Effects of organic chromium sources on growth performance, lipid metabolism, antioxidant status, breast amino acid and fatty acid profiles in broilers

Miaomiao Han, a, b Yiqliang Chen, a Juntao Li, a Yuanyang Dong, b Zhiqiang Miao, b Jianhui Li b and Liying Zhang a*

Abstract

BACKGROUND: Trivalent chromium (Cr) is involved in carbohydrate, lipid, protein and nucleic acid metabolism in animals. This study evaluated the effects of different organic Cr forms with Cr methionine (CrMet), Cr picolinate (CrPic), Cr nicotinate (CrNic), and Cr yeast (Cr-yeast) at the level of 400 ∼ g kg −1 Cr, on growth performance, lipid metabolism, antioxidant status, breast amino acid and fatty acid profiles of broilers. In total, 540 one-day-old Arbor Acres male broilers were randomly assigned to five treatments with six replicates (18 broilers per replicate) until day 42.

RESULTS: The results showed growth performance was not affected by Cr sources. The Cr-yeast group had lower serum cortisol levels than the CrNic group (P < 0.05). Besides, Cr-yeast increased methionine and cysteine content in breast compared with the control group. Liver malondialdehyde content was lower in the CrMet group than the CrPic group on day 42 (P < 0.05). The n-3 polyunsaturated fatty acid (PUFA) values were increased, but the n-6/n-3 PUFA ratio was decreased in both CrMet and CrNic groups (P < 0.05). There were no significant effects on broilers’ serum antioxidant status and breast total essential amino acid content among all treatments.

CONCLUSIONS: Diets supplemented with organic Cr could regulate lipid metabolism, and improve amino acid and fatty acid profiles in broiler breast. Moreover, Cr-yeast was the most effective source in improving methionine and cysteine content, whereas CrMet was more effective than CrNic in increasing n-3 PUFA value and decreasing n-6/n-3 PUFA ratio in breast meat and effectively strengthened liver antioxidant ability than CrPic.

© 2020 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

Keywords: organic chromium; lipid metabolism; antioxidant status; fatty acid and amino acid profiles; broiler

INTRODUCTION

In recent years, the total consumption of chicken meat has increased with the rapid development of the poultry industry. 1,2 Poultry meat generally contains not only nutrients but also enriches health-promoting substances such as amino acids (AA) and n-3 polyunsaturated fatty acids (PUFA). 3,4 The characteristics of AA affect the umami and sweet flavor of meat. 5 The n-3 PUFA members are precursors of many inflammatory lipid mediators and have been shown to exert anti-inflammatory functions. 1,6 The n-6/n-3 PUFA ratio is a vital index for the pathogenesis of some diseases, such as cardiovascular diseases, cancer and autoimmune diseases. 7 Moreover, n-3 PUFA is an important factor contributing to selection of chicken meat by consumers. However, it is susceptible to quality deterioration and a short meat shelf life by lipid oxidation due to the lack of antioxidants in the meat. 8,9 The double bond in unsaturated fatty acids can be easily attacked by free radicals during the oxidation process, thus producing malondialdehyde (MDA) during lipid peroxidation. 9 In order to improve the antioxidant status, extend the meat shelf life and provide consumers with nutritious broiler meat, we added trivalent chromium (Cr) to broiler complete feed. Cr is also an antioxidant additive that may be used as a dietary supplement in a nutritional strategy to accumulate the desired PUFA, improve antioxidant capacity and finally strengthen broiler health.

© 2020 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
Trivalent Cr is involved in the metabolism of insulin by stimulating glucose consumption and increasing mRNA expression of the insulin receptor and glucose transporter-4. Cr may regulate lipid metabolism by decreasing the enzymatic activity of the fatty acid synthase or hormone-sensitive lipase. In addition, Cr is also vital for chondromodulin to stimulate the activity of the insulin receptor protein tyrosine kinase, which is required for stabilizing proteins and nucleic acid formation. Cr might act as an indirect antioxidant, by reducing high insulin levels and preventing glucose auto-oxidation. Supplementation of Cr in broilers has been shown to improve growth performance, regulate lipid metabolism, enhance immune status and alleviate heat or transport stress. However, other studies have reported opposite or even toxic results.

Organic Cr chelates, known as Cr methionine (CrMet), Cr picolinate (CrPic), Cr nicotinate (CrNic), Cr-yeast, Cr propionate and Cr histidinate, have higher bioavailability and lower toxicity than inorganic Cr forms. Chromium methionine (CrMet) has been reported to increase PUFA effects in animals. Each group containing six replicates (18 birds per replicate). The 540 one-day-old male broilers (Arbor Acres) were weighed and had ad libitum access to water and feed during the entire experimental period. The rearing room temperature was consistent at 35 °C (the first 3 days), after which the room temperature was gradually reduced by 3 °C each week until the temperature reached 24 °C. This temperature was maintained until the end of the experiment on day 42. The relative humidity of the rearing room was maintained between 50% and 70%. On days 7 and days 21, all broilers were inoculated with an inactivated Newcastle disease vaccine, and on days 14 and 28 broilers were given an inactivated infectious bursal disease vaccine.

MATERIALS AND METHODS

Animals

The protocol used in this experiment was approved by the Institutional Animal Care and Use Committee of China Agricultural University. Throughout the study, animal experiments were performed following the National Institutes of Health Guidelines for the care and use of experimental animals. This study was conducted on 540 one-day-old Arbor Acres male broilers (initial body weight 48.62 ± 0.72 g), which were purchased from Arbor Acres Poultry Breeding Co. (Beijing, China).

Material

Chromium methionine (CrMet, 9.54% Cr), chromium picolinate (CrPic, 12.20% Cr), chromium nicotinate (CrNic, 12.30% Cr) and chromium yeast (Cr-yeast, 0.07% Cr) were purchased from different Chinese companies (Harbin DeBon Xinjin Bio-tech Co. Ltd (Heilongjiang, China), Mianyang Sinyiml Chemical Co. Ltd (Sichuan, China) and Alltech Co. Ltd (Tianjin, China)).

Experimental protocol

The 540 one-day-old male broilers (Arbor Acres) were weighed and then randomly divided into five experimental groups, with each group containing six replicates (18 birds per replicate). The control group received corn–soybean meal basal diets. Experimental broilers were fed basal diets supplemented with 400 μg kg⁻¹ Cr in the form of CrNic, CrMet, CrPic and Cr-yeast, respectively. The organic Cr sources were premixed with corn flour and then added to each experimental diet. All experimental diets were fed in mash form. As shown in Table 1, the basal diet was a corn–soybean meal diet, which was formulated to meet or exceed the suggested nutrient requirements of broiler chickens.

