Cosmological evolution of interacting phantom energy with dark matter

Zong-Kuan Guo\(^1\), Rong-Gen Cai\(^1\) and Yuan-Zhong Zhang\(^{1,2}\)

\(^1\) Institute of Theoretical Physics, Chinese Academy of Sciences, PO Box 2735, Beijing 100080, People’s Republic of China
\(^2\) CCAST (World Lab.), PO Box 8730, Beijing 100080, People’s Republic of China
E-mail: guozk@itp.ac.cn, cairg@itp.ac.cn and yzhang@itp.ac.cn

Received 17 February 2005
Accepted 26 April 2005
Published 6 May 2005

Abstract. We investigate the cosmological evolution of an interacting phantom energy model in which the phantom field interacts with the dark matter. We discuss the existence and stability of scaling solutions for two types of specific interactions. One is motivated by the conformal transformation in string theory and the other is motivated by analogy with dissipation. In the former case, there exist no scaling solutions. In the latter case, there exist stable scaling solutions, which may give a phenomenological solution of the coincidence problem. Furthermore, the universe either accelerates forever or ends with a singularity, which is determined by not only the model parameters but also the initial velocity of the phantom field.

Keywords: dark energy theory, cosmology of theories beyond the SM

ArXiv ePrint: astro-ph/0412624
1. Introduction

The scalar field plays an important role in modern cosmology. The dark energy can be attributed to the dynamics of a scalar field, for instance quintessence [1,2], which convincingly realize the present accelerated expansion by using late-time attractor solutions, in which the scalar field mimics the perfect fluid in a wide range of parameters. Much attention has been drawn to the case of exponential potentials. The exponential potentials allow the possible existence of scaling solutions in which the scalar field energy density tracks that of the perfect fluid (so that at late times neither component can be negligible). In particular, a phase-plane analysis of the spatially flat FRW models showed that these solutions are the unique late-time attractors whenever they exist [3,4]. Moreover, exponential potentials appear naturally in the low dimensional models of string/M-theory [5].

The recent SNe data seem to favour the dark energy with the present equation of state $w < -1$ [6]. To obtain $w < -1$, a phantom field with a negative kinetic term may be a simplest implementation and can be regarded as one of the interesting possibilities describing dark energy [7]. The physical background for the phantom type of matter with strongly negative pressure would be found in string theory [8]. A phantom field may also arise in higher-order theories of gravity [9], Brans–Dicke and non-minimally coupled scalar field theories [10]. The cosmological models which allow for phantom matter appear naturally in k-essence models [11]. In spite of the fact that the field theory of phantom fields encounters the problem of stability, which one could try to bypass by assuming them to be effective fields [12], it is nevertheless interesting to study their cosmological implication. Recently, there have been many relevant studies on this topic [13].

The physical properties of phantom energy are rather weird, as they include violation of the dominant energy condition and increasing energy density with the expansion of the universe. The latter ultimately leads to an unwanted future singularity called the big rip. This singularity is characterized by the divergence of the scale factor in a finite time in future [14]. To avoid the cosmic doomsday, some phantom field models were proposed [15]. It requires a special class of phantom field potentials with a local maximum. Moreover, the energy density of the phantom field increases with time, while
the energy density of the matter fluid decreases as the universe expands. Why are the energy density of dark matter and the phantom energy density of the same order just at the present epoch? This coincidence problem becomes more difficult to solve in the phantom model. (Although see Scherrer [16], who argued that the universe spends a significant fraction of its total lifetime in a state for which the dark energy and matter densities are roughly comparable.) Therefore, from this point of view the cosmological scaling solution would be desirable for the history of the universe. Throughout this paper we use ‘scaling solution’ as meaning that the energy densities of the phantom field and the dark matter are proportional. However, as shown in [17], there exist no scaling solutions because the phantom energy increases while the matter energy decreases with time. In the case of non-interacting many-fluid phantom cosmologies one is able to keep some stable change of the ratio between various fluids throughout the evolution of the universe and get oscillations of the scale factor with big rip singularity avoidance [18]. But in the presence of the suitable interaction between phantom energy and dark matter this case could be realized easily in [19]. In this paper we investigate the stability and existence of scaling solutions in the scenario of interacting phantom energy with dark matter. We consider two phenomenological models. One is motivated by the conformal transformation from the Jordan frame to the Einstein frame in string theory and the other is motivated by analogy with dissipation. In the former model there exist no scaling solutions. However, in the latter model a phase-plane analysis shows that there exist two kinds of stable scaling solutions, which lead to two different fates of the universe. The universe either accelerates forever or ends with a big rip, which is determined by not only the model parameters but also the initial velocity of the phantom field. We will also discuss the physical consequences of these results.

