The Synchrony of Production & Escape: Half the Bright Lyα Emitters at $z \approx 2$ have Lyman Continuum Escape Fractions $\approx 50\%$

Rohan P. Naidu1*, Jorryt Matthee2†, Pascal A. Oesch3,4, Charlie Conroy1, David Sobral5, Gabriele Pezzulli6, Matthew Hayes7, Dawn Erb8, Ricardo Amorín9,10, Max Gronke11,12,13, Daniel Schaerer3, Sandro Tacchella14, Josephine Kerutt3, Ana Paulino-Afonso15, João Calhau16,17, Mario Llerena9,10 and Huub Röttgering18

1 Center for Astrophysics | Harvard & Smithsonian, 60 Garden Street, Cambridge, MA 02138, USA
2 Department of Physics, ETH Zürich, Wolfgang-Pauli-Strasse 27, 8093 Zürich, Switzerland
See Appendix C for the other authors’ affiliations.

ABSTRACT
The ionizing photon escape fraction (LyC f_{esc}) of star-forming galaxies is the single greatest unknown in the reionization budget. Stochastic sightline effects prohibit the direct separation of LyC leakers from non-leakers at significant redshifts. Here we circumvent this uncertainty by inferring f_{esc} using resolved ($R > 4000$) Lyα profiles from the X-SHOOTER Lyα survey at $z = 2$ (XLS-z2). With empirically motivated criteria, we use Lyα profiles to select leakers ($f_{\text{esc}} > 20\%$) and non-leakers ($f_{\text{esc}} < 5\%$) from a representative sample of $> 0.2L^*$ Lyman-α emitters (LAEs). We use median stacked spectra of these subsets over $\lambda_{\text{rest}} \approx 1000 – 8000\AA$ to investigate the conditions for LyC f_{esc}. Our stacks show similar mass, metallicity, M_{UV}, and β_{UV}. We find the following differences between leakers vs. non-leakers: (i) strong nebular CIV and HeII emission vs. non-detections, (ii) $[\text{O} iii]/[\text{O} ii] \approx 8.5$ vs. ≈ 3, (iii) $\text{Hα}/\text{Hβ}$ indicating no dust vs. $E(B-V) \approx 0.3$, (iv) MgII emission close to the systemic velocity vs. redshifted, optically thick MgII, (v) Lyα f_{esc} of $\approx 50\%$ vs. $\approx 10\%$. The extreme EWs in leakers ([OIII] + Hβ ≈ 1100 Å rest-frame) constrain the characteristic timescale of LyC escape to $\approx 3 - 10$ Myr bursts when short-lived stars with the hardest ionizing spectra shine. The defining traits of leakers – extremely ionizing stellar populations, low column densities, a dust-free, high ionization state ISM – occur simultaneously in the $f_{\text{esc}} > 20\%$ stack, suggesting they are causally connected, and motivating why indicators like $[\text{O} iii]/[\text{O} i]$ may suffice to constrain f_{esc} at $z > 6$ with JWST. The leakers comprise half our sample, have a median LyC $f_{\text{esc}} \approx 50\%$ (conservative range: $20\% - 55\%$), and an ionizing production efficiency $\log(\xi_{\text{ion}}/\text{Hz} \text{ erg}^{-1}) \approx 25.9$ (conservative range: $25.7 - 25.9$). These results show LAEs – the type of galaxies rare at $z = 2$, but that become the norm at higher redshift – are highly efficient ionizers, with extreme ξ_{ion} and prolific f_{esc} occurring in sync.

Key words: cosmology: observations – cosmology: dark ages, reionization, first stars – galaxies: high-redshift – intergalactic medium – ultraviolet: galaxies

1 INTRODUCTION
The Epoch of Reionization (EoR) was the last major phase transition of the Universe, when the first stars and galaxies announced their presence by ionizing the vast oceans of neutral Hydrogen (HI) they were born within (e.g., Loeb & Furlanetto 2013). While the timeline of reionization is increasingly well-constrained ($z \approx 6 – 9$, e.g., Fan et al. 2006; Planck Collaboration et al. 2018; Mason et al. 2019), the protagonists of reionization remain elusive. Quasars, due to their rapidly fading numbers with increasing redshift, are unlikely to have played a significant role (e.g., Matsuoka et al. 2018; Kulkarni et al. 2019; Shen et al. 2020). Star-forming galaxies are the likeliest candidates, but whether the ionizing photon budget arose from a multitude of ultra-faint galaxies (“democratic reionization”, e.g., Finkelstein et al. 2019) or a rarier set of bright galaxies (“reionization by oligarchs”, e.g., Naidu et al. 2020) is a key open question with wide-ranging physical (e.g., reionization topology) and practical (e.g., survey design) implications (Hutter et al. 2021).

* E-mail: rohan.naidu@cfa.harvard.edu, mattheej@phys.ethz.ch
† These authors contributed equally to this work.
‡ Zwicky Fellow

© 2021 The Authors
The ionizing photon budget is typically parametrized as a product of three quantities (e.g., Madau et al. 1999; Robertson et al. 2013; Duncan & Conselice 2015) – the UV star-formation density (ρ_{UV}), a conversion factor between the UV luminosity and number of ionizing photons (ϵ_{ion}), and the fraction of these photons that make it to the intergalactic medium (IGM) to ionize it (f_{esc}). ρ_{UV} is well-constrained to $M_{UV}=-15$ during the EoR (e.g., Bouwens et al. 2021) with a clear path to fainter magnitudes with JWST (e.g., Labbé et al. 2021). Prospects of constraining ϵ_{ion} are also bright (e.g., Chevallard et al. 2018). On the other hand, due to the opacity of the intervening intergalactic medium (f_{esc}) may never be directly observed at $z \gtrsim 4$ (e.g., Inoue et al. 2014). Progress must therefore rely on measuring and understanding f_{esc} at lower redshifts.

In recent years, direct f_{esc} studies have largely concentrated on two redshift windows set by available UV instrumentation – one at $z \approx 0.3$ where Lyman continuum (LyC) is accessible to HST/COS (e.g., Izotov et al. 2016a, 2018b, 2021a; Wang et al. 2019, 2021), and another at $z \approx 2-4$ accessible to ground-based facilities and HST/WFC3 UVIS (e.g., Jones et al. 2018; Smith et al. 2020; Ji et al. 2020; Meštric et al. 2020; Marques-Chaves et al. 2021; Davis et al. 2021; Prichard et al. 2021). The $z \approx 0.3$ COS efforts were first undertaken at a time when only a handful of robust LyC leakers had been identified, and it was unclear whether LyC leakage even occurred among the $\gtrsim 0.5L^*$ galaxies for which f_{esc} measurements were feasible (e.g., Izotov et al. 2016a,b). Their selection functions prioritized rare galaxies with a high theorized probability of non-zero f_{esc} (e.g., compact, extreme [OIII]/[OII], elevated H/α EW starbursts, i.e., “Green Peas”). These programs have been remarkably successful in proving f_{esc} does occur among fairly luminous galaxies and in producing a sample of ≈ 20 galaxies with robust LyC constraints (e.g., Izotov et al. 2016a, 2018b, 2021a). However, the complex selection function and unknown number densities make generalizing these findings to higher redshifts and into the EoR difficult.

LyC studies at higher redshifts ($z \approx 2-4$) have simpler selection functions, but are hampered by drastic IGM line of sight variations (e.g., Inoue et al. 2014). Ideally, we would like to perform a controlled comparative experiment by constructing leaker and non-leaker stacks, and then contrasting their features to isolate indicators of f_{esc}. However, it is generally difficult to decide whether any individual detection/non-detection is due to high/low f_{esc} or due to a particularly transparent/opaque line of sight. To put numbers to the scale of the problem – for a randomly sampled IGM sightline, the difference between the 10th and 90th percentile transmission is $> 50x$ at $z \approx 3$ (0.01 vs. 0.60, Steidel et al. 2018). Selecting apparent high f_{esc} and low f_{esc} leakers by applying mean IGM corrections amounts to comparing galaxies lying along transparent sightlines vs. opaque sightlines rather than high f_{esc} vs. low f_{esc} sources (e.g., Bassett et al. 2021). These ambiguities due to the IGM transmission are further compounded by viewing angle biases that hydrodynamical simulations show to be important due to the strong anisotropy of LyC f_{esc} (e.g., Gnedin et al. 2008; Wise & Cen 2009; Wise et al. 2014; Cen & Kimm 2015; Paardekooper et al. 2015). For instance, a galaxy may have high f_{esc}, but via holes pointed away from the observed sightline (e.g., Fletcher et al. 2019; Nakajima et al. 2020; Saxena et al. 2021).

Clearly, constructing pure, representative subsamples of leakers and non-leakers from direct LyC observations is challenging at high-z. Nonetheless, stacking sufficient (≈ 50 at $z \approx 3$) galaxies from independently sampled sightlines is expected to produce a robust population-averaged f_{esc} (e.g., Steidel et al. 2018). The current consensus is an average $f_{esc} \approx 5-10\%$ for $z \gtrsim 0.5L^*$ Lyman-break galaxies (LBGs) at $z \approx 3$ (e.g., Marchi et al. 2017; Naidu et al. 2018; Pahl et al. 2021). The question then is, how do we translate this constraint on $z \approx 3$ LBGs to EoR LBGs? These are very different populations, with important properties such as the star-formation surface density (Σ_{SFR}), proposed to be causatively linked to f_{esc} (e.g., Heckman et al. 2011; Sharma et al. 2016; Naidu et al. 2020), rising $\approx 0.5-1$ dex higher (e.g., Oesch et al. 2010; Shibuya et al. 2019) as galaxies grow bluer towards the EoR (e.g., Faucher-Giguère 2018; Tacchella et al. 2020).

In this work, we propose resolved Lyman-α (Lyα) emission-line spectroscopy is the panacea to the challenges around LyC f_{esc}. The resonant nature of Lyα, which makes it highly sensitive to HI in the IGM, is routinely exploited to constrain the timeline of reionization (e.g., Stark et al. 2011; Pentericci et al. 2014; Mason et al. 2018). This resonant nature also renders the Lyα line profile sensitive to the HI distribution within galaxies. From the emergent sample of LyC leakers it is clear that Lyα profiles are the highest fidelity tracers of f_{esc}, both at low and high redshifts, and across several dex in physical properties like stellar mass, specific SFR, Σ_{SFR}, and $E(B-V)$ (e.g., Verhamme et al. 2017; Izotov et al. 2018b, 2021a; Vanzella et al. 2020). From a theory point of view, the interpretation is intuitive and well-understood – line profiles with tightly spaced narrow blue and red peaks, with flux emitted close to the systemic redshift (z_{sys}), signal a transparent, porous ISM with clear passages for Lyα escape. On the other hand, broad lines, widely separated peaks, and no photons at z_{sys} signal an ISM through which Lyα (and LyC) photons struggled to escape (e.g., Verhamme et al. 2015; Gronke et al. 2015a; Dijkstra et al. 2016; Kimm et al. 2019; Kakiichi & Gronke 2021).

There are significant advantages to studying LyC with Lyα profiles. The IGM, which severely hampers direct LyC observations, has little effect on Lyα profiles at $z \approx 2-3$ (e.g., Hayes et al. 2021) so any individual galaxy can be robustly classified as a likely leaker or a non-leaker. Perhaps most importantly, Lyα constraints based on Lyα profiles can be extrapolated to higher redshifts with some confidence because LAEs at $z \approx 2-6$ are fundamentally similar – in e.g., their sizes (e.g., Malhotra et al. 2012; Paulino-Afonso et al. 2018), UV slopes (e.g., Santos et al. 2020), and Lyα line profiles corrected for IGM absorption (e.g., Hayes et al. 2021). Further, Lyα LFs are almost unevolving across $z \approx 2-6$, therefore a luminosity-limited survey at $z \approx 2$ would have a similar proportion of bright and faint LAEs as at higher redshifts (e.g., Sobral et al. 2018; Herenz et al. 2019; Ouchi et al. 2020).

Realizing the potential of resolved Lyα requires surveys with high spectral resolution at the Lyα wavelength ($R > 4000$, e.g., Verhamme et al. 2015) along with precise z_{sys}. Further, to ensure the generalizability of the results to higher redshifts, the selection function must be well known and ideally simple. The luminosity-limited ($L_{Ly\alpha} > 0.2L^*$) X-SHOOTER Lyα Survey at $z \approx 2$ (XLS-z2, Matthee et al. 2021), based on the narrow-band CALYMAH Survey (Matthee et al. 2016; Sobral et al. 2017b), fulfills exactly these requirements. In this paper we use XLS-z2 to extract the first statistical constraints on LyC f_{esc} via resolved Lyα profiles. In a companion paper (Matthee & Naidu et al. 2021) we use these constraints to show how LAEs explain the evolution of the cosmic ionizing emissivity from $z \approx 2-8$.

A plan for this paper follows – in §2 we describe the XLS-z2 sample, in §3 we motivate the Lyα-profile based selection criteria for the “Low Escape” ($f_{esc} < 5\%$) and “High Escape” ($f_{esc} > 20\%$) stacks that we produce in §4. In §5 we describe the physical conditions for LyC f_{esc} based on the differences between these stacks.
in §6 we estimate the \(f_{\text{esc}} \) of our High Escape stack. We place our results in a broader context, while addressing concerns and caveats in §7, and end with a summary in §8. Throughout this work we reference \(L^* \), the characteristic luminosity in Schechter function parametrizations of luminosity functions (LFs). In the context of Ly\(\alpha \) LFs, the \(L^* \) is as per the Sobral et al. (2018) \(z \approx 2 \sim 6 \) consensus LFs (log \(L_{\text{Ly\(\alpha \)}}/\text{erg s}^{-1} \approx 43 \)). Magnitudes are in the AB system (e.g., Oke & Gunn 1983). For summary statistics, unless otherwise mentioned, we report medians with errors on the median from bootstrapping (10th and 84th percentiles). We assume a flat \(\Lambda \)CDM concordance cosmology with \(\Omega_M = 0.3, \Omega_\Lambda = 0.7 \) and \(H_0 = 70 \text{ km s}^{-1} \text{ Mpc}^{-1} \).

2 SAMPLE & DATA

2.1 \(z \approx 2 \) Sample

Our sample is drawn from the X-SHOOTER Ly\(\alpha \) Survey at \(z \approx 2 \) (XLS-z2; Table 1). The following objects were excluded from our analysis: XLS-1 because it was identified as an AGN, XLS-9 and XLS-13 as no systemic redshift was measured owing to their faintness, XLS-30 because its data does not cover the H\(\alpha \) line, XLS-7, 8, 29, 31 because their Ly\(\alpha \) EW is < 25 \(\text{Å} \) (the standard definition that Ly\(\alpha \) LFs adopt for "SAFE", e.g., Sobral et al. 2018) and XLS-27 because its Ly\(\alpha \) line is significantly offset (by 9 kpc) from the rest-frame optical lines. We split the remaining 26 LAEs in subsets determined by their Ly\(\alpha \) line-profile.

