A case with a giant interatrial septal lipomatous hypertrophy, and thickened epicardial and visceral fat: Different faces of a common metabolic problem?

Gülşüm Kılıçkap
Department of Radiology, Yıldırım Beyazıt University, Yenimahalle Training and Research Hospital; Ankara-Turkey

Introduction

Interatrial septal lipomatous hypertrophy (ISLH) is a rare benign disorder characterized by fat deposition in the interatrial septum. It is an uncapsulated smooth mass that should be considered in the differential diagnosis of atrial masses. It is usually observed in the elderly and obese people, and it is more common in women than in men (1). Although arrhythmia and symptoms due to obstruction related to ISHL have been reported, it is usually asymptomatic and diagnosed incidentally. In many cases, diagnosis can be made by echocardiography alone if the mass has a typical appearance. Otherwise, multislice computed tomography (MSCT) or magnetic resonance imaging (MRI) may be required to determine the fat content.

Here, we report a case with a giant ISLH occupying the right atrial cavity along with a highly thickened epicardial and abdominal visceral fat tissue, suggesting that all of them may be a different presentations of a common metabolic problem.

Case Report

A 64-year-old male was sent to our Radiology Department for a MSCT pulmonary angiography (CTPA) to rule out possible pulmonary embolism. He was obese and had a history of chronic obstructive pulmonary disease and hypertension. He also had a metabolic syndrome due to hypertension, abdominal obesity, and hypertriglyceridemia. CTPA images (General Electric, brightspeed, 16 slices CT scanner) were obtained by administering a 75-mL bolus of intravenous iodine contrast at a rate of 4.5 mL/second. CTPA revealed no pulmonary embolism. However, an incidental fat-density mass (−90 HU on average) located in the interatrial septum extending to the right atrial cavity was seen (Fig. 1a, 1b). The mass was 5×4.5×4 cm in size and had a smooth contour. Characteristic dumbbell-shaped mass sparing the fossa ovalis was observed on CT and echocardiographic im-

Figure 1. A giant interatrial septal lipomatous hypertrophy occupying the right atrial cavity (Fig. 1a and 1b) that has a characteristic dumbbell-shape appearance (Fig. 1c). Increased visceral fat thickness can also be observed in Figure 1b.
tous changes and cicatricial bronchiectasis was observed in both pulmonary parenchyma.

Discussion

ISLH is characterized by lipid accumulation in the interatrial septum (2). As the fossa ovalis is spared, characteristic dumbbell-shaped appearance is observed in the images (3). Although different cut-off values have been proposed, the thickness of the interatrial septum is usually required to be >2 cm in ISLH (4). It was first described at postmortem examination by Prior in 1964 (5). The incidence is estimated to be 1%-8% (3). It should be considered in the differential diagnosis of atrial masses such as myxomas or lipomas. However, typical appearance is usually diagnostic.

We present a patient with obesity, metabolic syndrome, and a huge ISLH occupying the right atrial cavity. Although ISLH can be observed in daily practice, it is not common to see such a big ISLH. Moreover, in this case, ISLH was associated with a severely thickened epicardial and abdominal visceral fat tissue, suggesting a common metabolic problem might be involved in the development of all of these pathologies.

The exact etiopathogenesis is unknown. However, it has been proposed that mesenchymal cells that are entrapped in the interatrial septum during embryological development transformed to mature adipocytes in the presence of an appropriate stimulus (6). ISLH is usually observed in obese patients and is associated with the thickened epicardial tissue (1). Therefore, an appropriate stimulus might be a metabolic problem caused by lifestyle or genetic factors. Therefore, we think that this case is interesting not only for the size of ISLH occupying the right atrial cavity but also for a hypothesis-generating observation that requires scrutinized clinical research.

Conclusion

This patient had a huge ISLH and severely thickened epicardial and visceral fat tissue, and it might be suggested that ISLH is a part of a common metabolic problem.

References

1. Shirani J, Roberts WC. Clinical, electrocardiographic and morphologic features of massive fatty deposits ("lipomatous hypertrophy") in the atrial septum. J Am Coll Cardiol 1993; 22: 226-38.
2. Ayan K, De Boeck B, Velthuis BK, Schaap AJ, Cramer MJ. Lipomatous hypertrophy of the interatrial septum. Int J Cardiovasc Imaging 2005; 21: 659-61.
3. Xanthos T, Giannakopoulos N, Papadimitriou L. Lipomatous hy-
pertrophy of the interatrial septum: a pathological and clinical approach. Int J Cardiol 2007; 121: 4-8.

4. Heyer CM, Kagel T, Lemburg SP, Bauer TT, Nicolas V. Lipomatous hypertrophy of the interatrial septum: a prospective study of incidence, imaging findings, and clinical symptoms. Chest 2003; 124: 2068-73.

5. Prior JT. Lipomatous hypertrophy of cardiac interatrial septum. A lesion resembling hibernoma, lipoblastomatosis and infiltrating lipoma. Arch Pathol 1964; 78: 11-5.

6. Laura DM, Donnino R, Kim EE, Benenstein R, Freedberg RS, Saric M. Lipomatous Atrial Septal Hypertrophy: A Review of Its Anatomy, Pathophysiology, Multimodality Imaging, and Relevance to Percutaneous Interventions. J Am Soc Echocardiogr 2016; 29: 717-23.

Video 1. Transoesophageal echocardiographic image of the ISLH.

Address for Correspondence: Dr. Gülsüm Kılıçkap,
Yıldırım Beyazıt Üniversitesi,
Yenimahalle Eğitim ve Araştırma Hastanesi,
Radyoloji Bölümü,
Batıkent, Ankara- Türkiye
Phone: +90 312 587 25 33
E-mail: gkilickap@yahoo.com.tr
©Copyright 2018 by Turkish Society of Cardiology - Available online at www.anatoljcardiol.com
DOI:10.14744/AnatolJCardiol.2018.04264