Results. 780 patients met study inclusion criteria and 86% (667/780) received vaccine. Characteristics of PLWH with and without vaccine are presented in Table 1. Older age, lower HIV viral load, and virologic suppression had a statistically significant (p < 0.05) association with vaccine receipt in unadjusted analysis. Only older age (p < 0.01) was significantly associated with vaccine in logistic regression modeling (Table 2), however this relationship was non-linear.

Table 1. Characteristics of patients living with HIV during the 2020-2021 Influenza vaccination season

Characteristic	No Vaccine	Vaccine	p-value
Age, years, median (IQR)	40 (37-43)	64 (41-81)	0.015
Gender	Male	Female	0.122
Race, n (%)	Black	White	0.032
HIV status	HIV-positive	HIV-negative	0.007
C.D.C-defined AIDS	Yes	No	0.179
% Federal Poverty Level	Yes	No	0.002
% Female	Male	Female	0.006
AIDS-defined	Yes	No	0.003
Insurance	Medicare: Medicaid	Private: Medicaid	0.092

Note: *p* < 0.05 is statistically significant. IQR = interquartile range.

Table 2. Multivariable Analysis of Baseline Characteristics

Characteristic	Odds Ratio (95% Confidence Interval)	p-value	
Age*	1.10 (0.75, 1.21)	0.692	
% Federal Poverty Level	1.07 (0.62, 1.83)	0.822	
Virologic Suppression	Yes	No	0.017
Sex	Male	Female	0.117
Race	White	Black	0.17 (0.74, 1.84)
AIDS-defined	Yes	No	0.179
Insurance	Medicare: Medicaid	Private: Medicaid	0.029

*Age was found to be associated with vaccine, with increasing likelihood of vaccine up to 55 years of age and decreasing likelihood in those over 55 years of age based on flexible restricted cubic spline of age in model.

Conclusion. A high rate of PLWH received vaccine, far exceeding local and national benchmarks, with EMR data unlikely to have fully captured all vaccines. The role of the COVID-19 pandemic in vaccine amongst PLWH is not yet known. While older age was associated with vaccine in adjusted analysis, the number of unvaccinated patients was small, confidence intervals wide, and associations consequently weak.

Session: P-02. Adult Vaccines

Background. Two pneumococcal vaccines are currently recommended for use in U.S. adults: 23-valent pneumococcal polysaccharide vaccine (PPV23) and 13-valent pneumococcal conjugate vaccine (PCV13). Recommendations for adult PCV13 use were supported by a large randomized-controlled trial (RCT) demonstrating PCV13 efficacy against pneumococcal pneumonia (PnPn) and vaccine-type (VT) PnPn in older adults. New pneumococcal conjugate vaccines are expected to be licensed for adults in late 2021 and recommendations for use among adults will be reviewed and revised, as needed. We conducted a systematic review to summarize evidence on the vaccine efficacy and effectiveness (VE) of PPV23 and PCV13 against PnPn among adults.

Methods. We conducted a search of literature published from 1998 to February 2021 on PCV13 and PPV23 VE studies using eight reference databases. Studies targeting adults with immunocompromising conditions were excluded. VE results with 95% confidence intervals (CI) were abstracted and stratified by vaccine product, outcome evaluated (PnPn and VT PnPn), study design, and effect measure. Where applicable, random effects models were used to estimate pooled VE and I-squared statistic was reported to assess heterogeneity.

Results. Of 3,422 screened studies, we included 15 studies: three on PCV13 and 12 on PPV23 (Table 1). In addition to the RCT, we identified two observational studies for PCV13 (Table 1); however, pooled VE of the observational studies was not estimated due to differences in methods for reporting results. Pooled PPV23 VE against PnPn from two RCTs was 63% (95% CI: 31, 80 I-squared 0%), Pooled VE of PCV13 against VT PnPn from three observational studies was 18% (95% CI: 35, 35 I-squared 70%), and PPSV23 effectiveness against PnPn was limited with a pooled VE of 25% (95% CI: 7, 39 I-squared 78%) from nine observational studies.

Table 1. Vaccine Efficacy and Effectiveness of 13-Valent Pneumococcal Conjugate Vaccine and 23-Valent Pneumococcal Polysaccharide Vaccine Against Pneumococcal Pneumonia Outcomes

Author	Study Design	PPV23	PCV13
Allison 2016	RCT	34 (24 to 44)	35 (20 to 50)
Bozeman 2003	RCT	34 (24 to 44)	35 (20 to 50)
Bridges 2011	RCT	27 (19 to 35)	28 (21 to 35)
Cameron 2018	RCT	26 (18 to 35)	28 (21 to 35)
Deeks 2003	RCT	27 (21 to 33)	28 (21 to 35)
Epstein 2011	RCT	26 (18 to 35)	28 (21 to 35)
Froesch 2010	RCT	25 (18 to 32)	27 (21 to 35)
Hackett 2009	RCT	37 (27 to 47)	38 (27 to 47)
Hackett 2004	RCT	40 (29 to 51)	41 (30 to 52)
House 2012	RCT	37 (27 to 47)	38 (27 to 47)
Lambe 2011	RCT	40 (29 to 51)	41 (30 to 52)
McDonald 2013	RCT	37 (27 to 47)	38 (27 to 47)
Noakes 2004	RCT	37 (27 to 47)	38 (27 to 47)
Off 2004	RCT	37 (27 to 47)	38 (27 to 47)
Pilishvili 2010	RCT	37 (27 to 47)	38 (27 to 47)
Poston 2006	RCT	37 (27 to 47)	38 (27 to 47)
Poston 2008	RCT	37 (27 to 47)	38 (27 to 47)

Abbreviations: CI confidence interval; NHI non-bacteremic; PnPn pneumococcal pneumonia; RCT randomized-controlled trial; VT vaccine-type; VE vaccine efficacy; VH vaccine effectiveness; VH vaccine effectiveness.
Conclusion. Findings from observational studies supported PCV13 VE against VT PnPn reported in the RCT. Differences in the study design made the magnitude of PPSV23 effectiveness against PnPn and VT PnPn difficult to assess; however, findings from recent observational studies suggest PPSV23 provides limited protection against VT PnPn.

