Rating of Various Indian Airlines on various parameters using Twitter Data

Hitendra Garg
Department of Computer Engineering and Applications, GLA University, Mathura-INDIA
hitendra.garg@gmail.com

Abstract. In today’s world, e-commerce markets runs on the sentiments of the customers as they provide real feedback of the products or services. In such scenario, the companies tries to collect data from different social media platform like instagram, Facebook, twitter, and other sites where customers places their reviews and feedback about their experience on various parameters. These organizations analyze these data as per their requirements for market analysis, recommendation systems, feedback of the product/service, sentimental analysis etc. In this proposed work, feedback/reviews of various Indian airlines like Air-India, Indigo, Go-Air, Jet airways, Spice-Jet.is collected from twitter to rate the airlines services on various parameters like food quality, staff, delay in time, turbulence, aircraft condition and value for money parameters.

1. Introduction
Social networking sites have become a part of people’s day to day life. Most of the people use it to share their incidents from around the world on almost every possible topic. So, these sites like Twitter, Facebook, Instagram etc have become a hub of user-generated data. Twitter also provide its API to extract their data for free which has gain the attention of many companies, data analyst, scientific researchers as well as government agencies to use this data and extract all the useful results and conclusions for business purposes.

In the proposed work, we retrieved the tweets from twitter using ‘Tweepy’ library of python to compare the various Indian Airline companies on various service parameters that help the customer to choose the best airline service according to their real feedback from various stakeholders. We also compared and analysed the accuracy of our work using Naïve Bayes (Multinomial and Bernoulli), SVM (Support Vector Machine) and Maximum Entropy to find out which algorithms works better on obtained dataset.

2. Related Work
In recent years, analysis of social media data draws the attention of researchers due to variety and volume of data set. Pang et al. in 2002, gathered the opinions of public about a movie by using movie reviews data [7]. Dodds and Danforth in 2010 perform sentiment extraction of blogs. Parikh [3] developed two classifiers for sentiment extraction from tweets and classify them in some predefined categories like positive, negative and neutral tweets on the basis of Naïve Bayes bigram classifier and MaxEntropy model to categorize/classify input tuples (Tweets). Parikh [3] in their outcome describes that the Naïve Bayes bigram model classify the tweets in a much better way than the MaxEntropy classifier.
Bhayani [4] draws a solution for sentiment analysis of twitter data by distant supervision, they took data set for training where training data set consist of a number of tweets with emoticons and a testing data set which consist of n testing tuples. They use three supervised learning models such as Naïve Bayes classifier, Maximum Entropy classifier and Support Vector Machines classifier (SVM). They considered unigram, bigram and part-of-speech (POS) in their feature space (collection of feature vectors). Bhayani [4] describes that SVM is best among those two classifiers and the case of unigram is more effective than the case of bigram. But when they trained their maximum entropy classifier using the combination of unigrams and bigrams then MaxEntropy classifier performs much better than other classifiers which are trained from a combination of POS tags and unigrams by almost 3%.

Abhishek bhola [8] has conducted a study on twitter data about 2014 central election in India to know the opinion of the public towards different political parties and candidates of those parties. He prepared a dataset of 17.60 million tweets and then performed a sentiment analysis on that dataset to find how many persons at any location or time are in the favor of any particular party or candidate or how many people are interested in giving their vote to any political party.

B. Pang [5] performed an extensively large survey on sentiment analysis. They reviewed approximately more than 300 research papers which includes various types of problems that researchers faces during sentiment analysis and various tasks of opinion mining such as sentiment extraction, classification, clustering, and calculation of polarity.

The twites, collected are examined with the objective of rating different airline services on the basis of various parameters like delay time, staff behaviour, food quality, turbulence, aircraft condition value for money etc using various machine learning techniques. These ratings helps the customer for availing the services. In the proposed manuscript, data of various Indian Airlines services are collected from twitter.

Initially, we have extracted the tweets from twitter using ‘Tweepy’ library of python After preprocessing and filtering the tweets and reviews we have classified them in three categories: positive, negative and neutral using the ‘TextBlob’ library of python. It is found that Trip-Advisor data contains more positive sentiment data whereas twitter gives more negative sentiment data. Here, we compare the performance of various airlines on the basis of six different parameters namely: time delay, food, fare, staff, turbulence, aircraft conditions. This concludes that Trip Advisor data contains more positive sentiment data whereas twitter gives more negative sentiment data. We have applied these techniques describes as follow:

2.1. Bernoulli Naïve Bayes

Bernoulli Naïve Bayes uses naïve bayes classification specially in case of features based on Boolean values. The decision rule is

\[P(x_i|y) = P(i|y)x_i + (1 - P(i|y))(1 - x_i) \]

It penalizes the non-occurrence of feature I for class y, i.e. word occurrence vectors instead of word count vectors are used to train and test the classifier.

