MORSE INEQUALITIES FOR FOURIER COMPONENTS OF KOHN-ROSSI COHOMOLOGY OF CR COVERING MANIFOLDS WITH S^1-ACTION

RUNG-TZUNG HUANG AND GUOKUAN SHAO

Abstract. Let X be a compact connected CR manifold of dimension $2n + 1, n \geq 1$. Let \tilde{X} be a paracompact CR manifold with a transversal CR S^1-action, such that there is a discrete group Γ acting freely on \tilde{X} having $X = \tilde{X}/\Gamma$. Based on an asymptotic formula for the Fourier components of the heat kernel with respect to the S^1-action, we establish the Morse inequalities for Fourier components of reduced L^2-Kohn-Rossi cohomology with values in a rigid CR vector bundle over X. As a corollary, we obtain the Morse inequalities for Fourier components of Kohn-Rossi cohomology on X which were obtained by Hsiao-Li [15] by using Szegő kernel method.

1. Introduction and statement of the results

Gromov-Henkin-Shubin [10, Theorem 0.2] considered covering manifolds that are strongly pseudoconvex of complex manifolds and analyzed the holomorphic L^2-functions on the coverings. Todor-Chiose-Marinescu [20] generalized in a similar manner the Morse inequalities of Siu-Demailly [18, 7] on coverings of complex manifolds. The study of problems on CR manifolds with S^1-action becomes active recently, see [5, 11, 12, 14, 15] and the references therein. In particular, Hsiao-Li [15] established the Morse inequalities for Fourier components of Kohn-Rossi cohomology on X by using the Szegő kernel method. Inspired by the results of [10, 15, 20, 18, 7], we establish Morse inequalities for Fourier components of reduced L^2-Kohn-Rossi cohomology with values in a rigid CR vector bundle on a covering manifold over a compact connected CR manifold with S^1-action. This generalizes the results of [15] to CR covering manifolds with S^1-action. We present a proof by the heat kernel method, which is inspired by Bismut’s proof [3, 16] of the holomorphic Morse inequalities. The crucial estimate for Fourier components of the heat kernel of Kohn Laplacians was given in [12].

Now we formulate the main results. We refer to other sections for notations and definitions (see Definition 2.1, 2.2, 2.3, 2.5 and (3.1), (3.25) used here). Let X be a compact connected CR manifold of dimension $2n + 1, n \geq 1$ with a transversal CR S^1-action $e^{i\theta}$ on X. For $x \in X$, we say that the period of x is $2\pi \ell$, $\ell \in \mathbb{N}$, if $e^{i\theta} \circ x \neq x$, for every $0 < \theta < \frac{2\pi}{\ell}$, and $e^{i\frac{2\pi}{\ell}} \circ x = x$. For each $\ell \in \mathbb{N}$, put

\begin{equation}
X_\ell = \{ x \in X; \text{ the period of } x \text{ is } \frac{2\pi}{\ell} \}
\end{equation}

\begin{equation}
(1.1)
\end{equation}

and let

\begin{equation}
p = \min \{ \ell \in \mathbb{N}; X_\ell \neq \emptyset \}.
\end{equation}

\begin{equation}
(1.2)
\end{equation}

It is well-known that if X is connected, then X_p is an open and dense subset of X (see Duistermaat-Heckman [9]). Assume $X = X_{p_1} \cup X_{p_2} \cup \cdots \cup X_{p_k}$, $p =: p_1 < p_2 < \cdots < p_k$. Set

2010 Mathematics Subject Classification. 58J35, 32V20.

Key words and phrases. Kohn-Rossi cohomology, heat kernel, CR manifold.

The first author was supported by Taiwan Ministry of Science and Technology project 107-2115-M-008-007-MY2. Both authors would like to express their gratitude to Prof. Chin-Yu Hsiao for very helpful comments in this work.
$X_{\text{reg}} := X_p$. We call $x \in X_{\text{reg}}$ a regular point of the S^1 action. Let X_{sing} be the complement of X_{reg}.

Let \tilde{X} be a paracompact CR manifold, such that there is a discrete group Γ acting freely on \tilde{X} having $X = \tilde{X}/\Gamma$. Let $\pi : \tilde{X} \to X$ be the natural projection with the pull-back map $\pi^* : TX \to T\tilde{X}$. Then \tilde{X} admits a pull-back CR structure $T^{1,0}\tilde{X} := \pi^*T^{1,0}X$ and, hence, a CR manifold. We assume that \tilde{X} admits a transversal CR locally free S^1 action, denote by $e^{i\theta}$. We further assume that the map

$$\Gamma \times \tilde{X} \to \tilde{X}, \ (\gamma, \tilde{x}) \mapsto \gamma \circ \tilde{x}, \ \ \forall \gamma \in \Gamma, \ \ \forall \tilde{x} \in \tilde{X}.$$

is CR, see (2.3), and

$$e^{i\theta} \circ \gamma \circ \tilde{x} = \gamma \circ e^{i\theta} \circ \tilde{x}, \ \ \forall \gamma \in [0, 2\pi], \ \ \forall \tilde{x} \in \tilde{X}.$$

Let $\tilde{E} := \pi^*E$ be the pull-back bundle of a rigid CR vector bundle E over X. Then \tilde{E} is a Γ-invariant rigid CR vector bundle over \tilde{X}. We denote by \tilde{X}_{reg} the set of regular points of the S^1-action on \tilde{X}. Note that since Γ acts on \tilde{X} freely so that $\tilde{X}/\Gamma = X$, hence, we have $\tilde{X}_{\text{reg}}/\Gamma = X_{\text{reg}} = X_p$. We denote by $X(q)$ a subset of X such that

$$X(q) := \{x \in X : \mathcal{L}_x \text{ has exactly } q \text{ negative eigenvalues and } n - q \text{ positive eigenvalues}\}.$$

We refer to Section 2 for more details. Our main theorem is the following

Theorem 1.1. With the above notations and assumptions, as $m \to \infty$, for $q = 0, 1, \cdots, n$, the m-th Fourier components of reduced L^2-Kohn-Rossi cohomology (see §2.25) satisfy the following strong Morse inequalities

$$\sum_{j=0}^q (-1)^{q-j} \dim_{\Gamma} \overline{H}_{b(2),m}^j(\tilde{X}, \tilde{E}) \leq \frac{prm^n}{2\pi^{n+1}} \sum_{j=0}^q (-1)^{q-j} \int_{X(j)} |\text{det}(\mathcal{L}_x)| \, dv_{X}(x) + o(m^n), \text{ for } p \mid m,$$

$$\sum_{j=0}^q (-1)^{q-j} \dim_{\Gamma} \overline{H}_{b(2),m}^j(\tilde{X}, \tilde{E}) = o(m^n), \text{ for } p \nmid m.$$

where r denotes the rank of \tilde{E}, \dim_{Γ} denotes the Von Neumann dimension (see §2.3 in the below, [16] §3.6.1 or [11] §3) and \mathcal{L}_x is the Levi form at $x \in X$. When $p \mid m$, $q = n$, as $m \to \infty$, we have the asymptotic Riemann-Roch-Hirzebruch theorem

$$\sum_{j=0}^n (-1)^j \dim_{\Gamma} \overline{H}_{b(2),m}^j(\tilde{X}, \tilde{E}) = \frac{prm^n}{2\pi^{n+1}} \sum_{j=0}^n (-1)^j \int_{X(j)} |\text{det}(\mathcal{L}_x)| \, dv_{X}(x) + o(m^n).$$

In particular, we get the weak Morse inequalities

$$\dim_{\Gamma} \overline{H}_{b(2),m}^0(\tilde{X}, \tilde{E}) \leq \frac{prm^n}{2\pi^{n+1}} \int_{X(q)} |\text{det}(\mathcal{L}_x)| \, dv_{X}(x) + o(m^n).$$

By the standard argument in [16] or [18], we deduce easily the following Grauert-Riemenschneider criterion on coverings of CR manifolds.

Corollary 1.2. With the above notations and assumptions in Theorem 1.1, we assume also that X is weakly pseudoconvex and strongly pseudoconvex at a point. Then

$$\dim_{\Gamma} \overline{H}_{b(2),m}^0(\tilde{X}, \tilde{E}) \approx m^n, \text{ for } p \mid m.$$

In particular, $\dim_{\Gamma} \overline{H}_{b(2)}^0(\tilde{X}, \tilde{E}) = \infty.$
When $\Gamma = \{ e \}, p = 1$ and E is trivial line bundle, we deduce the following Morse inequalities of Hsiao-Li, see [15] Theorem 2.2 and Theorem 2.5.

Corollary 1.3. With the above notations and assumptions, as $m \to \infty$, for $q = 0, 1, \ldots, n$, the m-th Fourier components of Kohn-Rossi cohomology satisfy the following strong Morse inequalities,

$$
(1.7) \quad \sum_{j=0}^{q} (-1)^{q-j} \dim H_{b,m}^{j}(X) \leq \frac{m^{n}}{2^{n+1}} \sum_{j=0}^{q} (-1)^{q-j} \int_{X(j)} |\det(\mathcal{L}_{x})| \, dv_{X}(x) + o(m^{n}),
$$

where \mathcal{L}_{x} is the Levi form at $x \in X$. In particular, we get the weak Morse inequalities

$$
(1.8) \quad \dim H_{b,m}^{q}(X) \leq \frac{m^{n}}{2^{n+1}} \int_{X(q)} |\det(\mathcal{L}_{x})| \, dv_{X}(x) + o(m^{n}).
$$

Let X be a compact CR manifold of dimension $2n + 1$, $n \geq 1$. A classical theorem due to Boutet de Monvel [4] asserts that X can be globally CR embedded into \mathbb{C}^{N}, for some $N \in \mathbb{N}$, when X is strongly pseudoconvex with dimension $n \geq 5$. Epstein [5] proved that if X is strongly pseudoconvex with dimension 3 and a global free transversal CR S^{1}-action, then X can be embedded into \mathbb{C}^{N} by positive Fourier components of CR functions. Corollary 1.3 guarantees the abundance of positive Fourier components of CR functions to do embedding in general cases (e.g. the S^{1}-action can be only locally free). In [15], the authors’ proofs include localization of analytic objects (eigenfunctions, Szegö kernels), Kohn L^{2} estimates and scaling techniques. A more general version of Corollary 1.3 (with X being weakly pseudoconvex) is proved by Cheng-Hsiao-Tsai in [5] Proposition 1.20 and Corollary 1.21 in a different way. By using the Morse inequalities, (1.7) and (1.8), Hsiao-Li [15, Theorem 2.6] proved that there are abundant CR functions on X when X is weakly pseudoconvex and strongly pseudoconvex at a point. Corollary 1.2 generalizes Theorem 2.6 of [15] to CR covering manifolds.

This paper is organized as follows. In Section 2 we introduce some basic notations, terminology and definitions. In Section 3 we study the asymptotic behavior of heat kernels of Kohn Laplacians. Section 4 is devoted to the heat kernel proof of the main theorem.

