Some properties of the moment estimator of shape parameter for the gamma distribution

Piotr Nowak
Mathematical Institute, University of Wrocław
Pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland
E-mail: nowak@math.uni.wroc.pl

Abstract

Exact distribution of the moment estimator of shape parameter for the gamma distribution for small samples is derived. Order preserving properties of this estimator are presented.

Keywords: moment estimator, stochastic ordering, student’s ratio, dispersive ordering.

2010 MSC: 60E15, 62E15.

1 Introduction and preliminaries

It is well known that the gamma distribution has wide application, for example in meteorology to describe the distribution of rainfall.

The moment estimators $\hat{\alpha}$ and $\hat{\lambda}$ of the parameters α and λ of the gamma distribution with density

$$f(x; \alpha, \lambda) = \frac{1}{\Gamma(\alpha)\lambda^\alpha}x^{\alpha-1}\exp(-x/\lambda), \quad x > 0, \quad \alpha > 0, \lambda > 0$$

for a random sample X_1, \ldots, X_n are

(1.1)
$$\hat{\alpha} = \frac{\bar{X}^2}{S^2} \quad \text{and} \quad \hat{\lambda} = \frac{S^2}{\bar{X}},$$

where \bar{X} and S^2 are sample mean and sample biased variance respectively.

In this paper we are mainly interested in order preserving property of the estimator $\hat{\alpha}$. In general, we say that the estimator $\hat{\theta}$ based on the sample X_1, \ldots, X_n from population with density $f(\cdot; \theta)$ is increasing in θ with respect to the order \prec if $\hat{\theta}_1 \prec \hat{\theta}_2$, whenever $\theta_1 < \theta_2$, where $\hat{\theta}_1 (\hat{\theta}_2)$ is the estimator based on sample from density $f(\cdot; \theta_1) (f(\cdot; \theta_2))$. We shall consider when \prec is one of the following orders: $\leq_{st}, \leq_{disp}, \leq_*$. For details and definitions of these stochastic orders we refer the reader to Shaked and Shanthikumar [5].

Nowak [3] proved the following theorem.
Theorem 1. The estimators $\hat{\alpha}$ and $\hat{\lambda}$ are stochastically increasing respectively in α and λ.

Deriving exact distributions of moment estimators $\hat{\alpha}$ and $\hat{\lambda}$ is very tedious for $n > 2$. Now we find the distribution of $\hat{\alpha}$ for $n = 2$. First we prove the more general fact.

Lemma 1. Suppose that $X_1 \sim G(\lambda, \alpha_1)$ and $X_2 \sim G(\lambda, \alpha_2)$, X_1 and X_2 are independent random variables. Then $Z = \frac{S^2}{X^2}$ has density of the form

$$h(z; \alpha_1, \alpha_2) = \frac{1}{B(\alpha_1, \alpha_2)} z^{-1/2} \times \left[(1 - \sqrt{z})^{\alpha_1-1}(1 + \sqrt{z})^{\alpha_2-1} + (1 + \sqrt{z})^{\alpha_1-1}(1 - \sqrt{z})^{\alpha_2-1} \right].$$

Corollary 1. Let $X_1, X_2 \sim G(\lambda, \alpha)$, $Y \sim Ex(1)$, X_1, X_2 and Z are independent random variables. Then

$$(1.2) \quad \frac{X_1^2 + X_2^2}{(X_1 + X_2)^2} = \frac{1}{Z} \frac{(X_1 + Y)^2 + X_2^2}{(X_1 + Y + X_2)^2}.$$

Problem 1. Equation (1.2) yields some interesting property of the exponential distribution. There arises a question: Does this equation characterize the exponential distribution?

Corollary 2. For $n = 2$ the statistics $1/\hat{\alpha}$ has the beta distribution $B(1/2, \alpha)$. Hence $\hat{\alpha}$ has monotone likelihood ratio.

Now we examine dispersive ordering of the $\hat{\alpha}$ estimator. First we notice that $1/\hat{\alpha}$ is not dispersive monotone in α. We conclude it from Theorem 3.B.14 of Shaked and Shanthikumar [5] since the support of the estimator $1/\hat{\alpha}$ is the finite interval $(0, n-1)$.

Theorem 2. The estimator $1/\hat{\alpha}$ is not dispersively monotone in α.

We now consider dispersive ordering of the estimator $\hat{\alpha}$. From previous theorem it does not follow that $\hat{\alpha}$ is not dispersive monotone in α, though the function $1/x$ is decreasing and convex for $x > 0$. We should notice that Theorem 3.B.10(b) of Shaked and Shanthikumar [5] is not valid here. For example, in the following theorem we prove that for $n = 2$ the estimator $\hat{\alpha}$ is dispersively increasing in α.

Theorem 3. For $n = 2$ the estimator $\hat{\alpha}$ is dispersively increasing in α.

