Underweight and low waist circumference prior to percutaneous coronary intervention increase the risk for end-stage renal disease: A Nationwide Population Based-cohort Study

Eun Hui Bae
Chonnam National University Medical School

Sang Yeob Lim
Korea University Ansan Hospital

Tae Ryom Oh
Chonnam National University Medical School

Hong Sang Choi
Chonnam National University Medical School

Chang Seong Kim
Chonnam National University Medical School

Seong Kwon Ma
Chonnam National University Medical School

Bongseong Kim
Chonnam National University Medical School

Kyung-Do Han
Soongsil University

Soo Wan Kim (skimw@chonnam.ac.kr)
Chonnam National University Medical School https://orcid.org/0000-0002-3540-9004

Original investigation

Keywords: Underweight, Obesity, Percutaneous coronary intervention, End-stage renal disease, Body mass index, Waist circumference, Korean

DOI: https://doi.org/10.21203/rs.3.rs-54012/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background
The effect of obesity prior to percutaneous coronary intervention (PCI) on the development of end-stage renal disease (ESRD) is not clear.

Methods
Using nationally representative data from the Korean National Health Insurance System, we enrolled 140,164 subjects without renal disease at enrolment who underwent PCI between 2010 and 2015, and were followed-up until 2017. Patients were stratified into five levels based on their baseline body mass index (BMI) and six levels based on their waist circumference (WC; 5-cm increments). BMI and WC were measured at least 2 years prior to PCI. The primary outcome was the development of ESRD.

Results
During a median follow-up of 5.4 years, 2,082 (1.49%) participants developed ESRD. The underweight group (HR 1.331, 95%CI: 0.955–1.856) and low WC (<80/<75) (HR 1.589, 95%CI: 1.379–1.831) showed the highest ESRD risk and the BMI 25 ~ 30 group showed the lowest ESRD risk (HR 0.604, 95%CI: 0.542-0.673) in all participants after adjusting for all covariates. In the subgroup analysis for diabetes mellitus (DM), BMI showed a U-shape relationship with ESRD risk at a baseline of 28.8 for BMI in the none-DM group and a reverse linear relationship in the DM group. However, low WC prior to PCI was risk factor in only DM group.

Conclusions
Underweight and low WC prior to PCI, which showed the increased ESRD risk in patients undergoing PCI, especially in those with DM.

Trial Registration:
Retrospectively registered

Background
The prevalence of obesity has been steadily and significantly increasing worldwide [1, 2]. Because of its impact on cardiovascular diseases, obesity is becoming one of the most serious global health issues [3]. The risk factors associated with obesity and ischemic heart disease (IHD) are well-established, and obesity itself has been thought to be a risk factor for IHD and can worsen its prognosis regardless of the metabolic status [4–7]. There is less evidence showing obesity as an independent risk factor of end-stage renal disease (ESRD), regardless of the presence of type 2 diabetes mellitus (DM) [8], and observational studies have shown positive associations between obesity and chronic kidney disease or ESRD [9–12]. However, some studies showed that obesity did not increase the risk of ESRD in patients with moderate to advanced chronic kidney disease (CKD) [13]. Therefore, whether obesity is associated with the development of ESRD remains unclear.

Percutaneous coronary intervention (PCI) is an essential treatment modality for coronary artery disease. Although PCI is mainly performed in patients with underlying diseases such as DM, CKD, and hypertension, resulting in ESRD, there is insufficient data on the association between PCI and ESRD. In addition, the impact of obesity prior to PCI on ESRD risk has not been evaluated.

Therefore, we conducted this study to verify the relationship between obesity prior to PCI and ESRD risk using the National Health Insurance Service (NHIS) health checkup data.

Methods
Because of the confidentiality of the data used for this study and strict privacy policy from the data holder that the data can be kept among the designated research personnel only, the data cannot be provided to other else, whether or not the data are made anonymous.

Study Design and Database
The Korean National Health Insurance Service (KNHIS) comprises a complete set of health information pertaining to 50 million Koreans, which includes an eligibility database, a medical treatment database, a health examination database, and a medical care institution database [14–16]. The National Health Insurance Corporation (NHIC) is the single insurer, managed by the Korean government, to which approximately 97% of the Korean population subscribes. Enrolees in the NHIC are recommended to undergo a standardised medical examination at least every 2 years.
Among 270,237 subjects who underwent PCI in 2010–2015 (index year), 143,727 subjects follow up to 31 December 2017. We excluded 2,440 subjects with missing data for at least one variable. To avoid confounders by pre-existing diseases and minimize the possible effects of reverse causality, those who had a history of ESRD before the index year were also excluded (n = 1,123). Ultimately, the study population consisted of 140,164 subjects (Fig. 1). We registered only de novo PCI and excluded patients with a history of PCI to avoid the effects of past coronary intervention due to coronary artery disease, including angina pectoris or MI. We also excluded patients with cerebrovascular disease, heart failure, or cancer.

This study was approved by the Chonnam National University Hospital (study approval number: CNUH-EXP-2020-187) and National Health Insurance Service (NHIS-2019-1-379), and it was conducted according to the principles of the Declaration of Helsinki. The need for written informed consent was waived by our review board.

Definitions of BMI and WC

For each participant, the BMI was calculated by dividing the weight (in kg) by the square of the height (in m²). We defined obesity as a BMI ≥ 25 kg/m². The participants were then categorized by the definition of obesity as follows: underweight (BMI < 18.5 kg/m2), normal (≥ 18.5 to < 23 kg/m2), overweight (≥ 23 to < 25 kg/m2), stage 1 obesity (≥ 25 to 30 kg/m2), and stage 2 obesity (≥ 30 kg/m2) according to the World Health Organization recommendations for Asian populations [17].

The WC of each participant was also measured at the midpoint between the rib cage and iliac crest by a trained examiner. The patients were divided into 6 categories based on 5-cm WC increments: <60 cm in men and <75 cm in women, 60–85 cm in men and 75–80 cm in women, 85–90 cm in men and 80–85 cm in women (reference group), 90–95 cm in men and 85–90 cm in women, 95–100 cm in men and 90–95 cm in women, and ≥ 100 cm in men and ≥ 95 cm in women. Abdominal obesity was defined as a WC ≥ 90 cm in men and ≥ 85 cm in women according to the definition of the Korean Society for the Study of Obesity [18].

