Assessment of swallowing and masticatory performance in obturator wearers: a clinical study

Nungotso Vero1, Niraj Mishra1, Balendra Pratap Singh1*, Kamleshwar Singh1, Sunit Kumar Jurel1, Vijay Kumar2

1Department of Prosthodontics, Faculty of Dental Science, King Georges Medical University, Lucknow, India
2Department of Surgical Oncology, King Georges Medical University, Lucknow, India

PURPOSE. To assess function by identifying changes in swallowing and masticatory performance in maxillary obturator prosthesis wearers. MATERIALS AND METHODS. Sixty subjects were recruited for the study, of which 20 were obturator wearers, 20 were completely dentulous and 20 had removable partial/complete dentures with similar Eichner’s Index. Swallowing ability was evaluated with and without obturator using the “Water Drinking Test”; Masticatory performance was evaluated with the Sieve test; and maximum occlusal force was recorded with the help of a digital bite sensor. The data was analyzed using the Statistical Package for Social Science version 15.0 with a confidence level at 95%. RESULTS. Profile, behavior of drinking and time taken to drink were significantly improved (P<.001) in subjects after wearing obturator. Masticatory performance was not significantly different (P=.252) in obturator wearer when compared with dentulous or removable partial/complete denture wearer, but significantly (P<.001) high inter group difference in maximum occlusal force existed. Correlation between masticatory performance and maximum occlusal force was not significant (P=.124). CONCLUSION. Swallowing ability was significantly improved after wearing obturator but masticatory performance was not significantly different from those having similar occlusal support zone in their dentition. [J Adv Prosthodont 2015;7:8-14]

KEY WORDS: Masticatory performance; Obturator; Swallowing; Mastication; Occlusal force; Maxillectomy
ty test and mastication were subjective in nature and compared with completely edentulous subjects. Hence this study was planned to assess the swallowing ability in obturator prosthesis wearers and to compare the masticatory performance with similar occlusal support control group.

MATERIALS AND METHODS

Subjects were selected and recruited in this study amongst patients and their attendant who visited department of Prosthodontics of the medical university from June 2011 to December 2012. Selected samples were explained about the need and procedures to be employed in this study and were requested to sign a written consent form to indicate their acceptance and willingness to participate. Ethical approval was taken from the institutional ethical committee.

Twenty subjects were obturator wearer in case group. Two control groups were selected. Control group 1 included twenty healthy completely dentate subjects from patient attendants or matched subjects. Control group 2 had twenty removable partial denture/complete denture wearer having similar natural (as Eichner’s index) occlusal support zone from removable Prosthodontics clinic of department. Eichner’s index is based on the number of occlusal support zones in posterior contact area. There were four occlusal support zones (two premolar and two molar zones) if contact occurs with the opposing arch. This index includes three main groups (A, B, and C) and subgroups A1-A3, B1-B4, C1-C3 (Table 1).

Inclusion criteria for case group were
1. Patients who had undergone maxillectomy and were obturator wearers
2. Patients undergoing maxillectomy who would require obturator
3. Age group of 18 years and above
4. Class I to VI maxillectomy defect

Exclusion criteria were
1. Maximum jaw opening of 15 mm or less because the superolateral extension of the obturator may be limited, compromising the seal
2. Physical and mental disability that would interfere with the study

Fabrication of obturator and tests were done by a qualified prosthodontist who has more than eight years of clinical experience. Open top design of obturator was preferred. Extension along posterior and lateral margins of defect was emphasized to enhance retention, stability, and support. Vertical extension in the postero-medial region of the defect was carefully designed to minimize leakage. Swallowing ability and masticatory performance was checked under supervision of a qualified otolaryngologist.

Swallowing ability was evaluated by “Water drinking test” in obturator wearers with and without wearing the obturator. In water drinking test, subjects were instructed to drink 30 mL of water in one swallow with 5 seconds as cut-off point for normality and their profile were evaluated.

