On the equivalence between the sets of the trigonometric polynomials

Krystian Kazaniecki∗ and Michal Wojciechowski†

1Institute of Mathematics, University of Warsaw
2Institute of Mathematics, Polish Academy of Sciences

February 23, 2015

Abstract

In this paper we construct an injection from the linear space of trigonometric polynomials defined on \(T^d \) with bounded degrees with respect to each variable to a suitable linear subspace \(L^1_E \subset L^1(T) \). We give such a quantitative condition on \(L^1_E \) that this injection is a isomorphism of a Banach spaces equipped with \(L^1 \) norm and the norm of the isomorphism is independent on the dimension \(d \).

Introduction

The purpose of this article is to study the equivalence between sets of trigonometric polynomials defined on \(T \) with sets of trigonometric polynomials in higher dimensions. For a given vector of integers \(\tau = (\tau_1, \ldots, \tau_d) \) we want to study operator

\[
 f(x) = \sum_{\lambda} a_\lambda e^{2\pi i \langle \lambda, x \rangle} \rightarrow T f(z) = \sum_{\lambda} a_\lambda e^{2\pi i \langle \lambda, \tau \rangle} z \quad \forall x \in T^d \quad \forall z \in T
\]

with some bounds on vectors \(\lambda = (\lambda_1, \ldots, \lambda_d) \). We want to find a quantitative criterion on \(\tau \) for \(T \) being isomorphism in \(L^1 \) norm. To give a precise formulation we introduce following notation.

Definition 1. As a \(L^p_{\mathcal{A}}(T^k) \) we will denote a subspace of Banach space \(L^p(T^k) \) defined below

\[
 L^p_{\mathcal{A}}(T^k) = \{ f \in L^p(T^k) : \text{supp } \hat{f} \subset \mathcal{A} \}
\]

Definition 2. For a given sequence of natural numbers \((a_n)_{n \in \mathbb{N}} \) and a sequence of integers \((\tau_n)_{n \in \mathbb{N}} \) we define sets \(E \subset \mathbb{Z} \) and \(F \subset \mathbb{Z}^N \), where by \(\mathbb{Z}^N \) we denote a dual group to \(T^N \), in the following way:

\[
 F = \{ \lambda \in \mathbb{Z}^N : |\lambda_n| \leq |a_n| \}
 E = \{ \beta \in \mathbb{Z} : \beta = \sum_{k=1}^{\tau_k} \lambda_k \lambda_k \text{ for } \lambda_k \in F \}.
\]

Using that notation we can state the main Theorem of this article:

∗Krystian.Kazaniecki@mimuw.edu.pl
†M.Wojciechowski@impan.pl
Theorem 1. For a given sequence of natural numbers \((a_n)_{n\in\mathbb{N}}\) and a sequence of integers \(\tau_n\) satisfying
\[
\tau_{k+1} \geq 3a_k |\tau_k| \quad \forall k \in \mathbb{N},
\]
\[
\sum_{j=1}^{\infty} \frac{|a_j||\tau_j||a_{j+1}|}{|\tau_{j+1}|} < \infty.
\]
(2)
Then operator \(T : L^1_k(\mathbb{T}^d) \to L^1_k(\mathbb{T})\) given by the formula
\[
Tf(x) = \sum_{\lambda \in F} \hat{f}(\lambda) e^{2\pi i (\lambda, \tau)x}
\]
(3)
is an isomorphism, moreover
\[
K^{-1}\|f\|_{L^1_k(\mathbb{T}^d)} \leq \|Tf\|_{L^1_k(\mathbb{T})} \leq K\|f\|_{L^1_k(\mathbb{T}^d)}
\]
with the constant \(K\) depending only on the value of \(\sum_{j=1}^{\infty} \frac{|a_j||\tau_j||a_{j+1}|}{|\tau_{j+1}|}\) for all proofs seem to be incomplete. We fix this problem with an elementary proof for \(L^1\) norm. For examples of use of such a criterion one can check [2], [4].

Auxiliary lemmas

We start with the estimate on the approximation of trigonometric polynomial by simple functions.

Lemma 1. Let \(s_d, N_d \in \mathbb{N}\) and \(f\) is a trigonometric polynomial. Assume that the degree with respect to the last variable of the polynomial \(f\) is less than or equal to \(s_d\) (\(\deg_z(f) \leq s_d\)). For a function \(\tilde{f}\) given by the formula
\[
\tilde{f}(y', z) = \sum_{j=0}^{N_d-1} \chi_{I_j}(z) f \left(y', \frac{j}{N_d} \right) \quad \forall y' \in \mathbb{T}^{d-1}; \quad z \in \mathbb{T},
\]
where \(I_j = \left[\frac{j}{N_d}; \frac{j+1}{N_d} \right]\), we have
\[
\|f\|_{L^1(\mathbb{T}^d)} - \|\tilde{f}\|_{L^1(\mathbb{T}^d)} \leq \frac{s_d}{N_d} \|f\|_{L^1(\mathbb{T}^d)}.
\]

