Comparison of Sobol’ sequences in financial applications

Shin Harase

Abstract. Sobol’ sequences are widely used for quasi-Monte Carlo methods that arise in financial applications. Sobol’ sequences have parameter values called direction numbers, which are freely chosen by the user, so there are several implementations of Sobol’ sequence generators. The aim of this paper is to provide a comparative study of (non-commercial) high-dimensional Sobol’ sequences by calculating financial models. Additionally, we implement the Niederreiter sequence (in base 2) with a slight modification, that is, we reorder the rows of the generating matrices, and analyze and compare it with the Sobol’ sequences.

Keywords. Quasi-Monte Carlo method; Sobol’ sequence; Computational finance.

2010 Mathematics Subject Classification. 65C05, 65D30, 65C10.

1 Introduction

Monte Carlo (MC) methods are an important numerical tool for pricing many financial derivatives and calculating the Greeks. Generally speaking, these values can be expressed as mathematical expectations, and the expectations reduce to integrals over the s-dimensional unit cube $(0, 1)^s$ after a suitable change of variables, that is, $\int_{(0,1)^s} f(x) \, dx$ for a function $f : (0, 1)^s \to \mathbb{R}$ and $x := (x_1, \ldots, x_s)$. However, it is often difficult to evaluate the exact value analytically and the dimension s is over hundreds or thousands, so we use MC integration:

$$\int_{(0,1)^s} f(x) \, dx \approx \frac{1}{N} \sum_{n=0}^{N-1} f(x_n), \quad (1.1)$$

where $\{x_0, \ldots, x_{N-1}\} \subset (0, 1)^s$ is a point set of independent random samples from the uniform distribution on $(0, 1)^s$. MC has a probabilistic error of $O(N^{-1/2})$, which does not depend on the dimension s but is significantly slow. To improve the rate of convergence, we apply quasi-Monte Carlo (QMC) methods using

This work was partially supported by JSPS KAKENHI Grant Numbers JP18K18016, JP26730015, JP26310211, JP15K13460. This work was also supported by JST CREST.
low-discrepancy point sets or sequences that are more uniformly distributed than random points (see [7, 22] for the precise definition). Around the middle of the 1990s, a series of studies reported that QMC attains a higher rate of convergence than MC for certain types of high-dimensional numerical integration in finance [1, 4, 15, 23, 25]. Because of this, Sobol’ sequences have been widely used since then.

Sobol’ sequences are a class of low-discrepancy sequences originally proposed by Sobol’ [27] in 1967 and have parameters called direction numbers, which are freely chosen by the user. Thus, there are several implementations of Sobol’ sequences with distinct parameter values [2, 13, 14, 18, 28]. Some of them have been optimized with the aim of applying them to finance. A comparison of Sobol’ sequences for high-dimensional problems in finance was presented in [28], but we want to know further numerical examples, including randomization and effective dimension reduction techniques. According to [14], Joe and Kuo conducted some preliminary calculations for financial models and found that their new Sobol’ sequence [14] provided better results in some cases and, at worst, was comparable with the old sequence [13]; however, specific numerical examples were not included in their paper.

The aim of this paper is to provide a comprehensive comparative study of (non-commercial) high-dimensional Sobol’ sequences [13, 14, 18] in financial applications. Niederreiter [21, 22] proposed another class of low-discrepancy sequences, called Niederreiter sequences. Recently, Faure and Lemieux [8] described the relationships between Sobol’ and Niederreiter sequences in detail. Additionally, Faure and Lemieux [9] reported that the Niederreiter sequence (in base 2) with a slight modification, i.e., reordering the rows of the generating matrices, demonstrated high performance in some applications. Motivated by their report, we also analyze the modified Niederreiter sequence and compare it with Sobol’ sequences.

In the theory of “analysis of variance” (ANOVA) decomposition [4, 10, 11, 34, 35], it is known that the integrand \(f(x) \) for certain high-dimensional problems in finance is dominated by the first few variables (low effective dimension in the truncation sense) or is well approximated by a sum of functions of at most one or two variables (low effective dimension in the superposition sense), i.e.,

\[
f(x) = f_0 + \sum_{i=1}^s f_i(x_i) + \sum_{1 \leq i < j \leq s} f_{i,j}(x_i, x_j) + \text{(small higher-order terms)}. \tag{1.2}
\]

It is believed that these are reasons why QMC succeeds in high-dimensional numerical integration even if the nominal dimension \(s \) is over hundreds or thousands. The Sobol’ sequence provided by Joe and Kuo [14] was optimized so as to have
good two-dimensional (2D) projections for the assumption (1.2). As we shall see later, if the latter condition (1.2) is satisfied but the former condition is not satisfied, that is, if \(f(x) \) has low effective dimension in the superposition sense but high effective dimension in the truncation sense, then such optimization seems to be effective.

The remainder of this paper is organized as follows: In Section 2, we review digital nets and sequences, the \(t \)-value, which is a criterion of uniformity, and Sobol’ and Niederreiter sequences. In Sections 3 and 4, we present our main results. In Section 3, we calculate the frequency of \(t \)-values of Sobol’ and Niederreiter sequences for 2D projections in high dimensions and show that the new Sobol’ sequence provided by Joe and Kuo [14] and the modified Niederreiter sequence avoid the existence of extremely large \(t \)-values. In Section 4, we compare Sobol’ and Niederreiter sequences for numerical integration problems, e.g., Asian, digital, and basket options, with or without effective dimension reduction. In Section 5, we conclude this paper.

2 Preliminaries

2.1 Digital nets and digital sequences

Following [5, 7, 22], we recall a digital method to construct QMC point sets \(P \) and (infinite) sequences \(S \). Sobol’ sequences are included in these classes. Let \(\mathbb{F}_2 := \{0, 1\} \) be the two-element field. We perform addition and multiplication over \(\mathbb{F}_2 \) (or modulo 2).

