Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company’s public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Proof-of-concept of a low-dose unmodified mRNA-based rabies vaccine formulated with lipid nanoparticles in human volunteers: A phase 1 trial

Cassandra Aldrich a, Isabel Leroux-Roels b, Katell Bidet Huang c, Mihai Alexandru Bica c,1, Edde Loeligerc, Oliver Schoenborn-Kellenberger c, Lisa Walzc, Geert Leroux-Roels b, Frank von Sonnenburg a,2, Lidia Oostvogels c,*

aDivision of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany
bCenter for Vaccinology, Ghent University and Ghent University Hospital, Ghent, Belgium
cCureVac AG, Tübingen, Germany

1. Introduction

Recent infectious disease outbreaks caused by Zika, Ebola, chikungunya and SARS-CoV-2 viruses have highlighted the potential global threat to human health posed by emerging human infectious diseases [1]. There are increasing risks of spread of novel pathogens through human vectors with international travel as evidenced by the 2020 Covid-19 pandemic [2], or animal vectors with climate change illustrated by the increasingly wide range of dengue, chikungunya and Zika virus endemcity [3–5]. The development of new platforms to allow rapid production of novel vaccines, preferably avoiding the use of live pathogenic viruses and chemical inactivation steps which may modify the natural epitopes, is a major priority of vaccine research [1].

One promising technology with the potential to overcome many of these limitations is the use of messenger ribonucleic acid (mRNA) coding for the required antigen [6], which offers several advantages for vaccine manufacture. Production of mRNA using
well-defined manufacturing techniques allows the same facilities to be used to prepare different mRNA molecules for vaccines against various other pathogens using the same manufacturing platform. As this may lead to lower production costs this may be of particular importance for vaccines destined for low-income countries, including rabies vaccines.

CureVac has developed a proprietary mRNA platform, RNActive®, for use in the development of safe and effective prophylactic vaccines for humans [7]. Following preclinical demonstration of the feasibility of this approach the first clinical investigation assessing the potential of RNActive® for a variety of vaccine targets used the rabies virus glycoprotein (RABV-G) as a model antigen. Use of RABV-G presents several advantages in the early stages of development: the antigen has been clearly defined and characterized, and there is a WHO-defined level of immune response that is considered adequate for the assessment of new vaccines. Furthermore, the virtually 100% fatality outcome of rabies disease means that volunteers in phase 1 trials, providing they have no history of rabies vaccination, will represent an immunologically naïve population.

We demonstrated the proof-of-concept of mRNA for human vaccines in the first-ever human clinical trial of RABV-G mRNA using an initial formulation (CV7201) with the cationic protein protamine [8]. CV7201 was generally well tolerated but the induction of adequate immune responses was dependent upon the mode of administration of the vaccine, notably requiring intradermal or intramuscular administration with specialized devices. Further preclinical research in animal models has found that formulation of the mRNA in lipid nanoparticles (LNP) protects the mRNA and enhances the immune response [9]. Preclinical studies found that CV7202, a novel mRNA-LNP formulation which includes the same mRNA antigen as CV7201 encapsulated in LNP, elicits immune responses in non-human primates comparable to those induced by licensed vaccines (CureVac, data on file). We now report on the first use of this new formulation in adult human volunteers in an ongoing phase 1 study to assess the safety and immunogenicity of this new vaccine model, which is now being applied to other novel pathogenic viruses, notably SARS-CoV-2.

2. Methods

This is a non-randomized, open-label, controlled, dose-escalation, multi-center phase 1 study done at the University Hospital LMU Munich, Germany and the University of Ghent, Belgium from October 2018. The objective was to determine the safety, reactivity and immunogenicity of different dosages of CV7202 when administered as intramuscular injections in one- or two-dose regimens. The study protocol was approved by the respective Ethical Committees of the two institutions and registered on ClinicalTrials.gov (NCT03713086). Trial procedures were done in accordance with International Conference on Harmonization (ICH) and Good Clinical Practice guidelines, and applicable regulatory requirements. An internal safety review committee (iSRC) consisting of internal medical experts and the investigators, and an independent data safety monitoring board (DSMB) consisting of external vaccine experts reviewed safety data on a regular basis and made recommendations regarding the sequential enrolment of participants into dose escalation or de-escalation groups according to the DSMB charter and the protocol. The study is ongoing at the time of this report for long-term safety and immunogenicity follow-up, but database lock for the presented data was May 2020, at least four weeks after the second dose of experimental vaccine, CV7202.

