Holographic representation of the unified early and late universe via a viscous dark fluid

I. Brevik,1 A. V. Timoshkin,2,3

1) Department of Energy and Process Engineering, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
2) Institute of Scientific Research and Development, Tomsk State Pedagogical University (TSPU), 634061 Tomsk, Russia
3) Lab. for Theor. Cosmology, International Centre of Gravity and Cosmos, Tomsk State University of Control Systems and Radio Electronics (TUSUR), 634050 Tomsk, Russia

In this article we apply the holographic principle for describing in a unifying way the early and the late-time universe, when the general equation of state contains a bulk viscosity. We use the idea of a generalized cut-off holographic dark energy introduced by Nojiri and Odintsov (2006, 2017), and study the evolution of the universe when the equation of state has two power-law asymptotes. Analytical expressions for the infrared cut-offs in terms of the particle horizon are obtained. The energy conservation laws as derived from the holographic point of view, are given for various forms of the thermodynamic parameters and for various forms of the bulk viscosity. As a result, we obtain a unifying description of the early and the late-time universe in the presence of a viscous holographic fluid.

I. INTRODUCTION

One of the possible avenues for describing the evolution of the universe, is the holographic approach, also called the holographic principle [1–3]. The holographic dark energy model can be useful for the description of quantum gravity. The holographic principle has been widely applied, both to the early and to the late-time universe [4–17]. The generalized cut-off holographic dark energy (HDE) model was proposed Nojiri and Odintsov [1, 2], where infrared cut-off was identified with a combination of various parameters: Hubble constant, particle and future horizons, cosmological constant, and universe life-time. All known holographic dark energy models represent just particular classes of the Nojiri-Odintsov HDE as was shown in [18–20]. Furthermore, the Nojiri-Odintsov HDE gives a consistent basis for a novel generalized entropy while describing the holographic universe, see [21]. The holographic theory of the universe is well confirmed by astronomical observations [22–27]. Different applications of the theory of dark energy were studied in the reviews [28, 29].

One may ask: is it possible to build a description both the early-time and the late-time cosmic accelerating expansion of the universe in a single cosmological model? The answer to it is obtained in the article [30], where a unifying approach to early-time and late-time universe based on phantom cosmology was proposed. The cosmological model of a unified description of the early and the late-time accelerated universe, in terms of the van der Waals equation of state for the cosmic viscous fluid, was investigated in Ref. [31].

Considerations about viscous fluid models started some time ago, but their applications to the accelerating universe are rather recent. Various aspects of viscous cosmology models have been discussed in Refs. [32–46]. A unified description of dark energy and dark matter in the standard Friedmann-Robertson-Walker cosmology, in terms of a single dissipative unified dark fluid, was proposed in Ref. [47], where the dissipation was represented by a bulk viscosity with a constant coefficient.

The structure of the article is as follows: In Section II we introduce the main aspects of the holographic principle, following the terminology from Ref. [1]. In Section III we explain the unified dark fluid cosmological model and discuss the structure of the proposed equation of state. We apply various forms of the thermodynamic parameter and bulk viscosity for the unified viscous dark fluid model introduced in the work [48]. In Section IV we give the conclusion.

II. GENERALIZED HOLOGRAPHIC DESCRIPTION OF THE UNIVERSE

In this section we present the main points of the holographic principle, following the terminology from Ref. [3]. In the holographic description the main component is the cut-off radius of the horizon. According to the generalized
model introduced in Ref. [1], the holographic energy density is inversely proportional to the squared infrared cut-off \(L_{\text{IR}} \),
\[
\rho = \frac{3c^2}{k^2 L_{\text{IR}}} \tag{1}
\]
where \(k^2 = 8\pi G \) is Einstein’s gravitational constant; \(c \) is a nondimensional and positive constant.

We will consider a homogeneous and isotropic Friedmann-Robertson-Walker (RW) metric
\[
ds^2 = -dt^2 + a^2(t) \sum_{i=1}^3 (dx^i)^2 \tag{2}
\]
where \(a(t) \) is the scale factor.

