Introduction

Hypertension (MIM #14500) is one of the most common chronic diseases, and the most frequent reason for people to consult their doctor and take medication. Hypertension can burst a blood vessel or/and accelerate narrowing of arteries in the brain to cause a stroke which, if not lethal, can result in many catastrophic complications such as paralysis, aphasia, coma and so forth. The damage to the brain cannot be repaired, so the only rational approach is prevention. Hypertension is a major risk factor for the development of stroke. In 1964, it was first demonstrated that antihypertensive agents could reduce the risk of strokes [1]. It is well known that lowering blood pressure decreases the risk of stroke in people with moderate to severe hypertension [2]. There are eight classifications of antihypertensive drug classes are not known. Therefore, the major goal of this work was to perform a systematic review and a meta-analysis of the published data and to figure out whether calcium-channel blockers are better than other first-line antihypertensive agents. Despite the widespread use of blood-pressure-lowering agents which one is better against the development of stroke is unclear [3]. Controlling blood pressure in the patients with hypertension or/and stroke has important clinical implications including improved prognosis, reduced mortality and so on [4]. Angiotensin-converting enzyme inhibitors, β-adrenergic blockers, calcium channel blockers and diuretics are used extensively and listed as the first-line agents in the 1989 WHO/International Society of Hypertension Guidelines [5]. Because each study may have insufficient power to detect the effect of calcium channel blockers against stroke in the patients with hypertension; a meta-study to accumulate data from different studies may address this issue, and the specific effects of CCBs against stroke in patients with hypertension as compared to no treatment and other antihypertensive drug classes are not known. Therefore, the major goal of this work was to perform a systematic review and a meta-analysis of the published data and to figure out whether calcium-channel blockers are better than other first-line antihypertensive

Abstract

Background: Hypertension is a major risk factor for the development of stroke. It is well known that lowering blood pressure decreases the risk of stroke in people with moderate to severe hypertension. However, the specific effects of calcium channel blockers (CCBs) against stroke in patients with hypertension as compared to no treatment and other antihypertensive drug classes are not known.

Methods and Findings: This systematic review and meta-analysis of randomized controlled trials (RCTs) evaluated CCBs effect on stroke in patients with hypertension in studies of CCBs versus placebo, angiotensin-converting-enzyme inhibitors (ACEIs), β-adrenergic blockers, and diuretics. The PUBMED, MEDLINE, EMBASE, OVID, CNKI, MEDCH, and WANFANG databases were searched for trials published in English or Chinese during the period January 1, 1996 to July 31, 2012. A total of 177 reports were collected; among them 31 RCTs with 273,543 participants (including 130,466 experimental subjects and 143,077 controls) met the inclusion criteria. In these trials a total of 9,550 stroke events (4,145 in experimental group and 5,405 in control group) were reported. CCBs significantly decreased the incidence of stroke compared with placebo (OR = 0.68, 95% CI 0.61–0.75, p < 1 × 10⁻⁶), β-adrenergic blockers combined with diuretics (OR = 0.89, 95% CI 0.83–0.95, p = 7 × 10⁻⁵) and β-adrenergic blockers (OR = 0.79, 95% CI 0.72–0.87, p < 1 × 10⁻⁶), statistically significant difference was not found between CCBs and ACEIs (OR = 0.92, 95% CI 0.8–1.02, p = 0.12) or diuretics (OR = 0.95, 95% CI 0.84–1.07, p = 0.39).

Conclusion: In a pooled analysis of data of 31 RCTs measuring the effect of CCBs on stroke, CCBs reduced stroke more than placebo and β-adrenergic blockers, but were not different than ACEIs and diuretics. More head to head RCTs are warranted.
agents in the prevention of stroke, as well as to quantify the potential heterogeneity between different studies.

Methods

Data Sources

The PUBMED, MEDLINE, EMBASE, OVID, CNKI, MEDCH, and WANGFANG databases were searched for trials published in English or Chinese during the period January 1, 1996 to July 31, 2012. In addition, all references cited in these studies and previously published review articles were reviewed to identify additional works not indexed by the above databases. Search terms were “antihypertensive agents”, “placebo”, “hypertension”, “diuretics”, “beta-blockers” or “β-adrenergic blockers”, “angiotensin-converting-enzyme inhibitors”, “calcium channel blockers”, “vasodilator agents”, and “stroke”. Bibliographies of studies were also reviewed.

