A COUNTEREXAMPLE TO A MULTILINEAR ENDPOINT QUESTION OF CHRIST AND KISELEV

CAMIL MUSCALU, TERENCE TAO, AND CHRISTOPH THIELE

Abstract. Christ and Kiselev [2],[3] have established that the generalized eigenfunctions of one-dimensional Dirac operators with L^p potential F are bounded for almost all energies for $p < 2$. Roughly speaking, the proof involved writing these eigenfunctions as a multilinear series $\sum_n T_n(F,\ldots,F)$ and carefully bounding each term $T_n(F,\ldots,F)$. It is conjectured that the results in [3] also hold for L^2 potentials F. However in this note we show that the bilinear term $T_2(F,F)$ and the trilinear term $T_3(F,F,F)$ are badly behaved on L^2, which seems to indicate that multilinear expansions are not the right tool for tackling this endpoint case.

1. Introduction

Let $F(x)$ be a real potential on \mathbb{R}. For each energy $k^2 > 0$ we can consider the Dirac generalized eigenfunction equation

$$(\frac{d}{dx} + F)(-\frac{d}{dx} + F)\phi(x) = k^2 \phi(x)$$

on \mathbb{R}. This Dirac equation can be thought of as a Schrödinger equation with potential $V = F'' + F^2$. For each k there are two linearly independent eigenfunctions $\phi = \phi_k$. A natural question from spectral theory is to ask whether these eigenfunctions are bounded (i.e. are in L^∞) for almost every real k. In [3] Christ and Kiselev showed among other things that this was true when $F \in L^p_x$ for any $1 \leq p < 2$. It is well known (see e.g. [12]) that the statement fails when $p > 2$, but the $p = 2$ case remains open. In [5] it is shown that for L^2 potentials one has absolutely continuous spectrum on $[0,\infty)$, but this is a slightly weaker statement.

We briefly outline the arguments in [2],[3]. The method of variation of constants suggests the ansatz

$$\phi(x) = a(x)e^{ikx} + b(x)e^{-ikx}$$

$$(\frac{d}{dx} + F)\phi(x) = -ika(x)e^{ikx} + ikb(x)e^{-ikx}.$$

Substituting this into the previous and simplifying, we reduce to the first-order system

$$a'(x) = F(x)e^{-2ikx}b(x)$$
$$b'(x) = F(x)e^{2ikx}a(x).$$

For simplicity we may assume F is supported on the positive half axis. If we set initial conditions $a(-\infty) = 1$, $b(-\infty) = 0$ for instance, and then solve this system by iteration,
we thus obtain the formal multilinear expansions
\[a = 1 + \sum_{n \geq 2, \text{even}} T_n(F_1, \ldots, F); \quad b = \sum_{n \geq 1, \text{odd}} T_n(F_1, \ldots, F) \]
where for each \(n \geq 1 \), \(T_n \) is the \(n \)-linear operator
\[T_n(F_1, \ldots, F_n)(k, x) := \int_{x_1 < \cdots < x_n < x} e^{-2ik\sum_{j=1}^{n}(-1)^jx_j} F_1(x_1) \cdots F_n(x_n) \, dx_1 \cdots dx_n. \]

For integrable \(F_j \) we can define the \(n \)-linear operators
\[T_n(F_1, \ldots, F_n)(k, +\infty) := \int_{x_1 < \cdots < x_n} e^{-2ik\sum_{j=1}^{n}(-1)^jx_j} F_1(x_1) \cdots F_n(x_n) \, dx_1 \cdots dx_n. \]

The strategy of Christ and Kiselev was then to control each individual expression \(T_n \) on \(L^p \). Specifically, they showed the estimate
\[\| \sup_x |T_n(F, \ldots, F)(k, x)| \|_{L^p_k/L^{n,\infty}} \leq C_{p,n} \| F \|_{L^p_k}^n \]
(1)
for all \(n \geq 1 \) and \(1 \leq p < 2 \), where \(C_{p,n} \) was a constant which decayed rapidly in \(n \) and \(1/p + 1/p' = 1 \). In particular one has the non-maximal variant
\[\| T_n(F_1, \ldots, F_n)(k, +\infty) \|_{L^{p'}_k/L^{n,\infty}} \leq C_{p,n} \| F \|_{L^p_k}^n. \]
(2)

The boundedness of eigenfunctions for almost every \(k \) then follows by summing these bounds carefully.

