Asthma susceptible genes in Chinese population: A meta-analysis

Xiaobo Li1,2†, Yonggang Zhang21, Jie Zhang3†, Yuling Xiao4†, Jin Huang5,6, Can Tian1, Chao He4, Yao Deng4, Yingying Yang5, Hong Fan2,4*

Abstract

Background: Published data regarding the associations between genetic variants and asthma risk in Chinese population were inconclusive. The aim of this study was to investigate asthma susceptible genes in Chinese population.

Methods: The authors conducted 18 meta-analyses for 18 polymorphisms in 13 genes from eighty-two publications.

Results: Seven polymorphisms were found being associated with risk of asthma, namely: A Disintegrin and Metalloprotease 33 (ADAM33) T1-C/T (odds ratio [OR] = 6.07, 95% confidence interval [CI]: 2.69-13.73), Angiotensin-Converting Enzyme (ACE) D/I (OR = 3.85, 95%CI: 2.49-5.94), High-affinity IgE receptor β chain (FcεRI) -6843G/A (OR = 1.49, 95%CI: 1.01-2.22), Interleukin 13(IL-13) -1923C/T (OR = 2.99, 95%CI: 2.12-4.24), IL-13 -2044A/G (OR = 1.49, 95%CI: 1.07-2.08), Regulated upon Activation, Normal T cell Expressed and Secreted (RANTES) -28C/G (OR = 1.64, 95% CI: 1.09-2.46), Tumor Necrosis Factor-α (TNF-α) -308G/A (OR = 1.42, 95%CI: 1.09, 1.85). After subgroup analysis by age, the ACE D/I, β2-Adrenergic Receptor (β2-AR) -79G/C, TNF-α -308G/A, Interleukin 4 receptor(IL-4R) -1902G/A and IL-13 -1923C/T polymorphisms were found significantly associated with asthma risk in Chinese children. In addition, the ACE D/I, FcεRIβ -6843G/A, TNF-α -308G/A, IL-13 -1923C/T and IL-13 -2044A/G polymorphisms were associated with asthma risk in Chinese adults.

Conclusion: ADAM33, FcεRIβ, RANTES, TNF-α, ACE, β2-AR, IL-4R and IL-13 genes could be proposed as asthma susceptible genes in Chinese population. Given the limited number of studies, more data are required to validate these associations.

Introduction

Asthma is one of the most common chronic respiratory diseases, affecting about 300 millions of children and adults worldwide[1]. In China, more than 25 millions people are asthmatic patients, which includes almost 10 million children[2]. Compared with the western world, the preventive controls and treatments for asthma were not well established in China [3]. Only a few percent of asthma patients received proper treatment. Poverty and inadequate resources are the main hindrance to reduce the burden of disease in China especially in numerous of Chinese villagers. Therefore, the best approach to reduce asthma is primary prevention through modifying the risk factors of asthma.

It is well accepted that asthma is a complex disease and both genetic and environmental factors contribute to its inception and evolution[4,5]. Many studies regarding associations between genetic variants and asthma risk have been published and many genes were proposed as asthma susceptible genes[6-9]. However, the conclusions obtained from different populations were often different or even controversial. Possible roles may be that different genetic backgrounds and environment exposures in different ethnic population that may affect the pathogenesis of asthma. Thus, asthma susceptible genes in different population may not be the same.

In recent years, host genetic susceptibility to asthma has been a research focus in scientific community in China. Many genes were suggested as asthma risk
Li et al. Respiratory Research 2010, 11:129
http://respiratory-research.com/content/11/1/129
Page 2 of 21

Factors for Chinese population; however, many of the studies drew incompatible or even contradictory results. Considering a small number of sample size may be lack of power to reveal the reliable conclusion, we carried out a meta-analysis to assess the susceptible genes for asthma in Chinese population. To our knowledge, this is the first comprehensive and largest genetic meta-analysis conducted in people of Chinese descent for any respiratory diseases.

Materials and methods

Literature search
We conducted a literature search by using the electronic database Medline (Ovid), Pubmed, Embase, ScienceDirect, Springer, CNKI, Wanfang database, Weipu database and CBM database to identify articles that evaluated the association between genetic variants and the risk of asthma in Chinese population (Last search was updated on May 13, 2010). The search terms were used as follows: ‘asthma or asthmatic’, in combination with ‘polymorphism or variant or mutation’ and ‘Chinese or China’ for Medline (Ovid), Pubmed, Embase, ScienceDirect, Springer database; ‘asthma or asthmatic’, in combination with ‘polymorphism or variant or mutation’ for CNKI database, Wanfang database, Weipu database and CBM database. All languages were included. The following criteria were used for selecting literatures in the meta-analysis: (1) the study should evaluate the association between genetic variants and risk of asthma in Chinese population from either mainland, overseas or both, (2) the study should be a case-control design published in a journal (3) genotype distributions in both cases and controls were available for estimating an odds ratio with 95% confidence interval (CI) and P value, (4) genotype distributions of control population must be consistent with Hardy-Weinberg equilibrium (HWE), P > 0.05 (5) the polymorphism for data synthesis should be studied in at least three case-control studies, (6) polymorphisms for data synthesis should be characterized as -A/B, with the following genotypes: AA, AB and BB. Accordingly, the following exclusion criteria were used: (1) abstracts and reviews, (2) genotype frequency not reported, (3) repeated or overlapping publications (4) polymorphisms with data less than three case-control studies (5) genotype distributions of control population not consistent with HWE, (6) genetic variants not characterized as -A/B. For duplication or overlapping publications, the studies with larger number of cases and controls or been published latest were included.

Data extraction
Two independent authors (Xiaobo Li and Yonggang Zhang) checked all potentially relevant studies and reached a consensus on all items. In case of disagreement, a third author (Jie Zhang) would assess these articles. The following data were collected from each study: first author, year of publication, location of the people, ages, genotype frequencies in cases and controls.

Statistical Analysis
For each case-control study, we first examined whether the genotype distribution in control group was according to Hardy-Weinberg equilibrium by Pearson’s X^2 test http://ihg2.ensembl-euro惮enchen.de/cgi-bin/hw/hwa1.pl.

Any polymorphism that had been studied in at least three case-control studies was included in the meta-analysis. The strength of the associations between asthma risk and genetic variants were estimated by ORs and 95% CIs. The statistical significance of summary ORs were assessed by Z-test. The evaluated genetic models for each study were based mostly on those used in primary studies. Heterogeneity was evaluated by a X^2-based Q statistic and was considered statistical significant at P value < 0.10. I^2 was used to measure the percentage of variability in point estimated that due to heterogeneity rather than sampling error. When the P-value is > 0.10, the pooled OR was calculated by the fixed-effects model, otherwise, a random-effects model was used. To evaluate the age-specific effects, subgroup analyses were performed by age for polymorphisms which were investigated in a sufficient number of studies (data were available from at least three case-control studies for at least one subgroup). Publication bias was examined by using the funnel plots, Begg’s test and Egger’s test[4]. The funnel plot is asymmetrical when there is evidence of publication bias. All statistical tests were performed by using REVMAN 4.2 software and STATA 10.0.

