Comparison of Symbiodiniaceae diversities in different members of a *Palythoa* species complex (Cnidaria: Anthozoa: Zoantharia)—implications for ecological adaptations to different microhabitats

Masaru Mizuyama¹,², Akira Iguchi², Mariko Iijima², Kodai Gibu²,³ and James Davis Reimer¹,⁴

¹Molecular Invertebrate Systematics and Ecology Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, Japan
²Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
³Department of Bioresources Engineering, National Institute of Technology, Okinawa College, Nago, Okinawa, Japan
⁴Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, Japan

ABSTRACT

In this study we compared genotypes of zoantharian host-associating algal symbionts among *Palythoa* species, which are among the dominant benthic reef organisms in the Ryukyu Archipelago, Japan, and evaluated Symbiodiniaceae diversities of closely related congeneric *Palythoa* species. We targeted a species complex of the zoantharian genus *Palythoa* (*P. tuberculosa*, *P. sp. yoron*, *P. mutuki*) living among different microhabitats in a narrow reef area of Tokunoshima Island. For phylogenetic analyses, we used two DNA marker regions; nuclear internal transcribed spacer (ITS) and plastid mini-circle non-coding region (psbA*ncr*), both of which have previously been used to determine Symbiodiniaceae genotypes of zoantharian species. Our results showed that all *Palythoa* species hosted symbionts of the genus *Cladocopium*, with genotypic compositions of this genus showing some variations among the three different *Palythoa* species. Additionally, we found that the *Cladocopium* genotypic composition was statistically different among *Palythoa* species, and among *P. tuberculosa* specimens in different microhabitats. Our results suggest that ecological divergence among these three *Palythoa* species may be related to differing Symbiodiniaceae diversities that may in turn contribute to eco-physiological adaptation into different microhabitats on coral reefs.

INTRODUCTION

Zoantharians (Anthozoa: Zoantharia) belong to the phylum Cnidaria and can be dominant organisms in shallow coral reef areas (e.g., *Burnett et al., 1994*). In particular, the genus...
Palythoa is often among the most dominant benthos in coral reef areas (Irei, Nozawa & Reimer, 2011; Santos et al., 2016; Reimer et al., 2017a).

We recently reported on four putative Palythoa species (P. tuberculosa, P. sp. yoron, P. mutuki, and P. aff. mutuki) that form a species complex, and were observed to all occur within a narrow range of coral reefs in southern Japan (Mizuyama, Masucci & Reimer, 2018). For example, P. tuberculosa tends to occur across a wide range of habitats from shallow to deeper areas, from the intertidal zone to the mesophotic reef slope (Mizuyama, Masucci & Reimer, 2018), and has been reported from tropical to temperate regions (Reimer, Takishita & Maruyama, 2006). On the other hand, the other three Palythoa species appear to more restricted compared to P. tuberculosa in terms of their distribution and habitats within coral reefs. Palythoa mutuki is the second most dominant species in this genus in Okinawa and is often dominant at the reef edge, in surge channels, and in small bumps on reef flats (Irei, Nozawa & Reimer, 2011). Palythoa sp. yoron has yet to be formally described, but tends to occur on reef flats and backreef moats where it is exposed to strong water currents (Shiroma & Reimer, 2010). Although there is little published information on P. aff. mutuki, it has been observed near P. mutuki colonies on the reef flat (Mizuyama, Masucci & Reimer, 2018). Although molecular delineation of these Palythoa species groups was unsuccessful with molecular data, likely due to incomplete lineage sorting, they can be distinguished via morphological and reproductive data (Mizuyama, Masucci & Reimer, 2018). In addition, these Palythoa species display different microhabitat patterns within the coral reef, but it is still unclear how these species would have diversified under almost completely sympatric conditions.

Symbiodiniaceae endosymbiotic dinoflagellates are symbiotic with various metazoan phyla including Cnidaria (LaJeunesse et al., 2018). Many zoantharians maintain Symbiodiniaceae, similar to reef-building corals (Noda et al., 2017; Wee, Kurihara & Reimer, 2019). In the case of scleractinian corals, symbiotic relationships with Symbiodiniaceae are important for host survival in various environments (Baker, 2003), and can contribute to ecological divergence of host coral species (Winters et al., 2009). Previous molecular studies have reported that species composition of Symbiodiniaceae is closely related to host genotypes in corals (e.g., Bongaerts et al., 2010; Pinzon & LaJeunesse, 2011). Thus, information on the composition Symbiodiniaceae of the four Palythoa species above would also be helpful to understand their ecological divergence into different microenvironments within a reef. In particular, genotypic composition of symbiotic algae would be informative for understanding ecological divergence of these species because the genetic and/or community changes of microbiomes are expected to be faster than that of the hosts themselves (Torda et al., 2017), facilitating eco-physiological adaptation of holobionts into different microenvironments (e.g., Reimer et al., 2017b; Wee, Kurihara & Reimer, 2019). In this study, we aimed to (1) compare diversities of symbionts among the closely related Palythoa species P. tuberculosa, P. sp. yoron, P. mutuki and P. aff. mutuki, and (2) determine if diversities of symbionts explain eco-physiological adaptations to microhabitats of each species that entailed divergences among them (P. tuberculosa, P. sp. yoron and P. mutuki).
MATERIALS & METHODS

Specimens collection

Eighty-two colonies of three *Palythoa* species (*P. tuberculosa*, *P. sp. yoron*, and *P. mutuki*) were collected from a shallow fringing reef of Tokunoshima Island, Kagoshima, Japan (Figs. 1 and 2). Specimens of these three *Palythoa* species were collected in four different areas (Table 1, Fig. 2A): reef edge (Fig. 2B, 27.76998333N, 129.03988611E) for *P. tuberculosa* (Fig. 2C); reef flat 1 (Fig. 2D, 27.76997777N, 129.03925000E) for *P. tuberculosa* (Fig. 2E) and *P. mutuki*; reef flat 2 (Fig. 2F, 27.77195277N, 129.03843611E) for *P. mutuki* (Fig. 2G); and backreef moat (Fig. 2H, 27.76990833N, 129.03855833E) for *P. tuberculosa* and *P. sp. yoron* (Fig. 2I). To avoid collecting clones, we collected individuals from clearly different colonies while maintaining a set distance from each other of at least 1 m. In a previous study, even when closer to each other (within approximately 50 × 50 cm), no clones were observed in *Zoanthus* (Cnidaria: Anthozoa: Zoantharia) colonies (Albinsky et al., 2018). In addition, eighteen previously collected specimens of *Palythoa* species including 10 *P. aff. mutuki* specimens from Mizuyama, Masucci & Reimer (2018) were also examined in this study (Table 1).

