A unified method for optimal arbitrary pole placement

Robert Schmid a, Lorenzo Ntogramatzidis b, Thang Nguyen c, Amit Pandey d

aDepartment of Electrical and Electronic Engineering, University of Melbourne, Parkville, VIC 3010, Australia.
bDepartment of Mathematics and Statistics, Curtin University, Perth, WA 6848, Australia.
cDepartment of Engineering, University of Exeter, UK.
dDepartment of Mechanical and Aerospace Engineering, University of California, San Diego, USA.

Abstract

We consider the classic problem of pole placement by state feedback. We offer an eigenstructure assignment algorithm to obtain a novel parametric form for the pole-placing feedback matrix that can deliver any set of desired closed-loop eigenvalues, with any desired multiplicities. This parametric formula is then exploited to introduce an unconstrained nonlinear optimisation algorithm to obtain a feedback matrix that delivers the desired pole placement with optimal robustness and minimum gain. Lastly we compare the performance of our method against several others from the recent literature.

Key words: linear systems, pole placement, optimal control.

1 Introduction

We consider the classic problem of repeated pole placement for linear time-invariant (LTI) systems in state space form

$$\dot{x}(t) = Ax(t) + Bu(t),$$

where, for all $t \in \mathbb{R}$, $x(t) \in \mathbb{R}^n$ is the state and $u(t) \in \mathbb{R}^m$ is the control input. We assume that B has full column-rank, and that the pair (A,B) is reachable. We let $\mathcal{L} = \{\Lambda_1, \ldots, \Lambda_v\}$ be a self-conjugate set of $v \leq n$ complex numbers, with associated algebraic multiplicities $\mathcal{M} = \{m_1, \ldots, m_v\}$ satisfying $m_1 + \cdots + m_v = n$, and $m_i = m_j$ whenever $\Lambda_i = \overline{\Lambda}_j$. The problem of exact pole placement (EPP) by state feedback is that of finding a real feedback matrix F such that

$$\begin{equation}
(\Lambda + BF)X = X\Lambda,
\end{equation}$$

where Λ is a $n \times n$ Jordan matrix obtained from the eigenvalues of \mathcal{L}, including multiplicities given by \mathcal{M}, and X is a matrix of closed-loop eigenvectors of unit length. The matrix Λ can be expressed in the Jordan (complex) block diagonal canonical form

$$\Lambda = \text{blkdiag}(J(\lambda_1), \ldots, J(\lambda_v)),$$

where each $J(\lambda_i)$ is a Jordan matrix for λ_i of order m_i, and may be composed of up to g_i mini-blocks

$$J(\lambda_i) = \text{blkdiag}(J_1(\lambda_i), \ldots, J_{g_i}(\lambda_i)),$$

where $1 \leq g_i \leq m$. We use $\mathcal{P} = \{p_{i,k} \mid 1 \leq i \leq v, 1 \leq k \leq g_i\}$ to denote the order of each Jordan mini-block $J_i(\lambda_i)$; then $p_{i,k} = p_{j,k}$ whenever $\lambda_i = \overline{\lambda}_j$. When (A,B) is reachable, arbitrary multiplicities of the closed-loop eigenvalues can be assigned by state feedback, but the possible mini-block orders of the Jordan structure of $A+BF$ are constrained by the controllability indices [Rosenbrock, 1970]. If \mathcal{L}, \mathcal{M} and \mathcal{P} satisfy the conditions of the Rosenbrock theorem, we say that the triple $(\mathcal{L}, \mathcal{M}, \mathcal{P})$ defines an admissible Jordan structure for (A,B).

In order to consider optimal selections for the feedback matrix, it is important to have a parametric formula for the set of feedback matrices that deliver the desired pole placement. In [Kautsky et al., 1985] and [Schmid et al., 2014] parametric forms are given for the case where Λ is a diagonal matrix and the eigenstructure is non-defective; this requires $m_i \leq m$ for all $m_i \in \mathcal{M}$. Parameterisations that do not

* Corresponding author: R. Schmid. Earlier versions of this work appeared in (Schmid et al., 2013a) and Schmid et al (2013b). This work was supported in part by the Australian Research Council under the grant FT120100604.

