Genome-wide association mapping and genomic prediction for pre-harvest sprouting resistance, low α-amylase and seed color in Iranian bread wheat

Ehsan Rabieyan1, Mohammad Reza Bihamta1*, Mohsen Esmaeilzadeh Moghaddam2, Valiollah Mohammadi1 and Hadi Alipour3

Abstract

Background: Pre-harvest sprouting (PHS) refers to a phenomenon, in which the physiologically mature seeds are germinated on the spike before or during the harvesting practice owing to high humidity or prolonged period of rainfall. Pre-harvest sprouting (PHS) remarkably decreases seed quality and yield in wheat; hence it is imperative to uncover genomic regions responsible for PHS tolerance to be used in wheat breeding. A genome-wide association study (GWAS) was carried out using 298 bread wheat landraces and varieties from Iran to dissect the genomic regions of PHS tolerance in a well-irrigated environment. Three different approaches (RRBLUP, GBLUP and BRR) were followed to estimate prediction accuracies in wheat genomic selection.

Results: Genomes B, A, and D harbored the largest number of significant marker pairs (MPs) in both landraces (427,017, 328,006, 92,702 MPs) and varieties (370,359, 266,708, 63,924 MPs), respectively. However, the LD levels were found the opposite, i.e., genomes D, A, and B have the highest LD, respectively. Association mapping by using GLM and MLM models resulted in 572 and 598 marker-trait associations (MTAs) for imputed SNPs (−log10 P > 3), respectively. Gene ontology exhibited that the pleitropic MPs located on 1A control seed color, α-Amy activity, and PHS. RRBLUP model indicated genetic effects better than GBLUP and BRR, offering a favorable tool for wheat genomic selection.

Conclusions: Gene ontology exhibited that the pleitropic MPs located on 1A can control seed color, α-Amy activity, and PHS. The verified markers in the current work can provide an opportunity to clone the underlying QTLs/genes, fine mapping, and genome-assisted selection. Our observations uncovered key MTAs related to seed color, α-Amy activity, and PHS that can be exploited in the genome-mediated development of novel varieties in wheat.

Keywords: Cereal, Dormancy, GWAS, Pre-harvest sprouting

Background

Wheat (Triticum aestivum L.) has gradually become the global pioneer in supplying human nutrition and calories [1, 2]. The seeds of this crop are prone to sprouting at maturity when reiterated rainfall happens in the time of harvest in the field, leading to a remarkable decrease in flour quality and grain yield [3]. As a result, pre-harvest sprouting...
sprouting (PHS) is known as a detrimental restricting factor in wheat productivity [4]. Given this challenge, genetic improvements in PHS tolerance have become a serious focus of wheat breeders.

PHS tolerance depends on several factors, including i) environmental factors, such as relative humidity and temperature [4]; ii) biophysiological traits, such as germination-inhibitory compounds in the glumes, α-amylase (α-Amy) activity, grain structure and color, phytohormones, and seed dormancy [5]; iii) morphological traits, such as awn and spike structure [6]. Of these factors, grain color is genetically related to PHS tolerance, the red-grained genotypes are more tolerant to PHS than white ones [7]. Genes coding MYB transcriptional factors responsible for the flavonoid biosynthesis, i.e., *Tamyb10-1*, have been reported as candidates that determine grain color [8]. *Myb10* confers PHS resistance in wheat, which activates 9-cis-epoxycarotenoid dioxygenase (*NCED*) by biding the secondary wall MYB-responsive element (*SMRE*) to promote ABA biosynthesis in early wheat seed development stages [9–11]. Moreover, experimental evidence highlight seed dormancy is a key genetic component that determines PHS tolerance in wheat genotypes [2].

To date, numerous quantitative trait loci (QTLs) associated with PHS tolerance in wheat have been recognized in previous studies [12]. These works have either assayed PHS tolerance indirectly by germination testing of harvest-ripe grains in a controlled environment [13–15] and/or or directly by evaluating spikes in the field or in misting chambers [15, 16]. Most identified genomic segments are mapped on chromosome 4A [17–19], followed by 3A, 3B, and 3D [20]. The PHS tolerance genes located on the chromosomes 3D, 3B, and 3A are known to be pleiotropic or closely linked with red coat controlled by allele R [20]. Several resistant genes such as *MKK3* [21], *Vp1* [22, 23], *PM19* [24, 25], *MFT* [26], *PHS1* [27], *PHS-3D* [9], *ABI5* [28], *FUS3* [29] and *DOG1* [30], were characterized from wheat for grain dormancy. Recently, Torada et al. [21] cloned *MKK3* as the causal gene for grain dormancy. Further development of functional markers related to PHS tolerance is critical in wheat.

Genome-wide association study (GWAS) is an alternative tool to determine QTLs in natural populations [15]. The establishment of genotyping technologies, from SSRs to SNPs, could facilitate association studies for accurate and efficient exploring of potential loci involved in complex traits, including PHS resistance in wheat [7, 13, 31] and grain-associated traits [32, 33]. However, the molecular mechanisms of PHS resistance remain unclear. Genomic selection (GS) along with GWAS can dramatically accelerate genetic gain in breeding [34, 35]. Several methods, including SNP-BLUP, have been suggested for genomic prediction [36].

In this study, a total of 298 Iranian wheat genotypes were evaluated for genotyping-by-sequencing (GBS)-based GWAS to achieve two objectives: i) uncovering genetic loci associated with PHS resistance; (2) identifying the best model for estimating prediction accuracies in genomic selection.

Results

Phenotypic data summary

The results of descriptive statistics of traits related to pre-harvest sprouting are shown in Table 1. Germination percentage occurred among Iranian wheat cultivars and landraces were ranged from zero to %100. The averages of germination percentage in landraces and cultivars were 71.31% and are 79.67%, respectively, which shows that native populations harbor more value of this trait. Sprouting index, sprouting score, and sprouting spike also confirm the lower pre-harvest sprouting rate of native populations than cultivated varieties. The α-Amy enzyme activities in native populations and cultivars were 9.38 and 10.76, respectively, which indicates less activity of the enzyme in landraces than that of varieties. Color indices including L, a, and b do not differ significantly between cultivars and landraces.

From Fig. 1, wheat germination percentage (GP) indicated significant, negative correlations with most seed traits with coefficients ranging from 0.99 to 0.31 (*P < 0.01*). GP had the highest correlation with sprouting index (SI) (*r* = 0.98), α-Amy (A.amy) (*r* = 0.89), percentage of sprouted spike (SSp) (*r* = 0.68), color index L (*r* = 0.38), brightness index (W1) (*r* = 0.38), color index b, and Chroma (*r* = 0.25 and 0.24).

Assessment of SNPs

After eight Ion Proton runs, a total of 566,439,207 reads were identified with 458,363,607 (about 81%) high-quality barcoded reads. A total of 133,039 unique SNPs were called after filtering out duplicated reads. After imputation and discarding the SNPs with >20% missing values, >10% heterozygosity, and <5% minor allele frequency, 43,525 SNPs were identified across all 21 wheat chromosomes. Out of them, 15,951, 21,864, and 5,710 SNPs were mapped to A, B, and D genomes, respectively, which included 36.7%, 50.2%, and 13.1% of total SNPs (Fig. 2). The highest and lowest numbers of SNPs were located on 3A (4034 SNPs) and 4D (270 SNPs), respectively.
In order to determine the appropriate number of subpopulations, the number of clusters was plotted (K) against ΔK. The largest ΔK value was observed at K = 3 suggesting the presence of three subpopulations (Fig. 3a). Using the structure software, the population of 298 accessions was structured into three subpopulations, Sub1, Sub2, and Sub_3 (Fig. 2). Sub_1 contains 113 accessions with 107 landraces and 6 varieties, Sub_2 contains 111 accessions with 97 landraces and 14 varieties; Sub_3 contains 74 studies with 70 varieties and 4 landraces (Fig. 3b). Molecular markers-based PCA showed that the first and second components justified 16.9% and 6.3% of total genetic variance occurred between wheat accessions. Thus, our study can distinguish favorably cultivars and native populations (Fig. 4). As expected, a population structure was identified in the Iranian wheat landraces, with the first five eigenvalues accounting for 30.5% of genetic diversity. From the clustering results, the native populations were divided into two subgroups. Clustering based on the nearest neighbor also indicated that cultivars and landraces were appropriately separated by using the imputed markers (Fig. 5).

