A locally symmetric Kähler Einstein structure on a tube in the nonzero cotangent bundle of a space form

D.D. Poroşniuc

Abstract

We obtain a locally symmetric Kähler Einstein structure on a tube in the nonzero cotangent bundle of a Riemannian manifold of positive constant sectional curvature. The obtained Kähler Einstein structure cannot have constant holomorphic sectional curvature.

MSC 2000: 53C07, 53C15, 53C55

Keywords and phrases: cotangent bundle, Kähler Einstein metric, locally symmetric Riemannian manifold.

Introduction

The differential geometry of the cotangent bundle T^*M of a Riemannian manifold (M,g) is almost similar to that of the tangent bundle TM. However, there are some differences because the lifts (vertical, complete, horizontal etc.) to T^*M cannot be defined just like in the case of TM.

In [17] V. Oproiu and the present author have obtained a natural Kähler Einstein structure (G, J) of diagonal type induced on T^*M from the Riemannian metric g. The obtained Kähler structure on T^*M depends on one essential parameter u, which is a smooth function depending on the energy density t on T^*M. If the Kähler structure is Einstein they get a second order differential equation fulfilled by the parameter u. In the case of the general solution, they have obtained that (T^*M, G, J) has constant holomorphic sectional curvature.

In this paper we study the singular case where the parameter $u = At$, $A \in \mathbb{R}$. The considered natural Riemannian metric G of diagonal type on the nonzero cotangent bundle T^*_0M is defined by using one parameter ν which is a
smooth function depending on the energy density t. The vertical distribution VT_0^*M and the horizontal distribution HT_0^*M are orthogonal to each other but the dot products induced on them from G are not isomorphic (isometric).

Next, the natural almost complex structures J on T_0^*M that interchange the vertical and horizontal distributions depends of one essential parameter v.

After that, we obtain that G is Hermitian with respect to J and it follows that the fundamental 2-form ϕ associated to the almost Hermitian structure (G, J) is the fundamental form defining the usual symplectic structure on T_0^*M, hence it is closed.

From the integrability condition for J it follows that the base manifold M must have constant sectional curvature c and the parameter v must be a rational function depending on energy density t.

If the constant sectional curvature c is positive then we obtain a locally symmetric Kähler Einstein structure defined on a tube in T_0^*M. The Kähler Einstein manifold obtained cannot have constant holomorphic sectional curvature.

1. Some geometric properties of T^*M

Let (M, g) be a smooth n-dimensional Riemannian manifold and denote its cotangent bundle by $\pi : T^*M \to M$. Recall that there is a structure of a $2n$-dimensional smooth manifold on T^*M, induced from the structure of smooth n-dimensional manifold of M. From every local chart $(U, \varphi) = (U, x^1, \ldots, x^n)$ on M, it is induced a local chart $(\pi^{-1}(U), \Phi) = (\pi^{-1}(U), q^1, \ldots, q^n, p_1, \ldots, p_n)$, on T^*M, as follows. For a cotangent vector $p \in \pi^{-1}(U) \subset T^*M$, the first n local coordinates q^1, \ldots, q^n are the local coordinates x^1, \ldots, x^n of its base point $x = \pi(p)$ in the local chart (U, φ) (in fact we have $q^i = \pi^*x^i = x^i \circ \pi$, $i = 1, \ldots, n$). The last n local coordinates p_1, \ldots, p_n of $p \in \pi^{-1}(U)$ are the vector space coordinates of p with respect to the natural basis $(dx^1_{\pi(p)}, \ldots, dx^n_{\pi(p)})$, defined by the local chart (U, φ), i.e. $p = p_idx^i_{\pi(p)}$.

An M-tensor field of type (r, s) on T^*M is defined by sets of n^{r+s} components (functions depending on q^i and p_i), with r upper indices and s lower
indices, assigned to induced local charts \((\pi^{-1}(U), \Phi)\) on \(T^*M\), such that the local coordinate change rule is that of the local coordinate components of a tensor field of type \((r, s)\) on the base manifold \(M\) (see [6] for further details in the case of the tangent bundle). An usual tensor field of type \((r, s)\) on \(M\) may be thought of as an \(M\)-tensor field of type \((r, s)\) on \(T^*M\). If the considered tensor field on \(M\) is covariant only, the corresponding \(M\)-tensor field on \(T^*M\) may be identified with the induced (pullback by \(\pi\)) tensor field on \(T^*M\).

