COVID-19 の感染リスクを管理するための紫外（UV）放射に関する
CIE ポジションステートメント

2020年5月12日

序文

コロナウイルス感染症（COVID-19）のパンデミックにより、この感染症の原因である重症急性呼吸器症候群コロナウイルス 2（SARS-CoV-2）の蔓延を封じ込め、また緩和するための環境制御の模索が加速している。SARS-CoV-2 は、通常、大きな呼吸器飛沫との接触によって直接人から人へと感染するが、ウイルスで汚染された表面（フォミテとも呼ばれる）に触れた後、目、鼻、口に触れることで感染する。ここで重要なのは、呼吸器からの大きな飛沫が乾燥して飛沫核を形成し、数時間空気中に残ることによりウイルスが空気感染するという証拠が増えてきていることである。表面の性質や環境要因にもよるが、この感染源は数日間、感染能力を維持する場合がある (van Doremalen 2020)。

殺菌紫外照射（germicidal UV, GUV）の使用により、病原体（細菌やウイルスなど）の接触による広がりや空気を介した拡散の両方を減少させることができる。波長 254nm を中心とした UV-C 領域（波長 200 nm～280 nm）の GUV は、70年以上前から安全に使用されている。しかし、GUV は、量やその安全性に適切な注意を払い、豊富な知識を持って使用なければならない。GUV の不適切な使用は、人の健康や安全性に問題を生じ、病原体の不活性化が不十分となる可能性がある。GUV は家庭での使用を避けるべきで、また臨床的に正当化された場合を除き、絶対に皮膚の殺菌に使用してはならない。

GUV とは？

紫外放射は、私たちが光として認識する可視放射よりもエネルギーが高い（波長が短い）光放射の一部であり、GUV はこの波長のうち殺菌目的で使用される紫外放射のことをさす。

紫外放射は、生体への影響に基づいて波長領域別に分類されている。CIE によって、UV-A は 315 nm から 400 nm の波長範囲の光放射、UV-B は 280 nm から 315 nm の波長範囲の光放射、UV-C は 100 nm から 280 nm の波長範囲の光放射として定義されている。紫外放射のうち UV-C が最もエネルギーが高い。紫外放射のほとんどの領域は一部の微生物やウイルスに損傷を与える可能性があるが、UV-C が最も効果的であるため、この波長域による光放射が GUV として最も一般的に使用されている。

（空気中や表面に付着した）病原体を 90 % 不活性化するのに必要な照射量は、環境条件（相対湿度など）や病原体の種類によって異なる。一般的に、波長 254 nm を主に放射する水銀ランプの場合、病原体を 90 % 不活性化するのに必要な照射量は 20 J/m² から 200 J/m² である (CIE 2003)。これまでに、エボラウイルスで汚染された表面の殺菌に波長 254 nm の
UVが有効であることが示されている（Sagripanti and Lytle 2011；Jinadatha他2015；Tomas他2015）。他の研究では、Livermore Veterans病院においてインフルエンザ発生時のGUVの有効性が実証されている（Jordan 1961）。しかし、GUVのSARS-CoV-2に対する有効性に関するデータは、現在、研究が進行中であるが、公表されていない。

殺菌のためのGUVの使用

UV-Cは長年にわたり水の殺菌に実績がある。さらに、UV-C殺菌は、空気清浄装置に組み込まれ、空気清浄装置のバイオフィルム機能を維持し、空気殺菌するために使われている。CIE 2003）

ヘルスケア環境におけるポリマー材料の導入と抗生物質やワクチンの可用性が示されるまで、UV-C光源は、いくつかの国で手術室や他の部屋を一晩滅菌するために一般的に使用されていた。近年、医療分野では、部屋の空気や接触する可能性のある表面を殺菌するために、部屋全体に対してUV-C放射装置を使用することに再び関心が高まっている。このような装置は、部屋の特定の場所に一定期間配置すると、また影響を最小化するために環境を移動するロボットユニットとしても可能である。表面殺菌は、室内に適切な位置にUV-C光源を置くこと、また対象物に近接してUV-C光源を置くことで可能となる。