Definition 2.1 (Digital nets). Let \(s \geq 1 \) and \(m \geq 1 \) be integers. Let \(C_1, \ldots, C_s \in \mathbb{F}_2^{m \times m} \) be \(m \times m \) matrices over \(\mathbb{F}_2 \). For each \(n = 0, \ldots, 2^m - 1 \), let \(n = \sum_{l=0}^{m-1} n_l 2^l \) with \(n_l \in \mathbb{F}_2 \) be the expansion in base 2. For each \(1 \leq i \leq s \), set \((x_{n,i,0}, \ldots, x_{n,i,m-1})^\top := C_i(n_0, \ldots, n_{m-1})^\top \), where \(^\top \) is the transpose, and \(x_{n,i} := \sum_{l=0}^{m-1} x_{n,i,l} 2^{-l-1} \). Then, the point set \(P = \{x_n := (x_{n,1}, \ldots, x_{n,s}) \mid n = 0, \ldots, 2^m - 1 \} \) is called a digital net over \(\mathbb{F}_2 \) and \(C_1, \ldots, C_s \) are called the generating matrices of the digital net \(P \).

The concept of digital nets can be extended to (infinite) sequences \(S = \{x_0, x_1, \ldots\} \subset [0, 1)^s \) for \(\infty \times \infty \) generating matrices \(C_1, \ldots, C_s \in \mathbb{F}_2^{\infty \times \infty} \) and infinite expansions \(n = \sum_{l=0}^{\infty} n_l 2^l \) and \(x_{n,i} := \sum_{l=0}^{\infty} x_{n,i,l} 2^{-l-1} \) that contain only a finite number of nonzero terms. The resulting sequence \(S \) is called a digital sequence and the matrices \(C_1, \ldots, C_s \) are called the generating matrices of the digital sequence.
2.2 \((t, m, s)-nets\)

As a quality parameter of uniformity for a point set \(P\), we recall the definition of the \(t\)-value. See [5, 7, 22] for details.

Definition 2.2. \((t, m, s)-nets\). Let \(s \geq 1\), and \(t\) be an integer with \(0 \leq t \leq m\). A point set \(P = \{x_0, x_1, \ldots, x_{2^m-1}\}\) consisting of \(2^m\) points in \([0, 1)^s\) is called a \((t, m, s)-net\) (in base 2) if every subinterval \(J = \prod_{i=1}^{s}[a_i/2^{d_i}, (a_i + 1)/2^{d_i}) \in [0, 1)^s\) with integers \(d_i \geq 0\) and \(0 \leq a_i < 2^{d_i}\) for \(1 \leq i \leq s\) and of volume \(2^{t-m}\) contains exactly \(2^t\) points of \(P\).

Definition 2.3 \((t\)-value for a \((t, m, s)-net\). The minimum \(t\) that satisfies the above property is called the \(t\)-value for a \((t, m, s)-net\).

A point set \(P\) is well distributed if the \(t\)-value is small. The integration error is bounded by \(O(2^t(\log N)^{s-1}/N)\) for \(N = 2^m\) when \(f\) is smooth. The factor \((\log N)^{s-1}\) is not negligible if \(s\) is large, but QMC works well for high-dimensional numerical integration in finance possibly because \(f(x)\) has low effective dimension. In the case of digital nets, the \(t\)-value can be easily calculated by some algorithms [6, 26].

2.3 Sobol’ and Niederreiter sequences

Sobol’ [27] proposed a construction method for generating matrices \(C_1, \ldots, C_s \in \mathbb{F}_2^{\infty \times \infty}\) that have a good structure of \((t, m, s)-nets\). His sequences are now called **Sobol’ sequences** and are included in a subclass of **generalized Niederreiter sequences** [31, 32]. Recently, Faure and Lemieux [8] described the relationships between them in detail. From this viewpoint, Sobol’ sequences are formulated as follows:

(i) Let \(p_1(x) = x \in \mathbb{F}_2[x]\) and \(p_i(x) \in \mathbb{F}_2[x], 2 \leq i \leq s,\) be the \((i - 1)\)th primitive polynomials in a list of primitive polynomials that are sorted in non-decreasing order of degree, i.e., \(p_2(x) = x + 1, p_3(x) = x^2 + x + 1,\) and so on. Let \(e_i := \deg(p_i)\).

(ii) For each \(1 \leq i \leq s,\) set polynomials \(g_{i,0}(x), \ldots, g_{i,e_i-1}(x) \in \mathbb{F}_2[x]\) such that

\[
\deg g_{i,k}(x) = e_i - 1 - k \tag{2.1}
\]

for \(0 \leq k \leq e_i - 1,\) in advance. These polynomials are the parameters that can be freely chosen by the user and correspond one-to one to the so-called **direction numbers** (see Remark 2.4 for details).
(iii) For \(u = 1, 2, \ldots \), consider the formal power series expansion

\[
g_{i,k}(x) = \frac{1}{p_i(x)^u} \sum_{v=1}^{\infty} a^{(i)}(u, k, v)x^{-v} \in F_2((x^{-1})). \tag{2.2}
\]

(iv) Define \(C_i = (c_{j,v}^{(i)})_{j,v \geq 1} \in F_2^{\infty \times \infty} \) as

\[
c_{j,v}^{(i)} = a^{(i)}(Q + 1, k, v) \in F_2 \quad \text{for} \quad 1 \leq i \leq s, j \geq 1, v \geq 1,
\]

where

\[
j - 1 = Qe_i + k, \tag{2.3}
\]

with integers \(Q = Q(i, j) \) and \(k = k(i, j) \) satisfying \(0 \leq k \leq e_i - 1 \). Note that each row of \(C_i \) corresponds to each formal power series expansion in (2.2). Note that the conditions (2.1) and (2.3) correspond to the reordering of rows of \(C_i \) so as to obtain non-singular upper triangular (NUT) matrices.

