Axial anomaly with the overlap-Dirac operator in arbitrary dimensions

Takanori Fujiwara

Department of Mathematical Sciences, Ibaraki University, Mito 310-8512, Japan
E-mail: fujiwara@mx.ibaraki.ac.jp

Keiichi Nagao

High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801, Japan
E-mail: nagao@post.kek.jp

Hiroshi Suzuki

Department of Mathematical Sciences, Ibaraki University, Mito 310-8512, Japan
E-mail: hsuzuki@mx.ibaraki.ac.jp

Abstract: We evaluate for arbitrary even dimensions the classical continuum limit of the lattice axial anomaly defined by the overlap-Dirac operator. Our calculational scheme is simple and systematic. In particular, a powerful topological argument is utilized to determine the value of a lattice integral involved in the calculation. When the Dirac operator is free of species doubling, the classical continuum limit of the axial anomaly in various dimensions is combined into a form of the Chern character, as expected.

Keywords: Renormalization Regularization and Renormalons, Lattice Gauge Field Theories, Gauge Symmetry, Anomalies in Field and String Theories.
In this note, we evaluate for arbitrary even dimensions $d = 2n$ the classical continuum limit of the lattice axial anomaly defined by the overlap-Dirac operator [1]. This quantity has been studied many times [2]–[8]; but all treat $d = 4$ case. There also exist general arguments [3, 9, 7, 8] that the classical continuum limit reproduces the axial anomaly in the continuum theory, when the Dirac operator is free of species doubling. If it is possible, however, it is certainly preferable to demonstrate this by an explicit calculation. We do this for arbitrary dimensions and obtain the expected result; the classical continuum limit of the axial anomaly in various dimensions is combined into a form of the Chern character [10] [see eq. (41)]. Our calculation consists of two steps: First we determine $O(a^0)$ terms in the axial anomaly without expanding it with respect to the gauge coupling; this scheme is similar to that of refs. [11]–[14], [4, 5, 15]. Next, we evaluate a lattice integral involved; here a powerful topological argument is utilized to determine its value (closely related topological arguments can be found in refs. [16, 17, 2]). A combination of these two schemes provides a quite simple and systematic method to evaluate the classical continuum limit of the axial anomaly. To illustrate this point, we present a calculation of the axial anomaly with the Wilson-Dirac operator for arbitrary dimensions in appendix A.

The overlap-Dirac operator [1] is defined by

$$D = \frac{1}{a} \left[1 - A(A^\dagger A)^{-1/2} \right], \quad A = m_0 - aD_w,$$

$$D_w = \frac{1}{2} \left[\gamma_\mu (\nabla_\mu^* + \nabla_\mu) - ar\nabla_\mu^* \nabla_\mu \right],$$

where m_0 and r are free parameters. We assume $r > 0$ in what follows. In the absence of the gauge field, the Dirac operator is free of species doubling if $0 < m_0/r < 2$. ∇_μ and ∇_μ^* in this expression are forward and backward covariant difference operators respectively

$$\nabla_\mu \psi(x) = \frac{1}{a} [U(x, \mu) \psi(x + a\hat{\mu}) - \psi(x)], \quad (3)$$

$$\nabla_\mu^* \psi(x) = \frac{1}{a} \left[\psi(x) - U(x - a\hat{\mu}, \mu)^\dagger \psi(x - a\hat{\mu}) \right]. \quad (4)$$

By construction, the overlap-Dirac operator satisfies the Ginsparg-Wilson relation $\gamma_{d+1}D + D\gamma_{d+1} = aD\gamma_{d+1}D$ [18]. Due to this relation, the lattice fermion action $S_F = a^d \sum_x \overline{\psi}(x)D\psi(x)$ is invariant under the modified chiral transformation [19]

$$\delta \psi(x) = \epsilon \gamma_{d+1} \left(1 - \frac{1}{2} aD \right) \psi(x), \quad \delta \overline{\psi}(x) = \overline{\psi} \left(1 - \frac{1}{2} aD \right) \gamma_{d+1} \epsilon. \quad (5)$$

1Our notations: a denotes the lattice spacing. Greek letters, μ, ν, ... run from 1 to $d = 2n$. Repeated indices are understood to be summed over, unless noted otherwise. $\{ \gamma_\mu, \gamma_\nu \} = 2\delta_{\mu\nu}$, $\gamma_\mu^\dagger = \gamma_\mu$ and $\gamma_{d+1} = (-i)^n \gamma_1 \cdots \gamma_d$; $\gamma_{d+1}^2 = 1$ and $\gamma_{d+1}^2 = \gamma_{d+1}$ follow from this.

