Research Article

Generation of Monoclonal Antibodies against Immunoglobulin Proteins of the Domestic Ferret (*Mustela putorius furo*)

Greg A. Kirchenbaum¹ and Ted M. Ross¹²

¹Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
²Department of Infectious Diseases, University of Georgia, Athens, GA, USA

Correspondence should be addressed to Ted M. Ross; tedross@uga.edu

Received 7 November 2016; Revised 20 December 2016; Accepted 12 January 2017; Published 14 February 2017

The domestic ferret (*Mustela putorius furo*) serves as an animal model for the study of several viruses that cause human disease, most notably influenza. Despite the importance of this animal model, characterization of the immune response by flow cytometry (FCM) is severely hampered due to the limited number of commercially available reagents. To begin to address this unmet need and to facilitate more in-depth study of ferret B cells including the identification of antibody-secreting cells, eight unique murine monoclonal antibodies (mAb) with specificity for ferret immunoglobulin (Ig) were generated using conventional B cell hybridoma technology. These mAb were screened for reactivity against ferret peripheral blood mononuclear cells by FCM and demonstrate specificity for CD79α+B cells. Several of these mAb are specific for the light chain of surface B cell receptor (BCR) and enable segregation of kappa and lambda B cells. Additionally, a mAb that yielded surface staining of nearly all surface BCR positive cells (i.e., pan ferret Ig) was generated. Collectively, these mAb offer advancement compared to the existing portfolio of polyclonal anti-ferret Ig detection reagents and should be applicable to a wide array of immunologic assays including the identification of antibody-secreting cells by FCM.

1. Introduction

The domestic ferret (*Mustela putorius furo*) serves as an animal model for the study of several viruses that cause human disease [1, 2]. Most notably, ferrets are naturally susceptible to human influenza virus and are capable of viral transmission [3–6]. Their application to influenza research began in 1933, when throat washings from human subjects were administered intranasally into ferrets [6]. These animals went on to exhibit outward symptoms of influenza including fever, sneezing, and lethargy. Transmission of influenza-like disease was also observed following transfer of nasal washings from an infected ferret or co-housing with a naïve contact. Due to the expression of both α2,6 and α2,3 sialic acid moieties along the respiratory tract, ferrets are permissive to infection with human seasonal and pre-pandemic avian influenza isolates [7]. Moreover, they recapitulate the extrapulmonary replication of highly virulent avian influenza subtypes such as H5N1 and H7N7 [8, 9]. Collectively, the ferret model has provided invaluable insights into the antigenicity, virulence and transmissibility of circulating and newly emerging influenza isolates [1, 10–12].

Despite the usefulness of the ferret animal model, the lack of ferret-specific reagents has severely hampered the ability to perform in-depth immunologic profiling. Recent studies have implemented more detailed methods for interrogating the immune response elicited in the ferret, including quantitative RT-PCR to measure cytokine and chemokine transcript levels and flow cytometric analysis of leukocyte populations utilizing cross-reactive monoclonal antibody (mAb) reagents [13–17]. However, mAb with defined specificity for B cell lineage surface markers, such as CD19 [18], that would facilitate identification of ferret B cells at various developmental stages by flow cytometry (FCM) are currently lacking. To circumvent this issue, others have identified ferret B cells on the basis of surface immunoglobulin (Ig) and/or CD79α
expression [14, 16]. While CD79α is an excellent marker for identification of B lineage cells because it is an obligate chaperone for surface expression of B cell receptor (BCR) [19], the epitope recognized by this mAb (clone HM47) requires intracellular staining and thus does not permit isolation of viable B cells [20]. Alternatively, polyclonal antibodies with reactivity against ferret Ig are conducive for surface staining but do not exclusively define B cells due to binding of ferret Ig by myeloid cells via Fc receptors [14]. However, neither approach enables segregation of ferret B cells on the basis of heavy chain usage. Collectively, the suite of available reagents is still insufficient for an in-depth characterization of the humoral immune response, and specifically the identification of antibody-secreting cells by FCM. To begin to address this unmet need, several novel mAb with specificity for ferret immunoglobulin (Ig) were generated and characterized to define their specificity.

2. Materials and Methods

2.1. Animals. BALB/c mice (female, 8–10 weeks of age) from Jackson Laboratory (Bar Harbor, ME, USA) and Fitch ferrets (Mustela putorius furo, male or female, 6 to 12 months of age) from Triple F Farms (Sayre, PA, USA) were housed in cage units and fed ad libitum. All animals were handled in accordance with protocols approved by Institutional Animal Care and Use Committees and were cared for under USDA guidelines for laboratory animals.

2.2. Isolation of Ferret Peripheral Mononuclear Cells. Peripheral blood was collected via cardiac puncture into vacuum collection tubes containing sodium heparin (Becton Dickinson, Cat #367874) and gently inverted to prevent coagulation. Blood was then combined with phosphate buffered saline (PBS) (Corning, Cat #21-040-CV) before centrifugation at 500 × g for 10 min or 6x SDS-sample buffer (reducing) (Boston BioProducts, Cat #161-0737) with the highestantibodytiterreceivedaboosterimmu-

2.3. Purification of Ferret Immunoglobulin. Serum from two ferrets (female, 7 months of age) was pooled and immunoglobulin (Ig) precipitated by drop-wise addition of an equal volume of saturated ammonium sulfate solution (4.1 M) (Sigma, Cat #A4418) while maintaining the solution under constant agitation at 4°C. Precipitated protein was pelleted by centrifugation at 11,5000 rpm for 20 min at 4°C and then dissolved in PBS. The protein solution was then transferred into a Slide-A-Lyzer dialysis cassette (ThermoFisher, Cat #66030) and dialyzed against PBS at 4°C for three days with daily buffer exchanges. Subsequently, the protein solution was clarified by centrifugation at 6000 rpm for 10 min at 4°C and then passed through a 0.2 μm syringe filter (ThermoFisher, Cat #09-719C). This material is referred to as crude ferret Ig. Ferret Ig was further purified by affinity chromatography using Protein A/G (ThermoFisher, Cat #20423). Briefly, crude ferret Ig protein solution was applied to Protein A/G and the column (Bio-Rad, Cat #7311550) was washed by gravity flow with PBS. Fractions (2 mL) were collected and absorbance (280 nm) was monitored using a PowerWave XS spectrometer (Biotek, Winooski, VT, USA). Once wash fractions returned to baseline, ferret Ig protein was eluted by addition of 0.1 M glycine, pH 2.5 (Amresco, Cat #M103). Eluted protein was immediately neutralized with 200 μl 1.5 M Tris, pH 8.8 (Amresco, Cat #M151) and protein containing elution fractions were pooled, buffer exchanged into PBS containing 0.05% sodium azide (Sigma, Cat #S2002), and concentrated using a Spin-X UF filter (Sigma, Cat #C413489). This material is referred to as purified ferret Ig. Protein concentrations of the crude and purified ferret Ig solutions were determined according to the manufacturer’s instructions using a micro BCA™ assay kit (ThermoFisher, Cat #23235).

