Introduction

The purpose of this work is to reconstruct the dynamics of a fatal accident that occurred a few years ago, in which 2 boys on bicycles (a male and a female) and 2 boys in a sedan car were involved. The two boys on the bike lost their lives due to the rear-end collision. This is therefore the study of a case that really happened, of which synthetic results are provided which do not give any reference clues. No study of analogous cases was not found in literature; numerous articles can be found in the literature on the vehicle-cyclist impact, but the analyzes are carried out at an impact speed of 13.9 m/s maximum (50 km/h) and with the bike driver only. [1-14, 17].

Pre-crash conditions were set on the basis of the photographic files and video surveillance images, which concern the positioning of the bicycle with respect to the vehicle and the positioning of the cyclists on the bicycle itself.

The accident is reconstructed in this paper through the use of numerical models. Cyclists are represented by anthropomorphic models having the appearance of human beings, to which mass and inertial properties have been attributed; the car and bicycle models were downloaded from google sketchup, in a format compatible with the SimWise room. The accelerations of
the heads and the relative parameter of the damage (HIC, AIS), their position respect to the collision point, the points of impact of the head on the vehicle are obtained by the simulations. The tests were carried out at the speeds 20, 22, 25, 27, m/s; they are presumably close to the actual one, as identified by the preliminary investigations. No analysis of the other body parts was performed because the autopsy showed the brain impact as a cause of death for both passengers.

The virtual models are provided with height and mass of the occupants of the bike. The female was sitting on the rear rack of the bicycle. The choices and the relative simplifications carried out are based on the knowledge of biomechanics and in compliance with the provisions of the European regulations concerning the subject of crash tests and according to the possibilities, limits, and peculiar characteristics offered by SimWise. Poser Pro software was used for the three-dimensional geometric shape of the human model, and the proportioning of each body segment. The models were imported to Rhinoceros for compatibility with SimWise. The relative masses of each body segment were determined using the geometric approach method. Having to respect mass and height as binding elements, experimental data obtained by Braune-Fischer, Dempster and Clauser relating to a man of 75 kg mass are used in order to obtain by proportion the relative masses and dimensions of each individual body part, as already determined in previous works [15-18], for the mass of the male (driver) and of the woman respectively.

HIC (Head Injury Criterion)

The current version of the HIC was developed by the NHTSA (National Highway Traffic Safety Administration). The FMVSS directive requires that the HIC does not exceed the 1000 value over a maximum amplitude interval of 36 ms [19-24]. For the sake of brevity, the formula easily found in the bibliography is missed. On the acceleration curve, built with the experimental values by the accelerometers, a moving time window of 36 ms is applied, the corresponding HIC value is calculated for each interval; the value of HIC is the maximum of these. Varying the stiffness of the vehicle area where the impact occurs, the force - deformation bonds and the contact time vary and, therefore, also the HIC value. Typically, more rigid areas correspond to higher HIC values, because there are less vehicle deformations and therefore greater deformation forces transmitted to the pedestrian’s head. The highest values of HIC occur at the windscreens pillars, the sides of the hood and the hood-windscreen junction area. It should be noted that it has been proposed to shorten this interval to 15 ms rather than 36 ms to calculate HIC, in the case of head impacts with fairly rigid bodies (eg windshield). [25-27]

Corresponding Author: Gabriele Virzi Mariotti, virzister@gmail.com

Citation: Virzi Mariotti, G., Golfo, S., Carollo, F., Scalici, E. (2021). Study of an impact vehicle-bike at high speed. _Academia Letters_, Article 817. https://doi.org/10.20935/AL817.
Reproduction of environmental conditions and simulations.

Photographic archive made available shows that the point of impact of the car with the bicycle has an offset of about 50 cm on the right side with respect to the center of the vehicle, as Figure 1 shows.

From the investigations carried out, some images were selected that allow us to estimate the post impact dynamics. Figure 2 shows the discovery of the woman’s tufts of hair on the windshield of the car which gives a clue to the point of contact.

The man was found in the middle of the roadway at about 28.5 meters at least and was not hit for a second time. The woman stopped after about 54 meters at the edge of the road.

Corresponding Author: Gabriele Virzi Mariotti, virzister@gmail.com
Citation: Virzi Mariotti, G., Golfo, S., Carollo, F., Scalici, E. (2021). Study of an impact vehicle-bike at high speed. Academia Letters, Article 817. https://doi.org/10.20935/AL817.
In the simulations, one of the most usual positions was attributed to cyclists; failure to use the hands is due to the fact that they do not affect either the dynamics of the impact or the extent of the damage. Figure 3 shows the initial conditions seen from the side and from above.

The virtual models are imported into the SimWise environment, maintaining the geometric and mass characteristics. Then the following kinematic settings are assumed:

- The speed of the bicycle at the moment of impact is negligible compared to that of the vehicle.
- It can be considered with a good approximation that the bicycle with the driver and the passenger on board is almost stationary at the moment of impact.
- Accelerometers have been inserted in the center of gravity of the head as required for the calculation of the HIC.
Position sensors have been inserted so as to be able to monitor the position of the bodies and the distance from the point of impact instant by instant.

