Sugar and spice: Fc glycosylation in antibody-mediated transplant rejection

Nicole M. Valenzuela¹,*
¹Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, USA
*Correspondence: npyburn@mednet.ucla.edu
https://doi.org/10.1016/j.xcrm.2022.100809

Bharadwaj et al.¹ demonstrate that anti-donor HLA antibodies display low levels of Fc fucosylation. This signature was associated with potent provocation of NK cell effector functions and was discriminative for active antibody-mediated rejection among patients with donor specific HLA antibodies.

Transplantation is a life-saving treatment for patients with end-stage organ failure. This year, the United Network for Organ Sharing (UNOS) reported its one millionth transplant, and currently, more than 350,000 people are living with an organ allograft in the United States alone. However, organ transplant longevity does not match recipient life expectancy, with median graft survival ranging from 5 to 15 years. Alloimmunity results from recognition of genetically mismatched proteins in the donor as foreign by the recipient’s adaptive immune system. The most potent target of alloimmunity is the highly polymorphic human leukocyte antigen (HLA) system. Although transplant recipients are maintained on lifelong, systemic anti-T cell immunosuppression, antibody-mediated graft damage remains one of the most stubbornly important challenges to long-term transplant success. In particular, the presence of anti-donor HLA antibodies (DSA) represents a significant independent risk factor for acute rejection, chronic occlusive vasculopathy, and graft loss across transplanted organ types.

Decades of research have demonstrated that anti-HLA antibodies bind to donor vascular cells, and activate the classical complement system, induce vascular inflammatory signaling, and promote infiltration of recipient immune cells into the transplanted organ. Nevertheless, the simple presence of DSA is not a binary determinant of whether a patient will experience rejection or graft failure. Many groups have thus surmised that additional characteristics of DSA influence its pathogenicity.² Features such as immunoglobulin isotype and subclass, titer/quantity, and Fc glycosylation are important determinants of antibody effector function. The four human immunoglobulin G (IgG) subclasses have discrete affinities for different families of Fc gamma receptors (FcγRs) borne by innate immune cells such as NK cells, monocytes and neutrophils.³ IgG subclasses also exhibit unequal potency in activating the classical complement cascade. Consequently, there is high interest in the transplant field to understand if the relative abundance of IgG subclasses among anti-donor HLA antibodies is better correlated with risk of rejection than presence of HLA donor specific antibody alone.

Similarly, differential glycosylation of the Fc region of IgG controls engagement of FcγRs and the classical complement initiator C1q. This variance dynamically regulates an antibody’s capacity to activate effector functions like cell-mediated cytotoxicity and leukocyte adherence. For example, IgG glycovariants lacking fucose residues elicit greater natural killer (NK) cell antibody-dependent cytotoxicity,⁴ while galactosylation augments sialylated IgG3.⁵ They determined that high or low sialyl content of IgG was associated with acute antibody-mediated rejection (OR 0.7, p = 0.002), while another glycan moiety, bisected GlcNAc, was protective from acute antibody-mediated rejection (OR 0.7, p = 0.014).

In the report in this issue,¹ the Ackerman lab applied sophisticated glycopeptidomics assays to simultaneously analyze the subclass and glycosylation status of anti-donor HLA antibodies purified from transplant recipient serum. They then employed complementary in vitro approaches to interrogate the
functional interaction of differentially glycosylated HLA antibodies with FcγRs. Their findings show that anti-donor HLA antibodies exhibit reduced fucosylation compared with total IgG and that specific IgG subclasses display unique patterns of glycosylation. They go on to demonstrate that antibodies lacking fucose moieties trigger enhanced NK cell-mediated cytotoxicity, attributable to prolonged binding to FcγRIIa and greater FcγRIIa-induced intracellular signaling. Lastly, the authors find that, among patients with donor-specific antibodies, the degree of fucosylation was lower in those experiencing acute antibody-mediated rejection. These proof-of-principle data provide evidence that antibody subclass and glycosylation coordinate effector functions, at least in vitro, that are relevant to transplant rejection. The data further suggest that examining these dynamic characteristics in a curated, longitudinal population of clinical transplant recipients may discriminate of “pathogenic” DSA or have predictive value for rejection risk stratification.