Study Selection

A total of 177 published studies were identified using the screening procedure shown in Figure 1 (see Supplementary Information online). Among them, fifty-eight are systematic reviews and meta-analyses, one hundred and nineteen are randomized controlled trials. After searching, the following information was extracted: author, ethnicity of research subjects, year of publication, numbers of hypertension- and stroke-cases, medicine of treatment, age of patients, and years of followed-up. Studies were eligible for inclusion if they were randomized controlled trials and reported on stroke risk associated with the current use of the first-line antihypertensive agents in population settings.

Quality Assessment

Eligible studies must meet the following inclusion criteria: (1) with original data being independent among studies if more than one studies have overlapping subjects, only the study with bigger/biggest sample size was selected; (2) with the numbers of hypertension- and stroke-cases clearly provided; (3) with data of the first-line antihypertensive agents and/or placebo; (4) with the research design of randomized controlled trials, which is the best approach to evaluating new treatments, to challenging the efficacy of the old one, and to comparing the efficacy of different treatments [6–7]. All the available information was independently extracted by two investigators and no inconsistency was discovered. The quality assessment of evidence and an overall risk of bias assessment for each included study were evaluated by GRADE-profile software version 3.2.2 and RevMan version 5.0 (see Supplementary Information online), respectively.

Statistical Analysis

Publication bias was detected by Egger’s linear regression test, which measures funnel plot asymmetry on the scale of odds ratio (OR) [8]. Heterogeneity between studies was tested by Cochran’s Q-statistic test [9] and $I^2 = 100\% \times (Q-df) / Q$ [10], respectively. The I^2 metric is independent of the number of studies in the meta-analysis, and ranges between 0 and 100% ($I^2 < 25\%$: no heterogeneity; $I^2 = 25\%–50\%$: moderate heterogeneity; $I^2 = 50\%–75\%$: high heterogeneity; $I^2 > 75\%$: extreme heterogeneity). Heterogeneity was considered statistically significant when $p < 0.05$ [11]. If results were heterogeneous, the random effects model was used for meta-analysis. OR was pooled using the method of DerSimonian and Laird, and 95% confidence interval (CI) was constructed using Woolf’s method. The statistical analysis was conducted by the statistical package RevMan version 5.0 (The Cochrane collaboration, Oxford, England). A p value of less than 0.05 was considered as statistical significant.

Results

The derivation of the databases and published articles is described in Figure 1. A total of one hundred and seventy-seven studies concerning the stroke risk associated with the use of antihypertensive agents in the patients with hypertension were identified. Among them, one hundred and forty-six studies were excluded for (1) No numbers of hypertension- and stroke-cases; (2) Data duplication; (3) Not written in English or Chinese; (4) No randomized controlled trials; (5) Data missing or lacking; (6) No control group. Therefore, thirty-one studies [3–5, 12–39] and a total of 273,543 participants (including 130,466 experimental subjects and 143,077 controls) matched the inclusion criteria and were selected for the statistical test; and a total of 9,550 stroke events (4,145 in experimental group and 5,405 in control group) were reported (see Table 1). The quantity and quality of original investigations play an important role in determining the quality of the meta-analysis. To controlling the publication bias, the funnel test was performed (see Figure 2). No evidence of publication bias was found for the included thirty-one studies. Our analysis also indicated that the heterogeneity between studies was not statistical significance ($p > 0.05$), therefore, the fixed effects model was used for the meta-analysis. The results of quality assessment for each included study indicated that among the included thirty-one studies, twenty-eight reports [3–5, 12–15, 17–25, 27–32, 34–39] were high quality and the remaining three studies [16, 26, 33] were moderate quality (see Table 1 and Supplementary Information online). The overall quality of the evidence was high in our statistical tests.

