Influence of ideals in compactifications
Manoranjan Singha*, Sima Roy**

*Department of Mathematics, University of North Bengal, Darjeeling-734013, India
**Department of Mathematics, Raja Rammohan Roy Mahavidyalaya, Hooghly-712406, India

ABSTRACT

One point compactification is studied in the light of ideal of subsets of \(\mathbb{N} \). \(\mathcal{I} \)-proper map is introduced and showed that a continuous map can be extended continuously to the one point \(\mathcal{I} \)-compactification if and only if the map is \(\mathcal{I} \)-proper. Shrinking condition (C) introduced in this article plays an important role to study various properties of \(\mathcal{I} \)-proper maps. It is seen that one point \(\mathcal{I} \)-compactification of a topological space may fail to be Hausdorff but a class \(\{ \mathcal{I} \} \) of ideals has been identified for which one point \(\mathcal{I} \)-compactification coincides with the one point compactification if it is metrizable.

Key words: Ideal, \(\mathcal{I} \)-nonthin, one point \(\mathcal{I} \)-compactification, \(\mathcal{I} \)-proper map

MSC: Primary 54D35, 54D45; Secondary 54D55

1 Introduction

Theory of statistical convergence gets birth in the year 1951 as an extension of the concept of convergence of sequence of real numbers [7]. But it gets acquaintance in the late twentieth century. It has huge applications in the theory of integrability and related summability methods [8], [9]. Thin [13] subsets, which form ideal [11] on \(\mathbb{N} \), plays main role in statistical convergence. After a long, in the year 2001, Kostyrko et al [1] introduced the concept of \(\mathcal{I} \)-convergence using the notion of ideals. During last two decades research on the theory of \(\mathcal{I} \)-convergence have been reached in the peak [3], [4], [5], [6], [10], [12] etc..

Let’s begin with some basic definitions and results.
For any non-empty set X, a family $I \subset 2^X$ is called an ideal if (1) $\emptyset \in I$, (2) $A, B \in I$ implies $A \cup B \in I$, and (3) $A \in I, B \subset A$ implies $B \in I$. An ideal I is called non-trivial if $I \neq \{\emptyset\}$ and $X \notin I$. A non-trivial ideal $I \subset 2^X$ is called admissible if it contains all the singleton sets. Various examples of non-trivial admissible ideals are given in [1].

A sequence $(x_n)_{n \in \mathbb{N}}$ in a metric space (X, d) is said to be I-convergent to $\xi \in X$ ($\xi = \mathcal{I} - \lim_{n \to \infty} x_n$) if and only if for each $\epsilon > 0$ the set $A(\epsilon) = \{n \in \mathbb{N} : d(x_n, \xi) \geq \epsilon\}$ belongs to I. The element ξ is called the I-limit of the sequence $(x_n)_{n \in \mathbb{N}}$. Throughout this article I is a nontrivial admissible ideal on \mathbb{N}, unless otherwise stated.

A sequence $x = (x_n)_{n \in M}$ in a topological space X is called I-thin, where I is a nontrivial admissible ideal on \mathbb{N} if $M \in I$; otherwise it is called I-nonthin.

A topological space X is I-compact if any I-nonthin sequence $(x_n)_{n \in K}$ in X has an I-nonthin subsequence $(x_n)_{n \in M}$ that I/M-converges to some point in X. And then several properties of I-compactness have been studied.

2 I-proper maps and I-compactification

Definition 2.1 An I-nonthin sequence $(x_n)_{n \in M}$ in a topological space X is I-eventually constant at α if $\{n \in M : x_n \neq \alpha\} \in I/M$.

Note 2.2 Every eventually constant sequence is I-eventually constant, but converse may not be true. For example, consider $I = P(2\mathbb{N}) \cup \mathcal{I}_f$, \mathcal{I}_f is the collection of all finite subsets of \mathbb{N} and $x_n = 0$, if n is odd and $x_n = 1$, if n is even.

Definition 2.3 An I-nonthin sequence $(x_n)_{n \in M}$ in a topological space X is said to be I-eventually in $S \subset X$ if $\{n \in M : x_n \notin S\} \in I/M$.

Definition 2.4 ([14]) A subset A of a topological space X is called I-closed if $A = \overline{A^c}$, where $A^c = \{x \in X; \text{there exists an } I\text{-nonthin sequence } (x_n)_{n \in L}\text{ in } A \text{ that } I/L\text{-converges to } x\}$.

Definition 2.5 An admissible ideal I is said to satisfy shrinking condition(C) if for any set $A \notin I$ there exists a subset B of A such that $B \notin I$ and no infinite subset of B is in I. 2
The following examples are an witness of such ideal.

