CT characteristics in pulmonary adenocarcinoma with epidermal growth factor receptor mutation

Jing Zhao1,2,3,*, Julien Dinkel1,2, Arne Warth2,4, Roland Penzel4, Niels Reinmuth5, Philipp Schnabel2,4, Thomas Muley2,6, Michael Meister2,6, Heike Zabeck7, Martin Steins2,8, Jian-yong Yang3, Qian Zhou9, Heinz-Peter Schlemmer2,10, Felix J. F. Herth2,11, Hans-Ulrich Kauczor1,2, Claus Peter Heussel1,2,10

1 Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany, 2 Translational Lung Research Center Heidelberg (TLRC), Heidelberg, Germany, 3 Department of Diagnostic and Interventional Radiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China, 4 Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany, 5 Airway Center North (ARCN), LungenClinic Grosshansdorf GmbH, Großhansdorf, Germany, 6 Translational Research Unit, Thoraxklinik at University of Heidelberg, Heidelberg, Germany, 7 Department of Thoracic Surgery, Thoraxklinik at University of Heidelberg, Heidelberg, Germany, 8 Department of Thoracic Oncology, Thoraxklinik at University of Heidelberg, Heidelberg, Germany, 9 Clinical Trials Unit, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China, 10 Department of Radiology, German Cancer Research Center (dkfz), Heidelberg, Germany, 11 Department of Pneumology and Respiratory Critical Care Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany

* zhaojing.sysu@126.com (Zhao J); cjr.yangjianyong@vip.163.com (Yang J.Y)

Abstract

Comprehensively investigate the association of CT morphology and clinical findings of adenocarcinoma with EGFR mutation status. Retrospectively included 282 patients who was pathologically proved as lung adenocarcinoma with known EGFR mutation status (mutations: 138 patients, female: 86, median age: 66 years; wildtype: 144 patients, female: 67, median age: 62 years) and their pre-treatment CT scans were analyzed. CT findings and clinical information were collected. Univariate and multivariable logistic regression analysis were performed. Adjusted for age, gender and smoking history of two groups, significantly more patients with pleural tags, pleural and liver metastases were found in the EGFR mutated group (P = 0.007, 0.004, and 0.043, respectively). Multivariable logistic regression analysis found that the model included age, gender, smoking history of two groups, significantly more patients with pleural tags, pleural and liver metastases were found in the EGFR mutated group (P = 0.007, 0.004, and 0.043, respectively). Multivariable logistic regression analysis found that the model included age, gender, smoking history, air bronchogram, pleural tags, pleural and liver metastasis had a moderate predictive value for EGFR mutation status (AUC = 0.741, P < .0001). Exon-19 deletion was associated with air bronchogram which adjusted for age, gender and smoking history (P = 0.007, OR: 2.91, 95%CI: 1.25–7.79). The evidence of pleural tags, pleural and liver metastases go along with a higher probability of EGFR mutation in adenocarcinoma patients and air bronchogram is positively associated with Exon-19 deletion mutation.
support in the form of salaries for authors, but did not have any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: Author 1 – J.Z.: There was no conflict of interest to declare. Author 2 – J.D.: There was no conflict of interest to declare. Author 3 – A.W.: Consulting or Advisory Role; Company: Roche, Norah’s; Relationship: You; Research Funding; Company: Norah’s; Relationship: Your Institution. Author 4 – R.P.: There was no conflict of interest to declare. Author 5 – N.R.: Honoraria; Company: Hoffmann-La Roche, Lilly, Novartis, Boehringer-Ingelheim, Otsuka, Bristol-Myers Squibb; Relationship: You; Consulting or Advisory Role; Company: Hoffmann-La Roche, Lilly, Amgen, Novartis, Bristol-Myers Squibb; Relationship: You; Travel, Accommodations, Expenses, Company: Hoffmann-La Roche, Boehringer-Ingelheim; Relationship: You. Author 6 – P.S.: Honoraria; Company: E.Lilly Germany, Norah’s; Travel, Accommodations, Expenses, Company: E.Lilly; Relationship: You. Author 7 – T.M.: There was no conflict of interest to declare. Author 8 – M.M.: There was no conflict of interest to declare. Author 9 – H.Z.: Stock or Other Ownership; Company: stada; Relationship: You. Author 10 – M.S.: There was no conflict of interest to declare. Author 11 – J.Y.Y.: There was no conflict of interest to declare. Author 12 – O.Z.: There was no conflict of interest to declare. Author 13 – H.P.S.: Honoraria; Company: Siemens Healthcare; Relationship: You; Travel, Accommodations, Expenses, Company: Siemens Healthcare, Bracco, Curagita; Relationship: You. Author 14 – F.J.F.H.: There was no conflict of interest to declare. Author 15 – H.U.K.: Speakers’ Bureau; Company: Novartis, Siemens, Boehringer Ingelheim, ESR, Almirall; Relationship: You; Research Funding, Company: Siemens, Baye; Relationship: Your Institution. Author 16 – C.P.H.: Stock or Other Ownership; Company: Stada, GSK; Relationship: You; Consulting or Advisory Role, Company: Boehringer Ingelheim, Gilead, MSD, Intermune, Fresenius; Relationship: You; Speakers’ Bureau; Company: Gilead, MSD, Pfizer, Intermune, Boehringer Ingelheim, Novartis; Relationship: You; Research Funding, Company: Siemens, Pfizer, MeVis, Boehringer Ingelheim; Relationship: Your Institution.