Table 1. Distribution of patients according to Aramany’s classification and Eichner’s index

Aramany’s classification	No. of patients	Percentage
Class I	5	25
Class II	7	35
Class III	2	10
Class IV	3	15
Class V	0	0
Class VI	3	15
Eichner’s Indices		
Group A (Four occlusal supporting zone)	2	10
A1 (no missing teeth)	1	5
A2 (at least one missing tooth in maxilla/mandible)	1	5
A3 (at least one missing teeth in maxilla and mandible)	0	0
Group B (Three to one occlusal support zone)	14	70
B1 (three occlusal support zone)	9	45
B2 (two occlusal support zone)	4	20
B3 (one occlusal support zone)	1	5
Group C (No occlusal contact)	4	20
C1 (at least on tooth in maxilla and mandible)	2	10
C2 (at least one tooth in maxilla/mandible)	1	5
C3 (completely edentulous)	1	5
with combination of time required for drinking water (from pouring of water in mouth to original position of larynx was return back) and incidence of cough reflex while drinking. The test was done with and without wearing the obturator. The profile of each subject was categorized in accordance with specific criteria as followed:

- Normal: Able to drink in one swallow within 5 seconds without a cough reflex
- Suspected disability: Able to drink in one swallow in >5 seconds without a cough reflex, or able to drink in several swallows without a cough reflex
- Disability: Unable to drink without experiencing a cough reflex

Behavior of drinking was observed as natural drinking, sucking, holding, compulsory drinking, careful drinking and episode of drinking as drooling and nasal leakage; and characterized as

- Natural drinking: Able to drink water without problems
- Sucking: Sucking water (sip and/or sucking)
- Holding: Holding water in the mouth
- Compulsory drinking: Drinking water compulsorily with unnatural head posture
- Careful drinking: Drinking water carefully
- Drooling: Drooling water from the mouth
- Natural drinking: Leaking water into the nose

Subjects who exhibited natural drinking without any compensatory behavior and peculiar episodes were categorized as “normal” and the ones who exhibited at least one of the above mentioned behaviors and episodes were categorized as “abnormal”.

Chewing function was assessed by evaluating masticatory performance and maximum occlusal force. In masticatory performance, obturator wearers were compared with completely dentate (control group 1) and removable partial dentures wearers of similar Eichner’s index12 whereas maximum in control group 1 (1.06 ± 0.09) and minimum in obturator wearer (case group)(0.96 ± 0.20). Mean masticatory performance was maximum in control group 1 (1.06 ± 0.09) and minimum in obturator wearer (case group)(0.96 ± 0.20). Mean masticatory performance was maximum in control group 1 (1.06 ± 0.09) and minimum in obturator wearer (case group)(0.96 ± 0.20).

Masticatory performance ranged from 0.09 to 1.33 in different groups. Mean masticatory performance was maximum in control group 1 (1.06 ± 0.09) and minimum in obturator wearer (case group)(0.96 ± 0.20). Mean masticatory performance in control group 2 was 1.01 ± 0.23 (Table 3). Analysis of variance and box plot thereafter showed no statistically significant inter-group difference in masticatory performance in different groups (F=1.41; P=.252). Masticatory performance values in different groups were overlapping in nature (Fig. 1). Maximum difference was observed between case group and control group 1 while statistical significant inter-group difference in masticatory performance in different groups (F=1.41; P=.252). Masticatory performance values in different groups were overlapping in nature (Fig. 1). Maximum difference was observed between case group and control group 1 while significant inter-group difference in masticatory performance in different groups (F=1.41; P=.252). Masticatory performance values in different groups were overlapping in nature (Fig. 1). Maximum difference was observed between case group and control group 1 while significant inter-group difference in masticatory performance in different groups (F=1.41; P=.252). Masticatory performance values in different groups were overlapping in nature (Fig. 1). Maximum difference was observed between case group and control group 1 while
minimum difference was observed between case group and control group 2. There was no statistically significant difference between groups ("P">.05).