Broilers were fed with starter diets (days 1–21) and grower diets (days 22–42). Broilers were reared in wire-floored cages, in a controlled rearing room environment. Broilers were exposed to 23 h lighting and had ad libitum access to water and feed during the entire experimental period. The rearing room temperature was consistent at 35 °C (the first 3 days), after which the room temperature was gradually reduced by 3 °C each week until the temperature reached 24 °C. This temperature was maintained until the end of the experiment on day 42. The relative humidity of the rearing room was maintained between 50% and 70%. On days 7 and days 21, all broilers were inoculated with an inactivated Newcastle disease vaccine, and on days 14 and 28 broilers were given an inactivated infectious bursal disease vaccine.

Growth performance

On days 21 and 42, the body weight (BW) and feed consumption of all broilers in all replicates were recorded after a 12 h fasting period. At the end of the experiment, each replicate was selected (30 birds per replicate) and dissected. The longissimus thoracis muscle, which is one of the most important muscle groups for meat production, was taken from the right side of the breast. The whole breast muscle was rapidly chilled and dissected, and the visceral fat was carefully removed to determine the fat content. The fat and protein contents were determined by the acid soxhlet method and the Kjeldahl method, respectively.

Table 1. Ingredients and chemical composition of the basal diet (as-fed basis, %)

Item	Starter phase (days 1–21)	Grower phase (days 22–42)
Ingredients		
Corn	60.13	61.53
Soybean meal	32.50	31.70
Fish meal	2.00	0.00
Soybean oil	1.50	3.00
Dicalcium phosphate	1.50	1.70
Limestone	1.34	1.15
α-Methionine (98%)	0.23	0.12
Sodium chloride	0.30	0.30
Vitamin–mineral premixa	0.50	0.50
Total	100.00	100.00
Nutrient levels b		
ME (MJ kg⁻¹)	12.60	13.23
Crude protein	21.54	20.02
Ether extract	3.90	6.10
Calcium	1.02	0.91
Total phosphorus	0.68	0.66
Lysine	1.21	1.09
Methionine + cysteine	0.93	0.79

* Provided per kilogram of diet: vitamin A 9000 IU; vitamin D₃ 3000 IU; vitamin E 24 IU; vitamin K₁ 1.8 mg; thiamine 2.0 mg; riboflavin 5.0 mg; pyridoxine 3.0 mg; cobalamin 0.1 mg; nicotinic acid 40 mg; pantothenic acid 15 mg; folic acid 1.0 mg; biotin 0.05 mg; choline chloride 500 mg; iron (from FeSO₄) 80 mg; copper (from CuSO₄) 20 mg; zinc (from ZnSO₄) 90 mg; manganese (from MnSO₄) 80 mg; iodine (from KI) 0.35 mg; selenium (from Na₂SeO₃) 0.30 mg.

b All nutrient levels were analyzed except metabolizable energy.

c ME, metabolizable energy.
period. The growth performance parameters of the chickens for the periods between days 1–21, 22–42 and 1–42 were calculated as average daily gain (ADG), average daily feed intake (ADFI) and feed conversion ratio (FCR) for each replicate.

Sample collection
One broiler that was visually approximated the average BW in each replicate was selected for blood and tissue sampling on days 21 and 42. Blood was collected into 5 mL anticoagulant-free vacutainer tubes. Serum was collected and stored at −80 °C for later analysis. Serum from days 21 and 42 was prepared to detect the lipid metabolites, related hormones and antioxidant parameters. Liver and breast meat samples from days 21 and 42 were used to detect antioxidant indices. The remaining breast meat sample from day 42 was freeze-dried for 72 h and used to analyze the amino acid and fatty acid profiles.

Dietary chemical composition analysis
The nutritional value of the experimental diets was analyzed according to the methods of the Association of Official Analytical Chemists29 for total phosphorus (995.11), calcium (927.02), ether extract (920.39) and crude protein (988.05). Methionine and lysine contents were determined using acid hydrolysis with 6 mol L−1 HCl (994.12) and measured using an amino acid analyzer (Hitachi L-8800, Tokyo, Japan). Performic acid oxidation was performed prior to acid hydrolysis to determine the methionine concentration. The Cr content in the diets was determined by inductively coupled plasma mass spectrometry (model 7500, Agilent Technologies, Inc., Palo Alto, CA, USA) according to the method reported by Lindemann et al.29

Assay of serum lipid metabolites and hormones
On days 21 and 42, the serum contents of total triglyceride (TG), high-density lipoprotein cholesterol (HDLc), low-density lipoprotein cholesterol (LDLc) and cholesterol (CHOL) were analyzed using an automatic biochemical analyzer (Hitachi 7160, Hitachi High-Tech Corp., Tokyo, Japan). The serum contents were quantified using commercial kits from Jiancheng Biochemical Reagent Co. (Nanjing, China) and the methodology followed the manufacturer’s instructions.

Assay of amino acid profiles in breast
The amino acid compositions in freeze-dried breast samples were hydrolyzed with 6 mol L−1 HCl at 110 °C for 24 h except for methionine, cysteine and tryptophan, and then detected by an amino acid analyzer (Hitachi L-8900). In addition, sulfur amino acids (such as methionine and cysteine) were analyzed as methionine sulfone and cysteic acid after cold performic acid oxidation overnight and hydrolyzed with 6.8 mol L−1 HCl at 110 °C for 24 h before being detected using an amino acid analyzer (Hitachi L-8800). Tryptophan content was hydrolyzed by lithium hydroxide at 110 °C for 22 h, and then detected using high-performance liquid chromatography (Agilent 1200 Series).

Assay of fatty acid profiles in breast
Freeze-dried breast samples (200 mg) were used to detect fatty acid composition by gas chromatography (Agilent 6890 Series) following the method described by Pritam et al.30 Fatty acids were expressed as a percentage of the sum of the identified fatty acids (% w/w).

Statistical analysis
All experimental data were analyzed by one-way analysis of variance (ANOVA) for a completely randomized design using the general linear model (GLM) procedure of SAS (v 8.0, Inst. Inc., Cary, NC, USA). Differences among all treatments were examined with Tukey’s post hoc test. The replicate served as the experimental unit. P < 0.05 was considered statistically significant.