Some useful \(M\)-tensor fields on \(T^*M\) may be obtained as follows. Let \(v, w : [0, \infty) \to \mathbb{R}\) be a smooth functions and let \(||p||^2 = g^{-1}_{\pi(p)}(p, p)\) be the square of the norm of the cotangent vector \(p \in \pi^{-1}(U)\) \((g^{-1} = \text{the tensor field of type } (2,0)\) having the components \((g_{kl}(x))\) which are the entries of the inverse of the matrix \((g_{ij}(x))\) defined by the components of \(g\) in the local chart \((U, \varphi)\). The components \(g_{ij}(\pi(p)), p_i, v(||p||^2)p_j, p_i, w(||p||^2)p_j\) define \(M\)-tensor fields of types \((0, 2)\), \((0, 1)\), \((0, 2)\) on \(T^*M\), respectively. Similarly, the components \(g^{kl}(\pi(p)), g^0_k = p_ng^{hi}, w(||p||^2)g^{0k}g^{0l}\) define \(M\)-tensor fields of type \((2, 0)\), \((1, 0)\), \((2, 0)\) on \(T^*M\), respectively. Of course, all the components considered above are in the induced local chart \((\pi^{-1}(U), \Phi)\).

The Levi Civita connection \(\nabla\) of \(g\) defines a direct sum decomposition

\[
TT^*M = VT^*M \oplus HT^*M.
\]

of the tangent bundle to \(T^*M\) into vertical distributions \(VT^*M = \text{Ker } \pi_*\) and the horizontal distribution \(HT^*M\).

If \((\pi^{-1}(U), \Phi) = (\pi^{-1}(U), q^1, \ldots, q^n, p_1, \ldots, p_n)\) is a local chart on \(T^*M\), induced from the local chart \((U, \varphi) = (U, x^1, \ldots, x^n)\), the local vector fields \(\frac{\partial}{\partial p_1}, \ldots, \frac{\partial}{\partial p_n}\) on \(\pi^{-1}(U)\) define a local frame for \(VT^*M\) over \(\pi^{-1}(U)\) and the local vector fields \(\frac{\delta}{\delta q^1}, \ldots, \frac{\delta}{\delta q^n}\) define a local frame for \(HT^*M\) over \(\pi^{-1}(U)\), where

\[
\frac{\delta}{\delta q^i} = \frac{\partial}{\partial q^i} + \Gamma^0_{ih} \frac{\partial}{\partial p_h}, \quad \Gamma^0_{ih} = p_k \Gamma^k_{ih}
\]

and \(\Gamma^k_{ih}(\pi(p))\) are the Christoffel symbols of \(g\).

The set of vector fields \((\frac{\partial}{\partial p_1}, \ldots, \frac{\partial}{\partial p_n}, \frac{\delta}{\delta q^1}, \ldots, \frac{\delta}{\delta q^n})\) defines a local frame on \(T^*M\), adapted to the direct sum decomposition (1).

We consider

\[
t = \frac{1}{2} ||p||^2 = \frac{1}{2} g^{-1}_{\pi(p)}(p, p) = \frac{1}{2} g^{ik}(x)p_ip_k, \quad p \in \pi^{-1}(U)
\]

the energy density defined by \(g\) in the cotangent vector \(p\). We have \(t \in [0, \infty)\)
for all \(p \in T^*M \).

From now on we shall work in a fixed local chart \((U, \varphi)\) on \(M\) and in the induced local chart \((\pi^{-1}(U), \Phi)\) on \(T^*M\).

2. An almost Kähler structure on the \(T^*_0M \)

The nonzero cotangent bundle \(T^*_0M \) of Riemannian manifold \((M, g)\) is defined by the formula: \(T^*M \) minus zero section. Consider a real valued smooth function \(v \) defined on \((0, \infty) \subset \mathbb{R}\) and a real constant \(A \). We define the following \(M \)-tensor field of type \((0, 2)\) on \(T^*_0M \) having the components

\[
G_{ij}(p) = Atg_{ij}(\pi(p)) + v(t)p_ip_j.
\]

(3)

It follows easily that the matrix \((G_{ij})\) is positive definite if and only if \(A > 0, A + 2v > 0 \). The inverse of this matrix has the entries

\[
H^{kl}(p) = \frac{1}{At}g^{kl}(\pi(p)) + w(t)g^{0k}g^{0l},
\]

(4)

where

\[
w = \frac{-v}{At^2(A + 2v)}.
\]

(5)

The components \(H^{kl} \) define an \(M \)-tensor field of type \((2, 0)\) on \(T^*_0M \).

