African Journal of Emergency Medicine 9 (2019) 1–7

African Journal of Emergency Medicine

journal homepage: www.elsevier.com/locate/afjem

ORIGINAL ARTICLE

Developing a South African Helicopter Emergency Medical Service Activation Screen (SAHAS): A Delphi study

Diane Laatz*, Tyson Welzel, Willem Stassen

Division of Emergency Medicine, University of Cape Town, South Africa

ARTICLE INFO

Keywords:
Helicopter Emergency Medical Services
Air ambulances
Prehospital care
Emergency medical dispatch

ABSTRACT

Introduction: Helicopter Emergency Medical Services (HEMS) are an expensive resource that should be utilised efficiently to optimise the cost-benefit ratio. This is especially true in resource-limited settings, such as South Africa. This may be achieved by implementing call-out criteria that are most appropriate to the healthcare system in which HEMS operate. Currently, there are no published evidence-based HEMS call-out criteria developed for South Africa. By identifying patients that are most likely to benefit from HEMS, their utilisation can be enhanced and adjusted to ensure optimal patient outcome. We aimed to systematically utilise expert opinions to reach consensus on HEMS call-out criteria that are contextual to the South African setting.

Methods: A modified Delphi technique was used to develop call-out criteria, using current literature as the basis of the study. Purposive, snowball sampling was employed to identify a sample of 118 participants locally and internationally, of which 42 participated for all three rounds. Using an online survey platform, binary agreement/disagreement with each criterion was sought. Acceptable consensus was set at 75%. Statements were sent out in the third round ascertaining whether participants agreed with the analysis of the first two rounds.

Results: After two rounds, consensus was obtained for 63% (36/57) of criteria, while 64% of generated statements received consensus in the third round. Results emphasised the opinion that HEMS dispatch criteria relating to patient condition and incident locations were preferential to a comprehensive list. Through collation of these results and international literature, we present an initial concept for a South African HEMS Activation Screen (SAHAS), favouring inquiry on a case-by-case basis.

Discussion: The combination of existing literature and participant opinions, established that call-out criteria are most efficient when based on clinical parameters and geographic considerations, as opposed to a specified list of criteria. The initial concept of our SAHAS should be investigated further.

African relevance

- HEMS is a costly resource with unproven benefits in the LMIC setting.
- No published evidence-based HEMS call-out criteria have been developed for South Africa.
- Appropriate call-out criteria can improve the cost-effectiveness of the service.
- Identifying patients that are most likely to benefit from HEMS can ensure optimal patient outcome.

Introduction

Utilised internationally since the Second World War [1], Helicopter Emergency Medical Services (HEMS) were first introduced to the South African civilian setting in 1976. Based in Johannesburg, the first helicopter service was utilised for inter-hospital transfers [2]. Currently, HEMS are used for both inter-hospital transfers and primary scene responses, with services operating in six out of the nine South African provinces [2].

In the South African setting, a number of factors delay patients’ access to healthcare, including the heterogeneous distribution of specialist and tertiary hospitals, the disproportionate population distribution between rural and urban areas, and the shortage of paramedics [3,4]. If used appropriately, HEMS can reduce time to definitive care, increase accessibility for patients in remote or inaccessible areas, as well as bypass hospitals, and deliver patients directly to the most appropriate level of care. In this manner, HEMS may potentially reduce...
the burden on local EMS systems by reducing inter-hospital transfers and prolonged hospital stay [5–7].

Unfortunately, HEMS are known to be a costly resource. Delgado et al. suggested that in order for HEMS to be cost-effective in the United States, there must be a minimum of a 15% reduction in mortality amongst critically injured patients transported [8]. This relates to 1.3 lives saved for every 100 critical patients flown by HEMS to cost < 100,000 USD for every quality adjusted life year gained. Reducing over-triage will improve cost-effectiveness [8]. Thus highlighting the need to optimise dispatch criteria to improve HEMS cost-effectiveness [9].

Internationally, HEMS are dispatched to incidents following three modes of activation: 1) Immediate dispatch 2) Interrogated dispatch and 3) Crew request. These are based on the mechanism of injury, physiological parameters, the severity and location of injuries, age, distance/time to an appropriate facility and the geographical accessibility of the incident [10]. This model is not practical for the low-to middle-income country (LMIC) setting, as it results in high over-triage, and reducing cost-benefit ratio.