Table 1 Descriptive findings on the studied traits for Iranian landraces and cultivars

Abb	Group	Mean	Minimum	Maximum	Coeff of Variation	Std Error	Std Dev	Skewness	Kurtosis
GP	Landrace	71.31	0.00	100.00	99.45	1.98	28.53	1.24	0.39
	Cultivar	79.67	0.00	100.00	115.74	2.48	23.54	1.84	3.02
	Total	73.84	0.00	100.00	104.53	1.58	27.35	1.39	0.91
SI	Landrace	77.04	0.00	100.00	36.20	1.93	27.88	-1.38	0.84
	Cultivar	83.51	0.00	100.00	26.61	2.34	22.22	-1.95	3.38
	Total	78.99	0.00	100.00	33.46	1.53	26.43	-1.53	1.38
SS	Landrace	6.85	1.00	8.90	29.47	0.14	2.02	-1.49	1.49
	Cultivar	7.45	1.00	9.00	22.21	0.17	1.66	-2.06	4.53
	Total	7.03	1.00	9.00	27.49	0.11	1.93	-1.63	2.09
SSp	Landrace	92.98	0.00	100.00	23.48	1.51	21.83	-3.49	11.24
	Cultivar	96.61	0.00	100.00	15.47	1.58	14.95	-5.54	31.90
	Total	94.08	0.00	100.00	21.31	1.16	20.05	-3.88	14.31
A.amy	Landrace	9.38	0.11	16.09	45.69	0.30	4.29	-0.65	-0.49
	Cultivar	10.76	0.12	16.59	35.10	0.40	3.78	-0.99	0.75
	Total	9.80	0.11	16.59	42.67	0.24	4.18	-0.75	-0.23
L	Landrace	59.90	45.07	72.24	10.44	0.43	6.25	-0.18	-0.83
	Cultivar	60.68	45.01	72.17	9.96	0.64	6.04	-0.11	-0.79
	Total	60.13	45.01	72.24	10.29	0.36	6.19	-0.17	-0.81
a	Landrace	3.40	1.09	6.90	33.95	0.08	1.15	0.22	-0.39
	Cultivar	3.29	1.17	5.48	32.03	0.11	1.05	-0.13	-0.92
	Total	3.36	1.09	6.90	33.39	0.07	1.12	0.15	-0.47
b	Landrace	21.16	15.50	26.76	11.48	0.17	2.43	-0.36	-0.67
	Cultivar	21.73	16.55	25.62	9.29	0.21	2.02	-0.58	-0.06
	Total	21.33	15.50	26.76	10.90	0.13	2.32	-0.45	-0.51
Chroma	Landrace	21.46	15.55	26.96	11.48	0.17	2.46	-0.39	-0.62
	Cultivar	22.00	16.62	25.72	9.05	0.21	1.99	-0.63	0.06
	Total	21.62	15.55	26.96	10.83	0.14	2.34	-0.48	-0.43
Hue	Landrace	1.41	1.28	1.57	3.66	0.00	0.05	-0.06	-0.41
	Cultivar	1.42	1.31	1.52	3.53	0.01	0.05	0.08	0.84
	Total	1.41	1.28	1.57	3.62	0.00	0.05	-0.03	0.52
WI	Landrace	54.28	41.87	65.04	8.81	0.33	4.78	-0.19	-0.66
	Cultivar	54.74	42.19	64.03	8.57	0.49	4.69	-0.09	-0.73
	Total	54.42	41.87	65.04	8.73	0.28	4.75	-0.17	-0.68

GP Germination Percentage, SS Sprouting Score, SI Sprouting Index, SSp Sprouting Spike, A.amy Alpha amylase, WI Whiteness Index
Linkage disequilibrium (LD)

The levels of LD in genomes A, B, and D were 2279, 1707, and 5135, respectively. This reflects that genomes D, A, and B have the highest LD, respectively (Fig. 6). An analysis on landraces identified a total of 1,867,575 marker pairs with $r^2 = 0.182$, of which 847,725 (45.39%) harbored significant linkages at $P < 0.001$.

Similar to cultivars, marker pairs on chromosome 4A showed the strongest LD ($r^2 = 0.369$). Moreover, most of the significant marker pairs were found at distance of < 10 cM. Genomes D and B possessed the lowest and highest number of marker pairs (92,702 and 427,017), respectively. A total of 1,858,425 marker pairs with $r^2 = 0.211$ were identified in cultivars, of which 700,991 (37.72%) harbored significant linkages at $P < 0.001$. Based on the observations, most of the significant marker pairs were found at distance of < 10 cM. Genomes D and B possessed the lowest and
highest number of significant marker pairs (63,924 and 370,359), respectively (Table 2; Fig. 6).

MTAs for morphometric seed traits
In total, 566 and 598 significant marker pairs (MTAs) were identified by using GLM and MLM approaches, respectively, for PHS-related traits (–log10 \(P > 3 \)). Of the total number of MTAs in the GLM method, 204, 271, and 97 MTAs were assigned to genomes A, B, and D, respectively. Of 598 MTAs in the MLM method, 220, 273, and 105 MTAs belonged to genomes A, B, and D, respectively. Genome B with 47.9% (GLM) and 45.7% (MLM) harbored the highest significant marker pairs and genome D with 16.1% (GLM) and 17.6% (MLM) possessed the lowest marker pairs, respectively. The number of significant markers for GP, SS, SI, SSp, A.amy, L, a,
b, Hue, Chroma, and WI traits using the GLM method were 60, 65, 72, 120, 40, 30, 50, 35, 39, 35, and 20, as well as using the MLM method were 65, 66, 64, 170, 34, 30, 41, 35, 36, 37, and 20, respectively. The highest and lowest numbers of significant marker pairs using GLM and MLM methods were related to SSp (120 and 170 marker pairs) and WI (20 and 20 marker pairs), respectively. The most significant markers for PHS were on genome B, which has a greater effect on seed dormancy when compared to other genomes. However, the seed brightness (L and WI)-associated markers were located on genome A (Fig. 7). Manhattan diagrams for common areas associated with each seed trait are shown in Fig. 8.

Gene ontology
The markers with the highest significance (P < 0.0001) and pleiotropy were studied in more detail. A total of 41 markers with high significance and pleitropic were identified, most of which were on 1A, 1B, 2A, 3B, 6D, and 7A. The marker pairs located on 1A were found to be able to control seed color, α-Amy activity, and germination percentage. Some of the significant MTAs were responsible for important molecular and biological processes, including protein kinase, G protein-coupled receptor signaling, signal transduction, intracellular transport, oxidoreductase activity, Fe ion binding, oxidation–reduction process, monooxygenase activity, protein binding, regulation of transcription, and double-stranded DNA binding (Table 3). Based on the rice reference genome, the following pathways were discovered: hormone signal transduction (Fig. 9), metabolic pathways (Supplementary Fig. 1), MAPK signaling pathway (Supplementary Fig. 2), purine metabolism (Supplementary Fig. 3), spliceosome (Supplementary Fig. 4), and glycolysis/gluconeogenesis (Supplementary Fig. 5) ([37–39], www.kegg.jp/kegg/kegg1.html).

