Newtonian and General Relativistic models of spherical shells – II

D. Vogt* and P. S. Letelier*

Departamento de Matemática Aplicada-IMECC, Universidade Estadual de Campinas, Campinas São Paulo 13083-970, Brazil

Accepted 2010 April 19. Received 2010 March 30; in original form 2010 February 11

ABSTRACT

A family of potential–density pairs that represent spherical shells with finite thickness is obtained from the superposition of spheres with finite radii. Other families of shells with infinite thickness and with a central hole are obtained by inversion transformations of spheres and of the finite shells. We also present a family of double shells with finite thickness. All potential–density pairs are analytical and can be stated in terms of elementary functions. For the above-mentioned structures, we study the circular orbits of test particles and their stability with respect to radial perturbations. All examples presented are found to be stable. A particular isotropic form of a metric in spherical coordinates is used to construct a General Relativistic version of the Newtonian families of spheres and shells. The matter of these structures is anisotropic, and the degree of anisotropy is a function of the radius.

Key words: gravitation – galaxies: kinematics and dynamics.

1 INTRODUCTION

Analytical potential–density pairs with spherical symmetry have played an important role in galactic dynamics. Simplified models may be used not only to test and to perform sophisticated numerical simulations, but also to help us gain insight into more complicated phenomena. Several analytical potential–density pairs have been proposed as models for elliptical galaxies, bulges of disc galaxies (Plummer 1911; Jaffe 1983; Hernquist 1990), for dark matter haloes (Navarro, Frenk & White 1997), as well as generalizations of these models (Dehnen 1993; Tremaine et al. 1994; Zhao 1996). Shells constitute another spherical self-gravitating system that is important in issues such as cosmology, gravitational collapse and supernovae (see, for instance, Bičák & Schmidt 1999, and references therein). A common simplification is to consider shells with infinitesimal thickness. Rein (1999) constructed analytic solutions of the Vlasov–Poisson and Vlasov–Einstein systems representing, respectively, Newtonian and General Relativistic shells with finite thickness and a vacuum at the centre. A more detailed analysis of relativistic shells was done by Andréasson (2007). Solutions for relativistic double and also multishells were found by Andréasson & Rein (2007) using numerical methods. Other numerical solutions of finite Vlasov–Einstein shells were obtained by Gleiser & Ramirez (2010). Recently, Vogt & Letelier (2010) proposed a simple Newtonian family of potential–density pairs of spherical shells with varying thicknesses and also a General Relativistic version of these models.

In this work, we obtain families of potential–density pairs that represent spherical shells with finite thickness and shells with infinite thickness that have a central hole. We also build a family of double shells with finite thickness. For these structures, we study the rotation curves (circular orbits) of test particles and make a first stability analysis by considering the stability of circular orbits under small radial perturbations. We also consider a General Relativistic version of some of these Newtonian potential–density pairs in the same manner as in our previous work (Vogt & Letelier 2010). This paper is divided as follows. In Section 2, we present a family of spheres with finite radii that will be used as a basis for the construction of the spherical shells. In Section 3, the inversion theorem is applied to the spheres to obtain a first family of infinite shells. Then, in Section 4, shells with finite thickness are constructed by superposing different members of the family of spheres. The inversion theorem is also used on these shells to obtain another family of infinite shells with a central hole. In Section 5, we show how to construct a family of double shells with finite thickness by superposing different members of finite shells, and we discuss a particular example. In Section 6, we use a particular isotropic form of a metric in spherical coordinates to construct a simple General Relativistic version of the Newtonian shells and shells. We study in some detail two examples of spherical structures. Finally, in Section 7 we summarize our results.

*E-mail: dvogt@ime.unicamp.br (DV); letelier@ime.unicamp.br (PSL)
2 A FAMILY OF FINITE SPHERES

We begin by considering a family of spheres with finite radius and following mass–density distribution:

\[
\rho_m = \begin{cases}
\rho_0 \left(1 - \frac{r^2}{a^2} \right)^{m-1/2}, & 0 \leq r \leq a, \\
0, & r > a,
\end{cases}
\]

where \(m = 1, 2, \ldots\). This form of mass distribution has been chosen because it is a monotonically decreasing function of the radius and the corresponding potential can be expressed in terms of elementary functions, as will be seen below. Furthermore, models of thin finite discs with surface densities in the form of (1), where \(r \) now represents the cylindrical radius, are well known. The disc member with \(m = 1\) is the uniformly rotating disc of Kalnajs (1972). González & Reina (2006) constructed a family of generalized Kalnajs discs with surface density similar to (1); however, it is interesting to note that a family of discs with a similar density distribution has been used much earlier by Morgan & Morgan (1969) in their study of General Relativistic static thin discs.

The total mass \(M_m\) of the sphere is

\[
M_m = 4\pi \int_0^a r^2 \rho_m \, dr = \frac{\rho_0 \pi^2 a^4 (2m - 1)!!}{2^m (m + 1)!}.
\]

For convenience, we consider spheres with the same mass \(M = M_m\). Then, equation (1) can be rewritten as

\[
\rho_m = M 2^{m(m + 1)!} \pi^2 a^4 (2m - 1)!! \left(1 - \frac{r^2}{a^2} \right)^{m-1/2}.
\]

The potential of the sphere with \(m = 1\) follows from direct integration of the Poisson equation in spherical coordinates:

\[
\frac{1}{r^2} \frac{d}{dr} \left(r^2 \frac{d\Phi}{dr} \right) = 4\pi G \rho,
\]

and is given by

\[
\Phi_1 = \begin{cases}
\frac{2GM}{3a^2} \arcsin \left(\frac{r}{a} \right) - \sqrt{a^2 - r^2} (2r^2 - 5a^2), & 0 \leq r \leq a, \\
\frac{aG}{r}, & r > a.
\end{cases}
\]

The potentials of the spheres with \(m > 1\) can be found by using the recurrence relation

\[
\Phi_{m+1} = \frac{2m + 4}{a^{2m+4}} \int_0^{a^{2m+3}} a^{2m+3} \Phi_m \, da.
\]

For reference, the potentials of the members with \(m = 2, 3, 4\) read as

\[
\Phi_2 = \frac{2GM}{15a^6} \left[\frac{15a^6}{r} \arcsin \left(\frac{r}{a} \right) + \sqrt{a^2 - r^2} (8r^4 - 26a^2 r^2 + 33a^4) \right],
\]

\[
\Phi_3 = \frac{2GM}{105a^8} \left[\frac{105a^8}{r} \arcsin \left(\frac{r}{a} \right) - \sqrt{a^2 - r^2} (48r^6 - 200a^2 r^4 + 326r^2 a^4 - 279a^6) \right],
\]

\[
\Phi_4 = \frac{2GM}{315a^{10}} \left[\frac{315a^{10}}{r} \arcsin \left(\frac{r}{a} \right) + \sqrt{a^2 - r^2} (128r^8 - 656a^2 r^6 + 1368r^4 a^4 - 1490r^2 a^6 + 965a^8) \right].
\]

