Unusual temperature dependence of the London penetration depth in all-organic \(\beta'' - (ET)_2SF_5CH_2CF_2SO_3\) single crystals

R. Prozorov and R. W. Giannetta
Loomis Laboratory of Physics, University of Illinois at Urbana-Champaign, 1110 West Green St., Urbana, Illinois 61801.

J. Schlueter and A. M. Kini
Chemistry and Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439.

J. Mohtasham, R. W. Winter, G. L. Gard
Department of Chemistry, Portland State University, Portland, Oregon 97207.

(March 21, 2022)

The temperature dependence of the in-plane, \(\lambda_\parallel(T)\), and interplane, \(\lambda_\perp(T)\), London penetration depth was measured in the metal-free all-organic superconductor \(\beta'' - (ET)_2SF_5CH_2CF_2SO_3\) (\(T_c \approx 5.2\) K). \(\Delta\lambda_\parallel(T) \propto T^3\) up to 0.5 \(T_c\), a power law previously observed only in materials thought to be \(p^-\) wave superconductors. \(\lambda_\perp\) is larger than the sample dimensions down to the lowest temperatures (0.35 K), implying an anisotropy of \(\lambda_\perp/\lambda_\parallel \approx 400 - 800\).

74.70.Kn, 74.25.Nf

Despite intensive study, neither the pairing mechanism nor the symmetry of the order parameter has been conclusively established in organic superconductors of the \(\kappa - (BEDT-TTF)_2X\) class. (Henceforth \textquotedblleft BEDT-TTF\textquotedblright \ will be abbreviated by \"ET\".) For the most thoroughly investigated materials, \(\kappa - (ET)_2Cu(NCS)_2\) \((T_c \approx 9.5\) K) and \(\kappa - (ET)_2Cu[N(CN)_2]Br\) \((T_c \approx 12\) K), there is some evidence for a \(d^-\) wave pairing \([4]\). However, recent penetration depth measurements revealed an unusual fractional power law variation, \(\Delta\lambda(T) \propto T^{3/2}\), unlike that of any other superconductor \([3]\). While this exponent is consistent with a novel three-fluid model \([3]\), it is also suggestive of a magnetic excitation. In this paper we report penetration depth measurements in \(\beta'' - (ET)_2SF_5CH_2CF_2SO_3\), a recently synthesized all-organic superconductor free of metallic ions and in which magnetism is likely to be negligible. This material is a strongly two dimensional, extreme type II superconductor with \(T_c \approx 5.2\) K. It is metallic between 10 and 150 K and semiconducting from 150 up to 410 K \([3]\). The upper critical field parallel to the conducting planes exceeds the Pauli limit by 18% raising the possibility of either an inhomogeneous pairing state \([3]\) or spin triplet order parameter \([3]\). We determine the London penetration depth for supercurrents both along \((\lambda_0)\) and perpendicular \((\lambda_\perp)\) to the conducting planes. The penetration depth is extremely anisotropic, with \(\lambda_\perp\) roughly 800 times larger than \(\lambda_0\). Notably, \(\lambda_0 \propto T^2\) which might imply an energy gap with nodes, but is difficult to reconcile with either \(p^-\) or \(d^-\) wave models in two dimensions. We suggest that this power law may arise from the unusual phonon spectrum in this material.

Single crystals of \(\beta'' - (ET)_2SF_5CH_2CF_2SO_3\) were grown at Argonne National Laboratory by an electrocrystallization technique described elsewhere \([3]\). The high conductance layers correspond to the \(ab\) plane and the \(c^*\) axis is normal to the planes. This designation is similar to cuprates, while different from the \(\kappa - (ET)_2X\) materials. The room-temperature interplane resistivity is roughly 700 \(\Omega\) cm while the in-plane resistivity is about 0.2 \(\Omega\) cm \([3]\). Two crystals - 0.5 \(\times\) 0.5 \(\times\) 0.3 mm\(^3\) and 0.8 \(\times\) 0.6 \(\times\) 0.3 mm\(^3\) were used for measurements. Each had a transition temperature of approximately 5.2 K. A third crystal was used to measure the absolute penetration depth. The penetration depth was measured with an 11 MHz tunnel-diode driven LC resonator \([9]\). Samples were mounted on a movable sapphire stage with temperature controllable from 0.35 K to 50 K. The low noise level, \(\Delta f_{\text{min}}/f_0 \approx 5 \times 10^{-10}\), resulted in a sensitivity of \(\Delta\lambda \leq 0.5\) Å for our samples. An rf field was applied either perpendicular to the conducting planes to probe \(\Delta\lambda_\parallel(T)\) or along the \(a^-\) axis to probe \(\Delta\lambda_\perp(T)\).

