Cosmogenic 7Be in ground level air in Rostov-on-Don (Russia) (2001-2011)

E.A. Buraevaa, V.S. Malyshevskya,1, V.C. Nepchedova, B.I. Shramenkob, V.V. Stasova, L.V. Zorinaa

a Southern Federal University, 344090, Rostov-on-Don, Russia
b National Science Center «Kharkov Physical-Technical Institute», 61108, Kharkov, Ukraine

Abstract
The deposition flux of cosmogenic 7Be in the industrial city Rostov-on-Don (Russia) from 2001 to 2011 has been measured. The variations of annual 7Be deposition flux appear to be mainly correlated with the number of the meteorological parameters and solar activity. For the first time correlations of the volume activity of cosmogenic 7Be with such meteorological parameters as temperature, precipitation, wind speed, atmospheric pressure, relative humidity are identified.

Keywords: 7Be, beryllium, atmospheric flux, cosmogenic radionuclides, precipitation, sunspot activity, aerosols.

1. Introduction
To date, the monitoring of radionuclides in the atmospheric boundary layer suggests that a substantial contribution to the radioactivity of the surface air gives a short-lived isotope 7Be ($T_{1/2} = 52.3$ days) of the cosmogenic origin. Variations of the contents of 7Be in the air are associated with the solar activity and have a characteristic seasonal variation and latitude dependence. Due to the rapid decay, its activity in plants varies depending on the synoptic conditions. Therefore, 7Be is of interest not only in terms of radiation exposure on biological systems but can also be an indicator of rates of exchange in plants, and, as a consequence, an indicator of the accumulation by natural environments of pollutants entering the atmosphere. 7Be is one of the few radionuclides that are independent of anthropogenic activity. Therefore it can be used as a monitor to detect sources of other radionuclides into the atmosphere. This is what makes 7Be a convenient indicator for a rapid assessment of potential air pollution and air exchange in the environment. Therefore, the study of occurrence processes, transportation and migration of the radionuclide 7Be in the environment is of great interest.

It is believed that the main reactions leading to the formation of beryllium isotopes in Earth's atmosphere occur in the interaction of cosmic rays with nuclei of nitrogen and oxygen (Nagai, et.al., 2000), which are the main components of the air. These are the so-called

1 Corresponding author. E-mail address: vsmalyshevsky@sfedu.ru
“spallation” reactions: $^{14}\text{N}(p,X)^7\text{Be}$, $^{16}\text{O}(p,X)^7\text{Be}$ (up to 70–80%), $^{14}\text{N}(n,X)^7\text{Be}$ and $^{16}\text{O}(n,X)^7\text{Be}$ (up to 20–30%) (Yoshimori, 2005). Another possible mechanism of formation of beryllium isotope ^7Be in the upper atmosphere can be the photo-nuclear reactions $^{14}\text{N}(\gamma,X)^7\text{Be}$, $^{16}\text{O}(\gamma,X)^7\text{Be}$ and $^{12}\text{C}(\gamma,X)^7\text{Be}$. It is shown (Bezuglov, et.al., 2012) that the contribution of the photonuclear mechanism is comparable with the contribution of the proton and neutron channel of ^7Be formation in the atmosphere. The contribution of the photonuclear reactions to the total ^7Be production in the atmosphere is not less than 10%.

During changes in the solar activity (reduced number of sun spots is the Wolf number, URL) within the 11-year solar cycle and aperiodic bursts of solar activity, the geomagnetic field changes, cosmic rays are deflected and, correspondingly, the ^7Be production rate changes (Taplos, et.al., 2005). A decrease of the ^7Be production rate corresponds to an increase of solar activity (increase of the Wolf number) and vice versa, i.e., there is an anticorrelation between the ^7Be content in the atmospheric air and the Wolf number with coefficient $k = -0.81$ according to Ioannidou A. (2005) and $k = -0.83 \pm 0.03$ according to Stozhkov (2002). Over the 11-year solar cycle, the yearly average content at the maximum and minimum differs by approximately 45%. The ^7Be production rate also depends on the geographical coordinates of the observations station because of the effect of the Earth’s magnetic field on the cosmic ray distribution (Papastefanou, et.al. 2004).

Long (more than two cycles of solar activity) systematic measurements on the global network of stations must be performed in order to determine reliably the relation between the ^7Be volume activity in the air layer at the ground and the solar activity against the background of variations of a different origin. The results of the determination of ^7Be in the atmosphere in 1974–1999 at 26 stations were analyzed by Taplos, et.al., (2005). The existence of the anticorrelation indicated above, which explains about 54% of all temporal variations of the ^7Be for stations in Australia, New Zealand, and North America and only 18% of the variations for the stations in South America and Antarctica, has been proven.

