Nomograms for Prediction of Molecular Phenotypes in Colorectal Cancer

Background: Colorectal cancer (CRC) patients with different molecular phenotypes, including microsatellite instability (MSI), CpG island methylator phenotype (CIMP), and somatic mutations in BRAF and KRAS gene, vary in treatment response and prognosis. However, molecular phenotyping under adequate quality control in a community-based setting may be difficult. We aimed to build the nomograms based on easily accessible clinicopathological characteristics to predict molecular phenotypes.

Methods: Three hundred and six patients with pathologically confirmed stage I-IV CRC were included in the cohort. The assays for MSI, CIMP, and mutations in BRAF and KRAS gene were performed using resected tumor samples. The candidate predictors were identified from clinicopathological variables using multivariate Logistic regression analyses to construct the nomograms that could predict each molecular phenotype.

Results: The incidences of MSI, CIMP, BRAF mutation and KRAS mutation were 25.3% (72/285), 2.5% (7/270), 3.4% (10/293), and 34.8% (96/276) respectively. In the multivariate Logistic analysis, poor differentiation and high neutrophil/lymphocyte ratio (NLR) were independently associated with MSI; poor differentiation, high NLR and high carcinoembryonic antigen/tumor size ratio (CSR) were independently associated with CIMP; poor differentiation, lymphovascular invasion and high CSR were independently associated with BRAF mutation; poor differentiation, proximal tumor, mucinous tumor and high NLR were independently associated with KRAS mutation. Four nomograms for MSI, CIMP, BRAF mutation and KRAS mutation were developed based on these independent predictors, the C-indexes of which were 61.22% (95% CI: 60.28–62.16%), 95.57% (95% CI: 95.20–95.94%), 83.56% (95% CI: 81.54–85.58%), and 69.12% (95% CI: 68.30–69.94%) respectively.

Conclusion: We established four nomograms using easily accessible variables that could well predict the presence of MSI, CIMP, BRAF mutation and KRAS mutation in CRC patients.

Keywords: colorectal cancer, microsatellite instability, CpG island methylator phenotype, BRAF, KRAS, nomogram, prediction of molecular subtypes

Introduction
Colorectal cancer (CRC) is one of the most prevalent and fatal cancers worldwide. CRC is widely recognized as a result of gradual accumulations of genetic and epigenetic changes involving in different genes and pathways, and thus it is considered as a disease with high heterogeneity.

This heterogeneous nature confers the variation of CRC patients in treatment response and prognosis. Several molecular phenotypes have been studied to investigate CRC heterogeneity in past decades. Among them, microsatellite instability (MSI), CpG island methylator phenotypes...
phenotype (CIMP), and somatic mutations in BRAF and KRAS exons were most widely used in clinical decision-making.4,5

It has been suggested that 5-fluorouracil (5-FU) is an effective chemotherapeutic agent to markedly improve CRC survival in past decades.6 The regimen incorporating irinotecan and capecitabine is a well-established option for use as first-line, second-line and sequential treatment of CRC.7 However, adverse effects on survival were found when oxaliplatin or adjuvant treatment with 5-FU was applied in patients with MSI, while they had a special sensitivity to irinotecan.8-10 Moreover, several studies have shown that a CIMP (+) phenotype might improve the therapeutic effect of 5-FU treatment.11,12

The molecular phenotyping can guide the targeted therapy and immune-checkpoint treatments as well. The response to anti-epidermal growth factor receptor (EGFR) therapy, including cetuximab and panitumumab, also varies in molecular subtypes. It has been well documented that the patients with KRAS mutations would be resistant to anti-EGFR therapies, and thus anti-EGFR agents should be avoided in this subgroup of patients.3 In BRAF-mutant CRCs with advanced stages, the FOLFOXIRI regimen (irinotecan, oxaliplatin, 5-FU and leucovorin) and bevacizumab were considered as a favourable treatment, but they can benefit from oxaliplatin as well as patients with MSI does.9 An anti-EGFR may also be resisted in CIMP-high CRCs that display extensive DNA promoter hypermethylation and tumor suppressor gene repression. In addition, DNA methylation inhibition may be an efficient treatment for tumors with CIMP.13 Of note, MSI has become one of the most popular biomarkers in CRC and other cancers for treatment response to immune checkpoint blockades.8-10 BRAF mutation and CIMP have also been considered as promising prognostic markers in CRC.14

Given the values of these subtypes in distinguishing prognosis and response to therapies, molecular phenotyping is deserved in clinical decision-making. Unfortunately, testing tumor samples for molecular subtype under adequate quality control in a community-based setting sometimes may be difficult due to cost and technique limit, but clinicopathological information is easy-to-get in almost all clinical settings. Therefore, understanding the clinicopathological factors that could predict the presence of MSI, CIMP, and mutations in BRAF and KRAS is becoming crucial to provide crude molecular information for primary care physicians and assist molecular phenotyping for pathologists. Several studies have revealed the specific clinicopathological features associated with each molecular subtype.15-18 For example, CRCs with right-side location or poor differentiation have been shown to be associated with MSI-high, CIMP (+) and BRAF mutation. In addition, CIMP (+), BRAF mutation and KRAS mutation were more frequent in elderly female patients. Our study, therefore, aimed to conduct a comprehensive association analysis of clinicopathological variables with MSI, CIMP, and mutations in BRAF and KRAS, and establish nomograms using these easily accessible predictors for each molecular phenotype to make them be well used in clinical practice.

