TGF-β and Cancer Immunotherapy

Takashi MaruYama, WanJun Chen, and Hiroyuki Shibata*

*Mucosal Immunology Section, NIDCR, National Institute of Health; Bethesda, MD 20892, U.S.A.: and *Department of Clinical Oncology, Akita University Graduate School of Medicine; Akita 010–8573, Japan.

Received November 8, 2021; accepted December 8, 2021

The cytokine, transforming growth factor beta (TGF-β), has a history of more than 40 years. TGF-β is secreted by many tumor cells and is associated with tumor growth and cancer immunity. The canonical TGF-β signaling pathway, SMAD, controls both tumor metastasis and immune regulation, thereby regulating cancer immunity. TGF-β regulates multiple types of immune cells in tumor microenvironment, including T cells, natural killer (NK) cells, and macrophages. One of the main roles of TGF-β in the tumor microenvironment is the generation of regulatory T cells, which contribute to the suppression of anti-tumor immunity. Because cancer is one of the highest causes of death globally, the discovery of immune checkpoint inhibitors by Honjo and Allison in cancer immunotherapy earned a Nobel Prize in 2018. TGF-β also regulates the levels of immune checkpoints inhibitory receptors on immune cells. Immune checkpoints inhibitors are now being developed along with anti-TGF-β antibody and/or TGF-β inhibitors. More recently, chimeric antigen receptors (CARs) were applied to cancer immunity and tried to combine with TGF-β blockers.

Key words immunologic factor; immunotherapy; neoplasm; noble prize; signal transduction

INTRODUCTION

In 1978, De Larco and Todaro found many growth factors were produced by murine sarcoma virus-transformed cells including transforming growth factor beta (TGF-β). It has also reported that many types of cancer, including colorectal cancer (HT29), gastric cancer (Kato-III, OCUM-1 and HSC-39), and breast cancer (EMT-6), secrete TGF-β. In addition, tumors from a late stage of cancer patients showed high level of TGF-β expression. Therefore, concentration of TGF-β in sera from cancer patients was significantly higher than that from healthy donors. M2-like phenotype tumor associated macrophages (TAMs) is another source of TGF-β. Of note, the number of TAM and cancer stem cells was correlated in tumor microenvironment. Foxp3+ regulatory T cells (Tregs) can be generated or recruited in the tumor microenvironment and produce TGF-β, which also suppress tumor immunity. Therefore, targeting TAMs or Tregs' depletion induces strength of anti-cancer immunity. In addition, tumor infiltrate interleukin-10 (IL-10) B cells (namely regulatory B cells: Bregs) also produce TGF-β which also suppress T helper 1 (Th1) cytokine secretion and T cells proliferation. Although tumor cells help to generate Bregs, it is still unclear whether tumor-produced TGF-β contributes to the generation of Bregs. In this review, we focus on how TGF-β controls cancer immunity.

1. TGF-β CONTROLS IMMUNITY

1.1. TGF-β and Regulatory T Cells

In 2003, Chen et al. demonstrated that TGF-β can induce Foxp3+ Tregs from naïve CD4+ T cells in vitro in a dose dependent manner. The TGF-β-induced Tregs have suppressive ability against the expansion of antigen specific T cells in vitro and in vivo. T cell specific TGF-β receptor I-deficient mice (Tgbr1lox/lox Lck-cre) showed significantly less Foxp3+ Tregs population in the thymus at days 3–5 after birth, with subsequent expansion of the thymic Tregs population through IL-2 signaling. Therefore, TGF-β play crucial roles for generation of thymic Tregs (also called nTregs). Thymic Tregs maintain the suppression ability via Foxp3 stable expression. Zheng et al. identified several Foxp3-conserved non-coding sequences (CNS) and demonstrated that around 2kb downstream of transcriptional starting site of Foxp3 has conserved cytosine-phosphate-guanine (CpG) island, namely CNS2. In thymic Tregs, CNS2 region showed highly de-methylation status and binding Foxp3 itself. In addition, CNS2-deficient mice were showed easy to loss of Foxp3 expression in Tregs and also less thymic Tregs population. Therefore, CNS2 play an important role for stability of Foxp3 expression. Conversely, peripherally induced Tregs showed a less de-methylation status of CpG island in Foxp3-CNS2 and ease to loss the expression of Foxp3. TGF-β-induced Tregs are also less stable, but some components (e.g. retinoic acid, CDK8/19 inhibitor) can promote de-methylation status of CpG island in Foxp3-CNS2. It has been well demonstrated the mechanisms how TGF-β control Foxp3+ Tregs’ generation. Tone et al. demonstrated that SMAD3, a downstream of TGF-β signaling, could be enrich via the Foxp3 enhancer (called the CNS1 region) and positively regulate the generation of Tregs in cooperation with nuclear factor of activated T-cell (NFAT). These events occurred within 2 h after TGF-β stimulation. Histone/protein acetyltransferases p300 play crucial roles for TGF-β-induced Foxp3+ Tregs and cancer immunity. p300 could be enriched by the Foxp3 promoter and positively regulate Foxp3 gene expression in cooperation with several transcriptional factors (e.g. nuclear factor-kappaB (NF-κB), activator protein 1 (AP-1)), Some authors suggested that TGF-β protects nTregs from apoptosis in the thymus rather than TGF-β being required for generation of nTregs in the thymus. More recently, apoptotic cells support to produce TGF-β in thymus and it can prevent apoptotic thymic Tregs’ death. Thus, TGF-β has ability to protect the
progenitors of nTregs from apoptosis.

