Rat testicular germ cells and sertoli cells release different types of bioactive transforming growth factor beta in vitro

Bart L Haagmans1,5, Jos W Hoogerbrugge3, Axel PN Themmen3 and Katja J Teerds*2,4

Address: 1Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, POBox 80.165, 3508 TD Utrecht, The Netherlands, 2Department of Biochemistry and Cell Biology Faculty of Veterinary Medicine, Utrecht University, POBox 80.176, 3508 TD Utrecht, The Netherlands, 3Department of Endocrinology and Reproduction, Medical Faculty, Erasmus University Rotterdam, POBox 1738, 3000 DR Rotterdam, The Netherlands, 4Department of Animal Sciences, Human and Animal Physiology Group, Wageningen University, Haarweg 10, 6709 Pj Wageningen, The Netherlands and 5Present address: Institute of Virology, Erasmus MC, POBox 1738, 3000 DR Rotterdam. The Netherlands

Email: Bart L Haagmans - haagmans@viro.fgg.eur.nl; Jos W Hoogerbrugge - themmen@endov.fgg.eur.nl; Axel PN Themmen - themmen@endov.fgg.eur.nl; Katja J Teerds* - katja.teerds@wur.nl

* Corresponding author

Published: 5 February 2003
Received: 21 January 2003
Accepted: 5 February 2003

Reproductive Biology and Endocrinology 2003, 1:3

This article is available from: http://www.RBEj.com/content/1/1/3

© 2003 Haagmans et al; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article’s original URL.

Abstract

Several in vivo studies have reported the presence of immunoreactive transforming growth factor-β’s (TGF-β’s) in testicular cells at defined stages of their differentiation. The most pronounced changes in TGF-β1 and TGF-β2 immunoreactivity occurred during spermatogenesis. In the present study we have investigated whether germ cells and Sertoli cells are able to secrete bioactive TGF-β’s in vitro, using the CCl64 mink lung epithelial cell line as bioassay for the measurement of TGF-β. In cellular lysates, TGF-β bioactivity was only observed following heat-treatment, indicating that within these cells TGF-β is present in a latent form. To our surprise, active TGF-β could be detected in the culture supernatant of germ cells and Sertoli cells without prior heat-treatment. This suggests that these cells not only produce and release TGF-β in a latent form, but that they also release a factor which can convert latent TGF-β into its active form. Following heat-activation of these culture supernatant’s, total TGF-β bioactivity increased 6- to 9-fold. Spermatocytes are the cell type that releases most bioactive TGF-β during a 24 h culture period, although round and elongated spermatids and Sertoli cells also secrete significant amounts of TGF-β. The biological activity of TGF-β could be inhibited by neutralizing antibodies against TGF-β1 (spermatocytes and round spermatids) and TGF-β2 (round and elongating spermatids). TGF-β activity in the Sertoli cell culture supernatant was inhibited slightly by either the TGF-β1 and TGF-β2 neutralizing antibody. These in vitro data suggest that germ cells and Sertoli cells release latent TGF-β’s. Following secretion, the TGF-β’s are converted to a biological active form that can interact with specific TGF-β receptors. These results strengthen the hypothesis that TGF-β’s may play a physiological role in germ cell proliferation/differentiation and Sertoli cell function.

Background

The normal physiological functions of the testis are regulated by the gonadotrophins luteinizing hormone (LH) and follicle-stimulating hormone (FSH). In addition,
locally derived paracrine factors are also postulated to play an important role in maintaining cellular function, growth and differentiation in the testis. A number of peptide growth factors that affect the growth and metabolic activities of testicular cell types have been identified in the testis, including the transforming growth factor-β's (TGF-β's) [1].

The TGF-β's are polypeptide growth factors that are multifunctional regulators of both growth and development in many different tissues. To date three different forms of TGF-β have been identified in the testis. Sertoli cells and Leydig cells in the porcine testis express TGF-β1 mRNA [2,3]. In the adult mouse TGF-β1 and TGF-β2 mRNA's have been shown to be expressed in the somatic cell compartment of the germ cell depleted testis, while TGF-β1 mRNA expression has also been detected in spermatogenic cells [4]. In the rat testis TGF-β1, TGF-β2 and TGF-β3 mRNAs are expressed by Sertoli cells and peritubular/myoid cells. The expression pattern of these mRNAs has been shown to undergo clear changes during testicular development [5,6].

