Title
Initial events during phagocytosis by macrophages viewed from outside and inside the cell: membrane-particle interactions and clathrin.

Permalink
https://escholarship.org/uc/item/7x41p7ks

Journal
The Journal of cell biology, 94(3)

ISSN
0021-9525

Authors
Aggeler, J
Werb, Z

Publication Date
1982-09-01

DOI
10.1083/jcb.94.3.613

Peer reviewed
Initial Events during Phagocytosis by Macrophages
Viewed from Outside and Inside the Cell:
Membrane-Particle Interactions and Clathrin

JUDITH AGGELER and ZENA WERB
Department of Anatomy and Laboratory of Radiobiology and Environmental Health, University of
California, San Francisco, California 94143

ABSTRACT The initial events during phagocytosis of latex beads by mouse peritoneal macro-
phages were visualized by high-resolution electron microscopy of platinum replicas of freeze-
dried cells and by conventional thin-section electron microscopy of macrophages postfixed
with 1% tannic acid. On the external surface of phagocytosing macrophages, all stages of
particle uptake were seen, from early attachment to complete engulfment. Wherever the
plasma membrane approached the bead surface, there was a 20-nm-wide gap bridged by
narrow strands of material 12.4 nm in diameter. These strands were also seen in thin sections
and in replicas of critical-point-dried and freeze-fractured macrophages. When cells were
broken open and the plasma membrane was viewed from the inside, many nascent phagosomes
had relatively smooth cytoplasmic surfaces with few associated cytoskeletal filaments. However,
up to one-half of the phagosomes that were still close to the cell surface after a short phagocytic
pulse (2-5 min) had large flat or spherical areas of clathrin basketwork on their membranes,
and both smooth and clathrin-coated vesicles were seen fusing with or budding off from them.
Clathrin-coated pits and vesicles were also abundant elsewhere on the plasma membranes of
phagocytosing and control macrophages, but large flat clathrin patches similar to those on
nascent phagosomes were observed only on the attached basal plasma membrane surfaces.
These results suggest that phagocytosis shares features not only with cell attachment and
spreading but also with receptor-mediated pinocytosis.

Phagocytosis, the ingestion of foreign particles by cells, has
been the subject of active investigation since Metchnikoff (1)
first described the protective role of the “wandering cells” of
starfish larvae over a century ago. In mammals, the major
wandering phagocytes are macrophages and polymorphonu-
clear granulocytic leukocytes, and their roles in defense against
microorganisms and in inflammation are well documented (2–
5). Macrophages are long-lived cells specialized in ingesting
and sequestering a wide variety of foreign bodies and cell
debris, but the exact cellular mechanism by which they engulf
such particles is incompletely understood.

During the initial steps of phagocytosis, particles first bind
to the plasma membrane surface and then enter the cell,
enclosed within a plasma membrane-derived phagosomal
membrane. At least three specific receptors for the Fc portion
of various classes of IgG have been identified, and their roles
in the uptake of IgG-coated erythrocytes have been described
(6, 7). Receptors recognizing the C3b and C3d fragments of
complement can also mediate phagocytosis of erythrocytes by
activated macrophages (8). A receptor that recognizes mannose
residues of glycoconjugates may be responsible for ingestion of
yeast cell walls (9, 10), and so-called nonspecific receptors that
mediate the uptake of latex beads and other particles are also
known (5). The overall process of phagocytosis requires meta-
abolic energy (5) and is temperature-sensitive, with a threshold
at 18°C (11). Divalent cations are not required for cultured
macrophages to bind particles (12), but Ca2+ and especially
Mg2+ probably play a role in subsequent ingestion of particles
(12, 13). Opsonization of bacteria by factors in serum may
facilitate uptake (13, 14); macrophages cultured in serum-free
medium ingest particles, but at a reduced rate (12, 13).

Phagocytosis of particles by macrophages has been likened
to cell spreading on a substratum, because a dense network of
actin filaments appears beneath the plasma membrane in both

THE JOURNAL OF CELL BIOLOGY • VOLUME 94 • SEPTEMBER 1982 • 613-623
© The Rockefeller University Press • 0021-9525/82/09/0613/11 $1.00
cases (15). This has led to the suggestion that actin is directly involved in the plasma membrane movement that accompanies the phagocytic process (16). Hartwig et al. (17) have presented a model of phagocytosis in which an actin-binding protein interacts with cytoskeletal elements, and subsequent reorganization of subplasmalemmal actin filaments forces the plasma membrane up over the particle, forming the phagosome. Their evidence indicates that similar actin-binding proteins may function during both phagocytosis and cell spreading (18). Recently, Boyles and Bainton (19) studied the formation of focal attachment sites for cytoskeletal filaments on the plasma membrane of spreading polymorphonuclear leukocytes and found that similar plaques are formed on the cytoplasmic surface of phagosomes when these cells ingest yeast (20). Such foci also appear to act as attachment sites in spreading macrophages (21).

