Vertices Belonging to All Critical Independent Sets of a Graph

Vadim E. Levit
Ariel University Center of Samaria, Israel
levitv@ariel.ac.il

Eugen Mandrescu
Holon Institute of Technology, Israel
eugen.m@hit.ac.il

Abstract

Let $G = (V, E)$ be a graph. A set $S \subseteq V$ is independent if no two vertices from S are adjacent, and by $\text{Ind}(G)$ ($\Omega(G)$) we mean the set of all (maximum) independent sets of G, while $\text{core}(G) = \cap \{S : S \in \Omega(G)\}$. [13]. The neighborhood of $A \subseteq V$ is $N(A) = \{v \in V : N(v) \cap A \neq \emptyset\}$. The independence number $\alpha(G)$ is the cardinality of each $S \in \Omega(G)$, and $\mu(G)$ is the size of a maximum matching of G.

The number $\text{id}_{c}(G) = \max\{|I| - |N(I)| : I \in \text{Ind}(G)\}$ is called the critical independence difference of G, and $A \in \text{Ind}(G)$ is critical if $|A| - |N(A)| = \text{id}_{c}(G)$, [22]. We define $\text{ker}(G) = \cap \{S : S \text{ is a critical independent set}\}$.

In this paper we prove that if a graph G is non-quasi-regularizable (i.e., there exists some $A \in \text{Ind}(G)$, such that $|A| > |N(A)|$), then:

• $\text{ker}(G) \subseteq \text{core}(G)$
• $|\text{ker}(G)| > \text{id}_{c}(G) \geq \alpha(G) - \mu(G) \geq 1$.

Keywords: independent set, critical set, critical difference, maximum matching

1 Introduction

Throughout this paper $G = (V, E)$ is a simple (i.e., a finite, undirected, loopless and without multiple edges) graph with vertex set $V = V(G)$ and edge set $E = E(G)$. We consider only graphs without isolated vertices.

If $X \subseteq V$, then $G[X]$ is the subgraph of G spanned by X. By $G - W$ we mean either the subgraph $G[V - W]$, if $W \subseteq V(G)$, or the partial subgraph $H = (V, E - W)$ of G, for $W \subseteq E(G)$. In either case, we use $G - w$, whenever $W = \{w\}$. If $X, Y \subset V$ are non-empty and disjoint, then we denote $(X, Y) = \{xy : xy \in E, x \in X, y \in Y\}$.

The neighborhood of a vertex $v \in V$ is the set $N(v) = \{w : w \in V \text{ and } vw \in E\}$, while the closed neighborhood of $v \in V$ is $N[v] = N(v) \cup \{v\}$; in order to avoid ambiguity, we use also $N_{G}(v)$ instead of $N(v)$. In particular, if $|N(v)| = 1$, then v is a pendant vertex.
of G, and $\text{pend}(G) = \{v \in V(G) : v \text{ is a pendant vertex in } G\}$. The neighborhood of $A \subseteq V$ is denoted by $N(A) = N_G(A) = \{v \in V : N(v) \cap A \neq \emptyset\}$, and $N[A] = N(A) \cup A$.

A set $S \subseteq V(G)$ is independent if no two vertices from S are adjacent, and by $\text{Ind}(G)$ we mean the set of all the independent sets of G. An independent set of maximum size will be referred to as a maximum independent set of G, and the independence number of G is $\alpha(G) = \max\{|S| : S \in \text{Ind}(G)\}$. A graph G is quasi-regularizable if one can replace each edge of G with a non-negative integer number of parallel copies, so as to obtain a regular multigraph of degree $\neq 0$, [2]. For instance, $K_4 - e, e \in E(K_4)$, is quasi-regularizable, while P_3 is not quasi-regularizable. It is clear that a quasi-regularizable graph can not have isolated vertices.

Theorem 1.1 For a graph G the following assertions are equivalent:

(i) quasi-regularizable;

(ii) $|S| \leq |N(S)|$ holds for every $S \in \text{Ind}(G)$;

(iii) G has a perfect 2-matching, i.e., G contains a system of vertex-disjoint odd cycles and edges covering all its vertices.

