Influence of Fertilizers and Plant Growth Regulators Application on Physicochemical Attributes of ‘Kinnow’ Mandarin Fruit

Samina Khalida, Aman Ullah Malikb, Muhammad Irfan Ullahc, Muhammad Shafique Khalidd, and Mudassar Naseerd

aDepartment of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan; bInstitute of Horticultural Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan; cDepartment of Entomology, University College of Agriculture, University of Sargodha, Sargodha, Pakistan; dScientific Officer, Horticultural Research Station Sahiwal, Sahiwal, Pakistan

ABSTRACT

Plant growth regulators (Kinetin, GA\textsubscript{3} and Wokozim) and fertilizers (nitrogen, phosphorus, potassium and calcium) alone and in various combinations were applied to young ‘Kinnow’ mandarin trees to improve their quality. Fruit harvested at commercial maturity was analyzed at harvest and seven days after storage at ambient conditions. Results revealed that higher seed number (20) was recorded with Kinetin at 60 mg l-1 and minimum seed number (10) with Kinetin at 30 mg l-1+ GA\textsubscript{3} at 10 mg l-1. More healthy and less aborted seeds were recorded with Wokozim (1500 g tree-1)+2 ml l-1 foliar spray. High juice mass (%) and low rag mass (%) were observed with control and 250 g tree-1 phosphorous (P) application as single super phosphate. The TSS were higher with 150 g tree-1 calcium (Ca) applied as calcium ammonium nitrate and lower with P application at 500 g tree-1. Titratable acidity was higher in fruit treated with Kinetin at 60 mg l-1 and lower in fruit treated with NPK (230 + 250 + 250 g tree-1)+Ca (150 g tree-1)+Kinetin at 30 mg l-1. The TSS:TA ratio was higher in fruit treated with NPK (230 + 250 + 250 g tree-1)+ Ca (150 g tree-1)+ Kinetin at 30 mg l-1 and lower in fruit treated with P (250 g tree-1)+ Kinetin at 30 mg l-1. Ascorbic acid was higher in fruit treated with Ca (150 g tree-1)+P (250 g tree-1)+Kinetin at 30 mg l-1 and lower with Wokozim (1500 g tree-1)+2 ml l-1 foliar applications.

KEYWORDS

Fruit quality; fertilizers; ‘Kinnow’ mandarin; plant growth regulators; tree age

Introduction

‘Kinnow’ mandarin leads the citrus industry of Pakistan because of its excellent yield, more juice contents, refreshing flavor and adaptation to the indigenous agro climatic circumstances of Punjab, Pakistan since its introduction to sub continent from USA. In Pakistan during the year 2015–16 citrus fruit production was 2.34 million tonnes from an area of 192.23 thousand hectares (Anonymous, 2016). Pakistan exported 0.37 million tonnes of citrus and earned foreign exchange of 222 USD million during the year 2017–18 (Abbas, 2018). Presently, the area under ‘Kinnow’ mandarin cultivation is rising; but, owing to decline-related problems productive lifespan of citrus tree is very short and thus the growers frequently have to replace their old and vulnerable trees with new ones. On the other hand, fruit from young trees are considered inferior in fruit quality due to less juice and total soluble solid contents and thicker and rough rind (Khalid et al., 2012) due to which exporters are reluctant to purchase fruit from juvenile orchards.

The role of plant growth regulators (PGRs) and nutrients in citrus fruit quality is well recognized in mature trees (Ashraf et al., 2010; Fidelibus et al., 2002; Pozo et al., 2000; Singh and Sharma, 2011). The...
PGRs has been used to influence flowering, fruit set and fruit drop (Berhow, 2000) and have also been used to influence rind and juice quality, fruit color and size and to improve total soluble solid in different citrus species. Helal et al. (2019) reported that GA3 application at 50 ppm improved juice volume in Valencia oranges. In citrus plants endogenous PGRs and nutrient levels vary with vegetative and reproductive growth, which influences fruit set and fruit quality. Previous studies revealed that juvenile plants of Kalanchoe and Valencia orange were low in endogenous GA3 and cytokinins (Hendry et al., 1982; Wadhi and Ram, 1967) respectively as related to adult plants. Plant growth regulators (PGR) and nutrients were proved to affect the fruit rind thickness. Erner et al. (1976) described that in mature 18 year old Shamouti orange trees, rough fruit had higher endogenous cytokinin and GA3 contents as compared to smooth fruit. Goldschmidt (1983) reported that confined application of lanolin pastes comprising 0.02–1.0% of gibberellin A4+7 to developing citrus fruitlets produced peel thickening. However, Pozo et al. (2000) stated that foliar spray of GA3 on citrus fruit reduced rind thickness.

