Strong Gravitational Lensing Parameter Estimation with Vision Transformer

Kuan-Wei Huang1,∗, Geoff Chih-Fan Chen2,∗, Po-Wen Chang3, Sheng-Chieh Lin4, Chia-Jung Hsu5, Vishal Thengane6, and Joshua Yao-Yu Lin7,∗

1 Carnegie Mellon University
2 University of California, Los Angeles
3 Ohio State University
4 University of Kentucky
5 Chalmers University of Technology
6 Mohamed bin Zayed University of Artificial Intelligence
7 University of Illinois at Urbana-Champaign
∗ equal contribution
yaoyuyl2@illinois.edu

Abstract. Quantifying the parameters and corresponding uncertainties of hundreds of strongly lensed quasar systems holds the key to resolving one of the most important scientific questions: the Hubble constant (H_0) tension. The commonly used Markov chain Monte Carlo (MCMC) method has been too time-consuming to achieve this goal, yet recent work has shown that convolution neural networks (CNNs) can be an alternative with seven orders of magnitude improvement in speed. With 31,200 simulated strongly lensed quasar images, we explore the usage of Vision Transformer (ViT) for simulated strong gravitational lensing for the first time. We show that ViT could reach competitive results compared with CNNs, and is specifically good at some lensing parameters, including the most important mass-related parameters such as the center of lens θ_1 and θ_2, the ellipticities e_1 and e_2, and the radial power-law slope γ'. With this promising preliminary result, we believe the ViT (or attention-based) network architecture can be an important tool for strong lensing science for the next generation of surveys. The open source of our code and data is in https://github.com/kuanweih/strong_lensing_vit_resnet.

1 Introduction

The discovery of the accelerated expansion of the Universe [1,2] and observations of the Cosmic Microwave Background (CMB; e.g., [3]) established the standard cosmological paradigm: the so-called Λ cold dark matter (CDM) model, where Λ represents a constant dark energy density. Intriguingly the recent direct 1.7% H_0 measurements from Type Ia supernovae (SNe), calibrated by the traditional Cepheid distance ladder ($H_0 = 73.2 \pm 1.3$ km s$^{-1}$ Mpc$^{-1}$; SH0ES collaboration [4]), show a 4.2σ tension with the Planck results ($H_0 = 67.4 \pm 0.5$ km s$^{-1}$ Mpc$^{-1}$ [5]). However, a recent measurement of H_0 from SNe Ia calibrated by the Tip of the Red Giant Branch ($H_0 = 69.8 \pm 0.8$(stat) ± 1.7(sys) km s$^{-1}$ Mpc$^{-1}$; CCHP
collaboration [6]) agrees with both the Planck and SH0ES results. The spread in these results, whether due to systematic effects or not, clearly demonstrates that it is crucial to reveal unknown systematics through different methodology.

Strongly lensed quasar system provides such a technique to constrain \(H_0 \) at low redshift that is completely independent of the traditional distance ladder approach (e.g., [7,8,9]). When a quasar is strongly lensed by a foreground galaxy, its multiple images have light curves that are offset by a well-defined time delay, which depends on the mass profile of the lens and cosmological distances to the galaxy and the quasar [10]. However, the bottleneck of using strongly lensed quasar systems is the expensive cost of computational resources and man power. With commonly used Markov chain Monte Carlo (MCMC) procedure, modeling single strongly lensed quasar system requires experienced modelers with a few months effort in order to obtain robust uncertainty estimations and up to years to check the systematics (e.g., [11,12,13,14,15,16]). This is infeasible as \(\sim 2600 \) of such systems with well-measured time delays are expected to be discovered in the upcoming survey with the Large Synoptic Survey Telescope [17,18].

Fig. 1. Left panel: simulated strong lensing imaging with real point spread functions (top two: space-based telescope images; bottom: ground-based adaptive-optics images). Each image contains the lensing galaxy in the middle, the multiple-lensed quasar images, and the lensed background host galaxies (arc). Right panel: Vision Transformer attention map: the overall average attentions are focusing on the strong lens system. Each individual head is paying attention to different subjects such as attention heads #2 are focusing the center of lens, heads #1 and #3 are looking into particular lensed quasars, and heads #4 are dealing with the arc.
Deep learning provides a workaround for the time-consuming lens modeling task by directly mapping the underlying relationships between the input lensing images and the corresponding lensing parameters and their uncertainties. Hezaveh et al. [19] and Perreault Levasseur et al. [20] first demonstrated that convolution neural networks (CNNs) can be an alternative to the maximum likelihood procedures with seven orders of magnitude improvement in speed.

