Adjuvant chemotherapy after neoadjuvant chemoradiation and proctectomy improves survival irrespective of pathologic response in rectal adenocarcinoma: a population-based cohort study

Samer A. Naffouje1 · Yuen-Joyce Liu2 · Sivesh K. Kamarajah3,4 · George I. Salti2,5 · Fadi Dahdaleh5

Accepted: 24 August 2022 / Published online: 1 September 2022 © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
Background This study sought to determine whether adjuvant chemotherapy (AC) compared to no AC (noAC) after neoadjuvant chemoradiation (CRT) and resection for rectal adenocarcinoma prolongs survival. Current guidelines from expert groups are conflicting, and data to support administering AC to patients who received neoadjuvant CRT are lacking.

Methods A total of 19,867 patients met inclusion/exclusion criteria. Mean age was 58.6 ± 12.0 years, and 12,396 (62.4%) were males. Complete response (CR) was documented in 3801 (19.1%) patients and 8167 (41.1%) received AC. The cohort was stratified into pathological complete (pCR, N = 3801) and incomplete (pIR, N = 16,066) subgroups, and pIR further subcategorized into ypN0 (N = 10,191) and ypN+ (N = 5875) subgroups. After propensity score matching, AC was associated with improved OS in the pCR subgroups (mean 139.1 ± 1.9 vs. 134.0 ± 2.2 months; p < 0.001), in pIR ypN0 subgroup (141.6 ± 1.5 vs. 129.9 ± 1.2 months, p < 0.001), and in pIR ypN+ subgroup (155.9 ± 5.4 vs. 126.5 ± 7.6 months; p < 0.001).

Results AC was associated with improved OS in patients who received neoadjuvant CRT followed by proctectomy for clinical stages II and III rectal adenocarcinoma. This effect persisted irrespective of pathological response status.

Conclusions AC following neoadjuvant CRT and surgery is associated with improved OS in patients with rectal adenocarcinoma. These findings warrant adoption of AC after neoadjuvant CRT and surgery for clinical stage II and III rectal adenocarcinoma.

Keywords Neoadjuvant chemoradiation · Outcomes · Rectal cancer · Adjuvant chemotherapy

Introduction
A treatment strategy which incorporates neoadjuvant radiotherapy (RT) or chemoradiotherapy (CRT) and total mesorectal excision (TME) remains standard of care in the management of rectal adenocarcinoma as it optimizes locoregional control and offers a chance at cure. [1, 2] While the benefit of adjuvant chemotherapy (AC) has been documented in resected high-risk stage II and stage III colon cancer, [3] the effect of AC following CRT and TME remains less clear.

The National Comprehensive Cancer Network (NCCN) recommends that patients with locally advanced rectal cancer who undergo neoadjuvant CRT or RT should receive AC [4], whereas the European Society for Medical Oncology (ESMO) recommends AC for patients with yp stage III and high-risk yp stage II [5]. The effect of AC after CRT and TME has been examined in several randomized controlled trials, and an overall survival (OS) benefit over observation has not been detected. For example, in the European Organization for Research and Treatment of Cancer (EORTC) trial, adjuvant fluorouracil plus leucovorin in patients treated with neoadjuvant RT with or without chemotherapy did not significantly improve OS compared to observation alone.

* Fadi Dahdaleh
Fadi.Dahdaleh@EEHealth.org
1 Department of Surgical Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
2 Department of General Surgery, University of Illinois Hospital and Health Sciences System, Chicago, IL, USA
3 Department of Upper Gastrointestinal Surgery, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Trust, Birmingham, UK
4 Institute of Cancer and Genomics Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
5 Department of Surgical Oncology, Edward-Elmhurst Health, 120 Spalding Drive, Ste 205, Naperville, IL 60540, USA
Other trials similarly found no advantage to AC in this setting [7]. Despite that, proponents of AC cite flaws in existing trials largely related to poor compliance with AC, as only 43% of subjects in EORTC received AC, for example. Moreover, failure to adhere to study protocols due to treatment delays, dose reductions, and inability to complete intended therapy was common, all of which likely further diminished potential beneficial effects of AC [8].

Therefore, this study aims to evaluate the effect of AC on OS in patients with stage II and III rectal adenocarcinoma treated with neoadjuvant CRT using the National Cancer Database (NCDB), hypothesizing that AC improves OS. A secondary aim is to examine OS in patient subgroups according to tumor and nodal pathological response. To account for potential treatment selection bias, propensity score matching (PSM) was utilized and OS was assessed in individual relevant subgroups of patients.

Methods

NCDB is a joint project of the Commission on Cancer (CoC) of the American College of Surgeons and the American Cancer Society [9]. Data from Over 1500 CoC-accredited hospitals includes > 70% of all newly diagnosed cancers in the USA. Clinicopathologic data as well as information on demographics, facility type, and outcomes are recorded prospectively.

