Risk for cognitive impairment among HIV-infected persons with bipolar disorder

Clinicians and clinical neuroscientists are aware that individuals with bipolar disorder are at greater risk for developing serious medical, psychiatric, and substance-use comorbidities as compared with the general population.1,2 Less widely appreciated, however, is the observation that HIV infection appears to be more prevalent among persons with bipolar disorder and that both conditions pose significant risk for cognitive impairment.3 Higher rates of HIV infection among persons with bipolar disorder should not be surprising, given that infection and transmission of HIV involves risk factors that converge with bipolar disorder (eg, impulsivity, substance abuse). These factors likely also worsen adherence to treatment for both bipolar and HIV illness, and may adversely impact health-related quality of life and therapeutic outcomes. The public health consequence may be that nonadherence to antiretroviral therapy could lead to higher rates of transmission of treatment-resistant strains of HIV that can evolve with sporadic adherence. The intersection of bipolar disorder and HIV therefore merits discussion by clinicians, researchers, and policy makers.

If mental health clinicians adopt the recent Centers for Disease Control recommendation that all persons in clinical care be tested for HIV, we might expect that more HIV-infected persons with bipolar disorder will be identified who had not previously been diagnosed or treated for existing HIV infection.4 When addressing the complex combination of HIV infection, substance abuse or dependence, and bipolar disorder, it is important to recognize that each of these factors may be associated with substantial cognitive deficits. These neurocognitive impairments may impact on the ability to function in social and occupational settings, to follow through with treatment recommendations, and to manage their demanding medical conditions. Below we review the evidence for neuropsychological (NP) impairment among persons with bipolar disorder, HIV infection, and substance dependence (ie, methamphetamine dependence) as independent disorders. Our hypothesis, and the basis for our ongoing research, is that the presence of significant medical comorbidities (eg, HIV infection) and substance use (eg, methamphetamine dependence) may further compound the risk for additive neurocognitive impairments among persons with bipolar disorder. We describe our new program of research in bipolar disorder and comorbid HIV, and present data showing elevated rates of methamphetamine dependence among persons with bipolar disorder. Finally, we discuss how cognitive impairment may be a significant predictor of everyday functioning difficulties (eg, medication nonadherence).

Neuropsychological impairment among persons with bipolar disorder

Recent studies of individuals with bipolar disorder suggest that NP impairment is prevalent, and intermediate in severity between patients with schizophrenia and healthy comparison participants.5,6 NP impairments, particularly deficits in attention, processing speed, episodic memory, and executive functions (eg, set-shifting, complex problem-solving), are thought to persist during euthymic states between episodes (Table I).9-14

Neuropsychological impairment among persons with HIV infection

HIV infection is characterized by an acute, often febrile, phase lasting days or weeks, a prolonged medically
asymptomatic period, and a symptomatic phase of multisystem disease caused by immunosuppression. HIV is also known to cause neuropsychological (NP) impairments, particularly in the areas of attention/working memory, motor coordination, processing speed, learning, and attention (Table I).15,16 NP impairment tends to worsen with disease severity, with the greatest NP impairments observed among individuals with AIDS.16 HIV enters the central nervous system soon after infection, and mild cognitive impairment has been observed in approximately 30% of medically asymptomatic HIV-infected patients, whereas some form of NP impairment is observed in over 50% of individuals in later-stage HIV disease.15 Although antiretroviral treatments have greatly improved the longevity and quality of life for persons living with HIV infection, the prevalence of HIV-associated neurocognitive disorders (HAND) has not declined.17

Neuropsychological impairment among methamphetamine users

Persons with bipolar disorder and individuals with HIV are at increased risk for both alcohol and other substance abuse and dependence.2,18 The NP impairments associated with various drugs of abuse differ; however, most illicit substances and alcohol, when used in significant quantities or over a substantial period of time, are likely to produce measurable neuropsychological deficits that may persist for extended periods, even after abstinence is achieved. Here, we focus on the neuropsychological difficulties associated with methamphetamine use disorders because: (i) its use is on the rise in the United States16; (ii) cognitive impairments are common and substantial among abusers; and (iii) it is the most frequently abused substance, aside from marijuana and alcohol, worldwide.20 A recent review and meta-analysis showed that methamphetamine abuse or dependence resulted in neuropsychological impairments of medium effect size in the domains of episodic memory, executive functioning, information processing speed, motor skills, language, and visuoconstructive abilities.21 The cognitive domains with the largest effect sizes are listed in Table I. Furthermore, evidence suggests that when methamphetamine abuse or dependence is combined with HIV infection, there is additive neuropsychological impairment.22,23