Results

Candidate asthma-genes in Chinese Population
The selection process is shown in Figure 1. Briefly, 2489 search results were identified from Medline (Ovid), Pubmed, Embase, ScienceDirect, Springer, CNKI database, Wanfang database, Weipu database and CBM database in the initial search. After reading the titles and abstracts, 2159 articles were excluded for abstracts, reviews, duplicated search results or not being relevant to genetic variants and asthma risk in Chinese population. By reading through the full texts of the remaining 330 articles, 7 articles were excluded for not being relevant to polymorphisms and asthma risk. The remaining 323 articles were used for data extraction. A total of 539 case-control studies were extracted from 248 articles, and 75 articles were excluded because of the absence of the usable data or not a case-control design. In meta-analysis, a small number of studies weaken the conclusions; therefore, only polymorphisms which had been investigated in at least three case-control studies were included.
for data synthesis. Thus, we excluded all these polymorphisms which were studied in less than three case-control studies. A total of 260 case-control studies were excluded. Hence, a total of 279 case-control studies were left. In addition, genotype frequencies for control population in 53 case-control studies were not consistent with HWE and these case-control studies were all excluded. In the remaining 226 case-control studies, data in 45 case-control studies were overlapped or duplicated with other studies and these case-control studies were all excluded. Thus, 181 case-control studies were left. Among the 181 case-control studies, some polymorphisms were studied in less than three case-control studies, and these polymorphisms were also excluded (a total of 62 case-control studies were excluded). Finally, a total of 18 polymorphisms in 13 genes in 119 case-control studies concerning genetic variants and asthma risk in Chinese population met the inclusion criteria, were identified for data synthesis (Table 1). The characteristics of each polymorphism are listed in Table 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 and 19. The genetic models for pooling data are also listed in Table 1.

Summary results of Meta-analyses

For each polymorphism, heterogeneity was analyzed by a X^2-based Q statistic and was considered statistically significant at P-value < 0.10. When the P-value is less than 0.10, the pooled OR of each meta-analysis was calculated by the fixed-effects model; otherwise, a random-effects model was used. The chosen models to synthesize the data for each polymorphism can be seen in Table 20.

Forest plots of each polymorphism can be seen in Figure 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 and 19. In summary, we abstained significant results for seven polymorphisms: ADAM33 T1-C/T (OR = 6.07, 95% CI: 2.69-13.73, $Z = 4.33, P < 0.0001$), ACE D/I (OR = 3.85, ...
Table 1 Genes identified from individual studies

Gene	Chromosome location of gene	Polymorphism	Aminoacid change	Genetic model	Genotypes Evaluated	Other genotypes	Cases	Controls
β2-AR	5q31-32	-46G/A	Arg16Gly	Recessive	GG	GA+AA	1796	1589
		-79G/C	Gln27Glu	Recessive	GG	GC+CC	823	692
IL-4R	16p11.2-12.1	-1902G/A	Q576R	Dominant	GG+GA	AA	2308	1971
		-223G/A	Ile/Val	Recessive	GG	GA+AA	1623	1304
IL-4	5q31	-589C/T		Dominant	CC+CT	TT	1724	1656
		-79G/C		Dominant	GG+GA	AA	1434	1276
		-109C/T		Recessive	CC+CT	TT	342	371
ACE	17q23	D/I		Recessive	DD+II		385	335
IL-13	5q31	-2044A/G	Gln130Arg	Dominant	AA+AG	GG	1512	1351
		-1923C/T		Recessive	TT+TC	CC+CT	645	588
IL-1β	2q12-21	-511C/T		Dominant	TT+TC	CC	333	255
LT-α	6q21.3	+252A/G		Dominant	GG+GA	AA	674	896
TGF-β	1q13	-509C/T		Dominant	TT+TC	CC	406	390
CD14	5q31.1	-159C/T		Dominant	TT+TC	CC	1381	1219
ADAM33	20p13	-159C/T		Dominant	GG+GC		314	229
RANTES	17q11.2-12	-28G/C		Dominant	GG+GC			

Table 2 Main data of all studies included in the meta-analysis for the -46G/A (Arg16Gly) polymorphism in β2-AR gene

Study	Population location	Year	Age	Case	Control
Chan, I H [16]	Hong Kong	2008	10.4 ± 3.7	101	135
Cui, LY(Han) [17]	Neimenggu	2007	21-62	6	34
Cui, LY(Meng) [17]	Neimenggu	2007	26-69	3	21
Gao, J M [18]	Beijing	2004	38.7 ± 13.8	32	6
Li, H [19]	Shanghai	2009	3-12	86	76
Liao, W [20]	Chongqing	2001	5.8 ± 4.3	12	27
Qiu, Y Y(2008) [21]	Jiangsu	2008	63.2 ± 5.6	25	31
Shi, X H [22]	Jiangsu	2008	34(14-66)	22	19
Wang, Z [23]	Anhui	2001	30.6 ± 16.2	52	54
Xie, Y [24]	Shanghai	2008	49.8 ± 2.78	14	37
Xing, J [25]	Beijing	2001	20-66	9	62
Zhang, X Y [26]	Chongqing	2008	1.08-17	81	111
Wang, J Y [27]	Taiwan	2009	7.82 ± 3.81	138	207

Table 3 Main data of all studies included in the meta-analysis for the -79G/C (Gln27Glu) polymorphism in β2-AR gene

Study	Population location	Year	Age	Case	Control
Cui, LY(Han) [17]	Neimenggu	2007	21-62	32	6
Gao, G K [28]	Beijing	2002	4-56	20	32
Liao, W [20]	Chongqing	2001	5.8 ± 4.3	26	20
Lin, Y C [29]	Taiwan	2003	13.9 ± 0.07	65	15
Pan, Y P [30]	Jiangxi	2005	-	15	24
Qiu, Y Y(2000) [31]	Jiangsu	2000	42 ± 5	23	30
Qiu, Y Y(2008) [21]	Jiangsu	2008	63.2 ± 5.6	56	13
Wang, Z [23]	Anhui	2001	30.6 ± 16.2	108	19
Ye, X W [32]	Guizhou	2003	42.68 ± 10.55	25	39
Zhang, X Y [26]	Chongqing	2008	1.08-17	54	119
95%CI: 2.49-5.94, Z = 6.07, P < 0.00001), FcεRIb-6843G/A (OR = 1.49, 95%CI: 1.01-2.22, Z = 1.99, P = 0.05), IL-13-1902G/A (OR = 1.64, 95%CI: 1.04-2.58, Z = 2.34, P = 0.02), RANTES-28C/G (OR = 1.09-2.46, Z = 2.36, P = 0.02), TNF-α -308G/A (OR = 1.42, 95%CI: 1.09-1.85, Z = 2.63, P = 0.009). These results indicated that these polymorphisms were significant associated with asthma risk in Chinese population. All results for all 18 meta-analyses are summarized in table 20.

To evaluate the age-specific effects, subgroup analyses were performed by age for polymorphisms which were investigated in a sufficient number of studies (data were available from at least three case-control studies for at least one subgroup). Three subgroups were used: adults, children, others (ages in these case-control studies were not mentioned or mixed with adults and children). Briefly, we obtained significant results from five polymorphisms (ACE D/I, β2-AR -79G/C, TNF-α -308G/A, IL-4R -1902G/A and IL-13 -1923C/T) in children and

| Table 4 Main data of all studies included in the meta-analysis for the -1902G/A (Q576R) polymorphism in IL-4R gene |
Study	Population location	Year	Age	Case	Control						
				AA	AG	GG	AA	AG	GG	OR	95%CI
Cui, T P[33]	Hubei	2003	3-68	129	89	23	130	41	4	2.51	1.64-3.83
Deng, R Q[34]	Guangdong	2006	8-75	26	42	32	15	38	47	0.50	0.25-1.02
Gui, Q[35]	Chongqing	2006	49(28-72)	33	15	2	34	4	2	1.09	0.48-2.52
Hu, S Y[36]	Guangdong	2005	2-16	90	66	19	130	41	4	2.73	1.74-4.28
Liu, L N[37]	Henan	2005	3-15	46	27	3	47	12	1	2.36	1.09-5.08
Mak, J C[38]	Hong Kong	2007	42.4 ± 16.1	200	81	4	191	91	9	0.81	0.57-1.15
Sun, J[39]	Heilongjiang	2010	3-14	67	24	0	33	9	0	1.31	0.55-3.14
Wu, X H[40]	Hubei	2010	8.8	183	61	8	168	55	4	1.07	0.72-1.61
Zhang, A M[41]	Hunan	2005	3-14	55	39	0	57	11	0	3.67	1.71-7.89
Zhang, H[42]	Shanghai	2007	-	257	87	8	87	27	0	1.19	0.73-1.95
Zhang, W[43]	Singapore	2007	-	115	30	0	115	38	4	0.71	0.42-1.22
Wang, J Y[27]	Taiwan	2009	7.82 ± 3.81	326	112	9	360	140	12	0.88	0.66-1.17