The resonator frequency shift due to superconducting sample, \(\Delta f \equiv f(T) - f_0\), is given by \([8]\):

\[
\frac{\Delta f}{f_0} = \frac{V_s}{2V_0(1 - N)} \left(1 - \frac{\lambda}{R} \tanh \frac{R}{\lambda} \right)
\]

where \(f_0\) is the frequency in the absence of a sample, \(V_s\) is the sample volume, \(V_0\) is the effective coil volume and \(N\) is the effective demagnetization factor. The apparatus and sample - dependent constant \(\Delta f_0 \equiv V_s f_0/(2V_0(1 - N))\) was measured by removing the sample from the coil in situ \([8]\). For \(\lambda \ll R\), \(\tanh R/\lambda \approx 1\) and the change in \(\lambda\) with respect to its value at low temperature is \(\Delta\lambda = -\delta f R/\Delta f_{\text{min}}\), where \(\delta f \equiv \Delta f(T) - \Delta f(T_{\text{min}})\). In the parallel orientation \((H \parallel ab)\), however, we had to use the full expression, Eq. \([8]\) to estimate \(\lambda_\perp\) due to the weak screening in that direction.
literature values. The mainframe of Fig. 2 shows the
T dependence of the screening length in Al-coated
YBCO. The method recently developed a new method to determine
\(\lambda \) and \(\Delta \) by measuring the variation of an Al-coated
superconductor. We estimate a value of \(\Delta \lambda (0) \approx 800 \) \(\mu m \).

To date, there have been no reported measurements of the zero temperature penetration depth, \(\lambda_{\parallel} \). We recently developed a new method to determine \(\lambda_{\parallel} \) that relies upon the change in screening of an Al-coated sample as the temperature is reduced from above \(T_c \) to below \(T_c \). The inset in Fig. 2 shows the data obtained in a single crystal of YBCO. The method yields a value of 0.145 \(\pm \) 0.010 \(\mu m \) which is within 5% of literature values. The mainframe of Fig. 2 shows the method applied to \(\beta'' - (ET)_2SF_2CH_2CF_2SO_3 \). Since \(T_c \) of this material is only 5.2 K, its penetration depth is still changing at 0.35 K and the method is less reliable than for cuprate superconductors. We estimate a value of \(\lambda_{\parallel} (T = 0) = 1 - 2 \) \(\mu m \), in rough agreement with values for other ET compounds and leading to an anisotropy of 400 - 800. Our measurements provide only the average of \(\Delta \lambda_{\parallel} (T) \). Microwave conductivity measurements revealed a small in-plane anisotropy of approximately 1.35 with a maximum along the b axis.

Figure 3 shows the low temperature variation of \(\Delta \lambda_{\parallel} \) obtained in two samples of \(\beta'' - (ET)_2SF_2CH_2CF_2SO_3 \). Data for sample 2 is offset for clarity. The horizontal axis is \(T^3 \) showing that \(\Delta \lambda (T) \propto T^3 \) with a slope of 0.07 \(\mu m/K^3 \). The cubic power law is obeyed up to \(\sim T_c/2 \). The Al coated sample, shown in Fig. 2 also showed \(\Delta \lambda (T) \propto T^3 \), but below \(T_c \) the signal from \(\beta'' - (ET)_2SF_2CH_2CF_2SO_3 \) is screened by the Al coating. Both the \(n = 3 \) exponent and the wide range over which it holds are unusual and have not been observed in cuprate superconductors. To highlight the differences among superconductors, we plot in Fig. 3 the normalized low temperature variation of the penetration depth in \(\kappa = (ET)_2Cu(NCS)_2 \) (uppermost curve), \(\beta'' - (ET)_2SF_2CH_2CF_2SO_3 \) (middle curve) and polycrystalline Nb for comparison. Solid lines are the fits to \(T^{3/2} \). All data were taken in the same apparatus.

FIG. 1. Frequency variation in parallel (\(\Delta f_{\parallel} \)) and perpen-
dicular (\(\Delta f_{\perp} \)) orientations of the magnetic with respect to super-
conducting layers. Usual notation in terms of current flow is
used. Inset: zoom of \(\Delta f_{\parallel} (T) \). Note substantial difference
in shielding ability for two orientations.

FIG. 2. Measurements of the absolute value of \(\lambda_{\parallel} (0) \) in
\(\beta'' - (ET)_2SF_2CH_2CF_2SO_3 \). Inset: Same technique applied to
YBCO.

