Progress in treatment of viral infections in children with acute lymphoblastic leukemia

Maria Moschovi, Maria Adamaki, Spiros A. Vlahopoulos

Hematology-Oncology Unit, First Department of Pediatrics, University of Athens, Aghia Sophia Children’s Hospital, Athens, Greece

Abstract

In children, the most commonly encountered type of leukemia is acute lymphoblastic leukemia (ALL). An important source of morbidity and mortality in ALL are viral infections. Even though allogeneic transplantsations, which are often applied also in ALL, carry a recognized risk for viral infections, there are multiple factors that make ALL patients susceptible to viral infections. The presence of those factors has an influence in the type and severity of infections. Currently available treatment options do not guarantee a positive outcome for every case of viral infection in ALL, without significant side effects. Side effects can have very serious consequences for the ALL patients, which include nephrotoxicity. For this reason a number of strategies for personalized intervention have been already clinically tested, and experimental approaches are being developed. Adoptive immunotherapy, which entails administration of ex vivo grown immune cells to a patient, is a promising approach in general, and for transplant recipients in particular. The ex vivo grown cells are aimed to strengthen the immune response to the virus that has been identified in the patients’ blood and tissue samples. Even though many patients with weakened immune system can benefit from progress in novel approaches, a viral infection still poses a very significant risk for many patients. Therefore, preventive measures and supportive care are very important for ALL patients.

Introduction

According to the National Comprehensive Cancer Network (NCCN) guidelines, which are a most valuable resource for cancer, acute leukemia is considered a disease condition with high risk for infectious complications. In children, the most commonly encountered type of leukemia is acute lymphoblastic leukemia (ALL). ALL, in particular, is the most prevalent type of neoplasm in pediatric cancer patients undergoing chemotherapy, which develop acute respiratory viral infections. Even though allogeneic transplantsations, which are often applied also in ALL, carry a recognized risk for viral infections, there are multiple factors that make ALL patients susceptible to viral infections. The presence of those factors has an influence in the type and severity of infections.

The development of ALL as a disease itself has been attributed to a lack of mobilization of the immune system, due to decreased exposure to infectious agents. A weak immune surveillance would permit onset of ALL, and in parallel be accompanied by a weak defense against viral infections. Both susceptibilities (to ALL and viruses) can be attributed to an impaired ability to induce increases in stimulants of the adaptive immune response such as interferon gamma (IFNγ) and interleukin-12 (IL-12), and conversely increased capacity to secrete immunosuppressive hormones such as transforming growth factor-β and IL-10. Feedback regulation of transcription factors that control cytokine gene expression is not intact in malignant disease. In fact, ALL is associated with evidence for a cytokine imbalance at diagnosis, for example decreased steady state levels in IFNγ and increased levels of IL-10.

Disease progression of ALL further impair function of the immune system, as ALL is by definition an immunosuppressive disease that has been notably linked to neutropenia. Additionally, most effective therapeutic strategies for ALL are immunosuppressive. This includes steroids, which have been linked to Varicella-Zoster virus (VZV) infections. Loss of humoral immunity in ALL is considered particularly serious. After therapy, B- and T-lymphocytes need between six months and one year to recover the full range of their activity. Furthermore, therapeutically applied virus as part of the anti-leukemic scheme has been reported as causative of a fatal infection, where a live attenuated VZV vaccine was used as part of the therapeutic strategy.

Also factors that concern individual patients, such as genetic alleles that encode specific antigens can affect susceptibility to virus infection. For example the DEF1 gene haplotype [encodes β-defensin-1 (hBD-1)] was associated with herpes viruses prevalence in the serum of children with acute lymphoblastic leukemia. In particular, carriers of the GCA haplotype were found to have a significantly higher rate of antibodies against cytomegalovirus (CMV) and Herpes simplex virus (HSV) in ALL children compared to controls (CMV: 68 vs 29%, P=0.006; HSV: 56 vs 26%, P=0.04, respectively), while no association was found for antibodies against Epstein-Barr virus (EBV) by GCA haplotype in
case and controls (58 vs 40%, P=not significant). This suggests that leukemic patients carrying untranslated variants of hBD-1 have a higher susceptibility to herpes virus infections than controls. Finally, in cases that need allogeneic transplantation, T-cells are pharmacologically depleted to prevent graft-versus-host disease (GvHD). This depletion of lymphocytes removes an important barrier against viral infections. As an association of human leucocyte antigen class II polymorphic variant with incidence of precursor B-cell and T-cell ALL was made, it would be interesting to learn if this has effects on the susceptibility to viral infections.

All patients may suffer from viral infections through reactivation of a latent, preexisting virus due to the patients’ weakened immune system (for example CMV), especially after the additional immunosuppressive regimen for allogeneic transplantations, or by infections that occurred after onset of ALL, which include nosocomial infections. In viral infections where symptoms overlap, microbiological diagnosis and contact preventive measures are crucial, and strict isolation for all patients admitted on hospital ward during seasonal outbreaks of viruses that pose a severe risk to immunosuppressed patients is recommended.

All patients who meet the criteria for examination should be tested for a precipitating infection, including culture of blood and urine, depending on symptoms chest radiography, and screening for EBV, CMV, parvovirus B19, human immunodeficiency virus (HIV), and human herpes virus-6 (HHV6). The nasopharyngeal aspirate can also give information on the presence of virus in acute respiratory infections of pediatric ALL patients. An example of sensitive method for diagnosis of active viral infection, and also a reliable marker of successful clearance of virus from the blood is real-time polymerase chain reaction (PCR), as it is used to monitor for CMV. At least in the case of CMV it is considered a more reliable marker than antigen detection.

Our search strategy included use of the data available in Pubmed, Centers for Disease Control and Prevention (CDC; www.cdc.gov), the registry of patient studies ClinicalTrials.gov, and NCCN (www.nccn.org) for the terms that describe all viruses described herein, their pathology, and intervention methods that include clinical, translational, and experimental approaches.

