Major involvement of bacterial components in rheumatoid arthritis and its accompanying oxidative stress, systemic inflammation and hypercoagulability

Etheresia Pretorius1, Oore-Ofe Akeredolu1, Prashilla Soma1 and Douglas B Kell2,3,4

1Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, Pretoria 0007, South Africa; 2School of Chemistry, The University of Manchester, Manchester, M13 9PL, UK; 3The Manchester Institute of Biotechnology, The University of Manchester, Manchester, M1 7DN, UK; 4Centre for Synthetic Biology of Fine and Speciality Chemicals, The University of Manchester, Manchester, M1 7DN, UK

Corresponding authors: Etheresia Pretorius. Email: resia.pretorius@up.ac.za; Douglas B Kell. Email: dbk@manchester.ac.uk

Impact statement
Rheumatoid arthritis (RA) is accompanied by long-term inflammation that is mediated by cytokines and cross-reactive (auto-)antigens. Here we suggest one explanation is the presence of a (dormant) microbiome in RA that sheds the highly potent inflammagen, lipopolysaccharide lipopolysaccharides (LPS) to catalyze inflammagenesis, including via β-amyloid formation. We discuss various co-existing features in RA, including iron dysregulation, hypercoagulability, anomalous morphologies of host erythrocytes, and microparticle formation. We review literature and provide coherent evidence that an aberrant blood microbiome in RA has a major involvement in the development, progression, and therefore over-all etiology of the disease.

Abstract
We review the evidence that infectious agents, including those that become dormant within the host, have a major role to play in much of the etiology of rheumatoid arthritis and the inflammation that is its hallmark. This occurs in particular because they can produce cross-reactive (auto-)antigens, as well as potent inflammagens such as lipopolysaccharide that can themselves catalyze further inflammagenesis, including via β-amyloid formation. A series of observables coexist in many chronic, inflammatory diseases as well as rheumatoid arthritis. They include iron dysregulation, hypercoagulability, anomalous morphologies of host erythrocytes, and microparticle formation. Iron dysregulation may be responsible for the periodic regrowth and resuscitation of the dormant bacteria, with concomitant inflam-magen production. The present systems biology analysis benefits from the philosophical idea of “coherence,” that reflects the principle that if a series of ostensibly unrelated findings are brought together into a self-consistent narrative, that narrative is thereby strengthened. As such, we provide a coherent and testable narrative for the major involvement of (often dormant) bacteria in rheumatoid arthritis.

Keywords: Rheumatoid arthritis, dormancy, iron dysregulation, atopobiosis, infectious agents, lipopolysaccharides, Proteus, inflammation, comorbidities

Introduction: Disease background
RA is a complex and heterogeneous disease, sometimes classified as a syndrome with shared clinical manifestations.1 It is the most common immune-related chronic, inflammatory, autoimmune disease and affects approximately 0.5–1% of the adult population worldwide. It occurs as 20–50 cases per 100,000 annually, most commonly in women over 40.2–5 Although this is not yet apparently a mainstream recognition, a frankly overwhelming amount of epidemiological and experimental evidence, that we shall review here, indicates a microbial origin for RA. The clinical features of RA involve the presence of systemic inflammation, with various imbalances between pro- and anti-inflammatory cytokine activities, which may lead to multisystem immune complications.4 In RA patients, serum or plasma levels of cytokines are considered to indicate the severity of disease4 and this pathophysiologic presence of pro-inflammatory cytokines is known to be involved in the degradation of bone and cartilage.4 Due to the complexity of the disease, treatment and disease tracking after diagnosis is very difficult. In this article, we shall review briefly current knowledge regarding the involvement of cytokines and other markers in RA, which are also the hallmarks of systemic inflammation in all other inflammatory conditions. We also discuss clot hypercoagulability and platelet and erythrocyte (RBC) changes, that is consequent upon this persistent systemic inflammation, and how microparticle formation (from both platelets and RBCs) is
a characteristic feature of RA. We then review a consider-
able literature (summarized in part in two books6,7) that
suggests that the presence of a variety of detritus produced
from walls and membranes of Gram-negative and other
bacteria (including wall-less forms) may play a fundamen-
tal role in RA development, as well as the accompanying
cardiovascular disease and systemic inflammation seen in
RA. We discuss how the exposure of genetically susceptible
individuals to environmental factors (1) that can act as trig-
gers (2), cause an immunological reaction, followed by an
autoimmune response (3), can result in RA (4). We review a
plethora of evidence, collectively referred to as Ebringer’s
theory (5), that points to the environmental trigger as micro-
bial (particularly from e.g. urinary tract infections) (6). We
then look at the role of LPS from these microbes (7) in caus-
ing an imbalance between pro- and anti-inflammatory cyto-
kines, followed by systemic inflammation, and the effect on
the cardiovascular and hematological health of the RA
patient (8) (see Figure 1). Finally, recognizing the lack of
easy and accessible biomarkers, we suggest that in a truly
patient (8) (see Figure 1). Finally, recognizing the lack of
cardiovascular and hematological health of the RA
kines, followed by systemic inflammation, and the effect on
then look at the role of LPS from these microbes (7) in caus-
ing an imbalance between pro- and anti-inflammatory cyto-
kines, followed by systemic inflammation, and the effect on
the cardiovascular and hematological health of the RA
patient (8) (see Figure 1). Finally, recognizing the lack of
cardiovascular and hematological health of the RA
kines, followed by systemic inflammation, and the effect on
the cardiovascular and hematological health of the RA
patient (8) (see Figure 1). Finally, recognizing the lack of
the cardiovascular and hematological health of the RA
patient (8) (see Figure 1). Finally, recognizing the lack of

Epidemiology

An initial analysis of the potential causes of a disease is wise
to explain any unusual epidemiological features it may pos-
sess,9 following appropriate controls for their veracity.10
Clearly, within an overall prevalence of ca 0.5–1%, one fea-
ture of this disease is its considerable predilection for
women (69% of cases in a recent UK survey5) over men,
despite some reduction in female prevalence attributed to
the use of oral contraceptives.11,12 This is a striking differ-
ence of approximately two-or three-fold (see also litera-
ture2,12–15). Clearly, it might be linked to hormonal
differences, or to something on the X-chromosome, but
we know of no persuasive study that suggests what that
might be.

Twin studies “show concordance rates of 15% to 30%
between monozygotic twins and 5% among dizygotic
twins,14 suggesting that 50% to 60% of RA cases are due
to genetic factors.16,17” Other studies comparing monozy-
gotic twins alone show an occurrence in a second twin,
when a first twin manifests the disease, as just 12% in
Finland,18 15% for the UK,19 and 10% in Denmark.20 Thus,
environmental influences have a major influence.
Consequently, the leading hypothesis for RA (and indeed
for most other autoimmune disorders) is that RA is the
result of an environmental exposure or “trigger” in a gen-
etically more susceptible individual, that causes an
immunological reaction to the triggering antigen that hap-
pens to share one or more epitopes with a host protein (and
see Kell and Pretorius21), thus manifesting the autoimmune
responses. What might be the most common triggers? One
possibility to link the triggers with infection is to look at the
presence of flares. Flares are defined as a worsening of signs
and symptoms of sufficient intensity and duration to lead to
changes in therapy as per the Outcome Measures in
Rheumatology Clinical Trials (OMERACT) RA Flare
Definition Working Group, developed at OMERACT 9 in
2008.22 This working Group developed a standardized
method for description and measurement of “flare in RA”
to guide individual patient treatment.23

A very high proportion of sufferers were actually
exposed to an infection before their disease was diagnosed,
but sadly these kinds of data are not typically recorded
properly in the scientific literature. Consequently, and as
this becomes increasingly easy with electronic health
records, we do encourage clinical readers to make such ana-
lyses available. However, as with several related diseases
(e.g. literature21,24–26), our role as systems biologists is to put
gether a coherent, systems biology picture, and with all
the evidence that we shall review below, it is very clear
indeed that RA is driven by a microbial component. To
this end, one very major (and in our view clear) differenti-
ator between women and men is the equally more common,
anatomy-based prevalence in women over men of urinary
tract infection.29–31 This is the first “plank” in Ebringer’s
impressive series of arguments (most recently at 23)
that actually gives a satisfying and coherent account of at
least one microbial origin for RA, Proteus spp., that we now
review.
Ebringer's theory (with experiments) that *Proteus* infection from the urinary tract is a major cause of RA

Ebringer sets his work in a Popperian framework (for reviews of that see literature\(^{34–36}\)) but we consider that it is more conveniently set in a systems biology manner as a logical series or chain of intellectually linked events, and this is what we do here. Ebringer (we like especially Ebringer et al.\(^{32}\)) makes the following 10 claims (the many supporting references are in the paper):

1. HLA-DR4 lymphocytes injected into a rabbit evoke specific antibodies against *Proteus* cells (mainly the species *mirabilis* and *vulgaris*).
2. Antibodies to *Proteus* spp. are present in RA patients from 14 different countries.
3. Antibodies to *Proteus* bacteria in RA patients are disease-specific since no such antibodies are found in other conditions.
4. When RA patients have high titer of antibodies to *Proteus* such bacteria are found in urinary cultures.
5. Only *Proteus* bacteria and no other microbes evoke significantly elevated antibodies in RA patients (this is not 100% true, see below).
6. A “shared epitope” EQR(K)RAA shows “molecular mimicry” with the related sequence ESRRAL found in *Proteus* hemolysis.
7. *Proteus* urease contains a sequence IRRET which has “molecular mimicry” with the related LRREI found in collagen XI of hyaline cartilage.
8. Sera obtained from RA patients have cytopathic properties against sheep red cells coated with the cross-reacting EQR(K)RAA and LRREI self-antigen peptides.
9. *Proteus* sequences in hemolysin and urease as well as the self-antigens, HLA-DR1/4 and collagen XI, each contain an arginine doublet, thereby providing a substrate for peptidyl arginine deiminase (PAD) to give rise to citrulline, which is the main antigenic component of CCP, antibodies to which are found in early cases of RA.
10. Antibodies to *Proteus* come not only from sequences cross reacting to self-antigens but also from non-cross reacting sequences, thereby indicating that active RA patients have been exposed to infection by *Proteus*.

Taken together, these arguments show strongly that microbes, especially those derived from urinary tract infections, can act as triggers of autoimmunity, via established epitopes or antigens. We should point out, however, that many other studies (and it is highly doubtful that there could be a unitary cause) indicate antibody and PCR-based evidence for the presence or role of other microbes in RA. Both gut dysbioses and a changed oral microbiota have also been implicated. There is also evidence of a significant association between periodontitis and RA.\(^{37–43}\) Gut dysbioses are also frequently found in RA individuals\(^{44,45}\) and it was recently shown that dysbioses in RA patients may reflect an unusual abundance of certain rare bacterial lineages.\(^{46}\) Normalizing the gut microbiota was also suggested in assessing prognoses and in the treatment of RA.\(^{45,46}\) Some of these other microbes that are associated with RA are listed in Table 1 (and see also literature\(^{21,27,29}\)).

