THE ORDER OF A LINEARLY INVARIANT FAMILY IN \mathbb{C}^n

MARTIN CHUAQUI AND RODRIGO HERNÁNDEZ

Abstract. We study the (trace) norm of a linearly invariant family in the ball in \mathbb{C}^n. By adapting an approach that in one variable yields optimal results, we are able to derive an upper bound for the norm of the family in terms of the Schwarzian norm and the dimension n.

1. Introduction

The purpose of this paper is to obtain an upper bound for the trace order of a certain linearly invariant family of locally biholomorphic mappings defined in the unit ball \mathbb{B}^n in \mathbb{C}^n. The family is defined in terms of the Schwarzian derivative SF, which inherits from the Bergman metric in \mathbb{B}^n a natural norm $||SF||$ that is invariant under the automorphism group $[2]$. Disregarding certain normalizations, the families F_α considered in this paper are defined by the condition $||SF|| \leq \alpha$. Linearly invariant families of holomorphic mappings were introduced in one complex variable by Pommerenke in two seminal papers that offered a systematic treatment of such families $[10]$. He showed that relevant aspects of the family F, such as growth and covering, are determined by its order $\sup_{f \in F} |a_2(f)|$. If Sf is the usual Schwarzian derivative and $||Sf|| = \sup_{|z|<1} \left(1 - |z|^2\right)^2 |Sf(z)|$, then the family of properly normalized locally univalent mappings in the disc \mathbb{D} for which $||Sf|| \leq \alpha$ is linearly invariant. By means of a variational method, Pommerenke determined the sharp value $\sqrt{1 + \frac{1}{2} \alpha}$ for its order. In several variables, the concept of order of a linearly invariant family appears in the form of the (trace) order and the (norm) order $[1]$. In this work, we mimic the variational approach in several variables to estimate the order of F_α in terms of α and the dimension n. Much like in the analysis found in $[10]$, we are lead to a characteristic equation involving derivatives of order up to three that must be satisfied by any mapping extremal for the trace order. Finally, the estimate on the trace order is used to obtain a similar estimate for the norm order of the family F_α.

The authors were partially supported by Fondecyt Grants #1110321 and #1110160.

Key words: Schwarzian derivative, homeomorphic extension, ball, univalence, convexity, Bergman metric, weakly linearly convex, projective dual space.

2000 AMS Subject Classification. Primary: 32H02, 32A17; Secondary: 30C45.
2. Preliminaries

In [9] T.Oda generalizes the concept of Schwarzian derivative to the case of locally biholomorphic mappings in several variables. For such a mapping $F = F = (f_1, \ldots, f_n) : \Omega \subset \mathbb{C}^n \to \mathbb{C}^n$ he introduces a family of Schwarzian derivatives by

\begin{equation}
S_{ij}^k F = \sum_{l=1}^n \frac{\partial^2 f_l}{\partial z_i \partial z_j} \frac{\partial z_l}{\partial f_i} - \frac{1}{n+1} \left(\delta_i^k \frac{\partial}{\partial z_j} + \delta_j^k \frac{\partial}{\partial z_i} \right) \log JF,
\end{equation}

where $i, j, k = 1, 2, \ldots, n$, $JF = \det(DF)$ is the jacobian determinant of the differential DF and δ_i^k are the Kronecker symbols. Two important aspects of the one dimensional Schwarzian are also present in this context. First,

\begin{equation}
S_{ij}^k F = 0 \quad \text{for all} \quad i, j, k = 1, 2, \ldots, n \quad \text{iff} \quad F(z) = M(z),
\end{equation}

for some Möbius transformation

$$M(z) = \left(\frac{l_1(z)}{l_0(z)}, \ldots, \frac{l_n(z)}{l_0(z)} \right),$$

where $l_i(z) = a_{i0} + a_{i1}z_1 + \cdots + a_{in}z_n$ with $\det(a_{ij}) \neq 0$. Next, under composition we have the chain rule

\begin{equation}
S_{ij}^k (G \circ F)(z) = S_{ij}^k F(z) + \sum_{l,m,r=1}^n S_{lm}^r G(w) \frac{\partial w_l}{\partial z_i} \frac{\partial w_m}{\partial z_j} \frac{\partial z_k}{\partial w_r}, \quad w = F(z).
\end{equation}