RESULTS
Chromium analysis of diets
The analyzed Cr content in the starter and grower diets are presented in Table 2. The Cr content in the control diets during the starter and grower phases was 454.04 and 426.49 μg kg−1, respectively. The analyzed Cr concentrations in diets supplemented with 400 μg kg−1 Cr each in the form of CrNic, CrMet, CrPic and Cr-yeast were 837.65, 850.27, 836.30 and 872.82 μg kg−1 for the starter diets, and 840.43, 896.51, 827.98 and 859.76 μg kg−1 for the grower diets, respectively. The Cr content in diets supplemented with different organic Cr sources agreed with the expected values.

Growth performance
The effects of organic Cr sources on the growth performance of broilers are provided in Table 3. Diets supplemented with different forms of organic Cr did not affect the growth performance parameters of the broilers. In all experimental intervals (21 and 42 days), the ADG, ADFI and FCR were similar among all groups.

Table 2. Chromium content in experimental diets (μg kg−1)
Items

Starter phase
Grower phase
CrNic, chromium nicotinate; CrMet, chromium methionine; CrPic, chromium picolinate; Cr-yeast, chromium yeast.
The effects of the different organic Cr sources on broiler serum lipid metabolites and hormones are listed in Table 4. On day 21, diet supplemented with CrNic significantly increased serum HDLC content ($P < 0.05$) compared with the control group and the CrMet-treated group. There were no impacts on serum HDLC among CrNic, CrPic and Cr-yeast groups. Compared with the control group, diets supplemented with different organic Cr sources did not influence serum COR levels, whereas, compared with the CrNic group, the CrPic and Cr-yeast-treated diets significantly reduced serum COR levels ($P < 0.05$). Conversely, no differences in the serum COR levels were observed among the CrMet, CrPic and Cr-yeast groups. On day 42, compared with the control group, diets supplemented with CrPic and Cr-yeast significantly reduced serum COR levels ($P < 0.05$).

Table 3. Effects of organic chromium source on growth performance of broilers

Items	Control	CrNic	CrMet	CrPic	Cr-yeast	SEM	P-value
Body weight							
day 1 (g)	48.84	48.76	48.91	48.30	48.27	0.18	0.76
day 21 (kg)	0.70	0.71	0.70	0.71	0.71	0.01	0.97
day 42 (kg)	2.11	2.13	2.12	2.18	2.12	0.02	0.80
ADG (g)							
day 1–21	31.22	31.69	31.22	31.72	31.50	0.26	0.96
day 22–42	66.74	67.41	67.56	69.72	67.24	0.68	0.74
day 1–42	48.98	49.55	49.39	50.72	49.37	0.42	0.79
FCR							
day 1–21	1.36	1.36	1.29	1.32	1.36	0.01	0.27
day 22–42	1.79	1.82	1.81	1.83	1.80	0.01	0.87
day 1–42	1.65	1.67	1.66	1.68	1.66	0.01	0.91

CrNic, chromium nicotinate; CrMet, chromium methionine; CrPic, chromium picolinate; Cr-yeast, chromium yeast; SEM, standard error of means; ADG, average daily gain; ADFI, average daily feed intake; FCR, feed conversion ratio.

Table 4. Effects of organic chromium sources on serum metabolites and hormones of broilers

Items	Control	CrNic	CrMet	CrPic	Cr-yeast	SEM	P-value
Day 21							
TG (mmol L$^{-1}$)	0.30	0.31	0.25	0.28	0.29	0.01	0.42
HDLC (mmol L$^{-1}$)	2.26b	2.92a	2.31b	2.47ab	2.43ab	0.07	0.02
LDLC (mmol L$^{-1}$)	0.33	0.39	0.33	0.34	0.39	0.02	0.81
CHO (mmol L$^{-1}$)	4.64	5.18	4.60	5.03	4.78	0.09	0.14
INS (μIU ml$^{-1}$)	4.95	4.77	5.24	5.09	4.81	0.10	0.62
IGF-I (ng mL$^{-1}$)	134.66	140.51	170.48	134.13	129.72	4.85	0.06
COR (μg dL$^{-1}$)	2.82ab	2.94a	2.50ab	2.18b	2.20b	0.09	<0.01
Day 42							
TG (mmol L$^{-1}$)	0.27a	0.20ab	0.19ab	0.12b	0.13b	0.02	0.02
HDLC (mmol L$^{-1}$)	1.91a	1.55ab	1.49ab	1.02ab	0.86b	0.12	0.03
LDLC (mmol L$^{-1}$)	0.43	0.29	0.31	0.20	0.21	0.03	0.23
CHO (mmol L$^{-1}$)	4.00a	3.17ab	3.14ab	2.12ab	1.80b	0.24	0.02
INS (μg ml$^{-1}$)	5.33	6.61	5.97	6.19	6.79	0.20	0.15
IGF-I (ng mL$^{-1}$)	158.48	139.95	172.75	145.93	172.40	5.41	0.18
COR (μg dL$^{-1}$)	2.06ab	2.28a	2.17ab	2.05ab	1.90b	0.04	0.05

Values with different letters (a, b) in the same row differ significantly ($P < 0.05$).
CrNic, chromium nicotinate; CrMet, chromium methionine; CrPic, chromium picolinate; Cr-yeast, chromium yeast; SEM, standard error of means; TG, total triglyceride; HDLC, high-density lipoprotein cholesterol; LDLC, low-density lipoprotein cholesterol; CHO, cholesterol; INS, insulin; IGF-I, insulin-like growth factor I; COR, cortisol.

Lipid metabolism

The effects of the different organic Cr sources on broiler serum lipid metabolites and hormones are listed in Table 4. On day 21, diet supplemented with CrNic significantly increased serum HDLC content ($P < 0.05$) compared with the control group and the CrMet-treated group. There were no impacts on serum HDLC among CrNic, CrPic and Cr-yeast groups. Compared with the control group, diets supplemented with different organic Cr sources did not influence serum COR levels, whereas, compared with the CrNic group, the CrPic and Cr-yeast-treated diets significantly reduced serum COR levels ($P < 0.05$). Conversely, no differences in the serum COR levels were observed among the CrMet, CrPic and Cr-yeast groups. On day 42, compared with the control group, diets supplemented with CrPic and Cr-yeast significantly reduced serum COR levels ($P < 0.05$).
Effects of organic chromium sources on broilers www.soci.org
decreased serum TG content (P < 0.05) and diet supplemented with Cr-yeast significantly declined serum HDLC and CHO levels (P < 0.05), whereas there were no differences observed in TG, HDLC and CHO content in groups treated with different Cr sources. However, compared with broilers fed a diet supplemented with CrNic, broilers fed a Cr-yeast diet had lower COR levels (P < 0.05). In addition, there were no obvious differences in the levels of serum LDL, INS and IGF-I among all groups.