TGF-β suppresses interferon-γ (IFN-γ) (an inflammatory anti-cancer cytokine) expression in CD4^+ T cells.\(^{23}\) Takimoto et al. demonstrated that TGF-β-induced SMAD2/3 activation is a key pathway to Foxp3-independently suppress the expression of IFN-γ in CD4^+ T cells.\(^{24}\) Although SMAD2 or SMAD3-deficient T cells has been showed less Foxp3^+ Tregs induction in response to TGF-β1 in vitro, TGF-β1 signaling (SMAD2 and SMAD3) during Tregs’ generation steps would be complementing their function in each other (Fig. 1).

1-2. TGF-β and T Cell Immunity

In CD8^+ T cells, TGF-β suppresses activation, apoptotic cell death, and IFN-γ production.\(^{25}\) We further demonstrated that the TGF-β-SMAD-pathway induced nuclear kappa B family protein inhibitor of NF kappaB (IkB)-ζ, which negatively regulates IFN-γ gene expression in CD4^+ T cells.\(^{26}\) Therefore, IkB-ζ-deficient T cells show more IFN-γ expression even in the presence of TGF-β. Thus, the TGF-β-SMAD-IkB-ζ axis may regulate the gene expression of IFN-γ gene expression in a Foxp3-independent manner.

TGF-β also helps to generate IL-9-producing helper T cells (Th9) that enhanced anti-tumor immunity.\(^{27,28}\) Nakatsuksaka et al. demonstrated that IL-4 inhibits TGF-β-induced Id3 expression via TAK1 activation (non-SMAD pathway) and it plays a crucial role for Th9 differentiation.\(^{29}\) Therefore, anti-IL-9 antibody treatment showed tumor progression. On the other hands, IL-9-treatment in SGC-7901 (Gastric tumor cell line) xenografted nude mice showed less tumor growth.\(^{29}\) Another report has been shown that Th9 cells induce anti-tumor immunity via enhancement of IFN-γ production from CD8^+ T cells and natural killer (NK) cells.\(^{30}\) Recently, Li et al. generated 4T-Trap, anti-human CD4 antibody with TGF-βRII extra cellular domain, which is selectively blockade of TGF-β signaling in CD4^+ T cells and promotes cancer immunity-therapy.\(^{31}\) Interestingly, 4T-Trap-treated tumor bearing mice observed tumor vascular remodeling through a large amount of IL-4 from CD4^+ T cells.\(^{31}\)

Not only Tregs’ generation, TGF-β is also important for the differentiation of thymic CD8^+ T cells and IL-7 receptor α expression in T cells.\(^{32}\) In the thymus, IL-7 receptor signaling is known to be a sensor for the detection of the duration of TCR signaling and regulates the differentiation of CD8^+ T cells.\(^{33}\) Another paper demonstrated that the TGF-β-SMAD axis control the differentiation of CD8^+ T cells in thymus.\(^{24}\) In addition, the TGF-β-SMAD axis represses IFN-γ and granzyyme B expression in CD8^+ T cells.\(^{34}\) Therefore, TGF-β can suppress the tumor cytotoxicity of CD8^+ T cells,\(^{35}\) TGF-β from cancer cells also help to generate CD8^+ Foxp3^+ Tregs and it observed in peripheral blood from ovarian cancer patients.\(^{35}\) CD8^+ Foxp3^+ Tregs were also observed in tumor infiltrate lymphocytes and it can be induced and maintained by TGF-β from tumor cells.\(^{36}\)

1-3. TGF-β Regulate Innate Immunity

TGF-β from tumors could recruit CD45^+CD11c^+CD11b^+MHCII^+ macrophages but not dendritic cells.\(^{37}\) These macrophages called tumor associate macrophages (TAMs) and has been reported to produce immune suppressive cytokines (IL-10 and TGF-β) and control tumor immunity.\(^{8,38}\) Therefore, TAMs showed M2-like phenotypes. Another report showed that the TGF-β can induce M2-type macrophages through the SMAD-SNAIL pathway.\(^{39}\) Interestingly, silencing SNAIL in Bone marrow-derived macrophages showed M1-like phenotype including highly expressed Tfrα, Mcpl and IL2p40. Therefore, TGF-β may suppress M1-like macrophages and induces the polarization of M2-like macrophages in the tumor microenvironment.\(^{39}\)

NK cells express NKG2D, a transmembrane protein, which can recognize tumor surface ligands (MICA, MICB and ULBP1-6) and helps cancer immunosurveillance. TGF-β impaired NKG2D expression of NK cells, which prevent recognizing tumor surface ligands and inducing cytotoxicity.\(^{40}\) In addition, TGF-β control IFN-γ and granzyyme B from NK cells in response to CD16 and antibody dependent cellular cytotoxicity (ADCC).\(^{41}\) They demonstrated that TGF-β-SMAD3 axis play a crucial role for controlling ADCC. Another report demonstrated that NK cell specific SMAD4-deficient mice had less anti-tumor immunity, because a TGF-β-independent SMAD4 pathway promote granzyeme B production from NK cells.\(^{42}\) Gao et al. demonstrated that NK cells could be converted into type 1 ILC in the tumor microenvironment by TGF-β and lost their tumor immunosurveillance properties.\(^{43}\)

This type 1 ILC subset showed less IFN-γ production and more inhibitory immunological checkpoint receptor cytokotic T-lymphocyte antigen 4 (CTLA-4) expression. TGF-β in the tumor microenvironment also promotes IL-9 production from ILC2 and may play roles in anti-cancer immunity.\(^{27}\) TGF-β can induce Foxp3 expression in γδ (Vγ2) T cells and it shows blockade ability against proliferation of PBMC in response to TCR stimulation.\(^{44}\) Conversely, TGF-β with IL-2 stimulated γδ (Vγ2) T cells produced large amount of granzyyme B and IFN-γ and showed tumor cytotoxicity.\(^{45}\)

Thus, TGF-β controls cancer immunity through many kinds of immune cells in the tumor microenvironment (Fig. 2).