DNA extraction and PCR amplification

From each of these specimens, several polyps were cut with a surgical knife and DNA was extracted using DNeasy Blood and Tissue Kit (QIAGEN). DNA concentrations were checked by Qubit Fluorometer (ThermoFisher, Waltham, USA). Two molecular markers for genotyping symbiotic algae of *Palythoa* species were examined: nuclear internal
transcribed spacer ribosomal DNA (ITS-rDNA) region including partial 18S–ITS1–5.8S–ITS2–partial 28S (primers zITSf: CCG GTG AAT TAT TCG GAC TGA CGC AGT and ITS4: TCC TCC GCT TAT TGA TAT GC, (Baillie, Belda-Baillie & Maruyama, 2000; appx. 700–750 bp) and plastid mini-circle non-coding region DNA (psbA
ncr) (primers 7.4-Forw: GCA TGA AAG AAA TGC ACA CAA CTT CCC and 7.8-Rev: GGT TCT CTT ATT CCA TCA ATA TCT ACT G, (Moore et al., 2003; appx. 800–850 bp). These regions were amplified according to the PCR thermal conditions in Wee, Kurihara & Reimer (2019). Amplified PCR products of symbionts were directly sequenced, and sequence data were manually checked based on the chromatogram files and low quality sites were removed at the 5’ and 3’ ends by BioEdit v.7.0.5.3 (Hall, 1999). Obtained sequences were deposited in the GenBank database (MN654128–MN654306, Table 1).
Table 1 Specimen list.

Specimen ID	Location/Region	Species ID	Date (m/d/y)	Environment	Accession no. of ITS	Accession no. of psbA-F	Accession no. of psbA-R
A01PtToKa	Kaminomine/Tokunoshima	*Palythoa tuberculosa*	Jun 2, 2019	Reef edge	MN654209	MN654185	–
A02PtToKa	Kaminomine/Tokunoshima	*Palythoa tuberculosa*	Jun 2, 2019	Reef edge	MN654210	MN654184	MN654134
A03PtToKa	Kaminomine/Tokunoshima	*Palythoa tuberculosa*	Jun 2, 2019	Reef edge	MN654211	–	–
A04PtToKa	Kaminomine/Tokunoshima	*Palythoa tuberculosa*	Jun 2, 2019	Reef edge	MN654212	MN654186	MN654135
A05PtToKa	Kaminomine/Tokunoshima	*Palythoa tuberculosa*	Jun 2, 2019	Reef edge	MN654213	MN654187	MN654136
A06PtToKa	Kaminomine/Tokunoshima	*Palythoa tuberculosa*	Jun 2, 2019	Reef edge	MN654214	MN654188	–
A07PtToKa	Kaminomine/Tokunoshima	*Palythoa tuberculosa*	Jun 2, 2019	Reef edge	MN654215	MN654189	MN654137
A08PtToKa	Kaminomine/Tokunoshima	*Palythoa tuberculosa*	Jun 2, 2019	Reef edge	MN654216	MN654190	MN654138
A09PtToKa	Kaminomine/Tokunoshima	*Palythoa tuberculosa*	Jun 2, 2019	Reef edge	MN654217	–	–
A11PtToKa	Kaminomine/Tokunoshima	*Palythoa tuberculosa*	Jun 2, 2019	Reef flat	MN654218	MN654191	MN654139
A12PtToKa	Kaminomine/Tokunoshima	*Palythoa tuberculosa*	Jun 2, 2019	Reef flat	MN654219	MN654192	MN654140
A13PtToKa	Kaminomine/Tokunoshima	*Palythoa tuberculosa*	Jun 2, 2019	Reef flat	MN654220	MN654193	–
A14PtToKa	Kaminomine/Tokunoshima	*Palythoa tuberculosa*	Jun 2, 2019	Reef flat	MN654221	–	–
A16PtToKa	Kaminomine/Tokunoshima	*Palythoa tuberculosa*	Jun 2, 2019	Reef flat	MN654222	–	–
A17PtToKa	Kaminomine/Tokunoshima	*Palythoa tuberculosa*	Jun 2, 2019	Reef flat	MN654223	MN654194	MN654141
A18PtToKa	Kaminomine/Tokunoshima	*Palythoa tuberculosa*	Jun 2, 2019	Reef flat	MN654224	–	–
A19PtToKa	Kaminomine/Tokunoshima	*Palythoa tuberculosa*	Jun 2, 2019	Reef flat	MN654225	MN654195	MN654142
A20PtToKa	Kaminomine/Tokunoshima	*Palythoa tuberculosa*	Jun 2, 2019	Reef flat	MN654226	MN654198	–
A21PtToKa	Kaminomine/Tokunoshima	*Palythoa tuberculosa*	Jun 2, 2019	Backreef moat	MN654228	MN654169	MN654159
A22PtToKa	Kaminomine/Tokunoshima	*Palythoa tuberculosa*	Jun 2, 2019	Backreef moat	MN654229	–	–
A24PtToKa	Kaminomine/Tokunoshima	*Palythoa tuberculosa*	Jun 2, 2019	Backreef moat	MN654230	–	MN654143
A25PtToKa	Kaminomine/Tokunoshima	*Palythoa tuberculosa*	Jun 2, 2019	Backreef moat	MN654231	–	–
A26PtToKa	Kaminomine/Tokunoshima	*Palythoa tuberculosa*	Jun 2, 2019	Backreef moat	MN654232	–	–
A27PtToKa	Kaminomine/Tokunoshima	*Palythoa tuberculosa*	Jun 2, 2019	Backreef moat	MN654233	–	–
A28PtToKa	Kaminomine/Tokunoshima	*Palythoa tuberculosa*	Jun 2, 2019	Backreef moat	MN654234	–	–
A29PtToKa	Kaminomine/Tokunoshima	*Palythoa tuberculosa*	Jun 2, 2019	Backreef moat	MN654235	–	–

