Stellar parameters from very low resolution spectra and medium band filters

T\textsubscript{eff}, log g and [M/H] using neural networks

C.A.L. Bailer-Jones

Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg, Germany. email: calj@mpia-hd.mpg.de

Submitted 16 November 1999; Accepted 18 February 2000

Abstract. Large scale, deep survey missions such as GAIA will collect enormous amounts of data on a significant fraction of the stellar content of our Galaxy. These missions will require a careful optimisation of their observational systems in order to maximise their scientific return, and will require reliable and automated techniques for parametrizing the very large number of stars detected. To address these two problems, I investigate the precision to which the three principal stellar parameters (T\textsubscript{eff}, log g, [M/H]) can be determined as a function of spectral resolution and signal-to-noise (SNR) ratio, using a large grid of synthetic spectra. The parametrization technique is a neural network, which is shown to provide an accurate three-dimensional physical parametrization of stellar spectra across a wide range of parameters. It is found that even at low resolution (50–100 Å FWHM) and SNR (5–10)2 dex for stars earlier than solar. The accuracy of the results is probably limited by the finite parameter sampling of the data grid. The ability of medium band filter systems (with 10–15 filters) for determining stellar parameters is also investigated. Although easier to implement in a unpointed survey, it is found that they are only competitive at higher SNRs (≥ 50).

Key words: methods: data analysis – methods: numerical – surveys – Hertzsprung-Russel (HR) and C-M diagrams – stars: fundamental parameters – galaxy: stellar content

1. Background and Objectives

An understanding of the origin, properties and evolution of our Galaxy requires a careful census of its constituents, in particular its stellar members. Of special importance are the intrinsic physical properties of these stars. The fundamental properties are mass, age and abundances, as these determine a star’s history and future development. However, ages are not observable, and masses can only be directly obtained from some multiple systems. Thus we must indirectly gain this information via the stellar spectrum, and a number of atmospheric parameters have been defined for this purpose. The main ones are the effective temperature, T\textsubscript{eff}, the surface gravity, log g, and the metallicity, [M/H]. To these can also be added the alpha abundances, \{\alpha\} (which measure the deviations away from the ‘standard’ abundance ratios), the photospheric microturbulence velocity, V\textsubscript{micro}, and the extinction by the interstellar medium, A(\lambda) (although not intrinsic to the star, it is necessary for determining its luminosity). Masses and ages can then be determined from stellar structure and evolution models and with calibration via binary systems. It is important to realise that this modelling is complex, and a number of assumptions have to be made. There is, therefore, a limit to the precision with which we can determine physical properties.

Historically, spectroscopic parameters have been measured indirectly through the MK classification system (Morgan et al. [1943]) or via colour-magnitude and colour-colour diagrams. In the MK system, the two parameters spectral type and luminosity class act as proxies for T\textsubscript{eff} and log g. Originally a qualitative system relying on a visual match between observed spectra and a system of standards, much progress has been made in quantifying it with automated techniques (e.g. Weaver & Torres-Dodgen [1997]; Bailer-Jones et al. [1998]). The most commonly used classification techniques have been neural networks and \chi2 matching to templates (or more generally, minimum distance methods). A summary of recent progress in this area is given by von Hippel & Bailer-Jones (2000).

Despite this focus on the MK system, it is not well suited to classifying data from the deep surveys which will be central to the future development of Galactic astrophysics. This is for a number of reasons, but in particular because it lacks a measure of metallicity. Although MK does make allowance for various ‘peculiar’ stars, these are defined as exceptions, and the notation is not suited to a statistical, quantifiable analysis. This is problematic given
the significance of metal poor halo stars in a deep survey. There is also now no good reason why we should not determine physical parameters directly from the observational data.

Some attempts have been made to determine the physical parameters of real spectra directly by training neural networks on synthetic spectra. Gulati et al. (1997) used this approach to determine the effective temperatures of ten solar metallicity G and K dwarfs. Taking the “true” effective temperature of these stars as those given by Gray & Corbally (1994), they found a mean “error” in the network-assigned temperatures of 125 K. Bailer-Jones et al. (1997) determined T_{eff} for over 5000 dwarfs and giants in the range B5–K5, and also showed evidence of sensitivity of the parametrization models to metallicity.

The accuracy with which physical parameters can be determined from a stellar spectrum depends upon, amongst other things, the wavelength coverage, spectral resolution and signal-to-noise ratio (SNR). From the point of view of designing a stellar survey project it is essential to know how well the stellar parameters can be determined for a given set of these observational parameters. Moreover, given that there is always a limit to the collecting area and integration time available, there is always a trade-off between spectral resolution, sensitivity and sky coverage.

