Telocytes in Fibrosis Diseases: From Current Findings to Future Clinical Perspectives

Xiao-jiao Wei1, Tian-quan Chen1, and Xiao-jun Yang1

Abstract

Telocytes (TCs), a distinct type of interstitial (stromal) cells, have been discovered in many organs of human and mammal animals. TCs, which have unique morphological characteristics and abundant paracrine substance, construct a three-dimensional (3D) interstitial network within the stromal compartment by homocellular and heterocellular communications which are important for tissue homeostasis and normal development. Fibrosis-related diseases remain a common but challenging problem in the field of medicine with unclear pathogenesis and limited therapeutic options. Recently, increasing evidences suggest that where TCs are morphologically or numerically destructed, many diseases continuously develop, finally lead to irreversible interstitial fibrosis. It is not difficult to find that TCs are associated with chronic inflammation and fibrosis. This review mainly discusses relationship between TCs and the occurrence of fibrosis in various diseases. We analyzed in detail the potential roles and speculated mechanisms of TCs in onset and progression of systemic fibrosis diseases, as well as providing the most up-to-date research on the current therapeutic roles of TCs and involved related pathways. Only through continuous research and exploration in the future can we uncover its magic veil and provide strategies for treatment of fibrosis-related disease.

Keywords
telocytes, tissue homeostasis, fibrosis, extracellular matrix, treatment, fibrosis-related diseases

Introduction

Cellular Morphology

Popescu and colleagues found a novel type of stromal cell called interstitial cajal-like cells (ICLC) by chance in 2005, then it was designated formally as telocytes (TCs) in 20101,2. TCs are cells containing telopodes (Tps), which is the most notable and significant traits that distinguishes TCs from other populations of interstitial cells3,4. Transmission electron microscopy (TEM) is used as the gold standard to observe typical ultrastructural characteristics of TCs4,5. TCs are ultrastructurally characterized by a small piriform, spindle or triangular cell body (containing a small amount of cytoplasm and nucleus) and extremely long and thin cellular prolongations with uneven caliber, named Tps (extending about 10–100 microns), which demonstrates a moniliform structure with thin segments (podomers) alternating with dilated regions (podoms)3. Mitochondria, endoplasmic reticulum, and caveolae were observed within podoms, these are crucial for cellular metabolism and mediating the movement of TCs: calcium signaling, lipid homeostasis, mitochondrial dynamics, transport, and apoptotic signaling5,6. In the interstitial compartment, TCs are usually organized into a three-dimensional (3D) labyrinth-like network within interstitial compartment, which facilitates direct establishment of either homocellular or heterocellular contacts between Tps and other adjacent cells, such as fibroblasts, mast cell, stem cells (SCs), immunocytes, vascular endothelial cells, pericytes, muscle cells, and nerve fibers7–11 (Fig. 1). In addition, TCs can establish contacts with the connective extracellular matrix (ECM)12–14. With the aid of focused ion beam–scanning electron microscope (FIB-SEM) tomography, Tps present narrow and flattened (ribbon-like) structures and form 3D network by adherent homocellular junctions between TCs in heart and skin tissues; thus, strengthening the understanding of TCs’ spatial morphology5,15. All of these intercellular contacts were believed to be structural basis to

1 Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China

Submitted: May 11, 2022. Accepted: May 19, 2022.

Corresponding Author:
Xiao-jun Yang, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, P.R. China.

Email: yang.xiaojun@hotmail.com
Cell Transplantation

directly regulate information communication and influence cellular behavior within interstitial compartment.

Under TEM, many different types of extracellular vesicles (EVs) were observed around Tps, such as exosomes, ectosomes, apoptotic bodies, and multivesicular cargos, such indirect paracrine activity were supposed to enhance functional regulation of adjacent cells16–18 (Fig. 1). In addition to special morphological features, TCs have distinct proteomic, gene profiles and miRNA imprints which are extremely different from those of fibroblasts, mesenchymal cells, or endothelial cells19–23. Given the current evidence, TCs is a unique and typical stromal cell population, with accumulation evidence and advancement on its morphology and function in the last decade.

TCs Heterogeneity: Distribution and Immunophenotype

At present, increasing evidence indicates that TCs are located in the stroma of several organs and tissues in mammal animals, such as the heart24, the scalp 25, mammary gland1, male reproductive system 26–30, female reproductive system31–33, urinary system34, the gastrointestinal tract35, spleen36, skin37, joints12, kidney38, liver and so on39 (Table 1). Although TCs are lack of special immune markers, combined immunohistochemistry can be used to complement for the identification of TCs72,73. Basically, co-expression of CD34, vimentin, and PDGFRα is currently considered as the most noteworthy marker of TCs7. Multiple evidence showed that TCs express different immunophenotypes in different or even the same tissues or organs under the influence of the signaling received74 (Table 1). For instance, CD34, PDGFRα, vimentin, and c-kit are the most typical immune labels of cardiac TCs80,75,76. In female reproductive system, TCs are positive for CD34, c-kit, vimentin, PDGFRα, estrogen receptors (ER), progesterone receptors (PR), and T-type Ca2+ channels33,54,77,78. In terms of gastrointestinal tract, TCs are found to be double positive for CD34 and PDGFRα, and negative for c-kit35,79. Double-immunolabeling can act as a useful means to distinguish TCs from other mesenchymal cells, such as fibroblasts being vimentin-positive and CD34-negative, whereas TCs being double positive for CD34 and vimentin76. Giving different immune phenotypes, the researchers believe that there are different subpopulations of TCs even with the same ultrastructure and that such differences might be the basis of TCs region-specific heterogeneous functions61,80.

Structural and Paracrine-Based Functional Evidence

The role of TCs is still not fully understood, but many relevant functions have been proposed, with some of them strongly confirmed by experimental data, while others are highly structural related and thus somewhat speculative. TCs contribute to the maintenance of normal organ structure, tissue homeostasis, information center, and mechanical sensing, by forming complex 3D network within interstitial compartment through various types of homocellular and heterocellular junctions81. First, structural or mechanical support was evidenced typically in intestinal muscularis, TCs build complex network framework through connections with various structures: smooth muscle cells, interstitial cells of Cajal (ICC), nerve bundles, blood vessels, and SCs niches; function to maintain normal peristaltic movements; and prevent tissue deformation in the gastrointestinal tract82. Similarly, mechanical support from TCs’ network also was observed in interstitial space of the urinary bladder during stretching activities34. Second, TCs contribute to cell-to-cell communication and signaling. TCs act on neighboring cells (especially SCs niches) either by direct contact or paracrine activity. Several highly expressed substances identified in TC secretome profile were carried by EVs, including cytokines, growth factors, mRNAs, epigenetic regulators like miRNAs, and other non-coding RNAs, which were believed to be involved in intercellular exchange with adjacent cells83. Meanwhile, stemness properties of TCs were also evidenced by multiple in vivo studies. TCs is an emerging component of

