Craniofacial Ciliopathies Reveal Specific Requirements for GLI Proteins during Development of the Facial Midline

Ching-Fang Chang, Ya-Ting Chang, Grethel Millington, Samantha A. Brugmann

Division of Plastic Surgery, Department of Surgery and Division of Developmental Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati

* samantha.brugmann@cchmc.org

Abstract

Ciliopathies represent a broad class of disorders that affect multiple organ systems. The craniofacial complex is among those most severely affected when primary cilia are not functional. We previously reported that loss of primary cilia on cranial neural crest cells, via a conditional knockout of the intraflagellar transport protein KIF3a, resulted in midfacial widening due to a gain of Hedgehog (HH) activity. Here, we examine the molecular mechanism of how a loss of primary cilia can produce facial phenotypes associated with a gain of HH function. We show that loss of intraflagellar transport proteins (KIF3a or IFT88) caused aberrant GLI processing such that the amount of GLI3FL and GLI2FL was increased, thus skewing the ratio of GLI3FL to GLI3R in favor of the FL isoform. Genetic addition of GLI3R partially rescued the ciliopathic midfacial widening. Interestingly, despite several previous studies suggesting midfacial development relies heavily on GLI3R activity, the conditional loss of GLI3 alone did not reproduce the ciliopathic phenotype. Only the combined loss of both GLI2 and GLI3 was able to phenocopy the ciliopathic midfacial appearance. Our findings suggest that ciliopathic facial phenotypes are generated via loss of both GLI3R and GLI2R and that this pathology occurs via a de-repression mechanism. Furthermore, these studies suggest a novel role for GLI2R in craniofacial development.

Author Summary

Primary cilia are ubiquitous organelles that serve to transduce molecular signals within a cell. Loss of functional primary cilia results in a disease class called ciliopathies. Ciliopathies have a broad range of phenotypes; however, severe facial anomalies are commonly associated with this disease class. The facial midline is particularly sensitive to loss of primary cilia, frequently undergoing a significant widening. This phenotype is similar to that which occurs when there are gain-of-function defects in the Sonic Hedgehog pathway. This manuscript addresses the molecular basis for midfacial widening in ciliopathies. Importantly, we determine mechanisms to both rescue and phenocopy the ciliopathic
midfacial phenotype. In sum, this work provides novel insight into the molecular mechanisms of midfacial patterning and the extent to which loss of cilia impact that process.

Introduction

Midfacial disorders encompass a spectrum of conditions that affect the development of the facial midline. The full spectrum of medial craniofacial dysplasias range from conditions that exhibit tissue deficiencies or agenesis (hypotelorism, cyclopia) to those that exhibit tissue excess or duplication (hypertelorism, frontonasal dysplasia). The etiology of these conditions are heterogeneous; however, there has been an established linkage between activity of the Hedgehog (HH) pathway and midfacial growth [1–7]. Reduced levels of HH activity are associated with a collapse of midfacial tissues [2, 8, 9], whereas increased levels of HH activity are associated with a widening or duplication of midfacial tissues [1, 7, 10, 11]. Although this correlation between the HH pathway and midfacial disorders is well established, the cellular and molecular mechanisms by which these disorders occur remain nebulous.

GLIs are the major transcriptional effectors of the HH pathway. In vertebrates, the GLI family of proteins consists of three members (GLI1-3). GLI2 and GLI3 act as bifunctional transcription factors that contain an N-terminal repression domain, as well as a C-terminal transcriptional activation domain. Both proteins can be converted from full-length (GLIFL) transcriptional activators (GLIA) into truncated repressors (GLIR) through regulated proteolytic processing [12, 13]. GLI2 acts as the primary transcriptional activator of the HH pathway [14], yet it has been reported to contribute to some repressor activity [15–17]. GLI3 primarily functions as a transcriptional repressor of the HH pathway [18–21], although it has been shown to exert weak activator activity as well [22–24]. There is evidence of GLI2 and GLI3 having distinct, partially redundant roles during development [25], yet it is unclear if and how they compensate for one another during craniofacial development. The ratio of GLIA to GLIR is believed to dictate the net activity of the HH pathway [26, 27]; however, the exact mechanism by which the graded intracellular activity of GLIA and GLIR is generated remains unknown and is the subject of several ongoing studies.

Recently, several groups have contributed to piecing together a potential primary cilia-dependent mechanism for processing of a HH signal (reviewed in [28–30]). Integration of data from these studies allows for the following hypothesized mechanism. Prior to processing, GLI proteins associate with Suppressor of Fused (SUFU), a conserved protein known to regulate the activity of GLI transcription factors via modulating GLI processing, stabilization and subcellular localization [31–34]. In the presence of a HH signal, Smoothened (SMO) is translocated to the cilium [35] and the SUFU-GLIFL complex traffics through the cilium [36]. Activated ciliary SMO then works through KIF7 to promote the dissociation of the inhibitory SUFU-GLIFL complex [33, 34, 37]. Unbound GLIFL is then processed into an activator and moves to the nucleus to promote expression of downstream targets. In the absence of the HH ligand, SMO is not translocated into the cilium and thus cannot antagonize SUFU. SUFU remains in complex with GLI; GLI is proteolytically processed into GLIR and the SUFU-GLIR complex moves to the nucleus where it recruits the Sap18-Sin3 co-repressor complex to repress GLI target genes [38–41].

Loss of functional primary cilia results in a wide range of disorders called ciliopathies. 30% of ciliopathies can be primarily defined by their craniofacial phenotypes. Furthermore, 70% of craniofacial ciliopathies have midfacial defects, reminiscent of those with HH or GLI mutations [42]. To understand how ciliary defects affect GLI-mediated HH pathway activity during
midfacial patterning, we conditionally knocked out intraflagellar transport (IFT) proteins in cranial neural crest cells (NCCs) and examined GLI isoform expression and function. Taken together, our data add mechanistic insights into how the cilium and GLI proteins function during midfacial development.

Results

Conditional loss of anterograde intraflagellar transport proteins in NCCs produces midfacial defects

Our previous work showed that the conditional loss of *Kif3a* in NCCs (*Kif3a*^fl/fl^;*Wnt1-Cre*) generated severe midfacial defects, including midfacial widening, duplicated nasal septum, agenesis of the corpus callosum and aglossia [7]. To determine if the midfacial phenotypes were *Kif3a*-specific, or if the loss of other anterograde intraflagellar transport proteins produced this phenotype, we generated *Ift88*^fl/fl^;*Wnt1-Cre* embryos and compared the midfacial phenotypes to that of *Kif3a*^fl/fl^;*Wnt1-Cre* embryos. *Ift88*^fl/fl^;*Wnt1-Cre* embryos had a striking resemblance to *Kif3a*^fl/fl^;*Wnt1-Cre* embryos (Fig 1, Tables 1 and 2). Relative to wild-type embryos, both *Kif3a*^fl/fl^;*Wnt1-Cre* (n = 28) and *Ift88*^fl/fl^;*Wnt1-Cre* (n = 26) exhibited significant midfacial widening, as determined by internasal width (Fig 1A–1C; 1J). Furthermore, both mutants exhibited a bilateral cleft secondary palate (Fig 1D–1F). We had previously determined that the facial skeleton of *Kif3a*^fl/fl^;*Wnt1-Cre* mutants was highly dysmorphic [7]. Specifically, there was a duplication of the nasal septum underlying the severe midfacial widening. Safranin-O staining revealed that similar to *Kif3a*^fl/fl^;*Wnt1-Cre* embryos, *Ift88*^fl/fl^;*Wnt1-Cre* embryos also had a duplicated nasal septum (Fig 1G–1I, n = 2). This striking similarity between the midfacial phenotypes of *Kif3a*^fl/fl^;*Wnt1-Cre* and *Ift88*^fl/fl^;*Wnt1-Cre* mutants suggested that the underlying mechanisms for midfacial widening were not *Kif3a*-specific, but rather due to a ciliary process in which anterograde IFT proteins participated. Based on data linking midfacial development and primary cilia with the HH pathway, we next examined if GLI post-translational processing was affected in the frontonasal prominence (FNP) of *Kif3a*^fl/fl^;*Wnt1-Cre* and *Ift88*^fl/fl^;*Wnt1-Cre* embryos.

Loss of Kif3a and Ift88 in NCCs disrupts production of GLI isoforms

Primary cilia have previously been implicated in GLI processing [26, 30]. Several ciliary mutants exhibit aberrant production of full-length (FL) and cleaved GLI isoforms, which affects the overall ratio of full-length GLI activator (GLIA) to GLI repressor (GLIR) [26, 43]. To determine if loss of *Kif3a* and *Ift88* impacted the production of GLIFL and GLIR, e11.5 FNPs (area medial to the medial aspect nasal pit and ventral to the dorsal-most aspect of the nasal pit; inset Fig 2A) from each mutant were isolated for Western blot analysis of full-length GLI3 (GLI3FL), cleaved GLI3 (GLI3R), full-length GLI2 (GLI2FL) and cleaved GLI2 (GLI2R) isoforms (Fig 2). The amount of both GLI3FL and GLI2FL isoform was increased in the FNP of both *Kif3a*^fl/fl^;*Wnt1-Cre* and *Ift88*^fl/fl^;*Wnt1-Cre* mutants (Fig 2A), whereas production of GLI3R and GLI2R in *Kif3a*^fl/fl^;*Wnt1-Cre* and *Ift88*^fl/fl^;*Wnt1-Cre* embryos was reduced relative to that in the wild-type FNPs (Fig 2A). We next performed densitometry to quantitate how altered production of GLI isoforms affected the overall ratio of GLIFL to GLIR protein. Densitometry analysis determined that there was an approximate 8-fold and 5.5-fold increase of the GLI3FL:GLI3R ratio in the FNPs of *Kif3a*^fl/fl^;*Wnt1-Cre* and *Ift88*^fl/fl^;*Wnt1-Cre* mutants, respectively (Fig 2B) and an approximate 9-fold and 4.7-fold increase in GLI2FL:GLI2R ratio in the FNPs of *Kif3a*^fl/fl^;*Wnt1-Cre* and *Ift88*^fl/fl^;*Wnt1-Cre* mutants, respectively (Fig 2C). We speculate that the more significant increase in GLI expression in *Kif3a*^fl/fl^;*Wnt1-Cre* mutants relative to
Fig 1. Loss of anterograde intraflagellar transport proteins in NCCs results in severe midfacial widening. (A-C) Frontal view, (D-F) palatal view and (G-I) Safranin-O staining of transverse sections from e15.5 (A, D, G) wild-type, (B, E, H) Kif3a\(^{fl/fl}\);Wnt1-Cre and (C, F, I) Ift88\(^{fl/fl}\);Wnt1-Cre heads. Kif3a\(^{fl/fl}\);Wnt1-Cre and Ift88\(^{fl/fl}\);Wnt1-Cre have severe facial widening (B, C; dotted black lines), bilateral cleft of the secondary palate (E, F; black arrows) and duplication of the nasal septum (H, I; dotted white lines). (J) Quantitative measurements of the distance between nasal pits on e13.5 embryos show midfacial widening in both Kif3a\(^{fl/fl}\);Wnt1-Cre (n = 8) and Ift88\(^{fl/fl}\);Wnt1-Cre (n = 3) is significant, relative to wild-type embryos (n = 12). Statistical analysis was performed by student t-test (*P<0.05). Scale bars = 1000 µm.

