Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Viral Pneumonia in Patients with Hematopoietic Cell Transplantation and Hematologic Malignancies

Margaret L. Green, MD, MPHab,*

INTRODUCTION

Patients undergoing hematopoietic cell transplantation (HCT) or treatment of hematologic malignancy (HM) have profound impairment of cell-mediated and humoral immunity. As such they are at risk of lower respiratory tract infection from reactivation of latent infections, such as cytomegalovirus (CMV), and progression of community-acquired upper respiratory tract infections, such as respiratory syncytial virus (RSV) influenza A and B. The clinical presentation of these infections is varied, and diagnosis is often complicated by high rates of coinfection with bacterial, fungal, and other viral pathogens. CMV remains the most common cause of viral pneumonia in HCT/HM, but adoption of preemptive therapy strategies and changes in transplant techniques over the last few decades have resulted in significant improvement in the incidence and mortality associated with CMV pneumonia. Community respiratory virus (CRV) infections, such as influenza, parainfluenza, and respiratory syncytial virus, are common. Fewer patients develop lower tract disease; however, once established, mortality rates are high.

Infection prevention practices in the community and health care setting are critical in limiting the acquisition and spread of CRVs in this highly susceptible patient population.

Disclosure: Dr M.L. Green has received research funding from Merck and Astellas Global Pharma. No other relationships to disclose.

a University of Washington, 1959 NE Pacific Street, Box 359930, Seattle, WA 98195, USA; b Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA

* Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109.

E-mail address: mlgreen@fredhutch.org

Clin Chest Med 38 (2017) 295–305
http://dx.doi.org/10.1016/j.ccm.2016.12.009
0272-5231/17© 2016 Elsevier Inc. All rights reserved.
Clinical Presentation

Presenting signs and symptoms of viral pneumonia are variable. Most patients have fever and cough, with hypoxia and increased work of breathing of varying degrees depending on the extent of the infection. Upper respiratory tract infection symptoms, such as nasal congestion, rhinorrhea, sinusitis, myalgias, and fatigue, may be present for infections caused by community respiratory viruses (CRVs).

Imaging

Computed tomography (CT) is helpful in distinguishing between infectious and noninfectious causes of lung disease in this patient population and also between viral and fungal or bacterial infections.5,6 Viral pneumonias are similar in appearance on CT often demonstrating small centrilobular nodules, patchy bilateral areas of ground glass opacities and consolidation, bronchial wall thickening, and tree-in-bud opacities (Fig. 1). If there is significant bronchiolitis, air trapping can also be evident.9-10

Diagnostic Sampling

Fiberoptic bronchoscopy with bronchoalveolar lavage is the predominant sampling method to confirm a diagnosis of viral pneumonia in the HCT/HM population. Although sampling of the upper respiratory tract with nasopharyngeal aspirate/wash may provide an early identification of the involved virus or viruses, sampling of the lower tract is usually recommended to confirm the diagnosis and to exclude other copathogens. Because of the risk of hemorrhage in these patients who often have thrombocytopenia, endobronchial biopsy is usually avoided. Surgical lung biopsy, which was once the principle method by which lung abnormalities were evaluated after HCT, is now rarely performed.11

Virologic Diagnosis

Standard viral cultures are of waning utility in the diagnosis of viral pneumonias because it can take up to 2 weeks to become positive and several more recently identified respiratory viruses, such as human metapneumovirus, coronaviruses, and bocavirus, are notoriously difficult to isolate in culture. For most viral pathogens, molecular methods of viral detection, such as direct or indirect fluorescent antibody tests or nucleic acid tests, can be used to give reliable results with a rapid turnaround time. Multiplex polymerase chain reaction (PCR) panels have the advantage of being able to test for multiple viruses at the same time and are more sensitive than fluorescent antibody tests.12-17

Virus	Incidence of Infection	Progression to Pneumonia	Mortality	Treatment
Cytomegalovirus	50%–90% seroprevalence	1%–8% after allogeneic HCT with pre-emptive therapy	60%–80%	Ganciclovir or foscarnet
Influenza A and B (FluA and FluB)	33% of symptomatic patients	14%–30%	15%–28%	Oseltamivir or other neuraminidase inhibitors
Respiratory syncytial virus	14%–30% of symptomatic patients	40%–75%	28%–55%	No direct-acting therapy; inhaled ribavirin most studied
Parainfluenza virus	1%–10% of all patients	30%	17%–46%	None currently licensed; DAS-181 in phase III trials
Adenovirus	8%–17% after allogeneic HCT, 6% after autologous	~8%	N/A	Cidofovir
The diagnosis of CMV pneumonia, however, continues to rely on the use of standard viral or shell vial culture, histopathology, or immunohistochemical testing. The assumption has been that the CMV PCR tests would be too sensitive and have a low positive predictive value for CMV pneumonitis. However, because of the operational advantages of PCR testing with much faster turnaround time, efforts are underway to estimate a quantitative CMV viral load threshold that would be more predictive of CMV pneumonitis rather than asymptomatic shedding.

CYTOMEGALOVIRUS

Epidemiology

CMV is the most common cause of viral pneumonia after allogeneic HCT. Early reports indicated an incidence of 20% to 70% with an associated mortality of 85% to 90%. The development of ganciclovir resulted in significant improvements in the mortality associated with CMV pneumonia but with mortality rates still 60% to 80% focus shifted to prevention of disease. The use of ganciclovir for prophylaxis decreased the incidence of pneumonitis and other CMV end-organ disease, but was associated with increased rates of neutropenia and late-occurring disease (ie, after Day 100 posttransplant). In the current era of preemptive therapy, where patients are monitored for CMV replication with either pp65 antigen or CMV DNA PCR in the blood or plasma and antiviral treatment is initiated before the development of CMV pneumonia, the incidence of CMV pneumonia is now only 1% to 3% in the early posttransplant period (100 days post-transplant). An additional 1% to 8% of patients develop CMV pneumonia within the first year after transplant.