2.2. Multinomial Naïve Bayes

Multinomial Naïve Bayes is for multinomially distributed data which is typically represented as word vector counts. In text classification, the size of the vocabulary, ‘n’ is the number of features for each class y , parameter distribution vector is \(\theta_y = (\theta_{y1}, ..., \theta_{yn}) \) where \(\theta_{yi} \) is the probability \(P(x_i|y) \) of feature I appearing in a sample belonging to class y. \(\theta_{yi} \) with smoothened parameter is:

\[\theta_{yi} = \frac{N_{yi} + \alpha}{N_y + \alpha n} \]

2
Where \(N_{yi} = \sum_{x \in T} x_i \) is the number of times feature \(I \) appears in a sample of class \(y \) in the training set \(T \) and \(N_y = \sum_{i=1}^{[F]} N_{yi} \) is the total count for all features for class \(y \). \(\alpha \) is the smoothing parameter.

2.3 Support Vector Machines

It tries to find a hyper plane which separates the data in two classes as optimally as possible. The set of points are labeled with two categories (illustrated in Figure-1 with black and white points) and SVM chooses the hyperplane that maximizes the margin between the two classes.

![Figure-1 depicting SVM](image)

2.4 Maximum Entropy

The principle behind Maximum Entropy is the correct distribution that maximizes the Entropy / uncertainty to meet the constraints set by the ‘evidence’.

The maximum entropy suggest the unbiased model; events which are not excluded by known constraints should be assigned as much uncertainty as possible, meaning the probability distribution should be as uniform as possible. The mathematically the Entropy is given by \(H(p) = -\sum p(a,b) \log p(a,b) \), so that most likely probability distribution is the one that maximizes this entropy: \(P = \arg \max H(p) \).

The proposed work is divided into three sections: First section deals with the analysis of data extracted from a review site named “Trip Advisor”, Second section is about the analysis of data obtained from “Twitter”, a social networking site and lastly the third section deals with the analysis of different machine learning algorithms and models like Naïve Bayes, Support vector machine, Maximum Entropy etc. to explore their weaknesses and strengths in predicting the sentiments of a text obtained from real life sources.

3. PROPOSED METHODOLOGY

3.1 Analysis of Trip advisor reviews

3.1.1 Data extraction

Data has been extracted using “Scrapy”, a fast, open-source web crawling framework written in Python, used to extract the data from the web page in JSON (Java Script Object Notation) format.

The extracted dataset contains about 6000 reviews on “Jet Airways”, 3000 reviews on “Air India”, 3500 reviews on “Indigo”, 1500 on “Spicejet” and about 500 on “Go Air”.

3.1.2 Preprocessing of dataset

Obtained reviews have been used for analysis purpose and stop words, punctuation marks have been removed followed by tokenization. Stemming is also performed in this step such that words like departure, departed have been converted into depart. After preprocessing, reviews have been divided into a bag of tokens.

3.1.2.1 Classification

In the proposed work, TextBlob Python library are used for classification followed by preprocessing. Natural Language Processing and their associated functions are processed in python using TextBlob libraries that provide a simple API.

These reviews have been passed through the classifier one by one to provide its polarity and depending upon its sign (+ve, -ve or neutral). We classify these as Positive, Negative and Neutral as shown in Figure-3. This classification simply states that Jet Airways is the most popular airline followed by Indigo and Go Air among these five airlines. We normalize the chart as we can’t compare them due to popularity difference as shown in Figure-4. Figure-4 reports that Jet-Airways and Indigo airlines are having the highest ratio of Positive reviews while Spice-jet has least. It is also concluded that Air-India have highest ratio of negative reviews.

![Figure-3](attachment:image3.png)

Figure-3: Stacked bar graph depicting the distribution of sentiments of people on different airlines
3.2.1.2 Word frequency

Word frequency of each data set presents the occurrence of words as shown by WordCloud graphs in Figure-5. It describes that some words even having high frequency have no use as their removal is necessary. Here, these words are ‘Air’, ‘flight’, ‘airlin’, ‘goair’, ‘indigo’, ‘ground’, ‘jet’, ‘airways’, ‘they’ , ‘i’, ‘jetairways’, ‘travel’, ‘also’, ‘took’, ‘spice jet’, ‘even’, ‘fli’, ‘also’. WordCloud graph after elimination of these words is shown in Figure-6. The purpose of this exercise is to observe that people are mostly talking about: Time, Staff, Value for money, Food, Turbulence and Aircraft condition. Now, we deal with the reviews with these specific words.
The graph in Figure-7 shows the basic parameters like Time Delay, Value for money, Staff, Food, Turbulence and Aircraft condition and the volume of reviews in each category. In the same way, Figure-8 reports the distribution of positive reviews on most common parameters. Here, we eliminate Turbulence as people are less talking about turbulence as shown in Figure-7. Figure-9(a-d) describes the reviews of different airlines services on different parameters.