Glycemic status and definition of chronic disease

All participants were categorized into four groups based on their glycemic status: normal, impaired fasting glucose (IFG), DM < 5 years, and DM ≥ 5 years. IFG was defined as a fasting plasma glucose level of 100 ~ 125 mg/dL. Type 2 DM was defined as an FPG level ≥ 126 mg/dL or at least one claim per year for the prescription of hypoglycemic drug under ICD-10 codes E11-14.[19] Patients with type 1 DM who had claims under ICD-10 code E10 were excluded from this study.[20, 21] The group with DM < 5 years was defined as who had type 2 DM with 5 years on the date of the health checkup. The group with DM ≥ 5 years was defined as those who had type 2 DM 5 years before the date of the health checkup.

Comorbidities were identified using information gathered in the 1 year before the index date. Hypertension was defined as a previous hypertension diagnosis ICD-10 codes (I10–13, I15) and a history of taking at least 1 antihypertensive drug, or a recorded systolic blood pressure of ≥ 140 mmHg or diastolic blood pressure of ≥ 90 mmHg in the health examination database. Dyslipidemia was identified using the appropriate diagnostic code (E78) and a history of lipid-lowering drug use, or a total serum cholesterol concentration of ≥ 240 mg/dL in the health examination database. Chronic kidney disease (CKD) was defined as an estimated glomerular filtration rate (eGFR) of < 60 ml/min/1.73 m2 calculated using CKD epidemiology collaboration (CKD-EPI) equation and as a combination of ICD-10 codes(N18-19). The participants’ fasting blood glucose (mg/dL), total cholesterol (mg/dL), triglyceride (mg/dL), high-density lipoprotein cholesterol (mg/dL), and low-density lipoprotein cholesterol (mg/dL) concentrations were measured in a fasting state. The quality of the laboratory tests has been warranted by the Korean Association for Laboratory Medicine, and the hospitals participating in the NHI health checkup programs are certified by the NHIS.

Study Outcomes and Follow-up

The study population was followed from baseline to the date of ESRD diagnosis or until 31 December 2017, whichever came first. The primary end point was incident ESRD, which was defined using a combination of ICD-10 codes (Z49, Z94.0, and Z99.2) and a special code (V code) that was assigned in the initiation of renal replacement therapy (hemodialysis [HD], V001; peritoneal dialysis [PD], V003) and/or kidney transplantation (KT, V005) during hospitalization. All medical expenses for dialysis are reimbursed using the Korean Health Insurance Review and Assessment Service database. These patients are also registered as special medical aid beneficiaries. Therefore, we were able to identify every patient with ESRD in the entire South Korean population and to analyze the data for all patients with ESRD who started dialysis. Codes for treatment or medical expense claims included V005 for KT, V001 for HD, and V003 for PD. We excluded individuals without previous CKD who had a transplant or dialysis code on the same date as an acute renal failure code. Subjects on continuous renal replacement therapy or acute peritoneal dialysis were also excluded.

General health behaviors and sociodemographic variables

Smoking history was categorized as nonsmokers, former smokers, and current smokers. Alcohol drinking was categorized into 0, 1 to ~ 2, or ≥ 3 times/week by frequency (none, mild, and heavy, respectively), and regular exercise, defined as vigorous physical activity for at least 20 min/day, was categorized into 0,1 to ~ 4, and ≥ 5 times/week by frequency. Income level was divided by quartile: Q1 (the lowest), Q2, Q3, and Q4 (the highest).

Statistical Analysis
We report the mean ± SD with intervals for continuous variables and the numbers (with percentages) for categorical variables. The hazard ratios (HRs) with 95% confidence intervals (CIs) for ESRD by BMI and WC category was obtained using multivariable Cox proportional hazard models using the normal BMI(BMI18.5-23 kg/m2) and normal WC (85–90/80–85 cm) as a references after adjustment using 3 models. Model 1: crude model. Model 2: adjusted for model 1 plus age, sex, income, DM, dyslipidemia, and hypertension. Model 3: adjusted for model 2 plus smoking, alcohol drinking, physical activity, and eGFR. The cumulative ESRD incidence was estimated by constructing Kaplan-Meier curves for the mean 5.4-year follow-up period, and we used the log-rank test to examine differences in ESRD development by the level of BMI and WC. We also performed subgroup analysis for DM status. A P-value < 0.05 was considered to reflect statistical significance. SAS version 9.3 software and SAS survey procedures (SAS Institute, Inc., Cary, NC, USA) were used for all statistical analyses.

Results
Baseline Characteristics

Table 1 shows the baseline characteristics of the participants regarding the development of ESRD. Among all the participants, 2082 (1.49%) developed ESRD during a median follow-up duration of 5.4 years. The mean age was higher among individuals who developed ESRD than among those who did not. The proportions of low income was higher in the incident ESRD than in the non-ESRD groups. Comorbidities such as DM, HTN, dyslipidemia, CKD, and proteinuria were more prevalent in the ESRD group than in the non-ESRD group. GFR and BMI were lower, and BP and glucose levels were higher in the ESRD group than in the non-ESRD group (Table 1).
Table 1
Baseline characteristics of subjects according to the incident ESRD.