We have examined the plasma membranes of macrophages fixed during ingestion of latex beads using the high-resolution platinum replica techniques devised by Heuser (22, 23) to visualize the initial events of phagocytosis from both outside and inside the cell. On the external surface of phagocytosing macrophages, narrow strips of material were observed between the plasma membrane and the bead surface. On the cytoplasmic faces of nascent phagosomes, large areas of clathrin basketwork were observed. Preliminary reports of this work have been presented in abstract form (24–26).

MATERIALS AND METHODS

Cell Culture and Phagocytosis

Macrophages were harvested from CD-1 mice (Flow Laboratories, Inc., Rockville, MD) by peritoneal lavage using Dulbecco’s phosphate-buffered saline (PBS) with 100 U/ml sodium heparin. Cells were plated onto (5-mm)2 acid-cleaned glass cover slips in 16-mm culture wells (5 × 10⁶ cells/well) and incubated overnight in Dulbecco’s modified Eagle’s medium (DME) containing 10% fetal calf serum. In some experiments, the J774.2 macrophage cell line (6) was used. Before each experiment, cells were washed free of serum and cultured briefly in modified Eagle’s medium (Earle’s salts) (MEM), containing 0.2% lactalbumin hydrolysate (L-H), and buffered with 25 mM HEPES. For electron microscopy, latex beads (polystyrene 0.45-μm diameter; Polysciences, Inc., Warrington, PA) were washed once in Ca²⁺-free MEM-LH-HEPES, sonicated briefly, and added to cells at a concentration of 0.5 mg/ml. In one experiment, 0.1-μm diameter latex beads (Polysciences, Inc.) were used without prior washing. Decreasing the Ca²⁺ concentration before breaking open cells helped to reduce small vesicle formation from plasma membrane fragments; the kinetics and extent of bead uptake in Ca²⁺-free MEM-LH-HEPES, sonicated briefly, and added to cells was unambiguously determined because of dense cytoplasmic background or unclear sectioning of the plasma membrane. Results are expressed as percentage of phagosomes positive for clathrin coating.

RESULTS

Phagocytosis Viewed from Outside the Cell

Replicas of the outside surface of macrophages viewed by transmission electron microscopy provided high-resolution images of the plasma membrane similar to those described previously for fibroblasts (23). These surfaces were covered with many small bumps, slightly larger than intramembranous particles, that were distributed randomly against a homogeneous background of granular platinum (Fig. 1). The surface of 0.45-μm diameter beads either on cells (Figs. 1–3) or on the cover slip away from cells (Fig. 4a) had a rough, cobbled appearance with occasional larger bumps. Low magnification views of phagocytosing macrophages showed that beads were most abundant on the rounded perinuclear portion of ingesting cells, as previously described (30), although beads were also found on the thinner, spreading lamellipodia of these cells (not shown). There was a marked tendency for small beads to be unambiguously determined because of dense cytoplasmic background or unclear sectioning of the plasma membrane. Results are expressed as percentage of phagosomes positive for clathrin coating.

Fixation, Freezing, and Replica Preparation

After the cells were exposed to latex beads for 1-5 min at 37°C, the cover slips were washed to remove excess beads. Some cells were immediately fixed for 1 h at 22°C in 1% glutaraldehyde and 1% paraformaldehyde (pH 7.2) in medium E, composed of 155 mM NaCl, 5 mM KCl, 2 mM MgCl₂, 0.5 mM NaH₂PO₄, and 20 mM HEPES buffer, pH 7.2, which is isotonic with extracellular fluid. In other experiments, cells were transferred into medium I, composed of 100 mM KCl, 5 mM MgCl₂, 3 mM EGTA, and 20 mM HEPES buffer, pH 7.0, which is isotonic with intracellular fluid, and were rapidly broken open by placing a 0.1-μm-thick coated cover slip over them and pulling it away, or by gently scraping away cell tops with a loop of fine platinum wire. Broken-open cells were immediately fixed for 1 h in 1% glutaraldehyde and 1% paraformaldehyde at 22°C in medium I. After fixation, cells were rinsed briefly in distilled H₂O and then 15% methanol to wash out excess beads. Some cells were immediately fixed for 1 h at 22°C in 1% glutaraldehyde and 1% paraformaldehyde (pH 7.4) for 1 h, followed by 1 h each in 1% OsO₄ in acetate-veronal buffer, 1% tannic acid (Mallinkrodt Inc., Science Products Div., St. Louis, MO) (29) in 0.05 M sodium cacodylate buffer, and 1% uranyl acetate in acetate-veronal buffer. Cells were dehydrated through graded alcohols and embedded free from the plastic dish by adding propylene oxide. The resulting suspension was pelleted in a Beckman microfuge (Beckman Instruments, Inc., Spino Div., Palo Alto, CA) and embedded in Epon before sectioning on a Porter-Blum MTB-2 ultramicrotome (Ivan Sorvali, Inc., Norwalk, CT).

