Proceedings

Development of Biocontrol Agents to Manage Major Diseases of Tropical Plantation Forests in Indonesia: A Review †

Abdul Gafur

SinarMas Forestry Corporate Research and Development, Perawang 28772, Indonesia; gafur@uwalumni.com; Tel.: +62-761-900-0200
† Presented at the 1st International Electronic Conference on Forests—Forests for a Better Future: Sustainability, Innovation, Interdisciplinarity, 15–30 November 2020; Available online: https://iecf2020.sciforum.net.

Abstract: In 2018, the area of plantation forests in Indonesia reached 8,668,670 ha. Pests and diseases have been considered as critical factors in sustainable production of plantation forests in the humid tropic areas. With the introduction of new plant species such as fast-growing plants of acacias and eucalypts, new pests and diseases have become emerging threats. Several pathogenic fungi and bacteria have been recorded in plantation forests in Indonesia since their early establishment. The fungal species associated with the most common diseases include Ceratocystis manginecans (Ceratocystis wilt and dieback), Ganoderma philippii (red root rot), Phellinus noxius (brown root rot and heart rot), and Fusarium spp. (Fusarium wilt), whereas the major bacterial pathogens are Ralstonia spp. (bacterial wilt) and Xanthomonas spp. (leaf streak). As one key component of integrated pest management, biocontrol measure plays significant roles in managing major diseases of tropical plantation forests in Indonesia. A number of forestry companies have put development of biocontrol agents as one of their priority research programs. For this scenario, antagonists have been collected and isolated from different ecosystems. This paper reviews development of biocontrol agents to manage major diseases of tropical plantation forests in Indonesia.

Keywords: Acacia; Cerrena; Eucalyptus; Ganoderma; Gliocladium; Phellinus; Phlebiopsis; Ralstonia; Trichoderma

1. Introduction

The official Government publication [1] reported that in 2018, the area of plantation forests in Indonesia reached 8,668,670 ha, with ca. 94% of them being scattered in the Sumatera and Kalimantan islands. In that same year, the Forestry Sector contributed USD 12.17 billion to the country’s income [2]. Pests and diseases have been considered as critical factors in sustainable production of plantation forests in the humid tropic areas. With the introduction of new plant species such as fast-growing plants of acacias and eucalypts, new pests and diseases have become emerging threats. Several pathogenic fungi and bacteria have been recorded in plantation forests in Indonesia since their early establishment. The fungal species associated with the most common diseases include Ceratocystis manginecans (Ceratocystis wilt and dieback), Ganoderma philippii (red root rot), Phellinus noxius (Pyrrhoderma sp.) (brown root rot and heart rot), and Fusarium spp. (Fusarium wilt), whereas the major bacterial pathogens are Ralstonia spp. (bacterial wilt) and Xanthomonas spp. (leaf streak) [3,4]. As one key component of integrated pest management, biocontrol measure plays significant roles in managing major diseases of tropical plantation forests in Indonesia. Several forestry companies have put development of biocontrol agents as one of their priority research programs. For this scenario, antagonists have been collected...
and isolated from different ecosystems. This paper briefly reviews development of biocontrol agents to manage major diseases of tropical plantation forests in Indonesia, focusing on root rot diseases.

Red root rot caused mainly by *G. philippii* [5–8] was once considered as the most important disease of acacias, particularly *A. mangium* [9–12]. Losses due to the disease were estimated to be as high as 40% in 9–14-year-old *A. mangium* plantations (Table 1). Although occurring in lower frequencies, the disease is also found on different species of eucalypts [5,13,14]. The level of damage and incidence of this disease required development of effective management to secure sustainable production of forest plantations [15,16]. Incorporation of resistant genotypes [17,18] and use of biocontrol agents of microbial consortiums [19–21] are economically and environmentally feasible control measures to minimize the losses due to the disease. The biocontrol agents developed so far to manage root rot pathogens include *Trichoderma*, *Gliocladium*, *Cerrena*, *Phlebiopsis*, and some other white rot fungal species.

Table 1. Losses due to *Ganoderma philippii* in *Acacia mangium* plantations of different ages.