Macro (N, P, K and Ca) nutrients are required in large amounts and micro (B, Cu, Fe, Mg, Mn, Mo, Ni and Zn) nutrients are required in small amounts to play an important role in citrus fruit quality (Kaur et al., 2015). Phosphorous (P) being a constituent of nucleoprotein is important in cell division and plays important role in many physiological processes and enzymatic reactions in plants (Azeem et al. 2018). Similarly potassium also has a major role in many physiological processes in citrus plants like water relations, opening and closing of stomata, activation of enzymes, cell division, synthesis of proteins, formation of sugars and starch, and acid metabolism of citrus juice (Liu et al., 2000; Srivastava and Singh, 2005). Potassium has a positive influence on various citrus fruit quality attributes like fruit size, juice contents, color, size and juice flavor (Ashraf et al., 2010; Tiwari, 2005). Amina et al. (2018) reported that NPK applications significantly improve ascorbic acid contents of ‘Kinnow’ mandarin fruit. Calcium in the form of calcium pectate enhances the mechanical power of cell wall and plays an important role in the formation of pedicel attachment to proximal of fruit, hence resulted in a reduced fruit drop (Guardiola and Garcia, 2000). Zaman et al. (2019) reported that calcium application improves ‘Kinnow’ mandarin fruit yield and quality. Ascorbic acid contents increased with application of zinc and its combination with manganese and boron (Tariq et al. 2007) and with zinc and GA3 applications (Eman et al., 2007) in Washington navel orange and sweet orange respectively. Khalid et al. (2012) disclosed that young ‘Kinnow’ mandarin trees which were lower in endogenous Ca, N and P had rough and thick rind and had poor biochemical (TSS, titratable acidity, TSS: titratable acidity ratio and total sugars) fruit quality. Therefore the variation in endogenous levels of PGRs and nutrients among juvenile and adult plants could be a potential cause of inferior quality fruit in young orchards.

However, sporadic work has been done on exogenous use of PGRs and nutrients on citrus fruit quality grown on young plants. This study was carried out to determine the potential of exogenous use of PGRs (Kinetin and gibberellic acid), macronutrients (N, P, K and Ca) along with Wokozim (a commercial product which comprised of auxins, cytokinin, and nutrients such as B, Cu, Fe, Mg, Mn, Mo, Ni and Zn) in modifying fruit quality characteristics of ‘Kinnow’ mandarin fruits procured from young trees.

Materials and Methods

Plant Material and Site Selection

The trial was conducted on juvenile (5–6 years old) ‘Kinnow’ mandarin (Citrus nobilis Lour × Citrus deliciosa Tenora) trees budded on to rough lemon (Citrus jambhiri) rootstock, at Silanwali tehsil of Sargodha district (32°03’ N; 72°40’ E), Punjab, Pakistan.
Experimental Treatments

Fertilizers were applied to the plants in the first week of March, whereas PGRs were sprayed in the first week of April during fruit setting stage. Fifteen treatments comprising fertilizers and PGRs applied in this experiment viz. Control (without fertilizer and growth regulator), P (250 g tree⁻¹), P (500 g tree⁻¹), NPK (230 + 250 + 250 g tree⁻¹)+Ca (150 g tree⁻¹), Wokozim (granular) (1500 g tree⁻¹), Wokozim (1500 g tree⁻¹) + 2 ml l⁻¹ foliar spray, Kinetin (30 mg l⁻¹), Kinetin (60 mg l⁻¹), Kinetin (120 mg l⁻¹), P (250 g tree⁻¹) + Kinetin (30 mg l⁻¹), Kinetin (30 mg l⁻¹)+GA₃ (10 mg l⁻¹), P (250 g tree⁻¹)+Kinetin (30 mg l⁻¹)+GA₃ (10 mg l⁻¹), NPK (230 + 250 + 250 g tree⁻¹)+Ca (150 g tree⁻¹)+Kinetin (30 mg l⁻¹), Ca (150 g tree⁻¹)+ P (250 g tree⁻¹)+Kinetin (30 mg l⁻¹), Ca (150 g tree⁻¹).

Preparation and Application of Treatments

The source of N was urea (46% N), P was single supper phosphate (20% P), K was sulfate of potash (50% K) and calcium was calcium ammonium nitrate (10% Ca). Aqueous solution of PGRs having 0.1% wetting agent (Tween 20) was sprayed by hand held sprayer on entire tree to the point of run off. Simple water containing the same concentration of Tween 20 was used to treat control plants. Randomized complete block design (RCBD) was used to lay down the experiment having three replications with single tree per replication. Twenty fruits per treatment per replication were randomly picked at marketable harvest maturity (100% orange color) and transported to the Postharvest Research and Training Center (PRTC), Institute of Horticultural Sciences (IHS) University of Agriculture, Faisalabad (UAf), Pakistan. Fruits were washed with tap water, ten fruits per treatment per replication were analyzed for various fruit quality attributes just after harvest and ten fruits were retained at ambient environment (20 ± 2°C) for seven days and analyzed for physicochemical attributes.

Physical Parameters

Physical fruit quality parameters like fruit mass (g), fruit mass loss (%), juice mass (%), rag mass (%), rind mass (%), seed mass (%), fruit diameter (mm), rind thickness (mm), seed number, seed mass (%), aborted and healthy seed (%) were determined as described by Khalid (2013) with some modifications. Mass of ten fruit was determined and their average was calculated to determine fruit mass (g). Fruit mass loss (%) was calculated by subtracting the final mass from initial mass and their percentage was calculated. Rind, rag and seed mass (%) were determined by dividing the individual component mass by fruit mass multiplied by 100. Juice mass (%) was calculated by subtracting the sum of rind, rag and seed mass from fruit mass and expressed as a percentage. Total number of seeds from ten fruits was counted and their average was determined. Healthy and aborted seed from total seeds were separated and their percentage was determined.