The issue of lost to follow-up or withdrew was identified as follows: 1) six studies [4, 24, 29, 32, 34, 37] reported that no patient was lost to follow-up or withdrew; 2) eight studies [14, 17–18, 23, 25, 35–36, 38] did not report the information of the patient’s follow-up or withdrew; 3) the remaining seventeen studies [3, 5, 12–13, 15–16, 19–22, 26–28, 30–31, 33, 39] reported that some patients were lost to follow-up or withdrew but did not give out the reasons, and the rate of lost to follow-up was not significantly difference between the experimental and control groups (see Supplementary Information online). Therefore, we did not perform the comparisons of incidence of withdrawals due to adverse effects for CCBs versus other drugs, because it was easy to result in a bias.

The results from the risk of bias assessment for each included study indicated that among the included thirty-one studies, fifteen reports [3, 5, 14, 17–20, 22, 27, 29–33, 37, 39] were low risk of bias, thirteen reports [4, 12, 13, 15, 18, 19, 23, 25, 28, 34–36, 38] were unclear risk of bias, and the remaining three studies [16, 26, 33] were high risk of bias (see Table 1 and Supplementary Information online).

There are two types of stroke, ischemic stroke (80%) and hemorrhagic stroke (20%). A total of 60–80% of hypertension patients (blood pressure $\geq 140/90$ mmHg) face the risk of stroke. Hypertension is associated with ischemic- and hemorrhagic-stroke [40]. The detailed information of ischemic- or hemorrhagic-stroke was not presented in most original studies. The authors of included thirty-one studies have contact. Six reports authors could not contacted, nine reports authors did not response to us, five reports authors responded to us with the information we need, and eleven reports authors responded to us but did not give back the information we need. Therefore, we can not perform sub-groups analysis.
Table 1. Characteristics of 31 randomized controlled trials included in the meta-analyses.

Source year	Ethnicity	Treatment	Cases of Hypertension	Incidence of Stroke (%)	Quality of the evidence						
		Experimental (Male %)	Control (Male %)	Cases of Stroke	Overall risk of bias assessment						
		Control	Control	Experimental	Control	(RevMan)					
CCBS vs Placebo											
Poole-Wilson PA et al 2004	Europe	Nifedipine vs Placebo	3825(80)	63.5	6	9.3	63.4	6	9.3	Moderate	High
Lubano J et al 2005	Europe	CCBs vs Placebo	3994	65	11	9	65.5	7	6	Low	High
Turnbull F 2003	Asia	Felodipine vs Placebo	4270(61.5)	61.5	7	17	61.3	7	2	Low	High
Liu L et al 2005	Asia	Amlodipine vs Placebo	4841(61.8)	61.5	7	6	61.5	6	9	Moderate	High
Berl T et al 2003	Europe	Amlodipine vs Placebo	567(63)	59.1	7	4	58.3	6	8	High	Unclear
Turnbull F 2003	Asia	CCBs vs Placebo	3794	65	6	2	65	6	2	Low	High
Liu L et al 1998	Asia	Felodipine vs Placebo	1793	65	7	16	65.2	6	8	Low	High
Staessen JA et al 1998	Europe	Nitrendipine vs Placebo	2146	66	7	2	60	5	7	High	Unclear
Dens JA et al 2001	Europe	Nisoldipine vs Placebo	408(82)	60	6	3	60	6	3	High	Unclear
Gong L et al 1996	Asia	Nifedipine vs Placebo	817	66	5	2	66.8	6	5	Moderate	High
Liu L et al 2005	Asia	Nitrendipine vs Placebo	1253(65.0)	66	5	4	66.4	6	5	Moderate	High
Stassen JA et al 1998	Europe	Nitrendipine vs Placebo	2981(92.5)	74	2	3	71	2	3	Low	Low
Total											
CCBs vs ACEIs											
Estacio RO et al 1999	Europe	Nisoldipine vs Enalapril	235(68.1)	57	2	5	57	2	5	Moderate	High
Leenen FH et al 2005	Europe	Amlodipine vs Lisinopril	9048(52.7)	68.8	7	3	68.8	7	3	High	Low
Fukui T et al 2003	Asia	Amlodipine vs Candesartan	2353(75.2)	68.3	6	12	68.3	6	12	Moderate	High
Song Y et al 2011	Europe	Levamlodipine vs Enapril	6952(63.9)	63	2	1	63.8	6	2	Low	High
Ekbom T et al 2004	Europe	Amlodipine vs Chlorthalidone	752(26.6)	76	2	1	76	2	1	High	Unclear
Total											
CCBS vs blockers or/and Diuretics											
ALLHAT 2002	Europe	Amlodipine vs Chlorthalidone	9048(52.7)	68	8	3	68.9	8	3	High	Low
Rothwell BM et al 2010	Europe	Amlodipine vs Atenolol	9092	40	7	2	40	7	2	High	Low

