Supporting Information

Controlled Nucleation and Growth of DNA Tile Arrays within Prescribed DNA Origami Frames and Their Dynamics

Wei Li, Yang Yang, Shuoxing Jiang, Hao Yan, Yan Liu

Department of Chemistry and Biochemistry and The Biodesign Institute
Arizona State University, Tempe, AZ 85287
Experimental Materials and Methods

Materials: All DNA helper strands used in the origami frame were purchased in 96-well plates from Integrated DNA Technologies, Inc. (www.IDTDNA.com), desalted, with concentrations normalized to 200 µM. Single stranded M13mp18 viral DNA and phi X 174 DNA were purchased from New England Biolabs, Inc. (NEB, catalog number: N4040S and N3023S). All DNA strands in the DNA origami frame were used without further purification.

All DNA strands used in the DX tiles were purchased from Integrated DNA Technologies, Inc. (www.IDTDNA.com) in the format of desalted dry powder. The tile strands were all purified using denaturing polyacrylamide gel electrophoresis (10% 19:1 acrylamide/bisacrylamide, containing 50% urea) in 1xTBE buffer (pH 8.0, 89 mM tris base, 89 mM boric acid, 2 mM EDTA). The bands corresponding to the full length strands were individually excised from the gel, chopped into small pieces, soaked in 500 µL elution buffer (500 mM NH₄OAc, 10 mM Mg(OAc)₂, and 2 mM EDTA) and then shaken overnight to allow the DNA strands to elute from the gel blocks into the solution. After filtering out the gel blocks, the solutions were then mixed with butanol to extract any organic residue. After removing the butanol layer, 1 mL of ethanol was mixed with each solution to precipitate the DNA molecules. The mixtures were kept at -20 °C to ensure rapid and complete DNA precipitation. Then the purified DNA strands were spun down using a centrifuge, and then dried under vacuum. The DNA strands were then reconstituted in pure water and their concentrations were measured by absorbance at 260 nm.

Assembly Procedure: The DNA origami frame structure was assembled by mixing M13mp18 DNA (10 nM) and phi X 174 DNA (10 nM) with the helper strands in a 1:1:30 molar ratio in 1xTAE/Mg²⁺ buffer (pH 8.0, 20 mM Tris base, 20 mM acetic acid, 2 mM EDTA, 12.5 mM Mg(OAc)₂). The final volume of the reaction was 100 µL. The solution was annealed in a PCR thermocycler with the temperature decreased from 90 °C to 70 °C at a rate of 1 °C every 5 minutes, from 70 °C to 40 °C at a rate of 1 °C every 15 minutes, then from 40 °C to 25 °C at a rate of 1 °C every 10 minutes, and finally kept at 4 °C. Following annealing, the origami frame was washed with 1xTAE/Mg²⁺ buffer three times and passed through a 100 kD MWCO Microcon centrifugal filter device (Amicon, catalog number: UFC510096) to remove the excess helper strands.

Each DNA DX tile was assembled by mixing all the strands in the tile in an equal molar ratio (1 mM) in 100 µL 1xTAE/Mg²⁺ buffer. The solution was annealed in a PCR thermocycler with the temperature decreased from 90 °C to 25 °C at a rate of 4 °C every 5 minutes, and then kept at 25 °C.

The DNA origami frame – DX tile 2D array hybrid was assembled by mixing 1 pmol of purified DNA origami frame (100 µL, 10 nM) with the solutions of the four DX tiles. The amount of each tile was 100 pmol (100 µL, 1 mM). The final 500 µL solution was incubated at 25 °C.
overnight. Then the mixture was concentrated to 100 µL using a 100 kD MWCO Amicon centrifugal filter device.

Agarose Gel Electrophoresis Purification: The assembled frame-array hybrid was loaded onto an agarose gel (0.3% agarose containing 0.5 µg/mL ethidium bromide, 1×TAE/Mg\(^{2+}\) buffer) and subjected to gel electrophoresis at 80 volts for one hour on an ice-water bath. The product band was excised from the gel and shredded. The shredded gel blocks were transferred into a Freeze 'N Squeeze DNA Gel Extraction Spin Column (Bio-Rad, catalog number: 732-6165) and centrifuged to recover the buffer containing the purified product. The product was then stored at 4 °C and characterized by AFM.

Monomeric Avidin Resin Purification: 100 µL Monomeric Avidin Resin (Thermo Scientific, catalog number: 53146) suspension was transferred into a SigmaPrep™ spin column (Sigma, catalog number: SC1000). The resin was washed with 1×PBS buffer once (Sigma, catalog number: P4417), then washed with 2 mM biotin solution to block the non-reversible binding sites, and finally regenerated with glycine solution. The resin and biotin modified DNA origami frame – 2D array hybrid were mixed and incubated for 30 minutes. The resin bound with the frame-array hybrid was then washed with 1×PBS buffer to remove the free 2D array and DX tiles. The purified frame-array hybrid was then displaced from the resin with 100 µL biotin (2 mM) solution. The solution containing the purified product was then stored at 4 °C and subjected to AFM characterization.

AFM Imaging: The AFM imaging was performed using a Dimension FastScan AFM (Bruker). The samples (2 µL to 5 µL) were deposited onto freshly cleaved mica (Ted Pella, Inc.) and left to adsorb for 2 min. Buffer (1×TAE/Mg\(^{2+}\), 100 µL) was added on top of the sample and the sample was imaged in ScanAsyst in Fluid mode, using ScanAssyst Fluid+ probes (Bruker).

