IFNγ-HBD3 (open squares) for 2 hours at room temperature. Each protein bound to heparan sulfate was detected by ELISA. Results are expressed as mean ± SEM (n = 3). Asterisk (*) indicates t-test statistically different (P < 0.05) from the IFNγ group at the same concentration. ELISA, enzyme-linked immunosorbent assay; HBD, heparin-binding domain; IFN, interferon.
interferon gamma activated site (GAS) (Figure 3). In B16-8L6 cells, the amount of heparan sulfate on the surface of cells is small, because this cell line expresses heparanase, which is a heparan sulfate-degrading enzyme. Therefore, we were simply able to evaluate the biological activities of “free” IFNγ-HBD fusion proteins in vitro. Serially diluted IFNγ or IFNγ-HBD fusion proteins collected from culture media of COS-7 cells were added to each well of B16-8L6 cells transfected with pGAS-Luc. The addition of IFNγ increased the luciferase activity in a concentration-dependent manner. The fusion proteins also increased the activity, but the increase was a little smaller than that by IFNγ. The half maximal effective concentration (EC50) values calculated from the dose–response curves were 66.0, 80.5, 81.7, and 83.6 pg/ml for IFNγ, IFNγ-HBDγ, IFNγ-HBD2, and IFNγ-HBD3, respectively. Liver-directed gene transfer of IFNγ-HBD fusion proteins increases SOCS1 and γ-IP10 mRNA expression in mouse liver. pCpG vectors were used instead of pcDNA3 vectors for animal studies, because the former are more efficient in terms of transgene expression than the latter in mice. Mice received a hydrodynamic injection of any of the plasmids at different doses, and the livers were harvested 3 days after injection. Figure 4 shows the mRNA expression of IFNγ (or IFNγ-HBD fusion proteins), a suppressor of cytokine signaling 1 (SOCS1), and IFNγ inducible protein 10 (γ-IP10) in the mouse liver. The mRNA expression of the transgenes was dose dependent in all the groups and did not differ markedly from one to the other. The expression of IFNγ significantly increased the mRNA expression of SOCS1 and γ-IP10, indicating that IFNγ expressed in the liver is biologically active. The expression of these genes in the pCpG-IFNγ-HBDγ–injected group was increased to a similar level in the pCpG-IFNγ–injected group. On the other hand, the expression in the pCpG-IFNγ-HBD2– and pCpG-IFNγ-HBD3–injected groups was significantly lower than that in the pCpG-IFNγ– or pCpG-IFNγ-HBDγ–injected group, and the mRNA expression in the pCpG-IFNγ-HBD2–injected group was almost negligible over the dose range examined.

Heparin injection increases the serum concentration of IFNγ-HBDγ alone
The serum concentration of the transgenes was measured in mice after hydrodynamic injection of pCpG-IFNγ, pCpG-IFNγ-HBD1, or pCpG-IFNγ-HBD2 (Figure 5a). pCpG-IFNγ-HBD2 was not included in this study because IFNγ-HBD2 hardly induced SOCS1 and γ-IP10 in the mouse liver (Figure 4). As reported in our previous paper, a sustained serum concentration of IFNγ was obtained after injection of pCpG-IFNγ. The levels of serum IFNγ-HBDγ detected were similar to those of IFNγ. On the other hand, the serum concentrations of IFNγ-HBD2 were much lower than those of the other two, and they fell below the detection limit 3 days after injection.
Molecular Therapy — Methods & Clinical Development (2014) 14023 © 2014 The American Society of Gene & Cell Therapy

Three days after injection, the mice injected with any of the plasmids received a heparin injection, and the serum concentration of IFNγ, IFNγ-HBDγ, and IFNγ-HBDβ was then measured. The serum concentration of IFNγ-HBDγ was greatly increased (by about 20-fold) by the heparin injection, whereas that of the others remained almost unchanged.

