Holography and Rotating AdS Black Holes

David S. Berman1* and Maulik K. Parikh2†

1Institute for Theoretical Physics, University of Utrecht,
Princetonplein 5, 3584 CC Utrecht, The Netherlands

2Spinoza Institute, University of Utrecht,
P. O. Box 80 195, 3508 TD Utrecht, The Netherlands

Abstract

We probe the AdS/CFT correspondence by comparing the thermodynamics of a rotating black hole in five-dimensional anti-de Sitter space with that of a conformal field theory on S^3, whose parameters come from the boundary of spacetime. In the high temperature limit, we find agreement between gauge theory and gravity in all thermodynamic quantities up to the same factor of $4/3$ that appears for nonrotating holes.

PACS: 04.70.Dy, 11.15.-q, 11.25.-w, 11.25.Hf

I. INTRODUCTION

One of the hallmarks of the duality revolution in string theory has been the linking of apparently unrelated areas in physics via unexpected pathways. The AdS/CFT correspondence \cite{1} is a striking example of this; by analyzing Dirichlet three-branes, it connects

*d.berman@phys.uu.nl

†m.parikh@phys.uu.nl
gravity in a particular background to a strongly coupled gauge theory. More specifically, the correspondence says that IIB string theory in a background of five-dimensional anti-de Sitter space times a five-sphere is dual to the large N limit of $\mathcal{N} = 4$ supersymmetric Yang-Mills theory in four dimensions. (See [2] for an extensive review of this vast subject.)

From a supergravity point of view, a Dirichlet p-brane is simply a charged extended black hole. Moreover, the string theory description of D-branes allows one to determine its world-volume action; to lowest order in α' this is super Yang-Mills. In earlier work [3], the entropy of the black brane solution was correctly given to within a numerical coefficient by the entropy of the field theory on the brane. Later, this match was extended to the case of rotating branes [4–8].

The AdS/CFT correspondence extends the relationship between gauge theory and gravity from providing a description of a particular brane solution to describing the physics of the entire supergravity background by a dual conformal field theory in one dimension less. As such this realizes the principle of holography [9,10], the notion that the physics of the bulk is imprinted on its boundary.

Black holes provide an arena in which this correspondence between gravity and gauge theory may be examined. For nonrotating AdS black holes [11], the thermodynamics has been described by thermal conformal field theory [12]. Recently a five-dimensional rotating black hole embedded in anti-de Sitter space has been discovered [13]. Since rotation introduces an extra dimensionful parameter, the conformal field theory entropy is not so tightly constrained by the combination of extensivity and dimensional analysis; a successful correspondence between thermodynamic quantities is much more nontrivial. Our purpose in this paper, therefore, is to probe the correspondence by extracting the thermodynamics of the new rotating black hole from a dual conformal field theory in four dimensions.

We begin by demonstrating the holographic nature of the duality for nonrotating black holes: the thermodynamics of a nonrotating black hole in anti-de Sitter space emerges from a thermal conformal field theory whose thermodynamic variables are read off from the boundary of the black hole spacetime. In the high temperature limit, the field theory
calculation gives the correct entropy of the Hawking-Page black hole up to a factor of 4/3.

We then describe the new rotating Kerr-AdS black hole solution and show how its thermodynamic properties can be recovered from the dual field theory, in the high temperature limit. In that limit, the entropy, energy and angular momentum, as derived from the statistical mechanics of the field theory, all agree with their gravitational counterparts, again up to a common factor of 4/3.

II. ADS/CFT CORRESPONDENCE FOR NONROTATING HOLES

The five-dimensional Einstein-Hilbert action with a cosmological constant is given by

\[I = -\frac{1}{16\pi G_5} \int d^5 x \sqrt{-g} \left(R + 12l^2 \right) , \tag{1} \]

where \(G_5 \) is the five-dimensional Newton constant, \(R \) is the Ricci scalar, the cosmological constant is \(\Lambda = -6l^2 \), and we have neglected a surface term at infinity. Anti-de Sitter solutions derived from this action can be embedded in ten-dimensional IIB supergravity such that the supergravity background is of the form \(\text{AdS}_5 \times S^5 \). The AdS/CFT correspondence then states that there is a dual conformal field theory in four dimensions from which one can extract the physics.