Location	Age (Years)	Losses (%)	Reference
Indonesia	3–5 (2nd rotation)	3–28	Irianto et al. [22]
Malaysia	14	up to 40	Lee [10]
The Philippines	6–10	10–25	Militante and Manalo [23]
India	9–14	~40	Mehrotra et al. [24]

2. Trichoderma and Gliocladium

Trichoderma and *Gliocladium* are fast growing saprophytic fungi found in varying habitats. The fungi have high degree of ecological adaptability and frequently are the most prevalent culturable fungi in soil. In addition to colonizing plant roots, the fungi attack and parasitize other fungal species. Antibiosis, competition for nutrients or space, induced resistance and inactivation of the pathogen’s enzymes are some other recognized mechanisms used by the antagonists to suppress other fungal species including the pathogenic ones. For these reasons, *Trichoderma* and *Gliocladium* have so far been some of the most common fungi used as biocontrol agents to manage several plant diseases. Table 2 lists different species and/or isolates of the fungi developed to manage root rot diseases.

Table 2. Some *Trichoderma* and *Gliocladium* species developed to manage root rot pathogens.

Root Rot Pathogen	Biocontrol Agent	Reference
Ganoderma lucidum	*Trichoderma harzianum*	Bhaskaran [25]
	Trichoderma harzianum	Dharmaputra et al. [26]
Ganoderma boninense	*Trichoderma spp.*	Soepena et al. [27]
	Gliocladium viride	Susanto et al. [28]
Ganoderma spp.	*Trichoderma spp.*	Widyastuti [29]
Phellinus weirii	*Trichoderma viride*	Nelson et al. [30]
	Trichoderma polysporum, harzianum	Berglund and Ronnberg [31]
	Trichoderma sp.	Hagle and Shaw [32]
	Trichoderma harzianum, T. viride, T. hamatum	Raziq and Fox [33]

A number of free-living isolates collected from different origins and localities have been screened in vitro for their efficacy against root rot pathogens such as *Ganoderma* or *Phellinus*. Some of the collections are able to overgrow the pathogens (Figure 1). One problem with the free-living isolates, however, is their consistency in the field. Isolates with excellent inhibitory effects in laboratory tests may not be a good performer in the field. In addition, one particular isolate which is effective in certain environmental conditions is
not necessarily equally good in other conditions. To illustrate, two trials were established in two different locations in the Province of Riau, Sumatera, i.e., sites A and B. Results of the trials showed that *Trichoderma* isolated from site A performed best by reducing *Ganoderma* incidence by 7.0% in site A. Similarly, *Gliocladium* isolated from site B was the most effective in site B, decreasing *Ganoderma* incidence by 10.0% [19,20].

Endophytic *Trichoderma*, on the other hand, is considered more stable and have a wider plasticity. Endophytes share intimate symbiotic association with the plant hosts. They enter the host systems without triggering vulnerability to pathogen. Compared to free-living (rhizospheric) counterparts, endophytic antagonists are also better protected against abiotic stress and competing microbes. In addition, they are able to enhance both plant health and plant vigor and persist in the root through the rotation [34], providing hope for more effective disease management. Research focus then shifted more to endophytic *Trichoderma*. In this scenario, we also isolated a great number of putative endophytic *Trichoderma* isolated and subsequently screened, some were able to reduce significantly incidence of red root rot disease on *Acacia mangium* seedlings in the nursery screening (Figure 3).

Figure 1. *Ganoderma* (G) in pure culture (left) and *Trichoderma* (T) is overgrowing *Ganoderma* in dual culture (right) [19,20].

Endophytic *Trichoderma*, on the other hand, is considered more stable and have a wider plasticity. Endophytes share intimate symbiotic association with the plant hosts. They enter the host systems without triggering vulnerability to pathogen. Compared to free-living (rhizospheric) counterparts, endophytic antagonists are also better protected against abiotic stress and competing microbes. In addition, they are able to enhance both plant health and plant vigor and persist in the root through the rotation [34], providing hope for more effective disease management. Research focus then shifted more to endophytic *Trichoderma*. In this scenario, we also isolated a great number of putative endophytic *Trichoderma* isolated and subsequently screened, some were able to reduce significantly incidence of red root rot disease on *Acacia mangium* seedlings in the nursery screening (Figure 3).

