Olga Koutsoni1,3, Mourad Barhoumi2,*, Ikram Guizani2,4, Eleni Dotsika1,4

1 Laboratory of Cellular Immunology, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece, 2 Laboratoire d’Épidemiologie Moléculaire et de Pathologie Expérimentale Appliquée aux Maladies Infectieuses/LR11IPT04, Institut Pasteur de Tunis- Université Tunis El Manar, Tunis-Belvédère, Tunisia, 3 Department of Microbiology, Medical School of Athens, National and Kapodistrian University, Athens, Greece

Abstract

The leishmaniasis constitute neglected global public health problems that require adequate control measures, prophylactic clinical vaccines and effective and non-toxic drug treatments. In this study, we explored the potential of Leishmania infantum eukaryotic initiation factor (LeIF), an exosomal protein, as a novel anti-infective therapeutic molecule. More specifically, we assessed the efficacy of recombinant LeIF, in combination with recombinant IFN-γ, in eliminating intracellular L. donovani parasites in an in vitro macrophage model. J774A.1 macrophages were initially treated with LeIF/IFN-γ prior to in vitro infection with L. donovani stationary phase promastigotes (pre-infection treatment), and resistance to infection was observed 72 h after infection. J774A.1 macrophages were also treated with LeIF/IFN-γ after L. donovani infection (post-infection treatment), and resistance to infection was also observed at both time points tested (19 h and 72 h) after infection. To elucidate the LeIF/IFN-γ-induced mechanism(s) that mediate the reduction of intracellular parasite growth, we examined the generation of potent microbicidal molecules, such as nitric oxide (NO) and reactive oxygen species (ROS), within infected macrophages. Furthermore, macrophages pre-treated with LeIF/IFN-γ showed a clear up-regulation in macrophage inflammatory protein 1α (MIP-1α) as well as tumor necrosis factor alpha (TNF-α) expression. However, significant different protein levels were not detected. In addition, macrophages pre-treated with LeIF/IFN-γ combined with anti-TNF-α monoclonal antibody produced significantly lower amounts of ROS. These data suggest that during the pre-treatment state, LeIF induces intramacrophage parasite growth inhibition through the production of TNF-α, which induces microbicidal activity by stimulating NO and ROS production. The mechanisms of NO and ROS production when macrophages are treated with LeIF after infection are probably overall. These results indicate that LeIF is a good candidate for use as an anti-leishmanial molecule.

Introduction

Protozoa belonging to the order Kinetoplastida and the genus Leishmania constitute an important group of more than 20 species and subspecies of parasites that are transmitted to human or animals by sandfly vectors [1]. These protozoa cause Leishmaniasis, a group of diseases characterised by a wide spectrum of clinical manifestations, ranging from self-healing skin ulcers (e.g. Leishmania major) to disfiguring mucosal lesions (e.g. Leishmania braziliensis), or fatal visceral infections (e.g. Leishmania donovani) [2].

Leishmania spp. have a digenetic life cycle, existing in two distinct forms, the flagellated promastigotes in the gut of their sand-fly vectors and the aflagellated amastigotes in the mammalian host. Within the mammalian host, Leishmania parasites reside in phagocytic cells, primarily macrophages (MΦs), the key cellular mediators of inflammatory responses, which are important for host immune protection against microbial infections [3]. Flagellated promastigotes are targeted to acidic vacuolar compartments in MΦs that have the characteristics of mature phagolysosomes, where they differentiate into the smaller aflagellated amastigote stage [4]. Aflagellated amastigotes replicate by binary fission, rupturing infected macrophages and spreading to uninfected cells, thereby initiating the onset of disease symptoms in the host [5].

Although a major function of MΦs is to protect the host from microbes, Leishmania parasites are able to survive and persist inside the MΦs, indicating that these parasites deploy sophisticated mechanisms to evade and modulate the host immune system for their own benefit. The fate of intracellular Leishmania parasites is determined by the activation status of MΦs. On one hand, “classically” activated MΦs by interferon-gamma (IFN-γ), are capable of killing parasites effectively [6]. The immunological pathway that induces parasite destruction involves the production...
of nitric oxide (NO) upon activation of inducible nitric oxide synthase (iNOS) and other leishmanicidal molecules, such as reactive oxygen species (ROS) [7–9]. NO and ROS are key players in the macrophage defence system against intracellular parasites. Moreover, chemokines, the critical mediators of leukocyte trafficking and cellular recruitment during inflammatory responses, have been reported to restrict the intracellular survival of Leishmania via the activation of NO mechanisms. More specifically, cysteine-cysteine (CC) chemokines, such as MIP-1α and MCP-1, have a potent antileishmanial role via the generation of NO [10]. It has been shown that in human macrophages infected with L. infantum, treatment with MIP-1α triggers NO release and increases leishmanicidal ability [11]. Additionally, MIP-1α is responsible for stimulating TNF-α secretion by macrophages, a cytokine well recognised as an activator of the anti-leishmanial activity of macrophages [12]. On the other hand, “alternatively” activated macrophages (by non-protective Th2 cytokines, IL-4 and IL-10) preferentially activate the arginase pathway to produce polyamines and enhance parasite persistence [4,13,14]. Consequently, parasite persistence within macrophages is determined by a balance between the ability of the immune response to sufficiently activate Leishmania-infected macrophages versus the ability of the parasite to resist the cytotoxic mechanisms of macrophage activation [9].

