A POLYNOMIAL DEFINED BY THE $SL(2;\mathbb{C})$-REIDEMEISTER TORSION FOR A HOMOLOGY 3-SPHERE OBTAINED BY DEHN-SURGERY ALONG A TORUS KNOT

TERUAKI KITANO

Abstract. Let M_n be a homology 3-sphere obtained by $\frac{1}{n}$-Dehn surgery along a (p, q)-torus knot. We consider a polynomial $\sigma_{(p,q,n)}(t)$ whose zeros are the inverses of the Reidemeister torsion of M_n for $SL(2;\mathbb{C})$-irreducible representations. We give an explicit formula of this polynomial by using Tchebychev polynomials of the first kind. Further we also give a 3-term relations of these polynomials.

1. Introduction

Let $T(p, q)$ be a (p, q)-torus knot in S^3. Here p, q are coprime and positive integers. Let M_n be a homology 3-sphere obtained by $\frac{1}{n}$-Dehn surgery along $T(p, q)$. It is well known that M_n is a Brieskorn homology 3-sphere $\Sigma(p, q, N)$ where we write N for $\lfloor pgn + 1 \rfloor$. Here $\Sigma(p, q, N)$ is defined as

$$\{(z_1, z_2, z_3) \in \mathbb{C}^3 \mid z_1^p + z_2^q + z_3^N = 0, \ |z_1|^2 + |z_2|^2 + |z_3|^2 = 1\}.$$

In this paper we consider the Reidemeister torsion $\tau_\rho(M_n)$ of M_n for an irreducible representation $\rho : \pi_1(M_n) \to SL(2;\mathbb{C})$.

In the 1980’s Johnson [11] gave an explicit formula for any non-trivial value of $\tau_\rho(M_n)$. Furthermore, he proposed to consider the polynomial whose zero set coincides with the set of all non-trivial values $\{1/\tau_\rho(M_n)\}$, which is denoted by $\sigma_{(2,3,n)}(t)$. Under some normalization of $\sigma_{(2,3,n)}(t)$, he gave a 3-term relation among $\sigma_{(2,3,n+1)}(t), \sigma_{(2,3,n)}(t)$ and $\sigma_{(2,3,n-1)}(t)$ by using Tchebychev polynomials of the first kind.

Recently in [5] we gave one generalization of the Johnson’s formula for a $(2p’, q)$-torus knot. Here $p’, q$ are coprime odd integers. In this paper, we show the formula for any torus knot $T(p, q)$.

Acknowledgements. The author was staying in Aix-Marseille University when he wrote this article. He thanks for their hospitality. This research was partially supported by JSPS KAKENHI 25400101.

2010 Mathematics Subject Classification. 57M27.

Key words and phrases. Reidemeister torsion, a torus knot, Brieskorn homology 3-sphere, $SL(2;\mathbb{C})$-representation.
2. DEFINITION OF REIDMEISTER TORSION

First let us describe definitions and properties of the Reidemeister torsion for \(SL(2; \mathbb{C}) \)-representations. See Johnson [1], Kitano [2, 3] and Porti [7] for details.

Let \(b = (b_1, \cdots, b_d) \) and \(c = (c_1, \cdots, c_d) \) be two bases for a \(d \)-dimensional vector space \(W \) over \(\mathbb{C} \). Setting \(b_i = \sum_{j=1}^{d} p_{ij} c_j \), we obtain a nonsingular matrix \(P = (p_{ij}) \in GL(d; \mathbb{C}) \). Let \([b/c] \) denote the determinant of \(P \).

Suppose \(C^* : 0 \to C_k \xrightarrow{\partial_k} \cdots \xrightarrow{\partial_2} \xrightarrow{\partial_1} C_1 \xrightarrow{\partial_0} C_0 \to 0 \) is an acyclic chain complex of finite dimensional vector spaces over \(\mathbb{C} \). We assume that a preferred basis \(c_i \) for \(C_i \) is given for each \(i \). That is, \(C^* \) is a based acyclic chain complex over \(\mathbb{C} \).

