Original Research Article

Prevalence of ESBL and MBL Producing Gram Negative Isolates from Various Clinical Samples in a Tertiary Care Hospital

Narinder Kaur1*, Amandeep Kaur2 and Satnam Singh3

1Department of Microbiology, Adesh Medical College and Hospital, Ambala, India
2Department of Microbiology, 3Department of Pharmacology, Adesh institute of Medical Sciences and Research, Bathinda, India

*Corresponding author

A B S T R A C T

Antimicrobial resistance is a growing threat worldwide. Increasing resistance to third generation cephalosporins has become a cause for concern. The prevalence of extended spectrum–lactamases (ESBLs) and metallobetalactamases (MBL) among members of Enterobacteriaceae constitutes a serious threat to current -lactam therapy leading to treatment failure. A total of 276 Gram negative isolates were processed. ESBL was detected by phenotypic confirmatory disc diffusion test (PCDDT) using ceftazidime alone and in combination with clavulanic acid. MBL detection was done by Imipenem EDTA combined disc diffusion test and Modified Hodge test. Out of 276 isolates 69 (25%) were ESBL producers, 70 (25.3%) were MBL producers and 26 (9.42%) were both ESBL and MBL producers. Highest ESBL production was seen in Escherichia coli (46%) and maximum MBL production was seen in Klebsiella pneumoniae (34.8%). The study underlines problem of ESBL and MBL mediated resistance, which has created a therapeutic challenge for the clinicians and microbiologists. Simple disk method can be routinely employed to detect these common resistance mechanisms which will reduce the mortality and also spread of such resistant strains.

Keywords
Gram Negative, ESBL, MBL, Antibiotic resistance, Beta lactamases, Infection Control, Antibiotic Policy.

Article Info
Accepted: 12 March 2017
Available Online: 10 April 2017

Introduction

Antibiotic resistance among Gram-negative bacilli (GNB) is a rapidly expanding problem due to the organisms’ ability to mutate, and to acquire and transmit plasmids and other mobile genetic elements encoding resistance gene. Beta-lactamase antibiotics are among the most widely prescribed antibiotics worldwide and the emergence of resistance to these agents has resulted in a major clinical crisis (Siddiqui et al., 2014). The β- lactam group of antibiotics is widely used to treat the infections caused by the pathogenic bacteria. Due to the extensive use of these antibiotics, β-lactam mediated resistance has raised as major clinical crisis. The newer β-lactamases, including extended-spectrum β-lactamases (ESBLs), ampC β-lactamases (AmpC), and metallo-β-lactamases (MBLs) have emerged worldwide as a cause of antimicrobial β- lactamase mediated resistance in gram negative bacteria (Kumar et al., 2013). ESBLs are still considered as a threat since they are coded by plasmid and can be easily transmitted between species. ESBL producing organams are highly effective in inactivating penicillins, most cephalosporins and aztreonam and are inhibited by β- lactamase inhibitors such as clavulanic acid (Fam et al., 2006). ESBL producing isolates, in addition to being
Resistant to β-lactam antibiotics, often exhibit resistance to other classes of drugs such as aminoglycosides, cotrimoxazole, tetracycline and fluoroquinolones. ESBLs are often located on plasmids that are transferable from strain to strain (Kamble, 2015). Carbapenems are used as drug of choice to treat infections caused by beta-lactam resistant bacteria. But extensive and sometimes unnecessary use of the carbapenems, poor sanitation and large population has facilitated the emergence of carbapenem resistant bacteria (Wadekar et al., 2013).

Resistance to these antibiotics is due to decreased outer membrane permeability, increased efflux systems, alteration of penicillin binding proteins and carbapenem hydrolyzing enzymes carbapenemases (Kamalraj et al., 2015). Resistance to carbapenem is predominantly mediated by metallo betalactamases, a class B type of betalactamases that recognize bivalent metal ions (Anil Rajput et al., 2012). MBL can hydrolyze all metallo beta lactams except monobactams and are not inactivated by beta lactamase inhibitors like clavulanic acid, sulbactam and tazobactam (Chakraborty et al., 2010). They may be chromosomally or plasmid mediated and therefore poses a threat of spread of resistance by gene transfer among gram negative bacteria (Kamalraj et al., 2015).

