Genomic copy number variation study of nine *Macaca* species provides new insights into their genetic divergence, adaptation and biomedical application

Jing Li1,5, Zhenxin Fan1,2, Feichen Shen3, Amanda L. Pendleton3, Yang Song1, Jinchuan Xing4, Bisong Yue1, Jeffrey M. Kidd3*, and Jing Li1,2*

1 Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610065, China

2 Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610065, China

3 Department of Human Genetics, Medical School, University of Michigan, Ann Arbor, MI, 48109, USA

4 Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers, the State University of New Jersey, Piscataway, NJ, 08854, USA

5 Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China

* Authors for correspondence: Jing Li, Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China, +8613808067169,
ljtf@126.com; Jeffrey M. Kidd, Department of Human Genetics, Medical School, University of Michigan, Ann Arbor, MI, USA, +1734-764-6922, jmkidd@umich.edu
Abstract

Copy number variation (CNV) can promote phenotypic diversification and adaptive evolution. However, the genomic architecture of CNVs among *Macaca* species remains scarcely reported, and the roles of CNVs in adaptation and evolution of macaques have not been well addressed. Here, we identified and characterized 1479 genome-wide hetero-specific CNVs across nine *Macaca* species with bioinformatic methods, along with 26 CNV-dense regions and dozens of lineage-specific CNVs. The genes intersecting CNVs were overrepresented in nutritional metabolism, xenobiotics/drug metabolism, and immune related pathways. Population-level transcriptome data showed that nearly 46% of CNV genes were differentially expressed across populations and also mainly consisted of metabolic and immune related genes, which implied the role of CNVs in environmental adaptation of *Macaca*. Several CNVs overlapping drug metabolism genes were verified with genomic qPCR, suggesting that these macaques may have different drug metabolism features. The CNV-dense regions, including fifteen first reported here, represent unstable genomic segments in macaques where biological innovation may evolve. Twelve gains and forty losses specific to the Barbary macaque contain genes with essential roles in energy homeostasis and immunity defence, inferring the genetic basis of its unique distribution in North Africa. Our study not only elucidated the genetic diversity across *Macaca* species from the perspective of structural variation, but also provided suggestive evidence for the role of CNVs in adaptation and genome evolution. Additionally, our findings provide new insights into the application of diverse macaques to drug study.

Keywords: macaque; structural variation; genetic diversity; adaptive evolution; drug metabolism

Significance statement

Copy number variation (CNV) plays an important role in the adaptation and evolution of mammals. However, CNV in *Macaca* species has not been thoroughly studied so far, which hinders the understanding of genome features, adaptive evolution and biomedical application of macaques. Here we identified and characterized genome-wide interspecific CNVs among nine *Macaca* species, demonstrating...
that these macaques mainly diverge from one another in nutritional metabolism, drug metabolism and immune related pathways from the perspective of structural variation. Our findings provide not only suggestive evidence for the role of CNVs in the adaptation and evolution of *Macaca* species, but also new insights into the biomedical application of these non-human primates.
Introduction

Copy number variations (CNVs) represent a major form of structural genetic variation. CNVs are segments of DNA that have variable copy numbers within a species or a lineage (Feuk, et al. 2006; Freeman, et al. 2006). Widely spread over the genome, CNVs typically range from 1kb to 5Mb in the human genome (Redon, et al. 2006). A growing amount of evidence suggests that CNVs are associated with local adaptation via phenotypic trait variations (Kondrashov 2012). CNVs may impact variance in expression levels of specific genes via gene dosage effects, positional effects, gene splits, gene fusions and unmasking of recessive alleles (Henrichsen, et al. 2009; Hou, et al. 2012; Lupski and Stankiewicz 2005), leading to different phenotypes and susceptibility to diseases (Gökçümen and Lee 2009; Iskow, et al. 2012). Additionally, they can modify genome architecture and lead to additional structural variants that promote genome evolution and speciation (Conrad, et al. 2010; Perry, et al. 2008).

CNV features have been studied in many animal taxa, including birds (chicken (Jia, et al. 2013; Wang, et al. 2010) and zebra finch (Völker, et al. 2010)), mammals (mice and rats (Cahan, et al. 2009; Charchar, et al. 2010), dogs and wolves (Alvarez and Akey 2012; Nicholas, et al. 2011), pigs (Chen, et al. 2012; Paudel, et al. 2015), sheep (Yang, et al. 2018), cattle (Keel, et al. 2016), yaks (Goshu, et al. 2019), horse (Jun, et al. 2014), and great apes (Gazave, et al. 2011; Marques-Bonet, et al. 2009; Oetjens, et al. 2016)). In particular, CNV studies in humans and other great apes have uncovered the role of CNVs in various phenotypic traits, diseases, and primate evolution (Almal and Padh 2012; Itsara, et al. 2009; Stranger, et al. 2007; Sudmant, et al. 2013; Ventura, et al. 2011; Zhang, et al. 2009). Compared with the great ape lineage, the study of CNV in *Macaca* is rather limited. Prior work has mainly focused either on conspecific variations of the rhesus (Gokcumen, et al. 2011; Lee, et al. 2008) and cynomolgus macaques (Gschwind, et al. 2017), or on particular gene families in macaques (Degenhardt, et al. 2009; Ottolini, et al. 2014; Uno, et al. 2010), leaving genomic CNVs across *Macaca* species scarcely reported and the biological significance of CNVs in ecological and evolutionary processes of macaques unsolved.
The genus *Macaca* (Primates: Cercopithecidae) is a group of diverse Catarrhini that contains twenty-three species (Li, et al. 2015; Solari and Baker 2006) which have diverged over a short evolutionary timespan. Macaques are the most widely distributed Non-Human Primates (NHPs), occupying various habitat types in Asia along with Northern Africa and Southern Europe (Solari and Baker 2006). They have diverged genetically, morphologically, and behaviourally to adapt to a wide range of environmental conditions (Roos and Zinner 2015; Thierry 2007). Therefore, this genus has experienced both rapid speciation and adaptive radiation (Jiang, et al. 2016). To date, the general phylogenetic relationships among macaques have been well addressed, and the seven-species-group phylogeny (Roos, et al. 2014; Zinner, et al. 2013) based on molecular evidence is widely accepted.

Macaques are also important animal models in a wide range of biomedical research including drug development studies. They display very high similarity to humans in development, immunology, pathology, and behaviour (Haus, et al. 2014). Besides rhesus (*M. mulatta*) and cynomolgus (*M. fascicularis*) macaques, southern pig-tailed (*M. nemestrina*), Barbary (*M. sylvanus*), Tibetan (*M. thibetana*), and Japanese (*M. fuscata*) macaques are increasingly used as NHP models in biomedical research (Hatzioannou, et al. 2009; Pouladi, et al. 2013; Zhang, et al. 2017). The genetic backgrounds of different macaques may strongly affect the results of biomedical studies. For example, because of a species-specific insertion of a retrotransposon in the *TRIM5* gene, the southern pig-tailed macaque can be infected by HIV-1 while rhesus and cynomolgus macaques cannot (Brennan, et al. 2008; Newman, et al. 2008). However, detailed exploration of the impact of using different *Macaca* species on research outcomes is limited. Despite many genome-wide single nucleotide variant (SNV) studies elucidating the evolutionary history, population genetics or intraspecific genetic diversity of macaques (Fan, et al. 2014b; Fan, et al. 2018; Fang, et al. 2011; Higashino, et al. 2012; Liu, et al. 2018; Yan, et al. 2011; Zhong, et al. 2016), the genetic divergence among *Macaca* species has not been thoroughly surveyed, especially from the perspective of structural variation and CNV.

Recently, easier accessibility of next-generation sequencing (NGS) data of *Macaca* species combined with well-developed CNV detection approaches allow for comprehensive characterization of genome-
wide CNVs in macaques. NGS-based methods have become a popular strategy for CNV detection. Compared to array-based approaches like single nucleotide polymorphism (SNP) and comparative genomic hybridization arrays (aCGH) (Carter 2007; Li and Olivier 2012), the NGS-based approach has higher resolution, more accurate estimation of copy numbers and breakpoints, and better capability to identify novel CNVs (Alkan, et al. 2011; Meyerson, et al. 2010). Various software tools, such as Breakdancer (Fan, et al. 2014a), and pipelines such as fastCN, which calculates copy numbers with a read depth (RD) based approach (Pendleton, et al. 2018), have been developed to detect CNVs using NGS data.

In this study, we used a RD based method to identify interspecific CNVs and shared duplications genome-wide across nine species of macaques, and further analysed the distribution patterns and potential functions of these CNVs with bioinformatic approaches. In addition to the two flagship species in Macaca, rhesus and cynomolgus macaques, our sample set also includes the only non-Asian species, Barbary macaque (M sylvanus) and several less studied macaque species. Altogether, this systematic study presents the first comprehensive map of genome-wide interspecific CNV in Macaca. We aimed at not only obtaining a better understanding of the genetic diversity and biomedical application of these Macaca species, but also providing new insights into the roles of CNVs in genetic diversity, environmental adaptation and the evolution of these animals.

Materials and Methods

Genome data

Whole resequenced genomes of four macaques were produced in-house, including the Japanese (M. fuscata, JM), Taiwanese (M. cyclopis, TwM), Barbary (M. sylvanus, BM), and lion-tailed (M. Silenus, LM) macaques, as shown in table 1. This sequence data was combined with public genome data of the Chinese rhesus (M. mulatta lasiota, CR) (Yan, et al. 2011), cynomolgus (M. fascicularis, CE) (Yan, et al. 2011), Tibetan (M. thibetana, TM) (Fan, et al. 2014b), stump-tailed (M. arctoides, SM) (Fan, et al. 2018), and southern pig-tailed (M. nemestrina, PM) macaques. A genome dataset of nine individuals was analysed, involving nine species and representing six out of seven species-groups in Macaca (table 1). The sequence
data for each sample varied from 25× (TwM) to nearly 84× (JM) coverage, allowing sufficient power to detect CNVs.
Table 1 Information on genome data in this study.