Genomic prediction
BRR, RR-BLUP, and GBLUP models using imputed SNPs exhibited the highest prediction accuracy for phenotypes 6, 3, and 2. The highest prediction accuracy by the GBLUP was achieved for SSp, Hue, and WI; by the RR-BLUP method for SS, SI, A. amy, a, L, and b; as well as by the BRR for GP and L traits (Fig. 10). BRR, RR-BLUP, and GBLUP models using significant SNPs indicated the highest prediction accuracy for phenotypes 2, 7, and 2. The highest prediction accuracy by the GBLUP was achieved for L and WI; by the RR-BLUP method for GP, SS, SI, SSp, Hue, a, and b; as well as by the BRR for A. amy trait. Overall, the RR-BLUP showed higher prediction accuracy and the BRR had a slight difference in accuracy with the RR-BLUP.

Discussion
PHS tolerance in wheat is a complicated quantitative trait influenced by genetic background and environment [4]. Thus, reliable phenotyping and genotyping for
monitoring PHS tolerance can enhance the accuracy of QTL mapping. In this study, a total of 298 Iranian wheat accessions including 208 landraces and 90 cultivars were assembled as a natural population for mapping QTLs related to α-Amy enzyme activity, seed color, PHS using GWAS.

A high level of variation was uncovered in the studied traits for Iranian wheat accessions, suggesting the potential of the GWAS technique for exploring QTLs, as reported by Rahimi et al. [40]. The α-Amy enzyme activity was lower in native populations than that of cultivars. Moreover, the seeds of landraces were exposed to longer dormancy when compared to cultivars. From correlation analysis, the below facts were concluded based on the associations among α-Amy activity, grain color, and pr-harvest sprouting, i) the lower the α-Amy activity,
the higher the resistance of accessions to PHS; ii) the
darker the seed, the more dormant it is; and iii) the more
dormant the seed, the more PHS resistant it is. Similar
results were reported by Zhou et al. [3], Zhou et al. [4],
and Albrecht et al. [16].

The possibility for false associations can be raised in
mapping studies if population structure is not suitably
accounted for [41]. Two kinds of kinships lead to a high
rate of false positives in GWAS: cryptic relatedness and
ancestry difference. Cryptic relatedness appears when
some plant accessions are closely related; however,
these shared ancestries are undisclosed to breeders [42].
Large populations inevitably consist of accessions hav-
ing common ancestry from various populations. Ances-
try difference also refers to various ancestries among
accessions in research [33]. To evaluate the population
structure in Iranian wheat accessions, PCA analysis
and clustering were performed. Of results, the panel of
accessions was stratified into three groups. The selec-
tion effects in breeding programs are considered as the
reasons for such a genetic separation [43]. Rahimi et al.
[40] observed the same grouping on these Iranian wheat
accessions. Cultivars made up one group, while land-
races made up the other two groups, regardless of their
geographic origins. This mixture can be originated from
grain exchanges between farmers in different local mar-
kets throughout the country [44].

Of the results, the detected SNPs could cover the wheat
genome well. The SNPs were higher in genome B and
lower in genome D. Therefore, it seems there is a direct
correlation between chromosome size and SNP den-
sity [45], because of the smaller size of chromosomes
B compared to A ones. The higher frequency of SNPs
in genome B resulted from the evolutionary processes.
This inference was also stated by Alipour et al. [46] and
Mourad et al. [47].

Fig. 6 Overview of the linkage disequilibrium (LD) within the whole association panel per genome using imputed SNPs
Table 2 A summary of LD observed among marker pairs and the number of significant marker pairs per genome and chromosome

Chromosome	Total	Landrace	Cultivar					
	TNSP	r²	Dis. (cM)	NSSP	TNSP	r²	Dis. (cM)	NSSP
1A	111,575	0.111829	1.333712	49,917 (44.74%)	94,575	0.116906	1.568634	34,895 (36.9%)
2A	137,150	0.251605	0.856962	79,722 (58.16%)	125,450	0.289098	0.937672	68,972 (64.98%)
3A	96,450	0.130453	2.278778	79,428 (80.6%)	74,950	0.134097	2.933748	28,877 (38.41%)
4A	130,500	0.312779	1.378513	79,722 (58.16%)	110,850	0.369392	1.594492	66,016 (59.55%)
5A	71,850	0.132927	2.005721	32,488 (45.22%)	60,100	0.146486	2.402626	24,483 (40.74%)
6A	99,050	0.158856	1.296073	52,549 (53.05%)	85,850	0.178539	1.498357	40,739 (47.45%)
7A	149,700	0.193545	1.164988	78,616 (52.52%)	128,550	0.211862	1.358487	64,114 (49.87%)
1B	150,800	0.154279	0.932852	80,419 (53.33%)	135,600	0.154625	1.035051	64,442 (47.52%)
2B	187,300	0.156885	0.764253	102,236 (54.58%)	157,350	0.176011	0.910909	79,057 (50.24%)
3B	201,700	0.210733	0.771726	80,419 (53.33%)	173,200	0.220043	0.897820	57,252 (42%)
4B	60,050	0.115027	2.20477	23,537 (39.2%)	44,800	0.09777	2.968273	12,423 (27.73%)
5B	152,400	0.15014	1.292476	80,669 (52.93%)	136,300	0.14202	1.445522	57,252 (42%)
6B	190,850	0.13708	0.658245	99,314 (52.04%)	167,500	0.135522	0.750676	71,975 (42.97%)
7B	150,100	0.121987	0.987127	70,107 (46.71%)	127,550	0.12871	1.153868	51,602 (40.46%)
1D	48,650	0.238268	3.477302	26,009 (53.46%)	26,009	0.226198	3.808863	20,075 (47.24%)
2D	69,550	0.183682	1.586178	31,547 (45.36%)	55,400	0.163933	1.999669	21,117 (38.12%)
3D	37,050	0.116765	4.630972	5460 (4.74%)	31,800	0.16445	5.245984	11,619 (36.54%)
4D	13,500	0.122822	9.104484	4560 (3.78%)	11,800	0.16445	9.104484	4560 (3.78%)
5D	31,750	0.130873	6.894582	12,308 (38.77%)	26,250	0.134737	8.311979	9238 (35.19%)
6D	38,300	0.130729	4.134238	15,652 (40.87%)	34,900	0.136001	4.545476	12,619 (36.66%)
7D	46,700	0.150286	4.409549	17,838 (38.2%)	43,680	0.147516	4.882439	14,457 (34.18%)
A genome	796,275	0.195029	1.397647	417,684 (52.5%)	680,325	0.220024	1.631824	328,006 (46.81%)
B genome	1,093,200	0.154972	0.953755	575,681 (52.66%)	942,300	0.1588	1.106801	427,017 (43.52%)
D genome	285,500	0.162046	4.051048	113,374 (39.71%)	244,950	0.1634	4.684331	92,702 (87.85%)
Whole genomes	2,174,975	0.170566	1.523235	1,106,739 (50.89%)	1,867,575	0.181706	1.766921	847,725 (45.39%)

r² average squared allele frequency correlation, TNSP Total number of SNP pairs, NSSP Number of significant SNP pairs (P < 0.001), Dis Distance
Genomes D, A, and B have the highest LD, respectively. The strongest LD was recorded between marker pairs on chromosome 4A. The fact that cultivars exhibited higher LD in contrast to landraces, particularly in genome D, is presumably a consequence of selection throughout the time of breeding efforts for PHS-related traits [16]. The differences in LD occurred between genomes and accessions, in addition to the evolutionary processes, indicate the impact of breeding schedules. Similarly, Liu et al. [48] observed that the distance of LD decay in the native populations is less than cultivated varieties in wheat Pakistan/China collections.

Of the results, 1A, 2A, 4A, 1B, 2B, 6B, 4B, 3B, 5B, 7B, 6D, 5D, 4D, and 2D harbor genomic regions controlling PHS-related traits. Genome B possessed the highest number of MTAs, suggesting the potential of this genome in wheat adaptability to PHS. The most significant markers for PHS were on genome B, which has a greater effect on seed dormancy when compared to other genomes. However, the seed brightness-associated markers were located on genome A. These observations are in agreement with previous studies. For instance, Zhu et al. [3] mapped three key loci for PHS tolerance on chromosomes 6BL, 3BS, and 1AL, as well as validated one dCAPS and two CAPS markers for implementation in wheat genomics-based selection.

