The Lawson homology and Deligne-Beilinson cohomology for Fulton-MacPherson configuration spaces

Wenchuan Hu and Li Li

July 16, 2018

Abstract

In this paper, we compute the Lawson homology groups and Deligne-Beilinson cohomology groups for Fulton-MacPherson configuration spaces. The explicit formulas are given.

Contents

1 Introduction 1
2 Some fundamental materials 4
 2.1 Lawson homology .. 4
 2.2 The Fulton-MacPherson configuration spaces 5
 2.3 Deligne-Beilinson cohomology 7
3 Lawson homology for Fulton-MacPherson configuration spaces 9
4 Examples 11

1 Introduction

In this paper, all varieties are defined over \(\mathbb{C} \). Let \(X \) be an \(d \)-dimensional projective variety. Let \(Z_p(X) \) be the space of algebraic \(p \)-cycles on \(X \).

The \textbf{Chow group} \(\text{Ch}_p(X) \) of \(p \)-cycles is defined by \(Z_p(X) \) modulo the rational equivalence. For general background on Chow groups, the reader is referred to Fulton’s book.
The Lawson homology $L_pH_k(X)$ of p-cycles is defined by

$$L_pH_k(X) := \pi_{k-2p}(Z_p(X)) \text{ for } k \geq 2p \geq 0,$$

where $Z_p(X)$ is provided with a natural topology (cf. [F], [L1]). For general background on Lawson homology, the reader is referred to [L2].

It is convenient to extend the definition of Lawson homology by setting

$$L_pH_k(X) = L_0H_k(X), \text{ if } p < 0.$$

It was proved in [H] that, for any smooth projective variety X, the formula on Lawson homology for a blowup holds:

Theorem 1.1 (H) Let X be smooth projective variety and $Y \subset X$ be a smooth subvariety of codimension $r \geq 2$. Let $\sigma : \tilde{X}_Y \to X$ be the blowup of X along Y, $\pi : D := \sigma^{-1}(Y) \to Y$ the natural map, and $i : D \to \tilde{X}_Y$ the exceptional divisor of the blowup. Then for integers p, k with $k \geq 2p \geq 0$, there is an isomorphism

$$I_{p,k} : \left\{ \bigoplus_{1 \leq j \leq r-1} L_{p-j}H_{k-2j}(Y) \right\} \oplus L_pH_k(X) \cong L_pH_k(\tilde{X}_Y).$$

Now we give minimal notations for the Fulton-MacPherson configuration spaces enough for stating the main theorem (see section 2.2 for a construction of the Fulton-MacPherson configuration spaces by a sequence of blowups.)

Let X be a smooth projective variety of dimension d and let $n \geq 1$ be an integer. Consider the cartesian product $X^n := X \times \cdots \times X$ of n copies of X. Denote by Δ_I the diagonal in X^n where $x_i = x_j$ if $i, j \in I$.

The configuration space $F(X, n)$ is the complement of all diagonals in X^n, i.e.,

$$F(X, n) = X^n \setminus \bigcup_{|I| \geq 2} \Delta_I = \{(x_1, \ldots, x_n) \in X^n : x_i \neq x_j, \forall i \neq j\}.$$

For each subset $I \in [n] := \{1, \ldots, n\}$ with at least two elements, denote by $\text{Bl}_{\Delta}(X^I)$ the blowup of the corresponding cartesian product X^I along its small diagonal. In [FuM], Fulton and MacPherson have given the definition of their compactification $X[n]$ as follows.

Theorem 1.2 (Fulton-MacPherson) The closure of the natural locally closed embedding

$$i : F(X, n) \hookrightarrow X^n \times \prod_{|I| \geq 2} \text{Bl}_{\Delta}(X^I)$$

is smooth, and the boundary is a simple normal crossing divisor. The closure is called the Fulton-MacPherson configuration space, denoted by $X[n]$.

2
We call two subsets \(I, J \subseteq [n] := \{1, 2, \ldots, n\} \) are \textit{overlapped} if \(I \cap J \) is a nonempty proper subset of \(I \) and of \(J \).

