Voids in the 2dFGRS and ΛCDM simulations: spatial and dynamical properties

L. Ceccarelli,1* N. D. Padilla,2 C. Valotto1 and D. G. Lambas1

1IATE, Observatorio Astronómico de Córdoba, Argentina
2Departamento de Astronomía y Astrofísica, Pontificia Universidad Católica, V. Mackenna 4860, Santiago 22, Chile

Accepted 2006 September 5. Received 2006 September 5; in original form 2005 December 22

ABSTRACT
We perform a statistical study on the distribution and dynamics of voids in the 2dF Galaxy Redshift Survey (2dFGRS). Our statistics are tested and calibrated using mock 2dFGRS catalogues. We analyse the dynamics around voids in mock and real 2dFGRS surveys. The void–galaxy cross-correlation redshift-space distortions show evidence of the continuing growth of voids, confirming another prediction of the hierarchical clustering scenario. A non-linear outflow model can be used to provide quantitative estimates of the outflow velocities around 2dFGRS voids. These results are consistent with maximum outflows of 110, 210 and 270 km s\(^{-1}\) for voids of \(r_{\text{void}} = 7.5, 12.5\) and 17.5 Mpc, assuming a galaxy bias of \(b = 1\). As an application for future surveys, our study of the mock catalogues shows that direct measurements of the expansion of voids can be obtained using peculiar velocity data. We find that it would also be possible to detect differences in the velocity dispersion of galaxies in the directions parallel and perpendicular to the void walls.

Key words: methods: statistical – large-scale structure of Universe.

1 INTRODUCTION
The large-scale structure in the observed galaxy distribution is characterized by clusters, walls, filaments and also nearly empty regions called voids (Voguely et al. 1994, and references therein). The existence of voids has been confirmed by several surveys at a variety of wavelengths (Hoyle & Voguely 2002), such as the Centre for Astrophysics Survey (CTA; Voguely, Geller & Huchra 1991; Voguely et al. 1994), the Southern Sky Redshift Survey (SSRS; Gaztanaga & Yokohama 1993), the Point Source Catalogue Redshift Survey (PSCz; Hoyle & Voguely 2002), the Infrared Astronomical Satel-

*E-mail: ceccarelli.laura@gmail.com

et al. 2003; Goldberg & Voguely 2004; Sheth & van de Weygaert 2004; Shandarin, Sheth & Sahni 2004; Colberg et al. 2005; Padilla, Ceccarelli & Lambas 2005; Patiri, Betancort-Rijo & Prada 2006a and references therein). Other studies have focused on the properties of haloes populating the inner volumes of voids (Antonuccio-Delogu et al. 2002; Gottloeber et al. 2003; Goldberg & Voguely 2004; Goldberg et al. 2005; Patiri et al. 2006a). Another widely used application of void statistics is that of probing the bias in the galaxy distribution using large redshift surveys (Arbabi-Bidgoli & Muller 2002; Mathis & White 2002; Benson et al. 2003; Goldberg & Voguely 2004).

Void statistics have also been found to provide invaluable information on higher order clustering (White 1979; Fry 1986) which can be used to probe models for galaxy clustering (Croton et al. 2004) and void properties such as sizes, shapes and frequency of occurrence, and how these properties vary with galaxy type. In general, void statistics may provide important clues on the galaxy formation processes and can be used to place constraints on cosmological models (Peebles 2001).

Sheth & van de Weygaert (2004) have developed a model for the distribution of void sizes and evolution, and proved that surviving voids in the Universe should be in expansion at the present time. Using simulations in redshift space, Ryden (1995) found that voids show elongated shapes in the direction of the line of sight, a confirmation of the expansion of voids. Regos & Geller (1991) have obtain outflow velocities from simulations of the growth of voids within the large-scale structure traced by galaxies. More recently, Padilla et al. (2005) have detected the expansion of voids, both

© 2006 The Authors. Journal compilation © 2006 RAS

Received 2006 September 5. In original form 2005 December 22.
from the redshift-space distortions of void–mass and void–galaxy cross-correlation functions in numerical simulations, and quantitatively by measuring directly positive outflows of void shells.

Based on these previous results, the central idea in this work consists on performing a statistical study of dynamical properties of galaxies around voids in real and mock galaxy catalogues, to prove whether current observational catalogues can be used to confirm the predictions from numerical models. We will develop several statistical procedures which when applied to mock galaxy catalogues will answer these questions. Finally, we will put the hierarchical clustering paradigm to the test once more, by performing several void statistics using the 2dFGRS data.

This paper is organized as follows. We introduce the observational and synthetic catalogues in Section 2. In Section 3 we describe the algorithm developed to identify voids and we apply it to the observational and mock catalogues. In Section 4 we analyse the density profiles of mock galaxies around voids in real and redshift spaces; and in Section 5 we use redshift-space distortions, peculiar velocities, and a non-linear approximation to determine properties of the peculiar velocity field around voids, including the amplitude of the expansion of voids and the dispersion of galaxies in the directions parallel and perpendicular to the void walls. Finally, in Section 6, we present a summary of our results.

2 DATA

2.1 Observational data: 2dFGRS

We use the 2dFGRS final data release (Colles et al. 2003) as our observational data set. The 2dFGRS is one of the widest spectroscopic data sets available to date, and contains spectroscopic redshifts for approximately 230,000 galaxies. The source catalogue for the 2dFGRS is a revised and extended version of the APM galaxy catalogue from which a set of target galaxies, characterized by extinction-corrected magnitudes brighter than $b_J = 19.45$, was selected for the construction of the 2dFGRS. The main survey regions are two declination strips, plus 99 randomly located fields. Our results are obtained using the two strips described below. One strip is located near the South Galactic Pole, spanning approximately 80×15 deg2; the other strip is centred in the North Galactic Pole spanning 75×10 deg2 along the celestial equator. The survey covers a total of 2000 deg2 and has a median depth of $z = 0.11$.