In South Africa, HEMS activation is not standardised, resulting in inconsistent HEMS dispatch between different services. Typically, on-scene EMS providers are required to perform a clinical assessment of the patient before consulting with the Chief Medical Officer (CMO) on duty. CMO’s are ultimately responsible for determining eligibility, and authorisation for flight. It is our experience that this process is highly subjective. Furthermore, no recently accepted or evidence-based criteria exist to guide CMO’s decision. This seems to rather be guided by non-standardised interrogation and information gathered during consultation with ground crews.

A more detailed HEMS authorisation procedure specifically designed for the South African environment is needed; identifying which patients would gain maximal benefit from HEMS. The aim of this study was to systematically utilise expert opinions to reach consensus on a HEMS call-out criteria, which is contextual to the South African setting. We further aimed to create a screening tool based on these data to guide HEMS activations locally.

Methods

A modified Delphi methodology was utilised, as this allows the researchers to gain insight from experts in the field, with an understanding of the specific resources and needs within the South African environment. Currently accepted criteria from literature and well-established HEMS hompages was used to develop a list of call-out criteria [11–14]. These criteria were collated and presented to participants to decide whether these specific HEMS call-out criteria were applicable to the South African setting. A total of 62 call-out criteria were listed under four headings: 1) Mechanism of injury [25 criteria]; 2) Patient Characteristics – Anatomical location of injury [14 criteria]; 3) Patient Characteristics – Physiologic Parameters [15 criteria]; 4) Miscellaneous [8 criteria].

An online survey platform, SurveyMonkey* (Palo Alto, CA, USA) [15], was used for the study and potential participants were invited via personalised email links. Purposive, snowball sampling was used to identify an appropriate sample of physicians and paramedics locally and internationally. Physicians needed a minimum of two years’ experience within the fields of Emergency Medicine, Surgery or Anaesthesiology. In addition to this, HEMS exposure was required-either operationally or involvement in the authorisation process. Paramedics needed a minimum of two years’ experience in the pre-hospital environment with at least part-time HEMS experience.

The survey had a binary outcome – participants were asked to express agreement or disagreement with criteria listed. Consensus was set at 75%. Participants also had the opportunity to provide any justifications or suggestions in a free text field after each criterion, giving insight into the reasoning behind answers.

After each round, content analysis was performed, extracting certain themes or ideas that were popular amongst participants. Feedback of those criteria not reaching consensus was presented back to the panel for re-evaluation. A total of three rounds were conducted.

Consensus data, free text responses and international literature was then collated and categorised to develop a first concept of a South African HEMS Activation Screen (SAHAS) that might guide dispatch decision-making.

This study was approved by the Human Research Ethics Committee of the University of Cape Town (774/2015). Participants gave consent by clicking “agree” on the first question of the survey, with anonymity remaining throughout each round using customised program settings. Results are presented in accordance with the proposed Conducting and REporting DELphi Studies (CREDES) checklist [16].

Results

We identified and invited 118 experts, of which 65 completed surveys for round one, 49 participants completed surveys in round two and 42 completed surveys for round three. This yields an initial response rate of 55% and an attrition rate of 25% after round one, and 14% after round two. Our results are in line with previous studies describing acceptable sample sizes (n = 15–20) [17] and attrition rates (< 30%) [18].

The demographic information of the expert panel is presented in Table 1. The majority of the panel were South African paramedics (n = 41, 63%) with 11–15 years post-graduate experience (n = 18, 27%) and greater than five years of part-time HEMS experience (n = 17, 27%). Notably, 20% (n = 13) of the panel had greater than five years’ full-time HEMS experience.

Consensus was obtained in 32% (18/57) of the collated criteria after the first round, increasing to 63% (36/57) following the second round. Criteria were sub-divided into categories, with “Mechanism of Injury” obtaining 48% (12/25), “Patient Characteristics: Anatomy” obtaining 86% (12/14), “Patient Characteristics: Physiologic parameters” obtaining 60% (6/10) and “Miscellaneous” obtaining 75% (6/8) consensus after two rounds. The individual consensus levels at each round for every criteria are contained in the online appendix.