Many new questions arise from these findings. Herein, the authors focused on antibodies directed against one HLA antigen (HLA-A2) based on its high allele frequency in the donor population. Future studies confirming these findings across different HLA genotypes, particularly those directed against the HLA-DQ molecule, will be of high interest to the field. Further, NK cells are one of several FcγR-bearing leukocytes implicated in transplant rejection. The importance of subclass and glycosylation for interaction with monocytes and neutrophils will be an intriguing follow-up study. Similarly, complement activation is a critical pathogenic phenomenon exacerbating inflammation and tissue damage, which has hitherto been defined in in vivo assays measuring binding of C1q protein to HLA antibodies. Drilling down on the molecular features of HLA antibodies that more or less potently engage these systems is an exciting new avenue for the field of transplantation, with strong functional relevance to non-transplant contexts such as autoimmune vasculitis.

DECLARATION OF INTERESTS

The author declares no competing interests.

REFERENCES

1. Bharadwaj, P.S., Sweta, Pongracz, T., Con- cetta, C., Sharma, S., Le Moine, Alain, de Haan, Noortje, Murakami, N., et al. (2022). A fu-
cosylation of HLA-specific IgG1 as a potential predictor of antibody pathogenicity in kidney
transplantation. Cell Reports Medicine, in press.
2. Valenzuela, N.M., and Schaub, S. (2018). The Bio-
logy of IgG subclasses and their clinical rele-
ance to transplantation. Transplantation 102 (Suppl 1), S7–S13. https://doi.org/10.
1097/tp.0000000000001816.
3. Nimmerjahn, F., and Ravetch, J.V. (2005). Divergent immunoglobulin g subclass activity
through selective Fc receptor binding. Science 310, 1510–1512. https://doi.org/10.1126/sci-
eence.1118948.
4. Shinkawa, T., Nakamura, K., Yamane, N., Shoji-Hosaka, E., Kanda, Y., Sakurada, M.,
Uchida, K., Anazawa, H., Satoh, M., Yamasaki, M., et al. (2003). The absence of fucose but not
the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type
oligosaccharides shows the critical role of enhancing antibody-dependent cellular cyto-
toxicity. J. Biol. Chem. 278, 3466–3473. https://doi.org/10.1074/jbc.m210665200.
5. van Osch, T.L.J., Nouts, J., Derksen, N.I.L.,
vand Mierlo, G., van der Schoot, C.E., Wuhrer,
M., Rispehs, T., and Vidarsson, G. (2021). Fc
galactosylation promotes Hexamization of
human IgG1. Leading to enhanced classical
complement activation. J. Immunol. 207, 1545–1554. https://doi.org/10.4049/jimmu-
nol.2100399.
6. Seeling, M., Bruckner, C., and Nimmerjahn, F.
(2017). Differential antibody glycosylation in autoimmunity: sweet biomarker or modu-
lator of disease activity? Nat. Rev. Rheuma-
tol. 13, 621–630. https://doi.org/10.1038/
nrrheum.2017.146.
7. Oosterhoff, J.J., Larsen, M.D., van der Schoot,
C.E., and Vidarsson, G. (2022). Afucosylated
IgG responses in humans - structural clues to
the regulation of humoral immunity. Trends Im-
munol. 43, 800–814. https://doi.org/10.1016/j.
tol.2022.08.001.
8. Kapur, R., Kustlawa, I., Vestheim, A., Koele-
man, C.A.M., Visser, R., Einarssdottir, H.K.,
Porcelijn, L., Jackson, D., Kumpel, B., Deeder,
A.M., et al. (2014). A prominent lack of IgG1-Fc
fucosylation of platelet alloantibodies in preg-
nancy. Blood 123, 471–480. https://doi.org/
10.1182/blood-2013-09-527978.
9. Barba, T., Hab, J., Dureux, S., Koenig, A.,
Mathias, V., Rabeyrin, M., Pouliquen, E., Si-
card, A., Chartoire, D., Dugast, E., et al.
(2019). Highly variable sialylation status of
donor-specific antibodies does not Impact
humoral rejection outcomes. Front. Immunol.
10, 513. https://doi.org/10.3389/fimmu.2019.
00513.
10. Perrin, V., Bec, N., Beyze, A., Bourgeois, A.,
Szwarc, I., Champion, C., Chauvin, A., Rene,
C., Mourad, G., Merville, P., et al. (2022).
IgG3 donor-specific antibodies with a proin-
flammatory glycosylation profile may be asso-
ciated with the risk of antibody-mediated
rejection after kidney transplantation. Am. J.
Transplant. 22, 865–875. https://doi.org/10.
1111/ajt.16904.