2. Interacting phantom energy with dark matter

Let us consider a universe model where both the phantom field ϕ and the dark matter ρ_m are present. The Friedmann equation in a spatially flat FRW metric can be written as

$$H^2 = \frac{\kappa^2}{3} (\rho_p + \rho_m),$$

where $\kappa^2 \equiv 8\pi G_N$ is the gravitational coupling and the energy density and pressure, ρ_p and P_p, of the homogeneous phantom field ϕ are given by

$$\rho_p = -\frac{1}{2} \dot{\phi}^2 + V(\phi),$$

$$P_p = -\frac{1}{2} \dot{\phi}^2 - V(\phi),$$

respectively, in which $V(\phi)$ is the phantom field potential. We postulate that the two components, ρ_p and ρ_m, interact through the interaction term Q according to

$$\dot{\rho}_m + 3H(\rho_m + P_m) = Q,$$

$$\dot{\rho}_p + 3H(\rho_p + P_p) = -Q.$$
Suppose the dark matter possesses the equation of state $P_m = 0$. The dynamics of the phantom field with an exponential potential

$$V(\phi) = V_0 \exp(-\lambda \kappa \phi)$$ \hspace{1cm} (6)

has been analysed in [17]. We assume the dimensionless constant λ is positive since we can make it positive through $\phi \rightarrow -\phi$ if $\lambda < 0$. Here we generalize the analysis to the case in which the phantom field has interaction with the dark matter. As we will see, this gives rise to some interesting novel features. Following [3], we define the following dimensionless variables:

$$x \equiv \frac{\kappa \dot{\phi}}{\sqrt{6} H}, \hspace{1cm} y \equiv \frac{\sqrt{V}}{\sqrt{3} H}, \hspace{1cm} z \equiv \frac{\sqrt{\rho_m}}{\sqrt{3} H}. \hspace{1cm} (7)$$

Notice that x^2, y^2 and z^2 give the fraction of total energy density carried by the field kinetic energy, the field potential energy and the dark matter, respectively. Thus the fractional densities of ρ_p and ρ_m can be written as $\Omega_p = -x^2 + y^2$ and $\Omega_m = z^2$, respectively. The evolution equations (4) and (5) can be written as the following set of equations:

$$x' = -3x \left(1 + x^2 - \frac{1}{2} z^2\right) + \frac{\kappa}{\sqrt{6} H^2 \dot{\phi}} - \frac{3}{\sqrt{6}} \lambda y^2, \hspace{1cm} (8)$$

$$y' = -3y \left(x^2 + \frac{\sqrt{6}}{6} \lambda x - \frac{1}{2} z^2\right), \hspace{1cm} (9)$$

$$z' = -3z \left(\frac{1}{2} + x^2 - \frac{1}{2} z^2\right) + \frac{\kappa}{2 \sqrt{3} H^2 \sqrt{\rho_m}} \frac{Q}{\dot{\rho}_m}, \hspace{1cm} (10)$$

where the prime denotes a derivative with respect to the logarithm of the scale factor, $N \equiv \ln a$, and the Friedmann constraint equation (1) becomes

$$-x^2 + y^2 + z^2 = 1. \hspace{1cm} (11)$$

The critical points, where $x' = 0$, $y' = 0$ and $z' = 0$, correspond to an expanding universe with a scale factor $a(t)$ given by $a \propto t^{2/[3(1+w_{\text{eff}})]}$. The effective equation of state for the total cosmic fluid is

