This is a repository copy of Cryptic speciation associated with geographic and ecological divergence in two Amazonian Heliconius butterflies.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/131670/

Version: Published Version

Article:
Rosser, Neil Stephen, Freitas, André, Huertas, Blanca et al. (7 more authors) (2018)
Cryptic speciation associated with geographic and ecological divergence in two Amazonian Heliconius butterflies. Zoological journal of the linnean society. ISSN 0024-4082

https://doi.org/10.1093/zoolinnean/zly046

Reuse
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
Cryptic speciation associated with geographic and ecological divergence in two Amazonian Heliconius butterflies

NEIL ROSSER¹,²*, ANDRÉ V. L. FREITAS³, BLANCA RUERTAS⁴, MATHIEU JORON⁵, GERARDO LAMAS⁶, CLAIRE MÉROT⁷, FRASER SIMPSON⁸, KEITH R. WILLMOTT⁹, JAMES MALLET² and KANCHON K. DASMAHAPATRA¹

¹Department of Biology, University of York, Wentworth Way, Heslington YO10 5DD, UK
²Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA
³Departamento de Biología Animal and Museu de Zoologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
⁴Life Sciences Department, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
⁵Centre d’Ecologie Fonctionnelle et Évolutive, UMR 5175 CNRS - Université de Montpellier - Université Paul Valéry Montpellier - EPHE, 1919 route de Mende, 34293 Montpellier, France
⁶Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Apartado 14–0434, Lima-14, Peru
⁷IBIS, Université Laval, 1030 Avenue de la Médecine, Québec, Canada
⁸Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
⁹McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA

Received 23 February 2018; revised 14 May 2018; accepted for publication 27 May 2018

The evolution of reproductive isolation via a switch in mimetic wing coloration has become the paradigm for speciation in aposematic Heliconius butterflies. Here, we provide a counterexample to this, by documenting two cryptic species within the taxon formerly considered Heliconius demeter Staudinger, 1897. Amplified fragment length polymorphisms identify two sympatric genotypic clusters in northern Peru, corresponding to subspecies Heliconius demeter ucayalensis H. Holzinger & R. Holzinger, 1975 and Heliconius demeter joroni ssp. nov. These subspecies are reciprocally monophyletic for the mitochondrial genes COI and COII and the nuclear gene Ef1α, and exhibit marked differences in larval morphology and host plant use. COI sequences from 13 of the 15 currently recognized subspecies show that mtDNA differences are reflected across the range of H. demeter, with a deep phylogenetic split between the southern and northern Amazonian races. As such, our data suggest vicariant speciation driven by disruptive selection for larval performance on different host plants. We raise Heliconius demeter eratosignis (Joicey & Talbot, 1925) to Heliconius eratosignis based on nomenclatural priority, a species also comprising H. eratosignis ucayalensis comb. nov. and three other southern Amazonian races. Heliconius demeter joroni ssp. nov. remains within H. demeter s.s., along with northern Amazonian and Guianan subspecies.

ADDITIONAL KEYWORDS: butterflies – cryptic species – genotypic clusters – host plant shift – integrative taxonomy – mimicry – vicariant speciation.

INTRODUCTION
Cryptic species can be defined as species that are, or have been, erroneously classified as a single nominal
species due to their superficial morphological similarity (Bickford et al., 2007). In recent years, the integration of DNA sequences into taxonomy has led to the recognition of increasing numbers of such species (Hebert et al., 2004). Whether the origins of cryptic species can be consistently ascribed to any particular evolutionary processes is unclear (Bickford et al., 2007). On the face of it, this might seem unlikely, given that they are defined principally through humans’ visual perception of morphology. For example, while divergent selection may often lead to sister species with markedly different body shapes or colours (Jiggins et al., 2001b; Langerhans et al., 2007), in other cases it may affect traits causing reproductive isolation that have no clear morphological basis, such as behaviours (Janzen et al., 2009). Nonetheless, some theories of speciation might be more predisposed to the creation of cryptic species, such as when reproductive isolation results from the chance fixation of different, epistatic incompatibilities in separate populations subject to similar selective pressures (Clarke et al., 1988; Mani & Clarke, 1990; Orr, 1995; Turelli & Orr, 2000). It also has been shown that, at least for butterflies in the western Mediterranean, cryptic species are rarely sympatric (Vodá et al., 2015). While this may reflect to some extent the ability of taxonomists to diagnose species with limited range overlap, it is also consistent with phenotypic similarity constraining coexistence (Pigot & Tobias, 2013).

Heliconius butterflies are chemically defended and aposomatic, i.e. they advertise their defence to would-be predators using bright colours on their wings. To minimize the per capita cost incurred while predators learn the association between the warning signal and prey unprofitability, many *Heliconius* species mimic one another. This mutualistic interaction is known as Müllerian mimicry (Müller, 1879). Within *Heliconius*, a number of distinct mimetic phenotypes exist (e.g. blue and yellow, red and black patterns). Groups of sympatric species exhibiting the same phenotype are said to be co-mimics in a ‘mimicry ring’. It has been convincingly shown that when a population switches to a different mimicry ring, this can contribute to reproductive isolation. The reasons for this are twofold. First, hybrids with intermediate colour patterns are selected against by predators that do not recognize them as aposomatic (Merrill et al., 2012). Second, *Heliconius* males have been shown to preferentially court females with similar colour patterns to their own (Jiggins et al., 2001b; Jiggins et al., 2004; Kronforst et al., 2006; Mavárez et al., 2006; Chamberlain et al., 2009; Merrill et al., 2011), even when those females belong to a different species (Estrada & Jiggins, 2008). Because divergence in an ecologically relevant adaptive trait also creates reproductive isolation, *Heliconius* have become a prime example of so-called ‘ecological speciation’ (Nosisl, 2012). Furthermore, most *Heliconius* sister-species pairs differ in mimetic phenotype (Turner, 1976; Rosser et al., 2015). Consequently, reproductive isolation by mimicry shift has become a paradigm for speciation in the genus (Jiggins, 2008; Méro et al., 2017).

Nonetheless, there are instances of *Heliconius* sister species that do not appear to have diverged in wing colour pattern. For example, *Heliconius sara* (Fabricius, 1793) and *H. leucadia* Bates, 1862 are sympatric sister species with almost identical blue and yellow phenotypes. *Heliconius numata* (Cramer, 1780) and *H. ismenius* Latreille, 1817 are parapatric sister species with similar ‘tiger’ colour patterns. In addition, modern taxonomy and DNA sequencing have revealed a number of cryptic races belonging to the *H. cydnolitimareta* superspecies from the tropical eastern Andes (Brower, 1996; Lamas, 1997; Giraldo et al., 2008; Mallet, 2009; Méro et al., 2013; Arias et al., 2017). These taxa were hitherto unrecognized as members of the *H. cydnolitimareta* clade because they exhibit colour patterns extremely similar to those of sympatric subspecies of *H. melpomene* (Linnaeus, 1758), itself the sister to the *H. cydnolitimareta* lineage. In some cases, this striking phenotypic similarity is likely due to adaptive introgression of colour patterns between *H. melpomene* and *H. timareta* Hewitson, 1867 (*Heliconius Genome Consortium*, 2012). These examples suggest that speciation in *Heliconius* may sometimes occur without a mimicry shift, and demonstrate that closely related, co-mimics can maintain their identities in sympatry, despite occasional hybridization (Méro et al., 2017).

Based on previous systematic research, *H. demeter* Staudinger, 1897 was held to comprise 15 described subspecies with red, yellow and black phenotypes (Fig. 1) that participate in the ‘dennis-rayed’ *Heliconius* mimicry ring (Brown & Benson, 1975; Lamas, 2004). The taxon is widely distributed throughout most of Amazonia and the Guiana shield, but is usually scarce when compared to closely related co-mimics, such as *H. erato* (Linnaeus, 1758). Interestingly, several north Amazonian and Guianese races of *H. demeter* are sexually dimorphic, with hindwing rays in males fused at their base to form a bar. Sexual dimorphism in colour pattern is rare in *Heliconius*, and only one other species exhibits it prominently: *Heliconius nattereri* Heliconius nattereri C. Felder & R. Felder, 1865, from south-eastern Brazil. In the easternmost cordillera of the Andes in northern Peru, we discovered what we at first took to be two *H. demeter* races, *H. demeter* cf. *demeter* and *H. demeter* cf. *ucayalensis* H. Holzinger & R. Holzinger, 1975, flying together near the city of Tarapoto. *Heliconius demeter* cf. *demeter* is sexually dimorphic, but *H. demeter* cf. *ucayalensis* is not. At first we viewed these taxa as somewhat divergent subspecies, since there are contact zones between many butterfly subspecies in this area (Dasmahapatra et al., 2010). In the
present study, we show that these sympatric subspecies of 'H. demeter' in fact comprise two distinct species, corresponding to H. demeter cf. demeter and other northern and central Amazonian subspecies, and H. demeter cf. ucyalenensis and the south Amazonian races. In accordance with nomenclatural priority, the southern clade is recognized as H. eratosignis (Joicey & Talbot, 1925), a species comprising four subspecies (Lamas & Jiggins, 2017; Supporting Information, Table S1), and this nomenclature is adopted in this paper from here on. Additionally, it was noted that H. demeter cf. demeter specimens from Tarapoto are divergent from those in the H. demeter type locality near Iquitos, and accordingly this population is here described as a new subspecies: Heliconius demeter joroni ssp. nov.

