Rhabdomyolysis and acute kidney injury in Salmonella gastroenteritis: A case report

Ziqiang Zhu, Sina Aghaie, Andrei Bandarchuk, Anjula Gandhi

ABSTRACT

Introduction: Although infection by *Salmonella* has been commonly associated to diarrhea, complications such as cholecystitis, pancreatitis, acute pyelonephritis, osteomyelitis, myocarditis, encephalopathy, and multi-organ failure have been rarely reported.

Case Report: Herein, we report a case of *S. enteritidis* gastroenteritis complicated by rhabdomyolysis and acute kidney injury, which was successfully treated with hydration and antibiotics without dialysis. In this report, we reviewed all the previously published cases of rhabdomyolysis associated with *Salmonella* infection in English literatures and discussed the prevalence, pathogenesis and treatment.

Conclusion: Rhabdomyolysis was thought to be a rare complication of *Salmonella* infection. However, due to the variable manifestations that depend upon the extent and severity of muscle damage, rhabdomyolysis is perhaps under diagnosed as an extra-intestinal manifestation of *Salmonella* infection. Therefore, it is critical to recognize the condition promptly, initiate early antibiotics treatment and provide good supportive care. A high index of suspicion may help to reduce significant co-morbidities associated with the development of rhabdomyolysis in *Salmonella* infection.
Rhabdomyolysis and acute kidney injury in Salmonella gastroenteritis: A case report

Ziqiang Zhu, Sina Aghaie, Andrei Bandarchuk, Anjula Gandhi

ABSTRACT

Introduction: Although infection by *Salmonella* has been commonly associated to diarrhea, complications such as cholecystitis, pancreatitis, acute pyelonephritis, osteomyelitis, myocarditis, encephalopathy, and multi-organ failure have been rarely reported. Case Report: Herein, we report a case of *S. enteritidis* gastroenteritis complicated by rhabdomyolysis and acute kidney injury, which was successfully treated with hydration and antibiotics without dialysis. In this report, we reviewed all the previously published cases of rhabdomyolysis associated with *Salmonella* infection in English literatures and discussed the prevalence, pathogenesis and treatment. Conclusion: Rhabdomyolysis was thought to be a rare complication of *Salmonella* infection. However, due to the variable manifestations that depend upon the extent and severity of muscle damage, rhabdomyolysis is perhaps under diagnosed as an extra-intestinal manifestation of *Salmonella* infection. Therefore, it is critical to recognize the condition promptly, initiate early antibiotics treatment and provide good supportive care. A high index of suspicion may help to reduce significant morbidities associated with the development of rhabdomyolysis in *Salmonella* infection.

Keywords: Acute kidney injury, Gastroenteritis, Rhabdomyolysis, *Salmonella* infection

INTRODUCTION

Salmonella is estimated to cause more than 1.2 million illnesses every year in the United States [1], with 19,000 hospitalizations and 380 deaths every year. Among over 2500 serotypes of *Salmonella*, only a few of them can cause human infection [2], which can be divided into two categories—those cause typhoid fever and those cause gastroenteritis. *Salmonella typhimurium* and—*enteritidis* are the two most common serotypes in the United States. *Salmonella* infection may have different clinical presentations. The elderly, children, and immunocompromised patients are more likely to have severe disease. The most common manifestation of salmonellosis is gastroenteritis, including fever, diarrhea, and abdominal pain 12–72 hours after infection, which accounts for 70% of cases. Extraintestinal manifestations are not uncommon and have been reported both in immunocompromised and immunocompetent patients involving a variety of organ systems, including acute cholecystitis [3], pancreatitis [4], acute pyelonephritis [5], osteomyelitis [6], myocarditis [7], encephalopathy [8], disseminated intravascular coagulation (DIC) and
multi-organ failure [9]. Rhabdomyolysis secondary to Salmonella infections was thought to be a rare complication and has only been reported a few times. Here, we present a case of rhabdomyolysis and acute kidney injury with Salmonella enteritidis infection in a middle-aged male.

