SOLiD™ Sequencing of Genomes of Clinical Isolates of *Leishmania donovani* from India Confirm Leptomonas Co-Infection and Raise Some Key Questions

Neeloo Singh 1*, Surendra Chikara 2, Shyam Sundar 3

1 CSIR- Central Drug Research Institute, Lucknow, India, 2 Xcelris Genomics, Ahmedabad, India, 3 Institute of Medical Sciences, Banaras Hindu University, Varanasi, India

Abstract

Background: Known as ‘neglected disease’ because relatively little effort has been applied to finding cures, leishmaniasis kills more than 150,000 people every year and debilitates millions more. Visceral leishmaniasis (VL), also called Kala Azar (KA) or black fever in India, claims around 20,000 lives every year. Whole genome analysis presents an excellent means to identify new targets for drugs, vaccine and diagnostics development, and also provide an avenue into the biological basis of parasite virulence in the *L. donovani* complex prevalent in India.

Methodology/Principal Findings: In our presently described study, the next generation SOLiD™ platform was successfully utilized for the first time to carry out whole genome sequencing of *L. donovani* clinical isolates from India. We report the exceptional occurrence of insect trypanosomatids in clinical cases of visceral leishmaniasis (Kala Azar) patients in India. We confirm with whole genome sequencing analysis data that isolates which were sequenced from Kala Azar (visceral leishmaniasis) cases were genetically related to *Leptomonas*. The co-infection in splenic aspirate of these patients with a species of *Leptomonas* and how likely is it that the infection might be pathogenic, are key questions which need to be investigated. We discuss our results in the context of some important probable hypothesis in this article.

Conclusions/Significance: Our intriguing results of unusual cases of Kala Azar found to be most similar to *Leptomonas* species put forth important clinical implications for the treatment of Kala Azar in India. *Leptomonas* have been shown to be highly susceptible to several standard leishmaniacides *in vitro*. There is very little divergence among these two species viz. *Leishmania* sp. and *L. seymouri*, in terms of genomic sequence and organization. A more extensive perception of the phenomenon of co-infection needs to be addressed from molecular pathogenesis and eco-epidemiological standpoint.

Introduction

The family of Trypanosomatidae belongs to the order of Kinetoplastida protozoa. These are the most primitive organisms in eukaryotic evolution to have mitochondria and peroxisomes [1]. These parasites have different life cycles that involve one host (monoxenous) e.g. *Leptomonas*, or two hosts (heteroxenous) e.g. *Leishmania*. The latter involves an invertebrate that acts as a vector between other vertebrates or plants. During differentiation in the insect gut and in culture, these kinetoplastid protozoans appear as promastigotes (*Leptomonas* and *Leishmania*), and amastigotes (*Leishmania*), which develop in the mammalian host macrophage and causes disease. The ancestral form of *Leishmania* was *Leptomonas*, an organism living solely in the invertebrate host and transmitted by the ingestion of resistant forms (cysts) expelled with the excreta of the host [2]. Unlike *Leptomonas*, *Leishmania* produces no resistant cysts capable of development in the invertebrate host and has adapted to a life cycle alternating between invertebrate and vertebrate hosts [3,4].

Leishmania, a trypanosomatid protozoan parasite of humans, causes a wide spectrum of clinical disease referred to as leishmaniasis. Leishmaniasis represents a global health problem and is prevalent in Europe, Africa, Asia and the Americas; up to twenty million people are infected and half a million are affected by the lethal VL (www.dndi.org). In the Indian sub-continent, visceral leishmaniasis or Kala Azar (KA) as it is popularly known, is caused by *Leishmania donovani* and transmitted by the sandfly of genus *Phlebotomus argentipes*. One hundred fifty million people are living with the risk of VL in the Indian subcontinent (India, Nepal, and Bangladesh) [5].

Indian Kala-azar (VL) has a unique epidemiological feature of being anthropoctic; human are the only known reservoir of infection [6]. Localized cutaneous leishmaniasis (LCL) in India is mostly due to *Leishmania tropica* and is endemic in the deserts of Rajasthan [7,8]. Few cases of LCL among travelers have been documented in other Indian states such as Kerala [9], Assam, and Haryana, which are not disease-endemic areas [8]. A recognized endemic focus of leishmaniasis in Satluj river valley in Himachal...
Pradesh has been reported [10]. This endemic focus of leishmaniasis appears peculiar where localized cutaneous leishmaniasis (LCL) co-exists with visceral leishmaniasis (VL), and Leishmania donovani is predominant pathogen for LCL whereas only a few cases have been due to Leishmania tropica. P. longiductus a known vector for L. infantum, is the main vector in this endemic focus. L. donovani infantum causing both cutaneous and visceral leishmaniasis and K39 seroprevalence in dogs (known reservoir for L. infantum) have been reported for this region [11].

During 1993–1994, scientists from developing and developed countries planned and initiated a number of parasite genome projects and several consortiums for the mapping and sequencing of these medium sized genomes were established. Genomes of the Old World parasites L. braziliensis and L. mexicana have been sequenced [12]. The New World parasite L. braziliensis is the causative agent of mucocutaneous leishmaniasis, whereas the Old World species L. major and L. infantum, which are present in Africa, Europe and Asia, are parasites that cause cutaneous and visceral leishmaniasis, respectively [4]. It has been reported that L. donovani is genetically distinct from L. infantum [13]. To add to this plethora of knowledge, we undertook whole genome sequencing of clinical isolates of L. donovani believed to be causing Kala Azar in India. The genome analysis can provide insights into the functional characteristics of the visceral manifestation of the disease and also provide an avenue into the biological basis of parasite virulence in the L. donovani complex prevalent in India in comparison with the other species of Leishmania sequenced. The genome of L. donovani from India has so far not been sequenced.

