Pancreatic paraganglioma diagnosed by endoscopic ultrasound-guided fine needle aspiration: A case report and review of literature

Gandhi Lanke, John M Stewart, Jeffrey H Lee

ORCID number: Gandhi Lanke 0000-0002-5577-2257; John M Stewart 0000-0002-9589-8508; Jeffrey H Lee 0000-0001-6740-3670.

Author contributions: Lanke G composed and drafted the paper; Stewart JM provided path images, revised, and edited the draft; Lee JH conceptualized, designed, revised, and edited the draft.

Informed consent statement: All study participants, or their legal guardian, provided informed written consent prior to study enrollment.

Conflict-of-interest statement: None of the authors have any potential conflicts (financial, professional, or personal) that are relevant to the manuscript.

CARE Checklist (2016) statement: The authors have read the CARE Checklist (2016), and the manuscript was prepared and revised according to the CARE Checklist (2016).

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to

Gandhi Lanke, Department of Gastroenterology, Hepatology and Nutrition, MD Anderson Cancer Center, Lubbock, TX 79407, United States

John M Stewart, Pathology-lab Medicine Division, MD Anderson Cancer Center, Houston, TX 77030, United States

Jeffrey H Lee, Department of Gastroenterology, Hepatology and Nutrition, MD Anderson Cancer Center, Houston, TX 77030, United States

Corresponding author: Jeffrey H Lee, AGAF, FACG, FASGE, MD, Director, Professor, Department of Gastroenterology, Hepatology and Nutrition, MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1466, Houston, TX 77030, United States. jefflee@mdanderson.org

Abstract

BACKGROUND
Pancreatic paragangliomas (PPGL) are rare benign neuroendocrine neoplasms but malignancy can occur. PPGL are often misdiagnosed as pancreatic neuroendocrine tumor or pancreatic adenocarcinoma.

CASE SUMMARY
We reviewed 47 case reports of PPGL published in PubMed to date. Fifteen patients (15/47) with PPGL underwent endoscopic ultrasound-guided fine needle aspiration (EUS-FNA). Only six (6/15) were correctly diagnosed as PPGL. All patients with PPGL underwent surgical resection except three (one patient surgery was aborted because of hypertensive crisis, two patients had metastasis or involvement of major vessels). Our patient remained on close surveillance as she was asymptomatic.

CONCLUSION
Accurate preoperative diagnosis of PPGL can be safely achieved by EUS-FNA with immunohistochemistry. Multidisciplinary team approach should be considered to bring the optimal results in the management of PPGL.

Key Words: Pancreatic parangglioma; Endoscopic ultrasound-guided fine needle aspiration; Meta-iodobenzylguanidine scan; Metanephrines; GATA-3; Immunohistochemistry; Case report

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.
Core Tip: The morphologic overlap between pancreatic paraganglioma and neuroendocrine tumor is significant. An accurate diagnosis by endoscopic ultrasound-guided fine needle aspiration requires firstly that the possibility of paraganglioma is considered and secondly that a cell block is available for immunohistochemical stains. A patient-centered approach supported by a multidisciplinary team of radiologists, advanced endoscopists, endocrinologists, pathologists, oncologists, and surgeons is paramount in the management of pancreatic paraganglioma.

INTRODUCTION
Paragangliomas are rare neuroendocrine neoplasms arising from the sympathetic and parasympathetic paraganglia. This tumor is called pheochromocytoma in the adrenal medulla and elsewhere is known as extra-adrenal paraganglioma or simply as paraganglioma. The malignant potential of these tumors is difficult to predict. Most behave in a benign manner, but metastasis, which best defines malignant paraganglioma, may occur in 15%-20%.[1] When found in or around the pancreas this tumor is often misdiagnosed as pancreatic neuroendocrine tumor (PNET) or even pancreatic adenocarcinoma. In this study, we report a case of pancreatic paraganglioma diagnosed by endoscopic ultrasound-guided fine needle aspiration (EUS-FNA) and review of the literature on pancreatic paraganglioma.

CASE PRESENTATION

Chief complaints
A 73-year-old female presented with a chief complaint for evaluation of an incidental finding of peripancreatic lymph node.

History of present illness
She underwent computed tomography (CT) of the abdomen and pelvis as part of her routine surveillance for extranodal marginal zone B-cell lymphoma of mucosa-associated lymphoid tissue (MALT-lymphoma) of the lung and was found to have peripancreatic lymph node. She denied any abdominal pain, change in bowel habit, weight loss, nausea, or vomiting.

