INTEGRAL MEANS INEQUALITIES, CONVOLUTION, AND UNIVALENT FUNCTIONS

DANIEL GIRELA AND CRISTÓBAL GONZÁLEZ

Dedicated to Fernando Pérez González on the occasion of his retirement

Abstract. We use the Baernstein star-function to investigate several questions about the integral means of the convolution of two analytic functions in the unit disc. The theory of univalent functions plays a basic role in our work.

1. Introduction

Let $D = \{ z \in \mathbb{C} : |z| < 1 \}$ and $T = \{ z \in \mathbb{C} : |z| = 1 \}$ denote the open unit disc and the unit circle in the complex plane \mathbb{C}. We let also $\mathcal{Hol}(D)$ be the space of all analytic functions in D endowed with the topology of uniform convergence in compact subsets.

If $0 \leq r < 1$ and $f \in \mathcal{Hol}(D)$, we set

$$M_p(r, f) = \left(\int_{-\pi}^{\pi} |f(re^{it})|^p \frac{dt}{2\pi} \right)^{1/p}, \quad \text{if } 0 < p < \infty,$$

$$M_\infty(r, f) = \sup_{|z|=r} |f(z)|.$$

For $0 < p \leq \infty$, the Hardy space H^p consists of those $f \in \mathcal{Hol}(D)$ such that

$$\|f\|_{H^p} \overset{\text{def}}{=} \sup_{0 \leq r < 1} M_p(r, f) < \infty.$$

We refer to [6] for the theory of H^p-spaces.

If $f, g \in \mathcal{Hol}(D)$,

$$f(z) = \sum_{n=0}^{\infty} a_n z^n, \quad g(z) = \sum_{n=0}^{\infty} b_n z^n \quad (z \in D),$$

the (Hadamard) convolution $(f * g)$ of f and g is defined by

$$(f * g)(z) = \sum_{n=0}^{\infty} a_n b_n z^n, \quad z \in D.$$

We have the following integral representation

$$(f \ast g)(z) = \frac{1}{2\pi i} \int_{|\xi|=r} f\left(\frac{z}{\xi}\right) g(\xi) \frac{d\xi}{\xi}, \quad |z| < r < 1,$$
The convolution operation \(\star \) makes \(\text{Hol}(D) \) into a commutative complex algebra with an identity

\[
I(z) = \frac{1}{1 - z} = \sum_{n=0}^{\infty} z^n, \quad z \in \mathbb{D}.
\]

We refer to [14] for the theory of the convolution of analytic functions and its connections with geometric function theory.

Following [15], we shall say that a function \(F \in \text{Hol}(D) \) is bound preserving if for every \(f \in H^\infty \) we have that \(f \star F \in H^\infty \) and

\[
\|f \star F\|_{H^\infty} \leq \|f\|_{H^\infty}.
\]

Sheil-Small [15, Theorem 1.3] (see also [14, p. 123]) proved that a function \(F \in \text{Hol}(D) \) is bound preserving if and only if there exists a complex Borel measure \(\mu \) on \(\mathbb{T} \) with \(\|\mu\| \leq 1 \) such that

\[
F(z) = \int_{\mathbb{T}} \frac{d\mu(\xi)}{1 - z\xi}, \quad z \in \mathbb{D}.
\]

The measure \(\mu \) is a probability measure if and only if \(F \) is convexity preserving, that is, for any \(f \in \text{Hol}(D) \) the range of \(f \star F \) is contained in the closed convex hull of the range of \(f \) [14 pp. 123, 124].

It turns out that if \(F \) is bound preserving and \(1 \leq p \leq \infty \), then for every \(f \in H^p \) we have that \(f \star F \in H^p \) and

\[
\|f \star F\|_{H^p} \leq \|f\|_{H^p}.
\]

Actually, the following stronger result holds.

Theorem 1. Suppose that \(f, F \in \text{Hol}(D) \) with \(F \) being bound preserving. Then

\[
M_p(r, f \star F) \leq M_p(r, f), \quad 0 < r < 1,
\]

whenever \(1 \leq p \leq \infty \).