Fluorescence Kinetics: The fluorescence kinetics experiments were performed using a Nanolog fluorometer (Horiba Jobin Yvon). The origami frame was purified with 100 kD MWCO Microcon centrifugal filter devices (Amicon, catalog number: UFC510096) to remove excess helper strands. The concentration of the origami stock solution was 10 nM. The concentration of each tile stock solution was 1 µM. The sample chamber of the fluorometer was preset at 21 °C. 2.4 µL of Tile C solution (labeled with Fluorescein), and 2.4 µL of Tile D solution were added to a 120 µL quartz fluorescence cuvette. 1×TAE/Mg\(^{2+}\) buffer was added to make the final volume 120 µL. To the reaction with tile/origami at a molar ratio of 100:1, 2.4 µL the purified origami solution was added. To the reaction with tile/origami at a molar ratio of 100:2 or 100:3, the volume of the origami stock solution added was doubled or tripled. The sample was placed in the fluorometer and the time dependence of the intensity was monitored. Then 2.4 µL of Tile A solution (labeled with a black quencher) and 2.4 µL of Tile B solution were added to the cuvette and mixed well. The fluorescence intensity was measured once every 30 seconds, with an integration time of 10 seconds. The fluorescence intensities were first corrected for the volume difference, to a total volume of 124.8 µL after the addition of Tile A and B and then the data
were corrected for photo bleaching using a control with the same concentration of Tile C and Tile A.

Fluorescence Data:

For each reaction, the first trace is the original data collected by the fluorometer. The second trace is the data after correcting for the volume change. The third trace is the data after correcting for photo bleaching. The fourth trace is the data after normalization, which was used to generate the plots shown in Figure 4C and Figure S11B.

Design of the DX Tiles

Figure S1. The design of the four DX tiles. (A) Schematic design of the four tiles. The four tiles share the same sequences of Strands 2, 3, and 5. Each tile has a specific Strand 1 and 4. The sticky end pairing e.g. a, a’ are marked for each tile. (B) The detailed design of the four tiles. Each tile is four helical turns long. Strand 3 is 42 nts long. Strands 2 and 5 are both 37 nts long. Strands 1 and 4 are both 26 nts long.
PAGE Characterization of DX Tiles

Figure S2. Native polyacrylamide gel electrophoresis characterization of the formation of the four tiles. **Lanes 1 & 15:** 10 bp DNA marker. **Lane 2:** the core structure of the four tiles: Strand A2 + Strand A3 + Strand A5. (For Tile B, C, and D, the core structures all have the same sequences as Tile A). **Lane 3:** core + Strand A1. **Lane 4:** core + Strand A4. **Lane 5:** full Tile A (core + Strand A1 + Strand A4). **Lane 6-8:** the same combinations as Lanes 3-5 for Tile B. **Lane 9-11:** the same combinations as Lanes 3-5 for Tile C. **Lane 12-14:** the same combinations as Lanes 3-5 for Tile D.
Design of the DNA Origami Frame

Figure S3. Detailed design of the DNA origami frame. The origami frame is 210 nm wide, 60 nm and 95 nm tall (the two sides). The blue strand represents the phi X 174 scaffold and the red strand corresponds to the M13mp18 scaffold. The interior is decorated with sticky ends complementary to the sticky ends on Tiles A and B. At the outer ends of each helix, two extra thymine bases are added to prevent π-π stacking between origami.
AFM Image of Empty Origami Frame

Figure S4. AFM image of the empty origami frame. (A) Zoom-out AFM image of the empty origami frame. Most of the origami frames are well formed. There are several aggregated structures in the image that may be caused by crosslinking of multiple scaffold strands. (B) Zoom-in AFM image of selected well-formed empty origami frame. The scale bar is 100 nm.
Examination of the spontaneous formation of the DX tile arrays

Figure S5. Unregulated growth of 2D arrays of DX tiles. The four DX tiles were mixed together to a final concentration of 250 nM each. The mixture was incubated at 25 °C overnight and characterized by AFM. The four tiles form 2D arrays as designed.
Figure S6. Image of agarose gel electrophoresis showing the purification of the origami-2D array hybrid. **Lane 1**: 1kb DNA ladder. **Lane 2**: Empty origami frame without purification. The fastest intense band corresponds to the extra helper strands. The second fastest band corresponds to the empty origami frame. Upper faint bands are aggregated structures (see Figure S4). **Lane 3**: Origami frame and the four tiles incubated overnight at r.t. The faster band and the smear after it correspond to uncontrolled 2D tile-array of various sizes. The slower band corresponds to the origami-array hybrid, which runs faster than the empty origami frame in Lane 2, because once the frame is fully filled, the structure gets more solid. **Lane 4**: The four tiles incubated overnight at r.t. without the origami frame. The band and smear correspond to uncontrolled 2D tile-array of various sizes.
AFM Image of DNA Origami Frame – 2D Array Hybrid Purified by Agarose Gel Electrophoresis

Figure S7. AFM image of Frame-array hybrid purified by agarose gel electrophoresis. (A) Zoom-out AFM image of Frame-array hybrid purified by agarose gel electrophoresis. There were quite a few pieces of free 2D array of DX tiles that were not cleanly removed. Note that these 2D arrays had similar sizes as the frame-array hybrid, which mostly showed a filled interior. (B) Zoom-in AFM image of selected Frame-array hybrid purified by agarose gel electrophoresis. The scale bar is 100 nm.
Boitin Modified DNA Origami Frame – 2D Array Hybrid Purified with Monomeric Avidin Resin

Figure S8. AFM images of Boitin modified frame-array hybrid after purification with monomeric avidin resin. The origami frame was modified with biotin. When purifying with monomeric avidin resin, unmodified tiles and 2D arrays were washed away while the boitin modified frame-array hybrids were bound to the resin. The purified product was then washed off with excess biotin solution. (A) & (B) The AFM images show that using this purification method, fewer free 2D array residues remained. (C) Zoom-in AFM image of selected Frame-array hybrid purified with monomeric avidin resin. The scale bar is 100 nm.
Figure S9. AFM image of unpurified frame-array hybrid. Several, but not all of, distinguishable frame-array hybrid structures are marked in the image.
Defects of DNA Origami Frame – 2D Array Hybrid

Figure S10. Three major classes of defects in the frame-array hybrids. (A) The shrunken frame-array hybrid caused by sticky ends on tiles hybridizing with another row of non-neighboring tiles. (B) The widened frame-array hybrid caused by inserting one or two rows of tiles between neighboring rows. (C) The bent frame-array hybrid caused by association of sticky ends between non-neighboring columns of tiles. Each image in the figure is 610 nm × 610 nm.
Figure S11. FS-AFM images showing the dynamics of nucleation and growth of DX tiles into the DNA origami frame. (A) This is another example of the experiment shown in Figure 3. Each frame was collected over 87 seconds. Each frame is 287 nm × 287 nm. (B) The full set of images in Figure 3. Each frame was collected over 87 seconds. The scale bar is 100 nm.
Kinetics of the Nucleation Process of the Four Tiles