Thus, if G is a Möbius transformation then $S_{ij}^k (G \circ F) = S_{ij}^k F$. The $S_{ij}^0 F$ coefficients are given by

$$S_{ij}^0 F(z) = (JF)^{-\frac{1}{n+1}} \left(\frac{\partial^2}{\partial z_i \partial z_j} (JF)^{-\frac{1}{n+1}} - \sum_{k=1}^n \frac{\partial}{\partial z_k} (JF)^{-\frac{1}{n+1}} S_{ij}^k F(z) \right).$$

One can find in the literature other equivalent formulations of the Schwarzian in several variables, which also come in the form of differential operators of orders two and three (see, e.g., [5], [6], [8]). In order to recover a mapping from its Schwarzian derivatives we can consider the following overdetermined system of partial differential equations,

\begin{equation}
\frac{\partial^2 u}{\partial z_i \partial z_j} = \sum_{k=1}^n P_{ij}^k(z) \frac{\partial u}{\partial z_k} + P_{ij}^0(z) u, \quad i, j = 1, 2, \ldots, n,
\end{equation}

where $z = (z_1, z_2, \ldots, z_n) \in \Omega$ and $P_{ij}^k(z)$ are holomorphic functions in Ω, for $i, j, k = 0, \ldots, n$. The system (2.4) is called completely integrable if there are $n+1$ (maximum) linearly independent solutions. The system is said to be in canonical
form (see [11]) if the coefficients satisfy
\[\sum_{j=1}^{n} P_{ij}^j(z) = 0, \quad i = 1, 2, \ldots, n. \]

An important result established by Oda is that (2.4) is completely integrable and in canonical form if and only if \(P_{ij}^k = S_{ij}^k F \) for a locally holomorphic mapping \(F = (f_1, \ldots, f_n) \), where \(f_i = u_i/u_0 \) for \(1 \leq i \leq n \) and \(u_0, u_1, \ldots, u_n \) is a set of linearly independent solutions of the system. It was also observed by the author that \(u_0 = (JF)^{-
abla} \) is always a solution of (2.4) with \(P_{ij}^k = S_{ij}^k F \). The following result not stated in the work of Oda will be important in the rest of the paper.

The individual components \(S_{ij}^k F \) can be gathered to conform an operator in the following form (see [2]).

Definition 2.1. For \(k = 1, \ldots, n \) let \(S^k F \) be the matrix
\[S^k F = (S_{ij}^k F), \quad i, j = 1, \ldots, n. \]

Definition 2.2. We define the **Schwarzian derivative operator** as the mapping \(SF(z) : T_z \Omega \rightarrow T_{F(z)} F(\Omega) \) given by
\[SF(z)(\vec{v}) = \left(\vec{v}^t S^1 F(z) \vec{v}, \vec{v}^t S^2 F(z) \vec{v}, \ldots, \vec{v}^t S^n F(z) \vec{v} \right), \]
where \(\vec{v} \in T_z \Omega \).

As an operator \(SF(z) \) inherits a norm from the metric in the domain:

\[\|SF(z)\| = \sup_{\|\vec{v}\|=1} \|SF(z)(\vec{v})\|, \tag{2.5} \]
and finally, we let
\[||SF|| = \sup_{z \in \Omega} ||SF(z)||. \tag{2.6} \]

Our interest is to study certain classes of locally biholomorphic mappings \(F \) defined in the unit ball \(\mathbb{B}^n \). The Bergman metric \(g_B \) on \(\mathbb{B}^n \) is the hermitian product defined by
\[g_{ij}(z) = \frac{n+1}{(1-|z|^2)^2} \left[(1-|z|^2) \delta_{ij} + \bar{z}_i z_j \right]. \tag{2.7} \]
The automorphisms of \(\mathbb{B}^n \) act as isometries of the Bergman metric, and are given by
\[\sigma(z) = \frac{Az + B}{Cz + D}, \]
where A is $n \times n$, B is $n \times 1$, C is $1 \times n$ and D is 1×1 with

\begin{align*}
A^t A - C^t C &= \text{Id}, \\
|D|^2 - B^t B &= 1, \\
A^t B - C^t D &= 0,
\end{align*}
(see, e.g., \cite{4}).