This was a binary (presence/absence) assessment of the microbial contribution, but microbes have many properties beyond presence and absence. In particular, a notable and missing feature of most of these studies (including those of Ebringer) involves (i) the physiological state of the organisms in question, and (ii) what causes them to manifest their activities periodically (for instance as the “flares” characteristic of RA). This we therefore discuss next.

Dormancy, resuscitation, and iron dysregulation

Clinical or infection microbiologists typically recognize bacteria as being in one of two physiological macrostates, either being “alive” (on the basis of their being capable of replications, e.g. to form a colony on a petri dish containing a suitable solid medium), or if not being so capable then being assumed “dead.” However, these are not the only two major physiological states, and indeed they are probably the least common in natural environments! Importantly, the definition of these states is operational: the appearance of a microbe’s physiology also depends on the experiment being used to test it and is not of itself an “innate property” of the organism.\(^{65–67}\) In environmental microbiology, most microbes are non-growing because they lack the nutrients and/or signaling molecules to replicate, but they are not (irreversibly) “dead.” They are best described as “dormant,” and the means by which they are brought back from an apparent state of non-aliveness to one in which they can be cultivated is conventionally known as “resuscitation.” We demonstrated this in a series of papers in laboratory cultures of various actinobacteria (e.g. literature\(^{65,68–73}\)), leading to the discovery of an autologous “wake-up” molecule, the “resuscitation promotion factor” or Rpf\(^{74–78}\) that was necessary for resuscitating dormant bacteria in the presence of weak nutrient broth. Note that assays must be done under conditions of dilution to

Organism	Evidence	Selected references
Campylobacter	Microbiology	47
Chlamydia trachomatis	Synovial tissues	48
Escherichia coli	Antibodies	49–50
Multiple organisms	Review	27,51–53
Mycoplasmas	PCR, westerns, antibodies	54–57
Porphyromonas gingivalis	Antibodies, PCR, culture	38,58–63
Staphylococcus aureus	Microbiology of hip joint infections	64
Calculated growth requirements
Unknown growth and/or isolation
medium requirements
Unknown growth and/or isolation
Medium requirements
Antibiotic sensitivity
Phenotype switching between cultureability and dormancy
Dormant bacteria
Non-culturable bacteria
Culturable bacteria
Subpopulations within a differentiated bacterial system
Figure 2 A bacterial system contains distinct subpopulations (1), that we classify as culturable, dormant and non-culturable (2). Specific attention is given to persister cells (3), and the inter-relationship (4) between the subpopulations and phenotypic switching between cultureability and dormancy (5). Throughout we follow a systems biology approach to suggest resuscitation due to various triggers like iron and noradrenaline (6). (A color version of this figure is available in the online journal.)

extinction,66,67 to avoid the possibility of simple regrowth of small numbers of cells that were always “alive” and never dormant. In clinical microbiology, the terms “persister” and “persistent” are commonly used to refer to a phenotypically non-growing (but non-dead) subset of microbes, typically those that have been treated with but tolerant to antibiotics (e.g. literature27,28,79–86). In general terms, these too are operationally dormant as defined above, though their relative physiological states (e.g. as judged by expression profiles) are not really established. We have recently summarized the evidence for a dormant blood microbiome including in red cells21,27,28 (and see also Damgaard et al.87) to complement other literature pertaining to white cells and tissues (e.g. literature88–92). Such dormant cells are, of course, well placed to create inflammation via a continuing production of inflammatory agents such as LPS and molecules with antigenic properties as described above. We note that the emergence of infection may also accompany extinction,66,67 to avoid the possibility of simple regrowth of small numbers of cells that were always “alive” and never dormant.

The question then arises as to what kinds of stimuli trigger the resuscitation. Two are well established. One is the stimulation of Gram-negative bacterial growth by the stress hormone noradrenaline (NA) and other auto-inducers.97–103 One of the roles of NA is to act as a siderophore,104,105 since it is normally available iron that limits microbial replication in vivo.106–111 a phenomenon that adds considerably to the undesirable and purely chemical effects of the second one, which is the presence and availability of unliganded iron that is liable to catalyze the highly damaging Fenton reaction.25,112 (see Figure 2 adapted from Kell et al.27).

Pathophysiologic markers of inflammation in RA

As is well established, inflammatory agents such as LPS lead to the induction of inflammatory cytokines, most commonly IL-6, IL-1β, and TNF-α.129,147,201,142,159 Cytokine-mediated pathways are central to the pathogenesis of RA.119 A MEDLINE, Google Scholar, Scopus, and Web of Science assessment revealed that a plethora of cytokines and markers of inflammation are involved in RA pathology, and importantly, these cytokines are not only localized to the synovial fluid, but are systemically present and detectable in serum samples (see Table 2). Furthermore, a changed systemic cytokine activity is typically associated with oxidative stress, and this is also true in RA individuals.202–205

Systemic inflammation, cardiovascular disease, and RA

All of the above-mentioned cytokines and related inflammatory mediators are known to be involved in both systemic inflammation and cardiovascular disease, and it is also known that patients with RA carry an excess risk for cardiovascular disease,119,206–210 i.e. that there is a comorbidity. Indeed, cells and cytokines implicated in RA pathogenesis are involved in the development and progression of atherosclerosis, (which is generally recognized as an inflammatory cardiovascular disease219). Analysis of RA patients selected from an RA clinic in South Africa (ethical clearance obtained) confirmed that indeed cardiovascular complications are an important part of the clinical profile of RA patients (see Table 3).

Cardiovascular comorbidities relate more than others to disease activity in RA, and particularly type 2 diabetes and hyperlipidemia were found to be associated with disease activity.211 Cardiovascular disease, and particularly diabetes, has also been linked to gut dysbioses and bacterial translocation.212–216 Recently, it was also suggested that a co-morbidity index should be used both at baseline, and as a continuous variable in analyses in RA patients,217 as some co-morbidities are causally associated with RA and many others are related to its treatment.218

Systemic inflammation is entirely consistent with the plethora of diseases and comorbidities that exhibit iron dysregulation,24,112 raised serum ferritin,219 hypercoagulation and hypofibrinolysis,25 and anomalous morphological changes in both erythrocytes and fibrin.230,231 We thus turn to hypercoagulation in RA.

Hypercoagulation, erythrocyte (RBC), and platelet involvement in RA as a result of systemic inflammation

Another hallmark of systemic inflammation (as well as cardiovascular pathology) is clot hypercoagulability, and a hypercoagulable state is also found in RA,222–231 together with a decreased clot lysis ability,25,225,226 possibly due to genuine amyloid formation.232 Systemic inflammation, oxidative stress, and hypercoagulability all affect erythrocytes (RBCs) and platelets. One of the changes due to the systemic inflammation and oxidative stress noticeable in RBCs and platelets is the production of cell-derived microparticles (MPs).219

Flow cytometry is the usual method to quantify MP233,234; unfortunately, the small size of these structures and lack of standardization in methodology complicates
Mostly, as MP contain surface and cytoplasmic contents of the parent cells and bear phosphatidylserine, antibodies to specific cell surface markers and annexin V can be used for identification or for tissue factor-dependent FXa generation assays. Their sizes can vary but are of the order of 50 to 800 nm and are therefore easily detected on and around their mother-cell by scanning electron microscopy.

In RA, circulating MPs exposing complement components or activator molecules are elevated, and their

Table 2

Cytokines and other markers of inflammation	Effect on RA	Selected references
IL-1β	Upregulated; strong stimulator of bone resorption. Linked to joint inflammation and cartilage and bone destruction in patients with RA.	113–118
IL-6	IL-6 is involved in the regulation of immune responses, hematopoiesis and inflammation and is found in abundance in the synovial fluid and serum of patients with RA and the level correlates with the disease activity and joint destruction. Present in serum of RA patients.	119,120,121,113,114,141
IL-8	It is a neutrophil-activating peptide and the degree of neutrophil turnover is linked to the anaerobic metabolism of the synovial cavity. Upregulated in RA; and IL-6/IL-1β co-stimulation increases IL-8 production. Present in serum of RA patients.	129,130–135
IL-12	Linked to leukocyte migration, bone erosions and angiogenesis in RA. Present in serum of RA patients.	114,136–141
IL-15	Upregulated and expressed in synovial fluid. Long-term retention of IL-15/IL-15R complexes on the surfaces of monocytes and dendritic cells. Present in serum of RA patients.	142,143–146
IL-16	Present in human synovial fibroblasts. Present in serum of RA patients.	147,148–151
IL-17	Plays key roles in the propagation of joint inflammation, cartilage destruction, and bone erosion; IL-17 inhibits progenitor cells in RA cartilage; has regulatory roles in host defense and chronic inflammation which result in tissue damage and autoimmunity; shares downstream transcription factors with IL-1 and TNF-α; promote osteoclastogenesis. Present in serum of RA patients.	147,152,147,113,114,123,132,153–158
IL-18	Detected in synovial fluid in RA patients. Present in serum of RA patients.	159,137,160–165
IL-23	IL-23 is essential for the differentiation of Th17 lymphocytes, a subtype of T lymphocyte implicated in RA and promotes osteoclastogenesis Present in serum of RA patients.	123,139,157,166–168
IL-27	IL-27 upregulated and produced by antigen-presenting cells. Linked to leukocyte migration, bone erosions and angiogenesis. Present in serum of RA patients.	139,155,169–175
IL-7, IL-10, IL-19, IL-20, IL-22, IL-32, IL-35	All implicated in contributing to the pathogenesis of RA.	138,139,176
Toll-like receptor 2 (TLR-2) and TLR-4	Expressed in inflamed RA synovium, and the expression of these receptors is associated with the presence of inflammatory cytokines. expressed by cells within the RA joint and a variety of endogenous TLR ligands are present within the inflamed joints of patients with RA.	147,177–180
TNF-α	Promotes systemic inflammation and autoimmune pathology and is one of the cytokines that make up the acute phase reaction. Linked to joint inflammation and cartilage and bone destruction in patients with RA. Present in serum of RA patients.	119,114,117,120,132,161–184
interferon γ (IFN-γ)	Promotes autoimmune pathology and plays a role in immunity against intracellular pathogens; abundantly expressed in rheumatoid synovitis. Present in serum of RA patients.	113,185–188
Prostaglandin E2	Acts as mediator of immune inflammation.	132,189,190
Thromboxane-A2 and COX-2 [cyclooxygenase (COX)-2/thromboxane A2 (TxA2)]	Thromboxane-A2 produced by activated platelets and has prothrombotic properties, while COX-2 is responsible for the formation of thromboxane and prostaglandins.	191–193
Iron	Increased levels in synovial fluid and changed serum ferritin levels	194–200
levels are correlated with disease activity.240 These MPs are also of great importance in cardiovascular diseases, and this may be one reason for the enhanced cardiovascular morbidity and mortality seen in RA.240 Furthermore, MPs may contribute to the local hypercoagulation and fibrin deposition in inflamed joints of patients with RA.241

