Mortality from tetanus between 1990 and 2015: findings from the global burden of disease study 2015

Hmwe H. Kyu*, John Everett Mumford, Jeffrey D. Stanaway, Ryan M. Barber, Jamie R. Hancock, Theo Vos, Christopher J. L. Murray and Mohsen Naghavi

Abstract

Background: Although preventable, tetanus still claims tens of thousands of deaths each year. The patterns and distribution of mortality from tetanus have not been well characterized. We identified the global, regional, and national levels and trends of mortality from neonatal and non-neonatal tetanus based on the results from the Global Burden of Disease Study 2015.

Methods: Data from vital registration, verbal autopsy studies and mortality surveillance data covering 12,534 site-years from 1980 to 2014 were used. Mortality from tetanus was estimated using the Cause of Death Ensemble modeling strategy.

Results: There were 56,743 (95% uncertainty interval (UI): 48,199 to 80,042) deaths due to tetanus in 2015; 19,937 (UI: 17,021 to 23,467) deaths occurred in neonates; and 36,806 (UI: 29,452 to 61,481) deaths occurred in older children and adults. Of the 19,937 neonatal tetanus deaths, 45% of deaths occurred in South Asia, and 44% in Sub-Saharan Africa. Of the 36,806 deaths after the neonatal period, 47% of deaths occurred in South Asia, 36% in sub-Saharan Africa, and 12% in Southeast Asia. Between 1990 and 2015, the global mortality rate due to neonatal tetanus dropped by 90% and that due to non-neonatal tetanus dropped by 81%. However, tetanus mortality rates were still high in a number of countries in 2015. The highest rates of neonatal tetanus mortality (more than 1,000 deaths per 100,000 population) were observed in Somalia, South Sudan, Afghanistan, and Kenya. The highest rates of mortality from tetanus after the neonatal period (more than 5 deaths per 100,000 population) were observed in Somalia, South Sudan, and Kenya.

Conclusions: Though there have been tremendous strides globally in reducing the burden of tetanus, tens of thousands of unnecessary deaths from tetanus could be prevented each year by an already available inexpensive and effective vaccine. Availability of more high quality data could help narrow the uncertainty of tetanus mortality estimates.

Keywords: Tetanus, Mortality, Distribution, Trends

Background

Tetanus, commonly referred to as “lockjaw”, is a serious infection caused by Clostridium tetani. The bacterium is commonly found in the environment (usually in soil, dust, and animal waste). Tetanus spores can enter the body through cuts or abrasions. Newborns can become infected through contaminated instruments used to cut the umbilical cord or by improper handling of the umbilical stump [1]. Neonatal tetanus is more likely to occur in low and middle income countries especially in places such as urban slums and rural areas; in those places unhygienic deliveries at home are common, and coverage of antenatal care services and maternal tetanus toxoid immunization are usually inadequate [2–4].

During the past two decades, there has been a dramatic decline in tetanus cases and deaths due to the scale up of immunization programs [5, 6]. Despite the availability of an inexpensive and effective tetanus vaccine, many people in low and middle income countries...
continue to die from tetanus. In developed countries, tetanus is rare but occasional cases and deaths continue to occur in unvaccinated individuals. The current patterns and distribution of tetanus mortality have not been well documented. In this study, we identify the global, regional and national levels and trends of neonatal and non-neonatal tetanus mortality between 1990 and 2015, based on the findings from the Global Burden of Disease Study 2015.

Methods
Data from vital registration, verbal autopsy, and mortality surveillance data covering 12,534 site-years from 1980 to 2014 were used for this study [7]. The International Classification of Diseases (ICD) codes for neonatal tetanus include ICD-10 codes (A33-A35.0) and ICD-9 codes (037–037.9, 771.3). Further details about data sources are provided in the Web Appendix. We used the Cause of Death Ensemble model (CODEm) strategy [7–10], which has been widely used for generating global estimates of cause-specific mortality. The CODEm strategy evaluates potential models that apply different functional forms (mixed effects models and space-time Gaussian Process Regression models) to mortality rates or cause fractions with varying combinations of predictive covariates [7], including DTP3 coverage proportion, educational attainment, health system access, in-facility delivery proportion, lagged distributed income, skilled birth attendance proportion, and tetanus toxoid coverage proportion. An ensemble of models that performs best on out-of-sample predictive validity tests was then selected as the best model. A complete time series of the parameters for each covariate for each location was estimated using data from household surveys, censuses, official reports, administrative data, and systematic reviews. The sources and imputation methods used to generate time series for the covariates have been published elsewhere [11].

Results
There were 56,743 (95% uncertainty interval (UI): 48,199 to 80,042) deaths due to tetanus in 2015: 19,937 (UI: 17,021 to 23,467) deaths occurred in neonates and 36,806 (UI: 29,452 to 61,481) deaths occurred after the neonatal period (Table 1). Of all neonatal tetanus deaths, 45% of deaths occurred in South Asia. Sub-Saharan Africa accounted for additional 44% of deaths; 67% of these deaths occurred in eastern sub-Saharan Africa, 27% in western sub-Saharan Africa, and 6% in central sub-Saharan Africa. Of tetanus deaths after the neonatal period, 47% of deaths occurred in South Asia, 36% in sub-Saharan Africa, and 12% in Southeast Asia. Figure 1 shows the global age-sex distribution of tetanus mortality in 2015. Tetanus deaths were concentrated in neonates when they were compared with deaths in each of the other age categories (Fig. 1). More deaths occurred in males than females in most age groups (Fig. 1). Age-standardized tetanus mortality rate (per 100,000 people) among males (0.93, UI: 0.72 to 1.44) was also higher than that among females (0.63, UI: 0.50 to 0.90) (data not shown).

Between 1990 and 2015, the global mortality rate due to neonatal tetanus dropped by 90% and that due to non-neonatal tetanus dropped by 81% (Table 1). At the country level, the decline in neonatal tetanus mortality rate varied from -47% in Somalia to -95% in Angola in sub-Saharan Africa. The decline in tetanus mortality rate after the neonatal period varied from -0.12% in South Sudan to -92% in Mauritania in sub-Saharan Africa (Table 1).

There were also substantial between-country variations in tetanus mortality rates (Figs. 2 and 3). For example, neonatal tetanus mortality rates per 100,000 people varied from 3,376.4 (1,731.6 to 6,447.9) in Somalia to 1.0 (0.4 to 2.0) in Zimbabwe in sub-Saharan Africa in 2015 (Table 1). Tetanus mortality per 100,000 people after the neonatal period varied from 10.3 (3.6 to 23.7) in Somalia to 0.04 (0.03 to 0.06) in South Africa in the same year (Table 1).

Although both neonatal and non-neonatal tetanus deaths were concentrated in low and middle countries, a small number of deaths from non-neonatal tetanus continued to occur in high-income countries. We estimated 36 (UI: 28 to 51) deaths in Western Europe, 13 (UI: 11–16) deaths in high-income Asia Pacific, and 9 (UI: 8 to 11) deaths in high-income North America due to tetanus in 2015 (Table 1); most of these deaths occurred in adults, especially among elderly people. More detailed results showing the location-year-age-sex specific distributions of tetanus mortality from 1990 to 2015 in 5-year interval are viewable in an interactive online visualization tool at http://vizhub.healthdata.org/gbd-compare.

