Molecular Taxonomy Provides New Insights into Anopheles Species of the Neotropical Arribalzagia Series

Giovan F. Gómez¹, Sara A. Bickersmith², Ranulfo González³, Jan E. Conn²,4, Margarita M. Correa¹*

¹ Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín, Antioquia, Colombia, ² Griffin Laboratory, Wadsworth Center, New York State Department of Health, Singerlands, New York, United States of America, ³ Facultad de Ciencias Naturales y Exactas, Universidad del Valle, Cali, Valle del Cauca, Colombia, ⁴ Department of Biomedical Sciences, School of Public Health, State University of New York, Albany, New York, United States of America

* margaritcorrea@gmail.com

Abstract

Phylogenetic analysis of partial mitochondrial cytochrome oxidase c subunit I (COI) and nuclear internal transcribed spacer 2 (ITS2) sequences were used to evaluate initial identification and to investigate phylogenetic relationships of seven Anopheles morphospecies of the Arribalzagia Series from Colombia. Phylogenetic trees recovered highly supported clades for An. punctimacula s.s., An. calderoni, An. malefactor s.l., An. neomaculipalpus, An. apicimacula s.l., An. mattogrossensis and An. peryassui. This study provides the first molecular confirmation of An. malefactor from Colombia and discovered conflicting patterns of divergence for the molecular markers among specimens from northeast and northern Colombia suggesting the presence of two previously unrecognized Molecular Operational Taxonomic Units (MOTUs). Furthermore, two highly differentiated An. apicimacula MOTUs previously found in Panama were detected. Overall, the combined molecular dataset facilitated the detection of known and new Colombian evolutionary lineages, and constitutes the baseline for future research on their bionomics, ecology and potential role as malaria vectors.

Introduction

Malaria elimination remains a goal in Colombia where 64,309 malaria cases were reported in 2012 [1]. After Brazil, Colombia consistently has the highest number of annual malaria cases in Latin America [2], and underreporting is common [3]. Vector control remains one of the most effective measures to prevent malaria transmission [4,5] and for this, accurate Anopheles species identification is an essential part of targeted control strategies [5]. However, in Colombia several species in the subgenus Anopheles, including some potential malaria vectors, are relatively understudied.

The Anopheles subgenus comprises 187 valid species of which 56 are reported in the New World; 24 of these species are in the Neotropical Arribalzagia Series [6]. All species included in
this Series have a unique characteristic wing spot pattern that includes a dark spot at the end of the subcostal vein [7]. Of 47 anopheline species recorded in Colombia [8–10], 14 belong to the Anopheles subgenus, of which 12 are in the Arribalzagia Series [11]. Of these, Anopheles punctimacula Dyar & Knab and Anopheles neomaculipalpus Curry have been considered secondary malaria vectors [12,13]. Anopheles calderoni Wilkerson, recently detected in Colombia and Ecuador [14], is a suspected malaria vector [15], based on its anthropophilic behavior in the Colombian Pacific region [16]. Anopheles mattogrossensis and Anopheles perayssui were both previously found infected with Plasmodium vivax and P. falciparum in Brazil [17], but have not been incriminated in Colombia. A number of these species have been described or re-described based on morphological characters of life stages or male genitalia [18–21], and a few molecular taxonomic studies have been conducted revealing hidden diversity [14,22]. Such information is an essential prerequisite for understanding the biology, bionomics and role in malaria transmission of these species.

Anophele surveys are mostly based on field collected adult females, using human and animal baits, traps or other methods [23,24]. Rapid and accurate species identification of adult Anopheles females is of great relevance for vector biologists, particularly among species presenting difficulties during morphological identification[14,22,25]. Morphological characters of adult females, although useful [8,18,26,27], are limited for discriminating among closely related species or cryptic species with overlapping geographical distributions [28,29]. Morphological similarity among Arribalzagia Series species is widely documented [13,19,20]. For example, a recent molecular study that compared several specimens morphologically defined as An. punctimacula from Colombia, with reference material from Peru, Ecuador and Panama, revealed that some of these were An. calderoni [14].

Nuclear and mitochondrial markers have been used in molecular systematic studies and to elucidate phylogenetic relationships among Anopheles species [30]. Of these markers, the ITS2 (Internal Transcribed Spacer 2) region is reliable for differentiation of closely related species [31–33] and restriction fragment length polymorphism (RFLP) of the ITS2 is a sensitive, specific and rapid method for molecular confirmation [19,22,25,34–36]. The mitochondrial COI barcode region is another important systematics tool, but recent analysis suggests that resolution is higher when the barcode is combined with nuclear markers, at least for mosquitoes [30]. Morphology and COI barcode were used to discriminate successfully among An. calderoni, An. malefactor and An. punctimacula in Colombia [14]. Recently, based on phylogenetic analysis of COI and ITS2 sequences, An. punctimacula in Panama was designated as a species complex that includes at least two lineages (An. punctimacula s.s. and lineage B). Likewise, An. apicimacula encompasses at least two species, each comprising two lineages [22].

Considering that: i) accurate Anopheles species identification is essential for the design of targeted control vector strategies [23], ii) previous molecular work has suggested the presence of species complexes among the Arribalzagia Series, and iii) few studies exist on the molecular taxonomy of these species despite their possible role as malaria vectors, we hypothesize that seven morphospecies represent more than seven Molecular Operational Taxonomic Units (MOTUs) [37] in Colombia.

Material and Methods
Specimen sampling and DNA extraction
Specimens were collected in various localities across ten departments of Colombia from 2005–2012 and the study did not involve endangered or protected species. Mosquitoes were collected on private property, and permission was received from landowners prior to sampling (Fig. 1, Table 1). Most specimens were collected as adults using human landing catches.
under a protocol and written informed consent agreement approved by a University of Antioquia Institutional Review Board (Comité de Bioética, Sede de Investigación Universitaria, CBEIH- SIU, approval number 07–41–082). In addition, some An. malefactor fourth stage larvae were collected and reared to adults. Selected larval exuviae and male genitalia were mounted on microscope slides using Euparal, and at least one voucher specimen per species was deposited in the collection of the Laboratorio de Microbiología Molecular, Universidad de Antioquia, Colombia. Morphospecies were identified using the keys of González & Carrejo [8] and Wilkerson & Strickman [26]. Genomic DNA was extracted from abdomens using a salt precipitation protocol [38].

