60S dynamic state of bacterial ribosome is fixed by yeast mitochondrial initiation factor 3

Sergey Levitskii 1, Ksenia Derbikova 1, Maria V Baleva 1, Anton Kuzmenko 1, Andrey V Golovin 2,3,4, Ivan Chicherin 1, Igor A Krasheninnikov 1, Piotr Kamenski Corresp. 1

1 Faculty of Biology, Moscow State University, Moscow, Russia
2 Faculty of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia
3 Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
4 Faculty of Computer Science, Higher School of Economics, Moscow, Russia

Corresponding Author: Piotr Kamenski
Email address: peter@protein.bio.msu.ru

The processes of association and dissociation of ribosomal subunits are of great importance for the protein biosynthesis. The mechanistic details of these processes, however, are not well known. In bacteria, upon translation termination, ribosome dissociates into subunits which is necessary for its further involvement into new initiation step. The dissociated state of ribosome is maintained by initiation factor 3 (IF3) which binds to free small subunits and prevents their premature association with the large subunits. In this work, we have exchanged IF3 in E.coli cells by its ortholog from Saccharomyces cerevisiae mitochondria (Aim23p) and showed that yeast protein cannot functionally substitute the bacterial one and is even slightly toxic for bacterial cells. Our in vitro experiments have demonstrated that Aim23p does not split E.coli ribosomes into subunits. Instead, it fixes a state of ribosomes characterized by sedimentation coefficient about 60S which is not a stable structure but rather reflects a shift of dynamic equilibrium between associated and dissociated states of the ribosome. Mitochondria-specific terminal extensions of Aim23p are necessary for “60S state” formation, and molecular modeling results point out that these extensions might stabilize the position of the protein on the bacterial ribosome.
60S dynamic state of bacterial ribosome is fixed by yeast mitochondrial initiation factor 3

Sergey Levitskii¹, Ksenia Derbikova¹, Maria V. Baleva¹, Anton Kuzmenko¹, Andrey V. Golovin²,³,⁴, Ivan Chicherin¹, Igor A. Krasheninnikov¹, Piotr Kamenski¹*

¹ Faculty of Biology, M.V.Lomonosov Moscow State University, 1/12 Leninskie Gory, Moscow 119234, Russia
² Faculty of Bioengineering and Bioinformatics, M.V.Lomonosov Moscow State University, 1/73 Leninskie Gory, Moscow 119234, Russia
³ Sechenov First Moscow State Medical University, Institute of Molecular Medicine, 8-2 Trubetskaya str., Moscow 119991, Russia
⁴ Higher School of Economics, Faculty of Computer Science, 3 Kochnovsky pr., Moscow 125319, Russia.

Present address:
Anton Kuzmenko, Institute of Molecular Genetics, Russian Academy of Science, Moscow 123182, Russia.

*Corresponding author: Piotr Kamenski. E-mail: peter@protein.bio.msu.ru
ABSTRACT

The processes of association and dissociation of ribosomal subunits are of great importance for the protein biosynthesis. The mechanistic details of these processes, however, are not well known. In bacteria, upon translation termination, ribosome dissociates into subunits which is necessary for its further involvement into new initiation step. The dissociated state of ribosome is maintained by initiation factor 3 (IF3) which binds to free small subunits and prevents their premature association with the large subunits. In this work, we have exchanged IF3 in *E.coli* cells by its ortholog from *Saccharomyces cerevisiae* mitochondria (Aim23p) and showed that yeast protein cannot functionally substitute the bacterial one and is even slightly toxic for bacterial cells. Our *in vitro* experiments have demonstrated that Aim23p does not split *E.coli* ribosomes into subunits. Instead, it fixes a state of ribosomes characterized by sedimentation coefficient about 60S which is not a stable structure but rather reflects a shift of dynamic equilibrium between associated and dissociated states of the ribosome. Mitochondria-specific terminal extensions of Aim23p are necessary for “60S state” formation, and molecular modeling results point out that these extensions might stabilize the position of the protein on the bacterial ribosome.

INTRODUCTION

Upon termination of protein biosynthesis in bacteria, 70S ribosome dissociates into small (30S) and large (50S) subunits. Free small subunit then takes part in *de novo* formation of the initiation complex with mRNA, initiator tRNA, and several initiation factors. Binding of the large subunit promotes release of the initiation factors, and assembled 70S ribosomes begins a new round of translation (for review, see (Laursen et al. 2005)).

It is known that two proteins, namely RRF and EF-G, are responsible for bacterial ribosomes dissociation into subunits after termination of protein biosynthesis (Zavialov et al. 2005) (Peske et al. 2005). Once free 30S and 50S subunits appear, initiation factor 3 (IF3) binds the small subunit in order to keep it apart from the large one (Zavialov et al. 2005). This stage is, in fact, the very first stage of the translation initiation process; 30S•IF3 complex becomes the basis for the full-size initiatory complex formation which includes Shine-Dalgarno sequence of mRNA, initiator tRNA, and initiation factors 1 and 2. It is worth mentioning that anti-association
activity of IF3 is definitely of passive mode: it does not promote dissociation of the ribosome into subunits but instead binds to free small subunit and prevents its re-association with the large one (Gualerzi et al. 1977) (Gottleib et al. 1975).

The exact mechanism of ribosome dissociation into subunits remains unclear. This is due to methodological complications of studying this fast and dynamic process. In kinetic study, a model was proposed that assumed the existence of several consecutive conformations of ribosome in course of its dissociation; IF3 was hypothesized to be a potential effector of corresponding conformational changes which could shift the equilibria between different states of dissociating ribosome (Goss et al. 1980). It can be assumed that these conformations might be characterized by different sedimentation coefficients, less than 70S but probably more than 50S. Indeed, a ribosomal ~60S state was described in in vitro experiments; this state was formed under specific experimental conditions (Morimoto 1969). The authors used a term “60S component” and postulated that this was a new stable intermediate of the subunits dissociation / association reaction and that this intermediate was just “swollen 70S” (Morimoto 1969). Further investigations, however, have demonstrated that the exact sedimentation coefficient of this “swollen 70S” depends on the sedimentation speed and on the initial 70S concentration (Spirin 1971). These results fit very well to the above-discussed hypothesis about consecutive conformational changes of 70S ribosome during dissociation. However, none of these intermediate states has been seen as stable structure.

In this work, we investigated the effects of yeast mitochondrial IF3, Aim23p, on the E.coli translation. The idea comes from the recent work of Ayyub and colleagues where it has been demonstrated that mammalian mitochondrial IF3 (mtIF3), although being unable to fully substitute for IF3 in E.coli, exhibits some functional activity in bacterial cells (Ayyub et al. 2018). We exchanged infC gene (coding for IF3) in bacteria by AIM23 gene and found that Aim23p cannot substitute the cognate factor. Moreover, Aim23p was slightly toxic for the bacterial cell which was mediated by mitochondria-specific parts of the protein, namely its N- and C-terminal extensions. Our in vitro investigations have revealed that Aim23p does bind to E.coli ribosome and fixes its unusual state with sedimentation coefficient about 60S. This state can be further transformed into fully dissociated state if Am23p concentration is increased. According to the results of wet experiments and molecular modeling, terminal extensions of Aim23p might be responsible for 60S state fixation.
MATERIALS AND METHODS

Plasmids, E. coli strains and oligonucleotides used in the work may be found in Tables 1, 2, and 3, respectively.