Consequences of viral infection or reactivation

Types of viral infections that occur during ALL, especially after allogeneic transplantation, can have serious consequences, including adenovirus (ADV), EBV, CMV, VZV, BK, HHV6, HSV, and influenza virus. Even though in healthy children most of these infections can be overcome without serious consequences, in ALL patients they can cause serious morbidity and can even lead to a fatal outcome.

Many of the characterized virus types that are associated with fatal outcome (VZV, CMV, HHV6, EBV, HSV), belong to the herpes virus family, Herpesviridae. In particular, these herpes virus family members (VZV, CMV, HHV6, EBV, HSV), are known to cause serious morbidity and can even lead to a fatal outcome. At least in the case of CMV it is considered a more reliable marker than antigen detection.

Cytomegalovirus

CMV is a well-known risk for transplant recipients (e.g., resulting in pneumonitis, or ventriculonecephalitis), which is monitored by PCR. Patient CMV seropositivity with or without reactivation is the most important prognostic factor for survival and treatment-related mortality in stem cell transplantation from unrelated donors using pretransplant in vitro T-cell depletion with anti-thymocyte globulin. By multivariate analyses, CMV seropositivity remained the strongest independent negative factor for treatment-related mortality (relative risk: 5.3; confidence interval: 1.9-14.6; P=0.002).

Pathology of viral infections in ALL can be exacerbated by adenovirus. Adrenal insufficiency due to suppression of the hypothalamic-pituitary-adrenal axis by the glucocorticoid (GC) treatment in ALL may aggravate the effects of infections. Particularly after hematopoietic stem cell transplantation (HSCT), adrenal insufficiency may follow the GC administration that is used to ameliorate GvHD. Although rare, CMV infection itself has also been reported as a primary cause of adrenal insufficiency, necessitating early diagnosis and treatment.

Adenovirus

ADV infection of ALL patients during standard chemotherapy can lead to hepatitis, which can be fatal. On the other hand, systemic ADV infection has been noted after death from multiple organ failure, and in an ALL patient that had undergone allogeneic peripheral blood stem cell transplantation. In general ADV infection is a frequent complication after stem cell transplantation from alternate donors in the pediatric population. This makes it necessary to develop innovative treatment modalities that can improve the prognosis of ADV-infected, immunocompromised patients.

Varicella-Zoster virus

VZV infection has been also reported in connection with a high-dose glucocorticoid dexamethasone administration. VZV can be fatal both by infection of the ALL patient, as well as after reactivation of a latent VZV infection in the immunocompromised patient. Liver failure due to VZV infection has been early recognized as a fatal complication in ALL.

Herpes simplex virus

There have been reported deaths of transplant recipients from HSV pneumonia in spite of the use of acyclovir and foscarnet, and in spite of in vitro-sensitivity of HSV isolates from those pediatric ALL patients to foscarnet. HSV was also documented by immunohistochemistry and PCR, after autopsy of a 22-year old patient that died from multisystem organ failure, while in remission after chemotherapy for ALL.

Epstein-Barr virus

EBV, which can cause lethal infections also in ALL remission, may cause hemophagocytic lymphohistiocytosis (HLH), a syndrome of impaired immunity that presents an uncontrolled hyperinflammatory response. EBV-linked fatal hemophagocytic syndrome can result to bone marrow and hepatic failure.

Comparison of IFNγ, IL-10 and IL-6 may be useful for distinguishing between bacterial sepsis, viral infections, and HLH. Using the criteria IFNγ >75 pg/mL and IL-10 >60 pg/mL, specificity and sensitivity of diagnosing HLH is 98.9 and 93.0%, respectively. Apart from EBV, CMV, HHV6, parvovirus B19, and HIV can cause HLH, however EBV is the most consistently reported virus associated with HLH. EBV reactivation can complicate presentation of other infections including CMV and HHV6.

Human herpes virus-6

HHV6 is increasingly recognized as an important opportunistic pathogen.
HIV infection in patients with hematological malignancies, determined by the presence of anti-HIV antibodies has been reported. It was mostly encountered in patients diagnosed with B-cell lineage derived malignancies. Perinatally transmitted HIV has also been reported in the case of a five-year-old child with pre-B cell ALL. The child was successfully treated with anti-retroviral agents. Currently a clinical trial is recruiting HIV-positive hematologic cancer patients (NCT00968630).

Rhinovirus

In children, in general, rhinovirus infection has shown the potential for a more severe clinical course than respiratory syncytial virus (RSV) and influenza A/B infections. There is no widely used rhinovirus-targeted treatment, however several agents including pleconaril, BTA-798, and inhaled IFN-β 1a (SNG001), are being tested in the general patient population with rhinovirus infections. Globulin-replacement therapy is generally not helpful, because the infectious burden of rhinovirus in HSCT recipients is mainly due to impairment of the T-cell mediated immunity.

Respiratory syncytial virus

The presence of RSV is not rare in nasopharyngeal aspirate and blood samples of patients with neoplasia and acute respiratory infections. For RSV, which is monitored by real-time PCR, next to the NCCN-recommended ribavirin, at least one possible option, both for prophylaxis and also for persistent or serious RSV infection of pediatric ALL patients, is Palivizumab, a humanized monoclonal antibody directed against the fusion protein of RSV. Resistance to palivizumab is relatively rare but possible. Experimental treatments that include a small interfering RNA are under development. It is important to note that RSV is reportedly very common in pediatric autopsies of patients with severe respiratory infectious diseases, and may be the common virus identified after deaths that have not been linked to a pandemic.

Parvovirus B19

Parvovirus B19 can kill a patient in the event that the resulting pneumonia does not respond to treatment. Apart from pneumonia, the development of a B19-associated HLH is also possible.

Influenza virus

Influenza virus, in particular the H1N1 type, is well known to become lethal in patients who have complicating serious health problems.

Norovirus

Norovirus (NV) can also be fatal in immunocompromised patients, and this could pose a risk to ALL patients, especially after HSCT. Norovirus causes gastroenteritis, where elevated blood lactate was proposed to assist in predicting mortality. While ribavirin, interferons, and immunoglobulins might have some benefit to the patients, an effective vaccine is urgently needed for this virus.