The sample of 26 sources we study here is representative of \(L_{\text{Ly\(\alpha \)}} > 0.2L^* \) LAEs at \(z \approx 2 \). The median Ly\(\alpha \) \(f_{\text{esc}} \) is 30 ± 5\%, in excellent agreement with measurements of typical LAEs that also find \(\approx 30\% \) (Hayes et al. 2010; Song et al. 2014; Trainor et al. 2016; Sobral et al. 2017b; Harikane et al. 2018; Matthee et al. 2021). The median Ly\(\alpha \) EW is 95 ± 16 \(\text{Å} \), consistent with published EW distributions at similar redshifts (e.g., Gronwall et al. 2007; Hashimoto et al. 2017; Santos et al. 2020).

2.2 Data

The unique feature of XLS-z2 is the combination of wide wavelength coverage (\(\lambda_{\text{Ly\(\alpha \)}} \approx 1000 \sim 8000 \text{ Å} \) at \(z \approx 2 \)) with high spectral resolution for the Ly\(\alpha \) line (\(R = 4000 \sim 5000 \)) thanks to the X-SHOOTER echelle spectrograph on the VLT (Vernet et al. 2011). The exposure times are \(\approx 1 \text{ hours on average}, \) which enables simultaneous measurements of systemic redshifts (through the rest-frame optical [OIII] and H\(\alpha \) lines) along with sensitive Ly\(\alpha \) spectroscopy. Redshift \(\approx 2 \) is the lowest redshift where Ly\(\alpha \) can be measured from the ground and the highest redshift where H\(\alpha \) falls in the K band, enabling convenient estimates of Balmer decrements and Ly\(\alpha \) escape fractions (e.g., Sobral & Matthee 2019). Another advantage at \(z \approx 2 \) is that the impact of the IGM on Ly\(\alpha \) is negligible (e.g. Laursen et al. 2011; Hayes et al. 2021). The spectral resolution of XLS-z2 is a factor \(\approx 3 \) and \(> 5 \) higher than the data used by Kulas et al. (2012) and Trainor et al. (2015) respectively, who previously studied Ly\(\alpha \) profiles at \(z \approx 2 \) and is comparable to the study of a smaller sample (\(N = 6 \)) by Hashimoto et al. (2015).

We use both 1D and 2D spectra in this analysis. Measurements in individual sources and stacks are based on 1D spectra extracted based on the position and size of the UV-continuum. The stacking has been performed in 2D (see Matthee et al. 2021 for details on the data reduction, spectral extraction and stacking procedures).

2.3 Ly\(\alpha \) profile statistics

The individual Ly\(\alpha \) profiles are shown in Appendix A. The typical integrated signal-to-noise ratio of the Ly\(\alpha \) line is 20. A multiple peaked Ly\(\alpha \) line is detected in 19/26 LAEs (i.e. 73 \%). As the blue peak is in all cases fainter than the red peak (typically containing \(\approx 17\% \) of the total Ly\(\alpha \) flux), it is possible, but unlikely given Ly\(\alpha \) signal to noise ratio (SNR)>20, that some blue peaks are missed due to their faintness. Out of the multiple peaked systems, 2/19 show three peaks with a clear peak at the systemic velocity (XLS-2 and XLS-21). Two multiple peaked LAEs show additional faint absorption profiles, either in the blue peak or in the red peak (XLS-18, XLS-33). One of the 7 single-peaked LAEs shows a relatively symmetric Ly\(\alpha \) line at the systemic velocity (XLS-20).

2.4 Literature Sample of Lyman Continuum leakers

We design our criteria to select likely leakers and non-leakers based on Ly\(\alpha \) profiles by constructing empirical criteria based on literature galaxies which have both direct LyC measurements as well as resolved (\(R \geq 4000 \)) Ly\(\alpha \) profiles. The bulk of our literature calibration sample is comprised of 20 \(z \approx 0.3 \) GPs studied with HST/COS compiled in Izotov et al. (2021a). LyC is directly measured at \(> 850\text{Å} \) for these sources along with Ly\(\alpha \). The Ly\(\alpha \) luminosities of the XLS-z2 sample are well-matched to the luminosities of these low-\(z \) LyC leakers. Importantly for Ly\(\alpha \) comparisons, the physical scale at \(z \approx 0.3 \) probed by the COS apertures is very similar to the physical scale (\(\approx 7 \sim 10 \) kpc) at \(z \approx 2 \) probed by the XLS-z2 slits. This ensures similar central regions of the Ly\(\alpha \) emission are being captured. Also note that the spectral resolution for the XLS-z2 Ly\(\alpha \) profiles are comparable to the resolution of the HST/COS spectra of the GPs (Orlitová et al. 2018), such that there is no differential effect. These GPs span \(f_{\text{esc}} \approx 0\% \) to \(f_{\text{esc}} \approx 70\% \), with four sources showing \(f_{\text{esc}} > 20\% \).

At higher redshifts, while several LyC leaker candidates have been identified, very few have resolved Ly\(\alpha \) measurements. These sources are: Ion2 (\(z = 3.2 \)), Vanzella et al. (2016), Ion3 (\(z = 4.0 \)), Vanzella et al. (2018), Sunburst Arc (\(z = 2.4 \), Rivera-Thorsen et al. 2019), GS-30668/XLS-26 (\(z = 2.1 \)), Naidu et al. 2017, Matthee et al. 2021), GS-15601 (\(z = 3.27 \), J. Kerrut, in prep.). While few in number, all these sources show Ly\(\alpha \) profiles with prominent emission at the systemic velocity resembling the highest \(f_{\text{esc}} z \approx 0.3 \) Green
Table 1. Lyα properties of our parent sample, split by their inferred LyC f_{esc}. The Lyα escape fraction ($f_{esc, Lyα}$) is computed as $L_{Lyα}/L_{Lyα,int.}$ (see e.g. Hayes 2015), where $L_{Lyα,int.}$ is the Hα luminosity corrected for dust attenuation using the Balmer decrement and a Cardelli et al. 1989 attenuation law. The peak separation (v_{sep}) and central escape fraction (f_{cen}) are discussed in §3.1. † No Blue Peak detected, = Triple peak.

ID	$f_{esc, Lyα}$	v_{sep} km s$^{-1}$	f_{cen}
XLS-2	0.35±0.14	424 ± 24×	0.162 ± 0.007
XLS-3	0.77±0.32	184 ± 13	0.243 ± 0.016
XLS-11	0.55±0.18	368 ± 15	0.287 ± 0.005
XLS-14	0.40±0.24	246 ± 15	0.135 ± 0.037
XLS-17	1.11±0.12	♦	0.109 ± 0.004
XLS-18	0.10±0.08	♦	0.110 ± 0.004
XLS-19	0.32±0.17	445 ± 15	0.208 ± 0.015
XLS-23	0.27±0.13	497 ± 15	0.501 ± 0.013
XLS-21	0.16±0.06	528 ± 35×	0.233 ± 0.003
XLS-22	0.41±0.19	370 ± 14	0.314 ± 0.002
XLS-24	0.64±0.30	365 ± 17	0.153 ± 0.002
XLS-26	0.25±0.17	389 ± 16	0.364 ± 0.007
XLS-28	0.35±0.12	♦	0.357 ± 0.013

Peaks (see bottom panel of Fig. 1). This strongly suggests that systemic Lyα emission accompanies high LyC f_{esc}. A source detected in LyC at $z > 2$ despite the stochasticity of IGM transmission is likely to have high LyC f_{esc} (e.g., Bassett et al. 2021). Indeed, all these sources have an estimated $f_{esc} > 20\%$, thus complementing the GP sample at the high LyC f_{esc} end.

3 CLASSIFYING LYMAN CONTINUUM LEAKERS AND NON-LEAKERS WITH LYα PROFILES

Empirically, the Lyα line profile is the best predictor of LyC f_{esc} in galaxies in the local Universe (Izotov et al. 2018b, 2021a). We use line profiles to split the XLS-2 sample in subsets – “High Escape” (LyC $f_{esc} > 20\%$, “leakers”) and “Low Escape” (LyC $f_{esc} < 5\%$, “non-leakers”) based on a set of selection criteria that we design in this section. The motivation for $f_{esc} \approx 20\%$ is that this is approximately the average f_{esc} required for $M_{TH} \lesssim 15$ star-forming galaxies to produce reionization in typical calculations (e.g., Robertson et al. 2015; Naidu et al. 2020), whereas galaxies with $f_{esc} \approx 5\%$ are not relevant to the emissivity since even if all galaxies at e.g., $z \approx 7$ had $f_{esc} \approx 5\%$, they would be unable to produce reionization. We do not focus on galaxies with intermediate f_{esc} between these two limits since we do not have sufficient sources (N=4) to construct stacks with meaningful SNR.

We emphasize that our goal here is to place galaxies in broad f_{esc} bins that are clean and complete. We do not argue that the f_{esc} distribution is bimodal, but as f_{esc} is non-linearly related to (parametrisations of) the shape of the Lyα profile, the expected f_{esc} of the two stacks are very different. In what follows we describe our newly developed selection criteria and motivate these based on theoretical and empirical grounds.

3.1 Lyα Peak Separation (v_{sep}) and Central Escape Fraction (f_{cen}) as tracers of LyC f_{esc}: Motivation

Due to resonant scattering, the Lyα line profile is expected to be a tracer of the kinematics, column density, and distribution of neutral HI within a galaxy (e.g., Neufeld 1990; Verhamme et al. 2006; Gronke et al. 2015b; Dijkstra et al. 2016; Kakihara & Gronke 2021). If the ISM is porous with abundant low column density channels, Lyα photons escape with minimal scattering. Radiative transfer simulations show homogeneous, expanding media that cover HII regions with low column densities ($N_H \leq 10^{18}$ cm$^{-2}$) give rise to narrow, tightly separated red and blue peaks. In clumpy, multi-phase systems with non-uniform covering fractions (i.e., so-called riddled ionization-bounded HII regions), Lyα photons escape directly at the systemic velocity across clear lines of sight (Hansen & Oh 2006; Verhamme et al. 2015; Gronke et al. 2016a; Gronke 2017). On the other hand, dense HI distributions force Lyα photons to scatter till they shift out of resonance. This struggle to escape manifests in a broad profile, little flux at the systemic velocity, and widely separated blue and red peaks.

In the sample of $z \approx 0.3$ Lyα leakers the Lyα red and blue peak separation (v_{sep}) has been identified as the most faithful tracer of f_{esc} (e.g., Verhamme et al. 2017; Izotov et al. 2016a,b, 2018a,b, 2021a). This trend is illustrated in the top row of Figure 1 where narrower v_{sep} accompanies higher LyC f_{esc} and quantified as follows (Izotov et al. 2018b) with v_{sep} in km s$^{-1}$:

$$f_{esc} = 3.23 \times 10^4 v_{sep}^{-2} + 1.50 \times 10^2 v_{sep}^{-1} + 0.095.$$ (1)

However, v_{sep} measurements rely on the detection of a clear red and blue peak – fainter blue peaks may be missed due to poor SNR. Further, the applicability of v_{sep} is ambiguous when multiple peaks or systemic emission are seen in the profile. As a result, v_{sep} is an inapplicable metric for a large fraction of $f_{esc} > 20\%$ leakers. We show this in Figure 2, where we compile v_{sep} for all known LyC leakers with high resolution, (R \geq 4000) Lyα measurements and robust systemic redshifts3. All the $z \approx 2 \sim 4$ LyC leakers observed with high-resolution spectroscopy show complex profiles characterized by flux at line center in addition to red and blue peaks (bottom row, Figure 1). These sources include OS-30668-XLS-26 ($z = 2.2$, Naidu et al. 2017), the Sunburst Arc3 ($z = 2.4$, Rivera-Thorsen et al. 2019), Ion2 ($z = 3.2$, Vanzella et al. 2016), GS-15601 ($z = 3.3$, J.

1 In computing v_{sep} for a source like the Sunburst Arc (Figure 1) we set aside the central emission and measure the difference between the closest red and blue peaks. If instead v_{sep} was defined as max(flux, $v > 0$)–max(flux, $v < 0$) we would end up with $v_{sep} = 0$ (and an implied unphysical $f_{esc} = 100\%$) for all the $z = 2 \sim 4$ sources. This ambiguity is precisely the motivation for introducing f_{sep}.

2 The sources J1333+6246, J1442-0209, J1503+3644 are excluded because inspection of their Lyα profiles showed their systemic redshifts to be untrustworthy, see also Oritò et al. (2018).

3 We note that the Lyα line-profile of the Sunburst Arc corresponds to
The three Green Peas with $f_{\text{esc}} > 20\%$ also show significant line centre emission (e.g., J1243+4646, Figure 1). Complex profiles that are not just a blue+red peak combination are a routine feature at high f_{esc}. For these sources v_{sep} is ill-defined (e.g., in the Sunburst Arc) and/or drastically underestimates f_{esc} (e.g., Ion3).

In these cases v_{sep} is a poor tracer of LyC f_{esc} because the observed Lyα profiles are likely a combination of two distinct modes of Lyα escape (e.g., Rivera-Thorsen et al. 2017): (i) scattering, resonant escape through relatively higher column density HI that results in red and blue peaks, (ii) direct escape through porous channels that manifests as central Lyα. Since v_{sep} is sensitive only to the scattering escape mode, we introduce a new parameter, the “central escape fraction” (f_{cen}), that traces the direct escape mode as well. We define f_{cen} as the fraction of Lyα emission within ± 100 km s$^{-1}$ of the systemic velocity, i.e.,

$$f_{\text{cen}} = \frac{\text{Ly} \alpha \text{ flux at } \pm 100 \text{ km s}^{-1}}{\text{Ly} \alpha \text{ flux at } \pm 1000 \text{ km s}^{-1}}.$$ \hspace{1cm} (2)

where we found that the ± 1000 km s$^{-1}$ velocity window captures the total flux for all XLS-z2 sources. Theoretical profiles (e.g., Behrens et al. 2014; Verhamme et al. 2015; Dijkstra et al. 2016) suggest f_{cen} should track the relative abundance of low-opacity escape channels which can facilitate prolific LyC f_{esc}. Note that the denominator in Eq. 2 ensures that if only a small amount of flux is escaping at line centre, the f_{cen} (and the implied f_{esc}) is meagre. For instance, if central emission occurs on top of a double-peak profile, their relative weights are accounted for (contrast the $\approx 3 \times$ higher f_{cen} of the Sunburst Arc with that of Ion3 in Figure 1). An advantage of f_{cen} is that one does not need to identify the exact locations of red or blue peaks, which can be ambiguous for multi-peak profiles or when the fainter (typically blue) peak is below the detection threshold.

