Overfitting and correlations in model fitting with separation ratios
(Research Note)

Ian W. Roxburgh

Astronomy Unit, Queen Mary University of London, Mile End Road, London E1 4NS, UK. e-mail: I.W.Roxburgh@qmul.ac.uk
Received / Accepted

ABSTRACT

The r_{01} and r_{02} separation ratios are not independent so combining them into a single series r_{010} is overfitting the data, this can lead to almost singular covariance matrices with very large condition numbers, and hence to spurious results when comparing models and observations. Since the r_{02} ratios are strongly correlated with r_{01} and r_{03} ratios, they should be combined into a single series r_{012} (or r_{021}), which are not overfitted, and models and observation compared using the covariance matrix cov_{012} (or cov_{021}) of the combined set. I illustrate these points by comparing the revised Legacy Project data with my results on the 10 Kepler stars in common.

Key words. stars: oscillations, - astroseismology - methods: data analysis - methods: analytical - methods: numerical

1. Introduction

Frequency separation ratios are widely used in astroseismic model fitting, i.e. finding models whose oscillation properties match an observed set, as these ratios are almost independent of the outer layers of a star (Roxburgh and Vorontsov 2003, 2013).

The ratios, constructed from frequencies ν_{nl} for angular degree $\ell = 0, 1, 2$, are customarily defined as

$\begin{align*}
r_{01}(n) &= \frac{(\nu_{n-1,0} - 4\nu_{n-1,1} + 6\nu_{n,0} - 4\nu_{n+1,0} + \nu_{n+1,1})}{8 (\nu_{n,1} - \nu_{n-1,1})} \quad \text{at } \nu_{n,0} \quad (1a) \\
r_{10}(n) &= \frac{(\nu_{n-1,0} + 4\nu_{n-1,1} + 6\nu_{n,0} - 4\nu_{n+1,0} + \nu_{n+1,1})}{8 (\nu_{n+1,0} - \nu_{n,0})} \quad \text{at } \nu_{n,1} \quad (1b) \\
r_{02}(n) &= \frac{\nu_{n,0} - \nu_{n-1,2}}{\nu_{n,1} - \nu_{n-1,1}} \quad \text{at } \nu_{n,0} \quad (1c)
\end{align*}$

Since the ratios for given n have several frequencies in common (eg ν_{00}, ν_{11}), as do ratios of neighbouring n, they are strongly correlated. When comparing model and observed values this requires one to match models and observed values of the ratios using the covariance matrices of the ratios of the observed values. Care needs to be taken to ensure that one includes all the relevant correlations and that one does not overfit the data.

2. Combining r_{01} and r_{10} ratios into a single set r_{010}

Several authors combine the observed ratios r_{01} and r_{10} into a single sequence r_{010} (cf Silva Aguirre et al 2013, 2017), which should then be compared with model values using the r_{010} covariance matrix. To demonstrate this can lead to anomalies I show in Fig 1 the fits of the sequences r_{01}, r_{10}, r_{010} for 16 Cyg A as given by the Legacy project in their revised MCMC analysis (Lund et al 2017a,b), to the very slightly different values (LegacyN) obtained directly from Eqns 1 using their frequencies. The fits for all 3 sequences using Legacy errors and for r_{01}, r_{10} using the Legacy covariance matrices have $\chi^2 \sim 10^{-3}$, whereas the fit for r_{010} sequence has $\chi^2 = 4$. As shown in Table 1 similar results are obtained for the 10 stars in common between the Legacy Project and those analysed by myself (Roxburgh 2017).

![Fig. 1. 16CygA: Fits of Legacy project ratios to LegacyN values derived from the definitions and the Legacy frequencies, χ^2_{cov}, using Legacy errors and χ^2_{err} using the Legacy covariance matrices.](image)

Table 2 gives the fits between Legacy ratios and my values of the ratios for these 10 stars, again using the revised Legacy project covariance matrices (Lund 2017b). Several have substantial differences between χ^2_{err} for the r_{010} sequence and χ^2_{cov} for the r_{01} and r_{10} sequences, while others show modest agreement. The result for 16 Cyg A is illustrated in Fig 2

To identify the cause of this anomalous behaviour I note that the frequencies can be be expressed as (cf Roxburgh 2016)

$\nu_{nl} = \Delta[n + \ell/2 + \epsilon_{l}(\nu_{n\ell})]$, where $\epsilon_{l}(\nu) = \alpha(\nu) - \delta_{l}(\nu)$

$\alpha(\nu)$ is the (almost) ℓ independent outer phase shift and the $\delta_{l}(\nu)$ are the ℓ dependent inner phase shifts. The differences

$\epsilon_{l}(\nu) = \epsilon_{l}(\nu) - \delta_{l}(\nu)$

$\Delta(\nu_{n\ell}, l)$ which give approximations to the δ differences

$r_{01} \approx \delta_{1} - \delta_{0}$ at $\nu_{n,0}, \quad r_{10} \approx \delta_{1} - \delta_{0}$ at $\nu_{n,1}$