Email addresses: rschmid@unimelb.edu.au (Robert Schmid), L.Ntogramatzidis@curtin.edu.au (Lorenzo Ntogramatzidis), T.Nguyen-Tien@exeter.ac.uk (Thang Nguyen), appandey@ucsd.edu (Amit Pandey).
impose a constraint on the multiplicity of the eigenvalues to be assigned include (Bhattacharyya and de Souza, 1982) and (Fahmy and O’Reilly, 1983); however these methods require the closed-loop eigenvalues to all be distinct from the open-loop ones.

The general case where \mathcal{L} contains any desired closed-loop eigenvalues and multiplicities is considered in (Chatelin, 2007) and (Ait Rami et al., 2009), where parametric formulae are provided for F that use the eigenvector matrix X as a parameter. Maximum generality in these parametric formulae has however been achieved at the expense of efficiency, as the square matrix X has n^2 free parameters. By contrast, methods (Kautsky et al., 1985, Fahmy and O’Reilly, 1983, Bhattacharyya and de Souza, 1982, Schmid et al., 2014) all employ parameter matrices with mn free parameters.

The first aim of this paper is to offer a parameterisation for the pole-placement feedback matrix that combines the generality of (Chatelin, 2007) and (Ait Rami et al., 2009) with the efficiency of an mn-dimensional parameter matrix. We offer a parametric formula for all feedback matrices F solving (2) for any admissible $(\mathcal{L}, \mathcal{M}, \mathcal{P})$. For a given parameter matrix K, we obtain the eigenvector matrix X_K and feedback matrix F_K by building the Jordan chains from eigenvectors selected from the kernels of the matrix pencils $[A - \lambda_i I_n, B]$; and thus avoid the need for matrix inversions, or the solution of Sylvester matrix equations. The parameterisation will be shown to be exhaustive of all feedback matrices that assign the desired eigenstructure.

The second aim of the paper is to seek the solution to some optimal control problems. We firstly consider the robust exact pole placement problem (REPP), which involves obtaining F that renders the eigenvalues of $A + BF$ as insensitive to perturbations in A, B and F as possible. Numerous results (Chatelin, 1993) have appeared linking the sensitivity of the eigenvalues to various measures of the condition number of X. Another commonly used robustness measure is the departure from normality of the closed loop matrix $A + BF$. For the case of diagonal A, there has been considerable literature on the REPP, including (Kautsky et al., 1985, Byers and Nash, 1989, Tits and Yang, 1996, Varga, 2000, Ait Rami et al., 2009, Chatelin, 2007, Li et al., 2011, Schmid et al., 2014). Papers considering the REPP for the general case where $(\mathcal{L}, \mathcal{M}, \mathcal{P})$ defines an admissible Jordan structure include (Lam et al., 1997) and (Ait Rami et al., 2009).

A related optimal control problem is the minimum gain exact pole placement problem (MGEP), which involves solving the EPP problem and also obtaining the feedback matrix F that has the least gain (smallest matrix norm), which gives a measure of the control amplitude or energy required by the control action. Recent papers addressing the MGEP with minimum Frobenius norm for F include (Ataei and Enshaee, 2011) and (Kochetkov and Utkin, 2014).

In this paper we utilise our parametric form for the matrices X and F that solve (2) to take a unified approach to the REPP and MGEPP problems, for any admissible Jordan structure. In our first method for the REPP, we seek the parameter matrix K that minimises the Frobenius condition number of X. In our second approach to the REPP, we seek the parameter matrix that minimises the departure from normality of matrix $A + BF$. Next we address the MGEPP by seeking the parameter K that minimises the Frobenius norm of F. Finally, we combine these approaches by introducing an objective function expressed as a weighted sum of robustness and gain measures, and use gradient iterative methods to seek a local minimum.

The performance of the our algorithm will be compared against the methods of (Ait Rami et al., 2009, Ataei and Enshaee, 2011) and (Li et al., 2011) on a number of sample systems. We see that the methods introduced in this paper can achieve superior robustness while using less gain than all three of these alternative methods.