It is tempting to try this approach for the endpoint \(p = 2 \). For \(n = 1 \) we see that \(T_1(F)(k, +\infty) \) is essentially the Fourier co-efficient \(\hat{F}(k) \), while \(\sup_k |T_1(F)(k, x)| \) is essentially the Carleson maximal operator \(CF(k) \). The estimates (2), (1) for \(p = 2 \) then follow from Plancherel’s theorem and the Carleson-Hunt theorem \([4, 5]\) respectively.

For \(n = 2 \) the expression \(T_2(F,F)(k, +\infty) \) is essentially \(H_{-\infty}(\hat{F})^2(k) \), where \(H_{-\infty} \) is the Riesz projection
\[\overline{H_{-\infty}F} := \chi_{(-\infty,0]} \hat{F}, \]
and so (2) follows for \(p = 2 \) by Hölder’s inequality and the weak-type \((1,1)\) of the Riesz projections. We also remark that if the phase function \(x_1 - x_2 \) in the definition of \(T_2 \) were replaced by \(\alpha_1 x_1 + \alpha_2 x_2 \) for generic numbers \(\alpha_1, \alpha_2 \) then the operator is essentially a bilinear Hilbert transform and one still has boundedness from the results in \([7, 8, 13]\).

It may thus appear encouraging to try to estimate the higher order multilinear operators for \(L^2 \) potentials \(F \). However, in this note we show

Theorem 1.1. When \(p = 2 \) and \(n = 2 \), the estimate (2) fails. When \(p = 2 \) and \(n = 3 \), the estimate (2) fails.

Because of this, we believe that it is not possible to prove the almost everywhere boundedness of eigenfunctions for Dirac or Schrödinger operators with \(L^2 \) potential purely by multilinear expansions; we discuss this further in the remarks section.

The counterexample has a logarithmic divergence, and essentially relies on the fact that while convolution with the Hilbert kernel \(p.v. \frac{1}{x} \) is bounded, convolution with \(\frac{\text{sgn}(x)}{x} \) or \(\frac{\chi_{(-\infty,0]}(x)}{x} \) is not. It may be viewed as an assertion that \(L^2 \) potentials create significant long-range interaction effects which are not present for more rapidly decaying potentials.
Interestingly, our counterexamples rely strongly on a certain degeneracy in the phase function \(\sum_j (-1)^j x_j \) on the boundary of the simplex \(x_1 < \ldots < x_n \). If one replaced this phase by \(\sum_j x_j \), then we have shown in [9], [10] that the bound (2) in fact holds when \(p = 2 \) and \(n = 3 \). Indeed this statement is true for generic phases of the form \(\sum_j \alpha_j x_j \). A similar statement holds for (1) when \(p = 2 \) and \(n = 2 \) and will appear elsewhere.

The first author was supported by NSF grant DMS 0100796. The second author is a Clay Prize Fellow and is supported by a grant from the Packard Foundation. The third author was supported by a Sloan Fellowship and by NSF grants DMS 9985572 and DMS 9970469. The authors are grateful to M. Christ for pointing out the importance of the degeneracy in the phase function \(\sum_j (-1)^j x_j \) and for suggesting numerous valuable improvements to the manuscript.

