In this lecture note, we describe high dynamic range (HDR) imaging systems. Such systems are able to represent luminances of much larger brightness and, typically, a larger range of colors than conventional standard dynamic range (SDR) imaging systems. The larger luminance range greatly improves the overall quality of visual content, making it appear much more realistic and appealing to observers. HDR is one of the key technologies in the future imaging pipeline, which will change the way the digital visual content is represented and manipulated today.

Prerequisites
Essential knowledge of linear algebra, image/signal processing, and computer graphics (CG) is desirable. The basic aspects of HDR imagery are required for the full comprehension of this lecture note. The readers are invited to consult [1] for acquiring this basic know-how before reading this lecture note.

Relevance
Due to the availability of new display and acquisition technologies, interest in HDR increased significantly in the past years. Camera technologies have greatly evolved providing high-quality sensors that generate images of higher precision and less noise. Today’s market offers displays that are able to reproduce content with higher dynamic range, peak luminance, and a wider color gamut.

These advances are opening a large number of applications that span from broadcasting to cinema, manufacturing industry, and medical. This is also demonstrated by activities taking place today within the standardization communities, i.e., the Joint Photographic Experts Group (JPEG), Moving Picture Experts Group (MPEG), and Society of Motion Picture and Television Engineers (SMPTE) standards. New standards have been created for still HDR images, i.e., International Organization for Standardization (ISO)/ International Electrotechnical Commission (IEC) 18477 JPEG XT [2] and others that are under development. All of these activities are largely driven by industry, a strong indication that business cases around HDR will emerge in the near future.

Problem statement and solution

Problem statement
The problem to be solved consists of the development of an imaging and video system pipeline capable of representing a wider range of luminance and colors values compared to the traditional, SDR system pipeline. The idea is to design a complete system, which incorporates acquisition, storage, display, and evaluation subsystems, as shown in Figure 1.

Solution

Acquisition
Two major ways exist to generate HDR content: either generating a scene through CG tools or through the acquisition of a real-world scene with a camera. Rendering pipelines for computer-generated graphics integrate tools such as physically based lighting simulations that use physical-valid data of the scene and the environment, i.e., light sources and object materials. The models used are capable of simulating physically plausible behavior of the light of the scene within a specific environment and generating plausible images from an abstract scene description.

The second method acquires HDR images from real-world scenes; today, high-quality digital single-lens reflex cameras are available with sensors capable of capturing 12–16 bits/color channel. However, many portable devices, such as mobile phones and lower-quality digital cameras, are equipped with less expensive, lower performing hardware with precision limited to 10 bits or even lower.

For such a device, only a small subset of the available dynamic range of the scene can be captured, resulting in overexposed and underexposed areas of the acquired image. To overcome this limitation, one can capture different portions of the dynamic range of the scene by varying the exposure time.
The resulting images are then first registered, i.e., aligned to each other, before a camera response function is estimated from them. This function describes, parameterized by the exposure time, how luminances received by the sensor are mapped to pixel values; its inverse allows estimation of physical quantities of the scene from the acquired images. Finally, a weighted average over the pictures generates an HDR image [3]. The selected weights indicate the contribution of each frame at a given position to the final HDR sample value. An example of a multiexposure approach is depicted in Figure 2, where three images of the same scene were taken, varying the exposure time. A tone mapped version of the resulting HDR is also depicted. A typical problem of the multixposure method is the misalignment of the images, either due to movements in the scene or by the camera itself [4]. Merging such images without further processing results in ghosting artifacts in the HDR output. Such defects can be classified as follows:

- Global misalignment due to camera motion, e.g., camera movement or rotation. This type of misalignment affects all pixels of the image, causing ghost artifacts that can be removed through image registration.
- Local misalignment due to moving objects in the scene, only affecting portions of the image. Such defects arise if the time between the individual exposures is larger than the typical time within which an object moves in the scene. For example, some objects may be occluded in one of the images but visible in others.
- Local and global misalignments, combining the two previous types. A typical example is that of a camera that follows a free path, acquiring a scene composed of dynamic objects.