Size Measurements

The diameter and spacing of the surface strands observed between beads and cells were determined by selecting three typical electron microscope negatives made at × 60,000 and measuring all of the strands and spaces around two beads in each micrograph. These measurements were made directly on the negatives on a standard light box using a magnifying micrometer eyepiece and recorded to the nearest 0.1 μm. Strand spacing was measured from center to center as nearly as possible. 95 strands and 94 interstrand spaces were measured. Results are expressed as mean and standard deviation and the range is noted.

The number of clathrin-coated areas on the plasma membrane (excluding phagosomes membranes) was quantified in two ways: (a) Micrographs of broken-open cells taken at ≥ × 40,000 were projected onto blank paper, and exposed membrane and clathrin patches, pits, and vesicles were traced. Micrographs taken < × 36,000 could not be used because preliminary results indicated that some coated areas were not visible in such views. At × 40,000, each micrograph represents 3.8 μm² of plasma membrane. The tracings were then cut out and individually weighed. The results are expressed as percentage of plasma membrane surface covered with clathrin basketwork (mean and standard error). (b) The profiles of latex bead phagosomes and associated clathrin coats were measured on thin-section electron micrographs printed at × 50,000. For approximately one-third of these beads (17 out of 51) the presence of clathrin could not be unambiguously determined because of dense cytoplasmic background or unclear sectioning of the plasma membrane. Results are expressed as percentage of phagosomes positive for clathrin coating.

Thin-section Transmission Electron Microscopy

Peritoneal macrophages were cultured in 60-mm plastic dishes, exposed to latex beads at 37°C, and washed as described above. Cells were then fixed at 22°C in 1% glutaraldehyde in 0.02-0.1 M sodium cacodylate buffer (pH 7.4) for 1 h, followed by 1 h each in 1% OsO₄ in acetate-veronal buffer, 1% tannic acid (Mallinkrodt Inc., Science Products Div., St. Louis, MO) (29) in 0.05 M sodium cacodylate buffer, and 1% uranyl acetate in acetate-veronal buffer. Cells were dehydrated through graded alcohols and detached from the plastic dish by adding propylene oxide. The resulting suspension was pelleted in a Beckman microfuge (Beckman Instruments, Inc., Spino Div., Palo Alto, CA) and embedded in Epon before sectioning on a Porter-Blum MTB-2 ultramicrotome (Ivan Sorvali, Inc., Norwalk, CT)
At the earlier stages of attachment, small lamellipodia and surface ruffles were often observed creeping up the sides of the beads (Figs. 1 and 2), whereas at later stages the beads usually appeared to be sinking into the cytoplasm below the plasma membrane surface (Fig. 3c and d). Invariably, there was a gap of ~20 nm between the bead and the adjacent plasma membrane. This gap was bridged by many narrow strands of material (12.4 ± 3.5-nm diameter, mean ± SD), which were
FIGURE 3  Replicas of the outside surface of freeze-dried macrophages showing later stages of latex bead ingestion. (a and b) Intermediate stages in bead ingestion showing small surface ruffles engulfing beads. × 160,000. (c and d) Late stages in ingestion showing beads sinking below the cell surface. Bars, 0.2 μm. × 90,000.
FIGURE 4 Demonstration that 12.4-nm strands are present only during ingestion of beads by cells. (a) 0.45-μm beads isolated on the surface of the glass cover slip with no strands. The presence of 12.4-nm strands (brackets) in replicas of freeze-dried macrophages is not unique to quick-frozen samples because similar structures are also observed surrounding beads in conventional thin-section electron micrograph (b), in replica of a cell prepared by ethanol dehydration and critical point drying (c), and in replica of a freeze-fractured cell (d). In c and d, the electron-dense beads have not been dissolved with dioxane and still adhere to the platinum replica. Bar, 0.2 μm. x 60,000.

