Too small to succeed? Lighting up massive dark matter subhaloes of the Milky Way

Arianna Di Cintio,1 Alexander Knebe,1 Noam I. Libeskind,2 Gustavo Yepes,1 Stefan Gottlöber2 and Yehuda Hoffman3

1 Departamento de Física Teórica, Módulo C-15, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Cantoblanco, Madrid, Spain
2 Leibniz-Institut für Astrophysik Potsdam, An der Sternwarte 16, D-14482 Potsdam, Germany
3 Racah Institute of Physics, The Hebrew University of Jerusalem, 91904 Givat Ram, Israel

Accepted 2011 July 21. Received 2011 July 20; in original form 2011 June 6

ABSTRACT

Using Constrained Local UniversE Simulations (CLUES) of the formation of the Local Group in a cosmological context, we investigate the recently highlighted problem that the majority of the most massive dark subhaloes of the Milky Way (MW) are too dense to host any of its bright satellites. In particular, we examine the influence of baryonic processes and find that they leave a twofold effect on the relation between the peak of the rotation curve and its position (V_{max} and R_{max}). Satellites with a large baryon fraction experience adiabatic contraction, thus decreasing R_{max} while leaving V_{max} more or less unchanged. Subhaloes with smaller baryon fractions undergo a decrease in V_{max} possibly due to outflows of material. Furthermore, the situation of finding subhaloes in simulations that lie outside the confidence interval for possible hosts of the bright MW dwarf spheroidals appears to be far more prominent in cosmologies with a high σ_8 normalization and depends on the mass of the host. We conclude that the problem cannot be simply solved by including baryonic processes and hence demands further investigations.

Key words: methods: numerical – galaxies: formation – galaxies: haloes – Local Group.

1 INTRODUCTION

The cold dark matter (ΛCDM) model, first explored more than two decades ago (Davis et al. 1985), has been very successful in explaining a multitude of observations at cosmological scales, such as as anisotropies of cosmic microwave background radiation (e.g. Jarosik et al. 2011) and galaxy clustering on large scales (e.g. Cole et al. 2005). However, on smaller, galactic scales, the tests of the ΛCDM model are complicated by the baryonic physics involved in galaxy formation. Therefore, testing the currently accepted concordance model at these scales is necessary in order to not only understand the nature of DM, but also the accuracy of the model itself.

The validity of the ΛCDM model on galactic scales is still being questioned due to the discrepancy between the number of observed satellites and the number of predicted DM subhaloes. High-resolution simulations of galactic-size haloes resolve a substantial number of substructures within the virial radius, as first pointed out by Klypin et al. (1999) and Moore et al. (1999), and recently reviewed by Kravtsov (2010) and Bullock (2010).

The most popular interpretation of this so-called ‘missing satellite problem’ requires that the smallest DM haloes are inefficient at forming stars (e.g. Bullock 2010; Kravtsov 2010). Mechanisms such as early re-ionization of the intergalactic medium and supernovae feedback have been invoked to identify the halo mass scale where the galaxy formation starts to be inefficient (Bullock, Kravtsov & Weinberg 2000; Benson et al. 2002; Somerville 2002), partially solving the problem. Furthermore, the detection of satellites is most certainly biased because of current detection limits (Tollerud et al. 2008; Walsh, Willman & Jerjen 2009).

There is yet another aspect of the satellite population that needs to be addressed: the mismatch between the predicted and inferred distribution of V_{max} values at the high-V_{max} end as recently highlighted by Boylan-Kolchin, Bullock & Kaplinghat (2011), where V_{max} measures the peak of the rotation curve of subhaloes. Using the Aquarius simulations (Springel et al. 2008) and the Via Lactea II simulation (Diemand et al. 2008), they found that the majority of the most massive subhaloes (i.e. the high-V_{max} objects) of the Milky Way (MW) are too dense to host any of its bright satellites.

There are a number of ways in which this discrepancy may be resolved: the subhalo mass function of the MW could be a statistical anomaly with respect to the ΛCDM expectations (Liu et al. 2010; Guo et al. 2011), or the fundamental assumption that the luminosities of the satellites are not monotonically related to the mass of the subhaloes does not hold true.