Figure 1. Schematic drawing depicting telocytes (TCs) interstitial system. Based on transmission electron microscope, TCs construct three-dimensional structure to integrate information by either direct homocellular/heterocellular contacts between telopodes (Tps) and adjacent cells, or indirect paracrine extracellular vesicles (EV) to influence adjacent cells, including fibroblasts (Fb), stem cells (SCs), immunocytes (IC), mast cells (MC), endothelial cells (EC), pericytes (PC), smooth muscle cells (SMC), and nerves (N). In addition, TCs can establish contacts with the connective extracellular matrix (ECM) which aims to regulate and control cellular connection and information communication. Solid and dotted arrows represent dilated podoms and thin podomers, respectively.
System	Organ	Markers	Reference
Cardiovascular system	Heart	CD34; c-kit; vimentin; PDGFRα; PDGFRβ	Bei et al.²⁴, Zhuo et al.⁴⁰, Zhao et al.⁴¹, Chang et al.⁴²
	Vasculature	c-kit;	Gherghiceanu et al.⁴³
Respiratory system	Lungs	c-kit; CD34; vimentin	Zheng et al.⁴⁴
	Trachea and bronchi	c-kit; CD34; vimentin	Zheng et al.⁴⁵
Digestive system	Liver	CD34; PDGFRα; PDGFRβ; vimentin; c-kit	Xiao et al.⁵⁹
	Gallbladder	CD34; PDGFRα; c-kit; vimentin; nestin	Hinescu et al.⁶⁶
	Gastrointestinal tract	CD34; vimentin; PDGFRα; FOXL1; GLI1; SOX6; CD90; Lgr5	Vannucchi et al.⁵⁵, Degirmenci et al.⁶⁷, Shoshkes-Carmel et al.⁶⁸, Kinchen et al.⁴⁹, Carpu et al.⁵⁰, Halpern et al.⁵¹
	Spleen	vimentin; CD34; nanog; sca-1; c-kit	Chang et al.³⁶, Zhang et al.⁵²
Female reproductive system	Uterus	CD34; c-kit; vimentin; PDGFRα; PDGFRβ; ER; PR; α-SMA; CD44; Sca-1; connexin; SK3 channels; T-type Ca²⁺ channels	Cretoiu et al.⁵³, Ciontea et al.⁵⁴, Klein et al.⁵⁵, Hatta et al.⁵⁶, Rosenbaum et al.⁵⁷
	Fallopian tube	CD34; vimentin; ER; PR; S-100; caveolin1; caveolin2; nestin	Cretoiu³³, Cretoiu et al.⁵⁸
	Ovary	CD34; vimentin; PDGFRα; PDGFRβ	Liu et al.⁵⁹, Mazzoni et al.⁵⁰
	Placenta	CD34; c-kit; vimentin; caveolin1; TMEM16a	Suci et al.⁶¹, Nizyaeva et al.⁵²
	Mammary gland	CD34; c-kit; vimentin	Mou et al.⁵³
Urinary system	Kidney	c-kit; CD34; vimentin; nestin; CD105	Li et al.⁶⁴, Rusu et al.⁶⁵
	Ureter	CD34; CD105	Dobra et al.⁶⁶
	Urinary bladder	CD34; calreticulin; PDGFRα; α-SMA	Vannucchi et al.⁵⁴
Skin system	Skin	c-kit; CD34; vimentin	Ceafalan et al.³⁷
Male reproductive system	Testes	CD34; PDGFRα	Marini et al.²⁷
	Prostate	CD34; c-kit; TGFβ1; α-SMA; ERβ; VEGF; TNFR1	Sanches et al.⁵⁷,⁶⁸
	Epididymis	CD34; VEGF; S-100; vimentin	Hussein et al.²⁹
	Seminal vesicle	c-kit; CD34; desmin; S-100; ER; PR	Abd-Elhafeez et al.³⁰
Skeletal muscle system	Skeletal muscle	c-kit; caveolin1; VEGF; PDGFRβ	Popescu et al.⁶⁹, Manetti et al.⁷⁰, Suci et al.⁷¹

ER: estrogen receptors; PR: progesterone receptors; VEGF: vascular endothelial growth factor.
SCs niches microenvironment, provide both structural and paracrine support for SCs niche in different organs, including the intestine, skeletal muscle, heart, lung, and skin. Especially in gastrointestinal tract, subepithelial TCs act as “nursing cells” either through intercellular connections or through specific secretome, provide essential non-epithelial Wnts ligands and other activation or inhibition signals, to regulate proliferation, differentiation, maturation, and guidance of adjacent tissue-resident SCs and maintain homeostasis of the SCs niche microenvironment. Knock out of Porcupine (Porcn) and Wntless in FoxI1- or Gli1 - expressing TCs, which were two key genes to functional maturation of Wnts, will lead to decrease in SCs and stemness properties, breakdown of SCs niches and impaired epithelial renewal. In addition to the above effects, TCs may also be involved in immune response (immunomodulation and immunosurveillance), and electrical signal transduction (spreading the slow waves generated by ICC).

Protection Against Fibrosis

Fibrosis and regeneration are two opposite side of repair process after tissue injury or chronic inflammation. During fibrosis, via epithelial–mesenchymal transition (EMT), various cells including resident mesenchymal cells, or epithelial cells, are crucial sources of fibroblasts, followed with fibroblast transformation to myofibroblasts, which was the main component of ECM and a crucial biological mediator of fibrosis. Uncontrolled fibrosis is characterized by hyperplasia of myofibroblasts and subsequent excessive deposition of ECM, tissue remodeling, and scar formation, finally leads to organ malfunction, increased cancer risk, and end-stage organ disease.

Increasing evidence proved that TCs abnormalities (damage or loss) are closely related to many fibrosis-related diseases, such as systemic sclerosis, ulcerative colitis (UC), Crohn’s diseases (CD), heart failure, liver fibrosis, endometriosis (EMs), and acute salpingitis (AS). As TCs develop connecting or supporting structure within the whole interstitial compartment, fibrosis process will simultaneously spread to TCs. However, TC damage or loss might precede or be at the beginning of the onset of fibrosis, rather than being merely a consequence of the fibrotic process. Nevertheless, reciprocal causation might exist between the development of fibrosis and TCs’ damage in fibrosis diseases.

However, accumulating evidence confirmed that, TCs transplantation contributed to reduction of ECM deposition, enhanced recovery of organ function in model of myocardial infarction (MI) and renal fibrosis. Therefore, TCs provide a promising therapeutic opportunity to regeneration repair instead of tissue fibrosis, although the underlying mechanism(s) still need further investigation. The purpose of this review is to summarize current findings of TCs in various fibrotic diseases, with aim to probe future clinical perspectives.

Cardiovascular System

Cardiac TCs have been most extensively studied than any other tissues or organs. TCs preset in full layers of the heart wall, including epicardium, myocardium, endocardium, and cardiac valves, with the highest cell density in epicardium. Longitudinal and cross 3D networks were formed through heterogeneous and homogeneous intercellular junctions between cardiac TCs and mast cell, fibroblasts, pericytes, and cardiac progenitor. TCs also provide structure and functional support for SCs niches in epicardium, with bidirectional posttranscriptional signaling exchanged between TCs and SCs through EVs. Although in disease-affected cardiac tissues, TCs lose its essential roles in maintaining the integrity of structure and function. The number of TCs and Tps were decreased and even lost as a consequence of quantitative and qualitative changes in ECM composition, with negative correlation to the amount of mature fibrillar collagens and positive correlation to degraded collagens. Even the aging human heart was featured with a gradual depletion of TCs.

Multiple studies revealed therapeutic value of TCs. During acute experimental MI, TCs experienced significant loss in the first 1 or 2 days, while increased around the neo-vascularization border zone 30 days later, with direct physical contact or very narrow intercellular cleft (80–120 nm) to endothelial cells, and released vesicles containing various angiogenic micro-RNAs, therefore indicated that TCs were involved in neo-angiogenesis during late stage of MI. Cardiac TCs transplantation in rat model of MI dramatically enhance the number of c-kit/CD34 double positive cells in the infarcted area, resulted in a substantial reduction in infarct size and collagen deposition, increased microvessel density (MVD) in infarcted and marginal zones, enhanced ventricular remodeling and post-infarcted cardiac function after 14 weeks. Therapeutic value of TCs was also evidenced by its support on SCs niches, TCs abnormalities (damage or loss) will inevitably influence EVs secretion and impact local microenvironment, thus affecting the proliferation and differentiation of SCs. Transplantation of human-induced pluripotent stem cell (iTSC) can protect cardiac function and alleviate ventricular remodeling of MI in mice, by reconstruction of the interstitial network of TCs and angiogenesis within the infarcted myocardium. In which, authors believed that TCs may play a unique role in contributing to the observed functional recovery. More recently, cardiac TCs-EVs are capable of transferring macromolecular signals such as miRNA to adjacent cells, hence altering their transcriptional activity. Transplantation of miRNA-21-5P in rat MI model, the most abundant miRNA in cardiac TCs exosome, can facilitate angiogenesis, increase MVD in infarcted and border zones, reduce myocardial infarct size and fibrosis, and improve myocardial function via targeting and silencing Cdp1 gene to inhibit the apoptosis of microvascular endothelial cells (Fig. 2).
disease (CAVD), TCs-EVs injection can reduce valve calcification and valve interstitial cells apoptosis by transferring miRNA-30b, and inhibiting wnt/β-catenin/Runx2 axis110 (Fig. 2).

Giving these results, transplantation of TCs may ameliorate fibrosis of cardiac via following mechanisms: (a) enhance cardiac angiogenesis, (b) improve structural support in reconstruction of TCs network within interstitial compartment.
(c) rich amounts of signal substances, such as miRNA carried by TCs-EV or exosome, and (d) restore structural and functional support to activity of SCs niches.