Free text responses from the first two rounds were subject to content

Qualification	n	%
Paramedic	47	72
Critical Care Assistant	10	15
NDip: Emergency Medical Care	5	8
BTech: Emergency Medical Care	24	37
Non-South African Qualification	8	12
Medical Doctor	18	28
Anaesthesia	9	33
Emergency Medicine	9	50
Surgery	1	6
Aviation	2	11
Country of qualification		
South Africa	58	89
Other	7	11
Experience		
2-5 Years	10	15
6-15 Years	30	46%
More than 16 Years	25	39
Years HEMS Experience		
Part-time Experience	41	63
Full-time: Under 5 years	11	17
Full-time: More than 5 years	13	20

NDip: National Diploma; BTech: Bachelor of Technology; HEMS: Helicopter Emergency Medical Service.
Table 2: Summary of round three statements.

Statements
1’) HEMS dispatch should be based on the patients’ clinical condition, the on-scene resources, the environmental and geographical conditions, and the distance to appropriate facility.
2’) Time-saving aspect of HEMS is often overestimated, need for consideration of delays typically associated with HEMS.
3’) HEMS should be dispatched if, after clinical evaluation, the patients’ injuries require surgical interventions and HEMS is guaranteed to be the fastest mode of transport to appropriate facility.
4’) HEMS should be dispatched if, after clinical evaluation, the patient needs pre-hospital stabilization and there is no ALS on or near scene.
5’) HEMS should be dispatched only if time for HEMS to reach patient/scene is faster than ground transportation without ALS to hospital (“load-and-go”).
6’) HEMS should be dispatched for difficult or delayed ground access by ambulance, i.e. Bad terrain, poor road conditions, traffic, etc. Which will delay time to hospital significantly ONLY in the case of time-critical injuries.
7’) Alternatively, regardless of the severity of the injury, HEMS should be dispatched for difficult or significantly delayed ground access by ambulance, i.e. Bad terrain, poor road conditions, etc.
8’) For “Patient Characteristics: Anatomy”, isolated injuries cannot justify HEMS use, additional signs and symptoms or comorbidities indicating critical injuries requiring surgical interventions are necessary. Even in these cases, the deciding factor should be the time-saving aspect of HEMS.
9’) For “Patient Characteristics: Anatomy”, even with the presence of comorbidities, a thorough clinical examination needs to be performed to justify HEMS use.
10’) Only in extreme cases without paramedics available on GEMS or exceptionally poor road conditions, does analgesia warrant HEMS.
11’) Time-saving ability of HEMS supersedes the medical expertise associated with HEMS.
12’) Known cardiac/respiratory disease, if HEMS can guarantee reduced transport times.
13’) Utilising a CRAMS score < 8 as an indication for HEMS is a helpful score for clinical assessment, however it is too unfamiliar to utilise as a new evaluation tool.
14’) Cardiac arrest (post-traumatic) with ROSC does not warrant HEMS, unless HEMS has the ability to effectively treat patient with thoracotomy, blood transfusion, etc.

Statements with > 75% consensus.

Discussion

Our aim was to systematically utilise expert opinions in order to develop a more specific HEMS call-out criteria for the South African environment. Despite reaching consensus on the majority of criteria presented, our panel emphasised the importance of a more generalised screening tool, which can be adapted to individual cases. Participants believed that by doing this, there will be a more methodical approach to dispatching HEMS, where the logistical benefit of HEMS is identified primarily. Only if HEMS meets one or more of these criteria, should the patient’s clinical need be investigated through interrogation by the CMO.

From the responses obtained in this Delphi study, we present a possible screening tool that could be used to guide dispatch in Fig. 2. Our proposed screening tool has been adapted from the Centre of Disease Control and Prevention (CDC) guidelines, the National Association of EMS Physicians (NAEMSP) and comments received from participants in all three rounds [20,21]. We combined criteria identified as appropriate for HEMS activation, with the views of the participants. All participants were of the opinion that there should be no definitive criteria, and that any indication for authorising HEMS should be viewed with as much knowledge of the incident location and available resources.

Thomas et al. reinforced this approach to HEMS dispatch as their findings recommended that the CDC guidelines have the potential to positively impact patient outcomes. They emphasise the importance of adapting the criteria to the local healthcare systems’ abilities [22]. Therefore, by combining clinical and logistical components, patient risk stratification can be performed, identifying patients that will benefit maximally from HEMS.

Our proposed screening tool (South African HEMS Activation Screen, SAHAS), interrogates three aspects to HEMS activation namely, logistic eligibility, clinical eligibility and other restrictions. We discuss each of these in turn.

Before the clinical need is determined, the participants felt that the logistical benefit of HEMS needs to be justified. During this phase of the screening tool, the call-taker is required to perform this investigation. As all participants agreed, the timesaving ability, geographical or environmental conditions, traffic congestion, or multiple casualties are all factors that could necessitate HEMS.