In response to the claims by Boylan-Kolchin et al. (2011), Lovell et al. (2011) explored the possibility that warm DM (WDM) rather
than CDM can provide a better match to the inferred distribution of satellite circular velocities. With a power spectrum suppressed at masses below $\sim 10^{10} \, M_\odot$ (corresponding to a warmon mass of 2 keV), they found that a WDM model naturally produces haloes that are less concentrated than their CDM counterparts. The attempt to explain the evolution of small-scale structures in the local universe with a ΛWDM model was already presented in Tikhonov et al. (2009). However, this is only one possible solution to the problem.

Baryonic processes will most certainly also affect the DM distribution. Blumenthal et al. (1986) showed that dissipative baryons will lead directly to the adiabatic contraction of the halo increasing its central density, thus being a critical ingredient to determine subhalo properties. However, the possibility that the influence of baryons will lead to a flattening of the DM central density cusp (through dynamical friction of infalling substructures composed of DM and baryons) has, for instance, been suggested by El-Zant, Shlosman & Hoffman (2001) and further studied in Romano-Díaz et al. (2008). Another way in which the haloes’ density can be reduced is through sudden mass outflows that can alter substantially the central structure, as suggested by Navarro, Eke & Frenk (1996a). In a recent work of Parry et al. (2011), this last scenario has been tested by following the evolution of one simulated satellite, with promising results. The same authors though also showed that the inclusion of baryons in simulations does not seem to have any correlation with the increase or decrease of the DM central density.

In this Letter, we directly address the issue of the V_{max} problem in CDM simulations by comparing two identical simulations with each other: one that is solely based upon DM physics and another incorporating all the relevant baryonic physics. These simulations form part of the Constrained Local Universe Simulations (CLUES) project, in which the initial conditions are set by imposing constraints derived from observational data of the Local Group. The main feature of using constrained simulations is that it provides a numerical environment that closely matches our actual neighbourhood.

2 THE SIMULATIONS

2.1 Constrained simulations of the Local Group

We use the same simulations already presented in Libeskind et al. (2010), Libeskind et al. (2011), Knebe et al. (2010) and Knebe et al. (2011), and refer the reader to these papers for a more exhaustive discussion and presentation of these constrained simulations of the Local Group that form part of the CLUES project. However, we briefly summarize their main properties here for clarity.

We choose to run our simulations using standard ΛCDM initial conditions, which assume a 3-year Wilkinson Microwave Anisotropy Probe (WMAP) cosmology (Spergel et al. 2007), i.e. $\Omega_m = 0.24$, $\Omega_\Lambda = 0.76$. We use a normalization of $\sigma_8 = 0.75$ and a slope of the power spectrum of $n = 0.95$. We used the TreePM-SPH MPI code GADGET2 (Springel 2005) to simulate the evolution of a cosmological box with side length of $L_{\text{box}} = 64 h^{-1} \, \text{Mpc}$. Within this box, we identified (in a lower resolution run utilizing 10243 particles) the position of a model Local Group that closely resembles the real Local Group (cf. Libeskind et al. 2010). This Local Group has then been resampled with 64 times higher mass resolution in a region of 2 $h^{-1} \, \text{Mpc}$ about its centre giving a nominal resolution equivalent to 40963 particles giving a mass resolution of $m_{\text{DM}} = 2.1 \times 10^4 h^{-1} \, M_\odot$ for the DM and $m_{\text{gas}} = 4.42 \times 10^4 h^{-1} \, M_\odot$ for the gas particles. For more details, we refer the reader to Gottlöber, Hoffman & Yepes (2010).

For this particular study, we further use a gas dynamical SPH simulation started with the same initial conditions, in which we additionally follow the feedback and star formation (SF) rules of Springel & Hernquist (2003): the interstellar medium is modelled as a two-phase medium composed of hot ambient gas and cold gas clouds in pressure equilibrium. The thermodynamic properties of the gas are computed in the presence of a uniform but evolving ultraviolet cosmic background generated from QSOs and AGNs and switched on at $z = 6$ (Haardt & Madau 1996). Cooling rates are calculated from a mixture of a primordial plasma composition. No metal-dependent cooling is assumed. Cold gas cloud formation by thermal instability, SF, the evaporation of gas clouds and the heating of ambient gas by supernova-driven winds are assumed to all occur simultaneously. Note that the results presented through the Letter will only refer to the specific SF/feedback model of Springel & Hernquist (2003): other formalisms might lead to different conclusions, and will be addressed in a companion paper (Di Cintio et al., in preparation).