The completeness of the survey varies with position due to unobserved fields, observed objects with poor spectra, and objects that could not be observed due to either fibre collision constraints or broken fibres. The completeness is due in the range $[0, 1]$. To match the angular selection function in the construction of random catalogues we use the software developed by the 2dFGRS team and distributed as part of the data release that, for any coordinates (α, δ), gives the expected probability of galaxy being contained in the catalogue.

2.2 Synthetic data: mock 2dFGRS

We use a cold dark matter numerical simulation populated with semi-analytic galaxies as our starting point for creating mock 2dFGRS catalogues. The numerical simulation follows the evolution of 2503 particles in a ‘concordance’ cosmology with parameters in line with the results from the Wilkinson Microwave Anisotropy Probe (WMAP; Spergel et al. 2003) on the temperature fluctuations of the cosmic microwave background, and clustering measurements from the 2dFGRS and Sloan Digital Sky Survey (Abazajian et al. 2004). Specifically, the box side measures 250 Mpc h^{-1}, the matter density parameter corresponds to $\Omega_m = 0.3$, the value of the vacuum density parameter is $\Omega_k = 0.7$, the Hubble constant, $H_0 = h100$ s$^{-1}$ km Mpc$^{-1}$, with $h = 0.7$, and the primordial powerspectrum slope is $n_s = 0.97$. The present-day amplitude of fluctuations in spheres of 8 Mpc h^{-1} is set to $\sigma_8 = 0.8$. The resulting mass per dark matter particle is $M_{\text{min}} = 1.05 \times 10^{10}$ h$^{-1}$ M$_\odot$. The semi-analytic galaxies populating this numerical simulation were kindly provided by the Durham group (private communication). We briefly explain the procedure followed to this end: dark matter haloes of at least 10 dark matter particles are first identified in the numerical simulation using a Friends-of-Friends algorithm with a linking length $b = 0.2$. The resulting haloes are characterized by a minimum mass of $M_{\text{min}} = 1.05 \times 10^{11}$ h$^{-1}$ M$_\odot$, a median mass of $M_{\text{min}} = 2 \times 10^{11}$ h$^{-1}$ M$_\odot$, and a maximum mass of $M_{\text{min}} = 2 \times 10^{13}$ h$^{-1}$ M$_\odot$. These haloes are assigned galaxies using the galf orm code (Cole et al. 2000; Baugh et al. 2005). We use these semi-analytic galaxies to construct mock 2dFGRS surveys by first positioning an observer in a random position within the numerical simulation box, and then reproducing the selection function and angular mask of the 2dFGRS from this position. This results in a catalogue of galaxies of similar properties and observational biases to those of the real catalogue. This mock catalogue will be used in this work to calibrate our statistical methods, to interpret the data, and to detect any systematic biases in our procedures. In order to do this, we will treat the mock catalogue in exactly the same way as the real data. We start our analyses by defining the same galaxy subsamples for real and mock data in the next subsection.

2.3 Galaxy samples

Since the 2dFGRS is an apparent magnitude limited survey, the faintest galaxies are only registered at small distances while the brightest galaxies cover the whole catalogue. This results in a luminosity bias which can be overcome by constructing volume-limited samples.

For a given maximum redshift z_{lim} the catalogue is complete for galaxies brighter than

$$B_{\text{lim}} = b_{\text{lim}} - 25 - 5 \log(c z_{\text{lim}}) - 5 \log(H),$$

where b_{lim} is the flux completeness limit and H is the Hubble constant. This magnitude limit varies from point to point in the catalogue, with a brightest magnitude limit cut of $b < 18.9$ (the whole catalogue is complete above this cut).

We construct several volume-limited samples with galaxies brighter than B_{lim} and redshifts $z < z_{\text{lim}}$. The aim to use several samples is to compare results, differences in z_{lim} are related with differences in size of the identified voids and differences in B_{lim} are useful to check the underdensity stability when using different average galaxy densities. We choose three limits in redshift and two luminosity limits. As a result we obtain 12 samples in total for both, the 2dFGRS and mock catalogues.

The parameters z_{lim} and B_{lim} used to restrict the samples are shown in the second and third columns of Table 1. The remaining columns of the table show the resulting number of galaxies in each subsample for the NGP and SGP regions and real and mock catalogues. The values of B_{lim} chosen for each subsample satisfy equation (1) for the quoted values of z_{lim} and $b_{\text{lim}} = 18.9$ for S122, S152 and S171, $b_{\text{lim}} = 19.6$ for S122, S152 and S171.

As can be seen in Table 1 the number and number density of galaxies diminish when the sample is restricted to the brighter galaxies and to higher redshifts. This will have an impact on the identification of voids. Different samples will be the most appropriate to...
search for voids of different sizes according to the sample volume. For instance, larger volumes are better suited to find a statistically relevant number of large voids. However, in such cases the density of galaxies is low and it becomes difficult to find small voids. In the opposite case, a smaller volume with a denser population of galaxies allows us to identify small voids, but only includes a handful of large voids. We take this into account when choosing a subsample of galaxies to identify voids of a given radius.

