Title
Magnetic and Electronic Properties of URu2Si2 Revealed by Comparison with Nonmagnetic References ThRu2Si2 and LaRu2Si2

Permalink
https://escholarship.org/uc/item/7nt9b64p

Journal
Journal of the Physical Society of Japan, 84(6)

ISSN
0031-9015

Authors
Emi, Naoya
Hamabata, Ryosuke
Nakayama, Daisuke
et al.

Publication Date
2015-06-15

DOI
10.7566/jpsj.84.063702

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed
Magnetic and Electronic Properties of URu$_2$Si$_2$ Revealed by Comparison with Nonmagnetic References ThRu$_2$Si$_2$ and LaRu$_2$Si$_2$

Naoya Emi1, Ryosuke Hamabata1, Daisuke Nakayama1, Toshihiro Miki1, Takehide Koyama1, Koichi Ueda1, Takeshi Mito1,2, Yoh Kohori2, Yuji Matsumoto3, Yoshinori Haga4, Etsuji Yamamoto5, Zachary Fisk3,5, and Naohito Tsujii6

1Graduate School of Material Science, University of Hyogo, Kamigori, Hyogo 678-1297, Japan
2Graduate School of Science, Chiba University, Chiba 263-8522, Japan
3Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
4Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
5University of California, Irvine, CA 92697, U.S.A.
6National Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan

We have carried out nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements on ThRu$_2$Si$_2$ and LaRu$_2$Si$_2$, which are the nonmagnetic references of the intriguing heavy fermion URu$_2$Si$_2$. The comparisons of URu$_2$Si$_2$ with the reference materials allow us to analyze the already known NMR and NQR data on URu$_2$Si$_2$ phenomenologically and semiquantitatively. The study of 101Ru-NQR frequency suggests the relatively close electronic configuration of URu$_2$Si$_2$, including the valence of the actinide ion, to that of the tetravalent ThRu$_2$Si$_2$ at high temperatures, as well as the delocalization of $5f$ electrons at low temperatures. Ising-like spin fluctuations along the c-axis were brought to light by 29Si-NMR data in the so-called hidden order phase of URu$_2$Si$_2$. The unique magnetic property is plausibly associated with the mechanism of the unconventional superconductivity.

The uranium heavy fermion URu$_2$Si$_2$ has been attracting much interest since its discovery almost 30 years ago$^{4-5}$ because of its fascinating properties, including the mysterious phase transition at $T_{HO} = 17.5$ K, whose order parameter has not been identified [so-called "hidden order (HO)"], and its unconventional superconductivity below $T_c = 1.4$ K. Among a wide variety of experimental reports on this compound, studies using nuclear magnetic resonance (NMR) have played an important role in providing microscopic information on the issues of the HO and superconducting phases: for example, a decrease in the density of states at Fermi energy4,5 and spurious antiferromagnetic ordering6 in the HO phase, and the existence of line nodes in superconducting energy gap4,5. Moreover, symmetry changes across the HO have recently been discussed from the magnetic$^{7-9}$ and electronic10 points of view.

However, we have noticed that some pieces of fundamental information on magnetic fluctuations and U-valence have been missing owing to the lack of comparisons between the NMR data of URu$_2$Si$_2$ and its nonmagnetic references so far. In this paper, we report on the results of NMR and nuclear quadrupole resonance (NQR) measurements performed on the two isostructural non-f compounds ThRu$_2$Si$_2$ and LaRu$_2$Si$_2$. The comparisons of already reported NMR and NQR data on URu$_2$Si$_2$ with the present results allow us to analyze them semiquantitatively and to extract unique information on the magnetic and electronic properties of URu$_2$Si$_2$. First, we discuss whether ThRu$_2$Si$_2$ is suitable as the nonmagnetic reference of URu$_2$Si$_2$ on the basis of the NQR data measured at the Ru site. The NQR frequency ν_Q sensitively reflects local charge distribution. Then, by comparing the nuclear spin lattice relaxation rate $1/T_1$ data of URu$_2$Si$_2$ with those of ThRu$_2$Si$_2$, we conclude that there exist only spin fluctuations along the crystal c-axis in the HO phase and these Ising-like fluctuations may be important for the appearance of the unconventional superconductivity in URu$_2$Si$_2$.