History of past illness
Her medical history was significant for MALT-lymphoma, invasive lobular breast carcinoma, hypertension, atrial fibrillation, mitral valve prolapse, mitral valve stenosis, and actinic keratosis. Her surgical history included a mastectomy with sentinel lymph node dissection, laparoscopic cholecystectomy, tonsillectomy, left knee replacement, and bilateral carpal tunnel repair.

Personal and family history
Her family history was significant for colon cancer in maternal grandmother at the age of 65 years, prostate cancer in brother at the age of 63 years, and melanoma in mother. She had no history of alcohol or tobacco abuse. She has 2 children and attained menopause at the age of 52 years. Her medications included aspirin, furosemide, carvedilol, rosuvastatin, amiodarone, digoxin, anastrozole, and Eliquis.

Physical examination
Her physical examination was unremarkable, and her abdomen was soft nontender, nondistended with no palpable mass.
Laboratory examinations
Laboratory exam including fractionated metanephrines, chromogranin, and gastrin were negative.

Imaging examinations
CT of the abdomen and pelvis showed 2 cm × 1.1 cm lymph node adjacent to the pancreatic head (Figure 1A).

Endoscopy
EUS showed a 19 mm × 11.5 mm hypoechoic lesion near the pancreatic head (Figure 1B). Two FNA passes using a 25-gauge needle were performed via transduodenal approach (Figure 1C).

Pathology
Direct FNA smears showed tumor with neuroendocrine features. Initial immunoperoxidase stains performed on cell block sections were positive for synaptophysin and chromogranin, which seemed to confirm the morphologic impression of PNET. The pathologist was subsequently informed about the peripancreatic location and lack of a definite pancreatic lesion.

FINAL DIAGNOSIS
After additional testing showed the tumor to be positive for GATA-3 and negative for keratin with low expression of Ki-67 (less than 1%), the FNA diagnosis was revised to paraganglioma.

TREATMENT
Our patient was referred to endocrine surgery team after the FNA diagnosis of paraganglioma. After a thorough discussion with the patient on the benefits and risks of surgical resection, the patient elected to remain on close surveillance since she was asymptomatic with a 2-cm, nonfunctioning paraganglioma.

OUTCOME AND FOLLOW-UP
After a 1-year follow up, patient was found to have stable asymptomatic peripancreatic paraganglioma with no increase in size.

DISCUSSION
Paragangliomas are non-epithelial neuroendocrine neoplasms arising in close association with components of the parasympathetic and sympathetic nervous systems [2]. Most parasympathetic paragangliomas are nonfunctional and located along the glossopharyngeal and vagal nerves in the neck and base of the skull [3]. Sympathetic paraganglia secrete catecholamines (functional) and they are commonly located in the paravertebral ganglia of thorax, abdomen, and pelvis [3]. The incidence of extra-adrenal paraganglioma is unclear as these are often described with pheochromocytoma. In the United States, approximately 500-1600 cases are diagnosed every year and the combined annual incidence of pheochromocytoma/paraganglioma is approximately 0.8 per 100000 person-years [4,5]. Pancreatic paragangliomas are more common in women than men (2:1) and the mean age of incidence is 52 years (19-85 years) [6].

Patients with functional paragangliomas can experience hypertension, headache, sweating, and palpitations due to the excessive secretion of catecholamines [7]. Nonsecretory paragangliomas may present with abdominal mass with or without abdominal pain, but most are found incidentally on imaging studies [8,9]. CT has a sensitivity of approximately 90% in the identification of extra-adrenal paragangliomas, which frequently appear as highly vascular structures with areas of intraluminal hemorrhage and necrosis [8,10]. The CT findings of pancreatic paragangliomas differ from those of pancreatic ductal adenocarcinoma by their location at the pancreatic
head and absence of biliary dilation, although mild pancreatic duct dilatation is sometimes seen[11]. Paragangliomas are also differentiated from nonfunctioning islet cell tumor of the pancreas by observation of early contrast filling of the prominent draining veins of the tumor and the portal vein[12]. Magnetic resonance imaging (MRI) provides tissue characterization superior to CT without radiation[13]. Working synergistically, meta-iodobenzylguanidine (MIBG, I\(^{123}\) or I\(^{131}\)) scan is useful in differentiating functional from nonfunctional paragangliomas as well as in the detection of tumors in unusual locations, multiple primary tumors, and metastasis[13]. MIBG scan has a sensitivity of 85% and specificity of 95%-100% in the detection of extra-adrenal paragangliomas. Plasma or urinary metanephrines can be used to further establish the diagnosis of functional paragangliomas[13,14].