Scientific Names	Sample Identifier(s)	GenBank Accession(s)	Sequencing Platform(s)	#Reads	Genome Depth	Total Usable Base Pairs	Sex	Sample Origin(s)	Source(s)
M. mulatta	Mmul_8	--	Illumina	20,100,000	5.1X	---	female	Washington National Primate Research Center	Zimin, et al. 2014
M. mulatta lasiota	CR	SRA023856	Illumina	3,299,851,568	45.65X	2,264,143,011	female	Yunnan, China	Yan, et al. 2011
M. fascicularis	CE	SRA023855	Illumina	3,299,851,568	43.96X	2,245,482,535	female	Vietnam	Yan, et al. 2011
M. arctoides	SM	SRX1470574	Illumina	1,001,034,260	34.55X	2,280,352,231	female	southwestern China	Fan, et al. 2018
M. thibetana	TM	SRP032525	Illumina	1,275,012,390	36.92X	2,281,638,762	female	Sichuan, China	Fan, et al. 2014b
M. nemestrina	PM	SRX1022644	Illumina	770,413,198	25.59X	2,246,079,419	female	Washington National Primate Research Center	Baylor College of Medicine
M. fuscata	JM	SRR11921216	Illumina	2,258,829,541	83.85X	2,271,704,290	female	Kyoto Primate Research Center	Fan et al. unpublished
M. cyclopis	TwM	SRR11921217	Illumina	2,279,695,913	24.66X	2,279,695,913	female	Kyoto Primate Research Center	Fan et al. unpublished
M. sylvanus	BM	SRR11921218, SRR11927939- SRR11927943	Illumina	2,226,490,341	45.91X	2,226,490,341	female	Columbia University	In this study
M. silenus	LM	SRR11921219, SRR11927944- SRR11927948	Illumina	2,241,953,780	46.49X	2,241,953,780	female	Columbia University	In this study
Copy number estimation using short read data

As *Macaca* species are phylogenetically close, it is reasonable to estimate interspecific CNVs by mapping the short-read sequences from various macaques to the reference genome of the Indian rhesus macaque (*M. mulatta mulatta; Mmul_8*) (Zimin, et al. 2014). Prior to mapping, we employed FastQC (v0.11.8) (http://www.bioinformatics.babraham.ac.uk/projects/fastqc) to perform quality control checks on raw sequences, then used Trimmomatic (v0.36) (Bolger, et al. 2014) to filter and trim the reads. The cleaned reads were aligned to the reference genome using BWA mem (Li and Durbin 2009).

The program fastCN was designed to efficiently estimate genome copy number (CN) from short read data utilizing RD information (https://github.com/KiddLab/fastCN) (Pendleton, et al. 2018). Two steps were implemented to estimate CNs with the fastCN pipeline. First, GC correction was performed using custom-defined control regions to remove the GC bias introduced by PCR during library preparation and sequencing. Due to the lack of known control regions across macaques, we implemented an iterative process to retrieve effective control regions, which correspond to a copy-number of two in these diploid genomes. The initial controls regions were defined as autosomal genomic regions excluding segments masked by RepeatMasker and Tandem Repeat Finder (Benson 1999), overrepresented 50mers, assembly gaps, and an additional 36bp flanking each masked segment. Read depth was converted to estimated copy number based on a set of control regions. This calculation was performed in windows that contain an equal number (1,000 bp, 1 kb) of unmasked, non-gap positions. As a result, although each window contains the same number of interrogated positions, the actual size of the windows along the genome is variable and individual windows may span assembly gaps. Using this initial data, we then defined a revised set of control regions which appeared to have a fixed copy-number. Specifically, we optimized the controls for each sample as segments where read depth fell into the full width at half maximum (FWHM) of the RD distribution of all 1kb windows (supplementary fig. S1, Supplementary Material online), which were likely to be regions with a copy-number of two. We then repeated the GC normalization and copy number estimation procedure using the revised control regions for all the samples.
Second, GC-corrected per-bp depths were converted to mean depths in windows containing 1kb of unmasked sequence. As described above, the windows differ in genomic length, but each window contains 1,000 unmasked, non-gap positions. We estimated genome-wide CNs based on window depths by using a correction factor calculated from the average RD of the control regions. The calculation function is as follows:

\[CF = \frac{RD_{\text{ctl}}}{2} \]

\[CN = \frac{RD}{CF} \]

where CF stands for the correction factor, RD represents the read depth of specific genomic window, and RD_{\text{ctl}} is the mean read depth of the control regions. Unplaced contigs were merged as a single ‘chrUn’ in data processing to decrease the CPU time.

CNV and shared duplication identification

Due to the absence of multiple individuals of the same species, we used the maximum copy number difference (CND_{m}) to define interspecific CNV, which is the difference between the maximum CN (CN_{max}) and the minimum CN (CN_{min}) of the samples.

\[CND_{m} = CN_{\text{max}} - CN_{\text{min}} \]

Theoretically, duplications are regions with copy number of at least 3 copies, deletions are segments with copy number of one (heterozygous deletion) or zero (homozygous deletion), and CNVs are bins where the copy number difference is equal to or greater than one copy for any two samples, which means CND_{m} ≥1 among the nine samples. To correct for noise in the CNs, we checked the modal value of CND (~0.6) which should approximate zero, and thus set the CND_{m} threshold for CNV as 1.6 (1+0.6) copies (supplementary fig. S2, Supplementary Material online). Duplications were defined as windows with 2.7 (3-0.6/2) or more copies and deletions were defined as bins with 1.3 (1+0.6/2) or less copies among the nine samples. Duplications shared by all macaques are considered to be fixed in this genus, which are of research importance. To reduce false positives, we only kept CNVs or shared duplications no shorter than 3 kb. After merging consecutive 1 kb windows and calculating the mean CNs for merged windows, we filtered out these failing the thresholds or that were shorter than three windows (~3 kb). CNVs on chrUn
were excluded from subsequent analyses. We employed the UCSC genome browser to examine the copy number patterns using custom track files.

CNV-dense region detection

We surveyed CNV density across the genome using a sliding window of 10Mb with a custom python script. CNV density was defined as the CNV count in each window. According to the count distribution, bins with ten or more CNVs were empirically considered to be a CNV-dense region. LiftOver (https://genome.ucsc.edu/cgi-bin/hgLiftOver) was used to convert the coordinates to match the human reference genome hg19. We investigated if the CNV-dense regions overlapped with CNV hotspots shared by human, chimpanzee and rhesus macaque identified in (Gokcumen, et al. 2011).

Gene-based annotation and functional enrichment analyses

To delineate the functional impact of CNVs, we performed gene annotation and enrichment analyses. Gene-based annotation was implemented with ‘bedtools window’ (Quinlan and Hall 2010). Since CNVs can regulate the expression and function of adjacent genes, we set the intersecting window size between CNVs and genes as 5kb. Annotations of gene models in rhesus macaque genome were obtained from Ensembl (ftp://ftp.ensembl.org/pub/release-92). The GO and KEGG enrichment analyses were performed with standalone KOBAS 3.0 (Xie, et al. 2011) on genes that intersected CNVs or shared duplications with 5kb window allowance. The background gene set contained all Ensembl genes in the rhesus macaque. We chose ‘Fisher’s exact test’ and ‘Benjamini and Hochberg (1995)’ as the statistical and FDR correction methods, respectively. Small terms with five or less genes were dropped from our analyses. Functional enrichment with g:Profiler (Reimand, et al. 2007) was also conducted on genes intersecting with CNV-dense regions. Hierarchical filtering was set as ‘best per parent group’. The size of the functional categories ranged from 5 to 2000 genes. Benjamini-Hochberg FDR was employed to calculate significant threshold.

Permutation test
To inspect if there was any positional bias of the CNVs or shared duplications, we calculated empirical significance by performing 1,000 genome-wide permutations. We shuffled both the locations of the CNVs or shared duplications and locations of genes with ‘bedtools shuffle’ (Quinlan and Hall 2010) to examine the following three factors: 1) the number of CNVs or shared duplications intersecting with genes 2) the number of genes intersecting with CNVs or shared duplications and 3) the lengths of intersecting genes. The shuffling tested the following hypotheses, 1) if the genes were overlapped with CNVs or shared duplications incidentally, 2) if large genes were more likely to emerge in the enriched pathways, and 3) if the enriched CNV intersecting genes tended to emerge together. P values were defined as the possibility of the observation in the distribution of the permutation data.

Lineage specific CNV screening

Lineage specific CNVs were screened to investigate the evolutionary features or adaptive characteristics of macaques. We utilized Picard (v1.98; http://broadinstitute.github.io/picard/) and GATK (v3.2) (Depristo, et al. 2011) to identify the genome-wide interspecific single nucleotide variants (SNVs) of the nine species. After hard filtration suggested by the GATK website (QualByDepth (QD) < 2.0; QUAL < 30.0; Fisher Strand (FS) > 60.0; RMS Mapping Quality (MQ) < 40.0; Strand Odds Ratio (SOR) > 4.0; MQ Rank Sum < -12.5; Read Pos Rank Sum < -8.0), the SNVs were thinned to 500,000 sites with PLINK (v1.07) (Purcell, et al. 2007) to estimate a phylogenetic tree using the Neighbor-Joining (NJ) method by SNPhylo (Lee, et al. 2014). Bootstrap replicates (n=1000) were employed to assess branch support. Clade-specific duplication was defined as CN >= 2.7 for a clade and around two copies (1.7 <= CN <= 2.3) for others. Correspondingly, a lineage-specific CNV deletion was called when CN <= 1.3 for a lineage but 1.7 <= CN <= 2.3 for others.

Genomic qPCR validation

To validate the CNVs in drug metabolism genes including *CYP2C76, UGT2B33, UGT1A1, GSTM5,* and *GSTM1,* real-time quantitative PCR (qPCR) was conducted on genomic DNA. Primers were designed with Primer3Plus (https://primer3plus.com/cgi-bin/dev/primer3plus.cgi) for the CNVs and a diploid
internal control, part of \textit{RPP30} with no copy number alteration among macaques (supplementary fig. S3, Supplementary Material online). Primer information is available in supplementary table S1, Supplementary Material online. The fidelity of the primers was checked \textit{in silico}.

