Characterization of transcription factor MYB59 and expression profiling in response to low K⁺ and NO₃⁻ in indica rice (*Oryza sativa* L.)

Md. Qamrul Islam, Md. Nazmul Hasan, Hammadul Hoque, Nurnabi Azad Jewel, Md. Fahmid Hossain Bhuiyan and Shamsul H. Prodhan

Abstract

Background: Nitrogen and potassium are crucial supplements for plant development and growth. Plants can detect potassium and nitrate ions in soils and in like way, they modify root-to-shoot transport of these ions to adjust the conveyance among roots and shoots. Transcription factor MYB59 plays essential roles in numerous physiological processes inclusive of hormone response, abiotic stress tolerance, plant development, and metabolic regulation. In this study, we retrieved 56 MYB59 proteins from different plant species. Multiple sequence alignment, phylogenetic tree, conserved motif, chromosomal localization, and cis-regulatory elements of the retrieved sequences were analyzed. Gene structure, protein 3D structure, and DNA binding of OsMYB59 indica were also predicted. Finally, we characterized OsMYB59 and its function under low K⁺/NO₃⁻ conditions in *Oryza sativa* subsp. indica.

Results: Data analysis showed that MYB59s from various groups separated in terms of conserved functional domains and gene structure, where members of genus *Oryza* clustered together. Plants showed reduced height and yellowish appearance when grown on K⁺ and NO₃⁻ deficient medium. Quantitative real-time PCR uncovered that the OsMYB59 reacted to abiotic stresses where its expression was increased in BRRI dhan56 but decreased in other varieties on K⁺ deficient medium. In addition, OsMYB59 transcript level increased on NO₃⁻ deficient medium.

Conclusions: Our results can help to explain the biological functions of indica rice MYB59 protein and gave a theoretical premise to additionally describe its biological roles in response to abiotic stresses particularly drought.

Keywords: Potassium, Nitrogen, Transcription factor, Phylogeny, OsMYB59, 3D structure, RT-qPCR

Background

Abiotic stress, such as drought, submergence, salt, temperature, and other environmental extremes, affects the majority of plants. Plants establish unique ways to adapt to severe climatic conditions in order to compensate for these circumstances. Membrane transport and perception systems play crucial and necessary roles in maintaining cell homeostasis under stressful situations [39]. Drought stress limits the development of roots in plants and the diffusion rates of potassium ions (K⁺) toward the roots in the soil, restricting the K uptake. During this reduction in K⁺ levels, plants resilience to drought stress and K⁺ absorption might be further depressed. Consequently, it is essential to maintain enough plant K for drought tolerance [54]. Also, overexpressing the potassium channels (such as AKT1) in rice has impacts on plants’ tolerance to drought [2]. On the other hand, nitrate (NO₃⁻) is the most common type of...
nitrogen that plants utilize for development and growth. Plants obtain nitrogen by either atmospheric nitrogen fixation or by using N sources found in soil, such as nitrate, ammonium, urea, and organic forms of N. Nitrogen availability may influence drought tolerance in different ways. Under optimal water conditions and a high nitrate supply, there is enhanced root water absorption. Again, nitrate is associated with stomatal conductance and aquaporin expression, which may regulate plant adaptation to low water supply ([62]; Ding et al. 2016 [8]; Ding et al. 2018 [9]).

Potassium and nitrate ions enter into the plant by different transporters and channels, which convey K⁺ and NO₃⁻ directly into root cells. In *Arabidopsis thaliana*, K⁺ transporters such as High Affinity K⁺ Transporter 5 (HAK5) and K⁺ Absorption Permease 7 (KUP7), as well as the K⁺ channel—*Arabidopsis* K⁺ Transporter 1 (KT1), are important proteins involved in K⁺ uptake into the plant cells [17, 45, 48]. On the other hand, the assimilation of NO₃⁻ is intervened by the Nitrate Transporter 1/Peptide Transporter (NRT1/PTR) and the transporters of Nitrate Transporter 2 (NRT2) families [27, 55, 63]. After absorption into root cells, K⁺ and NO₃⁻ are released into xylem vessels and therefore transported toward the shoot. Root to shoot K⁺ transportation, in *Arabidopsis*, is mediated by the K⁺ transporter KUP7 and the K⁺ channel—Stelar K⁺ Outward Rectifier (SKOR). The Nitrate Transporter 1.5 (NRT1.5) is engaged with root to shoot NO₃⁻-transport in *Arabidopsis* [32], and is currently called as Nitrate Transporter 1/Peptide Transporter Family 7.3 (NPF7.3) from the NRT1/PTR family. As a proton coupled K⁺ antipporter, NPF7.3 can also prevent K⁺ translocation from root to shoot [29]. Thus, in *Arabidopsis*, NPF7.3 governs the coordinated transport of K⁺ and NO₃⁻ from the root to the shoot [10, 36]. Meanwhile, regulation of SKOR and NPF7.3 mRNA are done at the level of transcription and the inclusion of NO₃⁻ upregulates both SKOR and NPF7.3 transcripts. When K⁺ levels are low, the transcript level of NPF7.3 is reduced, preventing K⁺/NO₃⁻ transport from root to shoot [29]. Thus, transcriptional control of both SKOR and NPF7.3 might accomplish the coordinated transport of K⁺/NO₃⁻ from root to shoot in *Arabidopsis*. In rice (*Oryza sativa*), there are several key transporters involved into K⁺ and NO₃⁻ translocation such as OsHAK, OsKAT, OsHKT (for K⁺ transport) and OsNPF2.4, OsNPF2.2, OsNRT2.1, OsNRT2.3a (for NO₃⁻ transport).