In addition, we also have at our disposal a DM-only CLUES simulation based upon the WMAP3 cosmology (Komatsu et al. 2009) whose details will be presented in a companion paper; here it suffices to know that this simulation has the same formal resolution as the WMAP3 one, and it has also been resimulated within a sphere of 2 h^{-1} Mpc radius, i.e. the primary difference between the two simulations is merely the cosmology.

2.2 The (sub-)halo finding

We used the MPI+OpenMP hybrid halo finder AHF (AMIGA halo finder) to identify haloes and subhaloes in our simulation. AHF is the successor of the HIF halo finder by Gill, Knebe & Gibson (2004), and a detailed description of its mode of operation is given in the code paper (Knollmann & Knebe 2009). Note that AHF automatically (and essentially parameter-free) finds haloes, subhaloes, subsubhaloes, etc. As the two WMAP3 simulations started with the same initial conditions (apart from the baryons), we can match individual subhaloes in the DM-only simulation with a ‘sister’ subhalo in the SPH run (see Libeskind et al. 2010). In effect, this cross-identification pairs subclump at $z = 0$ that originated from the same overdensity in the initial conditions.

3 RESULTS

In order to most closely match the results presented by Boylan-Kolchin et al. (2011) and not to be contaminated by numerical effects, we limited the subhaloes used throughout the study to those within 300 kpc from their respective hosts and more massive than $M_{\text{sub}} > 2 \times 10^9 M_\odot h^{-1}$. We further stack the data for the two most massive hosts representing our MW and M31 galaxies.

In Fig. 1, we show the relation between R_{max} and V_{max} for the WMAP3 simulation alongside the 1σ confidence region of the known MW satellites, assuming that the mass density profile of the subhaloes containing the nine observed dwarf spheroidal (dSph) follows a NFW profile (Navarro, Frenk & White 1996b); the two solid lines in Fig. 1 (and Fig. 2) thus limit the area consistent with the observed half-light radii and masses of these dwarfs, based on the

1 http://www.clues-project.org

2 AHF is freely available from http://popia.ft.uam.es/AMIGA.
The relation between the peak of the rotation curve \(V_{\text{max}} \) and its position \(R_{\text{max}} \) for the WMAP3 simulations: the diamonds are DM-only subhaloes, the crosses represent baryonic SPH subhaloes. The two solid lines delimit the 1\(\sigma \) confidence interval of the observed bright MW dSph galaxies, as in Boylan-Kolchin et al. (2011). The arrows connect the DM–SPH sister pairs found following the matching haloes procedure of Libeskind et al. (2010).

The subhaloes are found only marginally outside the observational confidence interval. However, note that the actual \(V_{\text{max}} \) values for the subhaloes depend on the host mass and \(V_{\text{max host}} \), respectively (cf. Reed et al. 2005; Diemand, Kuhlen & Madau 2007; Springel et al. 2008). Therefore, in order to better compare the WMAP3 to the WMAP5 simulation, we scaled the subhaloes’ maximum velocities, \(V_{\text{max},\text{sub,WM3}} \), by the ratio \(V_{\text{max,WM3}}/V_{\text{max,WM5}} \) (not presented here) where the respective values are \(V_{\text{max,WM3}} = 131 \), \(V_{\text{max,WM5}} = 128 \) for WMAP3, and \(V_{\text{max,WM3}} = 178 \), \(V_{\text{max,WM5}} = 194 \) for WMAP5 (all in km s\(^{-1}\)). We find that this renormalization leads to a \(\approx 30 \% \) decrease of the \(V_{\text{max},\text{sub,WM3}} \) values, bringing them into agreement with the WMAP5 results. In that respect, the two DM-only simulations are in fact not too different!

More importantly, we see in Fig. 1 that the inclusion of baryonic physics does not solve the problem of the massive and highly concentrated DM subhaloes. On the contrary, subhaloes with baryons appear to be downshifted in the \(R_{\text{max}}–V_{\text{max}} \) plane with respect to their DM counterpart, sometimes even entering the regime outside the observational constraints only in the SPH run. However, we also find that the lower \(V_{\text{max}} \) objects seem to be shifted in the direction anticipated by Boylan-Kolchin et al. (2011), i.e. to the upper left of the plot. There appear to be two competing effects moving subhaloes in the \(R_{\text{max}}–V_{\text{max}} \) plane.