Proof. Let f^α denotes density of the estimator $\hat{\alpha}$. We know that $1/\hat{\alpha}$ has the beta distribution $B(1/2, \alpha)$, so

$$f^\alpha(x) = \frac{1}{B(1/2, \alpha)} x^{-3/2}(1 - 1/x)^{\alpha-1}, \quad x > 1.$$
In order to prove that $\hat{\alpha}_1 \leq_{\text{disp}} \hat{\alpha}_2$ whenever $\alpha_1 < \alpha_2$ it suffices to prove that

$$S^-(f^\alpha_c(x + 1) - f^\alpha_2(x + 1)) \leq 2 \quad \text{for every } c > 0$$

with the sign sequence being $-, +, -$ in the case of equality and $\hat{\alpha}_1 \leq_{\text{st}} \hat{\alpha}_2$ (see Theorem 2.6 and Remark 2.1 of Shaked [4]).

Fix $c > 0$. When $x > c$ then

$$f^\alpha_c(x + 1) - f^\alpha_2(x + 1) = \frac{1}{B(1/2, \alpha_2)}(x + 1)^{-3/2}(1 - 1/(x + 1))^{\alpha_2 - 1} \times$$

$$\times [A(x + 1)^{3/2}(x - c + 1)^{-3/2}(1 - 1/(x - c + 1))^{\alpha_1 - 1}/(1 - 1/(x + 1))^{\alpha_2 - 1} - 1],$$

where $A = B(1/2, \alpha_2)/B(1/2, \alpha_1)$. Thus $S^-(f^\alpha_c - f^\alpha_2) = S^-(h(x))$, where

$$h(x) = \log A + 3/2 \log(x + 1) - 3/2 \log(x - c + 1) +$$

$$+ (\alpha_1 - 1) \log(1 - 1/(x - c + 1)) - (\alpha_2 - 1) \log(1 - 1/(x + 1)).$$

Now we show that h has exactly one maximum when $\alpha_1 > 1$ and the sign sequence is $-, +, -$. In the other case h is decreasing. After calculating we have that $h'(x) = 0$ if and only if $-w(x)/(2x(x + 1)(x - c)(x - c + 1)) = 0$, where

$$w(x) = (2\alpha_2 - 2\alpha_1 + 3c)x^2 + (2\alpha_2 - 2\alpha_1 + 4c - 4\alpha_2c - 3c^2)x + 2c - 2\alpha_2c - 2c^2 + 2\alpha_2c^2.$$

So we must show that w has only one root in the interval (c, ∞) if $\alpha_1 > 1$ and no roots when $\alpha_1 \in (0, 1]$. Define $\bar{w}(x) = w(x + c)$. Therefore

$$\bar{w}(x) = (2\alpha_2 - 2\alpha_1 + 3c)x^2 + (2\alpha_2 - 2\alpha_1 + 4c(1 - \alpha_1) + 3c^2)x + 2(1 - \alpha_1)(c + c^2).$$

It is easy to see that for $\alpha_1 > 1$, \bar{w} has two different roots x_1 and x_2 that $x_1x_2 < 0$ and for $\alpha_1 \in (0, 1]$ \bar{w} has no roots in $(0, \infty)$. At the end we must show that the sign sequence is $-, +, -$ when $S^-(h) = 2$. For $\alpha_1 > 1$

$$\lim_{x \to c^+} h(x) = -\infty, \quad \lim_{x \to \infty} h(x) = \log A < 0.$$

Combining these above facts with Theorem 1 we end the proof.

Remark 1. The above theorem does not hold in general for $n \geq 3$, but direct calculating is impossible due to occurrence of hyper elliptic integrals. For example, numerical calculations show, that for $n = 3$, $\hat{\alpha}_1 \not\leq_{\text{disp}} \hat{\alpha}_2$ if $\alpha_1 = 1/5$ and $\alpha_2 = 1/4$. Then $G^{-1}(x) - F^{-1}(x)$ has the local maximum at $x \approx 0.72$ and the local minimum at $x \approx 0.85$.

Deriving exact distribution when $n = 3$ is more tedious. We should add, that the estimator $\hat{\alpha}$ is closely related to the student statistic $\sqrt{n}\bar{X}/S$. The properties of this statistic was very intensively studied in the literature, especially under non-normal conditions. First, we find joint distribution of the vector (\bar{X}, S). One can proof the following lemma, see for example Craig [2].
Lemma 2. If \(f \) is a density on \((0, \infty)\), then the joint distribution \((X, S)\) for \(n = 3 \) is given by formula

\[
F(\bar{x}, s) = \begin{cases}
18s \int_{x-s\sqrt{2}}^{x+s\sqrt{2}} f(x) f(\frac{3x-x_1 + R}{2}) f(\frac{3x-x_1 - R}{2}) dx_1, & 0 \leq s \leq \bar{x}\sqrt{2}/2, \\
\frac{1}{R} \int_0^{\frac{3\sqrt{2} - 6s^2 - s^2}{2}} + \int_{\frac{3\sqrt{2} - 6s^2 - s^2}{2}}^{\frac{3\sqrt{2} + 6s^2 - s^2}{2}} \frac{1}{R} f(x_1) f(\frac{3x-x_1 + R}{2}) f(\frac{3x-x_1 - R}{2}) dx_1, & \bar{x}\sqrt{2}/2 \leq s \leq \bar{x}\sqrt{2},
\end{cases}
\]

where \(R = \sqrt{6s^2 - 3(x_1 - \bar{x})^2} \).