| Table 5 Main data of all studies included in the meta-analysis for the -223G/A (Ile/Val) polymorphism in IL-4R gene |
Study	Population location	Year	Age	Case	Control						
				AA	AG	GG	AA	AG	GG	OR	95%CI
Chan, I H[16]	Hong Kong	2008	10.4 ± 3.7	79	159	57	49	80	38	0.81	0.51-1.29
Deng, R Q[44]	Guangdong	2006	8-75	24	47	29	9	33	58	0.30	0.16-0.53
Yang, Q[45]	Jiangxi	2004	18-71	6	21	7	8	16	5	1.24	0.35-4.44
Zhang, H[42]	Shanghai	2007	-	106	168	78	44	53	17	1.62	0.92-2.88
Zhang, W[43]	Singapore	2007	-	32	84	29	42	76	39	0.76	0.44-1.30
Wang, J Y[27]	Taiwan	2009	7.82 ± 3.81	105	201	139	124	250	136	1.25	0.94-1.65
Wu, X H[40]	Hubei	2010	8.8	46	131	75	59	110	58	1.23	0.83-1.85

| Table 6 Main data of all studies included in the meta-analysis for the -589 C/T polymorphism in IL-4 gene |
Study	Population location	Year	Age	Case	Control						
				TT	CT	CC	TT	CT	CC	OR	95%CI
Cui, T P[33]	Hubei	2003	3-68	141	89	11	114	52	9	1.33	0.89-1.98
Hu, S Y[36]	Guangdong	2005	2-16	108	59	8	114	52	9	1.16	0.75-1.79
Liu, L N[37]	Henan	2005	3-15	45	29	2	34	23	3	0.90	0.45-1.79
Mak, J C[38]	Hong Kong	2007	42.4 ± 16.1	179	95	15	186	87	19	1.08	0.77-1.51
Wang, W[46]	Xinjiang	2004	39 ± 8	22	42	29	15	26	21	1.03	0.49-2.19
Wu, X H[40]	Hubei	2010	8.8	163	83	6	132	84	11	0.76	0.52-1.10
Zhang, W D[47]	Shanghai	2005	-	101	47	4	109	45	3	1.15	0.71-1.85
Wang, J Y[27]	Taiwan	2009	7.82 ± 3.81	279	145	22	309	183	16	0.93	0.72-1.21
Table 7 Main data of all studies included in the meta-analysis for the -308A/G polymorphism in TNF-α gene

Study	Population location	Year	Age	GG	GA	AA	GG	GA	AA	OR	95%CI
Gao, J M[48]	Beijing	2003	38.7 ± 13.8	47	52	26	44	41	11	1.40	0.82-2.41
Guo, Y L[49]	Jiangxi	2004	-	4	28	16	7	11	3	1.50	1.00-2.16
Li, Z F[50]	Guangdong	2003	2-12	9	16	5	14	10	2	2.72	0.91-8.16
Liu, R M[51]	Hubei	2004	2-15	98	15	0	104	22	0	0.72	0.36-1.47
Mak, J C[38]	Hong Kong	2007	42.4 ± 16.1	244	47	1	250	40	2	1.17	0.75-1.84
Tan, E C[52]	Singapore	1999	-	49	18	0	115	36	0	1.17	0.61-2.26
Wang, T N[53]	Taiwan	2004	5-18	140	49	2	111	18	0	2.25	1.24-4.06
Zhao, H J[55]	Jilin	2005	-	45	5	0	71	9	0	0.88	0.28-2.78
Wang, J Y[27]	Taiwan	2009	7.82 ± 3.81	345	100	3	409	94	7	1.21	0.89-1.65

Table 8 Main data of all studies included in the meta-analysis for the -6843G/A polymorphism in FcεRI β gene

Study	Population location	Year	Age	AA	AG	GG	AA	AG	GG	OR	95%CI
Chan, I H[16]	Hong Kong	2008	10.4 ± 3.7	267	23	1	154	13	0	1.06	0.53-2.15
Cui, T P[56]	Hubei	2004	40.37 ± 15.09	60	40	6	78	26	2	2.14	1.20-3.81
Liu, T[57]	Shandong	2006	36.5	45	14	1	39	10	1	1.18	0.49-2.87
Tang, Y[58]	Guangdong	2003	39.5(12-67)	49	11	0	61	4	0	3.42	1.03-11.42
Wang, L[59]	Hubei	2003	2-16	65	40	5	70	20	2	2.20	1.20-4.06
Zeng, L X[60]	Jiangxi	2001	37(14-63)	61	5	3	27	1	0	3.54	0.42-29.73
Zhang, X Z[61]	Singapore	2004	52 ± 16	81	57	3	108	42	7	1.63	1.02-2.62
Zhao, K S[62]	Jilin	2004	1.5-14	126	23	2	92	13	0	1.40	0.68-2.89
Wang, J Y[27]	Taiwan	2009	7.82 ± 3.81	309	121	16	314	165	27	0.73	0.55-0.95

Table 9 Main data of all studies included in the meta-analysis for the -109C/T polymorphism in FcεRI β gene

Study	Population location	Year	Age	TT	TC	CC	TT	TC	CC	OR	95%CI
Li, H[19]	Shanghai	2009	3-12	110	58	24	78	90	24	1.00	0.55-1.83
Wang, L[59]	Hubei	2003	2-16	43	54	13	35	46	11	0.99	0.42-2.32
Zhao, K S [63]	Jilin	2004	5.6 ± 3.1	46	69	11	40	38	9	0.83	0.33-2.09

Table 10 Main data of all studies included in the meta-analysis for the D/I polymorphism in ACE gene

Study	Population location	Year	Age(year)	II	DI	DD	II	DI	DD	OR	95%CI
Gao, J M[64]	Beijing	1999	39(16-69)	12	15	23	16	26	8	4.47	1.75-11.43
Guo, Y B[65]	Guangdong	2006	0.33-3	27	18	7	36	32	4	2.64	0.73-9.56
Lu, H M[66]	Tianjin	2004	37(18-52)	3	4	11	5	7	3	6.29	1.29-30.54
Lue, K H[67]	Taiwan	2006	9.91 ± 1.62	48	40	17	56	42	4	4.73	1.53-14.60
Qin, J H[68]	Liaoning	2000	6.9 ± 2.7	24	10	18	21	14	5	3.71	1.24-11.10
Song, L J[69]	Jilin	2001	1-14	22	45	41	18	29	9	3.20	1.42-7.20

Li et al. Respiratory Research 2010, 11:129
http://respiratory-research.com/content/11/1/129
Page 6 of 21
Table 11 Main data of all studies included in the meta-analysis for the -2044A/G polymorphism in IL-13 gene

Study	Population location	Year	Age	Case	Control
Chan, I H[16]	Hong Kong	2008	10.4 ± 3.7	GG: 94, AG: 136, AA: 43	GG: 54, AG: 70, AA: 17
Feng, D[70]	Heilongjiang	2009	3-16	17	18
Liu, J Li[71]	Guangdong	2004	14-67	27	54
Wu, X H[40]	Hubei	2010	88	105	111
Yang, L F[72]	Gansu	2010	8 ± 4	71	60
Zhao, K S[73]	Jilin	2005	1.5-14	18	60
Wang, J Y[27]	Taiwan	2009	7.82 ± 3.81	203	194
Xi, D[74]	Hubei	2004	20	10	15
Xi, D[74]	Hubei	2004	≥4	10	25

