Protein phosphatase 2A inactivation induces microsatellite instability, neoantigen production and immune response

Yu-Ting Yen1,2, May Chien1,2, Pei-Yi Wu1,2, Chi-Chang Ho1,2, Chun-Te Ho1,2, Kevin Chih-Yang Huang3,4, Shu-Fen Chiang5,6, K. S. Clifford Chao5, William Tzu-Liang Chen7,8 & Shih-Chieh Hung1,2,9

Microsatellite-instable (MSI), a predictive biomarker for immune checkpoint blockade (ICB) response, is caused by mismatch repair deficiency (MMRd) that occurs through genetic or epigenetic silencing of MMR genes. Here, we report a mechanism of MMRd and demonstrate that protein phosphatase 2A (PP2A) deletion or inactivation converts cold microsatellite-stable (MSS) into MSI tumours through two orthogonal pathways: (i) by increasing retinoblastoma protein phosphorylation that leads to E2F and DNMT3A/3B expression with subsequent DNA methylation, and (ii) by increasing histone deacetylase (HDAC)2 phosphorylation that subsequently decreases H3K9ac levels and histone acetylation, which induces epigenetic silencing of MLH1. In mouse models of MSS and MSI colorectal cancers, triple-negative breast cancer and pancreatic cancer, PP2A inhibition triggers neoantigen production, cytotoxic T cell infiltration and ICB sensitization. Human cancer cell lines and tissue array effectively confirm these signaling pathways. These data indicate the dual involvement of PP2A inactivation in silencing MLH1 and inducing MSI.
Microsatellite-instable (MSI) tumours with defective DNA mismatch repair (MMR) account for 15% of sporadic colorectal cancers (CRCs), which mainly occur through epigenetic silencing that inactivates the somatic biallelic of the MMR genes. MSI is associated with better stage-adjusted prognosis in early stage I–III CRC and response to immune checkpoint blockade (ICB) than microsatellite-stable (MSS) tumours, leading to the urgent need to investigate the mechanisms causing MSI tumour development.

The programmed death 1 (PD-1) pathway, a negative feedback system that represses Th1 cytokine immune responses, is upregulated in many tumours. ICB with antibodies against PD-1 or its ligand (PD-L1) has led to remarkable clinical responses in patients with different types of cancers, including melanomas, non–small-cell lung cancer, renal cell carcinoma, bladder cancer, and Hodgkin’s lymphoma. Its success or failure is mainly determined by tumour intrinsic factors. MMR defects lead to accumulation of mutation burden, a potential source of immunogenic neoantigens recognised by the immune system, with high immunoscores and cytokotoxic T cell infiltration. These instable CRC and non-CRC patients with MMR deficiency (MMRd) have better responses to PD-1 ICB therapy and show improved progression-free survival. However, the molecular basis of these clinical features is poorly understood.

The presence of a BRAF (V600E) mutation promotes MLH1 silencing by increasing the levels of the v-maf avian musculoaponeurotic fibrosarcoma oncogene homologue G at the promoters of MLH1. However, this cannot explain the mechanism of most MSI CRC cases that lack this mutation. Moreover, the activating mutation in the oncogene BRAF is genetically seen subsequent to MLH1 hypermethylation. Emerging evidence also suggests that certain miRNAs can regulate MMR expression to influence genomic stability in CRC. However, this process is not through epigenetic silencing of MLH1.

Protein phosphatase 2A (PP2A), consisting of a catalytic subunit (C), a structural subunit (A), and a regulatory/variable B-type subunit, is a major serine/threonine phosphatase in cells and maintains cell homeostasis by counteracting most of the kinase-driven signalling pathways. Targeting PP2A as a therapeutic strategy has recently gathered much attention, yet the complexity of cellular functions and pathways regulating PP2A has meant that the anti-tumour effects of activating or inhibiting PP2A activity remain poorly elucidated. Emerging evidence indicates that PP2A inactivation, caused either by mutations or by endogenous inhibitors, has a major role in the maintenance of the transformed phenotype in cancer, but its distinct tumour-intrinsic role in shaping the immune microenvironment and response to ICB remains unknown.

In this work, we report a mechanism of MMRd and demonstrate that PP2A deletion or inactivation convert cold MSS into MSI tumours with increased cytokotoxic T cell infiltration and improved response to ICB in pre-clinical cancer models.

Results

Loss or inhibition of PP2A enhances cytokotoxic T cell infiltration, inhibits regulatory T cell infiltration, and correlates with MSI status. To provide insights into the inherent role of PP2A inactivation in promoting immune cell infiltration in CRC, we first demonstrated that mouse intestinal tumours, developed by the conditional deletion of Ppp2r1a (gene encoding PP2A scaffold protein in 95%) in Lgr5+ crypt stem cells (referred to as Ppp2r1a−/−), increased infiltration of CD8+ T cells and CD20+ B cells but decreased FOXP3+ regulatory T cell infiltration (Fig. 1a) and enriched cytokine, chemokine, interferon (IFN)-γ, and JAK-STAT protein levels in intestinal tumours. Both methylation-specific polymerase chain reaction (Supplementary Fig. 3a), and bisulfite sequencing (Supplementary Fig. 3b) demonstrated increased methylation of CpG islands of MLH1 in Ppp2r1a−/− intestinal tumours compared to controls.

PP2A inactivation silences MLH1 via the Rb-E2F-DNMT3A/3B and HDAC2-H3K9ac epigenetic pathways. Since epigenetic inactivation of MLH1 and DNA methylation cause most human MSI CRC, we first checked the promoter DNA methylation in mouse Ppp2r1a−/− intestinal tumours. Both methylation-specific polymerase chain reaction (Supplementary Fig. 3a), and bisulfite sequencing (Supplementary Fig. 3b) demonstrated increased methylation of CpG islands of MLH1 in Ppp2r1a−/− intestinal tumours compared to controls. Moreover, RNA-seq analysis (Supplementary Fig. 3c), followed by confirmation with western blotting (Supplementary Fig. 3d) revealed that Ppp2r1a deletion-induced MLH1 epigenetic silencing was associated with upregulation of the de novo DNA methyltransferases DNMT3A and DNMT3B. Although PP2A regulates pathways involved in the cell cycle, metabolism, migration, and survival, little, if any, is known about its role in epigenetic regulation. To identify the binding partners of Ppp2r1a for this function, we performed immunoprecipitation followed by mass spectrometry (IP/MS) in normal intestinal organoid cultures and analysed the enriched pathways by comparing transcriptomes between normal and Ppp2r1a−/− intestinal tumour organoid cultures (Fig. 3a). IP/MS identified several known proteins, such as protein phosphatase 2 catalytic subunit beta (PP2CB), retinoblastoma protein (Rb) and AKT1 in ovarian carcinoma and HEK cells and unknown proteins, such as histone deacteylase (HDAC)2, interacted with and regulated by Ppp2r1a (Supplementary Data 1). RNA-seq and gene set enrichment analysis (GSEA) revealed several pathways upregulated or downregulated in Ppp2r1a−/− intestinal tumour organoid cultures,
including p53, cell cycle, E2F, and RNA polymerase II transcription pathways (Fig. 3b and Supplementary Table 2). A total of 58 proteins were identified both as Ppp2r1a-interacting proteins and Ppp2r1a−/− intestinal tumour organoid culture-enriched genes (Supplementary Table 3 and Fig. 3c). Furthermore, regulation of TP53 activity (P value = 4.10 × 10^{−8}), cell cycle (P value = 1.02 × 10^{−6}), and RNA polymerase II transcription (P value = 4.06 × 10^{−6}) were listed as the top candidates for the identified common gene sets. We identified four genes that were in common in the three gene sets, namely HDAC2, PPP2CB, AKT1, and Rb1, and these were further selected for expression and functional validations (Fig. 3d, e). Among them, the phosphorylation levels of both Rb and HDAC2 increased (Supplementary Fig. 3d). The former exhibited a decrease in the total protein level and the latter exhibited...
an increase in the total protein level (Supplementary Fig. 3d) in Ppp2r1a−/− intestinal tumour organoid cultures compared to the control. Moreover, E2F1 (Supplementary Fig. 3d), a Rb-interacting protein, and its downstream signalling pathway were also upregulated (Supplementary Table 2). Notably, Rb suppresses dnmt3a/3b promoter activity and expression by binding with the E2F1 protein to the dnmt3a/3b promoter25, and HDAC2 plays an important role in suppressing H3K9 acetylation (H3K9ac) in CRC26. As expected, we found that mouse Ppp2r1a−/− intestinal tumour samples showed higher levels of phospho-Rb and phospho-HDAC2 than the control (Supplementary Fig. 3e).

