Early enteral nutrition in critically ill patients: ESICM clinical practice guidelines

Annika Reintam Blaser1,2*, Joel Starkopf1,3, Waleed Alhazzani4,5, Mette M. Berger6, Michael P. Casaer7, Adam M. Deane8, Sonja Fruhwald9, Michael Hiesmayr10, Carole Ichai11, Stephan M. Jakob12, Cecilia I. Loudet13, Manu L. N. G. Malbrain14, Juan C. Montejo González15, Catherine Paugam-Burtz16, Martijn Poeze17, Jean-Charles Preiser18, Pierre Singer19,20, Arthur R.H. van Zanten21, Jan De Waele22, Julia Wendon23, Jan Wernerman24, Tony Whitehouse25, Alexander Wilmer26, Heleen M. Oudemans-van Straaten27 and ESICM Working Group on Gastrointestinal Function

Abstract

Purpose: To provide evidence-based guidelines for early enteral nutrition (EEN) during critical illness.

Methods: We aimed to compare EEN vs. early parenteral nutrition (PN) and vs. delayed EN. We defined “early” EN as EN started within 48 h independent of type or amount. We listed, a priori, conditions in which EN is often delayed, and performed systematic reviews in 24 such subtopics. If sufficient evidence was available, we performed meta-analyses; if not, we qualitatively summarized the evidence and based our recommendations on expert opinion. We used the GRADE approach for guideline development. The final recommendations were compiled via Delphi rounds.

Results: We formulated 17 recommendations favouring initiation of EEN and seven recommendations favouring delaying EN. We performed five meta-analyses: in unselected critically ill patients, and specifically in traumatic brain injury, severe acute pancreatitis, gastrointestinal (GI) surgery and abdominal trauma. EEN reduced infectious complications in unselected critically ill patients, in patients with severe acute pancreatitis, and after GI surgery. We did not detect any evidence of superiority for early PN or delayed EN over EEN. All recommendations are weak because of the low quality of evidence, with several based only on expert opinion.

Conclusions: We suggest using EEN in the majority of critically ill under certain precautions. In the absence of evidence, we suggest delaying EN in critically ill patients with uncontrolled shock, uncontrolled hypoxaemia and acidosis, uncontrolled upper GI bleeding, gastric aspirate >500 ml/6 h, bowel ischaemia, bowel obstruction, abdominal compartment syndrome, and high-output fistula without distal feeding access.

Keywords: Abdominal problems, Parenteral nutrition, Contraindications, GI symptoms, Early enteral nutrition, Delay of enteral nutrition

Introduction

Existing guidelines recommend initiating enteral nutrition (EN) within the first 24–48 h after intensive care unit (ICU) admission if patients are unable to eat, not clearly defining reasons to delay EN [1–3]. The present guideline is issued by the Working Group on Gastrointestinal Function within the Metabolism, Endocrinology and Nutrition (MEN) Section of the European Society
of Intensive Care Medicine (ESICM) and is endorsed by ESICM. Our objective was to provide evidence-based
guidelines for early enteral nutrition (EEN) in critically
ill patients, focusing on specific clinical conditions fre-
quently associated with delayed EN. Caloric and protein
requirements, time to reach targets, type and route of
EN, and timing of supplemental or full parenteral nutri-
tion (PN) were not addressed. A full version of the intro-
duction with references is available in Supplement 1.

Methods

A full version of methods with references is available in
Supplement 1.

We performed a systematic review of “early” EN (EEN)
vs. early parenteral nutrition (PN) and EEN vs. delayed
EN in adult critically ill patients. After critical appraisal
of identified studies and in accordance with current
guidelines [1–3], we defined EEN as EN started within 48 h of admission independent of the type or amount.

Thereafter, we predefined conditions in which EN is
frequently delayed and performed a systematic review for
each of these questions.

If randomised controlled trials (RCT) were available,
we gave an evidence-based recommendation; if not, our
recommendations were based on expert opinion (very
low quality evidence), as all observational studies evalu-
ating EEN are intrinsically biased, because patients who
are less severely ill are more likely to receive and tolerate
EEN.

General considerations

We focussed on specific conditions in which EN is fre-
quently delayed and tolerance of EN might be impaired.
Therefore, all our recommendations are based on general
principles and precaution measures outlined in Table 1
[4–9]. All study questions and recommendations refer to
adult critically ill patients.

Results

All recommendations with the final agreed results are
presented in Table 2.

A flow chart with evidence identification process (Sup-
plement 2), number of identified abstracts and assessed
full texts for each study question (Supplement 3), Pub-
med search formulas (Supplement 4), evidence tables for
each question with respective references (Supplement 5),
evidence profiles for questions with meta-analyses
(Table 3), evidence profiles for additional meta-analyses
for Question 1 and 11 (Supplement 6), Forest plots for
meta-analyses (Figs. 1, 2 and Supplement 7) are provided.

Question 1: Should we use EEN in critically ill adult
patients?

The methodology is described in Supplement 1.
Table 2 Recommendations

Recommendation	Agreement (%)	Comments
1. We suggest using EEN in critically ill adult patients rather than early PN (conditional recommendation based on low quality evidence = Grade 2C) or delaying EN (conditional recommendation based on low quality evidence = Grade 2C)	100	
2. We suggest delaying EN if shock is uncontrolled and haemodynamic and tissue perfusion goals are not reached, but start low dose EN as soon as shock is controlled with fluids and vasopressors/inotropes (conditional recommendation based on expert opinion = Grade 2D)	91.4	Concern regards applying EN when very high doses of vasopressors (e.g. noradrenaline > 1 μg/kg/min) are required and hyperlactatemia is persisting or other signs of end-organ hypoperfusion are present
3. We suggest delaying EN in case of uncontrolled life-threatening hypoxaemia, hypercapnia or acidosis, but using EEN in patients with stable hypoxaemia, compensated or permissive hypercapnia and acidosis (conditional recommendation based on expert opinion = Grade 2D)	100	
4. We suggest that EN should not be delayed solely because of the concomitant use of neuromuscular blocking agents (conditional recommendation based on expert opinion = Grade 2D)	91.4	Concern regards very seldom patients in whom continuous infusion of neuromuscular blocking agents is needed, because these patients are in a very critical situation
5. We suggest starting low dose EEN in patients receiving therapeutic hypothermia and increase the dose after rewarming (conditional recommendation based on expert opinion = Grade 2D)	100	
6. We suggest using EEN in adult patients receiving extracorporeal membrane oxygenation (conditional recommendation based on expert opinion = Grade 2D)	100	
7. We suggest that EN should not be delayed solely because of prone positioning (conditional recommendation based on expert opinion = Grade 2D)	91.4	Concern regards tolerance of EN
8. We suggest using EEN in critically ill adult patients with traumatic brain injury (conditional recommendation based on expert opinion = Grade 2D)	95.7	No agreement regards strength of recommendation
9. We suggest using EEN in critically ill adult patients with stroke (ischaemic or haemorrhagic) (conditional recommendation based on expert opinion = Grade 2D)	100	
10. We suggest using EEN in critically ill adult patients with spinal cord injury (conditional recommendation based on expert opinion = Grade 2D)	100	
11. We suggest using EEN in critically ill adult patients with severe acute pancreatitis (conditional recommendation based on low quality evidence = Grade 2C)	100	
12. We suggest using EEN in critically ill adult patients after gastrointestinal surgery (conditional recommendation based on low quality evidence = Grade 2C)	100	
13. We suggest using EEN in critically ill adult patients after abdominal aortic surgery (conditional recommendation based on expert opinion = Grade 2D)	100	
14. We suggest using EEN in critically ill adult patients with abdominal trauma after the continuity of the GI tract is confirmed/restored (conditional recommendation based on expert opinion = Grade 2D)	100	Adequate gut perfusion needs to be confirmed
15. We suggest delaying EN in critically ill adult patients with overt bowel ischaemia (conditional recommendation based on expert opinion = Grade 2D)	100	
Table 2 continued

