Explaining Hyperproperty Violations

Norine Coenen¹, Raimund Dachselt², Bernd Finkbeiner¹, Hadar Frenkel¹, Christopher Hahn¹, Tom Horak², Niklas Metzger¹, Julian Siber¹

¹CISPA Helmholtz Center for Information Security
²Technische Universität Dresden

As presented at the 34th International Conference on Computer-Aided Verification (CAV 2022).
Model Checking

System model

Specification

Model Checker

✅

✗

⚡️
Explaining Counterexamples

We give explanations by identifying *causes* in the non-deterministic input sequences.

E.g.: *Explaining Counterexamples Using Causality*. Beer, Ben-David, Chockler, Orni, and Trefler. (CAV 2009).
Error explanation with distance metrics. Groce, Chaki, Kroening, Strichman. Int. J. Softw. Tools Technol. Transf. 8 (2006)
Hyperproperties

Observational determinism: “A system appears deterministic to low-security users”.

(Generalized) Noninterference

Declassification

Trace equality

Hyperproperties. Clarkson and Schneider. (CSF 2008).
HyperLTL

Observational determinism: “A system appears deterministic to low-security users”.

$$\forall \pi. \forall \pi'. \Box (li_\pi \leftrightarrow li_{\pi'}) \rightarrow \Box (lo_\pi \leftrightarrow lo_{\pi'})$$

(Generalized) Noninterference

Declassification

Trace equality

Temporal Logics for Hyperproperties. Clarkson, Finkbeiner, Koleini, Micinski, Rabe, and Sánchez. (POST 2014).
HyperLTL Model Checking

Specification \(\varphi \):

\[
\forall \pi. \forall \pi'. \Box (li_\pi \leftrightarrow li_{\pi'}) \rightarrow \Box (lo_\pi \leftrightarrow lo_{\pi'})
\]

Counterexample \(\Gamma \):

\[
\begin{array}{c|c|c}
\pi & \{} & \{} \\
\pi' & \{hi\} & \{hi, lo\} \\
\end{array}
\]

System \(T \):

![System Diagram]

Violation of \(\varphi \) on \(\Gamma \) is due to interactions between inputs on multiple traces.

Temporal Logics for Hyperproperties. Clarkson, Finkbeiner, Koleini, Micinski, Rabe, and Sánchez. (POST 2014).

Algorithms for Model Checking HyperLTL and HyperCTL. Finkbeiner, Rabe, and Sánchez. (CAV 2015).
HyperLTL Model Checking

Specification φ:

$$\forall \pi. \forall \pi'. \square (\text{hi}_\pi \leftrightarrow \text{hi}_{\pi'}) \rightarrow \square (\text{lo}_\pi \leftrightarrow \text{lo}_{\pi'})$$

Counterexample Γ:

$$\pi = \begin{cases} \{\} & \{\} & \{\} \omega \\
\{\text{hi}\} & \{\text{hi}, \text{lo}\} & \{\} \omega
\end{cases}$$

Violation of φ on Γ is due to interactions between inputs on multiple traces.

Temporal Logics for Hyperproperties. Clarkson, Finkbeiner, Koleini, Micinski, Rabe, and Sánchez. (POST 2014).

Algorithms for Model Checking HyperLTL and HyperCTL*. Finkbeiner, Rabe, and Sánchez. (CAV 2015).
Causal Analysis

Specification φ:

$$\forall \pi. \forall \pi'. \, \square (li_\pi \leftrightarrow li_{\pi'}) \rightarrow \square (lo_\pi \leftrightarrow lo_{\pi'})$$

Counterexample Γ:

$$\begin{array}{c|c|c}
\pi & \emptyset & \emptyset \\
\pi' & \{hi\} & \{hi, lo\} \\
& \emptyset & \emptyset^\omega \\
\hline
\end{array}$$

System T:

![Diagram](image)

We highlight the *causes* on the input sequences.

Causes and Explanations: A Structural-Model Approach. Halpern and Pearl. Brit. J. Phil. Sci. 56 (2005).
A Modification of the Halpern-Pearl Definition of Causality. Halpern. (IJCAI 2015).
We extend HP’s actual causality to hyperproperty effects and reactive systems.
Events and Causes

\[
\begin{array}{c|c|c}
\pi &= & \{\} \quad \{\} \quad \{\}^\omega \\
\pi' &=& \{hi\} \quad \{hi, lo\} \quad \{\}^\omega \\
\end{array}
\]

An event \(\langle l_a, n, \pi \rangle\) is the value of an atomic proposition \(a\) at position \(n\) in \(\pi\).

\[
(\pi, \pi') \models \langle hi, 0, \pi' \rangle
\]
Events and Causes

\[
\pi = \begin{array}{c|c|c}
\{\} & \{\} & \{\}^\omega \\
\hline
\{hi\} & \{hi, lo\} & \{\}^\omega
\end{array}
\]

An event \(\langle l_a, n, \pi \rangle\) is the value of an atomic proposition \(a\) at position \(n\) in \(\pi\).