A common dynamical quantity used to characterize spherical distributions of matter is the circular velocity \(v_c\) (or the rotation curve) of test particles. We will mostly be interested in the circular orbits of particles inside the matter distributions. We also investigate the stability of these orbits under small radial perturbations. This is characterized by the epicyclic frequency \(\kappa\), where stable circular orbits correspond to \(\kappa^2 > 0\). For spherical potentials, the circular velocity and epicyclic frequency are calculated through the relations (Binney & Tremaine 2008)

\[
v_c = \sqrt{\Phi_r} \quad \text{and} \quad \kappa^2 = \Phi_{rr} + \frac{3\Phi_r}{r}.
\]

Expressions for the circular velocity \(v_{c,m}\) and epicyclic frequency \(\kappa_m\) for the spheres with \(m = 1, 2, 3, 4\) are listed in Appendix A. Outside the spheres \(r > a\), we have \(v_c = (GM/r)^{1/2}\) and \(\kappa = (GM/r^3)^{1/2}\).

In Fig. 1(a), we plot some curves of the dimensionless mass density \(\bar{\rho}_m = \rho_m/(M/a^3)\), equation (3), as a function of \(r/a\), for four members of the family of spheres. In Figs 1(b) and (c), we show, respectively, some curves of the dimensionless circular velocity \(\bar{v}_{c,m} = v_{c,m}/(GM/a)^{1/2}\), equations (A1)–(A4), and curves of the dimensionless epicyclic frequency \(\bar{\kappa}_m = \kappa_m/(GM/a^3)^{1/2}\), equations (A5)–(A8), as functions of \(r/a\), for four members of the family of spheres. Unlike the disc case, we do not have a linear rotation profile for the sphere with \(m = 1\). We also note that the circular orbits for the first four members are unstable.

3 INVERTED SPHERES

A new family of spherical potential–density pairs can be obtained by making an inversion (or a Kelvin transformation; Thomson 1847; Kellog 1953) on the spheres with density (3). In spherical coordinates, the inversion theorem states that if a potential–density pair \(\rho(r), \Phi(r)\) is a
solution to the Poisson equation, then the pair
\[\rho_{\text{inv}} = \left(\frac{a}{r} \right)^5 \rho \left(\frac{a^2}{r} \right), \]
\[\Phi_{\text{inv}} = \frac{a}{r} \Phi \left(\frac{a^2}{r} \right) \]

is also a solution to the Poisson equation. The inversion theorem applied to the density (3) results in
\[\rho_{\text{inv}} = \frac{M_{2m}^2 a^2 (m + 1)!}{\pi^2 r^3 (2m - 1)!!} \left(1 - \frac{a^2}{r^2} \right)^{m-1/2}, \quad r \geq a. \]
\[\text{(13)} \]

This mass distribution can be interpreted as a family of spherical shells with a central hole of radius \(a \). The shells extend to infinity, although the density decays quite fast, \(\rho_{\text{inv}} \propto 1/r^5 \). The maximum of density occurs at \(r/a = \sqrt{(2m + 4)/5} \). The mass \(M_m \) of each shell is
\[M_m = 4\pi \int_a^\infty r^2 \rho_{\text{inv}}(r) \, dr = M_{2m} a^2 (m + 1)! \frac{2m + 1}{2m + 2} \frac{a^{2m + 2} (m + 1)!}{\pi (2m + 1) (2m - 1)!!}. \]
\[\text{(14)} \]

For convenience, we consider shells with the same mass \(\mathcal{M} = M_m \) and rewrite (13) as
\[\rho_{\text{inv}} = \frac{(2m + 1) M a^2}{4\pi r^5} \left(1 - \frac{a^2}{r^2} \right)^{m-1/2}, \quad r \geq a. \]
\[\text{(15)} \]

The expressions for the potentials of the shells with \(m = 1, 2, 3, 4 \) are given in Appendix B. From them result simple equations for the rotation curves \(v_{\text{c}(\text{inv})} \) and epicyclic frequencies \(\kappa_{\text{inv}} \), namely
\[v_{\text{c}(1)(\text{inv})} = \sqrt{\frac{GM}{r}} \left(1 - \frac{a^2}{r^2} \right)^{3/4}, \quad v_{\text{c}(2)(\text{inv})} = \sqrt{\frac{GM}{r}} \left(1 - \frac{a^2}{r^2} \right)^{5/4}, \]
\[\text{(16)} \]
\[v_{\text{c}(3)(\text{inv})} = \sqrt{\frac{GM}{r}} \left(1 - \frac{a^2}{r^2} \right)^{7/4}, \quad v_{\text{c}(4)(\text{inv})} = \sqrt{\frac{GM}{r}} \left(1 - \frac{a^2}{r^2} \right)^{9/4}, \]
\[\text{(17)} \]
\[\kappa_{\text{1}(\text{inv})} = \sqrt{\frac{GM(r^2 + 2a^2)}{r^5}} \left(1 - \frac{a^2}{r^2} \right)^{1/4}, \quad \kappa_{\text{2}(\text{inv})} = \sqrt{\frac{GM(r^2 + 4a^2)}{r^5}} \left(1 - \frac{a^2}{r^2} \right)^{3/4}. \]
\[\text{(18)} \]
The potentials associated with the mass density (21) are found by a similar sum, i.e. the potential of the shell with mass density (1) and make the following sum:

\[\rho_{m,n}(r \rightarrow \infty) = \sum_{m=0}^{n} C_k \frac{(-1)^{n-k} \rho_0 (1 - \frac{r^2}{a^2})^{m+1/2}}{a^{2n} n!}, \]

where \(C_k = \frac{n!}{(k!)(n - k)!} \). This new density distribution vanishes on \(r = a \) and \(r = a \(m \) exhibits a quite sharp density profile. In Figs 2(b) and (c), we plot, respectively, curves of the dimensionless circular velocity \(v_{c(m,n)} = v_{c(m,n)}/(GM/a^3) \), equations (16) and (17), and the dimensionless epicyclic frequency \(\kappa_{m,n} = \kappa_{m,n}/(GM/a^3)^{1/2} \), equations (18) and (19), as functions of \(r/a \), for the same members of inverted spheres. The four members of the shells shown are stable with respect to radial perturbations of circular orbits. From (20), we see that all members are stable. According to Newton’s shell theorem, the potential inside the hole (0 ≤ \(r \leq a \)) is constant and thus the circular velocity must be zero.