Let $\Omega(G) = \{S : S \text{ is a maximum independent set of } G\}$ and $\xi(G) = |\text{core}(G)|$, where $\text{core}(G) = \cap \{S : S \in \Omega(G)\}$, [13].

Similarly, let $\text{corona}(G) = \cup \{S : S \in \Omega(G)\}$, and $\zeta(G) = |\text{corona}(G)|$, [13].

A matching is a set of non-incident edges of G; a matching of maximum cardinality $\mu(G)$ is a maximum matching, and a perfect matching is a matching covering all the vertices of G.

In the sequel we need the following characterization of a maximum independent set of a graph, due to Berge.

Theorem 1.2 [2] An independent set S belongs to $\Omega(G)$ if and only if every independent set A of G, disjoint from S, can be matched into S.

G is called a König-Egerváry graph provided $\alpha(G) + \mu(G) = |V(G)|$ [6, 20]. It is known that each bipartite graph satisfies this property.

Theorem 1.3 [13] If G is a König-Egerváry graph, M is a maximum matching, then M matches $V(G) - S$ into S, for every $S \in \Omega(G)$, and $\mu(G) = |V(G) - S|$.

In Boros et al. [3] it has been proved that if G is connected and $\alpha(G) > \mu(G)$, then $\xi(G) = |\text{core}(G)| > \alpha(G) - \mu(G)$. This strengthened the following finding stated in [13]: if $\alpha(G) > (|V(G)| + k - 1)/2$, then $\xi(G) \geq k + 1$; moreover, $\xi(G) \geq k + 2$ is valid, whenever $|V(G)| + k - 1$ is an even number. For $k = 1$, the previous inequality provides us with a generalization of a result of Hammer et al. [8], claiming that if a graph G has $\alpha(G) > |V(G)|/2$, then $\xi(G) \geq 1$. In [12] it was shown that if G is a connected bipartite graph with $|V(G)| \geq 2$, then $\xi(G) \neq 1$. Jamison [9], Zito [29], and Gunther et al. [7] proved independently that $\xi(G) \neq 1$ is true for any tree T.

In Chlebík et al. [5] it has been found that if there is some $S \in \text{Ind}(G)$, such that $|S| > |N(S)|$, then $|\text{core}(G)| > \max\{|I| - |N(I)| : I \in \text{Ind}(G)\}$. It strengthens the inequality $|\text{core}(G)| > \alpha(G) - \mu(G)$ [3], since $\max\{|I| - |N(I)| : I \in \text{Ind}(G)\} \geq \alpha(G) - \mu(G)$ [17, 19].
The number $d(X) = |X| - |N(X)|$ is called the difference of the set $X \subseteq V(G)$, and $d_c(G) = \max\{d(X) : X \subseteq V(G)\}$ is the critical difference of G. A set $U \subseteq V(G)$ is critical if $d(U) = d_c(G)$ \cite{22}. The number $id_c(G) = \max\{d(I) : I \in \text{Ind}(G)\}$ is called the critical independence difference of G. If $A \subseteq V(G)$ is independent and $d(A) = id_c(G)$, then A is called critical independent \cite{22}.

For a graph G let us denote $\ker(G) = \cap \{S : S$ is a critical independent set $\}$ and $\varepsilon(G) = |\ker(G)|$.

For instance, the graph G_1 in Figure 1 has $\ker(G_1) = \text{core}(G_1) = \{a, b\}$. The graph G_2 from Figure 1 has $X = \{x, y, z, p, q\}$ as a critical non-independent set, because $d(X) = 1 = d_c(G_2)$, while $\ker(G_2) = \{x, y\} \subset \text{core}(G_2) = \{x, y\}$. The graph G_3 from Figure 1 has $\{t, u, v\}$ as a critical set, $\ker(G_3) = \{u, v\}$, while $\text{core}(G_3) = \{t, u, v, w\}$ is not a critical set.

