THE FANO SURFACE OF THE KLEIN CUBIC THREEFOLD

XAVIER ROLLEAU

Key-words: Fano surface of a cubic threefold, Automorphisms, Maximal Picard number, Intermediate Jacobians.
MSC (2000): 14J29, 14J50 (primary); 14J70, 32G20 (secondary).

ABSTRACT. We prove that the Klein cubic threefold F is the only smooth cubic threefold which has an automorphism of order 11. We compute the period lattice of the intermediate Jacobian of F and study its Fano surface S. We compute also the set of fibrations of S onto a curve of positive genus and the intersection between the fibres of these fibrations. These fibres generate an index 2 sub-group of the Néron-Severi group and we obtain a set of generators of this group. The Néron-Severi group of S has rank $25 = h^{1,1}$ and discriminant 11^{10}.

1. Introduction.

Let $F \hookrightarrow \mathbb{P}^4$ be a smooth cubic threefold. Its intermediate Jacobian

$$J(F) := H^{2,1}(F, \mathbb{C})^*/H_3(F, \mathbb{Z})$$

is a 5 dimensional principally polarized abelian variety $(J(F), \Theta)$ that plays in the analysis of curves on F a similar role to the one played by the Jacobian variety in the study of divisors on a curve.

The set of lines on F is parametrized by the so-called Fano surface of F which is a smooth surface of general type that we will denote by S. The Abel-Jacobi map $\vartheta : S \to J(F)$ is an embedding that induces an isomorphism $\text{Alb}(S) \to J(F)$ where

$$\text{Alb}(S) := H^0(\Omega_S)^*/H_1(S, \mathbb{Z})$$

is the Albanese variety of S, Ω_S is the cotangent bundle and $H^0(\Omega_S) := H^0(S, \Omega_S)$ (see [7] 0.6, 0.8 for details).

The tangent bundle theorem ([7] Theorem 12.37) enables to recover the cubic F from its Fano surface. Moreover it gives a natural isomorphism between the spaces $H^0(\Omega_S)$ and $H^0(F, \mathcal{O}_F(1)) = H^0(\mathbb{P}^4, \mathcal{O}_{\mathbb{P}^4}(1))$. As we mainly work with the Fano surface, we will identify the basis x_1, \ldots, x_5 of $H^0(\mathbb{P}^4, \mathcal{O}_{\mathbb{P}^4}(1))$ with elements of $H^0(\Omega_S)$ (for more explanations about these facts, see the discussion after Proposition [7]). We will also identify the abelian variety $J(F)$ with $\text{Alb}(S)$.

In [13], we give the classification of elliptic curve configurations on a Fano surface. It is proved that this classification is equivalent to the classification of the automorphism sub-groups of S that are generated by certain involutions. Moreover, it is also proved that the automorphism groups of a cubic and its Fano surface are isomorphic.

In the present paper, we pursue the study of these groups. By Lemma [6] below, the order of the automorphism group $\text{Aut}(S)$ of the Fano surface divides $11 \cdot 7 \cdot 5^2 \cdot 3^6 \cdot 2^3$.

This legitimates the study of the Fano surfaces which have automorphisms of order 7 or 11. A. Adler [1] has proved that the automorphism group of the Klein cubic:

\[F : x_1x_5^2 + x_5x_3^2 + x_3x_4^2 + x_4x_2^2 + x_2x_1^2 = 0 \]

is isomorphic to \(PSL_2(\mathbb{F}_{11}) \). We prove that:

Proposition 1. A smooth cubic threefold has no automorphism of order 7. The Klein cubic is the only one smooth cubic threefold which has an automorphism of order 11.

If a curve admits a sufficiently large group of automorphisms, Bolza has given a method to compute a period matrix of its Jacobian (see [6], 11.7). As for the case of curves, we use the fact that the Klein cubic \(F \) admits a large group of automorphisms to compute the period lattice of its intermediate Jacobian or, what is the same thing, the period lattice of its Jacobian (see [6], 11.7). The main properties used to prove Theorem 2 are the fact that the action of \(\text{Aut}(S) \) on \(\text{Alb}(S) \) preserves the polarization \(\Theta \) and the fact that the class of \(S \to \text{Alb}(S) \) is equal to \(\frac{1}{2} \Theta^3 \). We use also the knowledge of the analytic representation of the automorphisms of the p.p.a.v. \((\text{Alb}(S), \Theta) \).

To state the main result of this work, we need some notations: Let be \(\nu = \frac{-1 + \sqrt{-7}}{2} \) where \(i \in \mathbb{C} \), \(i^2 = -1 \) and let \(E \) be the elliptic curve \(\mathbb{C}/\mathbb{Z}[\nu] \). Let us denote by \(e_1, \ldots, e_5 \in H^0(\Omega_S) \) the dual basis of \(x_1, \ldots, x_5 \). Let be \(\xi = e^{2\pi i/7} \) and for \(k \in \mathbb{Z}/11\mathbb{Z} \), let \(v_k \in H^0(\Omega_S) \) be:

\[v_k = \xi^k e_1 + \xi^{9k} e_2 + \xi^{3k} e_3 + \xi^{4k} e_4 + \xi^{5k} e_5. \]

Theorem 2. 1) The period lattice \(H_1(S, \mathbb{Z}) \subset H^0(\Omega_S)^* \) of the Fano surface of the Klein cubic is equal to:

\[\Lambda = \frac{\mathbb{Z}[\nu]}{1 + 2\nu}(v_0 - 3v_1 + 3v_2 - v_3) + \frac{\mathbb{Z}[\nu]}{1 + 2\nu}(v_1 - 3v_2 + 3v_3 - v_4) + \sum_{k=0}^{2} \mathbb{Z}[\nu]v_k \]

and the first Chern class of the Theta divisor is: \(c_1(\Theta) = \frac{1}{\sqrt{11}} \sum_{j=1}^{5} dx_j \wedge d\bar{x}_j \).

2) The Néron-Severi group \(\text{NS}(S) \) of \(S \) has rank 25 = \(h^{1,1}(S) \) and discriminant 11^{10}.

3) Let \(\vartheta : S \to \text{Alb}(S) \) be an Albanese morphism and \(\text{NS}(\text{Alb}(S)) \) be the Néron-Severi group of \(\text{Alb}(S) \). The set of numerical classes of fibres of connected fibrations of \(S \) onto a curve of positive genus is in natural bijection with \(\mathbb{P}^4(\mathbb{Q}(\nu)) \) and the fibres of these fibrations generate rank 25 sub-lattice \(\vartheta^*\text{NS}(\text{Alb}(S)) \).

Actually, the period lattice is equal to \(c\Lambda \) where \(c \in \mathbb{C} \) is a constant, but we can normalize \(e_1, \ldots, e_5 \) in such a way that \(c = 1 \), see Remark [9].

A set of generators of \(\text{NS}(S) \) and a formula for their intersection numbers are given in Theorem [12].

We remark that \(J(F) \cong \text{Alb}(S) \) is isomorphic to \(\mathbb{E}^5 \) but by [7] (0.12), this isomorphism is not an isomorphism of principally polarized abelian varieties (p.p.a.v.). The fact that \(J(F) \) is isomorphic to \(\mathbb{E}^5 \) is proved in [2] in a different way.
Klein cubic threefold has a modular interpretation [10] (about the analogy with the Klein quartic, see also Remark 14).

