A novel spectral broadening from vector–axial-vector mixing in dense matter

Masayasu Harada\(^1\) and Chihiro Sasaki\(^2\)

\(^1\)Department of Physics, Nagoya University, Nagoya, 464-8602, Japan
\(^2\)Physik-Department, Technische Universität München, D-85747 Garching, Germany

(Dated: February 20, 2009)

The presence of baryonic matter leads to the mixing between transverse \(\rho\) and \(a_1\) mesons through a set of \(\omega\rho a_1\)–type interactions, which results in the modification to the dispersion relation. We show that a clear enhancement of the vector spectral function appears below \(\sqrt{s} = m_\rho\) for small three-momenta of the \(\rho\) meson, and thus the vector spectrum exhibits broadening. We also discuss its relevance to dilepton measurements.

PACS numbers: 21.65.Jk, 12.39.Fe, 12.35.Aw

In-medium modifications of hadrons have been extensively explored in the context of chiral dynamics of QCD \(\cite{1,2}\). Due to an interaction with pions in the heat bath, the vector and axial-vector current correlators are mixed. At low temperatures or densities a low-energy theorem based on chiral symmetry describes this mixing \(\text{(V-A mixing)} \cite{3}\). The effects to the thermal vector spectral function have been studied through the theorem \(\cite{3}\), or using chiral reduction formulas based on a virial expansion \(\cite{5}\), and near critical temperature in a chiral effective field theory involving the vector and axial-vector mesons \(\cite{6}\).

It has been derived, as a novel effect at finite baryon density, that a Chern-Simons term leads to mixing between the vector and axial-vector fields in a holographic QCD model \(\cite{7}\). This mixing modifies the dispersion relation of the transverse polarizations and will affect the in-medium current correlation functions independently of specific model dynamics. In this letter we study the effect of the vector–axial-vector mixing to the in-medium spectral functions which is the main input to the experimental observables. We show that the mixing produces a clear enhancement of the vector spectral function which appears below \(\sqrt{s} = m_\rho\), and that the vector spectral function is broadened due to the mixing. We will discuss its relevance to dilepton measurements.

At finite baryon density a system preserves parity but violates charge conjugation invariance. Chiral Lagrangians thus in general build in the term

\[
\mathcal{L}_{\rho a_1} = 2C' \epsilon^{\mu
u\lambda\sigma} \text{tr} \left[\partial_\nu V_\lambda \cdot A_\sigma + \partial_\sigma A_\lambda \cdot V_\nu \right].
\]

This mixing results in the dispersion relation \(\text{(2)}\)

\[
p_0^2 - \vec{p}^2 = \frac{1}{2} \left[m_\rho^2 + m_{a_1}^2 \pm \sqrt{(m_{a_1}^2 - m_\rho^2)^2 + 16C^2 \vec{p}^2} \right],
\]

which describes the propagation of a mixture of the transverse \(\rho\) and \(a_1\) mesons with non-vanishing three-momentum \(|\vec{p}| = \vec{p}\). The longitudinal polarizations, on the other hand, follow the standard dispersion relation, \(p_0^2 - \vec{p}^2 = m_\rho^2\). When the mixing vanishes as \(\vec{p} \to 0\), Eq. \(\text{(2)}\) with lower sign provides \(p_0 = m_\rho\) and it with upper sign does \(p_0 = m_{a_1}\). In the following, we call the mode following the dispersion relation with the lower sign in Eq. \(\text{(2)}\) “the \(\rho\) meson”, and it with the upper sign “the \(a_1\) meson”. In a holographic QCD approach the coupling \(C\) depends on the baryon density \(n_B\) and is found \(C = 1\, \text{GeV} \cdot (n_B / n_0)\) with normal nuclear matter density \(n_0 = 0.16 \, \text{fm}^{-3}\) \(\cite{7}\). Figure 1 shows the dispersion relation \(\text{(2)}\). For very large \(\vec{p}\) the longitudinal and transverse dispersions are in parallel with a finite gap, \(\pm C\). The dispersion relation \(\text{(2)}\) also indicates a possibility of vector condensation for a large \(C\) \(\cite{7}\).