Remark. If the matrix \((G_{ij})\) is positive definite, then its inverse \((H^{kl})\) is positive definite too.

Using the \(M \)-tensor fields defined by \(G_{ij}, H^{kl} \), the following Riemannian metric may be considered on \(T^*_0M \)

\[
G = G_{ij}dq^idq^j + H^{ij}Dp_idp_j,
\]

(6)

where \(Dp_i = dp_i - \Gamma^0_{ij}dq^j \) is the absolute (covariant) differential of \(p_i \) with respect to the Levi Civita connection \(\nabla \) of \(g \). Equivalently, we have

\[
G(\frac{\delta}{\delta q^i}, \frac{\delta}{\delta q^j}) = G_{ij}, \quad G(\frac{\partial}{\partial p_i}, \frac{\partial}{\partial p_j}) = H^{ij}, \quad G(\frac{\partial}{\partial p_i}, \frac{\delta}{\delta q^j}) = G(\frac{\delta}{\delta q^j}, \frac{\partial}{\partial p_i}) = 0.
\]
Remark that HT_0^*M, VT_0^*M are orthogonal to each other with respect to G, but the Riemannian metrics induced from G on HT_0^*M, VT_0^*M are not the same, so the considered metric G on T^*M is not a metric of Sasaki type. Remark also that the system of 1-forms $(dq^1, \ldots, dq^n, Dp_1, \ldots, Dp_n)$ defines a local frame on T^*T^*M, dual to the local frame $(\frac{\delta}{\delta q^i}, \ldots, \frac{\delta}{\delta q^n}, \frac{\partial}{\partial p_1}, \ldots, \frac{\partial}{\partial p_n})$ adapted to the direct sum decomposition (1).

Next, an almost complex structure J is defined on T_0^*M by the same M-tensor fields G_{ij}, H^{kl}, expressed in the adapted local frame by

\[J \frac{\delta}{\delta q^i} = G_{ik} \frac{\partial}{\partial p_k}, \quad J \frac{\partial}{\partial p_i} = -H^{ik} \frac{\delta}{\delta q^k} \]

From the property of the M-tensor field H^{kl} to be defined by the inverse of the matrix defined by the components of the M-tensor field G_{ij}, it follows easily that J is an almost complex structure on T_0^*M.

Theorem 1. (T_0^*M, G, J) is an almost Kähler manifold.

Proof. Since the matrix (H^{kl}) is the inverse of the matrix (G_{ij}), it follows easily that

\[G(J \frac{\delta}{\delta q^i}, J \frac{\delta}{\delta q^j}) = G(\frac{\delta}{\delta q^i}, \frac{\delta}{\delta q^j}), \quad G(J \frac{\partial}{\partial p_i}, J \frac{\partial}{\partial p_j}) = G(\frac{\partial}{\partial p_i}, \frac{\partial}{\partial p_j}), \]

\[G(J \frac{\partial}{\partial p_i}, J \frac{\delta}{\delta q^j}) = G(\frac{\partial}{\partial p_i}, \frac{\delta}{\delta q^j}) = 0. \]

Hence

\[G(JX, JY) = G(X, Y), \quad \forall X, Y \in \Gamma(T_0^*M). \]

Thus (T_0^*M, G, J) is an almost Hermitian manifold.

The fundamental 2-form associated with this almost Hermitian structure is ϕ, defined by

\[\phi(X, Y) = G(X, JY), \quad \forall X, Y \in \Gamma(T_0^*M). \]

By a straightforward computation we get

\[\phi(\frac{\delta}{\delta q^i}, \frac{\delta}{\delta q^j}) = 0, \quad \phi(\frac{\partial}{\partial p_i}, \frac{\partial}{\partial p_j}) = 0, \quad \phi(\frac{\partial}{\partial p_i}, \frac{\delta}{\delta q^j}) = \delta^j_i. \]

Hence

\[\phi = Dp_i \wedge dq^i = dp_i \wedge dq^i, \]

(8)
due to the symmetry of $\Gamma^0_{ij} = p_h \Gamma^h_{ij}$. It follows that ϕ does coincide with the fundamental 2-form defining the usual symplectic structure on T^*_0M. Of course, we have $d\phi = 0$, i.e. ϕ is closed. Therefore (T^*_0M, G, J) is an almost Kähler manifold.