Example 2.6
1. Consider the ideal
\[I_1 = P(2\mathbb{N}) \cup I_f \], where
\(I_f \) is the set of all finite subsets of \(\mathbb{N} \).

2. Let
\[I_2 = \{ A; A \text{ intersects finite } \Delta_i \text{'s} \} \] and
\[I_3 = \{ A; A \cap \Delta_i = \text{ finite, for all } i \in \mathbb{N} \} \]. where
\(\mathbb{N} = \bigcup_{i \in \mathbb{N}} \Delta_i \), each \(\Delta_i \) is infinite and \(\Delta_i \cap \Delta_j = \emptyset \), for all \(i \neq j \).

Then \(I_1, I_2, I_3 \) satisfy shrinking condition(C).

Proposition 2.7 Let \(I \) satisfies shrinking condition(C). If \((n_k)_{k \in \mathbb{N}} \) be any sequence of natural numbers with \(\lim_{k \to \infty} n_k = \infty \) and the range set of \((n_k)_{k \in \mathbb{N}} \) is not in \(I \), then there exists a monotone strictly increasing subsequence of \((n_k)_{k \in \mathbb{N}} \) whose range set also not in \(I \).

The ideal \(I_d \) consisting of subsets of \(\mathbb{N} \) having natural density 0 does not satisfy shrinking condition(C) due to Proposition 2.7 since if we take a sequence \((x_n)_{n \in \mathbb{N}} \) where \(x_1 = 2, x_2 = 1 \) and \(x_n = 2^{k+1} - (r - 1) \), if \(n = 2^k + r \), \(1 \leq r \leq 2^k \), \(k \in \mathbb{N} \), there is no monotone strictly increasing subsequence whose range set not in \(I_d \).

Theorem 2.8 Let \(X \) be \(T_1 \) and \(I \) satisfies shrinking condition(C). Let,
\((x_n)_{n \in L} \) be an \(I \)-nonthin sequence in \(X \) having no \(I \)-nonthin subsequence
\((x_n)_{n \in K} \) that \(I/K \)-converges. Then there exists a subset \(P \notin I \) such that the set
\(\{(x(n), n); n \in P\} \) is \(I \)-closed in \(X \times \mathbb{N}^+ \), where \(\mathbb{N}^+ \) is the one point compactification of \(\mathbb{N} \).

Proof. Since \(I \) satisfies shrinking condition(C), there exists \(P \subset L \) such that \(P \notin I \) and no infinite subset of \(P \) is in \(I \). Therefore \((x_n)_{n \in P} \) has no convergent subsequence and from Proposition 1.3 in [2], the set \(\{(x(n), n); n \in P\} \) is sequentially closed in \(X \times \mathbb{N}^+ \). Henceforth the set \(\{(x(n), n); n \in P\} \) is \(I \)-closed in \(X \times \mathbb{N}^+ \).

Definition 2.9 Let \(X \) and \(Y \) be topological spaces and \(f : X \to Y \) be a function.

1. \(f \) is \(I \)-continuous if for any \(I \)-nonthin sequence \((x_n)_{n \in M} \) which is \(I/M \)-converges to \(x \), then \((f(x_n))_{n \in M} \) is \(I/M \)-converges to \(f(x) \).
2. \(f \) is \(\mathcal{I} \)-homeomorphism if \(f \) is bijective, \(\mathcal{I} \)-continuous and \(f^{-1} \) is \(\mathcal{I} \)-continuous.

3. \(f \) is an \(\mathcal{I} \)-embedding if \(f \) yields an \(\mathcal{I} \)-homeomorphism between \(X \) and \(f(X) \).

4. \(f \) is \(\mathcal{I} \)-closed if image of any \(\mathcal{I} \)-closed set is \(\mathcal{I} \)-closed.

5. \(f \) is \(\mathcal{I} \)-proper if \(f \times 1_z : X \times Z \to Y \times Z \) is \(\mathcal{I} \)-closed, for all spaces \(Z \), provided \(f \) is \(\mathcal{I} \)-continuous.

Note 2.10 Every \(\mathcal{I} \)-proper function is \(\mathcal{I} \)-closed.

Theorem 2.11 Let \(X \) and \(Y \) be topological spaces. A function \(f : X \to Y \) is \(\mathcal{I} \)-continuous if and only if \(f^{-1}(B) \) is \(\mathcal{I} \)-closed for every \(\mathcal{I} \)-closed subset \(B \) of \(Y \).

Proof. Proof is omitted. \(\blacksquare \)

Definition 2.12 A topological space is called an \(\mathcal{I} \)-US space if every \(\mathcal{I} \)-nonthin \(\mathcal{I}/M \)-convergent sequence \((x_n)_{n \in M}\) has exactly one \(\mathcal{I} \)-limit to which it converges.

