Piecewise optimal fractional reproducing kernel solution and convergence analysis for the Atangana-Baleanu-Caputo model of the Lienard's equation

Shaher Momani1,2, Omar Abu Arqub*3, Banan Maayah2

1 Department of Mathematics and Sciences, College of Humanities and Sciences, Ajman University, Ajman, UAE
2 Department of Mathematics, Faculty of Science, The University of Jordan, Amman 11942, Jordan
3 Department of Mathematics, Faculty of Science, Al-Balqa Applied University, Salt 19117, Jordan

E-mails: Shaher Momani: s.momani@ajman.ac.ae and s.momani@ju.edu.jo
Omar Abu Arqub: o.abuarqub@bau.edu.jo
Banan Maayah: b.maayah@ju.edu.jo

*Corresponding author: Omar Abu Arqub, e-mail: o.abuarqub@bau.edu.jo

Abstract: In this paper, an attractive reliable analytical technique is implemented for constructing numerical solutions for the fractional Lienard’s model enclosed with suitable nonhomogeneous initial conditions, which are often designed to demonstrate the behavior of weakly nonlinear waves arising in the oscillating circuits. The fractional derivative is considered in the Atangana-Baleanu-Caputo sense. The proposed technique, namely, reproducing kernel Hilbert space method, optimizes numerical solutions bending on Fourier approximation theorem to generate required fractional solution with a rapidly convergent form. The influence, capacity, and feasibility of the presented approach are verified by testing some applications. The acquired results are numerically compared with the exact solutions in the case of non fractional derivative, which show the superiority, compatibility, and applicability of the presented method to solve a wide range of nonlinear fractional models.

Keywords: Atangana-Baleanu-Caputo fractional derivative; Fractional Lienard's model; Piecewise optimal fractional reproducing kernel method

1 Preface and Presentation

Mathematical simulation of nonlinear physical and abstract models is a very vital process for predicting the solution behavior of fractional differential equations (FDEs) corresponding to different applications in science and engineering. Whilst, computational models of physical systems are typically triggered through computer simulations, symbolic programming, and approximate numerical algorithms for emerging nonlinear problems, which often include a set of corresponding FDEs. Solutions of such nonlinear FDEs issues are great importance for describing the dynamic and asymptotic behavior of materials in many applications such as electric circuit, fluid mechanics, viscoelastic damping, electromagnetic, and electrochemistry [1-5]. In this light, there exists no classic, precise method that yields an analytical solution within a closed-form in terms of spatial and temporal parameters to deal with this types of nonlinear evolution models. Therefore, there is an urgent need for effective and sophisticated methods and algorithms for exploring analytical solutions of such challenges.

The fractional calculus approach is a powerful generalization of the classical calculus that deals with real order differentiation and integration. Recently, it has been extensively examined as an excellent tool in describing genetic properties, memory effort, and material transfer mechanisms in many connected areas of engineering and applied sciences [6-13]. Unlike classical calculus, which has a unique definition and clear geometrical and physical interpretations, there are many definitions for the fractional operations, including Riemann-Liouville, Caputo, Riesz, and Grünwald-Letnikov [1-5]. In view of this, a novel concept of fractional calculus, namely the Atangana-Baleanu-Caputo (ABC) fractional derivative, has been proposed in [14]. Since then several studies have appeared in the literature, for more details see [15-26]. Supplementary, this fractional ABC derivative seems to be liberating of singularity with local kernel function, because the kernel depends on the exponential formulation. Aught, this
In the current work, the application of the piecewise optimal fractional reproducing kernel method (FRKM) is extended to provide a convenient methodology to derive approximate numerical solution for model of the fractional Lienard’s equation (FLE) arising in oscillating circuits with ABC derivative. To achieve our goal, we consider the subordinate model:

\[
\begin{align*}
\text{ABC} \frac{\partial^{\delta}}{\partial t^{\delta}} \mu(t) + \lambda(\mu(t)) \partial_t \mu(t) + \eta(\mu(t)) &= \gamma(t), \\
\mu(0) &= \rho, \\
\partial_t \mu(0) &= \rho'.
\end{align*}
\]

(1)

To assign more on model of the FLE: \(\lambda(\mu(t)) \partial_t \mu(t)\) indicates the damping force, \(\eta(\mu(t))\) denotes the restoring force, and \(\gamma(t)\) stands for the external force. In the development of radio and vacuum tube technology, FLE is extremely investigated to describe the oscillating circuits. In reality, the FLE contains the damped pendulum or a damped spring-mass system as a particular case. It is also very useful as nonlinear models of various scientific fields while considering various selection of \(\lambda(\mu(t))\), \(\eta(\mu(t))\), and \(\gamma(t)\). For paradigm, the choice \(\lambda(\mu(t)) = a(\mu^2(t) - 1)\), \(\eta(\mu(t)) = \mu(t)\), and \(\gamma(t)\) progresses to Eq. (1) to the fractional Van der Pol equation used as a nonlinear model of electronic oscillation. More details about elaborated investigations of FLE model with its special properties one can refer to [27-31].

Extremely, we will symbolize the following: \(I = [0,1]\); \(\delta \in (1,2]\); \(\rho, \rho' \in \mathbb{R}\); \(\lambda, \eta \in C(\mathbb{R}, \mathbb{R})\); and \(\mu, \gamma \in C(I, \mathbb{R})\). Exceedingly, we will write \(\text{ABC} \frac{\partial^{\delta}}{\partial t^{\delta}} \mu(t)\) to sign the ABC fractional derivative of \(\mu\) in \(t\) over \(A\) of order \(\delta\) and is realized as

\[
\frac{\text{ABC} \frac{\partial^{\delta}}{\partial t^{\delta}} \mu(t)}{\frac{1}{\Gamma(1-\delta)}} \int_0^t \frac{\partial^2 \mu(\tau) M_{\delta}(\tau)}{1 - \delta (t - \tau)^\delta} dt,
\]

(2)

in which \(t = 0\) is a base point acquaint at \(t \in I - \{0,1\}\) and \(\omega \in Y^2(I - \{0,1\})\). Whereas, \(M_{\delta}(t) = \sum_{n=0}^{\infty} \frac{1}{\Gamma(n \delta + 1)} t^n\) with \(\delta > 0\) and \(t \in \mathbb{R}\) is the Mittag-Leffler function and \(Y^2\) is the Sobolev space of order 2 on the domain \(I - \{0,1\}\) and is realized as

\[
Y^2(I - \{0,1\}) = \{\mu \in L^2(I - \{0,1\}); \partial_t \mu(t), \partial_t^2 \mu(t) \in L^2(I - \{0,1\})\}.
\]

(3)

The standard RKM main area topic is in mathematical modelling and numerical simulation of multidimensional issues arising in engineering and physical sciences [32-34]. Later, the FRKM has been used in generating numerical solutions for strongly nonlinear integral-differential operators in the form of a rapidly convergent series with a minimum size of calculations without any restrictive hypotheses. So, this adaptive has been used as an alternative technique in solving several nonlinear and discontinuous shapes problems arising in engineering and physics as utilized in [35-40].