Analysis of variance and box plot showed a statistically significant inter-group difference in maximum occlusal force (F=67.95; "P"<.001) (Table 4). It was observed that subjects in case group had lower order of occlusal force whereas subjects in control group 1 had the highest order of occlusal force followed by control group 2. No overlapping interquartile values were observed on the box plot (Fig. 2). Maximum difference was observed between case group and control group 1 while minimum difference was observed between case group and control group 2. All differences between groups were statistically significant ("P"<.001).

None of the correlations between masticatory performance and maximum occlusal force were statistically significant (Table 5) (Fig. 3).

Table 2. Swallowing ability without and with definite obturator

S. No.	Variable	Without obturator	With obturator	Significance of change
1	Profile of water drinking test			
	Disability	2 10	0 0	z=4.000; "P"<.001 (Wilcoxon signed rank test)
	Suspected disability	15 75	3 15	
	Normal	3 15	17 85	
2	Time taken (Mean±SD) (seconds)	6.60±1.39	5.20±0.52	t=5.085; "P"<.001 (Paired t-test)
3	Behavior and episode of drinking			
	Natural	3 15	18 90	x²=22.556; "P"<.001 (Chi-square test)
	Abnormal	17 85	2 10	
	Careful	6 30	2 10	
	Compulsory	6 30	0 0	
	Drooling	2 10	0 0	
	Holding	2 10	0 0	
	Sucking	1 5	0 0	

Table 3. Comparison of mean masticatory performance, analysis of variance and between group comparisons of masticatory performance in different groups

Comparison of mean masticatory performance in different groups	No. of cases	Mean	SD	Minimum	Maximum
Case group	20	0.96	0.2	0.56	1.33
Control group 1	20	1.06	0.09	0.9	1.23
Control group 2	20	1.01	0.23	0.09	1.23
Total	60	1.01	0.18	0.09	1.33

Analysis of variance for masticatory performance in different groups	Sum of squares	df	Mean square	F	Sig.
Between groups	0.09	2	0.05	1.41	0.252
Within groups	1.9	57	0.03		
Total	1.99	59			

Analysis of variance for masticatory performance in different groups	Comparison	Mean difference	SE	"P"
Case vs control 1	-0.097	0.06	.221	
Case vs control 2	-0.048	0.06	.685	
Control 1 vs control 2	0.049	0.06	.674	
Fig. 1. Analysis of variance for masticatory performance in different groups.

Table 4. Analysis of variance for maximum occlusal force and between groups comparison of maximum occlusal forces in different groups (Tukey HSD test)

	Sum of squares	Df	Mean square	F	P value
Between Groups	17366.44	2	8683.22	67.95	<.001
Within Groups	7283.978	57	127.79		
Total	24650.41	59			

Between group comparison of maximum occlusal forces in different study groups

S. No.	Comparison	Mean difference	SE	P value
1	Case group vs Control group 1	-41.39	3.57	<.001
2	Case group vs Control group 2	-16.48	3.57	<.001
3	Case group 1 vs Control group 2	24.91	3.57	<.001

Fig. 2. Analysis of variance for occlusal force in different groups.

Table 5. Showing correlation between masticatory performances and maximum occlusal forces in different study groups

S.N.	Variable	Correlation “r”	P
1	Overall	0.201	.124
2	Case group	-0.006	.981
3	Control group 1	0.304	.192
4	Control group 2	-0.099	.679

DISCUSSION

The direct effect of maxillary defects, which were created by surgical intervention of neoplasm has a profound impact on the functional abilities of a patient.1 Maxillary defect which causes functional disability due to oral and sino-nasal cavity communication can be restored by prosthetic replacement with a pressure resistance seal of an obturator bulb against the mucosal lining and skin graft covering the defect.22,23
Use of artificial substitutes to replace anatomic structures has long been an accepted method of treatment for patients with maxillectomy defects. Major goal of cancer therapy is not only to eradicate the disease but also to restore patients to a reasonably normal quality of life. Psychological well-being and patient's vitality are an increasing contribution to evaluation of success of maxillectomy patients, and a good obturator function has been previously reported to contribute to the improved quality of life.