Theorem 2.13 Let \(X \) and \(Y \) be topological spaces. Let \(f : X \to Y \) be \(\mathcal{I} \)-continuous and \(Y \) is \(\mathcal{I} \)-US. Consider the following conditions:

(a) If an \(\mathcal{I} \)-nonthin sequence \((x_n)_{n \in M}\) in \(X \) has no \(\mathcal{I} \)-nonthin subsequence \((x_n)_{n \in N}\) that \(\mathcal{I}/N \)-convergent in \(X \), then \((f(x_n))_{n \in M}\) has no \(\mathcal{I} \)-nonthin subsequence \((x_n)_{n \in L}\) that \(\mathcal{I}/L \)-convergent in \(Y \).

(b) \(f^{-1}(B) \) is \(\mathcal{I} \)-compact for every \(\mathcal{I} \)-compact subset \(B \) of \(Y \).

(c) If \((x_n)_{n \in M}\) is an \(\mathcal{I} \)-nonthin \(\mathcal{I}/M \)-convergent sequence, then \(f^{-1}(\bar{x}) \) is \(\mathcal{I} \)-compact, where \(\bar{x} \) is the union of \((x_n)_{n \in M}\) and its \(\mathcal{I} \)-limit.

(d) \(f \) is \(\mathcal{I} \)-proper.

(e) \(f \times 1 : X \times N^+ \to Y \times N^+ \) is \(\mathcal{I} \)-closed, where \(N^+ \) is the one point compactification of \(N \).

Then, \((a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (d) \Rightarrow (e) \) and if \(X \) is \(T_1 \) and \(\mathcal{I} \) satisfies shrinking condition (C), \((e) \Rightarrow (a) \).
Proof. (a) ⇒ (b) Let \((x_n)_{n \in M}\) be an \(\mathcal{I}\)-nonthin sequence in \(f^{-1}(B)\). If \((x_n)_{n \in M}\) has no \(\mathcal{I}\)-nonthin subsequence \((x_n)_{n \in L}\) that \(\mathcal{I}/\mathcal{L}\)-convergent in \(X\), then \((f(x_n))_{n \in M}\) has no \(\mathcal{I}\)-nonthin subsequence \((f(x_n))_{n \in L}\) that \(\mathcal{I}/\mathcal{L}\)-convergent in \(Y\). Since \(f(x_n) \in B\), which contradicts \(\mathcal{I}\)-compactness of \(B\). So, \((x_n)_{n \in M}\) has an \(\mathcal{I}\)-nonthin subsequence \((x_n)_{n \in L}\) that \(\mathcal{I}/\mathcal{L}\)-converges to \(l\)(say). As \(f\) is \(\mathcal{I}\)-continuous, \((f(x_n))_{n \in L}\) is \(\mathcal{I}/\mathcal{L}\)-convergent to \(f(l)\). Also since \(B\) is \(\mathcal{I}\)-compact and \(Y\) is \(\mathcal{I}\)-US, \(B\) is \(\mathcal{I}\)-closed. So \(f(l) \in B\) which implies \(l \in f^{-1}(B)\). Hence \(f^{-1}(B)\) is \(\mathcal{I}\)-compact.

(b) ⇒ (c) and (d) ⇒ (e) are trivially hold.

(c) ⇒ (d) Let \(Z\) be a topological space and \(A\) is \(\mathcal{I}\)-closed in \(X \times Z\). Also let \((y_n, z_n)_{n \in M}\) be an \(\mathcal{I}\)-nonthin sequence in \((f \times 1_Z)(A)\) that \(\mathcal{I}/M\)-converges to \((y, z)\). So there exists a sequence \((x_n)_{n \in M}\) in \(X\) such that \(f(x_n) = y_n\). Then \((x_n, z_n)_{n \in M}\) is an \(\mathcal{I}\)-nonthin sequence in \(A\) and \((x_n)_{n \in M}\) is an \(\mathcal{I}\)-nonthin sequence in \(f^{-1}(\bar{y})\), where \(\bar{y}\) is the union of \((y_n)_{n \in M}\) and its \(\mathcal{I}\)-limit. Therefore \((x_n)_{n \in M}\) has an \(\mathcal{I}\)-nonthin subsequence \((x_n)_{n \in L}\) that \(\mathcal{I}/\mathcal{L}\)-converges to some point \(l\)(say). So, \((x_n, z_n)_{n \in L} \rightarrow_{\mathcal{I}/\mathcal{L}} (l, z)\). Since \(A\) is \(\mathcal{I}\)-closed in \(X \times Z\), \((l, z) \in A\). Henceforth, \((f(x_n))_{n \in M}\) is \(\mathcal{I}/\mathcal{L}\) convergent to \(f(l)\) and \(y\) also. Since \(Y\) is \(\mathcal{I}\)-US, \(f(l) = y\) and so \((y, z) \in (f \times 1_Z)(A)\).

