Measurement of Temporal Correlations of the Overhauser Field in a Double Quantum Dot

D. J. Reilly, J. M. Taylor, E. A. Laird, J. R. Petta, C. M. Marcus, M. P. Hanson and A. C. Gossard

1 Department of Physics, Harvard University, Cambridge, MA 02138, USA
2 Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
3 Department of Physics, Princeton University, Princeton, NJ 08544, USA
4 Department of Materials, University of California, Santa Barbara, California 93106, USA

In quantum dots made from materials with nonzero nuclear spins, hyperfine coupling creates a fluctuating effective Zeeman field (Overhauser field) felt by electrons, which can be a dominant source of spin qubit decoherence. We characterize the spectral properties of the fluctuating Overhauser field in a GaAs double quantum dot by measuring correlation functions and power spectra of the rate of singlet-triplet mixing of two separated electrons. Away from zero field, spectral weight is concentrated below 10 Hz, with $\sim 1/f^2$ dependence on frequency, f. This is consistent with a model of nuclear spin diffusion, and indicates that decoherence can be largely suppressed by echo techniques.

Electron spins in quantum dots are an attractive candidate for quantum bits (qubits) [1, 2]. For gate-defined devices made using GaAs, the coupling of single electron spins to $\sim 10^6$ thermally excited nuclear spins creates a fluctuating effective Zeeman field (the Overhauser field), B_{nuc}, with rms amplitude $B_{\text{nuc}} \sim 1-3 \text{ mT}$ [3, 4, 5, 6, 7]. At experimentally accessible temperatures, B_{nuc} fluctuates both as a function of position and time, with temporal correlations over a broad range of time scales, and is a dominant source of spin dephasing. Experiments have been performed both in GaAs [8, 9, 10, 11, 12, 13] and low-field spin relaxation [3, 4, 5, 6, 7]. Spin manipulation schemes [10, 11, 12, 13] can be employed to control spin dephasing, which can be observed and characterized using magnetometry [8, 9]. The conductance G_{rf} of a proximal radio frequency quantum point contact (rf-QPC) is sensitive to the charge configuration of the double dot. G_{rf} is sensitive to the charge degeneracy determined by electrostatic gates. A gate-pulse (Fig. 1(b)) cycle prepares new singlets each iteration by configuring the device deep in (2,0), at point (P), where transitions to the ground state singlet, (2,0)S, occur rapidly [9, 13]. Electrons are then separated to position S in (1,1) for a time τ_{S} where precession between the initial singlet and one of the triplet states is driven by components of the difference in Overhauser fields in the left and right dots, $\Delta B_{\text{nuc}} = B_{\text{nuc}}^{L} - B_{\text{nuc}}^{R}$ [9, 13].

In an applied field, the position of the separation point determines whether the (1,1) singlet (S) is nearly degenerate with one of the (1,1) triplets, with which it can then rapidly mix. Mixing of S with T_0 (the $m_s = 0$ triplet) occurs at large negative ϵ (green line in Fig. 1(b)) where exchange vanishes, $S - T_0$ mixing is driven by components of ΔB_{nuc} along the total field (applied plus Overhauser fields). In contrast, mixing of S with T_+ (the $m_s = +1$ triplet), which occurs at a lower negative, field-dependent value of ϵ (red line in Fig. 1(b)) where Zeeman splitting matches exchange, is driven by components of ΔB_{nuc} transverse to the total field. Measuring the degree of evolution out of the prepared S state following separation, by measuring the return probability to the (2,0) state, can be used to determine ΔB_{nuc}.
charge configuration after a certain separation time, effectively measures these components of the Overhauser field difference in the two dots. Measurement is carried out by moving the system to position M in (2,0) for a time $\tau_M = 5 \mu s$, during which only S return to (2,0) with appreciable probability. The spin state—triplet or singlet—is thereby converted to a charge state—(1,1) or (2,0), respectively—which is detected by the rf-QPC.