Since then, other works adopt CNN for strong lensing science related inference [21,22,23,24,25,26,27,28,29,30].

In this work, instead of using traditional CNN-based models, we explore the attention-based Vision Transformer (ViT, [31,32]) that has been shown to be more robust compared with CNN-based models [33]. Furthermore, ViT retains more spatial information than ResNet [34] and hence is perfectly suitable for the strong lensing imaging as the quasar configuration and the spatially extended background lensed galaxy provide rich information on the foreground mass distribution (see Figure 1).

2 Data and Models

In Section 2.1, we describe the strong lensing simulation for generating the datasets in this work. In Section 2.2, we describe the deep learning models we use to train on the simulated dataset for strong lensing parameters and uncertainty estimations.

2.1 Simulation and Datasets

Simulating strong lensing imaging requires four major components: the mass distribution of the lensing galaxy, the source light distribution, the lens light distribution, and the point spread function (PSF), which convolves images depending on the atmosphere distortion and telescope structures. We use the lenstronomy package [35,36] to generate 31,200 strong lensing images with the corresponding lensing parameters for our imaging multi-regression task. For the mass distribution, we adapt commonly used (e.g., [37,15]) elliptically symmetric power-law distributions [38] to model the dimensionless surface mass density of lens galaxies,

\[
\kappa_{pl}(\theta_1, \theta_2) = \frac{3 - \gamma'}{1 + q} \left(\frac{\theta_E}{\sqrt{\theta_1^2 + \theta_2^2/q^2}} \right)^{\gamma' - 1},
\]

where \(\gamma'\) is the radial power-law slope (\(\gamma' = 2\) corresponding to isothermal), \(\theta_E\) is the Einstein radius, and \(q\) is the axis ratio of the elliptical isodensity contour. The light distribution of the lens galaxy and source galaxy are described by elliptical S{\'e}rsic profile,

\[
I_S(\theta_1, \theta_2) = I_s \exp \left[-k \left(\frac{\sqrt{\theta_1^2 + \theta_2^2/q^2}}{R_{\text{eff}}} \right)^{1/n_{\text{sersic}}} - 1 \right],
\]
where I_s is the amplitude, k is a constant such that R_{eff} is the effective radius, q_L is the minor-to-major axis ratio, and $n_{\text{Sérsic}}$ is the Sérsic index [39]. For the PSFs, we use six different PSF structures including three real Hubble space telescope PSFs generated by Tinytim [40] and corrected by the real HST imaging [15], and three adaptive-optics (AO) PSFs reconstructed from ground-based Keck AO imaging [41,42,43]. Three example images are shown in Figure 1.

We split the whole simulated dataset of 31,200 images into a training set of 27,000 images, a validation set of 3,000 images, and a test set of 1,200 images. We rescale each image as $3 \times 224 \times 224$ and normalize pixel values in each color channel by the mean $[0.485, 0.456, 0.406]$ and the standard deviation $[0.229, 0.224, 0.225]$ of the datasets. Each image has eight target variables to be predicted in this task: the Einstein radius θ_E, the ellipticities e_1 and e_2, the radial power-law slope γ', the coordinates of mass center θ_1 and θ_2, the effective radius R_{eff}, and the Sérsic index $n_{\text{Sérsic}}$.

2.2 Models

We use the Vision Transformer (ViT) as the main model for our image multi-regression task of strong lensing parameter estimations. Inspired by the original Transformer models [31] for natural language processing tasks, Google Research proposed the ViT models [32] for computer vision tasks. In this paper, we leverage the base-sized ViT model (ViT-Base), which was pre-trained on the ImageNet-21k dataset and fine-tuned on the ImageNet 2012 dataset [44].

Taking advantage of the transfer learning concept, we start with the pre-trained ViT-Base model downloaded from the module of HUGGINGFACE’s TRANSFORMERS [45], and replace the last layer with a fully connected layer whose number of outputs matches the number of target variables in our regression tasks. The ViT model we use thus has 85,814,036 trainable parameters, patch size of 16, depth of 12, and 12 attention heads.

Alongside the ViT model, we also train a ResNet152 model [46] for the same task as a comparison between ViT and the classic benchmark CNN-based model. We leverage the pre-trained ResNet152 model from the TORCHVISION package [47] and modify the last layer accordingly for our multi-regression purpose.

