Panchina Calcarenite: A Building Material from Tuscany Coast

Andrea Aquino 1, Stefano Pagnotta 1,2, Simone Polese 1, Marco Tamponi 1, Marco Lezzerini 1

1Department of Earth Sciences, University of Pisa, via S. Maria 53 - 56126 Pisa, Italy
2Chemistry and Industrial Chemistry Department, University of Pisa, Via G. Moruzzi 13 - 56124 Pisa, Italy
andrea.aquino@phd.unipi.it

Abstract. The “Panchina” calcarenite widely outcrops along the Tuscan coastline from Livorno to Baratti (western Tuscany). It is a stone, highly porous with medium sized grains rich in organogenic carbonate fragments, mainly consisting in shells of bivalves, gastropods, and echinoderms visible to the naked eye or by using a lens. In the framework of the ongoing research on the building stones and mortars used throughout the Middle Ages in and surrounding the Pisa’s city (western Tuscany), this study focuses on the determination of the main physical and mechanical properties of “Panchina” stone samples from Livorno coast (Tuscany, Italy). The “Panchina” stone is no longer quarried and data is collected from unweathered rocks sampled from currently accessible outcrops. The data collected on twenty-eight samples from six outcrops of the Tuscan coast showed that the analysed specimens are made up of abundant calcite, subordinate quartz and feldspars, and traces of phyllosilicates. The analysed samples are characterized by medium-high porosity, highly variable water absorption by both capillarity and total immersion at atmospheric pressure, low uniaxial compressive resistance. Thanks to the good physical and mechanical properties that characterize the stone, the “Panchina” calcarenite is easy to work and extensively used in the necropolis of the Gulf of Baratti since Etruscan times and, in medieval times, in various public and religious buildings in the city of Pisa.

1. Introduction

Studies and research on the lithotypes used in Tuscan monumental constructions have been in progress for several years at the Earth Sciences Department of the University of Pisa [1-6]. Among these, a calcarenitic rock, called "Panchina" stone, is still poorly studied. It has been used in Tuscany since the Etruscans and Romans time, as testified from the presence of large ashlars in the archaeological areas of Luni and Baratti, and of small ones among the Roman remains in Pisa, at the so-called Nerone Thermæ [7]. Even in Pisa the use of the “Panchina” stone was intense, particularly in ancient buildings, until the mid-twelfth century, and subsequently was sporadic. The most relevant buildings built with this stone are S. Zeno and the façades of San Frediano and San Nicola [8-9]. Thanks to the ease of quarrying and carving of the stone, it was used to realise several ashlars worked for small arches. The “Panchina” stone was also used in the northern portion of the defensive walls of the city [7]. The aim of this work is to investigate the physical-mechanical properties of the "Panchina" calcarenite outcropping along the Livorno coast. The collected samples were preliminarily characterized from a chemical, mineralogical and petrographic point of view and, subsequently, the main physical and mechanical properties were determined following the indications of the European standards.
2. Geological setting

The "Panchina" stone of the western coast of Tuscany outcrops mainly along the coast between Livorno and Rosignano Marittimo, and in the Gulf of Baratti [10]. The typical outcrop of this rock is located within the city of Livorno and belongs to a morpho-sedimentary element, known in the literature as "Terrazzo di Livorno" [11-12] that represents the substrate on which the city was built. The "Terrazzo di Livorno" was interpreted as a polycyclic marine terrace by Federici & Mazzanti [13]. It developed during stage 5 of marine isotopic stratigraphy (MIS 5) starting around 125,000 years ago [14-16]. From the bottom to the top it is possible to distinguish the following stratigraphic sequence: 1) Sandstones and conglomerates of coastal marine environment ("Panchina I" or "Calcareniti sabbiose di Castiglioncello" and "Conglomerati di Chioma"), sometimes containing typical hot faunas [11-13] and referable to MIS 5e [14-17]. 2) Silty clays, sometimes peaty, of a mainly continental environment, sometimes containing terrestrial malacoфаunas and the remains of large mammals. These faunas are indicative of a phase of climate deterioration [12-13, 18-19] related to MIS 5d [18]. 3) Conglomerates in silty sandy matrix of river environment (Conglomerati di Rio Maggiore) that follow upward and in probable heterotopia to "Panchina I". 4) Sandstones of variable environment, from coastal marine to aeolian ("Panchina II"; [11, 20]), of uncertain dating, but probably corresponding to MIS 5c [14, 18]. This sequence refers to the "Calcareniti di Castiglioncello", cartography 1: 25.000 (QCP = q8) [20]. 5) Continental sands and sandy silts, strongly reddened or brown or orange in colour ("Sabbie di Ardenza" by [20]); often inside them there are Moustarian industries [21-22]. It has recently been proposed that their deposition occurred during MIS 3 and 4 [18, 23]. The substratum of the rather varied Pleistocene deposits consists of Pliocene deposits of the "Blue Clays" replaced to the west by sands and clays of the Lower Pleistocene of the Morrona Formation [24-25].