CASE REPORT

A previously healthy 42-year-old African-American male presented to the emergency department with 20–30 watery stools daily for three days, accompanied by nausea and vomiting. Three days prior to admission, the patient ate lunch at a local restaurant and later that night, he developed fever, chills, muscle cramping and watery diarrhea. There was no dysuria, melena, no history of recent illness or antibiotic use or contact with persons with similar illness prior to admission. He denied any recent travel outside the United States. Only past medical history was asthma. The patient was a healthy and active man with no history of alcohol, tobacco or illicit drug use.

On physical examination, he appeared ill-looking and dehydrated. He was afebrile, with blood pressure of 122/89 mmHg. His pulse was weak but regular at 87 beats/min. Bowel sounds were present and active. Generalized abdominal tenderness without guarding or rebound or organomegaly was noted on palpation. No skin rash was appreciated. No muscular weakness was elicited.

Hematological laboratory findings and blood chemistry values on the day of admission and subsequent days are given in Table 1. Pertinent laboratory data on admission included leukocytosis 13.3x10^9/L, and hemoglobin 16.6 g/dL. The serum creatinine level was elevated to 10.5 mg/dL, with an estimated glomerular filtration rate (GFR) of 5 mL/min per 1.73 m^2, suggesting acute kidney injury. The patient was found to have pure metabolic acidosis (anion gap 35). ALT and AST were mildly elevated. The creatinine kinase (CPK) level significantly elevated at 21 481 U/L. Urinalysis showed a specific gravity of 1.010 and a pH 5.5. A spot urine test showed urinary sodium of 9 mEq/L and creatinine 113 mg/dL, sample was positive for myoglobin. Rapid influenza and HIV tests were both negative. Salmonella Group D enteritidis was isolated from stool, while the blood and urine culture remained sterile. An abdominal ultrasound showed normal liver, spleen and kidney. Electrocardiogram showed sinus tachycardia and no ST-T wave changes.

The patient initially was managed by intravenous hydration and alkalization by sodium bicarbonate, he responded well to hydration. Patient was not on antibiotics until day 5 of admission when revealed Salmonella in stool culture. Ceftriaxone was initiated and one day later switched to oral ciprofloxacin. Good clinical response and complete normalization of most of the laboratory parameters were observed during treatment. On discharge, 7 days after admission, the patient was asymptomatic, enzyme levels had returned to normal, and serum creatinine decreased to 1.3.

DISCUSSION

Rhabdomyolysis is characterized by muscle pain and markedly elevated CPK level [10]. An elevated serum CPK to at least five times the upper limit of normal and usually greater than 5,000 U/L is diagnostic of rhabdomyolysis. Myoglobinuria may be present in rhabdomyolysis. Rhabdomyolysis has been reported in numerous disorders including the common etiologies [10] such as trauma, ischemic disorders, autoimmune diseases, drugs and toxins. It has also been associated with both viral and bacterial infections [11, 12] such as influenzavirus, Coxackie virus, Epstein-Barr virus, echovirus, HIV, Legionella, Staphylococcus and Escherichia coli. Rhabdomyolysis secondary to Salmonella infection has also been described in literature [4, 9, 13]. However, the mechanisms remain not fully elucidated. It was proposed that dehydration, hypoxia, electrolyte disturbances, bacterial invasion of the muscle, and Salmonella toxic effects on muscle cell metabolism could be responsible for muscle cell injury [14].