3. A Kähler structure on a tube $T^*_{0A} M$

We shall study the integrability of the almost complex structure defined by J on T^*_0M. To do this we need the following well known formulas for the brackets of the vector fields $\frac{\partial}{\partial p_i}, \frac{\partial}{\delta q^i}, i = 1, ..., n$

\[\begin{align*}
[\frac{\partial}{\partial p_i}, \frac{\partial}{\partial p_j}] &= 0; \\
[\frac{\partial}{\partial p_i}, \frac{\delta}{\delta q^j}] &= \Gamma^i_{jk} \frac{\partial}{\partial p_k}; \\
[\frac{\delta}{\delta q^i}, \frac{\delta}{\delta q^j}] &= R^0_{ij} \frac{\partial}{\partial p_k},
\end{align*} \]

where $R^h_{ij}((\pi(p))$ are the local coordinate components of the curvature tensor field of ∇ on M and $R^0_{ij}(p) = p_h R^h_{ij}$. Of course, the components R^0_{ij}, R^h_{ij} define M-tensor fields of types $(0,3), (1,3)$ on T^*M, respectively.

Theorem 2. The Nijenhuis tensor field of the almost complex structure J on T^*_0M is given by

\[N(\frac{\delta}{\delta q^i}, \frac{\delta}{\delta q^j}) = \begin{cases}
\{At((v + A)(\delta^h_{ij} g_{jk} - \delta^h_{ij} g_{ik}) - R^h_{ij}\} p_h \frac{\partial}{\partial p_k}, \\
N(\frac{\delta}{\delta q^i}, \frac{\partial}{\partial p_j}) = H^k l H^j r \{At((v + A)(\delta^h_{ij} g_{rl} - \delta^h_{ij} g_{il}) - R^h_{ij}\} p_h \frac{\delta}{\partial q^r}, \\
N(\frac{\partial}{\partial p_i}, \frac{\partial}{\partial p_j}) = H^k l H^j l \{At((v + A)(\delta^h_{ij} g_{rk} - \delta^h_{ij} g_{lk}) - R^h_{ij}\} p_h \frac{\partial}{\partial p_k}.
\end{cases} \]

Proof. Recall that the Nijenhuis tensor field N defined by J is given by

$N(X, Y) = [JX, JY] - J[X, Y] - J[JX, Y] - [X, JY]$, \forall $X, Y \in \Gamma(T^*_0M)$.

Then, we have $\frac{\delta}{\delta q^i} t = 0$, $\frac{\partial}{\partial p_i} t = g^{0k}$ and $\hat{\nabla}_i G_{jk} = 0$, $\hat{\nabla}_i H^{jk} = 0$, where

$\hat{\nabla}_i G_{jk} = \frac{\delta}{\delta q^i} G_{jk} - \Gamma^l_{ij} G_{lk} - \Gamma^l_{ik} G_{lj}$

$\hat{\nabla}_i H^{jk} = \frac{\delta}{\delta q^i} H^{jk} + \Gamma^l_{ij} H^{lk} + \Gamma^l_{ik} H^{lj}$
The above expressions for the components of N can be obtained by a quite long, straightforward computation.

Theorem 3. The almost complex structure J on T^*_0M is integrable if and only if the base manifold M has constant sectional curvature c and the function v is given by

$$v = \frac{c - A^2 t}{At}. \quad (11)$$

Proof. From the condition $N = 0$, one obtains

$$\{At(v + A)(\delta^h_i g_{jk} - \delta^h_j g_{ik}) - R^h_{kij}\}p_h = 0.$$

Taking $p_l \neq 0$ and $p_h = 0 \forall h \neq l$, it follows that

$$R^l_{kij} = At(v + A)(\delta^l_i g_{jk} - \delta^l_j g_{ik}).$$

Thus the sectional curvature $c = At(v + A)$ of (M, g) depends only on q^l. Using the Schur theorem (in the case where M is connected and dim $M \geq 3$), we obtain that c is constant. Then we obtain the expression (11) of v.

Conversely, if (M, g) has constant sectional curvature c and v is given by (11), it follows in a straightforward way that $N = 0$.

Remark. The function v must fulfill the condition

$$A + 2v = \frac{2c - A^2 t}{At} > 0, \quad A > 0. \quad (12)$$

If $c > 0$ then $(T^*_{0A}M, G, J)$ is a Kähler manifold, where $T^*_{0A}M$ is the tube in T^*_0M defined by the condition $0 < \|p\|^2 < \frac{4c}{At}$.

