Effects of the interaction between shade and drought on physiological characteristics in *Calamus viminalis* seedlings

Benxue CHEN\(^1\)\(^a\), Yanbing LI\(^2\)\(^b\), Guanglu LIU\(^1\)*, Shaohui FAN\(^1\)*, Haijun YANG\(^3\), Haoran SU\(^1\)

\(^1\)**Key Laboratory for Bamboo and Rattan, International Center for Bamboo and Rattan, 100102, Beijing, China; bencxuchen@126.com; liyanbing013@163.com; liuguanglu@icbr.ac.cn; fansh@icbr.ac.cn; shr@icbr.ac.cn**

\(^2\)**Zhoukou Normal University, Design College, 6 Wenfang Road, Zhoukou, Henan 466001, China; liyanbing013@163.com**

\(^3\)**Hainan Tropical Ocean University, Institute of Marine Science and Technology, 1 Yucai Road, 572022, Sanya, Hainan, China; hyang@hntou.edu.cn (**corresponding authors**)**

\(^{a,b}\) These authors contributed equally to the work

Abstract

Recently, the endangerment of wild rattan population draws attention on the conservation and sustainable utilization of rattan resources. Rattan growing usually faces the light and water stress. Therefore, we aim to explore the combined effects of shade and drought on seedling growth, thus providing a theoretical ground for the conservation and artificial cultivation of the rattan. The combined effects of shade and drought on physiological and biochemical traits were studied in two-years-old *Calamus viminalis* seedlings. Photosynthetic indices including Pn, Gs, Tr, and Ci and physiological indices including MDA, SOD, POD, CAT, and Pro were measured under four levels of water treatments and four levels of shade. Shade, drought and their interaction have a significant effect on *C. viminalis* seedlings growth. Generally, moderate shade could alleviate the impact induced by drought. However, mild drought usually enhances the effect caused by shading. The result showed that the shade decreased Pn, Gs, and Tr but increased Ci, MDA content and Pro content. Either with the shading or drought increasing, the activity of SOD, POD, and CAT firstly increase and then declined. Drought reduced Pn, Gs, Tr, and Ci but increased the content of MDA and Pro. Overall, the result suggests that 25-50% shading and 65% RSWC water treatment are most beneficial for the growth of *C. viminalis* seedlings.

Keywords: adversity resistance; antioxidant enzyme; low irradiance; photosynthesis; rattan seedlings; water deficiency

Abbreviations: CAT: catalase; Ci: intercellular CO\(_2\) concentration; Gs: stomatal conductance; MDA: malondialdehyde; Pn: Net photosynthetic rate; POD: peroxidase; Pro: proline; SOD: superoxide dismutase; Tr: transpiration rate

Introduction

Rattans are a group of climbing plants assigned to Family Palmae, Calameae, widely distributed in Indo-China and Chinese tropical and sub-tropical forests (Jiang *et al.*, 2007; Wang, 2015b). Rattans, so-called "green
gold”, are well known as an important non-timber product in southeastern Asia, most species of which are good material for handicraft and furniture. Moreover, some species’ shoots and fruits can be made into food products. Notably, the rattan plantation and trade are of enormous economic value and developmental potential (Li et al., 2002; Jiang et al., 2007; Jiang, 2013; Wang, 2015b). However, the over-exploitation of rattan resources leads to its habitat loss and a dramatic drop of the natural rattan populations, thus largely impeding the development of rattan industry and trade (Jiang et al., 2007; Dong et al., 2015; Chen et al., 2017; Peng, 2017). The research to investigate physiological characteristics and the affecting factors of rattan seedling growth was called for better conservation of rattan resources and sustainable utilization.

Light and water supply are the most significant factors for the rattan seedling growing (Ingram and Bartels, 1996; Jiang et al., 2007; Liu et al., 2011). Many studies demonstrated that the seedlings of most rattan species are supposed to grow well under some extent of shade and different species are grown under a various degree of the irradiance (Mori, 1980; Yin et al., 1988; Dransfield, 1992; Sun et al., 2013). One-year-old Calamus manan seedlings grow well under 10%-15% shading (Mori, 1980). The most beneficial light condition for the growth of C. simplicifolius seedlings is 20%-50% relative light intensity while that of C. teradactylus is 50%-60% (Yin et al., 1988). Contrary to the former species, Daemonorops margaritae and C. rhabdocladus seedlings require very high relative light intensity about 80% (Yin et al., 1988, 1993).

The water deficiency or drought was the main factor resulting in a remarkable reduction of rattan population (Yin et al., 1993; Li et al., 2002). The growth of most rattan species needs sufficient water supply, such as C. caesius (Manocaran, 1981a,b, 1982a,b). Only a few species like Daemonorops jenkinsiana and C. rhabdocladus have relatively high drought tolerance and can survive in less humidity condition (Yin et al., 1993; Li, 2003). The combine effects of shade and drought on woody seedling have often been described and there is growing evidence that the shade and drought have a significant interactive effect on plant growth (Sack and Grubb, 2002; Aranda et al., 2005; Climent et al., 2006). However, the opinions on whether the drought stress has a stronger impact on seedling growth in deep shade or at higher irradiance are divergent (Holmgren, 2000; Sack and Grubb, 2002). One of the popular opinions is that moderate shade can improve plant performance under drought (Rousset and Lepart, 2000). Tree seedling survival under dry conditions was higher in shade than in high light thus providing support for this opinion (Amisah et al., 2015). In addition, the study on Arthraxon hispidus suggests that the interaction of some degree of shading and drought can facilitate the photosynthetic capacity, metabolic rate, and resistance potential (Sun et al., 2018). As for rattans, previous studies mostly concentrated on the effect of irradiance or water supply solely on the growth of rattan seedlings (Yin et al., 1988; Li et al., 2002, 2003; Sun et al., 2013; Dong et al., 2015), however, the interactive effect of the two factors on the growth of rattan seedlings remains unknown.