We have expanded these findings to the protein level and have shown that immunoreactive TGF-β1 and TGF-β2 are present in vivo in testicular cells at defined stages of their differentiation [7]. TGF-β1 predominated in spermatocytes and early round spermatids, but as the spermatids elongated around stages VIII-IX of the cycle of the seminiferous epithelium, the TGF-β1 immunoreactivity declined. TGF-β2 was undetectable in spermatocytes and early round spermatids, but as spermiogenesis progressed, around stages V-VI, spermatids rapidly became positive for TGF-β2 and remained positive as the spermatids elongated. TGF-β1 immunoreactivity was present in Sertoli cells throughout testicular development, while TGF-β2 immunoexpression rapidly declined after birth [7].

Although the observation of immunoreactive TGF-β1 and TGF-β2 in germ cells at defined stages of their differentiation suggests that these growth factors may play a physiological role in germ cell differentiation, there is no evidence that these germ cells and Sertoli cells also secrete TGF-β's. Hence, in the present study we have investigated whether Sertoli cells, spermatocytes, round and elongated spermatids release TGF-β's in vitro, using the CCl64 mink lung epithelial cell line for the measurement of TGF-β bioactivity. Culture media we added to the bioassay before and after heat-activation, in order to determine whether these cell types secrete a factor that can activate the secreted latent TGF-β1 as well.

Materials & Methods

Cell isolation

Highly purified (> 99%) Sertoli cell preparations were obtained by isolating Sertoli cells from testes of 21-day-old Wistar rats (substrain R-1 Amsterdam) as has been described by Themmen et al. [8]. Sertoli cells were cultured in Eagle’s minimal essential medium (MEM; Gibco, Grand Island, NY) with 0.1% BSA (fraction V; Sigma, St Louis, MO) and antibiotics at a density of 12 × 10⁶ cells per 175 cm² in 20 ml medium at 37°C in culture flasks [8]. After a culture period of 24 h the culture supernatant was collected and the cells were scraped from the bottom of the culture flask, resuspended and homogenized in 2 ml phosphate buffered saline (PBS) after which both culture supernatant and cell homogenate were frozen and stored at -20°C until further processing.

Spermatogenic cells were isolated from 40/50-day-old Wistar rats (substrain R-1 Amsterdam) using collagenase and trypsin treatment, and purified using sedimentation at unit gravity (StaPut procedure) followed by density gradient purification (Percoll gradients) [9]. The purity of the cell preparations isolated according to this method, was analysed using DNA-flow cytometry [10]: the preparations enriched in spermatocytes, round and elongated spermatids contained more than 90% of cells with a 4C or 1C amount of DNA per cell, respectively. Spermatocytes, round spermatids and elongated spermatids were cultured in PBS with 0.1% BSA supplemented with 2 mM sodium pyruvate, 6 mM DL-lactate and antibiotics according to the method described by Jutte et al (11). The cell densities were 17 × 10⁶ cells and 80 × 10⁶ cells, respectively for spermatocytes and round spermatids, in 35 ml PBS at 32°C in culture flasks (Gibco). Elongated spermatids were cultured at a density of 16 × 10⁶ cells, in 18 ml PBS at 32°C in culture flasks (Gibco). Under these culture conditions the viability and capacity of protein synthesis and RNA synthesis and processing remains remarkably constant, as has been shown previously by our group (11–13). After a culture period of 24 h the spermatogenic cells were spun down, resuspended and homogenized in 2 ml PBS after which both supernatant and cell homogenates were frozen and stored at -20°C until further processing.

All experimental procedures involving the use of rats, were approved by the ethical committee for laboratory animal welfare of the Faculty of Medicine, Erasmus University, Rotterdam.