Figure S12. Characterization of the kinetics of the nucleation process. (A) The modification of the tiles with a fluorophore and dark quencher. The 5’ end of Strand A1 was modified with an Iowa Black Dark Quencher. The 3’ end of Strand C2 was modified with 6-FAM. Upon sticky end association in the tile array formation, the fluorophore and the quencher are brought into close proximity and fluorescence quenching is expected. (B) Normalized fluorescence decrease. The concentration of each of the tiles was 20 nM in all experiments. The legend indicates the molar ratio between the tiles and the origami frame. Each experiment was conducted in duplicate, the data of which coincided with each other. All curves shown are after correction for photo-bleaching. (C) Logarithm of the data in Panel B to the base e. The average of the curves of the reactions without origami seed in Panel B are subtracted from all other curves. Then ln(I/I_{ini}) is plotted against time. The data are then fit by Equation 5 in the main text.
DNA Sequences

Sequences of tile strands:

A1: AGGAACCATGAACCCCTGCAGCATGTC
A2: GCTGCAGGCGGAATCCGACCCTGTCCGTTGCACCATT
A3: GTGGGATTTCCGCTGGCTTGGCTTAGGTCACCACGCCACAGG
A4: ACTCAATGGTGACTAAACCTCTCTAAG
A5: AGGTTTAGTGACTCTTAGGCAAGCCAGTTTCATGG

B1: GTGATCCATGAACCCCTGCAGCAAG
B2=A2
B3=A3
B4: TAACGATGGTGACTAAACCTAAGCT
B5=A5

C1: TGAGTCCATGAACCCCTGCAGCAGCTT
C2=A2
C3=A3
C4: TTCCTATGGTGACTAAACCTGTTCT
C5=A5

D1: CGTTACCATGAACCCCTGCAGCAGT
D2=A2
D3=A3
D4: ATCACATGGTGACTAAACCTGACAT
D5=A5
Sequences of the helper strands and sticky end strands in the DNA origami frame:

Helper 1
GTATTAACCTCATTGCCTGAGTACGCCGTTGAGCAATACATTCTTTGATTTT

Helper 2
AGAGTCTGTCATCACGCAGGCACGGATGTTGAGCTCTTCTCTCTCC

Helper 3
CAGCAGAAGGCCCTGCTGGTATACGAGTGCTAA

Helper 4
AAACCGTCTACATTGAGGCCCTACCCAGGA

Helper 5
ACATCAGCCTCGCCAGCATGGCAAAAGGGCGAA

Helper 6
AAAGAACGTGGGACTCCAAGGTCAACAGGAAAA

Helper 7
TAGCTTTTGAAATACCTATTTTCTCATATT

Helper 8
TTGTTCCAGTTTGGAACAGAGGTGAGCTCT

Helper 9
CGTCGACCTGAAATGCAAATGTATTGAGT

Helper 10
ATCAAAGAATAGCCGAGATAGGCAATTGCA

Helper 11
TAGAACACAGTCACGACCGAAGTATCATTAA

Helper 12
CCTGTCTGATTGCTTCCGAAATCGGAAATATCAAAAGGGAAATTTTT

Helper 13
GTCACCCCGCCCCTAAAATCTCAGCAGAAAAT

Helper 14
TCCAGCCTGTATGTGGCAGAGCAGCCTCAAA

Helper 15
CCTAGCAGCAGAATGCAATAGGAGCGGAGCGAG

Helper 16
CCGCCTGCGCTGAGAGGTTGCAAATCGCGA

Helper 17
CGAGAATACTGATGCAATTAAAGGGCCCTTCA

Helper 18
AGTGAAGACGGGCAACAGCTGATGGCTACAT

Helper 19
CAGCTATTACCTGAGTATTTCCATTTTTCC

Helper 20
GGCTTTTGCCGTATGCTGGCAGTTTTGTTTGCAGAAACTGAAACGGACT

Helper 21
TAAAACGAGTCTATCTGGTCTTTGGGAGAG

Helper 22
GCATTAATGAACCGCGTGACCGGGCAATA

Helper 23
TTAGTTAATACCCAGAACTCAGGACATT

Helper 24
AAACCTCTGATAAAAACAGAGGTGAGAAAATGAAA

Helper 25
CAATTTAACTATAAAATATCCGAGCTCAAA

Helper 26
ACGCTCATAATGGCGCAGACGATGACTTGA

Helper 27
CAATGTGAGAAATAGTGGGAAATGTTGCTG

Helper 28
GATTCCGCTTTGAGTTCCGAAATATGAGGATT

Helper 29
TACCGCTTCTCCGGCGAATAATTTTCTGCAAAACTGAAACGGACT

Helper 30
TCTTTATGAAATACCTACCAGGCTTCCAC

Helper 31
GTGGTGCGAAAAAGTCTGAAACATGAACGTGAT

Helper 32
TAAATTTTCAAGAAAAAGTCTTGATCTCATT

Helper 33
GGAAACACGTGCGCAGAAGCTGAGTCAAGAATGCAATGAAAGAAAAACAC

Helper 34
AGTACGCTGACGATGACGCTTATACATCAAA

Helper 35
AAGATAGTGCTGAGGCCAGGCAGCGGTCG

Helper 36
CGAATTTGACATCACTTCTGCAAGGAACCCAC

Helper 37
TTGATACCCCTCAATATCTTGGCCTAAAA

Helper 38
GGGAGGAAAAACATTTGGAAGGAAATATTAGGCAT

Helper 39
GTTAACCTATTGACGTTTAAATATACATTCTTAGGAGCTAAGAAATA

Helper 40
GAAAATGTGCTAGGCGCCTGCAATGAAACAGAG

Helper 41
ACCTCACATTAGACTTTTTAAGAATATCCTGGCTTG

Helper 42
TGCGAAATAAAAAGTTTGTAGTTAAATGATTAG

Helper 43
GCCAGAGTGCTATCAAGGACCGGAATTCATACAAAAAGAAAAACACCAGAGTGAAC

Helper 44
ATAGCCAGGCATTAACCGTCAACGGTGTCTG

Helper 45
TTACAGTGCCAGAAACACATT
Helper 46 AATCTAAATCATTTCAATTACCTGTTAAGTGG
Helper 47 TATCAAACCAAGTTAAATATCGGACCTGA
Helper 48 GCAAATCACAATAACGGGATTCCCCATTAGTACG
Helper 49 GTAATCTAACAGTAACAGTACCTACCAACA
Helper 50 CTAATAGAGTAGATTTCAGGTTTTGGAAAGGACGTCAAATAGTCCGGAACAGC
Helper 51 TAAATTTACCATATAATTCCTGGAAGAAAG
Helper 52 TTAAGGGAACACAAACAGGCAATGATAG
Helper 53 TTTCGGAATCATCATCTTTGATTAAATTTA
Helper 54 CATTACCAGGCCGTGAGATGTACTCATTCTGAAGCACCACACAGAAACCTAGAGGAC
Helper 55 TATAACCTGTGTTGTCGTTCCGACGCATGA
Helper 56 CATTGAAAAATTAATACATTTGACAAAAAG
Helper 57 AGCAACAAAAATAATCTCTTAAATCGCAGAG
Helper 58 GTGTAACCTAGCAAAACCAACATGAAATTTACATC
Helper 59 ATGGCCGACCATTCAAAAGGATAAAACGGGTTAGA
Helper 60 CTCAAAGCGAACCACACAGGCAAATACAGTGA
Helper 61 TTTCAAGAAAAACATACCTTTTTTT
Helper 62 CTGGAAGACACATAAATCACCCTACTATGTGAG
Helper 63 TTCCGACGCAGAAGCAATACCCGGCTCCAA
Helper 64 AGATGGCGTTAGGAGTCCGGAGGGTGAGTCGGGATCGGAGG
Helper 65 CAAGTTAAAGAGCGTTGTCGAGCTAAACTGG
Helper 66 TAGCCATAAGTCAATAATACAAATGCAATTT
