Reproductive biology of *Charybdis* (*Goniohellenus*) *longicollis* Leene, 1938 (Brachyura: Portunidae), in the north-eastern Mediterranean Sea, Turkey

CANA TURELI AND IREM NUR YESILYURT

Department of Basic Sciences, Faculty of Fisheries, University of Cukurova, Balcalı-Adana, Turkey
e-mail: cantur@cu.edu.tr

ABSTRACT

The swimming crab, *Charybdis* (*Goniohellenus*) *longicollis* Leene, 1938, is a Lessepsian migrant into the Mediterranean and little is known about its biology in Iskenderun Bay, north-eastern Mediterranean, Turkey. The size of crabs, sex-ratio and spawning period of this species was defined from 951 specimens in order to understand their reproduction and development in the North-Eastern Mediterranean Sea. The crabs were found to occur throughout the year. Carapace width (CW) ranged between 7.22 to 100.60 mm and total weight ranged from 1.34 to 164.09 g. Male-female sex ratio was 0.6:1. Highest gonado-somatic index (GSI) was seen in March and September for females and in May for males. Ovigerous females were present throughout the year, with peak spawning activity in July and September. The CW of the ovigerous female crabs ranged between 23.71 and 95.93 mm. In winter months, GSI of males and females decreased. However, spawning season of *C. (G.) longicollis* in Yumurtalık Cove was observed throughout the year.

Keywords: *Charybdis* (*Goniohellenus*) *longicollis*, Crustacea, Iskenderun Bay, Lessepsian, Portunidae, Reproductive biology

Introduction

The swimming crab, *Charybdis* (*Goniohellenus*) *longicollis* Leene, 1938, is known to occur in the East African coast, the Red Sea, the Gulf of Aden, the Gulf of Oman and the Arabian Gulf. *C. (G.) longicollis* was first recorded in the Mediterranean in 1954 from Mersin Bay, Turkey (Holthuis, 1961). Since then, it has invaded and established a large population throughout the north-eastern Mediterranean coast of Turkey (Ozcan *et al.*, 2005; Marun, 2016) and has been recorded all along the Levantine coast, from Egypt to the Aegean coast of Turkey. Portunidae is the most successful family in colonisation of Mediterranean coasts. In fact, among the 54 Brachyura listed by Galil *et al.* (2015), 14 species belong to this family with 6 species in the genus *Charybdis* (Kondylatos *et al.*, 2017).

Previous studies on *C. (G.) longicollis* have reported the species’ distribution (Kocatas,1981; Kocatas and Katagan,1994; 2003; Enzenross and Enzenross, 1995; Zenetos *et al.*, 2005; Naderloo and Sari, 2007), parasites (Oksnebjerg *et al.*, 1997; Galil and Innocenti, 1999; Innocenti *et al.*, 2010; Ozcan and Katagan, 2016; Innocenti *et al.*, 2017), width/length-weight and width-length relationships from the north-eastern Mediterranean coast of Turkey (Sangün *et al.*, 2009) and sex distribution, morphometric aspects, condition factor and fecundity in Iskenderun Bay (Marun, 2016).

However, very little is known about the biology of *C. (G.) longicollis* in any area of its distribution, probably because it does not reach a commercial size and value. In Turkey, there have been no studies on the reproductive biology of the species. The purpose of this study was to investigate on the reproductive biology of female *C. (G.) longicollis* in Iskenderun Bay, Yumurtalık Cove, Turkey.

Materials and methods

C. (G.) longicollis were sampled monthly in the Yumurtalık Cove 36° 42’ N; 35° E - 35° 49’ E between July 2014 and June 2015 using a small shrimp trawl (15 m head rope with 14 mm-mesh cod end) towed for 45 min at three different depths; 0-10, 10-20 and 20-50 m. Bottom water salinity, temperature, dissolved oxygen (DO) and depth were measured at each station using a CTD probe (YSI 6600 multiparameter probe) and all individuals were held in ice until laboratory analyses.

In the laboratory, crabs were sorted sex-wise and individual records of carapace widths (CW, mm) and total weight (TW, g) were taken. Missing legs were noted and the opposing leg, if present, was removed, weighed and its weight was added to the total (Gelpi *et al.*, 2009).