Discussion
Exceptional progress has been made over the past two decades in reducing mortality from tetanus worldwide. Nevertheless, mortality from tetanus was still unnecessarily high in a number of low and middle income countries in 2015. The scale-up of immunization coverage to prevent maternal and neonatal tetanus represents a huge success of a collective effort. However, the scale-up has not been universal, with low vaccination coverage being documented in several countries [6, 12, 13]. Constraints related to financial and human resources and difficulty vaccinating people in hard-to-reach rural areas were among the factors influencing the tetanus toxoid vaccine coverage [12].
Table 1: Neonatal and non-neonatal tetanus deaths, mortality rates, and change in mortality rates between 1990 and 2015 for 21 Global Burden of Disease regions and 195 countries and territories (Regions ranked from the highest to lowest neonatal mortality rate in 2015)

Region	1990	2015	% change in rate between 1990 and 2015				
	Deaths (UI)	Rate per 100,000 (UI)	Neontal tetanus	Non-neonatal tetanus	Neontal tetanus	Non-neonatal tetanus	
Global	199118 (176424 to 228,139)	137,904 (118,003 to 201,898)	1,919.00 (1,700.28 to 2,198.69)	2.61 (2.23 to 3.81)	19,937 (17,021 to 23,467)	36,806 (29,452 to 46,181)	187,471 (160,050 to 220,666)
Eastern Sub-Saharan Africa	16642 (13,308 to 22,798)	10,775 (7,511 to 15,087)	2,610.92 (2,087.98 to 3,576.80)	5.81 (4.05 to 8.14)	5,949 (4,562 to 8,831)	8834 (5,932 to 13,689)	57712 (442,252 to 856,747)
Burundi	505 (262 to 858)	333 (170 to 557)	2,441.79 (1,268.06 to 4,149.11)	9.39 (3.04 to 9.93)	279 (134 to 529)	290 (98 to 639)	76211 (364,89 to 1,444,511)
Comoros	33 (18 to 54)	16 (8 to 31)	2,494.51 (1,351.41 to 4,112.77)	3.81 (1.82 to 7.50)	6 (3 to 11)	13 (6 to 27)	31714 (154,22 to 572,90)
Djibouti	16 (4 to 33)	12 (4 to 27)	950.85 (244.13 to 1,927.05)	2.06 (0.66 to 4.74)	8 (3 to 16)	16 (5 to 43)	49644 (185,535 to 945,90)
Eritrea	519 (256 to 919)	325 (193 to 528)	5,265.69 (2,595.33 to 9,315.49)	10.37 (5.16 to 16.85)	65 (31 to 121)	129 (41 to 263)	49080 (236,27 to 917,288)
Ethiopia	3,574 (2,202 to 5,470)	2,508 (1,448 to 3,803)	2,123.05 (1,308.21 to 3,249.19)	5.26 (3.03 to 7.97)	736 (389 to 1,247)	1,238 (601 to 2,358)	30809 (162.93 to 522,16)
Kenya	2,887 (1,753 to 5,846)	2,089 (851 to 4,743)	3,894.64 (2,365.00 to 7,885,42)	8.94 (6.40 to 20.30)	1,391 (621 to 5,662)	2,592 (927 to 2,193,85)	1,173,55 (776,38 to 2,193,85)
Madagascar	492 (349 to 679)	261 (184 to 359)	1,256.61 (891.69 to 1,736.04)	2.27 (1.09 to 3.12)	83 (36 to 184)	232 (74 to 548)	84 (36 to 184)
Malawi	655 (382 to 1,056)	292 (152 to 509)	1,984.98 (1,158.35 to 3,198.51)	3.11 (1.62 to 5.44)	147 (75 to 257)	244 (101 to 612)	29377 (149,48 to 514,35)
Mozambique	1,175 (602 to 2,171)	997 (493 to 1,728)	2,537.78 (1,301.84 to 4,690.31)	7.43 (3.67 to 12.88)	127 (67 to 237)	387 (143 to 710)	15553 (82,14 to 290,088)
Rwanda	396 (216 to 681)	259 (109 to 456)	1,658.13 (902.82 to 2,846.36)	3.59 (1.51 to 6.31)	123 (65 to 214)	139 (55 to 283)	45285 (239,79 to 784,94)
Somalia	1,441 (863 to 2,388)	1,171 (421 to 2,695)	6,423.06 (3,846.02 to 10,645.96)	18.36 (6.61 to 42.25)	1,188 (609 to 2,269)	1,114 (384 to 2,563)	3,376.39 (1,731.55 to 6,447.88)
South Sudan	787 (211 to 1,637)	443 (90 to 1,225)	3,985.03 (1,069.25 to 8,290,52)	7.63 (1.56 to 21.10)	668 (163 to 1,540)	944 (133 to 3,693)	2,002.54 (488.52 to 4,612.55)
Tanzania	1,001 (603 to 1,539)	775 (504 to 1,109)	1,192.20 (717.90 to 1,832.84)	3.06 (1.99 to 4.37)	488 (273 to 856)	683 (334 to 1,314)	31372 (175.59 to 550,025)
Uganda	2,231 (1,288 to 3,760)	850 (521 to 1,344)	3,461.47 (1,997.42 to 5,833.30)	4.90 (3.00 to 7.74)	424 (243 to 705)	482 (234 to 758)	33877 (193.95 to 562,954)
Zambia	921 (480 to 1,519)	439 (245 to 787)	3,277.63 (1,709.24 to 5,405.20)	5.42 (3.03 to 9.71)	211 (123 to 341)	385 (202 to 676)	43425 (251.90 to 700,03)

Note: UI = uncertainty intervals.
Table 1: Neonatal and non-neonatal tetanus deaths, mortality rates, and change in mortality rates between 1990 and 2015 for 21 Global Burden of Disease regions and 195 countries and territories (Regions ranked from the highest to lowest neonatal mortality rate in 2015) (Continued)