Introduction

Lung cancer remains the leading cause of cancer deaths for both men and women in the worldwide [1]. Many advances have been made in the understanding of the pathogenesis and management of lung cancer, particularly of adenocarcinoma (ADC). Specifically, the discovery of epithelial growth factor receptor (EGFR) mutations has changed lung cancer treatment. EGFR mutation is associated with a dramatic clinical response to the EGFR tyrosine kinase inhibitors (EGFR TKIs) gefitinib and erlotinib [2–4].

EGFR mutation testing is usually based on formaline fixed and paraffin embedded tumor specimens [5]. Approximately two thirds of non-small cell lung cancer (NSCLC) patients are diagnosed at an advanced stage of the disease [6] where only limited tumor specimens (biopsies, cytology) can be obtained in contrast to complete tumor resection. These limited tissue/cytologic samples are not always available or evaluable for diagnosis and mutation testing, leaving some patients unable to have the EGFR mutation status of their tumors determined [7]. Tumor heterogeneity [8] and the presence of lesions that are inaccessible to needle biopsy challenge the tumor biopsies as well. These challenges are accentuated in a later line setting because re-biopsy may not be feasible and tumor heterogeneity may be greater.

Therefore, a less invasive procedure to increase the pre-test probability for EGFR mutation analysis would be helpful. It has already been shown that non-smoking status, female and East Asian ethnicity are correlated with EGFR mutation, but they are not sufficient to select or exclude patients for EGFR mutation testing [9–10]. Several studies have demonstrated that circulating free tumor-derived DNA (ctDNA), which can be isolated from the plasma or serum of patients with NSCLC, is feasible to assess EGFR mutation status [11–12]. However, ctDNA analysis is technically challenging, the suitability and performance of ctDNA testing varies significantly between different geographic regions and different laboratories [13–14].

Computed tomography (CT) is widely used in clinic to evaluate lung cancer patients and few studies have been carried out to investigate the imaging features of ADC with EGFR mutations. The results are controversial and the correlation of imaging features with EGFR mutation is unclear [15–18]. We hypothesize that there were some CT characteristics might correlate with EGFR mutation status and those CT characteristics might serve as a complementary way to suggest the EGFR mutation status.

In order to identify imaging characteristics of EGFR mutated ADC, we retrospectively analyzed computed tomography (CT) images of a cohort suffering from ADC with known EGFR mutation status.

Materials and methods

This study was in compliance with the Health Insurance Portability and Accountability Act (HIPAA) regulations. Informed written consent for examinations (including CT, PET-CT and pathology examinations) were obtained from all patients. Clinical records of included patients suffering from ADC admitted to our 3rd level thoracic hospital between February 2006 and October 2013 were reviewed retrospectively. The retrospective analysis was approved by the ethics committee of the medical school of the University of Heidelberg (IRB approval number S-048/2012). All patient records were anonymized and de-identified prior to analysis.

Patients and clinical assessment

1575 consecutive ADC patients have been analyzed for EGFR mutation status (Exon 18–21), demographics and tumor histopathology. 271 patients (17%) showed EGFR mutations and a similar number of patients (n = 280) with EGFR wildtype from the same database was selected randomly for comparison. According to the inclusion criterion (available CT images before...
surgery, chemo- and radiotherapy in the Picture Archiving and Communication System,
PACS [Synapse, Fuji Medical System]), 282 patients (male: female: 129: 153, mean age: 64 years) were included into the analysis. In a few cases (n = 6), the only pre-treatment imaging available was a positron emission tomogram with a non-enhanced CT (PET-CT) which was deemed adequate for lesion interpretation and characterization.

Gender, age, smoking status (non-smokers were defined as having smoked < 100 cigarettes/life, former and active smokers were designated as smokers), malignant tumor history were retrieved from clinical documents (Table 1).

Histopathologic and EGFR analysis

Pathological diagnosis of the surgical specimens (n = 40), biopsies (n = 235) and cytological specimens (n = 7) were performed by board-certified pathologists according to the criteria of the 2004 WHO and 2011 IASLC/ATS/ERS classification [19]. *EGFR* mutations in exons 18–21 were determined by direct DNA sequencing as described previously in detail [20].

Table 1. Clinical characteristics of EGFR mutation (M) and wildtype (wt) cohorts.

Characteristics	EGFR mutation (n = 138)	EGFR wildtype (n = 144)	P		
	No.	%	No.	%	
Age (years)					
Median	66	62%	62	47%	0.056
Range	33–87	40–84			
Sex					
Female	86	62%	67	47%	0.008*
Smoking status					
Non-Smokers	106	84%	94	67%	0.002*
N/A	11	8%	4	3%	
Malignant tumor history	19	15%	24	17%	0.628
N/A	11	8%	4	3%	
UICC stage¹					0.066
I	4	3%	1	1%	
II	2	1%	5	4%	
III	24	18%	40	28%	
IV	104	78%	96	68%	
N/A	4	3%	2	1%	
N stage					0.983
N0	41	29%	41	30%	
N1	17	12%	17	12%	
N2	47	33%	42	30%	
N3	39	27%	38	28%	
Distant metastases					0.063
M0	30	22%	46	32%	
M1	104	78%	96	68%	
N/A	4	3%	2	1%	

Abbreviations: UICC: International Union Against Cancer; N/A: not applicable, LDH: lactate dehydrogenase
¹: 69 patients were staged by pathology and the rest of patients (n = 207) by clinical criteria.
P<0.05 was considered as statistically significant.

https://doi.org/10.1371/journal.pone.0182741.t001
CT evaluation

All included patients underwent chest CT or PET-CT, which had been conducted within one-month prior treatment and were interpreted on a PACS reading workstation retrospectively by two experienced chest radiologists (Z.J and D.J) in consensus blinded to the EGFR analysis results. CT examinations were performed at multiple institutions with a variety of helical scanners. The median section thickness used was 3mm (range from 0.5mm to 7mm).