Particularly, MPs derived from platelets that are involved in various thrombotic events are elevated in RA patients, and these platelet-derived MPs may be an important role-player in RA240,242,243; they may even be used as a biomarker reflecting systemic cell activation in RA.244,245 Platelet MPs in RA have also been found to be responsible for detrimental effects on endothelial cells, thus supporting their role as biomarkers of vascular damage.246 Although RBC MP formation is not very well described in RA in particular, we recently discussed possible mechanisms by which RBC MP formation may occur in RA.245 The nature and distribution of lipids in RBC bilayers are altered in RA, showing a decreased level of cholesterol and phospholipids when compared to healthy controls.247 Changed levels of cholesterol found in the RBC phospholipid bilayer can determine its capacity to express phosphatidylserine (PS) on the outer leaflet, independent of ATP-driven flip-pases.248 It is also well known that oxidative stress in RA influences RBC membrane integrity (see Table 4), and this supports the possibility that portions of the RBC membrane may bud off to form RBC MPs.174

Pathologic changes in coagulation result directly in abnormal fibrin fiber formation during clotting, and MPs associated with platelets, as well as membrane changes of RBCs, can be visualized by scanning electron microscopy in blood smears from RA individuals. See Figure 3(a) for an example of healthy fibrin fiber formation versus pathological fibrin fiber formation in RA (Figure 3(b)), and a healthy platelet showing a clear cell body and pseudopodia formation with a smooth membrane (Figure 4(a)) versus platelets from RA where activation, spreading, and MP formation are visible (Figure 4(b) and (c)). Red arrows in Figure 4(c) possibly indicate round ultramicrobacteria, which differ from the much more irregularly shaped MPs.

Figure 5(a) and (b) shows a typical healthy RBC with no membrane changes, compared to normal RBCs, of a typical RA individual (Figure 5(c) and (d)), where RBC folding due

\begin{table}
\centering
\caption{An analysis of the co-existing conditions of rheumatoid arthritis patients from a rheumatoid arthritis clinic in South Africa, showing baseline demographics of subjects (n = 38) with Rheumatoid Arthritis}
\begin{tabular}{|c|c|c|}
\hline
Variable & Mean ± (SD) for age, others N (%) & \\
\hline
\hline
Age, years & & \\
Males & 53 ± (13.01) & \\
Females & 55 ± (11.54) & \\
\hline
Chronic medication: & Females & Males & \\
NSAID & 21 (64%) & 4 (80%) & \\
Prednisone & 20 (61%) & 5 (100%) & \\
Chloroquine & 7 (21%) & 2 (40%) & \\
Salazopyrin & 8 (24%) & 1 (20%) & \\
Opioids & 13 (39%) & 1 (20%) & \\
Anti-depressants & 6 (18%) & 1 (20%) & \\
Acid-reducers & 17 (51%) & 3 (60%) & \\
Anti-hypertensives & 14 (42%) & 5 (100%) & \\
Statins & 10 (30%) & 2 (40%) & \\
\hline
Co-morbid conditions: & & & \\
Hypertension & 21 (64%) & 5 (100%) & \\
Dyslipidaemia & 12 (36%) & 1 (20%) & \\
Hypothyroidism & 4 (12%) & & \\
Asthma & 3 (9%) & & \\
Anaemia & 3 (9%) & & \\
Diabetes mellitus & 1 (3%) & 1 (20%) & \\
Gastric reflux & 11 (33%) & 3 (60%) & \\
\hline
\end{tabular}
\end{table}

\begin{table}
\centering
\caption{Markers taken as indicators of oxidative stress in RBCs}
\begin{tabular}{|c|c|}
\hline
Marker & Observed effect On RBCs & \\
\hline
Peroxides & Increased in RBCs249 & \\
Glutathione & Oxidized in RBCs249–251 & \\
Catalase & Increased in RBCs250 & \\
Superoxide dismutase & Increased in RBCs250 & \\
Malondialdehyde & Increased in RBCs250 & \\
Membrane redox system & Upregulated in RBCs250 & \\
Caspase-3/Calpain & Increased in RBCs251 & \\
Enzyme activity, e.g. ATPases & Altered in RBCs249,251–254 & \\
2,3 Diphosphoglycerate & Decreased in RBCs251,253,254 & \\
\hline
\end{tabular}
\end{table}

\begin{figure}
\centering
\includegraphics[width=\textwidth]{image}
\caption{Fibrin fiber formation in the presence of thrombin (a) healthy fibrin and (b) rheumatoid arthritis fibrin with matted fibrin. Scale: 1 \textmu m}
\end{figure}
to loss of structural integrity is seen in the presence of fibrin fiber formation (when thrombin is added (Figure 5(c))) and membrane changes are observed with MP formation (Figure 5(d)). The changed membrane surface is also confirmed via roughness analysis of RBC membranes using atomic force microscopy (AFM), where a significantly increased roughness was noted in RA RBCs compared to the case of healthy RBCs (Figure 6).

Figure 4 (a) A healthy platelet with prominent cell body and pseudopodia formation and smooth membrane; (b) two spreaded and activated platelets with microparticle formation (irregularly shaped structures closely associated with membranes (white arrows)) in rheumatoid arthritis; red arrows showing much rounder structures – possibly ultrabacteria; (c) a higher magnification of an RA platelet with microparticles budding off spreaded platelet. The scale bars are (a): 200 nm; (b): 1 μm and (c): 200 nm. (A color version of this figure is available in the online journal.)

Figure 5 (a) and (b) A representative healthy RBC (b is higher magnification showing the membrane); (c) and (d) A representative rheumatoid arthritis RBC with folding (c) and visible membrane microparticle formation. Scale bars for (a) and (c): 1 μm; scale bars for (b) and (d): 100 nm
A great many approaches to assessing disease severity exist, and the tendency to prescribe more drugs to those with more severe disease is necessarily a confounding factor. Databases for medical claims around disease severity have value, but they tend to lack information on important clinical variables, such as the number of tender and swollen joints, which would traditionally be used to assess disease severity in RA. Where comparissons exist, the information regarding, e.g. the presence of swollen joints and disease severity, are not well correlated. Objective measures of variables such as inflammatory cytokines are attractive, but for the patient, the severity, especially of pain, is subjective, and patient-assessed severity indices are consequently common. This said, the patient global assessment (PGA) is noteworthy as while using seven objective criteria based on stiffness and swelling, pain (being presumably too subjective) is not among them. Other studies did find some correlations between swelling, stiffness, and pain of joints.

Small molecules (sDMARDs) and their role(s) as antibacterials

The chief recommendations are to start early and monitor frequently. These are seen as the strategy of first resort, with methotrexate, sulfasalazine, and leflunomide being seen as front line drugs (possibly along with low-dose glucocorticoids). It is highly noteworthy that sulfasalazine is in fact an antibiotic (one of the first), as it is split in the intestine into aspirin and the antibiotic sulphaspyridine, while methotrexate shows antibiotic activity against organisms as diverse as *S. aureus* and *Plasmodium vivax*. As mentioned above, “first treatments” are the least likely to be confounded by bias occasioned by the fact that later treatments will be favored by patients with more severe or refractory disease, a phenomenon that probably confounded a study of minocycline and doxycycline. However, and while – like other drugs – they probably have multiple effects, a good many studies indicate the utility of the antibiotics minocycline and doxycycline in treating RA (e.g. literature). After sDMARDs have been tried, the recommendation is to move to a biological.

Biologicals (bDMARDs)

The chief biologicals are inhibitors of TNF-α, including monoclonals, and inhibitors of the IL-6 receptor; they all decrease inflammatory symptoms, and it is unclear whether they might have any direct or indirect antibacterial effects. Their chief issue is that, as proteins, they can themselves cause (auto) antigens to be raised, while, as mentioned above, any dampening of immune system response may increase the likelihood of novel or emergent infection.

Iron chelation as a therapeutic? If the “dormant microbial” hypothesis is correct, it is to be predicted that...
A role for lipopolysaccharides (LPS) in RA

Recently, we summarized the evidence for a significant involvement of lipopolysaccharide shed by dormant and resuscitating bacteria as underpinning the chronic inflammation characteristic of a variety of diseases, and suggested that LPS may play a role in the pathogenesis of RA.21 The presence and role of LPS may be supported by a recent review that provided evidence for the involvement of a microbiome in inflammatory arthritis and rheumatic diseases.316 Recently, Scher et al.317 also found strong correlates between the presence of \textit{Prevotella copri} and new-onset untreated RA patients.

Certainly, LPS is also known to upregulate all of the cytokines upregulated in RA and mentioned in Table 1. In our recent review,21 we also focused on the fact that antibodies could be generated to LPS that – like the anti-\textit{Proteus} antibodies mentioned in detail above – might also serve as autoantibodies of significance in RA and in particular during the flares (that may be ascribed to periods of particular resuscitation activity).

The generalized LPS also exerts its effects via activation of cytokines such as IL-6, and TNF-\textit{\alpha} in response to LPS,115 IL-8,318 IL-12,319 IL-15,320 thereby exciting the innate...
immune response. The scheme is typically as follows (extensively discussed in Kell and Pretorius21):

- LPS binds to the toll-like receptor 4 (TLR4).321–325
- Production of a variety of pro-inflammatory cytokines,326–328 where NF-κB plays a prominent role329,330 via a set of canonical pathways illustrated in Figure 7.
- NF-κB translocates to the nucleus to turn on a great many genes in a frequency-dependent fashion, including in particular TNF-α and IL-6.331–333
- At high concentrations of LPS,334,335 it also activates a “non-canonical” inflammasome pathway, which is independent of TLR4336,337 (see Figure 8).

Finally (see above), LPS may catalyze the formation of inflammatory and cytotoxic β-amyloids. Consequently, we might again suggest that appropriate antibacterials and iron chelators (that can hitchhike on the necessary transporters282,339–343) would serve to lower this stimulus, and in contrast to the biologics actually strike at the root causes of the disease.

Further tests of our hypothesis

While we have adduced much evidence in favor of the view that recurring infection by (resuscitating dormant) bacteria is in fact a, if not the, major and ultimate cause of RA, albeit there is not a unitary “cause,” our views do come with multiple predictions that may be tested (of course some have been already, see above, in many cases extensively).

- Bacteria should be detectable in relevant tissues of RA patients, whether by culture or by molecular methods (e.g. macromolecular sequencing or antibodies).
- Relevant products such as LPS and other antigens should be detectable in patients vs. controls.
- Their numbers (bacteria and/or inflammatory products) should increase with disease severity and during “flares.”
- Their numbers and activity (hence disease prevalence/severity) should correlate with free iron levels.
- Treatments that lower the activity of bacteria and/or their products should be of significant therapeutic benefit.
- These may include iron withholding, antibacterial, anti-LPS, and anti-amyloid treatments.