This study objectively assessed swallowing and found significant improvement in swallowing ability and also significantly reduced drinking time in maxillectomy patients while using an obturator. The reason of significant improvement of drinking with the obturator may be due to the closure of oro-antral communication of the defect. After wearing the obturator, most of the subjects having compensatory behavior could drink naturally whereas 10% subjects still showed compensatory behavior of drinking which may be due to the large size defect (such as class IV), leading to lesser retention and stability in obturator prostheses. Kreeft et al. had also found swallowing problems (subjective assessment) in obturator wearer and reason for this he stated was adjuvant radiotherapy complications. Moreno et al. have found a comparable swallowing with microvascular free flap reconstruction versus palatal obturator. Few other authors also assessed swallowing ability but as a subjective component in Quality of life questionaire.

No significant inter group difference was seen in different groups for masticatory performance. This is because masticatory performance may be dependent on occlusal stops and tooth morphology. Though studies by Anita Wedel et al. have shown poor chewing ability (subjective assessment) in 14% of maxillofacial obturator cases, but in our study 85% subjects were of class I, II, III & IV and 80% were of Eichner's index A & B type so most of the natural teeth are present which help in mastication. It was also documented that preferable chewing side by the patient follow the side where natural teeth are present and agar being a material softer than materials used in other studies, we have found no significant difference in masticatory performance. Despite this agar was selected because of the advantages of reproducibility, simple routine application and with implication that it can be crushed to the same degree in case and control groups.

Occlusal force ranged from 2.44 to 77 kg in different groups. Our study showed statistically significant inter-group difference in maximum occlusal force. This may be explained best by the fact that age variation factor and condition of occlusal support were of major influence for the maximum occlusal force. Majority of control group 1 (complete dentate) subjects were of lower age compared to control group 2 (removable partial/complete denture) subjects and case group in this study. Between inter-group comparisons; maximum difference was found between case group and control group 1; minimum difference was observed between case group and control group 2. These

significant differences may be because of multiple reasons like age, gender, condition of occlusal support, occlusal morphology of the biting location, and varying activity of jaw musculature in the subjects.

The present study also found that there is no significant statistical correlation between masticatory performance and maximum occlusal forces since maximum occlusal force was not required by the subject to chew a test material. As discussed, masticatory performance has no significant differences in different study groups as it is influenced by the number of existing teeth, morphology of teeth and the number of occlusal supports. Whereas, maximum occlusal force is influenced by age, gender, tooth morphology and jaw musculature with significant variation in different study groups.

Certain limitations of the present study were short duration of study period (one year) and small sample size due to tertiary referral centre. Inclusion of all different classes of maxillectomy defect and recruitment of irradiated and non-irradiated subjects may have resulted in selection bias. Maximum occlusal force was measured at subject's best biting location at a unilateral single contact area and hydrocolloid chewing material may still not be the ideal test material to assess masticatory performance.

Therefore, in order to improve upon the accuracy, further elaboration of this study with larger sample size and improvised methodology including other chewing test materials is recommended.

CONCLUSION

Obturator will improve swallowing ability as well as reduce drinking time in maxillectomy subjects. Masticatory performance was not depending on occlusal force and it is not significantly changed compared to normal, healthy adult having similar occlusal support zone.

REFERENCES

1. Minsley GE, Warren DW, Hinton V. Physiologic responses to maxillary resection and subsequent obturation. J Prosthet Dent 1987;57:338-44.
2. Okay DJ, Genden E, Buchbinder D, Urken M. Prosthodontic guidelines for surgical reconstruction of the maxilla: a classification system of defects. J Prosthet Dent 2001;86:352-63.
3. Bidra AS, Jacob RF, Taylor TD. Classification of maxillectomy defects: a systematic review and criteria necessary for a universal description. J Prosthet Dent 2012;107:261-70.
4. Arigbede AO, Dosumu OO, Shaba OP, Esan TA. Evaluation of speech in patients with partial surgically acquired defects: pre and post prosthetic obturation. J Contemp Dent Pract 2006;7:89-96.
5. Depprich R, Naujoks C, Lind D, Ommberger M, Meyer U, Kübler NR, Handschel J. Evaluation of the quality of life of patients with maxillofacial defects after prosthodontic therapy with obturator prostheses. Int J Oral Maxillofac Surg 2011;40:71-9.
6. Devlin H, Barker GR. Prosthetic rehabilitation of the edentulous patient requiring a partial maxillectomy. J Prosthet Dent 1992;67:223-7.