In addition to the preface and presentation cutter, the residual synopsis of the article is structured in the following subsidiary sections, simultaneously. Preliminaries and assumptions in the FRKM: requirements, principles, and tools. Impersonation solution of FLE in the ABC sense: formulation and solutions. Convergence and error conductance: behavior and characterization theorems. Numerical applications and computational results: FRKM steps, test applications, and discussions. Finally, Summary and outline are utilized on record.

2 Preliminaries and Assumptions in the FRKM

This section is dedicated to briefly present some definitions and properties of the FRKM and its corresponding hypothesis. At all events the FRKM is an effective approach for solving wide class of differential-integral operators in the fractional emotion and provided a general numeric scheme to handle the solution behaviors. Extremely, we will symbolize \(C(I)\) to denotes the set of absolutely continuous functions on \(I\).

Let \(\mathcal{H}\) be a Hilbert space of functions defined on \(A\). A function \(\Psi \in C(I \times I, \mathbb{R})\) is a reproducing kernel of \(\mathcal{K}\) if it fulfills the subsequent requisiments:

\[
\begin{align*}
\forall t \in I; \Psi(\cdot, t) &\in \mathcal{H}, \\
\forall \phi \in \mathcal{H} \text{ and } \forall t \in I; \langle \psi(\cdot), \Psi(\cdot, t) \rangle_{\mathcal{H}} &= \psi(t).
\end{align*}
\]

(4)
Definition 1 [18] The Hilbert space $\mathcal{A}(\mathbb{I})$ and its functional structure are arranged as
\[
\mathcal{A}(\mathbb{I}) = \{ \mu(t); \mu(t), \partial_t \mu(t), \partial_t^2 \mu(t) \in L^2(\mathbb{I}); \mu(0) = \partial_t \mu(0) = 0 \},
\]
\[
\langle \mu(t), \nu(t) \rangle_{\mathcal{A}} = \sum_{i=0}^{2} \partial_t^i \mu(0) \partial_t^i \nu(0) + \int_{\mathbb{I}} \partial_t^2 \mu(t) \partial_t^2 \nu(t) dt ,
\]
\[
\| \mu \|_{\mathcal{A}} = \sqrt{\langle \mu(t), \mu(t) \rangle_{\mathcal{A}}}. \tag{5}
\]

Definition 2 [18] The Hilbert space $\mathcal{B}(\mathbb{I})$ and its functional structure are arranged as
\[
\mathcal{B}(\mathbb{I}) = \{ \mu(t); \mu(t) \in L^2(\mathbb{I}) \},
\]
\[
\langle \mu(t), \nu(t) \rangle_{\mathcal{B}} = \int_{\mathbb{I}} \mu(t) \nu(t) + \partial_t \mu(t) \partial_t \nu(t) dt ,
\]
\[
\| \mu \|_{\mathcal{B}} = \sqrt{\langle \mu(t), \mu(t) \rangle_{\mathcal{B}}}. \tag{6}
\]

Theorem 1 [18] The Hilbert space $\mathcal{A}(\mathbb{I})$ is a complete reproducing kernel with kernel function
\[
M_t(s) = \frac{1}{120} \left(\frac{s^2(-5s^2t + s^3 + 10t^2(3 + s))}{t^2(-5t^2s + t^3 + 10s^2(3 + t))} \right), \tag{7}
\]

Theorem 2 [18] The Hilbert space $\mathcal{B}(\mathbb{I})$ is a complete reproducing kernel with kernel function
\[
N_t(s) = \frac{1}{2} \csc(1) \begin{cases} \cosh(t + s - 1) + \cosh(t - s - 1), & s \leq t, \\ \cosh(t + s - 1) + \cosh(s - t - 1), & s > t, \end{cases} \tag{8}
\]

In applicability of the FRKM, we divide the compact set \mathbb{I} into uniform splits encoded by t_i. This assumed that the gained set $\{t_i\}_{i=1}^{\infty}$ will be dense in \mathbb{I}. Anyhow, we attempt to cover the set as well as the numerical process should end up in finite phases.

For independency, if $\{\sigma_i\}_{i=1}^{m}$ is fixed according to $\sum_{i=1}^{m} \sigma_i M_t(s) = 0$; takeover $h_k(s) \in \mathcal{A}(\mathbb{I})$ as to $h_k(s_i) = \delta_{i,k}, \forall k = 1,2,\cdots, m$, then $0 = \langle h_k(s), \sum_{i=1}^{m} \sigma_i M_t(s) \rangle_{\mathcal{A}} = \sum_{i=1}^{m} \sigma_i \langle h_k(s), M_t(s) \rangle_{\mathcal{A}} = \sum_{i=1}^{m} \sigma_i h_k(s_i) = \sigma_i$ for $k = 1,2,\cdots, m$. De facto, this showed that $\{M_t(s_i)\}_{i=1}^{m}$ is linearly independent $\forall m \geq 1$. To generalize more, this will generate the subordinate result: the system $\{M_t(s_i)\}_{i=1}^{\infty}$ is linearly independent in $\mathcal{A}(\mathbb{I})$.

3 Impersonation Solution of FLE in the ABC Sense

The main tools in the FRKM are follows: building appropriate Hilbert spaces, generating corresponding kernel functions, defining appropriate differential linear operator, fitting orthonormal function systems, collecting symbolic computations and data sets, and software mathematical package solver. Hither, the FRKM is developing to construct highly efficient numerical solutions for the FLE that arise in the engineering and physical sciences and combine the implementations in a user-friendly framework.

Here, based on applied the auxiliary parametrized technique and to fixed the suggested solution in $\mathcal{A}(\mathbb{I})$; the subsequent replacement $\mu(t) \rightarrow \mu(t) - (\rho^t + \rho)$ will convert FLE of Eq. (1) into homogenous one. Anyhow, we still signify the conversion solution by $\mu(t)$ as
\[
\left\{ \begin{array}{l}
\frac{\partial}{\partial t} \alpha \beta \delta \mu(t) + \lambda (\mu(t)) \partial_t \mu(t) + \eta (\mu(t)) = \gamma(t), \\
\mu(0) = 0, \\
\partial_t \mu(0) = 0.
\end{array} \right. \tag{9}
\]

Essentially, define the linear operator Z and its map $Z[\mu](t)$ as
\[
\left(\begin{array}{c}
\mathcal{A}(\mathbb{I}) \\
\mathcal{B}(\mathbb{I})
\end{array} \right) \rightarrow \left(\begin{array}{c}
\mathcal{A}(\mathbb{I}) \\
\mathcal{B}(\mathbb{I})
\end{array} \right),
\]
\[
Z[\mu](t) = ABC \frac{\partial}{\partial t} \mu(t). \tag{10}
\]

Based on this, if $\zeta(t, \mu(t), \partial_t \mu(t)) = \gamma(t) - \eta (\mu(t)) - \lambda (\mu(t)) \partial_t \mu(t)$, then Eq. (9) can be converted into the form of
\[
\left\{ \begin{array}{l}
Z[\mu](t) = \zeta(t, \mu(t), \partial_t \mu(t)), \\
\mu(0) = 0, \\
\partial_t \mu(0) = 0.
\end{array} \right. \tag{11}
\]

Following, we will organize and construct system of orthogonal functions using the subsequent steps: put $\Xi_i(t) = N_i(t)$ and $\Lambda_i(t) = Z^*[\Xi_i](t), i = 1,2,3,\cdots$, where Z^* is the adjoint operator of Z, and $\{t_i\}_{i=1}^{\infty}$ is dense on \mathbb{I}.

