The Role of Ranged Horses in Eco-Epidemiology of *Rickettsia raoultii* Infection in China

Qiao-Cheng Chang1,2*, Yang Hu2, Ting-Ting Wu2, Xiao-Xiao Ma3, Bao-Gui Jiang4, Na Jia4, An-Qi Wang5* and Jia-Fu Jiang4*

1 School of Public Health, Shantou University, Shantou, China, 2 College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China, 3 Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China, 4 State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China, 5 Animal Health Laboratory, JRU BIPAR ANSES ENVA UPEC, Maisons-Alfort, France

Rickettsia raoultii is a tick-borne pathogen that infects humans; however, the vertebrate hosts of this pathogen have not been clearly defined. Our molecular examination of *Rickettsia* spp. infecting mammals and ticks in China, identified the *gltA*, *ompA*, and 17KD gene sequences of *R. raoultii* in horses and their ticks. This indicates a role of horses in *R. raoultii* epidemiology.

Keywords: horse, infection, *Rickettsia raoultii*, tick-borne pathogens, China

INTRODUCTION

Tick-borne rickettsioses are recognized as emerging vector-borne infections, infecting both human and animal hosts worldwide. *Rickettsia raoultii* was initially implicated as the causative agent of human infection in 2006 through the detection of DNA in the blood of a Spanish patient (Ibarra et al., 2006), and has since been reported in human infections in many countries of the world; in particular, China (Jia et al., 2014; Li et al., 2018; Dong et al., 2019). *R. raoultii* was first detected in *Dermacentor nuttalli* and *Rhipicephalus pumilio* ticks in 1999 (Rydkina et al., 1999). Although *R. raoultii* has been detected in bloodsucking insects and other tick species, the dominant vectors are generally considered to be *Dermacentor* spp. (Silaghi et al., 2011; Liu et al., 2016). *Rickettsia raoultii* has been detected in a variety of ticks collected from dogs, cattle, and wildlife (Klitgaard et al., 2017; Chisu et al., 2018; Seo et al., 2020). All of these animals may serve as reservoir hosts for *R. raoultii*; however, experimental evidence is still lacking. Additionally, *R. raoultii* has been detected in squirrels, marbled polecats, red foxes, hedgehogs, yaks, camels and other wild mammals in China (Liu et al., 2018, 2021; Zhao et al., 2019; Li et al., 2020; Fang et al., 2021; Shao et al., 2021). Furthermore, there is a highly significant association of horse contact with tick-borne lymphadenopathy, the pathogens of which are *R. slovaca* and *R. raoultii* (Lakos et al., 2012). Horses also play a role in the epidemiology of Brazilian spotted fever, which is caused by *R. rickettsii*. Horses are considered the most suitable domestic agent for Brazilian spotted fever in some areas (Sangioni et al., 2005), which raises the question of whether horses may also play a role in the disease epidemiology of *R. raoultii*. The findings from this study provide evidence that *Rickettsia* species are in horses and sympatric ticks and that these hosts play a role in the circulation of the spotted fever group of *rickettsiae*.
TABLE 1 | The status of *Rickettsia raoultii* infection in different samples.

Sample	No. tested	No. positive	Prevalence (%)
Vertebrate			
Horse	12	6	50
Cattle	16	0	0
Sheep	10	0	0
Wild mice	9	0	0
Tick (D. Silvarum)			
Adult (engorged)	6	6	100
Adult (free)	96	39	40.63
Egg	5	5	100
Larval	7	5	71.43
Nymph	5	5	100

THE STUDY

To identify putative vertebrate hosts of *R. raoultii*, we collected blood samples from horses (*n* = 12), cattle (*n* = 16), sheep (*n* = 10), and brown rats (*Rattus norvegicus*, *n* = 9). All the animals infested by ticks, and all were from the same rangeland in Daqing, northeastern China (46°58′N, 125°03′E), where spotted fever group rickettsiosis was previously reported (Jia et al., 2014).

Free-living ticks (*Dermacentor silvarum*, *n* = 96) were collected by the flagging method and engorged adult ticks (*D. silvarum*, *n* = 6) were collected from horses in the same rangeland. Tick eggs (100 eggs, 5 pools) were laid in our laboratory by engorged wild-caught adult female *D. silvarum* from a PCR-positive horse. Larval and nymphal ticks of the same cohort that fed on mice were collected and pooled (35 larvae/10 nymphs; 12 pools in total). All the samples were tested for *Rickettsia* spp. This study was approved by the Research Ethics Committee of Heilongjiang Bayi Agricultural University, China.