(continued on next page)
Specimen ID	Location/Region	Species ID	Date (m/d/y)	Environment	Accession no. of ITS	Accession no. of psbA-F	Accession no. of psbA-R
A30PtToKa	Kaminomine/Tokunoshima	Palythoa tuberculosa	Jun 2, 2019	Backreef moat	MN654236	–	–
B01PmToKa	Kaminomine/Tokunoshima	Palythoa mutuki	Jun 2, 2019	Reef flat	MN654237	–	–
B02PmToKa	Kaminomine/Tokunoshima	Palythoa mutuki	Jun 2, 2019	Reef flat	MN654238	MN654199	MN654144
B03PmToKa	Kaminomine/Tokunoshima	Palythoa mutuki	Jun 2, 2019	Reef flat	MN654239	–	–
B04PmToKa	Kaminomine/Tokunoshima	Palythoa mutuki	Jun 2, 2019	Reef flat	MN654240	–	–
B05PmToKa	Kaminomine/Tokunoshima	Palythoa mutuki	Jun 2, 2019	Reef flat	MN654241	–	MN654145
B06PmToKa	Kaminomine/Tokunoshima	Palythoa mutuki	Jun 2, 2019	Reef flat	MN654242	MN654170	MN654160
B07PmToKa	Kaminomine/Tokunoshima	Palythoa mutuki	Jun 2, 2019	Reef flat	MN654243	–	MN654161
B08PmToKa	Kaminomine/Tokunoshima	Palythoa mutuki	Jun 2, 2019	Reef flat	MN654244	MN654171	MN654162
B09PmToKa	Kaminomine/Tokunoshima	Palythoa mutuki	Jun 2, 2019	Reef flat	MN654245	–	–
B11PmToKa	Kaminomine/Tokunoshima	Palythoa mutuki	Jun 2, 2019	Reef flat	MN654246	–	–
B12PmToKa	Kaminomine/Tokunoshima	Palythoa mutuki	Jun 3, 2019	Reef flat	MN654247	MN654172	–
B13PmToKa	Kaminomine/Tokunoshima	Palythoa mutuki	Jun 3, 2019	Reef flat	MN654248	–	–
B14PmToKa	Kaminomine/Tokunoshima	Palythoa mutuki	Jun 3, 2019	Reef flat	MN654249	MN654173	–
B15PmToKa	Kaminomine/Tokunoshima	Palythoa mutuki	Jun 3, 2019	Reef flat	MN654250	–	–
B16PmToKa	Kaminomine/Tokunoshima	Palythoa mutuki	Jun 3, 2019	Reef flat	MN654251	–	–
B17PmToKa	Kaminomine/Tokunoshima	Palythoa mutuki	Jun 3, 2019	Reef flat	MN654252	MN654174	MN654163
B18PmToKa	Kaminomine/Tokunoshima	Palythoa mutuki	Jun 3, 2019	Reef flat	MN654253	MN654200	–
B20PmToKa	Kaminomine/Tokunoshima	Palythoa mutuki	Jun 3, 2019	Reef flat	MN654254	–	–
B21PmToKa	Kaminomine/Tokunoshima	Palythoa mutuki	Jun 3, 2019	Reef flat	MN654255	–	–
B22PmToKa	Kaminomine/Tokunoshima	Palythoa mutuki	Jun 3, 2019	Reef flat	MN654256	–	–
B23PmToKa	Kaminomine/Tokunoshima	Palythoa mutuki	Jun 3, 2019	Reef flat	MN654257	–	–
B24PmToKa	Kaminomine/Tokunoshima	Palythoa mutuki	Jun 3, 2019	Reef flat	MN654258	MN654175	MN654164
B25PmToKa	Kaminomine/Tokunoshima	Palythoa mutuki	Jun 3, 2019	Reef flat	–	MN654176	MN654165
B26PmToKa	Kaminomine/Tokunoshima	Palythoa mutuki	Jun 3, 2019	Reef flat	MN654259	–	MN654166
B28PmToKa	Kaminomine/Tokunoshima	Palythoa mutuki	Jun 3, 2019	Reef flat	–	MN654177	MN654167
C01PyToKa	Kaminomine/Tokunoshima	Palythoa sp. yoron	Jun 2, 2019	Backreef moat	MN654260	–	–
C02PyToKa	Kaminomine/Tokunoshima	Palythoa sp. yoron	Jun 2, 2019	Backreef moat	MN654261	–	–
C03PyToKa	Kaminomine/Tokunoshima	Palythoa sp. yoron	Jun 2, 2019	Backreef moat	MN654262	–	–
C04PyToKa	Kaminomine/Tokunoshima	Palythoa sp. yoron	Jun 2, 2019	Backreef moat	MN654263	–	–
C05PyToKa	Kaminomine/Tokunoshima	Palythoa sp. yoron	Jun 2, 2019	Backreef moat	MN654264	–	–
Table 1 (continued)