Fig 1. Map of collection sites for Arribalzagia Series species. Departments are noted with three letter codes. AMA: Amazonas; ANT: Antioquia; CHO: Chocó; COR: Córdoba; GUA: La Guajira; MAG: Magdalena; NAR: Nariño; NDS: Norte de Santander; RIS: Risaralda; VDC: Valle del Cauca. Identical symbols indicate the same species. Numbers on the map indicate collections sites detailed in Table 1.

doi:10.1371/journal.pone.0119488.g001
Species	n	Department	Municipality	Map No.	Sampling sites	Collection method(s)	Collection Year(s)	Latitude	Longitude	ITS2	COI
An. apicimacula s.l.	4	Antioquia	Necoclí	6	Pueblo Nuevo-Belavista	HLC	2009	8.426	-76.784	4	4
	5	Chocó	Nuquí	14	Panguí	HLC	2006	5.700	-77.267	2	3
	3	Valle del Cauca	Buenaventura	19	Zacarias-La Balastrera	HLC	2009	3.817	-76.983	1	3
An. calderoni	23	Nariño	Tumaco	20	Pindal	HLC, RC	2009–2010	1.617	-78.733	5	19
	5	Risaralda	Pereira	15	La Carbonera	HLC	2012	4.878	-75.858	3	4
	17	Valle del Cauca	Buga	18	Laguna de Sonso	HLC	2012	3.876	-76.348	3	16
	12	Valle del Cauca	Rofrío	17	El Jagual	HLC	2012	4.143	-76.279	3	12
	4	Valle del Cauca	Cartago	16	Hacienda Limones	CBC	2012	4.943	-75.903	2	4
An. malefactor	4	Antioquia	Vigía del Fuerte	9	San Antonio de Padua	BS	2010	6.283	-76.750	1	4
	1	Córdoba	Puerto Libertador	4	Corregimiento Juan José	HLC	2010	7.717	-75.850	0	1
	1	Norte de Santander	Tibú	12	Caño Victoria	HLC	2012	8.569	-72.667	1	1
An. neomaculipalpus	9	Antioquia	San Pedro de Urabá	8	El Caño	HLC, CBC	2011–2012	8.283	-76.383	3	9
	1	Antioquia	Turbo	7	Yarumal	HLC	2008	8.117	-76.733	1	1
	14	Córdoba	Moñitos	5	Rio Cedro	HLC	2005–2006	9.250	-76.100	5	14
	2	Córdoba	Montelíbano	3	Montelíbano-Rural	HLC	2012	7.983	-75.417	0	2
	1	La Guajira	Dibulla	1	Dibulla-Rural	HLC	2011	11.267	-73.300	0	1
	2	Norte de Santander	Zulia	13	Santa Rosa	CBC	2011	8.250	-72.550	2	2
	1	Norte de Santander	Tibú	12	Caño Victoria	HLC	2012	8.569	-72.667	1	1
An. punctimacula	5	Antioquia	San Pedro de Urabá	8	El Caño	HLC, CBC	2010–2012	8.283	-76.383	1	4
	2	Antioquia	Necoclí	6	Pueblo Nuevo-Belavista	HLC	2009	8.426	-76.784	1	2
	2	Antioquia	El Bagre	10	La Capilla	HLC	2009	7.583	-74.817	1	1
	1	Antioquia	Turbo	7	Camerún	HLC	2007	8.133	-76.717	1	0
	1	Antioquia	Vigía del Fuerte	9	San Antonio de Padua	HLC	2010	6.283	-76.750	1	0
	1	Antioquia	Zaragoza	11	El Retiro	HLC	2008	7.483	-74.850	0	3
	3	Córdoba	Montelíbano	3	Montelíbano-Rural	HLC	2012	7.983	-75.417	0	3
	4	La Guajira	Dibulla	1	Dibulla-Rural	HLC	2011	11.267	-73.300	0	4
	2	Magdalena	Los Achiotes	2	Los Achiotes	HLC	2005	11.250	-73.600	2	0
An. m. grossensis	2	Amazonas	Tarapacá	21	Nueva Unión	HLC	2010	-2.896	-69.758	2	2
An. peryassui	3	Amazonas	Letica	22	Km 6 and Km 11	HLC	2009	-4.215	-69.933	1	3
	2	Amazonas	Tarapacá	21	Nueva Unión	HLC	2010	-2.896	-69.758	2	0
Total	138									54	121

a Map number refers to the municipality as depicted in Fig. 1.

b HLC: Human-Landing Collection; CBC: Cattle-Bait Collection; BS: Breeding Site- larvae reared to adult; RC: Resting Collection.

doi:10.1371/journal.pone.0119488.t001
Barcode region

The COI gene region was amplified using the LCO and HCO universal primers [39] and modified PCR conditions [40]. PCR products were subjected to bidirectional sequencing. All the sequences were translated to amino acids to detect stop codons and potential shifts in reading frame as a test for possible nuclear mitochondrial pseudogenes (Numts). The COI protein sequence published for Anopheles gambiae (GI: 5834913) was used as a reference to indicate positions of amino acid changes. Potential contamination was explored using BLAST searches [41] (http://blast.ncbi.nlm.nih.gov/Blast.cgi). Additional COI sequences from GenBank were included for comparison with the original dataset (Table 2). COI sequences obtained in this work were deposited in GenBank under accession numbers KF698801-KF698878.

ITS2 region

The rDNA ITS2 was amplified using the primers ITS2-F (5'-TGAACTGCAGGACACATGAAC-3') and ITS2-R (5'-ATGCTTTAATTTAGGAGGTAGTC-3'), and analyzed by a RFLP assay [25,34,36]. Available confirmed specimens from the Arribalzagia Series species were used as controls for amplification and RFLP. The in silico restriction digestion for each species was predicted using Webcutter 2.0 tool available at http://rna.lundberg.gu.se/cutter2. PCR products were cloned using the CloneJET PCR Cloning Kit (Thermo Fisher Scientific Inc., PA, USA), and three to five clones per specimen were selected for sequencing. The ITS2 sequences were deposited in GenBank under accession numbers KF698879-KF698921 and KM262754-KM262760.

COI and ITS2 analyses

The COI and ITS2 sequences were edited in Geneious version 6.0.6 [42]. For ITS2, the flanking 5.8S and 28S regions were identified using the Diptera model through the ITS2 annotation tool [43,44] and excluded before ITS2 analysis. Analyses of intragenomic, intra- and interspecific ITS2 variation were performed in at least two specimens per morphospecies using DAMBE [45]. Mean uncorrected pairwise distances and standard errors were calculated with MEGA 5.0 [46]. The presence of interspersed and tandem repeat sequences was explored using the bioinformatics software Spectral Repeat Finder (SRF) [47] and Tandem Repeat Occurrence Locator (TROLL) [48], respectively.