Following the manufacturer’s instructions, DNA was extracted from the blood samples and ticks using a Tissue/Blood DNA Extraction Kit (Tiangen Biotech Inc., Beijing, China). PCR was performed to amplify the rickettsial citrate synthase gene (*gltA*), outer membrane protein A-encoding gene (*ompA*), and the 17-kDa antigen-encoding gene fragments; then, sequencing was performed (Li et al., 2018). The sequences obtained in this study were analyzed by an NCBI BLAST search. *Rickettsia* spp. were not detected in any of the samples from cattle, sheep, or brown rats, but sequences most closely related to *R. raoultii* were detected in 6/12 (50%) horses (Table 1). Additionally, *R. raoultii* was detected in 6/6 (100%) engorged ticks, 39/96 (41%) questing, 5/5 (100%) eggs, 5/7 (71%) larvae, and 5/5 (100%) nymphs (Table 1).

We deposited the sequences from 25 PCR-positive specimens into the GenBank database (accession nos. MH212168–92). For phylogenetic analysis, we used the MegAlign component to perform multiple sequence alignments with the ClustalX1.83 algorithm. A phylogenetic tree was constructed based on the *gltA* and *ompA* sequences identified in this study and other sequences from the GenBank database using the neighbor-joining method.

FIGURE 1 | Molecular phylogenetic analysis of *Rickettsia raoultii* isolates from horse. Two genes were concatenated (*gltA* + *ompA*), a total of (1,047 + 498) positions were tested. GenBank accession numbers of the Sequences of the *Rickettsia* species used to make the concatenated analysis were as follows: *R. rickettsii* (U59729 + U43804), *R. slovaca* (U59725 + U43808), *R. massiliae* (U59719 + U43799), *R. africae* (U59733 + U43790), *R. honei* (U59726 + U43809), *R. conorii* (U59730 + U43808), *R. japonica* (U59732 + U43801), *R. aeschlimanni* (U59722 + U43800), *R. helongiangensis* (AF172943 + AF179364), *R. parkeri* (KJ124257 + KJ271186), *R. rhipicephali* (DQ865208 + DQ865208), *R. monacensis* (LJ794217), *R. sibirica* (DQ365804 + AH015610), *R. raoultii* strain Marne (DQ365803 + AH015609), *R. raoultii* D1 from free-living tick, *R. raoultii* D4 from engorged adult tick on horse, *R. aeschlimanni* (DQ097038 + DQ097032), *R. tamurae* (AF394896 + DQ103256), *R. raoultii* China IM16 (KX745757 + KX74577), *R. raoultii* E1 from horse (MH212183 + MH212190), *R. raoultii* D1 from free-living tick (MH212179 + MH212186), *R. raoultii* E1 from horse (MH212183 + MH212190), *R. raoultii* D4 from engorged adult tick on horse (MH212181 + MH212188).
This revealed that the test samples from a horse, questing tick and an engorged adult tick clustered with other R. raoultii strains and were most closely related to R. raoultii strain MDJ1, which had been isolated from a patient in Mudanjiang, China (Figure 1).

DISCUSSION

Among our samples, R. raoultii was frequently detected in horses, but not in cattle, sheep, or brown rats, despite sharing pasture with the infected horses. A previous study in Xinjiang, China also reported the detection of R. raoultii in horses (Li et al., 2020). In this study, horses and other animals residing in the same environment were tested, but positive samples were only detected in horses. The results indicate that horses may be a vertebrate host of R. raoultii in the Daqing area. Horses are susceptible to a variety of rickettsial pathogens (Sangioni et al., 2005), and the prevalence rate is higher in some areas (Souza et al., 2016), indicating that horses may well be considered hosts. Therefore, horses may serve as a source of R. raoultii infection in ticks. Coincidentally, in a previous study, there were two human cases of R. raoultii infection in the same region (Jia et al., 2014).