The line element of a “Schwarzschild” black hole in anti-de Sitter space \([11]\) in five spacetime dimensions can be written as

\[ds^2 = - \left(1 - \frac{2MG_5}{r^2} + r^2l^2 \right) dt^2 + \left(1 - \frac{2MG_5}{r^2} + r^2l^2 \right)^{-1} dr^2 + r^2 d\Omega_3^2 . \tag{2} \]

This solution has a horizon at \(r = r_+ \) where

\[r_+^2 = \frac{1}{2l^2} \left(-1 + \sqrt{1 + 8MG_5l^2} \right) . \tag{3} \]

The substitution \(\tau = it \) makes the metric positive definite and, by the usual removal of the conical singularity at \(r_+ \), yields a periodicity in \(\tau \) of

\[\beta = \frac{2\pi r_+}{1 + 2r_+^2l^2} , \tag{4} \]
which is identified with the inverse temperature of the black hole. The entropy is given by

\[S = \frac{A}{4G_5} = \frac{\pi^2 r_+^3}{2G_5}, \tag{5} \]

where \(A \) is the “area” (that is 3-volume) of the horizon.

We shall take the dual conformal field theory to be \(\mathcal{N} = 4 \), U(N) super-Yang-Mills theory. But since it is only possible to do calculations in the weak coupling regime, we shall consider only the free field limit of Yang-Mills theory. Then, in the high-energy regime which dominates the state counting, the spectrum of free fields on a sphere is essentially that of blackbody radiation in flat space, with \(8N^2 \) bosonic and \(8N^2 \) fermionic degrees of freedom. The entropy is therefore

\[S_{\text{CFT}} = \frac{2}{3} \pi^2 N^2 V_{\text{CFT}} T_{\text{CFT}}^3. \tag{6} \]

We would like to evaluate this “holographically”, i.e. by substituting physical data taken from the boundary of the black hole spacetime. At fixed \(r \equiv r_0 \gg r_+ \), the boundary line element tends to

\[ds^2 \rightarrow r_0^2 \left[-l^2 dt^2 + d\Omega_3^2 \right]. \tag{7} \]

The physical temperature at the boundary is consequently red-shifted to

\[T_{\text{CFT}} = \frac{T_{\text{BH}}}{\sqrt{-g_{tt}}} = \frac{T_{\text{BH}}}{l r_0}, \tag{8} \]

while the volume is

\[V_{\text{CFT}} = 2\pi^2 r_0^3. \tag{9} \]

To obtain an expression for \(N \), we invoke the AdS/CFT correspondence. Originating in the near horizon geometry of the D3-brane solution in IIB supergravity, the correspondence [\[1\]], relates \(N \) to the radius of \(S^5 \) and the cosmological constant:

\[R_{S^5}^2 = \sqrt{4\pi g_s \alpha'^2} N = \frac{1}{l^2}. \tag{10} \]
Then, since
\[
(2\pi)^7 g_s^2 \alpha'^4 = 16\pi G_{10} = 16 \frac{\pi^4}{l_5^3} G_5 ,
\]
we have
\[
N^2 = \frac{\pi}{2l^3 G_5} .
\]
Substituting the expressions for \(N\), \(V_{\text{CFT}}\) and \(T_{\text{CFT}}\) into Eq. (3), we obtain
\[
S_{\text{CFT}} = \frac{1}{12} \frac{\pi^2}{l^6 G_5} \left(\frac{1 + 2r_+^2 l^2}{r_+} \right)^3 ,
\]
which, in the high temperature limit \(r_+ l \gg 1\), reduces to
\[
S_{\text{CFT}} = \frac{2}{3} \frac{\pi^2 r_+^3}{G_5} = \frac{4}{3} S_{\text{BH}} ,
\]
in agreement with the black hole result, Eq. (5), but for a numerical factor of 4/3.