2.1. Outcomes

The primary objective was assessment of safety and reactivity up to 28 days after administration by intramuscular injection of either a first or second dose of CV7202 administered to healthy adults in a range of increasing dosages starting at 5 μg. Main secondary objectives are ongoing evaluation of safety up to two years after vaccination, and comparison of the immune response to CV7202 with the licensed rabies vaccine, Rabipur®, administered in its recommended three dose schedule. For the latter we used proportions of each study group achieving the WHO-required level of response, a rabies-specific serum virus neutralizing titer ≥ 0.5 IU/ml. An exploratory objective was the characterization of the humoral immune responses in terms of the immunoglobulin IgG isotype against RABV-G.

2.2. Study design and participants

Eligible participants were 18–40 year-old adults of either gender who were healthy at enrolment according to medical history and examination, with a BMI ≥ 18.0 and ≤ 32.0 kg/m². Female volunteers were required to have a negative pregnancy test (serum hCG) at screening and negative urine hCG tests before vaccination on Days 1 and 29, and to agree to use approved contraception throughout the study. Male volunteers were required to use barrier contraception (condom) until three months after their last vaccination.

The main exclusion criteria included participation in any other clinical trial, receipt of other vaccines either 14 days (inactivated vaccines) or 28 days (live vaccines) before Day 1, any history of rabies vaccination, or planned travel to countries for which rabies vaccination is recommended or where there is a high risk of rabies exposure. Other exclusions included any immunosuppressive therapy within six months of study start, medication except for inhaled or nasal steroids or topically applied steroids, any history of an immunodeficient condition or potentially immune-mediated disease and any known allergy to any vaccine component.

The study was initially designed to be a dosage escalation with 5 μg as the lowest starting dosage: the first ten participants were enrolled in a staggered manner to receive the lowest anticipated dosage of CV7202, 5 μg, and this was to be followed by sequentially-enrolled groups of 16 volunteers each to receive higher dosages with the first eight participants enrolled into each group then receiving a second dose 28 days after the first. A control group enrolled without stagger received three doses of a licensed rabies vaccine according to the manufacturer’s recommendations.

The planned staggered enrolment consisted of the first participant in the 5 μg group receiving their first vaccination, followed by the second and third participants two working days later. The fourth and fifth participants were then enrolled and vaccinated one week after the first. Two days after these vaccinations the iSRC and DSMB reviewed the safety data from the first five participants before agreeing to the enrolment of further participants in this group. This process was to be repeated for the next groups, with the exception that safety data for sentinel safety groups comprising the first four participants was considered by the iSRC before enrolment of the remaining participants in each group. As described in results, following observation of excess reactivity to 5 μg CV7202 the protocol was modified to assess lower (1 μg and 2 μg) rather than higher dosages.

2.2.1. Vaccine

CV7202 is composed of mRNA encoding the RABV-G from the Pasteur strain (GenBank accession number: AAA47218.1) with four lipid components—cholesterol, 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), PEGylated lipid and a cationic lipid—provided as a sterile solution in a 2 mL glass vial. The stock solution of CV7202 was mixed with 0.9% sodium chloride by a study pharmacist to produce a 10 μg/mL solution, and volumes injected were 0.5 mL, 0.2 mL and 0.1 mL for the 5 μg, 2 μg and 1 μg doses of
mRNA, respectively. The control vaccine was Rabipur® (GSK Vaccines GmbH, Marburg, Germany), a licensed, inactivated rabies vaccine containing ≥ 2.5 IU per ml reconstituted dose, administered according to the manufacturer's recommended schedule of 1, 8 and 29 days. All vaccines were administered by intramuscular injection with a standard syringe/needle in the deltoid of the non-dominant arm.