The single crystals of ThRu$_2$Si$_2$ were grown in a tetra-arc furnace under high-purity Ar gas atmosphere by the Czochralski method. The details of the sample preparation are described elsewhere.11 A single crystal sample was used for the estimation of the temperature dependence of ν_Q at the Ru site by 99Ru-NMR measurement. Most of other the 29Si-NMR (nuclear spin $2I = 1/2$), 99,101Ru-NMR ($^{99,101}I = 5/2$), and 101Ru-NQR measurements on ThRu$_2$Si$_2$ were performed using a powdered sample. A polycrystalline sample of LaRu$_2$Si$_2$ was also synthesized by arc-melting constituent elements in Ar atmosphere, and we measured the 101Ru-NQR spectra of this sample. All the NMR and NQR experiments were carried out by the spin-echo technique with a phase-coherent pulsed spectrometer. T_1 was measured by a single rf-pulse saturation method.

The U ion in URu$_2$Si$_2$ has been regarded to be between U^{3+} ($5f^3$) and U^{4+} ($5f^2$) configurations. Actually, many theoretical models to explain the various properties of URu$_2$Si$_2$ seem based on the regime starting from the $5f^2$ configuration.12 However, it is difficult to distinguish experimentally these two valences. One of the reasons is that the two $5f$ electron states have quite close values of effective moment (3.62 and 3.58 μ_B for U^{3+} and U^{4+}, respectively), whose magnetic responses are indistinguishable. Therefore, we focused on the data on ν_Q, which is sensitive to local charge distribution.

Figure 1(a) shows a field-swept 99Ru-NMR line of ThRu$_2$Si$_2$. The spectrum consists of two peaks around 12.0 T arising from a transition between the nuclear spin states of $-1/2 \leftrightarrow 1/2$ and the two quadrupole-split first satellite lines ($\pm 1/2 \leftrightarrow \pm 3/2$) of 99Ru-NMR. An additional resonance peak indicated by an arrow is assigned to one of the two first satellites of 101Ru-NMR. From the obtained spectrum, we were able to extract $99\nu_Q = 1.046$ MHz for the 99Ru nucleus, yielding $101\nu_Q = 6.05$ MHz for the 101Ru nucleus using the ratio of nuclear quadrupole moments, $101Q/99Q = 457/79$. This estimation was verified by the
spectrum was performed at 4.2 K and a frequency corresponding to a
4.2 K and a frequency of 23.56 MHz. The solid line shows a calculated
101
information on electronic states in URu2Si2.

observed a 101Ru-NQR signal at a frequency of 12.1 MHz = 2 × 101νQ as shown in the inset of Fig. 1(a). At the Ru site with fourfold symmetry along the c-axis, the
ratio of NQR frequencies νQ : νQ(2) = 1 : 2, where νQ and νQ(2) are resonance frequencies for the transitions between ±1/2 ↔ ±3/2 and ±3/2 ↔ ±5/2, respectively.

Note that the 101νQ(101Ru-NQR) is close to that of ThRu2Si2 [101νQ(ThRu2Si2) = 5.72 MHz,10,14] in which the Th ion is tetravalent. Actually, it is difficult to estimate ionic valence quantitatively only from the νQ data. However, if we see how νQ changes in valence transition or valence-fluctuating systems (see, for example, Ref. 15 and the case of YbPd2Si2 described below), the present small difference in 101νQ (∼0.3 MHz) between URu2Si2 and ThRu2Si2 suggests the similarity of electronic configuration, except for 5f electrons, between the two compounds.

101νQ(ThRu2Si2) shows weak temperature dependence, as shown in Fig. 2(a). A more precise temperature dependence of 101νQ was measured for LaRu2Si2 in order to obtain further information on electronic states in URu2Si2. 101νQ(LaRu2Si2) estimated at 10.65 MHz at 4.2 K [see Fig. 1(b)] is close to 101νQ = 10.52 MHz for CeRu2Si2, both of which are trivalent or quasitrivalent compounds. On the other hand, 101νQ(LaRu2Si2) is ∼1.9 times larger than 101νQ(ThRu2Si2).
The difference is predominantly attributed to the difference in the charge distribution between the two systems. This result also supports the fact that the U valence is closer to 4+ rather than 3+, so that we found that ThRu2Si2 is applicable as the nonmagnetic reference of URu2Si2.