Similarly, the red-shifted energy of the conformal field theory matches the black hole mass, modulo a coefficient. The mass above the anti-de Sitter background is
\[
M' = \frac{3\pi}{4} M .
\]
This is the AdS equivalent of the ADM mass, or energy-at-infinity. The corresponding expression in the field theory is
\[
U_{\text{CFT}}^\infty = \sqrt{-g_\mu} \frac{\pi^2}{2} N^2 V_{\text{CFT}} T_{\text{CFT}}^4 = \frac{\pi^4}{2} r_+^4 l^2 = \frac{4}{3} M' ,
\]
where \(U_{\text{CFT}}^\infty\) is the conformal field theory energy red-shifted to infinity, and we have again taken the \(r_+ l \gg 1\) limit. The 4/3 discrepancy in Eqs. (3) and (14) is construed to be an artifact of having calculated the gauge theory entropy in the free field limit rather than in the strong coupling limit required by the correspondence; intuitively, one expects the free energy to decrease when the coupling increases. The 4/3 factor was first noticed in the context of D3-brane thermodynamics [3]. Our approach differs in that we take the idea of holography at face value, by explicitly reading physical data from the boundary of spacetime; nonetheless, Eq. (12) refers to an underlying brane solution.
At this level, the correspondence only goes through in the high temperature limit. Since the only two scales in the thermal conformal field theory are r_0 and T_{CFT}, high temperature means that $T_{\text{CFT}} \gg 1/r_0$, allowing us to neglect finite-size effects.

III. FIVE-DIMENSIONAL ROTATING ADS BLACK HOLES

The general rotating black hole in five dimensions has two independent angular momenta. Here we consider the case of a rotating black hole with one angular momentum in an ambient AdS space. The line element is

\[
\begin{align*}
 ds^2 &= \frac{-\Delta}{\rho^2} \left(dt - \frac{a \sin^2 \theta}{\Xi} d\phi \right)^2 + \frac{\Delta \sin^2 \theta}{\rho^2} \left(a dt - \frac{(r^2 + a^2)}{\Xi} d\phi \right)^2 \\
 &\quad + \frac{\rho^2}{\Delta} dr^2 + \frac{\rho^2}{\Delta \theta} d\theta^2 + r^2 \cos^2 \theta d\psi^2 ,
\end{align*}
\]

where $0 \leq \phi, \psi \leq 2\pi$ and $0 \leq \theta \leq \pi/2$, and

\[
\begin{align*}
 \Delta &= (r^2 + a^2) \left(1 + r^2 l^2 \right) - 2MG_5 \\
 \Delta \theta &= 1 - a^2 l^2 \cos^2 \theta \\
 \rho^2 &= r^2 + a^2 \cos^2 \theta \\
 \Xi &= 1 - a^2 l^2 .
\end{align*}
\]

This solution is an anti-de Sitter space with curvature given by

\[
R_{ab} = -4l^2 \, g_{ab} .
\]

The horizon is at

\[
r_+^2 = \frac{1}{2l^2} \left(-(1 + a^2 l^2) + \sqrt{(1 + a^2 l^2)^2 + 8MG_5 l^2} \right) ,
\]

which can be inverted to give

\[
MG_5 = \frac{1}{2}(r_+^2 + a^2)(1 + r_+^2 l^2) .
\]

The entropy is one-fourth the “area” of the horizon:
\[S = \frac{1}{2G_5} \frac{\pi^2 \left(r_+^2 + a^2 \right) r_+}{(1 - a^2 l^2)}. \]

(22)

The entropy diverges in two different limits: \(r_+ \to \infty \) and \(a^2 l^2 \to 1 \). The first of these describes an infinite temperature and infinite radius black hole, while the second corresponds to “critical angular velocity”, at which the Einstein universe at infinity has to rotate at the speed of light. The inverse Hawking temperature is

\[\beta = \frac{2\pi \left(r_+^2 + a^2 \right)}{r_+ (1 + a^2 l^2 + 2r_+^2 l^2)}. \]

(23)

The mass above the anti-de Sitter background is now

\[M' = \frac{3\pi}{4\Xi} M, \]

(24)

the angular velocity at the horizon is

\[\Omega_H = \frac{a \Xi}{r_+^2 + a^2}, \]

(25)

and the angular momentum is defined as

\[J_\phi = \frac{1}{16\pi} \int_S \epsilon_{abcd} \nabla^d \psi^e dS^{abc} = \frac{\pi Ma}{2\Xi^2}, \]

(26)

where \(\psi^a = \left(\frac{\partial}{\partial \phi} \right)^a \) is the Killing vector conjugate to the angular momentum in the \(\phi \) direction, and \(S \) is the boundary of a hypersurface normal to \(\left(\frac{\partial}{\partial t} \right)^a \), with \(dS^{abc} \) being the volume element on \(S \).