By appealing to the chain rule \eqref{2.3}, it was shown in \cite{2} that

\[\|S(F \circ \sigma)(z)\| = \|SF(\sigma(z))\|, \]
from which

\begin{equation}
\|SF\| = \|S(F \circ \sigma)\|. \tag{2.8}
\end{equation}

In this paper we will consider the family F_α defined by

\[F_\alpha = \{ F : \mathbb{B}^n \to \mathbb{C}^n \mid F \text{ locally biholomorphic}, F(0) = 0, DF(0) = \text{Id}, \|SF\| \leq \alpha \}. \]

The family F_α is linearly invariant and also compact \cite{2}. We are interested in studying its \textit{(trace) order} \cite{1}, given by

\begin{equation}
\text{ord } F_\alpha = \sup_{F \in F_\alpha} \sup_{|w|=1} \frac{1}{2} \left| \sum_{i,j=1}^{n} \frac{\partial^2 f_j}{\partial z_i \partial z_j}(0) w_i \right|. \tag{2.9}
\end{equation}

Because the family is compact, the order is finite. An equivalent form of the order is given by

\[A_\alpha = \sup_{f \in F_\alpha} |\nabla (JF)(0)|, \]
which is shown in \cite{2} to satisfy

\[A_\alpha = 2 \text{ord } F_\alpha. \]

A second measure of the size of a linearly invariant family F is given by the norm order, defined by

\[\|\text{ord}\|F = \sup_{f \in F} \frac{1}{2}||D^2 F(0)||, \]
where

\[F(z) = z + \frac{1}{2}D^2 F(0)(z, z) + \cdots. \]

In general, \text{ord } F \leq n\|\text{ord}\|F. For the family F_α in particular, it was shown in \cite{2} that

\begin{equation}
1 + \frac{\sqrt{3}}{2} \alpha \leq \|\text{ord}\|F_\alpha \leq \frac{2}{n+1} \text{ord } F_\alpha + \frac{\sqrt{n+1}}{2} \alpha. \tag{2.10}
\end{equation}
3. Variations and Extremal Mappings

Let $F_0 \in \mathcal{F}_\alpha$ be a mapping for which A_α is maximal, with $\nabla(JF_0)(0) = \Lambda = (\lambda_1, \ldots, \lambda_n)$. Let σ be an automorphism of B^n with $\sigma(0) = \zeta$, and consider the Koebe transform

$$G(z) = D\sigma(0)^{-1}DF_0(\zeta)^{-1}[F_0(\sigma(z)) - F_0(\zeta)].$$

The mapping $G \in \mathcal{F}_\alpha$ represents a variation of the extremal mapping F_0 when $|\zeta|$ is small. With this in mind, we need to compute $\nabla(JG)(0)$. We have that

$$DG(z) = D\sigma(0)^{-1}DF_0(\zeta)^{-1}DF_0(\sigma(z))D\sigma(z),$$

hence

$$JG(z) = J\sigma(0)^{-1}JF_0(\zeta)^{-1}JF_0(\sigma(z))J\sigma(z),$$

so that

$$\nabla(JG)(0) = \frac{\nabla(JG)}{JG}(0) = \frac{\nabla(JF_0)}{JF_0}(\zeta)D\sigma(0) + \frac{\nabla(J\sigma)}{J\sigma}(0).$$

In order to proceed with the analysis, we need the expansion of $\nabla(JG)(0)$ in powers of ζ.

Lemma 3.1. Let

$$B_{ij} = \sum_{k=1}^{n} S_{ij}^k F_0(0) \lambda_k, \quad B_{ij}^0 = S_{ij}^0 F_0(0).$$

Then

$$\frac{\nabla(JF_0)}{JF_0}(\zeta) = \Lambda + A \cdot \zeta + O(|\zeta|^2), \quad |\zeta| \to 0,$$

where $A = (A_{ij})$ is the matrix given by

$$A_{ij} = B_{ij} - (n + 1)B_{ij}^0 + \frac{\lambda_i \lambda_j}{n + 1}.$$

Proof. Let $u_0 = (JF_0)^{-\frac{1}{n+1}}$ and $\phi(\zeta) = \frac{\nabla(JF_0)}{JF_0}(\zeta)$. Then $\phi(0) = \Lambda$ because $JF_0(0) = 1$. We have that $\phi = (\phi_1, \ldots, \phi_n)$, where

$$\phi_i(\zeta) = \partial_i \log(JF_0)(\zeta) = -(n + 1)\partial_i(\log u_0)(\zeta), \quad \partial_i = \partial/\partial z_i.$$