Materials and Methods

Patients

The eligible patients were identified from the prospectively collected tissue bank of our institute from 2009 to 2012. Three hundred and six patients with pathologically confirmed stage I-IV CRC were included. As shown in Figure 1, the patients with multiple primary cancers, inflammatory bowel disease, tumor samples having extensive DNA degradation and missing medical records, Lynch syndrome, familial adenomatous polyposis, and other hereditary cancer syndromes were excluded. To avoid the potential influence of chemo/radiotherapy on CIMP test and clonal selection of other molecular phenotypes, the patients receiving chemo/radiotherapy before sample collecting were excluded. All the patients were treated and followed according to the NCCN guideline-based protocols in our institute.19,20 The demographic and clinicopathological information of included patients were collected from the medical record. The tumors located in ascending and transverse colon were defined as proximal tumor, while the distal tumor includes the tumors located in descending colon, sigmoid colon, and rectum.21 This study was approved by the Institutional Review Board of the Six Affiliated Hospital of Sun Yat-sen University and conducted in compliance with the Declaration of Helsinki. The written informed consent was obtained from the patients included in this study.

Mutational Analysis for KRAS and BRAF

The KRAS exon 2 and BRAFV600E mutation status of resected tumor samples were determined by Sanger sequencing. These mutation analyses were performed at the Molecular Laboratory of our institute under a high-quality control as previously described.22
CIMP Assay
To determine the CpG Island Methylator Phenotype (CIMP) in tumor samples, DNA was extracted (Qiagen, 51306) and bisulfite-treated (Zymo Research, D5002) according to the manufacturer’s protocol. The assay panel, including promoters of five genes (CACNA1G, IGF2, NEUROG1, RUNX3, SOCS1),23 was exploited to assess CIMP using quantitative methylation-specific PCR (qMSP) as previously described.24,25

Microsatellite Analysis
Microsatellite status was analyzed based on five commonly used markers of microsatellite sequence: BAT-25, BAT-26, NR-21, NR-22, and NR-24 using a fluorescence-based pentaplex polymerase chain reaction technique and capillary electrophoresis.26,27

Statistical Analysis
The potential predictive variables, including albumin (≤40 vs >40 g/L), total protein (≤60 vs >60 g/L), platelet counts (≤300×10⁹/L vs >300×10⁹/L), hemoglobin (≤110 vs >110 g/L), MCH (≤27 vs >27 pg), MCHC (≤320 vs >320 g/L), CEA (>5 vs ≤5 ng/mL), AFP (>25 vs ≤25 ng/mL), CA19-9 (≤37 vs >37 kU/L), CA125 (≤35 vs >35 kU/L), and CA153 (≤25 vs >25 kU/L), were preoperatively determined and categorized according to previous studies.20,28,29 BMI (<18.5 vs 18.5–24 vs ≥24 kg/m²) was categorized according to the reference standard in Chinese populations.30 The preoperative CEA/tumor size ratio (CSR), defined as the ratio of CEA level and the maximum tumor diameter, was exploited to evaluate the CEA level per tumor volume as we previously described.31 We used the preoperative neutrophil/lymphocyte ratio (NLR) and platelet/lymphocyte ratio (PLR) to determine the baseline systemic inflammation status in patients,32,33 and receiver operating characteristic curve (ROC) analysis was used to identify the optimum cutoff point for these variables (Supplementary Figure 1 and Supplementary Table 1).

Descriptive statistics were used to summarize baseline characteristics between patients with different molecular phenotypes, and the variables were compared using the Chi-square test or Rank-sum test according to their distributions. To estimate the predictive value of variables for each molecular phenotype, univariate Logistic regression analysis was used, and the odds ratio (OR) and the 95% confidence intervals (95% CI) were calculated. The variables considered significant in the univariable logistic regression analysis were further entered into the backward stepwise multivariable logistic regression analysis, based on which nomograms were constructed to predict the status of CIMP, MSI, KRAS mutation and BRAF mutation. The C-index was acquired for each nomogram, and internal validation using the bootstrap method was performed.
to determine the adjusted C-index. Calibration curves of the nomograms were generated to show the relationship between the predicted and observed outcomes. The SPSS (23.0) and R (3.6.0) were used for all analyses. The significant values were 2-tailed, and all variables were considered statistically significant if P values were less than 0.05.

Results

Three hundred and six patients meeting the inclusion and exclusion criteria were finally included in this study. Among them, the assays for MSI, CIMP, *BRAF* mutation, and *KRAS* mutation are available in 285, 270, 293, 276 patients, respectively (Figure 1), the incidences of which were 25.3% (72/285), 2.5% (7/270), 3.4% (10/293), and 34.8% (96/276) respectively. In consistent with previous studies, patients with CIMP (+) are tightly associated with the status of *BRAF* mutation (83.3% vs 1.7%, *P* < 0.001, Table 1). In addition, patients with MSI had significantly higher CIMP (+) frequency (6.9% vs 0.5%, *P* = 0.004, Table 1), and patients with *KRAS* mutation had significantly higher *BRAF* mutation rate (5.6% vs 0%, *P* = 0.017, Table 1). Patients’ baseline characteristics are summarized in Table 1.

