Do Plasticizers within the Indoor Environment Increase Airway Allergen Responsiveness?

There is an increasing appreciation that a wholistic consideration of the impact of air pollutants on health requires us to understand the continuum of exposures an individual may experience across the indoor and outdoor environment. This extends beyond the infiltration of ambient pollution into the home, school, or workplace to a consideration of exposures to the complex and highly heterogeneous chemical cocktail within indoor air. Although the literature on the adverse health impacts of ambient air pollution is extensive and mature, as highlighted by a joint European Respiratory Society/American Thoracic Society policy statement (1), work on indoor sources is less evolved (2). Although the population spends most of its time within the indoor environment, traveling from home to work and back again, a fraction that has increased as modern lifestyles have become more sedentary, the study of indoor air pollution has remained largely focused on a few common indoor pollutants: common allergens such as house dust mites and mold, carbon monoxide, second-hand tobacco smoke, radon, asbestos, and nitrogen dioxide. But the indoor environment is also a source of volatile and nonvolatile chemical species derived from modern synthetic building materials, furnishings, and household chemical products. The importance of these indoor sources has increased as our homes have become more airtight and energy efficient, such that now the indoor concentrations of volatile organic compounds are often significantly elevated compared with outdoor air (3). In addition, indoor air is also enriched with respirable microplastic fibers and particles that have the potential to deliver chemical additives to the lung (4).

In the paper by Maestre-Batlle and colleagues (pp. 672–680) in this issue of the Journal (5), the authors drill down onto the potential acute impacts of one common indoor air pollutant, dibutyl phthalate (DBP), on allergic airway responses. Phthalates (classified as plasticizers) are typically solvents found in plastic-based products that have aroused concern historically as endocrine-disrupting chemicals, but there is observational data also linking indoor concentrations, often in household dust, with increased risk of asthma, allergy, and wheeze (6).

The interaction between air pollutants and allergy has been shown by many studies (7, 8), with causative links proposed by epigenetic and other mechanisms (9), although these assertions have been questioned (10). Controlled human-exposure studies have also shown the potential of diesel exhaust and nitrogen dioxide to potentiate airway responses to allergen challenge (11–14). The findings have indicated that pollutants may affect the magnitude of the allergic response but also the threshold of allergen challenge demanded to induce a bronchoconstrictive response. In this issue, a team from the University of British Columbia, Vancouver, extend this consideration to DBP, investigating...
whether short-term exposures enhanced the bronchoconstrictive response, airway hyperresponsiveness (AHR), and the immune response to allergens in a placebo-controlled exposure study. This is the first human study to examine these responses under rigorous experimental conditions with the aim of providing causal support for the epidemiological observations linking phthalate exposure to adverse allergic responses. To achieve this objective, subjects with mild asthma and healthy volunteers, half with baseline airway hypersensitivity, and known to be sensitized to allergen (grass, birch, or house dust mites), were exposed to DBP for 3 hours, followed by an immediate inhalation challenge with the appropriate allergen. Lung function responses were assessed before, during, and up to 20 hours after exposure, with fractional exhaled nitric oxide assessed before and 3 and 20 hours after exposure and airway hyperreactivity assessed by methacholine challenge at 20 hours after challenge. Airway inflammation, including immune cell phenotypes, was assessed by BAL.

Although some of the responses observed were subtle, the authors found preliminary evidence that DBP exposure not only significantly enhanced the early allergic response, as compared with placebo exposure, but also increased AHR in subjects without preexisting hyperresponsiveness. One interpretation of this finding is that acute DBP exposure may move an individual with allergic sensitization and no AHR toward an endotype with hyperreactive airways when exposed to allergen. The selection of allergic-sensitized subjects both with and without AHR allowed the investigators to study the effects over a span in AHR, from normal to sensitized subjects both with and without AHR towards an endotype with hyperreactive airways. The inside story: health effects of indoor air quality on children and young people. London: The Royal College of Paediatrics and Child Health; 2020 [accessed 2020 May 25]. Available from: https://www.rcpch.ac.uk/sites/default/files/2020-01/the-inside-story-report-January-2020.pdf.

3. McDonald BC, de Gouw JA, Gilman JB, Jathar SH, Akherati A, Cappa CD, et al. The in vivo finding. The inside story: health effects of indoor air quality on children and young people. London: The Royal College of Paediatrics and Child Health; 2020 [accessed 2020 May 25]. Available from: https://www.rcpch.ac.uk/sites/default/files/2020-01/the-inside-story-report-January-2020.pdf.

4. Vianello A, Jensen RL, Liu L, Vollertsen J. Simulating human exposure to indoor airborne microplastics using a Breathing Thermal Manikin. Sci Rep 2019;9:8670.

5. Maestre-Batlle D, Huff RD, Schwartz C, Alexis NE, Tebbutt SJ, Turvey S, et al. Dibutyl phthalate augments allergen-induced lung function decline and alters human airway immunology: a randomized crossover study. Am J Respir Crit Care Med 2020;202:672–680.

6. Callesen M, Bekó G, Wescriller CJ, Sigsgaard T, Jensen TK, Clausen G, et al. Associations between selected allergens, phthalates, nicotine, polycyclic aromatic hydrocarbons, and bedroom ventilation and clinically confirmed asthma, rhinoconjunctivitis, and atopic dermatitis in preschool children. Indoor Air 2014;24:136–147.

7. Gehring U, Wijsa AH, Koppelman GH, Vonk JM, Smit HA, Brunekreef B. Air pollution and the development of asthma from birth until young adulthood. Eur Respir J 2020;56:2000147.

8. Bowatte G, Lodge C, Lowe AJ, Erbas B, Perrot J, Abramson MJ, et al. The influence of childhood traffic-related air pollution exposure on asthma, allergy and sensitization: a systematic review and a meta-analysis of birth cohort studies. Allergy 2015;70:245–256.

9. Carlsten C, Melén E. Air pollution, genetics, and allergy: an update. Curr Opin Allergy Clin Immunol 2012;12:455–460.

10. Hassoun Y, James C, Bernstein DI. The effects of air pollution on the development of atopic disease. Clin Rev Allergy Immunol 2019;57:403–414.

11. Strand V, Rak S, Svartengren M, Bylin G. Nitrogen dioxide exposure enhances asthma reaction to inhaled allergen in subjects with asthma. Am J Respir Crit Care Med 1997;155:881–887.

12. Wooding DJ, Ryu MH, Hüls A, Lee AD, Lin DTS, Rider CF, et al. Particle depletion does not remediate acute effects of traffic-related air pollution and allergen: a randomized, double-blind crossover study. Am J Respir Crit Care Med 2019;200:565–574.

13. Diaz-Sanchez D, Jyrala M, Ng D, Nel A, Saxon A. In vivo nasal challenge with diesel exhaust particles enhances expression of the CC chemokines rantes, MIP-1alpha, and MCP-3 in humans. Clin Immunol 2000;97:140–145.

14. Ryu MH, Lau KS, Wooding DJ, Fan S, Sin DD, Carlsten C. Particle depletion of diesel exhaust restores allergen-induced lung-protective surfactant protein D in human lungs. Thorax [online ahead of print] 28 May 2020; DOI: 10.1136/thoraxjnl-2020-214561.