A NOTE ON THE “LOGARITHMIC-\mathfrak{W}_3” OCTUPLLET ALGEBRA AND ITS NICHOLS ALGEBRA

AM SEMIKHATOV

ABSTRACT. We describe a Nichols-algebra-motivated construction of an octuplet chiral algebra that is a “\mathfrak{W}_3-counterpart” of the triplet algebra of $(p,1)$ logarithmic models of two-dimensional conformal field theory.

1. INTRODUCTION

Logarithmic models of two-dimensional conformal field theory can be defined as centralizers of Nichols algebras [1, 2]. For this, the generators F_i of a given Nichols algebra $\mathcal{B}(X)$ with diagonal braiding [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17] are to be realized as

$$F_i = \int e^{\alpha_i \varphi}, \quad 1 \leq i \leq \text{rank} \equiv \theta,$$

where $\varphi(z)$ is a θ-plet of scalar fields and $\alpha_i \in \mathbb{C}^\theta$ are chosen so as to reproduce the given braiding coefficients $q_{i,j}$ in

$$\Psi : F_i \otimes F_j \mapsto q_{i,j} F_j \otimes F_i, \quad 1 \leq i, j \leq \theta.$$

The coefficients are standardly arranged into a braiding matrix $(q_{i,j})_{1 \leq i \leq \text{rank}}$. The relation between the braiding matrix and the screening momenta is postulated [2] in the form of equations

$$q_{j,j} = e^{i \pi \alpha_j}, \quad q_{j,k} q_{k,j} = e^{2i \pi \alpha_j} \alpha_k$$

and the logical-“or” conditions

$$a_{i,j} \alpha_i \alpha_j = 2 \alpha_i \alpha_j, \quad \sqrt{(1 - a_{i,j}) \alpha_i \alpha_j = 2}$$

imposed for each pair $i \neq j$ and involving the Cartan matrix $a_{i,j}$ associated with the given braiding matrix (see, e.g., [18] and the references therein).

In this note, we describe some details related to the construction of the octuplet algebra [2] that can be considered a “logarithmic extension” of the \mathfrak{W}_3 algebra [19] similarly to how the triplet algebra [21, 22, 23] is a “logarithmic extension” of the Virasoro algebra. The starting point is a particular item in Heckenberger’s list of rank-2 Nichols algebras with diagonal braiding (which is item 5.7(1) in [20])—the braiding matrix

$$q_{ij} = \begin{pmatrix} q^2 & q^{-1} \\ q^{-1} & q^2 \end{pmatrix}.$$
where q^2 is a primitive $2p$th root of unity. We choose
\begin{equation}
q = e^{i \pi / p}
\end{equation}
with $p = 2, 3, \ldots$. This choice leads to $(p, 1)$-type logarithmic CFT models \cite{Chu2002,Kashiwara2003,Moore1998,Moore1997,Moore1994,Moore1993}, in contrast to (p, p') models that follow if q is chosen as $e^{i \pi p'/p}$ instead. The main expectation associated with $(p, 1)$-type models is that their representation categories are “very closely related” \cite{Kashiwara2003,Moore1997,Moore1994} to an appropriate representation category on the algebraic side, which in the braided case is some category of Yetter–Drinfeld modules (cf. \cite{Lauda2010}). In this paper, we therefore proceed along two routes: (i) describing the structure of the Yetter–Drinfeld modules, and (ii) discussing some properties of the octuplet algebra that centralizes this $\mathcal{B}(X)$. None of the two directions is pursued to the point where they actually meet (which would mean constructing a functor), but the results presented here hopefully bring us somewhat closer to that point.

2. The Nichols algebra

2.1. Presentation for $\mathcal{B}(X)$. We first recall the presentation of the relevant Nichols algebra, as a quotient of the tensor algebra. Our starting point is a two-dimensional braided vector space X with the preferred basis F_1, F_2 and the above braiding matrix in this basis. The Nichols algebra $\mathcal{B}(X)$ is the quotient by a graded ideal I \cite{Jimbo1985,Jimbo1987},
\begin{equation}
\mathcal{B}(X) = T(X)/\langle [F_1, [F_1, F_2]], [F_2, [F_2, F_1]], F_1^p, [F_2, F_1]^p, F_2^p \rangle, \quad \dim \mathcal{B}(X) = p^3,
\end{equation}
If $p = 2$, the double-bracket generators of the ideal are absent. The brackets here denote q-commutators determined by the braiding matrix: $[F_1, F_2] = F_1 F_2 - q^{-1} F_2 F_1$, $[F_2, F_1] = F_2 F_1 - q^{-1} F_1 F_2$, and so on by multiplicativity of the “q”-factor, whence the two double commutators in the ideal are explicitly given by
\begin{align*}
[F_1, [F_1, F_2]] &= F_1^2 F_2 - (q + q^{-1}) F_1 F_2 F_1 + F_2 F_1^2, \\
[F_2, [F_2, F_1]] &= F_2^2 F_1 - (q + q^{-1}) F_2 F_1 F_2 + F_1 F_2^2.
\end{align*}

A PBW basis in $\mathcal{B}(X)$ is given by $F_1^r F_3^s F_2^t$, $0 \leq r, s, t \leq p - 1$ \cite{Jimbo1987}, where
\begin{equation}
F_3 = [F_2, F_1].
\end{equation}
The double-bracket relations in the ideal can also be rewritten as $F_2 F_3 = q F_3 F_2$ and $F_3 F_1 = q F_1 F_3$.

Multiplication in $\mathcal{B}(X) = T(X)/I$ is the one induced by “concatenation” in the tensor algebra, $X^\otimes m \otimes X^\otimes n \to X^\otimes (m+n)$, $(x_1, \ldots, x_m) \otimes (y_1, \ldots, y_n) \mapsto (x_1, \ldots, x_m, y_1, \ldots, y_n)$. It is then relatively straightforward to show that the multiplication table of the PBW basis elements is
Comultiplication is by “deshuffling,” determined by the defining property of a braided Hopf algebra and the fact that F_1 and F_2 are primitive.