Cloning and standard procedures

Different versions of AIM23 (S. cerevisiae) and infC (E. coli) genes were cloned into above-mentioned vectors by standard PCR-restriction-ligation approach. Western-blot was performed by standard protocol using the rabbit antibodies against 6-His-tagged recombinant Aim23p (produced on our order by Almabion).

Construction of mutant E. coli strains (Thomason et al. 2007)

Genomic disruption of infC gene coding for IF3 was carried out in the E. coli strain MG1655. Cassette for infC genomic disruption containing the chloramphenicol resistance gene was prepared by PCR from pKD3 plasmid. Primers contained 5’-parts designed for the homologous recombination into the target genome site. The cassette was then delivered into E. coli cells by electroporation. These cells initially contained pKD46 plasmid encoding for recombinase, as well as pACDH plasmid containing infC gene. Clones where recombination took place were selected on chloramphenicol-containing medium and screened by PCR.

For transferring the bacterial genetic material to phage P1, 5ml of E. coli culture in logarhythmic growth phase was infected by 100 ul of phage suspension. The mixture was incubated at 37 °C for 3 hours with shaking and centrifuged at 9200 g for 10 minutes. The phage-containing upper fraction was taken and filtered through 0.45 um filter.

For generation of the experimental E. coli strains, the MG1655 cells containing pBAD plasmid with cloned infC gene were transformed by the plasmids coding for IF3 or different variants of Aim23p. 2 ml of ON cultures were pelleted and resuspended in 1 ml of 10 mM CaCl2, 5mM MgSO4. Suspensions were 100 ul aliquotted, then half a volume of P1 lysate was added, and the mixtures were incubated at 37 °C for 30 minutes without shaking. Then 1 ml of LB medium and 200 ul of sodium citrate were added followed by the incubation at 37 °C for 1 hour.
with shaking. The cells were plated on the agar dishes with antibiotics, 0.02% arabinose and
5mM sodium citrate. Screening of the clones was performed by PCR.

The growth curves of E.coli strains were registered in automatic mode using microplate
reader Infinite M200 PRO (Tecan Instruments).

Ribosome purification and analysis

Ribosomes were isolated from E.coli strain MG1655 according to (Rivera et al. 2015)
with minor changes. Briefly, bacterial cells from 1L culture with OD\textsubscript{600} \~0.6 were collected,
lysed, ribosomes from clarified lysate were sedimentated through 10% sucrose cushion, and
dissolved in minimal volume of 10 mM Tris-HCl pH 7.0; 60 mM KCl, 60 mM NH\textsubscript{4}Cl, 7 mM
magnesium acetate, 7 mM β-mercaptoethanol, 0.25 mM EDTA. Isolated ribosomes were stored
at -80°C. For dissociation reaction, approximately 24 pmoles (one unit of OD\textsubscript{260}) of ribosomes
were mixed with different amounts of recombinant Aim23p, IF3, or Aim23ΔNΔC in the above-
indicated buffer. Mixtures were incubated at 37°C for 30 min, and then applied on 15% - 40%
continuous sucrose gradients prepared on the same buffer. Samples were centrifuged for 18
hours at 100,000 g, and then fractionated from top to bottom (45 fractions each of 250 ul were
taken). Absorncencies of all fractions at 260 nm were measured.

In case of cross-linking, between the incubation with proteins and loading on the sucrose
gradient, formaldehyde was added to ribosome preparations up to 1%, and the mixtures were
incubated for 30 minutes on ice.

Molecular modeling

Homology model of Aim23p complex with E.coli 30S subunit was done with Modeller
9.17 (Sali & Blundell 1993) (script may be found in Supplementary Information). For building of
this model, we have used known structure of bacterial 30S subunit complex with the cognate IF3
(Pioletti et al. 2001), as well as sequence alignment of Aim23p with E.coli IF3 and other
orthologs (Atkinson et al. 2012).

Folding of Aim23p N-terminal extension was done with AbinitioFold protocol (Bonneau
et al. 2002) (Bonneau et al. 2001) on base of fragments obtained from Robetta web server (Kim
et al. 2004). Simulation was stopped after 180000 decoys were collected. Homology modeling
with new conformation of N-terminal extension was done with Modeller 9.17 (Sali & Blundell
Conformation of the C-terminal extension was equilibrated with FloppyTail protocol from Rosetta (Kleiger et al. 2009). Spatial structure visualization was done with the PyMOL Molecular Graphics System, Version 2.0 (Schrödinger, LLC).

RESULTS

Full-length Aim23p is undesirable for *E.coli* cells due to its terminal extensions.

As it has been already mentioned in Introduction, mammalian mtIF3 possesses some functional activity in *E.coli* cells (Ayyub et al. 2018). On the other hand, we have previously demonstrated that *E.coli* IF3 may partially rescue the growth defects of the yeast strain lacking Aim23p (Kuzmenko et al. 2014). Moreover, Aim23p was shown to bind the small subunit of bacterial ribosome *in vitro* (Atkinson et al. 2012). Taken together, these findings have allowed us to hypothesize that Aim23p might be at least partially functional in *E.coli* cells as initiation factor 3.

To verify this hypothesis, we have constructed three plasmids for further delivery into *E.coli* cells, coding for either cognate IF3 (positive control), Aim23p, or Aim23p without its mitochondria-specific N- and C-terminal extensions (Aim23∆N∆C). This last construct was designed in order to specifically check possible effects of Aim23p terminal extensions on bacterial translation: theoretically, these protein parts, being mitochondria-specific, might not be needed for protein biosynthesis in *E.coli*. Cloned genes of Aim23p and Aim23∆N∆C did not contain sequences coding for mitochondrial targeting signal. Thereafter, we have disrupted *E.coli infC* gene coding for IF3. This gene contains the promoter for the expression of the downstream gene (Wertheimer et al. 1988), so we have removed only first 153 nucleotides of *infC* gene from the bacterial genome. Since IF3 is indispensable for bacteria, before disruption we have transformed *E.coli* with the plasmid bearing *infC* gene under control of glucose-repressible promoter. Finally, we have delivered the above-described plasmids into bacterial cells and disrupted the genomic copy of *infC* gene. The scheme of bacterial strains engineering is presented on Fig. 1A.