Calcium Channel Blockers and Stroke Prevention
Source year [reference]	Ethnicity	Treatment	Cases of Hypertension	Age of Cases (Mean ± SD)	Years of followed up	Cases of Stroke	Incidence of Stroke (%)	Quality of the evidence	Overall risk of bias assessment		
Dahlof B et al 2005 [19]	Europe	Amlodipine vs Atenolol	630.8 ± 8.5	630.8 ± 8.5	63.0 ± 8.5	367	422	3.4	4.4	High	Unclear
Turnbull F 2003 [23]	Europe	CCBs vs diuretic and blocker	65	65	65	367	422	3.4	4.4	High	Unclear
Black HR et al 2003 [28]	Europe	Verapamil vs Atenolol	65.6 ± 7.4	65.6 ± 7.4	65.6 ± 7.4	367	422	3.4	4.4	High	Unclear
Hansson L et al 1999 [29]	Europe	CCBs vs diuretic and blocker	75.9	76	76	367	422	3.4	4.4	High	Low
Brown MJ et al 2000 [30]	Europe	Nifedipine vs Co-amilozide	55 ± 80	55 ± 80	55 ± 80	367	422	3.4	4.4	High	Low
Pepine CJ et al 2003 [31]	Europe	Verapamil vs Atenolol	66.0 ± 9.7	66.1 ± 9.8	66.1 ± 9.8	367	422	3.4	4.4	High	Low
Borhani NO et al 1996 [32]	Europe	Isradipine vs Hydrochlorothiazide	58.2 ± 8.3	58.7 ± 8.7	58.7 ± 8.7	367	422	3.4	4.4	High	Low
Wang Y et al 1998 [24]	Asia	Nitrendipine vs Diuretics	56 ± 11	54 ± 13	54 ± 13	367	422	3.4	4.4	High	Low
Hansson L et al 2000 [5]	Europe	Diltiazem vs Diuretic and β-blocker	60.5 ± 6.5	60.3 ± 6.5	60.3 ± 6.5	367	422	3.4	4.4	High	Low
NICS-EH Study Group 1999 [3]	Asia	Nicardipine vs Trichlormethiazide	69.7 ± 6.5	69.9 ± 6.4	69.9 ± 6.4	367	422	3.4	4.4	High	Low
Malacco E et al 2003 [33]	Europe	Lacidipine vs Chlorthalidone	72.3 ± 7.5	72.4 ± 7.6	72.4 ± 7.6	367	422	3.4	4.4	High	Low
Ekbom T et al 2004 [18]	Europe	CCBs vs diuretic and blocker	76.5	76.6	76.6	367	422	3.4	4.4	High	Low
Zanchetti A et al 2000 [22]	Europe	Lacidipine vs Atenolol	55.9 ± 7.5	56.1 ± 7.5	56.1 ± 7.5	367	422	3.4	4.4	High	Low
Zanchetti A et al 1998 [34]	Europe	Verapamil vs Chlorthalidone	54.2 ± 6.8	53.9 ± 7.2	53.9 ± 7.2	367	422	3.4	4.4	High	Unclear
Total			931	114	931	3710	3710	3.4	4.4	High	Low

Overall

| | | | 130466 | 143077 | 4145 | 5405 |

CCBs: Calcium Channel Blockers; ACEIs: Angiotensin-Converting Enzyme Inhibitors.
GRADE Working Group grades of evidence (see Supplementary Information online). High quality: Further research is very unlikely to change our confidence in the estimate of effect. Moderate quality: Further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate. Low quality: Further research is likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate. Very low quality: We are very uncertain about the estimate.