2 Arbitrary pole placement

Here we adapt the algorithm of (Klein and Moore, 1977) to obtain a simple parametric formula for the gain matrix F that solves the exact pole placement problem for an admissible Jordan structure $(\mathcal{L}, \mathcal{M}, \mathcal{P})$, in terms of an arbitrary parameter matrix K with mn free dimensions. We begin with some definitions.

Given a self-conjugate set of ν complex numbers $\{\lambda_1, \ldots, \lambda_\nu\}$ containing σ complex conjugate pairs, we say that the set is σ-conformably ordered if the first 2σ values are complex while the remaining are real, and for all odd $i \leq 2\sigma$ we have $\lambda_{i+1} = \bar{\lambda}_i$. For example, the set $\{10j, -10j, 2+2j, 2-2j, 7\}$ is 2-conformally ordered. For simplicity we shall assume in the following that \mathcal{L} is σ-conformally ordered.

If M is a complex matrix partitioned into ν column matrices $M = [M_1, \ldots, M_\nu]$, we say that M is σ-conformably ordered if the first 2σ column matrices of M are complex while the remaining are real, and for all odd $i \leq 2\sigma$ we have $M_{i+1} = \bar{M}_i$. For a σ-conformally ordered complex matrix M, we define a real matrix $Re(M)$ composed of V column matrices of the same dimensions as those of M thus: for each odd $i \in \{1, \ldots, 2\sigma\}$, the i-th and $i+1$-st column matrices of $Re(M)$ are $\frac{1}{2}(M_i + M_{i+1})$ and $\frac{1}{2j}(M_i - M_{i+1})$ respectively, while for $i \in \{2\sigma + 1, \ldots, \nu\}$, the column matrices of $Re(M)$ are the same as the corresponding column matrices of M. For any real or complex matrix X with $n + m$ rows, we define matrices $\overline{\pi}(X)$ and $\pi(X)$ by taking the first n and last m rows of X, respectively. For each $i \in \{1, \ldots, \nu\}$, we define the matrix pencil

$$S(\lambda_i) \triangleq \begin{bmatrix} A - \lambda_i I_n & B \end{bmatrix}. \quad (5)$$

We use N_i to denote an orthonormal basis matrix for the kernel of $S(\lambda_i)$. If $\lambda_{i+1} = \bar{\lambda}_i$, then $N_{i+1} = \overline{N}_i$. Since each $S(\lambda_i)$ is $n \times (n + m)$ and (A, B) is reachable, each kernel has dimension m. We let

$$M_i \triangleq \begin{bmatrix} A - \lambda_i I_n & B \end{bmatrix}^T, \quad (6)$$
where \(\dagger \) indicates the Moore-Penrose pseudo-inverse. For any matrix \(X \) we use \(X(i) \) to denote the \(i \)-th column of \(X \).

We say that a matrix \(K \) is a *compatible parameter matrix* for \((\mathcal{L}, \mathcal{H}, \mathcal{P})\), if \(K \overset{\text{def}}{=} \text{blkdiag}\{K_1, \ldots, K_v\} \), where each \(K_i \) has dimension \(m \times m_i \), and for each \(i \geq 2 \sigma \), \(K_i \) is a real matrix, and for all odd \(i \leq 2 \sigma \), we have \(K_{i+1} = K_i \). Then each \(K_i \) matrix may be partitioned as

\[
K_i = \begin{bmatrix} K_{i,1} & K_{i,2} & \ldots & K_{i,g_i} \end{bmatrix},
\]

(7)

where each \(K_{i,k} \) has dimension \(m \times p_{i,k} \). For \(i \in \{1, \ldots, v\} \) and \(k \in \{1, \ldots, g_i\} \) we build vector chains of length \(p_{i,k} \) as

\[
h_{i,k}(1) = N_i K_{i,k}(1),
\]

(8)

\[
h_{i,k}(2) = M_i \mathbf{p}(h_{i,k}(1)) + N_i K_{i,k}(2),
\]

(9)

\[
\vdots
\]

\[
h_{i,k}(p_{i,k}) = M_i \mathbf{p}(h_{i,k}(p_{i,k} - 1)) + N_i K_{i,k}(p_{i,k}).
\]

(10)

From these column vectors we construct the matrices

\[
H_{i,k} \overset{\text{def}}{=} [h_{i,k}(1) \ldots h_{i,k}(p_{i,k})]
\]

