Time-dependent and somatically acquired mitochondrial DNA mutagenesis and respiratory chain dysfunction in a scleroderma model of lung fibrosis

Amiq Gazdhar1,2,*, Dirk Lebrecht3*, Michael Roth4, Michael Tamm4, Nils Venhoff3, Chingching Foocharoen5, Thomas Geiser1,2 & Ulrich A. Walker3,6

1Dept. of Pulmonary Medicine University Hospital Bern, Bern Switzerland, 2Dept. of Clinical Research, University of Bern, Bern Switzerland, 3Dept. of Rheumatology & Clinical Immunology, University Hospital Freiburg, Freiburg, Germany, 4Pulmonary Cell Research, Biomedicine, University Basel; Pneumology, Internal Medicine, University Hospital Basel, Switzerland, 5Division of Rheumatology, Dept. of Medicine, Khon Kaen University, Khon Kaen, Thailand, 6Dept. of Rheumatology at Basel University, Basel, Switzerland.

Reactive oxygen species (ROS) have been implemented in the etiology of pulmonary fibrosis (PF) in systemic sclerosis. In the bleomycin model, we evaluated the role of acquired mutations in mitochondrial DNA (mtDNA) and respiratory chain defects as a trigger of ROS formation and fibrogenesis. Adult male Wistar rats received a single intratracheal instillation of bleomycin and their lungs were examined at different time points. Ashcroft scores, collagen and TGFβ1 levels documented a delayed onset of PF by day 14. In contrast, increased malon dialdehyde as a marker of ROS formation was detectable as early as 24 hours after bleomycin instillation and continued to increase. At day 7, lung tissue acquired significant amounts of mtDNA deletions, translating into a significant dysfunction of mtDNA-encoded, but not nucleus-encoded respiratory chain subunits. mtDNA deletions and markers of mtDNA-encoded respiratory chain dysfunction significantly correlated with pulmonary TGFβ1 concentrations and predicted PF in a multivariate model.

Scleroderma (also called systemic sclerosis, SSc) is a disease in which interstitial lung involvement represents the most frequent cause of death1. It is believed that pulmonary fibrosis (PF) results from a sequential ‘multi-hit’ lung injury, after which incomplete alveolar epithelial repair processes foster the release of profibrotic mediators such as transforming growth factor (TGF) β, progressive accumulation of excess extracellular matrix, collagen, and scar formation, ultimately leading to architectural distortion2-5. Despite some evidence for an involvement of the immune system, the pulmonary collagen deposits are in clinical practice rarely amenable to immunosuppressive therapy and many patients have remarkably little evidence of cellular inflammation in the pulmonary parenchyma6,7.

The exact initial triggers of the lung injury are not known but several lines of evidence point towards an important role of reactive oxygen species (ROS). ROS were found at great abundance early in the disease process6,7 and were found to be constitutively produced by fibroblasts; conversely ROS enhance fibroblast proliferation and collagen formation8. The mechanism that perpetuates the production of superoxide and hydrogen peroxide in SSc fibroblasts is not understood but it is intracellular and independent of cytokines9. ROS also activate latent TGFβ1, which in turn fosters the production of more ROS10-12. This intrinsic TGFβ1 cycle also promotes the epithelial mesenchymal transition (EMT), a process in which pulmonary epithelial cells transform to fibroblasts and myofibroblasts13-15. The importance of ROS in PF is also highlighted by the fact that N-acetylcysteine, a glutathione precursor that inhibits that myofibroblast formation16, attenuated PF in an animal model17 and in combination with other drugs - the decline of lung function in a randomized trial of patients with idiopathic PF18.

Up to now, the exact role of oxidant stress in the pathogenesis of human PF remains unclear, and the use of anti-
which augments the liberation of ROS, which then either attack the fact that unopposed mtDNA mutagenesis interferes with mitochondrial dysfunction, or a combination of both, then induce TGFβ1 and contribute to, or may even be an important driver of ROS mtDNA). In this study, we investigate the specific hypothesis that the other hand are themselves subject to oxidative injury of their on the one hand, they are the main cellular producers of ROS and on this study, we investigate the specific hypothesis that mutations in mtDNA accumulate with time during the progression of PF and contribute to, or may even be an important driver of ROS production and subsequent fibrosis. Our hypothesis hinges on the fact that unopposed mtDNA mutagenesis interferes with mitochondrial transcription and respiratory chain protein synthesis, a process which augments the liberation of ROS, which then either attack the respiratory chain itself, or in turn damage mtDNA. ROS may therefore close vicious circles of interconnected mtDNA and respiratory chain insults. Such vicious circles may continue to operate even in the absence of the inciting event and since mitochondrial ROS are also potent activators of TGFβ1, then account for the relentless progression of PF (figure 1).