Spaced ~25 nm apart (range, 12–67 nm). These strands were always visible at the edge of the forming phagosome but were not observed between adjacent beads or between beads and the cover slip (Fig. 4a). Once these structures had been recognized in replicas of freeze-dried cells, we also found similar strands in conventional thin-section electron micrographs and in replicas of critical-point-dried or freeze-fractured cells (Fig. 4b–d).

FIGURE 5 Low magnification view of a replica of the cytoplasmic surface of upper cell membrane (m) spread on a poly-l-lysine-coated glass cover slip (g), showing several nascent phagosomes (0.45 μm) (p) and scattered foci of cytoskeletal filament convergence (asterisks). A few cytoskeletal filaments can be seen adhering to the phagosomes. The pebbled appearance of the cover slip is clearly distinct from the area of smooth open membrane displayed in this replica. A large patch of clathrin basketwork (arrowhead) is present on one phagosome. Bar, 0.5 μm. x 30,000.
Phagocytosis Viewed from Inside the Cell

In samples of the upper surfaces of macrophages prepared by adhesion to poly-L-lysine-coated cover slips, irregular areas of smooth cytoplasmic membrane were readily distinguished from the adjacent pebbled-appearing cover slip, and individual bead phagosomes still attached to these membranes were easily identified (Fig. 5). Scattered foci of cytoskeletal filament convergence were widely distributed over the plasma membrane surface in such samples (Figs. 5 and 6a). As reported for spreading polymorphonuclear leukocytes (19) and macrophages (21), these dense foci were also abundant on the adherent bottom plasma membranes of these macrophages (not shown).

ASSOCIATION OF CYTOSKELETAL FILAMENTS WITH PHAGOSOMES: Because many reports have suggested that microfilaments are involved in the phagocytic process (15, 17, 31), we attempted to identify specific associations between filamentous cytoskeletal elements and nascent phagosome membranes in broken-open cells. Surprisingly, there were few clear examples of filament attachments to the cytoplasmic surfaces of nascent phagosomes in these preparations, although an organized meshwork of cytoskeleton was seen radiating out from nascent phagosomes in the area of organelle exclusion in macrophages observed by standard thin-section electron microscopy (Fig. 6b), as described by others for larger particles (15) and for the basal surfaces of attached cells (16). The reason for the small number of filament attachments to phagosomes observed in replicas of broken-open cells is not known at present, but this lack may be largely an artifact of our procedures for breaking cells open.

DISTRIBUTION OF COATED VESICLES IN MACROPHAGES: One cytoplasmic structure that can be dramatically visualized by the deep-etch replica technique is the clathrin basketwork surrounding coated vesicles (23). Coated vesicles have been noted in macrophages studied in thin sections (32, 33), but they have been relatively difficult to see against the dense cytoplasm of these cells. In replicas of broken-open macrophages, however, it was apparent that clathrin patches and vesicles were remarkably abundant (Fig. 7a), involving 1%-4% of the total plasma membrane surface (Table I). By using a hypotonic fixation buffer (0.02 M sodium cacodylate) and a postfixation protocol that included 1% tannic acid, we were also able to see numerous coated pits and vesicles in thin-section electron micrographs (Fig. 7b and c). Both the number and area of clathrin basketworks present on the adherent lower surfaces of macrophages were significantly greater than on the free upper plasma membrane surfaces (Table I). This was especially true for large flat patches of hexagonal basketwork, which were never observed on upper surfaces (Fig. 8). After a phagocytic stimulus (2-5 min), the number and area of coated patches on the adherent cell bottoms was increased twofold over controls (Table I).

ASSOCIATION OF CLATHRIN WITH PHAGOSOMES: Although the cytoplasmic surfaces of phagosomes were often quite smooth (Figs. 5 and 9a), examination of both replicas and thin-section micrographs indicated that up to one half of the phagosomes observed after a short (2-5 min) phagocytic pulse had areas of clathrin basketwork associated with them.

| Cells | Upper plasma membrane | Lower plasma membrane | \( P^* \) |
|-------|------------------------|-----------------------|--------|
| Control | 1.3 ± 0.3 (24) | 3.5 ± 1.0 (14) | 0.001 |
| Phagocytosing (2-5 min) | 1.6 ± 0.3 (40) | 9.7 ± 1.8 (31) | <0.001 |

\( P^* \) was determined by the unpaired two-sample Student's \( t \) test.