Recommendation	Agreement (%)	Comments
16. We suggest delaying EN in critically ill adult patients with high-output	100	Concern regards impaired gut perfusion and tolerance of EN. Monitoring
intestinal fistula if reliable feeding access distal to the fistula is not		trend of IAH and tolerance of EN are essential
achievable (conditional recommendation based on expert opinion = Grade 2D)		
17. We suggest using EEN in critically ill adult patients with an open abdomen	100	
(conditional recommendation based on expert opinion = Grade 2D)		
18a. We suggest using EEN in patients with intra-abdominal hypertension without	87.1	
abdominal compartment syndrome, but consider temporary reduction or discontinua-		
tion of EN when intra-abdominal pressure values further increase under EN		
(conditional recommendation based on expert opinion = Grade 2D)		
18b. We suggest delaying EN in critically ill adult patients with abdominal	100	
compartment syndrome (conditional recommendation based on expert opinion =		
Grade 2D)		
19. We suggest delaying EN in patients with active upper GI bleeding and	100	
starting EN when the bleeding has stopped and no signs of rebleeding are		
observed (conditional recommendation based on expert opinion = Grade 2D)		
20. We suggest starting low dose enteral nutrition when acute, immediately	100	
life-threatening metabolic derangements are controlled with or without liver		
support strategies, independent on grade of encephalopathy (conditional		
recommendation based on expert opinion = Grade 2D)		
21. We suggest delaying EN in critically ill adult patients if gastric aspirate	91.4	
volume is above 500 mL/6 h (conditional recommendation based on expert opinion		Single large gastric aspirate volume should trigger administration of
= Grade 2D)		prokinetics and reassessment, but not prolonged withholding of EN
22. We suggest using EEN in critically ill adult patients regardless of the	100	
presence of bowel sounds unless bowel ischaemia or obstruction is suspected		
(conditional recommendation based on expert opinion = Grade 2D)		
23. We suggest using EEN in critically ill adult patients presenting with	95.7	
diarrhoea (conditional recommendation based on expert opinion = Grade 2D)		

Response rate was 100% in both Delphi rounds (all co-authors responded, | | |
methodologist did not participate). Agreement is calculated as percentage of "agree" answers from total.
Question 1A: Should we use EEN rather than early PN?

Eight trials fulfilled the criteria and were included in meta-analyses (Supplement 5, Table 1A). Results are presented in Fig. 1.

For mortality, we included seven RCTs (2686 patients). EEN did not reduce mortality compared to early PN (RR 0.95; 95% CI 0.76–1.19; \(P = 0.64; I^2 = 9% \)). The certainty of evidence was moderate. We rated down for imprecision (Table 3).

For infection, we included seven RCTs (2729 patients). EEN reduced the risk of infections compared to early PN (RR 0.55; 95% CI 0.35–0.86; \(P = 0.009; I^2 = 65% \)). The certainty of evidence was low. We rated down for risk of bias and inconsistency (Table 3).

Table 3 Evidence profiles for the questions where meta-analyses were performed

Question 1	Early EN vs early PN in unselected critically ill population (identified during primary search using key words block on „critical illness“)									
	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Nº of patients	Effect	Quality	Importance
	Nº of studies						Nº of patients	Relative (95% CI)	Absolute (95% CI)	
Mortality	7	not serious¹	not serious²	not serious	serious³	none	431/1335 (32.3%)	RR 0.95 (0.76 to 1.19)	16 fewer per 1,000 (from 61 more to 77 fewer)	
Any Infections	7	serious⁴	serious⁵	not serious	not serious	none	283/1364 (20.7%)	RR 0.55 (0.35 to 0.86)	110 fewer per 1,000 (from 34 fewer to 160 fewer)	

Comments:
1. Although the randomization method was inappropriate or unclear in four RCTs out of five, we did not downgrade for risk of bias because the overall results did not change after excluding high risk of bias trials from the analysis, it is unlikely that risk of bias affected the mortality estimate.
2. We did not downgrade for inconsistency (\(I^2 = 9% \)).
3. We downgraded for imprecision by one level because the CI included significant benefit and harms (0.76, 1.19).
4. We downgraded for risk of bias by one level, most RCTs were non-blinded and had unclear or inappropriate methods of randomization.
5. We downgraded for inconsistency by one level due to significant statistical heterogeneity (\(I^2 = 65% \)).

Question 1B	Early EN vs delayed EN in unselected critically ill population (identified during primary search using key words block on „critical illness“)									
	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Nº of patients	Effect	Quality	Importance
Mortality	12	serious¹	not serious²	not serious	serious³	none	38/336 (11.3%)	RR 0.76 (0.52 to 1.11)	40 fewer per 1,000 (from 18 more to 80 fewer)	
Any Infections	11	serious¹	not serious²	not serious	serious³	none	45/299 (12.3%)	RR 0.64 (0.46 to 0.90)	124 fewer per 1,000 (from 35 fewer to 187 fewer)	

Comments:
1. We downgraded by one level for risk of bias, all RCTs had either inappropriate or unclear randomization methods.
2. \(I^2 = 0% \).
3. We downgraded by one level for imprecision, the CI crosses the line of unity.
4. We did not downgrade for inconsistency, the \(I^2 = 25% \).
5. We downgraded the quality of evidence by one level for imprecision, the number of events was small, and the CI included small benefit.
Question 1B: Should we use EEN rather than delay nutritional intake?