For regression tasks, the log-likelihood can be written as a Gaussian log-likelihood [48]. Thus for our task of K targets, we use the negative log likelihood as the loss function [20]:

$$\text{Loss}_n = -\mathcal{L} (y_n, \hat{y}_n, \hat{s}_n)$$

$$= \frac{1}{2} \left(\sum_{k=1}^{K} e^{-\hat{s}_{n,k}} \| y_{n,k} - \hat{y}_{n,k} \|^2 + \hat{s}_{n,k} + \ln 2\pi \right)$$

(3)

where $(y_n, \hat{y}_n, \hat{s}_n)$ are the (target, parameter estimation, uncertainty estimation) for the nth sample, and $(y_{n,k}, \hat{y}_{n,k}, \hat{s}_{n,k})$ are the (target, parameter estimation, uncertainty estimation) for the n-th sample of the k-th target. We note that in practice, working with the log-variance $\hat{s}_n = \ln \hat{\sigma}_n^2$ instead of the variance $\hat{\sigma}_n^2$.
improves numerical stability and avoids potential division by zero during the training process [49]. Choosing this loss function instead of the commonly used mean squared error results in the uncertainty prediction as well as the parameter prediction, which provides more statistical information than point-estimation-only predictions.

It is worth noting that we apply dropout before every hidden layers for both models with dropout rate of 0.1 to approximate Bayesian networks for the uncertainty estimate, but not for the attention layers in the ViT model. This is to include the "epistemic" uncertainties in neural networks by leaving dropout on when making predictions, together with the "aleatoric" uncertainties described by $\hat{\sigma}_n^2$ to account for intrinsic noise from the data. We refer readers to [48,20] for detailed discussion and derivation of the uncertainties.

Using the training set of 27,000 images, we train our ViT-Base and ResNet152 models with the loss function in Equation (3), the Adam optimizer [50] with 0.001 for the initial learning rate, the batch size of 20. Based on the validation set of 3,000 images, we evaluate the model predictions by the mean squared error across all 8 target variables to determine the best models. We then report the performance of the best ViT and ResNet models according to the test set of 1,200 images in Section 3.

3 Results

In this section, we present the performance of the best ViT and ResNet models on the test set of 1,200 images regards of our image multi-regression task of the strong lensing parameter and uncertainty estimation. Following the procedure in [20], for each model, we execute the prediction on the test set for 1000 times with dropout on to catch the epistemic uncertainty of the model. For each parameter prediction \hat{y}_n and uncertainty prediction $\hat{\sigma}_n$ amongst the 1000 predictions, we draw a random number from a Gaussian distribution $N(\hat{y}_n, \hat{\sigma}_n)$ as the prediction of the parameter. Therefore for each test sample, we have 1000 predicted parameters so that we take the mean and standard deviation as the final parameter and uncertainty predictions respectively.

The overall root mean square errors (RMSEs) for the lensing parameter estimation are 0.1232 for our best ViT-Base model and 0.1476 for our best ResNet152 model. The individual RMSEs for each target variable are summarized in Table 1. Our models indicate that except for the Einstein radius θ_E, the attention-based model ViT-Base outperforms the CNN-based model ResNet152 for all the other parameters in this image multi-regression task. Despite a higher RMSE of the Einstein radius for our best ViT than that of our best ResNet, it still reaches the benchmark precision of about 0.03 arcsec [19].

Using the prediction of the mean values and the corresponding uncertainties on the strong lensing parameters, we randomly select 50 test samples to illustrate the predictions from our ViT and ResNet models in Figure 2. Overall, the ViT model outperforms the ResNet model for θ_1, θ_2, e_1, e_2, and R_{eff} while maintaining a competitive performance for the other parameters. We note that
Table 1. Comparison of RMSE of the parameter predictions between ViT and ResNet.

Target	ViT	ResNet
Overall	0.1232	0.1476
θ_E [arcsec]	0.0302	0.0221
γ'	0.0789	0.0816
θ_1 [arcsec]	0.0033	0.0165
θ_2 [arcsec]	0.0036	0.0169
c_1	0.0278	0.0364
c_2	0.0206	0.0347
R_{eff} [arcsec]	0.0241	0.0487
n_{nsr}	0.0790	0.0959

Fig. 2. Comparison of predicted parameters and 1-σ uncertainties to the ground truths for all eight targets between our best Vision Transformer (ViT) model and our best ResNet model for 50 random chosen test samples. For each target, the ground truth and the model prediction are shown on the x-axis and y-axis respectively. The ViT model outperforms the ResNet model for θ_1, θ_2, c_1, c_2, and R_{eff} while maintaining a competitive performance for the other parameters.
Fig. 3. Comparison of predicted parameters to ground truths for all eight targets between our best Vision Transformer (ViT) model and our best ResNet model. Each panel shows the histogram of the percentage errors between the prediction means and the ground truths of the 1200 test samples for each target. The ViT model outperforms the ResNet model for θ_1, θ_2, e_1, e_2, and R_{eff} while maintaining a competitive performance for the other parameters.

both models cannot well capture the features of n_{e}. In Figure 3, we show the percentage error between the predictions and the ground truths for all 1200 test samples, supporting the statements above.