FIGURE 6 Demonstration of cytoskeletal filament association with macrophage membranes. (a) Replica of the cytoplasmic surface of the nonadherent upper cell membrane of a phagocytosing macrophage showing a starlike focus of cytoskeletal filament convergence. (b) Thin-section transmission electron micrograph of a phagocytosing macrophage showing cytoskeletal meshwork radiating out from a bead phagosome. Bar, 0.2 \( \mu \text{m} \). X 90,000.
FIGURE 7 Demonstration of coated pits and vesicles in macrophages. (a) Replica of the cytoplasmic surface of the adherent bottom of a phagocytosing macrophage showing several forming coated pits and vesicles (arrowhead), including a small vesicle (double arrowhead) budding off from what appears to be a remnant of smooth endoplasmic reticulum or Golgi apparatus. (b) Thin-section electron micrograph showing two en face views of coated vesicles (arrowheads). (c) Thin-section transmission electron micrograph of two coated pits (arrowheads) in a cell of the mouse macrophage line J774.2. The granular tannic acid-labeled content of these coated pits indicates that both are still in continuity with the cell surface. Bar, 0.2 μm. X 90,000.

FIGURE 8 Replicas of the cytoplasmic surface of adherent bottoms of mouse peritoneal macrophages after 5 min of phagocytosis, showing areas where the density of clathrin basketwork is very high. In a, 19% of the plasma membrane is clathrin-coated; in b, 28% is coated. It is noteworthy that much of the basketwork observed on these lower plasma membrane surfaces appears as flat patches, as in a. Possible remnants of cytoplasmic filament attachment to clathrin basketwork are indicated by circles. Bar, 0.2 μm. X 60,000.

(Table II). These areas were often quite large, in several cases covering the entire observable surface of the phagosome, an area equivalent to two to four coated vesicles (Fig. 9c). Deeper coated pits and vesicles were also found on phagosome membranes (Figs. 9b and 10). In Fig. 10, clusters of coated vesicles are seen budding off from the cytoplasmic face of bead phagosomes observed in both replicas and thin-sections. In one experiment, we examined phagocytosis of very small beads (0.1-μm diameter). Most of these beads were surrounded by smooth, closely adherent phagosomes (Fig. 9d), but uptake within coated vesicles was occasionally observed (Fig. 9e).

Because our techniques for breaking open cells disrupted many cytoplasmic structures, it was often difficult to ascertain the distance of a phagosome from the cell surface in replicas. However, in a number of cases a fortuitous break preserved the relationship between the ingested bead and the plasma membrane, and a large clathrin patch could be seen just under the plasma membrane adjacent to the advancing lip of the forming phagosome (Fig. 11; see also Fig. 9b). This proximity of large clathrin patches to the advancing phagosome lip was often observed by thin-section transmission electron microscopy as well (Figs. 10a and b, 12a, and Table II). The association between clathrin and phagosomes was not limited to ingestion of latex beads of various sizes, as shown by the large clathrin patch visible on the advancing plasma membrane of a macrophage ingesting a dead cell (Fig. 12b).

DISCUSSION

Particle Binding in Phagocytosis: An External View of Cell Surface Interactions

Phagocytosis of a variety of particles is known to be mediated
by specific receptors on the macrophage surface (5-8, 14), although the biochemical nature of the so-called nonspecific receptor that mediates uptake of latex beads is not yet known (5). This interaction may involve recognition of areas of negative charge density on the bead surface, but binding to secreted macrophage proteins that adhere to the beads is also a possibility. Phagocytosis of latex beads does not seem to be mediated by the polyanion receptor described by Brown et al. (34), however, because ingestion was undiminished by treating cells with heparin or polyinosinic acid, two potent inhibitors of the uptake of acetylated low density lipoprotein mediated by this receptor (J. Aggeler, unpublished observations).

The elegant experiments of Griffin and colleagues (35, 36) showed: that phagocytosis of particles by macrophages requires extensive interaction between specific receptors on the cell surface and recognition sites on the particle; and that engulfment stops if either receptors or recognition sites are not distributed continuously over the interacting surfaces. These

observers called this process "zippering." We suggest that the narrow strands that we observed bridging the space between the plasma membrane and the latex beads are the physical counterparts of this "zipper." The chemical composition of these strands is not known, although they are not destroyed by alcohol dehydration; nor is it clear whether they are extensions of some intrinsic membrane molecule (receptor) or part of an extrinsic cellular glycocalyx.