3. Materials and methods

Twenty-eight samples have been collected from six different areas along the coast from Livorno to Baratti: Salt Beach (PAS) and Accademia Beach (PAA) at Livorno, Quercianella (PAQ), Fortullino Beach (PAF) at Rosignano M.mo, Gulf of Baratti (PAR), Bucà delle Fate at Populonia (PAB). The analytical procedures used for this work are as follows: a) chemical analysis through X-ray fluorescence [26-27] for the determination of major and minor compounds (Na₂O, MgO, Al₂O₃, SiO₂, P₂O₅, K₂O, CaO, TiO₂, MnO, Fe₂O₃); b) CO₂ content was measured by calcimetry to estimate the amount of CaCO₃ in the tested sample [28]. The content of calcite was calculated with reference to a calibration curve constructed by linking the volume of CO₂ developed by acid attack of the powdered rock with the amount of pure CaCO₃; c) mineralogical analysis through X-ray diffractometry (XRD) λ = 1.5406 Å, angle range 4-66°20; d) petrographic analyses: transmitted light microscopic observation of thin sections (Zeiss Axioplan microscope); e) physical properties of the stones like real (ρ₁) and apparent (ρ₂) density, water absorption coefficient by capillarity, water absorption at atmospheric pressure, total and open porosity and saturation index have been determined following EN standards [29-31]. Real density (ρ₁) has been determined using a gas pycnometer (Ultrapycnometer 1000 by Quantachrome Corporation) [29]. The measurements were performed on approximately 10 g of very-fine-grained powders dried at 105 ± 5 °C for 24 h under the following experimental conditions: ultrahigh purity compressed Helium with outlet pressure of 140 kPa; target pressure, 100 kPa; equilibrium time, automatic; purge mode, 3 minutes of continuous flow; maximum number of runs. 6; number of averaged runs. the last three. Apparent density (ρ₂) has been determined by ratio between dry mass and volume of each specimen. The specimens were placed in a stove at 60° C until the dry weight was reached (i.e. when the difference between two successive weighing at an interval of 24 h is not greater than 0.1 % of the mass of the specimen). Then the specimens were immersed in distilled water following [29]. The volume of the specimens was measured by means of a hydrostatic balance on water-saturated samples [32]. Water absorption coefficient by capillarity has been determined on the same samples used for apparent density determination following EN 1936:2007 [30]. Measurements were taken after 1, 3, 5, 15, 30, 60, 120, 180, 240, 300, 360, 420, 480, 1440, 2880 minutes. Determination of water absorption at atmospheric pressure has been carried out on the same specimens [31]. Measurements were taken after 1, 3, 5, 15,
30, 60, 120, 180, 240, 300, 360, 420, 480, 1440, 2880 minutes. Total porosity has been calculated according to the following formula: \(P \text{ (vol. %)} = 100 \cdot (1 - \frac{\rho_a}{\rho_r}) \).

4. Results and discussions

The description of the “Panchina” stone samples, their sampling locations and their properties observed with naked eye are reported in Table 1.