Following methods discussed in [11,14], one can derive a finite action for this solution from the regularized spacetime volume after an appropriate matching of hypersurfaces at large \(r \). The result is

\[I = \frac{\pi^2 \left(r_+^2 + a^2 \right)^2 (1 - r_+^2 l^2)}{4G_5 \Xi r_+ (1 + a^2 l^2 + 2r_+^2 l^2)}. \]

(27)

As noted in [14], the action changes sign at \(r_+ l = 1 \), signalling the presence of a phase transition in the conformal field theory. For \(r_+ l > 1 \), the theory is in an unconfined phase and has a free energy proportional to \(N^2 \). One can also check that the action satisfies the thermodynamic relation.
\[S = \beta(M' - J_\phi \Omega_H) - I . \] (28)

It is interesting to note that, by formally dividing both the free energy, \(F = I/\beta \), and the mass by an arbitrary volume, one obtains an equation of state:

\[p = \frac{1}{3} r_+^2 l^2 - \frac{1}{3} \rho , \] (29)

where \(p = -F/V \) is the pressure, and \(\rho \) is the energy density. In the limit \(r_+l \gg 1 \) that we have been taking, this equation becomes

\[p = \frac{1}{3} \rho , \] (30)

as is appropriate for the equation of state of a conformal theory. This suggests that if a conformal field theory is to reproduce the thermodynamic properties of this gravitational solution, it has to be in such a limit.

IV. THE DUAL CFT DESCRIPTION

The gauge theory dual to supergravity on \(AdS_5 \times S^5 \) is \(\mathcal{N} = 4 \) super Yang-Mills with gauge group \(U(N) \) where \(N \) tends to infinity \([1]\). The action is

\[S = \int d^4x \sqrt{g} \, \text{Tr} \left(\frac{1}{4g^2} F^2 + \frac{1}{2} (D\Phi)^2 + \frac{1}{12} R \Phi^2 + \bar{\psi} D \psi \right) . \] (31)

All fields take values in the adjoint representation of \(U(N) \). The six scalars, \(\Phi \), transform under \(SO(6) \) R-symmetry, while the four Weyl fermions, \(\psi \), transform under \(SU(4) \), the spin cover of \(SO(6) \). The scalars are conformally coupled; otherwise, all fields are massless. We shall again take the free field limit. The angular momentum operators can be computed from the relevant components of the stress energy tensor in spherical coordinates. This approach is to be contrasted with \([3, 8, 15]\) in which generators of R-rotations are used corresponding to spinning D-branes.

The free energy of the gauge theory is given by

\[F_{\text{CFT}} = +T_{\text{CFT}} \sum_i \eta_i \int_0^{\infty} dl_i \int dm_i^\phi \int dm_i^\psi \ln \left(1 - \eta_i e^{-\beta(\omega_i - m_i^\psi \Omega_\phi)} \right) , \] (32)
where \(i \) labels the particle species, \(\eta = +1 \) for bosons and -1 for fermions, \(l_i \) is the quantum number associated with the total orbital angular momentum of the \(i \)th particle, and \(m_i^{\phi(\psi)} \) is its angular momentum component in the \(\phi(\psi) \) direction. Here \(\Omega \) plays the role of a “voltage” while the “chemical potential” \(m^\phi \Omega \) serves to constrain the total angular momentum of the system.