3 VOIDS IN GALAXY CATALOGUES

3.1 Void finding algorithm

We construct an algorithm to identify voids in galaxy catalogues. In order to develop this algorithm we assume that voids are approximately spherical. Our assumption is based on the approximate shapes of empty regions in numerical simulations (Padilla et al. 2005). The ‘a priori’ knowledge of the void shape suggests the way in which the algorithm will work, that is by searching empty spherical regions. We define a void as the largest spherical volume within which the matter density is below a critical value. According to this definition, two concentric spheres of different radii can not be different voids. Similarly, two or more superimposed empty spheres are not considered as individual voids.

The algorithm consists of the following steps. First, we set a large number of random positions for void centre candidates. These random positions are distributed throughout the catalogue. Notice that the efficiency of the algorithm is partly determined by the density of random centres. Therefore, we choose the number of candidate centres such that the mean distance between centres is smaller than the mean distance between galaxies. Moreover, we always use the largest possible number of centres within our computational limits. We also check that the relation $V_{\text{survey}}/V_{\text{sphere}}$ remains large enough for all the void sizes considered. In all random positions we consider spheres with radii ranging from r_{min} to r_{max} (every random position is the centre of a sphere whose radius increases from r_{min} to r_{max}). Given that by definition r_{min} is the minimum possible void radius, we carefully choose an appropriate value for this parameter. The density contrast (δ_{g}) is measured for every sphere. At this point the algorithm computes the density within each sphere as a function of radius and this value is compared to the maximum allowed density contrast (δ_{max}) which is given by the galaxy density in our 2dFGRS subsamples. As we are interested in extremely underdense regions we set $\delta_{\text{max}} = -0.9$. This value is in agreement with the mean density contrast of voids identified by Hoyle & Vogeley (2004).

In Table 2 we show the total number of voids obtained in each sample. Note that the brightest samples (S083, S103, S123, S153 and S173) contain a small number of voids with respect to samples constructed using the same z_{lim} and fainter galaxies.

Taking into account the different sizes of voids identified in each sample, a more detailed analysis of our samples of voids reveals the following.

(i) In the smallest samples (S121, S122) we do not find a significant number of voids with radii larger than 10 Mpc h^{-1}. However, specially in the most numerous sample (S121), we find a good number of voids with radii smaller than about 7 Mpc h^{-1}.

(ii) Samples with the smallest volumes (S121 and S122) are more suitable for searching voids of radii between 5 and 10 Mpc h^{-1} rather than larger voids.

(iii) The intermediate volume samples (S151, S152) give us the maximum number of voids with radii of 12, 13, 14 and 15 Mpc h^{-1}.

(iv) In the larger volume samples (S171 and S172) we find the largest number of large voids ($r_{\text{voids}} > 15$ Mpc h^{-1}) whereas we do not find any small voids.
we calculate the density profile for 10 subcatalogues of galaxies extracted from the sample of galaxies under analysis. Each one of these subcatalogues consists of the actual sample with 1/10th of its volume removed; this procedure excludes approximately 1/10th of the galaxies and each member is only removed once. The variance of the results of the true sample is that of the results derived from the 10 subcatalogues.

The analysis of void profiles resulting from different samples generally shows extremely empty voids, with approximately zero density of galaxies near the void centres. Densities smaller than 5 per cent the median are common in the void interiors and the galaxy density abruptly increases at distances of about the void radius. This is a good indication that we accurately find the boundaries of voids.

In Fig. 2 we show the density profiles for voids in the mock catalogue in real and redshift spaces (left-hand panels) and for the 2dFGRS survey, only in redshift space (right-hand panels). Each figure corresponds to a different sample in the mock and 2dFGRS catalogues as is indicated. We analyse the density profiles as a function of the distance to the void centre. As can be seen in this figure the profiles show the same behaviour regardless of the void radius. However, if we analyse in detail the density profiles as a function of void radius we can detect some differences. The shape of profiles of the smaller voids reach the higher values at a distance of \(\approx 1 \) void radius. The largest voids only reach profile values of \(\approx 1 \) at the same distance of 1 void radius. This behaviour is consistent with the results from semi-analytic galaxies in the simulation box (Padilla et al. 2005). Note that the samples used in this figure correspond to different absolute magnitude limits for different void sizes as explained in Section 2.3.

In the case of the mock catalogue, we consider the density profiles in real and redshift spaces (\(\delta_{rs} \) and \(\delta_{zs} \), respectively) and show them in the left-hand panel of Fig. 2. As can be seen in the figure, the profiles show the same shape in real and redshift spaces, although we can appreciate a difference at a distance of the order of the void radius where the redshift distortion in the void shape introduces an overestimation of the void radius in redshift space. This redshift distortion corresponds to the expansion of the void shells, which look elongated in the direction of the line of sight (Ryden 1995). This same effect may be responsible for the differences in

\[\delta_{rs} = \frac{V_{rs}}{V_{0}} \]

\[\delta_{zs} = \frac{V_{zs}}{V_{0}} \]
The assumption that our Universe is isotropic leads us to expect that the correlation function should also be isotropic. However, if we measure the correlation function in redshift space instead of in real space, anisotropies appear. This deviations from isotropy are known as redshift-space distortions. The use of peculiar velocities allows a direct, quantitative measurement of the outflow of galaxies from voids, which can be compared to predictions from non-linear theory approximation and results from the numerical simulation. We also test whether a mock peculiar velocity survey can detect subtle properties of the dynamics of galaxies around voids, such as a larger velocity dispersion in the direction of the void walls.