Generally, the Gram-Schmidt orthogonalization process used to generating the systems of orthonormal functions \(\{ \Lambda_i(t) \}_{i=1}^{\infty} \) on \(\mathcal{A}(I) \). Aught, if one refer to the orthogonalization coefficients by \(\varepsilon_{ik} \) in the indexes \(i = 2, 3, \ldots, k = 1, 2, \ldots, i-1 \), then

\[
\Lambda_i(t) = \sum_{k=1}^{i} \omega_{ik} \Lambda_k(t). \tag{12}
\]

At all event, if \(\langle \mu(t), \Lambda_i(t) \rangle_{\mathcal{A}} = 0 \), \(i = 1, 2, \ldots, \), then \(\langle \mu(t), \Lambda_i(t) \rangle_{\mathcal{A}} = \langle \mu(t), \mathcal{Z}^*[\mathcal{S}]a(t) \rangle_{\mathcal{A}} = \langle \mathcal{Z}[\mu](t), \mathcal{S}(t) \rangle_{\mathcal{B}} = \mathcal{Z}[\mu](t_i) = 0 \). Calling up that, \(\mu(t) = \langle \mu(\cdot), \mathcal{M}_t(\cdot) \rangle_{\mathcal{A}} \), this award \(\mathcal{Z}[\mu](t) = \langle \mathcal{Z}[\mu](t), \mathcal{S}(t) \rangle_{\mathcal{A}} = 0 \). By the density of \(\{ t_i \}_{i=1}^{\infty} \) on \(\mathcal{A} \), we've got \(\mathcal{Z}[\mu](t) = 0 \). During the existence of \(\mathcal{Z}^{-1} \), yields \(\mu(t) = 0 \). Subsequently, \(\{ \Lambda_i(t) \}_{i=1}^{\infty} \) is a complete on \(\mathcal{A}(I) \). One more, \(\Lambda_i(t) = \mathcal{Z}^*[\mathcal{S}]a(t) = (\mathcal{Z}^*[\mathcal{S}](s), \mathcal{M}_t(s))_{\mathcal{A}} = (\mathcal{S}(s), \mathcal{O}_{\mathcal{A}}[\mathcal{M}_t](s))_{\mathcal{B}} = \mathcal{Z}a[\mathcal{M}_t](s)|_{s=t_i} \).

Visibly, this will generate the subordinate result; the system \(\{ \Lambda_i(t) \}_{i=1}^{\infty} \) is complete and \(\Lambda_i(t) = \mathcal{Z}_a[\mathcal{M}_t](s)|_{s=t_i} \).

Theorem 3 Assume that \(\varepsilon_{ik} \) are orthogonalization coefficients for the orthonormal functions systems \(\{ \Lambda_i(t) \}_{i=1}^{\infty} \). Then, the subsequent are achieved:

1. Whenever \(n \to \infty \) the analytic solution of Eq. (11) fulfill well

\[
\mu(t) = \sum_{i=1}^{\infty} \sum_{k=1}^{i} \varepsilon_{ik} \zeta(t_k, \mu(t_k), \partial_t \mu(t_k)) \Lambda_i(t). \tag{13}
\]

2. The \(n \)-term numerical solution of Eq. (11) fulfill well

\[
\mu^n(t) = \sum_{i=1}^{n} \sum_{k=1}^{i} \varepsilon_{ik} \zeta(t_k, \mu(t_k), \partial_t \mu(t_k)) \Lambda_i(t). \tag{14}
\]

Proof. The convergent in the emotion of \(\| \|_{\mathcal{A}} \) will gives

\[
\mu(t) = \sum_{i=1}^{\infty} \langle \mu(t), \Lambda_i(t) \rangle_{\mathcal{A}} \Lambda_i(t)
= \sum_{i=1}^{\infty} \left(\mu(t), \sum_{k=1}^{i} \varepsilon_{ik} \Lambda_k(t) \right)_{\mathcal{A}} \Lambda_i(t)
= \sum_{i=1}^{\infty} \sum_{k=1}^{i} \varepsilon_{ik} \left(\mu(t), \mathcal{Z}^*[\mathcal{S}]k(t) \right)_{\mathcal{A}} \Lambda_i(t)
= \sum_{i=1}^{\infty} \sum_{k=1}^{i} \varepsilon_{ik} \left(\mathcal{Z}[\mu](t), \mathcal{S}(t) \right)_{\mathcal{B}} \Lambda_i(t)
= \sum_{i=1}^{\infty} \sum_{k=1}^{i} \varepsilon_{ik} \zeta(t_k, \mu(t_k), \partial_t \mu(t_k)) \Lambda_i(t)
= \sum_{i=1}^{\infty} \sum_{k=1}^{i} \varepsilon_{ik} \zeta(t_k, \mu(t_k), \partial_t \mu(t_k)) \Lambda_i(t). \tag{15}
\]

This due to the fact that \(\langle \mu(t), \mathcal{S}(t) \rangle_{\mathcal{A}} = \mu(t_i) \) and \(\sum_{i=1}^{\infty} \langle \mu(t_i), \Lambda_i(t) \rangle_{\mathcal{A}} \Lambda_i(t) \) is the Fourier series amplification around \(\{ \Lambda_i(t) \}_{i=1}^{\infty} \). Ultimately, for numerical computations, we truncated the series in Eq. (13) and creating the \(n \)-term numerical solution of \(\mu(t) \). ■

4 Convergence and Error Conductance

This section is devoted to describe the convergence of the FRKM for solving FLE in the ABC sense beneath the compatibility conditions of the existence, uniqueness, and adequate differentiability in the Hilbert domain \(\mathcal{A}(I) \).

To achieve our goal, we undertake \(\| \mu^{n-1} \|_{\mathcal{A}} \) is bounded whenever \(n \to \infty \) and \(\{ t_i \}_{i=1}^{\infty} \) is dense on \(I \).