Figures 1(c, d) show the time-averaged V_{rf} as a function of gate voltages V_L and V_R. Once calibrated, V_{rf} gives the probability $1 - P_S$ that a prepared singlet evolved into a triplet during the separation time τ_S. Inside the readout triangle (see Fig. 1(c)), triplet states remain blocked in (1,1) for a time $T_1 \gg \tau_M$ [14]. Similarly, inside the rectangular region indicated in Fig. 1(d), the prepared singlet mixes with T_+ and becomes blocked in (1,1). Calibration of V_{rf} uses the signal in (2,0) outside the readout triangle, where fast, spin-independent relaxation occurs via (1,0) or (2,1), to define $P_S = 1$, and the region within (1,1) to define $P_S = 0$.

Fitting $P_S(\tau_S)$ averaged over tens of seconds with a gaussian [9] [13] (Fig. 1(e)) gives $T_1^* = \hbar/(g\mu_B B_{nuc}) \sim 15$ ns corresponding to $B_{nuc} \sim 1.6$ mT ($N \sim 6 \times 10^6$), where $g \sim -0.4$ is the electron g-factor and μ_B is the Bohr magneton. The effect of finite T_1 on the calibration of P_S can be accounted by introducing a factor $C = (1 - e^{-\tau_M/T_1})/T_1/\tau_M$ [14] that relates P_S to the value $P_S^* \sim T_1$, $1 - P_S \sim (1 - P_S^*)C$. The dependence of P_S on τ_M (for a fixed $T_1 \sim 16 \mu s$ and $\tau_S = 50$ ns) is shown in Fig. 1(f). Applying this factor to Fig. 1(e) gives $P_S^*(\tau_S \gg T_1^*) = 1/3$, the expected value without normalizing the sensor output.

With less averaging, P_S shows fluctuations that reflect fluctuations of Overhauser field components. Figure 2 shows a slice through the readout triangle, obtained by rastering V_L at fixed V_R with $B = 100$ mT, $\tau_S = 25$ ns. At $B = 100$ mT, fluctuations in P_S have a flickering appearance with broadband time dependence extending to

![FIG. 1: (Color online) (a) Schematic energy diagram of the two-electron system. Inset: false-color SEM image of a double-dot with integrated rf-QPC charge sensor similar to the one measured (scale bar is 500 nm). (b) Gate-pulse cycle that is used to prepare (P) the (2,0) singlet, separate (S) into (1,1), either to the $S-T_0$ degeneracy (green dashed line) or the $S-T_+$ degeneracy (red dashed line), and return to (2,0) for measurement (M). (c) rf-QPC readout, V_{rf}, around the (1,1)-(2,0) transition during application of the cyclic gate-pulse sequence, showing the readout triangle indicated with white lines ($B = 0$ mT; $\tau_S = 50$ ns). A background plane has been subtracted. (d) V_{rf} as in (c), but for S at the $S-T_+$ degeneracy ($B = 10$ mT). (e) Average value of $P_S(\tau_S)$ at $B = 0$, $\tau_M = 2 \mu s$. Red line is a fit to the theoretical gaussian form. (f) Average value of $P_S(\tau_M)$ showing contrast dependence, $\tau_S = 50$ ns. Red line is a fit to the exponential form (see main text).](image1)

![FIG. 2: (Color online) (a) rf-QPC sensor output V_{rf} as a function of V_L and V_R with gate-pulse cycle applied ($\tau_S = 25$ ns, $\tau_M = 1.6 \mu s$, $B = 100$ mT). Color scale as in Fig. 1. (b) Repeated slices of V_L with $V_R = -709$ mV as a function of time. Markers on left axis correspond to markers in (a). (c) Sensor output calibrated to P_S (blue) along with a measurement of the background rf-QPC noise (pink) from (b) at arrow positions. (d) Similar to (b) but for $B = 0$, color scale same as in Fig. 1. (e) Similar to (b) but with S-point at $S-T_+$ degeneracy, $B = 100$ mT, color scale same as in Fig. 1.](image2)
FIG. 3: (Color online) (a) Power spectra of P_S at various magnetic fields, $\tau_S = 25$ ns. Spectra obtained by FFT (with Hamming window) of average of 8 traces sampled at 10 kHz. Background measurement noise (BG) found by setting $\tau_S = 1$ ns at $B = 100$ mT. Inset: numerical simulation results for corresponding magnetic fields: $B = 0$ (pink), $B = 5$ mT (blue), $B = 10$ mT (green), $B = 100$ mT (red). (b) Autocorrelation P_S for $\tau_S = 25$ ns and $B = 100$ mT (red curve). Model function (Eq. 1) (brown) and Monte Carlo result (black).