Bioassay for TGF-β

TGF-β activity in cell homogenates and cell culture supernatants was determined using a CCl64 mink lung epithelial cell biological assay [14]. The cells were collected during their logarithmic growth phase and suspended at a concentration of 8 × 10⁴ cells/ml in DMEM (Gibco)
containing 0.2% fetal calf serum (Gibco). Fifty µl of the suspension was added to flat bottom 96-well plates and incubated at 37°C for 5 h. Samples, either assayed directly or heat activated (5 min, 80°C), were then added to the wells at various dilutions with or without the addition of neutralizing rabbit anti-TGF-β1 or anti-TGF-β2 antibodies (gift from dr. AJM Van den Eijnden-Van Raaij, Hubrecht Laboratory, Utrecht, The Netherlands), as has been described before [15]. After 20 h the cells were pulsed with 1 µCi [3H]thymidine (Amersham, Amsterdam; specific activity 0.7–1.1 × 10⁸ MBq/mmol) for 4 h and the incorporated radioactivity was counted. The inhibition of the proliferation of the cells was related to a standard curve of recombinant human TGF-β1 (Genzyme, Cambridge, MA). All experiments were carried out in triplicate. Values are expressed as mean ± SD. For statistical analysis the two-tailed Student’s t-test was used.

Results

In cell lysates of spermatocytes, round and elongating spermatids, and Sertoli cells cultured for 24 h, TGF-β bioactivity was only measurable after heat activation. Elongating spermatids contained the highest levels of TGF-β bioactivity (Table 1).

TGF-β bioactivity was also measured in the supernatants of these cultures. Even without heat treatment considerable amounts of active TGF-β were detectable in the medium of all cell types. Following heat activation the amount of TGF-β increased 6- to 9-fold; the highest active TGF-β content was measured in the supernatant of the spermatocyte cultures (Table 1). TGF-β bioactivity in the culture supernatant’s was higher than in the cell lysates, suggesting that most TGF-β did not accumulate within the cells but was released during culture.

In order to confirm that it was indeed TGF-β that inhibited the growth of the CCl64 mink lung cells, and to investigate the types of TGF-β that were secreted by the testicular cells, neutralizing TGF-β1 and TGF-β2 antibodies were mixed with the culture supernatants 30 min before addition to the mink lung epithelial cell bioassay. As shown in Figure 1 TGF-β1 antiserum clearly reduced the growth inhibitory effects of the spermatocyte, round spermatid and Sertoli cell supernatants in CCl64 mink lung cells, while the effect of this antibody in the supernatant of elongated spermatids was less pronounced. The TGF-β2 antiserum reduced the growth inhibitory effects of round spermatid supernatant, while the effects in spermatocyte, round spermatid and Sertoli cell supernatant’s was minimal (Fig. 1).

Discussion

TGF-β has been purified from several nonneoplastic tissues, transformed cells and from conditioned media of several cell lines [16]. In the testis, Sertoli cells, peritubular/myoid cells and germ cells have been shown to contain mRNAs for different types of TGF-β’s [2,4–6]. Secretion of TGF-β1 by Sertoli cell-germ cell co-cultures has been demonstrated by Western blotting [17]. The data of the present study showed that cell lysates of highly purified germ cells and Sertoli cells contained TGF-β, which became activated following heat-treatment. In addition, these cells released TGF-β in vitro during a 24 h culture period. The highest level of intracellular TGF-β bioactivity was found in elongating spermatids, while spermatocytes were the testicular cell type that released most TGF-β during the culture period, although round and elongated spermatids and Sertoli cells also secreted significant amounts of this growth factor.

The activity of TGF-β in the culture supernatants could be inhibited considerably by neutralizing antibodies raised

Testicular cell type	Tissue	Supernatant		
	Not activated	Heat activated	Not activated	Heat activated
Spermatocytes	ND	5.0 ± 0.6	693.0 ± 231.0	6405.0 ± 105.0
Round spermatids	ND	1.5 ± 0.2	361.4 ± 100.6	2537.5 ± 262.5
Elongating spermatids	ND	103.1 ± 9.4	596.3 ± 138.4	2981.3 ± 393.8
Sertoli cells	ND	16.7 ± 6.7	233.3 ± 66.7	1458.3 ± 208.3

