Band gap anomaly and topological properties in lead chalcogenides

Simin Nie,¹ Xiao Yan Xu,¹ Gang Xu,¹ and Zhong Fang¹,²

¹Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
²Collaborative Innovation Center of Quantum Matter, Beijing, 100084, China
(Dated: October 28, 2015)

Band gap anomaly is a well-known issue in lead chalcogenides PbX (X=S, Se, Te, Po). Combining ab initio calculations and tight-binding (TB) method, we have studied the band evolution in PbX, and found that the band gap anomaly in PbTe is mainly related to the high onsite energy of Te 5s orbital and the large s-p hopping originated from the irregular extended distribution of Te 5s electrons. Furthermore, our calculations show that PbPo is an indirect band gap (6.5 meV) semiconductor with band inversion at L point, which clearly indicates that PbPo is a topological crystalline insulator (TCI). The calculated mirror Chern number and surface states double confirm this conclusion.

PACS numbers: 71.20.-b, 73.43.-f, 71.70.Ej

I. INTRODUCTION

Rock-salt chalcogenides represent a significant group of functional materials, in which many novel properties are discovered, including superconductivity¹, Fermi-liquid behavior,² ferroelectricity³,⁴ optoelectronics⁵,⁶ and spintronics⁷,⁸. Recently, this class of materials has attracted considerable attention again due to the realization of the nontrivial topological properties, so called TCI⁹,¹⁰, in SnTe¹¹,¹². In contrast to the widely studied Z₂ topological insulator (TI)¹³,¹⁴, Dirac cones lying on the TCI surfaces are protected by the mirror symmetry, rather than time reversal (TR) symmetry. Therefore, TCI phase is associated with a new topological invariant called mirror Chern number, which classifies and distinguishes TCI from TI and an ordinary insulator. Importantly, a quantized π-Berry phase induced by the band inversion is needed and essential in TCI to characterize its topological properties such as Dirac cones.

Though the discovery of TCI enriches people’s understanding of the topological classification, few TCIs are realized in experiment. In order to satisfy the requirement of the potential device applications, it is urgent to find more TCIs, especially those with large band gap and high working temperature. As we all know, most lead chalcogenides adopt the same structure as SnTe, where the band inversion at L point is driven by the spin-orbit coupling (SOC). Considering that lead is much heavier than tin, it is natural to postulate that PbX may be a large band gap TCI due to the much stronger SOC. However, until now, no TCI phase is realized in PbX. Therefore, it is important to figure out the main factors of the band gap evolution in rock-salt chalcogenides with the purpose of achieving large band gap TCIs. Based on previous studies, there is a famous empirical relation¹⁵ between band gap E_G and lattice constant a_0, which states that $E_G = E(L_0^-) - E(L_0^+)$ has a linear relationship with $1/a_0^2$ for a series of relevant rock-salt semiconductors. However, this relation is invalid in lead chalcogenides, where PbTe exhibits a well-known anomaly that E_G(PbS) > E_G(PbTe) > E_G(PbSe)¹⁶,¹⁷, even though the lattice constant a_0(PbTe) is much larger than a_0(PbSe). This band gap anomaly has been a long-standing question and remains under debate.

In this paper, by combining ab initio calculations and TB method, we have studied the band evolution and band gap anomaly in PbX. Our studies show that the band gap anomaly in PbTe is related to the delocalized 5s electrons of Te tightly. Comparing to S and Se, the 5s electrons of Te show much lower binding energy (high onsite energy) and very extended distribution caused by the huge screening effect of the numerous of interior electrons. As a result, Te 5s orbital pushes up the Pb p orbital through the huge s-p hybridization, leading to a large band gap for PbTe. Moreover, our calculations show that E_G(PbPo) roughly agrees with the linear relation $E_G \propto 1/a_0^2$ formed by PbS and PbSe, and it becomes a negative number, which means that band inversion happens at L point in PbPo. Our detailed Non-local Heyd-Scuseria-Ernzerhof (HSE) hybrid functional calculations show that PbPo is an indirect band gap semiconductor with a quantized π-Berry phase, which clearly indicates that PbPo is a TCI. The calculated mirror Chern number and surface states double confirm this conclusion.

