Socio-environmental factors associated with diabetes mellitus among patients hospitalized with schizophrenia in Japan

Junya Sado 1 · Tetsuhisa Kitamura 1 · Norio Noma 2 · Makiko Saito 2 · Hitoshi Azuma 2 · Tsukasa Azuma 2 · Tomotaka Sobue 1 · Yuri Kitamura 1

Received: 1 March 2016 / Accepted: 3 July 2016 / Published online: 22 July 2016 © The Japanese Society for Hygiene 2016

Abstract

Objective This study aimed to examine epidemiologically socio-environmental factors associated with diabetes mellitus among patients hospitalized with schizophrenia in Japan.

Methods This was a cross-sectional study from a single psychiatric hospital. Study patients were adults aged ≥20 years who were hospitalized with schizophrenia one or more times between January 2013 and December 2014. From electronic medical records or health insurance claims, we extracted schizophrenia patients with an F2 code according to ICD-10, and assessed the association of various factors with diabetes mellitus among these patients in a multivariable analysis.

Results During the 2-year period, there were 1899 patients hospitalized with a psychiatric disorder one or more times. Of them, a total of 770 adults with schizophrenia (285 men and 485 women) were eligible for our analysis. The standardized prevalence ratio of diabetes mellitus was 2.0 [95 % confidence interval (CI) 1.6–2.5] among men and 3.0 (95 % CI 2.5–3.6) among women in this hospital. There were no socio-environmental factors associated with diabetes mellitus among men. Among women, factors such as a 730-day hospitalization (adjusted odds ratio (OR) 3.82: 95 % confidence interval (CI) 1.52–9.64), and a medical protection/compulsory/discrimination hospitalization (adjusted OR 0.60, 95 % CI 0.36–0.99) were associated with diabetes mellitus. Compared with women living alone, those who were unmarried and lived together with someone had a significantly lower adjusted OR (0.41, 95 % CI 0.21–0.81).

Conclusions Socio-environmental factors such as length of hospitalization, type of hospitalization, and marital status and living arrangement were associated with diabetes mellitus among hospitalized women with schizophrenia.

Keywords Schizophrenia · Diabetes mellitus · Socio-environmental factors

Introduction

In Japan, the proportion of patients hospitalized with schizophrenia among those with psychiatric diseases has accounted for over 60 % [1, 2]. Although the prevalence of physical complications among hospitalized patients with schizophrenia was ~40–60 % according to the guideline on the treatment of schizophrenia, most of these patients did not receive medical treatments for those complications [3].

Diabetes mellitus is one of the most serious complications among patients with schizophrenia. Their estimated prevalence of diabetes mellitus was two to threefold higher among patients with schizophrenia compared with that of the general population [4–7], and their physical complications lead to a deterioration of their neurocognitive and psychosocial functions [8]. Among patients with schizophrenia, several factors might be associated with diabetes mellitus. For example, lifestyle factors (e.g., lower physical activity or function [9], sedentary lifestyle [7], and diets high in fat and low in fiber [10, 11]) are associated.
with high prevalence of diabetes mellitus. In addition, antipsychotic drugs (e.g., haloperidol and zotepine) administered to improve psychological symptoms were associated with a high prevalence of diabetes mellitus among schizophrenics [5, 12]. Socio-environmental factors associated with diabetes mellitus among these patients with schizophrenia were low education level and marital status [6]. However, their socio-environmental factors such as education level and social insurance have not been sufficiently investigated in Japan. Thus, an evaluation of the association between various factors and diabetes mellitus among patients with schizophrenia would contribute a helpful clue for preventing diabetes mellitus which is one of the important complications among these patients.

In this study, we aimed to epidemiologically examine various factors, such as socio-environmental factors, psychiatric symptoms, and current/past complications, associated with diabetes mellitus among patients hospitalized with schizophrenia in a single psychiatric hospital in Japan.

Methods

Study design, settings, and patients

This was a cross-sectional study from a single center. Subjects were adult patients aged \(\geq 20\) years, hospitalized with schizophrenia one or more times in a hospital which had 537 beds with departments of psychiatry and internal medicine, between January 1, 2013 and December 31, 2014, including subjects hospitalized since before December 31, 2012. From health insurance claims, we extracted schizophrenia patients with an F2 code (schizophrenia, schizotypal and delusional disorders) as listed in the International Classification of Diseases 10th revision (ICD-10) [13] as the primary and secondary diagnosis. Our study was conducted according to the Declaration of Helsinki and the Japanese ethics guidelines for epidemiological studies, and the study protocol was approved by the Ethics Committee of Osaka University Graduate School of Medicine (Number: 14185).

Data collection

In this study, information on patient characteristics was collected from health insurance claims and electronic medical records in cooperation with hospital staff. As for factors assessing the relationships between schizophrenia and diabetes mellitus [6, 14–19], we gathered the following items: age, gender, total length of hospitalization during the study period, and prescription of antidiabetics from health insurance claims, and body mass index (BMI), psychological symptoms, activities of daily living disorder (ADL disorder), current/past history of hypertension, current/past history of hyperlipidemia, prescription of antipsychotics, and socio-environmental factors such as education history, type of hospitalization, type of social insurance, marital status, and living arrangement from electronic medical records. Among patients with schizophrenia hospitalized since before December 31, 2012, we counted the total length of hospitalization from January 1, 2013, and defined 730 days as maximal length.