To further demonstrate that Rb and HDAC2 were the direct substrates of PP2A, CT26 cells were treated without and with LB100, a small-molecule inhibitor of PP2A27, followed by...
Ppp2r1a pulldown of the cell lysates for an in vitro phosphatase assay and western blotting. The data showed that the Ppp2r1a pulldown in LB100-treated cell lysate exhibited decreased PP2A activity (Supplementary Fig. 4a) and increased pRb and pHDAC2 levels (Supplementary Fig. 4b). The biochemical evidence shows that HDAC2 and Rb are direct PP2A substrates. We have also demonstrated the involvement of PP2A-Rb-E2F in upregulating DNMT3A/3B and the involvement of PP2A-HDAC2 in suppressing H3K9ac to induce epigenetic silencing of MLH1, we genetically modified a mouse MSS CRC cell line, CT26. CT26 transfected with two short hairpin RNAs (shRNAs) against Ppp2r1a exhibited increased phospho-Rb, E2F1, DNMT3A/3B, and total and phospho-HDAC2 levels; decreased Rb, H3K9ac, and MLH1 levels (Fig. 3f); and induced an MSI state (Supplementary Fig. 5), compared to cells transfected with control shRNAs. Moreover, Rb knockdown transiently increased E2F1 and DNMT3A/3B levels but decreased MLH1 levels (Supplementary Fig. 6a), consistent with the fact that passive DNA methylation only suppresses gene expression transiently28.

Interestingly, the effects of Ppp2r1a or Rb knockdown were also observed in a mouse MSI CRC cell line, MC38, in which the suppression of MSH2 was more pronounced than that of MLH1 (Supplementary Fig. 6b). More importantly, these Ppp2r1a knockdown effects were almost completely abrogated by E2F1 (Fig. 3g) or HDAC2 knockdown (Fig. 3g) and Supplementary Fig. 6c) or treatment with a DNMT inhibitor, 5 aza-cytidine (Fig. 3g). Together, these data suggest the requirement of both Rb-E2F-DNMT3A/3B and HDAC2-H3K9ac for PP2A inactivation-mediated epigenetic silencing of MLH1 or MSH2 genes and induction of MSI status. As expected, we found that human colorectal tumour samples showed higher levels of phospho-Rb and phospho-HDAC2 than the control (Fig. 3h).

Together, these data indicate that Rb and HDAC2 are dephosphorylated by PP2A and that their phosphorylation caused by PP2A inactivation for MLH1 epigenetic silencing can induce MSI status in CRC.

PP2A inactivation induces ICB response. Therefore, we assessed the effect of Ppp2r1a knockdown on tumour growth and response to antibodies against PD-1 (anti-PD1) in the MSS CRC cell line, CT26 (Fig. 4a). Ppp2r1a knockdown did not affect CT26 growth in syngeneic animals in the presence of control antibodies (Fig. 4b), however inhibited tumour growth in the presence of anti-PD1, compared to cells transfected with control shRNAs (WT CT26) (Fig. 4c). Although WT CT26 did not respond to anti-PD1 treatment (Fig. 4d), CT26 with Ppp2r1a knockdown responded to anti-PD1 treatment (Fig. 4e), suggesting Ppp2r1a knockdown sensitises CT26 to anti-PD1 treatment (Fig. 4e).

Increased levels of CD8+ tumour-infiltrating T cells were found in tumours formed by CT26 cells with Ppp2r1a knockdown compared to those formed by WT CT26 cells (Fig. 4f). To demonstrate that Ppp2r1a knockdown converted cold tumours into hot tumours by increasing neoantigen, we submitted the RNA-seq data of CT26-shppp2r1a and CT26-scr tumour samples, integrated in the fastq.gz files, and applied the NAP-CNB29 to predict neoantigens. A total of 270 missense transcripts, corresponding to 220 genes, shared by three CT26-shppp2r1a tumours but not found in the CT26-scr tumour were identified (Fig. 4g). The software also generated a ranking of putative neoantigens that are common in the three CT26-shppp2r1a tumours samples. The 30 top-scoring putative neoepitopes are shown in Supplementary Table 5. We then analysed the repertoire of T cell receptor (TCR) rearrangements in mice that received either WT CT26 or CT26 with Ppp2r1a knockdown tumour cells. To determine productive TCR rearrangements (TCRβ complementary determining region 3), DNA from peripheral blood mononuclear cells was amplified with TCR-specific primers and subjected to next-generation sequencing (NGS). Bioinformatics analyses revealed an expansion of the 20 more-represented TCR rearrangements in mice receiving CT26 with Ppp2r1a knockdown tumour cells (Fig. 4h and Supplementary Table 6), suggesting that Ppp2r1a knockdown in mouse MSS CRC triggers neoantigen generation and sensitises them to ICB-mediated anti-tumour activity.

