Master Key Secured Quantum Key Distribution

Tabish Qureshi
Centre for Theoretical Physics, Jamia Millia Islamia, New Delhi, India.

Tabish Shibli
SGTB Khalsa College, New Delhi, India.

Aditi Sheel
Department of Physics, Jamia Millia Islamia, New Delhi-110025, India.

A new scheme of Quantum Key Distribution is proposed using three entangled particles in a GHZ state. Alice holds a 3-particle source and sends two particles to Bob, keeping one with herself. Bob uses one particle to generate a secure key, and the other to generate a master-key. This scheme should prove to be harder to break in non-ideal situations as compared to the standard protocols BB84 and Eckert. The scheme uses the concept of Quantum Disentanglement Eraser. Extension to multi-partite scheme has also been investigated.

PACS numbers: 03.67.Dd ; 03.65.Ud

Crypting messages for secret communication is a very old problem. The so-called Vernam Cipher [1] or one-time pad, is a method which is believed to be the most secure, with the caveat that it is based on a shared key which can only be used once. This led to people exploring the possibility of remotely sharing a new secret key in a secure way. Quantum key distribution (QKD) allows two parties, conventionally called Alice and Bob, to generate a common string of secret bits, the secret key, in the presence of an eavesdropper, usually called Eve [2]. The key so generated, may be used for encrypting messages using Vernam Cipher. The pioneering protocol for QKD was given by Bennet and Brassard in 1984, in a conference in Bangalore [3]. Later another equivalent protocol was given by Eckert utilizing properties of entangled states [4]. In principle, QKD is hundred percent secure, the proof being provided by the laws of quantum mechanics [5]. However, real-life implementations of QKD have various issues which make them deviate from the assumptions in idealized models. By exploiting security loopholes in practical realizations, notably imperfections in the detectors, various attacks have been successfully demonstrated against commercial QKD systems [6, 7].

Here we introduce a new QKD method using three entangled particles. This method introduces an additional element in the standard key distribution protocols, to make it harder to break in non-ideal situations.

I. BB84 AND ECKERT PROTOCOLS

The basic quantum key distribution protocol of BB84 [3] or Eckert [4] is as follows.

1. An entangled spin-1/2 particle source produces a sequence of particles pairs, in a singlet state, one going to Alice, and one to Bob.

2. Bob measures the incoming particles’ spin states by randomly choosing a measurement of either the x-component of the spin or the z-component, with equal probability.

3. Bob publicly tells Alice which bases he used for each particle he received (but, of course not the result of his measurement).

4. Alice publicly tells Bob which bases she used to measure her particles.

5. Alice and Bob keep only the data from those measurements for which their bases are the same, discarding all the rest.

6. This data is interpreted as a binary sequence according to the coding scheme $|+\rangle_x = 1$, $|-\rangle_x = 0$, $|+\rangle_z = 1$, $|-\rangle_z = 0$ for Alice, and $|+\rangle_x = 0$, $|-\rangle_x = 1$, $|+\rangle_z = 0$, $|-\rangle_z = 1$ for Bob.

7. Alice announces the results of a small subset of her measurements. Bob checks if he has identical results. Any discrepancy here indicates a possible evesdropping attempt.

8. If there is no discrepancy, the rest of the binary sequence is treated as the new key, and is identical for both Alice and Bob.

If the entangled-particle source is held by Alice, and only one particle travels to Bob and the other remains with Alice, the protocol is essentially BB84. She could replace it by a source producing single particles, each of which she measures before forwarding it to Bob. The consequences will be identical to those described above.
II. THREE PARTICLE ENTANGLEMENT

Let us consider the following 3-particle entangled state, known as the GHZ state \[|\psi\rangle = \frac{1}{\sqrt{2}} (|\uparrow\rangle_1 |\uparrow\rangle_2 |\uparrow\rangle_3 + |\downarrow\rangle_1 |\downarrow\rangle_2 |\downarrow\rangle_3), \] where the states $|\uparrow\rangle_i, |\downarrow\rangle_i$ are eigenstates of the operator σ_{iz}, and let us also consider the following transformation in basis,

$|\uparrow\rangle_i = \frac{1}{\sqrt{2}} (|+\rangle_i + |−\rangle_i), \quad |\downarrow\rangle_i = \frac{1}{\sqrt{2}} (|+\rangle_i − |−\rangle_i) \tag{2}$

for i=1,2 and 3. If we just look at the subspaces of particles 1 and 2, their state is not a pure entangled state, but a mixed state, as can be seen by writing the density matrix for (1) and tracing over the states $|\uparrow\rangle_3, |\downarrow\rangle_3$. Here, the results of measurement of σ_{1z} and σ_{2z} will be correlated, but results of measurements of σ_{1x} and σ_{2x} will not be correlated.