$$w_{\text{eff}} = -x^2 - y^2. \hspace{1cm} (12)$$

Interaction terms Q have been discussed in the literature within the context of inflation and reheating. In the conventional reheating model, an interaction term $\Gamma_{\phi} \dot{\phi}^2$ dominates at the end of inflation when the scalar field is oscillating about the minimum of its potential. During this reheating phase the energy transferred from the scalar field is completely converted into matter. Within the context of exponential potentials, an interaction term of the form $Q = -c \kappa \rho_m \dot{\phi}$ was considered in [20, 21]. It was shown that the matter scaling solutions were stable solutions and the age of the universe is older when such the interaction term is included. Certain string theories in which the energy sources are separately conserved in the Jordan frame naturally lead to interaction terms in the Einstein frame; scalar tensor theory with matter terms may yield the same results [20, 21]. An interaction term of the form $Q = 3c H (\rho_p + \rho_m)$ was proposed to look for a dynamical solution to the coincidence problem [22]. Such an interaction term might be motivated by analogy with dissipation. For example, a fluid with bulk viscosity may give rise to a
term of this form in the conservation equation. Without an interaction term, it was shown that the dark matter could not track the phantom energy and would be quickly driven to zero [17]. It is of interest to study the cosmological consequences of the above two types of interactions in the phantom energy model.

3. Model I

Let us first consider the following interaction [20, 21, 23]:

\[Q = -c \kappa \rho_m \dot{\phi}, \]

(13)

where \(c \) is a dimensionless parameter. Such a coupling arises for instance in string theory [20], or after a conformal transformation of Brans–Dicke theory [21]. The evolution equations (8)–(10) can then be written as an autonomous system:

\[x' = -3x \left(1 + x^2 - \frac{1}{2} \frac{z^2}{6} \right) - \frac{3}{\sqrt{6}} c z^2 - \frac{3}{\sqrt{6}} \lambda y^2, \]

(14)

\[y' = -3y \left(x^2 + \frac{\sqrt{6}}{6} \lambda x - \frac{1}{2} \frac{z^2}{6} \right), \]

(15)

\[z' = -3z \left(\frac{1}{2} + x^2 - \frac{1}{2} \frac{z^2}{6} + \frac{\sqrt{6}}{6} c x \right), \]

(16)

which has three critical points as follows.

Point A:

\[x_A = -\frac{\sqrt{6}}{3} c, \quad y_A = 0, \quad z_A = \sqrt{1 + \frac{2}{3} c^2}. \]

(17)

This solution is physically meaningless since \(\Omega_m > 1 \) if \(c \neq 0 \).

Point B:

\[x_B = -\frac{\sqrt{6}}{6} \lambda, \quad y_B = \sqrt{1 + \frac{\lambda^2}{6}}, \quad z_B = 0. \]

(18)

This critical point corresponds to the phantom-dominated solution \(\Omega_p = 1 \), which always exists for any \(\lambda \) and \(c \). The effective equation of state, \(w_{\text{eff}} = -1 - \frac{\lambda^2}{3} \), depends on the slope of the potential. To find out under what condition this fixed point is a stable solution, we study the behaviour of small deviations from the solution. The linearization of system (14)–(16) about this fixed point yields two eigenvalues \(m_1 = -(3 + \lambda^2/2) \) and \(m_2 = -(\lambda^2 + 3 - c \lambda) \). Thus the phantom-dominated solution is stable for \(c \leq \lambda + 3/\lambda \).

Point C:

\[x_C = \frac{3}{\sqrt{6}(\lambda - c)}; \quad y_C^2 = -\frac{c}{\lambda - c} - \frac{3}{2(\lambda - c)^2}; \]

\[z_C^2 = \frac{\lambda}{\lambda - c} + \frac{3}{(\lambda - c)^2}. \]

(19)

This fixed point corresponds to the phantom-fluid scaling solution, which exists for

\[c \leq \frac{\lambda - \sqrt{\lambda^2 + 12}}{2} \quad \text{or} \quad \frac{\lambda + \sqrt{\lambda^2 + 12}}{2} \leq c \leq \lambda + \frac{3}{\lambda}. \]
Cosmological evolution of interacting phantom energy with dark matter

Figure 1. The convergence of different initial conditions to the attractor solution in the \((x, y)\) phase space for the model I with \(c = -2\) and \(\lambda = 1\).