This paper is arranged as follows. In section II we will in-
introduce the details of the \textit{ab initio} calculations and TB model. In section III, based on the TB model, we will study the origin of the band gap anomaly. In section IV we will focus on the electronic structure and topological properties of PbPo. Finally, section V contains a summary of this work.

II. \textit{AB INITIO} CALCULATIONS AND TB METHOD

Our \textit{ab initio} calculations are carried out by the projector augmented wave (PAW) method\cite{28, 29} implemented in Vienna \textit{ab initio} simulation package (VASP)\cite{28, 29}. Experimental lattice constants, with $a_0 = 5.942$ Å, 6.12 Å, 6.46 Å, and 6.59 Å for PbS, PbSe, PbTe, and PbPd are adopted in our calculations. The exchange and correlation potential is treated within the generalized gradient approximation (GGA) of Perdew-Burke-Ernzerhof type\cite{32}. Considering the possible underestimation of the band gap by GGA, HSE hybrid functional\cite{33} is further supplemented to improve the accuracy of the band gap. The cutoff energy of the plane wave expansion is 500 eV, and $11 \times 11 \times 11$ k-point grids are used in the self-consistent calculations. SOC is consistently considered in the calculations. Modified Becke-Johnson (mBJ)\cite{34} calculations are performed using the all-electron full-potential linearized augmented plane-wave (FP-LAPW) method implemented in the WIEN2k package\cite{35}.

In order to study the band evolution and the band gap anomaly accurately, a general eight-band Slater-Koster\cite{36} TB model with bases \{s, p, p, p, s, p, p, p\} are constructed, in which, besides the p-p hoppings, the s-p hybridizations are taken into account too:

$$
H(k) = H_0(k) + H_{so}(k) = \begin{pmatrix}
H_0^{CC}(\uparrow\uparrow) + \frac{1}{2} \xi^C L_z & H_0^{CA}(\uparrow\uparrow) & H_0^{CC}(\downarrow\downarrow) + \frac{1}{2} \xi^A L_z & H_0^{CA}(\downarrow\downarrow) \\
H_0^{CA}(\downarrow\uparrow) & H_0^{CC}(\downarrow\uparrow) + \frac{1}{2} \xi^C L_z & H_0^{CA}(\uparrow\downarrow) & H_0^{CC}(\uparrow\downarrow) + \frac{1}{2} \xi^A L_z \\
H_0^{CA}(\downarrow\uparrow) & H_0^{CA}(\downarrow\uparrow) + \frac{1}{2} \xi^A L_z & H_0^{CC}(\uparrow\uparrow) & H_0^{CA}(\uparrow\uparrow) \\
H_0^{CC}(\downarrow\downarrow) & H_0^{CC}(\downarrow\downarrow) + \frac{1}{2} \xi^A L_z & H_0^{CA}(\uparrow\downarrow) & H_0^{CC}(\uparrow\downarrow) + \frac{1}{2} \xi^A L_z
\end{pmatrix}
$$

where $L_{\pm} = L_x \pm iL_y$, $L_{x,y,z}$ are the angular momentum operators. ξ^C (ξ^A) is the SOC parameter for cation (anion) p orbital. The typical literature SOC parameters $\xi_{\text{Pb}}=0.91$ eV, $\xi_{\text{S}}=0.05$ eV, $\xi_{\text{Se}}=0.22$ eV, $\xi_{\text{Te}}=0.49$ eV and $\xi_{\text{Po}}=1.06$ eV are adopted from Wittel’s spectral data\cite{36} in this paper.