2.2. $\mathfrak{B}(X)$ as a subalgebra in $T(X)$. For any Nichols algebra $\mathfrak{B}(X)$, the graded ideal J such that $\mathfrak{B}(X) = T(X)/J$ is known to be the kernel of the total braided symmetrizer map in each grade, $\mathfrak{S}_n : X^{\otimes n} \to X^{\otimes n}$. Mapping by \mathfrak{S}_n in each grade therefore results in an equivalent description of $\mathfrak{B}(X)$ with multiplication given by the shuffle product

$$\ast : (x_1, \ldots, x_m) \otimes (y_1, \ldots, y_n) \mapsto \mathfrak{S}_{m,n}(x_1, \ldots, x_m, y_1, \ldots, y_n),$$

and comultiplication by deconcatenation (see [1] for the definition of shuffles and the braided symmetrizer; the only notational difference is that \ast is not used for the shuffle product there).

We let $B(r,t,s)$ be the image of $F_1^r F_3^t F_2^s$ under the map by the braided symmetrizer, or more precisely,

$$B(r,t,s) = \frac{1}{\langle r \rangle! \langle s \rangle! \langle t \rangle! (1 - q^2)^r} \mathfrak{S}_{r+2t+s}(F_1^r F_3^t F_2^s).$$

In particular,

$$B(1,0,0) = F_1, \quad B(2,0,0) = F_1 F_1,$$

$$B(0,0,1) = F_2, \quad B(1,0,1) = F_1 F_2 + q^{-1}F_2 F_1,$$

$$B(0,0,2) = F_2 F_2,$$

$$B(0,1,0) = -q^{-2}F_2 F_1.$$

2.2.1. The shuffle product of $B(r_1,t_1,s_1)$ and $B(r_2,t_2,s_2)$ follows from (2.2):

$$B(r_1,t_1,s_1) \ast B(r_2,t_2,s_2) =$$

$$\sum_{i=0}^{\min(s_1,r_2)} \langle r_1 + r_2 - i \rangle \langle s_1 + s_2 - i \rangle \langle t_1 + t_2 + i \rangle (1 - q^2)^\langle t_1 \rangle! \langle t_2 \rangle! \langle i \rangle! q^{\langle i \rangle!(r_2-i)+t_2(s_1-i)-s_1r_2+i(i+1)/2}$$

$$\times B(r_1 + r_2 - i, t_1 + t_2 + i, s_1 + s_2 - i).$$

and the coproduct is

$$\Delta : B(r,t,s) \mapsto \sum_{j=0}^{r} \sum_{m=0}^{s} \sum_{k=0}^{t} \sum_{i=0}^{k} (-1)^i q^{-i(i+3)/2+(k-m-2i)j+m(t-i-k)}$$

$$\times \langle i+j \rangle \langle i+m \rangle \langle i \rangle! B(r-j,k-i,i+m) \otimes B(j+i,t-k,s-m),$$
where terms with the lowest grades in the first tensor factor are

\[= 1 \otimes B(r, t, s) + F_1 \otimes B(r - 1, t, s) + q^{r-2}F_2 \otimes B(r, t, s - 1) - q^{r-2}(r + 1)F_2 \otimes B(r + 1, t - 1, s) + \ldots \]

(the dots stand for terms \(B(r', t', s') \otimes B(r'', t'', s'') \) with \(r' + 2t' + s' \geq 2 \)).

2.2.2. Remark. Although this is obvious, we note explicitly that the “Serre relations”—the double \(q \)-commutators in the ideal—are resolved in terms of the shuffle product in the sense that the relations

\[F_1 \ast F_1 \ast F_2 - (q + q^{-1})F_1 \ast F_2 \ast F_1 + F_2 \ast F_1 \ast F_1 = 0, \]

\[F_2 \ast F_2 \ast F_1 - (q + q^{-1})F_2 \ast F_1 \ast F_2 + F_1 \ast F_2 \ast F_2 = 0 \]

hold identically for the shuffle product defined by the braiding matrix (1.1).

2.2.3. The action of the antipode on the PBW basis elements is defined by the formulas

\[S(B(r, 0, 0)) = (-1)^r q^{r(r-1)} B(r, 0, 0), \]

\[S(B(0, t, 0)) = \sum_{i=0}^{t} (-1)^{i} q^{\frac{1}{2}j(i-1)-(i+3)i+2} B(i, t-i, i), \]

\[S(B(0, 0, s)) = (-1)^s q^{s(s-1)} B(0, 0, s) \]

and by the fact that \(S \) is a braided antiautomorphism:

\[S(B(r, t, s)) = q^{rt-rs+ts} S(B(0, 0, s)) \ast S(B(0, t, 0)) \ast S(B(r, 0, 0)). \]

2.3. Vertex operators and Yetter–Drinfeld \(\mathcal{B}(X) \) modules. Multivertex \(\mathcal{B}(X) \) module comodules, which are Yetter–Drinfeld modules, were defined in [11]. We here realize simple Yetter–Drinfeld modules of our \(\mathcal{B}(X) \) in terms of one-vertex modules.