To ensure that the error will decreasing for sufficiently large \(n \); its apparent that

\[
\| \mu - \mu^n \|_{\mathcal{A}}^2 = \left\| \sum_{i=1}^{\infty} \langle \mu(t_i), \Lambda_i(t) \rangle_{\mathcal{A}} \Lambda_i(t) \right\|_{\mathcal{A}}^2 \tag{16}
\]
Consequently, \(||\mu - \mu^n||_A||_{n=1}^\infty||\) is decreasing in \(||\cdot||_A||. Using the convergent fact on \(\sum_{i=1}^{\infty}\mu(t), \tilde{\Lambda}(t)||_A\), yields that \(||\mu - \mu^n||_A||_{n=1}^\infty||\) \(\rightarrow 0\) whenever \(n \rightarrow \infty\) as long as \(\mu(t)||\) and \(\mu^n(t)||\) are extracted from Eqs. (13) and (14), simultaneously. Visibly, this will generate the subordinate result; the sequence of error \(||\mu - \mu^n||_A||_{n=1}^\infty||\) is decreasing in \(A(\Omega)||\) and \(||\mu - \mu^n|| \rightarrow 0\) whenever \(n \rightarrow \infty||\).

\textbf{Lemma 1} Whenever \(\mu \in A(\Omega)||\), thereafter \(||\mu(t)|| \leq 3.5||\mu||_{A}, ||\partial_t\mu(t)|| \leq 3||\mu||_{A},\) and \(||\partial_t^2\mu(t)|| \leq 2||\mu||_{A}.||\)

\textbf{Proof.} Hither, we will consider \(||\mu(t)||\) exclusively. Perception that \(\partial_t^2\mu(t) - \partial_t^2\mu(0) = \int_0^t \partial_t^3\mu(p)\,dp||\) and integrated it from \(0||\) to \(t||\), the result is

\[
\partial_t\mu(t) - \partial_t\mu(0) - \partial_t^2\mu(0)t = \int_0^t \int_0^u \partial_t^4\mu(p)\,dp\,du||. \tag{17}
\]

Integrate again from \(0||\) to \(t||\), yields that

\[
\mu(t) - \mu(0) - \partial_t\mu(0)t - 0.5\partial_t^2\mu(t) = \int_0^t \int_0^u \partial_t^3\mu(p)\,dp\,du||. \tag{18}
\]

Taking the usual metric functions length yields that

\[
||\mu(t)|| \leq ||\mu(0)|| + ||\partial_t\mu(0)||t + \frac{1}{2} ||\partial_t^2\mu(0)||t^2 + \int_0^t ||\partial_t^3\mu(p)||\,dp. \tag{19}
\]

After rearranging the mathematical formulation, one find

\[
||\mu(t)|| \leq ||\mu(0)|| + ||\partial_t\mu(0)|| + 0.5||\partial_t^2\mu(0)|| + \int_0^t ||\partial_t^3\mu(p)||\,dp. \tag{20}
\]

Using Holder’s inequality and Eq. (5), we can note the dependency

\[
\left|\partial_t^k\mu(0)\right|_{k=0,2,4} \leq \left(\left(\mu(0)\right)^2 + \left(\partial_t\mu(0)\right)^2 + \left(\partial_t^2\mu(0)\right)^2 + \int_1^1 \left(\partial_t^3\mu(p)\right)^2 dt\right)^{1/2}. \tag{21}
\]

\[
\left|\int_1^1 \partial_t^3\mu(p)\,dp\right| \leq \left(\int_1^1 \left(\partial_t^3\mu(p)\right)^2 \,dp\,\left(1^2\right)^{1/2}\right)^{1/2}
\]

\[
\leq \left(\left(\mu(0)\right)^2 + \left(\partial_t\mu(0)\right)^2 + \left(\partial_t^2\mu(0)\right)^2 + \int_1^1 \left(\partial_t^3\mu(p)\right)^2 \,dt\right)^{1/2}. \tag{22}
\]

Thus, by amalgamate the overhead results one get \(||\mu(t)|| \leq 3.5||\mu||_{A}.||\).

\textbf{Theorem 4} Let \(\xi(t, \mu(t), \partial_t\mu(t)) \in C(\mathbb{R} \times \mathbb{R} \times \mathbb{R}, \mathbb{R}). If \(||\mu^{n-1} - \mu||_A|| \rightarrow 0, t_n \rightarrow s\) whenever \(n \rightarrow \infty||\), then as \(n \rightarrow \infty||\)

\[
\xi(t_n, \mu^{n-1}(t_n), \partial_t\mu^{n-1}(t_n)) \rightarrow \xi(s, \mu(s), \partial_t\mu(s)). \tag{23}
\]

\textbf{Proof.} Firstly, we will prove that \(\partial_t^k\mu^{n-1}(t_n) \rightarrow \partial_t^k\mu(s), k = 0,1,\) Since, we can note that

\[
\left|\partial_t^k\mu^{n-1}(t_n) - \partial_t^k\mu(s)\right| = \left|\partial_t^k\mu^{n-1}(t_n) - \partial_t^k\mu^{n-1}(s) + \partial_t^k\mu^{n-1}(s) - \partial_t^k\mu(s)\right|
\leq \left|\partial_t^k\mu^{n-1}(t_n) - \partial_t^k\mu^{n-1}(s)\right| + \left|\partial_t^k\mu^{n-1}(s) - \partial_t^k\mu(s)\right|
\leq \left|\partial_t^k\mu^{n-1}(s)\right||t_n - s| + \left|\partial_t^k\mu^{n-1}(s) - \partial_t^k\mu(s)\right|
\leq \Omega_1||\mu^{n-1}||_A||t_n - s| + \Omega_2||\mu^{n-1} - \mu||_A. \tag{24}
\]
where \(\xi \) in between \((\min\{t_n, s\}, \max\{t_n, s\})\) and \((\Theta_1, \Theta_2) = \{(3,3.5), k = 0, (2,3), k = 1\}.\) It pursues that \(|\mu^{n-1}(t_n) - \mu(s)| \to 0\) whenever \(n \to \infty.\) By means of \(\xi(t, \mu(t), \partial_t \mu(t)) \in C(\mathbb{A} \times \mathbb{R} \times \mathbb{R}, \mathbb{R})\) it implies the demanded. ■

Thereafter, we will symbolize \(F_i = \sum_{k=1}^{n} \xi(t_k, \mu(t_k), \partial_t \mu(t_k)).\) In fact, this allows one to put \(\mu^n(t)\) as

\[
\mu^n(t) = \sum_{i=1}^{n} F_i \Xi_i(t). \tag{25}
\]

Theorem 5 In the iterative formula of Eqs. (25), one has \(\mu^n(t) \to \mu(t)\) whenever \(n \to \infty.\)

Proof. From Eq. (25), we deduce that \(\mu^{n+1}(t) = \mu^n(t) + F_{n+1} \Xi_{n+1}(t).\) From orthogonality of \(\{\Xi_i(t)\}_{i=1}^{\infty}\) one acquired

\[
\begin{align*}
\|\mu^{n+1}\|_{\mathcal{A}}^2 &= \|\mu^n\|_{\mathcal{A}}^2 + \|F_{n+1}\|_{\mathcal{A}}^2 \\
&= \|\mu^{n-1}\|_{\mathcal{A}}^2 + \|F_{n+2}\|_{\mathcal{A}}^2 + \|F_{n+1}\|_{\mathcal{A}}^2 \\
&= \cdots \\
&= \|\mu^0\|_{\mathcal{A}}^2 + \sum_{i=1}^{n+1} \|F_i\|_{\mathcal{A}}^2. \tag{26}
\end{align*}
\]