Therefore, the parasite molecules that influence early cytokine production may be key determinants of resistance or susceptibility to Leishmania infection. Leishmania eukaryotic initiation factor (LeIF), which is homologous to eukaryotic initiation factor eIF4A, is highly conserved among Leishmania spp. and is present in both the amastigote and promastigote forms [15]. It is abundant in the secretome [16] and in the exosomes [17] of stationary phase L. donovani promastigotes. LeIF was first described as an antigen that induces the production of the protective Th-1 type cytokines, IL-12 and IFN-γ, in human peripheral blood mononuclear cells (PBMC) from either leishmaniasis patients or normal individuals [15]. LeIF also modulates IL-12p70, TNF-α and IL-10 production by human monocyte-derived macrophages from healthy individuals [18,19]. LeIF was also used as part of a trilusion recombinant protein vaccine, Leish 111f, which was shown to be protective in mice and hamster experimental models [20–22]. These recombinant proteins, when administered as a cocktail, were efficient for immunotherapy [23]. As LeIF induces secretion of IL-12, a cytokine necessary for the development of specific immunity towards a Th1 phenotype [24,25], in presence of IFN-γ in macrophages or monocytes [18,19,26], we assessed in the present study the effect of L. infantum eukaryotic initiation factor (LeIF) and IFN-γ on L. donovani infection in J774A.1 macrophages by evaluating the intracellular parasite growth, and investigating possible mechanism(s) that induce resistance to L. donovani infection in these macrophages.

Materials and Methods

Cell and parasite culture

The immortalized macrophage cell line J774A.1, derived from adult BALB/c mice (ATCC No: TIB-67), was purchased from the American Type Culture Collection (ATCC, Rockville, Maryland, USA). The J774A.1 cells were maintained in tissue flasks in complete medium RPMI-1640 (Biochrom AG, Berlin, Germany) with low content in phenol red supplemented with 2 mM L-glutamine, 10 mM Hepes, 24 mM NaHCO₃, 50 μM of 2-mercaptoethanol, 100 U/ml penicillin, 100 μg/ml streptomycin and 10% v/v heat-inactivated foetal Bovine serum (FBS; Gibco, Paisley, UK). The J774A.1 cells were sub-cultured in 25-

cm² cell culture flasks (CellStar, Greiner Bio-one, Germany) at 37°C with 5% CO₂ in air. After incubation for 2 h, the flasks were washed three times with medium at 37°C to remove the unattached cells, and the remaining attached cells were used as the macrophage monolayer.

The Leishmania donovani parasite (strain MHOM/IN/1996/THAK35, zymodeme MON-2) was kindly provided by Dr. Ketty Soteriadou (Laboratory of Molecular Parasitology, Hellenic Pasteur Institute, Athens, Greece). Promastigotes were grown at 26°C in complete RPMI-1640 medium (Biochrom AG, Berlin, Germany) in a cell culture flask (CellStar, Greiner Bio-one, Germany). Promastigote multiplication from the exponential to stationary phase was achieved at 26°C in a refrigerated incubator (Sanyo incubator mir-253 Electronic Biomedical, Japan) within 3 to 4 days (starting density of promastigotes 2×10⁵/ml and reaching the late stationary phase at 2×10⁶/ml). Late stationary phase parasites were centrifuged at 450 g (Beckman GPR Centrifuge) for 10 min and resuspended in RPMI-1640 culture medium supplemented with 10% FBS prior to their addition to the adhering macrophage monolayer.

Cloning, protein expression and purification

The LeIF gene was amplified from L. infantum (MHOM/TN/ 88/Aymoon) genomic DNA by PCR using 5′ oligonucleotide containing SpeI and NdeI sites and a 3′ oligonucleotide containing an XhoI site. The sequences of the oligonucleotides used for PCR were as follows:

LeIF_5′: 5′ GGGCGGACTGTCATATGGGCCGAGAATGTAAGATGCG 3′
LeIF_3′: 3′ GGGCGGTCGGAGCTCACCAGGTAGCCGGAAG 3′

The underlined regions hybridized to the LeIF sequence and the regions shown in bold are the inserted restriction sites. The 5′ extensions (GGCGG) facilitated cleavage by the restriction enzymes.

The PCR product was purified from a 0.5% agarose gel and cloned into a Bluescript plasmid (Stratagene, La Jolla, CA, USA) cut with SpeI and XhoI. The sequence of the insert was confirmed by DNA sequencing. LeIF was then subcloned into a PET-22b expression vector (Novagen, San Diego, CA, USA) cut with NdeI and XhoI, and the protein was expressed from the Origami (DE3) E. coli strain (Novagen) and purified as previously reported mainly upon lysozyme treatment of the bacterial pellets and Ni affinity chromatography of the soluble bacterial extracts [27]. Protein concentration was determined using the Bio-Rad (Hercules, CA, USA) protein assay with bovine serum albumin (BSA) as a standard. Purity and concentration were verified using a 12% Coomassie-stained SDS PAGE gel. The identity of the protein LeIF was verified by western blot using rabbit anti-LeIF primary polyclonal antibodies (1/1000 dilution). The recombinant LeIF was tested for the absence of contaminating lipopolysaccharide (LPS) as previously described [18].