Storage and compression
A naïve analysis of HDR images reveals that uncompressed HDR data would typically require four times more storage capacity than SDR data. Clearly, this view is oversimplifying the situation,
but it should at least indicate the need for a data format that is more compact. Better alternatives exist in the field, among them half-float (as used by OpenEXR), RGBE, LogLuv encoding, and representation of sample values in a perceptually uniform (PU) color space through an electro-optical transfer function (EOTF). All these convert a direct, floating-point representation into a more efficient data format that requires fewer bits while still providing a higher dynamic range and more precision than an SDR format.

If the precision of the HDR format is not sufficient, then quantization defects such as banding will become visible.

We now discuss a selection of popular HDR formats. Half-float precision is a compact representation for floating-point values, where 1 bit is used for the sign, 5 bits for the exponent, and 10 bits for the mantissa. The advantage that the half-float representation offers is that it is as flexible as the regular single-precision floating-point format at half the storage cost. However, since the maximum value representable by this format is 65,535, sample values should be calibrated by a common scale factor, i.e., represented in relative radiance to be able to represent the full dynamic range in the image.

The RGBE format takes advantage of the fact that the color components of an RGB image are highly correlated and usually have very similar magnitude. RGBE thus only stores one common scale factor for all three components in the form of an exponent E, and the individual channels are jointly scaled by E as follows:

$$R_e = \left\lfloor \frac{256R}{2^{E-128}} \right\rfloor$$

and for G and B the same equation applies. The \(\lfloor \cdot \rfloor\) denotes rounding down to the nearest integer. E is the common exponent that is encoded together with the RGB mantissas, resulting in a 32-bit/pixel representation.

$$E = \lfloor \log_2(\max(R, G, B)) + 128 \rfloor.$$ (2)

where \(\lfloor \cdot \rfloor\) denotes rounding up to the next integer.

A drawback of RGBE pixel encoding is that it cannot represent negative sample values, i.e., colors that are outside of the triangle spanned by the primary colors of the underlying RGB color space. A possible remedy is to code colors in the XYZ color space, taking only positive numbers by definition then giving rise to the XYZE encoding.

In both cases, however, errors are not uniformly distributed perceptually speaking, a problem that is partially solved by the LogLuv encoding. There, the luminance is coded logarithmically in one sign bit, 15 mantissa bits, and another 16 bits to encode the chroma values \(u_c\) and \(v_c\).

Logarithmic encoding of luminance values is a common trick used in many HDR encodings: When the same magnitude of distortion is introduced in low- and high-luminance image regions, one finds that artifacts will be more visible in low-luminance regions, as human vision follows approximately a logarithmic law—this is also known as Weber’s law in the literature.

However, more accurate models of human vision exist that map physical luminance (in nits, i.e., candela/square meter) into the units related to the just-noticeable differences. Such a mapping, namely from PU sample space to physical luminance, is also denoted as EOTF. Studies have shown that, under such a mapping, 10–12 bits are sufficient to encode luminances between 10^{-4} and 10^9 nits without visible banding.

HDR file formats that are making use of these HDR pixels representation have been proposed, and the three most widely used are Radiance HDR, the portable file format (PFM), and OpenEXR. Radiance HDR, indicated by the file extension .hdr or .pic, is based on RGBE or XYZE encoding plus a minimal header. A very simple run-length coding over rows is available.

PFM is part of the “portable any map” format and is indicated by the .pfm extension. The header indicates the number of components and a common scale factor of all sample values; the sign of the scale factor denotes the endianness of the encoding. The actual image pixels are encoded as RGB triples in IEEE single-precision floating point.

OpenEXR uses the file extension .exr; it was developed by Industrial Light and Magic in 2002, along with open-source libraries. Due to its widespread adoption, it has become the de facto standard file format for HDR images, especially in the cinema industry. This file format supports three pixel encoding formats: half-float (16-bit float), 32-bit float, and 32-bit integer. It also includes various lossy and lossless image compression algorithms.

We recently have seen the adoption of HDR technologies into products such as cameras with improved sensors, displaying higher dynamic range, and/or a larger color gamut. Unfortunately, interoperability at the device level is still at its infancy, making it difficult to exchange images between various devices or various vendors which try to lock-in customers through proprietary formats [2].