Group	None ESRD (N = 138,082)	ESRD (N = 2,082)	P
Age	63.39 ± 10.63	65.39 ± 9.87	<.0001
Sex, male(%)	97897(70.9)	1451(69.69)	0.2296
Current smoker	41174(29.82)	539(25.89)	<.0001
Heavy drinker	8958(6.49)	76(3.65)	<.0001
Physical activity-regular	28386(20.56)	355(17.05)	<.0001
Income-low	29846(21.61)	552(26.51)	<.0001
Diabetes mellitus	44078(31.92)	1562(75.02)	<.0001
HTN	95743(69.34)	1945(93.42)	<.0001
Dyslipidemia	70411(50.99)	1373(65.95)	<.0001
CKD (GFR < 60)	19562(14.17)	1659(79.68)	<.0001
Proteinuria	125014(91.21)	728(35.34)	<.0001
Trace	4326(3.16)	88(4.27)	
1+	4361(3.18)	296(14.37)	
2+	2407(1.76)	482(23.4)	
3+	805(0.59)	369(17.91)	
4+	152(0.11)	97(4.71)	
GFR	81.81 ± 40.81	41.3 ± 27.69	<.0001
BMI	24.66 ± 3.01	24.51 ± 3.19	0.0251
Glucose	112.17 ± 38.1	136.02 ± 67.9	<.0001
Total cholesterol	205.23 ± 46.21	203.61 ± 57.21	0.113
SBP	130.1 ± 15.94	137.51 ± 19.57	<.0001
DBP	79.04 ± 10.33	80.1 ± 12.12	<.0001
F/U duration	5.5 ± 1.93	2.54 ± 1.96	<.0001

Abbrations, ESRD, end-stage renal disease; HTN, hypertension; CKD, chronic kidney disease; GFR, glomerular filtration rate; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; F/U, follow up.

The characteristics of participants classified by BMI levels and WC are presented in Tables 2 and 3, respectively. Subjects in the underweight group (BMI < 18.5) were older; had a lower income; exercised less; and had a lower prevalence of DM, HTN, dyslipidemia, and CKD (Table 2). BP, fasting glucose, and total cholesterol were also lower in the underweight group (Table 2). Table 3 shows that the central obesity group patients were older; included mostly women; had a lower income; exercised less; and had a higher prevalence of DM, HTN, dyslipidemia, and CKD (Table 3). Apart from eGFR, BP, fasting glucose, and lipid level were also higher in the central obesity group (Table 3).
Table 2
Baseline characteristics of participants by level of body mass index

Variable	Distribution of body mass index	<18.5 (N = 2158)	18.5 ~ 23 (N = 37438)	23 ~ 25 (N = 38381)	25 ~ 30 (N = 55848)	30~ (N = 6339)	P
Age		70.41 ± 10.29	65.66 ± 10.34	63.63 ± 10.17	61.97 ± 10.50	59.22 ± 12.06	<.0001
Sex(male)		1451(67.24)	26075(69.65)	27869(72.61)	40061(71.73)	3892(61.4)	<.0001
Smoking							<.0001
None		964(44.67)	17835(47.64)	18202(47.42)	26619(47.66)	3280(51.74)	
Ex		359(16.64)	7580(20.25)	9044(23.56)	13411(24.01)	1157(18.25)	
Current		835(38.69)	12023(32.11)	11135(29.01)	15818(28.32)	1902(30)	
Drinking							<.0001
None		1563(72.43)	24789(66.21)	24162(62.95)	34628(62)	4168(65.75)	
Mild		468(21.69)	10413(27.81)	11883(30.96)	17347(31.06)	1709(26.96)	
Heavy		127(5.89)	2236(5.97)	2336(6.09)	3873(6.93)	462(7.29)	
Regular Exercise		281(13.02)	7284(19.46)	8370(21.81)	11695(20.94)	1111(17.53)	<.00001
Income*		546(25.3)	8295(22.16)	8250(21.5)	11883(21.28)	1424(22.46)	<.00001
DM		513(23.77)	11254(30.06)	12264(31.95)	18979(33.98)	2630(41.49)	<.00001
HTN		515(23.86)	9342(24.95)	10416(27.14)	17636(31.58)	2593(40.91)	<.00001
Dyslipidemia		863(39.99)	17527(46.82)	19405(50.56)	30177(54.03)	3812(60.14)	<.00001
CKD		343(15.89)	5606(14.97)	5644(14.71)	8527(15.27)	1101(17.37)	<.00001
Weight (Kg)		44.76 ± 5.85	56.18 ± 6.97	63.58 ± 6.92	71.2 ± 8.54	83.67 ± 11.56	<.00001
Height (cm)		159.97 ± 9.39	161.65 ± 8.88	162.63 ± 8.71	162.85 ± 9.08	161.9 ± 10.21	<.00001
WC (cm)		70.48 ± 6.32	78.78 ± 5.84	84.15 ± 5.25	89.65 ± 5.93	98.89 ± 7.31	<.00001
BMI		17.42 ± 0.94	21.43 ± 1.14	23.96 ± 0.57	26.77 ± 1.29	31.8 ± 1.92	<.00001
SBP (mmHg)		126.2 ± 18.15	128.13 ± 16.43	129.72 ± 15.76	131.55 ± 15.56	134.97 ± 16.29	<.00001
DBP (mmHg)		76.27 ± 11.39	77.45 ± 10.28	78.65 ± 10.1	80.13 ± 10.22	82.58 ± 11.09	<.00001
Glucose (mg/dL)		108.75 ± 48.03	110.81 ± 40.57	111.96 ± 38.22	113.44 ± 37.22	119.25 ± 41.15	<.00001
TC (mg/dL)		195.07 ± 42.04	201.89 ± 45.56	205.07 ± 44.36	207.25 ± 47.38	211.09 ± 53.45	<.00001
HDL (mg/dL)		55.16 ± 15.07	51.77 ± 23.21	49.24 ± 18.74	48.16 ± 23.68	47.83 ± 20.99	<.00001
LDL (mg/dL)		116.46 ± 36.95	123.1 ± 51.12	125.31 ± 70.69	125.38 ± 66.65	126.07 ± 57.03	<.00001
**TG (mg/dL)		103.54(101.51,105.62)	123.97(123.33,124.61)	139.77(139.05,140.5)	154.47(153.81,155.14)	170.72(168.54,172.92)	<.00001
GFR (mL/min/1.73 m²)		82.38 ± 33.54	82.26 ± 40.94	81.2 ± 40.88	80.55 ± 41.04	80.46 ± 42.62	<.00001
Hg (g/dL)		13.11 ± 1.69	13.78 ± 1.65	14.16 ± 1.6	14.38 ± 1.61	14.45 ± 1.72	<.00001