2The link variable $U(x, \mu)$ denotes a matrix in a (in general reducible) unitary representation of the gauge group to which the fermion belongs.
The fermion integration measure, however, acquires a non-trivial jacobian under the transformation \[19\]

\[
\delta \prod_x d\psi(x)d\bar{\psi}(x) = -2 \left[a^d \sum_x \epsilon q(x) \right] \prod_x d\psi(x)d\bar{\psi}(x),
\]

where

\[
q(x) = \frac{1}{a^d} \text{tr} \left[\gamma_{d+1} \left(1 - \frac{1}{2} aD(x, x) \right) \right].
\]

This framework thus realizes a desired breaking pattern of the chiral Ward-Takahashi identity even with finite lattice spacings;\(^3\) it is especially suitable for a study of phenomena associated to the axial anomaly, such as the U(1) problem [20]–[23].

The lattice axial anomaly \(q(x)\) may also be regarded as the index density, because

\[
a^d \sum_x q(x)
\]

is an integer depending on the gauge-field configuration [24].

We first note that a diagonal element of the kernel of an operator on the lattice can be expressed as

\[
O(x, x) = \sum_y O(x, y) \delta_{y,x} = \int_{-\pi}^{\pi} \frac{d^d k}{(2\pi)^d} e^{-ikx/a} \sum_y O(x, y) e^{iky/a}
\]

\[
= \int_{-\pi}^{\pi} \frac{d^d k}{(2\pi)^d} e^{-ikx/a} O e^{ikx/a}.
\]

So we note

\[
\left\{ \begin{array}{c} A \\ A^\dagger \end{array} \right\} e^{ikx/a} f(x) = e^{ikx/a} \left\{ -\gamma_\mu (i s_\mu + a Q_\mu) + m_0 + r \left[\sum_\nu (c_\nu - 1) + a R \right] \right\} f(x),
\]

where

\[
s_\mu = \sin k_\mu, \quad c_\mu = \cos k_\mu,
\]

and

\[
Q_\mu = \frac{1}{2} (e^{ik_\mu \nabla_\mu} + e^{-ik_\mu \nabla^*_\mu}), \quad R = \frac{1}{2} \sum_\mu (e^{ik_\mu \nabla_\mu} - e^{-ik_\mu \nabla^*_\mu}).
\]

From eqs. (1) and (7), we thus have

\[
q(x) = \frac{1}{2a^d} \int_{-\pi}^{\pi} \frac{d^d k}{(2\pi)^d} \text{tr} \left[\gamma_{d+1} \left\{ -\gamma_\mu (i s_\mu + a Q_\mu) + m_0 + r \left[\sum_\nu (c_\nu - 1) + a R \right] \right\} \right]
\]

\[
\times \left(-(i s_\nu + a Q_\nu)^2 \right) + \left\{ m_0 + r \left[\sum_\nu (c_\nu - 1) + a R \right] \right\}^2
\]

\[
- \frac{a^2}{4} [\gamma_\mu, \gamma_\nu][Q_\nu, Q_\rho] + a^2 r[\gamma_\mu Q_\nu, R]^{-1/2}
\]

\[(12)\]

\(^3\)Note that the jacobian is unity for flavor non-singlet chiral transformations for which \(\text{tr} \epsilon = 0.\)
where we have used \(\text{tr} \gamma_{d+1} = 0 \) and \(\gamma_\nu \gamma_\rho = \delta_{\nu\rho} + [\gamma_\nu, \gamma_\rho] / 2 \). In this form, an expansion of \(q(x) \) with respect to the lattice spacing \(a \) is straightforward. In the classical continuum limit, the gauge potential \(A_\mu(x) \) introduced by

\[
U(x, \mu) = \mathcal{P} \exp \left[a \int_0^1 dt A_\mu(x + (1 - t)a\hat{\mu}) \right],
\]