The vector-current correlation function in matter is decomposed into the longitudinal and transverse parts as

\[
G_V^{\mu\nu}(p_0, \vec{p}) = P_L^{\mu\nu} G_V^L(p_0, \vec{p}) + P_T^{\mu\nu} G_V^T(p_0, \vec{p}),
\]

with the polarization tensors \(P_L^{\mu\nu}\) and momentum \(p^\mu = (p_0, \vec{p})\). Using the bare propagator inverse, \(D_{V,A} = s - m_{\rho,a_1} \pm i m_{\rho,a_1}(s)\), \(G_V^L\) and \(G_V^T\) are expressed as

\[
G_V^L = \left(\frac{g_\rho}{m_\rho} \right)^2 \frac{-s}{D_V}, \quad G_V^T = \left(\frac{g_\rho}{m_\rho} \right)^2 \frac{-sD_A + 4C^2 \vec{p}^2}{D_V D_A - 4C^2 \vec{p}^2},
\]
with $s = p^2$ being the squared four-momentum and g_ρ the coupling strength of the ρ meson to the vector current. We have imposed gauge invariance on the vector current to get the form Γ_1. The spin-averaged correlator is given by $G_V = \frac{1}{3} [G_V^I + 2G_V^T]$. The vector spectral function is defined as the imaginary part of the vector correlator $\Im G_V$. We define the integrated spectrum over three momentum by

$$\Im G_V(s) = \int \frac{d^3\vec{p}}{2p_0} \Im G_V(p_0, \vec{p}).$$

Equation (4) indicates that the mixing at finite three momentum \vec{p} affects the real part of the transverse ρ self-energy. We use the vacuum decay widths Γ to illustrate its influence over the spectrum although Γ in dense matter are considered to be broadened Γ_2. We take the following experimental values for further calculations: $m_\pi = 0.14$ GeV, $m_\rho = 0.77$ GeV, $m_{a_1} = 1.26$ GeV, $g_\rho(s = m_\pi^2) = 0.15$ GeV Γ_3. For the a_1 meson we use $\Gamma_{a_1}(s = m_{a_1}^2) = 0.3$ GeV as a typical example.

We show the vector spectral function in Fig. 2. The transverse spectrum presents two bumps due to the mixing: the lower one corresponds to the ρ whose mass is shifted downward, and the upper one to the a_1 whose mass is shifted upward in compared with the longitudinal polarizations (see Fig. 1). Since two pion annihilation is assumed to be dominant in the ρ meson decay, the contribution at low \sqrt{s} is cut off at threshold $\sqrt{s} = 2m_\pi$. Figure 2 (left) shows a clear enhancement of the spectrum below $\sqrt{s} = m_\rho$ due to the mixing. This enhancement becomes much suppressed when the ρ meson is moving with a large three-momentum as shown in Fig. 2 (right). The upper bump now emerges more remarkably and becomes a clear indication of the in-medium effect from the a_1 via the mixing. The presence of the two bumps in the transverse part leads to some broadening of the spin-averaged spectrum.

For more realistic evaluations one needs to include nuclear many-body dynamics into meson decay widths. This will be another source of in-medium broadening and eventually the vector correlator may not exhibit a clear maximum. Besides the iso-vector $\rho-a_1$ mesons, the mixing between the ω and $f_1(1285)$ mesons as well as that between the ϕ and $f_1(1420)$ mesons in isoo-scalar channel also exists and changes the dispersion relations. This is controlled by the same mixing strength C which can be smaller in three-color QCD than the value predicted in holographic QCD models. In such a case the spectrum enhancement in low \sqrt{s} region becomes more moderate but the effect is still relevant to the vector spectrum of the ρ mesons carrying large \vec{p}. As a result, the averaged spectrum might have a broad bump with its maximum slightly shifted downward due to the mixing. Thus, it is expected that those mixing have some relevance to explain in-medium “mass shift” of the ρ, ω and ϕ mesons observed by CBELSA/TAPS and KEK-PS-E325 Γ_4.

As an application of the above in-medium spectrum, we calculate the production rate of a lepton pair emitted from dense matter through a decaying virtual photon. The differential production rate in a medium for fixed temperature T and baryon density n_B is expressed in terms of the imaginary part of the vector current correlator as Γ_5

$$\frac{dN}{d\vec{p}}(p_0, \vec{p}; T, n_B) = \frac{\alpha^2}{\pi^3} \frac{1}{e^{p_0/T} - 1} \Im G_V(p_0, \vec{p}; T, n_B),$$

where $\alpha = e^2/4\pi$ is the electromagnetic coupling constant. The three-momentum integrated rate is given by

$$\frac{dN}{ds}(s; T, n_B) = \int \frac{d^3\vec{p}}{2p_0} \frac{dN}{d\vec{p}}(p_0, \vec{p}; T, n_B).$$

