Abstract- Human voice is the very important field in digital speech processing. In the coming technologies every system will be based on the human voice. The system will be locked and unlocked by human voice. In this research, the researcher classify the voice according to their age groups. The researcher recognize the voice by calculating many various parameters such as pitch, power amplitude and THD and many more. There are many approaches through which the researcher can recognize the gender’s voice such as Hidden Markov Model [HMM], Dynamic Time Warping [DTW] etc. This paper is basically depending on the voice perception system which helps in to differentiate the voice between the gender’s voice and also differentiate the voice depends on age group. The researcher records many voices of different age groups of different values. Some voices contain utterance, silence and many others things. Firstly we will eliminate the silence from the voice, then we collect the features of the voice and then we calculate the values of the parameters. Depending on the values we recognize the voice it means the particular voice belongs to which age group. Till now the work is done only on the gender recognition system in which they classify the difference between gender’s voice. The classification of male and female voice is already implemented using genetic algorithm and it also implemented in fuzzy logic toolbox and also with the use of the neural network tool. But the classification of voice recognition system depends on age is new because it is not implemented yet now. The age based recognition system is very beneficial for a human being because it defines the difference between the voice of different age groups. We mainly calculate three parameters pitch, power amplitude and total harmonic distortion by using its formula. After calculating the values we get the range of each voice signal, then we create the fuzzy rules according to its values. Before making the fuzzy rules we have to calculate the range of each parameter, then fuzzy rules are applied to classify the voice according to its age group.

There is a procedure to classify the voice according to its age group:-

1. The researcher have to set the age groups on which the researcher decide the groups are to be taken like in this research, the researcher take 5 age groups which are defined below
 a. Infancy (0-4)
 b. Childhood (05-12 years)
 c. Adolescense (13-28 years)
 d. Adulthood (29-59 years)
 e. Seniors (60-90 years)
2. After this the researcher record the samples of each age group.
3. After record the samples the researcher convert the voice samples into signals.
4. With the help of the signals the researcher calculate the pitch value, power amplitude.
5. Then the researcher make the fuzzy rules.
6. After applying the fuzzy rules the researcher can easily classify the voice of each age group according to their pitch value, power amplitude value and total harmonic distortion values.

Keywords—voice recognition system, fuzzy logic, genetic algorithm, age based voice classification, Support Vector Machine (SVM), Gaussian Mixture Model (GMM)

I. INTRODUCTION

Speech recognition is the technique to convert the input speech signal (speech signal) to the digital signal on which the researcher apply some techniques and methodologies to find the voice according to their age group. Pitch is the main factor in the speech recognition because every age group there is different pitch value it means lower age group pitch is too high and senior age group pitch is too slow. There are several applications in which the researcher use as a security such as Defensive Purpose, Bank Security, Investigative actions etc. In today’s life every person have their own gadget but there are some people who are unable to lock properly and anyone can misuse it but through voice we can lock the gadget and only the owner can unlock the mobile phones, laptops etc. So, the voice recognition is very important and in this paper, we define that there are many methods to understand the difference between the male and female voice, to recognize the voice depending on their age group till 12 years child.

II. VOICE RECOGNITION

Voice recognition is the important part of human conversation. The human voice can be used for security purpose, it means we can lock or unlock the system by recording voice and another person can’t unlock the system. Voice recognition is the type of software invention which helps in communicating the human with the mobile devices and many other electronic devices. In an early generation people do know how to read they can’t access the electronic devices properly so through voice recognition they can access the devices easily.

Revised Manuscript Received on July 10, 2019.

Shruti Agarwal, Computer Science & Engineering, Shri Ram Murti Smarak College of Engineering & Technology, Bareilly, India.

Ashish Agrawal, Computer Science & Engineering, Shri Ram Murti Smarak College of Engineering & Technology, Bareilly, India.

Prabhakar Gupta, Computer Science & Engineering, Shri Ram Murti Smarak College of Engineering & Technology, Bareilly, India.

The researcher records many voices of different age groups of different values. Some voices contain utterance, silence and many others things. Firstly we will eliminate the silence from the voice, then we collect the features of the voice and then we calculate the values of the parameters. Depending on the values we recognize the voice it means the particular voice belongs to which age group. Till now the work is done only on the gender recognition system in which they classify the difference between gender’s voice. The classification of male and female voice is already implemented using genetic algorithm and it also implemented in fuzzy logic toolbox and also with the use of the neural network tool. But the classification of voice recognition system depends on age is new because it is not implemented yet now. The age based recognition system is very beneficial for a human being because it defines the difference between the voice of different age groups. We mainly calculate three parameters pitch, power amplitude and total harmonic distortion by using its formula. After calculating the values we get the range of each voice signal, then we create the fuzzy rules according to its values. Before making the fuzzy rules we have to calculate the range of each parameter, then fuzzy rules are applied to classify the voice according to its age group.