いくつかの国では、パンデミックにおける個人用保護具の殺菌のためのUV-Cの限定的な使用が検討されている（Jinadatha他2015；Nemeth他2020）。

病院での標準的な手作業による洗浄の補助手段としてUV-Cの利用が効果的であることを示す証拠が増えているが、より具体的な適用のためのガイドラインを標準的な試験方法と同様に開発する必要がある。

室内上部の空気を殺菌するためのUV-C光源は、通常、天井付近に取り付けられ、循環空気を殺菌するために連続的に動作する。このような方法は、結核の感染を抑制することに成功している（Mphaphlele 2015；Escombe 2009；DHHS 2009）。文献の統計的なレビューに基づき、世界保健機関（WHO）は、結核感染症の予防と制御の手段として、室内上部でのGUVの使用を推奨している（WHO 2019）。

いくつかの実験室での研究では、室内上部空気のUV-Cによる殺菌の効果は、相対湿度、温度条件および空気循環に依存することが明らかになっている（Ko他2000；Peccia他2001）。Escombeら（2009）は、ペルーのリマにおいて非空調病棟の天井付近にUV-C光源を設置し調べたところ、相対湿度が77％と高いにもかかわらず、空気中の結核菌による感染リスクが顕著に減少していることを確認した。

UV-Cの使用に伴うリスク

ほとんどの人は自然にUV-Cに曝露されることはない。太陽のUV-C放射は、たとえ標高が高いところであっても、主に大気によって遮断されている（Piazena and Häder 2009）。人間のUV-Cへの曝露は、一般的には人工的な光源によって引き起こされる。UV-Cは皮膚の最外層のみで表皮の基底層にはほとんど到達せず、目の角膜においても表層よりも深くまで浸透しない。目をUV-Cにさらすと光角膜炎になることがある、これは砂を目にこすりつけたような痛みを伴う炎症である。光角膜炎の症状は、露出後24時間以内に発症し、症状が治まるまでにさらに24時間かかる。
高放射照度の UV-C に皮膚がさらされると、紅斑（日焼けに似た皮膚の赤み）が発生することがある（ISO/CIE 2019）。この紅斑は通常、目に UV-C を浴びた症状よりも痛みが少ない。しかし、UV-C により発症した紅斑は、UV-C 曝露歴があることが知られていない場合には、皮膚炎と誤診されることがある。紅斑の原因となる UV-C レベルが皮膚に繰り返し曝露することで、身体の免疫系に影響を及ぼす可能性があるという根拠がいくつか示されており（Gläser 他 2009）。

紫外放射は一般的に発がん因子とされているが（ISO/CIE 2016）、UV-C のみでヒトがんが発生するという証拠はない。技術報告書 CIE 187:2010（CIE 2010）は、この問題について議論し、次のように結論付けていく。

紫外殺菌は、低圧水銀ランプ（UVGI）からの紫外放射は潜在的に発がん性があると認識されているが、皮膚ガンの相対リスクは、労働者が日常的に曝露される他の光源（太陽など）からのリスクよりも有意に低い。殺菌効果のある紫外放射は、安全かつ効果的に使用することで、皮膚ガンなどの長期的な遅延作用について大きなリスクを伴うことなく、室内の上層空気を殺菌すること可能である。」