(e) ⇒ (a) This implication is immediate from Theorem 2.8. □

Since every locally compact Hausdorff space can be embedded into a compact Hausdorff space, likewise using the notion of ideals of subsets of \(\mathbb{N}\), following theorem ensures that every topological space can be \(\mathcal{I}\)-embedded into an \(\mathcal{I}\)-compact space.

Theorem 2.14 Let \(X\) be a topological space, then \(X\) can be \(\mathcal{I}\)-embedded into an \(\mathcal{I}\)-compact space \(\widehat{X}\) so that \(\widehat{X} - X\) contains exactly one point and \(X\) is an open dense subspace of \(\widehat{X}\).

Proof. Let’s consider a topology on \(\widehat{X}\), \(\tau = \tau \cup \{U \cup \{\alpha\} : X - U\) is closed and \(\mathcal{I}\)-compact in \(X\}\} = \tau \cup \{U \cup \{\alpha\} : U\) is open in \(X\) and any \(\mathcal{I}\)-nonthin sequence \((x_n)_{n \in L}\) in \(X\) having no \(\mathcal{I}\)-nonthin \(\mathcal{I}/M\)-convergent subsequence \((x_n)_{n \in M}\) is \(\mathcal{I}\)-eventually in \(U\}\}, where \(\alpha\) is the point at infinity of \(X\). Then \(X\) is an open dense subspace of \(\widehat{X}\). Let \(S(X)\) be the set of all \(\mathcal{I}\)-nonthin sequence \((x_n)_{n \in M}\) in \(X\) having no \(\mathcal{I}\)-nonthin \(\mathcal{I}/\mathcal{L}\)-convergent subsequence \((x_n)_{n \in L}\). Let \(U \cup \{\alpha\}\) be any open set containing \(\alpha\), then all the elements of \(S(X)\) is \(\mathcal{I}\)-eventually in \(U\). Therefore all the elements of \(S(X)\) is \(\mathcal{I}\)-converges to \(\alpha\). Hence \(\widehat{X}\) is \(\mathcal{I}\)-compact. □

5
Definition 2.15 In the Theorem 2.14, \hat{X} is known as one point \mathcal{I}-compactification of X.

Definition 2.16 A topological space is said to be \mathcal{I}-sequential if every \mathcal{I}-closed set is closed.

Theorem 2.17 If a topological space X is \mathcal{I}-sequential, then \hat{X} is \mathcal{I}-sequential. In addition if X is \mathcal{I}-US, then \hat{X} is \mathcal{I}-US.

Proof. Let, U be an \mathcal{I}-open subset of \hat{X}. Then, $U \cap X$ is \mathcal{I}-open in X and since X is \mathcal{I}-sequential, $U \cap X$ is open in X. If $\alpha \notin U$, then U is open in X. Let $\alpha \in U$. Since U is \mathcal{I}-open and all the elements of $S(X)$ is \mathcal{I}-converges to α, then every element of $S(X)$ is \mathcal{I}-eventually in U. Also $U - \{\alpha\} = U \cap X$ is open in X. Hence U is open in \hat{X} and \hat{X} is \mathcal{I}-sequential.

Now let us consider an \mathcal{I}-nonthin sequence $(x_n)_{n \in M}$ in \hat{X} that is \mathcal{I}/M-converges to x and y in \hat{X}. If both $x, y \in X$, then $x = y$. Let, $(x_n)_{n \in M}$ is \mathcal{I}/M-converges to $x \in X$. Since X is open in \hat{X}, $\{n \in M; x_n \in X\} = L \notin \mathcal{I}/M$. That is, $(x_n)_{n \in L}$ is an \mathcal{I}-nonthin sequence in X. Since X is \mathcal{I}-US, $A = \{x\} \cup \{x_n; n \in L\}$ is \mathcal{I}-closed in X. So, A is closed in X that is $X - A = U$ is open in X. Therefore all the elements of $S(X)$ is \mathcal{I}-eventually in U, since A is \mathcal{I}-compact. So, $U \cup \{\alpha\}$ is open in \hat{X} which implies $(x_n)_{n \in L}$ does not converge to α. Hence \hat{X} is \mathcal{I}-US. \qed

Theorem 2.18 Let X, Y be topological spaces and Y be an \mathcal{I}-US space containing X as an open subspace. Let, $f : Y \to \hat{X}$ is defined by

$$f(x) = \begin{cases} x, & \text{if } x \in X; \\ \alpha, & \text{if } x \notin X \end{cases}$$

α is the point at infinity of X. Then, f is \mathcal{I}-continuous.