is regarded as a smooth function of \(x \) of the order \(O(a^0) \). The operators \(Q_\mu \) and \(R \) are of \(O(a^0) \) in this limit:

\[
Q_\mu = c_\mu (\partial_\mu + A_\mu) + O(a), \quad \text{no sum over } \mu, \quad \text{(14)}
\]

\[
R = \sum_\mu is_\mu (\partial_\mu + A_\mu) + O(a), \quad \text{no sum over } \mu, \quad \text{(15)}
\]

and

\[
[Q_\mu, Q_\nu] = c_\mu c_\nu F_{\mu\nu} + O(a), \quad \text{no sum over } \mu \text{ and } \nu, \quad \text{(16)}
\]

\[
[Q_\mu, R] = ic_\mu \sum_\nu s_\nu F_{\mu\nu} + O(a), \quad \text{no sum over } \mu, \quad \text{(17)}
\]

where \(F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu + [A_\mu, A_\nu] \). Thus it is straightforward to find \(O(a^0) \) terms in eq. (12), because the trace over Dirac indices requires at least \(d \) gamma matrices:

\[
\text{tr} \gamma_{d+1} \gamma_\nu \gamma_\lambda \cdots \gamma_\nu \gamma_\lambda = i^2 2^n \epsilon_\mu_1 \nu_1 \cdots \mu_n \nu_n.
\]

Namely, we have

\[
q(x) = \frac{1}{2} \int_{-\pi}^{\pi} \frac{d^d k}{(2\pi)^d} \left(-\frac{1}{2} \right)^{n/2} \left\{ \sum_\rho s_\rho^2 + \left[m_0 + r \sum_\rho (c_\rho - 1) \right] \right\}^{n-1/2} \times \left\{ \gamma_{d+1} \left[m_0 + r \sum_\sigma (c_\sigma - 1) \right] \left(-\frac{1}{2} \gamma_\mu \gamma_\nu c_\mu c_\nu F_{\mu\nu} \right)^n \right\} + \text{tr} \gamma_{d+1} \gamma_\lambda s_\sigma \left(-\frac{1}{2} \gamma_\mu \gamma_\nu c_\mu c_\nu F_{\mu\nu} \right)^{n-1} r \gamma_\lambda c_\gamma s_\sigma F_{\lambda\sigma} + \text{permutations} \right\} + O(a). \quad \text{(19)}
\]

A little calculation using the identity (18) shows

\[
q(x) = \frac{(-i)^n}{2(2\pi)^d} \left(-\frac{1}{2} \right)^{n/2} I(m_0, r) \epsilon_{\mu_1 \cdots \mu_n} \epsilon_{\nu_1 \cdots \nu_n} \text{tr} \left(F_{\mu_1 \nu_1} \cdots F_{\mu_n \nu_n} \right) + O(a), \quad \text{(20)}
\]

where the lattice integral \(I(m_0, r) \) is given by

\[
I(m_0, r) = \int_B d^d k I(k; m_0, r), \quad \text{(21)}
\]
with

\[
I(k; m_0, r) = \left(\prod_{\mu} c_\mu \right) \left\{ \sum_{\nu} s_\nu^2 + \left[m_0 + r \sum_{\nu} (c_\nu - 1) \right]^2 \right\}^{-n/2} \\
\times \left[m_0 + r \sum_{\rho} (c_\rho - 1) + r \sum_{\rho} s_\rho^2 \right],
\]

and

\[
\mathcal{B} = \left\{ k_\mu \in \mathbb{R}^d \mid -\frac{\pi}{2} \leq k_\mu \leq \frac{3\pi}{2} \right\}.
\]

Here we have shifted the integration region as \(k_\mu \in [-\pi, \pi] \to k_\mu \in [-\pi/2, 3\pi/2] \) for later convenience.

