Architecture of an analytics system

Data from instruments and connected systems

Analytics and Machine Learning

Data from business systems
What is Machine Learning

Machine learning uses **data** and produces a **program** to perform a **task**

Task: Human Activity Detection

Standard Approach	Machine Learning Approach
Hand Written Program	`model`: Inputs → Outputs
if \(X_{\text{acc}} > 0.5 \) then “SITTING”	
if \(Y_{\text{acc}} < 4 \) \& \(Z_{\text{acc}} > 5 \) then “STANDING”	
...	`model = Learning Algorithm`
Formula or Equation	\[Y_{\text{activity}} = \beta_1 X_{\text{acc}} + \beta_2 Y_{\text{acc}} + \beta_3 Z_{\text{acc}} + ... \]

MATLAB EXPO 2016
Classify images into 1000 categories
Monitor a manufacturing process

X1	X2	X3	X4	X5	X6	X7	Y
3030.9	2564	2187.7	1411.1	1.3602	100	97.613	'pass'
3095.8	2465.1	2230.4	1463.7	0.8294	100	102.34	'pass'
2932.6	2559.9	2186.4	1698	1.5102	100	95.488	'fail'
2988.7	2479.9	2199	909.79	1.3204	100	104.24	'pass'
3032.2	2502.9	2233.4	1326.5	1.5334	100	100.4	'pass'
2946.3	2432.8	2233.4	1326.5	1.5334	100	100.4	'pass'
3030.3	2430.1	2230.4	1463.7	0.8294	100	102.34	'pass'
3058.9	2690.2	2248.9	1004.5	0.7884	100	106.24	'pass'
2967.7	2600.5	2248.9	1004.5	0.7884	100	106.24	'pass'
3016.1	2428.4	2248.9	1004.5	0.7884	100	106.24	'pass'
2994.1	2548.2	2195.1	1046.1	1.3204	100	103.34	'fail'
2928.8	2479.4	2196.2	1605.8	0.9959	100	97.916	'fail'
2920.1	2507.4	2195.1	1046.1	1.3204	100	103.34	'pass'
3051.4	2529.3	2184.4	877.63	1.4668	100	107.87	'pass'
2964	2629.5	2224.6	947.77	1.2924	100	104.85	'fail'
Overview

Deep Learning

Machine Learning

Which data to use

Choose a model

Fine tuning

Share & Integrate

Deep Learning

MATLAB EXPO 2016
Which data to use?
Feature selection
Which data to use? Feature selection

Neighbourhood Component Analysis (NCA)
Which model to use? Classification Learner

Which data to use Choose a model Fine tuning Share & Integrate
Classification Learner
Classification Learner

![Classification Learner Interface](image-url)

- **Model Details**: Model number 2, Status: Draft
- **Classifier**: All Quick-To-Train
- **Predictors**:
 - X: X305
 - Y: X150
- **Classes**:
 - pass
 - fail

Note: The interface is from MATLAB Expo 2016.
Fine Tuning a Model: Bayesian Optimization

Which data to use Choose a model Fine tuning Share & Integrate
Tune Parameters with Bayesian Optimization

Previously tuning these parameters was a manual process.
Fine tuning a model – Bayesian Optimization
Share & Integrate

Which data to use
Choose a model
Fine tuning
Share & Integrate
Share & integrate: machine learning models

MATLAB code

```matlab
function label = classifyIonosphere(X) %#codegen
%classifyIonosphere Classify Ionosphere based on pre-trained SVM model
mdl = loadCompactModel( 'SVMIonosphere' ) ;
label = predict( mdl, X ) ;
end
```

C code

```c
/* Variable Definitions */
static emlrRSTInfo emlrRSTI = { 4, /* lineNo */
"classifyIonosphere", /* FuncName */
"C:\\Users\\joenrie\\sandbox\\temp\\feature-selection\\classifyIonosphere\\
"
};

/* Function Definitions */
void classifyIonosphere(classifyIonosphereStackData *SD, const emlrtStack
  const real_T X[11934], cell_wrap_0 label[351])
{
  real_T c0_Alpha[90];
  real_T expi_temp[34];
  real_T b_expl_temp;
  char_T c0_ClassNames[2];
  real_T c_expl temp[2];
```
Deep Learning

Machine Learning

Which data to use
Choose a model
Fine tuning
Share & Integrate

Deep Learning

MATLAB EXPO 2016
Deep Learning

Deep learning performs **end-end learning** by learning features, representations and tasks directly from images, text and sound.