Chemical Composition

Titratable acidity (TA) (%), TSS (°Brix), TSS:TA ratio and ascorbic acid (AA) (mg100 ml⁻¹) were evaluated as described by Khalid et al. (2012) with some modifications. Titratable acidity (%) was calculated by titrating juice sample against 0.1 N NaOH using two to three drops of phenolphthalein as an indicator (Hortwitz, 1960). Total soluble solids of juice sample were determined with hand refractometer (Atago, ATC-1, Tokyo, Japan). TSS:TA ratio was calculated by dividing TSS with TA. Ascorbic acid (AA) (mg100 ml⁻¹) was determined by titrating five ml of juice aliquot with 2, 6-dichlorophenolindophenol dye solution (Rusk, 1961).
Statistical Analysis

Treatments were organized in randomized complete block design (RCBD) with two factors (treatments and storage duration) factorial arrangement and treatment means were separated by Duncan’s Multiple Range test (DMRT). Further, different treatment combinations were compared using orthogonal contrasts.

Results and Discussion

Physical Parameters

Seed quality data exhibited in Table 1 showed that higher number of seeds per fruit (20) were extracted from plants treated with Kinetin 60 mg l⁻¹, while the lesser seed number per fruit (10) was found when both Kinetin and GA₃ were applied at 30 mg l⁻¹ + GA₃ at 10 mg l⁻¹. Reduction in seed number by GA₃ application might be due to reduced fertilization by either increasing ovule abortion or decreasing pollen tube germination (Mesejo et al., 2008). Similarly a reduction in seed number by GA₃ application was reported in Murcott Tangor (Domínguez and Rodríguez, 2007) and Afourer mandarin (Gambetta et al., 2013). More seed number in Kinetin treated fruit might be due to the positive impact of Kinetin on source sink relation in reproductive development by prompting photo assimilates production and partitioning (Kriedemann, 1968). Increased in seed number by Kinetin application was also reported in lentil by Khalil et al. (2006). More healthy (96%) and less aborted seeds (4%) were obtained from Wokozim (1500 g tree⁻¹)+2 ml l⁻¹ foliar spray, whereas P (250 g tree⁻¹) + Kinetin at 30 mg l⁻¹ gave lesser healthy (89%) and higher aborted seeds (11%) per fruit. Higher aborted seed in P treated plants might be due to reduced uptake of Boron as both nutrients are antagonistic to each other (Kaya et al., 2009). Boron is necessary for reproductive growth and

Treatments	Seed mass (g)	Total seed	Healthy seed (%)	Aborted seed (%)
Control	1.8	14 cd	94abcd	6bcde
P (250 g tree⁻¹)	2.0	14 cd	91cde	9abc
P (500 g tree⁻¹)	2.1	15 cd	90de	10ab
NPK (230 + 250 + 250 g tree⁻¹ + Ca (150 g tree⁻¹))	2.6	19a	90e	10a
Wokozim (granular) (1500 g tree⁻¹)	2.1	18abc	92abcde	8abbcde
Wokozim (1500 g tree⁻¹) + 2 ml l⁻¹ foliar spray	2.1	13de	96a	4e
Kinetin at 30 mg l⁻¹	2.6	12de	93abcde	7abcde
Kinetin at 60 mg l⁻¹	3.0	20a	94abcd	6bcde
Kinetin 120 mg l⁻¹	2.2	13de	95abc	5cde
P (250 g tree⁻¹) + Kinetin at 30 mg l⁻¹	1.8	15bcd	89e	11a
Kinetin at 30 mg l⁻¹ + GA₃ at 10 mg l⁻¹	2.6	10e	95a	5e
P (250 g tree⁻¹) + Kinetin at 30 mg l⁻¹ + GA₃ at 10 mg l⁻¹	2.5	18ab	95ab	5de
NPK (230 + 250 + 250 g tree⁻¹ + Ca 150 g tree⁻¹) + Kinetin at 30 mg l⁻¹	2.0	15cd	91bcd	9abcd
Ca (150 g tree⁻¹) + P (250 g tree⁻¹) + Kinetin at 30 mg l⁻¹	2.5	19a	94abcd	6bcde
Ca (150 g tree⁻¹)	2.3	18ab	93abcde	7abcde
LSD (P ≤ 0.05)	NS	3.49	4.07	4.07

Significance of selected contrasts on D-1

Treatments	Seed mass (g)	Total seed	Healthy seed (%)	Aborted seed (%)
Control vs P	NS	NS	0.04*	0.04*
Control vs Kinetin	0.007*	NS	NS	NS
Control vs Wokozim	NS	NS	NS	NS
P vs Kinetin	0.01*	NS	0.01*	0.01*
P vs Wokozim	NS	NS	0.01*	0.01*
Wokozim vs Kinetin	0.02*	NS	NS	NS

NS = Non significant; N = Nitrogen; P = Phosphorous; K = Potassium; Ca = Calcium; PGRs = Plant Growth Regulators

Similar letter in columns represents statistically similar results.
fertilization (Rerkasem et al., 1993) and its deficiency may cause seed abortion. The contrast between control and Kinetin, Kinetin and Wokozim and P and Kinetin showed that seed mass (g) was significantly increased with Kinetin treatments (Table 1). Contrasts between control and P, P and Kinetin and P and Wokozim discovered that P applications significantly decreased healthy seed (%) and improved aborted seed (%) as compared to control, Kinetin and Wokozim applications.

Fruit mass (g), rind mass (%), fruit diameter (mm) and rind thickness (mm) remained statistically at par with plant growth regulators and nutrients applications (Tables 2 and 3). Juice mass (%) was significantly reduced (44%) while rag mass (%) was significantly improved (30%) by higher dose of P and Wokozim applications in the form of fertilizer and foliar spray respectively (Table 4). Contrast analysis revealed that rag mass was significantly improved by Wokozim application. This could be due to rise in sink strength as Wokozim is comprised of PGRs and nutrients.