The components of the Kähler metric G on $T^*_{0A}M$ are

$$G_{ij} = Atg_{ij} + \frac{c - A^2 t}{At} p_ip_j; \quad (13)$$

$$H^{ij} = \frac{1}{At} g^{ij} - \frac{c - A^2 t}{At(2c - A^2 t)} g^{0i}g^{0j}. \quad (13)$$
4. A Kähler Einstein structure on T_{0A}^*

In this section we shall study the property of the Kähler manifold (T_{0A}^*, G, J) to be Einstein.

The Levi Civita connection ∇ of the Riemannian manifold (T_{0A}^*, G) is determined by the conditions

$$\nabla G = 0, \quad T = 0,$$

where T is its torsion tensor field. The explicit expression of this connection is obtained from the formula

$$2G(\nabla_X Y, Z) = X(G(Y, Z)) + Y(G(X, Z)) - Z(G(X, Y)) +$$

$$+ G([X, Y], Z) - G([X, Z], Y) - G([Y, Z], X); \quad \forall X, Y, Z \in \Gamma(T_{0A}^* M).$$

The final result can be stated as follows.

Theorem 4. The Levi Civita connection ∇ of G has the following expression in the local adapted frame $(\frac{\partial}{\partial q^1}, \ldots, \frac{\partial}{\partial q^n}, \frac{\partial}{\partial p^1}, \ldots, \frac{\partial}{\partial p^n})$:

$$\begin{align*}
\nabla \frac{\partial}{\partial q^i} \frac{\partial}{\partial p^j} &= Q_{hi}^{ij} \frac{\partial}{\partial p^h}, \\
\nabla \frac{\delta}{\delta q^i} \frac{\partial}{\partial p^j} &= -\Gamma_{ih}^{ij} \frac{\partial}{\partial p^h} + P_{hi}^{ij} \frac{\delta}{\delta q^h}, \\
\nabla \frac{\partial}{\partial p^i} \frac{\delta}{\delta q^j} &= S_{hij}^{ij} \frac{\partial}{\partial p^h}, \\
\nabla \frac{\delta}{\delta q^i} \frac{\delta}{\delta q^j} &= \Gamma_{ij}^{h} \frac{\delta}{\delta q^h} + S_{hij}^{ij} \frac{\partial}{\partial p^h},
\end{align*}$$

where $Q_{hi}^{ij}, P_{hi}^{ij}, S_{hij}^{ij}$ are M-tensor fields on $T_{0A}^* M$, defined by

$$\begin{align*}
Q_{hi}^{ij} &= \frac{1}{2} G_{hk} \left(\frac{\partial}{\partial p^i} H^{jk} + \frac{\partial}{\partial p^j} H^{ik} - \frac{\partial}{\partial p^k} H^{ij} \right), \\
P_{hi}^{ij} &= \frac{1}{2} H^{hk} \left(\frac{\partial}{\partial p^i} G_{jk} - H^{dl} R_{ijkl}^0 \right), \\
S_{hij}^{ij} &= -\frac{1}{2} G_{hk} \frac{\partial}{\partial p^k} G^{ij} + \frac{1}{2} R_{hij}^0.
\end{align*}$$

After replacing of the expressions of the involved M-tensor fields , we obtain

$$\begin{align*}
Q_{hi}^{ij} &= \frac{1}{2t} \left\{ (g^{ij} + \frac{c}{t(2c-A^2t)} g^{0i} g^{0j}) p_h - (\delta^{i0} g_{h0}^{0j} + \delta_{h0}^{0j} g_{0h}^{0i}) \right\}, \\
P_{hi}^{ij} &= -Q_{ji}^{ih}, \\
S_{hij}^{ij} &= - \frac{2c-A^2t}{2} (g_{ij} p_h + g_{ih} p_j) + \frac{A^2t}{2} g_{hj} p_i + \frac{3c-2A^2t}{2} p_h p_i p_j.
\end{align*}$$
The curvature tensor field K of the connection ∇ is obtained from the well known formula

$$K(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]}Z, \quad \forall \ X, Y, Z \in \Gamma(T^*_{0,A}M).$$