Long-time measurements (1987–2003) were performed by Papastefanou, et.al. (2004) at temperate latitudes (40°38'). Under especially favorable conditions (regularity of measurements of the meteorological parameters, absence of any effect due to some of them, and so forth), a correlation between the ^7Be content and the Wolf number can be determined reliably. Thus, measurements performed under the conditions of a dry and hot climate showed (Al-Azmi, et.al., 2001) that the changes of the yearly average volume activity of ^7Be depend on the Wolf number. A correlation cannot be established under different, less favorable, conditions (Petrova, et.al. 2003).
Almost immediately after they are formed, the \(^{7}\)Be nuclei precipitate in submicron-size aerosols, and transport with air masses, settling, and washing out by precipitation determines their subsequent fate. The methods used to determine the life time of aerosols (the period of time during which half of the initial content of the aerosols is removed from the atmosphere) and the results obtained are presented by Papastefanou (2006) together with data for other observation points (Greece, Germany, California, Hong Kong). It has been suggested that the data be divided into two groups: 2.6–15 days (average 8.8 days) for the air layer at the ground and 21–35.4 days (average 28.2 days) for the troposphere. According to other ideas, the first group describes tropospheric and the second stratospheric aerosols. Estimates obtained using the model of Koch, et.al., (1996) give 24–30 days for tropospheric aerosols and 1 yr. for stratospheric aerosols.

2. Materials and methods

The variations of the \(^{7}\)Be volume activity in the air layer at the ground depend on the exchange of air masses between the stratospheric and tropospheric reservoirs, dry and wet fallout, and tropospheric processes (vertical transport, advection) [3]. Measurements of the \(^{7}\)Be content in aerosols (1 per week) and precipitation (1 per month) are performed at the aspiration station of the Southern Federal University (Rostov-on-Don, Russia) in 2001–20011 as part of the monitoring of the radioactivity of the atmospheric layer at the ground in Rostov-on-Don (47°14′ NL; 39°42′ EL). The location of the station at temperate latitudes with a temperate continental climate and comparatively low precipitation imparts special significance to the systematic monitoring of \(^{7}\)Be in the atmosphere.

A ventilation setup with a filter consisting of FPP-15-1.7 Petryanov fabric with total area 0.56 m\(^2\) and a liquid Lambrecht micromanometer were used to obtain the samples. According to the measurements, the air flow rates were approximately 630 m\(^3\)/h initially (“fresh” filter) and 510 m\(^3\)/h after 7 days of exposure. The exposed filter was air dried and pressed into 35 mm in diameter and 10–30 mm high pellets. Three or four days after the filter was removed, the \(\gamma\)-ray spectrum was measured in 12–24 h with a Ge(Li) or HPGe detector of the low-background setup. \(^{7}\)Be was determined according to the 477 keV peak. The dust content in air was found according to the mass difference between the exposed and clean filter.

3. Results and discussion

As a result of continuous measurements of \(^{7}\)Be volume activity in surface air of Rostov-on-Don for the period 2001-2011 we found that the atmospheric aerosols concentration varies from 0.025 to 27.0 mBq/m\(^3\) mBq/m\(^3\), with an average grade on record 6.0 mBq/m\(^3\).
Analysis showed that the data are sufficient to determine the anticorrelation between the 7Be volume activity and the solar activity. We were able to establish the dependence of the 7Be volume activity for the second half of the 23rd and the first half of the 24th cycles of solar activity. The yearly and monthly average 7Be volume activity (Figs. 1 and 2, respectively) increases toward the end of the 23rd cycle and reaches a maximum at solar activity minimum of the 24th cycle at 2008. The corresponding scatter plot for the period 2001-2011 is shown in Fig. 4f. There is an anticorrelation between the 7Be content in the atmospheric air and the Wolf number with coefficient $k = -0.42$.

It is clear the volume activity of 7Be does not react to short-time variations of the Wolf numbers. To reliably determine the dependence of the 7Be concentration in the surface layer of the atmosphere on solar activity variations the systematic determination of 7Be in the global network of stations (more than 2 cycles of solar activity) are needed.

