A Systematic Map of Systematic Reviews in Pediatric Dentistry—What Do We Really Know?

Ingegerd A. Mejäre*, Gunilla Klingberg, Frida K. Mowafi, Christina Stecksén-Blicks, Svante H. A. Twetman, Sofia H. Tranæus

1 Swedish Council on Health Technology Assessment, Stockholm, Sweden, 2 Department of Pediatric Dentistry, Faculty of Odontology, Malmö University, Malmö, Sweden, 3 Department of Odontology, Section for Pediatric Dentistry, Faculty of Medicine, Umeå University, Umeå, Sweden, 4 Department of Odontology, Section for Cariology, Endodontics, Pediatric Dentistry and Clinical Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark

* ingegerd.mejare@sbu.se

Abstract

Objectives
To identify, appraise and summarize existing knowledge and knowledge gaps in practice-relevant questions in pediatric dentistry.

Methods
A systematic mapping of systematic reviews was undertaken for domains considered important in daily clinical practice. The literature search covered questions in the following domains: behavior management problems/dental anxiety; caries risk assessment and caries detection including radiographic technologies; prevention and non-operative treatment of caries in primary and young permanent teeth; operative treatment of caries in primary and young permanent teeth; prevention and treatment of periodontal disease; management of tooth developmental and mineralization disturbances; prevention and treatment of oral conditions in children with chronic diseases/developmental disturbances/obesity; diagnosis, prevention and treatment of dental erosion and tooth wear; treatment of traumatic injuries in primary and young permanent teeth and cost-effectiveness of these interventions. Abstracts and full text reviews were assessed independently by two reviewers and any differences were solved by consensus. AMSTAR was used to assess the risk of bias of each included systematic review. Reviews judged as having a low or moderate risk of bias were used to formulate existing knowledge and knowledge gaps.

Results
Out of 81 systematic reviews meeting the inclusion criteria, 38 were judged to have a low or moderate risk of bias. Half of them concerned caries prevention. The quality of evidence was high for a caries-preventive effect of daily use of fluoride toothpaste and moderate for...
fissure sealing with resin-based materials. For the rest the quality of evidence for the effects of interventions was low or very low.

Conclusion

There is an urgent need for primary clinical research of good quality in most clinically-relevant domains in pediatric dentistry.

Introduction

To help insure that administered treatments do more good than harm, gaps in knowledge about their effects—uncertainties—must be identified, and those deemed sufficiently important must be addressed [1]. According to the Database of Uncertainties about the Effects of Treatments (DUETs) and the Swedish Council on Health Technology Assessment (SBU), a knowledge gap is present when systematic reviews reveal uncertainty about a health technology’s medical effects, or if no systematic literature review is available (http://www.library.nhs.uk/duets/), (http://www.sbu.se/en/Published/Scientific-Uncertainties/). It follows that systematic reviews based on high-quality studies are crucial, not only for assessing the best available evidence, but also for identifying and communicating scientific uncertainty (knowledge gaps). Besides offering practitioners and other decision-makers an overview, an important goal is to encourage clinical research in strategic areas linked to clinical management. An initial step in this process is to systematically and transparently describe the extent of research in a field and to identify gaps in the research base [2].

In 2010, the Swedish Government gave SBU the task of identifying knowledge gaps in health care. Summarizing the state of research knowledge in the field of pediatric dentistry was considered to be an important part of this assignment. Pediatric dentistry involves early diagnosis and treatment of the multitude of oral diseases and conditions found in the child’s and the adolescent's mouth, including caries, periodontal disease, mineralization disturbances, disturbances in tooth development and tooth eruption, and traumatic injuries [3].

A number of systematic reviews addressing various topics in the field of pediatric dentistry have been published. However, to our knowledge their methodological quality has not been systematically assessed and the state of research knowledge of common interventions in pediatric dentistry has not been compiled. Using the mapping approach, the aim of this study was to identify, appraise and summarize existing knowledge and identify knowledge gaps covering essential fields of oral health care in children and adolescents. The mapping should provide answers to the most relevant questions related to pediatric dentistry. For example, since dental caries is the most common chronic disease among children and adolescents [4] it is crucial for the practitioner as well as the community to know which methods are most effective for preventing and treating the disease. Another example is dental anxiety/behavior management problems where the reported prevalence exceeds ten percent in many countries [3]. Knowledge about the best strategies for managing these children is obviously important. It is equally important to identify gaps in the research base so that unanswered questions can be tackled by additional practice-relevant research activities. For practical reasons the mapping was restricted to ten domains and did not include oral manifestations of malignant diseases, oral mucous lesions, surgery and orthodontics. AMSTAR [5] was used as the basis for assessing the quality of relevant systematic reviews.
Material and Methods

After consulting specialists in pediatric dentistry and colleagues working in community dentistry, questions related to the following ten domains appeared to cover the most important activities in pedodontic clinical practice: behavior management problems/dental anxiety; caries risk assessment and caries detection, including radiographic technologies; prevention and non-operative treatment of caries in primary and young permanent teeth; operative treatment of caries in primary and young permanent teeth; prevention and treatment of periodontal disease; management of tooth developmental and mineralization disturbances; prevention and treatment of oral conditions in children with chronic, diseases/developmental disturbances/obesity; diagnosis, prevention and treatment of dental erosion and tooth wear; treatment of traumatic injuries in primary and young permanent teeth and cost-effectiveness of interventions.

Inclusion criteria

Systematic reviews published in peer-reviewed journals addressing questions on any of the selected domains. Intervention, control and outcome parameters in accordance with the particular question:

Population	Children and adolescents up to age 18
Intervention	Diagnostic testing, prediction, prevention, treatment
Control	Reference test, control (comparator)
Outcome	Accuracy, validity, effect of intervention, cost-effectiveness

Exclusion criteria

- Surgical intervention of cleft lip and palate
- Speech-related interventions
- Guidelines or non-systematically performed meta-analyses

Literature search strategy

The latest literature search was made in April 2014 in three databases: PubMed, The Cochrane Library and the Centre for Reviews and Dissemination (CDR). There were no language restrictions. The search algorithm was ("Child" [Mesh] OR children[tiab] OR "Adolescent"[Mesh] OR adolescent[tiab]) AND ("Dental Care"[Mesh] OR dental care[tiab] OR "Dental Caries"[Mesh] OR caries[tiab]) AND systematic[sb]. Screening of references was used. The numbers of retrieved abstracts, included and excluded articles at each stage of the search process are given in a flow diagram (Fig. 1). Abstracts identified according to the inclusion criteria were examined independently by two review authors. If at least one of them found an abstract potentially relevant, it was included and the article was ordered in full text.

Data extraction and quality assessment

Data extraction, assessment of relevance and quality of included reviews were undertaken independently by two review authors. Any differences were solved by consensus; a third review author was consulted if necessary. In the case of reviews in which one of the review authors was involved, the quality was assessed by two independent reviewers.
The quality (in terms of the risk of bias) of all full text reviews was assessed using AMSTAR [5]. Items 1–3 and 5–8 were selected as being most important. The wording of question 7 was found to be somewhat unclear and was rephrased to “Was the overall scientific quality of each included study assessed and documented?” Thus, a yes-answer required an assessment of the overall risk of bias of each included study. The pre-specified criteria for low, moderate and high risk of bias are given in Table 1. A conservative approach was used; if a feature was not reported, it was assumed to be absent. If the answer to a particular question was unclear, it was discussed and a decision was reached in common as to whether the review should be classified as moderate or high risk of bias. Because the vast majority of published articles in the field of pediatric dentistry are identified in PubMed, it was considered acceptable to use only this database. As a general rule, the quality of individual studies in the reviews was not checked. An exception was when there was inconsistency or uncertainty about the results or conclusions of a review. In these cases, spot-test checks of individual articles were made.

If more than one systematic review on the same subject was found, only the one with the best quality and the most recent date was included [6].