Table 12 Main data of all studies included in the meta-analysis for the -1923C/T polymorphism in IL-13 gene

Study	Population location	Year	Age	Case	Control
Song, Q Z[75]	Guangdong	2005	14-67	CC: 24, CT: 55, TT: 21	CC: 43, CT: 47, TT: 10
Shi, X H[22]	Jiangsu	2008	34(14-66)	12	26
Chen, J Q[76]	Jiangsu	2004	2.59 ± 1.45	41	43
Wang, X H[77]	Shandong	2009	39 ± 11	31	57
Wu, X H[40]	Hubei	2010	8.8	106	114

Table 13 Main data of all studies included in the meta-analysis for the -511C/T polymorphism in IL-1β gene

Study	Population location	Year	Age	Case	Control
Hsieh, C C[78]	Taiwan	2004	8.74 ± 4.09	GG: 69, GA: 40	GG: 48, GA: 70
Wu, Z F[79]	Jiangxi	2007	11-68	16	36
Zhao, X F[80]	Yunnan	2006	5.9(3-14)	51	4

Table 14 Main data of all studies included in the meta-analysis for the +252A/G polymorphism in LT-α gene

Study	Population location	Year	Age	Case	Control
Gao, J M[81]	Beijing	2003	38.7 ± 13.8	AA: 13, AG: 63	AA: 49, AG: 46
Ma, W C[82]	Guangdong	2005	1.8-9	8	12
Mak, J C[38]	Hong Kong	2007	42.4 ± 16.1	70	146
Tan, E C[52]	Singapore	1999	-	13	38
Xu, X[83]	Guangdong	2003	18-69	12	21
Huang, S C[84]	Taiwan	2008	9.9 ± 4.1	20	69

Table 15 Main data of all studies included in the meta-analysis for the -509C/T polymorphism in TGF-β1 gene

Study	Population location	Year	Age	Case	Control
Lu, J R[85]	Jilin	2004	1-13	CC: 45, CT: 38	CC: 30, CT: 19
Mak, J C[36]	Hong Kong	2006	41.0 ± 16.1	46	109
Xia, W[87]	Jiangxi	2006	15-60	22	26
Table 16 Main data of all studies included in the meta-analysis for the -159C/T polymorphism in CD14 gene

Study	Population location	Year	Age	CC	CT	TT	OR	95%CI			
Chan, I H [16]	Hong Kong	2008	10.4 ± 3.7	55	134	80	26	77	38	0.88	0.52-1.48
Chen, M [88]	Guangdong	2009	14-71	63	62	25	40	68	42	0.50	0.31-0.82
Cui, T P [89]	Hubei	2003	2-16	27	67	49	10	42	20	0.69	0.32-1.52
Tan, C Y [90]	Taiwan	2006	-	17	56	47	24	55	41	1.51	0.77-2.99
Wu, X H [40]	Hubei	2010	8.8	54	117	81	31	121	75	0.58	0.36-0.94
Wang, J Y [27]	Taiwan	2009	7.82 ± 3.81	160	230	57	177	236	96	0.96	0.73-1.25

Table 17 Main data of all studies included in the meta-analysis for the T1-C/T polymorphism in ADAM33 gene

Study	Population location	Year	Age	TT	TC	CC	OR	95%CI			
Su, D J [91]	Heilongjiang	2008	36.69 ± 11.53	63	78	40	117	29	5	8.28	3.18-21.59
Wang, P [92]	Shandong	2006	43.32	250	45	1	236	33	1	0.91	0.06-14.65
Xiong, J Y [93]	Guangdong	2009	6-13	71	19	2	80	10	1	2.00	0.18-22.45

Table 18 Main data of all studies included in the meta-analysis for the -28G/C polymorphism in RANTES gene

Study	Population location	Year	Age	CC	CG	GG	OR	95%CI			
Liu, M [94]	Yunnan	2005	7.2 ± 4.8	25	53	16	29	3	0	2.71	0.63-11.59
Wang, L [95]	Hubei	2004	9 ± 3	65	31	4	72	17	1	2.15	1.11-4.17
Yao, T C [96]	Taiwan	2003	-	134	39	9	83	23	1	1.24	0.71-2.17

Table 19 Main data of all studies included in the meta-analysis for the -403A/G polymorphism in RANTES gene

Study	Population location	Year	Age	GG	GA	AA	OR	95%CI			
Leung, T F [97]	Hongkong	2005	9.9 ± 3.4	60	53	16	37	21	8	1.47	0.81-2.66
Liu, M [94]	Yunnan	2005	7.2 ± 4.8	17	13	2	16	14	2	0.88	0.33-2.35
Yao, T C [96]	Taiwan	2003	-	98	65	19	60	41	6	1.09	0.68-1.77

Table 20 Summary results of the meta-analysis and publications bias

Gene	Polymorphism	Genotype investigated	Studies Number	Effect Model	OR(95%CI)	Publication bias (Begg’s test)	
						t	P
β2-AR	-46G/A	GG	13	Random	1.02(0.75, 1.38)	-0.66	0.525
	-79G/C	GG	10	Fixed	0.86(0.58, 1.32)	1.60	0.148
IL-4R	-1902G/A	GG+GA	12	Random	1.30(0.94, 1.80)	-0.24	0.777
	-223G/A	GG	7	Random	0.92(0.63, 1.35)	0.81	0.453
IL-4	-589G/C/T	CC	8	Fixed	1.01(0.88, 1.16)	0.53	0.615
TNF-α	-308A/G	AA+AG	10	Random	1.42(1.09, 1.85)	1.38	0.205
FceRβ	-684G/AG	GG	9	Random	1.49(1.01, 2.22)	2.82	0.026
	-109C/T	CC	3	Fixed	0.96(0.62, 1.48)	-1.10	0.471
ACE	D/I	DD	6	Fixed	3.85(2.49, 5.94)	0.88	0.429
IL-13	-2044A/G	AA+AG	9	Random	1.49(1.07, 2.08)	1.93	0.095
	-1923C/T	TT	5	Fixed	2.99(2.12, 4.24)	1.19	0.320
IL-1β	-511C/T	TT+TC	3	Fixed	1.10(0.76, 1.59)	-0.16	0.896
LT-α	+252A/G	GG	6	Fixed	1.26(0.98, 1.62)	-0.02	0.985
TGF-β1	-509C/T	TT+TC	3	Fixed	1.17(0.83, 1.64)	0.57	0.074
CD14	-159C/T	TT+TC	6	Random	0.79(0.59, 1.06)	-0.41	0.700
ADAM33	T1-C/T	CC	3	Fixed	6.07(2.69, 13.73)	-8.22	0.077
RANTES	-28G/C	GG	3	Fixed	1.64(1.09, 2.46)	0.87	0.544
	-403A/G	AA+AG	3	Fixed	1.18(0.83, 1.67)	-0.37	0.777
Figure 2 Forest plot of asthma risk associated with β2-AR -46G/A in Chinese population. Subgroup analysis by age.

Figure 3 Forest plot of asthma risk associated with β2-AR -79G/C in Chinese population. Subgroup analysis by age.
Figure 4 Forest plot of asthma risk associated with IL-4R -1902G/A in Chinese population. Subgroup analysis by age.

Figure 5 Forest plot of asthma risk associated with IL-4R -223G/A in Chinese population. Subgroup analysis by age.
Figure 6 Forest plot of asthma risk associated with *IL-4*-589C/T in Chinese population. Subgroup analysis by age.

Figure 7 Forest plot of asthma risk associated with *TNF-α*-308A/G in Chinese population. Subgroup analysis by age.
five polymorphisms (ACE D/I, FcεRIb-6843G/A, TNF-α-308G/A, IL-13-1923C/T, IL-13-2044A/G) in adults.