The NCDB participant user file 2004–2018 for rectal cancer was utilized to identify patients over 18 years of age diagnosed with clinical stages II/III rectal adenocarcinoma. International Classification of Diseases for Oncology Third Edition (ICD-O-3) was used to select for adenocarcinoma (ICD-O-3 morphology codes: 8240–8248). Clinical staging was determined based on radiologic imaging according to the American Joint Commission on Cancer (AJCC). Therefore, clinical T and N staging used was available prior to treatment initiation.

Only patients who received long-course neoadjuvant CRT were included. Long-course neoadjuvant CRT was defined as receipt of at least 25 fractions to a total of 4500 cGy to the rectum or pelvis. Accepted radiation modalities as reported in NCDB included External Beam Radiation Therapy (EBRT), Intensity-Modulated Radiation Therapy (IMRT), and 3-Dimensional Conformal Computed Tomography (3D-CRT). Consistent with contemporary recommendations, only patients who underwent resection between 5 and 12 weeks met inclusion criteria. Patients who did not receive neoadjuvant CRT, received fewer fractions/lower doses of radiation, had unknown sites of radiation, and those who underwent surgical resection outside the abovementioned timeframe were excluded. Similarly, patients with alternate histologies, metastatic disease (stage IV), and those with clinical stages I and 0 were excluded. Patients with other cancer diagnoses and those with missing data on receipt of neoadjuvant CRT were also excluded.

Included proctectomy procedures were Low Anterior Resection (LAR), Abdominoperineal Resection (APR), proctocolectomy, and pelvic exenteration, as coded in NCDB. Patients with missing information on surgical procedure or approach were excluded. Only patients surviving beyond 90 days were included to adjust for immortal time bias. Other patient-level characteristics were analyzed as defined in NCDB: age, race, Charlson/Deyo comorbidity score (CDCC), year of diagnosis, insurance status (Medicaid/Medicare, private insurance, uninsured), zip code-level, education status, and urban versus rural area of residence. In addition, the following hospital-level characteristics were analyzed: facility type (academic, community, other) and facility location (Midwest, Northeast, South, West). Finally, the following clinicopathologic characteristics were analyzed: clinical T status, clinical N status (cN0, cN1, cN2, cN3, cNx), and tumor grade/differentiation (well/moderate, poor/anaplastic, unknown).

The study’s primary aim was to evaluate the specific effect of AC on OS and to further evaluate AC’s effect in prespecified subgroups based on pathologic response. To minimize potential confounding factors from suboptimal surgery, only patients with ≥12 nodes and negative proximal, distal, and circumferential margins were included.

After application of inclusion/exclusion criteria, patients were stratified according to pathologic response into pathologic complete response (pCR) and pathologic incomplete response (pIR) groups. pCR was defined in NCDB as ypT0ypN0. Next, the pIR cohort was further subcategorized according to pathologic nodal status into ypN0 and ypN+. A propensity score was then calculated for each group based on a multivariable regression model which adjusts for all demographic and clinical variables including age, sex, race, Charlson score, grade, radiation-surgery interval, type and approach of the surgical resection, and median time of follow-up. After building logistic models, patients were matched at a ratio of 1:1 in each group per the status of AC using the nearest neighbor method with a 0.1 caliper width. Conditional logistic regression was applied to compare categorical variables, whereas mixed effect modeling was used to compare continuous variables between patients who received AC vs. those who did not. Finally, Kaplan–Meier method was applied to estimate OS among matched subgroups. IBM SPSS v25 (Armonk, NY) with R 3.3.3 plugin software was used for statistical analysis. Significance was set at p < 0.05 throughout.
Results

Clinicopathologic characteristics

The NCDB participant user file for rectal cancer included 314,844 patients. After application of inclusion/exclusion criteria, 19,867 patients with clinical stage II/III rectal adenocarcinoma who completed long-course neoadjuvant CRT and underwent resection remained (Fig. 1). Mean age for the entire cohort was 58.6 ± 12.0 years, and 12,396 (62.4%) were males. There were 17,249 (86.8%) patients with clinical stage T3, and 10,662 (53.7%) were node-positive (clinical stage III). Of 19,867 patients, 11,991 (60.4%) underwent CRT, and the most commonly performed procedure was LAR (N = 13,801, 69.5%). The median number of retrieved nodes was 16, and pCR was documented in 3801 cases (19.1%). A total of 8,167 patients (41.1%) received AC and median follow-up time was 55.1 months. Table 1 summarizes the demographic, clinical, and pathologic characteristics of the selected population.