Since u_0 is a solution of (2.1) with $u_0(0) = 1$ and $\nabla u_0(0) = -\frac{1}{n+1} \nabla(JF_0)(0)$, we see that

$$\partial_j \phi_i(0) = -(n + 1)\partial_j \left[\frac{\partial_i u_0}{u_0} \right](0) = -(n + 1) \left[\partial_i^2 u_0(0) - \partial_i u_0(0)\partial_j u_0(0) \right],$$

$$= -(n + 1) \left[-\frac{B_{ij}}{n + 1} + B_{ij}^0 - \frac{\lambda_i \lambda_j}{(n + 1)^2} \right],$$

$$= -(n + 1) \left[-\frac{B_{ij}}{n + 1} + B_{ij}^0 - \frac{\lambda_i \lambda_j}{(n + 1)^2} \right].$$
which gives that the differential $D\phi(0)$ is given by the matrix $A = (A_{ij})$. This proves the lemma.

Lemma 3.2. With the notation as before, one can choose σ so that

$$D\sigma(0) = \text{Id} + O(|\zeta|^2),$$

$$\nabla(J\sigma)(0) = -(n+1)\overrightarrow{\zeta}.$$

Proof. Assume first that $\sigma(0) = \zeta = (\zeta_1, 0, \ldots, 0)$. Then we may take

$$\sigma(z) = \left(\frac{z_1 + \zeta_1}{1 + \zeta_1 z_1}, \sqrt{\frac{1 - |\zeta_1|^2}{1 + \zeta_1 z_1}} z_2, \ldots, \sqrt{\frac{1 - |\zeta_1|^2}{1 + \zeta_1 z_1}} z_n \right),$$

and one finds that

$$J\sigma(z) = \left(\frac{(1 - |\zeta_1|^2)^{n+1}}{(1 + \zeta_1 z_1)^{n+1}} \right),$$

together with

$$D\sigma(0) = \begin{pmatrix}
(1 - |\zeta_1|^2) & 0 & 0 & \cdots & 0 \\
0 & \sqrt{1 - |\zeta_1|^2} & 0 & \cdots & 0 \\
0 & 0 & \sqrt{1 - |\zeta_1|^2} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & \sqrt{1 - |\zeta_1|^2}
\end{pmatrix},$$

from which the lemma follows for ζ of the form $(\zeta_1, 0, \ldots, 0)$. The general case obtains after considering a rotation of the ball.

In light of Lemmas 3.1 and 3.2, we can rewrite equation (3.1) as

$$(3.3) \quad \nabla(JG)(0) = \Lambda + A \cdot \zeta - (n+1)\overrightarrow{\zeta} + O(|\zeta|^2).$$

Theorem 3.3. Let $F_0 \in \mathcal{F}_\alpha$ be extremal for the order, with $\nabla(JF_0)(0) = \Lambda$. Then

$$(3.4) \quad A \cdot \overrightarrow{\Lambda} = (n+1)\overrightarrow{\Lambda}.$$

Proof. The proof is based on the observation that, in reference to equation (3.3), we must have

$$|\nabla(JG)(0)| \leq |\Lambda|, \quad |\zeta| \to 0.$$

Let $\langle v, w \rangle = v_1 \overrightarrow{w_1} + \cdots + v_n \overrightarrow{w_n}$. Then

$$|\nabla(JG)(0)|^2 = |\Lambda|^2 + \text{Re}\langle \Lambda, A \cdot \zeta \rangle - 2(n+1)\text{Re}\langle \Lambda, \zeta \rangle + O(|\zeta|^2)$$

$$= |\Lambda|^2 + 2\text{Re}(\overrightarrow{\Lambda} \cdot \Lambda - (n+1)\Lambda, \zeta) + O(|\zeta|^2).$$

Since $\zeta = (\zeta_1, \ldots, \zeta_n)$ can be chosen small but otherwise arbitrary, we conclude that

$$\overrightarrow{A} \cdot \Lambda - (n+1)\Lambda = 0,$$
which proves the theorem because $A^t = A$.