One reason why these strands have not been specifically noted in previous morphologic studies of phagocytosis (3, 33, 36) may be that as few as 600 IgG molecules per erythrocyte, or a density of only 25 IgG molecules/μm² of erythrocyte surface, are sufficient for macrophage phagocytosis to proceed (8). In contrast, we estimate from the average spacing of the strands we observed between latex beads and the macrophage surface that cell/bead interactions had a density of 1,400/μm²—more than 50 times as frequent as IgG/Fc receptor interactions necessary for erythrocyte ingestion. The relatively

FIGURE 9 Replicas of the cytoplasmic surfaces of bead phagosomes viewed from inside broken-open macrophages. Many of the phagosomes visualized in this way have a relatively smooth surface (a), but large patches of clathrin basketwork can be seen on some (b and c). In b two adjacent phagosomes with clathrin-coated patches, pits, and vesicles (arrowheads) are shown just beneath the torn edge of the plasma membrane (lower left). (c) A phagosome entirely covered with clathrin basketwork. Possible remnant of a cytoskeletal filament attachment to this phagosome is indicated by a circle. In d and e, replicas of macrophages that had ingested 0.1-μm latex beads are shown; these replicas were not treated with dioxane so the electron-dense latex beads are still present. Most of these small beads were taken up in individual, smooth phagosomes (d), but e shows a bead that appears to have been trapped and taken up within a coated vesicle. Bar, 0.2 μm. X 90,000.
### TABLE II

**Frequency of Clathrin Basketwork on Phagosome Membranes**

| Method          | Time of incubation | Micrographs scored | Phagosomes scored | Phagosomes with clathrin |
|-----------------|--------------------|--------------------|------------------|--------------------------|
| Platinum replica| 2-min pulse        | 18                 | 32               | 44 (%)                  |
| Thin section    | 5-min pulse        | 24                 | 34 (51)*         | 53 (%)                  |
|                 | 5-min pulse followed by 30-min chase| 9               | 19 (32)*         | 0 (%)                   |

Electron micrographs of phagocytosing macrophages processed as described in Materials and Methods were scored for the presence of clathrin coats on phagosome membranes. All phagosomes scored after 5 min were within 1 μm of the plasma membrane. After a 30-min chase, all phagosomes scored were in a perinuclear location and many were associated with secondary lysosomes.

* Numbers in parentheses indicate total phagosomes present in these micrographs, about one-third of which could not be scored.

A small number of Fc-receptor interactions necessary for ingestion may explain why similar structures have not been observed during erythrocyte phagocytosis.

**Distribution of Clathrin on Macrophage Plasma Membranes: Role in Phagocytosis**

Many different soluble ligands have now been found to enter cells while bound to receptors clustered in clathrin-coated pits and vesicles, and this may be a general mechanism for receptor-mediated endocytosis (37–40). Infrequent coated vesicles have been noted previously in macrophages (32, 33), but our observations using platinum replicas and thin-section electron microscopy indicate that clathrin-coated vesicles are at least as abundant in these actively endocytic cells as they are in normal fibroblasts (23, 37–39). As shown in Table I, clathrin basketworks occupied ~1.5% of the free upper plasma membrane surface of macrophages and up to 10% of the adherent lower surfaces. We also observed all stages of coated vesicle formation in these samples, from small flat patches to spherical forms 150–200 nm in diameter (Figs. 7 a and 8), as has been described by Heuser (23) in cultured mouse fibroblasts. Addition of a tannic acid postfixation step during processing for thin-section electron microscopy allowed easy visualization of coated membranes, both associated with the plasma membrane (Fig. 7 b and c) and in the perinuclear cytoplasm.

Although it is generally believed that phagocytosis is the only type of adsorptive endocytosis in which coated vesicles do not play a major role (40), the early appearance of clathrin patches and vesicles on the surface of nascent phagosomes as reported here (Figs. 9–13 and Table II) indicates that clathrin-coated structures may function during phagocytosis as well. The presence of clathrin patches near the advancing lip of phagosomes that were not yet completely closed (Figs. 10–12) indicates that association between clathrin and phagosome membrane can be a very early event. After a 2-min phagocytic pulse, 44% of phagosomes had detectable clathrin patches on their surface (Table II), suggesting that such an early transient association of basketwork may occur during the formation of most phagosomes. During receptor-mediated uptake of soluble ligands, clathrin coats disappear from pinocytic vesicles within 2–5 min (39). By 30 min after a phagocytic pulse, all of the phagosomes were located deep within the cytoplasm and none were positive for clathrin (Table II). The function of clathrin during phagocytosis is not clear at present, but one possibility is that clathrin-coated vesicles may form to mediate recycling...
of internalized membrane back to the plasma membrane in response to a phagocytic or pinocytic stimulus. Membrane internalized in pinosomes reappears at the plasma membrane surface within 10 min in hamster fibroblasts (41), and labeled phagosome membrane proteins also return rapidly to the plasma membrane (27, 42).