Materials and Methods

Clinical Isolates

During the year 1998–2000, resistance to the widely used antimonial drug sodium antimony gluconate (SAG) had reached alarming heights in India [14]. At this time we had cultivated many isolates collected from the eastern region of India. Clinical isolates from confirmed patients of Kala Azar from endemic zone of Bihar and Uttar Pradesh were collected as splenic aspiration performed by our authorized clinical collaborator and co-author Dr Shyam Sundar, with prior written consent of the patients. Institutional Review Board (Banaras Hindu University, Varanasi) approved the study. The diagnostic criteria for Visceral Leishmaniasis (VL) were the presence of LD bodies (Leishman Donovan) in splenic aspirations performed and graded as per standard criteria [15]. Isolate 39, used for whole genome sequencing in this study, was isolated on 28.05.2000 from Muzaffarpur, Bihar from splenic aspirate of a patient who did not respond to SAG therapy, whereas isolate 2001, isolated on 01.02.2000, from Balia, Uttar Pradesh, responded to SAG therapy. Isolate Ld BHU 1095, responsive to amphotericin B was collected relatively recently from Muzaffarpur in Bihar on 31.07.2010. Splenic aspirates were collected and adapted to culture as described [16]. The virulence and level of susceptibility or resistance of these isolates was confirmed in vitro and in vivo, by infection in experimental animals as described [17]. Species identity of these promastigotes was confirmed to be similar to the donovani in the sequence based RFLP of their single-copy protein-coding gene, N-acetylglucosamine-1-phosphate transferase [18]. The isolates used in our study have also been the subject of various studies in leishmaniasis by many groups worldwide. In our hands (16,17) and also with others who have worked and published on these two isolates, they served as an excellent model of visceral leishmaniasis, producing typical clinical outcome consistently, including invariable death and splenic LD loads upon infection in hamsters of up to 10^10 per heavily infected spleen.

Solid DNA Sequencing

The genomic DNA of the parasites was isolated using the QIAamp DNA isolation kit (Qiagen, Catalog No. 51104). Sequencing runs were done using cycled ligation sequencing on a SOLiD™ Next Generation Sequencer (Applied Biosystems, India). Mate pair library approach was utilized thus generating data for two tags denoted as F3 and R3. Two segments of the Quad slide format were utilized to generate the data for each sample. Approximately, 5 ug of purified genomic DNA was sheared for a mate paired library with insert size between 1.5–2 Kb The blunt-ended ligation of sheared DNA was carried out to convert DNA with damaged or protruding ends to phosphoryl- ated, blunt-ended DNA. After that LMP CAP ligation was performed to add the LMP CAP adaptors to the sheared, end repaired DNA. Size-selection was performed after CAP adaptor ligation to remove unbound CAP adaptors. The sheared DNA was

Table 1. Mapping statistics of SOLiD mate pair reads to reference genome Leishmania infantum (LinJ).

Assembly Stats	Sample LD 2001	Sample LD 39	Sample LD BHU 1095
Number of contigs/scaffolds	14518	16389	18232
Total genome length (bp)	27466456	23799529	16806104
Average contigs/ scaffold length	1891	1452	921
Contigs/Scaffold N50	3370	1773	961
Max. contigs/scaffold size (bp)	26366	11755	4772
Min. contigs/scaffold size (bp)	200	500	500

Table 2. De Novo Assembly Statistics.

Assembly Stats	Ld 2001	Ld 39	Ld BHU 1095
Number of contigs/scaffolds	14518	16389	18232
Total genome length (bp)	27466456	23799529	16806104
Average contigs/ scaffold length	1891	1452	921
Contigs/Scaffold N50	3370	1773	961
Max. contigs/scaffold size (bp)	26366	11755	4772
Min. contigs/scaffold size (bp)	200	500	500

doi:10.1371/journal.pone.0055738.t001
doi:10.1371/journal.pone.0055738.t002
ligated to LMP CAP adaptors and then be circularized with a biotinylated internal adaptor. Nick translation was carried out to translate the nick into the genomic DNA region. Then enzymatic digestion was carried out followed by blunt-ended ligation. P1 and P2 adaptors were ligated to the ends of the end-repaired DNA. Nick translation of the ligated, purified library was performed. The library was amplified using Library PCR Primers and was run on an SOLiD™ Library Size selection gel. The library size ranging between 275 bp to 350 bp was finally selected for template bead preparation. For the clonal amplification of library emulsion PCR was performed. After emulsion PCR, bead wash was performed and enrichment of the template beads was carried out. Modification of 3’ ends was carried out for deposition of beads on glass slide. Quantification of beads using Nanodrop spectrophotometer was done. Work flow analysis (WFA) was carried out to confirm the quality of the beads.

Mapping and Assembly

The mapping module of the standard Resequencing workflow of BioScope v 1.3 software was utilized which has an algorithm designed on seed and extend approach of mapping. A quality value is associated with each alignment. The quality value estimates the probability that the alignment is correct. Output of pairing was a BAM file (Binary format for Sequence Alignment Map) which stores the read alignment in coordinate order. The colonspace reads from SOLiD sequence were aligned to the reference genomes. Reads from each of the isolates were mapped to the reference genome separately. Reads unmapped were identified. Reads with low complexity characteristics, containing homopolymer tract, at least four repeats of the same di-nucleotide or tri nucleotide in a row, were removed from the data set before further analysis. Although these reads maybe representing true genomic regions, however, the inherent difficulty in assigning them to a particular genomic region limits their value. This is an inherent problem with short read data of SOLiD sequencing technology. A quality value is associated with each alignment. The quality value estimates the probability that the alignment is correct. Output of pairing was a BAM file (Binary format for Sequence Alignment Map) which stores the read alignment in coordinate order.