Handling of data
Reviews judged as having a low or moderate risk of bias were used to summarize results and formulate existing knowledge and knowledge gaps for each domain. In accordance with the working process described by Whitlock [6], no synthesis was made of any effect size of different interventions. To get a uniform summary appraisal of the quality of evidence of the effects investigated, the various expressions used in the separate systematic reviews were transformed to GRADE terms [7] according to the following: Strong = GRADE High; Moderate = GRADE Moderate; Limited = GRADE Low; insufficient, fair, poor, low, weak, inconclusive, some evidence and other expressions of uncertainty = GRADE Very low.
Results

The number of included reviews and the number and proportion with a low/moderate risk of bias according to the ten domains are given in Table 2. A brief summary of the objectives, main results and quality of evidence of the effects of reviews with low to moderate risk of bias is given in Table 3. It shows that the quality of evidence is high for the caries-preventive effect of daily use of fluoride toothpaste and that supervised tooth-brushing is more effective than unsupervised. Table 4 shows the current activity of published systematic reviews and original studies. The various specific outcomes related to domain are given with comments in Table 5. The main characteristics of the 38 reviews with a low or moderate risk of bias [8–45] are described in more detail in S1 Table. The 43 reviews with a high risk of bias [46–88] with the main reason for downgrading, are described in S2 Table. Due to the relatively high number of systematic reviews on prevention, this domain was subdivided into fluoride technologies, other technologies, programs/routines and safety. A summary of existing knowledge is given in Table 6 showing that existing evidence-based knowledge is limited mainly to activities for preventing caries. Knowledge gaps identified from existing reviews are summarized in Table 7. Excluded articles [89–123], with the main reason for exclusion, are listed in S3 Table.

The main results, including existing knowledge and knowledge gaps from identified reviews with a low or moderate risk of bias, are presented below for each domain.

Table 1. Criteria for assessing risk of bias.

Risk of bias	Criteria
Low	Predetermined research question and inclusion criteria established (AMSTAR Question 1)
	At least two independent data extractors and consensus procedure reported (AMSTAR Question 2)
	At least the database MEDLINE/Pubmed used. Search strategy reported so that it can be repeated (AMSTAR Question 3)
	A list of included and excluded studies reported (AMSTAR Question 5)
	Relevant characteristics of included studies reported (AMSTAR Question 6)
	Assessment of the overall scientific quality of each included study provided (AMSTAR Question 7)
	The scientific quality of included studies used appropriately in formulating conclusions (AMSTAR Question 8)
	The rationale for combining/not combining results reported. Methods for pooling results reported (AMSTAR Question 9)
	Likely publication bias reported. This item can be omitted if publication bias was unlikely but not reported (AMSTAR Question 10)
	Any conflict of interest reported. This item can be omitted if conflicts of interest were unlikely (AMSTAR Question 11)
Moderate	A yes-answer to questions 1, 2 and 5–8 *.
High	A no-answer to any of the question listed under moderate risk of bias.

Pre-specified criteria of low, moderate and high risk of bias. Modified list of questions based on AMSTAR [5].

*List of included studies is mandatory; list of excluded studies can be absent.

doi:10.1371/journal.pone.0117537.t001
Behavior management problems/dental anxiety

Three systematic reviews displayed insufficient evidence of the effect of the behavior management strategies hypnosis, use of analgesics, and sedation or general anaesthesia for the delivery of dental care [8–10]. Thus, the effects of behavior management techniques remain uncertain.

Caries risk assessment and caries detection, including radiographic technologies

- **Caries risk assessment.** One systematic review [11] concluded that comprehensive multivariate models were more accurate than single variables for predicting future caries, especially in preschool children. Few models were, however, validated. Overall, the validity of models and single risk factors, as well as the role of confounding factors (e.g. age, lifestyle, socio-economy, and socio-demography) for predicting future caries, remain uncertain.

- **Caries detection.** One systematic review [12] displayed fair evidence of the accuracy of ECM (electric conductivity measurement) for detecting non-cavitated caries lesions. Poor evidence was found for all other methods, such as traditional visible inspection, bitewing radiography or other radiographic technologies and adjunct methods such as FOTI (fibre-optic transillumination), LF (laser fluorescence) and QLF (quantitative light-induced fluorescence) and lesion activity assessment (based on visual inspection).

Prevention and non-operative treatment of caries in primary and young permanent teeth

- **Fluoride technologies for caries prevention.** One systematic review concerned the caries-preventive effect of water fluoridation [13]. The quality of evidence of its effect was graded as
There was a dose-dependent increase in dental fluorosis. Thus, the effect size of caries reduction in relation to safety remains uncertain.

Two reviews covered the preventive effect of fluoride toothpaste [14,15]. There was strong evidence for an effect of daily use of fluoride toothpaste; supervised brushing was more

Table 3. Brief summary of systematic reviews with low or moderate risk of bias.

Domain (number of systematic reviews)	Objectives	Main results	Quality of evidence*
Behavior management problems/dental anxiety (3)	Effect of hypnosis, pre-operative analgesics for pain relief, sedation vs general anaesthesia	Uncertain effect	Very low
Caries risk assessment (1)	Validity of multivariate models and single factors to predict caries development	Baseline caries prevalence the most accurate single predictor	Low
Caries detection, including radiographic technologies (1)	Validity of methods for detecting non-cavitated caries lesions (visual, lesion activity assessment, radiography, LF, FOTI, ECM, QLF)	Acceptable diagnostic accuracy for ECM. Uncertain accuracy for other methods	Very low
Fluoride technologies for caries prevention (10)	Effects of toothpaste, varnish, mouth rinse, water fluoridation, supplements, slow release device, fluoridated food	Daily use of fluoride toothpaste effective, supervised more effective than unsupervised	High
		1500 ppm fluoride more effective than 1000 ppm	Low
		Varnish, mouth rinse, water fluoridation effective	Low
		Uncertain effect of other methods	Very low
Other technologies for caries prevention (5)	Effects of fissure sealing, HealOzone, chlorhexidine, triclosan	Fissure sealing (resin-based) effective	Moderate
		Uncertain effect of other methods	Very low
Programs/routines for caries prevention (4)	Effects of school-based programmes, recall interval, oral health promotion	Modest effect of daily tooth brushing, uncertain effect of recall interval, mass media	Very low
Non-operative treatment (2)	Effects of non-surgical methods to stop or reverse non-cavitated caries	Uncertain effect	Very low
Operative treatment (6)	Effects of restorations, excavation techniques, pulp treatment and treatment strategies for primary teeth	Uncertain effect	Very low
Prevention and treatment of periodontal disease (1)	Effects of triclosan	Uncertain effect	Very low
Management tooth developmental and mineralization disturbances (1)	Effects of restorative techniques in Amelogenesis imperfecta-affected teeth	No studies identified	Very low
Prevention and treatment of oral conditions in children with chronic diseases/developmental disturbances/obesity (4)	Relationship between chronic disease/developmental disturbances/obesity and caries	A positive relationship for asthma. No significant relationship for cleft lip/palate, chronic kidney disease or obesity	Very low
Diagnosis, prevention and treatment of dental erosion and tooth wear (0)	No systematic review identified	-	-
Treatment of traumatic injuries in primary and young permanent teeth (2)	Effects of interventions for treating external root resorption, displaced luxated front teeth	No studies identified	Very low
Cost-effectiveness of interventions (0)	No systematic review identified	-	-

*Expressions used in the systematic reviews were transformed to GRADE terms according to the following: Strong = GRADE High; Moderate = GRADE Moderate; Limited = GRADE Low; insufficient, fair, poor, low, weak, inconclusive, some evidence and other expressions of uncertainty = GRADE Very low.

Brief summary of the objectives, main results and estimated level of evidence of systematic reviews with low or moderate risk of bias. Quality of evidence of the effects according to GRADE terms [7].

doi:10.1371/journal.pone.0117537.t003

low. There was a dose-dependent increase in dental fluorosis. Thus, the effect size of caries reduction in relation to safety remains uncertain.