While most paragangliomas are solitary and sporadic, they can be multicentric and hereditary. Genetic testing should be considered in all patients diagnosed with paraganglioma as nearly 40% (pheochromocytoma and paraganglioma) carry germline mutations. Genetic testing allows for the identification of simultaneous cancers in hereditary syndromes and assists with screening family members at high risk[15]. The most common genetic mutations associated with paragangliomas are RET gene in multiple endocrine neoplasia type 2A and 2B, VHL in von Hippel-Lindau disease, NF1 in neurofibromatosis type 1, and succinate dehydrogenase (SDH) B, D, C genes[15].

One of the most valuable tools that can assist in establishing the diagnosis of paraganglioma is EUS, which both enables localization of the mass and acquisition of tissue samples for cytology via FNA. When not considered in the differential diagnosis, pancreatic paragangliomas can be easily misdiagnosed on EUS-FNA cytology as pancreatic neuroendocrine tumor (NET)[16,17]. Some authors suggest that EUS-FNA should not be done in functional paragangliomas as it can trigger the secretion of catecholamines[18]. In our case, the diagnosis was not established before EUS-FNA and there were no complications during and after the procedure.

On cytology, the cells of paragangliomas are relatively uniform in size, epithelioid in appearance with round to oval nuclei, and arranged in loosely cohesive clusters.

Figure 1 Computed tomography and endoscopy examinations. A: Computed tomography of abdomen pelvis showing a peripancreatic lymph node adjacent to the pancreatic head; B: Endoscopic ultrasonography showing a hypoechoic lesion near the pancreatic head; C: Endoscopic ultrasound-guided fine needle aspiration of the peripancreatic lesion.
Table 1: Reported cases of pancreatic paraganglioma in the literature

No.	Ref.	Age	Gender	Size	Location	EUS-FNA	Preop-diagnosis	Surgery	Postop diagnosis
1	Fujino et al [21]	61	Male	2.5 cm	Uncinate process	No	PNET	Pancreaticoduodenectomy	PPGL
2	Ohkawara et al [33]	72	Female	4 cm	Head	No	NET	Surgical resection	PPGL
3	Perrot et al [34]	41	Female	4.3 cm	Tail	No	PPGL	Tumor resection	PPGL
4	Tsukada et al [35]	51	Male	2.5 cm	Uncinate	No	PNET	Surgical resection	PPGL
5	Kim et al [12]	57	Female	7 cm	Head	No	Non-functioning islet cell tumor	Pancreaticoduodenectomy	PPGL
6	Paik [36]	70	Female	4.2 cm	Tail	No	None	Distal pancreatectomy	PPGL
7	He et al [37]	40	Female	4.5 cm	Uncinate	No	None	Surgical resection	PPGL
8	Higa and Kapur [38]	65	Female	2.1 cm	Uncinate	No	None	Pancreaticoduodenectomy	PPGL
9	Al-jiffry et al [39]	19	Female	9.5 cm	Head and neck	No	Sarcoma	Pancreaticoduodenectomy	PPGL
10	Zhang et al [27]	50	Female	6 cm	Head	Yes	Functional PPGL	Chemotherapy	PPGL
11	Zhang et al [27]	63	Female	4 cm	Head	No	Functional PPGL	Surgical resection	PPGL
12	Borohain et al [40]	55	Female	19 cm	Tail	No	Pancreatic cancer	Surgical resection	PPGL
13	Straka et al [41]	53	Female	Not mentioned	Head	No	None	Surgical resection	PPGL
14	Meng et al [11]	54	Female	3 cm	Head	No	None	Surgical resection	PPGL
15	Meng et al [11]	41	Female	6.2 cm	Head	No	None	Surgical resection	PPGL
16	Misumi et al [42]	47	Female	1.5 cm	Head	EUS only	PNET	Pancreaticoduodenectomy	PPGL
17	Bartley et al [43]	75	Female	15 cm	Tail	No	Pancreatic cyst	Not available	PPGL
18	Bartley et al [43]	70	Female	3 cm	Head	No	Pancreatic cyst	Not available	PPGL
19	Cope et al [44]	72	Female	14 cm	Head	No	Cystadenoma	Not available	PPGL
20	Zamir et al [45]	47	Male	10 cm	Body	No	Pancreatic cyst	Not available	PPGL
21	Parithivel et al [46]	85	Male	6 cm	Head	No	NET	Surgical resection	PPGL
22	Wang et al [32]	30	Female	6.4 cm	Tail	No	None	No surgery	PPGL
23	Ganc et al [18]	37	Female	4.8 cm	Head	Yes	NET	Pancreaticoduodenectomy	PPGL
24	Tumuluru et al [47]	62	Female	2.9 cm	Body	Yes	NET	Distal pancreatectomy/splenectomy	PPGL
25	Ginesu et al [48]	55	Male	2.5 cm	Uncinate	No	NET	Pancreaticoduodenectomy	PPGL
26	Liang and Xu [49]	41	Male	6.4 cm	Uncinate	No	NET	Pancreaticoduodenectomy	PPGL
27	Lin et al [3]	42	Female	6.3 cm	Body	No	NET	Middlesegment pancreatectomy	PPGL
Authors	Year	Gender	Age	Primary Location	Histological Type	Treatment	Source		
------------	------	--------	------	------------------	-------------------	-----------------	--------		
Nguyen et al [23]	2021	Female	70	Tail	Yes	PPGL	Surgical resection		
Zeng et al [19]	2021	Female	58	Head	Yes	NET	Surgical resection		
Zeng et al [19]	2021	Female	53	Head	Yes	NET	Surgical resection		
Singhi et al [16]	2021	Female	61	Tail	Yes	Pseudocyst	Surgical resection		
Singhi et al [16]	2021	Female	52	Body	Yes	PPGL	Not performed		
Singhi et al [16]	2021	Female	54	Head	Yes	PPGL	Surgical resection		
Singhi et al [16]	2021	Male	40	Body	Yes	NET	Surgical resection		
Singhi et al [16]	2021	Female	78	Body	Yes	Spindle cell neoplasm	Surgical resection		
Singhi et al [16]	2021	Male	44	Head	Yes	PPGL	Surgical resection		
Singhi et al [16]	2021	Male	38	Body	No	None	Surgical resection		
Singhi et al [16]	2021	Male	47	Body	No	NET	Surgical resection		
Singhi et al [16]	2021	Female	37	Tail	No	NET	Surgical resection		
Fite and Maleki [9]	2021	Male	40	Peripancreatic	No	NET	Surgical resection		
Fite and Maleki [9]	2021	Female	23	Peripancreatic	No	NET	Surgical resection		
Malthouse et al [56]	2021	Male	58	Head	No	NET	Not available		
Malthouse et al [50]	2021	Female	45	Head	No	Retro peritoneal tumor	Not available		
Sangster et al [10]	2021	Male	50	Not available	Head	Yes	Poorly differentiated carcinoma	Radiation treatment	
Lightfoot et al [51]	2021	Male	66	Head/uncinate	No	None	Pancreaticoduodenectomy		
Abbasi et al [52]	2021	Female	61	Head/uncinate	Yes	NET	Pancreaticoduodenectomy		
Present case	2021	Female	73	Head	Yes	PPGL	No surgery		