Phylogenetic Analysis on the Basis of ITS Gene

ITS gene sequences from Ld39, BHU1095 and Ld2001 were obtained from annotated assembled contigs. The ITS gene sequences of L. infantum and L. donovani Nepal strain Ld_BPK282A1 were obtained from Ensembl and Leptomonas was identified using homology based method. A phylogeny of these strains was carried using ITS gene sequences by multi-sequence alignment using CLC genomics workbench v5.1 with gap open cost 10, gap penalty score of 1. Phylogenetic tree was measured by using the bootstrap method with 1,000 replicates; for more computationally intensive ML trees, we used 100 bootstrap replicates by UPGMA methods.

Phylogenetic Analysis on the Basis of GP63 Gene

GP63 gene sequences from Ld39, BHU1095 and Ld2001 were obtained from annotated assembled contigs. The GP63 gene sequences of L. infantum and L. donovani Nepal strain Ld_BPK282A1 were obtained from Ensembl and Leptomonas was identified using homology based method. A phylogeny of these strains was carried using GP63 gene sequences by multi-sequence alignment using CLC genomics workbench v5.1 with gap open cost 10, gap penalty score of 1. Phylogenetic tree was measured by using the bootstrap method with 1,000 replicates; for more computationally intensive ML trees, we used 100 bootstrap replicates by UPGMA methods.

Accession Codes

This Whole Genome Shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession ANFN00000000. The version described in this paper is the first version ANFN01000000 for Leishmania donovani Ld 39; ALJU00000000, the version described in this paper is the first version, ALJU01000000 for Leishmania donovani Ld 2000; ANAF00000000, the version described in this paper is the first version, ANAF01000000 for Leishmania donovani BHU 1095.

Table 3. Statistics of genome coverage in percentage and bases with Leptomonas and L. donovani Nepal isolate Ld_BPK282A1.

Reference Description	BHU_1095	Ld_39	Ld_2001	BHU_1095	Ld_39	Ld_2001
Leptomonas	53426355	53551698	53700910	95.38%	95.60%	95.87%
Ld_BPK282A1	166098	161811	174694	0.50%	0.49%	0.53%

doi:10.1371/journal.pone.0055738.t003

Table 4. Mapping statistics of reads with Leptomonas and L. donovani Nepal isolate Ld_BPK282A1.

Reference Description	BHU_1095	Ld_39	Ld_2001
Leptomonas	42632516	50109373	44858095
Ld_BPK282A1	179637	190865	231275

doi:10.1371/journal.pone.0055738.t004
Results

SOLiD Sequencing Reads

The total number of 35-bp reads for each isolate were Ld 2001 \(2 \times 10^7\), Ld 39 \(2.4 \times 10^7\), BHU 1095 \(2.9 \times 10^7\) yielding approximately 200 fold coverage for each of the three genomes with the assumption that all the data was usable (Table 1). Using De Novo Analysis V2.0 software, assembly was performed by velvet assembler at a kmer of 31, full set of data was utilized for this analysis. Results of final outcome of assembly in contig and scaffold file in base space was obtained (Table 2).

Figure 1. Agarose gel analysis of hsp70 PCR-RFLP from different parasite isolates. The PCR products of 1420 bp were digested with the restriction enzyme Haell. Digested products were separated on 3% Small Fragment Agarose (Sigma,India). Lane M is a 100 bp Ladder (New England Biolabs, UK). Lanes 2- confirmed L. donovani (BHU-744). Lane 3: confirmed Leptomonas (BHU-154). Lane 4 is a BHU-1095 showing L. donovani signature. Lanes 5 and 6: BHU 39 and BHU 2001 respectively.

Figure 2. Phylogenetic relationships among strains of the L. donovani and Leptomonas complex inferred by UPGMA method of the nucleotide sequences of the GP63 genes.

Figure 3. Phylogenetic relationships among strains of the L. donovani and Leptomonas complex inferred by UPGMA method of the nucleotide sequences of the ITS1 and ITS2 regions.
Table 5. Designation and characteristics of GP 63 genes and strains used in this study.

GP63	Taxa	Accession number EMBL/NCBI/Contig IDs
Ld 2001_gp63	399500213	
	399502729	
	399502737	
	399503298	
	399503299	
	399503897	
	399504021	
	399504638	
	399505322	
	399506275	
	399506280	
	399507247	
	399507249	
	399508864	
	399510205	
	399510518	
	399510602	
	399510705	
	399510751	
	399510752	
	399510947	
	399511516	
	399511596	
	399512213	
	399512449	
	399512573	
	399512951	
	399513018	
	399513027	
	399513206	
Ldonovani_BPK282A1	LDBPK_100510	
	LDBPK_100520	
	LDBPK_280600	
	LDBPK_280610	
	LDBPK_312040	
Leptomonas	>NODE_16451-0.947-1	
	>NODE_18931-0.2081-0	
	>NODE_18931-0.2081-1	
	>NODE_34334-0.1195-28	
	>NODE_40634-0.206-43	
	>NODE_40634-0.206-45	
	>NODE_43570-0.1019-25	
	>NODE_46564-0.1189-16	
	>NODE_49117-0.518-30	
	>NODE_50764-0.655-84	
	>NODE_50908-0.2398-28	
	>NODE_52179-0.1261-100	

Table 5. Cont.

GP63	Taxa	Accession number EMBL/NCBI/Contig IDs
	> NODE_52179-0.1261-99	
	> NODE_60985-0.3035-55	
Leishmania infantum	LINJ_10_0530	
	LINJ_10_0510	
	LINJ_31_2040	
	LINJ_10_0500	
	LINJ10.0490	
	LINJ28.0610	
	LINJ28.0600	
	LINJ28.0580	
	LINJ28.3180	
BHU1095	contig_153	
	contig_167	
	contig_466	
	contig_1286	
	contig_2242	
	contig_2456	
	contig_2506	
	contig_2723	
	contig_3083	
	contig_3912	
	contig_4178	
	contig_4629	
	contig_4865	
	contig_4971	
	contig_5352	
	contig_5494	
	contig_6288	
	contig_6300	
	contig_6541	
	contig_6621	
	contig_7021	
	contig_8550	
	contig_10874	
	contig_11736	
	contig_12421	
	contig_12771	
	contig_13714	
	contig_13983	
	contig_14146	
	contig_14343	
	contig_14377	
	contig_14709	
	contig_14788	
Table 5. Cont.