Proof. Let, $(x_n)_{n \in M}$ be an \mathcal{I}-nonthin sequence in Y which is \mathcal{I}/M-converges to y. If $y \in X$, then $(x_n)_{n \in M}$ is \mathcal{I}-eventually in X (since X is an open subspace of Y). Then, $(f(x_n))_{n \in M}$ is \mathcal{I}-eventually in X and \mathcal{I}/M-converges to $f(y)$. If $y \in Y - X$, then three cases may arise. First case, if $(x_n)_{n \in M}$ has only \mathcal{I}-thin subsequences in X, then $(f(x_n))_{n \in M}$ is \mathcal{I}-eventually at α and so $f(x_n) \to_{\mathcal{I}/M} \alpha$. For second case, let $(x_n)_{n \in M}$ has only \mathcal{I}-thin subsequences in $Y - X$. Since Y is \mathcal{I}-US and $y \in Y - X$, which implies $(x_n)_{n \in M}$ has no \mathcal{I}-nonthin subsequence $(x_n)_{n \in L} \to_{\mathcal{I}/L}$-convergent in X. But \hat{X} is \mathcal{I}-compact,
so \(f(x_n) \to_{\mathcal{I}/M} \alpha \). Finally, if \((x_n)_{n \in M}\) has \(\mathcal{I}\)-nonthin subsequence in both \(X\) and \(Y - X\), then using above two cases both subsequences \(\mathcal{I}\)-converges to \(\alpha\) and so, \(f(x_n) \to_{\mathcal{I}/M} \alpha \). Hence \(f\) is \(\mathcal{I}\)-continuous. \(\blacksquare\)

Theorem 2.19 Let \(Y\) be an \(\mathcal{I}\)-compact \(\mathcal{I}\)-US space containing \(\mathcal{I}\)-sequential space \(X\) as an open dense subspace and \(Y - X\) has exactly one point. Then there is an \(\mathcal{I}\)-homeomorphism of \(Y\) with \(\tilde{X}\) which is the identity on \(X\).

Proof. The proof of the theorem follows from Theorem 2.11 and Theorem 2.18 \(\blacksquare\)

In the following we have investigated the relation between one point \(\mathcal{I}\)-compartment and \(\mathcal{I}\)-proper maps. Here \(\tilde{f} : \tilde{X} \to \tilde{Y}\) is the extension of \(f : X \to Y\) which takes \(\alpha_x\), the point at infinity of \(X\) to \(\alpha_y\), the point at infinity of \(Y\).

Theorem 2.20 Let \(X, Y\) be \(\mathcal{I}\)-sequential, \(\mathcal{I}\)-US spaces and \(f : X \to Y\) be continuous. Let \(X\) be \(T_1\) and \(\mathcal{I}\) satisfies shrinking condition \((C')\). Then \(\tilde{f} : \tilde{X} \to \tilde{Y}\) is continuous if and only if \(f\) is \(\mathcal{I}\)-proper.

Proof. Let \(f\) be \(\mathcal{I}\)-proper and \(\alpha_x\) and \(\alpha_y\) be the point at infinity of \(X\) and \(Y\) respectively. Let \((x_n)_{n \in M}\) be a sequence in \(\tilde{X}\) that \(\mathcal{I}/M\) converging to \(\alpha_x\). If \((x_n)_{n \in M}\) has an \(\mathcal{I}\)-nonthin subsequence which takes the value \(\alpha_x\), then \((\tilde{f}(x_n))_{n \in M}\) also has an \(\mathcal{I}\)-nonthin subsequence which takes the value \(\alpha_y\). Thus \((\tilde{f}(x_n))_{n \in M}\) \(\mathcal{I}/M\)-converges to \(\alpha_y\). Now if \((x_n)_{n \in M}\) has only \(\mathcal{I}\)-thin subsequence say \((x_n)_{n \in L}\) which takes the value \(\alpha_x\), then \((x_n)_{n \in P}\) is an \(\mathcal{I}\)-nonthin sequence in \(X\) with no \(\mathcal{I}\)-nonthin subsequence \((x_n)_{n \in P_1}\) that \(\mathcal{I}/P_1\) convergent in \(X\), where \(P = M - L\). Then by Theorem 2.13 \((f(x_n))_{n \in P}\) has no \(\mathcal{I}\)-nonthin subsequence \((f(x_n))_{n \in P_1}\) that \(\mathcal{I}/P_1\) convergent in \(Y\) and so \((\tilde{f}(x_n))_{n \in M}\) \(\mathcal{I}/M\)-converges to \(\alpha_y\). Proof of the converse part follows from Theorem 2.13 \(\blacksquare\)

Definition 2.21 A topological space \(X\) is locally \(\mathcal{I}\)-compact if every point \(x \in X\) has an \(\mathcal{I}\)-compact neighbourhood that is for every \(x \in X\), there exists an \(\mathcal{I}\)-compact subset \(C\) of \(X\) and an open set \(U\) containing \(x\) such that \(U \subset C\).