PPGL: Pancreatic paraganglioma; PNET: Pancreatic Neuroendocrine tumor; EUS-FNA: Endoscopic ultrasound-guided fine needle aspiration.

Morphological patterns like acinar/glandular architecture and rosette-like arrangements can be observed in paragangliomas [20]. In histologic sections, the tumor is typically composed of nests of cells separated by a highly vascularized network [21]. Although the morphologic overlap between paraganglioma and NET is significant, the distinction can be confidently made with immunoperoxidase stains, which require a cell block preparation. Both pancreatic paragangliomas and NETs readily express neuroendocrine markers like synaptophysin and chromogranin [19]. While most NETs are immunoreactive to pancytokeratins (AE1/AE3 and CAM 5.2) but not vimentin, paragangliomas show the opposite profile [19]. GATA-3 and PAX-8 can also be used to distinguish paragangliomas from NETs. Paragangliomas from any anatomic site are immunoreactive to GATA-3 in approximately 55% of the cases, but NETs are always nonreactive [22]. Of note, GATA-3 can be positive in cells of breast, urothelial, and pancreatic origin [23]. PAX-8 has a sensitivity of 88% and specificity of 74% for primary pancreatic NETs, but paragangliomas have weak or negative immunoreactivity to PAX-8 [24-26]. In our case, FNA smears with Papanicolaou stain showed abundant, tangled cellular processes and relatively uniform nuclei with finely granular chromatin and indistinct nucleoli (Figure 2). FNA cell block with hematoxylin and eosin stain (Figure 3A), diffuse cytoplasmic staining with chromogranin (Figure 3B),
Figure 2 Fine needle aspiration direct smear. Papanicolaou stain, × 400.