III. BAND GAP ANOMALY IN PbX

The band gaps calculated by different methods for PbX are shown in Fig. 1(a), in which the non-SOC band gap is defined as $\Delta E=E(L_2^0)−E(L_1^0)$ as shown in Fig. 2(a). In Fig. 3(a), the band gaps for PbTe show a distinct jump in all calculation methods, which means the band gap anomaly in PbTe is intrinsic of the material, and irrelevant to SOC and the form of the exchange-correlation functional. Comparing all the results shown in Fig. 3(a), we find HSE03+SOC is the most superior method, which gives almost the same band gaps as the experimental measurements for all materials. Therefore, in the following, the band structures calculated by HSE03 without SOC are taken as reference to fit the parameters in Eq. (1) and all parameters are directly transferred to Eq. (1) by adding the isotropic SOC term to estimate the band gaps and dispersions for all compounds. The comparisons between the
non-SOC band structures obtained by Eq. (3) and original HSE03 calculations are shown in Fig. 2 and all fitted parameters are listed in Table I, in which the detailed definitions of them are given in the sixth and seven columns. Taking D_3 as an example, "x,y(111)" and "C−A" mean D_3 is the hopping parameter from the p_c orbital (x) of cation (C) to the s orbital (y) of anion (A) along the vector $a_0/2 (1,0,0)$. In Fig. 2, the non-SOC band structures obtained from HSE03 calculations and TB fittings by Eq. (3) are plotted with red lines and blue dots respectively. It is clear that our TB results agree with HSE03 calculations very well, which certifies that our model is accurate enough to study all details of the system.

The estimated band gaps E_G (red circles) from Eq. (4) for all four compounds, as well as the experimental data at 4.2 K (blue pentagons), are summarized in Fig. 3(b). It is clear that our TB results overlap with the experimental data almost, which certifies that our model is accurate and powerful again. In order to study the origin of the band gap anomaly in PbTe, we have checked all the parameters in Table I carefully and found that the s orbital onsite energy of Te (C_1) is obviously higher than the other three. Taking A_1 (onsite energy of cation s orbital) as a referential energy, we get C_1-A_1 equal to -5.7716, -5.8421, -3.4233 and -5.3128 for PbS, PbSe, PbTe and PbPo respectively. As a result, the band energy of Te 5s orbital at Γ point shown in Fig. 2(c) is about -13 eV, while it is nearly -15 eV for the other three compounds. Owing to this high onsite energy, Te 5s orbital will push up Pb 6p orbital through the s-p hybridization and result in a large band gap for PbTe. Now, we try to artificially decrease the onsite energy of Te 5s orbital and push down the band gap at Γ point until it reaches the "regular" level -15 eV as the other three. (For this purpose, C_1 needs to be decreased by 2 eV.) After this adjustment, though the band gap does decrease about 0.2 eV as shown as the green triangle in Fig. 3(b), the band gap anomaly is still evident. Therefore, there must be some other reasons responsible to the band gap anomaly in addition to the high onsite energy of Te 5s orbital. We then recheck all the parameters in Table I and find that D_3 also show some irregularity. Naturally, $|D_3|$ should decrease monotonically from PbS to PbPo due to the increasing lattice constant. However, $|D_3(PbTe)|$ is a little larger than $|D_3(PbSe)|$, even though $a_0(PbTe) = 6.460 Å$ is obviously larger than $a_0(PbSe) = 6.124 Å$. Based on the above discussions, after decreasing C_1 by 2 eV and increasing D_3 by 0.08 eV to a "regular" number, the final band gap for PbTe is shown as the purple square in Fig. 3(b), which falls on the line formed by PbS-PbSe-PbPo almost. Therefore, we conclude that the band gap anomaly in PbTe is mainly related to the high onsite energy of Te 5s orbital and the irregularly large s-p hopping.

Because SOC nearly has no contribution to the band gap anomaly as identified by our ab initio calculations, we would like to analytically discuss the band gap evolution and anomaly based on the non-SOC TB model in the following. At this case, the band gap ΔE can be easily written as:

\[
\Delta E = \frac{1}{2} \left[\left| A_4-8A_6-6E_1-4B_1+2B_2+C_1+\sqrt{4D^2+\left(A_4-8A_6-6E_1-4B_1-2B_2-C_1\right)^2} \right| \right.
\]

\[
-\left(A_1-8A_3-6B_3-4B_2+C_3+\sqrt{4D^2+\left(A_1-8A_3-6B_3-4B_2-C_3\right)^2} \right)
\]