2.4. Protein Gel Electrophoresis. To assess purity of the respective ferret Ig containing protein solutions, 5 μg of crude or purified ferret Ig was loaded into Bolt™ 10% Bis-Tris Plus precast protein gels (ThermoFisher, Cat #NW00102) and resolved at 150 V for 50 min. Protein samples were diluted in either 2x Laemmli sample buffer (Bio-Rad, Cat #161-0737) with or without β-mercaptoethanol (JT Baker, Cat #P62405) or 6x SDS-sample buffer (reducing) (Boston BioProducts, Cat #BP111R). Reduced samples were heated at 100°C for 10 min and placed on ice prior to loading. Gels were stained with PageBlue™ protein staining solution (ThermoFisher, Cat #24620) and then destained in water before imaging using the myECL Imager (ThermoFisher, Waltham, MA, USA). Spectra™ Multicolor Broad Range Protein Ladder (ThermoFisher, Cat #26634) was included in all gels and used for molecular marker reference.

2.5. Generation of Murine Monoclonal Antibodies. Female BALB/c mice were immunized with 100 μg of purified ferret Ig containing the Imject adjuvant (Thermo Scientific, Cat #77161) via the intraperitoneal route. Serum was collected via the submandibular vein on day 21 and assessed by ELISA for antibody reactivity (refer to ELISA subsection). The two mice with the highest antibody titer received a booster immunization, via the intraperitoneal route, containing 100 μg of purified ferret Ig in PBS on Day 28. Three or four days after the booster immunization, splenocytes were harvested and used to perform a fusion with the SP2/O myeloma (kindly provided by Dr. Lawrence Wysocki, University of Colorado Denver) using polyethylene glycol 1450 (ATCC, Cat #50-X). Hybridomas were selected by addition of hypoxanthine (Acros Organics, Cat #1200100) and azaserine (Sigma, Cat #A4142) at a final concentration of 200 μM and 11.5 μM respectively in RPMI 1640 (Sigma,
Cat #R6504) containing 10% FBS, 23.8 mM sodium bicarbonate (Fisher Scientific, Cat #BP328), 7.5 mM HEPES (Amresco, Cat #0485), 170 μM Penicillin G (Tokyo Chemical Industry, Cat #PI770), 137 μM Streptomycin (Sigma, Cat #S9137), 50 μM β-mercaptoethanol, and 1 mM sodium pyruvate (ThermoFisher, Cat #11360070). Eleven days after the respective fusions, culture supernatants were screen for reactivity by ELISA (refer to ELISA subsection). Positive wells were further expanded and maintained under drug selection, and hybridoma cell lines of interest were subcloned by limiting dilution. Hybridomas were subsequently expanded in media containing 5% IgG-striped FBS (Hyclone, Cat #S9137), 50 μg/mL purified ferret Ig in carbonate buffer pH 9.4 containing 5 μg/mL fraction V bovine serum albumin (BSA) (Equitech-Bio, Cat #BAC69). Alternatively, plates were coated with 5 μg BSA in carbonate buffer alone. Plates were blocked with ELISA block buffer, PBS containing 0.2% BSA, 0.1% bovine gelatin (Sigma, Cat #G9391), and 0.05% Tween 20 (Sigma, Cat #P7949), for 90 min at 37°C prior to addition of culture supernatant or antibody solutions. Culture supernatants were diluted 1:2 for hybridoma screening, and purified mAb were diluted to 3 μg/mL in ELISA blocking buffer prior to 3-fold serial dilution. Plates were incubated for 90 min at 37°C and washed with PBS to remove unbound antibody. For hybridoma screening, horseradish peroxidase conjugated goat anti-mouse IgG (γ-specific) (Southern Biotech, Cat #1030-05) secondary antibody diluted in blocking buffer was added to ELISA plates. Alternatively, binding of mAb to ferret Ig was revealed by addition of horseradish peroxidase conjugated goat anti-mouse IgG1 (γ1-specific) (Southern Biotech, Cat #1070-05) secondary antibody. After addition of secondary antibody, plates were incubated for 60 min at 37°C and then washed extensively with PBS prior to addition of 2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) (Amresco, Cat #0400) substrate. Plates were incubated at 37°C for development and colorimetric conversion was terminated by addition of 5% SDS solution, and OD414 was measured using a PowerWave XS spectrophotometer. The concentration of individual mAb was then interpolated based on a nonlinear regression of the IgGκx standard using PRISM 6.0 (GraphPad Software, La Jolla CA, USA).

2.7. Competitive ELISA. A competitive ELISA was performed using unlabeled and biotinylated MaF-Ig mAb (refer to Protein Conjugation) to identify overlapping epitope recognition. CoStar high binding ELISA plates were coated overnight at 4°C with 2 μg/mL purified ferret Ig in carbonate buffer pH 9.4 containing 5 μg/mL BSA. Plates were then blocked with ELISA blocking buffer for 90 min at 37°C. Unlabeled MaF-Ig mAb (5–50 μg/mL starting concentration, determined using BCA assay kit) were serially diluted in ELISA blocking buffer, followed by addition of biotinylated MaF-Ig mAb, and plates incubated overnight at 4°C. Plates were washed five times with PBS, horseradish peroxidase conjugated streptavidin diluted in blocking buffer added, and the plates incubated for 60 min at 37°C. Following extensive washing with PBS, ABTS substrate was added and plates incubated at 37°C for development. Colorimetric conversion was terminated by addition of 5% SDS solution, and OD414 was measured using a PowerWave XS spectrophotometer. The percent of maximal signal was determined using the formula 100 × [OD414 experimental sample – OD414 blank]/OD414 maximal signal – OD414 blank].

2.8. Western Blot. To characterize the specificity of individual MaF-Ig mAb, 1 μg of purified ferret Ig or 0.5 μl of ferret serum was reduced and resolved by protein gel electrophoresis as previously described. Protein transfer to polyvinylidene difluoride (PVDF) membranes was performed using the Trans-Blot Turbo RTA Mini PVDF transfer kit (Bio-Rad, Cat #1704272) and a Trans-Blot Turbo Blotting system (Bio-Rad, Hercules, CA, USA) according to the manufacturer’s instructions. The membrane was blocked with PBS + Tween 20 (0.1% v/v) (PBST) containing 5% BSA (VWR, Cat #0332) at room temperature (RT) with constant agitation. The PVDF membranes were then cut into strips and probed with 15 mL of PBST containing 0.1 μg/mL of individual MaF-Ig mAb overnight at RT. The following day, PVDF membranes were washed three times with PBST before incubation for 60 min at RT with 10 mL PBST containing horseradish peroxidase conjugated goat anti-mouse IgG1 (γ1-specific). Following extensive washing with PBS, membranes were treated with 4 mL Clarity™ Western ECL Substrate (Bio-Rad, Cat #1705060) and imaged using myECL Imager. Postacquisition analysis was performed using myImageAnalysis™ Software (ThermoFisher).