The first Friedmann equation can be written as
\[
H^2 = \frac{k^2}{3\rho} \tag{3}
\]
where \(H(t) = \dot{a}(t)/a(t) \) is the Hubble parameter and \(\rho \) is the holographic energy density.

There are several ways for choosing the infrared radius \(L_{\text{IR}} \): identifying with the particle horizon \(L_p \), or alternatively with the future event horizon \(L_f \) [2]. The definitions are
\[
L_p(t) = a(t) \int_0^t \frac{dt'}{a(t')}, \quad L_f(t) = a(t) \int_t^\infty \frac{dt'}{a(t')}. \tag{4}
\]
It is to be noted that not all choices of a cut-off can lead to an accelerating universe.

If we suppose that the energy density \(\rho \) in Eq. (3) matches the energy density \(\rho \) in Eq. (1), then the first Friedmann equation for an expanding universe takes the form
\[
H = \frac{c}{L_{\text{IR}}} \tag{5}
\]
We will henceforth assume that the dark fluid, which drives the accelerated expansion, has a holographic origin. The source of this fluid can be a scalar field, or modified gravity.

III. HOLOGRAPHIC REPRESENTATION OF THE DISSIPATIVE UNIFIED DARK FLUID MODEL

Let us consider a viscous dark fluid with an effective inhomogeneous equation of state (EoS) in flat FRW space-time [49, 50],
\[
p = \omega(\rho, t)\rho + f(\rho) - 3H\zeta(H, t), \tag{6}
\]
where \(\omega(\rho, t) \) is the thermodynamic parameter and \(\zeta(H, t) \) is the bulk viscosity, which in general depends on the Hubble parameter and on the time \(t \). For the function \(f(\rho) \) we choose the form
\[
f(\rho) = \frac{\gamma \rho^n}{1 + \delta \rho^m}, \tag{7}
\]
where \(\gamma, \delta, n, m \) are free parameters. For thermodynamic reasons, we take \(\zeta(H, t) \) to be positive. Dissipation is described through the bulk viscosity, for which we assume the form
\[
\zeta(H, t) = \xi_1(t)(3H)^p, \tag{8}
\]
with \(p > 0 \).

The addition of the second term in the equation of state [50] allows us to describe the asymptotic behavior between the dust in the early universe and the late universe [52] via an interpolation between different powers in the energy density expression.

Further, we introduce nondimensional parameters
\[
\tilde{\rho} = \delta^{\frac{n}{m}} \rho, \quad \tau = \frac{\gamma}{\delta \frac{n}{m}} t. \tag{9}
\]
Let us assume that the universe is filled by a one-component viscous fluid, and write the energy conservation law as
\[\dot{\rho} + 3H(\rho + p) = 0. \]
(10)

We will distinguish between two cases.

Case 1. At first, we put \(\omega = -1 \) in the EoS and take \(\zeta(H, t) = \zeta_0 \), a constant. If we restrict ourselves to \(n > 0 \) and \(m > 0 \), then, provided \(n - m = \frac{1}{2} \) for large \(\tilde{\rho} \), Eq. (10) tends asymptotically to the following form,
\[\frac{d\tilde{\rho}}{dt} \approx \sqrt{3}(\zeta_0 - 1)\tilde{\rho}, \]
(11)
where \(\tilde{\zeta}_0 = \sqrt{3}\frac{\gamma - 1}{\delta^{\frac{1}{2}} m - 1} \zeta_0 \).

The solution of Eq. (11) is
\[\tilde{\rho} \approx \tilde{\rho}_0 e^{\lambda t}, \]
(12)
where \(\lambda = \sqrt{3}(\zeta_0 - 1)\frac{\gamma - 1}{\delta^{\frac{1}{2}} m - 1}, \) and \(\tilde{\rho}_0 \) is an arbitrary constant.

Correspondingly, the Hubble parameter takes the form
\[H(t) \approx \frac{k\tilde{\rho}_0}{\sqrt{3}\delta^{\frac{1}{2}} m - 1} e^{\frac{1}{2} \lambda t}. \]
(13)
If \(t \to 0 \), the Hubble parameter approaches a constant, \(H(t) \to \frac{k}{\sqrt{3}\delta^{\frac{1}{2}} m - 1} \). This case can be identified with the inflation.