Propensity score matching

As described above, the included cohort was stratified into pCR (N = 3801) and pIR (N = 16,066) groups, with the pIR group further subcategorized into ypNO (N = 10,191) and ypN+ (N = 5875) subgroups. Within the pCR group, 2505 patients did not receive AC whereas 1296 did. Baseline characteristics among these two subgroups were conducted and, notably, patients who received AC were significantly younger (57.1 ± 11.5 vs. 60.8 ± 12.5 years; p < 0.001), more likely to have a Charlson score of 0 (82.8% vs. 78.9%; p = 0.039), more commonly had clinical stage III tumors (56.4% vs. 46.1%; p < 0.001), and were more likely to undergo minimally invasive surgical resection (39.3% vs. 34.1%; p = 0.001). Propensity score was carried out as described among 1292 patients from each subgroup, which resulted in well-balanced cohorts. Standardized mean differences were calculated for each variable and ranged between 0.01 and 0.05, indicating good balance (Table 2).

Association of adjuvant chemotherapy with survival in matched subgroups

Survival was then estimated for matched subgroups, and patients who received AC had increased mean OS compared to no AC in the pCR subgroups (139.1 ± 1.9 vs. 134.0 ± 2.2 months, median not reached in both groups; p < 0.001). The absolute 5-year OS benefit of AC was 4% (92% vs. 88%; p < 0.001).

In the pIR ypN0 group, 6202 patients did not receive AC whereas 3989 did. Comparison of baseline characteristics similarly revealed that AC patients were younger (56.8 ± 10.9 vs. 60.6 ± 12.1 years; p < 0.001), had higher rates of Charlson score 0 (81.5% vs. 76.7%; p < 0.001), underwent surgery within 5–8 weeks (61.0% vs. 58.3%; p = 0.005), had minimally invasive procedures (38.5% vs. 34.9%; p < 0.001), and sustained T downstaging (77.4% vs. 73.0%; p < 0.001). Propensity-score matching was carried out similarly to yield 2970 well-balanced cohorts (Table 3). Again, AC patients had a longer mean OS compared to those who did not receive AC (141.6 ± 1.5 vs. 129.9 ± 1.2 months, medians not reached in both groups; p < 0.001). The absolute incremental 5-year OS advantage associated with AC was 6% (89% vs. 83%; p < 0.001, Fig. 2).

Finally, in patients with pIR and ypN+, 2993 did not receive AC whereas 2882 did. Baseline comparison of clinicopathologic factors revealed that AC patients were younger (55.9 ± 11.5 vs. 58.3 ± 12.7 years; p < 0.001) and more commonly underwent minimally invasive resections more commonly (33.2% vs. 29.5%; p = 0.002) but were less likely to be downstaged to ypT0 (10.7% vs. 13.9%; p = 0.003). A total of 2629 patients were matched by AC receipt status, and matched subgroups were well balanced (Table 4). Survival was improved with AC in matched pIR and ypN+ patients (median OS in the AC subgroup (155.9 ± 5.4 vs. 126.5 ± 7.6 months; p < 0.001). The absolute 5-year OS advantage associated with AC was 7% (76% vs. 69%; p < 0.001, Fig. 2).

Discussion

Neoadjuvant CRT and TME are the standard of care for patients with stage II and III rectal adenocarcinoma. In this study which utilized a national population-based cohort and included 19,867 patients who received neoadjuvant CRT followed by proctectomy for clinical stages II and III rectal adenocarcinoma, AC was associated with improved OS after accounting for potential biases through propensity score matching. Importantly, on individual stratified analyses by pathologic response to preoperative therapy, an OS advantage persisted irrespective of response in both pathologic node positive and node negative patients. Given existing limitations in prospective studies examining AC’s role in this setting, those findings collectively suggest that AC should not be omitted after neoadjuvant CRT based on final pathologic staging.

To date, four randomized controlled trials have evaluated the value of AC in patients with rectal adenocarcinoma treated with upfront CRT. In the seminal EORTC
Fig. 1 Flow diagram demonstrating the steps of patient selection
Notably, a minority of patients ultimately received intended AC in that study with a rate of 43%, indicating poor adherence to study protocol. In another important trial by Cionini et al., OS was similarly comparable among patients that received AC (leucovorin-modulated fluorouracil) and those who did not following neoadjuvant CRT and TME [7]. Compliance to AC again emerged as a notable limitation, as 28% of patients assigned to AC did not receive it. The Dutch colorectal PROCTOR/SCRIPT trials included patients with stage II or III rectal adenocarcinoma who underwent neoadjuvant RT or CRT followed by TME and were then randomly assigned to observation vs. adjuvant fluorouracil/leucovorin (PROCTOR) or to observation vs. adjuvant capecitabine (SCRIPT) [10]. A combined analysis of both studies again showed no significant difference in OS at 5 years [10]. In the present study, while compliance with AC was consistent with the aforementioned studies (41.1%), an OS advantage was detected in all analyzed subgroups. This is possibly related to the considerably larger sample size and due to improved overall care in a more contemporary time period.