Transcription factors regulate gene expression and thereby govern a variety of essential biological processes. They can be classified into different families based on the characteristics of their DNA binding domains [47]. Transcription factors that contain DNA binding MYB domain comprise a large family that have a variety of roles in eukaryotes [15]. MYB type transcription factors share similar domain architecture. At the N-terminus, they have a DNA-binding MYB domain comprising 1 to 4 imperfect repeats residues and at the C-terminus, they have transcription activation or repression domain. Repeats of the MYB domain have a structure of helix-turn-helix (HTH) and each repeat is about 52 amino acids long. Moreover, MYB transcription factors are divided into four types: 1R, 2R2R, 3R, and 4R, each with one to four repeats [12]. Although 2R3 MYB proteins are only found in terrestrial plants, they make up the largest subfamily of MYB type transcription factors [15]. In *Arabidopsis thaliana*, for example, more than 100 2R3 MYB proteins have been identified. The 2R3-MYB proteins include important roles in cell metabolism, determination of cell fate, growth, and biotic/abiotic stress responses. Many 2R3-MYB proteins, like *Arabidopsis* AtMYB32 [44], *Triticum aestivum* TaMYB1D [57], *Prunus persica* PpMYB18 [67], *Chrysanthemum morifolium* CmMYB1 [50], and *Pinus taeda* PtMYB14 [4], are used for flavonoid and lignin synthesis in different plant species. *Oryza sativa* has 230 MYB proteins where *Arabidopsis* has 339 MYB proteins [15]. They perform major functions such as hormone response, abiotic stress tolerance, plant growth, and metabolic control in various physiological processes [12]. In *Arabidopsis*, the MYB59 DNA binding domain interacts with the promoter of NPF7.3, resulting in increased NPF7.3 expression in response to outer environment K⁺/NO₃⁻ levels. NPF7.3 and MYB59 function along the same pathway for redirecting root to shoot K⁺/NO₃⁻ transport.

To manage stress conditions, many molecular changes can take place by activating and regulating certain stress-related genes [39]. Identifying important and differentially expressed genes in response to stress environments might be a suitable approach toward a better understanding of stress responses and their mechanisms [23]. Past studies indicated that rice *MYB59* is positively regulated with drought [46] and there are little studies about the regulation of OsMYB transcripts under K⁺ and NO₃⁻ stress. Transcription factor OsMYB59 indica is significantly less studied and its function is still to be validated. Under water deficient conditions, OsMYB59 may be upregulated and as previously described, K⁺/NO₃⁻ are closely associated with drought. Recently, functional validation and expression of MYB59 in *Arabidopsis* under K⁺ and NO₃⁻ deficient conditions were studied [11]. So, characterization and expression profiling of OsMYB59 indica were carried out in this study to know more about the role of this transcription factor.

Methods

Sequence retrieval of transcription factor MYB59 in different plant species, conserved motif analysis, multiple sequence alignment, and phylogenetic analysis

The amino acid, cDNA, CD5 sequences, and corresponding annotations were downloaded from the NCBI
Plant materials, growth conditions, and treatments

In this experiment, a total of three indica rice genotypes were used. Mature seeds of genotypes BRRI dhan56, BRRI dhan48, and BRRI dhan71 were collected from Bangladesh Rice Research Institute (BRRI). Healthy and good-quality mature seeds were selected as explants and for treatment. Characteristics of rice varieties are as follows: BRRI dhan56 is medium salt tolerant and drought tolerant; BRRI dhan48 and BRRI dhan71 are both drought tolerant.

The seeds were dehusked, which were meant for germination. The dehusked seeds were soaked in 70% (v/v) ethanol and shaken for 5 min, followed by several washes. Then, the seeds were treated with 2% sodium hypochlorite (NaOCl) for 2-3 min followed by several washes. After that, they were treated with 0.1% (w/v) HgCl₂ for 2-3 min with mild shaking and again washed with autoclaved distilled water several times. Finally, 2 drops of Tween 20 along with autoclaved distilled water were added. After mild shaking for 2 min, the solution was discarded and the seeds were subsequently washed with autoclaved distilled water.

Murashige and Skoog (MS) media was modified to make K⁺ sufficient medium and low K⁺ medium such as 1.5 mM MgSO₄ was unaltered, 1.25 mM KH₂PO₄ and 2.99 mM CaCl₂ were supplanted by 1.25 mM NH₄H₂PO₄ and 2.99 mM Ca(NO₃)₂, and 20.6 mM NH₄NO₃ and 18.79 mM KNO₃ were withdrawn. The final K⁺ concentration in the K⁺ sufficient medium and low-K⁺ medium were adjusted using KCl to 5 mM and 100 mM, respectively. On the other hand, media were modified from K⁺ sufficient medium for NO₃⁻ treatment such as 1.5 mM MgSO₄ and 1.25 mM NH₄H₂PO₄ were unaltered, 2.99 mM Ca(NO₃)₂ was supplanted by 2.99 mM CaCl₂ and afterward either 5 mM KNO₃ or 5 mM KCl was included, respectively, representing NO₃⁻ sufficient medium or NO₃⁻ deficient medium. All the media contained 0.7% (w/v) agar and 3% (w/v) sucrose. Seeds and plantlets were maintained on sufficient or deficient medium at 25 °C under 16-h-light/8-h-dark photoperiod.

Dehusked seeds of all three varieties were grown on K⁺ and NO₃⁻ sufficient media for 21 days. Then, they were transferred to low K⁺ (LK) and NO₃⁻ deficient (LN) media and kept there for 2 days. Finally, plantlets were transferred back to K⁺ and NO₃⁻ sufficient media. Data was taken during the whole process.

Transcription analyses

For both RT-PCR and RT-qPCR analyses, total RNA was extracted from roots (150 mg) by using the Trizol reagent (Invitrogen) and then treated with DNase I (Invitrogen™ DNA-free™ DNA Removal Kit) to eliminate genomic DNA contamination. The complementary DNA...
(cDNA) was synthesized by GoScript™ Reverse Transcription System (Promega Corporation, Madison, USA). Both oligo (dT) primers and random hexamer primers were used for RT-PCR and RT-qPCR analyses.

The eukaryotic elongation factor 1 alpha (eEF-1α) gene was used as an internal standard for normalization of gene expression levels [22]. Specifically designed primers were used to amplify MYB59 transcript (403 bp): RT-PCR was performed for 35 cycles, each at 94 °C for 30 s, 55.7 °C for 30 s, and 72 °C for 1 min. Three independent experiments were performed. The list of primers with respective Tm values is shown in Supplementary Table S2.