A significant difference in the sensitivity to heparin treatment between IFNγ-HBDγ and IFNγ-HBDβ suggests that the length of the HBD peptides is critical for the binding of these fusion proteins to the cell surface. Then, we designed IFNγ-HBDγ−n (n = 1, 2, 3, 4, or 5) and IFNγ fusion proteins with the single HBD and additional amino acids of the HBD (Figure 5c). Figure 5d shows the serum concentration of IFNγ-HBD fusion proteins in pCpG-IFNγ−HBDγ, pCpG-IFNγ−HBDβ, or pCpG-IFNγ−HBDγ−n (n = 1, 2, 3, 4, and 5) injected mice before and 5 minutes after heparin injection. The serum concentration of IFNγ-HBD fusion proteins tended to increase following heparin injection in all the cases examined, and a positive correlation was observed between the increase in the serum concentration and the number of additional amino acids (Figure 5d,e). However, the increase in IFNγ-HBDγ was much greater than that in IFNγ-HBDγ−3 or which is only one amino acid shorter than IFNγ-HBDγ−2.

Gene delivery of IFNγ-HBDγ inhibits hepatic metastasis with fewer unwanted side effects

Finally, we evaluated the therapeutic and unwanted side effects after gene delivery of IFNγ and IFNγ-HBDγ. Mice received the low doses of pDNA (0.12 µg/mouse for pCpG-IFNγ and 10 µg/mouse for pCpG-IFNγ-HBDγ) or the high doses of pDNA (0.3 µg/mouse for pCpG-IFNγ-HBDγ and 100 µg/mouse for pCpG-IFNγ-HBDγ) or control pDNA (pCpG-huIFNγ). The serum concentrations of IFNγ in the pCpG-IFNγ and the pCpG-IFNγ-HBDγ groups were similar tendency to Figure 5a (Figure 6a). Figure 6e shows the number of metastatic colonies of mouse ovarian carcinoma M5076 cells on the liver surface 14 days after inoculation into the tail vein. Injection of 0.12 and 0.3 µg pCpg-IFNγ reduced the number of the colonies to 53 and 49%, respectively, compared to that in the control pDNA-injected group. Injection of 10 and 100 µg pCpG-IFNγ-HBDγ reduced the number of the colonies to about 56 and 39%, respectively, compared to that in the control pDNA-injected group (Figure 6d,e). Significant inhibitory effect was observed in the 100 µg pCpG-IFNγ-HBDγ-injected group compared with the control pDNA-injected group. No significant difference was detected between the numbers of any pCpG-IFNγ and any pCpG-IFNγ-HBDγ groups. Then, the serum concentration of IL-12 p40 and the body weight were measured as indicators of the non-specific, unwanted side effects of IFNγ. The serum concentration of IL12 p40 was increased by the injection of each dose of pCpG-IFNγ (Figure 6b). In contrast, injection of pCpG-IFNγ-HBDγ induced less serum concentration of IL12 p40 compared to that of pCpG-IFNγ. Figure 6c shows the body weight of the mice. Again, a significant body weight loss was observed in the 0.12 µg pCpG-IFNγ-injected group, the 0.3 µg pCpG-IFNγ-injected group, and the 100 µg pCpG-IFNγ-HBDγ, but not in the 10 µg pCpG-IFNγ-HBDγ-injected group. In addition, one mouse receiving 0.3 µg pCpG-IFNγ was died during the experimental period.

DISCUSSION

IFNγ exerts its biological activity by binding to IFNγ receptors, which are expressed on a variety of cell types. Therefore, sustained delivery of IFNγ will not be sufficient to increase its therapeutic index, and controlled delivery to target cells is required. To control the tissue distribution of protein drugs, small peptides that bind to target cell surface proteins, such as growth factor receptors and cell adhesion molecules, were used to design fusion proteins. In this study, we designed IFNγ-HBD fusion proteins to limit the distribution of IFNγ to the surface of transfected cells through the interaction with heparan sulfate glycosaminoglycans. This strategy of the limited distribution of IFNγ was strongly dependent on liver-specific gene transfer by hydrodynamics-based procedure. The liver was selected as a target organ, because IFNγ can be a therapeutic treatment for liver fibrosis, hepatocellular carcinoma, and chronic hepatitis C.