Then, we down-regulated the expression of *infC* gene in these strains with glucose and measured their growth rates. The resulting curves may be found in Fig. 1B. The strain bearing wild-type *infC* gene on the plasmid grows normally, with fast entering the logarithmic phase and...
reaching the plateau. The strain carrying empty vector shows no growth at first 10 hours of
incubation which is easily explained by the absence of *infC* gene. However, slow growth has
been detected afterwards, probably as a result of glucose-repressed promoter leakage which, in
turn, allows minimal amount of IF3 to be synthesized. If *E. coli* cells contain Aim23ΔNΔC, the
corresponding strain’s growth curve is almost identical to that of the strain containing an empty
vector. This clearly indicated the impossibility of Aim23ΔNΔC to functionally substitute IF3 in
bacterial cells. The most interesting case is definitely the bacterial strain bearing the full-size
Aim23p. This strain, although reaching finally the level of the strain containing an empty vector,
grows measurably slower than strain containing an empty vector. This means that the full-size
Aim23p, but not Aim23ΔNΔC, negatively affects the viability of *E. coli* cells. It is rather possible
that the terminal extensions of Aim23p may somehow interrupt the bacterial translation.

Terminal extensions provide the ability of Aim23p to fix an unusual state of *E. coli* ribosomes.

The above-described unusual effect of Aim23p in *E. coli* cells has led us to study the
interaction of Aim23p with *E. coli* ribosomes *in vitro*. It is well known that adding cognate IF3 to
purified bacterial ribosomes shifts the equilibrium of the ribosome dissociation reaction making
the dissociated state preferable (Gottlieb et al. 1975). Based on this, we have purified ribosomes
from *E. coli* cells, incubated them with the recombinant IF3 (positive control), or Aim23p, or
Aim23ΔNΔC, fractionated the reactions by sucrose gradient centrifugation and analyzed the
corresponding sedimentation profiles by measuring the optical densities of the fractions at 260
nm. The results of our experiment are presented in Fig. 2A. First of all, sedimentation profile of
the ribosome sample with no proteins added was characterized by clear UV peaks of 30S and
50S subunits, as well as the whole 70S ribosomes, with the latter being most pronounced.
Adding IF3, as expected, led to the complete dissociation of ribosomes into subunits
(disappearance of the 70S peak and significant increase of the 30S and 50S peaks) while adding
of Aim23ΔNΔC gave no effect on the sedimentation profile. This was also expected: in our *in
vivo* experiments, this protein could not substitute for the cognate IF3 in *E. coli* cells (see Fig.1).
The profile of sedimentation has been curiously changed with adding the full-size Aim23p. This
protein caused a fusion of 50S and 70S peaks with the formation of a single wide peak with
maximum UV absorbance corresponded to approximately 60S sedimentation coefficient, exactly
between 70S and 50S. At the same time, the 30S peak was increased, but to the less extent than in case of the full dissociation promoted by IF3. The most logical explanation of this phenomenon would be that Aim23p cannot promote the normal ribosome dissociation at concentrations used in the experiment (20:1 molar ratio in relation to the ribosomes concentration) but instead binds it and fixes this unusual state of ribosomes. The appearance of this “60S state” might be linked somehow to the Aim23p slight toxicity for *E.coli* cells observed by us (see Fig. 1B). It should be noted, finally, that such action of Aim23p on the bacterial ribosomes is definitely mediated by its mitochondria-specific terminal extensions.

The same ribosomal fractions were analyzed for presence of recombinant proteins by Western-blot hybridization. We used the home-made antibodies against 6-His-tagged recombinant Aim23p, and, luckily, they had a significant cross-reactivity with the 6-His-tag (data not shown). Thus, we were able to detect Aim23p, Aim23∆N∆C, and IF3 since all recombinant proteins used in our experiments were 6-His-tagged. Results of this experiment can be found in Fig. 2B. *E.coli* IF3 was indeed detected only in 30S fractions while Aim23p version without terminal extensions was not seen in either ribosomal fraction; instead, Aim23∆N∆C was found in the very first fractions with no ribosomes. This explains the impossibility of Aim23∆N∆C to promote dissociation of bacterial ribosomes: this protein binds neither 70S ribosomes nor their separate subunits. Interestingly, full-size Aim23p behaves in all the contrary way compared to its version lacking terminal extensions. This protein is detectable in nearly all fractions containing ribosomes, either assembled or in the form of subunits. Maximum amount of Aim23p is bound to free 30S subunits, and there is almost equal distribution of the protein between fractions corresponding to 50S and “60S” peaks. Such non-canonical manner of binding ribosomes might be one of the reasons why Aim23p promotes formation of their “60S” state.

“60S state” of *E.coli* ribosomes is not a stable structure

The observed peak at 60S zone of the sedimentation profile may be explained in at least two ways. First opportunity is that Aim23p binds *E.coli* ribosomes and causes changes in their structure so that their sedimentation coefficient decreases to 60S. Alternative explanation is that, upon Aim23p binding, the ribosomal subunits become more flexible relative to one another. This, in turn, allows their reciprocal movements without full dissociation. In this case, the
observed 60S peak might reflect the changed dynamic equilibrium between associated and
dissociated states of the ribosome, rather than formation of a stable structure. In order to
distinguish between these two possibilities, we have repeated our ribosomes fractionation
experiment with additional cross-linking step (with the help of formaldehyde) after incubation
with proteins. We did not use Aim23ΔNΔC here since this protein is unable to bind *E.coli*
ribosomes (Fig. 2A and B). The results of cross-linking experiment are presented in Fig. 2C.
After formaldehyde treatment, the sedimentation profiles of ribosomes incubated with Aim23p
or IF3 were almost identical, and there was no 60S peak of the Aim23p-bound ribosomes. If 60S
peak would reflect the formation of a stable ribosomal structure, this structure would be fixed by
cross-linking. Thus, our results clearly indicate that the observation of 60S peak is the
consequence of some dynamic processes caused by Aim23p binding. One may speculate that
these processes are the very first stages of 70S ribosomes dissociation which cannot continue
normally due to the unusual manner of Aim23p interaction with the ribosomes.

After obtaining these intriguing results, we have decided to analyze the dose-dependency
of the Aim23p effect on *E.coli* ribosomes. The resulting profiles of ribosomes sedimentation
after adding Aim23p at different concentrations are presented at Fig. 3A. If Aim23p
concentration is 2.5 times more than in previously described experiment (i.e. 50:1 molar ratio in
relation to the ribosomes concentration), then the peak of “60S state” is almost not observed.
Instead, one can see a normal 50S peak which is slightly moved towards the increase of the
sedimentation coefficient. At the same time, the 30S peak is meaningfully increased relative to
the situation when the “60S state” is clearly observed. When Aim23p concentration is increased
twice more (up to 100:1 molar ratio in relation to the ribosomes concentration), the resulting
profile is identical to that in case of IF3 adding to ribosomes. One can hypothesize that these
results reflect the consecutive stages of 70S ribosomes dissociation through “60S state” to free
30S and 50S subunits.