Study endpoint

The main outcome was the proportion of diabetes mellitus among patients hospitalized with schizophrenia. Patients with diabetes mellitus were defined as those who: (1) received medication for diabetes mellitus, (2) had a hemoglobin A1c determined by the National Glycohemoglobin Standardization Program (HbA1c NGSP) \(\geq 6.5\) %, or (3) had a fasting blood glucose level \(\geq 126\) mg/dl from laboratory tests [20, 21]. As for data on HbA1c and/or fasting blood glucose level, we used the highest value from individual laboratory data during the study period, excluding the data in the date of admission because it might not be tested on fasting state.

Statistical analysis

We conducted analyses by sex. Using data on the prevalence of patients strongly suspected to have diabetes mellitus using the National Health and Nutrition Survey (NHNS) in 2012 [22], the age-adjusted prevalence was calculated by weighting subjects in each age group from this study. Based on this prevalence, we calculated the standardized prevalence ratio (SPR) as follows:

\[
SPR = \frac{\sum \text{Diabetes patient number in this study}}{\sum \text{Expected number}*}
\]

*Expected number = patients with schizophrenia in this study \(\times\) age-adjusted prevalence of diabetes in general population.

In addition, its 95 % confidence interval (CI) was calculated using Fisher’s method [23]. Chi-square test was used to compare the proportion of diabetes mellitus among the groups by characteristic. A multivariate logistic regression model was used to assess factors associated with diabetes mellitus among patients hospitalized with schizophrenia, and to calculate odds ratios (ORs) and their 95 % CIs. The following factors were incorporated into the models: age group (20–39, 40–49, 50–59, 60–69, \(\geq 70\) years old), type of hospitalization (voluntary, involuntary), total length of hospitalization (\(\leq 30, 31–364, 365–729, \text{or} 730\) days), type of social insurance (public
assistance, national health insurance, government/union-managed/mutual aid associations, old–old medical insurance, other), marital status and living arrangement [single/living together, married/living together, living alone (single or married)], education (junior high school, high school, university), disability pension (yes, no), BMI (<18.5, 18.5–24.9, ≥25.0 kg/m²), psychological symptoms [mild (patients do not have psychological symptoms at all, or has stable psychological symptoms), moderate (patients have the deficit of communication or reality testing but do not have deviancy affected from psychological symptoms), severe (patients have deviancy affected from psychological symptoms)], ADL disorder [mild (patients have independent daily life), moderate (patients have some disorder but almost independent daily life), severe (patients need to help daily life or are bedridden)], current/past history of hypertension (yes, no), current/past history of hyperlipidemia (yes, no), and antipsychotic drugs (none, typical antipsychotics, atypical antipsychotics, typical/atypical antipsychotics). All analyses were conducted with STATA version 12.0 SE software (Stata Corp LP) and the statistical significance level was set at 0.05.

Results

During the study period, 1899 patients were hospitalized with a psychiatric disorder one or more times. Of them, a total of 770 adults with schizophrenia (285 men and 485 women) were eligible for our analysis.

Table 1 shows the prevalence of diabetes mellitus among patients with schizophrenia in this study versus the general population in Japan. In this study, the number of schizophrenic patients with diabetes mellitus was 30.9 % [(218/770), 31.9 % (91/285) among men and 26.2 % (127/485) among women], whereas in the general Japanese population, age-adjusted prevalence was 15.8 % among men and 8.7 % among women. The SPR was 2.0 (95 % CI 1.6–2.5) among men and 3.0 (95 % CI 2.5–3.6) among women in this hospital, and the prevalence of diabetes mellitus was significantly higher in our study patients than in the general population. The prevalence rate ratio by age group was 6.9 in patients 20–29 years old, 17.9 in those 30–39 years old, and 5.1 in those 40–49 years old among men, and 20.9 in those 30–39 years old, and 8.3 in those 40–49 years old among women.

Table 1 Prevalence of diabetes mellitus among study subject patients with schizophrenia versus the general Japanese population

Subjects in this study	General Japanese population a	Prevalence rate ratio	95 % Confidence interval				
	Schizophrenia (N)	Diabetes (N)	Prevalence (%)	Prevalence of diabetes b (%)			
Men							
20–29 years	24	1	4.2	0.6	6.9	0.3	34.3
30–39 years	40	10	25.0	1.4	17.9	9.1	31.8
40–49 years	58	16	27.6	5.4	5.1	3.0	8.1
50–59 years	54	18	33.3	12.2	2.7	1.7	4.2
60–69 years	67	29	43.3	20.7	2.1	1.4	3.0
≥70 years	42	17	40.5	23.2	1.7	1.1	2.7
Total	285	91	31.9	15.8 b	2.0 d	1.6	2.5
Women							
20–29 years	22	0	0.0	0.0	NC	NC	NC
30–39 years	61	14	23.0	1.1	20.9	11.9	34.2
40–49 years	106	15	14.2	1.7	8.3	4.8	13.4
50–59 years	95	26	27.4	6.2	4.4	2.9	6.4
60–69 years	100	35	35.0	12.6	2.8	2.0	3.8
≥70 years	101	37	36.6	16.7	2.2	1.6	3.0
Total	485	127	26.2	8.7 b	3.0 d	2.5	3.6