Blood samples of Chinese rhesus (CR-AB, CR-OB), cynomolgus (CE-3), Tibetan (TM-4), stump-tailed (SM-2) and Japanese (JM-5) macaques were collected from Chengdu Zoo and Hengshu Biotechnology Company. Due to lack of Indian rhesus macaque, Chinese rhesus macaque (CR-AB) was used as calibrator for all qPCR experiments. As southern pig-tailed macaque is not distributed in China, we used northern pig-tailed macaque (\textit{M. leonine}, PM-6, faeces, Chengdu Zoo) instead, which is the phylogenetically closest species to the southern pig-tailed macaque in China, and both belong to silenus group (Roos, et al. 2014; Zinner, et al. 2013). Genomic DNA was extracted using TIANamp Genomic DNA Kit (TIANGEN, Peking, China). All samples were obtained in accordance with Chinese regulations for the implementation of protection of terrestrial wild animals (State Council Decree \[1992\] No.13), and all laboratory work was approved by the Guidelines for Care and Use of Laboratory Animals and the Ethics Committee of at Sichuan University (Chengdu, China). Throughout the procedure, care was taken to ensure animal welfare for all monkeys.

By referring to previous studies (Jung, et al. 2013; Wang, et al. 2018), relative quantification with \(\Delta\Delta CT\) method was employed, and CN of each target was calculated as \(2\times2^{-\Delta\Delta CT}\). Genomic qPCR was performed using the real-time qPCR system as recommended by the manufacturer’s instruction. In brief, a 10\(\mu\)L of reaction mixture contained 10 ng of genomic DNA, 1\times Taq SYBRGreen qPCR Mix (Innovagene, Changsha, China), and 5 pmol of each primer. Thermal cycling conditions consisted of one cycle of 3 min at 94°C followed by 40 cycles of 20 sec at 94°C, 40 sec at 60°C, and 20 sec at 72°C. All qPCR experiments were triplicate.

\textbf{Differential expression analysis of CNV genes based on population transcriptome data}

To explore if CNVs affected gene expression and further biological functions, we investigated the expression levels of CNVs intersecting genes (CNVGs) whose copy numbers were distinct (CND\(>=1.6\)) between the Chinese rhesus macaque (CR) and the Tibetan macaque (HT) using the expression matrices in

http://mc.manuscriptcentral.com/gbe
(Yan 2019), which studied the blood transcriptomes of 28 Chinese rhesus macaques and 24 Tibetan macaques. For the CNVGs with detectable expression, differentially expressed genes (DEGs) were identified using threshold of $p<0.05$ and $q<0.05$. To test if the percentage of differentially expressed CNVGs was significant, we randomly resampled the same number of CNVs between the Chinese rhesus and Tibetan macaques from all interspecific CNVs 1000 times, and compared the observation with the percentages of differentially expressed CNVGs in the resampled data. We also reviewed the main functions of these DEGs to infer the biological impact of these CNVs.

Results

Duplicated regions across the nine species

We estimated genomic copy number from NGS data of nine *Macaca* species based on the rhesus macaque reference genome (Mmul_8) using the fastCN algorithm (Pendleton, et al. 2018). To improve the performance of copy number estimation, we created an iterative process to identify control regions for GC normalization of the observed sequencing depth as described in Materials and Methods. The improved controls lead to an effective GC correction for all species (supplementary fig. S4, Supplementary Material online).

Using the estimated copy-numbers, gains and losses that spanned three or more 1kb windows were detected on a per sample basis for the nine species. There were 2,183 (*M. fascicularis*, CE) to 2,686 (*M. thibetana*, HT) gains identified per sample. The cumulative lengths of duplications across all chromosomes for each sample are shown in fig. 1A. The genomic distribution of copy number gains shows a highly uneven pattern. For example, chromosome 19 harbours the largest proportion of duplications, varying from 6.42% for the Tibetan macaque to 10.36% for the Chinese rhesus macaque. The lowest percentage of duplications was found on chromosome 18, fluctuating from 0.04% for the Chinese rhesus, Japanese, and crab-eating macaques to 0.11% for the lion-tailed macaque. Additionally, we identified an excess of duplications on chromosome 14 in the Japanese macaque. This excess was driven by a 4 Mb event that was absent in all other samples (fig. 1B and 1C). This large duplication
overlapped with seventeen genes, including five genes in the TRIM family (TRIM49, putative TRIM49B, TRIM51, putative TRIM64B, and TRIM77) and three genes associated with the nervous system (GRM5, FOLH1, and NAALAD2), and also harboured a small shared duplication intersecting a homolog to human TRIM64.
Fig. 1. Genomic patterns of duplications across the nine macaque species. (a) Cumulative lengths of duplications detected in three or more 1kb windows across all chromosomes for each sample. (b) Proportion of cumulative duplication lengths for each chromosome. (c) Copy number (blue histograms) across the large duplication on chromosome 14 of Japanese macaque is visualized in UCSC genome browser relative to other macaques (species symbols on left) and in the context of Ensembl gene models (red). Copy number was estimated in windows containing 1kb of non-gap, non-masked sequence. As a result, the genomic span of individual windows is variable and may include positions annotated as assembly gaps.

Shared duplications

We searched for regions that are duplicated in all analysed macaques, regardless of the estimated copy number. Although each species was represented by one individual, the shared duplicated regions likely represent genomic regions expanded across *Macaca*, indicating the common genomic features of this group. In total, 1,560 duplications were shared by all assessed macaques (fig 2, supplementary fig. S5, Supplementary Material online). Shared duplications on chromosome 7 were longer than these on other chromosomes. Chromosome 19 displayed the highest abundance while chromosome 18 held the lowest percentage of shared duplications (fig. 2b). Due to their across-genus distribution, these copy number gains likely resulted from duplications that occurred in the last common ancestor of these species.
Fig. 2. Cumulative lengths of the shared duplications detected in three or more 1kb windows on each chromosome in the nine *Macaca* species. (A) Average ratios of the cumulative lengths of shared duplications to the cumulative length of duplications per chromosome across the nine samples. Error bars represent the standard deviations of the ratios among the nine species. (B) The cumulative lengths (green bars) of the shared duplications per chromosome and the percentage (red line) of shared duplications on each chromosome in terms of length.

We observed that 1,166 shared duplications and their 5kb flanking sequences intersected 1,656 Ensembl genes annotated in the rhesus macaque genome. To assess the genomic location patterns of these duplicates, we conducted permutation tests by randomly shuffling the coordinates (n = 1,000 shuffles) of the duplications or the Ensembl genes, and found that shared duplicates are significantly enriched in genic regions ($p = 0.001$) and that more genes intersected with shared duplications than expected by chance ($p = 0.001$). We also noted that the lengths of these genes were shorter than expected ($p = 0.001$) (supplementary fig. S6-S7, Supplementary Material online). This was opposite to the expectation that CNVs would overlap with long genes due to random chance, suggesting that the enrichment may be driven by gene clustering, given that clustered genes are usually short in length.

Functional enrichment analysis of the 1,656 intersecting genes using KOBAS 3.0 ($p <= 0.01$, supplementary table S2, Supplementary Material online) showed that the majority of the enriched pathways were metabolic pathways, including metabolism of steroid hormone, xenobiotics, retinol,
pentose and glucuronate, starch and sucrose, aldarate, and porphyrin. The enriched categories also contained many ribosome related terms, coincident with the finding of a CNV study of horse (Doan et al. 2012) that 11.9% of ribosomal RNA (rRNA) genes in horse were affected by CNVs, ranking the first among all kinds of genes. To explore if these functional terms were enriched incidentally due to co-localization of genes belonging a shared biological pathway, permutation tests were conducted again by carrying out enrichment analyses using shuffled duplication datasets or shuffled gene sets. Permutations showed that the observed count of enriched pathways was greater than 90% of the pathway counts found in the permutations and that the count of significantly enriched GO categories was larger than that found in >95% of the permutations (supplementary fig. S8-S9, Supplementary Material online). This suggests the observed results reflect true enrichment signals rather than spurious hits due to random chance.

Genome-wide interspecific CNVs

A total of 1,479 regions were identified as copy numbers variable across the nine *Macaca* species with lengths of three or more consecutive 1kb windows (fig. 3, supplementary Dataset S1 and fig. S10, Supplementary Material online), including 1,106 gains and 451 losses. Of these, 78 were complex CNVs containing both gains and losses. Gains were approximately 2.5-fold more common than losses and displayed comparatively larger average sizes. These CNVs totalled 39.7 Mb, or 1.41% of the genome. The individual lengths of CNVs ranged from 3,001 bp to 1,086,528 bp with a mean and median of 26,857 bp and 12,007 bp, respectively. The majority of identified CNVs were relatively small, as ~70% were between 3kb and 20kb. The count comparison of CNVs with different lengths (>= 1kb, 3×1kb, 10×1kb windows) is shown in supplementary table S3, Supplementary Material online.
Fig. 3. Genomic distribution of all interspecific CNVs (detected in three or more 1kb windows) across the nine *Macaca* species. The blue rectangles represent duplication CNVs and the red rectangles represent deletion CNVs.

Functional annotation of CNVs

Using 5kb intersecting windows, 854 out of 1,479 CNVs overlapped with 1,420 Ensembl genes. Specifically, 727 (65.73%) duplications intersected with 1,287 genes, and 164 (36.36%) deletions encompassed 302 genes (supplementary fig. S11, Supplementary Material online). In total, 52.81% of CNVs are directly located in genic regions, which is concordant with the study of (Lee, et al. 2008) where 55% (68/124) CNVs identified in rhesus macaque were genic. Genes overlapping with CNVs and their 5kb flanking regions (CNVGs) can be separated into three categories: duplicated genes overlapped by CNV gains, deleted genes intersecting with CNV losses, and mixtures where genes co-localize with loci harbouring both gains and losses.
Permutation tests highlighted the role of gene clustering in this enrichment. Although the observed CNVs did not overlap with a gene more often than expected by chance ($p = 0.142$, supplementary fig. S12 A), the total number of genes that intersected with a CNVs was greater than expected ($p = 0.001$, supplementary fig. S12 B), and the length of the intersecting genes was significantly shorter than expected ($p = 0.001$, supplementary fig. S12 C). The observed intersection counts were substantially different from those found when the positions of genes were randomly shuffled (supplementary fig. S13). Thus, gene clustering, i.e., the non-uniform placement of genes along the genome, partially accounts for the increased number of genes that overlap with CNVs. Furthermore, we observed that CNVGs were significantly shorter than expected (supplementary fig. S12-S13, Supplementary Material online). This may reflect a real genome feature or represent a bias due to the comparatively low quality of the macaque genome assembly or gene model annotation.