Fourteen studies fulfilled the criteria and were included in the meta-analysis (Supplement 5, Table 1B). Results of the meta-analyses on EEN vs. delayed nutritional intake (including delayed EN, oral diet or PN) are presented in Fig. 2.

For mortality, we included 12 RCTs (662 patients). EEN did not reduce mortality compared to delayed nutritional intake (RR 0.76; 95% CI 0.52–1.11; \(P = 0.149; I^2 = 0\%\)). For infection, we included 11 RCTs (597 patients). EEN reduced risk of infection compared to delayed EN (RR 0.64; 95% CI 0.46–0.90; \(P = 0.010; I^2 = 25\%\)).
The certainty of evidence was low. We rated down for risk of bias and imprecision (Table 3).

In one study it was not possible to determine whether early PN was also used in some patients in the EEN group [10]. Adding eight additional studies identified via specific searches did not significantly change the results (included studies are presented in Supplement 5, Table 1D; evidence profiles in Supplement 6 and Forest plots in Supplement 7, Fig. 4).

Recommendation 1. We suggest using EEN in critically ill adult patients rather than early PN (Grade 2C) or delaying EN (Grade 2C).

Question 2: Should we delay EN in patients with shock receiving vasopressors or inotropes?

No RCTs were retrieved. We identified and analysed four prospective cohort studies, four case series/retrospective cohort studies and two reviews (Supplement 5, Table 2).
There is concern that EN in shock further jeopardizes the already impaired splanchnic perfusion. Non-occlusive bowel necrosis or non-occlusive mesenteric ischaemia (NOMI) has been reported in fewer than 1% of patients [11, 12], without evidence for causal relationship between shock, vasopressors, EN and NOMI [11–14]. In a large observational study, EEN (<48 h) in patients with ‘stable’ haemodynamics after fluid resuscitation, whilst receiving at least one vasopressor, was associated with reduced mortality compared to late EN (>48 h) [15]. These results suggest that the use of concomitant vasopressors (especially with stable or decreasing doses) should not preclude a trial of EN, despite a high prevalence of feeding intolerance [16]. In very unstable patients, EN may not have priority and potential positive effects of EN are unlikely to help improve instability. Persisting lactic acidosis may help identify uncontrolled shock.

Table 3 continued

Question 12B	Elective GI surgery. Early EN vs delayed EN										
Quality assessment	**No of patients**	**Effect**	**Quality**	**Importance**							
Mortality											
No of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	EEN	DEN	Relative (95% CI)	Absolute (95% CI)	
3	randomised trials	not serious	not serious	not serious	very serious¹	none	7/176 (4.0%)	7/170 (4.1%)	RR 0.83 (0.25 to 2.81)	1 fewer per 1,000 (from 26 fewer to 65 more)	
											CRITICAL
Infections											
6	randomised trials	serious²	not serious³	not serious	serious⁴	none	33/218 (15.1%)	65/214 (30.4%)	RR 0.43 (0.23 to 0.82)	173 fewer per 1,000 (from 55 fewer to 234 fewer)	
											CRITICAL
Anastomotic leak											
5	randomised trials	not serious	not serious	not serious	very serious¹	none	8/204 (3.9%)	20/200 (10.0%)	RR 0.43 (0.20 to 0.93)	57 fewer per 1,000 (from 7 fewer to 80 fewer)	
											CRITICAL

Comments:
1. The CI is extremely wide and number of events is very low, therefore, we downgraded by two levels for imprecision
2. All studies were non-blinded, therefore, we downgraded by one level for risk of bias
3. I²=46% but we did not consider this as a substantial heterogeneity
4. The number of events is small and the CI included both substantial and small benefit
5. We downgraded the quality of evidence by two levels for serious imprecision

Question 12C	Elective GI surgery. Early EN vs early PN										
Quality assessment	**No of patients**	**Effect**	**Quality**	**Importance**							
Pneumonia											
No of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	EEN	EPN	Relative (95% CI)	Absolute (95% CI)	
2	randomised trials	serious¹	not serious	not serious	serious²	none	13/220 (5.9%)	22/220 (10.0%)	RR 0.59 (0.31 to 1.14)	41 fewer per 1,000 (from 14 more to 69 fewer)	
											CRITICAL
Anastomotic leak											
2	randomised trials	not serious	serious³	not serious	serious⁴	none	8/220 (3.6%)	19/220 (8.6%)	RR 0.42 (0.19 to 0.95)	50 fewer per 1,000 (from 4 fewer to 76 fewer)	
											CRITICAL

Comments:
1. Both trials were non-blinded, we downgraded for risk of bias
2. We downgraded the quality of evidence for imprecision by one level, the CI included the unity line
3. I²=63%
4. We downgraded for imprecision, the number of events was very small and the results were sensitive to pooling method
Recommendation 2. We suggest delaying EN if shock is uncontrolled and haemodynamic and tissue perfusion goals are not reached, but start low dose EN as soon as shock is controlled with fluids and vasopressors/inotropes (Grade 2D).

Question 3:
Should we delay EN in patients with:

A. Hypoxaemia;
B. Hypercapnia;
C. Acidosis?

We found no direct evidence on these subquestions in the literature, and RCTs in this population are unlikely to become available.

The rationale to withhold EN in patients with hypoxaemia, hypercapnia and acidosis is to limit oxygen consumption and CO₂ production. However, the process of starving mobilises endogenous stores and is energy-consuming [17]. Acidosis may represent persistent shock and possibly contribute to gut dysfunction. Identifying and treating the cause of shock has priority over the initiation of EN. Similarly, in uncontrolled life-threatening hypoxaemia and hypercapnia, EN should be delayed until the symptoms are resolving.
In patients with acute lung injury, an RCT comparing trophic to full EN for up to 6 days was associated with less gastrointestinal intolerance when compared to full EN, without affecting ventilator-free days, infectious complications, physical function, or survival [7, 18]. There are no data suggesting EN in patients with chronic, subacute, compensated or permissive hypercapnia is unsafe or not feasible.

Recommendation 3. We suggest delaying EN in case of uncontrolled life-threatening hypoxaemia, hypercapnia or acidosis, but using EEN in patients with stable hypoxaemia, and compensated or permissive hypercapnia and acidosis (Grade 2D).

Question 4: Should we delay EN in patients receiving neuromuscular blocking agents?

One prospective study was identified (Supplement 5, Table 4), reporting similar gastric emptying as measured by gastric residual volume (GRV) in sedated patients with or without concomitant use of neuromuscular blocking agents [19]. The critical condition necessitating the use of neuromuscular blocking agents always needs to be considered, but these agents per se should not preclude EN. Analgesedation is known to slow gastric emptying [20]. Increased rate of EN intolerance is expected in deeply sedated patients with/without concomitant use of neuromuscular blocking agents.