NC Not calculable

a From National Health and Nutrition Examination Survey

b Proportion of strongly suspected diabetes mellitus (National correction value)

c Age-adjusted prevalence weighted by subjects in each age group from this study

d Standardized prevalence ratio (SPR)

\[SPR = \frac{\sum \text{Diabetes patient number in this study}}{\sum \text{Expected number}} \]

Expected number = patients with schizophrenia in this study × age-adjusted prevalence of diabetes in general population

© Springer
Table 2 shows the proportion of diabetes mellitus by characteristics in hospitalized patients with schizophrenia according to sex. Among schizophrenic men, the proportion of diabetes mellitus by total length of hospitalization was 9.8 % in ≤30 days, 34.6 % in 30–365 days, 43.9 % in 365–730 days, and 31.7 % in 730 days (P = 0.006), respectively. Other factors did not differ between the groups. Among schizophrenic women, the proportion of diabetes mellitus by total length of hospitalization was 13.9 % in ≤30 days, 23.8 % in 31–364 days, 34.4 % in 365–729 days, and 37.1 % in 730 days (P = 0.003), respectively. As for other factors, the proportion of diabetes mellitus tended to be high in patients who were unmarried and living together (32.7 %), and in those with severe psychological symptoms (46.4 %), severe ADL disorder (44.6 %), or current/past history of hypertension (42.4 %).

Factors associated with diabetes mellitus in schizophrenia men are noted in Table 3. The adjusted OR was greater in patients 60–69 years old (4.83: 95 % CI 1.48–15.76) and ≥70 years old (5.47: 95 % CI 1.34–22.32) than those 20–39 years old. The adjusted OR among patients with a BMI ≥25 kg/m² was 2.52-fold greater (95 % CI 1.17–5.43) than among those with a BMI of 18.5–24.9 kg/m². The adjusted OR tended to be greater in patients with 30–364 days (3.05: 95 % CI 0.94–9.84) and 365–729 days (3.73: 95 % CI 0.97–14.41). However, other factors were not associated with diabetes mellitus among schizophrenic men. As for schizophrenic women (Table 4), factors such as 730-day hospitalization (adjusted OR 3.82: 95 % CI 1.52–9.64), involuntary hospitalization (adjusted OR 0.60, 95 % CI 0.36–0.99), and current/past history of hypertension (adjusted OR 2.65, 95 % CI 1.39–5.04) were associated with diabetes mellitus. Compared with women who lived alone, those who were unmarried and lived together with someone had a significantly lower adjusted OR (0.41, 95 % CI 0.21–0.81).

Discussion

From this cross-sectional single-center study, socio-environmental factors such as total length of hospitalization, type of hospitalization, and marital status/living arrangement were associated with diabetes mellitus among hospitalized women with schizophrenia. In recent preceding studies on the association between diabetes mellitus and social factors in the general population, those with lower education level had a higher proportion of diabetes mellitus [14, 15], as did single women [14] and divorced and widowed women [16]. Our study assessing the association diabetes mellitus has with socio-environmental factors among patients with schizophrenia provides new clues for preventing diabetes mellitus complications among these patients.

The SPR among both sexes was higher than that in the general population, and the value was similar to the one in previous reports [5–7, 24]. In particular, the proportion of diabetes mellitus among younger adults with schizophrenia was higher than that in the general population, and our results confirmed those findings from previous reports [5–7, 12, 24]. A previous study suggested that patients with schizophrenia were vulnerable to dysfunctional glucose metabolism at earlier ages [25], which might explain this result and also suggests the importance of diabetes mellitus intervention and prevention for them.

This study underscored that schizophrenic women with a long-term hospitalization had a higher OR for diabetes mellitus compared with those with a short-term hospitalization. Factors associated with diabetes mellitus among patients with schizophrenia were reportedly sedentary lifestyle [7] and a shorter distance achieved in a 6-min walk test [9]. Hospitalization could cause a lower amount of activity and be associated with diabetes mellitus in a lengthened hospitalization. Indeed, the Global Assessment of Functioning (GAF) score, an index of social function, was low in schizophrenia patients with long-term hospitalization [17]. On the other hand, the aim of hospitalization in psychiatric hospitals is to improve psychiatric symptoms. It is different from the hospitalization for diabetes mellitus such as the improvement of diabetic symptoms or educational hospitalization for blood glucose control. Indeed, it was reported in Japan that 62.5 % of inpatient with schizophrenia did not go out at all, 55.0 % did not exercise at all, 27.9 % drank soft drink every day, and 17.0 % ate snacks too much [26]. Considering this result, patients with long-term hospitalization have possibilities to eat between-meal snacks and not to exercise. In addition, the results of long-term hospitalization among schizophrenic men tended to be similar to that among women. Thus, medical stuff could not sufficiently manage in-hospital lifestyles that might affect the development of diabetes mellitus among these patients with both men and women.