Two reviews covered the preventive effect of fluoride toothpaste [14,15]. There was strong evidence for an effect of daily use of fluoride toothpaste; supervised brushing was more
Table 4. Distribution of systematic reviews with low or moderate risk of bias according to publication year, number of included studies and number of included studies published during the last five years.

Domain/First author/Topic	Publication year (ref no)	Studies included in the review (n)	Included studies published 2009–2014 (n)
Behavior management problems/dental anxiety			
Al-Harasi/Hypnosis vs sedation	2010 [8]	3	0
Ashley/Preoperative analgesics	2012 [9]	5	1
Ashley/Sedation vs general anaesthesia	2012 [10]	0	-
Caries risk assessment and caries detection including radiographic technologies			
Mejare/Caries risk assessment	2014 [11]	42	16
Gomez/Caries detection	2013 [11]	42	10
Prevention and non-operative treatment of caries in primary and young permanent teeth			
McDonagh/Water fluoridation	2000 [13]	214	-
Ammar/Children’s toothpaste	2003 [14]	7	-
Twetman/Fluoride toothpaste	2003 [15]	54	-
Bonner/Slow release device	2006 [16]	1	-
Cagetti/Fluoride in food	2013 [17]	3	1
Carvalho/Varnish primary teeth	2010 [18]	8	0
Petersson/Varnish primary & permanent teeth	2004 [19]	24	-
Tubert-Jeannin/Fluoride supplements	2011 [20]	11	0
Twetman/Fluoride mouth-rinse	2004 [21]	25	-
Yeung/Fluoride in milk	2005 [22]	2	-
Ahovuo-Salaranta/Sealants	2013 [23]	34	6
Brazelli/Heal-Ozone	2006 [24]	1	-
Hiiri/Sealant vs varnish	2010 [25]	4	0
James/Chlorhexidine	2010 [26]	12	0
Riley/Triclosan	2013 [27]	1	0
Cooper/Behavior intervention	2013 [28]	4	1
Davenport/Routine checks	2003 [29]	28	0
Kay/School programme, health promotion	1998 [30]	38	-
Riley/Recall interval	2013 [31]	1	0
Bader/Arrest non-cavitated caries	2001 [32]	22	-
Brazelli/Arrest non-cavitated caries (HealOzone)	2006 [24]	5	-
Operative treatment of caries in primary and young permanent teeth			
Innes/Metal crowns vs filling materials	2007 [33]	0	-
Mickenautsch/ART* vs amalgam	2010 [34]	14	0
Nadin/Pulp treatment	2003 [35]	3	-
Rasines Alcaraz/Composite vs amalgam	2014 [36]	7	0
Ricketts/Excavation techniques	2013 [37]	8	3
Yengopal/Filling materials, treatment strategies	2009 [38]	3	0
Prevention and treatment of periodontal disease			
Riley/Periodontitis and triclosan	2013 [27]	1	0
Management of tooth developmental and mineralization disturbances			
Dashash/Amelogenesis imperfecta	2013 [39]	0	-
Alavaikko/Caries and asthma	2011 [40]	18	2
Andrade/Caries and kidney disease	2013 [41]	6	0

(Continued)
effective than unsupervised; evidence of a dose-dependent effect was limited. Two main uncertainties are the preventive effect in pre-school children related to the risk of fluorosis and the optimum ppm-value of fluoride in toothpastes intended for high caries risk children.

Seven reviews concerned various other fluoride technologies such as varnishes [18,19], mouth-rinses [21], slow release devices [16], tablets, drops, lozenges [20] and fluoridated food [17,22]. Whereas fluoride varnish is effective for preventing caries in permanent teeth [19], the reviews concerning primary teeth both concluded that the effect and safety of its use remain uncertain. When daily fluoride from toothpaste is used, any additional effect of fluoride mouth-rinse remains uncertain, particularly for individuals with high caries risk. The effects of all other investigated fluoride technologies also remain uncertain.

Other technologies for caries prevention. Five reviews covered various substances [23–27]. One addressed the effect of fissure sealants and found moderate evidence of an effect in high caries-risk children [23]. Another review compared the effect of sealants with fluoride varnish [25]. More research is needed to gain knowledge on the outcome of fissure sealants in

Table 4. (Continued)

Domain/First author/Topic	Publication year (ref no)	Studies included in the review (n)	Included studies published 2009–2014 (n)
Hasslöf/Caries and cleft lip/palate	2007 [42]	6	-
Hayden/Caries and obesity	2013 [43]	14	5
Treatment of traumatic injuries in primary and young permanent teeth			
Ahangari/External root resorption	2010 [44]	0	-
Belmonte/Displaced luxated teeth	2013 [45]	0	-

* ART = atraumatic restorative technique.

doi:10.1371/journal.pone.0117537.t004

Table 5. Main outcomes used to evaluate the effects of an intervention/diagnosis/risk assessment related to domain of systematic reviews with low or moderate risk of bias.

Domain	Main outcomes	Comments
Behavior management problems/dental anxiety	Completion of treatment, acceptance of local anaesthesia/tooth extraction, behavior, postoperative anxiety, severity or presence/absence of postoperative pain, adverse effects	Mainly qualitative outcomes
Caries risk assessment and caries detection including radiographic technologies	Predictive and diagnostic accuracy	Acceptable accuracy debatable. Patient’s benefit uncertain
Prevention and non-operative treatment of caries in primary and young permanent teeth	Caries incidence and caries lesion progression	Clinically relevant difference in effect size debatable
Operative treatment of caries in primary and young permanent teeth	Symptoms, survival of restoration/tooth, aesthetics, adverse effects	Clinically relevant difference in effect size debatable. Dichotomous success/failure may be problematic when evaluator blinding is not possible
Prevention/treatment of periodontal disease	Periodontitis (attachment loss), adverse effects	Discriminating level of attachment loss debatable
Prevention/treatment of oral conditions in children with chronic diseases/obesity/developmental disturbances	Caries prevalence (only relationships were studied)	Clinically relevant difference debatable

Empty domains are excluded.

doi:10.1371/journal.pone.0117537.t005
relation to baseline caries risk, with subsequent cost-effectiveness evaluation. There are also uncertainties concerning the effect of using other than resin-based materials for sealing, pre-treatment options and any difference in effect between sealants and varnishes. Any effect of chlorhexidine, HealOzone or triclosan, also remains uncertain [24,26,27].

Programs/routines for caries prevention. Four reviews concerned preventive programs/routines [28–31]. Two of them reported insufficient evidence of different recall intervals [29,31]; the other two reported insufficient evidence of school-based interventions or oral health promotion programmes [28,30]. Thus, the role of programmes and routines for caries prevention, as well as the effect of recall intervals, remain uncertain.

Safety of using fluoride agents for caries prevention. No studies of low or moderate risk of bias regarding safety were identified. Thus, the risk of fluorosis from using fluoride toothpaste in young children (<1 or <2 years), including the amount and concentration of fluoride, remains uncertain.

Non-operative treatment. Two reviews concerned non-operative treatment [24,32]. One concluded that there is insufficient evidence of the efficacy of non-surgical methods (mainly fluoride supplements) to arrest or reverse non-cavitated coronal lesions [32], and the other found insufficient evidence of the effect of HealOzone for managing such lesions [24].