2. CANCER IMMUNOTHERAPY OF IMMUNE CHECKPOINT INHIBITORS

2-1. Immune Checkpoint Inhibitor PD-1 and TGF-β

In 1992, Ishida et al. has been performed subtraction hybridization method using cDNA libraries from PMA + Ionomycin stimulated T cells hybridoma and cultured T cell hybridoma without growth factor (meaning apoptotic cells), then identified the immunoglobulin superfamily gene Program cell Death (PD)-1.\(^{46}\) PD-1 conserved several consensus sequences in
their cytoplasmic domain, including immunoreceptor-tyrosine based inhibitory motif (ITIM). Therefore, PD-1 stimulation inhibits T cell activation (TCR-stimulation induced Syk phosphorylation) via SHP, a kinase accumulated in ITIM motif.

Fig. 2. Roles of Regulatory T Cells, T Helper Type 9, and Tumor-Associated Macrophages in Cancer Immunity

Transforming growth factor beta (TGF-β) in the tumor microenvironment promotes interleukin-10 (IL-10) production from tumor-associated macrophages (TAMs) and regulatory T cells (Tregs). IL-10 suppresses anti-tumor immunity. Additionally, TGF-β inhibits the anti-tumor cytokine, interferon-gamma, and cytotoxic granzyme B from natural killer (NK) cells and cytotoxic (CD8) T cells. TGF-β helps to generate T helper type 9 (Th9) cells while Th9 produces IL-9/IL-21 and enhances cytotoxicity of CD8 T cells and NK cells. Thus, TGF-β plays a crucial role in anti-tumor immunity through immune regulation.

Fig. 3. Programmed Cell Death Protein 1/Programmed Death-Ligand 1 and CTLA4/CD80/86 Axes in Cancer Immunity

Programmed cell death protein 1 (PD-1) expressed on cytotoxic (CD8) T cells is recognized programmed death-ligand 1 on tumor cells, which is negatively regulated T cell activation. Transforming growth factor beta (TGF-β) from tumor induces PD-1 expression and negatively regulates tumor immunity. CTLA4 is highly expressed on regulatory T cells and predominantly binds to CD80/CD86 on tumor-associated macrophage (TAM). Therefore, CD28 molecules in CD8 T cells have little chance to bind to CD80/CD86 on TAM.

J558L melanoma growth but not B16 melanoma growth. In clinical trials, anti-PD-L1 antibody has been treated in many types of tumor patients including lung cancer, ovarian cancer and melanoma and showed pharmacological anti-tumor effects, and is now approved for cancer immunotherapy drugs: called Immune Checkpoints Inhibitors. It is also known that anti-PD-L1 antibody treatment enhances T cells infiltration in the tumor microenvironment. However, it has also been observed the tumor patients who have resistant to cancer therapy using immune checkpoint inhibitors.

To develop the effect of the immune checkpoint inhibitors, blockade of TGF-β has been tried. Anti-PD-L1 antibody with anti-TGF-β antibody treatments show strongly evoked anti-tumor immunity through the activation and penetration of T cells into the center of the tumor. A new concept of a biological drug: M7824 (MSB0011359C), a bifunctional fusion protein harboring a PD-L1 binding region and two TGF-β receptor 2 molecules (trap linker), treated tumor model showed activation of ADCC. In addition, M7824 treatment canceled suppressed T cell proliferation by Tregs. Another group also demonstrated that M7824-treated tumor bearing mice showed less tumor volume and metastasis and more CD8+ T cells and NK cells in tumor infiltrate lymphocytes than that of anti-PD-1 or TGF-β trap-treated mice. Clinical trial of M7824 showed that anti-tumor affects with a complete neutralizing effect of TGF-β in plasma and saturate PD-L1 in PBMC. Because sample size was too small, subset of immune cells in patients were no big difference even in the presence of M7824.

2-2. Regulation of PD-1 Expression and Cancer Immunity

TGF-β receptor signaling in Tregs plays crucial roles for their suppression ability. Therefore, blockade of surface bound TGF-β on the Tregs fails to suppress anti-tumor effects by CD8+ T cells. TGF-β also enhances antigen-induced PD-1 expression in CD4+ and CD8+ T cells both human and mouse. Mechanistically, TGF-β signal molecule SMAD3 directly enriched on PD-1 promoter region in response to TGF-β and positively regulated PD-1 gene expression cooperate with a transcriptional factor NFAT. Therefore, SMAD3-deficient mice (Smad3+/- CD4-cre) show less PD-1 expression in CD8 T cells in tumor microenvironment and are resistant to B16-
melanoma models. Therefore, anti-PD-1 treatment does not show anti-tumor effects in tumor bearing Smad3-deficient mice. Although the study did not demonstrate how much tumor specific Tregs were in TILs, the percentage of Foxp3+ Tregs in TILs was comparable between wild type (WT) and Smad3-deficient mice. Stephen et al. demonstrated more detail about molecular mechanisms of PD-1 expression that TCR stimulation induced histone deacetylase SATB1 enrichment on PD-1 promoter, which is negatively regulate PD-1 gene expression.59) TGF-β/SMAD axis negatively regulate SATB1 expression, therefore promote PD-1 expression in T cells through the SMAD3 binding on PD-1 promoter. Therefore, SATB1-deficient mice shows less anti-tumor immunity. Another report showed that SMAD3-deficient mice also prevented B16-melanoma progression through NK cell development.60) Conversely, SMAD3-deficient mice develop colorectal cancer with aging.61)

Previously, we demonstrated that GO-Y030 controls the TGF-β signaling and prevent Foxp3+ Tregs generation in vitro and also in tumor microenvironment.62) GO-Y030 identified a curcumin analog and has a 5-carbon space between 3,5-bis(methoxymethoxy)phenol. This phenomena is due to the strong reduction of S-phase fraction (DNA-synthesis) and apoptosis induction through the caspase-3 activation, which is more strongly than curcumin itself.63,64) In addition to colorectal carcinomas, breast and pancreatic carcinoma’s cell growth can equally be strongly inhibited by GO-Y030.65) Since anti-PD-1 treatment failed to deplete Tregs in tumor microenvironment.66) Therefore, when we try to apply GO-Y030 and cancel this negative effect of tumor immunity by anti-PD-1 treatment.67) Therefore, when we try to apply GO-Y030 and anti-PD-1 antibody in B16-F10 melanoma bearing mice, anti-tumor effects showed more strikingly than that of anti-PD-1 treatment only.