The first \(2^m \) points \(P \) can be viewed as a digital net generated by the upper-left \(m \times m \) submatrices of \(C_1, \ldots, C_s \in F_2^{\infty \times \infty} \). We can prove that \(P \) is a \((t, m, s)\)-net with the following properties (see [7, 22]):

- Each one-dimensional (1D) projection is a \((0, m, 1)\)-net, which means that 1D projections have already been optimized, that is, each \(t \)-value is 0.
- The \(t \)-value is \(\leq \sum_{i=1}^{s} (e_i - 1) \) for any \(m \), which means that the initial dimensions have already been optimized.
- For any low-dimensional projection, the \(t \)-value is \(\leq \sum (e_i - 1) \), where \(\sum \) is taken over the corresponding projections.

The condition (2.1) can be described as

\[
g_{i,k}(x) = x^{e_i-1-k} + \text{(lower terms)} \in F_2[x] \tag{2.4}
\]

for \(0 \leq k \leq e_i - 1 \), and a good selection of lower terms makes us obtain \(t \)-values smaller than those of the above upper bounds.

Remark 2.4. Sobol’ [27] originally proposed a column-by-column construction for generating matrices \(C_i \) using recurrences of columns based on primitive polynomials \(p_i(x) \) for each \(1 \leq i \leq s \). In this construction, the upper-left \(e_i \times e_i \) submatrices of generating matrices \(C_i \) are initial values, and were originally called the direction numbers, which exactly correspond one-to-one to the polynomials \(g_{i,0}(x), \ldots, g_{i,e_i-1}(x) \) with (2.1). See [8] for details.
Remark 2.5. Niederreiter [21, 22] proposed another construction method for generating matrices $C_1, \ldots, C_s \in \mathbb{F}_b^{\infty \times \infty}$ for low-discrepancy sequences, where b is a prime power and \mathbb{F}_b is a finite field with b elements. These sequences are called Niederreiter sequences. In the standard implementation of [3] in base $b = 2$, the main differences from Sobol’ sequences are that $p_i(x) \in \mathbb{F}_2[x], 1 \leq i \leq s$, are taken to be irreducible polynomials (sorted in non-decreasing order of degree) instead of primitive polynomials, and $g_{i,0}(x), \ldots, g_{i,e_i-1}(x)$ are taken to be

$$g_{i,k}(x) = x^k \in \mathbb{F}_2[x]$$

for $e_i = \deg(p_i)$ and $0 \leq k \leq e_i - 1$, instead of polynomials with the condition (2.1). Note that there are no freely chosen parameters. Note that the resulting generating matrices $C_1, \ldots, C_s \in \mathbb{F}_2^{\infty \times \infty}$ do not have the NUT properties (see Figs. 1 and 2 in [8]), so we suffer from the leading-zero phenomenon, that is, there are too many points close to the origin at the beginning of the sequences. Additionally, note that we obtain the NUT generating matrices after reordering the rows of C_i. According to Theorem 4.3 of [8], such NUT generating matrices are obtained by the original column-by-column construction, which implies that the primitivity of $p_i(x)$ is not necessary.

3 Analysis of Sobol’ and Niederreiter sequences with NUT generating matrices

In this section, we compare high-dimensional Sobol’ and Niederreiter sequences in terms of the t-values. In 1976, Sobol’ and Levitan [29] provided direction numbers in terms of Property A and Property A’ [30], which are the criteria for the equidistribution property of the 1 and 2 most significant bits, respectively. In 1988, Bratley and Fox [2] provided a FORTRAN implementation of the Sobol’ sequence using this set of direction numbers up to dimension 40. In our tests, we investigate the following (non-commercial) high-dimensional Sobol’ and Niederreiter sequences released after 2000:

(a) In 2003, Joe and Kuo [13] provided a Sobol’ sequence generator up to dimension 1111. The direction numbers for $1 \leq s \leq 40$ are the same as those of Bratley and Fox [2]. The direction numbers for $40 < s \leq 1111$ are selected so as to satisfy Property A. We refer to this generator as Sobol’ (JoeKuo03).

(b) Lemieux et al. [18] provided a Sobol’ sequence generator up to dimension 360. The direction numbers for $1 \leq s \leq 40$ are the same as those of Bratley and Fox [2]. The direction numbers for $40 < s \leq 360$ are optimized in terms of the resolution criterion for eight successive dimensions, see [17,
Chapter 3.5.2]. We use the 2004 version and refer to this generator as Sobol’
(Lemieux).

(c) In 2008, Joe and Kuo [14] indicated that the 2003 version of the Sobol’
sequence generator has a bad structure (i.e., extremely large t-values) for some
2D projections and searched the new direction numbers up to 21201. Their
approach was to choose the direction numbers so that (i) Property A holds
for $1 \leq s \leq 1111$; and (ii) the t-values of 2D projections of the point sets
are minimized by proposing the search criterion $D^{(6)}$. Consequently,
 extremely large t-values are avoided. We refer to this new generator as Sobol’
(JoeKuo08).