2.3.1. The \(\mathcal{X} \) spaces. Let \(Y^{n_1, n_2} \) be a one-dimensional vector space with basis \(V^{n_1, n_2} \) and braiding \(\psi : \mathcal{B}(X) \otimes Y^{n_1, n_2} \to Y^{n_1, n_2} \otimes \mathcal{B}(X) \) and \(Y^{n_1, n_2} \otimes \mathcal{B}(X) \to \mathcal{B}(X) \otimes Y^{n_1, n_2} \) defined by

\[\psi(F_i \otimes V^{n_1, n_2}) = q^{1-n_i} V^{n_1, n_2} \otimes F_i, \]

\[\psi(V^{n_1, n_2} \otimes F_i) = q^{1-n_i} F_i \otimes V^{n_1, n_2}, \]

\[i = 1, 2. \] Every space \(\mathcal{B}(X) \otimes V^{n_1, n_2} \otimes \mathcal{B}(X) \otimes V^{n_1, n_2} \otimes \ldots \otimes V^{n_1, n_2} \) is a Yetter–Drinfeld \(\mathcal{B}(X) \) module. Taking the \(a_i^j \) to be generic leads to continuum families of such modules, leaving us with no chance of a nice correspondence with any type of “reasonably rational” CFT model. The choice of the possible \(a_i^j \) values is governed by the requirement that all of them (and the braided vector space \(X \) itself) be objects of a suitable \(H^\mathcal{D} \).
category of Yetter–Drinfeld modules over a nonbraided Hopf algebra H. In the case of
diagonal braiding, more specifically, $H = k\Gamma$ for an Abelian group Γ, which can then be
considered the origin of the appropriate discreteness in the a_i^j values. We do not pursue
this line in this paper, and simply assume that the a_i^j take integer values.

We consider one-vertex modules $\mathcal{B}(X) \otimes V^{\{n_1, n_2\}}$ and for brevity write
$\mathcal{B}(r, t, s)^{\{n_1, n_2\}} = \mathcal{B}(r, t, s) \otimes V^{\{n_1, n_2\}} \in \mathcal{B}(X) \otimes Y^{\{n_1, n_2\}}$,
and, in particular,
$F_i^{\{n_1, n_2\}} = F_i \otimes V^{\{n_1, n_2\}} \in \mathcal{B}(X) \otimes Y^{\{n_1, n_2\}}$
(but $\mathcal{B}(0, 0, 0)^{\{n_1, n_2\}} = 1 \otimes V^{\{n_1, n_2\}}$ is normally written as $V^{\{n_1, n_2\}}$).

2.3.2. Left adjoint action. The formulas for the product, coproduct, and antipode in
[2.2.1-2.2.3] allow calculating the left adjoint action of the $\mathcal{B}(X)$ generators on one-vertex modules:
$F_1 \triangleright \mathcal{B}(r, t, s)^{\{n_1, n_2\}} = \langle r + 1 \rangle (1 - q^{2(s - t + 1 - n_1)}) \mathcal{B}(r + 1, t, s)^{\{n_1, n_2\}}$
$- q^{2r - 2s + t - 2n_1 + 3} \langle t + 1 \rangle (1 - q^2) \mathcal{B}(r, t + 1, s - 1)^{\{n_1, n_2\}}$
and
$F_2 \triangleright \mathcal{B}(r, t, s)^{\{n_1, n_2\}} = q^{1-r} \langle t + 1 \rangle (1 - q^2) \mathcal{B}(r - 1, t + 1, s)^{\{n_1, n_2\}}$
$+ q^{t-r} \langle s + 1 \rangle (1 - q^{2(s+1-n_2)}) \mathcal{B}(r, t, s + 1)^{\{n_1, n_2\}}$.

These formulas depend on n_1 and n_2 only through $(a_i \mod p)$. The $\mathcal{B}(X)$ coaction is given
by literally applying formula (2.4) to $\mathcal{B}(r, t, s) \otimes V^{\{n_1, n_2\}}$ (and is entirely independent of a_i).

2.3.3. Simple Yetter–Drinfeld modules. A simple Yetter–Drinfeld $\mathcal{B}(X)$-module $\mathcal{Y}^{\{n_1, n_2\}}$
is generated from $V^{\{n_1, n_2\}}$ under the action of $\mathcal{B}(X)$; its dimension is given by
$d(p, n_1, n_2) = \begin{cases}
\frac{d(n_1, n_2)}{\bar{p}}, & \bar{p} \leq p, \\
\frac{d(n_1, n_2) - d(p - \bar{n_1}, p - \bar{n_2})}{\bar{p} + 1}, & \bar{p} > p + 1,
\end{cases}$
where $d(n_1, n_2) = \frac{1}{2} n_1 n_2 (n_1 + n_2)$ and
$\underline{x} = \begin{cases}
p, & (x \mod p) = 0, \\
x \mod p, & \text{otherwise.}
\end{cases}$

3. The octuplet algebra centralizing $\mathcal{B}(X)$

We next discuss a CFT construction related to our $\mathcal{B}(X)$.
3.1. Screenings and their zero-momentum centralizer. We identify the \(\mathcal{B}(X) \) generators with two screenings

\[
F_\alpha = F_1 = \int e^{\Phi_\alpha}, \quad F_\beta = F_2 = \int e^{\Phi_\beta},
\]

where \(\Phi_\alpha(z) \) and \(\Phi_\beta(z) \) are two scalar fields whose OPEs are defined in accordance with the braiding matrix as follows:

\[
\Phi_\alpha(z) \Phi_\alpha(w) = \frac{2}{p} \log(z - w), \quad \Phi_\alpha(z) \Phi_\beta(w) = -\frac{1}{p} \log(z - w),
\]

\[
\Phi_\beta(z) \Phi_\beta(w) = \frac{2}{p} \log(z - w).
\]

It follows from the formulas in [2] that the centralizer ("kernel") of screenings (3.1) contains a Virasoro algebra with the central charge

\[
c = 50 - \frac{24}{p} - 24p = -\frac{2(3p - 4)(4p - 3)}{p}.
\]

This Virasoro algebra is represented by the energy–momentum tensor

\[
T(z) = \frac{p}{3} \partial \Phi_\alpha \partial \Phi_\alpha(z) + \frac{p}{3} \partial \Phi_\alpha \partial \Phi_\beta(z) + \frac{p}{3} \partial \Phi_\beta \partial \Phi_\beta(z) - (p - 1) \partial^2 \Phi_\alpha(z) - (p - 1) \partial^2 \Phi_\beta(z).
\]