A major concern with fusion proteins is the reduction in biological activity, as demonstrated in our previous study with IFNγ-MSA, IFNγ fused with MSA to the carboxyl-terminal end; it possessed only about 1/200 the biological activity of IFNγ. Szente et al. demonstrated that the carboxyl-terminal of IFNγ is important for the interaction with its receptor and following intracellular signaling, such as antiviral responses and major histocompatibility complex II expression. The experimental results of GAS reporter assay showed that all the IFNγ-HBD fusion proteins designed have comparable biological activities to IFNγ, suggesting that the steric hindrance of HBD is much lower than that of MSA (Figure 3).

To our surprise, the expression of IFNγ-HBD fusion proteins was quite dependent on the number of HBD on the fusion proteins. The mRNA expression of the transgenes and IFNγ-inducible genes, SOCS1, and γ-IP10, strongly suggests that the longer peptide...
interferes with the expression of fusion proteins in mouse liver (Figure 4b,c). This speculation is supported by the in vitro experiments using COS-7 cells, in which the amounts of the transgene products significantly decreased with an increase in the number of HBD fused to IFNγ (Figure 1b).

Heparin injection has been used to confirm the binding of products, such as EC-SOD and xanthine oxidase, to glycosaminoglycans. Our data showed that an HBD of EC-SOD is not sufficient to restrict IFNγ-HBD fusion protein to the cell surface, and two HBDs are required (Figures 1d and 5b). EC-SOD exists in monomeric, dimeric, or tetrameric forms. It has been reported that the affinity of EC-SOD for heparan sulfate was dependent on the degree of oligomerization, and EC-SOD tetramers were released into the systemic circulation following heparin injection. These properties of EC-SOD would explain the sensitivity to heparin injection or, in other words, binding to the cell surface of IFNγ-HBD, IFNγ-HBDα, and IFNγ-HBDα–IFNγ-HBDβ. Taken together with the expression data, we conclude that IFNγ-HBDβ is an excellent fusion protein with a good balance between binding affinity for heparin sulfate glycosaminoglycans and expression efficiency.

The mRNA expression of the IFNγ-inducible genes in the liver indicates that IFNγ-HBDβ actually binds to the IFNγ receptors on hepatocytes. This would be largely due to the properties of the hydrodynamic injection method, by which more than 99% of gene-transferred cells was ~10% in the liver after hydrodynamic gene transfer. Therefore, this low gene delivery limited the opportunity for IFNγ-HBD to work in the whole liver. In fact, all IFNγ-HBD fusion proteins significantly decreased with an increase in the number of HBD fused to IFNγ (Figure 1b).
proteins showed similar biological activities to IFNγ in vitro (Figure 3), whereas in vivo biological activities of IFNγ-HBD2 and IFNγ-HBD2 were less than IFNγ after hydrodynamic gene transfer (Figure 4). We speculated that this inconsistency between in vitro and in vivo experiments was derived from the amount of heparan sulfate. In the liver, the intercellular space is abundant with tissue matrix including glycosaminoglycan. We considered that IFNγ-HBD2 showed limited distribution near the transfected cells in the liver, whereas secreted IFNγ distributed to the whole liver. Therefore, IFNγ activity of the whole liver was decreased because the number of hepatocytes that was affected by IFNγ-HBD2 was less than that of IFNγ. Dedieu et al.26 has shown that adenovirus vector transfected ~80% of hepatocytes in the liver. Therefore, we considered that using adenovirus vector would improve the efficacy of IFNγ-HBD2. The inhibition of the proliferation of M5076 cells in the liver also suggested that a therapeutic level of bioactive IFNγ-HBD2 is limited in the organ.