Recommendation 4. We suggest that EN should not be delayed solely because of the concomitant use of neuromuscular blocking agents (Grade 2D).

Question 5: Should we delay EN in patients receiving therapeutic hypothermia?

One case series study addressing EN during therapeutic hypothermia was identified [21] (Supplement 5, Table 5).

During therapeutic hypothermia, energy metabolism might be markedly reduced [22, 23] when shivering is prevented. The rationale to withhold EN during therapeutic hypothermia is based on the presumed decrease in gut motility due to hypothermia [24, 25] and required analgesedation [20]. It has been suggested that EN could be successfully administered to
these patients [21]. Tolerance to enteral feeding was impaired during hypothermia, but improved during rewarming [21].

Recommendation 5. We suggest starting low dose EEN in patients receiving therapeutic hypothermia and increase the dose after rewarming (Grade 2D).

Question 6: Should we delay EN in patients receiving extracorporeal membrane oxygenation (ECMO)?

No RCTs and no prospective cohort studies were identified. Four case series in adult patients with ECMO were assessed (Supplement 5, Table 6), suggesting that EN is feasible during ECMO.

Recommendation 6. We suggest using EEN in patients receiving ECMO (Grade 2D).

Question 7: Should we delay EN during prone position?

One prospective cross-over, one cohort and three case series studies were identified (Supplement 5, Table 7).

Data on tolerance of EN in prone position are controversial. Observational studies found similar GRVs in prone and supine position [26], whereas poor feeding tolerance was improved with semi-recumbent position during supine periods and prokinetics [27, 28]. Although no RCTs on EN tolerance during prone position are available, reported studies do not support withholding EN in
prone position. Gastric emptying seems not to be significantly influenced by prone position and adverse events in most studies not increased.

Recommendation 7. We suggest that EN should not be delayed solely because of prone positioning (Grade 2D).

Remark: We suggest considering early use of prokinetics followed by post-pyloric feeding in case of persisting gastric retention.

Question 8: Should we delay EN in patients with traumatic brain injury?

We identified a Cochrane review with two updates and one recent meta-analysis, comparing early vs. late feeding, independent on the route of nutrition (EN or PN) (Supplement 5, Table 8C). We identified three RCTs comparing EEN vs. early PN, three RCTs comparing EEN vs. delayed EN (one with restricted randomisation), and one RCT comparing early PN vs. delayed EN (Supplement 5, Table 8A).

Question 8A: EEN vs. early PN

Three RCTs (116 patients) were included. EEN compared to early PN in patients with traumatic brain injury did not affect mortality (RR 1.91; 95% CI 0.59–6.18; \(P = 0.279; I^2 = 0\%\)) or the risk of pneumonia (RR 1.23; 95% CI 0.79–1.90; \(P = 0.36; I^2 = 0\%\)). The certainty of evidence for mortality outcome was low, for pneumonia it was very low. We rated down for risk of bias and imprecision (Table 3). Supplement 7, Fig. 5.

Question 8B: EEN vs. delayed EN

For mortality, two RCTs (86 patients) were included. EEN did not affect mortality compared to delayed EN (RR 0.66; 95% CI 0.18–2.45; \(P = 0.53; I^2 = 0\%\)). The certainty of evidence was low. We rated down for imprecision (Table 3).

For pneumonia, three RCTs (118 patients) were included. EEN did not affect the risk of pneumonia compared to delayed EN (RR 0.86; 95% CI 0.55–1.35; \(P = 0.51; I^2 = 0\%\)). The certainty of evidence was very low. We rated down for risk of bias and imprecision (Table 3). Supplement 7, Fig. 6.

In addition to RCTs, five cohort studies addressing this question were identified (Supplement 5, Table 8B).

Existing evidence did not allow determining or excluding any benefit or harm of EEN, therefore our recommendation is based on expert opinion.

Recommendation 8. We suggest using EEN in patients with traumatic brain injury (Grade 2D).

Question 9: Should we delay EN in patients with stroke (haemorrhagic or ischaemic)?

We identified two RCTs in patients with ischaemic stroke and one retrospective study in patients with hypertensive intracerebral haemorrhage (Supplement 5, Tables 9A, B).

One small RCT compared early vs. delayed EN and reported amelioration of cell-mediated immunity [29]; however, both groups received PN to meet caloric targets from day 1. A large RCT compared EEN (“as soon as possible”) to no nutrition within 7 days and reported a trend towards reduction of long-term mortality (6 months) with EN, with an increased risk of poor neurologic outcome in survivors [30]. An observational study reported reduction in infectious complications with EEN vs. delayed EN [31].

Recommendation 9. We suggest using EEN in patients with stroke (ischaemic or haemorrhagic) (Grade 2D).

Question 10: Should we delay EN in patients with spinal cord injury?

One RCT addressed EEN (<72 h) vs. delayed EN in cervical spinal injury [32]. No differences in outcome variables were identified. One retrospective cohort study addressed safety of EN early after spinal cord injury and reported no major complications [33] (Supplement 5, Tables 10A, B).

Recommendation 10. We suggest using EEN in patients with spinal cord injury (Grade 2D).

Question 11: Should we delay EN in patients with severe acute pancreatitis (SAP)?

We identified five systematic reviews with meta-analyses comparing EN to PN while not considering timing (Supplement 5, Table 11B). All meta-analyses concluded that EN was beneficial in reducing infections and three reported reduced mortality [3, 34, 35].

We identified five RCTs addressing EEN (“early” as defined by the authors) vs. early PN in SAP whereas only two studies defined “early” as <48 h. Three further RCTs addressed EEN vs. early PN and one RCT EEN vs. delayed EN in “predicted SAP”. Two RCTs addressing acute pancreatitis independent of severity and one RCT
studies, we included five RCTs (232 patients), EEN (<48 h) reduced the risk of infections compared to PN (RR 0.49; 95% CI 0.28–0.83; P = 0.008, I² = 9%). The certainty of evidence was low. We rated down for risk of bias, inconsistency and imprecision (Supplement 6).

For** infections** we included three RCTs (167 patients). EEN (<48 h) reduced the risk of pancreatic infections compared to PN (RR 0.40; 95% CI 0.22–0.73; P = 0.003; I² = 0%). The certainty of evidence was low. We rated down for risk of bias and imprecision (Supplement 6). Supplement 7, Fig. 9.

Taken together, the studies in different subpopulations have demonstrated a reduction of infections but no convincing effect of EEN on mortality.

Recommendation 11. We suggest using EEN in patients with severe acute pancreatitis (Grade 2C).

Question 12: Should we delay EN in patients after GI surgery?

Out of three published meta-analyses [36–38] addressing early postoperative feeding including early oral diet, the two more recent papers [36, 37] reached different conclusions: reduced mortality and length of stay (LOS) but increased risk of vomiting analysing 15 RCTs [37] vs. no difference in mortality and LOS, but reduced complications in early group from 13 RCTs [36].