In addition to the Virasoro algebra, the kernel of the screenings contains the dimension-3 Virasoro primary field (omitting the conventional \(z \) arguments of fields)

\[
W(z) = \partial \Phi_\alpha \partial \Phi_\alpha \partial \Phi_\alpha \partial \Phi_\alpha + \frac{3}{2} \partial \Phi_\alpha \partial \Phi_\alpha \partial \Phi_\beta \partial \Phi_\beta - \frac{3}{2} \partial \Phi_\alpha \partial \Phi_\alpha \partial \Phi_\beta \partial \Phi_\beta - \partial \Phi_\beta \partial \Phi_\beta \partial \Phi_\beta \partial \Phi_\beta
\]

\[
- \frac{9(p - 1)}{2p} \partial^2 \Phi_\alpha \partial \Phi_\alpha - \frac{9(p - 1)}{4p} \partial^2 \Phi_\alpha \partial \Phi_\beta + \frac{9(p - 1)}{4p} \partial^2 \Phi_\alpha \partial \Phi_\beta + \frac{9(p - 1)}{4p} \partial^2 \Phi_\beta \partial \Phi_\beta + \frac{9(p - 1)}{4p^2} \partial^3 \Phi_\alpha - \frac{9(p - 1)^2}{4p^2} \partial^3 \Phi_\beta.
\]

The operator product of this field with itself is given by

\[
W(z) W(w) = \frac{81(3p - 5)(3p - 4)(4p - 3)(5p - 3) - 243(3p - 5)(5p - 3)T(w)}{4p^4 (z - w)^6} - \frac{243(3p - 5)(5p - 3)T(w)}{8p^4 (z - w)^3} + \frac{243(3p - 5)(5p - 3)\partial T(w)}{16p^4 (z - w)^2} + \frac{243(3p - 5)(5p - 3)\partial^2 T(w)}{8p^4 (z - w)} - \frac{243(3p - 5)(5p - 3)\partial^3 T(w)}{16p^4 (z - w)},
\]

where \(TT(w) \) is the normal-ordered product \(T(w)T(w) \) (and similarly for \(\partial T(w) \)). This OPE defines the \(\mathcal{W}_3 \) algebra [19] (also see [31]).

In an equivalent description, the \(\mathcal{W}_3 \) algebra relations for the modes introduced as

\[
T(z) = \sum_{n \in \mathbb{Z}} L_n z^{-n - 2} \quad \text{and} \quad W(z) = \sum_{n \in \mathbb{Z}} W_n z^{-n - 3}
\]

are

\[
[L_m, L_n] = (m - n)L_{m+n} + \frac{1}{12}(50 - \frac{24}{p} - 24p)(m - 1)m(m + 1) \delta_{m+n,0},
\]

\[
[L_m, W_n] = (2m - n)W_{m+n},
\]

\[
[W_m, W_n] = -\frac{81(3p - 5)(5p - 3)}{8p^4} \frac{(m - n)(m + n + 3)(m + n + 2)}{5} - \frac{(m + 2)(n + 2)}{2} L_{m+n}.
\]
3.4. The octuplet algebra.

\[+ \frac{243}{4p^3}(m-n)\Lambda_{m+n} + \frac{27(3p-5)(3p-4)(4p-3)(5p-3)}{160p^3}m(m^2-1)(m^2-4)\delta_{m+n,0}, \]

where

\[\Lambda_m = \sum_{n \leq -2} L_n L_{m-n} + \sum_{n \geq 1} L_{m-n} L_n - \frac{3}{10} (m+3)(m+2)L_m. \]

3.2. Long screenings. The \(\mathcal{W}_3 \) algebra is also centralized by two “long” screenings

\[(3.4) \quad \mathcal{E}_\alpha = \oint e^{-p\phi_\alpha} \quad \text{and} \quad \mathcal{E}_\beta = \oint e^{-p\phi_\beta}. \]

Because

\[[F_i, \mathcal{E}_j] = 0, \]

the long screenings act on the kernel of the \(F_\alpha \) and \(F_\beta \), and are therefore a useful tool in studying that kernel.

3.3. Remark. We note that, generally, given the screenings \(F_i = \oint e^{\phi_i} = \oint e^{\alpha_i \phi} \), \(i = 1, \ldots, \theta \), the Virasoro dimension of a vertex \(e^{\mu \cdot \varphi(z)} \) with \(\mu = \sum_{i=1}^\theta c_i \alpha_i \) is

\[\Delta(c) = \sum_{i=1}^\theta c_i \left(1 - \frac{\alpha_i}{2} \right) + \frac{1}{2} \sum_{i,j=1}^\theta c_i c_j \alpha_i \alpha_j. \]

We list the generators of the ideal in (2.1) together with the vertex operators that naively (by momentum counting) correspond to them, and with the Virasoro dimensions of these vertices:

\[(3.5) \quad e^{2\phi_\alpha(z)+\phi_\beta(z)}, \quad e^{\phi_\alpha(z)+2\phi_\beta(z)}, \quad e^{p\phi_\alpha(z)}, \quad e^{p\phi_\alpha(z)+p\phi_\beta(z)}, \quad e^{p\phi_\beta(z)}, \quad e^{3}, \quad e^{3}, \quad 2p-1, \quad 3p-2, \quad 2p-1. \]

3.4. The octuplet algebra. The field

\[\mathcal{W}(z) = e^{p\phi_\alpha(z)+p\phi_\beta(z)}, \]

which is the top-dimension field in (3.5), is in the kernel of \(F_\alpha \) and \(F_\beta \) and is a \(\mathcal{W}_3 \)-primary field of dimension \(\Delta = 3p-2 \) and the \(W_0 \) eigenvalue zero. To describe how it is mapped by the long screenings, we need a reminder on \(\mathcal{W}_3 \) singular vectors.