2. Preliminaries

2.1. Some standard notations

We use the following notations: $\mathbb{N} = \{1, 2, \ldots \}$, $\mathbb{N}_{0} = \mathbb{N} \cup \{0 \}$, \mathbb{R} is the set of real numbers, $\mathbb{R}_{+} := \{x \in \mathbb{R}; x > 0 \}$, $\mathbb{R}_{+} := \{x \in \mathbb{R}; x \geq 0 \}$. For a multiindex $\alpha = (\alpha_{1}, \ldots, \alpha_{n}) \in \mathbb{N}_{0}^{n}$ we set $|\alpha| = \alpha_{1} + \cdots + \alpha_{n}$. For $x = (x_{1}, \ldots, x_{n})$ we write

$$
x^\alpha = x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}, \quad \partial_{x_{j}} = \frac{\partial}{\partial x_{j}}, \quad \partial_{x}^{\alpha} = \partial_{x_{1}}^{\alpha_{1}} \cdots \partial_{x_{n}}^{\alpha_{n}} = \frac{\partial|\alpha|}{\partial x^\alpha}.
$$

Let $z = (z_{1}, \ldots, z_{n})$, $z_{j} = x_{2j-1} + ix_{2j}$, $j = 1, \ldots, n$, be coordinates of \mathbb{C}^{n}. We write

$$
z^\alpha = z_{1}^{\alpha_{1}} \cdots z_{n}^{\alpha_{n}}, \quad \bar{z}^\alpha = \overline{z_{1}^{\alpha_{1}} \cdots z_{n}^{\alpha_{n}}},
$$

$$
\partial_{z_{j}} = \frac{\partial}{\partial z_{j}} = -\frac{1}{2} \left(\frac{\partial}{\partial x_{2j-1}} - i \frac{\partial}{\partial x_{2j}} \right), \quad \partial_{\bar{z}_{j}} = \frac{\partial}{\partial \bar{z}_{j}} = -\frac{1}{2} \left(\frac{\partial}{\partial x_{2j-1}} + i \frac{\partial}{\partial x_{2j}} \right),
$$

$$
\partial_{\bar{z}} = \frac{\partial^{\alpha}}{\partial z^{\alpha}} = \frac{\partial_{z}^{\alpha}}{\partial z^{\alpha}}, \quad \partial_{\bar{z}} = \frac{\partial_{\bar{z}}^{\alpha}}{\partial \bar{z}^{\alpha}} = \frac{\partial_{\bar{z}}^{\alpha}}{\partial \bar{z}^{\alpha}}.
$$

Let X be a C^∞ orientable paracompact manifold. We let TX and $T^{*}X$ denote the tangent bundle of X and the cotangent bundle of X, respectively. The complexified tangent bundle of X and the complexified cotangent bundle of X will be denoted by $\mathbb{C}TX$ and $\mathbb{C}^{*}X$, respectively. We write $\langle \cdot, \cdot \rangle$ to denote the pointwise duality between $T^{*}X$ and TX. We extend $\langle \cdot, \cdot \rangle$ bilinearly to $\mathbb{C}^{*}X \times \mathbb{C}TX$. For $u \in \mathbb{C}^{*}X$, $v \in \mathbb{C}TX$, we also write $u(v) := \langle u, v \rangle$.

Let $Y \subset X$ be an open set. The spaces of smooth sections of E over Y and distribution sections of E over Y will be denoted by $C^\infty(Y, E)$ and $D'(Y, E)$, respectively.

2.2. CR manifolds with S^1-action. Let $(X, T^{1,0}X)$ be a compact CR manifold of dimension $2n+1$, $n \geq 1$, where $T^{1,0}X$ is a CR structure of X. That is, $T^{1,0}X$ is a subbundle of rank n of the complexified tangent bundle $\mathbb{C}T X$, satisfying $T^{1,0}X \cap T^{0,1}X = \{0\}$, where $T^{0,1}X = \overline{T^{1,0}X}$, and $[\mathcal{V}, \mathcal{V}] \subset \mathcal{V}$, where $\mathcal{V} = C^\infty(X, T^{1,0}X)$. We assume that X admits a S^1 action: $S^1 \times X \to X$. We write $e^{i\theta}$ to denote the S^1 action. Let $T \in C^\infty(X, TX)$ be the global real vector field induced by the S^1 action given by $(Tu)(x) = \frac{\partial}{\partial \theta}(u(e^{i\theta} \circ x))|_{\theta = 0}$, $u \in C^\infty(X)$.

Definition 2.1. We say that the S^1 action $e^{i\theta}$ is CR if $[T, C^\infty(X, T^{1,0}X)] \subset C^\infty(X, T^{1,0}X)$ and the S^1 action is transversal if for each $x \in X$, $\mathcal{C}T(x) \oplus T^{1,0}_x X \oplus T^{0,1}_x X = \mathcal{C}T_x X$. Moreover, we say that the S^1 action is locally free if $T \neq 0$ everywhere.

Note that if the S^1 action is transversal, then it is locally free. We assume throughout that $(X, T^{1,0}X)$ is a connected CR manifold with a transversal CR S^1 action $e^{i\theta}$ and we let T be the global vector field induced by the S^1 action. Let $\omega_0 \in C^\infty(X, T^*X)$ be the global real one form determined by $\langle \omega_0, u \rangle = 0$, for every $u \in T^{1,0}X \oplus T^{0,1}X$ and $\langle \omega_0, T \rangle = -1$.

Definition 2.2. For $p \in X$, the Levi form \mathcal{L}_p is the Hermitian quadratic form on $T^{1,0}_p X$ given by $\mathcal{L}_p(U, \overline{V}) = -\frac{i}{2}(\partial \omega_0(p), U \wedge \overline{V})$, $U, V \in T^{1,0}_p X$.

Definition 2.3. If the Levi form \mathcal{L}_p is positive definite, we say that X is strongly pseudoconvex at p. If the Levi form is positive definite at every point of X, we say that X is strongly pseudoconvex.

Denote by $T^{*1,0}X$ and $T^{*0,1}X$ the dual bundles of $T^{1,0}X$ and $T^{0,1}X$, respectively. Define the vector bundle of $(0, q)$ forms by $T^{*0,q}X = \Lambda^q(T^{*1,0}X)$. Put $T^{*0,q}X := \bigoplus_{j \in \{0, 1, \ldots, n\}} T^{*0,j}X$. Let $D \subset X$ be an open subset. Let $\Omega^{0,q}(D)$ denote the space of smooth sections of $T^{*0,q}X$ over D and let $\Omega^{0,q}_0(D)$ be the subspace of $\Omega^{0,q}(D)$ whose elements have compact support in D. Put

$$\Omega^{0,*}(D) := \bigoplus_{j \in \{0, 1, \ldots, n\}} \Omega^{0,j}(D),$$

$$\Omega^{0,*}_0(D) := \bigoplus_{j \in \{0, 1, \ldots, n\}} \Omega^{0,j}_0(D).$$

Similarly, if E is a vector bundle over D, then we let $\Omega^{0,q}(D, E)$ denote the space of smooth sections of $T^{*0,q}X \otimes E$ over D and let $\Omega^{0,q}_0(D, E)$ be the subspace of $\Omega^{0,q}(D, E)$ whose elements have compact support in D. Put

$$\Omega^{0,*}(D, E) := \bigoplus_{j \in \{0, 1, \ldots, n\}} \Omega^{0,j}(D, E),$$

$$\Omega^{0,*}_0(D, E) := \bigoplus_{j \in \{0, 1, \ldots, n\}} \Omega^{0,j}_0(D, E).$$

Fix $\theta_0 \in [-\pi, \pi]$, θ_0 small. Let $de^{i\theta_0} : \mathcal{C}T_x X \to \mathcal{C}T_{e^{i\theta_0}x} X$ denote the differential map of $e^{i\theta_0} : X \to X$. By the CR property of the S^1 action, we can check that

$$de^{i\theta_0} : T^{1,0}_x X \to T^{1,0}_{e^{i\theta_0}x} X,$$

$$de^{i\theta_0} : T^{0,1}_x X \to T^{0,1}_{e^{i\theta_0}x} X,$$

$$de^{i\theta_0}(T(x)) = T(e^{i\theta_0}x).$$

Let $(e^{i\theta_0})^* : \Lambda^j(\mathcal{C}T^*X) \to \Lambda^j(\mathcal{C}T^*X)$ be the pull-back map by $e^{i\theta_0}$, $j = 0, 1, \ldots, 2n + 1$. From (2.1), it is easy to see that for every $q = 0, 1, \ldots, n$,

$$\left(e^{i\theta_0}\right)^* : T^{*0,q}_{e^{i\theta_0}x} X \to T^{*0,q}_x X.$$
Let $u \in \Omega^{0,q}(X)$. Define

$$Tu := \frac{\partial}{\partial \theta}((e^{i\theta})^*u)|_{\theta=0} \in \Omega^{0,q}(X).$$

For every $\theta \in \mathbb{R}$ and every $u \in C^\infty(X, \Lambda^j(\mathbb{C}T^*X))$, we write $u(e^{i\theta} \circ x) := (e^{i\theta})^*u(x)$.

Let $\overline{\partial}_b : \Omega^{0,q}(X) \rightarrow \Omega^{0,q+1}(X)$ be the tangential Cauchy-Riemann operator. From the CR property of the S^1 action, it is straightforward to see that

$$T\overline{\partial}_b = \overline{\partial}_b T \quad \text{on} \quad \Omega^{0,\cdot}(X).$$

Definition 2.4. Let $D \subset U$ be an open set. We say that a function $u \in C^\infty(D)$ is rigid if $Tu = 0$. We say that a function $u \in C^\infty(X)$ is Cauchy-Riemann (CR for short) if $\overline{\partial}_b u = 0$. We call u a rigid CR function if $\overline{\partial}_b u = 0$ and $Tu = 0$.

Definition 2.5. Let F be a complex vector bundle over X. We say that F is rigid (CR) if X can be covered with open sets U_j with trivializing frames $\{f^1_j, f^2_j, \ldots, f^n_j\}$, $j = 1, 2, \ldots$, such that the corresponding transition matrices are rigid (CR). The frames $\{f^1_j, f^2_j, \ldots, f^n_j\}$, $j = 1, 2, \ldots$, are called rigid (CR) frames.

Definition 2.6. Let F be a complex rigid vector bundle over X and let $\langle \cdot | \cdot \rangle_F$ be a Hermitian metric on F. We say that $\langle \cdot | \cdot \rangle_F$ is a rigid Hermitian metric if for every rigid local frames f_1, \ldots, f_r of F, we have $T\langle f_j | f_k \rangle_F = 0$, for every $j, k = 1, 2, \ldots, r$.

It is known that there is a rigid Hermitian metric on any rigid vector bundle F (see Theorem 2.10 in [3] and Theorem 10.5 in [11]). Note that Baouendi-Rothschild-Treves [2] proved that $T^{1,0}X$ is a rigid complex vector bundle over X.