2.9. Flow Cytometry. To evaluate the specificity of commercially available anti-ferret Ig reagents by flow cytometry
(FCM), ferret PBMC were labeled with FITC conjugated goat anti-ferret IgM (μ-specific) (Sigma, Cat # SAB3700807) or biotin conjugated goat anti-ferret IgG (GaF-IgG BLO) (Sigma, Cat #SAB3700796). Binding of GaF-IgG BLO was revealed using phycoerythrin conjugated streptavidin (SA-PE) (Biolegend, Cat #405204). The reactivity of individual mAb against ferret leukocytes was assessed by direct or indirect staining. Initially, culture supernatants from clonal hybridoma lines were diluted to 1×10^6/mL in FCM staining buffer (PBS + 2% FBS + 0.1% Na2EDTA) and used to stain ferret PBMC. Because this screening method was dependent on revealing binding of the murine mAb using a polyclonal goat anti-mouse Ig Alexa Fluor 647 (GaM-Ig AF647) reagent (BD, Cat #51-9006588BK), we were unable to utilize a cross-reactive anti-CD79β murine mAb (clone CB3-1) to identify B cells [16, 23]. Ferret B cells were instead identified using GaF-IgG BLO, which was revealed using SA-PE. Binding of murine mAb to ferret PBMC was revealed with GaM-Ig AF647. All staining was performed on ice in 100 μL of volume and cells were stained with LIVE/DEAD Aqua (ThermoFisher, Cat #L34957) prior to surface staining to enable exclusion of nonviable cells.

For direct staining, ferret PBMC were initially stained with LIVE/DEAD Aqua and then pretreated with irrelevant Mouse IgG2a,k (Biolegend, Cat #401502) and Rat IgG2a,k (Biolegend, Cat #400502) to exclude nonviable cells and minimize nonspecific binding. Ferret PBMC were then stained with anti-CD79β (Biolegend, Cat #341408) and DyLight 488, DyLight 650, and/or biotin conjugated MαF-Ig mAb (refer to Protein Conjugation). Biotinylated mAb were revealed by secondary staining with SA-PE. In order to putatively identify kappa light chain expressing B cells, ferret PBMC were stained with DyLight 650 conjugated recombinant Protein L (ThermoFisher, Cat #21889) and anti-CD79β simultaneously with DyLight 488 and biotin conjugated MαF-Ig mAb. Acquisition was performed on the LSR II cytometer (BD Biosciences, San Jose, CA, USA) and analysis performed with FlowJo Version 10.0.8 (Tree Star, Ashland, OR, USA).

2.10. Protein Conjugation. Protein A/G purified mAb or recombinant Protein L were conjugated to DyLight 488 (ThermoFisher, Cat #46402), DyLight 650 (ThermoFisher, Cat #62265), or EZ-Link™ NHS-LC-Biotin (ThermoFisher, Cat #21336) according to the manufacturer's instructions. Unreacted DyLight or NHS-LC-Biotin was removed by multiple buffer exchanges into PBS containing 0.05% sodium azide using Spin-X UF filters (30 kDa MWCO).

2.11. Sequencing Hybridoma V Region Genes. Variables of B cell hybridomas were cloned by RT-PCR and 5’ rapid amplification of cDNA ends (RACE) using pairs of constant region and anchor primers according to previously described methods [24]. Briefly, total RNA was isolated from hybridoma lines using RNeasy (Qiagen, Cat #74014) and first-strand cDNA synthesis performed using SuperScript III RT (ThermoFisher, Cat #18080051) using oligo-dT primer. First-strand cDNA was isolated using QIAquik PCR spin columns (Qiagen, Cat #28104) and then dG-tailed with TdT (NEB, Cat #M0315S) and dGTP (ThermoFisher, Cat #10218014). Variable IgH or Igk genes were then amplified from dG-tailed cDNA templates using Phusion (NEB, Cat# M0530S). A poly-A tail was added to products following completion of the second round of PCR by addition of 5 units recombinant Taq polymerase (ThermoFisher, Cat #EP0402) directly into the reaction and incubation at 72°C for 10 min. Products from Igk PCR were further purified with QIAquick PCR spin columns before digestion with restriction enzymes PstI (NEB, Cat #R0595S) or PflmI (NEB, Cat #R0509S) to disrupt the rearranged Vκ21-I2 gene from the SP2/0 fusion partner. After 2% agarose electrophoresis, the uncut Vκ products were isolated using the QIAquik gel extraction kit (Qiagen, Cat #28704) and eluted with autoclaved water. Variable region genes were cloned into pCR4-TOPO (ThermoFisher, Cat #K4575J10) or pSC-A (Agilent, Cat #240205) plasmids according to the manufacturer's instructions. Plasmid DNA was purified using QIAprep spin columns (Qiagen, Cat #27104) and submitted to Macrogen (Rockville, MD, USA) for sequencing. Heavy and kappa variable region genes were identified using IMGT V-Quest [21].

2.12. Statistics. Statistical analyses were performed using PRISM 6.0.

3. Results

3.1. Commercial Reagents against Ferret Immunoglobulin Lack Heavy Chain Specificity. Expression of a class-switched B cell receptor (BCR), such as IgG or IgA, can be used as a marker of memory B cells, while naive B cells express an IgM BCR [25]. As a first attempt to segregate ferret B cells into naive and memory compartments on the basis of surface BCR expression, ferret PBMC were stained with polyclonal goat anti-ferret IgM (GaF-IgM) or goat anti-ferret IgG (GaF-IgG) antiserum. Additionally, the mouse anti-human CD79β mAb (clone CB3-1), which cross-reacts with ferret leukocytes (Supplementary Materials available online at https://doi.org/10.1155/2017/5874572), was included in the staining solution to identify surface BCR+ cells [16]. The GaF-IgM antisera labeled ~99% of the CD79β+ population, while the GaF-IgG antisera contained ~66% of the CD79β+ population (Supplementary Materials). To extend these observations, ferret PBMC were next stained with both the GaF-IgM and GaF-IgG simultaneously. The majority of CD79β+ ferret PBMC exhibited staining with both the GaF-IgM and GaF-IgG reagents. Collectively, these findings indicate that surface staining with anti-CD79β enables identification of ferret B cells and currently available anti-ferret Ig reagents are insufficient to discriminate B cells on the basis of heavy chain expression.