A \textit{nest} \(S \) is a set of subsets of \([n]\) such that any two elements \(I \neq J \in S \) are not overlapped, and all singletons \(\{1\}, \ldots, \{n\} \) are in \(S \). Notice that the nest defined here, unlike the one defined in \([FM]\), contains singletons.

Given a nest \(S \), define \(S^\circ = S \setminus \{\{1\}, \ldots, \{n\}\} \). In the description of nests by forests below, \(S^\circ \) corresponds to the forest \(S \) cutting of all leaves.

A nest \(S \) naturally corresponds to a not necessarily connected tree (which is also called a \textit{forest} or a \textit{grove}), each node of which is labeled by an element in \(S \). For example, the following forest corresponds to a nest \(S = \{1, 2, 3, 23, 123\} \).

\[
\begin{array}{c}
\begin{array}{c}
\bullet & \bullet & \bullet \\
\{1\} & \{2\} & \{3\}
\end{array}
\end{array}
\]

\[
\begin{array}{c}
\begin{array}{c}
\downarrow & \downarrow & \downarrow \\
123 & 23 & 1
\end{array}
\end{array}
\]

\[
\begin{array}{c}
\begin{array}{c}
\downarrow & \downarrow & \downarrow \\
2 & 3 & \\
\end{array}
\end{array}
\]

Denote by \(c(S) \) the number of connected components of the forest, i.e., the number of maximal elements of \(S \). Denote by \(c_I(S) \) (or \(c_I \) if no ambiguity arise) the number of maximal elements of the set \(\{J \in S | J \subset I\} \), i.e. the number of sons of the node \(I \). In the above example, \(c(S) = 1, c_{123} = c_{23} = 2 \).

For a nest \(S \neq \{\{1\}, \ldots, \{n\}\} \) (i.e. \(S^\circ \neq \emptyset \)), define a set \(M_S \) of lattice points in the integer lattice \(\mathbb{Z}^{S^\circ} \) as follows

\[
M_S := \{ \mu = \{ \mu_I \} \in \mathbb{Z}^{S^\circ} : 1 \leq \mu_I \leq d(c_I - 1) - 1 \}.
\]

(Recall that \(d = \dim X, c_I = c_I(S) \)) and define \(\|\mu\| := \sum_{I \in S^\circ} \mu_I, \forall \mu \in M_S \).

For \(S = \{\{1\}, \ldots, \{n\}\} \), assume \(M_S = \{\mu\} \) with \(\|\mu\| = 0 \).

It was proved in \([Li]\) that, for any smooth projective variety \(X \) the following holds:

\textbf{Theorem 1.3 (\([Li]\))} \ Let \(X \) be a smooth projective variety defined over \(\mathbb{C} \). Then for each \(p \geq 0 \), there is an isomorphism of Chow groups:

\[
\text{Ch}_p(X[n]) \cong \bigoplus_S \bigoplus_{\mu \in M_S} \text{Ch}_{p-\|\mu\|}(X^{c(S)}).
\]

where \(S \) runs through all nests of \([n]\).

The first main result in this paper is the following

\textbf{Theorem 1.4} \ Let \(X \) be a smooth projective variety defined over \(\mathbb{C} \). Then for each pair of integers \(p, k \), \(k \geq 2p \geq 0 \), there is an isomorphism of Lawson homology groups:

\[
L_pH_k(X[n]) \cong \bigoplus_S \bigoplus_{\mu \in M_S} L_{p-\|\mu\|}H_{k-2\|\mu\|}(X^{c(S)}).
\]

where \(S \) runs through all nests of \([n]\).
Remark 1.1 When $p = 0$, Theorem 1.4 reduces to the formula of singular homology groups with integer coefficient for $X[n]$. In particular, the integer singular homology of $X[n]$ depends only the integer singular homology of X.

As a corollary, we have the following more explicit formula:

Corollary 1.1 Let X be a smooth projective variety defined over \mathbb{C}. Then for each pair of integers p, k, $k \geq 2p \geq 0$, there is an isomorphism of Lawson homology groups:

$$L_pH_k(X[n]) \cong \bigoplus_{1 \leq m \leq n} L_{p-i}H_{k-2i}(X^m) \oplus \left[\frac{z^m n}{m!}\right]_{m!},$$

where N and $\oplus [\frac{z^m n}{m!}]_{m!}$ are defined in (7).