doi:10.1371/journal.pgen.1006351.g001
Ift88^{fl/fl};Wnt1-Cre mutants stems from the independent function of these proteins within the cilium. The more significant increase in GLI protein expression is in line with the Ift3a^{fl/fl};Wnt1-Cre phenotype being slightly more severe than the Ift88^{fl/fl};Wnt1-Cre phenotype. The specificity of the antibodies for GLI2 and GLI3 and the presence of GLI3 and GLI2 full-length and repressor isoforms was confirmed by performing Western blot analysis and noting the absence of bands in Glil^{0/0};Wnt1-Cre and Glil2^{0/0};Wnt1-Cre embryos (S1 Fig) and allowing for longer exposure of film (S2 Fig), respectively.

GLI proteins can be degraded in the cytoplasm or shuttled to the nucleus, where they act as transcriptional activators or repressors. To determine if the robust increase in GLI3FL and GLI2FL detected via Western blot was conserved in the nucleus, we performed nuclear fractionation analysis (Fig 2D). Nuclear GLI3FL and GLI2FL were increased in the FNP of both Kif3a^{fl/fl};Wnt1-Cre and Ift88^{fl/fl};Wnt1-Cre embryos, whereas nuclear GLI3R was slightly reduced in the FNP of both Kif3a^{+/+};Wnt1-Cre and Ift88^{+/-};Wnt1-Cre embryos. Levels of nuclear GLI2R appeared similar between wild-type and Kif3a^{fl/fl};Wnt1-Cre embryos, yet appeared to decrease slightly in Ift88^{fl/fl};Wnt1-Cre embryos. Overall, the loss of cilia in NCCs caused an increase in the amount of nuclear GLI3FL/GLI2FL and a decrease in nuclear GLI3R.

Table 1. Table of genotype and phenotype frequency for wild-type, Kif3a^{fl/fl};Wnt1-Cre and Kif3a^{fl/fl};Wnt1-Cre;Gli3^{d699/+}.

Genotype	Stage	n (%)	Frontal widening	Bilateral cleft	Duplicated nasal septum
Control	e11.5	117 (73.12%)	0 (0%)	NA	NA
Kif3a^{fl/fl};Wnt1-Cre	e11.5	22 (13.75%)	22 (100%)	NA	NA
Kif3a^{fl/fl};Wnt1-Cre;Gli3^{d699/+}	e11.5	21 (13.13%)	0 (0%)	NA	NA
Control	e14.5	12 (54.55%)	0 (0%)	0 (0%)	0 (0%)
Kif3a^{fl/fl};Wnt1-Cre	e14.5	6 (27.27%)	6 (100%)	6 (100%)	6 (100%)
Kif3a^{fl/fl};Wnt1-Cre;Gli3^{d699/+}	e14.5	4 (18.18%)	0 (0%)	0 (0%)	0 (0%)

Genotypes of control including Kif3a^{fl/fl}, Kif3a^{+/+}, Kif3a^{d699/+};Wnt1-Cre, Kif3a^{fl/fl},Gli3^{d699/+}, Kif3a^{d699/+},Gli3^{d699/+}, Kif3a^{d699/+};Wnt1-Cre;Gli3^{d699/+}.

*n, number of embryos analyzed; %, percentage relative to the number of embryos analyzed. Frontal widening is defined by a distance between nasal pits greater than 1.5 mm in e11.5 embryos and greater than 1.8 mm e14.5 embryos. Bilateral clefting is defined by a patent area greater than 0.130 mm² in e14.5 embryos.

Table 2. Table of genotype and phenotype frequency for wild-type, Ift88^{fl/fl};Wnt1-Cre and Ift88^{fl/fl};Wnt1-Cre;Gli3^{d699/+}.

Genotype	stage	n (%)	Frontal widening	Bilateral cleft	Duplicated nasal septum
Control	e11.5	134 (75.70%)	0 (0%)	NA	NA
Ift88^{fl/fl};Wnt1-Cre	e11.5	24 (13.56%)	24 (100%)	NA	NA
Ift88^{fl/fl};Wnt1-Cre;Gli3^{d699/+}	e11.5	19 (10.74%)	0 (0%)	NA	NA
Control	e14.5	7 (63.64%)	0 (0%)	0 (0%)	0 (0%)
Ift88^{fl/fl};Wnt1-Cre	e14.5	2 (18.18%)	2 (100%)	2 (100%)	2 (100%)
Ift88^{fl/fl};Wnt1-Cre;Gli3^{d699/+}	e14.5	2 (18.18%)	0 (0%)	0 (0%)	0 (0%)

Genotypes of control including Ift88^{fl/fl}, Ift88^{+/-}, Ift88^{+/-};Wnt1-Cre, Ift88^{fl/fl},Gli3^{d699/+}, Ift88^{+/-},Gli3^{d699/+}, Ift88^{+/-};Wnt1-Cre;Gli3^{d699/+}.

*n, number of embryos analyzed; %, percentage relative to the number of total embryos (total embryos for e11.5 n = 177; for e14.5 n = 11). FNP: facial nasal process; NCC: neural crest cell.
GLI2R. Furthermore, this alteration in the production of GLI isoforms resulted in a skewing of the GLIFL to GLIR ratio in favor of the GLIFL isoform. It is well established that a net gain of HH function produces midfacial widening [1]. The increased GLIFL to GLIR ratio posed two possible molecular mechanisms for producing HH-dependent midfacial widening: (1) a loss of GLIR activity (de-repression) [44], or (2) a gain of GLIA activity. Using genetic and biochemical approaches, we attempted to determine which mechanism was responsible for midfacial widening in ciliopathic mutants.

Genetic addition of GLI3R in ciliary mutants can partially rescue ciliopathic midfacial phenotypes

GLI3 predominantly acts as the repressor of the HH pathway (reviewed in [45]), and loss of GLI3R has been linked to midfacial widening [11, 46, 47]. To test if reduced GLI3R is causal for ciliopathic midfacial phenotypes, we genetically increased GLI3R levels with the addition of one allele of \(\text{Gli3}^{\Delta 699} \) into \(\text{Kif3a}^{\text{fl/fl}}; \text{Wnt1-Cre} \) mutants. \(\text{Gli3}^{\Delta 699} \) encodes a C-terminally truncated \(\text{GLI3}^{\Delta 699} \)R that mimics the cleaved GLI3R [48]. \(\text{Kif3a}^{\text{fl/fl}}; \text{Wnt1-Cre}; \text{Gli3}^{\Delta 699/+} (n = 25) \) embryos showed a reduction in the internasal width, relative to \(\text{Kif3a}^{\text{fl/fl}}; \text{Wnt1-Cre} \) mutants (Fig 3A–3C; Table 1). The reduction in midfacial widening was accompanied by a less patent palate (Fig 3D–3F; Table 1). Most notably, the duplicated nasal septum of the \(\text{Kif3a}^{\text{fl/fl}}; \text{Wnt1-Cre} \) mutants was restored to a singular cartilaginous element in \(\text{Kif3a}^{\text{fl/fl}}; \text{Wnt1-Cre}; \text{Gli3}^{\Delta 699/+} \) embryos (Fig 3G–3I; Table 1). We repeated these rescue experiments by crossing \(\text{Gli3}^{\Delta 699} \) into \(\text{Ift88}^{\text{fl/fl}}; \text{Wnt1-Cre} \) mutants. Not surprisingly, given the lack of axonemal extension in \(\text{Ift88}^{\text{fl/fl}}; \text{Wnt1-Cre} \) mutants (S3A and S3B Fig), we observed a similar improvement in the midfacial phenotypes of \(\text{Ift88}^{\text{fl/fl}}; \text{Wnt1-Cre}; \text{Gli3}^{\Delta 699/+} \) embryos (n = 21) relative to \(\text{Ift88}^{\text{fl/fl}}; \text{Wnt1-Cre} \) mutants (S3C–S3E Fig; Table 2). Thus, based on these three phenotypic characteristics, we concluded that genetic addition of GLI3R produced a partial rescue of ciliopathic midfacial widening. We referred to the rescue as partial, because, despite a phenotypic improvement, \(\text{Kif3a}^{\text{fl/fl}}; \text{Wnt1-Cre}; \text{Gli3}^{\Delta 699/+} \) and \(\text{Ift88}^{\text{fl/fl}}; \text{Wnt1-Cre}; \text{Gli3}^{\Delta 699/+} \) embryos still exhibited craniofacial anomalies: midfacial widening (compare Fig 3A and 3C) and shorter proximal-distal length along the nasal septum (compare
beads and then with cell lysate (Fig 4A) from the facial prominences of wild-type, endogenous GBR (Fig 4A). The
GBRs, we generated a biotin-labeled oligo for the genes. To determine if GLI3 generated in ciliary mutants was able to recognize and occupy
proteins bind to consensus GLI binding regions (GBRs) within the regulatory regions of target
GLI proteins act as the key transcription factors for transduction of a HH signal. To do so, GLI
GLI3 binding to GLI binding regions is altered in ciliary mutants