In this study, we investigated the hypothesis of somatically acquired lesions in mitochondria as possible perpetuators of the relentless disease process by investigating mtDNA mutations and their association with interstitial lung disease in a bleomycin model of PF. We chose the bleomycin model because (i) bleomycin induces ROS, (ii) high doses of bleomycin frequently induce PF in humans and (iii) the development of SSc-like skin fibrosis has been observed in patients treated with bleomycin.

Results

Delayed onset of bleomycin lung injury. The pulmonary collagen content measured by means of the hydroxyproline assay increased with time. From a mean of 113 μg/mg wet tissue (SD 74) in the group not treated with bleomycin (control rats), the mean pulmonary hydroxyproline content increased by 154% after 48 hours (p = 0.08), 169% after 7 days (p = 0.016), and 167% after 14 days (p = 0.01). Similarly, in the control animals, the median Ashcroft score was 1.2 (interquartile range (IQR) 1.0, 1.6). At 24 hours and 48 hours after bleomycin instillation, the Ashcroft score remained unchanged with median scores of 1.1 and 1.2, respectively. The Ashcroft score increased 7 days after bleomycin instillation with a median Ashcroft score of 1.8, (IQR 1.4, 2.2, p = 0.053, Table 1) but only at the 14 day time point, the Ashcroft score differed significantly from control values (median 2.5, IQR 2.0, 3.1), p = 0.014, Table 1). As expected, the Ashcroft score and the results from the hydroxyproline assay correlated (r = 0.41, p = 0.004).

Taken together, the results demonstrate that the development of PF was time dependent and significantly established not before one to two weeks after bleomycin instillation.

α-SMA immunoreactivity was detected in normal lungs, only in the trachea and smooth muscle cells of the pulmonary blood vessels and no significant changes were observed 24 hours post bleomycin instillation. While a few immunoreactive cells were observed at 48 hours, larger areas of α-SMA immunoreactivity were observed in the thickened interstitial space after 7 days, increasing in number and size at day 14 after bleomycin injury (Figure 2). These data confirm the presence of myofibroblasts in the fibrotic scar.

Delayed increase of pulmonary TGFβ1 formation. Similar to the onset of PF, the levels of pulmonary TGFβ1 as a key profibrotic cytokine showed an increase with time (Table1). The median pulmonary TGFβ1 content increased from baseline (2.27 ng/ml, IQR 1.76, 2.48) but was significantly different from control lungs only at day 14 (2.86 ng/ml (IQR 2.76, 2.99, p < 0.001). TGFβ1 levels significantly correlated with the increased collagen content (r = 0.44, p = 0.002) and coincided with the deteriorating Ashcroft score.

ROS are formed early and increase with time. MDA levels as an indirect indicator of the formation of ROS were elevated in the lung early after bleomycin administration (Table 1). Even after 24 hours, the median MDA levels were augmented (p = 0.02); MDA then continued to increase progressively and the highest MDA levels were measured 14 days after bleomycin instillation (p < 0.001, Table 1). MDA levels were also loosely, but significantly correlated with the pulmonary collagen content (r = 0.3, p = 0.03) and with TGFβ1 concentrations (r = 0.30, p = 0.02).