Let X be a complex manifold of complex dimension d. Let Ω^k_X the sheaf of holomorphic k-form on X. The **Deligne complex of level p** is the complex of sheaves:

$$\mathbb{Z}_D(p) : 0 \to \mathbb{Z} \to \Omega^0_X \to \Omega^1_X \to \Omega^2_X \to \cdots \to \Omega^{p-1}_X \to 0$$

The **Deligne-Beilinson cohomology** of X in level p we mean the hypercohomology of this complex:

$$H^*_D(X, \mathbb{Z}(p)) := H^*(X, \mathbb{Z}_D(p))$$

For Deligne-Beilinson cohomology $H^*_D(\cdot, \mathbb{Z}(p))$, we obtain the following result:

Theorem 1.5 Let X be a smooth projective variety defined over \mathbb{C}. Then for each pair of integers p, k, there is an isomorphism of Deligne-Beilinson cohomology groups:

$$H^k_D(X[n], \mathbb{Z}(p)) \cong \bigoplus_{S} \bigoplus_{\mu \in M_S} H^{k-2\|\mu\|}_D(X^{c(S)}, \mathbb{Z}(p - \|\mu\|)).$$

The main tools used to prove the main result are: The formula on the Lawson homology for a blowup proved in [1] and the method in computing the Chow groups of the Fulton-MacPherson configuration space in [3].

2 Some fundamental materials

2.1 Lawson homology

Recall that for a morphism $f : U \to V$ between projective varieties, there exist induced homomorphism $f_* : L_pH_k(U) \to L_pH_k(V)$ for all $k \geq 2p \geq 0$. Furthermore, it has been
shown by C. Peters [Pe] that if U and V are smooth and projective, there are Gysin “wrong way” homomorphism $f^*: L_pH_k(V) \to L_{p-c}H_{k-2c}(U)$, where $c = \dim(V) - \dim(U)$.

Let X be a smooth projective variety and $i_0: Y \hookrightarrow X$ a smooth subvariety of codimension r. Let $\sigma: \tilde{X}_Y \to X$ be the blowup of X along Y, $\pi: D = \sigma^{-1}(Y) \to Y$ the natural map, and $i: D = \sigma^{-1}(Y) \hookrightarrow \tilde{X}_Y$ the exceptional divisor of the blowing up. Set $U \equiv X - Y \cong \tilde{X}_Y - D$. Denote by j_0 the inclusion $U \subset X$ and j the inclusion $U \subset \tilde{X}_Y$. Note that $\pi: D = \sigma^{-1}(Y) \to Y$ makes D into a projective bundle of rank $r - 1$, given precisely by $D = P(N_{Y/X})$ and we have (cf. [V2], pg.271)

$$O_{\tilde{X}_Y}(D)|_D = O_{P(N_{Y/X})}(-1).$$

Denote by h the class of $O_{P(N_{Y/X})}(-1)$ in Pic(D). We have $h = -D|_D$ and $-h = i^*i_*: L_qH_m(D) \to L_{q-1}H_{m-2}(D)$ for $0 \leq 2q \leq m$ ([FG, Theorem 2.4], [Pe, Lemma 11]). The last equality can be equivalently regarded as a Lefschetz operator

$$-h = i^*i_*: L_qH_m(D) \to L_{q-1}H_{m-2}(D), \quad 0 \leq 2q \leq m.$$

The proof of the main result are based on the following Theorems:

Theorem 2.1 (Lawson homology for a blowup) Let X be smooth projective manifold and $Y \subset X$ be a smooth subvariety of codimension r. Let $\sigma: \tilde{X}_Y \to X$ be the blowup of X along Y, $\pi: D = \sigma^{-1}(Y) \to Y$ the natural map, and $i: D = \sigma^{-1}(Y) \to \tilde{X}_Y$ the exceptional divisor of the blowing up. Then for each p, k with $k \geq 2p \geq 0$, we have the following isomorphism

$$I_{p,k} : \left\{ \bigoplus_{1 \leq j \leq r-1} L_{p-j}H_{k-2j}(Y) \right\} \oplus L_pH_k(X) \xrightarrow{\cong} L_pH_k(\tilde{X}_Y)$$

given by

$$I_{p,k}(u_1, \ldots, u_{r-1}, u) = \sum_{j=1}^{r-1} i_* (h^j \cdot \pi^*u_j) + \sigma^*u.$$