The aim of the current study is to determine the percentage of ESBL and MBL producers among gram negative clinical isolates. Early detection of ESBL and MBL producing organisms is crucial to establish appropriate antimicrobial therapy and to prevent their inter hospital dissemination.

Materials and Methods

A total of 276 Gram negative organisms were isolated from various clinical samples (urine, pus, blood, ET secretions, tracheal aspirates. They were identified by standard microbiological procedures (Collee et al., 2007). The susceptibility of isolates to antibiotics was determined by Kirby- Bauer disc diffusion method using Clinical and Laboratory Standard Institute guidelines (CLSI, 2016). Antibiotics included were cetzidime (30 μg), aztreonam (30 μg), cefipime (30 μg), cefotaxime (30 μg), cefoxitin (30μg), imipenem (10 μg), meropenem (10 μg), cefoperazone/ sulbactam (75/30 μg), piperacillin/ tazobactam (100/10 μg), gentamicin (10 μg), amikacin (30 μg), ciprofloxacin (5 μg), cotrimoxazole (1.25/23.75 μg), polymxin B (300U) and colistin (10 μg).

Isolates resistant to third generation cephalosporins were tested for ESBL production and isolates showing resistance to imipenem were tested for MBL production. Phenotypic detection of ESBL: The double disk diffusion method was used for detection of this enzyme as recommended by CLSI (CLSI, 2016). The suspension was streaked onto Mueller-Hinton agar plates (Hi Media, Mumbai, India). A disc of either cetzidime (30 μg) or cefotaxime alone (30μg) in combination with clavulanic acid (30μg/10 μg) was placed at the distance of 20 mm (centre to centre). After incubation overnight at 35°C, a positive test result was considered as a 5 mm increase in inhibition zone compared with a disk without clavulanic acid. Phenotypic detection of MBL: Imipenem resistant isolates were screened for production of MBL by double disc diffusion test and modified Hodge test and strains showing positive results by both the methods are considered MBL producers.

Double disc diffusion test

Commercially available imipenem (10μg) and imipenem/EDTA (10+750 μg) (Hi-media,
Mumbai) discs were placed on the Mueller Hinton agar at a distance of 20mm each other. After the incubation period of 16-18 hours at 37°C, the increase in inhibition zone size ≥7mm around the IMP/EDTA disc than the IMP alone was considered as MBL positive (Yong et al., 2002).

Modified Hodge test

An overnight culture of *E. coli* ATCC 25922 was adjusted to 0.5 McFarland standard and lawn culture was made on Muller Hinton agar (Hi-media, Mumbai). The 10 μg of imipenem was placed on the centre of the plate and test culture was streaked from the edge of the disc to the periphery of the plate. After the incubation period of 16-18 hours at 37°C, the presence of a cloverleaf zone or distortion of inhibition around the imipenem disc was interpreted as positive for MBL production (CLSI, 2016).

Results and Discussion

The emergence of antibiotic resistance is a matter of great concern, particularly in hospitals. Antibiotic resistant bacteria appear to be biologically fit and capable of causing serious life threatening infections. The increase in antibiotic resistance among gram-negative bacilli, such as Enterobacteriaceae group, *Pseudomonas aeruginosa* and others, is a notable example and how bacteria can procure, maintain and express new genetic information that can confer resistance to one or several antibiotics. Resistance in gram-negative bacteria is a serious problem and calls for an effective infection control measures to curb their dissemination (Walsh et al., 2005; Bradford, 2001). A total of 276 Gram negative organisms were isolated and further processed as study group. Out of 276 Gram negative isolates, *Escherichia coli* (41.6%) was the most common organism isolated followed by *Klebsiella pneumoniae* (24%) and *Pseudomonas* spp (17.7%) (Table 1). Antibiotic resistance profile of various gram negative isolates is shown in table 2. Isolates resistant to third generation cephalosporins were tested for ESBL production and isolates showing resistance to imipenem were tested for MBL production.

Among 276 gram negative isolates 69(25%) were ESBL producers, 70(25.3%) were MBL producers and 26(9.42%) were both ESBL and MBL producers (Table 3).