![Figure 1: Non-quasi-regularizable graphs.](image)

Clearly, $d_c(G) \geq id_c(G)$ is true for every graph G.

Theorem 1.4 \cite{22} The equality $d_c(G) = id_c(G)$ holds for every graph G.

If $A \in \Omega(G[N[A]])$, then A is called a local maximum independent set of G \cite{14}.

It is easy to see that all pendant vertices are included in every maximum critical independent set. It is known that the problem of finding a critical independent set is polynomially solvable \cite{11,22}.

Theorem 1.5 (i) \cite{18} Each local maximum independent set is included in a maximum independent set.

(ii) \cite{17} Every critical independent set is a local maximum independent set.

(iii) \cite{4} Each critical independent set is contained in some maximum independent set.

(iv) \cite{11} There is a matching from $N(S)$ into S, for every critical independent set S.

In this paper we prove that $\ker(G) \subseteq \text{core}(G)$ and $\varepsilon(G) \geq d_c(G) \geq \alpha(G) - \mu(G)$ hold for every graph G.

2 Results

Theorem 2.1 Let A be a critical independent set of the graph G and $X = A \cup N(A)$. Then the following assertions are true:

(i) $H = G[X]$ is a Kőnig-Egerváry graph;

(ii) $\alpha(G[V - X]) \leq \mu(G[V - X])$;

(iii) $\mu(G[X]) + \mu(G[V - X]) = \mu(G)$; in particular, each maximum matching of $G[X]$ can be enlarged to a maximum matching of G.

in order to build a maximum matching of G. Consequently, we get that
\[\alpha(H) + \mu(H) = |A \cup N(A)| = |X| = |V(H)|, \]
i.e., H is a König-Egerváry graph.

(ii) According to Theorem [1.5](ii), there exists a maximum independent set S such that $A \subseteq S$. Suppose that $|B| > |N(B)|$ holds for some $B \subseteq S - A$. Then, it follows that
\[|A| - |N(A)| < (|A| - |N(A)|) + (|B| - |N(B)|) \leq |A \cup B| - |N(A \cup B)|, \]
which contradicts the hypothesis on A, namely, the fact that $|A| - |N(A)| = d_e(G)$. Hence $|B| \leq |N(B)|$ is true for every $B \subseteq S - A$. Consequently, by Hall’s Theorem there exists a matching from $S - A$ into $V - S - N(A)$ that implies $|S - A| \leq \mu(G[V - X])$.

It remains to show that $\alpha(G[V - X]) = |S - A|$. By way of contradiction, assume that
\[\alpha(G[V - X]) = |D| > |S - A| \]
for some independent set $D \subseteq V - X$. Since $D \cap N[A] = \emptyset$, the set $A \cup D$ is independent, and
\[|A \cup D| = |A| + |D| > |A| + |S - A| = \alpha(G), \]
which is impossible.

(iii) Let M_1 be a maximum matching of H and M_2 be a maximum matching of $G[V - X]$. We claim that $M_1 \cup M_2$ is a maximum matching of G.

![Figure 2: $S \in \Omega(G)$ and A is a critical independent set of $G.$](image)

The only edges that may enlarge $M_1 \cup M_2$ belong to the set $(N(A), V - S - N(A))$. The matching M_1 covers all the vertices of $N(A)$ in accordance with Theorem [1.3] and part (i). Therefore, to choose an edge from the set $(N(A), V - S - N(A))$ means to loose an edge from M_1. In other words, no matching different from $M_1 \cup M_2$ may overstep $|M_1 \cup M_2|$.

Consequently, each maximum matching of $G[X]$ can find its counterpart in $G[V - X]$ in order to build a maximum matching of G. ■

Theorem [2.1] allows us to give an alternative proof of the following inequality due to Lorentzen.
Corollary 2.2 [17], [19] The inequality \(d_e(G) \geq \alpha(G) - \mu(G) \) holds for every graph \(G \).