Most participants agreed that distance to the appropriate hospital is
an important factor in determining reduced total pre-hospital time. This is particularly true considering that multiple studies have established transport distances and transport times that correlate with an overall reduction in total pre-hospital time [23,24].

Direct transportation to a specialist trauma facility has been associated with a 25% reduction in mortality of critically injured patients [25]. These findings reinforce participants’ views regarding bypassing inappropriate facilities. Participants felt that HEMS was indicated in instances where the closest facility was not appropriate for the patients’ specific needs.

In South Africa, where the access to a specialist facility is determined by the patients’ geographic locale, HEMS could overcome these spatial barriers. The geographical location of the incident will play an important role in determining the need for HEMS based on their expertise treating these conditions. In the urban setting, there are often appropriately qualified paramedics on scene who can manage critically injured patients, however during peak-time traffic or multiple-casualty incidents, HEMS can be considered. In rural areas, where there is inadequate paramedic coverage, HEMS could be the fastest transportation mode to ensure appropriate management. However, the timesaving aspect of HEMS is only appreciable for transport distances > 73 km as well as inaccessible or difficult-to-reach locations [23]. However, these specific distances and transport times have not been established in the South African setting. We therefore utilise data from other settings within the screening tool.

After logistical factors have deemed appropriate for HEMS, the CMO will then perform a thorough clinical investigation to determine the clinical benefit of HEMS on a case-by-case basis. Findings from a critical review performed by Lee et al. identified that patients with more serious injuries (ISS > 15) or physiologic derangements gain the greatest benefit from HEMS [26]. This reinforces the need for a detailed clinical investigation in order to improve patient selection.

Patients with time-sensitive injuries, physiologic or anatomical insults, or those with specific healthcare requirements or needs are factored into this phase of authorisation.

In South Africa, trauma is the second leading cause of death, resulting in this being a common incident for EMS personnel to treat. Due to the high mortality rates associated with trauma, it is common for pre-hospital providers to seek additional resources when treating critical patients [11]. This results in a large volume of trauma patients being airlifted to a trauma hospital. Muhlbauer et al. identified road traffic accidents as the leading incident utilising HEMS, making up 36% of analysed cases [2].

A systematic review was done by Harmsen et al. investigating the influence of pre-hospital times on trauma patients. Their findings determined the importance of performing the appropriate pre-hospital clinical interventions rather than saving time when treating traumatised patients. They found that reduced pre-hospital times are only beneficial in haemodynamically unstable patients with penetrating trauma or in patients suffering neurotrauma [27]. This is in-line with the participants’ views, as they emphasised the importance of the correct patient being flown in preference to basing the decision purely on the hypothetical time-saving aspects of HEMS.

HEMS call-out criteria should be tailored to the local burden of disease of the system in which it functions. A shift in the current burden of disease is becoming apparent towards a larger incidence of non-communicable diseases such as stroke and myocardial infarction [28,29]. These conditions require time-sensitive interventions only available at specialist facilities. HEMS has the advantage over GEMS by improving access to specialist facilities to patients in rural and urban

Fig. 1. Delphi Participant Flow Diagram.
Fig. 2. South African Helicopter Emergency Medical Services Activation Screen (SAHAS).
areas [30,31].

HEMS authorisation cannot be restricted to a pre-defined list of clinical conditions or injuries, and an exhaustive list can therefore not be provided within the SAHAS. Other comorbidities should also be considered [32]. In keeping with the views of our panel, the importance of appropriate selection of CMOs cannot be over-emphasised.

The European Aeromedical Institute has a list of criteria that the CMO should meet in order to comply with their specified standards. The requirements include a licence to practice within the country of the service provider; four years clinical experience in either emergency medicine, anaesthesia or intensive care medicine; at least two years working in the critical care environment; maintaining clinical skills; fluent in the preferred language; and a safe understanding of aero-medical requirements and local resources [23]. We suggest creating and implementing a similar list for the South African setting in order to assist with the correct patient selection.

Once the logistical and clinical indications are confirmed, a flight risk assessment needs to be performed. This should be conducted independently of the patient information and should preferably be completed by an aviator. When considering HEMS dispatch, the safety of the crew overshadows any stipulated criteria. Pilots are to abide strictly to weather minima for each aircraft type and safe landing zones are to be prioritised. By abiding to this, the HEMS crews are protected from being pressured into flying patients [6]. Patient weight is also an important factor when determining the safety or feasibility of the flight. Each HEMS operation has weight and balance specifications for their specific aircraft, bearing in mind fuel, equipment, and crew weights. Strict adherence to these regulations enhances the overall safety of the HEMS operation [6,33].