The OR for diabetes mellitus among schizophrenic women who had an involuntary hospitalization, such as a medical protection/compulsory/discrimination hospitalization, was lower than among those with a voluntary hospitalization. Both diet therapy and exercise therapy are recommended for the treatment of diabetes mellitus, and it is important to control blood glucose levels [27]. For example, previous research showed that metabolic symptoms among prisoners with diabetes mellitus were improved because of the regular life in a prison [28], and controlling lifestyle leads to improving symptoms of diabetes mellitus. In involuntary hospitalizations, medical
Factor	Category	Men	Women	
	Subject (N) Diabetes, n (%)	P value	Subject (N) Diabetes, n (%)	P value
Age group 20–39 years	64 11 (17.2) 0.015	83 14 (16.9) <0.001		
40–49 years	58 16 (27.6)	106 15 (14.2)		
50–59 years	54 18 (33.3)	95 26 (27.4)		
60–69 years	67 29 (43.3)	100 35 (35.0)		
≥70 years	42 17 (40.5)	101 37 (36.6)		
BMI <18.5 kg/m²	38 15 (39.5) 0.078	97 28 (28.9) 0.776		
18.5–24.9 kg/m²	173 47 (27.2)	255 62 (24.3)		
≥25.0 kg/m²	71 29 (40.8)	127 35 (27.6)		
Unknown	3 0 (0.0)	6 2 (33.3)		
Education	Junior high school 98 30 (30.6) 0.980	150 45 (30.0) 0.269		
High school 105 35 (33.3)	195 53 (27.2)			
University 73 23 (31.5)	122 24 (19.7)			
Unknown 9 3 (33.3)	18 5 (27.8)			
Type of social insurance	Public assistance 123 39 (31.7) 0.262	164 47 (28.7) 0.664		
National health insurance 117 43 (36.8)	213 53 (24.9)			
Government/union-managed/	Old–old medical insurance 18 5 (27.8)	44 13 (29.5)		
mutual aid associations	Others 2 0 (0.0)	0 0 (0.0)		
Marital status & Living	Living alone (unmarried or married) 86 21 (24.4) 0.257	155 24 (15.5) 0.003		
arrangement	Unmarried/living together 26 8 (30.8)	98 32 (32.7)		
Married/living together	167 59 (35.3)	222 68 (30.6)		
Unknown 6 3 (50.0)	10 3 (30.0)			
Type of hospitalization	Voluntary 139 38 (27.3) 0.105	227 66 (29.1) 0.175		
Involuntary 146 53 (36.3)	258 61 (23.6)			
Total length of hospitalization	≤30 days 41 4 (9.8) 0.006	72 10 (13.9) 0.003		
	30–364 days 162 56 (34.6)	260 62 (23.8)		
	365–729 days 41 18 (43.9)	64 22 (34.4)		
	730 days 41 13 (31.7)	89 33 (37.1)		
Disability pension	No 159 49 (30.8) 0.651	291 81 (27.8) 0.312		
	Yes 126 42 (33.3)	194 46 (23.7)		
Psychological symptom	Mild 116 36 (31.0) 0.366	187 42 (22.5) 0.053		
	Moderate 147 45 (30.6)	269 72 (26.8)		
	Severe 22 10 (45.5)	28 13 (46.4)		
	Unknown 0 0 (0.0)	1 0 (0.0)		
ADL disorder	Mild 194 61 (31.4) 0.291	319 75 (23.5) 0.010		
	Moderate 53 14 (26.4)	84 21 (25.0)		
	Severe 25 12 (48.0)	56 25 (44.6)		
	Unknown 13 4 (30.8)	26 6 (23.1)		
Medical history of hyperlipidemia	No 223 68 (30.5) 0.324	370 93 (25.1) 0.345		
	Yes 62 23 (37.1)	115 34 (29.6)		
Medical history of hypertension	No 239 71 (29.7) 0.067	400 91 (22.8) <0.001		
	Yes 46 20 (43.5)	85 36 (42.4)		
Antipsychotic drug	None 22 8 (36.4) 0.360	37 10 (27.0) 0.305		
	Typical antipsychotics 31 10 (32.3)	46 17 (37.0)		
	Atypical antipsychotics 149 41 (27.5)	269 64 (23.8)		
	Typical/atypical	83 32 (38.6) 0.305		

ADL activities of daily living, *BMI* body mass index
Table 3 Factors associated with diabetes mellitus in men hospitalized with schizophrenia