Operative treatment of caries in primary and young permanent teeth

Six reviews were identified [33–38]. The effect of pre-formed metal crowns compared with filling materials in primary teeth is uncertain [33]. The most effective way of treating carious teeth also remains uncertain, i.e. the effects of stepwise, partial or no dentinal caries removal compared with complete caries removal on signs/symptoms of pulp disease and restoration failure [37]. Other uncertainties are the effect of ART compared with amalgam restorations [34], the effect of composite resin versus amalgam fillings [36] and the effect of different types of treatment for pulpally involved primary molars [35]. Furthermore, the effects of different filling materials on pain, survival and aesthetics, as well as the effects of restoration versus extraction versus no treatment in primary teeth, remain uncertain [38].
Domain	Knowledge gaps
Behavior management problems/dental anxiety	Effect of conscious sedation versus general anaesthesia
	effect of different conscious sedation techniques and dosages
	effect of pre-operative analgesics on pain relief.
Caries risk assessment and caries detection, including radiographic	Validity of multivariate models and single predictors
technologies	validity of different techniques for detecting non-cavitated caries lesions
	validity of radiographic methods for detecting enamel and dentin caries
	risk and potential harm of over- and under-detecting caries.
Prevention and non-operative treatment of caries in primary and young	Proper amount and level of ppm fluoride in tooth-pastes for pre-school children
permanent teeth	related to the risk of fluorosis
	effect of toothpaste introduction age, optimal brushing time and post-brushing
	behavior
	additional effect of fluoride mouth-rinse in high caries risk children/adolescents
	effect of fissure sealing of permanent molars in populations with low caries
	risk
	effect of fissure sealing of permanent molars with glass-ionomer cements
	effect of fissure sealing of permanent molars with resin-based sealants compared with glass-ionomer cements
	effect of fissure sealing compared with fluoride varnish application
	effect of fluoride varnish in primary teeth
	effect of chlorhexidine
	effects of varying other agents and methods and effect of adding fluoride to
	food
	effects of information, professional programs, routine dental checks and
	counseling
	effect of non-operative methods to arrest or reverse non-cavitated caries
Operative treatment of caries in primary and young permanent teeth	Effect of partial versus complete caries removal on signs/symptoms and
	restoration survival
	effects of filling materials on pain, survival and aesthetics
	effects of no treatment, non-operative or operative treatment on pain, survival
	and aesthetics in primary teeth
	clinical and radiographic outcome of different techniques for primary and
	permanent teeth with reversible pulpitis.
Prevention and treatment of periodontal disease	Effect of interventions for preventing and treating periodontal disease.
Management of tooth developmental and mineralization disturbances	Effect of interventions for managing tooth developmental and mineralization
	disturbances.
(Continued)
Prevention and treatment of periodontal disease

One review on the effect of adding triclosan/copolymer to fluoride toothpaste on plaque, gingivitis, calculus and periodontitis was identified [27]. The authors concluded that adding triclosan to toothpaste had no effect on periodontitis but the statement was uncertain.

Management of tooth developmental and mineralization disturbances

One review concluded that there is no evidence for the most effective intervention for treating teeth affected by Amelogenesis imperfecta [39]. Thus, uncertainty exists for the management of all types of mineralization disturbances as well as tooth developmental disturbances.

Prevention and treatment of oral conditions in children with chronic diseases/developmental disturbances/obesity

Three reviews concerned dental caries prevalence/caries risk in children with asthma, chronic kidney disease or cleft lip/palate [40–42]. Although not addressing prevention, these reviews were considered important and were therefore included under this heading. All concluded that there are uncertainties concerning caries prevalence/caries risk compared with healthy children. Uncertainty also exists regarding caries risk, prevention and treatment of children with other chronic diseases, functional disabilities such as neuropsychiatric disorders and oral-motor function disturbances. One review on the relationship between obesity and dental caries concluded that the role of confounding factors remains uncertain [43].

Diagnosis, prevention and treatment of dental erosion and tooth wear

No systematic reviews were identified.

Treatment of traumatic injuries in primary and young permanent teeth

Two reviews were identified [44,45]. One considered the effects of interventions for treating external root resorption in permanent teeth [44] and the other the effect of treatment of displaced permanent front teeth. Both were empty reviews and any effects of these or other interventions for treating traumatic injuries therefore remain uncertain.

Table 7. (Continued)

Domain	Knowledge gaps
Prevention and treatment of oral conditions in children with chronic	Effect of interventions for the management of oral conditions in children with
diseases/developmental disturbances/obesity	chronic diseases/developmental disturbances/obesity and other conditions,
	including neuropsychiatric functional disorders and oral-motor function
	disturbances.
Diagnosis, prevention and treatment of dental erosion and tooth wear	Diagnostic validity and effect of interventions for preventing and treating
	dental erosion and tooth wear.
Treatment of traumatic injuries in primary and young permanent teeth	Effect of interventions for the management of traumatic injuries in primary
	and young permanent teeth.
Cost-effectiveness of interventions	Cost-effectiveness of interventions for the ten selected domains.

doi:10.1371/journal.pone.0117537.t007
Cost-effectiveness of interventions

The cost-effectiveness of different strategies for the management of dental conditions in children and adolescents remains uncertain.

Discussion

This map report provides a systematic description of research activity in practice-relevant fields of pediatric dentistry. The effects of caries preventive strategies were relatively widely investigated and existing evidence-based knowledge was mainly restricted to this domain (Table 6). Other domains were investigated less well or not at all, resulting in a considerable number of knowledge gaps, from both existing and non-existing systematic reviews (Table 7). A possible explanation could be that existing systematic reviews were of old date. Almost two thirds of those with low or moderate risk of bias were, however, published within the latest five years (Table 4). With few exceptions the number of included studies published within the last five years was small. Some topics may be regarded as “saturated”, such as the effect of water fluoridation whereas most other topics clearly point to an urgent need for clinical research activities. In spite of several quite recently published studies, validated caries risk assessment methods are still lacking. A conceivable reason could be the complexity of the topic and the lack of consensus on methodological requirements in design, conduct, analysis and reporting. The same applies to caries detection methods where the accuracy of single or combined methods to detect non-cavitated lesions still remains a knowledge gap. The number of included studies in each systematic review shows that the major research activities during the last five years have been restricted to caries risk assessment, caries detection, fissure sealants and the relationship between obesity and caries (Table 4). The reasons for this can only be speculated on.

It follows that management of dental conditions in children and adolescents to a large extent is not evidence-based, and that at present, the best available evidence consists of own or colleagues’ experience or expert opinions. This ought to alarm stakeholders, the profession and policy-makers. It is obvious that clinical research of good quality is crucial and should be given priority so that important knowledge gaps can be eliminated. In this context it is important to note that absence of evidence of a certain intervention does not mean that there is evidence of a lack of its effect. In other words, a certain intervention may be effective even though the evidence for this is weak or lacking. The need for evidence remains, however.

The methodological quality of the systematic reviews varied and more than half of them were considered to have a high risk of bias (Table 2). The three most common shortcomings concerned questions 2, 7 and 8 in AMSTAR. A no answer to question 7 implied that each primary study was not given an overall assessment of its risk of bias. Another common reason for downgrading was that primary studies with a high risk of bias were pooled and conclusions were drawn from such results. Similarly, heterogeneous primary studies were sometimes pooled without sensitivity and subgroup analyses (question 8). The quality of evidence for a certain outcome was often not reported by the authors and if reported, the terms used varied. This made it difficult to compare the reported strength or quality of evidence of different reviews. It seems that the terms proposed by the GRADE working group (high, moderate, low and very low quality of evidence) have not yet been accepted in the literature [7]. To get a summary of the state of knowledge, reported quality of evidence of individual reviews were transformed into GRADE terms (Table 3). This was considered to be a reasonably fair way of summarizing the evidence base of individual systematic reviews.

There were six so-called empty systematic reviews, that is, there were no studies eligible for inclusion [10,33,38,39,44,45]. There is no straightforward way to assess such reviews. It has been suggested that they should be excluded [6]. We kept them, however, because they clearly
point to a knowledge gap on a particular question and five of them were assessed as having a low risk of bias. One [10] was considered to have a moderate risk of bias since it may be questioned whether the inclusion criteria (RCTs) were appropriate, that is, RCTs may not be possible for ethical reasons (S1 Table).