We sampled a small cohort of international participants, which could bias results however, this may be mitigated by a larger local response bringing specific contextual views. This does consequently limit the external validity of the study.

We utilised expert opinion in this study which is the lowest level of evidence, and can only yield results identifying ‘first principles’ [34]. Further development, validation and refinement of this screening tool is recommended.

Consensus was not reached in all criteria, yet we expressly aimed at closing the study after three rounds in order to maintain opinions without forcing participants into consensus [35,36].

HEMS justification needs to be continuously assessed. This could be done by implementing regular audits on HEMS in South Africa and their impact on mortality and morbidity. We further suggest additional health economics studies on HEMS in LMICs to determine the cost to benefit ratio.

HEMS are a costly resource that should be dispatched to patients who would maximally benefit from its expedited transport and increased skillset. By appropriately selecting patients who will maximally benefit from HEMS, its utilisation can be optimised towards a more favourable cost-benefit ratio. There is a paucity of literature to highlight which patients could benefit from HEMS in LMICs like South Africa. We propose an initial concept for screening HEMS eligibility based on systematic utilisation of expert opinion and dispatch criteria found in the literature. Further research and validation of this SAHAS is required.

Conflicts of interest

The authors have no conflicts of interest to declare.

Authors’ contributions

Authors contributed as follows to the conception or design of the work; the acquisition, analysis, or interpretation of data for the work; and drafting the work or revising it critically for important intellectual content: DL contributed 60%, WS contributed 25%, and TW contributed 15%. All authors approved the version to be published and agreed to be accountable for all aspects of the work.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ajem.2018.09.001.

References

[1] Madzila M, Kopaski Z. Helicopter Emergency Medical Service – the past and the present. J Public Heal Nurs Med Rescue 2013:1.
[2] Mulhihauer D, Naidoo R, Hardcastle TC. An analysis of patients transported by a private helicopter emergency medical service in South Africa. South African Med J 2016;106(2):201.
[3] Linard C, Gilbert M, Snow RW, Noor AM, Tatem AJ. Population distribution, settlement patterns and accessibility across Africa in 2010. PLoS One 2012;7(2).
[4] Govebrd K, Grainger L, Naidoo R, Macdonald R. The pending loss of advanced life support paramedics in South Africa. African J Emerg Med 2012;2(2):59–66.
[5] Sung I, Lee T. Modeling requirements for an Emergency Medical Service system design evaluator. Korea Adv Inst Sci Technol 2012;7:793–805.
[6] Flockeare DJ, Stuhlmler DFE, Briathwaite SA, Thomas SH, Madden JF, Hanks DG, et al. Appropriate selection of CMOs cannot be over-emphasised.