Proof. Since \(F \) is bound preserving, there exists a complex Borel measure \(\mu \) on \(\mathbb{T} \) with \(\|\mu\| \leq 1 \) such that

\[
F(z) = \int_{\mathbb{T}} \frac{d\mu(\xi)}{1 - z\xi} = \sum_{n=0}^{\infty} \left(\int_{\mathbb{T}} \xi^n d\mu(\xi) \right) z^n, \quad z \in \mathbb{D}.
\]

If \(f(z) = \sum_{n=0}^{\infty} a_n z^n \ (z \in \mathbb{D}) \), we have

\[
(f \star F)(z) = \sum_{n=0}^{\infty} a_n \left(\int_{\mathbb{T}} \xi^n d\mu(\xi) \right) z^n
\]

\[
= \int_{\mathbb{T}} \left(\sum_{n=0}^{\infty} a_n \xi^n z^n \right) d\mu(\xi) = \int_{\mathbb{T}} f(\xi z) d\mu(\xi), \quad z \in \mathbb{D}.
\]
This immediately yields (1.2) for \(p = \infty \). Now, if \(1 \leq p < \infty \), using Minkowski’s integral inequality we obtain

\[
M_p(r, f \ast F) = \left[\frac{1}{2\pi} \int_{-\pi}^{\pi} \left| \int_T f(r\xi e^{i\theta})d\mu(\xi) \right|^p d\theta \right]^{1/p} \\
\leq \left[\frac{1}{2\pi} \int_{-\pi}^{\pi} \left(\int_T |f(r\xi e^{i\theta})|d|\mu|(\xi) \right)^p d\theta \right]^{1/p} \\
\leq \int_T \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} |f(r\xi e^{i\theta})|^p d\theta \right)^{1/p} d|\mu|(\xi) \\
= \int_T M_p(r, f) d|\mu|(\xi) \leq M_p(r, f).
\]

□

2. Star-type inequalities

The main purpose of this article is studying the possibility of extending Theorem 1 to cover other integral means, at least for some special classes of functions. In order to do so, we shall use the method of the star-function introduced by A. Baernstein [2, 3].

If \(u \) is a subharmonic function in \(\mathbb{D} \setminus \{0\} \), the function \(u^* \) is defined by

\[
u^*(re^{i\theta}) = \sup_{|E|=2\theta} \int_E u(re^{it})dt, \quad 0 < r < 1, \quad 0 \leq \theta \leq \pi,
\]

where \(|E| \) denotes the Lebesgue measure of the set \(E \). The basic properties of the star-function which make it useful to solve extremal problems are the following [3]:

- If \(u \) is a subharmonic function in \(\mathbb{D} \setminus \{0\} \), then the function \(u^* \) is subharmonic in \(\mathbb{D}^+ = \{ z = re^{i\theta} : 0 < r < 1, 0 < \theta < \pi \} \) and continuous in \(\{ z = re^{i\theta} : 0 < r < 1, 0 \leq \theta \leq \pi \} \).

- If \(v \) is harmonic in \(\mathbb{D} \setminus \{0\} \), and it is a symmetric decreasing function on each of the circles \(\{|z| = r\} \) (\(0 < r < 1 \)), then \(v^* \) is harmonic in \(\mathbb{D}^+ \) and, in fact, \(v^*(re^{i\theta}) = \int_0^\theta v(re^{it})dt \).

The relevance of the star-function to obtain integral means estimates comes from the following result.

Proposition A ([3]). Let \(u \) and \(v \) be two subharmonic functions in \(\mathbb{D} \). Then the following two conditions are equivalent:

(i) \(u^* \leq v^* \) in \(\mathbb{D}^+ \).

(ii) For every convex and increasing function \(\Phi : \mathbb{R} \rightarrow \mathbb{R} \), we have that

\[
\int_{-\pi}^{\pi} \Phi \left(u(re^{i\theta}) \right) d\theta \leq \int_{-\pi}^{\pi} \Phi \left(v(re^{i\theta}) \right) d\theta, \quad 0 < r < 1.
\]

Proposition A yields the following result about analytic functions.