As for images, two international standards are already available that support HDR content, namely ISO/IEC 15444, International Telecommunication Union–Telecommunication Standardization Sector (ITU-T) T.800 JPEG 2000 and ISO/IEC 29199, ITU-T T.832 JPEG XR. Despite the fact that they support lossless compression, their limited adoption by the market may be correlated to their lack of backward compatibility with existing JPEG ecosystems [5]. Industry players are typically reluctant to change technology in their production pipeline to cope with adoption of newly established standards. A migration path from existing to new solutions, allowing a gradual transition from old to new technology helps them keep their investments low.

To address this issue, the JPEG, formally known as ISO/IEC JTC1/SC29/WG1, began in the 2012, the standardization of a new technology, ISO/IEC 18477 JPEG XT [2]. The JPEG XT image coding system is currently organized into nine parts that define the baseline coding architecture (the legacy JPEG code stream 8-bit mode), an extensible file format specifying a common syntax for extending the legacy
JPEG, and application of this syntax for coding integer or floating-point samples between 8- and 16-bit precision [2].

This coding architecture is then further refined to enable lossless and near-lossless coding and is complemented by an extension for representing alpha-channels [2]. Due to its flexible layered structure, the JPEG XT capabilities can be extended into novel applications such as omnidirectional photography, animated images, structural editing, and privacy and security that are under examination and development [6].

In practice, JPEG XT can be seen as a super set of the 8-bit mode JPEG, where existing JPEG technology is reused whenever possible; this, in particular, allows encoding of an HDR image purely on the basis of legacy JPEG implementations. JPEG XT is a two-layered design, the first layer of which represents the SDR image. It is encoded in JPEG, with 8-bits/sample in the ITU BT.601-7 RGB color space (base layer B) (see Figure 3). The extension layer E includes the additional information to reconstruct the HDR image starting from the base layer B.

Concerning video compression, some recent standards are providing options to encode video in high bit precision, i.e., up to 12 bits for ISO/IEC 14496-2 and ISO/IEC 14496-10 AVC/H.264. These modes are defined in the profile Fidelity Range Extensions (FRExt) and, for ISO/IEC 23008-2 ITU-T-H.265 High-Efficiency Video Coding (HEVC), in the Format Range Extension (RExt).

The H.264/AVC extensions build upon an EOTF that covers a dynamic range of up to 2.5 magnitudes; while sufficient for consumer applications, this is a limitation for typical HDR content.

H.265/HEVC recently integrated a transfer function for HDR video content that prequantizes data to a 10- or 12-bit domain, which is then taken as input by the HEVC encoder. This EOTF, denoted as $ST2084—Hybrid Log-Gamma$—is designed for luminances up to 10,000 nits. Finally, guidelines on how to encode HDR video content with HEVC have been provided in ISO/IEC 23008-14 and 15.

Similar to JPEG XT, a backward-compatible solution for HDR video encoding has been presented by Mantiuk et al. [7]. Recently, a signaling mechanism to support backward compatibility has been integrated into the HEVC standard (ISO/IEC NP TR 23008-15). The backward compatibility is achieved as in the case of HDR still image encoding described previously. A base layer encodes the SDR frames, and an extension layer hidden from the base includes the necessary information to extend the dynamic range. To improve encoding performance, the redundancy information is minimized through the decorrelation between the SDR and HDR streams, achieving a reduction in size of the HDR stream to about 30% of the size of the SDR stream.

Invisible noise reduction is also used to remove details that cannot be seen in the residual stream prior to encoding.

Display

The native visualization of HDR content is limited by the physics of the display. Despite the fact that the current technology on the market can guarantee high contrast ratio, this is achieved by lowering the black level. However, the peak luminance remains limited, restricting the available dynamic range for bright images. Even with enhanced contrast, many display panels offer only a limited precision of 8 or, at most, 10 bits/color channel, and not all of them support a wide color gamut.