The scale factor is given by
\[a(t) = a_0 \exp \left[\tilde{\lambda} e^{\frac{1}{2} \lambda t} \right], \]
(14)
where \(\tilde{\lambda} = \frac{k\tilde{\rho}_0}{\sqrt{3}\delta^{\frac{1}{2}} m - 1} \) and \(a_0 \) is a positive constant.

We can now calculate the particle horizon \(L_p \),
\[L_p = \frac{2}{\lambda} \exp \left[\tilde{\lambda} e^{\frac{1}{2} \lambda t} \right] \left[Ei \left(-\tilde{\lambda} e^{\frac{1}{2} \lambda t} \right) - Ei(-\tilde{\lambda}) \right], \]
(15)
where \(Ei(x) \) is the integral exponential function.

The Hubble parameter \(H \) can be expressed in terms of the particle horizon and its time derivative as
\[H = \frac{\dot{L}_p - 1}{L_p}, \quad \dot{H} = \frac{\dot{L}_p}{L_p} - \frac{\dot{L}_p^2}{L_p^2} + \frac{\dot{L}_p}{L_p} \]
(16)
Thus by using (15) the energy conservation equation (10) can be rewritten as
\[\frac{\dot{L}_p}{L_p} - \frac{\dot{L}_p^2}{L_p^2} + \frac{\dot{L}_p}{L_p} \approx \sqrt{3}\frac{\gamma}{2\delta^{\frac{1}{2}} m} (\zeta_0 - 1) \frac{\dot{L}_p - 1}{L_p}. \]
(17)
Thus, we have successfully applied the holographic principle to this model.

Case 2. Let us now consider a cosmological model with a thermodynamic parameter linearly dependent on time,
\[\omega(\rho, t) = at + b, \]
(18)
where \(a, b \) are arbitrary parameters. Assume also the function \(\xi_1(t) \) in Eq. (8) to be linear in time,
\[\xi_1(t) = \tau(dt + e), \]
(19)
with arbitrary parameters \(\tau, d, e \). Then, in the case \(p = 1 \) the bulk viscosity gets the following simple form,
\[\zeta(H, t) = 3\tau(dt + e)H, \]
(20)
and the EoS gets the form
\[p = (at + b)\rho + \frac{\gamma\rho^n}{1 + \delta\rho^m} - 9\tau(dt + e)H^2. \]
(21)
If we put $n = m + 1$, then by inserting (21) into (10) we obtain the modified gravitational equation of motion,

$$\dot{\rho} + \sqrt{3} k (at + b) \rho^{3/2} + \sqrt{3} k \rho^{1/2} \frac{\gamma \rho^{m+1}}{1 + \delta \rho^{m}} - 3 \sqrt{3} \tau k^3 (pt + e) \rho^{3/2} = 0.$$

(22)

If we assume $m = \frac{1}{2}$, the solution of this equation is

$$\rho(t) = \left[\sqrt{3} k \left(\frac{1}{2} a_1 t^2 + b_1 t + \rho_0 \right) - \delta \right]^{-2},$$

(23)

where ρ_0 is an arbitrary constant. We have here introduced the constants $a_1 = \delta c_1, c_1 = a - 3 \tau k^2 d, b_1 = \delta (b + 1) - 3 \tau \delta k^2 e + \gamma$, and $d_1 = b + 1 - 3 \tau k^2 e$.

The Hubble parameter is

$$H(t) = \frac{k}{\sqrt{3}} \left[\sqrt{3} k \left(\frac{1}{2} a_1 t^2 + b_1 t + \rho_0 \right) - \delta \right]^{-1}.$$

(24)

Then in the early universe $t \to 0$, the Hubble parameter tends to the constant $H(t) \to \frac{k}{\sqrt{3}} (\sqrt{3} k \rho_0 - \delta)^{-1}$, corresponding to inflaton, while in the late universe $t \to +\infty$ the Hubble parameter goes again to the constant $H \to 0$ and we have late-time accelerating expansion.