Although probably not yet seen as mainstream, a number of therapeutic strategies based on these and other ideas (including the roles of vitamin D metabolites, that for reasons of space we do not discuss here) do indeed seem to have enjoyed success (e.g. literature344–348).
Concluding remarks
As mentioned previously, while it can be difficult (but cf.49) to ascribe causality in complex biochemical networks, an accepted strategy within the philosophy of science, that rather accurately describes the systems biology approach, is to the effect that if a series of ostensibly unrelated findings are brought together into a self-consistent narrative, that narrative is thereby strengthened. This is known as “coherence.”350–353 We have sought, we believe successfully, to bring together the evidence for a coherent narrative that links infection, microbial dormancy, iron dysregulation, and inflammation as part of the etiology of RA. Importantly, the proposals can easily be tested further, both diagnostically and therapeutically.

Authors’ contributions: All authors participated in the design, interpretation of the studies, and analysis of the data and review of the manuscript. EP wrote the paper and prepared images; DBK wrote and edited the paper; OA prepared design, interpretation of the studies, and analysis of the data. All authors participated in the comparisons using the 2010 ACR/EULAR classification criteria and the 1987 ACR classification criteria. Results from the Norfolk Arthritis Register. Ann Rheum Dis 2013;72:1315–20
6. Ebringer A. Rheumatoid arthritis and Proteus. London: Springer, 2012
7. Poehlmann KM. Rheumatoid arthritis: the infection connection. Torrance, CA: Satori Press, 2012
8. Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med 2015;372:793–5
9. Ebringer A, Rashid T. Rheumatoid arthritis is caused by Proteus: the molecular mimicry theory and Karl Popper. Front Biosci 2009;1:577–86
10. Symmons DPM. Epidemiology research in rheumatology—progress and pitfalls. Nat Rev Rheumatol 2015;11:631–8
11. Symmons D, Turner G, Webb R, Astin P, Barrett E, Lunt M, Scott D, Silman A. The prevalence of rheumatoid arthritis in the United Kingdom: new estimates for a new century. Rheumatology 2002;41:793–800
12. Gibofsky A. Overview of epidemiology, pathophysiology, and diagnosis of rheumatoid arthritis. Am J Manag Care 2012;18(13 Suppl):S295–302
13. Tobón GJ, Youinou P, Sarasu A. The environment, geo-epidemiology, and autoimmune disease: rheumatoid arthritis. J Autoimmun 2010;35:10–4
14. Charles J, Brit H, Pan Y. Rheumatoid arthritis. Aust Fam Physician 2013;42:765
15. Crane MM, Junea M, Allen J, Kurrrasch RH, Chu ME, Quattrocchi E, Manson SC, Chang DJ. Epidemiology and treatment of new-onset and established rheumatoid arthritis in an insured US population. Arthritis Care Res 2015;67:1646–55
16. Silman AJ, Pearson JE. Epidemiology and genetics of rheumatoid arthritis. Arthritis Res 2002;4(Suppl 3):S265–72
17. Melmes IB, Scheit G. The pathogenesis of rheumatoid arthritis. N Engl J Med 2011;365:2205–19
18. Aho K, Koskenuuo M, Tuominen J, Kaprio J. Incidence of rheumatoid arthritis in a nationwide series twins. J Rheumatol 1986;13:899–902
19. Silman AJ, MacGregor AJ, Thomson W, Holligan S, Carthy D, Farhan A, Ollier WE. Twin concordance rates for rheumatoid arthritis: results from a nationwide study. Br J Rheumatol 1993;32:903–7
20. Svendsen AJ, Holm NV, Kyrkvik K, Petersen PH, Junker P. Relative importance of genetic effects in rheumatoid arthritis: historical cohort study of Danish nationwide twin population. BMJ 2002;324:264–6
21. Kell DB, Pretorius E. On the translocation of bacteria and their lipopolysaccharides between blood and peripheral locations in chronic, inflammatory diseases: the central roles of LPS and LPS-induced cell death. Integr Biol 2015;7:1399–77
22. Alten R, Pohl C, Choy EH, Christensen R, Furst DE, Hewlett SE, Leong A, May JE, Sanderson TC, Strand V, Woodworth TG, Bingham CO 3rd. Developing a construct to evaluate flares in rheumatoid arthritis: a conceptual report of the OMERACT RA flare definition working group. J Rheumatol 2011;38:1745–50
23. Bingham CO 3rd, Pohl C, Woodworth TG, Hewlett SE, May JE, Rahman MU, Witter JP, Furst DE, Strand CV, Boers M, Alten RE. Developing a standardized definition for disease “flare” in rheumatoid arthritis (OMERACT 9 Special Interest Group). J Rheumatol 2009;36:2335–41
24. Kell DB. Iron behaving badly: inappropriate iron chelation as a major contributor to the aetiology of vascular and other progressive inflammatory and degenerative diseases. BMC Med Genomics 2009;22
25. Kell DB, Pretorius E. The simultaneous occurrence of both hypercoagulability and hypofibrinolysis in blood and serum during systemic inflammation, and the roles of iron and fibrinogen. Integr Biol 2015;7:24–52
26. Funke C, Schneider SA, Berg D, Kell DB. Genetics and iron in the systems biology of Parkinson’s disease and some related disorders. Neurochem Int 2013;62:637–52
27. Kell DB, Potgieter M, Pretorius E. Individuality, phenotypic differentiation, dormancy and persistence in culturable bacterial systems: commonalities shared by environmental, laboratory, and clinical microbiology. F1000Research 2015;6:179

Acknowledgments
We thank the National Research Foundation (NRF) and Medical Research Council (MRC) of South Africa for supporting this collaboration. This article is paper 10 in the series “The role of the dormant blood microbiome in chronic, inflammatory disease.”

Declaration of conflicting interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Ethical approval
Ethical approval was granted at the University of Pretoria (Human Ethics Committee: Faculty of Health Sciences): E Pretorius.

Funding
This work was also a contribution from the Manchester Centre for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM) (BBSRC grant BB/M017702/1).

References
1. Chemin K, Klareskog L, Malmstrom J. Is rheumatoid arthritis an autoimmune disease? Curr Opin Rheumatol 2016;28:181–8
2. Carmona L, Cross M, Williams B, Lassere M, Marsh L. Rheumatoid arthritis. Best Pract Res Clin Rheumatol 2010;24:733–45
3. Terao C, Ikari K, Nakayamada S, Takahashi Y, Yamada R, Ohnura K, Hashimoto M, Furu M, Ito H, Fujii T, Yoshida S, Saito K, Taniguchi A, Momohara S, Yamanaka H, Mimori T, Matsuda F. A twin study of rheumatoid arthritis in the Japanese population. Mod Rheumatol 2016;26:685–9
4. Mateen S, Zafar A, Moin S, Khan AQ, Zubair S. Understanding the role of cytokines in the pathogenesis of rheumatoid arthritis. Clin Chim Acta 2016;455:161–71
5. Humphreys JH, Verstappen SM, Hyrich KL, Chipping JR, Marshall T, Symmons DP. The incidence of rheumatoid arthritis in the UK:...
28. Potgieter M, Bester J, Kell DB, Pretorius E. The dormant blood microbiome in chronic, inflammatory diseases. FEMS Microbiol Rev 2015;39:567–91
29. Foxman B. Epidemiology of urinary tract infections: incidence, morbidity, and economic costs. Am J Med 2002;113(Suppl 1A):55–13
30. Foxman B. The epidemiology of urinary tract infection. Nat Rev Urol 2010;7:653–60
31. Vasudevan M. Urinary tract infection: an overview of the infection and the associated risk factors. J Microbiol Exp 2014;1:8–22
32. Ehringer A, Rashid T, Wilson C. Rheumatoid arthritis, Proteus, anti-CCP antibodies and Karl Popper. Autoimmun Rev 2010;9:216–23
33. Ehringer A, Rashid T. Rheumatoid arthritis is caused by a Proteus urinary tract infection. Apnus 2014;122:363–8
34. Medawar P. Pluto’s republic. Oxford: Oxford University Press, 1982
35. Kell DB, Oliver SG. Here is the evidence, now what is the hypothesis? The complementary roles of inductive and hypothesis-driven science in the post-genomic era. Bioscience 2004;26:99–105
36. Kell DB. Scientific discovery as a combinatorial optimisation problem: how best to navigate the landscape of possible experiments? Bioscience 2012;34:236–44
37. Mercado FB, Marshall RI, Klestov AC, Bartold PM. Is there a relationship between rheumatoid arthritis and periodontitis. J Periodontol 2001;72:779–87
38. Mercado F, Marshall RI, Klestov AC, Bartold PM. Is there a relationship between rheumatoid arthritis and periodontal disease? J Periodontol 2000;72:267–72
39. de Smit M, Westra J, Vissink A, Doornbos-van der Meer B, Brouwer E, van Winkelhoff AJ. Periodontitis in established rheumatoid arthritis patients: a cross-sectional clinical, microbiological and serological study. Arthritis Res Ther 2012;14:R222
40. Choi IA, Kim JH, Kim YM, Lee JY, Kim KH, Lee EF, Lee EB, Lee YM, SongYW. Periodontitis is associated with rheumatoid arthritis: a study with longstanding rheumatoid arthritis patients in Korea. Kor J Intern Med 2016;31(5):977–86
41. Fuggle NR, Smith TO, Kaul A, Sofat N. Hand to mouth: a systematic review and meta-analysis of the association between rheumatoid arthritis and periodontitis. Front Immunol 2016;7:80
42. Scher JU, Ubeda C, Eqinda M, Kharin R, Buisci Y, Viale A, Lipuma L, Attur M, Pillinger MH, Weissmann G, Littman DR, Pamer EG, Bretz WA, Abramson SB. Periodontal disease and the oral microbiota in new-onset rheumatoid arthritis. Arthritis Rheum 2012;64:3083–94
43. Bialowas K, Swierkot J, Radwan-Oczko M. [Role of Porphyromonas gingivalis in rheumatoid arthritis and inflammatory spondyloarthopathies]. Postepy Hig Med Dos 2014;68:1171–9
44. Maeda Y, Kumanogoh A, Takeda K. Altered composition of gut microbiota in rheumatoid arthritis patients. Nihon Rinsho Meneki Gakkai Kaishi 2016;39:59–63
45. Zhang X, Zhang D, Jia H. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat Med 2015;21:895–905
46. Chen J, Wright K, Davis JM, Jerald P, Marietta EV, Murray J, Nelson H, Matteson EL, Taneja V. An expansion of rare lineage intestinal microbes characterizes rheumatoid arthritis. Genome Med 2016;8:43
47. Leitosalo-Repo M. Early arthritis and infection. Curr Opin Rheumatol 2005;17:433–9
48. Carter JD, Gerard HC, Whittum-Hudson JA, Hudson AP. The molecular basis for disease phenotype in chronic Chlamydia-induced arthritis. Int J Clin Rheumatol 2012;7:627–40
49. Newkirk MM, Goldbach-Mansky R, Senior BW, Klippel J, Schumacher HR Jr, El-Gabalawy HS. Elevated levels of IgM and IgA antibodies to Proteus mirabilis and IgM antibodies to Escherichia coli are associated with early rheumatoid factor (RF)-positive rheumatoid arthritis. Rheumatology 2005;44:1433–41
50. Newkirk MM, Zbar A, Baron M, Manges AR. Distinct bacterial colonization patterns of Escherichia coli subtypes associate with rheumatoid factor status in early inflammatory arthritis. Rheumatology 2010;49:1311–16
51. Hill Gaston JS, Lillcrap MS. Arthritis associated with enteric infection. Best Pract Res Clin Rheumatol 2003;17:219–39
52. Aastrupskiene D, Bernotiene E. New insights into bacterial persistence in reactive arthritis. Clin Exp Rheumatol 2007;25:470–9
53. Amital H, Govoni M, Maya R, Meroni PL, Ori S, Bebear C, Dehais J. Systematic detection of mycoplasmas by culture and polymerase chain reaction (PCR) procedures in 209 synovial fluid samples. Br J Rheumatol 1997;36:310–4
54. Sawitzke A, Joyner D, Knudston K, Mu HH, Cole B. Anti-MAM antibody in rheumatic disease: evidence for a MAM-like superantigen in rheumatoid arthritis? J Rheumatol 2000;27:358–64
55. Martinez-Martinez RE, Abud-Mendoza C, Patino-Marín N, Rizo-Rodriguez JC, Little JW, Loyola-Rodriguez JP. Detection of peri-odontal bacterial DNA in serum and synovial fluid in refractory rheumatoid arthritis patients. J Clin Periodontol 2009;36:1004–10
56. Mikuls TR, Payne JB, Reinhardt RA, Thiele GM, Maziarz E, Cannella AC, Holers VM, Kuhn KA, O’Dell JR. Antibody responses to Porphyromonas gingivalis (P. gingivalis) in subjects with rheumatoid arthritis and periodontitis. Int Immunopharmacol 2009;9:38–42
57. Hitchen CA, Chandad F, Ferucci ED, Willemsen A, Loa-Fasainay A, van der Woude D, Markland J, Robinson D, Elias B, Newkirk M, Toes RM, Huizinga TW, El-Gabalawy HS. Antibodies to Porphyromonas gingivalis are associated with anticitrullinated protein antibodies in patients with rheumatoid arthritis and their relatives. J Periodontol 2010;37:1105–12
58. Mikuls TR, Thiele GM, Deane KD, Payne JB, O’Dell JR, Yu F, Sayles H, Weisman MH, Gregersen PK, Buckner JH, Keating RM, Derber LA, Robinson WH, Holers VM, Norris JM. Porphyromonas gingivalis and disease-related autoantibodies in individuals at increased risk of rheumatoid arthritis. Arthritis Rheum 2012;64:3522–30
59. Li S, Yu Y, Yue Y, Liao H, Xie W, Thai J, Mikuls TR, Thiele GM, Duryee MJ, Sayles H, Payne JB, Klassen LW, O’Dell JR, Zhang Z, Su K, autoantibodies from single circulating plasmablasts react with citrullinated antigens and Porphyromonas gingivalis in rheumatoid arthritis. Arthritis Rheumatol 2016;68:614–26
60. Kharlamova N, Jiang X, Sherina N, Potempa B, Israelsson L, Quirke AM, Eriksson K, Yucel-Lindberg T, Venables PJ, Potempa J, Alfredsson L, Lundberg K. Antibodies to Porphyromonas gingivalis indicate interaction between oral infection, smoking, and risk genes in rheumatoid arthritis etiology. Arthritis Rheumatol 2016;68:604–13
61. Schrama JC, Lutro O, Langwath H, Hallan G, Espehaug B, Sjursen H, Engesæter LB, Fenvang BT. Bacterial findings in infected hip joint replacements in patients with rheumatoid arthritis and osteoarthritis: a study of 318 revisions for infection reported to the Norwegian orthopa- plasty register. ISRN Orthop 2012;2012:437675
62. Kaprelyants AS, Kell DB. Dormancy in stationary-phase cultures of Micrococcus luteus: flow cytometric analysis of starvation and resuscitation. Appl Environ Microbiol 1993;59:3187–96
63. Kell DB, Kaprelyants AS, Weichart DH, Harwood CL, Barer MR. Viability and activity in readily culturable bacteria: a review and discussion of the practical issues. Antonie van Leeuwenhoek 1982;59:169–87
64. Kaprelyants AS, Kell DB. Bacterial dormancy and culturability: the role of autocrine growth factors. Curr Opin Microbiol 2000;3:238–43
65. Kaprelyants AS, Kell DB. Rapid assessment of bacterial viability and vitality using rhodamine 123 and flow cytometry. J Appl Bacteriol 1992;72:410–22
66. Kaprelyants AS, Mukamolova GV, Kell DB. Estimation of dormant Micrococcus luteus cells by penicillin lysis and by resuscitation in cell-free spent medium at high dilution. FEMS Microbiol Lett 1994;115:347–52
70. Kaprelyants AS, Mukamolova GV, Davey HM, Kell DB. Quantitative analysis of the physiological heterogeneity within starved cultures of Micrococcus luteus using flow cytometry and cell sorting. *Appl Environ Microbiol* 1996;62:1311–6