The components of curvature tensor field K with respect to the adapted local frame $(\frac{\delta}{\delta q^1}, \ldots, \frac{\delta}{\delta q^n}, \frac{\partial}{\partial p_1}, \ldots, \frac{\partial}{\partial p_n})$ are obtained easily:

$$
\begin{align*}
K\left(\frac{\delta}{\delta q^i}, \frac{\delta}{\delta q^j}\right)\frac{\delta}{\delta q^k} &= QQ Q^h_{ijk} \frac{\delta}{\delta q^l}, \\
K\left(\frac{\partial}{\partial p_i}, \frac{\partial}{\partial p_j}\right)\frac{\delta}{\delta q^k} &= PP P^k_{ijh} \frac{\partial}{\partial p^h}, \\
K\left(\frac{\partial}{\partial p_i}, \frac{\delta}{\delta q^j}\right)\frac{\delta}{\delta q^k} &= PP Q^j_{ikh} \frac{\partial}{\partial p^h}, \\
K\left(\frac{\partial}{\partial p_i}, \frac{\delta}{\delta q^j}\right)\frac{\partial}{\partial p^k} &= PP Q^j_{ik} \frac{\partial}{\partial p^k},
\end{align*}
$$

where

$$
\begin{align*}
QQ Q^h_{ijk} &= \frac{A^2 t}{2} (\delta^h g^i - \delta^h g^i) + \frac{A^2}{4} (g_{ik}p_j - g_{jk}p_i) g^{0h} - \\
&- \frac{A^2}{4} (\delta^h p_j - \delta^h p_i)p_k, \\
QQ P^k_{ijh} &= -QQ Q^k_{ijh}, \\
PP Q^j_{ikh} &= -\frac{1}{2t}(\delta^j g^i - \delta^j g^i) - \frac{1}{4t}(g^{ih}g^{0j} - g^{ih}g^{0j})p_k + \\
&+ \frac{1}{4t}(\delta^i g^{0j} - \delta^i g^{0j})g^{0h}, \\
PP P^h_{ijk} &= -PP Q^h_{ijk}, \\
PP Q^j_{ik} &= \frac{A^2}{2} \delta^j G_{hk} + \frac{2c - A^2 t}{4t}(\delta^j p_h + \delta^j p_k)p_j + \\
&+ \frac{A^2}{4} (g_{jh}p_k + g_{jk}p_h) g^{0i} - \frac{c}{2t} g^{0i} p_j p_h p_k, \\
PQQ^i_{hk} &= \frac{A^2}{2} \delta^i H^{hk} - \frac{1}{4t}(g^{ih}g^{0k} + g^{ik}g^{0h})p_j - \\
&- \frac{A^2}{4(2c - A^2 t)} (\delta^h g^{0k} + \delta^k g^{0h}) g^{0j} + \frac{c}{2t} (2c - A^2 t) g^{0h} g^{0h} g^{0k} p_j,
\end{align*}
$$

are M-tensor fields on $T^*_{0,A}M$.

\[9\]
Remark. From the local coordinates expression of the curvature tensor field \(K \) we obtain that the Kähler manifold \((T^*M, G, J)\) cannot have constant holomorphic sectional curvature.

The Ricci tensor field \(\text{Ric} \) of \(\nabla \) is defined by the formula:

\[
\text{Ric}(Y, Z) = \text{trace}(X \rightarrow K(X, Y)Z), \quad \forall \ X, Y, Z \in \Gamma(T^*_0AM).
\]

It follows

\[
\begin{aligned}
\text{Ric}(\frac{\partial}{\partial p^i}, \frac{\partial}{\partial p^j}) &= \frac{An}{2}H^{ij}, \\
\text{Ric}(\frac{\partial}{\partial p^i}, \frac{\partial}{\partial q^r}) &= \text{Ric}(\frac{\delta}{\delta q^r}, \frac{\partial}{\partial p^i}) = 0.
\end{aligned}
\]

Thus

\[
(19) \quad \text{Ric} = \frac{An}{2}G.
\]