Acknowledgement 3. The author wishes to thank the referee for his numerous valuable remarks on a previous version of this paper.

This work was done at the Max-Planck Institut of Bonn, which is also acknowledged.

2. THE UNIQUE CUBIC WITH AN AUTOMORPHISM OF ORDER 11.

Let us recall some facts proved in [13] and fix the notations and conventions:

Definition 4. A morphism between two abelian varieties \(f : A \to B \) is the composition of a homomorphism of Abelian varieties \(g : A \to B \) and a translation. We call \(g \) the *homomorphism part* of \(f \). The differential \(dg : T_A(0) \to T_B(0) \) at the point 0 is called the *analytic representation* of both \(f \) and \(g \), where \(T_A(0) \) and \(T_B(0) \) denote the tangent spaces of \(A \) and \(B \) at 0.

An automorphism \(f \) of a smooth cubic \(F \hookrightarrow \mathbb{P}^4 \) preserves the lines on \(F \) and induces an automorphism \(\rho(f) \) of the Fano surface \(S \).

An automorphism \(\sigma \) of \(S \) induces an automorphism \(\sigma' \) of the Albanese variety of \(S \) such that the following diagram:

\[
\begin{array}{ccc}
S & \xrightarrow{\vartheta} & \text{Alb}(S) \\
\sigma \downarrow & & \sigma' \downarrow \\
S & \xrightarrow{\vartheta} & \text{Alb}(S)
\end{array}
\]

is commutative (where \(\vartheta : S \to \text{Alb}(S) \) is a fixed Albanese morphism). The tangent space of the Albanese variety \(\text{Alb}(S) \) is \(H^0(\Omega_S)^\ast \). We denote by \(M_\sigma \in GL(H^0(\Omega_S)^\ast) \) the analytic representation of \(\sigma' \) : it is the dual of the pull-back \(\sigma^\ast : H^0(\Omega_S) \to H^0(\Omega_S) \). We denote by

\[
q : GL(H^0(\Omega_S)^\ast) \to PGL(H^0(\Omega_S)^\ast)
\]

the natural quotient map.

Theorem 5. 1) For \(\sigma \in \text{Aut}(S) \), the homomorphism part of the automorphism \(\sigma' \) is an automorphism of the p.p.a.v. \((\text{Alb}(S), \Theta) \).

2) Let \(M \) be the analytic representation of an automorphism of \((\text{Alb}(S), \Theta) \), then \(q(M) \) is an automorphism of \(F \hookrightarrow \mathbb{P}^4 = \mathbb{P}(H^0(\Omega_S)^\ast) \).

3) The morphism \(\rho : \text{Aut}(F) \to \text{Aut}(S) \) is an isomorphism and its inverse is the morphism : \(\text{Aut}(F) \to \text{Aut}(S) ; \sigma \mapsto q(M_\sigma) \).

4) The group \(\text{Aut}(S) \) is a sub-group of \(\text{Aut}(\text{Alb}(S), \Theta) \). If \(S \) is a generic Fano surface, then:

\[
\text{Aut}(F) \simeq \text{Aut}(S) \simeq \text{Aut}(\text{Alb}(S), \Theta)/\langle [-1] \rangle.
\]

When \(C \) is a non-hyperelliptic curve and \((J(C), \Theta) \) is its jacobian, there is an isomorphism \(\text{Aut}(C) \simeq \text{Aut}(J(C), \Theta)/\langle [-1] \rangle \) ([16] Chap.11, exercise 19). Result 4) of Theorem 5 is thus the analogue for a cubic and its intermediate Jacobian.

Proof. Part 1) and 3) are proved in [13], they imply that the morphism:

\[
\begin{array}{cccc}
\sigma & \mapsto & \text{Aut}(\text{Alb}(S), \Theta) \\
& \sigma' & \mapsto & \text{Aut}(S)
\end{array}
\]

is the analogue for a cubic and its intermediate Jacobian.
is injective, where σ'' is the homomorphism part of σ'.

Let us denote by $B_{x}X$ the blow-up at the point x of a variety X. By [5], the point 0 of $\text{Alb}(S)$ is the unique singularity of the divisor Θ: it is thus preserved by any automorphism τ of the p.p.a.v. $(\text{Alb}(S), \Theta)$.

The automorphism τ induces an automorphism of $B_{0}\Theta$ and $B_{0}\text{Alb}(S)$. Let M denotes the analytic representation of τ. Let E be the exceptional divisor of $B_{0}\Theta$. The exceptional divisor of $B_{0}\text{Alb}(S)$ is $\mathbb{P}(H^0(\Omega_{S})^*)$ and we consider the following diagram:

\[
\begin{array}{ccc}
E & \to & B_{0}\Theta \\
\downarrow & & \downarrow \\
\mathbb{P}(H^0(\Omega_{S})^*) & \to & B_{0}\text{Alb}(S)
\end{array}
\]

where all the maps are embeddings. The action on E of τ is obtained by restriction of the action of τ on $\mathbb{P}(H^0(\Omega_{S})^*)$ (that is the space of tangent directions to the point 0 of $\text{Alb}(S)$); this last action is given by the automorphism $q(M)$ that is the projectivization of the differential of the automorphism τ at 0.

Now, by [5] théorème p. 190, the exceptional divisor $E \hookrightarrow \mathbb{P}(H^0(\Omega_{S})^*)$ is the cubic $F \hookrightarrow \mathbb{P}(H^0(\Omega_{S})^*)$ itself, thus property 2) holds.

Suppose that $q(M)$ is the identity. There exists a root of unity λ such that M is the multiplication by λ. By [6], Corollary 13.3.5, the order of λ is 1, 2, 3, 4 or 6, and if the order d is 3, 4 or 6, then $\text{Alb}(S)$ is isomorphic to E^5 where E is the unique elliptic curve with an automorphism of order d.

On the other hand, the divisor Θ is symmetric: $[-1]^*\Theta = \Theta$ (see [7]), hence if the cubic threefold is generic, $q(M)$ is the identity if and only if τ is equal to $[1]$ or $[-1]$ and: $\text{Aut}(F) \simeq \text{Aut}(S) \simeq \text{Aut}(\text{Alb}(S), \Theta)/\langle [-1] \rangle$. □

Lemma 6. The order of the group $\text{Aut}(S)$ divides $11 \cdot 7 \cdot 5^2 3^6 9^2 23$.

Proof. The automorphism group of a p.p.a.v. acts faithfully on the group of n-torsion points for $n \geq 3$ ([6], Corollary 5.1.10). Thus the order of the group of automorphisms of a 5 dimensional p.p.a.v. must divides $a_n = \#GL_{10}(\mathbb{Z}/n\mathbb{Z})$ for $n \geq 3$. In particular, it divides

\[11 \cdot 7 \cdot 5^2 3^6 9^2 23 = gcd(a_3, a_5, a_7, a_{11}).\]

Theorem [5] implies then that the order of $\text{Aut}(S)$ divides $11 \cdot 7 \cdot 5^2 3^6 9^2 23$. □

Let us prove the following:

Proposition 7. The Klein cubic is the only one smooth cubic threefold which has an automorphism of order 11. There is no smooth cubic threefold with possesses an automorphism of order 7.

