Stearoyl-CoA desaturase-1 is a key factor for lung cancer-initiating cells

A Noto1,2, S Raffa1,3,4, C De Vitis2,5, G Roscilli1,6, D Malpicci2, P Coluccia2, A Di Napoli1,3, A Ricci1,3, MR Giovagnoli1,3, L Aurisicchio6,7, MR Torrisi1,3,4, G Ciliberto6,8 and R Mancini1,2

In recent years, studies of cancer development and recurrence have been influenced by the cancer stem cells (CSCs)/cancer-initiating cells (CICs) hypothesis. According to this, cancer is sustained by highly positioned, chemoresistant cells with extensive capacity of self renewal, which are responsible for disease relapse after chemotherapy. Growth of cancer cells as three-dimensional non-adherent spheroids is regarded as a useful methodology to enrich for cells endowed with CSC-like features. We have recently reported that cell cultures derived from malignant pleural effusions (MPEs) of patients affected by adenocarcinoma of the lung are able to efficiently form spheroids in non-adherent conditions supplemented with growth factors. By expression profiling, we were able to identify a set of genes whose expression is significantly upregulated in lung tumor spheroids versus adherent cultures. One of the most strongly upregulated gene was stearoyl-CoA desaturase (SCD1), the main enzyme responsible for the conversion of saturated into monounsaturated fatty acids. In the present study, we show both by RNA interference and through the use of a small molecule inhibitor that SCD1 is required for lung cancer spheroids propagation both in stable cell lines and in MPE-derived primary tumor cultures. Morphological examination and image analysis of the tumor spheroids formed in the presence of SCD1 inhibitors showed a different pattern of growth characterized by irregular cell aggregates. Electron microscopy revealed that the treated spheroids displayed several features of cellular damage and immunofluorescence analysis on optical serial sections showed apoptotic cells positive for the M30 marker, most of them positive also for the stemness marker ALDH1A1, thus suggesting that the SCD1 inhibitor is selectively killing cells with stem-like properties. Furthermore, SCD1-inhibited lung cancer cells were strongly impaired in their in vivo tumorigenicity and ALDH1A1 expression. These results suggest that SCD1 is a critical target in lung cancer tumor-initiating cells.

Cell Death and Disease (2013) 4, e947; doi:10.1038/cddis.2013.444; published online 5 December 2013

Subject Category: Cancer

Metabolic deregulation has emerged as one of the main features of cancer cells. Tumor cells display a radical modification of cellular metabolism, with increased glycolysis and lipogenesis, to support rapid growth and proliferation. A distinctive aspect of the lipogenic transformation is that cancer cells contain a large pool of monounsaturated fatty acids (MUFAs). MUFAs represent the precursors of phospholipids, tryglicerides, cholesterol esters, diacylglycerols and wax esters, which are the main component of membranes. Changes in lipid membrane composition can affect membrane fluidity, signaling and, consequently, gene expression.

MUFAs are generated from saturated fatty acids by the action of steryl-Co-A desaturases. Two SCD isoforms (SCD1 and 5) have been identified in humans and exhibit different tissue distribution patterns but share the same enzymatic function. SCD1 is found in almost all tissues with a major expression in liver, whereas SCD5 expression is restricted to pancreas and brain. Of these isoforms, SCD1 is the predominant one and is expressed ubiquitously among tissues. Recent evidences suggest that SCD1 has a supporting role in many human cancers including lung, breast, prostate and clear cell renal cell carcinoma. It has been reported that in lung cancer SCD1 contributes to maintain a shift in lipid metabolism (increase in lipogenesis and inhibition of fatty acid oxidation) and intracellular signaling (activation of Akt signals and deactivation of the AMPK pathway), therefore favoring an accelerated rate of cell proliferation, increased invasiveness, enhanced survival and, ultimately, a greater tumorigenic capacity. The growing evidences in support of SCD1 as a cancer target opens the possibility to utilize recently generated small molecule inhibitors of SCD1 activity as anticancer tools. A new perspective to our understanding of how cancer develops and recurs after initial therapy, and a further
opportunity to identify therapeutic agents with a new mechanism of action has been opened by the cancer stem cell hypothesis. According to this theory, cancer is sustained by a population of cells with stem cell-like properties whose distinctive feature is their extensive capacity to self-renew, and to produce progenitor cells and terminally differentiated progeny. The putative CSCs are themselves mostly quiescent for proliferation, are resistant to chemotherapeutic agents and therefore are thought to be responsible for disease relapse and for the emergence of resistance to therapies.

The identification of CSCs remains challenging and several CSC markers have been proposed. Among them, ALDH1A1 expression and its enzymatic activity seems to best correlate with the presence of CSCs and the aggressiveness of lung tumors. Although recent technological advances in the isolation and characterization of CSCs have led to a better understanding of their biology, our knowledge of the key factors responsible for their survival and propagation is still limited.

In a previous study, from our group primary tumor cultures obtained from malignant pleural effusions (MPEs) of patients with adenocarcinoma of the lung were characterized for the presence of cells with ALDH1A1 activity. We showed that in the majority of the samples analyzed, the percentage of ALDH1A1 bright cells increased on culturing in spheroid conditions, suggesting the presence of putative CSCs in MPE-derived primary cultures (MPEDCC) and their enrichment in cancer spheroids. Most importantly gene expression profiling of spheroids versus adherent cultures allowed the identification of a gene expression signature of spheroids composed by a limited set of co-regulated genes. Among them, one of the most significantly upregulated gene in spheroids was SCD1.