We caution that the specific choice of ± 100 km s$^{-1}$ is empirical and will be resolution dependent. However, the spectral resolution for the XLS-z2 observations and the sources used to calibrate the criteria are all very similar. We also caution that for low EW sources continuum subtraction errors can render f_{cen} uncertain, so this cri-

Kerrut, private comm.), and Ion3 ($z = 4.0$, Vanzella et al. 2018).

The profile of the LyC-leaking knot within the galaxy (see also Vanzella et al. 2021). It has a Lyα EW of 103 Å (Emil Rivera-Thorsen, private communication).
terion in specifically applicable to LAEs (Lyα EW ≥ 25 Å). In the following section we provide an empirical verification of the utility of our definition of f_{cen}.

3.2 Designing and validating f_{cen} & v_{sep} selection criteria

Here we use known LyC leakers from the literature to design our joint f_{cen} & v_{sep} selection criteria in order to identify High Escape ($f_{\text{esc}} > 20\%$) and Low Escape ($f_{\text{esc}} < 5\%$) galaxies. We obtained the Lyα spectra for these sources from the Lyα Spectral Database (LASD, Runnholm et al. 2021) or via private communication.

Figure 2. Discriminating between leakers and non-leakers using Lyα profiles. Top Left: LyC f_{esc} as a function of Lyα peak separation (v_{sep}) for the $z = 0.3$ Izotov et al. (2021a) Green Pea compilation and all the $z = 2 - 4$ leakers with high-resolution Lyα spectra. The fit from Izotov et al. (2018b) is shown with a dashed line. While successful at predicting LyC f_{esc} for the Green Peas, the Lyαv_{sep} fails to identify all the $z = 2 - 4$ sources as having $f_{\text{esc}} > 20\%$ because the systemic Lyα emission in these sources is not captured by v_{sep} (Figure 1 bottom). Top Right: To complement v_{sep} we introduce the Lyα central escape fraction (f_{cen}) that measures the fraction of the total Lyα flux emitted at ± 100 km s$^{-1}$ around the systemic redshift (§3.1). f_{cen} selects almost all the $z = 2 - 4$ sources missed by v_{sep} as having $f_{\text{esc}} > 20\%$. Combined, the f_{esc} and v_{sep} selection of $f_{\text{esc}} > 20\%$ sources (orange) is 90% complete and 80% pure, whereas the $f_{\text{esc}} < 5\%$ selection (purple) is 80% complete and 100% pure. Bottom: Distributions of v_{sep} and f_{cen} for the XLS-z2 sample, with selection criteria for the High Escape (purple) and Low Escape (orange) stacks informed by literature sources in the top row.
Relative Flux

\[\text{Relative Flux} \]

selection criterion of \(f_{\text{cen}} > 10\% \) reliably identifies the bulk (7 out of 9) of literature sources with \(f_{\text{esc}} > 20\% \). This adopted \(f_{\text{cen}} \) cut not only selects sources with obvious \(\text{Ly}\alpha \) at line centre like the Sunburst Arc, but also picks up sources with narrow lines and/or tight peak separations (e.g., J1154+2443, Figure 1).

When complemented with a \(v_{\text{sep}} < 250 \text{ km s}^{-1} \) criterion, corresponding to \(f_{\text{esc}} > 20\% \) (Eqn. 1, top-left, Figure 2), Ion2 is the only source missed (i.e., the only “false negative”). As for false positives, three Green Peas with marginally lower than expected \(\text{LyC} f_{\text{esc}} \approx 10-15\% \) are picked up – one of these, J1011+1947, has a \(\text{Ly}\alpha f_{\text{esc}} < 20\% \) and so is readily identified as a contaminant. To summarize, the following empirically motivated criterion:

\[f_{\text{esc}} > 20\% \implies f_{\text{cen}} > 10\% \text{ or } v_{\text{sep}} < 250 \text{ km s}^{-1} \] (3)

when applied to literature \(\text{LyC} \) leakers produces a sample of \(f_{\text{esc}}>20\% \) sources that is \(\approx 90\% \) complete and \(\approx 80\% \) pure.

For selecting galaxies with \(f_{\text{esc}}<5\% \), from the top row of Figure 2 we observe that once the high \(f_{\text{cen}} \) sources are set aside, an entirely pure and \(\approx 80\% \) complete sample can be selected as follows:

\[f_{\text{esc}} < 5\% \implies f_{\text{cen}} < 10\% \text{ and } v_{\text{sep}} > 375 \text{ km s}^{-1}. \] (4)

It is remarkable that these simple empirical selections based purely on \(\text{Ly}\alpha \) work so effectively given the intricate, multi-phase physics that drives \(f_{\text{esc}} \) (e.g., Paardekooper et al. 2015; Ma et al. 2016; Rosdahl et al. 2018). For instance, at first glance, \(v_{\text{sep}} \) and \(f_{\text{cen}} \) appear sensitive only to HI, and not to dust attenuation, which is the other key inhibitor of \(\text{LyC} f_{\text{esc}} \) (e.g., Chisholm et al. 2018). However, in §5 we argue that low column densities, and low attenuation are likely causally interlinked, and thus \(v_{\text{sep}} \) and \(f_{\text{cen}} \) implicitly select for low dust. In §5 we present several such independent spectroscopic points of evidence that inspire confidence in the robustness of the High and Low \(f_{\text{esc}} \) selections.

3.3 Applying \(f_{\text{cen}} \) and \(v_{\text{sep}} \) selections to XLS-z2

We have listed \(f_{\text{cen}} \) and \(v_{\text{sep}} \) measurements for our XLS-z2 sample in Table 1 along with \(\text{Ly}\alpha \) escape fractions measured from the \(\text{Ly}\alpha/\text{H}\beta \) ratio that is dust-corrected via Balmer decrements. Importantly for \(f_{\text{cen}}, \) systemic redshifts precise to \(< 10 \text{ km s}^{-1} \) are measured thanks to the strong [OIII] doublet and its known intrinsic line ratio (see Matthee et al. 2021 for details). \(\text{H}\alpha, \text{H}\beta, \) and in some cases nebular UV lines such as HeII are further used as a cross-check on the
systemic redshift. The peak separation is measured by searching for maxima on either side of the systemic redshift. Faint blue peaks (and hence v_{sep}) on either side of the blended lines are often undetected or unresolved for a few high-f$_{\text{esc}}$ sources. This is not the cause for concern – in §3.2 we showed that all but one of the literature leaks with tight v_{sep} were picked up by the f$_{\text{esc}}$ selection.

Applying Eqs. 3 & 4 we construct a sample of 13 High Escape ($f_{\text{esc}} > 20\%$) and 9 Low Escape ($f_{\text{esc}} < 5\%$) sources. 4 sources have intermediate f_{esc} and are not the subject of this analysis as their stacked spectra have low SNR due to the small number of stacked sources. All sources in the parent sample are placed in one of these three bins. In Figure 3 we show a selection of sources from the Low Escape and High Escape samples. The Low Escape galaxies show little to no flux around line centre and broad, widely separated peaks. In the High Escape sample, XLS-20 is an even more extreme version of the Sunburst Arc, with $\approx 50\%$ of its Lyα emitted at line centre, while XLS-17 resembles the Green Peas with tight peak separation.

The four sources classified as High Escape based on v_{sep} also have high f$_{\text{esc}} > 10\%$. However, five f$_{\text{esc}}$-selected sources appear to have relatively wide v_{sep} of ≈ 400 km s$^{-1}$ (Table 1). XLS-26 (Figure 3) is the archetype of such sources. We emphasize again that the systemic redshifts for all our f$_{\text{esc}}$ selected sources are highly secure – e.g., for XLS-26 the z$_{\text{sys}}$ is confirmed with several lines across multiple X-SHOOTER arrays (Hα, Hβ, [OIII]4960, 5008Å, Heα1640, OII]1660, OIII]1666Å). In these five cases we may be witnessing significant direct Lyα escape, so v_{sep} is under-estimating the LyC f$_{\text{esc}}$ (see §3.2). Higher resolution spectra might reveal a central peak superimposed on blue and red peaks in these sources. Supporting this interpretation, we note that XLS-26 was identified as a likely LyC leaker with f_{esc} = 60$^{+30}_{-18}$ (“GS-30668” in Naidu et al. 2017) with direct LyC imaging from the Hubble Deep UV Survey (Oesch et al. 2018, which also incorporates earlier UV imaging from Rafelski et al. 2015). Since its f$_{\text{esc}}$ was based on a probabilistic method (similar to the search that yielded Ion2, Vanzella et al. 2015), GS-30668 was presented as a likely catastrophic event but find only small changes within the uncertainties of the measurements listed in Table 2. This is because typical spatial offsets between Lyα and the UV continuum are small and our spectral extraction window accounts for variations in the shape of the UV continuum light distribution.

4 SPECTRAL STACKS

To bring out faint spectral features we construct median-stacked X-SHOOTER spectra of the High and Low Escape subsamples over the $f_{\text{esc}} = 1000$ – 8000 Å range. The stacking methodology follows Matthee et al. (2021) whose approach we summarise here. Individual 2D spectra are shifted to the rest-frame and centered on the spatial peak of the Lyα line and the flux densities are converted to luminosity densities before the spectra are continuum normal-

5 RESULTS: THE CONDITIONS FOR LYMAN CONTINUUM ESCAPE

In this section we explore the physical differences between the High Escape and Low Escape stacks. First, we point out similarities: within errors, the stellar mass (M*), UV luminosity (M$_{1500}$), and UV slope (β_{UV}) show no significant difference (Table 2). This implies that for LAEs the Lyα line-profile and the inferred f_{esc} do not strongly depend on these properties. Now, based on the differences

4 We have also created stacked spectra centred on the UV continuum emission, but find only small changes within the uncertainties of the measurements listed in Table 2. This is because typical spatial offsets between Lyα and the UV continuum are small and our spectral extraction window accounts for variations in the shape of the (stacked) UV continuum light distribution.
The XLS-z2 Survey: Synced Production & Escape of LyC photons in LAEs

Figure 4. Median-stacked X-SHOOTER spectra for the High Escape (left) and Low Escape (right) subsets that are selected purely on Lyα line profiles (top row). Each panel is centred on a spectral feature labeled in the top-left corner. Panels are arranged in order of increasing wavelength (top to bottom). All features are nebular emission, except for CII in the second row, which is an interstellar absorption line. Gray shaded regions mark the 1σ noise level. The locations of emission-lines are marked with vertical blue dashed lines, while red lines mark absorption features. The black horizontal dotted line shows the normalisation level for the second to fourth row. For the fifth (bottom) row, the flux levels are normalised to the [OIII] (left) and Hβ (right) flux, respectively.
Table 2. Summary of measured properties for the High Escape and Low Escape stacks. We report medians and bootstrapped errors on medians (16th and 84th percentile). Upper limits are 99th percentile values from bootstrapping. EWs are in the rest-frame. All emission-line ratios are dust-corrected.

Basic Properties	High Escape (f_esc > 20%)	Low Escape (f_esc < 5%)
log10(M star/M⊙)	9.2 ± 0.2	9.4 ± 0.2
M1500	−19.7 ± 0.3	−20.2 ± 0.3
β	−2.10 ± 0.21	−1.95 ± 0.16

Production

EW[OIII]1580/Å	1.9±0.8	< 0.9
EW[OIII]1666/Å	2.7±0.7	1.6 ± 0.5
EW[CII]1336/Å	6.8±1.3	6.4±1.9
EW[OII]1650/5000/Å	820 ± 260	670 ± 160
EW[OIII]/Å	720 ± 200	430 ± 110
log10(EW[OIII]/Hz erg⁻¹)	25.5±0.03	25.5±0.06

Escape

fesc,LyC = \frac{\int S_{\lambda < 912}}{\int S_{\lambda < 912}}	0.9±0.4	< 0.3
R_MgII = \frac{\text{MgII}}{\text{MgII}}	0.9±0.4	< 0.3
\lambda3729/\lambda3727 (s⁻¹)	+106 ± 3	+254 ± 4
\lambda3729/\lambda3729 (s⁻¹)	+60 ± 20	+130 ± 10

Production & Escape

EW[OIII]1380/Å	111 ± 6	61 ± 3
EW[CII]1336/Å	6.7±2.5	5.7±1.8
EW[OIII]1580/Å	< 3.4	6.1±1.7

ISM conditions

E(B − V)	0.00±0.07	0.34±0.10
O32 = [OII]/[SIII]	8.4±2.2	2.7±0.4
O3Hb = [OII]/[SIII]	4.7±0.6	6.0±0.5
NeO2 = [OII]/[SIII]	0.7±0.3	0.3±0.1
R23 = [OIII]/[OII]	6.3±0.9	10.3±1.2
N2Ha = [NII]/[SII]	< 0.08	< 0.03
12+log(O/H)	8.2±0.3	8.1±0.1

between the stacks we aim to understand the differing physical conditions between leakers and non-leakers. In what follows we split the results in groups of features pertaining to the production of ionizing photons, the ISM they are radiated into, and finally the ease with which they are able to escape their parent galaxy.

5.1 Production: High Escape accompanies extreme \(\xi_{\text{ion}} \) and hard ionizing spectra revealed by HeIi and CIV emission

Here we focus on the ionizing photons produced by the stellar populations powering our stacks before they make it into the ISM. Based on rest-frame optical and UV line ratios (e.g., [OII]/[Hβ], CIV/CIII], CIV/HeIi1640), we find that both stacks have emission-lines that are photoionised by young stars and not by AGN activity (e.g., Kauffmann et al. 2003; Juneau et al. 2014; Feltre et al. 2016).