Let us put $a = 3 \tau k^2 d, b = 3 \tau k^2 e - 1$, whereby $a_1 = c_1 = d_1 = 0$ and $b_1 = \gamma$. In this case the Hubble parameter simplifies to

$$H(t) = \frac{k}{\sqrt{3}} \left[\sqrt{3} k (\gamma t + \rho_0) - \delta \right]^{-1}.$$

(25)

Let us put the constant $\rho_0 = 0$ and calculate the scale factor

$$a(t) = a_0 \exp \left[\frac{2k}{\sqrt{3} \alpha} \sqrt{t} \right] \left(\sqrt{t} - \delta \right)^{\frac{2k}{3 \alpha \sqrt{3} \gamma}},$$

(26)

where $\alpha = \sqrt{3} k \gamma$, and calculate the particle horizon L_p.

$$L_p(t) = \exp \left[\frac{2k}{\sqrt{3} \alpha} \sqrt{t} \right] \left(\sqrt{t} - \delta \right) \frac{2k}{3 \alpha \sqrt{3} \gamma} \int_0^t \exp \left[\frac{2k}{\sqrt{3} \alpha} \sqrt{t} \right] \frac{dt}{\left(\sqrt{t} - \delta \right)} \frac{2k}{3 \alpha \sqrt{3} \gamma}. $$

(27)

If $\delta = \frac{\sqrt{3} \alpha^2}{2k}$, we obtain

$$L_p(t) = \sqrt{3} \frac{\alpha}{k} \exp \left[\frac{2k}{\sqrt{3} \alpha} \sqrt{t} \right] \left(\sqrt{t} - \delta \right) \left\{ 1 - \exp \left[- \frac{2k}{\sqrt{3} \alpha} \sqrt{t} \right] + e^{-1} \left[Ei \left(1 - \frac{2k}{\sqrt{3} \alpha} \sqrt{t} \right) - Ei(1) \right] \right\}. $$

(28)

In this case the energy conservation equation takes the form

$$2 \left(\frac{L_p}{L_p} - \frac{L_p^2}{L_p^2} + \frac{L_p}{L_p} \right) + 3 \sqrt{3} \gamma \frac{(L_p-1)^3}{k} + \frac{\sqrt{\frac{L_p-1}{L_p}}}{1 + \sqrt{\frac{L_p-1}{L_p}}} = 0.$$

(29)

Thus, we have obtained a reconstruction of the conservation equation for energy, according to the holographic principle.

IV. CONCLUSION

We have considered the holographic description of a unified model of the early and the late-time universe, in a homogeneous and isotropic Friedmann-Robertson-Walker metric. To obtain this, we have identified the infrared radius \mathcal{L}_{IR} with the particle horizon L_p. As a model for the universe, we have studied a general equation of state for
the dark fluid in the presence of a bulk viscosity. We have explored the holographic principle for cosmological models with various values for the thermodynamic parameter \(\omega(\rho, t) \) and for different forms of the bulk viscosity \(\zeta(H, t) \). For each model the infrared radius, in the form of a particle horizon, has been calculated in order to obtain the energy conservation law. Thus, we have shown the equivalence between viscous models and the holographic model.

The agreement between a theoretical model of dark energy with astronomical observations was discussed in Ref. [53]. For the redshift parameters of distant supernova of type Ia, agreement between observed data and theoretical prediction was obtained.

ACKNOWLEDGMENT

This work was supported in part by Ministry of Education of Russian Federation, Project No FEWF-2020-0003 (A. V. T.).