Macrophage infection assay

J774A.1 macrophages were detached from culture flasks monolayer by scraping, washed and pelleted twice at 500 g (Beckman GPR Centrifuge, Germany) for 10 min, resuspended in complete RPMI-1640 culture medium and counted in Malassez chambers. Cell viability (97%) was determined by Trypan blue exclusion dye. Cell suspensions at an appropriate concentration (2×10⁶ cells/ml) were added to 24-well culture plates (Sarstedt, Numbrecht, Germany), and they were allowed to adhere for 2 h at 37°C under 5% CO₂ atmosphere. Adherent J774A.1 cells were infected in vitro with the L. donovani stationary phase promastigotes.
at a ratio of 1:15 as previously described [28]. At 4 h post-infection, non-internalised promastigotes were removed by washing 3 times with RPMI-1640 at 37 °C. J774A.1 cells were treated for 15 h with recombinant LeIF (10 μg/ml) in combination with mouse recombinant IFN-γ (1 ng/ml) (BD Pharmingen, San Diego, USA) prior to or after infection with L. donovani promastigotes. Control cells were cultured and infected with promastigotes in a LeIF/IFN-γ-deficient medium for all of the procedures. We determined the effect of LeIF/IFN-γ treatment on L. donovani infection in J774A.1 macrophages at early (4 h and 19 h, respectively) and late (72 h) time points after infection. The effect of each treatment was determined using the alamarBlue (Invitrogen Life Technologies, NY, USA) colorimetric method as described previously [29]. The culture medium was removed at designated time points, and 50 μl of PBS (phosphate buffered saline) supplemented with 0.01% w/v sodium dodecyl sulphate (SDS) was added. After a 30 min incubation at 37 °C in 5% CO₂ atmosphere, J774A.1 cells were lysed, and the parasites were released into complete Schneider’s Insect medium (Sigma, St. Louis, MO) for 24 h. AlamarBlue was then diluted to 10% with complete Schneider’s medium and incubated for 16 h. The leishmanicidal activity was evaluated by correlation of the number of surviving Leishmania organisms with the absorbance of alamarBlue. The O.D. of lysed J774A.1 macrophages was used as negative control while the O.D. of lysed infected J774A.1 macrophages was used as positive control. In this method, the reduction of the culture medium and colour development of the reagent are proportional to cell proliferation by determining fluorescence at 570 nm using as a reference filter at 630 nm [29]. Additionally, in similar experimental conditions of infection, the pre-infection and post-infection treated J774A.1 macrophages were collected by using a cell scraper (Sarstedt, Inc. Newton, USA) and were washed twice with PBS. Finally, they were suspended in l PBS and cytocentrifuged (Cytospin 2, Shandon, UK) on a slide and stained with Giemsa’s Azure Eosin Methylene Blue Solution (Merck, Germany). Intracellular amastigotes were counted in 200 macrophages in a microscope at 100× magnification (Olympus, BH, Japan). The infection rate (percentage of infected macrophages containing amastigotes/200 macrophages) and the parasite load (total number of intracellular parasites in 200 infected macrophages/200) were determined and compared in LeIF/IFN-γ and IFN-γ treated cells.

NO synthesis assay

The LeIF/IFN-γ-induced NO synthesis by J774A.1 cells was measured as the accumulation of nitrates in cell culture supernatants for designated incubation periods using the Griess reaction (Sigma-Aldrich, USA) according to manufacturer’s protocol [30]. Briefly, the J774A.1 cells were stimulated with LeIF/IFN-γ (10 μg/ml and 1 ng/ml, respectively), either pre- or post-infection, upon exposure to L. donovani promastigotes in a cell:parasite ratio 1:15. As a positive control, J774A.1 cells were co-cultured with 1 μg/ml LPS and 1 ng/ml IFN-γ. At designated time points post-infection, 50 μl of supernatants were mixed with 100 μl of Griess reagent (1% sulphanilamide, 0.1% naphthylethylenediamine dihydrochloride, 5% phosphoric acid dissolved in distilled water) [31]. Absorbance was measured at 570 nm with a Dynatech Laboratories MRX spectrophotometer (Germany). The relative NO concentrations were calculated from a standard curve generated with known amounts of NaNO₂ and the data are expressed as the mean concentration units (ng/ml) ± SD.

Generation of reactive oxygen species (ROS) in J774A.1 macrophages

LeIF/IFN-γ-mediated generation of ROS in J774A.1 cells. To measure the LeIF/IFN-γ-mediated generation of ROS in J774A.1 cells, we used flow cytometry with fluorescent probes (carboxy-H₂DCFDA (Life Technologies, NY, USA) that permit the determination of intracellular fluorescence [32]. Briefly, J774A.1 cells were stimulated with LeIF/IFN-γ (10 μg/ml and 1 ng/ml), pre- or post-infection with L. donovani stationary phase promastigotes (as described in § 5). For each time point, the cells were probed with H₂DCFDA (5 M) for 30 min at 37 °C and 5% CO₂. Hydrogen peroxide (H₂O₂; 1 mM) was added as the positive control group, and the cells were incubated for 15 min at 37 °C and 5% CO₂. The cells were analysed for intracellular ROS with FACs Calibur using CellQuest software (Becton-Dickinson, San Jose, CA). The data are expressed as the intensity of fluorescence (Geo Mean).

Effect of TNF-α on ROS production in J774A.1 cells. To determine the correlation of TNF-α production with generation of ROS in parasitized J774A.1 cells, we used flow cytometry with carboxy-H₂DCFDA probe. J774A.1 cells were stimulated with LeIF/IFN-γ, as described above, with or without anti-mouse TNF-α monoclonal antibody (4 μg/ml) (clone: MP6-XT3, AbD Serotec, Oxford, UK). Cells were analyzed for intracellular ROS with FACs Calibur. Data are expressed by the following formula: Geo Mean = Geo Mean(J774+LeIF+MON2+IFN-γ) - Geo Mean(J774+MON2+IFN-γ).

Isolation of RNA and RT - PCR

The total RNA of non-infected and infected (either pre-infection or post-infection treated) J774A.1 cells (5×10⁶) was extracted using an RNeasy Mini Kit (Qiagen, Germany) following the manufacturer’s instructions [33]. A 1 μg aliquot of total RNA was then reverse-transcribed using M-MLV Reverse Transcriptase and the oligo(dT) 15 primer, according to the manufacturer’s instructions (Promega, USA). The reverse transcription step was performed at 40°C for 60 min and 90°C for 5 min.