(11)

of dimension \((n + m) \times p_{i,k}\), and

\[
H_i \overset{\text{def}}{=} [H_{i,1} \ldots H_{i,g_i}], \quad H_K \overset{\text{def}}{=} [H_1 \ldots H_v], \quad X_K \overset{\text{def}}{=} \mathbf{p}(H_K)
\]

(12)

of dimension \((n + m) \times m_i\), \((n + m) \times n\) and \(n \times n\), respectively. Note that \(H_K \) is \(\sigma \)-conformally ordered, and hence we may define real matrices

\[
V_K \overset{\text{def}}{=} \mathbf{p}(\text{Re}(H_K)), \quad W_K \overset{\text{def}}{=} \mathbf{p}(\text{Re}(H_K))
\]

(13)

of dimensions \(n \times n\) and \(m \times n\), respectively. We are now ready to present the main result of this paper.

Theorem 2.1 For almost all choices of the compatible parameter matrix \(K \), the matrix \(V_K \) in (13) is invertible. The set of all real feedback matrices \(F \) such that \(A + BF \) has Jordan structure given by \((\mathcal{L}, \mathcal{H}, \mathcal{P})\) is parameterised in \(K \) as

\[
F_K = W_K V_K^{-1}.
\]

(14)

Proof: Firstly we let \(K \) be any compatible parameter matrix yielding invertible \(V_K \) and \(W_K \) in (13) and \(F_K \) in (14). We prove that the closed-loop matrix \(A + BF_K \) has the required eigensstructure. \(V_K \) and \(W_K \) may be partitioned as

\[
V_K = [V_1 \ldots V_v], \quad W_K = [W_1 \ldots W_v],
\]

(15)

where, for each \(i \in \{1, \ldots, v\} \), \(V_i \) and \(W_i \) have \(m_i \) columns. Let \(H_{i,k} \) in (11) be partitioned as

\[
H_{i,k} = \begin{bmatrix} v_{i,k}^{(1)} & \ldots & v_{i,k}^{(p_{i,k})} \\ w_{i,k}^{(1)} & \ldots & w_{i,k}^{(p_{i,k})} \end{bmatrix},
\]

(16)

where, for each \(k \in \{1, \ldots, g_i\} \), the column vectors satisfy by construction

\[
(A - \lambda_i I_n) v_{i,k}^{(p_{i,k})} + B w_{i,k}^{(p_{i,k})} = 0,
\]

(17)

\[
(A - \lambda_i I_n) v_{i,k}^{(p_{i,k})} + B w_{i,k}^{(p_{i,k})} = v_{i,k}^{(1)}(k),
\]

(18)

\[
\vdots
\]

\[
(A - \lambda_i I_n) v_{i,k}^{(p_{i,k})} + B w_{i,k}^{(p_{i,k})} = v_{i,k}^{(p_{i,k} - 1)}(k).
\]

(19)

Define for each \(i \in \{1, \ldots, v\} \) and \(k \in \{1, \ldots, g_i\} \),

\[
V_i = [v_{i,k}^{(1)} \ldots v_{i,k}^{(p_{i,k})}], \quad W_i = [w_{i,k}^{(1)} \ldots w_{i,k}^{(p_{i,k})}]
\]

(20)

and next define, for each \(i \in \{1, \ldots, v\} \), \(V_i' = [V_i', V_i', \ldots, V_i', V_i', V_i', \ldots, V_i'] \) and \(W_i' = [W_i', W_i', \ldots, W_i', W_i', W_i', \ldots, W_i'] \). As \(K \) is a compatible parameter matrix, we have, for all odd \(i \in \{1, \ldots, 2\sigma\} \), \(V_i' = V_i \) and \(W_i' = W_i \). As \(K \) is a compatible parameter matrix, we have, for all odd \(i \in \{1, \ldots, 2\sigma\} \), \(V_i' = V_i \) and \(W_i' = W_i \). Since \(F_K V_K = W_K \), then \(F_K [V_i' V_i'_{i+1}] = [W_i' W_i'_{i+1}] \) for all odd \(i \in \{1, \ldots, 2\sigma\} \). Hence, for each odd \(i \in \{1, \ldots, 2\sigma\} \), we have

\[
(A + BF_K)[V_i' V_i'_{i+1}] = [V_i' V_i'_{i+1}]{\text{diag}}\{J(\lambda_i), J(\lambda_{i+1})\},
\]

(21)

and for all \(i \in \{2\sigma + 1, \ldots, v\} \), we have \((A + BF_K)V_i = V_i J(\lambda_i) \). Thus \((A + BF_K)X_K = X_K A \), where \(X_K = [V_1' \ldots V_v'] \) and \(A \) is as in (3), as required.