The goal of the present study was to investigate the expression and functional significance of SCD1 in lung cancer cell cultures. For this purpose, we studied the cellular response of tumor spheroids generated from either a stabilized lung cancer cell line or from MPE-derived primary cultures to SCD1 inhibition. This was achieved with the use of the small molecule inhibitor MF-438 or by RNA interference. The results demonstrate that SCD1 may represent a key therapeutic target for lung cancer stem cells.

Results

SCD1 upregulation in lung cancer spheroids goes in parallel with increased ALDH1A1 activity. Lung cancer spheroids obtained from MPE-derived cell cultures (MPEDCC) could be serially propagated in vitro and gave rise efficiently to tumor masses reproducing the histopathological features of the original human tumors when implanted in immunodeficient mice. Gene expression analysis led to the identification of a set of 19 genes overexpressed in tumor spheroids versus adherent cultures. Among the overexpressed genes, SCD1 was one of the most significantly upregulated in spheroids.

We first determined the spheroid-forming efficiency in a panel of five MPE-derived cell cultures named Pe d/10, Pe e/10, Pe o/11, Pe p/11 and Pe s/11 obtained from distinct non-small cell lung cancer (NSCLC) patients (for their origin and nomenclature see the Materials and Methods section and Mancini et al.) and in a stable NSCLC cell line (NCI-H460) trying to establish a correlation with ALDH1A1 activity. The results, shown in Figures 1a and b, demonstrate that cells with higher ALDH1A1 activity show the highest efficiency in tumor spheroid formation. This is clearly evident when comparing the behavior of NCI-H460, Pe o/11, Pe d/10 and Pe e/10, which have ALDH1A1 positive cells ranging from 25.1% to 11.5% and a strong spheroid-forming ability, with that of Pe s/11 and Pe p/11, where a value for ALDH1A1 activity below 5%, was accompanied by a reduced ability to form spheroids (Figures 1a and b).

Next, to confirm and expand our previous microarray data, we verified by western blotting and real-time RT-PCR, SCD1 expression in three of these selected primary cultures and in the stable cell line NCI-H460. As shown in Figures 1c and d, all four lung cancer cultures analyzed presented a more than 10-fold increase of SCD1 mRNA levels in spheroids compared with adherent cells (Student’s t-test: Pe d/10). This was paralleled by a constant increase in SCD1 protein levels.

SCD1 is required for spheroid formation. On the basis of the previous data, we next assessed the contribution of SCD1 to the formation of spheroids. Cell cultures were transfected with a siRNA against SCD1 or a control siRNA (scramble) and a spheroid-forming assay was performed. The results showed a dramatic reduction of the number of spheroids formed in SCD1-depleted cultures: siSCD1-transfected cell cultures show a 2- to 3-fold decrease of spheroid-forming efficiency, compared with the cultures transfected with a control siRNA (Student’s t-test: Pe d/10). MF-438, a thiadiazole–pyridazine derivate, was recently described as a potent, orally available SCD1 enzymatic inhibitor that exhibits good pharmacokinetics and metabolic stability. First, we tested in adherent cultures from MPEDCC and in the NCI-H460 cell line the effect of MF-438 on cell viability in a 72-h growth inhibition assay. All cell cultures analyzed were highly resistant to this inhibitor, showing IC50 values between 20 and 50 µM (Supplementary Figure 1). To examine the effect of SCD1 inhibition on spheroid formation, the same inhibitor was tested in a spheroid-forming assay. Surprisingly, as shown in Figure 2c and Table 1, Pe o/11 as well as NCI-H460 spheroids were very sensitive to MF-438 with IC50 values below 1 µM, showing a more than 100-fold sensitization compared with adherent cultures. To confirm the specificity of the inhibition, we performed rescue experiments using oleate, the main product of SCD1 activity, in spheroids treated or not with MF-438. As shown in Figure 2d, oleate supplementation in the form of conjugate with BSA (OA-BSA) partially but significantly reversed spheroids inhibition by MF-438, indicating that fatty acid desaturation by SCD1 is essential for spheroid formation (Student’s t-test: Pe d/10). Similar results were also obtained using a different enzymatic inhibitor of SCD1 A938572 (Supplementary Figure 2).

We also analyzed the three-dimensional morphology of tumor spheroids grown in sphere medium with or without the
MF-438 inhibitor, using a dose (1 μM), which did not affect cell morphology in 2D adherent cultures and below their IC₅₀ values (Table 1). Although untreated cultures displayed a typical spheroid pattern of growth, characterized by sphericity of the multicellular structures (φ = 0.92) and high percentage of tight spheroids (exceeding 50%) (Figures 3a and b, Table 2), the amount of tight spheroids in the presence of the SCD1 inhibitor was drastically reduced (10.3%; Chi square test: P < 0.0001) and the cultures were characterized by high prevalence of irregular cell aggregates (62.8%) of lower sphericity (φ = 0.80) with respect to the untreated cultures (Figures 3b and c).

Taken together these data suggest that SCD1 inhibition has a more pronounced effect on cancer stem cells enriched cultures which organize themselves as three-dimensional (3D) structures, and therefore that this enzyme can be a target specific for cells with cancer-initiating properties.