3.4.1. Singular vectors in \(\mathcal{W}_3 \) Verma modules. We recall from [32] (also see [31] and the references therein) that highest-weight vectors of the \(\mathcal{W}_3 \) algebra can be conveniently parameterized by \((x, y) \) such that

\[L_m |x, y\rangle = 0, \quad m \geq 1, \]

\[W_m |x, y\rangle = 0, \quad m \geq 1, \]

\[L_0 |x, y\rangle = \left(\frac{x^2+y^2+xy}{3} - \frac{(p-1)^2}{p} \right) |x, y\rangle, \]
and built on that state. The singular vector has the highest-weight parameters a^c

The two numbers x and y are defined not uniquely but up to a Weyl transformation; the
Weyl group orbit of (x, y) also contains $(-x, x + y)$, $(x + y, -y)$, $(y, -x - y)$, $(-x - y, x)$, and $(-y, -x)$. We write $\mathcal{V}(z) \doteq |x, y\rangle$ for any field/state $\mathcal{V}(z)$ that satisfies the above conditions.

In what follows, we use the conditions for the existence of singular vectors in Verma
modules of the \mathcal{W}_3 algebra [33] [34] [32]. Whenever a state can be represented as $|x, y\rangle$ with $x = a\sqrt{p} - \frac{c}{\sqrt{p}}$ for integer a and c such that $ac > 0$, there is a singular vector on the level ac built on that state. The singular vector has the highest-weight parameters $(x', y') = (x - 2a\sqrt{p}, y + a\sqrt{p})$. Similarly, if $y = b\sqrt{p} - \frac{d}{\sqrt{p}}$ with $bd > 0$, then a singular vector occurs on the level bd and has the highest-weight parameters $(x'', y'') = (x + b\sqrt{p}, y - 2b\sqrt{p})$.

3.4.2. It follows that

$$\mathcal{W}(z) = e^{p\phi_\alpha(z) + p\phi_\beta(z)} \doteq |2\sqrt{p} - \frac{1}{\sqrt{p}}, 2\sqrt{p} - \frac{1}{\sqrt{p}}, 0\rangle,$$

and hence the corresponding Verma-module state has two singular vectors at level 2. Both
of them vanish in our free-field realization. Of the two fields $e\mathcal{W}(z)$ and $e\mathcal{W}(z)$, we
concentrate on the second; it lands in the module generated from

$$e^{p\phi_\alpha(z)} \doteq |3\sqrt{p} - \frac{1}{\sqrt{p}}, \frac{1}{\sqrt{p}}, 0\rangle.$$

The corresponding highest-weight state in the Verma module has singular vectors at levels
3 and $p - 1$. The first of these vanishes in the free-boson realization, but the second does not, yielding just the field $\mathcal{W}_\beta(z) = e\mathcal{W}(z)$, as we show in Fig. 1. We note that

$$\mathcal{W}_\beta(z) = P_{\beta}^{[p-1]}(\partial \phi(z)) e^{p\phi_\alpha(z)}$$

with a differential polynomials in $\partial \phi_\alpha(z)$, $\partial \phi_\beta(z)$ in front of the exponential; here and
hereafter, we indicate the degree d of a differential polynomial as $P[d]$.

Totally similarly,

$$\mathcal{W}_\alpha(z) = e\mathcal{W}(z) = P_{\alpha}^{[p-1]}(\partial \phi(z)) e^{p\phi_\beta(z)}$$

is a descendant of

$$e^{p\phi_\beta(z)} \doteq |3\sqrt{p} - \frac{1}{\sqrt{p}}\rangle.$$

The maps of $\mathcal{W}_\alpha(z)$ by $e\mathcal{W}$ and of $\mathcal{W}_\beta(z)$ by $e\mathcal{W}$ are differential polynomials (not involving exponentials). They are not descendants of the unit operator, however. We have

$$1 \doteq |\sqrt{p} - \frac{1}{\sqrt{p}}, \sqrt{p} - \frac{1}{\sqrt{p}}\rangle,$$

which implies singular vectors at levels 1, 1, 4, $2p - 1$, and $2p - 1$. All of these vanish in the free-field realization. In each of the grades where a level-$(2p - 1)$ singular vector vanishes, another state is produced as $e\mathcal{W}(e^{p\phi_\alpha(z)})$ and
A NOTE ON THE "LOGARITHMIC-\(W_3\)" OCTUPTLET ALGEBRA AND ITS NICHOLS ALGEBRA

Figure 1. Maps by the long screenings \(\varepsilon_\alpha\) and \(\varepsilon_\beta\). Crosses and downward arrows leading to them show \(W_3\) singular vectors that vanish in the free-boson realization. Bullets (and downward arrows) show nonvanishing states in the same grades; the relative levels of singular vectors are indicated at the arrows. An open circle superimposed with a cross shows a vanishing \(W_3\) singular vector and a (\(W_3\)-primary) state in the same grade, but not in the same \(W_3\)-module (and downward arrows drawn from such \(\times\) show singular vectors built on those primary states).

Two more modules—those with \(e^{p\Phi_\alpha}\) and \(e^{-p\Phi_\alpha}\) at the top—are not shown here; their structure repeats that of the "\(e^{p\Phi_\alpha}\)" and "\(e^{-p\Phi_\alpha}\)" modules with \(\alpha \leftrightarrow \beta\). Dotted arrows show the maps by \(\varepsilon_\alpha\) and \(\varepsilon_\beta\) from the missing modules.
We Weyl-reflect the highest-weight parameters to the same pair of singular vectors. These two next-generation singular vectors vanish in these singular vectors therefore has two level-