Abbreviations: M, male; DM, diabetes mellitus; HTN, hypertension; CKD, chronic kidney disease; WC, waist circumference; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; TC, total cholesterol; HDL, high density lip; LDL, low density lipoprotein; TG, triglyceride; GFR, glomerular filtration rate; Hg, hemoglobin; * low income 25%, **geometric mean.
Table 3
Baseline characteristics of participants by level of waist circumference

Variable	Distribution of waist circumference	N=22619	N=31637	N=36739	N=27108	N=214049	N=8012	P
Age		63.95±11.04	62.79±10.45	63.14±10.42	63.50±10.43	64.09±10.70	64.22±11.24	<.0001
Sex(male)		16240(71.8)	23800(75.23)	26479(72.07)	19216(70.89)	9065(64.52)	4548(56.76)	<.0001
Smoking		10461(46.25)	14116(44.62)	17527(47.71)	12932(47.71)	7339(52.24)	4525(56.48)	<.0001
Ex-		4425(19.56)	7285(23.03)	8552(23.28)	6606(24.37)	3106(22.11)	1577(19.68)	<.0001
Current		7733(34.19)	10236(32.35)	10660(29.02)	7570(27.93)	3604(26.5)	1910(23.84)	<.0001
Drinking								<.0001
Income		14698(64.98)	19388(61.28)	23061(62.77)	17130(63.19)	9379(66.76)	5654(70.57)	<.0001
DM		5539(24.49)	9148(28.92)	11772(32.04)	9727(35.88)	5643(40.17)	3811(47.57)	<.0001
HTN		5183(22.91)	8223(25.99)	10482(28.53)	8478(31.27)	4925(35.06)	3211(40.08)	<.0001
Dyslipidemia		10036(44.37)	15205(48.06)	18954(51.59)	14696(54.21)	8124(57.83)	4769(59.52)	<.0001
CKD		2796(12.36)	4110(12.99)	5338(14.53)	4473(16.5)	2716(19.33)	1788(22.32)	<.0001
Weight (Kg)		55.1±7.86	61.6±7.9	65.51±8.58	69.67±9.3	72.94±10.47	78.84±12.83	<.0001
Height (cm)		160.65±8.51	162.39±8.48	162.69±8.89	163.26±9.2	162.75±9.76	162.26±10.19	<.0001
WC (cm)		73.82±4.26	80.86±2.59	85.54±2.66	90.29±2.63	94.86±2.77	101.64±4.84	<.0001
BMI		21.29±2.08	23.3±1.84	24.68±1.91	26.06±2.2	27.43±2.19	29.81±2.97	<.0001
SBP (mmHg)		127.11±16.38	129.04±15.77	130.28±15.61	131.48±15.78	132.74±16.02	134.5±16.65	<.0001
DBP (mmHg)		77.33±10.39	78.54±10.15	79.14±10.19	79.75±10.24	80.25±10.51	81.2±11.05	<.0001
Glucose (mg/dL)		107.95±39.05	110.63±37.86	112.27±37.95	114.09±37.53	116.73±40.34	121.38±44.48	<.0001
TC (mg/dL)		201.31±43.9	204.93±46.96	206.13±44.04	206.52±47.9	206.47±45.42	206.43±56.28	<.0001
HDL (mg/dL)		52.89±21.07	49.96±20.62	48.88±20.61	48.26±26.72	47.94±19.86	48.14±23.04	<.0001
LDL (mg/dL)		122.81±46.42	125.23±50.17	125.79±88.22	124.89±55.73	123.99±51.77	122.61±56.17	<.0001
TG (mg/dL)		115.58	134.29	145.47	154.47	159.17	164.02	<.0001
GFR (mL/min/1.73 m²)		83.91±42.09	82.22±38.07	81.42±45.09	79.9±38.77	78.57±38.59	77.65±39.06	<.0001
Hg (g/dL)		13.8±1.65	14.16±1.61	14.22±1.63	14.28±1.63	14.21±1.68	14.1±1.74	<.0001

Abbreviations: M, male; DM, diabetes mellitus; HTN, hypertension; CKD, chronic kidney disease; WC, waist circumference; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; TC, total cholesterol; HDL, high density lip; LDL, low density lipoprotein; TG, triglyceride; GFR, glomerular filtration rate; Hg, hemoglobin; * low income 25%, **geometric mean.**
The underweight group (HR 1.331, 95%CI: 0.955–1.856) and the WC < 80/~75 group (HR 1.589, 95% CI: 1.379–1.831) showed the highest ESRD risk, while the BMI 25 ~ 30 group showed the lowest ESRD risk (HR 0.604, 95%CI: 0.542-0.673) in all participants after adjusting for age, sex, income, presence of DM, dyslipidemia, hypertension, smoking, alcohol drinking, physical activity, and glomerular filtration rate (Fig. 2A & 2B, Fig. 3A&B and Table 4). Central obesity prior to PCI tended to show a risk factor for ESRD development, but it was not statistically significant (Fig. 2B).

Table 4
Multivariate cox analysis for incident ESRD by level of BMI and WC in underwent PCI patients.

Group	Total (n)	ESRD (n)	Duration	IR	HR (95% Confidence interval)
					Model1
					Model2
					Model3
Body mass index					
< 18.5	2158	37	9899.1	3.74	1.136(0.815–1.582)
18.5 ~ 23	37438	633	197473.99	3.21	1(ref.)
23 ~ 25	38381	565	211034.25	2.68	0.842(0.752–0.943)
25 ~ 30	55848	729	311221.44	2.34	0.738(0.664–0.821)
30~	6339	118	34578.16	3.41	1.070(0.879–1.302)
P for trend					

Waist circumference					
< 80/<75	22619	323	119092.41	2.71	1.136(0.986–1.308)
80 ~ 85/75 ~ 80	31637	442	172675.72	2.56	1.08(0.949–1.229)
85 ~ 90/80 ~ 85	36739	479	202452.23	2.37	1(ref.)
90 ~ 95/85 ~ 90	27108	400	150018.41	2.67	1.128(0.988–1.288)
98 ~ 100/90 ~ 95	14049	237	77138.12	3.07	1.297(1.110–1.516)
100~/95~	8012	201	42830.04	4.69	1.97(1.671–2.323)
P for trend					

Abbrations, IR, incidence rate (per 1000 person-years); ESRD, end-stage renal disease; HR, hazard ratio. Model 1: crude model. Model 2: adjusted for age, sex. Income, diabetes mellitus, dyslipidemia, hypertension. Model 3: adjusted for model 2 plus smoking, alcohol drinking, regular exercise, glomerular filtration rate.