Proof. Let \(A \) be a critical independent set of \(G \), and \(X = A \cup N(A) \).

By Theorem 2.1(ii), we get \(\alpha(G[V - X]) - \mu(G[V - X]) \leq 0 \). Hence it follows that

\[
\alpha(G[X]) - \mu(G[X]) \geq (\alpha(G[X]) + \alpha(G[V - X])) - (\mu(G[X]) + \mu(G[V - X])).
\]

Theorem 2.1(iii) claims that \(\mu(G[X]) + \mu(G[V - X]) = \mu(G) \).

Since \(A \) is a critical independent set, there exists some \(S \in \Omega(G) \) such that \(A \subseteq S \), and \(\alpha(G[X]) = |A| \), by Theorem 1.4(ii). Hence we have

\[
\alpha(G[X]) + \alpha(G[V - X]) = |A| + |S - A| = \alpha(G).
\]

In addition, Theorem 2.1(i) and Theorem 1.3 imply that \(\mu(G[X]) = |N(A)| \).

Finally, we obtain

\[
d_e(G) = \max \{|I| - |N(I)| : I \in \text{Ind}(G)\} = |A| - |N(A)| = \\
\alpha(G[X]) - \mu(G[X]) \geq \alpha(G) - \mu(G),
\]

and this completes the proof. ■

Applying Theorem 2.1 and Theorem 1.5(iii) we get the following.

Corollary 2.3 [17] Let \(J \) be a maximum critical independent set of \(G \), and \(X = J \cup N(J) \). Then the following assertions are true:

(i) \(\alpha(G) = \alpha(G[X]) + \alpha(G[V - X]) \);
(ii) \(\alpha(G) = \alpha_c(G) + \alpha(G[V - X]) \);
(iii) \(G[X] \) is a König-Egerváry graph.

The graph \(G \) from Figure 3 has \(\ker(G) = \{a, b, c\} \). Notice that \(\ker(G) \subseteq \text{core}(G) \); \(S = \{a, b, c, v\} \) is a largest critical independent set, and neither \(S \subseteq \text{core}(G) \) nor \(\text{core}(G) \subseteq S \). In addition, \(\text{core}(G) \) is not a critical independent set of \(G \).

![Figure 3](image)

Figure 3: \(G \) is a non-quasi-regularizable graph with \(\text{core}(G) = \{a, b, c, u\} \).

Theorem 2.4 For a graph \(G = (V, E) \) of order \(n \), the following assertions are true:

(i) the function \(d \) is supermodular, i.e., \(d(A \cup B) + d(A \cap B) \geq d(A) + d(B) \) for every \(A, B \subseteq V(G) \);
(ii) if \(A \) and \(B \) are critical in \(G \), then \(A \cup B \) and \(A \cap B \) are critical as well;
(iii) \(\ker(G) = \cap \{B : B \text{ is a critical set of } G\} \).
Proof. (i) Let us notice that $N(A \cup B) = N(A) \cup N(B)$ and $N(A \cap B) \subseteq N(A) \cap N(B)$. Further, we obtain

$$d(A \cup B) = |A \cup B| - |N(A \cup B)| = |A \cup B| - |N(A) \cup N(B)| =$$

$$= |A| + |B| - |A \cap B| - |N(A)| - |N(B)| + |N(A) \cap N(B)| =$$

$$= (|A| - |N(A)|) + (|B| - |N(B)|) + |N(A) \cap N(B)| - |A \cap B| =$$

$$= d(A) + d(B) - (|A \cap B| - |N(A \cap B)|) + |N(A) \cap N(B)| - |N(A \cap B)| =$$

$$= d(A) + d(B) - d(A \cap B) + |N(A) \cap N(B)| - |N(A \cap B)| \geq$$

$$\geq d(A) + d(B) - d(A \cap B).$$

(ii) By part (i), we have that

$$d(A \cup B) + d(A \cap B) \geq d(A) + d(B) = 2d_c(G).$$

Consequently, we get that $d(A \cup B) = d(A \cap B) = d_c(G)$, i.e., both $A \cup B$ and $A \cap B$ are critical sets.