Fig 3G and 3I; S3C and S3E Fig). (J) Western blot analysis of GLI3 expression in wild-type, Kif3a Δ699/Δ699; Wnt1-Cre and Kif3a Δ699/Δ699; Wnt1-Cre; Gli3 Δ699/Δ699 facial prominences. Asterisk denotes expression of
Gli3 Δ699R GADPH was used as the loading control. (K) Quantitative analysis of Western blot in (J) by ImageJ (n = 3). GLI3FL to GLI3R ratio is significantly increased in Kif3a Δ699/Δ699; Wnt1-Cre compared to wild-type. However, the ratio is significantly reduced in Kif3a Δ699/Δ699; Wnt1-Cre; Gli3 Δ699/Δ699 compared to Kif3a Δ699/Δ699; Wnt1-Cre. Statistical analysis was performed by student t-test (*P < 0.01), with three separate Western blots. (L-N) Phospho-Histone H3 (pHH3) staining of FNP mesenchyme in e11.5 embryos. (O) Quantitative measurement of pHH3 positive cells in the FNP of wild-type (n = 3; 7 consecutive, 8 μm sections), Kif3a Δ699/Δ699; Wnt1-Cre (n = 3; 7 consecutive 8 μm sections) and Kif3a Δ699/Δ699; Wnt1-Cre; Gli3 Δ699/Δ699 (n = 3; 12 consecutive, 8 μm sections) embryos. Statistical analysis was performed by student t-test (*P < 0.05). Scale bars = 1000 μm. Inset schematic of facial prominences in J indicate FNP, maxillary prominence (MXP) and mandibular prominence (MNP) (red) were harvested for the experiment.

doi:10.1371/journal.pgen.1006351.g003

Fig 3G and 3I; S3C and S3E Fig). Gli3 Δ699/+ and Gli3 Δ699/+Δ699 embryos did not display any obvious craniofacial defects, despite the reduction or absence of GLI3A (S4 Fig), further supporting the hypothesis that loss of the GLI3R rather than the gain of the GLI3A contributed to the midfacial widening.

To confirm that addition of one Gli3 Δ699 allele molecularly restored the amount of GLI3R to wild-type levels, we performed Western blot analysis on e11.5 wild-type, Kif3a Δ699/Δ699; Wnt1-Cre and Kif3a Δ699/Δ699; Wnt1-Cre; Gli3 Δ699/+ facial prominences (inset Fig 3I). Introduction of Gli3 Δ699R (Fig 3J asterisk) increased the total amount of GLI3R in Kif3a Δ699/Δ699; Wnt1-Cre; Gli3 Δ699/+ embryos to a level comparable to wild-type, and thus restored the ratio of GLI3FL to GLI3R closer to that of wild-type embryos (Fig 3K). Again, these results were similar to what was observed in Ift88 Δ699/Δ699; Wnt1-Cre; Gli3 Δ699/+ facial prominences (S3F Fig). Finally, our previous work suggested that the onset of midfacial widening in Kif3a Δ699/Δ699; Wnt1-Cre was due to increased midfacial proliferation within the FNP prior to condensation of the nasal septum [7]. Phospho-Histone H3 (pHH3) staining confirmed increased proliferation in the distal FNP of Kif3a Δ699/Δ699; Wnt1-Cre, relative to wild-type embryos (Fig 3L and 3M). Introduction of the Gli3 Δ699 allele significantly reduced pHH3 staining, suggesting that proliferation was restored to that of wild-type levels (Fig 3N and 3O; n = 3). These data, in conjunction with partial rescue of the craniofacial phenotype, suggested that aberrant HH pathway activity, via reduced GLI3R activity, was the molecular basis of ciliopathic midfacial widening.

GLI3 binding to GLI binding regions is altered in ciliary mutants

GLI proteins act as the key transcription factors for transduction of a HH signal. To do so, GLI proteins bind to consensus GLI binding regions (GBRs) within the regulatory regions of target genes. To determine if GLI3 generated in ciliary mutants was able to recognize and occupy GBRs, we generated a biotin-labeled oligo for the Patched (Ptch) promoter containing one endogenous GBR (Fig 4A). The Ptch oligo was incubated with streptavidin conjugated Dynabeads and then with cell lysate (Fig 4A) from the facial prominences of wild-type, Kif3a Δ699/Δ699; Wnt1-Cre mutants or Kif3a Δ699/Δ699; Wnt1-Cre; Gli3 Δ699/+ rescue embryos (inset Fig 4A and 4B). Pull-down and subsequent Western blot experiments revealed that in wild-type facial prominences, GLI3R dominated the binding of GBRs (Fig 4B). We repeated this experiment in Kif3a Δ699/Δ699; Wnt1-Cre mutant facial prominences and found two interesting results. First, despite lacking proper ciliary-dependent post-translational processing, GLI3 generated in ciliary mutants was still able to recognize and bind to GBRs. Second, the distribution of GLI3FL to GLI3R binding to the synthesized GBRs was altered in the facial prominences of the Kif3a Δ699/Δ699; Wnt1-Cre mutant
Cilia-Dependent Gli Processing in Craniofacial Development

A

B

GLI binding region pull-down

Input

	WT	Kif3a^{+/+}; Wnt1-Cre	Kif3a^{+/+}; Wnt1-Cre; GlI3^{fl/fl}
GLI3^{FL}	[image]	[image]	[image]
GLI3^R	[image]	[image]	[image]

Biotin-oligo: + + + + + + +

Oligo: - + - + - + +

C

Wild-type

Kif3a^{+/+}; Wnt1-Cre

Kif3a^{+/+}; Wnt1-Cre; GlI3^{fl/fl}

D

Input

IP: αGLI3

	WT	Kif3a^{+/+}; Wnt1-Cre	Kif3a^{+/+}; Wnt1-Cre
SUFU GLI3	[image]	[image]	[image]

E

Wild-type

Kif3a^{+/+}; Wnt1-Cre

Cyt	Nuc
SUFU GLI3	[image]
G4PDH	[image]
LAMIN	[image]
GLIFL produced in constitutive inhibition, leading to the loss of GLI activator activity [50]. To determine if excess KIF7 mediated dissociation of the GLI-SUFU complex is impaired, rendering GLIFL under control of HH ligand or loss of cilia prevents SMO localization to the ciliary axoneme, and thus SMO/GBR, dissociates GLIFL from SUFU, allowing GLIFL to function as an activator. Absence when HH ligand is present, SMO is trafficked into the cilia. Activated SMO, in conjunction with GLI3 binding to SUFU is altered in ciliary mutants relative to wild-type facial prominences. In embryos, low levels of SUFU protein were detected. There was an increase of total SUFU protein in the association of SUFU with GLI3 in the developing FNP (inset Fig 4D). In wild-type embryos, the association of SUFU with GLI3 in the developing FNP (inset Fig 4D). Thus, despite having increased levels of GLI3FL produced in ciliary mutants [49], the addition of the GLI3FL allele in Kif3aΔ699/Δ699 Wnt1-Cre;Gli3Δ699/+ embryos did not restore Ptc expression to that of the wild-type (Fig 4C). Furthermore, GLI1 protein expression was not changed in Kif3aΔ699/Δ699 Wnt1-Cre embryos (S5 Fig). These data suggest that the loss of cilia disrupts the pathway in such manner that expression of the two pathway ‘readouts’ are neither synchronized, nor accurate representations of pathway dynamics, a trend we have observed before with ciliary mutants [49].

Our GBR pull-down assay was performed in vitro with a synthesized Ptc oligo containing a GBR. To test if altered levels of GLI isoform binding to regulatory regions could impact target gene expression in vivo, we performed Ptc in situ hybridization on e11.5 wild-type, Kif3aΔ699/Δ699 Wnt1-Cre and Kif3aΔ699/Δ699 Wnt1-Cre;Gli3Δ699/+ embryos (Fig 4C). As expected, wild-type embryos displayed Ptc expression in previously defined areas of the facial prominences. Interestingly, Ptc expression was decreased throughout the facial prominences in Kif3aΔ699/Δ699 Wnt1-Cre embryos (Fig 4C). Furthermore, GLI1 protein expression was not changed in Kif3aΔ699/Δ699 Wnt1-Cre embryos (S5 Fig). These data suggest that the loss of cilia disrupts the pathway in such manner that expression of the two pathway ‘readouts’ are neither synchronized, nor accurate representations of pathway dynamics, a trend we have observed before with ciliary mutants [49].

The addition of the GLI3Δ699 allele in Kif3aΔ699/Δ699 Wnt1-Cre;Gli3Δ699/+ embryos did not restore Ptc expression to that of the wild-type (Fig 4C). Thus, despite having increased levels of GLI3FL produced in Kif3aΔ699/Δ699 Wnt1-Cre mutants (Fig 2) and increased enrichment of GLI3FL on the GBRs of a synthesized oligo, we did not see increased expression of Ptc in vivo. These data suggest that the partial rescue of midfacial widening in Kif3aΔ699/Δ699 Wnt1-Cre;Gli3Δ699/+ embryos is not via restoration of Ptc expression and that increased production of GLI3FL does not translate into increased activator activity in Kif3aΔ699/Δ699 Wnt1-Cre mutants. We next attempted to determine why GLI3FL generated in Kif3aΔ699/Δ699 Wnt1-Cre mutants was not functioning as an activator.