Figure 4 shows the acceleration trend of the woman’s head for the entire duration of the impact up to the position of rest.

Figure 4: Woman head acceleration trend at 25 m/s.

Figure 5 shows the acceleration trend of the man’s head for the entire duration of the impact up to the position of rest.

Figure 5: Man head acceleration trend at 25 m/s.

Table. 1 – Simulations results
Discussion

Table 1 summarizes the maximum values of the accelerations expressed in [g], and the corresponding HIC values of the woman and man both in the primary and secondary impact. The probability values P (AIS3 +) and P (AIS4 +) calculated according to the formulas reported in [28, 29] are also determined. The table shows that both passengers on the bike died instantly, in correspondence with the primary impact, which occurred at a presumable speed of 25-27 m / s. With regard to the secondary impact, the acceleration and HIC values strongly depend
on the falling position of the bodies, which, on the other hand, does not happen in the case of a primary impact which presents an increasing trend.

Proceeding step by step, in correspondence with the maximum acceleration value, both the primary impact point of the head on the vehicle and the secondary impact point on the ground can be evaluated. In the following images, the woman’s head is represented in yellow and the man’s head in black. Figure 6 shows the impact points of the head on the vehicle at the impact speed of 27 m / s; it can be seen how the head of the man instead of impacting on the vehicle, impacts with the head of the woman; this also happens in all simulations at different speeds.

Figure 7 shows the impact points of the head on the road, at the impact speed of 27 m / s.

Conclusions

From the comparison with the available photos, it can be deduced that the estimated speeds for carrying out the tests are found to cover a good range of possible post-impact dynamics, as the woman’s head impacts the vehicle’s windshield. From the HIC values and the comparison with the AIS code, it appears that the cyclists have probably caused fatal damage as a result of the primary impact as in the secondary impact the HIC values are rather low.

The post-impact positions of the cyclists allows to deduce that the dynamics before the

Speed [m/s]	Primary impact	Secondary impact
20	22	25
20	22	25
20	22	25
20	22	25

Table 1 – Simulations results

Speed [m/s]	Primary impact	Secondary impact
20	22	25
20	22	25
20	22	25
20	22	25

Speed [m/s]	Primary impact	Secondary impact
20	22	25
20	22	25
20	22	25
20	22	25

Corresponding Author: Gabriele Virzi Mariotti, virzister@gmail.com

Citation: Virzi Mariotti, G., Golfo, S., Carollo, F., Scalici, E. (2021). Study of an impact vehicle-bike at high speed. Academia Letters, Article 817. https://doi.org/10.20935/AL817.
impact and the respective positions with respect to the vehicle are corrected with due approximations. The body of the man in all the simulations ends up on the road, as regards the woman, in this case too she is projected on the roadside. In all the simulations the man assumes a trajectory with a vault on the roof and a rear fall typical of high speeds. (This confirms that no traces of a second investment have been found on his body). The woman, on the other hand, assumes a pushing motion as she sits on the luggage rack and has a lower center of gravity.
References

1. Kim JK, Kim SP, Ulfarsson GF, et al. Bicyclist injury severities in bicycle–motor vehicle accidents. Accid Anal Prevent 2007; 39: 238–251.

2. Van Schijndel M, De Hair S, Rodarius C, et al. Cyclist kinematics in car impacts reconstructed in simulations and full scale testing with Polar dummy. In: IRC-12-85 IRCOBI conference, 2012, pp.800–812, http://www.ircobi.org/wordpress/downloads/irc12/pdf_files/85.pdf

3. Fredriksson R., Rosen E. Priorities for bicyclist protection in car impacts—a real life study of severe injuries and car sources. In: IRC-12-85 IRCOBI conference, 2012, pp.779–786, http://www.ircobi.org/wordpress/downloads/irc12/pdf_files/83.pdf

4. Van Hassel E and de Lange R. Bicyclist safety in bicycle to car accidents: an inventory study. TNO report 06.OR.SA.031.1/RDL, 17 August 2006, https://www.fietsberaad.nl/CROWFietsberaad/media/Kennis/Bestanden/Bicyclist safety in bicycle to car accidents, an inventory study.pdf.ext=.pdf

5. Mukherjee S, Chawla A, Mohan D, et al. Effect of vehicle design on head injury severity and throw distance variations in bicycle crashes. In: Proceedings of TRIPP conference, New Delhi, India, paper no. 070467,

6. Watson J. W., Investigation of cyclist and pedestrian impacts with motor vehicles using experimentation and simulation. PhD Thesis, Cranfield University, Bedford, 2010.

7. Peng Y, Chen Y, Yang J, et al. A study of pedestrian and bicyclist exposure to head injury in passenger car collisions based on accident data and simulations. Safety Sci, 2012; 50: 1749–1759.

8. Carollo F, Naso V and Virzi’ Mariotti G. Injury and throwing distance in teenage cyclist-vehicle crash. WSEAS T Power Syst 2016; 11: 171–182.