	Univariate					
	OR	95 % CI	P value	OR	95 % CI	P value
Age group						
20–39 years	Reference					
40–49 years	1.84	0.77 4.37	0.170	2.34	0.81 6.75	0.115
50–59 years	2.41	1.02 5.70	0.045	2.76	0.92 8.26	0.070
60–69 years	3.68	1.64 8.26	0.002	4.83	1.48 15.76	0.009
≥70 years	3.28	1.34 8.02	0.009	5.47	1.34 22.32	0.018
BMI						
<18.5 kg/m²	1.75	0.84 3.63	0.134	1.11	0.43 2.86	0.821
18.5–24.9 kg/m²	Reference			Reference		
≥25.0 kg/m²	1.85	1.04 3.31	0.037	2.52	1.17 5.43	0.018
Education						
Junior high school						
High school	1.13	0.63 2.05	0.678	1.82	0.85 3.92	0.125
University	1.04	0.54 2.01	0.900	1.72	0.73 4.05	0.212
Type of social insurance						
Public assistance						
National health insurance	1.25	0.73 2.14	0.410	1.37	0.62 3.02	0.433
Government/union-managed/mutual aid associations	0.41	0.13 1.28	0.124	0.86	0.22 3.32	0.821
Old–old medical insurance	0.83	0.28 2.49	0.737	0.59	0.14 2.41	0.462
Others	NC	NC NC	NC	NC	NC NC	NC
Marital status & Living arrangement						
Living alone (unmarried or married)						
Unmarried/living together	0.59	0.33 1.06	0.079	0.51	0.22 1.16	0.109
Married/living together	0.81	0.33 1.98	0.650	0.59	0.19 1.90	0.379
Type of hospitalization						
Voluntary	Reference			Reference		
Involuntary	1.51	0.92 2.50	0.106	1.47	0.77 2.80	0.248
Total length of hospitalization						
≤30 days	Reference			Reference		
30–364 days	4.89	1.66 14.41	0.004	3.05	0.94 9.84	0.062
365–729 days	7.24	2.18 24.08	0.001	3.73	0.97 14.41	0.056
730 days	4.29	1.26 14.60	0.020	1.98	0.50 7.81	0.327
Disability pension						
No	Reference			Reference		
Yes	1.12	0.68 1.85	0.651	1.12	0.58 2.19	0.730
Psychological symptom						
Mild	Reference			Reference		
Moderate	0.98	0.58 1.66	0.941	0.98	0.49 1.93	0.944
Severe	1.85	0.73 4.68	0.193	2.07	0.64 6.72	0.225
ADL disorder						
Mild	Reference			Reference		
Moderate	0.78	0.40 1.55	0.481	0.53	0.23 1.22	0.135
Severe	2.01	0.87 4.67	0.103	1.18	0.41 3.45	0.756
Medical history of hyperlipidemia						
No	Reference			Reference		
Yes	1.34	0.75 2.42	0.325	1.09	0.52 2.28	0.827
Table 3 continued

Medical history of hypertension	Univariate	Multivariate		
	OR 95 % CI	P value	OR 95 % CI	P value
No	Reference	Reference		
Yes	1.82 0.95	3.47 0.069	0.87 0.38	1.99 0.742

Antipsychotic drug	Univariate	Multivariate		
	OR 95 % CI	P value	OR 95 % CI	P value
None	Reference	Reference		
Typical antipsychotics	0.83 0.26	2.63 0.756	0.71 0.17	2.91 0.635
Atypical antipsychotics	0.66 0.26	1.70 0.394	0.75 0.22	2.48 0.633
Typical/atypical antipsychotics	1.10 0.41	2.91 0.851	0.90 0.25	3.29 0.872

ADL activities of daily living, BMI body mass index, OR odds ratio, CI confidence interval, NC not calculable

Table 4 Factors associated with diabetes mellitus in women hospitalized with schizophrenia

Age group	Univariate	Multivariate		
	OR 95 % CI	P value	OR 95 % CI	P value
20–39 years	Reference	Reference		
40–49 years	0.81 0.37	1.79 0.607	0.58 0.23	1.45 0.248
50–59 years	1.86 0.89	3.86 0.097	1.05 0.44	2.51 0.907
60–69 years	2.65 1.31	5.38 0.007	1.09 0.43	2.75 0.860
≥70 years	2.85 1.41	5.75 0.003	1.30 0.44	3.78 0.636

BMI	Univariate	Multivariate		
<18.5 kg/m²	Reference	Reference		
18.5–24.9 kg/m²	1.18 0.73	1.92 0.493	1.66 0.89	3.10 0.113

Education	Univariate	Multivariate		
	OR 95 % CI	P value	OR 95 % CI	P value
Junior high school	Reference	Reference		
High school	0.87 0.54	1.39 0.565	1.41 0.78	2.55 0.258
University	0.57 0.32	1.01 0.053	1.02 0.50	2.07 0.960

Type of social insurance	Univariate	Multivariate		
	OR 95 % CI	P value	OR 95 % CI	P value
Public assistance	Reference	Reference		
National health insurance	0.82 0.52	1.31 0.411	1.30 0.69	2.43 0.420
Government/union-managed/ mutual aid associations	0.70 0.35	1.38 0.300	0.86 0.33	2.24 0.761
Old–old medical insurance	1.04 0.50	2.17 0.908	1.02 0.37	2.82 0.963
Others	NC NC NC NC	Reference		

Marital status & Living arrangement	Univariate	Multivariate		
	OR 95 % CI	P value	OR 95 % CI	P value
Living alone (unmarried or married)	Reference	Reference		
Unmarried/living together	0.41 0.25	0.70 0.001	0.41 0.21	0.81 0.011
Married/living together	1.10 0.66	1.83 0.719	1.58 0.79	3.17 0.195