Detailed imaging characteristics of the primary lesions, corresponding lymph nodes and distant metastases were recorded (Fig 1), including [21–26]:

1. Primary tumor: location (peripheral [outer perimeter within 1 cm of the pleura], middle and central); maximal axial size; shape (with or without atelectasis [obstructive, compressive and combining]; if without, the shape was classified as round, ovoid, lobulated or irregular); margin (smooth, spiculated, lobulated, concave and the predominant one); attenuation (solid, ground glass opacity [GGO], or semisolid with recording the percentage of GGO); presence of cavitation, air bronchogram (AB), calcification within the tumor; number of pleural tags; number of satellite nodules, including the maximum size of the biggest one; number of nodules in different ipsilateral lobes; pleural contacts (slight pleural contact, visceral pleural invasion, parietal pleural invasion); tumor enhancement (homogeneous, heterogeneous, large necrosis [more than 50% of the tumor area]).

2. Lymph node (LN): According to the 7th Edition TNM classification of lung cancer, LN were divided into three levels: N1 –N3). Short axial diameter of the biggest LN in each level was recorded if more than 5 mm as well as the attenuation of the corresponding LN after contrast enhancement (fatty, isodense, hyperdense, necrosis, mixed). A LN with a short axis diameter of more than 10mm was rated as metastasis [27–28].

3. Distant metastases: a) Presence of nodule(s) in the contralateral lung (recording the maximal axial diameter of the biggest nodule and the distribution of pulmonary metastases [regional or random and diffuse]); presence of lymphatic carcinomatosis or pleural carcinosis (all the pleural metastases were either proven by histology or clinical criteria (pleura with obvious irregular thickening or nodules of the pleura which became more irregular and thicker during the follow up); b) Nearly all included patients (n = 267/282) underwent additional imaging studies (abdominal CT or ultrasound, brain CT or magnetic resonance (MR) imaging and whole-body bone scanning with technetium 99m medronate) for tumor staging. All available images and reports were reviewed. The specific distant metastatic organ (brain, liver, adrenal gland etc), the number of corresponding metastases and the total number of distant metastases which were divided into two groups (less or more than five) were recorded.

Statistical analysis

Initially, differences between categorical clinical and CT features were compared by \(\chi^2 \) test, Fisher’s exact test and Kruskal-Wallis test. Quantitative continuous variables in clinical and CT data were compared by Mann-Whitney-U test. Cases like “the size of satellite nodule and minor size of N1LN” with single missing data points too much were not included into the logistic regression analysis. Univariate logistic and multivariable logistic regression analysis which adjusted for age, gender and smoking history of two groups were employed to evaluate the relationship between clinical and CT features with EGFR mutation status. The optimized combination of different CT and clinical features to predicting the EGFR mutation status was
performed by logistic regression analysis. $P < 0.05$ was considered to be statistically significant. Bonferroni adjustment method will be performed in multiple comparisons if necessary. The statistical software (SPSS 16.0; SPSS, Chicago, Ill) was used to perform the analysis and create graphs.
Results

EGFR mutation status and clinical characteristics

Our cohort included 282 patients. 138 patients (female: male: 86: 52, median age 66y) had **EGFR** mutations (M) while 144 patients (female: male: 67: 77, median age 62y) were **EGFR** wildtype (wt). The **EGFR** mutation group was constituted by 62 patients (45%) who had exon 19 deletions, 39 patients (28%) who harbored p.L 858R mutations and 27% of patients with other types of mutations (Fig 2).

All the clinical characteristics with **EGFR** mutation status were recorded in Table 1.

EGFR mutation status and CT features

Primary tumor. No statistically significant differences between **EGFR** mutation status (mutation: M and wildtype: WT) in tumor location (peripheral, middle and central), size, shape, margin, attenuation, pleural contact and enhancement. However, AB was found in 44% (n_M = 55) of the **EGFR** mutated patients and 31% (n_WT = 39) of the patients with wt (P = 0.033). The percentage of **EGFR** mutated patients (n_M = 42 (33%) vs. n_WT = 26 (20%), P = 0.013) with more than one pleural tag was significantly higher. **EGFR** mutated patients showed a significantly higher incidence of satellite nodule (n_M = 71 [56%] vs. n_WT = 50 [38%],

![Fig 2. The percentage composition of the detected **EGFR** mutations.](https://doi.org/10.1371/journal.pone.0182741.g002)

Note. - Combined **EGFR** mutation stands for mutation at least was found in two exons (18–21), for example point mutation in 18 and 20 exons.

- Seldom mutation means at least two combination of the way of **EGFR** mutation, such as deletion combined insertion in exon 19.

