Distal Pectoralis Major Tear

Mohammed El Idrissi, Hachem Chafik, Abdelhalim Elibrahimi, Abdelmajid Elmrini

Department of Orthopaedic Surgery B4, Hassan II University Hospital, Fez, Morocco.

Abstract

Background: Rupture of the pectoralis major muscle is an uncommon injury. We report a total pectoralis major tear, treated successfully with the anchor technique suture.

Case Report: A 31 years old, right-hand-dominant male presented with pain in shoulder joint following bench-press using weights. He was originally diagnosed as having shoulder sprain. Three weeks later, magnetic resonance imaging (MRI) confirmed total rupture of the pectoral major muscle tendon. Restoration of continuity was achieved by anchors suture technique. Conclusion: The rupture of the pectoralis major muscle remains an exceptional traumatic pathology of the athlete. The diagnosis is often ignored in the acute phase. MRI remains the diagnostic tool of choice. The early surgical repair allows total functional recovery.

Keywords: Athletes, Pectoralis Muscles, Rupture, Shoulder, Suture Anchors.

Introduction

The pectoralis major (PM) muscle is a powerful adductor, flexor, and internal rotator of the shoulder, and contributes considerably to upper-body power and motor capacity. Rupture of the PM muscle is an uncommon injury. Athletes who lose all PM muscle function following a complete tear of this muscle risk losing their career [1]. Therefore, complete tear of PM is considered a severe, incapacitating sports injury. These injuries occur primarily during lifting activities that require contraction with the arm in external rotation and extension [2]. Although pectoralis injuries are relatively uncommon, the diagnosis of a tear may be overlooked if the patient is not carefully screened by a thorough physical examination of both the injured and uninjured sides. This case report presents a case of total pectoralis major tear, treated successfully with the anchor technique suture.

Case Report

Mr. EA, a 31 years old, right-hand-dominant male presented with acute onset right shoulder pain. This was accompanied by weakness and inability to move right upper limb. His pain started during bench-presses using weights (300 kg) while preparing for national body-building competition. He had no significant past medical history of using steroids or quinolones or any significant surgical history. Examination showed tenderness in the region of his right pectoralis insertion and slight restriction of movement on adduction and internal rotation of shoulder joint. He was treated with symptomatic treatment and sent home.

Over the next few days the athlete developed marked swelling and ecchymosis over his injured shoulder joint. He presented three weeks later with increased pain, weakness, and restriction of motion. Clinical examination showed disappearance of the anterior relief of the axillary hollow. This was accentuated by abduction or adduction of the affected arm. Passive and active movements of adduction and internal rotation showed a muscular...
weakness and decreased range of motion. Clinical
diagnosis of rupture of the pectoral major muscle
was suspected and magnetic resonance imaging
(MRI) confirmed the diagnosis of total rupture
of the pectoral major muscle tendon [Fig.1]. The
patient was operated under general anaesthesia.
Through an anterior delto-pectoral approach,
surgical exploration revealed a total rupture of the
pectoral major muscle at the confirming the result
of the MRI [Fig.2]. Restoration of continuity was
achieved by anchors suture technique. Follow up
treatment of immobilisation in a sling for four
weeks and a program of functional rehabilitation
of the shoulder, avoiding abduction and external
rotation for two weeks was completed. At three
months, the patient regained full and painless
mobility of the shoulder. At six months of follow-
up, the patient resumed his indoor training without
restriction of movements; he is also satisfied with
the aesthetic result.

Discussion

Pectoralis major tendon ruptures are uncommon
injuries that, until the mid-twentieth century, were
primarily vocational injuries [1-4]. The recent
increase is most likely attributable to increased use
of anabolic steroids and increased participation in
contact sports and weight-training activities [5-
8]. Most reports have been limited to either case
reports/series or small single surgeon cohorts.
More recently, larger case series have been reported
[1-3,8]. The pectoralis major is at risk during any
activity in which the arm is extended and externally
rotated while under maximal contraction. Rupture
is often followed by an audible pop, a tearing
sensation, immediate pain, and/or weakness. Tears
occur almost exclusively in active men in their
third to fourth decades of life. Approximately
75% of cases are related directly to sports activity.
Weight-lifting exercises account for nearly 50%
of cases reported in the literature, with wrestling
and gymnastics are also frequently implicated
[9,10].