There is a procedure to classify the voice according to its age group:-

1. The researcher have to set the age groups on which the researcher decide the groups are to be taken like in this research, the researcher take 5 age groups which are defined below
 a. Infancy (0-4)
 b. Childhood (05-12 years)
 c. Adolescense (13-28 years)
 d. Adulthood (29-59 years)
 e. Seniors (60-90 years)
2. After this the researcher record the samples of each age group.
3. After record the samples the researcher convert the voice samples into signals.
4. With the help of the signals the researcher calculate the pitch value, power amplitude.
5. Then the researcher make the fuzzy rules.
6. After applying the fuzzy rules the researcher can easily classify the voice of each age group according to their pitch value, power amplitude value and total harmonic distortion values.
Fuzzy Logic Based Voice Recognition As Per Their Gender And Age Group

III. FUZZY LOGIC

Fuzzy logic is also called as fuzzy set theory, which was established in 1965 by Lofti Zadeh to combat the problems mathematically. It is completely based on “degree of truth” rather than the values which is given in true or false. The application of fuzzy logic based consumer based devices such as cameras, washing machines and medical instrumentation etc. Fuzzy logic has many different meanings. In the basic sense, this is a logical system that represents the symbol of multivalued logic. On the large scale, fuzzy logic (FL) is usually synonymous with the fuzzy set, which belongs to classes of the objects in which boundaries are not clear and it includes a membership function which is also called a degree of matter [12]. Fuzzy sets are the superset of classical sets in which each element is affiliated with the real number which represents the degree of membership of the elements which are present in that particular set. In the fuzzy logic the researcher have some inputs which the researcher apply on some inference system like FIS and gets the output results.

The basic concept which comes under the fuzzy logic is that of the linguistic variable it means the variables whose values are words not the number it doesn’t give the answer in 0 and 1. In the fig 1 it shows that the values come under the range 0 and 1. It is clearly shown that the temperature is not exactly identified. There are many possibilities which defines the temperature like:

1. Very cold
2. Cold
3. Warm
4. Hot
5. Very hot

This shows that the fuzzy logic has linguistic variables which don’t give the exact value like 0 or 1.

Fuzzy logic is a multivalued logic, which means the researcher can apply the fuzzy rules on more than one variable and the researcher used a fuzzy inference system to get the output. There are mainly two types of methods which comes under FIS:-

1. Mamdani’s fuzzy inference method
2. Sugeno’s type system

IV. METHODS

There are many methods which help in differentiating the gender’s voice. The researcher also classify the different age’s voice and the researcher recognize the voice according to their age group it means the researcher identify which voice belongs to which age particularly. If any fake person wants to enter into the system, then the system should recognize that he/she is not the owner of the system and it shows an error. There are many methods to classify the voice like pitch, its frequency, power amplitude, total harmonic distortion, and to collect the feature the researcher use MFCC (Mel-frequency Cepstral coefficients) is the technique which helps in collecting the feature of the speech and many more.

4.1 Features Extraction- This is the initial step to recognize the speech of any person. For feature extraction the researcher mainly use MFCC which helps in getting the exact output.

Fig 4: Feature Extraction [17]
In the fig 4 it describe the whole process to extract the features of the voice it means that first the researcher collect the voice of the person with the use of microphones then the researcher take the voice as an input for the formation of windowing. In the formation or transaction of the windowing the splitting in the voice from the start to the end will be minimized. Succeeding the minimization the splitting in the voice the continuous voice will be converted in to the window frames and these frames are passed into the DFT which helps in converting the frames into Mel-frequency warping then spectral analysis is to done with exact resolution with a subjective frequency scale i.e. Mel frequency scale which creates Mel-Spectrum and thens this spectrum will passed to log, later inverse DFT which gives the final result as Mel-cepstrum and this Mel-cepstrum subsist the features which are required for the speaker testimony.