- There was one patients had both deletion in exon 19 and p.L858R.

https://doi.org/10.1371/journal.pone.0182741.g002
P = 0.004) while the median size of the biggest one was smaller (7mm vs. 9mm, \(P = 0.034\)) (Table 2) (S1 Table).

Lymph nodes. The median short axis diameter of the biggest N1 LN in *EGFR* mutated patients was smaller (12 mm vs. 14 mm; \(P = 0.023\)) (Table 2). Other comparisons such as the short axis of the biggest LN in the other two levels and LN staging status were not statistically different.

Metastases. While random and diffuse, pulmonary metastases were more frequent in the *EGFR* mutation group (n\textsubscript{M}: 11 [8%] vs. n\textsubscript{WT}: 4 [3%], \(P = 0.052\)), this observation did not reach significance. The frequency of pleural metastases, of which 63 patients were confirmed by pathology and 17 patients were diagnosed according to clinical criteria, was higher in the *EGFR* mutation group (n\textsubscript{M} = 50 [36%] vs. n\textsubscript{WT} = 30 [21%], \(P = 0.004\)). With distant metastases, the overall incidence and the patients with more than five metastases were similar between the two groups. However, liver metastases were found significantly more often in *EGFR* mutated patients (\(P = 0.010\)) while bilateral adrenal gland metastases were found only in *EGFR* wt patients (\(P = 0.002\)). Interestingly, half of the adrenal metastases patients in *EGFR* wt group were manifested as bilateral metastases (Table 2) (S1 Table).

Univariate and multivariable logistic regression analysis. Univariate logistic analysis showed that gender, smoking history, AB, pleural tags, pleural metastasis and liver metastasis were significantly different in two groups and the \(P\) values were 0.008, 0.002, 0.033, 0.014, 0.004 and 0.013, respectively (Table 2).

Table 2. Statistically significant imaging characteristics comparison between *EGFR* mutation statuses.

TNM Feature	Total	No.	%	Total	No.	%	\(P^*\)	\(P^#\) (OR, 95%CI)
Primary tumor								
Air bronchogram\(^1\)	126	39	31%	125	55	44%	0.033	0.059
Pleural tags (\(>1\))\(^2\)	133	26	20%	127	42	33%	0.013	0.007(2.27, 1.25–4.14)
SN\(^3\) Number (\(>1\))	131	50	38%	126	71	56%	0.004	-
Size(mm)								
Median	9	-	-	7	-	-	0.034	-
Range	3–29	-	-	3–34	-	-	-	-
LN Biggest N1								
LN size								
Median (mm)	14	-	-	12	-	-	-	-
Range	7–33	-	-	6–22	-	-	-	-
Metastases								
M1a Pleural	144	30	21%	138	50	36%	0.004	0.004(2.30, 1.30–4.06)
M1b Liver\(^4\)	140	8	6%	132	20	15%	0.010	0.043(2.54, 1.03–6.28)
Bilateral adrenal\(^5\)	140	9	6%	130	0	0%	0.002	NA

LN: lymph node, *EGFR*: epidermal growth factor receptor, SN: satellite nodules

\(^1\): 31 patients (M: wt = 13: 18) were excluded from this specific analysis, because the primary tumor of 10 patients could not be identified and the tumor-bearing lobe of the rest of patients were atelectasis, thus, the contour of the primary tumor was barely clearly recognized.

\(^2\): 22 patients (M: wt = 11:11) were excluded from this specific analysis, because the primary tumor of 10 patients could not be identified and the tumor associated atelectasis hides the pleural relation of the tumor in these patients.

\(^3\): Satellite nodules in 25 patients (M:wt = 12:13) could not be counted due to atelectasis and the not-identified primary tumors.

\(^4\): N1: ipsilateral peribronchial and/or ipsilateral hilar LN and intrapulmonary nodes, only included the short size of LN more than 5mm.

\(^5\): Information concerning liver and adrenal gland metastases was missing for 10 and 12 patients, respectively.

\(^#\): The \(P\) value was calculated by multivariable logistic regression analysis which adjusted for age, gender and smoking history.

\(*\): \(P < 0.05\) was considered as statistically significant.
Adjusted for age, gender and smoking history of two groups respectively, we found that the incidence of pleural tags ($P = 0.007$), pleural ($P = 0.004$) and liver metastases ($P = 0.043$) are significantly higher in $EGFR$ mutated patients. (Table 2) However, the incidence of AB was nearly to show the significant difference in two groups ($P = 0.059$). Further, multivariable regression analysis found that combined age, gender, smoking history, AB, pleural tags, pleural and liver metastasis together which showed the highest predictive value (AUC = 0.741) (Fig 3).

Association of the CT features with $EGFR$ exon-19 deletion or p.L858R

After adjusting for age, gender and smoking history, multivariable logistic regression analysis showed that AB strongly associated with exon-19 deletion mutation (OR, 2.91; 95%CI: 1.25–7.79; $P = 0.011$), as compared to the rest of $EGFR$ mutations. Whereas, compared with the rest of $EGFR$ mutated patients, patients with p.L858R mutation had significant less AB (OR, 3.12; 95%CI: 1.25–7.79, $P = 0.015$) (Table 3). With other imaging features, there were no significant differences were found when associated them with $EGFR$ exon-19 deletion or p.L858R.
Discussion

This study has identified certain clinical and imaging characteristics which were correlated with EGFR mutations. According to previous reports [9, 10], we found that women and non-smokers tended to have EGFR mutation more often. To our knowledge, no study has previously been done with the objective of a comprehensive comparison of CT features of ADC patients with different EGFR mutation status, hence only single pattern such as GGO [16, 17, 29–32] have been evaluated so far. In addition, there were two studies have showed that ADC patients with malignant pleural effusion (MPE) had a higher incidence of EGFR mutation [33, 34].