Substituting linear perturbations \(x \rightarrow x_C + \delta x\), \(y \rightarrow y_C + \delta y\), and \(z \rightarrow z_C + \delta z\) about the critical point into the system of equations (14)–(16), to first-order in the perturbations, gives the following two independent evolution equations of the linear perturbations:

\[
\begin{align*}
\delta x' &= -\frac{3}{2} \left(1 + 3x_C^2 + y_C^2 + \frac{4}{\sqrt{6}} c x_C \right) \delta x - \left[3x_C y_C + \frac{6}{\sqrt{6}} (\lambda - c) y_C \right] \delta y, \\
\delta y' &= -3y_C \left(\frac{\sqrt{6}}{6} \lambda + x_C \right) \delta x - 3y_C^2 \delta y.
\end{align*}
\]

The two eigenvalues of the coefficient matrix of the above equations determine the stability of the critical point. We find that the solution is unstable.

In the cosmological model with the interaction (13) between phantom field and dark matter, the phantom-dominated solution is the only attractor solution in the parameter space, \(c \leq \lambda + 3/\lambda\). In figures 1–4, we plot the numerical results. Comparing figure 3 with figure 4, we see that the phantom energy more quickly dominates the universe when the parameter \(c\) decreases. In figures 1 and 2, the trajectories converge at the same fixed point, which is only determined by the parameter \(\lambda\). Hence energy transfer whether from the phantom field to the dark matter or vice versa yields similar cosmological consequences. The stable critical point \(B\) with \(x_B < 0\) indicates that the phantom field climbs up the exponent potential. The energy density of the phantom field increases as the universe expands, which leads to unwanted future singularity, and therefore the coincidence problem becomes more difficult. In the next section, we will investigate a phenomenal model, in which the cosmic doomsday is avoided and the coincidence problem may be alleviated.

4. Model II

Now let us consider the specific interaction [22, 19, 24]

\[
Q = 3c H(\rho_p + \rho_m),
\]

Journal of Cosmology and Astroparticle Physics 05 (2005) 002 (stacks.iop.org/JCAP/2005/i=05/a=002)
where c is a dimensionless parameter denoting the transfer strength. This type of interaction has been proposed to look for a dynamical solution to the coincidence problem in [22]. Then the equation system (8)–(10) can be written as an autonomous system:

\begin{align}
 x' &= -3x \left(1 + x^2 - \frac{1}{2} z^2 - \frac{1}{2} c x^{-2} \right) - \frac{3}{\sqrt{6}} \lambda y^2, \\
 y' &= -3y \left(x^2 + \frac{\sqrt{6}}{6} \lambda x - \frac{1}{2} z^2 \right), \\
 z' &= -3z \left(\frac{1}{2} + x^2 - \frac{1}{2} z^2 - \frac{1}{2} c z^{-2} \right),
\end{align}

which has four critical points.
Figure 4. The evolution of the fractional densities of the phantom field (the dashed curve) and the dark matter (the solid curve) for the case in figure 2.

Point A:

\[x_A^2 = \frac{1}{2}(\sqrt{1 + 4c} - 1), \quad y_A = 0, \quad z_A^2 = \frac{1}{2}(\sqrt{1 + 4c} + 1). \]

(26)

This solution is physically meaningless since \(\Omega_p < 0 \).

Points B, C, D: The other three critical points are solutions of the following set of equations:

\[f(x) = c, \]

(27)

\[y^2 = -x^2 - \frac{\sqrt{6}}{3} \lambda x + 1, \]

(28)

\[z^2 = 2x^2 + \frac{\sqrt{6}}{3} \lambda x, \]

(29)

where we have defined a cubic function

\[f(x) \equiv x \left(2x + \frac{\sqrt{6}}{3} \lambda \right) \left(1 - \frac{\sqrt{6}}{3} \lambda x \right). \]

(30)

The critical point with \(x_B < 0 \), labelled by B, exists for

\[0 < c \leq f\left(-\lambda - \sqrt{\lambda^2 + 12} \right). \]

There are two critical points with \(x_{C,D} > 0 \), one of which is physically meaningless, labelled by D. The other point, labelled by C, exists for

\[0 < c \leq \min\left\{ f\left(-\lambda + \frac{\sqrt{\lambda^2 + 6}}{\sqrt{6}} \right), f\left(-\lambda + \frac{\sqrt{\lambda^2 + 12}}{2\sqrt{6}} \right) \right\}. \]

We see that the point B corresponds to a climbing-up phantom field, while the point C corresponds to a rolling-down phantom field. In order to study the stability of the
Cosmological evolution of interacting phantom energy with dark matter