We propose two hypotheses for the origin of the ‘bias’ in CNV gene length: 1) the rhesus macaque reference genome is incompletely assembled, and/or 2) the gene models in CNV regions may be inaccurate. To investigate these assumptions, we compared not only the protein coding gene lengths in control regions and CNV regions, but also the quality of gene models from rhesus (Mmul_8), chimpanzee (Pan_troglodytes-2) and human (GRCh38) reference genomes. The genomic lengths of all protein coding genes in the macaque genome were similar to that in the chimpanzee genome, but shorter than those in the human genome (supplementary table S4a, Supplementary Material online), suggesting that assembly quality may affect our results. The comparison between control and CNV regions also indicates quality of gene models in CNVs may contribute to the observation (supplementary table S4b, Supplementary Material online).

We again performed enrichment analyses with KOBAS 3.0 and subsequent permutation tests for CNVs. CNVGs were generally over-represented ($p <= 0.01$) in three main categories: nutritional metabolism, xenobiotics/drug metabolism, and immune related pathways, but some enrichments lacked strong support from the corrected p value (table 2 and supplementary table S5, Supplementary Material online). Enrichment outputs of duplicated genes were quite similar to that of all CNVGs, mainly because
copy gains outnumbered copy losses. Deleted genes were enriched in ‘olfactory transduction’ and disease pathways including ‘Viral myocarditis’ (mcc05416), ‘Asthma’ (mcc05310) and ‘Graft-versus-host disease’ (mcc05332) (supplementary table S6, Supplementary Material online). These pathways were in accordance with the enriched GO terms related to signaling receptor activity. Results from randomized permutations based on locations of both CNVs and genes showed there were 90% more enriched KEGG pathways and GO terms than expected by chance (supplementary fig. S14-S15, Supplementary Material online), confirming the functional enrichment in these CNVGs. Additionally, we note that enriched genes (ribosome genes, HLA loci, olfactory genes) tended to be clustered in the genome (Younger et al 2001; Ishii et al. 2006).

Table 2 Enrichment outputs of genes intersecting the CNVs and their 5kb flanking sequences using KOBAS 3.0, (A) enriched KEGG pathways, and (B) enriched GO terms (only exhibiting the highest category in the tree for GO terms containing exactly the same genes). The term description and ID are provided along with the number of genes identified near our CNVs (input) compared to the total Ensembl gene set of the rhesus macaque (background). The raw and corrected p values are indicated. Input gene names with enrichment signals (p <= 0.01) can be found in the last second column.

Term	ID	Input No.	Background No.	p Value	Corrected p Value	Gene Symbols†	CNV ID
Pentose and glucuronate interconversions	mcc00040	6	21	1.9E-05	0.034	ALDH3A2, LOC706528, UGT2B33, UGT1A1, UGT2B15, ENSMMUG00000012355	chr16-19414797-19421121, chr3-160661084-160869232, chr5-65506980-65623157, chr5-65628860-65729639, chr12-116232453-116238344, chr5-6546947-65503089, chr5-65628860-65729639, chr16-19414797-19421121, chr12-116232453-116238344, chr5-65506980-65623157, chr5-6546947-65503089, chr1-183324769-18338450, chr4-33338105-33352404, chr4-3355720-33386474, chr4-33406118-33412221, chr4-30203433-30413162, chr6-15479623-154806159, chr1-14308663-14373529, chr4-33928581-33933207, chr3-39508480-39512271
Ascorbate and aldarate metabolism	mcc00053	5	14	4.0E-05	0.037	UGT2B15, ALDH3A2, UGT1A1, UGT2B33, ENSMMUG00000012355	
Viral myocarditis	mcc05416	7	42	7.8E-05	0.047	ABL2, MAMU-DRB1, LOC106992470, SGCD, CASP9, MAMU-DPB1, ACTB	
Pathway	Enrichment ID	Count	FDR	p-value			
--	---------------	-------	-------	----------			
Retinol metabolism	mcc00830	7	45	1.1E-04	0.052		
Chemical carcinogenesis	mcc05204	7	55	3.5E-04	0.013		
Antigen processing and presentation	mcc04612	6	44	6.7E-04	0.15		
Porphyrin and chlorophyll metabolism	mcc00860	5	29	7.4E-04	0.15		
Drug metabolism - cytochrome P450	mcc00982	6	48	0.001	0.17		
Type I diabetes mellitus	mcc04940	5	32	0.0011	0.17		
Metabolism of xenobiotics by cytochrome P450	mcc00980	6	49	0.0011	0.17		
Starch and sucrose metabolism	mcc00500	5	36	0.0018	0.25		
RNA degradation	mcc03018	6	64	0.0039	0.46		
Drug metabolism - other enzymes	mcc00983	4	32	0.0072	0.46		

Chemical Pathway
- Retinol metabolism
 - mcc00830
 - Count: 7
 - FDR: 45
 - p-value: 1.1E-04
 - FDR: 0.052
- Chemical carcinogenesis
 - mcc05204
 - Count: 7
 - FDR: 55
 - p-value: 3.5E-04
 - FDR: 0.013
- Antigen processing and presentation
 - mcc04612
 - Count: 6
 - FDR: 44
 - p-value: 6.7E-04
 - FDR: 0.15
- Porphyrin and chlorophyll metabolism
 - mcc00860
 - Count: 5
 - FDR: 29
 - p-value: 7.4E-04
 - FDR: 0.15
- Drug metabolism - cytochrome P450
 - mcc00982
 - Count: 6
 - FDR: 48
 - p-value: 0.001
 - FDR: 0.17
- Type I diabetes mellitus
 - mcc04940
 - Count: 5
 - FDR: 32
 - p-value: 0.0011
 - FDR: 0.17
- Metabolism of xenobiotics by cytochrome P450
 - mcc00980
 - Count: 6
 - FDR: 49
 - p-value: 0.0011
 - FDR: 0.17
- Starch and sucrose metabolism
 - mcc00500
 - Count: 5
 - FDR: 36
 - p-value: 0.0018
 - FDR: 0.25
- RNA degradation
 - mcc03018
 - Count: 6
 - FDR: 64
 - p-value: 0.0039
 - FDR: 0.46
- Drug metabolism - other enzymes
 - mcc00983
 - Count: 4
 - FDR: 32
 - p-value: 0.0072
 - FDR: 0.46
† The novel genes without gene symbols are indicated with Ensembl gene IDs.

Term	ID	Input No.	Background No.	p Value	Corrected p Value	Gene Symbols†	CNV ID
glucuronosyltransferase activity	GO:0015020	3	5	5.1E-04	0.13	UGT1A1, UGT2B33, UGT2B15	chr12-116232453-116238344, chr5-65506980-65623157, chr5-65628860-65729639
UDP-glycosyltransferase activity	GO:0008194	3	14	0.0053	0.46	UGT1A1, UGT2B33, UGT2B15	chr12-116232453-116238344, chr5-65506980-65623157, chr5-65628860-65729639
DNA conformation change	GO:0071103	3	15	0.0063	0.46	HMG3B, NCAPD2, H2BFWT	chrX-144618359-144621948, chr11-6773682-6777531, chrX-97761715-97768667
flavonoid metabolic process	GO:0009812	2	5	0.009	0.46	UGT2B33, UGT2B15	chr5-65506980-65623157, chr5-65628860-65729639

† The novel genes without gene symbols are indicated with Ensembl gene IDs.

Drug metabolism genes were highly enriched among the CNV intersecting genes, including *CYP2C76*, *UGT2B33*, *UGT2B15*, *UGT1A1* and *GSTM5*. Notably, the copy number patterns of *CYP2C76* fit the expectations for *Macaca* species under the evolutionary phylogeny reconstructed from genomic SNVs with high bootstrap support values (supplementary fig. S16, Supplementary Material online). In detail, the species that diverged early in the phylogenetic tree (BM, LM, and PM) maintained two copies of *CYP2C76*, while others had around four copies. We observed distinct copy number difference across macaques in this region on the UCSC genome browser, with a short shared duplication (~1kb, 8-9 copies) embedded in the CNV (fig. 4A). We also uncovered 26 apparent SNVs in the CNV intersecting *CYP2C76* which were heterozygous in all macaques except for BM, LM and PM, whose genotypes were homozygous at each locus, validating this CNV with SNV genotyping. The copy number pattern at *GSTM5* was generally consistent with the phylogenetic topology of this genus as well. The clade of CE, CR, and TwM, representing recently diverged macaques, had 5-6 copies of *GSTM5*, but only 2-3 copies were found in other species (fig. 4B).
Fig. 4. Copy number patterns of CYP2C76 and GSTM5 across the nine Macaca species. (A) CYP2C76 (chr9: 90,280,000-90,360,000) and (B) GSTM5 (chr1: 110,670,000–110,770,000). The black baselines in the tracks indicate copy number of two, and CNV regions are indicated with black dashed box. As in Fig. 1, copy number was estimated in windows containing 1 kb of non-gap, non-masked sequence.
CNV-dense regions

We detected 26 CNV-dense regions (containing 479 CNVs), which displayed at least ten CNVs per 10 Mb segment. These CNV-dense regions were distributed across the genome, and chromosome 7 harboured four such regions, ranking the first among all chromosomes. Fifteen of the 26 CNV-dense regions are first reported here, while the remaining eleven regions overlap with human, chimpanzee and rhesus macaque-shared CNV regions identified by (Gokcumen, et al. 2011), which are very likely to be CNV hotspots in both great apes and Catarrhini. Several important immunity-related genes, such as HLA, HCG9, DEFA, and DEFB were located in the overlapping segments, along with members of the most polymorphic CNV enriched gene families: olfactory receptor (OR), TRIM and ZNF. Studies involving more species are needed to investigate this pattern further.