Subgroup Analyses

Subgroup analyses for DM and DM duration were performed. The DM group showed a reverse linear relationship with ESRD risk at a baseline BMI value of 28.9 kg/m² (Fig. 3C) and a U-shape relationship with ESRD risk at a baseline WC of 94 cm (Fig. 3D). However, the non-DM subgroup analysis, both showed a U-shape relationship with ESRD risk at a baseline BMI value of 28.8 kg/m² and baseline WC of 93 cm (Fig. 3E&F).

In the DM duration subgroup analysis, being underweight was a risk factor in all four groups (normal, IFG patients, DM < 5 years, and DM ≥ 5 years) (Table 5). WC < 80 ~ 85/75 ~ 80 cm increased ESRD risk in only DM group (DM < 5 years and DM ≥ 5 years), not normal or IFG group (Table 6).
Table 5
Multivariate cox analysis for incident ESRD by level of BMI in underwent PCI patients (subgroup analysis for DM)

Group	BMI group	Total (n)	ESRD (n)	Duration	IR	HR (95% Confidence Interval)	Model1	Model2
Normal	< 18.5	1184	13	5571.95	2.3331	2.518(1.418–4.473)	1.925(1.072–3.456)	
	18.5 ~ 23	17675	113	95838.72	1.1791	1.295(0.997–1.682)	1.182(0.905–1.544)	
	23 ~ 25	16446	82	92519.63	0.8863	0.977(0.735–1.299)	0.952(0.715–1.266)	
	25 ~ 30	21698	112	123647.66	0.9058	1(ref.)	1(ref.)	
	30~	1936	13	10808.38	1.2028	1.327(0.747–2.357)	1.195(0.67–2.129)	
IFG	< 18.5	461	6	2100.27	2.8568	4.226(1.821–9.808)	3.052(1.292–7.211)	
	18.5 ~ 23	8509	51	45194.58	1.3497	2.034(1.415–2.923)	1.529(1.052–2.224)	
	23 ~ 25	9671	51	53667.81	0.9503	1.442(0.987–2.107)	1.348(0.92–1.977)	
	25 ~ 30	15171	56	85116.8	0.6579	1(ref.)	1(ref.)	
	30~	1773	13	9686.64	1.3421	2.027(1.108–3.705)	2.291(1.246–4.213)	
DM < 5yrs	< 18.5	180	3	816.72	3.6732	1.862(0.590–5.879)	1.985(0.623–6.318)	
	18.5 ~ 23	4135	91	21667.89	4.1998	2.191(1.643–2.921)	2.464(1.832–3.315)	
	23 ~ 25	5244	84	28794.88	2.9172	1.534(1.144–2.057)	1.629(1.211–2.191)	
	25 ~ 30	8925	95	50123.92	1.8953	1(ref.)	1(ref.)	
	30~	1364	13	7634.05	1.7029	0.898(0.503–1.603)	0.739(0.411–1.326)	
DM ≥ 5yrs	< 18.5	333	15	1410.16	10.6371	1.141(0.682–1.908)	1.369(0.817–2.294)	
	18.5 ~ 23	7119	368	34772.81	10.583	1.175(1.025–1.347)	1.327(1.156–1.523)	
	23 ~ 25	7020	348	36051.93	9.6527	1.081(0.941–1.242)	1.181(1.027–1.358)	
	25 ~ 30	10054	466	52333.06	8.9045	1(ref.)	1(ref.)	
	30~	1266	79	6449.09	12.2498	1.368(1.078–1.737)	1.178(0.925–1.498)	
P for trend					0.0031	<0.0001		

Abbreviations: BMI, body mass index; ESRD, end-stage renal disease; IR, incidence rate (per 1000 person-years); HR, hazard ratio; DM, diabetes mellitus BP; IFG, impaired fasting glucose; Model 1: crude model. Model 2: adjusted for age, sex. Income, diabetes mellitus, dyslipidemia, hypertension, smoking, alcohol drinking, regular exercise, glomerular filtration rate.
Table 6
Multivariate cox analysis for incident ESRD by level of WC in underwent PCI patients (subgroup analysis for DM)