Disclosures. All Authors: No reported disclosures

14. Postmarketing Safety Experience With MenACWY-TT
Lidia Serra, MS1; Susan Mather, MD1; Cindy Burman, PharmD3; Chris Webber, MD2; 1Pfizer Inc, Collegeville, Pennsylvania; 2Pfizer, Ltd. Hurley UK, Hurley, England, United Kingdom

Session: P-02. Adult Vaccines

Background. MenACWY-TT (Nimenrix®), a quadrivalent meningococcal tetanus toxoid conjugate vaccine, was first licensed in 2012 and is available in 82 countries but not in the United States. MenACWY-TT is administered in infants as a 2 + 1 (6 weeks to < 6 months of age) or 1 + 1 (6 to < 12 months of age) schedule with the booster dose at 12 months of age, and from 12 months of age as a single dose. In addition to its widespread use to protect against meningococcal serogroups A, C, W, and Y, MenACWY-TT is a constituent of an investigational pentavalent meningococcal (MenABCWY) vaccine currently undergoing clinical development.

Methods. Using the MenACWY-TT Periodic Safety Update Report (PSUR) with format and content in accordance with Good Pharmacovigilance Practice Module VII and International Council for Harmonisation Guideline E2C, for data up to April 19, 2020, postmarketing safety experience with MenACWY-TT is considered. The PSUR data included herein are spontaneous adverse events (AEs) from the Pfizer safety database. AEs were coded by system organ class (SOC) and preferred term (PT) using MedDRA v.22.1J.

Results. The cumulative estimated exposure of MenACWY-TT was nearly 26 million doses, with the majority administered in 0- to 16-year-olds and in the Western European Union (Figure 1). Over the reporting period, 13,301 cumulative AEs occurred. The most common SOCs in the reporting period were general disorders and administration site conditions (n=5169; 39%); nervous system disorders (n=1986; 15%); injury, poisoning and procedural complications (n=1266; 10%); and gastrointestinal disorders (n=1031; 8%) (Figure 2). By PT, the most common AEs were pyrexia (n=1613; 12%), headache (n=738; 6%), and vaccination site pain (n=394; 3%) (Figure 3). Of the 3299 serious AEs reported, the most common were pyrexia (n=317; 10%) and headache (n=209; 6%).

Figure 1. Cumulative Estimated MenACWY-TT Exposure* By Sex and Age Group

Region/Country	Doses, %	Total doses
Western European Union	56.7	15,194,886
Latin America	15.9	4,100,149
Africa/Middle East	7.5	1,932,458
Australia/New Zealand	7.1	1,829,817
Central and Eastern Europe	5.8	1,505,066
Asia (excluding Japan)	3.1	800,105
Canada	1.9	502,829

*Due to various dosage regimens and country-specific vaccination schedules, it is not possible to determine with certainty the number of individuals who received Nimenrix vaccines, therefore worldwide distribution information is used to serve as a reasonable indicator of patient exposure

Conclusion. Based on cumulative safety data in conjunction with existing efficacy and effectiveness data, the benefit-risk profile of MenACWY-TT remains favorable and is consistent with the safety profile of MenACWY-TT established in clinical studies.

Disclosures. Lidia Serra, MS, Pfizer Inc (Employee, Shareholder) Susan Mather, MD, Pfizer Inc (Employee, Shareholder) Cindy Burman, PharmD, Pfizer Inc (Employee, Shareholder) Chris Webber, MD, Pfizer (Employee, Shareholder)

15. Evaluation of Retained Immunity for Tetanus-Diphtheria and Pneumococcal Vaccines in Recipients of Cellular Therapies
Georgios Angelidakis, MD1; Roy F. Chemaly, MD, MPH, FACP, FIDSA2; Partow Kebriaei, MD3; Nadim J Ajami, PhD3; Micah M Bhatti, MD4; Elizabeth Shpall, MD3; Chitra Hosing, MD2; Preetesh Jain, MD2; Kris Michael Mahadeo, MD3; Fareed Khawaja, MBBS5; Jennifer Wargo, MD2; Robert Jeng, MD2; Ella Arzu Heredia, MD1; 1Departments of Infectious Diseases, Infection Control and Employee Health, Houston, Texas; 2The University of Texas MD Anderson Cancer Center, Houston, TX; 3MD Anderson Cancer Center, Houston, Texas; 4Laboratory Medicine, Houston, Texas; 5University of Texas MD Anderson Cancer Center, Houston, Texas; 6The University of Texas MD Anderson Cancer Center, Houston, Texas; 7The University of Texas MD Anderson Cancer Center, Houston, Texas

Abstracts • OFID 2021:8 (Suppl 1) • S131