Other viruses

Also reactivation of polyomaviruses BK and John Cunningham virus is increasingly prevalent cause of morbidity and mortality in immunocompromised patients. Primary infection occurs during childhood through respiratory or urino-oral transmission. Other viruses that posed a lethal threat to ALL patients in the past such as the measles virus, are far less frequently encountered today; among several reasons, due to progress in vaccine development, and years of implementation of population-wide vaccination programs (measles-mumps-rubella vaccine).

Limits of established methods for treatment of viral infection and prophylaxis against viral reactivation in acute lymphoblastic leukemia patients

As there is currently no drug that can be guaranteed to cure severe viral infections in patients with compromised immune system, the optimum choice of treatment is subject of ongoing discussion and improvements. Two main sources of published guidelines can be mentioned here, namely the non-profit NCCN and the public health institute CDC, a federal agency under the Department of Health and Human Services (one brief summary of recommended antivirals is provided in Table 1).

Neutropenia

For neutropenia, which is a contributing factor for infections during chemotherapy, myeloid growth factors are recommended as primary prophylaxis; in consideration of the burden of cost for healthcare for febrile neutropenia and the prophylaxis, it is recommended to focus on therapeutic benefit. In regard to treatment aimed at the virus, an important fact is that often the antiviral agents used against a virus that proved resistant to the first line drug, often carry a significant burden of potential side effects.

Cidofovir and its alternatives

The choice, therefore, needs to take into account the ability of the patient’s organism to tolerate specific toxic agents. For example, the agent cidofovir has been gradually changing position in the NCCN top choice list of agents used for CMV prophylaxis during the last two years, mainly due to substantial nephrotoxicity. Currently the NCCN panel recommends valacyclovir or acyclovir as prophylaxis against CMV reactivation, and monitoring by PCR or antibody-based methods. In 2015 cidofovir is regarded as a third-line treatment option for CMV, while foscarnet is generally a more preferred option for acyclovir-resistant CMV (foscarnet could be applicable even in neonates) due to less (but still significant) potential nephrotoxicity. Monitoring of drug resistance to ganciclovir, foscarnet and cidofovir is performed by genotyping.

Hyperimmune anti-CMV globulins have been also used as a passive form of immunization, for prophylaxis against CMV with some success. Ayclovir, valacyclovir, and famiclovir are recommended for prophylaxis against HSV reactivation, especially for transplant recipients (both autologous and allogeneic) and for a long time period, of over 30 days, recipients of allogeneic HSCT, in case of GvHD or of frequent HSV reactivations before transplantation. However, patients who already receive foscarnet or ganciclovir to prevent CMV reactivation do not need additional administration of acyclovir.

ADV, and several other viruses are also treated with cidofovir, which in those cases might be better tolerated than in CMV infections. Alternatively, treatment with a modified dosing regimen of cidofovir was well tolerated and high-risk ADV infections resolved in seven pediatric allogeneic hematopoietic progenitor cell transplant recipients.

For HSCT patients that were seropositive for VZV before the transplantation, the NCCN panel recommends prophylaxis with acyclovir for at least 1 year after HSCT. This prophylaxis should be extended in cases that immunosuppressive treatment is prolonged. Drugs used in prophylaxis against HSV are active also against VZV. In contrast, valacyclovir and acyclovir have only weak activity against CMV, even though they...
have a good safety profile.22 Therefore, surveillance and preemptive therapy with ganciclovir or foscarnet is still required for patients that are seropositive for CMV. Another, less studied but potentially fatal herpes family member, which may prove sensitive to ganciclovir, foscarnet or cidofovir is HHV7; can be detected by nested PCR and antibody-based methods, including the enzyme-linked immunosorbent assay (ELISA).91-95 It may cause mutually exclusive infections with HHV6, and can lead to lethal encephalitis.

In the case of influenza virus, established prevention and treatment methods have a good record also for ALL patients. Neuraminidase inhibitors, for instance, improve outcome of patients with leukemia and influenza; however, the best protection from pneumonia is offered by preventive vaccination.96-98

Another virus that can become reactivated during immunosuppression is hepatitis B virus (HBV), for which lamivudine was recommended for prophylaxis, with the additional note for a need for extended use in cases of prolonged immunosuppression of patients that are positive for the HBV antigen; however resistance has been often noted, and therefore it is recommended to use in combination with other drugs such as adefovir.99,100 A far lower probability of resistance, exists for tenofovir and entecavir and therefore either one of these two drugs can be considered as an effective monotherapy.101,102 Conversely, tenofovir and entecavir are not recommended to be used in combination, unless a very high viral load is present (NCCN prevention and treatment of cancer-related infections, version 1, 2015). Detection of HBV can be made by detection of antibody to hepatitis B core antigen, and by PCR-based determination of serum HBV DNA level.103,104

Several drugs have been removed from the list of preferred agents against virus-resistant disease, due to the lack of evidence for a curative substantial effect. In contrast, toxic drugs such as e.g., cidofovir remain as important treatment options, especially for CMV, due to numerous evidence-based studies that have demonstrated high antiviral activity.105,106 A lipid conjugate of cidofovir labeled CMX001 (brincidofovir) is increasingly used against DNA viruses (ADV, CMV, polymyxa, etc.).107,108 CMX001, is an orally bioavailable derivative of cidofovir (hexadecyloxypropyl cidofovir), and recently completed a phase II clinical trial for preemptive treatment of ADV (NCT 01241344).109