C. viminalis, widely distributed in southern Asia, is one of the excellent rattan species for the rattan plantation and industry. However, the research about its physiological characteristics and responses to shade and drought stress are still lacking. In the present study, C. viminalis seedlings were subjected to 2×4 factorial (shade, drought) experiment to test the interactive effects of shade and drought on seedling growth and their physiological resistance. We aim to provide a theoretical ground and support for the conservation and artificial cultivation of C. viminalis.

Materials and Methods

Plant growth conditions and experimental site

Two-years-old C. viminalis seedlings were collected from Hainan Zhongteng Co., Ltd., Hainan province, China. Each seedling was separately transplanted to a pot (diameter: 21 cm; height: 19 cm) with the same amount of red clay soil obtained from Ganzhaling, Hainan province. The physiological conditions of the
soil were measured as follows. PH: 5.6, water content: 17.26%, organic content: 11.4 g·kg\(^{-1}\), available N content: 127.75 mg·kg\(^{-1}\), available phosphorus content: 7.13 mg·kg\(^{-1}\), available potassium contents: 80.05 mg·kg\(^{-1}\). The seedlings were grown at the greenhouse of Yongmao ecological breeding base, which located at Jiyang, Sanya in Hainan province (109°35′41″E, 18°19′21″N) from 5 April to 21 June 2018.

Experimental design

After one-month establishment phase of the seedlings, the seedlings were subjected to 2×4 factorial (shade, drought) experiment for a total of 16 treatment combinations and each treatment had 15 pots (8 May 2018). The experiment consists of four water regimes: 85% relative soil water content (CK, W0), 65% RSWC (mild drought, W1), 45% RSWC (moderate drought, W2) and 25% RSWC (severer drought, W3) and four shade treatments: full sunlight (CK), 25% shading, 50% shading, and 75% shading. For the water treatment, relative soil water content was measured by the soil moisture tester (TDR300, USA) at 15:00-18:00 every day and watered as needed to maintain soil moisture during the experiment. For the shade treatment, the seedlings are covered by the shade-cloth. Physiological indices were measured after 45 days of treatment.

Physiological traits measurement

Net photosynthetic rate \((Pn)\), transpiration rate \((Tr)\), intercellular CO\(_2\) concentration \((Ci)\), and stomatal conductance \((Gs)\) were measured by a portable photosynthesis system Li-6400 (Lincoln, USA) at 9:00-11:00 on sunny days. Five random replicates and from each of replicates three functional leaves were selected for measurement.

The content of MDA and Pro were measured by thiobarbital acid colorimetry and acid ninhydrin method respectively. The activity of SOD, POD, and CAT were measured using NBT method, guaiacol method and ultraviolet absorption method respectively. Three replicates were imposed for each index measurement.

Statistical analyses

All data were subjected to an analysis of variance and Duncan comparisons at a threshold \(p=0.05\) to test the differences between the treatments with an SPSS 20.0 (IBM, USA). All the graphs were created and processed by using Origin 8.5.

Results

Effects of the shade and drought on photosynthetic indices of Calamus viminalis seedlings

With the shading degree increasing, the photosynthetic indices including the net photosynthetic rate \((Pn)\), stomatal conductance \((Gs)\), transpiration rate \((Tr)\) and intercellular carbon dioxide concentration \((Ci)\) all experienced an early raise and a subsequent decline (Table 1). For 25% shading, Tr and Ci significantly increased whereas Pn and Gs showed no statistically significant difference \((p>0.05)\). For 50% shading, Pn decreased significantly by 30%, however, Tr and Ci showed a significant increase by 12% and 8% respectively \((p<0.05)\). A significant decrease was found for Pn, Gs, and Tr at 75% shading \((p<0.05)\), where the decrease was 70%, 45%, and 11% respectively. Pn and Gs reached a peak at 25% shading while Tr and Ci experienced the greatest increase at 50% shading. Conclusively, all the photosynthetic indices were found significantly declined at 75% shading.

Drought decreased Tr and Ci. And Pn and Gs increased under W1 but decreased under W2 (Table 1). Under mild drought \((W1)\), Pn and Gs significantly increased by 27% and 47% respectively compared to control group \((p<0.05)\) but Tr and Ci markedly decreased by 9% and 12% respectively. Under moderate drought \((W2)\), Tr and Ci showed a significant decline by 34% and 15% respectively but Pn showed no significant
decrease from the control group. When the seedlings submitted to the severe drought (W3), water deficiency induced a prominent decrease for Pn, Gs, Tr, and Ci by 67%, 64%, 65%, and 20% respectively.