MATERIAL AND METHODS

MORPHOLOGICAL AND BEHAVIOURAL ANALYSIS

To identify species-specific diagnostic characters in the 15 currently recognized subspecies of H. demeter and H. eratosignis, all type series and specimens held in the Natural History Museum London (NHMUK) were examined. In addition, we examined holotypes, allotypes, syntypes and other material held at the Florida Museum of Natural History (FLMNH), the Museum fur Naturkunde, Berlin (MNB), the Natural History Museum at the San Marcos National University, Lima, Peru (MUSM), the Naturhistorisches Museum, Wien (NHMW), the National Museum of Brazil, Rio de Janeiro (MNRJ), the University of Campinas, Brazil (ZUEC) and the University of São Paulo, São Paulo, Brazil (MZUSP) (Supporting Information, Table S2).

For morphometric analyses of wing shape, images of the ventral and dorsal surfaces of dissected forewings and hindwings of 75 H. eratosignis ucyalenesis, 31 H. demeter joroni ssp. nov. and 16 H. demeter bouqueti Nöldner, 1901 specimens from Tarapoto and French Guiana were captured using either a high-resolution flatbed scanner or a Nikon D90 digital camera with a Nikon micro 105/2.8GEDVR lens. In addition, we conducted a global geometric morphometric analysis using 31 photographs of museum specimens representing eight other subspecies. All specimens used in morphometric analysis are shown in Supporting Information, Table S3.

© Zoological Journal of the Linnean Society 2018, 2018, XX, 1–17
For wing and hindwing shape were described using 20 and 18 landmarks, respectively, which were placed at vein intersections and vein termini on the ventral side (Supporting Information, Fig. S1). Standard tests of repeatability were carried out by taking the landmarks five times per wing on subsamples of five butterflies from a single subspecies and sex. Landmark coordinates were digitized using TpsDig2 (Rohlf, 2010) and superimposed using a general Procrustes analysis (Bookstein, 1991; Zelditch et al., 2004). Wing size was measured using the log-transformed centroid size (Bookstein, 1991). Differences in size between *H. d. joroni* ssp. nov. and *H. e. ucayalensis* were investigated with a one-way ANOVA, with size as the response, and species and sex as predictive factors. *P*-values were corrected for multiple comparisons following Benjamini & Hochberg (1995).

To study shape, dimensionality reduction was employed to correct for the effect of using a large number of variables relative to the number of specimens. We used the minimum subset of principal components (PCs) that minimized the total cross-validated misclassification percentages between groups defined a priori (Baylac & Friess, 2005). To explore shape differences between *H. d. joroni* ssp. nov. and *H. e. ucayalensis*, a MANOVA was applied to the PC subsets, with shape as the response and sex and species as predictive factors. Given the high sexual dimorphism, species discrimination based on shape was investigated for each sex separately through a Canonical Variate Analysis (CVA), with a leave-one-out cross-validation procedure (CV). All statistics and morphometrics were performed in R 2.13.1 (R Development Core Team, 2011) with ade4 (Chessel et al., 2004) and Rmorph libraries (Baylac, 2007).

Genitalia of three male *H. d. joroni* ssp. nov. and seven male *H. e. ucayalensis* collected from Tarapoto were prepared from material preserved in salt-saturated DMSO. The tips of the abdomens were removed and further cleaned. Approximately 2200 bp of mtDNA comprising cytochrome oxidase I (COI), tRNA-leu and the 5' end of cytochrome oxidase II (COII) was amplified by PCR in three sections, for seven *H. demeter joroni* ssp. nov., 12 *H. eratosignis ucayalensis* and 12 *H. demeter bouqueti*. Four autosomal nuclear genes *Elongation factor 1-α (Ef1α), Tektin, Ribosomal protein L5 (Rpl5), Mannose-phosphate isomerase (Mpi)* and the sex-linked *Triose phosphate isomerase (Tpi)* were also successfully sequenced for varying numbers of these three taxa. Only small amounts of degraded DNA could be obtained from the museum specimens. Therefore, for these samples the first ~760 bp of COI was amplified in two shorter sections. All PCR products were cleaned and cycle-sequenced with the PCR primers using the BIG DYE TERMINATOR v.3.1 Cycle Sequencing Kit (Applied Biosystems), and sequences obtained using an ABI3730xl DNA Analyzer (Applied Biosystems). Supporting Information, Table S6 contains details of the primers used and PCR conditions. Sequences from *Heliconius* species in the sara–sapho clade were downloaded from Genbank to act as outgroups. GenBank accession numbers for all sequences used are provided in Supporting Information, Table S7 and Table S8. Sequences were aligned using ClustalW, and the alignments then checked by eye.

Phylogenetic analysis of sequence data was carried out using MEGA7 (Kumar et al., 2016). For each gene, we found the nucleotide substitution model that best described the substitution pattern using all sites, a Neighbour-joining tree and Bayesian Inference Criterion (BIC). We then found the maximum likelihood (ML) tree for each gene assuming the selected model of sequence evolution, and estimated node
support using 1000 bootstrap replicates. To obtain higher resolution nuclear data, eight specimens each of *H. eratosignis ucayalensis*, *H. demeter joroni* ssp. nov. and *H. demeter bouqueti* were genotyped using four AFLP primer combinations: TaqI-CAG with EcoRI-ATG, TaqI-CGA with EcoRI-AGC, TaqI-CAG with EcoRI-AGC and TaqI-CCA with EcoRI-ACA. The AFLP protocol used is similar to that described in Vos et al. (1995), and the primer sequences and reaction conditions are described in Madden et al. (2004). The AFLP products were resolved by electrophoresis through 6% acrylamide gels, visualized by autoradiography, and scored by eye. A total of 81 loci were polymorphic and could be scored unambiguously.

The Bayesian clustering program STRUCTURE 2.2 (Pritchard et al., 2000) was used to evaluate the number of genetic clusters indicated by these AFLP genotypes, using standardized inference criteria (Evanno et al., 2005). Following a 100 000-step burn-in period, data were collected over 100 000 Markov chain Monte Carlo repetitions. STRUCTURE analysis was carried out on the dataset, increasing *K* from 1 to 10. At each value of *K*, the analysis was repeated three times to check between-run consistency. The AFLP data were also used to calculate pairwise Nei-Li genetic distances (Nei & Li, 1979) between all genotyped individuals. These distances were then used to calculate average genetic distances between each of the three taxa.

RESULTS

ADULT MORPHOLOGY

Examination of *H. demeter joroni* ssp. nov. and *H. eratosignis ucayalensis* wings from Peru revealed two diagnostic morphological characters strictly concordant with the mitochondrial DNA classification of these two species. (1) In the proximal region of the narrow costa–subcosta space on the underside of the forewing, *H. demeter joroni* ssp. nov. exhibits a strong yellow 3–5mm-long streak placed in the anterior half of the space along the costal vein, often associated with black scales posteriorly (Fig. 2A). In *H. eratosignis ucayalensis* this region is uniformly orange (Fig. 2B). Brown & Benson (1975) also noticed this character difference between northern and southern Amazonian populations, but did not recognize its significance, probably because they lacked a long series of these taxa from a sympatric population. (2) In males of *H. demeter joroni* ssp. nov., the red rays on the dorsal hindwing fuse to form a hindwing bar (Fig. 2C), while in males of *H. e. ucayalensis* they do not (Fig. 2D). This character is inapplicable to females, all of which have unfused red rays, and to the geographic forms of *H. demeter* from north-eastern South America that lack rays. One clear difference in genital morphology was observed between the males of the *H. d. joroni* ssp. nov. (*N* = 3) and *H. e. ucayalensis* (*N* = 7): the posterior tip of the valva presents a rounded profile in *H. d. joroni* ssp. nov., while in *H. e. ucayalensis*...
this region has a characteristic convex depression (Supporting Information, Fig. S2). However, the utility of this trait is unclear given the small sample sizes.