2.3. Immune Checkpoint Inhibitor CTLA4 and TGF-β

CTLA-4 is another inhibitory receptor that expresses Tregs and has a stronger affinity against CD80/CD86 compared with CD28.68) (Fig. 3). Signaling through the CTLA-4 negatively regulated T cells activation. Leach et al. showed that anti-CTLA-4 antibody treatment has potential to activate anti-tumor immunity using several types of tumor mouse model (e.g. Colon carcinoma and fibrosarcoma).69) In immunodeficient environment, Tregs showed highly expressed CTLA-4 and anti-CD-1 antibody in B16-F10 melanoma bearing mice, anti-tumor effects showed more strikingly than that of anti-CD-1 treatment only.

The deletion of TGF-β receptor II (TGFBR2) in Chimeric Antigen Receptor (CAR)-T cells by clustered regularly interspaced short palindromic repeats (CRISPR)-associated proteins 9 (CRISPR/CAS9) led to strong anti-tumor efficiency.70) These TGFBR2-edited CAR-T cells demonstrated less Tregs induction and T cell exhaustion in response to TGF-β in vitro. Another report indicated that TGF-β receptor kinase inhibitor SD-208-treated CAR-T cells induce more proliferation, more IFN-γ production and less PD-1 expression.71) In addition, the expression of dominant-negative TGF-βRII in CAR-T cells increased tumor proliferation and cytotoxicity.72) Conversely, CD28-LCK-ζ CAR-T cells are resistant to TGF-β mediated repression of tumor cytotoxicity through constitutive IL-2 secretion.73) Interestingly, CAR-T cells targeting TGF-β prevented generation of Tregs and promoted cytotoxicity of CD8+ T cells, which would be contribute to anti-cancer immunity.74) CD137 (4-1BB) is a costimulatory molecule that expressed CD4+ and CD8+ T cells.75) For anti-tumor immunity, anti-4-B11 antibody treatment has been performed and demonstrated that activation of CD8+ T cells including IFN-γ production and cytotoxicity maker-induced capability. Agonistic anti-4-1 BB humanized antibody treatment showed therapeutic effect in carcinoma (MCA5) bearing mice. However, this effect was abolished in the mice who has no CD4+ and/or CD8+ T cells.76) On the other hands, anti-4-1 BB treatment does not show anti-tumor effects in C3 tumor bearing mice (Tumorigenic HPV16-transformed embryonic cells).77) At the moment, transfected chimeric TGF-βR2-4-1BB receptor in T cells showed increase tumor clearance activity (A375 melanoma xenograft model).78) This chimeric receptor does not include the partial extra cellular domain of TGF-βR2; therefore, TGF-β consumption may occur without TGF-β signaling conduct. Thus, anti-TGF-β signaling can increase the potential of CAR-T tumor immunotherapy.

Acknowledgments This research was supported in part by the Fund for the Intramural Research Program of NIDCR to WC and Grant-in-Aid for Scientific Research (C) (20K11546) to HS.

Conflict of Interest The authors declare no conflict of interest.

REFERENCES

1) de Larco JE, Todaro GJ. Growth factors from murine sarcoma virus-transformed cells. Proc. Natl. Acad. Sci. U.S.A., 75, 4001–4005 (1978).

2) Calon A, Espinet E, Palomo-Ponce S, Tauriello DV, Iglesias M, Cespedes MV, Sevillano M, Nadal C, Jung P, Zhang XH, Byrom D, Riera A, Rosell D, Mangues R, Massague J, Sancho E, Sancho E, Battle D, Arienti A, Riera D, Rossell D, Nelken R, Massague J, Sancho E, Sancho E, Battle D, Arienti A, Riera D, Rossell D, Nelken R, Massague J, Sancho E, Battle D, Arienti A, Riera D, Rossell D, Nelken R, Massague J, Sancho E, Battle D, Arienti A, Riera D, Rossell D, Nelken R, Massague J, Sancho E, Battle D, Arienti A, Riera D, Rossell D, Nelken R, Massague J, Sancho E, Battle D, Arienti A, Riera D, Rossell D, Nelken R, Massague J, Sancho E, Battle D. Dependency of colorectal cancer on a TGF-beta-driven program in stromal cells for metastasis initiation. Cancer Cell, 22, 371–384 (2012).

3) Mahara K, Kato J, Terui T, Takimoto R, Horimoto M, Murakami T, Mogi Y, Watanabe N, Kohgo Y, Nitsu Y. Transforming growth factor beta 1-secreted from scirrhous gastric cancer cells is associated with excess collagen deposition in the tissue. Br. J. Cancer, 69, 777–783 (1994).
4) Moses H, Barcellos-Hoff MH. TGF-beta biology in mammary development and breast cancer. Cold Spring Harb. Perspect. Biol., 3, a003527 (2011).

5) Teicher BA, Maehara Y, Kakke Y, Ara G, Kyes SR, Wong J, Herbst R. Reversal of in vivo drug resistance by the transforming growth factor-beta inhibitor decorin. Int. J. Cancer, 71, 49–58 (1997).