We identified three RCTs comparing early vs. delayed EN after emergency GI surgery and six RCTs in elective GI surgery. Two RCTs compared EEN vs. early PN in patients after elective GI surgery (Supplement 5, Table 12).

Question 12A: Emergency GI surgery. EEN vs delayed EN

Three RCTs (343 patients) were included. EEN did not affect mortality compared to delayed EN (RR 0.80; 95% CI 0.46–1.40; P = 0.44; I² = 0%). EEN reduced the risk of infections compared to delayed EN (RR 0.61; 95% CI 0.40–0.93; P = 0.02; I² = 0%). The certainty of evidence was low. We rated down for risk of bias and imprecision (Table 3). Supplement 7, Fig. 10.

Question 12B: Elective GI surgery. EEN vs. delayed EN

For mortality three RCTs (346 patients) were included. EEN did not affect mortality compared to delayed EN in patients after elective GI surgery (RR 0.83; 95% CI 0.25–2.81; P = 0.77; I² = 17%). The certainty of evidence was low. We rated down for imprecision (Table 3).

For any infections six RCTs (432 patients) were included. EEN reduced the risk of infections compared to delayed EN (RR 0.43; 95% CI 0.23–0.82; P = 0.01; I² = 46%). The certainty of evidence was low. We rated down for risk of bias and imprecision (Table 3).
Five RCTs (404 patients) reported anastomotic leak. EEN reduced the risk of surgical leak compared to delayed EN (RR 0.43; 95% CI 0.20–0.93; \(P = 0.03; \hat{I}^2 = 0\%\)). The certainty of evidence was low. We rated down for imprecision (Table 3). Supplement 7, Fig. 11.

Question 12C: Elective GI surgery. EEN vs early PN

Two RCTs (440 patients) were included. EEN did not reduce the risk of pneumonia compared to early PN (RR 0.59; 95% CI 0.31–1.14; \(P = 0.12, \hat{I}^2 = 0\%\)), but reduced the risk of anastomotic leak compared to early PN (RR 0.42; 95% CI 0.19–0.95; \(P = 0.04, \hat{I}^2 = 63\%\)). The certainty of evidence was low. We rated down for risk of bias, inconsistency and imprecision (Table 3). Supplement 7, Fig. 12.

Recommendation 12. We suggest using EEN in patients after GI surgery (Grade 2C).

Question 13: Should we delay EN in patients after abdominal aortic surgery?

No RCTs but two cohort studies were identified (Supplement 5, Table 13). Cohort studies both in elective [39] and emergency repair [40] did not compare EEN with any of our comparators, but showed that EEN was successful in a minority of patients. A multimodal approach has been proposed [41], including early removal of nasogastric tubes, immediate postoperative mobilisation early oral or enteral feeding, accepting GRV up to 500 ml and use of prokinetics. Although these patients are at risk of bowel ischaemia with prevalence reported between 7 and 17% [42, 43], the risk itself should not lead to withholding EN, unless bowel ischaemia is suspected (see also Recommendation 15).

Recommendation 13. We suggest using EEN in patients after abdominal aortic surgery (Grade 2D).

Question 14: Should we delay EN in patients with abdominal trauma?

Ten RCTs and ten cohort studies addressing EEN in trauma patients (RCTs: within 6–48 h; cohort studies: within 12–96 h) were identified, but abdominal trauma specifically was addressed in six RCTs, four of them compared EEN to early PN and two EEN to delayed EN (Supplement 5, Table 14A).

Question 14A: EEN vs early PN

For mortality two RCTs (142 patients) were included. EEN did not affect mortality compared to early PN (RR 0.49; 95% CI 0.09–2.69; \(P = 0.41, \hat{I}^2 = 0\%\)). The certainty of evidence was very low. We rated down for risk of bias and imprecision (Table 3).

For any infection four RCTs (219 patients) were included. EEN did not affect the risk of infections compared to early PN (RR 0.83; 95% CI 0.41–1.70; \(P = 0.837\)). The certainty of evidence was very low. We rated down for risk of bias, inconsistency and imprecision (Table 3). See Supplement 7, Fig. 14.

Recommendation 14. We suggest using EEN in patients with abdominal trauma when the continuity of the GI tract is confirmed/restored (Grade 2D).

Question 15: Should we delay EN in patients with bowel ischaemia?

We identified no clinical studies, but physiological knowledge and common sense support withholding EN in patients with overt bowel ischaemia. However, patients with endoscopic evidence of mild to moderate large bowel mucosal ischaemia, without signs of transmural ischaemia or bowel distension, might profit from low dose EN. In this case we support considering EN. In a recent retrospective study, survivors were more often fed enteral before the diagnosis of acute mesenteric ischaemia, but no independent association between EN and mortality was demonstrated [45].
Recommendation 15. We suggest delaying EN in patients with overt bowel ischaemia (Grade 2D).

Question 16: Should we delay EN in critically ill adult patients with intestinal fistula?

We identified one retrospective cohort study and two case series, all showing outcome benefit of “early” EN (Supplement 5, Table 16). However, “early” was defined as EN started within 7 days or 14 days of admission. Retrospective design further diminishes the importance of these studies.

Intolerance of EN or increasing fistula output causing skin breakdown or fluid/electrolyte imbalance are evident reasons to decrease or discontinue EN [46].

Recommendation 16. We suggest delaying EN in patients with high-output intestinal fistula if reliable feeding access distal to the fistula is not achievable (Grade 2D).

Question 17: Should we delay EN in patients with an open abdomen?

Seven observational studies (one prospective cohort study, three retrospective cohort studies and four case series) were identified; two studies compared EEN (different definitions) vs delayed EN and reported higher rate of early abdominal closure, less fistula formation and lower incidence of ventilator-associated pneumonia in the “early” EN group (Supplement 5, Table 17). The largest study comparing EN to no EN in patients with open abdomen after abdominal trauma reported independent associations between EN and ultimate fascial closure and decreased mortality rate in patients without bowel injury, but no difference in a subgroup of patients with bowel injury [47].

Recommendation 17. We suggest using EEN in patients with open abdomen (Grade 2D).

Question 18: Should we delay EN in patients with intra-abdominal hypertension?

Four observational studies were identified (one prospective cohort study, four retrospective cohort studies and four case series) were identified; two studies compared EEN (different definitions) vs delayed EN and reported higher rate of early abdominal closure, less fistula formation and lower incidence of ventilator-associated pneumonia in the “early” EN group (Supplement 5, Table 17). The largest study comparing EN to no EN in patients with open abdomen after abdominal trauma reported independent associations between EN and ultimate fascial closure and decreased mortality rate in patients without bowel injury, but no difference in a subgroup of patients with bowel injury [47].