Production and GLI3 binding to SUFU is altered in ciliary mutants

When HH ligand is present, SMO is trafficked into the cilia. Activated SMO, in conjunction with KIF7, dissociates GLIFL from SUFU, allowing GLIFL to function as an activator. Absence of HH ligand or loss of cilia prevents SMO localization to the ciliary axoneme, and thus SMO/KIF7 mediated dissociation of the GLI-SUFU complex is impaired, rendering GLIFL under constitutive inhibition, leading to the loss of GLI activator activity [50]. To determine if excess GLIFL produced in Kif3aΔ699/Δ699 Wnt1-Cre embryos remained associated with SUFU, we examined the association of SUFU with GLI3 in the developing FNP (inset Fig 4D). In wild-type embryos, low levels of SUFU protein were detected. There was an increase of total SUFU protein in Kif3aΔ699/Δ699 Wnt1-Cre mutant embryos (Fig 4D, input), as well as an increase in the amount of GLI3-SUFU association (Fig 4D, IP:αGLI3). Furthermore, we performed nuclear fractionation and found levels of nuclear SUFU were increased in the Kif3aΔ699/Δ699 Wnt1-Cre mutant
Taken together, these data suggest that despite increased amounts of GLI3FL in
Kif3a^{fl/fl};Wnt1-Cre mutant embryos, GLI3FL was rendered inactive, possibly due to a failure to
dissociate from SUFU.

Conditional loss of GLI3 in NCCs does not recapitulate the midfacial
phenotype of ciliary mutants

Multiple studies have suggested GLI3 predominantly functions as a repressor, and that GLI3R
activity is required for midfacial patterning [11, 46, 47]. Based on these findings and the partial
rescue of ciliopathic midfacial phenotypes in
Kif3a^{fl/fl};Wnt1-Cre;Gli3^{Δ699/+} embryos, we
hypothesized that loss of GLI3 in NCCs should recapitulate the ciliopathic midfacial widening
observed in Kif3a^{fl/fl};Wnt1-Cre and Ift88^{fl/fl};Wnt1-Cre mutants. To test this hypothesis, we
generated Gli3^{fl/fl};Wnt1-Cre embryos. Interestingly, we found that Gli3^{fl/fl};Wnt1-Cre embryos did
not phenocopy the midfacial phenotypes of ciliary mutants (Fig 5). Gli3^{fl/fl};Wnt1-Cre embryos
did not show midfacial widening (Fig 5A and 5B), a cleft secondary palate (Fig 5G and 5H) or
a bifurcated nasal septum (Fig 5M and 5N). The lack of midfacial phenotypes in Gli3^{fl/fl};Wnt1-Cre
embryos suggested that perhaps GLI3 was not the only factor driving the midfacial
ciliopathic phenotype. Given that GLI2 processing is also disrupted in Kif3a^{fl/fl};Wnt1-Cre and
Ift88^{fl/fl};Wnt1-Cre mutants (Fig 2), and that GLI2 null animals have craniofacial defects [25],
we hypothesized that GLI2 may also be playing an important role in midfacial patterning.

Conditional loss of both GLI2 and GLI3 in NCCs recapitulates the
midfacial phenotype of ciliary mutants

A precedent exists for GLI proteins compensating for one another in several biological contexts
and for GLI2 having repressor activity [16, 17]. To determine if loss of GLI2 function also
contributed to the ciliopathic midfacial phenotype, we generated Gli2^{fl/fl};Wnt1-Cre and Gli2^{fl/fl};
Gli3^{fl/fl};Wnt1-Cre mutants and assayed embryos for characteristic midfacial phenotypes of
ciliopathic mutants. Similar to Gli3^{fl/fl};Wnt1-Cre embryos, Gli2^{fl/fl};Wnt1-Cre embryos did not
show midfacial widening (Fig 5C), but did have a medial cleft of the secondary palate (Fig 5I).
Furthermore, although a small split in the most ventral aspect of the nasal septum was detected
in Gli2^{fl/fl};Wnt1-Cre embryos (S6 Fig), these embryos did not present with a bifurcated septum
similar to that of the Kif3a^{fl/fl};Wnt1-Cre and Ift88^{fl/fl};Wnt1-Cre mutants (Fig 5O). Overall,
Gli2^{fl/fl};Wnt1-Cre embryos did not phenocopy Kif3a^{fl/fl};Wnt1-Cre and Ift88^{fl/fl};Wnt1-Cre
mutants.

We next tested if conditional loss of both GLI2 and GLI3 in NCCs would recapitulate the
midfacial ciliopathic phenotype. Gli2^{fl/fl};Gli3^{fl/fl};Wnt1-Cre double mutants exhibited facial phenotypes very similar to Kif3a^{fl/fl};Wnt1-Cre and Ift88^{fl/fl};Wnt1-Cre mutants. Gli2^{fl/fl};Gli3^{fl/fl};
Wnt1-Cre embryos exhibited midfacial widening (Fig 5D; Table 3), bilateral clefting of the sec-

ondary palate (Fig 5J; Table 3) and a bifurcated nasal septum (Fig 5P; Table 3), giving the
Gli2^{fl/fl};Gli3^{fl/fl};Wnt1-Cre embryos a strikingly similar phenotype to Kif3a^{fl/fl};Wnt1-Cre and
Ift88^{fl/fl};Wnt1-Cre embryos (compare Fig 5D, 5E; 5J, 5K; and 5P, 5Q; Table 3). These data,
together with our biochemical analysis showing aberrant GLI processing (Fig 2),
suggest that the midfacial widening in ciliopathic mutants is caused by the combinatorial loss
of GLI2R and GLI3R function.

Our data suggested loss of GLIR function was causal to the midfacial widening in the exam-
ined ciliary mutants, as we were able to rescue the phenotypes with addition of GLI3R. We
next tested if the craniofacial complex in Kif3a^{fl/fl};Wnt1-Cre embryos would be sensitive to
altering the GLI ratio (e.g., would increasing the amount of GLIA in these mutants exacerbate
midfacial widening). To do so, we utilized ΔNGli2 mice. ΔNGli2 encodes a constitutively active
form of GLI2 that mimics the action of GLI2A independent of ciliary processing [51]. We first generated ΔNGli2;Wnt1-Cre embryos and examined facial phenotypes with one copy of constitutively active GLI2 in NCCs. ΔNGli2;Wnt1-Cre embryos did not exhibit a widened midline or duplicated nasal septum (S7A–S7D Fig), presumably due to overriding GLIR activity. However, when we genetically increased the amount of GLI2A on a background with reduced GLIR via generating Kif3afl/fl;Wnt1-Cre;ΔNGli2 embryos, we observed a significant exacerbation of

![Fig 5. Combined conditional loss of GLI3 and GLI2 phenocopies midfacial phenotypes of ciliary mutants.](image)

(A–F) Frontal view, (G–L) palatal view and (M–R) Safranin-O staining on transverse sections of the nasal septum (dotted white lines) from e15.5 (A, G, M) wild-type, (B, H, N) Gli3fl/fl;Wnt1-Cre (n = 8), (C, I, O) Gli2fl/fl;Gli3fl/fl;Wnt1-Cre (n = 6), (E, K, Q) Kif3afl/fl;Wnt1-Cre and (F, L, R) Kif3afl/fl;Wnt1-Cre;ΔNGli2 (n = 5). Scale bars = 1000 μm.

doi:10.1371/journal.pgen.1006351.g005

Genotype	stage	n (%)	Frontal widening	Bilateral cleft	Duplicated nasal septum
Control	e14.5	15 (68.18%)	0 (0%)	0 (0%)	0 (0%)
Gli2fl/fl;Gli3fl/fl;Wnt1-Cre	e14.5	2 (9.09%)	0 (0%)	0 (0%)	0 (0%)
Gli2fl/fl;Gli3fl/fl;Wnt1-Cre	e14.5	3 (13.64%)	0 (0%)	0 (0%)	0 (0%)
Gli2fl/fl;Gli3fl/fl;Wnt1-Cre	e14.5	2 (9.09%)	2 (100%)	2 (100%)	2 (100%)
Control	e15.5	21 (63.64%)	0 (0%)	0 (0%)	0 (0%)
Gli2fl/fl;Gli3fl/fl;Wnt1-Cre	e15.5	3 (9.09%)	0 (0%)	0 (0%)	0 (0%)
Gli2fl/fl;Gli3fl/fl;Wnt1-Cre	e15.5	5 (15.15%)	0 (0%)	0 (0%)	0 (0%)
Gli2fl/fl;Gli3fl/fl;Wnt1-Cre	e15.5	4 (12.12%)	4 (100%)	4 (100%)	4 (100%)

Genotypes of control including Gli2fl/fl;Gli3fl/fl;Gli2fl/fl;Gli3fl/fl;Gli2fl/fl;Gli3fl/fl;Gli2fl/fl;Gli3fl/fl;Wnt1Cre.

n, number of embryos analyzed; %, percentage relative to the number of total embryos (total embryos for e14.5 n = 22; for e15.5 n = 33).

n, number of embryos presenting phenotypes; %, percentage relative to the number of embryos analyzed.

Frontal widening is defined by a distance between nasal pits greater than 1.8 mm in e14.5 and e15.5 embryos.

Bilateral clefting is defined by a patent area greater than 0.253 mm² in e14.5 and e15.5 embryos.

doi:10.1371/journal.pgen.1006351.t003

Table 3. Table of genotype and phenotype frequency for wild-type, Gli2fl/fl;Gli3fl/fl;Wnt1-Cre, Gli2fl/fl;Gli3fl/fl;Wnt1-Cre and Gli2fl/fl;Gli3fl/fl;Wnt1-Cre.
the internasal width, relative to Kif3aα/α, Wnt1-Cre mutants (Fig 5F). The exacerbation of midfacial widening was accompanied by a severe midfacial cleft (Fig 5L) and two completely separate nasal septa in Kif3aα/α, Wnt1-Cre;ΔNGli2 embryos (Fig 5R). Western blot analysis confirmed the presence of the ΔNGli2 protein in Kif3aα/α, Wnt1-Cre;ΔNGli2 embryos (S7E Fig).