3.2. Purification of Ferret Immunoglobulin. Ferret Ig was first crudely enriched from serum through ammonium sulfate precipitation and the resulting protein solution was predominantly IgG (Figure 1, lanes 2 and 3). Next, ferret Ig was further purified by affinity chromatography using Protein A/G. This second purification step removed the majority of contaminating proteins and produced a highly pure ferret Ig preparation (Figure 1, lanes 4 and 5). Reduction of the purified ferret...
Ig into heavy and light chain components confirmed the presence of both Ig\(\alpha\) and Ig\(\gamma\) on the basis of their differential sizes (Figure 1, lane 5) [26].

3.3. Immunization with Purified Ferret Immunoglobulin. Mouse IgG2a mAb have increased nonspecific binding to ferret leukocytes relative to IgG1 (data not shown). In order to elicit an antibody response utilizing the IgG1 subclass, BALB/c mice were immunized with purified ferret Ig prepared with the Imject alum adjuvant [27]. Following a single immunization with ferret Ig and adjuvant, antigen-specific reactivity was detected by ELISA and western blot (Supplementary Materials). Moreover, reduction of ferret Ig in the SDS-PAGE enabled discrimination between antibody reactivity with the light (Ig\(\alpha\)/Ig\(\lambda\)) and heavy (Ig\(\mu\) or Ig\(\gamma\)) chain components of ferret Ig.

3.4. Characterization of Monoclonal Antibodies by ELISA. Based on their reactivity with ferret Ig, two mice (#3 and #5) were chosen for mAb generation. Eight IgG\(\gamma\) mAb, collected from two independent fusions, reacted with purified ferret Ig. Each of these mouse anti-ferret Ig (MaF-Ig) mAb reacted with ferret Ig by ELISA (Figure 2). Additionally, normalization of the input IgG1 concentration highlighted the distinct binding curves of several MaF-Ig mAb.

3.5. Assessment of Monoclonal Antibody Reactivity by Western Blot. As an additional technique to further characterize the reactivity of the respective mAb with ferret Ig, individual MaF-Ig mAb were used to probe reduced ferret Ig antigen and serum from three naive ferrets in a western blot screen.

Figure 1: SDS-polyacrylamide gel electrophoresis of purified ferret immunoglobulin. 5\(\mu\)g of crude (lanes 2 and 3) or Protein A/G purified (lanes 4 and 5) ferret Ig preparations were resolved by SDS-PAGE under nonreducing (lanes 2 and 4) or reducing (lanes 3 and 5) conditions. Molecular marker references are indicated (lane 1). Image was acquired using the myECL imager and contrast adjustment of the entire image was performed using myImageAnalysis software. Image is representative of two independent purifications.

Figure 2: Monoclonal antibody binding to ferret immunoglobulin. Mouse mAb were evaluated for binding to purified ferret Ig by ELISA. Optical densities are plotted versus normalized IgG1 input (x-axis). Data are representative of two or more independent experiments that yielded similar results.

Three of the eight MaF-Ig mAb demonstrated specific reactivity with ferret Ig antigen using this assay (Figure 3). Both MaF-Ig mAb 4-B10 and 8-H9 reacted with ferret Ig light chain protein (Figures 3(b) and 3(c)). Additionally, mAb II-E3 reacted with a protein species corresponding to the Ig\(\gamma\) chain (Figure 3(d)). Of note, these MaF-Ig mAb reacted with both purified ferret Ig antigen and serum samples, suggesting the epitopes recognized by the respective mAb are not polymorphic.

3.6. Assessment of Monoclonal Antibody Reactivity by Flow Cytometry. In spite of earlier observations suggesting that the GaF-Ig antisera was unlikely to define IgG\(\gamma\) ferret B cells exclusively (Supplementary Materials), this reagent was incorporated into a flow cytometric screening assay to evaluate the ability of each MaF-Ig mAb to bind ferret PBMC because it enabled resolution of these cells into distinct populations on the basis of staining intensity (Figure 4(b)). The two populations of ferret PBMC that demonstrated staining with the GaF-Ig antisera were referred to as IgG\(\gamma\)int and IgG\(\gamma\)p, respectively, for the sole purpose of detailing the staining patterns observed for the respective MaF-Ig mAb (Figure 4 and data not shown). Using this flow cytometric screening approach, both 4-B10 and 8-H9 had similar staining patterns of ferret PBMC and labeled ~50% of the IgG\(\gamma\)hi population (Figures 4(c) and 4(d)). Moreover, both of these MaF-Ig mAb also reacted with a small population of IgG\(\gamma\)pol cells. Three additional MaF-Ig mAb (4-E3, 4-DII, and 6-H5) had similar reactivity patterns (data not shown). A distinct staining pattern was observed using two MaF-Ig mAb (6-B5 and 6-B7) (Figure 4(e) and data not shown). Specifically, pretreatment of ferret PBMC with these mAb resulted
in the disappearance of the IgG^hi population, likely due to BCR internalization or blocking of epitopes targeted by the GaF-Ig^α antisera. Additionally, a subset of the IgG^int population was labeled by 6-B7 on the basis of GaF-Ig^α staining (Figure 4(e)). Finally, the II-E3 mAb had a third staining pattern with low-level binding to IgG^int cells but did not bind to IgG^hi cell population.

As a next step to further characterize the reagents, directly labeled MaF-Ig mAb were used to stain ferret PBMC in combination with anti-CD79β (Figure 5). Based on previously observed western blot and flow cytometric staining patterns (Figures 3 and 4), the MaF-Ig mAb were segregated into two classifications. The first group of MaF-Ig mAb comprised 6-B5, 6-B7, and II-E3 and these mAb had a reactivity profile consistent with Ig heavy chain specificity. Despite evidence of reactivity with IgG^hi cells in the indirect screen (data not shown), biotinylated 6-B5 did not stain CD79β^+ ferret B cells (Figure 5(a)). By contrast, biotinylated 6-B7 stained almost all of the CD79β^+ cell population (Figure 5(b)). In addition, II-E3 stained the entire CD79β^+ cell population with a low-level of fluorescence, as well as a small population of CD79β^neg cells (Figure 5(c)). Similar results were also observed using these same mAb following DyLight conjugation (data not shown).

The second group of MaF-Ig mAb (4-B10 and 8-H9) exhibited a reactivity profile consistent with light chain specificity. However, double-labeling CD 79β^+ ferret PBMC with these mAb revealed staining of distinct populations of cells (Figure 6(a)). Moreover, nearly the entire CD79β^+ population stained positive with either 4-B10 or 8-H9, with few cells reacting with both mAb. Collectively, these findings suggested that 4-B10 and 8-H9 define distinct populations of ferret B cells on the basis of light chain expression.