The mapping approach is specifically designed to categorize existing literature and to identify gaps in the evidence base but it has its limitations [124]. A systematic map provides an appraisal of the methodological quality of systematic reviews but does not scrutinize the quality of the primary research included in each review. Consequently, a limitation is that individual primary studies of the systematic reviews are not scrutinized. Therefore, flaws may be overlooked, such as inconsistencies regarding the quality of individual primary studies and their qualification for contributing to synthesis and conclusions. On the other hand, as a conservative approach was taken, this limitation should not have had any major influence on the results.

The outcomes vary depending on domain (Table 5). Although well established and commonly used in dental research their robustness and clinical relevance deserves attention. The mainly qualitative outcomes in studies on behavior management problems/dental anxiety can introduce bias when interpreting the results. Thus, parents’ or children’s self-reported data may be used to decide “success” or “failure”. For example, the review by Ashley [9] points out that measures of pain depend on the baseline anxiety of the child yet none of the included studies recorded this. Regarding caries risk assessment and caries detection, the acceptable accuracy may be debatable and patient’s benefit is uncertain. The definition of a clinically relevant difference in effect size in studies on caries prevention may also be debatable. The effect size was, however, not appraised in this mapping for interventions where evidence-based knowledge exists.

It should also be noted that the external validity of the results of separate systematic reviews was not considered. Included primary research may have been undertaken in populations and settings that do not apply to today’s conditions in a particular country. An example is the statement “effective in children with high caries risk”. This might mean one thing in one country and another thing in another.

Strictly, all systematic reviews including those with high or moderate quality of evidence of the effect of a treatment displayed some gaps in knowledge. For example, there was moderate evidence that fissure sealing is effective for preventing caries. Whether that applies also to individuals with low caries risk or to other than resin-based materials still remain as knowledge gaps. So, depending on the extent of subgrouping of individuals/treatments there will probably always be gaps in knowledge. Their importance and priority for research activities must be judged accordingly.

A review of reviews aimed to assess the methodological quality of all reviews related to pediatric dentistry and oral health published by the Cochrane Oral Health Group and to assess implications for practice [125]. The authors concluded that there is strong evidence that topical fluoride treatment and sealants are effective for preventing caries in children and adolescents even though the reviews generated inconclusive findings. In contrast, the present mapping arrived at varying quality of evidence of preventive measures and identified several knowledge gaps (S1, S2 Tables and Table 7).

It is noteworthy that health-economic aspects yielded no systematic reviews of sufficient quality. One review with a high risk of bias [88] concluded that the health-economic effects of caries-preventive measures were difficult to assess due to the scarcity of original studies with sufficiently good quality and contradictory results of individual studies. A later non-systematic review on the same subject arrived at the same conclusion [112]. Overall, the cost-effectiveness needs to be addressed in future studies.
The fact that there is a severe gap in the scientific evidence on diagnosis and treatment in most fields in pediatric dentistry does not mean that there is no basis for selecting a particular method instead of another in clinical practice. For example, methods that can expose patients to large risks should be avoided. Methods involving particularly high costs should also be avoided until their cost-effectiveness has been tested properly. Furthermore, diagnosis and treatment with relevant established theoretical assumptions are preferred to methods that lack such theoretical basis. In the absence of scientific evidence for alternative methods, one should also adhere to established treatments [126]. Although important, patient-oriented aspects, such as the acceptability of an intervention, were only occasionally mentioned in the systematic reviews.

Conclusions

There is high/moderate quality of evidence of a caries-preventive effect of daily use of fluoride toothpaste and fissure sealing with resin-based materials. For all other domains the quality of evidence of the effects of interventions was low or very low. There is an urgent need for primary clinical research of good quality in most domains in pediatric dentistry.

Supporting Information

S1 PRISMA Checklist. Reported items according to the PRISMA checklist. (DOC)

S1 Table. Main characteristics of systematic reviews with low or moderate risk of bias. Main objectives, results and estimated level of evidence of systematic reviews with low or moderate risk of bias for the ten selected domains in pediatric dentistry. Presence of a knowledge gap is based on the estimated level of evidence according to authors. (DOCX)

S2 Table. Main characteristics of systematic reviews with high risk of bias. Main objectives, results and estimated level of evidence of systematic reviews with high risk of bias according to criteria listed in Table 1 for the ten selected domains in pediatric dentistry. Presence of a knowledge gap is based on the estimated level of evidence according to authors. (DOCX)

S3 Table. Excluded systematic reviews and the main reason for exclusion. (DOCX)

Author Contributions

Responsible for literature search and for handling and distributing abstracts and full-text articles to other authors: FM. Took part in designing the systematic review: IM GK CSB S. Twetman S. Tranæus. Analyzed the data (work load equally distributed): IM GK CSB S. Twetman S. Tranæus. Developed tool for analyzing the data (criteria for high, moderate and low risk of bias): IM GK CSB S. Twetman S. Tranæus. Wrote first draft: S. Twetman. Wrote subsequent and final drafts: IM. Gave response and criticized drafts: GK FM CSB S. Twetman S. Tranæus. Produced table content: IM GK CSB S. Twetman S. Tranæus. Final layout: IM.

References

1. Chalmers SI (2011) Systematic reviews and uncertainties about the effects of treatments [editorial]. Cochrane Database Syst Rev 2010 12. Available: http://www.thecochranelibrary.com/details/
editorial/691951/Systematic-reviews-and-uncertainties-about-the-effects-of-treatments-by-Sir-Iain. html. Accessed 2015 January 10.

2. Clapton J, Rutter D, Sharif N (2009) Social care institute for excellence (SCIE) Systematic mapping guidance. Available: http://www.scie.org.uk/publications/researchresources/rr03.asp. Accessed 2015 January 10.

3. Koch G, Poulsen S (2009) Pediatric dentistry: A clinical approach. Chichester: Willey-Blackwell.

4. Petersen PE (2003) The World Oral Health Report 2003: continuous improvement of oral health in the 21st century—the approach of the WHO Global Oral Health Programme. Community Dent Oral Epidemiol 31: Suppl 1:3–23. PMID: 15015736

5. Shea BJ, Grimshaw JM, Wells GA, Boers M, Andersson N, et al. (2007) Development of AMSTAR: a measurement tool to assess the methodological quality of systematic reviews. BMC Med Res Methodol 7: 10. PMID: 17302989

6. Whitlock EP, Lin JS, Chou R, Shekelle P, Robinson KA (2008) Using existing systematic reviews in complex systematic reviews. Ann Intern Med 148: 776–782. PMID: 18490690

7. Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, et al. (2008) GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ 336: 924–926. doi:10.1136/bmj.39489.470347.AD PMID: 18436948

8. Al-Harasi S, Ashley PF, Moles DR, Parekh S, Walters V (2010) Hypnosis for children undergoing dental treatment. Cochrane Database Syst Rev: Cd007154. doi:10.1002/14651858.CD007154.pub2 PMID: 20687082

9. Ashley PF, Parekh S, Moles DR, Anand P, Behbehani A (2012) Preoperative analgesics for additional pain relief in children and adolescents having dental treatment. Cochrane Database Syst Rev 9: Cd008392. doi:10.1002/14651858.CD008392.pub2 PMID: 22972120

10. Ashley PF, Williams CE, Moles DR, Parry J (2012) Sedation versus general anaesthesia for provision of dental treatment in under 18 year olds. Cochrane Database Syst Rev 11: Cd006334. doi:10.1002/14651858.CD006334.pub3 PMID: 23152234

11. Mejare I, Axelsson S, Dahlén G, Espelid I, Norlund A, et al. (2014) Caries risk assessment. A systematic review. Acta Odontol Scand 72: 81–91. doi: 10.3109/00016357.2013.822548 PMID: 23998481

12. Mejdare I, Axelsson S, Dahlén G, Espelid I, Norlund A, et al. (2014) Caries risk assessment. A systematic review. Acta Odontol Scand 72: 81–91. doi: 10.3109/00016357.2013.822548 PMID: 23998481