A cause \(C\) is a set of events.
C is a Cause if...

\[
\begin{align*}
\pi &= \{\} & \{\} & \{\}^\omega \\
\pi' &= \{hi\} & \{hi, lo\} & \{\}^\omega
\end{align*}
\]

SAT: Γ satisfies all events in C.
Interventions

$$\pi = \{\} \quad \{\} \quad \{\}^\omega$$

$$\pi' = \{hi\} \quad \{hi, lo\} \quad \{\}^\omega$$

An intervention on C flips the values of all events in C.

$$\text{intervene}(\Gamma, \{\langle hi, 0, \pi'\rangle\}, \emptyset) \quad \rightarrow \quad \pi = \{\} \quad \{\} \quad \{\}^\omega$$

$$\pi' = \{\} \quad \{hi\} \quad \{lo\} \quad \{\}^\omega$$
Contingencies

\[\pi = \{\} \quad \{\} \quad \{\}^\omega \]

\[\pi' = \{hi\} \quad \{hi, lo\} \quad \{\}^\omega \]

A **contingency** \(\mathcal{W} \) allows to reset states back to \(\Gamma \).

\[\text{intervene}(\Gamma, \{\langle hi, 0, \pi'\rangle\}, \{\langle \neg lo, 2, \pi'\rangle\}) \]

\[\pi = \{\} \quad \{\} \quad \{\} \quad \{\}^\omega \]

\[\pi' = \{\} \quad \{hi\} \quad \{\} \quad \{\}^\omega \]
C is a Cause if...

\[
\begin{array}{c|c|c}
\pi &=& \{\} \quad \{\} \quad \{\}^\omega \\
\pi' &=& \{hi\} \quad \{hi, lo\} \quad \{\}^\omega \\
\end{array}
\]

SAT: Γ satisfies all events in C.

CF: There exists a \mathcal{W} and $C' \subseteq C$ s.t.: $\text{intervene}(\Gamma, C', \mathcal{W}) \models \varphi$.

MIN: No $C' \subset C$ satisfies SAT and CF.
C is a Cause if...

\[\pi = \begin{cases} \{\} & \{} \\ \{hi\} & \{hi, lo\} \end{cases} \quad \{\}^\omega \]

\[\pi' = \begin{cases} \{\} & \{} \\ \{hi\} & \{hi, lo\} \end{cases} \quad \{\}^\omega \]

SAT: Γ satisfies all events in C.

CF: There exists a \mathcal{W} and $C' \subseteq C$ s.t.: $\text{intervene}(\Gamma, C', \mathcal{W}) \models \varphi$.

MIN: No $C' \subset C$ satisfies SAT and CF.
Encoding the CF Criterion

System T:

(Partial) counterexample:

$$\pi' = \{hi\}\{hi, lo\}\{}^\omega$$

Counterfactual automaton (T, π'):

Counterfactual automata have additional inputs (here: c) for setting a contingency.
Finding a Cause as a Hyperproperty

\[\pi = \{\} \quad \{\} \quad \{\}^\omega \]
\[\pi' = \{hi\} \quad \{hi, lo\} \quad \{\}^\omega \]

Counterexample

Counterfactual Automata

\[\exists \pi_c. \exists \pi'_c. \forall \pi''_c. \forall \pi'''_c. \varphi_{cause} \]

Causality

\[\forall \pi. \forall \pi'. (\square (li_\pi \leftrightarrow li_{\pi'}) \rightarrow \square (lo_\pi \leftrightarrow lo_{\pi'})) \]

HyperLTL Specification

Encoding of causality in \(\varphi_{cause} \): see our paper.
Computing All Causes

If some C is a cause, then no strict superset $C' \supset C$ is a cause.
Experiments

| Instance | $|\Gamma|$ | $|\varphi|$ | (C) | time (ms) |
|-----------------------|-----------|-------------|-------|-----------|
| Running example (paper)| 10 | 9 | 2 | 55 |
| Security in & out | 35 | 19 | 8 | 798 |
| Drone example 1 | 24 | 19 | 5 | 367 |
| Drone example 2 | 18 | 36 | 3 | 256 |
| Asymmetric arbiter ’19| 28 | 35 | 10 | 490 |
| Asymmetric arbiter | 72 | 35 | 24 | 1480 |
Visual Analysis of Hyperproperties for Understanding Model Checking Results. Horak, Coenen, Metzger, Hahn, Flemisch, Méndez, Dimov, Finkbeiner, and Dachselt. (VIS 2021). https://hypervis.tools.react.cs.uni-saarland.de
Conclusion

Counterexamples of hyperproperties are *difficult to understand* and *debug*.

Extending HP’s actual causality to hyperproperties gives *precise explanations*.

Causal inference can itself be stated as a *hyperproperty* model-checking problem.

Symbolic causes, explicit relations, existential quantifiers