RT-qPCR was conducted using a Maxima SYBR Green qPCR Master Mix (2X) (Thermo Fisher Scientific, Waltham, MA, USA) on a StepOne™ Real-Time PCR System machine (Applied Biosystems). The amplification reactions were performed in a total volume of 25 μl, which contained 12.5 μl SYBR Green Master Mix, 8.45 μl nuclease-free water, 0.75 μl forward and reverse primers (10 mM), and 2.5 μl cDNA. PCR was conducted as follows: 95 °C for 10 min, followed by 40 cycles of 95 °C for 15 s, 55.7 °C for 30 s, and 72 °C for 40 s. Three biological replicates were used in one independent RT-qPCR experiment. Three independent experiments were performed in one RT-qPCR analysis.

A melting curve analysis was performed at the end of the PCR run over a range of 65-95 °C. The ΔCT method using a reference gene was used for evaluating the gene expression levels. Finally, Student’s t test and graphs were plotted using GraphPad Prism 6.0.

Results

Conserved motif analysis

Using the MEME tool, we looked for the three most conserved motifs in 56 MYB59 proteins. Motif 1 was the longest, with 50 amino acid residues, followed by motif 2 with 24 and motif 3 with 29 residues (Supplementary Table S3). Long conserved residues present in the aligned sequences can demonstrate the conserved structures of MYB59 proteins among species.

Multiple sequence alignment

Clustal Omega was used to align the MYB59 protein sequences from 56 plant species using the default parameters, where the residues were shaded as identical and similar. As mentioned earlier, we found 3 most conserved motifs with statistical significance. We highlighted only motif 1 and motif 2 in Supplementary Fig. S1 due to higher significance than motif 3. Motif 2 (LNRTGKCSRLRVNLYHPGLRKGK) and motif 1 (MTPQEERLVLEHAKWGNRSIRARKLPGRTD NEIKNYWRTHRMKKAQEK) from *Oryza sativa* indica were very similar to other plants and suggested that these conserved residues could potentially play a key role in the functionality of MYB59 and could be included in metabolic processes.

Phylogenetic analysis of MYB59 proteins

To comprehend the phylogenetic relationship among MYB59s, a maximum likelihood phylogenetic tree was developed, which incorporates both dicotyledonous plants and monocotyledonous plants. The constructed tree was divided into three primary groups based on the tree topology, for example, group A, B, and C. Based on the sub-clustering, group A was further subdivided into two subgroups such as A1 and A2. Group B was likewise subdivided into two subgroups on the basis of sub-clustering (B1 and B2) (Fig. 1). We found 6 homologs of genus *Oryza*, whereas MYB59s from different groups may differ from one another in terms of gene structure and conserved functional domains. However, even more molecular, genetic, and physiological studies on the functional role/s of MYB59 proteins under various perturbations are needed.

Gene location and structure of OsMYB59 indica

In this study, the genomic distribution of the OsMYB59 indica in rice plants was investigated through chromosomal mapping. The gene was found on chromosome 1: 47, 136, 245-47, 137, 286 forward strand, as shown by the findings (Supplementary Fig. S2).

To establish the numbers and positions of exons and introns in the OsMYB59 indica gene, an analog of full-length cDNA sequences with the relevant genomic DNA sequences was made. The coding sequences of the OsMYB59 indica gene were found to be interrupted by an intron (Supplementary Fig. S3).

Cis-element analysis of rice MYB59

5’ UTR sequence (2000bp) of OsMYB59 indica was subjected to classify possible regulatory cis-acting components in PlantCARE database. We found several cis-regulatory elements responsive to abiotic, biotic stresses, and light, as shown in Table 1.

Analysis of protein features

OsMYB59 indica has 276 amino acid residues with a molecular weight of 31.05 kDa and displayed primarily basic characteristics with 6.86 pl value. The subcellular localization of OsMYB59 indica was predicted as nuclear.

3D structure and DNA-binding prediction of OsMYB59 indica

Three-dimensional models were generated by SWISS-MODEL; the model was refined using ModRefiner, and the quality of the model was analyzed using the
Ramachandran plot, in which our model showed 98.9% in allowed residues and ERRAT quality factor was A: 100. *OsMYB59* indica gene synthesizes a DNA binding R2R3 (Repeat2 Repeat3) transcription factor, containing R2 and R3 amino acid sequence repeats (Fig. 2).

MYB59 protein and DNA (B-DNA) docking was done using HDOCK SERVER, where the docking score was −217.99 (Fig. 3). After docking, the binding-site residues on the protein (within 3Å) were visualized using PyMOL. We found 9 binding-site residues within 3Å.

Table 1 Predicted cis-elements in the promoter regions of the *OsMYB59* indica gene responsive to stresses and light

Cis-acting element	Sequence	Function	Source
ARE	AAACCA	Cis-acting regulatory element essential for the anaerobic induction	PlantCARE database
CGTCA-motif	CGTCA	Cis-acting regulatory element involved in the methyl jasmonate (MeJA) responsiveness	PlantCARE database
LTR	CCGAAA	Cis-acting element involved in low-temperature responsiveness	PlantCARE database
MYB	CAACAG	Stress-induced drought, low temperature, salt, abscisic acid, and gibberellic acid responses	(Zhu et al. 2005 [69])
MYC	CATGTG	Cold stress mitigation	(Maruyama et al. 2012 [37])
G-box	CACGAC	Cis-acting regulatory element involved in light responsiveness	PlantCARE database
I-box	gGATAAGGTG	Part of a light responsive element	PlantCARE database
Sp1	GGGCGG	Light responsive element	PlantCARE database
TCCC-motif	TCTCCCT	Part of a light responsive element	PlantCARE database
TCT-motif	TCTTAC	Part of a light responsive element	PlantCARE database
and they were K58, G59, R92, L95, S96, L99, R100, N146, and T154 (Fig. 4).