[7] Cheddie S, Mackert DJJ, Hardcastle TC, den Hollander D, Canimjhee H, Moodley S. Direct admission versus inter-hospital transfer to a level I trauma unit improves survival: an audit of the new Insko Albert Luthuli central hospital trauma unit. South African Med J 2011;101(3):176–8.
[8] Delgado MK, Staudenmayer KL, Wang NE, Spain DA, Weis S, Owens DK, et al. Cost-effectiveness of physician staffed Helicopter Emergency Medical Service (HEMS) transport to a major trauma centre in NSW, Australia. Injury 2012;43(11):1843–9.
[9] Taylor C, Jan S, Curtis K, Trannes A, Li Q, Palmer C, et al. The cost-effectiveness of physician staffed Helicopter Emergency Medical Service (HEMS) transport to a major trauma centre in NSW, Australia. Injury 2012;43(11):1843–9.
[10] Thomas SH. Controversies in prehospital care: air medical response. Emerg Med Pract 2005;7:1–26.
[11] Bases & Fleet [Internet]. The SA Red Cross Air Mercy Service. 2017 [cited 11 February 2017]. Available from: https://www.ams.org.za/about-us/bases-fleet.
[12] HALO Aviation [Internet]. Haloav.co.za. 2017 [cited 11 February 2017]. Available from: http://www.haloav.co.za/home/services.
[13] Aeromedical Fleet – ER24 Emergency [Internet]. ER24 Emergency. 2017 [cited 11 June 2017]. Available from: https://www.er24.co.za/products-services/ aeromedical-fleet/.
[14] Aeromedical operations [Internet]. Netcare911.co.za. 2017 [cited 11 June 2017]. Available from: http://www.netcare911.co.za/Products-Services/Aeromedical-operations/.
[15] SurveyMonkey Inc. [Internet]. Palo Alto, California, USA; Available from: www.surveymonkey.com.
[16] Junger S, Payne S, Brine J, Radbruch L, Brearey S. Guidance on conducting and Reporting Delphi Studies (CREDES) in palliative care: recommendations based on a methodological systematic review. Palliat Med 2017;31(8):684–706.
[17] Ludwig B. Predicting the future: have you considered using the Delphi methodology? J Ext 1997;35(5).
[18] Walker A, Selfe J. The Delphi method: a useful tool for the allied health researcher. Br J Thor Rehabil 1996;36(12):677–81.
[19] Diaz M, Hendey G, Rivina H. When is the helicopter faster? a comparison of helicopter and ground ambulance transport times. J Trauma 2005;58(1):148–53.
[20] Sassor S, Hunt R, Paul M, Sugarman D, Pearson W, Dulski T. Centers for disease control and prevention: guidelines for field triage of injured patients. MMWR 2012;61(1).
[21] Brown JB, Forsythe RM, Stassen NA, Gestrine ML. The National Triage Telephone Protocol: can this tool predict which patients with trauma will benefit from helicopter transport? J Trauma Acute Care Surg 2012;73(2):319–25.
[22] Thomas SH, Brown KM, Oliver ZJ, Spaite DW, Lawner BJ, Sahni R, et al. The evidence-based guideline for the air medical transportation of prehospital trauma patients. J Trauma Acute Care Surg 2012;73(2):319–25.
[23] Diaz M, Hendey G, Rivina H. When is the helicopter faster? a comparison of helicopter and ground ambulance transport times. J Trauma 2005;58(1):148–53.
[24] Gordon K, Swan A, Thirkell C, Bailey M, Greenberg D. The Wellington Life Flight Helicopter Emergency Medical Service (HEMS): a retrospective audit against New Ministry of Health criteria. N Z Med J 2016;129(1427):1402:30–43.
[25] Mackenzie EJ, Rivara FP, Jurkovich GJ, et al. A national evaluation of the effect of trauma center care on mortality. N Engl J Med 2006;354:366–78.
[26] Lee E, Arthur A, Thomas S. Helicopter EMS transport outcomes literature: annotated review of articles published 2012–2013. Br J Med Res Pract 2014;4(19):3620–49.
[27] Harmsen AMK, Giannakopoulos G, Moerbeek PR, Jansma EP, Bonjer HJ, Bloemers FW. The influence of prehospital time on trauma patients outcome: a systematic review. Injury. Elsevier Ltd 2015;46(4):662–9.
[28] Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V. Global and regional mortality from 253 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012;380:2095–129.
Lim S, Vos T, Flaxman A. Burden of disease and injury attributable to 67 risk factors in 21 regions, 1990–2010: a systematic analysis for the global burden of disease study 2012. Lancet 2012.

Hutton C, Fleming J, Youngquist S, Hutton K, Heiser D. Stroke and HEMS transports: an analysis of 25332 patients. Air Med J 2015;34(6):348–56.

Phillips M, Arthur AO, Chandwaney R, Hatfield J, Brown B, Pogue K, et al. Helicopter transport effectiveness of patients for primary percutaneous coronary intervention. Air Med J 2013;32(3):144–52.

Andruszkow H, Schweigkoffer U, Lefering R, Frey M. Impact of helicopter emergency medical service in traumatized patients: which patient benefits most? PLoS One 2016:1–12.

Thomas S. Controversies in prehospital care: air medical response. Emerg Med Pract 2005;7(6).

OCEBM Levels of Evidence Working Group*. “The Oxford Levels of Evidence 2”. Oxford Centre for Evidence-Based Medicine. http://www.cebm.net/index. Jeremy Howick, Iain Chalmers (James Lind Library), Paul.

Von der Gracht HA. Consensus measurement in Delphi studies. Review and implications for future quality assurance. Technol Forecast Soc Change 2012;79(8):1525–36.

Skolmoski GJ, Hartman FT. The Delphi method for graduate research. J Inf Technol Educ 2007:6.