Acute kidney injury (AKI) is a well-known complication of rhabdomyolysis. The reported frequency of acute kidney injury ranges from 13% to approximately 50% [10]. Acute renal failure due to rhabdomyolysis in typhoid was first described as early as 1977 [13]. Later, non-typhoid Salmonellae, i.e. Salmonella enteritidis, Salmonella bonariensis, Salmonella group C and Salmonella typhimurium, have also been reported with this complication [4, 15, 16]. Therefore, rhabdomyolysis and AKI are potential complications of salmonellosis. Table 2 gives the characteristics of all the reported individual cases of rhabdomyolysis associated with microbiologically proven Salmonella infection in English language journals. Janssen et al. [17] reviewed over a two-year period of 44 hospitalized adult patients with Salmonella gastroenteritis, and reported 36% of the cases complicated with acute renal failure. However, during the course of Salmonella infection, the muscle involvement in some cases may or may not be clinically evident. Therefore, rhabdomyolysis is perhaps under diagnosed and may constitute an extraintestinal manifestation of the infection. In addition, the associated risk of renal failure is not correlated with the peak CPK level. Clinicians should be aware of this possibility of muscular involvement and development of acute renal failure. The occurrence of acute kidney injury in many patients is believed due to dehydration from gastroenteritis, tissue hypoxia from sepsis, rhabdomyolysis, nephrotoxicity of myoglobin [14]. Other rare causes of acute kidney injury in Salmonella infection include glomerulonephritis, acute tubular necrosis (ATN) and interstitial nephritis [4, 18].

The overall prognosis of acute kidney injury from Salmonella infection based on our review of reported
Table 1: Hematological and blood chemistry laboratory values

Day of admission	1	2	3	4	5	6	7
WBC (10^9/L)	13.3	8.1	6.3	5.3	6.8	8.8	9.5
Hg (g/dL)	16.6	15.0	13.2	12.7	12.7	12.5	12.2
PLT (10^9/L)	218	173	161	171	168	195	206
BUN (mg/dL)	54	68	62	37	18	13	14
Creatinine (mg/dL)	10.5	9.4	5.5	2.1	1.7	1.3	1.3
Serum Na (mEq/L)	127	126	131	131	133	136	137
Serum K (mEq/L)	5.5	4.5	3.6	3.1	3.4	3.3	3.6
Serum HCO₃ (mEq/L)	16	17	18	27	32	35	25
ALT (U/L)	74	100	110	100	94	97	110
AST (U/L)	467	528	492	356	267	51	58
CPK (U/L)	21481	25102	--	11426	5660	1241	849

WBC: white blood cell, Hg: hemoglobin, PLT: platelets, BUN: blood urea nitrogen, CPK: creatinine kinase

Table 2: Details of reported cases of rhabdomyolysis associated with Salmonella infection in English literature

Author (Reference)	Age	Sex	Salmonella Subtype/Source	CPK (U/L)	WBC (10^9/L)	Serum Creatinine (mg/dL)	Treatment
Blaaauw et al. [3]	27 F	S. enteritidis/Urine, stool	45429	9.7	1.37	Ceftriaxone	
Abdulla et al. [4]	56 M	S. enteritidis/Blood	2801	8	9.09	Ciprofloxacin Hemodialysis	
Retornaz et al. [9]	50 M	S. enteritidis/Stool	3200	4.8	7.16	Ciprofloxacin	
Brneic et al. [14]	58 F	S. infantis/Blood	>64000	17.1	3.30	Hemodialysis	
Sirmatel et al. [15]	21 M	S. paratyphi B/Blood	4070	2.5	5.70	Ceftriaxone Ciprofloxacin Deceased	
Gingold-Belfer et al. [16]	24 M	S. group C/Stool	24073	5.92	1.06	Ofloxacin	
Fisk et al. [20]	25 M	S. entericaserovartyphi/Blood	31410	11.8	1.79	Ceftriaxone Ciprofloxacin	
Ali et al. [21]	42 M	S. typhi/Blood	17000	Normal	12.7	Ciprofloxacin	
Jhawar et al. [22]	64 M	S. typhi/Stool	9473	3.2	3.7	Cefoperazone, Ciprofloxacin, Imipenemcilastin Hemodialysis	
Al-aqeedi et al. [23]	34 M	S. typhi/Blood	6341	4.5	2.38	Ceftriaxone	
Khan et al. [24]	23 M	S. typhi/Blood, urine stool	5350	2.2	6.03	Ceftriaxone	
Neau et al. [25]	72 M	S. enteritidis/Stool	3008	--	1.22	Ofloxacin	
73 F	S. enteritidis/Stool	213	--	1.26	Ofloxacin		
37 M	S. enteritidis/Stool	1124	--	8.05	Ofloxacin		
Campistol et al. [26]	43 M	S. enteritidis/Stool	1870	14.6	9.9	Ampicillin	
51 M	S. enteritidis/Stool	4300	11.8	12	Ampicillin		
38 M	S. enteritidis/Stool, blood	2270	11.7	13	Ampicillin		
cases, in addition to the current case, seems to have a benign course. Among all 18 reported cases in Table 2, one patient died because of multi-organ failure [15]. Hemodialysis was not required before renal failure resolved in majority of the reported cases. Abdulla et al. [4] described two adult patients with severe rhabdomyolysis due to S. enteritidis complicated by ATN requiring hemodialysis in one case. In a retrospective study of 44 adult patients with Salmonella infection induced acute renal failure, kidney function recovered in all but 1 patient [17]. However, rhabdomyolysis induced acute kidney injury from Salmonella infection in previous reported pediatric cases has largely in the need for dialysis [19]. It is unclear whether there is any difference between adult and pediatric cases in terms of pathogenesis, treatment and prognosis in rhabdomyolysis associated with Salmonella infection.

