Near equipartitions of colored point sets

Andreas F. Holmsen∗ Jan Kynčl† Claudiu Valculescu‡

Abstract

Suppose that nk points in general position in the plane are colored red and blue, with at least n points of each color. We show that then there exist n pairwise disjoint convex sets, each of them containing k of the points, and each of them containing points of both colors.

We also show that if P is a set of $n(d+1)$ points in general position in \mathbb{R}^d colored by d colors with at least n points of each color, then there exist n pairwise disjoint d-dimensional simplices with vertices in P, each of them containing a point of every color.

These results can be viewed as a step towards a common generalization of several previously known geometric partitioning results regarding colored point sets.

Keywords: colored point set; convex equipartition; colorful island; ham sandwich theorem

1 Introduction

In this note, we prove two results concerning partitions of colored point sets. We conjecture a common generalization of these results, as well as various other related results and conjectures [1, 2, 10]. First we establish some basic terminology.

Definitions. We say that a finite set in \mathbb{R}^d is in general position if each of its subsets of size at most $d+1$ is affinely independent. A partition of a finite set X into m parts is called an m-coloring of X, the parts are called color classes, and we also say that X is m-colored. We allow the color classes to be empty. A subset $Y \subseteq X$ is called j-colorful if Y contains points from at least j distinct color classes. Let X be a subset of \mathbb{R}^d, and

∗Department of Mathematical Sciences, KAIST, Daejeon, South Korea Email: andreas@kaist.edu
†Department of Applied Mathematics and Institute for Theoretical Computer Science, Charles University, Prague. Email: kyncl@kam.mff.cuni.cz. Supported by the grant no. 14-14179S of the Czech Science Foundation (GAČR)
‡EPFL, Lausanne, Switzerland. Email: adrian.valculescu@epfl.ch. Research partially supported by Swiss National Science Foundation Grants 200020-165977 and 200021-162884.
Figure 1: A 2-colored set of 50 points spanning 10 pairwise disjoint 2-colorful 5-islands.

$Y \subseteq X$. The convex hull of Y, denoted by conv Y, is called an island (spanned by X) if $X \cap \text{conv} Y = Y$. Equivalently, we say that the set X spans Y. If conv Y is an island spanned by X and $|Y| = k$, then we also say that conv Y is a k-island. If $Y \subseteq X$, we say that the island conv Y is j-colorful if Y is j-colorful. See Figure 1. Notice that when X is in general position and $k \leq d + 1$, then a k-island spanned by X is a $(k - 1)$-dimensional simplex with vertices in X.

The results. Our first result concerns partitions of 2-colored planar point sets into 2-colorful subsets of k points with disjoint convex hulls.

Theorem 1. Let $k \geq 2$ and $n \geq 1$ be integers, and let X be a 2-colored point set in general position in \mathbb{R}^2. Suppose that $|X| = kn$ and that there are at least n points in each color class. Then X spans n pairwise disjoint 2-colorful k-islands.

Our second result concerns partitions of d-colored point sets in \mathbb{R}^d into d-colorful subsets of $d + 1$ points with disjoint convex hulls.

Theorem 2. Let $d \geq 2$ and $n \geq 1$ be integers, and let X be a d-colored point set in general position in \mathbb{R}^d. Suppose that $|X| = (d + 1)n$ and that there are at least n points in each color class. Then X spans n pairwise disjoint d-colorful $(d + 1)$-islands.

Both theorems can be seen as particular cases of the following common generalization:

Conjecture 3. Let d, k, m be integers satisfying $k, m \geq d \geq 2$. Let X be an m-colored set of kn points in general position in \mathbb{R}^d. Suppose that X admits a partition into n pairwise disjoint d-colorful k-tuples. Then X spans n pairwise disjoint d-colorful k-islands.

The condition that X admits a partition into n pairwise disjoint d-colorful k-tuples can be stated equivalently as the following Hall-type condition on the sizes of the color classes.
Lemma 4. Let d, k, m be integers satisfying $k, m \geq d \geq 2$. Let X be a set with kn elements and let $X = X_1 \cup X_2 \cup \cdots \cup X_m$ be an m-coloring of X. The set X admits a partition into n pairwise disjoint d-colorful k-tuples if and only if for every $t \in [d-1]$ and every subset $I \subset [m]$ with $|I| = t$ we have

$$\sum_{i \in I} |X_i| \leq (k - d + t)n. \tag{1}$$

Lemma 4 is purely combinatorial, and not geometric in nature. We provide its proof in Section 2, where in Lemma 8 we also show how to reduce the problem in Conjecture 3 to the case of $2d - 1$ or $2d - 2$ colors by merging some color classes.