Region	1990-2015 Range	1990-2015 Mean	1990-2015 Median	1990-2015 Change	2015-2017 Mean	2015-2017 Median
Bangladesh	(116,984 to 146,106)	130,317	135,759	128,451	2,849,01	2,773,01
Bhutan	(22,276 to 37,832)	29,102	30,375	28,875	1,057,00	1,014,00
India	(70,753 to 85,683)	78,017	79,756	76,925	3,681,91	3,502,32
Nepal	(4,586 to 11,519)	7,519	7,987	7,459	14,104,21	12,601,59
Pakistan	(3,936 to 24,277)	15,796	16,875	15,375	4,958,99	4,294,82
Western Sub-Saharan Africa	(10,862 to 18,136)	13,791	15,105	14,275	2,097,30	2,185,05
Benin	(147 to 484)	282	315	298	1,635,25	1,585,02
Burkina Faso	(547 to 1,712)	1,012	1,218	1,065	3,259,31	3,042,16
Cameroon	(133 to 1,086)	522	602	562	1,289,98	1,170,23
Cape Verde	(0 to 1)	0	0	0	0,92	0,92
Chad	(519 to 1,833)	1,060	1,323	1,188	4,714,89	4,893,37
Cote d’Ivoire	(594 to 1,037)	594	631	608	1,357,12	1,268,33
Ghana	(632 to 1,142)	676	720	703	1,590,87	1,365,82
Guinea	(567 to 2,383)	1,389	1,725	1,557	6,577,60	5,086,19
Guinea-Bissau	(47 to 133)	82	108	95	2,352,61	2,431,01
Liberia	(74 to 205)	125	190	157	1,780,95	1,729,14
Mali	(39 to 177)	90	123	105	295,43	343,13
Mauritania	(45 to 149)	86	113	100	1,407,14	1,370,10
Niger	(881 to 2,844)	1,645	2,026	1,767	5,075,00	4,692,49
Country	Neornatal Deaths	Non-Neornatal Deaths	Mortality Rate (2010)	Change in Mortality Rate (2010)		
-------------------------	-------------------	----------------------	-----------------------	---------------------------------		
Nigeria	5,550 (3,304 to 8,734)	2,639 (1,500 to 4,451)	1,784.94 (1,062.80 to 2,909.18)	2.76 (1.57 to 4.66)		
Sao Tome and Principe	2 (1 to 3)	10 (6 to 16)	574.98 (315.21 to 981.36)	8.81 (4.95 to 14.07)		
Senegal	375 (219 to 628)	192 (94 to 324)	1,535.95 (898.48 to 2,571.63)	2.57 (1.23 to 3.34)		
Sierra Leone	147 (62 to 291)	124 (56 to 216)	1,133.98 (476.89 to 2,244.16)	3.16 (1.42 to 5.52)		
The Gambia	24 (16 to 36)	13 (7 to 21)	747.87 (499.97 to 1,110.26)	1.37 (0.75 to 2.33)		
Togo	129 (72 to 221)	100 (57 to 145)	1,078.12 (601.66 to 1,851.57)	2.64 (1.51 to 3.85)		
Central Sub-Saharan Africa	1,979 (1,272 to 2,959)	1,434 (498 to 3,178)	1,046.37 (672.61 to 1,564.55)	2.71 (0.94 to 6.01)		
Angola	704 (305 to 1,475)	380 (92 to 1,240)	1,602.73 (694.73 to 3,358.72)	3.39 (0.82 to 11.06)		
Central African Republic	132 (69 to 224)	101 (37 to 205)	1,471.61 (720.47 to 2,506.44)	3.44 (1.26 to 7.00)		
Congo	9 (3 to 19)	20 (4 to 45)	138.02 (445.2 to 282.70)	0.82 (0.19 to 1.87)		
Democratic Republic of the Congo	1,122 (651 to 1,792)	920 (295 to 2,179)	894.53 (518.84 to 1,428.11)	2.63 (0.84 to 6.22)		
Equatorial Guinea	9 (5 to 17)	9 (3 to 23)	705.17 (357.03 to 1,294.33)	2.51 (0.81 to 6.05)		
Gabon	3 (0 to 6)	5 (0 to 15)	95.94 (1800 to 243.98)	0.55 (0.05 to 1.61)		
North Africa and Middle East	10,817 (6,911 to 16,193)	2,379 (1,513 to 3,773)	1,275.80 (815.17 to 1,909.97)	0.71 (0.45 to 1.13)		
Afghanistan	6006 (2,430 to 10,493)	1,075 (309 to 2,380)	12,935.74 (5,233.49 to 22,598.70)	8.77 (2.52 to 19.42)		
Algeria	93 (37 to 182)	44 (15 to 97)	148.02 (59.58 to 290.16)	0.17 (0.06 to 0.37)		
Bahrain	0 (0 to 0)	0 (0 to 0)	6.95 (3.39 to 10.30)	0.08 (0.02 to 0.04)		
Egypt	882 (368 to 1,351)	458 (251 to 566)	627.55 (403.83 to 961.23)	0.82 (0.45 to 1.01)		
Iran	100 (45 to 188)	55 (32 to 99)	72.33 (32.81 to 136.50)	0.10 (0.06 to 0.18)		
Iraq	26 (11 to 50)	12 (6 to 23)	51.47 (22.42 to 100.64)	0.07 (0.04 to 0.13)		
Country	Neonatal Deaths	Non-Neonatal Deaths	Neonatal Mortality Rate	Non-Neonatal Mortality Rate	Change in Neonatal Mortality Rate	Change in Non-Neonatal Mortality Rate
------------------	-----------------	---------------------	-------------------------	----------------------------	----------------------------------	--------------------------------------
Jordan	0 (0 to 1)	0 (0 to 1)	3.38 (1.64 to 6.06)	0.01 (0.01 to 0.02)	1 (1 to 1)	-95.25 (-97.86 to -87.63)
Kuwait	0 (0 to 0)	0 (0 to 0)	1.09 (0.72 to 1.57)	0.01 (0.00 to 0.01)	0 (0 to 0)	-89.18 (-93.30 to -81.34)
Lebanon	0 (0 to 1)	1 (1 to 1)	9.10 (4.23 to 16.39)	0.03 (0.02 to 0.04)	1 (1 to 1)	-95.99 (-98.83 to -87.68)