In the present study 34(49.2%) ESBL producers were from IPD patients and 18(26%) were from OPD patients. Amongst the MBL producers 28(40%) were from IPD patients and 14(20%) were from OPD patients (Table 4). Our results showing high percentage of ESBL and MBL production in IPD patients were similar to findings of Oberoi et al., (2013), Deshmukh et al., (2011) and Prajapati et al., (2013). These results corroborates the fact that a lot of risk factors associated with infections exist in indoor and ICU patients like environmental reservoir for multidrug resistant organisms, opportunities of cross transmission, sick and immunocompromised patients who are colonized, patients having multiple wounds and indwelling devices, heavy use of broad spectrum antibiotics and frequent contamination of the hands of health care workers while patient care. Highest ESBL production was seen in *Escherichia coli* (46%) followed by *Klebsiella pneumonia* (21.2%) (Table 5), which is comparable with studies by Kamble (2015), Agarwal et al., (2008), Tsering et al., (2008) and Shiju et al., (2010). In our study highest MBL production was seen in *Klebsiella pneumoniae* (34.8%) and *Pseudomonas* spp (34.6%) (Table 5), which is comparable to studies conducted by Oberoi et al., (2013), Kumar et al., (2012) and Rao et al., (2013).
Table 1: Distribution of various Gram negative isolates (N=276)

Escherichia coli	115(41.6%)
Klebsiella pneumoniae	66(24.0%)
Pseudomonas spp	49(17.7%)
Acinetobacter spp	25(9.1%)
Citrobacter spp	9(3.3%)
Proteus spp	7(2.5%)
Enterobacter spp	5(1.8%)

Table 2: Resistance pattern (% resistance) of various gram negative isolates (N=276)

Antibiotic Tested	**Escherichia coli**	**Klebsiella pneumoniae**	**Pseudomonas spp**	**Acinetobacter spp**	**Citrobacter spp**	**Proteus spp**	**Enterobacter spp**
Ceftazidime	77(66.9%)	39(59%)	28(57.1%)	22(88%)	7(77.7%)	6(85.7%)	4(80%)
Ceftriaxone	75(65.2%)	38(57.5%)	NT	23(92%)	7(77.7%)	6(85.7%)	4(80%)
Cefepime	69(60%)	25(53.0%)	20(40.8%)	20(80%)	7(77.7%)	4(57.1%)	3(60%)
Cefoperazone-Sulbactam	69(60%)	36(54.5%)	13(26.5%)	18(72%)	5(55.5%)	4(57.1%)	3(60%)
Piperacillin-Tazobactam	69(60%)	32(48.4%)	19(38.7%)	19(76%)	6(66.6%)	3(42.8%)	2(40%)
Gentamicin	72(62.6%)	38(57.5%)	16(32.6%)	14(56%)	5(55.5%)	3(42.8%)	3(60%)
Amikacin	64(55.6%)	44(66.6%)	11(22.4%)	13(52%)	6(66.6%)	4(57.1%)	1(20%)
Ciprofloxacin	51(44.3%)	27(41%)	22(44.8%)	17(68%)	4(44.4%)	5(71.4%)	3(60%)
Imipenem	19(16.5%)	33(50%)	14(28.5%)	16(66%)	7(77.7%)	6(85.7%)	3(60%)
Meropenem	20(17.3%)	33(50%)	15(30.6%)	18(72%)	6(66.6%)	6(85.7%)	3(60%)
Cotrimoxazole	37(32.1%)	36(54.5%)	NT	20(80%)	8(88.8%)	7(100%)	4(80%)
Polymixin B	0(0%)	0(0%)	0(0%)	0(0%)	0(0%)	NT	0(0%)
Colistin	0(0%)	0(0%)	0(0%)	0(0%)	0(0%)	NT	0(0%)

Table 3: Percentage of ESBL and MBL producers among total Gram negative isolates

Total GNB isolates	276
ESBL producers	69(25%)
MBL producers	70(25.3%)
Both ESBL and MBL producer	26(9.42%)
Table 4 Area wise distribution of ESBL and MBL producers

	OPD	IPD	ICU
ESBL producers (N=69)	18 (26%)	34 (49.2%)	17 (24.7%)
MBL producers (N=70)	14 (20%)	28 (40%)	28 (40%)
Both ESBL and MBL producers (N=26)	4 (15.4%)	12 (46.2%)	10 (38.4%)
Total (N=165)	36	74	55