Table 1. Effects of different levels of shade and drought on photosynthetic parameters of seedlings

Index	Drought stress	Shade degree/%		
	0	25	50	75
Photosynthetic rate/(μmol·m⁻²·s⁻¹)	(Pn)			
W0	2.44±0.17ABa	2.91±0.14Ba	1.67±0.42ABb	0.74±0.07Bc
W1	3.13±0.15Ab	4.55±0.52Aa	2.01±1.12Ac	1.12±0.15Ac
W2	1.75±0.08Bb	3.01±0.14Ba	1.01±0.02Bc	0.19±0.03Cd
W3	0.81±0.05Cb	1.89±0.06Ca	0.72±0.11Cb	0.17±0.09Cc
Stomatal conductance / (mmol·m⁻²·s⁻¹)	(Gs)			
W0	0.11±0.04ABab	0.13±0.07Aba	0.08±0.01Abc	0.06±0.01Abc
W1	0.14±0.05Aa	0.16±0.06Aa	0.10±0.03Aab	0.09±0.05Aab
W2	0.09±0.01Bab	0.12±0.03Ba	0.09±0.02Aab	0.07±0.03Aab
W3	0.04±0.01Cb	0.09±0.01Ba	0.04±0.01Bb	0.05±0.02Bb
Intercellular CO₂ concentration / (μmol·mol⁻¹)	(Ci)			
W0	317.86±17.22Abc	322.53±5.69Ab	344.31±9.45Ab	312.66±11.29Abc
W1	289.74±13.15Bc	340.58±14.25Ab	382.86±39.46Aa	325.46±82.4AAb
W2	271.04±10.41Bd	332.36±7.44Ab	370.87±6.39Aa	316.28±21.67Ab
W3	254.62±31.16Cc	333.19±13.03Aa	314.38±30.12Ba	279.71±25.51Bb
Transpiration rate/(mmol·m⁻²·s⁻¹)	(Tr)			
W0	2.04±0.13Ab	2.11±0.42Aa	2.28±0.17Aa	1.81±0.05Ac
W1	1.79±0.08Bb	2.09±0.65Aa	2.12±0.16Aa	1.65±0.26Aab
W2	1.35±0.09Cc	1.82±0.08Bb	2.09±0.23Aa	1.24±0.17Bc
W3	0.72±0.04Dc	1.42±0.35Cb	2.01±0.39Ba	0.87±0.11Cc

Note: Different capital letters in the same row indicate significant difference among the drought treatments at p<0.05 level, and different lower case letters in the same row indicate significant difference among the luminousness at p<0.05 level (n=12); W0: enough moisture; W1: mild drought; W2: moderate drought; W3: severe drought.

The interactive effects of shade and drought were significant for the growth of *C. viminalis* seedlings. The moderate shade can alleviate the drought influences on seedlings. Twenty-five shading can reduce the decrease of Pn, Gs, Tr, and Ci induced by drought, however, 50% shading enhanced the reduction of all the photosynthetic indices. Meanwhile, mild drought (W1) significantly increased Pn at 25% shading (p<0.05), whereas significantly decreased Pn at 75% shading (p<0.05). Moderate drought (W2) significantly reduced Pn, Tr at 75% shading (p<0.05). A significant reduction of Pn, Tr, Ci, and Gs was observed by 93%, 51%, 55%, and 83% respectively under the severe water stress (W3) and lowest irradiance (75% shading) (p<0.05). In concluding, *C. viminalis* seedlings exhibited the greatest Pn (4.55 μmol·m⁻²·s⁻¹) under 25% shading and mild drought (W1).

The double factor variance analysis suggests the shade and drought both have highly significant effects on photosynthetic indices (p<0.001) (Table. 2). The examining value of F shows that the influence of shade has the ranking as follows Ci>Pn>Tr>Gs. The influence of drought has the same ranking as shade. A distinct interaction of shade × drought is also shown in Table 2 (p<0.001) with a ranking Tr>Ci>Pn>Gs.

Effects of shade and drought on the content of MDA in *C. viminalis* leaves

Shade led to a reduction of the content of MDA in *C. viminalis* seedlings under 25% and 50% shade degree by 10% and 8% respectively while a significant increase under 75% shade degree by 17% (P<0.05) (Fig. 1). Drought stress increasingly raised the content of MDA in *C. viminalis* seedlings. Mild drought didn’t induce a significant increase in the content of MDA (p>0.05). Moderate drought and severer drought led to a significant increase in the content of MDA in seedlings by 31% and 42% respectively in response to water deficiency (p<0.05).
Table 2. Double factor variance analysis on photosynthetic indices. The photosynthetic rate, stomatal conductance, intercellular CO2 concentration and transpiration rate were measured in \((P_n)/(\mu \text{mol·m}^{-2}\cdot \text{s}^{-1})\), \((G_s)/(\text{mmol·m}^{-2}\cdot \text{s}^{-1})\), \((C_i)/(\mu \text{mol·mol}^{-1})\), and \((T_r)/(\text{mmol·m}^{-2}\cdot \text{s}^{-1})\) respectively.