In rodent models, direct deletion of MMR genes, such as MLH130 or MSH231, in tumours triggers neoantigen generation and cytotoxic T cell infiltration, impairs tumour growth, and sensitises them to ICB therapies. We reasoned that pharmacological agents that drive PP2A inactivation and cause epigenetic silencing of MMR genes may, paradoxically, be beneficial for therapeutic purposes. The safety, tolerability, and preliminary anti-tumour activity of LB100 have been previously shown in adult patients with progressive solid tumours37. Treatment of CT26, MC38, mouse triple-negative breast cancer 4T1, and mouse pancreatic cancer Pan18 with LB100 induced MLH1 loss and an increase in MSI status (Supplementary Fig. 7). We then
assessed the therapeutic effects of LB100 combined with anti-PD-1 treatment on tumour growth. Notably, pharmacologic inhibition of PP2A with LB100 has been known to enhance the immune-mediated anti-tumour activity of the PD-1 blockade through the inhibition of Treg differentiation. Compared with treatment with LB100 or anti-PD1 alone, the combination of LB100 and anti-PD1 synergistically improved its activity on anti-tumour growth and increased survival (Fig. 5a), although the synergistic effect of LB100 and anti-PD1 was less than that of Ppp2r1a knockdown and anti-PD1 (Fig. 4c, e). To prove that LB100 sensitised tumour cells to ICB therapies regardless of its Treg inhibitory activity, we showed the expression of p110δ in Treg (Foxp3+), but not in CD8+ or polymorphonuclear myeloid-derived suppressor cell (PMN-MDSC) (Ly6Ghigh) in
Fig. 3 MLH1 loss caused by DNMT3A/B upregulation is mediated through the PP2A-Rb-E2F pathway. a Immunoprecipitation performed with Capturem Protein A columns. Organoid lysates from WT mice were incubated with 1 μg of PPP2R1A antibody for 10 min. The antibody-lysate complex was applied to equilibrate Protein A spin columns. The eluted fraction was then subjected to SDS-PAGE to confirm the presence of PP2A B subunit antigen (52 kDa, detected by Cell Signaling #2290). Images are representative of one biological independent sample for each group. b Volcano plot for the comparison of RNA-seq data of Lyr5-EGFP-CreERT2, Ppp2r1aflx/flx intestinal organoids treated with and without DMBA and tamoxifen for 50 days. Differently expressed genes (fold change >2 and FDR < 0.05) are denoted in red or green. Plot is representative of three biological independent samples for each group. c Intersection of ppp2r1a interaction protein in a and differently expressed genes in b (IP protein data are available in Supplementary Data 1 and RNA-seq data are available in GSE120241 with NIH/NCBI at GEO dataset). d The top 3 significant gene ontology categories from the 58 interacted proteins identified by GSEA (whole gene ontology category is listed in Supplementary Table 4). e Venn diagram showing overlap (gene numbers) among genes associated with regulation of TP53 activity, cell cycle, and RNA polymerase II transcription. The intersection contained four genes, including hdac2, ppp2cb, akt1, and rb1. Western blot analysis of f CT26 transfected with the indicated shRNAs, and treated with g vehicle control or 5-azacytidine (AZA, 1 μM for 1 day). Blots are representative of three biological independent samples for each group. h Human tissue array containing MSI and MSS colorectal tumours was assayed for p-Rb (n = 141, P = 0.0132) and p-HDAC2 (n = 138, P = 0.02) levels by immunohistochemistry. (Left) Representative pictures showing increased p-Rb and p-HDAC2 levels in MSI compared to MSS. Arrows indicate positive signals. Bar = 25 μm. (Right) Quantitative data are shown. P value was determined by two-sided Mann-Whitney U-test. Source data are provided as a Source data file.

the CT26 tumour microenvironment (Supplementary Fig. 8). We then used the p110δ inhibitor PI-3065 to block Treg-mediated immune suppression in mice32, and showed that the therapeutic effects of the combination of LB100 and anti-PD1 on reducing tumour growth and enhancing survival were also observed in the presence of PI-3065 (Fig. 5b). Together, these data indicate that LB100 sensitises tumour cells to ICB therapies independent of its Treg inhibition activity. To assess whether the results obtained using mouse cancer models can translate to human diseases, we characterised and compared the expression levels of proteins related to PP2A structure and functions between MSS and MSI tumours in 33 human CRC cell models. Compared to MSS cancers, MSI cancers had increased expression of CIP2A and decreased expression of PPP2R1A (Fig. 5c). We chose 3 human MSS CRC cells, HT29, SW480 (primary), and SW620 (metastasis) for further studies. The latter two were from the same patient33. Treatment of HT29 with pharmaceutical inhibition of PP2A activity (Supplementary Fig. 9) with two drugs, LB100 and LB102, for 2 and 7 days or with shRNAs against PPP2R1A induced MLH1 loss (Fig. 5d) and an increase in MSI status (Fig. 5e, Supplementary Fig. 10). Similar results were observed for SW620 (Fig. 5e, Supplementary Fig. 11). Moreover, treatment with LB100 also induced Rb phosphorylation and DNMT3A/3B upregulation in SW620 and SW480 (Supplementary Fig. 12). In line with the data obtained from mouse models, human CRC cells, in which MSI status is related to increased CIP2A level and decreased PPP2R1A level and in which the loss of MMR genes and the induction of MSI status are caused by PP2A inhibition, may also respond to ICB therapy when it is combined with PP2A inactivation.

PP2A-related gene mutations or expression changes can predict mutation burden, MSI status, and the response to ICB. A previous study demonstrated that the MSI status can predict the clinical benefit of ICB across 12 tumour types35, making ICB the first Food and Drug Administration-approved tissue-agnostic therapy for MSI-H cancers34. This result urges us to determine whether these findings can be extended to various clinical settings. Besides CRC, endometrial carcinomas are classified into MSI and MSS tumours35. Analysis of human endometrial carcinoma TCGA data (n = 373)33, including 13, 4, and 4% patients with PPP2R1A, SET, and CIP2A mutations or altered mRNA levels, respectively, revealed that patients with these genetic or transcriptional alterations had increased mutation rate cluster, MSI status, and tumour mutation count (Supplementary Fig. 13). We have further undertaken a reanalysis of the MSK-IMPACT cohort (including the clinical and genomic data of 1661 advanced cancer patients treated with ICB36) and showed that PPP2R1A mutation (1.4%) was associated with an increased tumour mutation burden score and mutation count, and a better overall survival status (Supplementary Fig. 14a, b). Moreover, the median survival time and the univariate Cox regression hazard ratio of patients with PPP2R1A-mutated tumours were much better than those of patients with PPP2R1A-non-mutated tumours (Supplementary Fig. 14c). The pan-cancer nature of this biomarker probably reflects the fundamental mechanisms by which ICB functions. These data together support the hypothesis that PPP2R1A, SET, and CIP2A mutations or altered mRNA levels are associated with higher mutation burden and MSI status and help to predict responses to ICB.

Discussion
Cancer immunotherapy with checkpoint-blocking antibodies targeting Cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) and PD-1/PD-L1 can cause a long-term sustained response in patients with metastatic cancer of a wide range of histologies. Currently available immunotherapeutic agents are expensive and generally associated with considerable toxicity, and most importantly, only a small portion of cancer patients respond to immunotherapy, which mainly depends on the tumour-intrinsic and -extrinsic factors37,38. The identification of reliable predictive biomarkers39 and the development of new combination therapies that enhance immunotherapy are the keys to successful treatment40,41. In the current study, we demonstrate that the loss of PP2A function through genetic manipulation or drug treatment makes a variety of mouse immune tolerance tumour models sensitive to ICB, and it has been further confirmed by using human cancer cell lines and human CRC tissue arrays. In addition, we show that human endometrial carcinomas with PPP2R1A, SET, and CIP2A mutations or changes in mRNA levels are associated with higher mutation burden and MSI status. Combinational therapy can be used to change the intrinsic or extrinsic factors of the tumour, thereby increasing the success rate of anti-cancer immunotherapy. For example, a compound (D18) can be used to increase KDM5A level for PD-L1 upregulating through PI3K–AKT–S6K1 signalling, and to activate Toll-like receptors 7 and 8 (TLR7/8) signalling pathways40, thereby enhancing anti–PD-1 immunotherapy response in melanoma. Otherwise, an immunotherapeutic combination using the STAT1-activating IFN-γ, the TLR3 ligand poly(I:C), and an anti–IL-10 antibody can be used to convert the microenvironment to a more favourable configuration and sensitize murine tumours to ICB by attracting IFN-γ-producing nature killer (NK) cells41. These studies imply that it is possible to make the patient’s tumour sensitive to ICB through combinational therapies.
Similarly, the negative effects of PP2A inhibition in Treg function have been used to modify the immune microenvironment, thereby enhancing the response to ICB in murine tumour models. Taffs et al. was the first to identify PP2A as a potential negative regulator of T-cell activation through regulation of TCR mediated transmembrane signalling. Using okadaic acid, they proved that PP2A inhibition can enhance the cell-cell contact dependence of lymphocytes and antigen-specific effector functions. This result was later corroborated by Parry et al., in which they identified PP2A as the phosphatase responsible for CTLA-4 mediated deactivation of Akt signalling, providing direct evidence that PP2A plays a prominent role in mediating CTLA-4 suppression of T-cell activation. In addition, PP2A activity was also found to be elevated in Tregs compared to conventional T cells through a Foxp3-involved ceramide signalling pathway. Treg-specific genetic deletion of PP2A increased mTORC1 signalling, and strikingly, resulted in Treg dysfunction, impaired immunosuppressive capability, and profound multiorgan autoimmune diseases. A recent study further showed that PP2A inhibition with LB-100 enhanced the responses of murine tumours to ICB, potentially through activation of mTORC1 which resulted in reduced