Aim23p and *E.coli* IF3 act jointly to dissociate bacterial ribosomes in vitro.
The discovered “60S state” of bacterial ribosomes might be the result of the decreased
ribosome stability. In other words, the equilibrium of the dissociation reaction in this case may
be slightly shifted towards free subunits without full dissociation. This, in turn, means that such
state of the ribosome should be subjected to dissociation easier than the normal 70S state. In
order to check this hypothesis, we performed *in vitro* dissociation experiments with Aim23p and IF3 being simultaneously added to ribosomes. While Aim23p was added in concentration sufficient for “60S state” fixation (10:1 molar ratio in relation to the ribosomes concentration; see Fig. 3B), the amount of IF3 used was not enough for full ribosome dissociation (15:1 molar ratio in relation to the ribosomes concentration). If both proteins were presented in the reaction together (each at the same concentration as alone), the complete dissociation was detected. This phenomenon could be explained as follows. If “60S state” appears as a result of Aim23p action, the minimal amount of the free 30S subunits is immediately formed (this was also seen in our previous experiments, see Fig. 2A and 3A). Adding a little amount of the cognate IF3 leads to the fixation of the 30S subunits in their free state and further shifts the reaction equilibrium towards the dissociated state of the ribosome. Thus, Aim23p and IF3 may act jointly to promote the dissociation of the bacterial ribosomes. To verify this, we performed a Western-blot analysis of the ribosomes fractions corresponding to the free subunits and to the whole ribosomes in presence of Aim23p, or IF3, or both proteins together. The results are presented at Fig. 3C. IF3 in this experiment has been found to bind exclusively free 30S subunits but not 70S ribosomes, exactly as expected. Aim23p, however, is detected both in free 30S subunits and in the 70S ribosomes fractions (which fits well to our results presented in Fig. 2B), and this does not qualitatively depend on presence or absence of IF3 in the reaction. This explains well the joint action of these two proteins resulting in the ribosomes dissociation which cannot be achieved when using Aim23p and IF3 at the same concentrations separately.

Molecular modeling points on the importance of Aim23p terminal extensions for protein interaction with *E. coli* ribosomes

A very interesting question rises from the above-described results: in which manner does Aim23p interact with bacterial ribosome and what is the role of its terminal extensions in such interaction? To shed light on this problem, we have performed molecular modeling. Previously (Atkinson et al. 2012) sequence alignment of Aim23p with *E. coli* IF3 and other orthologs has been done. On the base of this data, as well as the known structure of 30S complex with the cognate IF3 (Pioletti et al. 2001), we have built the homology model of Aim23p complex with *E. coli* 30S ribosomal subunit with the help of Modeller 9.18 (script may be found in Supplementary Information). In the resulting model, Aim23p eventually has a long
and extended N-terminal tail (Suppl. Fig.2). Size of this tail was comparable with size of 30S subunit and model could not provide valuable information about N-terminal extension function. We have suggested that N-terminal extension is somehow structured and have built the corresponding model with Rosetta AbInitio protocol. From 18398 decoys of N-terminal extension, top ten had alpha-helical structure with RMSD less than 10 Å. This observation reflects the fact that N-terminal extension does not possess certain spatial structure but probably has mobile helical packaging. N-terminal extension model with best Rosetta score was used to rebuild new homology model of 16S RNA and Aim23p complex. Resulting model has surprisingly revealed strong interaction of N-terminal extension with C-terminal domain of Aim23p core part and with long 3’ terminal helix of 16S RNA. Additional distance restraints between centers of mass from 15 to 40 Å were applied to sample distance between Aim23p’s N-terminal extension and C-terminal domain. As a result, top models have confirmed interaction of N-terminal extension with C-terminal domain, while interaction with 16S RNA does not look favorable. Best models of packed C-terminal extension showed interaction with N-terminal domain. Thus, in silico modeling points to the possible mode of Aim23p interaction with 30S subunit where the terminal extensions of the protein “press down” the core Aim23p part to the ribosome. This may be the reason of the importance of Aim23p terminal extensions for binding bacterial ribosomes (see Fig.2). The summary of molecular modeling is presented in Figure 4.

DISCUSSION

We have demonstrated previously that E.coli IF3 fused with the mitochondrial targeting sequence of Aim23p may complement to minimal extent the absence of AIM23 gene in yeast (Kuzmenko et al. 2014) which is a strong evidence of Aim23p being bona fide initiation factor 3 in mitochondria. This finding is not surprising taking into account that bacterial enzymes may often functionally substitute for their mitochondrial orthologues in the organelles. This, for example, has been demonstrated for several aminoacyl-tRNA synthetases (Edwards & Schimmel 1987) (Chiu et al. 2009) and for the proteins involved in Fe-S clusters formation (Kispal et al. 1999). In this work, we have performed “reverse” experiment and investigated if Aim23p is able to substitute for cognate IF3 in E.coli cells. The cases of successful complementation of bacterial proteins by their mitochondrial orthologues have been described remarkably rarer than the opposite situations. However, mammalian mitochondrial initiation factor 2 has been shown to
function in *E. coli* cells instead or two cognate factors at once, namely IF1 and IF2 (Gaur et al. 2008). Most probably, this is due to the short insertion domain of mammalian mtIF2 that is believed to execute the function of IF1 in mitochondria. Moreover, in a recent work it has been demonstrated that mammalian mtIF3, although not being able to fully substitute for IF3 in *E. coli*, exhibits some functional activity in bacterial cells (Ayyub et al. 2018). Speaking about Aim23p, this protein, as we have discovered in the present study, does not work as an initiation factor in *E. coli*, independently of presence or absence of the terminal extensions. We used an experimental system where cognate IF3 gene was disrupted in the bacterial genome but was presented on the plasmid under the control of glucose-repressible promoter. Such promoters are well known to leak if the amount of glucose is low. In our case, this allows the synthesis of minimal amount of IF3 and weak growth of the bacterial culture after a dozen of hours of incubation, when the main portion of glucose becomes utilized by bacterial cells (Fig. 1B). Surprisingly, this weak growth is even slower in presence of full-size Aim23p when comparing to Aim23p without terminal extensions. This means that these regions of Aim23p even make this protein slightly toxic for bacterial cells. Interestingly, mammalian mtIF3 behaves quite differently in *E. coli*. Full-size factor does not markedly affect the *E. coli* growth rate while deletion of the N-terminal extension leads to the severe growth impairment (Ayyub et al. 2018). However, to our opinion, these results should not be directly compared with the data presented in this work. The main reason for this is the difference in the experimental systems. Ayyub and colleagues used the mutant strain in which IF3 was devoid of first 55 amino acids and was synthesized in normal quantities. Earlier, the same authors have shown that this truncated version of IF3 is enough for *E. coli* survival and can perform all main functions of the factor (Ayyub et al. 2017). This means that the action of any mtIF3 version in such cells is somewhat additional to the action of the cognate factor. On the contrary, our *E. coli* cells contained minimal amount of wild-type IF3 synthesized from repressed but leaking promoter, and the quantity of Aim23p encoded in the plasmid was much higher. In this case, the heterologous factor influence on the bacterial cells might be stronger than that discovered by Ayyub and colleagues.