6) Lamora A, Talbot J, Bougras G, Amiaud J, Leduc M, Chesneau J, Taurelle J, Stresing V, Le Deley MC, Heymann MF, Heymann D, Redini V, Verrecchia E. Overexpression of Smad3 blocks primary tumor growth and lung metastasis development in osteosarcoma. Clin. Cancer Res., 20, 5097–5112 (2014).

7) Chen Y, Song Y, Du W, Gong L, Chang H, Zou Z. Tumor-associated macrophages: an accomplice in solid tumor progression. J. Biomed. Sci., 26, 78 (2019).

8) Fan QM, Jing YY, Yu GF, Kou XR, Ye F, Gao L, Li R, Zhao QD, Yang Y, Lu ZH, Wei LX. Tumor-associated macrophages promote cancer stem cell-like properties via transforming growth factor-betabeta-induced epithelial-mesenchymal transition in hepatocellular carcinoma. Cancer Lett., 352, 160–168 (2014).

9) Bos PD, Rudensky AY. Treg cells in cancer: a case of multiple personalities. J. Exp. Med., 207, 1593–1599 (2008).

10) Bortoloni S, Imamoto A, Carugati S, Allavena P, D’Incalci M, Novelli H, Cappello P. Depletion of tumor-associated macrophages switches the epigenetic profile of pancreatic cancer infiltrating T cells and restores their anti-tumor phenotype. Oncotarget, 7, e1393596 (2017).

11) Kamada T, Togashi Y, Tay C, Ha D, Sasaki A, Nakamura Y, Sato E, Fujikura S, Tada Y, Tanaka A, Morikawa H, Kawazoe K, Nakagita T, Shi harshita K, Sakaguchi S, Nishikawa H. PD-L1(+)/regulatory T cells amplified by PD-1 blockade promote hyperprogression of cancer. Proc. Natl. Acad. Sci. U.S.A., 107, 9999–10009 (2010).

12) Zhang Y, Morgan R, Chen C, Cai Y, Clark E, Khan WN, Shin SU, Cho HM, Al Bayati A, Pimentel A, Rosenblatt JD. Mammary-tumor-educated B cells acquire LAP/TGF-beta and PD-L1 expression and suppress anti-tumor immune responses. Int. Immunol., 28, 423–433 (2016).

13) Chen W, Jin W, Hardegen N, Lei KJ, Li L, Marinos N, McGeady G, Wahl SM. Conversion of peripheral CD4(+)CD25(-) naive T cells to CD4(+)CD25(+) regulatory T cells by TGF-beta induction of transcription factor Foxp3. J. Exp. Med., 198, 1857–1886 (2003).

14) Liu Y, Zhang P, Li J, Kulkarni AB, Perruche S, Chen W. A critical function for TGF-beta signaling in the development of natural CD4(+)CD25(+)Foxp3(+) regulatory T cells. Nat. Immunol., 9, 632–640 (2008).

15) Maruyama T, Konkel JE, Zamarron BF, Chen W. The molecular mechanisms of Foxp3 gene regulation. Semin. Immunol., 23, 418–423 (2011).

16) Zheng Y, Josecovich S, Chaudhry A, Peng XP, Forbush K, Rudensky AY. Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature, 463, 808–812 (2010).

17) Akamatsu M, Miki N, Ohkura N, Kawasaki K, Kitagawa Y, Sugimoto A, Hirota K, Nakamura N, Ujihara S, Kurosaki T, Hamaguchi H, Harada H, Xia G, Morita Y, Aromori I, Narumiya S, Sakaguchi S. Conversion of antigen-specific effector/memory T cells into Foxp3-expressing Treg cells by inhibition of CDK8/19. Sci. Immunol., 4, eaaw707 (2019).

18) Tone Y, Furuchi K, Koijima Y, Tykociński ML, Greene MI, Tone M, Smad3 and NFA1 cooperate to induce Foxp3 expression through its enhancer. Nat. Immunol., 9, 194–202 (2008).

19) Liu Y, Wang L, Predina J, Han R, Beier UH, Wang LC, Kapoor V, Bhatti YR, Akimova T, Singhal S, Brindle PK, Cole PA, Brindle PK, Hancock WW. Two histone/protein acetyltransferases, CBP and p300, are dispensable for Foxp3(+) T-regulatory cell development and function. Mol. Cell. Biol., 34, 3993–4007 (2014).

20) Bhaskaran N, Quigley C, Weinberg A, Huang A, Popkin D, Pandiyen P. Transforming growth factor-beta sustains the survival of Foxp3(+) regulatory cells during late phase of oropharyngeal candidiasis infection. Mucosal Immunol., 9, 1015–1026 (2016).

21) Konkel JE, Jin W, Abbatiello B, Grainger JR, Chen W. Thymocyte apoptosis drives the intrathymic generation of regulatory T cells. Proc. Natl. Acad. Sci. U.S.A., 111, E465–E473 (2014).

22) Lin JT, Martin SL, Xia L, Gorham JD. TGF-beta 1 uses distinct mechanisms to inhibit IFN-gamma expression in CD4(+) T cells at priming and at recall: differential involvement of Stat4 and T-bet. J. Immunol., 174, 5950–5958 (2005).

23) Takimoto T, Wakabayashi Y, Sekiya T, Inoue N, Morita R, Ichiyama K, Takahashi R, Asakawa M, Muto G, Mori T, Hasegawa E, Saito S, Hara T, Nomura M, Yoshimura A, Smad2 and Smad3 are redundantly essential for the TGF-beta-mediated regulation of regulatory T cell biology and T cell development. J. Immunol., 185, 842–855 (2010).

24) Filippi CM, Juedes AE, Oldham JE, Ling E, Togher L, Peng Y, Flavell RA, von Herrath MG. Transforming growth factor-beta suppresses the activation of CD8(+) T-cells when naive but promotes their survival and function once antigen experienced: a two-faced impact on autoimmunity. Diabetes, 57, 2684–2692 (2008).