The six SPH (sister) subhaloes that are outside the confidential range have a smaller \(R_{\text{max}} \) than their DM-only companion: the addition of baryons causes a contraction of the halo. This effect is also visible for three SPH (sister) subhaloes inside the observational area and is readily explained by the physical phenomenon of adiabatic contraction (Blumenthal et al. 1986; Gnedin et al. 2004). We confirm that the baryon fraction \(f_{b} = \Omega_{b}/\Omega_{m} \) of those subhaloes moving downwards is higher than for the subhaloes shifted to the upper left. On average, the baryon fraction of the nine (sister) SPH subhaloes, whose \(R_{\text{max}} \) is reduced with respect to their DM counterpart, is \(f_{b} = 0.314 \), while the mean \(f_{b} \) of the SPH subhaloes inside the 1\(\sigma \) area whose \(R_{\text{max}} \) increases is \(f_{b} = 0.006 \), i.e. substantially smaller. The subhaloes with high \(f_{b} \) experience adiabatic contraction, and the majority of these objects are the ones with the initial highest \(R_{\text{max}}–V_{\text{max}} \) pairs.

To confirm this last point, we used the \textsc{contra} code (Gnedin et al. 2004) to calculate the adiabatic contraction of a DM halo in response to condensation of baryons. Using our numerical data as input parameters, we found that adiabatic contraction is actually efficient only for those subhaloes with sufficiently high \(f_{b} \), as expected: the amount of the \(R_{\text{max}} \) reduction computed this way perfectly matches the observed shifts in Fig. 1.

Instead, for the lower \(V_{\text{max}} \) sister subhaloes (with substantially smaller baryon fractions), the baryonic matter has the capability to lower the maximum velocity of the rotation curves, while increasing \(R_{\text{max}} \). This has already been claimed in previous works and may be due to different mechanisms. In particular, we like to highlight the mass outflow model of Navarro et al. (1996a): immediate expulsion of a large fraction of baryonic material during SF could be the cause of the creation of a central DM core, which will move the peak of the rotation curve to larger radii. This model has been successfully tested by Parry et al. (2011) who followed the formation history of a single stellar-dominated satellite, which undergoes the sequence of events predicted by Navarro et al. (1996a). Another possible explanation to end up with less concentrated density profiles is through the mechanism described by Mashchenko, Couchman & Wadsley (2006). A random bulk motion of gas, driven by stellar feedback, results in a flattening of the central DM cusps, thus leading to DM densities smaller than predicted by pure DM cosmological models.
models. However, why is it that those objects with low baryon fractions are the ones that require the aforementioned mechanisms? Is it that the gas expulsion has already occurred, thereby lowering the baryon fraction? Possibly, the baryon fraction is only low at redshift \(z = 0 \) because of mass losses during the subhaloes’ history. Lately, Nickerson et al. (2011) explored the effect of several baryon loss mechanisms on subhaloes in SPH simulation of a MW-like galaxy, too: they found that for the subhaloes which ended up having (or having had) stars but no gas, the most efficient mechanism of baryon removal is exactly the stellar feedback (Dekel & Silk 1986). Finally, we note that the adiabatic contraction (following Gnedin et al. 2004) is ineffective for these subhaloes. We will address all these issues of the temporal evolution, mass loss and baryon influence in greater detail in a companion paper (Di Cintio et al., in preparation).

We close this section with a detailed look at the rotation curves of the sister haloes in Fig. 3. In each plot, the two sister objects are presented; the solid and dashed lines represent the circular velocity of the DM subhaloes in the DM-only simulation and of the (sister) SPH subhalo, respectively. The asterisks show the \(\sqrt{V_{\text{max}}-R_{\text{max}}} \) pairs used in Fig. 1. We thus observe adiabatic contraction at work: the first three objects (which happen to have high baryon fraction) in that plot clearly show the centrally peaked total matter distribution in the SPH run. The plot further indicates that our measurements of the rotation curve and its peak are not contaminated by numerical artefacts (e.g. misidentified halo centre, etc.).

\begin{figure}[ht]
\centering
\includegraphics[width=\textwidth]{rotation_curves.png}
\caption{Rotation curves of 10 sister pairs of massive subhaloes. In each panel, the velocity profile of a pair of DM and SPH subhaloes is presented. The actual values of \(V_{\text{max}} \)–\(R_{\text{max}} \) are plotted as asterisks.}
\end{figure}

4 CONCLUSIONS

In this Letter, we explored the possibility that baryonic processes may solve the recently presented problem of ‘the puzzling darkness of MW subhaloes’ (Boylan-Kolchin et al. 2011). To this extent, we used DM only as well as full hydrodynamical simulations of cosmic structure in the context of the CLUES project. We used cosmological parameters determined from both the WMAP3 and WMAP5 data.