Further maps by the long screenings do not produce \(\mathbb{W}_3 \)-descendants of the corresponding exponentials either. We consider \(\mathcal{E}_\beta \mathcal{W}_\alpha (z) \) and \(\mathcal{E}_\beta \mathcal{W}_\beta (z) \). In the module associated with

\[
e^{-p\Phi_\beta(z)} = |2\sqrt{p} - \frac{1}{\sqrt{p}} - \sqrt{p} - \frac{1}{\sqrt{p}}\rangle,
\]

two singular vectors at level 2 and two at level \(2p - 2 \) vanish; located at the grades of the last two are \(\mathcal{E}_\beta \mathcal{E}_\alpha e^{p\Phi_\alpha(z)} \) (the maps shown in Fig. 1) and \(\mathcal{E}_\beta \mathcal{E}_\beta e^{p\Phi_\beta(z)} \)\(^1\) Now, \(\mathcal{E}_\beta \mathcal{E}_\alpha e^{p\Phi_\alpha(z)} \) and \(\mathcal{E}_\beta \mathcal{E}_\beta e^{p\Phi_\beta(z)} \) have a level-(\(p - 1 \)) singular-vector descendant each. In our free-field realization, these two singular vectors evaluate the same up to a nonzero overall factor, thus producing a \(\mathbb{W}_3 \)-primary field

\[
\mathcal{W}_\beta \alpha (z) = \mathcal{E}_\beta \mathcal{W}_\alpha (z) = \mathcal{P}[{3p-2}]_\beta_\alpha (\hat{\varphi}(z)) e^{-p\Phi_\beta(z)}.
\]

Everything with the replacement \(\alpha \leftrightarrow \beta \) applies to the field

\[
\mathcal{W}_\alpha \beta (z) = \mathcal{E}_\alpha \mathcal{W}_\beta (z) = \mathcal{P}[{3p-3}]_\alpha_\beta (\hat{\varphi}(z)) e^{-p\Phi_\alpha(z)}.
\]

Finally, mapping by the long screenings once again gives a field

\[
\mathcal{W}_\alpha \beta \beta (z) = \mathcal{E}_\alpha \mathcal{W}_\beta \beta (z) = \mathcal{P}[{4p-4}]_\alpha_\beta_\beta (\hat{\varphi}(z)) e^{-p\Phi_\alpha(z)-p\Phi_\beta(z)}
\]

(which is also \(\mathcal{E}_\beta \mathcal{W}_\alpha \beta (z) \) up to a factor), which is not in the module associated with \(e^{-p\Phi_\alpha(z)-p\Phi_\beta(z)} \), however. In the Verma module associated with the highest-weight vector

\[
e^{-p\Phi_\alpha(z)-p\Phi_\beta(z)} = \left| -\frac{1}{\sqrt{p}}, -\frac{1}{\sqrt{p}} \right\rangle,
\]

there are two singular vectors at level \(p - 1 \), both of which are nonvanishing in the free-field realization and are in fact the images of \(e^{-p\Phi_\beta(z)} \) (and \(e^{-p\Phi_\alpha(z)} \); see Fig. 1). Each of these singular vectors therefore has two level-(\(2p - 2 \)) singular vectors, which are in fact the same pair of singular vectors. These two next-generation singular vectors vanish in

\(^1\)We illustrate the use of \(\mathbb{W}_3 \). In the Verma module with the highest-weight vector \(|x,y\rangle = \left[2\sqrt{p} - \frac{1}{\sqrt{p}}, -\sqrt{p} - \frac{1}{\sqrt{p}}\right] \) associated with \(e^{-p\Phi_\beta(z)} \), one of the level-(\(2p - 2 \)) singular vectors exists due to the representation \(y = \frac{\nu - 1}{2\sqrt{p}}, \) and therefore the singular vector has the highest-weight parameters \((\nu',\nu'') = (-\frac{1}{\sqrt{p}},3\sqrt{p} - \frac{1}{\sqrt{p}}) \), i.e., those of \(e^{p\Phi(z)} \). The other level-(\(2p - 2 \)) singular vector is seen immediately if we Weyl-reflect the highest-weight parameters to \((\tilde{x},\tilde{y}) = (-x,x+y) \). We then have \(\tilde{y} = \frac{2(p-1)}{\sqrt{p}} - \sqrt{p}, \) and hence the singular vector has the parameters \((-3\sqrt{p} + \frac{1}{\sqrt{p}},3\sqrt{p} - \frac{2}{\sqrt{p}}) \). After the same Weyl reflection, the parameters \((3\sqrt{p} - \frac{1}{\sqrt{p}},\frac{1}{\sqrt{p}}) \) correspond to \(e^{p\Phi(z)} \).
our free-field realization, but the maps by \mathcal{E}_α (and by \mathcal{E}_β) land in the same grades. The two vectors in the image of the long screenings share a singular-vector descendant at the level-$(p - 1)$ and this descendant is the $W_{\alpha\alpha\beta}(z)$ field.

3.4.3. We summarize the octuplet structure of \mathcal{W}_3 primary fields generated by long screenings from $\mathcal{W}(z)$:

![Diagram of the octuplet structure of \mathcal{W}_3 primary fields](image)

The dashed arrows represent maps to the target field up to a nonzero overall factor. All the fields in the diagram are \mathcal{W}_3-primaries, with the same Virasoro dimension $3p - 2$.

We follow [2] in proposing these fields as generators of the octuplet algebra $\mathfrak{W}_{p,1}$—the extended algebra of logarithmic \mathcal{W}_3 models.