MIP-1α and TNF-α analysis by real-time quantitative PCR

Real-time PCR was performed using an Exicycler 96 (Bioneer, Daejeon, Korea) with a SYBR Green PCR Master Mix (Kapa Biosystems, Boston, USA). The PCR mixture (20 μl) contained 5 pmoles of each primer, 3 μl of distilled water, 10 μl of commercial SYBR Green master mixture and 5 μl of cDNA. Primer pairs for MIP-1α (forward: TGG GTG CTA GAA TAG TAC ACT G, reverse: GAG GGA GAT GGG GTG TGA), TNF-α (forward: AGC CGA CTG GTG AGC AAA CCA CCA A, reverse: AGA CCC ATT CCC TTC AGG CAG CAA T) and GAPDH (forward: AGG TGG TGA AGC AGG CAT C, reverse: AGG CCC TCT CTG TTA TTA TGG) were derived from published work [34]; the primer pairs amplified 321 bp, 406 bp and 357 bp DNA fragments, respectively. GAPDH was used for normalisation. The samples were placed in low-profile 0.2 ml 8-tube strips (Bio-Rad, Hercules, USA) that were sealed with flat optical 8-cap strips (Bio-Rad, Hercules, USA). The thermal cycling conditions were as follows: an initial activation step for 10 min at 95°C followed by 45 cycles of denaturation for 30 sec at 95°C, annealing for 30 sec at 60°C and extension for 45 sec at 72°C. All PCR experiments were followed by a melting curve analysis to verify amplicon specificity. All expression ratios were computed via the ΔΔCt method. More specifically, cytokine cycle threshold (Ct) values were normalised to GAPDH expression, as determined by ΔCt = Ct (cytokine) - Ct (GAPDH). Fold change in gene expression
was determined by $2^{-\Delta \Delta C_t}$, where $\Delta C_t = C_t (\text{experimental}) - C_t (\text{control})$ \cite{35}. All real-time PCR experiments were performed as 3 replicates from one experiment.

MIP-1α and TNF-α detection by ELISA

MIP-1α and TNF-α were detected at the late time points either at pre-infected or post-infected J774A.1 macrophages. Culture supernatants were collected at the end of each incubation period and were stored at -80°C until analyzed. MIP-1α and TNF-α were determined by sandwich ELISA kits (900-K125, 900-K54; PeproTech, Rocky Hill, NJ) according to manufacturer’s instructions. The concentrations of cytokines were calculated by using standard curves. Detection threshold for MIP-1α and TNF-α was 8 pg/ml and 16 pg/ml, respectively.

Statistical analysis

The significance of the results was calculated using a nonparametric statistical test: the two-sided Mann-Whitney for comparison between two groups. The data shown are representative of at least three independent experiments and are presented as the mean ± SD. The level of statistical significance was set at p≤0.05.

Results

Effect of LieIF/IFN-γ pre-infection treatment on L. donovani growth in J774A.1 macrophages

Since previous reports showed that LeIF in IFN-γ activated macrophages and monocytes induces secretion of IL-12 \cite{18,19,26} a cytokine necessary for the development of specific immunity towards a Th1 phenotype \cite{24,25}, we investigated the effect of LieIF on the susceptibility of MOs to L. donovani infection. To this end, the LieIF gene was sub-cloned into pET22b plasmid containing a carboxyl terminal His 6 tag to permit the recombinant protein purification on nickel affinity column upon expression in *Escherichia coli* \cite{Fig. 1A}. The identity of the protein was verified by using rabbit anti-LieIF polyclonal antibodies \cite{Fig. 1B}. Subsequently, J774A.1 macrophages were pre-treated with LieIF/IFN-γ and were then infected with L. donovani parasites. The effect of these proteins was determined using the alamarBlue colorimetric method, where the number of intracellular parasites is correlated with the absorbance of the reagent. At 4 h time point after infection, the percentage of intracellular parasite growth inhibition in LieIF/IFN-γ-treated cells was low (3%), similar to the percentage obtained by IFN-γ alone (Fig. 2A). At the late time point (72 h) after infection, the LieIF/IFN-γ-treated cells showed a significantly higher inhibition of parasite growth in comparison to cells treated solely with IFN-γ (89% vs 7%) \cite{Fig. 2B}. Additionally, as shown in Fig. 2C and Fig. 2D, LieIF/IFN-γ-pre-treated macrophages exhibited significantly (p<0.05) lower L. donovani infection rates and parasite load than the IFN-γ-treated cells, 48% vs 72% and 3.48 vs 5.62, respectively whereas J774A.1 cells treated solely with LieIF did not exhibit parasite growth inhibition (data not shown). These results suggest that at 72 h post infection, LieIF/IFN-γ induced resistance of co-cultured J774A.1 cells to L. donovani infection.

Effect of LieIF/IFN-γ post-infection treatment on L. donovani growth in J774A.1 macrophages

The observation that LieIF/IFN-γ-pre-treated J774A.1 macrophages showed resistance to L. donovani infection prompted us to examine the efficacy of treatment with LieIF/IFN-γ post- L. donovani infection on intracellular parasite growth. Thus, treatment of J774A.1 cells with LieIF/IFN-γ post-infection showed a statistically significant inhibition of intracellular parasite growth (p≤0.05) \cite{Fig. 3}. The inhibition of parasite growth was apparent at early (19 h) \cite{Fig. 3A} and at late (72 h) time points after infection.
LieIF/IFN-γ-induced NO generation in infected J774A.1 macrophages

The ability of J774A.1 macrophages to reduce intracellular parasite growth after treatment with LieIF/IFN-γ before or after the infection indicates that effective anti-microbial mechanisms are activated and leishmanicidal molecules are produced due to this dual treatment. Even though Leishmania has evolved sophisticated mechanisms leading to the repression and inhibition of NO production [36], macrophage killing of the Leishmania parasite in vivo is mediated by NO, a key mediator of nonspecific immunity. We found that infected J774A.1 cells, pre- or post-infection treated with LieIF/IFN-γ, had a marked increase in generation of NO synthesis as measured by nitrite accumulation in the culture medium determined by the Griess reaction (Fig. 4). For comparison, NO production of cells stimulated with LPS plus IFN-γ and non-stimulated cells served as positive and negative controls respectively. All presented values have been calculated after subtraction of the NO production values of the control group of infected macrophages as L. donovani alone is able to induce negligible amounts of NO in culture supernatants. The highest values of NO levels (113 ng/ml and 157 ng/ml) were observed, at the late time point (72 h) after infection in culture supernatants of J774A.1 cells that were pre- or post-infection treated with LieIF/IFN-γ (Fig. 4A, 4B), respectively. The lowest values of NO production were detected at early time points (4 h and 19 h) after infection of J774A.1 cells that were pre- or post-infection treated with LieIF/IFN-γ, 76 ng/ml and 41 ng/ml, respectively (Fig. 4C and Fig. 4D). Collectively, LieIF together with IFN-γ induced the production of NO in infected J774A.1 cells.