Bipolar disorder	HIV	Methamphetamine
Learning/memory	Learning	Learning/memory
Processing speed	Processing speed	Processing speed
Attention/working memory	Attention/working memory	Executive functions
Executive Functions	Motor skills	

Table I. Overlap in neuropsychological domains commonly impaired among bipolar disorder, HIV infection, and methamphetamine abuse/dependence.
group without bipolar disorder met criteria for a lifetime diagnosis of Major Depressive Disorder (MDD); however, only 11% (2/18) met criteria for a current depressive episode. Twenty-seven percent (4/15) of participants in the bipolar group met criteria for a current depressive episode and an equivalent amount (27%; 4/15) met criteria for a current manic episode (2 manic episodes, 1 hypomanic episode, 1 extreme irritability episode). Also as anticipated, participants in the bipolar group tended to take a greater number of psychotropic medications; 93% (14/15) in bipolar group were taking more than one psychotropic medication as compared with 33% (6/18) in the group without bipolar disorder. The bipolar group also had higher scores on both the Young Mania Rating Scale and the Beck Depression Inventory-II, and lower scores on global assessment of functioning.

The rates of current alcohol, marijuana, and methamphetamine dependence were relatively low in both groups; however, rates of lifetime marijuana and methamphetamine dependence were elevated among participants with bipolar disorder and HIV infection as compared with those with HIV alone, and rates of lifetime alcohol dependence were elevated in both groups (Table II). When examining alcohol or dependence of methamphetamine instead of focusing exclusively on dependence, 65% (9/15) of the bipolar group met criteria for lifetime methamphetamine abuse or dependence as compared with 28% (5/18) in the group without bipolar disorder.

Detailed neuropsychological test results are pending larger sample sizes; however, with the cognitive impairments found in both bipolar disorder and persons with methamphetamine dependence, we anticipate significant neuropsychological impairments among our participants with both bipolar disorder and HIV infection, and possibly even greater impairments among those with bipolar disorder, HIV infection, and methamphetamine dependence.

Implications of impaired cognition for everyday functioning among persons with bipolar disorder

Cognitive impairment appears to be one of the strongest predictors of everyday functioning difficulties in several populations including bipolar disorder and HIV infection. Medication adherence, an extremely important daily activity for persons with significant medical or psychiatric problems, appears to be consistently related to cognitive abilities among individuals with HIV infection and persons with bipolar disorder.

Specific deficits in the NP domains of executive functioning, attention, and memory have been shown to be associated with poor medication adherence. Therefore, the convergence of risk for cognitive impairment among persons with comorbid HIV, BD, and methamphetamine abuse or dependence may make persons with these multiple risk factors particularly susceptible to nonadherence and other everyday functioning difficulties (Figure 1).
Summary

Persons with bipolar disorder are at risk for medical and psychiatric comorbidities, including those known to independently cause neuropsychological impairment (e.g., HIV infection, methamphetamine dependence). We suggest that these conditions may confer additional risk for the development of neuropsychological impairment among persons with bipolar disorder. We speculate that cognitive difficulties in bipolar HIV+ patients may impact medication adherence and other everyday functioning tasks. Poor adherence to psychotropics may lead to mood destabilization, whereas inconsistent adherence to antiretroviral medications may lead to the development of treatment-resistant strains of HIV. Substance abuse may further destabilize the care of these individuals and may additionally contribute to cognitive impairments.

Additional research is needed to better understand the neuropsychological abilities of patients with bipolar disorder and other serious comorbidities, including the extent of impairment, its features, likelihood for progression, relationship to HIV exposure, and impact on everyday functioning abilities among the multiply affected. The exact relationship between bipolar disorder and methamphetamine abuse and dependence also warrants further investigation. Finally, targeted interventions for complex cases at risk for neuropsychological impairment are needed (see Depp et al in this issue, p 239); improving medication adherence seems to be one area for intervention that is important and attainable.

This work was supported by the National Institute of Mental Health (R03 MH078785 and P30 MH 62512) and the California HIV/AIDS Research Program IDEA Award (ID06-SD-201).