Genomic regions controlling PHS were detected in most wheat chromosomes in this study. To date, seven
Fig. 8 (See legend on previous page.)
Table 3 Description of expected MTAs using imputed SNPs for seed traits of Iranian wheat accessions in well-watered environment

No	SNP	Sequence	Trait-Index	Chromosome	Position (bp)	Cellular component	Molecular process	Biological process
1	rs1074	TGCAGCAAAAGTG CTGAGTTCCTCCTCTCT GTGAGTTGGGGGC TGGAAACGACCAT AGGTGCTCATTG	GP, SS, SI, SSp and A.amy	6B	5683	-	double-stranded DNA binding	regulation of transcription, DNA-templated
2	rs12754	TGCAGCAAGTG CGTATAGGGGTGGGTTAACCTGTGCTAGAGT GAGGCTGCTACC GAAACTTTTT	GP, SS, SI and SSp	6B	58,062	-	-	-
3	rs13478	TGCAGCACACAC CGTGGGCTACCT ACACGTTCTTTTC CAAAGTAGGATA ACCCCGATCACA TCTT	b and Chroma	3B	76,224	-	-	-
4	rs15410	TGCAGCACCCTAC CCCACACCCAAA GCAACTCGTAC TAGCAGATGTGTCTTC CTTTCTCACATA	GP, SS, SI and A.amy	1A	66,115	-	-	-
5	rs19991	TGCAGCATGTTG ACCCGGAGACC AGCATGGATTTT AGCAGAGACCTG TGTCCCTTCTT TCG	GP, SS, SI and A.amy	1B	47,847	-	-	-
6	rs19993	TGCAGCATGTTG ACCCGGAGACC AGCATGGATTTT AGCAGAGACCTG TGTCCCTTCTT TCG	GP, SS, SI and A.amy	1B	47,847	-	-	-
7	rs22935	TGCAGGGCGCCCGA GGGGACGTCGTAC CGTGGCCCGCG CGCACCTCGTCG CCCCCGGACCTCA CGGA	GP, SS, SI and A.amy	1B	47,847	-	-	-
8	rs23642	TGCAGCCCCGCA GAGGGCAGGCC AACCGGACGCG CGCCGACTTCCAG CGCAGCGAAAACA TGCCTG	SS, L and WI	1A	44,512	-	-	-
9	rs27586	TGCAGGACCTTCTC ACAAGCCATCCA CGTACCCTCGGC TGGTCCCTAACCTG AGGTTAATGAGA	b, L and Chroma	2D	58,883	-	-	-
10	rs27947	TGCAGGAAAGCCA TCACACACTGCAAT GGAGGCTCGCAG AGCGGCTCAGGAGCAGCCCGGC	GP, SS, SI and A.amy	6D	119,937	-	-	-
11	rs27948	TGCAGGAAAGCCA TCACACACTGCAAT GGAGGCTCGCAG AGCGGCTCAGGAGCAGCCCGGC	GP, SS, SI and A.amy	6D	119,937	-	-	-
12	rs27950	TGCAGGAAAGCCA TCACACACTGCAAT GGAGGCTCGCAG AGCGGCTCAGGAGCAGCCCGGC	GP, SS, SI and A.amy	6D	119,937	-	-	-
No	SNP	Sequence	Trait-Index	Chromosome	Position (bp)	Cellular component	Molecular process	Biological process
----	-------	---------------------------------	-------------	------------	--------------	-------------------	--	-------------------------------------
13	rs27951	TGCAGCGAAGCA TACCGACACTGC AATGGAGCGTCCG CCCG	GP, SS, Sl and A.amy	6D	119,937	-	protein binding	-
14	rs3368	TGCAGACACTATGTT TGATGGCGAGTGGA TGGCAAACGGAG AGGCACCGGAGT CGGAAAGCGG	b and Chroma	3B	77,361	-	-	-
15	rs34002	TGCAGCGTGTGG AGATCAACGGAG AAGCACACCATATAC GGCCTGGACACA GTGTAAGATC	GP, SS, Sl and A.amy	7B	72,800	-	-	-
16	rs35658	TGCAGCTCAACC AAAACACGCTTA AAGCTCATTCCT GCTCTACTACGA GGAACAAATGTT GGCAC	L and WI	5B	45,594	-	-	-
17	rs36765	TGCAGCTCCGCT TGGCTCCACCCAG GTACGCTCCCAA CCTCCACACCTCT GGTCCGAGAAGTGG	GP, SS, Sl and A.amy	7B	72,800	-	-	-
18	rs40099	TGCAGCTGTTTC ACTGTAGACCTG CGACTCAGGCA GGAAGAGCGGAT ATGCGAGATGAA AAGCAGCTGGAAG GAGC	L and WI	7B	12,528	-	-	-
19	rs42907	TGCAGGAATCCC GCTTACTCCATGGAT CTCTATGTAGTGGTA TCAACGGTTTGCC TTGCCTGATGG	b, L, WI and Chroma	2A	11,390	-	-	-
20	rs43563	TGCAGCGAGAGA TAAATCGAGTCACCC AAGGCAAACCGA CACCTGAGAAAG ACGACTCTAGCA GGAAGAGCGGAT ATGCGAGATGAA AAGCAGCTGGAAG GAGC	a and Hue	5B	51,278	-	monooxygenase activity; iron ion binding; oxidoreductase activity	oxidation–reduction process
21	rs44886	TGCAGGAGGCTGT GCCAGACGCTAACA CACCGATGCTTA AAGGAAAGGTTAA GGAGCGACAAACAC ACAC	GP, SS, Sl and SSp	5D	7959	-	-	-
22	rs45340	TGCAGGATCTGACA AGTGGGCTACTC GATGTAATTTTACCC GAGATCGGAAGA GGCGGATGTC	GP, SS, Sl and SSp	3B	113,948	-	-	-
23	rs51766	TGCAGGGTAAA TTAAGCAGACTGC TAGCTGTAGTACGA AACAAGATGCTGTT CAGCTGTAGT	GP, SS, Sl, SSp and A.amy	4B	61,749	-	-	-
Table 3 (continued)