Using the presence/absence of the yellow costal streak on the ventral forewing, the existing 15 named subspecies of *H. demeter* could be unambiguously classified as either belonging to *H. demeter* or *H. eratosignis* COI haplogroups (see below). With the exception of *Heliconius demeter titan* Neukirchen, 1995, in all male specimens the presence of the yellow costal streak was also perfectly concordant with fused or reduced hind wing rays (Supporting Information, Table S9). In *H. d. titan* there is a clear yellow costal streak, but the hindwing rays in the male are only partially fused, and *H. d. titan* was also intermediate for other less clear-cut characters (see subspecies description for *H. d. joroni* ssp. nov.). Its COI sequence is also divergent from the other *H. demeter* (see below).

Description of the new subspecies from Tarapoto

Heliconius demeter joroni **Lamas & Rosser** ssp. nov.

(Fig. 3)

Heliconius demeter [ssp. nov.] Lamas, MS: Lamas, 2004: 268. Lamas & Jiggins, 2017: 224.

![Figure 3. Holotype ♂ of *Heliconius demeter joroni* Lamas and Rosser ssp. nov. Upper photo: dorsal, lower photo: ventral. Scale bar = 10 mm.](image)

Diagnosis

Heliconius demeter joroni ssp. nov. is similar to *H. demeter demeter*, but differs from Staudinger’s syntypes of *H. demeter* from Iquitos, Loreto, Peru (now in the MNB) in having a much narrower yellow postmedian band on the dorsal forewing. It is known only from the Cordillera Escalera, near Tarapoto, Peru (Fig. 1), where its co-mimics include *Heliconius eratosignis ucayalensis*, *Heliconius elevatus pseudocupidineus* Neustetter, 1931, *Heliconius aoede cupidineus* Stichel, 1906 and Eueides tales michaeli Zikán, 1937, among others. Males are easily distinguishable from all sympatric taxa through the fused rays on the hindwing dorsum and the yellow costal streak on the forewing underside. Females may be distinguished from co-mimics through the configuration of the rays (which radiate from the cell), small size, length of the antennae (longer than the forewing discal cell) and the presence of the forewing underside yellow costal streak. Both sexes usually exhibit a single row of white submarginal dots along the anal margin of the ventral hindwing, which can be used to help separate the females from *H. erato emma* and *E. tales michaeli*. This character can be faint or even missing in *H. demeter joroni* ssp. nov. and occasionally present in *H. erato emma*. However, the latter is confined to the Amazonian lowlands adjacent to the Cordillera Escalera, and at present there is no evidence to suggest that they regularly co-occur, barring occasional migrants.

Male

Forewing: Length: 35.5–40 mm, mean = 38.25 mm, N = 10. Forewing dorsum with a yellow postmedian band from R₁ to Cu₂, with maximum width of 8 mm. The forewing band usually more or less straight, or bowed slightly outwards distally (indented distally in *H. e. ucayalensis*). At the edges of the band a slight overlap of yellow scales on the black background, producing a greenish tinge both discally and distally, but this character less pronounced than in *H. d. demeter* or *H. e. ucayalensis*. Some specimens exhibit a faint greenish spot in the middle of cell Cu₁-Cu₂. Dennis (i.e. the basal patch on the forewing) brick red, reaching roughly two-thirds the length of the discal cell. Anal bar of dennis shorter than other dennis elements, and tends to become separated from the anal margin (longer and tends to fill nearly to the anal margin in *H. e. ucayalensis*). Forewing more elongate and pointed than in *H. e. ucayalensis*, usually with a bulge in the margin near end of Cu₁ (absent in *H. e. ucayalensis*). Ventral surface similar to dorsal, but with dennis and postmedian band less bright and reduced relative to dorsum. Base of the narrow costal–subcosta space with a strong yellow 3–5 mm long streak placed adjacent to the costa, often associated with black scales posteriorly. Anal cell space (aft of...
2A) tends to be narrower than in *H. e. ucayalensis*, fitting with the narrower friction patch.

Hindwing: On dorsum the grey friction patch is narrow, and the ray in cell Rs-M1 is strongly present, forming the anterior tip of the bar of fused rays (in *H. e. ucayalensis* rays are unfused and the friction patch is broad, leading to almost complete loss or reduction to a smudge of the ray). On the ventral side a yellow costal streak, a single row of white submarginal dots along the anal margin and some diffuse red spots at the bases of Cu1, Sc+R1 and the discal cell. Rays reduced relative to the dorsal side, and unfused.

Female Forewing: Length: 35–39.5 mm, mean = 36.8 mm, N = 5. As the male, except no friction patch or greenish tinge to forewing postmedian band on dorsum, and no greenish spot in the middle of cell Cu1-Cu2.

Hindwing: The subcostal ray on cell Sc+R1-Rs is expressed on the dorsum in full orange-red (expressed in pale whitish scales in *H. e. ucayalensis*). Also distinguishable from males by the five-segmented prothoracic tarsus (fused in male) and external genitalia.

Type material
Holotype ♀ (Fig. 3), PERU, San Martín, Tarapoto, San Roque, 500m, 06°22′S, 76°26′W, 28.iii.2016 (N. Rosser leg.). Deposited in the Natural History Museum at the San Marcos National University, Lima, Peru (MUSM). Paratypes (all from PERU, San Martin): 2♂, same data as holotype; 1♂, 5♀, km 17 Tarapoto-Yurimaguas, 1000m, 06°27′S, 76°17′W, 20.xi.1999 (G. Valencia leg.); 1♂, km 17 Tarapoto-Yurimaguas, 1000m, 06°27′S, 76°17′W, 11.xii.1999 (M. Joron leg.); 1♂, km 19 Tarapoto-Yurimaguas, 1300m, 06°27′S, 76°17′W, 26.viii.2002 (C. Jiggins leg.); 1♂, km 22 Tarapoto-Yurimaguas, 940m, 06°27′S, 76°17′W, 16.xi.2005 (M. Joron leg.); 2♂, km 19 Tarapoto-Yurimaguas, La Antena, 1300m, 06°27′S, 76°18′W, 22.vii.2007 (M. Joron leg.); 1♂, Fundo Biodiversidad, 950m, 06°28′S, 76°17′W, 21.xi.2007 (G. Lamas leg.). All deposited in MUSM.

Etymology
The subspecies name (a masculine noun in the genitive case) recognizes the contribution of the French evolutionary biologist Dr Mathieu Joron to the knowledge of the mimetic butterfly fauna of San Martin, Peru. Dr Joron is presently a Senior Scientist at the Centre d’Ecologie Fonctionnelle et Evolutive in Montpellier. He began studying the butterflies of San Martín during his PhD and has continued to do so throughout his career, with a particular focus on *Heliconius numata*.

Wing shape morphometrics
Morphometric analyses found no significant difference between the wing centroid sizes of *H. e. ucayalensis* and *H. d. joroni* ssp. nov. (FW: F10,192 = 1.62, P = 0.20; HW: F1,103 = 0.52, P = 0.47). However, forewing and hindwing shape differ significantly between *H. e. ucayalensis* and *H. d. joroni* ssp. nov. (FW: F20,84 = 12.3, pillai = 0.74, P < 0.0001; HW: F20,84 = 16.0, pillai = 0.79, P < 0.0001). *Heliconius demeter joroni* ssp. nov. has proportionally more elongated forewings than *H. e. ucayalensis*, characterized by a reduction around the Cu1 vein, while *H. e. ucayalensis* has more rounded wings (Fig. 4; Supporting Information, Fig. S4), confirming the perception of human observers (see description of *H. d. joroni* ssp. nov.). The hindwings are also more elongated in *H. d. joroni* ssp. nov., with a smaller discal cell, and more rounded in *H. e. ucayalensis*. Hindwing shape can be used as a criterion to distinguish between *H. e. ucayalensis* and *H. d. joroni* ssp. nov, with 92% of females and 93% of males accurately reassigned. Forewing shape differences between *H. e. ucayalensis* and *H. d. joroni* ssp. nov. are much stronger in males (allowing accurate reassignment of 93% of males).