The seasonal variation of 7Be in aerosols, which is well known for different latitudes and climatic conditions and is associated with the spring rearrangement of the atmosphere in the stratosphere–troposphere system, is quite clearly detected. As a rule, the seasonal variation of the 7Be volume activity exhibits a spring–summer maximum and an autumn–winter minimum. Thus, for temperature latitudes (Greece) the summer maximum is 7.29–6.96 mBq/m3 and the winter minimum is 2.75–4.09 mBq/m3 (Ioannidou, et.al., 2005). For Moscow (Russia), the spring–summer maximum is 4.3–4.6 mBq/m3 and the autumn–winter minimum is 2.6–3.3 mBq/m3 (Petrova, et.al. 2003). Our data show that spring–summer maximum of the 7Be volume activity in aerosols is observed yearly (Fig. 2) and on the average over 2001-2011 (Fig. 3). The average ratios of the maximum to minimum values of the seasonal average of the 7Be content equal approximately 2.6 (for Moscow 1.6 over 1996–2001). Fourier analysis of the entire set of data over ten years confirms the seasonal variation – the period of the first dominant harmonic is 52 weeks. Previously obtained (Buraeva, et.al., 2007) the five-year average (2001–2005) of 7Be volume activity in aerosols in Rostov-on-Don was about 3.9 mBq/m3. The increase in the average 7Be volume activity nearly doubled (up to 6.0 mBq/m3) due to the minimum of solar activity in 2008 and growth in the production of cosmogenic beryllium in the atmosphere as a consequence.

The salient features of the seasonal variation of the 7Be content in aerosols from one year to another are related with the changes in the meteorological conditions (temperature, precipitation, wind speed, atmospheric pressure, relative humidity). The Table 1 shows the average meteorological parameters for the city of Rostov-on-Don during the observation period 2001-2011. The corresponding scatter plot for the period 2001-2011 and correlation coefficients are shown in Fig. 4.
At temperate latitudes, the amount of precipitation has the greatest effect on the 7Be concentration. The generalized results of an analysis of the relation between the 7Be content in aerosols and precipitation show (Fig. 4c) the presence of anticorrelation with a coefficient $k = -0.21$. The opposite relation between the 7Be content in aerosols and precipitation is due to selective washing out of the atmosphere by precipitation. The volume activity and atmospheric pressure are similarly linked (Fig. 4a). This is understandable, because the increase in precipitation is accompanied by a decrease in atmospheric pressure.

After falling onto the ground, 7Be accumulates in the soil–vegetation cover. The maximum amount of precipitation, occurring in June–July, decreases the 7Be concentration in aerosols immediately after its summer maximum in July. On the whole, this is in agreement with the data on the effect of precipitation on the 7Be content in the atmosphere at temperate latitudes (Ioannidou, et al., 2005). Wet precipitation is the most effective mechanism for removing 7Be from the atmosphere. The wash-out coefficient is estimated by Buraeva, et al., (2007) to be 30–60% and depends on the dispersity of the aerosol and the type of precipitation (snow, rain, downpour, protracted), which lower the 7Be content almost all year.

Seasonal course of 7Be repeats the change in temperature for the observation period. There is a direct correlation of these parameters. The temperature dependence of the 7Be concentration (Fig. 4d) is determined over a period of ten years and the correlation with temperature (Fig. 4, $k = 0.61$) has been established.

During the observation period the wind speed since 2006 has doubled (see Table 1), which may assist to increase the role of wind lifting of radionuclides in the near-surface atmosphere. Since 2006 the east and north-east winds was dominated, and in 2009 just east wind was dominated. These changes in meteorological parameters (mostly wind speed/direction, and relative humidity) contribute to the winds lifting of the soil dust and increase the volume activity of beryllium in the air. The correlation with wind speed is $k = 0.34$ (Fig. 4e).

The dependence of the activity concentration of 7Be in the surface atmosphere of Rostov-on-Don on the relative humidity of the air is inverted (Fig. 4b, $k = -0.62$). Basically, at the highs of 7Be activity in surface air the relative humidity decreases. In most cases the maximum volume activity of 7Be for the period of July to September with the lowest values of relative humidity (below 50%). Such a dependence of the 7Be in atmospheric aerosols on the amount of rainfall and relative humidity confirms the washout of aerosols by the precipitation.

4. Conclusions

On the whole, the results of our analysis of the 7Be content in atmospheric aerosols and meteorological parameters illustrate the main features of the variation of these quantities and
their relation with the regional climatic characteristics. The variations of annual 7Be deposition flux appear to be mainly correlated with the number of the meteorological parameters and solar activity. For the first time correlations of the volume activity of cosmogenic 7Be with such meteorological parameters as temperature, precipitation, wind speed, atmospheric pressure, relative humidity are identified. The correlations allow one to predict radioactive contamination of the atmosphere in future.

