Scaffolding profile in solving geometry problems in terms of van Hiele level

H S Rahman, Susanto, Hobri, M Irfan, R Karimah and A U Albab

Department of Postgraduated Mathematics Education, University of Jember, Jember, Indonesia
Email: saifurrahmanzahag4@gmail.com

Abstract. Solving the geometry problem is not an easy matter for some students. In addition to relying on understanding concepts, problem type exercises, scaffolding is also considered important to assist students in solving geometry problems. This study looked at the scaffolding process for students in solving geometry problems in terms of the van Hiele level. There are three groups of research subjects with each group of subjects representing students who have the ability of geometry at the visual, analytical, and informal deduction levels at the van Hiele level. The research method used is descriptive qualitative. Qualitative methods are used to analyze the subject scaffolding at each level of van Hiele in solving geometry problems. The results of the study found that subjects with a visual level tend to solve problems by presenting them in the form of images without observing in-depth the concepts used. So it takes scaffolding in terms of image presentation, mathematical concepts, and problem-solving flow. Subjects with the level of analysis identify the nature of the wake in the problem to determine the mathematical concepts used. Scaffolding is needed in the form of image presentation and problem-solving flow. While subjects with an informal level of deduction can determine the mathematical concepts used by first looking at the properties of the image. However, subjects at this level still need scaffolding in the problem-solving flow.

1. Introduction
Facts show that many students encounter difficulties in solving problems in the field of geometry. Moreover, the types of questions from various exams ranging from semester exams to national exams already use questions with the Higher Order Thinking Skills (HOTS) standard. Besides the practice and habituation of students in working on problems is at risk in this situation, it is hoped that scaffolding from the teacher can also be used as a solution to overcome these problems.

Radford et al in his writing "Fostering learner independence through heuristic scaffolding: A valuable role for teaching assistants” says that Scaffolding originated from Vygotsky's sociocultural theory [1]. This theory proposes that, through social interaction with others at the intermental level, children develop higher mental functions such as thinking and reasoning. To be effective, such social exchange must be within the zone of proximal development (ZPD), which is the distance between what they can achieve themselves and what they can do with the help of others who are more capable [2].

Scaffolding is to provide individuals with assistance at the beginning of learning, then reduce the assistance and provide opportunities for students to take over their duties after being able to do it independently. Assistance provided by teachers can be in the form of instructions, warnings, encouragement, describing problems in other forms that allow students to be independent. Scaffolding means the teacher’s way to guide students to achieve success. Teacher encouragement is needed so
that students can achieve optimal achievement. Not only in the learning process, scaffolding can also be given in the process of solving problems to help children in solving problems or tasks.

Scaffolding has a contribution to the process of learning and teaching in class. This was revealed as a positive strategy even though the research said it was still not maximal in the implementation process [3]. Anghileri proposed three levels in scaffolding that specifically support mathematics learning, namely Level 1: Environmental provisions (classroom organization, artifacts such as blocks) that is the learning process that can take place without direct intervention from the teacher. Level 2: Explaining, reviewing and restructuring. There is a direct interaction between the teacher and students associated with the subject matter to be given in class. Level 3: Developing Conceptual thinking. Teaching and learning activities that emphasize the development of conceptual thinking skills. At this level, students get support to build, develop, and produce conceptual discourse [4].

Van Hiele level descriptors for five level. Visual level: children are able to recognize and name basic shapes. Analysis level: recognizable traits but as separate entities and not related to each other, informal deduction level: students begin to build relationships between the properties of forms, formal deduction level: the meaning of deduction is realized and students know what is needed to develop an evidence and definition is needed so that the evidence becomes clear, and rigor level: students understand the axiom system and can accept evidence that is contrary to intuition and what is real to students as long as the argument is valid [5].

2. Research methods

There are three groups of subjects in this research, with the details of one group of subjects representing the geometry ability of students at visual level of van Hiele levels, one group of subjects representing the geometry ability of students at analysis level of van Hiele levels, and one group of subjects representing the ability of geometry students at informal deduction level of van Hiele levels [6,7]. Then the three groups of subjects are given a geometry problem that requires high-level thinking skills in solving them.

During the problem-solving process, students waited for and conducted interviews and scaffolding by researchers. From the series of problem-solving processes, the result will be analyzed qualitatively about scaffolding process needed by the subject to solve the problem presented based on the ability of van Hiele level geometry. Then from the description of the scaffolding students will formulate a scaffolding profile in solving geometry problems in terms of the van Hiele level.

3. Research Finding

Students are given geometry problems as follows.

![Figure 1. Research question.](image)
Based on research conducted on subjects at the visual, analytical, and informal deduction levels of van Hiele, the following data were obtained.