NCCN guidelines recommend AC for patients with locally advanced rectal adenocarcinoma treated with upfront CRT [4]. Whether AC improves oncologic outcomes in this setting has been addressed previously using NCDB, and increased OS has consistently been observed [11–13]. Most recently, Gahagan et al. analyzed NCDB between 2006 and 2013 and included patients with stage II and III rectal adenocarcinoma treated with neoadjuvant CRT and noted an OS advantage with AC. In this study, OS was similarly improved with AC despite several key methodological differences. First, included patients in this study were treated in a more contemporary period (2004–2018) and underwent a strict selection criteria in an effort to exclude patients receiving suboptimal surgical resection (negative CRM and adequate LN yield). This likely minimized chances of under-staging and further limited the potential detrimental effect of inadequate surgery on OS. Second, independent subgroup analyses were conducted and stratified by pathologic response according to both tumor and nodal status to allow for comparison of additional matched subsets. Finally, patients who did sustain a complete response were also studied and matched independently, further supporting AC’s role in this subgroup.

Existing research supports that attaining pCR in patients who have undergone neoadjuvant CRT and TME is associated with improved oncologic outcomes overall [12–15]. Even without AC, pCR has been associated with increased 5-year disease-free and OS rates of 96% (95%, CI: 77–99) and 100%, respectively [16]. A systematic review and meta-analysis including pooled data from NCDB reported a trend towards improved OS with AC, but data was limited due to heterogeneity in the included samples [17]. Indeed, whether AC represents overtreatment in

Table 1 Summary of the demographic and clinical characteristics of the selected patient population

N	19867
Age (years)	Mean ± SD 58.6 ± 12.0
	Median 59
Sex	Male 12396 (62.4%)
	Female 7471 (37.6%)
Race	White 16267 (81.9%)
	Black 1439 (7.2%)
	Other 2161 (10.9%)
Charlson score	0 15854 (79.8%)
	1 3099 (15.6%)
	2 625 (3.1%)
	3+ 289 (1.5%)
Grade	Well differentiated 1412 (7.1%)
	Moderately differentiated 13657 (68.7%)
	Poorly differentiated 1857 (9.3%)
	Not reported 2941 (14.8%)
Clinical T stage	T1 116 (0.6%)
	T2 958 (4.8%)
	T3 17249 (86.8%)
	T4 1544 (7.8%)
Clinical N stage	Negative 9205 (46.3%)
	Positive 10662 (53.7%)
Clinical stage	Stage II 9205 (46.3%)
	Stage III 10662 (53.7%)
Radiation-surgery interval	5–8 weeks 11991 (60.4%)
	9–12 weeks 7876 (39.6%)
Surgery	LAR 13801 (69.5%)
	APR 4938 (24.9%)
	Proctocolectomy 541 (2.7%)
	Exenteration 587 (3.0%)
Approach	Open 12964 (65.3%)
	Minimally-invasive 6903 (34.7%)
Retrieved lymph nodes	Mean ± SD 18.7 ± 7.6
	Median 16
Pathologic T stage	T0 4525 (22.8%)
	T1 1221 (6.1%)
	T2 5045 (25.4%)
	T3 8528 (42.9%)
	T4 548 (2.8%)
Pathologic N stage	N0 13992 (70.4%)
	N1 4088 (20.6%)
	N2 1787 (9.0%)
Response	Complete response 3801 (19.1%)
	Partial response 10122 (50.9%)
	No response 5944 (29.9%)
Adjuvant systemic therapy	No 11700 (58.9%)
	Yes 8167 (41.1%)
Follow up (months)	Mean ± SD 62.4 ± 35.6
	Median 55.1
For example, in an analysis of European RCTs, OS improvement in patients with ypT0N0 disease was minimal when compared to non-responders [18]. In this study, AC conferred a meaningful OS improvement in all subgroups irrespective of tumor or nodal response status, suggesting AC should be considered universally. Specifically, in pIR and ypN+ patients, a 5-year OS incremental advantage associated with AC was 7% compared to 4% in the pCR subgroup. While it is not possible to cross compare incremental OS improvements, this data suggests that response is unlikely to considerably affect a decision to pursue AC.

This study has several limitations, most of which are due to its retrospective design and inherent biases associated with large dataset analyses. First, while NCDB employs rigorous quality control measures and high regulatory standards, coding errors and observer bias remain possible. Second, important granular details on type and extent of postoperative chemotherapy are lacking. This certainly may have affected OS and, consequently, study conclusions. However, in an effort to overcome that, this study employed stringent selection criteria aimed at excluding patients who may have received substandard preoperative therapy. Third, selection bias is unavoidable in this retrospective analysis.