several seconds. Comparing the quieter (pink) trace in Fig. 2c, for point M such that $(1, 1)$ always returns to $(0, 2)$, to the fluctuating (blue) trace, where return to $(0, 2)$ requires $S - T_0$ mixing by Overhauser fields, we see that the amplitude of the fluctuating signal (blue) is ~ 100 times larger than the background noise of the charge sensor. At $B = 0$, slices across the readout triangle does not show a flickering (large, low-frequency) P_S signal (Fig. 2(d)). Figure 2(e) shows slices across the $S - T_+\tau$ resonance (see Fig. 1(d)). Here also, P_S also does not have a flickering appearance, independent of B, reflecting rapid fluctuations of transverse components of ΔB_{nuc}. We avoid rapidly cycling through the $S - T_+$ transition, which can produce DNP [20].

To investigate the spectral content of P_S fluctuations, fast Fourier transforms (FFTs) of V_{rf} are taken with V_L and V_R positioned to sample the center of the readout triangle. Figure 3(a) shows power spectra of P_S, with $\tau_S = 25$ ns, over the range $B = 0$ - 100 mT. Measurement at $\tau_S = 1$ ns, where $P_S \sim 1$, has a 1/f form and is identical to the noise measured outside the readout triangle, and constitutes our background of instrumental noise. At $B = 0$ no spectral content above the 1/f background noise is seen (Fig. 2(a)). With increasing B, an increasing spectral content is observed below ~ 100 Hz. For $B > 20$ mT, the spectra become independent of B. The dependence of the power spectrum of P_S on separation time τ_S is shown in Fig. 4. We found that the largest fluctuations over the greatest frequency range occur for $\tau_S \sim T_+^* \sim 15$ ns, and these fluctuations show a roughly 1/f2 spectrum. Spectra were also obtained out to 100 kHz (not shown) where no additional high frequency components were observed above the background noise. For $\tau_S < T_+^*$, P_S remains near unity with few fluctuations; For $\tau_S > T_+^*$ low-frequency content is suppressed while components in the range $1 - 10$ Hz are enhanced.

We model fluctuations in P_S as arising from the dynamic Overhauser magnetic field in thermal equilibrium. A classical Langevin equation is used to describe fluctuations of ΔB_{nuc} arising from nuclear spin diffusion on distances much larger than the lattice spacing and times much longer than the time-scale set by nuclear dipole-dipole interaction. For $B \gg B_{\text{nuc}}$, correlations of the Overhauser field can be evaluated analytically in terms of a dimensionless operator \hat{A}_z^2 for each nuclear spin species β, where $\sum_{\beta} x^\beta \hat{A}_z^2 = B^z_{\text{nuc}}/B_{\text{nuc}}$ and similarly for the right dot, with $x^{71}\text{As} = 1, x^{75}\text{Ga} = 0.6, x^{71}\text{As} = 0.4$. This gives $\langle \hat{A}_z^2(t + \Delta t) \hat{A}_z^2(t) \rangle = \langle (1 + \Delta t/\Delta t_{\beta}) \rangle^{-1}$, at time difference Δt, where Δt_{β} is the species-dependent spin diffusion coefficient, σ_\perp is the electron wave function spatial extent perpendicular to the 2DEG (and along the external field) and σ_\parallel is the wave function extent in the plane of the 2DEG, assumed symmetric in the plane. Brackets $\langle \ldots \rangle$ denote averaging over t and nuclear ensembles.