Figure-7: Graph depicting sentiment distribution of people on different parameters

Figure-8(a-b): Graph showing the distribution of positive reviews on four parameters for five different airlines & 8-b showing its normalized view.
3.2. Analysis of tweets extracted from Twitter

3.2.1 Data extraction

Tweepy API is used to extract data from twitter with certain restrictions as it has a limit of ten days only. Due to this restriction, we extract the data from twitter again and again in different periods of time which contains number of tweets on a particular query. Numbers of tweets that we extracted from twitter on particular airlines are shown in Table 1.

3.2.1.1 Data Preprocessing:

In sentiment analysis, Data Preprocessing is a very essential as it contains noisy, duplicate / repeated tweets and some time uses short forms like ‘are you’ as ‘r u’ etc. Therefore preprocessing is essential which contain following steps:

a. Convert all the tweets in the dataset into lower case.

b. Remove all the URL, username ‘@username’ from the tweets.

c. Tweets also contains hash tags like ‘#airindia’ and sometimes these # tags provide us some significant information about the query, hence it is required to keep the hash tag words safe so we replace those # tags words with words only and remove # tag symbol. E.g. #kakashi is replaced by 'kakashi'.

d. Sometimes some unnecessary whitespaces and punctuations are also present at the starting and ending of the text so we remove these whitespaces and punctuation from the starting and ending of the texts. e.g: ’this car is bwaah!’ is replaced with ‘this car is bwaah’.

e. Remove all repeated tweets.

f. Table-1 shows the results after preprocessing the tweets w.r.t. actual tweets

g. Stop words like ‘a’, ‘is’, ‘an’ etc are completely removed from preprocessed tweets as it does not change the emotions or feeling of tweets.

h. Also remove the punctuations such a comma, single/double quote, question marks at the starting and ending of each word.

Airline	Air India	Jet Airways	Indigo	Spice-Jet	Go-Air
Number of Tweets (After preprocessing / total Tweets)	5020/14281	1579/2419	5224/7699	1132/2066	8348/11640

Figure-9(a-d): Parameter wise comparison of airlines
3.2.2 Data Analysis:

The preprocessed data is passed through Textblob (predefined library in python for processing textual data) to predict the sentiments of tweets in following way:

a. Pass the tweets to a model which is defined inside the Textblob and predict the sentiment of the tweet as positive, negative or neutral by assigning it a polarity between 1.0 to -1.0.

b. After calculating polarity, we assign a label to the tweet if polarity is greater than 0 then ‘positive’, if polarity is less than 0 then ‘negative’ and if polarity is equal to 0 then ‘neutral’.

c. Calculate total number of positive, negative and neutral tweets and plot the graph shown in Figure-10. Figure-11 reports various parameters of five airlines.

![Figure-10: Tweets classification](image)

3.2.3 Analysis of different machine learning algorithms

The sufficient amount of data is collected, preprocessed and analyzed through various machine learning algorithms. Tweets have been analyzed through Bernoulli Naïve Bayes, Multinomial Naïve Bayes, Maximum Entropy and Support Vector Machines and it have been reported that SVM shows better results in predictions on the test set. The Reviews from Trip Advisor also analyzed on the basis of title and contents. It is observed that SVM reports 87.56% accuracy on the basis of contents while Max-entropy reports highest result on the basis of title. Details results are shown in Table-2. Title refers to the shortest possible description of the review. It has the advantage of faster classification of data. Content refers to the detailed possible description of the review. It has the advantage of better accuracy of classification of data.

ML Algorithms	Tweets	Reviews (On Basis of Content)	Reviews (On Basis of Title)
Bernoulli Naïve Bayes	68.11	69.41	69.41
Multinomial Naïve Bayes	72.44	74.53	74.53
Maximum Entropy	65.98	44.53	44.53
Support Vector Machines	84.51	87.56	87.56
4. CONCLUSIONS

Sentimental Analysis is the modern, easier and most cost effective way to understand the need of the mass population. It provides the way to read the feeling of general person on various subjects on the basis of their comments, reviews etc on public platforms. Here, the objective of the proposed work is to assess the services of most popular indian airlines like Spice-Jet, Go-Air, Air-India, Indigo and Jet airways, through the reviews from Trip-advisor and tweets from Tweeter on various parameters like food quality, staff, delay in time, turbulence, aircraft condition and value for money parameters. Different Airlines services are showing better result as compare to other on different parameters. On the basis of reviews, Jet-airways shows best option on the basis of Time Delay and overall customer satisfaction. In terms of value for money Spice-jet is the first choice. Air India is best in its food / meal quality. It is observed that observation on different parameters by reviews from trip advisor and tweets are completely different as Jet-Airways is better in terms of Fare, Indigo is better in terms of meal etc. Overall Jet-airways is seems better as compare to other existing airlines in India but unfortunately
today, Jet-Airways completely shut down the airlines services in April-2019.