Functional enrichment analyses performed with g:Profiler showed that the 722 genes intersecting CNV-dense regions were enriched in immune function, as suggested by the most significantly enriched pathway ‘antigen processing and presentation’ (mcc04612, \(p = 1.81\times10^{-5} \)) and enriched GO terms including immunoglobulin production (GO:0002377, \(p = 4.4\times10^{-8} \)), antigen processing and presentation of peptide antigen via MHC class I (GO:0002474, \(p = 1.08\times10^{-6} \)), MHC protein complex (GO:0042611, \(p = 1.9\times10^{-8} \)), and peptide antigen binding (GO:0042605, \(p = 0.00229 \)).

Lineage specific CNVs

To address evolutionary issues of these sibling species, we reconstructed the Macaca phylogeny with SNPhylo using thinned genomic SNVs with the NJ method, and surveyed the lineage specific CNVs according to the resulting topology (fig. 5). Six of the seven species groups defined by (Roos, et al. 2014; Zinner, et al. 2013) in Macaca are included in this study. We did not identify any CNV specific to group mulatta (CR, TwM, JM), fascicularis (CE), sinica (TM), or arctoides (SM). This absence may reflect the very short species divergence time in the four species groups.

We observed that BM, the only member in sylvanus, formed the longest branch of the phylogenetic tree and there were twelve gains and forty losses specific to this clade (fig. 5). It is intriguing that the number of specific loss events was more than twice the number of specific gain events. BM-specific
(sylvanus-specific) CNVs overlapped with genes related to metabolism and immunity, including duplications in PRKD1/PKD1 and CD55, and deletions in ADIPOR2, TBX20, and SERINC5 (supplementary fig. S17, Supplementary Material online). These CNVs also intersect LRP1B, a gene whose deletion or downregulation significantly correlates with acquired chemotherapy resistance in high-grade serious cancers (Cowin, et al. 2012).

Fig. 5. Lineage specific interspecific CNVs are displayed on the branches of the Neighbor-Joining tree of nine Macaca species, which was generated by SNPhylo based on thinned genomic SNVs (500k sites). Bootstrap values are at each node, as determined by 1000 bootstraps. Species groups defined by (Roos, et al. 2014; Zinner, et al. 2013) are labeled in green ovals on the tree.

Twenty-two duplications and one deletion were specific to the large group comprising all other species. These CNVs intersect with genes that are mainly involved in metabolism and immunity, too, such as ACBD7, APOBEC3F, and IGHV7-4-1. The silenus species group (composed of LM and PM) displayed sixteen shared CNVs, including three duplications and thirteen deletions. One of the silenus-specific
duplications is just ~500bp away from the gene \textit{NPTX2}, a member of neuronal pentraxin family associated with neurological disorders and cancers.

\textbf{Genomic qPCR validation of CNVs}

We attempted to validate the copy numbers of drug metabolism genes including \textit{CYP2C76}, \textit{UGT2B33}, \textit{UGT1A1}, \textit{GSTM5}, and \textit{GSTM1} with qPCR conducted on genomic DNA from samples of the same species, but different than the resequenced individuals. Results of qPCR indicated that CNV detection based on read depth was credible, and also demonstrated that some of the identified CNVs were not fixed in the studied species. In detail, the copy number distribution of \textit{GSTM5} was consistent with that based on NGS data (fig. 6A). And copy number patterns of \textit{GSTM1} and \textit{UGT1A1} were generally in accord with that obtained from NGS data except for the cynomolgus macaque (fig. 6B-C). Taking \textit{UGT1A1} for example, Tibetan and cynomolgus macaques have more copies of this region than others according to the qPCR results, while CNV detection with NGS data showed that Tibetan macaque had more copies than other species who displayed similar copy numbers. These inconsistencies could be due to outstanding genetic variation in the populations of cynomolgus macaques which was demonstrated by (Li, et al. 2018; Ling, et al. 2011; Satkoski Trask, et al. 2013), since the qPCR sample originated from a breeding population in China of unclear geographical source, however, the resequenced individual came from Vietnam (Yan, et al. 2011). Therefore, our results suggest that \textit{GSTM1} and \textit{UGT1A1} are copy number polymorphic in cynomolgus macaque. Because of failure in primer design or PCR, we were unable to validate the CNV in \textit{CYP2C76} and \textit{UGT2B33}.
Fig. 6 Comparison of copy number patterns determined by genomic qPCR and bioinformatic analysis. Copy numbers from qPCR (blue) and bioinformatically estimated (red) approaches are provided for genes GSTM5, GSTM1, and UGT1A1. The whiskers stand for standard errors of copy numbers estimated by independent technical replicates of qPCR experiments.

Differential expression of the CNV intersecting genes

Based on the blood transcriptomes of 28 Chinese rhesus macaques and 24 Tibetan macaques (Yan 2019), we explored if the CNVs had an impact on gene expression. We discovered that a considerable proportion of CNVGs were differentially expressed genes (DEGs). In total, 370 CNVs showed distinct copy numbers (CND>=1.6) between the Chinese rhesus macaque and the Tibetan macaque, and intersected with 135 genes with quantifiable expression based on the transcriptome data. Approximately 46% (62/135) of these CNVGs were DEGs (p < 0.05 and q< 0.05, supplementary table S7, Supplementary Material online). However, the ratio was not significantly different from the randomly resampled data (p =
Genes playing important roles in metabolism (APOL1, PDK3 and GLUD1), immune function (IL9R, LILRB1, LILRA2, MAMU-A and MAMU-A3) along with zinc finger genes were included in the DEGs.

Discussion

This study represents the most extensive assessment of CNV across macaques to date, sampling six out of seven species groups in *Macaca* and including some less studied species. Our results provide new evidence for the involvement of CNVs in the adaptation and evolution of macaques. In total, 1479 CNVs, constituting 1.41% of the macaque genome, along with 1560 duplications shared across species, 26 CNV-dense regions, and dozens of lineage-specific CNVs were identified. High coverage genome data and an improved CNV detection pipeline based on fastCN allowed for a higher-resolution map of CNVs across *Macaca* species. Although each species was only represented by single individual, our study identified interspecific genetic divergence in *Macaca* from the perspective of structural variation, in contrast to previous genomic CNV studies in rhesus and cynomolgus macaques that focused on intraspecific genetic polymorphism (Gokcumen et al. 2011; Lee, et al. 2008). Function enrichment and expression-level analyses with transcriptome data from (Yan 2019) suggest roles for CNV in environmental adaptation and genome evolution of *Macaca*, with implications for the usage of these non-human primates in drug metabolism or diseases research.

Characteristics of the CNV regions

We uncovered the general copy number patterns and chromosomal distributions of CNVs among *Macaca* species. For example, we found that chromosome 19, the shortest autosome, displayed the most significant enrichment of CNVs. This chromosome is also enriched for genes and microsatellites (Xu, et al. 2016) in macaques. Genome-wide, we observed a higher number of gains (1,106) relative to losses (451). This imbalance was unlikely a bias derived from CNV detection methods, because identification of deletions is very robust in NGS approaches (Pang, et al. 2014; Pinto, et al. 2011) and previous CNV studies of rhesus macaque (Lee, et al. 2008) and human (Sudmant, et al. 2015) also detected more
genomic gains than losses. Furthermore, genomes are more likely tolerant of duplications than deletions which could result in loss of functions (Brewer, et al. 1999) and are typically selected against (Zarrei, et al. 2015). However, within a single lineage, gene copy losses generally dominated gains, demonstrating that deletion CNVs are also related to the phylogenetic evolution and may be used as phylogenetic markers for Macaca.

Along with shared duplications, CNVs were distributed unevenly in the genomes of macaques. Greater than 52% of CNVs were located directly in genes, while only 34-36% of interspecific SNVs were genic for macaques (Li, et al. 2018). This is in agreement with previous finding that CNVs were prone to occur in gene-rich regions (Conrad, et al. 2010). CNVs and shared duplications overlapped more frequently with relatively short genes than expected, which may be a true trait of these regions attributed to gene clustering or a bias due to the quality of the reference genome. In addition, 26 CNV-dense regions were identified, with fifteen regions specific to Macaca and eleven shared by human, chimpanzee and macaques. According to a human study of such loci (Dumas, et al. 2007), CNV-dense regions are prone to gene instability and are possible “gene nurseries” where new gene families may be emerging, facilitating biological innovation and rapid evolution of macaques. Genes overlapping the eleven potential CNV hotspots in primates included several ORs and immunity-related genes, such as HLA, HCG9, DEFA, and DEFB, which suggests that diversity in immunity represents a main evolutionary strategy in primates.

The possible role of CNV in adaptations of Macaca

Although some enriched GO or KEGG terms lacked significant support based on corrected p value, we do find that CNVs are functionally relevant, with a bias towards metabolism and immunity function. CNVGs were mainly enriched for nutritional metabolism, xenobiotics/drug metabolism, and immune related pathways (table 2). Using expression data of Chinese rhesus and Tibetan macaques (Yan 2019), we found that differentially expressed CNVGs also mainly consisted of metabolic and immune related genes (e.g. APOL1 and LILRB1). The functional categories were not only partially overlapping with the enrichment outputs of all DEGs between the two species (Yan 2019), but also consistent with results from a comparative transcriptome study (Li et al, 2017) in which these expression differences were found to be
mainly in the GO term of nutrient reservoir activity and KEGG subcategories including infectious diseases and immune system. Our results indicate these monkeys are genetically divergent from one another in metabolism and immunity, agreeing with the conclusions of a SNV study of macaques (Li, et al. 2018), and also indicate that CNVs may affect gene functions related to environmental responses such as metabolism and immune response. Given that *Macaca* species have different foraging habits (Srivastava 1999; Hanya et al. 2011), body sizes (Solari and Baker 2006) and immunity traits (Trichel, et al. 2002; De Vries, et al. 2012), these findings may reflect adaptation to diverse habitats.