The goal of this paper is to determine the accuracy with which physical stellar parameters can be determined from spectroscopic data at a range of SNRs and resolutions which could realistically be achieved in a deep survey mission. This specification rules out high resolution spectra. The parametrization work has been carried out using neural networks (Sect. 3) because they have been shown to be one of the best approaches for this kind of work. This is not to presuppose, however, that some other approach may not ultimately be better. The simulations have been made using a large database of synthetic spectra generated from Kurucz atmospheric models (Sect. 3). While these spectra do not show the full range of variation in real stellar spectra, they are adequate for a realistic demonstration of what is possible as a function of SNR and resolution. The results are presented in Sect. 6 and summarised and discussed in Sect. 7. Finally, the requirements for a complete survey-oriented classification system are given in Sect. 8.

Table 1. Three multiband filter systems proposed for the GAIA mission. All profiles are symmetric about the central wavelength, λ_c, and have a FWHM of $\Delta \lambda$. The profiles of the filters in the Asiago and modified Strömvil systems (F. Favata 1999, private communication) are defined as Gaussians (although note that the former is only an approximation to the original Asiago system in Munari 1999). The filters of the selected GAIA system (ESA, in preparation) have flatter tops and steeper sides than Gaussians, and have defined relative peak transmissions, T. There is some (intended) redundancy within each filter system.

	Asiago	mod Strömvil	GAIA			
λ_c / \AA	$\Delta \lambda / \AA$	λ_c / \AA	$\Delta \lambda / \AA$	T		
3000	1410	3450	400	3260	820	0.92
3860	190	3800	300	3750	1460	0.96
4090	170	4050	200	4050	600	0.90
4300	120	4450	1100	4645	450	0.86
4800	1500	4600	200	5075	270	0.78
5270	80	5150	200	5250	2070	0.97
5310	170	5450	200	5700	900	0.93
6300	1500	5500	1000	6560	240	0.72
7920	1720	6500	1000	6740	1160	0.94
9640	1700	6560	200	7380	1850	0.97
		7500	1000	7470	280	0.79
		8000	400	7775	310	0.81
		8500	1000	8160	480	0.87
		8700	300	8940	480	0.97
		9380	200			

2. The GAIA Galactic Survey Mission

The simulations in this paper were partially inspired by the need to produce an optimal photometric/spectroscopic system for the GAIA Galactic survey mission. GAIA is a candidate for the ESA cornerstone 5 mission for launch in 2009 (ESA, in preparation). It is primarily an astrometric mission with a precision of a few microarcseconds, and will survey the entire sky down to $V=20$, thus observing c. 10^9 stars in our Galaxy. Radial velocities will be obtained on board down to $V=17.5$, thus providing a 6D phase space survey (three spatial and three velocity co-ordinates) for stars brighter than this limit. A survey of this size will have a profound impact on Galactic astrophysics, but to achieve this it is essential that the physical characteristics of the target objects are measured and correlated with their spatial and kinematic properties. As GAIA is a continuously scanning satellite, a fixed total amount of integration time is available for each object, so there is a trade-off between resolution, signal-to-noise ratio and wavelength coverage.

For various reasons, the current GAIA design does not include a spectrograph (other than a 1.5 Å resolution region between 8470 and 8700 Å intended for radial velocity measurements), but instead will image all objects in several medium and broad band filters (Table 1). Three filter systems are shown: the system nominally selected for the mission plus two alternatives. The profiles of the two alternatives are represented as Gaussians in this paper. The ability of these filter system to determine stellar parameters will be compared with that for spectra of various resolutions.
3. The network model

A neural network is an algorithm which performs a non-linear parametrized mapping between an input vector, \(\mathbf{x} \), and an output vector, \(\mathbf{y} \). (The term ‘neural’ is misleading: although originally developed to be very simplified models of brain function, many neural networks have nothing to do with brain research and are better described in purely mathematical terms.) The network used in this paper is a feedforward multilayer perceptron with two ‘hidden layers’. These hidden layers form non-linear combinations of their inputs. The output from the first hidden layer is the vector \(\mathbf{p} \), the elements of which are given by

\[
p_j = \tanh \left(\sum_i w_{i,j} x_i \right)
\]

These values are then passed through a second hidden layer which performs a similar mapping, the output from that layer being the vector \(\mathbf{q} \)

\[
q_k = \tanh \left(\sum_j w_{j,k} p_j \right)
\]

The output from the network, \(\mathbf{y} \), is then the weighted sum of these

\[
y_i = \sum_k w_{k,j} q_k
\]

The tanh function provides the non-linear capability of the network, and the weights, \(\mathbf{w} \), are its free parameters. The model is supervised, which means that in order for it to give the required input–output mapping it must be trained on a set of representative data patterns. These are inputs (stellar spectra) for which the true target outputs (stellar parameters) are known. The training is a numerical least-squares minimisation: Starting with random values for the weights, a set of spectra are fed through the network and the error in the actual outputs with respect to the desired (target) outputs calculated. The gradient of this error with respect to each of the \(N \) weights is then used to iteratively perturb the weights towards a minimum of the error function. Thus the training is a minimisation problem in an \(N \)-dimensional space, and the resulting input–output mapping can be regarded as a non-linear interpolation of the training data. Once the network has been trained the weights are fixed and the network used to obtain physical stellar parameters for new spectra.