From now on, let E be a rigid CR vector bundle over X and we take a rigid Hermitian metric $\langle \cdot | \cdot \rangle_E$ on E and take a rigid Hermitian metric $\langle \cdot | \cdot \rangle$ on $\mathbb{C}T^*X$ such that $T^{1,0}X \perp T^{0,1}X$, $T \perp (T^{2,0}X \oplus T^{0,1}X)$, $\langle T | T \rangle = 1$. The Hermitian metrics on $\mathbb{C}T^*X$ and on E induce Hermitian metrics $\langle \cdot | \cdot \rangle$ and $\langle \cdot | \cdot \rangle_E$ on $T^{0,\cdot}X$ and $T^{0,\cdot}X \otimes E$, respectively. We denote by $d\nu_E = d\nu_X(x)$ the volume form on X induced by the fixed Hermitian metric $\langle \cdot | \cdot \rangle$ on $\mathbb{C}T^*X$. Then we get natural global L^2 inner products $\langle \cdot | \cdot \rangle_E$, $\langle \cdot | \cdot \rangle$ on $\Omega^{0,\cdot}(X, E)$ and $\Omega^{0,\cdot}(X)$, respectively. We denote by $L^2(X, T^{0,\cdot}X \otimes E)$ and $L^2(X, T^{0,\cdot}X)$ the completions of $\Omega^{0,\cdot}(X, E)$ and $\Omega^{0,\cdot}(X)$ with respect to $\langle \cdot | \cdot \rangle_E$ and $\langle \cdot | \cdot \rangle$, respectively. Similarly, we denote by $L^2(X, T^{0,\cdot}X \otimes E)$ and $L^2(X, T^{0,\cdot}X)$ the completions of $\Omega^{0,\cdot}(X, E)$ and $\Omega^{0,\cdot}(X)$ with respect to $\langle \cdot | \cdot \rangle_E$ and $\langle \cdot | \cdot \rangle$, respectively. We extend $\langle \cdot | \cdot \rangle_E$ and $\langle \cdot | \cdot \rangle$ to $L^2(X, T^{0,\cdot}X \otimes E)$ and $L^2(X, T^{0,\cdot}X)$ in the standard way, respectively. For $f \in L^2(X, T^{0,\cdot}X \otimes E)$, we denote $\|f\|_E^2 := \langle f \mid f \rangle_E$. Similarly, for $f \in L^2(X, T^{0,\cdot}X)$, we denote $\|f\|_E^2 := (f \mid f)$.

We also write $\overline{\partial}_b$ to denote the tangential Cauchy-Riemann operator acting on forms with values in E:

$$\overline{\partial}_b : \Omega^{0,\cdot}(X, E) \rightarrow \Omega^{0,\cdot}(X, E).$$

Since E is rigid, we can also define Tu for every $u \in \Omega^{0,q}(X, E)$ and we have

$$T\overline{\partial}_b = \overline{\partial}_b T \quad \text{on} \quad \Omega^{0,\cdot}(X, E).$$

For every $m \in \mathbb{Z}$, let

$$\Omega^{0,q}_m(X, E) := \{u \in \Omega^{0,q}(X, E); Tu = imu\}, \quad q = 0, 1, 2, \ldots, n,$$

$$\Omega^{0,\cdot}_m(X, E) := \{u \in \Omega^{0,\cdot}(X, E); Tu = imu\}.$$

For each $m \in \mathbb{Z}$, we denote by $L^2_m(X, T^{0,q}X \otimes E)$ and $L^2_m(X, T^{0,q}X)$ the completions of $\Omega^{0,q}_m(X, E)$ and $\Omega^{0,\cdot}_m(X)$ with respect to $\langle \cdot | \cdot \rangle_E$ and $\langle \cdot | \cdot \rangle$, respectively. Similarly, we denote by $L^2_m(X, T^{0,\cdot}X \otimes E)$ and $L^2_m(X, T^{0,\cdot}X)$ the completions of $\Omega^{0,\cdot}_m(X, E)$ and $\Omega^{0,\cdot}_m(X)$ with respect to $\langle \cdot | \cdot \rangle_E$ and $\langle \cdot | \cdot \rangle$, respectively.
2.3. Covering manifolds, Von Neumann dimension. Let $(X, T^{1,0}X)$ be a compact CR manifold of dimension $2n + 1$, $n \geq 1$. Let \tilde{X} be a paracompact CR manifold, such that there is a discrete group Γ acting freely on \tilde{X} having $X = \tilde{X}/\Gamma$. Let $\pi : \tilde{X} \to X$ be the natural projection with the pull-back map $\pi^* : TX \to \tilde{T}X$. Then \tilde{X} admits a pull-back CR structure $\tilde{T}^{1,0}\tilde{X} := \pi^*T^{1,0}X$ and, hence, a CR manifold. We assume that \tilde{X} admits a transversal CR locally free S^1 action, denoted by $e^{i\theta}$. We further assume that the map
\[\Gamma \times \tilde{X} \to \tilde{X}, \ (\gamma, \tilde{x}) \mapsto \gamma \circ \tilde{x}, \ \forall \tilde{x} \in \tilde{X}, \ \forall \gamma \in \Gamma.\]
is CR, i.e.
\[\gamma_*(T^{1,0}_{\tilde{x}}\tilde{X}) \subseteq T^{1,0}_{\tilde{\gamma}(\tilde{x})}\tilde{X},\]
and
\[e^{i\theta} \circ \gamma \circ \tilde{x} = \gamma \circ e^{i\theta} \circ \tilde{x}, \ \forall \tilde{x} \in \tilde{X}, \ \forall \theta \in [0, 2\pi[, \ \forall \gamma \in \Gamma.\]

It is easy to see that the S^1-action $e^{i\theta}$ on \tilde{X} induces a transversal CR locally free S^1 action, also denoted by $e^{i\theta}$. We denote by $\tilde{T} := \pi^*T$ the pull-back one form on \tilde{X}, then T is the global real vector field induced by the S^1-action on X. Let $\tilde{\omega}_0 := \pi^*\omega_0$ be the pull-back one form on \tilde{X}, where ω_0 is the global real one form on X as defined in Subsection 2.2. Then, for $\tilde{p} \in \tilde{X}$, the Levi form $\tilde{\mathcal{L}}_\tilde{\omega}$ is the Hermitian quadratic form on $T^{1,0}_{\tilde{p}}\tilde{X}$ given by
\[\tilde{\mathcal{L}}_\tilde{\omega}(\tilde{U}, \tilde{V}) = -\frac{1}{2i}(d\tilde{\omega}_0(\tilde{p}), \tilde{U} \wedge \tilde{V}) = -\frac{1}{2i}(d\omega_0(\pi(\tilde{p})), \pi_*\tilde{U} \wedge \pi_*\tilde{V}),\]
where $\tilde{U}, \tilde{V} \in T^{1,0}_{\tilde{p}}\tilde{X}$.

As usual, let $\Omega^{0,q}(\tilde{X})$ denote the space of smooth sections of $\wedge^q(T^{1,0}\tilde{X})$. We also denote by $\tilde{\partial}_b : \Omega^{0,q}(\tilde{X}) \to \Omega^{0,q+1}(\tilde{X})$ the tangential Cauchy-Riemann operator. Then $\tilde{T}\tilde{\partial}_b = \tilde{\partial}_b\tilde{T}$ on $\Omega^{0,q}(\tilde{X})$. Let E be a rigid CR vector bundle over X, then $\tilde{E} := \pi^*E$ is a Γ-invariant rigid CR vector bundle over \tilde{X}. Again let $\Omega^{0,q}(\tilde{X}, \tilde{E})$ denote the space of smooth sections of $\wedge^q(T^{1,0}\tilde{X}) \otimes \tilde{E}$. We again denote by $\tilde{\partial}_b : \Omega^{0,q}(\tilde{X}, \tilde{E}) \to \Omega^{0,q+1}(\tilde{X}, \tilde{E})$ the tangential Cauchy-Riemann operator. Then again $\tilde{T}\tilde{\partial}_b = \tilde{\partial}_b\tilde{T}$ on $\Omega^{0,q}(\tilde{X}, \tilde{E})$. We denote by $L^2(\tilde{X}, T^{1,0}\tilde{X} \otimes \tilde{E})$ and $L^2(\tilde{X}, T^{1,0}\tilde{X})$ the completions of $\Omega^{0,q}(\tilde{X}, \tilde{E})$ and $\Omega^{0,q}(\tilde{X})$ with respect to the corresponding pull-back metrics $(\cdot, \cdot)_{\tilde{E}}$ and (\cdot, \cdot). Similarly, we denote by $L^2(\tilde{X}, T^{1,0}\tilde{X} \otimes \tilde{E})$ and $L^2(\tilde{X}, T^{1,0}\tilde{X})$ the completions of $\Omega^{0,q}(\tilde{X}, \tilde{E})$ and $\Omega^{0,q}(\tilde{X})$ with respect to the corresponding pull-back metrics $(\cdot, \cdot)_{\tilde{E}}$ and (\cdot, \cdot).

As usual, for every $m \in \mathbb{Z}$, let
\[\Omega_m^{0,q}(\tilde{X}, \tilde{E}) := \left\{ u \in \Omega^{0,q}(\tilde{X}, \tilde{E}); \tilde{T}u = imu \right\}, \quad q = 0, 1, 2, \ldots, n,\]
\[\Omega_m^{0,q}(\tilde{X}, \tilde{E}) := \left\{ u \in \Omega^{0,q}(\tilde{X}, \tilde{E}); \tilde{T}u = imu \right\}.\]

For each $m \in \mathbb{Z}$, we denote by $L_m^2(\tilde{X}, T^{1,0}\tilde{X} \otimes \tilde{E})$ and $L_m^2(\tilde{X}, T^{1,0}\tilde{X})$ the completions of $\Omega_m^{0,q}(\tilde{X}, \tilde{E})$ and $\Omega_m^{0,q}(\tilde{X})$ with respect to the corresponding pull-back metrics $(\cdot, \cdot)_{\tilde{E}}$ and (\cdot, \cdot). Similarly, we denote by $L_m^2(\tilde{X}, T^{1,0}\tilde{X} \otimes \tilde{E})$ and $L_m^2(\tilde{X}, T^{1,0}\tilde{X})$ the completions of $\Omega_m^{0,q}(\tilde{X}, \tilde{E})$ and $\Omega_m^{0,q}(\tilde{X})$ with respect to the corresponding pull-back metrics $(\cdot, \cdot)_{\tilde{E}}$ and (\cdot, \cdot).

Recall that $U \subset \tilde{X}$ is called a fundamental domain of the action of Γ on \tilde{X} if the following conditions hold:

1. $\tilde{X} = \bigcup_{\gamma \in \Gamma} \gamma(U)$,
2. $\gamma_1(U) \cap \gamma_2(U) = \emptyset$ for $\gamma_1, \gamma_2 \in \Gamma, \gamma_1 \neq \gamma_2$,
3. $U \setminus \tilde{U}$ is of measure 0.
We can take U to be S^1-invariant and with the pull-back S^1-action $e^{i\theta}$. We construct such a fundamental domain in the following: From the discussion in the proof of [5, Theorem 2.11], we can find local trivializations W_1, \cdots, W_N such that $X = \bigcup_{j=1}^N W_j$ and each W_j is S^1-invariant. For each j, let $\tilde{W}_j \subset \tilde{X}$ be an S^1-invariant open set such that $\pi : \tilde{W}_j \to W_j$ is a diffeomorphism and a CR map with inverse $\phi_j : W_j \to \tilde{W}_j$. Define $U_j = W_j \setminus (\bigcup_{i<j} \tilde{W}_i \cap W_j)$. Then $U := \bigcup_j \phi_j(U_j)$ is the fundamental domain we want.