Predictive Variables for MSI

In our cohort, the characteristics of patients with MSI and microsatellite stability (MSS) are similar except for tumor differentiation and location. MSI was more frequent in poorly differentiated CRCs [39.6% (19/48) vs 22.4% (52/232), *P* = 0.013] and proximal CRCs [36.5% (19/52) vs 22.7% (53/233), *P* = 0.039] (Table 1). Next, we performed logistic regression analyses to identify the clinicopathological variables that predict MSI in CRC. In the univariate analysis, tumor differentiation, location and NLR were significantly associated with MSI (Table 2). These factors were entered into a multivariate analysis, in which poor differentiation (OR=2.392, 95% CI: 1.213–4.715; *P* = 0.012) and high NLR (OR=3.893, 95% CI: 1.14–13.293; *P* = 0.030) were independently associated with MSI status (Table 3).

Predictive Variables for CIMP

A CIMP (+) status was more frequent in CRCs characterized as older patients [4.1%(6/147) vs 0.6%(1/159), *P* = 0.043], larger size [4.9%(7/143) vs 0.0%(0/160), *P* = 0.014], poor differentiation [10.7%(6/56) vs 0.4%(1/243), *P* < 0.001], lymphovascular invasion [13.0%(3/23) vs 1.4%(4/280), *P* = 0.004], and elevated CA125 [15.0%(3/20) vs 1.5%(4/239), *P* = 0.003] (Table 1). To identify the clinicopathological predictors for CIMP (+) in CRC, we performed Logistic regression analyses. A CIMP (+) status was found to be associated with poor differentiation, lymphovascular invasion, platelet counts, NLR, PLR and CSR in the univariate analysis (Table 2), while only the association with poor differentiation (OR=28.373, 95% CI: 2.961–271.921; *P* = 0.004), NLR (OR 14.518, 95% CI: 1.526–138.108; *P* = 0.020), and CSR (OR=14.350, 95% CI: 2.718–75.753; *P* = 0.047) were still significant in multivariate analysis (Table 3).

Predictive Variables for *BRAF* Mutation

BRAF mutation was more frequent in CRCs with poor differentiation [13.7% (7/51) vs 1.3% (2/235), *P* < 0.001], lymphovascular invasion [22.7% (5/22) vs 1.9% (5/269), *P* < 0.001], elevated CEA [9.0% (6/67) vs 1.9% (4/208), *P* = 0.022], elevated CA19-9 [12.8% (5/39) vs 2.2% (5/231), *P* = 0.005], and elevated CA125 level [20.0% (4/20) vs 2.4% (6/249), *P* = 0.001] (Table 1). Next, we performed Logistic regression analyses to identify predictors for *BRAF* mutation from clinicopathological variables. The predictors that was significant in the univariate analysis, including poor differentiation, lymphovascular invasion, CEA, NLR, PLR and CSR (Table 2), were entered into a multivariate analysis, in which poor differentiation (OR=9.447, 95% CI: 1.937–46.071; *P* = 0.005), lymphovascular invasion (OR=10.861, 95% CI: 2.043–57.727; *P* = 0.005), and high CSR (OR=14.350, 95% CI: 2.718–75.752; *P* = 0.002) were independently associated with *BRAF* mutation (Table 3).

Predictive Variables for *KRAS* Mutation

KRAS mutation was more frequent in patients with proximal tumors [48.1% (35/72) vs 31.7% (71/224), *P* = 0.025], mucinous tumor [56.7% (17/30) vs 32.1% (79/246), *P* = 0.008], and high platelet counts [0.0% (0/4) vs 38.7% (79/204), *P* = 0.015], while other characteristics were similar between *KRAS* wild-type and mutant patients (Table 1). Next, we performed logistic regression analyses to identify the clinicopathological predictors for *KRAS* mutation in CRC. In the univariate analysis, poor differentiation, proximal tumor, mucinous tumor and NLR were significant predictors for harboring *KRAS* mutation (Table 2). The further multivariate analysis showed all these variables, including poor differentiation (OR=0.164, 95% CI: 0.035–0.771; *P* = 0.022), proximal tumor (OR=2.351, 95% CI: 1.202–4.598; *P* = 0.013), mucinous tumor (OR=11.651, 95% CI: 2.119–64.074; *P* = 0.005), and high NLR (OR=1.983, 95% CI: 1.144–4.438;
Table 1 Baseline Characteristics of Included CRC Patients with Different Molecular Phenotypes