The negative influence of Aim23p on *E. coli* cells, most probably, might realize via its interaction with bacterial ribosomes. This is exactly what we have demonstrated in the present work. In certain concentration range, Aim23p promotes the formation of a very unusual state of *E. coli* ribosomes *in vitro*. Our results presented in Fig.2 and 3 indicate that this state is
characterized by the partial fusion of 70S and 50S peaks. The maximum of absorbance at 260 nm in this case approximately corresponds to the 60S sedimentation coefficient. We propose to call it “60S state”. To our current knowledge, such ribosome state has never been detected in vivo. However, it was described in in vitro experiments (Morimoto 1969), notably at approximately the same magnesium concentrations as we used in our work (10 mM vs 7 mM, respectively). Morimoto used a term “60S component” and postulated that this was a new stable intermediate of the subunits association reaction and that this intermediate was just “swollen 70S” (Morimoto 1969). Further investigations, however, have demonstrated that the sedimentation coefficient of this “swollen 70S” depends on the centrifugation speed and on the initial 70S concentration (Spirin 1971). This indicates that discussed ~60S zone on the sedimentation pattern is the consequence of the dynamic equilibrium of dissociation-association reaction rather that the stationary ribosomal structure. In our work, we came to the same conclusion when treating “60S state” with formaldehyde (Fig. 2C). Such treatment led to complete disappearance of the corresponding peak showing that corresponding state of the ribosomes cannot be regarded as stable structure.

In this work, the 60S peak on the ribosomes sedimentation profile has been for the very first time detected after adding a protein to the ribosomes. Aim23p possesses this activity due to its terminal extensions since we have not seen any changes in the ribosome sedimentation profile when adding Aim23ΔNΔC (Fig. 2A). In order to elucidate the role of terminal extensions, we have performed molecular modeling of Aim23p complex with 30S. According to its results, the direct interaction between terminal extensions of Aim23p (especially N-terminal one) and the core protein part might take place. This probably makes Aim23p “fixed” on the small subunit (see Fig.4). Interestingly, the similar effect of mammalian mtIF3 has been described with regard to human mitochondrial ribosomes dissociation in vitro (Haque et al. 2008). Full-length mtIF3 promotes normal dissociation while using its truncated version without terminal extensions causes the partial fusion of the 39S (large subunit) and 55S (whole mitoribosome) peaks. This clearly indicates some abnormal dissociation.

In the present work, the “60S state” has been demonstrated to dissociate by increased amount of Aim23p (Fig. 3A), or by a small amount of E.coli IF3 (Fig. 3B). The slight toxicity of Aim23p for E.coli cells (see above, Fig. 1B) may be also explained by fixing the “60S state” which dissociates poorly in presence of marginal IF3 quantities synthesized from leaking
promoter. At the same time, the presence of even large amount of Aim23p in *E.coli* cells together with the physiological amount of the cognate IF3 has no effect on bacterial viability, as we could see when purifying recombinant Aim23p from wild-type *E.coli* cells (data not shown). Even if “60S state” is fixed in such conditions, it might rapidly dissociate to the subunits with the help of IF3 since this state might dissociate easier than 70S ribosomes (see Fig. 3B). This may be also the case in the work of Ayyub and colleagues: having sufficient amounts of cognate *E.coli* IF3 allows bacterial ribosomes to keep the dissociated state *in vivo* properly regardless on the mammalian mtIF3 presence, and this could explain almost normal growth of the corresponding bacterial strains (Ayyub et al. 2018).

The question if “60S state” exists in wild-type bacterial cells is of high interest. The answer “no” seems to be obvious as bacterial IF3 is well-known to bind only free 30S subunits. This was also seen in the present work (Fig. 2B and 3C). At the same time, IF3 must bind 70S ribosomes, or at least keep bound to 30S when 70S is already formed, to fix any dissociation intermediate. The impossibility of this binding, however, is not dogmatic. In the structural study, IF3 was found as a part of the fully assembled bacterial initiator complex, together with 70S ribosomes (Allen et al. 2005). The authors propose that IF3 does bind the free 30S subunit initially and then remains bound to 70S ribosomes for a short time after subunits association. Moreover, in a recent study binding of IF3 with 70S ribosome was confirmed by FRET experiments, and an alternative binding site of IF3 was identified on 50S subunit (Goyal et al. 2017). The subunits association in presence of IF3 might be realized *via* some intermediate states relative to the “60S state” detected in the present work.

The possible mechanisms of the *E.coli* ribosomes 60S intermediate state formation and dissociation are summarized in Fig.5.

CONCLUSIONS

The main result of this work is the detection of a state of *E.coli* ribosomes (“60S state”) which is formed as a result of interaction with *S.cerevisiae* mitochondrial translation initiation factor 3, Aim23p. We also demonstrate that Aim23p and cognate *E.coli* IF3 actions on bacterial ribosome are of different modes and that these two proteins may bind it jointly. We show that the key players in the game of Aim23p binding to *E.coli* ribosomes are protein’s mitochondria-specific terminal extensions that, according to the molecular modeling results, might nestle the
core part of Aim23p to ribosomal small subunit. Thus, the binding efficiency increases. Our results provide a basis for future structural studies of “60S state” which, in turn, will elucidate the fine mechanisms of bacterial ribosome dissociation / association.

ACKNOWLEDGEMENTS

We are grateful to Gemma Atkinson (Umea University, Sweden, and Tartu University, Estonia) for the in silico prediction of Aim23p terminal extensions. We also thank Konstantin Khodosevich (Copenhagen University, Denmark), Vasily Hauryliuk (Umea University, Sweden, and Tartu University, Estonia), Ivan Tarassov (Strasbourg University, France), Stanislav Kozlovsky and Alexey Kharitonov (Moscow University, Russia) for providing strains and chemicals. We appreciate the improvement of the figures quality by Alexey Fedyakov (Moscow University, Russia). Our special thanks are to Sergey Dmitriev (Moscow University, Russia) and Vyacheslav Kolb and his lab members (Institute of Protein Research, Russia) for helpful discussions. The technical help of our students Maria Klimontova, Valeria Zinia, Anna Mirnaya, Anastasia Kapusta, and Margarita Chudenkova is greatly appreciated.

REFERENCES

Allen GS, Zavialov A, Gursky R, Ehrenberg M, and Frank J. 2005. The cryo-EM structure of a translation initiation complex from Escherichia coli. Cell 121:703-712. DOI 10.1016/j.cell.2005.03.023.