Time after intratracheal bleomycin	0 hours	24 hours	48 hours	7 days	14 days
Number of rats examined	10	10	9	10	10
Ashcroft score, median (IQR)	1.2 (1.0, 1.6)	1.1 (1.0, 1.2)	1.2 (1.0, 1.7)	1.8 (1.4, 2.2)	2.5 (2.0, 3.1)*
Collagen (μg/mg wet tissue), mean (SD)	113 (74)	30 (9)*	174 (70)	192 (58)	189 (37)*
TGFβ1 (ng/ml, median (IQR))	2.27 (1.76, 2.48)	2.09 (1.97, 2.24)	2.60 (2.07, 2.95)	2.41 (2.19, 2.75)	2.86 (2.76, 2.99)*
Malondialdehyde (μmol/g lung), median (IQR)	29 (21, 43)	64 (53, 70)*	89 (84, 98)*	102 (91, 146)*	125 (106, 221)*
Total mtDNA copy number/cell, mean (SD)	59 (10)	65 (21)	58 (11)	64 (20)	50 (10)*
[(mean m messenger copies/cell)]	0 (0.7)	0 (0.7)	0 (0.21)	30 (20, 44)*	47 (42, 54)*
Common deletion (% of total mtDNA), median (IQR)	1.7 (1.8)	0.8 (0.4)	2.0 (2.3)	0.9 (1.0)	0.3 (0.2)*
COX-SDH ratio, mean (SD)	1.8 (1.9)	1.5 (1.9)	1.0 (1.0)	0.6 (0.8)*	0.1 (0.1)*
COX/COXIV ratio, median (SD)	100 (20)	132 (28)*	63 (16)*	76 (30)*	59 (11)*
COXIV/GAPDH ratio, median (SD)	100 (22)	80 (18)	100 (20)	101 (23)	97 (6)

* p < 0.001 vs. 0 hours; † p < 0.05 vs. 0 hours
in all rats after 7 and 14 days, when also high proportions of mtDNA
detectable deletion. In contrast, the ‘common’ deletion was detected
point and six animals at the 48 hour time point did not have any
(Table 1). Six control animals, eight animals at the 24 hour time
control lungs and at the early time points after bleomycin exposure
0.046).

These data demonstrate that ROS formation occurs early after the
instillation of bleomycin, continues to increase in the absence of
further bleomycin applications, and precedes the development of PF.

mtDNA mutagenesis coincides with the onset of PF. The mean
pulmonary copy numbers of total mtDNA remained unchanged
compared to controls at 24 hours, 48 hour and 7 day time points
(Table 1). Fourteen days after the bleomycin instillation however,
the mtDNA copy numbers were significantly reduced compared to
controls (mean wild type mtDNA levels 84% of control values, p =
0.046).

The ‘common’ mtDNA deletion was only detected at low levels in
control lungs and at the early time points after bleomycin exposure
(Table 1). Six control animals, eight animals at the 24 hour time
point and six animals at the 48 hour time point did not have any
detectable deletion. In contrast, the ‘common’ deletion was detected
in all rats after 7 and 14 days, when also high proportions of mtDNA
molecules were detected (median percentage of deleted among total
mtDNA molecules 30%, p = 0.006 and 47%, p < 0.001, respectively
vs. 0% in controls).

Among all rat lungs, the proportions of deleted mtDNA molecules
positively correlated with the degree of PF as assessed by Ashcroft
score (r = 0.48, p < 0.001, figure 3), pulmonary collagen content (r =
0.26, p < 0.001), and TGFβ1 levels (r = 0.57, p < 0.001, figure 3).
These data indicate that the accumulation of significant amounts of
mtDNA mutations coincides with the onset of PF.

Delayed onset of mtDNA-encoded respiratory chain dysfunction.
We measured the activity of COX, a mitochondrial respiratory chain
enzyme whose subunits are encoded in part by mtDNA and in part
by nDNA. Fourteen days after bleomycin injury, the ratio of COX
activity/wet tissue was significantly reduced (p < 0.02) with only
17.6% of control activity remaining (Table 1).

We then normalized COX activity for the activity of SDH, a res-
piratory chain enzyme that is exclusively encoded by nDNA. In the
lungs the resulting mean COX/SDH-ratio was 1.8 in control rats and
decreased progressively to 83%, 57%, 33% and 6%, at 24 hours,
48 hours, 7 days and 14 days (Table 1). This progressive loss of
mtDNA-encoded respiratory chain activity also highly correlated
with the frequency of the mtDNA common deletion (r = −0.37,
p = 0.007) and with TGFβ1 levels r = 0.57, p < 0.001). COX
histochemistry confirmed the downregulation of COX-activity,
although a particular cell type accounting for this effect could not
be observed (Figure 2).