Risk factors for development of CMV pneumonia after allogeneic HCT are CMV seropositivity, recipient of a cord blood graft, HLA-mismatched donors, myeloablative conditioning regimens, acute and chronic graft-versus-host disease (GVHD), and use of T-cell-depleted stem cells.

CMV pneumonia is much less common in patients who have received an autologous transplant, or in patients receiving treatment of HM with incidence of 1% to 5% reported in the absence of surveillance and preemptive therapy.

Treatment

Ganciclovir (5 mg/kg intravenous [IV] every 12 hours) remains the first-line treatment for CMV
pneumonitis. Based on the results of three non-randomized studies, CMV immunoglobulin was often recommended as adjunctive treatment. However, more recent analyses have called into question the additional benefit of this therapy. Duration of treatment is generally induction therapy for 21 to 28 days, followed by 21 to 28 days of maintenance therapy (ganciclovir, 5 mg/kg IV every 24 hours). Foscarnet (90 mg/kg IV every 12 hours) may be used in the setting of neutropenia because it is associated with less bone marrow suppression than ganciclovir, but commonly causes significant nephrotoxicity.

Antiviral resistance mutations have been identified in the viral encoded UL97 kinase, required only by ganciclovir, and the viral DNA polymerase, the target of ganciclovir, foscarnet, and cidofovir. Fortunately, antiviral resistance is a rare occurrence in patients with HCT/HM occurring in 0% to 4% of patients with CMV reactivation. Foscarnet, cidofovir, and brincidofovir (an oral nucleotide analogue and prodrug of cidofovir) could be used for treatment of resistant CMV caused by UL97 mutations. Maribavir and etermovir, two agents currently undergoing clinical trials, have distinct mechanisms of action that may make them useful for treatment of resistant CMV disease; however, little is known of their genetic barrier to resistance.

Other Herpesviruses

Reactivation of latent varicella zoster virus and herpes simplex virus in immunocompromised patients can result in disseminated disease with pneumonia and was a significant clinical problem for patients with HCT/HM. Long-term prophylaxis with acyclovir or valacyclovir has been the standard of care for more than a decade. Cases still rarely occur in patients who have discontinued acyclovir prophylaxis, but generally respond well to high-dose parenteral acyclovir.

COMMUNITY RESPIRATORY VIRUSES

CRVs are a common cause of infection in patients with HCT/HM; however, the risk of pneumonia varies by virus type and patient risk factors. Several of the viruses, such as influenza and RSV, have significant seasonal variation of incidence, whereas others, such as parainfluenza virus (PIV) and adenovirus, tend to cause disease year round. Outbreaks on oncology and HCT hospital wards and ambulatory clinics have been described for many of these viruses, emphasizing the importance of infection-prevention policies and procedures that can prevent the transmission of viruses among highly susceptible patients. This is particularly challenging with this patient population because of prolonged viral shedding, which often lasts weeks or months.

Influenza

Influenza is diagnosed in approximately 1% of patients with HCT/HM during treatment, and in 33% of patients presenting with respiratory virus symptoms. Progression to pneumonia occurs in 14% to 30% of patients and is associated with mortality rates of 15% to 28%. During the 2009 H1N1 influenza pandemic, rates of pneumonia were much higher (>50%), but mortality was similar. Risk factors for development of pneumonia include lymphopenia (<100 cells/µL), neutropenia (<500 cells/µL), steroid use at time of diagnosis, and absence of antiviral treatment.

Neuraminidase inhibitors, primarily oseltamivir, are currently the standard of care for influenza treatment and postexposure prophylaxis. Oseltamivir resistance has been described but remains uncommon. In the setting of documented or suspected oseltamivir resistance, or in patients who have impaired enteric absorption, inhaled zanamivir or the newly licensed parenteral peramivir have been used.

Seasonal vaccination with the trivalent inactivated vaccine is recommended for all health care workers caring for patients with HCT/HM, family members, and household contacts. Additionally, it is recommended that patients undergoing treatment of leukemia and lymphoma are vaccinated because it may reduce the risk of hospitalization for respiratory illness. Ideally, vaccine should be administered at least 2 weeks before any cytotoxic therapy. For HCT recipients, vaccination, vaccination of patients less than 6 months after transplant is ineffective and is generally not recommended. Chemoprophylaxis after exposure is recommended for patients with HCT within 1 year of transplant or for patients with HM during chemotherapy.

Respiratory Syncytial Virus

Infection with RSV is more common than influenza, occurring in 7% to 10% of patients undergoing allogeneic HCT. Among patients with HCT/HM presenting with viral respiratory symptoms, RSV is diagnosed in 14% to 30%. Involvement of the lower respiratory tract occurs in 40% to 75% of infected patients. Risk factors for progression to pneumonia include patient age, allogeneic HCT, mismatched or unrelated donor, GVHD, myeloablative conditioning
regimens, infection less than 30 days post-transplant, prolonged lymphopenia, and lack of ribavirin-based therapy.81,98–101 RSV pneumonia is associated with mortality rates of 28% to 55%.100,102,103 Treatment with inhaled ribavirin has been shown in several retrospective studies to be associated with decreased rates of progression and a 67% to 83% reduction in the risk of mortality after RSV infection.100,102 Based on these data, many centers use inhaled ribavirin (2 g for 2 hours every 8 hours for 10 days) in select, high-risk patient populations.66,104 However, because of recent increases in the cost of this formulation, the use of systemic (oral or parenteral) ribavirin is increasing despite a paucity of evidence to support this practice.102,105,106 There are a few noteworthy agents with novel mechanisms of action that are currently in trial: GS5806, an oral RSV entry inhibitor; and ALS8176, a nucleoside RSV polymerase inhibitor.107,108 Finally, pneumonia caused by RSV has been associated with a significant airflow decline by 1 year posttransplant, an important long-term sequela of this common infection.109