One should also notice that the temperature dependence of 101νQ(URu2Si2) shows a gradual decrease with increasing temperature, as seen in the upper panel of Fig. 2(a), which is a characteristic behavior reflecting a normal thermal expansion of the lattice. The result suggests that no significant rearrangement of charge distribution occurs with
temperature, namely, the La ion is in a stable trivalent state. In this context, we may expect a somewhat similar temperature dependence for 101νQ(ThRu2Si2) as well.

On the other hand, 101νQ(URu2Si2) increases with temperature above THo. Therefore, the difference between 101νQ(URu2Si2) and 101νQ(ThRu2Si2) ∼0.3 MHz at 4.2 K as mentioned above) is even smaller at higher temperatures, suggesting a closer electronic configuration between these two compounds at high temperatures. The decrease in νQ in the low-temperature regime is generally observed in valence-fluctuating lanthanide compounds, where the positive valence of lanthanide ions simultaneously decreases upon cooling. We found that the temperature dependence of 101νQ(URu2Si2) is analogous to that of the isostructural Yb compound YbPd2Si2. Here, the Yb valence was studied by X-ray absorption spectroscopy,17) as shown in Fig. 2(b). As temperature decreases, the delocalization of 4f electrons is induced owing to the evolution of exchange interactions between conduction and 4f electrons, resulting in the decrease in the Yb valence (valence-fluctuating state) and simultaneously in νQ(YbPd2Si2) [see Fig. 2(c)]. Similarly, the temperature dependence of 101νQ(URu2Si2) revealed in Fig. 2(a) suggests the delocalization of U-5f electrons at low temperatures. For a more quantitative discussion, reliable theoretical calculations are required.

Next, we show the results of 29Si-NMR measurements. The 29Si-NMR line exhibits a slightly asymmetric powder pattern, as seen in Fig. 3, implying that it consists of small anisotropic components of the Knight shift K. However, the evaluated anisotropic component of the shift is quite small: Kaniso = 8 × 10−3 MHz. Therefore, compared with the strongly anisotropic Knight shift of URu2Si2,4) the shift is regarded to be almost isotropic. As discussed in Ref. 4, the hyperfine coupling constant of URu2Si2 is isotropic, and the present results are consistent with this.

By measuring the intensities of the 29Si-NMR signal near the frequencies indicated by arrows in Fig. 3, we could estimate 1/T1 of ThRu2Si2 [hereafter denoted as Th(1/T1)]
for $H \parallel c$ and $H \perp c$, i.e., $T^v_\parallel(1/T^v_\parallel)$ and $T^v_\perp(1/T^v_\perp)$, respectively. Their temperature dependences are shown in Fig. 4, along with the previously reported data on URu$_2$Si$_2$ $[U(1/T^v_\perp)_{K}]$. $T^v_\perp(1/T^v_\perp)$ shows the so-called Korringa relation

$$T^v_\perp(1/T^v_\perp) = 0.0112T, \quad \text{(1)}$$

which is a characteristic behavior of a Fermi liquid. Although we were able to measure $T^v_\parallel(1/T^v_\parallel)$ only up to 10 K owing to a poor signal-to-noise ratio, the result indicates that $T^v_\parallel(1/T^v_\parallel)$ is isotropic within experimental accuracy. For $T > T_{HO}$, we assume that Eq. (1) corresponds to a contribution from conduction electrons without $5f$ electrons in URu$_2$Si$_2$. As indicated in Ref. 4, $U(1/T^v_\perp)$ shows the Korringa relation above T_{HO}, as shown by dotted lines in Fig. 4. Since $1/T^v_\perp$ is generally proportional to D_0, with D_0 being the density of states at Fermi energy, the enhancement of $U(1/T^v_\perp)$ compared with $T^v_\perp(1/T^v_\perp)$ above T_{HO} implies the formation of a heavy Fermi liquid owing to the Kondo effect.