Figure 4. Principal component (PC) analysis of wing shape variation between *H. eratosignis* and *H. demeter*. Males are represented with open circles and females by filled circles. Ellipses represent a graphical summary of the distribution. *Heliconius e. ucayalensis* is shown in blue, *H. d. joroni* ssp. nov. in red and *H. d. bouqueti* in orange. Shape variation captured by PC1 and PC2 are illustrated next to each axis, where dotted lines represent minimum values of the axis, and solid lines represent maximum values. PC1 captures shape differences between the sexes across both species. PC2 captures variation between species as well as between *H. demeter* subspecies.
the samples), than in females (for which reassignment is not better than random). Wing shape differences (with more elongated wings in _H. demeter_ and more rounded wings in _H. eratosignis_) were also consistently observed in other subspecies, as shown by the analysis including _H. d. bouqueti_ samples (Fig. 4) and the museum specimens of the other races (Supporting Information, Fig. S5). In both species, size and shape exhibit sexual dimorphism with females having larger, wider wings than males (Fig. 4; Supporting Information, Fig. S3) (size FW: $F_{1,104} = 16.9 \ P < 0.001$, HW $F_{1,104} = 28.9 \ P < 0.001$; shape FW: $F_{20,84} = 15.2$, pillai $= 0.78 \ P < 0.0001$, HW: $F_{20,84} = 19.4$, pillai $= 0.82 \ P < 0.0001$).

Host plant ecology and immature morphology

In the wild near Tarapoto, confirmed host plant records for _H. e. ucayalensis_ comprised clusters of 12–20 yellow ovoid eggs ($N = 3$), or groups of 1–4 gregarious larvae ($N = 2$) encountered on new leaves of _Passiflora skiantha_ Huber (Passifloraceae: subgenus _Astrophea_) at Urahuasha ($–6.466^\circ$, $–76.335^\circ$) and San Roque de Cumbaza ($–6.363^\circ$, $–76.441^\circ$) (Fig. 5E, G). Both male and female _H. e. ucayalensis_ were also often caught investigating _P. skiantha_ plants in these and other nearby localities. When placed in an insectary with 22 local species of _Passiflora_, wild caught females ($N = 6$) laid 78 eggs on _P. skiantha_, in clusters of 12–33 eggs ($N = 4$), usually on new leaves and once on the

Figure 5. Immature stages and host plants of _Heliconius eratosignis_ and _Heliconius demeter_ near Tarapoto. A, _Heliconius eratosignis ucayalensis_ ovipositing on _P. skiantha_ in our insectary. B, _Heliconius eratosignis ucayalensis_ final instar larva, found wild as a 2nd instar larva on _P. skiantha_ at Urahuasha, on 24/3/16. C, _Heliconius demeter joroni_ Lamas and Rosser **ssp. nov.** final instar larva, found wild as first instar larva on _D. retusa_ at San Roque de Cumbaza on 28/3/16. D, _Heliconius eratosignis ucayalensis_ pupa. E, _Passiflora skiantha_ in flower at El Túnel. F, _Dilkea retusa_ flowering at San Roque de Cumbaza. G, A clutch of wild _H. eratosignis ucayalensis_ eggs on _P. skiantha_ from San Roque de Cumbaza.
expanding young shoot (Fig. 5A). One other female laid a single egg on Dilkea retusa Mast. (Passifloraceae). This latter female did also show considerable interest in P. skiantha prior to ovipositing on D. retusa, but the P. skiantha plant had no new growth at the time. Final instar larvae are characterized by a black head, legs and prolegs, spines and anal shield (Fig. 5B). Aside from the spiracles and a black band comprising a pair of elongated black spots running laterally on the dorsal side of the prothorax, only faint black spotting is observed on the thorax and abdomen, which are yellow. However, the larvae are notable for having black, annular stripes that start around the mid-points of each abdominal segment and run laterally and dorsally, approximately through the spiracles and the base of the spines. In between these black stripes, there are also fainter bands of darker coloration running between the abdominal segments. The pupae are typical for Heliconius in the H. erato clade, with long head horns (Fig. 5D). The base coloration is predominantly brown but with some paler bands/patches, and with distinct narrow white bands running horizontally and diagonally in the abdominal segments. There are three pairs of silver spots on the dorsal side of first abdominal segments, and an additional pair on the head. The horns are more darkly coloured and the spines are black. The horns are similar in length to those of H. erato and H. charithonia (Linnaeus, 1767), but are more elongate and taper to a point. Spines on the abdominal segments are somewhat longer than in H. erato and H. charithonia, and similar in length to those of H. sara.

Around Tarapoto we noted an association between presence of D. retusa and H. d. joroni ssp. nov. On several occasions H. d. joroni ssp. nov. females were caught in the vicinity of D. retusa plants at Biodiversidad (−6.460556°, −76.289923°), San Roque de Cumbaza, Pucayaquillo (−6.5882°, −76.2224°) and at La Antena (−6.45716°, −76.29858°). On two occasions, pairs of eggs were found on plants at Biodiversidad and La Antena; however, in general, finding eggs and larvae proved difficult. This is probably because it is difficult to find D. retusa with new growth suitable for the immature stages of Heliconius, at least in those plants accessible to human observers. Nonetheless, on 28 March 2016 a single first instar larva and a yellow ovoid egg were found on a D. retusa plant above San Roque de Cumbaza (Fig. 5F). The larva was reared to final instar using D. retusa (it refused P. skiantha), but failed to pupate. Its identity was confirmed as H. d. joroni ssp. nov. using COI DNA barcoding. This final instar larva was broadly similar to H. e. ucayalensis morphologically (Fig. 5C). However, the black annular stripes running between the spines were absent, and instead the larva was characterized by regular black spotting between the spines. The base colour also appeared a more greenish yellow than in H. e. ucayalensis; however, on the basis of a single individual it is unclear whether this is a reliable diagnostic character.

While we only provide data on larval morphology and host plant use from northern Peru, previously published data suggest that the specific differences we found in sympathy are widely applicable across the ranges of H. demeter and H. eratosignis. Heliconius demeter terrasanta Brown & Benson, 1975 has solitary, spotted final instar larvae and uses Dilkea sp. in the Brazilian state of Pará. Heliconius eratosignis eratosignis has been recorded using Passiflora ca. citrifolia Salisib. (subgenus Astrophya) in Rondônia, and has gregarious, striped final instar larvae (Brown & Benson, 1975).

Molecular data
The models of sequence evolution selected for each gene, along with associated parameter values and Bayesian Inference Criterion score, are shown in Supporting Information, Table S10. Analysis of mtDNA sequences (COI + COII) revealed a deep divergence between two haplogroups corresponding to H. d. joroni ssp. nov. and H. d. bouqueti + H. e. ucayalensis (Fig. 6). The net proportional distance between these haplogroups is 5.2%, and reciprocal monophyly was well supported (bootstrap percentages of 97% and 99%, respectively). Within the H. demeter cluster, H. d. bouqueti and H. d. joroni ssp. nov. also formed two well-supported, reciprocally monophyletic groups (bootstrap of 88% and 97%, respectively).

In addition, we were able to obtain ~760bp of COI sequence for 13 of the 15 previously recognized sub-species in the clade formed by H. demeter + H. eratosignis (Fig. 6). The resulting phylogeny indicated two reciprocally monophyletic groups, comprising the northern (H. demeter) and southern (H. eratosignis) races. The southern clade was well supported (100% bootstrap), and comprised H. e. ucayalensis, along with H. e. eratosignis, H. e. tambopata Lamas, 1985 and H. e. ulyses Brown & Benson, 1975. The northern clade comprised H. d. demeter and H. d. bouqueti, along with H. d. angeli Neukirchen, 1997, H. d. karinae Neukirchen, 1990, H. d. neildi Neukirchen, 1997, H. d. terrasanta, H. d. titan and H. d. turneri Brown & Benson, 1975. The bootstrap support for this northern clade was only moderate (64%), however this is due to the uncertain placement of H. d. titan, which appears as sister to a well-supported (100%) monophyletic clade containing the other races of H. demeter.

Of the five nuclear loci examined, only Ef1α showed H. d. demeter + H. d. bouqueti and H. e. ucayalensis to form reciprocally monophyletic groups (Supporting Information, Fig. S6). Bootstrap support for these two groupings was only moderate (65% and 62%, respectively), and the two exhibited only two fixed nucleotide
differences across 798 bp of Ef1α sequence. Tpi showed H. e. ucayalensis to be monophyletic (76%), but with the paraphyly or monophyly of H. demeter uncertain; the ML tree indicates the former, but with bootstrap support of only 28%. Mpi also recovered H. d. joroni ssp. nov. as a well-supported monophyletic group.
(97%), but found *H. e. ucayalensis* and *H. d. bouqueti* to be polyphyletic. *Rpl5* and *Tektin* showed polyphyly in all three taxa.