Parainfluenza Virus

Unlike influenza and RSV, PIV infections occur without much seasonal variation. The incidence of PIV infection in patients with HCT/HM is 1% to 10%, and 30% of infected patients develop pneumonia; most cases are caused by PIV type 3.110–113 Death occurs in 17% to 46% of patients who develop pneumonia.110,112,113 Risk factors for development of pneumonia include high-dose corticosteroid use, lymphopenia, neutropenia, infection occurring early posttransplantation, the presence of copathogens, and a higher Acute Physiology and Chronic Health Evaluation II score.110,113,114 There are currently no licensed treatments for PIV pneumonia. Ribavirin has been used with little noted improvement in mortality or clinical response.110,114 DAS181, an investigational sialidase fusion protein that works by removing sialic acid–containing receptors from respiratory epithelial cells, preventing PIV from binding, has been successfully used in several cases of adult and pediatric PIV pneumonia in HCT/HM and is currently in phase III clinical trials.115,116

Adenovirus

Human adenovirus (HAdV) infections can cause significant disseminated disease in patients with HCT/HM, including severe pneumonia. The most severe disease occurs after HCT, especially in children, and in patients with HM treated with alemtuzumab.117–119 Adenovirus infection occurs in 8% to 17% of patients undergoing allogeneic HCT, with most cases occurring in children.120,121 A total of 10% of patients develop HAdV end-organ disease; the lungs are involved in 75% of these cases.120,121 Infection is less common after autologous HCT, occurring in only 6% of patients, and end-organ disease including pneumonia is rare. In addition to T-cell depletion, risk factors for HAdV disease are lymphopenia, receipt of cord blood grafts, GVHD requiring increased or prolonged immunosuppression, and absence of HAdV-specific T-cell responses.122 Patients with adenoviral pneumonia often have involvement at other sites, such as the gut and liver, and mortality rates with disseminated disease are high. First-line treatment of HAdV disease including pneumonitis is cidofovir (5 mg/kg once weekly, or 1 mg/kg three times weekly) and reduction in immunosuppression whenever possible.66,122–124

Other Community Respiratory Viruses

Other common CRVs, such as human metapneumovirus, novel coronaviruses (eg, SARS-CoV, MERS-CoV), and even human rhinovirus, cause lower respiratory tract infection in patients with HCT/HM.125–128 Although each of these viruses have their own specific biology and epidemiology, the risk factors for pneumonia that have been identified for other CRVs, such as lymphopenia and infection occurring early after HCT, are shared. Because there are yet no direct-acting treatments for these viruses, efforts to prevent infection in these highly immunosuppressed patients remains paramount. Current guidelines recommend preventing contact from symptomatic health care workers and family members, daily screening of health care workers and visitors to inpatient units for symptoms, active surveillance for CRV disease, and isolation of symptomatic patients with recognition that viral shedding is prolonged in this patient population.129,130

SUMMARY

The profound and prolonged immunosuppression experienced by patients undergoing HCT and intensive chemotherapy for HM results in rates of viral pneumonia that far surpass the incidence in the general population. Patients with viral pneumonia generally present with fever; hypoxia; and often bilateral, patchy nodular infiltrates with or without surrounding ground glass opacities on high-resolution CT imaging. Because the imaging findings do not help distinguish among different viral etiologies, and these patients commonly have other viral, bacterial, and fungal coinfections,
a microbiologic diagnosis typically requires fiberoptic bronchoscopy with bronchoalveolar lavage.

Although CMV remains the most common cause of viral pneumonia in this population, efforts to treat CMV replication early in its course and changes in transplant practices have resulted in improvements in the incidence and associated mortality of CMV pneumonia. Taken together, CRV infections also occur commonly in this patient population. However, the rates of progression to pneumonia vary depending on the virus with influenza, RSV, and PIV causing lower tract disease more commonly than adenovirus, human metapneumovirus, and rhinovirus, and patient risk factors relating to the degree of immunosuppression (ie, lymphopenia, early posttransplant, steroid use). Once established, however, pneumonia caused by these infections is associated with high mortality rates in part because of the lack of direct-acting antiviral agents for most of these viruses. Infection prevention practices that limit the acquisition of CRVs by patients with HCT/HM and decrease the risk of spread within the clinics and inpatient settings are of particular importance.