References
[1]. A. Pak and P. Paroubek. “Twitter as a Corpus for Sentiment Analysis and Opinion Mining”. In Proceedings of the Seventh Conference on International Language Resources and Evaluation, 2010, pp.1320-1326.
[2]. Agarwal, B. Xie, I. Vovsha, O. Rambow, R. Passonneau, “Sentiment Analysis of Twitter Data”, In Proceedings of the ACL 2011 Workshop on Languages in Social Media, 2011, pp. 30-38.
[3]. R. Parikh and M. Movassate, “Sentiment Analysis of User- Generated Twitter Updates using Various Classification Techniques”, CS224N Final Report, 2009.
[4]. Go, R. Bhayani, L. Huang. “Twitter Sentiment Classification Using Distant Supervision”. Stanford University, Technical Paper, 2009.
[5]. Bo Pang and Lillian Lee. 2008. Opinion mining and sentiment analysis. Found. Trends Inf. Retr., 2(1-2):1–135.
[6]. Dodds, P. S., & Danforth, C. M. (2010). Measuring the happiness of large-scale written expression: Songs, blogs, and Presidents. Journal of Happiness Studies, 11(4), 441–456.
[7]. Pang, B., Lee, L., & Vaithyanathan, S. (2002). Thumbs up: sentiment classification using machine learning techniques. In Proceedings of the ACL-02 conference on Empirical methods in natural language processing-Volume 10 (pp. 79-86). Association for Computational Linguistics.
[8]. Abhishek Bhola "Twitter and Polls: Analyzing and estimating political orientation of Twitter users in India General Elections 2014” arXiv:1406.5059 [cs.SI].
[9]. Min Song MeenChulKim ;Yoo Kyung Jeong, Analyzing the Political Landscape of 2012 Korean Presidential Election in Twitter 1541-1672/14/ Published by the IEEE Computer Society.
[10]. Wan, X. “A Comparative Study of Cross-Lingual sentiment classification”. In proceedings of the 2012 IEEE/WIC/ACMInternational joint conferences on web intelligence and IntelligentAgent technology-Volume 1 (pp. 24-31). IEEE computer society. 2012.
[11]. Taboada, M., Brooke, J., Tofiloski, M., Voll, K., &Stede, M. “Lexicon based methods for sentiment analysis”. Computational linguistics, 2011:37(2), 267-307.
[12]. V. M. K. Peddinti and P. Chintalapoodi, “Domain adaptation in sentiment analysis of twitter,” in Analyzing Microtext Workshop, AAAI, 2011.
[13]. Shulong Tan, Yang Li, Huan Sun, Ziyu Guan, Xifeng Yan, Jiajun Bu, “Interpreting the Public Sentiment Variations on Twitter”, IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 5, MAY 2014.
[14]. Changbo Wang, Zhao Xiao, Yuhua Liu, Yanru Xu, Aoying Zhou, and Kang Zhang, “SentiView: Sentiment Analysis and Visualization for Internet Popular Topics” IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. 43, NO. 6, NOVEMBER 2013.
[15]. Shai Shalev-Shwartz, Yoram Singer, Nathan, Srebro, Andrew Cotter “Pegasos: Primal Estimated sub-GrAdient SOLver for SVM”, 2000.
[16]. Chuan-Ju Wangz, Ming-Feng Tsaiy, Tse Liuy, Chin-Ting Changzy, “Financial Sentiment Analysis for Risk Prediction” Department of Computer Science & Program in Digital Content and Technology National Chengchi University Taipei 116, 2013
[17]. A. Kumar and T. M. Sebastian, “Machine learning assisted Sentiment Analysis”. Proceedings of International Conference on Computer Science & Engineering (ICCSE’2012), 2012, pp. 123-130.
[18]. K. Dave, S. Lawrence, and D.M. Pennock. “Mining the peanut gallery: Opinion extraction and semantic classification of product reviews”. In Proceedings of the 12th International Conference on World Wide Web (WWW), 2003, pp. 519–528.
[19]. L. Barbosa, J. Feng. “Robust Sentiment Detection on Twitter from Biased and Noisy Data”. COLING 2010:Poster Volume, pp. 36-44.
[20]. S. Batra and D. Rao, “Entity Based Sentiment Analysis on Twitter”, Stanford University, 2010.