For interspecific comparison, ITS2 sequences of Anopheles species belonging to Arribalzagia Series retrieved from GenBank also were analyzed (Table 2). Manual editing and multiple
sequence alignment were performed with Geneious version 6.0.6 under default parameters. Sequences were checked for insertions or deletions.

Phylogenetic analysis

Sequences were aligned and gaps were treated as missing data. Because saturation in substitutions can have negative effects on phylogenetic inference, saturation levels were tested in DAMBE [49]. The best-fit model of DNA substitution and the parameter estimates used for tree construction were chosen according to the Akaike Information Criterion (AIC) as implemented in jModeltest version 2.1.4 [50]. The results provided TrN+I+G and TIM3+G as the best-fit models for the COI and ITS2 datasets, respectively. Phylogenetic trees based on ITS2, COI or the concatenated (COI+ITS2) datasets were constructed using methods of Neighbor-Joining (NJ) in MEGA 5.0 [46], Maximum Likelihood (ML) in PhyML 3.0 [51] and Bayesian (BI) analysis in MrBayes [52]. To construct the NJ tree we chose Kimura’s (1980) two-parameter model (K2P), typically used in the DNA barcode strategy [53]. ML and BI were run with the parameters inferred from jModeltest.

Although all ITS2 variants were included in the ITS2 phylogeny, only the most frequent variant of each specimen was included in the concatenated analysis. For Bayesian inference, the analyses were initiated with random starting trees and the Markov chain Monte Carlo search was run with four chains for five million (ITS2 and ITS2+COI) for ten million generations (COI), sampling every 1,000 generations and discarding and average of 25% of each run as burn-in. Bootstrap sampling (1,000 replicates) was performed to test inferred phylogenies. *Anopheles (Anopheles) pseudopunctipennis* was used as the outgroup [54].

DNA-based approaches for species recognition

Molecular Operational Taxonomic Units (MOTUs) were identified according to the reciprocal monophyly criterion for the different phylogenetic approaches using individual markers (COI or ITS2) or concatenated (COI+ITS2) trees. The species delimitation plugin for Geneious [55] was used to calculate Rosenberg’s P_{AB} value, a test for taxonomic distinctiveness based on the null hypothesis that the observed monophyly was found by chance alone [56]. Correspondence between morphospecies and MOTUs in the gene trees was evaluated.

Criteria for assessing and comparing the COI barcode for specimens of the seven Arribalzagia Series species, included Best Match (BM), Best Close Match (BCM) and All Species Barcodes (ASB), as performed in TaxonDNA. These three algorithms are used to test identification success [57]. The presence or absence of the “barcode gap”, or the result of a smaller intraspecific divergence with respect to interspecific divergence, was evaluated. In addition, identification success was determined based on the 1% standard threshold cut-off value suggested by The Barcode of Life Data System [58], using SPIDER [59]. Automatic Barcode Gap Discovery (ABGD) allowed the partitioning of the DNA sequence datasets into clusters of like taxa setting a range of maximum values of intraspecific divergence (P) without an *a priori* species hypothesis [60].

Results

Species assignment

Overall, molecular confirmation agreed with the morphological identification for 83.21% of the wild-caught females. For the remaining 16.79%, misassignments among individual species were 90.91% ($n=10$) for *An. apicimacula* s.l., 30% ($n=9$) for *An. neomaculipalpus*, 16.67% ($n=1$) for *An. malefactor*, 9.09% ($n=2$) for *An. punctimacula* and 1.64% ($n=1$) for *An. calderoni*.
Anopheles apicimacula s.l. was frequently confused with An. punctimacula (54.55%) or An. neomaculipalpus (36.63%). The latter species was also misidentified as An. punctimacula (23.33%).

The PCR-RFLP-ITS2 assay was used as an initial approach for species confirmation. The PCR-ITS2 yielded a different product size for each species (Table 2), ranging from 393 bp for An. punctimacula to 481 bp for An. apicimacula. Interestingly, there were two slightly different PCR product sizes for Anopheles malefactor Dyar and Knab: 396 bp (specimens from Antioquia) and 401 bp (specimen from Norte de Santander). The species An. punctimacula s.s., An. apicimacula, An. neomaculipalpus could be differentiated by their PCR-RFLP-ITS2 patterns (Table 3). Furthermore, An. mattogrossensis and An. peryassui yielded similar banding patterns with slight differences in band sizes, which could not be discriminated on the electrophoresis gel. Two restriction patterns were detected for An. malefactor. Specimens from Antioquia and Córdoba Departments yielded a similar restriction pattern to An. punctimacula s.s. However, the ITS2 fragment corresponding to the Norte de Santander specimen was not cut by the enzyme, a result confirmed by bioinformatic analysis.

ITS2 sequence characterization

The Arribalzagia Series species had a range of ITS2 size from 265 bp in An. punctimacula s.s. to 353 bp in An. apicimacula from the Colombian Caribbean or lineage C. Overall, ITS2 size was conserved at the intraspecific level, except for a few specimens within some species (S1 Table). At the individual level, low intragenomic ITS2 variation was detected in all species and was restricted to a few mutations. The highest ITS2 intragenomic mean uncorrected p-distance of 1.23% was detected for one An. calderoni specimen from Risaralda. Anopheles mattogrossensis specimens had two ITS2 variants that differed by one bp (336 and 337 bp); the mean uncorrected p-distance between them was 1.19%. Comparison of both ITS2 variants with those available from GenBank found that the 336 bp ITS2 variant had the same deletion as a sequence reported for An. mattogrossensis from the state of Rondônia in western Brazil (AF461754). Likewise, the 337 bp variant was similar to the one reported for An. mattogrossensis from southern Colombia (JX198307). Further details about the specimens, number of clones and the mean uncorrected p-distance among ITS2 sequences can be found in S1 Table.

At the intraspecific level, two ITS2 variants were detected in An. malefactor. The ITS2 variant detected in Norte de Santander Department, NE Colombia, was identical to a previously

Table 3. Comparison of in vitro with in silico results from PCR-RFLP-ITS2 assay.

