Case Report

Neo Left Main Channel Creation Using Double Stenting Alongside a Sapien 3 Aortic Valve Bioprosthesis for Left Main Coronary Obstruction Following Valve-in-Valve Transcatheter Aortic Valve Replacement: A Case Report With Review of Literature

Apuvra D. Patel, MD, MPH1,2,3, Thomas Haldis, DO1, Kais Al Balbissi, MD2, and Timir Paul, MD, PhD2

Abstract
Transcatheter aortic valve replacement in the setting of failed surgical bioprosthesis (valve-in-valve) is a valuable option for patients with bioprosthetic aortic stenosis or regurgitation who are deemed high risk for repeat open heart surgery. Although the procedure is successful with proper preprocedural assessment, instances of left main (LM) coronary artery ostium obstruction have been documented. We present a case of LM coronary obstruction in the immediate postoperative period following implantation of a 20-mm Edwards Sapien 3 valve inside the degenerated 21-mm Mitroflow bioprosthesis stenosis, which was treated with double stenting alongside the Edwards Sapien 3 valve creating a channel (“neo left main”) that extended from mid-LM to the upper margin of the Edwards Sapien 3 valve. Although valve-in-valve in a Mitroflow degenerated bioprosthesis is a relatively safe procedure, 2 or more stents may be necessary to scaffold a channel to the coronary arteries between Edwards Sapien 3 prosthesis and aorta in the event of a coronary obstruction.

Keywords
transcatheter aortic valve replacement, valve-in-valve, left main coronary obstruction, aortic stenosis

Introduction
With the advancement in technology, transcatheter aortic valve replacement (TAVR) for failed surgical aortic bioprosthesis (valve-in-valve [VIV]) has become a widely accepted option for patients at high risk for redo open heart surgery.1 The TAVR procedure is successful in the majority of patients, though coronary ostial obstruction has been reported as one of the most serious complications associated with high mortality.1-5 Data suggest that insertion of Edwards Sapien 3 valve in VIV procedure is not associated with coronary obstruction.6-10 We reported the first case of left main (LM) coronary ostium obstruction following insertion of Edwards Sapien 3 valve on degenerated Mitroflow aortic bioprosthesis stenosis, successfully treated with the insertion of 2 bare metal stents creating a channel between Edwards Sapien 3 valve and aorta toward LM coronary artery ostium.

Case Description
An 81-year-old female presented with increasing shortness of breath with exertion for about 1 year. Past surgical history was significant for aortic valve replacement using a 21-mm Mitroflow bioprosthesi for aortic stenosis and coronary artery bypass surgery with a left internal mammary artery...
graft to the left anterior descending artery 3 years before the current presentation. Comorbidities included atrial fibrillation, obesity, hypertension, and hyperlipidemia. Physical examination showed grade 3/6 systolic murmur in the right second intercostal space. Echocardiography revealed severe bioprosthetic stenosis with a mean transaortic gradient of 41 mm Hg and aortic valve orifice of 0.9 cm². The left ventricular systolic function was preserved and there was mild mitral stenosis. Coronary angiography showed a left dominant circumflex and atretic left internal mammary artery graft to the distal left anterior descending artery. LM coronary artery was widely patent. Transfemoral implantation of a 20-mm Edwards Sapien 3 valve inside 21-mm Mitroflow bioprosthesis under the guidance of transesophageal echocardiography was initially uneventful (Figure 1). Postprocedure, the patient was extubated in the catheterization suite, during which she complained of chest pain. Deep ST-segment depression was noted on a cardiac monitor and an electrocardiogram (ECG) suggesting possible anterolateral and inferior subendocardial ischemia. Stat echocardiography showed a mild reduction in left ventricular systolic function, but no evidence of pericardial effusion, aortic root dissection, or aortic hematoma. Urgent coronary angiography revealed Mitroflow leaflet overriding the LM ostium with poor flow in the left coronary artery (Figure 2). Upper cells of Edwards Sapien 3 valve could not be crossed because of obstruction by the prosthetic valve leaflet, so the LM artery was wired and ballooned behind the Sapien 3 valve (Figure 3). A channel (“neo left main”) was created alongside the Edwards Sapien 3 valve extending from mid-LM artery to the upper margin of the Edwards Sapien 3 valve. The first stent was compressed by the Edwards Sapien 3 valve and aorta. Two bare metal stents were needed to scaffold the Edwards Sapien 3 valve efficiently and to provide a new LM coronary artery channel.