Proposition B. Let \(f \) and \(g \) be two non-identically zero analytic functions in \(\mathbb{D} \). Then the following conditions are equivalent:

(i) \((\log |f|)^* \leq (\log |g|)^* \) in \(\mathbb{D}^+ \).
For every convex and increasing function $\Phi : \mathbb{R} \to \mathbb{R}$, we have that

$$
\int_{-\pi}^{\pi} \Phi \left(\log |f(re^{i\theta})| \right) d\theta \leq \int_{-\pi}^{\pi} \Phi \left(\log |g(re^{i\theta})| \right) d\theta, \quad 0 < r < 1.
$$

Since for any $p > 0$ the function Φ defined by $\Phi(x) = \exp(px)$ ($x \in \mathbb{R}$) is convex and increasing we deduce that if f and g are as in Proposition B and $(\log |f|)^* \leq (\log |g|)^*$ in \mathbb{D}^+, then

$$M_p(r, f) \leq M_p(r, g), \quad 0 < r < 1,$$

for all $p > 0$.

The main achievement in the use of the star-function by A. Baernstein in [3], was the proof that the Koebe function $k(z) = \frac{z}{(1-z)^2}$ ($z \in \mathbb{D}$) is extremal for the integral means of functions in the class S of univalent functions (see [6] and [13] for the notation and results regarding univalent functions). Namely, Baernstein proved that if $f \in S$ then

$$ (\pm \log |f|)^* \leq (\pm \log |k|)^* $$

and, hence,

$$\int_{-\pi}^{\pi} |f(re^{i\theta})|^p d\theta \leq \int_{-\pi}^{\pi} |k(re^{i\theta})|^p d\theta, \quad 0 < r < 1,$$

for all $p \in \mathbb{R}$. In particular, we have that if $f \in S$ and $0 < p \leq \infty$, then

$$M_p(r, f) \leq M_p(r, k), \quad 0 < r < 1.$$

Subsequently the star-function has been used in a good number of papers to obtain bounds on the integral means of distinct classes of analytic functions (see, e.g., [4, 11, 5, 8, 9, 12]).

Coming back to convolution, the following questions arise in a natural way.

Question 1. Let f, g, F, G be analytic functions in \mathbb{D} with $|F|$ and $|G|$ being symmetric decreasing on each of the circles $\{|z| = r\}$ and suppose that

$$(\log |f|)^* \leq (\log |F|)^* \quad \text{and} \quad (\log |g|)^* \leq (\log |G|)^*.$$

Does it follow that $(\log |f \ast g|)^* \leq (\log |F \ast G|)^*$?

Question 2. Let F and f be two analytic functions in \mathbb{D} and suppose that F is bound preserving. Can we assert that $(\log |f \ast F|)^* \leq (\log |f|)^*$?

We shall show that the answer to these two questions is negative. Regarding Question 1 we have the following result.

Theorem 2. There exist two functions $F_1, F_2 \in \text{Hol}(\mathbb{D})$ with

$$(\log |F_j|)^* \leq (\log |I|)^*, \quad \text{for } j = 1, 2,$$

and such that

$$(2.1) \quad \text{the inequality } (\log |F_1 \ast F_2|)^* \leq (\log |I \ast I|)^* \text{ does not hold.}$$

Here, I is the identity element of the convolution defined in (1.1), that is, $I(z) = \frac{1}{1-z}$ ($z \in \mathbb{D}$). Hence $I \ast I = I$.

Proof. Let h be an odd function in the class S with Taylor expansion

$$h(z) = z + a_3 z^3 + a_5 z^5 + \ldots$$
with \(|a_5| > 1\). The existence of such an \(h\) was proved by Fekete and Szegö (see [7, p.104]).

Set also

\[
(2.2) \quad h_1(z) = \frac{h(z)}{z} = 1 + a_3 z^2 + a_5 z^4 + \ldots, \quad z \in \mathbb{D}.
\]

It is well known that there exists a function \(H \in S\) such that \(h(z) = \sqrt{H(z^2)}\) (see [7, p.64]).

Set \(k_2(z) = \sqrt{k(z^2)} = \frac{z}{1-z^2}\) and \(J(z) = \frac{k_2(z)}{z} = \frac{1}{1-z^2}\) (\(z \in \mathbb{D}\)). By Baernstein’s theorem we have \((\log |H|)^* \leq (\log |k|)^*\), a fact which easily implies that \((\log |h_1|)^* \leq (\log |J|)^*\).