(d) Recently, Faure and Lemieux [8] discussed the Niederreiter sequence (in base
2) with NUT generating matrices after reordering the rows of the generat-
ing matrices. This sequence can be viewed as the Sobol’ sequence based
on irreducible polynomials $p_1(x) = x, p_2(x), \ldots, p_s(x) \in \mathbb{F}_2[x]$ with non-
decreasing order of degree and given by $g_{i,k}(x) = x^{e_i-1-k}$ for $e_i = \deg(p_i)$
and $0 \leq k \leq e_i - 1$, so as to satisfy the condition (2.1). Additionally,
Faure and Lemieux [9] reported that the Niederreiter sequence with NUT
generating matrices already demonstrated high performance in some high-
dimensional numerical integrations without optimizing the lower terms of
$g_{i,k}(x)$ in (2.4). To confirm their new findings, we implement this gene-
ration and refer to it as Niederreiter (NUT). The irreducible polynomials and direc-
tion numbers are available at https://github.com/sharase/niederreiter-nut.

In addition, Kucherenko et al. [28] released commercial software for Sobol’
sequences up to dimension 65536 with Property A for all dimensions and Property
A’ for successive dimensions, but we exclude it from our tests because it requires
a commercial license.

To compare the sequences (a)–(d), we assume that the integrand $f(x)$ satisfies
the condition (1.2). The t-values of 1D projections are all 0, so we calculate the
t-values of 2D projections. Let $m \geq 1$ and

$$t(i, s; m)$$

denote the t-value of the digital net that corresponds to the (i, s)-projection (i.e.,
the 2D projection of dimensions i and s with $1 \leq i \leq s - 1$) of the first 2^m
points. Tables 1 and 2 show the frequency of all the values of $t(i, s; m)$ ($1 \leq i \leq s - 1$) for
$2 \leq s \leq 360$ and $2 \leq s \leq 1024$, respectively. Sobol’ (Lemieux) is up to dimen-
sion 360, and hence it is excluded in Table 2. From the tables, there exist extremely
large t-values for Sobol’ (Lemieux) and (JoeKuo03), but Niederreiter (NUT) tends
to avoid such large t-values, as well as Sobol’ (JoeKuo08). Conversely, the occur-
rence of small t-values (e.g., 1 or 2) for Niederreiter (NUT) is more frequent than
for Sobol’ sequences. This implies that Niederreiter (NUT) has high uniformity for 2D projections in high dimensions without optimizing direction numbers.

4 Comparison in financial applications

We compare Niederreiter (NUT) and Sobol’ sequences in Section 3 from the viewpoint of financial applications. In the QMC setting, we apply randomizations using linear scrambling and digital shift to point sets (see [12, 16, 17] for details). This technique preserves the t-values of (t, m, s)-nets and avoids the problem that the first point is always the origin. We apply the randomizations M times, make M point sets $\tilde{P}_l = \{\tilde{x}_n^{(l)}\} \subset (0, 1)^s (l = 1, \ldots, M)$, and compute M independent estimates of (1.1):

$$Q_l := \frac{1}{N} \sum_{n=0}^{N-1} f(\tilde{x}_n^{(l)}).$$

Further, we compute the mean and the standard error of Q_1, \ldots, Q_M, i.e.,

$$\bar{Q} := \frac{1}{M} \sum_{l=1}^{M} Q_l, \quad \text{stderr}(\bar{Q}) := \sqrt{\frac{1}{M(M-1)} \sum_{l=1}^{M} (Q_l - \bar{Q})^2}.$$

Throughout this paper, we set $M = 100$ as the number of randomizations.

4.1 Asian option

Assume that under the risk-neutral measure the asset price S_t follows the Black–Scholes model (i.e., geometric Brownian motion):

$$dS_t = rS_t dt + \sigma S_t dB_t,$$ (4.1)

where r is the risk-free interest rate, σ is the volatility, B_t is a standard Brownian motion. The problem of pricing an Asian call option on the discrete arithmetic average is formulated as follows: the payoff function is given by $\max(0, \frac{1}{s} \sum_{i=1}^{s} S_{t_i} - K)$, where K is the strike price at maturity T, and a time interval $[0, T]$ is discretized at equally spaced times $t_i = i\Delta t$ for $i = 1, \ldots, s$, where $\Delta t = T/s$. Then, the value of the option at time 0 is given by

$$E \left[e^{-rT} \max(0, \frac{1}{s} \sum_{i=1}^{s} S_{t_i} - K) \right].$$ (4.2)
The analytical solution to (4.1) is given by $S_t = S_0 \exp((r - \sigma^2/2)t + \sigma B_t)$, so it is sufficient to simulate sample paths of Brownian motion. The standard construction of Brownian motion is to generate B_{t_i} sequentially in time: given $B_0 = 0,$

$$B_{t_i} = B_{t_{i-1}} + \sqrt{\Delta t} Z_i, \quad i = 1, \ldots, s,$$

where $Z_1, \ldots, Z_s \sim N(0, 1)$ are i.i.d. standard normally distributed random variables. The standard construction (4.3) can be written as

$$(B_{t_1}, \ldots, B_{t_s})^\top = A(Z_1, \ldots, Z_s)^\top, \quad A = \sqrt{\Delta t} \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 1 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{pmatrix},$$

where A is an $s \times s$ lower triangular matrix. Thus, the expectation (4.2) can be written as

$$\int_{(0,1)^s} e^{-rT} \max \left(0, \frac{1}{s} \sum_{i=1}^s S_0 \exp \left(\left(r - \frac{\sigma^2}{2} \right) t_i + \sigma w_i \right) - K \right) \, dx,$$

where $\Phi : (0,1) \to \mathbb{R}$ denotes the cumulative distribution function of the standard normal distribution and $(w_1, \ldots, w_s)^\top := A(\Phi^{-1}(x_1), \ldots, \Phi^{-1}(x_s))^\top$ for $x = (x_1, \ldots, x_s) \in (0,1)^s$. We use the following parameters: $T = 1, r = 0.1, \sigma = 0.2, S_0 = 100, K = 100$, which were used in [34].