In the current case, the patient’s presenting symptoms of fever and diarrhea were typical of Salmonella gastroenteritis. We considered his rhabdomyolysis due to Salmonella infection since other causes of rhabdomyolysis such as trauma, medications, illicit drugs, ischemic disorders and infection like influenza were all ruled out. Despite having elevated muscle enzymes, he had no muscle weakness on examination, therefore, Salmonella-induced myopathy was also ruled out. His kidney function responded well to conservative management and returned to baseline within seven days of admission. Aggressive early recognition of the rhabdomyolysis, extensive fluid replacement and appropriate treatment with antibiotic may have lead to successful management of Salmonella-induced rhabdomyolysis and renal failure without progression to ATN in our patient [20–26].

CONCLUSION

In summary, depending upon the extent and severity of muscle damage, the manifestations of rhabdomyolysis secondary to Salmonella infection can vary from mild myalgia to severe pain with weakness. The associated risk of renal failure may not correlate with the peak creatinine kinase (CPK) level. Therefore, a high index of suspicion may help to reduce significant co-morbidities associated with rhabdomyolysis in Salmonella infection.

AUTHOR CONTRIBUTIONS

Ziqiang Zhu – Substantial contributions to conception and design, Acquisition of data, Analysis and interpretation of data, Drafting the article, Revising it critically for important intellectual content, Final approval of the version to be published
Sina Aghaie – Analysis and interpretation of data, Revising it critically for important intellectual content, Final approval of the version to be published
Andrei Bandarchuk – Analysis and interpretation of data, Revising it critically for important intellectual content, Final approval of the version to be published

GUARANTOR

The corresponding author is the guarantor of submission.

CONFLICT OF INTEREST

Authors declare no conflict of interest.

COPYRIGHT

© 2015 Ziqiang Zhu et al. This article is distributed under the terms of Creative Commons Attribution License which permits unrestricted use, distribution and reproduction in any medium provided the original author(s) and original publisher are properly credited. Please see the copyright policy on the journal website for more information.