Figure 3 Fine needle aspiration cell block. A: Hematoxylin and eosin stain, × 200; B: Diffuse cytoplasmic staining, chromogranin (× 100); C: Diffuse nuclear staining, GATA-3, (× 100); D: No staining, keratin cocktail (× 100).

diffuse nuclear staining with GATA-3 (Figure 3C), and no staining with keratin cocktail (Figure 3D).

Since there are no definitive criteria for the diagnosis of malignancy in paraganglioma apart from metastasis, the treatment of choice for paraganglioma is surgical resection. For functional paragangliomas, preoperative administration of α-adrenergic receptor blocker can help prevent a hypertensive crisis during the surgery[27]. The most common sites of metastasis include the regional lymph nodes, bone, lung, and liver, and the dissemination usually occurs through blood or lymph nodes[28]. When surgery is not feasible, radiation therapy can be considered[29]. For malignant paragangliomas, treatment with I131 MIBG or combination chemotherapy (cyclophos-
Pancreatic paragangliomas are rare and EUS-FNA is a valuable tool in establishing the diagnosis. When assessing a lesion in the pancreas, paraganglioma should be included in the differential diagnoses along with PNET and pancreatic ductal adenocarcinoma. As EUS-FNA can trigger a hypertensive crisis in functional pancreatic paragangliomas, pre-procedure use of alpha-adrenergic blocker should be considered. To bring the optimal result in the management of paraganglioma, it is imperative to have a multidisciplinary team approach involving radiologists, advanced endoscopists, endocrinologists, pathologists, oncologists, and surgeons.

CONCLUSION

Pancreatic paragangliomas are rare and EUS-FNA is a valuable tool in establishing the diagnosis. When assessing a lesion in the pancreas, paraganglioma should be included in the differential diagnoses along with PNET and pancreatic ductal adenocarcinoma. As EUS-FNA can trigger a hypertensive crisis in functional pancreatic paragangliomas, pre-procedure use of alpha-adrenergic blocker should be considered. To bring the optimal result in the management of paraganglioma, it is imperative to have a multidisciplinary team approach involving radiologists, advanced endoscopists, endocrinologists, pathologists, oncologists, and surgeons.

REFERENCES

1. Lenders JW, Eisenhofer G, Mannelli M, Pacak K. Phaeochromocytoma. Lancet 2005; 366: 665-675 [PMID: 16112304 DOI: 10.1016/s0140-6736(05)67139-5]
2. Asa SL, Ezait S, Mete O. The Diagnosis and Clinical Significance of Paragangliomas in Unusual Locations. J Clin Med 2018; 7 [PMID: 30217041 DOI: 10.3390/jcm7090280]
3. Lin S, Peng L, Huang S, Li Y, Xiao W. Primary pancreatic paraganglioma: a case report and literature review. World J Surg Oncol 2016; 14: 19 [PMID: 26801070 DOI: 10.1186/s12957-016-0771-2]
4. Beard CM, Sheps SG, Kurland LT, Carney JA, Lie JT. Occurrence of phaeochromocytoma in Rochester, Minnesota, 1950 through 1979. Mayo Clin Proc 1983; 58: 802-804 [PMID: 6645626]
5. Chen H, Sippel RS, O’Dorisio MS, Vinik AI, Lloyd RV, Pacak K; North American Neuroendocrine Tumor Society (NANETS). The North American Neuroendocrine Tumor Society consensus guideline for the diagnosis and management of neuroendocrine tumors: phaeochromocytoma, paraganglioma, and medullary thyroid cancer. Pancreas 2010; 39: 775-783 [PMID: 20664475 DOI: 10.1097/MPA.0b013e3181e6f40]
6. Liang W, Xu S. CT and MR Imaging Findings of Pancreatic Paragangliomas: A Case Report. Medicine (Baltimore) 2016; 95: e2959 [PMID: 26945413 DOI: 10.1097/MD.0000000000002959]
7. Lack EE, Cubilla AL, Woodruff JM, Lieberman PH. Extra-adrenal paragangliomas of the retroperitoneum: A clinicopathologic study of 12 tumors. Am J Surg Pathol 1980; 4: 109-120 [PMID: 7377461 DOI: 10.1097/00000478-198004000-00002]
8. Kaltasas GA, Besser GM, Grossman AB. The diagnosis and medical management of advanced neuroendocrine tumors. Endocr Rev 2004; 25: 458-511 [PMID: 15180952 DOI: 10.1210/er.2003-0014]
9. Elder EE, Elder G, Larsson C. Phaeochromocytoma and functional paraganglioma syndrome: no longer the 10% tumor. J Surg Oncol 2005; 89: 193-201 [PMID: 15719371 DOI: 10.1002/jso.20177]
10. Sangster G, Do D, Previgliano C, Li B, LaFrance D, Heldmann M. Primary retroperitoneal paraganglioma simulating a pancreatic mass: a case report and review of the literature. HPB Surg 2010; 2010: 645728 [PMID: 21188160 DOI: 10.1155/2010/645728]
11. Meng L, Wang J, Fang SH. Primary pancreatic paraganglioma: a report of two cases and literature review. World J Gastroenterol 2015; 21: 1036-1039 [PMID: 25624744 DOI: 10.3748/wjg.v21.i13.1036]
12. Kim SY, Byun JH, Choi G, Yu E, Choi EK, Park SH, Lee MG. A case of primary paraganglioma that arose in the pancreas: the Color Doppler ultrasonography and dynamic CT features. Korean J Radiol 2008; 9 Suppl: S18-S21 [PMID: 18607119 DOI: 10.3348/kjr.2008.9.s18]
13. van Gils AP, Falke TH, van Erkel AR, Arditi JW, Sandler MP, van der Mey AG, Hoogma RP. MR imaging and MIBG scintigraphy of phaeochromocytomas and extrarenal functioning paragangliomas. Radiographics 1991; 11: 37-57 [PMID: 1671719 DOI: 10.1148/radiographics.11.1.1671719]
14. Plouin PF, Gimenez-Roqueplo AP. Initial work-up and long-term follow-up in patients with...
phaeochromocytomas and paragangliomas. Best Pract Res Clin Endocrinol Metab 2006; 20: 421-434 [PMID: 16980203 DOI: 10.1016/j.beem.2006.07.004]