Our conclusions are twofold and can be summarized as follows.

(i) We find that when baryonic physics is included, following the feedback and SF prescriptions of Springel & Hernquist (2003), the problem of having too dense massive subhaloes is not solved. Instead, gas dynamical simulations pose new questions regarding which mechanisms are responsible for the lowering of \(R_{\text{max}} \) in those subhaloes (while \(V_{\text{max}} \) remains more or less constant). Adiabatic contraction seems to be a reasonable explanation, as shown using the modified adiabatic contraction model of Gnedin et al. (2004): this process is effective only for some subhaloes, specifically, for those with a high baryon fraction. For the SPH subhaloes with lower baryon fractions at redshift \(z = 0 \), instead, we observe a general increase of \(R_{\text{max}} \) with respect to their DM counterpart, thus meaning that other effects are at work, e.g. the model proposed by Navarro et al. (1996a) in which a rapid expulsion of baryonic mass during SF causes a reduction of the halo concentration, as well as naturally explaining the low baryon fraction of these objects.

(ii) While in the WMAP5 DM-only case we find DM subhaloes outside the confidence area (calculated following the prescription given in Boylan-Kolchin et al. 2011), in the WMAP3 cosmology we have only one massive subhalo outside this observational range. Since the Via Lactea II and Aquarius simulations presented in Boylan-Kolchin et al. (2011) are similar cases, we conclude that the cosmology certainly has an influence, too: the higher \(\sigma_8 \) of the WMAP5 scenario eventually led to higher host masses which – according to our test – are the most likely reason for the higher number of excessively centrally concentrated substructures. Note that the latest data from WMAP7 favours \(\sigma_8 = 0.807 \), a value between the WMAP3 and WMAP5 results: this could mean that the problem is worse than in WMAP3, but not as pronounced as in the WMAP5 case.

An issue touched upon neither by us nor by other authors is the adequacy of using NFW profiles when calculating the confidence interval for possible hosts of the bright MW dSphs. It is obvious that tidal effects will lead to severe modifications of the original NFW density profile subhaloes had upon infall into their host (Kazantzidis et al. 2004). They therefore leave an impact upon internal and kinematical properties, respectively (Lokas et al. 2010; Lokas, Kazantzidis & Mayer 2011), which should be taken into account when using observed half-light radii \(R_{1/2} \) and their corresponding masses \(M_{1/2} \) to define the confidence interval. Further, Romano-Díaz et al. (2008) showed that adiabatic contraction makes the DM profile almost isothermal. However, the relevance is questionable as material will primarily be stripped from the outer regions: Peñarrubia, McConnell & Navarro (2008) state that dSphs embedded in NFW haloes are very resilient to tidal effects until they are nearly destroyed. This is supported by Navarro et al. (2010) who...
found that the NFW shape holds reasonably well even for subhaloes. To roughly gauge the problem, we fitted our (SPH) subhaloes to a NFW profile, and observed that while some of them are well fitted, there are still objects whose density profile cannot be approximated by the simple NFW functional form. Taking all these considerations into account suggests that the NFW profile used to calculate the allowed region is likely not the best choice.

The interpretation of the results presented here clearly demands a closer investigation of the evolutionary tracks of the satellites, the actual influence of the SF and feedback model as well as an improved calculation of the observational confidence level, verifying the applicability of the NFW approach. However, we leave this to a companion paper (Di Cintio et al., in preparation) and only highlight here that simply the inclusion of baryonic physics does not solve the problem; it rather poses new challenges to be explored and studied in greater detail.