In order to prove that the parameterisation is exhaustive, we consider a feedback matrix \(F \) such that the eigensstructure of \(A + BF \) is given by \((\mathcal{L}, \mathcal{H}, \mathcal{P})\), and show there exists a compatible parameter matrix \(K \) such that matrices \(V_K \) and \(W_K \) can be constructed in (13), with \(V_K \) invertible and \(F = W_K V_K^{-1} \). From (3)-(4), \(A \) can be written as

\[
A = \text{blkdiag}(J(\lambda_1), \ldots, J_{g_1}(\lambda_1), \ldots, J(\lambda_v), \ldots, J_{g_v}(\lambda_v)).
\]

Hence there exists an invertible matrix \(T \) satisfying \((A + BF)T = TA \). Let us partition \(X \) and \(Y \) conformably with the corresponding Jordan mini-blocks that they multiply, i.e.,

\[
\begin{bmatrix} A & B \\ X_{1,1} & \ldots & X_{1,v} \\ Y_{1,1} & \ldots & Y_{1,v} \end{bmatrix} = \begin{bmatrix} X_{1,1} J(\lambda_1) & \ldots & X_{1,v} J_{g_v}(\lambda_v) \end{bmatrix}.
\]

(22)

For \(i \in \{1, \ldots, v\} \) and \(k \in \{1, \ldots, g_i\} \), the generic term is

\[
\begin{bmatrix} A & B \\ X_{i,k} & Y_{i,k} \end{bmatrix} = X_{i,k} J(\lambda_i).
\]

First consider the case in which \(\lambda_i \) is real. Partitioning \(X_{i,k} = [v_{i,k}(1) \ldots v_{i,k}(p_{i,k})] \) and \(Y_{i,k} = [w_{i,k}(1) \ldots w_{i,k}(p_{i,k})] \), we
can write (22) as
\[
\begin{bmatrix}
 A & B \\
 v_{i,k}(1) & v_{i,k}(p_{i,k}) \\
 w_{i,k}(1) & w_{i,k}(p_{i,k})
\end{bmatrix} = \begin{bmatrix}
 v_{i,k}(1) & v_{i,k}(p_{i,k}) \\
 w_{i,k}(1) & w_{i,k}(p_{i,k})
\end{bmatrix} J_k(\lambda_i),
\]

which yields
\[
\begin{align*}
A v_{i,k}(1) + B w_{i,k}(1) &= v_{i,k}(1) \lambda_i \\
A v_{i,k}(2) + B w_{i,k}(2) &= v_{i,k}(1) + \lambda_i v_{i,k}(2) \\
&\vdots \\
A v_{i,k}(p_{i,k}) + B w_{i,k}(p_{i,k}) &= v_{i,k}(p_{i,k} - 1) + \lambda_i v_{i,k}(p_{i,k})
\end{align*}
\]

and combining these we obtain
\[
H_{i,k} = [h_{i,k}(1) \ldots h_{i,k}(p_{i,k})].
\] (29)

Lastly we obtain matrices H_i and H as in (12), and V as in (13). Then we must have $\text{rank}(V) = n$, else no parameter matrix K would exist to yield a real feedback matrix F_k in (14) that delivers the desired closed-loop eigenstructure. This contradicts the assumption that (A, B) is reachable.

