Connection between the ideals generated by traces and by supertraces in the superalgebras of observables of Calogero models

S.E. Konstein*, I.V. Tyutin*
I.E. Tamm Department of Theoretical Physics, P.N. Lebedev Physical Institute, RAS 119991, Leninsky prosp., 53, Moscow, Russia
konstein@lpi.ru, tyutin@lpi.ru

Received 19 August 2019
Accepted 30 August 2019

If G is a finite Coxeter group, then symplectic reflection algebra $H := H_1, \eta(G)$ has Lie algebra \mathfrak{sl}_2 of inner derivations and can be decomposed under spin: $H = H_0 \oplus H_1/2 \oplus H_1 \oplus H_3/2 \oplus \ldots$ We show that if the ideals \mathcal{I}_i ($i = 1, 2$) of all the vectors from the kernel of degenerate bilinear forms $B_i(x, y) := sp_i(x \cdot y)$, where sp_i are (super)traces on H, do exist, then $\mathcal{I}_1 = \mathcal{I}_2$ if and only if $\mathcal{I}_1 \cap H_0 = \mathcal{I}_2 \cap H_0$.

1. Preliminaries and notation

Let \mathcal{A} be an associative superalgebra with parity π. All expressions of linear algebra are given for homogenous elements only and are supposed to be extended to inhomogeneous elements via linearity.

Definition 1.1. A linear function str on \mathcal{A} is called a supertrace if

$$\text{str}(f \cdot g) = (-1)^{\pi(f)\pi(g)} \text{str}(g \cdot f) \quad \text{for all } f, g \in \mathcal{A}. $$

Definition 1.2. A linear function tr on \mathcal{A} is called a trace if

$$\text{tr}(f \cdot g) = \text{tr}(g \cdot f) \quad \text{for all } f, g \in \mathcal{A}. $$

We will use the notation “sp” and the term “(super)trace” to denote both cases, traces and supertraces, simultaneously.
2. The superalgebra of observables

Let \(V = \mathbb{R}^N \) be endowed with a positive definite symmetric bilinear form \((\cdot, \cdot)\). For any nonzero \(\vec{v} \in V \), define the reflections \(r_{\vec{v}} \) as follows:

\[
 r_{\vec{v}} : \vec{x} \mapsto \vec{x} - 2 \frac{\langle \vec{x}, \vec{v} \rangle}{\langle \vec{v}, \vec{v} \rangle} \vec{v} \quad \text{for any} \; \vec{x} \in V.
\] (2.1)

A finite set of non-zero vectors \(\mathcal{R} \subset V \) is said to be a root system and any vector \(\vec{v} \in \mathcal{R} \) is called a root if the following conditions hold:

i) \(\mathcal{R} \) is \(r_{\vec{w}} \)-invariant for any \(\vec{w} \in \mathcal{R} \),

ii) if \(\vec{v}_1, \vec{v}_2 \in \mathcal{R} \) are proportional to each other, then either \(\vec{v}_1 = \vec{v}_2 \) or \(\vec{v}_1 = -\vec{v}_2 \).

The Coxeter group \(G \subset O(N, \mathbb{R}) \subset \text{End}(V) \) generated by all reflections \(r_{\vec{v}} \) with \(\vec{v} \in \mathcal{R} \) is finite.

We do not apply any conditions on the scalar products of the roots because we want to consider both crystallographic and non-crystallographic root systems, e.g., \(I_2(n) \) (see Theorem 4.1).

Let \(\eta \) be a complex-valued \(G \)-invariant function on \(\mathcal{R} \), i.e., \(\eta(\vec{v}) = \eta(\vec{w}) \) if \(r_{\vec{v}} \) and \(r_{\vec{w}} \) belong to one conjugacy class of \(G \).