Tone mapping is a process that compresses the dynamic range of an input signal to that available by the display or the printing process while keeping the visualization convincing. Tone mappers can be roughly classified into global and local approaches. The former applies the same tone curve on the all image pixels. The latter takes the spatial position and
its surrounding into account; with that, local operators can take advantage of known effects of the human visual system such as local eye adaptation to the luminance. While the former is simple and efficient, it may fail to reproduce details in high contrast image regions [see Figure 4(a)]. Although the latter can reproduce details in such regions better [see Figure 4(b)], it often comes at the cost of increased complexity and computational time; it may also introduce artifacts around edges.

Despite this classification, we may also categorize the tone mappers based on their intent. Three main categories of tone mappers can be identified, based on the visual system, for scene reproduction and for best subjective quality. The first aims at integrating mechanisms, which simulate various aspects of the human visual system, into the tone mapper. This includes glare, luminance and chromatic adaptations, night vision, etc. The second category attempts to reproduce the best match in color gamut and dynamic range available for the display on which the image will be visualized. This is achieved through the preservation of the original scene’s appearance. The last category produces images with the most preferred subjective quality. Typical examples are operators with parameters that can be adjusted to achieve a specific artistic goal.

Color correction

Dynamic range mismatches between the HDR data and display devices, as previously shown, are typically handled by tone mappers, focusing on one dimension of the color gamut, along the luminance direction. This generates two major drawbacks. First, appearance effects are often ignored, leading to images which may appear poorly or too saturated, as shown in Figure 5(b) and (c) [8]. Second, such a tone mapper may not guarantee that all the sample values of the tone mapped image are within the available target, as shown in Figure 5(d). Even though the output luminance may be reproducible by the display, the chrominance may fall out of the available gamut, resulting in clipping of extreme colors. This clipping may again introduce hue shifts and image defects [9].

Figure 4. (a) Global versus (b) local. The global approach results in lost of details in high contrast regions. (c) The HDR frame is tone mapped for display purposes.

Figure 5. Tone mapper drawbacks. (a) The HDR input image and changes in appearance due to either (b) a reduction or (c) an excessive saturation (images courtesy of Francesco Banterle). (d) Pixels may be within the destination gamut only for the lightness channel L'; however, their chroma channel may still be out of gamut. Here the HDR input image has been tone mapped for display purposes (image courtesy of Tania Pouli).

To improve the saturation of the tone mapped image, a simple solution is to introduce an adjustable parameter that allows the overall saturation of the tone mapped image [10] to be controlled. In the following, let p be a parameter in $[0,1]$, then

$$I_i = \left(\frac{L_i}{L_o} \right)^p L_o.$$

Here L_o is the input HDR image, I_i is the final output tone mapped image (both in RGB values), L_o is the luminance of the original HDR image, and
\(L_t \) is the luminance of the tone mapped image. The parameter \(p \) then needs to be selected for the best—most pleasing—result. Unfortunately, the simple solution presented above does not only adjust the saturation, it also implies a luminance shift. Controlling \(p \) to get the desired effect may be hard. This problem can be overcome by a more careful choice of the input and output scaling operation [10]:

\[
I_t = \left(\left(\frac{L}{L_{\max}} - 1 \right) p + 1 \right) L_t. \tag{4}
\]

While this allows better control of the luminance shift, it may cause undesirable hue artifacts [8] if applied separately to each component of an RGB image. The value of \(p \) in the above equations can be automated based on the slope of the tone curve at each luminance level [10]. To reduce hue and lightness shifts, one may work with perceptual uniform color space to separate the color appearance parameters such as saturation from hue and lightness. This will allow modifying the saturation of the tone mapped image to match the saturation of the input HDR image while hue and lightness of the tone mapped image \(I_t \) will remain untouched [8]. Other approaches exploit the use of color appearance models and extend the concept of gamut mapping of the HDR content [9]. The former approach guarantees the matching of the color appearance attributes between the input HDR and the tone mapped images. The latter ensures that all the tone mapped pixels are within the color gamut of the display, minimizing the hue and luminance distortion.