Next let K be any compatible parameter matrix for $(\mathcal{L}, \mathcal{M}, \mathcal{P})$, let $V_k = \mathcal{P}(Re(H_k))$ and assume V_k is singular. Then X_k in (12) is also singular, i.e. $\text{rank}(X_k) \leq n - 1$. Without loss of generality, assume the first column of X_k is linearly dependent upon the remaining ones. Then there exist a σ-conformally ordered set of n coefficient vectors $\alpha_{i,k,l}$, not all equal to zero, for which
\[
\begin{align*}
\mathcal{P}(h_{i,1}(1)K_{i,1}(1)) &= \sum_{l=2}^{p_{i,1}} \alpha_{i,1,l} \mathcal{P}(h_{i,1}(l)) \\
&+ \sum_{k=2}^{p_{i,k}} \sum_{l=1}^{p_{i,k}} \alpha_{i,k,l} \mathcal{P}(h_{i,k}(l)) \\
&+ \sum_{i=1}^{v} \sum_{k=1}^{p_{i,k}} \alpha_{i,k,l} \mathcal{P}(h_{i,k}(l))
\end{align*}
\]

This implies that $\text{rank}(X_k) = n$ may fail only when $K_{i,1}(1)$ lies on an $(m - 1)$-dimensional hyperplane in the m-dimensional parameter space. Thus the set of compatible parameter matrices K that can lead to a loss of rank in X_k, and hence V_k, is given by the union of at most n hyperplanes of dimension at most $nm - 1$ in the nm-dimensional parameter space. Since hyperplanes have zero Lebesgue measure, the set of parameter matrices K leading to singular V_k has zero Lebesgue measure.

The above formulation takes its inspiration from the proof of Proposition 1 in [Klein and Moore, 1977], and hence we shall refer to (14) as the Klein-Moore parametric form for F.

3 Optimal pole placement methods

We firstly present some classic results on eigenvalue sensitivity. Let A and X be such that $A = XJX^{-1}$, where J is the Jordan form of A, and let $A' = A + H$. Then, for each eigenvalue λ' of A', there exists an eigenvalue λ of A such that
\[
\frac{1}{1 + (\lambda - \lambda')^r} \leq \kappa_2(X)||H||_2,
\] (30)

where l is the size of the largest Jordan mini-block associated with λ, and $\kappa_2(X) = ||X||_2||X^{-1}||_2$ is the spectral condition number of X (Chatelin, 1993). As the Frobenius condition number $\kappa_{\text{FRO}}(X) = ||X||_{\text{FRO}}||X^{-1}||_{\text{FRO}}$ satisfies $\kappa_2(X) \leq \kappa_{\text{FRO}}(X)$ and is differentiable, it is often used as a robustness measure in conjunction with gradient search methods.

A second widely used robustness measure is the departure from normality of the matrix A, which is defined as follows.
By comparing our performance against that of (Ataei and Enshaee, 2011), we considered the 5 example systems introduced in that paper. Among these, the first example system assigned all the poles to zero, and hence requires a defective closed-loop eigenstructure. The other four sample systems all involve distinct eigenvalues. The results are shown in Table 2. The results have been constructed using the feedback matrices provided by (Ataei and Enshaee, 2011).

Table 2

Example	Ataei and Enshaee	Our Method		
	\(\kappa_{\text{FRO}}(X) \)	\(\kappa_{\text{FRO}}(X) \)	\(\|F\|_{\text{FRO}} \)	\(\|F\|_{\text{FRO}} \)
1	321.4	4.444	1.295	1.295
2	290.5	278.6	3.844	3.844
3	7.895	6.515	1.304	1.304
4	3.873	4.353	4.072	4.072
5	26.01	21.56	4.662	4.662

The results show that our method achieved the desired eigenstructure with equal or slightly less gain than that of (Ataei and Enshaee, 2011). In all but one of the samples, our method also achieved a more robust eigenstructure, especially in Example 1, which has the defective eigenstructure. Lastly, we consider Example 1 in (Li et al., 2011). The four desired closed loop poles are all distinct in this example. The method of (Li et al., 2011) considers the problem of minimising the Frobenius norm of the feedback matrix and the minimisation of the departure from normality measure. The authors obtained a feedback \(F \) yielding \(\delta_{\text{FRO}}(A + BF) = 20.67 \), and an alternative matrix \(F \) that delivers the desired pole placement with gain \(\|F\|_{\text{FRO}} = 6.049 \).