4 FAMILIES OF SPHERICAL SHELLS

Now we use the spheres discussed in Section 2 to construct potential–density pairs that represent shells of matter with finite thickness. The method is similar to the one used by Letelier (2007) to obtain rings by superposing the Morgan & Morgan (1969) discs. We take the density distribution (1) and make the following sum:

\[\rho^{(m,n)} = \sum_{k=0}^{n} C_k^{(m,n)} (-1)^{n-k} \rho_0 (1 - \frac{r^2}{a^2})^{m+1/2} \sum_{k=0}^{n} C_k^{(m,n)} (-1)^{n-k} \left(1 - \frac{r^2}{a^2} \right)^{n-k} = \rho_0 \left(1 - \frac{r^2}{a^2} \right)^{m+1/2} \left(\frac{r}{a} \right)^{2n}, \]

which suggest the general relations

\[v_{c(m,n)} = \sqrt{\frac{GM(r^2 + 6a^2)}{r^5}} \left(1 - \frac{r^2}{a^2} \right)^{3/4}, \]

\[\kappa_{m,n} = \sqrt{\frac{GM(r^2 + 8a^2)}{r^5}} \left(1 - \frac{r^2}{a^2} \right)^{7/4}. \]

Some curves of the dimensionless mass density \(\rho_{m,n}(r \rightarrow \infty) = \rho_{m,n}/(GM/a^3) \), equation (15), as a function of \(r/a \), are shown in Fig. 2(a). The shell with \(m = 1 \) exhibits a quite sharp density profile. In Figs 2(b) and (c), we plot, respectively, curves of the dimensionless circular velocity \(v_{c(m,n)} = v_{c(m,n)}/(GM/a^3) \), equations (16) and (17), and the dimensionless epicyclic frequency \(\kappa_{m,n} = \kappa_{m,n}/(GM/a^3)^{1/2} \), equations (18) and (19), as functions of \(r/a \). The four members of the shells shown are stable with respect to radial perturbations of circular orbits.

Figure 2. (a) The mass density \(\rho_{m,n}(r \rightarrow \infty) = \rho_{m,n}/(GM/a^3) \), equation (15), as a function of \(r/a \), for four members of inverted spheres. (b) The circular velocity \(v_{c(m,n)} = v_{c(m,n)}/(GM/a^3)^{1/2} \), equations (16) and (17), and (c) the epicyclic frequency \(\kappa_{m,n} = \kappa_{m,n}/(GM/a^3)^{1/2} \), equations (18) and (19), as functions of \(r/a \), for the same members of inverted spheres.
In Fig. 3(a), we display curves of the dimensionless mass density \(\bar{\rho}^{(m,n)} = \rho^{(m,n)}/\rho_c \), equation (21), as a function of \(r/a \), for four members of spherical shells. For small values of \(r/a \), the density of the shell grows as \((r/a)^{(2n+1)}\); therefore, shells with larger values of \(n \) also have larger holes. Curves of the dimensionless circular velocity \(\bar{v}^{(m,n)}_c = v^{(m,n)}_c/(G\rho_c a^2)^{1/2} \), equations (C5)–(C8), and of the dimensionless epicyclic frequency \(\bar{\kappa}^{(m,n)} = \kappa^{(m,n)}/(G\rho_c)^{1/2} \), equations (C9)–(C12), are displayed in Figs 3(b) and (c), respectively. For small values of \(r/a \), the rotation curves are proportional to \((r/a)^{(2n+2)}\) and thus also grow more slowly as \(n \) increases. We also see that the members of shells shown in the figure are stable.

In Fig. 3(a), we display curves of the dimensionless mass density \(\bar{\rho}^{(m,n)} = \rho^{(m,n)}/\rho_c \), equation (21), as a function of \(r/a \), for four members of spherical shells. For small values of \(r/a \), the density of the shell grows as \((r/a)^{(2n+1)}\); therefore, shells with larger values of \(n \) also have larger holes. Curves of the dimensionless circular velocity \(\bar{v}^{(m,n)}_c = v^{(m,n)}_c/(G\rho_c a^2)^{1/2} \), equations (C5)–(C8), and of the dimensionless epicyclic frequency \(\bar{\kappa}^{(m,n)} = \kappa^{(m,n)}/(G\rho_c)^{1/2} \), equations (C9)–(C12), are displayed in Figs 3(b) and (c), respectively. For small values of \(r/a \), the rotation curves are proportional to \((r/a)^{(2n+2)}\) and thus also grow more slowly as \(n \) increases. We also see that the members of shells shown in the figure are stable.

It is also possible to invert the shells. A Kelvin transformation applied to the density (21) results in

\[
\rho^{(m,n)}_{(\text{inv})} = \rho_c \left(1 - \frac{a^2}{r^2} \right)^{m+1/2} \left(\frac{a}{r} \right)^{2n+5}, \quad r \geq a, \tag{23}
\]

which represents a shell with a central hole of radius \(a \). If \(n = 0 \) and \(m \to m - 1 \), we recover the family of inverted shells discussed in Section 3. They also extend to infinity with an even larger decay of density, \(\rho^{(m,n)}_{(\text{inv})} \propto 1/r^{2n+5} \). The maximum of density occurs at \(r/a = \sqrt{(2m + 2n + 6)/(2n + 3)} \). The total mass of each shell is

\[
4\pi \int_a^\infty r^2 \rho^{(m,n)}_{(\text{inv})} \, dr = \frac{\rho_c \pi a^3 2^{2n+1} (2m + 1)!!}{(2m + 2n + 3)!!} \tag{24}
\]

Curves of the dimensionless mass density \(\bar{\rho}^{(m,n)}_{(\text{inv})} \), equation (23), as a function of \(r/a \), are displayed in Fig. 4(a) for four members of inverted shells. Figs 4(b) and (c) show, respectively, curves of the dimensionless circular velocity \(\bar{v}^{(m,n)}_{c(\text{inv})} \), equations (D5) and (D6), and of the dimensionless epicyclic frequency \(\bar{\kappa}^{(m,n)}_{c(\text{inv})} \), equations (D7)–(D9), for the same members of inverted shells. Once again, these members are stable with respect to radial perturbations of circular orbits.