First, we consider the case of dimension $s = 360$. Figure 1 shows a summary of the standard error stderr(\bar{Q}) in log$_2$ scale for $m = 1, \ldots, 20$. In our experiments, we applied QMC methods based on Sobol’ and Niederreiter sequences (a)–(d) and crude MC methods using random number sequences from Mersenne Twister [19]. For this, we observed that Niederreiter (NUT) and Sobol’ (JoeKuo08) are more effective than the others, particularly for $m = 10, \ldots, 18$, which are often used in practice. Additionally, our result seems to agree with the frequency of t-values for 2D projections in Table 1. Thus, it is inferred that the Asian option using the standard construction (4.3) has low effective dimension in the superposition sense but high effective dimension in the truncation sense.

Further, we consider the higher dimensional case $s = 1024$. Figure 2 shows a summary of stderr(\bar{Q}) in log$_2$ scale. In the standard construction (4.3), Niederreiter (NUT) and Sobol’ (JoeKuo08) also provide better results than Sobol’ (JoeKuo03). Further, we recall dimension reduction techniques, such as the principal component analysis (PCA) construction [1] for generating Brownian motion B_t, which enhance the efficiency of QMC methods. Here, the sampled Brownian motion
\((B_{t_1}, \ldots, B_{t_s})^\top\) is normally distributed with mean 0 and covariance matrix \(C = (\min(t_i, t_j))_{i,j=1}^s\), i.e., \((B_{t_1}, \ldots, B_{t_s})^\top \sim N(0, C)\). Generally, we obtain the equivalent paths of Brownian motion:

\[
(B_{t_1}, \ldots, B_{t_s})^\top = A(Z_1, \ldots, Z_s)^\top, \quad (Z_1, \ldots, Z_s)^\top \sim N(0, I_s),
\]

provided we apply the change of variables \(x = Az\) with \(AA^\top = C\). The matrix \(A\) in the standard construction (4.4) is the Cholesky matrix of \(C\), i.e., \(AA^\top = C\). Conversely, the PCA construction is a method used to choose \(A = [\sqrt{\lambda_1} v_1, \cdots, \sqrt{\lambda_s} v_s]\), where \(\lambda_1 \geq \cdots \geq \lambda_s\) are the eigenvalues and \(v_1, \ldots, v_s\) are the corresponding unit-length eigenvectors of \(C\). In our experiment, the Niederreiter (NUT) and Sobol’ sequences with PCA outperform those with the standard construction, but those with PCA have exactly the same convergence rates. Our result implies that PCA transforms the integrand so as to have low effective dimension in the truncation sense, that is, the important variables are concentrated in the first few dimensions (e.g., \(\leq 2\) or 3). However, for Sobol’ sequences, the lower terms of \(g_{i,k}(x)\) in (2.4) have almost no choice and are fixed in these first dimensions because the degree \(e_i\) in (2.4) is sufficiently small. Thus, it seems to be difficult to expect further improvement for dimension reduction techniques as a result of changing the direction numbers for Sobol’ sequences.

We also tested the Brownian bridge (BB) construction [20] as another dimension reduction technique and observed that there is no difference among Niederreiter (NUT) and Sobol’ sequences for the convergence rates, which are better than the standard construction but worse than PCA, so we omitted the results.

4.2 Digital option

Assume that the asset price \(S_t\) follows the Black–Scholes model (4.1). Papageorgiou [24] considered the following digital option:

\[
E \left[\frac{1}{s} \sum_{i=1}^s (S_{t_i} - S_{t_{i-1}})_+^0 S_{t_i} \right],
\]

where \((x)_+^0\) is equal to 1 if \(x > 0\) and is 0 otherwise, \(x \in \mathbb{R}\). He indicated that effective dimension reduction techniques perform worse than the standard construction (4.3). Wang and Tan [36] and Wang [33] found that if the paths are generated by the standard construction, then the discontinuities of the payoff function of the sum of the indicator functions are aligned with the coordinate axes, so good performance is expected, but BB and PCA do not have this type of discontinuity. Thus, the standard construction is a good choice in this QMC setting. Figure 3 shows a summary of stderr(\(Q\)) in log₂ scale. We used the parameters
s = 128, T = 1, r = 0.045, σ = 0.3, S₀ = 100 from [24]. Indeed, PCA is worse than the standard construction. Niederreiter (NUT) and Sobol’ (JoeKuo08) with good 2D projections are useful for such a problem. Note that this example is very simple and the value (4.5) can be calculated analytically.

4.3 Basket option

Following [34, 35], under the risk-neutral measure, we consider a European-style basket call option on the arithmetic average over s assets \(S_t^{(1)}, \ldots, S_t^{(s)} \), and assume that each asset satisfies

\[
dS_t^{(i)} = rS_t^{(i)} dt + \sigma^{(i)} S_t^{(i)} dB_t^{(i)} \quad (i = 1, \ldots, s),
\]

for a mean return parameter \(r \) and volatility parameters \(\sigma^{(i)} \). Assume \(B_t^{(1)}, \ldots, B_t^{(s)} \) are correlated Brownian motions with correlations \(\rho_{ij} \), and the terminal pay off at \(T \) is given by \(\max(0, \frac{1}{s} \sum_{i=1}^{s} S_T^{(i)} - K) \). For this, we compute the price of the basket option:

\[
E \left[e^{-rT} \max \left(0, \frac{1}{s} \sum_{i=1}^{s} S_T^{(i)} - K \right) \right].
\]