Chemical Composition

Table 5 revealed that Ca application at 150 g tree⁻¹ had higher TSS (10.8°Brix), whereas lower TSS (9.2°Brix) was depicted with P at 500 g tree⁻¹ (Table 5). Decline in TSS by P application could be due to reduced activity of sucrose phosphate synthase (SPS) enzyme by the application of P (Qiu and Israel, 1992). This enzyme synthesizes sucrose, which is the key component of TSS of juice (Huang et al., 2009; Huber and Israel, 1982). Therefore decrease in the synthesis of sucrose might decrease the TSS of juice. Analogous outcomes of lower the TSS in Flam grapefruit juice by phosphorus application were also stated by Dou et al. (2005). Raise in the TSS of juice by calcium treatment could be due to its boosting effect on enzymes, which synthesize sucrose (Bhatia and Singh, 2000) and therefore improved TSS of juice. Likewise, Singh and Sharma (2011) also described that in citrus pre-harvest applications of calcium increased juice TSS (*Brix). Interaction of treatments and shelf life period showed that on seventh day maximum TSS (11.8°Brix) was recorded with Ca (150 g tree⁻¹)+P (250 g

Table 2. Fruit physical quality variables influenced by PGRs and nutrients.
Treatments
Control
P (250 g tree⁻¹)
P (500 g tree⁻¹)
NPK (230 + 250 + 250 g tree⁻¹) + Ca (150 g tree⁻¹)
Wokozim (granular) (1500 g tree⁻¹)
Wokozim (1500 g tree⁻¹) + 2 ml l⁻¹ foliar spray
Kinetin at 30 mg l⁻¹
Kinetin at 60 mg l⁻¹
Kinetin 120 mg l⁻¹
P (250 g tree⁻¹) + Kinetin at 30 mg l⁻¹
Kinetin at 30 mg l⁻¹ + GA₃ at 10 mg l⁻¹
P (250 g tree⁻¹)+Kinetin at 30 mg l⁻¹ + GA₃ at 10 mg l⁻¹
NPK (230 + 250 + 250 g tree⁻¹)+Ca (150 g tree⁻¹)+Kinetin at 30 mg l⁻¹
Ca (150 g tree⁻¹)+ P (250 g tree⁻¹) + Kinetin at 30 mg l⁻¹
Ca (150 g tree⁻¹)
LSD (P ≤ 0.05)

Significance of selected contrasts on D-1

Fruit (g)	Fruit mass diameter (mm)	Rind thickness (mm)	
Control vs P	NS	NS	NS
Control vs Kinetin	NS	NS	NS
Control vs Wokozim	NS	NS	NS
P vs Kinetin	NS	NS	NS
P vs Wokozim	NS	NS	NS
Wokozim vs Kinetin	NS	NS	NS

NS = Non significant; N = Nitrogen; P = Phosphorous; K = Potassium; Ca = Calcium; PGRs = Plant Growth Regulators

Similar letter in columns represents statistically similar results.
Table 3. Effect of PGRs and nutrients on rind mass (%) of ‘Kinnow’ mandarin.

Treatments	Rind mass (%)		
	* Day-1	** Day-7	Mean (Treatment)
Control	27	23	25
P (250 g tree^{-1})	25	22	24
P (500 g tree^{-1})	27	23	25
NPK (230 + 250 + 250 g tree^{-1})+Ca (150 g tree^{-1})	26	25	25
Wokozim (granular) (1500 g tree^{-1})	27	26	26
Wokozim (1500 g tree^{-1}) + 2 ml l^{-1} foliar spray	27	25	26
Kinetin at 30 mg l^{-1}	27	25	26
Kinetin at 60 mg l^{-1}	25	23	24
Kinetin 120 mg l^{-1}	28	24	26
P (250 g tree^{-1}) + Kinetin at 30 mg l^{-1}	26	24	25
P (500 g tree^{-1}) + Kinetin at 30 mg l^{-1}	27	24	25
P (250 g tree^{-1}) + Kinetin at 30 mg l^{-1} + GA_{3} at 10 mg l^{-1}	26	26	26
NPK (230 + 250 + 250 g tree^{-1})+Ca (150 g tree^{-1})+Kinetin at 30 mg l^{-1}	27	27	27
Ca (150 g tree^{-1})+ P (250 g tree^{-1})+Kinetin at 30 mg l^{-1}	27	25	26
Ca (150 g tree^{-1})	27	25	26
Controls vs P	NS		
Controls vs Kinetin	NS		
Controls vs Wokozim	NS		
P vs Kinetin	NS		
P vs Wokozim	NS		
Wokozim vs Kinetin	NS		

NS = Non significant; N = Nitrogen; P = Phosphorous; K = Potassium; Ca = Calcium; PGRs = Plant Growth Regulators

Similar letter in columns represents statistically similar results.

Table 4. Influence of PGRs and nutrients on rag mass (%) and juice mass (%) of ‘Kinnow’ mandarin.