It is easy to see that

$$L^2(\tilde{X}, \tilde{E}) \simeq L^2 T \otimes L^2(U, \tilde{E}) \simeq L^2 \Gamma \otimes L^2(X, E).$$

We then have a unitary action of Γ by left translations on $L^2 \Gamma$ by $t_\gamma \delta_\eta = \delta_{\gamma \eta}$, where $\{\delta_\eta : \eta \in \Gamma\}$ is the orthonormal basis of $L^2 \Gamma$ formed by the delta functions. It induces a unitary action of Γ on $L^2(\tilde{X}, \tilde{E})$ by $\gamma \mapsto T_\gamma = t_\gamma \otimes \text{Id}$.

Let us recall the definition of the Von Neumann dimension or Γ-dimension of a Γ-module $V \subset L^2(\tilde{X}, T^{*, q} \tilde{X} \otimes \tilde{E})$, see also [10, Definition 3.6.1]. We shall denote by $\mathcal{L}(A)$ the space of bounded operators of the Hilbert space H. Let $\mathcal{A}_T \subset \mathcal{L}(L^2 \Gamma)$ be the algebra of operators which commute with all left translations and denote the unit element of Γ by 1. We define $\text{Tr}_T[A] := \langle A \delta_\eta, \delta_\eta \rangle$, $A \in \mathcal{A}_T$. Note that a Γ-module is a left Γ-invariant subspace $V \subset L^2 \Gamma$. The orthogonal projection P_V on V is in \mathcal{A}_T for a Γ-module V. Set $\dim_\Gamma V := \text{Tr}_T[P_V]$. Now we replace $L^2 \Gamma$ by $L^2(\tilde{X}, T^{*, q} \tilde{X} \otimes \tilde{E})$. Then to any operator $A \in \mathcal{L}(L^2(\tilde{X}, T^{*, q} \tilde{X} \otimes \tilde{E}))$, we associate operators $a_{\gamma \eta} \in \mathcal{L}(L^2(U, T^{*, q} \tilde{X} \otimes \tilde{E}))$ such that $a_{\gamma \eta}(f)$ is the projection of $A(\delta_{\gamma \eta} \otimes f)$ on $\mathbb{C} \delta_\eta \otimes L^2(U, T^{*, q} \tilde{X} \otimes \tilde{E})$. In addition, if $A \in \mathcal{A}_T$ and A is positive, then $a_{\gamma \eta} = a_{\eta \gamma^{-1} \eta}$ and

$$\text{Tr}_T[A] := \text{Tr}[a_{ee}] \geq 0,$$

is well-defined. The orthogonal projection P_V on $V \subset L^2(\tilde{X}, T^{*, q} \tilde{X} \otimes \tilde{E})$ is in \mathcal{A}_T for a Γ-module V.

Definition 2.7. The Von Neumann dimension or Γ-dimension of a Γ-module V is defined by

$$\dim_\Gamma V := \text{Tr}_T[P_V].$$

3. Asymptotic expansion of heat kernels of Kohn Laplacians

In this section, we recall the definition of heat kernels. Then we give a new version of asymptotic expansions of heat kernels of Kohn Laplacians.

3.1. Asymptotics of heat kernels of Kohn Laplacians on a compact CR manifold.

Since $T\bar{\partial}_b = \bar{\partial}_bT$ and E is a rigid CR vector bundle with a rigid Hermitian metric, we have

$$\bar{\partial}_{b,m} := \bar{\partial}_b : \Omega^0_{m^*}(X, E) \to \Omega^0_{m^*}(X, E), \quad \forall m \in \mathbb{Z}.$$

The m-th Fourier component of Kohn-Rossi cohomology is given by

$$H^0_{b,m}(X, E) := \frac{\ker \bar{\partial}_b : \Omega^0_{m,q}(X, E) \to \Omega^0_{m,q+1}(X, E)}{\im \bar{\partial}_b : \Omega^0_{m,q-1}(X, E) \to \Omega^0_{m,q}(X, E)}.$$

We also write

$$\overline{\partial}_b^* : \Omega^0_{m^*}(X, E) \to \Omega^0_{m^*}(X, E)$$

to denote the formal adjoint of $\bar{\partial}_b$ with respect to $(\cdot | \cdot)_E$. Since $(\cdot | \cdot)_E$ and $(\cdot | \cdot)$ are rigid, we can check that

$$T\overline{\partial}_b = \overline{\partial}_b T \quad \text{on } \Omega^0_{m^*}(X, E),$$

$$\overline{\partial}_{b,m} := \overline{\partial}_b : \Omega^0_{m^*}(X, E) \to \Omega^0_{m^*}(X, E), \quad \forall m \in \mathbb{Z}.$$
Now, we fix \(m \in \mathbb{Z} \). The \(m \)-th Fourier component of Kohn Laplacian is given by
\[
\Box_{b,m} := (\overline{\partial}_{b,m} + \overline{\partial}_{b,m}^\ast)^2 : \Omega^0_m(X, E) \to \Omega^0_m(X, E).
\]
We extend \(\Box_{b,m} \) to \(L^2_m(X, T^{*0 \cdot}X \otimes E) \) by
\[
\Box_{b,m} : \text{Dom} \Box_{b,m} \subset L^2_m(X, T^{*0 \cdot}X \otimes E) \to L^2_m(X, T^{*0 \cdot}X \otimes E),
\]
where \(\text{Dom} \Box_{b,m} := \{ u \in L^2_m(X, T^{*0 \cdot}X \otimes E); \Box_{b,m} u \in L^2_m(X, T^{*0 \cdot}X \otimes E) \} \), where for any \(u \in L^2_m(X, T^{*0 \cdot}X \otimes E) \), \(\Box_{b,m} u \) is defined in the sense of distributions. We recall the following results (see Section 3 in [5]).

Theorem 3.1. The Kohn Laplacian \(\Box_{b,m} \) is self-adjoint, \(\text{Spec} \Box_{b,m} \) is a discrete subset of \([0, \infty[\) and for every \(\nu \in \text{Spec} \Box_{b,m} \), \(\nu \) is an eigenvalue of \(\Box_{b,m} \) with finite multiplicity.

For every \(\nu \in \text{Spec} \Box_{b,m} \), let \(\{ f_1^\nu, \ldots, f_{d_\nu}^\nu \} \) be an orthonormal frame for the eigenspace of \(\Box_{b,m} \) with eigenvalue \(\nu \). The heat kernel \(e^{-t \Box_{b,m}}(x, y) \) is given by
\[
e^{-t \Box_{b,m}}(x, y) = \sum_{\nu \in \text{Spec} \Box_{b,m}} \sum_{j=1}^{d_\nu} e^{-t \nu} f_j^\nu(x) \otimes (f_j^\nu(y))^\dagger,
\]
where \(f_j^\nu(x) \otimes (f_j^\nu(y))^\dagger \) denotes the linear map:
\[
f_j^\nu(x) \otimes (f_j^\nu(y))^\dagger : T^{*0 \cdot}X \otimes E_y \to T^{*0 \cdot}X \otimes E_x,
\]
\[
u(y) \in T^{*0 \cdot}X \otimes E_y \to f_j^\nu(x) \langle u(y) | f_j^\nu(y) \rangle_E \in T^{*0 \cdot}X \otimes E_x.
\]
Let \(e^{-t \Box_{b,m}} : L^2(X, T^{*0 \cdot}X \otimes E) \to L^2_m(X, T^{*0 \cdot}X \otimes E) \) be the continuous operator with distribution kernel \(e^{-t \Box_{b,m}}(x, y) \).

We denote by \(\hat{\mathcal{R}} \) the Hermitian matrix \(\hat{\mathcal{R}} \in \text{End}(T^{1,0}X) \) such that for \(V, W \in T^{1,0}X \),
\[
id\omega_0(V, W) = \langle \hat{\mathcal{R}}V | W \rangle.
\]
Let \(\{ \omega_j \}_{j=1}^n \) be a local orthonormal frame of \(T^{1,0}X \) with dual frame \(\{ \omega^j \}_{j=1}^n \). Set
\[
\gamma_d = -i \sum_{l,j=1}^n d\omega_0(\omega_j, \overline{\omega_l}) \omega^l \wedge t\omega_j,
\]
where \(t\omega_j \) denotes the interior product of \(\omega_j \). Then \(\gamma_d \in \text{End}(T^{*0 \cdot}X) \) and \(-id\omega_0 \) acts as the derivative \(\gamma_d \) on \(T^{*0 \cdot}X \). If we choose \(\{ \omega_j \}_{j=1}^n \) to be an orthonormal basis of \(T^{1,0}X \) such that
\[
\hat{\mathcal{R}}(x) = \text{diag}(a_1(x), \ldots, a_n(x)) \in \text{End}(T^{1,0}_xX),
\]
then
\[
\gamma_d(x) = -\sum_{j=1}^n a_j(x) \omega^j \wedge t\omega_j.
\]
Define \(\text{det} \hat{\mathcal{R}}(x) := a_1(x) \ldots a_n(x) \).

Fix \(x, y \in X \). Let \(d(x, y) \) denote the standard Riemannian distance of \(x \) and \(y \) with respect to the given Hermitian metric. Take \(\zeta \)
\[
o < \zeta < \inf \left\{ \frac{2\pi}{p_k}, \frac{2\pi}{p_r} - \frac{2\pi}{p_{r+1}} \right\}, r = 1, \ldots, k - 1.
\]
For \(x \in X \), put
\[
\hat{d}(x, X_{\text{sing}}) := \inf \left\{ d(x, e^{-i\theta}x); \zeta \leq \theta \leq \frac{2\pi}{p} - \zeta \right\}.
\]

The following result generalizes Theorem 3.1 in [12].
Theorem 3.2. With the above notations and assumptions, for every \(\epsilon > 0 \), there are \(m_0 > 0 \), \(\varepsilon_0 > 0 \) and \(C > 0 \) such that for all \(m \geq m_0 \), we have

\[
\left| e^{-\frac{b m}{4\pi}} h_{\circ b, m}(x, x) - \sum_{s=1}^{p} e^{2\pi s(1-mi)} (2\pi)^{n-1} m^{n} \frac{\det(R) \exp(t_\gamma d)}{\det(1 - \exp(-tR))} (x) \otimes \text{Id}_{E_x} \right|
\]

\[
\leq \epsilon m^n + C m^n t^{-n} e^{-\frac{c_\circ m d(x, x)}{t}}, \quad \forall (t, x) \in \mathbb{R} \times X_{\text{reg}}.
\]

Proof. We use the notations from Section 3 in [12]. Recall that \(\Gamma_m \) is defined in [12] (3.31) (see also (3.29)). For \(x \in X_{\text{reg}} \), we have

\[
\Gamma_m(t, x, x) = \frac{1}{2\pi} \sum_{j=1}^{N} \int_{0}^{2\pi} H_{j,m}(t, x, e^{iu} \circ x) e^{imu} du
\]

\[
= \frac{1}{2\pi} \sum_{s=1}^{p} e^{2\pi s(1-mi)} \sum_{j=1}^{N} \int_{0}^{2\pi} H_{j,m}(t, x, e^{iu} \circ x) e^{imu} du
\]

\[
= \frac{1}{2\pi} \sum_{s=1}^{p} e^{2\pi s(1-mi)} \sum_{j=1}^{N} \int_{u \in [\frac{2\pi}{p} - \zeta]} H_{j,m}(t, x, e^{iu} \circ x) e^{imu} du
\]

\[
= \frac{1}{2\pi} \sum_{s=1}^{p} e^{2\pi s(1-mi)} \sum_{j=1}^{N} \int_{-\zeta}^{\zeta} H_{j,m}(t, x, e^{iu} \circ x) e^{imu} du,
\]

where \(H_{j,m} \) is defined in [12] (3.30) (see also (3.29)). From [12] (3.29), (3.34) and [5] (6.4), there are \(\varepsilon_0 > 0 \) and \(C_0 \) independent of \(j, x, m, t \) such that, for all \(t \in \mathbb{R}_+ \) and for all \(m \in \mathbb{N} \), we have

\[
\left| \frac{1}{2\pi} \int_{u \in [\frac{2\pi}{p} - \zeta]} H_{j,m}(t, x, e^{iu} \circ x) e^{imu} du \right| \leq C_0 m^n t^{-n} e^{-\frac{c_\circ m d(x, x)}{t}}.
\]

Then the proof is completed by applying [12] (3.32), (3.39) and (3.12).