Note that by Lemma 4, the conditions on the sizes of the color classes stated in Theorem 1 and Theorem 2 are necessary for the existence of a partition into n pairwise disjoint d-colorful k-tuples.

Theorem 1 confirms Conjecture 3 for $k \geq m = d = 2$. This, together with Lemma 8, implies Conjecture 3 for $d = 2$ and arbitrary $k, m \geq 2$. The proof of Theorem 1 is elementary and is based on a result by Kaneko, Kano, and Suzuki [9]. The proof is given in Section 3.

Theorem 2 confirms Conjecture 3 for $k - 1 = m = d \geq 2$. The proof of Theorem 2 is based on the continuous ham sandwich theorem and a special discretization argument [5, 10] and it is given in Section 4.

Relation to previous results. The classical ham sandwich theorem states that for any d measures in \mathbb{R}^d there is a hyperplane bisecting each of these d measures simultaneously. The theorem is often used in two versions: a continuous version with “nice” measures (see Theorem 12) and a discrete version with discrete measures or point sets. The discrete ham sandwich theorem has been a source of influence for further developments related to a wide range of geometric partitioning results for discrete point configurations. The following result is a typical example.

Theorem 5 (Akiyama–Alon [2]). Let $d \geq 2$ and $n \geq 1$ be integers, and let X be a d-colored point set in general position in \mathbb{R}^d. Suppose that $|X| = dn$ and that there are exactly n points in each color class. Then X spans n pairwise disjoint d-colorful d-islands.

The planar case of Theorem 5 has the following generalization, conjectured by Kaneko and Kano [7], and proven independently by Bespamyatnikh et al. [3], Ito et al. [6] and Sakai [17].

Theorem 6 (Bespamyatnikh et al. [3], Ito et al. [6], Sakai [17]). Let A and B be disjoint finite sets in \mathbb{R}^2 such that $A \cup B$ is in general position, $|A| = an$, and $|B| = bn$. Then there exist n pairwise disjoint convex sets C_1, C_2, \ldots, C_n such that $|C_i \cap A| = a$ and $|C_i \cap B| = b$ for every $i \in [n]$.

Theorem 6 solves the case of Theorem 1 when the size of each color class is divisible by n. There is also a continuous version of Theorem 6 due to Sakai [17], which was generalized to
arbitrary dimension by Soberón [18]. Soberón’s proof of the continuous version relies on an ingenious application of power diagrams and Dold’s theorem. Even further generalizations were obtained by Karasev et al. [14] and independently by Blagojević and Ziegler [4]. However, going from the continuous version to the discrete version seems to require, in many cases, a non-trivial approximation argument, and we do not see how the continuous results [4, 14, 18] could be used to settle our Conjecture 3 for the case \(m = d \).

In the discrete setting, it is natural to try to relax the divisibility condition on the sets \(|A|\) and \(|B|\) in Theorem 6, and some partial results were obtained in [8, 9, 12, 13]. Another recent example in this direction is the following generalization of Theorem 5, due to Kano and Kynčl [10].

Theorem 7 (Kano–Kynčl, [10]). Let \(d \geq 2 \) and \(n \geq 1 \) be integers, and let \(X \) be a \((d+1)\)-colored point set in general position in \(\mathbb{R}^d \). Suppose that \(|X| = dn\) and that there are at most \(n \) points in each color class. Then \(X \) spans \(n \) pairwise disjoint \(d \)-colorful \(d \)-islands.

Note that by Lemma 4, the conditions on the sizes of the color classes stated in Theorem 5 and Theorem 7 are necessary for the existence of a partition into \(n \) pairwise disjoint \(d \)-colorful \(d \)-tuples.

Theorem 5 proves the case \(k = m = d \) of Conjecture 3, while the case \(k = m - 1 = d \) is answered by Theorem 7. The case \(k = d \) and \(m \geq d \) was originally conjectured by Kano and Suzuki [10, Conjecture 3]. The case \(m \geq k = d = 2 \) was proved by Aichholzer et al. [1] and by Kano, Suzuki and Uno [11].

In this note we are mostly concerned with the case \(k \geq m = d \). For \(d = 2 \), Theorem 6 covers the subcase where the cardinality of each \(X_i \) is divisible by \(n \). Kaneko, Kano, and Suzuki [9] solved the subcase with \(d = 2 \), \(k \) odd and \(|X_1| - |X_2| \leq n \).