Treatments	Rag mass (%)		Juice mass (%)			
	*Day-1	**Day-7	Mean	*Day-1	**Day-7	Mean
Control	24	26	25d	48	51	50ab
P (250 g tree^{-1})	24	28	26cd	50	50	50a
P (500 g tree^{-1})	28	35	32a	45	42	44e
NPK (230 + 250 + 250 g tree^{-1})+Ca (150 g tree^{-1})	26	26	26bcd	47	49	48abcd
Wokozim (granular) (1500 g tree^{-1})	28	30	29abc	45	44	44de
Wokozim (1500 g tree^{-1}) + 2 ml l^{-1} foliar spray	29	30	30ab	44	45	44cde
Kinetin at 30 mg l^{-1}	26	28	27bcd	47	47	47abced
Kinetin at 60 mg l^{-1}	25	28	27bcd	50	49	49abc
Kinetin 120 mg l^{-1}	29	28	29abc	43	47	45bced
P (250 g tree^{-1}) + Kinetin at 30 mg l^{-1}	29	26	27bcd	46	50	48abcd
P (250 g tree^{-1}) + Kinetin at 30 mg l^{-1} + GA_{3} at 10 mg l^{-1}	28	25	27bcd	45	51	48abcd
P (250 g tree^{-1}) + Kinetin at 30 mg l^{-1} + GA_{3} at 10 mg l^{-1}	25	26	26d	48	47	47abced
NPK (230 + 250 + 250 g tree^{-1})+Ca (150 g tree^{-1})+Kinetin at 30 mg l^{-1}	26	26b	26cd	47	47	47abced
Ca (150 g tree^{-1})+ P (250 g tree^{-1})+Kinetin at 30 mg l^{-1}	26	26b	26cd	46	49	48abcd
Controls vs P	NS					
Controls vs Kinetin	NS					
Controls vs Wokozim	0.03*					
P vs Kinetin	NS					
P vs Wokozim	NS					
Wokozim vs Kinetin	NS					

NS = Non significant; N = Nitrogen; P = Phosphorous; K = Potassium; Ca = Calcium; PGRs = Plant Growth Regulators

Similar letter in columns represents statistically similar results.
Table 5. Nutrients and PGRs effect on TSS (Brix) and acidity (%) of 'Kinnow' mandarin juice.

Treatments	TSS (‘Brix)	Titratable acidity (%)				
	*Day-1	**Day-7	Mean	*Day-1	**Day-7	Mean
Control	9.1ef	9.8cdf	9.4de	0.62	0.50	0.56abcd
P (250 g tree⁻¹)	9.2de	9.7cdf	9.5de	0.60	0.45	0.53d
P (500 g tree⁻¹)	8.8f	9.6cdf	9.2e	0.59	0.52	0.55abcd
NPK (230 + 250 + 250 g tree⁻¹+ Ca (150 g tree⁻¹)	9.7cdfef	9.2def	9.5de	0.63	0.45	0.54bde
Wokozim (granular) (1500 g tree⁻¹)	9.9 cdef	9.7cdef	9.8cde	0.74	0.49	0.62abc
Wokozim (1500 g tree⁻¹) + 2 ml l⁻¹ foliar spray	10.2cd	9.9cde	10.1bcd	0.75	0.50	0.62ab
Kinin at 30 mg l⁻¹	9.9cdef	9.8cde	9.8cde	0.60	0.48	0.57abde
Kinetin at 60 mg l⁻¹	9.8cdef	10.3bc	10.1bcd	0.72	0.56	0.64a
Kinetin 120 mg l⁻¹	9.7cdef	9.9cde	9.8cde	0.64	0.54	0.59abde
P (250 g tree⁻¹) + Kinetin at 30 mg l⁻¹	9.4cdef	9.9cde	9.7cde	0.72	0.54	0.63a
Kinetin at 30 mg l⁻¹+ Ga₃ at 10 mg l⁻¹	9.1ef	11.2ab	10.2abcd	0.71	0.55	0.63a
P (250 g tree⁻¹)+Kinetin at 30 mg l⁻¹ at 10 mg l⁻¹	9.4cdef	11.2ab	10.3abc	0.57	0.50	0.54cd
NPK (230 + 250 + 250 g tree⁻¹)+Ca (150 g tree⁻¹)+Kinetin at 30 mg l⁻¹	9.1ef	11.5a	10.3abc	0.60	0.49	0.52d
Ca (150 g tree⁻¹)	9.5cdef	11.80a	10.6ab	0.67	0.51	0.59abcd
Ca (150 g tree⁻¹)	10.0cde	11.50a	10.8a	0.67	0.53	0.60abcd
Treatments (LSD)	0.61	0.07				
Treat. × SD (LSD)	0.87	NS				
Significance of selected contrasts on D-1	TSS	Titratable acidity (TA) (%)				
Control vs P	NS	NS				
Control vs Kinetin	NS	NS				
Control vs Wokozim	0.04*	0.02*				
P vs Kinetin	0.03*	NS				
P vs Wokozim	0.01*	0.001*				
Wokozin vs Kinetin	NS	NS				

NS = Non significant; N = Nitrogen; P = Phosphorous; K = Potassium; Ca = Calcium; PGRs = Plant Growth Regulators

Similar letter in columns represents statistically similar results.

tree⁻¹)+Kinetin at 30 mg l⁻¹, whereas minimum TSS (8.77°Brix) on day-1 was recorded with P (500 g tree⁻¹). The TSS of juice increased during seven days of ambient storage and significant increment was recorded in Ca and Ga₃ treated fruits. This increase in TSS may perhaps be due to conversion of complex carbohydrates into simple sugar (Singh and Sharma, 2011). Maximum titratable acidity (0.64%) of juice was assessed by Kinetin application at 60 mg l⁻¹, whereas minimum titratable acidity (0.53%) was detected by P application at 250 g tree⁻¹. Titratable acidity (%) declined during seven days ambient storage (Table 5). This decrease in acidity could be due to more breakdowns of organic acids into sugar and salts during the processes of respiration (Rutter et al., 1975).