Specimen ID	Location/Region	Species ID	Date (m/d/y)	Environment	Accession no. of ITS	Accession no. of psbA-F	Accession no. of psbA-R
C06PyToKa	Kaminomine/Tokunoshima	Palythoa sp. yoron	Jun 2, 2019	Backreef moat	MN654265	–	–
C07PyToKa	Kaminomine/Tokunoshima	Palythoa sp. yoron	Jun 2, 2019	Backreef moat	MN654266	–	–
C08PyToKa	Kaminomine/Tokunoshima	Palythoa sp. yoron	Jun 2, 2019	Backreef moat	MN654267	–	–
C09PyToKa	Kaminomine/Tokunoshima	Palythoa sp. yoron	Jun 2, 2019	Backreef moat	MN654268	–	–
C10PyToKa	Kaminomine/Tokunoshima	Palythoa sp. yoron	Jun 2, 2019	Backreef moat	MN654269	–	–
C11PyToKa	Kaminomine/Tokunoshima	Palythoa sp. yoron	Jun 2, 2019	Backreef moat	MN654270	–	–
C12PyToKa	Kaminomine/Tokunoshima	Palythoa sp. yoron	Jun 2, 2019	Backreef moat	MN654271	MN654201	MN654146
C13PyToKa	Kaminomine/Tokunoshima	Palythoa sp. yoron	Jun 2, 2019	Backreef moat	MN654272	–	–
C14PyToKa	Kaminomine/Tokunoshima	Palythoa sp. yoron	Jun 2, 2019	Backreef moat	MN654273	MN654179	MN654147
C15PyToKa	Kaminomine/Tokunoshima	Palythoa sp. yoron	Jun 2, 2019	Backreef moat	MN654274	MN654180	–
C16PyToKa	Kaminomine/Tokunoshima	Palythoa sp. yoron	Jun 2, 2019	Backreef moat	MN654275	MN654202	MN654148
C17PyToKa	Kaminomine/Tokunoshima	Palythoa sp. yoron	Jun 2, 2019	Backreef moat	MN654276	MN654203	MN654149
C18PyToKa	Kaminomine/Tokunoshima	Palythoa sp. yoron	Jun 2, 2019	Backreef moat	MN654277	–	MN654168
C19PyToKa	Kaminomine/Tokunoshima	Palythoa sp. yoron	Jun 3, 2019	Backreef moat	MN654278	–	–
C20PyToKa	Kaminomine/Tokunoshima	Palythoa sp. yoron	Jun 3, 2019	Backreef moat	MN654279	MN654204	MN654150
C21PyToKa	Kaminomine/Tokunoshima	Palythoa sp. yoron	Jun 3, 2019	Backreef moat	MN654280	MN654205	MN654151
C22PyToKa	Kaminomine/Tokunoshima	Palythoa sp. yoron	Jun 3, 2019	Backreef moat	MN654281	MN654206	MN654152
C24PyToKa	Kaminomine/Tokunoshima	Palythoa sp. yoron	Jun 3, 2019	Backreef moat	MN654282	MN654181	–
C25PyToKa	Kaminomine/Tokunoshima	Palythoa sp. yoron	Jun 3, 2019	Backreef moat	MN654283	MN654196	MN654153
C26PyToKa	Kaminomine/Tokunoshima	Palythoa sp. yoron	Jun 3, 2019	Backreef moat	MN654284	–	MN654154
Specimen ID	Location/Region	Species ID	Date (m/d/y)	Environment	Accession no. of ITS	Accession no. of psbA-F	Accession no. of psbA-R
------------	-----------------------	--------------------	--------------	-----------------	----------------------	-------------------------	-------------------------
C27PyToKa	Kaminomine/Tokunoshima	*Palythoa* sp. yoron	Jun 3, 2019	Backreef moat	MN654285	MN654207	MN654155
C28PyToKa	Kaminomine/Tokunoshima	*Palythoa* sp. yoron	Jun 3, 2019	Backreef moat	MN654286	–	–
C29PyToKa	Kaminomine/Tokunoshima	*Palythoa* sp. yoron	Jun 3, 2019	Backreef moat	MN654287	MN654208	MN654156
C30PyToKa	Kaminomine/Tokunoshima	*Palythoa* sp. yoron	Jun 3, 2019	Backreef moat	MN654288	MN654182	MN654157
159PamToKa	Kaminomine/Tokunoshima	*Palythoa* aff. *mutuki*	July 28, 2010	In Mizuyama, Masucci & Reimer (2018)	MN654300	–	–
233PamErYa	Yakomo/Okinoerabu	*Palythoa* aff. *mutuki*	Jun 17, 2011	In Mizuyama, Masucci & Reimer (2018)	MN654301	–	–
237PamErSu	Sumiyoshi/Okinoerabu	*Palythoa* aff. *mutuki*	Jun 18, 2011	In Mizuyama, Masucci & Reimer (2018)	MN654302	–	–
248PamToKa	Kaminomine/Tokunoshima	*Palythoa* aff. *mutuki*	Jun 21, 2011	In Mizuyama, Masucci & Reimer (2018)	MN654303	–	–
250PamToKa	Kaminomine/Tokunoshima	*Palythoa* aff. *mutuki*	Jun 21, 2011	In Mizuyama, Masucci & Reimer (2018)	MN654304	MN654183	MN654131
328PamOkTe	Teniya/Okinawa	*Palythoa* aff. *mutuki*	Apr 5, 2012	In Mizuyama, Masucci & Reimer (2018)	MN654305	–	–
364PamOkOk	Oku/Okinawa	*Palythoa* aff. *mutuki*	Jun 25, 2012	In Mizuyama, Masucci & Reimer (2018)	MN654306	–	–
Specimen ID	Location/Region	Species ID	Date (m/d/y)	Environment	Accession no. of ITS	Accession no. of psbA-F	Accession no. of psbA-R
-------------	-----------------------	----------------	--------------	--	--------------------------	------------------------	------------------------
2PtOkOd	Odo/Okinawa	Palythoa tuberculosa	Aug 18, 2009	In Mizuyama, Masucci & Reimer (2018)	MN654289	–	MN654158
39PtYoUk	Ukachi/Yoron	Palythoa tuberculosa	Mar 4, 2010	In Mizuyama, Masucci & Reimer (2018)	MN654290	–	MN654132
63PtErYa	Yakomo/Okinoerabu	Palythoa tuberculosa	Mar 5, 2010	In Mizuyama, Masucci & Reimer (2018)	MN654291	–	MN654133
100PtToKa	Kaminomine/Tokunoshima	Palythoa tuberculosa	Mar 9, 2010	In Mizuyama, Masucci & Reimer (2018)	MN654292	–	MN654128
15PyOkOd	Odo/Okinawa	Palythoa sp. yoron	Sep 5, 2009	In Mizuyama, Masucci & Reimer (2018)	MN654297	–	MN654130
51PyYoUk	Ukachi(West)/Yoron	Palythoa sp. yoron	Mar 4, 2010	In Mizuyama, Masucci & Reimer (2018)	MN654298	–	–
85PyErYa	Yakomo/Okinoerabu	Palythoa sp. yoron	Mar 5, 2010	In Mizuyama, Masucci & Reimer (2018)	MN654296	MN654197	–
105PyToKa	Kaminomine/Tokunoshima	Palythoa sp. yoron	Mar 9, 2010	In Mizuyama, Masucci & Reimer (2018)	MN654299	MN654178	MN654129