Figure captions:

a Schematic diagram of the experiment design. The control group (IgG, Anti-PD1 200 μg) is compared to the PP2A inhibition group (CT26-shppp2r1a). The experiment was performed with 7 days of tumour growth, with tumour volumes recorded and compared between groups.

b Graph showing the tumour volume over time in control and PP2A inhibition groups. The graph demonstrates a significant difference (P = 0.005).

c Graph showing the tumour volume over time in control and PP2A inhibition groups. The graph demonstrates a significant difference (P = 0.005).

d Graph showing the tumour volume over time in control and PP2A inhibition groups. The graph demonstrates a significant difference (P = 0.0014).

e Graph showing the tumour volume over time in control and PP2A inhibition groups. The graph demonstrates a significant difference (P = 0.0014).

f Images of CD8/CD4 expression in CT26-scr and CT26-shppp2r1a groups at different time points (day 21, day 28, day 35).

g Diagram illustrating the overlapping areas of CT26-shppp2r1a-1, CT26-shppp2r1a-2, and CT26-shppp2r1a-3. The diagram shows the percentage of TCRs within each area, with CT26-scr having 16% (2.7%) and CT26-shppp2r1a having 56% (9.5%).

h Graph showing the distribution of productive TCRs in CT26-scr and CT26-shppp2r1a groups.
Fig. 4 Ppp2r1a knockdown triggers neoantigen generation and sensitises to ICB therapies in MSS tumours. Ppp2r1a knockdown and PD-1 blockade synergistically elicit tumour rejection in a CD8+ T cell-dependent manner. a The flowchart of animal experiments. BALB/c mice were inoculated with 0.5 × 10^6 CT26 cells transplanted with scramble (scr) or Ppp2r1a shRNA (shppp2r1a) subcutaneously in the flank. In all experiments, polyclonal hamster IgG and Anti-PD-1 (clone: RMP1-14, BioXcell) were administered using doses of 200 μg for the initial injection and 100 μg for subsequent injections. Mice were then intraperitoneally injected with isotype control IgG or anti-PD-1 antibodies (200 μg, per mouse) on days 5, 8, and 11 following tumour injection. b–e The indicated CT26 clones were injected into syngeneic B6/C57B1 mice. Tumour growth curves were compared and tumour samples were harvested for further analysis. Three independent experiments were done. Data of representative experiments are shown as mean ± s.e.m. (n = 5). P value was determined by two-way ANOVA. f (Left) Immunofluorescence of CD8 and CD4 was performed on CT26-scr and CT26-shppp2r1a tumours to assess CD8+ and CD4+ T cell infiltration at the indicated time points. Bar = 25 μm. f (Right) Quantification of CD8+ density. Three independent experiments were done. Data of representative experiments are shown as mean ± s.e.m. (n = 5). P = 0.0046 was determined by two-sided one-way ANOVA. g A Venn diagram showing a total of 220 genes, including 270 missense transcripts, shared by three CT26-shppp2r1a tumours but not found in the CT26-scr tumour. h Distribution of the 20 most frequent TCR rearrangements identified in peripheral blood from mice (n = 3 for each group) injected with the indicated CT26 clones. The width of the violins is proportional to the number of TCR templates in each level of the y axis; the bars inside the violins show the quartiles of the 20 templates; bars span the first to third quartiles; the horizontal lines inside the bars represent the median; the grey zones represent all samples; the white circle shows the median value. TCR analysis was performed on blood samples obtained 13 days after injection of the tumour cells, as described in the “Methods” section. Source data are provided as a Source data file.

To be noted, inhibiting P2A, a tumour suppressor, can cause lots of oncogenic signals in normal tissues, thereby limiting the therapeutic potential of P2A inhibition in cancer treatment. Similarly, this problem can be solved by controlled delivery of therapeutic agents to tumours.

Although it has been reported that some subunits of the P2A holoenzyme, such as PPP2R2B, are highly methylated and silenced in some CRC tumours, P2A inhibition may not induce immune infiltrate, mainly composed of TH1 and cytotoxic T cells), while tumours caused by Apc^+/−, KrasLSL-G12D, Tgfbir2^−/−, and Trp53^−/−, belong to type IV CMS (characterised by TGFβ-activated stroma) are corresponding to MSS, suggesting the tumour itself is the dominant force shaping the tumours microenvironment. The current study also supports this theory, in which murine ppp2r1a-deficient tumours exhibit enhanced CD8+ T cell infiltration and reduced Foxp3+ Treg infiltration. Similarly, higher SET and CIP2A levels in human CRC cancers are positively correlated with CD8+ cytotoxic T infiltration but negatively correlated with Foxp3+ Treg infiltration. Therefore, MSI CRC has the tumour microenvironment of type I CMS and is sensitive to ICB treatment, so there is no need to use Treg inhibition in combination. Because LB100, a P2A inhibitor, has the ability to convert cold MSS tumours into hot MSI tumours, thereby inhibiting Treg infiltration by the tumour itself, there is no need to combine Treg inhibition for enhancing ICB response. We further showed that the effect of LB100 combined with anti-PD1 on the enhancement of ICB response was independent of Treg inhibition. Together, these data indicate that the effect of the LB100/anti-PD-1 combination on enhancing ICB response is mainly through the conversion of MSS tumours into MSI tumours. This can also be used to explain why the in vivo anti-cancer effect of LB100/anti-PD1 was worse than that of anti-PD1 combined with Ppp2r1a gene knockdown in mouse cancer cells.

Furthermore, the inability of the therapeutic agent to reach the tumour site may be the reason for the lower efficacy of systemic administration, which can be improved by using a cancer-targeting strategy combined with nanomedicine that offers multiple benefits in treating chronic human diseases, including cancer, by site-specific and target-oriented delivery of medicines. High local drug concentration would be able to increase the exposure time, thereby enhancing the anti-cancer efficacy and reducing the systemic toxicity in the treatment of a variety of cancers.

Targeting Treg has been proposed as a combinational therapy for enhancing ICB response, however, the clinical trial results do not support this strategy. One such mechanism is the production of tryptophan metabolites along the kynurenine pathway by the enzyme indoleamine 2,3-dioxygenase 1 (IDO1), which is induced by IFNγ. However, clinical trials using inhibition of IDO1 in combination with blockade of the PD1 pathway in patients with melanoma did not improve the efficacy of treatment compared to PD1 pathway blockade alone. These data indicate that the previously proposed LB100/anti-PD-1 combination for suppressing Treg to enhance ICB response may be ineffective.