Biological processes influencing adaptation have been identified in CNVGs of many animals, including metabolic processes, stress response, and defence response. For example, CNVs in the α-amylase gene facilitated adaptation to dietary starch consumption in both humans (Mandel and Breslin 2012) and dog breeds (Arendt, et al. 2016; Mandel and Breslin 2012). CNV-overlapping genes related to drug detoxification and innate or adaptive immunity were overrepresented in human (Almal and Padh 2012; Freeman, et al. 2006), pig (Paudel, et al. 2013; Wang, et al. 2012), dog (Nicholas, et al. 2009), and cattle (Fadista, et al. 2010; Hou, et al. 2011), involving gene families like *CYP*, *ABC*, *HLA*, *MHC*, *BD*, *IL*, and *OR*, which were also present in the CNVGs identified in this study. This can be explained by a general model that phylogenetically stable genes have core functions in development and physiology, whereas unstable genes have accessory functions associated with unstable environmental interactions such as toxin and pathogen exposure (Thomas 2007).

However, it is worth noting that there are limitations for gene set enrichment analysis even in human where the majority of annotations is generated, and more uncertainty exists in species such as macaques which have less precise gene annotations. For example, some immune related pathways may include poorly annotated genes containing immunoglobulin-like domains that are evolving fast and hence are subject to duplication, without truly being involved in immunity-related traits. Additionally, we found CNVs tended to overlap with gene clusters, necessitating another layer of cautiousness on the enrichment results. Therefore, more investigation is needed to elucidate the connection between the identified CNVs and adaptive differences between *Macaca* species.
Implications for the biomedical application of Macaca species

Macaca species have been extensively used as experimental models in drug discovery research and drug safety evaluation, including rhesus, crab-eating and Barbary macaques (Zuber, et al. 2002). Intriguingly, xenobiotics/drug metabolism was one of the most enriched biologic processes for the CNVGs in Macaca, suggesting that various macaques could react differently to drugs. Highly over-represented CNVGs included CYP2C76, UGT1A1, UGT2B33, and GSTM5, which belong to three well-known drug-metabolizing enzyme families, CYP, UGT and GST. CYP2C76 and GSTM5 expanded in recently diverged species, such as the crab-eating, Chinese rhesus and Taiwanese macaques (fig. 4).

Drug metabolism genes can determine drug half-life (He, et al. 2011; Linder, et al. 1997). These highly polymorphic genes are thus important in pharmaceutical development (He, et al. 2011; Linder, et al. 1997). A previous study showed that CYP genes in macaques were nearly identical to the orthologs in human (Uno, et al. 2011). CNVs in these genes were also observed in human (Fuselli 2019; He, et al. 2011), and individuals with more than two copies of CYP2D6 wildtype alleles had elevated CYP2D6 enzyme activity (Ingelman-Sundberg 2005). Additionally, we found that approximately 46% of the CNVGs with distinct copies in Chinese rhesus and Tibetan macaques were differentially expressed, suggesting that a large proportion of CNVGs have an altered expression level and may result in different phenotypes. Therefore, we propose that the Barbary, lion-tailed, crab-eating and Chinese rhesus macaques may differ in drug metabolism of certain substrates due to CNV of drug metabolism related genes. This CNV study, to some extent, provides theoretical basis for the selection of optimal NHP models for drug research and preclinical toxicology tests. Further functional studies of individuals CNVs are needed to fully address this issue.

Since CNV plays an essential role in phenotypes and diseases (Almal and Padh 2012; Stranger, et al. 2007; Zhang, et al. 2009), CNVs can affect the outcome and interpretation of biomedical studies in which various Macaca species are employed as NHP models of diseases, especially CNVs overlapping with genes related to immunity or diseases (table 2). Thus, genetic characterization of the macaques is recommended before their usage in biomedical research.
BM-specific/sylvanus-specific CNVs

The Barbary macaque is the sole living member of a distinct and ancient species group in *Macaca*, *sylvanus* (Fa 2012), and is the only NHP indigenous to North Africa (Taub 1978). It lives for extended periods in snow-covered areas during winter, suffering from not only cold stress but also food shortage. CNVs specific to BM/sylvanus intersected with genes including *PRKD1/PKD1*, *ADIPOR2*, and *TBX20* (supplementary fig. S17, Supplementary Material online), they may have a role in the adaptation of BM to the harsh environment of its habitats. A recent study of pancreatic β cells found that protein PKD1 controlled the granule degradation in response to nutrient availability, and concluded that switching from macroautophagy to insulin granule degradation using a PKD-dependent mechanism was important to keep insulin secretion low upon fasting (Goginashvili, et al. 2015). Therefore, the BM-specific duplication located in the intron of *PKD1* may affect its expression and may enable BM to better control insulin secretion during starvation, aiding in winter survival.

A BM-specific deletion overlapped with the first intron of *ADIPOR2*, a gene that is highly conserved from yeast to human (Tang, et al. 2005) and plays important roles in the regulation of glucose and lipid metabolism, inflammation, and oxidative stress. Targeted disruption of *ADIPOR2* decreased the activity of PPAR-alpha signalling pathways, affecting lipid metabolism and adaptive thermogenesis (Yamauchi, et al. 2007). The partial deletion in the intron may change the metabolic actions of glucose and lipid, and thermogenesis, probably via down regulation of its expression and then increasing the level of adiponectin. (Park, et al. 2011) found that long-term central infusion of adiponectin improves energy and glucose homeostasis by decreasing fat storage and suppressing hepatic gluconeogenesis without changing food intake, suggesting increased adiponectin leads to high level of glucose homeostasis. It is plausible that this CNV would benefit BM in food shortage and coldness during winter.

Partial deletion of *TBX20* was another event specific to BM/sylvanus. (Sakabe, et al. 2012) found in adult *TBX20-/-* hearts, additional genes involved in cardiovascular biology and energy metabolism were downregulated, while genes related to immune response and cell proliferation were upregulated. This deletion might lower energy metabolism requirements and increase immunity defences in BM, which
could be beneficial to the Barbary macaque in an environment where nutrient shortage is frequent. Further functional studies would help address these hypotheses.

Challenges in CNV study of macaques

Several challenges remain for the CNV study of macaques. First, although a single individual is informative of interspecific divergence of *Macaca*, it is necessary to verify CNVs among *Macaca* species on a population scale. Some regions may be copy number variable among individuals, as demonstrated by the cynomolgus macaque in the genomic qPCR validation. A population-scale CNV study of drug metabolism genes in macaques is highly desirable to assess the impact of such variation on biomedical studies. In addition to the gene set enrichment strategy, more robust evidence is required to clarify the role of CNVs in environmental adaption of *Macaca* species. The interpretation of gene set enrichment is uncertain even in humans where gene annotations are superior to most species. These uncertainties are exasperated in divergent species like macaques.

In NGS based methods, the accuracy and sensitivity of CNV identification depends heavily on the quality of the reference genome. Functional analysis of CNVs also calls for accurate gene models. The relatively short lengths of CNVGs suggested that inferior quality of the reference genome (Mmul_8) had an effect on our study. Single molecule, real-time sequencing is a very promising way to improve the continuity of the reference genome with very long reads (McCarthy 2010; Roberts, et al. 2013). Recently, the single molecule-assembly of Chinese rhesus macaque (He et al. 2019) has been reported. Along with an increasing number of intensive genome studies, this resource can undoubtedly improve CNV detection in macaques. In turn, CNV surveys can broaden our knowledge of *Macaca* genome variation.

Data accessibility

The genome-wide copy number data are available in figshare at http://doi.org/10.6084/m9.figshare.9900401. The scripts for gene annotation, enrichment and permutation can be found at https://github.com/umscholj/Macaca_CNV/blob/master/annotation_enrichment_permutation. Other additional information is available in the electronic supplementary material.
Authors’ contributions

J.L.*, J.L. (first author), and B.Y. designed this study. J.L. (first author) performed data analysis and wrote the article. Z.F. participated in genomic data collection. F.S., A.L.P. and J.M.K.* contributed to methodology. J.L.* and J.M.K.* revised the article. Y.S. and J.X. respectively participated in the data analysis and qPCR experiment design.

Acknowledgements

This work was supported by the State Key Program of National Natural Science Foundation of China [31530068], the National Natural Science Foundation of China [31770415], the Enterprises and Institutions Cooperation Project funded by Science and Technology Agency of Sichuan Province [18SYXHZ0019], the Fundamental Research Funds for the Central Universities [2012017yjsy153] and the China Scholarship Council. We sincerely thank Sarah Emery for language assistance in the manuscript draft and Chaochao Yan for providing the transcriptome data.

Literature Cited

671 Alkan C, Coe BP, Eichler EE 2011. Genome structural variation discovery and genotyping. Nature Reviews Genetics 12: 363.
672 Almal SH, Padh H 2012. Implications of gene copy-number variation in health and diseases. Journal of human genetics 57: 6.
673 Alvarez CE, Akey JM 2012. Copy number variation in the domestic dog. Mammalian Genome 23: 144-163.
674 Arendt M, Cairns K, Ballard J, Savolainen P, Axelsson E 2016. Diet adaptation in dog reflects spread of prehistoric agriculture. Heredity 117: 301.
675 Auerbach BD, Osterweil EK, Bear MF 2011. Mutations causing syndromic autism define an axis of synaptic pathophysiology. Nature 480: 63.
676 Benson G 1999. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Research 27: 573-580.
677 Bolger AM, Lohse M, Usadel B 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30: 2114-2120.
Brennan G, Kozyrev Y, Hu S-L 2008. TRIMCyp expression in Old World primates Macaca nemestrina and Macaca fascicularis. Proceedings of the National Academy of Sciences 105: 3569-3574.

Brewer C, Holloway S, Zawalnyski P, Schinzel A, FitzPatrick D 1999. A chromosomal duplication map of malformations: regions of suspected haplo-and triplolethality—and tolerance of segmental aneuploidy—in humans. The American Journal of Human Genetics 64: 1702-1708.

Cahan P, Li Y, Izumi M, Graubert TA 2009. The impact of copy number variation on local gene expression in mouse hematopoietic stem and progenitor cells. Nature Genetics 41: 430.