Figure 2. Isolation of putative endophytic *Trichoderma* [21].
3. White Rot Fungi

Other biological control agents commonly used to control root rot diseases are non- or weak pathogenic white fungi. These fungi could break down wood debris faster than the pathogen, occupy the same resource as the pathogen, compete for nutrients, produce inhibitory secondary metabolites, and are able to mycoparasitize the pathogen [35,36]. The commercially available *Phlebiopsis gigantea* is widely used in the northern hemisphere to control root rot pathogen *Heterobasidion annosum*. Despite this, white rot fungi had not been adequately explored in Indonesia until recently, as biological control agents that can compete with *G. philippii* or *P. noxius* for wood resources. *Phlebiopsis* and *Cerrena*, another biocontrol agent, inhibit mycelial growth of the root-rot pathogens *G. philippii* and *P. noxius*. Both species compete with the root rot pathogens for space and nutrients. Previous in vitro tests have demonstrated their antagonism against the pathogens. We also explored methods of applying the antagonists to effectively control red root disease in plantations [37,38]. They were inoculated onto stumps to prevent infections and colonization by pathogens (Figure 4).
In addition to Phlebiopsis and Cerrena [37,38], we collected 107 samples of other white-rot fungi from forestry plantations in Riau Province to investigate their potentials as biological control agents of root rot diseases. As reported earlier, the fungi were isolated from rotten woods including trunks and twigs, and fruiting bodies [39]. Out of the 107 samples collected, 28 from rotten woods and 51 from fruiting bodies were successfully isolated. Screenings of the isolated fungi were carried out on wood block, wood disc, and malt extract agar containing wood-powder. Results of the three-step screenings (Figure 5) indicate that two isolates, WFA033 and WFA068, have potentials as biological control agents against the red root rot pathogen, G. philippii.

![Figure 5. Dual culture of WFA033 (left) and WFA068 (right) isolates and Ganoderma philippii on wood disc (top) and on MEA-WP (bottom) media. The white rot fungi overgrow and inhibit the growth of G. philippii [39].](image)

4. Endophytic Bacteria

Bacterial wilt disease (BWD) has recently emerged as an economically important disease of tropical plantation forests in Indonesia, especially on Eucalyptus stands [40–42]. The causal agents, R. solanacearum and R. pseudosolanacearum, have a broad range of host plants, including 450 species of over 50 families. The pathogens usually invade the host through root injuries, crosses the root cortex and overruns the xylem vessels leading to sudden wilting and plant death. Controls had so far been limited to crop rotation, intercropping (agriculture), use of resistant materials. Use of antagonists, fungal or bacterial, with endophytic or rhizospheric nature isolated from the same crop or unrelated crops should also be considered as a crucial component of BWD integrated management. For this, a consortium of endophytic bacteria was developed to manage BWD on Eucalypts seedlings in Riau Province. The microbes demonstrated the ability to suppress R. solanacearum in artificial media. The product remains effective after several years; it reduces disease risk and prolongs the incubation period.