Choose any basis \(b_i \) for \(B_i = \text{Im}(\partial_{i+1}) \) and take a lift of it in \(C_{i+1} \), which is denoted by \(\tilde{b}_i \). Since \(B_i = Z_i = \text{Ker}\partial_i \), the basis \(b_i \) can serve as a basis for \(Z_i \). Furthermore since the sequence

\[
0 \to Z_i \to C_i \xrightarrow{\partial_i} B_{i-1} \to 0
\]

is exact, the vectors \((b_i, \tilde{b}_{i-1}) \) form a basis for \(C_i \). Here \(\tilde{b}_{i-1} \) is a lift of \(b_{i-1} \) in \(C_i \). It is easily shown that \([b_i, \tilde{b}_{i-1}/c_i] \) does not depend on a choice of a lift \(\tilde{b}_{i-1} \). Hence we can simply denote it by \([b_i, b_{i-1}/c_i] \).

Definition 2.1. The torsion \(\tau(C_*) \) of a based chain complex \(C_* \) with \(\{c_i\} \) is given by the alternating product

\[
\tau(C_*) = \prod_{i=0}^{k} [b_i, b_{i-1}/c_i]^{(-1)^{i+1}}.
\]

Remark 2.2. It is easy to see that \(\tau(C_*) \) does not depend on choices of the bases \(\{b_0, \cdots, b_k\} \).

Now we apply this torsion invariant of chain complexes to geometric situations as follows. Let \(X \) be a finite CW-complex and \(\tilde{X} \) a universal covering of \(X \) with the lifted CW-complex structure. The fundamental group \(\pi_1 X \) acts on \(\tilde{X} \) from the right-hand side as deck transformations. We may assume that this action is free and cellular by taking a subdivision if we need. Then the chain complex \(C_*(\tilde{X}; \mathbb{Z}) \) has the structure of a chain complex of free \(\mathbb{Z}[\pi_1 X] \)-modules.

Let \(\rho : \pi_1 X \to SL(2; \mathbb{C}) \) be a representation. We denote the 2-dimensional vector space \(\mathbb{C}^2 \) by \(V \). Using the representation \(\rho \), \(V \) admits the structure of a \(\mathbb{Z}[\pi_1 X] \)-module and then we denote it by \(V_\rho \).
Define the chain complex $C_*(X; V_\rho)$ by $C_*(\hat{X}; \mathbb{Z}) \otimes_{\mathbb{Z}[\pi_1 X]} V_\rho$ and choose a preferred basis
\[(\tilde{u}_1 \otimes e_1, \tilde{u}_1 \otimes e_2, \cdots, \tilde{u}_d \otimes e_1, \tilde{u}_d \otimes e_2) \]
of $C_i(X; V_\rho)$ where $\{e_1, e_2\}$ is a canonical basis of $V = \mathbb{C}^2$, $\{u_1, \cdots, u_d\}$ are the i-cells giving a basis of $C_i(\hat{X}; \mathbb{Z})$ and $\{\tilde{u}_1, \cdots, \tilde{u}_d\}$ are lifts of them on \hat{X}. Now we suppose that $C_*(X; V_\rho)$ is acyclic, namely all homology groups $H_*(X; V_\rho)$ are vanishing. In this case ρ is called an acyclic representation.

Definition 2.3. Let $\rho : \pi_1(X) \to SL(2; \mathbb{C})$ be an acyclic representation. Then the Reidemeister torsion $\tau_\rho(X) \in \mathbb{C} \setminus \{0\}$ is defined by the torsion $\tau(C_*(X; V_\rho))$ of $C_*(X; V_\rho)$.

Remark 2.4.

1. We define $\tau_\rho(X) = 0$ for a non-acyclic representation ρ.
2. The definition of $\tau_\rho(X)$ depends on several choices. However it is well known that it is a piecewise linear invariant in the case of $SL(2; \mathbb{C})$-representations.