REFERENCES

1. Ison MG, Hayden FG, Kaiser L, et al. Rhinovirus infections in hematopoietic stem cell transplant recipients with pneumonia. Clin Infect Dis 2003;36(9):1139–43.
2. Shannon VR, Andersson BS, Lei X, et al. Utility of early versus late fiberoptic bronchoscopy in the evaluation of new pulmonary infiltrates following hematopoietic stem cell transplantation. Bone Marrow Transplant 2009;45(4):647–55.
3. Oren I, Hardak E, Zuckerman T, et al. Does molecular analysis increase the efficacy of bronchoalveolar lavage in the diagnosis and management of respiratory infections in hematopoietic patients? Int J Infect Dis 2016;50:48–53.
4. Hardak E, Avivi I, Berkun L, et al. Polymicrobial pulmonary infection in patients with hematological malignancies: prevalence, co-pathogens, and outcome. Infection 2016;44(4):491–7.
5. Miller WTJ, Mickus TJ, Barbosa EJ, et al. CT of viral lower respiratory tract infections in adults: comparison among viral organisms and between viral and bacterial infections. AJR Am J Roentgenol 2011;197(5):1088–95.
6. Kanne JP, Godwin JD, Franquet T. Viral pneumonia after hematopoietic stem cell transplantation: high-resolution CT findings. J Thorac Imaging 2007;22(3):292–9.
7. Franquet T, Rodriguez S, Martino R, et al. Thin-section CT findings in hematopoietic stem cell transplantation recipients with respiratory virus pneumonia. AJR Am J Roentgenol 2006;187(4):1085–90.
8. Herbst T, Van Deerlin VM, Miller WTJ. The CT appearance of lower respiratory infection due to parainfluenza virus in adults. AJR Am J Roentgenol 2013;201(3):550–4.
9. Shiley KT, Van Deerlin VM, Miller WTJ. Chest CT features of community-acquired respiratory viral infections in adult inpatients with lower respiratory tract infections. J Thorac Imaging 2010;25(1):68–75.
10. Kim M-C, Kim MY, Lee HJ, et al. CT findings in viral lower respiratory tract infections caused by parainfluenza virus, influenza virus and respiratory syncytial virus. Medicine 2016;95(26):e4003.
11. Cheng G-S, Stednick Z, Madtes DK, et al. Decline in the use of surgical biopsy for diagnosis of pulmonary disease in hematopoietic cell transplantation recipients in an era of improved diagnostics and empirical therapy. Biol Blood Marrow Transplant 2016;22:2243–9.
12. Osiowy C. Direct detection of respiratory syncytial virus, parainfluenza virus, and adenovirus in clinical respiratory specimens by a multiplex reverse transcription-PCR assay. J Clin Microbiol 1998;36(11):3149–54.
13. Coiras MT, Aguilar JC, Garcia ML, et al. Simultaneous detection of fourteen respiratory viruses in clinical specimens by two multiplex reverse transcription nested-PCR assays. J Med Virol 2004;72(3):484–95.
14. Templeton KE, Scheltinga SA, Beersma MFC, et al. Rapid and sensitive method using multiplex real-time PCR for diagnosis of infections by influenza A and influenza B viruses, respiratory syncytial virus, and parainfluenza viruses 1, 2, 3, and 4. J Clin Microbiol 2004;42(4):1564–9.
15. Fan J, Henrixson KJ, Savatski LL. Rapid simultaneous diagnosis of infections with respiratory syncytial viruses A and B, influenza viruses A and B, and human parainfluenza virus types 1, 2, and 3 by multiplex quantitative reverse transcription-polymerase chain reaction-enzyme hybridization assay (Hexaplex). Clin Infect Dis 1998;26(6):1397–402.
16. Choudhary ML, Anand SP, Heydari M, et al. Development of a multiplex one step RT-PCR that detects eighteen respiratory viruses in clinical specimens and comparison with real time RT-PCR. J Virol Methods 2013;189(1):15–9.
17. van Elden L, van Kraaij M. Polymerase chain reaction is more sensitive than viral culture and antigen testing for the detection of respiratory viruses in adults with hematological cancer and pneumonia. Clin Infect Dis 2002;34(2):177–83.
18. Ljungman P, Griffiths P, Paya C. Definitions of cytomegalovirus infection and disease in transplant recipients. Clin Infect Dis 2002;34(8):1094–7.
19. Fajac A, Stephan F, Ibrahim A, et al. Value of cytomegalovirus detection by PCR in bronchoalveolar lavage routinely performed in asymptomatic bone marrow recipients. Bone Marrow Transplant 1997; 20(7):581–5.

20. Cathomas G, Morris P, Pekle K, et al. Rapid diagnosis of cytomegalovirus pneumonia in marrow transplant recipients by bronchoalveolar lavage using the polymerase chain reaction, virus culture, and the direct immunostaining of alveolar cells. Blood 1993;81(7):1909–14.

21. Eriksson BM, Brytting M, Zweygberg-Wirgart B, et al. Diagnosis of cytomegalovirus in bronchoalveolar lavage by polymerase chain reaction, in comparison with virus isolation and detection of viral antigen. Scand J Infect Dis 1993;25(4): 421–7.

22. Tan SK, Burgener EB, Waggoner JJ, et al. Molecular and culture-based bronchoalveolar lavage fluid testing for the diagnosis of cytomegalovirus pneumonia. Open Forum Infect Dis 2016;3(1):ofv212.

23. Krowka MJ, Rosenow EC. Pulmonary complications of bone marrow transplantation. Chest 1985; 87(2):237–46.

24. Meyers JD, Flournoy N, Thomas ED. Risk factors for cytomegalovirus infection after human marrow transplantation. J Infect Dis 1986;153(3):478–88.

25. Schmidt GM, Horak DA, Niland JC, et al. A randomized, controlled trial of prophylactic ganciclovir for cytomegalovirus pulmonary infection in recipients of allogeneic bone marrow transplants; the City of Hope-Stanford-Syntex CMV Study Group. N Engl J Med 1991;324(15):1005–11.

26. Winston DJ, Ho WG, Bartoni K, et al. Ganciclovir therapy for cytomegalovirus infections in recipients of bone marrow transplants and other immunosuppressed patients. Rev Infect Dis 1988;10(Suppl 3): S547–53.

27. Crumpacker C, Marlowe S, Zhang JL, et al. Treatment of cytomegalovirus pneumonia. Rev Infect Dis 1988;10(Suppl 3): S538–46.

28. Erard V, Guthrie KA, See S, et al. Reduced mortality of cytomegalovirus pneumonia after hematopoietic cell transplantation due to antiviral therapy and changes in transplantation practices. Clin Infect Dis 2015;61(1):31–9.

29. Goodrich JM, Mori M, Gleaves CA, et al. Early treatment with ganciclovir to prevent cytomegalovirus disease after allogeneic bone marrow transplantation. N Engl J Med 1991;325(23):1601–7.