国際非電離放射線防護委員会（ICNIRP）は、UV-C を含む紫外放射の職業曝露に関するガイドラインを発表している。保護されていない目及び皮膚への紫外放射の曝露は、光化学作用による紫外放射ハザードのための作用関数のピーク波長である 270 nm の光放射において 30 J/m² を超えてはならないとされている。紫外放射の危険性は波長に依存し、波長 254 nm の光放射では最大曝露限界は 60 J/m² となる。さらに波長 222 nm の光放射では、最大（光化学作用）曝露限界はさらに大きく、約 240 J/m² となっている。この波長 222 nm の光放射は、殺菌目的で現在継続して研究されている（Buonanno 他 2017；Welch 他 2018；Narita 他 2018；Taylor 他 2020；Yamano 他 2020）。前述した一日の紫外放射曝露限界は、製品の光生物学的安全性に関する IEC/CIE 規格（IEC/CIE 2006）に記載されている。

代表的な UV-C 光源は、UV-C 以外の波長の光放射を含むことも多い。UV-C 光源の中には、UV-B や UV-A 放射を含むものがあり、また UV-C 殺菌光源としているが、UV-C 放射がほとんど出ていないこともある。このような様々な製品による紫外放射の曝露は、皮膚がんのリスクを高める可能性があり、これを最小限に抑えるために保護対策を講じる必要がある。空気殺菌において再循環ダクトに固定されている紫外放射光源や、水の殺菌に使用されている紫外放射光源は、人への曝露の危険性がないことが多い、設計されているが、紫外照射区域内で作業するような場合には、労働者は、産業用衣類（厚手の布地など）や産業用顔面保護具（フェイスシールド）などの個人用保護具を着用することが必要である（ICNIRP 2010）。フルフェイスレスピレーター（CIE 2006）とディスポーザブルグローブ（CIE 2007）も紫外放射から保護に有効である。

UV-C の測定

UV-C の一般的な測定は、通常、ポータブル UV-C 放射照度計を使用して行われる。理想的には、各放射計の校正は国際単位系（SI）にトレーサブルであり、ISO/IEC 17025（ISO/IEC 2015）に従って認定された試験所によって校正されることが望ましい（BIPM 2019a；BIPM 2019b）。さらに、UV-C 放射照度計を使用する際には、校正証明書を確認し、報告書に記載されているすべての補正係数を適用することが重要である。校正証明書は通常、校正に使用された UV-C 光源に対してのみ有効であり、他のタイプの光源を測定する際

注：UVGI は、Ultraviolet Germicidal Irradiation の略。
には大きな外れが発生する可能性がある。ほとんどの UV-C 放射照度計の校正は、通常、低圧水銀ランプの波長 254 nm の輝線発光を使用して行われている。校正済みの UV-C 放射照度計を、波長 254 nm とは著しく異なる波長（波長範囲）の UV 光源の測定に使用した場合、スペクトル不一致による外れが数十パーセントの発生する可能性がある。UV-C 放射照度計の中には、例えば UV-LED 光源やエキシマランプでの使用など、254 nm 以外の波長を考慮して校正されているものもある。

紫外放射計を校正する際には、校正試験所がユーザーにどのようなタイプの光源の評価に使用するかを確認することが最善であり、理想的には、スペクトル不一致による外れを減らすために、ユーザーが測定する光源と類似した分光分布をもつ光源を使用して機器を校正するのが望ましい。CIE 220:2016（CIE 2016）は、紫外放射計の特性評価と校正のためのガイドラインを提供している。光放射の有効性の測定に関する詳細は、（ICNIRP/CIE 1998）を参照されたい。現在、CIE と ICNIRP では、光放射の測定と光生物学的影響に関するオンラインチュートリアルを開催している（CIE/ICNIRP 2020）。

消費者向け製品

現在の COVID-19 パンデミックに伴い、表面や空気の効率的な殺菌を目的とする多くの UV-C 製品が市場に投入されている。消費者向け製品の安全性に関する具体的なガイドラインは、国際電気標準会議（IEC）などの国際機関が担っており、CIE が提供するものではない。したがって、本ポジションペーパーでは、殺菌のための紫外放射の安全な使用と適用に関してより広い問題を取り扱っている。消費者に提供される製品は、通常、持ち運び可能な機器として販売されている。CIE は、このような持ち運び可能な機器によるユーザーが有害なレベルの UV-C に曝される可能性があることを懸念している。また、消費者が UV 製品を不適切に使用・取扱いをしたり（そのため効果的な殺菌ができない）、実際には UV-C を放射していない製品を購入したりする可能性もある。