Let $F \hookrightarrow \mathbb{P}^4$ be a smooth cubic threefold and S be its Fano surface. In the Introduction, we mention that the cubic threefold F can be recovered knowing only the surface S. This important, but non-trivial, result is called the Tangent Bundle Theorem and is due to Fano, Clemens-Griffiths and Tyurin (Beauville also gives another proof in [3]). We give more explanation about that result; it will explain how we identify the spaces $H^0(\mathbb{P}^4, \mathcal{O}_{\mathbb{P}^4})$ and $H^0(\Omega_{S})$ and the main ideas of the proof of Proposition [7].

Let us consider the natural morphism of vector spaces:

\[Ev : \oplus_{n \in \mathbb{N}} S^n H^0(\Omega_{S}) \to \oplus_{n \in \mathbb{N}} H^0(S, S^n \Omega_{S})\]
given by the natural maps on each pieces of the graduation. The Tangent Bundle Theorem can be formulated as follows:

The kernel of Ev is an ideal of the ring $\oplus_{n \in \mathbb{N}} S^n H^0(\Omega_S)$ generated by a cubic $F_{eq} \in S^3 H^0(\Omega_S)$ and the cubic threefold $\{F_{eq} = 0\} \hookrightarrow \mathbb{P}(H^0(\Omega_S)^*)$ is (isomorphic to) the original cubic $F \hookrightarrow \mathbb{P}^4$.

By this Theorem, the homogenous coordinates $x_1, \ldots, x_5 \in H^0(\mathbb{P}^4, O_{\mathbb{P}^4}(1))$ of \mathbb{P}^4 are also a basis of the global holomorphic 1-forms of S.

Proof. (of Proposition 4). The intermediate Jacobian of a smooth cubic threefold with an order 11 automorphism is a 5 dimensional p.p.a.v. that possesses an automorphism of order 11. By the theory of complex multiplication there are only four such principally abelian varieties, they are denoted by X_1, \ldots, X_4 in [9].

By [7], an intermediate Jacobian is not a Jacobian of a curve, but by Theorem 2 of [9], the p.p.a.v. X_1 and X_2 are Jacobians of curves, thus we can eliminate X_1 and X_2.

The abelian variety X_3 has an automorphism τ' of order 11 such that the eigenvalues of its analytic representation M are $\{\xi, \xi^2, \xi^3, \xi^5, \xi^7\}$, $\xi = e^{i\pi/11}$.

Suppose that X_3 is the intermediate Jacobian of a cubic threefold $F \hookrightarrow \mathbb{P}^4$. By Theorem 5, the morphism $1^1 M$ acts on $H^0(\mathbb{P}^4, O_{\mathbb{P}^4}(1))$ and the projectivized morphism $q(M)$ is an automorphism of $F \hookrightarrow \mathbb{P}^4$.

Let $S^3(1^1 M)$ be the action of $1^1 M$ on

$$H^0(\mathbb{P}^4, O_{\mathbb{P}^4}(3)) = S^3 H^0(\mathbb{P}^4, O_{\mathbb{P}^4}(1)).$$

An equation of F is an eigenvector for $S^3(1^1 M)$. We can easily compute the eigenspaces of $S^3(1^1 M)$ and check that no one contains the equation of a smooth cubic threefold, thus X_3 cannot be an intermediate Jacobian.

The p.p.a.v. X_1, X_2 and X_3 are not intermediate Jacobians and by the Torelli Theorem [7], the association $F \rightarrow (J(F), \Theta)$ is injective, hence the p.p.a.v. X_4 is the intermediate Jacobian of the Klein cubic and this cubic is (up to isomorphism) the only one smooth cubic which has an order 11 automorphism.

Let us prove that there are no smooth cubic threefolds with an automorphism of order 7.

By the Theorems 13.1.2. and 13.2.8. and Proposition 13.2.5. of [6], an automorphism of order 7 of a five dimensional Abelian variety has eigenvalues $1, 1, \mu, \mu^a, \mu^b$ where μ is a primitive 7-th root of unity and a, b are integers such that $\{\mu, \mu^a, \mu^b\}$ is a set containing three pairwise non-complex conjugate primitive roots of unity.

Up to the change of μ by a power, there are two possibilities:

The first case is $a = 2$ and $b = 3$. For $c \in \mathbb{Z}/7\mathbb{Z}$, let us denote by χ_c the representation $\mathbb{C} \to \mathbb{C}; t \mapsto \mu^c t$ of $\mathbb{Z}/7\mathbb{Z}$. The third symmetric product of the representation:

$$H^0(\mathbb{P}^4, O_{\mathbb{P}^4}(1)) \to H^0(\mathbb{P}^4, O_{\mathbb{P}^4}(1))$$

$x_1, x_2, x_3, x_4, x_5 \mapsto \mu x_1, \mu^2 x_2, \mu^3 x_3, x_4, x_5$

decomposes as the direct sum:

$$6 \chi_0 + 4 \chi_1 + 6 \chi_2 + 6 \chi_3 + 5 \chi_4 + 4 \chi_5 + 4 \chi_6.$$

By example, the space corresponding to $6 \chi_0$ is generated by the forms $x_1^3, x_2^3 x_5, x_4 x_5^2, x_3^3, x_2^2 x_3, x_3^2 x_1$.

No element of this space is an equation of a smooth cubic threefold. In the similar way, we can check that the other factors do not give a smooth cubic.
The second case is $a = 2$ and $b = 4$. In the same manner, we can check that we do not obtain a smooth cubic in that case.

3. The period lattice of the intermediate Jacobian of the Klein cubic.

Let F be the Klein cubic:

$$x_1x_5^2 + x_5x_3^2 + x_3x_1^2 + x_4x_3^2 + x_2x_1^2 = 0$$

and let S be its Fano surface. Let $\vartheta : S \rightarrow \text{Alb}(S)$ be a fixed Albanese morphism; it is an embedding. Let us compute the period lattice $H_1(S, \mathbb{Z}) \subset H^0(\Omega_S)^* \subset \mathbb{Q}$ of the Albanese variety of S.

The order 5 automorphism:

$$g : (z_1 : z_2 : z_3 : z_4 : z_5) \mapsto (z_5 : z_1 : z_4 : z_2 : z_3)$$

acts on F. Let $\sigma = \rho(g)$ be the automorphism of S defined in paragraph [2]. By Theorem [5] there exists a 5-th root of unity θ such that $M_\sigma \in GL(H^0(\Omega_S)^*)$ is equal to:

$$M_\sigma : (z_1, z_2, z_3, z_4, z_5) \mapsto \theta (z_5, z_1, z_4, z_2, z_3)$$

in the basis e_1, \ldots, e_5 dual to x_1, \ldots, x_5. Since the Klein cubic F and g are defined over \mathbb{Q} and the Fano surface contains points defined over \mathbb{Q}, we deduce that the morphism M_σ (that is the differential at a point defined over \mathbb{Q} of an automorphism defined over \mathbb{Q}) is defined over \mathbb{Q}, thus: $\theta = 1$.