No	SNP	Sequence	Trait-Index	Chromosome	Position (bp)	Cellular component	Molecular process	Biological process
24	rs53795	TGCAGGTGATCAG	b, L and WI	3B	121,341	-	-	-
25	rs54459	TGCAGGTGATCAG	GP, SS, SI, SSp, A.amy, L and WI	1A	44,512	-	-	-
26	rs54460	TGCAGGTGATCAG	GP, SS, SI, SSp, A.amy, L and WI	1A	44,512	-	-	-
27	rs54593	TGCAGGTGATCAG	GP, SS, SI and SSp	3B	113,379	-	-	-
28	rs6018	TGCAGGTGATCAG	GP, SS, SI and SSp	3B	113,379	-	-	-
29	rs62109	TGCAGGTGATCAG	GP, SS, SI, SSp, A.amy, L and WI	7B	63,702	-	Intracellular transport	-
30	rs63948	TGCAGGTGATCAG	L, WI, Hue and Chroma	6D	119,937	-	-	-
31	rs8926	TGCAGGTGATCAG	GP, SS, SI, SSp, A.amy, L and WI	4A	44,512	-	-	-
32	rs20094	TGCAGGTGATCAG	L and WI	4D	54,756	-	-	-
33	rs21099	TGCAGGTGATCAG	GP, SS, SI and SSp	7A	59,400	Integral component of membrane	-	-
34	rs33980	TGCAGGTGATCAG	GP, SS, SI and SSp	2D	12,505	-	-	-
PHS QTLs were detected, including Qphs.ahau-7A.2, Qphs.ahau-6A, Qphs.ahau-5D, Qphs.ahau-5B.4, Qphs.ahau-3B, Qphs.ahau-2B.3 and Qphs.ahau-2A.1 [3]. Our observations showed that the darker the seed, the more dormant it will be and thus the more resistant it will be to PHS. Of justifying the cause, some associations were observed between grain color and PHS tolerance. Zhu et al. [3], for instance, discovered the positive correlations between PHS tolerance and seed color and suggested that this association occurs because the red-colored populations harbor more tolerant Qphs.ahau-1A and Qphs.ahau-3B alleles. Therefore, the authors stated that wheat seed color may be modulated collectively via Tamyb10-1 and other QTLs. In this work, MTAs related to grain color were found on 7B, 2A, etc. In this regard, the Psy1 gene coding phytoene synthase 1, responsible for yellow pigment, is co-segregated with seed brightness on 7B [49]. A major QTL controlling both a* (redness) and L* (brightness) was also reported on 2A [44]. Therefore, it seems that QTLs located on 7B and 2A are involved in wheat seed brightness, and thereby PHS tolerance. In this work, MTAs related to seed dormancy were found in some chromosomes, such as 4A. Similarly, Torada et al. [21] mapped TaMKK3-A as a candidate gene for the wheat seed dormancy, namely Phs1, on chromosomes 4A. They suggested that a single amino acid substitution in the kinase domain of this protein is related to the length of seed dormancy. From our findings, α-Amy-related genomic regions were found on 6B, 6D, 7B, etc. This is in line with previous studies. Lazarus et al. [50] demonstrated that α-Amy-related genomic regions are multigene families located on the chromosomes 7A, 7B, 7D (α-Amy2) and 6A, 6B, 6D (α-Amy1).
The flanking sequences of imputed SNPs were searched and aligned versus the RefSeq v1.0 ([51], https://urgi.versailles.inra.fr/blast_iwgsc/). Interestingly, output indicated that most marker pairs are in the protein-coding regions, which control the transcription process. DNA-binding, transcription factor activity, and transmembrane transport are other examples that are likely responsible for PHS tolerance. These findings are similar to the earlier researches [31]. Based on the rice reference genome, the following pathways were discovered: metabolic pathways, hormone signal transduction, MAPK signaling pathway, purine metabolism, spliceosome, and glycolysis/gluconeogenesis. Liu et al. [52] observed that the slowed glycolysis leads to down-regulate glycerate-3-phosphate and inhibits seed germination (i.e., PHS). Torada et al. [21] uncovered a MKK3 by a map-based approach as a candidate gene for the locus Phs1 on 4A in wheat. Liu et al. [53] revealed that water status changes transcript levels of key genes involved in auxin, JA, and ethylene biosynthesis and their metabolic pathways, suggesting roles in regulating seed dormancy and germination. Nonogaki et al. [54] showed that seed germination and dormancy, the two main factors around PHS, are controlled by endogenous hormone balance, especially between GA and ABA, reflecting their vital roles in PHS. Wang et al. [38] indicated that MAPK signaling and hormone signal transduction are associated with PHS. Zhang et al. [55] also highlighted that transcripts of spliceosome-related genes are abundant in the early stage of seed germination, suggesting the role of spliceosome in PHS process.

The highest prediction accuracy by GBLUP was achieved for SSp, Hue, and WI; by RR-BLUP method for SS, SI, A.amy, a, L, and b; as well as by BRR for GP and L traits. Shabannejad et al. [56] revealed BRR and RR-BLUP are superior to other GP models, which are utilized in well-irrigated and rain-fed environments, respectively. Overall, obtaining the highest GP accuracy is depend on the genomic selection method, level of LD, genetic architecture, and genetic variation [57]. In this study, RRBLUP model indicated genetic effects better than GBLUP and BRR, offering a favorable tool for wheat genomic selection. It was reported that high genetic variation would be achieved by the GBLUP if markers were closely associated with the trait of interest.

Table 4: Climatic data in the studied environments

Year	Month	Max Temperature °C	Min Temperature °C	Average Temperature °C	Total rainfall, mm	Average relative humidity	Sunny hours	Evaporation, mm
2017–2018	November	13.519	4.967	8.929	29.22	64.018	4.810	2.069
	December	9.172	-0.047	4.315	27.59	62.066	6.520	0.270
	January	9.255	-0.416	4.374	4.06	55.780	5.625	0.000
	February	10.356	-0.482	4.721	15.34	55.074	5.874	0.000
	March	15.623	3.985	9.844	38.66	50.191	7.228	0.000
	April	22.903	9.511	16.419	40.11	39.557	9.343	5.892
	May	29.258	14.192	21.833	11.94	35.941	9.233	9.207
	June	34.974	18.595	26.991	0.12	28.390	10.898	12.698
2018–2019	November	14.561	4.104	10.900	0.93	45.810	6.893	3.068
	December	9.242	-0.119	4.671	41.11	60.134	5.065	0.000
	January	8.406	-0.613	3.668	15.04	57.750	6.652	0.000
	February	7.871	-2.254	2.536	27.99	61.429	6.868	0.000
	March	14.216	4.623	9.271	38.44	56.847	5.942	0.179
	April	21.093	9.563	15.110	46.65	49.954	6.587	4.497
	May	29.229	14.261	21.935	22.01	38.722	10.435	7.377
	June	34.159	17.597	26.083	0.00	32.304	12.763	11.676
2019–2020	November	17.080	6.383	11.520	0.63	43.479	6.960	3.189
	December	12.303	1.652	6.671	4.71	50.419	7.226	0.000
	January	9.077	-0.055	4.052	19.84	54.476	6.526	0.000
	February	10.739	2.039	6.464	31.73	64.755	5.829	0.000
	March	20.558	8.377	14.652	14.11	38.952	7.303	0.000
	April	19.983	7.793	13.633	45.81	51.413	7.563	6.714
	May	25.513	12.061	18.432	57.07	54.907	8.287	6.161
	June	33.807	17.347	25.583	7.23	37.492	11.100	11.143
and/or plant populations were advanced. RR-BLUP can work well for genetic architecture consisting of numerous loci with small impacts. BRR is similar to RR-BLUP however its shrinkage depends on the size of the studied population [58].

Conclusion
In the current study, GWAS for PHS in Iranian bread wheat accessions revealed the lowest LD decay distance and the highest number of marker pairs on genome B due to evolutionary events. The loci controlling the traits of interest were mapped on 1A, 2A, 4A, 1B, 2B, 7B, 3B, 5B, 6B, 4B, 6D, 2D, 5D, and 4D. Gene ontology exhibited that the pleitropic MPs located on 1A can control seed color, α-Amy activity, and PHS. The verified markers in the current work can provide an opportunity to clone the underlying QTLs/genes, fine mapping, and genome-assisted selection.

Material and methods

Plant material and field trial
To monitor PHS resistance, 208 native landraces and 90 cultivars were cultured in an alpha-lattice with two repeats in three crop seasons (2017–18, 2018–19, and 2019–20) under well-irrigated conditions (Table 4). The sizes of plots were adjusted as 1 m². After physiological maturing, a total of 50 spikes were chosen from each plot and stored at -20 °C. After about a month, the spikes were taken out of the refrigerator and kept at 25 °C for 48 h. From each repeat, 10 healthy spikes were selected and soaked in distilled water for 3 h. Spikes immersed under 100% humidity were placed inside the controlled chambers, in which the steam and mist systems are utilized to spray and to maintain the moisture of the spikes, with a 16 h light/8 h dark photoperiod at 25 °C [3]. The authors declare that all that permissions or licenses were obtained to collect the wheat plant.