| Table 1. Currently recommended antiviral agents for patients with weakened immune system and high risk for viral infection or reactivation. |
|---|---|
| **Virus** | **Treatment, alternative drugs (CDC & NCCN recommended 1.2015)** | **Disease state (links: further information)** |
| HSV | Acyclovir, famiciclovir, valacyclovir | Active therapy, neutropenia, mucositis https://www.cdc.gov/rsv/clinical/description.html |
| VZV | Acyclovir, famiciclovir, valacyclovir | Active therapy, neutropenia http://www.ch.gov.au/clinicalguide/guideline_index/Chickenpox_varicella/ |
| CMV | Preemptive valganciclovir, ganciclovir | Stem cell transplantation, treatment with alemtuzumab http://www.mayoclinic.org/diseases-conditions/cmv/in-depth/CON-20029514 |
| CMV | Second/third line foscarnet, cidofovir | Resistant CMV (stem cell transplantation, treatment with alemtuzumab) https://www.cdc.gov/hiv/diagnosis-test/hiv-faq.html#b12 |
| HBV | Entecavir, tenofovir, lamivudine, adefovir, telbivudine | Resolved HBV infection, HBV antigens, transplantation, anti-CD20/or CD52 therapy http://www.cdc.gov/hepatitis/HBV/HBVfaq.htm#b12 |
| HCV | Ledipasvir/simeprevir and sofosbuvir, paritaprevir and ritonavir, ombitasvir and dasabuvir | Transplantation, anti-CD20 therapy, corticosteroids http://www.hcvguidelines.org/full-report-view |
| HIV | Integrase inhibitors, non-nucleoside reverse transcriptase inhibitors | Chemotherapy, targeted therapy http://aidsinfo.nih.gov/guidelines/html/1/adult-and-adolescent-treatment-guidelines/ |
| Influenza A/B | Oseltamivir, zanamivir | Influenza outbreaks (subtype specific) http://www.cdc.gov/cdcx/professionals/antivirals/antiviral-use-influenza.htm |
| RSV | Ribavirin | Neutropenia, seasonal pattern http://www.cdc.gov/cdcx/professional/clinical/description.html |
| Adenovirus | Cidofovir | Compromised immune system, seasonal pattern http://www.cdc.gov/adenovirus/hsp/adenol prevention-treatment.html |

CDC, Centers for Disease Control and Prevention; NCCN, National Comprehensive Cancer Network; HSV, Herpes simplex virus; VZV, Varicella-Zoster virus; CMV, cytomegalovirus; HBV, hepatitis B virus; HCV, hepatitis C virus; HIV, human immunodeficiency virus; RSV, respiratory syncytial virus.

Advancing frontier of treatment

Currently available treatment options do not guarantee a positive outcome for every case of viral infection in ALL, without significant side effects. For this reason a number of strategies for personalized intervention have been already clinically tested, and experimental approaches are being developed to translate progress from basic and preclinical research into specific treatment strategies (www.clinicaltrials.gov). Personalized intervention can be effective, however, to date high cost prevents a wider application. Experimental approaches on the other hand, may limit cost of treatment and improve outcome; they need, however, to be proven in the clinical setting.

The need to improve antiviral treatment options has led to several...
Adoptive immunotherapy

Adoptive immunotherapy is a promising approach in general, and for HSCT recipients in particular. A field where adoptive immunotherapy is particularly important is the growing field of allogeneic cord blood transplantation (CBT).110 Even though CBT has many advantages over e.g., bone marrow transplantation, immune cells in the cord blood are generally in a more immature developmental state than corresponding cell types in the bone marrow or peripheral blood, which poses a significant risk for recipients with infection. Therefore, several approaches are developed, which include antigen-specific T cells from cord blood, redirecting cord blood T cells using chimeric antigen receptors, and generating cord blood-derived natural killer cells and regulatory T cells.18,110,111 Recently, cord blood-derived naïve T-cells were exposed to modified antigen-presenting cells, and transduced with the CAR.CD19 retroviral vector, developing thereby a combination of antiviral and antileukemic activity. Specifically these cells could cause lysis of viral antigen–pulsed autologous phytohemagglutinin blasts, demonstrating the capacity to target simultaneously CMV, EBV, and ADV.112

At least theoretically, antigen presentation could suffice to direct T-cell responses, and there are multiple methods under development to harness the function of dendritic cells (DC).113 The importance of antigen-presenting cells was demonstrated with DCs transfected with plasmid DNAs encoding a range of immunodominant and subdominant viral antigens from EBV, CMV, and ADV. These were used to activate T cells that were subsequently expanded in culture. This method had clinical feasibility, as was shown recently, and with an even broader range of encoded antigens. Namely, rapidly generated single-culture virus-specific T cells could recognize 12 antigens from five viruses (EBV, ADV, CMV, BK, and HHV6) on a small patient cohort that had received allogeneic transplants.114 The group at Baylor College of Medicine had previously described a method by which it is possible to rapidly generate a single preparation of polyclonal (CD4+ and CD8+) T cells which are specific for seven viruses (EBV, CMV, ADV, BK, HHV6, RSV, and influenza virus) frequently described as important risk factors affecting prognosis post HSCT.115 These broadly virus specific T cells are now been evaluated clinically (ClinicalTrials.gov Identifier NCT01570283).

Still, there is significant room for improvement of methodology for adoptive immunotherapy, which can allow more frequent use. One approach is a combination of regulatory and virus-specific T-cells to increase the efficiency of transferred cells.116 Another approach is interferon-\(\gamma\) capture of the T cells that are subsequently transferred to the patient: ADV-directed T-cells that were isolated by IFN-\(\gamma\) capture (thereby enriched on the basis of their capacity for IFN-\(\gamma\) secretion) were infused to pediatric HSCT recipients that were also treated with cidofovir.117 The infusions could clear viraemia; however not all patients clear the infection and some patients die.118 Therefore it can be concluded that reconstitution of a functional immune response is not under all circumstances possible in HSCT recipients.119 In part, the need to strengthen the immune system may be also indirectly met by supportive treatment.118 In fact, supportive treatment may, to some extent, facilitate recovery from viral infections that are potentially dangerous.118-120

Agents that target more than one molecular pathway

Finally, an emerging research concept is to assay for pharmaceutical agents that counter viral infections and malignant disease simultaneously, using compounds that inhibit growth of the virus and malignant cells at the same time.121,122 ALL is not an exception to this option: at Johns Hopkins University an artemisinin-based derivative was developed with a selective toxicity against both ALL cells and CMV, reportedly without to interfere with growth of non-malignant cells.123 Also chloroquine, which has chemosensitizing activity against some types of malignancy, was shown to improve the cross-presentation of non-replicating influenza virus in vitro and T cell responses in mice following a single administration of inactivated virus.124,125

Conclusions

From the state-of-the-art in research against viral infections it can be concluded that even though most patients with weakened immune system can benefit from progress in antiviral agents, a viral infection in this patient group still poses a very significant risk. Therefore, preventive measures are very important.