3.1. Level 0 subject (van Hiele Visual Level)
The subject answer

![Figure 2. Visual level subject answer.](image)

Table 1. Visual level subject interview.

P1 1001	From the picture, how is your idea to solve it?
S1 1001	(Long silence with no response)
P1 1002	What kind of two-dimensional figure it is?
S1 1002	Rectangle, but (silence) there is also a triangle
P1 1003	It means that α is what kind of triangle part?
S1 1003	Triangle side
P1 1004	How to define the length?
S1 1004	(Long silence, look at the researcher and smile)
P1 1005	Remember the Pythagorean theorem? Can it be used for all triangles?
S1 1005	For right-angled triangle (doubtful)
P1 1006	Is there any right-angled triangle on this picture?
S1 1006	There is no sign of it
P1 1007	Can you provide a line to form a definite triangle?
S1 1007	Add a line here (point to a perpendicular line that intersects at point θ)

Van Hiele level descriptors for the visual level namely students can identify and operate structures such as squares, rectangles, triangles, and other geometric configurations such as lines, angles, and characteristics according to their visual form. Subjects at this level cannot directly guess how the problem can be solved. The observation and analysis process of the subject is only focused on visualizing images that appear, just like focusing on the rectangular and triangular. The subject also know that α that is asked is part of the triangle side.

Then the teacher gives further scaffolding in the form of a stimulus to come up with an idea about what triangles can be used. The teacher gives instructions by first raising the issue of what is the Pythagoras theorem. The Pythagoras theorem is presented as scaffolding for the subject to recall the right-angled triangle. So that the subject gets a clue that he needs the role of a right-angled triangle in solving the problem. The next scaffolding provided is to make right triangles by first adding helplines to the problem. The series of scaffolding process provided by the teacher as a form of service to subjects at the visual level that has the characteristics of identifying lines, angles, square, triangles, and other geometric configurations.
P1 1008 What do you get from drawing a line through point O?
S1 1008 There are 4 rectangles, these lines (referring to the four lines that are asked and known) rectangles diagonal
P1 1009 Did it form the right-angled triangles as expected?
S1 1009 Yes, Half of this triangle (referring to one of the triangles)
P1 1010 Using the Pythagorean theorem, can you present it in the form of an equation?
S1 1010 Yes, I can
P1 1011 Using all these 4 equations, what can you do to define the value a?
S1 1011 (Long silence with no response)
P1 1012 There are four equations, whereas you will determine the value of one of these equations. what do you have to do?
S1 1012 Add up or subtract between several equations
P1 1013 Which equation will be added or subtracted? (Long silence)
 Pay attention to the sides of the equation of the same size. What you are looking for is the length of a. So, which equation can be used to define a?
S1 1013 Equation 1 is summed with Equation 3
Why is it?

Because GC has the same size as DE, then \(DE^2 + EO^2 = 3^2\). The Value of \(a\) is 16.

The interview above continuous with subject indicators at van Hiele visual level according to Fuys. The subject identified the properties in the rectangle formed by the addition of two perpendicular lines. Researchers provide scaffolding by asking whether the right triangle formed as a stimulus. Scaffolding in the form of instructions for using the Pythagoras theorem to be some equation is also needed by the subject. Based on the data above we know that many types of scaffolding in the form of instructions or directions, questions, and so on in helping the subject at the visual level of van Hiele in solving a problem.

The data above shows that subjects who are at the visual level cannot immediately decide on a theory, proposition, or flow in the process of solving a problem. Subjects tend to observe and identify the visible characteristics. So it is necessary to observe the properties of the shape visually first, then try to arrange and connect some of the properties of the shape as a basis for determining the theorem or the flow of problem-solving. The type of scaffolding students needed in the process of presenting and processing a flat figure, flow in the process of problem-solving, and some concepts in mathematics.

3.2. Level 1 subject (van Hiele Analysis Level)

The subject answer

![Figure 5. Analysis level subject answer.](image)

Table 3. Analysis level subject interview.

Question	Response
P2 1001	From the picture, how is your idea to solve it?
S2 1001	(Long Silence) This is Rectangle, but it seems like \(a\) is not part of the diagonal. Is not straight
P2 1002	How about the triangle at that figure, can you use it to define the value of \(a\)?
S2 1002	Maybe yes (doubtful and confused)
P2 1003	It means that \(a\) is one of the triangle sides Do you still remember the theorem that can be used for triangle?
S2 1003	Pythagorean theorem, but only on right-angled triangles.
P2 1004	good Is there any right-angled triangle on this picture?
S2 1004	Nothing
P2 1005	How can you make a right-angled triangle so that the value of \(a\) can be determined? The four lines intersect at O
S2 1005	It means that we have to make a new line that intersects on O, so that it will become the right-angled triangle.
Van Hiele level descriptors for the level of analysis students can analyze shapes based on their components and relationships between components, determine the properties of group of shapes empirically, and use traits to solve problems. Subjects in this level consider the properties that exist in the rectangle in the form of diagonals to determine the value of a. Because rectangular diagonal properties cannot be used in this problem, the subject gets scaffolding from the teacher to use the properties in the triangle to solve it.