2. Proof of Theorem 1.1

The letter \(C \) may denote different large constants in the sequel. To be consistent with the previous notation we shall define the Fourier transform as

\[
\hat{F}(k) := \int e^{-2ikx} F(x) \, dx.
\]

We let \(N \gg 1 \) be a large integer parameter, which we shall take to be a square number, and test (1), (2) with the real-valued potential

\[
F(x) := \sum_{j=N}^{2N} F_j(x)
\]

where the \(F_j \) are given by

\[
F_j(x) := N^{-1} \cos(2A_j x) \phi(\frac{x}{N} - j),
\]

\(\phi \) is a smooth real valued function supported in \([-\frac{1}{4}, \frac{1}{4}]\) with total mass \(\int \phi = 1 \) such that \(\hat{\phi} \) stays away from 0 in \([-1, 1]\), and \(A \) is a sufficiently large absolute constant whose purpose is to ensure that

\[
4 \sum_{j \in \mathbb{Z} \setminus \{0\}} \left| \hat{\phi}(\xi - A j) \right| \leq |\hat{\phi}(\xi)|
\]

for \(\xi \in [-1, 1] \). Informally, \(F \) is a “chirp” which is localized in phase space to the region

\[
\{(k, x) : k = \pm \frac{A_j}{N} + O(\frac{1}{N}); x = N j + O(N), N \leq j \leq 2N\}.
\]

We may compute the Fourier transform of the \(F_j \) using the rapid decay of \(\hat{\phi} \) as

\[
\hat{F}_j(k) = \frac{1}{2} e^{-2i(Nk - A j)j} \hat{\phi}(Nk - A j) + O(N^{-200}) \tag{3}
\]

in the region \(\frac{A}{2} < k < 3A \). We remark that the error term \(O(N^{-200}) \) has a gradient which is also \(O(N^{-200}) \).

Clearly we have \(\|F_j\|_2 = O(N^{-1/2}) \), and hence that \(\|F\|_2 = O(1) \).
We now compute

\[T_2(F, F)(k, x) = \int_{x_1 < x_2 < x} e^{2ik(x_1 - x_2)} F(x_1)F(x_2) \, dx_1 dx_2 \]

in the region

\[|Nk - Aj_0| \leq 1; \quad x = N(j_0 - \sqrt{N} + \frac{1}{2}) \]

for some integer \(\frac{3N}{2} < j_0 < 2N \). In this region we show that

\[|T_2(F, F)(k, x)| \geq C^{-1} \log N, \]

which will imply that

\[\| \sup_x |T_2(F, F)(k, x)| \|_{L^2, \infty} \geq C^{-1} \log N \]

and thus contradict (1) for \(n = 2 \) and \(p = 2 \) by letting \(N \) go to infinity.

We now prove (6). Fix \(k, j_0, x \). Observe from (4) that \(T_2(F_j, F_{j'})(k, x) \) vanishes unless \(j \leq j' \leq j_0 - \sqrt{N} \). Thus we may expand

\[T_2(F, F)(k, x) = \sum_{N \leq j \leq j_0 - \sqrt{N}} T_2(F_j, F_j)(k, x) + \sum_{N \leq j < j' \leq j_0 - \sqrt{N}} T(F_j, F_{j'})(k, x). \]

We first dispose of the error term (8). In the region \(j < j' \leq j_0 - \sqrt{N} \), the conditions \(x_1 < x_2 < x \) in (4) become superfluous, so we may factor

\[T_2(F_j, F_{j'})(k, x) = \hat{F}_j(k) \hat{F}_{j'}(k). \]

However, since \(\hat{\phi} \) is rapidly decreasing and \(|j - j_0|, |j' - j_0| \geq \sqrt{N} \), we see from (3) that

\[|\hat{F}_j(k)|, |\hat{F}_{j'}(k)| \leq CN^{-100}. \]

Summing this, we see that the total contribution of (8) is \(O(N^{-198}) \).

Now we consider the contribution of (7). We use the identity

\[T_2(F_j, F_j)(k, x) = T_2(F_j, F_j)(k, +\infty) = H_-(|\hat{F}_j|^2)(k) \]

combined with (3). The operator \(H_- \) is a non-trivial linear combination of the identity and the Hilbert transform, while \(|\hat{F}_j|^2 \) is essentially a non-negative bump function rapidly decreasing away from the interval \([jA/N - O(1/N), jA/N + O(1/N)] \). Because of this we see that for \(j \neq j_0 \) we have

\[H_-(|\hat{F}_j|^2)(k) = \frac{c}{j - j_0} + O(|j - j_0|^{-2}) \]

where \(c \) is a non-zero absolute constant. Summing this over all \(j \leq j_0 - \sqrt{N} \) and observing that \(j - j_0 \) has a consistent sign we see that the contribution of (7) has magnitude at least \(C^{-1} \log N \), and (6) follows.