Based on the consensus molecular subtypes (CMSs) of CRC, the majority of MSI tumours belong to type I CMS (characterised by increased expression of genes associated with a diffuse inflammatory infiltrate, mainly composed of TH1 and cytotoxic T cells), while tumours caused by Apc^+/−, KrasLSL-G12D, Tgfbir2^−/−, and Trp53^−/−, belong to type IV CMS (characterised by TGFβ-activated stroma) are corresponding to MSS, suggesting the tumour itself is the dominant force shaping the tumours microenvironment. The current study also supports this theory, in which murine ppp2r1a-deficient tumours exhibit enhanced CD8+ T cell infiltration and reduced Foxp3+ Treg infiltration. Similarly, higher SET and CIP2A levels in human CRC cancers are positively correlated with CD8+ cytotoxic T infiltration but negatively correlated with Foxp3+ Treg infiltration. Therefore, MSI CRC has the tumour microenvironment of type I CMS and is sensitive to ICB treatment, so there is no need to use Treg inhibition in combination. Because LB100, a P2A inhibitor, has the ability to convert cold MSS tumours into hot MSI tumours, thereby inhibiting Treg infiltration by the tumour itself, there is no need to combine Treg inhibition for enhancing ICB response. We further showed that the effect of LB100 combined with anti-PD1 on the enhancement of ICB response was independent of Treg inhibition. Together, these data indicate that the effect of the LB100/anti-PD-1 combination on enhancing ICB response is mainly through the conversion of MSS tumours into MSI tumours. This can also be used to explain why the in vivo anti-cancer effect of LB100/anti-PD1 was worse than that of anti-PD1 combined with Ppp2r1a gene knockdown in mouse cancer cells.

Furthermore, the inability of the therapeutic agent to reach the tumour site may be the reason for the lower efficacy of systemic administration, which can be improved by using a cancer-targeting strategy combined with nanomedicine that offers multiple benefits in treating chronic human diseases, including cancer, by site-specific and target-oriented delivery of medicines. High local drug concentration would be able to increase the exposure time, thereby enhancing the anti-cancer efficacy and reducing the systemic toxicity in the treatment of a variety of cancers.

Targeting Treg has been proposed as a combinational therapy for enhancing ICB response, however, the clinical trial results do not support this strategy. One such mechanism is the production of tryptophan metabolites along the kynurenine pathway by the enzyme indoleamine 2,3-dioxygenase 1 (IDO1), which is induced by IFNγ. However, clinical trials using inhibition of IDO1 in combination with blockade of the PD1 pathway in patients with melanoma did not improve the efficacy of treatment compared to PD1 pathway blockade alone. These data indicate that the previously proposed LB100/anti-PD-1 combination for suppressing Treg to enhance ICB response may be ineffective.

Based on the consensus molecular subtypes (CMSs) of CRC, the majority of MSI tumours belong to type I CMS (characterised by increased expression of genes associated with a diffuse inflammatory infiltrate, mainly composed of TH1 and cytotoxic T cells), while tumours caused by Apc^+/−, KrasLSL-G12D, Tgfbir2^−/−, and Trp53^−/−, belong to type IV CMS (characterised by TGFβ-activated stroma) are corresponding to MSS, suggesting the tumour itself is the dominant force shaping the tumours microenvironment. The current study also supports this theory, in which murine ppp2r1a-deficient tumours exhibit enhanced CD8+ T cell infiltration and reduced Foxp3+ Treg infiltration. Similarly, higher SET and CIP2A levels in human CRC cancers are positively correlated with CD8+ cytotoxic T infiltration but negatively correlated with Foxp3+ Treg infiltration. Therefore, MSI CRC has the tumour microenvironment of type I CMS and is sensitive to ICB treatment, so there is no need to use Treg inhibition in combination. Because LB100, a P2A inhibitor, has the ability to convert cold MSS tumours into hot MSI tumours, thereby inhibiting Treg infiltration by the tumour itself, there is no need to combine Treg inhibition for enhancing ICB response. We further showed that the effect of LB100 combined with anti-PD1 on the enhancement of ICB response was independent of Treg inhibition. Together, these data indicate that the effect of the LB100/anti-PD-1 combination on enhancing ICB response is mainly through the conversion of MSS tumours into MSI tumours. This can also be used to explain why the in vivo anti-cancer effect of LB100/anti-PD1 was worse than that of anti-PD1 combined with Ppp2r1a gene knockdown in mouse cancer cells.

Furthermore, the inability of the therapeutic agent to reach the tumour site may be the reason for the lower efficacy of systemic administration, which can be improved by using a cancer-targeting strategy combined with nanomedicine that offers multiple benefits in treating chronic human diseases, including cancer, by site-specific and target-oriented delivery of medicines. High local drug concentration would be able to increase the exposure time, thereby enhancing the anti-cancer efficacy and reducing the systemic toxicity in the treatment of a variety of cancers.

Targeting Treg has been proposed as a combinational therapy for enhancing ICB response, however, the clinical trial results do not support this strategy. One such mechanism is the production of tryptophan metabolites along the kynurenine pathway by the enzyme indoleamine 2,3-dioxygenase 1 (IDO1), which is induced by IFNγ. However, clinical trials using inhibition of IDO1 in combination with blockade of the PD1 pathway in patients with melanoma did not improve the efficacy of treatment compared to PD1 pathway blockade alone. These data indicate that the previously proposed LB100/anti-PD-1 combination for suppressing Treg to enhance ICB response may be ineffective.

Based on the consensus molecular subtypes (CMSs) of CRC, the majority of MSI tumours belong to type I CMS (characterised by increased expression of genes associated with a diffuse
MSI status in these tumours. Due to intratumoural heterogeneity of genetic or epigenetic events leading to PP2A inactivation, some tumour cells may retain functional PP2A activity. For these PP2A functional tumour cells, PP2A inhibition may induce MSI status, thereby making them sensitive to ICB.

There are limitations to our study. We only proved the effect of PP2A inhibition in the “primary” resistance to ICB, reprogramming cold into hot inflamed tumours and improving anti–PD-1 immunotherapy, but did not examine whether mRNA dysregulation or mutations of these genes also play a role in the adaptive and acquired resistance to ICB. Future studies will also need to address the unravelling complexity associated with these dynamic treatment responses. Generally, applying the results of animal models to human patients is a key biomedical challenge.
problem is the main reason for the failure of treatment from preclinical research to clinical trial35. This is likely related to the heterogeneity of patients, cancer types, and environmental factors. However, these are all controlled in the mouse model and this reason can be used to explain the failure.

Methods

Animal studies. Pp2r2alox/lox−− mice, carrying conditional alleles with loxP sites flanking exon 5-6 of Pp2r2a, were purchased from the Jackson Laboratory and crossed to Lgr5-EGFP-CreERT2 mice66 to generate Lgr5-EGFP-CreERT2; Pp2r2alox/lox−− mice. BALB/c and C57BL/6 mice were purchased from National Laboratory Animal Center (Taiwan). All animal studies and care of live animals were approved and performed following the guidelines made by the China Medical University Institutional Animal Care and Use Committee (No. 2017-239 and No. 2020-229). Mice aged 6–8 weeks were injected intraperitoneally with a single 200 μl dose of tamoxifen in sunflower oil at 10 mg/ml. Mice were housed in an animal facility at China Medical University Animal Center under constant environmental conditions (room temperature, 20–24 °C; relative humidity, 50–70%; and a 12-h light-dark cycle). All mice had access to food and water ad libitum.