71. Mukamolova GV, Kaprelyants AS, Kell DB. Secretion of an antibacterial factor during resuscitation of dormant cells in Micrococcus luteus cultures held in an extended stationary phase. *Antonie van Leeuwenhoek* 1995;67:289–95

72. Mukamolova GV, Yanopolskaya ND, Kell DB, Kaprelyants AS. On resuscitation from the dormant state of Micrococcus luteus. *Antonie van Leeuwenhoek* 1997;72:237–43

73. Mukamolova GV, Kaprelyants AS, Kell DB, Young M. Adoption of the transiently non-culturable state - a bacterial survival strategy? *Adv Micro Physiol* 2003;47:65–129

74. Mukamolova GV, Kaprelyants AS, Young DI, Young M, Kell DB. A bacterial cytokine. *Proc Natl Acad Sci* 1998;95:8916–21

75. Mukamolova GV, Kormer SS, Kell DB, Kaprelyants AS. Stimulation of the multiplication of Micrococcus luteus by an autocrine growth factor. *Arch Microbiol* 1999;172:9–14

76. Mukamolova GV, Turapov OA, Young DI, Kaprelyants AS, Kell DB, Young M. A family of autocrine growth factors in Mycobacterium tuberculosis. *Mol Microbiol* 2002;46:623–35

77. Mukamolova GV, Turapov OA, Kazarian K, Telkov M, Kaprelyants AS, Kell DB, Young M. The rpf gene of Micrococcus luteus encodes an essential secreted growth factor. *Mol Microbiol* 2002;46:631–21

78. Mukamolova GV, Murzin AG, Salina EG, Demina GR, Kell DB, Kaprelyants AS, Young M. A family of autocrine growth factors in Mycobacterium tuberculosis. *Mol Microbiol* 2006;59:84–98

79. Allison KR, Brynildsen MP, Collins JJ. Heterogeneous bacterial persisters and engineering approaches to eliminate them. *Curr Opin Microbiol* 2011;14:593–8

80. Fauvart M, De Groote VN, Michiels J. Role of persister cells in chronic infections: clinical relevance and perspectives on anti-persister therapies. *J Med Microbiol* 2011;60(Pt 6):699–709

81. Kester JC, Fortune SM. Persisters and beyond: mechanisms of phenotypic drug resistance and drug tolerance in bacteria. *Crit Rev Biochem Mol Biol* 2014;49:91–101

82. Lewis K. Persister cells, dormancy and infectious disease. *Nat Rev Microbiol* 2007;5:48–56

83. Lewis K. Persister cells. *Annu Rev Microbiol* 2010;64:357–72

84. Wood TK, Knabel SJ, Kwan BW. Bacterial persister cell formation and dormancy. *Appl Environ Microbiol* 2013;79:7116–21

85. Zhang Y, Yew WW, Barer MR. Targeting persisters for tuberculosis control. *Antimicrob Agents Chemother* 2012;56(S):2223–30.

86. Holden DW. Persisters unmasked. *Appl Environ Microbiol* 2002;68:4788–94

87. Thwaites GE, Gant V. Are bloodstream leukocytes Trojan Horses for the multiplication of Mycobacterium tuberculosis? *Clin Microbiol Rev* 2011;24:593–8

88. Pretorius et al. The struggle for iron – a bacterial survival strategy? *Biochem Biophys Res Commun* 1993;190:447–52

89. Lyte M. Microbial endocrinology and infectious disease in the 21st century. *Trends Microbiol* 2004;12:14–20

90. Lyte M. Microbial endocrinology: host-microbiota neuroendocrine interactions influencing brain and behavior. *Cytot Microbes* 2014;5:381–9

91. Reissbrodt R, Rienaecker I, Romanova JM, Freestone PPE, Haigh RD, Lyte M, Tschäpe H, Williams PH. Resuscitation of Salmonella enterica serovar typhimurium and enterohemorrhagic Escherichia coli from the viable but nonculturable state by heat-stable enterobacterial autoinducer. *Appl Environ Microbiol* 2002;68:4788–94

92. Ruscitti P, Cipriani P, Carubbi F, Liakoudi V, Zazzeroni F. The role of IL-

93. Curtis JR, Patkar N, Xie A, Martin C, Allison JJ, Saag M, Shatin D, Furst DE, Emery P. Rheumatoid arthritis pathophysiology: update on emerging cytokine and cytokine-associated cell targets. *Rheumatology* 2014;53:1560–9

94. Ruscitti P, Cipriani P, Carubbi F, Liakoudi V, Zazzeroni F. The role of IL-

95. Nicolas N, Che D, Mariette X, Lortholary O. Research Axed on Tolerance of Biotherapies Group. Incidence and risk factors of Legionella pneumophila pneumonia during anti-tumor necrosis factor therapy: a prospective French study. *Clin 2013;144:990–8

96. Tubach F, Salmon D, Ravaud P, Allanoire Y, Goupille P, Breban M, Pollar-Prades B, Poupin S, Sacchi A, Chichemanian RM, Bretagne S, Emile D, Lemann M, Lortholary O, Mariette X, Research Axed on Tolerance of Biotherapies Group. Risk of tuberculosis is higher with anti-tumor necrosis factor monoclonal antibody therapy than with soluble tumor necrosis factor receptor therapy; the three-year prospective French Research Axed on Tolerance of Biotherapies registry. *Arthritis Rheum* 2009;60:1894–94.