Supernatant, using the CCl64 mink lung epithelial cell line as a bioassay for the measurement of TGF-β activity. Spermatocytes, round spermatids, elongated spermatids and Sertoli cells were cultured for 24 h. TGF-β activity in the different preparations was measured before and after heat-activation of the samples (for details see Materials & Methods). The incubations were carried out in triplicate (values are presented as means ± SD); the data being representative of at least three different experiments. ND: not detectable.
against TGF-β1 (spermatocytes, round spermatids) and TGF-β2 (elongating spermatids). The TGF-β1 antibody had a less pronounced inhibitory effect on the bioactivity in elongated spermatid conditioned medium, while the same was the case for the TGF-β2 antibody in conditioned medium of spermatocytes and round spermatids. However, one has to keep in mind that the ED50's for growth inhibition of CCl64 mink lung epithelial cells by the different isoforms of TGF-β are not the same. Therefore, it is not possible to extrapolate the growth inhibitory effects to amounts of TGF-β1 and TGF-β2 released by spermatocytes, and round and elongating spermatids. The data of the present study fit very well with our immunohistochemical observations, where we found intense immunostaining for TGF-β1 in spermatocytes and round spermatids. TGF-β2 immuno-reactivity was low or absent in these cell types. In contrast, TGF-β2 immunoreactivity was high in elongating spermatids, while in these cells TGF-β1 immunostaining was negligible [7].

TGF-β activity in the Sertoli cell culture supernatant was slightly inhibited following the addition of the TGF-β1 or TGF-β2 neutralizing antibody. These results further extend previous observations by Avallet et al [17] who could not detect TGF-β1 secretion by Sertoli cells in vitro by Western blotting. Based on studies by Mullaney & Skinner [6] who showed that in Sertoli cells from 21-day-old rats TGF-β3 mRNA is the type of TGF-β that is predominantly expressed and secreted, we presume that remaining bioactivity in the Sertoli cell supernatant is probably due to the presence of TGF-β3.

Whereas many cell types have the potential to produce TGF-β in vitro, they have been reported to secrete TGF-β in an inactive (latent) form which is unable to bind to its receptors [18,19]. The CCl64 mink lung epithelial cell line which we used as a bioassay for the detection of TGF-β activity, does not detect latent TGF-β. Latent TGF-β can, however, be activated by physiochemical treatment.
In an immunohistochemical study we have shown that there exists a marked transition from TGF-β1 to TGF-β2 during the cycle of the seminiferous epithelium [7]. The present investigation expands these findings with the observation that germ cells and Sertoli cells release these different types of TGF-β's in vitro as well. The physiological relevance of TGF-β's as growth- and differentiation-regulatory factors appears to rest on the regulation of its activation [15]. Once activated, these TGF-β's have extremely short half-lives and are transported only within a short range [24], suggesting that these transforming growth factors presumably exert their action in a paracrine fashion within the seminiferous tubules.

So far actions of TGF-β on testicular cells have only been demonstrated in vitro. Morera et al. [25] and Benahmed and colleagues [26] have for instance shown that TGF-β can inhibit the stimulatory actions of FSH on Sertoli cell aromatase activity by attenuating cAMP levels in vitro. Other groups have reported that TGF-β increases inhibin α mRNA levels [27], lactate production [28] and proteoglycan synthesis [29]. TGF-β3 has been implicated to perturb the inter-Sertoli tight junction permeability barrier possibly by affecting occludin, zonula occludens-1 and claudin-11, genes expressed in junctional complexes [30]. These observations indicated that Sertoli cells presumably possess binding sites for TGF-β. Reports of direct effects of TGF-β on germ cells are limited. Hakovinta and colleagues [31] have demonstrated that TGF-β increased DNA synthesis in preleptotene spermatocytes in seminiferous tubules, suggesting the presence of functional receptors on these cells. Indeed, in more recent studies it has been shown that Sertoli cells, spermatocytes and spermatids express TGF-β receptor types I and/or II [27,32]. Taken together, these observations further strengthen the hypothesis that TGF-β's are important paracrine/autocrine factors within the seminiferous tubules and suggest the existence of stage dependent interaction and communication between neighboring Sertoli and germ cells.