We now compute \(T_3(F, F, F)(k, +\infty) \) in the region

\[|Nk - Aj_0| \leq 1; \quad 1.4N < j_0 < 1.6N. \]
We will show that
\[|T_3(F, F, F)(k, +\infty)| \geq C^{-1} \log N \] (12)
in this region, which will disprove (4) for \(n = 3 \) and \(p = 2 \) similarly to before.

It remains to prove (12). Fix \(j_0 \). Observe that \(T_3(F_j, F_{j'}, F_{j''})(k, +\infty) \) vanishes unless \(j \leq j' \leq j'' \). Thus we can split
\[T_3(F, F, F)(k, +\infty) = \sum_{N \leq j \leq 2N} T_3(F_j, F_j, F_j)(k, +\infty) \] (13)
\[+ \sum_{N \leq j < j' \leq 2N} T_3(F_j, F_j, F_{j'})(k, +\infty) \] (14)
\[+ \sum_{N \leq j' < j \leq 2N} T_3(F_{j'}, F_j, F_j)(k, +\infty) \] (15)
\[+ \sum_{N \leq j < j' < j'' \leq 2N} T_3(F_j, F_{j'}, F_{j''})(k, +\infty). \] (16)

We first consider (13). We expand
\[T_3(F_j, F_j, F_j)(k, +\infty) = \int_{x_1 < x_2 < x_3} e^{2ik(x_1-x_2+x_3)}F_j(x_1)F_j(x_2)F_j(x_3) \, dx_1dx_2dx_3. \]
This is a linear combination of eight terms of the form
\[N^{-3} \int_{x_1 < x_2 < x_3} e^{2ik(x_1-x_2+x_3)}e^{2i\frac{\lambda}{N}(\pm x_1 \pm x_2 \pm x_3)} \phi(x_1-j)\phi(x_2-j)\phi(x_3-j) \, dx_1dx_2dx_3; \]
making the substitutions \(y_s := \frac{x_s}{N} - j \) for \(s = 1, 2, 3 \), this becomes
\[e^{i\theta} \int_{y_1 < y_2 < y_3} e^{2ikN(y_1-y_2+y_3)}e^{2iA_j(y_1+y_2+y_3)} \phi(y_1)\phi(y_2)\phi(y_3) \, dy_1dy_2dy_3 \]
for some phase \(e^{i\theta} \) depending on all the above variables.

We shall only consider the choice of signs \((-y_1 + y_2 - y_3)\); the reader may easily verify that the other choices of signs are much smaller thanks to stationary phase. In this case we can write the above as
\[e^{i\theta} \int_{y_1 < y_2 < y_3} e^{2i(kN-A_j)(y_1-y_2+y_3)} \phi(y_1)\phi(y_2)\phi(y_3) \, dy_1dy_2dy_3. \]
If \(kN - A_j = O(1) \) we estimate this crudely by \(O(1) \). Otherwise we can perform the \(y_1 \) integral using stationary phase to obtain
\[e^{i\theta} \frac{1}{2i(kN-A_j)} \int_{y_2 < y_3} e^{2i(kN-A_j)y_3} \phi(y_2)\phi(y_3) \, dy_2dy_3 + O(|kN-A_j|^{-2}). \]
Performing another stationary phase we see that this quantity is \(O(|kN-A_j|^{-2}) \). Summing over all \(j \) we see that (13) is \(O(1) \).