4.2 MFCCs- The Mel-Frequency Cepstrum is the technique which the researcher used to extract the features of the voice and this is based on frequencies (which are lower than 1000 Hz) with the well-known fluctuations of human ear’s critic bandwidth. The motive of the MFCC is to describe about the behavior of the human voice. The detailed process of MFCC is-

\[f[m] = \sum_{n=0}^{N-1} X[n] 2 \Delta m[k] \]

where, \(M \) is the number of Mel bands calculated by [1][17]

\[C[n] = \sum_{m=1}^{M} b_m [FBE(m)] \cos \left(\frac{\pi (m+1/2)}{M} \right) \quad n = 0, 1, \ldots, M \]

4.3 Pitch- Pitch is the most important feature to differentiate the voice either between gender’s voice or age based voice recognition system. Pitch can be calculated by the pitch detection algorithm. With the help of the calculated values from pitch detection algorithm, it is proved that the pitch of the female voice is high as compared to male voices. According to the researcher’s the pitch of the human’s voice is decided by the resonant frequency of the vocal folds. The values of the pitches are very different from each other the pitch of the small children is very high from the adult male and female pitch value. The frequency of adult male is about 125Hz, in the adult female the frequency is about 210, and in the frequency of children’s voice is more over 300 Hz. The vocal folds are vibrating when they are closed to obstruct the airflow through the glottis and this principle is known as Bernoulli’s principle[17].

4.4 Short-term Energy- This is the method which helps in finding the voiced and unvoiced part in the speech signal. The amplitude of the human voice signal divericate with the time. The amplitude of the unvoiced part of a human voice is lower and the amplitude value of the voiced part is higher. This can be calculated by this equation [4]

\[E = \sum_{m=-\infty}^{\infty} (x(m)w(n-m))^2 \]

4.5 Total Harmonic Distortion- Total harmonic distortion or THD is a quantification of the harmonic distortion existed in a signal and is described as the ratio of the sum of the powers of all harmonic components to the power of the fundamental frequency. From the testing results it is seen that the total harmonic distortion of the female voice is higher than the male voice.

4.6 Gaussian Mixture Model
A Gaussian mixture model is a probabilistic model that speculates all the data points are originated from a mixture of a finite number of Gaussian distributions without known parameters. A Gaussian mixture object implements the expectation-maximization (EM) algorithm for fitting Gaussian mixture models. A GaussianMixture.fit method is provided that learns a Gaussian Mixture Model from trained data.

4.7 Support Vector Machine
SVM is the most energetic machine learning technique which is used for data classification and pattern classification. The authors applied the SVM to the acoustic model of voice recognition system which are based on the Linear Predictive Coding and MFCC features for the different dataset [16]. SVM comes under the supervised machine learning technique that helps us in analyzing the data which we can use for classification and also for regression analysis.
V. RESULTS

The aim of this research is to classify the different voice according to the male and female voice and as per their age group. There are many techniques which helps in extracting the features of the voice like PLC, MFCC etc. MFCC is the best method for extracting the features of the voice. There are many parameters which the researcher can use for the voice recognition but in this review, it is shown that the voice can be classify on three parameters such as power amplitude, pitch and total harmonic distortion. Till now the work is done at max 50yrs old person’s voice. The best way is to extract the features on the voice dataset, record the voice of different age group with the microphone and use either machine learning technique or fuzzy logic and other different methodologies. In this research it is shown that the speech voice recognition can be done with the help of SVM and Gaussian mixture model.

VI. CONCLUSION

In this research it shows that there are many approaches which help in to recognize the voice on the basis of their age and differentiate the voice between male and female. There are many parameters which are used to differentiate the voice between male and female such as pitch and much more. Pitch is calculated by a pitch detection algorithm and it is proved that the pitch of the females is higher in comparison to male only in the case of voice based gender recognition system. In age based voice recognition system the pitch is different in every age group, it means the pitch of small children is very high and according to the increment in their age the pitch gets slow down but generally there is not so much difference in the female voice. In this research it is shown that the voice of the particular person belongs to which age group.