Pre harvest sprouting and α-Amy activity
After 7 days, PHS resistance was measured (Supplementary Table 2) based on the sprouting score as follows: the wheat spikes were given a score of one to nine, including one (germinated), two (less than 5%), three (5 to 15%), four (16 to 25%), five (26 to 45%), six (46 to 65%), seven (66 to 85%), eight (86 to 95%), and nine (more than 95%). The sprouting Index (SI, Eq. 1) was given a score of zero to five for each spike, in which zero was considered as the non-germinated spikes and five as 100% germinated spikes. The germination percentage (GP) and sprouted spikes (SS) were estimated from Eq. (2) and (3), respectively [59, 60].

\[
\text{SI}(\%) = \left(\sum \left(0 - 5 \right) n \ast 5 \right) \ast 100
\]

Where n represents the number of clusters,

\[
\text{GP}(\%) = \left(\frac{n_i}{N} \right) \ast 100
\]

Where ni and N are the numbers of germinated and total seeds, respectively,

\[
\text{SSp}(\%) = \left(\frac{m_i}{M} \right) \ast 100
\]

Where mi is the number of sprouted spikes and M is the total number of spikes.

To estimate α-Amy activity, the spikes of all accessions were taken out of the refrigerator, threshing was conducted by hand to avoid damaging the seed coat or embryos. Therefore, seeds were imbibed in a petri dish for a duration of 24 h at 25 °C and then prepared for enzyme extraction [61]. 0.5 ml of the seed extract (60 mM phosphate buffer (pH 8.6) and 0.5 ml of starch solution were incubated at 37 °C for 30 min. The reaction was ceased by adding 1 ml of hydrochloric acid (0.1 N), and then 1 ml of the iodine reagent was added to the solution. The color absorption was recorded using a plate reader at 620 nm [16].
Fig. 9 (See legend on previous page.)
Evaluation of seed color with digital images

The digital images of wheat grains in the current work were provided by a camera (Canon SX540 HS) equipped with 800 dpi resolution. The captured images were analyzed and processed via Python 3.7 \cite{62}. For calibration, the regression between L, a, and b indices calculated with the Japanese CR_400 colorimeter and a photo box of 17 standard colors printed on 8 cm squares were used.

Chroma saturation or index was calculated by Eq. (4), Hue Angle by Eq. (5), and Whiteness Index by Eq. (6).

\[
Chroma = \sqrt{a^2 + b^2} \tag{4}
\]

\[
Hue = \arctan\left(\frac{b}{a}\right) \tag{5}
\]
\[WI = 100 - \sqrt{(100 - L)^2 + a^2 + b^2} \]

Where, \(L \), \(a \), and \(b \) are color indices.

GBS and imputation

The GBS libraries were established and sequenced for the Iranian wheat genotypes following the procedure as explained by Alipour et al. [46]. SNPs were discovered via internal alignments after trimming reads to 64 bp and categorizing them into tags. SNP calling was carried out using the UNEAK GBS pipeline, where SNPs with low allele frequency < 1% and reads with a low-quality score < 15 were removed to keep away from false-positive outputs. The imputation was accomplished according to available allele frequencies in BEAGLE version 3.3.2 [63]. The distance of LD decay was determined by the ggdplot2 package in RStudio [64]. The W7984 reference genome was used because it fulfills the highest accuracy of imputation among various wheat reference genomes [65].

Population structure and kinship matrix

Population structure in the Iranian wheat accessions was assayed via STRUCTURE version 2.3.4. An admixture model was exploited along with a simulation phase consisting of 10,000 steps for \(K = 1–10 \). In this study, \(\Delta K \) was exerted to estimate the most likely number of subpopulations [66]. To measure LD among markers, the expected and observed allele frequencies were introduced into TASSEL. To determine the relationships among the Iranian wheat accessions, a neighbor-joining tree was constructed according to a pairwise distance matrix by TASSEL version 5 [67].

Genome-wide association study

The general linear model (GLM) and mixed linear model (MLM) approaches were accomplished to obtain the marker effect estimations. The GLM was performed with population structure (Q matrix) integrated as covariate to correct for the effects of population substructure. The MLM was employed with accounting for both population structure and family structure matrix (Kinship) to control both Type I and Type II errors. The association mapping was carried out using GLM and MLM functions of TASSEL5 [65, 68]. To correct for multiple testing, a false discovery rate (FDR) method described was used to declare significant marker-trait associations with relevant grain phenotype descriptor. A Manhattan plot was obtained using the CMplot package to explore associations between genotypes and phenotypes.

Annotation of genes

Sequences harboring associated SNP markers were exploited for the gene annotation by aligning to the IWGSC-RefSeq V1.0 (IWGSC) using Gramene (http://www.gramene.org/), an integrated database for comparative genomics in plant species. The overlapping genes with the highest blast score were picked out for further analysis. The ensemble-gramene database was utilized to extract the molecular functions and biological processes of genes in the gene ontology. Moreover, the significant SNPs were utilized in the enrichment analysis of gene ontology via KOBAS version 2.0 for testing in the KEGG (https://www.genome.jp/kegg/).

Genomic prediction strategies

GP was calculated by various approaches, including BRR [69], GBLUP [70], and RR-BLUP [71] based on whole 43,525 marker set and GWAS on the training set. All of the analyses were performed by iPat Tool [72]. The GP accuracy was determined as Pearson’s correlations (r) between GEBVs and BLUPs over the validation and training sets [73].

Statistical analysis

The descriptive statistics and correlation analysis was conducted by R 4.1 using the ggdplot2, dplyr, ggpurbr and psych packages to reveal the distribution of wheat traits. To classify wheat genotypes, heatmap analysis was carried out in RStudio.

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1186/s12870-022-03628-3.

Additional file 1: Supplementary Table 1. Overview on the landraces and cultivars of Iranian wheat studied. **Supplementary Table 2.** Phenotypic (germination, grain color, alpha-amylase) data measured in landraces and cultivars of Iranian wheat studied. **Supplementary Fig 1.** The KEGG pathway of metabolic pathways. **Supplementary Fig 2.** The KEGG pathway of MAPK signaling. **Supplementary Fig 3.** The KEGG pathway of purine metabolism. **Supplementary Fig 4.** The KEGG pathway of spliceosome. **Supplementary Fig 5.** The KEGG pathway of glycolysis/ gluconeogenesis.

Acknowledgements

Not applicable.

Authors’ contributions

M.R. Bihamta proposed the idea and helped to provide the plant materials, E.Rabieyan performed field trial, analyzed the data and wrote draft version of the manuscript, H.Alipour proposed the idea and helped in the genomic data analysis, M. Esmaeilzadeh Moghaddam and V. Mohammadi were involved in designing and conducting the experiment. All authors contributed to revising and editing the manuscript. All authors have read and approved of the final manuscript.

Funding

This research did not receive any specific funding.
Availability of data and materials
The datasets generated and analyzed during the current study are available in the Figshare repository [https://doi.org/10.6084/m9.figshare.1877447/v1].

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Agronomy and Plant Breeding, Faculty of Agricultural Sciences and Engineering, University of Tehran, Karaj, Iran. 2 Cereal Department, Seed and Plant Production Institute, AREEO, Karaj, Iran. 3 Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran.

Received: 11 January 2022 Accepted: 5 May 2022
Published online: 17 June 2022

References

1. Rabieyan E, Alipour H. NGS-based multiplex assay of trait-linked molecular markers revealed the genetic diversity of Iranian bread wheat landraces and cultivars. Crop Pasture Sci. 2021;72(3):173–82. https://doi.org/10.1071/CP20362.

2. Rabieyan E, Bihamta MR, Moghaddam ME, Mohammadi V, Alipour H. Imaging-based screening of wheat seed characteristics towards distinguishing drought-responsive Iranian landraces and cultivars. Crop Pasture Sci. 2022;73(4):337–55. https://doi.org/10.1071/CP21500.

3. Zhu Y, Wang S, Wei W, Xie H, Liu K, Zhang C, Ma C. Genome-wide association study of pre-harvest sprouting tolerance using a 90K SNP array in common wheat (Triticum aestivum L). Theor Appl Genet. 2019;132(11):2947–63. https://doi.org/10.1007/s00122-019-03398-x.