Let us now consider (16). When \(j < j' < j'' \), the constraints \(x_1 < x_2 < x_3 \) in the definition of \(T_3 \) are redundant, and we can factorize
\[T_3(F_j, F_{j'}, F_{j''})(k, +\infty) = \overline{F_j(k)}\overline{F_{j'}(k)}\overline{F_{j''}(k)}. \]
Applying (3) and using the rapid decay of \(\phi \) we see that

\[
|T_3(F_j, F_{j'}, F_{j''})(k, +\infty)| \leq C(1 + |j - j_0| + |j' - j_0| + |j'' - j_0|)^{-10} + CN^{-100}.
\]

Summing over all \(j, j', j'' \) we see that (16) is \(O(1) \).

It remains to control (15) + (14). First we consider (14). For this term the condition \(x_2 < x_3 \) is redundant, so we can factorize

\[
T_3(F_j, F_{j'}, F_{j'})(k, +\infty) = T_2(F_j, F_j)(k, +\infty)\hat{F}_{j'}(k).
\]

Now consider (15). For this term the condition \(x_1 < x_2 \) is the dominant contribution to (17). Using (3) as in (16) we see that (15) is

\[
|T_3(F_j, F_j, F_j)(k, +\infty) - T_2(F_j, F_j)(k, +\infty)\hat{F}_{j'}(k)| \leq CN^{-100}.
\]

We claim these terms are the dominant contribution to (17). We consider the terms with \(j = j_0 \). We claim these terms are the dominant contribution. From (3), (10) we conclude

\[
\sum_{N \leq j, j' \leq 2N} \sgn(j' - j)T_2(F_j, F_j)(k, +\infty)\hat{F}_{j'}(k) + \sum_{N \leq j' < j \leq 2N} \hat{F}_{j'}(k)|\hat{F}_j(k)|^2.
\]

Using (3) as in (16) we see that (16) is \(O(1) \), so to prove (12) it will suffice to show

\[
\sum_{N \leq j, j' \leq 2N, j \neq j'} \sgn(j' - j)T_2(F_j, F_j)(k, +\infty)\hat{F}_{j'}(k) \geq C^{-1} \log N. \tag{17}
\]

We first consider the terms with \(j' = j_0 \). We claim these terms are the dominant contribution. From (3), (10) we conclude

\[
\sum_{N \leq j \leq 2N, j \neq j_0} \sgn(j_0 - j)T_2(F_j, F_j)(k, +\infty)\hat{F}_{j_0}(k)
\]

\[
= \sum_{N \leq j \leq 2N, j \neq j_0} c \frac{\sgn(j_0 - j)}{j_0 - j} \hat{F}_{j_0}(k) + O(1). \tag{18}
\]

Here \(c \) is the same non-zero constant as in (10), and \(\hat{F}_{j_0}(k) \) is bounded away from 0 by choice of \(\phi \). Thus the first term is greater than \(C^{-1} \log N \), so it suffices indeed to show that this term is the dominant contribution to (17).

We consider the terms with \(j = j_0 \). Using that \(|T_2(F_j, F_j)(k, +\infty)| \leq C \) we obtain

\[
\sum_{N \leq j' \leq 2N, j_0 \neq j'} |T_2(F_{j_0}, F_{j_0})(k, +\infty)\hat{F}_{j'}(k)| \leq C.
\]

This term is therefore negligible.

Finally, we have to consider the terms with \(j, j' \neq j_0 \). We have by the choice of \(A \),

\[
\sum_{N \leq j, j' \leq 2N, j, j' \neq j_0} |T_2(F_j, F_j)(k, +\infty)|\hat{F}_{j'}(k)| \leq \frac{1}{2} \sum_{N \leq j \leq 2N, j \neq j_0} \frac{c}{|j - j_0|}|\hat{F}_{j_0}(k)| + C
\]
3. Remarks