For stellar populations, a canonical quantum in the context of ionizing photon production is \(\xi_{\text{ion}} \), the Hydrogen ionizing photon production efficiency, which is cast in terms of the rate of Hydrogen ionizing photons (\(\text{N}(\text{H}^0) \)) produced per unit (intrinsic) UV luminosity (\(L_{1500} \)). We derive this quantity in terms of the dust-corrected Hα and UV luminosities using the Balmer decrement (e.g., Bouwens et al. 2016; Matthee et al. 2017; Shivaei et al. 2018):

\[
\xi_{\text{ion}} = \frac{\text{N}(\text{H}^0)}{L_{1500}} = \frac{L(\text{Hα})}{L_{1500}} \left[7.4 \times 10^{11} \text{ s}^{-1}/\text{erg s}^{-1}\text{Hz}^{-1} \right].
\]

We measure a log(\(\xi_{\text{ion}}/\text{Hz erg}^{-1} \)) of 25.5±0.06 in the low f_esc stack (assuming LyC f_esc < 0%), and log(\(\xi_{\text{ion}}/\text{Hz erg}^{-1} \)) of 25.8±0.03 in the high f_esc stack (assuming LyC f_esc= 50%, see §6; for f_esc= 0% we find 25.5±0.03). For the low escape stack (E(B − V) ≈ 0.3) we caution the dust correction is uncertain on a 0.3 dex level due to the unknown stellar-to-nebular attenuation and differences across dust curves (e.g., Shivaei et al. 2018), while this is not a concern for the leakers which have E(B − V) ≈ 0.

The High Escape stack also appears to have a harder ionizing spectrum. Prominent narrow CIV[1548], 1550 and HeIi1640 emission is detected at SNR of 4.7 and 3.5, respectively, while there is no sign of these lines among the non-leakers (third row, Figure 4; Figure 5). The HeII EW at 80% higher among the leakers. Strong HeII emission is clear evidence for the production of photons with > 54.4 eV (e.g., Shu et al. 2012; Berg et al. 2018; Nanayakkara et al. 2019; Saxena et al. 2020). That these features are seen in the median stack implies such hard ionizing photons occur routinely among LyC leakers. To put the shape of the SED in perspective, the effective ionizing spectral slope, \(\alpha' \), of the BPASS burst SEDs that produce the observed Hα EWs accounting for an f_esc = 50% (e.g., Stanway et al. 2020) is shallower than the slopes typically adopted for AGN (\(\alpha = 1.3 \) vs. \(\alpha = 1.7 \), e.g., Becker & Bolton 2013). However, note that \(\alpha \) only effectively captures the total number of Hydrogen ionizing photons, and typical quasar SEDs (e.g., Luo et al. 2015) still produce a higher number of Helium ionizing photons at fixed M_UV.

5.2 Production & Escape: hints from CIV

The simultaneous detection of nebular CIV emission alongside HeIi (§5.1) in leakers is evidence that < 260 eV photons are not only being produced but might also be escaping the ISM (Berg et al. 2019). The resonant CIV line, analogous to Lyα, is sensitive to the column density of high-ionization gas. This imprint of the column density on CIV may be seen among the MUSE HeII emitters (Nanayakkara et al. 2019), only a small fraction of which show CIV in emission while the majority show interstellar absorption and/or stellar wind features (e.g., Platt et al. 2019). This is despite CIV requiring a lower ionization energy than HeII (47.9 eV versus 54.4 eV, Draine 2011), and despite the presence of sufficient Carbon in the ISM (CII is detected). In these sources CIV may be suffering significant absorption and scattering < 260 eV photons are being produced but likely fail to escape the ISM. However, tellingly, one of the highest E(CIV) emitters in the MUSE HeII emitter sample is the \(z = 2.2 \) LyC leaker XLS-26/GS-30668/MUSE-1273 that we discussed earlier in the context of central Lyα escape in §3 (Figure 3). A similar scenario as in XLS-26 occurs in the High Escape

\[\alpha' \] is defined such that integrating \(f_s = \nu f' \) for < 912 Å matches the total number of < 912 Å ionizing photons computed by integrating the model SED (e.g., Becker & Bolton 2013).
stack, where nebular C iv emission appears alongside He ii. The C iv doublet ratio indicates some absorption in the ISM – the blue line is weaker than the expectation for pure emission based on the relative oscillator strengths. The line is observed relatively close to the systemic velocity (+60 ± 20 km s⁻¹) implying little scattering.

5.3 ISM: large differences in attenuation at comparable metallicity

Once the ionizing photons leave their sites of production their fate is decided by the contents, density, and geometry of the ISM they encounter. The gas-phase metallicities of our stacks are similar within errors: 12 + log O/H of 8.2 ± 0.3 versus 8.1 ± 0.1. We measure this with a composite of strong-line indicators – R23, [O iii]/[O ii], [O iii]/Hβ, [Ne iii]/[O iii] – calibrated on high-redshift analogues in the Local Universe (Bian et al. 2018). We caution that for the High Escape group, R23 and [O iii]/Hβ yield much (0.5 dex) higher metallicity (12 + log O/H ≈ 8.4) compared to the other two indicators. This is potentially because these two indicators are bi-valued and lose sensitivity around sub-solar (≤ 20%) metallicity ranges (e.g., Pérez-Montero et al. 2021). For the Low Escape group the indicators are in better agreement.

Dust is expected to be a key inhibitor of LyC fesc (e.g., Inoue et al. 2001; Chisholm et al. 2018). The Low Escape stack has a Balmer decrement of 4.1 ± 0.4 indicating widespread dust attenuation among the non-leakers. On the other hand, in the High Escape stack the Balmer decrement is indistinguishable from the expected value for case B recombination (2.8 ± 0.2) in gas with electron temperatures 10-15 kK indicating essentially dust-free pathways for LyC escape, at least outside the HII regions in which the ionizing photons were produced, as the Balmer decrement is insensitive to the attenuation law at < 912 Å (Israel & Kennicutt 1980; Reines et al. 2008). Understanding the dust law at < 912 Å is important, now that we know LyC leakers produce copious photons far below the Lyman edge (see §6.3). We emphasize that there is no explicit information on the attenuation in our stacking criteria (Lyα vsesc and fesc), so the Balmer decrements are a clear, independent validation that High Escape is associated with low (negligible) attenuation.

5.4 ISM: super star cluster-like extreme ionization state in leakers is revealed by elevated [O iii]/[O ii]> 8

The ionization parameter (U) – the ratio of the number density of ionizing photons to the number density of Hydrogen gas – is typically used to characterize the state of photoionized gas in galaxies (e.g., Sanders et al. 2015). In our stacks, Ne3O2 ([Ne iii]3870/[O ii]3727,3729) and [O iii]/[O ii] are tracers of the ionization parameter (e.g., Levesque & Richardson 2014; Strom et al. 2017; Maiolino & Mannucci 2019).

One of the most striking differences between the two stacks is the [O iii]/[O ii] ratio (bottom row, Figure 4; Figure 5) – 8.4±2.2 in the High Escape stack versus 2.7±0.4 in the Low Escape stack. This translates to a log U ≈ -2.3 (2.6) for the High (Low) Escape stacks adopting the Strom et al. (2018) calibration appropriate for z ≈ 2. Likewise, the Ne3O2 ratio also implies log U = -2.3 (2.5) for the High (Low) Escape subsets. The log U = -2.3 of our High Escape stack is among the highest observed for a population, close to the theoretical/observational threshold in the z ≈ 0 Universe (Dopita et al. 2006; Kewley et al. 2019; Pérez-Montero et al. 2021), comparable to confirmed LyC leakers at z ≈ 0.3 (Guseva et al. 2020), and ≥ 0.5 dex higher than continuum-selected samples at z ≈ 2–3 (e.g., Strom et al. 2018; Topping et al. 2020).

As a population, the elevated ionization state of the High Escape stack is comparable to the largest star clusters (Kewley et al. 2019), the so-called “super star clusters”, which routinely show log U ≈ -2.3 (e.g., Indebetouw et al. 2009; Leitherer et al. 2018; Miceva et al. 2019). These compact (order 10 pc), ≈ 10⁵ M☉ complexes of young (order 10 Myrs), massive stars may be the key sites for LyC production and escape (e.g., Vanzella et al. 2019, 2021; Östlin et al. 2021).

5.5 Escape: Optically thin gas traced by Lyα fesc

The stacked Lyα profiles (top panel, Figure 4), by design, show the expected signatures – the High Escape sources have an fesc ≈ 0.27 and a red peak that is ≈ 100 km s⁻¹ from line centre (see Table 2), indicating low column densities, ionized channels, and modest scattering (§3.1). The Low Escape stack on the other hand has little flux emitted at line center (fesc ≈ 0.03), and its red peak is observed at ≈ 250 km s⁻¹ from the systemic velocity, indicating considerably more scattering than the High Escape stack.

Now we dwell on other aspects of the Lyα line that did not go into our selection of the subsets. The Lyα fesc, which is computed by comparing the observed Lyα luminosity with the dust-corrected Ha luminosity, provides a useful upper bound on the LyC fesc. This is clear empirically (e.g., Gazagnes et al. 2020; Izotov et al. 2021a), through radiative transfer simulations (e.g., Dijkstra et al. 2016; Kimm et al. 2019), and makes intuitive sense: Lyα photons can scatter and escape through somewhat higher column density gas, while LyC cannot. The Lyα fesc for our High Escape stack is 47±3% whereas for the Low Escape stack we find 9±2% (Table 2). This is a strong cross-check on the robustness of our stacks – the Low Escape stack is ruled out from having a LyC fesc > 10% while the High Escape stack may have an fesc as high as ≈ 50%.

We find that the leakers have a Lyα EW ≈ 2× higher than the non-leakers. However, note that the 61 ± 3 Å EW in the Low Escape stack is also substantial and demonstrates that Lyα EW by itself is an impure predictor of fesc. This is discussed further in §7.3.

5.6 Escape: Optically thin gas traced by Mg ii

The Mg ii doublet has a similar ionization potential to that of Hα (15 eV), resonantly scatters like Lyα, and will be within the grasp of JWST at z > 6 when Lyα is damped by the neutral IGM (e.g., Henry et al. 2018; Feltre et al. 2018; Chisholm et al. 2020). Our stacks show that the Mg ii doublet can be used as an indirect tracer of HI column density (fourth row, Figure 4; Figure 5). The Low Escape stack shows redshifted (130 ± 10 km s⁻¹) Mg ii emission while in the High Escape stack Mg ii emission arises much closer to the line-centre (± 30 km s⁻¹). Further, the line ratio of the Mg ii doublet (R = Mg ii2796/2803) is in agreement with recent results from Chisholm et al. (2020) who argued the column density of neutral Hydrogen is proportional to R = Mg ii2796/2803 in the optically thin regime. Indeed, in the Low Escape stack R ≈ 2803 ≈ 1 whereas in the High Escape stack the redder line in the doublet is undetected, implying a higher line ratio.
5.7 Escape: Low covering fraction in leakers revealed by CII absorption

The covering fraction of neutral gas is a measure of how riddled with ionized channels (“holes”) the ISM is. Covering fractions, as inferred from ISM absorption lines (both metal lines as well as hydrogen lines), are expected to trace LyC \(f_{\text{esc}} \), with a higher covering fraction corresponding to lower \(f_{\text{esc}} \) (e.g., Reddy et al. 2016; Gagné et al. 2018, 2020; Auerhofer et al. 2021). Our sensitivity for detecting HI absorption lines blue-wards of Ly\(\alpha \) is low. In stacks of LAEs the strongest low-ionisation interstellar absorption lines are typically SiII and CII (Trainor et al. 2015). We clearly detect CII absorption in the Low Escape stack (with an EW\(= -1.6 \pm 0.2 \) Å), and no such absorption feature in the High Escape stack (with a 2\(\sigma \) limiting EW > −0.6 Å; Figure 4). No significant SiII absorption is detected in any of the stacks (2\(\sigma \) limiting EWs > −0.8 Å and > −0.6 Å for the High and Low escape stack, respectively). The difference between SiII and CII is likely of instrumental origin as our sensitivity is a factor \(\approx 1.4 \) better around CII then around SiII. The differences between the CII absorption strengths in the stacks is another line of evidence that a porous ISM conducive to high LyC \(f_{\text{esc}} \) occurs in the High Escape stack, whereas the Low Escape sources do not have such pathways.

6 RESULTS: THE ESCAPE FRACTION OF THE HIGH ESCAPE STACK

The High Escape stack was constructed purely based on Ly\(\alpha \) profiles to have LyC \(f_{\text{esc}} > 20 \)%, and contains 50 ± 10% (binomial error from sample size) of the sample studied in this work (Table 1). Through multiple spectroscopic indicators (§5) we have verified this stack is indeed probing high \(f_{\text{esc}} \). We now estimate what the \(f_{\text{esc}} \) of this sample is likely to be.

6.1 Constraints from the Ly\(\alpha \) escape fraction

A strict upper bound on the LyC \(f_{\text{esc}} \) is due to the Ly\(\alpha \) \(f_{\text{esc}} = 47^{+3}_{-8} \% \), the 95th percentile of which is \(\approx 55 \% \). Both empirical (e.g., Gagné et al. 2020; Izotov et al. 2021a) and theoretical (e.g., Dijkstra et al. 2016; Kimm et al. 2019, 2021) work show that the LyC \(f_{\text{esc}} > 2 \)LyC \(f_{\text{esc}} \). Ly\(\alpha \) and LyC likely emanate from the same production sites powered by young stars, and the resonant scattering of Ly\(\alpha \) gives it an added advantage when it comes to escaping the ISM. We deem this broad range (20 – 55%) our “conservative” estimate since it encompasses the entire realm of possibility for our stack.

We make a finer estimate of the LyC \(f_{\text{esc}} \) by observing that in the Izotov et al. (2021a) Green Pea compilation, the higher the LyC \(f_{\text{esc}} \), the closer it is to the Ly\(\alpha \) \(f_{\text{esc}} \). This trend is supported by the Kimm et al. (2019) simulations in which turbulent clouds with LyC \(f_{\text{esc}} \geq 20 \% \) have \(f_{\text{esc, LyC}} / f_{\text{esc, Ly\(\alpha \)} = 1 \). Indeed, for the seven Izotov et al. (2021a) GPs that satisfy our High Escape selection criteria (Eq. 3) we calculate a bootstrapped ratio of \(f_{\text{esc, LyC}} / f_{\text{esc, Ly\(\alpha \)} = 82^{+16}_{-15} \% \). This ratio produces an LyC \(f_{\text{esc}} \) of 38\(^{+9}_{-8} \% \) for the High Escape stack.

