Studies of Nature of Uncommon Bifurcated I−I···(I−M) Metal-Involving Noncovalent Interaction in Palladium(II) and Platinum(II) Isocyanide Cocrystals

Margarita Bulatova, Daniil M. Ivanov,* J. Mikko Rautiainen, Mikhail A. Kinzhalov, Khai-Nghi Truong, Manu Lahtinen, and Matti Haukka*

Cite This: Inorg. Chem. 2021, 60, 13200−13211

ABSTRACT: Two isostructural trans-[MI2(CNXyl)2]I2 (M = Pd or Pt; CNXyl = 2,6-dimethylphenyl isocyanide) metallopolymeric cocrystals containing uncommon bifurcated iodine···(metal−iodide) contact were obtained. In addition to classical halogen bonding, single-crystal X-ray diffraction analysis revealed a rare type of metal-involved stabilizing contact in both cocrystals. The nature of the noncovalent contact was studied computationally (via DFT, electrostatic surface potential, electron localization function, quantum theory of atoms in molecules, and noncovalent interactions plot methods). Studies confirmed that the I···I halogen bond is the strongest noncovalent interaction in the systems, followed by weaker I···M interaction. The electrophilic and nucleophilic nature of atoms participating in I···M interaction was studied with ED/ESP minima analysis. In trans-[PtI2(CNXyl)2]I2 cocrystal, Pt atoms act as weak nucleophiles in I···Pt interaction. In the case of trans-[PdI2(CNXyl)2]I2 cocrystal, electrophilic/nucleophilic roles of Pd and I are not clear, and thus the quasimetallophilic nature of the I···Pd interaction was suggested.

1. INTRODUCTION

Noncovalent interactions (NCIs) are a powerful instrument applied in such fields as synthesis,1 catalysis,2,3 design of photoactive materials,4−6 and biochemistry.7 Halogen bonding (XB), in particular, has been found to be a very useful NCI, for example, in the synthesis of self-assembled polymers,8−10 due to its high directionality and possibilities for fine-tuning. Recently, XB has been utilized in our research to create metallopolymers.11 Known types of metal−halide interactions involved in the self-assembly of metallopolymers include classical XB12 (Figure 1A) and semicoordination bond via electron belt (Figure 1C).

In cocrystals of metal complexes, classical XB is represented by donor/acceptor interaction of an electron-deficient area (σ-hole) located on a XB donor (XBD) and an electron-rich area located either on a ligand or on the metal center itself. In the case of an interaction with square planar d6, linear d10 transition metal complexes, or metal surface, an electron lone pair on the d orbital acts as the nucleophile, while a σ-hole of a halogen atom acts as the electrophile. The first examples of the possible metal-involved XBs were represented by van Koten et al.13−16 for the I−I···Pd13 bonds between diiodine and NCN pincer Pt13 complexes. Theoretical investigations of these interactions showed that they are rather strong and comparable with coordinative bonds.17,18 Further works of van Koten et al.
showed that the analogous palladium and nickel NCN pincer complexes interact with diiodine in other ways.19−21 Nevertheless, later works represented metal-involving XB not only with PtII22−28 and PdII23,27,29,30 but also with NiII,27,31 RhI,32,33 AuI,34−36 and Au0 centers37−41 as nucleophiles.

In contrast to XB, a semicoordination bond31 occurs when an electrophilic region of a metal center is interacting with the electron belt of a halogen atom or a nucleophilic halide anion. Particularly, examples of PdII···I31,42−47 and PtII···I48−50 semicoordination bonds have been described in the literature. Both types of discussed noncovalent interactions between metal centers and halogen atoms can be considered polar NCIs (with clear electrophilic or nucleophilic51 roles assignable to interacting atoms). In this connection, it is worth noting the well-defined nonpolar NCIs (with unclear electro- or nucleophilic52 roles) between the halogen atoms (type-I halogen−halogen interactions caused by dispersive forces)5 and metallophilic interactions (closed-shell (d10) or pseudoclosed shell (d8) weak attractive metal···metal contacts presumably dominated by electrostatic and dispersion forces).52 Although possible a nonpolar NCI involving metal center and halogen atoms is considered for the so-called C−I...Ni boundary case,53 the nature of nonpolar interaction (such as philicity of interacting centers and energy components) between halogen and metal atoms has never been studied thoroughly prior to this work.

As a continuation of our studies of metal-involving interactions53 and halogen bonding,26 especially between molecular iodine and iodide isocyanide complexes,53,54 the association of molecular iodine with trans-[Mi2(CNXyl)2] (M = Pd (1) or Pt (2); CNXyl = 2,6-dimethylphenyl isocyanide) species was studied. The simple structure of molecular iodine allows a high level of control in the self-assembly of noncovalently bound metallopolymers. Bearing both an electron-deficient region of a σ-hole and an electron-rich area of an electron belt, I2 is prone to interact with both electrophilic and nucleophilic regions of other molecules.55 In addition, the relatively small size of the I2 molecule allows it to overcome steric constraints. Furthermore, square planar trans-[Mi2(CNXyl)2] are promising building blocks in organo-metallic chemistry due to stabilizing metal−carbon π interactions.56,57 An occupied dz2 orbital of these Pd and Pt complexes is accessible for interaction, which opens up the possibility for the generation of metal−involving XB systems.