We consider here the Symplectic Reflection (Super)algebra over complex numbers (see [6]) \(H := H_{1, \eta}(G) \) and call it the superalgebra of observables of Calogero model based on root system \(\mathcal{R} \).\(^a\)

This algebra consists of noncommuting polynomials in \(2N \) indeterminates \(a^\alpha_i \), where \(\alpha = 0, 1 \) and \(i = 1, \ldots, N \), with coefficients in \(\mathbb{C}[G] \) satisfying the relations (see [6] Eq. (1.15))\(^b\)

\[
 [a^\alpha_i, a^\beta_j] = \varepsilon^{\alpha\beta} \left(\delta_{ij} + \sum_{\vec{v} \in \mathcal{R}} \eta(\vec{v}) \frac{v_i v_j}{\langle \vec{v}, \vec{v} \rangle} r_{\vec{v}} \right),
\] (2.2)

and

\[
 r_{\vec{v}} a^\alpha_i = \sum_{j=1}^N \left(\delta_{ij} - 2 \frac{v_i v_j}{\langle \vec{v}, \vec{v} \rangle} \right) a^\alpha_j r_{\vec{v}}.
\] (2.3)

Here \(\varepsilon^{\alpha\beta} \) is the antisymmetric tensor such that \(\varepsilon^{01} = 1 \), and \(v_i \) (\(i = 1, \ldots, N \)) are the coordinates of the vector \(\vec{v} \). The commutation relations (2.2), (2.3) suggest to define the parity \(\pi \) by setting:

\[
 \pi(a^\alpha_i) = 1 \quad \text{for any} \; \alpha, \; i; \quad \pi(r_{\vec{v}}) = 0 \quad \text{for any} \; \vec{v} \in \mathcal{R}.
\] (2.4)

and we can consider the algebra \(H \) as a superalgebra as well.

\(^a\)This algebra has a faithful representation via Dunkl differential-difference operators \(D_i \), see [5], acting on the space of \(G \)-invariant smooth functions on \(V \), namely \(\tilde{D}^\alpha_i = \frac{1}{2} (x_i + (-1)^\alpha D_i) \), see [1, 14]. The Hamiltonian of the Calogero model based on the root system \([2-4, 13]\) is the operator \(\tilde{H}^{01} \) defined in (3.2) (see [1]). The wave functions are obtained in this model via the standard Fock procedure with the Fock vacuum \(|0\rangle \) such that \(\tilde{D}^0_i |0\rangle = 0 \) for all \(i \) by acting on \(|0\rangle \) with \(G \)-invariant polynomials of the \(\tilde{D}^1_i \).

\(^b\)The sign and coefficient of the sum in the rhs of Eq. (2.2) is chosen for obtaining the Calogero model in the form [1], Eq. (1), Eq. (5), Eq. (9), Eq. (10) when \(\mathcal{R} \) is of type \(A_{N-1} \).
3. \(\mathfrak{sl}_2\)

Observe an important property of the superalgebra \(H\): the Lie (super)algebra of its inner derivations contains the Lie subalgebra \(\mathfrak{sl}_2\) generated by operators

\[D^{\alpha\beta} : f \mapsto D^{\alpha\beta} f = [T^{\alpha\beta}, f], \tag{3.1} \]

where \(\alpha, \beta = 0, 1\), and \(f \in H\), and polynomials \(T^{\alpha\beta}\) are defined as follows:

\[T^{\alpha\beta} := \frac{1}{2} \sum_{i=1}^{N} \left(a_i^\alpha a_i^\beta + a_i^\beta a_i^\alpha \right). \tag{3.2} \]

These operators satisfy the following relations:

\[[D^{\alpha\beta}, D^{\gamma\delta}] = \varepsilon^{\alpha\gamma} D^{\beta\delta} + \varepsilon^{\alpha\delta} D^{\beta\gamma} + \varepsilon^{\beta\gamma} D^{\alpha\delta} + \varepsilon^{\beta\delta} D^{\alpha\gamma}, \tag{3.3} \]

since

\[[T^{\alpha\beta}, T^{\gamma\delta}] = \varepsilon^{\alpha\gamma} T^{\beta\delta} + \varepsilon^{\alpha\delta} T^{\beta\gamma} + \varepsilon^{\beta\gamma} T^{\alpha\delta} + \varepsilon^{\beta\delta} T^{\alpha\gamma}. \]