2.2.2. Safety assessments

Following vaccination on Day 1 participants were monitored for 4 h and were only discharged when vital parameters were within the normal ranges and similar to pre-vaccination levels. Injection site reactogenicity was assessed on 1 h after vaccination on Day 1, and on Day 2 for 1 µg and 2 µg doses, or Day 3 for the 5 µg dose. Participants were provided with diary cards in which they recorded solicited local reactions (pain, redness, swelling and itching) and systemic adverse events (AE; fever, chills/shivers, nausea/vomiting, diarrhea, headache, fatigue, myalgia and arthralgia) for seven days post vaccination, and any unsolicited AEs for 28 days after each vaccination. In the two dose subsets and the Rabipur group this monitoring schedule was applied for each vaccination. All solicited and unsolicited AEs were graded according to severity, using mild, moderate or severe as categories using the FDA toxicity grading scale [10]. Serious adverse events (SAE) or adverse events of special interest (AESI; AEs with a suspected immune mediated disease etiology) were recorded throughout the study duration and reported immediately to the sponsor or investigator.

2.3. Virus-neutralizing antibodies

Serum samples prepared at baseline (Day 1) and subsequently on Days 8, 15, 29, 36, 43, and 57 (pre-vaccination for applicable time-points), were stored at –80 °C for assessment of immune responses. Rabies virus-specific serum neutralizing titers (VNT) were measured using the WHO-recommended rapid fluorescent focus inhibition test (RFFIT) [13] at the accredited Kansas State University Rabies Laboratory. Titers are expressed as International Units per mL (IU/mL), with a titer ≥ 0.5 IU/mL considered an adequate response to vaccination [11].

2.4. ELISA for RABV-G-specific immunoglobulins

Levels of RABV-G-specific IgG were measured by enzyme-linked immunosorbent assay (ELISA) at the same timepoints. Briefly, plates were coated overnight with recombinant RABV-G protein expressed in HEK293 cells diluted to 1 µg/ml in phosphate-buffered saline (PBS). Wells were blocked in phosphate-buffered saline (PBS) + 0.05% Tween-20 (PBST) + 5% skimmed milk for 1.5 h before incubation of duplicate serial dilutions of serum samples in PBST + 2% skimmed milk for 2 h at room temperature. After four washes with PBST, horseradish peroxidase (HRP)-labelled detection antibodies specific for human IgG (clone EFE 565, ThermoFisher Scientific) were added for 1 h. Plates were washed five times with PBST before colorimetric detection using tetramethylbenzidine substrate (Biolegend). Reactions were stopped with 2 N H₂SO₄ and absorbance read at 450 nm with 620 nm as reference wavelength. Antibody titers were calculated based on isotype control calibration curves, with titers expressed as arbitrary ELISA units per mL (U/mL).

3. Results

A total of 69 volunteers were screened of whom 55 were enrolled, screen failures mainly being due to inability to meet all protocol requirements (Fig. 1). Two enrolled participants did not receive any vaccination, one due to non-compliance with the protocol and one who withdrew for personal reasons. The original staggered enrolment plan was followed for the 5 µg dose group, and ten volunteers were enrolled and received one 5 µg vaccination. However, concerns over the reactogenicity profile in this group led to a temporary hiatus in the study while the reactogenicity and immunogenicity data from this group were assessed. Following an extensive root cause analysis the iSRC and DSMB recommended continuing with 1 µg and then 2 µg dosages, and the control Rabipur group. Results for all groups are reported below. Group demographics of the 53 volunteers enrolled and assigned to the four groups were similar (Table 1). One participant from the Rabipur control group was lost to follow up after Day 1, and one participant in the 5 µg CV7202 group withdrew consent at Day 15 for personal reasons. The remaining 51 participants completed study procedures through to the Day 57 visit.

3.1. Safety

There were no immediate reactions or AEs during the four-hour post-vaccination surveillance period in any participant, and there have been no vaccine-related SAEs or AESIs throughout the study to date. One Rabipur participant was hospitalized with appendicitis, which was not considered to be related to the vaccine. No participant withdrew from the study due to an AE.