5 A FAMILY OF DOUBLE SHELLS

The members of the family of shells discussed in Section 4 may be combined to generate double shells with finite thickness. To achieve this, we superpose members of (21) in the following way:

\[
\rho^{(m,n)}_{(2)} = \rho^{(m,n)} - 2b^2 \rho^{(m,n+1)} + b^4 \rho^{(m,n+2)} = \rho_c \left(1 - \frac{r^2}{a^2} \right)^{m+1/2} \left(\frac{r}{a} \right)^{2n} \left(1 - \frac{b^2 r^2}{a^2} \right)^2, \tag{25}
\]
Figure 4. (a) The mass density \(\bar{\rho}_{(m,n)}^{(inv)} = \rho_{(m,n)}^{(inv)} / \rho_c \), equation (23), as a function of \(r/a \), for four members of inverted shells. (b) The circular velocity \(\bar{v}_{(m,n)}^{(inv)} = v_{(m,n)}^{(inv)} / (G \rho_c a^2)^{1/2} \), equations (D5) and (D6), and (c) the epicyclic frequency \(\bar{\kappa}_{(m,n)}^{(inv)} = \kappa_{(m,n)}^{(inv)} / (G \rho_c)^{1/2} \), equations (D7)–(D9), as functions of \(r/a \), for the same members of inverted shells.

where \(b > 1 \). This density distribution may be interpreted as two concentric spherical shells with a gap located at \(r/a = 1/b \). We take as an example the member with \(m = 0, n = 1 \). The potential as well as the expressions of the rotation curve and epicyclic frequency for this example is given in Appendix E.

Fig. 5(a) shows curves of the dimensionless mass density \(\bar{\rho}_{(0,1)}^{(2)} = \rho_{(0,1)}^{(2)} / \rho_c \), equation (25), as a function of \(r/a \) for some values of \(b \). Curves of the circular velocity \(\bar{v}_{(0,1)}^{(2)} = v_{(0,1)}^{(2)} / (G \rho_c a^2)^{1/2} \), equation (E2), and of the epicyclic frequency \(\bar{\kappa}_{(0,1)}^{(2)} = \kappa_{(0,1)}^{(2)} / (G \rho_c)^{1/2} \), equation (E3), are plotted in Figs 5(b) and (c), respectively. Unlike the structures discussed so far, the rotation curves for this example of double shell show a point of minimum. They also show no sign of instability.

6 GENERAL RELATIVISTIC SPHERES AND SHELLS

Now we consider an extension to General Relativity of the Newtonian spherical potential–density pairs discussed so far. We choose a particular metric in an isotropic form in spherical coordinates \((t, r, \theta, \phi)\), which was also used in a recent work on another relativistic model of shells (Vogt & Letelier 2010):

\[
ds^2 = \left(\frac{1 - f}{1 + f} \right)^2 c^2 \, dt^2 - (1 + f)^4 \left(dr^2 + r^2 \, d\theta^2 + r^2 \sin^2 \theta \, d\phi^2 \right),
\]

where \(f = f(r) \). The Schwarzschild solution is given by metric (26) if \(f = GM/(2c^2 r) \), and the relation between the function \(f(r) \) and the Newtonian potential \(\Phi(r) \) is

\[
f = -\frac{\Phi}{2c^2}.
\]

By using the Einstein equations, we find the following expressions for the non-zero components of the energy–momentum tensor \(T_{\mu\nu} \) (Vogt & Letelier 2010):

\[
T'_{t} = -\frac{c^4}{2\pi G (1 + f)^3} \frac{1}{r^2} \frac{d}{dr} \left(r^2 \frac{df}{dr} \right),
\]

\[
T'_{r} = \frac{c^4}{2\pi G (1 + f)^3 (1 - f)} \frac{df}{dr} \left(\frac{f}{r} + \frac{df}{dr} \right),
\]

\[
T'_{\theta} = \frac{c^4}{2\pi G (1 + f)^3 (1 - f)} \frac{df}{dr} \left(\frac{f}{r} + \frac{df}{dr} \right),
\]

\[
T'_{\phi} = \frac{c^4}{2\pi G (1 + f)^3 (1 - f)} \frac{df}{dr} \left(\frac{f}{r} + \frac{df}{dr} \right).
\]
The mass density \(\rho_{(2)}^{(1)} = \rho_{(2)}^{(1)}/\rho_{c} \), equation (25), as a function of \(r/a \), for a double shell. (b) The circular velocity \(v_{c}^{(0,1)} = v_{c}^{(0,1)}/(G\rho_{c}a^{2})^{1/2} \), equation (E2), as a function of \(r/a \), for the same double shell.

\[
T^{\theta}_{\theta} = T^{\phi}_{\phi} = \frac{c^{4}}{4\pi G (1 + f)^{2} (1 - f)} \left[\frac{d^{2} f}{d r^{2}} + \frac{f}{r} \frac{d f}{d r} - \frac{(d f/d r)^{2}}{r^{2}} \right].
\]

(30)

The energy density reads as \(\epsilon = T^{\theta}_{\theta}/c^{2} \) and the pressures or tensions along a direction \(k \) are given by \(P_{k} = -T^{k}_{k} \). The ‘effective Newtonian density’ \(\rho_{N} = \epsilon + P_{c}/c^{2} + P_{\phi}/c^{2} + P_{\theta}/c^{2} \) can be cast as

\[
\rho_{N} = -\frac{c^{2}}{2\pi G (1 + f)^{2} (1 - f)} \frac{d}{d r} \left(r^{2} \frac{d f}{d r} \right).
\]

(31)

We will study in some detail two simple examples of General Relativistic spherical structures with finite extent: the sphere with potential (C1). Using equations (5) and (27)–(31), we find the following expressions for the components of the energy–momentum tensor of the sphere:

\[
\tilde{\epsilon}_{1} = \frac{4}{\pi^{2} a^{4} (1 + f_{1})^{3}} \sqrt{1 - \frac{\tilde{r}^{2}}{\tilde{a}^{2}}},
\]

(32)

\[
\tilde{\rho}_{N1} = \frac{4}{\pi^{2} a^{4} (1 + f_{1})^{3} (1 - f_{1})} \sqrt{1 - \frac{\tilde{r}^{2}}{\tilde{a}^{2}}},
\]

(33)

\[
\tilde{P}_{1} = \frac{8}{3\pi^{3} a^{4} f_{2} (1 + f_{1})^{4} (1 - f_{1})} \left(1 - \frac{\tilde{r}^{2}}{\tilde{a}^{2}} \right)^{3/2} \left[\frac{\tilde{a}^{3}}{\tilde{r}} \arcsin \left(\frac{\tilde{r}}{\tilde{a}} \right) + (2\tilde{r}^{2} - \tilde{a}^{2}) \sqrt{1 - \frac{\tilde{r}^{2}}{\tilde{a}^{2}}} \right],
\]