It follows from Eq. (3.3) that the operators \(D^{00}, D^{11}\) and \(D^{01} = D^{10}\) constitute an \(\mathfrak{sl}_2\)-triple:

\[[D^{01}, D^{11}] = 2D^{11}, \quad [D^{01}, D^{00}] = -2D^{00}, \quad [D^{11}, D^{00}] = -4D^{01}. \]

The polynomials \(T^{\alpha\beta}\) commute with \(\mathbb{C}[G]\), i.e., \([T^{\alpha\beta}, r_v] = 0\), and act on the \(a_i^{\alpha\beta}\) as on vectors of the irreducible 2-dimensional \(\mathfrak{sl}_2\)-modules:

\[D^{\alpha\beta} a_i^\gamma = [T^{\alpha\beta}, a_i^\gamma] = \varepsilon^{\alpha\gamma} a_i^\beta + \varepsilon^{\beta\gamma} a_i^\alpha, \quad \text{where } i = 1, \ldots, N. \tag{3.4} \]

We will denote this \(\mathfrak{sl}_2\) thus realized by the symbol \(\text{SL}2\).

The subalgebra

\[H_0 := \{ f \in H \mid D^{\alpha\beta} f = 0 \text{ for any } \alpha, \beta \} \subset H \tag{3.5} \]

is called the subalgebra of singlets.

Introduce also the subspaces \(H_s := \bigoplus_{s=0}^{\infty} H_s\), which is the direct sum of all irreducible \(\text{SL}2\)-modules \(H_s\) of spin \(s\), for \(s = 0, 1/2, 1, \ldots\). It is clear that \(H_0\) is the defined above subalgebra of singlets.

The (super)algebra \(H\) can be decomposed in the following way

\[H = H_0 \oplus H_{\text{rest}}, \quad \text{where } H_{\text{rest}} := H_{1/2} \oplus H_1 \oplus H_{3/2} \oplus \ldots. \]

Then each element \(f \in H\) can be represented in the form \(f = f_0 + f_{\text{rest}}\), where \(f_0 \in H_0\) and \(f_{\text{rest}} \in H_{\text{rest}}\).

Note, that since \(\text{SL}2\) is generated by inner derivations and \(T^{\alpha\beta}\) are even elements, each two-sided ideal \(\mathcal{I} \subset H\) can be decomposed in an analogous way: \(\mathcal{I} = \mathcal{I}_0 \oplus \mathcal{I}_{1/2} \oplus \ldots\).

Since \(T^{\alpha\beta}\) are even elements of the superalgebra \(H\), we have \(\text{sp}(D^{\alpha\beta} f) = 0\) for any (super)trace \(\text{sp}\) on \(H\), and hence the following proposition takes place:

Proposition 3.1. \(\text{sp}(f) = \text{sp}(f_0)\) for any \(f \in H\) and any (super)trace \(\text{sp}\) on \(H\).

\[\text{This elementary fact is known for a long time, see, eg. [12].}\]
Proof. If \(s \neq 0 \), then the elements of the form \(D^{\alpha\beta} f \), where \(\alpha, \beta = 0, 1 \), and \(f \in H^i \), \(f \neq 0 \), span the irreducible \(SL_2 \)-module \(H^i \). This implies \(\text{sp} f = 0 \) for any (super)trace on \(H \) and any \(f \in H_{\text{rest}} \).

\[\square \]

4. The (super)traces on \(H \)

It is shown in [9, 10, 12] that the algebra \(H \) has a multitude of independent (super)traces. For the list of dimensions of the spaces of the (super)traces on \(H_{1,n}(M) \) for all finite Coxeter groups \(M \), see [8]. In particular, there is an \(m \)-dimensional space of traces and an \((m + 1)\)-dimensional space of supertraces on \(H_{1,2}(I_2(2m + 1)) \).

Every (super)trace \(\text{sp}(\cdot) \) on any associative (super)algebra \(\mathcal{A} \) generates the following bilinear form on \(\mathcal{A} \):

\[
B^{\text{sp}}(f, g) = \text{sp}(f \cdot g) \quad \text{for any} \quad f, g \in \mathcal{A}.
\]

It is obvious that if such a bilinear form \(B^{\text{sp}} \) is degenerate, then the kernel of this form (i.e., the set of all vectors \(f \in \mathcal{A} \) such that \(B^{\text{sp}}(f, g) = 0 \) for any \(g \in \mathcal{A} \)) is the two-sided ideal \(\mathcal{I}^{\text{sp}} \subset \mathcal{A} \).