Antioxidant capacity
There were no differences in the antioxidant indices of T-AOC, GSH-Px and MDA levels in the serum and breast among all groups (Table 5). However, compared with the control treatment, diets supplemented with organic Cr did not affect the liver MDA levels on day 42, whereas MDA content was significantly decreased in broilers fed a diet supplemented with CrMet compared with CrPic (P < 0.05).

Amino acid profiles of broilers
Table 6 shows that methionine and cysteine levels in breast were significantly affected by Cr supplementation, unlike the content of the other amino acids in the breast. Compared with the control group, CrNic and Cr-yeast supplementation significantly increased methionine levels in the breast of broilers (P < 0.05), with Cr-yeast being superior to CrNic (P < 0.05). Besides, Cr-yeast supplementation significantly increased cysteine levels in the breast of broilers compared with the other four groups (P < 0.05). However, no differences were noted across all experimental groups in the total amount of essential amino acid (EAA).

Fatty acid profiles of breast
As shown in Table 7, there were no differences in the saturated fatty acid (SFA) contents except for C12:0 and C20:0 in the breast of broilers. Compared with the control group, diets supplemented with CrNic, CrMet and CrPic significantly decreased C12:0 content (P < 0.05). In addition, broilers fed CrPic-treated diet had lower C20:0 levels compared with the control group, CrMet group, and Cr-yeast group (P < 0.05). However, no differences were observed in the total amount of SFA, monounsaturated fatty acid (MUFA), PUFA, and n-6 PUFA among all groups. Compared with the control group, the PUFA/SFA ratios and total amount of n-3 PUFA were significantly increased with Cr supplementation, except for the Cr-yeast addition (P < 0.05). The CrNic- and CrMet-treated groups had significantly decreased ratios of n-6/n-3 PUFA compared with the control group (P < 0.05). Conversely, there were negligible differences across the various Cr-treated groups for PUFA/SFA ratios, n-3 PUFA content and n-6/n-3 PUFA ratios.

Table 5. Effects of organic chromium sources on antioxidant status in serum, liver and breast of broilers

Item	Control	CrNic	CrMet	CrPic	Cr-yeast	SEM	P-value
Day 21							
Serum							
GSH-Px (μM)	703.98	730.97	714.69	705.31	760.62	25.84	0.96
T-AOC (μM)	10.50	10.50	9.75	9.70	10.11	0.23	0.70
MDA (μM)	3.96	4.19	3.73	3.80	4.54	0.15	0.48
Liver							
GSH-Px (μM)	714.28	588.29	612.01	663.58	558.12	23.00	0.22
T-AOC (μM)	7.87	8.09	8.23	7.84	8.52	0.23	0.89
MDA (μM)	2.45	2.41	2.32	2.24	2.29	0.05	0.73
Breast							
GSH-Px (μM)	426.77	390.59	413.03	438.78	441.58	7.44	0.16
T-AOC (μM)	5.06	5.20	5.69	5.71	4.79	0.19	0.52
MDA (μM)	3.59	2.95	2.75	2.36	3.00	0.14	0.07
Day 42							
Serum							
GSH-Px (μM)	782.89	815.19	783.48	809.59	816.96	10.48	0.74
T-AOC (μM)	9.54	9.21	8.69	8.98	8.49	0.22	0.61
MDA (μM)	4.95	3.68	3.89	4.20	4.48	0.20	0.31
Liver							
GSH-Px (μM)	729.07	620.46	653.63	653.15	675.12	19.70	0.57
T-AOC (μM)	7.82	7.23	7.58	6.27	7.20	0.19	0.08
MDA (μM)	3.15ab	2.95ab	2.24b	3.47a	2.60ab	0.13	0.02
Breast							
GSH-Px (μM)	3.62	3.42	3.65	3.23	3.00	0.11	0.32
T-AOC (μM)	421.02	413.94	414.98	396.47	461.78	8.38	0.13
MDA (μM)	3.86	4.19	3.84	4.45	5.07	0.19	0.25

Values with different letters (a, b) in the same row differ significantly (P < 0.05). CrNic, chromium nicotinate; CrMet, chromium methionine; CrPic, chromium picolinate; Cr-yeast, chromium yeast; SEM, standard error of mean; GSH-Px, glutathione peroxidase; T-AOC, total antioxidant capacity; MDA, malondialdehyde.

J Sci Food Agric 2021; 101: 3917–3926 © 2020 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
DISCUSSION

In the present study, the broilers were reared under normal conditions without any obvious stress factors, similar to local industry conditions. The results indicated that supplementation with different Cr sources at a level of 400 μg kg⁻¹ in broiler diets had no impact on broiler growth performance (ADG, ADFI and FCR) throughout the experimental periods. This result is consistent with those of some previous studies. Zheng et al.³³ did not observe an effect of Cr supplementation on growth performance for Cobb 500 broilers fed diets supplemented with 400 or 2000 μg kg⁻¹ Cr in the forms of Cr propionate, Cr chloride (CrCl₃) or CrPic. In addition, Naghieh et al.³² reported no differences in body weight gain and FCR of broilers that received Cr-treated diets at the level of 600 μg kg⁻¹ Cr in the form of CrNic, CrMet or Cr-yeast. Sahin et al.³³ showed that growth performance was not affected in Ross 308 broilers fed diets containing 200 μg kg⁻¹ Cr in the form of CrPic or Cr histidinate. Sukombat et al.³⁴ demonstrated no differences in growth performance among treatments of broilers fed Cr-treated diets with 200–800 μg kg⁻¹ Cr in the form of Cr-yeast, CrPic and CrCl₃, respectively. Safwat et al.³⁵ also demonstrated no differences in Arbor Acres broiler growth performance in the CrMet group and Cr-yeast group under normal conditions. Under heat stress conditions, positive effects of Cr on broiler performance were reported in the form of CrPic and Cr histidinate, and the results of the study showed that Cr histidinate was superior to CrPic.³³ Toghyani et al.³⁶ found that Cr supplementation in the form of CrNic and CrCl₃ in broiler diets significantly increased feed intake and body mass. Conversely, FCR was not influenced by dietary Cr treatments under heat stress conditions.³³ The extensive differences in outcomes might be attributed to the Cr sources or temperature variations between the studies.