In this study, the infection rate of R. raoultii in D. silvarum was 40.63%, which was higher than that (32.25%) in other studies (Wen et al., 2014). Furthermore, all engorged adult ticks and almost all egg/larval/nymphal tick pools were positive for R. raoultii. Our results support the idea that D. silvarum acts as a vector and a reservoir for R. raoultii. Schmuck et al. (2020) confirmed that transovarial transmission might be an efficient way of maintaining the infection cycle of R. raoultii, and both transtadial and transovarial transmission of R. raoultii have been demonstrated in D. nuttalli (Moore et al., 2018).

In conclusion, the main livestock grazing in the area were cattle, horses, and sheep, which were equally likely to be bitten by ticks, but R. raoultii was only detected in horses. Horses may therefore serve as a source of R. raoultii, contributing to the long-term preservation of R. raoultii in this area by promoting the infection of ticks and further increasing the chances of humans becoming infected with R. raoultii via tick bites.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found below: https://www.ncbi.nlm.nih.gov/genbank/, MH212168-92.

AUTHOR CONTRIBUTIONS

J-Fj, A-QW, and Q-CC designed the project and experiments. YH, T-TW, and X-XM conducted the experiments. B-GJ and NJ analyzed the data. YH and Q-CC drafted the manuscript. All authors corrected, edited, and approved the manuscript.

FUNDING

This work was supported by the National Key Research Development Program of China (2019YFC1200501), the STU Scientific Research Foundation for Talents (NTF21043), and the National Natural Science Foundation of China (32072885).

ACKNOWLEDGMENTS

We thank Mallory Eckstut from Liwen Bianji, Edanz Group China (www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

REFERENCES

Chisu, V., Foxi, C., and Masala, G. (2018). First molecular detection of the human pathogen Rickettsia raoultii and other spotted fever group Rickettsiae in ixodid ticks from wild and domestic mammals. Parasitol. Res. 117, 3421–3429. doi: 10.1007/s00436-018-6036-y

Dong, Z., Yang, Y., Wang, Q., Xie, S., Zhao, S., Tan, W., et al. (2019). A case with neurological abnormalities caused by Rickettsia raoultii in Northwestern China. BMC Infect. Dis. 19:796. doi: 10.1186/s12879-019-4414-4

Fang, L. Z., Lei, S. C., Yao, Y. Z., Xiao, Y. J., Liu, J. W., Gong, X. Q., et al. (2021). Detection of multiple intracellular bacterial pathogens in Haemaphysalis flava ticks collected from hedges in central China. Pathogens 10:115. doi: 10.3390/pathogens10020115

Ibarra, V., Oteo, J. A., Portillo, A., Santibanez, S., Blanco, J. R., Metola, L., et al. (2006). Rickettsia slovaca infection: DEBONEL/TIBOLA. Ann. N. Y. Acad. Sci. 1078, 206–214. doi: 10.1196/annals.1374.040

Jia, N., Zheng, Y. C., Ma, L., Huo, Q. B., Ni, X. B., Jiang, B. G., et al. (2014). Human infections with Rickettsia raoultii, China. Emerg. Infect. Dis. 20, 866–868. doi: 10.3201/eid2005.130995

Klitgaard, K., Chrid, M., Isbrand, A., Jensen, T. K., and Bodker, R. (2017). Identification of Dermacentor reticulatus ticks carrying Rickettsia raoultii on migrating jackal. Denmark. Emerg. Infect. Dis. 23, 2072–2074. doi: 10.3201/ eid2312.170919

Lakos, A., Körösi, A., and Foldvári, G. (2012). Contact with horses is a risk factor for tick-borne lymphadenopathy (TIBOLA): a case control study. Wien. Klin. Wochenschr. 124, 611–617. doi: 10.1007/s00508-012-0217-y

Li, H., Zhang, P. H., Huang, Y., Du, J., Cui, N., Yang, Z. D., et al. (2018). Isolation and Identification of Rickettsia raoultii in human cases: a surveillance study in 3 medical centers in China. Clin. Infect. Dis. 66, 1109–1115. doi: 10.1093/cid/cix917

Li, J., Li, Y., Moumouni, P. F. A., Lee, S. H., Galon, E. M., Tumwebaze, M. A., et al. (2020). First description of Coxiella burnetii and Rickettsia spp. infection and molecular detection of piroplasma co-infecting horses in Xinjiang Uyghur autonomous region, China. Parasitol. Int. 76:102028. doi: 10.1016/j.parint.2019.102028