Remark 3.3. It is easy to check that

\[
\sum_{s=1}^{p} e^{2\pi s(1-mi)} = \begin{cases} p & \text{if } m \mid p, \\ 0 & \text{if } p \nmid m. \end{cases}
\]

\[\square \]

3.2. BRT trivializations. To prove Theorem 3.2 we need some preparations. We first need the following result due to Baouendi-Rothschild-Treves [2].

Theorem 3.4. For every point \(x_0 \in X \), we can find local coordinates \(x = (x_1, \ldots, x_{2n+1}) = (z, \theta) = (z_1, \ldots, z_n, \theta), z_j = x_{2j-1} + ix_{2j}, j = 1, \ldots, n, x_{2n+1} = \theta \), defined in some small neighborhood \(D = \{|z| < \delta, -\varepsilon_0 < \theta < \varepsilon_0\} \) of \(x_0 \), \(\delta > 0 \), \(0 < \varepsilon_0 < \pi \), such that \((z(x_0), \theta(x_0)) = (0, 0) \) and

\[
T = \frac{\partial}{\partial \theta}
\]

\[
Z_j = \frac{\partial}{\partial z_j} + i \frac{\partial \varphi}{\partial z_j} (z) \frac{\partial}{\partial \theta}, j = 1, \ldots, n
\]

where \(Z_j(x), j = 1, \ldots, n \), form a basis of \(T_x^{1,0} X \), for each \(x \in D \), and \(\varphi(z) \in C^\infty(D, \mathbb{R}) \) is independent of \(\theta \). We call \((D, (z, \theta), \varphi) \) BRT trivialization.
By using BRT trivialization, we get another way to define $Tu, \forall u \in \Omega^0,q(X)$. Let $(D, (z, \theta), \varphi)$ be a BRT trivialization. It is clear that
$$\{d\bar{z}_{j_1} \wedge \cdots \wedge d\bar{z}_{j_q}, \, 1 \leq j_1 < \cdots < j_q \leq n\}$$
is a basis for $T^*_{x}^{0,q} X$, for every $x \in D$. Let $u \in \Omega^0,q(X)$. On D, we write
$$(3.15)\quad u = \sum_{1 \leq j_1 < \cdots < j_q \leq n} u_{j_1, \ldots, j_q} d\bar{z}_{j_1} \wedge \cdots \wedge d\bar{z}_{j_q}.$$Then, on D, we can check that
$$(3.16)\quad Tu = \sum_{1 \leq j_1 < \cdots < j_q \leq n} (Tu_{j_1, \ldots, j_q}) d\bar{z}_{j_1} \wedge \cdots \wedge d\bar{z}_{j_q}$$and Tu is independent of the choice of BRT trivializations. Note that, on BRT trivialization $(D, (z, \theta), \varphi)$, we have
$$(3.17)\quad \overline{\partial}u = \sum_{j=1}^{n} d\bar{z}_j \wedge \left(\frac{\partial}{\partial \overline{z}_j} - i \frac{\partial}{\partial \theta}(z) \frac{\partial}{\partial \theta}\right).$$

3.3. Local heat kernels on BRT trivializations. Until further notice, we fix $m \in \mathbb{Z}$. Let $B := (D, (z, \theta), \varphi)$ be a BRT trivialization. We may assume that $D = U \times \mathbb{C}^n$. Since E is rigid, we can consider E as a holomorphic vector bundle over U. We may assume that E is trivial on U. Consider a trivial line bundle $L \rightarrow U$ with non-trivial Hermitian fiber metric $|1|^2 L = e^{-2\varphi}$. Let $(L^m, h^L_m) \rightarrow U$ be the m-th power of (L, h^L). Let $\Omega^0,q(U, E \otimes L^m)$ and $\Omega^0,q(U, E)$ be the spaces of $(0,q)$ forms on U with values in $E \otimes L^m$ and E, respectively, $q = 0, 1, 2, \ldots, n$. Put
$$\Omega^0,q(U, E \otimes L^m) := \oplus_{j \in \{0, 1, \ldots, n\}} \Omega^0,j(U, E \otimes L^m),$$
$$\Omega^0,q(U, E) := \oplus_{j \in \{0, 1, \ldots, n\}} \Omega^0,j(U, E).$$Since L is trivial, from now on, we identify $\Omega^0,q(U, E)$ with $\Omega^0,q(U, E \otimes L^m)$. Since the Hermitian fiber metric $(\cdot \mid \cdot)_E$ is rigid, we can consider $(\cdot \mid \cdot)_E$ as a Hermitian fiber metric on the holomorphic vector bundle E over U. Let (\cdot, \cdot) be the Hermitian metric on $\mathbb{C}TU$ given by
$$(\cdot, \cdot) = \left(\frac{\partial}{\partial z_j}, \frac{\partial}{\partial z_k}\right) = \left(\frac{\partial}{\partial \overline{z}_j}, i \frac{\partial}{\partial \theta}(z) \frac{\partial}{\partial \theta}\right) + \left(\frac{\partial}{\partial \theta}(z) \frac{\partial}{\partial \theta}, \frac{\partial}{\partial \overline{z}_k}\right), \quad j, k = 1, 2, \ldots, n.$$$(\cdot, \cdot)$ induces a Hermitian metric on $T^*U := \bigoplus_{j=0}^{n} T^{0, j} U$, where $T^{0,j} U$ is the bundle of $(0,j)$ forms on U, $j = 0, 1, \ldots, n$. We shall also denote this induced Hermitian metric on T^*U by (\cdot, \cdot). The Hermitian metrics on T^*U and E induce a Hermitian metric on $T^*U \otimes E$. We shall also denote this induced metric by $(\cdot \mid \cdot)_E$. Let $(\cdot, \cdot)_m$ be the L^2 inner product on $\Omega^0,q(U, E \otimes L^m)$ induced by $(\cdot, \cdot)_E$. Similarly, let $(\cdot, \cdot)_0$ be the L^2 inner product on $\Omega^0,q(U, E \otimes L^m)$ induced by $(\cdot, \cdot)_0$ and h^L_m.

The curvature of L induced by h^L is given by $R^L := 2\overline{\partial} \varphi$. Let $R^L \in \text{End}(T^{1,0}U)$ be the Hermitian matrix given by
$$R^L(W, \overline{Y}) = \langle \hat{R}^L W, Y \rangle, \quad W, Y \in T^{1,0} U.$$Let $\{w_j\}_{j=1}^{n}$ be a local orthonormal frame of $T^{1,0} U$ with dual frame $\{\overline{w}_j\}_{j=1}^{n}$. Set
$$(3.18)\quad \omega_d = - \sum_{l,j} R^L(w_j, \overline{w}_l) \overline{w}_l \wedge (\omega_j),$$where ω_j denotes the interior product of \overline{w}_j.
Let
$$\overline{\partial} : \Omega^0,q(U, E \otimes L^m) \rightarrow \Omega^0,q(U, E \otimes L^m)$$
be the Cauchy-Riemann operator and let
\[\overline{\partial}^m : \Omega^0\bullet(U, E \otimes L^m) \to \Omega^0\bullet(U, E \otimes L^m) \]
be the formal adjoint of \(\overline{\partial} \) with respect to \(\langle \cdot, \cdot \rangle_m \). Put
\[
(3.19) \quad \Box_{B,m} := (\overline{\partial} + \overline{\partial}^m)^2 : \Omega^0\bullet(U, E \otimes L^m) \to \Omega^0\bullet(U, E \otimes L^m).
\]
We need the following result (see Lemma 5.1 in [5])

Lemma 3.5. Let \(u \in \Omega^0\bullet_m(X, E) \). On \(D \), we write \(u(z, \theta) = e^{im\theta \bar{u}(z)} \), \(\tilde{u}(z) \in \Omega^0\bullet(U, E) \). Then,
\[
(3.20) \quad e^{-m\varphi} \Box_{B,m}(e^{m\varphi} \tilde{u}) = e^{-m\varphi} \Box_{B,m}(u).
\]

Let \(z, w \in U \) and let \(T(z, w) \in (T^0\bullet_0 U \otimes E_w) \boxtimes (T^0\bullet_0 U \otimes E_z) \). We write \(|T(z, w)| \) to denote the standard pointwise matrix norm of \(T(z, w) \) induced by \(\langle \cdot, \cdot \rangle \). Let \(\Omega^0\bullet(U, E) \) be the subspace of \(\Omega^0\bullet(U, E) \) whose elements have compact support in \(U \). Let \(dv_U \) be the volume form on \(U \) induced by \(\langle \cdot, \cdot \rangle \). Assume \(T(z, w) \in C^\infty(U \times U, (T^0\bullet_0 U \otimes E_w) \boxtimes (T^0\bullet_0 U \otimes E_z)) \). Let \(u \in \Omega^0\bullet(U, E) \). We define the integral \(\int T(z, w)u(w)dw_U(w) \) in the standard way. Let \(G(t, z, w) \in C^\infty(\mathbb{R}_+ \times U \times U, (T^0\bullet_0 U \otimes E_w) \boxtimes (T^0\bullet_0 U \otimes E_z)) \). We write \(G(t) \) to denote the continuous operator
\[
G(t) : \Omega^0\bullet(U, E) \to \Omega^0\bullet(U, E),
\]
and we write \(G'(t) \) to denote the continuous operator
\[
G'(t) : \Omega^0\bullet(U, E) \to \Omega^0\bullet(U, E),
\]
\[
u \to \int G(t, z, w)u(w)dw_U(w)\]
\[
u \to \int \frac{\partial G(t, z, w)}{\partial t}u(w)dw_U(w).
\]

We consider the heat operator of \(\Box_{B,m} \). By using the standard Dirichlet heat kernel construction (see [9]) and the proofs of Theorem 1.6.1 and Theorem 5.5.9 in [16], we deduce the following