Morphological changes in treatment plants

Plants were germinated on petridish and transferred to K+/NO$_3^-$ sufficient media or low K$^+$ (LK)/NO$_3^-$ deficient (LN) media for monitoring the morphological changes. They were transferred after reaching two leaves stage and treated for 7 days. We found yellowish shoots when grown on LK and LN medium. In LK medium, a series of leaf color changes occurred, depending on variety, including yellow and a tan/brown color resulting from leaf death. In severe cases, leaf roll back and die-back (from leaf tips) will proceed. Older leaves or whole plants became yellowish-green in LN medium. Furthermore, older leaves and occasionally all leaves were light green and chlorotic at the tip apart from new greener leaves. The yellowing suggests potassium and nitrate deficiency causing chlorosis, reduced chlorophyll content, and slow growth (Fig. 5).
RT-PCR analysis of the target and housekeeping gene

RT-PCR analysis showed the presence of both OsMYB59 indica and eEF-1α bands. We found size specific bands in all three rice varieties and both treatments. Product sizes of MYB59 and eEF-1α were 403 bp and 103 bp, respectively.

Quantitative reverse transcription PCR (RT-qPCR) analysis of OsMYB59 indica gene in responses to various treatments

Transcription factor MYB59 expression levels were evaluated using RT-qPCR after low K⁺ or NO₃⁻ treatment. Plants germinated on K⁺/NO₃⁻ sufficient (5 mM)
medium were used as controls. For treatment, they were then relocated to either low K⁺ (100 mM—LK) or low NO₃⁻ (0 mM—LN) medium for 2 days. The plants were then returned to a medium with sufficient K⁺ or NO₃⁻ (5 mM). For the RT-qPCR assay, roots were acquired at different times, as indicated. The assay was repeated for

Fig. 5 Morphology of the plants grown into K⁺ sufficient/low K⁺ medium in BRRI dhan56 (a), BRRI dhan48 (b), BRRI dhan71 (c), and NO₃⁻ sufficient/NO₃⁻ deficient medium in BRRI dhan56 (d), BRRI dhan48 (e), BRRI dhan71 (f); bar = 1 cm
three different rice varieties with different levels of tolerance to abiotic stresses. Melt curve and amplification plots from the StepOne™ software were used to verify the amplification and specificity of the amplicons. BRRI dhan56 is a moderate salt and drought-tolerant variety [1, 24]. We saw upregulation of OsMYB59 in both LK and LN medium for this variety. There is a significant increase in the OsMYB59 transcript level on the 1st day of treatment which decreases rapidly in the subsequent days of treatment and the return back to sufficient medium (Fig. 6). However, we found different scenarios in the case of BRRI dhan48 and BRRI dhan71. These two varieties are drought tolerant and developed for Barind Tract of Bangladesh. For both BRRI dhan48 and BRRI dhan71, there is a slight decrease in the OsMYB59 transcript level on the 1st and 2nd day of low K⁺ treatment, which then increases when returned back to sufficient medium. On the other hand, for low NO₃⁻ treatment, OsMYB59 transcript level follows, which was seen in the case of BRRI dhan56 (Fig. 6). With the increasing reaction temperature, double-stranded DNA, with dye molecules, is divided into single-stranded DNA that allows fluorescence to shift and a melting curve to form. In our study, the melt curves prove that only MYB59 and eEF-1α were amplified with the melting temperature of ~87 °C for MYB59 and ~79.5 °C for eEF-1α.

Discussion
In order to assess the evolutions within the rice and other species MYB59 proteins, we have performed a phylogenetic study. There is a comparatively long evolutionary distance between Arabidopsis and rice, but we found close distance among the members of the genus Oryza. Consequently, its members’ developmental ties are more conservative than those of other subgroups.

The conserved functional domains we found from MEME analysis can have fundamental roles in different groups of MYB59 proteins. The gene structure, however, varied between different plant species. Therefore, they may have separate downstream regulatory genes and take part in various signaling paths. We found that Arabidopsis and japonica rice has no introns in their gene structure, but indica rice has one intron.

OsMYB59 indica functions may be specified by the arrangements and nature of cis elements on the gene promoter. OsMYB59 indica is primarily active in biotic, abiotic stresses, and light-inducing responsiveness, as seen by the findings. To date, only a few researches on functional analysis of the plant transcription factor OsMYB59 have been carried out. Light causes the plant transcriptome to be massively reprogrammed, increases or decreases gene expression and thus regulates the associated signaling pathway. MYB59 in Arabidopsis is classified as an R2R3 transcription factor. An earlier report found that MYB59 contributes to the regulation of cell cycle progression and root formation [38]. Prior studies showed a high resemblance in gene structure and amino-acid sequence between MYB59 and its nearest homolog MYB48 [63]. Furthermore, both play a role in the jasmonic acid signaling network, which indicates their operational redundancy [19]. Rice MYB59 also applies to the R2R3 type MYB protein and includes cis-regulatory elements that are sensitive to methyl jasmonate (MeJA) [46]. This indicates that both Arabidopsis and rice may have common functions for MYB59.

Although the majority of the residues associated with DNA binding are conserved, one residue (Leu versus Glu) of the R2 repeat significantly contrast among plant and animal MYB proteins, which likely contributes to the variation in their target DNAs. 5mC, as well as 6mA modifications, prohibit the interactions between MYB transcription factors and their target DNAs. The key residues responsible for DNA recognition are profoundly preserved in all R2R3-MYB proteins [53]. In addition, MYB transcription factors and DNA 5mC modifications show opposite functions in many plant specific processes, particularly fruit maturing [26, 33]. The buildup of anthocyanins in apple peel is negatively associated with DNA methylation levels, but contrarily it is positively related to MYB proteins [13]. Numerous R2R3-MYB proteins have been shown to increase anthocyanin [5, 6, 30, 41, 68], however, DNA hypermethylation brought about colorless or non-ripening fruits [35]. Significantly, the L→A mutation in WER (a MYB protein) resulted in stronger binding affinity than that of wild-type WER [53]. In addition, the DNA 6mA modification level is higher in plants compared to mammals. In rice, around 0.2% of adenines are modified by 6mA [66] and a comparative level was also seen in Arabidopsis [31]. DNA 5mC and 6mA modifications may direct gene expression by debilitating the interaction between MYB transcription factors and their target DNAs during plant development [53].