Note that \(s \) is the number of assets, not the number of discretization steps. The solutions to (4.6) are given by \(S_t^{(i)} = S_0^{(i)} \exp((r - (\sigma^{(i)})^2/2)t + \sigma^{(i)} B_t^{(i)}) \). Here, the random vector \((B_T^{(1)}, \ldots, B_T^{(s)})^\top \) is normally distributed with mean \(0 \) and covariance matrix \(C = (\rho_{ij} T)_{i,j=1}^s \). Let \((Z_1, \ldots, Z_s)^\top \sim N(0, I_s)\). The standard construction for generating Brownian motion is \((B_T^{(1)}, \ldots, B_T^{(s)})^\top = A(Z_1, \ldots, Z_s)^\top\), where \(A \) is the Cholesky matrix of \(C \). By contrast, the PCA chooses \(A = [\sqrt{\lambda_1} v_1, \ldots, \sqrt{\lambda_s} v_s] \), where \(\lambda_1 \geq \cdots \geq \lambda_s \) are the eigenvalues and \(v_1, \ldots, v_s \) are the corresponding unit-length eigenvectors of \(C \). Expectation (4.7) is expressed as

\[
\int_{(0,1)^s} e^{-rT} \max \left(0, \frac{1}{s} \sum_{i=1}^{s} S_0^{(i)} \exp \left(r - \frac{(\sigma^{(i)})^2}{2} \right) T + \sigma^{(i)} w_i \right) - K \right) dx.
\]

where \((w_1, \ldots, w_s)^\top := A(\Phi^{-1}(x_1), \ldots, \Phi^{-1}(x_s))^\top\). We set the parameters \(s = 128, T = 1, r = 0.1, \sigma^{(i)} = 0.2, \rho_{ij} = 0.3(i \neq j), S_0^{(i)} = 100, K = 100, \) which are taken from [34, 35], and conduct experiments on the standard and PCA constructions. Figure 4 shows a summary of stderr(\(\tilde{Q} \)) in log₂ scale. Unlike the previous examples, the Niederreiter (NUT) and Sobol’ sequences using the standard (Cholesky) construction have exactly the same convergence rates. According to [34, Table 3 and 6] and [35, Table 3 and Table 5], it is inferred that the value
of basket options using the standard (Cholesky) construction is determined by depending on the first few variables or depending on a high proportion to order-1 terms $\sum_{i=1}^{s} f_i(x_i)$ in (1.2), compared with those of Asian options.

4.4 Asian option under the Heston model

As a more complicated model, under the risk-neutral measure, we consider the pricing of an Asian call option (4.2) with maturity T and strike K written on an asset whose price process S_t satisfies the Heston stochastic volatility model:

$$dS_t = rS_tdt + \sigma_t S_t \left[\rho dB_t^{(1)} + \sqrt{1 - \rho^2} dB_t^{(2)} \right],$$

$$d\sigma_t^2 = \kappa \left[\theta - \sigma_t^2 \right] dt + \xi \sigma_t dB_t^{(1)},$$

where σ_t^2 is the volatility process, $B_t^{(1)}$ and $B_t^{(2)}$ are two independent standard Brownian motions, r is the risk-free interest rate, κ is the speed of mean reversion, $\theta > 0$ is the long-run mean variance, ξ is the volatility of the volatility, ρ is the correlation between the Brownian motions driving S_t and σ_t^2. The volatility process σ_t^2 follows a CIR process, which is always positive under the assumption $2\kappa \theta > \xi^2$. We use the Euler–Maruyama scheme with s steps to discretize both S_t and σ_t^2 as in [17, Fig. 7.3 in Chapter 7.2.1]. Let $\Delta t = T/s$. Then, we need $2s$-dimensional points to simulate both S_{t_i} and $\sigma_{t_i}^2$ for $t_i = i\Delta t$ ($i = 1, \ldots, s$).

Figure 5 gives results for an Asian option under the Heston model with $s = 512$. We use the parameters $T = 0.5, r = 0, \kappa = 2, \theta = 0.01, \xi = 0.1, \rho = 0.5, S_0 = 100, \sigma_0 = 0.1, K = 100$, which are from [17, Chapter 7.3]. Note that Niederreiter (NUT) and Sobol’ (JoeKuo08) give better results than Sobol’ (JoeKuo03).

5 Concluding remarks

Sobol’ sequences have been used successfully in high-dimensional numerical integration in financial applications. There are several implementations of Sobol’ sequence generators with distinct direction numbers, so it is natural to assess which of them is better. Hence, we tested Sobol’ sequences for calculating financial models and observed that the Sobol’ sequence with good 2D projections [14] outperforms the previous Sobol’ sequences [13, 18], particularly in the case in which the integrands have low effective dimension in the superposition sense but high effective dimension in the truncation sense. Additionally, we implemented the Niederreiter sequence with NUT generating matrices, suggested by Faure and Lemieux [8, 9]. Surprisingly, the modified Niederreiter sequence has already had good 2D projections, and had high performance for calculating some financial models without optimizing direction numbers.
Figure 1. Comparison of Niederreiter (NUT) and Sobol’ sequences for the pricing of an Asian option with $s = 360$.

Figure 2. Comparison of Niederreiter (NUT) and Sobol’ sequences for the pricing of an Asian option using the standard and PCA constructions for $s = 1024$.
Figure 3. Comparison of Niederreiter (NUT) and Sobol’ sequences for the pricing of a digital option with $s = 128$.

Figure 4. Comparison of Niederreiter (NUT) and Sobol’ sequences for the pricing of a basket option with number of assets $s = 128$.
Figure 5. Comparison of Niederreiter (NUT) and Sobol’ sequences for the pricing of an Asian option under the Heston model for $s = 512$.
Finally, we mention the possibility of the further improvement of Sobol’ sequences. In fact, we attempted the further improvement of Sobol’ type digital nets by optimizing direction numbers in terms of the framework of generalized Niederreiter sequences based on irreducible polynomials. For example, we attempted to search direction numbers so as to have even better t-values for 2D projections or better three-dimensional projections in addition to good 2D projections. The aim appears to be theoretically achieved, but we could not observe a clear difference from the Niederreiter sequence with the NUT generating matrices for calculating financial models. Perhaps, there might be a limit to the further improvement of Sobol’ sequences by optimizing direction numbers from a practical perspective. Therefore, further improvement of Sobol’ sequences is left for future work.