Item	Photosynthetic rate	Stomatal conductance	Intercellular CO2 concentration	Transpiration rate
Shade	F 89.355	8.411	259.412	11.651
p	<0.001	<0.001	<0.001	<0.001
Drought	F 94.656	16.343	342.176	78.243
p	<0.001	<0.001	<0.001	<0.001
Shade × Drought	F 9.466	4.093	17.624	39.175
p	<0.001	<0.001	<0.001	<0.001

Figure 1. Effects of different shade and drought on MDA content of *C. viminalis*

Moreover, a significant interactive effect of shade and drought was found on the content of MDA \((p<0.05)\). Twenty-five shading can reduce the growing of MDA induced by drought. By contrast, more than 50% shading would assist in the promotion of MDA under drought stress in seedlings. On the other hand, mild drought stress promoted the increase of MDA significantly at 75% shading. The content of MDA increased significantly by 60% compared with the control group under the combined effect of severe drought and lowest irradiance.

The variance analysis indicates that shade and drought have a highly significant influence on the content of MDA in *C. viminalis* seedlings. The magnitude of influence ranks as follows Shade > Drought > Shade > Drought (Table 3).

Table 3. Double factor variance analysis on MDA

Item	Shade	Drought	Shade × Drought			
	F	p	F	p	F	p
Malondialdehyde (MDA)/(µmol/g)	12.809	0.001	19.613	<0.001	4.313	<0.001
Effects of shade and drought on the activity of SOD, POD, and CAT of *C. viminalis* leaves

With shading increasing, the activity of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) increased first and then declined (Fig. 2). The activity of SOD increased significantly by 12% compared with the control group at 25% shading (p<0.05). For 50% shading, the activity of SOD and POD have observed a prominent increase by 39% and 25% respectively (p<0.05). However, the activity of SOD, POD, and CAT show no significant difference (p>0.05) at 75% shading. Mild drought (W1) and moderate drought (W2) increased the activity of SOD significantly by 26% and 23% respectively (p<0.05). On the contrary, the activity of SOD, POD, and CAT declined but not significantly under the severe drought (W3) (p>0.05).

![Graph](image)

Figure 2. Effects of different shade and drought on the antioxidant activity of *C. viminalis*

The interactive effect of shade and drought was significant for the activities of SOD, POD, and CAT (p<0.05). The greatest activity of SOD was observed when seedlings submitted to 50% shading and moderate drought, with an increase up to 66% of the control group. The activity of POD and CAT reached a peak at 50% shading and moderate drought, increasing by 134% and 97% respectively. The combined effect of deep shading (75% shading) and severer drought (W3) significantly declined the activity of SOD, POD, and CAT.

The variance analysis suggests that shade and drought have highly significant effects on the activity of SOD, POD, and CAT (p<0.01) (Table 4). The effects of shading on antioxidant rank as follows SOD>CAT>POD and the effects of drought rank SOD>POD>CAT. The interaction of shade and drought was prominent for the activity of SOD and POD, however not significant for that of CAT, where the ranking of effects is SOD>POD>CAT.
Table 4. Two ways variance analysis of antioxidase activity. The superoxide dismutase, peroxidase activity and gatalase activity were measured in \((\text{SOD})/(\text{U} \cdot \text{min}^{-1} \cdot \text{g}^{-1})\), \((\text{POD})/(\text{U} \cdot \text{min}^{-1} \cdot \text{g}^{-1})\) and \((\text{CAT})/(\text{U} \cdot \text{min}^{-1} \cdot \text{g}^{-1})\) respectively

Item	Superoxide dismutase	Peroxidase activity	Gatalase activity
Shade	F 40.88	7.936	8.867
	p <0.001	0.001	0.002
Drought	F 103.451	9.832	6.126
	p <0.001	<0.001	<0.001
Shade × drought	F 4.632	3.109	1.438
	p 0.041	0.026	0.091

Effects of shade and drought on the content of proline of *C. viminalis* leaves

The content of proline was observed no significant difference when submitted to 50% shading \((p>0.05)\). However, 75% shading increased proline significantly by 46% \((p<0.05)\). The drought stress significantly increased the content of proline, which increases up to 46%, 77%, and 108% respectively under mild drought \((W1)\), moderate drought \((W2)\) and severe drought \((W3)\) stress.

Shade and drought have a significant interactive effect on the content of proline \((p<0.05)\). The increase of proline was reduced at 25% shading, however, increased at 50% and 75% shading. Drought stress greatly further increased the growing of the proline induced by shading. Mild drought \((W1)\) significantly increased the content of proline at 50% shading. The severe drought \((W3)\) and the lowest irradiances induced a significant increase of proline by 161% compared with the control group (Fig. 3).