Writing the states of particle 3 in terms of the eigenstates of σ_{3z}, (1) can be written as

$|\psi\rangle = \frac{1}{2} (|\uparrow\rangle_1 |\uparrow\rangle_2 + |\downarrow\rangle_1 |\downarrow\rangle_2) |+\rangle_3$

$+ \frac{1}{2} (|\uparrow\rangle_1 |\uparrow\rangle_2 − |\downarrow\rangle_1 |\downarrow\rangle_2) |−\rangle_3. \tag{3}$

As we have not changed the state, measurements on particle 1 and 2 will not show any quantum correlations. However, if one also makes a measurement of σ_{3z}, and picks out only those results of measurement of particle 1 and 2, for which particle 3 yields $|+\rangle_3$, particle 1 and 2 will show quantum correlation. Particles 1 and 2, which appeared to be disentangled in state (1), are now entangled. One can say that a measurement of σ_{3z} has erased the disentanglement between particle 1 and 2. Correlating the measurements of particles 1 and 2 with $|−\rangle_3$ will also lead to an entanglement of 1 and 2, but of a slightly different form. This concept of quantum disentanglement eraser was introduced by Garisto and Hardy [9].

As one can see, measurement of particle 3, in a particular basis, has the potential to control the nature of entanglement of particles 1 and 2. We use this feature to construct a new 3-particle protocol for QKD. The GHZ state has been used before to construct QKD protocol for sharing a secure key between three parties [10]. However, we are only interested in two-party key-sharing.

III. MASTER-KEY SECURED QKD (MKS-QKD)

In the following we propose a key distribution scheme where Alice holds a 3-particle source which generates a sequence of particle trios in a GHZ state given by (1). She sends particle 2 and 3 to Bob and keeps particle 1 with herself. Bob calls (say) particle 3 as master channel and the particle 2 as secure channel. He measures σ_{3z} on the master channel so that he gets either $|+\rangle_3$ or $|−\rangle_3$. One can see from (3) that if Alice and Bob measure σ_{1z} and σ_{2z} respectively, their results will always be correlated. For example, if Alice gets $|\downarrow\rangle_1$ Bob will necessarily get $|\downarrow\rangle_2$, and if Alice gets $|\uparrow\rangle_1$ Bob will necessarily get $|\uparrow\rangle_2$, irrespective of the results of the master channel.

Now if Alice and Bob (on particle 2) measure σ_{1x}, writing (1) in terms of the eigenstates of σ_{1x} will make it easier to see what will happen.

$|\psi\rangle = \frac{1}{2} (|+\rangle_1 |+\rangle_2 + |−\rangle_1 |−\rangle_2) |+\rangle_3$

$+ \frac{1}{2} (|+\rangle_1 |−\rangle_2 + |−\rangle_1 |+\rangle_2) |−\rangle_3. \tag{4}$

It is clear from the above that if the master channel measurement gives $|+\rangle_3$ the measurement results of Alice and Bob (on particle 2) on σ_{1x} will be identical. On the other hand, if the master channel measurement gives $|−\rangle_3$ the measurement results of Alice and Bob (on particle 2) on σ_{1x} will be inverted with respect to each other.

On receiving the two particles through two different channels, Bob randomly decides to use one channel to generate his secure key, and the other to generate a master-key. The details of the protocol are as follows.

1. A 3-particle source is held by Alice which generates a sequence of 3 entangled particles. Particle 1 remains with Alice, while particles 2 and 3 go to Bob through two different channels.

2. Bob randomly chooses one channel to generate his secure key and the other to generate the master-key. Bob randomly chooses a different channel for his master-key, for each pair that comes to him.

3. Alice measures the incoming particles’ spin states by randomly choosing a measurement of either the x-component of the spin or the z-component, with equal probability. Bob does the same for his secure channel.

4. Bob measures the x-component of the spin of particles from his master channel.

5. Alice and Bob publicly declare which bases they used for the secure channel, for each particle they received.

6. Alice and Bob keep only the data from those measurements for which their secure channel bases are the same, discarding all the rest.

7. This data is interpreted as a binary sequence according to the coding scheme $|\uparrow\rangle \rightarrow 1, |\downarrow\rangle \rightarrow 0, |+\rangle \rightarrow 1, |−\rangle \rightarrow 0$ by Alice and Bob. Bob interprets the data of the master channel as follows: $|+\rangle \rightarrow 0, |−\rangle \rightarrow 1$, if he measured x-component in the secure channel; $|+\rangle \rightarrow 0, |−\rangle \rightarrow 0,$
for every single pair. Evesdropper measuring per can correctly guess which one is the master channel BB84 protocol. However, there is no way an evesdropper distribution scheme then reduces to that of the Eckert or advance Bob’s master-key. The security of this key dis- considered to be the master channel, and can know in ment of particles that travels to Bob, he can perform measure- rectly guesses which is the master channel for each pair sharing more robust against attacks.