Sample	Location	Colour	Grain size	Porosity	Decay
PAB01	PAB	G	Medium Sand	Medium	Medium - Low
PAB02	PAB	G	Medium Sand	Medium	Medium - Low
PAB03	PAB	G	Medium Sand	Medium	Medium - Low
PAB04	PAB	G	Medium Sand	Medium	Medium - Low
PAB05	PAB	G	Medium Sand	Medium	Medium - Low
PAB06	PAB	G	Medium Sand	Medium	Medium - Low
PAB07	PAB	G	Medium Sand	Medium	Medium - Low
PAB08	PAB	G	Medium Sand	Medium	Medium - Low
PAB09	PAB	G	Medium Sand	Medium	Medium - Low
PAB10	PAB	G	Medium Sand	Medium	Medium - Low
PAF01	PAF	M	Medium Sand	High	High
PAF02	PAF	M	Medium Sand	High	High
PAQ01	PAQ	GB	Silt	Very Low	Almost absent
PAQ02	PAQ	GB	Silt	Very Low	Almost absent
PAS01	PAS	GB	Fine Sand grain	Low	Medium
PAS02	PAS	GB	Fine Sand grain	Low	Medium
PAS03	PAS	GB	Fine Sand grain	Low	Medium
PAS04	PAS	GB	Fine Sand grain	Low	Medium
PAA1	PAA	G	Medium Sand	Medium	High
PAA2	PAA	M	Coarse Sand	High	High
PAB11	PAB	G	Medium Sand	Medium	Medium - Low
PAB12	PAB	G	Medium Sand	Medium	Medium - Low
PAR1	PAR	G	Fine Sand grain	Low	Low
PAR2	PAR	M	Fine Sand grain	Low	Low
PAR3	PAR	G	Medium Sand	Medium	Medium - Low
PAR4	PAR	GR	Medium Sand	Medium	Medium - Low
PAR5	PAR	G	Fine Sand grain	Low	Low
PAR6	PAR	M	Medium Sand	Medium	Medium - Low

PAA = Livorno, Accademia Beach; PAS = Livorno, Salt Beach; PAQ = Quercianella; PAF = Rosignano M.mo, Fortullino Beach; PAR = Gulf of Baratti; PAB = Buca delle Fate at Populonia; G = yellow; B = white; M = brown; R = red.

The colour of the analysed samples varies from white to brownish red. “Panchina” stone is a calcarenite with variable grain size between silt and coarse sand. The porosity is quite variable from high to very high, and the samples present an external alteration from almost absent to high.
In Table 2, we report the chemical composition of the analysed samples of “Panchina” stone. The main components, excluding the Loss On Ignition (LOI) values that is essentially due to the CO₂ contents, are represented by CaO, with values ranging from 35.01 wt. % to 49.91 wt. % and SiO₂ even though the latter one highly varies from 8.31 wt. % to 32.92 wt. %.

Table 2. Chemical compositions (wt. %) of the analysed samples of “Panchina” stone.

Sample	LOI	Na₂O	MgO	Al₂O₃	SiO₂	P₂O₅	K₂O	CaO	TiO₂	MnO	Fe₂O₃
PAB01	28.60	0.15	0.30	1.59	32.92	0.06	0.42	35.01	0.16	0.28	0.51
PAB02	34.65	0.14	0.39	1.38	17.88	0.05	0.39	43.94	0.32	0.31	0.55
PAB03	33.30	0.16	0.32	1.56	21.26	0.05	0.39	41.87	0.20	0.35	0.54
PAB04	32.22	0.08	0.26	1.01	24.62	0.04	0.35	40.48	0.21	0.23	0.50
PAB05	32.45	0.11	0.27	1.24	24.18	0.06	0.41	40.29	0.26	0.30	0.43
PAB06	31.34	0.15	0.32	1.46	25.84	0.05	0.37	39.56	0.20	0.33	0.38
PAB07	32.82	0.13	0.29	1.03	23.66	0.05	0.34	40.82	0.23	0.26	0.37
PAB08	29.48	0.12	0.28	1.26	30.40	0.05	0.35	37.12	0.19	0.29	0.46
PAB09	28.16	0.21	0.32	1.61	32.77	0.05	0.37	35.39	0.21	0.45	0.46
PAB10	30.01	0.11	0.29	1.25	29.09	0.08	0.37	37.70	0.37	0.27	0.46
PAF01	35.23	0.15	0.25	1.20	17.49	0.06	0.35	44.33	0.28	0.22	0.44
PAF02	35.41	0.14	0.29	1.09	17.95	0.05	0.29	43.88	0.30	0.18	0.42
PAQ01	36.11	0.36	0.25	1.72	15.36	0.05	0.32	45.01	0.25	0.22	0.35
PAQ02	31.98	0.23	0.28	1.81	24.44	0.09	0.38	39.61	0.29	0.33	0.56
PAS01	38.49	0.07	0.27	0.99	10.93	0.07	0.36	47.92	0.18	0.31	0.41
PAS02	37.77	0.07	0.17	0.87	11.95	0.15	0.24	47.83	0.20	0.37	0.38
PAS03	39.96	0.04	0.22	0.66	8.31	0.03	0.25	49.91	0.19	0.14	0.29
PAS04	38.45	0.18	0.34	1.46	9.86	0.15	0.39	47.96	0.24	0.46	0.51