Inverse tone mapping

The latest standardization trends and technological improvements push the display features toward ultra HD, higher dynamic range, i.e., up to 1,000 and 6,000 nits, and wide color gamut (ITU-R Rec. 2020). Since traditional liquid crystal display (LCD) panels with constant backlight illumination are not able to reproduce the necessary dynamic range, HDR displays make use of a modulated backlight. In such a display, a front-layer LCD panel includes the color filters and provides the necessary level of detail for accurate image reproduction, and a lower resolution matrix of independently controlled LEDs modulate its illumination at a coarser level, providing a much larger dynamic range. Optical layers and reflectors around each LED maximize the brightness in its corresponding area of the front LCD panel and minimize the light leakage into adjacent cells. Due to the coarser resolution of the back panel, image quality degradation may appear, which can be reduced through the use of post processing filtering of the displayed image.

The widespread availability of SDR content and the recent availability of displays with larger dynamic range also made it attractive to process such content for presentations on HDR displays. This process can be seen as the opposite problem of tone mapping and is thus called inverse tone mapping. The ability to reconstruct the mapping between the pixel values encoded in the SDR image and the scene luminance values, also known as the inverse camera response function, is the desirable goal. While it is an easy task to reconstruct the camera response function from a series of different exposures of the same SDR content, it is an ill-posed problem to reconstruct such an inverse when only a single exposure of an unknown camera is available.

The camera response function models the complete pipeline from light acquisition to SDR pixel values, including the (nonlinear) sensor response, exposure, camera postprocessing (e.g., flare-removal), and tone mapping of raw pixel values to SDR sample values. Recovering the dynamic range for an SDR content will consist of two basic steps. First, estimate an inverse camera response function to linearize the SDR content signal and then adjust the dynamic range of the SDR pixel to fit it to the dynamic range of the HDR display. However, SDR images are presenting two major issues when expanding them to larger dynamic range. First, the limited pixels precision, i.e., quantization to 256 values/channel, causes loss of detail and posterization. These artifacts, while barely visible in the SDR domain, can be emphasized during the expansion of the dynamic range. Second, under and overexposed regions in the SDR image contain very limited information. This may lead, during the dynamic range expansion, to regions that have the same appearance as in the original SDR image.

To solve the first problem, advanced filtering is needed before boosting the dynamic range of the SDR image. Bilateral filtering is an example: by tuning its parameters properly, high and low frequencies can be processed separately, avoiding some of the typical artifacts of range-expansion. While lost image content cannot be recovered in any way, to solve the second problem, inpainting may at least generate plausible image details in under- or overexposed image regions, provided the regions are sufficiently small and enough details are available around them.

HDR quality indices

The evaluation of the quality of an image or video is one of the fundamental steps in understanding whether the algorithm is capable of achieving a level of quality acceptable for a specific application. Depending on whether the original source is available when assessing a somewhat distorted image or video, one distinguishes between full-reference and no-reference quality indices. If only partial information on the original is available, they are called reduced-reference indices. In a second dimension, we can distinguish between objective and subjective quality indices. In the former method, a computer algorithm quantifies the differences between a reference and a test image or video. Such an algorithm may include a model of the human visual system and then evaluates the visibility of image defects in terms of its observer’s model. The latter method evaluates quality through studies by human observers. Based on a particular test methodology, observers are asked to qualify characteristics of single or pairs of visual stimuli in form of image or video and to provide a score on a scale or a relative rating between multiple presentations. The second method is capable of catching all aspects of human vision and is thus more appropriate to evaluate (or even define) the quality of an image or a video. It is, however, also very resource and time consuming and
only a limited number of media artifacts can be rated by such a method. Objective quality indices, as computer implementations, are more convenient as they allow automatic assessment. However, they are less reliable in estimating the overall image quality as their assessment is based on a limited mathematical model.

While reliable objective full-reference metrics are known and have been studied multiple times, no-reference quality prediction by computer algorithms is a much harder problem. Subjectively, both full- and no-reference methods are in use, though might answer slightly different questions. Full-reference methods measure fidelity—how close the distorted image is to the reference—while no-reference methods rate the overall quality of a presentation.