When \(n \) is a power of 2, the case \(m = d \) of Conjecture 3 can be obtained relatively easily by induction from the discrete ham sandwich theorem [15, Theorem 1.4.3], proceeding like in Case 1 in the proof of Theorem 13 in Section 4. Thus the main contribution of this paper and the main difficulty in it consists in removing the divisibility assumptions for \(n \) and the sizes of the color classes.

2 Auxiliary results

Proof of Lemma 4. Without loss of generality, we assume that \(|X_1| \geq |X_2| \geq \cdots \geq |X_m|\). Condition (1) can then be stated using only \(d - 1 \) inequalities as follows:

\[
\forall t \in [d-1] \quad \sum_{i=1}^{t} |X_i| \leq (k - d + t)n.
\]

(2)

The necessity of condition (2) follows from the fact that for every \(t \in [d] \), every \(d \)-colorful \(k \)-tuple has at most \(k - d + t \) elements in \(X_1 \cup X_2 \cup \cdots \cup X_t \), since it has at least \(d - t \) elements in \(X_{t+1} \cup X_{t+2} \cup \cdots \cup X_m \).
We now prove the sufficiency of (2). If $|X_1| = n$, then let $t = 0$. Otherwise let $t \in [m]$ be the largest index such that $|X_i| > n$. For each $i \in [d]$, let Y_i be an arbitrary n-element subset of X_i if $i \leq t$, otherwise let $Y_i = X_i$. Let $Y = \bigcup_{i=1}^m Y_i$; see Figure 2. We claim that $|Y| \geq dn$. Indeed, by condition (2) and by the assumptions that $|X| = kn$ and $k \geq d$ (which may be regarded as condition (2) for $t = 0$), we have

$$|Y| = |X| - |X \setminus Y| = kn - \sum_{i=1}^t (|X_i| - n) = kn + tn - \sum_{i=1}^t |X_i| \geq dn.$$

We construct a partition of X into n d-colorful k-tuples as follows. First we take a subset Y' of exactly dn elements of Y and partition it into n d-colorful d-tuples, by filling the elements of Y' into an $n \times d$ grid, column by column, starting with the elements of $Y_1 \cap Y'$, then the elements of $Y_2 \cap Y'$, and so on. The rows of the grid then form the desired partition: since each $Y_i \cap Y$ has at most n elements, no two elements in the same row get the same color, and hence the d-tuple in each row is d-colorful.

Finally, we extend each d-tuple of the partition to a k-tuple by adding arbitrary $k - d$ elements of the remaining set $X \setminus Y'$. The resulting k-tuples are automatically d-colorful.

Merging colors

In order to prove Conjecture 3 for $k = d$, it is enough to prove it for $m = 2d - 1$ [10]. Indeed, if the number of color classes is larger, we can merge two classes of small size into a single class of size at most n, which implies that condition (1) is still satisfied.

The next lemma implies that to prove Conjecture 3 for $k > d$, it is enough to prove it for $m = 2d - 2$.

![Figure 2: Partition into parts P_1, \ldots, P_6 with parameters $k = 4$, $n = 6$, $m = 5$, and $d = 3$.](image)
Lemma 8. Let \(d, k, m \) be integers satisfying \(d \geq 2, k \geq d + 1, \) and \(m \geq 2d - 1. \) Let \(X \) be a set with \(kn \) elements and let \(X = X_1 \cup X_2 \cup \cdots \cup X_m \) be an \(m \)-coloring of \(X \) satisfying condition (1). There exist two color classes such that by merging them into a single color class, the resulting \((m - 1)\)-coloring of \(X \) still satisfies condition (1).

Proof. Assume that \(|X_1| \geq |X_2| \geq \cdots \geq |X_m| \). We merge \(X_{m-1} \) and \(X_m \) into a single class \(X'_{m-1} \). Since \(m \geq 2d - 1 \), we have \(|X'_{m-1}| = |X_{m-1}| + |X_m| \leq 2kn/(2d - 1) \). We now verify that the \((m - 1)\)-coloring \(\chi' = (X_1, X_2, \ldots, X_{m-2}, X'_{m-1}) \) satisfies (1).