Then the teacher gives further scaffolding in the form of a stimulus to come up with an idea about what triangles can be used. The teacher gives instructions by first raising the issue of what is the right-angled triangle. A right-angled triangle is raised as a scaffolding for the subject to recall the special properties inherent in the right triangle. So that subjects can predict and can guess that the Pythagorean theorem can be used in solving the problem. The series and process of scaffolding provided by the teacher as a form of service to the subject at the level of analysis have the characteristics of using built-in recognizable attributes but as separate entities and not related to each other.

Figure 6. Analysis level subject answer.

Figure 7. Analysis level subject answer.

Table 4. Analysis level subject interview.

P2 1006	What do you get from drawing a line through point O?
S2 1006	These four lines (pointing to four intersecting lines at point O) the hypotenuse of a right-angled triangle.
P2 1007	Using the Pythagorean theorem, can you present it in the form of an equation?
S2 1007	Yes, You can
P2 1008	Using all these 4 equations, what can you do to define the value a?
S2 1008	(Long Silence)
P2 1009	There are four equations, whereas you will determine the value of one of these equations. what do you have to do?
S2 1009	Eliminating an equation that already has a value (Elimination)
The interview above continue with the subject indicators at van Hiele visual level according to Fuys. The subject can recognize the properties of right-angled triangles formed by perpendicular lines through point O. It is also able to integrate well between geometry material which is the subject of problems with material elimination and substitution, with various types and types scaffolding in the form of instructions, directions, questions as a stimulus, and visual scaffolding provided by the teacher.

The data above shows that subjects who are at the visual level cannot immediately decide on a theory, proposition, or flow in the process of solving a problem. So it is necessary to observe the properties of the shape visually, then try to arrange and connect some of the properties of the shape as a basis for determining the theorem or the flow of problem-solving. Besides that, the type of scaffolding that students need at the level of analysis is an initial explanation from the researcher to clarify the problem or correct students' perceptions. scaffolding in the form of assistance to connect between the properties of the shape known by the subject as a basis for determining the theorem and the flow of problem-solving. At this level, students still need visual scaffolding.

3.3. Level 2 subject (van Hiele Informal Deduction Level)

The subject answer

![Image](Figure 8. Informal deduction level subject answer.)

Table 5. Informal deduction level subject interview

P3 1001	From the picture, how is your idea to solve it?
S3 1001	a Is triangle side of right-angled triangle EBC It means that it used the Pythagorean theorem.
P3 1002	are you sure that the EBC triangle is right-angled?
S3 1002	Eh… (Silent thinking) There is no right-angled sign, meaning it’s not like (expression of confusion)
P3 1003	How can you make a right-angled triangle so that the value of a can be determined? The four lines intersect at one point
S3 1003	Oh ... That means add perpendicular lines that also intersect at one point B.
The van Hiele level descriptor for the level of informal deduction is students can formulate and use definitions, provide informal arguments and arrange the sequence of traits given previously. Subjects at this level have begun to estimate the use of theorems and definitions that can be used in the process of solving problems by first observing the various properties of the wake. The subjects estimated that the EBC formed a right-angled triangle at B.

Scaffolding from the teacher in this condition is important to give. The teacher has the authority to provide scaffolding in the form of giving questions as a stimulus so that students check the answers. Students can know and be sure that the answer is not right. Then the teacher gives further scaffolding in the form of a stimulus to come up with an idea about how the Pythagorean theorem can be used. In other words, the subject at the level of informal deduction can formulate several definitions and traits in determining the theorem to be used in the problem-solving process. With some types of scaffolding provided by the teacher.

![Figure 9. Informal deduction level subject answer.](image)

![Figure 10. Informal deduction level subject answer.](image)

Table 6. Informal deduction level subject interview.