Libya	3 (1 to 6)	2 (1 to 3)	27.28 (7.22 to 60.38)	0.04 (0.02 to 0.07)	1 (1 to 1)	-90.51 (-96.39 to -69.15)
Morocco	989 (538 to 1,398)	99 (57 to 159)	1,627.61 (874.97 to 2,533.64)	0.40 (0.23 to 0.63)	24 (14 to 45)	89.62 (-99.82 to -99.21)
Oman	1 (0 to 3)	1 (0 to 1)	21.52 (6.85 to 60.75)	0.04 (0.02 to 0.07)	0 (0 to 0)	-91.13 (-98.68 to -79.74)
Palestine	0 (0 to 0)	0 (0 to 0)	1.93 (0.84 to 3.46)	0.02 (0.01 to 0.02)	0 (0 to 1)	-90.56 (-96.29 to -70.14)
Qatar	0 (0 to 0)	0 (0 to 0)	1.86 (0.86 to 3.50)	0.01 (0.01 to 0.02)	0 (0 to 0)	-93.58 (-97.51 to -82.80)
Saudi Arabia	18 (7 to 37)	14 (6 to 30)	41.89 (15.79 to 83.76)	0.09 (0.04 to 0.19)	1 (1 to 2)	-94.78 (-97.95 to -82.45)
Sudan	335 (133 to 644)	124 (38 to 254)	529.66 (211.04 to 1,019.34)	0.62 (0.19 to 1.27)	30 (13 to 57)	-94.32 (-97.57 to -86.12)
Syria	234 (135 to 373)	37 (17 to 71)	694.90 (400.52 to 1,108.49)	0.30 (0.14 to 0.57)	2 (1 to 3)	-99.29 (-99.67 to -98.54)
Tunisia	2 (1 to 3)	3 (1 to 5)	10.74 (4.11 to 20.10)	0.04 (0.02 to 0.09)	0 (0 to 0)	-98.75 (-99.49 to -96.39)
Turkey	1,477 (811 to 2,417)	241 (114 to 475)	1,398.68 (768.29 to 2,289.23)	0.44 (0.21 to 0.87)	3 (1 to 5)	-99.80 (-99.92 to -99.57)
United Arab Emirates	4 (1 to 11)	8 (4 to 14)	117.59 (26.52 to 303.85)	0.46 (0.23 to 0.75)	4 (0 to 1)	-96.91 (-99.30 to -75.06)
Yemen	731 (317 to 1,710)	205 (75 to 476)	1,549.33 (672.76 to 3,624.06)	1.72 (0.63 to 3.99)	21 (10 to 41)	-96.80 (-98.83 to -91.46)
Caribbean	416 (236 to 679)	310 (145 to 526)	614.45 (348.58 to 1,003.59)	0.87 (0.41 to 1.47)	48 (23 to 101)	-86.93 (-94.99 to -65.08)
Antigua and Barbuda	0 (0 to 0)	0 (0 to 0)	31.99 (22.34 to 43.90)	0.31 (0.27 to 0.35)	0 (0 to 0)	-92.73 (-95.87 to -86.97)
Barbados	0 (0 to 0)	1 (1 to 1)	60.34 (38.92 to 90.25)	0.46 (0.41 to 0.53)	0 (0 to 0)	-94.25 (-97.25 to -88.84)
Belize	0 (0 to 1)	1 (0 to 1)	92.67 (63.37 to 133.29)	0.41 (0.17 to 0.52)	0 (0 to 1)	-96.45 (-98.34 to -93.04)
Bermuda	0 (0 to 0)	0 (0 to 0)	4.26 (2.73 to 6.42)	0.07 (0.06 to 0.07)	0 (0 to 0)	-94.58 (-97.40 to -89.70)
Country	Neontal Deaths	Non-neontal Deaths	Mortality Rate	Change in Mortality Rate		
-------------------------------	----------------	-------------------	----------------	--------------------------		
Cuba	0 (0 to 0)	2 (2 to 3)	1.06 (0.87 to 1.29)	0.02 (0.02 to 0.03)		
Dominica	0 (0 to 0)	1 (0 to 1)	98.14 (67.4 to 140.95)	0.77 (0.36 to 0.94)		
Dominican Republic	14 (10 to 18)	30 (23 to 50)	85.97 (64.23 to 112.33)	0.42 (0.32 to 0.70)		
Grenada	0 (0 to 0)	1 (0 to 1)	76.71 (42.97 to 121.19)	0.65 (0.30 to 0.79)		
Guyana	1 (1 to 2)	2 (1 to 3)	67.75 (48.88 to 93.88)	0.33 (0.15 to 0.40)		
Haiti	384 (210 to 637)	248 (93 to 457)	1,947.17 (1,065.07 to 3,231.50)	3.50 (1.32 to 6.49)		
Jamaica	3 (2 to 4)	5 (2 to 6)	64.21 (41.80 to 94.09)	0.21 (0.10 to 0.28)		
Puerto Rico	0 (0 to 0)	2 (2 to 2)	0.88 (0.75 to 1.03)	0.05 (0.05 to 0.09)		
Saint Lucia	0 (0 to 0)	1 (1 to 1)	80.36 (50.47 to 123.45)	0.62 (0.55 to 0.70)		
Suriname	0 (0 to 0)	0 (0 to 0)	35.86 (24.47 to 51.04)	0.18 (0.16 to 0.21)		
Trinidad and Tobago	0 (0 to 0)	3 (2 to 3)	11.24 (8.92 to 14.23)	0.21 (0.19 to 0.23)		
Virgin Islands, U.S.	0 (0 to 0)	0 (0 to 0)	0.95 (1.33 to 2.85)	0.02 (0.01 to 0.02)		
Southeast Asia	10,464 (7,157 to 14,800)	14,415 (8,364 to 23,523)	1,118.77 (765.18 to 1,582.32)	3.13 (1.82 to 5.11)		
Cambodia	890 (407 to 1,620)	658 (301 to 1,340)	3,104.97 (1,419.33 to 5,650.98)	7.33 (3.36 to 14.92)		
Indonesia	7,288 (4,168 to 11,357)	8,739 (4,757 to 15,096)	2,069.37 (1,183.43 to 3,224.54)	4.83 (2.63 to 8.34)		
Laos	572 (296 to 980)	405 (202 to 782)	4,276.17 (2,216.13 to 7,325.09)	9.62 (4.79 to 18.56)		
Malaysia	4 (2 to 6)	22 (12 to 30)	9.82 (5.67 to 16.28)	0.12 (0.06 to 0.17)		
Maldives	1 (1 to 2)	1 (0 to 1)	195.02 (110.32 to 332.12)	0.37 (0.18 to 0.62)		
Table 1 Neonatal and non-neonatal tetanus deaths, mortality rates, and change in mortality rates between 1990 and 2015 for 21 Global Burden of Disease regions and 195 countries and territories (Regions ranked from the highest to lowest neonatal mortality rate in 2015) (Continued)