Acknowledgement

This work was supported by Federal Program of the Russian Ministry of Science and Education "Scientific and scientific-pedagogical personnel of innovative Russia" (grant number 14.A18.21.0633). The final stage of this work was supported by Russian Foundation for Basic Research and by National Academy of Sciences of Ukraine grant number 12-08-90401-Ukr_a.
References

Al-Azmi, D., Sayed, A. and Yatim, H. 2001. Variations in 7Be concentrations in the atmosphere of Kuwait during the period 1994 to 1998. App. Rad. Isotopes. 55, 413–417.

Bezuglov, M. V., Malyshevsky, V. S., Fomin, G. V., Torgovkin, A. V., Shramenko, V. I., Malykhina, T. V. 2012. Photonuclear production of cosmogenic beryllium-7 in the terrestrial atmosphere. Physical Review C. 86, 024609 (1-5).

Buraeva, E. A., Davydov, M. G., Zorina, L. V., Malyshevsky, V. S. and Stasov. V. V. 2007. Content of cosmogenic 7be in the air layer at the ground at temperate latitudes. Atomic Energy. 102, No. 6.

Ioannidou, A., Manolopoulou, M., and Papastefanou, C. 2005. Temporal changes of 7Be and 210Po concentrations in surface air at temperate latitudes (40°N). App. Rad. Isotopes. 63, 277–284.

Koch, D., Jacob, D. and Graustein, W. 1996. Vertical transport of tropospheric aerosols as indicated by 7Be and 210Pb in chemical tracer model. J. Geophys. Res. 18, 651–666.

Nagai, H., Tada, W., and Kobayashi, T. 2000. Production rates of 7Be and 10Be in the atmosphere. Nucl. Instrum. Meth. B, 172, 796–801.

Papastefanou, C. 2006. Residence time of tropospheric aerosols in association with radioactive nuclides. Appl. Rad. Isotopes. 64, 93–100.

Papastefanou, C., and Ioannidou, A. 2004. Beryllium-7 and solar activity. App. Rad. Isotopes. 61, 1493–1495.

Petrova, T. B., Okhrimenko, S. E., Vlasov, V. K. and Miklyaev, P. S. 2003. Beryllium-7 content in atmospheric air in Moscow. ANRI. No. 3, 22–29 (in Russian).

Stozhkov, Y. 2002. The role of cosmic ray in the atmospheric processes. J. Phys. 6, 2002.

Taplos, S., Rimbu, N., and Borsan, D. 2005. Solar forcing on the 7Be-air concentration variability at ground level. J. Atm. Solar Terr. Phys. 67, 1626–1631.

URL, Solar Influences Data Analysis Center (SIDC), http://sidc.oma.be/

Yoshimori, M. 2005. Production and behavior of beryllium 7 radionuclide in the upper atmosphere. Adv. Space Res. 36, 922–926.
Table 1. Averaged meteorological parameters

Year	Rainfall, mm	Temperature, °C	Wind speed, m/s	Relative humidity, %	Atmospheric pressure, mm Hg
2001	67,0	10,0	1,9	71,7	755,5
2002	46,0	10,3	1,8	69,2	756,0
2003	52,0	9,0	1,9	70,8	756,8
2004	78,0	10,2	1,7	75,1	755,3
2005	58,0	10,8	1,9	71,6	756,2
2006	47,0	10,4	3,1	69,8	755,9
2007	31,0	12,3	4,2	64,8	755,3
2008	36,0	10,8	4,3	69,5	756,3
2009	51,0	10,9	4,4	70,8	755,5
2010	45,0	11,9	5,1	68,8	755,0
2011	48,0	10,1	4,4	69,2	756,1
Captions

Fig. 1. The yearly average 7Be volume activity and solar activity for period 2001-2011 (note that to be placed on the same graph the 7Be volume activity increased 10 times).

Fig. 2. The monthly average 7Be volume activity and solar activity for period 2001-2011 (note that to be placed on the same graph the 7Be volume activity increased 10 times).

Fig. 3. The yearly average for period 2001-2011 seasonal variation of 7Be volume activity and solar activity (note that to be placed on the same graph the 7Be volume activity increased 10 times).

Fig. 4. Scatterplot showing the correlation between meteorological parameters, solar activity and volume activity.
Fig. 1

Fig. 2
Fig. 3

Fig. 4