In the case of severely immunocompromised patients such as transplant recipients, patient isolation in a total protective environment could prove an effective means of protection.126 Direct person-to-person contact including inhalation of respiratory secretions from an affected individual is the primary cause of infections for most viruses. Contact with contaminated surfaces carries also an important risk; however the viability of a virus on contaminated surfaces varies, from the resilient NV that can remain infectious even in small titers, and in the presence of disinfectants, to the unstable RSV that only remains viable for a few hours on hands or surfaces.127 Therefore well-trained personnel, especially in hand decontamination, and patient isolation, are factors that limit viral complications in patients with a severely weakened immune system.

References

1. Inaba H, Greaves M, Mullighan CG. Acute lymphoblastic leukaemia. Lancet 2013;381:1943-55.
2. Benites ECA, Cabrini DP, Silva ACB, et al. Acute respiratory viral infections in pediatric cancer patients undergoing chemotherapy. J Pediatr (Rio J) 2014;90:370-6.
3. Hilgendorf I, Freund M, Jilg W, et al. Vaccination of allogeneic haematopoietic stem cell transplant recipients: report from the international consensus conference on clinical practice in chronic GVHD. Vaccine 2011;29:2825-33.
4. Urayama KY, Buffer PA, Gallagher ER, et al. A meta-analysis of the association between day-care attendance and childhood acute lymphoblastic leukaemia. Int J Epidemiol 2010;39:718-32.
5. Winkler B, Taschik J, Haubitz I, et al. TGF\(\beta\) and IL10 have an impact on risk group and prognosis in childhood ALL. Pediatr Blood Cancer 2015;62:72-9.
6. Cocco C, Pistoia V, Airoldi I. Anti-leukemic properties of IL-12, IL-23 and IL-27: differences and similarities in the control of pediatric B acute lymphoblastic leukemia. Crit Rev Oncol Hematol 2012;83:310-8.
7. Billerbeck E, Labitt RN, Vega K, et al. Insufficient interleukin-12...
signalling favours differentiation of human CD4(+) and CD8(+) T cells into GATA-3(+) and GATA-3(+) T-bet(+) subsets in humanized mice. Immunology 2014;143:202-18.

8. Vlahopoulos SA, Cen O, Hengen N, et al. Dynamic aberrant NF-kB spurrs tumorigenesis: A new model encompassing the microenvironment. Cytokine Growth Factor Rev 2015;26:389-403.

9. Adamaki M, Tsotra M, Vlahopoulos S, et al. STAT transcript levels in childhood acute lymphoblastic leukaemia: STAT1 and STAT3 transcript correlations. Leuk Res 2015 [Epub ahead of print].

10. Bhattacharya K, Allwinn R, Langer R, et al. Differential loss of humoral immunity against measles, mumps, rubella and varicella-zoster virus in children treated for acute lymphoblastic leukaemia. Immunology 2014;142:124-39.

11. Bordon V, Bravo S, Van Renterghem L, et al. Surveillance of viral infection in an infant. Eur J Pediatr 2010;169:887-9.

12. Lee S, Kim S-H, Choi S-M, et al. Cytomegalovirus ventriculoencephalitis after unrelated double cord blood stem cell transplantation: incidence and outcome of CMV infection and disease. Pediatr Blood Cancer 2008;50:647-9.

13. Lin Y-L, Chang P-C, Wang Y, Li M. Identification of novel viral interleukin-10 isoforms of human cytomegalovirus AD169. Virus Res 2008;131:213-23.

14. Förster S, Brandt M, Mottok DS, et al. Secretory expression of biologically active human Herpes virus interleukin-10 analogues in Escherichia coli via a modified Sec-dependent transporter construct. BMC Biotechnol 2013:13:82.

15. Bochennek K, Ljungman P, de La Camara R, Milpied N, et al. Randomized study of valacyclovir as prophylaxis against cytomegalovirus reactivation in recipients of allogeneic HLA-mismatched bone marrow graft on the magnitude and kinetics of Epstein-Barr virus load in the peripheral blood of bone marrow transplant recipients. Clin Transplant 2004;18:518-24.

16. Valanciute G, Jureckova E, Valancius A, et al. Evolution of post-HLA transplantation CMV infection and management. J Blood Med 2014;5:69-86.

17. Bordon V, Bravo S, Van Renterghem L, et al. Surveillance of cytomegalovirus (CMV) DNAemia in pediatric allogeneic stem cell transplantation: incidence and outcome of CMV infection and disease. Transpl Infect Dis Off J Transplant Soc 2008;10:19-23.

18. Hough R, Chetwood A, Sinfield R, et al. Fatal adenovirus hepatitis with an alemtuzumab-containing preparative regimen for Philadelphia-positive acute lymphoblastic leukemia. J Korean Med Sci 2010;25:630-3.

19. McNamee D, Hadley M, Pachter JS, et al. Cytomegalovirus DNAemia in pediatric allogeneic stem cell transplantation: incidence and outcome of CMV infection and disease. Pediatr Blood Cancer 2008;50:647-9.
43. Yabe H, Hattori K, Inoue H, et al. Fatal adenovirus infection indistinguishable from thrombotic microangiopathy after allogeneic CD34+ peripheral progenitor cell transplantation. Tokai J Exp Clin Med 2005;30:71-5.