Variable	Microsatellite Status	CIMP	BRAF	KRAS	CEA (ng/mL)														
	MSS	MSI	MSI%	P	Wild	Mut	Mut%	P	Wild	Mut	Mut%	P							
Age	≤ 62	118	33	21.9%	0.761	158	1	6%	0.043	150	4	2.6%	0.626	95	52	35.4%	0.826		
	> 62	95	29	29.1%		141	6	4%	0.413	133	6	4.3%	112	6	7%	0.413	112	6	7%
Gender	Male	113	44	28.0%	0.235	172	1	0.6%	0.058	164	4	2.4%	0.463	102	51	33.3%	0.573		
	Female	100	28	21.9%		127	1	8%	0.138	122	6	4.7%	112	6	5%	0.383	102	51	33.3%
BMI	≤ 18.5	23	4	14.8%	0.419	27	0	0%	0.697	25	1	2.8%	0.513	19	6	24.0%	0.250		
	18.5-24	112	40	26.3%		160	3	1.8%	0.108	153	3	1.9%	88	58	39.7%				
	≥ 24	68	25	28.1%		97	1	1.1%	0.004	92	4	4.3%	63	29	30.7%				
Family history of CRC	Yes	3	1	25.0%	0.507	5	0	0%	0.246	5	0	0%	1	0	0%	0.330			
	No	230	71	23.6%		293	7	2.4%	289	0	10.7%	0.004	204	96	32.0%				
Tumor location	Proximal	33	19	36.5%	0.039	51	4	0%	0.058	51	2	3.8%	0.796	27	25	48.1%	0.025		
	Distal	180	53	22.2%		248	4	1.6%	0.108	232	8	3.3%	153	71	31.7%				
Tumor length	> 4.00	97	37	27.6%	0.427	136	7	4.9%	0.014	132	7	5.0%	0.272	89	40	31.0%	0.187		
	≤ 4.00	114	35	23.5%		160	0	0%	0.014	148	3	2.0%	0.272	89	56	38.6%			
Mucinous tumor	Yes	21	9	30%	0.528	266	6	2.2%	0.786	30	1	3.2%	0.643	13	17	56.7%	0.008		
	No	192	63	24.7%		33	1	2.9%	0.026	31	2	6.4%	0.043	167	79	32.1%			
Differentiation	Poor	29	19	39.6%	0.012	50	6	10.7%	<0.001	44	7	13.7%	<0.001	30	18	37.9%	0.637		
	Moderate-well	180	52	22.4%		242	1	0.4%	0.004	233	2	1.3%	148	76	33.9%				
Lymphovascular invasion	+	12	9	42.9%	0.057	20	3	13.0%	0.004	17	5	22.7%	<0.001	15	4	21.1%	0.189		
	-	199	63	24.0%		276	4	1.4%	0.004	264	5	1.9%	164	92	35.9%				
Perineural invasion	+	15	9	37.5%	0.259	270	7	2.5%	0.687	23	2	8.0%	0.407	17	7	29.2%	0.632		
	-	198	63	24.1%		26	0	0%	0.026	260	8	3.0%	163	89	35.3%				
TNM staging	I	44	16	26.6%	0.965	64	0	0%	0.515	59	0	0%	0.346	34	22	39.2%	0.474		
	II	94	30	24.2%		123	4	3.1%	0.004	123	4	3.1%	78	46	37.1%				
	III	66	24	26.7%		101	3	2.9%	0.004	96	6	6.3%	60	25	29.4%				
	IV	7	2	22.2%		9	0	0%	0.026	9	0	0%	7	2	22.2%				
CEA (ng/mL)	> 5	46	16	25.8%	0.994	68	4	5.6%	0.124	61	6	9.0%	0.022	37	23	38.3%	0.622		
	≤ 5	152	53	25.9%		212	3	1.4%	0.026	204	4	1.9%	129	69	34.8%				

(Continued)
Table 1 (Continued).

Variable*	Microsatellite Status	CIMP	BRAF	KRAS													
	MSS	MSI	MSI%	P	-	+	+%	P	Wild	Mut	Mut%	P	Wild	Mut	Mut%	P	
CA19-9 (kU/L)	>37	28	9	24.3%	0.787	40	3	7.0%	0.127	34	5	12.8%	0.005	23	14	37.8%	0.726
	≤ 37	167	60	26.4%	235	4	1.7%	226	5	2.2%	142	76	34.9%	0.000			
AFP (ng/mL)	>25	0	1	100%	0.257	1	0	0%	1	1	0	0%	1	0	100%	0.359	
	≤ 25	191	65	25.4%	266	7	2.6%	253	9	3.4%	159	88	35.6%	0.000			
CA125 (kU/L)	>35	12	7	36.8%	0.280	17	3	15.0%	0.003	16	4	20%	0.001	12	7	36.8%	0.904
	≤ 35	181	62	25.5%	255	6	1.5%	243	6	2.4%	151	83	35.5%	0.112			
CA153 (kU/L)	>25	4	0	0%	0.156	4	0	0%	1	4	0	0%	1	3	25.0%	0.977	
	≤ 25	163	61	27.2%	224	6	2.6%	215	9	4.0%	133	83	38.4%	0.000			
Albumin (g/L)	≤ 40	78	24	23.5%	0.394	107	7	6.1%	0.001	103	7	6.4%	0.163	65	34	34.3%	0.999
	>40	122	48	28.2%	179	0	0%	168	4	2.3%	109	57	34.3%	0.517			
Total protein (g/L)	≤ 60	15	5	25.0%	0.693	19	3	13.6%	0.010	18	3	14.3%	0.045	11	9	45.0%	0.472
	>60	126	52	29.2%	188	3	1.6%	179	5	2.7%	110	64	36.7%	0.000			
Platelet counts (10^9/L)	≤ 300	155	57	26.9%	0.830	229	3	1.3%	0.035	216	6	2.7%	0.210	129	79	37.9%	0.018
	>300	41	14	25.5%	51	4	7.3%	50	4	7.4%	42	11	20.8%	0.000			
MCH (pg)	≤ 27	51	17	25.0%	0.590	65	4	5.8%	0.131	61	5	7.6%	0.069	46	18	28.1%	0.227
	>27	131	52	28.4%	199	3	1.5%	188	5	2.6%	115	66	36.4%	0.000			
MCHC (g/L)	≤ 320	60	20	25.0%	0.545	82	5	5.7%	0.064	76	6	7.3%	0.103	51	25	32.9%	0.758
	>320	122	49	28.7%	182	2	1.1%	174	4	2.2%	110	59	34.9%	0.517			
Hemoglobin (g/L)	≤ 110	69	21	23.3%	0.419	87	6	6.5%	0.007	84	5	5.6%	0.370	54	33	37.9%	0.480
	>110	129	50	27.9%	195	1	0.5%	184	5	2.6%	117	59	33.5%	0.000			
NLR (median = 2.05)	> 2.05	102	32	23.9%	0.404	143	1	0.7%	0.126	137	4	2.8%	0.704	90	42	31.8%	0.260
	≤ 2.05	96	38	28.4%	138	6	4.2%	130	6	4.4%	80	50	38.5%	0.000			
PLR (median = 127.34)	> 127.34	94	36	27.7%	0.618	142	1	0.7%	0.126	135	3	2.2%	0.328	85	44	34.1%	0.865
	≥ 127.34	104	34	25.0%	137	6	4.2%	130	7	5.1%	85	46	35.1%	0.000			
CSR (median = 0.64)	≤ 0.64	100	36	26.5%	0.869	139	3	2.1%	0.004	204	5	2.4%	0.131	136	67	33.0%	0.367
	>0.64	96	33	25.6%	138	4	2.8%	129	6	4.4%	77	48	38.4%	0.000			
Microsatellite status	MSS	-	-	-	-	212	1	0.5%	0.004	204	5	2.4%	0.131	136	67	33.0%	0.367
	MSI	-	-	-	-	67	5	6.9%	0.004	67	5	6.9%	0.004	44	28	38.9%	0.000
P=0.015), were independently associated with KRAS mutation (Table 3).