We then analyzed the subunit composition of COX by means of
Western Blots and normalized the expression of the mtDNA
encoded COX subunit I for that of the simultaneously probed
nDNA-encoded COX subunit IV. The mean COXI/COXIV-ratio
was increased in the rats at 24 hours (132% compared to controls),
but was substantially reduced at 48 hours, 7 days and 14 days after
bleomycin exposure (mean COXI/COXIV-ratio 63%, 76% and 60%
of control values (Table 1). Furthermore, the COXI/COXIV-ratio
was negatively correlated with the collagen content in the lungs
(r = −0.57, p < 0.001), the pulmonary TGFβ1 content (r = −0.36,
p < 0.01), the pulmonary concentrations of MDA (r = −0.30, p =
0.035), and the frequency of mtDNA deletions (r = −0.36, p = 0.01).

By means of Western blot, we lastly quantified the presence of the
COXIV subunit by normalizing the COXIV signal to that of the
simultaneously probed GAPDH protein in lung tissue. The resulting
COXIV/GAPDH-ratio is an indicator of the expression of nDNA-
encoded respiratory chain components but did not statistically differ
between time points and did not correlate with both markers of PF
and TGFβ1 concentrations in the lung.

These results indicate that the reduced mitochondrial respiratory
chain activity is highly correlated with markers of PF and can be
attributed to a defect in the mtDNA-encoded, but not to nDNA-
encoded COX subunits whereas the expression of nDNA-encoded
respiratory chain components is entirely preserved.

Electron microscopy of lung tissue at day 14 (Figure 2) revealed a
pronounced enlargement and a disrupted architecture of pulmonary
mitochondria, similar to that seen in other mitochondrial disorders
[28]. Less pronounced, but similar ultrastructural abnormalities of
the mitochondria were also seen at day 7, but not at earlier time
points.

Multivariate analysis of parameters associated with PF. Finally, we
identified independent predictors of Ashcroft scores, pulmonary
hydroxyproline and TGFβ1 content in a multivariate median
regression analysis (Table 2). This analysis confirms acquired
mtDNA deletions and markers of respiratory chain dysfunction,
underscoring the association of mtDNA mutagenesis and mtDNA-
encoded respiratory defect with the delayed acquisition of PF.

Figure 2 | Effects of bleomycin on lung histology. Representative electron
micrographs (A, B) demonstrate mitochondrial enlargement, disrupted
crystal architecture and intracytoplasmic vacuoles in an alveolar epithelial
cell at day 14. Panels C and D demonstrate depressed COX activity in
pulmonary tissue at day 14 (brown stain in COX/SDH histochemistry) and
an upregulation of SDH activity (blue stain) not visible at day 0 (insert in
panel D). Panels E and F show the expression of αSMA. In normal lung,
brown staining was only observed in the smooth muscle around the
airways (E); a representative slide of lung tissue 14 days after bleomycin
however documents excess αSMA expression in the thickened interstitial
space (F). Magnification bars: 4 μm (A,B), 40 μm (C,D, insert D); 100 μm
(E,F).
Figure 3 | Correlations between PF, pulmonary TGFβ1 content, mitochondrial mutagenesis and mitochondrial function.
Mitochondria participate in cold-induced vasospasm (Raynaud’s phenomenon), a symptom that is present in virtually every SSc patient29,30. In Raynaud’s phenomenon, mitochondria generate ROS in vascular smooth muscle cells which then augment vasoconstriction by mobilizing adrenergic receptors to the cell surface via the RhoA/Rho kinase (ROCK) pathway32,33. It is therefore interesting to speculate if the pathogenetic mechanisms that operate in SSc are associated with mitochondrial damage in other organ systems.

We have to acknowledge, that our results, although compelling, do not provide causal proof of the pathogenetic role of mitochondrial dysfunction in lung injury. Recent data however found a suppressed synthesis of alveolar ATP and mitochondrial dysfunction in an in vivo model of acute lung injury and even more importantly, it was demonstrated that the experimental normalization of mitochondrial bioenergetics was protective34.

We do not know which cell types account for our findings. Fibroblasts are a possible candidate, because when explanted from fibrotic lungs after bleomycin treatment these cell types retain their profibrotic phenotype in culture35, in support of an intracellular damage which is possibly fixed in the mitochondrial genome. In our study, we analyzed the respiratory chain activity by means of histochemistry but were not able to demonstrate the specific involvement of a particular cell type. This finding was strengthened by electron microscopy which revealed ultrastructural damage of mitochondria in a variety of pulmonary cells, including alveolar epithelial cells. Alveolar epithelial cells may also provide a source of ROS, as they have been shown to be subject to mtDNA injury and consecutive apoptosis36. Failure of alveolar epithelial cells to reepithelialize in response to injury is an important mechanism in the pathogenesis of PF2.