The risk of bias assessment is done using RevMan (see Supplementary Information online). Low risk of bias: Plausible bias unlikely to seriously alter the results, low risk of bias for all key domains (within a study), and most information is from studies at low risk of bias (across studies). Unclear risk of bias: That raises some doubt about the results, unclear risk of bias for one or more key domains (within a study), and most information is from studies at low or unclear risk of bias (across studies). High risk of bias: Plausible bias that seriously weakens confidence in the results, high risk of bias for one or more key domains (within a study), the proportion of information from studies at high risk of bias is sufficient to affect the interpretation of results (across studies).

doi:10.1371/journal.pone.0057854.t001
Stroke Events of CCBs vs Placebo

Ten studies were included in this test [12,14–16,21,23,25–26,37–38], which consisted of 21,844 experimental subjects and 21,690 controls, and 1,574 stroke events (622 in experimental group and 907 in control group). Statistic test revealed that the CCBs could significantly decline the stroke risk (OR = 0.68, 95% CI 0.61–0.75, p<1×10⁻⁵) compared with that of placebo (see Figure 3a). The incidence of stroke in CCBs group was decreased by 33.33% [(4.2%-2.8%) ÷ 4.2% × 100%] compared with that of placebo group (see Table 1).

Stroke Events of CCBs vs ACEIs

Eight studies with a total of 15,511 experimental subjects and 15,558 controls were included in this analysis [4,13,18,20,29,35–36,39], and 1446 stroke events were reported (728 in experimental group and 788 in control group). No statistically significant

Figure 1. A schematic diagram for the search strategy of published reports.
doi:10.1371/journal.pone.0057854.g001
Calcium Channel Blockers and Stroke Prevention

a

b

c

Subgroups
- CCBs vs β-blockers and/or Diuretics
- CCBs vs β-blockers and Diuretics
- CCBs vs Diuretics
- CCBs vs β-blockers
difference was found (OR = 0.92, 95% CI 0.8–1.02, p = 0.12) between CCBs and ACEIs in their efficiency of against stroke (see Figure 3b). However, the incidence of stroke in CCBs group was decreased by 7.84% ([5.1%–4.7%] × 100%) compared with that of ACEIs group (see Table 1).

Stroke Events of CCBs vs Diuretics or/and β-adrenergic Blockers

Sixteen independent reports with 93,111 experimental subjects and 105,829 controls were included in this meta-analysis [3,5,17–19,22–24,27–34], which consisted of 6,505 stroke events (2795 in experimental group and 3710 in control group). The incidence of stroke in CCBs group was decreased by 14.28% ([3.5%–3%] × 100%) compared with that of diuretics or/and β blockers in the prevention of stroke (see Figure 3c). Results of subgroups analyses indicated that the CCBs were more effective than β-adrenergic blockers alone (OR = 0.79, 95% CI 0.72–0.87, p < 10⁻⁵), β-adrenergic blockers combined with diuretics (OR = 0.89, 95% CI 0.83–0.95, p = 7 × 10⁻⁵), but not diuretics alone (OR = 0.95, 95% CI 0.84–1.07, p = 0.39) in the prevention of stroke (see Figure 3c).

Discussion

This study demonstrates that the use of calcium channel blockers therapy, compared with placebo therapy (OR, 0.68), β-adrenergic blockers therapy (OR, 0.79), diuretics combined with β-adrenergic blockers therapy (OR, 0.89), angiotensin-converting enzyme inhibitors therapy (OR, 0.92), and diuretics therapy (OR, 0.95), was associated with a lower incidence of stroke events in the patients with hypertension. In this combined study of different hypertension populations, the risk of stroke events reduction for patients receiving calcium channel blockers therapy was similar.

Due to different sample size in different treatment groups, it is essential to use and interpret the above results with cautions. These findings present new evidence to support the idea that the CCBs reduced stroke more than placebo and β-adrenergic blockers, but were not different than ACEIs and diuretics. Hypertension is only one of the major risk factors in the development of stroke, the number of stroke events remains high even though the antihypertensive agents are used extensively [39]. Therefore, other risk factors or/and the biological processes underlying the pathophysiology of stroke warrant further studies in the near future.