Predictive Nomograms Established for MSI, CIMP, BRAF and KRAS Mutation

Four Nomograms were developed based on the independently significant factors in the multivariate logistic regression analysis (Figure 2, left). The nomogram for predicting MSI status was a model in which NLR weighted more than differentiation. Tumor differentiation weighted most, and NLR and CSR were followed in the nomogram for predicting CIMP (+). The nomogram for predicting BRAF mutation included predictors similar to that for CIMP (+), except for NLR replaced by lymphovascular invasion. These three predictors weighted similar in this model. In the nomogram for predicting KRAS mutation, the histological features of differentiation and mucinous tumor showed a superior impact on the prediction over proximal location and NLR. Using these nomograms, we could easily calculate the probability of MSI, CIMP (+), BRAF mutation and KRAS mutation based on clinicopathological information.

We further used 1000 bootstrap resamples to compute adjusted C-indexes. The C-indexes of MSI, CIMP (+), BRAF mutation and KRAS mutation were 61.22% (95% CI: 60.28–62.16%), 95.57% (95% CI: 95.20–95.94%), 83.56% (95% CI: 81.54–85.58%), and 69.12% (95% CI: 68.30–69.94%) respectively. Calibration curves between predicted and actual observations by internal validation demonstrated that these nomograms showed good statistical performance for predicting the probability of each phenotype, except for the nomograms for MSI and CIMP (+), in which the probability of MSI would be overestimated when the probability was less than 0.2 (Figure 2, right).

Discussion

In this study, we identified the independent predictors for MSI, CIMP (+), BRAF mutation and KRAS mutation. Among these predictors, NLR and PLR as the systemic inflammation markers, and CSR as a tumor size-corrected CEA indicator have not been reported to be associated with any of molecular phenotypes so far. To the best of our knowledge, this is the first study exploiting them in models to predict molecular phenotypes. We constructed four nomograms using these independent predictors, and their internal validations showed good statistical performance to
predict molecular phenotypes. Considering the significance of MSI, CIMP (+), BRAF mutation and KRAS mutation in currently clinical decision-making, the nomograms we generated that could predict molecular phenotypes using easily accessible clinicopathological variables would be widely used in clinical practice.

Molecular Subtypes	Variable*	P	OR	CI 95%
MSI	Tumor location			
	Proximal	0.041	1.955	1.029–3.717
	Non-proximal			
Differentiation	Poor	0.014	2.268	1.177–4.369
	Moderate-well			
NLR	High	0.026	3.988	1.177–13.510
	Low			
CIMP	Differentiation			
	Poor	0.002	29.040	3.421–246.524
	Moderate-well			
Lymphovascular invasion	+	0.003	10.350	2.166–49.463
	-			
Platelet (10⁹/L)	≥ 300	0.022	5.987	1.300–27.577
	≤ 300			
NLR	High	0.008	17.746	2.100–149.938
	Low			
PLR	High	0.050	5.250	0.999–27.582
	Low			
CSR	High	0.015	6.696	1.450–30.923
	Low			
BRAF	Lymphovascular invasion	<0.001	15.529	4.095–58.899
	+			
	-			
Differentiation	Poor	<0.001	12.356	3.077–49.625
	Moderate-well			
CEA(ng/mL)	≥ 5	0.015	5.016	1.371–18.353
	< 5			
PLR	High	0.042	4.175	1.055–16.524
	Low			
CSR	High	0.002	8.325	2.248–30.829
	Low			
KRAS	Differentiation	0.637	1.168	0.612–2.230
	Poor			
	Moderate-well			
Tumor location	Proximal	0.027	1.995	1.081–3.681
	Distal			
Histology	Mucinous	0.027	2.371	1.103–5.098
	Non-mucinous			
NLR	High	0.013	1.937	1.149–3.267
	Low			

Notes: *All the laboratory variables were preoperatively determined. Only predictive factors with statistical significance were presented in this table. The cutoff of each variable determined by ROC can be found in Supplementary Table 1.