Between-run consistency was high in the STRUCTURE analysis of AFLP genotypes: replicate runs at each *K*-value yielded virtually identical likelihoods. The optimal number of genotypic clusters was three, corresponding cleanly to each of the three taxa (Fig. 7). The two sympatric Peruvian taxa, *H. d. joroni* ssp. nov. and *H. e. ucayalensis*, form clearly separate genotypic clusters. The average Nei–Li pairwise genetic distances between *H. d. joroni* ssp. nov., *H. d. bouqueti* and *H. e. ucayalensis* calculated using AFLP genotypes are: *H. d. joroni* ssp. nov.–*H. d. bouqueti* 0.46, *H. d. joroni* ssp. nov.–*H. e. ucayalensis* 0.72 and *H. d. bouqueti*–*H. e. ucayalensis* 0.70. Therefore, the sympatric Peruvian taxa (*H. d. demeter* and *H. e. ucayalensis*) are genetically more divergent than in the allopatric *H. d. demeter*–*H. d. bouqueti* comparison.

Geographic distribution

Subspecies of *H. demeter* and *H. eratosignis* are mapped in Fig. 1, with photos of a type specimen of each race. Races of *H. demeter* occupy the Guianas and much of the Amazon basin. *H. eratosignis* races occur in the west and south of the Amazon basin. In Tarapoto, the two species fly together at a number of sites in the Cordillera Escalera. Only *H. eratosignis* has been recorded from the adjacent Amazonian lowlands, despite considerable sampling in the area. Museum data and observations by Keith Brown (1979) suggest that the two overlap (at least broadly) in the extreme south of Pará and northern Mato Grosso, in Brazil. There may well also be a contact zone on the Juruá River, between Porto Walter and Eirunépé, as both *H. demeter demeter* and *H. eratosignis tambopata* are known to occur there. However, the exact position of contact in this very large area is unclear. In data published by Brown (1979) two additional contact zones are indicated, at Pucallpa, Peru and near Cobija on the Brazilian/Bolivian border. We were unable to locate the relevant specimens in museum collections; however, we consider these points unreliable and excluded them from the distribution map in Fig. 1. The first is probably a generalized locality, with the specimens potentially coming from a large area of northern Peru. The second is likely explained through the co-occurrence of both *H. eratosignis ulysses* and *H. eratosignis tambopata*, as the latter was not described at the time (Lamas, 1985).

DISCUSSION

Gene genealogies can be used in concert with morphological differences to diagnose species within single populations, because reciprocal monophyly within a freely interbreeding population becomes highly improbable when multiple individuals are sequenced. Similarly, the existence of clusters of multilocus genotypes within a sympatric population comprises strong evidence for distinct species, because linkage disequilibria between alleles at unlinked loci are highly unlikely to arise without barriers to recombination.

![Figure 7. Structure analysis of AFLP genotypes from H. demeter and H. eratosignis specimens from Tarapoto (Peru) and H. demeter from French Guiana using the optimal number of clusters (K = 3). Each of the 24 individuals is represented by a vertical bar broken into three segments. The proportion of each colour in the bar indicates the posterior mean probability of ancestry from each genetic cluster.](https://academic.oup.com/zoolinnean/advance-article-abstract/doi/10.1093/zoolinnean/zly046/5066664)
We have shown that in northern Peru, *H. d. joroni* ssp. nov. and *H. e. ucayalensis* sampled from a small geographic area comprise two monophyletic groups for the mtDNA markers COI + COII, and form distinct genotypic clusters using AFLP data. Furthermore, the 5.2% net mtDNA divergence between *H. d. joroni* ssp. nov./*H. d. bouquesti* and *H. e. ucayalensis* is equivalent to interspecific genetic distances between other *sara–sapho* group species, and is greater than distances between many other sister pairs of *Heliconius* species, such as those within the cyano–melpomene species group (Beltrán et al., 2002; Giraldo et al., 2008). Thus, together with the observed differences in larval and adult morphology, wing shape, behaviour and host plant use, our data strongly imply the existence of two species that are sympatric in at least one area. Additionally, the COI phylogeny of 13 of the 15 races of *H. demeter* and *H. eratosignis* resolved two reciprocally monophyletic groups, comprising *H. d. joroni* ssp. nov. and the northern Amazonian races, and *H. e. ucayalensis* and the southern Amazonian races. These groups are consistent with morphological criteria (e.g. the forewing costal streak) and are also evident in the morphometric analysis of wing shape (Fig. 4; Supporting Information, Fig. S5). Both clades were well supported, excepting the uncertain position of *H. d. titan*, whose assignment to *H. demeter* rather than to *H. eratosignis* was only marginally favoured by molecular and morphological data. *Heliconius demeter titan* is also notable for discordant morphological characters, and for its long mtDNA branch lengths and reciprocal monophyly with *H. demeter*. Because *H. d. titan* appears broadly sympatric with other *H. demeter* races, it may even represent a further cryptic species within this clade.

In contrast to the mtDNA, only one of the five nuclear markers sequenced (E/1a) showed reciprocal monophony between *H. d. bouquesti/H. d. joroni* ssp. nov. and *H. e. ucayalensis*. However, two other nuclear genes (Tpi and Mpi) did show monophyletic groups corresponding to subspecies or species. Gene genealogies that fail to resolve relationships between closely related species are not unusual in *Heliconius* and may reflect either the retention of ancestral polymorphisms, introgression following speciation, or simply uninformative genetic data (Maddison, 1997; Beltrán et al., 2002; Bull et al., 2006). Because effective population sizes are lower for the maternally inherited COI + COII and sex-linked Tpi than for the autosomal loci, they are expected to coalesce more recently (Palumbi et al., 2001), and so finding monophyly at these loci remains consistent with the hypothesis of ancestral polymorphisms. In addition, if introgression was producing the observed patterns, we might expect polyphyly between the sympatric taxa *H. e. ucayalensis* and *H. d. joroni* ssp. nov., but with *H. d. bouquesti* phylogenetically distinct, due to its geographic isolation. However, females are the heterogametic sex in butterflies, and, in accordance with Haldane’s rule, female sterility is an early manifestation of intrinsic postzygotic reproductive isolation (Jiggins et al., 2001a; Naisbit et al., 2002). Introgression should, therefore, be more inhibited at COI + COII and Tpi (Sperling, 1994), thus their monophyly could still be consistent with autosomal introgression between the species. As such, we cannot rule out introgression as a possible cause of incongruence between nuclear genealogies and species boundaries, especially given the abundant evidence for gene flow between closely related *Heliconius* (Dasmahaputra et al., 2007; Mallet et al., 2007; Heliconius Genome Consortium, 2012; Pardo-Díaz et al., 2012; Martin et al., 2013), and the known importance of colour pattern as a prezygotic reproductive isolating barrier in *Heliconius* (Merrill et al., 2011, 2012). Previous studies of cryptic *Heliconius* have suggested that hybridization between closely related co-mimics may be higher than between non-mimics, although quantitative comparisons are difficult (Giraldo et al., 2008; Mérot et al., 2013, 2017). It would be interesting to investigate whether the other similarly divergent co-mimetic sister pair *H. leucadia* Bates, 1862 and *H. sara* exhibit similar phylogenetic discordance.

It is striking that three recently described cryptic species pairs of *Heliconius* are distinguishable using a minor colour pattern difference in the costa–subcosta space on the forewing underside (Giraldo et al., 2008; Mérot et al., 2013; and the present study). Many other co-mimetic *Heliconius* are distinguishable using seemingly inconsequential red dots and streaks at the base of the ventral hindwing (Emsley, 1965; Holzinger & Holzinger, 1994). While this variation might be attributable to relaxed selection from predators on the underside of the hindwing, their repeated utility for distinguishing the species leads one to speculate that they are important for the butterflies themselves in terms of mate recognition. Indeed, these ventral areas are perhaps the most visible part of the wing to both sexes during courtship. This hypothesis could conceivably be tested using colour pattern manipulations and assortative mating experiments.

In other recently described cryptic *Heliconius*, phenotypic similarity is most parsimoniously explained by convergence through introgression of colour pattern alleles (Mallet, 2009; Heliconius Genome Consortium, 2012; Pardo-Díaz et al., 2012). In the case of *H. demeter* and *H. eratosignis*, the available data suggest that speciation occurred from start to finish without a significant mimicry shift. The present geographic distributions of the species are suggestive of vicariance between the north and south Amazon basin. This seems consistent with the species mimicry...
similarity, because allopatric speciation does not require ecological divergence (Coyne & Orr, 2004). It might also explain the poly- and paraphyly at nuclear loci, because monophyly would be slow to develop in the large vicariant populations (Maddison, 1997). Nonetheless, H. demeter and H. eratosignis do differ in other ecologically relevant traits that may have played a part in their speciation. Sexual dimorphism in colour pattern is very unusual in Heliconius, and finding that closely related species differ markedly in mating signals is often considered indicative of speciation via sexual selection (Panhuis et al., 2001). The ‘greenish’ scales (in reality, interspersed black and yellow scales) exhibited by males produce a seemingly non-mimetic phenotype that could be the product of sexual selection, but seem unlikely to be involved in speciation because they are present in both species. In contrast, fused rays are exhibited only by H. demeter. In some regions, such as near the Andes, this leads to males being somewhat poorer mimics of other Heliconius species than are females and could, therefore, be interpreted as the product of female choice for a male trait. However, in other regions, such as in French Guiana, the dimorphism seems to be a mixed strategy, with males mimicking species such as Heliconius egeria (Cramer, 1775) and females mimicking species such as H. erato. A mimetic explanation for the fused rays of H. demeter may, therefore, be more likely than sexual selection, and furthermore fits the hypothesis of vicariance, followed by more recent contact in the Amazon headwaters.