In the current work, molecular iodine forms isostructural metallopolymeric cocrystals, trans-[Mi2(CNXyl)2]·I2 (M = Pd or Pt), where complex units are noncovalently linked via I2 molecules (Figure 2). Careful analysis of experimental and theoretical data along with a literature search revealed atypical I−I···(I−M) bifurcated noncovalent bonds, in which classical halogen bond is additionally stabilized by an uncommon type of an I···M contact between a metal center and halogen atom. In this contact, the halogen atom is neither interacting via a σ-hole (Figure 1A) nor via an electron belt (Figure 1C), but presumably via a transitional area (Figure 1B). To understand the nature of this intermediate contact, it was comprehensively studied with various bond analysis methods such as electrostatic surface potential (ESP) analysis (to discover the angle limits of a σ-hole), NCIs plot (NCI-plot) analysis (to reveal the relative strength of the interaction), electron density (ED)/ ESP analysis (to assign philicity of the interacting atoms), and local energy decomposition (LED) analysis (to indicate which interaction type best describes the contact).
Table 1. Characteristic Parameters of Selected Noncovalent Interactions in the Crystal Structures of 1–I₂ and 2–I₂

cocystal	contact	1–I₁	1–I₂	2–I₁	2–I₂		
1–I₁	d(I–I), Å	3.4986(11)	3.5034(11)	3.4038(8)	3.4038(8)	3.5206(9)	3.604(1)
	θ(I–I), deg	173.07(3)	173.10(3)	128.58(3)	128.64(3)	172.13(3)	172.31(3)
	R_{IX}	0.88	0.88	0.94	0.94	0.89	0.89

R_{IX} = d(I–X)/(R_I^{vdW} + R_X^{vdW}), where R_{IX} is distance reduction ratio, I is a donor atom, X is an acceptor atom (I, Pt, Pd), and d(I–X) is the distance between I and X in Å; R_I^{vdW} and R_X^{vdW} are the vdW radii of I and X correspondingly determined by Bondi. 63–65

Table 2. M–I and I–I Distances in the Single Crystals of the trans-[M₂(CNXyl)₂] Complexes, Corresponding Cocrystals, and I₂ Molecule 66

	1	1–I₁	1–I₂	2	2–I₁	2–I₂
d(M–I), Å	2.5950(4)	2.6156(7)	2.602(4)	2.6179(6)	2.6187(6)	2.7179(2)
d(I–I), Å	2.7264(9)	2.7200(11)	2.7400(11)	2.738(4)	2.748(4)	2.748(4)

2. RESULTS AND DISCUSSION

2.1. Complexes 1 and 2 and Their Cocrystals. Syntheses of complexes trans-[PdI₂(CNXyl)₂]⁺ (1) and trans-[PtI₂(CNXyl)₂]⁺ (2) are presented in Scheme 1. A similar trans-[PdBr₂(CNXyl)₂] complex has been described previously. Cocrystals 1–I₂ and 2–I₂ were grown from 1:1 CH₂Cl₂/CHCl₃ and CHCl₃ solutions of a 1:1 mixture of the noncovalently interacting atoms and the sum of corresponding van der Waals radii (vdW). 66 The distance reduction ratio of NCI (R_{IX}) can be calculated as R_{IX} = d(I–X)/(R_I^{vdW} + R_X^{vdW}), where I (iodine) represents a halogen bond donor (XBD) atom, X is a halogen bond acceptor (XBA) atom, d(I–X) is the distance between I and X in Å, R_I^{vdW} and R_X^{vdW} are the vdW radii of I and X correspondingly determined by Bondi. 63–65

The uncommon bifurcated I–I–(I–M) contact can be subdivided into two types of NCIs: I–I and M–I. Within the cocrysal, the relative strength of the XB is rather similar: For I–I XB, R_{IX} is 0.88 for 1–I₁ and 0.89 for 2–I₁ for M–I interaction, R_{IX} is 0.94 for 1–I₂ and 0.93 for 2–I₂. Hence, in both cocryystals I–I XB is slightly stronger than M–I interaction. This might indicate the main role of I–I XB in the interaction (which is further confirmed in theoretical analysis of the structures, vide infra). Another parameter attracting attention is the θ(I–I–M) angle in both cocryystals, which is significantly more acute (about 120°) than that of classical XB (180°). 12

The I–Pd distances in 1–I₁ are shorter by ~0.06 Å than the same I–Pd distances in 2–I₂ (Table 1). At the same time, the
electron density values in the corresponding I⋯M bond critical points (BCPs) are similar (the difference is less than 0.001 a.u., see Table 3 in section 2.3.2). According to these observations, the vdw Pd radius may be similar or only slightly shorter than the Pt radius. This hypothesis is in disagreement with Bondi’s vdw radii (1.63 Å for Pd vs 1.75 Å for Pt).62 and further detailed studies should be carried out in this direction.

Comparing M–I bond length in the cocrystals and in the corresponding complexes (Table 2), we observed elongation of the M–I bond in the cocrystals, presumably due to a strong influence of the halogen bonding with I2 in the cocrystals. This elongation was also found in a few other cocrystals of square planar Pt complexes having different XBDs,73,64 and the M–I bond elongation is likely to be found in similar systems of square planar transition metal complexes interacting with XBD.