which shows an explicit relation between ΔE, C_1 and D_3. In

![FIG. 2. (color online) Non-SOC band structures of PbX. The red lines and the blue dots are obtained from HSE03 calculations and TB model fitting respectively.](image-url)
Eq. (5), if we omit D_3, all $C_1 (E_1)$ terms will cancel with each other, which means that the anomaly of C_1 needs the help of D_1 to involve in the band gap formation and finally leads to a large gap for PbTe. Therefore, besides the directly bonded p-p hopping parameters (A_0, C_0, etc.), the key factors in determining the band gap for PbX are the huge s-p hybridization D_3 (D_2) and the irregular high onsite energy C_1. We note that, such huge s-p hybridization is a typical character of the covalent systems rather than the ionic compounds. Generally, the hybridizations between the bonding (antibonding) states and non-bonding states are very weak in ionic compounds, such as CaX ($X=S, Se, Te$), SrX ($X=S, Se, Te$) and BaX ($X=S, Se, Te$) in which the irregular high onsite energy of Te s orbital has negligible influence on the band gap E_G because the s (antibonding state from cation)-s (non-bonding state from anion) hybridization is negligible. This is the main reason why CaX, SrX and BaX obey the empirical relation $E_G \approx 1/a_0^2$ very well, even though the irregularity of the Te s orbital also exists in all these ionic systems. Moreover, we note that the s-p hybridizations D_3 (D_2) in lead chalcogenides are too strong to be treated by the perturbation method. Using the fitted parameters for PbTe to do a rough estimation, $48D_3^2$ is almost equal to $(A_6-8A_9+6E_1-4B_3-2B_4-C_1)^2$. Therefore, the first square root in the right hand of Eq. (5) is approximately equal to $1/\sqrt{2|48D_3|} + [A_6-8A_9+6E_1-4B_3-2B_4-C_1]$, which can be used to estimate the band gap evolution with atomic number for PbX as a function of the atomic radius for S, Se, Te and Po as a function of the atomic number Z.

Next, we would like to discuss the origin of the irregularity of C_1 and D_3 deeply. Because both C_1 and D_3 are related to the s orbital of anion tightly, it is natural to propose that the irregularity may be originated from the chalcogen atoms themselves. We have calculated the binding energies of the outermost s electrons E_s for all chalcogen atoms and plotted them with the atomic number Z in Fig. 3(c), in which the points for sulfur, selenium and polonium show an approximately straight line while the point of tellurium is much higher than the straight line. This result clearly demonstrates that the high onsite energy C_1 of PbTe is inherited from the low binding energy of tellurium $5s$ electrons. To study the irregularity of D_3 in PbTe, we show a plot of the atomic radius of the chalcogen atoms Ω as a function of atomic number Z in Fig. 3(d). We can see that the atomic radius of tellurium does not lie on the straight line as the others do and its position is higher than the line, which means tellurium $5s$ orbital is more extended. As a result, the hybridization between $5s$ orbital of Te and p_x orbital of Pb, i.e. D_3, is abnormally larger than the “regular” value. Both the low binding energy and the extended distribution of the tellurium $5s$ electrons are related to the unusually strong screening effect of the V-period elements, as well as the penetration effect and relativistic effect. In general, the huge screening effect from the interior electrons will reduce the binding effect of nucleus and lead to a low binding energy and more extended distribution of Te $5s$ electrons. However, the detailed discussions of the atomic energy level distribution and distribution are very complicated and out of the scope of this work. Finally, we claim that such $5s$ electrons irregularity is universal for the right side elements in the V row of the periodic Table of Elements\cite{e.g. Sn, and our discussion is universal for other covalent systems with the same structure. For example, similar analysis would give the conclusion that the $5s$ orbital irregularity of Sn will obviously reduce the band gap of the tin chalcogenides, which may be the main reason why the band gap of tin chalcogenide is usually smaller than the same row lead chalcogenide\cite{43, 44}.

IV. TOPOLOGICAL PROPERTIES IN PbPo

One important result of our calculations is that E_G is negative for PbPo as shown in Fig. 2(b), which means that band inversion happens at L point of PbPo. Detailed HSE03+SOC calculations have been performed to confirm this conclusion. The calculated band structure is shown in Fig. 2(a), in which one p orbital of Pb is obviously dropped down below the Fermi level at L point as represented by the blue circles. Furthermore, our calculations show that PbPo is an indirect band gap (6.5 meV) semiconductor (see inset of Fig. 2(a)), rather than a direct band gap semiconductor\cite{45} or semimetal\cite{46}. All these band characters of PbPo are very similar to SnTe, which implies that PbPo may be a TCI too.