Figure 3. Effects of different shading and drought on proline content of *C. viminalis*

The variance analysis showed that shade and drought both have a highly significant effect on proline \((p<0.01)\) (Table 5), ranking as Drought > Shade > Shade × Drought.
Discussion

Effects of shade and drought on photosynthesis
Shading impacts the photosynthesis by reducing the light intensity and duration and regulating the transpiration rate and stomatal closure (Tang et al., 2013). The present study shows that shading has a significant influence on the photosynthesis of *C. viminalis* seedlings. With the shading degree increasing, Pn, Gs, Tr, and Ci increased first and then declined. Pn and Gs reached a peak at 25% shading while Tr and Ci reached a peak at 50% shading (Table 1). Therefore, the growth of *C. viminalis* seedlings favors some extent of shading, especially among the range of 25%-50%. This result agrees with the general opinion that moderate shading could facilitate the growth of rattan seedlings but overshading is greatly harmful to its growth (Bøgh, 1996; Yin et al., 1998). However, different species have various shading tolerance. *C. manan*, *C. simplicifolius*, and *C. teradactylus* have similar shading tolerance with *C. viminalis*, approximately ranging from 20%-65% (Mori, 1980; Yin et al., 1988, 1993; Sun et al., 2013). *C. gracilis* seedlings can grow well under up to 75% shading (Dong et al., 2015). By contrast, *C. rhodocladus* seedling growth requires very high light intensity up to 80% full light (Yin et al., 1993).

Water stress leads to the reduction of photosynthetic material transportation, thus directly decreasing the efficiency of photosynthesis (Lawlor, 1995; Han et al., 2014; Yuan et al., 2016). In the present study, with an increasing degree of water stress, Pn and Gs increased first but then declined. The result is not confirm to the opinion that mild drought decreases photosynthetic capacity (Yang et al., 2007; Dai et al., 2009). Contrarily the mild drought (W1) could promote Pn and Gs to the greatest value in the present study (Table 1) (Deng et al., 2016). And water stress started to decrease Pn and Gs from moderate drought (W2) but not significantly. A significant decline of Pn, Gs, Tr, and Ci was observed only when seedlings submitted to severe drought (W3) (Table 1). Therefore, the result suggests that *C. viminalis* seedlings have relatively high drought tolerance.

A significant interactive effect of shading and drought on the growth of *C. viminalis* seedlings was observed in the present study. Mild drought (W1) could generally improve the photosynthetic capacity. On the other hand, 25% shading could alleviate the decrease of photosynthetic capacity induced by drought. But the interaction of overshading and severer drought could lead to marked reduction of the photosynthetic capacity. The same result was also observed in *Arthraxon hispidus* (Sun et al., 2018.)

Effects of shade and drought on the content of MDA
The content of MDA is an indicator of membrane lipid peroxidation, reflecting the degree of cell membrane damage in response to the light or water stress (Chen, 1989; Yang et al., 2017). The MDA content would dramatically increase in the plant when the plant is at an adverse condition (Wei et al., 2014; Liu et al., 2018). In the paper, the MDA content at 25% shading was even lower than that of the control group (Fig. 1). The MDA content started to increase at 50% shading but still lower than that of the control group (Fig. 1). However, when the seedlings submitted to 75% shading, the MDA content remarkably increased to its maximum value (Fig. 1). Therefore, 25% shading could promote the performance of the seedling, but 50% shading is a threshold that would do harm to the growth of seedlings.

Table 5. Double factor variance analysis on proline content

Item	Shade	Drought	Shade × Drought			
Proline content (Pro)/μg/g	F	p	F	p	F	p
	12.809	<0.001	19.613	<0.001	4.313	<0.001

Benxue C et al. (2020). Not Bot Horti Agrobo 48(1):305-317
On the other hand, the drought stress induces a significant increase in MDA content (Wang et al., 1990; 2006; 2013). Moderate drought and severe drought lead to a prominent increase of MDA content, suggesting an enhancement of lipid peroxidation in cells (Sang et al., 2011; Qian et al., 2015; Jia et al., 2015, 2018). The similar result was found in the study of *Rhodiola kirilowii* seedlings (Yang et al., 2017). The interactive effect of shading and drought is significant on the growth of *C. viminalis* seedlings. Low irradiance like 25% shading could lower the MDA content, thus alleviating the damage caused by drought on the cell membrane. However, more than 50% shading would augment the MDA content induced by drought.

Effects of shade and drought on the activity of SOD, POD, and CAT

The antioxidant enzyme system, including SOD (superoxide dismutase), POD (Peroxidase) and CAT (catalase), is an important and complicated protective mechanism of plants against the adverse condition (Wu et al., 2016). When plants are facing water or light stress, the activity of SOD, POD, and CAT are promoted to decrease the damage induced by the environment stress (Wu et al., 2016; Sun et al., 2018). The activity of SOD, POD, and CAT generally show an increasing trend at the early stage under stress. The activity of SOD, POD, and CAT started to increase significantly at 25% shading and decline at 75% shading but not significantly (Table 4). Different plant species differ in the responding order and magnitude of the antioxidant enzyme system under stress. In *Arthraxon hispidus*, the activity of POD significantly increased at 10% shading whereas that of *C. viminalis* significantly increased at 30% shading (Sun et al., 2018). Moreover, the activities of SOD, POD, and CAT in *Arthraxon hispidus* prominently decreased at 70% shading, however, those of *C. viminalis* declined at 75% shading but not significantly (Sun et al., 2018). Probably, the *C. viminalis* seedlings have a higher resistance than *Arthraxon hispidus* under low irradiance.