Region	Neonatal Deaths 1990 (95% CI)	Neonatal Deaths 2015 (95% CI)	Neonatal Mortality Rate 1990 (95% CI)	Neonatal Mortality Rate 2015 (95% CI)	Change in Neonatal Mortality Rate (95% CI)
Mauritius	0 (0 to 0)	1 (1 to 1)	9.56 (7.45 to 12.41)	0.06 (0.05 to 0.07)	0.00 (0.00 to 0.00)
Myanmar	517 (97 to 954)	1,821 (312 to 5,948)	612.06 (233.38 to 1,128.90)	4.34 (0.74 to 14.18)	21 (10 to 37)
Philippines	200 (163 to 244)	1,019 (846 to 1,188)	129.45 (105.46 to 158.18)	1.65 (1.37 to 1.92)	47 (31 to 64)
Seychelles	0 (0 to 0)	0 (0 to 0)	32.38 (21.75 to 47.36)	0.44 (0.27 to 0.58)	0 (0 to 0)
Sri Lanka	1 (1 to 2)	6 (5 to 6)	4.97 (4.03 to 5.99)	0.03 (0.03 to 0.04)	1 (0 to 1)
Thailand	127 (87 to 180)	465 (254 to 566)	155.07 (106.80 to 220.44)	0.82 (0.45 to 1.00)	2 (1 to 3)
Timor-Leste	50 (24 to 95)	48 (20 to 103)	2,082.18 (964.44 to 3,898.45)	6.49 (2.64 to 13.73)	1 (0 to 2)
Vietnam	800 (380 to 1,522)	1,210 (609 to 1,971)	540.45 (256.93 to 1,028.69)	1.78 (0.89 to 2.89)	22 (11 to 41)
East Asia	136,28 (11,272 to 16,125)	8,651 (4,719 to 10,316)	669.52 (553.78 to 792.19)	0.73 (0.40 to 0.89)	231 (184 to 283)
China	13,572 (11,215 to 16,085)	8,621 (4,703 to 10,287)	686.09 (566.96 to 813.15)	0.75 (0.41 to 0.81)	222 (177 to 275)
North Korea	56 (20 to 134)	26 (11 to 44)	176.26 (62.36 to 422.93)	0.13 (0.05 to 0.22)	9 (2 to 29)
Taiwan	1 (0 to 1)	4 (3 to 6)	2.32 (1.16 to 4.30)	0.02 (0.01 to 0.03)	0 (0 to 0)
Oceania	6 (3 to 12)	5 (2 to 12)	35.91 (14.92 to 73.03)	0.07 (0.03 to 0.18)	2 (1 to 5)
American Samoa	0 (0 to 0)	0 (0 to 0)	1.13 (0.75 to 1.70)	0.01 (0.01 to 0.01)	0 (0 to 0)
Federated States of Micronesia	0 (0 to 0)	0 (0 to 0)	3.31 (1.53 to 6.21)	0.02 (0.01 to 0.04)	0 (0 to 0)
Fiji	0 (0 to 0)	0 (0 to 0)	0.79 (0.45 to 1.27)	0.01 (0.01 to 0.01)	0 (0 to 0)
Guam	0 (0 to 0)	0 (0 to 0)	1.01 (0.70 to 1.49)	0.01 (0.01 to 0.01)	0 (0 to 0)
Kiribati	0 (0 to 0)	0 (0 to 0)	1.99 (1.18 to 3.18)	0.02 (0.02 to 0.03)	0 (0 to 0)
Marshall Islands	0 (0 to 0)	0 (0 to 0)	7.06 (3.33 to 13.97)	0.03 (0.02 to 0.04)	0 (0 to 0)
Northern Mariana Islands	0 (0 to 0)	0 (0 to 0)	1.66 (0.54 to 3.55)	0.01 (0.01 to 0.02)	0 (0 to 0)