Let be $\xi = \frac{e^{2\pi i}}{11}$. The equation of the Klein cubic is chosen in such a way that it is easy to check that the automorphism

$$f : (z_1 : z_2 : z_3 : z_4 : z_5) \mapsto (\xi z_1 : \xi^9 z_2 : \xi^3 z_3 : \xi^4 z_4 : \xi^5 z_5)$$

acts on it. Let be $\tau = \rho(f)$. By Theorem [5] the analytic representation of the homomorphism part of τ' is:

$$M_\tau : (z_1, z_2, z_3, z_4, z_5) \mapsto \xi^j (\xi z_1, \xi^9 z_2, \xi^3 z_3, \xi^4 z_4, \xi^5 z_5),$$

where $j \in \mathbb{Z}/11\mathbb{Z}$. Proposition 13.2.5. of [3] implies that $j = 0$.

Notation 8. For $k \in \mathbb{Z}/11\mathbb{Z}$, let v_k be the vector:

$$v_k = \xi^k e_1 + \xi^{9k} e_2 + \xi^{3k} e_3 + \xi^{4k} e_4 + \xi^{5k} e_5$$

$$= (M_\tau)^k v_0 \in H^0(\Omega_S)^*$$

and let be $\ell_k = \xi^k x_1 + \xi^{9k} x_2 + \xi^{3k} x_3 + \xi^{4k} x_4 + \xi^{5k} x_5 \in H^0(\Omega_S)$.

Let us construct a sub-lattice of $H_1(S, \mathbb{Z})$.

Let q_1 be the homomorphism part of

$$\sum_{k=0}^{\infty} (\sigma')^k$$

(where $\sigma' \circ \vartheta = \vartheta \circ \sigma$). Its analytic representation is:

$$dq_1 : H^0(\Omega_S)^* \rightarrow H^0(\Omega_S)^*$$

$$z \mapsto \ell_0(z)v_0.$$
and its image is an elliptic curve which we denote by E. The restriction of the homomorphism part of $q_1 \circ \tau'$: $\text{Alb}(S) \to E$ to E is the multiplication by:
\[
\nu = \xi + \xi^9 + \xi^3 + \xi^4 + \xi^5 = \frac{-1 + i\sqrt{11}}{2},
\]
thus the curve E has complex multiplication by the principal ideal domain $\mathbb{Z}[\nu]$ and there is a constant $c \in \mathbb{C}^*$ such that:
\[
H_1(S, \mathbb{Z}) \cap Cv_0 = \mathbb{Z}[\nu]cv_0.
\]

Remark 9. Up to a normalization of the basis e_1, \ldots, e_5 by a multiplication by the scalar $\frac{1}{\xi}$, we suppose that $c = 1$. Under this normalization, the Klein cubic remains the same:
\[
F = \{x_1x_5^2 + x_5x_3^2 + x_3x_4^2 + x_4x_2^2 + x_2x_1^2 = 0\}.
\]

Let $\Lambda_0 \subset H^0(\Omega_S)^*$ be the \mathbb{Z}-module generated by the v_k, $k \in \mathbb{Z}/11\mathbb{Z}$. The group Λ_0 is stable under the action of M_τ and $\Lambda_0 \subset H_1(S, \mathbb{Z})$.

Lemma 10. The \mathbb{Z}-module $\Lambda_0 \subset H_1(S, \mathbb{Z})$ is equal to the lattice:
\[
R_0 = \mathbb{Z}[\nu]v_0 + \mathbb{Z}[\nu]v_1 + \mathbb{Z}[\nu]v_2 + \mathbb{Z}[\nu]v_3 + \mathbb{Z}[\nu]v_4.
\]

Proof. We have:
\[
\nu v_0 = v_1 + v_3 + v_4 + v_9,
\]
hence νv_0 is an element of Λ_0. This implies that the vectors $\nu v_k = (M_\tau)^k \nu v_0$ are elements of Λ_0 for all k, hence: $R_0 \subset \Lambda_0$. Conversely, we have:
\[
v_5 = v_0 + (1 + \nu)v_1 - v_2 + v_3 + \nu v_4.
\]
This proves that the lattice R_0 contains the vectors $v_k = (M_\tau)^k v_0$ generating Λ_0, thus: $R_0 = \Lambda_0$. \[\square\]

Let us compute the first Chern class $c_1(\Theta)$ of the Theta divisor Θ of $\text{Alb}(S)$:

Lemma 11. Let H be the matrix of the Hermitian form of the polarization Θ in the basis e_1, \ldots, e_5. There exists a positive integer a such that:
\[
H = a \frac{2}{\sqrt{11}} I_5
\]
where I_5 is the size 5 identity matrix.

Proof. By Theorem 5 the homomorphism part of τ' preserves the polarization Θ. This implies that:
\[
^t M_\tau H M_\tau = H
\]
where M_τ is the matrix in the basis e_1, \ldots, e_5 whose coefficients are conjugated of those of M_τ. The only Hermitian matrices that verify this equality are the diagonal matrices. By the same reasoning with σ instead of τ, we obtain that these diagonal coefficients are equal and:
\[
H = a \frac{2}{\sqrt{11}} I_5
\]
where a is a positive real (H is a positive definite Hermitian form). As H is a polarization, the alternating form $c_1(\Theta) = \Im(H)$ take integer values on $H_1(S, \mathbb{Z})$, hence $a = \Im(^t v_2 H v_1)$ is an integer. \[\square\]
Now, we construct a lattice that contains $H_1(S, \mathbb{Z})$:

Let be $k \in \mathbb{Z}/11\mathbb{Z}$. The analytic representation of the morphism $q_1 \circ (\tau')^k$ is:

$$
H^0(\Omega_S) \to H^0(\Omega_S)^*
$$

$$
z \mapsto \ell_k(z)v_0.
$$

Let be $\lambda \in H_1(S, \mathbb{Z})$. As

$$
H_1(S, \mathbb{Z}) \cap \mathbb{C}v_0 = \mathbb{Z}[\nu]v_0,
$$

the scalar $\ell_k(\lambda)$ is an element of $\mathbb{Z}[\nu]$. Let us define:

$$
\Lambda_4 = \{ z \in H^0(\Omega_S)^*/\ell_k(z) \in \mathbb{Z}[\nu], 0 \leq k \leq 4 \}.
$$

Lemma 12. The \mathbb{Z}-module $\Lambda_4 \supset H_1(S, \mathbb{Z})$ is equal to the lattice:

$$
R_1 = \sum_{k=0}^{k=3} \mathbb{Z}[\nu] (v_k - v_{k+1}) + \mathbb{Z}[\nu]v_0.
$$

Moreover M_τ stabilizes Λ_4.