A remarkable feature shown in Fig. 4 is that $U(1/T^v_\parallel)$ abruptly decreases to the line expressed by Eq. (1) below T_{HO}. $(1/T^v_\parallel)$ and $(1/T^v_\perp)$ are related to the dynamical susceptibilities perpendicular and parallel to the c-axis, $\chi_\perp(q, \omega_0)$ and $\chi_\parallel(q, \omega_0)$, respectively, as follows:

$$\left(\frac{1}{T^v_\parallel}\right)_i = \left[\frac{2\gamma_\perp^2 k_BT}{\gamma_\perp\hbar}\right]^2 \sum_q \left[A_{\text{hd}, \perp}^2 \left|\text{Im}\chi_\perp(q, \omega_0)\right|^2 + A_{\text{hf}, \parallel} \left|\text{Im}\chi_\parallel(q, \omega_0)\right|^2\right], \quad \text{(2)}$$

and

$$\left(\frac{1}{T^v_\perp}\right)_i = \left[\frac{2\gamma_\perp^2 k_BT}{\gamma_\perp\hbar}\right]^2 \sum_q \left[A_{\text{hd}, \perp}^2 \left|\text{Im}\chi_\perp(q, \omega_0)\right|^2 + A_{\text{hf}, \parallel} \left|\text{Im}\chi_\parallel(q, \omega_0)\right|^2\right] + A_{\text{hf}, \parallel} \left|\text{Im}\chi_\parallel(q, \omega_0)\right|^2, \quad \text{(3)}$$

where γ_\perp and γ_\parallel are the nuclear and electronic gyromagnetic ratios, respectively, ω_0 is the NMR frequency, $\text{Im}\chi_\perp(q, \omega_0)$ is the imaginary part of $\chi_\perp(q, \omega_0)$ ($i = \parallel$ and \perp), and $A_{\text{hd}, i} \approx A_{\text{hf}, i}$ for URu$_2$Si$_2$ and ThRu$_2$Si$_2$ as mentioned above. From Eq. (2), the decrease in $U(1/T^v_\perp)$ below T_{HO} implies that $\chi_\perp(q, \omega_0)$ in the HO phase is as small as that in the nonmagnetic metal ThRu$_2$Si$_2$.

On the other hand, $(1/T^v_\perp)$ predominantly obtains contribution from $\chi_\parallel(q, \omega_0)$, because $\chi_\perp(q, \omega_0)$ is small in Eq. (3). The anisotropy in $U(1/T^v_\parallel)$, which is in contrast to the case of ThRu$_2$Si$_2$, indicates the existence of magnetic correlations between electrons even in the Fermi liquid state. Therefore, the enhancement of $U(1/T^v_\perp)$ in the HO phase is ascribed to the spin fluctuations existing only along the c-axis. Such a unique observation in URu$_2$Si$_2$ should be associated with the Ising-like magnetic property, which is revealed for example in the strongly anisotropic susceptibility: the magnetic signal along the a-axis is almost temperature-independent and several times smaller than that along the easy axis (c-axis).1

We briefly comment on the appearance of the superconductivity in URu$_2$Si$_2$. The superconductivity occurs in the lower-temperature region included by the HO phase having the Ising-type magnetic fluctuations, as mentioned above. If Cooper pairing is magnetically mediated there, the spin fluctuations along the c-axis should be responsible for the superconductivity, because the perpendicular component as small as those in ThRu$_2$Si$_2$ is unlikely to be the main driving force for the occurrence of the unconventional, anisotropic superconductivity. This regime is also consistent with the strong anisotropy in the upper critical field $H_{c2}^{(a)}$ [i.e., $H_{c2}^{(a)}(H \perp c) > H_{c2}^{(a)}(H \parallel c)$]: spin fluctuations will be considerably suppressed when applying magnetic field along the c-axis, leading to the depression of the superconductivity. Interestingly, a similar Ising anisotropy characterizes the magnetic properties in the U-based ferromagnetic (FM) superconductors URhGe and UCoGe,19,20 in which FM fluctuations are intimately related to the appearance of superconductivity.21