(iii) Let Γ_{ci} be the family of all critical independent sets of G, while Γ_c denotes the family $\{B : B$ is a critical set in $G\}$.

By part (ii), both sets

$$\ker(G) = \cap \{S \in \Gamma_{ci}\} \quad \text{and} \quad Q_c = \cap \{B \in \Gamma_c\}$$

are critical. Theorem 1.4 implies that $\Gamma_{ci} \subseteq \Gamma_c$, and therefore, $Q_c \subseteq \ker(G)$. On the other hand, Q_c is independent, because by Theorem 1.4, one of the critical sets from Γ_c is independent. Consequently, we obtain $\ker(G) \subseteq Q_c$, and this completes the proof. ■

Theorem 2.5 For a graph $G = (V, E)$ of order n, the following assertions are true:

(i) $V \supseteq \text{corona}(G) \supseteq S \supseteq \text{core}(G) \supseteq \ker(G)$, for every $S \in \Omega(G)$;

(ii) $n \geq \xi(G) \geq \alpha(G) \geq \xi(G) \geq \varepsilon(G) \geq d_c(G) \geq \alpha(G) - \mu(G)$;

(iii) $\xi(G) \geq \alpha(G) - \mu(G) + \varepsilon(G) - d_c(G)$.

Proof. (i) Clearly, $\text{core}(G) \subseteq S \subseteq \text{corona}(G) \subseteq V$ hold for each $S \in \Omega(G)$. The set $\ker(G)$ is independent by definition. According to Theorem 1.4(ii), $\ker(G)$ is critical. Consequently, by Theorem 1.4(iv), there exists a matching M_L from $N(\ker(G))$ into $\ker(G)$. Figure 3 will accompany us all the way to the end of the proof.

Let $S \in \Omega(G)$, and $A_1 = \ker(G) \cap S$. Since $\ker(G) - A_1$ is stable and disjoint from S, Theorem 1.2 ensures that there is a matching M_B from $\ker(G) - A_1$ into S, covering some subset A_2 of $S - A_1$. Let $S \in \Omega(G)$, and $A_1 = \ker(G) \cap S$. Since $\ker(G) - A_1$ is stable and disjoint from S, Theorem 1.2 ensures that there is a matching M_B from $\ker(G) - A_1$ into S, covering some subset A_2 of $S - A_1$. Clearly, we have

$$|\ker(G) - A_1| = |A_2|, \quad A_1 \cap A_2 = \emptyset, \quad \text{and} \quad A_2 \subseteq N(\ker(G) - A_1) \cap S.$$

Assume that there is some $v \in (N(\ker(G) - A_1) \cap S) - A_2$. The vertex v must be matched with some vertex from $\ker(G) - A_1$ by M_L, because $\{v\} \cup A_1 \subseteq S$. Hence M_L matches the set $N(\ker(G) - A_1) \cap S$ into $\ker(G) - A_1$, which is impossible, since

$$|N(\ker(G) - A_1) \cap S| \geq |\{v\} \cup A_2| > |A_2| = |\ker(G) - A_1|.$$
Corollary 2.7

If there is some $S \in \text{Ind}(G)$ with $|S| \geq |N(S)|$, then $\xi(G) > d_c(G)$.

Proof. According to Theorem 2.5, G is non-quasi-regularizable if and only if $\ker(G) \neq \emptyset$, i.e., $|\ker(G)| \geq 2$. The fact that G has no isolated vertices implies $N(\ker(G)) \neq \emptyset$, and consequently, it follows $\varepsilon(G) = |\ker(G)| > |\ker(G)| - |N(\ker(G))| = d_c(G)$. Further, using Theorem 2.5, we get both (i) and (ii). ■

Corollary 2.6

If $d_c(G) > 0$ or, equivalently, G is a non-quasi-regularizable graph, then

(i) $\eta(G) \geq \alpha(G) \geq \xi(G) \geq \varepsilon(G) > d_c(G) \geq \alpha(G) - \mu(G) \geq 1$;

(ii) $\xi(G) \geq \alpha(G) - \mu(G) + \varepsilon(G) - d_c(G)$.