Now, it is clear that \(J\) is subordinate to \(I\) and then, using [11, Lemma 2], we see that \((\log |J|)^* \leq (\log |I|)^*\). Thus it follows that

\[
(2.3) \quad (\log |h_1|)^* \leq (\log |I|)^*.
\]

For \(n = 1, 2, 3, \ldots\), we define \(f_n\) inductively as follows

\[
f_1 = h_1 \quad \text{and} \quad f_n = f_{n-1} * f_1, \quad \text{for } n \geq 2.
\]

In other words, \(f_n = h_1 * \cdots * h_1\). Clearly, \((2.2)\) yields

\[
f_n(z) = 1 + a_3^n z^2 + a_5^n z^4 + \ldots.
\]

Since \(|a_5| > 1\), it follows that \(|a_5^n| \to \infty\), as \(n \to \infty\). This is equivalent to saying that

\[
|f_n^{(4)}(0)| \to \infty, \quad \text{as } n \to \infty.
\]

Then it follows that the family \(\{f_n^{(4)} : n = 1, 2, 3, \ldots\}\) is not a locally bounded family of holomorphic functions in \(\mathbb{D}\). Using [11, Theorem 16, p.225] we see that the same is true for the family \(\{f_n : n = 1, 2, 3, \ldots\}\). Take \(p \in (0,1)\), then \(I \in H^p\). Since a bounded subset of \(H^p\) is a locally bounded family [6, p.36], it follows that

\[
(2.4) \quad \sup_{n \geq 1} \|f_n\|_{H^p} = \infty.
\]

Now, \((2.4)\) implies that \(\|f_n\|_{H^p} > \|I\|_{H^p}\) for some \(n\). Using Proposition [13] we see that this implies that

the inequality \((\log |f_n|)^* \leq (\log |I|)^*\) is not true for some \(n\).

Let \(N\) be the smallest of all such \(n\). Using \((2.3)\) and the fact that \(f_1 = h_1\), it follows that that \(N > 1\).

Then it is clear that \((2.1)\) holds with \(F_1 = f_1, F_2 = f_{N-1}\). \(\square\)

We have the following result regarding Question [2]

Theorem 3. There exist \(f, F\) analytic and univalent in \(\mathbb{D}\) such that \(F\) is convexity preserving and with the property that the inequality \((\log |f * F|)^* \leq (\log |f|)^*\) does not hold.

The following lemma will be used in the proof of Theorem [3]

Lemma 1. Let \(f, F \in \mathcal{H}o l((D)\) and suppose that \(F(0) = 1\), \(F\) is convexity preserving, and that \(f\) and \(f * F\) are zero-free in \(\mathbb{D}\) and satisfy the inequality \((\log |f * F|)^* \leq (\log |f|)^*\). Then we also have that

\[
(2.5) \quad \left(\log \left\lfloor \frac{1}{f * F} \right\rfloor \right)^* \leq \left(\log \left\lfloor \frac{1}{F} \right\rfloor \right)^*.
\]
Proof. Set \(u = \log |f \ast F|, \) \(v = \log |f|. \) Then \(u \) and \(v \) are harmonic in \(\mathbb{D}, \) \(u(0) = v(0), \) and \(u^* \leq v^*. \) Then it follows that, for \(0 < r < 1 \) and \(0 \leq \theta \leq \pi, \)

\[
(-u)^*(re^{i\theta}) = \sup_{|E|=2\theta} \int_{E} u(re^{it})dt = \sup_{|E|=2\theta} \left(-\int_{-\pi}^{\pi} u(re^{it})dt + \int_{[-\pi,\pi] \setminus E} u(re^{it})dt \right) = -2\pi u(0) + u^*(re^{i(\pi-\theta)}) \leq -2\pi v(0) + v^*(re^{i(\pi-\theta)}) = (-v)^*(re^{i\theta}).
\]

Hence, we have proved that \((-u)^* \leq (-v)^*\) which is equivalent to (2.5). \(\square \)