Figure 5. Stability regions of the (λ, c) parameter space for model II. In regions I, either the climbing-up scaling solution or the rolling-down scaling solution is the stable late-time attractor. In region II, the climbing-up solution is the stable late-time attractor. The solutions are physically meaningless in region III.

two critical points, we obtain the two independent evolution equations of the linear perturbations

\[
\delta x' = -\frac{3}{2} \left(1 + 3x^2_{B,C} + y^2_{B,C} + \frac{c}{x^2_{B,C}} \right) \delta x - \left(3x_{B,C}y_{B,C} + \frac{6}{\sqrt{6}} \lambda y_{B,C} \right) \delta y,
\]

\[
\delta y' = -3y_{B,C} \left(\frac{\sqrt{6}}{6} \lambda + x_{B,C} \right) \delta x - 3y^2_{B,C} \delta y.
\]

The corresponding eigenvalues of the coefficient matrix of the above equations indicate that the critical points B and C are always the late-time stable attractor solutions if they exist.

In the case of the interaction form (22), there exist two kinds of stable scaling solutions, the climbing-up scaling solution with $x_B < 0$ in figure 6 and the rolling-down scaling solution with $x_C > 0$ in figure 7. As shown in figures 8 and 9, the universe evolves from the matter-dominated phase to the scaling solution, which is characterized by a constant ratio of the energy densities of the dark matter and the phantom field. This may provide us with a phenomenological solution of the coincidence problem. These results agree with those in [19]. The different regions in the (γ, c) parameter space lead to different qualitative evolutions. In region II of the parameter space in figure 5, the critical point B is a stable solution. However, in region I both points B and C are stable. Which one is the late-time stable attractor solution? The phantom field either climbs up or rolls down the exponent potential, which is determined by the initial velocity of the phantom field. If the phantom field initially climbs up, the effective equation of state w_{eff} tends to below -1 and realizes a transition from $w_{\text{eff}} > -1$ to $w_{\text{eff}} < -1$ in figure 10. Thus the universe ends with a big rip. If the phantom field initially rolls down, the effective equation of state w_{eff} tends to above -1 and realizes a transition from $w_{\text{eff}} < -1$ to
Figure 6. The convergence of different initial conditions to the attractor solution in the \((x, y)\) phase space for model II with \(c = 0.2\) and \(\lambda = 1\). We choose initial conditions with \(x_0 < 0\).

Figure 7. The convergence of different initial conditions to the attractor solution in the \((x, y)\) phase space for model II with \(c = 0.2\) and \(\lambda = 1\). We choose initial conditions with \(x_0 > 0\).

\(w_{\text{eff}} > -1\) in figure 11. In this case the cosmic doomsday is avoided and the universe accelerates forever.

5. Conclusions and discussion

We have presented a phase-space analysis of the evolution for a spatially flat FRW universe driven by an interacting mixture of dark matter and phantom field with an exponent potential. We have discussed the existence and stability of the cosmological scaling solution for two types of interactions, namely \(Q = -c \kappa \rho_m \phi\) motivated by the conformal relationships between the Jordan and Einstein frames in string theory, and
Cosmological evolution of interacting phantom energy with dark matter

Figure 8. The evolution of the fractional densities of the phantom field (the dashed curve) and the dark matter (the solid curve) for the case in figure 6.

Figure 9. The evolution of the fractional densities of the phantom field (the dashed curve) and the dark matter (the solid curve) for the case in figure 7.

\[Q = 3c H (\rho_p + \rho_m) \] motivated by analogy with dissipation. In the former model, the phantom-dominated solution is the only attractor solution when \(c \leq \lambda + 3/\lambda \). Energy transfer, whether from the phantom field to the dark matter (i.e. \(c > 0 \)) or vice versa (i.e. \(c < 0 \)), leads to similar behaviour, except that the phantom energy more quickly dominates the universe in the latter case than the former case. Since the phantom field climb up the exponent potential, the energy density of the phantom field quickly increases as the universe expands, which leads to an unwanted future singularity.

However, in model II with the interaction (22) between phantom field and dark matter, there exist two kinds of stable scaling solutions, the climbing-up scaling solution and the rolling-down scaling solution. The existence of a stable scaling solution requires a transfer of energy from the phantom field to the dark matter. In this model the universe evolves from a matter-dominated phase to a scaling solution, which is characterized by a constant
Figure 10. The evolution of the effective equation of state for the case in figure 6.