*The San Diego HIV Neurobehavioral Research Center (HNRC) group is affiliated with the University of California, San Diego, the Naval Hospital, San Diego, and the Veterans Affairs San Diego Healthcare System, and includes: Director: Igor Grant, MD; Co-Directors: J. Hampton Atkinson, MD, Ronald J. Ellis, MD, PhD, and J. Allen McCutchan, MD; Center Manager: Thomas D. Marcotte, PhD; Naval Hospital San Diego: Braden R. Hale, MD, MPH (PI); Neuromedical Component: Ronald J. Ellis, MD, PhD (PI), J. Allen McCutchan, MD, Scott Letendre, MD, Edmund Capparelli, PharmD, Rachel Schrier, PhD; Neurobehavioral Component: Robert K. Heaton, PhD (PI), Mariana Cherney, PhD, David J. Moore, PhD, Steven Paul Woods, PsyD; Neuroimaging Component: Terry Jernigan, PhD (PI), Christine Fennema-Notestine, PhD, Sarah L. Archibald, MA, John Hesselink, MD, Jacopo Annesi, PhD, Michael J. Taylor, PhD, Brian Schweinsburg, PhD; Neurobiology Component: Eliezer Masliah, MD (PI), Ian Everall, FRCPsych, FRCPath, PhD, Dianne Langford, PhD; Neurovirology Component: Douglas Richman, MD, (PI), David M. Smith, MD; International Component: J. Allen McCutchan, MD, (PI); Developmental Component: Ian Everall, FRCPsych, FRCPath, PhD (PI), Stuart Lipton, MD, PhD; Clinical Trials Component: J. Allen McCutchan, MD, J. Hampton Atkinson, MD, Ronald J. Ellis, MD, PhD, Scott Letendre, MD; Participant Accrual and Retention Unit: J. Hampton Atkinson, MD (PI), Rodney von Jaeger, MPH; Data Management Unit: Anthony C. Gamst, PhD (PI), Clint Cushman, BA, (Data Systems Manager), Daniel R. Masys, MD (Senior Consultant); Statistics Unit: Ian Abramson, PhD (PI), Florein Vaida, PhD, Christopher Ake, PhD.

The views expressed in this article are those of the authors and do not reflect the official policy or position of the Department of the Navy, Department of Defense, nor the United States Government.

Figure 1. Bipolar disorder, HIV, and substance abuse may lead to neuropsychological impairments that may impact everyday functioning activities such as medication adherence. Medication nonadherence may then in turn exacerbate both HIV and bipolar disorder.
REFERENCES