Abbreviations: MSI, microsatellite instability; CIMP, CpG island methylator phenotype; CEA, carcinoembryonic antigen; CSR, CEA/tumor size ratio; NLR, neutrophil/lymphocyte ratio; PLR, platelet/lymphocyte ratio.
The missense mutations in KRAS occur in approximately 37.5–38% CRCs in Chinese populations. However, several studies showed that BRAF mutation was only found in 2.8–4.4% CRCs in Chinese population. In our study, BRAF mutation presented in 3.4% (10/293) cases, which is accordant to the reported mutation rate in Chinese population. These results showed that there may exist a distinct nature of CRC between populations. The previous studies have reported various predictors for BRAF mutation, including elderly female patients and tumors characterized as right-sided, mucinous and poor differentiation. In our study, poor differentiation, lymphovascular invasion and high CSR were independent predictors for BRAF mutation. The distinct BRAF-mutation epidemiology and genetic basis between our population and previous cohort may contribute to the variation in predictors. The developed nomogram using these variables showed a high predictive accuracy up to 83.56%. As shown in the calibration curve,

Molecular Subtypes	Variable*	P	OR	CI 95%
MSI	Differentiation Poor Moderate-well	0.012	2.392	1.213–4.715
NLR	High Low	0.030	3.893	1.140–13.293
CIMP	Differentiation Poor Moderate-well	0.004	28.373	2.961–271.921
NLR	High Low	0.020	14.518	1.526–138.108
CSR	High Low	0.047	6.230	1.023–37.959
BRAF	Differentiation Poor Moderate-well	0.005	9.447	1.937–46.071
Lymphovascular invasion	+ -	0.005	10.861	2.043–57.727
CSR	High Low	0.002	14.350	2.718–75.753
KRAS	Differentiation Poor Moderate-well	0.022	0.164	0.035–0.771
Tumor location	Proximal Distal	0.013	2.351	1.202–4.598
Histology	Mucinous Non-mucinous	0.005	11.651	2.119–64.074
NLR	High Low	0.015	1.983	1.144–3.438

Notes: *All the laboratory variables were preoperatively determined. The cutoff of each variable determined by ROC can be found in Supplementary Table 1.

Abbreviations: MSI, microsatellite instability; CIMP, CpG island methylator phenotype; CSR, carcinoembryonic antigen/tumor size ratio; NLR, neutrophil/lymphocyte ratio.
Figure 2 Nomograms and calibration curves for predicting the probability of (A) MSI, (B) CIMP (+), (C) BRAF mutation and (D) KRAS mutation. The predicted and observed probabilities of MSI, CIMP (+), BRAF mutation and KRAS mutation were shown in the calibration curves. **Abbreviations:** NLR, neutrophil/lymphocyte ratio; PLR, platelet/lymphocyte ratio; CSR, CEA/tumor size ratio.
nomogram-predicted probability of status also fitted well with actual molecular status. This nomogram showed good statistical performance for predicting the probability of BRAF mutation.

It has been shown in both our cohort (Table 1) and previous report\(^ {16,38}\) that CIMP (+) is tightly associated with BRAF mutation. Since CIMP (+) was reported to represent about 15% of CRCs in western population,\(^ {39} \) it is not surprising that CIMP (+) incidence in our study, similar to BRAF mutation frequency, is lower than that in the previous report (2.7% versus 15%). Some retrospective studies have described the clinical features associated with CIMP (+) CRCs, including proximal tumor, elderly females, poor differentiation and mucinous tumor.\(^ {16} \) In consistent with this study, poor differentiation was also independently associated with CIMP (+) status in our study. Moreover, high NLR and high CSR were independent predictors for CIMP (+) status as well. We built a nomogram showing good statistical performance for predicting CIMP (+) using these three independent predictors. However, this nomogram could only predict tumor with low risk of CIMP (+). This might result from low CIMP (+) incidence in our cohort.

Approximately 5% to 25% of sporadic CRCs develop with the defects in DNA mismatch repair (MMR) system.\(^ {39-41} \) Similarly, MSI presented in 25.3% (72/285) patients in our cohort. MMR deficiency leads to MSI in cancer cells, which is the second most common pathway for CRC development. According to previous studies, the CRCs with MSI have distinct features, including right-sided tumor, poor differentiation, abundant tumor-infiltrating lymphocytes and less aggressive clinical course.\(^ {18,34,42} \) It has been demonstrated that MSI has high sensitivity as the screening test to identify individuals with Lynch syndrome.\(^ {43} \) Our nomogram for MSI, thus, may provide useful information for primary physicians to identify this subgroup of hereditary cancers. Models for predicting the presence of MSI-H status has been built. Jenkins et al developed the MsPath model in 2007.\(^ {15} \) However, this model is only applied to patients diagnosed before the age of 60 years. In addition, Angela Hyde et al developed a histology-based model for predicting MSI in 2010.\(^ {18} \) Unfortunately, popular use of this model would be limited by its predictors that need to be evaluated by experienced pathologists. In current study, we identified NLR as an independent predictor for MSI, which could be easily used and provided valuable information in practice. However, there were only two independent predictors in this model, and the generated nomogram using differentiation and NLR did not perform well for the prediction.