[1] S. Nojiri and S. D. Odintsov, Covariant generalized holographic dark energy and accelerating universe, Eur. Phys. J. C 77 (2017) 528.
[2] S. Nojiri and S. D. Odintsov, Unifying phantom inflation with late-time acceleration: Scalar phantom-non-phantom transition model and generalized holographic dark energy, Gen. Relativ. Gravit. 38 (2006) 1285.
[3] M. Li, A model of holographic dark energy, Phys. Lett. B 603 (2004) 1.
[4] S. Nojiri, S. D. Odintsov and E. N. Saridakis, Holographic inflation, Nucl. Phys. B 949 (2019) 114790; Phys. Lett. B 797 (2019) 134829.
[5] E. Elizalde and A. V. Timoshkin, Viscous fluid holographic inflation, Eur. Phys. J. C 79 (2019) 732.
[6] S. Nojiri, S. D. Odintsov and E. N. Saridakis, Holographic bounce, Phys. Rept. 696 (2017) 1.
[7] R. Horvat, Holography and variable cosmological constant, Phys. Rev. D 70 (2004) 087301.
[8] Q. G. Huang and Y. G. Gong, The holographic dark energy in a non-flat universe, J. Cosmol. Astropart. Phys. 0408 (2004) 013.
[9] D. Pavon and W. Zimdahl, Holographic dark energy and cosmic coincidence, Phys. Lett. B 628 (2005) 206.
[10] B. Wang, Y. G. Gong and E. Abdalla, Transition of the dark energy equation of state in an interacting holographic dark energy model, Phys. Lett. B 624 (2005) 141.
[11] M. R. Setare and E. N. Saridakis, Non-minimally coupled canonical, phantom and quintom models of holographic dark energy, Phys. Lett. B 671 (2009) 331.
[12] E. Elizalde and A. V. Timoshkin, Viscous fluid holographic inflation, Eur. Phys. J. C 79 (2019) 732.
[13] S. Nojiri, S. D. Odintsov and E. N. Saridakis, Holographic bounce, Nucl. Phys. B 949 (2019) 114790.
[14] I. Brevik and A. V. Timoshkin, Viscous fluid holographic bounce, Int. J. Geom. Methods 17 (2020) 2050023.
[15] E. Elizalde, S. Nojiri, S. D. Odintsov and P. Wang, Dark energy: Vacuum fluctuations, the effective phantom phase, and holography, Phys. Rev. D 71 (2005) 103504.
[16] S. Nojiri, S. D. Odintsov, Tanmoy Paul, Different Faces of Generalized Holographic Dark Energy, Symmetry 13 (2021) 6, 928 (2022).
[17] S. Nojiri, S. D. Odintsov, V.K. Oikonomou, Tanmoy Paul, Unifying Holographic Inflation with Holographic Dark Energy: a Covariant Approach, Phys. Rev. D 102 (2020) 023540.
[18] S. Nojiri, S. D. Odintsov, Tanmoy Paul, Barrow entropic dark energy: A number of generalized holographic dark energy family, Phys. Lett. B 825 (2022) 136844.
[19] S. Nojiri, S. D. Odintsov, Valerio Faraoni, How fundamental is entropy? From non-extensive statistics and black hole physics to the holographic dark universe, (2022), arXiv: 2201.02424 [gr-qc].
[20] X. Zhang, Statefinder diagnostic for holographic dark energy model, Int. J. Mod. Phys. D 14 (2005) 1597.
[21] B. Guberina, R. Horvat and H. Stefancic, Hint for quintessence-like scalars from holographic dark energy, J. Cosmol. Astropart. Phys. 0505 (2005) 001.
[22] E. Elizalde, S. Nojiri, S. D. Odintsov and P. Wang, Dark energy: Vacuum fluctuations, the effective phantom phase, and holography, Phys. Rev. D 71 (2005) 103504.
[23] S. Nojiri, S. D. Odintsov, Tanmoy Paul, Different Faces of Generalized Holographic Dark Energy, Symmetry 13 (2021) 6, 928 (2022).
[28] S. Nojiri, S. D. Odintsov and V. K. Oikonomou, Modified gravity theories on a nutshell: Inflation, bounce and late-time evolution, Phys. Rept. 692 (2017) 1.
[29] S. Nojiri, S. D. Odintsov, Unified cosmic historyin modified gravity from F(R) theory to Lorentz non-invariant models, Phys. Rept. 505 (2011) 59-144.