Traditional Machine Learning

1. Manual Feature Extraction
2. Classification

- Car ✓
- Truck
- Bicycle

Deep Learning approach

- Convolutional Neural Network (CNN)
- End-to-end learning
- Feature learning + Classification

- Car ✓
- Truck
- Bicycle
What is Deep Learning?

Input Image → Convolution → Rectified linear units → Pooling → Fully Connected layers to support classification

→ Flower
→ Cup
→ Car
→ Tree

Every feature map output is the result of applying a filter to the image
The new feature map is the next input

Activations of the network at a particular layer

MATLAB EXPO 2016
Object Recognition using Deep Learning

![MATLAB GUI for object recognition](image)

Training (using GPU)	Millions of images from 1000 different categories
Prediction	Real-time object recognition using a webcam connected to a laptop
Why is Deep Learning so Popular?

- **Results**: Achieved substantially better results on ImageNet large scale recognition challenge
 - 95% + accuracy on ImageNet 1000 class challenge

- **Computing Power**: GPU’s and advances to processor technologies have enabled us to train networks on massive sets of data.

- **Data**: Availability of storage and access to large sets of labeled data
 - e.g., ImageNet, PASCAL VoC, Kaggle

Year	Error Rate
Pre-2012 (traditional computer vision and machine learning techniques)	> 25%
2012 (Deep Learning)	~ 15%
2015 (Deep Learning)	<5%
Two Approaches for Deep Learning

1. Train a Deep Neural Network from Scratch

- Convolutional Neural Network (CNN)
- Learned features
- Lots of data
- New Task
- Fine-tune network weights

2. Fine-tune a pre-trained model (transfer learning)

- Pre-trained CNN
- New Task
- Fine-tune network weights
- Car ✓
- Truck ✗
- Bicycle

MATLAB EXPO 2016
Two Deep Learning Approaches

Approach 1: Train a Deep Neural Network from Scratch

Convolutional Neural Network (CNN)

Recommended **only** when:

Training data	1000s to millions of labeled images
Computation	Compute intensive (requires GPU)
Training Time	Days to Weeks for real problems
Model accuracy	High (can over fit to small datasets)
Two Deep Learning Approaches

Approach 2: Fine-tune a pre-trained model

(transfer learning)

CNN trained on massive sets of data

- Learned robust representations of images from larger data set
- Can be fine-tuned for use with *new data or task* with small – medium size datasets
Two Deep Learning Approaches

Approach 2: Fine-tune a pre-trained model (transfer learning)

CNN trained on massive sets of data
- Learned robust representations of images from larger data set
- Can be fine-tuned for use with new data or task with small – medium size datasets

Recommended when:

Training data	100s to 1000s of labeled images (small)
Computation	Moderate computation (GPU optional)
Training Time	Seconds to minutes
Model accuracy	Good, depends on the pre-trained CNN model
Deep Learning in MATLAB

% Define a CNN architecture
layers = [
 imageInputLayer([32 32 3])
 convolution2dLayer(5,32,'Padding',2)
 reluLayer()
 maxPooling2dLayer(3,'Stride',2)
 ...
 fullyConnectedLayer(10)
 softmaxLayer()
 classificationLayer()
];

opts = trainingOptions('sgdm', 'InitialLearnRate', 0.001);

% Train the CNN
[net, info] = trainNetwork(X, Y, layers, opts);
% Everything except the last 3 layers.
preTrainedLayers = preTrainedNetwork.Layers(1:end-3);

% Add new fully connected layer for 2 categories,
% the softmax layer, and the classification layer which make up the
% remaining portion of the networks classification layers.
layers = [
 preTrainedLayers
 fullyConnectedLayer(2)
 softmaxLayer
 classificationLayer()
];

net = trainNetwork(X, Y, layers, opts);
Demo Stations
1. Classification Learner Demo
Predictive Maintenance of Turbofan Engine

Sensor data from 100 engines of the same model

Predict and fix failures before they arise
- Import and analyze historical sensor data
- Train model to predict when failures will occur
- Deploy model to run on live sensor data
- Predict failures in real time

Data provided by NASA PCoE
http://ti.arc.nasa.gov/tech/dash/pcoe/prognostic-data-repository/
2. Deep Learning Demo
FIN