This gives \(\|\mu^{n+1}\|_{\mathcal{A}} \geq \|\mu^n\|_{\mathcal{A}}\) and \(\exists \gamma \in \mathbb{R}\) such that \(\sum_{i=1}^{\infty} \|F_i\|_{\mathcal{A}} = \gamma,\) which glimpse that \(\{\Xi_i(t)\}_{i=1}^{\infty} \in l^2.\) In order to

\[
\mu^m(t) - \mu^{m-1}(t) \perp \mu^{m-1}(t) - \mu^{m-2}(t) \perp \cdots \perp \mu^{n+1}(t) - \mu^n(t), \tag{27}
\]

it succeed for \(m > n\) that

\[
\|\mu^m - \mu^n\|_{\mathcal{A}} = \|\mu^m - \mu^{m-1} + \mu^{m-1} - \cdots + \mu^{n+1} - \mu^n\|_{\mathcal{A}} = \|\mu^m - \mu^{m-1}\|_{\mathcal{A}}^2 + \|\mu^{m-1} - \mu^{m-2}\|_{\mathcal{A}}^2 + \cdots + \|\mu^{n+1} - \mu^n\|_{\mathcal{A}}^2, \tag{28}
\]

wheras, \(\|\mu^m - \mu^{m-1}\|_{\mathcal{A}} = \|F_m\|_{\mathcal{A}}.\) So, whenever \(n, m \to \infty,\) one has \(\|\mu^m - \mu^n\|_{\mathcal{A}} = \sum_{i=n+1}^{m} \|F_i\|_{\mathcal{A}} \to 0\) and by the completeness \(\exists \mu^n(t) \in \mathcal{A}(\mathbb{I})\) such that \(\mu^n(t) \to \mu(t)\) as \(n \to \infty in the emotion of \|\|_{\mathcal{A}}.\)

Theorem 6 In the iterative formula of Eqs. (25), one has \(\mu(t) = \sum_{i=1}^{\infty} F_i \Xi_i(t)\) whenever \(n \to \infty.\)

Proof. But in return, by taking \(\lim_{n \to \infty, (\cdot)}\) on both sides of Eq. (25), one get \(\mu(t) = \sum_{i=1}^{\infty} F_i \Xi_i(t).\) Whilst \(\mathbb{E}[\mu](t) = \sum_{i=1}^{\infty} F_i \mathbb{E}[\Xi_i](t),\) thus

\[
\begin{align*}
\mathbb{E}[\mu](t_i) &= \sum_{i=1}^{\infty} F_i(\mathbb{E}[\Xi_i](t), \mathcal{A}_i(t))_t \\
&= \sum_{i=1}^{\infty} F_i(\Xi_i(t), \mathbb{E}[\mathcal{A}_i](t))_t \\
&= \sum_{i=1}^{\infty} F_i(\Xi_i(t), \mathcal{A}_i(t))_t. \tag{29}
\end{align*}
\]

\[
\begin{align*}
\sum_{i=1}^{l} E_{\mu}(t_i) &= \sum_{i=1}^{\infty} F_i \left(\left(\sum_{i=1}^{l} E_{\mu}(t_i)\right)_t\right) \\
&= \sum_{i=1}^{\infty} F_i(\Xi_i(t), \mathcal{A}_i(t)). \tag{30}
\end{align*}
\]

Justificatory, if \(l = 1,\) then \(\mathbb{E}[\mu](t_1) = \zeta(t_1, \mu^0(t_1), \partial_t \mu^0(t_1)).\) Still, if \(l = 2,\) then \(\mathbb{E}[\mu](t_2) = \zeta(t_2, \mu^1(t_2), \partial_t \mu^1(t_2)).\) In analogous route, the modality form is \(\mathbb{E}[\mu](t_n) = \zeta(t_n, \mu^{n-1}(t_n), \partial_t \mu^{n-1}(t_n)).\) By the density condition, \(\forall s \in \mathbb{I};\)

\[
\exists \{t_{n_q}\}_{q=1}^{\infty}\) such that \(t_{n_q} \to s\) whenever \(q \to \infty\) or \(\mathbb{E}[\mu](t_{n_q}) = \zeta(t_{n_q}, \mu^{n_q-1}(t_{n_q}), \partial_t \mu^{n_q-1}(t_{n_q})).\)

Let \(j \to \infty\) one get \(\mathbb{E}[\mu](s) = \zeta(s, \mu(s), \partial_t \mu(s)).\) Also, since \(\Xi_i(t) \in \mathcal{A}(\mathbb{I}),\) then \(\mu(t)\) satisfies Eq. (11). Eventually, the uniqueness of solution on Eq. (11) utilizes the required score.

5 **Numerical Applications and Computational Results**
This section utilizes some numerical applications with different fractional order parameters for model of FLE in the ABC fractional sense. The numerical results are discussed graphically and quantitatively to verify the validity and applicability of the proposed FRKM in obtaining accurate numerical solutions for those models. Mathematica 10 software package is used in all computational process.

5.1 The FRKM Steps

The attached steps focussing on the computational steps required using an appropriate software package for solving Eq. (11) using FRKM. In these Procedure and Algorithm, some subsequent inputs are needed so as to deduce the numerical reckoning \(\mu^n \) of \(\mu \) in \(\mathcal{A}(\mathbb{I}) \).

Procedure 1 Steps of the orthonormal Gram-Schmidt process:

Step 1: For \(i = 2, 3, \ldots \) and \(k = 1, 2, \ldots, i - 1 \), do the following:

\[
\varepsilon_{ik} = \begin{cases}
\frac{1}{\|\Lambda_i\|_{\mathcal{A}}}, & i = k = 1, \\
\frac{1}{\|\Lambda_i\|_{\mathcal{A}} - \sum_{p=1}^{i-1} \langle\Lambda_i(t), \Lambda_p(t)\rangle_{\mathcal{A}}^2}, & i = k \neq 1, \\
\frac{1}{\|\Lambda_i\|_{\mathcal{A}} - \sum_{p=1}^{i-1} \langle\Lambda_i(t), \Lambda_p(t)\rangle_{\mathcal{A}}^2} \sum_{p=k}^{i-1} \langle\Lambda_i(t), \Lambda_p(t)\rangle_{\mathcal{A}} \omega_{p, k}, & i > k.
\end{cases}
\]

Output: The orthogonalization coefficients \(\varepsilon_{ik} \).