(continued on next page)
Specimen ID	Location/Region	Species ID	Date (m/d/y)	Environment	Accession no. of ITS	Accession no. of psbA-F	Accession no. of psbA-R
218PmOkOd	Odo/Okinawa	*Palythoa mutuki*	May 4, 2011	In Mizuyama, Masucci & Reimer (2018)	MN654294	–	–
77PmErYa	Yakomo/Okinoerabu	*Palythoa mutuki*	Mar 5, 2010	In Mizuyama, Masucci & Reimer (2018)	MN654293	–	–
280PmToKa	Kaminomine/Tokunoshima	*Palythoa mutuki*	Oct 5, 2011	In Mizuyama, Masucci & Reimer (2018)	MN654295	–	–
Haplotype network inference and phylogenetic estimation

Obtained sequences for ITS-rDNA, psbA^{ncr} forward and reverse regions were aligned, respectively. In order to discriminate taxa of Symbiodiniaceae, we extracted the ITS2 region utilizing SymPortal (Hume et al., 2019; https://symportal.org/) and performed BLASTN search against the nt database using the NCBI website (https://blast.ncbi.nlm.nih.gov/Blast.cgi) for ITS-rDNA sequences. Haplotype network inference was performed for ITS-rDNA sequences using the alignment with TCS networks method (Clement et al., 2002) in PopART (Leigh & Bryant, 2015). Any columns in the alignment with gaps or ambiguous sites were automatically masked in the inference. The phylogenetic analyses were performed by MEGA version X (Kumar et al., 2018) and any loci with ambiguous (double peaks) sites and gaps was automatically deleted completely for calculation in order to avoid over/underestimation of genetic distance among each sequence. Molecular phylogenetic trees of each marker were constructed by maximum likelihood (ML) and neighbor joining (NJ) methods under the JC+G model for ITS-rDNA region and the JC model for psbA^{ncr} regions adopted by modeltest program within MEGA X. The significance of each node was tested by bootstrap test with 1,000 replications. Bayesian inference was performed using BEAST2 (Bouckaert et al., 2019) under default settings other than the clock model being changed to the relaxed log normal model, which showed the highest likelihood value according to the model comparison program compiled in BEAST2 (Drummond et al., 2006). Posterior probability (PP) on each branch was calculated summarizing four independent 10 million MCMC simulations.

Statistical analyses

To clarify the relationships between (1) symbiont lineages and host species, and (2) symbiont lineages and host microhabitats, Fisher’s exact test was conducted for the compositions of genotype for ITS-rDNA region and monophyletic clades for psbA^{ncr} forward and reverse regions. It should be noted that host microhabitat was restricted by host species for P. sp. yoron and P. mutuki, and thus we only targeted P. tuberculosa for these analyses (aim 2 above) When significance was detected in Fisher’s exact test, Cramér’s coefficient of association (V) was calculated to evaluate which factors (host species or host microhabitat) were strongly associated with each other.

RESULTS

Sequence alignment

The total number of sequences of Symbiodiniaceae from specimens of the four Palythoa species obtained in this study was 98 sequences for the ITS-rDNA region (513–773 bp), 40 sequences for the psbA^{ncr} forward region (330–547 bp), and 41 sequences for the psbA^{ncr} reverse region (352–494 bp). As the primer set for psbA^{ncr} used in this study did not make a congruent contig, obtained sequences of forward regions and reverse regions were aligned separately (Noda et al., 2017). After alignment, a total of 449 sites with 5 parsimony informative (=PI) sites for the ITS-rDNA region, 260 sites with 94 PI sites for the psbA^{ncr} forward region, and 293 sites with 40 PI sites for the psbA^{ncr} reverse region were used for each phylogenetic estimation.
Figure 3 Haplotype network tree constructed with nuclear ITS-rDNA region alignment using TCS networks method. Scale represents number of sequences with circle sizes proportional to haplotype frequency. Colors represent Palythoa species: red, P. tuberculosa; yellow, P. sp. yoron; blue, P. mutuki; green, P. aff. mutuki.

Barcoding, haplotype network and phylogenetic trees

As the result of BLAST searches, all query sequences of the ITS-rDNA region \((n = 98)\) were confirmed as belonging to the genus Cladocopium. Seventeen ITS-rDNA unique sequences (=genotypes) were observed in TCS network, with most of the sequences belonging to one of major three ITS-rDNA genotypes (Fig. 3, Table S1). No significant clade was detected for the ITS-rDNA phylogenetic tree (Fig. S1). Summarizing these ITS-rDNA genotypes from the viewpoint of host species, \(P.\) tuberculosa possessed mainly Genotype01 \((n = 20)\) followed by Genotype02 \((n = 7)\), and \(P.\) sp. yoron also possessed mainly Genotype01 \((n = 20)\) followed by Genotype03 \((n = 8)\) (see details in Table S1). On the other hand, \(P.\) mutuki possessed mainly Genotype02 \((n = 13)\) with a few Genotype01 \((n = 3)\) and Genotype03 \((n = 2)\). Although the number of specimens examined was smaller \((n = 6)\) than those the other species, \(P.\) aff. mutuki also possessed mainly Genotype01 \((n = 5)\).

In contrast, phylogenetic trees generated from psbA\textsubscript{ncr} regions had a higher resolution. Two monophyletic clades were well supported by bootstrap values and posterior probability in both forward (Fig. 4 clf1, ML = 100, NJ = 100, PP = 1 and clf2, ML = 100, NJ = 100, PP = 1) and reverse trees (Fig. 5 clr1 and clr2, ML = 100, NJ = 100, PP = 1). Summarizing these Symbiodiniaceae lineages from the viewpoint of host species, \(P.\) tuberculosa inhabiting the reef edge possessed clf1/clr1 lineage \((n = 7/5)\) and one specimen inhabiting at the backreef moat possessed clf2/clr2 lineage. Palythoa sp. yoron inhabiting at the backreef moat possessed mainly clf1/clr1 \((n = 9/13)\), however, approximately one third of specimens \((n = 5)\) possessed other lineages. On the other hand, \(P.\) mutuki inhabiting the reef flat possessed mainly clf2/clr2 \((n = 8/8)\) other than two specimens that possessed clf1/clr1. Unfortunately, as most of \(P.\) aff. mutuki specimens were not amplified by this primer set, we could only obtain phylogenetic information on one specimen which possessed the same lineage as \(P.\) sp. yoron (C24ToKa-PF) for the forward region and clr1 for the reverse region.
Figure 4 Molecular phylogenetic tree of Symbiodiniaceae of Palythoa species using mitochondrial psbAncr forward region. Bootstrap values of maximum likelihood (ML) and neighbor joining (NJ) methods, and posterior probability (PP) are shown more than 70% for ML and NJ, and more than 0.95 for PP at the nodes, respectively. Scale bars indicate substitutions per site. Colored letters and colored diagrams represent Palythoa species and their habitats, respectively: red, \textit{P. tuberculosa}; yellow, \textit{P. sp. yoron}; blue, \textit{P. mutuki}; green, \textit{P. aff. mutuki}; circle in pink, reef edge; triangle in purple, reef flat; square in orange, back-reef moat.