Our study has showed that, several radiological features associated with EGFR mutation in ADC: the number of patients with AB, pleural tags, pleural and liver metastases was significantly higher if EGFR is mutated. Logistic regression analysis showed that the model composed by age, gender, smoking history, AB, pleural tag (n = 1), pleural and liver metastasis have a moderate predictive value for EGFR mutation. These could enable radiologists to better understand the imaging features which correlated with EGFR mutation and to applying this understanding into clinical practice by allowing radiologists to raise clinical suspicion for EGFR mutation.

Lepidic predominant ADC were already described to show AB frequently [35], while a correlation of EGFR mutations with the lepidic pattern has also been demonstrated [20]. This might explain why EGFR mutated patients in our cohort showed more AB. Koenigkam Santos M et al. [36] found that ADC was more commonly associated with pleural tags, compared to squamous cell carcinomas. In our study, mutated ADC had more pleural tags than wild type ADC.

Several reports [33, 37] found that overall survival (OS) could be prolonged in EGFR positive ADC patients with MPE undergoing EGFR-TKI therapy. Meanwhile, several retrospective studies [33, 34] discovered that patients with ADC and MPE had a higher rate of EGFR mutation. A functional variant of the EGFR promoter, 216G/T (rs712829), was associated with pleural spread of ADC which is usually accompanied with MPE [38]. This might explain the significantly higher number of pleural metastases in EGFR mutated patients. The accompanied high incidence of pleural effusion might cause more compressive atelectasis (n_M = 12 vs. n_WT = 6) in ADC with EGFR mutation.

In contrast to the previous findings [18, 39–41], neither significant differences in LN staging, pulmonary, nor brain metastases were noticed, while satellite metastases were significantly more frequent and of smaller size in EGFR mutated tumors. The latter findings were probably

Characteristics	Deletion in exon 19	Deletion in p.L858R	P*	P*(OR, 95%CI)	P*	P*(OR, 95%CI)
Female (n = 138)	45/62	73%	41/76 54%	0.025 >0.05	23/39 59%	63/99 64% 0.611-
Air bronchogram (n = 125)	33/59	56%	22/66 33%	0.011 0.007(2.91, 1.25–7.79)	9/34 27%	46/91 51% 0.016 0.015(3.12, 1.25–7.79)

OR: odd ratio, CI: confidence interval.
* The P value was calculated by multivariable logistic regression analysis which adjusted for age, gender and smoking history.
†: P < 0.05 was considered as statistically significant.
‡: 13 patients were excluded out in this specific analysis, because the primary tumor of 5 patients could not be identified and the tumor-bearing lobe in 8 patients were atelectasis and the contour of the primary tumor was barely recognized.

https://doi.org/10.1371/journal.pone.0182741.t003
associated with the abundant angiogenesis of EGFR pathways [42] since this important mediator supports local spread resulting in multiple metastases in the same lobe or the whole lung. This mechanism might also explain the few necrosis in EGFR mutated tumors (n_M = 1; n_WT = 7, Table 1). In addition, the short axis of N1 LN in EGFR mutated tumors was smaller. A possible explanation for this maybe EGFR was expressed in almost all cells with the only exception of the mature lymphohematopoietic cells [42].

The majority of detected EGFR mutations were either p.L858R or exon-19 deletions (39 + 62 = 101, 73%, Table 3). An association of CT features and OS with p.L858R or exon-19 deletions might be different. It has been demonstrated that p.L858R were correlated with the CT feature ‘invasive solid pattern’ [29], had not prolonged OS after EGFR-TKI therapy [43]. While exon-19 deletion, in contrast, had a longer progression-free survival (PFS) [44] and OS [43,45] after TKI treatment. Therefore, it is useful to know the correlation of significant clinical features and CT pattern with EGFR p.L858R or exon-19 deletions. As we found exon-19 deletion mutations were significantly more frequent in women and this was consistent with the finding that EGFR mutation favoring female patients. Even excitingly, we found exon-19 deletion is correlated with a significantly greater number of AB, whereas tumors with p.L858R mutation had significantly less frequent AB (Table 3).

Besides, our study has its own limitations. This was a retrospective study which would induce patient selection bias and the case included in the study were not enough, even we have already included as many cases as we could. However, these results might serve as a basement for our further international cooperative study and all those results still need be further validated by our prospective study.

Conclusion
Clinical and CT-derived imaging characteristics are associated with activating EGFR mutations. Especially, the presence of AB, pleural tag, pleural and liver metastases may help to increase pretest probability for EGFR mutation. In addition, the presence of AB positively associated with EGFR exon-19 mutation.