SCD1 impairment reduces expression of stem cell markers in spheroids. Next, we decided to assess the effect of SCD1 inhibition on the activity of ALDH1A1 enzyme. We generated spheroids in the presence of a siRNA specific for SCD1 and after 72 h, we evaluated ALDH1A1 activity by flow cytometry. Both in NCI-H460 and primary culture Pe o/11, silencing of SCD1 induced a dramatic reduction of ALDH1A1-positive cells (ALDH bright) compared with control siRNA-transfected cells (21.22% versus 10.68% in NCI-H460 and 26.18% versus 11.86% in Pe o/11; Student’s t-test: P < 0.05) (Figure 4a).

We previously showed that MPEDCC undergo increased expression of stem cell markers Nanog and Oct4, when grown as spheroids. 31 Therefore, we analyzed the effect of SCD1 downregulation during spheroid formation on the expression of these markers. Indeed, as shown in Figure 4b both OCT4 and Nanog, mRNA levels were reduced ~10-fold in SCD1-depleted NCI-H460 spheroids (Student’s t-test: P < 0.01).

A similar effect was also obtained using MF-438 in Pe o/11 and NCI-H460 spheroids cultures. Untreated spheroids showed an elevated ALDH1A1 activity (22.34% in NCI-H460, 28.66% in Pe o/11) as compared with MF-438-treated spheroids (10.11% in NCI-H460, 12.76% in Pe o/11; Student’s t-test: P < 0.05) (Figure 4c). Importantly, spheroids formed in the presence of the inhibitor dramatically reduced their ALDH1A1 activity, which was restored by oleate addition (Supplementary Figure 3).

SCD1 inhibition induces cellular damage and anoikis in ALDH1A1-positive cells. The ability of cells to grow in conditions of non-adherence is linked to their resistance to anoikis (detachment-induced apoptosis). We previously reported that MPEDCC are resistant to anoikis when grown as 3D cultures and that this is partly dependent on the activation of the BDNF/TrkB axis. 31 Hence, to determine the cellular response after treatment with MF-438, we carried out on Pe o/11, a spheroid-forming assay in the presence of the inhibitor and monitored anoikis induction by flow cytometry using Annexin V. As shown in Figure 5a,
a striking increased of apoptotic cells was observed in MF-438-treated spheroids (16.2% versus 4.3%; Student’s *t*-test: *P* < 0.01). Transmission electron microscopy revealed that the aberrant spheroids formed in the presence of the SCD1 inhibitor displayed several ultrastructural features of cellular damage, such as cytoplasmic vacuolization, mitochondrial swelling, apoptotic nuclei with areas of marginal, dense-stained chromatin and, although less frequently, nuclear fragmentation (Figure 5b).

Finally, we demonstrated by quantitative immunofluorescence that the anoikis-inducing effect of MF-438 was specific for ALDH1A1-positive cells. Indeed, immunofluorescence analysis performed using the M30 CytoDEATH Fluorescein monoclonal antibody, able to detect the caspase-cleaved cytokeratin 18, showed that the percentage of apoptotic cells positive for the M30 marker was much higher in spheroids treated with MF-438 than in those grown in basal conditions (47.3% versus 2.4%; Student’s *t*-test: *P* < 0.0001; Figure 5c, upper panel). Co-immunostaining for M30 and for the stemness marker ALDH1A1 confirmed the very high percentage of ALDH1A1-positive cells (86.2%) in untreated spheroids, whereas treatment with MF-438 induced a clear decrease of ALDH1A1-positive cells (66.8%; Student’s *t*-test: *P* < 0.05; Figure 5c lower panel). In addition, the double labeling approach revealed that most of the apoptotic M30-positive cells were also positive for ALDH1A1 (31.6% of M30*+/AldhA1*+) versus 3.0% of M30*+/AldhA1*− cells in Pe o/11 MF-438 treated), thus suggesting that the SCD1 inhibitor is selectively killing cells with stem like properties.

SCD1-depleted tumor spheroids have a strongly reduced ability to grow in vivo. To assess the effect of SCD1 inhibition on the capability to form tumors in vivo, we decided to perform in vivo xenograft studies in CD1 mice.
using the MPEDCC Pe o/11 and the stable NSCLC cell line NCI-H460. For this purpose, spheroids were generated as described above in the absence or in the presence of a 48-h treatment with MF-438. Spheroids were then disaggregated, cells counted and an equivalent number of viable cells from SCD1-inhibited or normal cultures was injected subcutaneously in groups of 10 CD1 mice.

As reported before cells derived from normal Pe o/11 spheroids were more tumorigenic than an equivalent number of cells from adherent cultures (Figure 6a, Student’s t-test, \(P < 0.05 \) probably as a consequence of the enriched number of ALDH1A1-expressing cells in the spheroid cultures.\(^{31} \) In contrast, cells derived from spheroids generated in the presence of MF-438 showed a strongly decreased tumorigenic potential (Figure 6a, Student’s t-test: \(P < 0.05 \)). Different results were obtained for NCI-H460 xenografts. In this case, the inhibitory effect of MF-438 was clearly evident in the percentage of tumor engraftment rather than in the size of the tumor masses generated (Supplementary Table 1 and data not shown).