Proof. Let be $\ell_1^*, \ldots, \ell_5^* \in H^0(\Omega_S)^*$ be the dual basis of ℓ_1, \ldots, ℓ_5 (see Notations \mathbb{R}). Then $\Lambda_4 = \bigoplus_{j=1}^5 \mathbb{Z}[\nu] \ell_j^*$. Since $(e_1, \ldots, e_5) = (\ell_1^*, \ldots, \ell_5^*)A$ and $(v_0, \ldots, v_4) = (e_1, \ldots, e_5)^tA$ for the matrix:

$$
A = \begin{pmatrix}
1 & 1 & 1 & 1 & 1 \\
\xi & \xi^9 & \xi^3 & \xi^4 & \xi^5 \\
\xi^2 & \xi^7 & \xi^6 & \xi^8 & \xi^{10} \\
\xi^3 & \xi^5 & \xi^9 & \xi & \xi^4 \\
\xi^4 & \xi^3 & \xi & \xi^5 & \xi^9
\end{pmatrix},
$$

we have $(\ell_1^*, \ldots, \ell_5^*) = (v_0, \ldots, v_4)^tA^{-1}A$. Moreover:

$$
^tA^{-1}A = \frac{1}{1 + 2\nu} \begin{pmatrix}
-1 & -\nu & 0 & -1 & 1 - \nu \\
-\nu & 2 & 0 & -\nu & 3 + \nu \\
0 & 0 & 0 & 1 & -1 \\
-1 & -\nu & 1 & -2 & 1 - \nu \\
1 - \nu & 3 + \nu & -1 & 1 - \nu & 2 + 2\nu
\end{pmatrix}.
$$

Let B be the matrix:

$$
B = \begin{pmatrix}
-\nu - 1 & 1 & -1 & 0 & 5 \\
1 & -1 & 0 & 0 & \nu \\
-1 & 0 & 0 & 1 & -1 - \nu \\
0 & 0 & 1 & 0 & \nu \\
0 & 1 & 0 & 0 & \nu
\end{pmatrix} \in SL_5(\mathbb{Z}[\nu]).
$$

We have $(\ell_1^*, \ldots, \ell_5^*)B = (v_0, \ldots, v_4)^tA^{-1}AB = (\frac{v_0 - v_1}{1 + 2\nu}, \frac{v_1 - v_2}{1 + 2\nu}, \frac{v_2 - v_3}{1 + 2\nu}, \frac{v_3 - v_4}{1 + 2\nu}, v_0)$, thus $\Lambda_4 = R_1$. By using the equality:

$$
v_5 = v_0 + (1 + \nu)v_1 - v_2 + v_3 + \nu v_4,
$$

we easily check that the vector $M_\tau(\frac{v_5 - v_4}{1 + 2\nu}) \in H^0(\Omega_S)^*$ is in Λ_4, hence Λ_4 is stable by M_τ. □
Now, using the action of \(M_\tau \), we determine the lattice \(H_1(S, \mathbb{Z}) \) among lattices \(\Lambda \) such that \(\Lambda_0 \subset \Lambda \subset \Lambda_4 \).

We denote by \(\phi : \Lambda_4 \to \Lambda_4/\Lambda_0 \) the quotient map. The ring \(\mathbb{Z}[\nu]/(1 + 2\nu) \) is the finite field with 11 elements. The quotient \(\Lambda_4/\Lambda_0 \) is a \(\mathbb{Z}[\nu]/(1 + 2\nu) \)-vector space with basis:

\[
t_1 = \frac{1}{1 + 2\nu}(v_0 - v_1) + \Lambda_0, \quad t_2 = \frac{1}{1 + 2\nu}(v_1 - v_2) + \Lambda_0, \\
t_3 = \frac{1}{1 + 2\nu}(v_2 - v_3) + \Lambda_0, \quad t_4 = \frac{1}{1 + 2\nu}(v_3 - v_4) + \Lambda_0.
\]

Let \(R \) be a lattice such that \(\Lambda_0 \subset R \subset \Lambda_4 \). The group \(\phi(R) \) is a sub-vector space of \(\Lambda_4/\Lambda_0 \) and:

\[
\phi^{-1}\phi(R) = R + \Lambda_0 = R.
\]

The set of lattices \(R \) such that \(\Lambda_0 \subset R \subset \Lambda_4 \) is thus in bijection with the set of sub-vector spaces of \(\Lambda_4/\Lambda_0 \) and these lattices are also \(\mathbb{Z}[\nu] \)-modules.

Because \(M_\tau \) preserves \(\Lambda_0 \), the morphism \(M_\tau \) induces a morphism \(\widetilde{M}_\tau \) on the quotient \(\Lambda_4/\Lambda_0 \) such that \(\phi \circ M_\tau = \widetilde{M}_\tau \circ \phi \). As \(M_\tau \) stabilizes \(H_1(S, \mathbb{Z}) \), the vector space \(\phi(H_1(S, \mathbb{Z})) \) is stable by \(\widetilde{M}_\tau \). Let be:

\[
w_1 = -t_1 + 3t_2 - 3t_3 + t_4 \\
w_2 = t_1 - 2t_2 + t_3 \\
w_3 = -t_1 + t_2 \\
w_4 = t_1.
\]

The matrix of \(\widetilde{M}_\tau \) is

\[
\begin{pmatrix}
0 & 0 & 0 & -1 \\
1 & 0 & 0 & 4 \\
0 & 1 & 0 & 5 \\
0 & 0 & 1 & 4
\end{pmatrix}
\]

in the basis \(t_1, \ldots, t_4 \) of \(\Lambda_4/\Lambda \) and the matrix of \(\widetilde{M}_\tau \) is:

\[
\begin{pmatrix}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{pmatrix}
\]

in the basis \(w_1, \ldots, w_4 \). The sub-spaces stable by \(\widetilde{M}_\tau \) are the space \(W_0 = \{0\} \) and the spaces \(W_j, 1 \leq j \leq 4 \) generated by \(w_1, \ldots, w_j \). Let \(\Lambda_j \) be the lattice \(\phi^{-1}W_j \), then:

Theorem 13. The lattice \(H_1(S, \mathbb{Z}) \) is equal to \(\Lambda_2 \), and \(\Lambda_2 \) is equal to

\[
R_2 = \frac{\mathbb{Z}[\nu]}{1 + 2\nu}(v_0 - 3v_1 + 3v_2 - v_3) + \frac{\mathbb{Z}[\nu]}{1 + 2\nu}(v_1 - 3v_2 + 3v_3 - v_4) + \bigoplus_{k=0}^{2} \mathbb{Z}[\nu]v_k.
\]

Moreover, the Hermitian matrix associated to \(\Theta \) is equal to \(\frac{2}{\sqrt{11}}I_5 \) in the basis \(e_1, \ldots, e_5 \) and \(c_1(\Theta) = \frac{1}{\sqrt{11}} \sum_{k=1}^{5} dx_k \wedge d\bar{x}_k \).
Proof. Let $c_1(\Theta) = \Im(H) = i\frac{\pi}{\sqrt{11}} \sum dx_k \wedge d\bar{x}_k$ be the alternating form of the principal polarization Θ. Let $\lambda_1, \ldots, \lambda_{10}$ be a basis of a lattice Λ. By definition, the square of the Pfaffian $Pf_\Theta(\Lambda)$ of Λ is the determinant of the matrix

$$(c_1(\Theta)(\lambda_j, \lambda_k))_{1 \leq j, k \leq 10}.$$

Since Θ is a principal polarization, we have $Pf_\Theta(H_1(S, \mathbb{Z})) = 1$.

It is easy to find a basis of Λ_j ($j \in \{0, \ldots, 4\}$). For example, the space W_2 is generated by $w_2 = t_1 - 2t_2 + t_3$ and $w_1 + w_2 = t_2 - 2t_3 + t_4$ and as

$$\phi\left(\frac{1}{1 + 2v}(v_0 - 3v_1 + 3v_2 - v_3)\right) = w_2, \quad \phi\left(\frac{1}{1 + 2v}(v_1 - 3v_2 + 3v_3 - v_4)\right) = w_1 + w_2,$$

the lattice R_2 (that contains Λ_0) is equal to Λ_2.

