Chaperonin containing TCP-1 (CCT/TRiC) is a novel therapeutic and diagnostic target for neuroblastoma

Amanda Cox¹, Daniel Nierenberg¹, Oscar Camargo¹, Eunkyung Lee², Amr S. Khaled³, Joseph Mazar⁴, Rebecca J. Boohaker⁵, Tamarah J. Westmoreland⁴, and Annette R Khaled¹

¹Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL, United States of America.
²College of Health Professions and Sciences, University of Central Florida, Orlando, FL, United States of America.
³Pathology and Laboratory Medicine, Orlando VA Medical Center, Orlando, FL, United States of America.
⁴Nemours Children's Hospital, Orlando, FL, United States of America
⁵Southern Research, Birmingham, AL, United States of America
Table S1: RT-qPCR Primers

Gene	Forward	Reverse
GAPDH	GAA GGT GAA GGT CGG AGTCAA C	TGG AAG ATG GTG ATG GGA TTT C
CCT3	TCAGTCCGGTGGT GCATCTTTGG	CCTCCAGGTATCTTTTCCACTCT
CCT2-FLAG	CAG AGG TGA TCC TTC TGC GTG TG	TGT CGT CGT CCT TGT AG
CCT2	GGT AGA AAG CCA CGA CGA AG	GGT GCC AGA GCC TTT CAG GC

Table S2: CCT2 Sequences

Sequence:

```
MASLSLAVNIFKAGADEERAAETARLTSFIGAIAIGDLVKSTLGPKMDKILLSSGRDASLMVTNDGATILKINGVDNPAAKVLVDVMSVQDEDVGDDGTTVSLAAELREAESLIAKHHIPQTIAGWREATKAAAREALLSSAVDHGSDEVKFRQDLMNAGTTLSSHDLTHDHFTKLAVEAVRLKGSNGLEAIHIKIKLGGLSLDSYLEDGFLDDKKGVNPQKRKENAKILANTGMDTDFKIFGSRVFVDSTAKVAEIIEAEKMEKVERILKHIGNCFNPHEQYLPFGAAVMAEAPDFAVERALVTGGEIABSTDFDPELVKLGSCLKLEEMDKHPSFGALGACTVLRGATQQILDEAERSHLADVCVLAQKDSRTYVGCGSMELDHAIVOLRNPTEKAEVAMYESYAKALRMLPTIIADGNYDSADLVAQLRRAHSEGNNTAGMTDREGTIGDMAILGITESFQVRQVLLSAEAAEVLRVDNIIKAAPRKRVPDHPGGGGGCENLYFQSS
```

Sequence:

```
CATATGGCGAGCCCTAGCCTGGCCGCGGTGAACATCTTCAAAGCGGGGTGCAGGACGAGAGGC
CTGGCGGAAACCCTGCCTGACCCAGCTTTCATCGGCGACATCGGTATTTGTTGAGCCTGTTGGAAG
AGCAAGCCTTCGGCCGGAAGGTATTTCTGAGACGCCGTTGCTGAGTCCGACCCGCACC
TGATGGTGACCAACGATGCGCGACCACCTCTGAGAAGACATTTGGGTGTCAGCACCCCGGCCG
GAAAGTCTCTGCGTATGAGCGCGTTGAGTTTGCGCGTTGCGTGGAGTGTGCGTCGCTCGAC
CTGGCGGTCTTCCGCGCGGGAACCTGCCGCTGTGAGGCGGAAAGTGGATGGGTCTCCTGAC
TCCCGGGATACCCCGGGAAGAAGAAAATGCAAGAGAAATGGTACCCCGGACGTGGATTTGG
ACAAAAAAAAGAGAGAGAAGAAAAAAAATCAGGAAAGGAAGTAACCCCGGAGGACAC
TGGCGAGACATCGAACCCGGAAGAAGAAAAATGCAAGAGAAATGGTACCCCGGAGGACAC
```

This table provides the primers used for RT-qPCR experiments. The primers are designed to amplify specific genes, with sequences provided for each primer pair. The Table S2 sequences provide the full-length sequence of the CCT2 gene, which can be used for further molecular biology studies such as cloning or sequencing.
Table S3. Number of tumor tissue types