Liu, D., Wang, Y. Z., Zhang, H., Liu, Z. Q., Wureli, H. Z., Wang, S. W., et al. (2016). First report of Rickettsia raoultii and R. slovaca in Melophagus Ovinus, the sheep ked. Parasit. Vectors 9:600. doi: 10.1186/s13071-016-1885-7

Liu, G., Zhao, S., Tan, W., Hornok, S., Yuan, W., Mi, L., et al. (2021). Rickettsiae in Red Fox (Vulpes vulpes). Marbled Polecats (Vormela peregusna) and their ticks in Northwestern China. Parasit. Vectors 14:204. doi: 10.1186/s13071-021-04718-1

Liu, X., Yang, M., Liu, G., Zhao, S., Yuan, W., Xiao, R., et al. (2018). Molecular evidence of Rickettsia Raoultii, “Candidatus Rickettsia Barbariae” and a novel babesia genotype in marbled polecats (Vormela peregusna) at the China-Kazakhstan border. Parasit. Vectors 11:450. doi: 10.1186/s13071-018-3033-z

Moore, T. C., Pulcher, L. A., Caddell, L., von Fricken, M. E., Anderson, B. D., Gonchigoo, B., et al. (2018). Evidence for transovarial transmission of
tick-borne Rickettsiae circulating in Northern Mongolia. *PLoS Negl. Trop. Dis.* 12:e0006696. doi: 10.1371/journal.pntd.0006696

Rydkina, E., Roux, V., Rudakov, N., Gafarova, M., Tarasevich, I., and Raoult, D. (1999). New *Rickettsiae* in ticks collected in territories of the former Soviet Union. *Emerg. Infect. Dis.* 5, 811–814. doi: 10.3201/eid0506.990612

Sangioni, L. A., Horta, M. C., Vianna, M. C., Gennari, S. M., Soares, R. M., Galvao, M. A., et al. (2005). *Rickettsial* Infection in animals and brazilian spotted fever endemicy. *Emerg. Infect. Dis.* 11, 265–270. doi: 10.3201/eid1102.040656

Schmuck, H. M., Chitimia-Dobler, L., Kröl, N., Kacza, J., and Pfeffer, M. (2020). Collection of Immature *Dermacentor Reticulatus* (Fabricius, 1794) ticks from vegetation and detection of *Rickettsia Raoultii* in them. *Ticks Tick Borne Dis.* 11:101543. doi: 10.1016/j.ttbdis.2020.101543

Seo, M. G., Kwon, O. D., and Kwak, D. (2020). High prevalence of *Rickettsia raoultii* and associated pathogens in canine ticks, South Korea. *Emerg. Infect. Dis.* 26, 2530–2532. doi: 10.3201/eid2610.191649

Shao, J. W., Yao, X. Y., Song, X. D., Li, W. J., Huang, H. L., Huang, S. J., et al. (2021). Molecular detection and genetic diversity of *Rickettsia* spp. in pet dogs and their infesting ticks in harbin, Northeastern China. *BMC Vet. Res.* 17:113. doi: 10.1186/s12917-021-02823-y

Silaghi, C., Hamel, D., Thiel, C., Pfister, K., and Pfeffer, M. (2011). Spotted fever group *Rickettsia* in ticks, Germany. *Emerg. Infect. Dis.* 17, 890–892. doi: 10.3201/eid1705.101445

Souza, C. E., Camargo, L. B., Pinter, A., and Donalisco, M. R. (2016). High Seroprevalence for *Rickettsia rickettsii* in equines suggests risk of human infection in silent areas for the Brazilian spotted fever. *PLoS One* 11:e0153303. doi: 10.1371/journal.pone.0153303

Wen, J., Jiao, D., Wang, J., Yao, D., Liu, Z., Zhao, G., et al. (2014). *Rickettsia raoultii*, the predominant *Rickettsia* found in *dermacentor silvarum* ticks in China-Russia border areas. *Exp. Appl. Acarol.* 63, 579–585. doi: 10.1007/s10493-014-9792-0

Zhao, S., Yang, M., Jiang, M., Yan, B., Zhao, S., Yuan, W., et al. (2019). *Rickettsia Raoultii* and *Rickettsia Sibirica* in ticks from the long-tailed ground squirrel near the China-Kazakhstan border. *Exp. Appl. Acarol.* 77, 425–433. doi: 10.1007/s10493-019-00349-5

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Chang, Hu, Wu, Ma, Jiang, Jia, Wang and Jiang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.