Then, with the help of a computer, we can calculate the square of the Pfaffian P_j of the lattice Λ_j and verify that it is equal to:

$$a^{10}11^{4 - 2j}$$

where a is the integer of Lemma \[11\]. As a is a positive integer, the only possibility that P_j equals 1 is $j = 2$ and $a = 1$. \qed

Remark 14. Let C be the Klein quartic curve: this curve is canonically embedded into $\mathbb{P}^2 = \mathbb{P}(H^0(C, \Omega_C)^*)$ and there exists a basis x_1, x_2, x_3 of $H^0(C, \Omega_C)$ such that $C = \{x_1^3x_2 + x_2^3x_3 + x_3^3x_1 = 0\}$. The automorphism group of C is $PSL_2(\mathbb{F}_7)$. By taking exactly the same arguments as the Klein cubic threefold, it is possible to compute the period lattice $H_1(C, \mathbb{Z}) \subset H^0(C, \Omega_C)^*$.

4. The Néron-Severi Group of the Fano Surface of the Klein Cubic.

Let us define:

$$u_1 = \frac{1}{1 + 2v}(v_0 - 3v_1 + 3v_2 - v_3), \quad u_2 = \frac{1}{1 + 2v}(v_1 - 3v_2 + 3v_3 - v_4),$$

$$u_3 = v_0, \quad u_4 = v_1, \quad u_5 = v_2,$$

and let $y_1, \ldots, y_5 \in H^0(\Omega_S)$ be the dual basis of u_1, \ldots, u_5.

Let be $k, 1 \leq k \leq 5$. The image of $H_1(S, \mathbb{Z})$ by $y_k \in H^0(\Omega_S)$ is $\mathbb{Z}[\nu]$, and this form is the analytic representation of a morphism of Abelian varieties

$$r_k : \text{Alb}(S) \to \mathbb{E} = \mathbb{C}/\mathbb{Z}[\nu].$$

By Theorem \[13\] the morphisms r_1, \ldots, r_5 form a basis of the $\mathbb{Z}[\nu]$-module of rank 5 of homomorphisms between $\text{Alb}(S)$ and \mathbb{E}.

We denote by Λ_5^* the free $\mathbb{Z}[\nu]$-module of rank 5 generated by y_1, \ldots, y_5 and for $\ell \in \Lambda_5^* \setminus \{0\}$, we denote by $\Gamma_{\ell} : \text{Alb}(S) \to \mathbb{E}$ the morphism whose analytic representation is $\ell : H^0(\Omega_S)^* \to \mathbb{C}$.

Let $\vartheta : S \to \text{Alb}(S)$ be a fixed Albanese morphism. We denote by $\gamma_{\ell} : S \to \mathbb{E}$ the morphism $\gamma_{\ell} = \Gamma_{\ell} \circ \vartheta$ and we denote by F_{ℓ} the numerical equivalence class of a fibre of γ_{ℓ} (this class is independent of the choice of ϑ).

We define the scalar product of two forms $\ell, \ell' \in \Lambda_5^*$ by:

$$\langle \ell, \ell' \rangle = \sum_{k=1}^{k=5} \ell(e_k)\overline{\ell'(e_k)}$$
and the norm of ℓ by:
$$\|\ell\| = \sqrt{\langle \ell, \ell \rangle}. $$

We denote by $\text{NS}(X)$ the Néron-Severi group of a variety X. For a point s of S, we denote by C_s the incidence divisor that parametrizes the lines on F that cut the line corresponding to the point s. The aim of this section is to prove the following result:

Theorem 15. 1) Let ℓ, ℓ' be non-zero elements of Λ_A^*. The fibre F_ℓ has arithmetic genus:
$$g(F_\ell) = 1 + 3\|\ell\|^2,$$

satisfies $C_s F_\ell = 2\|\ell\|^2$ and :
$$F_\ell F_{\ell'} = \|\ell\|^2 \|\ell'\|^2 - \langle \ell, \ell' \rangle \langle \ell', \ell \rangle.$$

2) The image of the morphism $\vartheta^* : \text{NS}(\text{Alb}(S)) \to \text{NS}(S)$ is a rank 25 sub-lattice of discriminant $2^2 11^{10}$.

3) The following 25 fibres
$$\{ F_{y_k} \quad k \in \{1, \ldots, 5\},$$
$$F_{y_k+y_l} \quad 1 \leq k < l \leq 5,$$
$$F_{y_k+\nu y_l} \quad 1 \leq k < l \leq 5,$$

form a \mathbb{Z}-basis of $\vartheta^* \text{NS}(\text{Alb}(S))$ and together with the class of the incident divisor C_s ($s \in S$), they generate $\text{NS}(S)$. The lattice $\text{NS}(S)$ has discriminant 11^{10}.

We identify elements of the Néron-Severi group of $\text{Alb}(S)$ with alternating forms.

Lemma 16. The Néron-Severi group of $\text{Alb}(S)$ is generated by the 25 forms:
$$\left\{ \begin{array}{l}
\frac{1}{\sqrt{11}} dy_k \wedge d\bar{y}_k \quad k \in \{1, \ldots, 5\}, \\
\frac{1}{\sqrt{11}} (dy_k \wedge d\bar{y}_l + dy_l \wedge d\bar{y}_k) \quad 1 \leq k < l \leq 5, \\
\frac{1}{\sqrt{11}} (\nu dy_k \wedge d\bar{y}_l + \nu dy_l \wedge d\bar{y}_k) \quad 1 \leq k < l \leq 5.
\end{array} \right.$$

Proof. The Hermitian form $H' = \frac{2}{\sqrt{11}} I_5$ in the basis u_1, \ldots, u_5 defines a principal polarization of $\text{Alb}(S)$. Let $\text{End}^*(\text{Alb}(S))$ be the group of symmetrical morphisms for the Rosati involution associated to H'. An endomorphism of $\text{Alb}(S)$ can be represented by a matrix $A \in M_5(\mathbb{Z}[\nu])$ in the basis u_1, \ldots, u_5. The symmetrical endomorphisms satisfy $^tAH' = H'A$ i.e. $^tA = A$. A basis \mathcal{B} of the group of symmetrical elements is:
$$\left\{ \begin{array}{l}
e_{kk} \quad k \in \{1, \ldots, 5\}, \\
e_{kl} + e_{lk} \quad 1 \leq k < l \leq 5, \\
\nu e_{kl} + \nu e_{lk} \quad 1 \leq k < l \leq 5,
\end{array} \right.$$

where e_{kl} is the matrix with entry 1 in the intersection of line k and row l and 0 elsewhere.

By [6], Proposition 5.2.1 and Remark 5.2.2., the map:
$$\phi_{H'} : \text{End}^*(\text{Alb}(S)) \to \text{NS}(\text{Alb}(S))$$
$$A \quad \mapsto \quad 3m(^tAH'^*)$$

is an isomorphism of groups. We obtain the base of the Lemma by taking the image by $\phi_{H'}$ of the base \mathcal{B}. \square
The Néron-Severi group of the curve $E = \mathbb{C}/\mathbb{Z}[\nu]$ is the \mathbb{Z}-module generated by the form $\eta = \frac{i}{\sqrt{11}}dz \wedge d\bar{z}$. Let be $\ell \in \Lambda^*_A \setminus \{0\}$. We have:

$$\Gamma^*_\ell \eta = \frac{i}{\sqrt{11}}d\ell \wedge d\bar{\ell}$$

and this form is the Chern class of the divisor Γ^*_0.