Discussion

Coronary obstruction following VIV TAVR procedure is uncommon with an overall reported incidence of ≤3.5% across different VIV registries. This in addition to the
data from case reports and case series have documented instances of coronary obstruction with the use of various transcatheter heart valves (THVs) on stented or stentless surgical bioprostheses. However, no data exist on incidence or management of coronary obstruction in patients undergoing Edwards Sapien 3 THV for the failed Mitroflow surgical bioprosthesis. Mechanical obstruction of LM coronary ostium is more common than right ostium, and acute hemodynamic compromise is reported more often than delayed presentation following TAVR. This case highlights the importance of management of coronary obstruction in the setting of VIV utilizing Edwards Sapien 3 THV for the failed Mitroflow bioprosthesis. Mechanical obstruction of LM coronary ostium is more common than right ostium, and acute hemodynamic compromise is reported more often than delayed presentation following TAVR. This case highlights the importance of management of coronary obstruction in the setting of VIV utilizing Edwards Sapien 3 THV for the failed Mitroflow bioprosthesis. Mechanical obstruction of LM coronary ostium is more common than right ostium, and acute hemodynamic compromise is reported more often than delayed presentation following TAVR.3,13-19 This case highlights the importance of management of coronary obstruction in the setting of VIV utilizing Edwards Sapien 3 THV for the failed Mitroflow bioprosthesis. Mechanical obstruction of LM coronary ostium is more common than right ostium, and acute hemodynamic compromise is reported more often than delayed presentation following TAVR. If VIV is considered an optimal approach in patients with high risk for surgery, then during the procedure it is recommended to perform balloon valvuloplasty initially. If after valvuloplasty a patient remains hemodynamically stable and risk of coronary obstruction seems higher, then it is recommended to preemptively protect the coronary by putting a wire and a stent. Once the valve is deployed, it is recommended to take several angiographic pictures from different directions during withdrawal of guide, such that the assessment of coronary obstruction before removal of wire and stent can be made. Since the late presentation of coronary obstruction is possible, postprocedure ECG, echocardiography, and signs and symptoms of myocardial ischemia evaluation are warranted. In this report, the patient developed coronary obstruction even after a thorough assessment of the risk of obstruction. However, there are operative factors that could have contributed to the coronary obstruction and with the use of procedural steps as highlighted above could have provided smoother management in this instance. First, the implantation of SAPIEN 3 valve inside a Mitroflow prosthesis was high (Figures 2-4). Second, it would have been the more straightforward management of coronary obstruction if we had wired the coronary ostium before the implantation of the SAPIEN 3 valve. We did not anticipate this problem beforehand and hence did not wire the ostium. In situations such as this, where it is difficult to approach coronary ostium post VIV, creating a channel between obstructing and bulkier Mitroflow leaflets and aorta could be considered such that deployment of stent in coronary ostium becomes easier and such a channel could potentially be kept open from the upper aspect of the Mitroflow leaflets and Edwards Sapien 3 valve to the LM coronary ostium.