The results in this paper use a network code written by the author consisting of five and ten hidden nodes in the first and second hidden layers respectively. The complexity of the network is determined by the number of hidden nodes and layers. While networks with a single hidden layer can provide non-linear mappings, experience has shown that a second hidden layer can lead to considerable improvement in performance (Bailer-Jones et al. 1998). This has been confirmed with the data in this paper. Significant further improvement is not expected through the addition of more hidden nodes/layers. The network has three outputs, one for each of the parameters \(T_{\text{eff}}, \log g \) and \([\text{M/H}]\). The error which is minimised is the commonly-used sum-of-squares error (the sum being over all training patterns and outputs), except that the error contribution from each output is weighted by a factor related to the precision with which that parameter can be determined.

I stress that a neural network is not fundamentally different from many other parameter fitting algorithms. Its strengths are that it has a fast and straight-forward training algorithm, can map arbitrarily complex functions (given sufficient data to determine the function), and can be parallelised in software or hardware to achieve considerable increases in speed. One of the common criticisms of neural networks is that it is difficult to interpret their weights and get an idea of exactly how they achieve their results. While this is essentially true, part of this difficulty stems from the fact that the models are problem-independent: they are purely mathematical models that do not explicitly take into account the physics of the problem. Moreover, in order to fully understand the model it would be necessary to simplify it, and this in turn would reduce its performance. This “interpretability–complexity” trade-off is inherent to almost any type of heuristic model.

4. Synthetic spectra

A large grid of synthetic spectra have been generated using Kurucz atmospheric models (Kurucz 1992) and the synthetic spectral generation program of Gray (Gray & Corbally 1994). The parameter grid consists of 36 \(T_{\text{eff}} \) values between 4000 K and 30 000 K (step sizes between 250 K and 5000 K), 7 values of \(\log g \) between 2.0 and 5.0 dex (in 0.5 steps) and 15 values of \([\text{M/H}]\) between \(-3.0\) and \(+1.0\) dex (step sizes between 0.1 and 0.5). The micro-turbulence velocity was fixed at 2.0 kms\(^{-1}\). This yielded an (almost complete) grid of 3537 atmospheric models. Contiguous spectra were calculated between 3000 and 10 000 Å in 0.05 Å steps with a line list of over 900000 atomic and molecular lines. The resolution, \(r \), of these spectra was then degraded to 25, 50, 100, 200 and 400 Å FWHM by Gaussian convolution. (Each resolution element is sampled by two pixels, so these resolutions correspond to 560, 280, 140, 70 and 35 inputs to the network respectively.) These resolutions are considerably lower then the 1–5 Å generally used for MK classification. The spectra were also combined with the transmission curves of the filters (Table 1) to produce three sets of filter fluxes. Poisson noise was added to all data sets to simulate signal-to-noise ratios of 5, 10, 20, 50 and 1000 per resolution element. The result is 40 sets of 3537 absolute spectral energy distributions at each combination of resolution and SNR. The absolute flux information is retained.
5. Spectral parametrization results

As the neural network is a parameter fitting algorithm, it is essential that its performance is evaluated on an independent set of data from that on which it is trained. For this purpose, each of the 40 data sets was randomly split into two halves and one used for training (1760 spectra) and the other for testing (1759 spectra). log$10T_{\text{eff}}$ (rather than T_{eff}) is used as a target in the networks to reduce the dynamic range of this parameter and give a better representation of the uncertainties. The input and output parameters are scaled to have zero mean and unit standard deviation to prevent ‘saturation’ of the network during training.

For each data set a *committee* of three identical networks was trained from different initial random weights. The resultant parameter for any star is then the average of the three networks. This helps to reduce the effects of imperfect training convergence. Each network was trained with a conjugate gradient algorithm for 10 000 iterations and used weight decay regularisation to avoid overtraining. More training did not reduce the error further. The resultant parameter for any star is then the average of the three networks. This helps to reduce the effects of imperfect training convergence. Each network was trained from different initial random weights.

The precision to which physical parameters can be determined from a stellar spectrum depends not only on the SNR and resolution, but also on the type of star. For example, it is more difficult to determine the metallicity of hot stars on account of the almost complete absence of metal lines. Therefore, I summarise the performance of each data set for three different temperature ranges (for all log g and [M/H]):

1. $T_{\text{eff}} < 5800$ K (stars later than solar – 408 spectra in the test subset)
2. $5800 < T_{\text{eff}} < 10000$ (A and F stars – 888 spectra in the test subset)
3. $T_{\text{eff}} > 10000$ K (O and B stars – 463 spectra in the test subset)

The error measure I used is the average absolute error, ϵ, of each parameter, i.e. the absolute difference between the network output and the target value averaged over all stars in the test subset for that temperature range. This error is more robust than the often-used RMS error because it is less distorted by outliers and more characteristic of the majority of the error distribution. For a Gaussian distribution $1\sigma = 1.25\epsilon$, although some of the error distributions deviate significantly from Gaussian.