Statistics of P_S for $S - T_0$ mixing are found using the z-component of the Overhauser operators, $\Delta \hat{A}_z = \sum_{\beta} x^\beta (\hat{A}_z^2 - \hat{A}_z^2)$. For gaussian fluctuations and a species-independent diffusion constant, D, this gives a mean $\langle P_S \rangle = \frac{1}{2} [1 + e^{-2G^2(\Delta \hat{A}_z^2)}]$ and autocorrelation $\langle P_S(t + \Delta t) P_S(t) \rangle - \langle P_S \rangle^2$

$$= \frac{e^{-4G^2(\Delta \hat{A}_z^2)}}{4} \left[\cosh(4G^2(\Delta \hat{A}_z(t + \Delta t) - \Delta \hat{A}_z(t))) - 1 \right],$$

where $G = \tau_S/T_+^*$ is a gain coefficient. The autocorrelation function at $B = 100$ mT shown in Fig. 3(b) is obtained by Fourier transforming the power spectrum [31]. We fit to the autocorrelation function using a contrast factor, C, (see Fig. 1(f) and discussion), and the diffusion coefficient, D, as fitting parameters. Wavefunction widths are taken from numerical simulations of the device [32], $\sigma_z = 7.5$ nm, $\sigma_\perp = 40$ nm. The fit gives $D \sim 10^{-13}$ cm2/s, consistent with previous measurements on bulk GaAs samples using optical techniques [6].

In Eq. (1) the dependence on τ_S leads to a scaling of the correlation time of P_S by G^2 to find the underlying Overhauser field correlation time. For fields $B > 20$ mT, the data in Fig. 3(b) indicate an autocorrelation time of ~ 3 s for P_S corresponding to a time $\tau_S \sim 10$ s for $\Delta \hat{A}_z$ to decorrelate by half of its initial value.

Near $B \sim 0$, transverse components of the nuclear field lead to rapid dephasing of nuclear spins. In this regime, we use a Monte Carlo method to simulate nuclear dynamics [33]. Figure 3(b) shows that numerical and analytical
Clear spins and suppress long time correlations in Δ_{nuc} because nuclear fields at low B can be understood as arising from the influence of the transverse spectral content as shown in the inset of Fig. 4. Similar behavior, though independent of B and τ, is observed in the spectra of P_S at the S_T resonance (not shown). Below $B \sim 10$ mT, an increased spectral content at frequencies between 1 - 10 Hz is observed in the experiment and theory. The frequency at which the spectra intersect however, remains constant (~ 1 Hz) in the simulations but increases at low B in the experimental data. We are able to approximate this behavior in the simulation by increasing the diffusion coefficient ($D \sim 10^{-12}$ cm2/s at $B = 0$), implying an enhancement of diffusion, beyond typical values [6], as B approaches zero. This may be due to the growing influence of non-secular terms in the dipole-dipole interaction at low magnetic field [8, 23]. Diffusion maybe further enhanced at low B as a result of electron mediated flip-flop of nuclear spins [12, 34], an effect neglected in the simulation.

Finally, we model how the separation time for the two-electron spin state affects the power spectra. Simulated spectra are shown in the inset of Fig. 4 for $\tau_S = 1$ ns, 25 ns and 100 ns at $B = 100$ mT. Good agreement with experiment is achieved when again accounting for the additional $1/f$ noise and contrast reduction. We find that τ_S acts to filter fluctuations in ΔB_{nuc}, so that for $\tau_S \gg T_2^*$, low frequency correlations in ΔB_{nuc} are suppressed in the spectra of P_S (see Eq. 1). This filtering effect leads to the turn-over at ~ 2 Hz evident in the spectra for $\tau_S = 100$ ns. For $\tau_S \sim T_2^*$, little filtering occurs and the power spectra of P_S reflect the underlying intrinsic fluctuations of the Overhauser magnetic field.

FIG. 4: (Color online) Power spectra of P_S at $B = 100$ mT for separation times $\tau_S = 25$ ns (red) and $\tau_S = 100$ ns (blue). Setting $\tau_S = 1$ ns (black) yields background noise. Inset shows simulation results for $B = 100$ mT, $\tau_S = 25$ ns (red) and $\tau_S = 100$ ns (blue). Note the suppression of low-frequency content and enhancement of mid-frequency content for long τ_S in the experiment and simulation.