For the drought stress, the activity of SOD was promoted significantly when facing mild drought (W1) and the activity of POD increased significantly when seedlings submitted to moderate drought (W2) (Table 4). Under severe drought, the activity of SOD, POD, and CAT all experienced a decline but the decreases are not significant (Table 4). Consequently, *C. viminalis* seedlings may have powerful antioxidant enzyme regulating ability to protect plants from damage induced by adverse conditions. However, when the interactive effect of deep shading and severer drought obviously exceeds the threshold of the regulation of antioxidant enzyme system, the activity of SOD, POD and CAT significantly decline (Jing et al., 2013; Li et al., 2014; Ren et al., 2017). This strong combined effect is also observed in *Arthraxon hispidus* (Sun et al., 2018).

Effects of shade and drought on the content of proline

The content of free proline, an important osmolyte, plays a vital role in regulating the osmotic pressure of the plant cell and alleviating the damage induced by adverse condition (Ren et al., 2000; Mahajan and Tuteja, 2005; Haffani et al., 2014). In this study, Pro had lower content than the control group at 25% and 50% shading but increased significantly by 46% at 75% shading. That suggests the damage induced by full light and deep shading triggers the great accumulation of Pro in the plant (Arora and Saradhi, 2002; Xue et al., 2011; Xie et al., 2013).

The drought has a greater impact on the content of Pro than shading. The water stress significantly increased the content of Pro at mild drought, moderate drought, and severe drought by 46%, 77%, and 108% respectively (compared with the control group). The accumulation of Pro can protect plant cell from peroxidative processes induced by water stress through osmotic regulation (Shao et al., 2006; Liu et al., 2007; Sang et al., 2011; Hou et al., 2014). This result is supported by many studies in terms of maize, sorghum, *Arthraxon hispidus* and *Eucommia ulmoides* (Shao et al., 2006; Liu et al., 2007; Sun et al., 2018). The interaction of shading and drought exert great influences on the content of Pro. Twenty-five percent shading could alleviate the impact induced by drought, but more than 50% shading enhances the accumulation of Pro caused by drought. This result is in full accordance with the recent study on *Arthraxon hispidus* (Sun et al., 2018).
Conclusions

Shade, drought and their interaction have a significant effect on *C. viminalis* seedlings growth. Generally, moderate shade could alleviate the impact induced by drought. However, mild drought usually enhances the effect caused by shading. The interactive effect of deep shading and severe drought leads to a significant decrease of the photosynthetic capacity, the decrease of the activity of the antioxidant enzyme and the accumulation of MDA and Pro. When facing the light and water stress, the seedling adjusts itself by regulating photosynthetic indices, enhancing the activity of antioxidant enzyme system, and increasing Pro content to reduce the damage and gradually establish a protective mechanism to adapt the adverse conditions. The result shows that *C. viminalis* seedlings have relatively high shading and drought resistance and 25%-50% shading and 65% relative soil water content is most beneficial for *C. viminalis* seedlings growth. As a result, *C. viminalis* seedlings are more favorably planted in well-drained soil and moderate shade condition than poorly-drained soil and full light condition. When rattans are grown in the natural high-density forests, proper weeding and thinning the crown of the trees would facilitate their growth.

Acknowledgements

This research was supported by the special funds ‘Tropical bamboo and rattan resources collection and preservation research’ (1632017007) and ‘Population structure research of the natural regeneration rattans in Hainan’ (1632016014) from International Center for Bamboo and Rattan.

Conflict of Interest

The authors declare that there are no conflicts of interest related to this article.

References

Amissah L, Mohren GMJ, Kyereh B, Poorter L (2015). The effects of drought and shade on the performance, morphology and physiology of Ghanaian tree species. PLoS ONE 10(4):e0121004.

Aranda I, Castro L, Pardos M, Gil L, Pardos JA (2005). Effects of the interaction between drought and shade on water relations, gas exchange and morphological traits in cork oak (*Quercus suber* L.) seedlings. Forest Ecology and Management 210(1-3):117-129.

Arora S, Saradhi PP (2002). Light induced enhancement in proline levels under stress is regulated by non-photosynthetic events. Biologia Plantarum 45(4):629-632.

Bøgh A (1996). Abundance and growth of rattans in Khao Chong National Park, Thailand. Forest Ecology and Management 84(1-3):71-80.

Chen SY (1989). Membrane-lipid peroxidation and plant stress. Chinese Bulletin of Botany 6(4):211-217.

Chen RG, Fan SH, Liu GL, Xu RJ, Hu X, Su HR (2017). Niche characteristics of dominant species of rattan accompanying community in secondary lowland rain forest in Hainan Island, China. Acta Botanica Boreali-Occidentalia Sinica 37(6):1226-1233.

Climent JM, Aranda I, Alonso J, Pardos JA, Gil L (2006). Developmental constraints limit the response of Canary Island pine seedlings to combined shade and drought. Forest Ecology and Management 231(1-3):164-168.
Dai YJ, Shen ZG, Li Y (2009). Effects of shade treatments on the photosynthetic capacity, chlorophyll fluorescence, and chlorophyll content of *Tetrastigma hemsleyanum* Diels et Gilg. Environmental and Experimental Botany 65(2-3):177-182.

Deng YP, Lei JP, Pan L, Wang XR (2016). Model fitting of photosynthetic light-response curves in different *Quercus variabilis* provenances and its parameter comparison. Chinese Journal of Ecology 35(2):387-394.