Finally, we monitored ALDH1A1 expression in xenografts by immunostaining of paraffin sections. Interestingly, both NCI-H460 and Pe o/11 xenografts obtained with cells generated from SCD1-inhibited spheroids showed a nearly complete lack of ALDH1A1 staining as compared with control tumors (Figure 6b).

Discussion

Lung cancer is the most common invasive cancer worldwide and includes a broad variety of histological subtypes, which belong to two main groups, small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC), which account approximately for 20% and 80% of all lung cancers cases, respectively. In spite of the introduction in the past decades of several targeted therapies, lung cancer remains a major health problem and the primary cause of deaths for cancer.\(^{32} \) The development of more effective therapies, which target central molecules involved in the progression and the proliferation of cancer cells, will be an efficient approach to treat lung cancer.

De novo lipogenesis seems to have a central role in the maintenance and progression of many human cancers. Cancer cells increase their lipid content to support growth, proliferation and survival. SCD1 is the central enzyme involved in the genesis of monounsaturated fatty acids from saturated fatty acids; MUFA and SFA are the most abundant fatty acids in cells, and the ratio SFA/MUFA can affect
Morphological characterization and morphometric analysis of three-dimensional multicellular structures

Table 2

3D structures	Tight spheroids	Irregular aggregates	Single floating cells
Frequency (n=10)	21.7±7.2	71.9±4.5	27.8±3.3
Shape Factor (IR)	0.89±0.99	0.94	0.95
Volume (IR)	0.2×10^5 (μm^3)	0.1×10^5 (μm^3)	0.9×10^5 (μm^3)
Size (IR)	105	60.1±3.0	57.2±3.0

Stearoyl-CoA desaturase-1 is a key factor in the regulation of lipid metabolism. Previous studies have shown that SCD1 expression is upregulated in many tumors and is associated with cancer-initiating properties. In this study, we investigated the role of SCD1 in the survival of cancer cells using a three-dimensional spheroid model. Our data strongly suggest that SCD1 inhibition selectively induces apoptosis of ALDH1A1-positive cells. This was confirmed by both RNA interference and pharmacological inhibition, which led to a decrease in ALDH1A1 activity and a decrease in cell viability. Importantly, differentiated 2D cultures were much less sensitive to SCD1 inhibition, suggesting a direct role of SCD1 in the regulation of factors that affect cancer cell survival.

Our data strongly support the notion that SCD1 inhibition is directly responsible for impaired survival of cancer-initiating cells, as also demonstrated by rescue experiments carried out with oleic acid. More importantly, through immunofluorescence analysis, we demonstrated that SCD1 enzymatic inhibition selectively induced apoptosis of ALDH1A1-positive cells. This was further confirmed in in vivo studies, which showed that cells derived from SCD1-inhibited spheroids give rise to smaller tumors with a strongly impaired expression of ALDH1A1. Currently, we do not know the exact mechanism through which SCD1 inhibition causes the selective death of cells with cancer-initiating properties. Mauvoisin et al. have recently shown in breast cancer cultures that SCD1 down-regulation strongly affects oncogenic signaling through inhibition of GSK3 phosphorylation and impairment of β-catenin translocation to the nucleus. This, and, as a consequence, of its transactivation capacity and the expression of target genes, it will be interesting to assess whether a similar mechanism can be observed in CSC-like cells form NSCLC.

Our data strongly suggest that SCD1 may be a promising target for lung cancer. Several small molecular weight inhibitors have been developed, and their clinical efficacy is currently being evaluated.
inhibitors for SCD1, such as MF-438, have been developed during the last years, which have good oral bioavailability and PK properties. Commonly observed adverse consequences of prolonged in vivo inhibition of SCD1 are skin damage with dry eye, squinting and alopecia, which are all reversible on discontinuation. These adverse effects may severely limit further development of SCD1 inhibitors for the treatment of cancer. Several approaches to limit side effects of systemic SCD1 inhibitors are under consideration, which include development of partial inhibitors or intermittent dosing. In addition, an important factor to take into account when considering SCD1 as target for cancer therapy and which emerges from our study, is that progenitor and terminally differentiated cancer cells have a low sensitivity to SCD1 inhibition as compared with CSC-like cells. Hence, SCD1 inhibitors cannot be expected to act as cancer-debulking agents but rather as selective tools to impair or delay cancer recurrence.

Materials and Methods

Cell cultures. NCI-H460 cell line was from ATCC (Manassas, VA, USA) and was cultured in RPMI-1640 medium (Sigma, St. Louis, MO, USA) supplemented with 10% FBS (Sigma). Primary cell cultures were obtained from individual patients affected by NSCLC using a procedure previously described by Mancini et al. Malignant pleural fluid cells were submitted to immunocytochemistry to confirm adenocarcinoma cell origin. Diagnoses were considered 'true positives' if they were in agreement with the consensus cytological diagnosis. Experiments were approved by the Sant' Andrea Hospital Ethics Committee 2010 (504/10). All patients agreed to participate to the study and signed an informed consent form.