In plant’s responses to the K⁺ deficiency, transcriptional control is a very essential method. Under K⁺ deficient conditions, for example, the transcript levels of K⁺ transporter genes are upregulated to improve high affinity K⁺ intake of the plant roots [54]. Simultaneously, K⁺ transport from root to shoot should be decreased to retain enough K⁺ in the root. This represents an effective adaptive mechanism for maintaining root operation and the root to shoot K⁺ equilibrium. In order to preserve the required membrane potential and osmotic balance, the root must maintain a minimum concentration of K⁺ in the event of K⁺ deficiency in the soil. In comparison, the stem and young leaves reflect a large sink that needs a significant amount of K⁺ if adequate K⁺ is provided for...
Fig. 6 OsMYB59 indica transcription responds to external K⁺ levels in BRRI dhan56 (a), BRRI dhan48 (b), BRRI dhan71 (c), and external NO₃⁻ levels in BRRI dhan56 (d), BRRI dhan48 (e), and BRRI dhan71 (f). Plus (+) and minus (−) symbols represent sufficient and deficient conditions, respectively. RT-qPCR data are shown as means ± SE. Differences between the values of treatments and controls were compared using t tests (*p < 0.05, **p < 0.01, and ***p < 0.001)
plants’ development. As such, more K⁺ is carried to the shoots to promote plant growth. The root-to-shoot transportation of K⁺ then must be fine-tuned to external K⁺ levels. The yield and quality of crops depend on the sufficient supply of potassium and nitrogen. In certain agricultural regions like Asia, however, existing fertilization activity limits agricultural production and leads to several challenges. In addition to a substantial reduction in nitrogen utilization efficiencies, the excessive usage of nitrogen fertilizer and the absence of potash fertilizers often lead to air/water/soil pollution and deterioration of the environment [18, 43, 65]. The coordination of the K/N use is therefore limited [11]. In our study, we found that under low K⁺ stress, two out of three selected varieties show downregulation of MYB59 transcripts. These two varieties (BRRI dhan48 and BRRI dhan71) are drought tolerant. On the other hand, BRRI dhan56, which is moderate salt and drought tolerant, showed upregulation of MYB59. This suggests MYB59 transcript level under low K⁺ also depends on the genotype and level of stress tolerance of the variety. Again, under low NO₃⁻ stress, all three varieties showed upregulation of MYB59. Therefore, MYB59 possibly regulate one or more of K⁺ transporters like OsHAK, OsKAT, OsHKT [20, 40, 42, 51, 61], and NO₃⁻ transporters like OsNPF2.4, OsNPF2.2, OsNAR2.1, and OsNRT2.3a [14, 34, 56, 59] in rice under stresses. In summary, our findings have helped to clarify the biological functions of rice MYB59 indica and established a theoretical framework to characterize its biological functions further in exposure to abiotic stress.

Conclusions
As the world population increases, rice consumption has placed agriculture on top of the international agenda. To meet the dual challenge of producing enough food and alleviating poverty, more rice needs to be produced at a low unit cost so that the environment and ecosystem services can be safeguarded. At the same time, increased water scarcity in irrigated systems, as well as droughts, salinity, submergence, and global warming, are putting the capacity of rice-producing productive environments in jeopardy.

In our study, we characterized transcription factor MYB59 and analyzed its expression under low K⁺ and NO₃⁻ stress. Transcription factor MYB59 participates in many plant biological processes but has not been systematically studied in rice. We found many cis-regulatory elements that confirm its participation under biotic and abiotic stresses. MYB59s from different groups diverged in terms of gene structure and conserved domains. The prediction of conserved motifs and domains, chromosomal and subcellular localization, and their sequence homology with others provided insight into the structure and putative functions. Real-time quantitative PCR analysis of the OsMYB59 gene subjected to various stressors revealed that they are induced in response to external K⁺ and NO₃⁻ levels and depend on the stress responsiveness of the drought and salt-tolerant varieties. During K⁺ stress, we found that OsMYB59 is upregulated in BRRI dhan56 (about 3.1-fold increase vs control at 1st day of treatment), but downregulated in BRRI dhan48 (0.37-fold decrease vs control at 1st day of treatment), and BRRI dhan71 (0.3-fold decrease vs control at 1st day of treatment). On the other hand, OsMYB59 is upregulated under NO₃⁻ stress in all three varieties (1.72-fold, 0.19-fold, and 0.33-fold increase vs control at 1st day of treatment in BRRI dhan56, BRRI dhan48, and BRRI dhan71, respectively). Previous studies showed only downregulation of OsMYB and AtMYB59 transcription factors under low K⁺, and upregulation of AtMYB59 under NO₃⁻ deficient conditions. However, these responses are also regulated by light and individual OsMYB59 expressions differed with the presence or absence of light. The availability of this information might encourage researchers for further functional validation.

Acknowledgements
The authors thank Plant Genetic Engineering (PGE) Laboratory, Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Bangladesh Rice Research Institute (BRRI), and Bangladesh Agricultural University (BAU) for providing critical discussion.

Additional file 1: Supplementary Table S1. List of retrieved MYB59 protein sequences from 56 plants species using NCBI and EnsemblPlants.
Supplementary Table S2. List of primers with Tm and product size used in this study. Supplementary Table S3. Most conserved three motifs of MYB59 proteins in 56 plant species detected by using MEME tool. Supplementary Fig. S1. Multiple sequence alignments of the MYB59 proteins obtained with Clustal Omega. Identical and similar residues were shaded as black and grey, respectively. Shading of the multiple-alignment file was done using BoxShade by ExPASy.
Supplementary Fig. S2. Location of rice MYB59 gene on rice chromosome 1.
Supplementary Fig. S3. Gene structure of rice MYB59 indica. Exons, introns, and untranslated regions are marked by round red rectangles, black lines, and blue rectangles, respectively. The scale bar at the bottom estimates the lengths of the exons, introns, and untranslated regions.

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/s43141-021-00248-6.
and Technology, Sylhet-3114, for providing opportunity to conduct the research.