As noted, following the administration of one dose of vaccine in the 5 µg group there was a high rate of early onset reactogenicity which affected 9 (90%) of the 10 participants (Table 2). All but one of the participants reported pain at the injection site, which was graded as severe in one case. There was only one report of any other local reaction—a case of mild redness in one participant—with no reports of injection site swelling or itching. There was a high rate of solicited systemic adverse events in this group, with 41 events reported by 9 participants, 32 (78%) of which were described as mild or moderate, but 9 (22%) of which were described as severe in 6 participants. The most frequent systemic AEs were headache, fatigue, myalgia and chills, the majority with onset within 24 h of vaccination on Days 1 or 2. Severe cases of fatigue, chills and myalgia which occurred became moderate or mild within 24 h of onset, except for one case of severe fatigue that lasted for 29 h, and a second case of severe fatigue lasting three days with onset on Day 5 that was related to an acute gastroenteritis-like illness with nausea and vomiting.
Unsolicited adverse events were reported by 9 (90%) of the 10 participants; 7 (70%) of these were considered to be related to vaccination, including 5 (50%) graded as severe. The most frequent of these were three cases of lack of appetite (all severe), three cases of night sweats (two severe), two cases of dizziness (one severe), and two cases of tachycardia (one severe). There were single cases of severe AEs—neck stiffness, excessive sweating, hip stiffness, pre-syncopal episode, hot flushes, thirst, lack of thirst, perceived dehydration, weakness, and lethargy—some in the same participant. The majority of unsolicited AEs resolved within 24 h of onset and the only medication used for treatment of such AEs was ibuprofen, used by 4 of 10 (40%) participants.

Following the study hiatus, 1 and 2 l g dosages of CV7202 were administered and were associated with a much lower reactogenic-

Parameter	CV7202 Dose groups	Rabipur group		
	5 μg	2 μg	1 μg	11
N	10	16	16	5 (50)
Age, years	26.1 (±4.0)	28.3 (±5.8)	27.1 (±5.6)	25.5 (±4.2)
Range	[20, 33]	[21, 38]	[19, 38]	[21, 36]
Male n (%)	10 (100)	16 (100)	15 (94)	11 (100)
Ethnicity White n (%)	10 (100)	16 (100)	15 (94)	11 (100)
Height, (cm)	174 (±4.4)	172 (±8.4)	171 (±8.4)	174 (±12.4)
Weight, (kg)	72.4 (±9.2)	72.1 (±14.4)	70.0 (±8.9)	71.4 (±15.1)
BMI, (kg/m²)	23.8 (±2.6)	24.4 (±3.6)	24.0 (±2.5)	23.2 (±2.2)
Range	[20, 28]	[19, 32]	[18, 28]	[20, 27]
levels of unconjugated bilirubin in the blood [14–16]. In our study, a genetic disorder which is present in approximately 10% of young children was the observation of asymptomatic, isolated elevated bilirubin [12,13].

Three of these five subjects, we observed isolated, elevated total bilirubin elevations prior to the first vaccination (either at screening or at baseline immediately prior to vaccine administration). Three of the five had one or more bilirubin elevations that were marked as clinically significant during the conduct of the study, two of which were present at baseline. The third described previous clinically significant elevations which were added to their medical history.

Split bilirubin analysis was requested in the three cases of clinically significant bilirubin elevation to substantiate the suspected MGS: one participant had a split bilirubin typical for MGS and in combination with a history of raised elevations the diagnosis of MGS was marked in the medical history without genetic confirmation. In a second suspected MGS participant split bilirubin was requested at a visit when total bilirubin was normal and there were no further elevations observed. Because of a childhood history of intermittent icterus on further questioning, suspected MGS was marked in their medical history. Split bilirubin analysis will be done at any future study visit where total bilirubin is elevated and the subject will be referred to their GP for further testing. In the third participant with clinically significant elevation of bilirubin results of the split bilirubin analysis was not typical for MGS, but the participant had a recent symptomatic acute CMV illness. Considering the pattern of bilirubin elevations, overall clinical picture and prevalence in Munich, per exclusionem MGS is still suspected in this participant who has been referred to their GP for further testing. The results are as yet unknown.

Split bilirubin levels will be analyzed for both participants with non-clinically significant bilirubin elevations at their next scheduled visit. Until then, both subjects remain suspected for MGS and might be referred for further testing.

3.2. Immunogenicity – Neutralizing antibodies

VNT responses were detected in all four study groups as illustrated in Fig. 2. Following a 5 µg dose of CV7202, VNT levels ≥ 0.5 IU/ml were observed from Day 29 in two of nine (22%) participants and these responses were maintained up to Day 57, the last timepoint assessed (Fig. 3).

The 1 µg and 2 µg CV7202 groups also displayed small detectable responses following the first dose. These were more pronounced in the 2 µg group in which 5 of 16 (31%) had VNT

Table 2

Solicited local reactions and systemic AEs in the 5 µg CV7202 group.