3. Johnson’s theory

Let $T(p, q) \subset S^3$ be a (p, q)-torus knot with coprime integers p, q. Now we write M_n to a closed orientable 3-manifold obtained by a $\frac{1}{n}$-Dehn surgery along $T(p, q)$. Here the fundamental group of $S^3 \setminus T(p, q)$ has the presentation as follows:

\[\pi_1(S^3 \setminus T(p, q)) = \langle x, y \mid x^p = y^q \rangle. \]

Furthermore $\pi_1(M_n)$ admits the presentation as follows;

\[\pi_1(M_n) = \langle x, y \mid x^p = y^q, ml^n = 1 \rangle \]

where $m = x^{-r}y^s$ $(r, s \in \mathbb{Z}, ps - qr = 1)$ is a meridian of $T(p, q)$ and similarly $l = x^{-p}m^{pq} = y^{-q}m^{pq}$ is a longitude.

It is seen [1, 5] that the set of the conjugacy classes of the irreducible representations of $\pi_1(M_n)$ in $SL(2; \mathbb{C})$ is finite. Any conjugacy class can be represented by $\rho_{(a,b,k)} : \pi_1(M_n) \to SL(2; \mathbb{C})$ for some triple (a, b, k) such that

1. $0 < a < p, 0 < b < q, a \equiv b \mod 2$,
2. $0 < k < N = \left| pqn + 1 \right|, k \equiv na \mod 2$,
3. $\text{tr}(\rho_{(a,b,k)}(x)) = 2 \cos \frac{a\pi}{p}$,
4. $\text{tr}(\rho_{(a,b,k)}(y)) = 2 \cos \frac{b\pi}{q}$,
5. $\text{tr}(\rho_{(a,b,k)}(m)) = 2 \cos \frac{k\pi}{N}$.

Furthermore Johnson computed $\tau_{\rho_{(a,b,k)}}(M_n)$ as follows.

Theorem 3.1 (Johnson).

1. A representation $\rho_{(a,b,k)}$ is acyclic if and only if $a \equiv b \equiv 1$.
For any acyclic representation $\rho_{(a,b,k)}$ with $a \equiv b \equiv 1$, then one has

$$\tau_{\rho_{(a,b,k)}}(M_n) = \frac{1}{2 \left(1 - \cos \frac{2\pi a}{p}\right) \left(1 - \cos \frac{2\pi b}{q}\right) \left(1 + \cos \frac{p q k \pi}{N}\right)}.$$

4. Main theorem

In this section we give a formula of the torsion polynomial $\sigma_{(p,q,n)}(t)$ for $M_n = \Sigma(p, q, N)$ obtained by a $\frac{1}{n}$-Dehn surgery along $T(p, q)$. Now we define torsion polynomials as follows.

Definition 4.1. A one variable polynomial $\sigma_{(p,q,n)}(t)$ is called the torsion polynomial of M_n if the zero set coincides with the set of all non trivial values $\{\tau_{\rho}(M_n) | \tau_{\rho}(M_n) \neq 0\}$ and it satisfies the following normalization condition as

$$\sigma_{(p,q,n)}(0) = \begin{cases}
(-1)^{(N-1)(p-1)} \frac{1}{8} & p \text{ is even, } q \text{ is odd}, \\
(-1)^{(N-1)(p-1)} \frac{1}{8} & q \text{ is even, } q \text{ is odd}, \\
(-1)^{(N-1)(p-1)(q-1)} & p, q \text{ are odd, } n \text{ is even}, \\
(-1)^{(N-1)(p-1)(q-1)} \frac{1}{8} & p, q \text{ are odd, } n \text{ is odd}
\end{cases}$$

where $N = |pqn + 1|$.

Remark 4.2.

1. For $M_0 = S^3$, the torsion polynomial $\sigma_{(p,q,0)}(t)$ is defined by $\sigma_{(p,q,0)}(t) = 1$.
2. In the case that $p = 2p'$ is even and p' is odd, then this normalization condition coincides with the one in [5].