15 Dahia PL. Phaeochromocytoma and paraganglioma pathogenesis: learning from genetic heterogeneity. Nat Rev Cancer 2014; 14: 108-119 [PMID: 24442145 DOI: 10.1038/nrc3645]

16 Singhi AD, Hruban RH, Fabre M, Imura J, Schulick R, Wolfgang C, Ali SZ. Peripancreatic paraganglioma: a potential diagnostic challenge in cytopathology and surgical pathology. Am J Surg Pathol 2011; 35: 1498-1504 [PMID: 21921779 DOI: 10.1097/PAS.0b013e3182281767]

17 Jiménez-Heffernan JA, Vicandi B, López-Ferrer P, González-Peramato P, Pérez-Campos A, Viguera JM. Cytologic features of phaeochromocytoma and retroperitoneal paraganglioma: a morphologic and immunohistochemical study of 13 cases. Acta Cytol 2006; 50: 372-378 [PMID: 16900997 DOI: 10.1159/000325975]

18 Ganc RL, Castro AC, Coliaiacoavo R, Vigil R, Rossini LG, Altenfelder R. Endoscopic ultrasound-guided fine needle aspiration for the diagnosis of nonfunctional paragangliomas: a case report and review of the literature. Endosc Ultrason 2012; 1: 108-109 [PMID: 24949346 DOI: 10.7178/eus.02.009]

19 Zeng J, Sirmis A, Oweity T, Hajdu C, Cohen S, Shi Y. Peripancreatic paraganglioma mimics pancreatic/gastrointestinal neuroendocrine tumor on fine needle aspiration: Report of two cases and review of the literature. Diagn Cytopathol 2017; 45: 947-952 [PMID: 28560856 DOI: 10.1002/dc.23761]

20 Gong Y, DeFrias DV, Nayar R. Pitfalls in fine needle aspiration cytology of extradrenal paraganglioma. A report of 2 cases. Acta Cytol 2003; 47: 1082-1086 [PMID: 14674085 DOI: 10.1159/0003266652]

21 Fujino Y, Nagata Y, Ogino K, Watahiki H, Ogawa H, Saitoh Y. Nonfunctional paraganglioma of the pancreas: report of a case. Surg Today 1998; 28: 209-212 [PMID: 9525014 DOI: 10.1007/s005950050108]

22 Weisserfert A, Kalhor N, Liu H, Rodrigeuz J, Fujimoto J, Tang X, Wistuba II, Moran CA. Thymic neuroendocrine tumors (paraganglioma and carcinoid tumors): a comparative immunohistochemical study of 46 cases. Hum Pathol 2014; 45: 2463-2470 [PMID: 25294372 DOI: 10.1016/j.humpath.2014.08.013]

23 Nguyen E, Nakasaki M, Lee TK, Lu D. Diagnosis of paraganglioma as a pancreatic mass: A case report. Diagn Cytopathol 2018; 46: 804-806 [PMID: 29882285 DOI: 10.1002/dc.23974]