| Mean | 33.69 | 0.14 | 0.28| 1.29 | 21.05| 0.07 | 0.35| 42.15| 0.24 | 0.29 | 0.45 |
| St.Dev. | 3.45 | 0.07 | 0.05| 0.30 | 7.57 | 0.03 | 0.05| 4.36 | 0.05 | 0.08 | 0.07 |

PAA = Livorno, Accademia Beach; PAS = Livorno, Salt Beach; PAQ = Quercianella; PAF = Rosignano M.mo, Fortullino Beach; PAR = Gulf of Baratti; PAB = Buca delle Fate at Populonia; LOI = Loss on Ignition at 950 °C; Fe₂O₃ = total iron expressed as Fe₂O₃.

The results of the analyses of the physical and mechanical properties are reported in Tables 3 and 4. The apparent density, ρₐ, varies from 1.73 to 2.13 g/cm³ in agreement with the total porosity values, ranging from 21.6 to 36.3 vol.%. The water absorption varies from 9.0 to 19.6 wt.%, and from 19.0 to 28.6 vol.%, with a saturation index that varies from 73 to 87.

The uniaxial compressive resistance of the "Panchina" stone samples is relatively low, but highly variable due to the heterogeneity of its composition. The analysed samples have uniaxial compressive strength values ranging from 2.2 to 8.1 MPa, rebound index values from 64 to 66, and ultrasound pulse velocity values from 3748 to 4018 m/s.
Table 3. Main physical properties of the analysed samples of “Panchina” stone.

Campione	ρ_r (g/cm3)	ρ_a (g/cm3)	C_1 (g/m2s$^{0.5}$)	w. Abs. (wt. %)	w. Abs. (vol. %)	Total porosity (% in vol)	Saturation Index
PAB mean	2.71	1.97	131.08	11.3	21.8	27.2	79
St. Dev.	0.01	0.14					
PAF mean	2.71	1.92	143.33	11.2	21.4	29.2	73
St. Dev.	0.01	0.02	63.52	1.0	1.7	0.7	4
PAQ mean	2.71	2.13	391.50	9.0	19.0	21.6	87
St. Dev.	0.01	0.08	173.24	3.4	6.5	2.9	19
PAS mean	2.71	1.73	340.33	19.6	28.6	36.3	79
St. Dev.	0.01	0.03	88.34	1.3	1.8	1.1	3

ρ_r = real density; ρ_a = apparent density; C_1 = water absorption coefficient by capillarity; w. Abs. = water absorption at atmospheric pressure. PAA = Livorno, Accademia Beach; PAS = Livorno, Salt Beach; PAQ = Quercianella; PAF = Rosignano M.mo, Fortullino Beach; PAR = Gulf of Baratti; PAB = Buca delle Fate at Populonia.

Table 4. Main mechanical properties of the analysed samples of “Panchina” stone.

Campione	Compressive Strength (MPa)	Rebound Index	Ultrasound velocity (m/s)
PAB mean	7.6	64	3865
St. Dev.	6.7	4	244
PAF mean	5.6	64	3993
St. Dev.	5.6	5	193
PAQ Mean	8.1	66	4018
St. Dev.	8.1	3	277
PAS mean	2.2	64	3748
St. Dev.	2.2	6	247

PAS = Livorno, Salt Beach; PAQ = Quercianella; PAF = Rosignano M.mo, Fortullino Beach; PAB = Buca delle Fate at Populonia.