Taken together, these data contribute to the proposal of the following mechanism for midfacial patterning and the observed ciliopathic midfacial phenotypes. In the wild-type FNP, cilia effectively process GLI3FL into GLI3R. GLI3R–SUFU complexes occupy the GBRs within GLI target genes (Fig 6A). A ratio of high GLIR binding relative to GLIFL activator binding at GBRs of target genes is established. Thus, there are high levels of GLIR activity during normal growth of the FNP (Fig 6A). The loss of cilia (in both Kif3aα/α, Wnt1-Cre and Ift88α/α, Wnt1-Cre mutants) impairs normal processing of GLIFL and GLIR, resulting in higher levels of GLIFL and lower levels of GLIR, relative to control embryos. Lack of ciliary-localized SMO prevents GLIFL from dissociating from SUFU. Thus, in ciliary mutants there is a reduction in GLIR occupation of GBRs, and the GLI3FL that now occupies the GBR is not functional due to maintained association with SUFU (Fig 6B). This disruption in processing causes a loss of required GLIR activity and a “de-repression” in the FNP. Loss of GLI repression in the FNP then results in midfacial widening, a classic gain of HH phenotype. We further hypothesize that genetic addition of the Gli3Δ699 allele can partially rescue the phenotype via cilia-independent production of a truncated GLI3 protein that functions like GLI3R. This GLI3Δ699R is able to compete with GLIFL to occupy the majority of the GBRs within the regulatory regions of target genes (Fig 6C). Binding of GLI3Δ699R at GBRs restores the amount of GLIR enrichment and the GLI ratio distribution in the FNP to levels similar to wild-type (Fig 6C). We suggest the rescue is only partial because some amount of GLIFL–SUFU complex still occupies GBRs (supported by data in Fig 4B). Addition of the ΔNGli2 allele produces GLI2A free from SUFU suppression, and increases the amount of GLI2A at GBRs (Fig 6D). The disruption in cilia-dependent GLI processing combined with addition of functional GLI2A shifts the GLI ratio heavily in favor of the GLIA. The facial phenotype manifests as an exacerbated midfacial widening due to a de-repression combined with increased GLI2A activity in the FNP (Fig 6D). Finally, our hypothesized model also explains how Gli2α/α, Gli3α/α, Wnt1-Cre could phenocopy the Kif3aα/α, Wnt1-Cre midfacial condition (Fig 6E). Loss of GLI2 and GLI3 would prevent any GLIFL or GLIR from binding to GBRs within the regulatory regions of target genes, thus mimicking the Kif3aα/α, Wnt1-Cre loss of GLIR binding and increased binding of a non-functional GLIFL–SUFU complex. Loss of both GLI2 and GLI3 in NCCs had the same effect on the GLI production as loss of cilia- loss of the predominant repressor resulting in a de-repression. Loss of GLI repression in the FNP then results in the gain of Hedgehog phenotype of midfacial widening (Fig 6E). Together, these data support the hypothesis that, rather than being dependent upon GLI3R alone, GLI2R also plays a role in midfacial patterning.

Discussion

It is well established that the HH pathway plays a critical role in midfacial patterning; however, the mechanisms by which HH signaling patterns the face and the role primary cilia play in that process are less clear. Our data suggest that primary cilia play an essential role in midfacial development via the post-translational processing of GLI transcription factors. We report that loss of cilia, via conditional knock-out of anterograde IFT proteins, results in a severely widened facial midline (Fig 1). Western blot analysis showed a significant increase in the amount of nuclear GLI3FL and GLI2FL produced in these mutants (Fig 2), thus skewing the ratio of GLIFL to GLIR in favor of the FL isoform. Genetic addition of GLI3R to the mutant partially...
rescued the midfacial phenotypes (Fig 3), possibly via re-establishing the proper binding ratio of GLI3FL to GLI3R at GBRs (Fig 4). Although there was an increase in GLIIFL production, we suggest the full-length isoform is not active due to maintained association between GLI3FL and SUFU and increased levels of nuclear SUFU in the ciliary mutants. Thus, we support a mechanism of de-repression rather than activation for generating midfacial widening (Fig 4).

Despite the ability to rescue the midfacial phenotype with addition of GLI3R, the phenotype did not appear to be solely due to the loss of GLI3R function, as conditional knock-out of GLI3 did not recapitulate the phenotype (Fig 5). The midfacial phenotype could only be recapitulated when both GLI2 and GLI3 were lost in NCCs (Fig 5). Taken together, these data provoke several questions regarding our understanding of midfacial patterning and the role of GLI proteins during craniofacial development.

Loss of cilia on NCCs results in midfacial widening

Midfacial defects encompass a spectrum of diseases ranging from midline collapse (cyclopia) to midline expansion/duplication (frontonasal dysplasia/diprosopus) [1]. The current understanding of HH-mediated midfacial growth hypothesizes a mechanism by which HH activity in the ventral forebrain directly signals to the adjacent facial ectoderm, inducing a competency in the ectoderm prior to NCC arrival into the FNP. As NCCs migrate in between the forebrain and facial ectoderm, NCCs of the FNP signal to the overlying facial ectoderm establishing a Sonic Hedgehog (SHH)-expressing signaling center in the facial ectoderm coined the Frontonasal Ectodermal Zone (FEZ). The FEZ in turn establishes growth zones within the underlying NCC-derived mesenchyme of the FNP that regulate the size and shape of the midface [52–57]. Gain or loss of SHH activity in either signaling center can cause an expansion or loss of midfacial structures, respectively.

Our studies explore a novel mechanism for the generation of midfacial expansion- a NCC-specific, ciliary-dependent mechanism. The loss of functional primary cilia on NCCs recapitulates the midfacial widening similar to those reported when there is a gain of SHH activity in the forebrain or FEZ (Fig 1; [6]). Several explanations exist to explain how these two different mechanisms can generate similar midfacial phenotypes. First, it is possible that midfacial

Fig 6. Schematic of hypothesized model for GLI-dependent facial patterning. In (A) wild-type, (B) Kif3a^{fl/fl};Wnt1-Cre, (C) Kif3a^{fl/fl};Wnt1-Cre;ΔGLI3^{699/+}, (D) Kif3a^{fl/fl};Wnt1-Cre;ΔNGLI2 and (E) GLI2^{fl/fl};GLI3^{Δ699};Wnt1-Cre embryos, GLI binding on GBRs, overall ratio of GLIIFL activator versus GLIIR activity, and net GLI activity within the developing FNP are indicated. Red indicates GLIR activity, green indicates GLIA activity, white indicates loss of activity. mxp, maxillary prominence. GLI3R[*] = GLI3^{Δ699} R, GLI2A[*] = ΔNGLI2.

doi:10.1371/journal.pgen.1006351.g006
phenotypes in our conditional ciliary mutants are autonomous to the NCC. Second, it is possible that changes in NCC-derived facial mesenchyme induce changes in the neuroectoderm and FEZ that then contribute to the ciliary midfacial phenotype. There is precedence for NCCs exerting a critical effect on the developing forebrain [58–61], and we have previously observed aberrant morphology in the neuroectoderm of \(Kif3a^{\text{fl/fl}}; Wnt1-Cre \) mutant embryos [7]; however, how those dysmorphologies arise is unknown. Exploring if the establishment and/or maintenance of SHH signaling centers in the brain and face are disrupted in ciliary mutants is a focus of our ongoing work.

Third, the midfacial phenotypes observed in anterograde intraflagellar transport mutants could be due to a combinatorial effect of loss of cilia in both NCCs and neural tissue. Despite being the predominantly used driver to examine NCCs, recombination is also known to occur in the dorsal diencephalon and perhaps other areas of the developing brain in \(Wnt1-Cre \) animals [62]. Given the significant role cilia have in neural patterning [28], it is possible that the midfacial phenotypes observed in \(Kif3a^{\text{fl/fl}}; Wnt1-Cre \) and \(Ift88^{\text{fl/fl}}; Wnt1-Cre \) embryos are due to defects in the developing brain that then have secondary, compounding effects on NCCs that lack cilia. Understanding the role of primary cilia in transducing signals between NCCs and adjacent tissues during craniofacial development will be important for better understanding the relationship between NCCs, the forebrain and facial ectoderm during craniofacial development.

Various mechanisms of GLI function exist to pattern developing organ systems

Several studies have established that the GLI proteins function to regulate the output of the HH pathway; however, the mechanisms by which these proteins do so are not fully understood. For example, both GLI2 and GLI3 can function as repressors or activators, and there is precedence for organ systems requiring the function of either a GLIR or GLIA for proper development and patterning [18, 48]. The existence of both repressor and activator isoforms allows for several mechanisms of action including activation, de-repression and ratio sensing to establish the proper amount of activity required for development of an organ system. The range of mechanisms used by GLI proteins is fully evident when examining GLI function in organ systems such as the limb and neural tube. In mouse and chick limb buds, a gradient of GLI3R forms inversely to a SHH source in the ZPA [63, 64] and loss of GLI2 has no effect on digit patterning, whereas loss of GLI3 results in polydactyly [65], a phenotype associated with a gain of HH function [66]. Embryos lacking both SHH and GLI3 also have polydactyly similar to that generated when GLI3 alone is lost, suggesting that limb patterning is due to the suppression of GLI3R function [63, 67]. Interestingly, a separate mechanism exists in the neural tube. Both GLI2 and GLI3 are expressed in the neural tube; however, their expression becomes confined to discrete regions. GLI3 is only expressed in the medial and dorsal regions, whereas GLI2 is expressed throughout the entire dorsal-ventral axis. Loss of function studies support a mechanism in which GLI3R activity is required for patterning the dorsal neural tube, while GLI2A activity is required for patterning the ventral regions of the neural tube [18, 68, 69].