Reaction or adverse event, n (%)	5 µg CV7202 (N = 10)			
	Any	Mild	Moderate	Severe
Any local reaction	9	3	5	1
Pain	7	1	1	0
Redness	0	0	0	0
Swelling	0	0	0	0
Itching	0	0	0	0
Any solicited systemic adverse event	5	3	1	0
Fever	7	1	1	0
Headache	7	1	1	0
Fatigue	7	1	1	0
Chills	7	1	1	0
Myalgia	5	1	2	0
Arthralgia	4	1	1	0
Nausea/vomiting	3	2	1	0
Diarrhea	2	1	1	0
Any unsolicited systemic adverse event	9	6	6	6
levels ≥ 0.5 IU/ by Day 29, whereas no participants in the 1 µg group displayed an adequate response (0.5 IU/mL) by Day 29 after one dose (Fig. 3). Responses were markedly increased following the second dose on Day 29 such that 5 of the 8 (63%) participants who received a second dose of 1 µg and 7 of 8 (83%) participants who received a second dose of 2 µg had titers ≥ 0.5 IU/mL at Day 36. All participants (100%) in both the 1 µg and 2 µg groups reached this level at Day 43 (Fig. 3). GMTs were higher than 0.5 IU/mL at Day 36 in both groups and were further increased at Days 43 and 57. Peak GMTs were achieved at Day 43 with 1 µg (4.8 IU/mL [95% CI: 1.77–13.0]) and 2 µg (4.2 IU/mL [1.02–17.2]) of CV7202. All participants in the Rabipur group had titers ≥ 0.5 IU/mL by Day 15, 7 days after the second vaccination and this 100% rate was maintained up to Day 57.

Rabipur achieved a peak GMT of 13.5 IU/mL [95% CI: 5.95–30.6] IU/mL at Day 15, 7 days after the second dose. The GMT did not further

Table 3

Numbers (%) of participants reporting solicited local reactions and systemic adverse events (AE) in the 7 days after receiving CV7202 or Rabipur.

Reaction or AE, n (%)	5 µg CV7202	1 µg CV7202	2 µg CV7202	Rabipur				
	Dose 1	Dose 1	Dose 2	Dose 1				
	10	16	8	16				
Any solicited local reaction	9 (90)	13 (81)	5 (63)	16 (94)	6 (75)	5 (45)	6 (60)	5 (50)
Pain	9 (90)	13 (81)	5 (63)	15 (94)	6 (75)	5 (45)	6 (60)	5 (50)
Redness	1 (10)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)
Swelling	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)
Itching	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)
Any solicited systemic AE	9 (90)	11 (69)	5 (63)	13 (81)	7 (88)	8 (73)	5 (50)	4 (40)
Fever	5 (50)	0 (0)	1 (13)	3 (19)	2 (25)	0 (0)	0 (0)	0 (0)
Headache	7 (70)	8 (50)	4 (50)	11 (69)	5 (63)	4 (36)	2 (20)	3 (30)
Fatigue	8 (80)	6 (38)	4 (50)	9 (56)	5 (63)	5 (45)	5 (50)	1 (10)
Chills	7 (70)	0 (0)	2 (22)	6 (38)	2 (25)	0 (0)	0 (0)	1 (10)
Myalgia	5 (50)	6 (38)	4 (50)	7 (44)	5 (63)	2 (18)	0 (0)	0 (0)
Arthralgia	4 (40)	3 (19)	3 (38)	3 (19)	1 (13)	0 (0)	0 (0)	0 (0)
Nausea/vomiting	3 (30)	1 (6)	0 (0)	1 (6)	1 (13)	1 (9)	0 (0)	0 (0)
Diarrhea	2 (20)	1 (6)	0 (0)	1 (6)	2 (25)	0 (0)	0 (0)	0 (0)
Any unsolicited systemic AE	9 (90)	9 (56)	4 (50)	14 (88)	5 (63)	4 (36)	4 (40)	
Related to vaccination	7 (70) *	2 (13)	1 (13)	9 (56)	2 (25)	1 (9)	0 (0)	
Any medically attended AE	1 (10) *	4 (25)	1 (13)	2 (13)	1 (13)	0 (0)	0 (0)	

* Events reported over the whole 56-day study period.
increase following a third dose of Rabipur but was maintained at 9.1 IU/mL through to Day 57. Day 43 GMTs after two doses of CV7202 were not statistically significantly lower than those achieved with three doses of Rabipur (p = 0.2831 for 1 μg, p = 0.3507 for 2 μg; Mann-Whitney test).