(34)

\[
P_{\phi 1} = P_{\theta 1} = \frac{4}{3\pi^{3} a^{4} f_{2} (1 + f_{1})^{4} (1 - f_{1})} \left(1 - \frac{\tilde{r}^{2}}{\tilde{a}^{2}} \right)^{1/2} \left[\frac{\tilde{a}^{4}}{\tilde{r}} \arcsin \left(\frac{\tilde{r}}{\tilde{a}} \right) + (4\tilde{r}^{2} - \tilde{a}^{2}) \arcsin \left(\frac{\tilde{r}}{\tilde{a}} \right) + (2\tilde{r}^{2} + \tilde{a}^{2}) \sqrt{1 - \frac{\tilde{r}^{2}}{\tilde{a}^{2}}} \right],
\]

(35)

with

\[
f_{1} = \frac{2}{3\pi a^{2}} \left[\frac{3a^{4}}{\tilde{r}} \arcsin \left(\frac{\tilde{r}}{a} \right) - \sqrt{\tilde{a}^{2} - \tilde{r}^{2}} (2\tilde{r}^{2} - \tilde{a}^{2}) \right],
\]

(36)

and the dimensionless variables and parameters are \(\tilde{r} = r/r_{s}, \tilde{a} = a/r_{s}, \tilde{\epsilon}_{1} = \epsilon_{1}/(M/r_{s}^{3}), \tilde{\rho}_{N1} = \rho_{N1}/(M/r_{s}^{3}), \tilde{P}_{k1} = P_{k1}/(Mc^{2}/r_{s}^{3}) \) and \(r_{s} = GM/(2c^{2}) \).
The energy condition holds if \(\rho_{N} \geq 0 \), whereas the weak energy condition imposes the condition \(\epsilon \geq 0 \). The dominant energy condition requires \(|P_{\epsilon}/\epsilon| \leq c^{2} \). Equations (32) and (33) show that the strong and weak energy conditions are satisfied if \(\hat{\alpha} \geq 16/(3\pi) \approx 1.70 \). In Fig. 6(a), we plot the curves of the energy density \(\hat{\epsilon}_{1} \) (solid curve) and the effective Newtonian density \(\hat{\rho}_{N1} \) (dashed curve), as functions of \(\hat{r} = \hat{r}/\hat{r}_{s} \), for the sphere with radius \(\hat{a} = 7 \). In Fig. 6(b), we display the radial pressure \(\hat{P}_{1} \) (solid curve) and the azimuthal/polar pressure \(\hat{P}_{01} \), as functions of \(\hat{r} = \hat{r}/\hat{r}_{s} \), for the same sphere. Unfortunately, we found that the energy density is not always a monotone decreasing function of the radius. This happens if \(\hat{\alpha} \lesssim 6.8 \). For \(\hat{\alpha} \gtrsim 6.8 \), the dominant energy condition is also satisfied. The radial and azimuthal pressures also decrease monotonically and both vanish on the sphere’s surface. In this example, we have an anisotropic sphere with larger azimuthal/polar than radial pressures.

In the case of the shell with potential (C1), we obtain the following expressions for the components of the energy–momentum tensor:

\[
\epsilon^{(0,1)} = \frac{1}{1 + f^{(0,1)}} \left(\frac{\hat{r}}{\hat{a}} \right)^{2} \sqrt{1 - \hat{r}^{2} \hat{a}^{2}},
\]

\[
\rho_{N}^{(0,1)} = \frac{1}{1 + f^{(0,1)}} \left[1 - f^{(0,1)} \right] \left(\frac{\hat{r}}{\hat{a}} \right)^{2} \sqrt{1 - \hat{r}^{2} \hat{a}^{2}},
\]

\[
\hat{P}_{r}^{(0,1)} = \frac{\pi}{360\hat{a}^{2} \hat{r}^{2} \left[1 + f^{(0,1)} \right] \left[1 - f^{(0,1)} \right]} \left[1 - \hat{r}^{2} \hat{a}^{2} \right]^{3/2} \left[3\hat{a}^{5} \arcsin \left(\frac{\hat{r}}{\hat{a}} \right) + (2\hat{r}^{2} + \hat{a}^{2})(4\hat{r}^{2} - 3\hat{a}^{2}) \sqrt{1 - \hat{r}^{2} \hat{a}^{2}} \right],
\]

\[
\hat{P}_{v}^{(0,1)} = \hat{P}_{\phi}^{(0,1)} = \frac{\pi}{720\hat{a}^{2} \hat{r}^{2} \left[1 + f^{(0,1)} \right] \left[1 - f^{(0,1)} \right]} \left[1 - \hat{r}^{2} \hat{a}^{2} \right] \left[3\hat{a}^{5} \arcsin \left(\frac{\hat{r}}{\hat{a}} \right) \right. - (18\hat{r}^{4} - \hat{r}^{2} \hat{a}^{2} - 2\hat{a}^{4}) \arcsin \left(\frac{\hat{r}}{\hat{a}} \right) + (4\hat{r}^{6} + 28\hat{r}^{4} \hat{a}^{2} + 7\hat{r}^{2} \hat{a}^{4} + 6\hat{a}^{6}) \sqrt{1 - \hat{r}^{2} \hat{a}^{2}} \right],
\]

with

\[
f^{(0,1)} = \frac{1}{120\hat{a}^{2} \hat{r}} \left[15\hat{a}^{6} \arcsin \left(\frac{\hat{r}}{\hat{a}} \right) - \sqrt{\hat{r}^{2} \hat{a}^{2} - (8\hat{r}^{4} - 6\hat{a}^{2} \hat{r}^{2} - 17\hat{a}^{4})} \right].
\]

and the dimensionless variables and parameters are now \(\hat{r} = r/r_{c} \), \(\hat{a} = a/r_{c} \), \(\epsilon^{(0,1)} = \epsilon^{(0,1)}/\rho_{c} \), \(\hat{\rho}_{N}^{(0,1)} = \rho_{N}^{(0,1)}/\rho_{c} \), \(\hat{P}_{k}^{(0,1)} = P_{k}^{(0,1)}/(\rho_{c} c^{2}) \) and \(r_{c} = c/\sqrt{G \rho_{c}} \).