2.2 The Fulton-MacPherson configuration spaces

Fulton and MacPherson have constructed in [FuM] a compactification of the configuration space of n distinct labeled points in a non-singular algebraic variety X. It is related to several areas of mathematics. In their original paper, Fulton and MacPherson use it to construct a differential graded algebra which is a model for $F(X, n)$ in the sense of Sullivan [FuM]. Axelrod-Singer constructed the compactification in the setting of smooth manifolds. $\mathbb{P}^1[n]$ is related to the Deligne-Mumford compactification $\overline{M}_{0,n}$ of the moduli space of nonsingular genus-0 projective curves.
Now we explain an explicit inductive construction of this compactification given in [FuM]. \(X[2]\) is the blowup of \(X^2\) along the diagonal \(\Delta_{12}\). \(X[3]\) is a sequence of blowups of \(X[2] \times X\) along non-singular subvarieties corresponding to \(\{\Delta_{123}; \Delta_{13}, \Delta_{23}\}\). More specifically, denote by \(\pi\) the blowup \(\pi: X[2] \times X \to X^3\), we blow up first along \(\pi^{-1}(\Delta_{123})\), then along the strict transforms of \(\Delta_{13}\) and \(\Delta_{23}\) (the two strict transforms are disjoint, so they can be blown up in any order). In general, \(X[n + 1]\) is a sequence of blowups of \(X[n] \times X\) along smooth subvarieties corresponding to all diagonals \(\Delta_I\) where \(|I| \geq 2\) and \((n + 1) \in I\).

Later, a symmetric construction of \(X[n]\) has been given by several people: De Concini and Procesi [DP], MacPherson and Procesi [MP], and Thurston [Th]. To construct \(X[n]\) we can blow up along diagonals by the order of ascending dimension, which is different from the non-symmetric order of the original construction. For example, \(X[4]\) is the blowup of \(X^4\) along diagonals corresponding to:

\[
1234; 123, 124, 134, 234; 12, 13, \ldots, 34.
\]

Compare it with the order in [FuM]:

\[
12; 123; 13, 23; 124, 134, 234; 14, 24, 34.
\]

It is proved in [Li] that, for any smooth projective variety \(X\) the following holds:

Theorem 2.2 ([Li]) Let \(X\) be a smooth projective variety defined over \(\mathbb{C}\). Then for each \(p \geq 0\), there is an isomorphism of Chow groups:

\[
\text{Ch}^p(X[n]) \cong \bigoplus_S \bigoplus_{\mu \in M_S} \text{Ch}^{p-\|\mu\|}(X^{c(S)}).
\]

where \(S\) runs through all nests of \([n]\).

Notice that we use upper indices for the Chow groups in the above theorem. By changing variable \(\mu_I\) to \(d(c_I - 1) - \mu_I\), we get exactly Theorem 1.3 appeared in the introduction.

Remark 2.1 The above theorem proved in [Li] holds for non-singular projective varieties \(X\) over any algebraic closed field.

Equivalently, but more explicitly, the Chow groups \(X[n]\) of can be calculated by using exponential generating functions. Here we adopt R. Stanley’s notation \([x^i]F(x)\) as the coefficient of \(x^i\) in the power series \(F(x)\), which is generalized in an obvious way to the following situation [St]:

\[
[x^i t^n n!]\sum_{j,q} a_{jq} x^j t^q q! = a_{in}.
\]
Corollary 2.1 If $h_i(x)$ are polynomials whose exponential generating function $N(x, t) = \sum_{i \geq 1} h_i(x) \frac{t^i}{i!}$ satisfies the identity

$$(1 - x)x^d + (1 - x^{d+1}) = \exp (x^d N) - x^{d+1}\exp (N),$$

then we have

$$Ch_p(X[n]) = \bigoplus_{1 \leq m \leq n} \bigoplus_{0 \leq i \leq p} Ch_{p-i}(X^m)^{\otimes [x^i m^p]} \Delta^m \otimes m'. $$

\[\square\]