Figure 11. The evolution of the effective equation of state for the case in figure 7.

ratio of the energy densities of the dark matter and the phantom field. This may provide us with a phenomenological solution of the coincidence problem. Furthermore, in the climbing-up case, the effective equation of state w_{eff} tends to below -1, and then the universe ends with a big rip. The effective equation of state may realize a transition from $w_{\text{eff}} > -1$ to $w_{\text{eff}} < -1$. In the rolling-down case, the effective equation of state w_{eff} tends to above -1 and may cross -1. In this case the cosmic doomsday is avoided and the universe accelerates forever with a power-law form. What is the ultimate fate of the universe? The universe either accelerates forever or ends with a big rip, which is determined by not only the model parameters but also the initial velocity of the phantom field in the scenario of interacting phantom energy with dark matter.

Acknowledgments

This project was in part supported by the National Basic Research Program of China under grant No 2003CB716300, by the NNSFC under grant Nos 90403032, 10325525 and 90403029, and also by the MSTC under grant No TG1999075401.
Cosmological evolution of interacting phantom energy with dark matter

References

[1] Ratra B and Peebles P J E, 1988 Phys. Rev. D 37 4096 [SPIRES]
Wetterich C, 1988 Nucl. Phys. B 302 668 [SPIRES]
[2] Zlatev I, Wang L M and Steinhardt P J, 1999 Phys. Rev. Lett. 82 896 [SPIRES]
Steinhardt P J, Wang L and Zlatev I, 1999 Phys. Rev. D 59 123504 [SPIRES]
[3] Copeland E J, Liddle A R and Wands D, 1998 Phys. Rev. D 57 4686 [SPIRES]
[4] Guo Z K, Piao Y S and Zhang Y Z, 2003 Phys. Lett. B 568 1 [SPIRES]
Guo Z K, Piao Y S, Cai R G and Zhang Y Z, 2003 Phys. Lett. B 576 12 [SPIRES]
Guo Z K and Zhang Y Z, 2004 J. Cosmol. Astropart. Phys. JCAP08(2004)010 [SPIRES] [hep-th/0403151]
[5] Chen C M, Ho P M, Neupane I P, Ohta N and Wang J E, 2003 J. High Energy Phys. JHEP10(2003)058 [SPIRES]
Wohlfarth M N R, 2004 Phys. Rev. D 69 066002 [SPIRES]
Ohta N, 2004 Preprint hep-th/0411230
[6] Alam U, Sahni V and Starobinsky A A, 2004 Preprint astro-ph/0403687
Choudhury T R and Padmanabhan T, 2003 Preprint astro-ph/0311622
Huterer D and Cooray A, 2004 Preprint astro-ph/0404062
Feng B, Wang X L and Zhang X, 2004 Preprint astro-ph/0404224
Gong Y, 2004 Preprint astro-ph/0405446
[7] Caldwell R R, 2002 Phys. Lett. B 545 23 [SPIRES]
Mersini L, Bastero-Gil M and Kanti P, 2001 Phys. Rev. D 64 043508 [SPIRES]
Piazza F and Tsujikawa S, 2004 J. Cosmol. Astropart. Phys. JCAP07(2004)004 [SPIRES]
[8] Pollock M D, 1988 Phys. Lett. B 215 635 [SPIRES]
Calcagni G, 2004 Preprint gr-qc/0410027
[9] Caldwell R R, 2002 Phys. Rev. D 66 043522 [SPIRES]
Esposito-Farese G and Polarski D, 2001 Phys. Rev. D 63 063504 [SPIRES]
Elizalde E, Nojiri S and Odintsov S D, 2004 Phys. Rev. D 70 043539 [SPIRES]
[10] Finkbeiner D P and Schlegel D J, 2004 Phys. Rev. D 69 043509 [SPIRES]