The remaining MaF-Ig mAb (4-E3, 4-D11, and 6-H5) also had light chain reactivity. These mAb were categorized on the basis of costaining with 4-B10 or 8-H9 single-positive ferret B cells (Figures 6(b)–6(d)). Using a multilabeling approach, 4-E3 was found to costain with nearly the entire 4-B10^pos population, while simultaneously not labeling 8-H9^pos cells (Figure 6(b) and data not shown). Similarly, 8-H9^pos cells were labeled by 4-D11 or 6-H5, and these mAb exhibited minimal reactivity with 4-B10^pos cells (Figures 6(c) and 6(d)). Of note, we routinely observed a small population of 8-H9^pos cells that were not stained by 4-D11 (Figure 6(c)). Collectively, these data indicate that 4-B10 and 4-E3 recognize a common light chain protein that is distinct from the light chain recognized by the other mouse anti-ferret light chain (MaF-IgL) mAb (8-H9, 4-D11, and 6-H5).

3.7. Identification of Overlapping Epitope Recognition through Competitive Binding ELISA. To further characterize whether the MaF-Ig mAb were recognizing overlapping or distinct epitopes on ferret Ig, competitive binding assays were performed. Specifically, unlabeled MaF-Ig mAb were used as competitors and evaluated for their ability to inhibit binding of biotinylated mAb (4-B10, 4-E3, 6-B7, 8-H9, and II-E3) to the purified ferret Ig antigen. Consistent with the double-labeling FCM studies in which 4-B10 and 8-H9 recognized distinct populations of ferret PBMC (Figure 6(a)), these MaF-Ig mAb did not exhibit inhibition of each other in the competitive binding ELISA (Figures 7(a) and 7(c)). In addition, despite recognition of the same population as assessed by double-labeling FCM (Figure 6(b)), 4-E3 exhibited only subtle inhibition of 4-B10 at the highest concentration tested (5 μg/mL) (Figure 7(a)). In stark contrast, 4-B10 competed for binding with biotinylated 4-E3 (Figure 7(b)). Moreover,

Figure 3: Reactivity of monoclonal antibody against reduced ferret immunoglobulin. 1 μg of ferret Ig (lane 2) or 0.5 μl of ferret serum (n = 3) (lanes 3–5) was resolved by SDS-PAGE under reducing conditions and transferred to PVDF membranes. Membranes were then cut into strips and probed with (a) irrelevant IgGl, (b) 4-B10, (c) 8-H9, or (d) II-E3. Images were acquired using the myECL imager and contrast adjustments of the entire image were performed using myImageAnalysis software. Visible light images of the molecular markers (lane 1) are presented next to the corresponding chemiluminescent image for reference. Images are representative of two independent experiments.
Figure 4: Flow cytometric assessment of monoclonal antibody reactivity. Reactivity of mouse anti-ferret Ig mAb with ferret PBMC was evaluated by flow cytometry. Binding of mouse Ig to ferret PBMC was revealed by secondary staining with Alexa Fluor 647 conjugated goat anti-mouse IgG (GaM-IgG). Additionally, ferret B cells were identified by costaining with biotinylated goat anti-ferret IgG, which was revealed by secondary staining with phycoerythrin conjugated streptavidin (SA-PE). (a) Reactivity of the GaM-IgG secondary antibody with ferret PBMC. (b–f) 1 μg of an IgG1 control (b) or mouse anti-ferret Ig mAb (c–f) was used for indirect surface staining of ferret PBMC. The presented data were generated using PBMC from a single ferret and are representative of two or more independent experiments that yielded similar results.

Figure 5: Surface staining with heavy chain reactive monoclonal antibodies. Biotinylated mouse anti-ferret Ig mAb were used in combination with anti-CD79β to evaluate surface staining of ferret B cells. Binding of biotinylated (a) 6-B5, (b) 6-B7, or (c) II-E3 was revealed by secondary staining with phycoerythrin conjugated streptavidin (SA-PE). Frequency of CD79β^pos/^neg ferret PBMC that costained with the mouse anti-ferret Ig mAb are indicated. Data shown were generated using a single ferret and are representative of two or more independent experiments that yielded similar results.
Figure 6: Characterization of light chain reactive monoclonal antibodies. Mouse anti-ferret Ig mAb were used in combination for surface staining of ferret PBMC. Plots are pregated on B cell receptor expressing cells (CD79\(\beta\)+) as shown in Supplementary Materials. (a) Dual staining of ferret B cells with mAb 4-B10 and mAb 8-H9. (b) Dual staining of ferret B cells with mAb 4-B10 and mAb 4-E3. (c) Dual staining of ferret B cells with mAb 8-H9 and mAb 4-D11. Arrow indicates population of 8-H9+ B cells that lack costaining with 4-D11. (d) Dual staining of ferret B cells with mAb 8-H9 and mAb 6-H5. Data are representative of two or more independent experiments comprising \(n \geq 6\) individual ferrets.

4-B10 exhibited superior competition with biotinylated 4-E3 relative to the homologous unlabeled competitor. No competition of biotinylated 8-H9 was observed by any MαF-Ig mAb tested. Strikingly, even unlabeled 4-D11 at 20 \(\mu\)g/mL failed to compete with 8-H9 despite these mAb labeling a common population of ferret PBMC by FCM (Figures 6(c) and 7(c)). Similarly, none of the MαF-Ig mAb exhibited competition with biotinylated 11-E3 (Figure 7(d)). However, a number of MαF-Ig mAb were found to compete with biotinylated 6-B7, despite assignment of this mAb as heavy chain specific (Figure 7(e)). Specifically, both unlabeled 4-B10 and 8-H9 demonstrate definitive competition with biotinylated 6-B7 (Figure 7(e)). Moreover, 4-E3 and 4-D11 (only at high concentrations) were also capable of inhibiting binding of biotinylated 6-B7 to the ferret Ig antigen, albeit to a less extent relative to 4-B10 and 8-H9.

3.8. Determination of Light Chain Specificity. Although the individual MαF-Ig mAb were already segregated into two distinct groups on the basis of light chain reactivity, their precise specificity remained undefined. To determine which group of MαF-Ig mAb was specific for the Ig\(\kappa\) chain, a fluorescently labeled bacterial protein with specificity for Ig\(\kappa\) chains from a variety of species [28, 29], Protein L, was used to label ferret B cells. Approximately 25% of CD79\(\beta\)+ ferret B cells stained brightly with the fluorescently conjugated Protein L reagent (Figure 7(a)) and these cells were putatively assigned as Ig\(\kappa\)-expressing B cells. Next, these CD79\(\beta\)+
Protein L<sup>hi</sup> cells were evaluated for costaining with 4-B10 or 8-H9, which defined distinct subsets of ferret B cells. The majority (~80%) of CD79<sup>β</sup><sup>+</sup> Protein L<sup>hi</sup> cells were costained with 4-B10 (Figure 7(b)) and indicated that 4-B10 was specific for ferret Ig<sub>κ</sub>. Conversely, this result indicated that 8-H9 was specific for Ig<sub>λ</sub>. Using these assignments, the distribution of Ig<sub>κ</sub> and Ig<sub>λ</sub> expression by circulating CD79<sup>β</sup><sup>+</sup> ferret B cells was determined (Figure 7(c)).