By straightforward computation, using the relations (16),(18) and the package Ricci, the following formulas are obtained:

\[
\begin{aligned}
\frac{\delta}{\delta q^r}QQQ^h_{ijkl} &= -\Gamma^h_{ls}QQQ^s_{ijkl} + \Gamma^h_{li}QQQ^h_{skj} + \Gamma^h_{lj}QQQ^h_{isk} + \Gamma^h_{lk}QQQ^h_{ij}, \\
\frac{\delta}{\delta q^r}PPQ^i_{jk} &= \Gamma^i_{lk}PPQ^i_{sjk} - \Gamma^i_{ls}PPQ^i_{ijk} - \Gamma^i_{ij}PPQ^i_{skh} + \Gamma^i_{ih}PPQ^i_{jks}, \\
\frac{\delta}{\delta q^r}PPQ^i_{jkh} &= -\Gamma^i_{ls}PPQ^i_{skh} + \Gamma^i_{ij}PPQ^i_{skh} + \Gamma^i_{lk}PPQ^i_{jkh} + \Gamma^i_{lh}PPQ^i_{jks}, \\
\frac{\partial}{\partial p^i}QQQ^h_{ijk} &= -P^i_{hs}QQQ^h_{skj} + P^i_{si}QQQ^h_{skj} + P^i_{sj}QQQ^h_{skj} + P^i_{sh}QQQ^h_{skj}, \\
\frac{\partial}{\partial p^i}PPQ^i_{j} &= P^i_{ks}PPQ^i_{skh} - P^i_{si}PPQ^i_{skh} - P^i_{sj}PPQ^i_{skh} - P^i_{sh}PPQ^i_{skh}, \\
\frac{\partial}{\partial p^i}PPQ^i_{jkh} &= -P^i_{sk}PPQ^i_{skh} + P^i_{sl}PPQ^i_{skh} + P^i_{sj}PPQ^i_{skh} + P^i_{sh}PPQ^i_{skh}, \\
\frac{\partial}{\partial p^i}PPQ^i_{j} &= P^i_{sk}PPQ^i_{skh} - P^i_{sl}PPQ^i_{skh} - P^i_{sj}PPQ^i_{skh} - P^i_{sh}PPQ^i_{skh}.
\end{aligned}
\]
Due to the relations (14),(17), we have

\[
(\nabla_{\delta q^l} K)(\frac{\delta}{\delta q^i}, \frac{\delta}{\delta q^j}) \frac{\delta}{\delta q^k} = \left(\frac{\delta}{\delta q^l} QQQ^h_{ijk} + \Gamma^h_{ls} QQ_Q^s_{ijk} - \Gamma^h_{ij} QQ_Q^h_{sk} - \Gamma^h_{lk} QQ_Q^h_{js} \right) \frac{\delta}{\delta q^h} + \\
+ (S_{hls} QQ_Q^s_{ijk} + S_{slk} QQ_Q^s_{ih} + S_{ssl} PQQ^s_{ikh} - S_{sli} PQQ^s_{jkh}) \frac{\partial}{\partial p^h}.
\]

The coefficient of \(\frac{\delta}{\delta q^h} \) is zero due to the relations (20). By straightforward computation, using the relations (16),(18) and the package Ricci, we obtain that the coefficient of \(\frac{\partial}{\partial p^h} \) is zero. Thus

\[
(\nabla_{\delta q^l} K)(\frac{\delta}{\delta q^i}, \frac{\delta}{\delta q^j}) \frac{\delta}{\delta q^k} = 0.
\]

Similarly

\[
(\nabla_{\delta p^l} K)(\frac{\delta}{\delta q^i}, \frac{\delta}{\delta q^j}) \frac{\delta}{\delta q^k} = \left(\frac{\partial}{\partial p^l} QQQ^h_{ijk} + P^h_{ls} QQ_Q^s_{ijk} - P^h_{ij} QQ_Q^h_{sk} - P^h_{lk} QQ_Q^h_{js} \right) \frac{\delta}{\delta q^h}.
\]

The coefficient of \(\frac{\delta}{\delta q^h} \) is zero due to the relations (20). Thus

\[
(\nabla_{\delta p^l} K)(\frac{\delta}{\delta q^i}, \frac{\delta}{\delta q^j}) \frac{\delta}{\delta q^k} = 0.
\]

Similarly, we have computed the covariant derivatives of curvature tensor field \(K \) in the local adapted frame \((\delta_{q^i}, \delta_{p^j}) \) with respect to the connection \(\nabla \) and we obtained in all the cases that the result is zero. Therefore

\[
\nabla K = 0.
\]

Now we may state our main result.

Theorem 5. If the Riemannian manifold \((M, g)\) has positive constant sectional curvature \(c \), the conditions (12) are fulfilled and the components of the metric \(G \) are given by (13) then \((T^*_\theta A^\ast M, G, J)\) is a locally symmetric Kähler Einstein manifold.
References

[1] Besse, A., *Einstein manifolds*, Ergeb. Math.Grenzgeb.(3) 10, Springer-Verlag, Berlin 1987.