High concentrations of IFNγ in the systemic circulation result in several adverse events both in humans and mice, including anorexia and weight loss.25 These adverse events are induced directly by IFNγ26 or indirectly27,28 through the up-regulation of other cytokines, including IL12. Following stimulation with IFNγ, IL12 is produced by dendritic cells,29 macrophages,30 and B cells.31 The minor changes in the body weight and IL12 suggest that IFNγ-HBD2 is delivered in very small amounts to these immune cells after liver-directed gene transfer. The limited production of IL12 is very important for achieving liver-selective delivery of IFNγ fusion proteins, because it is a strong inducer of IFNγ.32 In addition, death of mice was observed after high dose of pCpG-IFNγ administration. However, in the case of pCpG-IFNγ-HBD2, no mice died. This result also suggested that fusing HBD to IFNγ is effective to reduce the adverse effect of IFNγ.

In conclusion, we demonstrated that fusing HBD to IFNγ can be used to control the tissue distribution of IFNγ and that the liver-specific distribution of IFNγ obtained by liver-directed gene transfer of IFNγ-HBD2 is effective in reducing secondary unwanted effects without reducing the therapeutic effect.

MATERIALS AND METHODS

pDNA construction

pCpG-huIFNγ encoding human IFNγ and pCpG-IFNγ-encoding murine IFNγ were constructed as described previously. pCpG-IFNγ-HBD2 (n = 1, 2, 3) were constructed by inserting the polymerase chain reaction (PCR) amplification encoding IFNγ-HBD2 into the BglII/NheI site of pCpG-mcs vector (InvivoGene, San Diego, CA). pCMV-IFNγ-HBD2, pCpG-IFNγ-HBD2, and pCpG-IFNγ-HBD2 (n = 1, 2, 3) were constructed by inserting the BglII/NheI IFNγ-BglII/HindIII site of pCpG-mcs vector (InvivoGene, San Diego, CA). pCMVIFNγ-HBD2, pCpG-IFNγ-HBD2, and pCpG-IFNγ-HBD2 (n = 1, 2, 3) were constructed by inserting the BglII/NheI site of pCpG-mcs vector (InvivoGene, San Diego, CA).

pCMV-IFNγ-HBD2, pCpG-IFNγ-HBD2, and pCpG-IFNγ-HBD2 (n = 1, 2, 3) were constructed by inserting the BglII/NheI site of pCpG-mcs vector (InvivoGene, San Diego, CA). pCMV-IFNγ-HBD2, pCpG-IFNγ-HBD2, and pCpG-IFNγ-HBD2 (n = 1, 2, 3) were constructed by inserting the BglII/NheI site of pCpG-mcs vector (InvivoGene, San Diego, CA). pCMV-IFNγ-HBD2, pCpG-IFNγ-HBD2, and pCpG-IFNγ-HBD2 (n = 1, 2, 3) were constructed by inserting the BglII/NheI site of pCpG-mcs vector (InvivoGene, San Diego, CA).
14 days after transplantation.

gamma temperature, each well was washed with phosphate-buffered saline (PBS) (Ready-SET-GO! Murine IFN-gamma to heparan sulfate
tions. In brief, pDNA/Lipofectamine 2000 complexes were prepared in a ratio
of 1 μg pDNA/3 μl LA2000.