Note: The mortality rates are expressed per 1,000 live births, and the change in mortality rates are calculated as the percentage change from 1990 to 2015.
Region	Neonatal Mortality Rate 2015	Neonatal Mortality Rate 2015	Change in Neonatal Mortality Rate	Change in Neonatal Mortality Rate		
Papua New Guinea	5 (2 to 11)	4 (1 to 10)	2 (1 to 6)	0.09 (0.03 to 0.25)		
Samoa	0 (0 to 0)	0 (0 to 0)	0 (0 to 0)	0.02 (0.01 to 0.04)		
Solomon Islands	0 (0 to 0)	0 (0 to 0)	0 (0 to 0)	0.06 (0.02 to 0.15)		
Tonga	0 (0 to 0)	0 (0 to 0)	0 (0 to 0)	0.01 (0.01 to 0.02)		
Vanuatu	0 (0 to 0)	0 (0 to 0)	0 (0 to 0)	0.05 (0.02 to 0.10)		
Andean Latin America	28 (21 to 35)	66 (38 to 76)	17 (12 to 37)	0.17 (0.10 to 0.20)		
Bolivia	1 (0 to 2)	3 (1 to 5)	1 (1 to 2)	0.04 (0.01 to 0.07)		
Ecuador	8 (6 to 10)	31 (16 to 36)	7 (4 to 21)	0.30 (0.16 to 0.36)		
Peru	19 (13 to 26)	33 (20 to 40)	8 (6 to 15)	0.15 (0.09 to 0.18)		
Tropical Latin America	433 (379 to 496)	751 (411 to 833)	189 (119 to 263)	0.49 (0.27 to 0.54)		
Brazil	402 (350 to 463)	735 (401 to 813)	186 (117 to 262)	0.49 (0.27 to 0.54)		
Paraguay	31 (20 to 47)	17 (9 to 22)	3 (2 to 11)	0.40 (0.22 to 0.52)		
Central Latin America	338 (303 to 381)	459 (427 to 483)	45 (38 to 57)	0.27 (0.25 to 0.29)		
Colombia	81 (65 to 101)	90 (82 to 98)	10 (8 to 13)	0.26 (0.24 to 0.29)		
Costa Rica	0 (0 to 1)	1 (1 to 1)	0 (0 to 0)	0.03 (0.03 to 0.03)		
El Salvador	18 (12 to 25)	31 (11 to 40)	2 (1 to 7)	0.58 (0.21 to 0.79)		
Guatemala	5 (4 to 6)	47 (43 to 53)	5 (4 to 6)	0.52 (0.47 to 0.58)		
Honduras	19 (12 to 30)	16 (8 to 21)	11 (6 to 18)	0.33 (0.16 to 0.43)		
Mexico	200 (177 to 228)	246 (233 to 260)	10 (9 to 13)	0.29 (0.27 to 0.33)		
Nicaragua	9 (7 to 13)	8 (3 to 11)	1 (1 to 6)	0.20 (0.08 to 0.25)		
Region	Neonatal Mortality 1990	Neonatal Mortality 2015	Non-neonatal Mortality 1990	Non-neonatal Mortality 2015	Change in Neonatal Mortality 1990-2015	Change in Non-neonatal Mortality 1990-2015
-------------------------------	-------------------------	-------------------------	-----------------------------	----------------------------	--	--
Panama	2 (1 to 3)	1 (1 to 1)	37.28 (25.89 to 52.26)	0.05 (0.02 to 0.09)	0 (0 to 1)	0.00 (0.00 to 0.00)
Venezuela	4 (4 to 5)	19 (17 to 21)	9.88 (8.17 to 11.86)	0.10 (0.09 to 0.10)	1 (1 to 2)	5 (4 to 7)
Southern Sub-Saharan Africa	31 (23 to 39)	58 (33 to 83)	24.78 (18.04 to 30.95)	0.11 (0.06 to 0.16)	3 (2 to 4)	33 (24 to 60)
Botswana	1 (0 to 2)	2 (0 to 7)	18.67 (6.46 to 44.78)	0.13 (0.03 to 0.48)	0 (0 to 0)	1 (0 to 4)
Lesotho	3 (1 to 6)	7 (1 to 19)	66.37 (24.80 to 142.61)	0.42 (0.08 to 1.19)	1 (0 to 1)	119.6 (45.0 to 246.9)
Namibia	1 (0 to 2)	2 (1 to 5)	24.47 (12.07 to 48.83)	0.17 (0.05 to 0.34)	0 (0 to 0)	1 (0 to 2)
South Africa	25 (17 to 33)	39 (22 to 55)	31.04 (20.66 to 40.36)	0.10 (0.06 to 0.15)	2 (1 to 3)	19 (14 to 33)
Swaziland	0 (0 to 1)	1 (0 to 3)	14.70 (5.14 to 34.86)	0.13 (0.05 to 0.30)	0 (0 to 0)	1 (0 to 1)
Zimbabwe	1 (0 to 2)	7 (3 to 13)	3.18 (1.53 to 6.41)	0.06 (0.03 to 0.12)	0 (0 to 0)	9 (4 to 19)
Southern Latin America	5 (5 to 6)	39 (35 to 42)	6.72 (5.72 to 8.07)	0.08 (0.07 to 0.09)	1 (0 to 1)	5 (4 to 6)
Argentina	4 (4 to 6)	31 (28 to 35)	8.25 (6.84 to 10.24)	0.10 (0.09 to 0.11)	0 (0 to 1)	3 (3 to 5)
Chile	1 (1 to 1)	5 (5 to 6)	3.12 (2.55 to 3.96)	0.04 (0.04 to 0.04)	0 (0 to 0)	1 (1 to 1)
Uruguay	0 (0 to 0)	2 (1 to 2)	5.57 (4.14 to 7.60)	0.05 (0.05 to 0.05)	0 (0 to 0)	0.38 (0.25 to 0.57)
High-income Asia Pacific	7 (5 to 11)	53 (49 to 56)	4.77 (3.44 to 7.12)	0.03 (0.03 to 0.03)	0 (0 to 0)	13 (11 to 16)
Brunei	0 (0 to 0)	0 (0 to 0)	9.78 (5.43 to 17.15)	0.10 (0.05 to 0.16)	0 (0 to 0)	0 (0 to 1)
Japan	1 (1 to 1)	25 (24 to 26)	0.89 (0.81 to 0.96)	0.02 (0.02 to 0.02)	0 (0 to 0)	7 (6 to 9)
Singapore	0 (0 to 0)	0 (0 to 0)	1.13 (0.93 to 1.38)	0.01 (0.01 to 0.01)	0 (0 to 0)	0.12 (0.08 to 0.16)
South Korea	6 (4 to 10)	27 (24 to 30)	12.44 (8.46 to 19.46)	0.06 (0.06 to 0.07)	0 (0 to 0)	5 (4 to 7)
Central Asia	2 (2 to 2)	19 (13 to 21)	1.26 (1.11 to 1.42)	0.03 (0.02 to 0.03)	0 (0 to 0)	8 (7 to 12)
Armenia	0 (0 to 0)	1 (1 to 1)	0.79 (0.62 to 0.99)	0.03 (0.02 to 0.03)	0 (0 to 0)	0 (0 to 1)