The total number of male and female crabs was used to calculate the sex ratio per month. Chi-square (χ^2) statistic was used to test the difference between the sexes.
Juveniles and adults (including ovigerous females) were described by the form of the abdomen and the presence of egg masses (Williams, 1974). In females, ovaries were dissected out and examined to classify the maturity stages (gonad development stages) (Wenner, 1989). Four stages were categorised as follows: stage 1 - immature ovary, white; stage 2 - maturing or developing ovary, light yellow; stage 3 - mature ovary, yellow/orange and stage 4 - ripe ovary, dark orange or red.

Weight of the ovaries of crabs was measured to the nearest 0.001 g. GSI was calculated using the following formula (Soundarapandian et al., 2013):

\[
GSI = \frac{\text{Wet weight of the gonad}}{\text{Wet weight of the body}} \times 100
\]

Fecundity was estimated by analysing 118 female crabs. Egg mass colours were classified as bright orange = 1, dark orange = 2, brown = 3, dark brown = 4 and black = 5 (Jivoff et al., 2007) and then, the egg masses were removed from the pleopods for measurement of weight. From each egg mass, three 0.01 g subsamples of eggs were randomly separated, weighed, spread on the microscope slide with one side striped with glycerol (30%) and the eggs were counted under a stereo microscope (Prager et al., 1990). The number of eggs in the sample was taken as the average numbers of eggs from the three subsamples. The total number of eggs for each female was extrapolated from the whole egg mass. Linear and logarithmic regression analyses and exponential functions were used to establish the relationships between fecundity and body size (CW, TW) and egg mass weight (EW). Differences in the regression slope for the relationships between fecundity and body size were analysed by t-test. Spawning peak was determined as the months with highest number of ovigerous females.

The size at first sexual maturity of females was determined using the minimum size class data of the ovigerous females.

Statistical tests involved the use of simple regression analysis and ANOVA (Freund and Wilson, 2003). SPSS was used for all statistical analyses. All statistical effects were considered significant at p = 0.05.

Results

Water temperature ranged from 15.93 to 30.13°C and the lowest and highest values were measured at 0-10 m during all the sampling cruises. The average salinity ranged between 37.40±0.65‰ (March 2015) and 38.61±0.78‰ (October 2014). Temperature and salinity were seasonally variable. The mean dissolved oxygen (DO) rate ranged from 5.99 to 8.43 mg l⁻¹. There was also a seasonal trend for dissolved oxygen. Hypoxic (<2 mg l⁻¹) bottom water was not found in any station in the Yumurtalık Cove.

During the study period, a total of 951 crabs, which consisted of 523 females (55%), 213 of which were ovigerous), 350 males (36.8%) and 78 juveniles (8.2%) were caught. The crabs were abundant between June (17.45%) and July to December (61.30%).

Male crabs were larger than females \(F_{1-3} = 65.06; P = 0.00 \), CW in male ranged between 14.73-71.88 mm (42.29±0.43) and in females varied from 7.12 to 100.6 mm (Table 1).

The overall male to female ratio showed female dominance during the study period (0.6:1). Chi-square \(\chi^2 \) test indicated that the difference between the numbers of males and females was significant (p<0.05) (Table 2).

The monthly distribution of maturity stages of females are shown in Fig. 1. Maturity stage 1 occurred during all months. In December, all the specimens were in this stage. Fully mature ovaries were seen throughout the sampling period except in December and January, with the highest percentages in September and July.

GSI values for the 170 females ranged from 1.63 to 5.37% with a mean value of 3.38±1.17%. Those of 172 males ranged from 0.17 to 0.58% with a mean of

Sex	Number	CW (mm)	CL (mm)	W (g)
Male	350	14.73-71.88 (42.29±0.43)	4.49-57.92 (25.98±0.28)	1.34-129.53 (17.05±0.57)
Female	310	17.22-100.60 (38.75±0.49)	16.33-61.68 (23.20±0.21)	1.80-164.09 (11.74±0.76)
Ovigerous female	213	23.71-95.93 (34.57±0.42)	14.58-33.36 (21.18±0.17)	2.97-88.84 (9.54±0.43)
Juvenile	78	23.64-48.42 (33.19±0.66)	13.17-32.10 (20.45±0.43)	2.51-31.99 (8.09±0.66)

Values are : Minimum-Maximum; Values in parantheses refers to Mean ±SE
CW: Carapace width, CL: Carapace length, W: Body weight,
0.35±0.14%. In females, the mean GSI values increased with two peaks in September and March. They declined in December and had a slight oscillation in June. In males, the highest GSI values were estimated for November and May. In winter months, the GSI values of males and females decreased. The spawning season for females was observed two times in spring and fall months. Ovigerous females were collected during the study period. Higher proportion of ovigerous females occurred from June to November. The highest numbers of ovigerous individuals were caught in July (Fig. 2). Ovigerous female crabs ranged between 23.71 and 95.93 mm in CW and 2.97 and 88.84 g in body weight (Table 1).