We now turn to a calculation of the lattice integral \(I(m_0, r) \). We utilize the following topological argument. We first introduce a mapping from the Brillouin zone \(\mathcal{B} \) to the unit sphere \(S^d \). The mapping is defined by

\[
\theta_0 = m_0 + r \sum_{\mu} (c_\mu - 1),
\]

\[
\theta_\mu = s_\mu, \quad \text{for} \quad \mu = 1, \ldots, d,
\]

and

\[
x_A = \frac{\theta_A}{\epsilon}, \quad \epsilon = \sqrt{\sum A \theta_A^2},
\]

where \(x_A (A = 0, 1, \ldots, d) \) is the coordinate of \(\mathbb{R}^{d+1} \) in which the unit sphere \(\sum_A x_A^2 = 1 \) is embedded. Since this mapping is periodic on the Brillouin zone \(\mathcal{B} \), we can regard \(\mathcal{B} \) as a torus \(T^d \). Namely \(k_\mu \to x_A \) defines a mapping \(f : T^d \to S^d \). The crucial observation is that the volume form on this sphere coincides with the integrand of \(I(m_0, r) \):

\[
\Omega = \frac{1}{d!} \epsilon_{A_0 \cdots A_d} x_{A_0} dx_{A_1} \wedge \cdots \wedge dx_{A_d}
\]

\[
= \frac{1}{d! \epsilon_{d+1}} \epsilon_{A_0 \cdots A_d} \theta_{A_0} d\theta_{A_1} \wedge \cdots \wedge d\theta_{A_d}
\]

\[
= I(k; m_0, r) \, dk_1 \wedge \cdots \wedge dk_d.
\]

This shows that the integral of \(\Omega \) on a (sufficiently small) coordinate patch \(U \) on \(S^d \) is given by

\[
\int_U \Omega = \text{sgn} \left[I(k^j; m_0, r) \right] \int_{U^j} I(k; m_0, r) \, dk_1 \wedge \cdots \wedge dk_d,
\]

where \(U^j (j = 1, \ldots, m) \) is a component of the inverse image of \(U \) under \(f \); \(f^{-1}(U) \):

\[
f^{-1}(U) = U^1 \cup \cdots \cup U^m \subset T^d,
\]
and k^j ($j = 1, \ldots, m$) is a certain point on U^j. For a sufficiently small U, U_j are pairwise disjoint. We take preimages of a point $y \in U$ under f, $f^{-1}(y)$, as k^j. Then by summing both sides of eq. (28) over j, we have

$$
\sum_j \int_{U^j} I(k; m_0, r) \, dk_1 \wedge \cdots \wedge dk_d = (\deg f) \int_U \Omega,
$$

where the degree of the mapping f is given by

$$
\deg f = \sum_{f(k^j) = y} \text{sgn} \left[I(k^j; m_0, r) \right].
$$

In general, the degree of the mapping $f : T^d \to S^d$ is defined by a sum of the signature of jacobian of the coordinate transformation between T^d and S^d over preimages of a point $y \in S^d$. An important mathematical fact [25] is that the degree takes the same value for all (regular) points y on S^d. Thus, by summing eq. (30) over all coordinate patches U of S^d, we have

$$
I(m_0, r) = \int_{T^d} I(k; m_0, r) \, dk_1 \wedge \cdots \wedge dk_d = (\deg f) \int_{S^d} \Omega,
$$

where $\int_{S^d} \Omega$ is given by the volume of the unit sphere S^d:

$$
\int_{S^d} \Omega = \text{vol}(S^d) = \frac{2^{d+1}}{d!} \pi^{\frac{d}{2}} n!.
$$

We may choose any point y on S^d to evaluate the degree (31). We choose $y = (1, 0, \ldots, 0)$. This requires

$$
x_{\mu}(k^j) = \frac{a_{\mu}}{\epsilon} = 0, \quad \text{for} \quad \mu = 1, \ldots, d,
$$

and

$$
x_0(k^j) = \frac{m_0 + r \sum_{\mu}(c_{\mu} - 1)}{|m_0 + r \sum_{\mu}(c_{\mu} - 1)|} = 1.
$$