Lemma 17. The 25 forms:

$$\begin{align*}
\eta_k &= \Gamma^*_y \eta \quad k \in \{1, \ldots, 5\}, \\
\eta^1_{k,l} &= \Gamma^*_y \eta + \eta \quad 1 \leq k < l \leq 5, \\
\eta^2_{k,l} &= \Gamma^*_y \eta + \nu \eta \quad 1 \leq k < l \leq 5.
\end{align*}$$

are a basis of the Néron-Severi group of $\text{Alb}(S)$.

Proof. Let $1 \leq k \leq 5$ be an integer. The element $\Gamma^*_y \eta = \frac{i}{\sqrt{11}}dy_k \wedge d\bar{y}_k$ lies in the basis of Lemma 16. Let $1 \leq l < k \leq 5$ be integers, let be $a \in \{1, \nu\}$, and $\ell = y_k + ay_l$. We have:

$$\Gamma^*_\ell \eta = \frac{i}{\sqrt{11}}(dy_k \wedge d\bar{y}_k + ady_k \wedge d\bar{y}_l + ady_l \wedge d\bar{y}_k + a\bar{a}dy_l \wedge d\bar{y}_k),$$

this proves, when we take $a = 1$ and next $a = \nu$, that the forms of the basis of Lemma 16 are \mathbb{Z}-linear combinations of the forms $\eta_k, \eta^1_{k,l}, \eta^2_{k,l}, 1 \leq k, l \leq 5$. \square

Let us prove Theorem 15.

Proof. By [7], the homology class of S in $\text{Alb}(S)$ is equal to $\frac{\Theta^3}{3!}$, thus the intersection of the fibres F_ℓ and $F_{\ell'}$ is equal to:

$$\int_A \frac{1}{3!} \wedge^3 c_1(\Theta) \wedge \Gamma^*_\ell \eta \wedge \Gamma^*_{\ell'} \eta.$$

Write ℓ in the basis $x_1, \ldots, x_5 : \ell = a_1 x_1 + \cdots + a_5 x_5$ and $\ell' = b_1 x_1 + \cdots + b_5 x_5$, then:

$$\frac{1}{3!}(\frac{i}{\sqrt{11}})^2d\ell \wedge d\bar{\ell} \wedge d\ell' \wedge d\bar{\ell}' \wedge (\wedge^3 c_1(\Theta))$$

is equal to:

$$(\frac{i}{\sqrt{11}})^5(\sum a_j dx_j) \wedge (\sum \bar{a}_j d\bar{x}_j) \wedge (\sum b_j dx_j) \wedge (\sum \bar{b}_j d\bar{x}_j) \wedge \sum_{h < j < k} dx_h \wedge d\bar{x}_h \wedge dx_j \wedge d\bar{x}_j \wedge dx_k \wedge d\bar{x}_k$$

that is equal to:

$$\left(\sum_{k \neq j} (a_k \bar{a}_j b_j \bar{b}_j - a_k \bar{a}_j b_j \bar{b}_j)\right) \frac{1}{5!} \wedge^5 c_1(\Theta).$$

But : $\int_A \frac{1}{3!} \wedge^5 c_1(\Theta) = 1$ because Θ is a principal polarization of $\text{Alb}(S)$, hence:

$$F_\ell F_{\ell'} = \int_A \frac{1}{3!} \wedge^3 c_1(\Theta) \wedge \Gamma^*_\ell \eta \wedge \Gamma^*_{\ell'} \eta = \sum_{k \neq j} (a_k \bar{a}_j b_j \bar{b}_j - a_k \bar{a}_j b_j \bar{b}_j) = ||\ell||^2 ||\ell'||^2 - \langle \ell, \ell' \rangle \langle \ell', \ell \rangle.$$

By [7] (10.9) and Lemma 11.27, $\frac{3}{2} \vartheta c_1(\Theta)$ is the Poincaré dual of a canonical divisor K of S, hence:

$$KF_\ell = \frac{3}{2} \vartheta c_1(\Theta) \vartheta \Gamma^*_\ell \eta = \frac{3}{2} \int_A \frac{1}{3!} \wedge^4 c_1(\Theta) \wedge \Gamma^*_\ell \eta.$$
and:

$$KF_{\ell} = \int_{\mathbb{A}} 6(\frac{i}{\sqrt{11}})^5(\sum a_j dx_j) \wedge (\sum \bar{a}_j d\bar{x}_j) \wedge \sum_{1 \leq k \leq 5} (\bigwedge (dx_j \wedge d\bar{x}_j))$$

so $KF_{\ell} = 6 \sum_{k=1}^{5} a_k \bar{a}_k = 6\|\ell\|^2$. Thus we have: $g(F_{\ell}) = (KF_{\ell} + 0)/2 + 1 = 3\|\ell\|^2 + 1$. By [7], $3C_s$ is numerically equivalent to K, hence $C_s F_{\ell} = 2\|\ell\|^2$.

Lemma [17] gives us a basis $\eta_1, ..., \eta_{25}$ of $\text{NS}(\text{Alb}(S))$ and we know the intersections $\vartheta^* \eta_k \vartheta^* \eta_l$ in the Fano surface. With the help of a computer, we can verify that the determinant of the intersection matrix:

$$(\vartheta^* \eta_k \vartheta^* \eta_l)_{1 \leq k, l \leq 25}$$

is equal to $2^{21}11^{10}$. By general results of [13], the index of $\vartheta^* \text{NS}(\text{Alb}(S)) \subset \text{NS}(S)$ is 2 and $\text{NS}(S)$ is generated by $\vartheta^* \text{NS}(\text{Alb}(S))$ and the class of an incidence divisor C_s. \hfill \Box

Corollary 18. 1) Let C be a smooth curve of genus > 0 and let $\gamma : S \to C$ be a fibration with connected fibres. Then there exists an isomorphism $j : E \to C$ and a form $\ell \in \Lambda^*_A$ such that $\gamma = j \circ \gamma_\ell$.

2) The set of numerical classes of fibres of connected fibrations of S onto a curve of positive genus is in natural bijection with $\mathbb{P}^4(\mathbb{Q}(\nu))$.

3) The fibres of these fibrations generate $\vartheta^* \text{NS}(\text{Alb}(S))$.

To prove Corollary [18], we need the following Lemma:

Lemma 19. 1) Let be $\ell \in \Lambda^*_A \setminus \{0\}$, $\ell = t_1 y_1 + \cdots + t_5 y_5$. The fibration Γ_ℓ has connected fibres if and only if $t_1, ..., t_5$ generate $\mathbb{Z}[\nu]$.

2) Let $\Gamma : \text{Alb}(S) \to C$ be a morphism with connected fibres onto an elliptic curve C. Then $C = \mathbb{E}$ and there exists $\ell \in \Lambda^*_A$ such that $\Gamma = \Gamma_\ell$.