Proof. We can estimate the difference of \(L^1\) norms of the functions using the norm of the partial derivative of \(f\).

\[
\|f\|_{L^1(\mathbb{T}^d)} - \|\tilde{f}\|_{L^1(\mathbb{T}^d)} = \left| \int_{\mathbb{T}^d} |f(y', z)| dy'dz - \int_{\mathbb{T}^d} |\tilde{f}(y', z)| dy'dz \right|
\]
\[
= \left| \sum_{j=0}^{N_d-1} \int_{\mathbb{T}^{d-1}} \int_{I_j} |f(y', z)| - |\tilde{f}(y', \frac{j}{N_d})| dz dy' \right|
\]
\[
\leq \sum_{j=0}^{N_d-1} \int_{\mathbb{T}^{d-1}} \int_{I_j} |f(x)| - \left| f \left(\frac{j}{N_d} \right) \right| dz dy'
\]
\[
\leq \sum_{j=0}^{N_d-1} \int_{\mathbb{T}^{d-1}} \int_{I_j} \int_{0}^{N_d} \frac{\partial}{\partial z} (y', z + y) dy dy' dz
\]
\[
\leq \sum_{j=0}^{N_d-1} \int_{I_j} \int_{\mathbb{T}^{d-1}} \int_{0}^{N_d} \frac{\partial}{\partial z} (y', z + y) dy dy' dz
\leq \frac{s_d}{N_d} \|f\|_{L^1(\mathbb{T}^d)}.\]
Due to Bernstein inequality (see e.g. [5]) we get
\[
\left\| f \right\|_{L^1(\mathbb{T}^d)} - \left\| \tilde{f} \right\|_{L^1(\mathbb{T}^d)} \leq \frac{\| \partial_x f \|_{L^1(\mathbb{T}^d)}}{N_d} \leq \frac{\text{deg}_z(f)}{N} \|f\|_{L^1(\mathbb{T}^d)} \leq \frac{s_d}{N_d} \|f\|_{L^1(\mathbb{T}^d)}.
\]
\[\square\]

Lemma 2. For trigonometric polynomials \(f_{l_d}, f_{l_d+1}, \ldots, f_{k_d} \in L^1(\mathbb{T}^d)\), \(-N_d < l_d < k_d \leq N_d\) and
\[
w_{d+1}(y', y, z) = \sum_{j=l_d}^{k_d} e^{2\pi i y j_d} f_j(y', z),
\]

following estimates are satisfied
\[
\|w_{d+1}\|_{L^1(\mathbb{T}^{d+1})} \leq \sum_{j=l_d}^{k_d} \|f_j\|_{L^1(\mathbb{T})} \leq |k - l| \|w_{d+1}\|_{L^1(\mathbb{T}^{d+1})}.
\]

Proof. Left hand side of the inequality is just a triangle inequality. To get the right hand side of inequality we just observe that following inequalities are satisfied and add them up.
\[
\int_{\mathbb{T}^d} |f_j| dy' dz = \int_{\mathbb{T}^d} \left| \int_{\mathbb{T}} e^{-2\pi i y j_d} w_{d+1} dy \right| dy' dz \int_{\mathbb{T}^d} \leq \|w_{d+1}\|_{L^1(\mathbb{T}^{d+1})}.
\]
\[\square\]

Lemma 3. Assume that trigonometric polynomials \(f_{l_d}, f_{l_d+1}, \ldots, f_{k_d} \in L^1(\mathbb{T}^d)\) satisfy \(\text{deg}_z(f_j) \leq s_d\). We define functions
\[
w_d(y', z) := \sum_{j=l_d}^{k_d} e^{2\pi i y j_d} f_j(y', z),
\]
\[
w_{d+1}(y', y_d, z) := \sum_{j=l_d}^{k_d} e^{2\pi i y j_d} f_j(y', z).
\]

This pair of functions satisfies following estimates
\[
\left(1 - 2|k_d - l_d| \frac{s_d}{N_d}\right) \|w_{d+1}\|_{L^1(\mathbb{T}^{d+1})} \leq \|w_d\|_{L^1(\mathbb{T}^d)} \leq \left(1 + 2|k_d - l_d| \frac{s_d}{N_d}\right) \|w_{d+1}\|_{L^1(\mathbb{T}^{d+1})}.
\]

Proof. Let us define functions
\[
\tilde{w}_{d+1}(y', y_d, z) := \sum_{j=l_d}^{k_d} e^{i y_d j_d} \tilde{f}_j(y', z),
\]
\[
\tilde{w}_d(y', z) := \sum_{j=l_d}^{k_d} e^{i y_d j_d} \tilde{f}_j(y', z).
\]