Figure 4

SCD1 inhibition reduces markers of staminality. (a) Pictures of ALDH1A1 activity determined by flow cytometry using Aldefluor assay. NCI-H460 and Pe o/11 cells were transfected with control siRNA (scramble) or a siRNA specific for SCD1 (siSCD1), cultured for 72 h in spheroid medium and subjected to ALDH1A1 activity assay by flow cytometry. Data indicated that silencing of SCD1 reduced dramatically the percentage of cells with ALDH1A1 activity both in NCI-H460 and Pe o/11 cultures. Data are representative of three independent experiments. (b) RT-real time PCR was performed to evaluate mRNA relative expressions of OCT4 and Nanog in siSCD1 and scramble-transfected NCI-H460 cell cultures. Results demonstrated a decreased in mRNA levels of both OCT4 and Nanog genes in siSCD1-transfected cells in respect to control siRNA-transfected spheroids. Histograms show the means of at least three independent experiments. Bars indicate S.D. Student's t-test *P<0.01 in siSCD1 versus control siRNA-transfected cells. GAPDH was used as the normalization. (c) Representative pictures of flow cytometry analysis for ALDH1A1 activity. Spheroids of Pe o/11 and NCI-H460 cell cultures treated for 72 h with MF-438 (1 μM) reduced the percentage of positive cells with ALDH1A1 activity. Data are representative of three independent experiments.
Each distinct culture was named Pe (from Pleural effusion) followed by a progressive identification letter and a number indicating the year when the culture was originated. As previously reported in Mancini et al.,30 to avoid long periods of adaptations in cell culture all samples were banked in liquid nitrogen at passage 3 (p3), on average 1 month following MPE collection. All further experiments described in this study were conducted with p5 to p10 cells, that is, cells in the initial passages after thawing, unless otherwise specified. Spheroids cultures were obtained from adherent culture plating single cells at clonally density in serum-free medium, as reported by Mancini et al.30 and Giarnieri et al.37

ALDH activity assay. Second generation of spheroids was analyzed for ALDH1A1 enzymatic activity using Aldefluor kit (Stem Cell Technologies, Vancouver, BC, Canada) according to manufacturer’s instructions and as previously described.30,31,38 Brightly fluorescent ALDH1A1-positive cells were detected in the green fluorescence channel, and samples treated with the specific ALDH1A1 inhibitor DEAB were used as the control to set the gates defining the ALDH1A1-positive region, defined at 0.2%. Samples were also stained with propidium iodide (Invitrogen, Carlsbad, CA, USA) to exclude nonviable cells in flow cytometric analysis. Samples were analyzed in a MACSQuant Analyzer Flow Cytometer (Miltenyi Biotec, Bergisch Gladbach, Germany).

Western blot analysis. Cell lysates obtained using RIPA buffer (Sigma) were separated on SDS/PAGE acrylamide gel and transferred overnight on nitrocellulose membranes. Membranes were blocked with 5% milk, incubated overnight with the appropriate primary antibody, followed by the secondary antibody HRP-conjugated, and developed with ECL western blotting substrate (Promega, Madison, WI, USA). The primary antibodies used were as follows: anti-SCD1 (Cell Signaling Technology, Beverly, MA, USA) and anti-GAPDH (Sigma). All results were normalized over GAPDH.

Real time RT-PCR analysis. Total RNA of spheroids and adherent cells was extracted with TRIzol reagent (Life Technologies, Gaithersburg, MD, USA).
A total of 200 μg of RNA was digested with DNase I (Invitrogen) and reverse-transcribed with Superscript first-strand synthesis system (Invitrogen) according to the manufacturer’s instructions. Real-time PCR was carried out with SYBR Select Master Mix (Applied Biosystems, Foster City, CA, USA). GAPDH was included for the normalization of the real time RT-PCR.

The primers used for individual genes were:

- Oct4-F: 5'-GTGGAGAGCAACTCCGATG-3',
- Oct4-R: 5'-TGCTCCAGCTTCTCCTTCTC-3';
- Nanog-F: 5'-ATCCAGACGCTCGATTTCTTCTTCTC-3',
- Nanog-R: 5'-TTTTTGCACTCTTCCTCTC-3';
- SCD-1-R: 5'-TCTTACAGCAGCCAACCCAACCA-3';
- SCD-1-F: 5'-GCAGGGGAAACCAGTATGAG-3';
- GAPDH-F: 5'-GCTACGTGAGGAGACTGAGAC-3';
- GAPDH-R: 5'-ATGCAGTCCCGCTTCGACGC-3';

Apoptosis assay. Analysis of apoptosis in adherent and spheroid cells was carried out by flow cytometry using Alexa fluor 488-Annexin V (Invitrogen). Second generation of spheroid cultures were treated with or without MF-438 (1 μM) for 72 h. Treated cells were collected and incubated with Annexin V for 15 min in the dark according to the recommendation of the manufacturer. Samples were analyzed using MacsQuant Flow Cytometer (Miltiary Biotec).

MTT assay. Cellular growth in the presence or absence of MF-438 was evaluated using MTT assay. Adherent cultures were plated in 96 well/plate and after 24 h were treated with the indicate concentration of MF-438. After 72 h of treatment, MTT (Sigma) was added to the wells and DMSO (Sigma) was used to solubilize the MTT-formazan product. Absorbance was measured at 570 nm using Multiskan EX Microplate Photometer (Thermo Scientific Dharmacon, Lafayette, CO, USA). The dose–response curves could be plotted with 50% inhibitory concentration (IC50), and were defined with KaleidaGraph software.