The findings of our work indicated that CCBs reduced stroke more than placebo and β-adrenergic blockers, but the detail molecular mechanisms are not well known and remain to be excavated in the future. By now, it can be explained in part by that CCBs can generate stronger antihypertensive effect (by dilating the blood vessels) than that of β-blockers (by reducing the blood flow of cardiac output) or that of placebo (by confounders). These results reported here provide strong evidence linking controlling hypertension to a reduced risk of stroke. Meanwhile, this study has some limitations and caveats. First, as not all clinical data were available from each original report, other subclasses-stratified analyses could not be performed; the risk of bias assessment in this work could rob the credibility of results. Second, only studies reported in English or Chinese were included, which might be...
vulnerable to the bias of language and ethnicity. Third, the whole sample size in this study is sufficient for statistical purposes, but the sample size of each subgroup is relatively small and susceptible to false positive or negative results. Fourth, after the treatment of antihypertensive agents, the years of follow-up between studies varied (2 to 5.5 years), which also could result in a bias. Finally, only four kinds of antihypertensive agents were tested in this report; addition of other drugs and withdrawals of treatment may also lead to an underestimation of the real differences in stroke risk between the previous reports. Further studies are required to investigate the association between other antihypertensive agents and stroke-risk, and to provide a better estimate the benefits of antihypertensive agents against stroke in the hypertension populations.

In conclusions, the present analysis shows that CCBs, ACEIs, diuretics, and β-adrenergic blockers can decline the incidence of stroke in the hypertension populations. Among them, CCBs reduced stroke more than placebo and β-adrenergic blockers, but were not different than ACEIs and diuretics. More head to head RCTs are warranted. This systematic review and meta-analysis provides a thorough examination of the literature on the effect of first-line antihypertensive agents in the prevention of stroke, and provide a foundation of knowledge on which clinical and public messaging deserves to be further discussed.

Supporting Information

Supplementary Information S1 The quality assessment of evidence by GRADEprofiler. (DOC)

Supplementary Information S2 The risk of bias assessment by RevMan. (DOC)

Acknowledgments

We also thank the anonymous reviewers who made comments valuable to the revision of this article.

Author Contributions

Conceived and designed the experiments: MSY. Performed the experiments: MSY GJJC. Analyzed the data: MSY GJJC. Contributed reagents/materials/analysis tools: MSY GJJC. Wrote the paper: MSY GJJC.