4. Zhou Y, Tang H, Cheng MP, Dangkwa KQ, Chen ZX, Li ZY, et al. Genome-wide association study for pre-harvest sprouting resistance in a large germplasm collection of Chinese wheat landraces. Front Plant Sci. 2017;8:401. https://doi.org/10.3389/fpls.2017.00401.

5. Mares DJ, Mrva K. Wheat grain pre-harvest sprouting and late maturity alpha-amylase. Planta. 2014;240(6):1167–78. https://doi.org/10.1007/s00042-014-2172-5.

6. Cao L, Hayashi T, Tokui M, Mori M, Miura H, Onishi K. Detection of QTLs for traits associated with pre-harvest sprouting resistance in bread wheat (Triticum aestivum L). Breed Sci. 2016;66(2):260–70. https://doi.org/10.1270/jsbbs.66.260.

7. Lin M, Zhang DD, Liu SB, Zhang GR, Yu JM, Fritz AK, Bai GH. Genome-wide association analysis on pre-harvest sprouting resistance and grain color in U.S. winter wheat. BMC Genomics. 2016;17(1):794–810. https://doi.org/10.1186/s12864-016-3148-6.

8. Hime I, MaeKawa M, Miura H, Noda K. Development of PCR markers for Tamarby10 related to R-1. red grain color gene in wheat. Theor Appl Genet. 2011;122(12):1561–76. https://doi.org/10.1007/s00122-011-1555-2.

9. Lang J, Fu Y, Zhou Y, Cheng M, Deng M, Li W, Wang J. Myb-D confers PH5-3D resistance to pre-harvest sprouting by regulating NCED in ABA biosynthesis pathway of wheat. New Phytol. 2021;230(5):1940–52.

10. Yang J, Tan C, Lang J, Tang H, Hao M, Tan Z, Wang J. Identification of qPHS. sicau-1B and qPHS. sicau-3D from synthetic wheat for pre-harvest sprouting resistance in wheat germplasm CN10555. Theor Appl Genet. 2007;115(7):971–80.

11. Rabieyan E, Bihamta MR, Moghaddam ME, Mohammadi V, Alipour H. Identification of candidate genes regions and markers for pre-harvest sprouting resistance in wheat (Triticum aestivum L). BMC Plant Biol. 2014;14(1):1–12. https://doi.org/10.1186/s12870-014-0340-1.

12. Liu S, Bai G, Cai S, Chen C. Dissection of genetic components of preharvest sprouting resistance in white wheat. Mol Breed. 2011;27(4):511–23. https://doi.org/10.1007/s10814-010-9948-7.

13. Ogbonnaya FC, Imtiaz M, Ye G, Heamden PR, Hernandez E, Eastwood RF. Genetic and QTL analyses of seed dormancy and preharvest sprouting resistance in the wheat genome CN10555. Theor Appl Genet. 2008;116(7):891–902. https://doi.org/10.1007/s00122-008-0712-8.

14. Liu S, Bai G. Dissection and fine mapping of a major QTL for preharvest sprouting resistance in white wheat Rio Blanco. Theor Appl Genet. 2010;121(8):395–404. https://doi.org/10.1007/s00122-010-1396-4.

15. Torada A, Koike M, Ogawa T, Takenouchi Y, Tadamura K, Wu J, et al. A causal gene for seed dormancy on wheat chromosome 4A encodes a MAP kinase cinn. Curr Biol. 2016;26(6):782–7. https://doi.org/10.1016/j.cub.2016.01.063.

16. Chang C, Feng JM, Si HQ, Yin B, Zhang HP, Ma CX. Validating a novel allele of viviparous-1 (Vv-1B) associated with high seed dormancy of Chinese wheat landrace. Warwianbaimai Mol Breeding. 2010;25(3):177–25.

17. Yang Y, Zhao XL, Xia LQ, Chen XM, Xia XC, Yu Z, Roder M. Development and validation of a Viviparous-1 STS marker for pre-harvest tolerance in Chinese wheats. Theor Appl Genet. 2007;115(7):971–80.

18. Barrero JM, Cavanagh C, Verbyla KB, Tibbits JF, Verbyla AP, Huang BE, Gubler F. Transcriptomic analysis of wheat near-isogenic lines identifies PM19-A1 and A2 as candidates for a major dormancy QTL. Genome Biol. 2015;16(1):1–18.

19. Torada A, Koike M, Ogawa T, Takenouchi Y, Tadamura K, Wu J, Ogihara Y. A causal gene for seed dormancy on wheat chromosome 4A encodes a MAP kinase cinn. Curr Biol. 2016;26(6):782–7.

20. Lei L, Zou X, Wang S, Zhu M, Carver BF, Yan L. TaMFT-A1 is associated with seed germination sensitive to temperature in winter wheat. PLoS ONE. 2013;8(9):e73330.

21. Liu S, Sehgal SK, Lin M, Li J, Trick KN, Gill BS, Bai G. Independent mis-splicing mutations in Ta PHS 1 causing loss of preharvest sprouting (PHS) resistance during wheat domestication. New Phytol. 2015;208(3):928–35.

22. Yang Y, Ma YZ, Xu ZS, Chen XM, He ZH, Yu Z, Xia LQ. Isolation and characterization of Viviparous-1 genes in wheat cultivars with distinct ABA sensitivity and pre-harvest sprouting tolerance. J Exp Bot. 2007;58(11):2863–71.

23. Chiu RS, Nahal H, Provat NJ, Gazzarrini S. The role of the Arabidopsis FUSCA3 transcription factor during inhibition of seed germination at high temperature. BMC Plant Biol. 2012;12(1):1–16.

24. Ashikawa I, Mori M, Nakamura S, Abe F. A transgenic approach to controlling wheat seed dormancy by using Triticeae DOG1-like genes. Transgenic Res. 2014;23(4):621–9.

25. Rehman-Arif MA, Neumann K, Nagel M, Koblijski B, Lohwasser U, Brner A. An association mapping analysis of dormancy and pre-harvest sprouting in wheat. Euphytica. 2012;183(4):409–17. https://doi.org/10.1007/s10681-012-0705-1.

26. Lei L, Zou X, Wang S, Zhu M, Carver BF, Yan L. TaMFT-A1 is associated with seed germination sensitivity to temperature in winter wheat. PLoS ONE. 2013;8(9):e73330.

27. Liu S, Sehgal SK, Lin M, Li J, Trick KN, Gill BS, Bai G. Independent mis-splicing mutations in Ta PHS 1 causing loss of preharvest sprouting (PHS) resistance during wheat domestication. New Phytol. 2015;208(3):928–35.

28. Yang Y, Ma YZ, Xu ZS, Chen XM, He ZH, Yu Z, Xia LQ. Isolation and characterization of Viviparous-1 genes in wheat cultivars with distinct ABA sensitivity and pre-harvest sprouting tolerance. J Exp Bot. 2007;58(11):2863–71.

29. Chiu RS, Nahal H, Provat NJ, Gazzarrini S. The role of the Arabidopsis FUSCA3 transcription factor during inhibition of seed germination at high temperature. BMC Plant Biol. 2012;12(1):1–16.

30. Ashikawa I, Mori M, Nakamura S, Abe F. A transgenic approach to controlling wheat seed dormancy by using Triticeae DOG1-like genes. Transgenic Res. 2014;23(4):621–9.

31. Rehman-Arif MA, Neumann K, Nagel M, Koblijski B, Lohwasser U, Brner A. An association mapping analysis of dormancy and pre-harvest sprouting in wheat. Euphytica. 2012;183(4):409–17. https://doi.org/10.1007/s10681-012-0705-1.
33. Chen GF, Zhang H, Deng ZY, Wu RG, Li DM, Wang MY, Tian JC. Genome-wide association study for kernel weight-related traits using SNPs in a Chinese winter wheat population Euphytica. 2016;212(2):173–85. https://doi.org/10.1007/s10681-016-1750-y.