The Ly\(\alpha \) \(f_{\text{esc}} \) we use for this estimate is calculated via the same assumptions as the Izotov et al. (2021a) compilation (e.g., the intrinsic Ly\(\alpha \)/H\(\alpha \) ratio is matched). Further, the spatial scale probed by the HST/COS apertures in the Green Pea studies (\(\approx 1.3'' \) radius, \(7 \sim 10 \) kpc at \(z \approx 0.3 \)) is comparable to our “slits” at \(z \approx 2 \). This ensures consistent Ly\(\alpha \) \(f_{\text{esc}} \) comparison, given the spatially extended nature of Ly\(\alpha \) emission (e.g., Hayes et al. 2013; Wisotzki

Figure 5. Spectroscopic tracers of LyC \(f_{\text{esc}} \) identified in this work that will be easily accessible with JWST – the [OIII]/[OII] ratio (top), the MgII velocity offset (middle), and the rest-frame EWs of high ionization lines (HeII, CIV; bottom). The High Escape stack is represented in shades of orange, while the Low Escape stack is shown in shades of purple. We depict the full conservative range (LyC \(f_{\text{esc}} \) = 20 – 50%) for the High Escape stack (see Table 3). For comparison, individual [OIII]/[OII] measurements for the \(z = 0.3 \) Izotov et al. (2021a) Green Peas are shown in the top panel – note that most of the GPs were selected for follow-up because they have high [OIII]/[OII]. MgII offsets and UV emission line EWs are not yet available for these sources.
et al. 2016). We also clarify that this argument does not imply that high Lyα esc selects for high LyC esc—the point is that at high LyC esc, fesc, LyC, Lyα ≳ 1 which is supported by these fesc > 20% systems being in “density bounded nebulae” that are transparent to LyC along all lines of sight (e.g., Ramambason et al. 2020), thus diminishing the resonance advantage of Lyα over LyC.

6.2 Constraints from the Lyα red peak and HI covering fraction

The HI covering fraction (f cov) – the fraction of high column density (N(HI) > 1020 cm⁻²) channels – has been used as a successful predictor of the LyC escape fraction (e.g., Reddy et al. 2016, 2021; Chisholm et al. 2018) as follows:

\[
f_{\text{esc}} = (1 - f_{\text{cov}}) \times 10^{-0.4A(\lambda=912\AA)}. \tag{6}
\]

In our case the attenuation is negligible, so we set \(A(\lambda=912\AA) = 0\). To estimate \(f_{\text{cov}}\) we exploit the \(\sigma\) correlation with the Lyα red peak velocity (\(V_{\text{red}} - V_{\text{rough}}\)) reported in Gazagnes et al. (2020). Note that the red peak velocity is measured with respect to the Lyα “trough”, i.e., the minima between the red and blue peak in typical double-peaked profiles. Gazagnes et al. (2020) sample, mostly drawn from the Izotov et al. (2021a) compilation, has very similar Lyα resolution to the sample studied here, so differential effects are limited. The significant, albeit noisy, relationship (S. Gazagnes, private comm.) is as follows:

\[
f_{\text{cov}} = (0.29 \pm 0.10) \times \frac{(V_{\text{red}} - V_{\text{rough}})}{(100 \text{ km s}^{-1})} + 0.14 \pm 0.22. \tag{7}
\]

We cannot apply this metric directly to the stack since there is no clear trough in the profile – instead, we apply it object by object to each individual source and compute the median \(f_{\text{cov}}\). In the three cases where there is no trough in the profile we either set aside the source (XLS-24) or assume \(V_{\text{red}} - V_{\text{rough}} = 0\) (XLS-20, XLS-28). The adopted values for all galaxies are shown along with their profiles in Appendix A. The median \(V_{\text{red}} - V_{\text{rough}}\) for our sample is \(147^{+28}_{-28}\) km s⁻¹ which translates to \(1 - f_{\text{cov}} = 43^{+26}_{-24}\%\).

We have verified that for the seven GPSs that satisfy the High Escape criteria computing 1 – fesc in this manner results in a number slightly higher than their mean LyC, fesc (48% vs 35% – this is due to significant dust attenuation in these sources, i.e., \(A(\lambda=912\AA)\) is not zero. It is important to note that Eqn. 6 assumes an “ionization bounded nebula” – i.e., the ionization front is surrounded by an impermeable layer of high column density gas (\(N(HI) \gg 10^{18}\text{ cm}^{-2}\)) that is perforated by a smattering of low column density channels whose proportion is \(\approx 1 - f_{\text{esc}}\). However, as we discuss in the following section, fesc > 20% leakers likely deviate from this physical picture.

6.3 The difference between Lyman edge fesc (850–912 Å) and total fesc (0–912 Å)

The optical line ratios and covering fractions of prolific LyC leakers (fesc > 20%) imply they are best described as “density bounded nebulae” (Ramambason et al. 2020). That is, the ionization front is surrounded by low column density gas (\(10^{16} - 10^{18}\text{ cm}^{-2}\)) punctuated by entirely transparent (< \(10^{16}\text{ cm}^{-2}\)) channels (see Fig. 16 of Gazagnes et al. 2020 for an excellent schematic). Modifying Eqn. 6 for this situation and assuming no dust attenuation we have:

\[
f_{\text{esc,LyC}} = \frac{(1 - f_{\text{cov}}) \times 1 + f_{\text{cov}} \times f_{\text{cov,esc}}}{10^{-0.4A(\lambda=912\AA)}}. \tag{8}
\]

This equation expresses the view that there is a fraction (1-fcov) of entirely transparent channels with \(f_{\text{esc,LyC}} = 100\%\) through which the ionizing continuum emerges as is. However, there is also a fraction of channels (fcov) that is not entirely transparent (\(10^{16} - 10^{18}\text{ cm}^{-2}\)) but is permeable to ionizing photons which have an effective escape fraction of fesc,esc. It is in the context of fesc,esc that the < 850Å photons powering our High Escape stack become important.

All the LyC fesc measurements we have discussed in this paper, devised our selections around, and used to empirically estimate the LyC fesc in the previous sections were made at the Lyman edge (∼ 850 – 912Å). However, photons below the Lyman edge (∼ 850Å) are produced in copious amounts in the High Escape sources, as testified by the presence of strong optical line EWs (e.g., rest-frame [OIII]γ940,5008+Hβ ≈1100 Å), as well as HeI,11640 and CIV,1548,1550 emission. The < 850Å photons have much lower photoionization cross-sections compared to those at > 850Å. Thus, there may be significant differences between the total escape fraction measured across the entire ionizing continuum (“total fesc”, ∼ 0 – 912Å) compared to the escape fraction measured only at the Lyman edge (“edge fesc”, 850 – 912Å) (e.g., Nge din et al. 2008; Inoue 2010; Haardt & Madau 2012; McCandliss & O’Meara 2017; Kimm et al. 2019; Berg et al. 2019). Since < 850Å photons are an ubiquitous feature of LyC fesc occurring in our median stack, literature LyC fesc estimates and the empirical scaling relations we used in this section may be systematically underestimating the total LyC fesc. And it is the total fesc that ultimately matters for reionization calculations.

For the High Escape stack, with an fesc = 60% (§6.2), our estimates from the previous sections are roughly underestimated by ± 10% for covering column densities of N(HI)<10¹⁷ cm⁻² expected in the density-bound scenario, i.e., a total fesc≥50% (Figure B.1). Independently, the Nge din et al. (2008) hydrodynamical simulations provide an explicit scaling of fesc(0-912Å) ≥1.25fesc (912Å), which also results in an fesc(0-912Å) ≥50% for our stack.

From the arguments in this section it might seem our Low Escape stack (edge LyC fesc<5%, Lyα fesc<10%) must also have a higher total fesc. However, it displays significant CH absorption implying high column densities (i.e., it is likely ionization bounded as further suggested by its lower O32 ratio). The difference between edge and total fesc applies only to the fcov × fesc,esc term in Eq. 8 when the covering gas is also transparent (10¹⁶ - 10¹⁸ cm⁻²). Further, the Low Escape stack lacks the ionizing sources producing < 850Å photons (e.g., no HeI and CIV emission). Due to the correlated nature of low column densities, low dust, and ionizing stellar populations, the difference between edge and total fesc must be thought of as a “high edge fesc implies higher total fesc” effect. We also note that a contribution from free-bound emission of H which peaks shortward of the LyC limit may mean that reported edge escape fractions are conversely somewhat overestimated (see Inoue 2010). Here we only seek to argue that some difference likely exists between the edge and total fesc, and have provided an approximate estimate – more sophisticated modeling that accounts for e.g., realistic ionization and density structure is warranted.
6.4 Consistency with existing LBG and LAE escape constraints

A back-of-the-envelope consistency check for our estimated LyC f_{esc} comes from recent stacked f_{esc} measurements of $M_{UV} \leq -19$ LBGs at $z \approx 2.5 - 4$ that all find an average $f_{esc} \approx 5 - 10\%$ (Marchi et al. 2017; Steidel et al. 2018; Pahl et al. 2021). At these redshifts and for comparable M_{UV} the fraction of $L > 0.2L^*$ LAEs (i.e., our survey faint limit) in LBG samples is $\approx 30\%$ (e.g., Santos et al. 2021). Importantly, the entire $p(M_{UV}/L_{Ly\alpha})$ distribution for $L > 0.2L^*$ LAEs is contained at $M_{UV} < -19$ as seen via the XLS-z sample (Matthee et al. 2021). If half of these LAEs (i.e., 15% of LBGs) have an average $f_{esc} \approx 40\%$ at the Lyman edge, and all other galaxies have $f_{esc} \approx 0\%$ then the stacked f_{esc} for an $M_{UV} \leq -19$ LBG sample should be $\approx 5 - 10\%$, in excellent agreement with literature estimates. Another cross check comes from the fraction of individually detected leakers in the LBG samples – for the Keck Lyman Continuum Survey (KLCS) this fraction is $\approx 10\%$ (Pahl et al. 2021), which is consistent with the $\approx 15\%$ ($< 15\%$ with IGM damping) implied by our results. For a more sophisticated exploration of how our LAE constraints translate to the overall LBG population, we refer readers to §5 of our companion paper (Matthee & Naidu et al. 2021).

As for LyC studies of LAEs, Oesch et al. (2021) and Bian & Fan (2020) stacked direct LyC imaging at $z \approx 3$ from the Hubble Deep UV Survey (HDUV, Oesch et al. 2018) with samples dominated by $M_{UV} \leq -18$ LAEs from the MUSE-Wide (Urrutia et al. 2019) and MUSE-HUDF (Bacon et al. 2017) surveys. These authors report 2σ upper limits of $\leq 20\%$ on the $\approx 900\AA f_{esc}$ (see also Japelj et al. 2017 who report consistent estimates using a smaller sample of MUSE LAEs with shallower imaging). On the other hand, the LAE subsample of KLCS ($M_{UV} < -19$) has reported $f_{esc} \approx 20\%$, albeit with considerable IGM transmission uncertainties due to their sample size of 26 (Pahl et al. 2021). As we argue that only half the LAEs are in the leaking-phase, the imaging constraints are marginally inconsistent and the spectroscopic constraints in excellent agreement with our results that expect these studies to find $f_{esc} \approx 20\%$ (half the LAEs have edge f_{esc} of $\approx 40\%$).

6 DISCUSSION

7.1 Implications for constraining LyC f_{esc} with JWST: can strong lines do it all?

A prime directive of LyC studies at $z < 4$ is to identify indirect estimators of LyC that are easily accessible during the EoR. The pressing question is, which spectroscopic features must be in future observations at the highest redshifts? Our High and Low Escape stacks show promising and significant median differences in lines like MgII and CII expected to be tightly linked to the HI column density (e.g., Gazagnes et al. 2018, 2020; Mauerhofer et al. 2021; Henry et al. 2018; Chisholm et al. 2020). This bodes well for programs pursuing these faint features with JWST.
7.2 A case for optimism about $\left[\text{O} \text{iii}\right]/\left[\text{O} \text{ii}\right]$ as a LyC f_{esc} predictor at high-redshift

The $\left[\text{O} \text{iii}\right]/\left[\text{O} \text{ii}\right]$ line-ratio has been considered a promising indicator of LyC leakage as it might trace density-bounded nebulae (e.g., Jaskot & Oey 2013; Nakajima & Ouchi 2014) and has been extensively studied due to the relative brightness of both emission-lines. However, tests of this indicator have produced mixed results (e.g., Naidu et al. 2018; Chisholm et al. 2018; Jaskot et al. 2019; Bassett et al. 2019; Nakajima et al. 2020). On the other hand, we identify a stark contrast in $\left[\text{O} \text{iii}\right]/\left[\text{O} \text{ii}\right]$ across our stacks of LAEs (\S5).

We consider three effects that may explain the difference between our results and previous work. First, the LAE selection may help reduce the scatter arising from viewing angle effects (e.g. akin to those expected for LyC escape, Gnedin et al. 2008; Paardekooper et al. 2015; Cen & Kimm 2015) by honing in on galaxies at similar, favorable viewing angles to begin with. The LAE selection also selects galaxies with relatively low mass, compact sizes, high specific star formation rate, and elevated star-formation surface density - conditions that may correlate with f_{esc}, and thereby further reduce scatter (e.g. Heckman et al. 2011; Marchi et al. 2018; Cen 2020; Naidu et al. 2020; Matthee et al. 2021). Second, the absence of a strong correlation between f_{esc} and $\left[\text{O} \text{iii}\right]/\left[\text{O} \text{ii}\right]$ in high-redshift analogues at $z \approx 0.3$ that are all LAEs (e.g., Izotov et al. 2021a) may be due to physical sources of scatter that are absent at higher-redshift. These could, for example, be diverse star formation histories on longer timescales that drive differences in chemical abundances in the ionising stellar populations. Third, the absence of strong differences in $\left[\text{O} \text{iii}\right]/\left[\text{O} \text{ii}\right]$ between LAEs classified as LyC leakers or non-leakers using direct imaging experiments (e.g., Fletcher et al. 2019) may be explained by stochasticity in the IGM transmission (e.g. Steidel et al. 2018). Differences in properties such as $\left[\text{O} \text{iii}\right]/\left[\text{O} \text{ii}\right]$ are obscured if average IGM transmission values are applied to compute f_{esc} for individual sources – such samples are then effectively split by IGM transmission and not by whether sources are genuine leakers or non-leakers (e.g., Bassett et al. 2021).

Our Lyα line-profile based strategy likely minimizes viewing angle effects, bypasses IGM transmission stochasticity, and thus helps clearly identify the physical conditions in galaxies associated with LyC escape at high-redshift. The increased prevalence of LAEs with increasing redshift, and the clear variations in $\left[\text{O} \text{iii}\right]/\left[\text{O} \text{ii}\right]$ among LAEs with high and low f_{esc} are likely cause for optimism for $\left[\text{O} \text{iii}\right]/\left[\text{O} \text{ii}\right]$ as a stand-alone indicator of the average LyC f_{esc} for galaxies at the highest redshifts.