The ideals of this sort are found, for example, in [11, Theorem 9.1] (generalizing the results of [15, 16] and [7] for the two- and three-particle Calogero models).

Theorem 9.1 from [11] may be shortened to the following theorem:

Theorem 4.1. Let \(m \in \mathbb{Z} \), where \(m \geq 1 \) and \(n = 2m + 1 \). Then

1) The associative algebra \(H_{1,n}(I_2(n)) \) has nonzero traces \(tr^i \) such that the symmetric invariant bilinear form \(B_{tr^i}(x, y) = tr^i(x \cdot y) \) is degenerate if and only if \(\eta = \frac{z}{n} \), where \(z \in \mathbb{Z} \setminus n\mathbb{Z} \). For each such \(z \), all nonzero degenerate traces on \(H_{1,z/n}(I_2(n)) \) are proportional to each other.

2) The associative superalgebra \(H_{1,n}(I_2(n)) \) has nonzero supertraces \(\text{str}^i \) such that the supersymmetric invariant bilinear form \(B_{\text{str}^i}(x, y) = \text{str}^i(x \cdot y) \) is degenerate if \(\eta = \frac{z}{n} \), where \(z \in \mathbb{Z} \setminus n\mathbb{Z} \). For each such \(z \), all nonzero degenerate supertraces on \(H_{1,z/n}(I_2(n)) \) are proportional to each other.

3) The associative superalgebra \(H_{1,n}(I_2(n)) \) has nonzero supertraces \(\text{str}^i \) such that the supersymmetric invariant bilinear form \(B_{\text{str}^i}(x, y) = \text{str}^i(x \cdot y) \) is degenerate if \(\eta = z + \frac{1}{2} \), where \(z \in \mathbb{Z} \). For each such \(z \), all nonzero degenerate supertraces on \(H_{1,z+1/2}(I_2(n)) \) are proportional to each other.

4) For all other values of \(n \), all nonzero traces and supertraces are nondegenerate.

Theorem 4.1 implies that if \(z \in \mathbb{Z} \setminus n\mathbb{Z} \), then there exists the degenerate trace \(tr_z \) generating the ideal \(\mathcal{I}^{tr_z} \) consisting of the kernel of the degenerate form \(B_{tr_z}(f, g) = tr_z(f \cdot g) \), and simultaneously the degenerate supertrace \(\text{str}_z \) generating the ideal \(\mathcal{I}^{\text{str}_z} \) consisting of the kernel of the degenerate form \(B_{\text{str}_z}(f, g) = \text{str}_z(f \cdot g) \).

A question arises: is it true that \(\mathcal{I}^{tr_z} = \mathcal{I}^{\text{str}_z} \)?

Answer to this and other similar questions can be considerably simplified by considering only the singlet parts of these ideals.

The following theorem justifies this method:

Theorem 4.2. Let \(\text{sp}_1 \) and \(\text{sp}_2 \) be degenerate (super)traces on \(H \). They generate the two-sided ideals \(\mathcal{I}_1 \) and \(\mathcal{I}_2 \) consisting of the kernels of bilinear forms \(B_1(f, g) = \text{sp}_1(f \cdot g) \) and \(B_2(f, g) = \text{sp}_2(f \cdot g) \), respectively.
Then $\mathcal{I}_1 = \mathcal{I}_2$ if and only if $\mathcal{I}_1 \cap H_0 = \mathcal{I}_2 \cap H_0$.

Proof. It suffices to prove that if $\mathcal{I}_1 \cap H_0 = \mathcal{I}_2 \cap H_0$, then $\mathcal{I}_1 = \mathcal{I}_2$.