Example 2.22 If we take \(\mathcal{I} = \mathcal{I}_f \cup \{A \subset \mathbb{N}; A \cap \Delta_i\text{ is infinite for finite }i\text{'s and for other }i\text{'s }A \cap \Delta_i\text{ is finite}\}\), where \(\Delta_i = \bigcup_{i \in \mathbb{N}} \Delta_i\), \(\Delta_i \cap \Delta_j = \emptyset\), \(i \neq j\) and \(\mathcal{I}_f\) is the collection of all finite subsets of \(\mathbb{N}\). Then \(\mathbb{R}\) with usual topology is locally \(\mathcal{I}\)-compact but not \(\mathcal{I}\)-compact (\([17]\)).
Example 2.23 \mathbb{R} with usual topology is not locally I_d-compact.

Theorem 2.24 A topological space X is locally I-compact, Hausdorff and I-sequential, then there exists a unique upto homeomorphic topological space \hat{X} which is I-compact, Hausdorff, X is an open dense subspace of \hat{X} and $\hat{X} - X$ contains exactly one element.

Proof. Consider the previous mentioned topology $\hat{\tau}$ on \hat{X} (in Theorem 2.14). Let, x and y be two distinct points of \hat{X}. If both x, y in X, there exists two disjoint open sets U and V in X containing x and y respectively. Now, let $x \in X$ and $y = \alpha$. Since X is locally I-compact, there exists an I-compact set C in X containing a neighbourhood U of x. Also since I-compact subset of a Hausdorff space is I-closed and X is I-sequential, which implies C is closed in X. So, $(X - C) \cup \{\alpha\}$ is open in \hat{X}. Henceforth, there exists two disjoint open sets U and $(X - C) \cup \{\alpha\}$ containing x and α respectively. So, \hat{X} is Hausdorff. Let, \hat{Y} be a Hausdorff one point I-compactification of X. Let α_x and α_y be the point at infinity of X and Y respectively and define a map $h : \hat{X} \rightarrow \hat{Y}$ by

$$f(x) = \begin{cases} x, & \text{if } x \in X; \\ \alpha_y, & \text{if } x = \alpha_x. \end{cases}$$

Then h is a bijection. Let, U be an open set in \hat{X} not containing α_x, then $U \cap X = U$ is open in X. Therefore $h(U) = U$ is open in X so in \hat{Y}. Now let U be an open set in \hat{X} containing α_x. Then, $\hat{X} - U = C$ is closed in \hat{X} and since \hat{X} is I-compact, C is I-compact in \hat{X}. Then $C \subset X$ is I-compact in X and so I-compact in \hat{Y}. Also since X is I-sequential, C is closed in \hat{Y}. Therefore $h(U) = \hat{Y} - C$ is open in \hat{Y}. Hence h is a homeomorphism.

Theorem 2.25 If one point I-compactification of a topological space X is Hausdorff and I-sequential, then X is locally I-compact.

Proof. Let, $x \in X$ and since \hat{X} is Hausdorff, there exists two disjoint open sets U and V of \hat{X} containing x and α respectively. So, $\hat{X} - V = C$ is closed in \hat{X} and then I-compact in \hat{X}. Therefore C is I-compact in X and $x \in U \subset C$. Hence X is locally I-compact.

Corollary 2.26 A topological space X is locally I-compact, Hausdorff and I-sequential if and only if there exists a unique upto homeomorphic topological space \hat{X} which is I-compact, Hausdorff, X is an open dense subspace of \hat{X} and $\hat{X} - X$ has exactly one point.
Theorem 2.27 If $f : X_1 \to X_2$ is a homeomorphism of locally \mathcal{I}-compact, Hausdorff and \mathcal{I}-sequential spaces, then f extends to a homeomorphism of their one point \mathcal{I}-compactifications.