25) Maruyama T, Kobayashi S, Oyasawara K, Yoshimura A, Chen W, Muta T. Control of IFN-gamma production and regulatory function by the inducible nuclear protein IkappaB-beta in T cells. J. Leukoc. Biol., 98, 385–393 (2015).

26) Purwar R, Schlaphbach C, Xiao S, Kang HS, Elvanay W, Jiang X, Jetten AM, Khoury SJ, Fulhbrigge RC, Kuchorook VK, Clark RA, Kappers TS. Robust tumor immunity to melanoma mediated by interleukin-9-producing T cells. Nat. Med., 18, 1248–1253 (2012).

27) Nakatsukasa H, Zhang D, Maruyama T, Chen H, Cui K, Ishikawa M, Deng L, Zanvit P, Tu E, Jin W, Abbatiello B, Goldberg N, Chen Q, Sun L, Zhao K, Chen W. The DNA-binding inhibitor Id3 regulates IL-9 production in CD4(+) T cells. Nat. Immunol., 16, 1077–1084 (2015).

28) Cai L, Zhang Y, Zhang Z, Chen H, Hu J. Effect of Th9/IL-9 on the growth of gastric cancer in nude mice. Onco Targets Ther., 12, 2225–2234 (2019).

29) Vegran F, Berger H, Boidot R, Mignot G, Bruchard M, Doss M, Chalmin F, Rebe C, Derangere V, Ryfle B, Kato M, Prevost-Blondel A, Ghiringhelli F, Apetoh L. The transcription factor IRF1 dictates the IL-21-dependent anticancer functions of TH9 cells. Sci. Transl. Med., 10, eaaw707 (2018).

30) Oh W, Oh SA, Ma Q, Byon MA, Zhu J, Li MO. TGF-beta cytokine signaling promotes CD8+ T cell development and low-affinity CD4+ T cell homeostasis by regulation of interleukin-7 receptor alpha expression. Immunity, 39, 335–346 (2013).

31) Singer A, Adoro S, Park JH, Lineage fate and intense debate: myths, models and mechanisms of CD4-CD8-lineage choice. Nat. Rev. Immunol., 8, 788–801 (2008).

32) Thomas DA, Massague J. TGF-beta directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell, 8, 369–380 (2005).

33) Wu M, Chen X, Lou J, Zhang S, Zhang X, Huang L, Sun R, Huang P, Wang F, Pan S. TGF-beta1 contributes to CD8(+) Treg induction through p38 MAPK signaling in ovarian cancer microenvironment. Oncotarget, 7, 44534–44544 (2016).

34) Le DT, Ladle BH, Lee T, Weiss V, Yao X, Leblanc A, Armstrong TD, Jaffe EM, CD8(+) Foxp3(+) tumor infiltrating lymphocytes ac-
cumulate in the context of an effective anti-tumor response. *Int. J. Cancer*, **129**, 636–647 (2011).

37) Byrne SN, Knox MC, Halliday GM. TGFbeta is responsible for skin tumour infiltration by macrophages enabling the tumours to escape immune destruction. *Immunol. Cell Biol.*, **86**, 92–97 (2008).

38) Komohara Y, Jinushi M, Takeya M. Clinical significance of macrophage heterogeneity in human malignant tumors. *Cancer Sci.*, **105**, 1–8 (2014).

39) Zhang F, Wang H, Wang X, Jiang G, Liu H, Zhang G, Wang H, Fang R, Bu Xu, Cai S, Du J. TGF-beta induces M2-like macrophage polarization via SNAIL-mediated suppression of a pro-inflammatory phenotype. *Oncoarget*, 7, 52294–52306 (2016).

40) Castriconi R, Cantoni C, Della Chiesa M, Vitale M, Marcheno É, Conte R, Biassoni R, Bottino C, Moretta L, Moretta A. Transforming growth factor beta 1 inhibits expression of NKp30 and NK2D receptors: consequences for the NK-mediated killing of dendritic cells. *Proc. Natl. Acad. Sci. U.S.A.*, **100**, 4120–4125 (2003).

41) Trotta R, Daf Col J, Yu J, Carliariello D, Thomas B, Zhang X, Allard J 2nd, Wei M, Mao H, Byrd JC, Perrotti D, Caligiuri MA. TGF-beta utilizes SMAD3 to inhibit CD16-mediated IFN-gamma production and antibody-dependent cellular cytotoxicity in human NK cells. *J. Immunol.*, **181**, 3784–3790 (2003).

42) Wang Y, Guo Y, Dong W, Sun J, Wang Y, Wang H, Scavilile S, Zhang J, Wu L, Deng Y, He X, Mundy-Bosse B, Freed AG, Wang LS, Caligiuri MA, Yu J. SMAD4 promotes TGF-beta-independent NK cell homeostasis and maturation and antitumor immunity. *J. Clin. Invest.*, **128**, 5123–5136 (2018).

43) Gao Y, Souza-Fonseca-Guimaraes F, Bald T, et al. Tumor immunoevasion by the conversion of effector NK cells into type 1 innate lymphoid cells. *Nat. Immunol.*, **18**, 1004–1015 (2017).

44) Casetti R, Agrati C, Wallace M, Sacchi A, Martini F, Martino A, Rinaldi A, Malkovsky M. Cutting edge: TGF-beta1 and IL-15 no evasion by the conversion of effector NK cells into type 1 innate immunity. *J. Immunol.*, **181**, 3784–3790 (2003).

45) Peters C, Meyer A, Kaukanaou L, Feder J, Schriever T, Lettau A, Jansen O, Wesch D, Kablitz D. TGF-beta enhances the cytotoxic activity of Vdelta2 T cells. *OncoImmunology*, **8**, e1522471 (2018).