Suppose that \(t \in [d - 1] \) is the smallest integer for which \(\chi' \) violates condition (1). The inequality \(2kn/(2d - 1) \leq (k - d + 1)n \) follows from \((2d - 3)(k - d) \geq 1 \), thus \(t \geq 2 \). Then \(|X'_{m-1}| > |X_t| \), and so \(|X'_{m-1}| + \sum_{i=1}^{t-1} |X_i| > (k - d + t)n \) while \(\sum_{i=1}^{t-1} |X_i| \leq (k - d + t - 1)n \). By our assumption, we have \(|X'_{m-1}| \leq \frac{2}{m-t+1} \sum_{i=t}^{m} |X_i| \). Together, this gives

\[
(m - t + 1)(k - d + t)n < 2 \cdot \sum_{i=t}^{m} |X_i| + (m - t - 1) \cdot \sum_{i=1}^{t-1} |X_i| \\
\leq 2 \cdot \sum_{i=1}^{m} |X_i| + (m - t - 1) \cdot (k - d + t - 1)n \\
= 2kn + (m - t - 1)(k - d + t - 1)n
\]

and thus

\[
0 > (m - t + 1)(k - d + t - 2k - (m - t - 1)(k - d + t - 1) = m - t + 2k - 2d + 2t - 1 - 2k \geq t - 2 \geq 0;
\]

a contradiction.

The following examples show that it is not always possible to merge two color classes if \(m = 2d - 1 \) and \(k = d \) or if \(m = 2d - 2 \) and \(k \geq d + 1 \).

For \(m = 2d - 1 \) and \(k = d \), let \(n \) be a multiple of \(2d - 1 \), let \(X \) be a set with \(dn \) elements and let \(X = X_1 \cup X_2 \cup \cdots \cup X_{2d-1} \) be a \((2d - 1)\)-coloring of \(X \) satisfying

\[
|X_1| = |X_2| = \cdots = |X_{2d-1}| = \frac{d}{2d - 1} \cdot n.
\]

Then by merging an arbitrary pair of color classes we get a class with \((2dn)/(2d - 1) > n\) elements, violating condition (1).

For \(m = 2d - 2 \) and \(k \geq d + 1 \), let \(n \) be a multiple of \(2d - 3 \), let \(X \) be a set with \(kn \) elements and let \(X = X_1 \cup X_2 \cup \cdots \cup X_{2d-2} \) be a \((2d - 2)\)-coloring of \(X \) satisfying

\[
|X_1| = (k - d + 1)n \quad \text{and} \quad |X_2| = |X_3| = \cdots = |X_{2d-2}| = \frac{d - 1}{2d - 3} \cdot n.
\]

Let \(Y = X_{2d-3} \cup X_{2d-2} \). Now \(X = X_1 \cup Y \cup X_2 \cup X_3 \cup \cdots \cup X_{2d-4} \) is a \((2d - 3)\)-coloring of \(X \) where \(X_1 \) and \(Y \) are the two largest color classes. We have

\[
|X_1| + |Y| = \left(k - d + 1 + \frac{2d - 2}{2d - 3} \right) \cdot n > (k - d + 2)n,
\]

which violates condition (1).
3 Proof of Theorem 1

Our proof of Theorem 1 is a modification of the proof by Kaneko, Kano and Suzuki [9, Theorem 2] and relies on the following crucial result by Bespamyatnikh, Kirkpatrick and Snoeyink [3, Theorem 5], restated by Kaneko et al. [9, Theorem 6] in a more general form, which we also use. More precisely, the formulation by Bespamyatnikh et al. [3] assumes that $a_1/b_1 = a_2/b_2 = a_3/b_3$, but Kaneko et al. [9] observed that the proof can be easily modified so that the assumption can be omitted. See Figure 3.

Theorem 9 (3-cutting theorem [3, 9]). Let $a_1, a_2, a_3, b_1, b_2, b_3$ be positive integers. Let A and B be finite disjoint sets of points in the plane such that $A \cup B$ is in general position, $|A| = a_1 + a_2 + a_3$, and $|B| = b_1 + b_2 + b_3$. Suppose that any open halfplane containing exactly a_i points from A contains less than b_i points from B. Then there exist disjoint convex sets C_1, C_2, C_3 such that $|C_i \cap A| = a_i$ and $|C_i \cap B| = b_i$ for every $i \in \{1, 2, 3\}$.

Our proof of Theorem 1 actually gives a slightly stronger conclusion. In particular, the k-islands form a “near-equipartition” in the sense that the numbers of points of a given color in distinct k-islands differ by at most 1.

Proof of Theorem 1. We denote the two color classes of X by A and B, so $X = A \cup B$. We proceed by induction on n. The statement is trivial for $n = 1$. If $|A|$ and $|B|$ are both divisible by n, then the result follows from Theorem 6. We may therefore assume that there are positive integers a, b, s, t such that

$|A| = na + s, \quad |B| = nb + t, \quad k = a + b + 1, \quad s + t = n.$

We claim that there exist pairwise disjoint k-islands $C_1, C_2, \ldots, C_s, D_1, D_2, \ldots, D_t$ such that $|C_j \cap A| = a + 1$, $|C_j \cap B| = b$, $|D_i \cap A| = a$, and $|D_i \cap B| = b + 1$ for every $j \in [s], i \in [t]$.