We now use the concept of disentanglement eraser to construct another kind of key distribution scheme in which there is a Master who wishes to control the key distribution between Alice and Bob. In this scheme, the key held by the Master has a special position that without using it Alice and Bob cannot share a secure key eventhough they used the Eckert protocol. This is much like a system in some bank lockers where the bank holds a master-key without using which the key of an individual client doesn’t work. The protocol for the Master-key controlled quantum key distribution works as follows.

1. An 3-particle source is held by the Master which generates a sequence of 3 entangled particles. Particle 1 goes to Alice, particle 2 to Bob and particle 3 remains with the Master.

2. Alice and Bob measure the incoming particles’ spin states by randomly choosing a measurement of either the x-component of the spin or the z-component, with equal probability.

3. The Master measures the x-component of the spin of his particle.

4. Bob and publicly declare which bases they used for each particle they received (but, of course not the result of the measurement).

5. Alice and Bob keep only the data from those measurements for which their bases are the same, discarding all the rest. The Master also discards the data for particles for which Alice and Bob’s bases do not match.

6. This data is interpreted as a binary sequence according to the coding scheme $|\uparrow\rangle \rightarrow 1$, $|\downarrow\rangle \rightarrow 0$, $|+\rangle \rightarrow 1$, $|–\rangle \rightarrow 0$ by Alice and Bob. The Master interprets his data as follows: $|+\rangle \rightarrow 0$, $|–\rangle \rightarrow 1$, if Alice and Bob measured x-component; $|+\rangle \rightarrow 0$, $|–\rangle \rightarrow 0$, if Alice and Bob measured z-component. All three now have a key, but Alice and Bob’s key doesn’t match.

7. The Master announces his key publicly which Bob adds to his key bit by bit, modulo 2.

8. At this stage, the keys generated by Alice and Bob are identical.

9. In order to check for any evesdropping attempt, Al- ice announces the results of a small subset of her measurements. Bob checks if he has identical re- sults. Any discrepancy here indicates a possible evesdropping attempt. The rest of the sequence now forms the usable key.

In the nearly impossible scenario if an evesdropper correctly guesses which is the master channel for each pair of particles that travels to Bob, he can perform measurement of σ_{xz}, where m is the particle number which is considered to be the master channel, and can know in advance Bob’s master-key. The security of this key distri- bution scheme then reduces to that of the Eckert or BB84 protocol. However, there is no way an evesdrop- per can correctly guess which one is the master channel for every single pair. Evesdropper measuring σ_x on the wrong channel will lead to his attempt being detected. This feature introduces an additional complexity in the secure key distribution, and consequently makes the key sharing more robust against attacks.

IV. MASTER-KEY CONTROLLED QKD (MKC-QKD)

We now use the concept of disentanglement eraser to construct another kind of key distribution scheme in which there is a Master who wishes to control the key distribution between Alice and Bob. In this scheme, the key held by the Master has a special position that without using it Alice and Bob cannot share a secure key eventhough they used the Eckert protocol. This is much like a system in some bank lockers where the bank holds a master-key without using which the key of an individual client doesn’t work. The protocol for the Master-key controlled quantum key distribution works as follows.

1. An 3-particle source is held by the Master which generates a sequence of 3 entangled particles. Particle 1 goes to Alice, particle 2 to Bob and particle 3 remains with the Master.

2. Alice and Bob measure the incoming particles’ spin states by randomly choosing a measurement of either the x-component of the spin or the z-component, with equal probability.

3. The Master measures the x-component of the spin of his particle.

4. Bob and publicly declare which bases they used for each particle they received (but, of course not the result of the measurement).

5. Alice and Bob keep only the data from those measurements for which their bases are the same, discarding all the rest. The Master also discards the data for particles for which Alice and Bob’s bases do not match.

6. This data is interpreted as a binary sequence according to the coding scheme $|\uparrow\rangle \rightarrow 1$, $|\downarrow\rangle \rightarrow 0$, $|+\rangle \rightarrow 1$, $|–\rangle \rightarrow 0$ by Alice and Bob. The Master interprets his data as follows: $|+\rangle \rightarrow 0$, $|–\rangle \rightarrow 1$, if Alice and Bob measured x-component; $|+\rangle \rightarrow 0$, $|–\rangle \rightarrow 0$, if Alice and Bob measured z-component. All three now have a key, but Alice and Bob’s key doesn’t match.