Table 2. [M/H] accuracy. Tabulation of the results in Figs 2B, C. The resolution is in Å, except for the three filter systems which are denoted by their names. SNR is the signal-to-noise ratio (per resolution element in the case of the spectra). ϵ_1, ϵ_2 and ϵ_3 are the mean absolute errors for the three temperature ranges < 5800, 5800–10 000 and > 10 000 K respectively. ϵ_{all} is the error across all temperatures (4000–30 000 K).

resolution	SNR	ϵ_1	ϵ_2	ϵ_3	ϵ_{all}
Asiago	1000	0.227	0.144	0.353	0.218
	50	0.229	0.379	0.855	0.464
	20	0.293	0.577	0.911	0.593
	10	0.334	0.668	0.930	0.653
	5	0.478	0.746	0.924	0.726
modified	1000	0.258	0.185	0.343	0.243
Strömvil	50	0.273	0.362	0.852	0.465
	20	0.272	0.451	0.932	0.530
	10	0.296	0.523	0.923	0.570
	5	0.455	0.616	0.933	0.657
GAIA	1000	0.230	0.215	0.382	0.261
	50	0.301	0.370	0.818	0.468
	20	0.324	0.438	0.907	0.530
	10	0.385	0.506	0.920	0.582
	5	0.528	0.603	0.966	0.685
	400	0.223	0.182	0.292	0.220
	50	0.312	0.300	0.578	0.376
	20	0.349	0.337	0.735	0.445
	10	0.346	0.359	0.808	0.474
	5	0.402	0.341	0.908	0.505
	200	0.167	0.132	0.222	0.164
	50	0.252	0.213	0.313	0.248
	20	0.296	0.251	0.454	0.315
	10	0.301	0.247	0.524	0.332
	5	0.294	0.305	0.803	0.434
	100	0.160	0.123	0.199	0.151
	50	0.219	0.156	0.267	0.200
	20	0.226	0.177	0.302	0.221
	10	0.250	0.182	0.338	0.239
	5	0.236	0.198	0.568	0.304
	50	0.147	0.121	0.161	0.138
	50	0.158	0.123	0.186	0.147
	20	0.174	0.146	0.223	0.173
	10	0.191	0.155	0.232	0.184
	5	0.203	0.169	0.279	0.206
	25	0.140	0.103	0.132	0.119
	50	0.141	0.113	0.160	0.132
	20	0.154	0.126	0.172	0.145
	10	0.164	0.129	0.191	0.154
	5	0.170	0.137	0.214	0.165
The results of the parametrization process are shown in Figs 1-4 and tabulated in Tables 3 & 4. Before interpreting these results we should consider the limits which the data themselves place on the performance. First, the network will be unable to produce errors smaller than the smallest variations in the data set. If, to take a hypothetical example, the spectra did not change as the metallicity changed by 1.0 dex, we could not expect the network to determine [M/H] to much better than 0.5 dex. Second, the grid of atmospheric models represents the physical parameters at a finite sampling, e.g., a constant step size of 0.5 dex for log g. This sampling does not in itself limit the precision achievable; it is perfectly possible for the network to legitimately give an error much smaller than the sampling because the network is minimising a continuous error function and not just obtaining the best match between a spectrum and a set of templates. Nonetheless, the network input–output mapping is an interpolation of the training data, and the more coarsely sampled the parameter grid the harder it is for the network to get a reliable interpolation. Consequently, while the network may be able to achieve sub-sampling accuracy, we should not be surprised if it cannot. Thus to avoid over-interpreting these results we should not compare two errors which are both smaller than half the sampling level. The average ‘half-sampling’ values for [M/H] and log g are 0.2 and 0.25 respectively, and for log T_eff in the three temperature ranges (cool, intermediate and hot) are 0.01, 0.01 and 0.03 respectively.

Table 3. log g accuracy. See Table 2 for details

resolution	SNR	\(\epsilon_1\)	\(\epsilon_2\)	\(\epsilon_3\)	\(\epsilon_{all}\)
Asiago	1000	0.714	0.272	0.197	0.362
50		0.640	0.218	0.440	0.379
20		0.763	0.325	0.567	0.494
10		0.828	0.375	0.644	0.555
5		0.836	0.604	0.665	0.676
modified	1000	0.728	0.238	0.125	0.330
Strömvil	50	0.770	0.260	0.316	0.400
20		0.801	0.322	0.459	0.475
10		0.829	0.401	0.631	0.565
5		0.849	0.738	0.699	0.755

