Branes and quantization

Sergei Gukov1,2 and Edward Witten3

1Department of Physics, University of California, Santa Barbara, CA 93106, USA
2Department of Physics, Caltech, Pasadena, CA 91125, USA
3School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540, USA

gukov@theory.caltech.edu

Abstract

The problem of quantizing a symplectic manifold (M, ω) can be formulated in terms of the A-model of a complexification of M. This leads to an interesting new perspective on quantization. From this point of view, the Hilbert space obtained by quantization of (M, ω) is the space of (B_{cc}, B') strings, where B_{cc} and B' are two A-branes; B' is an ordinary Lagrangian A-brane, and B_{cc} is a space-filling coisotropic A-brane. B' is supported on M, and the choice of ω is encoded in the choice of B_{cc}. As an example, we describe from this point of view the representations of the group $SL(2, \mathbb{R})$. Another application is to Chern–Simons gauge theory.

Contents

1 Introduction 1447

1.1 The Problem 1447

1.2 Quantization via branes 1448

1.3 Comparison to geometric quantization 1453