Contrasts analysis exposed that use of Wokozim significantly enhanced TSS when compared with control (Table 5). Phosphorus fertilizer considerably reduced TSS compared to Wokozim and Kinetin treatments.

Maximum TSS:TA (19.8) was noted with NPK (230 + 250 + 250 g tree⁻¹)+Ca (150 g tree⁻¹) + Kinetin at 30 ml l⁻¹, whereas minimum TSS:TA ratio (15.8) was detected with P (250 g tree⁻¹)+Kinetin at 30 ml l⁻¹ (Table 6). The TSS:TA ratio significantly improved during the shelf life duration. Increased TSS:TA in the course of ambient storage may possibly be due to rise in TSS and fall in acidity (Table 5) during storage. Maximum ascorbic acid (57 mg 100 ml⁻¹) was perceived with application of Ca (150 g tree⁻¹)+P (250 g tree⁻¹)+Kinetin at 30 ml l⁻¹, whereas minimum ascorbic acid (37.6 mg 100 ml⁻¹) was observed with Wokozim (1500 g tree⁻¹)+2 ml l⁻¹ foliar spray (Table 4). Decrease in ascorbic acid in the Wokozim treatment (Table 6) could be due to the presence of auxin and cytokinin in Wokozim formulation. These two PGRs might improve reproductive growth (sink strength) of the plant. As increased reproductive growth in Arabidopsis mutant vtc 1 resulted in reduced ascorbic acid concentrations (Barth et al., 2006). Interaction of treatment and storage interval showed that more ascorbic acid
Table 6. Influence of PGRs and nutrients on TSS:TA and ascorbic acid (mg 100 ml⁻¹) of ’Kinnow’ mandarin juice.

Treatments	TSS:TA	Ascorbic acid (mg 100 ml⁻¹)				
	*Day-1	**Day-7	Mean	*Day-1	**Day-7	Mean
Control	14.8	20.0	17.4bcdef	36.6fg	47.3cdef	41.9cd
P (250 g tree⁻¹)	15.4	21.5	18.4abcd	36.6fg	58.1abcd	47.4abc
P (500 g tree⁻¹)	14.8	18.5	16.8cdef	45.2defg	58.1abcd	51.6abc
NPK (230 + 250 + 250 g tree⁻¹)+Ca (150 g tree⁻¹)	15.4	20.8	18.1abcede	43.0efg	60.2abc	51.6abc
Wokozim (granular) (1500 g tree⁻¹)	13.4	19.7	16.6def	36.6fg	47.3cdef	42.0cd
Wokozim (1500 g tree⁻¹) + 2 ml l⁻¹ foliar spray	13.8	20.0	16.9cdef	34.3	40.9efg	37.6d
Kinetin at 30 mg l⁻¹	15.1	20.4	17.8bcdef	45.2defg	53.8abced	49.5abc
Kinetin at 60 mg l⁻¹	13.6	18.5	16.1ef	40.9efg	58.1abcd	49.5abc
Kinetin 120 mg l⁻¹	15.1	18.2	16.7cdef	40.9efg	51.6bcd	46.2bcd
P (250 g tree⁻¹) + Kinetin at 30 mg l⁻¹	13.1	18.5	15.8f	47.3cdef	62.4ab	54.8ab
Kinetin at 30 mg l⁻¹+ GA₃ at 10 mg l⁻¹	13.2	20.9	17.0cdef	45.2defg	53.8abced	49.5abc
P (250 g tree⁻¹)+Kinetin at 30 mg l⁻¹+ GA₃ at 10 mg l⁻¹	16.7	22.3	19.5ab	49.5bcdef	58.1abcd	53.8ab
NPK (230 + 250 + 250 g tree⁻¹)+Ca (150 g tree⁻¹)+Kinetin at 30 mg l⁻¹	16.2	23.4	19.8a	51.6bcde	47.3cdefg	49.4abc
Ca (150 g tree⁻¹) + P (250 g tree⁻¹)+Kinetin at 30 mg l⁻¹	14.4	23.4	18.9abc	66.7a	47.3cdefg	57.0a
Ca (150 g tree⁻¹)	15.0	22.0	18.5abcde	53.8abced	43.0efg	48.4abc
Treatments (LSD)	1.95		8.56			
Treat. × SD (LSD)	NS	12.11				
Significance of selected contrasts on D-1	TSS:TA	Ascorbic acid (mg 100 ml⁻¹)				
Control vs P	NS	NS				
Control vs Kinetin	NS	NS				
Control vs Wokozim	NS	NS				
P vs Kinetin	NS	NS				
P vs Wokozim	NS	NS				
Wokozim vs Kinetin	NS	NS				

NS = Non significant; N = Nitrogen; P = Phosphorous; K = Potassium; Ca = Calcium; PGRs = Plant Growth Regulators

Similiar letter in columns represents statistically similar results.

(66.7 mg 100 ml⁻¹) was detected on the first day, with Ca (150 g tree⁻¹)+P (250 g tree⁻¹)+Kinetin at 30 ml l⁻¹ whereas less ascorbic acid (34.3 mg 100 ml⁻¹) was noted on the first day with Wokozim (1500 g tree⁻¹)+2 ml l⁻¹ foliar spray. Ascorbic acid significantly enhanced during ambient storage for seven days.