There are four L points \{L_1 (0, 0, 0), L_2 (0, 0, \pi), L_3 (\pi, \pi, 0), L_4 (\pi, 0, 0)\} in the first BZ of PbPo (see Fig. 2(b)). Because there are even band inversion points, the topological property of PbPo is different with 3D strong TIs\cite{27, 28}. Actually, the topological property is protected by the mirror symmetry, and its topological invariant is the mirror Chern number C_M instead of Z_2.

The eigenvalue (m) of the mirror operator $\hat{m}(\{1, 0\})$ is a good quantum number for PbPo. So we can classify the Bloch wavefunctions on (110) plane by m, and define the berry connection $A^{\alpha}(k)$ and berry curvature $\Omega^{\alpha}(k)$ on the plane as fol-
the top of the valence band and the bottom of the conduction band of PbPo. The calculated surface states on (111) and (001) planes.

\[
A^m(k) = i \sum_n (\langle u_n^m | \nabla_k | u_n^m \rangle)
\]
\[
\Omega^m(k) = \nabla_k \times A^m(k)
\]

where \(u_n^m(k)\) with mirror eigenvalue \(m = \pm i\) is the \(n\)th eigenstate at \(k\) point. The sum is over all occupied bands. The mirror Chern number \(C_M\) is defined as \(C_M = (n_i - n_{-i})/2\), \(n_{m} = \int \Omega^m(k) \cdot dS\). Using above formula, we find \(C_M = -2\) for PbPo, which confirms that PbPo is a TCI. The other hallmark of the TCI is the mirror symmetry protected nontrivial surface states. We have calculated the surface states on (111) and (001) plane as shown in Fig. 4(b) and Fig. 4(c), respectively. As we can see, there are two distinct Dirac cones: one is pinned at the time reversal invariant momentum (TRIM) point while the other is situated off the TRIM point. On (111) plane, \(L_2, L_3\) and \(L_4\) are projected to the same point \(M\), while \(L_1\) is projected to \(\Gamma\) point. There is no additional interaction coming from the scattering between odd \(L\)-valleys. So the Dirac cones on (111) plane exactly locate at the TRIM points as shown in Fig. 4(b). On (001) plane, \(L_1\) and \(L_2\) (\(L_3\) and \(L_4\)) are projected to the same point \(X\) (another \(\bar{X}\)). The interaction between two \(L\)-valleys will introduce an additional term to push the Dirac cones away from TRIM point[9]. However, \(k\)-points along \(\Gamma - X\) direction preserve mirror symmetry with respect \(m_{1(\bar{T})}\) operator. Therefore, even the Dirac cones are pushed away from TRIM point, they can still survive along \(\Gamma - X\) direction as shown in Fig. 4(c). The Dirac cones are protected by the mirror symmetry rather than TR symmetry, which is an important difference between TCI and \(Z_2\) TI.

V. CONCLUSION

In summary, we have studied the band evolution in PbX, and found that, though the \(s\) orbital of the anion is far away from the Fermi level, it has crucial influence on the band gap through the huge \(s-p\) hybridization. The high onsite energy of Te \(s\) orbital and its irregular extended distribution combining together result in an irregular big band gap in PbTe, \(\text{i.e.}\) the famous band gap anomaly in lead chalcogenides. Furthermore, our calculations show that PbPo is an indirect band gap (6.5 meV) semiconductor with negative \(E_G\), which means that band inversion happens at \(L\) point in PbPo. The calculated mirror Chern number and surface states confirm that PbPo is a TCI.

ACKNOWLEDGMENTS

We thank Xianxin Wu, Zhijun Wang, Richard Martin and Theodore Geballe for valuable discussions, the support from National Science Foundation of China (Grant Nos. 11204359), the 973 program of China (Grant Nos. 2013CB921700), and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant Nos. XDB07020100).