3.4.4. Calculations with particular examples show the OPE

$$W(z) W_{\alpha\alpha\beta}(w) = \frac{c_1 \cdot 1}{(z-w)^{6p-4}} + \frac{c_2 T(w)}{(z-w)^{6p-6}} + \frac{c_2/2 \partial T(w)}{(z-w)^{6p-7}} + \ldots$$

with nonzero p-dependent coefficients (and no dimension-3 $W(w)$ field), and

$$W_{\alpha}(z) W_{\beta\alpha\beta}(w) = \frac{(-1)^{p+1} c_1 \cdot 1}{(z-w)^{6p-4}} + \frac{(-1)^{p+1} c_2 T(w)}{(z-w)^{6p-6}} + \frac{(-1)^{p+1} c_2/2 \partial T(w)}{(z-w)^{6p-7}} + \ldots,$$

$$W_{\beta}(z) W_{\alpha\beta\alpha}(w) = \frac{(-1)^{p+1} c_1 \cdot 1}{(z-w)^{6p-4}} + \frac{(-1)^{p+1} c_2 T(w)}{(z-w)^{6p-6}} + \frac{(-1)^{p+1} c_2/2 \partial T(w)}{(z-w)^{6p-7}} + \ldots$$

with nonzero coefficients, and the OPEs $W_{\alpha}(z) W_{\beta\alpha\beta}(w)$ and $W_{\beta}(z) W_{\alpha\beta\alpha}(w)$ that start very similarly. The adjoint-$s\ell(3)$ nature of the octuplet manifests itself in the OPEs such as

$$W_{\alpha}(z) W_{\beta}(w) = \frac{c_3 W(w)}{(z-w)^{3p-2}} + \ldots,$$

$$W_{\alpha}(z) W_{\alpha\beta\alpha}(w) = O(z-w),$$

$$W_{\beta}(z) W_{\beta\alpha\beta}(w) = O(z-w),$$
\[W_{\alpha\beta\alpha}(z) W_{\beta\alpha\beta}(w) = \frac{c_{3} W_{\alpha\beta\beta}(w)}{(z - w)^{p-2}} + \ldots \]

3.4.5. Some octuplet algebra representations. To construct CFT counterparts of the modules introduced in 2.3, we first define the “fundamental weights” \(\omega_i \) such that \(\omega_i \cdot \alpha_j = \delta_{i,j} \):

\[\omega_1 = \frac{p}{3}(2\alpha_1 + \alpha_2), \quad \omega_2 = \frac{p}{3}(\alpha_1 + 2\alpha_2). \]

We let \(\omega_\alpha(z) \) and \(\omega_\beta(z) \) denote the corresponding fields:

\[\omega_\alpha(z) = \frac{p}{3}(2\varphi_\alpha(z) + \varphi_\beta(z)), \quad \omega_\beta(z) = \frac{p}{3}(\varphi_\alpha(z) + 2\varphi_\beta(z)). \]

Then the field

\[\mathcal{F}_{n_1,n_2}(z) = e^{\frac{1-n_1}{p} \omega_\alpha(z) + \frac{1-n_2}{p} \omega_\beta(z)} \]

has the same braiding with \(F_i \) as \(V^{(n_1,n_2)} \) has in 2.3.1. The dimension of \(\mathcal{F}_{n_1,n_2}(z) \) is

\[\Delta_{n_1,n_2} = p - n_1 - n_2 + \frac{n_1^2 + n_1 n_2 + n_2^2}{3p} - \frac{(p-1)^2}{p} \]

and, in fact, \(\mathcal{F}_{n_1,n_2}(z) \cong |x,y> \) with \((x,y) \) given by any pair from the Weyl orbit:

\[(\sqrt{p} - \frac{n_1}{\sqrt{p}}, \sqrt{p} - \frac{n_2}{\sqrt{p}}), (\frac{n_2}{\sqrt{p}} - \sqrt{p}, \frac{n_1}{\sqrt{p}} - \sqrt{p}), \]

\[(\sqrt{p} - \frac{n_2}{\sqrt{p}}, \frac{n_1 + n_2}{\sqrt{p}} - 2\sqrt{p}), (\frac{n_1 + n_2}{\sqrt{p}} - 2\sqrt{p}, \sqrt{p} - \frac{n_1}{\sqrt{p}}), \]

\[(\frac{n_1}{\sqrt{p}} - \sqrt{p}, -\frac{n_1 + n_2}{\sqrt{p}} + 2\sqrt{p}), (-\frac{n_1 + n_2}{\sqrt{p}} + 2\sqrt{p}, \frac{n_2}{\sqrt{p}} - \sqrt{p}). \]

The corresponding \(\mathcal{W}_3 \) singular vectors vanish in the free-field realization. We propose the irreducible \(\mathcal{O}_{p,1} \)-modules generated from \(\mathcal{F}_{n_1,n_2}(z) \) as counterparts of the corresponding simple Yetter–Drinfeld \(\mathcal{B}(X) \) modules, as a starting point to study the relation between the two representation categories.

4. Conclusions

We have outlined some details of the construction of the octuplet extended algebra \(\mathcal{O}_{p,1} \) proposed in [2], and described the corresponding Nichols algebra \(\mathcal{B}(X) \) in rather explicit terms. Systematically comparing \(\mathcal{O}_{p,1} \) representations with Yetter–Drinfeld \(\mathcal{B}(X) \) modules is very interesting from the perspective of whether the relation existing in the \(W_{p,1} \) (triplet-algebra) case [24, 25, 28, 29] extends to the current \(\mathcal{W}_3 \)-related octuplet setting.

Acknowledgments. It is a pleasure to thank I. Runkel and C. Schweigert for the useful discussions and the Department of Mathematics, Hamburg University for hospitality. This paper was supported in part by the RFBR grant 11-01-00830.
A NOTE ON THE “LOGARITHMIC-3” OCTUPLET ALGEBRA AND ITS NICHOLS ALGEBRA

REFERENCES

[1] A.M. Semikhatov and I.Yu. Tipunin, *The Nichols algebra of screenings*, Commun. Contemp. Math. 14 (2012) 1250029, arXiv:1101.5810.

[2] A.M. Semikhatov, *Virasoro central charges for Nichols algebras*, arXiv:1109.1767 [math.QA], in: “Conformal field theories and tensor categories,” proceedings of a workshop at Beijing International Center For Mathematical Research, June 2011, Springer, to appear.

[3] W. D. Nichols, *Bialgebras of type one*, Commun. Algebra 6 (1978) 1521–1552.