Chromium plays a pivotal role in carbohydrate and lipid metabolism since it has been effectively involved in improving glucose tolerance and alleviating insulin resistance.¹⁴,³⁷ The mechanisms through which Cr regulates glucose metabolism are not fully elucidated. It has been reported that Cr could enhance glucose transporter-4 translocation and insulin-stimulated glucose transport, which might be induced by decreasing circulating membrane cholesterol levels and thereby positively affecting membrane fluidity.³⁷,³⁸ In addition, Cr reportedly regulated lipid metabolism by decreasing the enzymatic activity of fatty acid synthase and hormone-sensitive lipase.¹⁵ Zheng et al.³¹ demonstrated that diets supplemented with Cr propionate, CrPic and CrCl₃ did not affect serum levels of TC, HDLC and LDL, but increased serum TG content in Cobb 500 broilers. Sahin et al.³³ indicated that diets supplemented with CrPic and Cr histidinate did not influence serum CHO levels under thermoneutral conditions, but decreased serum CHO levels under heat stress, with Cr histidinate proving to be superior to the CrPic group in Ross 308 broilers. Safwat et al.³⁵ reported that, compared with the control group, serum TG, CHO and low-density lipoprotein content was decreased and high-density lipoprotein content was elevated in broilers fed diets containing 500 and 1000 μg kg⁻¹ Cr in the form of CrMet or Cr-yeast, with no significant difference between the CrMet group and Cr-yeast group. In the present study, compared with the control group, the broilers fed CrNic-treated diets increased serum HDLC content on day 21, and the CrNic was more effective than CrMet. The broilers fed diets supplemented with CrPic and Cr-yeast decreased serum TG content on day 42, and

![Table 6. Effects of organic chromium sources on amino acid profiles in breast muscle of broilers (dry matter basis, %)](https://www.soci.org)
Cr-yeast decreased serum HDLC and CHO content on day 42, compared with the control group. Furthermore, on days 21 and 42, serum hormones of the INS and IGF-I contents were not affected by dietary supplementation with organic Cr. Therefore, the present study indicated that different organic Cr sources could effectively regulate lipid metabolism, but there were discrepancies in the lipid parameters. Chromium can facilitate the binding of insulin to membrane receptors and increase the insulin function. However, further research is required to explain the pathways by which Cr potentiates insulin function and contributes to lipid metabolism. In addition, cortisol, which releases from the adrenal gland, was induced by stress factors through the hypothalamus–pituitary–adrenal axis; hence cortisol is considered an indicator of stress conditions in broilers. In the present study, diets supplemented with Cr-yeast decreased broiler serum COR content on days 21 and 42, being obviously superior to the CrNic group, which confirmed that the diet supplemented with Cr-yeast could alleviate the detrimental effects of physiological stress. Cr-yeast was superior to other Cr forms in the reduction of serum COR content. This result could be related to the fact that the Cr-yeast is produced by culturing yeast cells in a trivalent Cr-containing medium. Yeast may have positive effects on the regulation of inflammatory processes.

The antioxidant status is critical for maintaining animal health and can be influenced by nutrients. Antioxidant capacity includes antioxidant enzyme activities, such as GSH-Px, and non-enzymatic compounds, such as GSH. GSH-Px helps to control the level of hydrogen peroxide and lipid peroxides produced during the redox reaction of metabolic activities, and then inhibits the formation of free radicals. In addition, T-AOC and MDA are also vital indices for evaluating antioxidant status in animals. T-AOC represents the capacity of free radical scavenging by the radical-scavenging antioxidants contained in the samples and indicates the oxidative status of the whole body. MDA is another marker of oxidative damage.

Table 7. Effects of organic chromium sources on fatty acid profiles in breast muscle of broilers (dry matter basis, %)

Items	Control	CrNic	CrMet	CrPic	Cr-yeast	SEM	P-value
SFA							
C12:0	0.08a	0.05b	0.05b	0.06b	0.07ab	<0.01	0.02
C14:0	0.33	0.32	0.31	0.33	0.32	0.01	0.90
C15:0	0.10	0.09	0.10	0.11	0.10	0.00	0.10
C16:0	22.00	21.68	21.32	21.51	21.73	0.14	0.66
C17:0	0.03	0.03	0.03	0.03	0.03	<0.01	0.40
C18:0	12.90	12.35	12.82	12.33	12.46	0.29	0.96
C20:0	0.39a	0.28ab	0.37a	0.20b	0.39a	0.02	0.01
C21:0	0.83	0.82	0.88	0.91	0.92	0.03	0.80
C22:0	0.23	0.19	0.20	0.18	0.17	0.01	0.21
C24:0	0.12	0.11	0.13	0.12	0.12	0.01	0.95
MUFA							
C16:1	1.63	1.83	1.69	1.62	1.79	0.09	0.93
C18:1n9c	24.35	24.14	23.54	24.00	24.37	0.40	0.97
C20:1	0.28	0.24	0.25	0.26	0.24	0.01	0.24
C24:1	0.32	0.25	0.29	0.28	0.25	0.01	0.27
n-3 PUFA							
C18:3n3	1.07	1.35	1.35	1.30	1.25	0.05	0.33
C20:3n3	0.06	0.08	0.09	0.08	0.09	0.01	0.59
C20:5n3	0.32	0.31	0.36	0.32	0.40	0.01	0.23
C22:6n3	0.83	0.98	1.08	0.96	0.81	0.05	0.44
n-6 PUFA							
C18:2n6c	24.81	26.69	26.14	27.15	26.73	0.28	0.06
C20:3n6	1.00	1.02	0.97	1.00	1.00	0.03	0.98
C20:4n6	7.72	7.19	7.37	7.27	7.56	0.27	0.97
SFA	37.21	35.93	36.28	35.78	37.22	0.32	0.48
MUFA	26.88	26.46	26.85	26.16	27.06	0.44	0.97
PUFA	36.36	37.61	37.96	38.06	37.79	0.28	0.37
PUFA/SFA	0.97b	1.05a	1.05a	1.06a	1.02ab	0.01	0.01
n-3 PUFA	2.36b	2.70a	2.85a	2.64a	2.62ab	<0.01	0.01
n-6 PUFA	34.07	34.90	35.11	35.41	34.75	0.24	0.54
n-6/n-3 PUFA	14.26a	12.94b	12.36b	13.43ab	13.46ab	0.18	<0.01

Fatty acid concentrations were expressed as percentages of the total identified fatty acids. CrNic, chromium nicotinate; CrMet, chromium methionine; CrPic, chromium picolinate; Cr-yeast, chromium yeast; SEM, standard error of means; SFA, saturated fatty acids; MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty acids.