Bibliography

[1] P. Acworth, M. Broadie and P. Glasserman, *A comparison of some Monte Carlo and quasi-Monte Carlo techniques for option pricing*, Monte Carlo and Quasi-Monte Carlo Methods 1996 (P. Hellekalek, G. Larcher, H. Niederreiter and P. Zinterhof, eds.), Lecture Notes in Statistics 127, Springer-Verlag, New York, 1998, pp. 1–18.

[2] P. Bratley and B. L. Fox, Algorithm 659: Implementing Sobol’s quasirandom sequence generator, *ACM Trans. Math. Software* 14 (1988), 88–100.

[3] P. Bratley, B. L. Fox and H. Niederreiter, Implementation and tests of low-discrepancy sequences, *ACM Trans. Model. Comput. Simul.* 2 (1992), 195–213.

[4] R. E. Caflisch, W. Morokoff and A. B. Owen, Valuation of mortgage backed securities using brownian bridges to reduce effective dimension, *Journal of Computational Finance* 1 (1997), 27–46.

[5] J. Dick, F. Y. Kuo and I. H. Sloan, High-dimensional integration: the quasi-Monte Carlo way, *Acta Numer.* 22 (2013), 133–288.

[6] J. Dick and M. Matsumoto, On the fast computation of the weight enumerator polynomial and the t value of digital nets over finite abelian groups, *SIAM J. Discrete Math.* 27 (2013), 1335–1359.

[7] J. Dick and F. Pillichshammer, *Digital nets and sequences. Discrepancy theory and quasi-Monte Carlo integration*, Cambridge University Press, Cambridge, 2010.

[8] H. Faure and C. Lemieux, Irreducible Sobol’ sequences in prime power bases, *Acta Arith.* 173 (2016), 59–80.

[9] H. Faure and C. Lemieux, *Implementation of irreducible Sobol’ sequences in prime power bases*, 2018, Submitted for publication.

[10] M. Griebel and M. Holtz, Dimension-wise integration of high-dimensional functions with applications to finance, *J. Complexity* 26 (2010), 455–489.
[11] M. Holtz, *Sparse grid quadrature in high dimensions with applications in finance and insurance*, Lecture Notes in Computational Science and Engineering 77, Springer-Verlag, Berlin, 2011.

[12] H. S. Hong and F. J. Hickernell, Algorithm 823: Implementing scrambled digital sequences, *ACM Trans. Math. Software* 29 (2003), 95–109.

[13] S. Joe and F. Y. Kuo, Remark on Algorithm 659: implementing Sobol’s quasirandom sequence generator, *ACM Trans. Math. Software* 29 (2003), 49–57.

[14] S. Joe and F. Y. Kuo, Constructing Sobol’ sequences with better two-dimensional projections, *SIAM J. Sci. Comput.* 30 (2008), 2635–2654.

[15] C. Joy, P. P. Boyle and K. S. Tan, Quasi-Monte Carlo methods in numerical finance, *Management Sci.* 42 (1996), 926–938.

[16] P. L’Ecuyer, Quasi-Monte Carlo methods with applications in finance, *Finance Stoch.* 13 (2009), 307–349.

[17] C. Lemieux, *Monte Carlo and quasi-Monte Carlo sampling*, Springer Series in Statistics, Springer, New York, 2009.

[18] C. Lemieux, M. Cieslak and K. Luttmer, *RandQMC User’s Guide: A Package for Randomized Quasi-Monte Carlo Methods in C*, Department of Computer Science, University of Calgary, Calgary, AB, Canada, Technical report no. 2002-712-15, 2002, Version January 13 2004.

[19] M. Matsumoto and T. Nishimura, Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator, *ACM Trans. Model. Comput. Simul.* 8 (1998), 3–30.

[20] B. Moskowitz and R. E. Caflisch, Smoothness and dimension reduction in quasi-Monte Carlo methods, *Math. Comput. Modelling* 23 (1996), 37–54.

[21] H. Niederreiter, Low-discrepancy and low-dispersion sequences, *J. Number Theory* 30 (1988), 51–70.

[22] H. Niederreiter, *Random number generation and quasi-Monte Carlo methods*, CBMS-NSF Regional Conference Series in Applied Mathematics 63, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992.

[23] S. Ninomiya and S. Tezuka, Toward real-time pricing of complex financial derivatives, *Applied Mathematical Finance* 3 (1996), 1–20.

[24] A. Papageorgiou, The brownian bridge does not offer a consistent advantage in quasi-Monte Carlo integration, *J. Complexity* 18 (2002), 171 – 186.

[25] S. Paskov and J. Traub, Faster valuation of financial derivatives, *Journal of Portfolio Management* 22 (1995), 113–120.

[26] G. Pirsic and W. Ch. Schmid, Calculation of the quality parameter of digital nets and application to their construction, *J. Complexity* 17 (2001), 827 – 839.
[27] I. M. Sobol’, On the distribution of points in a cube and the approximate evaluation of integrals, *USSR Computational Mathematics and Mathematical Physics* 7 (1967), 86 – 112.

[28] I. M. Sobol’, D. Asotsky, A. Kreinin and S. Kucherenko, Construction and comparison of high dimensional Sobol’ generators, *Wilmott* (2011), 64–79.

[29] I. M. Sobol’ and Levitan I. M., *The Production of Points Uniformly Distributed in a Multidimensional Cube*, Institute of Applied Mathematics, USSR Academy of Sciences, Technical report no. 40, 1976, (In Russian).