For a fixed integer $i \in [t]$, consider an open halfplane H_i containing precisely ia points from A. If $|H_i \cap B| = i(b + 1)$, then the complement of H_i contains $(n - i)a + s$ points from A and $(n - i)b + (t - i)$ points from B, and we are done by induction. We may therefore
assume that H_i contains strictly less than $i(b+1)$ points or strictly more than $i(b+1)$ points. The following observation is well-known (see for instance [3, Lemma 3]) and can be shown by a simple continuity argument.

Observation 10. Let $i \in [t]$ and let H_i and H'_i be two open halfplanes, each containing exactly ia points from A. If $|H_i \cap B| < i(b+1)$ and $|H'_i \cap B| > i(b+1)$, then there exists a halfplane H''_i satisfying $|H''_i \cap A| = ia$ and $|H''_i \cap B| = i(b+1)$.

In view of Observation 10 we may assume that either every open halfplane containing exactly ia points from A contains less than $i(b+1)$ points from B, or every open halfplane containing exactly ia points from A contains less than $i(b+1)$ points from B. We denote these two cases by $\sigma_a(i) = -1$ and $\sigma_a(i) = +1$, respectively.

By the same argument, for every fixed integer $j \in [s]$, either every open halfplane containing exactly ja points from A contains less than jb points from B, or every open halfplane containing exactly ja points from A contains more than jb points from B. We denote these two cases by $\sigma_{a+1}(i) = -1$ and $\sigma_{a+1}(i) = +1$, respectively.

Under the assumption that there is no open halfplane containing exactly a points from A and $(b+1)$ points from B, or $(a+1)$ points from A and b points from B, we observe the following.

Observation 11. $\sigma_a(1) = \sigma_{a+1}(1)$.

Proof. To see why this holds, consider a line l passing through one point from A and no point from B, and has precisely a points from A on its left side. Let l' be a line parallel to l slightly to the right of l such that no points from $A \cup B$ are contained in the open strip bounded by l and l'. Thus the two open left halfplanes bounded by l and l' contain the same number of points from B, which is either smaller than b or greater than $b+1$. □

Without loss of generality, we may assume that $\sigma_a(1) = \sigma_{a+1}(1) = -1$. (Otherwise, we can just exchange the roles of A and B.) We now claim that if the sequence $\sigma_a(1), \sigma_a(2), \sigma_a(3), \ldots$, changes signs, then we can find parameters satisfying the conditions of Theorem 9. To see this, suppose there exists a smallest integer $i \leq t$ such that

$$\sigma_a(1) = \sigma_a(2) = \cdots = \sigma_a(i-1) = -1 \quad \text{and} \quad \sigma_a(i) = +1.$$

Consider a line l disjoint with $A \cup B$ that has exactly ia points from A on its left side. By the assumption $\sigma_a(i) = +1$, it follows that on the right side of l there are exactly $|A| - ia = (n-i)a + s$ points from A and less than $|B| - i(b+1) = (n-i)b + (t-i)$ points from B. Therefore, the hypothesis of Theorem 9 is satisfied with

$$a_1 = a, \quad a_2 = (i-1)a, \quad a_3 = (n-i)a + s$$

$$b_1 = b+1, \quad b_2 = (i-1)(b+1), \quad b_3 = (n-i)b + (t-i).$$

We can thus apply the inductive hypothesis in each of the resulting convex sets C_1, C_2, C_3 guaranteed by Theorem 9.

By the same argument applied to the sequence $\sigma_{a+1}(1), \sigma_{a+1}(2), \ldots, \sigma_{a+1}(s)$, we may assume that $\sigma_a(i) = \sigma_{a+1}(j) = -1$ for all $i \in [t]$ and $j \in [s]$. In particular, $\sigma_{a+1}(s) = \sigma_a(t)$, but this is a contradiction since these signs correspond to complementary halfplanes. □
4 Proof of Theorem 2

The proof of Theorem 2 is similar to the proof of Theorem 7 [10], but it is a bit easier, since here we can use directly the continuous ham sandwich theorem, instead of its generalization.

Theorem 12 (The ham sandwich theorem [19], [16, Theorem 3.1.1]). Let $\mu_1, \mu_2, \ldots, \mu_d$ be d absolutely continuous finite Borel measures on \mathbb{R}^d. Then there exists a hyperplane h such that each open halfspace H defined by h satisfies $\mu_i(H) = \mu_i(\mathbb{R}^d)/2$ for every $i \in [d]$.