Skin System

Skin TCs preset mainly in dermal reticular layer, with a few in dermal papilla layer. In normal skin, FIB-SEM tomography demonstrates that, TCs develop spatial 3D networks, Tps construct heterocellular contacts to surrounding cells: mast cells, fibroblasts, adipocytes, blood vessels, nerves and adnexal structures of skin. TCs maintain normal tissue structure by controlling their activity\(^{10,15,37}\). TCs were found surrounding SCs in human normal skin and acting as nurse cells\(^{94}\). Similarly, EVs were observed along with Tps, indicated rich amount of information exchange and functional regulation to adjacent cells from skin TCs\(^{15}\).

In skin diseases, such as psoriasis and systemic sclerosis (SSc), which manifest as over-production of autoantibodies and progressive fibrosis, TCs experience ischemia-induced cell degeneration: severe ultrastructural damages (swollen mitochondria, cytoplasmic vacuolization, lipofuscin bodies) or almost completely disappeared in full layer of skin as disease progressive\(^{64,117}\). Authors speculated that, skin TCs might be more susceptible to chronic ischemic microenvironment of SSc\(^{94}\). In consequence, damage or loss of TCs may affect the 3D structure of skin ECM. First, in normal dermis, Tps were usually collagen-embedded or lining elastic fibers, whereas Tps were surrounded with large and abnormal aggregates of elastin and collagen fibers in SSc skin to limit their spreading into the interstitium, thus impact normal construction of 3D structure\(^{94}\). Next, damage or loss of TCs might contribute to abnormal activation of fibroblasts and mast cells in SSc skin, lead to excessive deposition of ECM and fibrosis\(^{10,37,94}\). Last but not least, damage or loss of TCs was accompanied by disappearance of vascular wall-resident SCs niches, this will inevitably impact SCs-mediated tissue regeneration and lead to fibrosis\(^{94}\). Interestingly, loss of TCs was found to accompany fibrosis of multiple visceral organs in SSc, such as gastric wall, myocardium and lung\(^{103}\).

Similar results were reported in bleomycin-induced mouse model of scleroderma, an early stage of SSc; obvious cellular degeneration in ECM of dermis, such as breaking and shorting of Tps, nuclear fragmentation, progressive reduction, and disappearance of TCs were observed with aggravation of skin fibrosis, and authors suggested that TCs injury occurred in the beginning of fibrosis rather than the result of fibrosis\(^{118}\). In addition, TCs were considered to be source of myofibroblasts during the formation of dermal fibrosis, although the progressive reduction of CD34 in TCs was not parallel to the increased \(\alpha \)-SMA expression in myofibroblasts. This might be explained that, only part of TCs transition into myofibroblasts, with most of the rest experience degeneration and necrosis\(^{118}\). This opinion was consistent with others, in which human resident CD34+ stromal cells/TCs have progenitor capacity and are a source of \(\alpha \)-SMA+ cells during tissue repair process\(^{119-121}\). In addition, giving the contact between TCs and macrophages in normal skin, and the fact that TCs enhanced classically activated macrophages (M1) differentiation\(^{114}\), authors proposed that TCs injury might lead to alternatively activated macrophages (M2), which was an important participant for promoting tissue fibrosis in many fibrotic diseases\(^{118}\).

So far, there is no report concerning the therapeutic application of TCs in skin diseases.

Liver

TCs mainly located in Disse space of liver, provide 3D structural support to hepatic stellate cells (HSCs), hepatocytes and SCs in interstitial compartment\(^{10}\). Hepatic fibrosis and liver cirrhosis are characterized by excessive activation of HSCs and deposition of ECM\(^{122}\). Close relationship between TCs and liver injury and fibrosis was documented. In human liver fibrosis, TCs, which were labeled with four different double immunofluorescence markers (CD34/PDGF\(\alpha \) or CD34/PDGF\(\beta \) or CD34/Vimentin or CD34/c-kit), all demonstrate severe reduction of TCs, with obvious collagen deposition, accumulation of inflammatory cells, and necrosis. However, researchers were unable to determine whether TCs damage was the cause or result of liver fibrosis\(^{72}\). Ultrastructural damage of TCs was also present in rat model of aflatoxin B1–induced liver injury\(^{122}\). Two potential mechanisms were proposed for TCs involvement in liver fibrosis. First, disruption of TCs based 3D interstitial structure will lose both paracrine loaded with exosomes and direct heterocellular contact on HSCs, subsequently contribute to abnormal activation of HSCs and fibrosis\(^{101}\), just like activation of fibroblast in skin tissue fibrosis\(^{94}\). Second, damaged TCs might lose their structural and functional support to hepatocytes and SCs regeneration, finally lead to liver fibrosis\(^{87}\).

Meanwhile, for treatment purpose, TCs showed its potential in tissue repair after liver injury. In murine model of partial hepatectomy, hepatic cell proliferation rate increased significantly at 48 and 72 hours, accompanied by a peak of TCs and hepatic SCs at 72 hours, indicate that TCs are participate closely related to hepatocytes and SCs regeneration\(^{73}\). What’s more, in Npc1 mutant mice, which manifested as enlarged spleen and altered metabolism of cholesterol and glycolipid, significantly increased splenic TCs were observed. Authors proposed that splenic TCs might act as a defender for enlarged spleen via recruiting hematopoietic SCs and macrophages to reduce progressive splenic damage and malfunction\(^{52}\). However, the involved mechanisms still need investigation.

Respiratory System

TCs were located in interstitial of lung or around terminal bronchioles, with 3D network connections between Tps and
alveolar epithelial cells, nerves, blood vessels and SCs. Lung TCs had specific gene and protein profiles which distinguished itself form other mesenchymal cells: SCs, fibroblasts, alveolar type II cells, airway basal cells and lymphocytes. At gene level, Capn2, Fhl2 and Qsox1 were over-expressed in chromosome 1, which suggested TCs might be involved in regulating tissue homeostasis and maintaining structural integrity, anti-inflammation and alleviating fibrosis in lung diseases. Among them, Capn2 plays a crucial role in morphogenesis and tissue homeostasis. Fhl2 is associated with reversing inflammation and slowing fibrosis. Qsox1 is involved in oxidative protein folding, cell cycle control and ECM remodeling. The most down-expression of Pde5 in chromosome 3 is associated with development of pulmonary fibrosis and interstitial lung disease. Protein profiles of lung TCs showed, elevated superoxide dismutase and acid ceramidase could reduce oxidative stress and inhibit fibrosis during injury.

Meanwhile, TCs show its therapeutic potential in repair of tissue damage result from lung inflammation, which was characterized with excessive ECM deposition and pulmonary interstitial fibrosis. Similar in other tissues, TCs form close relationship with SCs niches in lung, support and nourishing through nanocontact or paracrine activity on SCs, initiate and promote SCs-based tissue repair during acute lung injury. TCs can reduce oxidative stress and tissue damage via increased miRNA-146a-5p, then downregulate CREB1/DUOX2 pathway in mice model of inflamed lungs (Fig. 2). In ventilation-induced mice lung injury, TCs transplantation can alleviate inflammation, promote angiogenesis via vascular endothelial growth factor (VEGF) and improve lung function. TCs transplantation in mouse model of lipopolysaccharide (LPS)-induced acute respiratory distress syndrome (ARDS) can relieve acute lung injury, promote angiogenesis and tissue repair through miRNA-21a-3p-Pi3K(p110α)/AKT/mTOR signal pathway (Fig. 2). Co-transplantation of TCs and mesenchymal stem cells (MSC) significantly relieve alveolar inflammation and injury, mechanism including enhanced migration, proliferation of MSC and TCs nutritional support for MSC. Intraperitoneal administration of TCs yield reduced pulmonary inflammation and edema, and facilitated proliferation and differentiation of airway epithelium by providing nutrients with TCs-derived mediators and exosomes (Fig. 2).

Urinary System

In urinary system, TCs mainly distributed in renal cortex interstitium and upper lamina propria of the renal pelvis, ureter and urinary bladder. In renal cortical interstitium, TCs appeared around blood vessels and renal tubules, accompanied by EVs release surrounding Tps. Loss or damage of TCs is closely related to occurrence of ureteral wall fibrosis. In experimental obstructive hydronephrosis, TCs reduction and collagen deposition were observed in thickened ureteral wall. In patients with ureteropelvic junction obstruction (UPJO), decrease of TCs was accompanied by increased ratio of collagen to muscle contents. These experiences further confirmed TCs’ roles for maintaining normal ureter structure.