Supporting information
S1 Table. Imaging characteristics comparison between different EGFR mutation status in primary tumor.
(DOC)

S2 Table. Imaging characteristics comparison between different EGFR mutation status in distant metastases (M).
(DOCX)

Acknowledgments
We would like to extend our thanks to Dr. Elizabeth Chang Xu for the English editing of the manuscript. Jing Zhao, Julien Dinkel, Arne Warth, Niels Reinmuth, Philipp Schnabel, Thomas Muley, Michael Meister, Martin Steins, Heinz-Peter Schlemmer, Felix JF Herth, Hans-Ulrich Kauczor and Claus Peter Heussel are a member of German Center for Lung Research (DZL).
Author Contributions

Conceptualization: Jing Zhao, Julien Dinkel, Arne Warth, Roland Penzel, Niels Reinmuth, Philipp Schnabel, Thomas Muley, Jian-yong Yang, Felix J. F. Herth, Hans-Ulrich Kauczor, Claus Peter Heussel.

Data curation: Arne Warth, Roland Penzel, Niels Reinmuth, Philipp Schnabel, Thomas Muley, Michael Meister, Martin Steins, Jian-yong Yang, Heinz-Peter Schlemmer, Felix J. F. Herth, Hans-Ulrich Kauczor, Claus Peter Heussel.

Formal analysis: Jing Zhao, Julien Dinkel, Jian-yong Yang, Qian Zhou, Hans-Ulrich Kauczor, Claus Peter Heussel.

Investigation: Jing Zhao, Julien Dinkel.

Methodology: Jing Zhao, Julien Dinkel, Arne Warth, Niels Reinmuth, Philipp Schnabel, Thomas Muley, Michael Meister, Heike Zabeck, Martin Steins, Jian-yong Yang, Heinz-Peter Schlemmer, Felix J. F. Herth, Hans-Ulrich Kauczor, Claus Peter Heussel.

Project administration: Arne Warth, Niels Reinmuth, Thomas Muley, Michael Meister, Heike Zabeck, Jian-yong Yang, Heinz-Peter Schlemmer, Felix J. F. Herth, Hans-Ulrich Kauczor, Claus Peter Heussel.

Resources: Arne Warth, Niels Reinmuth, Philipp Schnabel, Thomas Muley, Michael Meister, Heike Zabeck, Martin Steins, Jian-yong Yang, Heinz-Peter Schlemmer, Felix J. F. Herth, Hans-Ulrich Kauczor, Claus Peter Heussel.

Supervision: Hans-Ulrich Kauczor, Claus Peter Heussel.

Validation: Jing Zhao, Julien Dinkel, Claus Peter Heussel.

Visualization: Jing Zhao, Julien Dinkel, Jian-yong Yang, Qian Zhou, Hans-Ulrich Kauczor, Claus Peter Heussel.

Writing – original draft: Jing Zhao, Claus Peter Heussel.

Writing – review & editing: Jing Zhao, Julien Dinkel, Arne Warth, Roland Penzel, Niels Reinmuth, Philipp Schnabel, Thomas Muley, Michael Meister, Heike Zabeck, Martin Steins, Jian-yong Yang, Qian Zhou, Heinz-Peter Schlemmer, Felix J. F. Herth, Hans-Ulrich Kauczor, Claus Peter Heussel.

References

1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J Clin. 2009; 59:225–249. https://doi.org/10.3322/caac.20006 PMID: 19474385

2. Paez JG, Jänne PA, Lee JC, Tracy S, Greulich H, Gabriel S, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science. 2004; 304:1497–1500. https://doi.org/10.1126/science.1099314 PMID: 15118125

3. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med. 2004; 350:2129–2139. https://doi.org/10.1056/NEJMoia040938 PMID: 15118073

4. Pao W, Miller V, Zakowski M, Doherty J, Politi K, Sarkaria I, et al. EGFR receptor gene mutations are common in lung cancers from "never smokers" and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci USA. 2004; 101:13306–13311 https://doi.org/10.1073/pnas.0405220101 PMID: 15329413

5. Lindeman NI, Cagle PT, Beasley MB, Chitale DA, Dacic S, Giaccone G, et al: Molecular testing guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors: guideline from the College of American Pathologists, International Association for the Study of Lung Cancer, and...
Association for Molecular Pathology. J Thorac Oncol 2013; 8(7):823–5. https://doi.org/10.1097/JTO.0b013e3182908688 PMID: 23552377

6. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin 2011; 61:69–90. https://doi.org/10.3322/caac.20107 PMID: 21296855

7. Fenizia F, De Luca A, Pasquale R, Sacco A, Forgione L, Lambiase M, et al. EGFR mutations in lung cancer: from tissue testing to liquid biopsy. Future Oncol. 2015; 11: 1611–23. https://doi.org/10.2217/ fon.15.23 PMID: 26043215

8. Vignot S, Frampton GM, Soria JC, Yelensky R, Commo F, Brambilla C, et al: Next-generation sequencing reveals high concordance of recurrent somatic alterations between primary tumor and metastases from patients with non-small-cell lung cancer. J Clin Oncol 2013; 31: 2167–2172. https://doi.org/10.1200/JCO.2012.47.7737 PMID: 23630207

9. Girard N, Sima CS, Jackman DM, Sequist LV, Chen H, Yang JC, et al: Nomogram to predict the presence of EGFR activating mutation in lung adenocarcinoma. Eur Respir J 2012; 39(2):366–72. https://doi.org/10.1183/09031936.0010111 PMID: 21778168

10. Dogan S, Shen R, Ang DC, Johnson ML, D’Angelo SP, Paik PK, et al: Molecular epidemiology of EGFR and KRAS mutations in 3,026 lung adenocarcinomas: higher susceptibility of women to smoking-related KRAS-mutant cancers. Clin Cancer Res 2012; 18(22):6169–77. https://doi.org/10.1158/1078-0432.CCR-11-3265 PMID: 23014527