7. Matsuyama M, Tsukiyama Y, Koyano K. Objective clinical assessment of change in swallowing ability of maxillectomy patients when wearing obturator prostheses. Int J Prosthodont 2005;18:475-9.

8. Tang JA, Rieger JM, Wolfaardt JF. A review of functional outcomes related to prosthetic treatment after maxillary and mandibular reconstruction in patients with head and neck cancer. Int J Prosthodont 2008;21:337-54.

9. Vega C, León X, Cervelli D, Pons G, López S, Fernández M, Quer M, Masià J. Total or subtotal glossectomy with microsurgical reconstruction: functional and oncological results. Microsurgery 2011;31:517-23.

10. Speksnijder CM, van der Glas HW, van der Bilt A, van Es RJ, van der Rijt E, Koole R. Oral function after oncological intervention in the oral cavity: a retrospective study. J Oral Maxillofac Surg 2010;68:1231-7.

11. Kreeft AM, Krap M, Wismeijer D, Speksnijder CM, Smeele LE, Bosch SD, Muijen MS, Balm AJ. Oral function after maxillectomy and reconstruction with an obturator. Int J Oral Maxillofac Surg 2012;41:1387-92.

12. Ikebe K, Matsuda K, Muri S, Maeda Y, Nokubi T. Validation of the Eichner index in relation to occlusal force and masticatory performance. Int J Prosthodont 2010;23:521-4.

13. Aramany MA. Basic principles of obturator design for partially edentulous patients. Part I: Classification. 1978 [classical article]. J Prosthet Dent 2001;86:559-61.

14. John Beumer III, Mark T, Marunick, Neil Garret, Dennis Rohner, Harry Reintsema, Elliot Abemayor, Renee Penn, Vishad Nabili, Peter Bucher. Rehabilitation of maxillary defects. In: John Beumer II, Mark T Marunick, Salvatore J Quintessence publishing Co, Inc; 2011. p. 168-70.

15. Vega C, León X, Cervelli D, Pons G, López S, Fernández M, Quer M, Masià J. Total or subtotal glossectomy with microsurgical reconstruction: functional and oncological results. Microsurgery 2011;31:517-23.

16. Proffit WR, Fields HW. Occlusal forces in normal- and long-face children. J Dent Res 1983;62:571-4.

17. MacDonald JW, Hannam AG. Relationship between occlusal contacts and jaw-closing muscle activity during tooth clenching: Part I. J Prosthet Dent 1984;52:718-28.

18. Kim J, Jang W, Shin S, Kim W, Kim S, Kim J. Accuracy of bite force measurements using thin film transducers. J Prosthet Dent 2004;91:518-23.

19. Rottner K, Richter EJ. Effect of occlusal morphology on the accuracy of bite force measurements using thin film transducers. J Prosthet Dent 2004;91:518-23.

20. King GE, Gay WD. Application of various removable partial denture design concepts to a maxillary obturator prosthesis. J Prosthodont Dent 1979;41:316-8.

21. Irish J, Sandhu N, Simpson C, Wood R, Gilbert R, Gullane P, Brown D, Goldstein D, Devins G, Barker E. Quality of life in patients with maxillectomy prostheses. Head Neck 2009;31:813-21.

22. Moreno MA, Skoracki RJ, Hanna EY, Hanasono MM. Microvascular free flap reconstruction versus palatal obturation for maxillectomy defects. Head Neck 2010;32:860-8.

23. Aramany MA. Basic principles of obturator design for partially edentulous patients. Part I: Classification. 1978 [classical article]. J Prosthet Dent 1984;52:718-28.

24. Aramany MA. Basic principles of obturator design for partially edentulous patients. Part I: Classification. 1978 [classical article]. J Prosthet Dent 1984;52:718-28.