The I–I bond length is elongated in I2 and 2-I2 cocrystals in comparison to that in the solid-state structure of I2.65 (Table 2). This elongation of a covalent bond in XBD is typical for a XB according to IUPAC XB definition.12

Although according to R\(_{\text{X\(X\)}}\) value halogen bonding seems to be the strongest NCI, it is important to take into consideration the combination of all the involved NCIs like I⋯M interaction and π⋯π stacking. The significance of the discussed interactions for the structure arrangement was further elucidated by various computational methods (see the “Theoretical Studies” section and the "QTAIM Analysis" section of the Supporting Information, where QTAIM = quantum theory of atoms in molecules).

2.3. Theoretical Studies of Noncovalent Interactions.

With the help of computational chemistry, the nature and relative strength of NCIs discovered by SCXRD can be thoroughly studied. Careful analysis of the calculated electron density distribution can reveal NCIs and their properties. A combination of several approaches such as analysis of ESP,46,67 NCI-plot44 analysis, combined electron localization function (ELF)59 and Bader’s quantum theory of atoms in molecules (QTAIM) analysis,70 and LED71 analysis gives a broad look on NCIs. To support the idea that observed interactions are not only caused by packing effects, the data of single-point (SP) structures and optimized (OPT) ones were compared (for more details, see the Experimental Section).

2.3.1. ESP Analysis. Observed NCIs can be clarified by analysis of anisotropic charge distribution, which is visualized by ESP.58,67,72–76 ESP visualizes electron-rich and -deficient areas of the molecule that are likely to participate in electrostatic intermolecular interactions. This helps to estimate the geometries and expected strengths of the XB interactions. The strength of the XB formed by the XBD is related to the magnitude of σ-hole77 on the XBD atom that can be described by the maximum of ESP (\(V_{s,\text{max}}\)). The influence of the XBA on the XB can be estimated using the minimum of ESP (\(V_{s,\text{min}}\)) on the XBA atom electron density surface. ESP analysis was carried out on the 0.001 a.u. contour of molecule’s electron density (that encompasses 96% of the molecular charge).78

Anisotropic charge distributions of I2, trans-[PdI2(CNXyl)2] (1), and trans-[PtI2(CNXyl)2] (2) were analyzed, and the corresponding ESPs are represented in Figure 3. An electron-deficient area corresponding to the σ-hole of the I2 molecule was calculated with \(V_{s,\text{max}} = 139 \text{ kJ mol}^{-1}\) which is reasonably close to the \(V_{s,\text{min}}\) value (127 kJ mol\(^{-1}\)) reported by Kolář et al.79 at much higher ab initio QCISD/def2-QZVP level of theory. As was suggested by the X-ray diffraction analysis, the I2 molecule is expected to behave in the cocrystals as a XB, interacting with complexes 1 or 2 that act as XBAs. To participate in XB, complexes 1 and 2 are required to bear an electron-rich area around the I or M (M = Pd or Pt) atom. Indeed, ESP studies of 1 and 2 confirm the electron-rich areas (\(V_{s,\text{min}}\)) for iodine atoms (\(V_{s,\text{min}} = -112 \text{ kJ mol}^{-1}\)) and for the Pd (\(V_{s,\text{min}} = -81 \text{ kJ mol}^{-1}\)) and Pt centers (\(V_{s,\text{min}} = -89 \text{ kJ mol}^{-1}\)). These local nucleophilic areas roughly correlate with the regions of I⋯I and I⋯M interactions.

To analyze if the uncommon I⋯M contact could be caused by XB-type interactions, we determined the σ-hole limiting angle\(^\circ\) (\(\angle(I⋯I\dots\text{XBA})\)) for the I2 molecule. The σ-hole limiting angle helps to estimate the angle range where nucleophilic atom can approach the electron-deficient area of I atom with a favorable electrostatic attraction. The limits of the interaction with the σ-hole were found to be 115–180\(^\circ\) (see Figure S4). In the case of 1-I2 and 2-I2 cocrystals, \(\angle(I⋯I\dots\text{M})\) is around 128\(^\circ\) allowing M atoms to interact with the σ-holes of I2. While this provides evidence of the likely existence of I⋯M interaction, it does not give direct information on the nature of the interaction and further computational analyses were carried out to achieve this.

2.3.2. NCI-plot Analysis. NCI-plot analysis is a powerful method to reveal the repulsive or attractive nature of the interaction and to describe the relative strength of noncovalent bonding.81,82 2D and 3D NCI-plots visualizing all the interactions in 1-I2 and 2-I2 cocrystals can be found in Figures...
S8–S13. Here only the interactions involved in the bifurcated contact are discussed.

For (1) 4 I 2 and (2) 4 I 2 clusters 2D plots of (s) against sign(λ/s) have a similar shape (see Figures S8 and S9). Two types of attractive NCIs (I–I and I–M XBs, where M = Pt or Pd) were found in the [−0.02, −0.008] a.u. range of sign(λ) and one type of repulsive interaction found in the [0.009, 0.018] a.u. range of sign(λ) (Figure 4). The repulsion areas for the I–I–(1–M) interactions can be explained by the repulsion of lone pairs of the metal center and iodide ligand in 1 and 2; the same areas can be found in isolated 1 and 2 (see the sign(λ) projections in Figure S14). Expectedly, the strength of XB in both cocrystals was found to be very similar. This observation correlates with data obtained experimentally (see Table 1).