Further information on the spin fluctuations detected by the present T^v_\parallel measurements is obtained using the modified Korringa relation for weakly correlated metals: $T^v_\parallel K^v_\parallel = SK(\alpha^{-1})$, where K^v_\parallel is the spin part of K, $S = h/4\pi k_B(\gamma_e/\gamma_n)^3$, $K(\alpha) = (1 - \alpha^2/2)[1 - \alpha(\gamma_\perp q_0/\gamma_\perp(q_0))]^{-2}$, $1 - \alpha^{-1}$ is an enhancement factor, and $\gamma_\perp(q_0)$ is the dynamical susceptibility for noninteracting fermions.22 At low temperatures in the HO phase, $K_{\text{hd},\parallel} = 0.31$, being independent of temperature. Note that $K_{\text{hd},\parallel} \propto \gamma_\perp(0,0)$, and $\gamma_\perp(q, \omega_0)$ is probed by $U(1/T^v_\parallel)/(1/T^v_\parallel)/2$ from Eqs. (2) and (3), where $U(1/T^v_\parallel)_i$ ($i = \parallel$ and \perp) denotes $5f$ electronic components. Although $U(1/T^v_\parallel)$ may be extracted by subtracting the contribution of conduction electrons, it is indeed difficult to
estimate it correctly in the HO phase, because one needs to consider the reduction in carrier density below T_{Ho}. Here, if we assume $U/(1/T_1)_{J_{fl}} \sim U/(1/T_1)_{0}$, which should give a lower limit of $U/(1/T_1)_{J_{c}}$, we obtain $K(\alpha) \ll 1$ for $H \parallel c$. This result does not vary even if we assume $U/(1/T_1)_{J_{fl}} \sim U/(1/T_1)_{0}$, which should give an upper limit.

According to the modified Korringa relation, the result indicates FM correlations in the HO phase. On the other hand, one expects antiferromagnetic (AFM) correlations originating from the neighboring AFM order phase under pressure. Indeed, a magnetic excitation with the AFM wave vector $Q_0 = (1,0,0)$ was detected by an inelastic neutron measurement.24 Here, to understand the present NMR result, we need to take into account the crystallographical surroundings of the Si site: it is located near an ab basal plane with four nearest-neighbor U ions. As expected from the Q_0 vector, the U magnetic moments tend to align ferromagnetically within the ab basal plane, so that they give rise to FM fluctuations that cannot be canceled out at the Si site. Thus, the T_1 relaxation is predominantly affected by the FM correlations owing to the geometrical factor; thus, the present result is not in disagreement with the AFM correlations between the planes.

In summary, the comparisons of already reported NMR and NQR data on URu$_2$Si$_2$ with the data on isostructural U electronic con

Acknowledgements We thank K. Ishida, Y. Takahashi, H. Harima, G. Motoyama, M. Mizumaki, and T. Kohara for valuable discussions. This work was partially supported by JSPS KAKENHI Grant No. 24540349.