Proof. Let $t \subset \mathbb{Z}[\nu]$ be the ideal of $\mathbb{Z}[\nu]$ generated by $t_1, ..., t_5$. This ideal satisfies $d\Gamma_\ell(H_1(S, \mathbb{Z})) = t$.

The morphism Γ_ℓ factorizes through the natural morphisms $\text{Alb}(S) \to \mathbb{C}/t$ and $\mathbb{C}/t \to \mathbb{E} = \mathbb{C}/\mathbb{Z}[\nu]$. If $t \neq \mathbb{Z}[\nu]$, then the fibres of Γ_ℓ are not connected because the fibres of $\mathbb{C}/t \to \mathbb{E}$ are not connected.

Let us recall that $\mathbb{Z}[\nu]$ is a principal ideal domain: there exist a generator g of t and $\ell' \in \Lambda^*_A$ such that $\ell = \ell' g$. If we replace ℓ by ℓ', we are now reduced to the case where $t = \mathbb{Z}[\nu]$, $g = 1$.

In that case, there exist $a_1, ..., a_5 \in \mathbb{Z}[\nu]$ such that $\sum a_i t_i = 1$. The homomorphism $\mathbb{E} \to \text{Alb}(S)$ whose analytic representation is:

$$
\begin{align*}
\mathbb{C} & \to H^0(\Omega_S)^* \\
 z & \mapsto \sum a_i u_i
\end{align*}
$$

is a section of Γ_ℓ, hence $\text{Alb}(S) \simeq \mathbb{E} \times \text{Ker}(\Gamma_\ell)$, and since $\text{Alb}(S)$ is connected, that implies that the fibre $\text{Ker}(\Gamma_\ell)$ is connected; thus Γ_ℓ has connected fibres.

Now let be Γ as in part 2). The curve C is isogenous to \mathbb{E}; let $j : C \to \mathbb{E}$ be an isogeny. There exists ℓ such that $j \circ \Gamma = \Gamma_\ell$. Moreover, we proved that there exists
\(\ell' \) such that \(\Gamma_{\ell'} \) is the Stein factorization of \(\Gamma_{\ell} = j \circ \Gamma \). As \(\Gamma \) and \(\Gamma_{\ell'} \) have the same fibres, we see that
\[
C = \text{Alb}(S)/\text{Ker}(\Gamma) = \text{Alb}(S)/\text{Ker}(\Gamma_{\ell'}) = E
\]
and \(\Gamma = \Gamma_{\ell'} \). \(\square \)

Let us prove Corollary 18:

Proof. Let \(\gamma : S \to C \) be a fibration onto a curve of genus \(\geq 0 \). Since the natural morphism \(\wedge^2 H^0(\Omega_S) \to H^0(S, \wedge^2 \Omega_S) \) is an isomorphism \([7]\), the Castelnuovo Lemma implies that the curve \(C \) has genus 1.

Let \(\Gamma : \text{Alb}(S) \to C \) be the morphism such that \(\gamma = \Gamma \circ \vartheta \). The fibres of \(\Gamma \) are connected, otherwise their trace on \(S \hookrightarrow \text{Alb}(S) \) would be disconnected fibres of \(\gamma \).

Lemma 19 2) implies that \(C = E \) and there exists a \(\ell \) such that \(\Gamma = \Gamma_{\ell} \). Moreover, this \(\ell \) satisfies \(\ell(\wedge^2 H_1(S, \mathbb{Z})) = \mathbb{Z}[\nu] \) and thus defines a point in \(\mathbb{P}^4(\mathbb{Q}(\nu)) \); this last set is canonically identified with \(\mathbb{P}^4(\mathbb{Q}(\nu)) \) (the numerical class of a fibre determine the fibration).

Conversely, by Lemma 19 1), to a point of \(\mathbb{P}^4(\mathbb{Q}(\nu)) \), there corresponds a form \(\ell \in \Lambda^2_A \) (up to a sign) such that \(\Gamma_{\ell} \) has connected fibres. Let \(\gamma \) be the Stein factorization of \(\Gamma_{\ell} \circ \vartheta \). We proved that there is a form \(\ell' \) such that \(\gamma = \Gamma_{\ell'} \circ \vartheta \) and \(\Gamma_{\ell'} \) has connected fibres. Thus \(\ell = \ell' \), \(\Gamma_{\ell} \circ \vartheta \) has connected fibres and to \(\ell \) we associate the fibre \(F_{\ell} \in \text{NS}(S) \). This class \(F_{\ell} \) is independent of the choice of \(\pm \ell \). That ends the proof of parts 1) and 2).

The point 3) is a reformulation of Lemma 17. \(\square \)

References

[1] Adler A., "On the automorphism group of a certain cubic threefold", Amer. J. of Math. 100 (1978), 1275–1280.
[2] Adler A., "On the automorphism group of certain hypersurfaces", J. Algebra 72 (1981), no.1, 146–165.
[3] Adler A., Ramanan S., "Moduli of abelian varieties", LNM 1644, Springer, Berlin, (1996).
[4] Barth W., Hulek K., Peters C., Van De Ven A., "Compact complex surfaces", Ergeb. Math. Grenzgeb. vol.4, 2nd edition, Springer (2004).
[5] Beauville A., "Les singularités du diviseur Θ de la jacobienne intermédiaire de l’hypersurface cubique dans \(\mathbb{P}^4 \)\), Algebraic Threefold (Proc. Varenna 1981), LNM 947, 190–208; Springer-Verlag (1982).
[6] Birkenhake C., Lange H., "Complex abelian varieties", Grundlehren, Vol 302, 2nd edition, Springer (1980).
[7] Clemens H., Griffiths P., "The intermediate Jacobian of the cubic threefold", Annals of Math. 95 (1972), 281–356.
[8] Griffiths P., Harris J., "Principles of algebraic geometry", Wiley (1978).
[9] González-Aguilera V., Muñoz-Porras J.M., Zamora A., "On the 0-dimensional irreducible components of the singular locus of \(A_5 \)\), Arch. Math. 84, (2005), 298–303.
[10] Gross M., Popescu S. "The moduli space of (1, 11)-polarised abelian surfaces is unirational", Compositio Math. 126 (2001), no 1., 1–23.
[11] Manin Y., "Cubic forms", North-Holland Publishing Company, Amsterdam, (1974).
[12] Murre J.P., "Algebraic equivalence modulo rational equivalence on a cubic threefold", Compositio Math., Vol 25, 1972, 161–206.
[13] Roulleau X., "Elliptic curve configurations on Fano surfaces". [arXiv:1004.1861v1 [math.AG]]
[14] Tyurin A.N., "On the Fano surface of a nonsingular cubic in \mathbb{P}^4", Math. Ussr Izv. 4 (1970), 1207–1214.
[15] Tyurin A.N., "The geometry of the Fano surface of a nonsingular cubic $F \subset \mathbb{P}^4$ and Torelli theorems for Fano surfaces and cubics", Math. Ussr Izv. 5 (1971), 517–546.
[16] Zarhin Y., "Cubic surfaces and cubic threefolds, Jacobians and the intermediate Jacobians", arxiv:math/0610138v2 [mathAG].

Xavier Roulléau,
Graduate School of Mathematical Sciences,
University of Tokyo,
3-8-1 Komaba, Meguro,
Tokyo, 153-8914
Japan
roulléau@ms.u-tokyo.ac.jp