In summary, the present study demonstrates the presence of several types of latent TGF-β's within spermatogenic cells and Sertoli cells which are released by these cells as well. Following release they are converted to a biological active form that can interact with specific TGF-β receptors. The presence of active TGF-β within the seminiferous tubules may have important implications for the role of TGF-β's in the function of Sertoli cells, and germ cell development.

Acknowledgements

The authors thank dr. van den Bijnden-van Raaij (Hubrecht laboratory, Utrecht, The Netherlands) for the gift of the TGF-β1 and TGF-β2 neutralizing polyclonal antibodies.

References

1. Bellvé AR and Zheng WV Growth factors as autocrine and paracrine modulators of male gonadal functions. J Reprod Fertil 1989, 85:771-793
2. Avallet O, Vigier M, Albaldajo V, de Cesaris P and Saez JM Transforming growth factor β gene expression in cultured porcine Sertoli and Leydig cells: Effects of hormone and growth factors. In: Proceedings of the 6th European Workshop on Molecular and Cellular Endocrinology of the Testis 1990, D13:
3. Caussanel S, Tabone E, Hendrick JC, Dacheux F and Benahmed M Cellular distribution of transforming growth factor betas 1, 2, and 3 in the testis of the goat. Biol Reprod 1997, 56:357-367
4. Watrin F, Scotto L, Associen RK and Wolgemuth DJ Cell lineage specificity of expression of the murine transforming growth factor-β1 and transforming growth factor-β2 genes. Cell Growth & Differ 1991, 2:77-83
5. Skinner MK and Moses HL Transforming growth factor-β gene expression and action in the seminiferous tubule: Peritubucal cell-Sertoli cell interactions. Mol Endocrinol 1989, 3:625-634
6. Mullaney BP and Skinner MK Transforming growth factor-β1, -β2, and -β3 gene expression and action during pubertal development of the seminiferous tubule: Potential role at the onset of spermatogenesis. Mol Endocrinol 1993, 7:677-76
7. Teerds KJ and Dornington JH Localization of transforming growth factor-β1 and -β2 during testicular development in the rat. Biol Reprod 1993, 48:40-45
8. Themmen APN, Blok LJ, Post M, Baarends WM, Hoogerbrugge JW, Parmentier M, Vassert G and Groootege JO Follitropin receptor down-regulation involves a CAMP-dependent post-transcriptional decrease of receptor mRNA expression. Mol. Cell Endocrinol 1991, 78R:R7-R13
9. Groootege JO, Jansen R and van der Molen HJ Effect of glucose on ATP dephosphorylation in rat spermatids. J Reprod Fertil 1986, 77:99-107
10. Toebosch AMW, Brussée R, Verkerk A and Groootege JO Quantitative evaluation of the maintenance and development of spermatocytes and round spermatids in cultured tubule fragments from immature rat testis. Int J Androl 1989, 12:360-374
11. Jutte NHM, Jansen R, Groootege JO, Rommers FFG and van der Molen HJ Protein synthesis by isolated pachytene spermatocytes in the absence of Sertoli cells. J Exp Zool 1985, 233:285-290
12. Groootege JO, Grollé-Hey AH, Rommers FFG and van der Molen HJ Ribonucleic acid synthesis in vitro in primary spermatocytes isolated from rat testis. Biochem J 1977, 168:23-31
13. Grootegoed JA, Kruger-Sewnarain RC, Jutte NHPM, Rommerts FFG and van der Molen HJ Fucosylation of glycoproteins in rat spermatocytes and spermatids. Gam Res 1982, 5:303-315

14. Danielpour D, Dart LL, Flanders KC, Roberts AB and Sporn MB Immunodetection and quantitation of the two forms of transforming growth factor-β (TGF-β1 and TGF-β2) secreted by cells in culture. J Cell Physiol 1989, 138:79-86

15. Ballaoui E, Kwakkenbos-Isbrucker L, Mummery CL, de Laat SW, van den Eijnden-van Raaij AJ van der Saag PT and van den Burg B The role of TGF-beta production in growth inhibition of breast-tumor cells by progestins. Int J Cancer 1995, 61:80-86