30. Winston DJ, Ho WG, Bartoni K, et al. Ganciclovir prophylaxis of cytomegalovirus infection and disease in allogeneic bone marrow transplant recipients. Results of a placebo-controlled, double-blind trial. Ann Intern Med 1993;118(3):179–84.

31. Boeckh M, Gooley TA, Myers D, et al. Cytomegalovirus pp65 antigenemia-guided early treatment with ganciclovir versus ganciclovir at engraftment after allogeneic marrow transplantation: a randomized double-blind study. Blood 1996;88(10):4063.

32. Nguyen Q, Champlin R, Giralt S, et al. Late cytomegalovirus pneumonia in adult allogeneic blood and marrow transplant recipients. Clin Infect Dis 1999;28(3):618–23.

33. Ng K, White LE, Lewington S, et al. Risk factors for the development of cytomegalovirus disease after allogeneic stem cell transplantation. Haematologica 2006;91(1):78–83.

34. Marti FM, Ljungman P, Papanicolaou GA, et al. Maribavir prophylaxis for prevention of cytomegalovirus disease in recipients of allogeneic stem-cell transplants: a phase 3, double-blind, placebo-controlled, randomised trial. Lancet Infect Dis 2011;11(4):284–92.

35. Green ML, Leisenring W, Stachel D, et al. Efficacy of a viral load-based, risk-adapted, preemptive treatment strategy for prevention of cytomegalovirus disease after hematopoietic cell transplantation. Biol Blood Marrow Transplant 2012;18(11): 1687–99.

36. Boeckh M, Leisenring W, Riddell SR, et al. Late cytomegalovirus disease and mortality in recipients of allogeneic hematopoietic stem cell transplants: importance of viral load and T-cell immunity. Blood 2003;101(2):407–14.

37. Boeckh M, Nichols WG, Chemaly RF, et al. Valganciclovir for the prevention of complications of late cytomegalovirus infection after allogeneic hematopoietic cell transplantation. Ann Intern Med 2015; 162(1):1.

38. Miller W, Flynn P, McCullough J, et al. Cytomegalovirus infection after bone marrow transplantation: an association with acute graft-vs-host disease. Blood 1986;67(4):1162.

39. Dahi PB, Perales MA, Devlin SM, et al. Incidence, nature and mortality of cytomegalovirus infection after double-unit cord blood transplant. Leuk Lymphoma 2015;56(6):1799–805.

40. Milano F, Pergam SA, Xie H, et al. Intensive strategy to prevent CMV disease in seropositive umbilical cord blood transplant recipients. Blood 2011;118(20):5689–96.

41. Hertenstein B, Hampel W, Bunjes D, et al. In vivo/ ex vivo T cell depletion for GVHD prophylaxis influences onset and course of active cytomegalovirus infection and disease after BMT. Bone Marrow Transplant 1995; 15(3):387–93.

42. van Burik J-AH, Carter SL, Freifeld AG, et al. Higher risk of cytomegalovirus and aspergillus infections in recipients of T cell-depleted unrelated bone
marrow: analysis of infectious complications in patients treated with T cell depletion versus immunosuppressive therapy to prevent graft-versus-host disease. Biol Blood Marrow Transplant 2007;13(12):1487–98.

44. Chemaly RF, Torres HA, Hachem RY, et al. Cytomegalovirus pneumonia in patients with lymphoma. Cancer 2005;104(6):1213–20.

45. Nguyen Q, Estey E, Raad I, et al. Cytomegalovirus pneumonia in adults with leukemia: an emerging problem. Clin Infect Dis 2001;32(4):539–45.

46. Konoplev S, Champlin RE, Giralt S. Cytomegalovirus pneumonia in adults autologous blood and marrow transplant recipients. Transplantation 2001;72(8):877–81.

47. Ljungman P, Biron P, Bosi A, et al. Cytomegalovirus interstitial pneumonia in autologous bone marrow transplant recipients. Infectious disease working party of the European Group for bone marrow transplantation. Bone Marrow Transplant 1994;13(2):209–12.

48. Jain R, Trehan A, Mishra B, et al. Cytomegalovirus disease in children with acute lymphoblastic leukemia. Pediatr Hematol Oncol 2016;33(4):239–47.

49. Boeckh M, Ljungman P. How we treat cytomegalovirus in hematopoietic cell transplant recipients. Blood 2009;113(23):5711–9.

50. Emanouel D, Cunningham I, Jules-Elysee K, et al. Cytomegalovirus pneumonia after bone marrow transplantation successfully treated with the combination of ganciclovir and high-dose intravenous immune globulin. Ann Intern Med 1988;109(10):777–82.

51. Reed EC, Bowden RA, Dandliker PS, et al. Treatment of cytomegalovirus pneumonia with ganciclovir and intravenous cytomegalovirus immunoglobulin in patients with bone marrow transplants. Ann Intern Med 1988;109(10):783–8.

52. Schmidt GM, Kovacs A, Zaia JA, et al. Ganciclovir/imunoglobulin combination therapy for the treatment of human cytomegalovirus-associated interstitial pneumonia in bone marrow allograft recipients. Transplantation 1988;46(6):905–7.

53. Machado CM, Dulley FL, Boas LS, et al. CMV pneumonia in allogeneic BMT recipients undergoing early treatment of pre-emptive ganciclovir therapy. Bone Marrow Transplant 2000;26(4):413–7.

54. Ljungman P, Engelhard D, Link H, et al. Treatment of interstitial pneumonitis due to cytomegalovirus with ganciclovir and intravenous immune globulin: experience of European Bone Marrow Transplant Group. Clin Infect Dis 1992;14(4):831–5.

55. Lurain NS, Chou S. Antiviral drug resistance of human cytomegalovirus. Clin Microbiol Rev 2010; 23(4):689–712.

56. Avery RK, Arav-Boger R, Marr KA, et al. Outcomes in transplant recipients treated with fosarnet for ganciclovir-resistant or refractory cytomegalovirus infection. Transplantation 2016;100(10):e74–80.