Theorem 3.6. There is \(A_{B,m}(t, z, w) \in C^\infty(\mathbb{R}_+ \times U \times U, (T^0\bullet_0 U \otimes E_w) \boxtimes (T^0\bullet_0 U \otimes E_z)) \) such that
\[
\lim_{t \to 0^+} A_{B,m}(t) = I \text{ in } D'(U, T^0\bullet_0 U \otimes E),
\]
\[
(3.21) \quad A'_{B,m}(t)u + \frac{1}{m} A_{B,m}(t)(\Box_{B,m}u) = 0, \forall u \in \Omega^0\bullet(U, E), \forall t > 0,
\]
and \(A_{B,m}(t, z, w) \) satisfies the following:

(I) For every compact set \(K \Subset U \), \(\alpha_1, \alpha_2, \beta_1, \beta_2 \in \mathbb{N}_0 \), there are constants \(C_{\alpha_1, \alpha_2, \beta_1, \beta_2, K} > 0 \) and \(\varepsilon_0 > 0 \) independent of \(t \) and \(m \) such that
\[
\left| \frac{\partial^{\alpha_1} \partial^{\alpha_2} \partial^{\beta_1} \partial^{\beta_2}}{\partial_t^m} \left(A_{B,m}(t, z, w)e^{m(\varphi(w) - \varphi(z))} \right) \right| \leq C_{\alpha_1, \alpha_2, \beta_1, \beta_2, K} \left(\frac{m}{t} \right)^{n+|\alpha_1|+|\alpha_2|+|\beta_1|+|\beta_2|} e^{-m\varepsilon_0 \frac{1}{\beta_1^2}}, \forall (t, z, w) \in \mathbb{R}_+ \times K \times K.
\]

(II) \(A_{B,m}(t, z, w) \) admits an asymptotic expansion:
\[
(3.22) \quad A_{B,m}(t, z, w) = (2\pi)^{-m} \frac{\det(\hat{R}_t)}{\det(1 - \exp(-t\hat{R}_t))} \left(z \otimes \text{Id}_{E_z} + o(m^n) \right)
\]
in \(C^\ell(U, \text{End}(T^0\bullet_0 U \otimes E)) \) locally uniformly on \(\mathbb{R}_+ \times U \), for every \(\ell \in \mathbb{N} \). Here we use the convention that if an eigenvalue \(\alpha_j(z) \) of \(\hat{R}_t(z) \) is zero, then its contribution for \(\frac{\det(\hat{R}_t)}{\det(1 - \exp(-t\hat{R}_t))} \) is \(\frac{1}{t} \).
3.4. L^2 Kohn-Rossi cohomology on a covering manifold. Let

$$\widetilde{b}_b : \text{Dom} \widetilde{b}_b \subset L^2(\widetilde{X}, T^{s_0 \bullet} \widetilde{X}) \to L^2(\widetilde{X}, T^{s_0 \bullet} \widetilde{X})$$

be the Gaffney extension of the pull-back Kohn Laplacian on \widetilde{X}. By a result of Gaffney, \widetilde{b}_b is a positive self-adjoint operator (see Proposition 3.1.2 in Ma-Marinescu [10]). That is, \widetilde{b}_b is self-adjoint and the spectrum of \widetilde{b}_b is contained in \mathbb{R}_+. Now, we fix $m \in \mathbb{Z}$. As in (3.33), we introduce the m-th Fourier component of the Kohn Laplacian $\tilde{b}_{b,m}$ on $\Omega^{0,\bullet}_m(\tilde{X}, \tilde{E})$. We can easily see that $\tilde{b}_{b,m}$ is also self-adjoint. By the second isomorphism of (2.10), we can see that, for any $\gamma \in \Gamma$,

$$T_\gamma(\text{Dom}(\tilde{b}_{b,m})) \subset \text{Dom}(\tilde{b}_{b,m}), \quad T_\gamma \tilde{b}_{b,m} = \tilde{b}_{b,m}T_\gamma \quad \text{on} \quad \text{Dom}(\tilde{b}_{b,m}).$$

(3.24) Consider the spectral resolution $E^q_\lambda(\tilde{b}_{b,m})$ of $\tilde{b}_{b,m}$ acting on $L^2(\tilde{X}, T^{s_0 q} \tilde{X} \otimes \tilde{E})$. (See [16, Appendix C.2]). The proof of the following lemma is similar to Lemma 3.6.3 in Ma-Marinescu [10].

Lemma 3.7. For any $q = 0, 1, \cdots, n$ and $\lambda \in \mathbb{R}$, then $E^q_\lambda(\tilde{b}_{b,m})$ commutes with Γ, its Schwartz kernel is smooth and

$$\dim_\Gamma E^q_\lambda(\tilde{b}_{b,m}) < +\infty.$$

Proof. By (2.10) and (3.24), we can see that, for any $\lambda \in \mathbb{R}$, $E^q_\lambda(\tilde{b}_{b,m})$ commutes with Γ. We claim that $\tilde{b}_{b,m} - \tilde{T}^2 \equiv \Delta$ is a second order elliptic operator, so is $\Delta - m^2$. Its principal symbol is locally written as

$$\sigma_\Delta(x, \xi) = \sigma_{\tilde{b}_{b,m}}(x, \xi) - \sigma_{\tilde{T}^2}(x, \xi) = \sum_{j=1}^{n} |\sigma_{L_j}(x, \xi)|^2 - \sigma_{\tilde{T}}(x, \xi)^2,$$

where $\xi = (\xi_1, \ldots, \xi_{2n}, \xi_{2n+1})$ and $\{L_j\}$ is an orthonormal basis of $T^{0,1}_x \tilde{X}$. It is well-known that the characteristic manifold of \tilde{b}_b is

$$\Sigma = \{ (x, c\tilde{w}_0(x)) \in T^* \tilde{X} : c \neq 0 \}.$$

It means that $\sigma_{\tilde{b}_{b,m}}(x, \xi) > 0$ if and only if $(\xi_1, \ldots, \xi_{2n}) \neq 0$. Meanwhile, in a local BRT coordinate [2], we have $\tilde{T} = \frac{\partial}{\partial \theta}$, then $\sigma_{\tilde{T}} = i\xi_{2n+1}$. That is, $\sigma_{\tilde{T}^2} = -\xi_{2n+1}^2$. Then the claim is proved. By the spectral theorem, cf. [16, Theorem C.2.1], we have $\text{Im}(E_\lambda(\Delta - m^2)) \subset \text{Dom}((\Delta - m^2)^k)$ for $k \in \mathbb{N}$. Using the uniform Sobolev spaces [19, pp. 511-512], it is easy to see that $\text{Im}(E_\lambda(\Delta - m^2)) \subset \Omega^\bullet(\tilde{X}, \tilde{E})$, so that $E_\lambda(\Delta - m^2) : L^2(\tilde{X}, T^{s_0 \bullet} \tilde{X} \otimes \tilde{E}) \to \Omega^\bullet(\tilde{X}, \tilde{E})$ is linear continuous. Hence, $\text{Im} E_\lambda(\tilde{b}_{b,m}) = \text{Im}(E_\lambda(\Delta - m^2)) \cap L^2_{m_2}(\tilde{X}, T^{s_0 \bullet} \tilde{X} \otimes \tilde{E}) \subset \Omega^\bullet(\tilde{X}, \tilde{E})$ and $E_\lambda(\tilde{b}_{b,m}) : L^2_{m_2}(\tilde{X}, T^{s_0 \bullet} \tilde{X} \otimes \tilde{E}) \to \Omega^\bullet(\tilde{X}, \tilde{E})$ is also linear continuous. By Schwartz kernel theorem, the kernel $E_\lambda(\tilde{b}_{b,m})(x, x)$ of $E_\lambda(\tilde{b}_{b,m})$ with respect to $dv_{\tilde{X}}(x)$ is smooth. By [16] (3.6.12),

$$\dim_\Gamma E_\lambda(\tilde{b}_{b,m}) = \int_U \text{Tr}[E_\lambda(\tilde{b}_{b,m})(\tilde{x}, \tilde{x})]dv_{\tilde{X}}(\tilde{x}) < +\infty.$$

□

Definition 3.8. (a) The m-th Fourier component of the space of harmonic forms $\mathcal{H}_\bullet^\bullet(\tilde{X}, \tilde{E})$ is defined by

$$\mathcal{H}_{b,m}^\bullet(\tilde{X}, \tilde{E}) := \text{Ker}(\tilde{b}_{b,m}) = \{ s \in \text{Dom}(\tilde{b}_{b,m}) : \tilde{b}_{b,m}s = 0 \}.$$
Asymptotics of heat kernels of Kohn Laplacians on a covering manifold. We may assume that, for each x, we may suppose that

Theorem 3.9. By (3.26), we the isomorphism

$$\tau \{z \in C_0, \delta \} = 1 \gamma, j$$

Put

$$\gamma, j \{ \gamma, j \} \equiv 1$$

Note that when $\Gamma = \tau \{z \in C_0, \delta \}$, we have

$$\gamma, j \{ \gamma, j \} = 1$$

where $[V]$ denotes the closure of the space V.

We can easily obtain the following weak Hodge decomposition

$$L^2_n(\tilde{X}, T^{*\bullet} \tilde{X} \otimes \tilde{E}) = \mathcal{H}^\bullet(\tilde{X}, \tilde{E}) \oplus [\text{Im}(\mathcal{D}_{b,m})] \oplus [\text{Im}(\mathcal{D}_{b,m})]$$

By (3.26), we the the isomorphism

$$\mathcal{H}_{b(2),m}^\bullet(\tilde{X}, \tilde{E}) \cong \mathcal{H}^\bullet_{b(2),m}(\tilde{X}, \tilde{E})$$.

3.5. Asymptotics of heat kernels of Kohn Laplacians on a covering manifold. Assume that $X = D_1 \cup D_2 \cup \cdots \cup D_N$, where $B_j := (D_j, (z, \theta), \varphi_j)$ is a BRT trivialization, for each j. We may assume that, for each j, $D_j = U_j \times -2 \delta_j \cup \delta_j \subset \mathbb{C}^n \times \mathbb{R}$, $\delta_j > 0$, $\delta_j > 0$, $U_j = \{z \in \mathbb{C}^n; |z| < l_j \}$. For each j, put $\hat{D}_j = \hat{U}_j \times \delta_j \tilde{x} \frac{l_j}{2}, \tilde{y} \frac{l_j}{2}, \tilde{w} \frac{l_j}{2}, \tilde{z} \frac{l_j}{2}$, where $\hat{U}_j = \tilde{U}_j \times \delta_j \tilde{x} \frac{l_j}{2}, \tilde{y} \frac{l_j}{2}, \tilde{w} \frac{l_j}{2}, \tilde{z} \frac{l_j}{2}$.