13. McDonagh MS, Whiting PF, Wilson PM, Sutton AJ, Chestnutt I, et al. (2000) Systematic review of water fluoridation. Bmj 321: 855–859. PMID:11021861

14. Ammari AB, Bloch-Zupan A, Ashley PF (2003) Systematic review of studies comparing the anti-caries efficacy of children’s toothpaste containing 600 ppm of fluoride or less with high fluoride toothpastes of 1,000 ppm or above. Caries Res 37: 85–92. PMID:12652045

15. Twetman S, Axelsson S, Dahlgren H, Holm AK, Kallestal C, et al. (2003) Caries-preventive effect of fluoride toothpaste: a systematic review. Acta Odontol Scand 61: 347–355. PMID:14960006

16. Bonner BC, Clarkson JE, Dobbyn L, Khanna S (2006) Slow-release fluoride devices for the control of dental decay. Cochrane Database Syst Rev: Cd005101. PMID:17054238

17. Cagetti MG, Campus G, Milia E, Lingstrom P (2013) A systematic review on fluoridated food in caries prevention. Acta Odontol Scand 71: 381–387. doi:10.3109/00016357.2012.690447 PMID: 22827733

18. Carvalho DM, Salazar M, Oliveira BH, Coutinho ES (2010) Fluoride varnishes and decrease in caries incidence in preschool children: a systematic review. Rev Bras Epidemiol 13: 139–149. PMID: 20683562

19. Petsesson LG, Twetman S, Dahlgren H, Norlund H, Holm AK, et al. (2004) Professional fluoride varnish treatment for caries control: a systematic review of clinical trials. Acta Odontol Scand 62: 170–176. PMID:15370638

20. Tubert-Jeannin S, Auclair C, Amsallem E, Tramini P, Gerbaud L, et al. (2011) Fluoride supplements (tablets, drops, lozenges or chewing gums) for preventing dental caries in children. Cochrane Database Syst Rev: Cd007592. doi:10.1002/14651858.CD007592.pub2 PMID: 22161414

21. Twetman S, Petersson L, Axelsson S, Dahlgren H, Holm AK, et al. (2004) Caries-preventive effect of sodium fluoride mouthrinses: a systematic review of controlled clinical trials. Acta Odontol Scand 62: 223–230. PMID: 15519419

22. Yeung CA, Hitchings JL, Macfarlane TV, Threlfall AG, Tickle M, et al. (2005) Fluoridated milk for preventing dental caries. Cochrane Database Syst Rev: Cd003876. PMID: 16034911

23. Ahovuo-Saloranta A, Fors H, Walsh T, Hiiri A, Nordblad A, et al. (2013) Sealants for preventing dental decay in the permanent teeth. Cochrane Database Syst Rev 3: Cd001830. doi:10.1002/14651858.CD001830.pub4 PMID: 23543512
24. Brazzelli M, McKenzie L, Fielding S, Fraser C, Clarkson J, et al. (2006) Systematic review of the effectiveness and cost-effectiveness of HealOzone for the treatment of occlusal pit/fissure caries and root caries. Health Technol Assess 10: iii–iv, ix–80.

25. Hiiri A, Ahovuo-Saloranta A, Nordblad A, Makela M (2010) Pit and fissure sealants versus fluoride varnishes for preventing dental decay in children and adolescents. Cochrane Database Syst Rev: Cd003067. doi: 10.1002/14651858.CD003067.pub3 PMID: 2038319

26. James P, Parnell C, Whelton H (2010) The caries-preventive effect of chlorhexidine varnish in children and adolescents: a systematic review. Caries Res 44: 333–340. doi: 10.1159/000315346 PMID: 20606432

27. Riley P, Lamont T (2013) Triclosan/copolymer containing toothpastes for oral health. Cochrane Database Syst Rev 12: CD010514. doi: 10.1002/14651858.CD010514.pub2 PMID: 24310847

28. Cooper AM O, 'Malley LA, Elison SN, Armstrong R, Burnside G, et al. (2013) Primary school-based behavioural interventions for preventing caries. Cochrane Database Syst Rev 5: Cd009378. doi: 10.1002/14651858.CD009378.pub2 PMID: 23726891

29. Davenport CF, Elley KM, Fry-Smith A, Taylor-Weetman CL, Taylor RS (2003) The effectiveness of routine dental checks: a systematic review of the evidence base. Br Dent J 195: 87–98; discussion 85. PMID: 12881749

30. Kay E, Locker D (1998) A systematic review of the effectiveness of health promotion aimed at improving oral health. Community Dent Health 15: 132–144. PMID: 10645682

31. Ricketts D, Lamont T, Innes NP, Kidd E, Clarkson JE (2013) Operative caries management in adults and children. Cochrane Database Syst Rev 3: Cd003808. doi: 10.1002/14651858.CD003808.pub3 PMID: 23543523

32. Yengopal V, Hameker SY, Patel N, Siegfried N (2009) Dental fillings for the treatment of caries in the primary dentition. Cochrane Database Syst Rev: Cd004483. doi: 10.1002/14651858.CD004483.pub2 PMID: 19370602

33. Dashash M, Yeung CA, Jamous I, Blinkhorn A (2013) Interventions for the restorative care of amelogenesis imperfecta in children and adolescents. Cochrane Database Syst Rev 6: CD007157. doi: 10.1002/14651858.CD007157.pub2 PMID: 23744349

34. Alavaikko S, Jaakkola MS, Tjaderhane L, Jaakkola JJ (2011) Asthma and caries: a systematic review and meta-analysis. Am J Epidemiol 174: 631–641. doi: 10.1093/aje/kwr129 PMID: 21828369

35. Andrade MR, Antunes LA, Soares RM, Leao AT, Maia LC, et al. (2013) Lower dental caries prevalence associated to chronic kidney disease: a systematic review. Pediatr Nephrol.

36. Hasslöf P, Twetman S (2007) Caries prevalence in children with cleft lip and palate—a systematic review of case-control studies. Int J Paediatr Dent 17: 319–319. PMID: 17633119

37. Hayden C, Bowler JO, Chambers S, Freeman R, Humphris G, et al. (2013) Obesity and dental caries in children: a systematic review and meta-analysis. Community Dent Oral Epidemiol 41: 289–308. doi: 10.1111/cdeo.12014 PMID: 23157709

38. Ahangari Z, Nasser M, Mahdian M, Fedorowicz Z, Marchesan MA (2010) Interventions for the management of external root resorption. Cochrane Database Syst Rev: Cd008003. doi: 10.1002/14651858.CD008003.pub2 PMID: 20596798

39. Belmondo FM, Macedo CR, Day PF, Saconato H, Fernandes Moca Trevisani V (2013) Interventions for treating traumatised permanent front teeth: luxated (dislodged) teeth. Cochrane Database Syst Rev 4: Cd006203. doi: 10.1002/14651858.CD006203.pub2 PMID: 23633394
46. Lourenco-Matharu L, Ashley PF, Furness S (2012) Sedation of children undergoing dental treatment. Cochrane Database Syst Rev 3: Cd003877. doi: 10.1002/14651858.CD003877.pub4 PMID: 22419289

47. Matharu L, Ashley PF (2006) Sedation of anxious children undergoing dental treatment. Cochrane Database Syst Rev: Cd003877. PMID: 16437466

48. Zhou Y, Cameron E, Forbes G, Humphris G (2011) Systematic review of the effect of dental staff behaviour on child dental patient anxiety and behaviour. Patient Educ Couns 85: 4–13. doi: 10.1016/j.pec.2010.08.002 PMID: 20807676

49. Hoole M, Scott H, Boganin C, Satur J, Kilpatrick N (2012) Body mass index and dental caries in children and adolescents: a systematic review of literature published 2004 to 2011. Syst Rev 1: 57. doi: 10.1186/2046-4053-1-57 PMID: 23171603