Using triangle inequality we get
\[
\|w_d\|_{L^1(\mathbb{T}^d)} - \|w_{d+1}\|_{L^1(\mathbb{T}^{d+1})} \leq \left| \|w_d\|_{L^1(\mathbb{T}^d)} - \|\tilde{w}_d\|_{L^1(\mathbb{T}^d)} \right| + \left| \|\tilde{w}_{d+1}\|_{L^1(\mathbb{T}^{d+1})} - \|\tilde{w}_d\|_{L^1(\mathbb{T}^d)} \right|
\]
\[
+ \left| \|w_{d+1}\|_{L^1(\mathbb{T}^{d+1})} - \|\tilde{w}_{d+1}\|_{L^1(\mathbb{T}^{d+1})} \right|. \tag{4}
\]
Once again using the triangle inequality we obtain
\[\|w_d\|_{L^1(\mathbb{T}^d)} - \|\tilde{w}_d\|_{L^1(\mathbb{T}^d)} + \|w_{d+1}\|_{L^1(\mathbb{T}^{d+1})} - \|\tilde{w}_{d+1}\|_{L^1(\mathbb{T}^{d+1})} \leq 2 \sum_{j=0}^{k} \|f_j - \tilde{f}_j\|_{L^1(\mathbb{T}^d)}. \]

Then the definition of the function \tilde{f}_j leads to estimates from Lemma [1] and Lemma [2]
\[\|w_d\|_{L^1(\mathbb{T}^d)} - \|\tilde{w}_d\|_{L^1(\mathbb{T}^d)} + \|w_{d+1}\|_{L^1(\mathbb{T}^{d+1})} - \|\tilde{w}_{d+1}\|_{L^1(\mathbb{T}^{d+1})} \leq 2k_d - l_d \frac{s_d}{N_d} \|w_{d+1}\|_{L^1(\mathbb{T}^{d+1})}. \] (5)

Now we pass to estimate of the second term of the right hand side of the inequality [4]. We know that the function $f_j(y', \cdot)$ is a constant on a interval I_k for every $j \in \{1, \ldots, N_d - 1\}$ and every $y' \in \mathbb{T}^{d-1}$. We denote this value by $h_j(k, y')$. This property is crucial in the following calculations.

\[\|\tilde{w}_d\|_{L^1(\mathbb{T}^d)} = \int_{\mathbb{T}^d} |\tilde{w}(y', z)| dy' dz \]
\[= \int_{\mathbb{T}^{d-1}} \sum_{k=0}^{N-1} \int_{I_k} \sum_{j=1}^{k_d} e^{2\pi i j N z} f_j(y', z) \, dz dy' \]
\[= \int_{\mathbb{T}^{d-1}} \sum_{k=0}^{N-1} \int_{I_k} \sum_{j=1}^{k_d} e^{2\pi i j N z} h_j(k, y') \, dz dy' \]
\[= \frac{1}{N} \int_{\mathbb{T}^{d-1}} \sum_{k=0}^{N-1} \int_{T} \sum_{j=1}^{k_d} e^{2\pi i j y_d} h_j(k, y') \, dy_d dy' \]
\[= \int_{\mathbb{T}^{d+1}} \sum_{j=1}^{k_d} e^{2\pi i j y_d} \tilde{f}_j(y', z) \, dz dy_d dy' \]
\[= \int_{\mathbb{T}^{d+1}} |\tilde{w}_{d+1}| = \|\tilde{w}_{d+1}\|_{L^1(\mathbb{T}^{d+1})}. \]

We have obtain
\[\|\tilde{w}_d\|_{L^1(\mathbb{T}^d)} = \|\tilde{w}_{d+1}\|_{L^1(\mathbb{T}^{d+1})} \]

Above equality together with [4] and [5] gives us
\[\|w_d\|_{L^1(\mathbb{T}^d)} - \|\tilde{w}_d\|_{L^1(\mathbb{T}^d)} + \|w_{d+1}\|_{L^1(\mathbb{T}^{d+1})} - \|\tilde{w}_{d+1}\|_{L^1(\mathbb{T}^{d+1})} \leq 2k_d - l_d \frac{s_d}{N_d} \|w_{d+1}\|_{L^1(\mathbb{T}^{d+1})} \]
which is equivalent to the inequality from the statement of the lemma. \(\square \)

Now using above lemmas we can prove the main theorem.