In the following, we will focus on full-reference objective quality indices. Here, one can again distinguish between display-referred and luminance-independent metrics. The former expects that the values in images or video correspond to the absolute luminance emitted from a display on which a presentation is shown. The latter accepts any relative radiance values as input. They assume that human vision is approximately scale-independent, a property that is equivalent to Weber’s law. Generally, the objective metrics designed for SDR, such as peak signal-to-noise ratio and structural similarity index metric, are ill-suited for HDR content. These metrics take as input a gamma corrected image and consider this content in an approximate PU space. However, this assumption is valid for CRT displays that are working typically in low-luminance range (0.1–80 nits). This is not valid for brighter displays, where distortions that are barely visible in CRT displays will be noticeable. A simple encoding of the physical luminance that makes objective metrics for SDR content applicable for HDR content is to transform luminance values into a PU space. Recently, two major objective metrics for evaluating HDR content directly have emerged [11], [12]. Both are full-reference human-visual-system-based metrics. HDR-VDP-2 is an objective metric capable of detecting differences in achromatic images. For that, it includes a contrast sensitivity model inspired by the properties of the human visual system for a wide range of luminance values. The metric takes test and reference HDR images as input, which are then mapped first to a perceptual space and frequency-filtered in several orientation and frequency specific subbands, modeling the first layer of the visual cortex. In each subband, a masking model is applied, and the difference of the cortex-filtered output is then used to predict both visibility as the probability of defect-detection, and quality, as the perceived magnitude of distortion.

The dynamic range-independent (also known by the acronym DR1) metric attempts to evaluate image quality independent of the dynamic range of the two images to be compared. If the dynamic range is identical, the pixel-wise difference between test and reference images would already provide an indicator of the visible artifact to be measured. If the dynamic range is different, though, a per-pixel difference could be due to either an image defect degrading image quality or the change of the dynamic range. In the latter, the visible differences in the test image should not be classified as visual artifacts. To distinguish between the two causes, such metrics apply a model of the HVS based on the detection and classification of visible changes in the image structure. These structural changes are a measure of contrast and can be categorized as follows [12]:

- Loss of visible contrast, i.e., if a contrast is visible in the reference image but is no longer visible in the test image. This happens, for example, if the tone mapper compresses details so much such that they become invisible after tone mapping.
- Amplification of invisible contrast, i.e., the opposite of the aforementioned effect. This type of degradation is typical for inverse tone mapping when, due to contrast stretching, contouring artifacts start to appear.
- Reversal of visible contrast, i.e., if the contrast in the test image is the inverse of the contrast in the reference image. Such defects appear, for example, due to clipping after tone mapping.

The evaluation of HDR video content is also a very important issue in various applications and standardization activities. Recently, the HDR-video quality measure metric has been proposed [11] to provide a feasible objective metric to evaluate quality in HDR video content. Video quality is computed based on a spatiotemporal analysis that relates to human eye fixation behavior during video viewing.

What we have learned

Based on this lecture note, readers could have learned what HDR imagery is, including all steps involved in its specific imaging pipeline, and what extra features it is capable of providing to the end user. In particular, HDR imagery is conveying to the end user an extraordinary experience when compared to the traditional digital imaging known today, e.g., 8–10 bits. To better understand improvements introduced by HDR content, which is perceived by the end user, one can compare it to what happened approximately 50 years ago when television moved from black/white to color.

Acknowledgments

Touradj Ebrahimi acknowledges the Swiss State Secretariat for Education, Research and Innovation, for the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska–Curie grant agreement number 643072-QoE-Net.

Authors

Alessandro Artusi (artusialessandro4@gmail.com) received his M.S. degree in computer science in 1997 from the University of Milan, Italy, and his Ph.D. degree in computer science in 2004 from the Vienna University of Technology, Austria. He is a researcher at the KIOS Research and Innovation Center of the University of Cyprus. He is a member of the ISO/IEC/JTC1/SC29/WG1 Committee (also known as JPEG), one of the editors of the JPEG XT standard, and a recipient of the
Image Restoration: From Sparse and Low-Rank Priors to Deep Priors

The use of digital imaging devices, ranging from professional digital cinema cameras to consumer grade smartphone cameras, has become ubiquitous. The acquired image is a degraded observation of the unknown latent image, while the degradation comes from various factors such as noise corruption, camera shake, object motion, resolution limit, hazing, rain streaks, or a combination of them. Image restoration (IR), as a fundamental problem in image processing and low-level vision, aims to reconstruct the latent high-quality image from its degraded observation. Image degradation is, in general, irreversible, and IR is a typical ill-posed inverse problem. Due to the large space of natural image contents, prior information on image structures is crucial to regularize the solution space and produce a good estimation of the latent image. Image prior modeling and learning then are key issues in IR research. This lecture note describes the development of image prior modeling and learning techniques, including sparse representation models, low-rank models, and deep learning models.