提言のまとめ

UV-C を放射する製品は、空気や表面の殺菌や水の殺菌に非常に有効である。CIE と WHO は、臨床的に正当な理由がない限り、手やその他の皮膚を殺菌するために紫外線殺菌ランプを使用することについて警告している（WHO 2020）。UV-C は人間や動物にとって非常に危険であるため、安全規制に準拠し適切に設計された製品、または安全性を最優先とし非常に管理された状況でのみ使用することができ、ICNIRP（2004）および IEC/CIE（2006）で設定された曝露限界を超えないことを保証する必要がある。適切な UV 測定は、UV 評価とリスク管理のために不可欠である。

参考文献

BIPM (2019a) The International System of Units (SI), 9th Edition. Downloadable at https://www.bipm.org/utils/common/pdf/si-brochure/SI-Brochure-9-EN.pdf
BIPM (2019b) The International System of Units (SI), 9th Edition – Appendix 3: Units for photochemical and photobiological quantities. Downloadable at https://www.bipm.org/utils/common/pdf/si-brochure/SI-Brochure-9-App3-EN.pdf, accessed 2020-04-24.
Buonanno, M., Ponnaiya, B., Welch, D., Stanislauskas, M., Randers-Pehrson, G., Smilenov, L., Lowy, F.D., Owens, D.M. and Brenner, D.J. (2017) Germicidal Efficacy and Mammalian Skin Safety of 222-nm UV Light. Radiat Res 187(4): 483-491. DOI:10.1667/RR0010CC.1

CIE (2003) CIE 155:2003 Ultraviolet Air Disinfection. Freely available at http://cie.co.at/news/cie-releases-two-key-publications-uv-disinfection

CIE (2006) CIE 172:2006 UV protection and clothing.

CIE (2007) CIE 181:2007 Hand protection by disposable gloves against occupational UV exposure.

CIE (2010) CIE 187:2010 UV-C photocarcinogenesis risks from germicidal lamps. Freely available at http://cie.co.at/news/cie-releases-two-key-publications-uv-disinfection

CIE (2016) CIE 220:2016 Characterization and Calibration Methods of UV Radiometers.

CIE/ICNIRP (2020) CIE/ICNIRP Online Tutorial on the Measurement of Optical Radiation and its Effects on Photobiological Systems, August 25, 2020 to August 27, 2020. http://cie.co.at/news/cieicnirp-online-tutorial-measurement-optical-radiation-and-its-effects-photobiological-systems, accessed 2020-04-24.

DHHS (2009) Environmental Control for Tuberculosis: Basic Upper-Room Ultraviolet Germicidal Irradiation Guidelines for Healthcare Settings, DHHS (NIOSH) Publication Number 2009-105, https://www.cdc.gov/niosh/docs/2009-105/default.html, accessed 2020-04-25.

Escombe, A.R., Moore, D.A., Gilman, R.H., Navincopa, M., Ticona, E., Mitchell, B., Noakes, C., Martínez, C., Sheen, P., Ramirez, R., Quino, W., Gonzalez, A., Friedland, J.S., Evans, C.A. (2009) Upper-room ultraviolet light and negative air ionization to prevent tuberculosis transmission. PLoS Med. 6(3):e43. DOI: 10.1371/journal.pmed.1000043.