LieIF/IFN-γ triggered ROS generation in L. donovani infected J774A.1 macrophages

Ingestion of microbial invaders by MΦs induces the generation of reactive oxygen intermediates, which constitute an essential part of the defence mechanism adopted by the host. Because Leishmania parasites enter MΦs, they protect themselves against host oxidative burst through the expression of antioxidant enzymes and by the inhibition of ROS and NO production in the MΦs [37]. To investigate whether LieIF/IFN-γ caused ROS generation in J774A.1 cells, the fluorescent probe H$_2$DCFDA was used. For comparison, ROS generation in LPS- and in H$_2$O$_2$-stimulated cells served as positive controls. The detectable inherent basal level of ROS generation in J774A.1 cells was low (Geo Mean = 1.80); thus, all the results are presented with the subtraction of the background fluorescence of non-labelled (NL) cells and are thus, all the results are presented with the subtraction of the background fluorescence of non-labelled (NL) cells and are presented in Fig. 5. LieIF/IFN-γ triggered ROS generation in infected J774A.1 cells at the late time point after infection, either when added to cells pre- or post–infection, Geo Mean = 14.58 and 27.12, respectively (Fig. 5A and Fig. 5B). The ROS generation caused by addition of LieIF/IFN-γ was 3-fold higher and 2-fold higher, pre- and post-infection, respectively, than the corresponding generation caused by IFN-γ alone (Fig. 5A, 5B). Additionally, it is noteworthy that pre- and post-infection treatment with LieIF/IFN-γ produced similar amounts of ROS as those observed in the positive control (LPS-treated macrophages), 18.58 and 27.92, respectively. Interestingly, no ROS generation was evident at the early time (4 h and 19 h) points of infection (data not shown).

LieIF/IFN-γ induced MIP-1α and TNF-α production in L. donovani infected J774A.1 macrophages

Chemokines and proinflammatory cytokines are involved in both innate and adaptive immunity, facilitating the initiation and maintenance of the immune response mechanisms that are elicited by intracellular parasites [38–41]. The chemokine MIP-1α has a key role in immunity against experimental visceral leishmaniasis
Moreover, the proinflammatory cytokine TNF-α potentially plays a role as a triggering signal for NO generation [45]. The MIP-1α and TNF-α gene expressions in J774A.1 cells treated with LieIF/IFN-γ pre- or post-infection were determined by quantitative real-time PCR. The expression of GAPDH was used to normalise the data, and these results are presented in Figure 6. Infected cells pre-treated with LieIF/IFN-γ showed a clear 5-fold up-regulation in MIP-1α mRNA expression compared to infected macrophages treated only with IFN-γ (p<0.05) (Fig. 6A). A low level of MIP-1α expression was detected in macrophages that were incubated with medium only and cells pre-treated with LieIF alone exhibited low MIP-1α mRNA expression as well. In contrast, when J774A.1 cells were post-infection treated with LieIF/IFN-γ, no increased expression in MIP-1α was observed compared to infected macrophages treated only with IFN-γ. MIP-1α was also detected in culture supernatants at the late time point (72 h) after L. donovani infection. Pre-treatment of infected cells with LieIF/IFN-γ induced the release of MIP-1α. Nevertheless, control J774A.1 cells not exposed to LieIF/IFN-γ, as well as infected J774A.1 cells exposed to IFN-γ only, elicited a MIP-1α response of similar magnitude at 72 h after infection (Fig. 6C). In addition, infected J774A.1 cells that were pre-treated with LieIF/IFN-γ showed an 8.6-fold TNF-α up-regulation of gene expression, compared to infected cells treated only with IFN-γ (Fig. 6B). However, TNF-α release in supernatants of infected J774A.1 cells pre-treated with LieIF/IFN-γ was not significant when compared to control groups (Fig. 6D). Conversely, post-infection treatment of the cells with LieIF/IFN-γ did not induce any up-regulation in MIP-1α or TNF-α mRNA expression. Similarly, infected macrophages post-treated with LieIF/IFN-γ released similar levels of MIP-1α and TNF-α to the control groups.

Correlation of TNF-α production with generation of ROS in parasitized J774A.1 cells

Nitrogen and reactive oxygen (ROS) intermediates are important in the activation of transcription factor NF-kB, which controls the activity of numerous immunity and inflammation genes, including TNF-α [46]. In order to clarify the interplay between NO and ROS generation and TNF-α production, we tested the effect of anti-TNF-α monoclonal antibody on oxidative burst in parasitized macrophages, at the late time point (72 h) after L. donovani infection. J774A.1 cells, pre-infection treated with LieIF/IFN-γ combined with anti-TNF-α monoclonal antibody produced significantly lower amounts of ROS compared to J774A.1 cells pre-infection treated with LieIF/IFN-γ only (p = 0.005) (Fig. 7A). Nevertheless, TNF-α neutralization had no effect on ROS production in J774A.1 cells that were post-infection treated with LieIF/IFN-γ (p = 0.121) (Fig. 7B).