Proof of Theorem 3. Set

\[
f(z) = \frac{1}{(1-z)^2} = \sum_{n=0}^{\infty} (n+1)z^n, \quad F(z) = 1 - \frac{1}{2}z, \quad z \in \mathbb{D}.
\]

Clearly, \(f \) and \(F \) are analytic, univalent, and zero-free in \(\mathbb{D}. \) Also

\[(f \ast F)(z) = 1 - z, \quad z \in \mathbb{D}.
\]

Hence \(f \ast F \) is also zero-free in \(\mathbb{D}. \) Notice that \(\frac{1}{f \ast F} \notin H^\infty \) and \(\frac{1}{f} \in H^\infty. \) Then it follows that

\[(2.6) \quad \text{the inequality } \left(\log \left| \frac{1}{f \ast F} \right| \right)^* \leq \left(\log \left| \frac{1}{f} \right| \right)^* \text{ does not hold.}
\]

Now, it is a simple exercise to check that

\[F(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{1 - \cos \theta}{1 - e^{i\theta}z} d\theta
\]

and then it follows that \(F \) is convexity preserving. Then, using (2.6) and Lemma 11 it follows that the inequality \((\log |f \ast F|)^* \leq (\log |f|)^* \) does not hold, as desired. \(\square \)

We close the paper with a positive result, determining a class of univalent functions \(\mathcal{Z} \) such that (1.2) is true for all \(p > 0, \) whenever \(f \in \mathcal{Z} \) and \(F \) is convexity preserving.

A domain \(D \) in \(\mathbb{C} \) is said to be Steiner symmetric if its intersection with each vertical line is either empty, or is the whole line, or is a segment placed symmetrically with respect to the real axis. We let \(\mathcal{Z} \) be the class of all functions \(f \) which are analytic and univalent in \(\mathbb{D} \) with \(f(0) = 0, \) \(f'(0) > 0, \) and whose image is a Steiner symmetric domain. The elements of \(\mathcal{Z} \) will be called Steiner symmetric functions. Using arguments similar to those used by Jenkins 10 for circularly symmetric functions, we see that a univalent function \(f \) with \(f(0) = 0 \) and \(f'(0) > 0 \) is Steiner symmetric if and only if it satisfies the following two conditions: (i) \(f \) is typically real and (ii) \(\text{Re} \ f \) is a symmetric decreasing function on each of the circles \(\{|z| = r\} \) \((0 < r < 1). \) Then it follows that if \(f \in \mathcal{Z} \) then for every \(r \in (0, 1), \) the domain \(f (\{|z| < r\}) \) is a Steiner symmetric domain and, hence, the function \(f_r \) defined by \(f_r(z) = f(rz) \) \((z \in \mathbb{D}) \) belongs to \(\mathcal{Z} \) and it extends to an analytic function in the closed unit disc \(\overline{\mathbb{D}}. \) Now we can state our last result.

Theorem 4. Suppose that \(f \in \mathcal{Z} \) and let \(F \) be an analytic function in \(\mathbb{D} \) which is convexity preserving. We have, for every \(p > 0, \)

\[(2.7) \quad M_p(r, f \ast F) \leq M_p(r, f), \quad 0 < r < 1.
\]
Proof. In view of Theorem 1 we only need to prove (2.7) for 0 < p < 1. Let \(\mu \) be the probability measure on \(\mathbb{T} \) such that \(F(z) = \int_{\mathbb{T}} \frac{d\mu(\xi)}{1-\xi z} \) (\(z \in \mathbb{D} \)). Then we have

\[
(f * F)(z) = \int_{\mathbb{T}} f(\xi z)d\mu(\xi).
\]

Since \(F \) is convexity preserving, for 0 < \(r < 1 \), we have that \((f_r * F)(\mathbb{D}) \) is contained in the closed convex hull of \(f_r(\mathbb{D}) \). This easily yields

\[
\min_{z \in \mathbb{D}} \Re f_r(z) \leq \min_{z \in \mathbb{D}} \Re (f_r * F)(z), \quad \max_{z \in \mathbb{D}} \Re (f_r * F)(z) \leq \max_{z \in \mathbb{D}} \Re f_r(z).
\]

By the remarks in the previous paragraph, we find that, for all \(r \in (0, 1) \), \(f_r \) belongs to \(Z \) and extends to an analytic function in the closed unit disc \(\overline{\mathbb{D}} \). Finally, we claim that

\[
\Re (f_r * F) \leq (\Re f_r)^*, \quad 0 < r < 1.
\]

Once this is proved, using Proposition 6 of [5], we deduce that

\[
M_p(r, f * F) = \|f_r * F\|_{H^p} \leq \|f_r\|_{H^p} = M_p(r, f), \quad 0 < p \leq 2,
\]

finishing our proof.