TCs also showed its potential in therapeutic purpose. Renal fibrosis is the end stage of various renal diseases, which eventually leads to the destruction of renal parenchyma and renal failure. In a renal ischemia–reperfusion injury (IRI) model, in vivo administration of renal TCs can alleviate renal histological damage and save renal dysfunction, through growth factors mediated proliferation and apoptosis of renal tubular epithelial cells. In rat model of renal fibrosis, TCs transplantation can indirectly increase the expression of hepatocyte growth factor (HGF), further inhibit TGF-β1/Smad signaling pathway, prevent subsequent EMT process and alleviate renal fibrosis (Fig. 2). However, in vitro TCs can’t yield any changes or impact on EMT and HGF production in TGF-β1-induced fibrosis cell model. Although the underlying mechanism of this discrepancy is unknown, TCs provide a promising breakthrough in treatment of renal fibrosis.

Gastrointestinal Tract

TCs were widely distributed in full layer of gastrointestinal tract, especially constituted the intestinal SCs niche within mucosal layer. TCs support entire epithelium by forming a subepithelial plexus extending from stomach to colon tissues. Due to multiple subtypes of TCs (expressing different immunophenotypes), there was no unified definition of such mesenchymal cells. They were generally identified or named by specific morphological characteristics.

Inflammatory bowel disease (IBD), including CD and UC, are chronic recurrent diseases and common cause of extensive intestinal wall fibrosis. TC showed normal morphology and distribution likely maintaining their supposed roles in unaffected ileal segments. While in IBD cases, architectural disorder and fibrosis of intestinal wall was accompanied by diseases severity related loss of TCs. Loss of TCs was paralleled by decrease of c-kit positive ICC at myenteric plexus, these might explain dysmotility of gastrointestinal tract in IBD. In addition, damaged TCs were embedded in ECM and lead to destruction of 3D structure due to hypoxia, further cause deformation of the gastrointestinal structure and impaired contacts with around cells, including immunocytes, fibroblasts, smooth muscle cells, ICC, and so on. Moreover, when studying human adipose tissue and intestinal wall affected by inflammation and repair (appendicitis, diverticulitis of large bowel and Crohn’s disease of the terminal ileum), the observed CD34+ TCs undergone a series of activation, proliferation and differentiation to α-SMA+ stromal cells (myofibroblasts), indicating that CD34+ stromal cells/TCs have progenitor capacity and are source of α-SMA+ stromal cells during tissue repair.
Although there is no current application of cell transplantation for treatment of gastrointestinal diseases, TCs demonstrate its promising therapeutic value. TCs provide structural and functional support for SCs niches within gastrointestinal epithelium by providing non-epithelial sources of Wnts ligands and R-Spondins 3 (RSPO3), both were important regulator for WNT signaling pathway^{47,48,111}. As we know, Wnt/β-catenin pathway is pivotal and indispensable for sustaining the self-renewal and proliferation of intestinal SCs^{138}. Knockout of Porcn or Wntless gene required for Wnts secretion and RSPO3 in FoxJ1- and Gli1-expressing intestinal stromal cells, resulted in reduction of SCs population, defect epithelial proliferation and crypt collapse^{47,48,111} (Fig. 2). These indicates that TCs act as the central coordinator of intestinal renewal, responsible for SCs mediated tissue repair and maintaining stability of local intestinal environment. Interestingly, single-cell RNA sequencing revealed a mesenchymal cell population, expressing SOX6, F3, CD142 and Wnt genes, was identified near the colonic crypt niche. Breakdown of intestinal epithelial structure in UC was accompanied by considerable reduction of these cells. Abundant Wnt signal for SCs proliferation further proves the classification of observed interstitial cells as almost similar to TCs under studying^{49}.

Gallbladder TCs is a new player in gallstone disease. Current studies mainly focus on decreased density of TCs in patients with cholelithiasis, indicated close regulation of gallbladder and extrahepatic bile duct movement, bile component alterations, and chronic inflammatory process^{91,139,140}. However, there is no solid evidence reporting the involvement of TCs in ECM remodeling or fibrosis in gallbladder tissues.

Female Reproduction System

TCs existed in various parts of female reproductive system, including vagina, cervix, uterus, uterine tubes, and ovary. Site-specific TCs subpopulations was observed with different immunophenotypes and may be related to specific functions, such as immunomodulation and immunosurveillance, muscular layer contractility, pregnancy maintenance, and tissue regeneration^{32,55,141}. In female reproductive system, TCs specifically express ER and PR, suggested that its functions and activities were periodically controlled by hormones^{59,142}. In normal oviduct, TCs distributed in lamina propria and muscular layer, involved in maintenance of normal structure and function, by creating 3D network with smooth muscle, blood vessels, nerve fibers, and so on^{141}. TCs and Tps wrap around SCs to form SCs niches^{96}.

Gynecological conditions are often accompanied by tissue fibrosis, such as premature ovarian failure (POF), EMs, intrauterine adhesions, AS, uterine leiomyoma, and ectopic pregnancy^{59,144-147}. In mouse model of cyclophosphamide-induced POF, ovarian parenchymal cell injury is coupled with TCs reduction in fibrotic stroma which may be linked to reduced estrogen levels, resulting in damage of ovarian microenvironment and function^{59}. In EMs- or AS-affected rat oviduct, decrease or loss of TCs was accompanied by extensive ultrastructural damage, including collapse of interstitial 3D network and disruption of TC-SCs niches, finally lead to oviduct fibrosis and tubal factor infertility^{78,96}. Similar results were reported in clinical specimen from EMs and tubal ectopic pregnancy, in which, damage and loss of oviduct TCs was observed accompanied with fibrosis and reduced tubal motility^{148}. On the contrary, in patients with uterine myoma^{147} and ectopic pregnancy^{146}, TCs appear compensatory increase in fallopian tube, then will decrease the cilia and muscular movement of oviduct, then lead to female fertility disorders^{146,147}. In obstetric conditions, with the aid of TEM and immunophenotype studying, loss and impairment of TCs in human preeclampsia placenta (under the influence of hypoxia and malnutrition) was observed and differentiated into fibrocytes in fibrotic villi stroma, indicated that TCs potentially have functions related to immunomodulation, angiogenesis, and fibrosis^{62}.

Uterine leiomyoma is characterized by ECM overproduction in myometrium, TC was found disappeared in leiomyoma and lose its control on tissue homeostasis, with excessive ECM deposition^{149}. TCs are crucial components in pathogenesis of leiomyoma formation, supposed mechanisms including (a) TCs damage may affect hormone-regulated smooth muscle cell proliferation and apoptosis. (b) TCs may transform into interstitial cells upon damage since they are considered as progenitor cells of fibroblasts and myofibroblasts. (c) TCs damage linked to hypoxia and decreased angiogenesis in uterine fibroid^{149,150}. (d) TCs induce nitric oxide synthase (NOS) production and play joined role with NOS-positive autonomic innervation in regulation of myometrial proliferation, microenvironment imbalance and ECM remodeling^{151}.

TCs show emerging therapeutic role in gynecologic conditions, as evidenced by its proactive impact on peritoneal macrophage and endometrial stromal cells (ESCs) in our group. In vitro TCs can activate and enhance M1 differentiation and phagocytosis of pelvic macrophages, through inhibiting mitochondria-mediated apoptosis via activation of NF-κB in macrophages. This will be a promising way to restore the defective immunosurveillance, inhibit the onset of EMs and tissues fibrosis formation^{9,114}. TCs can enhance in vitro the proliferation, adhesion, and motility of ESCs through the ERK pathway^{113} (Fig. 2). Furthermore, TCs promote in vitro decidualization and mesenchymal-epithelial transition (MET) in ESCs through Wnt/β-catenin signaling pathway^{112} (Fig. 2), consistent with TCs being a critical source of Wnts in the intestinal SCs niche^{58} (Fig. 2). Thus, TCs provide a promising cell therapy for defective decidualization related gynecological conditions, fibrosis diseases, and reproductive problems.
Mammary Gland

In human mammary gland, TCs mainly distributed around capillaries and breast ducts, forming spatial 3D network structure with immunocytes, capillaries, lymphocytes, macrophages, and mast cells. Rat mammary TCs was crucial for stromal structure and breast development, and TCs in different physiological stages demonstrate different immunohistochemical and ultrastructural characteristics. Mammary resident CD34+ Stromal Cells/TCs was proposed as the origins for cancer-associated fibroblasts (CAFs) in invasive lobular carcinoma of breast, which may act as a guide for neoplastic cells, assist in ECM deposition and remodeling, tumor growth, invasion, metastasis, and angiogenesis, as well as modulating tumor immunity.