44. Myers GD, Krance RA, Weiss H, et al. Adenovirus infection rates in pediatric recipients of alternate donor allogeneic bone marrow transplants receiving either antithymocyte globulin (ATG) or alemtuzumab (Campath). Bone Marrow Transplant 2005;36:101-8.

45. Lion T. Adenovirus infections in immunocompetent and immunocompromised patients. Clin Microbiol Rev 2014;27:441-62.

46. Matsuazaki A, Suminoe A, Koga Y, et al. Fatal visceral varicella-zoster virus infection without skin involvement in a child with acute lymphoblastic leukaemia. Pediatr Hematol Oncol 2008;25:237-42.

47. Wiegering V, Schick J, Beer M, et al. Varicella-zoster virus infections in immunocompromised patients - a single centre 6-years analysis. BMC Pediatr 2011;11:31.

48. Müller I, Aepinus C, Beck R, et al. Noncutaneous varicella-zoster virus (VZV) infection with fatal liver failure in a child with acute lymphoblastic leukaemia (ALL). Med Pediatr Oncol 2001;37:145-7.

49. Frangoul H, Wills M, Crossno C, et al. Acyclovir-resistant herpes simplex virus pneumonia post-unrelated stem cell transplantation: a word of caution. Pediatr Transplant 2007;11:942-4.

50. Herget GW, Riede UN, Schmitt-Griff A, et al. Generalized herpes simplex virus infection in an immunocompromised patient-report of a case and review of the literature. Pathol Res Prac 2005;201:123-9.

51. Look AT, Naegle RF, Callihan T, et al. Fatal Epstein-Barr virus infection in a child with acute lymphoblastic leukaemia in remission. Cancer Res 1981;41:4280-3.

52. Kawabata Y, Hirokawa M, Saitoh Y, et al. Late-onset fatal Epstein-Barr virus-associated hemophagocytic syndrome following cord blood cell transplantation for adult acute lymphoblastic leukaemia. Int J Hematol 2006;84:445-8.

53. Xu X-J, Tang Y-M, Song H, et al. Diagnostic accuracy of a specific cytokine pattern in hemophagocytic lymphohistiocytosis in children. J Pediatr 2012;160:984-990.e1.

54. Ogata M. Human herpesvirus 6 in hematological malignancies. J Clin Exp Hematol 2009;49:57-67.

55. Hubacek P, Virgili A, Ward KN, et al. HHV-6 DNA throughout the tissues of two stem cell transplant patients with chromosomally integrated HHV-6 and fatal CMV pneumonitis. Br J Haematol 2009;145:394-8.

56. Mbanda DN, Minkoulo EM, Kaptue LN. HIV-1 infection in adults with haematological malignancies in Yaoundé, Cameroon. West Afr J Med 2002;21:183-4.

57. Ghosh M, Banerjee M, Chakraborty S, Bhattacharyya S. Successful outcome in a HIV infected child presenting with Pre-B acute lymphoblastic leukaemia. Indian J Pediatr 2012;79:267-9.

58. Asher SA, Petrich A, Hamid JS, et al. Clinical severity of rhinovirus/enterovirus compared to other respiratory viruses in children. Influenza Other Respir Viruses 2014;8:436-42.

59. Shah DP, Ghantoji SS, Mulanovich VE, et al. Management of respiratory viral infections in hematopoietic cell transplant recipients. Am J Blood Res 2012;2:203-18.

60. Piralla A, Zecca M, Comoli P, et al. Persistent rhinovirus infection in pediatric hematopoietic stem cell transplant recipients with impaired cellular immunity. J Clin Virol 2015;67:38-42.

61. Santos RP, Chao J, Nepo AG, et al. The use of intravenous palivizumab for treatment of persistent RSV infection in children with leukemia. Pediatrics 2012;130:e1695-9.

62. Al-Ala‘ayan S, Pollack P, Notario GF. Safety and pharmacokinetics of extended use of palivizumab in Saudi Arabian infants and children. Drugs Context 2015;4:212270.

63. Oliveira DBl, Iwane MK, Phil MM, et al. Molecular characterization of respiratory syncytial viruses infecting children reported to have received palivizumab immunoprophylaxis. J Clin Virol 2015;65:26-31.

64. Turner TL, Kopp BT, Paul G, et al. Respiratory syncytial virus: current and emerging treatment options. Clin Outcomes Res 2014;6:217-25.

65. De Clercq E. Chemotherapy of respiratory syncytial virus infections: the final breakthrough. Int J Antimicrob Agents 2015;45:234-7.

66. Speers DJ, Moss DM, Minney-Smith C, et al. Influenza and respiratory syncytial virus are the major respiratory viruses detected from prospective testing of pediatric and adult coronial autopsies. Influenza Other Respir Viruses 2013;7:1113-21.

67. De Souza Costa VH, Baurakiades E, Viola Azevedo ML, et al. Immunohistochemistry analysis of pulmonary infiltrates in necropsy samples of children with non-pandemic lethal respiratory infections (RSV; ADV; PIV1; PIV2; PIV3; FLU A; FLU B). J Clin Virol 2014;61:211-5.

68. Beske F, Modrow S, Sörensen J, et al. Parvovirus B19 pneumonia in a child undergoing allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant 2007;40:89-91.

69. Abla O, Gassas A, Stevens R, et al. bcr-abl-positive T-cell acute lymphoblastic leukemia associated with parvovirus B19 infection. J Pediatr Hematol Oncol 2006;28:98-9.

70. Matsubara K, Uchida Y, Wada T, et al. Parvovirus B19-associated hemophagocytic lymphohistiocytosis in a child with precursor B-cell acute lymphoblastic leukemia under maintenance chemotherapy. J Pediatr Hematol Oncol 2011;33:565-9.

71. Exposito S, Ascolese B, Senatore I, Codedà C. Pediatric norovirus infection. Eur J Clin Microbiol Infect Dis 2014;33:285-90.

72. Gustavsson L, Andersson L-M, Brink M, et al. Venous lactate levels can be used to identify patients with poor outcome following community-onset norovirus enteritis. Scand J Infect Dis 2012;44:782-7.