5. Conclusions
The “Panchina” calcarenite, outcropping on the coast from Livorno to Baratti, is mainly composed of calcite (63-90% wt) and quartz (8-34% wt) with some feldspars and phyllosilicates in traces. The rock is characterized by medium-high porosity (12-37% by volume) and shows variable water absorption by capillarity (at 5 minutes, 10-514 g/m2s$^{0.5}$) and by total immersion at atmospheric pressure (3-19% by weight). The compressive resistances are medium-low (1-31 MPa). We notice an inverse proportionality between porosity and mechanical compressive strength in the material. The stones have evident variations of physical-mechanical properties related both to different outcrop places and from the same area of origin (e.g. PAS). The low apparent density and easy workability favoured the use of this stone since the ancient times for the construction of the Etruscan necropolis of Baratti and, in medieval times, in various public and religious buildings in the city of Pisa.

References
[1] M. Franzini, M. Lezzerini, L. Mannella, "The stones of medieval buildings in Pisa and Lucca (western Tuscany. Italy). 3 – Green and white-pink quartzites from Mt. Pisano", *Eur. J. Mineral.*, vol. 13, pp. 187-195, 2001.
The stones of medieval buildings in Pisa and Lucca (western Tuscany, Italy). 4 – "Agnano breccias" from Mt. Pisano", Eur. J. Mineral., vol. 14, pp. 447-451, 2002.

[3] M. Franzini, M. Lezzerini, “The stones of medieval buildings in Pisa and Lucca provinces (western Tuscany, Italy). 1 – The Monte Pisano marble", Eur. J. Mineral., vol. 15, pp. 217-224, 2003.

[4] M. Franzini, M. Lezzerini, F. Origlia, “Marbles from the Campiglia Marittima area (Tuscany, Italy)”, Eur. J. Mineral., vol. 22, pp. 881-893, 2010.

[5] A. Baldanza, A. Gioncada, M. Lezzerini, “Historical building stones of the western Tuscany (Italy): the Acquabona Limestones from Mts. Livornesi”, Periodico di Mineralogia, vol. 81, pp. 1-17, 2012.

[6] M. Ramacciotti, M. Spampinati, M. Lezzerini, “The building stones of the apsidal walls of the Pisa’s Cathedral”, Atti Soc. Tosc. Sci. Nat. Mem. Serie A., vol. 122, pp. 55-62, 2015.

[7] M. Franzini, “Le pietre Toscane nella edilizia medioevale della città di Pisa”, Mem. Soc. Gol. It., vol. 49, pp. 233-244, 1993.

[8] M. Lezzerini, “Mappatura delle pietre presenti nella facciata della chiesa di San Frediano (Pisa, Italia)”, Atti Soc. Tosc. Sci. Nat. Mem. Serie A., vol. 110, pp. 43-50, 2005.

[9] M. Lezzerini, F. Antonelli, S. Columbu, R. Gadducci, A. Marradi, D. Miriello, L. Parodi, L. Secchiarli, A. Lazzeri, “Cultural Heritage Documentation and Conservation: Three-Dimensional (3D) Laser Scanning and Geographical Information System (GIS) Techniques for Thematic Mapping of Façade Stonework of St. Nicholas Church (Pisa, Italy)”, International Journal of Architectural Heritage, vol. 10:1, pp. 9-19, 2016.

[10] F. Rodolico, “Le pietre delle città d’Italia”, Le Monnier, Firenze, 1953.

[11] A. Malatesta, “Le formazioni pleistocenice del Livornese”, Atti Soc. Tosc. Sci. Nat. Mem. Serie A, vol. 51, pp. 145-206, 1942.

[12] G. Barsotti, P.R. Federici, L. Giannelli, R. Mazzanti, G. Salvatorini, “Studio del Quaternario Livornese, con particolare riferimento alla stratigrafia e alle faune delle formazioni del bacino di carenaggio della Torre del Fanale”, Mem. Soc. Geol. It., vol. 13, pp. 425-495, 1974.

[13] P.R. Federici, R. Mazzanti, “Note sulle pianure costiere della Toscana”, Mem. Soc. Geograf. It., vol. 53, pp. 165-270, 1995.

[14] F. Antonioli, S. Silenzi, E. Vittori, C. Villani, “Sealevel changes and tectonic mobility. Precise measurements in three coastlines of Italy considered stable during the last 125 ky”, Physics and Chemistry of the Earth. Part A: Solid Earth and Geodesy, vol. 24, pp. 337-342, 1999.

[15] J.H. Chen, H.A. Curran, B. White, G.J. Wasserburg, “Precise chronology of the last interglacial period: 234U-230Th data from fossil coral reefs in the Bahamas”, Bulletin of the Geological Society of America, vol. 103, pp. 82-97, 1991.