The involution of post-lactational mammary gland is featured as alveoli collapse and ECM remodeling. TCs involved actively in such involution process in Mongolian gerbil, by surrounding collapsed alveoli and breast ducts with synthesis of Matrix Metallopeptidase 9 (MMP9) and VEGF, which was essential for ECM digestion and remodeling, and angiogenesis respectively. Therefore, TCs have therapeutic potential in maintaining the dynamic balance of CAFs or ECM either in carcinoma of breast or fibrotic diseases.

Male Reproduction System

In human male reproduction system, TCs distributed in inner genitalia, including prostate, testes, epididymis, seminal vesicle. Prostatic TCs existed in interacinar region around the acinar smooth muscle, where they created Tps network around acini to support alveoli and smooth muscle differentiation, as well as the maintenance of interstitial compartment homeostasis at different phases. The prostatic TCs undergone dynamic alterations under castration, such as phenotypic transitions, Tps loss, or folding, which can be reversed by testosterone, indicated androgen-dependent TCs play a key role in prostate tissue organization and reversing prostate involution by connecting with alveoli and smooth muscle. Furthermore, TCs contributed to age-related structural alterations in the prostate by synthesizing VEGF and expressing TNFR1, which promoted angiogenesis and established a pro-inflammatory microenvironment respectively.

Testicular TCs distributed and formed complex reticular structures around blood vessels and seminiferous tubules, with close contact between its long Tps and adjacent cells, such as peritubular myoid cells, mononuclear cells, intertubular steroiogenic Leydig cells. TCs also existed in testes of different species, with their unique structural distribution and potential roles including spermatogenesis control, structure maintenance, lipid metabolism, and cell signal transmission. In male fish, TCs produce MMP-2 and MMP-9, indicated TCs can undergo de-differentiation and contribute to ECM reorganization and tissue remodeling.

TCs in seminoma almost totally disappeared, accompanied by severe degeneration of testicular architecture and interstitial fibrosis. TCs damage/loss activate α-SMA+ myoid cells which contribute to tumor invasion and metastasis. This is similar in breast cancer, TCs were considered the source of CAFs and facilitate tumor invasion and metastasis. Therefore, modulation of TCs activity might provide a therapeutic approach in cancer biology. However, the relationship between the loss of TCs and disease development was still controversial. Whether abnormal seminoma microenvironment leads to damage or loss of TCs, or disruption of TCs-based signal network further trigger pathological changes of testicular tissue, will be an interesting topic and worth of in-depth investigation.

Skeletal Muscle

TCs located in endomysium and perimysium of skeleton muscle, form special 3D interstitial network with all type of cells within muscular tissue, support paracrine signaling trophic substance (such as VEGF) to both satellite and non-satellite, suggesting a key role in integrating signals for skeletal muscle fibers, regeneration and repair after trauma. Moreover, by cell culture obtained from explant, TCs support and establish heterogeneous junctions with muscle SCs niche and exhibited specific capacities, including high proliferation capacity (CD105+, Ki67+), pluripotent capacity (Oct4+), and angiogenesis (VEGF+) TCs’ nursing role in neighboring satellite cell (SC)-mediated skeletal muscle regeneration was also evidenced by TC-SC morpho-functional interaction following damaged skeletal muscle condition. In human fetal skeletal muscle, series changes of CD34+ TCs was observed during early stages of myogenesis, with peak number, immunopositivity and richest reticular network with blood vessels and myotubes at 10 to 11.5 weeks, suggesting their potential involvement in the early steps of myogenesis.

Although lack of reports on TCs in fibrosis treatment, current studies lay the ground and provide new attractive target in the field of regenerative medicine in skeleton muscles repair.

Conclusion and Future Perspectives

In conclusion, this review summarized current findings that TCs, as a novel stromal cell population, are involved in fibrosis diseases in several organs or tissues, with confirmed therapeutic evidence in heart, liver, gastrointestinal tract, lung, kidney, female reproduction system. Due to intricate junctions and specific paracrine traits, TCs have been a spotlight to in-depth understanding its underlying molecular mechanisms. Giving that TCs are responsible for the process of fibrotic conditions, a pressing need for future research works to better discover and expand its relevant prophylactic or therapeutic roles in fibrosis-related diseases.
Acknowledgments
The authors thank the reviewers for their insightful comments.

Author Contributions
XJW took part in the conception of this review, drafted the manuscript, and prepared the figures and table. TQC and XJY revised and gave the final approval of submission.

Ethical Approval
This study was approved by authors’ institutional review board.

Statement of Human and Animal Rights
This article does not contain any studies with human or animal subjects.

Statement of Informed Consent
There are no subjects in this article and informed consent is not applicable.

Declaration of Conflicting Interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the National Natural Science Foundation of China (grant numbers 81971335 and 81571415).