Because our method of rupturing cells by sticking upper cell surfaces to a poly-l-lysine-coated cover slip produced an un-
even pattern of opened cells, we cannot be sure that we observed a completely random sample of upper and lower plasma membrane surfaces. Nevertheless, the number and extent of clathrin baskets on the plasma membrane of adherent cell bottoms in a representative sample of micrographs was significantly greater than the number on upper plasma membranes (Table I). This increase was especially true for large flat patches (Fig. 8a), which were never observed on the upper cell membranes (except associated with phagosomes). The reason for the large clathrin patches observed in replicas of cell bottoms and of phagosomes is not clear, but similar flat clathrin carpets have been reported recently on the bottom surfaces of cultured HeLa cells (43), where they may play a role in adhesion of cells to the cover slip. In this regard, the large patches of clathrin basketwork found on latex bead phagosomes may also reflect an adhesion event and, thus, reinforce the analogy between particle phagocytosis and cell spreading on a substratum (15).

We would like to express our deep appreciation to Dr. John Heuser, Washington University School of Medicine (St. Louis, MO) for teaching us his quick-freeze, deep-etch replica techniques, for allowing us free access to his laboratory and equipment, for his participation in some of the early experiments reported here, and for stimulating and critical discussions on all aspects of this work. We would also like to thank Mr. Daniel Friend for suggesting the tannic acid postfixation technique and for his critical comments on this manuscript, Mr. William Keene for technical assistance, and Carol Hoefler for secretarial assistance. Some of the micrographs were taken using the JEOL 100C Electron Microscope at the Electron Microscopy Laboratory at the University of California, Berkeley.

This work was supported by the U.S. Department of Energy, by a National Science Foundation Predoctoral Fellowship to J. Aggeler, and by U.S. Public Health Service Grants to J. Heuser.

Received for publication 26 January 1982, and in revised form 6 May 1982.