It is therefore likely, that several cell types account for our findings. Current studies from our group now determine the presence and functional relevance of mtDNA mutagenesis in lung biopsies from patients with PF. Additional in vitro studies using fibroblasts devoid of any mtDNA38 will help to elucidate the effect of mitochondrial lesions on the response of lung fibroblasts to profibrotic stimuli. Our findings may also help in the rational development of protective ROS scavengers.

Conclusions

Our data suggest that mtDNA alterations and respiratory chain defects, initiated during acute bleomycin exposure, and gradually accumulating over time could represent an important factor in the delayed onset of PF and in the perpetuation of ROS-mediated lung injury.

Methods

Animals. Fifty adult male Wistar rats (220–240 g) were obtained from the animal care facility in Bern, Switzerland. Experiments were performed in accordance to the standards of the European Convention of Animal Care. The study protocol was approved by the University of Bern Animal Study Committee.

Instillation of bleomycin. At day one of the protocol, rats were anesthetized by inhalation of 4% isoflurane, intubated with a 14 gauge catheter (Innyte, Madrid, Spain) and instilled intratracheally with bleomycin (1.28 U/rat) to both lungs. The dosage of bleomycin was based on preliminary experiments showing induction of PF with lowest mortality34. Animals were sacrificed in groups of ten 24 hours, 48 hours, 7 days, or 14 days after intratracheal bleomycin instillation. Lung alquots were either fixed in formalin or snap frozen for further analysis. Ten rats with no bleomycin instillation served as controls. One rat in the 48 hour group was found dead 24 hours after bleomycin instillation; therefore the 48 hour group had 9 animals available for the analysis, whereas all other groups had 10 rats each.

Histology and Ashcroft scoring. The extent of PF was evaluated with the Ashcroft score on formalin-fixed sections after haematoxylin and eosin staining of the mid apical regions of the left and the middle lobes of the right lungs32. The pathologist was blinded to the group status of the specimen. Five microscopic fields were randomly chosen and a score ranging from 0 (normal) to 8 (total fibrosis) was given to each field. For each animal the mean score of all fields was calculated.

Hydroxyproline Assay. Lung collagen content was quantified by means of the hydroxyproline assay as described39. Frozen middle regions of both lungs where

Discussion

The aim of this study was to investigate the role of somatically acquired mitochondrial dysfunction in the irreversible perpetuation of PF in a rat lung fibrosis model. We demonstrate that a single instillation of bleomycin induces ROS formation with early functional and genetic mitochondrial lesions and that these mitochondrial defects are perpetuated and augmented with time in the absence of additional bleomycin dosing. It is known that quantitative and qualitative mtDNA-defects must exceed a threshold in order to achieve pathogenic relevance21, possibly accounting for the onset of fibrotic activity at later stages.

Importantly, our data indicate that the respiratory impairment is associated with selective impairment of mitochondrial, but not nuclear encoded respiratory chain subunits. ROS also impair the function of polymerase-gamma, the enzyme responsible for mtDNA replication. This fact may account at least in part for the decrease in total mtDNA levels observed at day 14 and contribute to the functional defect in the expression of mtDNA encoded respiratory chain subunits.

An aberrant response to recurrent insults is now accepted as an important mechanism in the etiology of PF2–4. There is ample evidence suggesting that ROS are generated in the pulmonary parenchyma and play a vital role in fibrotic process6,7,9. Bleomycin releases large amounts of ROS22–25 which are important in the onset of PF in this model, as highlighted by the fact that the absence of ROS directly triggers apoptotic pathways in the lung parenchyma28.

The mitochondrial theory of ageing associates oxidative stress with mitochondrial mutagenesis and respiratory dysfunction of organs at senescence29,30. Our data therefore provide an explanation for the so far elusive link between ageing as perhaps the strongest non-environmental risk factor for interstitial lung involvement and the onset of PF in non SSc patients29,31. Such mitochondrial impairment has been demonstrated in models of liver fibrosis and there is growing interest in the potential role of acquired mtDNA mutations in other late-onset diseases30.