Note that eq. (35) is equivalent to the condition $m_0/r + \sum_{\mu}(c_{\mu} - 1) > 0$. Now eq. (34) implies that $k^j_{\mu} = 0$ or π for each direction μ. We denote the number of π’s appearing in k^j by an integer $n_{\pi} \geq 0$,

$$
k^j = (\pi, \ldots, \pi, 0, \ldots, 0),
$$

In deriving this relation, we have assumed that U is within the range of f, i.e., the inverse image $f^{-1}(U)$ is not empty. This relation itself, however, is meaningful even if U is not within the range of f, if one sets $\deg f = 0$ for such case. As a consequence, eq. (32) holds even if $f : T^d \to S^d$ is not a surjection, i.e., not an onto-mapping.
irrespective of the position of \(\pi \)'s. For a given \(n_\pi \), the number of such \(k_j \) is \(\binom{d}{n_\pi} \). The second relation (35) on the other hand requires \(n_\pi < m_0/(2r) \). At those \(k_j \), we have

\[
\text{sgn} \left[I(k^j; m_0, r) \right] = \prod_{\mu} c_\mu = (-1)^{n_\pi}.
\] (37)

Thus eq. (31) gives

\[
\text{deg } f = \sum_{n_\pi=0}^{[m_0/2r]} \binom{d}{n_\pi} (-1)^{n_\pi}.
\] (38)

Combining eqs. (20), (32), (33) and (38), we finally obtain

\[
q(x) = \frac{i^n}{(4\pi)^n n!} \sum_{n_\pi=0}^{[m_0/2r]} (-1)^{n_\pi} \binom{d}{n_\pi} \epsilon_{\mu_1\nu_1 \ldots \mu_n\nu_n} \text{tr} \left(F_{\mu_1\nu_1} \cdots F_{\mu_n\nu_n} \right) + O(a),
\] (39)

where we have used

\[
\left(-1/2 \right)^n = \frac{1}{n!} \left(-\frac{1}{2} \right)^n (d-1)!!.
\] (40)

In particular, when \(0 < m_0/r < 2 \) with which the (free) overlap- Dirac operator is free of species doubling [1], eq. (39) reproduces the expected result. Multiplying the volume form \(d^dx = dx_1 \wedge \cdots \wedge dx_d \) to \(q(x) \), we have

\[
q(x) d^dx = \text{tr} \exp \left(\frac{i}{2\pi} F \right) d^dx + O(a),
\] (41)

where the field strength 2-form \(F \) is defined by \(F = F_{\mu\nu} dx_\mu \wedge dx_\nu/2 \). This is our main result. When combined with cohomological arguments, it provides an absolute normalization of the lattice axial anomaly even with finite lattice spacings [26, 27] and with finite volumes [28].

A. Axial anomaly with the Wilson-Dirac operator

With the Wilson-Dirac operator, the chiral symmetry is explicitly broken by the Wilson term and the axial anomaly is regarded as arising from this explicit breaking [29]. The axial anomaly thus has a structure of a fermion one-loop diagram containing the Wilson term and, in our notation, it reads

\[
q_w(x) = -\frac{1}{a^d} \text{tr} \left(\gamma_{d+1} \frac{a^2}{2} r \nabla_\mu A A A \right) = -\frac{1}{a^d} \text{tr} \left[\gamma_{d+1} \frac{a^2}{2} r \nabla_\mu (A A A) A \right],
\] (A.1)

where the parameter \(m_0 \) in \(A \) of eq. (1) is replaced by \(am \) with \(m \) being the bare mass of the fermion. An expansion with respect to the lattice spacing is almost identical to the case of the overlap-Dirac operator in the text and we have

\[
q_w(x) = -\frac{i^n}{(2\pi)^d} I_w(r) \epsilon_{\mu_1\nu_1 \ldots \mu_n\nu_n} \text{tr} \left(F_{\mu_1\nu_1} \cdots F_{\mu_n\nu_n} \right) + O(a),
\] (A.2)
where \(I_w(r) = \int_{B} d^d k \mathcal{I}_w(k; r) \) and

\[
\mathcal{I}_w(k; r) = \left(\prod_{\mu} c_\mu \right) \left\{ \sum_{\nu} s_{\nu}^2 + r^2 \left[\sum_{\nu} (c_{\nu} - 1) \right]^2 \right\}^{-(n-1)} \times \left\{ r^2 \left[\sum_{\rho} (c_{\rho} - 1) \right]^2 + r^2 \sum_{\rho} (c_{\rho} - 1) \sum_{\sigma} \frac{s_{\sigma}^2}{c_{\sigma}} \right\},
\]