7.3 The interplay between Lyα EW and LyC f_{esc}: high f_{esc} does not imply low EWs

It may seem intuitive that high LyC f_{esc} sources must have weak emission lines since large fractions of ionizing photons are lost to the IGM without exciting emission in the ISM. Thus, a potential concern underlying this work is that the Lyα line luminosity may decrease with increasing f_{esc}, and the most prolific LyC leakers are missed in our Lyα-selected sample. On the other hand, it is expected (e.g., Dijkstra et al. 2016) as well as observed (e.g., Izotov et al. 2020) that the LyC escape fraction (and thus the emerging Lyα luminosity) is correlated with the LyC escape fraction as both are sensitive to the H1 column density.

The Lyα EW that emerges from a galaxy is plausibly proportional to the intrinsic Lyα EW associated with a stellar population and the Lyα escape fraction. As the Lyα and LyC escape fractions are correlated (e.g. Izotov et al. 2021a; Kimm et al. 2021), there is a regime of small LyC f_{esc} where variations in Lyα EWs correlate with f_{esc}, producing a linear relation (e.g. Steidel et al. 2018). It is expected that the correlation between Lyα EW and f_{esc}, LyC breaks or flattens eventually (e.g. Nakajima & Ouchi 2014), as very high escape fractions impact the Lyα source term too much. The question is where this break happens, which is complicated as galaxies show varying intrinsic Lyα EWs (i.e. due to differences in stellar ages and metallicities).

We investigate these effects in Fig. 6, where we compiled measured Lyα EWs and LyC f_{esc}, and also illustrate the conservative range of f_{esc} (Table 3) for the High and Low Escape LAEs. The LyC leaker GPs at $z \approx 0.3$ are all accompanied by high observed Lyα EWs > 70 Å (e.g. Izotov et al. 2016a, 2018a, b), without the Lyα EW being a criterion in their sample selection. For the leaking GPs, the average LyC f_{esc} is ≈ 20 % and the average Lyα EW ≈ 130 Å. This suggests that these GPs are experiencing particularly young bursts (Chisholm et al. 2019) leading to high intrinsic EWs. None of the confirmed leakers with $f_{esc} > 10$ % have a Lyα EW that is below 20-25 Å (i.e. the typical selection thresholds for LAE surveys). On the other hand, there are several galaxies with a Lyα EW > 100 Å, but a moderate < 10% escape fraction.

There are two key takeaways from this compilation. The first is that the conditions that produce high f_{esc} (e.g., the presence of young, extremely ionizing stellar populations) often also produce very high intrinsic EWs such that even the weakened EWs due to the $(1-f_{esc})$ in the source term are high (e.g., ≈ 110 Å for Lyα in our High Escape stack compared to ≈ 60 Å for the Low Escape stack). The second takeaway is that there is considerable scatter in the relation between Lyα EW and f_{esc}, both in individual sources and in our two High and Low Escape stacks, which both show relatively high Lyα EW. High LyC leakage is found in galaxies with...
high emerging Lyα EWs, suggesting that Lyα EW may serve as a complete pre-selector of LyC leaking galaxies. However, Lyα EW alone will also select a high number of false-positives.

7.4 The coincidence of high f_{esc} with high ξ_{ion} and timing the LyC escape phase to $\approx 2 - 10$ Myrs

A main concern of f_{esc} simulations (e.g., Ma et al. 2015) is that short-lived massive stars with highly ionizing spectra are also the stars that need to explode and clear the ISM. The paucity of these massive stars in the ISM is cleared may lead to poor ionizing output. That is, high f_{esc} periods and high ξ_{ion} periods may be out of phase. Our results show that galaxies with high LyC f_{esc} are also the ones with hard ionizing spectra and elevated ξ_{ion}.

What could cause this? Hydrodynamical simulations have emphasized the importance of bursty feedback from young, massive stars in driving LyC f_{esc} (e.g., Rosdahl et al. 2018; Kimm et al. 2019; Ma et al. 2020) where the LyC f_{esc} is expected to be highly stochastic, varying rapidly on ≈ 10 Myr timescales (e.g., Trebitsch et al. 2017; Barrow et al. 2020). We can test this by estimating the burstiness of the recent star formation history in the stacks using EWs of recombination lines like Hα to that age, first order, sensitive to the relative number of very hot stars and therefore to the age of stellar populations. These EWs have the added advantage of only mild dependencies on the initial mass function, metallicity and fine-grained properties like binarity and rotation velocity (e.g., Leitherer et al. 1999; Gräfener & Vink 2015).

Following Jaskot & Oey (2013), we estimate the age of the star-bursts in the High and Low Escape stacks based on Hα EWs from BPASS (Stanway & Eldridge 2018) and Starburst99 models (Leitherer et al. 1999). We assume a stellar metallicity $Z \approx 5\% Z_{\odot}$ motivated by the inferred gas-phase metallicity (see also Matthee et al. 2021). The High Escape stack has an Hα EW of ≈ 1400 Å (corrected for $1/(1-f_{\text{esc}})$)\(^6\), which requires a very young age of $2-10$ Myr for a single burst and $\lesssim 10$ Myr for continuous star formation (see top panel of Figure 7). The Hα EW of the Low Escape stack is compatible with a much larger age spread: ≈ 10 Myr for a single burst, but < 200 Myr for continuous star formation. Confirming the emerging picture from simulations, a key distinguishing feature of High Escape galaxies is that they have undergone a very recent ($\lesssim 10$ Myr) burst.

A bursty SFH does not necessarily yield coherence in the phases of high ionizing photon production and escape. Feedback first needs to clear the birth clouds before LyC f_{esc} can occur. The effects of binary star evolution have been proposed as a remedy to this issue, since they yield significant LyC production even after the most massive stars have exploded (e.g., Ma et al. 2016; Rosdahl et al. 2018; Doughty & Finlator 2021). The EWs of nebular HeII and CIV emission can help test this scenario since they are sensitive to hotter stars than HI-ionizing stars, and may probe Myr timescales (e.g., Görgb et al. 2019; Stanway et al. 2020; Sencynha et al. 2021). Knowledge of the origin of these strong nebular lines could in the future further help timing the LyC leaking phases. In addition, more sensitive spectroscopy that can measure P Cygni stellar wind features from e.g. NV and OIV could be useful in constraining the ages of the most massive stars (e.g. Izotov et al. 2018b; Chisholm et al. 2019).

7.5 A unified scheme for LyC Escape and extrapolating $z \approx 2$ results to $z > 6$

In Figure 8 we present a simple unified picture of LyC f_{esc} across all star-forming galaxies by synthesizing our findings, the relation between LAEs and the general galaxy population, and results from recent hydrodynamical simulations (e.g., Trebitsch et al. 2017; Rosdahl et al. 2018; Kimm et al. 2019; Ma et al. 2020; Barrow et al. 2020; Kimm et al. 2021). Our evolutionary sequence for LyC f_{esc} follows in the footsteps of Tenorio-Tagle et al. (1999); Mas-Hesse et al. (2003); Mao et al. (2007) who presented such sequences for the emergence of Lyα from star-forming galaxies.

We distinguish galaxies as being in one of four phases. In Phase I, super star cluster like objects form in vigorous starbursts. It takes $\approx 2 - 3$ Myr for the massive stars in them to destroy their birth clouds and clear channels through the ISM via feedback (e.g., winds, supernovae). Phase I might explain the persisting mystery as to why f_{esc} constraints (more precisely, N(HI) constraints) from long Gamma Ray Bursts (GRBs; e.g., Vliestaart et al. 2020) across a wide range of redshifts find low average f_{esc} (e.g., 0.5%, Tanvir et al. 2019), at odds with LBG stacks (e.g., Pahl et al. 2021). A possible explanation is that the short-lived (< 5 Myr) progenitors of long GRBs (> 40 M$_{\odot}$) stars, e.g., Levan et al. 2016) preferentially explode while the birth clouds and ISM are yet to be cleared.

In Phase II, which describes the phases of the galaxies in our High Escape stack, the birth clouds are plausibly disrupted and channels in the ISM have been carved for LyC f_{esc}(\$7.4\). Binary products, in addition to young stars that continue forming within the ionized shells cleared by feedback, radiate photons into the IGM with a very high ionizing photon production efficiency. In Phase III, corresponding to our Low Escape stack, the ISM is more opaque to Lyα and LyC as feedback weakens since the most massive stars have already exploded – relatively young populations that can

\(^6\) In the lower limiting case f_{esc}=20 %, the intrinsic Hα EW of the High Escape stack is ≈ 900 Å which implies ages $\lesssim 7 - 30$ Myr.
produce Lyα are nonetheless still present. Phase IV describes the ‘steady-state’ LBGs in which the ISM is opaque to dust and HI and the ionising photon production efficiency is about \(\approx 3 \) times lower than during Phase II (e.g. Bouwens et al. 2016 and §5).

Remarkably, we found that half the LAEs are in Phase II despite its short characteristic timescale (\(< 10 \) Myrs) compared to Phase III (10-100 Myrs). This implies that the likelihood of observing a galaxy to be in a specific phase is not solely determined by the duration of these phases. There might be two important physical effects at play. First, the fraction of favorable viewing angles such that a Phase II galaxy is observed as a Ly\(\alpha \) emitter is likely higher compared to a Phase III galaxy. This may be the case when the large scale ISM around young Phase II clusters has a larger fraction of low column density and dust-poor sight-lines compared to Phase III bursts (as supported by §5). Second, the duty cycle of Phase II might be rapid, with consecutive bursts occurring in quick succession. Ma et al. (2020) detail such a scenario: an accelerating supernova superbubble sweeps up material in its wake, and consecutive generations of young stars form inside the cleared out bubble – a kpc-scale bubble is expected to take \(\approx 20 - 40 \) Myrs to expand during which it would support Phase II conditions (El-Badry et al. 2019).

At \(z \approx 2 \), the majority of LBGs are not detected as LAEs (e.g., Cassata et al. 2015; Kusakabe et al. 2018) and Phase IV is therefore the most common. Galaxies in any phase can go back to being in Phase I and II when they undergo starbursts. However, the more
massive a galaxy is, the more unlikely it is that young starbursts can dominate significant fraction of the light. This could be either because they are out-shined by older star-forming regions, or because the fraction of favourable sight-lines through the galaxy decreases with increasing mass. This may be reflected by observations that find that the Lyα escape fraction generally decreases with increasing mass for galaxies selected irrespective of their Lyα strength (e.g. Matthee et al. 2016; Oyarzún et al. 2017). Our line-profile statistics (§3.3) suggest that Phase II is concentrated in a minority (< 10%, i.e., half the LAEs) of the overall galaxy population (≥ 0.5L⋆ LBGs) at z ≃ 2.

This framework helps explain the rarity of LyC leakers at lower redshifts and their probable increasing incidence at higher redshifts (e.g. Faucher-Giguère 2020) in terms of the growing LAE fraction (specifically Phase II fraction) among LBGs. At higher redshifts, the LAE population forms an increasing fraction of the LBG population (e.g. Stark et al. 2010), and therefore a higher fraction of the total galaxy population occupies Phases II-III sketched in Fig. 8. There are already strong hints that Phase II conditions (e.g., high [OIII]/[OII], extreme [OIII] EWs) grow increasingly common towards the EoR in lockstep with the rising LAE fraction (e.g., Labbé et al. 2013; De Barros et al. 2019; Endley et al. 2021). At z ≃ 2 when the LAE fraction among M_{UV} < −18 LBGs is ≃ 0.1, the average LyC_fesc is ≃ 0.05, whereas at z ≃ 8 when the LAE fraction may be ≃ 1, we expect an average f_{esc} of 0.25 (half the LAEs have f_{esc} ≃ 50%, the other half have f_{esc} ≃ 0, non-LAEs have f_{esc} ≃ 0). Indeed, the Lyα escape fraction measured in LAEs at z = 2 is comparable to the LBG population-averaged Lyα escape fraction at z > 6 (Hayes et al. 2011; Sobral et al. 2017a; Matthee et al. 2021). This implies that – if the Lyα to LyC connection is not evoking – the average Lyα escape fraction of LAEs at z ≃ 2 is comparable to the average LyC escape fraction of the star-forming galaxy population in the Epoch of Reionisation.

It is therefore plausible that we can extrapolate our f_{esc} results on LAEs at z ≃ 2 to LAEs at z ≃ 3 as LAEs show redshift-invariance of various properties relevant to f_{esc} – sizes, 2σσσ, line profiles, β_{UV} slopes, and luminosity functions (e.g., Malhotra et al. 2012; Paulino-Afonso et al. 2018; Herenz et al. 2019; Santos et al. 2020; Hayes et al. 2021), but direct tests – such as the evolution of the distribution of Lyα line-profiles with redshift – would be able to verify this. In a companion paper (Matthee & Naidu et al., 2021), we quantify the implications of this framework by showing the ionizing emissivity from bright LAEs is sufficient to explain the cosmic ionizing background from z ≃ 2 – 8.

7.6 Caveats & Limitations

Here we discuss caveats and limitations around our results and ways to address them.

While theoretically well-motivated, and validated by multiple independent spectroscopic indicators (\S), our Lyα profile-based LyC selection criteria were designed based on a small sample of ≃ 25 sources that have both high-resolution Lyα profiles as well as direct LyC f_{esc} measurements. These criteria must be further validated with larger samples – e.g., there are now ≃ 20 LyC leaker candidates at z = 2 – 4 awaiting high-resolution Lyα measurements (e.g., Bian et al. 2017; Steidel et al. 2018; Fletcher et al. 2019).

A ≃ 4× larger sample would help confirm our results and reduce the error on the fraction of LyC leaking LAEs by half (currently we report 50 ± 10%). However, obtaining high-resolution spectra spanning the entire rest-frame UV to optical wavelength range that we have analyzed here is challenging. Very few datasets currently exist at any redshift with such coverage. We hope the validation of the Lyα-based approach in this study spurs greater investments in large surveys designed to measure the bare minimum high-resolution Lyα coupled with a precise systemic redshift for galaxies drawn representatively from Lyα LFs (see Matthee & Naidu et al. 2021 for a Lyα-LF based framework for the emissivity).

The high ionization lines (CIV,α1548,α1550, Heα,Heβ) detected only in the f_{esc} > 20% stack may prove very informative – they show extremely ionizing (> 5×4 eV) photons are produced during periods of elevated LyC f_{esc}. However, latest stellar population models are unable to match the observed EWs of these lines (bottom panel of Figure 7), and so quantitative details relying on these models such as the exact time when Heα,Heβ production peaks after a burst are uncertain. We now have yet another motivating reason – understanding LyC_fesc – to unravel the origins of nebular Heα (e.g., Stanway et al. 2020; Sanchyna et al. 2021; Simmonds et al. 2021; Olivier et al. 2021).