Conclusion

Coronary obstruction is a rare complication of VIV procedure when an Edward Sapien 3 valve is used in the setting of degenerated Mitroflow bioprosthesis. Careful assessment of the anatomical relationship between coronary ostia and Mitroflow bioprosthesis using either computed tomography and/or transesophageal echocardiography is important. Placement of stents between bioprosthetic valve leaflets and aorta may be needed to create a channel between the upper margins of Edward Sapien 3 valve and LM artery in the setting of LM ostium obstruction.
Author, Year	Type of Study	Number of Subjects	Number of Subjects With Coronary Obstruction, n (%)	Branch of Coronary Ostial Obstruction	Treatment of Coronary Obstruction	Degeneration Mode (Stenosis, Regurgitation, Mixed), n (%)	Type of Surgical Bioprosthesis, n (%)	Type of VIV THV				
Webb et al, 2017	PARTNER 2 VIV registry	365	3 (0.8)	Not available	Not available	Stenosis: 197/357 (55)	Stented: 337/365 (92)	23- or 26- mm Sapien XT				
Alnasser et al, 2017	VIV international data registry	162; Portico (n = 54) and CoreValve (n = 108)	2 (1.9); CoreValve	Not available	Not available	Regurgitation: 84/357 (24)	Stentless or homograft2/365 (6)	Stenosis: 56/162 (35)	Mixed: 76/357 (21)	Unknown: 6/365 (2)	Stented: 142/162 (88)	23-, 25-, or 26- mm Portico, or CoreValve
Cokburn et al, 2017	Case series	6	2	Left main	Subject 1: balloon aortography and repeat surgery	Regurgitation: 52/162 (32)	Stentless: 20/162 (12)	Stenosis: 5 (33)	Sorin Freedom Solo (stentless)	26-mm CoreValve (n = 1); 23-mm Evolut-R (n = 3); 23-mm Lotus (n = 1)		
Praz et al, 2016	Case report	1	1	Left and right main	Removal of Lotus valve	Regurgitation	Sorin Freedom Solo (stentless)	29-mm CoreValve	29-mm CoreValve			
Fabris et al, 2016	Case report	1	1	Left and right main	Resolute stent 4.0 × 15 mm in left main, and 3.5 × 18 mm in right main artery	Regurgitation	St. Jude Toronto (stentless)	29-mm CoreValve				
Allende et al, 2014	Case report	1	1	Left main	Promus element 4.0 × 12 mm stent	Mixed	Freestyle (stentless)	23-mm Sapien XT				
Dvir et al, 2012	Global VIV registry	202; CoreValve (n = 124) and Sapien XT (n = 78)	7 (3.5); 4 CoreValve and 3 Sapien XT	Left main	Not available	Stenosis: 85/202 (42)	Stented: 155 (77)	26-mm CoreValve and 23-mm Sapien XT				
Gurvich et al, 2011	Case series	2	2	Left and right main (subject 1); left main (subject 2)	CABG and sternotomy (subject 1); inoperable (subject 2)	Regurgitation: 68/202 (34)	Stentless: 47 (23)	Stentless: 47 (23)	23-mm Edwards Sapien (subject 1) and 26-mm CoreValve (subject 2)			

Abbreviations: VIV, valve-in-valve; THV, transcatheter heart valve; PARTNER 2, placement of aortic transcatheter valves 2; CABG, coronary artery bypass grafting.
Declaration of Conflicting Interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author(s) received no financial support for the research, authorship, and/or publication of this article.

Ethics Approval
Our institution does not require ethical approval for reporting individual cases or case series.

Informed Consent
Verbal informed consent was obtained from the patient for her anonymized information to be published in this article.