Relevance

IR plays an important role in many applications, such as digital photography, medical image analysis, remote sensing, surveillance, and digital entertainment. We give an introduction to the major IR techniques developed in past

Lei Zhang and Wangmeng Zuo

References

[1] A. Artusi, F. Banterle, T. O. Aydin, D. Panozzo, and O. Sorkine-Hornung, Image Content Retargeting: Maintaining Color, Tone, and Spatial Consistency, Boca Raton, FL: CRC, 2016.
[2] A. Artusi, R. Mantiuk, T. Richter, P. Korshunov, P. Hanhart, T. Ebrahimi, and M. Agostinelli, “JPEG XT: A compression standard for HDR and WCG images,” IEEE Signal Process. Mag., vol. 33, no. 2, pp. 118–124, 2016.
[3] P.Debevec and J. Malik, “Recovering high dynamic range radiance maps from photographs,” in Proc. 24th Annu. Conf. Computer Graphics and Interactive Techniques, 1997, pp. 369–378.
[4] S. Pradeep and C. Aguerrebere, “Practical high dynamic range imaging of everyday scenes: Photographing the world as we see it with our own eyes,” IEEE Signal Process. Mag., vol. 33, no. 5, pp. 36–44, 2016.
[5] A. Artusi, R. Mantiuk, R. Thomas, H. Philippe, K. Pavel, A. Massimiliano, T. Arkady, and E. Touradj, “Overview and evaluation of the JPEG XT HDR image compression standard,” Real Time Image Process. J., pp. 1–16, Dec. 2015.
[6] R. Thomas, A. Artusi, and E. Touradj, “JPEG XT: A new family of JPEG backward-compatible standards,” IEEE Multimedia Mag., vol. 23, no. 3, pp. 80–88, 2016.
[7] R. Mantiuk, A. Efremov, K. Myszkowski, and H.-P. Seidel, “Backward compatible high dynamic range MPEG video compression,” ACM Trans. Graph., vol. 25, no. 3, pp. 713–723, 2006.
[8] T. Pouli, A. Artusi, F. Banterle, A. O. Akyüz, H.-P. Seidel, and E. Reinhard, “Color correction for tone reproduction,” in Proc. Color and Imaging Conf. Soc. Imaging Science and Technology, Nov. 2013, Albuquerque, NM, pp. 215–220.
[9] E. Šikudova, T. Pouli, A. Artusi, A. Ahmet Özgüz, B. Francesco, E. Reinhard, and Z. M. Mazlumoglu, “A gamut mapping framework for color-accurate reproduction of HDR images,” IEEE Trans. Comput. Graph. Appl., vol. 36, no. 4, pp. 78–90, 2015.
[10] R. Mantiuk, R. Mantiuk, A. Tomaszewska, and W. Heidrich, “Color correction for tone mapping,” Comput. Graph. Forum, vol. 28, no. 2, pp. 193–202, 2009.
[11] M. Narwaria, R. K. Mantiuk, M. P. Da Silva, and P. L. Callet, “HDR-VDP-2.2: A calibrated method for objective quality prediction of high dynamic range and standard images,” J. Electron. Imaging, vol. 24, no. 1, pp. 1–10, 2015.
[12] T. O. Aydin, R. Mantiuk, K. Myszkowski, and H.-P. Seidel, “Dynamic range independent image quality assessment,” ACM Trans. Graph., vol. 27, no. 3, pp. 69:1–69:10, Aug. 2008.

Digital Object Identifier 10.1109/MSP.2017.2717489
Date of publication: 6 September 2017