2.3 Deligne-Beilinson cohomology

Let X be a complex manifold of complex dimension d. Let Ω^k_X the sheaf of holomorphic k-form on X. The Deligne complex of level p is the complex of sheaves

$$Z_D(p) : 0 \to \Omega^{(2\pi P)^p} X \to \Omega^1_X \to \Omega^2_X \to \cdots \to \Omega^{p-1}_X \to 0$$

The Deligne-Beilinson cohomology of X in level p we mean the hypercohomology of this complex:

$$H^*_D(X, \mathbb{Z}(p)) := H^*(X, \mathbb{Z}(p))$$

There is a multiplication of complexes

$$\nu : \mathbb{Z}(p)_D \otimes \mathbb{Z}(q)_D \to \mathbb{Z}(p + q)_D$$

defined as follows

$$\nu(x \bullet y) = \begin{cases}
 x \cdot y, & \text{if } \deg x = 0 \\
 x \wedge dy, & \text{if } \deg x > 0 \text{ and } \deg y = q > 0 \\
 0, & \text{otherwise}
\end{cases}$$

This gives a product structure on the Deligne–Beilinson cohomology as follows

$$\cup : H^k_D(X, \mathbb{Z}(p)) \otimes \mathbb{Z} H^{k'}_D(X, \mathbb{Z}(q)) \to H^{k+k'}_D(X, \mathbb{Z}(p + q)).$$

(2)

For details, the reader is referred to [EV].

Let X be an d-dimensional compact Kähler manifold. The Hodge filtration

$$\cdots \subseteq F^p H^k(X, \mathbb{C}) \subseteq F^{p-1} H^k(X, \mathbb{C}) \subseteq \cdots \subseteq F^0 H^k(X, \mathbb{C}) = H^k(X, \mathbb{C})$$
is defined by

\[F^p H^k(X, \mathbb{C}) = \bigoplus_{i \geq p} H^{i,k-i}(X). \]

We denote by \(p^k_X \) the natural quotient map \(p^k_X : H^k(X, \mathbb{C}) \to H^k(X, \mathbb{C})/F^p H^k(X, \mathbb{C}). \)

It was proved (cf. [EV], Corollary 2.4; [V1], Proposition 12.26) that

\[
\cdots \to H^{k-1}(X, \mathbb{C})/F^p H^{k-1}(X, \mathbb{C}) \to H^k_D(X, \mathbb{C})/F^p H^k(X, \mathbb{C}) \to H^k(X, \mathbb{C})/F^p H^k(X, \mathbb{C}) \to \cdots \tag{3}
\]

Now let \(X \) be an \(d \)-dimensional projective variety over \(\mathbb{C} \) and \(i_0 : Y \hookrightarrow X \) a smooth subvariety of codimension \(r \geq 2 \). Let \(\sigma : \tilde{X}_Y \to X \) be the blowup of \(X \) along \(Y \), \(\pi : D = \sigma^{-1}(Y) \to Y \) the natural map, and \(i : D = \sigma^{-1}(Y) \hookrightarrow \tilde{X}_Y \) the exceptional divisor of the blowup. Set \(U := X - Y \cong \tilde{X}_Y - D \). Denote by \(j_0 \) the inclusion \(U \subset X \) and \(j \) the inclusion \(U \subset \tilde{X}_Y \). Note that \(\pi : D = \sigma^{-1}(Y) \to Y \) makes \(D \) into a projective bundle of rank \(r - 1 \), given precisely by \(D = \mathbb{P}(N_{Y/X}) \) and we have (cf. [V2], pg. 271]

\[\mathcal{O}_{\tilde{X}_Y}(D)|_D = \mathcal{O}_{\mathbb{P}(N_{Y/X})}(-1). \]

Denote by \(h \) the class of \(\mathcal{O}_{\mathbb{P}(N_{Y/X})}(-1) \) under the first Chern class \(c_1 : H^1(D, \mathcal{O}_D) \to H^2_D(D, \mathbb{Z}(1)) \) (cf. [EV, p. 88]).