Values with different letters (a, b) in the same row differ significantly (P < 0.05).
of oxidative stress, which is one of the final products of polyunsaturated fatty acid peroxidation in the cells. The level of MDA was negatively correlated with the activity of GSH-Px. Chromium has positive effects on antioxidant status. The enhanced antioxidant status in animals with Cr supplemented diets has previously been reported by Rao et al., who supplemented organic Cr in Cobb 400 broiler diets, and Machac et al., who supplemented Cr histidine in cat diets. Tang et al. identified that diets supplemented with 200 μg kg⁻¹ Cr in the form of Cr-yeast, Cr-Pic or CrMet did not affect the GSH-Px capacity and MDA content in broiler breast and leg muscles. Tang et al. found that the T-AOC content increased in the leg muscle of broilers fed diets containing 200 μg kg⁻¹ Cr from CrMet, which was much more effective than Cr-yeast and CrPic in the leg. Safwat et al. demonstrated that serum MDA content was decreased in CrMet- or Cr-yeast-supplemented groups of broilers. In the current study, GSH-Px, T-AOC and MDA content did not vary in the serum and breast of broilers fed diets supplemented with organic Cr; conversely, lower MDA level on day 42 was lower in the CrMet group than the CrPic group. This could be attributed to the chelation of methionine, which, as an antioxidant, eliminated reactive oxygen species by methionine residues or through GSH synthesis. Therefore, it was recognized that diets supplemented with CrMet could improve the liver antioxidant status of broilers. However, it is unclear whether Cr and methionine had synergistic effects on the body antioxidant reaction. Therefore, the interaction of metal Cr and chelation in the body mechanism remains unknown.

Chromium plays an important role in protein metabolism. It has been demonstrated that Cr could elevate amino acid incorporation and transportation in rat heart or skeletal muscle cells. Tian et al. reported that diet supplemented with CrMet had no impact on amino acid composition in growing–finishing pig muscle. Tian et al. showed that, compared with the control group, diet supplemented with CrPic decreased alanine content in the breast of broilers, and broilers fed diets supplemented with Cr-yeast had much higher content of aspartic acid, glycine and valine in broiler breast compared to broilers fed diets supplemented with CrPic. In the present study, no significant differences were observed in the amino acid content in breast, except for methionine and cysteine, among all broiler groups. However, broilers fed a diet supplemented with Cr-yeast had increased methionine and cysteine levels compared with the control group, and Cr-yeast was significantly effective than CrNic in increasing methionine levels. The possible reason for the Cr-yeast group having higher content of methionine and cysteine may be that the active composition of yeast had synergistic effects on Cr, greatly stimulating glucose consumption. Moreover, it is likely that Cr-yeast showed a similar absorption mechanism to that of selenium yeast, which was absorbed by an active transport mechanism via methionine transporters and then entered the body’s methionine pool.

The fatty acid content in meat usually determines the meat nutritive value and potentially influences its storage or further processing. Meat enrichment with n-3 PUFA or the balance of n-6/n-3 PUFA in broiler chickens is essential for consumer acceptance. It was demonstrated that excessive n-6 PUFA and SFA increased the risk of pathogenesis of many diseases, such as cardiovascular diseases and cancer incidence, which could be reduced by higher n-3 PUFA levels (or a lower n-6/n-3 ratio). The n-3 PUFA members mainly include α-linolenic acid (C18:3n3), eicosapentaenoic acid (C20:5n3) or docosahexaenoic acid (C22:6n3), which could enhance body immune functions.

Nejad et al. indicated that diet supplemented with CrMet did not affect the SFA content, unsaturated fatty acid (UFA) content or the ratios of UFA/SFA, MUFA/SFA and PUFA/SFA, but increased PUFA value in loin side beef in Holstein steers. In finishing pigs, Tian et al. showed that diets supplemented with 100–800 μg kg⁻¹ Cr from CrMet did not affect PUFA values in belly fat. Conversely, Jin et al. observed that diet containing 200 μg kg⁻¹ Cr from CrMet increased PUFA content in the longissimus thoracis muscle. To the best of our knowledge, the available information on broiler tissues is limited to the effect of Cr supplementation on the fatty acid profiles of broilers. Diets supplemented with CrPic had no influence on PUFA content but decreased the n-6/n-3 PUFA ratio in broiler breast. In the present study, the breast n-3 PUFA values were significantly increased by 14.41%, 20.76% and 11.86% in broilers fed diets containing CrNic, CrMet and CrPic, respectively. The n-6/n-3 PUFA ratios significantly declined by 9.26% and 13.32% in the breast of broilers provided with CrNic and CrMet in their diets, respectively. Although there were no effects on PUFA/SFA ratios, n-3 PUFA content and n-6/n-3 PUFA ratios among the four Cr-treated groups, the CrMet group was much more effective both in increasing n-3 PUFA and decreasing the n-6/n-3 PUFA ratio. Therefore, the superiority of CrMet could be attributed to the fact that the synergetic effects between methionine and Cr might be much more effective in regulating lipid metabolism. However, the underlying mechanism remains unclear and requires further research.

CONCLUSIONS

Diets supplemented with organic Cr at a dosage of 400 μg kg⁻¹ could regulate lipid metabolism and improve the amino acid and fatty acid profiles in the breast meat of Arbor Acres broilers. Moreover, Cr-yeast was an effective source in improving methionine and cysteine content, whereas CrMet was more effective than CrNic in increasing the n-3 PUFA value and decreasing the n-6/n-3 PUFA ratio in the breast meat and was effectively strengthen liver antioxidant ability than CrPic.

ACKNOWLEDGEMENTS

The authors are grateful for the help of the laboratory team and staff at the Ministry of Agriculture and Rural Affairs Feed Industry Centre. We would like to thank Editage (www.editage.cn) for English language editing. This present work was supported by the Basic Research Project, Shanxi Province (201901D211372), the ‘1331 Project’ Key Disciplines of Animal Sciences, Shanxi Province (J201911301), the Shanxi Agricultural University Science and Technology Innovation Fund under Grant (2020BQ21) and Shanxi Province Outstanding Doctor Award Fund (SXYBK2019020, SXYBK201808).