73. Chen Z, Nosovtsev SV, Bok K, et al. Development of Norwalk virus-specific monoclonal antibodies with therapeutic potential for the treatment of Norwalk virus gastroenteritis. J Virol 2013;87:9547-57.

74. Lindesmith LC, Ferris MT, Mullan CW, et al. Broad blockade antibody responses in human volunteers after immunization with a multivalent norovirus VLP candidate vaccine: immunological analyses from a phase I clinical trial. PLoS Med 2015;12:e1001807.

75. De Gascun CF, Carr MJ. Human polyomavirus reactivation: disease pathogenesis and treatment approaches. Clin Dev Immunol 2013;2013:373579.

76. Wiedinger K, Bitsaktsis C, Chang S. Reactivation of human polyomaviruses in immunocompromised states. J Neurovirol 2014;20:1-8.

77. Craft AW, Reid MM, Gardner PS, et al. Virus infections in children with acute lymphoblastic leukaemia. Arch Dis Child 1979;54:755-9.

78. Medical Research Council Working Party for Childhood Leukaemia. Progressive reduction in treatment-related deaths in Medical Research Council childhood lymphoblastic leukaemia trials from 1980 to 1997 (UKALL VIII, X and XI). Br J Haematol 2001;112:293-9.

79. Koochakzadeh I, Khosravi MH, Pourakbari B, et al. Assessment of immune response following immunization with DTPdT and MMR vaccines in children treated for acute lymphoblastic leukaemia. Pediatr Hematol Oncol 2014;31:656-63.

80. Zwitserloot AM, Mavinkurve-Groothuis AMC, Galama JM, et al. Importance of neutropenia for development of invasive infections at various phases of treatment for hemato-oncological diseases in children. Scand J Infect Dis 2012;44:355-62.

81. Lyman GH, Kuderer NM. Cost effectiveness of myeloid growth factors in cancer chemotherapy. Curr Hematol Rep 2003;2:471-9.
reactivation in allogeneic hematopoietic stem cells transplantation recipients: a prospective study. Haematologica 2002; 87:446-7.

84. Ozdemir E, St John LS, Gillespie G, et al. Cytomegalovirus reactivation following allogeneic stem cell transplantation is associated with the presence of dysfunctional antigen-specific CD8+ T cells. Blood 2002; 100:3690-7.

85. Wang Y, Smith KP. Safety of alternative antiviral agents for neonatal herpes simplex virus encephalitis and disseminated infection. J Pediatr Pharmacol Ther JPPPT Off J P Paediatrics 2014;19:72-82.

86. Göhring K, Hamprecht K, Jahn G. Antiviral drug- and multidrug resistance in cytomegalovirus infected SCT patients. Comput Struct Biotechnol J 2015; 13:153-9.

87. Gentry BG, Phan Q, Hall ED, et al. Human cytomegalovirus resistance to deoxyribosylindole nucleosides maps to a transversion mutation in the terminase subunit-encoding gene UL89. Antimicrob Agents Chemother 2015; 59:226-32.

88. Chou S, Ecolanl J, Sahoo MK, et al. Improved detection of emerging drug-resistant mutant cytomegalovirus subpopulations by deep sequencing. Antimicrob Agents Chemother 2014; 58:4697-702.

89. Gregg K, Hakki M, Kaul DR. UL54 foscarnet mutation in an hematopoietic stem cell transplant recipient with cytomegalovirus disease. Transpl Infect Dis 2014; 16:320-3.

90. Miescher SM, Huber TM, Kühne M, et al. In vitro evaluation of cytomegalovirus-specific hyperimmune globulins vs. standard intravenous immunoglobulins. Vox Sang 2015; 109:71-8.

91. Caruso Brown AE, Cohen MN, Tong S, et al. Pharmacokinetics and safety of intravenous cidofovir for life-threatening viral infections in pediatric hematopoietic stem cell transplant recipients. Antimicrob Agents Chemother 2015; 59:3718-25.

92. Anderson EJ, Guzman-Cottrill JA, Kletzel M, et al. High-risk adenovirus-infected pediatric allogeneic hematopoietic progenitor cell transplant recipients and preemptive cidofovir therapy. Pediatr Transplant 2008; 12:219-27.

93. Chan PKS, Li CK, Chik KW, et al. Risk factors and clinical consequences of human herpesvirus 7 infection in paediatric hematopoietic stem cell transplant recipients. J Med Virol 2004; 72:668-74.

94. Chan PKS, Chik K-W, To K-F, et al. Case report: human herpesvirus 7 associated fatal encephalitis in a peripheral blood stem cell transplant recipient. J Med Virol 2002; 66:493-6.

95. Ongrádi J, Kövesdi V, Kováts E. [Human herpesvirus 7]. Orv Hetil. 2002; 151:645-51.

96. Chemaly RF, Torres HA, Aguilera EA, et al. Neuraminidase inhibitors improve outcome of patients with leukemia and influenza: an observational study. Clin Infect Dis 2007;44:964-7.

97. Simpson CR, Ritchie LD, Robertson C, et al. Vaccine effectiveness in pandemic influenza - primary care reporting (VIPER): an observational study to assess the effectiveness of the pandemic influenza A (H1N1) vaccine. Health Technol Assess Winch Engl 2010; 14:313-46.

98. Dignani MC, Costantini P, Salgueira C, et al. Pandemic 2009 Influenza A (H1N1) virus infection in cancer and hematopoietic stem cell transplant recipients; a multicenter observational study. F1000Research 2014;3:221.

99. Ziakas PD, Karsaliakos P, Mylonakis E. Effect of prophylactic lamivudine for chemotherapy-associated hepatitis B reactivation in lymphoma: a meta-analysis of published clinical trials and a decision tree addressing prolonged prophylaxis and maintenance. Haematologica 2009;94:998-1005.

100. Chiang LT, Yao M, Ko B-S, Chen C-H. Development of immunity against hepatitis B virus after donor lymphocyte infusion in a peripheral blood stem cell transplantation recipient with chronic hepatitis B. Infection 2011;39:363-5.