[2] Calabi, E., *Métriques Kaehleriennes et fibrés holomorphes*, Ann. Scient. Ec. Norm. Sup., 12 (1979), 269-294.

[3] Gheorghiev, Gh.; Oproiu, V., *Varietăți diferențiable finit și infinit dimensionale*, Ed. Academiei Rom. I (1976), II (1979).

[4] Kobayashi, S.; Nomizu, K., *Foundations of Differential Geometry I, II*, Interscience, New York, 1963, 1969.

[5] Lee, J.M., *Ricci. A Mathematica package for doing tensor calculations in differential geometry. User’s Manual, 1992, 2000.*

[6] Mok, K.P.; Patterson, E.M.; Wong, Y.C., *Structure of symmetric tensors of type (0,2) and tensors of type (1,1) on the tangent bundle*, Trans. Am. Math. Soc. 234 (1977), 253-278.

[7] Oproiu, V., *On the differential geometry of the tangent bundles*, Rev. Roum. Math. Pures Appl. 13 (1968), 847-856.

[8] Oproiu, V., *A generalization of natural almost Hermitian structures on the tangent bundles*. Math. J. Toyama Univ., 22 (1999), 1-14.

[9] Oproiu, V., *General natural almost Hermitian and anti-Hermitian structures on the tangent bundles*. Bull. Soc. Sci. Math. Roum. 43 (91), (2000), 325-340.

[10] Oproiu, V., *Some new geometric structures on the tangent bundle*, Public. Math. Debrecen. 55 (1999), 261-281.

[11] Oproiu, V., *A Kähler Einstein structure on the tangent bundle of a space form*, Int. J. Math. Math. Sci. 25 (2001), 183-195.

[12] Oproiu, V., *A locally symmetric Kähler Einstein structure on the tangent bundle of a space form*, Beiträge zur Algebra und Geometrie/ Contributions to Algebra and Geometry, 40 (1999), 363-372.

[13] Oproiu, V.; Papaghiuc, N., *A locally symmetric Kaehler Einstein structure on a tube in the tangent bundle of a space form*, Revue Roumaine Math. Pures Appl. 45 (2000), 863-871.
[14] **Oproiu, V.; Papaghiuc, N.**, *A Kähler structure on the nonzero tangent bundle of a space form*, Differential Geom. Appl. 11 (1999), 1-12.

[15] **Oproiu, V.; Papaghiuc, N.**, *A pseudo-Riemannian metric on the cotangent bundle*, An. Ştiinţ. Univ. Al. I. Cuza, Iaşi 36 (1990), 265-276.

[16] **Oproiu, V.; Papaghiuc, N.**, *Another pseudo-Riemannian metric on the cotangent bundle*, Bull. Inst. Polit., Iasi, 27 (1991), fasc.1-4, sect.1.

[17] **Oproiu, V.; Poroşniuc, D.D.**, *A Kähler Einstein structure on the cotangent bundle of a Riemannian manifold*, to appear in An. Ştiinţ. Univ. Al. I. Cuza, Iaşi.

[18] **Poroşniuc, D.D.**, *A locally symmetric Kähler Einstein structure on the cotangent bundle of a space form*, preprint.

[19] **Poroşniuc, D.D.**, *A Kähler Einstein structure on the nonzero cotangent bundle of a space form*, preprint.

[20] **Sasaki, S.**, *On the Differential Geometry of the Tangent Bundle of Riemannian Manifolds*, Tohoku Math. J., 10 (1958), 238-354.

[21] **Tahara, M.; Vanhecke, L.; Watanabe, Y.**, *New structures on tangent bundles*, Note di Matematica (Lecce), 18 (1998), 131-141.

[22] **Tahara, M.; Watanabe, Y.**, *Natural almost Hermitian, Hermitian and Kähler metrics on the tangent bundles*, Math. J. Toyama Univ., 20 (1997), 149-160.

[23] **Yano, K.; Kobayashi, S.**, *Prolongations of tensor fields and connections to tangent bundles, I. General Theory*, Jour. Math. Soc. Japan, 18 (1966), 194-210.

[24] **Yano, K.; Ishihara, S.**, *Tangent and Cotangent Bundles*, M. Dekker Inc., New York, 1973.

D.D.Poroşniuc
Department of Mathematics
National College ”M. Eminescu”
Botoşani, România.
e-mail: danielporosniuc@lme.ro