The following proposition was proved in [EV].

Proposition 2.1 ([EV], Prop. 8.5) The Deligne-Beilinson cohomology \(H^k_D(D, \mathbb{C}(p)) \) of the projective bundle \(\pi : D \to Y \) is given by the following isomorphism:

\[
\bigoplus_{0 \leq j \leq r-1} H^{k-2j}_D(Y, \mathbb{C}(p-j)) \xrightarrow{\pi_*} H^k_D(D, \mathbb{Z}(p))
\]

Remark 2.2 We omit the cup product of elements in \(H^{k-2j}_D(Y, \mathbb{Z}(p-j)) \) with \(h^j \).

Moreover, Barbieri-Viale proved the following blowup formula for Deligne-Beilinson cohomology:

Theorem 2.3 ([Bv]) Let \(X, Y, D, \tilde{X}_Y, Y \) be as above. Then for each \(p, k \) with \(p \geq r \geq 0 \), we have the following isomorphism

\[
I_{p,k} : \left\{ \bigoplus_{1 \leq j \leq r-1} H^{k-2j}_D(Y, \mathbb{C}(p-j)) \right\} \oplus H^k(D, \mathbb{C}(p)) \xrightarrow{\sim} H^k_D(\tilde{X}_Y, \mathbb{Z}(p)). \tag{4}
\]

Remark 2.3 Barbieri-Viale proved a general result, including the blowup formula for \(\acute{e} \text{tale} \) cohomology, to Theorem 2.3.
3 Lawson homology for Fulton-MacPherson configuration spaces

In this section, we give a proof of Theorem 1.4. According to the construction, the Fulton-MacPherson configuration space $X[n]$ is obtained by a sequence of blowups along all diagonals Δ_I in a suitable order. Each of them is a blowup of a smooth projective variety along a smooth projective subvariety. Therefore, we can calculate the Lawson homology groups of $X[n]$ by successively applying the blowup formula for Lawson homology (Theorem 2.1).

We have the following

Theorem 3.1 Let X be a smooth projective variety defined over \mathbb{C}. Then for each pair of integers p, k, $k \geq 2p \geq 0$, there is an isomorphism of Lawson homology groups:

$$L_p H_k(X[n]) \cong \bigoplus_{S, \mu \in M_S} \bigoplus_{c(S)} \prod_{i=1}^{p-1} H_{k-2i}(|\mu|)(X^{c(S)}).$$

Proof. This follows essentially from the construction of the Fulton-MacPherson configuration space $X[n]$ and the blowup formula for Lawson homology groups. The detailed computation for explicit formulas will be given in the corollary below.

More explicitly, we have the following

Corollary 3.1 Let X be a smooth projective variety defined over \mathbb{C}. Then for each pair of integers p, k, $k \geq 2p \geq 0$, there is an isomorphism of Lawson homology groups:

$$L_p H_k(X[n]) \cong \bigoplus_{1 \leq m \leq n} \bigoplus_{0 \leq i \leq p} L_{p-i} H_{k-2i}(X^m) \oplus \left[\frac{x^n}{n!} \right] N^m_m.$$

where N and $\oplus \left[\frac{x^n}{n!} \right] N^m_m$ are the same as those in Corollary 2.1.

Proof. Let $h_n(x)$ be the polynomial

$$\sum_{\{S, \mu \in M_S \mid c(S) = 1} x^{||\mu||}. $$

Given a fixed nest S with n leaves and $c(S) = 1$, its contribution to $h_n(x)$ is the product of σ_{c_I-1}, where I goes through all non-leaves of S (if S has no non-leaves, i.e., it contains only singletons, then the contribution is 1). Therefore we have the following recurrence formula

$$h_n(x) = \sum_{\{I_1, \ldots, I_k \mid \text{partition of } [n]} h_{|I_1|} h_{|I_2|} \cdots h_{|I_k|} \sigma_{k-1}. $$
where \(\sigma_k = \sum_{i=1}^{dk-1} x^i \) for \(k > 0 \), and \(\sigma_0 = 0. \)