3.3. Immunogenicity – ELISA RABV-G-specific immunoglobulin antibodies

As illustrated in Fig. 4 anti-RABV-G IgG antibodies displayed the same pattern of responses as VNT. There were detectable increases after one dose with 6 of 16 (38%), 11 of 16 (69%) and 8 of 9 (89%) participants in the 1, 2 and 5 μg dosage groups developing low levels of RABV-G-specific IgG, respectively. GMTs were 853 U/mL (95% CI: 455–1599), 1581 U/mL (899–2780), and 2409 U/mL (1113–5215) at Day 29 after the first dose in the 1, 2, and 5 μg CV7202 groups, respectively, and these levels did not further increase in one dose groups. Much larger increases were observed after second vaccinations, peaking at 34,186 U/mL (13253–88185) and 20,707 U/mL (5592–76678) at Day 43 in the 1 and 2 μg groups, respectively. There were highly significant positive Spearman correlations between VNT and IgG titers (Fig. 5), particularly after two doses of CV7202 (r² = 0.8319, p < 0.0001).

An IgG response was not detected one week after the first Rabipur vaccination; GMTs were 461 and 464 at Days 1 and 8, respectively, but rapidly increased to 12,460 U/mL (95% CI: 6575–23611) at Day 15, 7 days after the second dose. A further incremental increase to 33,373 U/mL (21236–52447) was observed after the third dose and this level was sustained to Day 57. As for the VNT, RABV-G IgG GMTs at Day 43 after two doses of CV7202 were not statistically significantly lower than those achieved with three doses of Rabipur (p = 0.9654 for 1 μg, p = 0.2031 for 2 μg by Mann-Whitney test).

4. Discussion

Following demonstration that encapsulation of RABV-G mRNA in lipid nanoparticles improved immune responses in animal models [9], we assessed the safety, reactogenicity, and immunogenicity of CV7202, a novel mRNA-LNP formulation, in adults in comparison with a licensed rabies vaccine. Following observations of high reactogenicity when using the 5 μg dose of CV7202 we found 1 and 2 μg dosages were better tolerated, with no safety concerns and two doses elicited immune responses in terms of neutralizing activity and IgG antibodies that were comparable with three doses of licensed rabies vaccine. Preliminary investigation of the 5 μg response suggest that high innate immune responses driven by type 1 interferon and cytokines and strong induction of toll-like receptor signaling pathways observed in most participants, might have contributed to unfavorable reactogenicity and immunogenicity profiles. This will be investigated in further studies.

In this small trial CV7202 appeared to be safe, with no vaccine-related SAEs or withdrawals due to AEs. Although over half the recipients of the highest dose of CV7202 reported severe solicited systemic or unsolicited AEs, the reactogenicity profiles of the lower doses of CV7202 (1 and 2 μg) were more acceptable. The 2 μg dose elicited a limited number of severe AEs in the first 24 h post-vaccination. Local reactions to these dosages consisted almost exclusively of transient mild to moderate headache, fatigue and chills, and any cases that were described as initially severe rapidly moderated and resolved, most within 48–72 h and all within the 7-day reporting period. There were no major changes in reactogenicity after the second dose when compared with the first, although the numbers of participants are small. This contrasts with recent reports of mRNA-LNP vaccines against the SARS-CoV-2 virus responsible for the COVID-19 pandemic which had similar rates of reactogenicity and in which reactogenicity noticeably increased after a second dose [17,18].

Importantly, we showed that all recipients, despite the low amount of mRNA included in the vaccine, had functional antibody responses after two 1 or 2 μg doses of CV7202, with GMTs of both rabies-specific neutralizing and RABV-G-specific IgG antibodies that were not significantly lower than those observed after three doses of licensed rabies vaccine. The neutralizing response profile of CV7202 displayed a strong correlation with production of RABV-G-specific IgG antibodies following two doses. There were
also transient increases in IgM antibodies but not IgA after second doses of Rabipur and CV7202 (data not shown), but direct comparison of the kinetics of these responses is complicated by the different vaccination schedules—1 and 8 days for licensed vaccine and 1 and 29 days for CV7202—and no second dose.