50. Reisine ST, Psoter W (2001) Socioeconomic status and selected behavioral determinants as risk factors for dental caries. J Dent Educ 65: 1009–1016. PMID: 11699971

51. Chenoweth R, Scott H, Leiser M, Minder T, Steurer J (2005) Are mutans streptococci detected in preschool children a reliable predictive factor for dental caries risk? A systematic review. Caries Res 40: 366–374. PMID: 16946603

52. Tellez M, Gomez J, Pretty I, Ellwood R, Ismail A (2012) Evidence on existing caries risk assessment systems: are they predictive of future caries? Community Dent Oral Epidemiol. 56(5): 388–397. doi: 10.3109/00016357.2012.690448 PMID: 22630355

53. Valaitis R, Hesch R, Passarelli C, Sheehan D, Sinton J (2000) A systematic review of the relationship between breastfeeding and early childhood caries. Can J Public Health 91: 411–417. PMID: 11200729

54. Azarpazhooh A, Main PA (2008) Fluoride varnish in the prevention of dental caries in children and adolescents: a systematic review. Todays FDA 20: 21–25, 27. PMID: 19186385

55. Espelid I (2009) Caries preventive effect of fluoride in milk, salt and tablets: a literature review. Eur Arch Paediatr Dent 10: 149–156. PMID: 19772644

56. Ismail AI, Hasson H (2008) Fluoride supplements, dental caries and fluorosis: a systematic review. J Am Dent Assoc 139: 1457–1468. PMID: 18978383

57. Marinho VC, Higgins JP, Sheiham A, Logan S (2003) Fluoride toothpastes for preventing dental caries in children and adolescents. Cochrane Database Syst Rev: Cd002278. PMID: 12535435

58. Marinho VC, Higgins JP, Sheiham A, Logan S (2004) Combinations of topical fluoride (toothpastes, mouthrinses, gels, varnishes) versus single topical fluoride for preventing dental caries in children and adolescents. Cochrane Database Syst Rev: Cd002781. PMID: 14973992

59. Marinho VC, Higgins JP, Logan S, Sheiham A (2003) Fluoride toothpastes (toothrinses, or moudrines, or gels, or varnishes) for preventing dental caries in children and adolescents. Cochrane Database Syst Rev: Cd002782. PMID: 14583954

60. Marinho VC, Higgins JP, Logan S, Sheiham A (2003) Fluoride mouthrinses for preventing dental caries in children and adolescents. Cochrane Database Syst Rev: Cd002783. PMID: 14973991
69. Marinho VC, Higgins JP, Logan S, Sheiham A (2002) Fluoride gels for preventing dental caries in children and adolescents. Cochrane Database Syst Rev: Cd002280. PMID: 12076446

70. Marinho VC, Worthington HV, Walsh T, Clarkson JE (2013) Fluoride varnishes for preventing dental caries in children and adolescents. Cochrane Database Syst Rev 7: Cd002279. doi: 10.1002/14651858.CD002279.pub2 PMID: 23846772

71. Santos AP, Oliveira BH, Nadanovsky P (2013) Effects of low and standard fluoride toothpastes on caries and fluorosis: systematic review and meta-analysis. Caries Res 47: 382–390. doi: 10.1159/000348492 PMID: 23572031

72. Dos Santos AP, Nadanovsky P, de Oliveira BH (2012) A systematic review and meta-analysis of the effects of fluoride toothpastes on the prevention of dental caries in the primary dentition of preschool children. Community Dent Oral Epidemiol.

73. Walsh T, Worthington HV, Glenny AM, Appelbe P, Marinho VC, et al. (2010) Fluoride toothpastes of different concentrations for preventing dental caries in children and adolescents. Cochrane Database Syst Rev: Cd007868. doi:10.1002/14651858.CD007868.pub2 PMID: 20091655

74. Wright JT, Hanson N, Ristic H, Whall CW, Estrich CG, et al. (2014) Fluoride toothpaste efficacy and safety in children younger than 6 years: a systematic review. J Am Dent Assoc 145: 182–189. doi: 10.14219/jada.2013.37 PMID: 24487610

75. Wong MC, Glenny AM, Tsang BW, Lo EC, Worthington HV, et al. (2010) Topical fluoride as a cause of dental fluorosis in children. Cochrane Database Syst Rev: Cd007693. doi:10.1002/14651858.CD007693.pub2 PMID: 20091645

76. Hujoel PP (2013) Vitamin D and dental caries in controlled clinical trials: systematic review and meta-analysis. Nutr Rev 71: 88–97. doi: 10.1111/j.1753-4887.2012.00544.x PMID: 23356636

77. Hujoel PP, Cunha-Cruz J, Banting DW, Loesche WJ (2006) Dental flossing and interproximal caries: a systematic review. J Dent Res 85: 298–305. PMID:16567548

78. Moynihan PJ, Kelly SA (2014) Effect on caries of restricting sugars intake: systematic review to inform WHO guidelines. J Dent Res 93: 8–18. doi: 10.1177/0022034513508954 PMID: 24323509

79. Twetman S, Keller MK (2012) Probiotics for caries prevention and control. Adv Dent Res 24: 98–102. doi: 10.1177/0022034512449465 PMID: 22899689

80. Zhang Q, van Palenstein Helderman WH, van’t Hof MA, Truin GJ (2006) Chlorhexidine varnish for preventing dental caries in children, adolescents and young adults: a systematic review. Eur J Oral Sci 114: 449–455. PMID: 17184224

81. Ammari JB, Baqain ZH, Ashley PF (2007) Effects of programs for prevention of early childhood caries. A systematic review. Med Princ Pract 16: 437–442. PMID: 17917443

82. Tellez M, Gomez J, Kaur S, Pretty IA, Ellwood R, et al. (2012) Non-surgical management methods of noncavitated carious lesions. Community Dent Oral Epidemiol.

83. Bader JD, Rozier RG, Lohr KN, Frame PS (2004) Physicians’ roles in preventing dental caries in preschool children: a summary of the evidence for the U.S. Preventive Services Task Force. Am J Prev Med 26: 315–325. PMID: 15110059

84. Bhaskar V, McGraw KA, Dívaris K (2014) The importance of preventive dental visits from a young age: systematic review and current perspectives. Clin Cosmet Investig Dent 8: 21–27. doi:10.2147/CCIDE.S41499 PMID: 24672258

85. Simancas-Pallares MA, Diaz-Caballero AJ, Luna-Ricardo LM (2010) Mineral trioxide aggregate in primary teeth pulpotomy. A systematic literature review. Med Oral Patol Oral Cir Bucal 15: e942–946. PMID: 20526246

86. Chi DL (2013) Dental caries prevalence in children and adolescents with cystic fibrosis: a qualitative systematic review and recommendations for future research. Int J Paediatr Dent 23: 376–386. doi: 10.1111/ijpd.12042 PMID: 23758751

87. Kåléstål C, Norlund A, Söder B, Nordenram G, Dahlgren H, et al. (2003) Economic evaluation of dental caries prevention: a systematic review. Acta Odontol Scand 61: 341–346. PMID: 14960005

88. Aartman IH, van Everdingen T, Hoogstraten T, Schuurs AH (1998) Self-report measurements of dental anxiety and fear in children: a critical assessment. ASDC J Dent Child 65: 252–258, 229–230. PMID: 9740944