Proof of the main Theorem

Proof. Let us take polynomial $f \in L^1_F(\mathbb{T}^n)$ which depends only on first n variables. Then from the definition of operator T we have
\[Tf(z) = \sum_{(\lambda_1, \ldots, \lambda_n) \in F} \tilde{f}(\lambda_1, \ldots, \lambda_n) e^{2\pi i (\sum_{i=1}^{n} \tau_i \lambda_i) z} \quad \forall z \in \mathbb{T}, \]
which we can rewrite in the form
\[w_1(z) := Tf(z) = \sum_{j=-a_n}^{a_n} e^{2\pi i j \tau_n z} g_j^1(z), \]
where \(g_j \) are suitable polynomials such that \(\deg_z (g_j^1) \leq \sum_{j=1}^{n-1} |a_j| \tau_j \). By the Lemma we get
\[\left(1 - 4a_n \sum_{j=1}^{n-1} a_j |\tau_j| \right) \|w_2\|_{L^1(\mathbb{T})} \leq \|w_1\|_{L^1(\mathbb{T})} \leq \left(1 + 4a_n \sum_{j=1}^{n-1} a_j |\tau_j| \right) \|w_2\|_{L^1(\mathbb{T})}, \]
where
\[w_2(y, z) = \sum_{(\lambda_1, \ldots, \lambda_n) \in F} \tilde{f}(\lambda_1, \ldots, \lambda_n) e^{2\pi i (\lambda_1 \cdots \lambda_{n-d+1}) y} e^{2\pi i (\sum_{i=1}^{n-d} \tau_i \lambda_i) z}. \]
Analogously as in the case \(d = 1 \) we proceed with \(d > 1 \). We obtain trigonometric polynomials of the form
\[w_d(y', z) := \sum_{(\lambda_1, \ldots, \lambda_n) \in F} \tilde{f}(\lambda_1, \ldots, \lambda_n) e^{2\pi i ((\lambda_1 \cdots \lambda_{n-d+1}) y')} e^{2\pi i (\sum_{i=1}^{n-d} \tau_i \lambda_i) z} \quad \forall z \in \mathbb{T} \forall y' \in \mathbb{T}^{d-1}. \]
We can rewrite them in following way
\[w_d(y', z) = \sum_{j=-a_d}^{a_d} e^{2\pi i j \tau_d z} g_j^d(y', z), \]
with polynomials \(g_j^d \) satisfying \(\deg_z (g_j^d) \leq \sum_{j=1}^{n-d} |a_j| \tau_j \). By the Lemma we have
\[(1 - K(d)) \|w_{d+1}\|_{L^1(\mathbb{T}^{d+1})} \leq \|w_d\|_{L^1(\mathbb{T}^d)} \leq (1 + K(d)) \|w_{d+1}\|_{L^1(\mathbb{T}^{d+1})}, \]
where constant \(K(d) \) is given by the formula
\[K(d) = 4a_{n-d+1} \sum_{j=1}^{n-d} a_j |\tau_j| \]
Combining above inequalities for \(d = 1, \ldots, n-1 \) we get
\[\Pi_{j=1}^{n-1} (1 - K(j)) \|w_n\|_{L^1(\mathbb{T}^n)} \leq \|T f\|_{L^1(\mathbb{T})} \leq \Pi_{j=1}^{n-1} (1 + K(j)) \|w_n\|_{L^1(\mathbb{T}^n)}. \]
Let us observe that the function \(w_n \) is equal to the function \(f \) up to a permutation of the variables. Hence \(\|w_n\|_{L^1(\mathbb{T}^n)} = \|f\|_{L^1(\mathbb{T}^n)} \). Since \(a_j, \tau_j \) satisfy we have
\[\sum_{d=1}^{\infty} K(d) = \sum_{d=1}^{\infty} 4a_{n-d+1} \sum_{j=1}^{n-d} a_j |\tau_j| \leq C \sum_{d=1}^{\infty} a_d (a_{d-1} + 1) \frac{\tau_{d-1}}{\tau_d} \leq \infty. \]
Hence there exist such a constant \(K \) that following inequality is satisfied
\[K^{-1} \|f\|_{L^1(\mathbb{T}^n)} \leq \|T f\|_{L^1(\mathbb{T})} \leq K \|f\|_{L^1(\mathbb{T}^n)}, \quad (6) \]
References

[1] Myriam Déchamps. Sous-espaces invariants de $L^p(G)$, G groupe abélien compact, *Harmonic analysis*, Publ. Math. Orsay 81, 1981

[2] Rafał Latała. L_1-norm of combinations of products of independent random variables, *Israel J. Math.*, 203 (2014), no. 1, p. 295-308

[3] Yves Meyer. Endomorphismes des idéaux fermés de $L^1(G)$, classes de Hardy et séries de Fourier lacunaires. *Ann. Sci. École Norm. Sup. (4)*, 1:499–580, 1968.

[4] Michal Wojciechowski. On the strong type multiplier norms of rational functions in several variables. *Illinois J. Math.*, 42(4):582–600, 1998.

[5] Antoni Zygmund. *Trigonometric Series. Volume I and II*. Cambridge University Press, 2003