5 DYNAMICAL PROPERTIES OF GALAXIES IN VOIDS

We analyse the dynamics of galaxies around voids following two different approaches. The first is a qualitative approach, where we study the shape of the isocontours of the void–galaxy cross-correlation function measured in the directions parallel and perpendicular to the line of sight. From this study we can infer characteristics of the peculiar velocity field. The second approach is a quantitative measurement of galaxy outflows or void expansion, which can be derived in two ways. (i) The first measurement of the void expansion can be achieved by applying a simple, non-linear theory approximation that relates the peculiar velocity outflows to the void–galaxy cross-correlation function; this method can be applied to the mock and real 2dFGRS data. (ii) The second method is only possible in the mock catalogue due to the current observational limitations, where we directly calculate the outflow amplitudes from peculiar velocities. We analyse the dynamics of galaxies around voids following two different approaches. The first is a qualitative approach, where we study the shape of the isocontours of the void–galaxy cross-correlation function measured in the directions parallel and perpendicular to the line of sight. From this study we can infer characteristics of the peculiar velocity field. The second approach is a quantitative measurement of galaxy outflows or void expansion, which can be compared to predictions from non-linear theory approximation and results from the numerical simulation. We also test whether a mock peculiar velocity survey can detect subtle properties of the dynamics of galaxies around voids, such as a larger velocity dispersion in the direction of the void walls.

5.1 Dynamics using redshift-space distortions

We have performed a study of the void–galaxy cross-correlation function, that is the correlation function between void centres and galaxies, as a function of the directions parallel and perpendicular to line of sight, π and σ, respectively.

The assumption has important dynamical consequences as will be seen below.

\[
\xi(\sigma, \pi) = \frac{DD(\Delta\sigma, \Delta\pi)}{DR(\Delta\sigma, \Delta\pi)} - 1. \tag{2}
\]
where DD is the number of galaxy and void centre pairs in the range of distances \((\Delta \sigma, \Delta \pi)\), and DR is the number of void–random galaxy pairs in the same range of distances.

In a hierarchical scenario of structure formation, the objects in underdense regions tend to be accreted toward more massive systems. According to this, the galaxies inside voids and in void shells, would be attracted to the matter outside of the void, producing a large-scale streaming motion in the form of an outflow from the void centre or a void expansion. The outflow motion would be seen in the distortion pattern of the \(z\)-space correlation function as an elongation in the direction of the line of sight (\(\pi\) direction). The upper panels of Fig. 5 show the contour lines for the samples S121 from the mock (left-hand panels) and 2dFGRS (right-hand panels) catalogues, for small void radii \((5 \lesssim r_{\text{void}} \, \text{Mpc}^{-1} \lesssim 10)\). The two panels in the middle of Fig. 5 correspond to intermediate void sizes \(10 < r_{\text{void}} \, \text{Mpc}^{-1} \lesssim 15\) obtained from sample S151. The bottom of Fig. 5 shows the distortions for the largest voids \((15 < r_{\text{void}} \, \text{Mpc}^{-1} \lesssim 20)\) obtained using sample S171. As is mentioned in Section 3, the different samples considered in the upper, middle and lower panels of the figure have been chosen to have the most convenient number of voids for a high statistical significance and to reduce the noise in the results. The estimated jackknife uncertainties in \(\xi(\sigma, \pi)\) are \(\simeq 10\) per cent of the value of \(\xi\). There is a clear elongated distortion pattern in all panels of Fig. 5 which is consistent with an outflow motion. The fact that the 2dFGRS galaxies show such an elongation around voids represents a further confirmation of the hierarchical clustering scenario of structure formation. However, the noisy results restrict the quantitative applications of this method. Therefore, a different approach should be followed in order to quantify the expansion of voids in the Universe.

5.2 Quantitative measures of galaxy outflows around voids

In order to study the statistical characteristics of the peculiar velocity field around voids we estimate the mean amplitude of the velocity field as a function of the distance to the void centre. We place our reference system at the void centres so that a negative velocity indicates an outflow motion (and a positive velocity indicates an infall on to the void centre). We adopt two approaches, an indirect derivation of the velocity field from a theoretical model, and a direct measure of the peculiar velocity amplitude. The first method, requires many assumptions about the adopted cosmological model in order to derive the velocity field. However, this method works satisfactorily even when assuming a simple, non-linear approximation. The second method consists of the calculation of the velocity field amplitude using galaxy peculiar velocities. Even though this is the most simple and natural approach, it has the disadvantage of being only applicable to mock catalogues.

5.2.1 Non-linear model for the outflow

We apply a non-linear theory model by Croft, Dalton & Efstathiou (1999) to describe the dynamical behaviour of particles around underdense regions. We choose to use a non-linear model in favour of a linear approximation since in the inner regions of voids, the overdensity is significantly different from zero and therefore, the linear theory condition \(|\delta| \ll 1\) is not satisfied. The outflow model, which is analogous to the infalling model for overdensities, assumes spherical symmetry. When analysing both, mock catalogues and real data, we assume the concordance \(\Lambda\)CDM cosmology consistent with results from WMAP (Spergel et al. 2003). As the overdensity within regions around voids is \(\sim -1\), we can expect the non-linear approximation to describe the velocity field accurately:

\[
V_{\text{inf}} = -\frac{1}{3} \frac{\Omega_m H_0 (\delta(r))^2}{[1 + \delta(r)]^{0.25}},
\]

(3)

where \(\delta(r)\) is the matter density contrast within a sphere of radius \(r\). We apply the outflow model to predict the amplitude of peculiar velocities. The model uses the measured values void–galaxy cross-correlation function in redshift and real spaces \([\xi(s)\) and \(\xi(r)\), respectively\] to calculate the galaxy density contrast \(\delta_g(r)\) (Croft et al. 1999); the subindex \(gx\) indicates that we can not measure the void–mass cross-correlation function directly. Therefore, the infalling velocities obtained from this formalism actually correspond to

\[
V_{\text{inf}}^g \simeq bV_{\text{inf}},
\]

(4)

valid where \(|\delta| \ll 1\) (i.e. at the void boundaries or further away), \(b\) is the unknown bias factor relating the mass and galaxy density contrasts around voids, which in this work is assumed to be \(b = 1\) (see for instance Verde et al. 2002).
We first apply this formalism to the void–galaxy cross-correlation function obtained from the mock catalogue and show the predicted peculiar velocities in grey lines in Fig. 6, where each line type corresponds to different void radii (same ranges in black lines).