FIG. 2: The vector spectral function for $C = 1$ GeV. The curves of the left figure are calculated integrating over $0 < \vec{p} < 0.5$ GeV, and those of the right figure over $0.5 < \vec{p} < 1$ GeV.
Figure 3 presents the integrated rate at $T = 0.1$ GeV for $C = 1$ GeV. One clearly observes a strong three-momentum dependence and an enhancement below $\sqrt{s} = m_\rho$ due to the Boltzmann distribution function which result in a strong spectral broadening. The total rate is mostly governed by the spectrum with low momenta $\bar{p} < 0.5$ GeV due to the large mixing parameter C. When density is increased, the mixing effect gets irrelevant and consequently in-medium effect in low \sqrt{s} region is reduced in compared with that at higher density. The calculation performed in hadronic many-body theory in fact shows that the ρ spectral function with a low momentum carries details of medium modifications \[11\]. One may have a chance to observe it in heavy-ion collisions with certain low-momentum binning at J-PARC, GSI/FAIR and RHIC low-energy running.

It is straightforward to introduce other V-A mixing between $\omega-f_1(1285)$ and $\phi-f_1(1420)$. We use the constant widths of narrow peaked mesons above threshold: $\Gamma_\omega = 8.49$ MeV, $\Gamma_\phi = 4.26$ MeV, $\Gamma_{f_1(1285)} = 24.3$ MeV and $\Gamma_{f_1(1420)} = 54.9$ MeV \[8\]. The coupling constants of ω and ϕ mesons to the vector current are given by

$$g_\omega = \frac{1}{3} \frac{m_\omega^2}{m_\rho^2} g_\rho, \quad g_\phi = \frac{\sqrt{2}}{3} \frac{m_\phi^2}{m_\rho^2} g_\rho.$$ \hspace{1cm} (8)

Figure 4 shows the integrated rate at $T = 0.1$ GeV with several mixing strength C which are phenomenological option. One observes that the enhancement below m_ρ is suppressed with decreasing mixing strength. This forms into a broad bump in low \sqrt{s} region and its maximum moves toward m_ρ. Similarly, some contributions are seen just below m_ϕ. This effect starts at threshold $\sqrt{s} = 2m_K$ in the present analysis because of $\Gamma_\phi(s) = \Theta(s - 4m_K^2)\Gamma_\phi(m_\phi)$. Self-consistent calculations of the spectrum in dense medium will provide a smooth change and this eventually makes the ϕ meson peak somewhat broadened.

The relevance of this mixing in dense matter essentially relies on how the strength C is precisely determined. Holographic QCD approach predicts a strong mixing. However, the models based on the gravity-gauge correspondence are formulated in large N_c limit. Their prediction of observables may have a non-negligible $1/N_c$ correction \[12\]. This suggests a possibility that C is smaller in realistic QCD. One might consider to replace the mixing term \[11\] with the $\omega-\rho-\pi_1$ term which has been shown to arise from the gauged Wess-Zumino-Witten term in chiral Lagrangians \[13\] or alternatively from the reduction of five-dimensional Chern-Simons term to four dimensions \[14\],

$$\mathcal{L}_{\omega\rho\pi_1} = g_{\omega\rho\pi_1}(\omega_0) \epsilon^{\nu\omega\lambda\sigma} \text{tr} \left[\partial_\nu V_\lambda \cdot A_\sigma + \partial_\nu A_\lambda \cdot V_\sigma \right],$$ \hspace{1cm} (9)

where the ω field is replaced with its expectation value given by $\langle \omega_0 \rangle = g_{\omega NN} \cdot n_B/m_\omega^2$. One finds with empirical numbers $C = g_{\omega\rho\pi_1}(\omega_0) \approx 0.1$ GeV at normal nuclear matter density. This relatively much weaker mixing has little importance in the correlation functions. It is plausible to assume an actual value of C in QCD in the range $0.1 < C < 1$ GeV since the strong mixing in holographic QCD models contains higher members of Kaluza-Klein (KK) modes other than the lowest ω meson and those higher excitations are embedded in C. Some importance of the higher KK modes even in vacuum in the context of holographic QCD can be seen in the pion electromagnetic form factor at the photon on-shell: This is saturated by the lowest four vector mesons in a top-down holographic QCD model \[15\]. In hot and dense environment those higher members get modified and the masses might be somewhat decreasing evidenced in an in-medium holographic model \[17\]. This might provide
a strong V-A mixing $C > 0.1$ GeV in three-color QCD and the dilepton measurements may be a good testing ground.

It is also an interesting issue to address a change of the vector correlator with the V-A mixing toward chiral symmetry restoration. The mixing is chirally symmetric and thus does not approach zero toward the chiral restoration in contrast to the vanishing V-A mixing near the critical temperature T_c without baryon density [6]. A spontaneous breaking of Lorentz invariance via the omega condensation could increase the mixing strength C near chiral restoration [18]. Furthermore, if meson masses drop due to partial restoration of chiral symmetry assuming a second- or weak first-order transition in high baryon density but low temperature region, the ground state near the critical point may favor vector condensation even for a moderate mixing strength. This will be reported elsewhere.