From here assume $n \neq 0$. Recall Johnson’s formula

$$\frac{1}{\tau_{\rho_{(a,b,k)}}(M_n)} = 2 \left(1 - \cos \frac{2\pi a}{p}\right) \left(1 - \cos \frac{2\pi b}{q}\right) \left(1 + \cos \frac{p q k \pi}{N}\right),$$

where $0 < a < p, 0 < b < q, a \equiv b \equiv 1 \mod 2, k \equiv n \mod 2$. Here by putting

$$C_{(p,q,a,b)} = \left(1 - \cos \frac{a\pi}{p}\right) \left(1 - \cos \frac{b\pi}{q}\right),$$

one has

$$\frac{1}{\tau_{\rho_{(a,b,k)}}(M_n)} = 4C_{(p,q,a,b)} \cdot \frac{1}{2} \left(1 + \cos \frac{p q k \pi}{N}\right).$$

Main result is the following.

Theorem 4.3. The torsion polynomial of M_n is given by

$$\sigma_{(p,q,n)}(t) = \prod_{(a,b)} Y_{(a,b)}(t)$$
A POLYNOMIAL DEFINED BY REIDEMEISTER TORSION

where

\[
Y_{(n,a,b)}(t) = \begin{cases}
\frac{T_{N+1}(s) - T_{N-1}(s)}{2(s^2 - 1)} & (p \text{ or } q \text{ is even}, n > 0), \\
- \frac{T_{N+1}(s) - T_{N-1}(s)}{2(s^2 - 1)} & (p \text{ or } q \text{ is even}, n < 0), \\
\frac{T_{N+1}(s) - T_{N-1}(s)}{2(s^2 - 1)^2} & (p, q \text{ are odd}, n \text{ is even}, n > 0), \\
- \frac{T_{N+1}(s) - T_{N-1}(s)}{2(s^2 - 1)^2} & (p, q \text{ are odd}, n \text{ is even}, n < 0), \\
T_N(s) & (p, q, n \text{ are odd}).
\end{cases}
\]

Here

- \(T_t(x) \) is the \(l \)-th Tchebychev polynomial of the first kind.
- \(s = \sqrt{t} \).
- \(C_{(p,q,a,b)} = (1 - \cos \frac{a\pi}{p})(1 - \cos \frac{b\pi}{q}) \).
- a pair of integers \((a, b)\) is satisfying the following conditions:
 - \(0 < a < p, 0 < b < q \),
 - \(a \equiv b \equiv 1 \mod 2 \).

Remark 4.4. Recall that the \(l \)-th Tchebychev polynomial \(T_t(x) \) is defined by \(T_t(\cos \theta) = \cos(l\theta) \).

Proof. We consider the following;

\[
X_n(x) = \begin{cases}
\frac{T_{N+1}(x) - T_{N-1}(x)}{2(x^2 - 1)} & (n > 0), \\
- \frac{T_{N+1}(x) - T_{N-1}(x)}{2(x^2 - 1)} & (n < 0).
\end{cases}
\]

\[
X'_n(x) = T_N(x).
\]

First we assume \(p = 2p' \) is even. For the case that \(p' \) is odd, then it is proved in \([5]\). Then we suppose that \(p' \) is even. Here \(N = |2p'qn + 1| \) is always odd.

Case 1: \(p = 2p', p' \) is even and \(n > 0 \)

We modify one factor \((1 + \cos \frac{2p'k\pi}{N})\) of \(\frac{1}{\tau_p(M_n)} \) as follows. See \([5]\) for the proof.

Lemma 4.5. The set \(\{\cos \frac{2p'k\pi}{N} | 0 < k < N, k \equiv n \mod 2\} \) is equal to the set \(\{\cos \frac{2p'k\pi}{N} | 0 < k < \frac{N-1}{2}\} \).