Species	Agarose gel fragment sizes (bp)	Bioinformatic prediction of fragment sizes (bp)		
	PCR product	PCR-RFLP	PCR product	PCR-RFLP
An. neomaculipalpus	500	259, 165, 111	452	255, 136, 61
An. apicimacula lineage C (Caribbean)	481	300, 150, 70	481	290, 130, 61
An. apicimacula lineage P (Pacific)	480	390, 70	480	372, 61, 47
An. punctimacula s.s.	397	334, 81	393	317, 76
An. calderoni	394	Uncut	401	Uncut
An. malefactor	399	Uncut; 378, 313, 113	401; 396	Uncut; 326, 70
An. mattogrossensis	505	230, 80	464*	213, 190, 61
An. peryassui	500	300, 96	464*	287, 116, 61

* An ITS2 variant of 463 bp was found that yielded 286, 116 and 61 bp in the in silico restriction analysis. PCR: Polymerase Chain Reaction; RFLP: Restriction Fragment Length Polymorphisms; (bp): base pairs.

doi:10.1371/journal.pone.0119488.t003
reported ITS2 for a Panamanian specimen of *An. malefactor*, 273 bp in length (JX212823). In contrast, specimens from a Caribbean locality in Antioquia Department, NW Colombia, had a deletion of five base pairs (268 bp) and 12 single mutations. The uncorrected p-distance between ITS2 variants of *An. malefactor* from the NE and NW was 4.5%. The overall mean uncorrected p-distance among all ITS2 sequences for each MOTU was: *An. neomaculipalpus* (0.2±0.1%), *An. punctimacula* s.s. (0.3±0.2%), *An. calderoni* (0.3±0.1%), *An. peryassui* (0.5±0.2%), *An. mattogrossensis* (0.8±0.4%), *An. apicimacula* s.l. (0.9±0.2%) and *An. malefactor* (2.4±0.6%). *Anopheles punctimacula* s.s. was molecularly confirmed in Caribbean and north-west Colombian localities by comparison of ITS2 sequences with those from Panama. Three fixed substitutions detected in the Panamanian specimens (positions 62, 131 and 81 of the ITS2 alignment) [22], were also found in those from Colombia. Two additional nucleotide substitutions were detected, one transversion at position 108 of the ITS2 alignment (T→A) in some sequences from Antioquia and La Guajira, and a unique sequence with a transition (G→A) at position 169 from La Guajira. The mean average ITS2 interspecific K2P distance was 48.8%. The highest ITS2 genetic distance was between *An. peryassui* and *An. mattogrossensis* (66.2±3%), and the lowest between *An. punctimacula* s.s. and *An. malefactor* (11.5±1.8%) (S2 Table). A common pentanucleotide tandem repeat (CACCT)$_2$ present in all ITS2 of the 9.3±1.3% between some sequences from Antioquia and La Guajira, and a unique sequence with a transition (G→A) at position 169 from La Guajira. The mean average ITS2 interspecific K2P distance was 48.8%. The highest ITS2 genetic distance was between *An. peryassui* and *An. mattogrossensis* (66.2±3%), and the lowest between *An. punctimacula* s.s. and *An. malefactor* (11.5±1.8%) (S2 Table). A common pentanucleotide tandem repeat (CACCT)$_2$ present in all ITS2 of the Arribalzagia Series species from Panama [22], was detected in five Colombian species, *An. punctimacula* s.s., *An. calderoni*, *An. neomaculipalpus* and *An. apicimacula* s.l. Additionally, one hexanucleotide tandem repeat (TGCGCA)$_2$ was detected in *An. calderoni*.

DNA barcoding

The *COI* alignment was 611 bp and yielded 79 unique haplotypes. There were 180 polymorphic sites (29.46%), from which 160 were parsimoniously informative (26.18%). Nucleotide changes mainly occurred at the third-codon positions and were silent. However, some interspecific *COI* nucleotide differences led to non-synonymous amino acid substitutions and some single amino acid differences were fixed at the species level. *Anopheles punctimacula* s.s. had a substitution (serine to alanine) at position 171, and *An. malefactor* at position 191 (valine to isoleucine). The average genetic distance among all *COI* sequences was 9.77±0.83%. Intraspecific variation values were *An. punctimacula* s.s. (0.42±0.16%), *An. malefactor* (0.55±0.2%), *An. peryassui* (0.83±0.26%), *An. neomaculipalpus* (0.86±0.19%), *An. mattogrossensis* (1±0.33%), *An. calderoni* (1.09±0.21%) and *An. apicimacula* s.l. (4.44±0.63%).

The most frequent *An. calderoni* haplotype (KF698801 = 27.27%) was shared among Pacific region localities within 122 km (Buga-Pereira). For *An. punctimacula* s.s., the most frequent haplotype (KF698833 = 66.67%) was from localities in Antioquia, Córdoba and La Guajira Departments (maximum straight-line distance between the farthest localities = 495 km). Lastly, the localities of Antioquia and Córdoba contained the most frequent haplotype for *An. neomaculipalpus* (KF698843 = 20%). There was a high number of unique haplotypes in the analyzed taxa (49.6%). The overall mean nucleotide diversity for the barcode was 0.084.

Intertaxa *COI* genetic distances among the seven Arribalzagia Series members ranged from 9.3±1.3% between *An. punctimacula* s.s. and *An. malefactor*, to 14.7±0.8% between *An. calderoni* and *An. peryassui* (S3 Table). Each of the *Anopheles* members formed a monophyletic group in the NJ, ML and BI trees with high support (Fig. 2). Results were also supported by Rosenberg’s P_{AB} values that were significant for all MOTUs ($p<0.05$). The BM and BCM criteria yielded identical results with 100% “correct” identifications. Moreover, 97.87% and 2.13% of the *COI* sequences were assigned as “correct” and “ambiguous” using the ASB criterion, respectively. The problematic identifications corresponded only to *COI* sequences of *An. apicimacula* lineage C.
Fig 2. NJ topology based on barcode (COI) sequences for members of the Arribalzagia Series. First number in each node indicate NJ bootstrap values (in percentages), numbers in bold indicate Bayesian posterior probability for each MOTU. *Anopheles pseudopunctipennis* was included as the outgroup.

doi:10.1371/journal.pone.0119488.g002
A COI threshold value equal or greater than 1% provided a perfect species identification for the dataset, with the presence of a barcoding gap. The ABGD method consistently revealed eight groups using an *a priori* intraspecific genetic divergence ≤1.47% under Jukes and Cantor’s model (JC69), supporting each morphospecies as a single species, except for *An. apicimacula* that encompassed two provisional MOTUs for all lower cut-offs.