Mouse intestinal organoid cell isolation and culture. The protocols of mouse intestinal organoid, cell isolation, and culture were modified from previously described methods24,26. In brief, the intestines were harvested, opened longitudinally, and cut into small pieces of 2 mm in size. The tissues were soaked in desalting buffer before being digested using Liberase in a shaker at 37 °C for 1 h. After digestion, the tissues were filtered through a 70 μm sterile cell strainer and incubated with primary antibodies anti-MLH1 (ab92312, dilution 1:500, Abcam), anti-CD3E (A1753, dilution 1:50, ABclonal), anti-CD20 (ab217344, dilution 1:500, Abcam), anti-CD3E (A1753, dilution 1:50, ABclonal), anti-CD4 (ab237722, dilution 1:50, Abcam), and anti-CD8 (ab217344, dilution 1:500, Abcam). The slides were mounted with DAPI (GTX30920, GeneTex) followed by covering with a coverslip. The samples were examined with a Leica TCS SP8 confocal spectral microscope (Leica Application Suite X). For immunohistochemical staining, paraffin-embedded sections were deparaffinized and rehydrated, with antigen being retrieved by placing sections in D buffers for microwave heating. Then, the sections were reacted with primary antibodies anti-PPP2R1A (GTX102206, dilution 1:100, GeneTex), anti-phH3 (GTX50236, dilution 1:50, GeneTex), anti-pRb (ab173289, dilution 1:100, Abcam), anti-CIP2A (ab99518, dilution 1:100, Abcam), and anti-SET (ab181990, dilution 1:250, Abcam) followed by incubation with corresponding secondary antibodies for 30 min at room temperature. The primary antibodies included anti-MLH1 (ab92312, dilution 1:500, Abcam), anti-CD8 (ab217344, dilution 1:500, Abcam), anti-CD4 (ab237722, dilution 1:50, Abcam), and anti-CD3E (A1753, dilution 1:50, ABclonal). The slides were polymerized in the centre well of a 6-well plate containing cell culture medium changed every 3 days. The experiment was repeated twice, each condition with triplicate samples, and each sample contained multiple (×15) organoids.

Cell lines. CT26 mouse colon carcinoma, SW480, SW620 human colon carcinoma and 4T1 mammary carcinoma cell lines were obtained from ATCC. MC38 colon carcinoma was obtained from Kerafast. Mouse pancreatic ductal adenocarcinoma
Tissue 1:1000, CST), anti-DNMT3B (GTX22851, blot by 2.0 GeneTex), anti-pRb (8180, dilution 1:1000, CST), anti-Rb (9313, dilution 1:1000, PerkinElmer) and peroxidase-conjugated secondary antibodies (Merck). The blot detection was performed with the enhanced chemiluminescence system following mouse sample primers: L24372, forward 5′-AAGA-3′, reverse 5′-GCTGGCCATATATATTTAAACC-3′ and reverse 5′-GCTGGCAAGAAGGTACTCACCC-3′; mBAT-26, forward 5′-TCGGCTTTCAAGCATCCATA-3′ and reverse 5′-TTTGTTGTAGATGTTTGATTAGGGTTGT-3′. The PCR reaction was performed in a 3% agarose gel.

Western blot analysis. For western blot analysis, the organoids or cells were lysed in lysis buffer (1% Triton X-100, 150 mM NaCl, 10 mM tris pH 7.4, 1 mM, 1 EDTA pH 8.0, protease/phosphatase inhibitor cocktail, Bio Kit). Lysates were clarified by centrifugation and amounts of proteins were normalised with the Protein Assay Dye Reagent concentrate kit (Bio-Rad). Total cellular proteins were run on a 3% agarose gel.

Immunoprecipitation and mass spectrometry. For the identification of PPP2R1A-interacting proteins, wild-type intestinal organoid cultures were lysed using Protein Assay Dye Reagent concentrate kit (Bio-Rad). Total cellular proteins were run on a 3% agarose gel.

Transfection (shRNA construct, transfection). Cells were transfected with the shRNAs against PPP2R1A, Hb, HDAC2 or a negative control short hairpin RNA (shRNA) (Scramble) using Lipofectamine 2000 following manufacturer’s recommendations (Invitrogen/Life Technologies, USA). After 48 h transfection, transfected cells were collected by trypsinization and desalted on C18 ZipTips (Millipore) before analysis on a hybrid quadrupole-orbitrap mass spectrometer (Q Exactive; Thermo Fisher Scientific). Protein identifications were obtained with MASCOT (Matrix Science) using UniProt/Swiss-Prot. The results were controlled for false-discovery rate and the proteins were identified as analysed with Qiagen’s Ingenuity Pathway Analysis (IPA) software for the identification of pathway enrichment in the data set.

Whole-exome sequencing, alignment, and annotation. SureSelectXT Mouse All Exon Kit (G75590-001, Agilent, CA, USA) was used to capture exome sequences according to the standard protocols. The products of exome capture should meet the criteria of 300 ± 30 bp length of fragments and total amount >600 ng. After then, the index-tagged samples were pooled and sequenced on Illumina HiSeq 2000. Burrows-Wheeler Alignment (v0.7.12) was applied to align the reads to the reference genome (mm10) with default parameters, which were then sorted and the duplicated reads were filtered by picard-tools (v1.8). InDel realignment and base quality score recalibration were performed with GenomeAnalysisTK (v3.5) using mm10 dbsnp database as known sites. Single-nucleotide polymorphisms and indels were identified by GenomeAnalysisTK HaploTypeCaller (v3.5) with default parameters. Whole-exome sequencing raw data were submitted to SRA database (SRA: https://trace.ncbi.nlm.nih.gov/Traces/sra/; accession number SRP162613)

Neonantigen identification. RNA-seq analyses were performed on CT26-shppp2r1a and CT26-scr tumours harvested from mice when tumour volume reached around 70 mm³. Total RNA was isolated from tumours using the AllPrep DNA/RNA Mini Kit (Qiagen), according to the manufacturer’s instructions. Pre-diagnosis of neoantigens was performed by submission of RNA-seq data in “fastq.gz” files to generate a ranking of putative neoantigens via the NA-PeCNB website. For each variation, the mutant peptide sequence was obtained. Haplotypes for mouse samples were set to H2-Kd and H2-Dd for BALB/c background. Data were submitted and approved by Gene Expression Omnibus (GEO; accession number GSE18257).

Bisulphite PCR sequencing. Genomic DNA was isolated from mouse intestinal organoids using QIAamp DNA Mini Kit (Qiagen). In all, 500 μg of DNA was treated with sodium bisulphite using EZ DNA Methylation-Gold Kit (Zymo Research). The bisulphite converted DNA was amplified by PCR using Bio-Rad Hotstar plus Taq DNA polymerase and the following primers were used: mMLH1 Primer I, 5′-GGGTGAGAACATGCTATTTTTATTTTACGTC-3′ and mMLH1 Primer II: 5′-ACCCAGCATGATATATAAAACACC-3′. Cycling conditions were as follows: denaturation at 95°C for 5 min, followed by 45 cycles of amplification (95°C for 30 s, annealing temperature for 30 s and 72°C for 45 s), and a final extension at 72°C for 10 min. The PCR products were run on a 3% agarose gel and recovered from the gel using QIAQuick Gel Extraction Kit (Qiagen). The purified PCR products were submitted for sequencing (SeqWright), if their concentration was high enough for sequencing. For PCR for further enrichment on the chimpanzees, sequencing conditions of the sequencing results, the heights of methylated peak (C peak) and unmethylated peak (T peak) of each CpG were measured and the percentage of methylation was calculated as: methylation% = 100 × value of methylated peak / (value of methylated peak + value of unmethylated peak). The overall DNA methylation of a gene promoter region was the average of methylation percentages of all CpGs examined.