Now we can modify

\[
\frac{1}{2} \left(1 + \cos \frac{2p'k\pi}{N}\right) = \frac{1}{2} \cdot 2 \cos^2 \frac{2p'k\pi}{2N} = \cos^2 \frac{p'k\pi}{N}.
\]
We put
\[z_k = \cos \frac{p'k\pi}{N} \quad (1 \leq k \leq N - 1). \]
By the definition, it is seen
\[z_{N-k} = \cos \frac{p'(N - k)\pi}{N} \]
\[= \cos(p'\pi - \frac{p'k\pi}{N}) \]
\[= z_k \]
because \(p' \) is even.
Therefore it is enough to consider only \(z_k \) \((1 \leq k \leq \frac{N-1}{2})\).
Now we substitute \(x = z_k \) to \(T_{N+1}(x) \). Then one has
\[T_{N+1}(z_k) = \cos \left((N + 1) \frac{p'k\pi}{N} \right) \]
\[= \cos \frac{p'k\pi}{N} \]
\[= z_k \]
and
\[T_{N-1}(z_k) = \cos \left((N - 1) \frac{p'k\pi}{N} \right) \]
\[= \cos \frac{p'k\pi}{N} \]
\[= z_k. \]
Hence it holds
\[T_{N+1}(z_k) - T_{N-1}(z_k) = 0. \]
By properties of Tchebychev polynomials, it is seen that
\[T_{N+1}(1) - T_{N-1}(1) = 0, \]
\[T_{N+1}(-1) - T_{N-1}(-1) = 0. \]
We remark that the degree of \(X_n(x) = \frac{T_{N+1}(x) - T_{N-1}(x)}{2(x^2 - 1)} \) is \(N - 1 \) and \(z_1, \cdots, z_{\frac{N-1}{2}} \) are zeros. Because both of \(T_{N+1}(x) \) and \(T_{N-1}(x) \) are even functions, then \(-z_1, \cdots, -z_{\frac{N-1}{2}}\) are also zeros of \(X_n(x) \). Hence \(X_n(x) \) is a functions of \(x^2 \). Here by replacing \(x \) by \(\frac{\sqrt{t}}{2\sqrt{C_{(p,q,a,b)}}} \), the degree of \(Y_{(n,a,b)}(t) \) is \(\frac{N-1}{2} \), and the roots of \(Y_{(n,a,b)}(t) \) are
\[4C_{(p,q,a,b)}z_k^2 = 4C_{(p,q,a,b)} \cos^2 \frac{\pi k}{N} \quad \left(0 < k < \frac{N - 1}{2} \right), \]
which are all non trivial values of \(\frac{1}{\tau_{(a,b)}(M_n)}. \)
Here we check the normalization condition. By the definition of \(Y_{(n,a,b)}(t)\) and properties of \(T_{N+1}(x), T_{N-1}(x)\), one has
\[
Y_{(n,a,b)}(0) = \frac{T_{N+1}(0) - T_{N-1}(0)}{2(0 - 1)} = \frac{(-1)^{\frac{N+1}{2}} - (-1)^{\frac{N-1}{2}}}{2} = (-1)^{\frac{N+1}{2}}.
\]
Hence it can be seen
\[
\sigma_{(p,q,n)}(0) = \prod_{(a,b)} (-1)^{\frac{N+1}{2}} = \prod_{(a,b)} \left((-1)^{\frac{N+1}{2}} \right)^{\frac{N(p+1)}{4}} = (-1)^{(N-1)p(q-1)}.
\]
Therefore we obtain the formula.

Case 2: \(p = 2p'\) and \(n < 0\)
In this case we modify \(N = |2p'qn + 1| = 2p'|q|n| - 1\). By the same arguments, it is easy to see the claim of the theorem is proved.

Next assume both of \(p, q\) are odd integers.

Case 3: \(p, q\) are odd and \(n\) is even
If \(n\) is even, then \(N = |pqn + 1|\) is odd. Then the similar arguments in [5] work well. Then it can be proved.