57. Choi SH, Hwang J-Y, Park K-S, et al. The impact of drug-resistant cytomegalovirus in pediatric allogeneic hematopoietic cell transplant recipients: a prospective monitoring of UL97 and UL54 gene mutations. Transpl Infect Dis 2014;16(6):919–29.

58. Eckle T, Prix L, Jahn G, et al. Drug-resistant human cytomegalovirus infection in children after allogeneic stem cell transplantation may have different clinical outcomes. Blood 2000;96(9):3286–9.

59. Avery RK, Marty FM, Strasfeld L, et al. Oral maribavir for treatment of refractory or resistant cytomegalovirus infections in transplant recipients. Transpl Infect Dis 2010;12(6):489–96.

60. Schubert A, Ehlert K, Schuler-Luettmann S, et al. Fast selection of maribavir resistant cytomegalovirus in a bone marrow transplant recipient. BMC Infect Dis 2013;13:330.

61. Chou S. Approach to drug-resistant cytomegalovirus in transplant recipients. Curr Opin Infect Dis 2015;28(4):293–9.

62. Kaul DR, Stoelben S, Cober E, et al. First report of successful treatment of multidrug-resistant cytomegalovirus disease with the novel anti-CMV compound AIC246. Am J Transplant 2011;11(5):1079–84.

63. Locksley RM, Flournoy N, Sullivan KM, et al. Infection with varicella-zoster virus after marrow transplantation. J Infect Dis 1985;152(6):1172–81.

64. Koc Y, Miller KB, Schenkein DP, et al. Varicella zoster virus infections following allogeneic bone marrow transplantation: frequency, risk factors, and clinical outcome. Biol Blood Marrow Transplant 2000;6(1):44–9.

65. Baden LR, Bensinger W, Angarone M. Prevention and treatment of cancer-related infections. J Natl Compr Canc Netw 2012;10(11):1412–45.

66. Tomblyn M, Chiller T, Einsele H, et al. Guidelines for preventing infectious complications among hematopoietic cell transplantation recipients: a global perspective. Biol Blood Marrow Transplant 2009;15(10):1143–238.

67. Boeckh M, Kim HW, Flowers MED, et al. Long-term acyclovir for prevention of varicella zoster virus disease after allogeneic hematopoietic cell transplantation—a randomized double-blind placebo-controlled study. Blood 2006;107(5):1800–5.

68. Erard V, Guthrie KA, Varley C, et al. One-year acyclovir prophylaxis for preventing varicella-zoster virus disease after hematopoietic cell transplantation: no evidence of rebound varicella-zoster virus disease after drug discontinuation. Blood 2007;110(8):3071–7.

69. Perren TJ, Powles RL, Easton D, et al. Prevention of herpes zoster in patients by long-term oral
acyclovir after allogeneic bone marrow transplantation. Am J Med 1988;85(2A):99–101.

70. Kim DH, Kumar D, Messner HA, et al. Clinical efficacy of prophylactic strategy of long-term low-dose acyclovir for varicella-zoster virus infection after allogeneic peripheral blood stem cell transplantation. Clin Transplant 2008;22(6):770–9.

71. Kim DH, Messner H, Minden M, et al. Factors influencing varicella zoster virus infection after allogeneic peripheral blood stem cell transplantation: low-dose acyclovir prophylaxis and pre-transplant diagnosis of lymphoproliferative disorders. Transpl Infect Dis 2008;10(2):90–8.

72. Weinstock DM, Eagan J, Malak SA, et al. Control of influenza A on a bone marrow transplant unit. Infect Control Hosp Epidemiol 2000;21(11):730–2.

73. Mattner F, Sykora K-W, Meissner B, et al. An adenovirus type F41 outbreak in a pediatric bone marrow transplant unit. Pediatr Infect Dis J 2008;27(5):419–24.

74. Abdallah A, Rowland KE, Schepetiuk SK, et al. An outbreak of respiratory syncytial virus infection in a bone marrow transplant unit: effect on engraftment and outcome of pneumonia without specific antiviral treatment. Bone Marrow Transplant 2003;32(2):195–203.

75. Hodson A, Kasiwal M, Streetly M, et al. A parainfluenza-3 outbreak in a SCT unit: sepsis with multi-organ failure and multiple co-pathogens are associated with increased mortality. Bone Marrow Transplant 2011;46(12):1545–50.

76. Chu HY, Englund JA, Podczervinski S, et al. Nosocomial transmission of respiratory syncytial virus in an outpatient cancer center. Biol Blood Marrow Transplant 2014;20(6):844–51.

77. Campbell AP, Guthrie KA, Englund JA, et al. Clinical outcomes associated with respiratory virus detection before allogeneic hematopoietic stem cell transplant. Clin Infect Dis 2015;61(2):192–202.

78. de Lima CRA, Mirandoli TB, Carneiro LC, et al. Prolonged respiratory viral shedding in transplant patients. Transpl Infect Dis 2014;16(1):165–9.

79. Lehners N, Tabatabai J, Prifert C, et al. Long-term shedding of influenza virus, parainfluenza virus, respiratory syncytial virus and nosocomial epidemiology in patients with hematological disorders. PLoS One 2016;11(2):e0148258.

80. Nichols WG, Guthrie KA, Corey L, et al. Influenza infections after hematopoietic stem cell transplantation: risk factors, mortality, and the effect of antiviral therapy. Clin Infect Dis 2004;39(9):1300–6.

81. Chemaly RF, Ghosh S, Bodey GP, et al. Respiratory viral infections in adults with hematologic malignancies and human stem cell transplantation recipients. Medicine 2006;85(5):278–87.