Type of hospitalization	Univariate	Multivariate		
	OR 95 % CI	P value	OR 95 % CI	P value
Voluntary	Reference	Reference		
Involuntary	0.76 0.50	1.13 0.175	0.60 0.36	0.99 0.048

Total length of hospitalization	Univariate	Multivariate		
	OR 95 % CI	P value	OR 95 % CI	P value
≤30 days	Reference	Reference		
30–364 days	1.94 0.94	4.01 0.073	1.42 0.64	3.17 0.393
365–729 days	3.25 1.40	7.55 0.006	2.03 0.77	5.37 0.153
730 days	3.65 1.65	8.09 0.001	3.82 1.52	9.64 0.004
staff manages lifestyles such as dietary and sleeping duration among patients with schizophrenia, which might result in their lower proportion of diabetes.

Compared with schizophrenic women who lived alone, those who were unmarried and lived together with someone had a significantly lower OR for diabetes mellitus, but those who were married and living together did not. The association of diabetes mellitus with living arrangement and marital status in preceding studies is still under debate. The proportion of diabetes mellitus among married schizophrenic patients was significantly lower than among unmarried ones [6]. On the other hand, the proportion of diabetes mellitus among women in general living together with someone was significantly lower than that of those living alone [29], and this result was similar to ours. Generally, support from a partner might explain the lower proportion of diabetes mellitus among married persons [30, 31]. Although our findings from this study would suggest that support for schizophrenic women by medical staff or family members, but not by husbands, was important, the association between diabetes mellitus and living arrangement or marital status among patients with schizophrenia needs to be confirmed by other cohorts.

In this study, the OR for diabetes mellitus among both sexes with schizophrenia did not differ because of education level. In other studies, the proportion of diabetes mellitus among the general population with a lower education level was higher than among those with higher education level [14, 15, 18, 19], but this result was inconsistent with ours. Those with a higher education level had better physical and social environments [14] and could better access and understand information on healthcare from specialists [32]. Thus, higher education level could be associated with good environments, but we did not detect an association between education level and diabetes mellitus among patients with schizophrenia in this study.

The OR for diabetes mellitus among schizophrenic women with hypertension was higher than among those without hypertension. Hypertension is part of the diabetes mellitus screening criteria in the guideline on the treatment of diabetes mellitus [27], and is one of the standard risk factors of diabetes mellitus among patients with psychiatric disorders in the guideline on the treatment of schizophrenia [3]. In addition, the OR for diabetes mellitus among schizophrenic men with a BMI ≥25 kg/m² was higher than among those with a BMI of 18.5–24.9 kg/m². These results

Table 4 continued

	Univariate			Multivariate				
	OR	95 % CI	P value	OR	95 % CI	P value		
Disability pension								
No	Reference			Reference				
Yes	0.81	0.53	1.22	0.312	0.75	0.43	1.30	0.307
Psychological symptom								
Mild	Reference			Reference				
Moderate	1.26	0.82	1.95	0.297	1.26	0.75	2.13	0.381
Severe	2.99	1.32	6.78	0.009	2.28	0.80	6.51	0.125
ADL disorder								
Mild	Reference			Reference				
Moderate	1.08	0.62	1.89	0.776	0.79	0.41	1.51	0.468
Severe	2.62	1.46	4.72	0.001	1.90	0.87	4.17	0.107
Medical history of hyperlipidemia								
No	Reference			Reference				
Yes	1.25	0.79	1.99	0.346	0.90	0.51	1.58	0.708
Medical history of hypertension								
No	Reference			Reference				
Yes	2.49	1.53	4.07	<0.001	2.65	1.39	5.04	0.003
Antipsychotic drug								
None	Reference			Reference				
Typical antipsychotics	1.58	0.62	4.05	0.339	1.72	0.56	5.28	0.347
Atypical antipsychotics	0.84	0.39	1.84	0.667	1.14	0.44	2.99	0.787
Typical/atypical antipsychotics	1.00	0.44	2.28	0.996	1.10	0.39	3.10	0.852

ADL activities of daily living, BMI body mass index, OR odds ratio, CI confidence interval, NC not calculable
reinforce the importance of making lifestyle improvements for reducing the number of diabetes mellitus patients with or without schizophrenia.

Among male patients with schizophrenia, there were no social-environment factors associated with diabetes mellitus. However, for example, the ORs of the involuntary hospitalization were 1.47 in men and 0.60 in women compared with the voluntary hospitalization and there was a gender difference. In preceding studies among general population, unmarried women had lower OR of diabetes mellitus compared with married women [14], and those who had lower education had higher OR of diabetes mellitus in both sexes but the OR was greater in women than in men [33]. Therefore, it may be that men and women in different social economic status group have different health beliefs and lifestyle factors that may be associated with the risk of type 2 diabetes [33, 34]. Although the definitive reasons for these sex-related differences remain unclear in the literatures including ours [33, 35], further efforts would be needed to investigate this relationship.