Especially intriguing is the difference between SP and OPT structures. As expected, the strength of all interactions weakens in the optimized structures (Figure 4, Table 3). In the case of SP structures, I–I and I–M contacts have very similar interaction strengths, while in the OPT structures I–M contact is weaker. In the case of (2) 4 I 2, the change is more noticeable (i.e., interactions are more weakened) than in the case of (1) 4 I 2 (Table 3).

Table 3. Peak sign(λ) Values of NCIs in the (1) 4 I 2 and (2) 4 I 2 (a.u.)

cluster	(1) 4 I 2, M = Pd	(2) 4 I 2, M = Pt
interaction	peak sign(λ), a.u.	peak sign(λ), a.u.
I–I–11	−0.0167	−0.0154
I–I–13	−0.0159	−0.0119
I–M 4–1	−0.0160	−0.0099

2.3.3. Philicity Definition: Analysis of ELF and ED/ESP Minima. ELF is useful in the investigation of XBs and related interactions.4,83–89 As a derivative of electron density ELF59,90–92 allows to locate areas of shared and unshared electron pairs. A combination of ELF and QTAIM70 methods visualizes bond paths at the interaction areas and facilitates the philicity of interacting atoms.26,93

Combined ELF and QTAIM analysis information for SP and OPT (1) 4 I 2 and (2) 4 I 2 model structures is presented in Figure 5 as projections on a plane formed by metal atoms, iodide ligands, and iodine molecules. In all four analyzed structures, the I–I–(1–M) bond paths go through the increased ELF areas on the iodides (i.e., through the lone pairs) and through decreased ELF regions on the diiodine I atoms (i.e., through the σ-holes). These observations support the XB nature of the I–I–(1–M) contacts where iodide ligands behave as nucleophiles toward electrophilic diiodine molecules. Similar behavior was observed in the case of the I–I–(1–Pd) XBs in [PtI 2(1,5-cyclooctadiene)·0.5I 2 in our previous work26 where the I–I bond paths go through the σ-hole (iodine in I 2) and the lone electron pair (iodide ligand) ELF regions.

ELF projections show increased ELF areas around Pd and Pt atoms above and below the bond paths connecting metal centers and iodide ligands that can be interpreted as filled d 2 orbitals. The M⋯I bond paths that connect metal centers and I 2 molecules go through these d 2 orbitals. However, the ELF values suggest only relatively weak concentrations of electron pairs in areas occupied by d 2 orbitals and the areas lack directional dependence outside the plane formed by metal centers and iodide ligands suggesting that metal centers are likely to act as weak nucleophiles at most. Actually, any bond corresponding to NCI with the metal center would cross the area of d 2 orbitals, because any d 2-metal-involving interaction is required to stay away from the ligands in the
complex plane, and the nature of the NCI will depend more on the atom of the interacting partner. At the same time, in all four clusters the I···M bond paths connect to I$_2$ iodine atoms through areas with intermediate ELF values which could indicate that the interactions are either weakly polar or nonpolar. Since the I···M bond paths connect atoms in each structure through areas described by intermediate ELF values, combined ELF and QTAIM analysis does not provide conclusive evidence on the philicity of atoms in these interactions.

An alternative way to assign philicity of noncovalently interacting atoms is to compare the minima of the electron density (ED) and ESP along the bond path.

Figure 6. 1D profiles of the ED (black) and ESP (red) functions along the I···Pd bond paths in (1)$_4$I$_2$ for SP (upper graphs) and OPT (lower graphs) structures.

Figure 7. 1D profiles of the ED (black) and ESP (red) functions along the Pd···Pd bond path in (cis-[PdCl$_2$(CNPh)$_2$])$_2$ (left) and the Pt···Pt bond path in (cis-[PtCl$_2$(CNPh)$_2$])$_2$ (right).

Figure 8. 1D profiles of the ED (black) and ESP (red) functions along the I···Pt bond paths in (2)$_4$I$_2$ SP (upper graphs) and OPT (lower graphs) structures.
In the case of I···Pd bond paths in (1)_4I_2, the 1D profiles of the ED and ESP functions (Figure 6) show that their minima overlap both in the SP and OPT structures. Together with the combined ELF and QTAIM analysis information, this suggests that I···Pd interactions are best described as nonpolar with Pd and I atoms having similar roles. It is noteworthy that similar interactions, which can be also called intermediate between semicoordination (electrophilic metal center) and metal-involving halogen bonding (nucleophilic metal center), have been previously reported for a Ni(II) complex.31

The nonpolar noncovalent I···Pd interactions in (1)_4I_2 are reminiscent of the noncovalent metal center involving interactions in related palladium and platinum chloride isocyanide complexes,98–101 where metal centers participate in nonpolar metallophilic Pd···Pd and Pt···Pt bonds. To compare these interactions DFT SP calculations (M06-L/def2-TZVP) were carried out for two model clusters (cis-[PdCl_2(CNPh)_2])_2 and (cis-[PtCl_2(CNPh)_3])_2, based on the experimental X-ray data from the structures COYBOI01 and CPCIPT12,102 respectively. Combined ELF and QTAIM analysis of the (cis-[MCl_2(CNPh)_3])_2 (M = Pd or Pt) clusters indicated the expected existence and nonpolar noncovalent nature of the Pd···Pd and Pt···Pt interactions (see Figure S18). Further confirmation of the nonpolar nature of the halophilic interactions is provided by the 1D profiles of the ED and ESP functions along the M···M bond paths in (cis-[MCl_2(CNPh)_3])_2 (M = Pd or Pt) clusters (Figure 7) where ED and ESP minima overlap in both cases.