Proof. Let, $f : X_1 \to X_2$ be a homeomorphism, where X_1 and X_2 are locally \mathcal{I}-compact, Hausdorff \mathcal{I}-sequential spaces. Then from Theorem 2.24, there exist Hausdorff one point \mathcal{I}-compactifications \hat{X}_1 and \hat{X}_2 of X_1 and X_2 respectively. Define $\hat{f} : \hat{X}_1 \to \hat{X}_2$ by

$$\hat{f}(\alpha) = \begin{cases} f(x), & \text{if } x \in X_1; \\ \alpha_2, & \text{if } x = \alpha_1 \end{cases}$$

α_1 and α_2 be the point at infinity of X_1 and X_2 respectively. Then \hat{f} is a homeomorphism. ■

Theorem 2.28 If a topological space X has a Hausdorff one point \mathcal{I}-compactification, then every compact subset of X is \mathcal{I}-compact.

Proof. Let, (X, τ) be a topological space, it has a Hausdorff one point \mathcal{I}-compactification. Let, $K \subset X$ is a compact subset of X and $e : X \to \hat{X}$ be an embedding. Then, $e(K)$ is compact in \hat{X}. Since \hat{X} is T_2, $e(K)$ is closed in \hat{X}. This implies $e(K) \subset e(X)$ is \mathcal{I}-compact in \hat{X} and so K is \mathcal{I}-compact. ■

Example 2.29 Since not every compact subset of \mathbb{R} is \mathcal{I}_d-compact, so one point \mathcal{I}_d-compactification of \mathbb{R} is not Hausdorff.

Definition 2.30 ([14]) An admissible ideal \mathcal{I} is said to satisfy shrinking condition(B) if for any sequence of sets $\{A_i\}$ not in \mathcal{I}, there exists a sequence of sets $\{B_i\}$ in \mathcal{I} such that each $B_i \subset A_i$ and $B = \bigcup_{i=1}^{\infty} B_i \notin \mathcal{I}$.

Theorem 2.31 If \mathcal{I} satisfies shrinking condition(B) and one point compactification of a topological space is metrizable, then one point \mathcal{I}-compactification is homeomorphic to one point compactification.

Proof. Let \hat{X} and Y be the one-point \mathcal{I}-compactification of X and one point compactification of X respectively. Since \mathcal{I}-satisfies shrinking condition(B) and Y is metrizable, this implies Y is \mathcal{I}-compact [14]. Claim that, Y and
\(\hat{X}\) are homeomorphic. Let \(\alpha_1\) and \(\alpha_2\) be the point at infinity of \(X\) with \(\hat{X} - X = \{\alpha_1\}\) and \(Y - X = \{\alpha_2\}\). Define a mapping \(h : \hat{X} \rightarrow Y\) by
\[
h(x) = \begin{cases} x & \text{if } x \in X; \\ \alpha_2 & \text{if } x = \alpha_1. \end{cases}
\]
If \(U\) be an open set in \(\hat{X}\) not containing \(\alpha_1\), then \(U\) is open in \(Y\) also. Now let, \(U\) is an open set in \(\hat{X}\) containing \(\alpha_1\), then \(C = \hat{X} - U\) is closed in \(\hat{X}\). Since \(\hat{X}\) is \(\mathcal{I}\)-compact, \(C\) is \(\mathcal{I}\)-compact in \(\hat{X}\). Also metrizability of \(X\) implies \(C\) is compact in \(X\). Then \(C\) is compact and hence closed in \(Y\). Therefore, \(h(U) = Y - C\) is open in \(Y\) and so \(h^{-1}\) is continuous. Now let \(U\) be an open set in \(Y\) containing \(\alpha_2\), that is \(Y - U = C\) is closed in \(Y\). Then \(C\) is compact in \(Y\) and so in \(X\). Also since \(X\) is \(T_2\), \(C\) is closed in \(X\) and since \(\mathcal{I}\)-satisfies shrinking condition(B), \(C\) is \(\mathcal{I}\)-compact in \(X\). Therefore, \((X - C) \cup \{\alpha_1\}\) is open in \(\hat{X}\). So \(h^{-1}(U) = \hat{X} - C\) is open in \(\hat{X}\) that is, \(h\) is continuous. \(\blacksquare\)

Corollary 2.32 If \(\mathcal{I}\) satisfies shrinking condition(B), then one point \(\mathcal{I}\)-compactification of \(\mathbb{R}\) with usual topology is homeomorphic to \(S^1\) as a subspace of \(\mathbb{R}^2\) with usual topology.

As shown in Example 2.29 \(\mathbb{R}\) with usual topology may not have Hausdorff one point \(\mathcal{I}\)-compactification for some ideals, one of such one point \(\mathcal{I}\)-compactification is as follows:

Example 2.33 One point \(\mathcal{I}\)-compactification of \(\mathbb{R}\) with usual topology \(U\) is a circle \(S^1\) with topology \(\tau_{S^1}\) consisting of open subset of \(S^1 - \{\alpha\}\) considered as a subspace of \(\mathbb{R}^2\) and cofinite subset of \(S^1\) containing \(\alpha\), where \(\alpha\) is the point at infinity of \(\mathbb{R}\).