97. Freeston PF, Haigh RD, Williams PH, Lyte M. Stimulation of bacterial growth by heat-stable, norepinephrine-induced autoinducers. *FEMS Microbiol Lett* 1999;172:53–60

98. Freeston PPE, Sandrini SM, Haigh RD, Lyte M. Microbial endocrinology: how stress influences susceptibility to infection. *Trends Microbiol* 2008;16:55–64

99. Lyte M, Ernst S. Catecholamine-induced growth of Gram-negative bacteria. *Life Sci* 1992;50:203–12

100. Lyte M, Ernst S. Alpha-adrenergic and beta-adrenergic-receptor involvement in catecholamine-induced growth of gram-negative bacteria. *Biochem Biophys Res Commun* 1993;190:447–52

101. Lyte M. Microbial endocrinology and infectious disease in the 21st century. *Trends Microbiol* 2004;12:14–20

102. Lyte M. Microbial endocrinology: host-microbiota neuroendocrine interactions influencing brain and behavior. *Cytot Microbes* 2014;5:381–9

103. Reissbrodt R, Rienaecker I, Romanova JM, Freestone PPE, Haigh RD, Lyte M, Tschäpe H, Williams PH. Resuscitation of Salmonella enterica serovar typhimurium and enterohemorrhagic Escherichia coli from the viable but nonculturable state by heat-stable enterobacterial autoinducer. *Appl Environ Microbiol* 2002;68:4788–94

104. Furst DE, Emery P. Rheumatoid arthritis pathophysiology: update on emerging cytokine and cytokine-associated cell targets. *Rheumatology* 2014;53:1560–9

105. Ruscitti P, Cipriani P, Carubbi F, Liakoudi V, Zazzeroni F. The role of IL-

106. Armitage AE, Drakesmith H. The battle for iron. *Science* 2014;346:1299–300

107. Fischbach MA, Lin HN, Liu DR, Walsh CT. How pathogenic bacteria evade mammalian sabotage in the battle for iron. *Nat Chem Biol* 2006;2:132–8

108. Halef KP, Skaar EP. A battle for iron: host sequestration and Staphylococcus aureus acquisition. *Microbes Infect* 2012;14:217–27

109. Subashchandrabose S, Mobley HLT. Back to the metal age: battle for metals at the host-pathogen interface during urinary tract infection. *Metalomics* 2015;7:935–42

110. Nairz M, Schroll A, Sonnweber T, Weiss G. The struggle for iron – a metal at the host-pathogen interface. *Cell Microbiol* 2010;12:1691–702

111. Reid DW, Anderson GJ, Lamont IL. Role of lung iron in determining the bacterial and host struggle in cystic fibrosis. *Am J Physiol Lung Cell Mol Physiol* 2009;297:L795–802

112. Kell DB. Towards a unifying, systems biology understanding of large-scale cellular death and destruction caused by poorly liganded iron: Parkinson’s, Huntington’s, Alzheimer’s, prions, bactericides, chemical toxicology and others as examples. *Arch Toxicol* 2010;84:725–89

113. Roberts CA, Dickinson AK, Taams LS. The interplay between monocytes/macrophages and CD4(+) T cell subsets in rheumatoid arthritis. *Front Immunol* 2015;6:571

114. Furst DE, Emery P. Rheumatoid arthritis pathophysiology: update on emerging cytokine and cytokine-associated cell targets. *Rheumatology* 2014;53:1560–9

115. Ruscitti P, Cipriani P, Carubbi F, Liakoudi V, Zazzeroni F. The role of IL-

116. Pretorius et al. Major involvement of bacterial components in RA 367
116. Lee B, Kim TH, Jun JB, Yoo DH, Woo JH, Choi SJ, Lee YH, Song GG, Sohn J, Park-Min KH, Ivashkiv LB, Ji JD. Direct inhibition of human RANK+ osteoclast precursors identifies a homeostatic function of IL-1beta. J Immunol 2010;185:5926–34

117. Joosten LA. Excessive interleukin-1 signaling determines the development of TH1 and TH17 responses in chronic inflammation. Arthritis Rheum 2010;62:520–2

118. Eklund KK, Leirisalo-Repo M, Ranta P, Maki T, Kautiainen H, Hannonen P, Korpeila M, Hakala M, Jarvinen M, Pottonen T. Serum IL-1beta levels are associated with the presence of erosions in recent onset rheumatoid arthritis. Clin Exp Rheumatol 2007;25:684–9

119. McInnes JB, Buckley CD, Isaacs JD. Cytokines in rheumatoid arthritis - shaping the immunological landscape. Nat Rev Rheumatol 2016;12:63–8

120. Rossi D, Modena V, Sciascia S, Roccatello D. Rheumatoid arthritis: biological therapy other than anti-TNF. Int Immunopharmacol 2015;27:185–8

121. Huizinga TW. Personalized medicine in rheumatoid arthritis: is the glass half full or half empty? J Intern Med 2015;277:178–87

122. Kim GW, Lee NR, Pi RH, Lim YS, Lee YM, Lee JM, Jeong HS, Huizinga TW. Personalized medicine in rheumatoid arthritis: is the glass half full or half empty? J Intern Med 2015;277:178–87

123. Siebert S, Tsoukas A, Robertson J, McInnes I. Cytokines as therapeutic targets in rheumatoid arthritis and other inflammatory diseases. Pharmacol Rev 2015;67:280–309

124. Puchner A, Blum S. IL-6 blockade in chronic inflammatory diseases. Wien Med Wochenschr 2015;165:14–22

125. Calabrese LH, Rose-John S. IL-6 biology: implications for clinical targeting in rheumatic disease. Nat Rev Rheumatol 2014;10:720–7

126. Li F, Xu J, Zheng J, Sokolove J, Zhu K, Zhang Y, Sun H, Evangelou E, Pan Z. Association between interleukin-6 gene polymorphisms and rheumatoid arthritis in Chinese Han population: a case-control study and a meta-analysis. Sci Rep 2014;4:5714

127. Srirangan S, Choy EH. The role of interleukin 6 in the pathophysiology of rheumatoid arthritis. Ther Adv Musculoskelet Dis 2010;2:247–56

128. Madhok R, Crilly A, Watson J, Capell HA. Serum interleukin 6 levels in rheumatoid arthritis: correlations with clinical and laboratory indices of disease activity. Ann Rheum Dis 1993;52:232–4

129. Cho ML, Ju IH, Kim HR, Oh HJ, Kang CM, Jhun JY, Lee SY, Park MK, Min JK, Park SH, Lee SH, Kim HY. Toll-like receptor 2 ligand mediates the upregulation of angiogenic factor, vascular endothelial growth factor and interleukin-8/CXCIL8 in human rheumatoid synovial fibroblasts. Immunol Lett 2007;108:121–8

130. Caiello I, Minnone G, Holzinger D, Vogl T, Prencipe G, Manzo A, De Sandre G, Strobl R, Meli I, De Sena E, Gualtieri P, Tselios T, Manzi S, Zaccaria A, Iannone R. Increased interleukin-12 and interferon-gamma gene polymorphisms in Brazilian patients with rheumatoid arthritis: a pilot study. Tissue Antigens 2015;86:276–8

131. Nakano S, Morimoto S, Suzuki S, Tsushima H, Yamanaka K, Sekigawa I, Takasaki Y. Immunoregulatory role of IL-35 in T cells of patients with rheumatoid arthritis. Rheumatology 2015;54:1498–506

132. Pope RM, Shahrara S. Possible roles of IL-12-family cytokines in rheumatoid arthritis. Nat Rev Rheumatol 2013;9:252–6

133. Ernemann S, af Klint E, Catrina AI, Sundberg E, Engstrom M, Klareskog L, Ulfgren AK. Synovial expression of IL-15 in rheumatoid arthritis is not influenced by blockade of tumor necrosis factor. Arthritis Res Ther 2006;8:R18

134. Ebrahimi AA, Noshad H, Sadreddini S, Hejazi MS, Mohammadzadeh Sadigh Y, Esbarghi Y, Ghoyazadeh M. Serum levels of TNF-alpha, TNF- alphaRI, TNF-alphaRII and IL-12 in treated rheumatoid arthritis patients. Iran J Immunol 2010;7:67–73

135. González-Alvaro I, Ortiz AM, García-Vicuna R, Balsa A, Pascual-Salcedo D, Laffon A. Increased serum levels of interleukin-15 in rheumatoid arthritis with long-term disease. Clin Exp Rheumatol 2003;21:639–42

136. Jung YO, Cho ML, Kang CM, Jhun JY, Park JS, Oh HJ, Min JK, Park SH, Kim HY. Toll-like receptor 2 and 4 combination engagement upregulates IL-15 synergistically in human rheumatoid synovial fibroblasts. Immunol Lett 2007;109:21–7

137. Kageyama Y, Takahashi M, Torikai E, Suzuki M, Ichikawa T, Nagafusa T, Koide Y, Nagano A. Treatment with anti-TNF-alpha antibody infliximab reduces IL-15 levels in patients with rheumatoid arthritis. Clin Rheumatol 2007;26:505–9

138. Yang XK, Xu WD, Leng RX, Liang Y, Liu YY, Fang YX, Feng CC, Li R, Cen H, Pan HF, Ye DQ. Therapeutic potential of IL-15 in rheumatoid arthritis. Hum Immunol 2015;76:812–8

139. Waldmann TA. Targeting the interleukin-15 system in rheumatoid arthritis. Arthritis Rheum 2005;52:2585–8

140. Cho ML, Jung YO, Kim KW, Park MK, Oh HJ, Ju HJ, Cho YG, Min JK, Park SH, Kim HY. IL-17 induces the production of IL-16 in rheumatoid arthritis. Exp Mol Med 2008;40:237–45

141. Murota A, Suzuki K, Kassai Y, Miyazaki T, Morita R, Kondo Y, Takeshita M, Niki Y, Yoshimura A, Takeuchi T. Serum proteomic analysis identifies interleukin 16 as a biomarker for clinical response during early treatment of rheumatoid arthritis. Cytokine 2016;78:87–93

142. Warszt K, Hoberg M, Rudert M, Tsui S, Pap T, Angres B, Essl M, Smith TJ, Cruikshank WW, Klein G, Gay S, Aicher WK. Transforming growth factor beta1 and laminin-111 cooperate in the induction of interleukin-16 expression in synovial fibroblasts from patients with rheumatoid arthritis. Ann Rheum Dis 2011;69:270–5

143. Lard LR, Roep BO, Toes RE, Huizinga TW. Enhanced concentrations of interleukin 16 are associated with joint destruction in patients with rheumatoid arthritis. J Rheumatol 2004;31(1):35–9.