46) Ishida Y, Agata Y, Shibaibara K, Honjo T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. *EMBO J.*, **11**, 3887–3895 (1992).

47) Chikuma S. Basics of PD-1 in self-tolerance, infection, and cancer immunity. *Int. J. Clin. Oncol.*, **21**, 448–455 (2016).

48) Keir ME, Liang SC, Guerina I, Latchman YE, Qipo A, Albacker Chikuma S. Basics of PD-1 in self-tolerance, infection, and cancer immunity. *Int. J. Clin. Oncol.*, **21**, 448–455 (2016).

49) Konkel JE, Zhang D, Jian Y, Guan XY, Yan BP, Lan HY. Smad3 promotes cancer progression by inhibiting E4BP4-mediated NK cell development. *Nat. Commun.*, **8**, 14677 (2017).

50) Zhu Y, Richardson J, Parada LF, Graff JM. Smad3 mutant mice develop metastatic colorectal cancer. *Cell*, **94**, 703–714 (1998).

51) MaruYama T, Kobayashi S, Nakatsukasa H, Morimoto T, Taguchi D, Sunagawa Y, Morimoto T, Asao A, Jin W, Owada Y, Ishii N, Iwabuchi Y, Yoshimura A, Chen W, Shibata H. The curcumin analog GO-Y030 controls the generation and stability of regulatory T cells. *Front. Immunol.*, **12**, 687669 (2021).

52) Ohori H, Yamashita H, Inaguma M, Shibuya M, Kubo A, Takanashi A, Tahakashi S, Kato S, Suzuki T, Ishihara C, Iwabuchi Y, Shibata H. Synthesis and biological analysis of new curcumin analogues bearing an enhanced potential for the medicinal treatment of cancer. *Nat. Cancer Ther.*, **5**, 2560–2571 (2006).

53) Chen L, Hutzen B, Bash D, DeAngelis S, Chen CL, Fuets JR, Li G, Li PK, Lin J. New structural analogues of curcumin exhibit potent growth suppressive activity in human colorectal carcinoma cells. *BMC Cancer*, **9**, 99 (2009).

54) Lan Y, Zhang D, Xu C, Hance KW, Marelli B, Qi J, Yu H, Qin G, Sircar A, Hernandez VM, Jenkins MH, Fontana RE, Deshpande A, Locke G, Sabzevari H, Radvanyi L, Lo KM. Enhanced pre-clinical antitumor activity of M7824, a bifunctional fusion protein simultaneously targeting PD-L1 and TGF-beta. *Sci. Transl. Med.*, **10**, eaan5488 (2018).

55) Strauss J, Heery CR, Scholm J, Madan RA, Cao L, Kang Z, Lamping E, Marte JL, Donahue RN, Grega A, Cordes L, Christensen O, Mahnke L, Helwig C, Gulyee JL. Phase I trial of M7824 (MSB001359C), a bifunctional fusion protein targeting PD-L1 and TGFbeta, in advanced solid tumors. *Clin. Cancer Res.*, **24**, 1287–1295 (2018).

56) Konkel JE, Zhang D, Jian Y, Chia Z, Zangarle-Murray T, Jin W, Chen W. Transforming growth factor-beta signaling in regulatory T cells controls T helper-17 cells and tissue-specific immune responses. *Immunity*, **46**, 660–674 (2017).

57) Schild S, Schlaer DA, Li Y, Toledo-Crow R, Panageas K, Yang X, Zhong H, Houghton AN, Silverstein SL, Mehandru I, Wolkoff JD. Blockade of surface-bound TGF-beta on regulatory T cells abrogates suppression of effector T cell function in the tumor microenvironment. *Sci. Signal.*, **10**, eaax972 (2017).

58) Park BV, Freeman VT, Hascanzadeh A, Chatterton MA, Rokhsanzadeh A, Neujahr J, Weng M, Nyhuyn JY, Schall SM, Lee SJ, Pan F, FandP Dell DM, et al. TGF-beta-mediated SMAD3 enhances PD-1 expression on antigen-specific T Cells in cancer. *Cancer Discov.*, **6**, 1366–1381 (2016).

59) Stephen SL, Payne KK, Chaurio RA, Allegrezza MJ, Zhu H, Perez-Sanz J, Perales-Puchal A, Nguyen JM, Vara-Aitor AE, Eruslanov EB, Borovsky ME, Zhang R, Laufer TM, Conejo-Garcia JR. SATB1 expression governs epigenetic repression of PD-1 in tumor-reactive T cells. *Immunity*, **46**, 51–64 (2017).

60) Tang PM, Zhou S, Meng XM, Wang QM, Li CJ, Lian GY, Huang XR, Jiang Y, Guan XY, Yan BP, KoKF, Lan HY. Smad3 promotes cancer progression by inhibiting E4BP4-mediated NK cell development. *Nat. Commun.*, **8**, 14677 (2017).

61) Zhang T, Gao X, Wang X, Chen C, Guo Y, Sun H, Peng Z, Zhang C, Li Q, Li Q. New structural analogues of curcumin exhibit potent growth suppressive activity in human colorectal carcinoma cells. *BMC Cancer*, **9**, 99 (2009).

62) Hou S, Liao Z, Song GJ, Zhang M, Zhao H, Wang L, Zhao K, Lin Z, Liang W, Li L, Wang Y, Li J, Ji X, et al. SMAD4 promotes TGF-beta-induced growth inhibition in human colorectal cancer cells. *Int. J. Oncol.*, **30**, 587–594 (2007).

63) Wang J, Chen Y, Zheng J, Zhao J, Sun J, Yang H, Zhang J, et al. New structural analogues of curcumin exert potent growth suppressive activity in human colorectal cancer cells. *BMC Cancer*, **9**, 578 (2009).