[1] Y. Matsushita, P. Wianecki, A. T. Sommer, T. Geballe, and I. Fisher, Physical Review B 74, 134512 (2006).
[2] C. Wood, Reports on progress in physics 51, 459 (1988).
[3] H. Wang, Y. Pei, A. D. LaLonde, and G. J. Snyder, Advanced Materials 23, 1366 (2011).
[4] A. I. Lebedev and I. A. Sluchinskaya, Ferroelectrics 157, 275 (1994).
[5] B. A. Akimov, A. Dmitriev, D. Khokhlov, and L. Ryabova, physica status solidi (a) 137, 9 (1993).
[6] Y. Liu, M. Gibbs, J. Puthussery, S. Gaik, R. Ihly, H. W. Hillhouse, and M. Law, Nano letters 10, 1690 (2010).
[7] S. Jin, H. Wu, and T. Xu, Applied Physics Letters 95, 132105 (2009).
[8] G. Grabecki, Journal of applied physics 101, 081722 (2007).
[9] L. Fu, Physical Review Letters 106, 106802 (2011).
[10] H. Weng, J. Zhao, Z. Wang, Z. Fang, and X. Dai, Physical review letters 112, 016403 (2014).
[11] T. H. Hsieh, H. Lin, J. Liu, W. Duan, A. Bansil, and L. Fu, Nature communications 3, 982 (2012).
[12] Y. Tanaka, Z. Ren, T. Sato, K. Nakayama, S. Souma, T. Takahashi, K. Segawa, and Y. Ando, Nature Physics 8, 800 (2012).
[13] M. Z. Hasan and C. L. Kane, Reviews of Modern Physics 82, 3045 (2010).
[14] X.-L. Qi and S.-C. Zhang, Reviews of Modern Physics 83, 1057 (2011).
[15] H. Weng, X. Dai, and Z. Fang, MRS Bulletin 39, 849 (2014).
[16] H. Weng, X. Dai, and Z. Fang, Physical Review X 4, 011002 (2014).
In the APPENDIX, the detailed descriptions of the real and imaginary matrix elements in Eq. [3] are shown in Table II and Table III respectively.