Gläser, R., Navid, F., Schuller, W., Jantschitsch, C., Harder, J., Schröder, J.M., Schwarz, A., Schwarz, T. (2009) UV-B radiation induces the expression of antimicrobial peptides in human keratinocytes in vitro and in vivo. Journal of Allergy and Clinical Immunology 123(5): 1117-1123. DOI: 10.1016/j.jaci.2009.01.043

ICNIRP (2004) ICNIRP Guidelines – On limits of exposure to ultraviolet radiation of wavelengths between 180 nm and 400 nm (incoherent optical radiation), Health Physics 87(2):171-186; 2004. Available at http://www.icnirp.org

ICNIRP (2010) ICNIRP Statement – Protection of workers against ultraviolet radiation, Health Physics 99(1):66-87; DOI: 10.1097/HP.0b013e3181d85908 Available at http://www.icnirp.org

ICNIRP/CIE (1998) ICNIRP 6/98 / CIE x016-1998. Measurement of Optical Radiation Hazards.

IEC/CIE (2006) IEC 62471:2006/CIE S 009:2002 Photobiological safety of lamps and lamp systems / Sécurité photobiologique des lampes et des appareils utilisant des lampes. (bilingual edition)

ISO/IEC (2015) ISO/IEC 17025:2015 General requirements for the competence of testing and calibration laboratories.

ISO/CIE (2016) ISO/CIE 28077:2016(E) Photocarcinogenesis action spectrum (non-melanoma skin cancers).

ISO/CIE (2019) ISO/CIE 17166:2019(E) Erythema reference action spectrum and standard erythema dose.

2 2020-06-25 まで限定無料
Jinadatha, C., Simmons, S., Dale, C., Ganachari-Mallappa, N., Villamaria, F.C., Goulding, N., Tanner, B., Stachowiak, J., Stibich, M. (2015) Disinfecting personal protective equipment with pulsed xenon ultraviolet as a risk mitigation strategy for health care workers. *Am J Infect Control* 43(4): 412-414. DOI: 10.1016/j.ajic.2015.01.013

Jordan, W.S. (1961) The Mechanism of Spread of Asian Influenza, *Am Rev Resp Dis*. Volume 83, Issue 2P2, Pages 29-40. DOI: 10.1164/arrd.1961.83.2P2.29

Ko, G., First, M.W., Burge, H.A. (2000) Influence of relative humidity on particle size and UV sensitivity of Serratia marcescens and Mycobacterium bovis BCG aerosols. *Tubercle and Lung Disease*. Volume 80, Issues 4–5, Pages 217-228. DOI: 10.1054/tuld.2000.0249

Mphaphlele, M. (2015) Institutional Tuberculosis Transmission. Controlled Trial of Upper Room Ultraviolet Air Disinfection: A Basis for New Dosing Guidelines. *Am J Respir Crit Care Med*. 192(4):477-84. DOI: 10.1164/rcrm.201501-0060OC

Narita, K., Asano, K., Morimoto, Y., Igarashi, T., Hamblin, M.R., Dai, T. and Nakane, A. (2018) Disinfection and healing effects of 222-nm UVC light on methicillin-resistant Staphylococcus aureus infection in mouse wounds. *Journal of Photochemistry and Photobiology B: Biology* 178: 10-18. DOI: 10.1016/j.jphotobiol.2017.10.030

Nemeth, C., D. Laufersweiler, E. Polander, C. Orvis, D. Harnish, S. E. Morgan, M. O'Connor, S. Hymes, S. Nachman and B. Heimbuch (2020). "Preparing for an Influenza Pandemic: Hospital Acceptance Study of Filtering Facepiece Respirator Decontamination Using Ultraviolet Germicidal Irradiation." *J Patient Saf*. DOI 10.1097/PTS.0000000000000600.