It is possible that \(\beta'' - (ET)_2SF_2CH_2CF_2SO_3 \) has an
everly anisotropic s-wave order parameter and the \(T^3 \)
variation is an effective, intermediate temperature power
law that only holds above the low temperature, exponential region. Our numerical calculations show that anisotropic s-wave states, at least in weak coupling, do not exhibit a \(T^3 \) variation over any extended range. In fact, the data in Fig. 3 shows a slight downward deviation from \(T^3 \) at the lowest temperatures, implying a decrease in the exponent - just the opposite of exponential suppression. Strictly speaking, it is the power law variation of the superfluid density \(\rho_s \) which is most directly related to the structure of the gap. \(\Delta \lambda_{\parallel} (T) \) is the mea-
sured quantity and its temperature variation only asymptoti-
cally approaches that of \(\rho_s \). The superfluid density
versus temperature was calculated from \(\Delta \lambda_{\parallel} (T) \) for
\(\lambda_{\parallel} (0) = 0.5, 1, 2, 5 \mu m \). In each case, we found that a cubic power law remained the best fit, although the range over which it held was reduced for smaller choices of \(\lambda_{\parallel} (0) \).
It is also possible that a small tilt of the $c*$ axis relative to the field may induce interplane supercurrents and create an admixture of both $\lambda_1(T)$ and $\lambda_2(T)$ in the data. If the applied field is tilted by θ relative to the $c*$ axis the additional contribution to the observed frequency shift is given by [10],

$$\Delta f_{\text{tilt}} = \frac{f_0 V_s}{2 V_0} \left(1 - \frac{\lambda_1}{d} + \frac{\lambda_2}{w} \right) \sin^2(\theta) \quad (2)$$

The alignment was checked at room temperature by repeatedly attaching a sample to the sapphire rod with vacuum grease and measuring the divergence of a laser beam reflected off the sample surface. The average alignment error was never more than 2 degrees. To be conservative, we consider a misalignment of 5 degrees and using the data for $\Delta \lambda(T)$ from Fig. 1, calculate a maximum misalignment error of 4% in our determination of $\Delta \lambda(T)$ versus temperature. This value is too small to change our conclusion about the presence of an $n = 3$ exponent.

A T^3 variation of λ_1 is unusual, but was predicted for a three dimensional $p-$wave superconductor with an equatorial line of nodes; the so-called polar state with $\Delta(\hat{k}) = \Delta_0(T) \hat{k} \cdot \hat{l}$. Here, \hat{l} is the axis of gap symmetry which must lie parallel to the vector potential \hat{A} in order to obtain a cubic power law. If \hat{l} is perpendicular to \hat{A} the dependence is linear in T. The relevance to our data is questionable since $\beta'' - (ET)_{2}SF_{5}CH_{2}CF_{2}SO_{3}$ is strongly two dimensional and both d and $p-$wave states must have line nodes perpendicular to the ab plane, giving a linear T dependence. A T^3 dependence would then require an angular variation of the gap near the node, $\Delta(\phi) \propto \phi^{1/3}$, for which there is no obvious justification.

Previous tunnel diode measurements of the penetration depth in UPt_3, believed by many to be a p-wave superconductor, revealed intermediate exponents ranging from $n = 2-4$ depending upon surface preparation [14].

However, lower frequency measurements on the same samples gave lower power laws ($n = 1-2$) for reasons not understood, but possibly related to surface dissipation. SQUID measurements of the penetration depth in the heavy fermion material UBe_{13} gave $n = 2$, which could arise either from point nodes or impurity scattering [12,13]. The latter might be an issue in $\beta'' - (ET)_{2}SF_{5}CH_{2}CF_{2}SO_{3}$ since, at the low end, our data show a slight tendency toward a lower power law, possibly $n = 2$. Recent measurements in Sr_2RuO_4, also thought to be $p-$wave superconductor, have shown $\lambda \approx T^3$ in one sample, attributed to a combination of impurity scattering and nonlocality in a superconductor with line nodes [14]. $\beta'' - (ET)_{2}SF_{5}CH_{2}CF_{2}SO_{3}$ is an extreme type II material and nonlocality is unlikely to be an issue until one reaches temperatures of order $(\xi/\lambda)T_c \approx 0.05$ K [7]. Finally, on general grounds p-wave pairing is favored in materials with a tendency toward ferromagnetism, for which there is no evidence in this material. Although the discovery of a new pairing symmetry is appealing, $\beta'' - (ET)_{2}SF_{5}CH_{2}CF_{2}SO_{3}$ is sufficiently complex that other possibilities should be considered. Recent heat capacity measurements suggest a strong-coupling s-wave BCS state. They also indicate the presence of optical modes in the 20-40 K energy range [18]. Some time ago, it was shown theoretically that the coupling of electrons to low frequency, localized vibrations can give a temper-
ature dependence to the effective mass and thus a power law to the London penetration depth over and above that due to the superfluid fraction [19]. For example, a phonon density of states $g(E)$ varying as E^2 may give rise to a T^3 power law for an s-wave superconductor, in the absence of vertex corrections. Under most circumstances vertex corrections raise the power to T^5 making the effect extremely small, but this may not be true here. Our data suggest that strong coupling calculations involving a realistic phonon spectrum may be relevant for organic superconductors. We also wish to stress the desirability of NMR measurements in $\beta'' - (ET)^3 SF_3CH_2CF_2SO_3$ to help determine the parity of the order parameter.