The robustness of this study includes the high quality-control in molecular assays, strict patient selection to eliminate the confounding influence on molecular phenotyping, and reliable statistical workflow to construct nomograms using continuous and categorized variables. However, this study has some limitations. First, the statistical power of the results in CIMP and BRAF mutation was limited by their low incidences in our population. Second, the sample size of stage-IV patients was small, and thus the nomograms need to be further trained and validated in a cohort with sufficient stage-IV cases to make them can be applied to stage-IV CRC. Moreover, patients included in our study were from a single institution. As a result, there may exist a variation of predictive ability of models among institutions, and an external validation set would be useful to validate our predictive models.

In conclusion, we established four models with easily obtained variables to predict the probability of MSI, CIMP (+), BRAF mutation and KRAS mutation. The nomograms should not replace the molecular laboratory tests of CRC, but it could allow physicians to speculate molecular subtypes of CRCs, then better estimate patients’ prognosis where genetic testing is not available or reimbursed because of infrastructure limits.

Funding

This work was supported by the National Basic Research Program of China (973 Program) (No. 2015CB554001, JW), the National Natural Science Foundation of China (No. 81972245, YL; No. 81902877, HY), the Natural Science Fund for Distinguished Young Scholars of Guangdong Province (No. 2016A030306002, YL), the Tip-top Scientific and Technical Innovative Youth Talents of Guangdong Special Support Program (No. 2015TQ01R454, YL), the Project 5010 of Clinical Medical Research of Sun Yat-sen University-5010 Cultivation Foundation (No. 2018026, YL), the Natural Science Fund of Guangdong Province (No. 2016A030310222, HY; No. 2018A0303130303, HY), the Program of Introducing Talents of Discipline to Universities, and National Key Clinical Discipline (2012).

Disclosure

The authors declare that they have no competing interests.

References

1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. *CA Cancer J Clin.* 2018;68:394–424. doi:10.3322/caac.20153
2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. *CA Cancer J Clin.* 2019;69(1):7–33. doi:10.3322/caac.20153
3. Punt CJ, Koopman M, Vermeulen L. From tumour heterogeneity to advances in precision treatment of colorectal cancer. Nat Rev Clin Oncol. 2017;14(4):235–246. doi:10.1038/nrclinonc.2016.171

4. Kocarnik JM, Shiovitz S, Phipps AI. Molecular phenotypes of colorectal cancer and potential clinical applications. Gastroenterol Rep (Oxf). 2015;3(4):269–276. doi:10.1093/gastro/gov046

5. Cunningham D, Atkin W, Lenz HJ, et al. Colorectal cancer. Lancet. 2010;375(9719):1030–1047. doi:10.1016/S0140-6736(10)60355-4

6. Mocellin S, Baretta Z, Roque IFM, et al. Second-line systemic therapy for metastatic colorectal cancer. Cochrane Database Syst Rev. 2017;1:CD006875.

7. Van Cutsem E, Kohne CH, Lang I, et al. Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-line treatment for metastatic colorectal cancer: updated analysis of overall survival according to tumor KRAS and BRAF mutation status. J Clin Oncol. 2011;29(15):2011–2019. doi:10.1200/JCO.2010.33.5901

8. Rodriguez-Salas N, Dominguez G, Barderas R, et al. Clinical relevance of colorectal cancer molecular subtypes. Crit Rev Oncol Hematol. 2017;109:9–19. doi:10.1016/j.critrevonc.2016.11.007

9. Ribic CM, Sargent DJ, Moore MJ, et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N Engl J Med. 2003;349(3):247–257. doi:10.1056/NEJMoa022289

10. Singh PP, Sharma PK, Krishnan G, Lockhart AC. Immune checkpoints and immunotherapy for colorectal cancer. Gastroenterol Rep (Oxf). 2015;3(4):289–297. doi:10.1093/gastro/gov053

11. Shiovitz S, Bertagnolli MM, Renfro LA, et al. CpG island methylator phenotype is associated with response to adjuvant irinotecan-based chemotherapy for stage III colon cancer. Gastroenterology. 2014;147(3):637–645. doi:10.1053/j.gastro.2014.05.009

12. Van Rijnsoever M, Elsaleh H, Joseph D, McCaul K, Iacopetta B. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet. 2006;38(7):787–793. doi:10.1038/ng1834

13. Weisenberger DJ, Siemund KD, Campan M, et al. CpG island methylator phenotype in colorectal cancer and potential clinical applications. Gastroenterology. 2014;147(3):637–645. doi:10.1053/j.gastro.2014.05.009

14. Weisenberger DJ, Li, Zhang DY, et al. Prognostic value of CpG island methylator phenotype in colorectal cancer: a systematic review and meta-analysis. Ann Oncol. 2014;25(12):2314–2327. doi:10.1093/annonc/mdu149

15. Jenkins MA, Hayashi S, O, et al. Neoadjuvant modulation for predicting BRAF mutational status of metastatic colorectal cancer and potential clinical applications. J Natl Cancer Inst. 2019;111(4):264–273. doi:10.1093/jnci/dgy075