Taxa	Accession number EMBL/NCBI/Contig_IDs
GP63	
contig_15481	
contig_16073	
contig_16466	
contig_17609	
contig_17869	
contig_17924	
LD_39	
contig_7416	
contig_7441	
contig_8106	
contig_103	
contig_9808	
contig_1128	
contig_1164	
contig_1294	
contig_11517	
contig_11541	
contig_12419	
contig_12698	
contig_12699	
contig_12702	
contig_13126	
contig_13516	
contig_14137	
contig_14878	
contig_15648	
contig_15897	
contig_16264	
contig_2354	
contig_333	
contig_3645	
contig_455	
contig_502	
contig_4961	
contig_5341	
contig_5407	
contig_617	
contig_5972	
contig_6290	

Comparison of SOLID Sequencing Reads to Reference Leishmania Genomes

Unexpectedly, only 2–3 percent of reads of Ld 2001 and Ld 39 mapped to LinJ genome. From total of 2 × 297 M reads obtained for Ld BHU 1095, 26 M reads mapped to LinJ genome which is ~9 percent of the total reads (Table 1). Despite approximately 200 fold coverage based on the raw number of reads obtained for each isolate genome, some number of unmapped reads were also obtained which is a limitation of short read technology. There is also a possibility that these maybe derived from regions of low complexity in the sequenced genomes. Remaining unmapped reads which are not of low complexity, could be truly unique sequences or errors in the sequencing system. In an attempt to identify between these two possibilities, mapping the reads in SOLiD color space using MAQ was employed to identify orthologs. Largest number of matches were found with genomic sequence of Leptomonas seymouri.

L. donovani Nepal isolate [19] BPK282A1 reference genome was downloaded from site: http://www.ebi.ac.uk/embl (accession number FR799588-FR799623) with a total genome length incl. Gaps of 32,444,968 bp. The genome coverage of BHU_1095, Ld_39 and Ld_2001 was computed against Leptomonas and L. donovani Nepal strain Ld_BPK282A1 by reference assisted assembly. The BHU_1095, Ld_39 and Ld_2001 reads were aligned with Leptomonas and L. donovani Nepal strain Ld_BPK282A1 genome using Bioscope v1.3. The percentage of reads aligned on Leptomonas were 31.02% for BHU_1095, 67.11% for Ld_39 and 65.70 for Ld_2001 respectively. Similarly, the percentage of reads mapped on L. donovani Nepal strain Ld_BPK282A1 were 0.50% for BHU_1095, 0.49% for Ld_39 and 0.53% for Ld_2001 respectively. The genome coverage with respect to Leptomonas is around 95% and for L. donovani Nepal strain Ld_BPK282A1 its around 0.5% for all the samples.

From the Tables 3 and 4, it’s clear that raw reads of BHU1095, Ld_39 and Ld_2001, covers more than 90% of the Leptomonas genome whereas less than 1% of the Ld_BPK282A1 genome (L. donovani Nepal strain) indicating that there is a presence of Leptomonas and Leishmania, and Leptomonas is predominant.

It has been noticed that with very high coverage such as used here, at times the data actually becomes harder to interpret as the number of chimeric clones and errors start to generate a large amount of noise. Therefore we used a subset of the data, 10 million reads were selected from the total data set of sample BHU 1095, this being the most recent of the clinical isolates to have been collected from patient in endemic region, and denovo assembly was performed using velvet 1.1.04 at kmer 15 and kmer31. The contigs from both the kmers were merged and final assembly was performed using CAP3. The assembly contained 1,27,259 contigs (N50 contig size of 159 bp) and total genome length of 19.3 Mb. For downstream analysis we proceeded with 1,27,259 contigs. The cut-off of 500 bp was applied for filtration of contigs resulting in 1485 contigs. BLASTN against nr database was carried out for 1485 contigs, out of which 73 contigs had a BLAST result. 44 contigs out of 73 had hit against Leishmania.

Genome sequence data for Ld BHU 1095 was also generated on HiSeq2000 using Paired-end 2 × 100 bp. Reads generated were 1,00,000. One lac (1 × 10^5) paired end reads were mapped on Leishmania infantum reference genome and Leptomonas, using GS Mapper. Reads of sample Ld BHU 1095 mapping to L. infantum 2.9%; Leptomonas 89.7%; L. donovani Nepal isolate 19.37%.

The data from different platforms concluded that all the three samples were having a major portion of Leptomonas genome and small percentage of Leishmania genome. We then carried out Hsp70 PCR-RFLP [20] and confirmed mixed infection, signals of both Leptomonas spp. and Leishmania donovani were obtained in the two isolates Ld 2001 and Ld 39 whereas Ld BHU 1095 showed L. donovani pattern (Fig. 1). It is clear from this gel that Ld 2001 and Ld 39 contained a mixture of Leptomonas and Leishmania DNA (with considerably more of the former). Both these isolates did not appear to be a perfect match for either Leptomonas or Leishmania.
DNA, since they contained two additional bands at ~200–250 bp found in neither BHU-154 nor BHU-744. They also lacked the bands found at ~50 bp. BHU-1095 contained only *Leishmania* restriction pattern and not *Leptomonas*. However, whole genome sequencing of BHU 1095 revealed only ~20% similarity to *Leishmania* and rest attributed to *Leptomonas*, indicating that

Table 6. Designation and characteristics of ITS genes and strains used in this study.