References

1. Hamilton M, Thompson EM, Wiansiewski TK (1964) The role of blood-pressure control in preventing complications of hypertension. Lancet 1: 235–238.
2. Liu GT, Zeng GM, Hong X (2011) Long-term calcium channel blockers: The best choice of antihypertensive treatment for the Chinese hypertension population. Zhongguo She Qu Yi Shi 13: 10–11. (In Chinese).
3. National Intervention Cooperative Study in Elderly Hypertensives Study Group (1999) Randomized double-blind comparison of a calcium antagonist and a diuretic in elderly hypertensives. Hypertension 34: 1129–1133.
4. Song YY, Yang YL (2011). Antihypertensive effect of levamlodipine besylate and evaluate the patients in the cerebral vascular disorder. Zhongguo Luo Xian Xue Za Zhi 31: 4039–4040. (In Chinese).
5. Hansson L, Hedner T, Lund-Johansen P, Kjeldsen SE, Lindholm LH, et al. (2000) Randomised trial of effects of calcium antagonists compared with diuretics and beta-blockers on cardiovascular morbidity and mortality in hypertension: the Nordic Diltiazem (NORDIL) study. Lancet 356: 359–365.
6. Hill AB (1965) The Environment and Disease: Association or Causation? Proc R Soc Med 58: 293–300.
7. Hill AB (1966) Reflections on controlled trial. Ann Rheum Dis 25: 107–113.
8. Egger M,Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315: 629–634.
9. Churchill TA, Burdick E, Mosteller F (1995) Heterogeneity in meta-analysis of data from epidemiologic studies: a commentary. Am J Epidemiol 142: 371–382.
10. Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21: 1539–1550.
11. Deeks J (2001) Systematic reviews in health care: Systematic reviews of evaluations of diagnostic and screening tests. BMJ 323: 157–162.
12. Staessen JA, Fagard R, Thijs L, Arabidze GG, et al. (1997) Randomised double-blind comparison of placebo and active treatment for older patients with isolated systolic hypertension. The Systolic Hypertension in Europe (Sys-Eur) Trial Investigators. Lancet 350: 757–764.
13. Tatti P, Pahor M, Byington RP, Di Mauro P, Guarisco R, et al. (1998) Outcome results of the Fosinopril Versus Amlodipine Cardiovascular Events Randomized Trial (FACET) in patients with hypertension and NIDDM. Diabetes Care 21: 597–603.
14. Lubes J, Wagener G, Kirwan BA, de Brouwer S, Poole-Wilson PA (2005) ACTION (A Coronary disease Trial Investigating Outcome with Nifedipine GITS) investigators. Effect of long-acting nifedipine on mortality and cardiovascular morbidity in patients with symptomatic stable angina and hypertension: the ACTION trial. J Hypertens 23: 641–648.
15. Liu L, Wang JG, Gong L, Liu G, Staessen JA (1998) Comparison of active treatment and placebo in older Chinese patients with isolated systolic hypertension. Systolic Hypertension in China (Syst-China) Collaborative Group. J Hypertens 16: 1023–1029.
16. Poole-Wilson PA, Lubes J, Kirwan BA, van Dalen DJ, Wagener G, et al. (2004) Coronary disease Trial Investigating Outcome with Nifedipine gastrointesatal therapeutic system. Investigators. Effect of long-acting nifedipine on mortality and cardiovascular morbidity in patients with stable angina requiring treatment (ACTION trial; randomised controlled trial. Lancet 364: 849–857.
17. Rothwell PM, Howard SC, Dolan E, O’Brien E, Dobson JE, et al. (2010) ASCOT-BPLA and MRC Trial Investigators. Effects of beta blockers and calcium-channel blockers on within-individual variability in blood pressure and risk of stroke. Lancet Neurol 9: 469–480.
18. Eklo¨f T, Linjer E, Hedner T, Lane J, De Faire U, et al. (2004) Cardiovascular events in elderly patients with isolated systolic hypertension. A subgroup analysis of treatment strategies in STOP-Hypertension-2. Blood Press 13: 137–141.
19. Dahlo¨f B, Sever PS, Poulter NR, Wedel H, Beavers DG, et al. (2005) ASCOT Investigators. Prevention of cardiovascular events with an antihypertensive regimen of amloide plus bendroflumethiazide as required versus atenolol adding bendroflumethiazide as required, in the Anglo-Scandinavian Cardiac Outcomes Trial-Blood Pressure Lowering Arm (ASCOT-BPLA): a multicentre randomised controlled trial. Lancet 366: 895–906.
20. Leenen FH, Nwochukwu CE, Black HR, Cusmano WC, Davis BR, et al. (2006) Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial Collaborative Research Group. Clinical events in high-risk hypertensive patients randomly assigned to calcium channel blocker versus angiotensin-converting enzyme inhibitor in the antihypertensive and lipid-lowering treatment to prevent heart attack trial. Hypertension 48: 374–384.
21. Liu L, Zhang Y, Liu G, Li W, Zhang X, et al. (2005) FEVER Study Group. The Felineopin Event Reduction (FEVER) Study: a randomized long-term placebo-controlled trial in Chinese hypertensive patients. J Hypertens 23: 2175–2172.
22. Zanchetti A, Bond MG, Heming N, Neis A, Mancia G, et al. (2002) European Lancidipine Study on Atherosclerosis investigators. Calcium antagonist lancidipine slows down progression of aorteam coronary angioplasty (results of the NICEOL study). Lancet 359: 1950–1957.
23. Xue X, Huang XQ, Sun J, Wang X, et al. (2002) Usefulness of Nisoldipine for prevention of restenosis after percutaneous transluminal coronary angioplasty (results of the NICOLE study). J Cardiovascular artery disease in Leiuen. Am J Cardiol 87: 28–33.
24. Gong L, Zhang W, Zhu Y, Zhu J, Kong D, et al. (1996) Shanghái trial of nifedipine in the elderly (STONE). J Hypertens 14: 1237–1245.
25. ALLHAT Officers and Coordinators for the ALLHAT Collaborative Research Group (2002) The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial-Blood Pressure Lowering Arm (ALLHAT-BPLA): a multicentre randomised controlled trial. J Hypertens 20: 1415–1425.
26. Black HR, Elliott WJ, Grandits G, Grambsch P, Lucente T, et al. (2003) CONVINCE Research Group. Principal results of the Controlled Onset Verapamil Investigation of Cardiovascular End Points (CONVINCE) trial. JAMA 290: 2073–2082.
27. Hansson L, Lindholm LH, Eklo¨f T, Dahlo¨f B, Lane J, et al. (1999) Randomised trial of old and new antihypertensive drugs in elderly patients: cardiovascular mortality and morbidity the Swedish Trial in Old Patients with Hypertension-2 study. Lancet 354: 1751–1756.
28. Brown MJ, Palmer CR, Castaigne A, de Leeuw PW, Mancia G, et al. (2000) Morbidity and mortality in patients randomised to double-blind treatment with