ORCID iD
Xiao-jun Yang https://orcid.org/0000-0001-5143-3357

References
1. Gherghiceanu M, Popescu LM. Interstitial Cajal-like cells (ICLC) in human resting mammary gland stroma. Transmission electron microscope (TEM) identification. J Cell Mol Med. 2005;9(4):893–910.
2. Popescu LM, Faussone-Pellegrini MS. TELOCYTES—a case of serendipity: the winding way from Interstitial Cells of Cajal (ICC), via Interstitial Cajal-Like Cells (ICLC) to TELOCYTES. J Cell Mol Med. 2010;14(4):729–40.
3. Cretoiu D, Radu BM, Banciu A, Banciu DD, Cretoiu SM. Telocytes heterogeneity: from cellular morphology to functional evidence. Semin Cell Dev Biol. 2017;64:26–39.
4. Gherghiceanu M, Popescu LM. Heterocellular communication in the heart: electron tomography of telocyte–myocyte junctions. J Cell Mol Med. 2011;15(4):1005–11.
5. Cretoiu D, Hummel E, Zimmermann H, Gherghiceanu M, Popescu LM. Human cardiac telocytes: 3D imaging by FIB-SEM tomography. J Cell Mol Med. 2014;18(11):2157–64.
6. Song D, Cretoiu D, Wang X. Mitochondrial DNA in telocytes. Adv Exp Med Biol. 2017;1038:55–70.
7. Cretoiu SM, Popescu LM. Telocytes revisited. Biomol Concepts. 2014;5(5):353–69.
8. Faussone-Pellegrini MS, Gherghiceanu M. Telocyte’s contacts. Semin Cell Dev Biol. 2016;55:3–8.
9. Jiang X, Cretoiu D, Shen Z, Yang X. An in vitro investigation of telocytes-educated macrophages: morphology, heterocellular junctions, apoptosis and invasion analysis. J Transl Med. 2018;16(1):85.
10. Rusu MC, Mirancea N, Manoiu VS, Valcu M, Nicolae M, Paduraru D. Skin telocytes. Ann Anat. 2012;194(4):359–67.
11. Mohamedien D, Awad M. Pulmonary guardians and special regulatory devices in the lung of Nile monitor lizard (Varanus niloticus) with special attention to the communication between telocyte, pericyte, and immune cells. Microsc Microanal. 2022;28(1):281–87.
12. Rusu MC, Loreto C, Mănoiu VS. Network of telocytes in the temporomandibular joint disc of rats. Acta Histochem. 2014;116(4):663–68.
13. Sanches BDA, Leonel ECR, Maldarine JS, Tamarindo GH, Barquilha CN, Felisibino SL, Goês RM, Vilamaior PSL, Taboga SR. Telocytes are associated with tissue remodeling and angiogenesis during the postlactational involution of the mammary gland in gerbils. Cell Biol Int. 2020;44(12):2512–23.
14. Sanches BDA, Tamarindo GH, dos Santos Maldarine J, da Silva ADT, dos Santos VA, Lima MLD, Rahal P, Goês RM, Taboga SR, Felisibino SL, Carvalho HF. Telocytes contribute to aging-related modifications in the prostate. Sci Rep. 2020;10(1):21392.
15. Cretoiu D, Gherghiceanu M, Hummel E, Zimmermann H, Simionescu O, Popescu LM. FIB-SEM tomography of human skin telocytes and their extracellular vesicles. J Cell Mol Med. 2015;19(4):714–22.
16. Cretoiu D, Xu J, Xiao J, Cretoiu SM. Telocytes and their extracellular vesicles-evidence and hypotheses. Int J Mol Sci. 2016;17(8):1322.
17. Vader P, Breakefield XO, Wood MJ. Extracellular vesicles: emerging targets for cancer therapy. Trends Mol Med. 2014;20(7):385–93.
18. Fertig ET, Gherghiceanu M, Popescu LM. Extracellular vesicles release by cardiac telocytes: electron microscopy and electron tomography. J Cell Mol Med. 2014;18(10):1938–43.
19. Cismasoiu VB, Radu E, Popescu LM. miR-193 expression differentiates telocytes from other stromal cells. J Cell Mol Med. 2011;15(5):1071–74.
20. Zheng Y, Zhang M, Qian M, Wang L, Cismasoiu VB, Bai C, Popescu LM, Wang X. Genetic comparison of mouse lung telocytes with mesenchymal stem cells and fibroblasts. J Cell Mol Med. 2013;17(4):567–77.
21. Zheng Y, Cretoiu D, Yan G, Cretoiu SM, Popescu LM, Fang H, Wang X. Protein profiling of human lung telocytes and microvascular endothelial cells using iTRAQ quantitative proteomics. J Cell Mol Med. 2014;18(6):1035–59.
22. Zheng M, Sun X, Zhang M, Qian M, Zheng Y, Li M, Cretoiu SM, Chen C, Chen L, Cretoiu D, Popescu LM, et al. Variations of chromosomes 2 and 3 gene expression profiles among pulmonary telocytes, pneumocytes, airway cells, mesenchymal stem cells and lymphocytes. J Cell Mol Med. 2014;18(10):2044–60.
23. Zheng Y, Cretoiu D, Yan G, Cretoiu SM, Popescu LM, Wang X. Comparative proteomic analysis of human lung telocytes with fibroblasts. J Cell Mol Med. 2014;18(4):568–89.
24. Bei Y, Zhou Q, Sun Q, Xiao J. Telocytes in cardiac regeneration and repair. Semin Cell Dev Biol. 2016;55:14–21.
25. Wang L, Xiao L, Zhang R, Jin H, Shi H. Ultrastructural and immunohistochemical characteristics of telocytes in human scalp tissue. Sci Rep. 2020;10(1):1693.
26. Mustafa FE-ZA, Elhanbaly R. Histological, histochemical, immunohistochemical and ultrastructural characterization of the testes of the dove. Zygote. 2021;29(1):33–41.
27. Marini M, Rosa I, Guasti D, Gacci M, Sgambati E, Ibbà-Manneschi L, Manetti M. Reappraising the microscopic anatomy of human testis: identification of telocyte networks in the peribulbar and intertubular stromal space. Sci Rep. 2018;8(1):14780.
28. Corradi LS, Jesus MM, Fochi RA, Vilamaia PS, Justulin LA Jr, Góes RM, Felisbino SL, Taboga SR. Structural and ultrastructural evidence for telocytes in prostate stroma. J Cell Mol Med. 2013;17(3):398–406.
29. Hussein MT, Abdel-Maksoud FM. Structural investigation of epididymal microvascularite and Its relation to telocytes and immune cells in camel. Microsc Microanal. 2020;26(5):1024–34.
30. Abd-Elhafeez HH, Mokhtar DM, Hassan AH. Effect of melatonin on telocytes in the seminal vesicle of the Soay ram: an immunohistochemical, ultrastructural and morphometrical study. Cells Tissues Organs. 2017;203(1):29–54.
31. Klein M, Csöbönyeiová M, Danišovič L, Lapides L, Varga I. Telocytes in the female reproductive system: up-to-date knowledge, challenges and possible clinical applications. Life. 2022;12(2):267.
32. Ullah S, Yang P, Zhang L, Zhang Q, Liu Y, Chen W, Waqas Y, Le Y, Chen B, Chen Q. Identification and characterization of telocytes in the uterus of the oviduct in the Chinese soft-shelled turtle, Pelodiscus sinensis: TEM evidence. J Cell Mol Med. 2014;18(12):2385–92.
33. Cretoiu SM. Immunohistochemistry of telocytes in the uterus and fallopian tubes. Adv Exp Med Biol. 2016;913:335–57.
34. Vannucchi MG, Traini C, Guasti D, Del Popolo G, Faussone-Pellegrini MS. Telocytes subtypes in human urinary bladder. J Cell Mol Med. 2014;18(10):2000–2008.
35. Vannucchi MG, Traini C, Manetti M, Ibbà-Manneschi L, Faussone-Pellegrini MS. Telocytes express PDGFRα in the human gastrointestinal tract. J Cell Mol Med. 2013;17(9):1099–108.
36. Chang Y, Li C, Gan L, Li H, Guo Z. Multiple immunophenotypes of cardiac telocytes. Exp Cell Res. 2015;338(2):239–44.
37. Gherghiceanu M, Hinescu ME, Andresi F, Mandache E, Macarie CE, Faussone-Pellegrini MS, Popescu LM. Intestinal Cajal-like cells (ICLC) in myocardial sleeves of human pulmonary veins. J Cell Mol Med. 2008;12(5A):1777–81.
38. Zheng Y, Bai C, Wang X. Potential significance of telocytes in the pathogenesis of lung diseases. Expert Rev Respir Med. 2012;6(1):45–49.
39. Zheng Y, Li H, Manole CG, Sun A, Ge J, Wang X. Telocytes in trachea and lungs. J Cell Mol Med. 2011;15(10):2262–68.
40. Hinescu ME, Ardeleanu C, Gherghiceanu M, Popescu LM. Intestinal Cajal-like cells in human gallbladder. J Mol Histol. 2007;38(4):275–84.
41. Shoshkes-Carmel M, Wang YJ, Wangnenste KJ, Töth B, Kondo A, Massasa EE, Itzkovitz S, Kaestner KH. Subepithelial telocytes are an important source of Wnts that supports intestinal crypts. Nature. 2018;557(7704):242–46.
42. Kinchen J, Chen HH, Parik K, Antanaviciute A, Jagielowicz M, Fawker-Corbett D, Ashley N, Cubitt L, Mellado-Gomez E, Attar M, Sharma E, et al. Structural remodeling of the human colonic mesenchyme in inflammatory bowel disease. Cell. 2018;175(2):372–86.e317.
43. Caruso ON, Westendorp BF, Vermeulen JLM, Meisner S, Koster J, Muncan V, Wildenberg ME, van den Brink GR. Colonic CD90+ crypt fibroblasts secrete semaphorins to support epithelial growth. Cell Rep. 2019;26(13):3698–708.e3695.
44. Halpern KB, Massalha H, Zwick RK, Moor AE, Castillo-Azofeita D, Rozenberg M, Farack L, Egozi A, Miller DR, Averbukh I. Lgr5+ telocytes are a signaling source at the intestinal villus tip. Nat Commun. 2020;11(1):1936.
45. Zhang B, Yang C, Qiao L, Li Q, Wang C, Yan X, Lin J. Telocytes: a potential defender in the spleen of Npc1 mutant mice. J Cell Mol Med. 2017;21(5):848–59.
46. Cretoiu SM, Radu BM, Bânciu A, Bânciu DD, Cretoiu D, Ceafalan LC, Popescu LM. Isolated human uterine telocytes: immunocytochemistry and electrophysiology of T-type calcium channels. Histochem Cell Biol. 2015;143(1):83–94.
47. Ciontea SM, Radu E, Regalia T, Ceafalan L, Cretoiu D, Gherghiceanu M, Braga RI, Malincenco M, Zagrean L, Hinescu ME, Popescu LM. C-kit immunopositive interstitial cells (Cajal-type) in human myometrium. J Cell Mol Med. 2005;9(2):407–20.
48. Klein M, Urban L, Deckov I, Danisovic L, Polak S, Danihel M. Immunohistochemical and histochemical characteristics of telocytes in the prostate. J Cell Mol Med. 2013;17(1):123–33.
49. Hinescu ME, Ardeleanu C, Gherghiceanu M, Popescu LM. Intestinal Cajal-like cells in human uterus: an immunohistochemical study. Biologia. 2017;72(10):1217–23.
50. Hatta K, Huang ML, Weisel RD, Li RK. Culture of rat endometrial telocytes. J Cell Mol Med. 2012;16(7):1392–96.
51. Rosenbaum ST, Svaló J, Nielsen K, Larsen T, Jørgensen JC, Bouchelouche P. Immunolocalization and expression of
small-conductance calcium-activated potassium channels in human myometrium. J Cell Mol Med. 2012;16(12):3001–3008.

58. Cretoiu SM, Cretoiu D, Simionescu A, Popescu LM. Telocytes in human fallopian tube and uterus express estrogen and progesterone receptors. Sex Steroids. 2012;21(9):114.