Figure 1A	# of tissue samples
GTEx	7862
TCGA	734
TARGET	10535

Figure 1B and 1E	
Solid Tissue Normal	11
Primary Solid Tumor	286

Figure 1C	
Ganglioneuroblastoma	3
Non-germinomatous germ cell tumor	1
Hemangioblastoma	3
Teratoma	9
Neurofibroma/Plexiform	21
Oligodendrogliaoma	2
Malignant peripheral nerve sheath tumor (MPNST)	4
Langerhans Cell histiocytosis	4
Glial-neuronal tumor NOS	5
Sarcoma	5
Chordoma	6
Not Reported	2
Dysplasia/Gliosis	15
Meningioma	29
Other	34
Schwannoma	17
Cavernoma	1
Dysembryoplastic neuroepithelial tumor (DNET)	25
Ganglioglioma	49
Germinoma	5
Gliomatosis Cerebri	2
Craniopharyngioma	36
Brainstem glioma- Diffuse intrinsic pontine glioma	14
Tumor Type	Count
---	-------
Ependymoma	93
Low-grade glioma/astrocytoma (WHO grade I/II)	254
Adenoma	3
Metastatic secondary tumors	7
Neurocytoma	3
Neuroblastoma	5
Atypical Teratoid Rhabdoid Tumor (ATRT)	30
Ewing's Sarcoma	8
High-grade glioma/astrocytoma (WHO grade III/IV)	103
Medulloblastoma	119
Pineoblastoma	3
Choroid plexus papilloma	15
Subependymal Giant Cell Astrocytoma (SEGA)	3
Supratentorial or Spinal Cord PNET	16
Choroid plexus carcinoma	4
Primary CNS lymphoma	1
Rhabdomyosarcoma	2

Figure 1D

Subproject	Count
Acute Myeloid Leukemia, Induction Failure Subproject	32
ALL	194
AML	196
Clear cell sarcoma of Kidney	13
Neuroblastoma	162
Wilms Tumor	126

Table S4. Percent of neuroblastoma tumors with CCT2 score (NB641c, US Biomax)

CCT2 Score	% CCT2 Score
0	13%
1	5.6%
2	11.1%
3	53.7%
4	13%
NR	3.7%

NR, not readable
Table S5. CCT2 score for Neuroblastoma tissue microarray (TMA), NB641c (US Biomax), with INSS stage and IHC marker (CD56/CgA)

Number	CD56	CgA	INSS stage	CCT2 score	
45	-	-	I	0	
46	-	-	I	0	
1	+	-	I	0	
2	+	-	I	1	
3	++	++	I	0	
4	++	++	I	0	
39	++	+	I	0	
40	++	+	I	0	
43	++	-	I	1	
44	++	-	I	1	
32	++	++	I	2	
31	++	++	I	3	
9	++	-	I	4	
10	++	-	I	4	
8	+++	++	I	2	
15	+++	+++	I	2	
17	+++	+++	I	2	
49	+++	+++	I	2	
50	+++	+++	I	2	
6	+++	++	IV	3	
7	+++	++	I	3	
11	+++	+++	I	3	
12	+++	+++	I	3	
13	+++	+++	I	3	
14	+++	+++	I	3	
16	+++	+++	I	3	
18	+++	+++	I	3	
19	+++	+++	I	3	
20	+++	+++	I	3	
21	+++	+++	IIB	3	
22	+++	+++	IIB	3	
23	+++	+++	IV	3	
24	+++	+++	IV	3	
29	+++	+++	I	3	
30	+++	+++	I	3	
35	+++	+	I	3	
---	-----	---	---	---	---
36	+++	+	I	3	
37	+++	+	I	3	
38	+++	+	I	3	
41	+++	+++	I	3	
42	+++	+++	I	3	
47	+++	++	I	3	
48	+++	++	I	3	
51	+++	-	I	3	
52	+++	-	I	3	
53	+++	+	I	3	
54	+++	+	I	3	
5	+++	++	IV	4	
25	+++	++	I	4	
26	+++	++	I	4	
33	+++	++	I	4	
34	+++	++	I	4	
Figure S1. HiLoad 16 600 S200 CCTb60mM. (A) Purified protein from SEC column shows a single peak. (B) Homology modeling using MOE was done. Simulations of CT20p docking were performed with the atomic model of bovine CCT2 subunit derived from a 4.0 Angstrom cryo-EM map. Binding energies of CT20p on CCT2 are shown and most energetically feasible site for CT20p binding on CCT2 is shown by arrows.
Figure S2. Pediatric malignant tumor tissue microarray (TMA) with normal tissue as control, PC701 (US Biomax), processed by IHC for CCT2. (A) Full image of TMA for stained for CCT2. (B) TMA map (n=70), duplicate cores.
Figure S3. Neuroblastoma and peripheral nerve tissue microarray (TMA), with INSS stage, IHC marker (CD56/CgA), NB641c (US Biomax), processed by IHC for CCT2. (A) Full image of TMA stained for CCT2. (B) TMA map, (n=27), duplicate cores. Legend: Adr- Adrenal gland, Med- Mediastinum/left posterior, Pel- Pelvic cavity, Per- Peripheral nerve, Ret- Retroperitoneum.
Figure S4. Representative images from Analyzer II for manually stained IMR-32 cells. CCT2-PE antibody concentration was 12 ug/mL (A) and 24 ug/mL (B). Column one is overlay of columns 2 and 3 which are cytokeratin and DAPI respectively, column 4 is CD45 marker for leukocytes and column 5 is for CCT2-PE antibody.