Discussion

Macrophages are phagocytic cells that play a critical role in host immune responses to microbial infection. They play a pivotal role in initiating protective immune response to Leishmania infection whereas they allow the growth of this intracellular pathogen. During the past decades, a large body of evidence has supported the notion that the IFN-γ cytokine plays a decisive role in antileishmanial defence [47,48]. Upon IFN-γ activation, macrophages provide the necessary regulatory signals in the form of cytokines to induce T cell activation and elicit several effector mechanisms involved in the control of infection. In IFN-γ-primed bone marrow-derived macrophages, L. donovani promastigotes induce the secretion of NO, which plays an essential role in the control of Leishmania infection by these macrophages [49,50]. However, despite the importance of IFN-γ in the development of resistance to Leishmania infection, it was reported that the administration of exogenous IFN-γ does not protect susceptible BALB/c mice from L. major infection [51]. In addition, IFN-γ mRNA was detected in the infected skin lesions of not only resistant C57BL/6 mice but also susceptible BALB/c mice [52]. These reports suggest that IFN-γ alone is not sufficient to control L. major and that additional factor(s) would be required for the development of protective immunity to Leishmania infection. Exosomes of Leishmania are considered to play a role during the early stage of infection by delivering pre-emptive strikes that create permissive environment for infection with particularly a role for gp63, the major...
promastigote surface glycoprotein, and EF-1α, elongation factor 1α, which are delivered into the cytosol of the infected macrophage where they activate multiple host protein-tyrosine phosphatases. This way, these proteins negatively regulate IFN-γ signalling pathways and thus prevent the effective expression of microbicidal functions of the macrophage [53]. LeIF, antigen well known for its immune-modulating activities and ability to induce secretion of IL-12 cytokine from macrophages or monocytes of healthy donors [18,19] or from PBMC from either leishmaniasis patients or normal individuals [16], constitutes an abundant protein in the exosomes of L. donovani stationary phase promastigotes [18] that is supposedly also delivered to infected cells.

In this study, we demonstrated the synergistic effect of the recombinant proteins LeIF and IFN-γ in eliminating intracellular L. donovani parasites in an in vitro macrophage infection model thus inferring a potential role for this exosomal protein during the early stages of infection. Our findings suggest that treatment of J774A.1 macrophages with LeIF/IFN-γ, prior to Leishmania infection, led to a statistically significant reduction in intracellular parasite growth at the late time point of infection (72 h). This result was confirmed by the significant reduction in both infection rate and parasite load. The observed immunomodulatory activities of IFN-γ are consistent with previous studies, and our results demonstrate clearly that LeIF reinforces the activities of IFN-γ [54]. The finding that LeIF/IFN-γ pre-treated J774A.1 cells showed resistance to L. donovani infection prompted us to examine the efficacy of LeIF on intracellular growth of L. donovani following infection, and we showed that J774A.1 cells treatment with LeIF/IFN-γ after Leishmania infection also led to a significant prevention of parasite growth at early (19 h) and late time (72 h) points of infection.

Here, reduction of intracellular parasite growth upon LeIF/IFN-γ treatment was shown to be mediated by the production of anti-microbial effector molecules. Nitric oxide and oxidative mediators are proven leishmanicidal molecules capable of killing parasites effectively upon exposure to Th1 cytokines, including IFN-γ and TNF-α. The role of NO in controlling Leishmania MΦ infection is well established in humans and other mammals.
ROS derivatives normally lead to the destruction of the parasite, and we observed that J774A.1 cells treated with LieIF/IFN-γ alone, at both early (4 h) and late time points (72 h) after infection, suggest this pre-infection treatment induced resistance to L. donovani infection in an NO-dependent manner. Interestingly, J774A.1 cells treated with LieIF/IFN-γ after their infection produced greater levels of NO both at early (19 h) and late time points (72 h) of infection. Collectively, these results suggest that treatment with LieIF/IFN-γ, either pre- or post-infection, impairs L. donovani macrophage infection in an NO-dependent manner.

In addition to NO production, activation of macrophages leads to ROS production through an oxidative burst that is ultimately responsible for the leishmanicidal activity [61,63–65]. Although ROS derivatives normally lead to the destruction of the phagocytosed microorganism, Leishmania spp. have been adapted to survive and replicate in this hostile environment by deploying antioxidant systems or by suppressing macrophage ROS production [63]. Leishmania inhibits the production of \(\text{O}_2^- \) in vivo, and it has been reported that \(\text{O}_2^- \) and \(\text{H}_2\text{O}_2 \) levels are significantly lower in monocytes from patients with active visceral leishmaniasis as compared to healthy controls [66,67]. To assess whether the intracellular parasite growth inhibition is also mediated by ROS derivatives, we determined ROS production at the late time point (72 h) after infection, when the inhibition of intracellular parasite growth was most prominent. Our results support the notion that ROS production is responsible for leishmanicidal activity. Indeed, we observed that J774A.1 cells treated with LieIF/IFN-γ, pre- or post-infection, led to a significant increase of ROS generation which suggests that LieIF, in synergy with IFN-γ, is able to confer protection to L. donovani infection by driving the innate immune response towards the up-regulation of NO and ROS, the potent macrophage-derived microbicidal molecules that are critical in controlling Leishmania infection [68,69].

Acknowledgments

The authors acknowledge Dr. Geneviève Milon (Institut Pasteur, Paris) for critical reading of the manuscript.

Author Contributions

Conceived and designed the experiments: ED IG OK MB. Performed the experiments: OK MB. Analyzed the data: OK MB ED IG. Wrote the paper: OK MB ED IG.
References