Heliconius demeter and H. eratosignis are also unusual in their apparent host plant specificity, because most Heliconius sister species use overlapping suites of Passiflora spp. (Rosser et al., 2015). Host plant shifts are frequently associated with speciation in phytophagous insects (Bush, 1969; Drès & Mallet, 2002), and there is some evidence for their importance in Heliconius (Jorge et al., 2011; Merrill et al., 2013; Rosser et al., 2015). This could be either because the butterflies tend to mate in the vicinity of their host plants (Bush, 1969), or due to disruptive selection for larval performance on alternative hosts (Punk, 1998). Heliconius demeter and H. eratosignis belong to a clade of Heliconius known to exhibit ‘pupal mating’, in which mating sometimes occurs on the host plant before the females have fully emerged from their pupae (Deinert et al., 1994), thus the former model seems possible. It also seems plausible that the evolutionary and phenotypic divergence between P. skiantha and D. retusa could produce disruptive selection on larval performance. For example, P. skiantha contains cyanogenic glycosides (secondary defence compounds) not found in D. retusa (Erika de Castro & Neil Rosser, unpublished). Furthermore, H. demeter and H. eratosignis are the only sister species pair within Heliconius known to comprise a species with gregarious larvae and one with solitary larvae (Beltrán et al., 2007; Kozak et al., 2015). Their larvae may also be involved in mimicry with other Heliconius species (Brown & Benson, 1975): Heliconius eratosignis larvae are nearly identical to the gregarious larvae of H. doris (Linnaeus, 1771) and H. xanthothes Bates, 1862 (Brown & Benson, 1975; Mallet & Jackson, 1980), whereas, H. demeter larvae are more similar to those of H. ricini (Linnaeus, 1758). Whatever the drivers of divergence in H. demeter and H. eratosignis, their limited geographic overlap, co-mimicry, sexual dimorphism, and marked differences in host plant use and oviposition behaviour, highlight them as an interesting counter-example to other Heliconius sister species. In particular, H. demeter and H. eratosignis exhibit striking parallels to cryptic species in the Afrotropical butterfly genus Cymothoe (Nymphalidae). Strong host plant and ecological differences have evolved between C. egesta (Cramer, 1775) and C. confusa Aurivillius, 1887, formerly considered subspecies of a single widely distributed species. These differences are apparently insufficient to allow sympatry, bar a narrow region of overlap between their otherwise allopatric ranges (McBride et al., 2009).

Our use of integrative taxonomy (Dayrat, 2005; Pante et al., 2015) to diagnose a cryptic species of Heliconius joins a series of similar, recent discoveries in other butterflies (Willmott et al., 2001; Hebert et al., 2004; McBride et al., 2009; Dincă et al., 2011; Hill et al., 2012; Barbosa et al., 2015). Frequently, cryptic taxa are initially flagged by molecular markers, after which subtle differences in morphology or behaviour are recognized as species-specific (Janzen et al., 2009). Thus, despite its limitations (Elias et al., 2007; Silva-Brandão et al., 2009), DNA barcoding still holds great potential to screen putative cryptic species for further study. While the net contribution of cryptic species to biodiversity remains to be established (Stork, 2018), the continual discovery of hidden species in a group as intensively studied as butterflies suggests that predictions of global species richness based on current knowledge may be gross underestimates (Adis, 1990; Bickford et al., 2007).

DATA ACCESIBILITY

DNA sequences have been submitted to GenBank; accession numbers are given in the Supplementary Information.

ACKNOWLEDGEMENTS

We thank NERC (NE/K012886/1) and BBSRC (BB/G006903/1) for funding this work. We also thank SERFOR and the Peruvian Ministry of Agriculture for collecting permits (288-2009-AG-DGFFS-DGEFFS, 2013).

© Zoological Journal of the Linnean Society 2018, 2018, XX, 1–17
Barbosa EP, Silva AK, Paluch M, Azeredo-Espin AML, Arias CF, Giraldo N, McMillan OW, Lamas G, Jiggins CD, Beltrán M, Jiggins CD, Bull V, Linares M, Mallet J, Beltrán M, Jiggins CD, Brower AVZ, Bermingham E, Baylac M, Friess M. 2006. Fourier descriptors, procrustes superimposition, and data dimensionality: an example of cranial shape analysis in modern human populations. In: Slice DE, ed. Developments in primatology: progress and prospects. Modern morphometrics in physical anthropology. New York: Kluwer/Plenum, 145–165.

Beltrán M, Jiggins CD, Bull V, Linares M, Mallet J, McMillan WO, Beringham E. 2002. Phylogenetic discordance at the species boundary: comparative genealogies among rapidly radiating Heliconius butterflies. Molecular Biology and Evolution 19: 2176–2190.

Beltrán M, Jiggins CD, Brower AVZ, Beringham E, Mallet J. 2007. Do pollen feeding, pupal-mating and larval gregariousness have a single origin in Heliconius butterflies? Inferences from multilocus DNA sequence data. Biological Journal of the Linnean Society 92: 221–239.

Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B (Methodological) 57: 289–300.

Bickford D, Lohman DJ, Dodhi NS, Ng PK, Meier R, Winker K, Ingram KK, Das I. 2007. Cryptic species as a window on diversity and conservation. Trends in Ecology & Evolution 22: 148–155.

Bookstein FL. 1991. Morphometric tools for landmark data: geometry and biology. Cambridge, UK: Cambridge University Press.

Brower AVZ. 1996. A new mimetic species of Heliconius (Lepidoptera: Nymphalidae), from southeastern Colombia, revealed by cladistic analysis of mitochondrial DNA sequences. Zoological Journal of the Linnean Society 116: 317–332.

Brown KS. 1979. Ecologia geográfica e evolução nas florestas neotropicais. Campinas, Brazil: Universidade Estadual de Campinas.

Brown KS, Benson WW. 1975. The Heliconians of Brazil (Lepidoptera: Nymphalidae) part VI, aspects of the biology and ecology of Heliconius demeter with description of four new subspecies. Bulletin of the Allyn Museum 26: 1–19.

Bull V, Beltrán M, Jiggins CD, McMillan WO, Beringham E, Mallet J. 2006. Polyphyletic and gene flow between non-sibling Heliconius species. BMC Biology 4: 11.

Bush GL. 1969. Sympatric host race formation and speciation in frugivorous flies of the genus Rhagoletis (Diptera, Tephritidae). Evolution 23: 237–251.

Chamberlain NL, Hill RI, Kapan DD, Gilbert LE, Kronforst MR. 2009. Polymorphic butterfly reveals the missing link in ecological speciation. Science 326: 847–850.

Cheyse D, Dufour AB, Thioulouse J. 2002. The ade4 package: I: one-table methods. R News 4: 5–10.

Clarke BC, Shelton PR, Mani GS. 1988. Frequency-dependent selection, metrical characters and molecular evolution. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 319: 631–640.

Coyne JA, Orr HA. 2004. Speciation. Sunderland, MA: Sinauer Associates Inc.

Dasmahapatra KK, Silva-Vásquez A, Chung JW, Mallet J. 2007. Genetic analysis of a wild-caught hybrid between non-sister Heliconius butterfly species. Biology Letters 3: 660–663.

Dasmahapatra KK, Lamas G, Simpson F, Mallet J. 2010. The anatomy of a ‘suture zone’ in Amazonian butterflies: a coalescent-based test for vicariant geographic divergence and speciation. Molecular Ecology 19: 4283–4301.

Dayrat B. 2005. Towards integrative taxonomy. Biological Journal of the Linnean Society 85: 407–415.

Deinert EL, Longino JT, Gilbert LE. 1994. Mate competition in butterflies. Nature 370: 23–24.

Dincă V, Lukhtanov VA, Talavera G, Vila R. 2011. Unexpected layers of cryptic diversity in wood white Leptidea butterflies. Nature Communications 2: 324.

REFERENCES

Adis J. 1990. Thirty million arthropod species-too many or too few? Journal of Tropical Ecology 6: 115–118.