We then apply the outflow model to the 2dFGRS catalogue. We use the redshift-space correlations obtained for the observational catalogue assuming that our results will not change significantly when using redshift-space correlations as opposed to real-space data. The predicted velocities are shown in black lines in Fig. 6. For comparison, we also show the predicted velocities for the mock catalogue in grey lines. The maximum outflow amplitudes for the 2dFGRS, and distances where this maximum occurs, are in excellent agreement with the predictions for the mock catalogue. Regardless of the void size, both curves exhibit very similar amplitudes and shapes, specially at distances of the order of one void radius.

It is very reassuring to find the same velocity outflows in mock and observational catalogues. This suggests we are obtaining a reliable estimate for the velocity of void shells in the 2dFGRS. Only at large separations from the void centres the outflow velocities became considerably larger in the 2dFGRS. It remains to be confirmed whether this result is to be expected from the data or simply produced by systematic effects perhaps induced by the use of redshift-space correlations.

5.2.2 Galaxy outflows from mock peculiar velocities

Studies on the outflow of void shells have been performed mainly in numerical simulations and semi-analytical galaxies by several authors. For instance, Regos & Geller (1991) have studied the evolution of voids in numerical simulations obtaining the peculiar streaming velocities of void walls (Regos & Geller 1991). Dubinski et al. (1993) have analysed the peculiar velocity field surrounding voids in simulations. Another related work was performed by Sheth & van de Weygaert (2004) who studied the void size evolution in simulations.

We compute the amplitude of the velocity field around voids using the line-of-sight component of galaxy peculiar velocities in mock 2dFGRS catalogues, assuming a radial, spherically symmetric outflow motion. Note that as the real 2dFGRS survey contains no data regarding peculiar velocities, this method can not be applied to this particular catalogue. Therefore, all the analyses in this subsection are restricted to the mock catalogues.

In Fig. 7 we show the peculiar velocity outflow as a function of the distance to the void centre derived from peculiar velocities in the mock catalogue (black lines). Different lines correspond to different ranges of void radius and are obtained from different subsamples (solid lines, $5 < r_{void} \text{ Mpc} h^{-1} \leq 10$ and S121; dotted lines, $10 < r_{void} \text{ Mpc} h^{-1} \leq 15$ and S151; dashed lines, $15 < r_{void} \text{ Mpc} h^{-1} \leq 20$ and S171). Grey lines show the velocity amplitude predicted by the outflow model using the same samples and void radii as for the black lines.

We then apply the outflow model to the 2dFGRS catalogue. We use the redshift-space correlations obtained for the observational catalogue assuming that our results will not change significantly when using redshift-space correlations as opposed to real-space data. The predicted velocities are shown in black lines in Fig. 6. For comparison, we also show the predicted velocities for the mock catalogue in grey lines. The maximum outflow amplitudes for the 2dFGRS, and distances where this maximum occurs, are in excellent agreement with the predictions for the mock catalogue. Regardless of the void size, both curves exhibit very similar amplitudes and shapes, specially at distances of the order of one void radius.

It is very reassuring to find the same velocity outflows in mock and observational catalogues. This suggests we are obtaining a reliable estimate for the velocity of void shells in the 2dFGRS. Only at large separations from the void centres the outflow velocities became considerably larger in the 2dFGRS. It remains to be confirmed whether this result is to be expected from the data or simply produced by systematic effects perhaps induced by the use of redshift-space correlations.

5.2.2 Galaxy outflows from mock peculiar velocities

Studies on the outflow of void shells have been performed mainly in numerical simulations and semi-analytical galaxies by several authors. For instance, Regos & Geller (1991) have studied the evolution of voids in numerical simulations obtaining the peculiar streaming velocities of void walls (Regos & Geller 1991). Dubinski et al. (1993) have analysed the peculiar velocity field surrounding voids in simulations. Another related work was performed by Sheth & van de Weygaert (2004) who studied the void size evolution in simulations.

We compute the amplitude of the velocity field around voids using the line-of-sight component of galaxy peculiar velocities in mock 2dFGRS catalogues, assuming a radial, spherically symmetric outflow motion. Note that as the real 2dFGRS survey contains no data regarding peculiar velocities, this method can not be applied to this particular catalogue. Therefore, all the analyses in this subsection are restricted to the mock catalogues.

In Fig. 7 we show the peculiar velocity outflow as a function of the distance to the void centre derived from peculiar velocities in the mock catalogue (black lines). Different lines correspond to different ranges of void radius and are obtained from different subsamples (solid lines, $5 < r_{void} \text{ Mpc} h^{-1} \leq 10$ and S121; dotted lines, $10 < r_{void} \text{ Mpc} h^{-1} \leq 15$ and S151; dashed lines, $15 < r_{void} \text{ Mpc} h^{-1} \leq 20$ and S171). Grey lines show the velocity amplitude predicted by the outflow model using the same samples and void radii as for the black lines.

We then apply the outflow model to the 2dFGRS catalogue. We use the redshift-space correlations obtained for the observational catalogue assuming that our results will not change significantly when using redshift-space correlations as opposed to real-space data. The predicted velocities are shown in black lines in Fig. 6. For comparison, we also show the predicted velocities for the mock catalogue in grey lines. The maximum outflow amplitudes for the 2dFGRS, and distances where this maximum occurs, are in excellent agreement with the predictions for the mock catalogue. Regardless of the void size, both curves exhibit very similar amplitudes and shapes, specially at distances of the order of one void radius.