Helper 67 TAAATTAATCTTGCTTCTGAATATTACGAGAAT
Helper 68 TTTCATGGAACACGCTTTAGATTATTT
Helper 69 TGAATAACCTTTCCCTTGAATCTCATAATTACAG
Helper 70 AACAATTTGGCGGCTTTTTGACCTATCGGTA
Helper 71 AATCATAGAAAGATGCCATAGTGAATGAAACA
Helper 72 ATTAGAGCATGCCTACAGTATTGTGCTAT
Helper 73 TTAGACGCCTGAGGTCTGAGGCTTATCATC
Helper 74 CATCACCCTTGAATGGCGAGATTTGGTTAT
Helper 75 AGCAAGCGCCGGCTCATCGAGGACCAGCT
Helper 76 AACAAATATAACCCGGCTTTGATTATTTA
Helper 77 TCGCAAGAATGTAAATGCTGATGCTTAGGAAC
Helper 78 TTTCACCTTTTTTTATGTAATTATTT
Helper 79 ATAACTATCAAAGAACGCGAGAATGTTGCCAC
Helper 80 TTAGCCATTCAAGAAGTGCTTTTTATCAAG
Helper 81 ACCGACCGGACCTAATTAATGGACCTTTTT
Helper 82 ATCCCTTACCAAAATCAAGCACTAAATCCAA
Helper 83 TTTTCATCTTCTTTGTGATAAAATT
Helper 84 CAAGTCCATTTTATCAGTGCATCTCTTTCT
Helper 85 AACGCCCAGGCGAGAAGTAAATGACACC
Helper 86 CGCTCAAATAAAGAATAAAACCCGTTTTGAAAT
Helper 87 CGTTATACAAAAAGCCTGTTTAGTTCAGGACT
Helper 88 TTAAGGCGTTAAAGTACTGCCTTTTT
Helper 89 ATTACTAGAAATCTCTTACAGTATCTCTTTCT
Helper 90 GCACGCTCAGCGAGAAATCGCTCTTTT
Helper 91 GTAATTTCGCGCATTTTAACAAAACAAAGGCCA
Helper 92 AGTCTCATAGTGGCATTTTAGTAAATCATATG
Helper 93 TTAATTGAGAATGCCAGAGGCATT
Helper 94 GATTGCTCTTTTCATCTCGAGAATTGCAATAGCAG
Helper 95 TTGATTCTTGAAATGCCAGACAGAG
Helper 96 ACTGAACAGTAATGAGAATAGGCAAGC
Helper 97 AAAACAGGTCATAGTTCTTCAGCTCGTGCTGAAG
Helper 98 AAATAGCAGAAGATGATTCTTTCAGCTCGTGCTGAAG
Helper 99 ATATACCTGCTTTTCTGATTCAGATCGA
Helper 100 AGAAACAGGTTATTTATCAACAAATAGTATTTGCTGC
Helper 101 AACAGCCAAAAATAATATCCATAGACCTCGCAGATGCT
Helper 102 CCGATCTGAAATCAGGAACGAGCACTGCTCAAATT
Helper 103 AATCTCGGAAAACCTGCTTTGTCAGAATCGGCTCTTCCCTT
Helper 104 GCTCAAATGGAACGAGCATTTATTGATCAGCAG
Helper 105 TTTGCTCACTCTACGGGTTTACGCTCAGTACGAGAC
Helper 106 TTGATTTGGTCTTGGAATAATACCGTTTTT
Helper 107 AACCTCCCAGGAATCAGATCTAGCTCGTCATTT
Helper 108 CGGTATCTCAGAGGTTTACGCTCAGTACGAGAC
Helper 109 GCATCTGCTTTTTCATGCTAGCTCGTCAGTTTT
Helper 110 AACATACAAACCTGAGCTTTTCCGAAATATAG
Helper 111 AGAAATATCCTTTTCATGCTCAGTACGAGAC
Helper 112 TTTTTTCGAGCCCTGTAACAAAT
Helper 113 GACAAGAGAGAGGCGATAGACGGTCAGAGAG
Helper 114 CGACAATAGCCTTTTACAGATCAGAAGACAAATA
Helper 115 ACAGCAGCTTGTGTTGTCAGATCAGAAGACAAATA
Helper 116 TGAACAAATGTTATTATTATATCCCAAAAAAGTA
Helper 117 ACAGCAGCTGCTTTTTGCAAGAGGAGGAG
Helper 118 ATCATTTCCCCATTCAATCTTAACTCAGTACGTACCT
Helper 119 ATTTTCATGACTTGCGGGAGGTTTACTCAGTACG
Helper 120 ATAGCAATAGAAGAGCAGACGTCATCTGCTCAAG
Helper 121 GAGCCAATATTGGAGGTTGTCAATCTGAGCTCAGTACGAGATCAGCAGAAGCA
Helper 122 GAAATGTGCTTCACAGAATTGGGATGGCACAAG
Helper 123 TCAACCCGATAATTTGAGCCTAAAAATAGACAAATAGAAGACAAATA
Helper 124 GTTTACCCAAGAATTGGTATAAGATAACAAACA
Helper 125 ATTTTGTCAGAGAAACATGGAATTTAAATAGGAATA
Helper 126 AAAGAAACCCAGCCCTTTTTAAGTCCAATAA
Helper 127 GAAAATACGCCGAAACAAAGTTACCAAAAATA
Helper 128 ACTCTTAAAAACGCAATATAAACGCGAGGCTC
Helper 129 CCATTACACGTCAGAGCAGCCCTTTATGCAACCCA
Helper 130 GGGAGCAGCATATCACCATTATCAGATGAAAGCCT
Helper 131 GGTGTGCTCAGAAAAAGGAGAATCTTTTACG
Helper 132 TCCTAAAAATGCAGTTATCATCTGCTGCTTATC
Helper 133 GCAGCCAGTGAGAAGAGTAGAGAAAGGCAATGAAA
Helper 134 TTAGTCAGAGGGTTGAGGAGAGTT
Helper 135 ATAAACCCGCGCCAAAGACAAAAAGCAATTAAG