Table 1 Neonatal and non-neonatal tetanus deaths, mortality rates, and change in mortality rates between 1990 and 2015 for 21 Global Burden of Disease regions and 195 countries and territories (Regions ranked from the highest to lowest neonatal mortality rate in 2015) (Continued)
Table 1 Neonatal and non-neonatal tetanus deaths, mortality rates, and change in mortality rates between 1990 and 2015 for 21 Global Burden of Disease regions and 195 countries and territories (Regions ranked from the highest to lowest neonatal mortality rate in 2015) (Continued)

Country	Neonatal Mortality Rate	Non-neonatal Mortality Rate	Change in Mortality Rate			
Azerbaijan	0 (0 to 0)	2 (1 to 3)	2.05 (1.53 to 2.63)			
Georgia	0 (0 to 0)	2 (1 to 3)	0.77 (0.59 to 0.99)			
Kazakhstan	0 (0 to 0)	6 (6 to 7)	0.86 (0.71 to 1.03)			
Kyrgyzstan	0 (0 to 0)	1 (0 to 1)	0.83 (0.66 to 1.03)			
Mongolia	0 (0 to 0)	0 (0 to 1)	1.02 (0.54 to 1.69)			
Tajikistan	0 (0 to 0)	1 (1 to 1)	2.06 (1.54 to 2.71)			
Turkmenistan	0 (0 to 0)	1 (1 to 1)	3.72 (2.71 to 5.05)			
Uzbekistan	0 (0 to 1)	4 (3 to 4)	0.77 (0.59 to 0.97)			
High-income North America	3 (3 to 3)	42 (40 to 44)	0.89 (0.82 to 0.96)			
Canada	0 (0 to 0)	3 (3 to 3)	0.83 (0.71 to 0.98)			
Greenland	0 (0 to 0)	0 (0 to 0)	1.21 (0.77 to 1.72)			
United States	3 (3 to 3)	39 (37 to 41)	0.89 (0.83 to 0.97)			
Central Europe	3 (2 to 3)	77 (69 to 86)	1.90 (1.44 to 2.65)			
Albania	0 (0 to 0)	1 (0 to 1)	3.72 (2.50 to 5.35)			
Bosnia and Herzegovina	0 (0 to 0)	1 (1 to 2)	0.79 (0.52 to 1.21)			
Bulgaria	0 (0 to 0)	3 (3 to 4)	0.95 (0.79 to 1.16)			
Croatia	0 (0 to 0)	6 (5 to 7)	0.87 (0.73 to 1.02)			
Czech Republic	0 (0 to 0)	2 (1 to 2)	0.90 (0.74 to 1.08)			
Hungary	0 (0 to 0)	15 (13 to 17)	0.97 (0.82 to 1.13)			
Macedonia	0 (0 to 0)	0 (0 to 1)	1.28 (0.84 to 1.78)			
Country	Deaths	Cases	Mortality Rate	Confidence Interval 95%	Mortality Rate	Confidence Interval 95%
------------------	------------	-------------	----------------	-------------------------	----------------	-------------------------
Montenegro	0 (0 to 0)	0 (0 to 0)	0.89 (0.35 to 1.84)	0.01 (0.01 to 0.01)	0.00 (0 to 0)	0.10 (0 to 0)
Poland	0 (0 to 1)	32 (27 to 37)	1.06 (0.90 to 1.29)	0.08 (0.07 to 0.10)	0.10 (0.06 to 0.16)	0.01 (0.01 to 0.01)
Romania	1 (0 to 1)	10 (9 to 10)	2.41 (1.86 to 3.15)	0.04 (0.04 to 0.04)	0.25 (0.15 to 0.39)	0.03 (0.02 to 0.04)
Serbia	1 (0 to 2)	7 (2 to 12)	7.26 (2.50 to 16.55)	0.07 (0.02 to 0.13)	0.25 (0.16 to 0.40)	0.03 (0.01 to 0.04)
Slovakia	0 (0 to 0)	1 (1 to 1)	0.85 (0.61 to 1.14)	0.01 (0.01 to 0.02)	0.11 (0.07 to 0.16)	0.01 (0.01 to 0.01)
Slovenia	0 (0 to 0)	1 (1 to 1)	1.95 (1.56 to 2.40)	0.04 (0.04 to 0.03)	0.15 (0.07 to 0.20)	0.00 (0.00 to 0.01)
Western Europe	6 (5 to 7)	205 (189 to 223)	1.83 (1.62 to 2.14)	0.05 (0.05 to 0.06)	0.13 (0.11 to 0.17)	0.01 (0.01 to 0.01)
Andorra	0 (0 to 0)	0 (0 to 0)	0.49 (0.25 to 0.91)	0.02 (0.01 to 0.03)	0.04 (0.02 to 0.07)	0.01 (0.01 to 0.01)
Austria	0 (0 to 0)	1 (1 to 2)	0.88 (0.74 to 1.05)	0.02 (0.02 to 0.03)	0.13 (0.09 to 0.17)	0.00 (0.00 to 0.00)
Belgium	0 (0 to 0)	3 (2 to 3)	0.89 (0.74 to 1.08)	0.03 (0.02 to 0.03)	0.12 (0.09 to 0.16)	0.01 (0.01 to 0.01)
Cyprus	0 (0 to 0)	0 (0 to 0)	1.99 (1.27 to 3.12)	0.02 (0.01 to 0.03)	0.15 (0.10 to 0.22)	0.01 (0.01 to 0.01)
Denmark	0 (0 to 0)	1 (1 to 1)	0.93 (0.78 to 1.12)	0.01 (0.01 to 0.02)	0.14 (0.09 to 0.19)	0.00 (0.00 to 0.00)
Finland	0 (0 to 0)	1 (1 to 1)	0.92 (0.76 to 1.11)	0.01 (0.01 to 0.02)	0.12 (0.07 to 0.16)	0.00 (0.00 to 0.00)
France	1 (0 to 1)	60 (48 to 74)	0.90 (0.76 to 1.05)	0.11 (0.08 to 0.13)	0.11 (0.07 to 0.17)	0.01 (0.01 to 0.01)
Germany	1 (0 to 1)	12 (11 to 14)	0.87 (0.74 to 1.03)	0.02 (0.01 to 0.02)	0.12 (0.08 to 0.17)	0.00 (0.00 to 0.00)
Greece	0 (0 to 0)	3 (3 to 3)	1.76 (1.39 to 2.29)	0.03 (0.03 to 0.03)	0.45 (0.30 to 0.70)	0.02 (0.01 to 0.03)
Iceland	0 (0 to 0)	0 (0 to 0)	0.81 (0.66 to 0.97)	0.01 (0.01 to 0.01)	0.09 (0.06 to 0.13)	0.00 (0.00 to 0.00)
Ireland	0 (0 to 0)	0 (0 to 0)	0.90 (0.74 to 1.08)	0.01 (0.01 to 0.01)	0.10 (0.07 to 0.13)	0.00 (0.00 to 0.00)
Israel	0 (0 to 0)	0 (0 to 0)	0.91 (0.76 to 1.10)	0.01 (0.01 to 0.01)	0.11 (0.08 to 0.15)	0.00 (0.00 to 0.00)
Italy	0 (0 to 1)	60 (52 to 70)	1.15 (0.95 to 1.39)	0.11 (0.09 to 0.12)	0.13 (0.09 to 0.20)	0.03 (0.02 to 0.05)
Region	Neonatal Deaths (0 to 0)	Neomortality (0 to 0)	Mortality (0 to 0)	Change (0 to 0)	Change (0 to 0)	
-------------------------	--------------------------	-----------------------	--------------------	----------------	----------------	
Luxembourg	0 (0 to 0)	1.62 (1.33 to 2.02)	0.04 (0.04 to 0.05)	0.0 (0 to 0)	0.00 (0.00 to 0.01)	
Malta	0 (0 to 0)	6.80 (5.16 to 9.05)	0.15 (0.13 to 0.17)	0.0 (0 to 0)	0.01 (0.01 to 0.01)	
Netherlands	0 (0 to 0)	0.90 (0.75 to 1.08)	0.01 (0.01 to 0.01)	0.0 (0 to 0)	0.00 (0.00 to 0.00)	
Northern Ireland	0 (0 to 0)	0.88 (0.73 to 1.04)	0.02 (0.01 to 0.02)	0.0 (0 to 0)	0.00 (0.00 to 0.00)	
Norway	1 (0 to 1)	0.93 (0.78 to 1.09)	0.01 (0.01 to 0.01)	0.0 (0 to 0)	0.00 (0.00 to 0.00)	
Portugal	2 (1 to 2)	17 (15 to 20)	0.17 (0.15 to 0.20)	0.0 (0 to 0)	0.01 (0.00 to 0.00)	
Scotland	0 (0 to 0)	0.85 (0.72 to 1.00)	0.01 (0.01 to 0.02)	0.0 (0 to 0)	0.00 (0.00 to 0.00)	
Spain	2 (1 to 2)	32 (28 to 36)	0.08 (0.07 to 0.09)	0.0 (0 to 0)	0.01 (0.00 to 0.00)	
Sweden	0 (0 to 0)	1.23 (1.03 to 1.43)	0.02 (0.02 to 0.02)	0.0 (0 to 0)	0.00 (0.00 to 0.00)	
Switzerland	0 (0 to 0)	0.92 (0.77 to 1.13)	0.01 (0.01 to 0.01)	0.0 (0 to 0)	0.00 (0.00 to 0.00)	
United Kingdom	1 (0 to 1)	8 (7 to 8)	0.84 (0.77 to 0.92)	0.01 (0.01 to 0.01)	0.00 (0.00 to 0.00)	
Australasia	0 (0 to 0)	0.89 (0.77 to 1.02)	0.01 (0.01 to 0.02)	0.0 (0 to 0)	0.00 (0.00 to 0.00)	
Australia	0 (0 to 0)	0.89 (0.75 to 1.05)	0.01 (0.01 to 0.02)	0.0 (0 to 0)	0.00 (0.00 to 0.00)	
New Zealand	0 (0 to 0)	0.88 (0.74 to 1.04)	0.01 (0.01 to 0.02)	0.0 (0 to 0)	0.00 (0.00 to 0.00)	
Eastern Europe	2 (2 to 2)	92 (82 to 104)	0.80 (0.71 to 0.91)	0.04 (0.04 to 0.05)	0.00 (0.00 to 0.00)	
Belarus	0 (0 to 0)	0.82 (0.60 to 1.11)	0.04 (0.01 to 0.04)	0.0 (0 to 0)	0.01 (0.00 to 0.02)	
Estonia	0 (0 to 0)	0.97 (0.76 to 1.20)	0.02 (0.02 to 0.03)	0.0 (0 to 0)	0.00 (0.00 to 0.00)	
Latvia	0 (0 to 0)	0.88 (0.72 to 1.05)	0.02 (0.02 to 0.02)	0.0 (0 to 0)	0.00 (0.00 to 0.00)	
Lithuania	0 (0 to 0)	0.83 (0.68 to 0.99)	0.04 (0.04 to 0.05)	0.0 (0 to 0)	0.01 (0.00 to 0.01)	
Table 1 Neonatal and non-neonatal tetanus deaths, mortality rates, and change in mortality rates between 1990 and 2015 for 21 Global Burden of Disease regions and 195 countries and territories (Regions ranked from the highest to lowest neonatal mortality rate in 2015) (Continued)