Proof. According to Theorem 2.4, if G is non-quasi-regularizable and $\ker(G) \neq \emptyset$, then $\eta(G) \geq \alpha(G) \geq \xi(G) = \varepsilon(G) > d_c(G) \geq \alpha(G) - \mu(G) \geq 1$. Further, using Theorem 2.5, we get both (i) and (ii). ■

Consequently, we get that $N(\ker(G) - A_1) \cap S = A_2$. Thus M_L matches the set $N(\ker(G) - A_1) \cap S$ onto $\ker(G) - A_1$, and $N(A_1)$ into A_1. Clearly, we have

$$|\ker(G) - A_1| = |A_2|, A_1 \cap A_2 = \emptyset, \text{ and } A_2 \subseteq N(\ker(G) - A_1) \cap S.$$

Assume that there is some $v \in (N(\ker(G) - A_1) \cap S) - A_2$. The vertex v must be matched with some vertex from $\ker(G) - A_1$ by M_L, because $\{v\} \cup A_1 \subseteq S$. Hence M_L matches the set $N(\ker(G) - A_1) \cap S$ into $\ker(G) - A_1$, which is impossible, since

$$|N(\ker(G) - A_1) \cap S| \geq |\{v\} \cup A_2| > |A_2| = |\ker(G) - A_1|.$$

Consequently, we get that $N(\ker(G) - A_1) \cap S = A_2$. Thus M_L matches the set $N(\ker(G) - A_1) \cap S$ onto $\ker(G) - A_1$, and $N(A_1)$ into A_1.

In conclusion, we may assert that $|\ker(G)| - |N(\ker(G))| = |A_1| - |N(A_1)|$. Hence, we infer that $\ker(G) - A_1 = \emptyset$, otherwise we have that A_1 is a critical independent set of G with $|A_1| < |\ker(G)|$, in contradiction with the hypothesis on minimality of $\ker(G)$.

This ensures that $\ker(G) \subseteq S$ for every $S \in \Omega(G)$, which means that $\ker(G) \subseteq \text{core}(G)$.

(ii) Using part (i), Theorem 2.4(iii), and Corollary 2.2, we deduce that

$$n \geq \zeta(G) \geq \alpha(G) \geq \xi(G) \geq \varepsilon(G) = |\ker(G)| \geq |\ker(G)| - |N(\ker(G))| = d_c(G) \geq \alpha(G) - \mu(G),$$

which completes the proof.

(iii) It follows immediately from part (ii). ■

Notice that $\xi(K_{2,3}) = \varepsilon(K_{2,3}) > d_c(K_{2,3}) = 1 = \alpha(K_{2,3}) - \mu(K_{2,3})$, while the graph G_2 is from Figure 4 satisfies $\xi(G_2) > \varepsilon(G_2) = d(G_2) = 1$.

Figure 4: $S \in \Omega(G)$, $\ker(G)$, and $A_1 = S \cap \ker(G)$.
3 Conclusions

Writing this paper we have been motivated by the inequality

$$\xi(G) = |\text{core}(G)| > \alpha(G) - \mu(G),$$

which is true for every graph G without isolated vertices, such that $\alpha(G) > \mu(G)$ [3].

What we have found is that there exists a subset of $\text{core}(G)$, which is a real obstacle to its nonemptiness. The cardinality of this subset, namely, $\varepsilon(G) = |\ker(G)|$ stands out above $\alpha(G) - \mu(G)$ on its own.

The problem of whether there are vertices in a given graph G belonging to $\text{core}(G)$ is NP-hard [3]. On the other hand, it has been noticed that for some families of graphs $\text{core}(G)$ may be computed in polynomial time.

We conclude with the following question.