Table 5 ESBL and MBL producers among various isolates

Organism	No. of isolates	ESBL producers No. (%)	MBL producers No. (%)	Both ESBL and MBL producers No. (%)
Escherichia coli	115	53 (46.08%)	17 (14.7%)	7 (6.08%)
Klebsiella pneumoniae	66	14 (21.2%)	23 (34.8%)	5 (7.57%)
Pseudomonas spp	49	1 (2.04%)	17 (34.6%)	6 (12.2%)
Acinetobacter spp	25	1 (4%)	7 (28%)	5 (20%)
Citrobacter spp	9	0 (0%)	3 (33.3%)	2 (22.2%)
Proteus spp	7	0 (0%)	2 (28.5%)	1 (25%)
Enterobacter spp	5	0 (0%)	1 (20%)	0 (0%)
Total	276	69 (25%)	70 (25.3%)	26 (9.42%)

Table 6 Sample wise distribution of various ESBL positive isolates

ESBL producer	No. of isolates	Urine	Pus	High vaginal swabs	ET Secretions	Sputum
Escherichia coli	53	34 (64.1%)	15 (41.5%)	3 (5.6%)	0 (0%)	1 (1.8%)
Klebsiella pneumoniae	14	6 (42.8%)	6 (42.8%)	0 (0%)	1 (7.14%)	1 (7.1%)
Pseudomonas spp	1	0 (0%)	0 (0%)	0 (0%)	1 (100%)	0 (0%)
Acinetobacter spp	1	0 (0%)	1 (100%)	0 (0%)	0 (0%)	0 (0%)
Total	69	40 (58%)	22 (31.8%)	3 (4.3%)	2 (2.89%)	2 (2.89%)
Table 7 Sample wise distribution of various MBL positive isolates (N=70)

MBL producer	No of isolates	Urine (17)	Pus (18)	Blood (4)	ET secretions (12)	Tracheal aspirate (11)	Sputum (4)	Central Line tip (4)
Escherichia coli	17	8(47.05%)	3(17.6%)	1(5.8%)	2(11.7%)	2(11.7%)	0(0%)	1(5.8%)
Klebsiella pneumoniae	23	2(8.7%)	7(30.4%)	0(0%)	3(13%)	6(26%)	2(8.7%)	3(13%)
Pseudomonas spp	17	6(35.3%)	4(23.5%)	2(11.7%)	3(17.6%)	2(11.7%)	0(0%)	0(0%)
Acinetobacter spp	7	0(0%)	1(14.2%)	1(14.2%)	2(28.4%)	2(28.4%)	1(14.2%)	0(0%)
Citrobacter spp	3	0(0%)	1(33.3%)	0(0%)	2(66.6%)	0(0%)	0(0%)	0(0%)
Proteus spp	2	1(50%)	1(50%)	0(0%)	0(0%)	0(0%)	0(0%)	0(0%)
Enterobacter spp	1	1(100%)	0(0%)	0(0%)	0(0%)	0(0%)	0(0%)	0(0%)
Total	70	18(25.7%)	17(24.2%)	4(5.7%)	12(17.1%)	12(17.1%)	3(4.2%)	4(5.7%)

Table 8 Sample wise distribution of both ESBL and MBL positive isolates

Name of the isolate	No of isolates	Urine	Pus	Sputum	Tracheal aspirate	ET secretions	Central line tip	Peritoneal fluid
Escherichia coli	7	1(14.2%)	6(85.7%)	0(0%)	0(0%)	1(14.2%)	0(0%)	0(0%)
Klebsiella pneumoniae	5	1(20%)	1(20%)	0(0%)	0(0%)	1(20%)	0(0%)	2(40%)
Pseudomonas spp	6	2(33.3%)	1(16.6%)	0(0%)	1(16.6%)	1(16.6%)	1(16.6%)	0(0%)
Acinetobacter spp	5	0(0%)	0(0%)	0(0%)	3(60%)	2(40%)	0(0%)	0(0%)
Citrobacter spp	2	1(50%)	0(0%)	0(0%)	0(0%)	1(50%)	0(0%)	0(0%)
Proteus spp	1	0(0%)	0(0%)	1(100%)	0(0%)	0(0%)	0(0%)	0(0%)
Total	26	5(19.2%)	8(30.7%)	1(3.8%)	4(15.3%)	5(19.2%)	1(3.8%)	2(7.7%)