34. Lozada DN, Mason RE, Sannelli JM, Brown-Guedira G. Accuracy of genomic selection for grain yield and agronomic traits in soft red winter wheat. BMC Genet. 2019;20(1):1–12. https://10.1186/s12863-019-0785-1.

35. Juliana P, Poland J, Huerta-Espino J, Shrestha S, Crossa J, Crespo-Herrera L, Singh RP. Improving grain yield, stress resilience and quality of bread wheat using large-scale genomics. Nat Genet. 2019;51(10):1530–9. https://doi.org/10.1038/s41588-019-0496-6.

36. Tsai HY, Janss LL, Andersson JR, Orabi J, Jensen JD, Jahoor A, Jensen J. Genomic prediction and GWAS of yield quality and disease-related traits in spring barley and winter wheat. Sci Rep. 2020;10(1):1–15. https://doi.org/10.1038/s41598-020-6023-2.

37. Kanehisa M, Goto S, KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000;28:27–30. https://doi.org/10.1093/nar/28.1.27.

38. Kanehisa M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 1992;28:1947–51. https://10.1002/pro.3715.

39. Kanehisa M, Furumichi M, Sato Y, Ishiguro-Watanabe M, Tanabe M. KEGG: integrating viruses and cellular organisms. Nucleic Acids Res. 2014;42:D212–D218. https://doi.org/10.1093/nar/gkt122.

40. Rahimi Y, Bihamta MR, Taleei A, Alipour H, Ingvarsson PK. Genome-wide association study of agronomic traits in bread wheat reveals novel putative alleles for future breeding programs. BMC Plant Biol. 2019;19(1):1–19. https://doi.org/10.1186/s12867-019-1483-x.

41. Wang X, Liu H, Siddiqua KH, Yan G. Transcriptomic profiling of wheat near-isogenic lines reveals candidate genes on chromosome 3A for pre-harvest sprouting resistance. BMC Plant Biol. 2021;21(1):1–14. https://doi.org/10.1186/s12870-021-02824-x.

42. Sul JH, Martin LS, Eskin E. Population structure in genetic studies: Con founding factors and mixed models. PLoS Genet. 2018;14(12):e1007309. https://doi.org/10.1371/journal.pgen.1007309.

43. Alipour H, Abdi H, Rahimi V, Bihamta MR. Dissection of the genetic basis of genotype-by-environment interactions for grain yield and main agronomic traits in Iranian bread wheat landraces and cultivars. Sci Rep. 2021;11(1):1–17. https://doi.org/10.1038/s41598-021-96576-1.

44. Alemau A, Feyissa T, Tuberesa R, Maccarefi M, Sciarra G, Letta T, Abeyo B. Genome-wide association mapping for grain shape and color traits in Ethiopian durum wheat (Triticum turgidum ssp. durum). The Crop Journal. 2020;8(5):757–68. https://doi.org/10.1002/cj.2020.01.001.

45. Sabzezari M, Zeinali M, Naghavi MR. CRISPR-based metabolic editing: Next-generation metabolic engineering in plants. Gene. 2020;759:144993. https://doi.org/10.1016/j.gene.2020.144993.

46. Sabzezari M, Bihamta MR, Majidi-Hervan E, Alipour H, Ebrahimia A. A simple cost-effective high-throughput image analysis pipeline improves genomic prediction accuracy for days to maturity in wheat. Plant Methods. 2020;16(1):1–11. https://doi.org/10.1186/s12870-020-00866-2.

47. Sabzezari M, Zeinali M, Naghavi MR. CRISPR-based metabolic engineering of wheat using large-scale genomics. Nat Genet. 2019;51(10):1530–9. https://doi.org/10.1038/s41588-019-0496-6.

48. Liu A, Gao F, Hao F, Yu M, Lei H, Wu X, Tang H. Reprogramming of seed metabolism facilitates pre-harvest sprouting resistance of wheat. Sci Rep. 2016;6(1):1–11. https://doi.org/10.1038/srep20593.

49. Liu A, Gao F, Kanjo Y, Jordan MC, Kamiya Y, Seo M, Ayele BT. Regulation of Wheat Seed Dormancy by After-Bpering Is Mediated by Specific Transcriptional Switches That Induce Changes in Seed Hormone Metabolism and Signaling. PLoS ONE. 2013;8(2):e56570. https://doi.org/10.1371/journal.pone.0056570.

50. Nonogaki H, Barrero JM, Li C. Editorial Seed dormancy germination and pre-harvest sprouting. Front Plant Sci. 2018;9:1783. https://doi.org/10.3389/fpls.2018.01783.

51. Zhang Q, Zhang X, Wang S, Tan C, Zhou G, Li C. Involvement of alternative splicing in barley seed germination. PLoS ONE. 2016;11(3):e0152824. https://doi.org/10.1371/journal.pone.0152824.

52. Shabannejad M, Bihamta MR, Majidi-Hervan E, Alipour H, Ebrahimia A. A classic approach for determining genomic prediction accuracy under terminal drought stress and well-watered conditions in wheat landraces and cultivars. PLoS One. 2021;16(3):e0247824. https://doi.org/10.1371/journal.pone.0247824.

53. Clarke JM, DePauw RM, Mcleod JG, McCraig TN. Variation for preharvest sprouting resistance in durum wheat. Crop Sci. 1994;34(6):1632–5. https://doi.org/10.2135/cropsci1994061183000340000600038x.

54. Hui P. Divergent selection for sprouting resistance in spring wheat. Plant Breeding. 1995;114(3):199–204. https://doi.org/10.1111/1439-0523.1995.tb07939.x.

55. Mori M, Uchino N, Chono M, Kato K, Miura H. Mapping QTLs for grain dormancy on wheat chromosome 3A and the group 4 chromosomes and their combined effect. Theor Appl Genet. 2005;110(7):1315–23. https://doi.org/10.1007/s00122-005-0172-2.

56. Zhang C, Si Y, Lamkey J, Boydston RA, Garland-Campbell KA, Sankaran S. High-throughput phenotyping of seed/seedling evaluation using digital image analysis. Agronomy. 2018;8(5):63. https://doi.org/10.3390/agronomy8050063.

57. Browning BL, Browning SR. A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. Am J Hum Genet. 2009;84(2):210–23. https://doi.org/10.1016/j.ajhg.2009.01.005.

58. Team R Core. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. 2015;21.42:14.

59. Alipour H, Bai G, Zhang G, Bihamta MR, Peyghambari SA. Imputation accuracy of wheat genotyping-by-sequencing (GBS) data using barley and wheat genome references. PLoS ONE. 2019;14(1):e0208614. https://doi.org/10.1371/journal.pone.0208614.

60. Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155(2):945–59. https://doi.org/10.1093/genetics/155.2.945.

61. Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics. 2007;23(19):2633–5. https://doi.org/10.1093/bioinformatics/btm308.

62. Lipka AE, Tian F, Wang Q, Peiffer J, Li M, Bradbury PJ, et al. GAPT: genome association and prediction integrated tool. Bioinformatics. 2012;28(18):2397–9. https://doi.org/10.1093/bioinformatics/bts444.

63. Pérez P, de los CG. Genome-wide regression and prediction with the BGLR statistical package. Genetics. 2014;198(2):483–95. https://doi.org/10.1534/genetics.114.164442.

64. Clark SA, van der Werf J. Genomic best linear unbiased prediction (gBLUP) for the estimation of genomic breeding values. Methods Mol Biol. 2013;1019:321–30. https://doi.org/10.3835/plantgenome2011.08.0024.
72. Chen CJ, Zhang Z. iPat: intelligent prediction and association tool for genomic research. Bioinformatics. 2018;34(11):1925–7. https://doi.org/10.1093/bioinformatics/bty015.

73. Resende MF, Munoz P, Resende MD, Garrick DJ, Fernando RL, Davis JM, Kirst M. Accuracy of genomic selection methods in a standard data set of loblolly pine (Pinus taeda L). Genetics. 2012;190(4):1503–10. https://doi.org/10.1534/genetics.111.137026.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.