Conclusion

In conclusion, Ca and low P improved aborted seed (%) and ascorbic acid, whereas Kinetin, GA₃ and Wokozim improved healthy seed (%), but reduced ascorbic acid concentrations in ’Kinnow’ mandarin juice.

Acknowledgments

The authors acknowledge the Higher Education Commission (HEC) of Pakistan for providing financial provision in the form of indigenous PhD scholarship scheme. The authors are also grateful to Mr. Tariq Mehmood Cheema, a citrus grower in Sargodha district for permitting work at his orchards.

Disclosure Statement

The authors announce that they have no conflict of interest.

ORCID

Muhammad Irfan Ullah http://orcid.org/0000-0002-2463-2665
References

Abbas, G. 2018. Pakistan exported record 370,000 tons of Kinnow in 2017–18. Pakistan Today, 6 June 2018. https://profit.pakistantoday.com.pk/2018/06/05/pakistan-exported-record-370000-tons-of-kinnow-in-2017-18/

Amina, T.H., M.B.S. Afzal, T. Ashraf, and S. Nawaz. 2018. Optimization and determination of doses of phosphorus and potassium for Citrus reticulata (Blanco) under the agro-climatic conditions of Sargodha, Pakistan: Effect on yield and fruit quality of citrus. Acta Sci. Agric. 2(6):48–55.

Anonymous. 2016. Fruit vegetables and condiments statistics of Pakistan. Government of Pakistan, Ministry of National Food Security and Research, Economic Wing, Islamabad. http://amis.pk/files/F&V%20Statistics%202015-16.pdf. (Retrieved on 19-05-2021).

Ashraf, M.Y., A. Gul, M. Ashraf, F. Hussaina, and G. Ebert. 2010. Improvement in yield and quality of ’Kinnow’ (Citrus nobilis × Citrus delicosa) by potassium fertilization. J. Plant Nutr. 33:1625–1637. doi: 10.1080/01904167.2010.496887.

Azeeem, K., A. Khan, F. Naz, M. Ilyas, I. Azeeem, F. Anwar, and W. Ahmad. 2018. The impact of different P fertilizer sources on growth, yield and yield component of maize varieties. Agric. Res. Tech. 13:55–58.

Barth, C., M. De Tullio, and P.L. Conklin. 2006. The role of ascorbic acid in the control of flowering time and the onset of senescence. J. Exp. Bot. 57:1657–1665. doi: 10.1093/jxb/erj198.

Berhow, M.A. 2000. Effect of early plant growth regulator treatments on flavonoid levels in grapefruit. Plant Growth Regul. 30:225–232. doi: 10.1023/A:1006349108636.

Bhatia, S., and R. Singh. 2000. Calcium-mediated conversion of sucrose to starch in relation to the activities of amylase and sucrose-metabolizing enzymes in sorghum grains raised through liquid culture. Indian J. Biochem. Biophys. 37:135–139.

Domingues, M.C.S. and J.D. Rodrigues. 2007. Reduction of seeds in 'Honey' orange by application of plant growth regulators during reproductive stages. Ciência e Agrotecnologia (Brazil). 31:758–764. 10.1590/S1413-70542007000300023

Dou, H., S. Jones, T. Obreza, and B. Rouse. 2005. Influence of various phosphorus and potassium rates on juice vitamin C, β-carotene, lycopene and sugar concentrations of Flame grapefruit. Proc. Fla. State Hortic. Soc. 118:372–375.

Eman, A.A., A. El-Moneim, M.A. El-Migeed, A.M.M.I. Omayma, and M.M. Ismail. 2007. GA3 and zinc sprays for improving yield and fruit quality of Washington Navel orange trees grown under sandy soil conditions. Res. J. Agric. Biol. Sci. 3(5):498–503.

Erner, Y., R. Goren, and S.P. Monselise. 1976. The rough fruit condition of the Shamouti orange connections with the endogenous hormonal balance. J. Hortic. Sci. 51(3):367–374. doi: 10.1080/00221589.1976.11514700.

Fidelibus, M.W., F.S. Davies, and C.A. Campbell. 2002. Gibberellic acid application timing affects fruit quality of processing oranges. Hortic. Sci. 37:353–357.

Gambetta, G., A. Gravina, C. Fasiolo, C. Fornero, S. Galiger, C. Inzaaurralde, and F. Rey. 2013. Self-incompatibility, parthenocarpy and reduction of seed presence in 'Afourer'mandarin. Sci. Hortic. 164:183–188. doi: 10.1016/j.scientia.2013.09.002.

Goldschmidt, E.E. 1983. Asymmetric growth of citrus fruit peel induced by localized application of gibberellins in lanolin pastes. Scientia Hortic. 21(1):29–35. 10.1016/0304-4238(83)90183-8.

Guardiola, J.L., and L. Garcia. 2000. Increasing fruit size in citrus. Thinning and stimulation of fruit growth. Plant Growth Regul. 31:121–132. doi: 10.1023/A:1006339721880.

Helal, M.E., N.E. Ashour, M.M. Merwad, and A.E.M. Mansour. 2019. Effect of some growth regulators and boron on fruiting and quality of orange. Middle East J. 8(2):594–599.

Hendry, N.S., J.V. Stadan, and P. Allan. 1982. Cytokinins in citrus. II. Fluctuations during growth in juvenile and adult plants. Scientia Hortic. 17: 247–256. https://profit.pakistantoday.com.pk/2018/06/05/pakistan-exported-record-370000-tons-of-kinnow-in-2017-18/.

Hortwitz, W. 1960. Official and tentative methods of analysis. Association of the Official Agriculture Chemist, Washington DC.