Measurement of the binding affinities of IFN-gamma-HBD fusion proteins

Western blotting
The supernatants of COS-7 cells transfected with pCMV-IFN-gamma or pCMV-IFN-gamma-HBD were collected 24 hours after transfection. The samples were subjected to 10% sodium dodecyl sulphate–polyacrylamide gel electrophoresis under reducing or nonreducing conditions and transferred to a polyvinylidene fluoride transfer membrane electrophoretically. After blocking with 2% bovine serum albumin, the membrane was probed with rat anti-mouse IFN-gamma monoclonal antibody (1:200; Biologic, San Diego, CA) for 1 hour at room temperature and then allowed to react with goat anti-rat IgG polyclonal antibody conjugated with horseradish peroxidase (1:2,000; R&D System, Minneapolis, MN) for 1 hour at room temperature. The bands were detected by LAS-3000 (Fuji Film, Tokyo, Japan).

mRNA quantification
Total RNA was extracted from ~100 mg liver samples using Sepasol RNA I Super (Nakalai Tesque, Kyoto, Japan). Reverse transcription was performed using a ReverTra Ace qPCR RT kit (TOYOBO, Osaka, Japan), followed by RNaseH treatment (Ribonuclease H; Takara Bio, Otsu, Japan). For quantitative analysis of mRNA expression, a real-time PCR was carried out using total cDNA using KAPA SYBR FAST ABI Prism 2X qPCR Master Mix (Kapa Biosystems, Boston, MA). The oligodeoxynucleotide primers used for amplification were Ifn-gamma-sense: 5′-CGGACACAGTCAATGAGCCTA-3′, Ifn-gamma-antisense: 5′-GGTGGTGCTGATGGCCTGATTGTC-3′, and Ifn-gamma-inducible protein 10y-sense: 5′- CCGTTGGGCTCATTCTTCC-3′, and Ifn-gamma-inducible protein 10y-antisense: 5′- CTGCTATAGGGCGCTCACTAC-3′, and V–beta-actin-sense: 5′- CCGGTTTGGCGATTTCTGGC-3′, and V–beta-actin-antisense: 5′- GACCGAGGCTTACATCTGGC-3′. Amplified products were detected online via intercalation of the fluorescein dye using the StepOnePlus Real-Time PCR System (Applied Biosystems, Foster City, CA, USA). The fractional cycle number at which the fluorescence passes the threshold (Ct values) was used for quantification using a comparative Ct method. The mRNA expression of the target genes of interest was normalized to the rRNA expression level of β-actin.

Measurement of cytokine concentration
The culture medium and serum of mice were collected at indicated times after the transfection. The murine IFN-gamma concentration was determined by Murine IFN-gamma ELISA kits (Ready-SET-GO! Murine IFN-gamma ELISA; ebioscience). The murine IL-12 p40 concentration was determined using a murine IL-12 p40 ELISA kit (OptEIA® sets; Pharmingen, San Diego, CA).
Experimental hepatic metastasis

M5076 cells were suspended in Hanks’ balanced salt solution. Cell suspensions containing 1 x 10^7 M5076 cells in 100 μl Hanks’ balanced salt solution were injected into the tail vein of C57BL/6 mice to establish experimental hepatic metastasis. Then, 3 days after inoculation of tumor cells, each pDNA was injected into the tail vein by hydrodynamic gene transfer. pCG-HuFNY was used as a control pDNA. Then, 14 days after inoculation of tumor cells, 0.3 ml 10% solution of carbon ink (Huekibokuji, Huekinorikougyo, Osaka, Japan) in PBS was injected. The carbon particles in the ink make the metastatic nodules more visible by rendering the liver black. Thirty minutes after injection of the carbon solution, mice were sacrificed, and their livers were bleached by Fekete’s solution, and the number of metastatic nodules on the liver surface was counted.

Statistical analysis

Differences were statistically evaluated by Student’s t-test or Steel–Dwass test for multiple comparison. A P value of less than 0.05 was considered as statistically significant.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ACKNOWLEDGMENTS

This work was supported by Grants-in-Aid for Scientific Research (B) and for Young Scientists (B) from Japan Society for the Promotion of Science and by Grants-in-Aid for Scientific Research (B) and for Young Scientists from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