4. Discussion

In this study, eight individual mAb with specificity for ferret Ig were characterized (Table 1). Five of these mAb had specificity for ferret Ig light chain, while the remaining three mAb did not recognize a distinct surface expressed heavy chain. Additionally, we generated a mAb (6-B7) that yielded surface staining of nearly all surface BCR positive cells (i.e., pan ferret Ig). Collectively, these MaF-Ig mAb offer advancement in ferret Ig detection compared to the existing portfolio of polyclonal antiserum reagents. Moreover, several of these mAb (4-B10, 8-H9, and 11-E3) are likely to be applicable to a wide array of immunologic assays, including the identification of antibody-secreting cells by FCM.

Pooled serum was chosen as the source of material for subsequent purification of ferret Ig because both IgM and IgG antibody classes were abundant and this biological fluid was readily available [26]. Moreover, the purified ferret Ig preparation had the potential to elicit mAb with specificity for the heavy chain (Ig<sub>κ</sub> or Ig<sub>λ</sub>) and the light chain (Ig<sub>κ</sub> or Ig<sub>λ</sub>) using a single antigen. However, due to the complexity of the ferret Ig antigen, antigen-specific binding in the ELISA format was insufficient to determine the precise specificity of the respective MaF-Ig mAb (Figure 2). To this end, additional screening approaches, such as FCM, western blot and competitive binding assays, were necessary to further define the specificity and categorized the individual MaF-Ig mAb.

Implementation of an indirect FCM screening method during the initial characterization enabled identification of
Figure 8: Designation of light chain reactive monoclonal antibody specificity. Mouse anti-ferret Ig mAb (4-B10 and 8-H9) were used in combination with anti-CD79β and DyLight 650 conjugated Protein L to assign mAb reactivity with kappa light chain expressing B cells. (a) Representative surface staining of ferret PBMC with anti-CD79β and Protein L. Kappa light chain expressing B cells were defined as CD79β+ cells that stained intensely with DyLight 650 conjugated Protein L and were gated as shown in (a). The mean frequency of total B cells ± SD that stained intensely with Protein L is indicated. (b) Representative costaining of kappa light chain expressing B cells with 4-B10 or 8-H9. The mean frequency ± SD of total kappa B cells exhibiting costaining with 4-B10 or 8-H9 is indicated. Data in (a) and (b) are combined from two independent experiments (n = 6). (c) Distribution of kappa or lambda light chain expression by total B cells (CD79β+) was determined on the basis of costaining with 4-B10 or 8-H9. Data in (c) are combined from three independent experiments (n = 14). Statistical significance was determined using a paired Student’s t-test. **P < 0.001.

Table 1: Summary of MaF-Ig mAb.

| mAb  | Ig subclass | \( V_H^a \)          | \( V_L^b \)          | Specificity                  |
|------|-------------|----------------------|----------------------|-----------------------------|
| 4-B10| IgG1        | IGHV4-1              | IGKV6-13             | Light chain (IgG)\(^{cd}\)  |
| 4-D11| IgG1        | IGHV2-3              | IGKV6-104            | Light chain (IgG)\(^{d}\)   |
| 4-E3\(^b\)| IgG1 | IGHV1-20 or IGHV1-37 | IGKV3-12             | Light chain (IgG)\(^{d}\)   |
| 6-B5 | IgG1        | IGHV5-6              | IGKV9-93             | Ferret Ig                   |
| 6-B7 | IgG1        | IGHV5-6              | ND\(^{cd}\)          | Heavy chain (IgH)\(^{f}\)   |
| 6-H5 | IgG1        | IGHV5-17             | IGKV5-48             | Light chain (IgG)\(^{d}\)   |
| 8-H9 | IgG1        | IGHV14-3             | IGKV6-32             | Light chain (IgG)\(^{d}\)   |
| 11-E3| IgG1        | IGHV1581             | IGKV6-17             | Heavy chain (IgY)\(^{f}\)   |

\(^{a}\): identified using IMGT V-Quest (see [21]). \(^{b}\): unable to unambiguously assign IGHV. \(^{c}\): determined by western blot. \(^{d}\): determined by flow cytometry. \(^{e}\): not determined. \(^{f}\): negative for intracellular IgG by flow cytometry. \(^{g}\): determined by competitive ELISA.

MaF-Ig mAb that recognized epitopes present on ferret leukocytes. Moreover, incorporation of the MaF-Ig antisera in this screen enabled resolution of ferret PBMC into distinct populations on the basis of staining intensity, and provided insight into the specificity of the respective MaF-Ig mAb (Figure 4 and data not shown). Specifically, each of MaF-Ig mAb exhibited a similar staining pattern in which approximately half of the slgG\(^{hi}\) population was intensely labeled by the respective mAb. Moreover, these MaF-Ig mAb also labeled a small subset of the slgG\(^{int}\) population at a similarly intense level, while the remainder of the slgG\(^{int}\) population exhibited a low-level of staining (Figures 4(c) and 4(d) and data not shown). This staining pattern indicated that surface Ig\(^{\gamma}\) B cells constituted a fraction of the slgG\(^{int}\) population and was consistent with the observation that the GaF-Ig antisera as well as other commercially available polyclonal anti-ferret Ig antisera fail to label all B cells (data not shown and [14]). Additionally, this staining pattern implied that myeloid cells constituted a portion of the slgG\(^{int}\) population and that IgG acquired via FcR was bound in such manner that the light chain was accessible to the respective MaF-Ig mAb. Furthermore, segregation of the IgG\(^{int}\) and slgG\(^{hi}\) populations in the FCM screen also facilitated perception of the distinct binding specificities exhibited by the heavy chain reactive mAb 6-B7 and 11-E3 on the basis of their differential reactivity profile with the slgG\(^{hi}\) population (Figures 4(e) and 4(f)). Lastly, in the absence of the apparent disappearance of the slgG\(^{hi}\) population that resulted following pretreatment of ferret PBMC with 6-B5 (data not shown), this MaF-Ig mAb would not have been characterized further.

Despite the perceived reactivity of 6-B5 in the antigen-specific capture ELISA and indirect FCM screening during the initial characterization, definitive staining of ferret B cells using this mAb, when directly coupled, was not observed (Figure 5(a) and data not shown). It is likely that biotinylation of 6-B5 was inefficient, rather than that conjugation destroyed the binding specificity of this mAb. Specifically, both unlabeled and biotinylated 6-B5 exhibited comparable binding to ferret Ig in an ELISA when using a goat anti-mouse IgG secondary reagent (data not shown). By contrast, the
same biotinylated 6-B5 exhibited a near absence of reactivity against ferret Ig when streptavidin was used to reveal binding. Consequently, it will be necessary to explore alternative chemistries for conjugation of 6-B5 to fully realize the utility of this mAb for flow cytometric applications.