Fecundity of C. (G.) longicollis was 99176±51899 eggs, ranging between 22200±8879 (CW=22.33 mm) and 292608±38728 eggs (CW=45.21 mm). The mean fecundity increased with increasing total weight (F_{0.10}=7.96; p<0.05) and mean fecundity differences among size classes were significant (F_{4,113}=11.42; p<0.05). Mean fecundity very weakly correlated with carapace width (r=0.17, p<0.01); however, there was a high and positive correlation of weight (r=0.57, p<0.01) with egg weight (r=0.67, p<0.01) and mean fecundity. The regression slopes for fecundity-weight (t=7.5; p=0.00) and fecundity-egg weight (t=12.2; p=0.00) were significant. The regression between fecundity and weight was F=26973.9+7158.6*W (R²=0.330; F_{1-117}=57.1; p=0.00). The estimated regression equation of egg weight on fecundity was LnF=11.29+0.94*Ln EW (R²=0.563; F_{1-117}=149.6; p=0.00).

Discussion

In this study, females were found to be dominant in the population. Similar observation was reported by Sangun et al. (2009) and by Ozcan and Katagan (2016) in Iskenderun Bay. In contrast, Marun (2016) reported that male crabs were dominant in the population (M:F=1:0.88). Pereira et al. (2009) stated that predominance of adult females is seen mainly in areas of higher salinity. The
was estimated as *...

Sangin et al. (2009) reported the mean carapace width of *C. (G.) longicollis* population as 38.13±0.54 mm (22.46-59.06 mm) and the population’s mean carapace width as 23.66±0.32 mm (14.18-35.71 mm). They stated that males had mean carapace width of 25.44±0.58 mm (14.18-35.71 mm) while this value for the females was 22.59±0.34 mm (14.19-31.85 mm) in Iskenderun Bay. Ozcan and Katagan (2016) reported that largest number of crabs were between 30 and 45 mm CW. The crabs captured ranged from 0.6 to 50.75 g in weight. Marun (2016) stated that the distribution of carapace width of the Lessepsian crabs ranged between 19.2 mm and 67.3 mm, with a mean value of 39.97±0.23 mm, while the total weight values varied between a minimum of 0.8 g and a maximum of 50.75 g. In the present study, the mean CW of the crabs were similar, while the minimum values were lower and the maximum values were higher (Table 1). The reproductive season for the females was observed with two peaks in spring and fall months in the Iskenderun Bay, with ripe females (maturity stage 4) occurring from March to November, with the highest percentages in September and July and immature females (maturity stage 1) and ovigerous females occurring in all the months. Spawning is correlated with seasonal changes in sea temperature (Dhawan et al., 1976). Spawning usually occurs in waters with temperature and salinity values favourable for hatching of eggs and growth of larvae. The salinity and temperature range inside the Yumurtalık Cove seemed to characterise it as a spawning area. The prevalence of mature females as well as the high percentage of ovigerous females indicates that the invasion of *C. (G.) longicollis* is complete and the species is well established within the area, as suggested by Raboou et al. (2015).

Marun (2016) caught ovigerous females from April to November. Eggs of 31 females were counted, and the mean fecundity of *C. (G.) longicollis* was estimated as 4058.88±640.01 eggs per female (137-15047 eggs per female). The mean fecundity in the present study was 4058.88±640.01 eggs per female (137-15047 eggs per female). In the present study, the mean fecundity increased as total body weight increased and there was significant difference between the size classes. Marun (2016) estimated the regression between fecundity and weight relationship as $F=976.72\,W-832.45\, 72\,W-832.45$ ($R^2=0.4205$), which is similar to the results obtained in the present study.

This study provides useful information on the aspects of the reproductive status of *C. longicollis* in the Mediterranean Sea. The population, characterised by densities of adult and ovigerous female specimens, confirms that *C. (G.) longicollis* is well established in the Mediterranean coast of Turkey. Further studies are needed for assessing the potential relationships with other brachyuran species in order to foresee possible negative impacts due to the invasion.

Acknowledgements

This study was supported by Cukurova University Scientific Research Projects Coordination Unit (Project No: SUF2013YL6). The authors thank the crew of commercial trawler “MAVI SU 3” for carrying out the trawling operations and Ahmet Nevzat Ilhan for help in the laboratory studies.

References

Dhawan, R. M., Dwivedi, S. N. and Rajamanickam, G. M. 1976. Ecology of the blue crab *Portunus pelagicus* (Linnaeus) and its potential fishery in Zuari Estuary. *Indian J. Fish.*, 23: 57-64.

Enzenross, R. and Enzenross, L. 1995. Erstnachweise indopazifischer Brachyura (Crustacea: Decapoda) von der turkischen Mittelmeerküste. *Stuttgarter Beitrage zur Naturkunde*, 521: 1-4.

Freund, R. J. and Wilson, W. J. 2003. *Statistical methods*. Academic Press, San Diego, USA, 673 pp.

Galil, B. S. and Innocenti, G. 1999. Notes on the population structure of the portunid crab *Charybdis longicollis* Leene, parasitised by the rhizocephalan *Heterosaccus dollfusi* Boschma, off the Mediterranean coast of Israel. *Bull. Mar. Sci.*, 64(3): 451-63.

Galil, B. S., Froglia, C. and Noel, P. 2015. Looking back, looking ahead: The CIESM Atlas, Crustaceans. *Manag. Biol. Invasion*, 6: 171-175. doi: http://dx.doi.org/10.3391/mbi.2015.6.2.07

Gelpi, C. G., Condrey, R. E., Fleeger, J. W. and Dubois, S. F. 2009. Discovery, evolution and implications of blue crab, *Callinectes sapidus*, spawning, hatching and foraging grounds in federal (US) waters offshore of Louisiana. *Bull. Mar. Sci.*, 85(3): 203-222.

Holthuis, L. B. 1961. Report on a collection of Crustacea Decapoda and Stomatopoda from Turkey and Balkans. *Zool. Verhan*, 47: 1-67.

Innocenti, G. and Galil, B. S. 2010. Invasive host, *Charybdis longicollis* (Decapoda: Brachyura: Portunidae) and invasive
Reproductive biology of *Charybdis (Goniohellenus) longicollis*

Ozcan, T. and Katagan, T. 2016. Prevalence of *Heterosuccus dollfusi* (Cirripedia: Rhizocephala: Sacculinidae). *Rapp. Comm. Int. Mer Medit.*, 39: 545.

Innocenti, G., Stasolla, G., Goren, M., Stern, N., Levitt-Barmats, Y., Diamant, A. and Galil, B. S. 2017. Going down together: invasive host, *Charybdis longicollis* (Decapoda: Brachyura: Portunidae) and invasive parasite, *Heterosuccus dollfusi* (Cirripedia: Rhizocephala: Sacculinidae) on the upper slope off the Mediterranean coast of Israel. *Mar. Biol. Res.*, 13(2): 229-236. doi.org/10.1080/17451000.2016.1240873

Jivoff, P., Hines, A. H. and Quackenbush, L. S. 2007. Reproduction biology and embryonic development. In: Kennedy, V. S. and Cronin, L. E. (Eds), *The blue crabs Callinectes sapidus*. Maryland Sea Grant, p. 255-286.

Kocatas, A. 1981. Liste preliminaire et repartition des Crustaces Decapodes des eaux Turques. *Rapports et procès-Verbaux des Reunions Commission Internationale pour l'Exploration Scientifique de la Mer Méditerranée*, 27(2): 161-162.

Kocatas, A. and Katagan, T. 1994. Turkiye denizleri biyolojik çeşitliliğinde Lesepsiyen (Suveys Kanali) Decapod ve Stomatopod türlerinin etkisi. XII. *Ulusal Biyoloji Kongresi*, Edirne, p. 290-294, (In Turkish)

Kocatas, A. and Katagan, T. 2005. Brachyuran crabs (Crustacea: Decapoda) in Iskenderun Bay. *Turkish Waters with notes on lessepsian migration*. Technical University, Institute of Engineering and Science, Decapod crustacean fauna of the Turkish Seas. *Zoology in the Middle East*, 29: 63-74. doi.org/10.1080/09397140.2003.10637971.

Kondylatos, G., Kampouris, T. E., Kouloumeris, V. and Corsini-Foka, M. 2017. The Indo-Pacific brachyuran *Charybdis (Gonioinfradens) paucidentata* (Milne Edwards 1861) (Brachyura, Portunidae) in the Cyclades, Aegean Sea. *Turk. J. Zool.*, 41: 1118-1120. DOI: 10.3906/zoo-1612-48.