Phylogenetic relationships

There was no saturation signal among the COI sequences (*p* < 0.05), validating the dataset for phylogenetic analyses. Phylogenetic trees based on NJ, ML and BI approaches with each marker (i.e. COI or ITS2) showed highly supported discrete clades for *An. punctimacula s.s.*, *An. calderoni*, *An. malefactor*, *An. neomaculipalpus*, *An. apicimacula* Caribbean and Pacific lineages, *An. mattogrossensis* and *An. peryassui*. Two highly supported mitochondrial lineages (BPP: 0.98) were detected in all trees for *An. apicimacula* s.l. that corresponded exclusively to specimens from the Caribbean and Pacific regions of Colombia (Figs. 2–4). Bayesian trees derived from ITS2 and COI+ITS2 data showed very similar topologies, whereas species groups in the COI tree were less evident.

Discussion

This study confirms that previously recognized morphospecies of the Arribalzagia Series of Colombia constitute independent evolutionary lineages or MOTUs and reveals hidden lineages. Strong molecular evidence supports at least two geographically separated MOTUs of *An. apicimacula* in the Colombian Pacific and Caribbean regions, respectively. The level of COI intraspecific variation for *An. apicimacula* s.l. (4.44%), compared to the standard value usually found for *Anopheles* species (<2%) [61,62], and the fixed ITS2 sequence differences together support the hypothesis that *An. apicimacula* is a complex [22]. These lineages are distributed...
along the Chocó/Darien/Western Ecuador biodiversity hotspot [63]; a variety of factors in this region, including landscape heterogeneity, historical demographical processes and Pleistocene environmental changes might have driven divergence [64,65]. It will be interesting to include *An. apicimacula* specimens from the type locality (Livingston, Guatemala) [66], to determine whether either of these lineages constitutes *An. apicimacula* s.s. Further sampling of *An. apicimacula* s.l., and the application of integrative taxonomic analysis will assist new species delimitation and geographical range [67,68].

Low intragenomic ITS2 variation was detected for most of the *Arribalzagia* species (<1%), with values comparable to those for other *Anopheles* species such as African *Anopheles arabiensis* (0.07%), *An. gambiae* (0.43%) [69], Neotropical *An. nuneztovari* (<0.2%) [70], and members of the Albitarsis Complex (<0.57%) [71]. At the intraspecific level, an unexpected 4.5% divergence between the N and the NE *An. malefactor* ITS2 variants was higher than those reported among 21 species of the subgenus *Nyssorhynchus* (0–2.8%) [72] or members of the Albitarsis Complex (0.28–1.17%) [71]. Nonetheless, ITS2 divergence was not supported by COI analysis (K2P distance <1%). Although the greatest distance between the collection localities for the Colombian *An. malefactor* specimens was 517 km, geographical distance alone cannot explain the ITS2 differentiation. The Panamanian *An. malefactor* ITS2 sequences were identical to those of the Colombian NE, collected 550 km away, whereas the NW specimens collected 227 km from the Panamanian *An. malefactor* collection site differed. Other factors may be responsible for this divergence, e.g., although it is recognized that concerted evolution homogenizes the ITS2 at the species level [73,74], differences in population size or migration rates could also affect ITS2 evolution among populations [75]. Similar COI but highly divergent ITS2 sequences in *An. malefactor* is hypothesized to be the result of mitochondrial introgression or incomplete lineage sorting at the mitochondrial locus, as observed for other species such as *An. cruzi* [76–79] and it also suggests that *An. malefactor* comprises at least two MOTUs. An integrative taxonomic approach that includes analysis of additional molecular markers should provide details of population structure, demographic history, and the formation of evolutionarily independent lineages in *An. malefactor* [64,80].
Morphological keys to adult females were useful for initial species identification, but some *An. apicimacula* were misidentified as *An. punctimacula* or *An. neomaculipalpus*. Overall, some Arribalzagia Series species females differ in morphological characters such as wing spot pattern (S1 Fig.). For instance, the small and appressed dark scales on the cubital vein of *An. apicimacula* s.l., which differ in form in *An. punctimacula* and *An. neomaculipalpus*, [8,26] was not easily detected in some specimens, resulting in their misidentification. This character of *An. apicimacula* is only shared with *An. intermedius*, a species that has been historically reported in forested areas from Central and South America [81], but with just one doubtful early record in Villavicencio, Colombia [8,82]. In this study, *An. malefactor* s.l. was relatively easy to separate based on its entirely white hindtarsomere 5, which usually has at least one dark band in *An. punctimacula* and *An. calderoni* [8]. Misidentification of specimens could result from intraspecific variation in wing spots as documented for other anopheline species [14,83], the loss of thoracic scales due to the sampling technique or during the mosquito life cycle [84] or human error in identifying ambiguous or damaged field samples. It will be important to determine if *An. malefactor* and *An. apicimacula* lineages are truly morphologically cryptic [85].

The PCR-RFLP-ITS2 strategy facilitated the identification of most members of the Arribalzagia Series. However, for accurate identification of *An. punctimacula* s.s.-*An. malefactor* s.l. and *An. mattogrossensis-An. peryassui*, that showed similar restriction patterns, we recommend sequencing the ITS2 or COI barcode region. Nevertheless, the low cost and effort needed to implement PCR-RFLP protocols in the laboratory [25,34,86,87], suggest the importance of designing a PCR-RFLP strategy based on a useful marker for the rapid and accurate discrimination of species and lineages in the Arribalzagia Series.

Conclusions

Nuclear and mitochondrial markers recovered monophyletic morphospecies in the Arribalzagia Series and allowed updating records of these species in several localities of the country. This is the first work in Colombia providing molecular confirmation of *An. apicimacula*, *An. punctimacula* s.s. and *An. malfactor* s.l. The two *An. apicimacula* evolutionary lineages detected, Pacific and Caribbean, with fixed differences in the mitochondrial and nuclear loci, likely represent two species. A possible mitochondrial introgression event or incomplete lineage sorting during the phylogenetic history of *An. malefactor* is hypothesized. Information on accurate identification of Colombian Arribalzagia Series species constitutes the baseline for future studies on their bionomics and vectorial importance that could be used for targeted and effective control efforts.

Supporting Information

S1 Fig. Comparison of wing-spot patterns among five species in the Arribalzagia Series.
PSD: presectorial dark; SD: sector dark; PD: preapical dark; AD: apical dark; CuA vein: Cubital vein.

(TIF)

S1 Table. Intragenomic variability of ITS2 in analyzed Arribalzagia Series species.