Leishmania_infantum_ITS1_2
JX448543.1
JX448541.1
JX448539.1
JX448537.1
JX448535.1
JX448546.1
JX448544.1
JX448542.1
JX448540.1
JX448538.1
JX289879.1
JX289853.1
JX289880.1
JX289852.1
HQ535858.1
FN398341.2
FN398342.1
JQ776643.1
DQ182535.1
HQ830333.1
JQ362410.1
GU045592.1
FN398343.2
GQ444144.1
GU591397.1
FJ940893.1
FJ940891.1
FJ940892.1
FJ555210.1
EU604812.1
EU604810.1
EU810777.1
FJ555211.1
FJ555209.1
EU810776.1
EU326227.1
FJ497004.1
EF653268.1
GQ367488.1
GQ367486.1
GQ367487.1
GQ332359.1
EU680963.1
EU637915.1
EU680962.1
FM164420.1
FM164418.1

Table 6. Cont.

Leishmania_infantum_ITS1_2
FM164416.1
FM164419.1
FM164417.1
A634370.1
A634364.1
A634362.1
A634354.1
A634352.1
A634350.1
A634348.1
A634346.1
A634344.1
A634342.1
A634340.1
A634371.1
A634369.1
A634363.1
A634361.1
A634355.1
A634353.1
A634351.1
A634349.1
A634347.1
A634345.1
A634343.1
A634341.1
A634339.1
A000288.1
A000303.1
A000295.1
A000289.1

Leptomonas

| Node_3422-0.590-0 |
| Node_8222-0.589-0 |

Ld_2001

| gi|399513055|gb|ALJU010000452.1| |
| gi|399513471|gb|ALJU010000036.1| |

BHU1092

| contig_3530 |
| contig_1060 |
| contig_707 |
| contig_33 |

DOI:10.1371/journal.pone.0055738.t006
Discussion

The occurrence of *Leptomonas* along with *Leishmania* amastigotes in splenic aspirates of Kala Azar patients is a unique phenomena worth exploring. Srivastava et al [20] have attributed this to the immune system depression in the patient to explain the opportunistic parasitism by this trypanosomatid. We put forth certain questions which need investigation.

Flagellates of the family Trypanosomatidae fall into two natural groups. The primitive genera is *Leptomonas* which is confined to invertebrates, and the more advanced genera is *Leishmania* which uses both vertebrate and invertebrate host [23]. The monogenic species *Leptomonas* are also known as “lower trypanosomatids” because the digenetic genera *Leishmania* are thought to have arisen from a monogenic ancestor [24] and are parasitic in arthropods mainly in Insecta and Diptera [1]. The parasites are found in various sections of the alimentary tracts of infected insects, and transmission is assumed to largely follow contaminative pathways [2]. The morphology of the insect-inhabiting stages of the pathogenic digenetic species resembles that of the monogenic species. *Leptomonas* shares a promastigote stage of development with *Leishmania*. These lower trypanosomatids are characterized by case of cultivation and less fastidious nutritional requirements than *Leishmania*. Promastigotes of the clinical isolates in this study transformed into amastigotes and survived in cultured macrophages as well as in experimental hamsters [16,17]. Promastigotes of *Leptomonas costaros*, a kinetoplastid parasite of water striders, transformed into amastigotes but did not survive in cultured macrophages [25]. So does our study indicate that *Leptomonas* is influencing the pathogenesis of leishmaniasis? Is the distribution of *Leishmania* strains containing *Leptomonas* limited to specific eastern region of India, or occur elsewhere, also needs to be ascertained.

The results of our study put forth certain debatable issues. In India for VL in Bihar region, anthropoponic transmission with no intermediate host has been observed [26]. But our study now questions the fact that is VL or KA in India actually not anthropoponic as is believed till today? The source could be zoonotic, dogs could be the reservoir. The theory of canine origin of human kala azar was postulated by Nicolle as way back as in 1908 [27]. At that time dogs were found infected in nearly every endemic centre of human kala azar except India. Human and canine Kala Azar of the Mediterranean region is transmitted by the dog flea (*Ctenocephalus canis*) and perhaps also by the human flea (*Pulex irritans*) [28]. Small proportion of the dog fleas in many regions harbor a natural parasite *Herpetomonas ctenocephali* [29]. A possible case of human infection by *Herpetomonas* has been reported [30]. The sites of natural leptomonad infections in dog fleas are typically the hindgut and rectum, but in many insect groups, salivary glands and hemocoel have been reported to be infected [31]. Opportunistic infection with an insect trypanosomatid *Leptomonas pulxsimulantis*, a trypanosomatid found in the dog’s flea was diagnosed in an HIV positive patient presenting a clinical picture of visceral leishmaniasis co-infection [32]. The presence of *Leptomonas* of the dog’s flea in an HIV positive patient reinforces the idea that humans under immune suppression conditions may be vulnerable to other insect trypanosomatids giving rise to clinical manifestations similar to leishmaniasis. Feces deposited by infected adult fleas are usually well supplied with amastigotes which retain their infectiousness after drying [30]. To facilitate transmission, these flagellar cysts, known as straphangers are capable of long term survival in adverse conditions. Dedet et al. [33] reported the first human case of *Leptomonas* infection in an HIV-infected patient. Amastigote forms were found to be present in the bone marrow aspirate of the HIV positive patient and these parasites grew in culture as promastigotes. However, infection in laboratory animals could not be established [34]. Monoxenous trypanosomatids can be pathogenic for human beings. Similar cases have also been reported [35,36] where in HIV infected patients, *Leptomonas*...
parasites were detected with symptoms sometimes resembling those of visceral or cutaneous leishmaniasis. The present article also sustains the possibility of lower trypanosomatids infecting humans exists and should be considered by attending physicians. *Leptomonas* are opportunistic parasites with human infection possibly occurring *per os*, and so through our study we raise the question whether Kala Azar is leishmaniasis in some clinical cases in India? Due to morphological similarity and cross-reactivity with *Leishmania* species, human cases of infection with these lower trypanosomatids may have been underestimated. Or on the other hand, these clinical cases indeed represent *Leishmania-Leptomonas* co-infection. *A. longipalpis* of insect origin was highly susceptible to several standard trypanocides and leishmanicides in *vitro* and easily grown in defined media [37].