11. Douillard JY, Ostoros G, Cobo M, Culeanu T, Cole R, McWalter G, et al. Gefitinib treatment in EGFR mutated caucasian NSCLC: circulating-free tumor DNA as a surrogate for determination of EGFR status. J Thorac Oncol. 2014; 9:1345–53. https://doi.org/10.1097/JTO.0000000000000263 PMID: 25122430

12. Rosell R, Moran T, Queralt C, Porta R, Cardenal F, Camps C, et al. Screening for epidermal growth factor receptor mutations in lung cancer. N Engl J Med. 2009; 361:958–67. https://doi.org/10.1056/NEJMoa0904554 PMID: 19692684

13. Han B, Tjulandin S, Hagiwara K, Normanno N, Wulundari L, Konstantin Konstantinovich L, et al. Determining the prevalence of EGFR mutations in Asian and Russian patients (pts) with advanced non-small-cell lung cancer (aNSCLC) of adenocarcinoma (ADC) or non-ADC histology: IGNITE study. Ann Oncol. 2015; 26 (Suppl 1): i29–i30.

14. Reck M, Hagiwara K, Han B, Tjulandin S, Grohe C, Yokoi T, et al. Investigating the utility of circulating-free tumour-derived DNA (cIDNA) in plasma for the detection of epidermal growth factor receptor (EGFR) mutation status in European and Japanese patients (pts) with advanced non-small-cell lung cancer (aNSCLC). Ann Oncol. 2015; 26 (Suppl 1): i58–i59.

15. Glynn C, Zakowski MF, Ginsberg MS. Are there imaging characteristics associated with epidermal growth factor receptor and KRAS mutations in patients with adenocarcinoma of the lung with bronchioalveolar features? J Thorac Oncol 2010; 5(3):344–8. https://doi.org/10.1097/JTO.0b013e3181c3b97a PMID: 20872229

16. Han B, Normanno N, Wulundari L, Konstantin Konstantinovich L, et al. Determining the prevalence of EGFR mutations in Asian and Russian patients (pts) with advanced non-small-cell lung cancer (aNSCLC) of adenocarcinoma (ADC) or non-ADC histology: IGNITE study. Ann Oncol. 2015; 26 (Suppl 1): i29–i30.

17. Travis WD, Brambilla E, Noguchi M, Nicholson AG, Geisinger K, Yatabe Y, et al: International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society:international multidisciplinary classification of lung adenocarcinoma: executive summary. Proc Am Thorac Soc. 2011; 8(5):381–5. https://doi.org/10.1513/pats.201107-042ST PMID: 21926387

18. Warth A, Penzel R, Lindenmaier H, Brandt R, Stenzinger A, Herpel E, et al: EGFR, KRAS, BRAF and ALK gene alterations in lung adenocarcinomas: patient outcome, interplay with morphology and immunophenotype. Eur Respir J 2014; 43(3):872–83. https://doi.org/10.1183/09031936.0018013 PMID: 23988776

19. Aoki T, Tomoda Y, Watanabe H, Nakata H, Kasai T, Hashimoto H, et al: Peripheral lung adenocarcinoma: correlation of thin-section CT findings with histologic prognostic factors and survival. Radiology 2001; 220: 803–809. https://doi.org/10.1148/radiol.2203001701 PMID: 11526285
22. Gandara DR, Aberle D, Lao D, Jett J, Akhurst T, Heelan R, et al: Radiographic imaging of bronchioloalveolar carcinoma: screening, patterns of presentation and response assessment. J Thorac Oncol 2006; 1: Suppl. 9, S20–6.

23. Godoy MC, Naidich DP. Subsolid pulmonary nodules and the spectrum of peripheral adenocarcinomas of the lung: recommended interim guidelines for assessment and management. Radiology 2009; 253: 606–622. https://doi.org/10.1148/radiol.2533090179 PMID: 19952025

24. Li F, Sone S, Abe H, Macmahon H, Doi K. Malignant versus benign nodules at CT screening for lung cancer: comparison of thin-section CT findings. Radiology 2004; 233: 793–798. https://doi.org/10.1148/radiol.2333031018 PMID: 15498895

25. Suzuki K, Kusumoto M, Watanabe S, Tsuchiya R, Asamura H. Radiologic classification of small adenocarcinomas of the lung: radiologic-pathologic correlation and its prognostic impact. Ann Thorac Surg 2006; 81: 413–419. https://doi.org/10.1016/j.athoracsur.2005.07.058 PMID: 16427823

26. Lee HJ, Goo JM, Lee CH, Park CM, Kim KG, Park EA, et al: Predictive CT findings of malignancy in ground-glass nodules on thin-section chest CT: the effects on radiologist performance. Eur Radiol 2009; 19: 552–560. https://doi.org/10.1007/s00330-008-1188-2 PMID: 18925404

27. Mori K, Yokoi K, Saito Y, Tominaga K, Miyazawa N. Diagnosis of mediastinal lymph node metastases in lung cancer. Jpn J Clin Oncol 1992; 22(1):35–40. PMID: 1573787