Full-size DOI: 10.7717/peerj.8449/fig-4

Relationships among symbiont genotype/lineages, host species and host microhabitats

From the results of Fisher’s Exact test, significant differences were detected in all combinations, i.e., ITS-rDNA genotype and host species \((p < 0.01)\), psbAncr forward lineages and host species \((p < 0.01)\), psbAncr reverse lineages and host species \((p < 0.01)\), and ITS-rDNA genotype and host microhabitats for \textit{P. tuberculosa} \((p < 0.05)\) (Table 2). In other words, it was shown that Symbiodiniaceae lineages and host species were not independent, nor were Symbiodiniaceae lineages and host microhabitats for \textit{P. tuberculosa}.

Mizuyama et al. (2020), \textit{PeerJ}, DOI 10.7717/peerj.8449
The effective dose calculated by Cramér's coefficient of association (V) was largest between host species and psbA\textit{ncr} forward/reverse lineages ($V = 0.786$, $V = 0.682$, respectively), and moderate for the other combinations (host species and ITS-rDNA genotypes, $V = 0.477$; host microhabitats and ITS-rDNA genotypes).
Table 2 Composition of genotype for ITS-rDNA sequences and monophyletic clades for psbA_{ncr} sequences of Symbiodiniaceae from Palythoa species used in this study and microenvironments of host habitats. Significances were tested by Fisher’s Exact Test and V value represents Cramer’s coefficient of association.

Symbiodiniaceae genotype (ITS-rDNA)	Symbiodiniaceae lineage (psbA_{ncr} forward region)	Symbiodiniaceae lineage (psbA_{ncr} reverse region)
Genotype01	Genotype02	Genotype03
	clf1	clf2
	clr1	clr2
Host species		
P. tuberculosa	20	7
	0	13
P. sp. yoron	20	1
	8	10
P. mutuki	3	13
	2	10
P. aff. mutuki	5	1
	0	–
Total	48	22
	10	13
P. aff. mutuki		
Host habitats of P. tuberculosa		
Reef edge	8	0
Reef flat	7	2
Backreef moat	2	4
Total	17	6
p < 0.01, V = 0.477	p < 0.01, V = 0.786	p < 0.01, V = 0.682
Notes.		
P. aff. mutuki was removed from statistical analyses of psbA_{ncr} region due to low numbers of specimens.		

DISCUSSION

Symbiodiniaceae genotype/lineage and host species

The development of molecular markers such as psbA_{ncr} that have higher resolution than commonly used 18S or ITS ribosomal DNA markers has helped unveil a more detailed picture of the genetic diversity of Symbiodiniaceae (Takishita et al., 2003; LaJeunesse & Thornhill, 2011; LaJeunesse et al., 2018) (but see also Hume et al., 2019 who utilized intragenomic variation of ITS2 to resolve genetic delineations). Accordingly, host species biodiversity has been discovered from the initial observation of differences of Symbiodiniaceae phylotypes in some cnidarian species (e.g., gorgonian Eunicea flexuosa, Prada et al., 2014; scleractinian coral Seriatopora hystrix, Warner, Van Oppen & Willis, 2015).

From the results of Mizuyama, Masucci & Reimer (2018), none of the four molecular markers utilized could clearly delineate four Palythoa species, although they could delineate two closely related species groups composed of P. tuberculosa—P. sp. yoron and P. mutuki—P. aff. mutuki. These previous results seem to be reflected in the results in the current study of Symbiodiniaceae genotypes of ITS-rDNA and lineages of psbA_{ncr} regions. Palythoa tuberculosa and P. sp. yoron mostly shared the same symbiont genotype (Genotype01); nevertheless, they also partially shared the other genotypes with P. mutuki (Genotype02 and Genotype03). With regard to psbA_{ncr} lineages, even though the delineation of species groups between P. tuberculosa—P. sp. yoron and P. mutuki were shown more clearly, they were not divided completely. The situation requires further investigation via obtaining more P. aff. mutuki specimens’ psbA_{ncr} sequences. Unfortunately, in the current study, despite much searching, we could not find large numbers of P. aff. mutuki on the reef in Tokunoshima Island, even though they were previous sampled for...
Mizuyama, Masucci & Reimer (2018). We do not know what happened to P. aff. mutuki colonies, but they may have been strongly affected by the bleaching events of 2016 and 2017 observed in southern Japan (Masucci et al., 2019).

Symbiodiniaceae genotype/lineage and microhabitat of host species

From the results of the phylogenetic analyses, three microhabitats were not exclusively allocated in distinct Symbiodiniaceae genotypes or monophyletic clades, but the ratios of different genotypes were significantly different for P. tuberculosa. Regarding P. tuberculosa, Symbiodiniaceae Genotype01 was mostly detected on the reef edge and reef flat, while Genotype02 was mainly observed in the backreef moat. Although there were not enough samples to conduct statistical examinations of P. sp. yoron and P. mutuki due to their habitat specificity, Genotype02 and clf2/clr2 were detected mainly on the reef flat, while Genotype01 and clf1/clr1 were observed from all three environments.

It has been reported that zoantharian species with different symbiotic genotypes show species-specific photosynthetic responses against seawater temperature and pCO$_2$ (Graham & Sanders, 2016; Reimer et al., 2017b; Wee, Kurihara & Reimer, 2019). Although the four Palythoa species in this study occurred sympatrically on one reef, the environmental conditions in a reef can be quite different according to small-scale geographical features. Seawater temperatures on reef flats frequently reach near 40 $^\circ$C (Achituv & Dubinsky, 1990). In enclosed reefs, seawater temperatures and pCO$_2$ show higher variations than those in exposed reefs (Suzuki, Nakamori & Kayanne, 1995; Fitt et al., 2001). Thus, the relationship between Symbiodiniaceae and host Palythoa species may change among different microhabitats in a reef area, facilitating ecological divergence of Palythoa species within a narrow geographic range.