But these are not independent data.
Table 1. Fits of Legacy ratios and covariances to LegacyN ratios

KIC no	r_{01}	r_{02}	r_{010}	
3427720	χ_{cov}^2	0.0006	0.0007	0.0424
6106415	χ_{cov}^2	0.0002	0.0003	4.1139
6116048	χ_{cov}^2	0.0006	0.0008	0.9903
6225718	χ_{cov}^2	0.0111	0.0033	2.0442
6603624	χ_{cov}^2	0.0004	0.0004	0.0524
8379927	χ_{cov}^2	0.0111	0.0016	5.6099
8760414	χ_{cov}^2	0.0009	0.0011	0.8123
9098294	χ_{cov}^2	0.0007	0.0007	0.1008
10963065	χ_{cov}^2	0.0004	0.0005	0.0266
12069424	χ_{cov}^2	0.0009	0.0012	4.0505
12069449	χ_{cov}^2	0.0014	0.0006	1.4373

Table 2. Fits of Legacy ratios and covariances to Roxburgh’s ratios

KIC no	r_{01}	r_{02}	r_{010}	
3427720	χ_{cov}^2	0.345	0.411	0.545
6106415	χ_{cov}^2	1.200	1.247	2.622
6116048	χ_{cov}^2	0.697	0.648	1.048
6225718	χ_{cov}^2	0.905	0.806	2.786
6603624	χ_{cov}^2	0.217	0.130	0.302
8379927	χ_{cov}^2	0.391	0.398	14.786
8760414	χ_{cov}^2	0.751	0.660	3.836
9098294	χ_{cov}^2	0.394	0.467	0.575
12069424	χ_{cov}^2	1.043	1.057	8.813
12069449	χ_{cov}^2	1.467	1.576	27.518

Fig. 2. 16CygA: Fits Legacy–Roxburgh ratios (Leg errors/cov)

A simple illustration of this is to suppose one has N independent values of $e_0(N)$ and $e_1(N)$ at the same frequencies ν_i. Then since $e_0(N) = \alpha(N) - \delta_0(N)$ and $e_1(N) = \alpha(N) - \delta_1(N)$, subtraction eliminates the N values of α leaving N independent values of $\delta_1 - \delta_0$ at the N frequencies ν_i. One could determine additional values of $\delta_1 - \delta_0$ at any ν_i either by interpolating in the $N e(\nu_i)$’s and subtracting, or equivalently interpolating in the $N \delta_1 - \delta_0$ at ν_i, but this does give any additional independent information.

The fact that with real data one needs to interpolate in either, or both the e’s does alter this. In principle the values $\delta_1 - \delta_0$ at $\nu_{n,1}$ can be derived by interpolation in the values at $\nu_{n,0}$, and likewise the values of r_{01} by interpolation in the values of r_{01}. In this sense the combined sequence of r_{010} which has $\sim N$ terms is overdetermined.

Since such interpolation is dominantly linear it follows that the ratio $r_{01}(n)$ is strongly correlated with the neighbouring values $r_{01}(n)$ and $r_{01}(n + 1)$, and likewise for all neighbouring triplets. For Legacy 16 Cyg A, $corr(r_0{(19)}, r_0{(19)}) = 0.84$ and $corr(r_0{(19)}, r_0{(20)}) = 0.80$. This in turn can lead to almost singular r_{010} covariance matrices with large condition numbers (eg $\sim 1.6 \times 10^8$ for Legacy 16CygA, to be contrasted with values 883 and 587 for r_{01}, r_{010} covariance matrices).

One could argue that the r_{010} sequence is not overdetermined since one is simply comparing 2N frequencies; this is true, but one is comparing particular combinations of frequencies designed to eliminate the contributions of the outer layers and this introduces strong correlations between neighbouring terms which can lead to nearly singular covariance matrices.

As remarked by Lund et al (2017b) in their Erratum this leads to an inverse covariance matrix for r_{010} with very large values oscillating in sign, which can lead to spurious values of χ^2 when comparing 2 sets of ratios. For example for 16 Cyg A the elements on the leading diagonal of the inverse covariance matrix are all positive with values up to 1.6×10^{11} whereas the elements on the neighbouring diagonals have similar values but are all negative.

To illustrate that this behaviour is not just due to the properties of the Legacy covariance matrices I show in Table 3 the comparisons for all 10 stars using my ratio covariance matrices. These show similar (but different) behaviour to those in Table 2.

Using the combined series r_{010} therefore can, (but may not) give spurious results. One should avoid this possibility by comparing only one of the r_{01} or r_{10} sequences. As discussed below this should be combined with the r_{02} ratios.