Mersini L, Bastero-Gil M and Kanti P, 2001 Phys. Rev. D 64 043508 [SPIRES]
Piazza F and Tsujikawa S, 2004 J. Cosmol. Astropart. Phys. JCAP07(2004)004 [SPIRES]
[11] Pollock M D, 1988 Phys. Lett. B 215 635 [SPIRES]
Calcagni G, 2004 Preprint gr-qc/0410027
[12] Caldwell R R, Kamionkowski M and Weinberg N N, 2003 Phys. Rev. Lett. 91 071301 [SPIRES]
Gonzalez-Diaz P F, 2003 Phys. Rev. D 68 043514 [SPIRES]
Piao Y S and Zhou E, 2003 Phys. Rev. D 68 083515 [SPIRES]
Johri V B, 2004 Phys. Rev. D 70 041303 [SPIRES]
Wei Y H and Tian Y, 2004 Class. Quantum Grav. 21 5347 [SPIRES]
Piao Y S and Zhang Y Z, 2004 Preprint astro-ph/04041231
Lima J and Alcaniz J S, 2004 Preprint astro-ph/0402265
Bouhmadi-Lopez M and Madrid J J, 2004 Preprint astro-ph/0404540
Feng B, Li M, Piao Y S and Zhang X, 2004 Preprint astro-ph/0407432
[13] Schuster E and White M, 2001 Phys. Rev. D 64 043514 [SPIRES]
Mclean B, 2002 Preprint astro-ph/0210321
Dabrowski M P, Stachowiak T and Szydlowski M, 2003 Phys. Rev. D 68 103519 [SPIRES]
Piao Y S and Zhou E, 2003 Phys. Rev. D 68 083515 [SPIRES]
Johri V B, 2004 Phys. Rev. D 70 041303 [SPIRES]
Wei Y H and Tian Y, 2004 Class. Quantum Grav. 21 5347 [SPIRES]
Piao Y S and Zhang Y Z, 2004 Preprint astro-ph/04041231
Lima J and Alcaniz J S, 2004 Preprint astro-ph/0402265
Bouhmadi-Lopez M and Madrid J J, 2004 Preprint astro-ph/0404540
Feng B, Li M, Piao Y S and Zhang X, 2004 Preprint astro-ph/0407432
[14] Caldwell R R, Kamionkowski M and Weinberg N N, 2003 Phys. Rev. Lett. 91 071301 [SPIRES]
Gonzalez-Diaz P F, 2003 Phys. Rev. D 68 021303 [SPIRES]
Samit M and Toporensky A, 2004 Mod. Phys. Lett. A 19 1509 [SPIRES]
Stefancic H, 2004 Phys. Lett. B 595 9 [SPIRES]
Chimento L P and Lazkoz R, 2004 Preprint gr-qc/0405020
Nesseris S and Perivolaropoulos L, 2004 Preprint astro-ph/0410309
[15] Carroll S M, Hoffman M and Trodden M, 2003 Phys. Rev. D 68 023509 [SPIRES]
Singh P, Samit M and Dadhich N, 2003 Phys. Rev. D 68 023522 [SPIRES]
Guo Z K, Piao Y S and Zhang Y Z, 2004 Phys. Lett. B 594 247 [SPIRES]
Arefeva I Y, Kochelev A S and Vernov S Y, 2004 Preprint astro-ph/0412619
[16] Scherrer R J, 2005 Phys. Rev. D 71 063519 [SPIRES]
[17] Zhao Z K, Piao Y S, Zhang X and Zhang Y Z, 2005 Phys. Lett. B 608 177 [SPIRES]
[18] Dabrowski M P and Stachowiak T, 2004 Preprint hep-th/0411199
[19] Guo Z K and Zhang Y Z, 2005 Phys. Rev. D 71 023501 [SPIRES]
Wetterich C, 1995 Astron. Astrophys. 301 321 [SPIRES]
Cosmological evolution of interacting phantom energy with dark matter

[21] Amendola L, 1999 Phys. Rev. D 60 043501 [SPIRES]
[22] Zimdahl W, Pavon D and Chimento L P, 2001 Phys. Lett. B 521 133 [SPIRES]
 Chimento L P, Jakubi A S, Pavon D and Zimdahl W, 2003 Phys. Rev. D 67 083513 [SPIRES]
[23] Billyard A P and Coley A A, 2000 Phys. Rev. D 61 083503 [SPIRES]
 Tsujikawa S and Sami M, 2004 Phys. Lett. B 603 113 [SPIRES]
 Wei H and Cai R G, 2004 Preprint hep-th/0412045
[24] Cai R G and Wang A, 2005 J. Cosmol. Astropart. Phys. JCAP03(2005)002 [SPIRES]