The important link then in the transmission of infection i.e. the sandfly vector, also needs to be questioned. Natural infection of *P. argentipes* and *P. longipalpis* by sandfly vector, also needs to be questioned. Natural infection of domestic animals including cattle from an endemic area in Nepal [43]. Studies conducted in Bangladesh to investigate the role of any domestic animal in VL transmission [44] shows that cattle are not a reservoir host for *L. donovani* despite its preference by *P. argentipes* as blood source. Ecological conditions should also be considered, changes in habitat associated with human development might create conditions suitable for establishment of anthropoconic cycles of infection with parasites which otherwise so far had been regarded as only monoclonal parasites or invertebrates.

Considering that *Leptomonas* was present in the splenic aspirate at time of collection, a question comes to mind that whether it could it be a hybrid profile (through genetic exchanges by recombination between the two species). *P. argentipes*, sand fly species might be transmitting both parasites? Co-infection of *Leishmania* and *Leptomonas* in some sandflies in Nepal has been established [39]. *Leishmania* parasites are capable of having a sexual cycle consistent with meiotic processes inside the insect vector [45]. Hybrid genotypes have been observed in field isolates involving most *Leishmania* species [46–49]. With the formation of genetic hybrids [50] new foci of disease may emerge as the hybrid progeny are transmitted to the mammalian vertebrate host by sandfly bites. Hybrid progenies within the vector host of *Leishmania major* have been established [51]. Is leishmaniasis in India caused by insect parasites?

For better disease management and healthcare, monitoring of *Leishmania* infection in sandflies is important to precise the eco- epidemiology of Kala-azar in India. Examination of domestic cattle for serological and molecular evidence of *Leishmania* infection in the VL endemic area in Bihar, India needs to be carried out. Parasites isolated from VL cases in India are routinely not typed, assuming that they are all *L. donovani* in contrast to other countries where typing is more systematically done. Investing in infrastructure to set up good typing centers and parasite banks needs to be undertaken. Ongoing clinical drug trials in India, are prone to result in dynamic selective pressures which may mould the genome of the parasites, therefore, profiling of VL in India using deep sequencing as a prospect of continuous surveillance of pathogenic parasites and their threat to public health should be greatly supported and encouraged by Indian government. We have established through this study the success of second generation sequencing technologies for building parasite whole genomes. This approach can now be adapted to studying local population genetics of the kinetoplastid parasites in India. Work is underway to assess and quantify the presence of *L. donovani* and *Leptomonas* directly from the human splenic aspirates using PCR.

Acknowledgments

We are extremely grateful to Dr Peter Myler, Affiliate Professor, Departments of Global Health & Medical Education and Biomedical Informatics, University of Washington Seattle, WA, USA who provided bioinformatics assistance in our project. We acknowledge Invitrogen BioServices India Pvt. Ltd for the whole genome sequencing run on SOLEDTM. CDRI Communication number 151/2011/NS.

Author Contributions

Conceived and designed the experiments: NS. Performed the experiments: NS SC. Analyzed the data: NS SC. Contributed reagents/materials/ analysis tools: SS. Wrote the paper: NS.

References

1. Vickerman K, Preston TM (1976) Comparative cell biology of the kinetoplastid flagellates. In: WHR Lumsden, DA Evans (eds), Biology of the Kinetoplastida, Academic Press, London/New York/San Francisco, p. 35–130.
2. Baker JR (1965) The evolution of parasitic protozoa. Symp Br Soc Parasitold 3: 1–27.
3. Killick-Kendrick R, Ward RD (1975) *Leishmania* in phlebotomid sandflies. Proc R Soc Lond B 180: 229–231.
4. Lynn MA, McMaster WR (2008) *Leishmania*: Conservation evolved–diverse diseases. Trends Parasitol 24: 103–105.
5. Cheeran MM, Sundar S, Rijal S, Faiz A, Miller P, et al. (2010) A review of possible zoonotic transmission of *Leishmania–Leptomonas* co-infection. A *A. longipalpis* of insect origin was highly susceptible to several standard trypanocides and leishmanicides in *vitro* and easily grown in defined media [37].

The important link then in the transmission of infection i.e. the sandfly vector, also needs to be questioned. Natural infection of *Phlebotomus longipalpis* by *Leptomonas*, in a focus of kala-azar has been reported [38]. Co-infection of *Leishmania* and *Leptomonas* in some sandflies in Nepal was confirmed by their rDNA signature [39]. Results of several studies have shown that *Phlebotomus argentipes*, the only known vector for *Leishmania donovani* in the Indian subcontinent, prefer to feed on both bovine and human blood [40]. Being a preferable host for *P. argentipes*, cattle was shown to play an undecided role in several epidemiological studies in the Indian subcontinent [41]. Chakravarty et al. [42] surveyed 64 cows along with dog, but could not find any amastigotes based on direct observation of smears from peripheral blood, liver, spleen, and bone marrow. On the other hand, *Leishmania* DNA was detected in several domestic animals including cattle from an endemic area in Nepal [43]. Studies conducted in Bangladesh to investigate the role of any domestic animal in VL transmission [44] shows that cattle are not a reservoir host for *L. donovani* despite its preference by *P. argentipes* as blood source. Ecological conditions should also be considered, changes in habitat associated with human development might create conditions suitable for establishment of anthropoconic cycles of infection with parasites which otherwise so far had been regarded as only monogenetic parasites of invertebrates.