Recommendation 18a. We suggest using EEN in patients with intra-abdominal hypertension without abdominal compartment syndrome, but consider temporary reduction or discontinuation of EN when intra-abdominal pressure values further increase under EN (Grade 2D).

Recommendation 18b. We suggest delaying EN in patients with abdominal compartment syndrome (Grade 2D).

Question 19: Should we delay EN in patients with upper GI bleeding?

No studies addressing EEN were identified. One RCT in bleeding due to gastric or duodenal ulcer reported shorter hospital stay (4.2 ± 1.2 vs. 5.9 ± 1.4 days, P < 0.001) in the early oral feeding group [50].

EN as protection against stress ulceration and GI bleeding is suggested in one meta-analysis [51], one retrospective study in burns [52] and several reviews [53–55]. An RCT comparing ranitidine and sucralfate reported EN as an independently protective factor against GI bleeding [56]. The main rationale to prohibit eating/EN is based on fear for disturbed visibility in a further endoscopy/intervention due to rebleeding. Therefore, delaying EN for 48–72 h in patients with a high risk of rebleeding has been suggested [57]. Considering the absence of evidence to support this time frame, we suggest starting EN during the first 24–48 h after bleeding has been stopped; prolonged postponement of EN is unnecessary or even harmful because of increased risk of stress ulceration. Importantly, there is no evidence that fine-bore nasogastric tubes cause variceal bleeding [57].

Recommendation 19. We suggest delaying EN in patients with active upper GI bleeding, and starting EN when the bleeding has stopped and no signs of rebleeding are observed (Grade 2D).

Question 20: Should we delay EN in patients with acute liver failure?

We could not identify any study in acute or acute-on-chronic liver failure patients. Some benefits of EN have been shown in patients with alcoholic hepatitis, malnourished patients with cirrhosis and patients with liver transplantation [58–60], where glycogen stores may be depleted after an overnight fast and metabolic conditions resemble prolonged starvation in healthy individuals [61]. EN in fulminant acute liver failure has never been studied. These patients often present with hypoglycaemia, which should be corrected with intravenous glucose,
sometimes together with insulin. Fulminant liver failure is associated with increased serum amino acid concentrations, especially glutamine [62, 63]. It seems likely that a failing liver is unable to provide effective metabolic support required for nutrition. The pathophysiological rationale to delay EN in fulminant hepatic failure would be to “spare” the severely injured liver from the duties of metabolising and storing nutrition during a period of stress and also to avoid additional increases in ammonia. Intravenous provision of nutrients except correction of hypoglycemia and appropriate provision of vitamins and trace elements may be futile or harmful early in the clinical course [64].

Recommendation 20. We suggest starting low dose EN when acute, immediately life-threatening metabolic derangements are controlled with or without liver support strategies, independent on grade of encephalopathy (Grade 2D).

Remark: Arterial ammonia levels should be monitored.

Question 21: Should we delay EN in patients with large gastric aspirate volumes (GAV)?

We identified no study addressing this question. Based on existing evidence from two RCTs comparing the threshold volumes to stop already started EN [65, 66], a clear threshold volume (in ranges up to 500 ml) that increased the risk of ventilator-associated pneumonia was not identified. Measurements of GAV/GRV are not a gold standard and alternative methods (like ultrasound) can be applied to diagnose overfilling of the stomach. Gross distension of the stomach is likely to be undesirable and therefore we suggest that EN should be delayed when GAV/GRV is >500 ml/6 h [65], either for a limited time period or until administration of prokinetics. For patients with persistently large GAV/GRVs the use of postpyloric feeding should be considered rather than withholding EN, unless bowel ischaemia or obstruction is suspected (see also Recommendation 15).

Recommendation 21. We suggest delaying EN if gastric aspirate volume is above 500 ml/6 h (Grade 2D).

Question 22: Should we delay EN in patients with absent bowel sounds?

One cohort study was identified [67] (Supplement 5, Table 22). Bowel sounds are frequently absent in mechanically ventilated patients and this is associated with impaired outcome [68]. The concept that bowel sounds must be present before initiation of enteral feeding is not based on evidence and should be abandoned [69]. After laparotomy small intestinal motility is frequently preserved despite gastric and colonic paresis. The small intestine may contract silently (absence of gas), while feeding is well tolerated [69]. Gastric and colonic paresis may effectively be treated with prokinetics [70]. Initiation of EN in absence of bowel sounds might be associated with earlier return of bowel sounds, fewer episodes of vomiting, and shorter ICU and hospital stay [67].

Recommendation 22. We suggest using EEN regardless of the presence of bowel sounds unless bowel ischaemia or obstruction is suspected (Grade 2D).

Question 23: Should we delay EN in patients with diarrhoea?

There were no studies testing delay of EN in case of diarrhoea, but diarrhoea is often considered as a reason to delay EN [71]. Prevalence of diarrhoea in unselected ICU population is between 14 and 21% [72, 73]. Causes include impaired digestion/absorption, bacterial overgrowth or infection such as *Clostridium difficile*. Observational studies [74, 75] suggest that diarrhoea can be effectively managed with protocolised measures other than immediate cessation in EN. We recommend analysing the causes of diarrhoea and treat appropriately (e.g. *C. difficile* colitis). We also suggest considering treating bacterial overgrowth by selective decontamination, fibre-enriched or semi-elementary diet or digestive enzymes to reduce diarrhoea.

Recommendation 23. We suggest using EEN in patients with diarrhoea (Grade 2D).

Conclusions

We suggest using EEN, initiated at a low rate, in the majority of critically ill patients; however, the evidence is weak. Beneficial effects in terms of infection prevention have been demonstrated in unselected critically ill patients, as well as in patients with severe acute pancreatitis and after GI surgery. However, we suggest delaying EN in patients with uncontrolled shock (haemodynamic and tissue perfusion goals are not met despite of fluids and vasopressors), uncontrolled hypoxaemia and acidosis, uncontrolled GI bleeding, overt bowel ischaemia (occlusive or non-occlusive), bowel obstruction (mechanical ileus), abdominal compartment syndrome, gastric aspirate volume >500 ml/6 h or high-output fistula if reliable distal feeding access is not achievable.

Electronic supplementary material

The online version of this article (doi:10.1007/s00134-016-4665-0) contains supplementary material, which is available to authorized users.