By the Compositional Formula of exponential generating functions (cf. [St], Theorem 5.1.4), the generating function \(N(t) := \sum_{i \geq 1} h_i \frac{t^i}{i!} \) of \(h_n \) satisfies the identity
\[
N - t + 1 = E_g(N),
\]
where \(E_g(N) = 1 + \sum_{i > 0} \sigma_i - 1 N_i. \)

Since \(\sigma_j = (x^j - x)/(x - 1) \), calculation shows
\[
E_g(N) = 1 + N + \frac{1}{x - 1} \left[\frac{1}{x^d} (e^{xdN-1} - 1) - xe^N + x \right].
\]

Put it in the above identity, we have
\[
(1 - x)x^d t + (1 - x^{d+1}) = \exp(x^d N) - x^{d+1} \exp(N).
\]

For a partition \(\Pi = \{I_1, \ldots, I_k\} \) of \([n] \), the number of times of \(h_\Delta(\Pi)(i) \) appear in the decomposition of \(h(X[n]) \) is equal to \([x^k](h_{|I_1}(x) \cdots h_{|I_k}(x)) \). Add up this number for all partitions with \(k \) blocks, we will get the number of times of \(h(X^k)(i) \) appear in the decomposition, denoted by \(a_{k,i}. \)

Denote
\[
F_n(y) = \sum_{\text{partition of } [n]} h_{|I_1} h_{|I_2} \cdots h_{|I_k} y^k.
\]

Then the coefficient \([y^k]F_n(y) = \sum a_{k,i} x^i. \) Use the Compositional Formula again,
\[
F_n = \left[\frac{t^n}{n!} \right] \exp(yN).
\]

Therefore
\[
[y^k]F_n(y) = \left[\frac{y^k}{n!} \right] \frac{t^n}{n!} \exp(yN) = \left[\frac{y^k}{n!} \right] \frac{t^n}{n!} \exp(yN) = \left[\frac{y^k}{n!} \right] \frac{t^n}{n!} \frac{n^k}{x^k}.
\]

Now the results follow from Theorem [St] \(\Box \).

Similarly, we compute the Deligne-Beilinson cohomology for Fulton-MacPherson configuration spaces.

Theorem 3.2 Let \(X \) be a smooth projective variety defined over \(\mathbb{C} \). Then for each pair of integers \(p, k \), there is an isomorphism of Deligne-Beilinson cohomology groups:
\[
H^k_{\text{D}}(X[n], \mathbb{Z}(p)) \cong \bigoplus_{S} \bigoplus_{\mu \in \mathcal{M}_S} H^{k-2||\mu||}_{\text{D}}(X^{e(S)}, \mathbb{Z}(p - ||\mu||)).
\]
Proof. The method of the proof is the same as that in Theorem 3.1. We get the result by using the explicit construction of Fulton-MacPherson configuration spaces and Theorem 2.3.

Remark 3.1 By using the same method, we can compute the étale cohomology for Fulton-MacPherson configuration spaces.

Remark 3.2 The decomposition of Lawson homology (Theorem 3.1) and Deligne-Beilinson cohomology (Theorem 3.2) of the Fulton-MacPherson configuration spaces can be generalized without any difficulty to the wonderful compactifications of arrangements of subvarieties, since the latter compactifications can also be constructed by a sequence of blowups along smooth centers (for definition and construction of these compactifications, see [Li]).

4 Examples

1. The Lawson homology group of $X[2]$.

The morphism $\pi : X[2] \to X^2$ is a blowup along the diagonal Δ_{12}. Corollary 3.1 asserts

$$L_pH_k(X[2]) \cong L_pH_k(X^2) \oplus \bigoplus_{j=1}^{d-1} L_{p-j}H_{k-2j}(X).$$

2. The Lawson homology group of $X[3]$.

Note that $X[3]$ is the blowup of X^3 first along small diagonal Δ_{123}, then along three disjoint proper transforms of diagonals Δ_{12}, Δ_{13} and Δ_{23}.