Define a mapping \(e : \mathbb{R} \rightarrow S^1 - \{\alpha\}\) by
\[
e(x) = \begin{cases} (x, \sqrt{1 - x^2}) & \text{if } |x| \leq 1; \\ (\frac{2x}{x^2 + 1}, \frac{x^2 - 1}{x^2 + 1}) & \text{if } |x| > 1. \end{cases}
\]
Then, \(e\) is a bijection. Claim that, \(S^1\) with \(\tau_{S^1}\) is an one point \(\mathcal{I}\)-compactification of \(\mathbb{R}\). Let us consider an \(\mathcal{I}\)-nonthin sequence \((x_n)_{n \in M}\) in \(S^1\) which has no \(\mathcal{I}\)-nonthin subsequence \((x_n)_{n \in L}\) that \(\mathcal{I}/_L\)-convergent in \(S^1 - \{\alpha\}\), then \((x_n)_{n \in M}\) \(\mathcal{I}/_M\)-converges to \(\alpha\). Otherwise, there exists an open set \(U \cup \{\alpha\}\) containing \(\alpha\) such that \(L = \{n \in M; x_n \notin U \cup \{\alpha\}\} \notin \mathcal{I}/_M\). Then \((x_n)_{n \in L}\) is an \(\mathcal{I}\)-nonthin sequence in \(S^1 - \{\alpha\}\). Also since \(S^1 - (U \cup \{\alpha\})\) is finite say, \(\{a_1, a_2, ..., a_m\}\)
that is, \(x_n \in \{ a_1, a_2, \ldots, a_m \}, n \in L \). This implies, \((x_n)_{n \in L} \) has an \(I \)-nonthin subsequence \((x_n)_{n \in K} \) that \(I/K \)-converges to one of such \(a_i \), which contradicts our assumption. Hence, \(S^1 \) with \(\tau_{S^1} \) is \(I \)-compact. Also, \(e : \mathbb{R} \rightarrow S^1 \) is an embedding, since \(e : \mathbb{R} \rightarrow e(\mathbb{R}) \) is a homeomorphism and \(e(\mathbb{R}) = S^1 - \{ \alpha \} \) is a dense subspace of \(S^1 \). Hence, one point \(I \)-compactification of \(\mathbb{R} \) with usual topology is \(S^1 \) with \(\tau_{S^1} \) which is not Hausdorff.

References

[1] P. Kostyrko, T. Šalát, W. Wilczyński, \(I \)-convergence, Real Anal. Exchange, 26(2) (2000/2001), 669-686.

[2] R. Brown, On sequentially proper maps and a sequential compactification, J. London Math. Soc.(2),7(1973), 515-422.

[3] Y. Sever, E. Dündar, Regularly ideal convergence and regularly ideal Cauchy double sequences in 2-normed spaces, Filomat, 28(5) (2014), 907-915.

[4] E. Savaş, M. Gürdal, Ideal convergent function sequences in random 2-normed spaces. Filomat, 30(3) (2016), 557-567.

[5] G. Di Maio, L. D. Kočinac, Statistical convergence in topology, Topology and its Applications, 156(1), (2008), 28-45.

[6] J. Cincura, M. Sleziak, T. Šalát, V. Toma, Sets of statistical cluster points and I-cluster points, Real Anal. Exchange, 30 (2005), 565-580.

[7] H. Fast, Sur la convergence statistique, Colloq. Math., 2 (1951), 241-244.

[8] I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66 (1959), 361-375.

[9] D. Djurčić, L. D. Kočinac, M. R. Žižović, Summability of sequences and selection properties, Abstract and Applied Analysis, (Vol. 2011), (2011), Hindawi,7pp.

[10] P. Das, S. Dutta, On some types of convergence of sequences of functions in ideal context. Filomat, 27(1) (2013), 157-164.
[11] K. Kuratowski, Topologie I, PWN, Warszawa, 1961.

[12] A. Boccuto, P. Das, X. Dimitriou, N. Papanastassiou, Ideal exhaustiveness, weak convergence and weak compactness in Banach space, Real Anal. Exchange, 37(2) (2012), 389-410.

[13] J. A. Fridy, Statistical limit points, Proc. Amer. Math. soc. 118 (1993), no. 4, 1187-1192.

[14] M. Singha, S. Roy, Compactness with ideals. arXiv preprint arXiv:2107.00050 (2021).