Let $\{\psi_j\}$ be a partition of unity subordinate to $\{\hat{D}_j\}$. Then $\{\tilde{\psi}_{\gamma,j} := \psi_1 \circ \pi\}$ is a partition of unity subordinate to $\{\hat{D}_{\gamma,j}\}$, where $\pi^{-1}(\hat{D}_j) = U_{\gamma,j} \hat{D}_{\gamma,j}$ and $\hat{D}_{\gamma,j}$ and $\hat{D}_{\gamma,j}$ are disjoint for $\gamma_1 \neq \gamma_2$. For each $\gamma \in \Gamma$ and each j, we have $\tilde{U}_{\gamma,j} = \tilde{U}_{\gamma,j} \times \delta_j \tilde{x} \frac{l_j}{2}, \tilde{y} \frac{l_j}{2}, \tilde{w} \frac{l_j}{2}, \tilde{z} \frac{l_j}{2}$.

Fix $\gamma \in \Gamma$ and $j = 1, 2, \ldots, N$. Put

$$K_{\gamma,j} = \{z \in \tilde{U}_{\gamma,j}; there is a \theta \in [-\frac{\delta_j}{2}, \frac{\delta_j}{2}] such that \tilde{\psi}_{\gamma,j}(z, \theta) \neq 0\}.$$

Let $\tau_{\gamma,j}(z) \in C^\infty(\tilde{U}_{\gamma,j})$ with $\tau_{\gamma,j} \equiv 1$ on some neighborhood $W_{\gamma,j}$ of $K_{\gamma,j}$. Let $\sigma_{\gamma,j} \in C^\infty([-\frac{\delta_j}{2}, \frac{\delta_j}{2}])$ with $\int \sigma_{\gamma,j}(\theta) d\theta = 1$. Let $\tilde{A}_{B_{\gamma,j},m}(t, z, w) \in C^\infty(\mathbb{R}_+ \times \tilde{U}_{\gamma,j} \times \tilde{U}_{\gamma,j}, (T_w^{*\bullet} \tilde{U}_{\gamma,j} \otimes \tilde{E}_w))$ be as in Theorem 3.6.

Put

$$\tilde{H}_{\gamma,j,m}(t, \tilde{x}, \tilde{y}) = \tilde{\psi}_{\gamma,j}(\tilde{x})e^{-m\varphi_j(z) - im\theta} \tilde{A}_{B_{\gamma,j},m}(t, z, w)e^{m\varphi_j(w)}e^{im\theta} \tau_{\gamma,j}(w) \sigma_{\gamma,j}(\eta),$$

where $\tilde{x} = (z, \theta)$, $\tilde{y} = (w, \eta) \in \mathbb{C}^n \times \mathbb{R}$. Let

$$\tilde{\Gamma}_m(t, \tilde{x}, \tilde{y}) := \frac{1}{2\pi} \sum_{\gamma \in \Gamma} \sum_{j=1}^N \int_0^\pi \tilde{H}_{\gamma,j,m}(t, \tilde{x}, e^{iu} \tilde{y})e^{imu} du.$$

Note that when $\gamma = \{e\}$, $\tilde{\Gamma}_m(t, \tilde{x}, \tilde{y}) = \Gamma_m(t, \pi(\tilde{x}), \pi(\tilde{y}))$ is defined in $[12] (3.31)$.

From Lemma 3.5, off-diagonal estimates of $\tilde{A}_{B_{\gamma,j},m}(t, \tilde{x}, \tilde{y})$ (see (3.22)), we can repeat the proof of Theorem 5.14 in $[5]$ with minor change and deduce that

Theorem 3.9. For every $\ell \in \mathbb{N}$, $\ell \geq 2$, and every $M > 0$, there are $\epsilon_0 > 0$ and $m_0 > 0$ independent of t and m such that for every $m \geq m_0$, we have

$$\left\|e^{-\pi b_{\gamma,j,m}(\tilde{x}, \tilde{y})} - \tilde{\Gamma}_m(t, \tilde{x}, \tilde{y})\right\|_{C^\ell(\tilde{x} \times \tilde{x})} \leq e^{-\frac{t}{\epsilon_0}}, \ \forall t \in (0, M).$$

From Theorem 3.6.4 in $[16]$, we have
Proposition 3.10. For any $t_0 > 0, \epsilon > 0$ and any $\gamma \in \Gamma, j = 1, 2, \cdots, N,$ there exists $C > 0$ such that for any $z \in \tilde{U}_{\gamma,j}, m \in \mathbb{N}, t > t_0,$
\[
\left\| \tilde{A}_{\gamma,j,m}(t, z, z) - A_{\gamma,j,m}(t, \pi(z), \pi(z)) \right\|_{C^0(\tilde{U}_{\gamma,j} \times \tilde{U}_{\gamma,j})} \leq C \exp \left(-\frac{m}{32t}\epsilon \right).
\]

From (3.11) (see (3.31) in [12], 3.28, 3.29), Proposition 3.10 and the fact that $\tilde{\psi}_{\gamma,j} = \psi_j \circ \pi,$ we can easily deduce that

Lemma 3.11. With the above notations and assumptions as in Theorem 3.9, we have
\[
\left\| \tilde{\Gamma}_m(t, \tilde{x}, \tilde{x}) - \Gamma_m(t, \pi(\tilde{x}), \pi(\tilde{x})) \right\|_{C^0(\tilde{X} \times \tilde{X})} \leq C \exp \left(-\frac{m}{t}\epsilon_0 \right).
\]

From Theorem 3.9, Lemma 3.11 and Theorem 3.5 of [12], we have

Theorem 3.12. For every $\ell \in \mathbb{N}, \ell \geq 2,$ and every $M > 0,$ there are $\epsilon_0 > 0$ and $m_0 > 0$ independent of t and m such that for any $\tilde{x} \in \tilde{X}$ and $m \geq m_0,$ we have
\[
\left\| e^{-\frac{t}{m}\tilde{\Delta}_{b,m}}(\tilde{x}, \tilde{x}) - e^{-\frac{t}{m}\Delta_{b,m}}(\pi(\tilde{x}), \pi(\tilde{x})) \right\|_{C^0(\tilde{X} \times \tilde{X})} \leq C \exp \left(-\frac{m}{t}\epsilon_0 \right), \quad \forall t \in (0, M).
\]

By Theorem 3.2 and Theorem 3.12, we have

Theorem 3.13. With the above notations and assumptions, for every $\epsilon > 0,$ there are $m_0 > 0, \epsilon_0 > 0$ and $C > 0$ such that for all $m \geq m_0,$ we have
\[
\left(3.31\right) \quad \left\| e^{-\frac{t}{m}\tilde{\Delta}_{b,m}}(\tilde{x}, \tilde{x}) - \sum_{s=1}^{p} e^{\frac{2\pi i (s-1)m_l}{n} (2\pi)^{n-1} m_l^{-1} m_l^n \frac{\det(\tilde{R})}{\det(1 - \exp(-t\tilde{R}))} \rho(\tilde{x}) \otimes \text{Id}_{E_{\rho(\tilde{x})}}} \right\| \leq C m^n t^{-n} e^{-\epsilon_0 m_d(\rho(\tilde{x}), X_{\text{sing}})^2}, \quad \forall (t, \tilde{x}) \in \mathbb{R}_+ \times \tilde{X}_{\text{reg}}.
\]

Recall that since Γ acts on \tilde{X} freely so that $\tilde{X}/\Gamma = X,$ hence, we have $\tilde{X}_{\text{reg}}/\Gamma = X_{\text{reg}}.$

4. Heat kernel proof

In this section, we will present the heat kernel proof of the main theorem.

We denote by $\text{Tr}_{\Gamma,q}$ the Γ-trace of operators acting on $L^2_m(\tilde{X}, T^{0,\rho} \tilde{X} \otimes \tilde{E}),$ see Subsection 2.3 or [16, Subsection 3.6.1].

Lemma 4.1. For any $t > 0, m \in \mathbb{N}, 0 \leq q \leq n,$ we have
\[
\left(4.1\right) \quad \sum_{j=0}^{q} (-1)^{q-j} \dim_{\Gamma} \tilde{T}_{b,(2),m}^j(\tilde{X}, \tilde{E}) \leq \sum_{j=0}^{q} (-1)^{q-j} \text{Tr}_{\Gamma,j}[\exp(-\frac{t}{m}\tilde{\Delta}_{b,m})],
\]
with equality for $q = n.$

Proof. Let $E_{\lambda}^{1,0}$ be the spectral resolution of $\tilde{\Delta}_{b,m}$ acting on $L^2_m(\tilde{X}, T^{0,\rho} \tilde{X} \otimes \tilde{E}).$ We consider the projectors $E_{\lambda}^{1,0}([\lambda_1, \lambda_2]) = E_{\lambda_1}^{1,0} - E_{\lambda_2}^{1,0},$ where $\lambda_2 > \lambda_1 \geq 0.$ Then, by the Hodge decomposition \cite{22, 28}, $\sum_{j=0}^{q} (-1)^{q-j} E_{\lambda}^{1,0}([\lambda_1, \lambda_2])$ is the projection on the range of $\partial_{b,m} E_{\rho(\tilde{x})}^{1,0}([\lambda_1, \lambda_2])$ and thus a positive operator. Hence the Γ-invariant measure $\sum_{j=0}^{q} (-1)^{q-j} dE_{\lambda}^{1,0}$ is positive on $\{ \lambda > 0 \}.$ It follows that
\[
\left(4.2\right) \quad R := \int_{\lambda > 0} e^{-\frac{t}{m}\lambda} \sum_{j=0}^{q} (-1)^{q-j} dE_{\lambda}^{1,0} \geq 0,
\]
and R commutes with $\Gamma.$ On the other hand,
\[
\left(4.3\right) \quad \text{Tr}_{\Gamma,j}[\exp(-\frac{t}{m}\tilde{\Delta}_{b,m})] \quad = \quad \dim_{\Gamma} \tilde{T}_{b,(2),m}^j(\tilde{X}, \tilde{E}) + \text{Tr}_{\Gamma} \int_{\lambda > 0} e^{-\frac{t}{m}\lambda} dE_{\lambda}^{1,0}.
\]

By (4.2) and (4.3), we obtain the result. \qed
Let \(\text{Tr}_q[\exp(-\frac{t}{m}\Box_{b,m})] \) be the trace of the operator \(\exp(-\frac{t}{m}\Box_{b,m}) \) acting on \(\Omega^0_m(X, E) \). It is well-known that (see Theorem 8.10 in [17])

\[
(4.4) \quad \text{Tr}_q[\exp(-\frac{t}{m}\Box_{b,m})] = \int_X \text{Tr}_q[\exp(-\frac{t}{m}\Box_{b,m})(x,x)] dv_X(x).
\]

By [16, (3.6.7)] and [16, (3.6.8)], as in (4.4), Proposition 4.2.

We have

\[
(4.5) \quad \text{Tr}_{\Gamma,q} \left[\exp\left(-\frac{t}{m}\tilde{\Box}_{b,m}\right) \right] = \int_U \text{Tr}_q \left[e^{-\frac{t}{m}\tilde{\Box}_{b,m}(\tilde{x},\tilde{x})} \right] dv_{\tilde{X}}(\tilde{x}).
\]

Now we are in a position to give the heat kernel proof of the Morse inequalities for the Fourier components of reduced \(L^2 \) Kohn-Rossi cohomology.