Acknowledgments

We acknowledge stimulating discussions with B. Friman, N. Kaiser, S. Matsuzaki, M. Rho and W. Weise. The work of C.S. has been supported in part by the DFG cluster of excellence “Origin and Structure of the Universe”. The work of M.H. has been supported in part by the JSPS Grant-in-Aid for Scientific Research (c) 20540262 and Global COE Program “Quest for Fundamental Principles in the Universe” of Nagoya University provided by Japan Society for the Promotion of Science (G07).

[1] See, e.g., V. Bernard and U. G. Meissner, Nucl. Phys. A 489, 647 (1988); T. Hatsuda and T. Kunihiro, Phys. Rept. 247, 221 (1994); R. D. Pisarski, hep-ph/9503330; G. E. Brown and M. Rho, Phys. Rept. 269, 333 (1996); F. Klingl, N. Kaiser and W. Weise, Nucl. Phys. A 624, 527 (1997); F. Wilczek, hep-ph/0003183; G. E. Brown and M. Rho, Phys. Rept. 363, 85 (2002).
[2] R. Rapp and J. Wambach, Adv. Nucl. Phys. 25, 1 (2000), R. S. Hayano and T. Hatsuda, arXiv:0812.1702 [nucl-ex]; R. Rapp, J. Wambach and H. van Hees, arXiv:0901.3280 [hep-ph].
[3] M. Dey, V. L. Eletsky and B. L. Ioffe, Phys. Lett. B 252, 620 (1990), B. Krippa, Phys. Lett. B 427, 13 (1998).
[4] E. Marco, R. Hofmann and W. Weise, Phys. Lett. B 530, 88 (2002), M. Urban, M. Buballa and J. Wambach, Phys. Rev. Lett. 88, 042002 (2002).
[5] J. V. Steele, H. Yamagishi and I. Zahed, Phys. Lett. B 384, 255 (1996); Phys. Rev. D 56, 5605 (1997), K. Dusling, D. Teaney and I. Zahed, Phys. Rev. C 75, 024908 (2007), K. Dusling and I. Zahed, arXiv:0712.1982 [nucl-th].
[6] C. Sasaki, M. Harada and W. Weise, Prog. Theor. Phys. Suppl. 174, 173 (2008); Phys. Rev. D 78, 114003 (2008); [arXiv:0901.0842 [hep-ph]].
[7] S. K. Domokos and J. A. Harvey, Phys. Rev. Lett. 99, 141602 (2007).
[8] C. Amsler et al. (Particle Data Group), Phys. Lett. B 667, 1 (2008).
[9] D. Trnka et al. [CBELSA/TAPS Collaboration], Phys. Rev. Lett. 94, 192303 (2005).
[10] K. Ozawa et al. [E325 Collaboration], Phys. Rev. Lett. 86, 5019 (2001), M. Naruki et al., Phys. Rev. Lett. 96, 092301 (2006), T. Tabaru et al., Phys. Rev. C 74, 052501 (2006), R. Muto et al. [KEK-PS-E325 Collaboration], Phys. Rev. Lett. 98, 042301 (2007).
[11] F. Riek, R. Rapp, T. S. Lee and Y. Oh, arXiv:0812.0987 [nucl-th].
[12] see, e.g. M. Harada, S. Matsuzaki and K. Yamawaki, Phys. Rev. D 74, 076004 (2006).
[13] N. Kaiser and U. G. Meissner, Nucl. Phys. A 519, 671 (1990).
[14] C. T. Hill, Phys. Rev. D 73, 085001 (2006); Phys. Rev. D 73, 126009 (2006), J. A. Harvey, C. T. Hill and R. J. Hill, Phys. Rev. Lett. 99, 261601 (2007); Phys. Rev. D 77, 085017 (2008).
[15] T. Sakai and S. Sugimoto, Prog. Theor. Phys. 113, 843 (2005); Prog. Theor. Phys. 114, 1083 (2005).
[16] M. Harada, S. Matsuzaki and K. Yamawaki, in preparation.
[17] K. Peeters, J. Sonnenschein and M. Zamaklar, Phys. Rev. D 74, 106008 (2006).
[18] K. Langfeld, H. Reinhardt and M. Rho, Nucl. Phys. A 622, 620 (1997), K. Langfeld and M. Rho, Nucl. Phys. A 660, 475 (1999).