Apply again Corollary 3.1 we have

$$L_pH_k(X[3]) \cong L_pH_k(X^3) \oplus \bigoplus_{j=1}^{d-1} \bigoplus_{i=1}^{2d-1} \left(L_{p-j}H_{k-2j}(X) \right)^{\oplus \min\{3i-2, 6d-3i-2\}}$$

Acknowledgment

We would like to thank professor H. Blaine Lawson and Mark de Cataldo for suggestions, conversations and all their helps.
References

[Bv] L. Barbieri-Viale, \textit{H-cohomologies versus algebraic cycles}. (English. English summary) Math. Nachr. 184 (1997), 5–57.

[DP] C. De Concini and C. Procesi, \textit{Wonderful models of subspace arrangements}, Selecta Mathematica 1 (1995), 459–494.

[EV] H. Esnault and E. Viehweg, \textit{Deligne-Beilinson cohomology}. Beilinson’s conjectures on special values of \(L\)-functions, 43–91, Perspect. Math., 4, Academic Press, Boston, MA, 1988.

[F] E. Friedlander, \textit{Algebraic cycles, Chow varieties, and Lawson homology}. Compositio Math. 77 (1991), no. 1, 55–93.

[FG] E. Friedlander and O. Gabber, \textit{Cycle spaces and intersection theory}. Topological methods in modern mathematics (Stony Brook, NY, 1991), 325–370, Publish or Perish, Houston, TX, 1993.

[FrM] E. Friedlander and B. Mazur, \textit{Filtrations on the homology of algebraic varieties. With an appendix by Daniel Quillen}. Mem. Amer. Math. Soc. 110 (1994), no. 529, x+110 pp.

[Fu] W. Fulton, Intersection theory, Second edition, Springer-Verlag, Berlin, 1998.

[FuM] W. Fulton and R. MacPherson, \textit{A compactification of configuration spaces}, Ann. Math. \textbf{139} (1994), 183–225.

[GH] Griffiths, Phillip; Harris, Joseph, \textit{Principles of algebraic geometry}. Reprint of the 1978 original. Wiley Classics Library. John Wiley & Sons, Inc., New York, 1994. xiv+813 pp. ISBN 0-471-05059-8

[H] W. Hu, \textit{Birational invariants defined by Lawson homology.} arXiv:math.AG/0511722.

[L1] H. B. Lawson, \textit{Algebraic cycles and homotopy theory.}, Ann. of Math. \textbf{129}(1989), 253–291.

[L2] H. B. Lawson, \textit{Spaces of algebraic cycles.} pp. 137-213 in Surveys in Differential Geometry, 1995 vol.2, International Press, 1995.

[Li] L. Li, \textit{Chow motive of Fulton-MacPherson configuration spaces}. Ph. D. Thesis. SUNY, Stony Brook, 2006.

[MP] R. MacPherson and C. Procesi, \textit{Making conical compactifications wonderful}, Selecta Math. (N.S.) \textbf{4} (1998), no. 1, 125–139.
[Pe] C. Peters, *Lawson homology for varieties with small Chow groups and the induced filtration on the Griffiths groups.* Math. Z. 234 (2000), no. 2, 209–223.

[St] R. P. Stanley, *Enumerative combinatorics,* Vol. 2., Cambridge Studies in Advanced Mathematics, 62. Cambridge University Press, Cambridge, 1999.

[Th] D. Thurston, *Integral Expressions for the Vassiliev Knot Invariants*, arXiv:math.AG/9901110.

[V1] C. Voisin, *Hodge theory and complex algebraic geometry.* I. Translated from the French by Leila Schneps. Cambridge Studies in Advanced Mathematics, 76. Cambridge University Press, Cambridge, 2002. x+322 pp. ISBN 0-521-80260-1,

[V2] C. Voisin, *Hodge theory and complex algebraic geometry.* II. Translated from the French by Leila Schneps. Cambridge Studies in Advanced Mathematics, 77. Cambridge University Press, Cambridge, 2003. x+351 pp. ISBN 0-521-80283-0

Wenchuan Hu, Department of Mathematics, MIT, Room 2-304, 77 Massachusetts Avenue Cambridge, MA 02139 Email: wenchuan@math.mit.edu

Li Li, Department of Mathematics, Stony Brook University, SUNY, Stony Brook, NY 11794-3651 Email:lili@math.sunysb.edu