Author details

1. Department of Anaesthesiology and Intensive Care, University of Tartu, Tartu, Estonia. 2. Center of Intensive Care Medicine, Lucerne Cantonal Hospital, Lucerne, Switzerland. 3. Department of Anaesthesiology and Intensive Care, Tartu, Estonia.
Acknowledgements
Collaborators in ESICM Working Group on Gastrointestinal Function: Claudia Spies, Klinik für Anästhesiologie mit Schwerpunkt operative Intensivmedizin der Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum, Berlin; Pietro Vecchiarelli, Intensive Care Unit, Ospedale Belcolle, Strada Sammartinese, Belcolle Hospital, Viterbo, Italy; Anne Berit Guttormsen, Department of Anesthesia and Intensive Care, Haukeland University Hospital, Bergen, Norway. The costs covering the open access publication of this article were covered by the International Fluid Academy (IFA). The IFA is integrated within the not-for-profit charitable organization iMERiT (International Medical Education and Research Initiative) under Belgian Law, and iFA website (http://www.thefluidacademy.org) is an official SMACC (Social Media and Critical Care) affiliated site, based on the philosophy of FOAM (Free Open Access Medical Education).

Compliance with ethical standards
Conflicts of interest
See Supplement 8.

Open Access
This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/), which permits any noncommercial use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Received: 8 September 2016 Accepted: 27 December 2016 Published online: 6 February 2017

References
1. Kreymann KG, Berger NM, Deutz NE, Hiesmayr M, Jolliet P, Kazandjiev G, Nitenberg G, van den Berghe G, Wernerman J, DGEM (German Society for Nutritional Medicine), Ebner C, Hart W, Heymann C, Speich C, ESPEN (European Society for Parenteral and Enteral Nutrition) (2006) ESPEN guidelines on enteral nutrition: intensive care. Clin Nutr 25:210–223. doi:10.1016/j.clnu.2006.01.021
2. Fernández-Ortega JF, Herrero Meseguer JL, Martínez García P, Metabolism and Nutrition Working Group of the Spanish Society of Intensive Care Medicine and Coronary units (2011) Guidelines for specialized nutritional and metabolic support in the critically-ill patient: update. Consensus SEMICYUC-SENPE: indications, timing and routes of nutrient delivery. Nutr Hosp 26(Suppl 2):7–11. doi:10.5556/nh20110001000002
3. Taylor BE, McClave SA, Martindale RG, Warren MW, Johnson DR, Braunischweig C, McCarthy MS, Davanos E, Rice TW, Cresci GA, Gervasio JM, Sacks GS, Roberts PR, Compher C, Society of Critical Care Medicine; American Society of Parenteral and Enteral Nutrition (2016) Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (AS.P.E.N.). Crit Care Med 44:390–438. doi:10.1097/CCM.0000000000001525
4. Caser MP, Van den Berghe G (2014) Nutrition in the acute phase of critical illness. N Engl J Med 370:1227–1236. doi:10.1056/NEJMra1304623
5. Wejs P, Lojaaard WG, Beuhsuhen A, Girbes AR, Oudemans-van Straaten HM (2014) Early high protein intake is associated with low mortality and energy overfeeding with high mortality in non-septically ventilated critically ill patients. Crit Care 18:701. doi:10.1186/s13054-014-0701-z
6. National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network, Rice TW, Wheeler AP, Thompson BT, Steingrub J, Hite RD, Moss M, Morris A, Dong N, Rock P (2012) Initial trophic vs full enteral feeding in patients with acute lung injury: the EDDEN randomized trial. JAMA 307:795–803. doi:10.1001/jama.2012.137
7. Arabi YM, Aldawood AS, Haddad SH, Al-Dorzi HM, Tamim HM, Jones G, Mehta S, McIntyre L, Soliman O, Sakkitha MH, Sadat M, Afesh L, PermiT Trial Group (2015) Permissive underfeeding or standard enteral feeding in critically ill adults. N Engl J Med 372:2398–2408. doi:10.1056/NEJMoa1502826
8. Caser MP, Van den Berghe G (2015) Editorial on the original article entitled “Permissive underfeeding of standard enteral feeding in critically ill adults” published in the New England Journal of Medicine on June 18, 2015. Ann Transl Med 3:22. doi:10.3978/j.issn.2305-5839.2015.07.22
9. Reintam Blaser A, Malbrain ML, Starkopf J, Fruhwald S, Jakob SM, De Waele J, Braun JP, Poeze M, Spiess C (2012) Gastrointestinal function in intensive care patients: terminology, definitions and management. Recommendations of the ESICM working group on abdominal problems. Intensive Care Med 38:384–394. doi:10.1007/s00134-011-2499-y
10. Chuntrasakul C, Sathayak J, Chongtumanavanit S, Bunnak A (1996) Early nutritional support in severe traumatic patients. J Med Assoc Thai 79:21–26
11. Manci EE, Muzevich KM (2013) Tolerance and safety of enteral nutrition in critically ill patients receiving intravenous vasopressor therapy. JPEN J Parenter Enteral Nutr 37:641–651. doi:10.1177/0148607112470460
12. Marvin RG, McKinley BA, McQuaggan M, Concanour CS, Moore FA (2000) Nonocclusive bowel necrosis occurring in critically ill trauma patients receiving enteral nutrition manifests no reliable clinical signs for early detection. Am J Surg 179:7–12
13. Wells DL (2012) Provision of enteral nutrition during vasopressor therapy for hemodynamic instability: an evidence-based review. Nutr Clin Pract 27:521–526. doi:10.1177/0884533611448480
14. Flordelís Lasierra JL, Pérez-Vela JL, Umezawa Makikado LD, Torres Sánchez E, Colino Gómez L, Maroto Rodríguez B, Arribas López P, Gómez de la Cámara A, Monjeo González JC (2015) Early enteral nutrition in patients with hemodynamic failure following cardiac surgery. JPEN J Parenter Enteral Nutr 39:154–162. doi:10.1177/0148607113504219
15. Khalid J, Doshi P, DiGiovine B (2010) Early enteral nutrition and outcomes of critically ill patients treated with vasopressors and mechanical ventilation. Am J Crit Care 19:261–268. doi:10.4037/ajcc2010197
16. Mentec H, Dupont H, Bocchetti M, Cani P, Ponche F, Bleichner G (2001) Upper digestive intolerance during enteral nutrition in critically ill patients: frequency, risk factors, and complications. Crit Care Med 29:1955–1961
17. Fontaine E, Muller MJ (2011) Adaptive alterations in metabolism: practical consequences on energy requirements in the severely ill patient. Curr Opin Clin Nutr Metab Care 14:171–175. doi:10.1097/MCO.0b013e32834bad4
38. Lewis SJ, Andersen HK, Thomas S (2009) Early enteral nutrition within 24 h of intestinal surgery versus later commencement of feeding: a systematic review and meta-analysis. J Gastrointest Surg 13:569–575. doi:10.1007/s11605-008-0592-x

39. Lewis SJ, Egger M, Sylvester PA, Thomas S (2001) Early enteral feeding versus "nil by mouth" after gastrointestinal surgery: systematic review and meta-analysis of controlled trials. BMJ 323:773–776