Publication bias
The Begg’s funnel plots and Egger’s tests were performed to assess the potential publication bias (Begg’s funnel plots can be seen in Additional File 1). The results did not suggest evidence of publication bias except for the FcεRIb-6843G/A polymorphism. Statistical results of Begg’s test are summarized in Table 20.

Discussion
The aim of meta-analysis is to combine results from studies on the same topic and to produce more precise results. The current study is to reveal the roles of genetic variants and their associations with risk of asthma in Chinese population. In summary, we finally identified 18 polymorphisms in 13 genes. Among them, seven polymorphisms (ADAM33 T1-C/T, ACE D/I, FcεRIb-6843G/A, IL-13-1923C/T, IL-13-2044A/G, RANTES-28C/G and TNF-α-308G/A) were statistically associated with increased risk of asthma. In order to analysis the age-specific associations, subgroup analysis were performed by age. The ACE D/I, B2-AR-79G/C, TNF-α-308G/A, IL-4R-1902G/A and IL-13-1923C/T polymorphisms were found being associated with asthma risk in Chinese children, while the ACE D/I, FcεRIb-6843G/A, TNF-α-308G/A, IL-13-1923C/T, IL-13-2044A/G polymorphisms were associated with asthma risk in Chinese adults. Given that the data
for each polymorphism were from at least three case-control studies, the obtained results could be more precise than results obtained from any individual study.

The β2-AR gene is a critical gene in the pathogenesis of asthma. β2-ARs are present on many airway cells, especially in smooth muscle cells which are hyperreactive in asthmatic patients. At present, β2-AR agonists were major methods for treating asthmatic patients. In this meta-analysis, ten case-control studies for β2-AR -79G/C and eleven for -46G/A polymorphism were identified. The results indicated the two polymorphisms were not associated with asthma risk in hasthmatic patients, and the obtained results could be more precise than results obtained from any individual study.
Chinese population. After subgroup analysis by age, the -79G/C polymorphism was associated with decreased risk of asthma in Chinese children. Up to now, three meta-analyses had been performed to investigate the association between polymorphism of β2-AR gene and risk of asthma [10-12]. Thakkinstian A[12] found that the heterozygote in -79G/C was associated with decreased risk of asthma in both adults and children. However, we didn’t find these associations in Chinese adults, which suggested different roles of this polymorphism may exist in the pathogenesis of asthma in different age groups. Previous study indicated that the -46G allele enhanced agonist-induced down regulation of the receptor, and the -79G allele might enhance resistance to down regulation. In combination with our results, personalized therapy of asthma patients in different age population with different genetic backgrounds in Chinese population should also be carried out in clinical practices.

The TNF-α gene, encodes a key proinflammatory cytokine in airway, is located on an asthma susceptible region-chromosome 6p. The TNF-α protein plays a central role in inflammation and involves in pathogenesis of asthma. Several polymorphisms have been identified in this gene, such as -308A/G, -238A/G. The -308A/G polymorphism in the promoter may affect the
expression of this cytokine, which may affect the occurrence of asthma. In the meta-analysis performed by Gao and colleagues[13], they found the A allele was significant with increased risk of asthma (OR = 1.37, 95%CI = 1.02-1.84 for A vs. G). Consistently, we found the TNF-\(\alpha\)-308A/G polymorphism was significantly associated with increased risk of asthma (OR = 1.36, 95%CI = 1.13-1.63 for AA+AG vs. GG) in Chinese population. For A vs G, the pooled OR is 1.26 with 95%CI: 1.08-1.47 in this study, which suggested a weaker association between this polymorphism and asthma risk in Chinese population.

IL-4 gene is located on chromosome 5q31, it was suggested to be associated with asthma risk, including elevated serum IgE levels and airway hypersensitiveness. A few studies indicated the -589C/T polymorphism in the promoter as a risk factor for asthma, but with inconclusive results. Li and colleagues performed a meta-analysis and found the T allele was associated with decrease risk of asthma (T vs C: OR = 0.86, 95%CI = 0.78-0.94)[14]. However, our results didn't reveal a positive association between this polymorphism and risk of asthma in Chinese. Compared with Li's study, the total number of studies concerning the Chinese population

Figure 14 Forest plot of asthma risk associated with LT-\(\alpha\)+252A/G in Chinese population.

Figure 15 Forest plot of asthma risk associated with TGF-\(\beta\)1 -509C/T in Chinese population.
Figure 16 Forest plot of asthma risk associated with CD14 -159C/T in Chinese population.

Figure 17 Forest plot of asthma risk associated with ADAM33 T1-C/T in Chinese population.

Figure 18 Forest plot of asthma risk associated with RANTES -28G/C in Chinese population.
was smaller, which suggested more studies should be carried out to reveal these associations.

IL-4 and IL-13 signal through binding to a receptor complex comprised of the IL-13Rα1 and IL-4Rα with subsequent phosphorylation of JAKs and STAT6[15]. IL-4 receptor plays its role in inflammation through IL-4 and IL-13. The IL-4 receptor gene is located on chromosome 16 p12.1-p11.2. Some polymorphisms had been identified as risk factors for asthma, such as -1902G/A and -223G/A. Our results indicated the -1902G/A polymorphism was associated with increased risk of asthma in Chinese children, but not in Chinese adults. The results also indicated the -223G/A polymorphism was not associated with risk of asthma in Chinese population.

The FcεRIb gene is a major candidate gene, involving in the pathogenesis of asthma. It is located on the chromosome 11q13. The -6843G/A polymorphism, leading change in an amino acid sequence at residue 237 from glutamic acid to glycine, is associated with increased IgE levels in atopic asthmatic children. In Chinese population, the -6843G/A polymorphism is the most extensively studied polymorphism in FcεRIb gene. Our study revealed this polymorphism as a risk factor of asthma in Chinese population. Chinese who carry the GG or GA genotype have an 49% increased risk of asthma than AA carriers. Our results also demonstrated the -109C/T polymorphism in this gene was not associated with increased risk of asthma in Chinese population.

Up to date, we first found that ADAM33 T1-C/T, ACE D/I, IL-13 -1923C/T, RANTES -28C/G and IL-13 -2044A/G polymorphisms were associated with risk of asthma in Chinese population by using meta-analyzes. Some results are similar to other studies performed in other ethnic- groups and some are not. In future, more published results should be included to update and validate these associations in Chinese population.

In this study, the rigorous inclusive criteria made the results more precise. Any study in which genotype distribution of control group divorced from HWE was excluded. In this meta-analysis, 11 polymorphisms were synthesized by using the fixed-effect model, 7 used random-effects model. Because the fixed-effect model is more precise than random effect model, the strength of evidence of ADAM33 T1-C/T, ACE D/I, IL-13 -1923C/T, RANTES -28C/G, as risk factors for asthma was greater than that of FcεRIb -6843G/A, IL-13 -2044A/G and TNF-α -308G/A.

The heterogeneity of clinical information among studies should also be mentioned. Heterogeneity is an important issue when interpreting the results of meta-analysis. Significant heterogeneity existed in overall comparisons in a few meta-analyses, such as FcεRIb -6843G/A. After subgroup analyses by age, the heterogeneity was effectively decreased or removed in adults. Possible explanation may be that differences in etiology may exist in difference age groups. Another important factor contributing to heterogeneity was that homogeneity in either the case and control groups was uncertain. Ideally, all cases and controls in this meta-analysis should be matched for age, sex, atopic status and environmental exposures. However, these issues could not all be explained precisely because of insufficient clinical information for individual person. In addition, because this study is based on population of Chinese descent with the same genetic background, so the similarity of these studies might be very good, despite most studies were conducted in different areas of China.