Authors’ contributions
MQL and MNH conceived and designed the research. SHP supervised the experiment. MQL, MNH, and NAU analyzed the data. MQL wrote the manuscript. MNH, HH, and NAU provided guidance and revised the manuscript. MHFB assisted in the bioinformatics work. All authors read and approved the final manuscript.

Funding
This study was financially supported by the US Department of Agriculture (USDA) and The University Grants Commission, People’s Republic of Bangladesh. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Availability of data and materials
All data generated or analyzed during this study are included in this published article [and its supplementary information files].

Declarations

Ethics approval and consent to participate
Not applicable

Consent for publication
Not applicable

Competing interests
The authors declare that they have no competing interests.

Received: 19 March 2021 Accepted: 18 September 2021

Published online: 26 October 2021

References
1. Ahmed M, Haq ME, Hossain MM, Md S-a-M, Hasan MM (2017) Performance of four different rice cultivars under drought stress in the north-western part of Bangladesh. Int J Agric Forestry 7(6):134–139. https://doi.org/10.5923/j.ijaf.20170706.03
2. Ahmad I, Mian A, Maathuis FJM (2016) Overexpression of the rice AKT1 potassium channel affects potassium nutrition and rice drought tolerance. J Exp Bot 67:2689–2698. https://doi.org/10.1093/jxb/erw103
3. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37(suppl_2):W202
4. Bedon F, Bomal C, Caron S, Levasseur C, Boyle B, Mansfield SD, Schmidt A, Gerherson J, Grima-Pettenati J, Seguin A, Mackay J (2010) Subgroup 4 R2R3-MYBs in conifer trees: gene family expansion and contribution to the isoprenoid-and flavonoid-oriented responses. J Exp Bot 61(14):3847–3864. https://doi.org/10.1093/jxb/erq196
5. Chen K, Liu H, Lou Q, Liu Y (2017) Ectopic expression of the grape hyacinth (Muscari armeniacum) R2R3-MYB transcription factor gene, MaAN2, induces anthocyanin accumulation in tobacco. Front Plant Sci 8:965. https://doi.org/10.3389/fpls.2017.00965
6. Dasgupta K, Thilmony R, Stover E, Oliveira ML, Thomson J (2017) Novel R2R3-MYB transcription factors from Prunus armeniaca regulate differential patterns of anthocyanin accumulation in tobacco and citrus. GM Crops Food 8(2):85–105. https://doi.org/10.1080/21645698.2016.1267897
7. Delano WL (2002) The PyMOL molecular graphics system. https://www.pymol.org
8. Ding L, Li Y, Wang Y, Gao L, Wang M, Chaumont F, Shen Q, Guo S (2016) Root ABA accumulation enhances rice seedling drought tolerance under ammonium supply: interaction with aquaporins. Front Plant Sci 7:1206. https://doi.org/10.3389/fpls.2016.01206
9. Ding L, Lu Z, Gao L, Guo S, Shen Q (2018) Is nitrogen a key determinant of water transport and photosynthesis in higher plants under drought stress? Front Plant Sci 9:143. https://doi.org/10.3389/fpls.2018.01143
10. Drechsler N, Zheng Y, Bohner A, Nobmann B, von Wiren N, Kunze R, Rauch C (2015) Nitrate-dependent control of shoot K homeostasis by the nitrate transporter 1/peptide transporter family member NPF7.3/NRT1.5 and the stelar K+ outward rectifier SKOR in Arabidopsis. Plant Physiol 169(4):2823–2847. https://doi.org/10.1104/pp.15.01152
11. Du QX, Wang FL, Li H, Jing S, Yu M, Li J, Wu WH, Kudla J, Wang Y (2019) The transcription factor MYB59 regulates K+/NO3− translocation in the Arabidopsis response to low K+ stress. Plant Cell 31(3):599–714. https://doi.org/10.1105/tpc.18.00674
12. Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepinec L (2010) MYB transcription factors in Arabidopsis. Trends Plant Sci 15(10):573–581. https://doi.org/10.1016/j.tplants.2010.06.005
13. El-Sharkawy I, Liang D, Xu K (2015) Transcriptome analysis of an apple (Malus: domestica) yellow fruit somatic mutation identifies a gene network module highly associated with anthocyanin and epigenetic regulation. J Exp Bot 66(22):7359–7376. https://doi.org/10.1093/jxb/eru433
14. Fan X, Naz M, Fan X, Xuan W, Miller AJ, Xu G (2017) Plant nitrate transporters from gene function to application. J Exp Bot 68(10):2463–2475. https://doi.org/10.1093/jxb/erx011
15. Feller A, MacKemer K, Braun EL, Grotewold E (2011) Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant J 66(1):94–116. https://doi.org/10.1111/j.1365-313X.2010.04344.x
16. Gasteiger E, Hoogland C, Gattiker A, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. The Proteomics Protoc Handb 571–607. https://doi.org/10.3858/sp-59259-890-0.571
17. Gieth M, Mäser P, Schroeder Ji (2005) The potassium transporter AHK5 functions in K+ deprivation-induced high-affinity K+ uptake and AKT1 K+ channel contribution to K+ uptake kinetics in Arabidopsis roots. Plant Physiol 137(3):1105–1114. https://doi.org/10.1104/pp.104.057216
18. Guo JH, Liu XJ, Zhang Y, Shen JL, Han WX, Zhang WF, Christie P, Goulding KWT, Vitousek PM, Zhang FS (2010) Significant acidification in major chinese croplands. Sci 327(5968):1008–1010. https://doi.org/10.1126/science.1182570