Theorem 2 follows by induction from the following special discrete version of the ham sandwich theorem, which is an analogue of the discrete hamburger theorem from [10].

We say that point sets X_1, X_2, \ldots, X_d are balanced in a subset $S \subseteq \mathbb{R}^d$ if for every $i \in [d]$, we have

$$|S \cap X_i| \geq \frac{1}{d+1} \sum_{j=1}^d |S \cap X_j|.$$

Theorem 13. Let $d \geq 2$ and $n \geq 2$ be integers. Let $X_1, X_2, \ldots, X_d \subset \mathbb{R}^d$ be d disjoint point sets balanced in \mathbb{R}^d. Suppose that $X_1 \cup X_2 \cup \cdots \cup X_d$ is in general position and $\sum_{i=1}^{d+1} |X_i| = (d + 1)n$. Then there exists a hyperplane h disjoint with each X_i such that for each open halfspace H determined by h, the sets X_1, X_2, \ldots, X_d are balanced in H and $\sum_{i=1}^d |H \cap X_i|$ is a positive integer multiple of $d + 1$.

4.1 Proof of Theorem 13

Let $X = \bigcup_{i=1}^d X_i$. Replace each point $p \in X$ by an open ball $B(p)$ of a sufficiently small radius $\delta > 0$ centered at p, so that no hyperplane intersects or touches more than d of these balls. We will apply the ham sandwich theorem for suitably defined measures supported by the balls $B(p)$. Rather than taking the same measure for each of the balls, we use a variation of the trick used by Elton and Hill [5]. For each $p \in X$ and $k \geq 1$, we choose a small number $\varepsilon_k(p) \in (0, 1/k)$ so that for every $i \in [d]$ and for every subset $Y_i \subset X_i$, we have

$$\sum_{p \in Y_i} (1 - \varepsilon_k(p)) \neq \frac{1}{2} \cdot \sum_{p \in X_i} (1 - \varepsilon_k(p)). \quad (3)$$

Now let $k \geq 1$ be a fixed integer. For each $i \in [d]$, let $\mu_{i,k}$ be the measure supported by the closure of $\bigcup_{p \in X_i} B(p)$ such that it is uniform (that is, equal to a multiple of the Lebesgue measure) on each of the balls $B(p)$ and $\mu_{i,k}(B(p)) = 1 - \varepsilon_k(p)$.

We apply the ham sandwich theorem (Theorem 12) to the measures $\mu_{i,k}$, $i \in [d]$, and obtain a bisecting hyperplane h_k.

For each $i \in [d]$, let μ_i be the limit of the measures $\mu_{i,k}$ as k tends to infinity; that is, μ_i is uniform on every ball $B(p)$ such that $p \in X_i$ and $\mu_i(B(p)) = 1$. Since the supports of all the measures $\mu_{i,k}$ are uniformly bounded, there is a sequence $\{k_m\}$ such that the subsequence of hyperplanes h_{k_m} has a limit h'. More precisely, if $h_{k_m} = \{x \in \mathbb{R}^d; x \cdot v_m = c_m\}$ where $v_m \in S^{d-1}$, then $h' = \{x \in \mathbb{R}^d; x \cdot v = c\}$ where $v = \lim_{m \to \infty} v_m$ and $c = \lim_{m \to \infty} c_m$.
By the absolute continuity of the measures, each open halfspace H defined by $h' \in \mathbb{R}^d$ satisfies $\mu_i(H) = \mu_i(\mathbb{R}^d)/2$ for every $i \in [d]$.

The condition (3) ensures that for every m, the hyperplane h_{k_m} intersects the support of each measure μ_{i,k_m}, $i \in [d]$. In particular, for each $i \in [d]$, there is a point $p_i \in X_i$ such that for infinitely many $m \geq 1$, the hyperplane h_{k_m} intersects each of the balls $B(p_i)$. It follows that for each $i \in [d]$, the hyperplane h' either touches $B(p_i)$ or intersects $B(p_i)$. In fact, h' touches $B(p_i)$ if $|X_i|$ is even and h' contains the point p_i, if $|X_i|$ is odd, and each open halfplane determined by h' contains exactly $\lceil |X_i|/2 \rceil$ points of X_i.

We now rotate the hyperplane h' slightly, to a hyperplane h that touches each of the balls $B(p_i)$, so that the point sets X_1, X_2, \ldots, X_d are balanced in each halfspace determined by h and the number of points of X in each halfspace is divisible by $d + 1$. Essentially, for each point p_i we can decide independently on which side of h it will end. We consider two cases according to the parity of n.