Subject	Question	Answer
P3 1004	What do you get from adding these two perpendicular lines?	
S3 1004	These four lines (pointing to four intersecting lines at point B) the hypotenuse of a right-angled triangle.	
P3 1005	Using the Pythagorean theorem, can you present it in the form of an equation?	
S3 1005	Yes, I can	
P3 1006	Using all these 4 equations, what can you do to define the value \(a\)?	
S3 1006	Maybe the substitution elimination material is ...	
	(Linear Equation System Of Two Variablematerial using elimination and substitution)	
P3 1007	Which equation will be eliminated?	
Pay attention to the sides of the equation of the same size. What you are looking for is the length of a, So, which equation can be used to define a?

Eeeh... (doubtful)

Equation 1 is summed with Equation 3

Why is it?

Because CH has the same size as DG, then $CH^2 + CG^2 = 3^2$. And the a is 16

The continuation of the interview above is also consistent with subject indicators at van hiele visual level according to Fuys. The subject can connect the properties and several definitions in the problem-solving process. It is also able to integrate between geometry material which is the subject of problems with material elimination and substitution, with various types and scaffolding in the form of instructions, directions, questions as a stimulus, and visual scaffolding provided by the teacher.

The data above shows that subjects who are at the visual level cannot immediately decide on a theory, proposition, or flow in the process of solving a problem. Besides that, the type of scaffolding that students need at the level of analysis is an initial explanation from the researcher to clarify the problem or correct students' perceptions. There are some questions as a stimulus to bring up idea and material.

4. Discussion

Based on data above, it is found that subjects with a visual level tend to solve problems by presenting it in the form of images without depth observation into the concept. So it takes scaffolding in terms of the presentation and processing of flat shapes, mathematical concepts, and problem solving flow. This finding is in accordance with the theory of van Hiele according to Fuys who said that subjects at the visual level were able to identify and operate structures such as squares, rectangles, triangles, and other geometric configurations. Subjects with the level of analysis identify the nature of the problem to determine the mathematical concepts used. So it takes scaffolding in the form of image presentation and problem solving flow. This finding is also in accordance with van Hiele's theory according to Fuys who said that subjects at the level of analysis are able to analyze shapes based on their components and relationships between components, determine the properties of group of shapes empirically, and use traits to solve problems. Whereas subjects with informal deduction level can determine the mathematical concepts used by first looking at the properties of the shapes. However, subjects at this level still need scaffolding in the problem solving flow. This finding is also in accordance with van Hiele's theory according to Fuys who said that subjects at the level of analysis are able to formulate and use definitions, provide informal arguments and arrange the sequence of properties given previously. This can be seen from the ability of the subject in establishing the Pythagoras theorem as a tool to solve the research problems.

5. Conclusion

The results showed that subjects with a visual level tend to solve the problem by presenting it in the form of images without depth observation into the concept. So it takes scaffolding in terms of the presentation and processing of flat shapes, mathematical concepts, and problem solving flow. Subjects with the level of analysis identify the nature of the problem to determine the mathematical concepts used. Scaffolding is needed in the form of image presentation and problem solving flow. Whereas subjects with informal deduction level can determine the mathematical concepts used by first looking at the properties of the shapes. However, subjects at this level still need scaffolding in the problem solving flow.

The recommendation for further research is to discuss the benefits of this research, after the subject gets the right scaffolding in solving geometry problems, will later improve the creativity of the subject
in solve the other problems. This research can apply in higher level of education with geometry capabilities according to higher level of van Hiele level geometry.

Acknowledgment
We thank to our supervisor of this research who provided insight and expertise that greatly assisted the research, Geometry Research Group, Head of postgraduate courses in Mathematics Education University of Jember, Dean of the Faculty of Teaching and Education University of Jember, And all parties who helped us in this research.

References
[1] Radford J, Bosanquet P, Webster R, Blatchford P, and Rubie-Davies C 2014 Fostering learner independence through heuristic scaffolding: A valuable role for teaching assistants International Journal of Educational Research 63 116-126
[2] Bature I, and Jibrin A 2015 The perception of preservice mathematics teachers on the role of scaffolding in achieving quality mathematics classroom instruction International Journal of Education in Mathematics Science and Technology 3(4) 275-287
[3] Wood D 2018 Commentary: contribution of scaffolding to learning and teaching: interdisciplinary perspectives International Journal of Educational Research 90(1) 248-251
[4] Anghileri J 2006 Scaffolding practices that enhance mathematics learning Journal of Mathematics Teacher Education 9(1) 33-52
[5] Fuys D, Geddes D, and Tischler R 1988 The van Hiele model of thinking in geometry among adolescents Journal for Research in Mathematics Education Monograph 3 196
[6] Usiskin Z 1982 Van hiele levels and achievement in secondary school geometry CDASSG Project
[7] Sunardi 1998 Analysis of geometry learning materials based on van hiele's theory in junior high school mathematics books Journal of Argapura 49 - 59