Step 2: For \(i = 1, 2, 3, \ldots \) set

\[
\bar{\Lambda}_i(t) = \sum_{k=1}^{i} \varepsilon_{ik} \Lambda_k(t).
\]

Output: systems of orthonormal functions \(\{\bar{\Lambda}_i(t)\}_{i=1}^{\infty} \).

Algorithm 1 Steps of FRKM for numerical reckonings model of FLE in ABC approach.

Step I: Fixed \(t, s \) in \(\mathbb{I} \) and do Phases 1 and 2:

Phase 1: Set \(t_i = \frac{1}{n} i \) in the indices \(i = 0, 1, \ldots, n \).

Phase 2: Set \(\Lambda_i(t) = \mathbb{Z}[\mathcal{M}_i](s) \big|_{s=t_i} \) in the indices \(i = 1, 2, \ldots, n \).

Output: the orthogonal function system \(\Lambda_i(t) \).

Step II: In the indices \(i = 1, 2, \ldots \) and \(k = 1, 2, \ldots, i - 1 \) do Procedure 1.

Output: the orthogonalization coefficients \(\varepsilon_{ik} \).

Step III: Set \(\bar{\Lambda}_i(t) = \sum_{k=1}^{i} \varepsilon_{ik} \Lambda_k(t) \) in the indices \(i = 1, 2, \ldots, n \).

Output: the orthonormal function system \(\bar{\Lambda}_i(t) \).

Step IV: Set \(\mu^0(t_i) = 0 \) and in the index \(i = 1, 2, \ldots, n \) do Phases 1, 2, and 3:

Phase 1: Set \(\mu^i(t_i) = \mu^{i-1}(t_i) \).

Phase 2: Set \(\mathcal{F}_i = \sum_{k=1}^{i} \varepsilon_{ik} \mu_k(t_k) \partial_t \mu(t_k) \).

Phase 3: Set \(\mu^n(t) = \sum_{k=1}^{i} \mathcal{F}_k \bar{\Lambda}_k(t) \).

Output: The \(n \)-term numerical reckoning \(\mu^n(t) \) of \(\mu(t) \).

5.2 Test Applications

To fill our present results in form of realistic and tangible models; three applications for model of FLE in the ABC fractional sense contains forcing term in its nonhomogeneous part are discussed. The readers should be note thither that in the next three applications \(\mu(0) \) and \(\partial_t \mu(0) \) are known and may not homogeneous.

Application 1 Essentially, let allow us behold the subsequent model of FLE in ABC approach:
\[
\begin{align*}
\left\{\begin{array}{l}
ABC \partial_t^\delta \mu(t) + 3\mu(t) - 2\mu^3(t) = \gamma(t), \\
\mu(0) = 0, \\
\partial_t \mu(0) = 1.
\end{array}\right.
\] (33)

with forcing term \(\gamma(t) = \cos(t) \sin(2t) \) and the exact solution when \(\delta = 2 \) agree well with \(\mu(t) = \sin(t) \). (34)

Application 2 Now, let allow us behold the subsequent model of FLE in ABC approach:
\[
\left\{\begin{array}{l}
ABC \partial_t^\delta \mu(t) + \mu(t) \partial_t \mu(t) - 6e^{\mu(t)} = \gamma(t), \\
\mu(0) = 0, \\
\partial_t \mu(0) = 0.
\end{array}\right.
\] (35)

with forcing term \(\gamma(t) = 6t - 6e^t + 3t^5 \) and the exact solution when \(\delta = 2 \) agree well with \(\mu(t) = t^3 \). (36)

Application 3 Finally, let allow us behold the subsequent model of FLE in ABC approach:
\[
\left\{\begin{array}{l}
ABC \partial_t^\delta \mu(t) + (\mu^2(t) + 1) \partial_t \mu(t) - \mu(t) - \cosh(t) \mu^2(t) = \gamma(t), \\
\mu(0) = 0, \\
\partial_t \mu(0) = 1.
\end{array}\right.
\] (37)

with forcing term \(\gamma(t) = \cosh(t) \) and the exact solution when \(\delta = 2 \) agree well with \(\mu(t) = \sinh(t) \). (38)

In those three applications, the researchers should note that the absence of analytic solutions does not have much effect on the gained results; because we will obtain and plot the numerical solutions at different values of \(\delta \).

5.3 Results and Discussions

Occupancy \(t_i = \frac{i}{n} \) in the indices \(i = 0, 1, ..., n = 50 \) on \(\mu^n(t_i) \) and then applying Procedure 1 and Algorithm 1.

Anyhow, we apply the FRKM to discurred the previous three applications in which \(t \in \mathbb{I}, \delta \in [1,2] \) – \{1\}.

Following, numerical validations for different values of grid points \(t_i \in \mathbb{I} \) when \(\delta = 2 \) will be exhibited. For this purpose, Tables 1, 2, and 3 tabulates the evolution of exact solutions \(\mu(t_i) \), numerical solutions \(\mu^{50}(t_i) \), absolute errors \(\mathcal{A} \mathcal{B}[\mu^{50}](t_i) \), and relative errors \(\mathcal{R}e[\mu^{50}](t_i) \) for Applications 1, 2, and 3, simultaneously, where
\[
\mathcal{A} \mathcal{B}[\mu^{50}](t_i) = |\mu(t_i) - \mu^{50}(t_i)|
\] (39)
\[
\mathcal{R}e[\mu^{50}](t_i) = |\mu(t_i) - \mu^{50}(t_i)|/\mu(t_i)
\] (40)

Table 1. Numerical results of Application 1 when \(\delta = 2 \) using Algorithm 1.

\(t_i \)	\(\mu(t_i) \)	\(\mu^{50}(t_i) \)	\(\mathcal{A} \mathcal{B}[\mu^{50}](t_i) \)	\(\mathcal{R}e[\mu^{50}](t_i) \)
0	0.0000000000	0.0000000000	Indeterminate	0.0000000000
0.1	0.0010000000	0.0009999992	8.403186007 × 10^{-9}	8.403186007 × 10^{-6}
0.2	0.0080000000	0.0080000002	1.677197007 × 10^{-7}	2.096473758 × 10^{-7}
0.3	0.0270000000	0.027000032	3.230583386 × 10^{-8}	1.196512365 × 10^{-6}
0.4	0.0640000000	0.064000092	9.231110808 × 10^{-8}	1.442361064 × 10^{-6}
0.5	0.1250000000	0.125000191	1.911998641 × 10^{-7}	1.529598913 × 10^{-6}

Table 2. Numerical results of Application 2 when \(\delta = 2 \) using Algorithm 1.