The ED/Laplacian of ED values in Pd···Pd (0.012/0.030 a.u.) and Pt···Pt (0.016/0.038 a.u.) BCPs in (cis-[MCl_2(CNPh)_3])_2 clusters are similar to the values in the I···Pd BCPs in (1)_4I_2 SP (0.016/0.037–0.038 a.u.) and (0.012/0.027 a.u.) OPT structures. The nonpolarity of the I···Pt bond interactions in (1)_4I_2 and the similarity of their strength to metallophilic interactions leads us to designate them as *quasimetallophilic* interactions.

Comparison of the 1D profiles of ED and ESP along the I···Pt bond paths in (2)_4I_2 SP and OPT structures (Figure 8) shows that the ESP minima are slightly shifted toward the Pt atoms. The shift indicates that Pt atoms act as weak nucleophiles toward I_2 iodine atoms, and the I···I···Pt can be treated as metal-involving halogen bonding. Interestingly, the more nucleophilic character of PtII compared to PdII in accordance with SCXRD analysis data (based on R_2 values, I···I XB is slightly stronger than I···I M, Table 1). The I···I XB interaction is classified as mainly electrostatic by the LED analysis with small covalent and dispersion contributions. The weaker I···M interaction has higher contributions from covalent and dispersion terms than does the stronger I···I XB interaction in line with the other analyses that described the I···M interaction as weakly polar or nonpolar.

3. Conclusion

Two novel cocrystals of trans-[ML_2(CNXyl)_2]_1 (where M = Pd or Pt) representing noncovalently linked metallopolymeric structures were synthesized and characterized. Analysis of
Table 4. Energy Components of the Interguard Interaction Energies (kJ mol⁻¹) in (1)I₂ and (2)I₂ Cocrystals Calculated at DLPNO-CCSD(T)/def2-TZVPP Level

cocrystal	interaction	E_{ ext{nuc}}	E_{ ext{elstat}}	E_{ ext{disp}}	E_{(T)}	E_{ ext{aniso}}
(1)I₂	1 ↔ 6	−11	−28	−4	−1	−44
	2 ↔ 6	−64	−254	−11	−4	−333
	6 ↔ 7	−82	−295	−26	−8	−411
(2)I₂	1 ↔ 6	−10	−27	−5	−1	−43
	2 ↔ 6	−55	−243	−10	−4	−312
	6 ↔ 7	−69	−288	−29	−7	−392

“Exchange interaction, E_{	ext{exch}} electrostatic and polarization energy, E_{	ext{elstat}}; dispersion interaction, E_{	ext{disp}}; and contribution from triples correlation, E_{(T)} only. Interactions of interest are represented in this table, detailed information on all the interactions can be found in Supporting Information (Tables S8–S9). Electronic preparation energies resulting from intrafragments changes in electron density and deformation energies due to geometrical differences of fragments in interacting structure compared to their separated equilibrium geometries that are required to derive the dissociation energies corresponding to the analyzed interactions have not been included in the analysis.

Table 4. Energy Components of the Interguard Interaction Energies (kJ mol⁻¹) in (1)I₂ and (2)I₂ Cocrystals Calculated at DLPNO-CCSD(T)/def2-TZVPP Level

4. EXPERIMENTAL SECTION

4.1. General Computational Details. All the studied structures were optimized and analyzed using DFT theory. To achieve a good compromise between accuracy and computational demand for calculating systems containing NCIs M06-2-L functional combined with triple-ζ def2-TZVPP basis sets was chosen as the calculation method. To further reduce computational time resolution of identity approximation together with def2-TZV density fitting basis sets was employed in the calculations. DFT calculations were carried out with Gaussian16 (revision C01) program package. Complexes 1 and 2 and I₂ were subjected to full energy minimization. Models for solid-state clusters (1)I₂ and (2)I₂ were directly cut from the corresponding experimental crystal structures. Bonding analyses of NCIs in model structures (1)I₂ and (2)I₂ were carried out on both optimized (OPT) and crystal structure derived SP structures (where only positions of H-atoms were optimized). SP calculations (M06-2L/def2-TZVP) were also carried out for two model clusters, cis-[PdCl₂(CNPh₃)₂] and cis-[PdCl₂(CNPh₃)₃]I₂, based on the experimental X-ray data from the structures COYBO101 and CIPCPT12, respectively. The strength and topology of the interactions were studied with the NCI-plot program implemented in Criteo2 software, and 2D and 3D visualizations were carried out in Gnpulot and VMD programs, respectively. ESP surfaces of I₂ and I₂ molecules were calculated and visualized using AIMALL software at 0.001 a.u. surfaces. ELF projections and QTAIM analyses were carried out in Multimol 3.7.316 DLPNO-CCSD(T)-f106–108 wave functions for the LED analyses were calculated with ORCA 4.2 program, using def2-TZVPP orbital and def2-TZVPP/C107 and def2/JK117 auxiliary basis sets.

4.2. Materials and SCXRD Details. All chemicals and solvents such as CHCl₃ (VWR BDH Chemicals), CH₂Cl₂ (VWR BDH Chemicals), acetone (Fisher Scientific), KI (≥99.0%, Fisher Scientific), I₂ (Mallinckrodt), 2,6-dimethylphenyl isocyanide (further CNXyl, ≥98.0 GC%, Aldrich), and [PdCl₂(CH₃CN)₂] (99%, Aldrich) were used without additional purification. [PdI₂(COD)] synthesized according to the procedure reported by Rigamonti et al.61 The crystal data and details of data processing for the obtained cocrystals are summarized in the Supporting Information (“Single Crystal X-ray Diffraction data analysis (SCXRD)” section).