(DOCX)

S2 Table. ITS2-Interspecific K2P genetic distances. ITS2: Internal transcribed spacer 2. D: genetic distance. SE: Standard Error. K2P: Kimura 2 parameter, used as the evolutionary model.

(DOCX)
S3 Table. **COI-Interspecific K2P genetic distances.** COI: cytochrome oxidase I gene. D: genetic distance. SE: Standard Error. K2P: Kimura 2 parameter, used as the evolutionary model. (DOCX)

Acknowledgments

We thank the members of Grupo de Microbiología Molecular, especially to N. Naranjo, M. Altamiranda and J. Marin who cooperated in specimen collection and N. Álvarez, Y. Galeano and J. Rodriguez for technical laboratory support.

Author Contributions

Conceived and designed the experiments: GFG RG JEC MMC. Performed the experiments: GFG. Analyzed the data: GFG SAB RG JEC MMC. Contributed reagents/materials/analysis tools: RG JEC MMC. Wrote the paper: GFG SAB RG JEC MMC.

References

1. WHO (2012) World Malaria Report 2012. Available: www.who.int. Accessed 15 March 2013.
2. Padilla Rodríguez JC, Álvarez Uribe G, Montoya Araujo R, Chaparro Narváez P, Herrera Valencia S (2011) Epidemiology and control of malaria in Colombia. Mem Inst Oswaldo Cruz 106: 114–122. PMID: 21881765
3. Chaparro P, Soto E, Padilla JC, Vargas D (2012) Estimación del subregistro de casos de paludismo en diez municipios de la costa del Pacífico nariñense durante 2009. Biomédica 32: 29–37.
4. Brochero H, Quiñones ML (2008) Challenges of the medical entomology for the surveillance in public health in Colombia: reflections on the state of malaria. Biomedica 28: 18–24. PMID: 18645658
5. Ulrich JN, Naranjo DP, Alimi TO, Müller GC, Beier JC (2013) How much vector control is needed to achieve malaria elimination? Trends Parasitol 29: 104–109. doi: 10.1016/j.pt.2013.01.002 PMID: 23376213
6. Harbach RE (2013) Mosquito Taxonomic Inventory. Available: www.mosquito-taxonomic-inventory.info/. Accessed 10 September 2013.
7. Wilkerson RC, Peyton EL (1990) Standardized nomenclature for the costal wing spots of the genus *Anopheles* and other spotted-wing mosquitoes (Diptera: Culicidae). J Med Entomol 27: 207–224.
8. González R, Carrejo NS (2009) Introducción al estudio taxonómico de *Anopheles* de Colombia. 2nd ed. Cali: Universidad del Valle. 260 p.
9. Gutiérrez LA, Naranjo N, Jaramillo LM, Musikus C, Luckhart S, Conn JE, et al. (2008) Natural infectivity of *Anopheles* species from the Pacific and Atlantic Regions of Colombia. Acta Trop 107: 99–105. doi: 10.1016/j.actatropica.2008.04.019 PMID: 18554564
10. Montoya-Lerma J, Solarte YA, Giraldo-Calderón GI, Quiñones ML, Ruiz-López F, Wilkerson RC, et al. (2011) Malaria vector species in Colombia: a review. Mem Inst Oswaldo Cruz 106: 223–238. PMID: 21881778
11. Root FM (1922) The classification of American *Anopheles* mosquitoes. Am J Trop Med Hyg 2: 321–322.
12. Herrera S, Suárez MF, Sánchez G, Quiñones ML (1987) Uso de la técnica inmunoradiométrica (IRMA) en anofelinos de Colombia para la identificación de esporozoitos de *Plasmodium* Colombia Med 18: 2–6.
13. Roy H, Soto H, Huffaker C (1945) *Anopheles punctimacula* D. & K. as the vector of Malaria in Medellin, Colombia, South America. Am J Trop Med Hyg 25: 501–505. PMID: 21010819
14. González R, Carrejo N, Wilkerson RC, Alarcon J, Alarcon-Ormasa J, Ruiz-López F, et al. (2010) Confirmation of *Anopheles* (Anopheles) calderoni Wilkerson, 1991 (Diptera: Culicidae) in Colombia and Ecuador through molecular and morphological correlation with topotypic material. Mem Inst Oswaldo Cruz 105: 1001–1009. PMID: 21225197
15. Calderón G, Fernández R, Valle J (1995) Especies de la fauna anofelina, su distribución y algunas consideraciones sobre su abundancia e infectividad en el Perú. Rev Peru Epidemiología 8: 5–23.
16. Lucumi-Aragon D, González R, Salas-Quinchucua C (2011) Biting activity of *Anopheles calderoni* (Diptera: Culicidae) in two localities of Valle del Cauca, Colombia. Rev Colomb Entomol 37: 256–261.
Molecular Taxonomy of Arribalzagia Series Species

17. Tadei WP, Dutary Thatcher B (2000) Malaria vectors in the Brazilian amazon: Anopheles of the subgenus Nyssorhynchus. Rev Inst Med Trop Sao Paulo 42: 87–94. PMID: 10810323

18. Wilkerson RC (1990) Redescriptions of Anopheles punctimacula and An. malefactor (Diptera: Culicidae). J Med Entomol 27: 225–247. PMID: 2093767

19. Wilkerson RC (1991) Anopheles (Anopheles) calderoni n.sp., a malaria vector of the Arribalzagia Series from Peru (Diptera: Culicidae). Mosq Syst. 23: 25–38.

20. Wilkerson RC, Sallum MA (1999) Anopheles (Anopheles) forattini: a new species in Series Arrialzagia (Diptera: Culicidae). J Med Entomol 36: 345–354. PMID: 10337106

21. Wilkerson RC, Sallum MAM, Forattini OP (1997) Redescription of Anopheles (Anopheles) shannoni Davis; A member of the Arribalzagia Series from the Amazon Basin (Diptera: Culicidae). Proc Entomol Soc Washingt 99: 461–471.

22. Loaiza JR, Scott ME, Bermingham E, Sanjur OI, Rovira JR, Dutari LC, et al. (2013) Novel genetic diversity within Anopheles punctimacula s.l.: Phylogenetic discrepancy between the Barcode cytochrome c oxidase I (COI) gene and the rDNA second internal transcribed spacer (IT2S). Acta Trop 128: 61–69. doi: 10.1016/j.actatropica.2013.06.012 PMID: 23806568

23. WHO (2000) Malaria entomology and vector control. Learner’s guide. Geneva, Switzerland: World Health Organization. 107 p.