Our study suggests that GLIR activity is particularly important in the craniofacial complex, and that both GLI3R and GLI2R can contribute to this repressive activity. Furthermore, our data support both de-repression and cilia-dependent ratio sensing as essential mechanisms for interpreting the net GLI output in the developing face. In addition to gaining mechanistic insight into how cilia and GLI contribute to the patterning of the craniofacial complex, these data further support the hypothesis that GLI proteins use various mechanisms to exert their function on different organ systems. Our future studies will continue to examine how loss of
Cilia affect GLI protein function. For example, does loss of cilia impact GLI acetylation, phosphorylation, or sumoylation? Would the loss of these modifications impact the ability of the GLI to exert repressor or activator function? GLI proteins have also been reported to interact with co-regulators [70–72]. Does the loss of ciliary processing affect the ability of GLI to interact with co-activators or co-repressors? Examining GLI processing at multiple levels and understanding how each modification impacts overall protein function is an important challenge that lies ahead.

Although our study centers on the role of primary cilia in GLI processing and subsequent HH pathway activity, there are several pieces of evidence that suggest other pathways may also contribute to midfacial phenotypes observed in ciliopathic mutants. First, primary cilia do not function exclusively to transduce the HH pathway; rather, they are considered a hub for several signaling pathways [73–76]. Thus, it is possible that loss of the cilium also affects the Wnt, TGFβ, Notch and/or PDGF pathways; each of which have previously been implicated in midfacial patterning and craniofacial development [77–80]. Second, despite a marked improvement in midfacial patterning with the addition of the GLI3Δ699R, a total rescue was not achieved (Fig 3). We reason this could be due to the fact that we are only ‘rescuing’ the GLI deficit, and not addressing other pathways that may be affected by the loss of functional cilia. Examining how pathways other than the HH pathway are affected in craniofacial ciliopathies is a topic of our future work.

Our data explore both the ciliary- and GLI-dependent molecular mechanisms for the onset of midfacial phenotypes in craniofacial ciliopathies. Further understanding how the cilium processes GLI transcription factors, as well as the distinction between GLI2 and GLI3 and their capacity to compensate for one another is a topic that will undoubtedly be useful for future studies and will perhaps provide avenues for therapeutic intervention when considering treatment for craniofacial ciliopathies.

Materials and Methods

Transgenic mice

\(Wnt1-Cre \) and \(Gli3^{fl/fl} \) (from Jackson laboratory), \(Kif3a^{fl/fl} \) and \(Ift88^{fl/fl} \) (from Dr. Bradley Yoder, University of Alabama at Birmingham), \(Gli2^{fl/fl} \) (from Dr. Alexandra Joyner, Memorial Sloan-Kettering Cancer Center), \(Gli3^{Δ699} \) (from Dr. Chi-Chung Hui, the Hospital for Sick Kids, Canada), \(ΔNGli2 \) (from Andrzej Dlugosz, University of Michigan) were maintained by Veterinary Services of Cincinnati Children’s Hospital Medical Center with IACUC approval. All transgenic lines were outbred and maintained on a CD1 background.

Histology and immunostaining

e15.5 embryos were harvested and fixed in Bouin’s solution overnight. For Safranin-O staining, tissue was processed for paraffin embedding and staining procedures were followed as described (http://www.ihcworld.com_protocols/special_stains/safranin_o.htm). For phospho-Histone H3 (pHH3) staining (Ser10, Santa Cruz), e11.5 heads were fixed in 4% PFA, paraffin embedded and cut transversely. Staining was done according to manufacturer’s instruction. pHH3-positive cells in the FNP were counted from multiple consecutive sections (total thickness 60 μm).

Antibodies

The following antibodies were used per manufactures’ instructions: GLI2 (R&D systems; primary concentration 1:500, secondary concentration 1:5,000), GLI3 (R&D systems primary concentration 1:1,000, secondary concentration 1:5,000), SUFU (H300, Santa Cruz primary
concentration 1:2,000, secondary concentration 1:5,000), MYC (9B11, Cell Signaling primary concentration 1:2,000, secondary concentration 1:5,000), GAPDH (FL335, Santa Cruz primary concentration 1:10,000, secondary concentration 1:10,000), LAMIN A/C (H110, Santa Cruz primary concentration 1:2,000, secondary concentration 1:5,000), a-TUBULIN (DM1A, Abcam primary concentration 1:15,000, secondary concentration 1:20,000), PHH3 (JBW301, Millipore primary concentration 1:1,000, secondary concentration 1:1,000), (ARL13b, Protein Tech primary concentration 1:1,000, secondary concentration 1:1,000), gamma-TUBULIN (GTU88, Sigma primary concentration 1:1,000, secondary concentration 1:1,000).

Western blot, nuclear fractionation and immunoprecipitation

e11.5 embryos were harvested and either the frontonasal prominence (FNP; area medial to nasal pits) alone or the FNP, maxillary (MXP) and mandibular prominence (MNP) combined were dissected out. Whole cell lysate from the frontonasal prominence or combined facial prominences were sonicated in RIPA buffer (50 mM Tris-HCl, pH 7.4, 1% NP-40, 0.25% sodium deoxycholate, 150 mM NaCl, 1 mM EDTA) containing protease (Roche) and phosphatase inhibitors (1 mM PMSF, 1 mM Na3VO4, 10 mM NaF, 60 mM β-glycerophosphate). For nuclear fractionation, FNPs from multiple e11.5 embryos were freshly isolated and digested by 2 mg/mL Collagenase D (Roche) for 20 minutes at 37°C, with gentle shaking. Cytoplasmic protein was extracted using NE-PER™ reagents (CERI buffer, Thermo Scientific) according to manufacturer's instruction. The remaining nuclear pellet was re-suspended in CERI buffer and sonicated to obtain nuclear protein. For immunoprecipitation, protein samples were first incubated with antibody for 2 hours at 4°C. Dynabeads were then added and incubated for overnight at 4°C.

GLI3FL to GLI3R ratio was measured by quantitating bands in ImageJ. For the ratio of GLI3FL to GLI3R in Kif3a^{+/+};Wnt1-Cre;Gli3^{+/+} embryos, the amount of GLI3R used to calculate the ratio included the amount of GLI3Δ699R plus endogenous GLI3R.

GLI-binding region pull-down assay

DNA oligos containing partial sequence of mouse Ptch1 promoter (-911bps to -970bps) were synthesized with or without Biotin labeled at the 5’ end of the anti-sense strand (sense strand: CAGCCCCCCCACCCCCAAAGGGGATGCACACACCGGGGGTTGCCCTACCTGGGTG GTCCTCT; anti-sense strand: Biotin-AGAGACCACCCAGGTAGGCAACCCCGTTGTGTGC ATC CACAGGCTTGGGGTTGGGGGGCGG, underline indicates GLI binding site). 100 pmole of each sense and anti-sense strand (with or without Biotin labeled) was annealed to dsDNA. The Biotin-dsDNA was then incubated with 30 μL of Streptavidin-coupled Dynabeads (Invitrogen) for 15 minutes at room temperature. DNA-Dynabead complex was incubated with whole cell lysate for two hours at 4°C. GLI proteins pulled down by the DNA/beads complex were detected by Western blot.

Supporting Information

S1 Fig. Expressions of GLI2 and GLI3 isoforms in Gli2^{+/+};Wnt1-Cre and Gli3^{+/+};Wnt1-Cre facial prominences. (A) Western blotting analysis performed with protein extract from all facial prominences of wild-type, Gli2^{+/+};Wnt1-Cre and Gli2^{+/+};Wnt1-Cre embryos. Both GLI2FL and GLI2R were lost or significantly reduced in Gli2^{+/+};Wnt1-Cre mutant, indicating that the Gli2 gene was efficiently knocked out by Cre activity. (B) Western blotting analysis with all facial prominences of wild-type, Gli3^{+/+};Wnt1-Cre and Gli3^{+/+};Wnt1-Cre embryos. GLI3 protein was also largely eliminated in Gli3^{+/+};Wnt1-Cre mutant. Inset schematics of facial prominences in A and B indicates FNP, maxillary prominence (MXP) and mandibular prominence (MNP) (red).
were harvested for the experiment.

(S2 Fig. Longer exposure of Western blot and nuclear analysis. (A) Western blot and (B) nuclear fractionation analysis of GLI3FL, GLI3R, GLI2FL and GLI2R from the FNP of e11.5 embryos with a 2min exposure time. Longer exposure reveals presence of isoforms not observed at shorter exposure time (Fig 2; 30sec).

(S3 Fig. GLI3Δ699R partially rescued Ift88fl/fl;Wnt1-Cre midfacial phenotype. (A, B) Immunostaining for the axonemal marker Arl13b (green) and basal body marker γTubulin (red). (A) The axoneme and basal body are present in mesenchyme of the FNP of wild-type embryos. The axoneme is lost in the mesenchyme of the FNP of Ift88fl/fl;Wnt1-Cre embryos, but γTubulin staining remains, similar to observations in Kif3a0/0,Wnt1-Cre embryos. Safranin-O staining of transverse sections from e15.5 (C) wild-type, (D) Ift88fl/fl;Wnt1-Cre and (E) Ift88fl/fl;Wnt1-Cre;GlI3Δ699/+ heads. The duplicated nasal septum of the Ift88fl/fl;Wnt1-Cre was restored to a singular cartilaginous element in Ift88fl/fl;Wnt1-Cre;GlI3Δ699/+ (compare D and E; dotted white lines). (F) Western Blot for GLI3 isoforms. Expression of GLI3Δ699R (asterisk) and reduced expression of GLI3FL restored total levels of GLI3FL and GLI3R in Ift88fl/fl;Wnt1-Cre;GlI3Δ699/+ facial prominences to those more similar to wild-type embryos. GAPDH was used as the loading control. Scale bars in C–E = 500 μm. Inset schematic of facial prominences in F indicate FNP (red) was harvested for the experiment.