Methylation-specific PCR (MSP). MSP has been well established for measuring the status of specific CGI methylation of MLH1 genes in mice. MSP analysis of bisulphite-converted DNA was performed using EZ DNA Methylation-Gold Kit (Zymo Research). The bisulphite converted DNA was amplified by PCR using Bio-Rad Hotstar plus Taq DNA polymerase and the following primers were used: mMLH1 Primer I, 5′-GGGTGAGAACATGCTATTTTTATTTTACGTC-3′ and mMLH1 Primer II: 5′-ACCCAGCATGATATATAAAACACC-3′. Cycling conditions were as follows: denaturation at 95°C for 5 min, followed by 45 cycles of amplification (95°C for 30 s, annealing temperature for 30 s and 72°C for 45 s), and a final extension at 72°C for 10 min. The PCR products were run on a 3% agarose gel and recovered from the gel using QIAQuick Gel Extraction Kit (Qiagen). The purified PCR products were submitted for sequencing (SeqWright), if their concentration was high enough for sequencing. The primers were: 5′-TTTGTGTGATGTTTGTATAGCGTTGTT-3′ and 5′-CCACCTATCCCTACTCTACAAAACAC-3′. Methylated DNA forward primer, 5′-TGTGACTACCTTCTAGGCCTG-3′ and Methylated DNA reverse primer, 5′-TCTGCATTTTAACTATGGCTC-3′. Methylated DNA forward primer and reverse primer were the same as for Bisulphite PCR sequencing above. The PCR products were run on a 3% agarose gel.
Tumour cell transplantation studies. BALB/c mice were inoculated with 0.5 × 10⁶ CT26 or 4T1 cells, and C57BL/6 mice were inoculated with 0.5 × 10⁶ MC38 or 0.5 × 10⁵ Pan18 cells subcutaneously in the flank. When tumours reached between 50 and 100 mm³, mice were randomised into four treatment groups, including Sham, anti-PD-1 (clone: RMP1-14, BioXcell), LB100 (0.16 mg/kg), and anti-PD-1 with LB100 combination. Treatments were administered by intraperitoneal injection on days 5, 8, and 11. For anti-PD-1 administered doses, 200 µg per mouse was given for the initial treatment day and 100 µg per mouse was given for the subsequent treatment day.

For investigation of PP2A inhibition and PD-1 blockade synergistically eliciting tumour rejection in a regulatory T cell-independent manner, BALB/c mice inoculated with 0.5 × 10⁶ CT26 subcutaneously in the flank were further randomised into mice treated with vehicle or with iTreg, PI-3065 (75 mg/kg, daily), after tumour reached between 50 and 100 mm³. Maximal tumour burden permitted by CMU IACUC is 2000 mm³.

Coefficient of drug interaction (CI). It is calculated as follows: CI = AB/(A × B). AB is the ratio of the two-drug combination group to the control group. A or B is the ratio of the single-drug group to the control group. CI < 1 indicates synergism, CI > 1 indicates additivity, and CI = 1 indicates antagonism.

Statistical analysis. Statistical analyses were performed using the Excel (ver. 2016) and GraphPad Prism software. Statistical significance in tumour growth is determined by two-way analysis of variance with Bonferroni posttest. Unless otherwise stated, all data are expressed as mean ± s.e.m.

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability

The TCGA data used in this study are publicly available in ebiportal [https://www.ebiportal.org/]. All CCLE processed datasets are available at the CCLE portal [www.broadinstitute.org/ccle] and Depmap portal [http://www.depmap.org]. Whole-exome sequencing data and mRNA data of carcinogen-induced tumours from Lgr5(NON) mice are available with accession number SRP162613 and at GEO data set under accession code GSE120241.

Reporting summary

Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability

The TCGA data used in this study are publicly available in ebiportal [https://www.ebiportal.org/]. All CCLE processed datasets are available at the CCLE portal [www.broadinstitute.org/ccle] and Depmap portal [http://www.depmap.org]. Whole-exome sequencing data and mRNA data of carcinogen-induced tumours from Lgr5(NON) mice are available with accession number SRP162613 and at GEO data set under accession code GSE120241.

RNA sequencing data of CT26-shp2p2a1a and CT26-scr samples are available with NCBI NCBI at GEO data set under accession code GSE182571. The mass spectrometry data are available as Supplementary Data 1, TCR variable regions transcripts of CT26-shp2p2a1a and CT26-scr samples are available with NCBI NCBI at GEO data set under accession code GSE188992. The remaining data are available within the Article, Supplementary Information, or Source Data file. Source data are provided with this paper.

Received: 26 March 2021; Accepted: 2 December 2021; Published online: 15 December 2021