Group	WC group	Total (n)	ESRD (n)	Duration	IR	HR (95% Confidence interval)	Model1	Model2
Normal	< 80/75	11889	46	59606.12	0.77	0.912(0.626–1.329)	1.211(0.879–1.669)	
	80 – 85/75 – 80	14446	46	74122.92	0.62	0.736(0.505–1.072)	0.813(0.59–1.12)	
	85 – 90/80 – 85	15430	66	78377.69	0.84	1(ref.)	1(ref.)	
	90 – 95/85 – 90	10243	35	51201.19	0.68	0.812(0.539–1.224)	0.867(0.621–1.211)	
	98 – 100/90 – 95	4689	20	22694.35	0.88	1.047(0.635–1.726)	1.482(0.961–2.285)	
	100~/95~	2242	18	10218.99	1.76	2.084(1.238–3.510)	1.482(0.961–2.285)	
IFG	< 80/75	5191	22	22482.26	0.98	1.164(0.679–1.997)	1.321(0.832–2.097)	
	80 – 85/75 – 80	8043	28	33992.97	0.82	0.986(0.596–1.632)	1.156(0.77–1.737)	
	85 – 90/80 – 85	9537	33	39475.19	0.84	0.926(0.532–1.617)	0.731(0.408–1.276)	
	90 – 95/85 – 90	7138	18	28653.87	0.63	0.754(0.424–1.338)	0.721(0.563–1.963)	
	98 – 100/90 – 95	3717	8	14123.92	1.97	1.87(0.945–3.701)	1.319(0.723–2.407)	
	100~/95~	1959	11	6982.17	1.58	1.87(0.945–3.701)	1.319(0.723–2.407)	
DM < 5yrs	< 80/75	2225	60	19074.79	3.15	1.717(1.234–2.387)	2.026(1.378–2.98)	
	80 – 85/75 – 80	3926	89	35726.35	2.49	1.368(1.017–1.84)	1.499(1.067,2.105)	
	85 – 90/80 – 85	5143	86	47325.53	1.82	1(ref.)	1(ref.)	
	90 – 95/85 – 90	4352	73	40526.83	1.80	0.992(0.726–1.355)	0.906(0.629–1.306)	
	98 – 100/90 – 95	2532	47	23253.69	2.02	1.114(0.781–1.590)	0.906(0.599–1.370)	
	100~/95~	1670	23	14219.43	1.62	0.888(0.561–1.407)	0.738(0.441,1.234)	
DM ≥ 5yrs	< 80/75	3314	195	17929.24	10.88	1.363(1.137–1.633)	1.431(1.187–1.726)	
	80 – 85/75 – 80	5222	279	28833.48	9.68	1.22(1.035–1.437)	1.245(1.050–1.477)	
	85 – 90/80 – 85	6629	294	37232.82	7.89	1(ref.)	1(ref.)	
	90 – 95/85 – 90	5375	274	29656.79	9.24	1.169(0.992–1.379)	0.948(0.800–1.124)	
	98 – 100/90 – 95	3111	162	17066.15	9.50	1.201(0.991–1.455)	1.068(0.877–1.300)	
	100~/95~	2141	149	11409.45	13.06	1.645(1.351–2.003)	1.141(0.930–1.400)	

P for trend 0.3804 0.0361

Abbrations, BMI, body mass index; ESRD, end-stage renal disease; IR, incidence rate (per 1000 person-years); HR, hazard ratio; DM, diabetes mellitus BP; IFG, impaired fasting glucose; Model 1: crude model. Model 2: adjusted for age, sex. Income, diabetes mellitus, dyslipidemia, hypertension, smoking, alcohol drinking, regular exercise, glomerular filtration rate.

Discussion

The present study demonstrated that underweight and low WC prior to PCI were associated with a higher risk of ESRD during a 5.4-year follow-up period after PCI. Moreover, this phenomenon was more obvious in the DM subgroup than in the non-DM group, especially in low WC case. This association persisted after multivariable adjustment for important potential confounders.

Generally, BMI, an internationally accepted standard anthropomorphic measurement, is used to define obesity in research settings [22]. Several studies have examined the association between BMI and the future risk of ESRD. Although the results are conflicting, most epidemiologic studies showed that a higher BMI was associated with an increased risk of kidney disease. Two large epidemiologic studies in the U.S. reported a positive association between BMI and ESRD, and these studies analyzed a broad spectrum of BMI among a large, diverse sample of participants with long-term follow-up for ESRD [11, 12]. It is presumed that a higher BMI is an independent risk factor for ESRD in any ethnic group.

However, the association between BMI with future risk for ESRD tends to be discordant in patients with renal impairment, and this population thus exhibits a so-called "obesity paradox." Specifically, although a high BMI is associated with all-cause mortality and decreased renal function in...
patients with earlier stages of CKD, this association is attenuated in patients with advanced CKD [23, 24]. In addition, a few studies also showed that patients with obesity paradoxically exhibited more favorable clinical outcomes with respect to in-hospital, short-, and long-term mortality than those without obesity after PCI [25–28]. Therefore, there are still controversies between BMI and the risk for future ESRD in PCI patients. We therefore considered that longitudinal studies are required to explore the actual relationship between BMI and the risk of ESRD. To the best our knowledge, this is the first nationwide cohort study that examines the relationship between lower BMI and ESRD risk in the Korean population prior to PCI. Our findings were inconsistent with most previous published studies, showing that underweight had the highest risk for ESRD in PCI patients.

Recently, measures of central or abdominal obesity, defined by the WC and waist-hip ratio, have been used as more important predictors to assess the mortality risk than BMI [29, 30]. WC, a representative marker of visceral body fat, was found to correlate with inflammation, whereas subcutaneous body fat may be an indicator of the nutritional status [31]. In patients with ESRD, multiple studies identified WC as a direct and strong predictor of mortality and incident cardiovascular events, even after adjusting for the BMI and other risk factors [32, 33]. In fact, many studies have shown that central obesity or abdominal adiposity measured by the WC was linearly associated with a higher risk of mortality after PCI [34]. However, our findings show that a WC under ~ 85/~80 cm showed the highest risk for future ESRD development. Increasing WC was also linearly associated with a lower risk of future ESRD development. However, unlike BMI, low WC prior to PCI was a risk for ESRD in the only DM group, suggesting that suggest that WC maybe more accurate than BMI to estimate the risk for ESRD in prior to PCI. Central obesity could be a risk factor for ESRD development in all the total, DM and non-DM groups, as well as the low WC group in our study.

The exact mechanisms by which a low WC presents a high risk for ESRD development in PCI patients are not known. High adiposity itself has been reported as a predictor of good prognosis among patients with coronary artery disease. Lavie et al. reported that a high percentage of body fat, which was measured using the sum of the skinfold method, was associated with a low mortality rate among patients with stable angina [35].

Study Limitations

There are some limitation in this study. First, we did not collect relevant information on the food habits or other comorbidities that might affect weight. Second, this study did not consider use of medications such as hypoglycemic agents or lipid lowering agents, and adherence to treatment. Third, we were unable to obtain more information about the causes of ESRD. Fourth, we used data from the NHIS checkup program in a Korean population; therefore, we cannot generalize the results to other ethnic groups. Fifth, although we monitored the subjects for 5.4 years, the time of follow-up is short for patients to develop ESRD.

Conclusions

To the best of our knowledge, this is the first study on the relationship between BMI and WC prior to PCI and ESRD development in a large general population using a well-established and validated longitudinal national database for around 5.4 years. Our study demonstrated that Underweight and low WC prior to PCI, which showed the increased ESRD risk in patients undergoing PCI, especially in those with DM.