(S4 Fig. Gli3Δ699/+ , Gli3Δ699/Δ699 and ΔNGli2;Wnt1-Cre mutant mice lack facial phenotypes. (A–C) Frontal view of wild-type, Gli3Δ699/+ and Gli3Δ699/Δ699 e13.5 embryos. (D) Genotyping results for wild-type, Gli3Δ699/+ and Gli3Δ699/Δ699 embryos. (E) Western blot analysis of e11.5 facial prominences from wild-type, Gli3Δ699/+ and Gli3Δ699/Δ699 animals. In Gli3Δ699/Δ699 mutants, there is no GLI3FL expression.

(S5 Fig. GLI1 expression is not altered in Kif3a0/0;Wnt1-Cre mutants. Western blot analysis of wild-type and Kif3a0/0,Wnt1-Cre embryos for GLI1. Inset schematic of facial prominences indicates FNP, maxillary prominence (MXP) and mandibular prominence (MNP) (red) were harvested for the experiment. GAPDH was used as a loading control.

(S6 Fig. A minor split in nasal septum was detected in the most ventral aspect in GlI2fl/fl;Wnt1-Cre embryos. (A, B) Safranin-O staining of transverse sections through the ventral nasal septum of e15.5 wild-type and GlI2fl/fl;Wnt1-Cre embryos. Scale bar = 1000 μm.

(S7 Fig. Characterization of ΔNGli2;Wnt1-Cre, Kif3a0/0;Wnt1-Cre, Δ NGli2 embryos. (A, B) Frontal views of e14.5 wild-type and ΔNGli2;Wnt1-Cre embryos. (C, D) Alcian Blue staining on transverse sections through the nasal septum. (E) Western blot analysis of wild-type, Kif3a0/0;Wnt1-Cre and Kif3a0/0;Wnt1-Cre,ΔNGli2 embryos for GLI2 and MYC. ΔNGli2 is tagged by MYC. Inset schematic of facial prominences indicates FNP, maxillary prominence (MXP) and mandibular prominence (MNP) (red) were harvested for the experiment.
Acknowledgments

We thank members of the Brugmann lab for helpful comments and suggestions, Jaime Struve for genotyping, Bradley Yoder, Alex Joyner, C.C. Hui and Andrzej Dlugosz for sharing transgenic mouse lines.

Author Contributions

Conceptualization: SAB.
Formal analysis: CFC.
Funding acquisition: SAB.
Investigation: CFC YTC GM.
Methodology: SAB CFC YTC.
Project administration: SAB.
Resources: SAB.
Supervision: SAB.
Validation: CFC YTC GM.
Visualization: SAB CFC YTC GM.
Writing – original draft: SAB CFC.
Writing – review & editing: SAB CFC.

References

1. Hu D. and Helms J.A., The role of sonic hedgehog in normal and abnormal craniofacial morphogenesis. Development, 1999. 126(21): p. 4873–84. PMID: 10518503
2. Cordero D., et al., Temporal perturbations in sonic hedgehog signaling elicit the spectrum of holoprosencephaly phenotypes. J Clin Invest, 2004. 114(4): p. 485–94. doi: 10.1172/JCI19596 PMID: 15314685
3. Marcucio R.S., et al., Molecular interactions coordinating the development of the forebrain and face. Dev Biol, 2005. 284(1): p. 48–61. doi: 10.1016/j.ydbio.2005.04.005 PMID: 15979605
4. Zhang W., et al., Cdo functions at multiple points in the Sonic Hedgehog pathway, and Cdo-deficient mice accurately model human holoprosencephaly. Dev Cell, 2006. 10(5): p. 657–65. doi: 10.1016/j.devcel.2006.04.005 PMID: 16647303
5. Allen B.L., Tenzen T., and McMahon A.P., The Hedgehog-binding proteins Gas1 and Cdo cooperate to positively regulate Shh signaling during mouse development. Genes Dev, 2007. 21(10): p. 1244–57. doi: 10.1101/gad.1543607 PMID: 17504941
6. Young N.M., et al., Quantitative analyses link modulation of sonic hedgehog signaling to continuous variation in facial growth and shape. Development, 2010. 137(20): p. 3405–9. doi: 10.1242/dev.052340 PMID: 20826528
7. Brugmann S.A., et al., A primary cilia-dependent etiology for midline facial disorders. Hum Mol Genet, 2010. 19(8): p. 1577–92. doi: 10.1093/hmg/ddq030 PMID: 20168747
8. Chiang C., et al., Cyclopa and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature, 1996. 383(6599): p. 407–13. doi: 10.1038/383407a0 PMID: 8837770
9. Roessler E., et al., Loss-of-function mutations in the human GLI2 gene are associated with pituitary anomalies and holoprosencephaly-like features. Proc Natl Acad Sci U S A, 2003. 100(23): p. 13424–9. doi: 10.1073/pnas.2235734100 PMID: 1481620
10. Vortkamp A., et al., Deletion of GLI3 supports the homology of the human Greig cephalopolysyndactyly syndrome (GCP) and the mouse mutant extra toes (Xt). Mammalian Genome, 1992. 3(8): p. 461–3. PMID: 1322743
11. Vortkamp A., Gessler M., and Grzeschik K.H., GLI3 zinc-finger gene interrupted by translocations in Greig syndrome families. Nature, 1991. 352(6335): p. 539–540. doi: 10.1038/352539a0 PMID: 1650914

12. Dai P., et al., Sonic Hedgehog-induced activation of the Gli1 promoter is mediated by GLI3. J Biol Chem, 1999. 274(12): p. 8143–52. PMID: 10075717

13. Sasahi H., et al., Regulation of Gli2 and Gli3 activities by an amino-terminal repression domain: implication of Gli2 and Gli3 as primary mediators of Shh signaling. Development, 1999. 126(17): p. 3915–24. PMID: 10433919

14. Bai C.B. and Joyner A.L., Gli1 can rescue the in vivo function of Gli2. Development, 2001. 128(24): p. 5161–72. PMID: 11748151

15. Pan Y., Wang C., and Wang B., Phosphorylation of Gli2 by protein kinase A is required for Gli2 processing and degradation and the Sonic Hedgehog-regulated mouse development. Dev Biol, 2009. 326(1): p. 177–89. doi: 10.1016/j.ydbio.2008.11.009 PMID: 19056373

16. Buttitta L., et al., Interplays of Gli2 and Gli3 and their requirement in mediating Shh-dependent sclerotic induction. Development, 2005. 130(25): p. 6233–43. doi: 10.1242/dev.00851 PMID: 14602680

17. McDermott A., et al., Gli2 and Gli3 have redundant and context-dependent function in skeletal muscle formation. Development, 2001. 128(24): p. 5161–72. PMID: 11748151

18. Pan Y., Wang C., and Wang B., Phosphorylation of Gli2 by protein kinase A is required for Gli2 processing and degradation and the Sonic Hedgehog-regulated mouse development. Dev Biol, 2009. 326(1): p. 177–89. doi: 10.1016/j.ydbio.2008.11.009 PMID: 19056373

19. Theil T., et al., Gli3 is required for Emx gene expression during dorsal telencephalon development. Development, 1999. 126(16): p. 3561–71. PMID: 10409502

20. Tole S., Ragsdale C.W., and Grove E.A., Dorsal-ventral patterning of the telencephalon is disrupted in the mouse mutant extra-toes(J). Dev Biol, 2000. 217(2): p. 254–65. doi: 10.1006/dbio.1999.9509 PMID: 10625551

21. Bai C.B., Stephen D., and Joyner A.L., All mouse ventral spinal cord patterning by hedgehog is Gli dependent and involves an activator function of Gli3. Dev Cell, 2004. 6(1): p. 103–15. PMID: 14723851

22. Lei Q., et al., Transduction of graded Hedgehog signalling by a combination of Gli2 and Gli3 activator functions in the developing spinal cord. Development, 2004. 131(15): p. 3593–604. doi: 10.1242/dev.01230 PMID: 15215207

23. Mo R., et al., Specific and redundant functions of Gli2 and Gli3 zinc finger genes in skeletal patterning and development. Development, 1997. 124(1): p. 113–23. PMID: 9006072

24. Huangfu D., et al., Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature, 2003. 426(6962): p. 83–7. doi: 10.1038/nature02061 PMID: 14603322

25. Sasai N. and Briscoe J., Primary cilia and graded Sonic Hedgehog signaling. WIRES Dev Biol, 2012(1): p. 753–772.

26. Barnfield P.C., et al., Negative regulation of Gli1 and Gli2 activator function by Suppressor of fused through multiple mechanisms. Differentiation, 2005. 73(8): p. 397–405. doi: 10.1111/j.1432-0436.2005.00042.x PMID: 16316410

27. Wang C., Pan Y., and Wang B., Suppressor of fused and Spop regulate the stability, processing and function of Gli2 and Gli3 full-length activators but not their repressors. Development, 2010. 137(12): p. 2001–9. doi: 10.1242/dev.052126 PMID: 20463034