[4] S.L. Woronowicz, *Differential calculus on compact matrix pseudogroups (quantum groups)*, Commun. Math. Phys. 122 (1989) 125–170.

[5] G. Lusztig, *Introduction to Quantum Groups*. Birkhäuser, 1993.

[6] M. Rosso *Quantum groups and quantum shuffles*, Invent. math. 133 (1998) 399–416.

[7] N. Andruskiewitsch and M. Graña, *Braided Hopf algebras over non abelian finite groups*, Bol. Acad. Nacional de Ciencias (Cordoba) 63 (1999) 45–78 [arXiv:math/9802074 [math.QA]].

[8] N. Andruskiewitsch and H.-J. Schneider, *Pointed Hopf algebras*, in: *New directions in Hopf algebras*, MSRI Publications 43, pages 1–68. Cambridge University Press, 2002.

[9] N. Andruskiewitsch, *Some remarks on Nichols algebras*, in: *Hopf algebras*, Bergen, Catoiu and Chin (eds.) 25–45. M. Dekker (2004).

[10] N. Andruskiewitsch and H.-J. Schneider, *On the classification of finite-dimensional pointed Hopf algebras*, Ann. Math. 171 (2010) 375–417 [arXiv:math/0502157 [math.QA]].

[11] I. Heckenberger, *The Weyl groupoid of a Nichols algebra of diagonal type*, Invent. Math. 164 (2006) 175–188.

[12] I. Heckenberger, *Classification of arithmetic root systems*, Adv. Math. 220 (2009) 59–124 [math.QA/ 0605795].

[13] N. Andruskiewitsch, I. Heckenberger, and H.-J. Schneider, *The Nichols algebra of a semisimple Yetter–Drinfeld module*, Amer. J. Math. 132 (2010) 1493–1547.

[14] N. Andruskiewitsch, D Radford, and H.-J. Schneider, *Complete reducibility theorems for modules over pointed Hopf algebras*, J. Algebra, 324 (2010) 2932–2970 [arXiv:1001.3977].

[15] I. Angiono, *On Nichols algebras with standard braiding*, Algebra & Number Theory 3 (2009) 35–106 [arXiv:0804.0816].

[16] I.E. Angiono, *A presentation by generators and relations of Nichols algebras of diagonal type and convex orders on root systems*, arXiv:1008.4144.

[17] I. Angiono, *On Nichols algebras of diagonal type*, arXiv:1104.0268.

[18] I. Heckenberger and H.-J. Schneider, *Root systems and Weyl groupoids for Nichols algebras*, arXiv:0807.0691 [math.QA].

[19] A.B. Zamolodchikov, *Infinite additional symmetries in two-dimensional conformal quantum field theory*, Theor. Math. Phys. 65 (1985) 1205.

[20] M. Helbig, *On the lifting of Nichols algebras*, arXiv:1003.5882 [math.QA].

[21] H.G. Kausch, *Extended conformal algebras generated by a multiplet of primary fields*, Phys. Lett. B 259 (1991) 448.

[22] M.R. Gaberdiel and H.G. Kausch, *Indecomposable fusion products*, Nucl. Phys. B477 (1996) 293–318 [hep-th/9604026]; *A rational logarithmic conformal field theory*, Phys. Lett. B 386 (1996) 131–137 [hep-th/9606050]; *A local logarithmic conformal field theory*, Nucl. Phys. B538 (1999) 631–658 [hep-th/9807091].

[23] J. Fuchs, S. Hwang, A.M. Semikhatov, and I.Yu. Tipunin, *Nonsemisimple fusion algebras and the Verlinde formula*, Commun. Math. Phys. 247 (2004) 713–742 [hep-th/0306274].
[24] B.L. Feigin, A.M. Gainutdinov, A.M. Semikhatov, and I.Yu. Tipunin, Modular group representations and fusion in logarithmic conformal field theories and in the quantum group center, Commun. Math. Phys. 265 (2006) 47–93 [arXiv:hep-th/0504093].

[25] B.L. Feigin, A.M. Gainutdinov, A.M. Semikhatov, and I.Yu. Tipunin, Kazhdan–Lusztig correspondence for the representation category of the triplet W-algebra in logarithmic CFT, Theor. Math. Phys. 148 (2006) 1210–1235 [arXiv:math/0512621 [math.QA]].

[26] D. Adamović and A. Milas, On the triplet vertex algebra $W(p)$, Adv. Math. 217 (2008) 2664–2699 [arXiv:0707.1857v2 [math.QA]].

[27] D. Adamović and A. Milas, Lattice construction of logarithmic modules for certain vertex algebras, Selecta Math. New Ser., 15 (2009) 535–561, arXiv:0902.3417.

[28] K. Nagatomo and A. Tsuchiya, The triplet vertex operator algebra $W(p)$ and the restricted quantum group at root of unity, arXiv:0902.4607 [math.QA].

[29] A. Tsuchiya and S. Wood, The tensor structure on the representation category of the W_p triplet algebra, arXiv:1201.0419.

[30] A.M. Semikhatov, Fusion in the entwined category of Yetter–Drinfeld modules of a rank-1 Nichols algebra, Theoretical and Mathematical Physics 173(1) (2012) 1329–1358.

[31] P. Bouwknegt, K. Schoutens W-symmetry in conformal field theory, Phys. Rept. 223 (1993) 183–276 [arXiv:hep-th/9210010].

[32] P. Bowcock and G.M.T. Watts, Null vectors of the W_3 algebra Phys. Lett. B297 (1992) 282–288 [hep-th/9209105].

[33] S. Mizoguchi, Non-unitarity theorem for the a type W_n algebra, Phys. Lett. B222 (1989) 226; Phys. Lett. B231 (1989) 112–118.

[34] G.M.T. Watts, Determinant formulae for extended algebras in two-dimensional conformal field theory, Nucl. Phys. B326 (1989) 648–672.