Huang, Y., B.A. Rasco, and A.G. Cavinato. 2009. Fruit juices, p. 351-371. In: D. Sun (ed.). Infrared spectroscopy for food quality analysis and control. Academic press. Elsevier Inc. United States of America.

Huber, S.C., and D.W. Israel. 1982. Biochemical basis for partitioning of photosynthetically fixed carbon between starch and sucrose in soybean (Glycine max L. Merr.) leaves. Plant Physiol. 69:691–696. doi: 10.1104/pp.69.3.691.

Kaur, N., P.K. Monga, P.K. Arora, and K. Kumar. 2015. Effect of micronutrients on leaf composition, fruit quality and yield of Kinnow mandarin. J. Appl. Nat. Sci. 7(2):639–643. doi: 10.31018/jans.v7i2.658.

Kaya, C., A.L. Tuna, M. Dikilitas, M. Ashraf, S. Koskeroglu, and M. Guneri. 2009. Supplemenary phosphorus can alleviate boron toxicity in tomato. Sci. Hortic. 121(3):284–288. doi: 10.1016/j.scientia.2009.02.011.

Khalid, S. (2013). Fruit quality and storability of 'Kinnow' mandarin (Citrus reticulata Blanco) in relation to tree age (Doctoral dissertation, University of Agriculture, Faisalabad Punjab, Pakistan).

Khalid, S., A.U. Malik, B.A. Saleem, A.S. Khan, M.S. Khalid, and M. Amin. 2012. Tree age and canopy position affect rind quality, fruit quality and rind nutrient content of 'Kinnow' mandarin (Citrus nobilis Lour× Citrus delicosa Tenora). Scientia Hortic. 135:137–144. doi: 10.1016/j.scientia.2011.12.010.
Khalil, S., H.M. El-Saeid, and M. Shalaby. 2006. The role of kinetin in flower abscission and yield of lentil plant. J. Appl. Sci. Res. 2:587–591.

Kriedemann, P.E. 1968. An effect of Kinetin on the translocation if 14C-labelled photosynthate in Citrus. Aust. J. Biol. Sci. 21(3):569–572. doi: 10.1071/B19680569.

Liu, K., H. Fu, Q. Bei, and S. Luan. 2000. Inward potassium channel in guard cells as a target for polyamine regulation of stomatal movements. Plant Physiol. 124(3):1315–1326. doi: 10.1104/pp.124.3.1315.

Mesejo, C., A. Martínez-Fuentes, C. Reig, and M. Agustí. 2008. Gibberellic acid impairs fertilization in Clementine mandarin under cross-pollination conditions. Plant Sci. 175(3):267–271. doi: 10.1016/j.plantsci.2008.04.008.

Pozo, L., W.J. Kender, J.K. Burns, U. Hartmond, and A. Grant. 2000. Effects of gibberellic acid on ripening and rind puffing in ‘Sunburst’ mandarin. Proc. Fla. State Hort. Soc. 113:102–105.

Qiu, J., and D.W. Israel. 1992. Diurnal starch accumulation and utilization in phosphorus-deficient soybean plants. Plant Physiol. 98:316–323. doi: 10.1104/pp.98.1.316.

Rerkasem, B., R. Netsangtip, S. Lordkaew, and C. Cheng. 1993. Grain set failure in boron deficient wheat. Plant Soil 155 (1):309–312. doi: 10.1007/BF00025044.

Ruttner, H.P., W. Koblit, and D. Rust. 1975. Gluconeogenesis in the ripening barriers of grape (Vitis vinifera L). Indian J. Hort., 13(4):319-323.

Rusk, J.A.1961. Chemical methods for analysis of fruits and vegetables. Research Station Summerland. Canada Department of Agriculture, Publication No. 1154. Contribution No. 87, Research Station, Summerland B. C.; 50. Ottawa, Canada.

Singh, D., and R.R. Sharma. 2011. Beneficial effects of pre-harvest carbendazim and calcium nitrate sprays in ‘Kinnow’ (Citrus nobilis x Citrus deliciosa) storage. Indian J. Agri. Sci. 81:470–472.

Srivastava, A.K., and S. Singh. 2005. Soil and plant nutritional constraints contributing to Citrus decline in Marathwada Region, India. Commun. Soil Sci. Plant Anal. 35.17–18:2537–2550. doi: 10.1081/LCSS-200030359.

Tariq, M., M. Sarif, Z. Shah and R. Khan. 2007. Effect of foliar application of micronutrients on the yield and quality of sweet orange (Citrus sinensis L.). Pak. J. Biol. Sci. 10:1823-1828. doi: 10.3923/pjbs.2007.1823.1828

Tiwari, K.N. 2005. Diagnosing potassium deficiency and maximizing fruit crop production. Better Crop 89:29–31.

Wadh, M., and H.Y.M. Ram. 1967. Shortening the juvenile phase for flowering in Kalanchoe pinnata Pers. Planta Berl. 73:28–36. doi: 10.1007/BF00419838.

Zaman, L., W. Shafoqat, A. Qureshi, N. Sharif, K. Raza, S. Ud Din, S. Ikram, M.J. Jaskani, and M. Kamran. 2019. Effect of foliar spray of zinc sulphate and calcium carbonate on fruit quality of ‘Kinnow’ mandarin (Citrus reticulata Blanco). J. Glob. Innov. Agric. Soc. Sci. 7:157–161. doi: 10.22194/JGIASS/7.875.