REFERENCES

1. Scallan E, Hoekstra RM, Angulo FJ, et al. Foodborne illness acquired in the United States—major pathogens. Emerg Infect Dis 2011 Jan;17(1):7–15.
2. Brenner FW, Villar RG, Angulo FJ, Tauxe R, Swanmanathan B. Salmonella nomenclature. J Clin Microbiol 2000 Jul;38(7):2465–7.
3. Blaauw AA, Tobe TJ, Derksen RW, Bijlsma JW. A patient with systemic lupus erythematosus and Salmonella enteritidis bacteremia complicated by rhabdomyolysis and acute cholecystitis. Rheumatol (Oxford) 2000 Jan;39(1):110–2.
4. Abdulla AJ, Moorhead JF, Sweny P. Acute tubular necrosis due to rhabdomyolysis and pancreatitis associated with Salmonella enteritidis food poisoning. Nephrol Dial Transplant 1993;8(7):672–3.
5. Rus RR, Kersnik Levart T. Acute pyelonephritis with renal abscesses and acute renal failure after salmonella infection. Acta Paediatr 2010 Mar;99(3):470–3.
6. Sucato DJ, Gillespie R. Salmonella pelvic osteomyelitis in normal children: Report of two cases and a review of the literature. J Pediatr Orthop 1997 Jul-Aug;17(4):463–6.
7. Papamichalis P, Argyraki K, Papamichalis M, Loukopoulos A, Dalekos GN, Rigopoulou EI. Salmonella enteritidis Infection Complicated by Acute Myocarditis: A Case Report and Review of the Literature. Cardiol Res Pract 2011;2011:574230.
8. Miyabayashi H, Yamamori H, Nishimura A, et al. A case of rhabdomyolysis associated with Salmonella encephalopathy. No To Hattatsu 2002 Nov;34(6):517–22. [Article in Japanese].
9. Retornaz F, Fournier PE, Seux V, Jacomo V, Soubyrand J. A case of Salmonella enteritidis septicaemia complicated by disseminated intravascular coagulation, severe hepatitis, rhabdomyolysis and acute renal failure. Eur J Clin Microbiol Infect Dis 1999 Nov;18(11):830–1.
10. Bosch X, Poch E, Grau JM. Rhabdomyolysis and acute kidney injury. N Engl J Med 2009 Jul 2;361(1):62–72.
11. Blanco JR, Zabalza M, Salcedo J, Echeverria L, Garcia A, Vallejo M. Rhabdomyolysis of infectious and noninfectious causes. South Med J 2002 May;95(5):542–4.
12. Pesik NT, Otten EJ. Severe rhabdomyolysis following a viral illness: A case report and review of the literature. J Emerg Med 1996 Jul-Aug;14(4):425–8.
13. Rheingold OJ, Greenwald RA, Hayes FJ, Tedesco FJ. Myoglobinuria and renal failure associated with typhoid fever. JAMA 1977 Jul 25;238(4):341.
14. Brneć N, Viskovic I, Sasso A, Kraus I, Zamolo G. Salmonella infection-associated acute rhabdomyolysis. Some pathogenic considerations. Arch Med Res 2002 May-Jun;33(3):313–5.
15. Sirmatel F, Balci I, Sirmatel O, Bayazit N, Hocaoglu S. A case of Salmonella paratyphi B septicemia complicated by disseminated intravascular coagulation, severe hepatitis rhabdomyolysis and acute renal failure. J Infect 2001 Jul;43(1):19.
16. Gingold-Belfer R, Niv Y. Salmonella group C enteritis complicated by rhabdomyolysis. Isr Med Assoc J 2011 Jan;13(1):60–1.
17. Janssen van Doorn K, Pierard D, Spapen H. Acute renal dysfunction in salmonella gastroenteritis. J Clin Gastroenterol 2006 Nov-Dec;40(10):910–2.
18. Odetunde OI, Ezenwosu OU, Odetunde OA, Azubuike JC. Typhoid glomerulonephritis and intestinal perforation in a Nigerian child. Niger J Clin Pract 2014 Sep-Oct;17(5):655–7.
19. Veldhouse P, Hussain E, Olivero A, Kane JM. Rhabdomyolysis and acute renal failure: An unusual cause. Clin Pediatr (Phila) 2009 Oct;48(8):882–4.
20. Fisk DT, Bradley SF. Rhabdomyolysis induced by Salmonella enterica serovar Typhi bacteraemia. Clin Microbiol Infect 2004 Jul;10(7):595–7.
21. Ali M, Abdalla H. Salmonella typhi infection complicated by rhabdomyolysis, pancreatitis and polyneuropathy. Arab J Nephrol Transplant 2011 May;4(2):91–3.
22. Jhawar M, George P, Pawar B. Salmonella typhi sepsis and rhabdomyolysis with acute renal failure: a rare presentation of a common disease. Saudi J Kidney Dis Transpl 2010 Jul;21(4):732–4.
23. Al-aqeedi RF, Kamha A, Al-aani FK, Al-ani AA. Salmonella myocarditis in a young adult patient presenting with acute pulmonary edema, rhabdomyolysis, and multi-organ failure. J Cardiol 2009 Dec;54(3):475–9.
24. Khan FY, Al-Ani A, Ali HA. Typhoid rhabdomyolysis with acute renal failure and acute pancreatitis: A case report and review of the literature. Int J Infect Dis 2009 Sep;13(5):e282–5.
25. Neau D, Delmas Y, Merville P, et al. Rhabdomyolysis and Salmonella enteritidis infection. Eur J Clin Microbiol Infect Dis 2000 Dec;19(12):973–5.
26. Campistol JM, Perez Villa F, Montoliu J, Moreno A, Revert L. Rhabdomyolysis and acute renal failure associated with Salmonella enteritidis infection. J Hosp Infect 1989 Oct;14(3):267–8.
Andrei Bandarchuk is a chief resident in the Department of Medicine, the Brookdale University Hospital and Medical Center, NY, USA.