59. Liu T, Wang S, Li Q, Huang Y, Chen C, Zheng J. Telocytes as potential targets in a cyclophosphamide-induced animal model of premature ovarian failure. Mol Med Rep. 2016;14(3):2415–22.

60. Mazzoni TS, Viadanna RR, Quagio-Grassiotto I. Presence, localization and morphology of TELOCYTES in developmental gonads of fishes. J Morphol. 2019;280(5):654–65.

61.Suciu L, Popescu LM, Gherghiceanu M, Regalia T, Nicolescu MI, Hinescu ME, Faussone-Pellegrini MS. Telocytes in human term placenta: morphology and phenotype. Cells Tissues Organs. 2010;192(5):325–39.

62. Nizyaeva NV, Sakhacheva TV, Serboiu CS, Manole CG, Suciu LC, Popescu LM. Identification of telocytes in the prostate and telocytes adjacent to cancer cells in human term placenta: morphology and phenotype. Cells Tissues Organs. 2010;192(5):325–39.

63. Mou Y, Wang Y, Li J, Lü S, Duan C, Du Z, Yang G, Chen W, Zhao S, Zhou J, Wang C. Immunochemical characterization and functional identification of mammary gland telocytes in the self-assembly of reconstituted breast cancer tissue in vitro. J Cell Mol Med. 2013;17(1):65–75.

64. Li L, Lin M, Li L, Wang R, Zhang C, Qi G, Xu M, Rong R, Zhu T. Renal telocytes contribute to the repair of ischemically injured renal tubules. J Cell Mol Med. 2014;18(6):1144–56.

65. Rusu MC, Mogoantă L, Pop F, Dobra MA. Molecular phenotypes of the human kidney: myoid stromal cells/telocytes and myoepithelial cells. Ann Anat. 2018;218:95–104.

66. Dobra MA, Vrapciu AD, Pop F, Petre N, Rusu MC. The molecular phenotypes of ureteral telocytes are layer-specific. Acta Histochem. 2018;120(1):41–45.

67. Sanches BDA, Malдарине JS, Zani BC, Tamarindo GH, Biancardi MF, Santos FCA, Rahal P, Góes RM, Felisbinho SL, Vilamaior PSL, Taboga SR. Telocytes play a key role in prostate tissue organisation during the gland morphogenesis. J Cell Mol Med. 2017;21(12):3309–21.

68. Sanches BD, Corradi LS, Vilamaior PS, Taboga SR. Paracrine signaling in the prostatic stroma: a novel role for telocytes in the human male reproductive tract. Acta Histochem. 2018;120(1):41–45.

69. Popescu LM, Manole E, Serboiu CS, Manole CG, Suciu LC, Gherghiceanu M, Popescu BO. Identification of telocytes in skeletal muscle interstitium: implication for muscle regeneration. J Cell Mol Med. 2011;15(6):1379–92.

70. Manetti M, Tani A, Rosa I, Chellini F, Squecco R, Idrizaj E, Zecchi-Orlandini S, Ibbà-Manneschi L, Sassoli C. Morphological evidence for telocytes as stromal cells supporting satellite cell activation in eccentric contraction-induced skeletal muscle injury. Sci Rep. 2019;9(1):14515.

71. Suciu LC, Popescu BO, Kostin S, Popescu LM. Platelelderived growth factor receptor-β-positive telocytes in skeletal muscle interstitium. J Cell Mol Med. 2012;16(4):701–707.

72. Fu S, Wang F, Cao Y, Huang Q, Xiao J, Yang C, Popescu LM. Telocytes in human liver fibrosis. J Cell Mol Med. 2015;19(3):676–83.

73. Wang F, Song Y, Bei Y, Zhao Y, Xiao J, Yang C. Telocytes in liver regeneration: possible roles. J Cell Mol Med. 2014;18(9):1720–26.

74. Vannucchi MG, Faussone-Pellegrini MS. The telocyte subtypes. Adv Exp Med Biol. 2016;913:115–26.

75. Zhou J, Zhang Y, Wen X, Cao J, Li D, Lin Q, Wang H, Liu Z, Duan C, Wu K, Wang C. Telocytes accompanying cardiomyocyte in primary culture: two- and three-dimensional culture environment. J Cell Mol Med. 2010;14(11):2641–45.

76. Bei Y, Zhou Q, Fu S, Lv D, Chen P, Chen Y, Wang F, Xiao J. Cardiac telocytes and fibroblasts in primary culture: different morphologies and immunophenotypes. PLoS ONE. 2015;10(2):e0115991.

77. Cretoiu SM, Cretoiu D, Suciu L, Popescu LM. Perivascular Cajal-like cells of human fallopian tube express estrogen and progesterone receptors. J Mol Histol. 2009;40(5–6):387–94.

78. Yang XJ, Yang J, Liu Z, Yang G, Shen ZJ. Telocytes damage in endometriosis-affected rat oviduct and potential impact on fertility. J Cell Mol Med. 2015;19(2):452–62.

79. Milia AF, Ruffo M, Manetti M, Rosa I, Conte D, Fazi M, Messerini L, Ibbà-Manneschi L. Telocytes in Crohn's disease. J Cell Mol Med. 2013;17(12):1525–36.

80. Faussone-Pellegrini MS, Popescu LM. Telocytes. Biomol Concepts. 2011;2(6):481–89.

81. Bani D, Formigli L, Gherghiceanu M, Faussone-Pellegrini MS. Telocytes as supporting cells for myocardial tissue organization in developing and adult heart. J Cell Mol Med. 2010;14(10):2531–38.

82. Pieri L, Vannucchi MG, Faussone-Pellegrini MS. Histological and ultrastructural characteristics of an interstitial cell type different from ICC and resident in the muscle coat of human gut. J Cell Mol Med. 2008;12(5B):1944–55.

83. Albükses R, Tanase C, Codrici E, Popescu DI, Cretoiu SM, Popescu LM. The secretome of myocardial telocytes modulates the activity of cardiac stem cells. J Cell Mol Med. 2015;19(8):1783–94.

84. Díaz-Flores L, Goméz MG, Sáez FJ, Madrid JF. Behaviour of telocytes during physiological activation. Semin Cell Dev Biol. 2016;55:50–61.