Fig. 4. GMTs (with 95% CI) of RABV-G-specific Ig responses assessed by ELISA. IgG concentrations after immunization with one (red arrow) or two (open arrow) doses of CV7202 or three doses of Rabipur (blue arrows). Dotted lines indicate LLOQ. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Correlation of titers of RABV-G-specific neutralizing activity (VNT) and IgG antibodies after one or two doses of CV7202.

After dose 1	After dose 2
Pooled data from Days 8, 15 & 29	Pooled data from Days 36, 43 & 57
Spearman correlation:	
$r^2 = 0.7098$, $p < 0.0001$	$r^2 = 0.8319$, $p < 0.0001$
cantly lower than those induced by three doses of Rabipur, it may be interesting to compare CV7202 and Rabipur responses when used in the same schedule of three doses at Days 1, 8 and 29.

This interim report presents the immune responses up to four weeks after the second dose, but participants will be monitored for two years to assess long-term safety and persistence of the immune response. Further investigations of antibody responses after a booster vaccination, possibly with lower doses, will be necessary to determine whether long-term immune memory has developed, together with a qualitative comparison of avidity, IgG subclasses and B cell responses for CV7202 and the licensed vaccine.

This investigation of mRNA rabies vaccination was performed to determine the validity of the mRNA-LNP platform as a potential approach for viral vaccines. As already mentioned, using rabies as a model antigen presents several advantages in this early development program, but the principles being investigated can be applied to other viral pathogens. Although initial studies of mRNA vaccines were targeted against tumors for cancer immunotherapy [19,20], their potential for prophylactic use has led to an increasing amount of research into this aspect, notably the recent focus on vaccines against SARS-CoV-2 during the Covid-19 pandemic [21]. Several mRNA vaccine candidates using this approach have been reported to be in development [22,23]. Our initial studies of the mRNA technology using rabies mRNA, CV7201, found that there was potential for a human mRNA rabies vaccine, but the mode of delivery of the molecule was critical to elicit an adequate immune response due to its known instability in physiological conditions [8]. Intracellular delivery of oligonucleotides can be improved by encapsulating them in lipid nanoparticles (LNP) [9,23], and preclinical studies showed that protecting the mRNA by lipid encapsulation significantly enhanced the response to the CV7201 [9,24]. Studies to develop efficacious COVID-19 vaccines using mRNA have employed larger quantities of mRNA in LNP-formulations, 10–100 μg [17] or 25–250 μg [18], from which final doses of 30 μg and 100 μg were selected, respectively.

Having previously demonstrated the concept of mRNA vaccination in humans using rabies glycoprotein as antigen we have now confirmed the preclinical observations that lipid encapsulation also protects the mRNA molecule in humans and enhances the generation of protective immune responses after two doses in a similar manner to the inactivated control vaccine. It will be necessary to determine the duration of the immune response, and, for less pathogenic agents than rabies virus, potentially the efficacy of the response in a challenge model (e.g. prophylactic influenza vaccine development). Further studies are underway to apply this mRNA technology to other antigens, notably the development of a vaccine against the SARS-CoV-2 virus responsible for COVID-19 (ClinicalTrials.gov NCT04449276, EudraCT 2020-001286-36). Our observations of a significant immune response with extremely low amounts of mRNA, show the technology implemented for the CV7202 development holds the promise to allow protection of a large part of the population.

Acknowledgements

The authors are grateful to all the participants in Munich and Ghent who volunteered for this study and to Dr Mirjam Schunk (Munich), Dr Cathy Maes (Ghent), and Dr Aurelio Garofano (CureVac), and the respective study teams, trial coordinators and nurses for their expert assistance. We thank Keith Veitch (keitveitch communications, Amsterdam, the Netherlands) for assistance in drafting the manuscript. This paper is dedicated to the memory of Professor Frank von Sonnenburg who passed away on 21 August 2020.