Atkinson GC, Kuzmenko A, Kamenski P, Vysokikh MY, Lakunina V, Tankov S, Smirnova E, Soosaar A, Tenson T, and Hauryliuk V. 2012. Evolutionary and genetic analyses of mitochondrial translation initiation factors identify the missing mitochondrial IF3 in S. cerevisiae. Nucleic Acids Res 40:6122-6134. DOI 10.1093/nar/gks272

Ayyub SA, Dobriyal D, and Varshney U. 2017. Contributions of the N- and C-Terminal Domains of Initiation Factor 3 to Its Functions in the Fidelity of Initiation and Antiassociation of the Ribosomal Subunits. J Bacteriol 199. DOI 10.1128/JB.00051-17

Ayyub SA, Dobriyal D, Aluri S, Spremulli LL, and Varshney U. 2018. Fidelity of translation in the presence of mammalian mitochondrial initiation factor 3. Mitochondrion 39:1-8. DOI 10.1016/j.mito.2017.08.006
Bonneau R, Strauss CE, Rohl CA, Chivian D, Bradley P, Malmstrom L, Robertson T, and Baker D. 2002. De novo prediction of three-dimensional structures for major protein families. *J Mol Biol* 322:65-78.

Bonneau R, Tsai J, Ruczinski I, Chivian D, Rohl C, Strauss CE, and Baker D. 2001. Rosetta in CASP4: progress in ab initio protein structure prediction. *Proteins* Suppl 5:119-126. DOI 10.1002/prot.1170

Chiu WC, Chang CP, and Wang CC. 2009. Evolutionary basis of converting a bacterial tRNA synthetase into a yeast cytoplasmic or mitochondrial enzyme. *J Biol Chem* 284:23954-23960. DOI 10.1074/jbc.M109.031047

Edwards H, and Schimmel P. 1987. An E. coli aminoacyl-tRNA synthetase can substitute for yeast mitochondrial enzyme function in vivo. *Cell* 51:643-649.

Gaur R, Grasso D, Datta PP, Krishna PD, Das G, Spencer A, Agrawal RK, Spremulli L, and Varshney U. 2008. A single mammalian mitochondrial translation initiation factor functionally replaces two bacterial factors. *Mol Cell* 29:180-190. DOI 10.1016/j.molcel.2007.11.021

Goss DJ, Parkhurst LJ, and Wahba AJ. 1980. Kinetics of ribosome dissociation and subunit association. The role of initiation factor IF3 as an effector. *J Biol Chem* 255:225-229.

Gottleib M, Davis BD, and Thompson RC. 1975. Mechanism of dissociation of ribosomes of Escherichia coli by initiation factor IF-3. *Proc Natl Acad Sci U S A* 72:4238-4242.

Goyal A, Belardinelli R, and Rodnina MV. 2017. Non-canonical Binding Site for Bacterial Initiation Factor 3 on the Large Ribosomal Subunit. *Cell Rep* 20:3113-3122. DOI 10.1016/j.celrep.2017.09.012

Gualerzi C, Risuleo G, and Pon CL. 1977. Initial rate kinetic analysis of the mechanism of initiation complex formation and the role of initiation factor IF-3. *Biochemistry* 16:1684-1689.

Haque ME, Grasso D, and Spremulli LL. 2008. The interaction of mammalian mitochondrial translational initiation factor 3 with ribosomes: evolution of terminal extensions in IF3mt. *Nucleic Acids Res* 36:589-597. DOI 10.1093/nar/gkm1072

Kim DE, Chivian D, and Baker D. 2004. Protein structure prediction and analysis using the Robetta server. *Nucleic Acids Res* 32:W526-531. DOI 10.1093/nar/gkh468
Kispal G, Csere P, Prohl C, and Lill R. 1999. The mitochondrial proteins Atm1p and Nfs1p are essential for biogenesis of cytosolic Fe/S proteins. *EMBO J* 18:3981-3989. DOI 10.1093/emboj/18.14.3981

Kleiger G, Saha A, Lewis S, Kuhlman B, and Deshaies RJ. 2009. Rapid E2-E3 assembly and disassembly enable processive ubiquitylation of cullin-RING ubiquitin ligase substrates. *Cell* 139:957-968. DOI 10.1016/j.cell.2009.10.030

Kuzmenko A, Atkinson GC, Levitskii S, Zenkin N, Tenson T, Hauryliuk V, and Kamenski P. 2014. Mitochondrial translation initiation machinery: conservation and diversification. *Biochimie* 100:132-140. DOI 10.1016/j.biochi.2013.07.024

Laursen BS, Sorensen HP, Mortensen KK, and Sperling-Petersen HU. 2005. Initiation of protein synthesis in bacteria. *Microbiol Mol Biol Rev* 69:101-123. DOI 10.1128/MMBR.69.1.101-123.2005

Morimoto T. 1969. Intermediate stage in the association and dissociation of Escherichia coli ribosomes and the combining properties of their subunits. *Biochim Biophys Acta* 182:135-146.

Peske F, Rodnina MV, and Wintermeyer W. 2005. Sequence of steps in ribosome recycling as defined by kinetic analysis. *Mol Cell* 18:403-412. DOI 10.1016/j.molcel.2005.04.009

Pioletti M, Schlunzen F, Harms J, Zarivach R, Gluhmann M, Avila H, Bashan A, Bartels H, Auerbach T, Jacobi C, Hartsch T, Yonath A, and Franceschi F. 2001. Crystal structures of complexes of the small ribosomal subunit with tetracycline, edeine and IF3. *EMBO J* 20:1829-1839. DOI 10.1093/emboj/20.8.1829

Rivera MC, Maguire B, and Lake JA. 2015. Isolation of ribosomes and polysomes. *Cold Spring Harb Protoc* 2015:293-299. DOI 10.1101/pdb.prot081331

Sali A, and Blundell TL. 1993. Comparative protein modelling by satisfaction of spatial restraints. *J Mol Biol* 234:779-815. DOI 10.1006/jmbi.1993.1626

Spirin AS. 1971. On the equilibrium of the association-dissociation reaction of ribosomal subparticles and on the existance of the so-called '60 S intermediate' ('swollen 70 S') during centrifugation of the equilibrium mixture. *FEBS Lett* 14:349-353.

Thomason LC, Costantino N, and Court DL. 2007. E. coli genome manipulation by P1 transduction. *Curr Protoc Mol Biol* Chapter 1:Unit 1. DOI 10.1002/0471142727.mb0117s79
Wertheimer SJ, Klotsky RA, and Schwartz I. 1988. Transcriptional patterns for the thrS-infC-rplT operon of Escherichia coli. *Gene* 63:309-320.