Caution! CNXyl is hazardous to health and should be handled with care.

4.2.1. Synthesis of trans-[PdI₂(CNXyl)₂]. Synthesis was adapted from a procedure presented by Crociani et al.60 Solid CNXyl (26.2 mg, 0.2 mmol) was added to the suspension of [PdCl₂(CH₃CN)₂] (25.9 mg, 0.1 mmol) in 5 mL of CHCl₃. The reaction mixture was refluxed with stirring for 3 h and then cooled to room temperature (RT), and the solvent was evaporated at a rotary evaporator to give cis-[PdCl₂(CNXyl)] as a white solid. Then solid KI (166 mg, 1.1 mmol) was added to cis-[PdCl₂(CNXyl)] (43.7 mg, 0.10 mmol), and acetone (20 mL) was added to the resulting mixture. The resultant yellow suspension was stirred at RT for 2 days. The solvent was then finally evaporated on a rotary evaporator at 50 °C, and the orange product was suspended in H₂O. The product was extracted with CH₂Cl₂. The organic fraction was subjected to full solvent evaporation on a rotary evaporator, and the resulted orange solid was dissolved in CHCl₃. Some white insoluble material was filtered off from solution; the filtrate was left for recrystallization at RT in darkness (from CHCl₃). The yield of orange crystalline product was 55.6 mg (0.09 mmol, 89%). Elemental analysis (EA) CHN mode: Found: C 35.72; H 3.22; N 4.44. Calcd: C 34.73; H 2.91; N 4.50. 1H NMR (300 MHz, CDCl₃, δ ppm): 2.55 (s, 12H), 7.09–7.14 (m, 4 H), 7.21–7.28 (m, 2H).

4.2.2. Synthesis of I₂ Cocrystal of trans-[PdI₂(CNXyl)₂]. trans-[PdI₂(CNXyl)₂] (24.9 mg, 0.04 mmol) and I₂ (15.2 mg, 0.06 mmol) were dissolved in CH₂Cl₂/CHCl₃ (50:50 mixture, 8 mL). The solution was stirred at 50 °C (to dissolve iodine fully) until the mixture became homogeneous and then left for crystallization in dark at RT. The phase purity of the bulk material was confirmed by powder X-ray diffraction (PXRD, see the Supporting Information). 4.2.3. Synthesis of trans-[PdI₂(CNXyl)₂]. Synthesis was adapted from a procedure presented by Kahara et al.63 [PdI₂(COD)] (83 mg, 0.15 mmol) was added to a 5 mL of CH₂Cl₂ solution of CNXyl (39.4 mg, 0.3 mmol), and the mixture was stirred for 3 days at RT in darkness. The solvent was evaporated, and obtained solid was crystallized from CH₂Cl₂/TLC (silica gel 60 plate + CHCl₃) revealed byproducts. The product was purified by column chromatography (silica gel 60 + CHCl₃) and recrystallized from CHCl₃. The yield of yellow crystalline product was 99.8 mg (0.14 mmol, 93%). EA CHN mode: Found: C 31.83; H 2.81; N 4.11. Calcd: C 30.40; H 2.55; N 4.11. H NMR (300 MHz, CDCl₃, δ ppm): 2.55 (s, 12H), 7.14–7.18 (m, 4 H), 7.26–7.32 (m, 2H).

4.2.4. Synthesis of I₂ Cocrystal of trans-[PdI₂(CNXyl)₂]. trans-[PdI₂(CNXyl)₂] (21.3 mg, 0.03 mmol) and I₂ (15.2 mg, 0.06 mmol) were dissolved in CHCl₃, and the resulting dark brown mixture was left in an aluminum foil covered vial for slow evaporation at ambient conditions to give dark brown crystals of the desired product. The phase purity of the bulk material was confirmed by PXRD analysis (see Supporting Information).
ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021acs.inorgchem.1c01591.

Single-crystal X-ray diffraction data analysis (experimental procedures and crystallographic details); PXRD of 1-I2 and 2-I2 cocrystals (experimental procedures and detailed results of PXRD analysis); summary of computational studies on NClIs in 1-I2 and 2-I2 cocrystals (general computational details, ELF, QTAIM, LED, and NCI-plot analyses; ED/ESP minima criterion for I-1 interactions); view of (cis-MCl2(CNPh)2j; (M = Pd or Pt) dimeric clusters and ELF projections for them (PDF)

Accession Codes

CCDC 2054859–2054862 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Authors

Danil M. Ivanov – Institute of Chemistry, Saint Petersburg State University, Saint Petersburg 199034, Russian Federation; orcid.org/0000-0002-0855-2251; Email: d.m.ivanov@spbu.ru

Matti Haukka – Department of Chemistry, University of Jyväskylä, FI-40014 Jyväskylä, Finland; orcid.org/0000-0002-6744-7208; Email: matti.o.haukka@jyu.fi

Authors

Margarita Bulatova – Department of Chemistry, University of Jyväskylä, FI-40014 Jyväskylä, Finland; orcid.org/0000-0002-1904-3594