28. Tukachinsky H., Lopez L.V., and Salic A., A mechanism for vertebrate Hedgehog signaling: recruitment to cilia and dissociation of SuFu-Gli protein complexes. J Cell Biol, 2010. 191(2): p. 415–28. doi: 10.1083/jcb.201004108 PMID: 20956384
34. Humke E.W., et al., The output of Hedgehog signaling is controlled by the dynamic association between Suppressor of Fused and the Gli proteins. Genes Dev, 2010. 24(7): p. 670–82. doi: 10.1101/gad.1902910 PMID: 20360384
35. Rohatgi R., Milenkovic L., and Scott M.P., Patched1 regulates hedgehog signaling at the primary cilium. Science, 2007. 317(5836): p. 372–6. doi: 10.1126/science.1139740 PMID: 17641202
36. Eggenschwiler J.T. and Anderson K.V., Cilia and developmental signaling. Annu Rev Cell Dev Biol, 2007. 23: p. 345–73. doi: 10.1146/annurev.cellbio.23.090506.123249 PMID: 17506691
37. Li Z.J., et al., Kif7 regulates Gli2 through Sufu-dependent and -independent functions during skin development and tumorigenesis. Development, 2012. 139(22): p. 4152–61. doi: 10.1242/dev.081190 PMID: 23034632
38. Ding Q., et al., Mouse suppressor of fused is a negative regulator of sonic hedgehog signaling and alters the subcellular distribution of Gli1. Curr Biol, 1999. 9(19): p. 1119–22. PMID: 10531011
39. Kogerman P., et al., Mammalian suppressor-of-fused modulates nuclear-cytoplasmic shuttling of Gli-1. Nat Cell Biol, 1999. 1(5): p. 312–9. doi: 10.1038/13031 PMID: 10559945
40. Cheng S.Y. and Bishop J.M., Suppressor of Fused represses Gli-mediated transcription by recruiting the SAP18- mSin3 corepressor complex. Proc Natl Acad Sci U S A, 2002. 99(8): p. 5442–7. doi: 10.1073/pnas.082096998 PMID: 11960000
41. Paces-Fessy M., et al., The negative regulator of Gli, Suppressor of fused (Sufu), interacts with SAP18, Galectin3 and other nuclear proteins. Biochem J, 2004. 378(Pt 2): p. 353–62. doi: 10.1042/BJ20030786 PMID: 14611647
42. Zaghloul N.A. and Brugmann S.A., The Emerging Face of Primary Cilia. Genesis, 2011. 49(4): p. 231–246. doi: 10.1002/dvg.20728 PMID: 21305689
43. Huangfu D. and Anderson K.V., Signaling from Smo to Ci/Gli: conservation and divergence of Hedgehog pathways from Drosophila to vertebrates. Development, 2006. 133(1): p. 3–14. doi: 10.1242/dev.02169 PMID: 16339192
44. Falkenstein K.N. and Vokes S.A., Transcriptional regulation of graded Hedgehog signaling. Semin Cell Dev Biol, 2014. 33: p. 73–80. doi: 10.1016/j.semcdb.2014.05.010 PMID: 24862856
45. Hui C.C. and Angers S., Gli proteins in development and disease. Annu Rev Cell Dev Biol, 2011. 27: p. 513–37. doi: 10.1146/annurev-cellbio-092910-154046 PMID: 21801010
46. Vortkamp A., et al., Deletion of GLI3 supports the homology of the human Greig cephalopolysyndactyly syndrome (GCPS) and the mouse mutant extra toes (Xt). Mamm Genome, 1992. 3(8): p. 461–3. PMID: 1322743
47. Wild A., et al., Point mutations in human GLI3 cause Greig syndrome. Hum Mol Genet, 1997. 6(11): p. 1979–84. PMID: 9302279
48. Bose J., Grotewold L., and Ruther U., Pallister-Hall syndrome phenotype in mice mutant for Gli3. Hum Mol Genet, 2002. 11(9): p. 1129–35. PMID: 11978771
49. Chang C.F., et al., The cellular and molecular etiology of the craniofacial defects in the avian ciliopathic mutant talpid2. Development, 2014. 141(15): p. 3003–3012. doi: 10.1242/dev.105924 PMID: 25053433
50. Jia J., et al., Suppressor of Fused inhibits mammalian Hedgehog signaling in the absence of cilia. Dev Biol, 2009. 330(2): p. 452–60. doi: 10.1016/j.ydbio.2009.04.009 PMID: 19371734
51. Mill P., et al., Sonic hedgehog-dependent activation of Gli2 is essential for embryonic hair follicle development. Genes Dev, 2003. 17(2): p. 282–94. doi: 10.1101/gad.1038103 PMID: 12533516
52. Hu D., Marcucio R.S., and Helms J.A., A zone of frontonasal ectoderm regulates patterning and growth in the face. Development, 2003. 130(9): p. 1749–58. PMID: 12642481
53. Marcucio R., et al., Molecular Interactions coordinating development of the forebrain and face. Developmental Biology, 2005. 284(1): p. 48–61. doi: 10.1016/j.ydbio.2005.04.030 PMID: 15979605
54. Hu D. and Marcucio R.S., A SHH-responsive signaling center in the forebrain regulates craniofacial morphogenesis via the facial ectoderm. Development, 2009. 136(1): p. 107–16. doi: 10.1242/dev.026583 PMID: 19036802
55. Hu D. and Marcucio R.S., Unique organization of the frontonasal ectodermal zone in birds and mammals. Dev Biol, 2009. 325(1): p. 200–10. doi: 10.1016/j.ydbio.2008.10.026 PMID: 19013147
56. Hu D. and Marcucio R.S., Neural crest cells pattern the surface cephalic ectoderm during FEZ formation. Dev Dyn, 2012. 241(4): p. 732–40. doi: 10.1002/dvdy.22764 PMID: 22411554
57. Chong H.J., et al., Signaling by SHH rescues facial defects following blockade in the brain. Dev Dyn, 2012. 241(3): p. 247–56. doi: 10.1002/dvdy.22726 PMID: 22275045
58. Creuzet S.E., Martinez S., and Le Douarin N.M., The cephalic neural crest exerts a critical effect on forebrain and midbrain development. Proc Natl Acad Sci U S A, 2006. 103(38): p. 14033–8. doi: 10.1073/pnas.0605899103 PMID: 16966604

59. Creuzet S.E., Regulation of pre-otic brain development by the cephalic neural crest. Proc Natl Acad Sci U S A, 2009. 106(37): p. 15774–9. doi: 10.1073/pnas.0906072106 PMID: 19720987

60. Aguiar D.P., Sghari S., and Creuzet S., The facial neural crest controls fore- and midbrain patterning by regulating Foxg1 expression through Smad1 activity. Development, 2014. 141(12): p. 2494–505. doi: 10.1242/dev.101790 PMID: 24917504

61. Cajal M., et al., A conserved role for non-neural ectoderm cells in early neural development. Development, 2014. 141(12): p. 2494–505. doi: 10.1242/dev.101790 PMID: 24917504

62. Chai Y., et al., Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development, 2000. 127(8): p. 1671–9. PMID: 10725243

63. Litingtung Y., et al., Shh and Gli3 are dispensable for limb skeleton formation but regulate digit number and identity. Nature, 2002. 418(6901): p. 979–83. doi: 10.1038/nature01033 PMID: 12198547

64. Wang B., Fallon J.F., and Beachy P.A., Hedgehog-regulated processing of Gli3 produces an anterior/posterior repressor gradient in the developing vertebrate limb. Cell, 2000. 100(4): p. 423–34. PMID: 10693759

65. Hui C.C. and Joyner A.L., A mouse model of greig cephalopolysyndactyly syndrome: the extra-toes J mutation contains an intragenic deletion of the Gli3 gene. Nat Genet, 1993. 3(3): p. 241–6. doi: 10.1038/ng0393-241 PMID: 8387379

66. Riddle R.D., et al., Sonic hedgehog mediates the polarizing activity of the ZPA. Cell, 1993. 75(7): p. 1401–16. PMID: 826918

67. te Welscher P., et al., Progression of vertebrate limb development through SHH-mediated counteraction of GLI3. Science, 2002. 298(5594): p. 827–30. doi: 10.1126/science.1075620 PMID: 12215652

68. Jacob J. and Briscoe J., Gli proteins and the control of spinal-cord patterning. EMBO Rep, 2003. 4(8): p. 761–5. doi: 10.1038/sj.embor.embor896 PMID: 12897799

69. Bai C.B. and Joyner A.L., Gli1 can rescue the in vivo function of Gli2. Development, 2001. 128(24): p. 5161–72. PMID: 11748151

70. Nguyen V., et al., Cooperative requirement of the Gli proteins in neurogenesis. Development, 2005. 132(14): p. 3267–79. doi: 10.1242/dev.01905 PMID: 15983404

71. Koyabu Y., et al., Physical and functional interactions between Zic and Gli proteins. J Biol Chem, 2001. 276(10): p. 6889–92. doi: 10.1074/jbc.C000773200 PMID: 11238441

72. Aberger F. and Ruiz i Altaba A., Context-dependent signal integration by the GLI code: the oncogenic load, pathways, modifiers and implications for cancer therapy. Semin Cell Dev Biol, 2014. 33: p. 93–104. doi: 10.1016/j.semcdb.2014.05.003 PMID: 24852887

73. Corbit K.C., et al., Kif3a constrains beta-catenin-dependent Wnt signalling through dual ciliary and non-ciliary mechanisms. Nat Cell Biol, 2008. 10(1): p. 70–6. doi: 10.1038/ncb1670 PMID: 18084282

74. Schneider L., et al., PDGFRalpha signaling is regulated through the primary cilia in fibroblasts. Curr Biol, 2005. 15(20): p. 1861–6. doi: 10.1016/j.cub.2005.09.012 PMID: 16243034

75. Clement C.A., et al., TGF-beta signaling is associated with endocytosis at the pocket region of the primary cilium. Cell Rep, 2013. 3(6): p. 1806–14. doi: 10.1016/j.celrep.2013.05.020 PMID: 23746451

76. Ezratty E.J., et al., A role for the primary cilium in Notch signaling and epidermal differentiation during skin development. Cell, 2011. 145(7): p. 1129–41. doi: 10.1016/j.cell.2011.05.030 PMID: 21703454

77. Brugmann S.A., et al., Wnt signaling mediates regional specification in the vertebrate face. Development, 2007. 134(18): p. 3283–95. doi: 10.1242/dev.005132 PMID: 17699607

78. He F. and Soriano P., A critical role for PDGFRalpha signaling in medial nasal process development. PLoS Genet, 2013. 9(9): p. e1003851. doi: 10.1371/journal.pgen.1003851 PMID: 24086166

79. Foppiano S., Hu D., and Marcucio R.S., Signaling by bone morphogenetic proteins directs formation of an ectodermal signaling center that regulates craniofacial development. Dev Biol, 2007. 312(1): p. 103–14. doi: 10.1016/j.ydbio.2007.09.016 PMID: 18028903

80. Xu J., Krebs L.T., and Gridley T., Generation of mice with a conditional null allele of the Jagged2 gene. Genesis, 2010. 48(6): p. 390–3. doi: 10.1002/dvg.20626 PMID: 20533406