Zavialov AV, Hauryliuk VV, and Ehrenberg M. 2005. Splitting of the posttermination ribosome into subunits by the concerted action of RRF and EF-G. *Mol Cell* 18:675-686. DOI 10.1016/j.molcel.2005.05.016

FIGURE LEGENDS

Fig.1. Aim23p without terminal extensions is non-functional in *E.coli* cells while full-size Aim23p is even slightly toxic. (A) Scheme of the mutant *E.coli* strains production. At the first stage, the *infC* gene coded for *E.coli* IF3 was cloned into pACDH vector. The resulting plasmid was delivered into *E.coli* cells following by the genomic disruption of *infC* by the chloramphenicol resistance gene (Cat). The *infC* gene on the plasmid made the resulting strain viable. Then, the cells were inoculating by P1 phage in order to capture the genomic DNA region containing the disrupted *infC* gene. The result of the first stage was the phage with the above-mentioned genomic DNA region. On the second stage, the *infC* gene was cloned into pBAD vector (under control of glucose-repressible promoter), and genes of Aim23p and Aim23ΔNΔC were cloned into pACDH vector. pBAD-*infC* and pACDH with one of the above-mentioned genes were then delivered into wild-type *E.coli* cells following by the inoculation by the phage from the first stage. This was resulted in the substitution of the wild-type *infC* genomic copy by the disrupted gene. As a result, a series of *E.coli* strains were generated with the following features: (1) genomic disruption of *infC*, (2) presence of *infC* on the pBAD vector, (3) presence of *infC* (positive control), Aim23p, or Aim23ΔNΔC on the pACDH vector. (B) Growth curves of the *E.coli* strains (indicated on the right) obtained as described in Fig. 3A. Bacteria were initially incubated without glucose, then the medium was changed to the glucose-containing one, and the optical density registration began. Each strain contained *infC* gene on the pBAD vector under control of glucose-repressible promoter. IF3: *infC* gene on the pACDH vector. Vector: empty pACDH. Aim23 and Aim23ΔNΔC: full-size and truncated AIM23 genes, respectively, on the pACDH vector.
Fig. 2. The unusual effects of Aim23p on *E.coli* ribosomes *in vitro*. (A, C) Ribosomes sedimentation profiles: optical densities at 260 nm (Y-axes of the graph) of different fractions of *E.coli* ribosomes which were pre-incubated with the indicated proteins, cross-linked with formaldehyde (C) or not (A), and sedimented in the sucrose gradient. On the X-axes: 20-25 sequential fractions, from bottom to top of the gradient. Molar ratios protein:ribosomes are indicated near each sedimentation profile. The peaks corresponded to the ribosomes and their free subunits are marked with the vertical dotted lines. (B) Western-blot hybridization of different fractions of *E.coli* ribosomes pre-incubated with different proteins. The same ribosomes samples as in (A) were analyzed for this experiment. We used the antibodies against recombinant Aim23p with the significant cross-reactivity to the 6-His-tag which allowed us to detect both Aim23p and IF3. Numbers of fractions analyzed are indicated below. LC: loading control.

Fig. 3. Aim23p is able to dissociate *E.coli* ribosomes either in large concentrations, or together with *E.coli* IF3. (A, B) Ribosomes sedimentation profiles: optical densities at 260 nm (Y-axes of the each graph) of different fractions of *E.coli* ribosomes which were pre-incubated with the indicated proteins and sedimented in the sucrose gradient. On the X-axes: 20-25 sequential fractions, from bottom to top of the gradient. Molar ratios protein:ribosomes are indicated near each sedimentation profile. The peaks corresponded to the ribosomes and their free subunits are marked with the vertical dotted lines. (C) Western-blot hybridization of different fractions of *E.coli* ribosomes which were pre-incubated with the indicated proteins and sedimented in the sucrose gradient. In each case, the mixture of 2 fractions composing the peaks of 30S or 70S was analyzed (indicated on the top). 2 fractions composing the corresponding peaks on Fig. 3B were combined and loaded on PAAG. We used the antibodies against recombinant Aim23p with the significant cross-reactivity to the 6-His-tag which allowed us to detect both Aim23p and IF3 (indicated by arrows on the left) in the single analysis.

Fig. 4. Model of Aim23p interactions with *E.coli* 16S RNA. N-terminal extension is in light-pink, N-terminal domain is in hot-pink, C-terminal domain is in magenta and C-terminal extension is in deep-purple. 16S RNA is in black and white. (A) Overview of Aim23p location on 16S RNA. (B) Close-up view in same orientation. (C) Close-up view with counterclockwise
rotation around vertical axis displaying proximity of N-terminal extension, C-terminal domain
and 16S RNA.

Fig. 5. The hypothetic scheme of the formation and dissociation of *E.coli* ribosomes
intermediate state *in vitro*. 1. Initially, the small (SSU) and large (LSU) subunits of the ribosome
are associated one to another (70S). Adding of Aim23p (the terminal extensions are represented
by black boxes) changes the ribosome conformation making the subunits more flexible relative
to one another and allowing their reciprocal movements without full dissociation (60S). 2. This
intermediate dissociation state cannot spontaneously dissociate to the subunits in presence of
Aim23p. 3. Adding more Aim23p, however, shifts the dissociation reaction equilibrium which
results in appearance of the free SSU and LSU (30S + 50S). 4. Full dissociation of the
intermediate can also be reached by adding *E.coli* IF3 in amount insufficient for dissociation of
70S ribosomes.
Figure 1

Aim23p without terminal extensions is non-functional in *E.coli* cells while full-size Aim23p is even slightly toxic.

(A) Scheme of the mutant *E.coli* strains production. At the first stage, the *infC* gene coded for *E.coli* IF3 was cloned into pACDH vector. The resulting plasmid was delivered into *E.coli* cells following by the genomic disruption of *infC* by the chloramphenicol resistance gene (Cat). The *infC* gene on the plasmid made the resulting strain viable. Then, the cells were inoculating by P1 phage in order to capture the genomic DNA region containing the disrupted *infC* gene. The result of the first stage was the phage with the above-mentioned genomic DNA region. On the second stage, the *infC* gene was cloned into pBAD vector (under control of glucose-repressible promoter), and genes of Aim23p and Aim23ΔNΔC were cloned into pACDH vector. pBAD-*infC* and pACDH with one of the above-mentioned genes were then delivered into wild-type *E.coli* cells following by the inoculation by the phage from the first stage. This was resulted in the substitution of the wild-type *infC* genomic copy by the disrupted gene. As a result, a series of *E.coli* strains were generated with the following features: (1) genomic disruption of *infC*, (2) presence of *infC* on the pBAD vector, (3) presence of *infC* (positive control), Aim23p, or Aim23ΔNΔC on the pACDH vector. (B) Growth curves of the *E.coli* strains (indicated on the right) obtained as described in Fig. 3A. Bacteria were initially incubated without glucose, then the medium was changed to the glucose-containing one, and the optical density registration began. Each strain contained *infC* gene on the pBAD vector under control of glucose-repressible promoter. IF3: *infC* gene on the pACDH vector. Vector: empty pACDH. Aim23 and Aim23ΔNΔC: full-size and truncated AIM23 genes, respectively, on the pACDH vector.
Figure 2

The unusual effects of Aim23p on *E.coli* ribosomes *in vitro*.

(A, C) Ribosomes sedimentation profiles: optical densities at 260 nm (Y-axes of the graph) of different fractions of *E.coli* ribosomes which were pre-incubated with the indicated proteins, cross-linked with formaldehyde (C) or not (A), and sedimented in the sucrose gradient. On the X-axes: 20-25 sequential fractions, from bottom to top of the gradient. Molar ratios protein:ribosomes are indicated near each sedimentation profile. The peaks corresponded to the ribosomes and their free subunits are marked with the vertical dotted lines. **(B)** Western-blot hybridization of different fractions of *E.coli* ribosomes pre-incubated with different proteins. The same ribosomes samples as in (A) were analyzed for this experiment. We used the antibodies against recombinant Aim23p with the significant cross-reactivity to the 6-His-tag which allowed us to detect both Aim23p and IF3. Numbers of fractions analyzed are indicated below. LC: loading control.
Aim23p is able to dissociate *E.coli* ribosomes either in large concentrations, or together with *E.coli* IF3.