24. Wong J, Bayoh N, Olang G, Killeen GF, Hamel MJ, Vulule JM, et al. (2013) Standardizing operational vector sampling techniques for measuring malaria transmission intensity: evaluation of six mosquito collection methods in western Kenya. Malar J 12: 143. doi:10.1186/1475-2875-12-143 PMID: 23631641

25. Cienfuegos AV, Rosero DA, Naranjo N, Luckhart S, Conn JE, Correa MM (2011) Evaluation of a PCR-RFLP-ITS2 assay for discrimination of Anopheles species in northern and western Colombia. Acta Trop 118: 128–135. doi: 10.1016/j.actatropica.2011.02.004 PMID: 21345325

26. Wilkerson RC, Strickman D (1990) Illustrated key to the female Anophelinae mosquitoes of Central America and Mexico. J Am Mosq Control Assoc 6: 7–34. PMID: 2324726

27. Forattini OP (2002) Culicidología Médica, v.2: Identificación, Biología e Epidemiología. São Paulo: Edusp.

28. Packer L, Gibbs J, Sheffield C, Hannen R (2009) DNA barcoding and the mediocrity of morphology. Mol Ecol Resour 9: 42–50. doi: 10.1111/j.1755-0998.2009.02631.x PMID: 21564963

29. Scheffers BR, Joppa LN, Pimm SL, Laurance WF (2012) What we know and don’t know about Earth’s missing biodiversity. Trends Ecol Evol 27: 501–510. doi:10.1016/j.tree.2012.05.008 PMID: 22784409

30. Foster PG, Beroe ES, Bourke BP, Oliveira TMP, Nagaki SS, Sant’Ana DC, et al. (2013) Phylogenetic analysis and DNA-based species confirmation in Anopheles (Nyssorhynchus). PLoS One 8.

31. Collins FH, Paskevitz SM (1996) A review of the use of ribosomal DNA (rDNA) to differentiate among cryptic Anopheles species. Insect Mol Biol 5: 1–9. PMID: 8630529

32. Walton C, Handley JM, Kuvangkadilok C, Collins FH, Harbach RE, Baimai V, et al. (1999) Identification of five species of the Anopheles dirus complex from Thailand, using allele-specific polymerase chain reaction. Med Vet Entomol 13: 24–32. PMID: 10194764

33. Wilkerson RC, Reinert JF, Li C (2004) Ribosomal DNA ITS2 sequences differentiate six species in the Anopheles crucians complex (Diptera: Culicidae). J Med Entomol 41: 392–401. PMID: 15185940

34. Cienfuegos AV, Córdoba L, Gómez GF, Luckhart S, Conn JE, Correa MM (2008) Diseño y evaluación de metodologías basadas en PCR-RFLP de ITS2 para la identificación molecular de mosquitos Anopheles spp. (Diptera: Culicidae) de la Costa Pacífica de Colombia. Rev Biomédica 19: 35–44. PMID: 18338928

35. Matson R, Rios CT, Chavez CB, Gilman RH, Florin D, Sifuentes VL, et al. (2008) Improved molecular technique for the differentiation of neotropical anopheline species. Am J Trop Med Hyg 78: 492–498. PMID: 18337348

36. Zapata MA, Cienfuegos AV, Quiroa OI, Quirones ML, Luckhart S, Correa MM (2007) Discrimination of seven Anopheles species from San Pedro de Uraba, Antioquia, Colombia, by polymerase chain reaction-restriction fragment length polymorphism analysis of ITS sequences. Am J Trop Med Hyg 77: 67–72. PMID: 17620632

37. Floyd R, Abebe E, Papert A, Blaxter M (2002) Molecular barcodes for soil nematode identification. Mol Ecol 11: 839–850. PMID: 11972769

38. Rosero D, Gutiérrez LA, Cienfuegos AV, Jaramillo L, Correa M (2010) Optimización de un procedimiento de extracción de ADN para mosquitos anofelinos. Rev Colomb Entomol 36: 260–263.
39. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3: 294–299. PMID:7881515
40. Gómez GF, Jaramillo LM, Correa MM (2013) Wing geometric morphometrics and molecular assessment of members in the Albitarsis Complex from Colombia. Mol Ecol Resour 13: 1082–1092. doi: 10.1111/mcer.12126 PMID:23702155
41. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215: 403–410. PMID:2231712
42. Drummond AJ, Ashton B, Buxton S, Cheung M, Cooper A, Duran C, et al. (2011) Geneious version 6.0.6. Available: Available from www.geneious.com.
43. Eddy S (1998) Profile hidden Markov models. Bioinformatics 14: 755–763. PMID:9918945
44. Keller A, Schleicher T, Schultz J, Müller T, Dandekar T, Wolf M (2009) 5.8S-28S rRNA interaction and HMM-based ITS2 annotation. Gene 430: 50–57. doi:10.1016/j.gene.2008.10.012 PMID: 19026726
45. Xia X, Xie Z (2001) DAMBE: software package for data analysis in molecular biology and evolution. J Hered 92: 371–373. PMID:11535656
46. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739. doi:10.1093/molbev/msr121 PMID:21546353
47. Sharma D, Issac B, Raghava GPS, Ramaswamy R (2004) Spectral Repeat Finder (SRF): identification of repetitive sequences using Fourier transformation. Bioinformatics 20: 1405–1412. PMID: 14976032
48. Castelo AT, Martins W, Gao GR (2002) TROLL—tandem repeat occurrence locator. Bioinformatics 18: 634–636. PMID:12016062
49. Xia X, Xie Z, Salemi M, Chen L, Wang Y (2003) An index of substitution saturation and its application. Mol Phylogenet Evol 26: 1–7. PMID:12470932
50. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9: 772–772. doi:10.1038/nmeth.2109 PMID:22847109
51. Rosenberg NA (2007) Statistical tests for taxonomic distinctiveness from observations of monophyly. Evolution (NY) 61: 317–323.
52. Meier R, Shiyang K, Vaidya G, Ng PKL (2006) DNA barcoding and taxonomy in Diptera: a tale of high intraspecific variability and low identification success. Syst Biol 55: 715–728. PMID:17060194
53. Meyer CP, Paulay G (2005) DNA barcoding: Error rates based on comprehensive sampling. PLoS Biol 3: 1–10. PMID:15736988
54. Brown SDJ, Collins RA, Boyer S, Lefort MC, Malumbres-Olarte J, Vink CJ, et al. (2012) Spider: An R package for the analysis of species identity and evolution, with particular reference to DNA barcoding. Mol Ecol Resour 12: 562–565. doi:10.1111/j.1755-0998.2011.03108.x PMID:22243808
55. Bourke BP, Oliveira TP, Suesdek L, Bergo ES, Sallum MAM, Lima JB, et al. (2010) Lineage divergence detected in the malaria vector Anopheles marajoara (Diptera: Culicidae) in Amazonian Brazil. Malar J 9: 271. doi: 10.1186/1475-2875-9-271 PMID: 20929572
63. Myers N, Fonseca GAB, Mittermeier RA, Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403: 853–858. PMID: 10706275