144. Kaufmann J, Franke S, Kentsch-Engel R, Oelzner P, Hein G, Stein G. Correlation of circulating interleukin 16 with proinflammatory cytokines in patients with rheumatoid arthritis. Rheumatology 2001;40:474–7

145. Lubberts E, Koenders MI, van den Berg WB. The role of T-cell interleukin-17 in conducting destructive arthritis: lessons from animal models. Arthritis Res Ther 2005;7:29–37

146. Schminke B, Trautmann S, Mai B, Miosge N, Blaschke S. Interleukin 17 inhibits progenitor cells in rheumatoid arthritis cartilage. Cen H, Pan HF, Ye DQ. Therapeutic potential of IL-15 in rheumatoid arthritis. Hum Immunol 2015;76:812–8

147. Ernestam S, af Klint E, Catrina AI, Sundberg E, Engstrom M, Klareskog L, Ulfgren AK. Synovial expression of IL-15 in rheumatoid arthritis is not influenced by blockade of tumor necrosis factor. Arthritis Res Ther 2006;8:R18

148. Ernemann S, af Klint E, Catrina AI, Sundberg E, Engstrom M, Klareskog L, Ulfgren AK. Synovial expression of IL-15 in rheumatoid arthritis is not influenced by blockade of tumor necrosis factor. Arthritis Res Ther 2006;8:R18

149. Kaufmann J, Franke S, Kentsch-Engel R, Oelzner P, Hein G, Stein G. Correlation of circulating interleukin 16 with proinflammatory cytokines in patients with rheumatoid arthritis. Rheumatology 2001;40:474–7

150. Lubberts E, Koenders MI, van den Berg WB. The role of T-cell interleukin-17 in conducting destructive arthritis: lessons from animal models. Arthritis Res Ther 2005;7:29–37

151. Schminke B, Trautmann S, Mai B, Miosge N, Blaschke S. Interleukin 17 inhibits progenitor cells in rheumatoid arthritis cartilage. Cen H, Pan HF, Ye DQ. Therapeutic potential of IL-15 in rheumatoid arthritis. Hum Immunol 2015;76:812–8

152. Kaufmann J, Franke S, Kentsch-Engel R, Oelzner P, Hein G, Stein G. Correlation of circulating interleukin 16 with proinflammatory cytokines in patients with rheumatoid arthritis. Rheumatology 2001;40:474–7

153. Lubberts E, Koenders MI, van den Berg WB. The role of T-cell interleukin-17 in conducting destructive arthritis: lessons from animal models. Arthritis Res Ther 2005;7:29–37

154. Schminke B, Trautmann S, Mai B, Miosge N, Blaschke S. Interleukin 17 inhibits progenitor cells in rheumatoid arthritis cartilage. Cen H, Pan HF, Ye DQ. Therapeutic potential of IL-15 in rheumatoid arthritis. Hum Immunol 2015;76:812–8
216. Tang WH, Wang Z, Levison BS, Demacker PN, van der Meer JW, Stalenhoef AF. LPS-induced release of IL-1 beta, IL-1Ra, IL-6, and TNF-alpha in whole blood from patients with familial hypercholesterolemia: no effect of cholesterol-lowering treatment. *J Interferon Cytokine Res* 2006;26:101–7.

217. van Breukelen-van der Steep DF, Klopp B, van Zeben D, Hazes JM, Castro Cabezas M. Cardiovascular risk in rheumatoid arthritis: how to lower the risk? *Atherosclerosis* 2013;231:163–72.

218. Wruck CJ, Fragouli A, Gurzynski A, Brandenburg LO, Kan YW, Chan K, Hasserpeter J, Freitag-Wolff S, Varoga D, Lippross S, Pufe T. Role of oxidative stress in rheumatoid arthritis: insights from the Nrf2-knockout mice. *Ann Rheum Dis* 2011;70:844–50.

219. Veselinovic M, Barudzic N, Vuletic M, Zivkovic V, Tomic-Lucic A, Djuric D, Jakovljevic O. Oxidative stress in rheumatoid arthritis patients: relationship to diseases activity. *Mol Cell Biochem* 2014;391:225–32.

220. Vasanthi P, Nalini G, Rajaekar G. Status of oxidative stress in rheumatoid arthritis. *Int J Rheum Dis* 2009;12:29–33.

221. Nurmohamed MT, Heslinga M, Kitas GD. Cardiovascular comorbidity in rheumatoid diseases. *Nat Rev Rheumatol* 2015;11:693–704.

222. Hollan I, Dessein PH, Ronda N, Wasko MC, Svenungsson E, Skeoch S, Bruce IN. Atherosclerosis in rheumatoid arthritis: is it all about inflammation? *Clin Rheumatol* 2016;35:693–704.

223. Shoenfeld Y, Gerli R, Doria A, Matsuura E, Cerinic MM, Ronda N, Laj JAR, Abu-Shakra M, Meroni PL, Shaver Y. Accelerated atherosclerosis in autoimmune rheumatic diseases. *Circulation* 2005;112:3337–47.

224. Bisoadji RJ, Stroes ES, Tang WH, Castelli PJ, Verheugt FF. Where the immune response meets the vessel wall. *Neth J Med* 2009;67:328–33.

225. Bisoadji RJ, Stroes ES, Kastelein JJ, Tang WH. Targeting cardiovascular risk in rheumatoid arthritis: a dual role for statins. *Nat Rev Rheumatol* 2010;6:157–64.

226. Bisoadji RJ, Stroes ES, Morgan PP. Critical determinants of cardiovascular risk in rheumatoid arthritis. *Curr Pharm Des* 2011;17:21–6.

227. Mei WS, Peng CL, Lin CL, Chang YJ, Chen YF, Chiang YJ, Sung FC, Kao CH. Rheumatoid arthritis increases the risk of deep vein thrombosis and pulmonary thromboembolism: a nationwide cohort study. *Ann Rheum Dis* 2014;73:1774–80.

228. Ingegnoli F, Fantini F, Fagioli F, Giannattasio C, Lenti P, Mariotti PL, Cusano N, Vesselli S, Rovera M, Menichelli A, G(ro)ppa C, Caccialanza F. Mitochondrial derangement and prothrombotic biomarkers in patients with rheumatoid arthritis: effects of tumor necrosis factor-alpha blockade. *J Autoimmun* 2008;31:175–9.

229. Jin T, Bokarewa M, Ambu S, Tarkowski A. Impact of short-term therapies with biologics on prothrombotic biomarkers in rheumatoid arthritis. *Clin Exp Rheumatol* 2009;27:491–4.

230. Di Franco M, Gambardella L, AC DIL, Malorni W, Valesini G, Straface E. Possible implication of red blood cells in the prothrombotic risk in early rheumatoid arthritis. *J Rheumatol* 2015;42:1352–4.

231. Pretorius E, Mboitje S, Bester J, Robinson C, Kell DB. Acute induction of abnormal blood clotting by highly substoichiometric levels of bacterial lipopolysaccharide (LPS). *BioRxiv*. Epub ahead of print 16 May 2016. DOI: http://dx.doi.org/10.1101/053538.

232. Konokhova A, Cernova DN, Moskalensky AE, Strokov DI, Yurkin MA, Chernyshev AV, Maltsev VP. Super-resolved calibration-free flow cytometric characterization of platelets and cell-derived microparticles in platelet-rich plasma. *Cytoometry A* 2018;89:159–68.

233. Davie HM, Kell DB. Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single-cell analysis. *Microb Med* 1996;60:641–96.

234. Ardoin SP, Shanahan JC, Piesky DS. The role of microparticles in inflammation and thrombosis. *Scand J Immunol* 2007;66:159–65.

235. Simak J, Gelderman MP. Cell membrane microparticles in blood and blood products: potentially pathogenic agents and diagnostic markers. *Transfus Med Rev* 2006;20:1–26.

236. Visser Y, Kasthuri R, Voorhees P, Moharrez F, Taylor A, McNamara C, Wallen H, Witkowski M, Key NS, Rauch U, Mackman N. Measurement of microparticle tissue factor activity in clinical samples: a summary of two tissue factor-dependent FXa generation assays. *Thromb Res* 2016;139:90–7.

237. Goubran HA, Burnouf T, Stakij V, Seghatchian J. Platelet microparticles: a sensitive physiological "fine tuning" balancing factor in health and disease. *Transfus Apher Sci* 2015;52:12–8.

238. ein J, Tushuiyen ME, Sturk A, Damtse W, Boers M, Voskuyl AE, Diamant M, Wolbink GJ, Nieuwland R, Nurmohamed MT. Circulating microparticles remain associated with complement activation despite intensive anti-inflammatory therapy in early rheumatoid arthritis. *Ann Rheum Dis* 2010;69:1578–86.

239. Kniff Dutmter EA, Koerts J, Nieuwland R, Kalsbeek-Batenburg EM, van de Laar MA. Elevated levels of platelet microparticles are associated with disease activity in rheumatoid arthritis. *Arthritis Rheum* 2002;46:498–503.
241. Berckmans RJ, Nieuwland R, Tak PP, Boing AN, Romijn FP, Kraan MC, Breedveld FC, Hack CE, Sturk A. Cell-derived microparticles in synovial fluid from inflamed arthritic joints support coagulation exclusively via a factor VII-dependent mechanism. *Arthritis Rheum* 2002;46:2857–66

242. Gitz E, Pollitt AY, Gitz-Francois JJ, Alshehri O, Mori J, Montague S, Nash GB, Douglas MR, Gardiner EE, Andrews RK, Buckley CD, Harrison P, Watson SP. CLEC-2 expression is maintained on activated platelets and on platelet microparticles. *Blood* 2014;124:2262–70

243. Nurden AT. Platelets, inflammation and tissue regeneration. *Thromb Haemost* 2011;105(Suppl 1):S13–33

244. Sellam J, Prouillé V, Jungel A, Ittah M, Miceli Richard C, Gottenberg JE, Toft E; Benessiano J, Gay S, Freysinet JM, Mariette X. Increased levels of circulating microparticles in primary Sjogren’s syndrome, systemic lupus erythematosus and rheumatoid arthritis and relation with disease activity. *Arthritis Res Ther* 2009;11:R156

245. Olumuyiwa-Akeredolu OO, Pretorius E. Platelet and red blood cell interactions and their role in rheumatoid arthritis. *Rheumatol Int* 2015;35:1955–64

246. Rodríguez-Carrio J, Alperi-López M, López P, Alonso-Castro S, Carro-Esteban SR, Ballina-García FJ, Suarez A. Altered profile of circulating microparticles in rheumatoid arthritis patients. *Clin Sci* 2015;128:437–48

247. Vijayakumar D, Suresh K, Manoharan S. Altered pattern of lipids in plasma and erythrocyte membranes of rheumatoid arthritis patients. *Ind J Clin Biochem* 2005;20:52–5

248. van Zwieten R, Bochem AE, Hilarius PM, van Bruggen R, Bergkamp F, Vijayakumar D, Suresh K, Manoharan S. Altered pattern of lipids in plasma and erythrocyte membranes of rheumatoid arthritis patients. *Ind J Clin Biochem* 2005;20:52–5

249. Kosenko EA, Aliev G, Tikhonova LA, Li Y, Poghosyan AC, Kaminsky YG. Antioxidant status and energy state of erythrocytes in Alzheimer dementia: probing for markers. *CNS Neural Disorder* 2012;11:926–32

250. Maurya PK, Kumar P, Chandra P. Biomarkers of oxidative stress in erythrocytes as a function of human age. *World J Methodol* 2015;5:216–22

251. Kosenko EA, Aliev G, Kaminsky YG. Relationship between chronic disturbance of 2,3-diphosphoglycerate metabolism in erythrocytes and Alzheimer disease. *CNS Neural Disorder Drug Targets* 2016;15:113–23