Applying Method 2 with \(\alpha = 1 \) we obtained a feedback
matrix \(F \) yielding \(\delta_{\text{FRO}}(A + BF) = 18.52 \), and by using \(\alpha = 0 \), we obtained \(F \) such that \(\|F\|_{\text{FRO}} = 3.826 \), indicating that our method can achieve the desired pole placement with either smaller departure from normality measure, or less gain, than the method of [Li et al. 2011], as required.

5 Conclusion

We have introduced a novel parametric form for the feedback matrix that solves the classic problem of exact pole placement with any desired eigenstructure. The parametric form was used to take a unified approach to a variety of optimal pole placement problems. The effectiveness of the method has been compared against several recent alternative methods from the literature, and was shown in several examples to achieve the desired pole placement with either superior robustness or smaller gain than the other methods surveyed.

References

M. Ait Rami, S.E. Faiz, A. Benzaouia, and F. Tadeo, Robust Exact Pole Placement via an LMI-Based Algorithm, IEEE Transactions on Automatic Control, 54, 394–398, 2009.
M. Ataei and A. Enshaee, Eigenvalue assignment by minimal state-feedback gain in LTI multivariable systems, International Journal of Control, 84, 1956-1964, 2011.
S.P. Bhattacharyya and E. de Souza, Pole assignment via Sylvester equation, Systems & Control Letters, 1, 261–263, 1982.
R. Byers and S.G. Nash, Approaches to robust pole assignment, International Journal of Control, 49, 97-117, 1989.
F. Chatelin, Eigenvalues of Matrices, John Wiley and Sons, 1993.
E. Chu, Pole assignment via the Schur form, Systems & Control Letters 56, 303-314, 2007.
M.M. Fahmy and J. O’Reilly, Eigenstructure Assignment in Linear Multivariable Systems - A Parametric Solution, IEEE Transactions on Automatic Control, 28, 990–994, 1983.
J. Kautsky, N.K. Nichols and P. van Dooren, Robust Pole Assignment in Linear State Feedback, International Journal of Control, 41, 1129–1155, 1985.
G. Klein and B.C. Moore, Eigenvalue-Generalized Eigenvector Assignment with State Feedback, IEEE Transactions on Automatic Control, 22, 141–142, 1977.
J. Lam, H.K. Tam and N.K. Tsing, Robust deadbeat regulation, International Journal of Control, 67, 587–602, 1997.
T. Li, E. Chu and W.W. Lin, Robust Pole Assignment for Ordinary and Descriptor Systems via the Schur Form, in Numerical Linear Algebra in Signals, Systems and Control, edited by P. van Dooren, Lecture Notes in Electrical Engineering (80), Springer 2011.
S.A. Kochetkov and V.A. Utkin, Minimizing the Feedback Matrix Norm in Modal Control Problems, Automation and Remote Control, 75, 234-262, 2014.
H.H. Rosenbrock, State-Space and Multivariable Theory. New York: Wiley, 1970.
R. Schmid, L. Ntogramatzidis, T. Nguyen and A. Pandey, Arbitrary pole placement with minimum gain, Proceedings 21st Mediterranean Conference on Control and Automation, Crete, 2013a.
R. Schmid, L. Ntogramatzidis, T. Nguyen and A. Pandey, Robust repeated pole placement, Proceedings 3rd IEEE Australian Control Conference, Melbourne, 2014.
R. Schmid, A. Pandey and T. Nguyen, Robust Pole Placement With Moore’s Algorithm, IEEE Transactions on Automatic Control, 59, 500–505, 2014.
G.W. Stewart and J.G. Sun, Matrix Perturbation Theory, Academic press, 1990.
H.K. Tam and J. Lam, Newton’s approach to gain-controlled robust pole placement, IEE Proc.-Control Theory Applications, 144, 439–446, 1997.
A L. Tits and Y. Yang, Globally Convergent Algorithms for Robust Pole Assignment by State Feedback, IEEE Transactions on Automatic Control, 41, 1432-1452, 1996.
A. Varga, Robust Pole Assignment via Sylvester Equation Based State Feedback Parametrization, Proceedings IEEE International Symposium on Computer-Aided Control System Design, Anchorage, USA, 2000.