In order to facilitate the use of equation (3.4) to estimate the order of F_α, we use linear invariance to assume that $\Lambda = (\lambda, 0, \ldots, 0)$ with $\lambda > 0$. This normalization has a decoupling effect on (3.4), with the matrix A now given by

(3.5) \[A_{ij} = S_{ij}^1 \lambda - (n + 1)S_{ij}^0 + \frac{\delta_i^1 \delta_j^1}{n + 1} \lambda^2, \]

where $S_{ij}^k = S_{ij}^k F_0(0)$. By equating the first components of (3.4) we obtain

(3.6) \[\lambda^2 + (n + 1)S_{11}^1 \lambda - (n + 1)^2 S_{11}^0 - (n + 1)^2 = 0, \]

while the remaining components give

(3.7) \[S_{1j}^1 \lambda - (n + 1)S_{1j}^0 = 0, \quad j = 2, \ldots, n. \]

We are now in position to estimate the order of the family F_α.

Theorem 3.4. The order of F_α satisfies

(3.8) \[\text{ord} F_\alpha \leq \frac{1}{2}(n + 1) \left[\frac{1}{2} \sqrt{n + 1} \alpha + \sqrt{1 + \frac{1}{4}(n + 1)\alpha^2 + C(n, \alpha)} \right], \]

where

\[C(n, \alpha) \leq 6n^2 \alpha^2 + 16\sqrt{n}\alpha. \]

Proof. From (3.7), we see that

\[\left(\lambda + \frac{1}{2}(n + 1)S_{11}^1 \right)^2 = (n + 1)^2 \left(1 + \frac{1}{4}(S_{11}^1)^2 + S_{11}^0 \right). \]

In [2], the following bounds were established for the quantities S_{11}^1, S_{11}^0: \[|S_{11}^1| \leq \sqrt{n + 1}\alpha, \quad |S_{11}^0| \leq C(n, \alpha), \]

where

\[C(n, \alpha) = \left(4n^2 + 2n - 2 + \frac{n + 1}{n - 1} \right) \alpha^2 + \left(4\sqrt{n + 1} + 8\sqrt{\frac{n + 1}{n - 1}} \right) \alpha. \]

The inequality (3.8) follows at once from the estimates on S_{11}^1, S_{11}^0. Finally, it is not difficult to see that

\[C(n, \alpha) \leq 6n^2 \alpha^2 + 16\sqrt{n}\alpha. \]

The following corollary is obtained at once from (2.10).

Corollary 3.5. For the family F_α we have

\[||\text{ord}|| F_\alpha \leq (n + 1)\alpha + \sqrt{1 + \frac{1}{4}(n + 1)\alpha^2 + C(n, \alpha)}. \]
References

[1] Graham, I. and Kohr, G., Geometric function theory in one and higher dimensions, *Pure and Applied Math*. 255, Marcel Dekker (2003).

[2] Hernández, R., Schwarzian derivatives and a linearly invariant family in \(\mathbb{C}^n \), *Complex Variables* 228 (2006), 201-218.

[3] Hernández, R., Schwarzian derivatives and some criteria for univalence in \(\mathbb{C}^n \), *Pacific J. Math.* 52 (2007), 397-410.

[4] Krantz, S., Function Theory of Several Complex Variables, *Pure and Applied Math.*, Wiley (1982).

[5] Molzon, R. and Mortensen, K.P., Differential operators associated with holomorphic mappings, *Annals of Global Analysis and Geometry* 12 (1994), 291-304.

[6] Molzon, R. and Mortensen, K. P., The schwarzian derivative for maps between manifolds with complex projective connections. *Trans. Amer. Math. Soc.* 348 (1996), 3015-3036.

[7] Molzon, R. and Mortensen, K.P., Univalence of Holomorphic Mappings, *Pacific J. Math.* 180 (1997), 125-133.

[8] Molzon, R. and Tamanoi H., Generalized Schwarzians in several variables and Möbius invariant differential operators, *Forum Math.* 14 (2002), 165-188.

[9] Oda, T., On Schwarzian Derivatives in several variables (in Japanese), *Kokyuroku of R.I.M.*, *Kioto Univ.* 226 (1974).

[10] Pommerenke, Ch., Linear-invariente Familien analytischer Funktionen I, *Math. Ann.* 155 (1964), 108-154.

[11] Yoshida, M., Canonical forms of some system of linear partial differential equations, *Proc. Japan Acad.* 52 (1976), 473-476.

[12] Yoshida, M., Orbifold-Uniformizing Differential Equations, *Math. Ann.* 267 (1984), 125-142.

Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Casilla 306, Santiago 22, Chile, mchuaqui@mat.puc.cl

Facultad de Ciencias y Tecnología, Universidad Adolfo Ibáñez, Av. Diagonal las Torres 2640, Peñalolen, Chile, rodrigo.hernandez@uai.cl