Helper 136 ATAGAGCACAATCAAATAGAAGAAAGGACCAT
Helper 137 TATCTTACGGAACAGCCAGGAAACCATGAG
Helper 138 AGCAGATAATACAAAGGTGGCAAAACGTC
Helper 139 ACCGGAGTATTACGAGTAGTTAGTCAAGCTTAAAT
Helper 140 TCACGAAACTTTCATCAGATGAAAGAATCTCAGGACTTTAGCGTCAGACTGTA
Helper	Sequence
189	CTGGTGCCAGGCTGCAGCAACTGTTATAGCTGT
190	CCCGGGTACCCAGGCTGCAATTCGTGAATCGTGCAGGCGAGCAGAGATCGTGT
191	CCTCAGGATCGCTATTACGCAGACAGGATC
192	TTGGCAATGGTTGGAGATGTCAGGCTAGAAGGCGAGGAAAGGCAAAGGCAGATCGTGT
193	CGGCCAGTTGCTCAGGAGGGAAGGCTTGACAGAGATCGTGT
194	TTGGCAATGGTTGGAGATGTCAGGCTAGAAGGCGAGGAAAGGCAAAGGCAGATCGTGT
195	GATGGTACAGGCTGCAATTCGTGAATCGTGCAGGCGAGCAGAGATCGTGT
196	CCTCAGGATCGCTATTACGCAGACAGGATC
197	TTGGCAATGGTTGGAGATGTCAGGCTAGAAGGCGAGGAAAGGCAAAGGCAGATCGTGT
198	CGGCCAGTTGCTCAGGAGGGAAGGCTTGACAGAGATCGTGT
199	TTGGCAATGGTTGGAGATGTCAGGCTAGAAGGCGAGGAAAGGCAAAGGCAGATCGTGT
200	GATGGTACAGGCTGCAATTCGTGAATCGTGCAGGCGAGCAGAGATCGTGT
201	CTGGTGCCAGGCTGCAGCAACTGTTATAGCTGT
202	CCCGGGTACCCAGGCTGCAATTCGTGAATCGTGCAGGCGAGCAGAGATCGTGT
203	TTGGCAATGGTTGGAGATGTCAGGCTAGAAGGCGAGGAAAGGCAAAGGCAGATCGTGT
204	CTGGTGCCAGGCTGCAGCAACTGTTATAGCTGT
205	TTGGCAATGGTTGGAGATGTCAGGCTAGAAGGCGAGGAAAGGCAAAGGCAGATCGTGT
206	TTGGCAATGGTTGGAGATGTCAGGCTAGAAGGCGAGGAAAGGCAAAGGCAGATCGTGT
207	TTGGCAATGGTTGGAGATGTCAGGCTAGAAGGCGAGGAAAGGCAAAGGCAGATCGTGT
208	TTGGCAATGGTTGGAGATGTCAGGCTAGAAGGCGAGGAAAGGCAAAGGCAGATCGTGT
209	TTGGCAATGGTTGGAGATGTCAGGCTAGAAGGCGAGGAAAGGCAAAGGCAGATCGTGT
210	TTGGCAATGGTTGGAGATGTCAGGCTAGAAGGCGAGGAAAGGCAAAGGCAGATCGTGT
211	TTGGCAATGGTTGGAGATGTCAGGCTAGAAGGCGAGGAAAGGCAAAGGCAGATCGTGT
212	TTGGCAATGGTTGGAGATGTCAGGCTAGAAGGCGAGGAAAGGCAAAGGCAGATCGTGT
213	TTGGCAATGGTTGGAGATGTCAGGCTAGAAGGCGAGGAAAGGCAAAGGCAGATCGTGT
214	TTGGCAATGGTTGGAGATGTCAGGCTAGAAGGCGAGGAAAGGCAAAGGCAGATCGTGT
215	TTGGCAATGGTTGGAGATGTCAGGCTAGAAGGCGAGGAAAGGCAAAGGCAGATCGTGT
216	TTGGCAATGGTTGGAGATGTCAGGCTAGAAGGCGAGGAAAGGCAAAGGCAGATCGTGT
217	TTGGCAATGGTTGGAGATGTCAGGCTAGAAGGCGAGGAAAGGCAAAGGCAGATCGTGT
218	TTGGCAATGGTTGGAGATGTCAGGCTAGAAGGCGAGGAAAGGCAAAGGCAGATCGTGT
219	TTGGCAATGGTTGGAGATGTCAGGCTAGAAGGCGAGGAAAGGCAAAGGCAGATCGTGT
220	TTGGCAATGGTTGGAGATGTCAGGCTAGAAGGCGAGGAAAGGCAAAGGCAGATCGTGT
221	TTGGCAATGGTTGGAGATGTCAGGCTAGAAGGCGAGGAAAGGCAAAGGCAGATCGTGT
222	TTGGCAATGGTTGGAGATGTCAGGCTAGAAGGCGAGGAAAGGCAAAGGCAGATCGTGT
223	TTGGCAATGGTTGGAGATGTCAGGCTAGAAGGCGAGGAAAGGCAAAGGCAGATCGTGT
224	TTGGCAATGGTTGGAGATGTCAGGCTAGAAGGCGAGGAAAGGCAAAGGCAGATCGTGT
225	TTGGCAATGGTTGGAGATGTCAGGCTAGAAGGCGAGGAAAGGCAAAGGCAGATCGTGT
226	TTGGCAATGGTTGGAGATGTCAGGCTAGAAGGCGAGGAAAGGCAAAGGCAGATCGTGT
227	TTGGCAATGGTTGGAGATGTCAGGCTAGAAGGCGAGGAAAGGCAAAGGCAGATCGTGT
228	TTGGCAATGGTTGGAGATGTCAGGCTAGAAGGCGAGGAAAGGCAAAGGCAGATCGTGT
229	TTGGCAATGGTTGGAGATGTCAGGCTAGAAGGCGAGGAAAGGCAAAGGCAGATCGTGT
230	TTGGCAATGGTTGGAGATGTCAGGCTAGAAGGCGAGGAAAGGCAAAGGCAGATCGTGT
231	TTGGCAATGGTTGGAGATGTCAGGCTAGAAGGCGAGGAAAGGCAAAGGCAGATCGTGT
232	TTGGCAATGGTTGGAGATGTCAGGCTAGAAGGCGAGGAAAGGCAAAGGCAGATCGTGT
233	TTGGCAATGGTTGGAGATGTCAGGCTAGAAGGCGAGGAAAGGCAAAGGCAGATCGTGT
234	TTGGCAATGGTTGGAGATGTCAGGCTAGAAGGCGAGGAAAGGCAAAGGCAGATCGTGT
235	TTGGCAATGGTTGGAGATGTCAGGCTAGAAGGCGAGGAAAGGCAAAGGCAGATCGTGT