- The counterexample can easily be extended to larger n (e.g. by appending some bump functions to the left or right of F).
- The counterexample above involved a potential F which was bounded in L^2, but for which $\sup_x |T_2(F, F)(k, x)|$ and $|T_3(F, F, F)(k, +\infty)|$ were large (about $\log N$) on a large subset of $[A, 2A]$. By letting N vary and taking suitable linear combinations of such variants of the above counterexample, one can in fact generate a potential F bounded in L^2 for which $\sup_x |T_2(F, F)(k, x)|$ and $|T_3(F, F, F)(k, x)|$ accumulate at ∞ for $x \to \infty$ for all k in a set of positive measure (one can even achieve blow-up almost everywhere). Thus it is not possible to estimate these multilinear expansions in any reasonable norm if one only assumes the potential to be in L^2.
- Similarly if F had a derivative in L^2; it is the decay of F which is relevant here, not the regularity.
- The unboundedness of T_3 on L^2 can be interpreted as stating that the (non-linear) scattering map $F \mapsto b_k(+\infty)$ from potentials to reflection coefficients is not C^3 on the domain of L^2 potentials. Similarly the map $F \mapsto a_k(+\infty)$ from potentials to transmission coefficients is not C^4 on the domain of L^2 potentials. In particular these scattering maps are not analytic.
- Despite the bad behavior of the individual terms $T_k(F, \ldots, F)$, the transmission and reflection coefficients $a_k(x), b_k(x)$ are still bounded for the counterexample given above. This phenomenon is similar to the observation that the function $e^{ix} = 1 + ix - x^2/2 - \ldots$ is bounded for arbitrarily large real x, even if the individual terms $(ix^n/n!$ are not.

We now sketch the proof of boundedness of a_k, b_k. Suppose that $k = A j_0/N + O(1/N)$ for some $N \leq j_0 \leq 2N$; we now fix j_0 and k. We can write

\[
\begin{pmatrix}
a_k(x) \\
b_k(x)
\end{pmatrix} = G(x) \begin{pmatrix}1 \\ 0\end{pmatrix}
\]

where G is the 2×2 matrix solving the ODE

\[
G'(x) = \begin{pmatrix}0 & F(x) e^{-2ikx} \\ F(x) e^{2ikx} & 0\end{pmatrix} G(x); \quad G(-\infty) = \begin{pmatrix}1 & 0 \\ 0 & 1\end{pmatrix}.
\]

We define the matrices G_j similarly by

\[
G'_j(x) = \begin{pmatrix}0 & F_j(x) e^{-2ikx} \\ F_j(x) e^{2ikx} & 0\end{pmatrix} G_j(x); \quad G_j(-\infty) = \begin{pmatrix}1 & 0 \\ 0 & 1\end{pmatrix}.
\]

We observe the identity

\[
G(x) = G_{j_1}(+\infty) G_{j_1-1}(+\infty) \ldots G_N(+\infty)
\]

whenever $N \leq j_1 \leq 2N$ and $x = N(j_1 + \frac{1}{2})$; this can be proven by an easy induction on j_1 and the observation that the above ODE are invariant under right-multiplication.
One can compute the $G_j(+\infty)$ using multilinear expansions (or using Gronwall’s inequality), eventually obtaining
\[
G_j(+\infty) = \left(1 + \frac{ic}{j-j_0} \begin{array}{c} 0 \\ 1 - \frac{ic}{j-j_0} \end{array} \right) + O(|j-j_0|^{-2})
\]
for all $j \neq j_0$, where C is a non-zero real constant. Because of the crucial factor of i in the diagonal entries we see that the operator norm $\|G_j(+\infty)\|$ of G_j is
\[
\|G_j(+\infty)\| = 1 + O(|j-j_0|^{-2}).
\]
This allows one to multiply the $G_j(+\infty)$ together and obtain boundedness of $G(x)$ and hence $a_k(x), b_k(x)$.

In analogy with the observation concerning e^{ix}, one may need to use the fact that F is real in order to obtain boundedness of eigenfunctions in the L^2 case. When F is real there are additional estimates available, such as the scattering identity
\[
\int \log |a_k(+\infty)| \, dk = C \int |F(x)|^2 \, dx
\]
for some absolute constant C; see for instance [3].

We do not yet know how to obtain boundedness of eigenfunctions for L^2 potentials F. However we have been able to achieve this for a model problem in which the Fourier phases $e^{2i(k,z)}$ are replaced by a dyadic Walsh variant $e(k,x)$. See [1].