5. Conclusions

Pests and diseases are likely to continuously challenge plantation forests in Indonesia. However, there are also opportunities to manage them. As one key component of integrated disease management, biocontrol agents provide a significant contribution to the
effort. Future research on antagonistic microbes should focus more on isolation of locally more adapted and stable isolates of microbial consortia to increase their efficacy. Introduction of endophytic microbes into the scenario should be encouraged.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is not applicable to this article.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Badan Pusat Statistik. *Statistics of Timber Culture Establishment—2018*; BPS RI: Jakarta, Indonesia, 2019; 110p.
2. PPID KLHK. Available online: http://ppid.menlhk.go.id/siaran_pers/browse/1724 (accessed on 1 September 2020).
3. Tjahjono, B.; Ernawati, N.M.L.; Giyanto; Gafur, A. Bacterial leaf blight on *Acacia crassicarpa* caused by *Xanthomonas campesiris* in Indonesia. In Proceedings of the ISSAAS International Congress, Bali, Indonesia, 14–18 November 2010.
4. Yuvika; Nasution, A.; Gafur, A. Actinomycetes isolation and in vitro screening for *Xanthomonas* biocontrol. *J. Fitopatol. Indones.* 2013, 9, 124–129, doi:10.14692/jfi.9.5.160. (In Indonesian)
5. Coetzee, M.P.A.; Golani, G.D.; Tjahjono, B.; Gafur, A.; Wingfield, B.D.; Wingfield, M.J. A single dominant *Ganoderma* species is responsible for root rot of *Acacia mangium* and *Eucalyptus* in Sumatra. *South. For. J.* 2011, 73, 175–180.
6. Glen, M.; Bougher, N.L.; Francis, A.; Nigga, S.Q.; Lee, S.S.; Irianto, R.; Barry, K.M.; Mohammed, C.L. Molecular differentiation of *Ganoderma* and *Amousoderma* species associated with root rot disease of *Acacia mangium* plantations in Indonesia and Malaysia. *Australas. Plant Pathol.* 2009, 38, 345–356, doi:10.1071/AP09008.
7. Glen, M.; Yuskianti, V.; Francis, A.; Puspitasari, D.; Agustini, L.; Rimbawanto, A.; Indrayadi, H.; Gafur, A.; Mohammed, C.L. Identification of basidiomycete fungi in Indonesian hardwood plantations by DNA bar-coding. *For. Pathol.* 2014, 44, 496–508.
8. Yuskianti, V.; Gafur, A.; Francis, A.; Rimbawanto, A.; Gafur, A.; Indrayadi, H.; Mohammed, C.L. Species-specific PCR for rapid identification of *Ganoderma philippii* and *Ganoderma mastoporum* from *Acacia mangium* and *Eucalyptus* pellets plantations. *For. Pathol.* 2014, 44, 477–485.
9. Gafur, A.; Tjahjono, B.; Golani, G.D. Fungal species associated with acacia plantations in Riau, Indonesia. In Proceedings of the 2007 Asian Mycological Congress, Penang, Malaysia, 2–6 December 2007.
10. Lee, S.S. The current status of root diseases of *Acacia mangium* Wild. In *Ganoderma Diseases of Perennial Crops*; Flood, J., Bridge, P.D., Holderness, M., Eds.; CABI: London, UK, 2000; pp. 71–79.
11. Rimbawanto, A.; Tjahjono, B.; Gafur, A. *Panduan Hama dan Penyakit Akasia dan Ekaliptus*; Balai Besar Penelitian Bioteknologi dan Pemuliaan Tanaman Hutan: Yogyakarta, Indonesia, 2014; 48p.
12. Wingfield, M.J.; Slippers, B.; Roux, J.; Wingfield, B.D. Novel associations between pathogens; insects and tree species threaten world forests. *N. Z. J. For. Sci.* 2010, 40, S95–S103.
13. Francis, A.; Beadle, C.; Mardai; Indrayadi, H.; Tjahjono, B.; Gafur, A.; Glen, M.; Widyatmoko, A.; Hardyanto, E.; Junarto; Irianto, R.S.B.; Puspitasari, D.; et al. Basidiomycete root rots of paper-pulp tree species in Indonesia—identity, biology and control. In Proceedings of the 9th International Congress of Plant Pathology, Turin, Italy, 24–29 August 2008.
14. Gafur, A.; Tjahjono, B.; Golani, G.D. *Pests and Diseases of Low Elevation Eucalypts: Diagnose and Control*; APRIL Forestry R&D, PT RAPP: Pangkalan Kerinci, Indonesia, 2010; 40p.
15. Francis, A.; Beadle, C.; Puspitasari, D.; Irianto, R.S.B.; Rimbawanto, A.; Gafur, A.; Hardyanto, E.; Junarto; Tjahjono, B.; Mardai; Mohammed, C.L. Disease progression in plantations of *Acacia mangium* affected by red root rot (*Ganoderma philippii*). *For. Pathol.* 2014, 44, 447–459.
16. Page, D.; Glen, M.; Puspitasari, D.; Prihatini, I.; Gafur, A.; Mohammed, C. *Acacia* plantations in Indonesia facilitate clonal spread of the root pathogen *Ganoderma philippii*. *Plant Pathol.* 2020, 69, 685–697.
17. Gafur, A.; Nasution, A.; Yuliarto, M.; Wong, C.Y.; Sharma, M. A new screening method for *Ganoderma philippii* tolerance in tropical *Acacia* species. *South. J. For. Sci.* 2015, 77, 75–81.
18. Gafur, A.; Syaffiary, A.; Nugroho, A.; Wong, C.Y.; Sharma, M. Plant tolerance as a component of *Ganoderma philippii* management in *Acacia mangium* plantations. In *Proceedings of the Genetics of Tree-Parasite Interactions Meeting*, Orleans, France, 23–28 August 2015.
19. Gafur, A.; Tjahjono, B.; Golani, G.D. 2011a. Options for field management of *Ganoderma* root rot in *Acacia mangium* plantation forests. In Proceedings of the 2011 IUFRO Forest Protection Joint Meeting, Colonia del Sacramento, Uruguay, 8–11 November 2011.
20. Gafur, A.; Tjahjono, B.; Golani, G.D. Silvicultural options for field management of *Ganoderma* root rot in *Acacia mangium* plantations. In *Proceedings of the 4th Asian Conference on Plant Pathology and the 18th Australasian Plant Pathology Conference*, Darwin, Australia, 26–29 April 2011.
21. Gafur, A.; Nasution, A.; Wong, C.Y.; Sharma, M. Development of biological control agents to manage Ganoderma philippii in tropical Acacia mangium plantations. In Proceedings of the Genetics of Tree-Parasite Interactions Meeting, Orleans, France, 23–28 August 2015.