REFERENCES

1. Grassinger, A and Höpp, R (2004). Significance of the cytokine interferon gamma in clinical dermatology. Clin Exp Dermatol 29: 584–588.
2. Ellis, CN, Stevens, SR, Blok, BK, Taylor, RS and Cooper, KD (1999). Interferon-gamma therapy reduces blood leukocyte levels in patients with atopic dermatitis: correlation with clinical improvement. Clin Immunol 92: 49–55.
3. Jang, IG, Yang, JK, Lee, HJ, Yi, JY, Kim, HO, Kim, CW et al. (2000). Clinical improvement and immunohistochemical findings in severe atopic dermatitis treated with interferon-gamma. Jpn J Acad Dermatol 42: 1033–1040.
4. Stevens, SR, Hanifin, JM, Hamilton, T, Toffe, SJ and Cooper, KD (1998). Long-term effectiveness and safety of recombinant human interferon gamma therapy for atopic dermatitis despite unchanged serum IgE levels. Arch Dermatol 134: 799–804.
5. Noh, GW and Lee, KY (1998). Blood eosinophils and serum IgE as predictors for prognosis of interferon-gamma therapy in atopic dermatitis. Allergy 53: 1202–1207.
6. Schroeder, K, Hertzog, PJ, Ravasi, T and Hume, DA (1999). Human interferon-gamma receptor in human tissues. Eur J Immunol 29: 901–906.
7. Marrack, P, Blackman, M, Kushnir, E and Kappler, J (1990). The toxicity of staphylococcal enterotoxin B in mice is mediated by T cells. J Exp Med 171: 455–464.
8. Kaliński, P, Hilkens, CM, Snijders, A, Snijdewint, FG and Kapsenberg, ML (1997). IL-12-deficient dendritic cells, generated in the presence of proteaglinin E2, promote type 2 cytokine production in mounting human naive T helper cells. J Immunol 159: 28–35.
9. Matthys, P, Dijkmans, P, Proost, P, Van Damme, J, Heremans, H, Sobi, H et al. (1991). Severe cachexia in mice inoculated with interferon-gamma-producing tumor cells. Int J Cancer 47: 79–82.
10. Hjalmarsson, K, Marklund, SL, Engström, A and Edlund, T (1987). Isolation and sequence of complementary DNA encoding human extracellular superoxide dismutase. Proc Natl Acad Sci USA 84: 6340–6344.
11. Aguet, M, Dembici, Z and Merlin, G (1988). Molecular cloning and expression of the human interferon-gamma receptor. Cell 55: 273–280.
12. Valente, G, Gromer, L, Novelli, F, Geuna, M, Palestro, G, Forni, G et al. (1992). Distribution of interferon-gamma receptor in human tissues. Eur J Immunol 22: 2403–2412.
13. Fairbrother, WJ, Christigser, HW, Cochran, AG, Fuh, G, Keenan, QC, Quan, C et al. (1998). Novel peptide sequences to bind vascular endothelial growth factor target the receptor binding site. Biochemistry 37: 17754–17764.
14. Fekete, E (1938). A comparative morphological study of the mammary gland in a high and a low tumor strain of mice. Am J Pathol 14: 538–544.
15. Horigay, K, Nishikawa, M, Watcharanukar, K, Ikoma, A, Kabashima, K, Toyota, H et al. (2010). Sustained exogenous expression of therapeutic levels of IFN-gamma ameliorates atopic dermatitis in NC/Nga mice via Th1 polarization. J Immunol 184: 2729–2735.
16. Watcharanukar, K, Nishikawa, M, Takahashi, K, Kabashima, K, Takahashi, R and Takakura, Y (2012). Regulation of immunological balance by sustained interferon-γ gene transfer for acute phase of atopic dermatitis in mice. Gene Ther 20: 338–344.
17. Miyakawa, N, Nishikawa, M, Takahashi, Y, Ando, M, Misaka, M, Watanabe, Y et al. (2011). Prolonged circulation half-life of interferon γ activity by gene delivery of interferon γ-serum albumin fusion protein in mice. J Pharm Sci 100: 2350–2357.