From equations (37) and (38), we have that the strong and weak energy conditions are satisfied when \(\hat{\alpha} \leq \sqrt{15}/2 \approx 1.94 \). The dominant energy condition holds if

\[
\hat{\alpha} \leq \frac{5\sqrt{6} \pi + 15}{2(2\pi + 5)} \approx 1.29.
\]

Fig. 7(a) shows curves of the energy density \(\hat{\epsilon}^{(0,1)} \) (solid curve) and the effective Newtonian density \(\hat{\rho}_{N}^{(0,1)} \) (dashed curve), as functions of \(r/r_{c} \), for the shell with parameter \(\hat{\alpha} = 1.2 \). In Fig. 7(b), we show curves of the radial pressure \(\hat{P}_{r}^{(0,1)} \) (solid curve) and the azimuthal/polar pressure \(\hat{P}_{0}^{(0,1)} \) (dashed curve), as functions of \(r/r_{c} \), for the same shell. The pressures, as well as the densities, vanish at the centre and at the outer surface of the shell. This example shows a highly anisotropic relativistic shell with larger azimuthal/polar than radial pressures. We note...
that the analytical and numerical solutions for relativistic finite shells found by Andréasson (2007) and Gleiser & Ramirez (2010) also have anisotropic pressures.

7 DISCUSSION

In this work, we constructed families of potential–density pairs that represent spherical shells with finite thickness and shells with infinite thickness, but with a hole at the centre. Shells with finite thickness were obtained by the superposition of spheres with finite radii, and shells with infinite thickness extend by using the inversion theorem on spheres and finite shells. Furthermore, shells with finite thickness may be superposed to give a family of double shells with finite thickness. All the potential–density pairs discussed in this work can be expressed in terms of elementary functions. We also studied the rotation curves for these self-gravitating structures and made a stability analysis based on radial perturbations of circular orbits of individual particles. In all the examples discussed, we found stable structures.

A General Relativistic version of the Newtonian spherical potential–density pairs was obtained by using a particular isotropic form of a metric in spherical coordinates. We studied in some detail an example of a relativistic sphere and of a shell. In both cases, the matter presents equal azimuthal and polar pressures, but different from the radial pressure, and this anisotropy is a function of radius. It is possible to choose parameters such that all energy conditions are satisfied.

ACKNOWLEDGMENTS

DV thanks FAPESP for financial support and PSL thanks FAPESP and CNPq for partial financial support.

REFERENCES

Andréasson H., 2007, Communications Math. Phys., 274, 409
Andréasson H., Rein G., 2007, Classical Quantum Gravity, 24, 1809
Bičák J., Schmidt B. G., 1999, ApJ, 521, 708
Binney J., Tremaine S., 2008, Galactic Dynamics, 2nd edn. Princeton Univ. Press, Princeton, NJ
Dehnen W., 1993, MNRAS, 265, 250
Gleiser R. I., Ramirez M. A., 2010, Classical Quantum Gravity, 27, 065008
González G. A., Reina J. I., 2006, MNRAS, 371, 1873
Hernquist L., 1990, ApJ, 356, 359
Jaffe W., 1983, MNRAS, 202, 995
Kalnajs A. J., 1972, ApJ, 175, 63
Kellogg O.D., 1953, Foundations of Potential Theory. Dover Publications, New York
Letelier P. S., 2007, MNRAS, 381, 1031
Morgan T., Morgan L., 1969, Phys. Rev., 183, 1097
Navarro J. F., Frenk C. S., White S. D. M., 1997, ApJ, 490, 493
Plummer H. C., 1911, MNRAS, 71, 460
Rein G., 1999, Indiana Univ. Math. J., 48, 335
Thomson W. (Lord Kelvin), 1847, J. Math. Pures Appliquees, 12, 256
Tremaine S., Richstone D. O., Byun Y. I., Dressler A., Faber S. M., Grillmair C., Kormendy J., Lauer T. R., 1994, AJ, 107, 634
Vogt D., Letelier P. S., 2010, MNRAS, 402, 1313
Zhao H. S., 1996, MNRAS, 278, 488
APPENDIX A: ROTATION CURVES AND EPICYCLIC FREQUENCY FOR SPHERES

The expressions for the circular velocity $v_{c(m)}$ and epicyclic frequency κ_m for the spheres with $m = 1, 2, 3, 4$ read as

\[v_{c(1)} = \sqrt{\frac{2GM}{\pi a^2}} \left[\frac{a^2}{r} \arcsin \left(\frac{r}{a} \right) + \sqrt{a^2 - r^2 (2r^2 - a^2)} \right]^{1/2}, \tag{A1} \]

\[v_{c(2)} = \sqrt{\frac{2GM}{3\pi a^6}} \left[\frac{3a^6}{r^3} \arcsin \left(\frac{r}{a} \right) - \sqrt{a^2 - r^2 (8r^4 - 14r^2a^2 + 3a^4)} \right]^{1/2}, \tag{A2} \]

\[v_{c(3)} = \sqrt{\frac{2GM}{15\pi a^8}} \left[\frac{15a^4}{r^3} \arcsin \left(\frac{r}{a} \right) + \sqrt{a^2 - r^2 (48r^6 - 136r^4a^2 + 118r^2a^4 - 15a^6)} \right]^{1/2}, \tag{A3} \]

\[v_{c(4)} = \sqrt{\frac{2GM}{105\pi a^{10}}} \left[\frac{105a^{10}}{r^3} \arcsin \left(\frac{r}{a} \right) - \sqrt{a^2 - r^2 (384r^8 - 1488r^6a^2 + 2104r^4a^4 - 1210r^2a^6 + 105a^8)} \right]^{1/2}, \tag{A4} \]

\[\kappa_1 = \sqrt{\frac{2GM}{\pi r^2a^6}} \left[\frac{a^6}{r^3} \arcsin \left(\frac{r}{a} \right) + \sqrt{a^2 - r^2 (10r^2 - a^2)} \right]^{1/2}, \tag{A5} \]

\[\kappa_2 = \sqrt{\frac{2GM}{3\pi r^2a^6}} \left[\frac{3a^6}{r^3} \arcsin \left(\frac{r}{a} \right) - \sqrt{a^2 - r^2 (56r^4 - 62r^2a^2 + 3a^4)} \right]^{1/2}, \tag{A6} \]

\[\kappa_3 = \sqrt{\frac{2GM}{15\pi r^2a^8}} \left[\frac{15a^4}{r^3} \arcsin \left(\frac{r}{a} \right) + \sqrt{a^2 - r^2 (432r^6 - 904r^4a^2 + 502r^2a^4 - 15a^6)} \right]^{1/2}, \tag{A7} \]

\[\kappa_4 = \sqrt{\frac{2GM}{105\pi r^2a^{10}}} \left[\frac{105a^{10}}{r^3} \arcsin \left(\frac{r}{a} \right) - \sqrt{a^2 - r^2 (4224r^8 - 13008r^6a^2 + 13624r^4a^4 - 5050r^2a^6 + 105a^8)} \right]^{1/2}. \tag{A8} \]