So we proceed to prove (2.9). Fix \(r \in (0, 1) \) and set \(u = \Re (f_r * F), \quad v = \Re f_r \). Using (2.8), we have, for 0 < \(R < 1 \) and 0 < \(\theta < \pi \),

\[
u^*(Re^{i\theta}) = \sup_{|E|=2\theta} \int_E u(Re^{i\theta})dt = \sup_{|E|=2\theta} \int_E \int_T v(Re^{i\theta}\xi)d\mu(\xi)dt
\]

\[
= \sup_{|E|=2\theta} \int_E \int_T v(Re^{i\theta}\xi)d\mu(\xi) \leq \int_T v^*(Re^{i\theta})d\mu(\xi) = v^*(Re^{i\theta}).
\]

Acknowledgements. We wish to express our gratitude to the referee who made valuable suggestions for improvement.

References

[1] L. V. Ahlfors, Complex analysis. An introduction to the theory of analytic functions of one complex variable. Third edition. International Series in Pure and Applied Mathematics. McGraw-Hill Book Co., New York, 1978. xi+331 pp.

[2] A. Baernstein, Proof of Edrei’s spread conjecture, Proc. London Math. Soc. (3) 26 (1973), 418-434.

[3] A. Baernstein, Integral means, univalent functions and circular symmetrization, Acta Math. 133 (1974), 139-169.

[4] A. Baernstein, Some sharp inequalities for conjugate functions, Indiana Univ. Math. J. 27 (1978), no. 5, 833-852.

[5] J. E. Brown, Derivatives of close-to-convex functions, integral means and bounded mean oscillation, Math. Z. 178 (1981), no. 3, 353-358.

[6] P. L. Duren, Theory of \(H^p \) spaces, Academic Press, New York-London, 1970. Reprint: Dover, Mineola-New York, 2000.

[7] P. L. Duren, Univalent Functions, Springer-Verlag, New York, 1983.

[8] D. Girela, Integral means and \(BMOA \)-norms of logarithms of univalent functions, J. London Math. Soc. (2) 33 (1986), no. 1, 117-132.

[9] D. Girela, Integral means, bounded mean oscillation, and \(Ge\l'er \) functions, Proc. Amer. Math. Soc. 113 (1991), no. 2, 365-370.

[10] J. A. Jenkins, On circularly symmetric functions, Proc. Amer. Math. Soc. 6 (1955), 620-624.

[11] Y. J. Leung, Integral means of the derivatives of some univalent functions, Bull. London Math. Soc. 11 (1979), no. 3, 289-294.

[12] M. Nowak, Some inequalities for \(BMOA \) functions, Complex Variables Theory Appl. 16 (1991), no. 2-3, 81-86.
[13] Ch. Pommerenke, *Univalent Functions*, Vandenhoeck & Ruprecht, Göttingen, 1975.

[14] S. Ruscheweyh, *Convolutions in geometric function theory*, Séminaire de Mathématiques Supérieures [Seminar on Higher Mathematics], 83. Fundamental Theories of Physics. Presses de l’Université de Montréal, Montréal, Que., 1982, 168 pp.

[15] T. Sheil-Small, *On the convolution of analytic functions*, J. Reine Angew. Math. 258 (1973), 137-152.

ANÁLISIS MATEMÁTICO, UNIVERSIDAD DE MÁLAGA, CAMPUS DE TEATINOS, 29071 MÁLAGA, SPAIN
E-mail address: girela@uma.es

ANÁLISIS MATEMÁTICO, UNIVERSIDAD DE MÁLAGA, CAMPUS DE TEATINOS, 29071 MÁLAGA, SPAIN
E-mail address: cmge@uma.es