Dong SF, Lu J, Peng YW (2015). Effect of shading and fertilization on seedling growth of *Calamus gracilis*. Journal of West China Forestry Science 44(5):90-95.

Dransfield J (1992). The ecology and natural history of rattans. In: A guide to the cultivation of rattan. Wan RWM, Dransfield J, Manokaran N. Forest Record No. 35. Kuala Lumpur, Malaysia: Forest Research Institute Malaysia pp 29.

Haffani S, Mezni M, Slama I, Ksontini M, Chaïbi W (2014). Plant growth, water relations and proline content of three vetch species under water-limited conditions. Grass and Forage Science 69(2):323-333.

Han B, Li ZY, Guo H, Zhang JP (2014). Studies on seedling photosynthetic characteristics of five tree species under drought stress. Forest Research 27(1):92-98.

Holmgren M (2000). Combined effects of shade and drought on tulip poplar seedlings: trade-off in tolerance or facilitation? Oikos 90(1):67-78.

Hou ST, Zhang Q, Liu SC, Zeng LY, Wu Y, Liu GL (2014). Growth and physiological responses of *Melaleuca bracteata* cv. ‘Revolution Gold’ to water stress. Acta Botanica Boreali-Occidentalia Sinica 34(12):2491-2499.

Ingram J, Bartels D (1996). The molecular basis of dehydration tolerance in plant. Annual Review of Plant Physiology and Plant Molecular Biology 47(1):377-403.

Jia X, Sun CS, Li GY, Li GB, Chen GL (2015). Effects of progressive drought stress on the physiology, antioxidative enzymes and secondary metabolites of *Radix Astragali*. Acta Physiologiae Plantarum 37(12):262.

Jia X, Sun CS, Li GY, Li GB, Chen GL (2018). Effect of drought stress on the growth and physiological characteristics and the accumulation of astragaloside IV secondary metabolites of *Astragalus membranaceus* (Fisch.) var. *mongholicus* (Bge.) Hsiao. Acta Botanica Boreali-Occidentalia Sinica 38(3):501-509.

Jiang ZH, Fan SH, Zhang CS, Guan FY (2007). Advances in rattan research. Acta Agriculturae Universitatis Jianxiensis 29(6):957-964.

Jiang ZH, Wang KL (2013). Rattan in China. Science Press, Beijing.

Jing DW, Xing SJ, Du ZJ, (2013). Effects of drought stress on the growth, photosynthetic characteristics, and active oxygen metabolism of poplar seedlings. Chinese Journal of Applied Ecology 24(7):1809-1816.

Lawlor DW (1995). The effects of water deficit on photosynthesis. Environment and Plant Metabolism 129-160.

Li RS, Xu HC, Yang JC, Yin GT (2002). A review of relationship between rattan and water. Forestry studies in China 4(1):65-68.

Li RS (2003). Study on drought resistance and water use efficiency of three rattan species in southern China. PhD Thesis, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou.

Li YJ, Li J, Xu P, He HW (2014). Physiological responses of *Lycium ruthenicum* Murr. seedlings to drought stress. Arid Zone Research 31(4):756-762.

Liu JF, Yang WJ, Jiang ZP, Guo QS, Jin JQ, Xue L (2011). Effects of shading on photosynthetic characteristics and chlorophyll fluorescence parameters in leaves of the endangered plant *Thuja sutchuenensis*. Acta Ecologica Sinica 31(20):5999-6004.

Liu JL, Wang Y, Xu DM (2018). Study on physiological characteristics of five gramineous grass seedlings under drought stress. Pratacultural Science 35(5):1106-1115.
Liu HY, Liang ZS, Liu SM, Dong JE (2007). Effect of progressive drying and rewatering on protective enzyme activities and osmoregulatory molecules in leaves of *Eucommia ulmoides* seedling. Journal of Northwest Forestry University 22(3):55-59.

Mahajan S, Tuteja N (2005). Cold, salinity and drought stresses: an overview. Archives of Biochemistry and Biophysics 444(2):139-158.

Manokaran N (1981a). Survival and growth of rotan sega (*Calamus caesius*) seedlings at 2 years after planting: I. Line-planted in poorly-drained soil. The Malaysian Forester 44(1):12-22.

Manokaran N (1981b). Survival and growth of rotan sega (*Calamus caesius*) seedlings at 2 years after planting: I. Line-planted in well-drained soil. The Malaysian Forester 44(4):464-472.

Manokaran N (1982a). Survival and growth of rotan sega (*Calamus caesius*) seedlings at 2 years after planting: I. Group-planted in poorly-drained soil. The Malaysian Forester 45(1):36-48.

Manokaran N (1982a). Survival and growth of rotan sega (*Calamus caesius*) seedlings at 5 1/3 years after planting. The Malaysian Forester 45(2):193-202.

Mori T (1980). Growth of Rotan manau (*Calamus manan*) seedlings under various light conditions. The Malaysian Forester 43(2):187-192.

Peng C (2017). Study on site adaptability of rattan to environment in lowland secondary rain forest in Ganzaling of Hainan Island, China. PhD Thesis, Chinese Academy of Forestry, Beijing.

