Supporting Information

One-Pot Copper-Catalyzed Three-Component Reaction: a Modular Approach to Functionalized 2-Quinolones

Ah Reum Kim and Hee Nam Lim*

Table of Contents

1. Preparation of starting materials ...S2
2. Optimization table for the Cu-salts...S2
3. Optimization tables for the ketone substrate..S3
3. 1H-NMR, 13C-NMR and 19F-NMR..S4-51
1. Preparation of starting materials

2-Bromobenzaldehydes 1a-b, 1e-k, 1o, 1p and 1r are purchased from Alfa-Aesar (AA) and Tokyo Chemical Industry (TCI) co., Ltd and 1e-lb, 1lb-mb and 1q1 are prepared by the known methods. The ketones 1s and 1u are purchased from the AA and the TCI, respectively. The ketones 1t, 4a-4c and 1w4c are prepared. Sodium sulfinates 2b and 2f are available from the TCI, and 2d, 2e and 2g-i are purchased from the Fluorochem. The sodium sulfinates 2c and 2j-n are prepared by the known methods.5

2. Optimization table for the Cu-salts

![Chemical structure](image)

Entry	Copper catalyst	Yielda
1	Cu powder (60-80nm)	55%
2	Cu(dendritic)	42%
3	Cu(25nm)	40%
4	CuI	51%
5	CuBr	42%
6	CuCl	40%
7	Cu(OAc)\textsubscript{2}	46%
8	Cu(O\textsubscript{2})\textsubscript{2}	32%
9	CuO\textsubscript{2}	12%

adetermined by 1H NMR using 1,3,5-trimethoxybenzene as the internal standard

1 (a) L. R. Marcin, A. C. Good, Y.-J. Wu, D. S. Zuev, R. E. Olson and N. Wang (Bristol-Myers Squibb Co., USA), Preparation of amino acid-containing macrocycles as inhibitors of β–amyloid production, US Patent 20080194535, August 14, 2008; (b) B. H. Ahn, I. Y. Lee and H. N. Lim, Org. Biomol. Chem., 2018, 16, 7851.

2 (a) N. M. R. McNeil, D. J. Press, D. M. Mayder, P. Garnica, L. M. Doyle and T. G. Back, J. Org. Chem., 2016, 81, 7884; (b) J. Lin, W. Zhang, N. Jiang, Z. Niu, K. Bao, L. Zhang, D. Liu, C. Pan and X. Yao, J. Nat. Prod., 2008, 71, 1938.

3 (a) S. Song, X. Sun, X. Li, Y. Yuan and N. Jiao, Org. Lett., 2015, 17, 2886; (b) E. Baiceanu, K.-A. Nguyen, L. Gonzalez-Lobato, R. Nasr, H. Baubichon-Cortay, F. Loghin, M. L. Borgne, L. Chow, A. Boumendjel, M. Peuchmaur and P. Falson, Eur. J. Med. Chem., 2016, 122, 408.

4 (a) B. N. Hemric, K. Shen and Q. Wang, J. Am. Chem. Soc., 2016, 138, 5813; (b) T. M. E. Dine, W. Erb, Y. Berhault, J. Rouden and J. Blanchet, J. Org. Chem., 2015, 80, 4532; (c) S. L. MacNeil, M. Gray, D. G. Gusev, L. E. Briggs and V. Snieckus, J. Org. Chem., 2008, 73, 9710.

5 (a) A. U. Meyer, K. Straková, T. Slanina and B. König, Chem. Eur. J., 2016, 22, 8694; (b) T. Markovic, B. N. Rocke, D. C. Blakemore, V. Mascetti and M. C. Willis, Org. Lett., 2017, 19, 6033; (c) G. Bogonda, D. V. Patil, H. Y. Kim and K. Oh, Org. Lett., 2019, 21, 3774.
3. Optimization tables for the ketone substrate

![Chemical structures and reaction conditions]

Table S1. Additive effect

Desiccant (1 equiv)	Yield^a
None	4%
MgSO₄	4%
Na₂SO₄	trace
Al₂O₃	5%
NaCl	5%
CaCl₂	2%
Silica gel (100 wt%)	trace
Molecular sieve 4Å (100 wt%)	9%
CaO	trace
Ca(OH)₂	20%

Table S2. Determination of Ca(OH)₂ equivalent

Equivalent of Ca(OH)₂	Yield^a
1.0 equiv (0.50 mmol)	20%
1.5 equiv (0.75 mmol)	29%
2.0 equiv (1.00 mmol)	56%
2.5 equiv (1.25 mmol)	**59%**
3.0 equiv (1.50 mmol)	58%

^adetermined by 1H NMR using 1,3,5-trimethoxybenzene as the internal standard
3. 1H-NMR, 13C-NMR and 19F-NMR
4ga
S49