Carbrey JM, et al. 2003. Aquaglyceroporin AQP9: solute permeation and metabolic control of expression in liver. Proceedings of the National Academy of Sciences 100: 2945-2950.

Carter NP 2007. Methods and strategies for analyzing copy number variation using DNA microarrays. Nature Genetics 39: S16.

Charchar FJ, et al. 2010. Whole genome survey of copy number variation in the spontaneously hypertensive rat: relationship to quantitative trait loci, gene expression, and blood pressure. Hypertension 55: 1231-1238.

Chen C, et al. 2012. A comprehensive survey of copy number variation in 18 diverse pig populations and identification of candidate copy number variable genes associated with complex traits. BMC genomics 13: 733.

Conrad DF, et al. 2010. Mutation spectrum revealed by breakpoint sequencing of human germline CNVs. Nature genetics 42: 385.

Cowin PA, et al. 2012. LRP1B deletion in high-grade serous ovarian cancers is associated with acquired chemotherapy resistance to liposomal doxorubicin. Cancer research 72: 4060-4073.

De Vries RD, et al. 2012. Measles Immune Suppression: Lessons from the Macaque Model. PLOS Pathogens 8(8): 1-11.

Degenhardt JD, et al. 2009. Copy number variation of CCL3-like genes affects rate of progression to simian-AIDS in Rhesus Macaques (Macaca mulatta). Plos Genetics 5: e1000346.

Depristo MA, et al. 2011. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nature Genetics 43: 491.

Doan R, et al. 2012. Identification of copy number variants in horses. Genome Research 22(5): 899-907.

Dumas L, et al. 2007. Gene copy number variation spanning 60 million years of human and primate evolution. Genome Research 17: 000-000.
Fa JE. 2012. The Barbary macaque: a case study in conservation: Springer Science & Business Media.

Fadista J, Thomsen B, Holm L-E, Bendixen C 2010. Copy number variation in the bovine genome. Bmc Genomics 11: 284.

Fan X, Abbott TE, Larson DB, Chen K 2014a. BreakDancer: Identification of Genomic Structural Variation from Paired-End Read Mapping. Current protocols in human genetics 45.

Fan Z, et al. 2014b. Whole-genome sequencing of tibetan macaque (Macaca Thibetana) provides new insight into the macaque evolutionary history. Molecular Biology & Evolution 31: 1475.

Fan Z, et al. 2018. Ancient hybridization and admixture in macaques (genus Macaca) inferred from whole genome sequences. Molecular phylogenetics and evolution.

Fang X, et al. 2011. Genome sequence and global sequence variation map with 5.5 million SNPs in Chinese rhesus macaque. Genome biology 12: R63.

Feuk L, Carson AR, Scherer SW 2006. Structural variation in the human genome. Nature Reviews Genetics 7: 85.

Freeman JL, et al. 2006. Copy number variation: new insights in genome diversity. Genome research 16: 949-961.

Fuselli S 2019. Beyond drugs: the evolution of genes involved in human response to medications. Proceedings of the Royal Society B 286: 20191716.

Gökçümen Ö, Lee C 2009. Copy number variants (CNVs) in primate species using array-based comparative genomic hybridization. Methods 49: 18-25.

Gazave E, et al. 2011. Copy number variation analysis in the great apes reveals species-specific patterns of structural variation. Genome research.

Goginashvili A, et al. 2015. Insulin secretory granules control autophagy in pancreatic β cells. Science 347: 878-882.

Gokcumen O, et al. 2011. Refinement of primate copy number variation hotspots identifies candidate genomic regions evolving under positive selection. Genome biology 12: R52.

Goshu HA, et al. 2019. Genomic copy number variation of the CHKB gene alters gene expression and affects growth traits of Chinese domestic yak (Bos grunniens) breeds. Molecular Genetics and Genomics: 1-13.

Gschwind AR, Singh A, Certa U, Reymond A, Heckel T 2017. Diversity and regulatory impact of copy number variation in the primate Macaca fascicularis. BMC genomics 18: 144.

Hach F, et al. 2014. mrsFAST-Ultra: a compact, SNP-aware mapper for high performance sequencing applications.

Nucleic Acids Research 42: W494-W500.
Hanya G, et al. 2011. Dietary adaptations of temperate primates: comparisons of Japanese and Barbary macaques. Primates 52(2) : 187-198.

Hatziioannou T, et al. 2009. A macaque model of HIV-1 infection. Proceedings of the National Academy of Sciences of the United States of America 106: 4425-4429.

Haus T, et al. 2014. Genome typing of nonhuman primate models: implications for biomedical research. Trends in Genetics 30: 482-487.

He Y, et al. 2019. Long-read assembly of the Chinese rhesus macaque genome and identification of ape-specific structural variants. Nature Communications 10, 4233.

He Y, Hoskins JM, McLeod HL. 2011. Copy number variants in pharmacogenetic genes. Trends in molecular medicine 17: 244-251.

Henrichsen CN, Chaignat E, Reymond A. 2009. Copy number variants, diseases and gene expression. Human molecular genetics 18: R1-R8.

Higashino A, et al. 2012. Whole-genome sequencing and analysis of the Malaysian cynomolgus macaque (Macaca fascicularis) genome. Genome biology 13: R58.

Hou Y, et al. 2011. Genomic characteristics of cattle copy number variations. Bmc Genomics 12: 127.

Hou Y, et al. 2012. Genomic regions showing copy number variations associate with resistance or susceptibility to gastrointestinal nematodes in Angus cattle. Functional & integrative genomics 12: 81-92.

Ingelman-Sundberg M. 2005. Genetic polymorphisms of cytochrome P450 2D6 (CYP2D6): clinical consequences, evolutionary aspects and functional diversity. The pharmacogenomics journal 5: 6.

Ishii K, et al. 2006. Characteristics and clustering of human ribosomal protein genes. BMC Genomics 7: 37.

Iskow RC, Gokcumen O, Lee C. 2012. Exploring the role of copy number variants in human adaptation. Trends in Genetics 28: 245-257.

Itsara A, et al. 2009. Population analysis of large copy number variants and hotspots of human genetic disease. The American Journal of Human Genetics 84: 148-161.

Jia X, et al. 2013. Copy number variations identified in the chicken using a 60K SNP BeadChip. Animal genetics 44: 276-284.

Jiang J, et al. 2016. Mitochondrial Genome and Nuclear Markers Provide New Insight into the Evolutionary History of Macaques. Plos One 11: e0154665.
Jun J, et al. 2014. Whole genome sequence and analysis of the Marwari horse breed and its genetic origin. Bmc Genomics 15: S4.

Jung S-H, et al. 2013. De novo copy number variations in cloned dogs from the same nuclear donor. Bmc Genomics 14: 863.

Keel BN, Lindholm-Perry AK, Snelling WM 2016. Evolutionary and functional features of copy number variation in the cattle genome. Frontiers in genetics 7: 207.

Kondrashov FA 2012. Gene duplication as a mechanism of genomic adaptation to a changing environment. Proceedings of the Royal Society B: Biological Sciences 279: 5048-5057.

Lee AS, et al. 2008. Analysis of copy number variation in the rhesus macaque genome identifies candidate loci for evolutionary and human disease studies. Human molecular genetics 17: 1127-1136.

Lee T-H, Guo H, Wang X, Kim C, Paterson AH 2014. SNPhylo: a pipeline to construct a phylogenetic tree from huge SNP data. BMC genomics 15: 162.

Li C, Zhao C, Fan PF 2015. White-cheeked macaque (Macaca leucogenys): A new macaque species from Medog, southeastern Tibet. American Journal of Primatology 77: 753.

Li H, Durbin R 2009. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25: 1754-1760.

Li J, Fan Z, Sun T, Peng C, Yue B 2018. Comparative Genome-Wide Survey of Single Nucleotide Variation Uncovers the Genetic Diversity and Potential Biomedical Applications among Six Macaca Species. International journal of molecular sciences 19: 3123.

Li P, et al. 2017. Generation and characterization of the blood transcriptome of Macaca thibetana and comparative analysis with M. mulatta. Molecular BioSystems 13(6): 1121-1130.

Li W, Olivier M 2012. Current analysis platforms and methods for detecting copy number variation. Physiological genomics 45: 1-16.

Linder MW, Prough RA, Valdes R 1997. Pharmacogenetics: a laboratory tool for optimizing therapeutic efficiency. Clinical Chemistry 43: 254-266.

Ling F, et al. 2011. Characterization of the major histocompatibility complex class II DOB, DPB1, and DQB1 alleles in cynomolgus macaques of Vietnamese origin. Immunogenetics 63: 155-166.
Liu Z, et al. 2018. Population genomics of wild Chinese rhesus macaques reveals a dynamic demographic history and local adaptation, with implications for biomedical research. GigaScience 7. doi: 10.1093/gigascience/giy106

Lupski JR, Stankiewicz P 2005. Genomic disorders: molecular mechanisms for rearrangements and conveyed phenotypes. PLoS genetics 1: e49.

Mandel AL, Breslin PA 2012. High endogenous salivary amylase activity is associated with improved glycemic homeostasis following starch ingestion in adults. The Journal of nutrition 142: 853-858.

Marques-Bonet T, et al. 2009. A burst of segmental duplications in the genome of the African great ape ancestor. Nature 457: 877.

McCarthy A 2010. Third generation DNA sequencing: pacific biosciences' single molecule real time technology. Chemistry & biology 17: 675-676.

Meyerson M, Gabriel S, Getz G 2010. Advances in understanding cancer genomes through second-generation sequencing. Nature Reviews Genetics 11: 685.

Newman RM, et al. 2008. Evolution of a TRIM5-CypA splice isoform in old world monkeys. PLoS pathogens 4: e1000003.

Nicholas TJ, Baker C, Eichler EE, Akey JM 2011. A high-resolution integrated map of copy number polymorphisms within and between breeds of the modern domesticated dog. Bmc Genomics 12: 414.

Nicholas TJ, et al. 2009. The genomic architecture of segmental duplications and associated copy number variants in dogs. Genome Research.