Peccia, J., Werth, H.M., Miller, S., Hernandez, M. (2001) Effects of Relative Humidity on the Ultraviolet Induced Inactivation of Airborne Bacteria, *Aerosol Science and Technology*, Volume 35, Issue 3, DOI: 10.1080/02786820152546770

Piazena, H. and Häder, D.-P. (2009) Solar UV-B and UV-A irradiance in arid high-mountain regions: Measurements on the island of Tenerife as compared to previous tropical Andes data. *Journal of Geophysical Research: Biogeosciences*. 114(G4). DOI: 10.1029/2008JG000820

Sagripanti, J.-L. and Lytle, C.D. (2011) Sensitivity to ultraviolet radiation of Lassa, vaccinia, and Ebola viruses dried on surfaces. *Archives of Virology* 156(3): 489-494. DOI: 10.1007/s00705-010-0847-1

Taylor, W., Camilleri, E., Craft, D.L., Korza, G., Granados, M.R., Peterson, J., Szczpaniak, R., Weller, S.K., Moeller, R., Douki, T., Mok, W.W.K. and Setlow, P. (2020) DNA Damage Kills Bacterial Spores and Cells Exposed to 222-Nanometer UV Radiation. *Applied and Environmental Microbiology* 86(8): e03039-03019. DOI:10.1128/aem.03039-19

Tomas, M.E., Cadnum, J.L., Jencson, A., Donskey, C.J. (2015) The Ebola disinfection booth: evaluation of an enclosed ultraviolet light booth for disinfection of contaminated personal protective equipment prior to removal. *Infect Control Hosp Epidemiol*. 36(10): 1226-1228. DOI: 10.1017/ice.2015.166

van Doremalen, N., Bushmaker, T., Morris, D.H., Holbrook, M.G., Gamble, A., Williamson, B.N., Tamin, A., Harcourt, J.L., Thornburg, N.J., Gerber, S.I., Lloyd-Smith, J.O., de Wit, E., Munster, V.J. (2020) Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. *N Engl J Med*. 382: 1564-1567. DOI: 10.1056/NEJMc2004973

Welch, D., Buonanno, M., Grilj, V., Shuryak, I., Crickmore, C., Bigelow, A.W., Randers-Pehrson, G., Johnson, G.W. and Brenner, D.J. (2018) Far-UVC light: A new tool to control the spread of airborne-mediated microbial diseases. *Scientific Reports* 8(1): 2752. DOI: 10.1038/s41598-018-21058-w
WHO (2019) WHO guidelines on tuberculosis infection prevention and control. 2019 update. Geneva: World Health Organization.

WHO (2020) https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public/myth-busters, accessed 2020-04-22.

Yamano, N., Kunisada, M., Kaidzu, S., Sugihara, K., Nishiaki-Sawada, A., Ohashi, H., Yoshioka, A., Igarashi, T., Ohira, A., Tanito, M. and Nishigori, C. (2020) Long-term effects of 222 nm ultraviolet radiation C sterilizing lamps on mice susceptible to ultraviolet radiation. Photochemistry and Photobiology. DOI: 10.1111/php.13269

CIE 及び CIE ポジションステートメントについて

国際照明委員会（International Commission on Illumination）は、フランス語の名称である「Commission Internationale de l'Electricairage」から CIE とも呼ばれ、光と照明、色と視覚、光生物学、画像技術の科学と芸術に関連するすべての事項について、世界的な協力と情報交換を行うことを目的としています。

CIE は、技術的、科学的、文化的な基盤を持つ独立した非営利団体であり、加盟国のためには自発的に活動しています。1913年の設立以来、CIE はこの分野における最高の権威として認められており、光と照明の基礎に関する世界標準を発行している国際標準化団体としてISOに認められています。

CIE ポジションステートメントは、関連するCIE技術委員会との合意を確認した後、すべてのCIE部門（CIEの科学的作業を実施する機関）の理事を含むCIE理事会によって承認されます。

For any further information please contact

CIE Central Bureau
Kathryn Nield, General Secretary
Babenbergerstraße 9/9A, A-1010 Vienna, Austria
Phone: +43 1 714 31 87
Email: kathryn.nield@cie.co.at
Website: http://www.cie.co.at