Table 2	Comparison of the unmatched and matched datasets of the patient subgroup who achieved pathologic complete response (N = 3801) by the receipt of adjuvant systemic therapy					
	Unmatched dataset	Matched dataset 1:1				
	No AC	AC	p	No AC	AC	p
N	2505	1296	<0.001*	1292	1292	0.713
Age (years)	60.8 ± 12.5	57.1 ± 11.2	0.141	57.3 ± 12.0	57.1 ± 11.1	0.936
Sex						
Male	1567	779	62.6%	517	39.9%	0.115
Female	938	517	37.4%	395	39.9%	0.952
Race						
White	2077	1071	82.9%	514	42.8%	0.039*
Black	184	78	7.3%	37	6.1%	0.851
Other	244	147	11.3%	124	26.9%	0.723
Charlson Score	0.039*			0.843		
0	1976	1073	78.9%	514	50.8%	
1	413	176	16.5%	34	8.6%	
2	84	35	4.4%	10	2.4%	
3+	32	12	4.4%	10	2.4%	
Grade						
Well diff	162	91	6.5%	46	2.9%	
Moderately diff	1572	827	62.8%	827	52.6%	
Poorly diff	184	88	7.3%	12	7.3%	
Not reported	587	290	23.4%	290	18.2%	
Clinical stage	<0.001*			0.843		
Stage II	1349	565	43.6%	565	43.6%	
Stage III	1156	731	65.6%	731	65.6%	
Rad-surg interval	0.703			0.524		
5–8 weeks	1449	758	58.5%	758	58.5%	
9–12 weeks	1056	538	41.5%	538	41.5%	
Surgery						
LAR	1775	915	70.9%	915	70.9%	
APR	608	313	24.3%	313	24.3%	
Proctocolectomy	68	41	2.7%	41	2.7%	
Exenteration	54	27	2.2%	27	2.2%	
Approach						
Open	1652	787	65.9%	787	60.7%	0.001*
MIS	853	509	34.1%	509	39.3%	0.888
Retrieved nodes	18.2 ± 7.1	18.6 ± 7.7	0.113	18.3 ± 7.1	18.5 ± 7.6	0.471
Median follow-up	56.2	56.8		0.828	56.3	0.906

APR abdominoperineal resection, AC adjuvant systemic therapy, Diff differentiated, LAR low abdominal resection, MIS minimally invasive surgery

*Statistically significant
and it is therefore possible that patients selected to receive AC had fewer comorbidities and better overall performance status which may have contributed to improved outcomes.

While an intent-to-treat analysis would have been particularly useful, this was not possible as NCDB does not detail proposed treatment plans at time of diagnosis and further does not include information on why AC was not pursued or offered. In an effort to counteract this effect, strict inclusion and exclusion criteria were used to select patients based on upfront clinical staging alone. Moreover, only patients undergoing “optimal” surgery were included in an effort to lessen likelihood of AC utilization as a means to compensate for insufficient surgery. On the other hand, AC was likely recommended more commonly to patients with more adverse pathologic features, which may have introduced counteracting bias against the study’s findings. In an effort

Table 3	Comparison of the unmatched and matched datasets of the patient subgroup who achieved pathologic incomplete response with ypN0 (N = 10,191) by the receipt of adjuvant systemic therapy					
	Unmatched dataset	Matched dataset 1:1				
	No AC	AC	p	No AC	AC	p
N	6202	3989		3970	3970	0.697
Age (years)	60.6 ± 12.1	56.8 ± 10.9	<0.001*	57.1 ± 11.5	57.0 ± 10.8	
Sex	0.974	0.981				
Male	3920 (63.2%)	2520 (63.2%)	2508 (63.2%)	2507 (63.1%)		
Female	2282 (36.8%)	1469 (36.8%)	1462 (36.8%)	1463 (36.9%)		
Race	0.283	0.804				
White	5072 (81.8%)	3287 (82.4%)	3255 (82.0%)	3269 (82.3%)		
Black	473 (7.6%)	271 (6.8%)	286 (7.2%)	271 (6.8%)		
Other	657 (10.6%)	431 (10.8%)	429 (10.8%)	430 (10.8%)		
Charlson score	0.825	0.825				
0	4756 (76.7%)	3250 (81.5%)	3217 (81.0%)	3232 (81.4%)		
1	1086 (17.5%)	579 (14.5%)	599 (15.1%)	578 (14.6%)		
2	241 (3.9%)	102 (2.6%)	93 (2.3%)	102 (2.6%)		
3+	119 (1.9%)	58 (1.5%)	61 (1.5%)	58 (1.5%)		
Grade	0.491	0.972				
Well diff	497 (8.0%)	291 (7.3%)	288 (7.3%)	291 (7.3%)		
Moderately diff	4374 (70.5%)	2839 (71.2%)	2847 (71.7%)	2828 (71.2%)		
Poorly diff	481 (7.8%)	325 (8.1%)	316 (8.0%)	321 (8.1%)		
Not reported	850 (13.7%)	534 (13.4%)	519 (13.1%)	530 (13.4%)		
Rad-surg interval	0.005*	0.550				
5–8 weeks	3614 (58.3%)	2435 (61.0%)	2393 (60.3%)	2419 (60.9%)		
9–12 weeks	2588 (41.7%)	1554 (39.0%)	1577 (39.7%)	1551 (39.1%)		
Surgery	0.612	0.990				
LAR	4311 (69.5%)	159 (2.6%)	201 (3.2%)	201 (2.6%)		
APR	1531 (24.7%)	117 (2.6%)	117 (2.9%)	117 (2.9%)		
Proctocolectomy	159 (2.6%)	108 (2.7%)	103 (2.6%)	107 (2.7%)		
Exenteration	201 (3.2%)	117 (2.9%)	117 (2.9%)	117 (2.9%)		
Approach	<0.001*	0.835				
Open	4035 (65.1%)	2454 (61.5%)	2455 (61.8%)	2446 (61.6%)		
MIS	2167 (34.9%)	1535 (38.5%)	1515 (38.2%)	1524 (38.4%)		
Retrieved nodes	18.4 ± 7.5	18.7 ± 7.3	18.6 ± 7.8	18.7 ± 7.2		
T downstaging	0.028*	0.513				
Achieved	4562 (73.0%)	3086 (77.4%)	3059 (77.1%)	3067 (77.3%)		
Not achieved	1640 (26.4%)	903 (22.6%)	911 (22.9%)	903 (22.7%)		
Path T stage	0.600	0.829				
T0	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)		
T1	616 (10.0%)	386 (9.7%)	371 (9.3%)	383 (9.6%)		
T2	2306 (37.2%)	1529 (38.3%)	1513 (38.1%)	1523 (38.4%)		
T3	3086 (49.8%)	1943 (48.7%)	1965 (49.5%)	1933 (48.7%)		
T4	192 (3.1%)	131 (3.3%)	121 (3.0%)	131 (3.3%)		
Median follow-up	56.1	54.9	0.011*	55.0	55.0	0.875