Case 4: \(p, q\) are odd and \(n\) is odd
Suppose \(n\) is positive. First note that \(N = |pqn + 1|\) is even. We can modify one factor \((1 + \cos \frac{pk\pi}{N})\) of \(\frac{1}{\tau_p(M_n)}\) as follows. It is clear because \((q, N) = 1\).

Lemma 4.6. The set \(\{\cos \frac{pk\pi}{N} | 0 < k < N, k \equiv n \text{ mod } 2\}\) is equal to the set \(\{\cos \frac{b\pi}{N} | 0 < k < N, k \equiv 1 \text{ mod } 2\}\).

Now we can modify
\[
\frac{1}{2} \left(1 + \cos \frac{pk\pi}{N} \right) = \frac{1}{2} \cdot 2 \cos^2 \frac{pk\pi}{2N} = \cos^2 \frac{pk\pi}{2N}.
\]
We put
\[
z'_k = \cos \frac{pk\pi}{2N} (1 \leq k \leq N - 1, k \equiv 1 \text{ mod } 2).
\]
Here we substitute $x = z'_k \ (1 \leq k \leq \frac{N-1}{2}, k \equiv 1 \mod 2)$ to $T_N(x)$. Then one has
\[
T_N(z'_k) = \cos \left(\frac{N(pk\pi)}{2N} \right) \\
= \cos \left(\frac{pk\pi}{2} \right) \\
= 0
\]
because pk is odd.
Similarly it can be also seen that
\[
T_N(-z'_k) = 0.
\]
We mention that the degree of $X'_n(x) = T_N(x)$ is N and $\pm z'_1, \cdots, \pm z'_{N-1}$ are the zeros. Because $X'_n(x)$ is a functions of x^2. Here by replacing x by \(\frac{\sqrt{N}}{2\sqrt{C(p,q,a,b)}}\), Here it holds that its degree of $Y_{(n,a,b)}(t)$ is $\frac{N-1}{2}$, and the roots of $Y_{(n,a,b)}(t)$ are
\[
4C(p,q,a,b)z^2_k = 4C(p,q,a,b)\cos^2 \frac{\pi k}{N} \left(0 < k < \frac{N - 1}{2} \right),
\]
which are all non trivial values of $\frac{1}{\tau_{(n,a,b)}(M_n)}$.
Finally we can check the normalization condition as follows. By the definition of $Y_{(n,a,b)}(t)$, one has
\[
Y_{(n,a,b)}(0) = T_N(0) \\
= (-1)^{\frac{N}{2}}
\]
and
\[
s_{(p,q,n)}(0) = \prod_{(a,b)} (-1)^{\frac{N}{2}} \\
= \left((-1)^{\frac{N}{2}} \right)^{\frac{(p-1)(q-1)}{2}} \\
= (-1)^{\frac{N(p-1)(q-1)}{4}}.
\]
Therefore we obtain the formula.
In the case that n is negative, then it can be proved by similar arguments. Therefore this completes the proof. \(\square\)

Remark 4.7. By defining as $X_0(t) = 1$, it implies $Y_{(0,a,b)}(t) = 1$. Then the above statement is true for $n = 0$.

By direct computation, one obtains the following corollary.
Corollary 4.8. The degree \(\deg(\sigma_{(p,q,n)}(t)) \) is given by

\[
\deg(\sigma_{(p,q,n)}(t)) = \begin{cases}
\frac{(N-1)p(q-1)}{8} & (p \text{ even, } q \text{ odd}), \\
\frac{(N-1)(p-1)q}{8} & (p \text{ odd, } q \text{ even}), \\
\frac{(N-1)(p-1)q}{8} & (p, q \text{ odd, } n \text{ even}), \\
\frac{N(p-1)(q-1)}{8} & (p, q \text{ odd, } n \text{ odd}).
\end{cases}
\]

We mention the 3-term relations. For each factor of \(Y_{(n,a,b)}(t) \) of \(\sigma_{(p,q,n)}(t) \), there exists the following relation.