[30] S. Nojiri and S. D. Odintsov, Multiple lambda cosmology: dark fluid with time-dependent equation of state as classical analog of cosmological landscape, Phys. Lett. B 649, 440 (2007); Phys. Lett. B 639, 144 (2006).
[31] A.V. Astashenok, S. D. Odintsov, A. S. Tepliakov, The unified history of the viscous accelerating universe and phase transitions, (2021), arXiv:2112.13877 [gr-qc].
[32] I. Brevik and L.T. Heen, Remarks on the viscosity concept in the early universe, Astrophys. Space Sci. 219, 99 (1994).
[33] I. Brevik and A. Hallanger, Randall-Sundrum model in the presence of a brane bulk viscosity, Phys. Rev. D 69, 024009 (2004).
[34] M. Cataldo, N. Cruz and S. Lepe, Viscous dark energy and phantom evolution, Phys. Lett. B 619, 5 (2005).
[35] I. Brevik, J.M. Børven and S. Ng, Crossing of the $w = -1$ barrier in two fluid viscous modified gravity, Gen. Relativ. Grav. 38, 907 (2006).
[36] I. Brevik and S. D. Odintsov, Cardy-Verlinde entropy formula in viscous cosmology, Phys. Rev. D 65, 067302 (2002).
[37] B. Li and J. D. Barrow, Does bulk viscosity create a viable unified dark matter model?, Phys. Rev. D 79, 103521 (2009).
[38] I. Brevik, O. Gorbunova and D. Saez-Gomez, Viscous Little rip Cosmology, Gen. Relativ. Grav. 42, 1513 (2010).
[39] L. Sebastiani, Dark viscous fluid coupled with dark matter and future singularity, Eur. Phys. J. C 69, 547 (2010).
[40] H. Velten and D.J. Schwarz, Dissipation of dark matter, Phys. Rev. D 86, 083501 (2012).
[41] H. Velten, D.J. Schwarz, J.C. Fabris and W. Zimdahl, Viscous dark matter growth in (neo-)Newtonian cosmology, Phys. Rev. D 88, 103522 (2013).
[42] H. Velten, J. Wang and X. Meng, Phantom dark energy as an effect of bulk viscosity, Phys. Rev. D 88, 123504 (2013).
[43] K. Bamba and S.D. Odintsov, Inflation in a viscous fluid model, Eur. Phys. J. C 76, 18 (2016).
[44] I. Brevik, Ø. Grøn, J. de Haro, S.D. Odintsov and E.N. Saridakis, Viscous cosmology for early- and late-time universe, Int. J. Mod. Phys. D 26, 1730024 (2017).
[45] I. Brevik, E. Elizalde, S. D. Odintsov and A. V. Timoshkin, Inflationary universe in terms of a van der Waals viscous fluid, Int. J. Geom. Methods Mod. Phys. 14, 1750185 (2017).
[46] I. Brevik, E. Elizalde, V. V. Obukhov and A. V. Timoshkin, Inflationary universe with a viscous fluid avoiding self-reproduction, Annalen der Physik 529, 1600195 (2017).
[47] E. A. Elkhateeb, M. Hashim, Dissipative Unified Dark Fluid: Observational Constraints (2021), arXiv:2108.10905[astro-ph CO].
[48] S. Capozziello, V.F. Cardone, E. Elizalde, S. Nojiri and S.D. Odintsov, Observational constraints on dark energy with generalized equation of state, Phys. Rev. D 73, 043512 (2006).
[49] S. Nojiri and S. D. Odintsov, Inhomogeneous equation of state of the universe: Phantom era, future singularity and crossing the phantom barrier, Phys. Rev. D 72, 023003 (2005).
[50] S. Myrzakul, R. Myrzakulov and L. Sebastiani, Inhomogeneous viscous fluids in FRW universe and finite-future time singularities, Astrophys. Space Sci. 350, 845 (2014).
[51] S. Nojiri and S. D. Odintsov, Modified gravity theories on a nutshell: Inflation, bounce and late-time evolution, Phys. Rept. 692 (2017) 1.
[52] I. Brevik, A viable dark fluid model, Astrophys. Space Sci. 363, 7 (2018).
[53] E. Elkhateeb, Dissipative unified dark fluid, Int. J. Mod. Phys. 28, no. 9, 1950110 (2019).