Abbreviations

Abbreviation	Description
BMI	Body mass index
CKD	Chronic kidney disease
DM	Diabetes mellitus
eGFR	Estimated glomerular filtration rate
ESRD	End-stage renal disease
NHIS	National health insurance service
PCI	Percutaneous coronary intervention
IHD	Ischemic heart disease
WC	Waist circumference
WHO	World health organization
Declarations

Ethics approval and consent to participate
Not applicable

Consent for publication
All authors gave their consent for publication of this manuscript

Availability of data and materials
Not applicable.

Acknowledgments
None.

Funding
This research was supported by the Bio & Medical Development Program of the National Research Foundation (NRF) funded by the Korean government (MSIT) (2017M3A9E8023001), grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant number: HI18C0331), and by a grant (BCRI2002S&20076) of Chonnam National University Hospital Biomedical Research Institute.

Authors’ contributions
EHB and SYL wrote the first draft of the paper. All other authors provided editing assistance. All authors read and approved the final manuscript.

Disclosures
None.

References

1. Patterson RE, Frank LL, Kristal AR, White E. A comprehensive examination of health conditions associated with obesity in older adults. Am J Prev Med. 2004;27:385-90.
2. Yoon KH, Lee JH, Kim JW, Cho JH, Choi YH, Ko SH, et al. Epidemic obesity and type 2 diabetes in Asia. Lancet. 2006;368:1681-8.
3. An R, Ji M, Zhang S. Global warming and obesity: a systematic review. Obes Rev 2018;19:150-63.
4. Ramachandran A, Chamukuttan S, Shetty SA, Arun N, Susairaj P. Obesity in Asia—is it different from rest of the world. Diabetes Metab Res Rev. 2012;28 Suppl 2:47-51.
5. Prospective Studies C, Whitlock G, Lewington S, Sherliker P, Clarke R, Emberson J, et al. Body-mass index and cause-specific mortality in 900 000 adults: collaborative analyses of 57 prospective studies. Lancet. 2009;373:1083-96.
6. Nordestgaard BG, Palmer TM, Benn M, Zacho J, Tybjaerg-Hansen A, Davey Smith G, et al. The effect of elevated body mass index on ischemic heart disease risk: causal estimates from a Mendelian randomisation approach. PLoS Med. 2012;9:e1001212.
7. Manson JE, Colditz GA, Stampfer MJ, Willett WC, Rosner B, Monson RR, et al. A prospective study of obesity and risk of coronary heart disease in women. N Engl J Med. 1990;322:882-9.
8. Wang Y, Chen X, Song Y, Caballero B, Cheskin LJ. Association between obesity and kidney disease: a systematic review and meta-analysis. Kidney Int. 2008;73:19-33.
9. Vivante A, Golan E, Tzur D, Leiba A, Tirosh A, Skorecki K, et al. Body mass index in 1.2 million adolescents and risk for end-stage renal disease. Arch Intern Med. 2012;172:1644-50.
10. Mohammadi K, Chalmers J, Herrington W, Li Q, Mancia G, Marre M, et al. Associations between body mass index and the risk of renal events in patients with type 2 diabetes. Nutr Diabetes. 2018,8:7.
11. Hsu CY, McCulloch CE, Iribarren C, Darbinian J, Go AS. Body mass index and risk for end-stage renal disease. Ann Intern Med. 2006;144:21-8.
12. Fox CS, Larson MG, Leip EP, Culleton B, Wilson PW, Levy D. Predictors of new-onset kidney disease in a community-based population. JAMA. 2004;291:844-50.
13. Lin TY, Liu JS, Hung SC. Obesity and risk of end-stage renal disease in patients with chronic kidney disease: a cohort study. Am J Clin Nutr. 2018;108:1145-53.
14. Yang HK, Han K, Kwon HS, Park YM, Cho JH, Yoon KH, et al. Obesity, metabolic health, and mortality in adults: a nationwide population-based study in Korea. Sci Rep. 2016;6:30329.
Lee YH, Han K, Ko SH, Ko KS, Lee KU, Taskforce Team of Diabetes Fact Sheet of the Korean Diabetes A. Data Analytic Process of a Nationwide Population-Based Study Using National Health Information Database Established by National Health Insurance Service. Diabetes Metab J. 2016;40:79-82.

Lee J, Lee JS, Park SH, Shin SA, Kim K. Cohort Profile: The National Health Insurance Service-National Sample Cohort (NHIS-NSC), South Korea. Int J Epidemiol. 2017; 46:e15.

World Health Organization. The Asia-Pacific Perspective: Redefining Obesity and Its Treatment; International Association for the Study of Obesity; Health Communications Australia: Sydney, Australia 2000

Lee SY, Park HS, Kim DJ, Han JH, Kim SM, Cho GJ, et al. Appropriate waist circumference cutoff points for central obesity in Korean adults. Diabetes Res Clin Pract.2007;75:72-80.

Kim ES, Jeong JS, Han K, Kim MK, Lee SH, Park YM, et al. Impact of weight changes on the incidence of diabetes mellitus: a Korean nationwide cohort study. Sci Rep. 2018; 8:3735.

Noh J, Han KD, Ko SH, Ko KS, Park CY. Trends in the pervasiveness of type 2 diabetes, impaired fasting glucose and co-morbidities during an 8-year-follow-up of nationwide Korean population. Sci Rep. 2017;7:46656.

Koo DH, Han KD, Park CY. The Incremental Risk of Pancreatic Cancer According to Fasting Glucose Levels: Nationwide Population-Based Cohort Study. J Clin Endocrinol Metab. 2019;104:4594-9.

Engin A. The Definition and Prevalence of Obesity and Metabolic Syndrome. Adv Exp Med Biol. 2017;960:1-17.

Ahmadi SF, Zahmatkesh G, Ahmadi E, Streja E, Rhee CM, Gillen DL, et al. Association of Body Mass Index with Clinical Outcomes in Non-Dialysis-Dependent Chronic Kidney Disease: A Systematic Review and Meta-Analysis. Cardiorenal Med. 2015;6:37-49.