40. Rahman A, Martin C, Heyland DK (2015) Nutrition therapy for the critically ill surgical patient with aortic aneurysmal rupture: defining and improving current practice. J PN J Parenter Enteral Nutr 39:104–113. doi:10.1177/0148607113501695

41. van Zanten AR (2013) Nutrition barriers in abdominal aortic surgery: a multimodal approach for gastrointestinal dysfunction. J PN J Parenter Enteral Nutr 37:172–177. doi:10.1177/0148607112464995

42. Vermeulen Windsant IC, Hellenthal FA, Deniok JP, Prins MH, Buurman WA, Jacobs MJ, Schurink GW (2012) Circulating intestinal fatty acid-binding protein as a early marker of intestinal necrosis after aortic surgery: a prospective observational cohort study. Ann Surg 255:796–803. doi:10.1097/SLA.0b013e3182624b16

43. Bossett E, Ben Ahmed S, Galvaing F, Gave P, Jeppe JB, Cessa C, Lermusiaux P, Hasson-Khadja R, Coggia M, Haulon S, Rinkenbach S, Bion B, Feugier P, Steinmetz E, Becquemin JP, Association Universitaire de Recherche en Chirurgie (2014) Editor's choice–hybrid treatment of thoracic, thoracoabdominal, and abdominal aortic aneurysms: a multicenter retrospective study. Eur J Vasc Endovasc Surg 47:470–478. doi:10.1016/j.ejvs.2014.02.013

44. Doig GS, Heiphs PT, Simpson F, Sweetman EA (2011) Early enteral nutrition reduces mortality in trauma patients requiring intensive care: a meta-analysis of randomised controlled trials. Injury 42:50–56. doi:10.1016/j.injury.2010.06.008

45. Leone M, Bechis C, Baumstarck K, Ouattara A, Collange O, Augustin P, Annane D, Arbelot C, Aschenhouse K, Baldésoi O, Courrier S, Delapierre L, Demoxy D, Hengy B, Ichi C, Kipnis E, Bradsopper I, Lasocki S, Legrand M, Minoz O, Rimmell T, Allaine J, Bertrand PM, Bruder N, Klaesen F, Froui E, Lévy B, Martinez P, Peypel E, Piron A, Richer E, Toubi K, Vogler MC, Wallet F, Boufi M, Allauchoiche B, Konstantin JM, Martin C, Jaber S, Lefrant JY (2015) Outcome of acute mesenteric ischemia in the intensive care unit: a retrospective, multicenter study of 780 cases. Intensive Care Med 41:667–676. doi:10.1007/s00134-015-3690-8

46. Polk TM, Schwab CW (2012) Metabolic and nutritional support of the enterocutaneous fistula patient: a three-phase approach. World J Surg 36:524–533. doi:10.1007/s00268-011-1315-0

47. Burlow CC, Moore EE, Cuscieri J, Jurkovich GJ, Codner P, Nirula R, Millar D, Cohen KM, Kutzer ME, Haan J, Marsh HG, Ochsner G, Rovell SE, Truitt MS, Moore FO, Piacenti CM, Kaups KL, WTA Study Group (2012) Who should we feed? Western Trauma Association multi-institutional study of enteral nutrition in the open abdomen after injury. J Trauma Acute Care Surg 73:1380–1387. doi:10.1097/TA.0b013e318259924c

48. Sun JK, Li WQ, Ke L, Tong ZH, Ni HB, Li G, Zhang LY, Nie Y, Wang XY, Ye XH, Li N, Li JS (2013) Early enteral nutrition prevents intra-abdominal hyperthermia. In Vivo 27:143–146

49. Kirkpatrick AW, Roberts DJ, De Waele J, Jaeschke R, Malbrain ML, De Smet WR, Mairesse G, Moerman P, Lisman M (2011) Nutrition therapy for the critically ill surgical patient: a retrospective, multicentre study of 780 cases. Intensive Care Med 37:219–222. doi:10.1007/s00134-010-2344-9

50. Carrillo EJ, Wall LG, Rector Jr. F, Hamilton WR, Nalesnik MA, Sutherland TD, Doherty DB, Kunkel LM, Philbin RJ, Wholey MH, Craven DE (2012) Early enteral nutrition reduces mortality in trauma patients requiring intensive care: a meta-analysis of randomised controlled trials. Injury 43:50–56. doi:10.1016/j.injury.2011.10.008

51. Needham DM, Dinglas VD, Bienvenu OJ, Colantuoni E, Wozniak AW, Rice TW, Hopkins RO, NIH NHLBI ARDS Network (2013) One year outcomes in patients with acute lung injury randomised to initial thoracic or full enteral feeding: prospective follow-up of EDEN randomised trial. BMJ 346:f1532

52. Tamon F, Hamelin K, Duflo A, Girault C, Richard JC, Bonmarchand G (2003) Gastric emptying in mechanically ventilated critically ill patients: effect of neuromuscular blocking agent. Intensive Care Med 29:1717–1722. doi:10.1007/s00134-003-1898-9

53. Nguyen HQ, Chapin MI, Fraser RJ, Bryant K, Burgstall C, Ching K, Bel- lon M, Holloway RH (2006) The effects of sedation on gastric emptying and intra-gastric meal distribution in critical illness. Intensive Care Med 34:454–460. doi:10.1007/s00134-007-0942-2

54. Williams ML, Nolan JP (2014) Is enteral feeding tolerated during therapeutic hypothermia? Resuscitation 85:1469–1472. doi:10.1016/j.resuscitation.2014.08.018

55. Saur J, Leeweling H, Trinkmann F, Weissmann J, Borggrefe M, Kaden JJ (2004) Modification of the Harris-Benedict equation to predict the energy requirements of critically ill patients undergoing cardiopulmonary bypass. Ann Nutr Metab 53:268–275. doi:10.1159/000183982

56. Osland E, Yunus RM, Khan S, Memon MA (2011) Early versus traditional postoperative feeding in patients undergoing resectional gastrointestinal surgery: a meta-analysis. JPN J Parenteral Enteral Nutr 35:473–487. doi:10.1177/0148607110385698

57. Lewis SJ, Egger M, Sylvester PA, Thomas S (2001) Early enteral feeding versus "nil by mouth" after gastrointestinal surgery: systematic review and meta-analysis of controlled trials. BMJ 323:773–776

58. Klosnicht M, Ghaffarifar S, Jabbar Imani A, Shahnazi T (2013) Effects of early oral feeding on relapse and symptoms of upper gastrointestinal bleeding in peptic ulcer disease. Dig Endosc 25:125–129. doi:10.1111/j.1443-1661.2012.01347.x