Limitations

Our observations have several inherent limitations. First, this was a cross-sectional study from a single center, and there was the potential for selection bias. There have been many cross-sectional studies including ours investigating the risk factors associated with diabetes mellitus among schizophrenic patients, but a long-term follow-up cohort study assessing the risk factors among them is needed. Moreover, although the association between diabetes mellitus and socio-environmental factors among men with schizophrenia was unclear in this study, the association should also be assessed by other studies. Second, this study could not distinguish between new-onset diabetes mellitus and previous diabetes mellitus. Third, this study did not obtain information on the known risk factors for diabetes mellitus such as dietary pattern, exercise, smoking, alcohol drinking, and family history of diabetes; therefore, we could not adjust these variables in our analyses [36]. Furthermore, there might be unknown confounders affecting the association between diabetes mellitus and schizophrenia. Fourth, we would estimate greater number of patients with diabetes mellitus in this study than in the NHNS, because the prevalence of diabetes mellitus in this study was the period prevalence for 2 years, different from the point prevalence in the NHNS. Therefore, our estimation of the SPR and prevalence rate ratio by age group might be higher than expected. Fifth, the sample size in this study was small, and our results cannot be generalized to schizophrenia patients in the greater population. For example, schizophrenic men with a long-term hospitalization tended to have higher ORs for diabetes mellitus compared with those with a short-term hospitalization. Therefore, our results should be confirmed by further large-scale cohorts.

Conclusions

In this cross-sectional study from a single center, the prevalence rate ratio among patients with schizophrenia was higher than among general population in both sexes, especially among younger adults. The socio-environmental factors such as length of hospitalization, type of hospitalization, and marital status/living arrangement were associated with diabetes mellitus among hospitalized women with schizophrenia, but not among men with schizophrenia. Therefore, women with schizophrenia would need the prevention or intervention for diabetes mellitus from various healthcare practitioners such as public health nurses, nurses, and psychiatric social workers cooperatively based on these factors, especially when younger adults have schizophrenia. In addition, it is important to confirm socio-environmental risk factors for diabetes mellitus among patients with schizophrenia by prospective studies.

Acknowledgments We are deeply indebted to Mrs. Yumi Murai for the study support at the Division of Environmental Health and Population Sciences, Department of Social and Environmental Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan.

Conflicts of interest We have no conflicts of interest to declare.

References

1. Ministry of Health, Labour and Welfare and National Center of Neurology and Psychiatry of Japan. The 630 Survey in 2011. http://www.acnp.jp/nimhkeikaku/vision/pdf/data_h23h23_630_sasshitai.pdf. Accessed at 12 November, 2015 (in Japanese).
2. Ministry of Health, Labour and Welfare of Japan. 2011 Patient Survey. http://www.mhlw.go.jp/toukei/saikin/hw/kanja/11/dl/kanja.pdf. Accessed at 12 November, 2015 (in Japanese).
3. The Japanese Society of Neuropsychopharmacology. Japanese guidelines for schizophrenia treatment. 2nd ed. Tokyo: Igakushoin; 2008 (in Japanese).
4. Cohen D, Dekker JJ, Peen J, Gispen-de Wied CC. Prevalence of diabetes mellitus in chronic schizophrenic inpatients in relation to long-term antipsychotic treatment. Eur Neuropsychopharmacol. 2006;16:187–94.
5. Chien IC, Hsu JH, Lin CH, Bih SH, Chou YJ, Chou P. Prevalence of diabetes in patients with schizophrenia in Taiwan: a population-based National Health Insurance study. Schizophr Res. 2009;111:17–22.
6. Dixon L, Weidman P, Delahanty J, Delahanty J, Goldberg R, Postrado L, et al. Prevalence and correlates of diabetes in national schizophrenia samples. Schizophren Bull. 2000;26:903–12.
7. Argo T, Carnahan R, Barnett M, Holman TL, Perry PJ. Diabetes prevalence estimates in schizophrenia and risk factor assessment. Ann Clin Psychiatry. 2011;23:117–24.
8. Chwastiak LA, Rosenheck RA, McEvoy JP, Keefe RS, Swartz MS, Lieberman JA. Interrelationships of psychiatric symptom severity, medical comorbidity, and functioning in schizophrenia. Psychiatr Serv. 2006;57:1102–9.

9. Vancampfort D, De Hert M, Sweers K, De Herdt A, Detraux J, Probst M. Diabetes, physical activity participation and exercise capacity in patients with schizophrenia. Psychiatry Clin Neurosci. 2013;67:451–6.

10. Brown S, Birtwistle J, Roe L, Thompson C. The unhealthy lifestyle of people with schizophrenia. Psychol Med. 1999;29:697–701.

11. McCreadie RG. Diet, smoking and cardiovascular risk in people with schizophrenia: descriptive study. Br J Psychiatry. 2003;183:534–9.

12. Okumura Y, Ito H, Kobayashi M, Mayahara K, Matsumoto Y, Hirakawa I. Prevalence of diabetes and antipsychotic prescription patterns in patients with schizophrenia: a nationwide retrospective cohort study. Schizophr Res. 2010;119:145–52.

13. World Health Organization. The ICD-10 Classification of Mental and Behavioral Disorders Clinical descriptions and diagnostic guidelines. New and revised ed. Tokyo: Igakushoin; 2005 (in Japanese).