64) MaruYama T, Kobayashi S, Nakatsukasa H, Morimoto T, Asao A, Jin W, Owada Y, Ishii N, Iwabuchi Y, Yoshimura A, Chen W, Shibata H. The curcumin analog GO-Y030 controls the generation and stability of regulatory T cells. *Front. Immunol.*, **12**, 687669 (2021).

65) MaruYama T, Kobayashi S, Nakatsukasa H, Morimoto T, Asao A, Jin W, Owada Y, Ishii N, Iwabuchi Y, Yoshimura A, Chen W, Shibata H. The curcumin analog GO-Y030 inhibits STAT3 activity and cell growth in breast and pancreatic carcinomas. *Int. J. Oncol.*, **35**, 867–872 (2009).

66) MaruYama T, Kobayashi S, Shibata H, Chen W, Owada Y. Curcumin analog GO-Y030 boosts the efficacy of anti-PD-1 cancer immunotherapy. *Cancer Sci.*, **112**, 4844–4852 (2021).

67) Alegre ML, Frauwirth KA, Thompson CB. T-cell regulation by CD28 and CTLA-4. *Nat. Rev. Immunol.*, **1**, 220–228 (2001).

68) Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. *Science*, **271**, 1734–1736 (1996).

69) Selby MJ, Engagement JR, Quiqley M, Henning KA, Chen T, Srinivasan M, Korman AJ. Anti-CTLA-4 antibodies of IgG2a isotype enhance antitumor activity through reduction of intratumoral regulatory T cells. *Cancer Immunol. Res.*, **3**, 32–42 (2015).
70) Bulliard Y, Jolicour R, Windman M, Rue SM, Ettenberg S, Knee DA, Wilson NS, Dranoff G, Brogdon JL. Activating Fc gamma receptors contribute to the antitumor activities of immunoregulatory receptor-targeting antibodies. J. Exp. Med., 210, 1685–1693 (2013).

71) Yang Y, Xu W, Peng D, Wang H, Zhang X, Wang H, Xiao F, Zhu Y, Ji Y, Gulukotta K, Helseth DL Jr, Mangold KA, Sullivan M, Kaul K, Wang E, Prabhatkar BS, Li J, Wu X, Wang L, Seth P. An oncolytic adenovirus targeting transforming growth factor \(\beta\) inhibits pro-tumorigenic signals and produces immune activation: a novel approach to enhance anti-PD-1 and anti-CTLA-4 therapy. Hum. Gene Ther., 30, 1117–1132 (2019).

72) Bai X, Yi M, Jiao Y, Chu Q, Wu K. Blocking TGF-\(\beta\) signaling to enhance the efficacy of immune checkpoint inhibitor. Onco Targets Ther., 12, 9527–9538 (2019).

73) Maj T, Wang W, Crespo J, Zhang H, Wang W, Wei S, Zhao L, Vatan L, Shao I, Szeliga W, Lyssiotis C, Liu JR, Kryczek I, Zou W. Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD-L1-blockade resistance in tumor. Nat. Immunol., 18, 1332–1341 (2017).

74) Tang N, Cheng C, Zhang X, Qiao M, Li N, Mu W, Wei XF, Han W, Wang H. TGF-\(\beta\) inhibition via CRISPR promotes the long-term efficacy of CAR T cells against solid tumors. JCT Insight, 5, e133977 (2020).

75) Stubber T, Monjezi R, Wallstabe L, Kuhnemund J, Nietzsche SL, Daadkari G, Wockel A, Eisenle H, Wischhusen J, Hadezak M. Inhibition of TGF-beta-receptor signaling augments the antitumor function of ROR1-specific CAR T-cells against triple-negative breast cancer. J. Immunother. Cancer, 8, e000676 (2020).

76) Kloss CC, Lee J, Zhang A, Chen F, Melenhorst JJ, Lacey SF, Maus MV, Fraietta JA, Zhao Y, Jane CH. Dominant-negative TGF-beta receptor enhances PSMA-targeted human CAR T cell proliferation and augments prostate cancer eradication. Mol. Ther., 26, 1855–1866 (2018).

77) Golumba-Nagy V, Kuehle J, Hombach AA, Abken H. CD28-zeta CAR T cells resist TGF-beta repression through IL-2 signaling, which can be mimicked by an engineered IL-7 autocrine loop. Mol. Ther., 26, 2218–2230 (2018).

78) Hou AJ, Chang ZL, Lorenzini MH, Zah E, Chen YY. TGF-\(\beta\)-responsive CAR-T cells promote anti-tumor immune function. Bioeng. Transl. Med., 3, 75–86 (2018).

79) Vinay DS, Kwon BS. Immunotherapy of cancer with 4-1BB. Mol. Cancer Ther., 11, 1062–1070 (2012).

80) Kim JA, Averbook BJ, Chambers K, Rothchild K, Kjaergaard J, Papay R, Shu S. Divergent effects of 4-1BB antibodies on antitumor immunity and on tumor-reactive T-cell generation. Cancer Res., 61, 2031–2037 (2001).

81) Wilcox RA, Flies DB, Zhu G, Johnson AJ, Tamada K, Chapoval AI, Strome SE, Pease LR, Chen L. Provision of antigen and CD137 signaling breaks immunological ignorance, promoting regression of poorly immunogenic tumors. J. Clin. Invest., 109, 651–659 (2002).

82) Roth TL, Li PJ, Blaeschke F, Niew JJ, Apalhy R, Mowery C, Yu R, Nguyen MLT, Lee Y, Truong A, Hiatt J, Wu D, Nguyen DN, Goodman D, Blaestone JA, Ye CL, Roybal K, Shifrut E, Marson A. Pooled knockin targeting for genome engineering of cellular immunotherapies. Cell, 181, 728–744.e21 (2020).