Consider any non-zero element $f \in \mathcal{I}_1$. For any $g \in H$, we have $sp_1(f \cdot g) = 0$, $f \cdot g \in \mathcal{I}_1$ and $(f \cdot g)_0 \in \mathcal{I}_1$. So $(f \cdot g)_0 \in \mathcal{I}_1 \cap H_0$. Due to hypotheses of this Theorem, $(f \cdot g)_0 \in \mathcal{I}_2 \cap H_0$, and hence $sp_2((f \cdot g)_0) = 0$. Proposition 3.1 gives $sp_2(f \cdot g) = sp_2((f \cdot g)_0)$ which implies $sp_2(f \cdot g) = 0$. Therefore, $f \in \mathcal{I}_2$. □

Acknowledgments

The authors (S.K. and I.T.) are grateful to Russian Fund for Basic Research (grant No. 17-02-00317) for partial support of this work.

References

[1] L. Brink, H. Hansson and M.A. Vasiliev, Explicit solution to the N-body Calogero problem, *Phys. Lett.*, **B286** (1992), 109–111.
[2] F. Calogero, Solution of a three-body problem in one dimension, *J. Math. Phys.*, **10** (1969), 2191–2196.
[3] F. Calogero, Ground state of a one dimensional N-body problem, *J. Math. Phys.*, **10** (1969), 2197–2200.
[4] F. Calogero, Solution of the One-Dimensional N-Body Problems with Quadratic and/or Inversely Quadratic Pair Potentials, *J. Math. Phys.*, **12** (1971), 419. https://doi.org/10.1063/1.1665604.
[5] C.F. Dunkl, Differential-difference operators associated to reflection groups, *Trans. Amer. Math. Soc.*, **311** (1) (1989), 167–183. doi:10.2307/2001022.
[6] P. Etingof and V. Ginzburg, Symplectic reflection algebras, Calogero–Moser space, and deformed Harish–Chandra homomorphism, *Inv. Math.*, **147** (2002), 243–348.
[7] S.E. Konstein, 3-particle Calogero Model: Supertraces and Ideals on the Algebra of Observables, *Teor. Mat. Fiz.*, **116** (1998), 122. arXiv:hep-th/9803213.
[8] S.E. Konstein and R. Stekolshchik, Klein operator and the Number of Traces and Supertraces on the Superalgebra of Observables of Rational Calogero Model based on the Root System, *Journal of Nonlinear Mathematical Physics*, **20** (2) (2013), 295–308.
[9] S.E. Konstein and I.V. Tyutin, Traces on the Algebra of Observables of the Rational Calogero Model Based on the Root System, *Journal of Nonlinear Mathematical Physics*, **20** (2) (2013), 271–294. arXiv:1211.6600
[10] S.E. Konstein and I.V. Tyutin, The number of independent traces and supertraces on symplectic reflection algebras, *Journal of Nonlinear Mathematical Physics*, **21** (3) (2014), 308–335. arXiv:1308.3190
[11] S.E. Konstein and I.V. Tyutin, Ideals generated by traces or by supertraces in the symplectic reflection algebra $H_{1,v}(I_2(2m+1))$, *Journal of Nonlinear Mathematical Physics*, **24** (3) (2017), 405–425. DOI:10.1080/14029251.2017.1341702; arXiv:1612.00536
[12] S.E. Konstein and M.A. Vasiliev, Supertraces on the Algebras of Observables of the Rational Calogero Model with Harmonic Potential, *J. Math. Phys.*, **37** (1996), 2872.
[13] M.A. Olshanetsky and A.M. Perelomov, Quantum integrable systems related to lie algebras, *Phys. Rep.*, **94** (6) (1983), 313–404. DOI: 10.1016/0370-1573(83)90018-2.
[14] A. Polychronakos, Exchange operator formalism for integrable systems of particles, *Phys. Rev. Lett.*, **69** (1992), 703–705.
[15] M.A. Vasiliev, Quantization on sphere and high-spin superalgebras, *JETP Letters*, **50** (1989), 377–379.
[16] M.A. Vasiliev, Higher spin algebras and quantization on the sphere and hyperboloid, *Int. J. Mod. Phys.*, **A6** (07) (1991), 1115–1135. https://doi.org/10.1142/S0217751X91000605.