1) T. M. Palstra, A. A. Menovsky, J. van den Berg, A. J. Dirkmaat, P. H. Kes, G. J. Nieuwenhuys, and J. A. Mydosh, Phys. Rev. Lett. 55, 2727 (1985).
2) W. Schlabitz, J. Baumann, B. Pollit, U. Rauchschwalbe, H. M. Mayer, U. Aihlheim, and C. D. Bredl, Z. Phys. B 62, 171 (1986).
3) M. B. Maple, J. W. Chen, Y. Dalichaouch, T. Kohara, C. Rossel, M. S. Torikachvili, M. W. McElfresh, and J. D. Thompson, Phys. Rev. Lett. 56, 185 (1986).
4) Y. Kohori, K. Matsuda, and T. Kohara, J. Phys. Soc. Jpn. 65, 1083 (1996).
5) K. Matsuda, Y. Kohori, and T. Kohara, J. Phys. Soc. Jpn. 65, 679 (1996).
6) K. Matsuda, Y. Kohori, T. Kohara, K. Kuwahara, and H. Amitsuka, Phys. Rev. Lett. 87, 087203 (2001).
7) S. Takagi, S. Ishihara, M. Yokoyama, and H. Amitsuka, J. Phys. Soc. Jpn. 81, 114710 (2012).
8) S. Kambe, Y. Tokunaga, H. Sakai, T. D. Matsuda, Y. Haga, Z. Fisk, and R. E. Walsdist, Phys. Rev. Lett. 110, 246403 (2013).
9) K. R. Shiner, J. T. Haraldsen, A. P. Dioguardi, J. Crocker, N. apRoberts-Warren, A. C. Shockley, C.-H. Lin, D. M. Nisson, J. C. Cooley, M. Janoschek, K. Huang, N. Kanchanavanee, M. B. Maple, M. J. Graf, A. V. Balatsky, and N. J. Curro, Phys. Rev. B 88, 094436 (2013).
10) T. Mito, M. Hattori, G. Motoyama, Y. Sakai, T. Koyama, K. Ueda, T. Kohara, M. Yokoyama, and H. Amitsuka, J. Phys. Soc. Jpn. 82, 123704 (2013).
11) Y. Matsumoto, Y. Haga, N. Tateiwa, H. Aoki, N. Kimura, T. D. Matsuda, E. Yamamoto, Z. Fisk, and H. Yamagami, JPS Conf. Proc. 3, 011096 (2014).
12) For a review, see J. A. Mydosh and P. M. Oppenner, Rev. Mod. Phys. 83, 1301 (2011).
13) P. Pyykki, Mol. Phys. 106, 1665 (2008).
14) S. Saitoh, S. Takagi, M. Yokoyama, and H. Amitsuka, J. Phys. Soc. Jpn. 74, 2209 (2005).
15) For example, in the valence transition compound YbInCu$_4$, Q_{0} of 63Cu changes by $-0.8\, \text{MHz}$ across the Yb valence change from 2.98 (high-temperature phase) to 2.84 (low-temperature phase). Note that Q_{0} is in proportion to Q_{ν}, where Q is the nuclear quadrupole moment and Q_{ν} is the largest principal axis component of the electric field gradient at the nuclear position.
16) Y. Kawasaki, Dr. Thesis, Osaka University, 1998.
17) H. Yamaoka, J. Jarrige, N. Tsujii, J.-F. Lin, N. Hiraoka, H. Ishii, and K.-D. Tseui, Phys. Rev. B 82, 035111 (2010).
18) D. Aoki, F. Bourdarot, E. Hassinger, A. Miyake, S. Raymond, E. Taouf, and J. Flouquet, J. Phys.: Condens. Matter 22, 164205 (2010), and references therein.
19) D. Aoki, A. Huxley, E. Ressouche, D. Braithwaite, J. Flouquet, and E. Lhotel, and C. Paulsen, Nature 413, 613 (2001).
20) N. T. Huy, D. E. de Nijs, Y. K. Huang, and A. de Visser, Phys. Rev. Lett. 100, 077002 (2008).
21) T. Hattori, Y. Ibara, Y. Nakai, K. Ishida, Y. Tada, S. Fujimoto, N. Kawakami, E. Osaki, K. Deguchi, N. K. Sato, and I. Sato, Phys. Rev. Lett. 108, 066403 (2012).
22) T. Moriya, J. Phys. Soc. Jpn. 18, 516 (1963).
23) For URu$_2$Si$_2$, given that the susceptibility at high temperatures can be fitted with a simple Curie Weiss and the plot of χ vs T extrapolates to the origin, the plot of χ vs T extrapolates to the origin, we approximate $\chi_0 \sim K_T$.
24) C. Broholm, H. Lin, P. T. Matthews, T. E. Mason, W. J. L. Buyers, M. F. Collins, A. A. Menovsky, J. A. Mydosh, and J. K. Kjems, Phys. Rev. B 43, 12809 (1991).
25) H. Nakamura, K. Nakajima, Y. Kitaoka, K. Asayama, K. Yoshimura, and T. Nitta, J. Phys. Soc. Jpn. 89, 28 (1990).
26) T. Koyama, M. Nakamura, T. Mito, S. Wada, and J. L. Sarrao, Phys. Rev. B 71, 184437 (2005).
27) S. Sugita, A. Sekiya, S. Imada, J. Yamaguchi, A. Shigemoto, A. Irie, K. Yoshimura, M. Yabashi, K. Tamasku, A. Higashiyama, and T. Ishikawa, J. Phys. Soc. Jpn. 78, 074704 (2009).