TABLE II. Real part of $H_0(k)$

$H_{1,1}$	$A_1 + 4A_2 \cos(k_x)\cos(k_y) + \cos(k_y)\cos(k_x) + \cos(k_x)\cos(k_y) + 2B_1 \cos(2k_x) + \cos(2k_y) + \cos(2k_z)$
$H_{1,5}$	$2D_1 \cos(k_x) + \cos(k_y)\cos(k_z) + 8F_1 \cos(k_x)\cos(k_y)\cos(k_z)$
$H_{2,2}$	$A_0 + 4A_2 \cos(k_x)\cos(k_y)\cos(k_z) + 4A_2 \cos(k_x) + 2B_1 \cos(2k_x) + 2B_3 \cos(2k_y) + 2B_5 \cos(2k_y) + \cos(2k_z)$
$H_{2,3}$	$-4A_5 \sin(k_y)\sin(k_z)$
$H_{2,4}$	$-4A_5 \sin(k_x)\sin(k_y)$
$H_{2,6}$	$2D_2 \cos(k_x) + 2D_3 \cos(k_y) + \cos(k_z) + 8F_3 \cos(k_x)\cos(k_y)\cos(k_z)$
$H_{2,7}$	$-8F_5 \sin(k_y)\sin(k_z)$
$H_{2,8}$	$-8F_5 \sin(k_x)\sin(k_y)\sin(k_z)$
$H_{3,3}$	$A_0 + 4A_7 \cos(k_x)\cos(k_y) + \cos(k_z) + 4A_8 \cos(k_x)\cos(k_y)\cos(k_z) + 2B_1 \cos(2k_x) + 2B_5 \cos(2k_y) + 2B_5 \cos(2k_y) + \cos(2k_z)$
$H_{3,4}$	$-4A_5 \sin(k_x)\sin(k_y)$
$H_{3,5}$	$2D_2 \cos(k_x) + 2D_3 \cos(k_y) + \cos(k_z) + 8F_3 \cos(k_x)\cos(k_y)\cos(k_z)$
$H_{3,6}$	$-8F_5 \sin(k_y)\sin(k_z)$
$H_{3,7}$	$A_0 + 4A_7 \cos(k_x)\cos(k_y) + \cos(k_z) + 4A_8 \cos(k_x)\cos(k_y)\cos(k_z) + 2B_1 \cos(2k_x) + 2B_5 \cos(2k_y) + 2B_5 \cos(2k_y) + \cos(2k_z)$
$H_{3,8}$	$-4A_5 \sin(k_x)\sin(k_y)$
$H_{4,4}$	$A_0 + 4A_7 \cos(k_x)\cos(k_y) + \cos(k_z) + 4A_8 \cos(k_x)\cos(k_y)\cos(k_z) + 2B_1 \cos(2k_x) + 2B_5 \cos(2k_y) + 2B_5 \cos(2k_y) + \cos(2k_z)$
$H_{4,6}$	$H_{2,5}$
$H_{4,7}$	$H_{3,5}$
$H_{4,8}$	$2D_2 \cos(k_x) + 2D_3 \cos(k_y) + \cos(k_z) + 8F_3 \cos(k_x)\cos(k_y)\cos(k_z)$
$H_{5,5}$	$C_1 + 4C_2 \cos(k_x)\cos(k_y) + \cos(k_z)\cos(k_x) + \cos(k_x)\cos(k_y)\cos(k_z) + 2E_1 \cos(2k_x) + \cos(2k_y) + \cos(2k_z)$
$H_{6,6}$	$C_0 + 4C_7 \cos(k_x)\cos(k_y) + \cos(k_z) + 4C_8 \cos(k_x)\cos(k_y)\cos(k_z) + 2E_4 \cos(2k_x) + 2E_5 \cos(2k_y) + \cos(2k_z)$
$H_{6,7}$	$-4C_5 \sin(k_y)\sin(k_z)$
$H_{6,8}$	$-4C_5 \sin(k_x)\sin(k_y)\sin(k_z)$
$H_{7,7}$	$C_0 + 4C_7 \cos(k_x)\cos(k_y) + \cos(k_z) + 4C_8 \cos(k_x)\cos(k_y)\cos(k_z) + 2E_4 \cos(2k_x) + 2E_5 \cos(2k_y) + \cos(2k_z)$
$H_{8,8}$	$C_0 + 4C_7 \cos(k_x)\cos(k_y) + \cos(k_z) + 4C_8 \cos(k_x)\cos(k_y)\cos(k_z) + 2E_4 \cos(2k_x) + 2E_5 \cos(2k_y) + \cos(2k_z)$
TABLE III. Image part of $H_0(k)$

$G_{1,2}$	$-4A_3 \sin(k_x) \cos(k_y) + \cos(k_z) - 2B_2 \sin(2k_x)$
$G_{1,3}$	$-4A_3 \sin(k_y) \cos(k_x) + \cos(k_z) - 2B_2 \sin(2k_y)$
$G_{1,4}$	$-4A_3 \sin(k_z) \cos(k_x) + \cos(k_y) - 2B_2 \sin(2k_z)$
$G_{1,6}$	$2D_2 \sin(k_x) + 8F_3 \sin(k_y) \cos(k_x) \cos(k_y)$
$G_{1,7}$	$2D_2 \sin(k_y) + 8F_3 \sin(k_x) \cos(k_y) \cos(k_y)$
$G_{1,8}$	$2D_2 \sin(k_z) + 8F_3 \sin(k_x) \cos(k_z) \cos(k_z)$
$G_{2,5}$	$-2D_3 \sin(k_x) - 8F_3 \sin(k_y) \cos(k_x) \cos(k_y)$
$G_{3,5}$	$-2D_3 \sin(k_y) - 8F_3 \sin(k_x) \cos(k_y) \cos(k_y)$
$G_{4,5}$	$-2D_3 \sin(k_z) - 8F_3 \sin(k_x) \cos(k_z) \cos(k_z)$
$G_{5,6}$	$-4C_3 \sin(k_x) \cos(k_y) + \cos(k_z) - 2E_2 \sin(2k_x)$
$G_{5,7}$	$-4C_3 \sin(k_y) \cos(k_x) + \cos(k_z) - 2E_2 \sin(2k_y)$
$G_{5,8}$	$-4C_3 \sin(k_z) \cos(k_x) + \cos(k_y) - 2E_2 \sin(2k_z)$