ACKNOWLEDGMENTS

The simulations were performed and analysed at the Leibniz Rechenzentrum Munich (LRZ) and at the Barcelona Supercomputing Center (BSC). We thank DEISA for giving us access to computing resources in these centres through the DECI projects SIMU-LU and SIMUGAL-LU. We also acknowledge the MultiDark Consolider project and the ASTROSIM network of the ESF for the financial support of the workshop ‘CLUES workshop’ held in Brighton in 2011 June, where this Letter has been finished. YH has been partially supported by the Israel Science Foundation (13/08). NIL is supported by a grant by the Deutsche Forschungsgemeinschaft. AK is supported by the Spanish Ministerio de Ciencia e Innovacion (MICINN) in Spain through the Ramon y Cajal programme and the grants AYA 2009-13875-C03-02, AYA2009-12792-C03-03, CSD2009-00064 and CAM S2009/ESP-1496. We like to thank the referee Erik Tollerud for constructive comments.

REFERENCES

Benson A. J. et al., 2002, MNRAS, 333, 177
Blumenthal G. R. et al., 1986, ApJ, 301, 27
Boylan-Kolchin M., Bullock J. S., Kaplinghat M., 2011, MNRAS, 415, L40
Bullock J. S., 2010, arXiv e-prints
Bullock J. S., Kravtsov A. V., Weinberg D. H., 2000, ApJ, 539, 517
Cole S. et al., 2005, MNRAS, 362, 505
Davis M. et al., 1985, ApJ, 292, 371
Dekel A., Silk J., 1986, ApJ, 303, 39
Diemand J., Kuhlen M., Madau P., 2007, ApJ, 657, 262
Diemand J. et al., 2008, Nat, 454, 735
El-Zant A., Shlosman I., Hoffman Y., 2001, ApJ, 560, 636
Gill S. P. D., Knebe A., Gibson B. K., 2004, MNRAS, 351, 399
Gnedin O. Y. et al., 2004, ApJ, 616, 16
Gottlöber S., Hoffman Y., Yepes G., 2010, in Wagner S., Steinmetz M., Bode A., Müller M. M., eds, High Performance Computing in Science and Engineering Springer, Constrained Local UniversE Simulations (CLUES). p. 309
Guo Q. et al., 2011, arXiv e-prints
Haardt F., Madau P., 1996, ApJ, 461, 20
Jarosik N. et al., 2011, ApJS, 192, 14
Kazantzidis S. et al., 2004, ApJ, 608, 663
Klypin A. et al., 1999, ApJ, 516, 530
Knebe A. et al., 2011, MNRAS, 405, 1119
Knebe A. et al., 2011, MNRAS, 412, 529
Knollmann S. R., Knebe A., 2009, ApJS, 182, 608
Komatsu E. et al., 2009, ApJS, 180, 330
Kravtsov A., 2010, Advances Astron., 2010
Libeskind N. I. et al., 2010, MNRAS, 401, 1889
Libeskind N. I. et al., 2011, MNRAS, 411, 1525
Liu L. et al., 2011, ApJ, 733, 62
Lokas E. L. et al., 2010, arXiv e-prints
Lokas E. L., Kazantzidis S., Mayer L., 2011, arXiv e-prints
Lovell M. et al., 2011, arXiv e-prints
Mashchenko S., Couchman H. M. P., Wadsley J., 2006, Nat, 442, 539
Moore B. et al., 1999, ApJ, 524, L19
Navarro J. F., Eke V. R., Frenk C. S., 1996a, MNRAS, 283, L72
Navarro J. F., Frenk C. S., White S. D. M., 1996b, ApJ, 462, 563
Navarro J. F. et al., 2010, MNRAS, 402, 21
Nickerson S. et al., 2011, MNRAS, 415, 257
Parry O. H. et al., 2011, arXiv e-prints
Peñarrubia J., McConnachie A. W., Navarro J. F., 2008, ApJ, 672, 904
Reed D. et al., 2005, MNRAS, 357, 82
Romano-Díaz E. et al., 2008, ApJ, 685, L105
Somerville R. S., 2002, ApJ, 572, L23
Spergel et al. D. N., 2007, ApJS, 170, 377
Springel V., 2005, MNRAS, 364, 1105
Springel V., Hernquist L., 2003, MNRAS, 339, 289
Springel V. et al., 2008, MNRAS, 391, 1685
Tikhonov A. V. et al., 2009, MNRAS, 399, 1611
Tollerud E. J. et al., 2008, ApJ, 688, 277
Walsh S. M., Willman B., Jerjen H., 2009, AJ, 137, 450
Wolf J. et al., 2010, MNRAS, 406, 1220

This paper has been typeset from a \texttt{Ti\TeX}/\texttt{La\TeX} file prepared by the author.