Supplemental material for

Organic π-type thermoelectric module supported by photolithographic mold: a working hypothesis of sticky thermoelectric materials

Norifusa Satoh, Masaji Otsuka, Tomoko Ohki, Akihiko Ohi, Yasuaki Sakurai, Yukihiko Yamashita, Takao Mori

a International Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), Tsukuba, Japan

b Denka Innovation Center, Denka Company Limited, Tokyo, Japan

*e-mail: SATOH.Norifusa@nims.go.jp, Mori.Takao@nims.go.jp
Table S1. Output voltage of the single π-unit of as-received PEDOT:PSS and the ball-milled TTF-TCNQ mixed with PVC at different ratios.

PVC/TTF-TCNQ	80 °C	90 °C	100 °C
1/3	0.5 mV	0.5 mV	0.6 mV
1/12	0.9 mV	0.8 mV	1.0 mV
0	0.8 mV	1.1 mV	1.4 mV
Table S2. TE performances of PEDOT:PSS dedoped by KW-1000S.

	pH 1 (as-received)	pH 4	pH 7	pH 8
S (µV/K)	14.9	19.6	20.1	21.0
σ (S/cm)	1.24	0.231	0.513	0.762
PF (µW/mK2)	27.5	8.88	20.7	33.6
Table S3. TE performances of the dedoped PEDOT:PSS after the addition of different volume of DMSO per 1 ml PEDOT:PSS solution.

	0 µl/ml	10 µl/ml	20 µl/ml	30 µl/ml
S (µV/K)	21.0	21.6	21.6	21.2
σ (S/cm)	0.762	7.40	4.99	2.89
PF (µW/mK2)	33.6	345	233	130
Table S4. Output voltage of the single π-unit of the ball-milled TTF-TCNQ and as-received PEDOT:PSS or the dedoped PEDOT:PSS after the addition of different volume of DMSO per 1 ml PEDOT:PSS solution.

	80 °C	90 °C	100 °C	110 °C	120 °C	130 °C
as-received	0.8 mV	1.1 mV	1.4 mV	1.1 mV	1.5 mV	1.6 mV
10 µl/ml	1.3 mV	1.5 mV	1.9 mV	2.2 mV	2.7 mV	3.1 mV
20 µl/ml	1.4 mV	1.7 mV	2.1 mV	2.3 mV	2.8 mV	2.9 mV
30 µl/ml	1.4 mV	1.7 mV	1.9 mV	2.2 mV	2.7 mV	2.8 mV