\(t_i \)	\(\mu(t_i) \)	\(\mu^{50}(t_i) \)	\(\mathcal{A} \mathcal{B}[\mu^{50}](t_i) \)	\(\mathcal{R}e[\mu^{50}](t_i) \)
0	0.0000000000	0.0000000000	Indeterminate	0.0000000000
0.1	0.0010000000	0.0009999992	8.403186007 × 10^{-9}	8.403186007 × 10^{-6}
0.2	0.0080000000	0.0080000002	1.677197007 × 10^{-7}	2.096473758 × 10^{-7}
0.3	0.0270000000	0.027000032	3.230583386 × 10^{-8}	1.196512365 × 10^{-6}
0.4	0.0640000000	0.064000092	9.231110808 × 10^{-8}	1.442361064 × 10^{-6}
0.5	0.1250000000	0.125000191	1.911998641 × 10^{-7}	1.529598913 × 10^{-6}
Our next analysis is to explicate numerical solutions $\mu^n(t_i)$ of the FRKM in solving model of FLE in ABC approach. For this purpose, the contract between the numerical solutions when $\delta \in \{2, 1.9, 1.8, 1.7\}$ are investigate in Tables 4, 5, and 6 for Applications 1, 2, and 3, simultaneously, at various $t_i \in I$. It is obvious from the Tables that, there is good harmony and agreement between the presented data whether for $\delta = 2$ or $\delta \in \{1.9, 1.8, 1.7\}$.

Table 3. Numerical results of Application 3 when $\delta = 2$ using Algorithm 1.

t_i	$\mu(t_i)$	$\mu^{50}(t_i)$	$\Re \delta[\mu^{50}(t_i)]$	$\Re[\mu^{50}(t_i)]$
0	0.100166750	0.100166967	2.172963557 × 10^{-7}	2.169346172 × 10^{-6}
0.2	0.201336003	0.201336261	2.589315430 × 10^{-7}	1.286066773 × 10^{-6}
0.3	0.304520293	0.304520543	2.497367032 × 10^{-7}	8.200987211 × 10^{-7}
0.4	0.410752326	0.410752588	2.621567295 × 10^{-7}	6.382355329 × 10^{-7}
0.5	0.521095305	0.521095589	2.837283594 × 10^{-7}	5.444858166 × 10^{-7}
0.6	0.636653582	0.636653900	3.181711627 × 10^{-7}	4.997555526 × 10^{-7}
0.7	0.758583702	0.758584068	3.660353389 × 10^{-7}	4.825246549 × 10^{-7}
0.8	0.888105982	0.888106411	4.291121671 × 10^{-7}	4.831767556 × 10^{-7}
0.9	1.026516726	1.026517235	5.092519777 × 10^{-7}	4.960971068 × 10^{-7}
1.0	1.175201194	1.175206630	5.632861930 × 10^{-7}	4.793104330 × 10^{-7}

t_i	$\mu(t_i)$	$\mu^{50}(t_i)$	$\Re \delta[\mu^{50}(t_i)]$	$\Re[\mu^{50}(t_i)]$
0	0.999833416	0.998681057	0.097727054	0.096960031
0.2	0.198669331	0.196299255	0.194241208	0.192582953
0.3	0.295520207	0.291666516	0.288794809	0.286232594
0.4	0.389418342	0.384744952	0.380467024	0.376926644
0.5	0.479425539	0.473725124	0.468382649	0.463755356
0.6	0.564642474	0.558030132	0.551698889	0.545904986
0.7	0.644217688	0.636823116	0.629605554	0.626767976
0.8	0.717356092	0.709315906	0.701327938	0.693415053
0.9	0.783326912	0.774778513	0.766138961	0.757420285
1.0	0.841470994	0.832548933	0.823377242	0.813981347

t_i	$\mu(t_i)$	$\mu^{50}(t_i)$	$\Re \delta[\mu^{50}(t_i)]$	$\Re[\mu^{50}(t_i)]$
0	0.000999999	0.008491899	0.015847216	0.030213070
0.2	0.008000002	0.023246733	0.038232993	0.067556082
0.3	0.027000003	0.050332926	0.073292799	0.118289727
0.4	0.064000002	0.095736203	0.126992649	0.188331928
0.5	0.125000191	0.165388312	0.205195734	0.283398045
0.6	0.216000036	0.265184687	0.313690745	0.409059002
0.7	0.343000862	0.400905787	0.458207955	0.570773783
0.8	0.512001151	0.578646608	0.644426912	0.773910228
0.9	0.729000937	0.803972434	0.877997233	1.023759477
1.0	1.000000010	1.082769456	1.164516993	1.325546567

t_i	$\mu(t_i)$	$\mu^{50}(t_i)$	$\Re \delta[\mu^{50}(t_i)]$	$\Re[\mu^{50}(t_i)]$
0	0.100166967	0.105043660	0.109678954	0.114216844
0.2	0.201336261	0.211327117	0.220870685	0.230262477
Of the data gained, it can be observed that the columns tables almost match, similar in their digits, and in good agreement with each other, especially when considering the integer-order derivative. Indeed, the ABC fractional orders have strong effects on the model profiles, which tend to lead to unusual behaviors in the event of a significant departure from the integer value of $\delta = 1$.

The 3D surfaces plots of dynamic and geometric behaviors along the memory and heritage characteristics of the FRKM are given next. Following, the geometrical validations of the approximate solutions for different values of grid points $t_i \in \mathbb{I}$ and $\delta \in [1,2] - \{1\}$ are exhibited as presented in Figure 1 (a,b,c) for Applications 1, 2, and 3, simultaneously.

![Figure 1: Comparisons of between the 3D computational values of the FRKM when $t_i \in \mathbb{I}$ and $\delta \in [1,2] - \{1\}$: (a) Application 1; (b) Application 2; (c) Application 3.](image_url)

Finally, as the saying goes, it ended with a refreshing scent; the attitude evaluation of $\mathcal{A}^{\delta}[\mu^{50}](t_i)$ is examined. Aught at various $t_i \in \mathbb{I}$ and when $\delta = 2$; Figure 2 (a,b,c) gives the 2D relevant plots data of the FRKM elements for Applications 1, 2, and 3, simultaneously. It is seen that the expansion in the quantity of hub brings about a decrease in the total errors and correspondingly an improvement in the exactness of the got solutions.
Summary and Outline

This article targets to extend the application of the FRKM to explore numerical solutions for model of FLE in the ABC fractional derivative. This target has been successfully achieved using the suggested approach that directly implemented to provide suitable approximations that easily determinable components without any need for transformation or discretization. Some efficacious experiments are presented to validate the capacity and reliability of the approach, where the FRKM results are compared with exact solutions when $\delta = 2$, and with each other for different values of fractional ABC levels, which are found in good agreement with each other even after computing a few iterations. From the numerical and graphical results, it can be concluded that the proposed method is a systematic, powerful, and suitable tool for different nonlinear models, valid for a long time with great potential in scientific applications.

Acknowledgment

This research work is supported by the Ajman University grant: 2019-20.