Spheroid-forming assay. Cells were plated as single cells in ultra-low attachment plates (Corning Incorporated, Corning, NY, USA) and were grown in sphere medium with 8% methylcellulose (Sigma) with or without MF-438 inhibitor at the indicated concentrations for 7–8 days. For rescue experiments, Oleic Acid-BSA (Sigma) was used at 1 μM. We performed spheroid formation assay with second generation of spheroids plated at 1500–2000 cells/well in 96-well plates. The number of formed spheroids was counted under an inverted microscope.

siRNA transfection. Small interfering RNA-targeting SCD-1 (Sigma) or control siRNA-A (sc-37007; Santa Cruz, CA, USA) was transfected into adherent control siRNA-A (sc-37007; Santa Cruz, CA, USA) was transfected into adherent cells using Lipofectamine RNAiMAX Reagents (Invitrogen), according to the manufacturer’s recommendation. After 48 h from transfection, cultures were grown in sphere medium and allowed to form spheroids.

Chemicals. MF-438 SCD-1 inhibitor was kindly provided by Merck (Darmstadt, Germany). A939572 was purchased from Biovision (Milpitas, CA, USA). Oleic acid-BSA was from Sigma-Aldrich (Milan, Italy).

Morphometric analysis. For the 3D morphological analysis of tumor spheroids, samples were examined under an Axiosvert 200 inverted microscope (Zeiss, Oberkochen, Germany) equipped with differential interference contrast optics. For quantitative image analysis, digital micrographs of at least 200 multicellular structures and single cells for each condition were randomly captured from three different experiments using an AxioCam MRm CCD camera (Zeiss). Projected area (A), perimeter (P) and two orthogonal diameters (a and b) were measured for each 3D structures using the Axiovision software (Zeiss). Sphericity, volume and size was subsequently calculated according to the methods proposed by Kelm et al.39 and Vinci et al.40

The sphericity of each structure was expressed calculating the Shape Factor: φ = $\frac{4\pi A^2}{P^2}$.
The volume (μm^3) was corrected for Shape Factor and calculated applying:
$$V = \Phi \frac{1}{2} \left(\frac{D_3}{a} \right)^3.$$

The size (μm) was determined calculating the geometric mean diameter:
$$D_3 = \sqrt[3]{a b c}.$$

All 3D structures were also categorized according to their morphology and classified as follows: tight spheroids (densely packed spheres with almost indiscernible individual cells), irregular aggregates (two or more cells organized in loose or compact aggregates that do not form the typical spheroid structure) and single floating cells.

Transmission electron microscopy. Cultures, treated or not with MF-438 μm as above, were washed three times in PBS and fixed with 2% glutaraldehyde in PBS for 2 h at 4 °C. Samples were postfixed with 1% osmium tetroxide in veronal acetate buffer (pH 7.4) for 1 h at 25 °C, stained with uranyl acetate (5 mg/ml) for 1 h at 25 °C, dehydrated in acetone and embedded in Epon 812 (EMbed 812, Electron Microscopy Science, Hatfield, PA, USA). Ultrathin sections were examined unstained or poststained with uranyl acetate and lead hydroxide, under a Morgagni 268D transmission electron microscope (FEI, Hillsboro, OR, USA) equipped with a Mega View II charge-coupled device camera (SIS, Soft Imaging System GmbH, Munster, Germany) and analyzed with AnalySIS software (SIS).

Immunofluorescence. Cultures, untreated or treated with MF-438 μm as above, were washed in PBS and fixed with methanol for 4 min at −20 °C. To detect the apoptotic cells, spheroids were labeled with M30 CytoDEATH Fluorescein monoclonal antibody (1 : 150 in PBS, Roche, Mannheim, Germany). To verify the apoptotic versus the stemness phenotype, spheroids were double labeled with M30 CytoDEATH Fluorescein and with anti-ALDH1A1 primary rabbit monoclonal antibody (1 : 50 in PBS) followed by goat anti-rabbit IgG–Texas Red labeled with M30 CytoDEATH Fluorescein or with anti-ALDH1A1 primary rabbit monoclonal antibody (1 : 200 in PBS; Jackson Immunoresearch Laboratories, West Grove, PA, USA). Nuclei were visualized using 4,6-diamido-2-phenylindole dihydrochloride (DAPI) (1 : 10000 in PBS, Sigma Chemical Co., St. Louis, MO, USA). Fluorescence signals were analyzed by conventional fluorescence or by scanning in series of 0.5-μm sequential optical sections with an ApoTome System (Zeiss) connected with an Axovert 200 inverted microscope (Zeiss); image analysis and 3D reconstruction of the optical sections was then performed using the Axiovision software (Zeiss). The percentage of M30 and/or AlDH1A1-positive cells was analyzed counting for each treatment a total of 500 cells, observed in ten microscopic fields randomly taken from three different experiments.

In vivo studies. For xenograft assay, single-cell suspension was obtained by enzymatic digestion of the spheroids using different cell numbers in a volume of 100 μl of a 50% GFR Matrigel (BD Biosciences, Franklin Lakes, NJ, USA). In particular, Pe o/11 and NCI-H460 spheroids generated for 48 h in the absence or in the presence of SCID inhibitor (500 mg/ml) were injected subcutaneously into the right flank of ten CD1 nude mice for each group. 1 × 10^6 viable single cells for NCI-H460 and 1 × 10^5 viable single cells for Pe o/11, respectively, were used. Tumors were measured with a caliper at weekly intervals and tumor volumes were calculated using the formula: (length × width)^2 / 2. After ~70 days from injection, mice were killed and tumors excised for immunohistochemistry analysis.