82. Yousuf HM, Englund J, Couch R, et al. Influenza among hospitalized adults with leukemia. Clin Infect Dis 1997;24(6):1095–9.

83. Ljungman P. Respiratory virus infections in stem cell transplant patients: the European experience. Biol Blood Marrow Transplant 2001;7(Suppl):5S–7S.

84. Choi S-M, Boudreault AA, Xie H, et al. Differences in clinical outcomes after 2009 influenza A/H1N1 and seasonal influenza among hematopoietic cell transplant recipients. Blood 2011;117(19):5050–6.

85. Tramontana AR, George B, Hurt AC, et al. Oseltamivir resistance in adult oncology and hematology patients infected with pandemic (H1N1) 2009 virus, Australia. Emerg Infect Dis 2010;16(7):1068–75.

86. Couturier BA, Bender JM, Schwarz MA, et al. Oseltamivir-resistant influenza A 2009 H1N1 virus in immunocompromised patients. Influenza Other Respir Viruses 2010;4(4):199–204.

87. Pollara CP, Piccinelli G, Rossi G, et al. Nosocomial outbreak of the pandemic influenza A (H1N1) 2009 in critical hematologic patients during seasonal influenza 2010–2011: detection of oseltamivir resistant variant viruses. BMC Infect Dis 2013;13:127.

88. Renaud C, Kuypers J, Englund JA. Emerging oseltamivir resistance in seasonal and pandemic influenza A/H1N1. J Clin Virol 2011;52(2):70–8.

89. Yu Y, Garg S, Yu PA, et al. Peramivir use for treatment of hospitalized patients with influenza A(H1N1)pdm09 under emergency use authorization, October 2009–June 2010. Clin Infect Dis 2012;55(1):8–15.

90. Hernandez JE, Ædiga R, Armstrong R, et al. Clinical experience in adults and children treated with intravenous peramivir for 2009 influenza A (H1N1) under an Emergency IND program in the United States. Clin Infect Dis 2011;52(6):695–706.

91. Muthuri SG, Venkatesan S, Myles PR, et al. Effectiveness of neuraminidase inhibitors in reducing mortality in patients admitted to hospital with influenza A H1N1pdm09 virus infection: a meta-analysis of individual participant data. Lancet Respir Med 2014;2(5):395–404.

92. Shahgholi E, Ehsani MA, Salamati P, et al. Immunogenicity of trivalent influenza vaccine in children with acute lymphoblastic leukemia during maintenance therapy. Pediatr Blood Cancer 2010;54(5):716–20.

93. Cheuk DKL, Chiang AKS, Lee TL, et al. Vaccines for prophylaxis of viral infections in patients with hematological malignancies. Cochrane Database Syst Rev 2011;3:CD006505.

94. Baden LR, Swaminathan S, Angarone M, et al. Prevention and treatment of cancer-related infections, version 2.2016, NCCN clinical practice guidelines
in oncology. J Natl Compr Canc Netw 2016;14(7):882–913.

95. Rubin LG, Levin MJ, Ljungman P, et al. 2013 IDSA clinical practice guideline for vaccination of the immunocompromised host. Clin Infect Dis 2014;58(3):644–100.

96. Engelhard D, Nagler A, Hardan I, et al. Antibody response to a two-dose regimen of influenza vaccine in allogeneic T cell-depleted and autologous BMT recipients. Bone Marrow Transplant 1993;11(1):1–5.

97. Engelhard D, Mohty B, La Camara de R, et al. European guidelines for prevention and management of influenza in hematopoietic stem cell transplantation and leukemia patients: summary of ECIL-4 (2011), on behalf of ECIL, a joint venture of EBM, EORTC, ICHS, and ELN. Transpl Infect Dis 2013;15(3):219–32.

98. Nichols WG, Gooley T, Boeckh M. Community-acquired respiratory syncytial virus and parainfluenza virus infections after hematopoietic stem cell transplantation: the Fred Hutchinson Cancer Research Center experience. Biol Blood Marrow Transplant 2001;7(Suppl):11S–5S.

99. Martino R, Forras RP, Rabella N, et al. Prospective study of the incidence, clinical features, and outcome of symptomatic upper and lower respiratory tract infections by respiratory viruses in adult recipients of hematopoietic stem cell transplants for hematologic malignancies. Biol Blood Marrow Transplant 2005;11(10):781–96.

100. Shah DP, Ghanotii SS, Shah JN, et al. Impact of aerosolized ribavirin on mortality in 280 allogeneic haematopoietic stem cell transplantation recipients with respiratory syncytial virus infections. J Antimicrob Chemother 2013;68(8):1872–80.

101. Shah DP, Ghanotii SS, Ariza-Heredia EJ, et al. Immunodeficiency scoring index to predict poor outcomes in hematopoietic cell transplant recipients with RSV infections. Blood 2014;123:1–7.

102. Waghmare A, Campbell AP, Xie H, et al. Respiratory syncytial virus lower respiratory disease in hematopoietic cell transplant recipients: viral RNA detection in blood, antiviral treatment, and clinical outcomes. Clin Infect Dis 2013;57(12):1731–41.

103. Khanna N, Widmer AF, Decker M, et al. Respiratory syncytial virus infection in patients with hematological diseases: single-center study and review of the literature. Clin Infect Dis 2008;46(3):402–12.

104. Hirsch HH, Martino R, Ward KN, et al. Fourth European Conference on Infections in Leukaemia (ECIL-4): guidelines for diagnosis and treatment of human respiratory syncytial virus, parainfluenza virus, metapneumovirus, rhinovirus, and coronavirus. Clin Infect Dis 2012;56(2):258–66.

105. Chemaly RF, Aitken SL, Wolfe CR, et al. Aerosolized ribavirin: the most expensive drug for pneumonia. Transpl Infect Dis 2016;18(4):634–6.