Table 4. T_eff accuracy. See Table 2 for details

resolution	SNR	\(\epsilon_1\)	\(\epsilon_2\)	\(\epsilon_3\)	\(\epsilon_{all}\)
Asiago	1000	0.0057	0.0044	0.0094	0.0060
50		0.0032	0.0049	0.0189	0.0081
20		0.0046	0.0045	0.0209	0.0087
10		0.0054	0.0065	0.0219	0.0102
5		0.0055	0.0071	0.0174	0.0093
modified	1000	0.0033	0.0030	0.0102	0.0040
Strömvil	50	0.0050	0.0045	0.0167	0.0077
20		0.0035	0.0058	0.0204	0.0089
10		0.0034	0.0052	0.0239	0.0095
5		0.0036	0.0086	0.0255	0.0124

GAIA

resolution	SNR	\(\epsilon_1\)	\(\epsilon_2\)	\(\epsilon_3\)	\(\epsilon_{all}\)
1000 400	0.0077	0.0041	0.0098	0.0064	
50 50 20	0.0041	0.0038	0.0106	0.0057	
20 10 10	0.0049	0.0073	0.0187	0.0097	
20 10 10	0.0046	0.0064	0.0192	0.0093	
5 5 5 5	0.0067	0.0091	0.0239	0.0123	

200 1000

resolution	SNR	\(\epsilon_1\)	\(\epsilon_2\)	\(\epsilon_3\)	\(\epsilon_{all}\)
1000 1000	0.0051	0.0042	0.0071	0.0070	
50 50 50	0.0042	0.0081	0.0178	0.0096	
50 50 50	0.0035	0.0044	0.0087	0.0053	
20 20 20	0.0046	0.0049	0.0105	0.0063	
5 5 5 5	0.0050	0.0074	0.0178	0.0096	

50 1000

resolution	SNR	\(\epsilon_1\)	\(\epsilon_2\)	\(\epsilon_3\)	\(\epsilon_{all}\)
1000 1000	0.0030	0.0026	0.0063	0.0038	
50 50 50	0.0031	0.0031	0.0050	0.0036	
20 20 20	0.0037	0.0040	0.0081	0.0050	
10 10 10	0.0030	0.0038	0.0071	0.0045	
5 5 5 5	0.0031	0.0043	0.0069	0.0047	

25 1000

resolution	SNR	\(\epsilon_1\)	\(\epsilon_2\)	\(\epsilon_3\)	\(\epsilon_{all}\)
1000 25	0.0062	0.0037	0.0063	0.0050	
50 50 50	0.0034	0.0031	0.0039	0.0034	
20 20 20	0.0033	0.0031	0.0038	0.0033	
10 10 10	0.0032	0.0030	0.0045	0.0034	
5 5 5 5	0.0034	0.0028	0.0050	0.0035	
The implication is that, if the network produces errors smaller than these half-sampling values (as it does), we cannot know whether the performance is limited by the network model or by the data themselves. A distinction will only be possible with a more sensitive and finely sampled grid of atmospheric models.

With the above caveat taken into account, I draw attention to some interesting features in Figs 1–3.

1. Good \(T_{\text{eff}} \) determination is possible with all resolutions/filter systems and SNRs. The larger error in \(T_{\text{eff}} \) above 10000 K may be an artifact of the larger half-sampling value in this region (\(\geq 10000 \) K).

2. Only at high resolution can \(\log g \) be determined for the coolest stars and even then the determination is poor relative to the hotter stars. This is understandable, at least in part, because the \(\log g \) spectral signature is primarily in the line widths which are only apparent at high resolution.

3. Although the three filter systems differ somewhat, they give essentially the same performance as each other.

4. The filter systems (each with 10–15 input parameters) have similar \(\log g \) and \(T_{\text{eff}} \) as the \(r = 400 \) Å spectra (35 inputs).

5. At low SNR, the \(r = 400 \) Å spectra and the filters give poor [M/H] and very poor \(\log g \) determination for all three temperature ranges.

6. At high SNR (1000) all resolutions/filter systems appear to be equally good at determining any of the parameters. Differences will probably become apparent with a more sensitive training grid.

7. At higher temperatures the accuracy is more sensitive to SNR than at lower temperatures.

8. Metallicity determination is more difficult at higher temperatures, especially for the filters and low resolution spectra. This is understandable as at high temperature there are fewer and weaker metal lines which are only significant at high SNR and/or resolution.

9. In most cases there is little difference between the performances of the \(r = 25, 50 \) and 100 Å spectra, at least for this data grid.

