Assembly of Respiratory Complexes I, III, and IV into NADH Oxidase Supercomplex Stabilizes Complex I in Paracoccus denitrificans*

Received for publication, August 27, 2003, and in revised form, October 29, 2003
Published, JBC Papers in Press, November 10, 2003, DOI 10.1074/jbc.M309505200

Anke Stroh‡, Oliver Anderka§, Kathy Pfeiffer‡, Takao Yagi‡, Moshe Finell, Bernd Ludwig§, and Hermann Schägger**

From the ‡Zentrum der Biologischen Chemie, Universitätshäaklinikum Frankfurt, D-60590 Frankfurt, Germany, the §Institut für Biochemie, Universität Frankfurt, D-60439 Frankfurt, Germany, the ¶Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, and the [Wiki Drug Discovery Technology Center, Department of Pharmacy, University of Helsinki, FIN-00014 Helsinki, Finland

Stable supercomplexes of bacterial respiratory chain complexes III (ubiquinol:cytochrome c oxidoreductase) and IV (cytochrome c oxidase) have been isolated as early as 1985 (Berry, E. A., and Trumpower, B. L. (1985) J. Biol. Chem. 260, 2458–2467). However, these assemblies did not comprise complex I (NADH:ubiquinone oxidoreductase). Using the mild detergent digitonin for solubilization of Paracoccus denitrificans membranes we could isolate NADH oxidase, assembled from complexes I, III, and IV in a 1:4:4 stoichiometry. This is the first chromatographic isolation of a complete “respirasome.” Inactivation of the gene for tightly bound cytochrome c₅₅₂ did not prevent formation of this supercomplex, indicating that this electron carrier protein is not essential for structurally linking complexes III and IV. Complex I activity was also found in the membranes of mutant strains lacking complexes III or IV. However, no assembled complex I but only dissociated subunits were observed following the same protocols used for electrophoretic separation or chromatographic isolation of the supercomplex from the wild-type strain. This indicates that the P. denitrificans complex I is stabilized by assembly into the NADH oxidase supercomplex. In addition to substrate channeling, structural stabilization of a membrane protein complex thus appears as one of the major functions of respiratory chain supercomplexes.

With mitochondria, eukaryotic cells possess specialized organelles dedicated mainly to oxidative phosphorylation. Inner mitochondrial membranes of higher eukaryotes like mammalia are highly enriched for the four respiratory chain complexes, NADH:ubiquinone oxidoreductase (complex I), succinate: ubiquinone oxidoreductase (complex II), ubiquinol:cytochrome c oxidoreductase (complex III), and cytochrome c oxidase (complex IV), which generate an electrochemical potential across this membrane. FₐFₒ-ATP synthase (complex V) uses this electrochemical proton gradient to synthesize ATP (1).

Bacterial respiratory complexes are located in the cytoplasmic membrane. Paracoccus denitrificans, a Gram-negative soil bacterium, uses an electron chain for aerobic growth that comprises a full complement of mitochondrial respiratory complexes I–IV plus ATP synthase. In context of the endosymbiotic theory (2), proteobacteria like P. denitrificans are therefore regarded as likely ancestors of present day mitochondria (3, 4). In addition to its “canonical” respiratory chain, respiration in P. denitrificans is characterized by many branching points. Alternative oxidases (bo₃, quinol oxidase and cbb₃ cytochrome oxidase) allow growth under strongly varying oxygen concentrations. Additionally, Paracoccus may use a variety of electron donors (e.g. hydrogen) or nitrate as terminal electron acceptor, which leads to high environmental flexibility (5).

Bacterial complexes usually comprise a substantially lower number of subunits, e.g. 14, 3, and 4 subunits for P. denitrificans complexes I, III, and IV (6–9), respectively, compared with 46, 11, and 13 subunits for the corresponding bovine complexes (10–13). Association of respiratory chain complexes to supercomplexes was observed in mitochondrial (14, 15) and bacterial respiratory chains (16–21). Although stable interactions of bacterial complexes III and IV to form quinol oxidases have been reported, participation of complex I in supercomplex formation escaped detection so far. This may largely be due to a pronounced detergent sensitivity of complex I from various bacteria. So far, complex I could only be isolated from four bacteria: Escherichia coli (22), Rhodothermus marinus (23), Klebsiella pneumoniae (24), and Aquifex aeolicus (25).