(A, B) Ribosomes sedimentation profiles: optical densities at 260 nm (Y-axes of the each graph) of different fractions of *E.coli* ribosomes which were pre-incubated with the indicated proteins and sedimented in the sucrose gradient. On the X-axes: 20-25 sequential fractions, from bottom to top of the gradient. Molar ratios protein:ribosomes are indicated near each sedimentation profile. The peaks corresponded to the ribosomes and their free subunits are marked with the vertical dotted lines. **(C)** Western-blot hybridization of different fractions of *E.coli* ribosomes which were pre-incubated with the indicated proteins and sedimented in the sucrose gradient. In each case, the mixture of 2 fractions composing the peaks of 30S or 70S was analyzed (indicated on the top). 2 fractions composing the corresponding peaks on Fig. 3B were combined and loaded on PAAG. We used the antibodies against recombinant Aim23p with the significant cross-reactivity to the 6-His-tag which allowed us to detect both Aim23p and IF3 (indicated by arrows on the left) in the single analysis.
A.

- No proteins
- IF3 50:1
- Aim23 20:1
- Aim23 50:1
- Aim23 100:1

B.

- No proteins
- IF3 15:1 (partial dissociation)
- Aim23 10:1 (intermediate state)
- IF3 15:1 + Aim23 10:1 (full dissociation)
- IF3 50:1 (full dissociation)

C.

- Aim23 10:1
- IF3 15:1
- Aim23 + IF3

- Aim23
- IF3
Figure 4

Model of Aim23p interactions with *E.coli* 16S RNA.

N-terminal extension is in light-pink, N-terminal domain is in hot-pink, C-terminal domain is in magenta and C-terminal extension is in deep-purple. 16S RNA is in black and white. (A) Overview of Aim23p location on 16S RNA. (B) Close-up view in same orientation. (C) Close-up view with counterclockwise rotation around vertical axis displaying proximity of N-terminal extension, C-terminal domain and 16S RNA.
Figure 5

The hypothetic scheme of the formation and dissociation of \textit{E.coli} ribosomes intermediate state \textit{in vitro}.

1. Initially, the small (SSU) and large (LSU) subunits of the ribosome are associated one to another (70S). Adding of Aim23p (the terminal extensions are represented by black boxes) changes the ribosome conformation making the subunits more flexible relative to one another and allowing their reciprocal movements without full dissociation (60S). 2. This intermediate dissociation state cannot spontaneously dissociate to the subunits in presence of Aim23p. 3. Adding more Aim23p, however, shifts the dissociation reaction equilibrium which results in appearance of the free SSU and LSU (30S + 50S). 4. Full dissociation of the intermediate can also be reached by adding \textit{E.coli} IF3 in amount insufficient for dissociation of 70S ribosomes.
Table 1 (on next page)

Plasmids used in this work.
Plasmid	Description
pACDH	Low-copy vector for expression in *E. coli*
pACDHinfC*	pACDH with cloned *infC* gene from *E. coli*
pACDHAim23*	pACDH with cloned AIM23 gene lacking mitochondrial targeting sequence
pACDHAim23∆N∆C*	pACDH with cloned AIM23 gene lacking mitochondrial targeting sequence and both terminal extensions
pBAD	Vector for *E. coli* expression containing glucose-repressible promoter
pBADinfC*	pBAD with cloned *infC* gene from *E. coli*
pKD3	Plasmid containing FRT-cat-FRT for preparation of *E. coli* disruption cassettes
pKD46	Plasmid with Lambda Red recombinase from phage λ for efficient gene disruption in *E. coli*
pET32a	Vector for the heterologous proteins expression in *E. coli*
pETIF3*	pET32a with cloned *infC* gene from *E. coli*
pETAim23*	pET32a with cloned AIM23 gene lacking mitochondrial targeting sequence
pETAim23∆N∆C*	pET32a with cloned AIM23 gene lacking mitochondrial targeting sequence and both terminal extensions

* Generated in this work.
Table 2 (on next page)

E.coli strains used in this work.
Strain	Genotype / Description / Purpose
MG 1655	K-12 F^- ilvG^- rfb-50 rph-1 For genetic manipulations, for ribosome isolation
MG infC_ACDH*	MG 1655 + pACDHinfC + pKD46
MG_AIF3*	MG_infC_ACDH with first 153 nucleotides of inf3 gene exchanged by chloramphenicol resistance cassette
MG_infC_BAD*	MG 1655 + pBADinfC + pACDH
MG_IF3*	MG 1655 + pBADinfC + pACDH
MG_Aim23*	MG 1655 + pBADinfC + pACDHAim23
MG_Aim23ΔNΔC*	MG 1655 + pBADinfC + pACDHAim23ΔNΔC
Rosetta (DE3) pLysS	F^-ompT hsdS_{B}(R_{B}^- m_{B}^-) gal dcm λ(DE3 [lacI lacUV5-T7 gene 1 ind1 sam7 nin5]) pLysSRARE (Cam^R) For heterologous proteins synthesis and purification
Top10	F^- mcrA Δ(mrr-hsdRMS-mcrBC) φ80lacZΔM15 ΔlacX74 nupG recA1 araD139 Δ(ara-leu)7697 galE15 galK16 rpsL(Str^R) endA1 λ^- For molecular cloning

* Generated in this work.
Table 3 (on next page)

Oligonucleotides used in this work.
Table 3. Oligonucleotides used in the work

(all synthesized by Evrogen)

Restriction sites are in capital letters.

	Cloning of IF3 into pACDH and pBAD	tcagccatgctaaaggeggaacagagtc
2	Cloning of AIM23ΔNΔC into pACDH	tcagcattcactgtttctcttaggagega
3	Cloning of AIM23 into pACDH	tcagcattcactgtttctcttaggagega
4	Production of chloramphenicol resistance disruption cassette	cggaagtcctaaacggagctactgttgta
5	Screening of IF3 disruption and transduction (PCR-product is synthesized in case of IF3 gene conservation only)	cggaagtcctaaacggagctactgttgta
6	Screening of IF3 disruption and transduction (PCR-products from IF3 gene and from disruption cassette are different in size)	cggaagtcctaaacggagctactgttgta
7	AIM23 cloning into pET32a	gactCATATGaagtgctatcactttcatac
8	AIM23ΔNΔC cloning into pET32a	gactCATATGttggacacgggacaga
9	IF3 cloning into pET32a	atgcCATATGaagtgctatcactttcatac
10	Screening of pET32a-based constructs	gctagttatgtgcggccttttggt