(A.3)

which is independent of the fermion mass. To evaluate this lattice integral, we again utilize the mapping (24)–(26) with \(m_0 = 0 \). The mapping \(k_\mu \to x_\mu \) (we do not include \(x_0 \) here) defines a mapping \(g : \mathcal{B} \to B^d \), where \(B^d \) is the \(d \) dimensional ball, \(B^d = \{ x_\mu \in \mathbb{R}^d \mid \sum_\mu x_\mu^2 \leq 1 \} \). More precisely, we have to regard all points of the boundary of the ball, \(\sum_\mu x_\mu^2 = 1 \), are identified, because \(k = (0, \ldots, 0) \) is mapped to the boundary of the ball. The crucial relation this time is that the volume form of the ball, \(dx_1 \wedge \cdots \wedge dx_d \), coincides with the integrand of \(I_w(r) \) as one can verify. These observations show

\[
I_w(r) = (\deg g) \int_{B^d} dx_1 \wedge \cdots \wedge dx_d = (\deg g) \text{vol}(B^d),
\]

(A.4)

where the volume of the \(d \) dimensional ball, \(\text{vol}(B^d) \), is given by \(\text{vol}(B^d) = \pi^n/n! \) and the degree is

\[
\deg g = \sum_{g(k^j)=y} \text{sgn} \left[\mathcal{I}_w(k^j; r) \right].
\]

(A.5)

As the point \(y \) on \(B^d \), we choose the origin \(y = (0, \ldots, 0) \). All momenta whose components \(k_\mu \) are either 0 or \(\pi \), except \(k = (0, \ldots, 0) \), are mapped to \(y = (0, \ldots, 0) \). Thus the degree is given by

\[
\deg g = \sum_{n_\pi=1}^{d} \binom{d}{n_\pi} (-1)^{n_\pi} = -1.
\]

(A.6)

Combining eqs. (A.2), (A.4) and (A.6), we have

\[
q_w(x) d^d x = \text{tr} [\exp iF/(2\pi)] |_{d^d x} + O(a) \text{ for arbitrary Wilson parameter } r \neq 0.
\]

References

[1] H. Neuberger, *Exactly massless quarks on the lattice*, Phys. Lett. B 417 (1998) 141 [hep-lat/9707022]; More about exactly massless quarks on the lattice, Phys. Lett. B 427 (1998) 353 [hep-lat/9801031].

[2] Y. Kikukawa and A. Yamada, *Weak coupling expansion of massless QCD with a Ginsparg-Wilson fermion and axial U(1) anomaly*, Phys. Lett. B 448 (1999) 265 [hep-lat/9806013].

[3] K. Fujikawa, *A continuum limit of the chiral jacobian in lattice gauge theory*, Nucl. Phys. B 546 (1999) 480 [hep-th/9811235].
[4] D.H. Adams, *Axial anomaly and topological charge in lattice gauge theory with overlap-Dirac operator*, Ann. Phys. (NY) **296** (2002) 131 [hep-lat/9812003]; *On the continuum limit of fermionic topological charge in lattice gauge theory*, J. Math. Phys. **42** (2001) 5522 [hep-lat/0009026].

[5] H. Suzuki, *Simple evaluation of chiral jacobian with the overlap Dirac operator*, Prog. Theor. Phys. **102** (1999) 141 [hep-th/9812019].

[6] T.-W. Chiu and T.-H. Hsieh, *Perturbation calculation of the axial anomaly of Ginsparg-Wilson fermion*, hep-lat/9901011.

[7] T. Reisz and H.J. Rothe, *The axial anomaly in lattice QED: a universal point of view*, Phys. Lett. **B 455** (1999) 246 [hep-lat/9903003].

[8] M. Frewer and H.J. Rothe, *Universality of the axial anomaly in lattice QCD*, Phys. Rev. **D 63** (2001) 054506 [hep-lat/0004005].

[9] M. Lüscher, *Weyl fermions on the lattice and the non-abelian gauge anomaly*, Nucl. Phys. **B 568** (2000) 162 [hep-lat/9904009].

[10] See, for example, L. Alvarez-Gaumé, *An introduction to anomalies*, HUTP-85/A092 lectures given at Int. School on Mathematical Physics, Erice, Italy, Jul 1-14, 1985.