References

[1] Douglas D, Christodoulou M, Plotkin SA, Hatchett R. CEPI: driving progress towards epidemic preparedness and response. Epidemiol Rev 2019; pii: mzz012.
[2] Chinazzi M, Davis JT, Ajelli M, et al. The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak. Science 2020;368:395–400.
[3] Messina JP, Brady OJ, Golding N, Kraemer MUG, Wint GRW, Ray SE, et al. The current and future global distribution and population at risk of dengue. Nat Microbiol 2019;4:1508–15.
[4] Weaver SC, Lecuit M. Chikungunya virus and the global spread of a mosquito-borne disease. N Engl J Med 2015;372:1231–9.
[5] Petersen E, Wilson ME, Touch S, McCloskey B, Mwaba P, Bates M, et al. Rapid spread of Zika virus in the Americas—implications for public health preparedness for mass gatherings at the 2016 Brazil Olympic Games. Int J Infect Dis 2016;44:11–5.
[6] Jackson NAC, Kester RE, Casimiro D, Gurunathan S, DeRosa F. The promise of mRNA vaccines: a biotech and industrial perspective. npj Vaccines 2020;5:11.
[7] Rauch S, Lutz J, Kowalczyk A, Schlaeke T, Hedenreich R. mRNA vaccine: generation and testing of stable and immunogenic mRNA vaccines. Methods Mol Biol 2017;1499:89–107.
[8] Alberer M, Guad-Vogt U, Hong HS, Mehr KT, Backett L, Finak G, et al. Safety and immunogenicity of a mRNA rabies vaccine in healthy adults: an open-label, non-randomised, prospective, first-in-human phase 1 clinical trial. Lancet 2017;390:1511–20.
[9] Lutz J, Lazzaro S, Habbabedde M, Schmidtke M, Raebel P, Mui RL, et al. Unmodified mRNA in LNPs constitutes a competitive technology for prophylactic vaccines. npj Vaccines 2017;2:29.
[10] CDC. Toxicity grading scale for healthy adult and adolescent volunteers enrolled in preventive vaccine clinical trials (September 2007) Available at: https://www.fda.gov/media/73679/download Accessed 28 February 2020.
[11] WHO. Rabies vaccines WHO position paper. Wkly Epidemiol Rec 2020;85:425–38.
[12] Hopkins BJ, Daczkowski NF, Kaptur PE, et al. Randomized, double-blind, placebo-controlled, safety and immunogenicity study of 4 formulations of Anthrax Vaccine Adsorbed plus CPG 7909 (AV7909) in healthy adult volunteers. Vaccine 2013;31:3051–8.
[13] Klewerprin HN, Akil Jackson A, Handley A, et al. Non-immunogenicity of overlapping Gag peptides pulsed on autologous cells after vaccination of HIV infected individuals. PLoS ONE 2013;8:e74389.
[14] Sieg A, Arab L, Schleier F, Stehle A, Kommorrell B. Die Prävalenz des Gilbert-Syndroms in Deutschland [Prevalence of Gilbert's syndrome in Germany]. Dtsch Med Wochenschr 1987;112:1206–8.
[15] Strassburg CP. Hyperbilirubinemien syndromes [Gilbert-Meulegracht, Crüger-Najar, Dubin-Johnson, and Rotor syndrome]. Best Pract Res Clin Gastroenterol 2010;24:555–71.
[16] Wagner KH, Shels RG, Lang CA, Khoei NS, Bulmer AC. Diagnostic criteria and contributors to Gilbert’s syndrome. Crit Rev Clin Lab Sci 2018;55:129–39.
[17] Mulligan MJ, Lyke KE, Kitchin N, et al. Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults. Nature 2020;586:589–93.
[18] Jackson LA, Anderson EJ, Rouphael NG, et al. An mRNA vaccine against SARS-CoV-2 – preliminary report. New Engl J Med 2020;383:1920–31.
[19] Hilleman MR, Nair SA, Hall EK. mRNA-based vaccines in cancer immunotherapy. J Immunol Res. 2015;2015:794528.
[20] Sebastian M, Schröder A, Scheibl B, et al. A phase I/IIa study of the mRNA-based cancer immunotherapy CV9201 in patients with stage III/IV non-small cell lung cancer. Cancer Immunol Immunother 2019;68:799–812.
[21] Wang F, Kream RM, Stefano GB. An evidence based perspective on mRNA-SARS-CoV-2 vaccine development. Med Sci Monit 2020;26:e924700.
[22] Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines - a new era in oncology. Nat Rev Drug Discov 2018;17:418–29.
[23] Reichmuth AM, Oberli MA, Jaklenec A, Langer R, Blankschtein D. mRNA vaccine delivery using lipid nanoparticles. Ther Deliv 2016;7:319–34.
[24] Armbruster N, Jasny E, Petuch B. Advances in RNA vaccines for vaccine indications: A case study of a vaccine against rabies. Vaccines (Basel) 2019;7: E132.