Qian PX, Li XF, Wu YY, Rao HY, Liu R, Li MQ, Fu T (2015). Influence of shading on growth and physiological characteristics of container seedlings of *Acer cinnamomifolium*. Jiangsu Journal of Agricultural Sciences 31(3):667-672.

Ren YC, Liu J, Li M, Chen C, Sun XL (2017). Effects of shading stress on antioxidant system of two buffalograss varieties. Acta Agrestia Sinica 25(6):1345-1351.

Ren WW, Qian J, Ma J, Zheng SZ (2000). Comparative study of *Leymus chinensis*‘s water content and free proline of different geographic populations under the force of different consistency PEG. Acta Ecologica Sinica 20(2):349-352.

Rousset O, Lepart J (2000). Positive and negative interactions at different life stages of a colonizing species (*Quercus humilis*). Journal of Ecology 88(3):401-412.

Sack L, Grubb PJ (2002). The combined impacts of deep shade and drought on the growth and biomass allocation of shade tolerant woody seedlings. Oecologia 131(2):175-185.

Sang ZY, Ma LY, Chen FJ (2011). Growth and physiological characteristics of *Magnolia wufengensis* seedlings under drought stress. Acta Botanica Boreali-Occidentalia Sinica 31(1):0109-0115.

Shao YJ, Shan L, Li GM (2006). Comparison of osmotic regulation and antioxidation between sorghum and maize seedlings under soil drought stress and water recovering conditions. Chinese Journal of Ecology-Agriculture 14(1):68-70.

Sun S, Zhang XJ, Liu JP, You MH, Guo BH (2018). Synergistic effects of shade and drought on the physiological metabolism and resistance system of *Arthroxon bispidus*. Acta Ecologica Sinica 38(5):1770-1779.

Sun ZY, Ma YJ, Liu XE, Gao J (2013). Effects of low light environment on the growth and photosynthesis of *Calamus nambariensis* seedlings. Journal of Southwest Forestry University 33(1):16-20.

Tang GL, Li XY, Lin LS, Li L, Lu JR (2013). Change of different shading on moisture conditions and the physiological response in *Alhagi sparsifolia*. Chinese Journal of Plant Ecology 37(4):354-364.

Wang C, Lin QP, Gong DH, Li PA, Zhang ZP, Fu GZ (1990). A study on drought adaptability and its physiological mechanism of summer maize. Acta Agriculturae Boreali-Sinica 5(4):54-60.

Wang J, Zhou ZC, Rao LB, Jin GQ, Li JM (2006). Physiological response of *Liriodendron* Chinese provenances with different phosphorus efficiency under low phosphorus stress. Forest Research 19(4):527-531.

Wang KL (2015). Resources and distribution of rattan in China. Plant Science Journal 33(3):320-325.
Wang ZW, Mou SW, Yan LL, Han QF, Yang BP (2013). Effects of physiological and biochemical characteristics and growth under water stress in seedling of spring maize. Acta Botanica Boreali-Occidentalia Sinica 33(2):0343-0351.

Wei H, Cheng SP, He F, Liang W, Wu ZB, Cheng SP (2014). Growth responses and adaptations of the emergent macrophyte Acorus calamus Linn. to different water-level fluctuation. Journal of Freshwater Ecology 29(1):101-115.

Wu YB, Ye B (2016). Effects of combined elevated temperature and drought stress on anti-oxidative enzyme activities and reactive oxygen species metabolism of Broussonetia papyrifera seedlings. Acta Ecologica Sinica 36(2):403-410.

Xie YG, Liao XF, Zhang DK, Liu JM, Zhao XP, Wen P (2013). Effect of shading treatments on growth and physiological characteristics of Drepanostachyum luodianense. Guangdong Agricultural Sciences 40(12):49-53.

Xue W, Li XY, Zhu JT, Lin LS, Wang YJ (2011). Effects of shading on leaf morphology and response characteristics of photosynthesis in Alhagi sparsifolia. Chinese Journal of Plant Ecology 35(1):82-90.

Yang L, He ZJ, Zhao WJ, Jia GF, Lai LM, She H, ... Zheng YR (2017). Growth, physiological, and biochemical responses of Rhodiola kirilowii seedlings to water and shading. Acta Ecologica Sinica 37(14):4706-4714.

Yin GT, Xu HC, Zhang WL (1988). A preliminary study on the effect of different levels of light intensity on the growth of rattan seedlings. Forest Research 1(5):548-552.

Yin GT, Xu HC, Zhang WL, Fu JG, Zeng BS (1993). Study on the collection and introduction of rattan species. Forest Research 6(6):609-617.

Yuan XK, Yang ZQ, Li YX, Liu Q, Han W (2016). Effects of different levels of water stress on leaf photosynthetic characteristics and antioxidant enzyme activities of greenhouse tomato. Photosynthetica 54(1):28-39.

The journal offers free, immediate, and unrestricted access to peer-reviewed research and scholarly work. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.

License - Papers published in Notulae Botanicae Horti Agrobotanici Cluj-Napoca are Open-Access, distributed under the terms and conditions of the Creative Commons Attribution (CC BY) License.
© Articles by the authors; UASVM, Cluj-Napoca, Romania. The journal allows the author(s) to hold the copyright/to retain publishing rights without restriction.