Table 2 | Acquired mtDNA mutations and respiratory chain dysfunction as independent predictors of Ashcroft scores, pulmonary collagen deposition (hydroxyproline), and the proinflammatory cytokine TGFβ1

Variable	Ashcroft score	Hydroxyproline concentration	TGFβ1 concentration
Total mtDNA copy numbers/lung cell	0.004	0.02	0.003
Common mtDNA deletion (% of total mtDNA)			
Malon dialdehyde concentration	0.01	0.005	
COX-activity			
COX/SDH-ratio	0.03	<0.001	
COXII/COXIV-ratio	0.001		
Oxidation was initiated by incubation with 1 ml of chloramine T-reagent (20 mg/ml, Fitzgerald Industries International Inc., Acton, USA) against glycerol aldehyde dehydrogenase (GAPDH), an enzyme which is entirely encoded in the nuclear DNA (nDNA) and mtDNA, and succinate dehydrogenase (SDH), which is encoded by nDNA. The blots were also probed with an antibody calibrated with PCR products from templates with known amounts of deleted 5,000 kV.

Anti α-smooth muscle actin immunohistochemistry. Formaline fixed sections were deparaffinized in xylene series and rehydrated in decreasing ethanol series. Slides were pre-treated by microwave in citrate buffer (100 ml, pH 7.0) for 10 minutes, washed three times with Tris-buffered saline containing 0.1% tween and incubated overnight at 4°C with an anti-α-smooth muscle actin (α-SMA) antibody (1:100, Sigma Aldrich, USA). Antibody binding was detected as a brown stain by means of a peroxidase system and 3,3’-diaminobenzidine as a substrate (EnVision and System HRP DAB, DAKO USA).

MDNA-content. Total DNA was extracted with the QIAamp DNA Isolation kit (Qiagen, Hilden, Germany). Mtdna and ndna copy numbers were determined by quantitative polymerase chain reaction (PCR) using LightCycler® 480 Real-Time PCR System (Roche, Mannheim, Germany) on a 384 well plate. 10 μl reactions contained 5 μl of SYBR Green I Master mix (Roche, Mannheim, Germany), 10 ng genomic DNA, 0.5 μM of each primer. The mtDNA was amplified using the following extradeletional primers (nDNA) nuclease positions 2469 and 2542 with the forward primer, 5’-AAT GCT TGG TGT CAA CCA GTG TT-3’ and the backward primer 5’- AGA AAC CGG CTA GTA CGT C-3’. For the detection of nuclear DNA (nDNA) we selected GAPDH between nuclease positions 494 and 671, using the forward primer 5’-TTC ACC ACC AAC TAC TTT CTT-3’ and the backward primer 5’-GGG TAG GAT GAT GAC TTT C-3’. Amplifications of mitochondrial and nuclear products were separately performed as triplicates, with the following conditions: pre-incubation at 95°C for 5 min, followed by 40 cycles of a 3 steps amplification (95°C, 10 sec; 55°C 10 sec; 72°C 15 sec) ending with a melting curve for PCR product identification (95°C, 5 sec; 65°C, 1 min). Absolute mtDNA and nDNA copy numbers were calculated using serial dilutions of plasmids with known copy numbers. The mtDNA copy number per pulmonary cell was calculated as the number of mtDNA copies per two nuclear DNA copies.

Detection and quantification of the common mtDNA-deletion. The mtDNA sequence contains direct repeats between which base pairs may be deleted by slipped mispairing during replication14,15. A 4977 base pair deletion is the most frequent somatically acquired deletion in humans and therefore also termed “common” deletion. We probed for the 4834 base pair rat homologue of the “common” deletion by amplifying 100 ng of genomic DNA with the following extradeletional primers: F8725 5’-ATT TTT CCT CCC AAA CCT TCT CT-3’ and B13117 5’-AAG CCT GCC AGG ATG TTC TT-3’ in a PCR reaction14. By choosing a short extension cycle (30 seconds), the deleted molecule was preferentially amplified as a 459 base pair product. This PCR product was confirmed by sequencing to represent the “common” 4974 base pair mtDNA deletion in rats. The deletion was quantified by densitometry against a mtDNA stock (Qbiogene, France) and calibrated with PCR products from templates with known amounts of deleted mtDNA (from cybrids, homoplasmic for the “common” mtDNA-deletion14,15).