Arias CF, Giraldo N, McMillan OW, Lamas G, Jiggins CD, Salazar C. 2017. A new subspecies in a Heliconius butterfly adaptive radiation (Lepidoptera: Nymphalidae). Zoological Journal of the Linnean Society 180: 805–818.

Barbosa EP, Silva AK, Paluch M, Azeredo-Espin AML, Freitas AVL. 2015. Uncovering the hidden diversity of the Neotropical butterfly genus Ypthimoides Forster (Nymphalidae: Satyrinae): description of three new species based on morphological and molecular data. Organisms Diversity & Evolution 15: 577–589.

Baylac M. 2007. Rmorph: a R geometric and multivariate morphometrics library. Available from the author: baylac@mnhn.fr.

Baylac M, Friess M. 2006. Fourier descriptors, procrustes superimposition, and data dimensionality: an example of cranial shape analysis in modern human populations. In: Slice DE, ed. Developments in primatology: progress and prospects. Modern morphometrics in physical anthropology. New York: Kluwer/Plenum, 145–165.

Beltrán M, Jiggins CD, Bull V, Linares M, Mallet J, McMillan WO, Beringham E. 2002. Phylogenetic discordance at the species boundary: comparative genealogies among rapidly radiating Heliconius butterflies. Molecular Biology and Evolution 19: 2176–2190.

Beltrán M, Jiggins CD, Brower AVZ, Beringham E, Mallet J. 2007. Do pollen feeding, pupal-mating and larval gregariousness have a single origin in Heliconius butterflies?
Cryptic Speciation in Heliconius

Drès M, Mallet J. 2002. Host races in plant-feeding insects and their importance in sympatric speciation. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 357: 471–492.

Elias M, Hill RI, Willmott KR, Dasmahapatra KK, Brower AVZ, Mallet J, Jiggins CD. 2007. Limited performance of DNA barcoding in a diverse community of tropical butterflies. Proceedings of the Royal Society B: Biological Sciences 274: 2881–2889.

Emsley MG. 1965. Speciation in Heliconius (Lep., Nymphalidae): morphology and geographic distribution. Zoologica NY 50: 191–254.

Estrada C, Jiggins CD. 2008. Interspecific sexual attraction because of convergence in warning colouration: is there a conflict between natural and sexual selection in mimetic species? Journal of Evolutionary Biology 21: 749–760.

Evanno G, Regnaut S, Goudet J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14: 2611–2620.

Funk DJ. 1998. Isolating a role for natural selection in speciation: host adaptation and sexual isolation in neochlamisus bebbianae beetle larvae. Evolution 52: 1744–1759.

Giraldo N, Salazar C, Jiggins CD, Bermingham E, Linares M. 2008. Two sisters in the same dress: Heliconius cryptic species. BMC Evolutionary Biology 8: 324.

Hebert PDN, Penton EH, Burns JM, Janzen DH, Hallwachs W. 2004. Ten species in one: DNA barcoding reveals cryptic species in the Neotropical skipper butterfly Astraptes fulgerator. Proceedings of the National Academy of Sciences of the United States of America 101: 14812–14817.

Heliconius Genome Consortium. 2012. Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature 487: 94–98.

Hill RI, Elias M, Dasmahapatra KK, Jiggins CD, Koong V, Willmott KR, Mallet J. 2012. Ecologically relevant cryptic diversity in the highly polymorphic Amazonian butterfly Mechinistis maeuse s.l. (Lepidoptera: Nymphalidae; Ithomiini). Biological Journal of the Linnean Society 106: 540–560.

Holzinger HK, Holzinger R. 1994. Heliconius and related genera. Lepidoptera: Nymphalidae. The genera Eueides, Neruda and Heliconius. Venette, France: Sciences Nat.

Janzen DH, Hallwachs W, Blandin P, Burns JM, Cadiou JM, Chacon I, Dapkey T, Deans AR, Epstein ME, Espinoza B, Franclemont JG, Haber WA, Hajibabaei M, Hall JP, Hebert PD, Gauld ID, Harvey DJ, Hausmann A, Kitching IJ, Lafontaine D, Landry JF, Lemaire C, Miller JY, Miller JS, Miller L, Miller SE, Montero J, Munroe E, Green SR, Ratnasaming S, Rawlins JE, Robbins RK, Rodriguez JJ, Rougerie R, Sharkey MJ, Miller MA, Solis MA, Sullivan JB, Thiaucourt P, Wahl DB, Weller SJ, Whitfield JB, Willmott KR, Wood DM, Woodley NE, Wilson JJ. 2009. Integration of DNA barcoding into an ongoing inventory of complex tropical biodiversity. Molecular Ecology Resources 9: 1–26.

Jiggins CD. 2008. Ecological speciation in mimetic butterflies. BioScience 58: 541–548.

Jiggins CD, Linares M, Naisbit RE, Salazar C, Yang ZH, Mallet J. 2001a. Sex-linked hybrid sterility in a butterfly. Evolution 55: 1631–1638.

Jiggins CD, Naisbit RE, Coe RL, Mallet J. 2001b. Reproductive isolation caused by colour pattern mimicry. Nature 411: 302–305.

Jiggins CD, Estrada C, Rodrigues A. 2004. Mimicry and the evolution of premating isolation in Heliconius melpomene Linnaeus. Journal of Evolutionary Biology 17: 680–691.

Kozak KM, Wahlberg N, Neild AF, Dasmahapatra KK, Mallet J, Jiggins CD. 2015. Multilocus species trees show the recent adaptive radiation of the mimetic Heliconius butterflies. Systematic Biology 64: 505–524.

Kronforst MR, Young LG, Kapan DD, McNeely C, O’Neill RJ, Gilbert LE. 2006. Linkage of butterfly mate preference and wing color preference cue at the genomic location of wingless. Proceedings of the National Academy of Sciences 103: 6535–6538.

Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33: 1870–1874.

Lamas G. 1997. Los Papilionoidea (Lepidoptera) de la Zona Reservada de Tambopata, Madre de Dios, Perú I. Papilionidae, Pieridae y Nymphalidae (en parte). Revista Peruana de Entomología 27: 59–73.

Lamas G. 2004. Atlas of Neotropical Lepidoptera. Checklist: part 4A. Hesperioidea–Papilionoidea. In: Heppner JB, ed. Gainesville, Florida: Association for Tropical Lepidoptera/Scientific Publishers.

Lamas G, Jiggins CD. 2017. Taxonomic list. The ecology and evolution of Heliconius butterflies. New York, NY, United States of America: Oxford University Press, 214–244.

Langerhans RB, Gifford ME, Joseph EO. 2007. Ecological speciation in Gambusia fishes. Evolution 61: 2056–2074.

Maddison WP. 1997. Gene trees in species trees. Systematic Biology 46: 523–536.

Mallet J. 2009. Rapid speciation, hybridization and adaptive radiation in the Heliconius melpomene group. In: Butlin RK, Brdile J, Schulte D, eds. Speciation and patterns of diversity. Cambridge: Cambridge University Press.

Mallet J, Jackson DA. 1980. The ecology and social behaviour of the Neotropical butterfly Heliconius xanthocephes Bates in Colombia. Zoological Journal of the Linnean Society 70: 1–13.

© Zoological Journal of the Linnean Society 2018, 2018, XX, 1–17
Mani GS, Clarke BC. 1990. Natural hybridization in heliconine butterflies: the species boundary as a continuum. BMC Evolutionary Biology 7: 28.

Mani GS, Clarke BC. 1990. Mutational order: a major stochastic process in evolution. Proceedings of the Royal Society of London B: Biological Sciences 240: 29–37.

Martin SH, Dasmahapatra KK, Nadeau NJ, Salazar C, Walters JR, Simpson F, Blaxter M, Manica A, Mallet J, Jiggins CD. 2013. Genome-wide evidence for speciation with gene flow in Heliconius butterflies. Genome Research 23: 1817–1828.

Mavárez J, Salazar CA, Bermingham E, Salcedo C, Jiggins CD, Linares M. 2006. Speciation by hybridization in Heliconius butterflies. Nature 441: 868–871.

McBride CS, van Velzen R, Larsen TB. 2009. Allopatric origin of cryptic butterfly species that were discovered feeding on distinct host plants in sympathy. Molecular Ecology 18: 3639–3651.

Mérot C, Mavárez J, Evin A, Dasmahapatra KK, Mallet J, Lamas G, Joron M. 2013. Genetic differentiation without mimicry shift in a pair of hybridizing Heliconius species (Lepidoptera: Nymphalidae). Biological Journal of the Linnean Society 109: 830–847.

Mérot C, Salazar C, Merrill RM, Jiggins CD, Joron M. 2017. What shapes the continuum of reproductive isolation? Lessons from Heliconius butterflies. Proceedings of the Royal Society B: Biological Sciences 284: 20170335.