The most common physical examination
findings in the acute stages of the injury are swelling
and ecchymosis in the affected region, which can be
first seen from within a few hours to 48 hours after
injury [4]. More specific sign of pectoralis major
rupture in both acute and chronic stages is a loss or
thinning of the anterior axillary fold, which can be more easily recognized by looking for asymmetry compared with the non-affected side. Axillary fold defect is accentuated by abduction or adduction of the affected arm. Pain and weakness with adduction, internal rotation and decreased range of motion is also commonly seen [4]. Radiography provides supporting evidence for diagnosis of pectoralis major rupture, can reveal loss of pectoralis major shadow and also the loss of the normal soft-tissue anterior axillary fold when ruptures are complete. It excludes possible fractures or dislocations [11]. Ultrasonography is an effective and relatively inexpensive way to identify and locate a pectoralis major rupture [12,13]. The MRI is the modality of choice to evaluate pectoralis major rupture. Acute injuries may demonstrate high signal intensity at the musculo-tendinous junction while also demonstrating tendon-bone discontinuity and/or tendon-muscle retraction at the rupture site. Chronic injuries demonstrate a lower signal intensity, indicating scarring and fibrosis and may also show muscle retraction [14].

Surgical treatment is recommended as it allows muscular strength and range of motion comparable to before the accident. It also restores the normal contour of the axillary fold [15]. The commonly used surgical approach is the deltopectoral [4]. Three principle techniques are described: the bone trough technique, the anchor technique suture and the cortical button technique [10]. Non-operative treatment is generally recommended for contusions, partial tears, muscle belly ruptures, and complete tears for lower-demand or sedentary individuals [10]. It consists in rest, including sling immobilization in the adducted and internally rotated position, cold compression, and analgesics [4].

Conclusion

The rupture of the pectoralis major muscle remains an exceptional traumatic pathology of the athlete. The diagnosis is often ignored in the acute phase. MRI remains the diagnostic tool of choice. The early surgical repair allows total functional recovery.

Contributors: ME: Manuscript writing, case management; HC: photographs and manuscript revision, case management; A Elibrahimi, and A Elmrini: critical review of manuscript for intellectual content. ME will act as guarantor. All authors approved final version of the manuscript.

Funding: None; Competing interests: None stated.

References

1. Nute DW, Kusnezov N, Dunn JC, Waterman BR. Return to function, complication, and reoperation rates following primary Pectoralis major tendon repair in military service members. J Bone Joint Surg Am. 2017;99:25-32.
2. Bak K, Cameron EA, Henderson IJ. Rupture of the pectoralis major: a metaanalysis of 112 cases. Knee Surg Sports Traumatol Arthrosc. 2000;8:113-119.
3. Petilon J, Ellingson CI, Sekiya JK. Pectoralis major muscle ruptures. Oper Tech Sports Med. 2005;13:162-168.
4. Provencher MT, Handfield K, Boniquit NT, Reiff SN, Sekiya JK, Romeo AA. Injuries to the pectoralis major muscle: diagnosis and management. Am J Sports Med. 2010;38:1693-1705.
5. Mooers BR, Westermann RW, Wolf BR. Outcomes Following suture-anchor repair of Pectoralis major tears: A case series and review of the literature. Iowa Orthop J. 2015;35:8-12.
6. Äärimaa V, Rantanen J, Heikkilä J, Helttula I, Orava S. Rupture of the pectoralis major muscle. Am J Sports Med. 2004;32:1256-1262.
7. Inhofe PD, Grana WA, Egle D, Min KW, Tomasek J. The effects of anabolic steroids on rat tendon. An ultrastructural, biomechanical, and biochemical analysis. Am J Sports Med. 1995;23:227-232.
8. Cordasco FA, Mahony GT, Tsouris N, Degen RM. Pectoralis major tendon tears: functional outcomes and return to sport in a consecutive series of 40 athletes. J Shoulder Elbow Surg. 2017;26:458-463.
9. Provencher MT, Handfield K, Boniquit NT, Reiff SN, Sekiya JK, Romeo AA. Injuries to the pectoralis major muscle: diagnosis and management. Am J Sports Med. 2010;38:1693-1705.
10. Haley CA, Zacchilli MA. Pectoralis major muscle injuries: evaluation and treatment. Clin Sports Med. 2014;33:739-756.
11. Tietjen R. Closed injuries of the pectoralis major muscle. J Trauma. 1980;20:262-264.
12. Pavlik A, Csepai D, Berkes I. Surgical treatment of pectoralis major rupture in athletes. Knee Surg Sports Traumatol Arthrosc. 1998;6:129-133.

Mohammed El Idrissi et al.
13. Weaver JS, Jacobson JA, Jamadar DA, Theisen SE, Ebrahim F, Kalume-Brigido M. Sonographic findings of pectoralis major tears with surgical, clinical, and magnetic resonance imaging correlation in 6 patients. J Ultrasound Med. 2005;24:25-31.

14. Chiavaras MM, Jacobson JA, Smith J, Dahm DL. Pectoralis major tears: anatomy, classification, and diagnosis with ultrasound and MR imaging. Skeletal Radiol. 2015;44:157-164.

15. Daoudi A, Elibrahimi A, Loudiyi WD, Amar F, Chbani B, Elmrini A, et al. Rupture du muscle grand pectoral: à propos d’un cas Journal de Traumatologie du Sport. 2008; 25:154-157.