J. Mikko Rautainen – Department of Chemistry, University of Jyväskylä, FI-40014 Jyväskylä, Finland; orcid.org/0000-0002-3695-4151

Mikhail A. Kizhallov – Institute of Chemistry, Saint Petersburg State University, Saint Petersburg 199034, Russian Federation; orcid.org/0000-0001-5055-2251

Khai-Nghi Truong – Department of Chemistry, University of Jyväskylä, FI-40014 Jyväskylä, Finland

Manu Lahtinen – Department of Chemistry, University of Jyväskylä, FI-40014 Jyväskylä, Finland; orcid.org/0000-0001-5561-3259

Complete contact information is available at: https://pubs.acs.org/10.1021acs.inorgchem.1c01591

Author Contributions

M.B. carried out synthesis, crystallizations, part of the SCXRD studies, part of the wave function calculations, NCl-plot analysis, ESP visualizations, and manuscript preparation. D.M.I. carried out a combination of ELF and QTAIM analyses as well as the ED/ESP minima analysis. Both M.B. and D.M.I. contributed to data interpretation and analysis. J.M.R. carried out calculations of wave functions, QTAIM, and LED analysis. K.-N.T. carried out part of the SCXRD studies. M.L. carried out PXRD studies of the bulk materials. M.A.K. contributed to the manuscript preparation and literature search. M.H. guided the research and experimental design. The manuscript was written through the contributions of all authors. All authors have approved the final version of the manuscript.

Funding

This work was supported by the Academy of Finland (project no. 295581). Part of the theoretical investigations (ELF and QTAIM analysis, ED/ESP minima analysis) were supported by the Russian Science Foundation (project no. 19–73–10016 for D.M.I.).

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank Prof. V. Yu. Kukushkin for his help with manuscript preparation. The Finnish Grid and Cloud Infrastructure (urn:nbn:fi:research-infras-2016072533) and Prof. H. M. Tuononen (University of Jyväskylä) are gratefully acknowledged for the provision of computational resources.

REFERENCES

(1) Maharramov, A. M.; Mahmudov, K. T.; Kopylovich, M. N.; Pombeiro, A. J. L. Non-Covalent Interactions in the Synthesis and Design of New Compounds; John Wiley & Sons, Ltd, 2016. (2) Mahmudov, K. T.; Gurbanov, A. V.; Guseinov, F. I.; Guedes da Silva, M. F. C. Noncovalent Interactions in Metal Complex Catalysis. Coord. Chem. Rev. 2019, 387, 32–46. (3) Cavallo, G.; Metrangolo, P.; Milan, R.; Pilati, T.; Priimagi, A.; Resnati, G.; Terraneo, G. The Halogen Bond. Chem. Rev. 2016, 116 (4), 2478–2601. (4) Koshevoy, I. O.; Krause, M.; Klein, A. Non-Covalent Intramolecular Interactions through Ligand-Design Promoting Efficient Photoluminescence from Transition Metal Complexes. Coord. Chem. Rev. 2020, 405, 213094. (5) Wang, W.; Zhang, Y.; Jin, W. J. Halogen Bonding in Room-Temperature Phosphorescent Materials. Coord. Chem. Rev. 2020, 404, 213107. (6) Sivchik, V. V.; Solomatina, A. I.; Chen, Y.-T.; Karttunen, A. J.; Tunik, S. P.; Chou, P.-T.; Koshevoy, I. O. Halogen Bonding to Amplify Luminescence: A Case Study Using a Platinum Cyclometalated Complex. Angew. Chem., Int. Ed. 2015, 54 (47), 14057–14060. (7) Ho, P. S. Halogen Bonding I: Impact on Materials Chemistry and Life Sciences. Top. Curr. Chem. 2014, 358, 241–276. (8) Cook, S. A.; Borovik, A. S. Molecular Designs for Controlling the Local Environments around Metal Ions. Acc. Chem. Res. 2015, 48 (8), 2407–2414. (9) Zapata, F.; Gonzalez, L.; Caballero, A.; Bastida, A.; Bautista, D.; Molina, P. Interlocked Supramolecular Polymers Created by Combination of Halogen- and Hydrogen-Bonding Interactions through Anion-Template Self-Assembly. J. Am. Chem. Soc. 2018, 140 (6), 2041–2045. (10) Berger, G.; Soubhye, J.; Meyer, F. Halogen Bonding in Polymer Science: From Crystal Engineering to Functional Supramolecular Polymers and Materials. Polym. Chem. 2015, 6 (19), 3559–3580. (11) Ding, X.; Tuikka, M.; Rissanen, K.; Haukka, M. Extended Assemblies of Ru(Bpy)(CO)2X2 (X = Cl, Br, I) Molecules Linked by 1,4-Diiodotetrafluoro-Benzoene (DITFB) Halogen Bond Donors. Crystals 2019, 9 (6), 319. (12) Desiraju, G. R.; Ho, P. S.; Kloq, L.; Legon, A. C.; Marquardt, R.; Metrangolo, P.; Politzer, P.; Resnati, G.; Rissanen, K. Definition of the Halogen Bond (IUPAC Recommendations 2013). Pure Appl. Chem. 2013, 85 (8), 1711–1713. (13) van Beek, J. A. M.; van Koten, G.; Smeets, W. J. J.; Spek, A. L. Model for the Initial Stage in the Oxidative Addition of I2 to Organoplatinum(II) Compounds. X-Ray Structure of Square-Pyramidal [PtIII(C6H3(CH2NMe2)2-o, o)(H-I2)] Containing a
(84) Sauliez, P.; Polo, V.; Roisnel, T.; Lusar, R.; Fourmigué, M. The Thiocyanate Anion as a Polydentate Halogen Bond Acceptor. CrystEngComm 2010, 12, 558–566.