Case 1. Assume that $n = 2n'$ for some positive integer n'. Since the point sets X_1, X_2, \ldots, X_d are balanced in \mathbb{R}^d, we have $|X_i| \geq 2n'$ for each $i \in [d]$. To satisfy the balancing condition for the two halfspaces, each halfspace must contain at least n' points from each X_i. This is already satisfied for the original hyperplane h' and each X_i with an even number of points. If $|X_i|$ is odd for some i, then $|X_i| \geq 2n' + 1$ and thus moving the point p_i to either side of h will keep at least n' points of X_i in each halfspace. Since $|X|$ is even, there is an even number of X_i’s with odd cardinality, and therefore $|h' \cap X|$ is also even. Since $|X|/2 = n'(d + 1)$, the divisibility condition will be satisfied if each halfspace gets exactly $|X|/2$ points of X. This is easily achieved if we move half of the points from $h' \cap X$ to one halfspace and the remaining points of $h' \cap X$ to the other halfspace.

Case 2. Assume that $n = 2n' + 1$ for some positive integer n'. Then $|X| = (2n' + 1)(d + 1)$, and so the only way of satisfying the divisibility condition is having $(n' + 1)(d + 1)$ points in one halfspace and $n'(d + 1)$ points in the other halfspace determined by h. Since we can move d points between the halfspaces, this determines the number of points p_i that have to end in each halfspace determined by h.

Since h' bisects each of the measures μ_i and $\mu_i(\mathbb{R}^2) = |X_i|$ for each i, we have to move $(d + 1)/2$ units of the total measure $\mu = \sum_{i=1}^d \mu_i$ from one halfspace to the other one. Moving a point p_i contained in h' to one halfspace corresponds to moving half unit of μ, and moving a point p_i from one open halfspace to the opposite open halfspace corresponds to moving one unit of μ.

Assume without loss of generality that h' is horizontal, so that h will be almost horizontal. We will refer to the two halfspaces determined by h' or h as the halfspace above and below h' or h, respectively.

Let $c = |h' \cap X|$; that is, c is the number of sets X_i with odd cardinality. Let a be the number of the points p_i above h', and let b be the number of the points p_i below h'. Clearly, $a + b + c = d$. Assume without loss of generality that $a \geq b$. Since c has the same parity as $|X| = (2n' + 1)(d + 1)$, then $d + 1 - c$ is even, and thus $a + b = d - c$ is odd. This
Figure 4: A ham sandwich cut by a hyperplane h' for $m = d = 9$, $k = 10$ and n odd. The hyperplane h' intersects or touches $d = a + b + c$ of the balls, one from each X_i. We perturb h' so that the c balls with centers in h' and $(d + 1 - c)/2$ of the balls tangent to h' from above end up below the perturbed hyperplane.

implies that $a \geq b + 1$, and consequently $c/2 + a \geq (d + 1)/2$.

We move all the c points of $h' \cap X$ below h, and an arbitrary set of $(d + 1 - c)/2$ points p_i that are above h' to the halfspace below h. After that, the halfspace below h has exactly $(n' + 1)(d + 1)$ points of X. See Figure 4.

We now verify that the balancing condition is satisfied in both halfspaces. Since $|X_i| \geq 2n' + 1$ for every i, every set X_i of odd cardinality has at least n' points in the halfspace above h and at least $n' + 1$ points below h. Every set X_i of cardinality at least $2n' + 3$ has at least $n' + 1$ points in each halfspace determined by h. Every set X_i of cardinality $2n' + 2$ with p_i below h' has exactly $n' + 1$ points in each halfspace determined by h. Finally, every set X_i of cardinality $2n' + 2$ with p_i above h' has n' or $n' + 1$ points above h, and $n' + 2$ or $n' + 1$ points below h.

5 Final remarks

Conjecture 3 is still open for $d \geq 3$ and $k, m \geq d + 1$. It is likely that generalizing the 3-cutting theorem [3, 9] to \mathbb{R}^d, up to $d + 1$ parts and $2d - 2$ color classes might be a fruitful approach to prove Conjecture 3 in full generality.

Several proofs of special cases of Conjecture 3 include a step where a partition theorem for measures is discretized into a corresponding partition theorem for point sets; see Sakai’s proof of the 3-cutting theorem [17], our Theorem 13 or the discrete version of the hamburger theorem [10]. However, there are difficulties with this approach already for $d = 3$ and $k = m = 4$: Figure 5 shows that cutting by a single hyperplane is not sufficient.