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES

1. Ibrahim D, El-Sayed R, Khater SI, Said EN and El-Mandrawy SAM, Changing dietary n-6/n-3 ratio using different oil sources affects performance, behavior, cytokines mRNA expression and meat fatty acid profile of broiler chickens. Anim Nutr 4:44–51 (2018).
2. Petracci M, Mudalal S, Soglia F and Cavani C, Meat quality in fast-growing broiler chickens. World Poult Sci J 71:363–373 (2015).
3 Unitea AE, Panaitie TD, Dragomir C, Popota M, Olteanu M and Varzaru I. Effect of dietary chromium supplementation on meat nutritional quality and antioxidant status from broilers fed with Camelina-meal-supplemented diets. Animal Nutrition 13:2939–2947 (2019).

4 Kim MJ, Parvin R, Mushtaq MMH, Hwangbo J, Kim JH, Na JC et al., Influence of monochromatic light on quality traits, nutritional, fatty acid, and amino acid profiles of broiler chicken meat. Poult Sci 92: 2844–2852 (2013).

5 Kawai M, Okiyama A and Ueda Y, Taste enhancements between various amino acids and IMP. Chem Senses 27:739–745 (2002).

6 Calder PC, Omega-3 fatty acids and inflammatory processes. Nutrients 2:355–374 (2010).

7 Simopoulos AP, The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed Pharmacother 56:365–379 (2002).

8 Shen MM, Zhang LL, Chen YN, Zhang YY, Han HL, Niu Y et al., Effects of bamboo leaf extract on growth performance, meat quality, and meat oxidative stability in broiler chickens. Poult Sci 98: 6787–6796 (2019).

9 Liu F and Ng TB, Antioxidative and free radical scavenging activities of selected medicinal herbs. Life Sci 66:725–735 (2000).

10 Vincent JB, Is chromium pharmacologically relevant? J Trace Elem Med Biol 28:397–405 (2014).

11 White PE and Vincent JB, Systematic review of the effects of chromium(II) on chickens. Biol Trace Elem Res 188:99–126 (2019).

12 Bin-Jumah M, Abd El-Hack ME, Abdelnour SA, Hendy YA, Ghanem HA, Li YX, Liao XD, Dong YX, Zhang LY et al., Effect of varying levels of chromium propionate in the diet on body weight gain, feed consumption, intestinal health, immune response and nutrient transporter gene expression in broilers. Anim Feed Sci Technol 210:13596 (2020).

13 Vincent JB, The Bioinorganic Chemistry of Chromium. Wiley, Chichester (2013).

14 Emami A, Ganjkhaniou M and Zali A, Effects of Cr methionine on glucose metabolism, plasma metabolites, meat lipid peroxidation, and tissue chromium in Mahabadi goat kids. Biol Trace Elem Res 164:50–57 (2015).

15 Chen G, Gao Z, Chu W, Cao Z, Li C and Zhao H, Effects of chromium picolinate on fat deposition, activity and genetic expression of lipid metabolism-related enzymes in 21 day old Ross broilers. Asian Australas J Anim Sci 31:569–575 (2018).

16 Arif M, Hussain I, Mahmood MA, Abdi El-Hack ME, Siewul AA, Alagawany M et al., Effect of varying levels of chromium propionate on growth performance and blood biochemistry of broilers. Animals 9:935–935 (2019).

17 Hayirli A, Chromium nutrition of livestock species. Nutri Abstr Rev Ser B: Livest Feed Feed 75:11N–14N (2005).

18 Roussell AM, Andriollo-Sanchez M, Ferry M, Bryden NA and Anderson RA, Food chromium content, dietary chromium intake and related biological variables in French-free-living elderly. Br J Nutr 98:326–331 (2007).

19 Hayat K, Bodinger BM, Han D, Yang X, Sun Q, Aleya L et al., Effects of dietary intake of chromium propionate on growth performance, intestinal health, immune response and nutrient transporter gene expression in broilers. Sci Total Environ 707:13596 (2020).

20 Lu L, Zhao LL, Dong YX, Liao XD, Zhang LY et al., Dietary supplementation of organic or inorganic chromium modulates the immune responses of broilers vaccinated with avian influenza virus vaccine. Animal 13:983–991 (2018).

21 Perai AH, Kermanshah H, Moghadam HN and Zarban A, Effects of chromium and chromium plus vitamin C combination on metabolic, oxidative, and fear responses of broilers transported under summer conditions. Int J Biometeorol 59:453–462 (2015).

22 Ognik K, Drazbo A, Stepniowska A, Kozlowski K, Listops P and Jankowski J, The effect of chromium nanoparticles and chromium picolinate in broiler chicken diet on the performance, redox status and tissue histology. Anim Feed Sci Technol 259:114326 (2020).

23 Ghazi SH, Habibian M, Moenini MM and Abdolmohammadi AR, Effects of different levels of organic and inorganic chromium on growth performance and immunocompetence of broilers under heat stress. Biol Trace Elem Res 146:309–317 (2012).

24 Moenini MM, Bahrami A, Ghazi S and Targhibi MR, The effect of different levels of organic and inorganic chromium supplementation on production performance, carcass traits and some blood parameters of broiler chickens under heat stress condition. Biol Trace Elem Res 144:715–724 (2011).

25 Haq Z, Jain RK, Khan N, Dar MY, Ali S, Gupta M et al., Recent advances in role of chromium and its antioxidant combinations in poultry nutrition: a review. Vet World 9:1392–1399 (2016).

26 Jin CL, Wang Q, Zhang ZM, Xu YL, Yan HC, Li HC et al., Dietary supplementation with pioglitazone hydrochloride and chromium methionine improves growth performance, meat quality, and antioxidant ability in finishing pigs. J Agric Food Chem 66: 4345–4351 (2018).

27 Aviagen, Arbor Acres Broiler: Management Manual. Aviagen, Newbridge, UK (2018).

28 Association of Official Analytical Chemists, Official Methods of Analysis, 17th edn. AOAC, Gaithersburg, MD (2000).

29 Lindemann MD, Cromwell GL, Moneague HJ and Purser KW, Effect of chromium source on tissue concentration of chromium in pigs. J Anim Sci 86:2971–2978 (2008).

30 Pritam SS and Palmequist DL, Rapid method for determination of total fatty acid content and composition of feedstuffs and feces. J Agric Food Chem 36:1202–1206 (2002).

31 Zheng C, Huang Y, Xiao F, Lin X and Lloyd K, Effects of supplemental chromium source and concentration on growth, carcass characteristics, and serum lipid parameters of broilers reared under normal conditions. Biol Trace Elem Res 169:352–358 (2016).

32 Nargahi A, Toghayani M, Gheisari AA, Saeed SE and Miranzadeh H, Effect of different sources of supplemental chromium on performance and immune responses of broiler chicks. J Anim Vet Adv 9:354–358 (2010).