1. Halstead SB, Mahalingam S, Marovich MA, Ubel S, Mosser DM (2010) Intrinsic antibody-dependent enhancement of microbial infection in macrophages: disease regulation by immune complexes. Lancet Infect Dis 10: 712–722.
2. von Stetefeld K, Udey MC (2004) Requirements for Th1-dependent immunity against infection with Leishmania major. Microbes Infect 6: 1102–1109.
3. Grossje SM, Rogers ME, Bates PA (2003) Two separate growth phases during the development of Leishmania in sand flies: implications for understanding the life cycle. Int J Parasitol 33: 1027–1034.
4. Naderer T, McConville MJ (2008) The Leishmania-macroage interaction: a metabolic perspective. Cell Microbiol 10: 301–308.
5. Awasthi A, Mathar RK, Saha B (2004) Immune response to leishmanial infection. Indian J Med Res 119: 238–258.
6. Gordian S (2003) Alternative activation of macrophages. Nat Rev Immunol 3: 23–35.
7. Reiner SL, Lockley RM (1995) The regulation of immunity to leishmania major. Annu Rev Immunol 13: 151–177.
8. Bogdan C (2001) Nitric oxide and the immune response. Nat Immunol 2: 907–916.
9. Mukbel RM, Patten CJ, Gibson K, Ghosh M, Petersen C, et al. (2007) Macrophage killing of Leishmania amazonensis amastigotes requires both nitric oxide and superoxide. Am J Trop Med Hyg 76: 669–675.
10. Bhattacharya S, Ghosh S, Diasupta B, Mazumder D, Roy S, et al. (2002) Chemokine-induced leishmanicidal activity in murine macrophages via the generation of nitric oxide. J Infect Dis 185: 1704–1708.
11. Brandonsio O, Panaro MA, Famaro I, Sisto M, Leonardi D, et al. (2002) Macrophage chemokine receptor-1 and -2 induce nitric oxide release and enhance parasite killing in Leishmania-infected human macrophages. Clin Exp Med 2: 125–129.
12. Dey R, Majumder N, Bhattacharjee S, Majumdar SB, Banerjee S, et al. (2007) Induction of host protective Th1 immune response by chemokines in Leishmania donovani-infected BALB/c mice. Scand J Immunol 66: 671–683.
13. Das P, Lahiri A, Lahiri A, Chakravorty D (2010) Modulation of the arginase pathway in the context of microbial pathogenesis: a metabolic enzyme moonlighting as an immune modulator. PLoS Pathog 6: e1000999.
14. McConville MJ, Naderer T (2011) Metabolic pathways required for the intracellular survival of Leishmania. Annu Rev Microbiol 65: 543–561.
15. Sreekumar YA, Gudeta JA, Benson DR, Baciael O, Carvalho EM, et al. (1995) A recombinant Leishmania antigen that stimulates human peripheral blood mononuclear cells to express a Th1-type cytokine profile and to produce interleukin 12. J Exp Med 181: 1327–1337.
16. Silverman JM, Chan SK, Robinson DP, Dwyer DM, Nandan D, et al. (2008) Proteomic analysis of the secretome of Leishmania donovani. Genome Biol 9: 35.
17. Silverman JM, Clos J, de Oliveira CC, Shirvani O, Fang Y, et al. (2010) An interleukin 12. J Exp Med 181: 1527–1537.
18. Barhoumi M, Garnaoui A, Kaabi B, Tanner NK, Guizani I (2011) LeIF and its recombinant polypeptides modulate interleukin IL-12p70, IL-10 and tumor necrosis factor-alpha production by human monocytes. J Immunol 141: 2407–2412.
19. Barhoumi M, Meddeb-Garnaoui A, Tanner NK, Banroques J, Kaabi B, et al. (2011) Successful chemotherapy and cure of visceral leishmaniasis: involvement of distinct protein kinase C isoforms. J Leukoc Biol 88: 9–20.
20. Tsigouzis P, Karageouni E, Etonka D (2003) CD40+ T cells with parasite-specific cytotoxic activity and a Th1 profile of cytokine and chemokine secretion develop in experimental visceral leishmaniasis. Infection Immun 71: 580–586.
21. Silverman JM, Clos J, de Oliveira CC, Shirvani O, Fang Y, et al. (2010) An interleukin 12. J Exp Med 181: 1527–1537.
22. Barhoumi M, Banroques J, Linder P, Guizani I (2006) Leishmania-macroage interaction: a metabolic perspective. Cell Microbiol 10: 301–308.
23. Badaro R, Lobo I, Nakatani M, Muinós A, Netto EM, et al. (2001) Successful chemotherapy and cure of visceral leishmaniasis in IFN-gamma-stimulated macrophages. J Exp Med 194: 2407–2411.
24. Erualancio E, Kusmartsev S (2010) Identification of ROS using oxidized DCFDA and flow-cytometry. Methods Mol Biol 594: 57–72.
25. Kar S, Ukal A, Sharma G, Das PK (2010) MAPK-directed phosphatases preferentially regulate pro- and anti-inflammatory cytokines in experimental visceral leishmaniasis: involvement of distinct protein kinase C isoforms. J Leukoc Biol 88: 9–20.
26. Mikus J, Steveding D (2000) A simple colorimetric method to screen drug cytotoxicity against Leishmania using the dye Alamar Blue. Parasitol Int 40: 265–268.
27. Takas D (2007) Analysis of nitrite and nitrate in biological fluids by assay based on the Griess reaction: appraisal of the Griess reaction in the L-arginine/nitric oxide area of research. J Chromatogr A Analyt Technol Biomed Life Sci 151: 51–70.
28. Ding AH, Nathan CF, Stuehr DJ (1988) Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production. J Immunol 141: 2407–2411.
29. Erualancio E, Kusmartsev S (2010) Identification of ROS using oxidized DCFDA and flow-cytometry. Methods Mol Biol 594: 57–72.
30. Sar S, Ukal A, Sharma G, Das PK (2010) MAPK-directed phosphatases preferentially regulate pro- and anti-inflammatory cytokines in experimental visceral leishmaniasis: involvement of distinct protein kinase C isoforms. J Leukoc Biol 88: 9–20.
31. Mikus J, Steveding D (2000) A simple colorimetric method to screen drug cytotoxicity against Leishmania using the dye Alamar Blue. Parasitol Int 40: 265–268.
32. Eruslanov E, Kusmartsev S (2010) Identification of ROS using oxidized DCFDA and flow-cytometry. Methods Mol Biol 594: 57–72.
33. Kar S, Ukal A, Sharma G, Das PK (2010) MAPK-directed phosphatases preferentially regulate pro- and anti-inflammatory cytokines in experimental visceral leishmaniasis: involvement of distinct protein kinase C isoforms. J Leukoc Biol 88: 9–20.
34. Mikus J, Steveding D (2000) A simple colorimetric method to screen drug cytotoxicity against Leishmania using the dye Alamar Blue. Parasitol Int 40: 265–268.
35. Takas D (2007) Analysis of nitrite and nitrate in biological fluids by assay based on the Griess reaction: appraisal of the Griess reaction in the L-arginine/nitric oxide area of research. J Chromatogr A Analyt Technol Biomed Life Sci 151: 51–70.
36. Erualancio E, Kusmartsev S (2010) Identification of ROS using oxidized DCFDA and flow-cytometry. Methods Mol Biol 594: 57–72.
37. Sar S, Ukal A, Sharma G, Das PK (2010) MAPK-directed phosphatases preferentially regulate pro- and anti-inflammatory cytokines in experimental visceral leishmaniasis: involvement of distinct protein kinase C isoforms. J Leukoc Biol 88: 9–20.
38. Mikus J, Steveding D (2000) A simple colorimetric method to screen drug cytotoxicity against Leishmania using the dye Alamar Blue. Parasitol Int 40: 265–268.
55. Liew FY, Li Y, Millot S (1990) Tumor necrosis factor-alpha synergizes with IFN-gamma in mediating killing of *Leishmania major* through the induction of nitric oxide. J Immunol 145: 4306–4310.