89. Ahovuo-Saloranta A, Hiiri A, Nordblad A, Makela M, Worthington HV (2008) Pit and fissure sealants for preventing dental decay in the permanent teeth of children and adolescents. Cochrane Database Syst Rev: Cd001830. doi: 10.1002/14651858.CD001830.pub3 PMID: 18843625
91. Ahovuo-Saloranta A, Hiiri A, Nordblad A, Worthington H, Makela M (2004) Pit and fissure sealants for preventing dental decay in the permanent teeth of children and adolescents. Cochrane Database Syst Rev: Cd001830. PMID: 15266455
92. Aleksejuniene J, Brondani MA, Pattanaporn K, Brukiene V (2010) Best practices for dental sealants in community service-learning. J Dent Educ 74: 951–960. PMID: 20837736
93. Alves Filho P, Santos RV, Vettore MV (2014) [Factors associated with dental caries and periodontal diseases in Latin American indigenous peoples: a systematic review]. Rev Panam Salud Publica 35: 67–77. PMID: 24626450
94. Azarpazhooh A, Main PA (2008) Pit and fissure sealants in the prevention of dental caries in children and adolescents: a systematic review. J Can Dent Assoc 74: 171–177. PMID: 18353204
95. Azarpazhooh A, Main PA (2009) Fluoride varnish in the prevention of dental caries in children and adolescents: a systematic review. Hawaii Dent J 40: 6–7, 10–13; quiz 17. PMID: 20043452
96. Azarpazhooh A, Main PA (2009) Efficacy of dental prophylaxis (rubber cup) for the prevention of caries and gingivitis: a systematic review of literature. Br Dent J 207: E14; discussion 328–329. doi: 10.1038/sj.bdj.2009.899 PMID: 19816459
97. Bader JD, Shugars DA (2006) The evidence supporting alternative management strategies for early occlusal caries and suspected occlusal dentinal caries. J Evid Based Dent Pract 6: 91–100. PMID: 17138407
98. Beirne P, Clarkson JE, Worthington HV (2007) Recall intervals for oral health in primary care patients. Cochrane Database Syst Rev: Cd004346. PMID: 17943814
99. Brocklehurst P, Price J, Glenny AM, Tickle M, Birch S, et al. (2013) The effect of different methods of remuneration on the behaviour of primary care dentists. Cochrane Database Syst Rev 11: CD009853. doi: 10.1002/14651858.CD009853.pub2 PMID: 24184466
100. Chou R, Cantor A, Zakher B, Mitchell JP, Pappas M (2013) Preventing dental caries in children <5 years: systematic review updating USPSTF recommendation. Pediatrics 132: 332–350. doi: 10.1542/peds.2013-1469 PMID: 23858419
101. Delpier T, Giordana S, Wedin BM (2013) Decreasing sugar-sweetened beverage consumption in the rural adolescent population. J Pediatr Health Care 27: 470–478. doi: 10.1016/j.pedhc.2012.07.002 PMID: 22932228
102. Castilho AR, Mialhe FL, Barbosa Tde S, Puppin-Rontani RM (2013) Influence of family environment on children’s oral health: a systematic review. J Pediatr (Rio J) 89: 116–123. doi: 10.1016/j.jped.2013.03.014 PMID: 23642420
103. Frencken JE, Leal SC, Navarro MF (2012) Twenty-five-year atraumatic restorative treatment (ART) approach: a comprehensive overview. Clin Oral Investig 16: 1337–1346. doi: 10.1007/s00784-012-0783-4 PMID: 22824915
104. Font-Ribera L, Garcia-Continente X, Davo-Blanes MC, Ariza C, Diez E, et al. (2014) [The study of social inequalities in child and adolescent health in Spain.]. Gac Sanit.
105. Gawade PL, Hudson MM, Kaste SC, Neglia JP, Constine LS, et al. (2014) A systematic review of dental late effects in survivors of childhood cancer. Pediatr Blood Cancer 61: 407–416. doi: 10.1002/pbc.24842 PMID: 24427490
106. Haugejorden O (1996) Using the DMF gender difference to assess the "major" role of fluoride toothpastes in the caries decline in industrialized countries: a meta-analysis. Community Dent Oral Epidemiol 24: 369–375. PMID: 9007351
107. Ijaz S, Croucher RE, Marinho VC (2010) Systematic reviews of topical fluorides for dental caries: a review of reporting practice. Caries Res 44: 579–592. doi: 10.1159/000322132 PMID: 21150202
108. Kantovitz KR, Pascon FM, Rontani RM, Constine LS, et al. (2014) A systematic review of dental late effects in survivors of childhood cancer. Pediatr Blood Cancer 61: 407–416. doi: 10.1002/pbc.24842 PMID: 24427490
109. Matharu LM, Ashley PF (2005) Sedation of anxious children undergoing dental treatment. Int Dent J.
110. Llodra JC, Bravo M, Delgado-Rodriguez M, Baca P, Galvez R (1993) Factors influencing the effectiveness of sealants—a meta-analysis. Community Dent Oral Epidemiol 21: 261–268. PMID: 8222598
111. Marinho VC, Higgins JP, Logan S, Sheiham A (2002) Fluoride varnishes for preventing dental caries in children and adolescents. Cochrane Database Syst Rev: Cd002279. PMID: 12137653
112. Marino RJ, Khan AR, Morgan M (2013) Systematic review of publications on economic evaluations of caries prevention programs. Caries Res 47: 265–272. doi: 10.1159/000346917 PMID: 23407213
114. Marinho VC (2009) Cochrane reviews of randomized trials of fluoride therapies for preventing dental caries. Eur Arch Paediatr Dent 10: 183–191. PMID: 19772849

115. Mejäre I, Lingström P, Petersson LG, Holm AK, Twetman S, et al. (2003) Caries-preventive effect of fissure sealants: a systematic review. Acta Odontol Scand 61: 321–330. PMID: 14960003

116. Ribeiro NM, Ribeiro MA (2004) [Breastfeeding and early childhood caries: a critical review]. J Pediatr (Rio J) 80: S199–210. PMID: 15583771

117. Salone LR, Vann WF Jr., Dee DL (2013) Breastfeeding: an overview of oral and general health benefits. J Am Dent Assoc 144: 143–151. PMID: 23372130

118. Skinnier J, Johnson G, Phelan C, Blinkhorn A (2013) Dental caries in 14- and 15-year-olds in New South Wales, Australia. BMC Public Health 13: 1060. doi: 10.1186/1471-2458-13-1060 PMID: 24209635

119. Steyn NP, Temple NJ (2012) Evidence to support a food-based dietary guideline on sugar consumption in South Africa. BMC Public Health 12: 502. doi: 10.1186/1471-2458-12-502 PMID: 22762394

120. Tanzer JM, Livingston J, Thompson AM (2001) The microbiology of primary dental caries in humans. J Dent Educ 65: 1028–1037. PMID: 11699974

121. Theodoratou E, Tzoulaki I, Zgaga L, Ioannidis JP (2014) Vitamin D and multiple health outcomes: umbrella review of systematic reviews and meta-analyses of observational studies and randomised trials. BMJ 348: g2035. doi: 10.1136/bmj.g2035 PMID: 24690624

122. Treasure ET, Chestnutt IG, Whiting P, McDonagh M, Wilson P, et al. (2002) The York review—a systematic review of public water fluoridation: a commentary. Br Dent J 192: 495–497. PMID: 12047121

123. Weyant RJ, Tracy SL, Anselmo TT, Beltran-Aguilar ED, Donly KJ, et al. (2013) Topical fluoride for caries prevention: executive summary of the updated clinical recommendations and supporting systematic review. J Am Dent Assoc 144: 1279–1291. PMID: 24177407

124. Grant MJ, Booth A (2009) A typology of reviews: an analysis of 14 review types and associated methodologies. Health Info Libr J 26: 91–108. doi: 10.1111/j.1471-1842.2009.00848.x PMID: 19490148

125. Smail-Faugeron V, Fron Chabouis H, Durieux P, Attal JP, Muller-Bolla M, et al. (2013) Development of a core set of outcomes for randomized controlled trials with multiple outcomes—example of pulp treatments of primary teeth for extensive decay in children. PLoS One 8: e51908. doi: 10.1371/journal.pone.0051908 PMID: 23309555

126. Rotfyllning SBU. En systematisk litteraturöversikt. Stockholm: Statens beredning för medicinsk utvärdering (SBU); 2010 SBU-rapport nr 203. In Swedish. Summary in English.ISBN 978–91–85413–39–3.