33 Sahin N, Hayirli A, Orhan C, Tuzzu M, Akdemir F, Komorowski JR et al., Effects of the supplemental chromium form on performance and oxidative stress in broilers exposed to heat stress. Poult Sci 96: 4397–4402 (2017).

34 Sukombat W and Kanchanataweew S, Effects of various sources and levels of chromium on performance of broilers. Asian Australas J Anim 18:1628–1633 (2005).

35 Safwat AM, Elnaggar AS, Elghalid OA and El-Tahawy WS, Effects of different sources and levels of dietary chromium supplementation on performance of broiler chicks. Anim Sci 91:13448 (2020).

36 Toghayani M, Toghayani M, Shavizad M, Gheisari A and Bahadoran R, Chromium supplementation can alleviate the negative effects of heat stress on growth performance, carcass traits, and meat lipid oxidation of broiler chicks without any adverse impacts on blood constituents. Biol Trace Elem Res 146:171–180 (2012).

37 Hua Y, Clark S, Ren J and Sreejayan N, Molecular mechanisms of chromium in alleviating insulin resistance. J Nutr Biochem 23:313–319 (2012).

38 Chen G, Liu P, Pattar GR, Tackett L, Bhonagiri P, Strawbridge AB et al., Chromium activates glucose transporter 4 trafficking and enhances insulin-stimulated glucose transport in 3T3-L1 adipocytes via a cholesterol-dependent mechanism. Mol Endocrinol 20:857–870 (2006).

39 Spears JW, Lloyd KE, Pickworth CW, Huang YL, Krafla K, Hyda J et al., Chromium propionate in broilers: human food and broiler safety. Poult Sci 98:6579–6585 (2019).

40 Ahmad H, Tian J, Wang J, Khan MA, Wang Y, Zhang L et al., Effects of dietary sodium selenite and selenium yeast on antioxidant enzyme activities and oxidative stability of chicken breast meat. J Agric Food Chem 60:7111–7120 (2012).

41 Nelson JR, Sobotik EB, Athrey G and Archer GS, Effects of supplemental yeast fermentate in the feed or drinking water on stress susceptibility, plasma chemistry, cytokine levels, antioxidant status, and stress- and immune-related gene expression of broiler chickens. Poult Sci 99:3312–3318 (2020).

42 Berenjian A, Sharifi SD, Mohammadi-Sangcheshmeh A and Ghazanfari S, Effect of chromium nanoparticles on physiological stress induced by exogenous dexamethasone in Japanese quails. Biol Trace Elem Res 184:474–481 (2018).

43 Esrefoglu M, Cell injury and death: oxidative stress and antioxidant defense system: review. Turk Klin Tip Bilim 29:1660–1676 (2009).

44 Jiao X, Yang K, An Y, Teng X and Teng X, Alleviation of lead-induced oxidative stress and immune damage by selenium in chicken bursa of Fabricius. Environ Sci Polliut R 24:7555–7564 (2017).

45 Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG and Hoekstra WG, Selenium: biochemical role as a component of glutathione peroxidase. Nutr Rev 38:280–283 (1980).

46 Nikif E, Assessment of antioxidant capacity in vitro and in vivo. Free Radic Biol Med 49:503–515 (2010).

47 Ahmed SH, Koubaa N, Kharroubi W, Zarrour A, Mnaari A, Batbout F et al., Identification of long and very long chain fatty acids, plasmalogens-C16:0 and phytic acid as new lipid biomarkers in Tunisian
coronary artery disease patients. Prostaglandins Other Lipid Mediat 131:49–58 (2017).

48 Rao SV, Raju MV, Panda AK, Poonam NS, Murthy OK and Sunder GS, Effect of dietary supplementation of organic chromium on performance, carcass traits, oxidative parameters, and immune responses in commercial broiler chickens. Biol Trace Elem Res 147:135–141 (2012).

49 Machac N, Kaya Karasu G, Sahin N, Orhan C, Sahin K and Iben C, Effects of supplementation of chromium histidinate on glucose, lipid metabolism and oxidative stress in cats. J Anim Physiol Anim Nutr 103:331–338 (2019).

50 Tang L, Fang R, Zhou R, Zhang K and Hu L, Effects of different sources of dietary chromium on meat quality and amino acid content of broilers. J Zhejiang Univ (Agric Life Sci) 39:111–118 (2013).

51 Wang Y, Yin X, Yin D, Lei Z, Mahmood T and Yuan J, Antioxidant response and bioavailability of methionine hydroxy analog relative to DL-methionine in broiler chickens. Anim Nutr 5:241–247 (2019).

52 Wen C, Jiang XY, Ding LR, Wang T and Zhou YM, Effects of dietary methionine on growth performance, meat quality and oxidative status of breast muscle in fast- and slow-growing broilers. Poult Sci 96:1707–1714 (2017).

53 Stepniowska A, Drazbo A, Kozlowski K, Ognik K and Jankowski J, The effect of chromium nanoparticles and chromium picolinate in the diet of chickens on levels of selected hormones and tissue antioxidant status. Animals 10:45 (2020).

54 Evans GW and Bowman TD, Chromium picolinate increases membrane fluidity and rate of insulin internalization. J Inorg Biochem 46:243–250 (1992).

55 Roginski EE and Mertz W, Effects of chromium(III) supplementation on glucose and amino acid metabolism in rats fed a low protein diet. J Nutr 97:525–530 (1969).

56 Tian YY, Gong LM, Xue JX, Cao J and Zhang LY, Effects of graded levels of chromium methionine on performance, carcass traits, meat quality, fatty acid profiles of fat, tissue chromium concentrations, and antioxidant status in growing-finishing pigs. Biol Trace Elem Res 168:110–121 (2015).

57 Burk F and Hill KE, Regulation of selenium metabolism and transport. Annu Rev Nutr 35:109–134 (2015).

58 Kalakuntla S, Nagireddy NK, Panda AK, Jatho N, Thirunahari R and Vangoor RR, Effect of dietary incorporation of n-3 polyunsaturated fatty acids rich oil sources on fatty acid profile, keeping quality and sensory attributes of broiler chicken meat. Anim Nutr 3:386–391 (2017).

59 Nejad JG, Lee BH, Kim BW, Ohh SJ and Sung KI, Effects of chromium methionine supplementation on blood metabolites and fatty acid profile of beef during late fattening period in Holstein steers. Asian Australas J Anim Sci 29:378–383 (2016).