It is very reassuring to find the same velocity outflows in mock and observational catalogues. This suggests we are obtaining a reliable estimate for the velocity of void shells in the 2dFGRS. Only at large separations from the void centres the outflow velocities became considerably larger in the 2dFGRS. It remains to be confirmed whether this result is to be expected from the data or simply produced by systematic effects perhaps induced by the use of redshift-space correlations.
shells due to surrounding overdensities. It is also related with the evolution of voids analysed by Sheth & van de Weygaert (2004) in large-scale numerical simulations, where they use two processes to describe the void evolution: void-in-void processes and void-in-cloud processes. The void-in-cloud refers to small voids embedded in dense regions, which show collapse instead of expansion. Then, the infall of small void’s shells can be related to the collapse in the void-in-cloud process.

In order to test the effect of distance measurement errors on the velocity field amplitude, we apply a random uncertainty proportional to 10 per cent of the redshift-space distance. As expected, the main effect of distance uncertainties is to overestimate the peculiar velocity field amplitude specially in the deepest samples. The resulting velocity amplitudes are shown in light-grey lines in Fig. 8 whereas in dark-grey lines we show the resulting velocity outflows when distance measurement errors are not included.

As can be seen in Fig. 8 there is a strong shift of outflow velocities to more negative values. For example for the greatest voids (dashed lines), the maximum outflow velocity changes from 200 km s\(^{-1}\) to 400 km s\(^{-1}\), a systematic increase of 100 per cent when including distance measurement errors.

The largest contribution from distance measurement errors to the systematic offset in the outflow velocity comes from using radial peculiar velocities to infer the outflow velocity when the angle subtended by the observer and the galaxy from the void centre is close to \(\pi/2\). In this case, the component of the peculiar velocity in the radial direction to the void centre is nearly null, and the deprojection produces large spurious outflow velocities responsible for the systematic offset. Therefore, we repeat the analysis using only galaxies within \(\pi/4\) of the line of sight (as seen from the void centres) and show the results in black lines in Fig. 8. As can be seen the systematic offset is much less important in this case.

5.2.3 Maximum outflow amplitude

The results obtained in the previous subsections strongly suggest that there is a relation between the void size and the distance where the maximum outflow occurs. The void radius seems to determine in a very simple way the distance of the maximum outflow velocity. In order to characterize in a more quantitative way such a relation we study the contour lines of outflow velocity as a function of void radius and distance to the void centre.

The contour lines of outflow velocity directly measured from the mock peculiar velocities are plotted in the left-hand panel of Fig. 9, where the \(x\)-axis represents the void radius and the \(y\)-axis the distance to the void centre. The solid lines in Fig. 9, which represent positive velocities (i.e. galaxy infall to the void centre), are only found for small voids \((v_{\text{out}} < 11 \text{ Mpc} h^{-1})\) at relatively large distances compared to the void size. It is easily seen how large outflow velocities \((v_{\text{out}} > 100 \text{ km s}^{-1})\) are found around the largest voids (with radii \(r_{\text{void}} > 14 \text{ Mpc} h^{-1}\)) at distances in the range \(10 < r \text{ Mpc} h^{-1} < 20\). Note that this range is approximately centred at the average void radius. The right-hand panel shows the results when adding distance measurement errors to the mock peculiar velocities. As can be seen, there is also a clear relation between void radius and the distance corresponding to the maximum outflow velocity; however, as a consequence of large velocity errors, the resulting outflow velocities are much higher in this case.

In order to characterize the relation between the void radius an the distance at which the minimum velocity occurs, we find that a linear relation fits the results

\[
 r_{\text{min}} = a_0 r_{\text{void}} + b_1,
\]
where \(a_1 = 0.7 \) and \(b_1 = 2 \). This expression is represented by a grey dotted line in both panels of Fig. 9. Although this is the simplest way to describe the relation \(r(v_{\text{min}}) - r_{\text{void}} \) we also fit an exponential relation

\[
r(v_{\text{min}}) = \exp\left(\frac{r_{\text{void}}}{a}\right)^b, \tag{6}
\]

which is shown in a grey solid line in Fig. 9, with best-fitting parameters \(a = 0.62 \) and \(b = 0.30 \) (no errors) and \(a = 0.55 \) and \(b = 0.33 \) for the results when including distance measurement errors. This exponential expression can also fit the distance where the velocities reach 0 km s\(^{-1}\); in this case, the best-fitting parameters are \(a = 1 \) and \(b = 0.5 \) (when not considering errors). The parameter values obtained from peculiar velocities with no errors are similar to those obtained by fitting the same expression to semi-analytic galaxies (Padilla et al. 2005). As can be seen in Fig. 9, the linear and exponential functions are very similar, and both can be used to give an approximate relation between radius and maximum outflow amplitude.

We analyse the dependence of the maximum outflow distance on void radius predicted by the non-linear outflow model, in this case for both mock and observational catalogues. The aim is to compare the results from both catalogues, and to test the quality and efficiency of the model to describe the velocity field. We produce the velocity contour lines predicted by the model and show them in Fig. 10, where the left-hand panel corresponds to the mock catalogue and the right-hand panel corresponds to the 2dFGRS.