6. Summary and Discussion

The results demonstrate that a fully automated neural network can accurately determine the three principal physical parameters from spectroscopic or photometric stellar data, something which has not previously been demonstrated. Moreover, this work has used spectra of considerably lower resolution than have been used before in automated classifiers. Even at low resolution (50–100 Å FWHM) and SNR (5–10 per resolution element), neural networks can yield good determinations of \(T_{\text{eff}} \) and [M/H], and even for \(\log g \) for stars earlier than solar. Still lower resolutions permit good results provided the SNR is high enough (\(\geq 50 \)). That good \(T_{\text{eff}} \) can be achieved even at low resolution and SNR is perhaps not surprising when we consider that the spectra have absolute fluxes, which will be the case with high precision parallax missions such as GAIA. However, the more distant objects will have lower precision parallaxes and hence errors in the mean flux level. But even if we completely ignore distance information (and flux normalise the spectra), the shape of the spectrum is still a strong indicator of \(T_{\text{eff}} \). For example, Bailer-Jones et al. (1998) obtained an MK spectral type precision of 0.8 subtypes (\(\Delta \log T_{\text{eff}} = 0.010-0.015 \)) across a wide range of spectral types (B2–M7) using flux normalised spectra. This is similar to what can be achieved from broad band photometry, implying that \(T_{\text{eff}} \) determination only requires very low resolution.

The good performance of ‘high’ resolution spectroscopy (25 Å) at very low SNR (\(\sqrt{5} \) per pixel) was not expected. It seems to imply that for a given amount of integration time it may be better to sacrifice SNR for resolution. It is noteworthy that while the filters provide good \(T_{\text{eff}} \), their ability to determine [M/H] and especially \(\log g \) is very limited at low SNR.

How do these results compare with classical parametrization methods? Gray (1992) compiles results showing that with photometric errors below 0.01 magnitudes, the B–V colour calibrates \(T_{\text{eff}} \) to 2–3% (4% for hotter stars) in the absence of reddening. Slightly better precision can be obtained from the slope of the Paschen continuum and size of the Balmer discontinuity. The latter may also be used to measure \(\log g \) to ±0.2 dex. With spectra at a few Å resolution over a similar wavelength range to that used here, Cacciari et al. (1987) obtained uncertainties in \(\log T_{\text{eff}} \) and \(\log g \) of 0.01 and 0.04 respectively. Sinnerstad (1980) made uvby,\(\beta \) photometric measurements of B stars, and for uncertainties of 0.005 in \(\beta \) and of 0.01 in u–b (i.e. SNR ~ 200), infers errors in \(\log T_{\text{eff}} \) and \(\log g \) of 0.004 and 0.08 respectively. These are similar to or slightly better than the results for similar stars in Tables 1, 2 (\(\epsilon_5 \)) at the highest resolutions. High resolution (\(r \leq 0.1 \) Å) spectra have generally been used to determine metallicity, and in a review, Cayrel de Strobel (1985) notes that metallicity can be determined to ±0.07 dex at SNR=250 (but only ±0.2 dex at SNR=50) provided the effective temperature and gravity are approximately known. At lower SNR (10–20), Jones et al. (1990) could determine [Fe/H] to ±0.2 dex for G stars using a set of spectroscopic indices measured at 1 Å resolution in the range 4000–5000 Å, again using a known effective temperature.

More recently, Katz et al. (1998) have used a minimum distance method to parametrize spectra by finding the closest matching template spectrum. The template grid consisted of 211 flux calibrated spectra (3900–6800 Å, \(r \approx 0.1 \) Å) with 4000 K \(\leq T_{\text{eff}} \leq 6300 \) K, \(-0.29 \leq [\text{Fe/H}] \leq +0.35 \), and \(\log g \) for dwarfs and giants. The internal accuracy of the method for \(\log T_{\text{eff}}, \log g \) and [M/H] was 0.008, 0.28 dex, and 0.16 dex respectively at SNR=100,
and 0.009, 0.29 dex and 0.17 dex at SNR=10. As expected, their results for log g are much better than those in this paper at the similar temperature range (ε₁ in Table 3), presumably due to their much higher resolution. In contrast, their performance for [M/H] is similar and for T_eff somewhat worse than that in this paper at 500 times lower resolution. Their results also confirm that at high resolution a lower SNR leads to very little loss in performance. Snider et al. (2000) trained and tested neural networks on a set of 182 real F, G and K spectra over the range 3630–4890 Å at intermediate resolution (∼1 Å), and achieved 1σ errors in log T_eff, log g and [M/H] of 0.015, 0.41 dex and 0.22 dex respectively, based on training and testing a network with a set of 182 real F, G and K spectra.

When judging the relative values of the different resolution/SNR combinations in this paper, we must also take account of their implementation ‘costs’, specifically the relative integration times required. Usually for a survey, a fixed total amount of integration time is available for all filters/spectra. In the case of GAIA – which is continuously rotating – a star moves across a focal plane covered with a mosaic of CCDs which are clocked at the rotation rate. The different filters are fixed to different CCDs, so that as a star moves across the mosaic it is recorded in different wavelength ranges. Thus less numerous and/or broader filters would achieve a higher SNR than more or narrower filters. Some filters could be replaced with a slitless spectrograph (e.g. a prism or grism). This disperses every point on the sky and thus gives the full integration time for all wavelengths, but at the expense of increased sky noise and object confusion. These could be reduced by using one or more dichroics to redirect the light to two or more focal planes. (Confusion would be reduced further with GAIA by the fact that each area of sky is observed at many different position angles over the mission life.) An alternative approach is a set of many medium band filters (∼ 100 for r=100 Å over the complete wavelength range, although omission of some filters could be achieved). While this avoids the two principal disadvantages of the slitless spectrograph, the integration time per wavelength interval is dramatically reduced.