The competitive binding ELISA contributed to the characterization of the respective MαF-Ig mAb. First, the data generated using this approach served to reaffirm prior observations, such as the distinction between 4-B10 and 8-H9 determined by double-labeling FCM. Second, the competitive binding and antigen-specific capture ELISA data were in agreement and reflected differences in functional affinity by several of the MαF-Ig mAb. Most notably, 4-B10 exhibited stronger avidity for the ferret Ig antigen relative to 4-E3 (Figure 2) and also demonstrated superior competition of biotinylated 4-E3 compared to the homologous mAb (Figure 7(b)). Thirdly, the competitive binding ELISA also provided additional insight into the epitopes recognized by the respective MαF-Ig mAb. While it was already presumed that the MαF-Ig mAb were targeting the constant region of kappa or lambda light chain based on their FCM staining patterns (Figure 6), it remained unclear if these anti-kappa or anti-lambda mAb were targeting distinct or overlapping epitopes. On the basis of competitive inhibition, it is likely that 4-B10 and 4-E3 are recognizing similar, but not completely overlapping epitopes on the kappa constant region since the inhibition was unidirectional (Figures 7(a) and 7(b)). By contrast, 4-DII failed to inhibit binding of biotinylated 8-H9 despite the use of an elevated concentration (20 μg/mL), suggesting that these mAb recognize distinct epitopes on the lambda constant region. However, it remains plausible that the large difference in functional affinity between these mAb contributed to the lack of competition (Figures 2 and 7(c)). Additionally, biotinylated 4-DII failed to produce a sufficiently high binding signal against the ferret Ig antigen to enable evaluation of reciprocal inhibition by 8-H9 (data not shown). Similar to 8-H9, no inhibition of biotinylated 11-E3 was observed using any of the MαF-Ig mAb tested, further supporting the notion that this mAb recognizes a distinct epitope (Figure 7(d)). Surprisingly, several of the MαF-Ig mAb were capable of inhibiting binding of biotinylated 6-B7 to the ferret Ig antigen. This was unexpected since 6-B7 was categorized as heavy chain reactive based on the observed FCM staining pattern (Figure 5(c)). However, the ability of 4-B10 and 8-H9, as well as 4-E3 and 4-DII to a less extent, to compete with 6-B7 supports the conclusions that 6-B7 is recognizing an epitope that is restricted to the heavy chain. Moreover, these data suggest that 6-B7 recognizes an epitope on the heavy chain of ferret Ig that is proximal to either the kappa or lambda constant region. To this end, we hypothesize that 6-B7 would maintain reactivity with a Fab fragment of ferret Ig.

In spite of strong reactivity with purified ferret Ig by ELISA (Figure 2) and the Igy chain by western blot (Figure 3(d)), intense staining of ferret B cells using directly labeled 11-E3 was not observed (Figure 5(c)). However, low-level staining of the entire CD79B+ B cell population, as well as a small population of non-B cells in bulk ferret PBMC, was observed using 11-E3. Collectively, these observations indicate that the epitope recognized by 11-E3 may be restricted to secreted ferret IgG. Further experimentation will be necessary to resolve the utility of 11-E3 for studying ferret B cells and derived Ig.

The assignment of lambda light chain specificity to 8-H9 was based upon several independent observations. First, the near absolute segregation between populations of 4-B10+ and 8-H9+ ferret B cells indicated that these mAb recognized fundamentally distinct light chains (Figure 6(a)). Of note, this observation also indicates that allelic exclusion of dual light chain expression is largely intact in the ferret model [30]. Secondly, 8-H9+ ferret B cells were severely underrepresented in the population of B cells that bound the kappa-specific Protein L reagent at high levels (Figures 8(a) and 8(b)). While there was a population of 8-H9+ B cells in this gate (~20%), it is plausible that these Igλ+ B cells acquired binding with Protein L either due to inherent BCR specificity or through the association of secreted Igκ with surface expressed FcR [31, 32]. In addition, within the total B cell population, the frequency of 8-H9+ B cells detected from multiple independent ferrets closely resembled the distribution of Igλ+ B cells observed in humans [33].

While a draft sequence of the ferret genome is currently available [34], the Ig loci have not been annotated. Based on the findings presented in this report, we hypothesize that the ferret Igκ locus more closely resembles the human Igκ locus than the mouse Igκ loci due to the increase proportion of B cells that express a lambda light chain (Figure 8(c)). In laboratory mice, the Igκ locus is comprised of 3 functional Vκ gene elements that rearrange with associated Jκ-CA gene elements [35]. Additionally, in mice the prevalence of serum immunoglobulin utilizing a lambda light chain is severely reduced relative to immunoglobulin utilizing a kappa light chain [36]. By contrast, the human Igκ locus is more complex and encodes greater than 35 Vκ genes belonging to 10 subgroups [37]. Moreover, the distribution of kappa and lambda immunoglobulin is more balanced in human serum [38]. Collectively, these findings provide the first evidence that lambda light chain usage in ferrets closely resembles that seen in humans and further supports the use of ferrets for studying the antibody response elicited by influenza virus infection or influenza vaccination.

To more accurately mimic influenza infection and vaccination in humans, ferrets can be infected with various influenza viruses from different subtypes to establish a preimmune state in the animal. This model is useful to study both inactivated and live attenuated influenza vaccine (LAIV) candidates. In young children, an IgA recall response occurred following a second administration of LAIV [39]. However, ferrets previously infected with LAIV had a robust IgG antibody-secreting cell (ASC) response in the absence of an accompanying IgA ASC population following experimental challenge with seasonal influenza [40]. While it remains plausible that the immune response elicited by influenza infection of preimmune ferrets was distinct from that observed in young children following LAIV inoculation, it is more likely that the discrepancy between these two models originates from the use of polyclonal anti-ferret Ig detection reagents that possess an inherent lack of heavy chain specificity. This apparent lack of heavy chain specificity was observed
using a variety of polyclonal anti-ferret Ig reagents (Supplementary Materials and data not shown). While mAb with specificity for discrete ferret Ig heavy chain determinants were unfortunately not generated in this study, this example serves as motivation for the continued development and characterization of ferret Ig-specific reagents.

In addition, a polyclonal goat anti-ferret Ig reagent with specificity for IgA, IgG, and IgM was used to identify ferret B cells in the context of influenza infection using FCM [14]. In this study, the polyclonal goat anti-ferret Ig (A, G, and M) failed to label a substantial population of ferret B cells that exhibited intracellular staining with the anti-CD79α mAb (clone HM47). The MaF-Ig mAb reported here are an improvement over existing reagents and enable the identification of nearly all surface Ig⁺ ferret B cells (Figure 5(b)) and discrimination between Igκ and Igλ-expressing cells (Figure 6(a)).