Although a previous molecular study could not distinguish the boundaries among these Palythoa species (Mizuyama, Masucci & Reimer, 2018), it is suggested by our results that these species are ecologically divergent, and physiological differences within Symbiodiniaceae species may contribute to their ecological adaptation. In fact, Howells et al. (2012) reported that Cladocopium C1 in Acropora tenuis showed different physiological responses between northern and southern populations in the Great Barrier Reef. Considering that Cladocopium contains various species distinguished by differences of only a few bp in the ITS2 marker (Thornhill et al., 2014), meta-barcoding analyses via next-generation sequencing would be necessary to further understand the detailed relationship between Symbiodiniaceae and Palythoa species complex.

CONCLUSIONS

We succeeded in obtaining genotypic data of Symbiodiniaceae from four putative Palythoa species and detected micro-scale geographic variations of the symbiotic algae among these species within a single coral reef. Our results suggest that ecological divergence among Palythoa species may be related to differences in Symbiodiniaceae diversities among microhabitats, even within a narrow reef area. More powerful genetic data such as that generated by next-generation sequencing could provide us with additional understanding
on how neighboring *Palythoa* species have co-evolved with Symbiodiniaceae among the different microhabitats in a reef.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This study was funded by the research support programs of the National Institute of Advanced Industrial Science and Technology to Masaru Mizuyama. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
National Institute of Advanced Industrial Science and Technology.

Competing Interests
James D. Reimer is an Academic Editor for PeerJ.

Author Contributions
- Masaru Mizuyama conceived and designed the experiments, performed the experiments, analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the paper, and approved the final draft.
- Akira Iguchi analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the paper, and approved the final draft.
- Mariko Iijima and Kodai Gibu performed the experiments, authored or reviewed drafts of the paper, and approved the final draft.
- James Davis Reimer conceived and designed the experiments, authored or reviewed drafts of the paper, and approved the final draft.

Field Study Permissions
The following information was supplied relating to field study approvals (i.e., approving body and any reference numbers):

No permission or institutional approval is required for collecting Zoantharia in Japan. Please see *Mizuyama, Masucci & Reimer, 2018* or contact James D. Reimer for details (University of the Ryukyus; email: jreimer@sci.u-ryukyu.ac.jp).

DNA Deposition
The following information was supplied regarding the deposition of DNA sequences:

Nuclear internal transcribed spacer ribosomal DNA (ITS-rDNA) and plastid mini-circle non-coding region (psbAncr) sequences of Symbiodiniaceae are available at GenBank: MN654128–MN654306.

Data Availability
The following information was supplied regarding data availability:
The alignments of sequences for ITS-rDNA, psbA non-coding forward region and reverse region and the chromatogram files of ITS-rDNA region, psbA non-coding forward region and reverse region are available in the Supplemental File. Specimens can be viewed at the National Institute of Advanced Industrial Science and Technology (AIST). A complete list of the specimen accession numbers is available in Table 1.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/peerj.8449#supplemental-information.

REFERENCES

Achituv Y, Dubinsky Z. 1990. Evolution and zoogeography of coral reefs ecosystems of the world. In: Coral reefs. Amsterdam: Elsevier.

Albinsky D, Wham D, Shinzato N, Reimer JD. 2018. Population connectivity in the common reef zoantharian Zoanthus sansibaricus (Anthozoa: Hexacorallia) in southern Japan. Zoological Science 35(4):321–330 DOI 10.2108/zs180007.

Bailie BK, Belsa-Bailie CA, Maruyama T. 2000. Conspecificity and Indo-Pacific distribution of Symbiodinium genotypes (Dinophyceae) from giant clams. Journal of Phycology 36(6):1153–1161 DOI 10.1046/j.1529-8817.2000.00010.x.

Baker AC. 2003. Flexibility and specificity in coral-algal symbiosis: diversity, ecology, and biogeography of Symbiodinium. Annual Review of Ecology, Evolution, and Systematics 34(1):661–689 DOI 10.1146/annurev.ecolsys.34.011802.132417.

Bongaerts P, Riginos C, Ridgway T, Sampayo EM, Van Oppen MJ, Englebert N, Vermeulen F, Hoegh-Guldberg O. 2010. Genetic divergence across habitats in the widespread coral Seriatopora hystrix and its associated Symbiodinium. PLOS ONE 5(5):e10871 DOI 10.1371/journal.pone.0010871.

Bouckaert R, Vaughan TG, Barido-Sottani J, Duchène S, Fourment M, Gavryushkina A, Heled J, Jones G, Künnert D, Maio N, Matschiner M, Enders BK, Müller NF, Ogilvie HA, Plessis L, Popinga A, Rambaut A, Rasmussen D, Siveroni I, Suchard MA, Wu CH, Xie D, Zhang C, Stadler T, Drummond AJ. 2019. BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLOS Computational Biology 15(4):e1006650 DOI 10.1371/journal.pcbi.1006650.

Burnett WJ, Benzie JAH, Beardmore JA, Ryland JS. 1994. High genetic variability and patchiness in a common Great Barrier Reef zoanthid (Palythoa caesia). Marine Biology 121(1):153–160 DOI 10.1007/BF00349484.

Clement MJ, Snell Q, Walker P, Posada D, Crandall KA. 2002. TCS: estimating gene genealogies. In: Proc. 16th international parallel and distributed processing symposium, vol.2. 184.

Drummond AJ, Ho SY, Phillips MJ, Rambaut A. 2006. Relaxed phylogenetics and dating with confidence. PLOS Biology 4(5):e88 DOI 10.1371/journal.pbio.0040088.

Fitt WK, Brown BE, Warner ME, Dunne R. 2001. Coral bleaching: interpretation of thermal tolerance limits and thermal thresholds in tropical corals. Coral Reefs 20(1):51–65 DOI 10.1007/s003380100146.
Graham ER, Sanders RW. 2016. Species-specific photosynthetic responses of symbiotic zoanthids to thermal stress and ocean acidification. *Marine Ecology* 37(2):442–458 DOI 10.1111/maec.12291.

Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. *Nucleic Acids Symposium Series* 41:95–98.

Howells EJ, Beltran VH, Larsen NW, Bay LK, Willis BL, Van Oppen MJH. 2012. Coral thermal tolerance shaped by local adaptation of photosymbionts. *Nature Climate Change* 2(2):116–120 DOI 10.1038/nclimate1330.

Hume BCC, Smith EG, Ziegler M, Warrington HJM, Burt JA, LaJeunesse TC, Wiedenmann J, Voolstra CR. 2019. SymPortal: a novel analytical framework and platform for coral algal symbiont next-generation sequencing ITS2 profiling. *Molecular Ecology Resources* 19(4):1063–1080.

Irei Y, Nozawa Y, Reimer JD. 2011. Distribution patterns of five zoanthid species in Okinawa Island, Japan. *Zoological Studies* 50(4):426–433.

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. *Molecular Biology and Evolution* 35:1547–1549 DOI 10.1093/molbev/msy096.

LaJeunesse TC, Parkinson JE, Gabrielson PW, Jeong HJ, Reimer JD, Voolstra CR, Santos SR. 2018. Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. *Current Biology* 28(16):2570–2580 DOI 10.1016/j.cub.2018.07.008.

Leigh JW, Bryant D. 2015. popart: full-feature software for haplotype network construction. *Methods in Ecology and Evolution* 6(9):1110–1116 DOI 10.1111/2041-210X.12410.

Moore RB, Ferguson KM, Loh WK, Hoegh-Guldberg O, Carter DA. 2003. Highly organized structure in the non-coding region of the psbA minicircle from clade C *Symbiodinium*. *International Journal of Systematic and Evolutionary Microbiology* 53(6):1725–1734 DOI 10.1099/ijs.0.02594-0.

Noda H, Parkinson JE, Yang SY, Reimer JD. 2017. A preliminary survey of zoantharian endosymbionts shows high genetic variation over small geographic scales on Okinawa-jima Island, Japan. *PeerJ* 5:e3740 DOI 10.7717/peerj.3740.
Pinzon JH, LaJeunesse TC. 2011. Species delimitation of common reef corals in the genus Pocillopora using nucleotide sequence phylogenies, population genetics and symbiosis ecology. Molecular Ecology 20(2):311–325 DOI 10.1111/j.1365-294X.2010.04939.x.

Prada C, McIlroy SE, Beltrán DM, Valint DJ, Ford SA, Hellberg ME, Coffroth MA. 2014. Cryptic diversity hides host and habitat specialization in a gorgonian-algal symbiosis. Molecular Ecology 23(13):3330–3340 DOI 10.1111/mec.12808.

Reimer JD, Santos MEA, Kise H, Neo ML, Chen CA, Soong K. 2017a. Diversity of Zoantharia (Anthozoa: Hexacorallia) at Dongsha Atoll in the South China Sea. Regional Studies in Marine Science 12:49–57 DOI 10.1016/j.rsma.2017.02.006.

Reimer JD, Herrera M, Gatins R, Roberts MB, Parkinson JE, Berumen ML. 2017b. Latitudinal variation in the symbiotic dinoflagellate Symbiodinium of the common reef zoantharian Palythoa tuberculosa on the Saudi Arabian coast of the Red Sea. Journal of Biogeography 44(3):661–673 DOI 10.1111/jbi.12795.

Reimer JD, Takishita K, Maruyama T. 2006. Molecular identification of symbiotic dinoflagellates (Symbiodinium spp.) from Palythoa spp. (Anthozoa: Hexacorallia) in Japan. Coral Reefs 25(4):521–527 DOI 10.1007/s00338-006-0151-4.

Santos MEA, Kitahara MV, Lindner A, Reimer JD. 2016. Overview of the order Zoantharia (Cnidaria: Anthozoa) in Brazil. Marine Biodiversity 46(3):547–559 DOI 10.1007/s12526-015-0396-7.

Shiroma E, Reimer JD. 2010. Investigations into the reproductive patterns, ecology, and morphology in the zoanthid genus Palythoa (Cnidaria: Anthozoa: Hexacorallia) in Okinawa, Japan. Zoological Studies 49(2):182–194.

Suzuki A, Nakamori T, Kayanne H. 1995. The mechanism of production enhancement in coral reef carbonate systems: model and empirical results. Sedimentary Geology 99(3-4):259–280 DOI 10.1016/0037-0738(95)00048-D.

Takishita K, Ishikura M, Koike K, Maruyama T. 2003. Comparison of phylogenies based on nuclear-encoded SSU rDNA and plastid-encoded psbA in the symbiotic dinoflagellate genus Symbiodinium. Phycologia 42(3):285–291 DOI 10.2216/i0031-8884-42-3-285.1.

Thornhill DJ, Lewis AM, Wham DC, LaJeunesse TC. 2014. Host-specialist lineages dominate the adaptive radiation of reef coral endosymbionts. Evolution 68(2):352–367 DOI 10.1111/evo.12270.

Torda G, Donelson JM, Aranda M, Barshis DJ, Bay L, Berumen ML, Bourne DG, Cantin N, Foret S, Matz M, Miller DJ, Moya A, Putnam HM, Ravasi T, Oppen MJH, Thurber RV, Vidal-Dupiol J, Voolstra CR, Watson S, Whitelaw E, Willis BL, Munday PL. 2017. Rapid adaptive responses to climate change in corals. Nature Climate Change 7(9):627–636 DOI 10.1038/nclimate3374.

Warner PA, Van Oppen MJ, Willis BL. 2015. Unexpected cryptic species diversity in the widespread coral Seriatopora hystrix masks spatial-genetic patterns of connectivity. Molecular Ecology 24(12):2993–3008 DOI 10.1111/mec.13225.
Wee HB, Kurihara H, Reimer JD. 2019. Reduced Symbiodiniaceae diversity in *Palythoa tuberculosa* at a heavily acidified coral reef. *Coral Reefs* **38**(2):311–319 DOI 10.1007/s00338-019-01776-x.

Winters G, Beer S, Zvi BB, Brickner I, Loya Y. 2009. Spatial and temporal photoacclimation of *Stylophora pistillata*: zooxanthella size, pigmentation, location and clade. *Marine Ecology Progress Series* **384**:107–119 DOI 10.3354/meps08036.