ACKNOWLEDGMENTS

We wish to thank M. B. Salamon for useful discussions and for providing results on Sr_2RuO_4 prior to publication. Research at Urbana was supported through State of Illinois ICR funds. Research at Argonne was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences, under contract No. W-31-109-ENG-38. Research at Portland State University was supported by NSF grant No. CHE-9904316 and the Petroleum Research Fund, ACS-PRF 34624-AC7.

[1] A. Kawamoto, K. Miyagawa, Y. Nakazawa, and K. Kanoda, Phys. Rev. Lett. 74, 3455 (1995); H. Mayaffre, P. Wzietek, D. Jerome, C. Lenoir, and P. Batail, Phys. Rev.lett. 75, 4122 (1995); S. M. De Soto, C. P. Slichter, A. M. Kini, H. H. Wang, U. Geiser, and J. M. Williams, Phys. Rev. B, 52, 10364 (1995); S. Belin, K. Behmna, and A. Deluzet, Phys. Rev. Lett., 81 4728 (1998).

[2] A. Carrington, I. J. Bonalde, R. Prozorov, R. W. Gian netta, A. M. Kini, J. Schluter, H. H. Wang, U. Geiser, and J. M. Williams, Phys. Rev. Lett. 83, 4172 (1999).

[3] I. Kosztin, Q. J. Chen, B. Janko and K. Levin, Phys. Rev. B 58, R5936 (1998).

[4] H. H. Wang, M. L. VanZile, J. A. Schluter, U. Geiser, A. M. Kini, P. P. Sche, H. J. Koo, M. H. Whangbo, P. G. Nixon, R. W. Winter, and G. L. Gard, J. Phys. Chem. B 103, 5493 (1999).

[5] F. Zuo, P. Zhang, X. Su, J. S. Brooks, J. A. Schluter, J. Mohtasham, R. W. Winter, and G. L. Gard, J. Low Temp. Phys. 117, 1711 (1999).

[6] P. Fulde and R. A. Ferrel, Phys. Rev. 135, A550 (1964); A.I. Larkin and Yu.N. Ovechinnikov, Sov. Phys. JETP 20, 762 (1965).

[7] I. J. Lee, M. J. Naughton, G. M. Danner, P. M. Chaikin, Phys. Rev. Lett. 78, 3555 (1997).

[8] U. Geiser, J. A. Schluteter, H. H. Wang, A. M. Kini, J. M. Williams, P. P. Sche, H. I. Zakowicz, M. L. VanZile, J. D. Dudek, J. Am. Chem. Soc. 118, 9996 (1996).

[9] X. Su, F. Zuo, J. A. Schluter, J. M. Williams, P. G. Nixon, R. W. Winter, and G. L. Gard, Phys. Rev. B: 59, 4376 (1999).

[10] R. Prozorov, R. W. Giannetta, A. Carrington, and F. M. Araujo-Moreira, Physical Review B 62, 115 (2000).

[11] R. Prozorov, R. W. Giannetta, A. Carrington, P. Fournier, R. L. Greene, P. Gupta karma, D. G. Hinks, and A. R. Banks, Appl. Phys. Lett., submitted; cond-mat/0007013.

[12] P. Gross, B. S. Chandrasekhar, D. Einzel, K. Andres, P. J. Hirschfeld, H. R. Ott, J. Beuers, Z. Fisk, and J. L. Smith, Z. Phys. B 64, 174 (1986).

[13] D. Einzel, P. J. Hirschfeld, F. Gross, B. S. Chandrasekhar, K. Andres, H. R. Ott, J. Beuers, Z. Fisk, and J. L. Smith, Phys. Rev. Lett. 56, 2513 (1986).

[14] P. J. C. Signore, B. Andraka, M. W. Meisel, S. E. Brown, Z. Fisk, A. L. Giorgi, J. L. Smith, F. Gross-Alltag, E. A. Schuberth, A. A. Menovsky, Phys. Rev. B. 52, 4446 (1995).

[15] P. J. Hirschfeld and N. Goldenfeld, Phys. Rev. B 48, 4219 (1993).

[16] I. Bonalde, B. D. Yanoff, M. B. Salamon, D. J. Van Har- lingen, E. M. E. Chia, Z. Q. Mao, Y. Maeno (preprint).

[17] I. Kosztin and A. J. Leggett, Phys. Rev. Lett. 79, 135(1997).

[18] S. Wanka, J. Hagel, D. Beckmann, J. Wosnitza, J. A. Schluter, J. M. Williams, P. G. Nixon, R. W. Winter, G. L. Gard, Phys. Rev. B 57, 3084 (1998).

[19] G. V. Klimovitch, JETP Lett. 59, 786 (1993).