9. Carollo F, Naso V and Virzi’ Mariotti G. Teenage cyclist—pick up crash by multibody simulation; HIC evaluation and comparison with previous results. Int J Mech Eng 2016; 1: 75–83.37. Carollo F, Naso V, Virzi’ Mariotti G, et al. A new theoretical approach on teenage cyclist-vehicle crash. WSEAS T. Appl Theor Mech 2016; 11: 192–202.

10. Fanta O, Jelen K and Purs’h H. Interaction between cyclist and car during broadside and confrontation with pedestrian throw formulas multibody simulation. Trans TranspSci 2015; 3: 99–106.
11. Katsuhara T, Miyazaki H, Kitagawa Y, et al. Impact kinematics of cyclist and head injury mechanism in car to-bicycle collision. In: Proceedings IRCOBI conference, 2014, pp 670–684, http://www ircobi.org/wordpress/downloads/irc14/pdf_files/76.pdf

12. Carollo F, Virzı' Mariotti G and Naso V. Biomechanics parameters in teenage cyclist–SUV accident and comparison with the pedestrian. In: WSEAS-NAUN conference OTENG’15, Rome, 7–9 November 2015, pp.77–87,

13. Carollo F, Virzı' Mariotti G and Naso V. HIC evaluation in teenage cyclist–SUV accident. In: NAUN conference ICAT’15, Salerno, 27–29 June 2015, pp.252–259

14. Carollo F, Analisi di alcuni aspetti dell’Ingegneria dell’autoveicolo per una mobilità sostenibile: ambiente, incidentalità e materiali, PhD thesis, University of Roma1, 2018, http://hdl.handle.net/11573/1069735

15. Virzı' Mariotti G., Golfo S. Determination and analysis of the head and chest parameters by simulation of a vehicle–teenager impact. Proc IMechE, Part D: J Automobile Engineering 2014; 228: 3–20

16. Bellavia G., Virzı’ Mariotti G., Development of an anthropomorphic model for vehicle–pedestrian crash test, Ingegneria dell’Autoveicolo vol. 62, pp.48–56. In: XXI Science and Motor Vehicles: JUMV international conference with exhibition, Belgrade, 23–24 April 2007, https://core.ac.uk/reader/53238924

17. Carollo F, Virzı' Mariotti G., Scalici E. Injury evaluation in teenage cyclist-vehicle crash by multibody simulation. WSEAS T. Biol Biomed 2014; 11: 203–217.

18. Golfo S., Virzı’ Mariotti G., Carollo F., Argo A., Barbaraci G., Safety considerations on teenage pedestrian–bus impact, Proc IMechE Part D: J. Automobile Engineering 1–18 IMechE 2019 DOI: 10.1177/0954407019835617

19. Euro NCAP. Assessment Protocol and Biomechanical Limits, Version 4.1. Document, Euro NCAP, Brussels, Belgium, March 2004.

20. Euro NCAP. Assessment Protocol and Pedestrian Testing Protocol, Version 5.3.1. Document, Euro NCAP, Brussels, Belgium, November 2011.

21. Kuppa S. Injury criteria for side impact dummies. NHTSA, May 2004, https://www.researchgate.net/publication/242680543_INJURY_CRITERIA_FOR_SIDE_IMPACT_DUMMIES

Academia Letters, April 2021 ©2021 by the authors — Open Access — Distributed under CC BY 4.0

Corresponding Author: Gabriele Virzı Mariotti, virzister@gmail.com
Citation: Virzı Mariotti, G., Golfo, S., Carollo, F., Scalici, E. (2021). Study of an impact vehicle-bike at high speed. Academia Letters, Article 817. https://doi.org/10.20935/AL817.
22. Cyclist safety: an information resource for decision-makers and practitioners. Geneva: World Health Organization; 2020. Licence: CC BY-NC-SA 3.0 IGO.

23. NHTSA. Evaluation of FMVSS 214 and side impact protection: dynamic performance requirement. Technical report DOT HS 809 004, October 1999, https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/809004

24. NHTSA. Actions to reduce the adverse effects of air bags. FMVSS No. 208, February 1997, http://www.nhtsa.dot.gov/cars/rules

25. Prasad P., Mertz H. J. The position of the US delegation to the ISO Working Group 6 on the use of HIC in automotive environment. SAE technical paper 851246, 1985.

26. Prasad P., Mertz H. J., Dalmotas D. J., et al. Evaluation of the field relevance of several injury risk functions. Stapp Car Crash J 2010; 54: 1–25.

27. Mertz A. J., Prasad P., Nusholtz G, Head Injury Risk assessment for forehead impacts. Sae Paper 960099, February 26, March 1, 1996, Detroit, Michigan.

28. Piano L., La sicurezza passiva degli autoveicoli. Milano, Hoepli, 2009.

29. Virzi Mariotti G, Golfo S., Nigrelli V, Carollo F., Head Injury Criterion: Mini Review. Am J Biomed Sci & Res. 2019 - 5(5). AJBSR.MS.ID.000957. DOI: 10.34297/AJBSR.2019.05.000957.