References

[1] R. Herrmann, Fractional Calculus: An Introduction for Physicists, World Scientific, Singapore, 2014.
[2] V.E. Tarasov, Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer; Germany, 2011.
[3] B.J. West, Fractional Calculus View of Complexity: Tomorrow’s Science, Taylor & Francis, UK, 2015.
[4] A. Kilbas, H. Srivastava, J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Netherlands, 2006.
[5] B.J. West, Natures Patterns and the Fractional Calculus, De Gruyter, Germany, 2017.
[6] O. Abu Arqub, Fitted reproducing kernel Hilbert space method for the solutions of some certain classes of time-fractional partial differential equations subject to initial and Neumann boundary conditions, Computers & Mathematics with Applications 73 (2017) 1243-1261.
[7] O. Abu Arqub, N. Shawagfeh, Application of reproducing kernel algorithm for solving Dirichlet time-fractional diffusion-Gordon types equations in porous media, Journal of Porous Media 22 (2019) 411-434.
[8] O. Abu Arqub, Numerical algorithm for the solutions of fractional order systems of Dirichlet function types with comparative analysis, Fundamenta Informaticae 166 (2019) 111-137.

[9] S.S. Ray, New exact solutions of nonlinear fractional acoustic wave equations in ultrasound, Computers & Mathematics with Applications 71 (2016) 859-868.

[10] S.S. Ray, S. Sahoo, Analytical approximate solutions of Riesz fractional diffusion equation and Riesz fractional advection-dispersion equation involving nonlocal space fractional derivatives, Mathematical Methods in the Applied Sciences 38 (2015) 2840-2849.

[11] M.M. Meerschaert, C. Tadjeran, Finite difference approximations for fractional advection-dispersion flow equations, Journal of Computational and Applied Mathematics 172 (2004) 65-77.

[12] P. Zhuang, F. Liu, V. Anh, I. Turner, Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term, SIAM Journal on Numerical Analysis 47 (2009) 1760-1781.

[13] E. Atilgan, M. Senol, A. Kurt, O. Tasbozan, New wave solutions of time-fractional coupled Boussinesq-Whitham-Broer-Kaup equation as a model of water waves, China Ocean Engineering 33 (2019) 477-483.

[14] A. Atangana, D. Baleanu, New fractional derivatives with non-local and non-singular kernel: theory and application to heat transfer model, Thermal Science 20 (2016) 763-769.

[15] A. Atangana, J.J. Nieto, Numerical solution for the model of RLC circuit via the fractional derivative without singular kernel, Advances in Mechanical Engineering 7 (2015) 1-7.

[16] A. Atangana, D. Baleanu, New fractional derivatives with non-local and non-singular kernel: theory and application to heat transfer model, Thermal Science 20 (2016) 763-769.

[17] A. Atangana, J.F. Gómez-Aguilar, Decolonisation of fractional calculus rules: Breaking commutativity and associativity to capture more natural phenomena, The European Physical Journal Plus 133 (2018) 1-22.

[18] O. Abu Arqub, Numerical solutions of systems of first-order, two-point BVPs based on the reproducing kernel algorithm, Calcolo 55 (2018) 1-28.

[19] O. Abu Arqub, B. Maayah, Modulation of reproducing kernel Hilbert space method for numerical solutions of Riccati and Bernoulli equations in the Atangana-Baleanu fractional sense, Chaos, Solitons & Fractals 125 (2019) 163-170.

[20] O. Abu Arqub, B. Maayah, Numerical solutions of integrodifferential equations of Fredholm operator type in the sense of the Atangana-Baleanu fractional operator, Chaos, Solitons & Fractals 117 (2018) 117-124.

[21] O. Abu Arqub, B. Maayah, Fitted fractional reproducing kernel algorithm for the numerical solutions of ABC-Fractional Volterra integro-differential equations, Chaos, Solitons & Fractals 126 (2019) 394-402.

[22] J.D, Djida, A. Atangana, I. Area, Numerical computation of a fractional derivative with non-local and non-singular kernel, Mathematical Modelling of Natural Phenomena 12 (2017) 4-13.

[23] A. Atangana, J.F. Gómez-Aguilar, Fractional derivatives with no-index law property: Application to chaos and statistics, Chaos Solitons & Fractals 114 (2018) 516-535.

[24] A. Atangana. On the new fractional derivative and application to nonlinear Fisher's reaction-diffusion equation. Applied Mathematics and Computation 273 (2016) 948-956.

[25] A. Atangana, I. Koca, On the new fractional derivative and application to Nonlinear Baggs and Freedman model, Journal of Nonlinear Science and Applications 9 (2016) 2467-2480.

[26] O. Algahtani, Comparing the Atangana-Baleanu and Caputo-Fabrizio derivative with fractional order: Allen Cahn model, Chaos, Solitons and Fractals 89 (2016) 552-559.

[27] D. Kumara, R.P. Agarwal, J. Singh, A modified numerical scheme and convergence analysis for fractional model of Lienard's equation, Journal of Computational and Applied Mathematics 339 (2018) 405-413.

[28] D.I. Sinelshchikov, N.A. Kudryashov, On the Jacobi last multipliers and Lagrangians for a family of Liénard-type equations, Applied Mathematics and Computation 307 (2017) 257-264.

[29] Z. Liqin, Boundedness and convergence for the non-Liénard type differential equation, Acta Mathematica Scientia 27 (2007) 338-346.

[30] G.G. Kiltu, G.F. Duressa, Accurate numerical method for Liénard nonlinear differential equations, Journal of Taibah University for Science 13 (2019) 740-745.

[31] P.T. Cardin, D.D. Novaes, Asymptotic behavior of periodic solutions in one-parameter families of Liénard equations, Nonlinear Analysis 190 (2020) 111617.
[32] M. Cui, Y. Lin, Nonlinear Numerical Analysis in the Reproducing Kernel Space, Nova Science, USA, 2009.
[33] A. Berlinet, C.T. Agnan, Reproducing Kernel Hilbert Space in Probability and Statistics, Kluwer Academic Publishers, USA, 2004.
[34] A. Daniel, Reproducing Kernel Spaces and Applications, Springer, Basel, Switzerland, 2003.
[35] O. Abu Arqub, Approximate solutions of DASs with nonclassical boundary conditions using novel reproducing kernel algorithm, Fundamenta Informaticae 146 (2016) 231-254.
[36] W. Jiang, Z. Chen, A collocation method based on reproducing kernel for a modified anomalous subdiffusion equation, Numerical Methods for Partial Differential Equations 30 (2014) 289-300.
[37] F.Z. Geng, S.P. Qian, S. Li, A numerical method for singularly perturbed turning point problems with an interior layer, Journal of Computational and Applied Mathematics 255 (2014) 97-105.
[38] Y. Lin, M. Cui, L. Yang, Representation of the exact solution for a kind of nonlinear partial differential equations, Applied Mathematics Letters 19 (2006) 808-813.
[39] Y. Zhoua, M. Cui, Y. Lin, Numerical algorithm for parabolic problems with non-classical conditions, Journal of Computational and Applied Mathematics 230 (2009) 770-780.
[40] A. Akgül, A novel method for a fractional derivative with non-local and non-singular kernel, Chaos, Solitons and Fractals 114 (2018) 478-482.