APR abdominopelvic resection, AC adjuvant systemic therapy, Diff differentiated, LAR low abdominal resection, MIS minimally invasive surgery

*Statistically significant
Fig. 2 A Kaplan–Meier survival analysis of the matched patients with pathologic complete response to neoadjuvant chemoradiation by the status of adjuvant systemic therapy. B Kaplan–Meier survival analysis of the matched patients with pathologic incomplete response and ypN0 by the status of adjuvant systemic therapy. C Kaplan–Meier survival analysis of the matched patients with pathologic incomplete response and ypN+ by the status of adjuvant systemic therapy.
Patients with pathologic incomplete response to neoadjuvant chemoradiation and ypNO:

- AC: NR (mean 141.6 ± 1.5 months)
- No AC: NR (mean 129.9 ± 1.2 months)

\[p < 0.001 \]

Months	Cumulative survival
0	1.00
12	0.98
24	0.95
36	0.92
48	0.89
60	0.86
72	0.83
84	0.80
96	0.77
108	0.74
120	0.71
132	0.67
144	0.66
156	0.60
168	0.56

N entering	N withdrawing	N exposed to risk	N of events	Cumulative survival
3,970	55	3,942	12	1.00
3,903	260	3,773	79	0.98
3,564	553	3,287	82	0.95
2,929	554	2,652	75	0.92
2,300	492	2,054	69	0.89
1,739	409	1,534	62	0.86
1,268	280	1,123	33	0.83
945	240	825	36	0.80
669	183	577	19	0.77
467	153	390	17	0.74
297	123	235	7	0.71
167	86	124	7	0.67
74	52	48	1	0.66
21	19	12	1	0.60

N entering	N withdrawing	N exposed to risk	N of events	Cumulative survival
3,970	63	3,938	43	0.99
3,864	258	3,735	108	0.96
3,498	480	3,258	139	0.92
2,879	480	2,639	128	0.87
2,271	432	2,055	97	0.83
1,742	363	1,560	72	0.80
1,307	275	1,169	48	0.76
984	215	876	34	0.73
735	174	648	19	0.71
542	151	466	18	0.68
373	147	299	8	0.67
218	111	162	8	0.63
99	67	65	8	0.56
24	12		0	

Fig. 2 (continued)
Patients with pathologic incomplete response to neoadjuvant chemoradiation and ypN+:

AC 155.9 ± 5.4 months p<0.001
No AC 126.5 ± 7.6 months

Months	AC	No AC
0	2,629	2,543
12	2,575	2,249
24	2,346	1,829
36	1,912	1,448
48	1,507	1,110
60	1,121	846
72	852	646
96	628	461
120	461	307
144	199	109
168	109	56

Months	AC	No AC
0	2,615	2,481
12	2,511	2,129
24	2,201	1,715
36	1,765	1,344
48	1,370	1,018
60	1,019	763
72	767	561
96	561	398
120	257	157
144	83	83
168	36	8

Cumulative survival

AC: 0.99 0.95 0.89 0.83 0.76 0.71 0.66 0.62 0.58 0.56 0.53 0.53 0.50 0.50
No AC: 0.98 0.91 0.84 0.76 0.69 0.63 0.60 0.57 0.54 0.52 0.49 0.48 0.46 0.44

Fig. 2 (continued)
to mitigate these potential issues, multivariable regression and propensity score matching were utilized to generate well-balanced groups and individual subgroup analyses were then conducted. Last, patterns and timing of relapses are not made available in NCDB, and this of course limits interpretation of the true effect of chemotherapy in these groups of patients.

