Beam Energy Dependence of Strange Hadron Production from STAR at RHIC

Xiaoping Zhang (Tsinghua University)

For the STAR Collaboration

Aug. 13-18, Washington, DC, USA
Outline

- Motivation for strangeness production measurement in STAR Beam Energy Scan (BES)
- Strangeness (K$^\pm$, K$_S^0$, ϕ, Λ, Ξ, Ω) production at mid-rapidity
 - p_T spectra
 - Particle yields and ratios
 - Mean transverse kinetic energy: $<m_T> - m_0$
 - Central-to-peripheral nuclear modification factor: R_{CP}
 - Baryon enhancement: Ω/ϕ
- Summary
Motivation: study QCD phase diagram

- Beam Energy Scan at RHIC
 - Look for onset of de-confinement, phase boundary and critical point
 - Systematic study of Au+Au collisions at 7.7, 11.5, 19.6, 27, 39, 62.4 GeV

- Key observables on de-confinement
 1. Strangeness enhancement
 2. Baryon/meson ratio
 3. Nuclear modification factor
 - Partonic energy loss & recombination

STAR, arXiv:1007.2613; NA49, PRC78, 034918
Collisions: Au+Au
Collisions centrality from uncorrected $dN_{\text{ch}}/d\eta$ in $|\eta| < 0.5$

$\sqrt{s_{NN}}$ (GeV)	Good MB events in Million
7.7	~ 4 M
11.5	~ 12 M
19.6	~ 36 M
27	~ 70 M
39	~ 130 M
62.4	~ 67 M
Particle identification and reconstruction

- dE/dx+TOF: π, K, p and $\phi \rightarrow K^+ + K^-$ (invariant mass)
- Weak decay particles (K^0_S, Λ, Ξ, Ω), secondary vertex + invariant mass
Extensive strange particle spectra

- $\Lambda(\bar{\Lambda})$ spectra are weak decay feed-down corrected
- $\sim 20\%$ for Λ; $\sim 25\%$ for $\bar{\Lambda}$
The NA57 and NA49 yields have been scaled by the corresponding number of wounded nucleons, **STAR results closer to NA49**

- **Lambda** yields show dip at 39 GeV. Why? the baryon stopping at mid-rapidity may decrease with increasing energy

- **Central collisions**

- **Mid-rapidity**

 - NA49, PRC78,034918. 7% or 10% most central. (|y|<0.4 or 0.5)

 - NA57, PLB595,68; JPG32, 427 0-4.5% most central, |y|<0.5, stat. err. only

 - STAR, PRL86,89,92,98; PRC83 0-5% most central, |y|<0.5
The image contains graphs showing the centrality dependence of \bar{B}/B ratios: peripheral > central. This effect is more prominent at lower energies. Baryon stopping and absorption are also discussed. There is also a mention of the loss of low p_T $\bar{\Lambda}$ in central collisions.
Excitation function of \bar{B}/B ratios

- STAR BES data lie in a trend with NA49 data
- \bar{B}/B ratios increase with number of strange quarks at low energies
- $\bar{\Omega}^+/\Omega^- > \bar{\Xi}^+/\Xi^- > \bar{\Lambda}/\Lambda$: pair production v.s. baryon transport & associated production

Left: Solid red: STAR BES; Solid blue: STAR published; Open blue: NA49

Statistical + systematical error
Particle ratios

- Central, mid-rapidity
- Particle ratios consistent with NA49, consistent with the picture of a maximum net-baryon density around $\sqrt{s_{NN}} \sim 8$ GeV at freeze-out
- Associate production channels like $N + N \rightarrow N + \Lambda + K^+$ may be important for K^+ production, N is nucleon

J. Randrup et al., PRC 74, 047901 (2006)

![Graphs of Particle Ratios](image-url)
Particle ratios

- Clear K^-, Λ, Ξ^+ yield enhancement compared to pions with increasing collision energy
- Similar behavior for hidden strangeness $\phi(s\bar{s})$
- New scaling for ϕ/π v.s. \sim total collision energy, system size insensitive, initial production seems important for ϕ

Statistical + systematical error
New scaling on yields

φ mesons follow total participant nucleons energy scaling

K⁻ yield is lower than expected from the scaling in low beam energies

φ(s¯s): hidden strangeness

K⁻ (¯u s): open strangeness

Absorption of K⁻? no significant centrality dependence

Strangeness quark pairs (s¯s) correlation scenario, “K⁻ is suppressed compared to φ meson at small phase space”, qualitatively consistent

Redlich et al: Phys. Lett. B 603, 146 (2004)
Beam energy dependence of $<m_T>-m_0$

- For heavy strange hadrons ϕ, Λ, Ξ, $<m_T>-m_0$ show increasing trend with energy, mass matters
- Λ, Ξ: Solid red, STAR BES, 0-5% most central, statistical error only
- Solid blue, STAR published, most central, PRL 89, 092301; PRL 92, 182301. Open, NA49, most central, from NA49, PRC 78, 034918
- ϕ meson, statistical error