![Figure 10](https://example.com/figure10.png)

Figure 10. Contour lines of peculiar velocity outflows derived from the theoretical model, as a function of void radius (x-axis) and distance to the void centre (y-axis), for the mock and 2dFGRS catalogues (left- and right-hand panels, respectively). Grey solid lines represent velocities greater than -340 km s\(^{-1}\) at \(r_{\text{void}} = 8 \) Mpc/h, dotted lines at 280 km s\(^{-1}\) at \(r_{\text{void}} = 14 \) Mpc/h, black solid lines at 220 km s\(^{-1}\) at \(r_{\text{void}} = 18 \) Mpc/h, black long-dashed lines at 160 km s\(^{-1}\) at \(r_{\text{void}} = 22 \) Mpc/h, black short-dashed lines at 120 km s\(^{-1}\) at \(r_{\text{void}} = 26 \) Mpc/h, black dot-dashed lines at 80 km s\(^{-1}\) at \(r_{\text{void}} = 30 \) Mpc/h, and grey solid lines at 40 km s\(^{-1}\) at \(r_{\text{void}} = 34 \) Mpc/h.

If we compare both panels of Fig. 10 we note that from a qualitative point the results from both mock and theory are quite similar. In a more quantitative analysis, we find that the maximum velocities around large voids (\(r_{\text{void}} > 14 h^{-1} \) Mpc) occur at scales in the range \(10 < r h^{-1} \) Mpc < 20 in both cases. The results shown in this figure are also in agreement with those found from the direct measurement of the peculiar velocity field shown in Fig. 9.

We fit the maximum model outflow velocities using equations (5) and (6). The results from the mock catalogue are best fitted using the exponential expression with \(a = 0.90 \) and \(b = 0.33 \); the results from the 2dFGRS theory predictions are fitted by \(a = 1.05 \) and \(b = 0.35 \), also for the exponential fit. Note the similarity between the results from mock and real data.

5.2.4 Velocity dispersion in void shells

In order to fully characterize the dynamics of galaxies in void shells, we also compute the peculiar velocity dispersion in the directions parallel and perpendicular to the void shell. Again, due to the lack of peculiar velocity information in the 2dFGRS survey, all the analyses in this subsection are restricted to the mock catalogues.

As we only have the line-of-sight projection of the peculiar velocity, the best signal for velocities perpendicular to void shell (in the void radial direction) comes from galaxies close in projection to the void centre, whereas for the velocity parallel to the void shell, this comes from galaxies away from the void centre, in projection. Taking this into account we use galaxies within 45° of the line of sight from the void centre when calculating the dispersion in the direction perpendicular to the void shell, and only galaxies at more than 45° with respect to the line of sight from the void centre when calculating the dispersion in the direction parallel to the void shell.

Fig. 11 shows the relative velocity dispersion as a function of distance to the void centre in the mock catalogue. Black lines show the dispersion about the mean motion in the radial direction, and grey

![Figure 11](https://example.com/figure11.png)

Figure 11. Galaxy peculiar velocity dispersion relative to the void shell as a function of normalized distance to the void centre. Black lines show the dispersion in the direction perpendicular to the void shells and grey (cyan) lines indicate dispersion in the direction parallel to the void shells. Different line types correspond to different void radii and galaxy samples: solid lines are for \(5 r_{\text{void}} h^{-1} \) Mpc < 10 and S121, dotted lines are for \(10 r_{\text{void}} h^{-1} \) Mpc < 15 and S151 and dashed lines are for \(15 r_{\text{void}} h^{-1} \) Mpc < 20 and S171.
Figure 12. $\sigma_{\text{parallel}}/\sigma_{\text{perpendicular}}$ as a function of normalized distance to the void centre for $10 < r_{\text{void}} \, \text{Mpc} \, h^{-1} \leq 20$; inner panel: $\sigma_{\text{parallel}}/\sigma_{\text{perpendicular}}$ as a function of normalized distance to the void centre. Different line types correspond to different void radii and galaxy sample: solid lines correspond to $5 \leq r_{\text{void}} \, \text{Mpc} \, h^{-1} \leq 10$ and S121, dotted lines to $10 < r_{\text{void}} \, \text{Mpc} \, h^{-1} \leq 15$ and S151 and dashed lines to $15 < r_{\text{void}} \, \text{Mpc} \, h^{-1} \leq 20$ and S171.

Figure 13. Galaxy peculiar velocity dispersion relative to the void shell as a function of normalized distance to the void centre affected by distance measurement errors. Black lines indicate the dispersion in the direction perpendicular to the void shell, and grey (cyan) lines indicate the dispersion in the direction parallel to the void shell. Different line types correspond to different void radii and galaxy samples as in Fig. 11.

intermediate voids from sample S151 and dashed lines correspond to large voids from sample S171 as in Fig. 11.

Inspection of Fig. 13 shows that velocity dispersions are higher when peculiar velocity errors are included. We can also see that this effect is more important for the largest voids. The reason behind this systematic offset is that we use samples that reach higher redshifts for larger voids. In spite of this, a qualitative comparison of Figs 11 and 13 shows that the behaviour of the velocity dispersion parallel and perpendicular to the void shells are similar in both plots and that it can still be detected that galaxies move faster along the void walls, or alternatively, filaments.

6 CONCLUSIONS

In this work we have studied statistical properties of the dynamics of voids and galaxies populating void shells. We were specially interested in detecting and characterizing the expansion of voids, and in order to do so, we studied the redshift-space distortions detected in the galaxy–void cross-correlation function measured in the directions parallel and perpendicular to the line of sight. We also analysed the amplitude of the peculiar velocity outflows obtained from the peculiar velocities in mock catalogues and from non-linear theory approximation (Croft et al. 1999). In addition, we analysed the velocity dispersion in the directions parallel and perpendicular to the void shell. In all our statistical analyses we test the effect of peculiar velocity errors in our results. We summarize our results as follows.