Table 4 Comparison of the unmatched and matched datasets of the patient subgroup who achieved pathologic incomplete response with ypN+ (N = 5875) by the receipt of adjuvant systemic therapy

	Unmatched dataset	Matched dataset 1:1				
	No AC	AC	p	No AC	AC	p
N	2993	2882		2629	2629	
Age (years)	58.3 ± 12.7	55.9 ± 11.5	<0.001*	56.9 ± 12.3	56.5 ± 11.5	0.180
Sex			0.220			0.295
Male	1862 (62.2%)	1748 (60.7%)		1633 (62.1%)	1596 (60.7%)	
Female	1131 (37.8%)	1134 (39.3%)		996 (37.9%)	1033 (39.3%)	
Race			0.306			0.843
White	2411 (80.6%)	2349 (81.5%)		2131 (81.1%)	2142 (81.5%)	
Black	236 (7.9%)	197 (6.8%)		198 (7.5%)	187 (7.1%)	
Other	346 (11.6%)	336 (11.7%)		300 (1.4%)	300 (1.1%)	
Charlson score			0.087			0.824
0	2407 (80.4%)	2392 (83.0%)		2392 (83.0%)	2386 (83.0%)	
1	459 (15.3%)	386 (13.4%)		388 (14.8%)	365 (13.9%)	
2	90 (3.0%)	73 (2.5%)		71 (2.7%)	69 (2.6%)	
3+	37 (1.2%)	31 (1.1%)		30 (1.1%)	29 (1.1%)	
Grade			0.222			0.836
Well diff	197 (6.6%)	174 (6.0%)		166 (6.3%)	166 (6.3%)	
Moderately diff	2024 (67.6%)	2021 (70.1%)		1805 (68.7%)	1832 (69.7%)	
Poorly diff	409 (13.7%)	370 (12.8%)		349 (13.3%)	340 (12.9%)	
Not reported	363 (12.1%)	317 (11.0%)		309 (11.8%)	291 (11.1%)	
Rad-surg interval			0.146			0.647
5–8 weeks	1876 (62.7%)	1859 (64.5%)		1662 (63.2%)	1678 (63.8%)	
9–12 weeks	1117 (37.3%)	1023 (35.5%)		967 (36.8%)	951 (36.2%)	
Surgery			0.114			0.897
LAR	2027 (67.7%)	2028 (70.4%)		1822 (69.3%)	1829 (69.6%)	
APR	784 (26.2%)	683 (23.7%)		640 (24.3%)	642 (24.4%)	
Proctocolectomy	81 (2.7%)	84 (2.9%)		75 (2.9%)	76 (2.9%)	
Exenteration	101 (3.4%)	87 (3.0%)		92 (3.5%)	82 (3.1%)	
Approach			0.002*			0.407
Open	2110 (70.5%)	1926 (66.8%)		1806 (68.7%)	1778 (67.6%)	
MIS	883 (29.5%)	956 (33.2%)		823 (31.3%)	851 (32.4%)	
Retrieved nodes	19.1 ± 8.1	19.4 ± 7.8	0.832	19.2 ± 8.3	19.3 ± 7.7	0.587
Positive nodes	3.4 ± 3.5	3.4 ± 3.5	0.146	3.4 ± 3.5	3.4 ± 3.5	0.887
T downstaging			0.379			0.417
Achieved	1277 (42.7%)	1197 (41.5%)		1074 (40.9%)	1103 (42.0%)	
Not achieved	1716 (57.3%)	1685 (58.5%)		1555 (59.1%)	1526 (58.0%)	
Path T stage			0.003*			0.996
T0	417 (13.9%)	307 (10.7%)		304 (11.6%)	302 (11.5%)	
T1	115 (3.8%)	102 (3.5%)		92 (3.5%)	94 (3.6%)	
T2	591 (19.7%)	619 (21.5%)		543 (20.7%)	554 (21.1%)	
T3	1755 (58.6%)	1744 (60.5%)		1582 (60.2%)	1573 (59.8%)	
T4	115 (3.8%)	110 (3.8%)		108 (4.1%)	106 (4.0%)	
Median follow-up	52.8	53.3	0.411	53.0	53.1	0.908

*APR abdominoperineal resection, AC adjuvant systemic therapy, Diff differentiated, LAR low abdominal resection, MIS minimally invasive surgery

*Statistically significant

Conclusion

In this study, AC after neoadjuvant CRT in patients with stage II and III rectal adenocarcinoma who underwent “optimal” surgery was associated with improved OS. Despite a lack of prospective data to support AC in this setting, this study suggests that AC should be administered whenever possible.
Author contribution Study conception and design: FD, SN. Acquisition of data: SN. Analysis and interpretation of data: FD, SN, IS. Drafting of manuscript: IS, TP, FD. Critical revision: FD, SN.