Merrill RM, Gompert Z, Dembeck LM, Kronforst MR, McMillan WO, Jiggins CD. 2011. Mate preference across the speciation continuum in a clade of mimetic butterflies. Evolution 65: 1489–1500.

Merrill RM, Wallbank RWR, Bull V, Salazar PCA, Mallet J, Stevens M, Jiggins CD. 2012. Disruptive ecological selection on a mating cue. Proceedings of the Royal Society B: Biological Sciences 279: 4907–4913.

Merrill RM, Naishit RE, Mallet J, Jiggins CD. 2013. Ecological and genetic factors influencing the transition between host-use strategies in sympatric Heliconius butterflies. Journal of Evolutionary Biology 26: 1959–1967.

Müller F. 1879. Ituna und Thyridia. Ein merkwürdiges Beispiel von Mimicry bei Schmetterlingen. Kosmos (Leipzig) 5: 100–108.

Naishit RE, Jiggins CD, Linares M, Salazar C, Mallet J. 2002. Hybrid sterility, Haldane’s rule and speciation in Heliconius cydno and H. melpomene. Genetics 161: 1517–1526.

Nei M, Li WH. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences of the United States of America 76: 5269–5273.

Nosil P. 2012. Ecological speciation. Oxford: Oxford University Press.

Orr HA. 1995. The population genetics of speciation: the evolution of hybrid incompatibilities. Genetics 139: 1805–1813.

Palumbi SR, Cipriano F, Hare MP. 2001. Predicting nuclear gene coalescence from mitochondrial data: the three-times rule. Evolution 55: 859–868.

Panhuis TM, Butlin R, Zuk M, Tregenza T. 2001. Sexual selection and speciation. Trends in Ecology & Evolution 16: 364–371.

Pante E, Schoelincck C, Puillandre N. 2015. From integrative taxonomy to species description: one step beyond. Systematic Biology 64: 152–160.

Pardo-Díaz C, Salazar C, Baxter SW, Merot C, Figueiredo-Ready W, Joron M, McMillan WO, Jiggins CD. 2012. Adaptive introgression across species boundaries in Heliconius butterflies. PLoS Genetics 8: e1002752.

Pigot AL, Tobias JA. 2013. Species interactions constrain geographic range expansion over evolutionary time. Ecology Letters 16: 330–338.

Pritchard JK, Stephens M, Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945–959.

Rohlf FJ. 2010. TPSDig2, version 2.16. Stony Brook, NY: Department of Ecology and Evolution, State University of New York.

Rosser N, Phillimore AB, Huertas B, Willmott KR, Mallet J. 2012. Testing historical explanations for gradients in species richness in heliconine butterflies of tropical America. Biological Journal of the Linnean Society 105: 479–497.

Rosser N, Kozak KM, Phillimore AB, Mallet J. 2015. Extensive range overlap between heliconine sister species: evidence for sympatric speciation in butterflies? BMC Evolutionary Biology 15: 125.

Silva-Brandão KL, Lyra ML, Freitas AVL. 2009. Barcoding Lepidoptera: current situation and perspectives on the usefulness of a contentious technique. Neotropical Entomology 38: 441–451.

Sperling FAH. 1994. Sex-linked genes and species differences in Lepidoptera. The Canadian Entomologist 126: 807–818.

Stork NE. 2018. How many species of insects and other terrestrial arthropods are there on earth? Annual Review of Entomology 63: 31–45.

Turelli M, Orr HA. 2000. Dominance, epistasis and the genetics of postzygotic isolation. Genetics 154: 1663–1679.

Turner JRG. 1976. Adaptive radiation and convergence in subdivisions of the butterfly genus Heliconius (Lepidoptera: Nymphalidae). Zoological Journal of the Linnean Society 58: 297–308.

Vodá R, Dappporto L, Dinci V, Vila R. 2015. Cryptic matters: overlooked species generate most butterfly beta-diversity. Ecography 38: 405–409.

Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M. 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research 23: 4407–4414.

Willmott KR, Constantino LM, Hall JWP. 2001. A review of Colobura (Lepidoptera: Nymphalidae) with comments on larval and adult ecology and description of a sibling species. Annals of the Entomological Society of America 94: 185–196.

Zelditch ML, Swiderski DL, Sheets HD, Fink WL. 2004. Geometric morphometrics for biologists: a primer. San Diego: Elsevier Academic Press.
SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article at the publisher's web-site:

Figure S1. Landmarks used for the analysis of wing shape and size with geometric morphometry (displayed on *H. eratosignis ucayalensis* male).

Figure S2. Morphology of genitalia. Arrow indicates possible fixed difference. Voucher IDs in brackets.

Figure S3. Forewing (left) and hindwing (right) centroid size for *H. demeter joroni* ssp. nov. and *H. eratosignis ucayalensis*. Groups labelled with the same letter do not show significant centroid size difference.

Figure S4. Principal component analysis displaying wing shape variation between *H. demeter joroni* ssp. nov. (red) and *H. eratosignis ucayalensis* (blue). Males are represented with open circles and females by filled circles. Ellipses represent a graphical summary of the distribution. Top: forewing, bottom: hindwing. Shape variation is illustrated next to each axis, where broken shapes represent minimum negative values of the axis, and full lines represent maximum values.

Figure S5. Principal component (PC) analysis of wing shape variation between *H. eratosignis* and *H. demeter* with the inclusion of additional subspecies from museum collections (types, syntypes, etc.). As in Fig. 4 in the main text, the analysis included *H. e. ucayalensis* (in blue), *H. d. joroni* ssp. nov. (in red) and *H. d. bouquets* (in orange); males are represented with open circles and females by filled circles. The additional museum specimens are represented with red letters for *H. demeter* (orange for *H. d. bouquets*), corresponding to the subspecies: a, *H. d. angeli*; b, *H. d. bouquets*; d, *H. d. demeter*; k, *H. d. karinae*; n, *H. d. neildi*; t, *H. d. titan*; z, *H. d. zikani*; and with a blue letters for *H. eratosignis*: e, *H. e. eratosignis*; u, *ucayalensis*; y, *H. e. ulysses*. Ellipses represent a graphical summary of the distribution. Shape variation captured PC1 and PC2 are illustrated next to each axis, with dotted lines represent minimum values of the axis, and full lines representing the maximum values. PC1 captures shape differences between males and females across both species. PC2 captures variation between species as well as between *H. demeter* subspecies.

Figure S6. Maximum likelihood trees of *H. demeter* and *H. eratosignis* specimens (red and blue respectively) from Tarapoto (Peru) and *H. demeter* from French Guiana (orange) based on sequences of five nuclear loci *Mpi*, *Tpi*, *Tektin*, *Rpl5* and *Ef1α*. Bootstrap values greater than 50% are shown. Otherwise identical voucher numbers terminating in A or B refer to alleles from heterozygous individuals.

Table S1. Revised synonymy of taxa formerly considered part of *H. demeter*. Letters a–m are valid subspecies names according to our revision and that of Lamas (2004).

Table S2. Type specimens of *H. demeter* and *H. eratosignis* examined. [1] Figured in: Holzinger, H. & Holzinger, R. 1975. *Heliconius demeter ucayalensis*, eine neue Subspezies aus Peru (Lepidoptera: Nymphalidae). Z. ArbGem. öst. Ent. 26:29–152. [2] Figured in: Lamas, G. 1985. Los Papilionoidea (Lepidoptera) de la Zona Reservada de Tambopata, Madre de Dios, Perú.- I : Papilionidae, Pieridae y Nymphalidae (en parte). Revista Peruana de Entomología 27: 59–73.

Table S3. Specimens used in morphometric analysis.

Table S4. List of *Passiflora* species used in captive host plant oviposition tests.

Table S5. Details of samples used for molecular work.

Table S6. PCR conditions for the amplicons used in this study. All reactions were carried out in 10-µL volumes using 10× buffer (Sigma), 0.5 µM each of forward and reverse primers and 0.25U Taq polymerase (Sigma). PCR cycling conditions were: initial denaturing at 94 °C for 2 min; followed by 35 cycles of 94 °C for 45 s, annealing temperature (T_a) for 45 s, 72 °C for 60 s; final extension at 72 °C for 5 min.

Table S7. GenBank Accession numbers for sequences used in nuclear phylogenies.

Table S8. GenBank accession numbers for sequences used in mtDNA phylogenies.

Table S9. Subspecies classified by presence or absence of strong costal yellow streak on the ventral forewing. Descriptions based on examination of holotype, syntype, allotype detailed in Table S2; fw = forewing; hw = hindwing.

Table S10. Models of sequence evolution and estimated parameters, selected using Bayesian Inference Criterion.