Some limitations of this meta-analysis should be acknowledged when explaining our results. First, only published articles in the selected electronic databases were included in this study, it may be possible that some studies were not included in those databases or some unpublished studies which had null results, which might bias the results. Second, due to lack of sufficient data, the homogeneity in either the case and control groups was uncertain and data were not stratified by other factors such as atopic status or sex. The tests for gene-environment interactions were not carried out either. Third, publication bias may affect the results.
Although P values of Begg’s test were more than 0.05 in 18 meta-analyses, we could not rule out this possibility, because for some polymorphisms, the included number of studies were relatively small. Third, this study didn’t included some polymorphisms with lack of number of studies, or polymorphisms which were not characterized as -A/B for lack of quality analysis for HWE, some polymorphisms, such as GSTM1-P/N, or HLA DR1 alleles and MHC alleles were not included, future studies should performed to analysis the effect of these polymorphism in Chinese population.

To our knowledge, this is the first and most comprehensive genetic meta-analysis to date conducted in Chinese descent for any respiratory diseases. In conclusion, this meta-analysis indicated the T1-C/T polymorphism in ADAM33 gene, the D/I polymorphism in ACE gene, the -6843G/A polymorphism in FceRIβ gene, the -1923C/T polymorphism in IL-13 gene, the -2044A/G polymorphism in IL-13 gene, the -28C/G polymorphism in RANTES gene and the -308G/A polymorphism in TNF-α gene are associated with asthma risk in Chinese population. And these results may also implicate in personalized therapy for asthma in Chinese population. In future, more studies should be conducted to investigate the gene-gene and gene-environment interactions between these polymorphisms in Chinese population.

Additional material

Additional file 1: Begg’s funnel plots for publication bias in selection of studies on asthma susceptibility genes in Chinese population. Figure S1 Begg’s funnel plots for publication bias in selection of studies on β2-AR -46G/A polymorphism. Figure S2 Begg’s funnel plots for publication bias in selection of studies on β2-AR -79G/C polymorphism. Figure S3 Begg’s funnel plots for publication bias in selection of studies on IL-4 -1902G/A polymorphism. Figure S4 Begg’s funnel plots for publication bias in selection of studies on IL-4 -223G/A polymorphism. Figure S5 Begg’s funnel plots for publication bias in selection of studies on IL-4 -589C/T polymorphism. Figure S6 Begg’s funnel plots for publication bias in selection of studies on TNF-α -308A/G polymorphism. Figure S7 Begg’s funnel plots for publication bias in selection of studies on FceRIβ -6843G/A polymorphism. Figure S8 Begg’s funnel plots for publication bias in selection of studies on FceRIβ -109C/T polymorphism. Figure S9 Begg’s funnel plots for publication bias in selection of studies on ACE D/I polymorphism. Figure S10 Begg’s funnel plots for publication bias in selection of studies on IL-13 -2044A/G polymorphism. Figure S11 Begg’s funnel plots for publication bias in selection of studies on IL-13 -1923C/T polymorphism. Figure S12 Begg’s funnel plots for publication bias in selection of studies on IL-13 -1923C/T polymorphism. Figure S13 Begg’s funnel plots for publication bias in selection of studies on IL-13 -1923C/T polymorphism. Figure S14 Begg’s funnel plots for publication bias in selection of studies on LT-α -252A/G polymorphism. Figure S15 Begg’s funnel plots for publication bias in selection of studies on CD14 -159C/T polymorphism. Figure S16 Begg’s funnel plots for publication bias in selection of studies on ADAM33 T1-C/T polymorphism. Figure S17 Begg’s funnel plots for publication bias in selection of studies on RANTES -28G/C polymorphism. Figure S18 Begg’s funnel plots for publication bias in selection of studies on RANTES -403A/G polymorphism.

References
1. Liu J, Mahapatra S, Feng H, Lockey R, Jena PK, Castro M, Irvin C, Johnson JA, Wang J, Sylvester JE. A polymorphism in the NPPA gene associates with asthma. Clin Exp Allergy 2008, 38(7):1117-1123.
2. Chen YZ. Recent status of prevention and treatment of asthma in children in China (Chinese). Zhonghua Er Ke Za Zhi 2004, 42(2):81-82.
3. Chen X, Lin JT. The current prevention and treatment situation of asthma in China (Chinese). Journal of Internal Intensive Medicine 2008, 14(5):225-226.
4. Zhang Y, Zhang J, Huang J, Li X, He C, Tian C, Peng C, Guo L, Xiao Y, Fan H. Polymorphisms in the transforming growth factor-beta1 gene and the risk of asthma: A meta-analysis. Respiratory 2010, 15(3):643-650.
5. Denham S, Koppelman GH, Blakey J, Vijst M, Ferreira MA, Hove IP, Sayers I. Meta-analysis of genome-wide linkage studies of asthma and related traits. Respir Res 2008, 9:38.
6. Weiss ST, Raby BA, Rogers A. Asthma genetics and genomics 2009. Curr Opin Genet Dev 2009, 19(3):279-282.
7. Pinto LA, Depner M, Klopp N, Illig T, Bork K, Gabriel S, Silverman ES, Weiss ST. Polymorphisms in signal transducer and activator of transcription 3 and lung function in asthma. Respir Res 2005, 6:52.
8. Bosse Y, Lembre M, Poon Art, Daley D, He JQ, Sandford A, White JH, James AL, Musa AS, Palmer RJ, Raby BA, Weiss ST, Kozyrskyj AL, Becker A, Hudson TJ, Laprise C. Asthma and genes encoding components of the vitamin D pathway. Respir Res 2009, 10:16.
9. Miga O, Naguchi E, Jain Z, Shibasaki M, Migna T, Ichikawa K, Matsu A, Arinami T. ADRB2 polymorphisms and asthma susceptibility: transmission...
disequilibrium test and meta-analysis. Int Arch Allergy Immunol 2004, 134(2):150-157.

11. Contopoulos-Ioannidis DG, Manoli EN, Ioannidis JP: Meta-analysis of the association of beta2-adrenergic receptor polymorphisms with asthma phenotypes. J Allergy Clin Immunol 2003, 111(5):963-972.

12. Thakkinstian A, McEvoy M, Minelli C, Gibson P, Hancock B, Duff D, Thompson J, Hall I, Kaufman J, Leung TF, Helms PJ, Hakonarson H, Halper E, Navon R, Atta J: Systematic review and meta-analysis of the association between (beta2)-adrenergic receptor polymorphisms and asthma: a HuGE review. Am J Epidemiol 2005, 162(3):201-211.

13. Gao J, Shan G, Sun B, Thompson PJ, Gao X: Association between polymorphism of tumour necrosis factor alpha-308 gene promoter and asthma: a meta-analysis. Thorax 2006, 61(6):466-471.

14. Li Y, Guo B, Zhang L, Han J, Wu B, Xiong H: Association between C-589T polymorphisms of interleukin-4 gene promoter and asthma: a meta-analysis. Respir Med 2008, 102(7):984-992.

15. Moynihan Bt, Tollocco B, El Bassam S, Ferrado P, Michoud MC, Martin JG, Laberge S: IFN-gamma, IL-4 and IL-13 modulation responsive of human airway smooth muscle cells to IL-13. Respir Res 2008, 9:84.

16. Chan IH, Tang NL, Leung TF, Huang W, Lam YY, Li CY, Wong OK, Wong GW, Lam CW: Study of gene–gene interactions for endophenotypic quantitative traits in Chinese asthmatic children. Allergy 2008, 63(9):1031-1039.

17. Cui LY, Liu XH, Gao LX, Fan DS: Association of beta2-adrenergic receptor polymorphisms in genes predisposing to asthma in children of Chinese Han nationality. Zhong Hua Jie He He Hu Xi Za Zhi 2000, 11(2):93-97.