In the present study highest percentage of ESBL and MBL production was seen in urine and pus isolates (Tables 5, 6, 7 and 8). Our results correlate with study of Grover et al., (2013), Oberoi et al., (2013) and Deshmukh et al., (2011). Early detection of ESBL and MBL positive isolates is mandatory not only for patient management but also for appropriate infection control measures to prevent the spread of the organisms (Uma devi et al., 2011)

MBL are enzymes that can hydrolyse wide variety of beta lactams including penicillins,
cephems and carbepenems except aztreonam (Krishna, 2010). Production of MBL has vast therapeutic consequences since these organisms also carry multidrug resistance genes and the only viable option remains potentially toxic polymyxin B and colistin (Veenu gupta et al., 2013).

In conclusion the early detection of beta lactamase producing isolates would be important for the reduction of mortality rates for patients and also to avoid the intra hospital dissemination of such strains. Simple phenotypic screening tests are proved to be rapid and convenient for their detection in the clinical laboratory. Monitoring and judicious usage of cephalosporins and imipenem, periodic surveillance of antibiotic resistance patterns and efforts to decrease empirical antibiotic therapy would go a long way in addressing some of the problems associated with ESBL an MBL producer. To overcome the problem of emergence and the spread of multidrug resistant organisms, a combined interaction between the microbiologist, clinicians and infection control team is needed.

References

Anil Rajput, Bhavin Prajapati, Bimal Chauhan, Atit Shah, Toral Trivedi and Mina Kadam. 2012. Prevalence of Metallo-beta-lactamases (MBL) producing Pseudomonas aeruginosa in a Tertiary care Hospital. Indian. J. Basic. Appl. Med. Res., 1(4): 304-308.

Bradford, P.A. 2001. Extended-Spectrum -Lactamases in the 21st Century: Characterization, Epidemiology, and Detection of This Important Resistance Threat. Clin. Microbiol. Rev., 14(4): 933–951.

Collee, J.G., Barrie, P., Marmion, A.G., Fraser, and A. Simmons. 2007. Mackie and McCartney Practical Medical Microbiology, 14th ed. Edinburgh: Churchill Livingstone.

Clinical Laboratory Standards Institutes. 2016. Performance Standards for antimicrobial susceptibility testing, 26th International Supplement (M100-S26). Wayne, Pennsylvania, US A: National Committee for Clinical Laboratory standards.

Debasrita Chakraborty, Saikat Basu and Satadal Das. 2010. A Study on Infections Caused By Metallo Beta Lactamase Producing Gram Negative Bacteria in Intensive Care Unit Patients. American J. Infect. Dis., 6(2): 34-39.

Deshmukh, D.G., Damle, A.S., Bajaj, J.K., Bhakre, J.B., and Patwardhan, N.S. 2011. Metallo-β-lactamase-producing Clinical Isolates from Patients of a Tertiary Care Hospital. J. Lab. Physicians, 3(2): 93–97.

Kumar, E., K. Usha, B.V. Ramana, A. Chaudhury, D.V.R., Sai Gopal. 2013. Prevalence of various β-lactamase (ESBL, AmpC and MBL) producing multidrug resistant clinical isolates of Acinetobacter spp. in a tertiary care hospital. Asian J. Pharm. Clin. Res., Vol 6, Suppl 4, 28-31.

Grover, N., Sahni, A.K., Bhattacharya, S. 2013. Therapeutic challenges of ESBLS and AmpC beta- lactamase producers in a tertiary care centre. Med. J. Armed Forces India, 69: 4-10.

Kamalraj, M., Kaviarasen, K., Padmapriya, G. 2015. Phenotypic detection of ESBL and MBL in clinical isolates of Non fermenters. Indian J. Basic and Appl. Med. Res., Vol.4, Issue 4, 470-475.

Kamble, D. 2015. Phenotypic detection of ESBL and MBL in Gram Negative bacilli isolated from clinical specimens. Int. J. Med. Res. Rev., 3(8): 866-870. doi: 10.17511/ijmrr.2015.i8.163.w, vol 3, No 8,2015.