7. Development of a survey parametrization system

The development of a complete parametrization system will require further research, much of which needs to be directed at taking better account of the true nature of the observational data. Directions and suggestions for the course of this work are now given.

7.1. Object selection

Essentially all of the work in the literature on automated classification deals with preselected objects. In contrast, an unpointed survey will pick up a whole range of objects, necessitating a filtering system to select the stars. Such a system could make use of both object morphology and spectral features, and systems based on neural networks (e.g. Odewahn et al. 1993; Miller & Coe 1996; Serra-Ricart et al. 1996) and Principal Components Analysis (Bailer-Jones et al. 1998) have been proposed. Such a system must be relatively robust and always allow for ‘unknown’ objects which can be dealt with manually.

7.2. Model training

It will be necessary to have a stellar database for training which takes better account of the larger range of variation present in the Galactic stellar population. Ideally, a large set of real spectra across a wide range of physical parameters should be obtained for this purpose. Good atmospheric models and synthetic spectra are nonetheless still required for determining their physical parameters and thus for training the network. There are two possible approaches to training. The first is to train on synthetic spectra suitably preprocessed to be in the same form as the observed spectra (e.g. Bailer-Jones et al. 1997). The alternative is to obtain a representative sample of real spectra with the survey system, calibrate them, and then use them to train a network. In theory the latter method gives a better sampling of the true cosmic variance in the spectra, but of course requires that a representative sample is selected from the survey data. This sample could be improved as the survey progressed. Neural networks are fast to train and apply, so it is realistic to expect that even for a database of 10^9 objects the network could be retrained and applied to the whole database in less than a day.

7.3. Improved stellar models

More advanced model atmospheres are required for a number of reasons:

1. T_eff, [M/H] and log g do not uniquely describe a true spectrum. Models sensitive to different abundance ratios and which include chromospheres (for example) are necessary.
2. Kurucz models assume LTE which is known to break down in a number of regimes (e.g. for very hot stars).
3. Both the atmospheric models and the line lists lack water opacity, known to be important for cool stars, thus setting the current lower T_eff limit of about 4000 K.
4. Yet more advanced models (which include dust) are required for very cool stars (L and T dwarfs) and brown dwarfs, of which many will be found by GAIA.

7.4. Reddening

Of particular importance is interstellar extinction (reddening), especially in deep surveys. The extinction can, in theory, be determined by the network by training it on
artificially reddened synthetic spectra and providing the network with a “reddening” output parameter (or parameters). This has been demonstrated on limited data sets by Weaver & Torres-Dodgen [1995] and Gulati, Gupta & Singh [1997], who determined E(B−V) to within 0.05 and 0.08 magnitudes respectively. The latter made use of 6 Å resolution UV spectra (4850–5380 Å). The former used red spectra (5800–8900 Å) at 15 Å resolution and found that the spectral type and luminosity class classifications did not degrade much as reddening was added. It is therefore to be expected that the parametrizations in this paper will be robust to reddening, particularly as the spectra have a much larger wavelength coverage. The filter systems proposed for GAIA were of course designed with interstellar extinction in mind, and a study of its impact has been carried out (ESA, in preparation). This work shows that suitable Q parameters (non-linear combinations of the filter fluxes) used to determine the physical parameters are largely insensitive to reddening. It also claims that narrow band filters are not necessary for overcoming reddening. In some parts of the parameter space, reddening is more problematic (e.g. for K stars), largely due to a degeneracy between it and Teff and log g. However, at intermediate and high Galactic latitudes it is expected that E(B−V) can be determined to within 0.002 magnitudes. Munari [1999] similarly shows that reddening-free indices exist for the Asiago filter system. As a neural network also forms non-linear combinations of the filter fluxes, it is reasonable to suppose that it too will be robust to reddening, although this will be the subject of future work.

7.5. Binary systems

The parametrization model used in a real survey must confront the fact that most stars are in spatially unresolved multiple systems. Independent measurement of the physical properties of each component is desirable and in principle achievable – when the brightness ratio is large enough – by training the network with composite spectra. In this case the network model would need to have multiple sets of outputs to deal with each component. An alternative approach is to use ‘probabilistic outputs’ in which the single output for, say, Teff, is replaced with a series of outputs in which each value of Teff (6000, 6250, 6500 etc.) is represented separately. The network then evaluates the probability that each temperature is present in the input spectrum. This method is not recommended, however, as it eliminates the intrinsically continuous nature of the physical parameters. It would also greatly increase the number of outputs and hence the number of free parameters (weights) in the network.