85. Ruffo M, Goméz MG, Prats J, Cretoiu SM, Cretoiu D, Gherghiceanu M, Faussone-Pellegrini MS. Telocytes: new insight into the pathogenesis of gallstone disease. J Cell Mol Med. 2013;17(6):734–42.
92. Wynn T. Cellular and molecular mechanisms of fibrosis. J Pathol. 2008;214(2):199–210.
93. Wynn TA. Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J Clin Invest. 2007;117(3):524–29.
94. Manetti M, Guiducci S, Ruffo M, Rosa I, Faussone-Pellegrini MS, Matucci-Cerinic M, Ibba-Manneschi L. Evidence for progressive reduction and loss of telocytes in the dermal cellular network of systemic sclerosis. J Cell Mol Med. 2013;17(4):482–96.
95. Manetti M, Rosa I, Messerini L, Ibba-Manneschi L. Telocytes are reduced during fibrotic remodelling of the colonic wall in ulcerative colitis. J Cell Mol Med. 2015;19(7):1720–28.
96. Yang J, Chi C, Liu Z, Yang G, Shen ZJ, Yang XJ. Ultrastructure damage of oviduct telocytes in rat model of acute salpingitis. J Cell Mol Med. 2015;19(7):2597–2606.
97. Zhao B, Liao Z, Chen S, Yuan Z, Yilin C, Lee KK, Qi X, Shen X, Zheng X, Qin T, Cai D. Intramyocardial transplantation of cardiac telocytes decreases myocardial fibrosis and improves post-infarcted cardiac function in rats. J Cell Mol Med. 2014;18(5):892–903.
98. Zhong L, Li L, Qi G, Hu M, Hu C, Wang S, Li J, Zhang M, Zhang W, Zeng Y, Zhan Y, et al. Transplantation of telocytes attenuates unilateral ureter obstruction-induced renal fibrosis in rats. Cell Physiol Biochem. 2018;46(5):2056–71.
99. Liu J, Shen X, Zheng X, Li Z, Wang J, Qi X, Cai D. Distribution of telocytes in the rat heart. Chinese J Tissue Eng Res. 2011;15(19):3546.
100. Gherghiceanu M, Popescu LM. Cardiac telocytes—their junctions and functional implications. Cell Tissue Res. 2012;348(2):265–79.
101. Cismasu VB, Popescu LM. Telocytes transfer extracellular vesicles loaded with micro RNA s to stem cells. J Cell Mol Med. 2015;19(2):351–58.
102. Richter M, Kostin S. The failing human heart is characterized by decreased numbers of telocytes as result of apoptosis and altered extracellular matrix composition. J Cell Mol Med. 2015;19(11):2597–2606.
103. Manetti M, Rosa I, Messerini L, Guiducci S, Matucci-Cerinic M, Ibba-Manneschi L. A loss of telocytes accompanies fibrosis of multiple organs in systemic sclerosis. J Cell Mol Med. 2014;18(2):253–62.
104. Popescu LM, Curici A, Wang E, Zhang H, Hu S, Gherghiceanu M. Telocytes and putative stem cells in ageing human heart. J Cell Mol Med. 2015;19(1):31–45.
105. Manole CG, Gherghiceanu M, Simionescu O. Telocyte dynamics in psoriasis. J Cell Mol Med. 2015;19(7):1504–19.
106. Rosa I, Romano E, Fioretto BS, Giusti D, Ibba-Manneschi L, Matucci-Cerinic M, Manetti M. Scleroderma-like impairment in the network of telocytes/CD34+ stromal cells in the experimental mouse model of bleomycin-induced dermal fibrosis. Int J Mol Sci. 2021;19(7):1427.
107. Liu J, Shen X, Zheng X, Li Z, Wang J, Qi X, Cai D. Distribution of telocytes in the rat heart. Chinese J Tissue Eng Res. 2011;15(19):3546.
108. Gherghiceanu M, Popescu LM. Cardiac telocytes—their junctions and functional implications. Cell Tissue Res. 2012;348(2):265–79.
109. Popescu LM, Curici A, Wang E, Zhang H, Hu S, Gherghiceanu M. Telocytes and putative stem cells in ageing human heart. J Cell Mol Med. 2015;19(2):351–58.
110. Richter M, Kostin S. The failing human heart is characterized by decreased numbers of telocytes as result of apoptosis and altered extracellular matrix composition. J Cell Mol Med. 2015;19(11):2597–2606.
111. Manetti M, Rosa I, Messerini L, Guiducci S, Matucci-Cerinic M, Ibba-Manneschi L. A loss of telocytes accompanies fibrosis of multiple organs in systemic sclerosis. J Cell Mol Med. 2014;18(2):253–62.
112. Popescu LM, Curici A, Wang E, Zhang H, Hu S, Gherghiceanu M. Telocytes and putative stem cells in ageing human heart. J Cell Mol Med. 2015;19(1):31–45.
113. Manole CG, Gherghiceanu M, Simionescu O. Telocyte dynamics in psoriasis. J Cell Mol Med. 2015;19(7):1504–19.
114. Rosa I, Romano E, Fioretto BS, Giusti D, Ibba-Manneschi L, Matucci-Cerinic M, Manetti M. Scleroderma-like impairment in the network of telocytes/CD34+ stromal cells in the experimental mouse model of bleomycin-induced dermal fibrosis. Int J Mol Sci. 2021;19(7):1427.
115. Liu J, Shen X, Zheng X, Li Z, Wang J, Qi X, Cai D. Distribution of telocytes in the rat heart. Chinese J Tissue Eng Res. 2011;15(19):3546.
116. Gherghiceanu M, Popescu LM. Cardiac telocytes—their junctions and functional implications. Cell Tissue Res. 2012;348(2):265–79.
117. Cismasu VB, Popescu LM. Telocytes transfer extracellular vesicles loaded with micro RNA s to stem cells. J Cell Mol Med. 2015;19(2):351–58.
118. Richter M, Kostin S. The failing human heart is characterized by decreased numbers of telocytes as result of apoptosis and altered extracellular matrix composition. J Cell Mol Med. 2015;19(11):2597–2606.
119. Manetti M, Rosa I, Messerini L, Guiducci S, Matucci-Cerinic M, Ibba-Manneschi L. A loss of telocytes accompanies fibrosis of multiple organs in systemic sclerosis. J Cell Mol Med. 2014;18(2):253–62.
120. Popescu LM, Curici A, Wang E, Zhang H, Hu S, Gherghiceanu M. Telocytes and putative stem cells in ageing human heart. J Cell Mol Med. 2015;19(1):31–45.
121. Manole CG, Gherghiceanu M, Simionescu O. Telocyte dynamics in psoriasis. J Cell Mol Med. 2015;19(7):1504–19.
122. Rosa I, Romano E, Fioretto BS, Giusti D, Ibba-Manneschi L, Matucci-Cerinic M, Manetti M. Scleroderma-like impairment in the network of telocytes/CD34+ stromal cells in the experimental mouse model of bleomycin-induced dermal fibrosis. Int J Mol Sci. 2021;19(7):1427.
123. Ali FAZ, Abdel-Maksoud FM, Abd Elaziz HO, Al-Brakati A, Elmahallawy EK. Descriptive histopathological and ultrastructural study of hepatocellular alterations induced by aflatoxin B1 in rats. Animals. 2021;11(2):509.

124. Sun X, Zheng M, Zhang M, Qian M, Zheng Y, Li M, Cretoiu D, Chen C, Chen L, Popescu LM, Wang X. Differences in the expression of chromosome 1 genes between lung telocytes and other cells: mesenchymal stem cells, fibroblasts, alveolar type II cells, airway epithelial cells and lymphocytes. J Cell Mol Med. 2014;18(5):801–10.

125. Song D, Cretoiu D, Zheng M, Qian M, Zhang M, Cretoiu SM, Chen L, Fang H, Popescu LM, Wang X. Comparison of chromosome 4 gene expression profile between lung telocytes and other local cell types. J Cell Mol Med. 2016;20(1):71–80.

126. Wang J, Ye L, Jin M, Wang X. Global analyses of chromosome 17 and 18 genes of lung telocytes compared with mesenchymal stem cells, fibroblasts, alveolar type II cells, airway epithelial cells, and lymphocytes. Biol Direct. 2015;10(1):9.

127. Shi L, Dong N, Chen C, Wang X. Potential roles of telocytes in lung diseases. Semin Cell Dev Biol. 2016;55:31–39.

128. Alnajar A, Nordhoff C, Schied T, Chiquet-Ehrismann R, Loser K, Vogl T, Ludwig S, Wixler V. The LIM-only protein FHL2 attenuates lung inflammation during bleomycin-induced fibrosis. PLoS ONE. 2013;8(11):e81356.

129. Shi L, Dong N, Chen C, Wang X. Potential roles of telocytes in lung diseases. Semin Cell Dev Biol. 2016;55:31–39.
(CAFs) in invasive lobular carcinoma of the breast. Int J Mol Sci. 2021;22(7):3686.

154. Felisbino SL, Sanches BDA, Delella FK, Scarano WR, Dos Santos FCA, Vilamaior PSL, Taboga SR, Justulin LA. Prostate telocytes change their phenotype in response to castration or testosterone replacement. Sci Rep. 2019;9(1):3761.

155. Liu Y, Liang Y, Wang S, Tarique I, Vistro WA, Zhang H, Haseeb A, Gandahi NS, Iqbal A, An T. Identification and characterization of telocytes in rat testis. Aging (Albany NY). 2019;11(15):5757.

156. Milon A, Pawlicki P, Rak A, Mlyczynska E, Plachno BJ, Tworzydlo W, Gorowska-Wojtowicz E, Bilinska B, Kotula-Balak M. Telocytes are localized to testis of the bank vole (Myodes glareolus) and are affected by lighting conditions and G-coupled membrane estrogen receptor (GPER) signaling. Gen Comp Endocrinol. 2019;271:39–48.

157. Marini M, Ibba-Manneschi L, Rosa I, Sgambati E, Manetti M. Changes in the telocyte/CD34+ stromal cell and α-SMA+ myoid cell networks in human testicular seminoma. Acta Histochem. 2019;121(8):151442.

158. Bojin FM, Gavriliuc OI, Cristea MI, Tanasie G, Tatu CS, Panaitescu C, Paunescu V. Telocytes within human skeletal muscle stem cell niche. J Cell Mol Med. 2011;15(10):2269–72.

159. Marini M, Manetti M, Rosa I, Ibba-Manneschi L, Sgambati E. Telocytes in human fetal skeletal muscle interstitium during early myogenesis. Acta Histochem. 2018;120(5):397–404.