A Hubble constant measurement from superluminal motion of the jet in GW170817

K. Hotokezaka1*, E. Nakar2*, O. Gottlieb2, S. Nissanke3,4, G. Hallinan5, K. Masuda1, G. Hallinan6, K. P. Mooley6,7 and A. T. Deller8,9

1Department of Astrophysical Sciences, Princeton University, Princeton, NJ, USA. 2The Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel. 3GRAPPA, Anton Pannekoek Institute for Astronomy and Institute of High-Energy Physics, University of Amsterdam, Amsterdam, The Netherlands. 4Nikhef, Amsterdam, The Netherlands. 5Department of Astrophysics/IMAPP, Radboud University Nijmegen, Nijmegen, The Netherlands. 6Caltech, Pasadena, CA, USA. 7National Radio Astronomy Observatory, Socorro, NM, USA. 8Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, Victoria, Australia. 9ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav), Hawthorn, Victoria, Australia. *e-mail: kentah@astro.princeton.edu; udini@wise.tau.ac.il
A Hubble constant measurement from superluminal motion of the jet in GW170817

K. Hotokezaka¹, E. Nakar², O. Gottlieb², S. Nissanke³,⁴,⁵, K. Masuda¹,¹⁰, G. Hallinan⁶, K. P. Mooley⁶,⁷, & A. T. Deller⁸,⁹

¹Department of Astrophysical Sciences, Princeton University, Peyton Hall, Princeton, NJ 08544, USA
²The Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel
³GRAPPA, Anton Pannekoek Institute for Astronomy and Institute of High-Energy Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
⁴Nikhef, Science Park 105, 1098 XG Amsterdam, The Netherlands
⁵Department of Astrophysics/IMAPP, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
⁶Caltech, 1200 E California Blvd, MC 249-17, Pasadena, CA 91125, USA
⁷National Radio Astronomy Observatory, Socorro, New Mexico, 87801, USA
⁸Centre for Astrophysics & Supercomputing, Swinburne University of Technology, John St, Hawthorn VIC 3122 Australia
⁹ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav), Australia
¹⁰NASA Sagan Fellow
Supplementary Information
Supplementary Figure 1: Corner plot1 for a Power-Law Jet model. The afterglow light curve at 3 GHz and the centroid motion resolved by VLBI are used as the observed input data. Vertical lines depict 68\% credible intervals.
Supplementary Figure 2: Same as Figure 1 but for a Gaussian Jet model.
Supplementary Figure 3: Corner plot for the combined GW-EM analysis with a Power-Law Jet model. The afterglow light curve at 3 GHz and the centroid motion resolved by VLBI are used as the observed input data. Vertical lines depict 68% credible intervals. Here we use high spin PhenomNR posterior.
Supplementary Figure 4: Same as Figure 3 but for a Gaussian Jet model.
Supplementary Figure 5: Afterglow light curve at 3 GHz and centroid motion from day 75 to 230 with 1σ uncertainties. Also shown are the light curves calculated with (a) a PLJ and (b) a GJ model, where 50 sets of the model parameters are randomly chosen from the MCMC samples. Bottom panels show the histogram of the centroid motion with 3000 samples randomly chosen: (c) a PLJ model and (d) a GJ model. These are the results of the combined GW-VLBI-LC analysis.
Supplementary Figure 6: Comparison between the H_0 posteriors of the high and low spin priors. Here we use hydrodynamics simulation jet model ($0.25 < \theta_{\text{obs}} \left(\frac{d}{41 \text{ Mpc}}\right) < 0.5 \text{ rad}$). Solid blue curve: the GW-VLBI-LC analysis with the high-spin prior, dash-dotted purple curve: the GW-VLBI-LC analysis with the low-spin prior, solid orange curve: the GW-only analysis with the high-spin prior, and dash-dotted green curve: the GW-only analysis with the low-spin prior. The vertical lines show symmetric 68% credible interval for each model.
References

1. Foreman-Mackey, D. corner.py: Scatterplot matrices in python. The Journal of Open Source Software 24 (2016). URL http://dx.doi.org/10.5281/zenodo.45906.