64. Loaiza JR, Bermingham E, Sanjur OI, Scott ME, Bickersmith SA, Conn JE (2012) Review of genetic diversity in malaria vectors (Culicidae: Anophelinae). Infect Genet Evol 12: 1–12. doi: 10.1016/j.meegid.2011.08.004 PMID: 21864721

65. De Queiroz K (2007) Species concepts and species delimitation. Syst Biol 56: 879–886. PMID: 18027281

66. Dyar HG, Knab F (1906) Diagnoses of new species of mosquitoes. Proc Biol Soc Washington XIX: 133–142.

67. Dayrat B (2005) Towards integrative taxonomy. Biol J Linn Soc 85: 807–815.

68. Will KW, Mishler BD, Wheeler OD (2005) The perils of DNA barcoding and the need for integrative taxonomy. Syst Biol 54: 844–851. PMID: 16243769

69. Paskewitz SM, Wesson DM, Collins FH (1993) The internal transcribed spacers of ribosomal DNA in five members of the Anopheles gambiae species complex. Insect Mol Biol 2: 247–257. PMID: 9087562

70. Onyabe DY, Conn JE (1999) Intragenomic heterogeneity of a ribosomal DNA spacer (ITS2) varies regionally in the neotropical malaria vector Anopheles nuneztovari (Diptera: Culicidae). Insect Mol Biol 8: 435–442. PMID: 10654969

71. Li C, Wilkerson RC (2007) Intragenomic rDNA ITS2 variation in the neotropical Anopheles (Nyssorhynchus) albitalis complex (Diptera: Culicidae). J Hered 98: 51–59. PMID: 17158469

72. Manguin S, Wilkerson RC, Conn JE, Rubio-Palis Y, Danoff-Burg JA, Roberts DR, et al. (1999) Population structure of the primary malaria vector in South America, Anopheles darlingi, using isozyme, random amplified polymorphic DNA, internal transcribed spacer 2, and morphologic markers. Am J Trop Med Hyg 60: 364–376. PMID: 10466962

73. Ganley ARD, Kobayashi T (2007) Highly efficient concerted evolution in the ribosomal DNA repeats: total rDNA repeat variation revealed by whole-genome shotgun sequence data. Genome Res 17: 184–191. PMID: 17200233

74. Liao D (1999) Concerted evolution: molecular mechanism and biological implications. Am J Hum Genet 64: 24–30. PMID: 9915939

75. Fritz GN, Conn J, Cockburn A, Seawright J (1994) Sequence analysis of the ribosomal DNA internal transcribed spacer 2 from populations of Anopheles nuneztovari (Diptera: Culicidae). Mol Biol Evol 11: 406–416. PMID: 8015435

76. Walton C, Handley JM, Tun-Lin W, Collins FH, Harbach RE, Baimai V, et al. (2000) Population structure and population history of Anopheles dirus mosquitoes in Southeast Asia. Mol Biol Evol 17: 962–974. PMID: 10833203

77. Donnelly MJ, Pinto J, Girod R, Besansky NJ, Lehmann T (2004) Revisiting the role of introgression vs shared ancestral polymorphisms as key processes shaping genetic diversity in the recently separated sibling species of the Anopheles gambiae complex. Heredity (Edinb) 92: 61–68. PMID: 14666125

78. Rona LDP, Carvalho-Pinto CJ, Peixoto AA (2013) Evidence for the occurrence of two sympatric sibling species within the Anopheles (Kerteszia) cruzi complex in southeast Brazil and the detection of asymmetric introgression between them using a multilocus analysis. BMC Evol Biol 13: 207. doi: 10.1186/1471-2148-13-207 PMID: 24063651

79. Chocohote W, Min G-S, Intapan PM, Tantrawatpan C, Saeung A, Lulitanond V (2014) Evidence to support natural hybridization between Anopheles sinensis and Anopheles klini (Diptera: Culicidae): possibly a significant mechanism for gene introgression in sympatric populations. Parasit Vectors 7: 36. doi: 10.1186/1756-3305-7-36 PMID: 24443885

80. Zarowiecki M, Loaiza JR, Conn JE (2011) Towards a new role for vector systematics in parasite control. Parasitology 138: 1723–1729. doi: 10.1017/S003118201100062X PMID: 21679487

81. Forattini OP (1962) Entomologia Médica, Faculdade de Higiene e Saúde Pública. São Paulo: Universidade de São Paulo. 662 p.

82. Heinemann SJ, Belkin JN (1978) Collection records of the project “Mosquitoes of Middle America” 12. Colombia (COA, COB, COL, COM). Mosq Syst 10: 493–539.

83. Fajardo Ramos M, González Obando R, Fidel Suárez M, López D, Wilkerson R, Sallum MAM (2008) Morphological analysis of three populations of Anopheles (Nyssorhynchus) nuneztovari Gabaldón (Diptera: Culicidae) from Colombia. Mem Inst Oswaldo Cruz 103: 85–92. PMID: 18368239

84. Khalin AV, Aibulatov SV (2012) A new technique for the study of thoracic sclerites of mosquitoes (Diptera, Culicidae) allowing correct identification of genera and species. Parazitologija 46: 253–259. PMID: 23285738
85. Jörger KM, Schrödl M (2013) How to describe a cryptic species? Practical challenges of molecular taxonomy. Front Zool 10: 59. doi: 10.1186/1742-9994-10-59 PMID: 24073641

86. Fanello C, Santolamazza F, Della Torre A (2002) Simultaneous identification of species and molecular forms of the Anopheles gambiae complex by PCR-RFLP. Med Vet Entomol 16: 461–464. PMID: 12510902

87. Ruiz F, Quiñones ML, Erazo HF, Calle DA, Alzate JF, Linton YM (2005) Molecular differentiation of Anopheles (Nyssorhynchus) benarrochi and An. (N.) oswaldoi from southern Colombia. Mem Inst Oswaldo Cruz 100: 155–160. PMID: 16021302