19. Hickman R, van Verk MC, van Dijken AJH, Mendes MP, Vroegop-Vos IA, Gairls L, Steerenberg M, van der Nagel I, Weesink GJ, Jorinkon A, Talbot A, Rhodes J, de Vries M, Schauinitk RC, Denby K, Pietere JM, van Wees SCM (2017) Architecture and dynamics of the jasmonic acid gene regulatory network. Plant Cell 29(9):2086–2105. https://doi.org/10.1105/tpc.1600958
20. Horie T, Brodsky DE, Costa A, Kaneko T, Lo Schiavo F, Katsuhara M, Horie Ji, Kaneko T, Lo Schiavo F, Katsuhara M, Horie Ji (2015)Architecture and dynamics of the jasmonic acid gene regulatory network. Plant Cell 29(9):2086–2105. https://doi.org/10.1105/tpc.1600958
21. Jain M, Nijhawan A, Tyagi AK, Khurana JP (2006) Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem Biophys Res Commun 345:646–651. https://doi.org/10.1016/j.bbrc.2006.04.140
22. Javid SM, Shobbar ZS, Ebrahim H, Shabazz M (2021) New insights on key genes involved in drought stress response of barley: gene networks reconstruction, hub, and promoter analysis. J Genet Eng Biotechnol 19(1):2. https://doi.org/10.3329/bjet.v19i1.82017
23. Kader MA, Aditya TL, Majumder RR, Hore TK, Shahuluddin AKM, Amin A (2020) Development of drought tolerant rice variety BRRI dhan66 for rainfed lowland ecosystem of Bangladesh. Bangladesh Rice J 23(1):45–55. https://doi.org/10.3399/bvtj.v23i1.46080
24. Kumar S, Stecher G, Li M, Naranjiz C, Tamukua C (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1507–1510. https://doi.org/10.1093/molbev/mmy096
25. Lang Z, Wang Y, Tang K, Tang D, Derksa C, Cheng J, Zhang H, Yanda AK, Zhu J (2017) Critical roles of DNA demethylation in the activation of ripening-induced genes and inhibition of ripening-repressed genes in tomato fruit. Proc Natl Acad Sci 114(22):E4511–E4519. https://doi.org/10.1073/pnas.1705233114
26. Léria SR, Oralva KB, Boyer JC, Chiaruzzi M, Crawford N, Daniel-Vedele F, David L, Dickstein R, Fernandez E, Forde B, Gassmann W, Geiger D, Gaoon A, Gong JM, Halkier BA, Harris IM, Hedrich R, Limami AM, Rentsch D, Seo M, Tsay YF, Zhang M, Coruzzi G, Lacombe B (2014) A unified nomenclature of nitrate transporters: from gene function to application. J Exp Bot 65(1):2–4. https://doi.org/10.1038/jxb.2013.219
27. Leu S, Sarcheri A, Jiang Z, Chang J, Balkov J, Moraes C, van de Peer Y, Rouzé P, Rombaars S (2002) PlantCARE, a database of plant cis-acting regulatory
elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30(1):325–327. https://doi.org/10.1093/nar/30.1.325
29. Li H, Yu M, Du XQ, Wang ZF, Wu WH, Quintero FJ, Jin XH, Li HD, Wang Y (2017) NRTR5/NPFT3 functions as a proton-coupled H⁺K⁺ antiporter for K⁺ loading into the xylem in arabidopsis. Plant Cell 29(8):2016–2026. https://doi.org/10.1105/tpc.16.00972
30. Li S, Wang W, Gao J, Yin K, Wang R, Wang C, Petersen M, Munday J, Qiu J-L (2016) MYB75 phosphorylation by MPK4 is required for light-induced anthocyanin accumulation in Arabidopsis. Plant Cell 28(11):2866–2883. https://doi.org/10.1105/tpc.16.006244
31. Li R, How-Rit A, Sammitti L, Teysseir E, Rollin D, Mortain-Bertrand A, Halle S, Liu M, Kong J, Wu C (2015) A DEMETER-like DNA methyltransferase governs fruit ripening. Proc Natl Acad Sci 112(34):10804–10809. https://doi.org/10.1073/pnas.1503621112
32. Lin SH, Kuo HF, Canivenc G, Lin CS, Lepetit M, Hsu PK,illard P, Lin HG, Wang YY, Tsai CB, Gojon A, Tsay YF (2008) Mutation of the Arabidopsis NRTR7.5 nitrate transporter causes defective root-to-shoot nitrate transport. Plant Cell 20:2514–2528. https://doi.org/10.1105/tpc.108.062044
33. Liu R, Okada T, Nakayama H, Shinmyo A, Yoshida K (2008) Expression of OsHAK genes encoding potassium ion transporters in rice. Plant Biotechnology 25(3):241–246. https://doi.org/10.5511/plantbiotechnology.25.241
34. Luo B, Chen J, Zhu L, Liu S, Li B, Lu H, Ye G, Xu G, Fan X (2018) Overexpression of a high-affinity nitrate transporter OsNRT2.1 increases yield and manganese accumulation in rice under alternating wet and dry conditions. Frontiers in Plant Science 9. https://doi.org/10.3389/fpls.2018.01932
35. Manning K, Tsai M, Poeoe M, Hong Y, Thompson AJ, King GL, Giovannoni JJ, Seymour GB (2006) A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat Genet 38(8):948–952. https://doi.org/10.1038/ng1381
36. Meng S, Peng JS, He YN, Zhang GB, Yi HY, Fu YL, Gong JM (2016) Arabidopsis NRTR1.5 mediates the suppression of nitrate starvation-induced leaf senescence by modulating foliar potassium level. Mol Plant 9(3):461–470. https://doi.org/10.1093/mp/ctx105.2015.01215
37. Maruyama K, Todaka D, Mizoi S, Matsukura S, Takasaki H, Sakurai T, Yamamoto YY, Yoshiwara K, Kojima M, Sakakibara H, Shinozaki K, Yamaguchi-Shinozaki K (2012) Identification of a high-affinity nitrate transporter OsNRT2.1 of an ERF transcription factor in Arabidopsis: AtHAK5 and AKT1 are vital for seedling establishment and postgermination growth under low-potassium conditions. Plant Physiol 153(2):863–875. https://doi.org/10.1104/tpc.110.154369