Considering that *Leptomonas* was present in the splenic aspirate at time of collection, a question comes to mind that whether it could it be a hybrid profile (through genetic exchanges by recombination between the two species). *P. argentipes*, sand fly species might be transmitting both parasites? Co-infection of *Leishmania* and *Leptomonas* in some sandflies in Nepal has been established [39]. *Leishmania* parasites are capable of having a sexual cycle consistent with meiotic processes inside the insect vector [45]. Hybrid genotypes have been observed in field isolates involving most *Leishmania* species [46–49]. With the formation of genetic hybrids [50] new foci of disease may emerge as the hybrid progeny are transmitted to the mammalian vertebrate host by sandfly bites. Hybrid progenies within the vector host of *Leishmania major* have been established [51]. Is leishmaniasis in India caused by insect parasites?

For better disease management and healthcare, monitoring of *Leishmania* infection in sandflies is important to precise the eco- epidemiology of Kala-azar in India. Examination of domestic cattle for serological and molecular evidence of *Leishmania* infection in the VL endemic area in Bihar, India needs to be carried out. Parasites isolated from VL cases in India are routinely not typed, assuming that they are all *L. donovani* in contrast to other countries where typing is more systematically done. Investing in infrastructure to set up good typing centers and parasite banks needs to be undertaken. Ongoing clinical drug trials in India, are prone to result in dynamic selective pressures which may mould the genome of the parasites, therefore, profiling of VL in India using deep sequencing as a prospect of continuous surveillance of pathogenic parasites and their threat to public health should be greatly supported and encouraged by Indian government. We have established through this study the success of second generation sequencing technologies for building parasite whole genomes. This approach can now be adapted to studying local population genetics of the kinetoplastid parasites in India. Work is underway to assess and quantify the presence of *L. donovani* and *Leptomonas* directly from the human splenic aspirates using PCR.

Acknowledgments

We are extremely grateful to Dr Peter Myler, Affiliate Professor, Departments of Global Health & Medical Education and Biomedical Informatics, University of Washington Seattle, WA, USA who provided bioinformatics assistance in our project. We acknowledge Invitrogen BioServices India Pvt. Ltd for the whole genome sequencing run on SOLEDTM. CDRI Communication number 151/2011/NS.