[16] P.J. Hearty, G.H. Miller, C.E. Stearns, B.J. Szabo, “Aminostratigraphy of Quaternary shorelines in the Mediterranean Basin”, Geological Society of America Bulletin, vol. 97, pp. 850-858, 1986.

[17] G. Zanchetta, F.P. Bonadonna, A. Ciampalini, A.E. Fallick, G. Leone, F. Marcolini, L. Michelucci, “Intratyrrenian cooling event deduced by non-marine mollusc assemblage at Villa S. Giorgio (Livorno, Italy)”, Boll. Soc. Paleont. It., vol. 43, pp. 347-359, 2004.

[18] G. Zanchetta, R. Beccatini, F. Bonadonna, P. Bossio, A. Ciampalini, A. Colonese, B. Dall’Antonia, A.E. Fallick, G. Leone, F. Marcolini, M. Mariotti Lippi, L. Michelucci, “Late Middle Pleistocene cool non-marine mollusc and small mammal faunas from Livorno (Italy)”, Rivista Italiana di Paleontologia e Stratigrafia, vol. 112, pp. 135-155, 2006.

[19] A. Lazzarotto, R. Mazzanti, C. Nencini, “Geologia e morfologia dei Comuni di Livorno e Collesalvetti”, Quaderni del Museo di Storia Naturale di Livorno, vol. 11, pp. 1-85, 1990.

[20] A. Lazzarotto, R. Mazzanti, C. Nencini, “Carta Geologica dei Comuni di Livorno e Collesalvetti”, Quaderni del Museo di Storia Naturale di Livorno, vol. 11, 1990.

[21] A. Malatesta, “L’industria musteriana di Livorno”, Atti della Società Italiana per il progresso
[22] A. Ciampalini, F. Sammartino, “Le industrie musteriane e le Sabbie di Ardenza (Livorno)”, Quaderni del Museo di Storia Naturale di Livorno, vol. 20, pp. 27-45, 2007.
[23] A. Bossio, L. Giannelli, R. Mazzanti, R. Mazzei, G. Salvatorini, “Gli strati alti del Messiniano, il passaggio Miocene-Pliocene e la sezione piolo-plio-pleistocenica di Nugola nelle colline a NE dei Monti Livornesi”, IX Convegno Società Paleontologica Italiana. 3-8 Ottobre 1981, pp. 55-90.
[24] L. Caudi, C. Bogi, “La malacofauna pliocenica del Cisternino (Livorno)”, Quaderni del Museo di Storia Naturale di Livorno, vol. 15, pp. 1-24, 1997.
[25] A. Costantini, A. Lazzarotto, M. Maccantelli, R. Mazzanti, F. Sandrelli, E. Tavarnelli, F.M. Elter, Geologia della Provincia di Livorno a Sud del Fiume Cecina”, Quaderni del Museo di Storia Naturale di Livorno, vol. 13. Supplemento n. 2, pp. 1-164, 1993.
[26] M. Franzini, L. Leoni, M. Sai, “Revisione di una metodologia analitica per fluorescenza-X. basata sulla correzione completa degli effetti di matrice”, Rend. Soc. It. Mineral. Petrog., vol. 31, pp. 365-378, 1975.
[27] M. Lezzerini, M. Tamponi, M. Bertoli, “Reproducibility, precision and trueness of X-ray fluorescence data for mineralogical and/or petrographic purposes”, Atti Soc. Tosc. Sci. Nat., Mem. Serie A., vol. 120, pp. 67-73, 2013.
[28] G. Leone, L. Leoni, F. Sartori, “Revisione di un metodo gasometrico per la determinazione di calcite e dolomite”, Atti Soc. Tosc. Sci. Nat., Mem. Serie A, vol. 95, pp. 7-20, 1988.
[29] EN 1936:2007 – “Natural stone test methods - Determination of real density and apparent density, and of total and open porosity”.
[30] EN 1925:1999 – “Natural stone test methods - Determination of water absorption coefficient by capillarity”.
[31] EN 13755:2008 – “Natural stone test methods - Determination of water absorption at atmospheric pressure”.
[32] M. Franzini, M. Lezzerini, “A mercury-displacement method for stone bulk-density determinations”, Eur. J. Mineral., vol. 15, pp. 225-229, 2003.