Country	Neonatal Deaths (1990)	Neonatal Deaths (2015)	Neonatal Mortality Rate (1990)	Neonatal Mortality Rate (2015)	Change in Mortality Rate (1990-2015)
Moldova	0 (0 to 0)	1 (1 to 1)	0.77 (0.61 to 0.96)	0.01 (0.01 to 0.02)	0.08 (0.05 to 0.13)
Russia	1 (1 to 1)	33 (29 to 39)	0.79 (0.67 to 0.93)	0.02 (0.02 to 0.03)	0.12 (0.09 to 0.15)
Ukraine	0 (0 to 1)	52 (45 to 61)	0.82 (0.63 to 1.04)	0.10 (0.09 to 0.12)	0.11 (0.06 to 0.19)
Tetanus mortality rates were the highest among neonates in low and middle income countries, indicating failures of health systems to provide immunization, antenatal care, and clean deliveries for all births. Mortality rates from tetanus after the neonatal period were much higher in low and middle income countries compared with high income countries, but a small number of deaths continued to occur in high income countries due to low vaccination coverage in adults [14, 15]. Our findings showed that age-standardized mortality from tetanus was higher among males than females globally. Previous studies have also reported male sex as a risk factor for both neonatal and non-neonatal tetanus [16, 17]. Although the exact reason is not clear, possible explanation for the increased risk of tetanus among newborn boys include medical-care seeking for boys, differential cord care, maternal recall, and
circumcision practices [13, 16]. Among adults, occupational exposure and relatively lower vaccination coverage in men were among the reasons for the increased risk [17].

A main limitation of this study concerns the poor availability of data in many sub-Saharan African countries where tetanus mortality is most common. For countries without reliable vital registration systems, our analysis relies on verbal autopsy data. Variations in analytical methods and the instrument used for collection of verbal autopsy data may also introduce measurement bias and reduce the comparability of tetanus cause-of-death data across countries. Estimating tetanus mortality for every geography over time is challenging especially for those with sparse or no data. We applied sophisticated modeling methods, borrowing strength across geography and covariates to help predict for locations and years with limited data. Accordingly, the estimates for a geography with sparse data are reflected by wider uncertainty intervals.

Conclusions

Up-to-date information on the levels and trends of tetanus mortality is critical to guide prevention and intervention efforts. Despite the availability of a safe, inexpensive, and effective vaccine, our findings on tetanus mortality suggest that the vaccine is not fully utilized. Despite the general decline in tetanus mortality, tens of thousands of lives could still be saved by scaling up interventions.

Additional file

Additional file 1: Tetanus data sources and citations. (XLS 114 kb)

Acknowledgements

We thank Roy Burstein for his technical support in producing the maps. We thank Emmanuela Gakidou, Kate Muller, Noelle Nightingale, and Pauline Kim for their valuable contributions to the production of the manuscript. We also thank the reviewers for their helpful comments.

Funding

The Global Burden of Disease Study 2015 was funded by the Bill & Melinda Gates Foundation. The funding body has no role in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript.

Availability of data and material

The data sources that support the findings of this study are available as Additional file 1. The datasets generated during the current study are available through the GBD Results Tool (http://vizhub.healthdata.org/gbd-results-tool). Additionally, metadata for all sources of raw data analysed in the current study are available in the GBD Data Input Sources Tool (http://ghdx.healthdata.org/gbd-2015/data-input-sources), which includes information about the data provider where interested parties can inquire about data access. Some restrictions apply to the availability of unpublished data, which were used under license for the current study, and so are not..
publicly available. Unpublished data are however available from the authors upon reasonable request and with permission of the providers of those data.

Authors’ contributions
HHK, JEM, TV, and MN prepared the first draft of the manuscript. HHK performed the data analyses with support from RMB, CJLM and MN. All authors contributed to the interpretation of the data and writing of the article. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Received: 18 September 2016 Accepted: 4 February 2017
Published online: 08 February 2017

References
1. Frick L, Frey R. "Tetanus." Gale Encyclopedia of Alternative Medicine. 2005. [May 22, 2015]. Available from: http://www.encyclopedia.com/doc/1G2-3435100722.html
2. Kyu HH, Shannon HS, Georgiades K, et al. Association of Urban Slum Residency with Infant Mortality and Child Stunting in Low and Middle Income Countries. Biomed Res Int. 2013:2013:12.
3. Singh A, Pallikadavath S, Ogollah R, et al. Maternal tetanus toxoid vaccination and neonatal mortality in rural north India. PLoS One. 2012;7(11):e48891.
4. World Health Organization. Viet Nam eliminates maternal and neonatal tetanus [May 22, 2015]. Available from: http://www.who.int/mediacentre/news/releases/2006/pr10/en/.
5. United Nations Children’s Fund (UNICEF). Eliminating maternal and neonatal tetanus. Available from: http://www.who.int/immunization/diseases/UNICEF_MNT_Advocacy_June04.pdf.
6. Khan AA, Zahidie A, Rabbani F. Interventions to reduce neonatal mortality from neonatal tetanus in low and middle income countries-a systematic review. BMC Public Health. 2013;13(1):1.
7. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. The Lancet. 2015;385(9963):117–71.
8. Lozano R, Naghavi M, Foreman K, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study. Lancet. 2010;380(9859):2095–128.
9. Foreman KJ, Lozano R, Lopez AD, et al. Modeling causes of death: an integrated approach using CODEm: University of Washington. 2011.
10. Ortblad KE, Lozano R, Murray CJL. The burden of HIV: insights from the Global Burden of Disease Study 2010. AIDS (London, England). 2013;27(13):2003.
11. Naghavi M, Wang H, Lozano R, et al. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;385(9963):117–71.
12. Pathirana J, Nkambule J, Black S. Determinants of maternal immunization in developing countries. Vaccine. 2015;33(26):2971–7. Epub 2015/05/06. eng.
13. Lambo JA, Nagulesapillai T. Neonatal tetanus elimination in Pakistan: progress and challenges. Int J Infect Dis. 2012;16(12):e833–42.
14. Williams WW, Lu P, O’Halloran A, et al. Surveillance of Vaccination Coverage Among Adult Populations - United States, 2014. MMWR Surveill Summ 2016;65(No. SS-1):1–36. http://dx.doi.org/10.15585/mmwr.ss6501a1.
15. Wu LA, Kanitz E, Cumuly J, D’Ancona F, Strikas RA. Adult immunization policies in advanced economies: vaccination recommendations, financing, and vaccination coverage. Int J Public Health. 2013;58(6):865–74.
16. Roper MH, Vandelaur JH, Gasse FL. Maternal and neonatal tetanus. Lancet. 2007;370(9603):1947–59.
17. Marulappa VG, Manjunath R, Mahesh Babu N, et al. A Ten Year Retrospective Study on Adult Tetanus at the Epidemic Disease (ED) Hospital, Mysore in Southern India: A Review of 512 Cases. J Clin Diagn Res. 2012;6(8):1177–80.