7.6. Incomplete data

Object confusion should not result in any overlapped spectrum being rejected entirely. Rather, it would be better to have a parametrization model which is robust to missing data. This is a major challenge for the feedforward network models used in this and most other papers on automated classification, and will presumably require some transformation of the input spectrum. An analysis of the effect of wavelength coverage on the parameter determination accuracy is important because a smaller spectral coverage (or coverages – it need not be contiguous) would also reduce this confusion.

Finally, the model should make use of all available data. In the case of GAIA, this means including the data from the high resolution spectrograph (8470–8700 Å at 0.75 Å/pix−1) used to measure radial velocities. As the inputs to the network need not be homogenous, there should be no problem incorporating different types of data.

Acknowledgements

I would like to thank Fabio Favata, Gerry Gilmore and Michael Perryman for useful discussions on this work, in particular within the context of the GAIA mission. I am also grateful to Robert Kurucz for use of his model atmospheres and compiled line lists, and to Richard Gray for the use of his synthetic spectra generation program.

References

Bailer-Jones C.A.L., Irwin M., von Hippel T., 1997, MNRAS 292, 157
Bailer-Jones C.A.L., Irwin M., von Hippel T., 1998, MNRAS 298, 361
Cacciari C., Malagnini M.L., Morossi C., Rossi L., 1987, A&A 183, 314
Cayrel de Strobel G., 1985, in Hayes D.S., Pasinetti L.E., Davis Philip A.G. (eds.) IAU Symp. 111, Calibration of Fundamental Stellar Quantities. Reidel, Dordrecht, p. 137
Gray D.F., 1992, The Observation and Analysis of Stellar Photospheres, Cambridge Univ. Press, Cambridge, second edition
Gray R.O., Corbally C.J., 1994, AJ 107, 742
Gulati R.K., Gupta R., Rao N.K., 1997, A&A 322, 933
Gulati R.K., Gupta R., Singh H.P., 1997, PASP 109, 843
Jones J.B., Gilmore G., Wyse R.F.G., 1996, MNRAS 278, 146
Katz D., Soubiran C., Cayrel R., Adda M., Cautain R., 1998, A&A, 338, 151
Kurucz R.L., 1992, In: Barbuy B., Renzini A. (eds), Stellar Populations of Galaxies. Kluwer, Dordrecht, 225
Morgan W.W., Keenan P.C., Kellman E., 1943, An Atlas of Stellar Spectra with an Outline of Spectral Classification, University of Chicago Press, Chicago
Miller A.S., Coe M.J., 1996, MNRAS 279, 293
Munari U., 1999, Baltic Astronomy 8, 123
Odewahn S.C., Humphreys R.M., Aldering G., Thurnes P., 1993, PASP 105, 1354
Serra-Ricart M., Gaitan V., Garrido L., Pérez-Fournon, 1996, A&AS 115, 195
Sinnerstad U., 1980, A&AS 40, 395
Snider S., Qu Y., Allende Prieto C., et al. 2000. In: Cool Stars 11. ASP Conf. Ser., R.J. Garcia Lopez, R. Rebolo, M.R. Zapatero Osorio (eds.), San Francisco (in press)
von Hippel T., Bailer-Jones C.A.L., 2000, Surveys and Automated Spectral Classification. In: IAU Reports on Astronomy XXIVA, J. Andersen (ed.). ASP, San Francisco (in press)

Weaver W.B., Torres-Dodgen A.V., 1995, ApJ 446, 300
Weaver W.B., Torres-Dodgen A.V., 1997, ApJ 487, 847
Fig. 1. $T_{\text{eff}} < 5800$ K. Error in the determination of physical parameters as a function of SNR for spectra at different resolutions (left column) and for three sets of filters (right column). The different resolutions shown in the left column are 25 Å (open triangles, dotted line), 50 Å (filled squares, dot-dash line), 100 Å (filled circles, short dashed line), 200 Å (filled triangles, long dashed line) and 400 Å (open squares, solid line). The three filter systems in the right column are Asiago (filled circles, short dashed line), modified Strömgren (filled squares, dot-dash line) and GAIA (filled triangles, long dashed line), and the $r = 400$ Å results are shown again for comparison (open squares, solid line). For all plots the vertical axis is the mean absolute error, ϵ, across all spectra in the test subset in this temperature range. Note that the fractional error in T_{eff} is equal to 2.3 times the error in $\log_{10} T_{\text{eff}}$. The horizontal dotted lines on the $\log g$ and $[\text{M/H}]$ plots are the performances of random (untrained) networks. This has a small dependence on the resolution (number of inputs), so the minimum values are shown. The corresponding value for T_{eff} is $\epsilon = 0.13$. The results are tabulated in Tables 2–4.
Fig. 2. Same as Fig 1 but for $5800 < T_{\text{eff}} < 10000$.
Fig. 3. Same as Fig. but for $T_{\text{eff}} > 10000$ K.