REFERENCES

1. Iman Esmailia, Nader Jafarnia Dubanloosa, Mansour Valid “Automatic classification of speech dysfluencies in continuous speech based on similarity measures and morphological image processing tools”, Elsevier Ltd., 2016.
2. Lokhande, Navnath S Nehe, Pratap S Vikhe, “Voice Activity Detection Algorithm for Speech Recognition Applications”, International Conference in Computational Intelligence, 2011.
3. Arjwan M. Abduljawad Al-Jawadi,”Speech Recognition And Retrieving using Fuzzy Logic System”, Technical College, Foundation Of Technical Engineering, Mosul, Iraq, 2009.
4. Bach R.G, KopparthiS., Adapa B., Barkhana B.D., “Separation Of Voiced and Unvoiced using Zero crossing rate and Energy of the Speech Signal”,University Of BridgePort.
5. Arul Valiyavalappil Haridas, Ramalatha Marimuthu, Vazii Gangadharan Sivakumar, “A Critical review and analysis on techniques of Speech recognition: The road ahead”, International Journal Of Knowledge-based and Intelligent Engineering System, 2018.
6. Atif Khan,Vikas Kumar, Santosh Kumar,”Speech Based Gender Identification Using FuzzyLogic”, International Journal of Innovative Research in Science,Engineering and Technology,2017.
7. Gayathri S, Mugundhan B, “Identification Of Age Using Voice Recognition”, International Journal Of Advances in Electronics and Computer Science, ISSN: 2393-2835, Vol. 4, Issue-7, 2017.
8. Shivaji J Chaudhari, Ramesh M Kagalkar, “Methodology for Gender Identification, Classification and Recognition of Human Age”, International Journal of Computer Applications (0975-8887), National Conference on Advances in Computing, 2015.
9. Karparagavalli S, Chandra E, “A review on Automatic Speech Recognition Architecture and Approaches”, International Journal Of Signal Processing, Image Processing and Pattern Recognition, Vol.9, Page 4, pp. 393-404, 2016.
10. Ahuja Pooja, Vyas JM, “A Development Overview Of Voice as a Steadfast Identification Technique”, Journal of Forensic Research,ISSN: 2157-7145, Vol 6, Issue 3, 2015.
11. Syed Mostaf Mmirhassani, Alireza Zourmand, and Hua-Nong Tang, “Age estimation based on children’s voice: A fuzzy-based decision fusion strategy”, The Scientific World Journal, Vol 2014, Article ID 534064.
12. https://in.mathworks.com/help/fuzzy/what-is-fuzzy-logic.html.
13. Mamdani, E.H. and S. Assilian, “An experiment in linguistic synthesis with a fuzzy logic controller,” International Journal of Man-Machine Studies, Vol.7, No. 1, pp. 1-13, 1975.
14. Yong-Qian Ying, Peng-Yung Woo, “Speech Recognition Using Fuzzy Logic”, IEEE, 1999.
15. Sahidullah. Md.; Saha, Goutam (May 2012), "Design, analysis and experimental evaluation of block based transformation in MFCC computation for speaker recognition". Speech Communication 54 (4): 543–565.
16. X. Huang, A. Acero, H.W. Hon, “Spoken Language Processing: A Guide to Theory, Algorithm, and System Development”, Prentice Hall, New Jersey, 2000, October.
17. https://sciencesdaily.com/terms/vocal_folds.html
18. https://en.wikipedia.org/wiki/Vocal_cords
19. Kamal Aida-zade, Anar Xocayev, Samir Rustamov, “Speech recognition using Support Vector Machine”, IEEE, 2016

AUTHORS PROFILE

Shruti Agarwal received the Bachelor of Engineering degree in Computer Science and Engineering, from Invertis University. She is pursuing M. Tech. in Computer Science and Engineering from Shri Ram Murti College Of Engineering and Technology, Bareilly. Her area of interest is Artificial Intelligence, and Web Development.

Ashish Agrawal has done his B.Tech in Information Technology from DNS college of Engineering & Technology in year 2011 and M.Tech in Computer Science And Engineering from Shri Ram Murti College Of Engineering and Technology, Bareilly in year 2015. He is Asst. Professor at Shri Ram Murti College Of Engineering and Technology, Bareilly. He has published more than 15 research papers in national and international journals.He has experience in SPSS and PSPP statistic tool and also in MATLAB Tool.

Prabhakar Gupta has done his B.Sc in 1991 from MJP Rohilkhand University, M.Sc. in 1995 from MJP Rohilkhand University, M.Tech in Computer Science and Engineering from Allahabad Agricultural Institute, I.E.T. Campus and Ph.d in Maths from MJP Rohilkhand University, Bareilly. He has specialization in Approximation Theory, Graph Theory, Soft Computing. He had 21 years of teaching experience. He has published more than 15 research papers in national and international journals. He is DEAN at Shri Ram Murti Smarak College Of Engineering and Technology, Bareilly.