101. Kitisinos KM, Corsa A, Liu Y, et al. No detectable resistance to tenofovir disoproxil fumarate after 6 years of therapy in patients with chronic hepatitis B. Hepatol Baltim Md 2014;59:434-42.

102. Watanabe M, Shibuya A, Takada J, et al. Entecavir is an optional agent to prevent hepatitis B virus (HBV) reactivation: a review of 16 patients. Eur J Intern Med 2010; 21:333-7.

103. Hammond SP, Borchelt AM, Ukomadu C, et al. Hepatitis B virus reactivation following allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 2009; 15:1049-59.

104. REVEAL-HBV Study Group. Risk of hepatocellular carcinoma across a biological gradient of serum hepatitis B virus DNA level. JAMA 2006;295:65-73.

105. Ljungman P, Delliliers GL, Platzbecker U, et al. Cidofovir for cytomegalovirus infection and disease in allogeneic stem cell transplant recipients. The Infectious Diseases Working Party of the European Group for Blood and Marrow Transplantation. Blood 2001; 97:388-92.

106. Platzbecker U, Bandt D, Thiede C, et al. Successful preemptive cidofovir treatment for CMV antigenemia after dose-reduced conditioning and allogeneic blood stem cell transplantation. Transplantation 2001; 71:880-5.

107. Florescu DF, Keck MA. Development of CMX001 (Brincidofovir) for the treatment of serious diseases or conditions caused by dsDNA viruses. Expert Rev Anti Infect Ther 2014; 12:1171-1178.

108. Papanicolaou GA, Lee YJ, Young JW, et al. Brincidofovir for polyomavirus-associated nephropathy after allogeneic hematopoietic stem cell transplantation. Am J Kidney Dis Off J Natl Kidney Found 2015; 65:780-4.

109. Wy R, Qasim W. Management of adenovirus in children after allogeneic hematopoietic stem cell transplantation. Adv Hematol 2013; 2013:176418.

110. Hanley PJ, Cruz CR, Shpall EJ, Bollard CM. Improving clinical outcomes using adoptively transferred immune cells from umbilical cord blood. Cytotherapy 2010; 12:713-20.

111. Hanley PJ, Cruz CRY, Savoldo B, et al. Functionally active virus-specific T cells that target CMV, adenovirus, and EBV can be expanded from naive T-cell populations in cord blood and will target a range of viral epitopes. Blood 2009; 114:1958-67.

112. Micklethwaite KP, Savoldo B, Hanley PJ, et al. Derivation of human T lymphocytes from cord blood and peripheral blood with antiviral and antileukemic specificity from a single culture as protection against infection and relapse after stem cell transplantation. Blood 2010; 115:2695-703.

113. Plantinga M, de Haar C, Nierkens S, Boelens JJ. Dendritic cell therapy in an allogeneic-hematopoietic cell transplantation setting: an effective strategy toward better disease control? Front Immunol 2014; 5:218.

114. Papadopoulou A, Gerdemann U, Katari UL, et al. Activity of broad-spectrum T cells as treatment for Adv, EBV, CMV, BKV, and HHV infections after HSCT. Sci Transl Med 2014; 6:242ra83.

115. Gerdemann U, Keirman JM, Katari UL, et al. Rapidly generated multivirus-specific cytotoxic T lymphocytes for the prophylaxis and treatment of viral infections. Mol Ther J Am Soc Gene Ther 2012; 20:1622-32.

116. Hanley PJ, Bollard CM, Brunstein CG. Adoptive immunotherapy with the use of regulatory T cells and virus-specific T cells derived from cord blood. Cytotherapy 2015; 17:749-55.

117. Qasim W, Gilmour K, Zhan H, et al. Interferon-γ capture T cell therapy for persistent Adenoviraeamia following allogeneic hematopoietic stem cell transplantation. Br J Haematol 2013; 161:449-52.

118. Moschovi M, Sterpi P, Youroukos S, Tzortzatou-Stathopoulou F. Encephalitis and myocarditis in a child with acute lymphoblastic leukemia: role of coxsackievirus B5? Pediatr Hematol Oncol 2002; 19:205-10.

119. Moschovi MA, Katsibardi K, Theodoridou M, et al. Enteroviral infec-
tions in children with malignant disease: a 5-year study in a single institution. J Infect 2007;54:387-92.
120. Katsibardi K, Moschovi MA, Theodoridou M, et al. Enterovirus-associated hemophagocytic syndrome in children with malignancy: report of three cases and review of the literature. Eur J Pediatr 2008;167:97-102.
121. Sato A. The human immunodeficiency virus protease inhibitor ritonavir is potentially active against urological malignancies. OncoTargets Ther 2015;8:761-8.
122. Kumar S, Bryant CS, Chamala S, et al. Ritonavir blocks AKT signaling, activates apoptosis and inhibits migration and invasion in ovarian cancer cells. Mol Cancer 2009;8:26.
123. Roy S, He R, Kapoor A, et al. Inhibition of human cytomegalovirus replication by artesininins: effects mediated through cell cycle modulation. Antimicrob Agents Chemother 2015;59:3870-9.
124. Vlahopoulos S, Critselis E, Voutsas IF, et al. New use for old drugs? prospective targets of chloroquines in cancer therapy. Curr Drug Targets 2014;15:843-51.
125. Garuli B, Di Mario G, Sciaraffia E, et al. Enhancement of T cell-mediated immune responses to whole inactivated influenza virus by chloroquine treatment in vivo. Vaccine 2013;31:1717-24.
126. Passweg JR, Rowlings PA, Atkinson KA, et al. Influence of protective isolation on outcome of allogeneic bone marrow transplantation for leukemia. Bone Marrow Transplant 1998;21:1231-8.
127. Moschovi M, Adamaki M, Kopsidas I. Viral infections in the pediatric oncology patient. In: Mendez-Vilas A, ed. Science against microbial pathogens: communicating current research and technological advances. Badajoz: Formatex; 2011. pp 353-362.