18. Gao J, Shan G, Sun B, Thompson PJ, Gao X: Association between polymorphism of tumour necrosis factor alpha-308 gene promoter and asthma: a meta-analysis. Thorax 2006, 61(6):466-471.

19. Li Y, Guo B, Zhang L, Han J, Wu B, Xiong H: Association between C-589T polymorphisms of interleukin-4 gene promoter and asthma: a meta-analysis. Respir Med 2008, 102(7):984-992.

20. Moynihan Bt, Tollocco B, El Bassam S, Ferrado P, Michoud MC, Martin JG, Laberge S: IFN-gamma, IL-4 and IL-13 modulation responsive of human airway smooth muscle cells to IL-13. Respir Res 2008, 9:84.

21. Chan IH, Tang NL, Leung TF, Huang W, Lam YY, Li CY, Wong OK, Wong GW, Lam CW: Study of gene–gene interactions for endophenotypic quantitative traits in Chinese asthmatic children. Allergy 2008, 63(9):1031-1039.

22. Cui LY, Liu XH, Gao LX, Fan DS: Association between beta 2-adrenergic receptor genetic polymorphisms and asthma in the population of Inner Mongolia (Chinese), Zhong Guo Lin Chuang Yi Xue 2007, 14(4):477-481.

23. Gao JM, Lin YG, Qiu CC, Liu YW, Ma Y, Liu Y: Beta-2-adrenergic receptor gene polymorphism in Chinese northern asthmatics. Chinese Medical Journal 2004, 117(13):164-169.

24. Li H, Xiaoian D, Quanhu L, Jie L, Yixiao B: Single-nucleotide polymorphisms in genes predisposing to asthma in children of Chinese Han nationality. J Invest Allergol Clin Immunol 2009, 19(5):391-395.

25. Liao W, Li WM, Zhao CM, Guang LX, Yin XJ, Ai XY, Xi M: Preliminary study on the relationship between beta-2-adrenergic receptor genes genetic polymorphisms and asthma in children of Han nationality of Chongqing (Chinese), Di San Jun Yi Da Xue Xue Bao 2001, 23(8):968-971.

26. Qiu YY, Yin KS: Relationship between beta 2-adrenergic receptor haplotype/polymorphisms and bronchial asthma in the elderly (Chinese), Shi Yong Lao Nian Yi Xue 2008, 22(2):105-107.

27. Shi XY, Zhou JP: Relationship between polymorphisms of IL-13 gene and beta-2 AR gene and asthma (Chinese), Shon Dong Yi Yao 2008, 48(32):119-121.

28. Wang Z, Chen C, Niu T, Wu D, Yang J, Wang B, Fang Z, Yandava CN, Draven JM, Weiss ST, Xu X: Association of asthma with beta(2)-adrenergic receptor gene polymorphism and cigarette smoking. Am J Respir Crit Care Med 2001, 163(5):1404-1409.

29. Xie Y, Yang ZZ, Chai BC: Relationship of genetic polymorphisms of beta-2-adrenergic receptor and asthma in children in Shanghai area (Chinese), Shi Yong Er Li Xin Chuan Za Zhi 2008, 23(4):272-273, 303.

30. Xing J, Wang C, Liu JZ, Yan M, Huang KW, Xiao B: Study on the beta-2 AR gene asthma risk in Chinese children (Chinese). Zhong Hua Yi Xue Ke Za Zhi 2001, 40(5):340-342.

31. Zhang XY, Zhao WL, Gao Q, He MH: Relationship between genetic polymorphisms of beta-2-adrenergic receptor and childhood asthma (Chinese), Lin Chuang Er Ke Za Zhi 2008, 26(5):399-402, 408.

32. Wang JY, Liou YH, Wu YJ, Hsiao YH, Wu LS: An association study of 13 SNPs from seven candidate genes with pediatric asthma and a preliminary study for genetic testing by multiple variants in Taiwanese population. J Clin Immunol 2009, 29(2):205-209.

33. Gao CK, Wang SW, Zhang K: Study on beta2-adrenergic receptor gene polymorphisms in asthmatics in the people of the Han nationality of northern China (Chinese), Zhong Hua Jie He He Hu Xi Za Zhi 2000, 23(2):93-97.

34. Lin YC, Lu CC, Shen CY, Lei HY, Guo YL, Su HJ: Roles of genotypes of beta 2-adrenergic receptor in the relationship between eosinophil counts and lung function decrements. J Investig Allergol Clin Immunol 2009, 19(3):265-272.

35. Pan YP, Zhou SL, Kuang JL, Rao WH: Study on the relationship between the genetic polymorphisms of beta2-adrenergic receptor gene and asthma (Chinese), Jiang Yi Yi Xue Yuan Xue Bao 2005, 45(4):44-47.

36. Qiu YY, Yin KS: Study on polymorphism of beta-2 AR and asthma risk in China (Chinese), Zhong Hua Jie He He Hu Xi Za Zhi 2000, 23(7):435-436.
Association between polymorphism of tumor necrosis factor-α promoter gene and asthma (Chinese), Shan Dong Yi Yao 2004, 44(25):4-6.

55. Zhao HJ, Ding YC, Liu Y, Shi JP, Liu HF, Zhang J, Cheng HJ, Cui YN, Hou SP. Association between polymorphism of tumor necrosis factor promoter gene and asthma (Chinese). J Lin Da Xue Xue Bao (Yi Xue Ban) 2005, 31(3):449-51.

56. Cui TP, Jian WC, Wang L, Xie XJ, Wu JM. The association analysis of FcRRIβ with allergic asthma in a Hebei Han adults population (Chinese), Zhong Guo Guo Bing Li Shi Yong Er Ke Za Zhi 2004, 21(10):2049-2052.

57. Liu T, Teng L, Guan LX, Wu LP, Sun KY. Study on the E237G polymorphism of the FcepsilonRI beta gene with asthma (Chinese), Zhong Guo Shi Yong Ke Za Zhi 2006, 26(15):1520-1522.

58. Tang Y, Wu XQ, Liu XY, Zeng Y, Li YQ, Wu Q, Zhou TH. Study on mutations of β-chain of high affinity IgE receptor gene in people of Han nationality in the southern China (Chinese), Zhong Guo Xian Dai Yi Xue Za Zhi 2003, 13(9):6-10.

59. Wang L, Cui TP. Relationship between FcRRI β gene polymorphism and juvenile allergic asthma in Hubei area (Chinese), Hua Zhong Ke Ji Da Xue Xue Bao (Yi Xue Ban) 2003, 32(3):332-335.

60. Zeng LX, Zhou SL, Huang JL, Rao WH. Study on mutations of β-chain of high affinity IgE receptor gene in asthmatic patients (Chinese), Jing Yi Xue Yuan Xue Bao 2001, 13(5):43-45.

61. Zhang XZ, Zhang WD, Qiu DW, Andrew S, Cheng TW. Polymorphism of TNF-beta gene and susceptibility to asthma with IL-13 gene polymorphism and level of IL-13 and TiGEl in patients with asthma (Chinese), Zhong Hua Jie He He Hu Xi Za Zhi 2009, 32(3):161-164.

62. Zhao KS, Cheng HJ, Qiao HM, Zhuo FX, Sun MY, Fu WY. Polymorphism of TNF-beta and asthma risk in children (Chinese), Xian Lin Chuang Yi Xue Xing Wu Gong Cheng Xue Za Zhi 2005, 11(3):204-206.

63. Xue X, Chen SQ, Liu LD, Sun BQ, Chen SC. HLA-DRB, TNFβ allele polymorphism in susceptibility to asthma in Guangdong Chinese (Chinese), Xian Lin Chuang Yi Xue Sheng Wu Gong Cheng Xue Za Zhi 2003, 14(12):105-108.

64. Huang SC, Wu WJ, Sun HL, Lue KH, Hui CH, Liao PF, Ku MS. Association of a lymphotixin-alpha gene polymorphism and atopic asthma in Taiwanese children. Pediatr Neonatol 2008, 49(2):30-34.