We found that digitonin can retain a supramolecular assembly of NADH oxidase from P. denitrificans and isolated for the first time chromatographically a complete “respirasome” comprising complexes I, III, and IV in a 1:4:4 stoichiometry that is suitable for detailed structural and functional analyses.

EXPERIMENTAL PROCEDURES

P. denitrificans Strains—The parental strain used in this study was Pd1222 (DSM413 derivative, Rif', Sp', enhanced conjugation frequencies, m⁻¹; Ref. 26). In strain MK6 (Pd1222, Δjbc::Km'; Refs. 27 and 28), the jbc operon (coding for the three-subunit complex III) was replaced by a kanamycin resistance cassette introduced via homologous recombination. Both alleles of cytochrome c oxidase subunit I are replaced by kanamycin and tetracycline resistance genes in strain MB31 (Pd1222, ΔactaI::Km'; ΔactaII::Te'; Ref. 29). In strain AT110 (Pd1225, cycM::Km'; Refs. 30 and 31), the cycM gene coding for cytochrome c₅₅₂ is inactivated by insertion of the kanamycin resistance gene. All strains were grown on succinate or methylamine medium (32, 33).

Isolation of Membranes—The cells were suspended in 100 mM potassium phosphate, pH 8.0, 1 mM EDTA, 100 μM Pefabloc SC, and broken using a Manton-Gaulin Press (400 bar, 2 × 10 min). After centrifugation (12,000 × g, overnight), the reddish brown membrane portion of the

* This work was supported by the Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 472, Projects P8 (to B. L.) and P11 (to H. S.), by grants from Fonds der Chemischen Industrie, and by United States Public Health Service Grant R01GM33712 (to T. Y.). The costs of publication of this article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

** To whom correspondence should be addressed: Zentrum der Biologischen Chemie, Universitätshäaklinikum Frankfurt, Theodor-Stern-Kai 7, Haus 25 B, D-60590 Frankfurt, Germany. Tel.: 49-69-6301-6927; Fax: 49-69-6301-6970; E-mail: schagger@zbc.kgu.de.
FIG. 1. Separation of respiratory chain complexes and supercomplexes by BN-PAGE. A, P. denitrificans membranes were solubilized using a digitonin/protein ratio of 2/g (g), and the resulting supernatant was centrifuged at 140,000 × g, 1 h. The supernatant was then centrifuged at 140,000 × g, 1 h. B, Western blot after two-dimensional resolution by Tricine-SDS-PAGE using a 10% acrylamide gel. A mixture of antibodies against subunits of complex III (cyt. c2, cyt. b, cyt. c552, cyt. c550), complex IV (Cox I, subunit I; Cox II, subunit 2), and against cyt. c952 (cyt. c550) were used to localize individual respiratory chain complexes and supercomplexes. Black arrows mark subunits cyt. c552 and cyt. c550 of the minor amounts of dimeric complex III. Nonspecific interaction of the antibody mixture with the α and β subunits of ATP synthase is indicated by arrowheads on a white background. For immunodetection of complex I in band a see Fig. 5A.

Isolation of P. denitrificans NADH Oxidase—The membranes (200 mg of protein) were suspended in 150 mM NaCl, 2 mM 6-aminohexanoic acid, 1 mM EDTA, 150 mM imidazole/HCl, pH 7.0 (8 ml), and solubilized by adding 3 g of digitonin/g protein (6 ml from a 10% digitonin solution). Following 30 min of ultracentrifugation at 100,000 × g, 150 mM sodium phosphate, pH 7.2, was added to the supernatant before application to a hydroxyapatite column (40 ml; equilibrated with 20 mM sodium phosphate, pH 7.2; run at room temperature). Following washing with 2 column volumes of 0.1% digitonin, 150 mM sodium phosphate, pH 7.2, individual respiratory chain complexes and supercomplexes were eluted by 0.05% Triton X-100, 150 mM sodium phosphate, pH 7.2. The eluate was concentrated approximately 5-fold to obtain a volume of 2.5 ml (Vivaspin 100,000 MWCO PES) and applied to a Sepharose Cl-6B column (80 ml; length, 1 meter; equilibrated with 0.05% digitonin, 100 mM NaCl, 5 mM 6-aminohexanoic acid, 1 mM EDTA, 20 mM Na-MOPS, pH 7.3; run at 4 °C). The digitonin buffer was stored at least 24 h before use at 4 °C to precipitate insoluble material (approximately 30% of the added digitonin).

Electrophoretic and Spectrometric Techniques—Blue native (BN)1 PAGE, two-dimensional SDS-PAGE, and densitometric quantification were performed as described recently (34, 35). Fluorometric flavin mononucleotide determination followed the protocols of Koziot (38) and Hatefi and Stempel (37). Heme contents were determined by pyridine hemochrome analysis (38). For determination of cytochrome contents of native proteins, redox difference spectra (dithionite-reduced minus ferricyanide-oxidized) were recorded using the following absorption coefficients: c-type cytochromes (cyt. c) of complex III and cytochrome c552, ε550–540 nm = 19.1 nm−1 cm−1; cytochrome b of complex III (containing hemes b2 and b3), ε562–577 nm = 57 nm−1 cm−1; cytochrome a, ε605–630 nm = 23.4 nm−1 cm−1. Enzymatic Analyses—All of the enzymatic assays were performed at 30 °C. Decylquinazoline-sensitive NADH-decylbenzoquinone (DBQ) oxidoreductase activity of complex I was measured in 50 mM Tris/HCl, pH 7.4, 200 μM NADH, 60 μM decylbenzoquinone, 2 mM KCN (εNADH:DBQ-oxidoreductase was determined in 250 mM sucrose, 0.2 mM EDTA, 2 mM NaCl, 75 mM Na-HEPES, pH 8.0, 200 μM decyano-NADH, 2 mM hexamino-ruthenium, measuring the oxidation of decyano-NADH. Thenonylfluoroacetone-sensitive succinate: dichloroindophenol (DCIP) oxidoreductase activity of complex II was measured in 50 mM sodium phosphate, 1 mM EDTA, 2 mM NaCl, 20 mM sodium succinate, 0.002% DCIP, pH 7.0 (εDCIP:610–750 nm = 20.5 nm−1 cm−1). Horse heart cyt. c and a buffer containing 150 mM NaCl, 75 mM imidazole/HCl, pH 7.0, was used for the following assays. DBH:cytochrome c oxidoreductase activity of complex III was measured in buffer supplemented with 2 mM KCN, 75 μM DBH, 50 μM cyt. c, by the antimycin-sensitive reduction of cyt. c (εc550–540 nm = 19.1 nm−1 cm−1). Cyt. c oxidase activity of complex IV was measured in buffer supplemented with 50 μM reduced cyt. c by the cyanide-sensitive oxidation of cyt. c. NADH:cytochrome c oxidoreductase, the coupled activities of complexes I and III, was measured in buffer supplemented with 2 mM KCN, 200 μM NADH, 50 μM cyt. c, by the antimycin-sensitive reduction of cyt. c. DBH oxidase activity, the coupled activities of complexes III and IV, was determined in buffer supplemented with 50 μM cyt. c and 70 μM DBH by the cyanide-sensitive oxidation of DBH (εDBH:620–630 nm = 4.2 nm−1 cm−1). NADH oxidase activity (complexes I, III, and IV) was measured by the cyanide-sensitive oxidation of 200 μM NADH.
RESULTS AND DISCUSSION

Identification and Purification of Respiratory Chain Supercomplexes—P. denitrificans membranes were solubilized by digitonin and separated by BN-PAGE. A major band representing monomeric complex V (M_{app} = 530 kDa) and several additional bands with apparent masses in the range 460–1900 kDa were detected (Fig. 1A, bands a–e). Assignment of these bands was possible after SDS-PAGE in a second dimension and immunological detection (Fig. 1B). Band d contained cytochromes c₁ and c_b and the Rieske iron sulfur protein (separate identification not shown), suggesting that complex III was fully assembled. Some cytochrome c₅₅₂ was bound in addition, indicating that cytochrome c₅₅₂ can bind not only to complex IV (described below) but also to complex III. Band e was identified as a subcomplex of complex III missing the Rieske iron sulfur protein and cytochrome c₅₅₂. The apparent masses of bands d and e from BN-PAGE suggest that fully assembled complex III and also the subcomplex are tetrameric in P. denitrificans. Minor amounts of dimeric com-

Band	Composition	M_{app}	M_{calc}	Remarks
a	I₁III₄IV₄	1900	1548	NADH oxidase supercomplex contains about two copies of cytochrome c₅₅₂
b	III₄IV₄	1200	984	
c	III₄IV₂	900	722	
d	III₄	600	460	Tetrameric complex III containing Rieske iron sulfur protein and traces of cytochrome c₅₅₂
e	III₄	460	379	Tetrameric complex III lacking Rieske iron sulfur protein and cytochrome c₅₅₂

Fig. 2. Typical elution profiles for the hydroxylapatite chromatography and gel filtration steps in NADH oxidase supercomplex isolation. **A**, left panel, hydroxylapatite chromatography. More than 70% of total protein was found in the flow-through fractions 1–5. Almost all respiratory chain activity was restricted to fractions 11 and 12. **A**, right panel, BN-PAGE of the corresponding fractions indicated that ATP synthase (complex V) was removed with the pass through, and elution fractions contained apparently undisturbed assemblies of respiratory chain complexes. **B**, left panel, gel filtration using Sepharose CL-6B largely separated complex II activity from complex I and III activities. **B**, right panel, BN-PAGE indicated that the first fractions essentially contained holo NADH oxidase (supercomplex a) with little contamination by complex I-free supercomplexes b and c. Dotted line, protein (mg/ml); X, NADH:DBQ oxidoreductase (complex I); ▲, succinate:DCIP oxidoreductase (complex II); ○, DBH:cytochrome c oxidoreductase (complex III); ■, cytochrome c oxidase (complex IV).
NADH Oxidase Supercomplex Stabilizes Complex I

Table II
Purification of NADH oxidase supercomplex from P. denitrificans

	Membranes	Supernatant	Hydroxylapatite	Sepharose fractions 4–6
Protein mg (%)	202 (100)	84 (42)	23 (11)	4 (2)
NADH:DBQ oxidoreductase	83 (100)	87 (106)	38 (47)	8.7 (10)
μmol min⁻¹ mg⁻¹	0.41	1.04	1.86	2.18
DBH:cytochrome c oxidoreductase	101 (100)	76 (76)	64 (64)	16 (16)
μmol min⁻¹ (%)	0.50	0.91	2.80	3.99
nmol cytochrome b (%)	25.1 (100)	20.5 (82)	12.9 (51)	2.8 (11)
μmol cytochrome b/g	0.12	0.24	0.56	0.71
Cytochrome c oxidase	349 (100)	272 (78)	176 (50)	30.5 (9)
μmol min⁻¹ (%)	1.73	3.24	7.63	7.82
nmol cytochrome aa₃ (%)	34.8 (100)	27.8 (80)	20.9 (80)	3.14 (9)
μmol cytochrome aa₃/g	0.17	0.33	0.90	0.80
Succinate:DCIP oxidoreductase	30.7 (100)	31.1 (101)	8.7 (28)	0 (0)
μmol min⁻¹ (%)	0.15	0.37	0.38	0
μmol min⁻¹ mg⁻¹	2.1 μmol/g	based on a stoichiometry of 4 mol/mol supercomplex for both cytochromes and the calculated mass (1.55 MDa) or the apparent mass from BN-PAGE (1.9 MDa), respectively. This substantial deviation can only be partly explained by protein impurities, because the subunit composition of NADH oxidase isolated chromatographically or by BN-PAGE was very similar, except for some additional bands present in the chromatographic preparation (Fig. 3). However, it seems more likely that the protein elution profile of Fig. 2B reflected an unknown non-protein contaminant most prominent in fractions 5–9, which interfered with the Lowry protein determination method. Digitonin and lipids can be excluded as this unknown non-protein contaminant, because digitonin and extracted Paracoccus lipids were tested not to interfere with the Lowry method. However, less than 1% digitonin in the sample does considerably interfere with the Biuret and Bradford methods, and more than 1% digitonin also interferes with the BCA method.		