Oetjens MT, Shen F, Emery SB, Zou Z, Kidd JM 2016. Y-chromosome structural diversity in the bonobo and chimpanzee lineages. Genome biology and evolution 8: 2231-2240.

Ottolini B, et al. 2014. Evidence of convergent evolution in humans and macaques supports an adaptive role for copy number variation of the β-defensin-2 gene. Genome biology and evolution 6: 3025-3038.

Pang AWC, MacDonald JR, Yuen RK, Hayes VM, Scherer SW 2014. Performance of high-throughput sequencing for the discovery of genetic variation across the complete size spectrum. G3: Genes, Genomes, Genetics 4: 63-65.

Park S, Kim D, Kwon D, Yang H 2011. Long-Term Central Infusion of Adiponectin Improves Energy and Glucose Homeostasis by Decreasing Fat Storage and Suppressing Hepatic Gluconeogenesis without Changing Food Intake. Journal of neuroendocrinology 23: 687-698.

http://mc.manuscriptcentral.com/gbe
Paudel Y, et al. 2013. Evolutionary dynamics of copy number variation in pig genomes in the context of adaptation and domestication. Bmc Genomics 14: 449.

Paudel Y, et al. 2015. Copy number variation in the speciation of pigs: a possible prominent role for olfactory receptors. BMC genomics 16: 330.

Pendleton AL, et al. 2018. Comparison of village dog and wolf genomes highlights the role of the neural crest in dog domestication. BMC biology 16: 64.

Perry GH, et al. 2008. Copy number variation and evolution in humans and chimpanzees. Genome research.

Pinto D, et al. 2011. Comprehensive assessment of array-based platforms and calling algorithms for detection of copy number variants. Nature biotechnology 29: 512.

Pouladi MA, Morton AJ, Hayden MR 2013. Choosing an animal model for the study of Huntington's disease. Nature Reviews Neuroscience 14: 708.

Quinlan AR, Hall IM 2010. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26: 841-842.

Redon R, et al. 2006. Global variation in copy number in the human genome. Nature 444: 444-454.

Reimand J, Kull M, Peterson H, Hansen J, Vilo J 2007. g: Profiler—a web-based toolset for functional profiling of gene lists from large-scale experiments. Nucleic Acids Research 35: W193-W200.

Roberts RJ, Carneiro MO, Schatz MC 2013. The advantages of SMRT sequencing. Genome biology 14: 405.

Roos C, et al. 2014. An updated taxonomy and conservation status review of Asian primates. Asian Primates Journal.

Roos C, Zinner D. 2015. Diversity and evolutionary history of macaques with special focus on Macaca mulatta and Macaca fascicularis. In. The Nonhuman Primate in Nonclinical Drug Development and Safety Assessment: Elsevier. p. 3-16.

Sakabe NJ, et al. 2012. Dual transcriptional activator and repressor roles of TBX20 regulate adult cardiac structure and function. Human Molecular Genetics 21: 2194-2204.

Satkoski Trask JA, et al. 2013. Single-Nucleotide Polymorphisms Reveal Patterns of Allele Sharing Across the Species Boundary Between Rhesus (Macaca mulatta) and Cynomolgus (M. fascicularis) Macaques. American Journal of Primatology 75: 135-144.

http://mc.manuscriptcentral.com/gbe
Solari S, Baker RJ 2006. Mammal Species of the World, A Taxonomic and Geographic Reference. Mastozoología Neotropical 13: 290-293.

Srivastava A. 1999. Primates of Northeast India. Bikaner: Megadiversity Press.

Stranger BE, et al. 2007. Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science 315: 848-853.

Sudmant PH, et al. 2013. Evolution and diversity of copy number variation in the great ape lineage. Genome research: gr. 158543.158113.

Sudmant PH, et al. 2015. Global diversity, population stratification, and selection of human copy-number variation. Science 349: aab3761.

Tang YT, et al. 2005. PAQR proteins: a novel membrane receptor family defined by an ancient7-transmembrane pass motif. Journal of molecular evolution 61: 372-380.

Taub DM 1978. The Barbary macaque in North Africa. Oryx 14: 245-253.

Thierry B 2007. Unity in diversity: lessons from macaque societies. Evolutionary Anthropology: Issues, News, and Reviews: Issues, News, and Reviews 16: 224-238.

Thomas JH 2007. Rapid birth–death evolution specific to xenobiotic cytochrome P450 genes in vertebrates. Plos Genetics 3: e67.

Trichel A, et al. 2002. Species-specific variation in SIV disease progression between Chinese and Indian subspecies of rhesus macaque. Journal of Medical Primatology 171-178.

Uno Y, Iwasaki K, Yamazaki H, Nelson DR 2011. Macaque cytochromes P450: nomenclature, transcript, gene, genomic structure, and function. Drug metabolism reviews 43: 346-361.

Uno Y, Uehara S, Kohara S, Murayama N, Yamazaki H 2010. Cynomolgus monkey CYP2D44 newly identified in liver, metabolizes bufuralol and dextromethorphan. Drug metabolism and disposition: dmd. 110.033274.

Völker M, et al. 2010. Copy number variation, chromosome rearrangement, and their association with recombination during avian evolution. Genome research.

Ventura M, et al. 2011. Gorilla genome structural variation reveals evolutionary parallelisms with chimpanzee. Genome research: gr. 124461.124111.

Wang J, et al. 2012. A genome-wide detection of copy number variations using SNP genotyping arrays in swine. Bmc Genomics 13: 273.
Wang S, et al. 2018. De novo sequence and copy number variants are strongly associated with Tourette disorder and implicate cell polarity in pathogenesis. Cell reports 24: 3441-3454. e3412.

Wang X, Nahashon S, Feaster TK, Bohannon-Stewart A, Adefope N 2010. An initial map of chromosomal segmental copy number variations in the chicken. Bmc Genomics 11: 351.

Xie C, et al. 2011. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Research 39: 316-322.

Xu Y, et al. 2016. Characterization of perfect microsatellite based on genome-wide and chromosome level in Rhesus monkey (Macaca mulatta). Gene 592: 269-275.

Yamauchi T, et al. 2007. Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nature medicine 13: 332.

Yan C 2019. Differential expression analysis of genes in blood tissues of two macaques during the process of ageing. [[Chengdu, China]: Sichuan University.

Yan G, et al. 2011. Genome sequencing and comparison of two nonhuman primate animal models, the cynomolgus and Chinese rhesus macaques. Nature biotechnology 29: 1019-1023.

Yang L, et al. 2018. Diversity of copy number variation in a worldwide population of sheep. Genomics 110: 143-148.

Younger RM, et al. 2001. Characterization of clustered MHC-linked olfactory receptor genes in human and mouse. Genome research 11: 519.

Zarrei M, MacDonald JR, Merico D, Scherer SW 2015. A copy number variation map of the human genome. Nature Reviews Genetics 16: 172.

Zhang F, Gu W, Hurles ME, Lupski JR 2009. Copy number variation in human health, disease, and evolution. Annual review of genomics and human genetics 10: 451-481.

Zhang X, et al. 2017. Genetic characterization of a captive colony of pigtailed macaques (Macaca nemestrina). Journal of the American Association for Laboratory Animal Science 56: 390-395.

Zhong X, et al. 2016. RhesusBase PopGateway: Genome-Wide Population Genetics Atlas in Rhesus Macaque. Molecular Biology & Evolution 33: 1370.

Zimin AV, et al. 2014. A new rhesus macaque assembly and annotation for next-generation sequencing analyses. Biology direct 9: 1-15.
Zinner D, et al. 2013. Family Cercopithecidae (old world monkeys). In. Handbook of the Mammals of the World—Primates: Lynx.

Zuber R, Anzenbacherová E, Anzenbacher P 2002. Cytochromes P450 and experimental models of drug metabolism. Journal of cellular and molecular medicine 6: 189-198.
Fig. 1. Genomic patterns of duplications across the nine macaque species. (a) Cumulative lengths of duplications detected in three or more 1kb windows across all chromosomes for each sample. (b) Proportion of cumulative duplication lengths for each chromosome. (c) Copy number (blue histograms) across the large duplication on chromosome 14 of Japanese macaque is visualized in UCSC genome browser relative to other macaques (species symbols on left) and in the context of Ensembl gene models (red). Copy number was estimated in windows containing 1kb of non-gap, non-masked sequence. As a result, the genomic span of individual windows is variable and may include positions annotated as assembly gaps.
Fig. 2. Cumulative lengths of the shared duplications detected in three or more 1kb windows on each chromosome in the nine Macaca species. (A) Average ratios of the cumulative lengths of shared duplications to the cumulative length of duplications per chromosome across the nine samples. Error bars represent the standard deviations of the ratios among the nine species. (B) The cumulative lengths (green bars) of the shared duplications per chromosome and the percentage (red line) of shared duplications on each chromosome in terms of length.
Fig. 3. Genomic distribution of all interspecific CNVs (detected in three or more 1kb windows) across the nine Macaca species. The blue rectangles represent duplication CNVs and the red rectangles represent deletion CNVs.
Fig. 4. Copy number patterns of CYP2C76 and GSTM5 across the nine Macaca species. (A) CYP2C76 (chr9: 90,280,000–90,360,000) and (B) GSTM5 (chr1: 110,670,000–110,770,000). The black baselines in the tracks indicate copy number of two, and CNV regions are indicated with black dashed box. As in Fig. 1, copy number was estimated in windows containing 1 kb of non-gap, non-masked sequence.
Fig. 5. Lineage specific interspecific CNVs are displayed on the branches of the Neighbor-Joining tree of nine Macaca species, which was generated by SNPhylo based on thinned genomic SNVs (500k sites). Bootstrap values are at each node, as determined by 1000 bootstraps. Species groups defined by (Roos, et al. 2014; Zinner, et al. 2013) are labeled in green ovals on the tree.
Fig. 6 Comparison of copy number patterns determined by genomic qPCR and bioinformatic analysis. Copy numbers from qPCR (blue) and bioinformatically estimated (red) approaches are provided for genes GSTM5, GSTM1, and UGT1A1. The whiskers stand for standard errors of copy numbers estimated by independent technical replicates of qPCR experiments.