56. Liew FY, Li Y, Moss D, Parkinson C, Rogers MV, et al. (1991) Resistance to *Leishmania major* infection correlates with the induction of nitric oxide synthase in murine macrophages. Eur J Immunol 21: 3009–3014.

57. Nacy CA, Meierovics AI, Belosevic M, Green SJ (1991) Tumor necrosis factor-alpha: central regulatory cytokine in the induction of macrophage antimicrobial activities. Pathobiology 29: 182–184.

58. Cunha FQ, Assreuy J, Xu D, Charles I, Liew FY, et al. (1993) Repeated induction of nitric oxide synthase and leishmanicidal activity in murine macrophages. Eur J Immunol 23: 1385–1390.

59. Evans TG, Thai L, Granger DL, Hibbs JR Jr (1993) Effect of in vivo inhibition of nitric oxide production in murine leishmaniasis. J Immunol 151: 907–915.

60. Assreuy J, Cunha FQ, Epperlein M, Norantha-Dutra A, O'Donnell GA, et al. (2001) Oxidative responses of human and murine macrophages during phagocytosis of *Leishmania chagasi*. J Immunol 167: 893–901.

61. Panaro MA, Acquafredda A, Lisi S, Loiumento DD, Trotta T, et al. (1999) Inducible nitric oxide synthase and nitric oxide production in *Leishmania infantum*-infected human macrophages stimulated with interferon-gamma and bacterial lipopolysaccharide. Int J Clin Lab Res 29:122–127.

62. Murray HW (1961) Susceptibility of *Leishmania* to oxygen intermediates and killing by normal macrophages. J Exp Med 125: 1302–1315.

63. Stafford JL, Neumann NF, Belosevic M (2002) Macrophage-mediated innate host defense against protozoa parasites. Curr Rev Microbiol 26: 187–248.

64. Lusti S, Konidou G, Boelaert J, Lebastard M, Soteriadou K (2006) The prevention of the growth of *Leishmania major* progeny in BALB/c iron-loaded mice: a process coupled to increased oxidative burst, the amplitude and duration of which depend on initial parasite developmental stage and dose. Microbes Infect 8: 1646–1472.

65. Kumar R, Pai K, Sundar S (2001). Reactive oxygen intermediates, nitrite and IFN-gamma in Indian visceral leishmaniasis. Clin Exp Immunol 124: 262–265.

66. Kumar P, Pai K, Pandey HP, Sundar S (2002) NADH-oxidase, NADPH-oxidase and myeloperoxidase activity of visceral leishmaniasis patients. J Med Microbiol 51: 832–836.

67. Basi R, Bhatnagar S, Bhatnagar B, Naskar K, De T, et al. (2005) Kinetoplastid membrane protein-11 DNA vaccination induces complete protection against both pentavalent antimonial-sensitive and -resistant strains of *Leishmania donovani* that correlates with inducible nitric oxide synthase activity and IL-4 generation: evidence for mixed Th1- and Th2-like responses in visceral leishmaniasis. J Immunol 174: 7160–7171.

68. Sharma A, Madhukara R (2009) Ubiquitin conjugation of open reading frame F DNA vaccine leads to enhanced cell-mediated immune response and induces protection against both antimony-susceptible and -resistant strains of *Leishmania donovani*. J Immunol 103: 7719–7731.

69. Matsukawa A, Hogaboam CM, Laiacs NW, Lincoln PM, Evanoff HL, et al. (2000) Pivotal role of the CC chemokine, macrophage-derived chemokine, in the innate immune response. J Immunol 164: 5362–5368.

70. O’Garra A, McEvoy LM, Zlotnik A (1998) T-cell subsets: chemokine receptors guide the way. Curr Biol 8: 646–649.

71. Sallusto F, Mackay CR, Lanzavecchia A (2000) The role of chemokine receptors in primary, effector, and memory immune responses. Annu Rev Immunol 18: 593–620.

72. Maurice M, von Stebut E (2004) Macrophage inflammatory protein-1. Int J Biochem Cell Biol 36: 1882–1886.

73. Dey R, Sarkar A, Majumder N, Bhattacharyya Majumdar S, Roychoudhury K, et al. (2005) Regulation of impaired protein kinase C signaling by chemokines in murine macrophages during visceral leishmaniasis. Infect Immun 73: 8334–8344.

74. Greenbaum D, Colangelo C, Williams K, Gerstein M (2003) Comparing protein abundance and mRNA expression levels on a genomic scale. Genome Biol 4: 117.

75. Fahey TJ 3rd, Tracey KJ, Tekamp-Olson P, Cousens LS, Jones WG, et al. (1992) Macrophage inflammatory protein 1 modulates macrophage function. J Immunol 149: 2764–2769.