Calcium Channel Blockers and Stroke Prevention
a long-acting calcium-channel blocker or diuretic in the International Nifedipine GITS study: Intervention as a Goal in Hypertension Treatment (INSIGHT). Lancet 356: 366–372.

31. Pepine CJ, Handberg EM, Cooper-DeHoff RM, Marks RG, Kowey P, et al. (2003) INVEST Investigators. A calcium antagonist vs a non-calcium antagonist hypertension treatment strategy for patients with coronary artery disease. The International Verapamil-Trandolapril Study (INVEST): a randomized controlled trial. JAMA 290: 2805–2816.

32. Borhani NO, Mercuni M, Borhani PA, Bockalew VM, Canossa-Terris M, et al. (1996) Final outcome results of the Multicenter Isradipine Diuretic Atherosclerosis Study (MIDAS). A randomized controlled trial. JAMA 276: 785–791.

33. Malacco E, Mancia G, Rappelli A, Menotti A, Zuccaro MS, et al. (2003) SHELL Investigators. Treatment of isolated systolic hypertension: the SHELL study results. Blood Press 12: 160–167.

34. Zanchetti A, Rosetti EA, Dal Palù C, Leonetti G, Magnani B, et al. (1998) The Verapamil in Hypertension and Atherosclerosis Study (VHAS): results of long-term randomized treatment with either verapamil or chlorthalidone on carotid intima-media thickness. J Hypertens 16: 1667–1676.

35. Estacio RO, Jeffers BW, Biggerstaff SL, Gifford N, et al. (1998) The effect of nisoldipine as compared with enalapril on cardiovascular outcomes in patients with non-insulin-dependent diabetes and hypertension. N Engl J Med 338: 645–652.

36. Fukui T, Rahman M, Hayashi K, Takada K, Higaki J, et al. (2003) CASE-J Study Group. Candesartan Antihypertensive Survival Evaluation in Japan (CASE-J): trial of cardiovascular events in high-risk hypertensive patients: rationale, design, and methods. Hypertens Res 26: 979–990.

37. Berl T, Hunskier LG, Lewis JB, Pfeffer MA, Porush JG, et al. (2003) Irbesartan Diabetic Nephropathy Trial. Collaborative Study Group. Cardiovascular outcomes in the Irbesartan Diabetic Nephropathy Trial: trial of patients with type 2 diabetes and overt nephropathy. Ann Intern Med 138: 542–549.

38. Tuomilehto J, Rastenye D, Birkenhager WH, Thijs L, Antikainen R, et al. (1999) Effects of calcium-channel blockade in older patients with diabetes and systolic hypertension. Systolic Hypertension in Europe Trial Investigators. N Engl J Med 340: 677–684.

39. Schrader J, Lieders S, Kuchewski A, Hammersen F, Plate K, et al. (2005) MOSES Study Group. Morbidity and Mortality after Stroke, Eprosartan Compared with Nitrendipine for Secondary Prevention: principal results of a prospective randomized controlled study (MOSES). Stroke 36: 1218–1226.

40. Donovan AL, Flexman AM, Gelb AW (2012) Blood pressure management in stroke. Curr Opin Anaesthesiol 25: 516–522.