1. Evans DL, Charney DS, Lewis L, et al. Mood disorders in the medically ill: scientific review and recommendations. Biol Psychiatry. 2005;58:175-189.
2. Suppes T, Dennehy EB, Gibbons EW. The longitudinal course of bipolar disorder. J Clin Psychiatry. 2000;61(suppl):23-30.
3. Beyer JL, Taylor L, Gersing KR, Krishnan KR. Prevalence of HIV infection in a general psychiatric outpatient population. Psychosomatics. 2007;48:31-37.
4. Centers for Disease Control and Prevention. Revised Recommendations for HIV Testing of Adults, Adolescents, and Pregnant Women in Health-Care Settings. Morbidity and Mortality Weekly Report. 2006;55(RR-14):1-17.
5. Althuler LL, Ventura J, van Gorp WG, Green MF, Theberge DC, Mintz J. Neurocognitive function in clinically stable men with bipolar I disorder or schizophrenia and normal control subjects. Biol Psychiatry. 2004;56:560-569.
6. Depp C, Moore D, Sitzer DJ, Palmer BW, Jeste DV. Neuropsychological functioning of middle-aged and elderly adults with bipolar disorder. Paper presented at: American Association of Geriatric Psychiatry Annual Meeting. San Diego; 2005.
7. Krabbe,F, L, Arts B, van Os J, Aleman A. Cognitive functioning in patients with schizophrenia and bipolar disorder: a quantitative review. Schizophr Res. 2005;80:137-149.
8. Goldberg TE. Some fairly obvious distinctions between schizophrenia and bipolar disorder. Schizophr Res. 1999;39:127-132; discussion 161-162.
9. Bearden CE, Hoffman KM, Cannon TD. The neuropsychology and neuroanatomy of bipolar affective disorder: a critical review. Bipolar Disord. 2001;3:106-50; discussion 151-153.
10. Martinez-Aran A, Vieta E, Colom F, et al. Cognitive impairment in euthymic bipolar patients: implications for clinical and functional outcome. Bipolar Disord. 2004;6:224-232.
11. Martinez-Aran A, Vieta E, Reinares M, et al. Cognitive function across manic or hypomanic, depressed, and euthymic states in bipolar disorder. Am J Psychiatry. 2004;161:262-270.
12. Mur M, Portella MJ, Martinez-Aran A, Pifarre J, Vieta E. Persistent neuropsychological deficit in euthymic bipolar patients: executive function as a core deficit. J Clin Psychiatry. 2007;68:1078-1086.
13. Savitz J, Solms M, Ramesar R. Neuropsychological dysfunction in bipolar affective disorder: a critical opinion. Bipolar Disord. 2005;7:216-235.
14. Torres JL, Boudreau VG, Yatham LN. Neuropsychological functioning in euthymic bipolar disorder: a meta-analysis. Acta Psychiatr Scand Suppl. 2007;(434):17-26.
15. Heaton R, Grant J, Butter N et al. The HNRC 500–neuropsychology of HIV infection at different disease stages. HIV Neurobehavioral Research Center. J Int Neuropsychol Soc. 1995;1:231-251.
16. Reger M, Welsh R, Razani J, Martin DJ, Boone KB. A meta-analysis of the neuropsychological sequelae of HIV infection. J Int Neuropsychol Soc. 2002;8:410-424.
17. Antinori A, Arendt G, Becker JT, et al. Updated research nosology for HIV-associated neuropsychological disorders. Neurology. 2007;69:1789-1799.
18. Klinkenberg WD, Sacks S. Mental disorders and drug abuse in persons living with HIV/AIDS. AIDS Care. 2004;16(suppl 1):S22-S42.
19. Department of Health and Human Services, Substance Abuse and Mental Health Services Administration. Results from the 2006 National Survey on Drug Use and Health: National Findings. Rockville, MD: 2007 (Office of Applied Studies, NSDUH Series H-32, DHHS Publication No. SMA 07-4293).
20. Rawson RA, Ranglin MD, Ling W. Will the methamphetamine problem go away? J Addict Dis. 2002;21:5-19.
21. Scott JC, Woods SP, Matt GE, et al. Neurocognitive effects of methamphetamine: a critical review and meta-analysis. Neuropsych Rev. 2007;17:275-297.
22. Levine AJ, Hardy DJ, Miller E, Castellon SA, Longshore D, Hinkin CH. The effect of recent stimulant use on sustained attention in HIV-infected adults. J Clin Exp Neuropsychol. 2006;28:29-42.
23. Rippeth JD, Heaton RK, Carey CL, et al. Methamphetamine dependence increases risk of neuropsychological impairment in HIV infected persons. J Int Neuropsychol Soc. 2004;10:1-14.
24. Green MF. Cognitive impairment and functional outcome in schizophrenia and bipolar disorder. J Clin Psychiatry. 2006;67:e12.
25. Heaton RK, Marcotte TD, Mindt MR, et al. The impact of HIV-associated neuropsychological impairment on everyday functioning. J Int Neuropsychol Soc. 2004;10:317-331.
26. Hinkin CH, Castellon SA, Durvasula RS, et al. Medication adherence among HIV+ adults: effects of cognitive dysfunction and regimen complexity. Neurology. 2002;59:1944-1950.
27. Hinkin CH, Hardy DJ, Mason KJ, et al. Medication adherence in HIV-infected adults: effect of patient age, cognitive status, and substance abuse. AIDS. 2004;18(suppl 1):S19-S25.
28. Selnes OA. Neurocognitive aspects of medication adherence in HIV infection. J Acquir Immune Defic Syndr. 2002;31(suppl 3):S132-S135.
29. Danion J, Neurriether C, Krieger-Finance F. Compliance with long-term lithium treatment in major affective disorders. Pharmacopsychiatry. 1987;20:230-231.
30. Berk M, Berk L, Castle D. A collaborative approach to the treatment alliance in bipolar disorder. Bipolar Disord. 2004;6:504-518.
31. Colom F, Vieta E, Tacchi MJ, Sanchez-Moreno J, Scott J. Identifying and improving non-adherence in bipolar disorders. Bipolar Disord. 2005;7(suppl 5):24-31.