Author Contributions

Conceived and designed the experiments: NS. Performed the experiments: NS SC. Analyzed the data: NS SC. Contributed reagents/materials/ analysis tools: SS. Wrote the paper: NS.
21. Weirather JL, Jeronimo SMB, Gautam S, Sundar S, Kang M, et al. (2011) Serial
20. McGhee RB, Cosgrove WB (1980) Biology and physiology of the lower
19. Downing T, Inamura H, Decuypere S, Clark TG, Coombs GH, et al. (2011)
Whole genome sequencing of multiple Leishmania donovani clinical isolates
provides insights into population structure and mechanisms of drug resistance.
Genome Res 21(12): 2143–56.
18. Waki K, Dutta S, Ray D, Kolli BK, Akman L, et al. (2009) Transmembrane
Molecules for Phylogenetic Analyses of Pathogenic Protists: Leishmania-Specific
Informative Sites in Hydrophilic Loops of Trans-Endoplasmic Reticulum N-
Acetylglucosamine-1-Phospho Transferase. Euk Cell 8 (2): 196–210.
17. Garnham PCC (1971) The genus
16. Fantham HB (1912) Some insect flagellates and the problem of the transmission
patient infected with HIV. Trans Roy Soc Trop Med Hyg 89: 644–646.
15. Wallace FG, Camargo EP, McGhee RB, Roitman I (1983) Guidelines for the
14. Alam MS, Ghosh D, Khan MGM, Islam MF, Mondal D, et al. (2011) Survey of
13. Bern C, Courtenay O, Alvar J (2010) Of cattle, sand flies and men: a systematic
review of risk factor analyses for South Asian visceral leishmaniasis and
implications for elimination. PLoS Negl Trop Dis 4(2): e599.
12. Chakravarty AK, Sanjay RK, Suri JC (1979) Zoonotic reservoir in Indian kala-
azar. J Commun Dis 11: 219–220.
11. Weirather JL, Jeronimo SMB, Kaur S, Sundar S, Kang M, et al. (2011) Serial
Quantitative PCR Assay for Detection, Species Discrimination, and Quantifi-
cation of Leishmania spp. in clinical samples of kala-azar patients from India.
Infect Genet Evol 10 (7): 1145–1150.
10. Weirather JL, Jeronimo SMB, Gautam S, Sundar S, Kang M, et al. (2011) Serial
Quantitative PCR Assay for Detection, Species Discrimination, and Quantifi-
cation of Leishmania spp. in Human Samples, J Clin Microbiol November 49 (11):
3902–3904.
9. Ghosh S, Banerjee P, Sarkar A, Ganguly S, Dutta S, et al. (2012) Co-infection of
Leptomonas—survives with Leishmania donovani in Indian Leishmaniasis. J Clin
Microbiol doi:10.1128/JCM.00966-12.
8. Garnham PCC (1971) The genus Leishmania. Bull World Health Org 44(4): 477–
489.
7. Stevens JR, Noyes HA, Schofield CJ, Gibson W (2001) The molecular evolution
of Trypanosomatidae. Adv Parasitol 48: 2–56.
6. Kutish GF, Janovy J Jr (1981) Inhibition of in vitro
24. Stevens JR, Noyes HA, Schofield CJ, Gibson W (2001) The molecular evolution
of Trypanosomatidae. Adv Parasitol 48: 2–56.
23. Garnham PCC (1971) The genus
22. Weirather JL, Jeronimo SMB, Gautam S, Sundar S, Kang M, et al. (2011) Serial
Quantitative PCR Assay for Detection, Species Discrimination, and Quantifi-
cation of Leishmania spp. in clinical samples of kala-azar patients from India.
Infect Genet Evol 10 (7): 1145–1150.
21. Weirather JL, Jeronimo SMB, Gautam S, Sundar S, Kang M, et al. (2011) Serial
Quantitative PCR Assay for Detection, Species Discrimination, and Quantifi-
cation of Leishmania spp. in Human Samples, J Clin Microbiol November 49 (11):
3902–3904.
20. McGhee RB, Cosgrove WB (1980) Biology and physiology of the lower
Trypanosomatidae. Adv Parasitol 48: 2–56.
19. Downing T, Inamura H, Decuypere S, Clark TG, Coombs GH, et al. (2011)
Whole genome sequencing of multiple Leishmania donovani clinical isolates
provides insights into population structure and mechanisms of drug resistance.
Genome Res 21(12): 2143–56.
18. Waki K, Dutta S, Ray D, Kolli BK, Akman L, et al. (2009) Transmembrane
Molecules for Phylogenetic Analyses of Pathogenic Protists: Leishmania-Specific
Informative Sites in Hydrophilic Loops of Trans-Endoplasmic Reticulum N-
Acetylglucosamine-1-Phospho Transferase. Euk Cell 8 (2): 196–210.
17. Garnham PCC (1971) The genus
16. Fantham HB (1912) Some insect flagellates and the problem of the transmission
patient infected with HIV. Trans Roy Soc Trop Med Hyg 89: 644–646.
15. Wallace FG, Camargo EP, McGhee RB, Roitman I (1983) Guidelines for the
14. Alam MS, Ghosh D, Khan MGM, Islam MF, Mondal D, et al. (2011) Survey of
13. Bern C, Courtenay O, Alvar J (2010) Of cattle, sand flies and men: a systematic
review of risk factor analyses for South Asian visceral leishmaniasis and
implications for elimination. PLoS Negl Trop Dis 4(2): e599.
12. Chakravarty AK, Sanjay RK, Suri JC (1979) Zoonotic reservoir in Indian kala-
azar. J Commun Dis 11: 219–220.
11. Weirather JL, Jeronimo SMB, Kaur S, Sundar S, Kang M, et al. (2011) Serial
Quantitative PCR Assay for Detection, Species Discrimination, and Quantifi-
cation of Leishmania spp. in clinical samples of kala-azar patients from India.
Infect Genet Evol 10 (7): 1145–1150.
10. Weirather JL, Jeronimo SMB, Gautam S, Sundar S, Kang M, et al. (2011) Serial
Quantitative PCR Assay for Detection, Species Discrimination, and Quantifi-
cation of Leishmania spp. in Human Samples, J Clin Microbiol November 49 (11):
3902–3904.
9. Ghosh S, Banerjee P, Sarkar A, Ganguly S, Dutta S, et al. (2012) Co-infection of
Leptomonas—survives with Leishmania donovani in Indian Leishmaniasis. J Clin
Microbiol doi:10.1128/JCM.00966-12.
8. Garnham PCC (1971) The genus Leishmania. Bull World Health Org 44(4): 477–
489.
7. Stevens JR, Noyes HA, Schofield CJ, Gibson W (2001) The molecular evolution
of Trypanosomatidae. Adv Parasitol 48: 2–56.
6. Kutish GF, Janovy J Jr (1981) Inhibition of in vitro macrophage digestion
capacity by infection with Leishmania donovani (Protozoa: kinetoplastida).
J Parasitol 67(4): 437–437.
5. Sundar S, Pai K, Kumar R, Pathak-Tripathi K, Gam AA, et al. (2001) Resistance
to treatment in kala-azar: speciation of isolates from northeast India.
Am J Trop Med Hyg. 65: 193–196.
4. Nicolle C, Conte C (1990) Origine canine du kala azar. Ibid., i.
3. Baule C (1920) Leishmania, Hropeptomonas, and Cohnidia in Fleas.
Parasitol 12: 366–377.
2. Fontham HB (1912) Some insect flagellates and the problem of the transmission
of Trypanosomatidae. British Med J 1196.
1. McGhee RB, Cosgrove WB (1980) Biology and physiology of the lower
Trypanosomatidae. Microbiol Rev 44: 140–173.

References:

10. Waki K, Dutta S, Ray D, Kolli BK, Akman L, et al. (2009) Transmembrane
Molecules for Phylogenetic Analyses of Pathogenic Protists: Leishmania-Specific
Informative Sites in Hydrophilic Loops of Trans-Endoplasmic Reticulum N-
Acetylglucosamine-1-Phosphate Transferase. Euk Cell 6 (2): 196–210.
9. Ghosh S, Banerjee P, Sarkar A, Ganguly S, Dutta S, et al. (2012) Co-infection of
Leptomonas—survives with Leishmania donovani in Indian Leishmaniasis. J Clin
Microbiol doi:10.1128/JCM.00966-12.
8. Garnham PCC (1971) The genus Leishmania. Bull World Health Org 44(4): 477–
489.
7. Stevens JR, Noyes HA, Schofield CJ, Gibson W (2001) The molecular evolution
of Trypanosomatidae. Adv Parasitol 48: 2–56.
6. Kutish GF, Janovy J Jr (1981) Inhibition of in vitro macrophage digestion
capacity by infection with Leishmania donovani (Protozoa: kinetoplastida).
J Parasitol 67(4): 437–437.
5. Sundar S, Pai K, Kumar R, Pathak-Tripathi K, Gam AA, et al. (2001) Resistance
to treatment in kala-azar: speciation of isolates from northeast India.
Am J Trop Med Hyg. 65: 193–196.
4. Nicolle C, Conte C (1990) Origine canine du kala azar. Ibid., i.
3. Baule C (1920) Leishmania, Hropeptomonas, and Cohnidia in Fleas.
Parasitol 12: 366–377.
2. Fontham HB (1912) Some insect flagellates and the problem of the transmission
of Trypanosomatidae. British Med J 1196.
1. McGhee RB, Cosgrove WB (1980) Biology and physiology of the lower
Trypanosomatidae. Microbiol Rev 44: 140–173.