Anjula Gandhi is a faculty in the Department of Medicine, the Brookdale University Hospital and Medical Center, NY, USA.
Edorium Journals: An introduction

Edorium Journals Team

About Edorium Journals
Edorium Journals is a publisher of high-quality, open access, international scholarly journals covering subjects in basic sciences and clinical specialties and subspecialties.

Invitation for article submission
We sincerely invite you to submit your valuable research for publication to Edorium Journals.

But why should you publish with Edorium Journals?
In less than 10 words - we give you what no one does.

Vision of being the best
We have the vision of making our journals the best and the most authoritative journals in their respective specialties. We are working towards this goal every day of every week of every month of every year.

Exceptional services
We care for you, your work and your time. Our efficient, personalized and courteous services are a testimony to this.

Editorial Review
All manuscripts submitted to Edorium Journals undergo pre-processing review, first editorial review, peer review, second editorial review and finally third editorial review.

Peer Review
All manuscripts submitted to Edorium Journals undergo anonymous, double-blind, external peer review.

Early View version
Early View version of your manuscript will be published in the journal within 72 hours of final acceptance.

Manuscript status
From submission to publication of your article you will get regular updates (minimum six times) about status of your manuscripts directly in your email.

Our Commitment

Six weeks
You will get first decision on your manuscript within six weeks (42 days) of submission. If we fail to honor this by even one day, we will publish your manuscript free of charge.

Four weeks
After we receive page proofs, your manuscript will be published in the journal within four weeks (31 days). If we fail to honor this by even one day, we will publish your manuscript free of charge and refund you the full article publication charges you paid for your manuscript.

Mentored Review Articles (MRA)
Our academic program “Mentored Review Article” (MRA) gives you a unique opportunity to publish papers under mentorship of international faculty. These articles are published free of charges.

Favored Author program
One email is all it takes to become our favored author. You will not only get fee waivers but also get information and insights about scholarly publishing.

Institutional Membership program
Join our Institutional Memberships program and help scholars from your institute make their research accessible to all and save thousands of dollars in fees make their research accessible to all.

Our presence
We have some of the best designed publication formats. Our websites are very user friendly and enable you to do your work very easily with no hassle.

Something more...
We request you to have a look at our website to know more about us and our services.

We welcome you to interact with us, share with us, join us and of course publish with us.