Ratio of Complexes in NADH Oxidase Supercomplex—The ratios of complexes were determined by fluorometric quantification of flavin mononucleotide as a marker for complex I and from pyridine hemochrome spectra (Table III). Calculation of the ratio is based on ratios of one flavin mononucleotide/complex I, two hemes a/complex IV, two hemes b, and one c-type heme (cytochrome c₅₅₂/complex III (50). Cytochrome c₅₅₂ concentration was calculated from the total heme c content (cytochromes c₅₅₂ plus c₅₅₃) considering that cytochrome c₅₅₂ concentration should equal the cytochrome b concentration, which is half the heme b concentration. Complexes I, III, and IV were found to be present in a 1:4:4 ratio. Cytochrome c₅₅₂ was substoichiometric to complex IV (approximately 1.6 ± 0.8/4). Assuming an initial 1:1 ratio, this would indicate that 40–80% of total cytochrome c₅₅₂ was lost during isolation.

Enzymatic Activities of Isolated NADH Oxidase Supercomplex—Turnover number of cytochrome c oxidase was 160 ± 15 s⁻¹ (n = 3) in isolated NADH oxidase, compared with 168 ± 15 s⁻¹ with digitonin-solubilized membranes assuming that all spectral absorption at 603 nm in the membranes used was due to cytochrome aa₃. These matching data seemed to indicate that alternative enzymes like bg₃ quinol oxidase and cbb₃ oxidase were not present in considerable amounts in the aerobically grown cells used. Turnover number of DBH:cytochrome c oxidoreductase (complex III) was 95 ± 14 s⁻¹ (n = 3) in isolated NADH oxidase complex. Spectral absorption of complex III at approximately 560 nm in membranes may be superimposed by several other b-type cytochromes, e.g. of succinate dehydrogenase (51). Therefore, complex III activity in membranes cannot be quantified reliably.
because of the 4-fold excess of the corresponding enzymes to complex I (see turnover numbers above and Table III). NADH: cytochrome c oxidoreductase (complexes I and III) activity of the same protein sample (1.51 ± 0.01 μmol min⁻¹ mg⁻¹) indicated almost optimum electron transfer from complex I to complex III, in agreement with high endogenous phospholipid and quinone contents required for electron transfer. Based on the Lowry protein determination, the phospholipid content decreased from 980 ± 80 nmol/mg in membranes to 290 ± 10 nmol/mg in isolated NADH oxidase, whereas the ubiquinone content increased from 2.7 ± 0.3 nmol/mg in membranes to 6.7 ± 0.8 nmol/mg in isolated NADH oxidase. The 8-fold increase of the quinone/phospholipid ratio seems to indicate specific enrichment of ubiquinone in the NADH oxidase supercomplex. A ubiquinone/supercomplex ratio of 10 mol/mol was calculated based on the Lowry protein determination. Considering a potential interference of a non-protein contaminant with the Lowry method as described above, the ratio can approach a value of 30 mol/mol.

However, specific NADH oxidase activity (complexes I, III, and IV) was reduced by 74% to 0.53 ± 0.07 μmol min⁻¹ mg⁻¹. Similarly, DBH oxidase (complexes III and IV) was reduced by 70% to 1.19 ± 0.01 μmol min⁻¹ mg⁻¹ compared with 4.07 ± 0.12 μmol min⁻¹ mg⁻¹ for DBH:cytochrome c oxidoreductase (complex III). This seems to indicate that the transfer of electrons between complexes III and IV was impeded, presumably by partial loss of cytochrome c₅₅₂, as described above.

Assembly into NADH Oxidase Supercomplex Stabilizes Complex I—Digitonin is one of the mildest detergents known. However, it was not clear whether retention of the complex I integrity in isolated NADH oxidase was due to the particular detergent properties or to an additional stabilizing role of supercomplex formation. To address this question, we compared respiratory chain activities in digitonin-solubilized membranes and the stability of complex I from wild-type and mutant strains during chromatography and BN-PAGE.

Complex III activity was not adversely affected by the loss of cytochrome c₅₅₂ or complex IV in the corresponding mutant strains (Fig. 4). However, the loss of complex III in the complex III mutant strain led to considerable reduction of complex I and IV activities, indicating that complex III is required for assembly/stability of both complexes. A moderate reduction of complexes I and IV was also observed in the mutant strain lacking cytochrome c₅₅₂, indicating that also cytochrome c₅₅₂ favors assembly/stability of the two complexes.