Proof of Theorem 1.1 Denote by \(\text{Tr}_{A^0,q} \) the trace on \(T^{*0,q}X \). The basis for \(T^{*0,q}X \) is

\[
\{ \omega^{j_1} \wedge \cdots \wedge \omega^{j_q} : j_1 < \cdots < j_q \}.
\]

We write for the index \((1, \ldots, q)\)

\[
\exp(t\gamma_d)(\omega^1 \wedge \cdots \wedge \omega^q)
\]

\[
= \prod_{j=1}^q (1 + (e^{-ta_j} - 1)\omega^j \wedge t\omega^j)(\omega^1 \wedge \cdots \wedge \omega^q)
\]

\[
= \sum_{k_1 < \cdots < k_q} c_{k_1 \ldots k_q}(x)\omega^{k_1} \wedge \cdots \wedge \omega^{k_q}.
\]

From direct calculations, we see that

\[
(4.8) \quad c_{1 \ldots q}(x) = \exp(-t \sum_{j=1}^q a_j(x)).
\]

Then we have

\[
(4.9) \quad \text{Tr}_{A^0,q}[\exp(t\gamma_d)] = \sum_{j_1 < \cdots < j_q} \exp(-t \sum_{i=1}^q a_{j_i}(x)).
\]

Hence

\[
\lim_{t \to \infty} \frac{\text{Tr}_{A^0,q}[\exp(t\gamma_d)]}{\det(1 - \exp(-t\mathcal{R}))} = \lim_{t \to \infty} \frac{\sum_{j_1 < \cdots < j_q} \exp(-t \sum_{i=1}^q a_{j_i}(x))}{\prod_{j=1}^n (1 - \exp(-ta_j(x)))} = (-1)^q 1_{X(q)},
\]
where the function $X(q)$ is defined by 1 on $X(q)$, 0 otherwise. As usual, for $\bar{x} \in \widetilde{X}$, $\pi(\bar{x}) = x \in X$. It follows from Theorem 3.13, (4.5) and Lemma 4.1 that

\[
\frac{1}{m^n} \sum_{j=0}^{q} (-1)^{q-j} \text{dim}_F \overline{H}_{b,(2),m}(\widetilde{X}, \widetilde{E}) \leq \frac{1}{m^n} \sum_{j=0}^{q} (-1)^{q-j} \text{Tr}_{\Gamma,q}[\exp(-\frac{t}{m} \mathcal{D}_{b,m})] \\
\leq \frac{1}{m^n} \sum_{j=0}^{q} (-1)^{q-j} \int_U \text{Tr}_{\Gamma,q}[\exp(-\frac{t}{m} \mathcal{D}_{b,m}(\bar{x}, \bar{x}))]d\nu(\bar{x}) \\
= \frac{1}{m^n} \sum_{j=0}^{q} (-1)^{q-j} \int_U \text{Tr}_{\Gamma,q}[\exp(-\frac{t}{m} \mathcal{D}_{b,m}(\bar{x}, \bar{x}))]d\nu(\bar{x}) \\
\leq (2\pi)^{-n-1} \sum_{s=1}^{p} e^{\frac{2\pi(n+1)}{p}} \sum_{j=0}^{q} (-1)^{q-j} \int_X \frac{\det(\dot{\mathcal{R}})\text{Tr}_{\Lambda_d}\exp(t\gamma_d) \otimes \text{Id}_X}{\det(1 - \exp(-t\mathcal{R}))}d\nu_X(x) \\
+ \epsilon \sum_{j=0}^{q} (-1)^{q-j} \text{Vol}(X) + C \sum_{j=0}^{q} (-1)^{q-j} \int_X t^{-n}e^{-\frac{\epsilon m d(x, \text{sing})^2}{t}}d\nu_X(x).
\]

Note that ϵ is arbitrarily small. By the dominant convergence theorem with $t \to \infty$, we have

\[
\lim_{m \to \infty, p|m} \frac{1}{m^n} \sum_{j=0}^{q} (-1)^{q-j} \text{dim}_F \overline{H}_{b,(2),m}(\widetilde{X}, \widetilde{E}) \leq \frac{pp}{(2\pi)^{n+1}} \sum_{j=0}^{q} (-1)^{q-j} \int_{X(j)} |\det(\mathcal{R})|d\nu_X(x),
\]

\[
\lim_{m \to \infty} \frac{1}{m^n} \sum_{j=0}^{q} (-1)^{q-j} \text{dim}_F \overline{H}_{b,(2),m}(\widetilde{X}, \widetilde{E}) = 0, \quad \text{for } p \nmid m.
\]

From Definition 2.7, (3.6) and (4.12), we finally get

\[
\sum_{j=0}^{q} (-1)^{q-j} \text{dim}_F \overline{H}_{b,(2),m}(\widetilde{X}, \widetilde{E}) \leq \frac{ppm^n}{2\pi^{n+1}} \sum_{j=0}^{q} (-1)^{q-j} \int_{X(j)} |\det(\mathcal{L}_x)|d\nu_X(x) + o(m^n), \quad \text{for } p|m,
\]

\[
\sum_{j=0}^{q} (-1)^{q-j} \text{dim}_F \overline{H}_{b,(2),m}(\widetilde{X}, \widetilde{E}) = o(m^n), \quad \text{for } p \nmid m.
\]

Let $q = n$ in (4.11), by applying Theorem 3.13, we obtain for $p|m$,

\[
\frac{1}{m^n} \sum_{j=0}^{n} (-1)^{n-j} \text{dim}_F \overline{H}_{b,(2),m}(\widetilde{X}, \widetilde{E}) \\
\geq \frac{1}{m^n} \sum_{j=0}^{n} (-1)^{n-j} \int_U \text{Tr}_{\Gamma,j}[\exp(-\frac{t}{m} \mathcal{D}_{b,m}(\bar{x}, \bar{x}))]d\nu_X(\bar{x}) \\
\geq (2\pi)^{-n-1} p \frac{1}{m^n} \sum_{j=0}^{n} (-1)^{n-j} \int_X \frac{\det(\dot{\mathcal{R}})\text{Tr}_{\Lambda_d}\exp(t\gamma_d) \otimes \text{Id}_X}{\det(1 - \exp(-t\mathcal{R}))}d\nu_X(x) \\
- cn\text{Vol}(X) - Cn \int_X t^{-n}e^{-\frac{\epsilon m d(x, \text{sing})^2}{t}}d\nu_X(x).
\]

Note that ϵ is arbitrarily small. By the dominant convergence theorem with $t \to \infty$, we have

\[
\lim_{m \to \infty, p|m} \frac{1}{m^n} \sum_{j=0}^{n} (-1)^{n-j} \text{dim}_F \overline{H}_{b,(2),m}(\widetilde{X}, \widetilde{E}) \geq \frac{pp}{(2\pi)^{n+1}} \sum_{j=0}^{n} (-1)^{n-j} \int_{X(j)} |\det(\mathcal{R})|d\nu_X(x).
\]
Then
\[
\liminf_{m \to \infty, p|m} \frac{1}{m^n} \sum_{j=0}^{n} (-1)^{n-j} \dim \mathcal{H}_{b(2),m}^j (\tilde{X}, \tilde{E}) = \frac{pr}{(2\pi)^{n+1}} \sum_{j=0}^{n} (-1)^{n-j} \int_{X(j)} |\det(\tilde{\mathcal{R}})| d\nu_X(x).
\]
We finally get
\[
\sum_{j=0}^{n} (-1)^{n-j} \dim \mathcal{H}_{b(2),m}^j (\tilde{X}, \tilde{E}) = \frac{prm^n}{2\pi^{n+1}} \sum_{j=0}^{n} (-1)^{n-j} \int_{X(j)} |\det(\mathcal{L}_x)| d\nu_X(x) + o(m^n) \text{ for } p|m.
\]
Then the proof is completed. \qed

REFERENCES

[1] M. F. Atiyah, Elliptic operators, discrete groups and von Neumann algebras, Astérisque, 32-33 (1976), pp. 43-72.
[2] M.-S. Baouendi and L.-P. Rothschild and F.-Treves, CR structures with group action and extendability of CR functions, Invent. Math., 83 (1985), 359–396.
[3] J.-M. Bismut, Demailly’s asymptotic Morse inequalities: a heat equation proof, J. Funct. Anal., 72 (1987), 263-278.
[4] L. Boutet de Monvel, Intégration des équations de Cauchy-Riemann induites formelles, Séminaire Goulaouic-Lions-Schwartz 1974–1975; Équations aux dérivées partielles linéaires et non linéaires, Centre Math., École Polytech., Paris, 1975, Exp. no. 9, pp. 13.
[5] J.-H. Cheng, C.-Y. Hsiao and I.-H. Tsai, Heat kernel asymptotics and a local index theorem for CR manifolds with S^1 action, arXiv:1511.00063.
[6] J.-J. Duistermaat and G.-J. Heckman, On the Variation in the Cohomology of the Symplectic Form of the Reduced Phase Space, Invent. Math., 69 (1982), 259-268.
[7] J. P. Demailly, Champs magnétiques et inégalités de Morse pour la d^c-cohomologie, Ann. Inst. Fourier, 35 (1985), 189-229.
[8] C. L. Epstein, CR-structures on three dimensional circle bundles, Invent. Math., 109 (1992), 351-403.
[9] Alexander Grigoryan and Laurent Saloff-Coste, Dirichlet heat kernel in the exterior of a compact set, Comm. Pure Appl. Math., 55 (2002), 93–133.
[10] M. Gromov, M. G. Henkin, M. Shubin, L^2 holomorphic functions on pseudo-convex coverings, GAFA, 8 (1998), 552-585.
[11] C.-Y. Hsiao, Szegö kernel asymptotics for high power of CR line bundles and Kodaira embedding theorems on CR manifolds, Memoirs of the American Mathematical Society, 254 (2018) no. 1217, v+142 pp.
[12] C.-Y. Hsiao and R.-T. Huang, The asymptotics of the analytic torsion on CR manifolds with S^1-action, to appear in Ann. of Math., arXiv:1705.00099.
[13] C.-Y. Hsiao, R.-T. Huang, X. Li and G. Shao S^1-equivariant index theorems and Morse inequalities on complex manifolds with boundary, arXiv:1711.05537.
[14] C.-Y. Hsiao and X. Li, Szegö kernel asymptotics and Morse inequalities on CR manifolds with S^1 action, to appear in Asian J. Math., arXiv:1502.02365.
[15] C.-Y. Hsiao and X. Li, Morse inequalities for Fourier components of Kohn-Rossi cohomology of CR manifolds with S^1-action, Math. Z., 284 (2016), no. 1-2, 441-468.
[16] X. Ma and G. Marinescu, Holomorphic Morse inequalities and Bergman kernels, Progress in Mathematics, 254, Birkhäuser Verlag, Basel, (2007).
[17] J. Roe, Elliptic operators, topology and asymptotic methods, Second edition, Pitman Research Notes in Mathematics Series, 395, Longman, Harlow, (1998).
[18] Y. T. Siu, A vanishing theorem for semipositive line bundles over non-Kähler manifolds, J. Diff. Geom., 19 (1984), 431-452.
[19] M. Shubin, L^2 Riemann–Roch theorem for elliptic operators, GAFA 5(2) (1995), 482-527.
[20] R. Todor, I. Chiose and G. Marinescu, Morse inequalities for covering manifolds, Nagoya Math. J. 163 (2001), 145-165.