S21
Helper 236	GAATTAGCTAATCATACAGGCACATCAAT
Helper 237	TTAAAACTCCCAAAAAATTAACGCTT
Helper 238	TCTACAGTTGAGGGACATAAAAAGATGAACTT
Helper 239	ATGGTCAGCAGCAGCTGGGAGATGTCAGGGAAG
Helper 240	TTGGGGCGTAACCTGTTTAGCTATACGGAGAG
Helper 241	TCTACTAATGACCATTAGATACAAGTTGATC
Helper 242	TTTAGATTTTAGTTCAGTAGTACGTTT
Helper 243	ACAGCAAGAGACCAGAATGAGGAAAGTAAATATG
Helper 244	GCGATAACCGCTCATCTCGAAGGTTCGCAG
Helper 245	CGCACAAGCCGGGATGATTGAAAATGTAATTGCT
Helper 246	TCCCAATTTCATCTCATATAACGCTTTAA
Helper 247	TTGGTCTGGAAGTCTGCGAAGCAGCGTT
Helper 248	CGCTCGGAGATGAGAAGCTATGTAATAAG
Helper 249	TCTACTAATGACCATTAGATACAAGTTGATC
Helper 250	ATATGCAAAATTGCTCCTTTTGAAGCAAC
Helper 251	TTGGGGCGTAACCTGTTTAGCTATACGGAGAG
Helper 252	TCTACTAATGACCATTAGATACAAGTTGATC
Helper 253	TTGGTCTGGAAGTCTGCGAAGCAGCGTT
Helper 254	ACATACCAGCTGCTAAATGTTTAAGAGGT
Helper 255	GAAGCCCAAGAGCCGCAACGTTCATGTAATAAG
Helper 256	TCCCAATTTCATCTCATATAACGCTTTAA
Helper 257	TTGGGGCGTAACCTGTTTAGCTATACGGAGAG
Helper 258	ACATACCAGCTGCTAAATGTTTAAGAGGT
Helper 259	GCCTCTTCAAGGGGAGATGAGAAGCTATGTAATAAG
Helper 260	TGTAAAATGGAAAGGACGAGGAAAGCTTCCTTTA
Helper 261	ACTTTTTCTGCTGCTATGTCAGGAGCC
Helper 262	CAAAAAGAAGTCAGAAGCAAGCTGAGAG
Helper 263	GCCTCTTCAAGGGGAGATGAGAAGCTATGTAATAAG
Helper 264	TGTAAAATGGAAAGGACGAGGAAAGCTTCCTTTA
Helper 265	ACTTTTTCTGCTGCTATGTCAGGAGCC
Helper 266	CAAAAAGAAGTCAGAAGCAAGCTGAGAG
Helper 267	GCCTCTTCAAGGGGAGATGAGAAGCTATGTAATAAG
Helper 268	TGTAAAATGGAAAGGACGAGGAAAGCTTCCTTTA
Helper 269	ACTTTTTCTGCTGCTATGTCAGGAGCC
Helper 270	CAAAAAGAAGTCAGAAGCAAGCTGAGAG
Helper 271	GCCTCTTCAAGGGGAGATGAGAAGCTATGTAATAAG
Helper 272	TGTAAAATGGAAAGGACGAGGAAAGCTTCCTTTA
Helper 273	ACTTTTTCTGCTGCTATGTCAGGAGCC
Helper 274	GCCTCTTCAAGGGGAGATGAGAAGCTATGTAATAAG
Helper 275	TGTAAAATGGAAAGGACGAGGAAAGCTTCCTTTA
Helper 276	CAAAAAGAAGTCAGAAGCAAGCTGAGAG
Helper 277	GCCTCTTCAAGGGGAGATGAGAAGCTATGTAATAAG
Helper 278	TGTAAAATGGAAAGGACGAGGAAAGCTTCCTTTA
Helper 279	CAAAAAGAAGTCAGAAGCAAGCTGAGAG
Helper 280	GCCTCTTCAAGGGGAGATGAGAAGCTATGTAATAAG
Helper 281	TGTAAAATGGAAAGGACGAGGAAAGCTTCCTTTA
Helper 282	CAAAAAGAAGTCAGAAGCAAGCTGAGAG
Helper 283	GCCTCTTCAAGGGGAGATGAGAAGCTATGTAATAAG
Helper 284 AGAATCTCTACCATGAACAAAATGATGGCG
Helper 285 GCAAGGATCAAAGTAAGAGCTTCTTCAACAAG
Helper 286 CTCAGAGCATAGGAACCCATGTACGGAAGTAG
Helper 287 CTTTAAGCCCAACAGCCATATAAGTTCCAT
Helper 288 CAGTTTTTACTTTTGTTAAGCATAGCAAGGC
Helper 289 AAAAGTCGAGGTGGAATTTTTCTCGGTAAAC
Helper 290 TAAGGGAAACCGAACAAGATAATTTCCTGACT
Helper 291 GTGAGCATCTGCAACGGATCTTTCACGTAACAC
Helper 292 GGATTAAGTGGTTTTTAGTGAGTTAGGGATAG
Helper 293 GGCGTCGCTCCTAGACCTTTAGCATTTAGCCA
Helper 294 TTTTTGCGCCATTTTCGATTTAATTATTTTCCG
Helper 295 GTAACCTTTGTAATTCTGCTTTTATCGAGCTGC
Helper 296 CGACAGCTCATCCTGGACAGATTTCTTAAAA
Helper 297 TCTTTAAGCTCGTAGAACCAGTTGACAATG
Helper 298 CATATCTGTTCTGCTTCAATATCTCGATATA
Helper 299 AAGCAGTATCCCCACCTCCTAATCTGTTAAAG
Helper 300 CATTAAAGGATATCACAACAAAAAGCATAGAC
Helper 301 TATCAGCTTGCTTTCCAGGATATTGTGCTATT
Helper 302 CAGCCTGATTACCGATAGTTGCGCCGGTAAGTT
Helper 303 ACAACAACCATCAGCATAGCTTTGGAAC
Helper 304 TCCGCTCGTGAAGGTAATTCTCGGTAAAC
Helper 305 GCCGCTTTTTCGCGGATCGTCACCCGGCTACA
Helper 306 ATCAGGAACGAGGTAGCAACGGCTACTTCTGC
Helper 307 CATTAAAGGATATCACAACAAAAAGCATAGAC
Helper 308 TCCGGACATCATAAAGCCTCAAATATC
Helper 309 GCAGTCGGGCAAGAACATACGACTAAATCCT
Helper 310 ACAGAAATTCAGGCACAAAAAAGCATG
Helper 311 TATTATCTAGCCCTGCCCTATTTACTGATA
Helper 312 ACCATAAAGGATATTCCAAACAAAGCATG
Helper 313 AAATGAAGGCGCCGATAAAAGTGCAACGAACAA
Helper 314 ATTAGGTCGAACCTGACGAGTTGTATACGTGA
Helper 315 CTCCTACAGTCACCAGTGAAAAACCGATG
Helper 316 CCCCCAGATGTCACCAGTGAAACCGATG
Helper 317 GTTTCCAGCGATTTTGCTAAAACACTACAACGC
Helper 318 ATCTCTGATTTCATCCCCAGGTTATCTCGGT
Helper 319 AGCGTACCTTGAAATGAGAAGCTCAGTAATT
Helper 320 GAGCAGGAAGCGAAGCGAAATAAATAGCGAAG
Helper 321 ATAGCCAAAGCAGGATCATCCTCAAGAAAAGAT
Helper 322 ACACATATCTACAGGCAAGCAGATCTCAACATT
Helper 323 TTGGCCAAAGGAATAAACCCTCGGT
Helper 324 TACTGACGCACGAGACGACGAGAAAGATCC
Helper 325 TAACGGAATGAGAATTAGGAATACCTCAACAG
Helper 326 TCATCGATCAATATTACAGGTTCGGTTAA
Helper 327 AACTAATGAAATACTAGGTAAAATTTAAGCGT
Helper 328 TGTTGGGAAAGAAGCAGATACATAATT
Helper 329 TGTTCCAGATAAAATCCGAAATCATCCTCGGTACAG
Helper 330 GAGCTCAGACCTATTAGTGTGGAGTACGGAT
Helper 331 ATCCCAAAAGCAGTGCTGAAACAAACACCA
Sticky End Right 13 CGTTACACTTTCTACTGTCAGAGCTCTCATCGCCGACTTAG
Sticky End Right 14
TGAGTATAGACGCATGATTTTATATAGTAAATCCAGCTCCTTTAAAAATGCTGACCAA