Complex I activity was substantially lower in all mutant strains compared with wild type, which might be taken as a hint for impeded assembly or stability of complex I in these membranes. Although all complex I activities were stable for 60 min after solubilization using low digitonin/protein ratios, reduced stability of complex I in the mutant strains lacking complexes III or IV became apparent from the subsequent analyses.

Attempts to isolate complex I from mutant strains lacking complexes III or IV led to an almost complete loss of NADH: DBQ oxidoreductase activity when the same isolation protocol as for parental strain was applied (results not shown). Even omission of the hydroxylapatite step that requires use of low Triton X-100 concentrations for protein elution and direct gel filtration using digitonin was not successful. These findings seem to indicate that complex I from these mutant strains is sufficiently stable at the low digitonin/lipid ratios used for solubilization, but stability is reduced under the conditions of chromatography. Because the presence of only one of the two complexes in the corresponding mutant strains could not protect complex I from inactivation during chromatography, we
conclude that complex I requires assembly into a complete NADH oxidase complex for optimal stability.

Reduced stability of complex I in these mutant strains was also apparent from the complete dissociation of complex I under the conditions of BN-PAGE. Following two-dimensional SDS-PAGE and electroblotting, a mixture of specific antibodies was used to identify the location of assembled complexes and dissociated subunits. Using parental strain Pd1222 (Fig. 5A), the antibodies identified supercomplexes a, b, and c and individual complexes III and IV, but intact individual complex I was not present. Dissociated complex I subunits NQO 3 and 1 were found at the running front of BN-PAGE, i.e. at the right-hand side of the two-dimensional gel. At present we cannot discriminate between two possibilities. The dissociated subunits might either originate from individual complex I if larger fractions of it were in equilibrium with supercomplexes b and c. On the other hand, almost all complex I might initially assemble into NADH oxidase supercomplex, which partially disintegrates during BN-PAGE.

Using the complex III deletion strain (Fig. 5C), individual complex IV was detected but no assembled complex I. This seems to indicate that all complex I that was functional after solubilization by digitonin dissociated under the conditions of BN-PAGE. Analysis of the complex IV deletion strain (Fig. 5D) led to a similar result, except that stable tetrameric complex III was identified.

The proteins involved in the interaction of complexes III and IV are not known. Tightly bound cytochrome c\textsubscript{552} that possesses a transmembrane anchor (31) initially was regarded as a candidate linker protein, because it binds preferentially to complex IV, and minor amounts were also found associated with complex III. Analyzing the strain carrying an inactivated cycM gene coding for cytochrome c\textsubscript{552} (Fig. 5B) indicated that this electron carrier was not essential for

	FMN	Heme a	Heme b	Heme c
Sample 1	0.16	1.18	1.20	0.90
Sample 2	0.20	1.42	1.62	0.89
Sample 3	0.13	1.04	1.00	0.90
Average	0.16 ± 0.03	1.21 ± 0.16	1.27 ± 0.26	0.9 ± 0.01

	Complex I	Complex IV	Complex III	Cytochrome c\textsubscript{1}	Cytochrome c\textsubscript{552}
Average	0.16 ± 0.03	0.61 ± 0.08	0.64 ± 0.13	0.64 ± 0.13	0.26 ± 0.13
Ratio	1.00	3.8 ± 0.5	4.0 ± 0.8	4.0 ± 0.8	1.6 ± 0.8

TABLE III

Determination of redox factor contents (nmol/mg) and respiratory complex stoichiometries in isolated NADH oxidase supercomplex

Cytochrome c\textsubscript{552} content was calculated from the total heme c content considering that cytochrome c\textsubscript{1} concentration equals the cytochrome b (complex III) concentration.

Fig. 4. Catalytic activities of digitonin-solubilized respiratory chain complexes from *P. denitrificans* parental and mutant strains. I, NADH:DBQ oxidoreductase activity of complex I; III, DBH:cytochrome c oxidoreductase activity of complex III; IV, cytochrome c oxidase activity of complex IV. WT, parental strain; Δc\textsubscript{552}, ΔcomplexIII, and ΔcomplexIV, mutant strains lacking cytochrome c\textsubscript{552}, complex III, and complex IV, respectively.
formation of supercomplexes a, b, and c. However, the amounts of supercomplexes were reduced, and the amounts of dissociated subunits of complex I were increased, indicating that cytochrome c\textsubscript{552} favors supercomplex formation and indirectly stabilizes complex I.