[30] I.M. Sobol, Uniformly distributed sequences with an additional uniform property, *USSR Computational Mathematics and Mathematical Physics* 16 (1976), 236 – 242.

[31] S. Tezuka, Polynomial arithmetic analogue of Halton sequences, *ACM Trans. Model. Comput. Simul.* 3 (1993), 99–107.

[32] S. Tezuka, *Uniform Random Numbers: Theory and Practice*, Kluwer Academic Publishers, Norwell, MA, 1995.

[33] X. Wang, Handling discontinuities in financial engineering: good path simulation and smoothing, *Oper. Res.* 64 (2016), 297–314.

[34] X. Wang and K.-T. Fang, The effective dimension and quasi-Monte Carlo integration, *J. Complexity* 19 (2003), 101–124.

[35] X. Wang and I. H. Sloan, Why are high-dimensional finance problems often of low effective dimension?, *SIAM J. Sci. Comput.* 27 (2005), 159–183.

[36] X. Wang and K. S. Tan, Pricing and hedging with discontinuous functions: quasi-Monte Carlo methods and dimension reduction, *Management Sci.* 59 (2013), 376–389.

Received ???.

Author information

Shin Harase, College of Science and Engineering, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan.

E-mail: harase@fc.ritsumei.ac.jp
Comparison of Sobol’ sequences

Table 1. Frequency of \(t(i, s; m) \) for \(2 \leq s \leq 360. \)

m	Niederreiter (NUT)	Sobol’ (JoeKuo08)	Sobol’ (Lemieux)	Sobol’ (JoeKuo03)
10				
	163	214	204	204
	11321	8201	8210	8208
	23097	20243	20040	20285
	16270	18004	18000	17854
	7947	10275	10092	9886
	3495	4819	4865	4997
	1472	1924	1991	1961
	576	777	863	835
	231	1127	233	125
	48	389	198	140
12				
	71	62	49	56
	7679	4752	4757	4774
	22265	17648	17452	17342
	17458	19105	18973	19027
	9527	6334	6408	6249
	4353	2848	2842	2814
	1954	1127	1270	1276
	864	389	498	467
	332	52	191	329
14				
	21	14	15	16
	5119	2857	2913	2864
	19870	14942	14912	14967
	19184	19442	19155	19131
	11111	14020	13589	13669
	5573	7581	7531	7414
	2375	1551	3581	3634
	1020	1551	1690	1698
	405	557	709	696
16				
	6	5	4	6
	3044	1771	1815	1745
	16906	12568	12586	12503
	20478	19566	19696	19418
	13001	14939	14735	15039
	6584	8566	8257	8354
	2903	4252	4077	4097
	1115	1893	1917	1902
	434	285	846	890
18				
	8	3	1	1
	1804	1119	1168	1075
	14312	10985	10897	10866
	20990	19412	19421	19422
	14831	15999	15963	15870
	7440	9175	9064	9236
	3267	4595	4538	4540
	1343	2087	2028	2003
	455	830	854	909
20				
	3	1	1	1
	1183	787	762	764
	12437	9470	9615	9526
	20942	19570	19188	19188
	15387	16932	16888	17006
	8394	9897	9798	9834
	3806	4736	4884	4970
	1594	1992	2052	2117
	636	831	868	817
	189	320	328	351

m	10	11	12	13	14	15	16	17	18	19
10										
	38	56	56	38	56	38	56	38	56	38
12										
	28	124	135	19	25	150	161	24	82	140
14										
	19	150	161	24	82	140	126	53	32	10
16										
	24	167	174	41	82	140	126	53	32	10
18										
	24	167	174	41	82	140	126	53	32	10
20										
	24	167	174	41	82	140	126	53	32	10
Table 2. Frequency of $t(i, s; m)$ for $2 \leq s \leq 1024$.

m	0	1	2	3	4	5	6	7	8	9
10	1217	91368	187247	131306	64096	28622	12135	5079	1881	825
Niederreiter (NUT)	Sobol' (JoeKuo08)	Sobol' (JoeKuo03)								
12	358	61934	178807	141504	77363	35943	16214	7030	2920	1188
Niederreiter (NUT)	Sobol' (JoeKuo08)	Sobol' (JoeKuo03)								
14	131	41284	161893	153405	87958	43456	20196	9017	3904	1672
Niederreiter (NUT)	Sobol' (JoeKuo08)	Sobol' (JoeKuo03)								
16	51	25934	142119	159612	101194	51623	24259	10993	4912	2035
Niederreiter (NUT)	Sobol' (JoeKuo08)	Sobol' (JoeKuo03)								
18	20	15374	118340	164947	114523	60295	28790	12922	5415	2118
Niederreiter (NUT)	Sobol' (JoeKuo08)	Sobol' (JoeKuo03)								
20	9	8790	95347	163784	127680	71672	33322	14166	5747	2254
Niederreiter (NUT)	Sobol' (JoeKuo08)	Sobol' (JoeKuo03)								

Number of occurrences of the t-value (continued)

m	10	11	12	13	14	15	16	17	18	19							
10	432	83	226	519	240	675	139	46	622	48							
Niederreiter (NUT)	Sobol' (JoeKuo08)	Sobol' (JoeKuo03)															
12	1020	436	126	58	1439	659	240	118	26	13							
Niederreiter (NUT)	Sobol' (JoeKuo08)	Sobol' (JoeKuo03)															
14	793	220	31	1044	226	3	1497	446	47	1834	805	331	153	61	32	4	4
Niederreiter (NUT)	Sobol' (JoeKuo08)	Sobol' (JoeKuo03)															
16	751	218	33	3	1940	644	95	2012	942	425	184	70	18	17	9	3	