APPENDIX B: POTENTIALS OF INVERTED SPHERES

The expressions for the potentials $\Phi_{m(\text{inv})}$ of the shells (15) with $m = 1, 2, 3, 4$, obtained by inversion of spheres, are

\[\Phi_{1(\text{inv})} = -\frac{GM}{8r} \left[3\arcsin \left(\frac{a}{r} \right) - \frac{\sqrt{r^2 - a^2}}{r} (5r^2 - 2a^2) \right], \tag{B1} \]

\[\Phi_{2(\text{inv})} = -\frac{GM}{48r} \left[15 \arcsin \left(\frac{a}{r} \right) + \frac{\sqrt{r^2 - a^2}}{r^3} (33r^4 - 26r^2a^2 + 8a^4) \right], \tag{B2} \]

\[\Phi_{3(\text{inv})} = -\frac{GM}{384r} \left[105 \arcsin \left(\frac{a}{r} \right) + \frac{\sqrt{r^2 - a^2}}{r^3} (279r^6 - 326r^4a^2 + 200r^2a^4 - 48a^6) \right], \tag{B3} \]

\[\Phi_{4(\text{inv})} = -\frac{GM}{1280r} \left[315 \arcsin \left(\frac{a}{r} \right) + \frac{\sqrt{r^2 - a^2}}{r^3} (965r^8 - 1490r^6a^2 + 1368r^4a^4 - 656r^2a^6 + 128a^8) \right]. \tag{B4} \]

APPENDIX C: POTENTIALS, ROTATION CURVES AND EPICYCLIC FREQUENCIES FOR SPHERICAL SHELLS

The expressions for the potentials $\Phi_{m(n)}$ of the shells (21) with $m = 0, 1$ and $n = 1, 2$ are

\[\Phi^{(0,1)} = -\frac{G\rho_s}{60a^3} \left[\frac{15a^6}{r^3} \arcsin \left(\frac{r}{a} \right) - \sqrt{a^2 - r^2 (8r^4 - 6a^2r^2 - 17a^4)} \right], \tag{C1} \]

\[\Phi^{(0,2)} = -\frac{G\rho_s}{3360a^3} \left[\frac{525a^6}{r^3} \arcsin \left(\frac{r}{a} \right) - \sqrt{a^2 - r^2 (240r^6 - 104r^4a^2 - 162r^2a^4 - 499a^6)} \right], \tag{C2} \]

\[\Phi^{(1,1)} = -\frac{G\rho_s}{1120a^3} \left[\frac{105a^6}{r^3} \arcsin \left(\frac{r}{a} \right) + \sqrt{a^2 - r^2 (80r^6 - 184r^4a^2 + 58r^2a^4 + 151a^6)} \right], \tag{C3} \]

\[\Phi^{(1,2)} = -\frac{G\rho_s}{20160a^3} \left[\frac{945a^{10}}{r^3} \arcsin \left(\frac{r}{a} \right) + \sqrt{a^2 - r^2 (896r^8 - 1712r^6a^2 + 264r^4a^4 + 394r^2a^6 + 1103a^8)} \right]. \tag{C4} \]
We also give the expressions for the circular velocity \(v_{(m,n)}^{(m,n)}\) and epicyclic frequency \(\kappa_{(m,n)}\) for these members:

\[
v_{c}^{(0,1)} = \sqrt{\frac{G \rho_{c} \pi}{12a^{3}}} \left[3a^{6} \frac{r}{a} \arcsin \left(\frac{r}{a} \right) + \sqrt{a^{2} - r^{2}} \left(8r^{4} - 2r^{2}a^{2} - 3a^{4} \right) \right]^{1/2},
\]

\[
v_{c}^{(0,2)} = \sqrt{\frac{G \rho_{c} \pi}{96a^{5}}} \left[15a^{8} \frac{r}{a} \arcsin \left(\frac{r}{a} \right) + \sqrt{a^{2} - r^{2}} \left(48r^{6} - 8r^{4}a^{2} - 10r^{2}a^{4} - 15a^{6} \right) \right]^{1/2},
\]

\[
v_{c}^{(1,1)} = \sqrt{\frac{G \rho_{c} \pi}{32a^{7}}} \left[3a^{6} \frac{r}{a} \arcsin \left(\frac{r}{a} \right) - \sqrt{a^{2} - r^{2}} \left(16r^{6} - 24r^{4}a^{2} + 2r^{2}a^{4} + 3a^{6} \right) \right]^{1/2},
\]

\[
v_{c}^{(1,2)} = \sqrt{\frac{G \rho_{c} \pi}{320a^{9}}} \left[15a^{10} \frac{r}{a} \arcsin \left(\frac{r}{a} \right) - \sqrt{a^{2} - r^{2}} \left(128r^{8} - 176r^{6}a^{2} + 8r^{4}a^{4} + 10r^{2}a^{6} + 15a^{8} \right) \right]^{1/2},
\]

\[
k_{c}^{(0,1)} = \sqrt{\frac{G \rho_{c} \pi}{12r^{3}a^{3}}} \left[3a^{6} \frac{r}{a} \arcsin \left(\frac{r}{a} \right) + \sqrt{a^{2} - r^{2}} \left(56r^{4} - 2r^{2}a^{2} - 3a^{4} \right) \right]^{1/2},
\]

\[
k_{c}^{(0,2)} = \sqrt{\frac{G \rho_{c} \pi}{96r^{5}a^{5}}} \left[15a^{8} \frac{r}{a} \arcsin \left(\frac{r}{a} \right) + \sqrt{a^{2} - r^{2}} \left(432r^{6} - 8r^{4}a^{2} - 10r^{2}a^{4} - 15a^{6} \right) \right]^{1/2},
\]

\[
k_{c}^{(1,1)} = \sqrt{\frac{G \rho_{c} \pi}{32r^{7}a^{7}}} \left[3a^{8} \frac{r}{a} \arcsin \left(\frac{r}{a} \right) - \sqrt{a^{2} - r^{2}} \left(144r^{6} - 152r^{4}a^{2} + 2r^{2}a^{4} + 3a^{6} \right) \right]^{1/2},
\]

\[
k_{c}^{(1,2)} = \sqrt{\frac{G \rho_{c} \pi}{320r^{9}a^{9}}} \left[15a^{10} \frac{r}{a} \arcsin \left(\frac{r}{a} \right) - \sqrt{a^{2} - r^{2}} \left(1408r^{8} - 1456r^{6}a^{2} + 8r^{4}a^{4} + 10r^{2}a^{6} + 15a^{8} \right) \right]^{1/2}.
\]