16. Sporn MB, Roberts AB, Wakefield LM and De Crombrugge B Some recent advances in the chemistry and biology of transforming growth factor-β. J Cell Biol 1987, 105:1039-1045

17. Aivalut O, Gomez E, Vigier M, Jégou B and Saez JM Sertoli cell-germ cell interactions and TGF-β expression and secretion in vitro. Biochem Biophys Res Commun 1997, 238:905-909

18. Aivalut O, Tada T, Li XF, Ogata M, Ikeda T, Fujimoto S, Fujisawa H and Hamaoka T Particular types of tumor cells have the capacity to convert transforming growth factor β from a latent to an active form. Cancer Res 1992, 52:5641-5646

19. Sporn MB, Roberts AB, Wakefield LM and Associan RK Transforming growth factor α: Biological function and chemical structure. Science 1986, 233:532-534

20. Pircher R, Jullien P and Lawrence DA β-Transforming growth factor is stored in human blood platelets as a latent high molecular weight complex. Biochem Biophys Res Commun 1986, 136:30-37

21. Knabbe C, Lippman ME, Wakefield LM, Flanders KC, Kasid A, Derynck R and Dickson RB Evidence that transforming growth factor β is a hormonally regulated negative growth factor in human breast cancer cells. Cell 1987, 48:417-428

22. Associan RK, Fleurdeyls BE, Stevenson HC, Miller PJ, Madtes DK, Rains EW, Ross R and Sporn MB Expression and secretion of type α transforming growth factor by activated human macrophages. Proc Natl Acad Sci USA 1987, 84:6020-6024

23. Bendell JJ and Dorrington J Estradiol-17β stimulates DNA synthesis in rat granulosa cells: Action mediated by transforming growth factor-β. Endocrinology 1991, 128:2663-2665

24. Wakefield L Growth factors: An overview. In: Hormonal Communicating Events in the Testis (Edited by: Isidori A, Fabbrini A, Dufau ML) 1990, 131-140

25. Morera AM, Esposito G, Ghiglieri C, Chauvin MA, Hartmann DJ and Benahmed M Transforming growth factor β1 inhibits gonadotropin action in cultured porcine Sertoli cells. Endocrinology 1992, 130:831-836

26. Benahmed M, Cochet C, Keramides M, Chauvin MA and Morera AM Evidence for a FSH dependent secretion of a receptor reactive transforming growth factor-β-like material by immature Sertoli cells in primary culture. Biochem Biophys Res Commun 1988, 154:1222-1231

27. Le Magueresse-Battistoni B, Morera AM, Goddard I and Benahmed M Expression of mRNAs for transforming growth factor-beta receptors in the rat testis. Endocrinology 1995, 136:2788-2791

28. Espositi G, Keramidas M, Mauduit C, Feige JJ, Morera AM and Benahmed M Direct regulating effects of transforming growth factor beta 1 on lactate production in cultured porcine Sertoli cells. Endocrinology 1991, 128:1441-1449

29. Panthou P, Barube P, Thiexot B and Bocquet J Effects of transforming growth factor-beta 1, interleukin-1 alpha and interleukin-6 on rat Sertoli cell proteoglycan synthesis. Biochem Mol Biol Int 1994, 34:603-612

30. W-Lui Y, Lee WM and Cheng CY Transforming growth factor β perturbs the inter-Sertoli cell tight junction permeability barrier in vitro possibly mediated via its effects on occludin, zona ultra occcludens-1, and claudin-11. Endocrinology 2001, 142:1865-1877

31. Harkovirta H, Kaipia A, Soder O and Parvinen M Effects of avidin-A, inhibin-A, and transforming growth factor α1 on stage-specific deoxyribonucleic acid synthesis during rat seminiferous epithelial cycle. Endocrinology 1993, 133:1664-1668

32. Olaso R, Pairault C and Habert R Expression of type I and II receptors for transforming growth factor β in the adult rat testis. Histochim Cell Biol 1998, 110:613-618