Finally we comment on the generalizability of our results to lower and higher redshifts. To first order, the framework presented in Figure 8 applies to any redshift – what changes is the fraction of galaxies that are in each phase. However, it must also be acknowledged that despite all their similarities, z ≃ 2 LAEs may have different star-formation histories, stellar abundances, and interstellar media compared to z ≃ 0 LAEs or z ≃ 6 LAEs. In our framework these differences would manifest in the width and duration of each phase. For instance, Phase II (the LyC phase), may be even more leaky and extended at z ≃ 6 given possibly lower metallicities and thus harder ionizing spectra (bottom panel of Fig. 7). To clarify this issue we need a systematic study of the detailed ISM and stellar populations of LAEs across redshift in the style of Izotov et al. (2021b) who focused on compact star-forming galaxies.

8 SUMMARY & OUTLOOK

We seek to isolate the physical conditions for LyC f_{esc} by comparing samples of LyC leakers (inferred f_{esc} > 20%, High Escape) against a control sample of non-leakers (inferred f_{esc} < 5%, Low Escape). Such a controlled study has been difficult to perform at high-z due to sightline effects and at low-z due to complex selection functions. Here we circumvent these hurdles by using resolved Lyα profiles from the luminosity-limited XLS-z2 survey to select leakers and non-leakers. Our empirically motivated selection criteria using the Lyα peak separation (v_{sep}) and central fraction (f_{cen}) are based on literature sources with f_{esc} measurements at z = 0–4, and have solid theoretical grounding in decades of radiative transfer simulations [§3, Figs. 1, 2, 3, Table 1]. By contrasting stacked spectra of the High Escape and Low Escape samples we find the following [Figure 4, Table 2] :

- The robustness of our stacks – that they do separate leakers (f_{esc} > 20%) from non-leakers (f_{esc} < 5%) – is confirmed by half a dozen independent spectroscopic indicators sensitive to HI and dust, the two chief regulators of f_{esc}. In the High Escape stack MgII is observed close to the systemic velocity, the resonant CIV is in emission, the Lyα f_{esc} which is ≥ LyC f_{esc} is ≃ 50%, CII absorption that is a hallmark of dense HI columns is undetected, and the Hα/Hβ ≃ 2.8 reveals a dust-free ISM. On the other hand, the low escape stack shows redshifted MgII (1530 km s^{-1}), no CIV emission, f_{esc} LyC ≤ f_{esc} Lyα ≃ 10%, strong CII absorption, and Hα/Hβ ≃ 4 implying E(B – V) ≃ 0.3. [§5.3–§5.7, Figure 4, Table 2]
The XLS-z2 Survey: Synced Production & Escape of LyC photons in LAEs

The leakers show strong nebular H\textsc{ii} and C\textsc{iv} emission in the median stack, signaling the ubiquity of high ionizing spectra along with a log(ξ_{ion}/Hz erg$^{-1}$) $\approx 25.7 - 25.9$ (for $f_{\text{esc}} = 20 - 50\%$). These high-ionization features and extreme EWs (e.g., [O\textsc{iii}]+H\textsc{beta} rest-frame EW ≈ 11000) can be produced only by young (< 10 Myr), low metallicity ($< 10\%Z_\odot$) stellar populations in theoretical burst SEDs. Low Escape sources have similar M_{UV} and a high log(ξ_{ion}/Hz erg$^{-1}$) ≈ 25.6 but lack the extreme EWs and H\textsc{ii} (> 54.4 eV). That is, the star-formation in leakers and non-leakers is similar on timescales of ≈ 100 Myrs but not on ≈ 10 Myrs. [§5.1, Figure 4, Table 2]

- The massive star-formation in the High Escape sources is occurring in an extreme ionization state ISM ([O\textsc{iii}]/[O\textsc{ii}] ≈ 8.5, log (U) ≈ -2.3), comparable to local super star cluster complexes. Non-leakers have a less ionized ISM with [O\textsc{iii}]/[O\textsc{ii}] ≈ 3. [§5.4, Figure 4, Table 2]

- The LyC f_{esc} at 850 – 912\AA{} (“Lyman edge f_{esc}”) of the High Escape stack is 20 – 55\% – the lower bound is by the Ly\textalpha{} profile-based selection and the upper bound is by requiring $f_{\text{esc, Ly\alpha}} \geq f_{\text{esc, LyC}}$. We make a finer estimate of the edge LyC f_{esc} ($\approx 40\%$) by exploiting empirical correlations with the Ly\textalpha{} f_{esc} and the Ly\textalpha{} red-peak velocity. Since the < 8500\AA{} photons that are ubiquitous among the leakers escape easily compared to edge photons, we estimate the total f_{esc} (0 – 912\AA{}) that matters for ionization calculations to be $\approx 50\%$. [§6.3, Table 3, Figure B.1]

- With JWST, the LyC f_{esc} for $z > 6$ galaxies may be constrained with a handful of strong emission lines. The defining characteristics of leakers – low column densities, hard ionizing spectra, a dust-free, high-ionization state ISM – occur simultaneously in the $f_{\text{esc}} > 20\%$ stack of LAEs. That is, these properties are highly correlated, and selecting for one of them increases the chances of selecting the others on average – significant scatter across individual galaxies still exists. So even though [O\textsc{iii}]/[O\textsc{ii}] and Balmer decrements are not explicitly sensitive to HI, they may be sufficient to implicitly estimate the average f_{esc}. This result is derived for LAEs, but is applicable to the ErR since the majority of $z > 6$ galaxies are expected to be LAEs. [§7.1, Figure 5]

- Observed emission lines need not be weak when LyC f_{esc} is high. Based on our stacks as well as a literature compilation of leakers we argue high f_{esc} occurs during a period of prolific ionizing photon production and so the intrinsic emission line EWs are so high that the observed EWs (e.g., ≈ 110\AA{} for Ly\textalpha{}) are still ≈ 2\times{} higher than non-leakers. [§7.3, Figure 6]

- We chart the highly non-linear relationship between observed Ly\textalpha{} EW and LyC f_{esc}. The Ly\textalpha{} EW serves as a complete but highly impure selector of high f_{esc} galaxies. For instance, out $f_{\text{esc}} < 5\%$ stack has a ≈ 60\AA{} EW, which according to the linear Ly\textalpha{} EW – LyC f_{esc} relation in [Steidel et al. 2018; Pahl et al. 2021] implies a LyC $f_{\text{esc}} \approx 30\%$ that is strongly ruled out by the indicators discussed above (e.g., $f_{\text{esc, Ly\alpha}} \approx 10\%$ $\geq f_{\text{esc, LyC}}$). [§7.3, Figure 6]

- We synthesize our findings in the following physical picture that confirms several aspects of recent hydrodynamical simulations. LyC leakers are galaxies that have undergone recent (< 10 Myr) episodes of vigorous star-formation. The super star clusters born out of these episodes have produced spatially concentrated feedback. This feedback has carved channels through the ISM, thus clearing paths for LyC. Crucially, for reionization, even after the ISM is cleared a reservoir of highly ionizing sources is still available to stream photons into the IGM. The galaxies with properties that favour a high escape of ionizing photons are also the galaxies that emit copious amounts of those photons at the right time – production and escape occur in sync. In sharp contrast, non-leakers (despite being strong Ly\alpha{} emitters in our sample) have a relatively dusty, opaque ISM that has not been cleared out by feedback, most likely linked to their dearth of the youngest, most massive stars. [§7.4 - 7.5, Figures 7, 8]

An important contribution of this work is the statistics of LyC f_{esc} among LAEs. Half the LAEs have $f_{\text{esc}} \approx 50\%$, the other half have $f_{\text{esc}} < 5\%$, and non-LAE LBGs have $f_{\text{esc}} \approx 0\%$ (LyC $f_{\text{esc}} \leq$ Ly\textalpha{} $f_{\text{esc}} \approx 0\%$). Since fundamental LAE properties are redshift-invariant, we can, with some confidence, extrapolate the constraints derived here to LAEs at higher redshifts. While comprising a minuscule fraction of the overall galaxy population at $z \approx 2$, the LAE fraction strongly evolves such that almost every $L_{\text{UV}} > 0.1L^*_{\odot}$ galaxy at $z \approx 8$ is perhaps an LAE. This work motivates and forms the basis of a Ly\alpha{}-based formalism for the cosmic ionizing emissivity that uses Ly\alpha{} luminosity functions instead of UV luminosity functions. The L_{UV} that varies on ≈ 100 Myr timescales and is insensitive to the HI column densities is replaced with $L_{\text{Ly\alpha}}$ that is intimately tied to the bursty, stochastic LyC f_{esc} that fluctuates on Myr timescales. Developing this Ly\alpha{}-anchored formalism for reionization is the focus of our companion paper.

ACKNOWLEDGEMENTS

We thank Stephan McCandliss and John O’Meara for their generous counsel on matters bluer than 912\AA{} and sharing code to generate LyC transmission curves in Figure B.1. It is a pleasure to thank the organizers of SAZERAC2.0, a conference where we received helpful affirmation from the community that we were onto something meaningful, particularly from Aaron Smith, John Chisholm, Steve Finkelstein, Joki Rosdahl, Peter Sanchyna, Simon Gazagnes, and Andy Bunker. This project owes its existence to the Leiden/ESA Astrophysics Program for Summer Students (LEAPS) 2017, one of the few truly open-armed research opportunities for undergraduates from developing countries, through which RPN and JM were first connected. We thank the Conroy group at Harvard, particularly Ana Bonaca, for their enthusiasm for all things $z = 0$ and $z > 0$. RPN thanks the Peters family for their hospitality while several aspects of this paper were being worked out, particularly §6 that was aided by the Hefeweizen of Idletyme Brewing Co.

RPN gratefully acknowledges an Ashford Fellowship granted by Harvard University. PO and JK acknowledge support from the Swiss National Science Foundation through the SNSF Professorship grant 190079. The Cosmic Dawn Center (DAWN) is funded by the Danish National Research Foundation under grant No. 140. CC acknowledges funding from the Packard foundation. GP acknowledges support from Fondecyt Regular Grant 190079. The Cosmic Dawn Center (DAWN) is funded by the Danish National Research Foundation under grant No. 140. CC acknowledges funding from the Packard foundation. GP acknowledges support from the Netherlands Research School for Astronomy (NOVA). MH is fellow of the Knut and Alice Wallenberg Foundation. RA acknowledges support from Fonddecyt Regular Grant 1202007. MG was supported by NASA through the NASA Hubble Fellowship grant HST-HF2-51409. ST is supported by the 2021 Research Fund 1.210134.01 of UNIST (Ulsan National Institute of Science & Technology). JC acknowledges support from the Spanish Ministry of Science and Innovation, project PID2019-107408GB-C43 (ESTALLIDOS) and from Gobierno de Canarias through EU FEDER funding, project PID2020010050. MLJ acknowledgments were worked out, particularly §6 that was aided by the Hefeweizen of Idletyme Brewing Co.

RPN gratefully acknowledges an Ashford Fellowship granted by Harvard University. PO and JK acknowledge support from the Swiss National Science Foundation through the SNSF Professorship grant 190079. The Cosmic Dawn Center (DAWN) is funded by the Danish National Research Foundation under grant No. 140. CC acknowledges funding from the Packard foundation. GP acknowledges support from the Netherlands Research School for Astronomy (NOVA). MH is fellow of the Knut and Alice Wallenberg Foundation. RA acknowledges support from Fondecyt Regular Grant 1202007. MG was supported by NASA through the NASA Hubble Fellowship grant HST-HF2-51409. ST is supported by the 2021 Research Fund 1.210134.01 of UNIST (Ulsan National Institute of Science & Technology). JC acknowledges support from the Spanish Ministry of Science and Innovation, project PID2019-107408GB-C43 (ESTALLIDOS) and from Gobierno de Canarias through EU FEDER funding, project PID2020010050. MLJ acknowledgments were worked out, particularly §6 that was aided by the Hefeweizen of Idletyme Brewing Co.
edges support from the ANID/Scholarship Program/Doctorado Nacional/2019-21191036.

We made extensive use of the Lyα Spectral Database (LASD\(^7\), Runnholm et al. 2021) without which compiling literature Lyα profiles would have been an infinitely more miserable task. Other software used in this work include: matplotlib (Hunter 2007), jupyter (Kluyver et al. 2016), TPython (Pérez & Granger 2007), numpy (Oliphant 2015), scipy (Virtanen et al. 2020), TOPCAT (Taylor 2005), and Astropy (Astropy Collaboration et al. 2013).

DATA AVAILABILITY

The VLT/X-SHOOTER data underlying this article were accessed from the ESO archive. The raw ESO data can be accessed through http://archive.eso.org/cms.html. The HST/COS spectra were accessed through the Lyman-\(\alpha\) Spectral Database accessible through http://lasd.lyman-alpha.com/. The derived data generated in this research will be shared on reasonable request to the corresponding authors.