Proposition 4.9.

1. Assume one of \(p \) and \(q \) is even. For any \(n \), it holds that

\[
Y_{(n+1,a,b)}(t) = D(t)Y_{(n,a,b)}(t) - Y_{(n-1,a,b)}(t)
\]

where \(D(t) = 2T_{pq} \left(\frac{\sqrt{\sigma}}{2\sqrt{\epsilon_{pq,a,b}}} \right) \).

2. Assume both of \(p, q \) are odd. For any \(n \), it holds that

\[
Y_{(n+2,a,b)}(t) = D(t)Y_{(n,a,b)}(t) - Y_{(n-2,a,b)}(t)
\]

where \(D(t) = 2T_{2pq} \left(\frac{\sqrt{\sigma}}{2\sqrt{\epsilon_{2pq,a,b}}} \right) \).

Proof. Here we need to consider \(N = |pqn + 1| \) is a function of \(n \in \mathbb{Z} \) for fixed \(p, q \). Then we write \(N(n) \) for \(N \) in this proof. The proof for the first case is essentially the same one for the 3-term relations [5]. We give the proof only for the second case. Recall the following property of Tchebychev polynomials

\[
2T_m(x)T_n(x) = T_{m+n}(x) + T_{m-n}(x)
\]

for any \(m, n \in \mathbb{Z} \).

Case 1: \(n \) is even

If \(n > 0 \) one has

\[
2T_{2pq}(x)X_n(x) = 2T_{2pq}(x)X_{N(n)+1}(x) - T_{N(n)-1}(x)
\]

\[
= T_{pq(n+1)+1+2pq}(x) + T_{pq(n+1)+1-2pq}(x) - (T_{pq(n+1)+1+2pq}(x) + T_{pq(n+1)+1-2pq}(x))
\]

\[
= T_{pq(n+2)+1+1}(x) - T_{pq(n+2)+1-1}(x) + T_{pq(n-2)+1+1}(x) - T_{pq(n-2)+1-1}(x)
\]

\[
= T_{N(n+2)+1}(x) - T_{N(n+2)-1}(x) + T_{N(n-2)+1}(x) - T_{N(n-2)-1}(x)
\]

\[
= X_{n+2}(x) + X_{n-2}(x).
\]
Therefore it can be seen that
\[X_{n+2}(x) = 2T_{2pq}(x)X_{n}(x) - X_{n-2}(x) \]
and
\[Y_{(n+2,a,b)}(t) = 2T_{2pq}\left(\frac{\sqrt{t}}{2\sqrt{C_{(2p,q,a,b)}}}\right) Y_{(n,a,b)}(t) - Y_{(n-2,a,b)}(t). \]
If \(n < 0 \), it can be also proved by the above argument.

Case 2: \(n \) is odd
If \(n > 0 \), one has
\[2T_{2pq}(x)X'_{n}(x) = 2T_{2pq}(x)T_{N(n)}(x) \]
\[= T_{pq(n+1)2pq}(x) + T_{pq(n+1-2pq}(x) \]
\[= T_{pq(n+2)+1}(x) + T_{pq(n-2)+1}(x) \]
\[= T'_{N(n+2)}(x) + T_{N(n-2)}(x) \]
\[= X'_{n+2}(x) + X'_{n-2}(x). \]
Therefore it can be seen that
\[X'_{n+2}(x) = 2T_{2pq}(x)X'_{n}(x) - X'_{n-2}(x) \]
and
\[Y_{(n+2,a,b)}(t) = 2T_{2pq}\left(\frac{\sqrt{t}}{2\sqrt{C_{(2p,q,a,b)}}}\right) Y_{(n,a,b)}(t) - Y_{(n-2,a,b)}(t). \]
If \(n < 0 \), it can be also proved.
This completes the proof of this proposition. \(\square \)

5. Examples

Finally we give some examples.