38. Otake T, Kitamoto HK, Nakamura A, Fukuda A, Tanaka Y (2007) Rice shaker potassium channel OsKAT1 confers tolerance to salinity stress on yeast and rice cells. Plant Physiology 144(6):1978–1985. https://doi.org/10.1104/pp.107.101154
39. Oglesby L, Ananga A, Obuya J, Ochieng J, Cebert E, Tsolova V, Pandey GK (2013) Gene expression analysis of rice seedling under potassium deprivation reveals major changes in metabolism and signaling components. PLoS One 8(7):e70321. https://doi.org/10.1371/journal.pone.0070321
40. Okada T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modelling server. Nucleic Acids Res 31(13):3381–3385. https://doi.org/10.1093/nar/gkg250
41. Shan H, Chen S, Jiang C, Chen C, Chen Y, Gu C, Li P, Song A, Zhu X, Gao H, Zhou G, Li T, Yang X (2012) Heterologous expression of the chrysanthemum R2R2-MYB transcription factor CmMYB2 enhances drought and salinity tolerance, increases hypersensitivity to ABA and delays flowering in Arabidopsis thaliana. Mol Biotechnol 51(2):160–173. https://doi.org/10.1007/s12095-010-9451-1
42. Shankar A, Singh A, Karwar P, Srivastava AK, Pandey A, Suprasanna P, Kapoor S, Pandey GK (2013) Gene expression analysis of rice seedling under potassium deprivation reveals major changes in metabolism and signaling components. PLoS One 8(7):e70321. https://doi.org/10.1371/journal.pone.0070321
43. Osakabe M, Deng X, Ding D, Dreyfuss G, Brownstein M, barnes J, Zhang X (2018) Structure and function of the rice genome. Trends in Plant Science 17(8):458–467. https://doi.org/10.1016/j.tplants.2012.04.006
44. Wei J, Feng H, Fan X, Yamaji N, Ma JF, Xu G (2018) OsNRT2.4 encodes a dual-affinity nitrate transporter and functions in nitrate-regulated root growth and nitrate distribution in rice. J Exp Bot 69(5):1095–1107. https://doi.org/10.1093/jxberv486
45. Wei Q, Zhang J, Sun F, Luo Q, Wang R, Hu R, Chen M, Chang J, Yang G, Ge H (2017) A wheat MYB transcriptional repressor TaMYB1D regulates pherophytox metabolism and enhances tolerance to drought and oxidative stresses in transgenic tobacco plants. Plant Sci 265:112–123. https://doi.org/10.1016/j.plantsci.2017.09.020
46. Xu D, Zhang Y (2011) Improving the physical realisation and structural accuracy of protein models by a two-step atom-level energy minimization. Biophys J 101(10):2525–2534. https://doi.org/10.1016/j.bpj.2011.10.024
47. Yan Y, Fan X, Feng H, Miller AJ, Shen Q, Xu G (2011) Rice OsNAR2.1 interacts with OsNRT2.1, OsNRT2.2 and OsNRT2.3a nitrate transporters to provide uptake over high and low concentration ranges. Plant Cell Environment 34(3):360–372. https://doi.org/10.1111/j.1365-3040.2011.02335.x
48. Yan Y, Zhang D, Zhou P, Li B, Huang S-Y (2017) HDOCK: a web server for protein–protein and protein–DNA/RNA docking based on a hybrid strategy. Nucleic Acids Res 45(W1):W965–W973. https://doi.org/10.1093/nar/gkw078
49. Yang T, Zhang S, Hu Y, Wu F, Chen G, Cai J, Wu T, Moran N, Yu L, Xu G (2014) The role of a potassium transporter OsHAK5 in potassium acquisition and transport from roots to shoots in rice at low potassium supply levels. Plant Physiology 166(4):945–959. https://doi.org/10.1104/pp.114.246520
50. Yang X, Ren B, Ding L, Gao C, Shen Q, Guo S (2012) Drought-induced root aerenchyma formation restricts water uptake in rice seedlings supplied with nitrogen. Plant Cell Physiol 53:495–504. https://doi.org/10.1093/pcp/pcs003
51. Yanhui C, Xiaojuan Y, Kun H, Meihua L, Jiajing L, Zhao Feng G, Zhiquang L, Yunfie Z, Xiaowiao X, Xiaoming Q, Yunping S, Li Z, Xiaohui D, Jingchu L, Xiang-Wang D, Zhangliang C, Hongya G, Li-Jia Q (2006) The MYB transcription factor superfamily of Arabidopsis: expression analysis and phylogenetic comparison with the rice MYB family. Plant Mol Biol 60(1):107–124. https://doi.org/10.1007/s11103-005-2910-y
52. Yu C, Chen Y, Lu C, Hwang J (2006) Prediction of protein subcellular localization. Proteins: Structure, Function, and Bioinformatics 64(3):643–651. https://doi.org/10.1002/prot.21018
53. Zhang X (2017) Biogeochecmy: a plan for efficient use of nitrogen fertilizers. Nature 543(7645):322–323. https://doi.org/10.1038/s41586-022-04322-a
66. Zhou C, Wang C, Liu H, Zhou Q, Liu Q, Guo Y, Peng T, Song J, Zhang J, Chen L (2018) Identification and analysis of adenine N⁶-methylation sites in the rice genome. Nature Plants 4(8):554–563. https://doi.org/10.1038/s41477-018-0214-x

67. Zhou H, Lin-Wang K, Wang F, Espley RV, Ren F, Zhao J, Ogutu C, He H, Jiang Q, Allan AC, Han Y (2019) Activator-type R2R3-MYB genes induce a repressor-type R2R3-MYB gene to balance anthocyanin and proanthocyanidin accumulation. New Phytol 221(4):1919–1934. https://doi.org/10.1111/nph.15486

68. Zhou H, Peng Q, Zhao J, Owiti A, Ren F, Liao L, Wang L, Deng X, Jiang Q, Han Y (2016) Multiple R2R3-MYB transcription factors involved in the regulation of anthocyanin accumulation in peach flower. Front Plant Sci 7: 1557. https://doi.org/10.3389/fpls.2016.01557

69. Zhu ZF, Sun CQ, Fu YC, Qian XY, Yang JS, Wang XK (2005) Isolation and analysis of a novel MYC gene from rice. Acta Genet Sin 32:393–398

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.