(85) Juárez-Pérez, E. J.; Aragoni, M. C.; Arca, M.; Blake, A. J.; Devillanova, F. A.; Garau, A.; Isaià, F.; Lippolis, V.; Núñez, R.; Pintus, A.; Wilson, C. A. Unique Case of Oxidative Addition of Interhalogens IX (X = Cl, Br) to Organosilane Ligands: Nature of the Chemical Bonding in Asymmetric Tse-X Polarised Hypervalent Systems. Chem. – Eur. J. 2011, 17 (41), 11497–11514.

(86) Xu, L.; Sang, P.; Zou, J.-W.; Xu, M.-B.; Li, X.-M.; Yu, Q.-S. Evaluation of Nucleotide C–Br···O Contacts from ONIOM Calculations: Theoretical Insight into Halogen Bonding in Nucleic Acids. Chem. Phys. Lett. 2011, 509 (4), 175–180.

(87) Bartashevich, E. V.; Matveychuk, Y. V.; Troitskaya, E. A.; Tsirelson, V. G. Characterizing the Multiple Non-Covalent Interactions in N, S-Heterocyclics-Diodine Complexes with Focus on Halogen Bonding. Comput. Theor. Chem. 2014, 1037, 53–62.

(88) Bartashevich, E.; Yushina, I.; Kropotina, K.; Mukhitdinova, S.; Tsirelson, V. Testing the Tools for Revealing and Characterizing the Iodine(−)iodine Halogen Bond in Crystals. Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 2017, 73 (2), 217–226.

(89) Yushina, I. D.; Kolesov, B. A. Interplay of Intra- and Intermolecular Interactions in Solid Iodine at Low Temperatures: Experimental and Theoretical Spectroscopy Study. J. Phys. Chem. A 2019, 123 (21), 4575–4580.

(90) Silvi, B.; Savin, A. Classification of Chemical Bonds Based on Topological Analysis of Electron Localization Functions. Nature 1994, 371 (6599), 683–686.

(91) Savin, A.; Nesper, R.; Wengert, S.; Fässler, T. F. ELF: The Electron Localization Function. Angew. Chem., Int. Ed. Engl. 1997, 36 (17), 1808–1832.

(92) Fuentelba, P.; Chamorro, E.; Santos, J. C. Understanding and Using the Electron Localization Function. Theor. Comput. Chem. 2007, 19, 57–85.

(93) Suslova, V. V.; Eliseeva, A. A.; Novikov, A. S.; Ivanov, D. M.; Dubovtsev, Y. A.; Bokach, N. A.; Kukushkin, V. Y. Tetrachlororotate(II) Anion as a Square-Planar Tecton for Crystal Engineering Involving Halogen Bonding. CrystEngComm 2020, 22 (24), 4180–4189.

(94) Mata, L.; Melins, E.; Alkorta, I.; Espinosa, E. Topological Properties of the Electrostatic Potential in Weak and Moderate N–H Hydrogen Bonds. J. Phys. Chem. A 2007, 111 (28), 6425–6433.

(95) Lambert, K.; Handels, P.; Engelt, U.; Aubert, E.; Espinosa, E. Stabilization of Polyiodide Chains via Anion–anion Interactions: Experiment and Theory. CrystEngComm 2016, 18 (21), 3832–3841.

(96) Bartashevich, E.; Mukhitdinova, S.; Yushina, I.; Tsirelson, V. Electronic Criterion for Categorizing the Chalcogen and Halogen Bonds: Sulfur(−)iodine Interactions in Crystals. Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 2019, 75 (2), 117–126.

(97) Bartashevich, E.; Matveychuk, Y.; Tsirelson, V. Identification of the Tetrel Bonds between Halide Anions and Carbon Atom of Methyl Groups Using Electronic Criterion. Molecules 2019, 24 (6), 1083.

(98) Harvey, P. D.; Truong, K. D.; Aye, K. T.; Drouin, M.; Bearpark, M.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Millam, J. M.; Klene, M.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A.; Peralta, E. J.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc.: Wallingford CT, 2016.

(111) Otero-de-la-Roz, A.; Johnson, E. R.; Luaña, V. Critic2: A Program for Real-Space Analysis of Quantum Chemical Interactions in Solids. Comput. Phys. Commun. 2014, 185 (3), 1007–1018.

(112) Williams, T.; Kelley, C. Gnuplot 4.4: An Interactive Plotting Program, 2010.

(113) Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graphics 1996, 14 (1), 33–38.

(114) Keith, T. A. AIMAll, version 12.06.03; TK Gristmill Software: Overland Park, KS, 2003.

(115) Lu, T.; Chen, F. Multiwave: A Multifunctional Wavefunction Analyzer. J. Comput. Chem. 2012, 33 (5), 580–592.

(116) Neese, F. Software Update: The ORCA Program System, Version 4.0. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2018, 8 (1), No. e1327.

(117) Weigend, F.; Hartree-Fock Exchange Fitting Basis Sets for Rn to Rn. J. Comput. Chem. 2008, 29 (2), 167–175.