- One can modify the counterexample to provide similar counterexamples for Schrödinger operators $-\frac{d^2}{dx^2} + V$ with $V \in L^2$, either by using the Miura transform $V = F' + F^2$ mentioned in the introduction, or by inserting the standard WKB phase modification to the operators T_k as in [3]. We omit the details.
- The multilinear expansion of a leads to an expansion of $|a|^2$, whose quadratic term is equal to
\[
2Re(T_2(F,F)) = 2Re(H_-(|\hat{F}|^2)) = |\hat{F}|^2
\]
This term is in L^1, which is better than the term $T_2(F,F)$, which is in general only in the Lorentz space $L^{1,\infty}$. The higher order terms of the expansion of $|a|^2$ are however unbounded again. Using the identity $|a|^2 = 1 + |b|^2$ we see that the fourth order term of $|a|^2$ is equal to
\[
2Re(T_1(F)T_3(F,F,F))
\]
We now define the modified potential
\[
G(x) = F(x) + G_0(x)
\]
where F is as in the proof of Theorem [1] and $G_0(x) = \phi(x - N^3)$. Expanding the fourth order term by multilinearity, one observes that all terms can be estimated from above nicely with the exception of
\[
2Re(T_1(G)T_3(F,F,F))
\]
Since $T_1(G) = \hat{G}$ has more rapidly changing phase than $T_3(F,F,F)$, the real part and the modulus $\overline{T_1(G)}T_3(F,F,F)$ are of comparable size on a large set, and so this term is of the order $\log(N)$ on a large set just like $T_3(F,F,F)$ itself.
A COUNTEREXAMPLE TO A MULTILINEAR ENDPOINT QUESTION OF CHRIST AND KISELEV

References

[1] Carleson, L, On convergence and growth of partial sums of Fourier series Acta Math. 116 [1966], pp. 135-157.
[2] Christ, M., Kiselev, A., Maximal functions associated to filtrations, J. Funct. Anal. 179 [2001], no 2., pp. 409-425
[3] Christ, M., Kiselev, A., WKB asymptotic behaviour of almost all generalized eigenfunctions of one-dimensional Schrödinger operators with slowly decaying potentials, J. Funct. Anal. 179 [2001], no 2., pp. 426-447
[4] Christ, M., Kiselev, A., Scattering and wave operators for one-dimensional Schrödinger operators with nonsmooth slowly decaying potentials, preprint.
[5] Deift, P. and Killip, R., On the absolutely continuous spectrum of one-dimensional Schrödinger operators with square summable potentials, Comm. Math. Phys. 203 [1999], pp. 61–72.
[6] Hunt, R. On the convergence of Fourier series 1968 Orthogonal Expansions and their Continuous Analogues. Proc Conf. Edwardsville, Ill. 1967 pp. 235-255, Southern Illinois Univ. Press, Carbondale, Ill.
[7] Lacey, M., Thiele, C., Lp Bounds for the bilinear Hilbert transform, p > 2. Ann. Math. (2) 146 [1997] no. 2, pp. 693—724.
[8] Lacey, M., Thiele, C., On Calderón’s Conjecture. Ann. Math. (2) 149 [1999], pp. 475–496.
[9] Muscalu, C., Tao, T., Thiele, C., Lp estimates for the biest I. The Walsh case. preprint
[10] Muscalu, C., Tao, T., Thiele, C., Lp estimates for the biest II. The Fourier case. preprint
[11] Muscalu, C., Tao, T., Thiele, C., A Walsh model for the bounded eigenfunction problem for L2 potentials, preprint
[12] Pearson, D., Singular continuous measures in scattering theory, Comm. Math. Phys. 60 [1978], pp. 13–36.
[13] Thiele, C. On the Bilinear Hilbert transform. Universität Kiel, Habilitationsschrift [1998]

Department of Mathematics, UCLA, Los Angeles CA 90095-1555
E-mail address: camil@math.ucla.edu

Department of Mathematics, UCLA, Los Angeles CA 90095-1555
E-mail address: tao@math.ucla.edu

Department of Mathematics, UCLA, Los Angeles CA 90095-1555
E-mail address: thiele@math.ucla.edu