Activity of the mitochondrial respiratory chain. The enzymatic activity of cytochrome c-oxidase (COX), a multisubunit respiratory chain complex which is encoded by nuclear DNA (nDNA) and mtDNA, and succinate dehydrogenase (SDH), which is encoded entirely by nDNA, were measured by spectrophotometry in freshly prepared lung extracts, as described16,17.

MTDNA-encoded respiratory chain protein. The subunit I of cytochrome c-oxidase (COX1) is encoded by mtDNA, whereas the subunits IV of cytochrome c-oxidase (COX4I) is encoded by nDNA and SDH, which is encoded by DNA template and 0.5 μl of SYBR Green I Master mix (Roche, Mannheim, Germany) on a 384 well plate. 10 μl reactions contained 5 μl of SYBR Green I Master mix (Roche, Mannheim, Germany), 10 ng genomic DNA, 0.5 μM of each primer. The mtDNA was amplified using the following extradeletional primers (nDNA) nuclease positions 2469 and 2542 with the forward primer, 5’- AAT GCT TGG TGT CAA CCA GTG TT-3’ and the backward primer 5’- AGA AAC CGG CTA GTA CGT C-3’. Amplifications of mitochondrial and nuclear products were separately performed as triplicates, with the following conditions: pre-incubation at 95°C for 5 min, followed by 40 cycles of a 3 steps amplification (95°C, 10 sec; 55°C 10 sec; 72°C 15 sec) ending with a melting curve for PCR product identification (95°C, 5 sec; 65°C, 1 min). Absolute mtDNA and nDNA copy numbers were calculated using serial dilutions of plasmids with known copy numbers. The mtDNA copy number per pulmonary cell was calculated as the number of mtDNA copies per two nuclear DNA copies.

Detection and quantification of the common mtDNA-deletion. The mtDNA sequence contains direct repeats between which base pairs may be deleted by slipped mispairing during replication14,15. A 4977 base pair deletion is the most frequent somatically acquired deletion in humans and therefore also termed “common” deletion. We probed for the 4834 base pair rat homologue of the “common” deletion by amplifying 100 ng of genomic DNA with the following extradeletional primers: F8725 5’-ATT TTT CCT CCC AAA CCT TCT CT-3’ and B13117 5’-AAG CCT GCC AGG ATG TTC TT-3’ in a PCR reaction14. By choosing a short extension cycle (30 seconds), the deleted molecule was preferentially amplified as a 459 base pair product. This PCR product was confirmed by sequencing to represent the “common” 4974 base pair mtDNA deletion in rats. The deletion was quantified by densitometry against a mtDNA stock (Qbiogene, France) and calibrated with PCR products from templates with known amounts of deleted mtDNA (from cybrids, homoplasmic for the “common” mtDNA-deletion14,15).

Activity of the mitochondrial respiratory chain. The enzymatic activity of cytochrome c-oxidase (COX), a multisubunit respiratory chain complex which is encoded by nuclear DNA (nDNA) and mtDNA, and succinate dehydrogenase (SDH), which is encoded entirely by nDNA, were measured by spectrophotometry in freshly prepared lung extracts, as described16,17.

MTDNA-encoded respiratory chain protein. The subunit I of cytochrome c-oxidase (COX1) is encoded by mtDNA, whereas the subunits IV of cytochrome c-oxidase (COX4I) is encoded by nDNA and SDH, which is encoded by DNA template and 0.5 μl of SYBR Green I Master mix (Roche, Mannheim, Germany) on a 384 well plate. 10 μl reactions contained 5 μl of SYBR Green I Master mix (Roche, Mannheim, Germany), 10 ng genomic DNA, 0.5 μM of each primer. The mtDNA was amplified using the following extradeletional primers (nDNA) nuclease positions 2469 and 2542 with the forward primer, 5’- AAT GCT TGG TGT CAA CCA GTG TT-3’ and the backward primer 5’- AGA AAC CGG CTA GTA CGT C-3’. Amplifications of mitochondrial and nuclear products were separately performed as triplicates, with the following conditions: pre-incubation at 95°C for 5 min, followed by 40 cycles of a 3 steps amplification (95°C, 10 sec; 55°C 10 sec; 72°C 15 sec) ending with a melting curve for PCR product identification (95°C, 5 sec; 65°C, 1 min). Absolute mtDNA and nDNA copy numbers were calculated using serial dilutions of plasmids with known copy numbers. The mtDNA copy number per pulmonary cell was calculated as the number of mtDNA copies per two nuclear DNA copies.