Example 5.1. Put \(p = 4, q = 3 \). Now \(N = |12n + 1| \). In this case \((a, b) = (1, 1), (3, 1)\). By applying the main theorem, one has
\[\sigma_{(4,3,-1)}(t) = 34359738368t^{10} - 77309411328t^{9} + 66840428544t^{8} \]
\[- 28655484928t^{7} + 6677331968t^{6} - 882900992t^{5} + 66371584t^{4} \]
\[- 2723840t^{3} + 55680t^{2} - 480t + 1. \]
\[\sigma_{(4,3,0)}(t) = 1. \]
\[\sigma_{(4,3,1)}(t) = 439804651104t^{12} - 12094627905536t^{11} + 13434657701888t^{10} \]
\[- 7859790151680t^{9} + 2670664351744t^{8} - 552909930496t^{7} \]
\[+ 71319945216t^{6} - 5727322112t^{5} + 278757376t^{4} \]
\[- 7741440t^{3} + 110208t^{2} - 672t + 1. \]
Example 5.2. Put $p = 3, q = 5$. Now $N = |15n + 1|$. In this case $(a, b) = (1, 1), (1, 3)$. For any odd number n, one has

$$
\sigma_{(3,5,0)}(t) = Y_{(n,1,1)}(t)Y_{(n,1,3)}(t)
= T_N \left(\frac{\sqrt{t}}{2 \sqrt{C_{(3,5,1,1)}}} \right) Y_N \left(\frac{\sqrt{t}}{2 \sqrt{C_{(3,5,1,3)}}} \right).
$$

By applying the main theorem, we obtain

$$
\sigma_{(3,5,-1)}(t) = 18014398509481984t^{14} - 47287796087390208t^{13} + 51721026970583040t^{12}
- 3084789822883456t^{11} + 1108500135333068t^{10} - 2520389888507904t^9
+ 372923420377088t^8 - 36436086620160t^7 + 2352597696512t^6
- 98837200896 + 260502322t^4 - 40341504t^3 + 329280t^2 - 1176t + 11.
\sigma_{(3,5,0)}(t) = 1.
\sigma_{(3,5,1)}(t) = 4611686018427387904t^{16} - 13835058055282163712t^{15}
+ 17726168133330272256t^{14} - 12754194144713244672t^{13}
+ 5718164151876976640t^{12} - 1682516673287946240t^{11}
+ 334779300425236480t^{10} - 45872724622442496t^9
+ 4367893693202432t^8 + 288911712583680t^7
+ 13126896451584r^6 - 399582953472t^5
+ 7798652928t^4 - 90832896t^3 + 563200t^2 - 1536t + 1.
$$

References

1. D. Johnson, A geometric form of Casson’s invariant and its connection to Reidemeister torsion, unpublished lecture notes.
2. T. Kitano, Reidemeister torsion of Seifert fibered spaces for $SL(2; \mathbb{C})$ representations, Tokyo J. Math. 17 (1994), 59–75.
3. T. Kitano, Reidemeister torsion of the figure-eight knot exterior for $SL(2; \mathbb{C})$-representations, Osaka J. Math. 31 (1994), 523–532.
4. T. Kitano, Reidemeister torsion of a 3-manifold obtained by an integral Dehn-surgery along the figure-eight knot, [arXiv:1506.00712](https://arxiv.org/abs/1506.00712) to appear in Kodai Math. J.
5. T. Kitano, A polynomial defined by the $SL(2; \mathbb{C})$-Reidemeister torsion for a homology 3-sphere obtained by a Dehn surgery along a $(2p, q)$-torus knot, [arXiv:1506.01774](https://arxiv.org/abs/1506.01774) to appear in Tohoku Math. J.
6. L. Moser, Elementary surgery along a torus knot, Pacific J. Math. 38 (1971), 737–745.
7. J. Porti, Reidemeister torsion, hyperbolic three-manifolds, and character varieties, [arXiv:1511.00400](https://arxiv.org/abs/1511.00400)