14. Hwang J, Shon C. Relationship between socioeconomic status and type 2 diabetes: results from Korea National Health and Nutrition Examination Survey (KNHANES) 2010-2012. BMJ Open. 2014;4:e005710.

15. Sacerdote C, Ricceri F, Rolandsson O, Baldi I, Chirlaque MD, Feskens E, et al. Lower educational level is a predictor of incident type 2 diabetes in European countries: the EPIC-InterAct study. Int J Epidemiol. 2012;41:1162–73.

16. Azimi-Nezhad M, Ghayour-Mobarhan M, Parizadeh MR, Safarizadeh SM, et al. Prevalence of type 2 diabetes mellitus in Iran and its relationship with gender, urbanisation, education, marital status and occupation. Singap Med J. 2008;49:571–6.

17. Masters GA, Baldessarini RJ, Ongur D, Centorrino F. Factors associated with length of psychiatric hospitalization. Compr Psychiatry. 2014;55:681–7.

18. Ostgren CJ, Sundstrom J, Svensson B, Lohm L, Nilsson PM, Johansson G. Associations of HbA1c and educational level with risk of cardiovascular events in 32,871 drug-treated patients with Type 2 diabetes: a cohort study in primary care. Diabet Med. 2013;30:e170–7.

19. Shang X, Li J, Tao Q, Li J, Li X, Zhang L, et al. Educational level, obesity and incidence of diabetes among Chinese adult men and women aged 18–59 years old: an 11-year follow-up study. PLoS One. 2013;8:e66479.

20. Takayanagi Y, Cascella NG, Sawa A, Eaton WW. Diabetes is associated with lower global cognitive function in schizophrenia. Schizophr Res. 2012;142:183–7.

21. Seino Y, Nanjo K, Tajima N, Kashihagi A, Araki E, Ito C, et al. Report of the Committee on the classification and diagnostic criteria of diabetes mellitus (Revision for International Harmonization of HbA1c in Japan). J Diabetes Investig. 2010;5:212–28.

22. Ministry of Health, Labour and Welfare of Japan. 2011 National Health and Nutrition Survey. http://www.mhlw.go.jp/bunya/koueiyou/dl/h23-houkoku.pdf. Accessed at 12 November, 2015 (in Japanese).

23. Snedecor GWC, Cochrane WG. Statistical methods. 7th ed. Ames: Iowa State University Press; 1980.

24. Schoepf D, Uppal H, Potluri R, Heun R. Physical comorbidity and its relevance on mortality in schizophrenia: a naturalistic 12-year follow-up in general hospital admissions. Eur Arch Psychiatry Clin Neurosci. 2014;264:3–28.

25. Hung CF, Wu CK, Lin PY. Diabetes mellitus in patients with schizophrenia in Taiwan. Prog Neuropsychopharmacol Biol Psychiatry. 2005;29:523–7.

26. Sugawara N, Yasui-Furukori N, Yamazaki M, Shimoda K, Mori T, Sugai T, et al. Attitudes toward metabolic adverse events among patients with schizophrenia in Japan. Neuropsychiatr Dis Treat. 2016;12:427–36.

27. Japan Diabetes Society. Evidence-based practice guideline for the treatment for diabetes in Japan. Tokyo: Nankodo; 2004.

28. Hinata M, Ono M, Midoriwaka S, Nakanishi K. Metabolic improvement of male prisoners with type 2 diabetes in Fukushima Prison, Japan. Diabetes Res Clin Pract. 2007;77:327–32.

29. Lidfeldt J, Nerbrand C, Samsoe B, Agardh CD. Women living alone have an increased risk to develop diabetes, which is explained mainly by lifestyle factors. Diabetes Care. 2005;28:2531–6.

30. Wyke S, Ford G. Competing explanations for associations between marital status and health. Soc Sci Med. 1992;34:523–32.

31. Joung IM, Stronks K, van de Mheen H, Mackenbach JP. Health behaviours explain part of the differences in self reported health associated with partner/marital status in The Netherlands. J Epidemiol Community Health. 1995;49:482–8.

32. Choi AI, Weekley CC, Chen S-C, Li S, Tamura MK, Norris KC, et al. Association of educational attainment with chronic disease and mortality: the kidney Early Evaluation Program (KEEP). Am J Kidney Dis. 2011;58:228–34.

33. Lee DS, Kim YJ, Han HR. Sex differences in the association between socio-economic status and type 2 diabetes: data from the 2005 Korean National Health and Nutritional Examination Survey (KNHANES). Public Health. 2013;127:554–60.

34. Ford ES, Li C, Zhao G, Pearson WS, Tsai J, Greenlund KJ. Trends in low-risk lifestyle factors among adults in the United States: findings from the Behavioral Risk Factor Surveillance System 1996-2007. Prev Med. 2010;51:403–7.

35. Tang M, Chen Y, Krewski D. Gender-related differences in the genetic risk factors for type 2 diabetes: a review from the nurses’ health study, nurses’ health study 2, and health professionals’ follow-up study. Curr Nutr Rep. 2014;3:345–54.