Data availability The authors confirm that the data supporting the findings of this study are available within the article and the National Cancer Database.

Declarations

Consent for publication All authors have read and approved the manuscript.

Conflict of interest The authors declare no competing interests.

References

1. Kapiteijn E, Marijnissen CA, Nast-Kolb D, Neoptolemos JP, Desmedt C, Kemeny N, et al. (2007) Preoperative chemotherapy with FOLFOX4 combined with or without involved-field radiotherapy as compared with neoadjuvant chemoradiotherapy for rectal cancer: 6-year results of a phase III trial. Lancet 370(9592):1136–43
2. Sauer R, Liersch T, Merkel S, et al. (2012) Preoperative versus postoperative chemoradiotherapy for locally advanced rectal cancer: results of the German CAO/ARO/AIO-94 randomized phase III trial after a median follow-up of 11 years. J Clin Oncol 30(16):1926–33
3. Petersen SH, Harling H, Kirkeby LT, Wille-Jørgensen P, Mocellin S, et al. (2012) Postoperative adjuvant chemotherapy in rectal cancer operated for cure. Cochrane Database Syst Rev (3):CD004078.
4. Network CC (2022) NCCN Guidelines: rectal cancer
5. Glyn-Jones R, Wyrwicz L, Tjulandin SA, et al. (2017) Rectal cancer: ESMO clinical practice guidelines for diagnosis, treatment, and follow-up. Ann Oncol 28(suppl_4):iv22–40
6. Bosset JF, Collette L, Calais G, et al. (2006) Chemotherapy with preoperative radiotherapy in rectal cancer. N Engl J Med 355(11):1114–123
7. Ciommo L, Marzano S, Boffi L, et al. (1996) Adjuvant postoperative radiotherapy in rectal cancer: 148 cases treated at Florence University with 8 years median follow-up. Radiother Oncol 40(2):127–33
8. Biagi JJ, Raphael MJ, Mackillop WI, Kong W, King WD, Booth CM (2011) Association between time to initiation of adjuvant chemotherapy and survival in colorectal cancer: a systematic review and meta-analysis. JAMA 305(22):2335–2342
9. Bilimoria KY, Stewart AK, Winchester DP, Ko CY (2008) The National Cancer Data Base: a powerful initiative to improve cancer care in the United States. Ann Surg Oncol 15(3):683–690
10. Breugem AJ, van Gijn W, Muller EW, et al. (2015) Adjuvant chemotherapy for rectal cancer patients treated with preoperative (chemo)radiotherapy and total mesorectal excision: a Dutch Colorectal Cancer Group (DCCG) randomized phase III trial. Ann Oncol 26(4):696–701
11. Ghagan JV, Whealan MD, Phelan MJ, et al. (2020) Improved survival with adjuvant chemotherapy in locally advanced rectal cancer patients treated with preoperative chemoradiation regardless of pathologic response. Surg Oncol 32:35–40
12. Polanco PM, Mokdad AA, Zhu H, Choti MA, Huerta S (2018) Association of adjuvant chemotherapy with overall survival in patients with rectal cancer and pathologic complete response following neoadjuvant chemotheraphy and resection. JAMA Oncol 4(7):938–943
13. Turner MC, Keenan JE, Rushing CN, et al. (2019) Adjuvant chemotherapy improves survival following resection of locally advanced rectal cancer with pathologic complete response. J Gastrointest Surg 23(8):1614–1622
14. Janjan NA, Crane C, Feig BW, et al. (2001) Improved overall survival among responders to preoperative chemoradiation for locally advanced rectal cancer. Am J Clin Oncol 24(2):107–112
15. Dossa F, Acuna SA, Rickles AS, et al. (2018) Association between adjuvant chemotherapy and overall survival in patients with rectal cancer and pathological complete response after neoadjuvant chemoradiation. JAMA Oncol 4(7):930–937
16. Garcia-Albeniz X, Gallego R, Hofheinz RD, et al. (2014) Adjuvant therapy sparing in rectal cancer achieving complete response after chemoradiation. World J Gastroenterol 20(42):15820–15829
17. Lim YJ, Kim Y, Kong M (2019) Adjuvant chemotherapy in rectal cancer patients who achieved a pathological complete response after preoperative chemoradiation: a systematic review and meta-analysis. Sci Rep 9(1):10008
18. Valentin-V, van Stiphout RG, Lammering G, et al. (2011) Nomograms for predicting local recurrence, distant metastases, and overall survival for patients with locally advanced rectal cancer on the basis of European randomized clinical trials. J Clin Oncol 29(23):3163–3172

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.