If we have the joint distribution \((X, S)\) it is easy to derive the distribution of the statistics \(T = \bar{X}/S = \sqrt{\alpha} \) from the formula

\[
f_T(t) = \int uF(ut, u)du.
\]

Proposition 1. For \(n = 3 \) the cumulative distribution function of \(T \) for the exponential distribution with density \(f(x) = e^{-x}, x > 0 \) is given by

\[
F(t) = \begin{cases}
1 - \frac{2\pi}{3\sqrt{3}t^2}, & t \geq \sqrt{2}, \\
-\sqrt{2-t^2} + \frac{\pi}{3\sqrt{3}} - \frac{2\arcsin\left(\frac{\sqrt{2}}{\sqrt{3}}\right)}{\sqrt{3t^2}} + 1, & \sqrt{2}/2 \leq t \leq \sqrt{2}.
\end{cases}
\]

On the other hand it is not easy to derive in the general the distribution of \(T \). For example, if \(\alpha \in (0, 1) \) above integrals can be calculated only by numerical methods. For \(n = 3 \), after a bit algebra we can also derive the distribution of \(T \) for the gamma distribution with shape parameter \(\alpha = 2 \).

Proposition 2. For \(n = 3 \) the cumulative distribution function of \(T \) for the gamma distribution with density \(g(x) = xe^{-x}, x > 0 \) is given by

\[
G(t) = \begin{cases}
1 - \frac{10\pi(4t^2-3)}{27\sqrt{3}t^4}, & t \geq \sqrt{2}, \\
\frac{\sqrt{2-t^2}(-33t^4-13t^2+8)+5\pi(4t^2-3)-30t(4t^2-3)\arcsin\left(\frac{\sqrt{2}}{\sqrt{3}}\right)}{27\sqrt{3}t^2} + 1, & \sqrt{2}/2 \leq t \leq \sqrt{2}.
\end{cases}
\]

From previous propositions it follows, that the statistic \(T \) is not monotone with respect to the star order \(\leq_s \), that is the function \(G^{-1}F(x)/x \) is not monotone in \(x > 0 \). To see it, let us calculate:

1) \(\frac{G^{-1}F(x)}{x} \bigg|_{x=\frac{11}{33}} = \frac{10}{33} \sqrt{\frac{1}{33} \left(\frac{11}{33} \right)} \approx 1.32686 \)

2) \(\frac{G^{-1}F(x)}{x} \bigg|_{x=\frac{2\pi}{2}} = \sqrt{\frac{40\pi + 2\sqrt{10\pi(22\pi - 27\sqrt{3})}}{27\sqrt{3} + 18\pi}} \approx 1.31502 \)

3) \(\frac{G^{-1}F(x)}{x} \bigg|_{x=\sqrt{2}} = \sqrt{\frac{40\pi + 2\sqrt{10\pi}}{6}} \approx 1.32081 \)
Since the star order is preserved under increasing function, we have the following corollary.

Corollary 3. For \(n = 3 \) the estimator \(\hat{\alpha} \) is not increasing in \(\alpha \) with respect to the star order.

The star order is closely related to the dispersive order, since

\[X \leq_{\ast} Y \text{ iff } \log X \leq_{\text{disp}} \log Y. \]

Using the same technique as in Theorem 3 we can prove the following proposition.

Proposition 3. For \(n = 2 \) the estimator \(\hat{\alpha} \) is increasing in \(\alpha \) with respect to the star order.

Applying the property that for nonnegative random variables such \(X \leq_{\text{st}} Y \) and \(X \leq_{\ast} Y \) implies the ordering \(X \leq_{\text{disp}} Y \) (see, for example, Ahmed et al. [1]) we can also deduce from Theorem 1 and Proposition 3 that \(\hat{\alpha} \) is dispersively monotone for \(n = 2 \).

References

[1] A. N Ahmed, A. Alzaid, J. Bartoszewicz, S. C. Kochar, *Dispersive and superadditive ordering*, Advances in Applied Probability 18, (1986), 1019–1022.

[2] Allen T. Craig, *The simultaneous distribution of mean and standard deviation in small samples*, The Annals of Mathematical statistics, Vol 3, No. 2, 1932, p.126–140.

[3] P. Nowak, *Stochastic comparisons of moment estimators of gamma distribution parameters*, to appear in Applicationes Mathematicae.

[4] M. Shaked, *Dispersive ordering of distributions*, J. Appl. Prob. 19 (1982), 310–320.

[5] M. Shaked, J. G. Shanthikumar, *Stochastic Orders*, Springer Verlag, New York, 2007.