The free energy is easiest to evaluate in a corotating frame, which corresponds to the constant-time foliation choice of hypersurfaces orthogonal to \(t^a \). Since, at constant \(r = r_0 \), the boundary has the metric

\[
ds^2 = r_0^2 \left[-l^2 dt^2 + \frac{2a l^2 \sin^2 \theta}{\Xi} dt d\phi + \frac{\sin^2 \theta}{\Xi} d\phi^2 + \frac{d\theta^2}{\Delta_\theta} + \cos^2 \theta d\psi^2 \right],
\]

the constant-time slices of the corotating frame have a spatial volume of

\[
V = \frac{2\pi^2 r_0^3}{1 - a^2 l^2}.
\]

The spectrum of a conformally coupled field on \(S^3 \) is essentially given by

\[
\omega_l \sim \frac{l}{r_0},
\]

where \(l \) is the quantum number for total orbital angular momentum. Eq. (32) can now be evaluated by making use of the identities

\[
\int_0^\infty dx x^n \ln \left(1 - e^{-x+c} \right) = -\Gamma(n+1)\text{Li}_{n+2}(e^c) = -\Gamma(n+1) \sum_{k=1}^{\infty} \frac{e^{kc}}{k^{n+2}},
\]

\[
\int dx x \text{Li}_2(e^{-ax+c}) = -\frac{1}{a^2} \left[ax \text{Li}_3(e^{-ax+c}) + \text{Li}_4(e^{-ax+c}) \right],
\]

where \(\text{Li}_n \) is the \(n \)th polylogarithmic function, defined by the sum above. The result is

\[
F_{\text{CFT}} = -\frac{\pi^4}{24} \frac{r_0}{r_0^3 - \Omega^2} (8N^2) T_{\text{CFT}}^4,
\]

yielding an entropy of

\[
S_{\text{CFT}} = \frac{2}{3} \frac{\pi^5}{l^3 G_5} \frac{r_0^3}{1 - \Omega^2 r_0^2} T_{\text{CFT}}^3.
\]

The physical temperature that enters the conformal field theory is
\[T_{\text{CFT}} = \frac{1}{l r_0} T_{\text{BH}} . \]

(39)

Similarly, the angular velocity is scaled to

\[\Omega_{\text{CFT}} = \frac{a l^2}{l r_0} . \]

(40)

Substituting Eqs. (39) and (40) into Eq. (38) and taking the high temperature limit as before, we have

\[S_{\text{CFT}} = \frac{2}{3G_5} \frac{\pi^2 r_+^3}{(1 - a^2 l^2)} = \frac{4}{3} S_{\text{BH}} . \]

(41)

The inclusion of rotation evidently does not affect the ratio of the black hole and field theory entropies.

In the corotating frame, the free energy is simply of the form \(N^2 V T^4 \), with the volume given by Eq. (34). However, with respect to a nonrotating AdS space, the free energy takes a more complicated form since now the volume is simply \(2\pi r_0^3 \). By keeping this volume and the temperature fixed, one may calculate the angular momentum of the system with respect to the nonrotating background:

\[J_{\phi}^{\text{CFT}} = -\frac{\partial F}{\partial \Omega} \bigg|_{V,T_{\text{CFT}}} = \frac{a r_+^4 \pi \left(1 + a^2 l^2 + 2 r_+ l^2 \right)^4}{48 l^6 \Xi^2 (r_+^2 + a^2)^4} . \]

(42)

In the usual \(r_+ l \gg 1 \) limit, we obtain

\[J_{\phi}^{\text{CFT}} = \frac{2\pi M a}{3 \Xi^2} = \frac{4}{3} J_{\phi}^{\text{BH}} , \]

(43)

so that the gauge theory angular momentum is proportional to the black hole angular momentum, Eq. (26), with a factor of 4/3.

The black hole mass formula, Eq. (24), refers to the energy above the nonrotating anti-de Sitter background. We should therefore compare this quantity with the red-shifted energy in the conformal field theory. Here a slight subtlety enters. Since the statistical mechanical calculation gives the energy in the corotating frame, we must add the center-of-mass rotational energy before comparing with the black hole mass. Then we find that
\[U_{\text{CFT}}^\infty = \sqrt{-g_{tt}} \left(U_{\text{corotating}} + J_{\text{CFT}} \Omega_{\text{CFT}} \right) = \frac{4}{3} M', \]

(44)

with \(M' \) given by Eq. (24), evaluated at high temperature. Using \(U_{\text{CFT}}^\infty = \sqrt{-g_{tt}} U_{\text{CFT}} \) and previous expressions for thermodynamic quantities, one may check that the first law of thermodynamics is satisfied.