REFERENCES

1. Karnovsky, M-L. 1981. Methenamine in Mesulla. A century of studies on phagocytosis. New Engl. J. Med. 304:178-1180.
2. Gordon, S., and Z. A. Cohn. 1973. The macrophage. Int. Rev. Cytol. 36:171-214.
3. Silverstein, S. C., J. Michl, and S.-S. J. Sung. 1978. Phagocytosis. In Transport of Macromolecules in Cellular Systems, S. C. Silverstein, editor. Dahlem Konferenzen, Berlin. 245-264.
4. Stossel, T. P. 1974. Phagocytosis. New Engl. J. Med. 290:717-723, 773-780, 833-839.
5. Karnovsky, M. L., J. Lazits, and S. R. Simmons. 1975. Metabolism of activated macrophages at rest and during phagocytosis. In Monocellular Phagocytes. Functional Aspects, Part II. R. van Furth, editor. Martinus Nijhoff, The Hague. 971-996.
6. Stendahl, O., J. H. Hartwig, E. A. Brothel, and T. P. Stossel. 1980. Distribution of actin-binding protein and myosin in macrophages during spreading and phagocytosis. J. Cell Biol. 84:215-224.
7. Boyles, J., and D. F. Bainton. 1979. Changing patterns of plasma membrane-associated filaments during the initial phases of polymorphonuclear leukocyte adherence. J. Cell Biol. 82:347-364.
8. Boyles, J., and D. F. Bainton. 1981. Changes in plasma-membrane-associated filaments during endocytosis and exocytosis in polymorphonuclear leukocytes. Cell. 24:905-914.
9. Maitre, J. A. 1981. The organization of actin in spreading macrophages. The actin-cytoskeleton of peritoneal macrophages is linked to the substratum via transmembrane connections. Exp. Cell Res. 132:235-248.
10. Brown, M. S. 1981. Quick-freeze, deep-etch preparation of samples for 3-D electron microscopy. Trends Biochem. Sci. 6:64-68.
11. Heuser, J. 1980. Three-dimensional visualization of coated vesicle formation in fibroblasts. J. Cell Biol. 84:560-583.
12. Aggeler, J., and J. Heuser. 1980. Phagocytosis visualized at high resolution from inside and outside the cell. J. Cell Biol. 87(2, Pt. II). 95a (Abstr.).
13. Aggeler, J., J. Heuser, and Z. W. Webb. 1981. The redistribution of clathrin during phagocytosis by macrophages. Fed. Proc. 40:1618.
14. Aggeler, J., J. Heuser, and Z. Webb. 1981. The redistribution of clathrin proteins (J. Cell Biol. 87, Pt. II). 24a (Abstr.).
15. Muller, W. A., S. R. Layton, and Z. A. Cohn. 1980. The membrane proteins of the vacuolar system. I. Analysis by a novel method of intravacuolar ionization. J. Cell Biol. 84:295-302.
16. Heuser, J. E., T. S. Reese, M. J. Drenis, Y. J. Lin, and L. Evans. 1979. Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release. J. Cell Biol. 92:271-300.
17. Berg, D. A., R. Rodewald, and L. I. Rehbnun. 1978. The visualization of actin filament polarity in thin sections. Evidence for the uniform polarity of membrane-associated filaments. J. Cell Biol. 79:846-852.
18. Walter, R. J. D. Berlin, J. R. Peiffer, and J. M. Oliver. 1980. Polarization of endocytosis and receptor topography on cultured macrophages. J. Cell Biol. 86:199-221.
19. Storme, B., and R. T. Chaddock. 1980. Immunofluorescent evidence for a transient association of actin with phagosomes in RHK cells. Cell Biol. Int Rep. 4:873-879.
20. Wiess, E. 1977. Ultrastructure and function of Kupffer cells and other sinusoidal cells in the liver. In Kupffer Cells and Other Liver Sinusoidal Cells. E. Wiess and D. L. Knock, editors. Elsevier/North-Holland Biomedical Press, Amsterdam. 33-60.
21. Maitre, J. A., W. A., and G. Kaplan. 1980. Endocytosis by macrophages. In The Reticuloendothelial System. I. Carr and W. T. Daems, editors. Vol. 1. Plenum Publishing Corp., New York. 19-55.
22. Maitre, J. S. S. Basu, J. R. Falk, K. Y. Ko, and J. L. Goldstein. 1980. The scavenger cell pathway for lipoprotein degradation: specificity of the binding site that mediates the uptake of negatively-charged LDL by macrophages. J. Supramol. Struct. 13:67-81.
23. Griffin, M. F., Jr., J. A. Griffin, J. E. Leder, and S. C. Silverstein. 1975. Studies on the mechanism of phagocytosis. I. Requirements for circumferential attachment of particle-bound ligands to specific receptors on the macrophage plasma membrane. J. Exp. Med. 142:1236-1282.
24. Griffin, M. F., Jr., J. A. Griffin, and S. C. Silverstein. 1976. Studies on the mechanism of phagocytosis. II. The interaction of macrophages with anti-immunoglobulin Ig-coated sheep erythrocytes. J. Exp. Med. 144:744-789.
25. Anderson, R. G. W., E. Vasiil, R. J. Mello, S. S. Brown, and J. L. Goldstein. 1978. Immunochemospecific visualization of coated pits and vesicles in human fibroblasts: relation to low density lipoprotein receptor distribution. Cell 15:919-933.
26. S affluent, J. L., J. S. Condeilla, and P. Sattir. 1980. Role of coated vesicles, microfilaments, and cadherin-in receptor-mediated endocytosis by cultured B lymphoblastoid cells. J. Cell Biol. 87:132-141.
27. Wall, D. A., G. Wilton, and A. L. Hubbard. 1980. The glial cell-specific recognition system of mammalian liver: the route of ligand internalization in rat hepatocytes. Cell. 21:79-93.
28. Pease, B. M. F., and M. S. Breitsher. 1981. Membrane recycling by coated vesicles. Annu. Rev. Biochem. 50:85-101.
29. Stoeve, B., F. D. Dreessen, and K. M. Maurey. 1981. Rapid cell surface appearance of endocytic membrane proteins in Chinese hamster ovary cells. Mol. Cell. Biol. 1:261-268.
30. Meier, W. A., S. R. Steitzman, and J. L. Cohn. 1980. The membrane proteins of the sinusomal system. II. Bidirectional flow between secondary lysosomes and plasma membrane. J. Cell Biol. 80:304-314.
31. Kappfül, P., and J. D. Pollard. 1981. Visualization of coated membrane regions, membrane specialization, and cytoplasmic filaments of cultured cells. J. Cell Biol. 91(2, Pt. 2):300a (Abstr.).