28. Seeley JM, Mayo JR, Miller RR, Müller NL. T1 lung cancer: prevalence of mediastinal nodal metastases and diagnostic accuracy of CT. Radiology 1993; 186(1):129–32. https://doi.org/10.1148/radiology.186.1.8416552 PMID: 8416552

29. Yoshida Y, Kokubu A, Suzuki K, Kuribayashi H, Tsuta K, Matsuno Y, et al: Molecular markers and diagnostic accuracy of CT. Radiology 1993; 186(1):129–32. https://doi.org/10.1148/radiology.186.1.8416552 PMID: 8416552

30. Hsu KH, Chen KC, Yang TY, Yeh YC, Chou TY, Chen HY, et al: Epidermal growth factor receptor mutation status in stage I lung adenocarcinoma with different image patterns. J Thorac Oncol 2011; 6 (6):1066–72. https://doi.org/10.1097/JTO.0b013e31821667b0 PMID: 21512404

31. Usuda K, Sagawa M, Motono N, Ueno M, Tanaka M, Machida Y, et al: Relationships between EGFR mutation status of lung cancer and preoperative factors—are they predictive? Asian Pac J Cancer Prev 2014; 15(2):657–62. PMID: 24568474

32. Wu SG, Yu CJ, Tsai MF, Liao WY, Yang CH, Jan IS, et al: Survival of lung adenocarcinoma patients with malignant pleural effusion. Eur Respir J 2013; 41(6):1409–18. https://doi.org/10.1183/09031936.00069812 PMID: 23018906

33. Smits AJ, Kummer JA, Hinrichs JW, Herder GJ, Scheidel-Jacobse KC, Jiwa NM, et al: EGFR and KRAS mutations in lung carcinomas in the Dutch population: increased EGFR mutation frequency in malignant pleural effusion of lung adenocarcinoma. Cell Oncol (Dordr) 2012; 35(3):189–96.

34. Koenigkam Santos M, Muley T, Warth A, de Paula WD, Lederlin M, Schnabel PA, et al: Morphological computed tomography features of surgically resectable pulmonary squamous cell carcinomas: Impact on prognosis and comparison with adenocarcinomas. Eur J Radiol 2014; 83(7):1275–81. https://doi.org/10.1016/j.ejrad.2014.04.019 PMID: 24840477

35. Guo H, Wan Y, Tian G, Liu Q, Kang Y, Li Y, et al: EGFR mutations predict a favorable outcome for malignant pleural effusion of lung adenocarcinoma with Tarceva therapy. Oncol Rep 2012; 27(3):680–90. https://doi.org/10.3892/or.2011.1559 PMID: 22134479

36. Guo H, Xing Y, Liu R, Chen S, Bian X, Wang F, et al: -216G/T (rs712829), a functional variant of the EGFR promoter, is associated with the pleural metastasis of lung adenocarcinoma. Oncol Lett 2013; 6 (3):683–688. https://doi.org/10.3892/ol.2013.1442 PMID: 24137392

37. Enomoto Y, Takada K, Hagiwara E, Kojima E. Distinct features of distant metastasis and lymph node stage in lung adenocarcinoma patients with epidermal growth factor receptor gene mutations. Respir Investig 2013; 51(3):153–7. https://doi.org/10.1016/j.resinv.2013.02.004 PMID: 23978641

38. Shin DY, Na II, Kim CH, Park S, Baek H, Yang SH. EGFR mutation and brain metastasis in pulmonary adenocarcinomas. J Thorac Oncol 2014; 9(2):195–9. https://doi.org/10.1097/JTO.0000000000000696 PMID: 24419416
41. Laack E, Simon R, Regier M, Andritzky B, Tennstedt P, Habermann C, et al: Miliary never-smoking adenocarcinoma of the lung: strong association with epidermal growth factor receptor exon 19 deletion. J Thorac Oncol 2011; 6(1):199–202. https://doi.org/10.1097/JTO.0b013e3181fb7c7f1 PMID: 21178715

42. De Luca A, Carotenuto A, Rachiglio A, Gallo M, Maiello MR, Aldinucci D, et al: The role of the EGFR signaling in tumor microenvironment. J Cell Physiol 2008; 214:559–67. https://doi.org/10.1002/jcp.21260 PMID: 17894407

43. J. C.-H. Yang, L. V. Sequist, M. Schuler, T. Mok, N. Yamamoto, K. O’Byrne, et al: Overall survival in patients with advanced NSCLC harboring common (Del19/L858R) EGFR mutations: analysis of two large, open-label phase III studies of afatinib vs chemotherapy, LUX-Lung 3 and LUX-Lung 6. Presented at the American society of clinical oncology meeting, Chicago, Illinois, May 30- Jun 3, 2014.

44. Choi CM, Kim MY, Lee JC, Kim HJ. Advanced lung adenocarcinoma harboring a mutation of the epidermal growth factor receptor: CT findings after tyrosine kinase inhibitor therapy. Radiology 2014; 270 (2):574–82. https://doi.org/10.1148/radiol.13121824 PMID: 24086072

45. Jackman DM, Yeap BY, Sequist LV, Lindeman N, Holmes AJ, Joshi VA, et al. Exon 19 deletion mutations of epidermal growth factor receptor are associated with prolonged survival in non-small cell lung cancer patients treated with gefitinib or erlotinib. Clin Cancer Res. 2006; 12:3908–14. https://doi.org/10.1158/1078-0432.CCR-06-0462 PMID: 16818686