We envision that several of the MaF-Ig mAb generated in this study will have applications in basic science and veterinary medicine. Due to their strong affinity for purified ferret Ig and reactivity with denatured heavy (Igγ) or light chain proteins, 4B10, 8H9, and 11E3 may prove to be most useful. Specifically, these MaF-Ig mAb should enable the identification of antibody-secreting cells by FCM. Additionally, these mAb are likely to have utility as secondary detection reagents in an array of assays such as ELISA, ELISPOT, and western blot. Implementation of these mAb in a variety of immunologic assays will also contribute towards the assessment of the next-generation of broadly-reactive influenza vaccines in this highly relevant model. In summary, the generation of these MaF-Ig mAb is an improvement over existing reagents available to immunologists and opens the door to more sophisticated study of ferret B cells.

Competing Interests

The authors report no conflict of interests with the results reported in this study.

Acknowledgments

This work was supported by the Vaccine and Gene Therapy Institute of Florida and the University of Georgia. Additionally, The authors thank Lawrence Wysocki for providing protocols and the SP2/0 myeloma and Rayleigh Chan and Thomas Penrose for their assistance in the production and purification of reagents used in this work.

References

[1] T. Enkirch and V. von Messling, "Ferret models of viral pathogenesis," Virology, vol. 479–480, pp. 259–270, 2015.

[2] R. Kozak, S. He, A. Kroeker et al., "Ferrets infected with bundibugyo virus or ebola virus recapitulate important aspects of human filovirus disease," Journal of Virology, vol. 90, no. 20, pp. 9209–9223, 2016.

[3] G. A. Kirchenbaum, D. M. Carter, and T. M. Ross, "Sequential infection in ferrets with antigenically distinct seasonal H1N1 influenza viruses boosts hemagglutinin stalk-specific antibodies," Journal of Virology, vol. 90, no. 2, pp. II16–II28, 2016.
standardized V-J and V-D-J sequence analysis,” *Nucleic acids research*, vol. 36, pp. W503–W508, 2008.

[22] R. Nazarpour, E. Zabihi, E. Alijanpour, Z. Abedian, H. Mehdi-zadeh, and F. Rahimi, “Optimization of Human Peripheral Blood Mononuclear Cells (PBMCs) cryopreservation,” *International Journal of Molecular and Cellular Medicine*, vol. 1, no. 2, pp. 88–93, 2012.

[23] T. Nakamura, H. Kubagawa, and M. D. Cooper, “Heterogeneity of immunoglobulin-associated molecules on human B cells identified by monoclonal antibodies,” *Proceedings of the National Academy of Sciences of the United States of America*, vol. 89, no. 18, pp. 8522–8526, 1992.

[24] W. Guo, D. Smith, K. Aviszus, T. Detanico, R. A. Heiser, and J. J. Wysocki, “Somatic hypermutation as a generator of antinuclear antibodies in a murine model of systemic autoimmunity,” *Journal of Experimental Medicine*, vol. 207, no. 10, pp. 2225–2237, 2010.

[25] C.-A. Reynaud, M. Descatoire, I. Dogan, F. Huetz, S. Weller, and J.-C. Weill, “IgM memory B cells: a mouse/human paradox,” *Cellular and Molecular Life Sciences*, vol. 69, no. 10, pp. 1625–1634, 2012.

[26] C.-J.-M. Martel and B. Aasted, “Characterization of antibodies against ferret immunoglobulins, cytokines and CD markers,” *Veterinary Immunology and Immunopathology*, vol. 132, no. 2–4, pp. 109–115, 2009.

[27] J. M. Brewer, M. Conacher, A. Satoskar, H. Bluethmann, and J. Alexander, “In interleukin-4-deficient mice, alum not only generates T helper 1 responses equivalent to Freund’s complete adjuvant, but continues to induce T helper 2 cytokine production,” *European Journal of Immunology*, vol. 26, no. 9, pp. 2062–2066, 1996.

[28] B. Akerstrom and L. Bjorck, “Protein L: an immunoglobulin light chain-binding bacterial protein. Characterization of binding and physicochemical properties,” *The Journal of Biological Chemistry*, vol. 264, no. 33, pp. 19740–19746, 1989.

[29] L. Bjorck, “Protein L. A novel bacterial cell wall protein with affinity for Ig L chains,” *Journal of Immunology*, vol. 140, no. 4, pp. 1194–1197, 1988.

[30] C. Vettermann and M. S. Schlissel, “Allelic exclusion of immunoglobulin genes: models and mechanisms,” *Immunological Reviews*, vol. 237, no. 1, pp. 22–42, 2010.

[31] S. Bournazos and J. V. Ravetch, “Fcy receptor pathways during active and passive immunization,” *Immunological Reviews*, vol. 268, no. 1, pp. 88–103, 2015.

[32] K. A. Pape, J. J. Taylor, R. W. Maul, P. J. Gearhart, and M. K. Jenkins, “Different B cell populations mediate early and late memory during an endogenous immune response,” *Science*, vol. 331, no. 6021, pp. 1203–1207, 2011.

[33] C. Heilmann and T. Barington, “Distribution of κ and λ light chain isotypes among human blood immunoglobulin-secreting cells after vaccination with pneumococcal polysaccharides,” *Scandinavian Journal of Immunology*, vol. 29, no. 2, pp. 159–164, 1989.

[34] X. Peng, J. Alféöldi, K. Gori et al., ”The draft genome sequence of the ferret (Mustela putorius furo) facilitates study of human respiratory disease,” *Nature Biotechnology*, vol. 32, no. 12, pp. 1250–1255, 2014.

[35] P. Sanchez, B. Nadel, and P. Cazenave, “VL–Jλ rearrangements are restricted within a V–J–C recombination unit in the mouse,” *European Journal of Immunology*, vol. 21, no. 4, pp. 907–911, 1991.

[36] G. Haughton, L. L. Lanier, and G. F. Babcock, “The murine kappa light chain shift,” *Nature*, vol. 275, no. 5676, pp. 154–157, 1978.

[37] M.-P. LeFranc, “Nomenclature of the human immunoglobulin lambda (IGL) genes,” *Experimental and Clinical Immunogenetics*, vol. 18, no. 4, pp. 242–254, 2001.

[38] S. Barandun, A. Morell, F. Skvaril, and A. Oberdorfer, “Deficiency of kappa or λ type immunoglobulins,” *Blood*, vol. 47, no. 1, pp. 79–89, 1976.

[39] C. S. Ambrose, X. Wu, T. Jones, and R. M. Mallory, ”The role of nasal IgA in children vaccinated with live attenuated influenza vaccine,” *Vaccine*, vol. 30, no. 48, pp. 6794–6801, 2012.

[40] X. Cheng, J. R. Zengel, A. L. Suguitan et al., “Evaluation of the humoral and cellular immune responses elicited by the live attenuated and inactivated influenza vaccines and their roles in heterologous protection in ferrets,” *Journal of Infectious Diseases*, vol. 208, no. 4, pp. 594–602, 2013.