7. The Master announces his key publicly which Bob adds to his key bit by bit, modulo 2.

8. At this stage, the keys generated by Alice and Bob are identical.

9. In order to check for any evesdropping attempt, Al- ice announces the results of a small subset of her measurements. Bob checks if he has identical re- sults. Any discrepancy here indicates a possible evesdropping attempt. The rest of the sequence now forms the usable key.

Using this scheme the Master can effectively delay the sharing of the key by any length of time. Another possible use of MKC-QKD is that if the entangled particles are to be provided by a third party, this method provides a way of authenticating the particle source. Without the publicly sent master-key, the keys of Alice and Bob will not match. Although this scheme provides a mechanism which makes the involement of the Master necessary, it may not provide any additional security over the BB84 and Eckert protocols.

V. MULTI-PARTICLE GHZ STATE

One might wonder if the n-particle GHZ state

$$|\psi\rangle = \frac{1}{\sqrt{2}}(|\uparrow\rangle_1|\uparrow\rangle_2|\uparrow\rangle_3 \ldots |\uparrow\rangle_n + |\downarrow\rangle_1|\downarrow\rangle_2|\downarrow\rangle_3 \ldots |\downarrow\rangle_n|,$$

(5)

possesses similar properties. In this state too, any two particles are not entangled, as the two-particle reduced density matrix, after tracing over rest of the n-2 particles, is a mixed state density matrix. However, one can show that if one measures the n-2 particles in an appropriate basis, the entanglement between the two particles can be brought back by correlating with the measurement results of n-2 particles. This indicates that a QKD protocol is possible by using a n-particle GHZ state. Since a n-particle entangled state has little practical use, we will not go into the details of describing the QKD protocol.
VI. CONCLUSION

The quantum disentanglement eraser idea for 3-particle GHZ state has been used here to construct two QKD protocols. The first one, where Alice holds the 3-particle source, provides an additional level of security over the BB84 or Eckert protocols. In ideal circumstances BB84 and Eckert methods provide unbreakable key sharing, but in non-ideal cases several kinds of attacks can be constructed. In such situations, our Master-Key Secured QKD protocol will provide key-sharing which will be harder to break. We have also provided a variant which we call Master-Key Controlled QKD where three parties are involved. MKC-QKD allows the possibility for a third person, called Master, to control the key sharing between Alice and Bob. Without the master-key provided publicly by the Master at a later stage, Alice and Bob will be unable to share a secure key. Various practical uses of this method can be explored. For example, if the source of particles is to be provided by a third party, this method can be used to establish the authenticity of the source. This variant, however, is not expected to provide and additional security over the BB84 or Eckert protocols.

Acknowledgments

T. Shibli thanks the Centre for Theoretical Physics for the summer student program during which this work was completed. A. Sheel thanks the Centre for Theoretical Physics for providing the facilities of the Centre during the course of this work.

[1] G.S. Vernam, "Cipher Printing Telegraph Systems For Secret Wire and Radio Telegraphic Communications", J. Am. Inst. Elec. Eng. 55: 109-115 (1926).
[2] N. Gisin et al., Rev. Mod. Phys. 74, 145 (2002); V. Scarani et al., Rev. Mod. Phys. 81, 1301 (2009).
[3] C.H. Bennett, G. Brassard, “Quantum cryptography: Public-key distribution and coin tossing,” in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, 1984, (IEEE Press, 1984), pp. 175179; C.H. Bennett and G. Brassard, “Quantum public key distribution,” IBM Technical Disclosure Bulletin 28, 31533163 (1985).
[4] A.K. Eckert, “Quantum cryptography based on Bell’s theorem”, Phys. Rev. Lett. 67, 661-663 (1991).
[5] P.W. Shor, J. Preskill, Phys. Rev. Lett 85, 441-444 (2000).
[6] C.-H.F. Fung et al., Phys. Rev. A 75, 032314 (2007); F. Xu, B. Qi and H.-K. Lo, New J. Phys. 12, 113026 (2010).
[7] B. Qi et al., Quantum Inf. Comput. 7, 73 (2007); Y. Zhao et al., Phys. Rev. A 78, 042333 (2008); L. Lydersen et al., Nature Photon. 4, 686 (2010); I. Gerhardt et al., Nature Commun. 2, 349 (2011).
[8] D.M. Greenberger, M.A. Horne, A. Zeilinger, “Going Beyond Bell’s Theorem” in Bell’s Theorem, Quantum Theory, and Conceptions of the Universe, eds. M. Kafatos (Kluwer Academic, Dordrecht, 1989), pp. 73-76; arXiv:0712.0921 [quant-ph].
[9] R. Garisto, L. Hardy, “Entanglement of projection and a new class of quantum erasers,” Phys. Rev. A 60, 827-831 (1999).
[10] G.L. Khym, W.Y. Chung, J.I. Kim, H.J. Yang, J. Korean Phys. Soc. 44, 1349-1354 (2004).