Summarizing, we conclude that detergent-labile complex I from \textit{P. denitrificans} is protected by supercomplex formation. Deletion of complexes III and IV causes decreased complex I contents in membranes, suggesting altered assembly/stability of complex I that is not assembled into a complete NADH oxidase supercomplex also in membranes. However, detergent-stable NADH dehydrogenases, like \textit{E. coli} complex I, do not require supercomplex formation. In fact, \textit{E. coli} does not possess complex III. Similarly, complexes I from the yeast \textit{Yarrowia lipolytica}, and the hyperthermophilic eubacterium \textit{A. aeolicus} are rather stable (25, 54), and no respiratory chain supercomplexes could be detected. Structural stabilization of a labile membrane protein complex seems to be a major function of supercomplex formation, in addition to substrate channeling, which is easily envisaged for the interaction of complexes III and IV in \textit{P. denitrificans} via cytochrome c\textsubscript{552} but also seems to play a role for the interaction of complexes I and III via ubiquinone, as recently reported for the bovine respirasome (55).

\begin{acknowledgments}
We are grateful to Andrea Duc\'ehe, Hans-Werner Muller, and Andrea Hermann for their excellent technical support. We also thank Drs. Volker Zickermann and Ulrich Brandt for many helpful discussions.
\end{acknowledgments}

\begin{thebibliography}{100}
\bibitem{1} Hatefi, Y. (1985) \textit{Annu. Rev. Biochem.} 54, 1015–1069
\bibitem{2} Margulis, L. (1970) \textit{Origin of Eukaryote Cells}, Yale University Press, New Haven, CT
\bibitem{3} John, P., and Whatley, F. R. (1975) \textit{Nature} 254, 495–498
\bibitem{4} Stouthamer, A. H. (1992) \textit{Antoni Leuvenhock} 61, 1–33
\bibitem{5} Baker, S., Ferguson, S. J., Ludwig, B., Page, M. D., Richter, O.-M. H., and van Spanning, R. J. M. (1998) \textit{Microbiol. Mol. Biol. Rev.} 62, 1046–1078
\bibitem{6} Xu, X., Matsumo-Yagi, A., and Yagi, T. (1993) \textit{Biochemistry} 32, 968–981
\bibitem{7} Yang, X., and Trumpower, B. L. (1994) \textit{J. Biol. Chem.} 269, 12282–12289
\bibitem{8} Kowalczyk, B., and Ludwig, B. (1987) \textit{J. Biol. Chem.} 262, 13805–13811
\bibitem{9} Raitio, M., Jalil, T., and Saraste, M. (1987) \textit{EMBO J.} 6, 2825–2833
\bibitem{10} Carroll, J., Fearnley, I. M., Shannon, R. J., Hirst, J., and Walker J. E. (2003) \textit{Mol. Cell Proteomics} 2, 117–138
\bibitem{11} Schagger, H., Brandt, U., Genicke, S., and von Jagow, G. (1995) \textit{Methods Enzymol.} 260, 82–96
\bibitem{12} Radenbach, B., Jarausch, J., Hartmann, R., and Merle, P. (1983) \textit{Anal. Biochem.} 129, 517–521
\bibitem{13} Yoshikawa, S., Shinzawa-Itoh, K., Nakashima, R., Yasno, R., Yamashita, E., Inoue, N., Yao, M., Fei, M. J., Liben, C. P., Mizushima, T., Yamaguchi, H., Tomizaki, T., and Tsukihara, T. (1998) \textit{Science} 280, 1723–1729
\bibitem{14} Schagger, H., and Pfeiffer, K. (2000) \textit{EMBO J.} 19, 1777–1783
\bibitem{15} Cruciat, C. M., Brunner, S., Saumann, F., Neupert, W., and Stuart, R. A. (2000) \textit{J. Biol. Chem.} 275, 18093–18096
\bibitem{16} Berry, E. A., and Trumpower, B. L. (1985) \textit{J. Biol. Chem.} 260, 2458–2467
\bibitem{17} Sone, N., Sekimachi, M., and Kutoh, E. (1987) \textit{J. Biol. Chem.} 262,
NADH Oxidase Supercomplex Stabilizes Complex I

5007