APPENDIX D: POTENTIALS, ROTATION CURVES AND EPICYCLIC FREQUENCIES FOR INVERTED SPHERICAL SHELLS

The expressions for the potentials \(\Phi_{(m,n)}^{(m,n)}\) of the inverted shells (23) with \(m = 0, 1\) and \(n = 1, 2\) are

\[
\Phi_{(0,1)}^{(m,n)} = -\frac{G \rho_{c} \pi a^{3}}{60r} \left[15r \frac{a}{r} \arcsin \left(\frac{a}{r} \right) + \sqrt{r^{2} - a^{2}} \left(17r^{4} + 6a^{2}r^{2} - 8a^{4} \right) \right],
\]

\[
\Phi_{(0,2)}^{(m,n)} = -\frac{G \rho_{c} \pi a^{3}}{3360r} \left[525r \frac{a}{r} \arcsin \left(\frac{a}{r} \right) + \sqrt{r^{2} - a^{2}} \left(499r^{6} + 162r^{4}a^{2} + 104r^{2}a^{4} - 240a^{6} \right) \right],
\]

\[
\Phi_{(1,1)}^{(m,n)} = -\frac{G \rho_{c} \pi a^{3}}{1120r} \left[105r \frac{a}{r} \arcsin \left(\frac{a}{r} \right) + \sqrt{r^{2} - a^{2}} \left(151r^{6} + 58r^{4}a^{2} - 184r^{2}a^{4} + 80a^{6} \right) \right],
\]

\[
\Phi_{(1,2)}^{(m,n)} = -\frac{G \rho_{c} \pi a^{3}}{20160r} \left[945r \frac{a}{r} \arcsin \left(\frac{a}{r} \right) + \sqrt{r^{2} - a^{2}} \left(1103r^{8} + 394r^{6}a^{2} + 264r^{4}a^{4} - 1712r^{2}a^{6} + 896a^{8} \right) \right].
\]

The circular velocity \(v_{(m,n)}^{(m,n)}\) and epicyclic frequency \(\kappa_{(m,n)}\) for these inverted shells read as

\[
v_{(0,1)}^{(m,n)} = \sqrt{\frac{4G \rho_{c} \pi a^{3}(2r^{2} + 3a^{2})}{15r^{3}}} \left(1 - \frac{a^{2}}{r^{2}} \right)^{3/4}, \quad v_{(0,2)}^{(m,n)} = \sqrt{\frac{4G \rho_{c} \pi a^{3}(8r^{4} + 12r^{2}a^{2} + 15a^{4})}{105r^{5}}} \left(1 - \frac{a^{2}}{r^{2}} \right)^{3/4},
\]

\[
v_{(1,1)}^{(m,n)} = \sqrt{\frac{4G \rho_{c} \pi a^{3}(2r^{2} + 5a^{2})}{35r^{3}}} \left(1 - \frac{a^{2}}{r^{2}} \right)^{5/4}, \quad v_{(1,2)}^{(m,n)} = \sqrt{\frac{4G \rho_{c} \pi a^{3}(8r^{4} + 20r^{2}a^{2} + 35a^{4})}{315r^{5}}} \left(1 - \frac{a^{2}}{r^{2}} \right)^{5/4},
\]

\[
k_{(0,1)}^{(m,n)} = \sqrt{\frac{4G \rho_{c} \pi a^{3}(2r^{4} + r^{2}a^{2} + 12a^{4})}{15r^{7}}} \left(1 - \frac{a^{2}}{r^{2}} \right)^{1/4}, \quad k_{(0,2)}^{(m,n)} = \sqrt{\frac{4G \rho_{c} \pi a^{3}(8r^{6} + 4r^{4}a^{2} + 3r^{2}a^{4} + 90a^{6})}{105r^{9}}} \left(1 - \frac{a^{2}}{r^{2}} \right)^{1/4},
\]

\[
k_{(1,1)}^{(m,n)} = \sqrt{\frac{4G \rho_{c} \pi a^{3}(2r^{6} + 4r^{4}a^{2} + 27r^{2}a^{4} + 30a^{6})}{35r^{9}}} \left(1 - \frac{a^{2}}{r^{2}} \right)^{1/4},
\]

\[
k_{(1,2)}^{(m,n)} = \sqrt{\frac{4G \rho_{c} \pi a^{3}(8r^{8} + 4r^{6}a^{2} + 3r^{4}a^{4} + 265r^{2}a^{6} - 280a^{8})}{315r^{11}}} \left(1 - \frac{a^{2}}{r^{2}} \right)^{1/4}.
\]
The potential $\Phi^{(0,1)}_{(2)}$ of the double shell discussed in Section 5 reads as
\[
\Phi^{(0,1)}_{(2)} = -\frac{G\rho_c \pi}{20160a^7} \left\{ \frac{315 a^{10}}{r} (7b^4 - 20b^2 + 16) \arcsin \left(\frac{r}{a} \right) + \sqrt{a^2 - r^2} \left[-896r^6b^4 + 16r^6a^2b^2(17b^2 + 180)
+ 24r^4a^4(15b^4 - 52b^2 - 112) + 2r^2a^6(289b^4 - 972b^2 + 1008) + a^8(1891b^4 - 5988b^2 + 5712) \right] \right\}. \tag{E1}
\]

The corresponding expressions of the circular velocity $v^{(0,1)}_{(c,2)}$ and epicyclic frequency $\kappa^{(0,1)}_{(2)}$ are
\[
v^{(0,1)}_{(c,2)} = \sqrt{\frac{G\rho_c \pi}{960a^7}} \left\{ \frac{15 a^{10}}{r} (7b^4 - 20b^2 + 16) \arcsin \left(\frac{r}{a} \right) + \sqrt{a^2 - r^2} \left[384r^8b^4 - 48r^6a^2b^2(b^2 + 20)
- 8r^4a^4(7b^4 - 20b^2 - 80) - 10r^2a^6(7b^4 - 20b^2 + 16) - 15a^8(7b^4 - 20b^2 + 16) \right] \right\}^{1/2}, \tag{E2}
\]
\[
\kappa^{(0,1)}_{(2)} = \sqrt{\frac{G\rho_c \pi}{960r^2a^7}} \left\{ \frac{15 a^{10}}{r} (7b^4 - 20b^2 + 16) \arcsin \left(\frac{r}{a} \right) + \sqrt{a^2 - r^2} \left[4224r^8b^4 - 48r^6a^2b^2(b^2 + 180)
- 8r^4a^4(7b^4 - 20b^2 - 560) - 10r^2a^6(7b^4 - 20b^2 + 16) - 15a^8(7b^4 - 20b^2 + 16) \right] \right\}^{1/2}. \tag{E3}
\]

This paper has been typeset from a TeX/LaTeX file prepared by the author.