All studies have been performed in accordance with Directive 86/609/EEC on the protection of Animals used for Experimental and other scientific purposes and made effective in Italy by the Legislative Decree DL 116/92 as described in Ricci et al. All animal protocols used for this study were reviewed and approved by the Institutional Committee (KTEC-2012–02).

Immunohistochemistry. Paraffin sections of tumors generated subcutaneously in CD1 nude mice after injection of NCI-H460 cell line or of Pe o/11 primary culture cells were immunostained for ALDH1A1 (clone EP1933Y, Abcam Ltd, Cambridge, MA, USA) and M30 (clone 1E7, Leica Microsystems, Wetzlar, Germany) using standard protocols. Immunostaining was detected using a biotin-streptavidin-peroxidase system (Vector Laboratories, Peterborough, UK) and visualized using diaminobenzidine (DAB) (Dako, Glostrup, Denmark).

Statistical methods. For almost all experiments, statistics were performed using two-tailed Student's t-Test. All values shown in the text and figures are ± S.D., where n = 3. P-values <0.05 were assumed as statistically significant.

For the morphometric analysis, to compare variables that do not assume Gaussian distribution, Mann–Whitney non-parametric test was used. Data are presented with the Tukey box-and-whisker plot, where the central box represents the interquartile ranges (IR; 25th to 75th percentile), the middle line represents the median, and the horizontal lines represent the minimum and the maximum value of observation range. Values are expressed as median ± IR. To compare variables that assume normal distribution, Student's t-test was used and values are expressed as mean ± S.E. from three independent experiments. Chi-square test was used to compare categorical variables. P-values <0.05 were assumed as statistically significant.

Conflict of Interest
The authors declare no conflict of interest.

Acknowledgements. This work was supported in part by AIRC grant IG10334 and by MIUR PRIN 2009 grant to G Gilberto.

This work has also been supported in part by FILAS grant to R Mancini, FILAS-CR-2011–1184. We are grateful to Merck for making available the SCID inhibitor MF-438. We also thank Dott Roberta Barzelotti for technical support.

1. Menendez JA, Lupu R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer 2007; 7: 773–777.
2. Igal RA. Stearoyl-CoA desaturase-1: a novel key player in the mechanisms of cell proliferation, programmed cell death and transformation to cancer. Carcinogenesis 2010; 31: 1509–1515.
3. Ntambi JM. Regulation of stearoyl-CoA desaturase by polyunsaturated fatty acids and cholesterol. J Lipid Res 1999; 40: 1549–1558.
4. Gibbons L, Sonnino S, Omodeo-Sale F, Gaini SM, Beris B. Phospholipid content and composition of human meningiomas. Neurochem Pathol 1984; 2: 171–188.
5. Zhang L, Ge L, Parimoo S, Steen K, Proulx SM. Human stearoyl-CoA desaturase: alternative transcripts generated from a single gene by usage of tandem polyadenylation sites. Biochem J 1999; 340: 255–264.
6. Beiraghi S, Zhou M, Talmadge CB, Went-Sumegi N, Davis JR, Huang D et al. Identification and characterization of a novel gene disrupted by a pericentric inversion inv(4)(p13.2q12.1) in a family with cystic fibrosis. Gene 2003; 309: 11–21.
7. Robert J, Montaudon D, Hugues P. Incorporation and metabolism of exogenous fatty acids by cultured normal and tumour glial cells. Biol Chem Philos Acta 1983; 752: 383–395.
8. Scaglia N, Chisholm JW, Igal RA. Inhibition of stearoyl-CoA desaturase-1 inactivates acetyl-CoA carboxylase and impairs proliferation in cancer cells: role of AMPK. PLoS One 2009; 4, e8102.
9. Mason P, Liang B, Li, U, Frenagen T, Murphy E, Quinn A et al. SCID inhibition causes cancer cell death by depletion unsaturated fatty acids. PLoS One 2012; 7:e33823.
10. Roogta UV, Bapalal JG, Wang X, Raeyk RP, Fargnol J, Henley BJ et al. Cancer cell dependence on unsaturated fatty acids implicates stearoyl-CoA desaturase as a target for cancer therapy. Mol Cancer Ther 2011; 10: 1551–1561.
11. Hess D, Igal RA. Genistein downregulates de novo lipid synthesis and impairs cell proliferation in human lung cancer cells. Exp Biol Med (Maywood) 2011; 236: 707–713.
12. Du X, Wang QF, Chan E, Merchant M, Liu J, French D et al. FGFRs stimulate stearoyl-CoA desaturase 1 activity to promote bladder tumor growth. Cancer Res 2012; 72: 5843–5855.
13. Fritz V, Benfodda Z, Rodier G, Henriquet C, Iborra F, Avancé S et al. Abrogation of de novo lipogenesis by stearoyl-CoA desaturase 1 inactivates acetyl-CoA carboxylase and impairs proliferation in cancer cells: role of AMPK. Mol Cancer 2010; 9: 1745–1754.
14. Luyimbazi D, Akcanat A, McAuliffe PF, Zhang L, Singh G, Gonzalez-Angulo AM et al. Rapamycin regulates stearoyl CoA desaturase 1 expression in breast cancer. Mol Cancer Ther 2010; 9: 2770–2784.
15. Scaglia N, Igal RA. Inhibition of Stearoyl-CoA Desaturase 1 expression in human lung adenocarcinoma cells impairs tumorigenesis. Int J Oncol 2008; 33: 839–850.
16. von Raemeling CA, Marlow LA, Wei JJ, Cooper SJ, Caulfield TR, Wu K et al. Stearoyl-CoA desaturase 1 is a novel molecular therapeutic target for clear cell renal cell carcinoma. Clin Cancer Res 2013; 19: 2368–2380.
17. Isabel E, Powell DA, Black WC, Chan CC, Crane S, Gordon R et al. Biological activity and phenotypic efficacy of acyl-coenzyme a desaturase potent systemically-distributed stearoyl-CoA desaturase inhibitors. Bioorg Med Chem Lett 2011; 21: 479–483.
18. Léger S, Black WC, Deschenes D, Dolman S, Falgueyret JP, Gagnon M et al. Synthesis and biological activity of a potent and orally bioavailable SCD inhibitor (MF-438). Bioorg Med Chem Lett 2010; 20: 498–502.
19. Nguyen LV, Vanner R, Dirs P, Eaves CJ. Cancer stem cells: an evolving concept. Nat Rev Cancer 2012; 12: 133–143.
20. Conway AE, Lindgren A, Galic Z, Pyle AD, Wu H, Zacc JA et al. A self-renewal program controls the expansion of genetically unstable cancer stem cells in pluripotent stem cell-derived tumors. Stem Cells 2009; 27: 18–28.
21. Eramo A, Lotti F, Sette G, Pilozzi E, Biffoni M, Di Virgilio A et al. Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ 2008; 15:504–514.

22. Dontu G, Wicha MS. Survival of mammary stem cells in suspension culture: implications for stem cell biology and neoplasia. J Mammary Gland Biol Neoplasia 2005; 10:75–86.

23. Akunuru S, James Zhai Q, Zheng Y. Non-small cell lung cancer stem/progenitor cells are enriched in multiple distinct phenotypic subpopulations and exhibit plasticity. Cell Death Dis 2012; 3:e352.

24. Bartucci M, Svensson S, Romania P, Dattilo R, Patrizii M et al. Therapeutic targeting of Chk1 in NSCLC stem cells during chemotherapy. Cell Death Differ 2012; 19:768–778.

25. Abdullah LN, Chow EK. Mechanisms of chemoresistance in cancer stem cells. Clin Transl Med 2013; 2:1326–2-3.

26. Deng S, Yang X, Lassus H, Liang S, Kaur S, Ye Q et al. Distinct expression levels and patterns of stem cell marker, aldehyde dehydrogenase isoform 1 (ALDH1), in human epithelial cancers. PLoS One 2010; 5:e10277.

27. Sullivan JP, Spinola M, Dodge M, Raso MG, Behrens C, Gao B et al. Aldehyde dehydrogenase activity selects for lung adenocarcinoma stem cells dependent on notch signaling. Cancer Res 2010; 70:9937–9948.

28. Ucar D, Cogle CR, Zucali JR, Ostmark B, Scott EW, Zori R et al. Aldehyde dehydrogenase activity as a functional marker for lung cancer. Chem Biol Interact 2009; 178:48–55.

29. Moreb JS. Aldehyde dehydrogenase as a marker for stem cells. Curr Stem Cell Res Ther 2008; 3:237-246.

30. Mancini R, Giarnieri E, De Vitis C, Malanga D, Roscilli G, Noto A et al. Spheres derived from lung adenocarcinoma pleural effusions: molecular characterization and tumor engraftment. PLoS One 2011; 6:e21320.

31. Ricci A, De Vitis C, Noto A, Fattore L, Marrotta S, Cherubini E et al. TrkB is responsible for EMT transition in malignant pleural effusions derived cultures from adenocarcinoma of the lung. Cell Cycle 2013; 12:1696–1703.

32. Herbst RS, Heymach JV, Lippman SM. Lung Cancer 2008; 359:1367–1380.

33. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008; 133:704–715.

34. Garcia-Gonzalo FR, Izpissu Belmonte JC. Albumin-associated lipids regulate human embryonic stem cell self-renewal. PLoS One 2008; 3:e1384.

35. Ben-David U, Gan OF, Golan-Lev T, Arora P, Yanuka O, Oren YS et al. Selective elimination of human pluripotent stem cells by an oleate synthesis inhibitor discovered in a high-throughput screen. Cell Stem Cell 2013; 12:167–167.

36. Mauvoisin D, Charli C, Lounis AM, Rassart E, Mounier C. Decreasing stearoyl-CoA desaturase-1 expression inhibits β-catenin signaling in breast cancer cells. Cancer Sci 2013; 104:36–42.

37. Giarnieri E, De Vitis C, Noto A, Roscilli G, Salerno G, Mariotta S et al. EMT markers in lung adenocarcinoma pleural effusion spheroid cells. J Cell Physiol 2013; 228:8.

38. Herbst RS, Heymach JV, Lippman SM. Lung Cancer 2008; 359:1367–1380.

39. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008; 133:704–715.

40. Vinci M, Gowan S, Boxall F, Patterson L, Zimmermann M, Court W et al. Advances in establishment and analysis of three-dimensional tumor spheroid-based functional assays for target validation and drug evaluation. BMC Biol 2012; 10–29.

Cell Death and Disease is an open-access journal published by Nature Publishing Group. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/