24 Sangoi AR, Ohgami RS, Pae RK, Beck AH, McKenney JK. PAX8 expression reliably distinguishes pancreatic well-differentiated neuroendocrine tumors from islet and pancreatic well-differentiated neuroendocrine tumors and pancreatic acinar cell carcinoma. Mod Pathol 2011; 24: 412-424 [PMID: 20890270 DOI: 10.1038/modpathol.2010.176]

25 Koo J, Mertens RB, Mirocha JM, Wang HL, Dhall D. Value of Ialet 1 and PAX8 in identifying metastatic neuroendocrine tumors of pancreatic origin. Mod Pathol 2012; 25: 893-901 [PMID: 22388755 DOI: 10.1038/modpathol.2012.34]

26 Long KB, Srivastava A, Hirsch MS, Hornick JL. PAX8 Expression in well-differentiated pancreatic endocrine tumors: correlation with clinicopathologic features and comparison with gastrointestinal and pulmonary carcinoid tumors. Am J Surg Pathol 2010; 34: 723-729 [PMID: 20414099 DOI: 10.1097/PAS.0b013e318181da020]

27 Zhang L, Liao Q, Hu Y, Zhao Y. Paraganglioma of the pancreas: a potentially functional and malignant tumor. World J Surg Oncol 2014; 12: 218 [PMID: 25030833 DOI: 10.1186/1477-7819-12-218]

28 Verma A, Pandey D, Akhtar A, Arsaia A, Singh N. Non-functional paraganglioma of retroperitoneum mimicking pancreatic mass with concurrent urinary bladder paraganglioma: an extremely rare entity. J Clin Diagn Res 2015; 9: XD09-XD11 [PMID: 25859512 DOI: 10.7860/JCDR/2015/1155.5570]

29 Yang JH, Bae SJ, Park S, Park HK, Jung HS, Chung JH, Min YK, Lee MS, Kim KW, Lee MK. Bilateral phaeochromocytoma associated with paraganglioma and papillary thyroid carcinoma: report of an unusual case. Endocr J 2007; 54: 227-231 [PMID: 17264665 DOI: 10.1507/endocrj.k06-068]

30 Fitzgerald PA, Goldsby RE, Huberty JP, Price DC, Hawkins RA, Veatch JJ, Dela Cruz F, Jahan TM, Linke CA, Damon L, Matthy KK. Malignant phaeochromocytomas and paragangliomas: a phase II study of therapy with high-dose 131I-metiodobenzylguanidine (131I-MIBG). Ann N Y Acad Sci 2006; 1075: 465-490 [PMID: 17102115 DOI: 10.1196/annals.1553.050]

31 Toneyukuc V, Emral R, Temizkan S, Sertçelik A, Erdenl I, Corapçioğlu D. Case report: patient with multiple paragangliomas treated with long acting somatostatin analogue. Endocr J 2003; 50: 507-513 [PMID: 14614206 DOI: 10.1507/endocrj.50.507]

32 Wang ZL, Fu L, Zhang Y, Babu SR, Tian B. An asymptomatic phaeochromocytoma originating from the tail of the pancreas. Pancreas 2012; 41: 165-167 [PMID: 22173833 DOI: 10.1097/MPA.0b013e31823262d0]

33 Ohkawara T, Naruse H, Takeda H, Asaka M. Primary paraganglioma of the head of pancreas: contribution of combinatorial image analyses to the diagnosis of disease. Intern Med 2005; 44: 1195-1196 [PMID: 16357461 DOI: 10.2169/internalmedicine.44.1195]

34 Perrot G, Pavic M, Milou F, Crozes C, Fauchempt S, Vincent E. [Difficult diagnosis of a pancreatic paraganglioma]. Rev Med Interne 2007; 28: 701-704 [PMID: 17618712 DOI: 10.1016/j.revmed.2007.06.001]

35 Tsukada A, Ishizaki Y, Nobukawa B, Kawasaki S. Paraganglioma of the pancreas: a case report and review of the literature. Pancreas 2008; 36: 214-216 [PMID: 18376320 DOI: 10.1097/01.MPA.0000311841.35183.45]
Lanke G et al. Pancreatic paraganglioma diagnosed by EUS-FNA

36 Paik KY. [Paraganglioma of the pancreas metastasized to the adrenal gland: a case report]. *Korean J Gastroenterol* 2009; 55: 409-412 [PMID: 20026898 DOI: 10.4166/kjg.2009.54.6.409]