REFERENCES

Amorín R., et al., 2017, Nature Astronomy, 1, 0052
Astropy Collaboration et al., 2013, A&A, 558, A33
Bacon R., et al., 2017, A&A, 608, A1
Barrow K. S., Robertson B. E., Ellis R. S., Nakajima K., Saxena A., Stark D. P., Tang M., 2020, ApJ, 902, L39
Bassett R., et al., 2019, MNRAS, 483, 5223
Bassett R., Ryan-Weber E. V., Cooke J., Meštrić U., Kakiichi K., Prichard A. S., Storchi-Bergmann T., 2019, MNRAS, 498, 2554
Bian F., Kewley L. J., Dopita M. A., 2018, ApJ, 859, 164
Bian F., Fan X., McGreer I., Cai Z., Jiang L., 2017, ApJ, 837, L12
Bian F., Kewley L., Dopita M., 2018, ApJ, 859, 175
Bouwens R. J., Smit R., Labbé I., Franx M., Caruana J., Oesch P., Stefanon M., 2018, A&A, 616, A30
Bouwens R. J., et al., 2021, arXiv e-prints, p. arXiv:2102.07775
Calhau J., et al., 2020, MNRAS, 493, 3341
Cardelli J. A., Clayton G. C., Mathis J. S., 1989, ApJ, 345, 245
Cassata P., et al., 2015, AAP, 573, A24
Cen R., 2020, ApJ, 889, L22
Cen R., Kimm T., 2015, ApJ, 801, L25
Chevallard J., et al., 2018, MNRAS, 479, 3264
Chisholm J., Rigby J. R., Bayliss M., Berg D. A., Dahle H., Gladders M., Sharon K., 2019, ApJ, 882, 182
Chisholm J., Prochaska J. X., Schaerer D., Gazagnes S., Henry A., 2020, MNRAS, 498, 2554
Davis D., et al., 2021, arXiv e-prints, p. arXiv:2107.11319
De Barros S., Oesch P., Labbé I., Stefanon M., González V., Smit R., Bouwens R. J., Illingworth G. D., 2019, MNRAS, 489, 2355
Dijkstra M., Groenke M., Venkatesan A., 2016, ApJ, 828, 71
Dopita M. A., et al., 2006, ApJ, 647, 244
Doughty C., Finlator K., 2021, MNRAS, 505, 2207

\(^7\) http://lasd.lyman-alpha.com

Draine B. T., 2011, Physics of the Interstellar and Intergalactic Medium
Duncan K., Conselice C. J., 2015, MNRAS, 451, 2303
El-Badry K., Ostriker E. C., Kim C.-G., Quataert E., Weisz D. R., 2019, MNRAS, 490, 1961
Endsley R., Stark D. P., Chevallard J., Charlot S., 2021, MNRAS, 500, 5229
Fan X., et al., 2006, AJ, 132, 117
Faucher-Giguère C.-A., 2018, MNRAS, 473, 3717
Faucher-Giguère C.-A., 2020, MNRAS, 493, 1614
Feltre A., Charlot S., Gutkin J., 2016, MNRAS, 456, 3354
Feltre A., et al., 2018, A&A, 617, A62
Finkelstein S. L., et al., 2019, ApJ, 879, 36
Fletcher T. J., Tang M., Robertson B. E., Nakajima K., Ellis R. S., Stark D. P., Inoue A., 2019, ApJ, 878, 87
Gawiser E., et al., 2007, ApJ, 671, 278
Gazagnes S., Chisholm J., Schaerer D., Verhamme A., Rigby J. R., Bayliss M., 2018, A&A, 616, A29
Gazagnes S., Chisholm J., Schaerer D., Verhamme A., Izotov Y., 2020, A&A, 639, A85
Gnedin N. Y., Kravtsov A. V., Chen H.-W., 2008, ApJ, 672, 765
Görgöb Y., de Mink S. E., Groh J. H., Leitherer C., Norman C., 2019, A&A, 629, A134
Gräfener G., Vink J. S., 2015, AAP, 578, L2
Gronke M., 2017, A&A, 608, A139
Gronke M., Dijkstra M., Trenti M., Wyithe S., 2015a, MNRAS, 449, 1284
Gronke M., Bull P., Dijkstra M., 2015b, ApJ, 812, 123
Gronke M., Dijkstra M., McCourt M., Oh S. P., 2016, ApJ, 833, L26
Gronwall C., et al., 2007, ApJ, 667, 79
Guseva N. G., et al., 2020, MNRAS, 497, 4293
Haardt F., Madau P., 2012, ApJ, 746, 125
Hansen M., Oh S. P., 2006, MNRAS, 367, 979
Harikane Y., et al., 2018, ApJ, 859, 84
Hashimoto T., et al., 2015, ApJ, 812, 157
Hashimoto T., et al., 2017, A&A, 608, A10
Hayes M., 2015, Publ. Astron. Soc. Australia, 32, e027
Hayes M., et al., 2010, Nature, 464, 562
Hayes M., Schaerer D., Oudin G., Mas-Hesse J. M., Atek H., Kunth D., 2011, ApJ, 730, 8
Hayes M., et al., 2013, ApJ, 765, L27
Hayes M. J., Runnholm A., Gronke M., Scarlata C., 2021, ApJ, 908, 36
Heckman T. M., et al., 2011, ApJ, 730, 5
Inoue A. K., Hirashita H., Kamaya H., 2001, ApJ, 555, 613
Inoue A. K., Shimizu I., Iwata I., Tanaka M., 2014, MNRAS, 442, 1805
Israel F. P., Kennicutt R. C., 1980, Astrophys. Lett., 21, 1
Izotov Y. I., Schaerer D., Verhamme A., Worseck G., Guseva N. G., 2016a, MNRAS, 461, 3683
Izotov Y. I., Orlitová I., Schaerer D., Verhamme A., 2016b, Nature, 529, 178
Jaskot A. E., Oey M. S., 2013, ApJ, 766, 91

\(^7\) R. P. Naidu & J. Matthee et al.

MNRAS 000, 1–25 (2021)
The XLS-z2 Survey: Synched Production & Escape of LyC photons in LAEs

Naidu R. P., Forrest B., Oesch P. A., Tran K.-V. H., Holden B. P., 2018, MNRAS, 478, 791

Naidu R. P., Tacchella S., Mason C. A., Bose S., Oesch P. A., Conroy C., 2020, ApJ, 892, 109

Nakajima K., Ouchi M., 2014, MNRAS, 442, 900

Nakajima K., Ellis R. S., Robertson B. E., Tang M., Stark D. P., 2020, ApJ, 867, 181

Nanayakkara T., et al., 2019, A&A, 624, A89

Neufeld D. A., 1990, ApJ, 350, 216

Oesch P. A., et al., 2010, ApJ, 709, L21

Oesch P. A., 2018, ApJS, 237, 12

Oesch P. A., Naidu R. P., Leja J., 2021, in prep.

Oke J. B., Gunn J. E., 1983, ApJ, 266, 713

Oliphant T. E., 2015, Guide to NumPy. Continuum Press

Olivier G. M., Berg D. A., Chisholm J., Erb D. K., Pogge R. W., Skillman E. D., 2021, arXiv e-prints, p. arXiv:2110.06725

Orlitová I., Verhamme A., Henry A., Scarlata C., Jaskot A., Oesch P. A., Schaerer D., 2018, A&A, 616, A60

Ostlin G., et al., 2021, ApJ, 912, 155

Ouchi M., et al., 2008, ApJS, 176, 301

Ouchi M., Ono Y., Shibuya T., 2020, ARA&A, 58, 617

Oyarzúñ G. Á., Blanc G. A., González V., Mateo M., Bailey J. I., 2017, ApJ, 843, 133

Paardekooper J.-P., Khochfar S., Dalla Vecchia C., 2015, MNRAS, 451, 2544

Pah J. A., Shapley A., Steidel C. C., Chen Y., Reddy N. A., 2021, arXiv e-prints, p. arXiv:2104.02081

Paulino-Afonso A., et al., 2018, MNRAS, 476, 5479

Pentericci L., et al., 2014, ApJ, 793, 113

Pérez, G., Granger B. E., 2007, Computing in Science and Engineering, 9, 21

Pérez-Montero E., Amorín R., Sánchez Almeida J., Vilchez J. M., García-Benito R., Kehrig C., 2021, MNRAS, 504, 1237

Planck Collaboration et al., 2018, arXiv e-prints, p. arXiv:1807.06209

Plat A., Charlot S., Bruzual G., Feltre A., Vidal-García A., Morisset C., Chevallard J., Todt H., 2019, MNRAS, 490, 978

Prichard J. L., et al., 2021, arXiv e-prints, p. arXiv:2110.06945

Rafelski M., et al., 2015, AJ, 150, 31

Ramabhadran L., Schaerer D., Stasińska G., Izotov Y. I., Guseva N. G., Vilchez J. M., Morisset C., 2020, A&A, 644, A21

Reddy N. A., Steidel C. C., Pettini M., Bougós-Palmero M., Shapley A. E., 2016, ApJ, 828, 108

Reddy N. A., et al., 2020, arXiv e-prints, p. arXiv:2010.05363

Reines A. E., Johnson K. E., Goss W. M., 2008, AJ, 135, 2222

Rivera-Thorsen T. E., et al., 2017, A&A, 608, L4

Rivera-Thorsen T. E., et al., 2019, Science, 366, 738

Robertson B. E., et al., 2013, ApJ, 768, 71

Robertson B. E., Ellis R. S., Furlanetto S. R., Dunlop J. S., 2015, ApJ, 802, L19

Rosdahl J., et al., 2018, MNRAS, 479, 994

Rumholz H., et al., 2018, MNRAS, 479, 138

Santos S., et al., 2020, MNRAS, 493, 141

Santos S., et al., 2021, MNRAS, 503, 6112

Sharma M., Theuns T., Frenk C., Bower R., Crain R., Schaller M., Schaye J., 2015, MNRAS, 458, 3947

Shibuya T., Ouchi M., Harikane Y., Nakajima K., 2019, ApJ, 871, 164

Shivaei I., et al., 2018, ApJ, 862, 140

Simmonds C., Schaerer D., Verhamme A., 2021, arXiv e-prints, p. arXiv:2108.12438

Naidu R. P., et al., 2017, ApJ, 847, 12

MNRAS 000, 1–25 (2021)
show the profiles of the LAEs in the Intermediate and Low Escape subsets, respectively. In each panel we list the Lyα escape fraction of the LAE, the fraction of their Lyα emission that escapes within ±100 km s⁻¹ of the systemic redshift (f_{esc}), the peak separation (when applicable) and the velocity difference between the peak of the red line and the nearest minimum blueward of it (i.e. the valley; v_{red-valley}). For XLS-20 we do not list v_{red-valley} because its Lyα line does not show a distinct asymmetric red peak. For the LAEs in the High Escape subset, we also list the reason why they have been classed in that subset.

We note that in some cases multiple velocity components are detected in the red-frame optical spectra, such as a broad component (e.g. XLS-18; XLS-24) or a second narrow component (e.g. XLS-12; XLS-16, but also XLS-25 and XLS-35 where they are blended). In these cases, as described in Matthee et al. (2021), the systemic redshift is placed at the component that is spatially closest associated with the Lyα emission. XLS-33 shows triple-peaked Lyα emission, but this is likely due to an absorbing system at ≈−400 km s⁻¹ (see also XLS-18 for another such example), instead of a peak at the systemic velocity.

APPENDIX B: COMPARISON BETWEEN EDGE (850 – 912Å) AND TOTAL (0 – 912Å) f_{esc}

Here we demonstrate the difference between the edge f_{esc} and total f_{esc} with SEDs matched to the High Escape stack’s highly ionizing nature and with LyC transmission curves for 0 – 912Å. The LyC transmission curves from McCandliss & O’Meara (2017) based on theoretical photoionization cross-sections are a function of three parameters: the column density (N_{HI}), the neutral Hydrogen fraction (X_{HI}), and neutral Helium fraction (X_{HeI}). In the bottom panels we see that even for column densities of ≈10^{18} cm⁻² where the edge f_{esc} is ≈0, the 0-912Å f_{esc} can be ≈20%. We also note that free-bound emission of H which peaks shortward of the LyC limit may also affect the determination of the LyC escape fractions, such that reported values may be currently overestimated since they do not account for this (e.g., Inoue 2010). Reﬁned estimates for the edge-to-total correction will require future studies.

APPENDIX C: AUTHOR AFFILIATIONS

3Department of Astronomy, University of Geneva, Chemin Pegasí 51, 1220 Versoix, Switzerland
4Cosmic Dawn Center (DAWN), Niels Bohr Institute, University of Copenhagen, Jagtvej 128, Københavns N, DK-2200, Denmark
5Department of Physics, Lancaster University, Lancaster, LA1 4YB, UK
6Kapteyn Astronomical Institute, University of Groningen, Landleven 12, 9747 AD Groningen, The Netherlands
7Stockholm University, Department of Astronomy and Oskar Klein Centre for Cosmoparticle Physics, AlbaNova University Centre, SE-10691, Stockholm, Sweden
8Center for Gravitation, Cosmology, and Astrophysics, Department of Physics, University of Wisconsin-Milwaukee, 3135 N. Maryland Avenue, Milwaukee, WI 53211, USA
9Instituto de Investigación Multidisciplinar en Ciencia y Tecnología, Universidad de La Serena, Raúl Bitrán 1305, La Serena, Chile
10Departamento de Astronomía, Universidad de La Serena, Av. Juan Cisternas 1200 Norte, La Serena, Chile

APPENDIX A: LYα PROFILES OF INDIVIDUAL GALAXIES

Figure A.1 shows the individual Lyα profiles of the XLS-2 LAEs classified in the High Escape subset, while Figures A.2 and A.3 show the profiles of the LAEs in the Intermediate and Low Escape subsets, respectively.
Figure A.1. Individual Lyman-α line-profiles of the LAEs classified in the High Escape subset. The velocity axis is centered on the systemic redshift. The thin and thick blue line shows the Lyα profiles with native and factor two binning, respectively. The green dashed line shows the line-profile of the rest-frame optical lines. The upper inset panels show the two-dimensional Lyα profiles, where the dashed white lines highlight the FWHM of the extraction window.
Figure A.2. As Fig. A.1, but now showing individual Lyman-\(\alpha\) line-profiles of the LAEs classified in the Intermediate Escape subset.

Figure A.3. As Fig. A.1, but now showing individual Lyman-\(\alpha\) line-profiles of the LAEs classified in the Low Escape subset.
The XLS-z2 Survey: Synced Production & Escape of LyC photons in LAEs

Figure B.1. The difference between Lyman edge f_{esc} (850 – 912Å) and total f_{esc} (0 – 912Å). Top left: BPASS SEDs selected to illustrate the hard ionizing nature of the High Escape stack. Top right: LyC transmission curves from McCandliss & O’Meara (2017) for log (N_{H}) and neutral fractions relevant to the semi-permeable portions of density bounded nebulae (see §6.3). Bottom left: The LyC f_{esc} computed over the entire ionizing spectrum compared to the f_{esc} measured at the Lyman edge as a function of SED age and metallicity. These curves are a result of convolving the SEDs with LyC transmission curves and comparing against the intrinsic SED. The total f_{esc} lies significantly above the 1 : 1 line (dashed gray). Remarkably, even for meagre edge f_{esc}(< 5%), significant total f_{esc} (20 – 40%) is possible. Varying metallicity and age has little effect on the edge to total f_{esc} conversion. Bottom right: Same as bottom-left panel, but exploring the effect of neutral fractions. Somewhat unintuitively, what matters to these curves is not the absolute Hydrogen and Helium neutral fractions, but the fractions relative to each other (e.g., the ionization bounded and density bounded cases are indistinguishable).

11Department of Physics & Astronomy, Johns Hopkins University, Bloomberg Center, 3400 N. Charles St., Baltimore, MD 21218, USA
12Hubble fellow
13Max Planck Institut fur Astrophysik, Karl-Schwarzschild-Strasse 1, D-85748 Garching bei München, Germany
14Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
15Centro de Astrofísica e Gravitação - CENTRA, Departamento de Física, Instituto Superior Técnico - IST, Universidade de Lisboa - UL, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
16Instituto de Astrofísica de Canarias, E-38200 La Laguna, Tenerife, Spain
17Departamento de Astrofísica, Universidad de La Laguna, E-38205 La Laguna, Tenerife, Spain
18Leiden Observatory, Leiden University, PO Box 9513, NL-2300 RA Leiden, The Netherlands

This paper has been typeset from a TeX/LaTeX file prepared by the author.