Krishna, B.V.S. 2010. New Delhi metallobeta-lactamases: A wake up call for microbiologists. Indian. J. Clin. Microbiol., 28(3): 265-66.

Kumar, S.H., Baveja, S.M., Gore, M.A. 2012. Prevalence and risk factors of Metallo β-lactamase producing Pseudomonas
aeruginosa and Acinetobacter species in burns and surgical wards in a tertiary care hospital. *J. Lab. Physicians*, 4(1): 39-42.

Mita, D., Wadekar, K., Anuradha and D., Venkatesha. 2013. Phenotypic detection of ESBL and MBL in clinical isolates of Enterobacteriaceae. *Int. J. Curr. Res. Aca. Rev.*, 1(3): 89-95.

Fam, N., M. Diab, H. Helmi, I. El-Defrawy. 2006. Phenotypic Detection of Metallo-β-Lactamases and Extended Spectrum β-Lactamases Among Gram Negative Bacterial Clinical Isolates. *Egyptian J. Med. Microbiol.*, Vol. 15, No 4: 719-730.

Nazneen Siddiqui, Jayshree Bhakre, Ajit Damle, Jyoti Bajaj. 2014. Prevalence of Extended Spectrum Beta Lactamase (ESBL) Producing Gram Negative Bacilli from various clinical isolates. *IOSR J. Dent. Med. Sci.*, Volume 13, Issue 9 Ver. VIII, 08-11.

Oberoi, L., Singh, N., Sharma, P., Aggarwal, A. 2013. ESBL, MBL and Ampc β Lactamases Producing Superbugs – Havoc in the Intensive Care Units of Punjab India. *J. Clin. Diag. Res.*, Vol-7(1): 70-73.

Prajapati, S.B., Oza, S.G., Mehta, S.J., Vegad, M.M. 2013. Prevalence Of Metallo-B-Lactamase Producing Pseudomonas Spp.(In Tertiary Care Hospital). *NJIRM*, 4(2): 68-70.

Rao, S.D., Kumar, E.A. 2013. Antimicrobial resistance and metallo β lactamase in gram-negative isolates of hospital-acquired burn wound infections. *J. Dr. NTR Univ. Health Sci.*, 2: 181-5.

Shiju, M.P., Yashavanth, R., Narendra, N. 2010. Detection of Extended Spectrum Beta-Lactamase Production and Multidrug Resistance in Clinical Isolates of E. coli and K. pneumoniae in Mangalore. *J. Clin. Diag. Res.*, 4: 2442-2445.

Tsering, D.C., Das, S., Adhiakari, L., Pal, R., Singh, T.S. 2009. Extended Spectrum Beta-lactamase Detection in Gram-negative Bacilli of Nosocomial Origin. *J. Glob. Infect. Dis.*, 1(2): 87-92.

Umadevi, S., Kandhakumari, G., Joseph, N.M., Kumar, S., Easow, J.M., Stephen, S. and Singh, U.K. 2011. Prevalence and antimicrobial susceptibility pattern of ESBL producing Gram Negative Bacilli. *J. Clin. Diag. Res.*, 5(2): 236-239.

Veenu gupta, Deepinder chhina and Amarjeet kaur. 2013. Incidence of metallo-β-lactamase (MBL) producing non fermenters isolated from respiratory samples in ICU patients. *Int. J. Pharm. Bio. Sci.*, 4(2): (B) 580 585.

Walsh, T.R., Toleman, M.A., Poirel, L., Nordmann, P. 2005. Metallo-beta-lactamases: the quiet before the storm? *Clin. Microbiol. Rev.*, 18(2): 306-25.

Yong, D., Lee, K., Yum, J.H., Shin, H.B., Rossolini, G.M., Chong, Y. 2002. Imipenem. EDTA disk method for differentiation of metallo-beta-lactamase-producing clinical isolates of Pseudomonas spp. and Acinetobacter spp. *J. Clin. Microbiol.*, 40(10): 3798-801.

How to cite this article:

Narinder Kaur, Amandeep Kaur and Satnam Singh. 2017. Prevalence of ESBL and MBL Producing Gram Negative Isolates from Various Clinical Samples in a Tertiary Care Hospital. *Int.J.Curr.Microbiol.App.Sci.* 6(4): 1423-1430. doi: https://doi.org/10.20546/ijcmas.2017.604.174