(i) We applied a void finding algorithm, which is capable of accurately identifying voids in galaxy catalogues affected by angular and radial selection functions, to volume-limited samples of mock and observational 2dFGRS catalogues.

(ii) The redshift-space distortion of galaxies around voids shows elongations along the line of sight. This can be interpreted as evidence of an outflow motion in both mock and observational data.
our analysis of mock catalogues indicates that several additional results on the dynamics around voids could be derived from the 2dFGRS survey if peculiar velocity data was available as well, or at least for a few tens of thousands of galaxies sampling a large enough volume so that a reasonable number of voids could be found.

(i) By studying the mock catalogues, we are able to perform a direct measurement of galaxy outflows using peculiar velocities. Outflows of about 200 km s$^{-1}$ are measured, in accordance with the results from numerical simulations from Padilla et al. (2005).

(ii) When distance measurements errors are included in the mock galaxies, the estimated outflow velocity is biased to higher values, which could be up to 400 km s$^{-1}$ for the larger voids.

(iii) Measurements of the velocity dispersion in shells around voids in the mock catalogues show that these are larger in the direction parallel to the void walls, in agreement with results from the full numerical simulation (Padilla et al. 2005). This result indicates that galaxies tend to move preferentially in the direction parallel to void shells, that is, along large-scale structure filaments and walls, and that a peculiar velocity catalogue with sufficient data could allow this measurement to be done, constituting a new test to the hierarchical clustering paradigm.

ACKNOWLEDGMENTS

This work has been partially supported by Consejo de Investigaciones Científicas y Técnicas de la República Argentina (CONICET), the Secretaria de Ciencia y Técnica of the Universidad Nacional de Córdoba (SeCyT), Fundación Antorchas, Argentina and Agencia Córdoba Ciencia. This work was supported in part by the ESO-Chile Joint Committee, NP was supported by a Proyecto Fondecyt Postdoctoral no. 3040038. LC and CV were partially supported by the Latin-American and European Network for Astrophysics and Cosmology (LENAC) Project.

REFERENCES

Abazajian K. et al., 2004, AJ, 128, 502
Antonuccio-Delogu V., Bocchiani U., van Kampan E., Pagliaro A., Romeo A. C. S., Germana A., Gamberra M., 2002, MNRAS, 332, 7
Arbabi-Bidgoli S., Muller V., 2002, MNRAS, 332, 205
Baugh C. M., Lacey C. G., Frenk C. S., Granato G. L., Silva L., Bressan A., Benson A. J., Cole S., 2005, MNRAS, 356, 1191
Benson A. J., Hoyle F., Torres F., Vogeley M., 2003, MNRAS, 340, 160
Colberg J., Seth R., Diaferio A., Gao L., Yoshida N., 2005, MNRAS, 360, 216
Cole S., Lacey C. G., Baugh C. M., Frenk C. S., 2000, MNRAS, 319, 168
Colles M. et al. (The 2dFGRS Team), 2003, VizieR Online Data Catalog, 7226
Croft R. A. C., Dalton G. B., Efstathiou G., 1999, MNRAS, 305, 547
Croton D. J. et al., 2004, MNRAS, 352, 828
Dubinski J., da Costa L. N., Goldwirth D. S., Lecar M., Piran T., 1993, ApJ, 410, 458
El-Ad H., Piran T., 1997, ApJ, 491, 421
Fry J. N., 1986, ApJ, 306, 358
Gaztanaga E., Yokohama J., 1993, ApJ, 403, 450
Goldberg D. M., Vogeley M. S., 2004, ApJ, 605, 1
Goldberg D. M., Jones T. D., Hoyle F., Rojas R. R., Vogeley M. S., Blanton M. R., 2005, ApJ, 621, 643
Gottloeber D. M., Lokas E. L., Klypin A., Hoffman Y., 2003, MNRAS, 344, 715
Hoyle F., Vogeley M. S., 2002, ApJ, 566, 641
Hoyle F., Vogeley M. S., 2004, ApJ, 607, 751
Hoyle F., Vogeley M. S., Rojas R., 2005, BAAS, 37, 443
Mathis H., White S. M., 2002, MNRAS, 337, 1193
Muller V., Arbabi-Bidgoli S., Einasto J., Tucker D., 2000, MNRAS, 318, 208
Padilla N. D., Lambas D. G., 1999, MNRAS, 310, 21
Padilla N. D., Ceccarelli L., Lambas D. G., 2005, MNRAS, 363, 977
Patiri S. G., Betancort-Rijo J. E., Prada F., 2006a, MNRAS, 368, 1132
Patiri S. G., Betancort-Rijo J. E., Prada F. K., Gottloeber S. 2006b, MNRAS, 369, 335
Peek J. E. E., 2001, ApJ, 557, 495
Regos E., Geller M. J., 1991, ApJ, 377, 14
Rojas R., Vogeley M. S., Hoyle F., Brinkmann J., 2005, ApJ, 624, 571
Ryden B., 1995, ApJ, 452, 25
Shandarin F. F., Sheth J. V., Sahni V., 2004, MNRAS, 343, 22
Sheth R., van de Weygaert R., 2004, MNRAS, 350, 517
Spergel D. N. et al., 2003, ApJS, 148, 175
Verde L., et al. (The 2dFGRS Team), 2002, MNRAS, 335, 432
Vogeley M. S., Geller M. J., Huchra J. P., 1991, ApJ, 382, 44
Vogeley M. S., Geller M. J., Park C., Huchra J. P., 1994, ApJ, 108, 745
White S. D. M., 1997, MNRAS, 186, 145

This paper has been typeset from a TeX/LaTeX file prepared by the author.