Lee SY, Park HS, Kim DJ, Han JH, Kim SM, Cho GJ, et al. Appropriate waist circumference cutoff points for central obesity in Korean adults. Diabetes Res Clin Pract. 2007;75:72-80.

Kim ES, Jeong JS, Han K, Kim MK, Lee SH, Park YM, et al. Impact of weight changes on the incidence of diabetes mellitus: a Korean nationwide cohort study. Sci Rep. 2018; 8:3735.

Noh J, Han KD, Ko SH, Ko KS, Park CY. Trends in the pervasiveness of type 2 diabetes, impaired fasting glucose and co-morbidities during an 8-year-follow-up of nationwide Korean population. Sci Rep. 2017;7:46656.

Koo DH, Han KD, Park CY. The Incremental Risk of Pancreatic Cancer According to Fasting Glucose Levels: Nationwide Population-Based Cohort Study. J Clin Endocrinol Metab. 2019;104:4594-9.

Engin A. The Definition and Prevalence of Obesity and Metabolic Syndrome. Adv Exp Med Biol. 2017;960:1-17.

Ahmadi SF, Zahmatkesh G, Ahmadi E, Streja E, Rhee CM, Gillen DL, et al. Association of Body Mass Index with Clinical Outcomes in Non-Dialysis-Dependent Chronic Kidney Disease: A Systematic Review and Meta-Analysis. Cardiorenal Med. 2015;6:37-49.

Lu JL, Kalantar-Zadeh K, Ma JZ, Kovesdy CP. Association of body mass index with outcomes in patients with CKD. J Am Soc Nephrol. 2014;25:2088-96.

Dhoot J, Tariq S, Erande A, Amin A, Patel P, Malik S. Effect of morbid obesity on in-hospital mortality and coronary revascularization outcomes after acute myocardial infarction in the United States. Am J Cardiol. 2013;111:1104-10.

Ellis SG, Elliott J, Horrigan M, Raymond RE, Howell G. Low-normal or excessive body mass index: newly identified and powerful risk factors for death and other complications with percutaneous coronary intervention. Am J Cardiol. 1996;78:642-6.

Gruberg L, Weissman NJ, Waksman R, Fuchs S, Deible R, Pinnow EE, et al. The impact of obesity on the short-term and long-term outcomes after percutaneous coronary intervention: the obesity paradox? J Am Coll Cardiol. 2002;39:578-4.

Oreopoulos A, Padwal R, Norris CM, Mullen JC, Pretorius V, Kalantar-Zadeh. Effect of obesity on short- and long-term mortality postcoronary revascularization: a meta-analysis. Obesity (Silver Spring). 2008;16:442-50.

Kim YH, Kim SM, Han KD, Jung JH, Lee SS, Oh SW, et al. Waist Circumference and All-Cause Mortality Independent of Body Mass Index in Korean Population from the National Health Insurance Health Checkup 2009-2015. J Clin Med. 2019;8.

Kittiskulnam P, Johansen KL. The obesity paradox: A further consideration in dialysis patients. Semin Dial. 2019;32:485-9.

Delgado C, Chertow GM, Kaysen GA, Dalrymple LS, Komak J, Grimes B, et al. Associations of Body Mass Index and Body Fat With Markers of Inflammation and Nutrition Among Patients Receiving Hemodialysis. Am J Kidney Dis. 2017;70:817-25.

Postorino M, Marino C, Tripepi G, Zoccali C, Group CW. Abdominal obesity and all-cause and cardiovascular mortality in end-stage renal disease. J Am Coll Cardiol. 2009;53:1265-72.

Postorino M, Marino C, Tripepi G, Zoccali C, Group CW. Abdominal obesity modifies the risk of hypertriglyceridemia for all-cause and cardiovascular mortality in hemodialysis patients. Kidney Int. 2011;79:765-72.

Coutinho T, Goel K, Correa de Sa D, Kragelund C, Kanaya AM, Zeller M, et al. Central obesity and survival in subjects with coronary artery disease: a systematic review of the literature and collaborative analysis with individual subject data. J Am Coll Cardiol. 2011;57:1877-86.

Lavie CJ, De Schutter A, Patel DA, Romero-Corral A, Artham SM, Milani RV. Body composition and survival in stable coronary heart disease: impact of lean mass index and body fat in the "obesity paradox". J Am Coll Cardiol. 2012;60:1374-80.
270,237 people underwent PCI in the Korean NHI database in 2010~2015

143,981 patients with checking BP within at least 2-years prior to PCI

Exclude:
- age<20: 254
- Variable data missing: 2,440
- Previous ESRD: 1,123

Eligible subjects (n=140,164) were assigned into 5 or 6 groups according to the distribution of BMI or WC

- BMI<18.5 (n=2,158)
- 18.5-23 (n=37,438)
- 23-25 (n=38,381)
- 25-30 (n=55,848)
- BMI≥30 (n=6,339)
- WC<80/-75 (n=22,619)
- 80-85/75-80 (n=31,637)
- 85-90/80-85 (n=36,739)
- 90-95/85-90 (n=27,108)
- 95-100/90-95 (n=14,049)
- WC≥110/-95- (n=8,012)

Figure 1
Flow diagram of the study. Abbreviations: PCI, Percutaneous coronary intervention. NHI, National health insurance; ESRD, End-stage renal disease; BMI, body mass index; WC, Waist circumference.
Figure 2

Incidence rates, hazard ratios, and 95% confidence intervals of end-stage renal disease by body mass index (A) and waist circumference (B). Adjusted for age, sex, income-low 25%, diabetes mellitus, hypertension, dyslipidemia, current smoker, alcohol consumption, regular exercise, and eGFR.

Figure 3

Cubic spline curves depicting the relationship between body mass index or waist circumference and end-stage renal disease risk in total (A&B), DM (C&D), and none-DM (D&F) subgroup. Abbreviations: DM, Diabetes mellitus. Adjusted for age, sex, income, DM, dyslipidemia, and hypertension, smoking, alcohol drinking, physical activity, and eGFR.