106. Beaird OE, Freifeld A, Ison MG, et al. Current practices for treatment of respiratory syncytial virus and other non-influenza respiratory viruses in high-risk patient populations: a survey of institutions in the Midwestern Respiratory Virus Collaborative. Transpl Infect Dis 2016;18(2):210–5.

107. DeVincenzo JP, McClure MW, Symons JA, et al. Activity of Oral ALS-5806 in a respiratory syncytial virus challenge study. N Engl J Med 2015;373(21):2048–58.

108. DeVincenzo JP, Whiteley RJ, Mackman RL, et al. Oral GS-5806 activity in a respiratory syncytial virus challenge study. N Engl J Med 2014;371(8):711–22.

109. Erard V, Chien JW, Kim HW, et al. Airflow decline after myeloablative allogeneic hematopoietic cell transplantation: the role of community respiratory viruses. J Infect Dis 2006;193(12):1619–25.

110. Chemaly RF, Hammod SS, Rathod DB, et al. The characteristics and outcomes of parainfluenza virus infections in 200 patients with leukemia or recipients of hematopoietic stem cell transplantation. Blood 2012;119(12):2738–45.

111. Srinivasan A, Wang C, Yang J, et al. Parainfluenza virus infections in children with hematologic malignancies. Pediatr Infect Dis J 2011;30(10):855–9.

112. Wendt CH, Weisdorf DJ, Jordan MC, et al. Parainfluenza virus respiratory infection after bone marrow transplantation. N Engl J Med 1992;326(14):921–6.

113. Schiffer JT, Kirby K, Sandmaier B, et al. Timing and severity of community acquired respiratory virus infections after myeloablative versus non-myeloablative hematopoietic stem cell transplantation. Haematologica 2009;94(8):1101–8.

114. Nichols WG, Corey L, Gooley T, et al. Parainfluenza virus infections after hematopoietic stem cell transplantation: risk factors, response to antiviral therapy, and effect on transplant outcome. Blood 2001;98(3):573–8.

115. Waghmare A, Wagner T, Andrews R, et al. Successful treatment of parainfluenza virus respiratory tract infection with DAS181 in 4 immunocompromised children. J Pediatr Infect Dis Soc 2015;4(2):114–8.

116. Chen Y-B, Driscoll JP, McAfee SL, et al. Treatment of parainfluenza 3 infection with DAS181 in a patient after allogeneic stem cell transplantation. Clin Infect Dis 2011;53(7):e77–80.

117. de Mezerville MHN, Teller R, Richardson S, et al. Adenoviral infections in pediatric transplant recipients. Pediatr Infect Dis J 2006;25(9):815–8.

118. Roch N, Salameire D, Gressin R, et al. Fatal adenoviral and enteroviral infections and an Epstein-Barr virus positive large B-cell lymphoma after alemtuzumab treatment in a patient with refractory Sézary syndrome. Scand J Infect Dis 2009;40(4):343–6.
119. Karlsson C, Lundin J, Kimby E, et al. Phase II study of subcutaneous alemtuzumab without dose escalation in patients with advanced-stage, relapsed chronic lymphocytic leukaemia. Br J Haematol 2009;144(1):78–85.

120. Bruno B, Gooley T, Hackman RC, et al. Adenovirus infection in hematopoietic stem cell transplantation: effect of ganciclovir and impact on survival. Biol Blood Marrow Transplant 2003;9(5):341–52.

121. Baldwin A, Kingman H, Darville M, et al. Outcome and clinical course of 100 patients with adenovirus infection following bone marrow transplantation. Bone Marrow Transplant 2000;26(12):1333–8.

122. Matthes-Martin S, Feuchtinger T, Shaw PJ, et al. European guidelines for diagnosis and treatment of adenovirus infection in leukemia and stem cell transplantation: summary of ECIL-4 (2011). Transpl Infect Dis 2012;14(6):555–63.

123. Yusuf U, Hale GA, Carr J, et al. Cidofovir for the treatment of adenoviral infection in pediatric hematopoietic stem cell transplant patients. Transplantation 2006;81(10):1398–404.

124. Legrand F, Berrebi D, Houhou N, et al. Early diagnosis of adenovirus infection and treatment with cidofovir after bone marrow transplantation in children. Bone Marrow Transplant 2001;27(6):621–6.

125. Oliveira RR, Machado AF, Tateno AF, et al. Frequency of human metapneumovirus infection in hematopoietic SCT recipients during 3 consecutive years. Bone Marrow Transplant 2008;42(4):265–9.

126. Rattray RM, Press RD. The clinical impact of coronavirus infection in patients with hematologic malignancies and hematopoietic stem cell transplant recipients. J Clin Virol 2015;68:1–5.

127. Renaud C, Xie H, Seo S, et al. Mortality rates of human metapneumovirus and respiratory syncytial virus lower respiratory tract infections in hematopoietic cell transplantation recipients. Biol Blood Marrow Transplant 2013;19(8):1220–6.

128. Seo S, Gooley TA, Kuypers JM, et al. Human metapneumovirus infections following hematopoietic cell transplantation: factors associated with disease progression. Clin Infect Dis 2016;63(2):178–85.

129. Dykewicz CA, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Infectious Diseases Society of America, American Society for Blood and Marrow Transplantation. Guidelines for preventing opportunistic infections among hematopoietic stem cell transplant recipients: focus on community respiratory virus infections. Biol Blood Marrow Transplant 2001;7(Suppl):19S–22S.

130. Sullivan KM, Dykewicz CA, Longworth DL, et al. Preventing opportunistic infections after hematopoietic stem cell transplantation: the Centers for Disease Control and Prevention, Infectious Diseases Society of America, and American Society for Blood and Marrow Transplantation Practice Guidelines and beyond. Hematol Am Soc Hematol Educ Program 2001;392–421.