[11] E. Seiler and I.O. Stamatescu, *Lattice fermions and theta vacua*, Phys. Rev. **D 25** (1982) 2177, erratum *ibid. D 26* (1982) 534.

[12] S. Aoki and I. Ichinose, *The Wess-Zumino term in lattice theories*, Nucl. Phys. **B 272** (1986) 281.

[13] S. Aoki, *Lattice fermions and nonabelian anomaly*, Phys. Rev. **D 35** (1987) 1435.

[14] K. Haga, H. Igarashi, K. Okuyama and H. Suzuki, *Remark on Pauli-Villars lagrangian on the lattice*, Phys. Rev. **D 55** (1997) 5325 [hep-th/9608025].

[15] K. Fujikawa and M. Ishibashi, *Chiral anomaly for a new class of lattice Dirac operators*, Nucl. Phys. **B 587** (2000) 419 [hep-lat/0005003].

[16] A. Coste and M. Lüscher, *Parity anomaly and fermion boson transmutation in three-dimensional lattice QED*, Nucl. Phys. **B 323** (1989) 631.

[17] M.F.L. Golterman, K. Jansen and D.B. Kaplan, *Chern-Simons currents and chiral fermions on the lattice*, Phys. Lett. **B 301** (1993) 219 [hep-lat/9209003].

[18] P.H. Ginsparg and K.G. Wilson, *A remnant of chiral symmetry on the lattice*, Phys. Rev. **D 25** (1982) 2649.

[19] M. Lüscher, *Exact chiral symmetry on the lattice and the Ginsparg-Wilson relation*, Phys. Lett. **B 428** (1998) 342 [hep-lat/9802011].
[20] S. Chandrasekharan, *Lattice QCD with Ginsparg-Wilson fermions*, Phys. Rev. D 60 (1999) 074503 [hep-lat/9805015].

[21] I. Ichinose and K. Nagao, *Gauged Gross-Neveu model with overlap fermions*, Chin. J. Phys. 38, (2000) 671 [hep-lat/9912011]; *Gross-Neveu model with overlap fermions*, Mod. Phys. Lett. A 15 (2000) 857; *Lattice QCD with the overlap fermions at strong gauge coupling*, Nucl. Phys. B 577 (2000) 279 [hep-lat/9910031]; *Lattice QCD with the overlap fermions at strong gauge coupling 2*, Nucl. Phys. B 596 (2001) 231 [hep-lat/0008002].

[22] M. Golterman and Y. Shamir, *Overlap-Dirac fermions with a small hopping parameter*, J. High Energy Phys. 09 (2000) 006 [hep-lat/0007021].

[23] L. Giusti, G.C. Rossi, M. Testa and G. Veneziano, *The $U_A(1)$ problem on the lattice with Ginsparg-Wilson fermions*, Nucl. Phys. B 628 (2002) 234 [hep-lat/0108009].

[24] P. Hasenfratz, V. Laliena and F. Niedermayer, *The index theorem in QCD with a finite cut-off*, Phys. Lett. B 427 (1998) 125 [hep-lat/9801021].

[25] See, for example, B.A. Dubrovin, A.T. Fomenko and S.P. Novikov, *Modern geometry—methods and applications. Part II. The geometry and topology of manifolds*, Springer-Verlag 1985, §13 and §14.

[26] M. Lüscher, *Topology and the axial anomaly in abelian lattice gauge theories*, Nucl. Phys. B 538 (1999) 515 [hep-lat/9808021].

[27] T. Fujiwara, H. Suzuki and K. Wu, *Noncommutative differential calculus and the axial anomaly in abelian lattice gauge theories*, Nucl. Phys. B 569 (2000) 643 [hep-lat/9906015]; *Axial anomaly in lattice abelian gauge theory in arbitrary dimensions*, Phys. Lett. B 463 (1999) 63 [hep-lat/9906016].

[28] H. Igarashi, K. Okuyama and H. Suzuki, *More about the axial anomaly on the lattice*, hep-lat/0206003.

[29] L.H. Karsten and J. Smit, *Lattice fermions: species doubling, chiral invariance, and the triangle anomaly*, Nucl. Phys. B 183 (1981) 103.