65. Su DJ, Zhang XM, Sui H, Lu FZ, Jin LH, Zhang J. Association of TGF-β1 promoter polymorphisms with atopic asthma and rhinitis in a Chinese Han population. BMC Med Genet 2008, 9:82.

66. Wang P, Liu QJ, Li JS, Li HC, Wei CH, Guo CH, Gong YQ. Lack of association between ADAM33 gene polymorphisms with adult allergic asthma and rhinitis in a Chinese Han population. BMC Clin Pathol 2008, 6:102-103, 106.

67. Xue X, Chen SQ, Liu LD, Sun BQ, Chen SC. HLA-DRB, TNFβ allele polymorphism in susceptibility to asthma in Guangdong Chinese (Chinese), Xian Lin Chuang Yi Xue Sheng Wu Gong Cheng Xue Za Zhi 2003, 14(12):105-108.

68. Song QZ, Wu B, Li W, Liu JL, Zhang WZ, Zhang YL. Association between IL-13 gen polymorphism and level of IL-13 and TiGEl in patients with asthma (Chinese), Zhong Guo Mian Yi Xue Za Zhi 2005, 216(6):469-471.

69. Chen QJ, Sun HP, Guo XR, Chen RH. Effect of IL-13 gene polymorphism on the levels of serum IL-13 and total IgE in asthmatic children (Chinese), Zhong Guo Shi Yong Er Ke Za Zhi 2004, 19(4):209-211.

70. Wang XK, Zhao W, Liu SG, Feng XP. Correlation of IL-4 and IL-13 gene polymorphisms with asthma and total serum IgE levels, Zhong Hua Jie He He Hu Xi Za Zhi 2009, 32(3):161-164.

71. He SJ, Cai TT, Jou WC, Wu CR, Kubayashi H. There is no evidence of difference in polymorphisms in the IL-1 beta-511 promoter and IL-1Ra gene between asthmatic and healthy groups, Pediatr Allergy Immunol 2004, 17(1):53-57.

72. Wu ZF, Yang H, Liu YL, Chen XK, Cui XM, Liang ZH. Relationship of interleukin-1beta and interleukin-1 receptor antagonist gene polymorphisms with asthma (Chinese), Min Yan Xue Za Zhi 2007, 28(1):699-700.

73. Zhao XF, Li HL, Huang YK. Study on association between interleukin-1 beta gene polymorphism and childhood asthma (Chinese), Shi Yong Ke Lin Chuang Za Zhi 2006, 21(16):1074-1075.

74. Guo YB, Lu Y, Cai HW, Chen YH, Cheng YS, Ye XF. Genetic polymorphism of angiotensin converting enzyme gene in kidney-deficiency asthma (Chinese), Zhong Hua Jie He He Hu Xi Za Zhi 2009, 32(3):161-164.

75. Zhao KS, Cheng HJ, Qiao HM, Zhuo FX, Sun MY, Fu WY. Association of FcRRIβ-β gene promoter polymorphism and total serum IgE levels of asthma in children (Chinese), Zhong Guo Shi Yong Ke Za Zhi 2004, 19(12):744-746.

76. Guo JM, Lin Yong, Xiao Y, Xu SF, Xu W, Ma Y. Polymorphism of angiotensin-converting enzyme gene and susceptibility to asthma with familial aggregation (Chinese), Zhong Hua Jie He He Hu Xi Za Zhi 1999, 22(11):669-72.

77. Guo YB, Lu Y, Cai HW, Chen YH, Cheng YS, Ye XF. Genetic polymorphism of angiotensin converting enzyme (ACE) gene in kidney-deficiency asthma from Guangdong population (Chinese), Zhong Guo Guo Bing Li Shi Yong Er Ke Za Zhi 2004, 21(10):2049-2052.

78. Zhao KS, Lin JW, Wang ZH, Guo Y, Yu LY, Fu WY. Association between FcRRIβ-β gene promoter polymorphism and total serum IgE levels of asthma in children (Chinese), Zhong Guo Shi Yong Er Ke Za Zhi 2004, 19(12):744-746.

79. Lu JL, Liu WD, Zhao KS, Sun MY, Fu WY. Study on TGFβ1 polymorphism and asthma susceptibility (Chinese), Lin Chuang Er Ke Za Zhi 2004, 22(12):594-797.

80. Zhao KS, Lu JW, Wang ZH, Guo Y, Yu LY, Fu WY. Association between FcRRIβ-β gene promoter polymorphism and total serum IgE levels of asthma in children (Chinese), Zhong Guo Shi Yong Er Ke Za Zhi 2004, 19(12):744-746.

81. Guo JM, Lin Yong, Xiao Y, Xu SF, Xu W, Ma Y. Polymorphism of angiotensin-converting enzyme gene and susceptibility to asthma with familial aggregation (Chinese), Zhong Hua Jie He He Hu Xi Za Zhi 1999, 22(11):669-72.

82. Guo YB, Lu Y, Cai HW, Chen YH, Cheng YS, Ye XF. Genetic polymorphism of angiotensin converting enzyme (ACE) gene in kidney-deficiency asthma from Guangdong population (Chinese), Zhong Guo Guo Bing Li Shi Yong Er Ke Za Zhi 2004, 21(10):2049-2052.

83. Lu HM, Li LY. Polymorphism of angiotensin-converting enzyme gene and susceptibility to patients of asthma in Tianjin (Chinese), Shan Xi Yi Yao Za Zhi 2004, 33(12):1016-1017.

84. Lue KH, Ku MS, Li C, Sun HL, Lee HS, Chou MC. ACE gene polymorphism might disclose why some Taiwanese children with allergic rhinitis develop asthma symptoms but others do not. Pediatr Allergy Immunol 2006, 17(5):508-513.

85. Qin JH, Wang LS. DD genotype of angiotensin-converting enzyme may be a risk factor for development of asthma in children (Chinese), Zhong Hua Er Ke Za Zhi 2000, 38(8):487-489.

86. Song LJ, Quan CS, Peng F, Lu WY. Correlation between asthma and polymorphism of angiotensin-converting enzyme gene with insertion or deletion in 108 Chinese northern children with allergic rhinitis develop asthma symptoms but others do not. Pediatr Allergy Immunol 2006, 17(5):508-513.

87. Qin JH, Wang LS. DD genotype of angiotensin-converting enzyme may be a risk factor for development of asthma in children (Chinese), Zhong Hua Er Ke Za Zhi 2000, 38(8):487-489.

88. Song LJ, Quan CS, Peng F, Lu WY. Correlation between asthma and polymorphism of angiotensin-converting enzyme gene with insertion or deletion in 108 Chinese northern children with allergic rhinitis develop asthma symptoms but others do not. Pediatr Allergy Immunol 2006, 17(5):508-513.

89. Qin JH, Wang LS. DD genotype of angiotensin-converting enzyme may be a risk factor for development of asthma in children (Chinese), Zhong Hua Er Ke Za Zhi 2000, 38(8):487-489.

90. Song LJ, Quan CS, Peng F, Lu WY. Correlation between asthma and polymorphism of angiotensin-converting enzyme gene with insertion or deletion in 108 Chinese northern children with allergic rhinitis develop asthma symptoms but others do not. Pediatr Allergy Immunol 2006, 17(5):508-513.
Leung TF, Tang NL, Lam CW, Li AM, Fung SL, Chan IH, Wong GW: RANTES G-401A polymorphism is associated with allergen sensitization and FEV1 in Chinese children. *Respir Med* 2005, 99(2):216-219.

doi:10.1186/1465-9921-11-129

Cite this article as: Li et al.: Asthma susceptible genes in Chinese population: A meta-analysis. *Respiratory Research* 2010 11:129.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit