Blow-up Rate Estimates for a Semilinear Heat Equation with a Gradient Term

Maan A. Rasheed and Miroslav Chlebik

May 5, 2014

Abstract

We consider the pointwise estimates and the blow-up rate estimates for the zero Dirichlet problem of the semilinear heat equation with a gradient term $u_t = \Delta u - |\nabla u|^2 + e^u$, which has been considered by J. Bebernes and D. Eberly in \cite{1}.

1 Introduction

Consider the following initial-boundary value problem

$$
\begin{aligned}
\begin{cases}
 u_t = \Delta u - h(|\nabla u|) + f(u), & (x, t) \in B_R \times (0, T), \\
 u(x, t) = 0, & (x, t) \in \partial B_R \times (0, T), \\
 u(x, 0) = u_0(x), & x \in B_R,
\end{cases}
\end{aligned}
$$

(1.1)

where $f \in C^1(R)$, $h \in C^1([0, \infty))$, $f, h > 0$, $h' \geq 0$ in $(0, \infty)$, $f(0) \geq 0$, $h(0) = h'(0) = 0$,

$$
|h(\xi)| \leq O(|\xi|^2),
$$

(1.2)

$$
sh'(s) - h(s) \leq Ks^q, \quad \text{for} \quad s > 0, \quad 0 \leq K < \infty, \quad q > 1,
$$

(1.3)

$u_0 \geq 0$ is smooth, radial nonincreasing function, vanishing on ∂B_R, this means it satisfies the following conditions

$$
\begin{aligned}
\begin{cases}
 u(x) = u_0(|x|), & x \in B_R, \\
 u_0(x) = 0, & x \in \partial B_R, \\
 u_0(|x|) \leq 0, & x \in B_R.
\end{cases}
\end{aligned}
$$

(1.4)

Moreover, we assume that

$$
\Delta u_0 + f(u_0) - h(|\nabla u_0|) \geq 0, \quad x \in B_R.
$$

(1.5)
The special case

\[u_t = \Delta u - |\nabla u|^q + u|u|^{p-1}, \quad p, q > 1 \]

(1.6)

was introduced in [2] and it was studied and discussed later by many authors see for instance [5, 12]. The main issue in those works was to determine for which \(p \) and \(q \) blow-up in finite time (in the \(L^\infty \)-norm) may occur. It is well known that it occurs if and only if \(p > q \) (see [5]). Equation (1.6) in \(\mathbb{R}^n \) was considered from similar point of view, in this case blow-up in finite time is also known to occur when \(p > q \), but unbounded global solutions always exist (see [12]). For bounded domains, it has been shown in [4] for equation (1.6) with general convex domain \(\Omega \) that, the blow-up set is compact. Moreover if \(\Omega = B_{\mathbb{R}} \), then \(x = 0 \) is the only possible blow-up point and the upper pointwise rate estimate takes the following form

\[u \leq c|x|^{-\alpha}, \quad (x, t) \in B_R \setminus \{0\} \times [0, T), \]

for any \(\alpha > 2/(p-1) \) if \(q \in (1, 2p/(p+1)) \), and for \(\alpha > q/(p-q) \) if \(q \in [2p/(p+1), p) \). We observe that \(q/(p-q) > 2/(p-1) \) for \(q > 2p/(p+1) \), therefore, the blow-up profile of solutions of equation (1.6) is similar to that of \(u_t = \Delta u + u^p \) as long as \(q < 2p/(p+1) \) (see [3]), whereas for \(q \) greater than this critical value, the gradient term induces an important effect on the profile, which becomes more singular.

On the other hand, it was proved in [3, 4, 6, 13] that the upper (lower) blow-up rate estimate in terms of the blow-up time \(T \) in the case \(q < 2p/(p+1) \) and \(u \geq 0 \), takes the following form

\[c(T-t)^{-1/(p-1)} \leq u(x, t) \leq C(T-t)^{-1/(p-1)}. \]

J. Bebernes and D. Eberly have considered in [1] a second special case of (1.1), where \(f(s) = e^s, h(\xi) = \xi^2 \), namely

\[
\begin{align*}
 u_t &= \Delta u - |\nabla u|^2 + e^u, \quad (x, t) \in B_R \times (0, T), \\
 u(x, t) &= 0, \quad (x, t) \in \partial B_R \times (0, T), \\
 u(x, 0) &= u_0(x), \quad x \in B_R.
\end{align*}
\]

(1.7)

The semilinear equation in (1.7) can be viewed as the limiting case of the critical splitting as \(p \to \infty \) in the equation (1.6). It has been proved that, the solution of the above problem with \(u_0 \) satisfies (1.4) may blow up in finite time and the only possible blow-up point is \(x = 0 \). Moreover, if we consider the problem in any general bounded domain \(\Omega \) such that \(\partial \Omega \) is analytic, then the blow-up set is a compact set. On the other hand, they proved that, if \(x_0 \) is a blow-up point for problem (1.7) with the finite blow-up time \(T \); then

\[
\lim_{t \to T^-} [u(x_0, t) + m \log(T - t)] = k,
\]
for some \(m \in \mathbb{Z^+} \) and for some \(k \in \mathbb{R} \). The analysis therein is based on the observation that the transformation \(v = 1 - e^{-u} \) changes the first equation in problem (1.7) into the linear equation \(v_t = \Delta v + 1 \), moreover, \(x_0 \) is a blow-up point for (1.7) with blow-up time \(T \) if and only if \(v(x_0, T) = 1 \).

In this paper we consider problem (1.7) with (1.4), our aim is to derive the upper pointwise estimate for the classical solutions of this problem and to find a formula for the upper (lower) blow-up rate estimate.

2 Preliminaries

The local existence and uniqueness of classical solutions to problem (1.1), (1.4) is well known by [7, 9]. Moreover, the gradient function \(\nabla u \) is bounded as long as the solution \(u \) is bounded due to (1.2) (see [11]).

The following lemma shows some properties of the classical solutions of problem (1.1) with (1.4). We may denote for simplicity \(u(r, t) = u(x, t) \).

Lemma 2.1. Let \(u \) be a classical solution to the problem classical solution of problem (1.1) with (1.4). Then

(i) \(u > 0 \) and it is radial nonincreasing in \(B_R \times (0, T) \). Moreover if \(u_0 \neq 0 \), then \(u_r < 0 \) in \((0, R] \times (0, T) \).

(ii) \(u_t \geq 0 \) in \(\overline{B_R} \times [0, T) \).

Depending on Lemma 2.1 the problem (1.1) with (1.4) can be rewritten as follows

\[
\begin{align*}
 u_t &= u_{rrr} + \frac{n-1}{r} u_r - h(-u_r) + f(u), \quad (r, t) \in (0, R) \times (0, T), \\
 u_r(0, t) &= 0, \quad u(R, t) = 0, \quad t \in [0, T), \\
 u(r, 0) &= u_0(r), \\
 u_r(r, t) &= 0, \quad (r, t) \in (0, R] \times (0, T).
\end{align*}
\]

(2.1)

3 Pointwise Estimate

In order to derive a formula to the pointwise estimate for problem (2.1), we need first to recall the following theorem, which has been proved in [4].

Theorem 3.1. Assume that, there exist two functions \(F \in C^2([0, \infty)) \) and \(c_\varepsilon \in \mathcal{C}^2([0, R]), \varepsilon > 0 \), such that

\[
c_\varepsilon(0) = 0, c_\varepsilon' \geq 0, \quad F > 0, F', F'' \geq 0, \quad \text{in} \quad (0, \infty), \tag{3.1}
\]

\[
f'F - fF' - 2c_\varepsilon F' F + c_\varepsilon^2 F'' F^2 - 2q^{-1} Kc_\varepsilon^2 F^q F' + AF \geq 0, \quad u > 0, 0 < r < R, \tag{3.2}
\]
where
\[A = \frac{c_\varepsilon'}{c_\varepsilon} + \frac{n - 1}{r} c_\varepsilon' - \frac{n - 1}{r^2}, \]
\[\frac{c_\varepsilon(r)}{r} \to 0 \text{ uniformly on } [0, R] \text{ as } \varepsilon \to 0, \text{ and} \]
\[G(s) = \int_s^\infty \frac{du}{F(u)} < \infty, \quad s > 0. \]

Let \(u \) be a blow-up solution to problem (2.1), where \(u_0 \) satisfies
\[u_0 r \leq -\delta, \quad r \in (0, R], \quad \delta > 0. \tag{3.3} \]

Suppose that, \(T \) is the blow-up time. Then the point \(r = 0 \) is the only blow-up point, and there is \(\varepsilon_1 > 0 \) such that
\[u(r, t) \leq G^{-1}\left(\int_0^r c_\varepsilon(z)dz\right), \quad (r, t) \in (0, R] \times (0, T). \tag{3.4} \]

We are ready now to drive a formula to the pointwise estimate for the blow-up solutions of problem (1.7) with (1.4).

Theorem 3.2. Let \(u \) be a blow-up solution to problem (1.7), assume that \(u_0 \) satisfies (1.4) and (3.3). Then the upper pointwise estimate takes the following form
\[u(x, t) \leq \frac{1}{2\alpha} \left| \log C - m \log(r) \right|, \quad (r, t) \in (0, R] \times (0, T), \]
where \(\alpha \in (0, 1/2], C > 0, m > 2. \)

Proof. Let \(c_\varepsilon = \varepsilon r^{1+\delta} \), where \(\delta \in (0, \infty). \)

It is clear that \(c_\varepsilon \) satisfies the assumptions (3.1) in Theorem 3.1, so that (3.2) becomes
\[
\begin{align*}
 f' F - f F' - 2\varepsilon (1 + \delta) r^{1+\delta} F' + \varepsilon^2 r^{2+2\delta} F'' F^2 \\
 - 2^{q-1} K \varepsilon^q r^{q+\delta q} F^q F' + \frac{\delta(n + \delta)}{r^2} F \geq 0, \quad u > 0, \quad 0 < r < R. \tag{3.5}
\end{align*}
\]

For the semilinear equation in (1.7) it is clear that \(K \geq 1, q = 2. \) To make use of Theorem 3.1 for problem (1.7), assume that
\[F(u) = e^{2\alpha u}, \quad \alpha \in (0, 1/2]. \]

It is clear that \(F \) satisfies all the assumptions (3.1) in Theorem 3.1. With this choice of \(F \) the inequality (3.5) takes the form
\[
\begin{align*}
 (1 - 2\alpha) e^{(1+2\alpha)u} + 4\varepsilon^2 r^{2(1+\delta)} e^{6\alpha u} + \frac{\delta(n + \delta)}{r^2} e^{2\alpha u} \geq \\
 4\alpha \varepsilon (1 + \delta) r^{1+\delta} e^{4\alpha u} + 4\varepsilon^2 r^{2(1+\delta)} e^{6\alpha u}, \quad u \geq 0, \quad 0 < r \leq R
\end{align*}
\]
provided $\alpha \leq \frac{1}{2 + 2\epsilon R(1 + \delta)}$.

Define the function G as in Theorem 3.1 as follows

$$G(s) = \int_s^\infty \frac{du}{e^{2\alpha u}} = \frac{1}{2\alpha e^{\alpha s}}, \quad s > 0.$$

Clearly,

$$G^{-1}(s) = -\frac{1}{2\alpha} \log(2\alpha s), \quad s > 0.$$

Thus (3.4) becomes

$$u(r, t) \leq \frac{1}{2\alpha} [\log C - m \log(r)], \quad (r, t) \in (0, R] \times (0, T),$$

where $C = \frac{2 + \delta}{2\alpha}, \quad m = 2 + \delta$.

Theorem 3.2 shows that, with choosing $\alpha = 1/2$, the upper point-wise estimate for problem (1.7) is the same as that for $u_t = \Delta u + e^u$, which has been considered in [8]. Therefore, the gradient term in problem (1.7) has no effect on the pointwise estimate.

4 Blow-up Rate Estimate

Since under the assumptions of Theorem 3.2, $r = 0$ is the only blow-up point for the problem (1.7), therefore, in order to estimate the blow-up solution it suffices to estimate only $u(0, t)$. The next theorem, which has been proved in [4], considers the upper blow-up rate estimate for the general problem (1.1).

Theorem 4.1. Let u be a blow-up solution to problem (1.1), where $u_0 \in C^2(B_R)$ and satisfies (1.4), (1.5). Assume that T is the blow-up time and $x = 0$ is the only possible blow-up point. If there exist a function, $F \in C^2([0, \infty))$ such that $F > 0$ and $F', F'' \geq 0$ in $(0, \infty)$, moreover,

$$f'F - F'f + F''|\nabla u|^2 - F'[h'(|\nabla u|)|\nabla u| - h(|\nabla u|)] \geq 0, \quad \text{in } B_R \times (0, T),$$

then the upper blow rate estimate takes the form

$$u(0, t) \leq G^{-1}(\delta(T - t)), \quad t \in (\tau, T),$$

where $\delta, \tau > 0, \quad G(s) = \int_s^\infty \frac{du}{F(u)}$.

For problem (1.7), if one could choose a suitable function F that satisfies the conditions, which have stated in Theorem 4.1, then the upper blow-up rate estimate for this problem would be held.
Theorem 4.2. Let \(u \) be a blow-up solution to problem (1.7), where \(u_0 \in C^2(\bar{B}_R) \) and satisfies (1.4), (3.3) and the monotonicity assumption
\[
\Delta u_0 + e^{u_0} - |\nabla u_0|^2 \geq 0, \quad x \in B_R,
\]
suppose that \(T \) is the blow-up time. Then there exist \(C > 0 \) such that the upper blow-up rate estimate takes the following form
\[
u(0, t) \leq \frac{1}{\alpha} \left[\log C - \log(T - t) \right], \quad 0 < t < T, \quad \alpha \in (0, 1].
\]

Proof. Let
\[
F(u) = e^{\alpha u}, \quad \alpha \in (0, 1].
\]
It is clear that the inequality (4.1) becomes
\[
(1 - \alpha)e^{(1+\alpha)u} + \alpha^2 e^{\alpha u} |\nabla u|^2 - \alpha e^{\alpha u} |\nabla u|^2 \geq 0,
\]
which holds for any \(\alpha \in (0, 1] \).

Set
\[
G(s) = \int_s^\infty \frac{du}{e^{\alpha u}} = \frac{1}{\alpha e^{\alpha s}}, \quad s > 0.
\]
Clearly,
\[
G^{-1}(s) = -\frac{1}{\alpha} \log(\alpha s), \quad s > 0.
\]
From Theorem 4.1 there is \(\delta > 0 \) such that
\[
u(0, t) \leq \frac{1}{\alpha} \left[\log(\frac{1}{\alpha \delta}) - \log(T - t) \right], \quad \tau < t < T.
\]
Therefore, there exist a positive constant, \(C \) such that
\[
u(0, t) \leq \frac{1}{\alpha} \left[\log C - \log(T - t) \right], \quad 0 < t < T.
\]

\[\square \]

Next, we consider the lower blow-up rate for problem (1.7), which is much easier than the upper bound.

Theorem 4.3. Let \(u \) be a blow-up solution to problem (1.7), where \(u_0 \) satisfies (1.4) and (3.3). Suppose that \(T \) is the blow-up time. Then there exist \(c > 0 \) such that the lower blow-up rate estimate takes the following form
\[
\log c - \log(T - t) \leq u(0, t), \quad 0 < t < T.
\]
Proof. Define

\[U(t) = u(0,t), \quad t \in [0,T). \]

Since \(u\) attains its maximum at \(x = 0\),

\[\Delta U(t) \leq 0, \quad 0 \leq t < T. \]

From the semilinear equation in (1.7) and above, it follows that

\[U_t(t) \leq e^{U(t)} \leq \lambda e^{U(t)}, \quad 0 < t < T, \quad (4.2) \]

for \(\lambda \geq 1\). Integrate (4.2) from \(t\) to \(T\), we obtain

\[\frac{1}{\lambda(T-t)} \leq e^{u(0,t)}, \quad 0 < t < T. \]

It follows that

\[\log c - \log(T-t) \leq u(0,t), \quad 0 < t < T, \]

where \(c = 1/\lambda\). \(\square\)

Remark 4.4. Theorem 4.3 (Theorem 4.2, where \(\alpha = 1\)) show that, the lower (upper) blow-up rate estimate for problem (1.7) is the same as for \(u_t = \Delta u + e^u\), which has been considered in [8], therefore, we conclude that, the gradient term in problem (1.7) has no effect on the blow-up rate estimate.

References

[1] J. Bebernes and D. Eberly, *Characterization of blow-up for a semilinear heat equation with a convection term*, Quart. J. Mech. Appl. Math. 42, 447-456, (1989).

[2] M. Chipot and F.B. Weissler, *Some blow up results for a nonlinear parabolic problem with a gradient term*, SIAM J. Math. Anal. 20, 886-907, (1989).

[3] M. Chlebik and M. Fila, *From critical exponents to blow-up rates for parabolic problems*, Rend. Mat. Appl. (7)19, 449-470, (1999).

[4] M. Chlebik, M. Fila and P. Quittner, *Blow-up of positive solutions of a semilinear parabolic equation with a gradient term*, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 10, 525-537, (2003).

[5] M. Fila, *Remarks on blow up for a nonlinear parabolic equation with a gradient term*, Proc. Amer. Math. Soc. 111, 795-801, (1991).

[6] M. Fila and Ph. Souplet, *The blow-up rate for semilinear parabolic problems on general domains*, NoDEA Nonlinear Differential Equations Appl. 8, 473-480, (2001).
[7] A. Friedman, *Partial Differential Equations of Parabolic Type*, Prentice-Hall, Englewood Cliffs, N.J., (1964).

[8] A. Friedman and B. McLeod, *Blow-up of positive solutions of semilinear heat equations*, Indiana Univ. Math. J. 34, 425-447, (1985).

[9] O. A. Ladyzenskaja, V.A.Solonnikov and N.N.Uralceva, *Linear and Quasilinear Equations of Parabolic Type*, Translations of Mathematical Monographs, American Mathematical Society, 23, (1968).

[10] C. V. Pao., *Nonlinear Parabolic and Elliptic Equations*, New York and London: Plenum Press, (1992).

[11] P. Quittner and Ph. Souplet, *Superlinear Parabolic Problems. Blow-up, Global Existence and Steady States*, Birkhuser Advanced Texts, Birkhuser, Basel, (2007).

[12] Ph. Souplet, *Recent results and open problems on parabolic equations with gradient nonlinearities*, Electron. J. Differential Equations 1-19, (2001).

[13] Ph. Souplet and S. Tayachi, *Blow up rates for nonlinear heat equations with gradient terms and for parabolic inequalities*, Colloq. Math. 88, 135-154, (2001).