ORCID iD
Timir Paul https://orcid.org/0000-0003-2020-154X

References
1. Webb JG, Dvir D. Transcatheter aortic valve replacement for bioprosthetic aortic valve failure: the valve-in-valve procedure. Circulation. 2013;127:2542-2550.
2. Dvir D, Webb JG, Bleiziffer S, et al. Transcatheter aortic valve implantation in failed bioprosthetic surgical valves. JAMA. 2014;312:162-170.
3. Dvir D, Webb J, Brecker S, et al. Transcatheter aortic valve replacement for degenerative bioprosthetic surgical valves: results from the global valve-in-valve registry. Circulation. 2012;126:2335-2344.
4. Ribeiro HB, Webb JG, Makkar RR, et al. Predictive factors, management, and clinical outcomes of coronary obstruction following transcatheter aortic valve implantation: insights from a large multicenter registry. J Am Coll Cardiol. 2013;62:1552-1562.
5. Dvir D, Leipsic J, Blanke P, et al. Coronary obstruction in transcatheter aortic valve-in-valve implantation: preprocedural evaluation, device selection, protection, and treatment. Circ Cardiovasc Interv. 2015;8:e002079.
6. Fournier S, Monney P, Roguelov C, et al. First reported successful femoral valve-in-valve transcatheter aortic valve replacement using the Edwards Sapien 3 valve. J Invasive Cardiol. 2015;27:E220-E223.
7. Schymik G, Schrofel H, Heimeshoff M, Luik A, Thoenes M, Mandinov L. How to adapt the implantation technique for the new SAPIEN 3 transcatheter heart valve design. J Interv Cardiol. 2015;28:82-89.
8. Wohrle J, Gonska B, Rodewald C, et al. Transfemoral aortic valve implantation with the new Edwards Sapien 3 Valve for treatment of severe aortic stenosis-impact of valve size in a single center experience. PLoS One. 2016;11:e0151247.
9. Gonska B, Seeger J, Rodewald C, Schambek D, Rottbauer W, Wohrle J. Transfemoral valve-in-valve implantation for degenerated bioprosthetic aortic valves using the new balloon-expandable Edwards Sapien 3 valve. Catheter Cardiovasc Interv. 2016;88:636-643.
10. Husser O, Pellegrini C, Kessler T, et al. Outcomes after transcatheter aortic valve replacement using a novel balloon-expandable transcatheter heart valve: a single-center experience. JACC Cardiovasc Interv. 2015;8:1809-1816.
11. Webb JG, Mack MJ, White JM, et al. Transcatheter aortic valve implantation within degenerated aortic surgical bioprostheses: PARTNER 2 Valve-in-Valve Registry. J Am Coll Cardiol. 2017;69:2253-2562.
12. Alnasser S, Cheema AN, Simonato M, et al. Matched comparison of self-expanding transcatheter heart valves for the treatment of failed aortic surgical bioprosthesis: insights from the Valve-in-Valve International Data Registry (VIDIV). Circ Cardiovasc Interv. 2017;10:e004392.
13. Cockburn J, Dooley M, Parker J, et al. Transcatheter aortic valve-in-valve treatment of degenerative stentless supra-annular Freedom Solo valves: a single centre experience. Catheter Cardiovasc Interv. 2017;89:438-444.
14. Praz F, Moschovitis A, Stortecky S, Pilgrim T, Eberle B, Windecker S. Bilateral, reversible coronary obstruction during aortic valve-in-valve implantation of a repositionable valve system. EuroIntervention. 2016;12:1195.
15. Fabris E, Perkan A, Rauber E, et al. Bilateral coronary obstruction in high-risk transcatheter aortic valve-in-valve implantation: when procedural strategy counts. Int J Cardiol. 2016;203:672-674.
16. Allende R, Ribeiro HB, Paradis JM, et al. Guidewire protection for a valve-in-valve transcatheter aortic valve implantation procedure with high-risk for coronary obstruction. Arch Cardiovasc Mex. 2014;84:322-324.
17. Gurvitch R, Cheung A, Bedogni F, et al. Coronary obstruction following transcatheter aortic valve-in-valve implantation for failed surgical bioprostheses. Catheter Cardiovasc Interv. 2011;77:439-444.
18. Seipelt RG, Hanekop GG, Schoendube FA, Schillinger W. Heart team approach for transcatheter aortic valve implantation procedures complicated by coronary artery occlusion. Interact Cardiovasc Thorac Surg. 2012;14:431-433.
19. Kukucka M, Pasic M, Dreyssse S, Hetzer R. Delayed subtotal coronary obstruction after transapical aortic valve implantation. Interact Cardiovasc Thorac Surg. 2011;12:57-60.
20. Chakravarty T, Jilaihawi H, Nakamura M, et al. Pre-emptive positioning of a coronary stent in the left anterior descending artery for left main protection: a prerequisite for transcatheter aortic valve-in-valve implantation for failing stentless bioprostheses? Catheter Cardiovasc Interv. 2013;82:E630-E636.