16. Weisenberger DJ, Leu H, et al. Demographic trends and KRAS/BRAF (V600E) mutations in colorectal cancer patients of South China: a single-site report. Int J Cancer. 2019;144(9):2109–2117. doi:10.1002/ijc.31973

17. Weisenberger DJ, Siemund KD, Campan M, et al. CpG island methylator phenotype in colorectal cancer and potential clinical applications. Gastroenterology. 2014;147(3):637–645. doi:10.1053/j.gastro.2014.05.009

18. Yu H, Bai L, Tang G, et al. Novel assay for quantitative analysis of DNA methylation at single-base resolution. Clin Chem. 2019;65:664–673. doi:10.1373/clinchem.2018.298570

19. Eads CA, Danenberg KD, Kawakami K, et al. MethylLight: a high-throughput assay to measure DNA methylation. Nucleic Acids Res. 2000;28(8):E32. doi:10.1093/nar/28.8.e32

20. Winkelmann R, Schneider M, Hartmann S, et al. DNA methylation instability occurs rarely in patients with cholangiocarcinoma: a retrospective study from a German tertiary care hospital. Int J Mol Sci. 2018;19(5). doi:10.3390/ijms19051421

21. Xia W, Qiao D, Y, et al. DNA methylation as a driver of colorectal cancer. World J Gastroenterol. 2019;25(33):269–289. doi:10.3748/wjg.v25.i33.269

22. Xiang W, Dai W, C, et al. A nomogram for the prediction of KRAS mutation in colorectal cancer. Ann Oncol. 2018;29. doi:10.1093/annonc/mdy118.015

23. Shahid S. Review of hematological indices of cancer patients receiving combined chemotherapy & radiotherapy or receiving radiotherapy alone. Crit Rev Oncol Hematol. 2016;105:145–155. doi:10.1016/j.critrevonc.2016.06.001

24. WHO Expert Consultation. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet. 2004;363(9403):157–163. doi:10.1016/S0140-6736(03)15268-3

25. Cai D, Huang ZH, Yu HC, et al. Prognostic value of preoperative carcinoembryonic antigen/tumor size in rectal cancer. World J Gastroenterol. 2019;25(33):4945–4958. doi:10.3748/wjg.v25.i33.4945

26. Dell’Aquila E, Cremolini C, Zoppola T, et al. Prognostic and predictive role of neutrophil/lymphocytes ratio in metastatic colorectal cancer: a retrospective analysis of the TRIBE study by GONO. Ann Oncol. 2018;29(4):924–930. doi:10.1093/annonc/mdy054

27. Lu C, Gao P, Yang, et al. Prognostic evaluation of platelet to lymphocyte ratio in patients with colorectal cancer. OncoTargets and Therapy. 2017;8(49):86287–86295. doi:10.18632/oncotarget.v8i49

28. Ye JX, Liu Y, Qiu Y, Zhong HH, Yi WN, Shi XY, KRAS and BRAF gene mutations and DNA mismatch repair status in Chinese colorectal carcinoma patients. World J Gastroenterol. 2015;21(5):1595–1605. doi:10.3748/wjg.v21.i5.1595

29. Kittajima S, Thummalapalli R, Barbic DA. Inflammation as a driver and vulnerability of KRAS mediated oncogenesis. Semin Cell Dev Biol. 2016;58:127–135. doi:10.1016/j.semcdb.2016.06.009

30. Corcoran RB, Ebi H, Turke AB, et al. EGFR-mediated re-activation of MAPK signaling contributes to insensitivity of BRAF mutant colorectal cancers to RAF inhibition with vemurafenib. Cancer Discov. 2012;2(3):227–235. doi:10.1158/2159-8290.CD-11-0341

31. Roth AD, Tejpar S, Delorenzi M, et al. Prognostic role of KRAS and BRAF in stage II and III resected colon cancer: results of the translational study on the PETACC-3, EORTC 40993, SAKK 60-00 trial. J Clin Oncol. 2010;28(3):466–474. doi:10.1200/JCO.2009.23.3452

32. Hinoue T, Weisenberger DJ, Lange CP, et al. Genome-scale analysis of aberrant DNA methylation in colorectal cancer. Genome Res. 2012;22(2):271–282. doi:10.1101/gr.117523.110
39. Puccini A, Berger MD, Naseem M, et al. Colorectal cancer: epigenetic alterations and their clinical implications. Biochim Biophys Acta Rev Cancer. 2017;1868(2):439–448. doi:10.1016/j.bbr.2017.09.003
40. Alexander J, Watanabe T, Wu TT, Rashid A, Li S, Hamilton SR. Histopathological identification of colon cancer with microsatellite instability. Am J Pathol. 2001;158(2):527–535. doi:10.1016/S0002-9440(10)63994-6
41. Bonneville R, Krook MA, Kautto EA, et al. Landscape of microsatellite instability across 39 cancer types. JCO Precis Oncol. 2017;2017:1–15.
42. Boland CR, Thibodeau SN, Hamilton SR, et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 1998;58(22):5248–5257.
43. Latham A, Srinivasan P, Kemel Y, et al. Microsatellite instability is associated with the presence of Lynch syndrome pan-cancer. J Clin Oncol. 2019;37(4):286–295. doi:10.1200/JCO.18.00283