We were not able to prove Conjecture 3 even in the case when X has the order type of the vertex set of the cyclic polytope, when one might expect the existence of a purely combinatorial solution.
Figure 5: An example for $d = 3$ and $k = m = 4$ showing that the discretization approach from the proof of Theorem 13 does not generalize easily. The figure represents a ham sandwich cut for four measures in \mathbb{R}^3. The cutting hyperplane, represented by the horizontal line, touches the supports of three different measures, but it cannot be locally modified to give a discrete balanced partition; that is, a partition satisfying the divisibility condition and the analogue of condition (1) simultaneously.

6 Acknowledgements

We are grateful to the reviewers for simplifying the rounding step in the proof of Theorem 13, and for their suggestions for improving the presentation.

References

[1] O. Aichholzer, S. Cabello, R. Fabila-Monroy, D. Flores-Pnaloza, T. Hackl, C. Huemer, F. Hurtado and D. Wood, Edge-removal and non-crossing configurations in geometric graphs, Discrete Math. Theor. Comput. Sci. 12(1) (2010), 75–86.

[2] J. Akiyama and N. Alon, Disjoint simplices and geometric hypergraphs, Combinatorial Mathematics: Proceedings of the Third International Conference (New York, 1985), 1–3, Ann. New York Acad. Sci., 555, New York Acad. Sci., New York, 1989.

[3] S. Bespamyatnikh, D. Kirkpatrick and J. Snoeyink, Generalizing ham sandwich cuts to equitable subdivisions, Discrete Comput. Geom. 24(4) (2000), 605–622.

[4] P. V. M. Blagojević and G. M. Ziegler, Convex equipartitions via equivariant obstruction theory, Israel J. Math. 200(1) (2014), 49–77.

[5] J. H. Elton and T. P. Hill, A stronger conclusion to classical ham sandwich theorem, European J. Combin. 32(5) (2011), 657–661.

[6] H. Ito, H. Uehara and M. Yokoyama, 2-dimension ham sandwich theorem for partitioning into three convex pieces, Discrete and Computational Geometry: Japanese Conference, JDCG’98 Tokyo, Japan, December 9-12, 1998. Revised Papers, ed. by J. Akiyama, M. Kano and M. Urabe, 129–157, Springer, 2000.

[7] A. Kaneko, M. Kano, Discrete geometry on red and blue points in the plane – a survey, Discrete and Computational Geometry, Algorithms and Combinatorics 25, 551–570, Springer, 2003.
[8] A. Kaneko and M. Kano, Semi-balanced partitions of two sets of points and embeddings of rooted forests, *Internat. J. Comput. Geom. Appl.* 15(3) (2005), 229–238.

[9] A. Kaneko, M. Kano, and K. Suzuki, Path coverings of two sets of points in the plane, *Towards a theory of geometric graphs*, 99–111, ed. by J. Pach, *Contemp. Math.* 342, Amer. Math. Soc., Providence, RI, 2004.

[10] M. Kano and J. Kynčl, The hamburger theorem, *Comput. Geom.* (to appear); arXiv:1503.06856v3 (2016).

[11] M. Kano, K. Suzuki, and M. Uno, Properly colored geometric matchings and 3-trees without crossings on multicolored points in the plane, *Discrete and Computational Geometry and Graphs*, 96–111, *Lecture Notes in Comput. Sci.* 8845, Springer, 2014.

[12] M. Kano and M. Uno, General balanced subdivision of two sets of points in the plane, *Discrete geometry, combinatorics and graph theory*, 79–87, *Lecture Notes in Comput. Sci.* 4381, Springer, 2007.

[13] M. Kano and M. Uno, Balanced subdivisions with boundary condition of two sets of points in the plane, *Internat. J. Comput. Geom. Appl.* 20(5) (2010), 527–541.

[14] R. Karasev, A. Hubard and B. Aronov, Convex equipartitions: the spicy chicken theorem, *Geom. Dedicata* 170 (2014), 263–279.

[15] J. Matoušek, *Lectures on discrete geometry*, Graduate Texts in Mathematics 212, Springer, New York, 2002, ISBN 0-387-95373-6.

[16] J. Matoušek, *Using the Borsuk–Ulam Theorem*, Universitext, Springer, 2003, ISBN 3-540-00362-2.

[17] T. Sakai, Balanced convex partitions of measures in \mathbb{R}^2, *Graphs Combin.* 18(1) (2002), 169–192.

[18] P. Soberón, Balanced convex partitions of measures in \mathbb{R}^d, *Mathematika* 58(1) (2012), 71–76.

[19] A. H. Stone and J. W. Tukey, Generalized “sandwich” theorems, *Duke Math. J.* 9 (1942) 356–359.