References

1. Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330–337 (2012).
2. Herman, J. G. et al. Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc. Natl Acad. Sci. USA 95, 6870–6875 (1998).
3. Veigl, M. L. et al. Biallelic inactivation of hMLH1 by epigenetic gene silencing, promoter hypermethylation in colorectal carcinoma. Proc. Natl Acad. Sci. USA 105, 3827–3832 (2008).
4. Gryfe, R. et al. Tumor microsatellite instability and clinical outcome in young human colon and rectal cancer. Clin. Cancer Res. 14, 6907–6914 (2008).
5. Topalian, S. L. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366, 2443–2454 (2012).
6. Miecznik, R. et al. Integrative analyses of colorectal cancer show immunoscore is a stronger predictor of patient survival than microsatellite instability. Immunity 44, 698–711 (2016).
7. Carethers, J. M. & Jung, B. H. Genetics and genomic biomarkers in sporadic colorectal cancer. Gastroenterology 149, 1177.e3–1190.e3 (2015).
8. Valeri, N. et al. MicroRNA-21 induces resistance to 5-fluorouracil by down-regulating human DNA Methylase 2 homolog 2 (hMTH2). Proc. Natl Acad. Sci. USA 107, 21098–21103 (2010).
9. Valeri, N. et al. Modulation of mismatch repair and genomic stability by miR-155. Proc. Natl Acad. Sci. USA 107, 6982–6987 (2010).
10.⽢erotti, D. & Neviani, P. Protein phosphatase 2A: a target for anticancer therapy. Cancer Biol. Ther. 16, 821–833 (2015).
11. Yen, Y. T. et al. PP2A deficiency enhances carcinogenesis of Lgr5(+) intestinal stem cells both in organoids and in vivo. Cells https://doi.org/10.3390/ cells10010090 (2019).
12. Koppang, A. et al. Colorectal cancers with microsatellite instability display mRNA expression signatures characteristic of increased immunogenicity. Mol. Cancer 3, 21 (2004).
13. Ali, K. et al. Inactivation of PI(3)K in p110delta breaks regulatory T-cell-mediated immune tolerance to cancer. Nature 510, 407–411 (2014).
14. Jackson, J. B. & Pallas, D. C. Circumventing cellular protection of PP2A by methylphosphonate treatment promotes transformation in an Akt-dependent manner. Neoplasia 14, 585–599 (2012).
15. Tang, Y. et al. MDM2 overexpression deregulates the transcriptional control of RB/E2F leading to DNA methyltransferase 3A overexpression in lung cancer. Clin. Cancer Res. 18, 4325–4332 (2012).
16. Miyagawa, C. L. et al. An inactivating mutation in HDAC2 leads to dysregulation of apoptosis mediated by APAF1. Gastroenterology 135, 1654–1664 e1652 (2008).
17. Chung, V. et al. Safety, tolerability, and preliminary activity of LB-100, an inhibitor of protein phosphatase 2A, in patients with relapsed solid tumors: an open-label, dose escalation, first-in-human, phase 1 trial. Clin. Cancer Res. 23, 3277–3284 (2017).
18. Savio, A. J. et al. The dynamic DNA methylation landscape of the mutl homolog 1 shore is altered by MLH1-93G+G polymorphism in normal tissues and colorectal cancer. Clin. Epigenet. 9, 26 (2017).
19. Wett-Carvajal, C. et al. Predicting MHC I restricted T cell epitopes in mice with NAP-CNB, a novel online tool. Sci. Rep. 11, 10780 (2021).
20. Germann, G. et al. Inactivation of DNA repair triggers neotumorigenesis and impairs tumour growth. Nature 552, 116–120 (2017).
21. Mandal, R. et al. Genetic diversity of tumors with mismatch repair deficiency influences anti-PD-1 immunotherapy response. Science 364, 485–491 (2019).
22. Ho, W. S. et al. Pharmacologic inhibition of protein phosphatase-2A achieves durable immune-mediated antitumor activity when combined with PD-1 blockade. Nat. Commun. 9, 2126 (2018).
23. Bergmann-Leitner, E. S. & Abrams, S. I. Differential role of Fas/Fas ligand interactions in cytolsis of primary and metastatic colon carcinoma cell lines by human antigen-specific CD8+ CTL. J. Immunol. 164, 4941–4954 (2000).
24. Lemery, S., Keegan, P. & Parducz, R. First FDA approval agnostic of cancer site — when a biomarker defines the indication. N. Engl. J. Med. 377, 1409–1412 (2017).
25. Cancer Genome Atlas Research Network et al. Integrated genomic characterization of endometrial carcinoma. Nature 497, 67–73 (2013).
26. Samstein, R. M. et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat. Genet. 51, 202–206 (2019).
27. Proctor, P., Ho-Lieskovan, S., Wargo, J. A. & Ribas, A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168, 707–723 (2017).
28. Pitt, J. M. et al. Resistance mechanisms to immune-checkpoint blockade in cancer: tumor-intrinsic and –extrinsic factors. Immunity 44, 1255–1269 (2016).
29. Galluzzi, L., Chan, T. A., Kroemer, G., Wolchok, J. D. & Lopez-Soto, A. The hallmarks of successful anticancer immunotherapy. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aat7808 (2018).
30. Wang, L. et al. Enhancing KDM5A and TLR activity improves the response to immune checkpoint blockade. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aax2282 (2020).
31. Fazek, R. M. et al. Sensitization to immune checkpoint blockade through activation of a STAT1/NK axis in the tumor microenvironment. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aav7816 (2019).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27620-x | www.nature.com/naturecommunications
42. Apostolidis, S. A. et al. Phosphatase PP2A is requisite for the function of regulatory T cells. Nat. Immunol. 17, 556–564 (2016).
43. Taffe, R. E., Redegeld, F. A. & Sitkovsky, M. V. Modulation of cytolytic T lymphocyte functions by an inhibitor of serine/threonine phosphatase, okadaic acid. Enhancement of cytolytic T lymphocyte-mediated cytotoxicity. J. Immunol. 147, 722–728 (1991).
44. Parry, R. V. et al. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol. Cell. Biol. 25, 9543–9553 (2005).
45. Delgoffe, G. M. PP2A’s restraint of mTOR is critical for T(reg) cell activity. Nat. Immunol. 17, 478–479 (2016).
46. Zhai, L. et al. Molecular pathways: targeting IDO1 and other tryptophan dioxygenases for cancer immunotherapy. Clin. Cancer Res. 21, 5427–5433 (2015).
47. Gunther, J., Dabriza, J. & Wirthgen, E. Limitations and off-target effects of tryptophan-related IDO inhibitors in cancer treatment. Front. Immunol. 10, 1801 (2019).
48. Labadie, B. W., Bao, R. & Luke, J. J. Reimagining IDO pathway inhibition in cancer immunotherapy via downstream focus on the tryptophan- kynurenine-aryl hydrocarbon axis. Clin. Cancer Res. 25, 1462–1471 (2019).
49. Guinney, J. et al. The consensus molecular subtypes of colorectal cancer. Nat. Med. 21, 1350–1356 (2015).
50. Tauriello, D. V. F. et al. TGFBeta drives immune evasion in genetically reconstituted colon cancer metastasis. Nature 554, 538–543 (2018).
51. Kim, B. Y., Rutka, J. T. & Chan, W. C. Nanomedicine. N. Engl. J. Med. 363, 2434–2443 (2010).
52. Jin, Q., Liu, Z. & Chen, Q. Controlled release of immunotherapeutics for enhanced cancer immunotherapy after local delivery. J. Control Release 329, 882–893 (2021).
53. Tan, J. et al. B5beta-associated PP2A complex controls PDK1-directed myc signaling and modulates rapamycin sensitivity in colorectal cancer. Cancer Cell 18, 459–471 (2010).
54. Lesterhuis, W. J. et al. Dynamic versus static biomarkers in cancer immunotherapy: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).
55. Li, T. et al. TIMER: a web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res. 77, e108–e110 (2017).
56. Tang, Z. et al. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 45, W98–W102 (2017).
57. Shen, C. N. et al. Lympathic vessel remodeling and invasion in pancreatic cancer progression. ElifeMedicine 47, 98–113 (2019).
58. Woerner, S. M. et al. Detection of coding microsatellite frameshift mutations in DNA mismatch repair deficient mouse intestinal tumors. Mol. Carcinog. 54, 1376–1386 (2015).
59. Brousch, M., Yu, L., Hubbard, T. & Choudhary, J. Accurate and sensitive peptide identification with Mascot Percolator. J. Proteome Res. 8, 3176–3181 (2009).
60. Xia, D., Wang, D., Kim, S. H., Katoh, H. & DuBois, R. N. Prostaglandin E2 promotes intestinal tumor growth via DNA methylation. Nat. Med. 18, 224–226 (2012).
61. Tauriello, D. V. F. et al. TGFbeta drives immune evasion in genetically reconstituted colon cancer metastasis. Nature 554, 538–543 (2018).
62. Kim, B. Y., Rutka, J. T. & Chan, W. C. Nanomedicine. N. Engl. J. Med. 363, 2434–2443 (2010).
63. Jin, Q., Liu, Z. & Chen, Q. Controlled release of immunotherapeutics for enhanced cancer immunotherapy after local delivery. J. Control Release 329, 882–893 (2021).
64. Tan, J. et al. B5beta-associated PP2A complex controls PDK1-directed myc signaling and modulates rapamycin sensitivity in colorectal cancer. Cancer Cell 18, 459–471 (2010).
65. Lesterhuis, W. J. et al. Dynamic versus static biomarkers in cancer immunotherapy: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).
66. Feng, L. X., Li, M., Liu, Y. J., Yang, S. M. & Zhang, N. Synergistic enhancement of cancer therapy using a combination of ceramide and docetaxel. Int. J. Mol. Sci. 15, 4201–4220 (2014).

Acknowledgements

This work was supported by the “Drug Development Center, China Medical University” from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan. This work was financially supported by the Ministry of Science and Technology (MOST 106-2321-B-039-003; 109-2321-B-039-003), China Medical University (CMU110-Z-05), and China Medical University Hospital (DMR-108-BC-5). The funding sources had no involvement in study design, in the collection, analysis and interpretation of data, in the writing of the report, and in the decision to submit the article for publication.

Author contributions

Y.-T.Y.: writing—original draft preparation, methodology, experiment conduction, data analysis; M.C.: experiment conduction, data analysis; P.-Y.W.: experiment conduction, data analysis; K.H., S.-F.C., K.C., W.C.: design and perform clinical studies, IRB protocol conduction, and tumour tissue microarray acquisition; S.-C.H.: writing—original draft preparation, writing—review and editing, conceptualisation, methodology, data analysis, funding acquisition.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-021-27620-x.

Correspondence and requests for materials should be addressed to Shih-Chieh Hung.

 Peer review information Nature Communications thanks Matthias Kloor and the other anonymous reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021