Experiment and theory show reduced low-frequency spectral content as B decreases toward zero. This can be understood as arising from the influence of the transverse nuclear fields at low B, which rapidly dephase nuclear spins and suppress long time correlations in ΔB_{nuc}. Similar behavior, though independent of B, is observed in the spectra of P_S at the $S-T_\perp$ resonance (not shown).

Acknowledgments

We thank L. DiCarlo, A. C. Johnson, and M. Stopa for contributions. This work was supported by DARPA, ARO/IARPA, NSF-NIRT (EIA-0210736) and Harvard Center for Nanoscale Systems. Research at UCSB supported in part by QuEST, an NSF Center.

References

[1] D. Loss and D. DiVincenzo, Phys. Rev. A. 57, 120 (1998).
[2] B. E. Kane, Nature (London) 393, 133 (1998).
[3] S. I. Erlingsson, Y. V. Nazarov, and V. I. Fal’ko, Phys. Rev. B. 64, 195306 (2001).
[4] I. A. Merkulov, A. L. Efros, and M. Rosen, Phys. Rev. B. 65, 205309 (2002).
[5] A. V. Khaetskii, D. Loss, and L. Glazman, Phys. Rev. Lett. 88, 186802 (2002).
[6] D. Paget, G. Lampel, and B. Sapoval, Phys. Rev. B. 15, 5780 (1977).
[7] A. S. Bracker et al., Phys. Rev. Lett. 94, 047402 (2005).
[8] R. de Sousa and S. Das Sarma, Phys. Rev. B. 68, 115322 (2003).
[9] J. R. Petta et al., Science 309, 2180 (2005).
[10] W. M. Witzel and S. Das Sarma, Phys. Rev. B. 74, 035322 (2006).
[11] F. H. L. Koppens et al., Nature (London) 442, 766 (2006).
[12] W. Yao, R.-B. Liu, and L. J. Sham, Phys. Rev. B. 74, 195301 (2006).
[13] J. M. Taylor et al., Phys. Rev. B. 76, 035315 (2007).
[14] A. C. Johnson et al., Nature (London) 435, 925 (2005).
[15] F. H. L. Koppens et al., Science 309, 1346 (2005).
[16] A. K. Huttel et al., Phys. Rev. B. 69, 073302 (2004).
[17] J. M. Taylor et al., Nature Physics (London) 1, 177 (2005).
[18] G. Giedke et al., Phys. Rev. A. 74, 032316 (2006).
[19] D. Klausen, W. A. Coish, and D. Loss, Phys. Rev. B. 73, 205302 (2006).
[20] S. A. Crooker et al., Nature (London) 431, 49 (2004).
[21] T. Sleator et al., Phys. Rev. Lett. 55, 1742 (1985).
[22] C. L. Degen et al., Phys. Rev. Lett. 99, 256601 (2007).
[23] A. Abragam, Principles of Nuclear Magnetism (International Series of Monographs on Physics) Oxford University Press, USA (1983).
[24] D. Gammon et al., Science 277, 85 (1997).
[25] J. Baugh et al., Phys. Rev. Lett. 99, 096804 (2007).
[26] J. R. Petta et al., Phys. Rev. Lett. 100, 067601 (2008).
[27] K. Ono and S. Tarucha, Phys. Rev. Lett. 92, 256803 (2004).
[28] M. S. Rudner and L. S. Levitov, Phys. Rev. Lett. 99, 036602 (2007).
[29] O. N. Jouravlev and Y. Nazarov, Phys. Rev. Lett. 96, 176804 (2006).
[30] D. J. Reilly et al., App. Phys. Lett. 91, 162101 (2007).
[31] The correlation function for the experimental data become slightly negative at long times, likely as the result of $1/f$ noise in the rf-QPC.
[32] M. Stopa, Private communication, (2007).
[33] J. M. Taylor, unpublished.
[34] C. Deng and X. Hu, Phys. Rev. B. 73, 241303(R) (2006).