Problem 3.1 Is it true that for any fixed positive integer k, to decide if $\varepsilon(G) > k$ is NP-complete?

References

[1] A. A. Ageev, *On finding critical independent and vertex sets*, SIAM Journal of discrete mathematics 7 (1994) 293-295.

[2] C. Berge, *Some common properties for regularizable graphs, edge-critical graphs and B-graphs*, In: Rosa, A., Sabidussi, G., Turgeon, J., eds., Theory and Practice of Combinatorics. North-Holland Mathematics Studies 60, Amsterdam: North-Holland, pp. 31-44.

[3] E. Boros, M. C. Golumbic, V. E. Levit, *On the number of vertices belonging to all maximum stable sets of a graph*, Discrete Applied Mathematics 124 (2002) 17–25.

[4] S. Butenko, S. Trukhanov, *Using critical sets to solve the maximum independent set problem*, Operations Research Letters 35 (2007) 519-524.

[5] M. Chlebík, J. Chlebíková, *Crown reductions for the minimum weighted vertex cover problem*, Discrete Applied Mathematics 156 (2008) 292-312.

[6] R. W. Deming, *Independence numbers of graphs - an extension of the König-Egerváry theorem*, Discrete Mathematics 27 (1979) 23-33.

[7] G. Gunther, B. Hartnell, D. F. Rall, *Graphs whose vertex independence number is unaffected by single edge addition or deletion*, Discrete Applied Mathematics 46 (1993) 167-172.

[8] P. L. Hammer, P. Hansen, B. Simeone, *Vertices belonging to all or to no maximum stable sets of a graph*, SIAM Journal of Algebraic Discrete Methods 3 (1982) 511-522.
[9] R. E. Jamison, *Alternating Whitney sums and matchings in trees, part 1*, Discrete Mathematics 67 (1987) 177-189.

[10] C. E. Larson, *A note on critical independence reductions*, Bulletin of the Institute of Combinatorics and its Applications 5 (2007) 34-46.

[11] C. E. Larson, *The critical independence number and an independence decomposition*, European Journal of Combinatorics 32 (2011) 294-300.

[12] V. E. Levit, E. Mandrescu, *On the structure of α-stable graphs*, Discrete Mathematics 236 (2001) 227-243.

[13] V. E. Levit, E. Mandrescu, *Combinatorial properties of the family of maximum stable sets of a graph*, Discrete Applied Mathematics 117 (2002) 149-161.

[14] V. E. Levit, E. Mandrescu, *A new Greedoid: the family of local maximum stable sets of a forest*, Discrete Applied Mathematics 124 (2002) 91-101.

[15] V. E. Levit, E. Mandrescu, *On α+-stable König-Egerváry graphs*, Discrete Mathematics 263 (2003) 179-190.

[16] V. E. Levit, E. Mandrescu, *Critical independent sets and König-Egerváry graphs*, Graphs and Combinatorics (2011) (accepted); math.CO arXiv:0906.4609, 8 pp.

[17] L. C. Lorentzen. *Notes on covering of arcs by nodes in an undirected graph*, Technical report ORC 66-16, Operations Research Center, University of California, Berkley, California, 1966.

[18] G. L. Nemhauser, L. E. Trotter, Jr., *Vertex packings: structural properties and algorithms*, Mathematical Programming 8 (1975) 232-248.

[19] A. Schrijver, *Combinatorial Optimization*, Springer, Berlin, 2003.

[20] F. Sterboul, *A characterization of the graphs in which the transversal number equals the matching number*, Journal of Combinatorial Theory Series B 27 (1979) 228-229.

[21] W. T. Tutte, *The 1-factors of oriented graphs*, Proceedings of the American Mathematical Society 22 (1947) 107-111.

[22] C. Q. Zhang, *Finding critical independent sets and critical vertex subsets are polynomial problems*, SIAM Journal of Discrete Mathematics 3 (1990) 431-438.

[23] J. Zito, *The structure and maximum number of maximum independent sets in trees*, Journal of Graph Theory 15 (1991) 207-221.