Marun, S. 2016. Some biological characteristics of Lessepsian crab *Charybdis longicollis* Leene, 1938 (Portunidae: Decapoda) in Iskenderun Bay. Graduate Thesis, Iskenderun Technical University, Institute of Engineering and Science, Department of Fisheries, Iskenderun/Hitay, (In Turkish).

Naderloo, R. and Sari, A. 2007. Subtidal crabs of the Iranian coast of the Persian Gulf: new collections and biogeographic considerations. *Aquat. Ecosyst. Health Manage.*, 10(3): 341-349. doi.org/10.1080/14634980701514620

Oksnebjerg, B., Enzenross, R. and Enzenross, L. 1997. First record of Rhizocephala (Crustacea: Cirripedia) from Turkish waters with notes on lessepsian migration. *Stuttgarter Beiträge zur Naturkunde Serie A (Biologie)*, 557: 1-7.

Ozcan, T., Katagan, T. and Kocatas, A. 2005. Brachyuran crabs from Iskenderun Bay. *Crustaceana*, 78(2): 237-244.

Ozcan, T. and Katagan, T. 2016. Prevalence of *Heterosuccus dollfusi* Boschma, 1960 (Rhizocephala: Sacculinidae) on *Charybdis longicollis* Leene, 1938 (Brachyura: Portunidae) from Iskenderun Bay, Turkey. *J. Black Sea/Mediterranean Environment*, 22(2): 128-136.

Pereira, M. J., Branco, J. O., Christoffersen, M. L., Junior, F. F., Fracasso, H. A. A. and Pinheiro, T. C. 2009. Population biology of *Callinectes danae* and *Callinectes sapidus* (Crustacea: Brachyura: Portunidae) in the south-west Atlantic. *J. Mar. Biol. Ass. U. K.*, 89(7): 1341-1351. DOI: 10.1017/S0025315409006065.

Perry, H. M. and Vanderkooy, S. J. 2015. *The blue crab fishery of the Gulf of Mexico, United States: A Regional Management Plan*. 2015 Revision. Gulf States Marine Fisheries Commission, 2404 Government St. Ocean Spring, MS 39564, No. 243.

Prager, M. H., Mcconaugha, J. R., Jones, C. M. and Geer, P. J. 1990. Fecundity of blue crab *Callinectes sapidus*, in Chesapeake Bay: biological, statistical and management considerations. *Bull. Mar. Sci.*, 46(1): 170-179.

Rabaoui, L., Arculeo, M., Mansour, L. and Tlig-Zouari, S. 2015. Occurrence of the lessepsian species *Portunus segnis* (Crustacea: Decapoda) in the Gulf of Gabes (Tunisia): first record. New information on its biology and ecology. *Cah. Biol. Mar.*, 56: 169-175.

Sangun, L., Tureli, C., Akamce, E. and Duysak, O. 2009. Width/length-weight and width-length relationships for 8 crabs from the north-eastern Mediterranean coast of Turkey. *J. Anim. Vet. Adv.*, 8(1): 75-75.

Severino-Rodrigues, E., Musiello-Fernandes, J., Moura, A. A. S., Branco, G. M. P. and Canedo, V. O. C. 2013. Fecundity, reproductive seasonality and maturation size of *Callinectes sapidus* females (Decapoda: Portunidae) in the south-east coast of Brazil. *Rev. Biol. Trop.*, 61(2): 595-602.

Soundarapandian, P., Varadarajan, D. and Boopathi, A. 2013. Reproductive biology of the commercially important portunid crab, *Portunus sanguinolentus* (Herbst). *J. Mar. Sci. Res. Dev.*, 3: 2.

Wenner, E. L. 1989. Incidence of insemination in female blue crabs, *Callinectes sapidus*. *J. Crust. Biol.*, 9(4): 587-594. doi.org/10.1163/193724089X00601.

Williams, A. B. 1974. The swimming crabs of the genus *Callinectes* (Decapoda: Portunidae). *Fish. Bull.*, 72: 685-798.

Zenetos, A., Cinar, M. E., Pancucci-Papadopoulou, M. A., Harmelin, J. G., Furnari, G., Andaloro, F., Bellou, N., Streftaris, N. and Zibrowius, H. 2005. Annotated list of alien marine species in the Mediterranean with emphasis on worst invasive species. *Mediterranea Mar. Sci.*, 6(2): 63-118. DOI: http://dx.doi.org/10.12681/mms.186.