V. DISCUSSION

There are two interesting aspects of these results. The first is that the same relative factor that appears in the entropy appears in the angular momentum and the energy. A priori, one has no reason to believe that the functional form of the free energy will be such as to guarantee this result (see, for example, [6]). The second is that the relative factor of 4/3 in the entropy is unaffected by rotation. Indeed, one could expand the entropy of the rotating system in powers and inverse powers of the 't Hooft coupling. The correspondence implies that

\[S_{\text{CFT}} = \sum_m a_m \lambda^m = \sum_n b_n \left(\frac{1}{\sqrt{\lambda}} \right)^n = S_{\text{BH}}. \]

(45)

We may approximate the series on the gauge theory side as \(a_0 \) and on the gravity side as \(b_0 \). Then, generically, we would expect these coefficients to be functions of the dimensionless rotational parameter \(\Xi \) so that \(a_0(\Xi) = f(\Xi) b_0(\Xi) \) with \(f(\Xi = 1) = 4/3 \). Our somewhat unexpected result is that \(f(\Xi) = 4/3 \) has, in fact, no dependence on \(\Xi \).

VI. ACKNOWLEDGMENTS

We would like to thank José Barbón, Roberto Emparan, and Kostas Skenderis for helpful discussions. D. B. is supported by European Commission TMR programme ERBFMRX-CT96-0045. M. P. is supported by the Netherlands Organization for Scientific Research (NWO).
REFERENCES

[1] J. Maldacena, “The Large N Limit of Superconformal field theories and supergravity,” Adv. Theor. Math. Phys. 2 (1998) 231, [hep-th/9711200].

[2] O. Aharony, S. S. Gubser, J. Maldacena, H. Ooguri, and Y. Oz, “Large N Field Theories, String Theory and Gravity,” [hep-th/9905111].

[3] S. S. Gubser, I. R. Klebanov, and A. W. Peet, “Entropy and temperature of black 3-branes,” Phys. Rev. D 54 (1996) 3915, [hep-th/9602135].

[4] A. Chamblin, R. Emparan, C. V. Johnson, and R. C. Myers, “Charged AdS Black Holes and Catastrophic Holography,” [hep-th/9902170].

[5] A. Chamblin, R. Emparan, C. V. Johnson, and R. C. Myers, “Holography, Thermodynamics and Fluctuations of Charged AdS Black Holes,” [hep-th/9904197].

[6] S. S. Gubser, “Thermodynamics of spinning D3-branes,” Nucl. Phys. B551 (1999) 667, [hep-th/9810224].

[7] M. Cvetić and S. S. Gubser, “Thermodynamic Stability and Phases of General Spinning Branes,” [hep-th/9903132].

[8] M. Cvetić and S. S. Gubser, “Phases of R-charged Black Holes, Spinning Branes and Strongly Coupled Gauge Theories,” JHEP 9904 (1999) 024, [hep-th/9902195].

[9] G. ’t Hooft, “Dimensional Reduction in Quantum Gravity,” University of Utrecht preprint THU-93/26, [gr-qc/9310026].

[10] L. Susskind, “The World as a Hologram,” J. Math. Phys. 36 (1995) 6377, [hep-th/9409089].

[11] S. W. Hawking and D. N. Page, “Thermodynamics of Black Holes in Anti-de Sitter Space,” Commun. Math. Phys. 87 (1983) 577, [hep-th/9811056].
[12] E. Witten, “Anti de Sitter Space and Holography,” Adv. Theor. Math. Phys. 2 (1998) 253, hep-th/9802150.

[13] S. W. Hawking, C. J. Hunter, and M. M. Taylor-Robinson, “Rotation and the AdS/CFT correspondence,” Phys. Rev. D 59 (1999) 064005, hep-th/9811050.

[14] E. Witten, “Anti-de Sitter Space, Thermal Phase Transition, And Confinement In Gauge Theories,” Adv. Theor. Math. Phys. 2 (1998) 505, hep-th/9803131.

[15] M. Cvetič and F. Larsen, “Near Horizon Geometry of Rotating Black Holes in Five Dimensions,” Nucl. Phys. B531 (1998) 239, hep-th/9805097.