252. Tikhonova LA, Kaminsky YG, Reddy VP, Li Y, Solomadin IN, Kosenko EA, *et al*. Impact of amyloid β25-35 on membrane stability, energy metabolism, and antioxidant enzymes in erythrocytes. *Am J Alzheimer’s Dis Other Dement* 2014;29:685–95

253. Kaminsky YG, Reddy VP, Ashraf G, Ahmad A, Benberin VV, Kosenko EA, *et al*. Age-related defects in erythrocyte 2,3-diphosphoglycerate metabolism in dementia. *Aging Dis* 2013;4:244–55

254. Kosenko EA, Solomadin IN, Tikhonova LA, Reddy VP, Aliev G, Kaminsky YG. Pathogenesis of Alzheimer disease: role of oxidative stress, amyloid-β peptides, systemic ammonia and erythrocyte energy metabolism. *CNS Neural Disorder* 2014;13:112–9

255. Karl DB, Pretorius E. Proteins behaving badly. Substoichiometric molecular control and amplification of the initiation and nature of amyloid fibril formation: lessons from and for blood clotting. *Prog Biophys Mol Biol*. Epub ahead of print 21 August 2016. DOI: 10.1016/j.pbiomolbio.2016.08.006

256. Pretorius E, Mbotwe S, Bester J, Robinson CJ, Kell DB. Acute induction of anomalous and amyloidiogenic blood clotting by molecular amplification of highly substoichiometric levels of bacterial lipopolysaccharide. *J R Soc Interface* 2016;13:20160539

257. Kell DB, Pretorius E. Substoichiometric molecular control and amplification of the initiation and nature of amyloid fibril formation: lessons from and for blood clotting. *BioRxiv* 2016;057356

258. Kell DB, Pretorius E. To what extent are the terminal stages of sepsis, septic shock, SIRS, and multiple organ dysfunction syndrome actually driven by a toxic priion/amyloid form of fibrin? *bioRxiv* preprint.

259. Kell DB, Kenny L.C. A dormant microbial component in the development of pre-clampsia. *BioRxiv* preprint. *bioRxiv* 2016;057356

260. Espargaró A, Busquets MA, Estelrich J, Sabate R. Key Points concerning amyloid infectivity and prion-like neuronal invasion. *Front Mol Neurosci* 2016;9:29

261. Fernández MS, Human IAPP amyloidogenic properties and pancreatic beta-cell death. *Cell Cal* 2014;56:416–27

262. Ow SY, Dunstan DE. A brief overview of amyloids and Alzheimer’s disease. *Protein Sci* 2014;23:1315–31

263. Stefani M. Structural features and cytotoxicity of amyloid oligomers: implications in Alzheimer’s disease and other diseases with amyloid deposits. *Prog Neurobiol* 2012;99:226–45

264. Husby G. Amyloidosis and rheumatoid arthritis. *Clin Exp Rheumatol* 1985;3:173–80

265. Habra M, Murphy EP, Whitehead AS, FitzGerald O, Bresnihan B. Acute-phase serum amyloid A production by rheumatoid arthritis synovial tissue. *Arthritis Res Ther* 2000;2:142–4

266. Cunname G, Whitehead AS. Amyloid precursors and amyloidosis in rheumatoid arthritis. *Baillieres Best Pract Res Clin Rheumatol* 1999;13:615–28

267. Kobayashi H, Tada S, Fuchigami T, Okuda Y, Takasugi K, Matsumoto T, Iida M, Aoyagi K, Iwashita A, Daimaru Y, Fujishima M. Secondary amyloidosis in patients with rheumatoid arthritis: diagnostic and prognostic value of gastroaduonal biopsy. *Br J Rheumatol* 1996;35:44–9

268. Nakamura T. Amyloid A amyloidosis secondary to rheumatoid arthritis: pathophysiology and treatments. *Clin Exp Rheumatol* 2011;29:850–7

269. Broadhurst D, Kell DB. Statistical strategies for avoiding false discoveries in metabolomics and related experiments. *Metabolomics* 2006;2:171–96

270. Vinet É, Kuriya B, Wiidfield J, Bernatsky S. Rheumatoid arthritis disease severity indices in administrative databases: a systematic review. *J Rheumatol* 2011;38:2318–25

271. Suissa S, Garbe E. Primer: administrative health databases in observational studies of drug effects–advantages and disadvantages. *Nat Clin Pract Rheumatol* 2007;3:725–32

272. Arnett FC, Edworthy SM, Bloch DA, Mcshane DJ, Fries JF, Cooper NS, Healey LA, Kaplan SR, Liang MH, Luthra HS, Medsger TA, Mitchell DM, Neustadt DH, Pinals RS, Schaller JG, Sharp JT, Wilder RL, Hunder GG. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. *Arthritis Rheum* 1988;31:315–24

273. Ward MM, Guthrie LC, Alba ML. Measures of arthritis activity associated with patient-reported improvement in rheumatoid arthritis when assessed prospectively versus retrospectively. *Arthritis Care Res* 2015;67:776–81

274. Smedstad LM, Kvien TK, Moum T, Vaglum P. Correlates of patients’ global assessment of disease improvement: A 2-year study of 216 patients with RA. *Scand J Rheumatol* 1997;26:259–65

275. Khan NA, Spencer HJ, Abda EA, Jonsson R, Ljunggren JW, Kerzberg E, Majdan M, Oyoo O, Peredo-Wende RA, Selim ZI, Skopoulis FN, Sulli A, Horslev-Petersen K, Taylor PC, Sokta T, group Q-R. Patient’s global assessment of disease activity and patient’s assessment of general health for rheumatoid arthritis when assessed prospectively versus retrospectively. *Arthritis Rheum* 2016;67:776–81

276. Cazzato M, Geher P, Cossec L, Henrohn D, Hetland ML, Inanc N, Jacobs JW, Kerzberg E, Majdan M, Oyoo O, Peredo-Wende RA, Selim ZI, Skopoulis FN, Sulli A, Horslev-Petersen K, Taylor PC, Sokta T, group Q-R. Patient’s global assessment of disease activity and patient’s assessment of general health for rheumatoid arthritis activity assessment: are they equivalent? *Ann Rheum Dis* 2012;71:1942–9

277. Smolen JS, Landewé R, Breedveld FC, Buch M, Burmester G, Dougados M, Emery P, Gaujoux-Viala C, Gossec L, Nam JL, Ramiro S, Winthrop K, de Wit M, Aletaha D, Betteridge N, Bijlsma JW, Boers M, Buttgerfeit E, Combe B, Cutofo M, Damjanov N, Hazes JM, Jacobs JW, Keusberg E, Majdan M, Oyoo O, Peredo-Wende RA, Selim ZI, Skopouli FN, Sulli A, Horslev-Petersen K, Taylor PC, Sokta T, group Q-R. Patient’s global assessment of disease activity and patient’s assessment of general health for rheumatoid arthritis activity assessment: are they equivalent? *Ann Rheum Dis* 2016;75:776–81

278. Nam JL, Ramiro S, Gaujoux-Viala C, Takase K, Leon-Garcia M, Emery P, Gossec L, Landewé R, Smolen JS, Buch M. Efficacy of biological disease-modifying antirheumatic drugs: a systematic literature review informing the 2013 update of the EULAR recommendations for major involvement of bacterial components in RA
332. Ashall L, Horton CA, Nelson DE, Paszek P, Ryan S, Sillitoe K, Murata Y, Hamuro J, Nakazawa T, Mori M. Regulation of LPS induced IL-12 production by IFN-gamma and IL-4 through intracellular glutathione status in human alveolar macrophages. *Clin Exp Immunol* 2001;124:290–6.

333. Mattei F, Schiavoni G, Belardelli F, Tough DF. IL-15 is expressed by dendritic cells in response to type I IFN, double-stranded RNA, or lipopolysaccharide and promotes dendritic cell activation. *J Immunol* 2001;167:1179–87.

334. Poltorak A, He XL, Smirnova I, Liu MY, Van Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C, Freudenberg M, Ricciardi-Castagnoli P, Layton B, Beutler B. Defective LPS signaling in C3H/HeJ mice: mutations in Tlr4 gene. *Science* 1998;282:2085–8.

335. Poltorak A, Ricciardi-Castagnoli P, Citterio S, Beutler B. Physical contact between lipopolysaccharide and Toll-like receptor 4 revealed by the sole conduit for LPS signal transduction: genetic and evolutionary studies. *J Endotoxin Res* 2001;7:277–80.

336. Lu YC, Yeh WC, Ohashi PS. LPS/TLR4 signal transduction pathway. *Cytokine* 2008;42:145–51.

337. O’Neill LAJ, Golenbock D, Bowie AG. The history of Toll-like receptors – redefining innate immunity. *Nat Rev Immunol* 2013;13:453–60.

338. Lu YC, Yeh WC, Ohashi PS. LPS/TLR4 signal transduction pathway. *Cytokine* 2008;42:145–51.

339. O’Neill LAJ, Bryant CE, Doyle SL. Therapeutic targeting of toll-like receptors for infectious and inflammatory diseases and cancer. *Pharmacol Rev* 2009;61:177–97.

340. Kawai T, Akira S. Toll-like receptors and their crossstalk with other innate receptors in infection and immunity. *Immunity* 2011;34:637–50.

341. Noort AR, Tak PP, Tas SW. Regulation and function of NF-kappaB signaling in innate immunity. *Discov Med* 2009;17:305–20.

342. Kell DB. What would be the observable consequences if phospholipid bilayer diffusion of drugs into cells is negligible? *Drug Disc Today* 2001;7:205–20.

343. Kell DB, Oliver SG. How drugs get into cells: tested and testable predictions to help discriminate between transporter-mediated uptake and lipidoidal bilayer diffusion. *Front Pharmacol* 2014;5:231.

344. Proal AD, Albert PJ, Marshall TG. Autoimmune disease in the era of the human microbiome. *Discov Med* 2014;17:253–40.

345. Proal AD, Albert PJ, Marshall TG. Autoimmune disease in the era of the metagenome. *Autoimmun Rev* 2009;8:677–81.

346. Proal AD, Albert PJ, Marshall TG. The human microbiome and autoimmunity. *Curr Opin Rheumatol* 2013;25:234–40.

347. Mangin M, Sinha R, Fincher K. Inflammation and vitamin D: the infection connection. *Inflamm Res* 2014;63:803–19.

348. Proal AD, Albert PJ, Marshall TG. Inflammatory disease and the human microbiome. *Disco Med* 2014;17:257–65.

349. Proal AD, Albert PJ, Marshall TG. Infection, autoimmunity, and vitamin D. In: Shoenfeld Y, Rose NR (eds). *Infection and autoimmunity*. New York: Academic Press, 2015, pp. 163–82.

350. Kell DB, Westerhoff HV. Metabolic control theory: its role in microbiology and biotechnology. *FEMS Microb Rev* 1986;39:305–20.

351. Thagard P. Explanatory coherence. *Behav Brain Sci* 1989;12:435–502.

352. Thagard P. How scientists explain disease. *Princeton, NJ: Princeton University Press, 1999.*