3. The combined sequence r_{012} or r_{102}

As is clear from the definitions of r_{02}, r_{10} (or r_{01}) in Eqns 1 these ratios are strongly correlated as they have several frequencies in common, one should therefore combine r_{01}, r_{02} into a combined sequence r_{102} and compare observed and model values using the covariance matrix of the combined set. Or equally combine the ratios r_{01}, r_{02} into a combined set r_{012}, but not both. Such combined sequences are not overfitted as from 3N values of $\chi_{0,\ell}^2, \ell = 0, 1, 2$, one can determine $\sim N$ independent values of each of the differences $\delta_1 - \delta_0$, and $\delta_2 - \delta_0$. The resulting covariance matrices have small condition numbers, eg for 16CygA 1.7×10^3 for r_{102} as compared to 1.6×10^8 for r_{010}. The r_{02} fits for 16 Cyg A are shown in Fig 3.
Since the Legacy project does not give r_{02} or r_{012} covariance matrices I generated these from the frequencies v_k and frequency covariance matrices $\text{cov}(v_k, v_m)$ as given in Lund (2017b), the same procedure as was used to generate my covariance matrices. The ratios and their derivatives with respect to the frequencies follow directly from the definitions in Eqns 1 and the covariance matrices. In this sense the Legacy project has N components. In this sense they are approximated by the ratios r_{01}, r_{02}, and r_{012}. This is a reflection of the frequency differences and considerably smaller errors on the low frequencies from my MLE analysis as compared to those from the Legacy project’s MCMC analysis (see, for example, tables A1-A3 in Roxburgh 2017).

4. Conclusions

The ratios r_{01}, r_{10} are not independent and in principle one set can be derived from the other by interpolation. From $N + 1$ frequencies one can only derive $\sim N$ independent values of the phase shift differences $\delta_1 - \delta_0$ (which are approximated by the ratios). But the r_{010} sequence has $\sim 2N$ components. In this sense one is overfitting the data. Neighbouring elements of the covariance matrix can then be very strongly correlated leading to almost singular matrices with large condition numbers, and hence spurious results when comparing 2 sets of ratios. Only one of r_{01}, r_{10} should be used in model fitting.

Table 4. Fits of LegacyN ratios and covariances to Roxburgh’s ratios

KIC no	r_{01}	r_{02}	r_{012}	r_{10}	r_{102}	r_{012}
3427720	χ^2_{cov} 0.427	0.772	0.582	0.580		
6106415	χ^2_{cov} 1.198	2.507	2.206	2.188		
6116048	χ^2_{cov} 0.657	0.597	0.562	0.567		
6225718	χ^2_{cov} 0.830	1.397	1.060	1.042		
6603624	χ^2_{cov} 0.138	1.926	1.162	1.226		
8379927	χ^2_{cov} 0.368	2.958	1.576	1.544		
8760414	χ^2_{cov} 0.661	2.831	1.742	1.550		
9098294	χ^2_{cov} 0.481	0.244	0.430	0.402		
12069424	χ^2_{cov} 1.059	0.857	0.919	0.947		
12069449	χ^2_{cov} 1.577	1.022	1.360	1.225		

Table 5. Fits of Roxburgh’s ratios and covariances to LegacyN ratios

KIC no	r_{01}	r_{02}	r_{012}	r_{10}	r_{102}	r_{012}
3427720	χ^2_{cov} 0.489	0.683	0.544	0.536		
6106415	χ^2_{cov} 1.270	2.762	2.259	2.361		
6116048	χ^2_{cov} 0.950	0.735	0.783	0.793		
6225718	χ^2_{cov} 0.663	1.045	0.859	0.924		
6603624	χ^2_{cov} 0.162	4.139	2.591	2.798		
8379927	χ^2_{cov} 0.441	1.069	0.701	0.646		
8760414	χ^2_{cov} 1.938	10.322	5.557	5.523		
9098294	χ^2_{cov} 0.564	0.268	0.479	0.425		
10963065	χ^2_{cov} 1.524	1.821	1.535	1.496		
12069424	χ^2_{cov} 2.607	6.608	4.697	4.790		
12069449	χ^2_{cov} 1.935	6.090	4.883	3.965		

Since the r_{02}, r_{10} and r_{01} ratios are correlated they should be combined into single sequence r_{010} or r_{102} when comparing 2 sets of ratios. These sequences are not overfitted since from $N + 1$ frequencies subtraction gives $\sim N$ values of both $\delta_1 - \delta_0$ and $\delta_2 - \delta_0$, which are approximated by the ratios r_{01}, r_{02}. The r_{012} covariance matrices have reasonable condition numbers.

References

Lund M N, Silva-Aguirre V , Davies G R, et al, 2017a, ApJ, 835, 172
Lund M N, Silva-Aguirre V , Davies G R, et al, 2017b, ApJ, 850,110
Roxburgh I W, 2016, A&A , 585, A63
Roxburgh I W, 2017, A&A , 604, A42
Roxburgh I W, Vorontsov S V, 2003, A&A , 411, 215
Roxburgh I W, Vorontsov S V, 2013, A&A , 560, A2
Silva Aguirre V , Basu S, Brandao I M, et al, 2013, ApJ, 769, 141
Silva Aguirre V , Lund M N, Antia H M, et al 2017 ApJ , 835, 173