From L. Van Hove
Nuclear modification factors R_{CP}

- No K_S^0 suppression in Au+Au 7.7 and 11.5 GeV
- Cronin effect takes over partonic rescatterings @ lower energies
- Intermediate p_T, particle R_{CP} difference becomes smaller @ 7.7 and 11.5 GeV

$R_{CP}(p_T) = \frac{[d^2\sigma/(N_{bin}dp_Tdp_Tdy)]_{central}}{[d^2\sigma/(N_{bin}dp_Tdp_Tdy)]_{peripheral}}$

ϕ meson R_{CP}: 0-10%/40%-60%

- 38.8 GeV
- 27.4 GeV
\(\Omega/\phi \) ratio

- **\(\Omega \) and \(\phi \) \(p_T \) distribution is sensitive to strange quark thermalization and recombination.** Intermediate \(p_T \) \(\Omega \) yield enhancement is explained by mainly thermal \(s \) quark recombination @ Au+Au 200 GeV

- **Intermediate \(p_T \) \(\Omega/\phi \) ratios: clear separation between \(\geq 19.6 \) and 11.5 GeV** (probability of same ratios in \(p_T \) 0.8—3.6 GeV/c: 11.5 & 19.6 GeV: \(8.6 \times 10^{-5} \); 19.6 & 27 GeV: 0.50; preliminary systematical error included)

- **Change of \(\Omega \) production mechanism?** parton recombination fails at 11.5 GeV?
Summary

- Measurements of strange hadron production in $\sqrt{s_{\text{NN}}} = 7.7 - 39$ GeV
- Particle yields and ratios are consistent with the picture of a maximum net-baryon density around $\sqrt{s_{\text{NN}}} \sim 8$ GeV at freeze-out, baryon transport to mid-rapidity is important
- Clear K^-, ϕ, Λ, Ξ^+ yield enhancement compared to pions with increasing collision energy
- The evolution of K^- and ϕ meson yields v.s. system size and collision energies is qualitatively consistent with strange quark pair ($s\bar{s}$) correlation scenario
- Intermediate p_T Ω/ϕ ratios and nuclear modification factors show clear separation between 200 — 19.6 GeV and below 11.5 GeV, phase transition?
Backup
Different strangeness production scenarios

- Canonical statistical model: “ϕ is more suppressed than K^- at small phase space”

- Strangeness quark pairs ($s\bar{s}$) correlation, radius R_C: $2.2 - 4.2$ fm
 “K^- is more suppressed than ϕ at small phase space”

HADES: Phys. Rev. C 80, 025209 (2009) E917: Phys. Rev. C 69, 054901 (2004)
NA49: Phys. Rev. C 78, 044907 (2008) STAR 62.4, 130 & 200 GeV: Phys. Rev. C 79, 064903 (2009)
Thermal model-PBM: Nucl. Phys. A 772, 167 (2006)
Redlich model: Phys. Lett. B 603, 146 (2004)

Statistical + systematical error
Au+Au 19.6 GeV spectra

K^0_S spectra, Au+Au 19.6 GeV

Λ spectra, Au+Au 19.6 GeV

Ξ spectra, Au+Au 19.6 GeV

Ω spectra, Au+Au 19.6 GeV

K^0_S spectra, Au+Au 19.6 GeV

Λ spectra, Au+Au 19.6 GeV

Ξ spectra, Au+Au 19.6 GeV

Ω spectra, Au+Au 19.6 GeV

Ξ spectra, Au+Au 19.6 GeV

Ω spectra, Au+Au 19.6 GeV
Au+Au 27 GeV spectra

K^0_s spectra, Au+Au 27 GeV

Λ spectra, Au+Au 27 GeV

Ξ^- spectra, Au+Au 27 GeV

Ω^- spectra, Au+Au 27 GeV

K^0_s spectrum, STAR Preliminary

Λ spectrum, STAR Preliminary

Ξ^- spectrum, STAR Preliminary

Ω^- spectrum, STAR Preliminary

Φ spectrum, Au+Au 27 GeV

Λ̄ spectrum, Au+Au 27 GeV

Ξ^+ spectrum, Au+Au 27 GeV

Ω^+ spectrum, Au+Au 27 GeV

STAR Preliminary
Mean transverse kinetic energy

- Statistical error only!
- $\langle m_T \rangle - m_0$ increases as the increase of centrality
- $\bar{\Lambda}$: abnormal increase of $\langle m_T \rangle - m_0$ versus centrality at Au+Au 7.7 GeV
Centrality dependence of \bar{B}/B ratios: peripheral > central

This effect is more prominent at lower energies, more baryon transport to mid-rapidity, absorption?
Strange baryon/meson ratios

- Mid-\(p_T\) ratios get higher at lower energy
 More baryon stopping?

- Centrality dependence for Au+Au 39 GeV
 Breaks at lower energies?
Strange baryon/meson ratios

- Mid-p_T ratios get lower at lower energies
- Ratios still rise from low to mid-p_T at lower energies
Multi-strange hadrons?

partonic

hadronic

J/ψ, Ω, φ

π, K, p

time

Multi-strange hadrons

➢ Small hadronic cross sections, freeze-out early

STAR, Nucl. Phys. A 757 (2005) 102