22. Irianto, R.S.B.; Barry, K.; Hidayati, N.; Ito, S.; Fiani, A.; Rimbawanto, A.; Mohammed, C. Incidence and spatial analysis of root rot of Acacia mangium in Indonesia. J. Trop. For. Sci. 2006, 18, 157–165.

23. Militante, E.P.; Manalo, M.Q. Root rot disease of mangium (Acacia mangium Wild.) in the Philippines. In Proceedings of the 5th International Conference on Plant Protection in the Tropics, Kuala Lumpur, Malaysia, 15–18 March 1999; Sivapragasam, A., Ismail, A.A., Sidam, A.K., Cheah, U.B., Chung, G.F., Chia, T.H., Eds.; pp. 448–450.

24. Mehrrotan, M.D.; Pandey, P.C.; Chakrabarti, K.; Suresh, S.; Hazra, K. Root and heart rots in Acacia mangium plantations in India. Indian For. 1996, 122, 155–160.

25. Bhaskaran, R. Management of the basal stem rot disease of coconut caused by Ganoderma lucidum. In Ganoderma Diseases of Perennial Crops; Flood, J., Bridge, P.D., Holderness, M., Eds.; CABI: London, UK, 2000; pp. 121–129.

26. Dharmaputra, O.S.; Tjitrosomo, H.S.S.; Abadi, A.L. Antagonistic effect of four fungal isolates to Ganoderma Neo-galerucis. J. Trop. For. Sci. 2005, 23, 153–157.

27. Siregar, B.A.; Giyanto.; Hidayat, S.H.; Siregar, I.Z.; Tjahjono, B. Epidemiology of bacterial wilt disease on Eucalyptus and Acacia in Indonesia. In Proceedings of the 1st International Electronic Conference on Forests (IECF), Online, 15–30 November, MDPI: Basel, Switzerland, 2020.

28. Siregar, B.A.; Gafur, A.; Tjahjono, B. Screening of white rot fungi as biological control agents against Ganoderma philippii. In Proceedings of the International Seminar and 12th National Congress of the Indonesian Phypathological Society, Solo, Indonesia, 3–5 December 2011.

29. Tjahjono, B.; Gafur, A.; Golani, G.D. Occurrence of bacterial wilt on acacias and eucalypts in Indonesia. In Proceedings of the ISSAAS International Congress, Bali, Indonesia, 14–18 November 2010.

30. Siregar, B.A.; Gafur, A.; Nuri, P.; Halimah, H.; Tjahjono, B.; Golani, G.D. First report on infection of Eucalyptus pellita seeds by Ralstonia solanacearum. In Proceedings of the 1st International Electronic Conference on Forests (IECF), Online, 15–30 November, MDPI: Basel, Switzerland, 2020.