Sticky End Up 1 TAAACGTTATTGCCCGGCGCCAGGTCCAGCTT
Sticky End Up 2 TTCCTCCGAAGAGCTACACAGTCCTTGACGAAATAA
Sticky End Up 3 AACTCGTATTCTGAATAATGGAAATCATGGAGCTGGCTTAG
Sticky End Up 4 ATACCCCGTGCCGAACCATTGGTTGATTATAATCTTTTGCGCGATTAAACT
Sticky End Up 5 GGGTGCGCATCAAAGCAATCGGCCGCAGCTT
Sticky End Up 6 TTCCTCGAGCAGCCTGATTAGCATGCCAGAGATTAATGCAACATC
Sticky End Up 7 TCAGGAACGTGGAACGACCAGCAATAAAGCTCTTCTTCTTAG
Sticky End Up 8 ATCACTGCTACAGGAAATGATTTTATAGTCTAAAGAAACCCGCGACAAAGGTACT
Sticky End Up 9 GTCAATATGCAAAATTAGCAACAGTGAGCTTT
Sticky End Up 10 TTCCTAGAGCTCCATGTCAATAGATGTGGGAGCAAAC

Sticky End Down 1 TGAGTGCAGCAGCGCCCTTTCTGTTGATAAAGCAAGCATACTCATAAGTCC
Sticky End Down 2 TTTCAGAGTAGAAACCAATCATAAGTGTAAAACTTACATAAATAGCCGCGTCTT
Sticky End Down 3 CGTTAAGTAAAGGTGCATTCCAAGTACCGCACTCGATTAGTTGCTATTTTGCGCGT
Sticky End Down 4 TAAATCAAATCGAGAACAAGCAAGCTGCAGGGAAATGCACAT
Sticky End Down 5 TGAGTGGCGGGCTAGTCAACCTCAGCACTAACCTTGCGAGCGCCCA
Sticky End Down 6 AAGAGCCATACCGCTGATCAAGAACTGTTCT
Sticky End Down 7 CGTTACGTGTTGGCAGTGAGCTTTATACCCAGAAGGGTGATTAGTGAGCATAC
Sticky End Down 8 CGTATTACGTGCGAGCATATATGGCTCAGGCTTTATAGTCAACCTTGAGT
Sticky End Down 9 CCAGCAGTCAGAATCGTGTAGGCTGACTCATATCTCAAATGGCCAGGGACAT

Sticky End-Scaffold Linker Left 1 CCATACAGCAGCGCC
Sticky End-Scaffold Linker Left 2 CAGTGACTCCGTCAGT
Sticky End-Scaffold Linker Left 3 GCGATACAGGCTACCA
Sticky End-Scaffold Linker Left 4 TGAGCGGCGTTCATGG
Sticky End-Scaffold Linker Left 5 GTGCGTGTGGACCACA
Sticky End-Scaffold Linker Left 6 CTGCGCTGGCTAAGGA
Sticky End-Scaffold Linker Left 7 GTATAAGTGTGTACCT
Sticky End-Scaffold Linker Left 8 TGAGCGGCGTTCATGG
Sticky End-Scaffold Linker Left 9 TTAAAGAGAAGCTTG
Sticky End-Scaffold Linker Left 10 GACTTCCGAGATCTAG
Sticky End-Scaffold Linker Left 11 GAGGAAAGTGCGAAC
Sticky End-Scaffold Linker Left 12 TGAAGCTTACGTTTGT
Sticky End-Scaffold Linker Left 13 TAGGCACATACGCTG

Sticky End-Scaffold Linker Up 1 GGACCTGGAAGATGTTAAGCTTGTCGCAGACTCTTGCGG
Sticky End-Scaffold Linker Up 2 CCAGCTCCCCACGCGATCCTCTCCTCCGCAGCGACTCGG
Sticky End-Scaffold Linker Up 3 GGCGCGACGACACTCCTGGCGTCCTCTAGGCTGCTCG
Sticky End-Scaffold Linker Up 4 AAGAGGCTCGATCAGTGGGTGCTCCTGACTGTAGCAG
Sticky End-Scaffold Linker Up 5 CCATGGTTATAGCGGTCATGAGCAGCAGGTGGAGCCTCT

Sticky End-Scaffold Linker Right 1 GCTCCTGAGTCCAGCA
Sticky End-Scaffold Linker Right 2 CCGGCGATATTGGCGCA
Sticky End-Scaffold Linker Right 3 ACATAAAGCCGCAAG
Sticky End-Scaffold Linker Right 4 GCTTGAACAGTGAT
Sticky End-Scaffold Linker Right 5 TCTCGGCTATAGGCTG
Sticky End-Scaffold Linker Right 6 AGTGCTCAATCCGAA
Sticky End-Scaffold Linker Right 7 GCCATTAGTCTCGGCC
Sticky End-Scaffold Linker Right 8 GGACTACCCGCTGTC
Sticky End-Scaffold Linker Right 9 CGGCCACGCCGCTAG
Sticky End-Scaffold Linker Right 10 TGTTCTGCTGCGCGT
Sticky End-Scaffold Linker Right 11 GCCATAAGCGAGAC
Sticky End-Scaffold Linker Right 12 GAGGACTGGAAGAGTG
Sticky End-Scaffold Linker Right 13 TCGGCGATGCGCTAT

Sticky End-Scaffold Linker Down 1 GCCCAAATTATCTCAGATCCGAGCAGGCAGGCGGCTGCGC
Sticky End-Scaffold Linker Down 2 GCATTCCAGATCGAGCGAGTCGTCGAGACCTACT
Sticky End-Scaffold Linker Down 3 AGTTCTTGAACAGAGGATGCTTCATCCTGAGGAGCGCCGC
Sticky End-Scaffold Linker Down 4 CCGGATTCATTTGACCAGTAGCTGACTGAGCCAACAG
Sticky End-Scaffold Linker Down 5 CCTGGCCACCCGACTCTGGTCAGACGCAGTGGAGCT

Helpers modified with biotin:

Biotin Helper 158 CAAAGCCTTTGCAATCCATCAAAACGTCAAGCATTCTTTTTTTTTTTTTTTTTTTTTTTT
Biotin Helper 159 AATTTACCAGGAGGGTGGAGCAGGACCAGAAGGGCAGCATTCTTTTTTTTTTTTTTTTTTTTTTT
Biotin Helper 161 TTGGCCTCTCCAGAATGGAAAGCGCCTTGAGGACTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
Biotin Helper 162 ACTGGTAATTGAGCTTTTTTATAGTACAGTCTCCTGTTTTTTTTTTTTTTTTTTTTTTTTTT
Biotin 20A [5' biotin]AAAAAAAAAAAAAAAAAAAAAA