37 He J, Zhao F, Li H, Zhou K, Zhu B. Pancreatic paraganglioma: A case report of CT manifestations and literature review. *Quint Imaging Med Surg* 2011; 1: 41-43 [PMID: 23256053 DOI: 10.3978/j.issn.2223-4292.2011.08.02]

38 Higa B, Kapur U. Malignant paraganglioma of the pancreas. *Pathology* 2012; 44: 53-55 [PMID: 22157698 DOI: 10.1097/PT.0b013e32833e426b]

39 Al-Jiffry BO, Alnemary Y, Khayat SH, Haiba M, Hatem M. Malignant extra-adrenal pancreatic paraganglioma: case report and literature review. *BMC Cancer* 2013; 13: 486 [PMID: 24138700 DOI: 10.1186/1471-2407-13-486]

40 Borgohan M, Gogoi G, Das D, Biswas M. Pancreatic paraganglioma: An extremely rare entity and crucial role of immunohistochemistry for diagnosis. *Indian J Endocrinol Metab* 2013; 17: 917-919 [PMID: 24083178 DOI: 10.4103/2223-4292.2011.08.02]

41 Straka M, Soumarova R, Migrova M, Vojtek C. Paraganglioma - a rare and dangerous entity. Vascular anatomy and impact on management. *J Surg Case Rep* 2014; 2014 [PMID: 25056378 DOI: 10.1093/jscr/rju074]

42 Misumi Y, Fujisawa T, Hashimoto H, Kagawa K, Noie T, Chiba H, Horiiuchi H, Harihara Y, Matsuhashi N. Pancreatic paraganglioma with draining vessels. *World J Gastroenterol* 2015; 21: 9442-9447 [PMID: 26309372 DOI: 10.3748/wjg.v21.i31.9442]

43 Bartley O, Ekdahl PH, Hultén L. Paraganglioma simulating pancreatic cyst. *Acta Chir Scand* 1966; 132: 289-297 [PMID: 5929097]

44 Cope C, Greenberg SH, Vidal JJ, Cohen EA. Nonfunctioning nonchromaffin paraganglioma of the pancreas. *Arch Surg* 1974; 109: 440-442 [PMID: 4368962 DOI: 10.1001/ARCHSURG.1974.01360030092024]

45 Zamir O, Amir G, Lernau O, Ne’eman Z, Nissan S. Nonfunctional paraganglioma of the pancreas. *Am J Gastroenterol* 1984; 79: 761-763 [PMID: 6486113]

46 Parthivvel VS, Niazi M, Malhotra AK, Swaminathan K, Kaul A, Shah AK. Paraganglioma of the pancreas: literature review and case report. *Dig Dis Sci* 2000; 45: 438-441 [PMID: 10711464 DOI: 10.1023/a:1005401718763]

47 Tumuluru S, Mellnick V, Doyle M, Goyal B. Pancreatic Paraganglioma: A Case Report. *Case Rep Pancreat Cancer* 2016; 2: 79-83 [PMID: 30631823 DOI: 10.1089/crpc.2016.0016]

48 Ginesu GC, Barmina M, Paliogiannis P, Trombetta M, Cossu ML, Feo CF, Addis F, Porcu A. Nonfunctional paraganglioma of the head of the pancreas: A rare case report. *Int J Surg Case Rep* 2016; 28: 81-84 [PMID: 27689525 DOI: 10.1016/j.ijsr.2016.09.012]

49 Cope C, Greenberg SH, Vidal JJ, Cohen EA. Nonfunctioning nonchromaffin paraganglioma of the pancreas. *Arch Surg* 1974; 109: 440-442 [PMID: 4368962 DOI: 10.1001/ARCHSURG.1974.01360030092024]

50 Malthouse SR, Robinson L, Rankin SC. Ultrasonic and computed tomographic appearances of paraganglioma mimicking pancreatic mass. *Clin Radiol* 1992; 47: 271-272 [PMID: 1395386 DOI: 10.1016/0361-813X(92)90333-3]

51 Lightfoot N, Santos P, Nikfarjam M. Paraganglioma mimicking a pancreatic neoplasm. *JOP* 2011; 12: 259-261 [PMID: 21546704]

52 Abbasi A, Wakeman KM, Pillarisetty VG. Pancreatic paraganglioma mimicking pancreatic neuroendocrine tumor. *Rare Tumors* 2020; 12: 2036361320982799 [PMID: 33425308 DOI: 10.1177/2036361320982799]

WJG | https://www.wjgnet.com

October 7, 2021 | Volume 27 | Issue 37