4 Conclusion

Strongly lensed quasar systems provide unique tools to resolve the recent 4-σ tension between the direct measurements of the H_0 and the prediction from the standard cosmological model (ΛCDM model) [51,4,6,7,42]. One of the key requirements is the mass parameter estimations of hundreds of strong lensing systems in order to achieve statistically significant results [52]. While this challenge cannot be achieved by the traditional and time-consuming MCMC method, deep neural network models can be a perfect alternative technique to efficiently achieve this goal. For example, Hezaveh et al. [19] and Perreault Levasseur et al. [20] showed that CNN-based models could be used to estimate the values and the corresponding uncertainties of the parameters given the strong lensing images.

In this work, we explored the recent state-of-the-art ViT as it has the advantage of capturing long-range interaction of pixels compared to CNN-based models. As a supervised multi-regression task, we trained ViT-Base as well as ResNet152 for the parameter and uncertainty estimations, using the dataset of 31,200 strong lensing images.
We show that ViT could reach competitive results compared with CNNs, and is specifically good at some lensing parameters, including the most important mass-related parameters such as the center of lens θ_1 and θ_2, the ellipticities e_1 and e_2, and the radial power-law slope γ'. With this promising preliminary result, we believe the ViT (or attention-based) network architecture can be an important tool for strong lensing science for the next generation of surveys.

Note that the mass distribution of real lensing galaxies are much more complicated than the simple power-law model and hence can potentially affect the H_0 measurement [53,54,55,56,57,58,59,60,61,62,63]. This effect has been illustrated with cosmological hydrodynamic simulations [56,64]. In the future work, we plan to train the neural network to directly learn from realistic hydrodynamic simulations without the need of mass profile assumptions. This cannot be achieved by traditional MCMC method, while neural network is the only way to directly test this long-standing debate about the possible systematics regarding the degeneracy between lensing H_0 results and the mass profile assumptions. We plan to open-source our code and datasets.

Acknowledgement

The authors thank the referees for their useful feedback and lenstronomy community for making the gravitational lensing simulation available.
References

1. S. Perlmutter, G. Aldering, G. Goldhaber, R. A. Knop, P. Nugent, P. G. Castro, S. Deustua, S. Fabbro, and et al. Measurements of Omega and Lambda from 42 High-Redshift Supernovae. *The Astrophysical Journal*, 517:565–586, June 1999.

2. A. G. Riess, A. V. Filippenko, P. Challis, A. Clocchiatti, A. Diercks, P. M. Garnavich, R. L. Gilliland, C. J. Hogan, and et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. *The Astronomical Journal*, 116:1009–1038, September 1998.

3. G. Hinshaw, D. Larson, E. Komatsu, D. N. Spergel, C. L. Bennett, J. Dunkley, M. R. Nolta, M. Halpern, R. S. Hill, N. Odegard, L. Page, K. M. Smith, J. L. Weiland, B. Gold, N. Jarosik, A. Kogut, M. Limon, S. S. Meyer, G. S. Tucker, E. Wollack, and E. L. Wright. Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results. *The Astrophysical Journal Supplement Series*, 208:19, October 2013.

4. Adam G. Riess, Stefano Casertano, Wenlong Yuan, J. Bradley Bowers, Lucas Macri, Joel C. Zinn, and Dan Scolnic. Cosmic Distances Calibrated to 1% Precision with Gaia EDR3 Parallaxes and Hubble Space Telescope Photometry of 75 Milky Way Cepheids Confirm Tension with ΛCDM. *The Astrophysical Journal Letters*, 908(1):L6, February 2021.

5. Planck Collaboration, N. Aghanim, Y. Akrami, M. Ashdown, J. Aumont, C. Baccigalupi, M. Ballardini, A. J. Banday, R. B. Barreiro, N. Bartolo, S. Basak, R. Battye, K. Benabed, J. P. Bernard, M. Bersanelli, P. Bielewicz, J. J. Bock, J. R. Bond, J. Borrill, F. R. Bouchet, F. Boulanger, M. Bucher, G. Burigana, R. C. Butler, E. Calabrese, J. F. Cardoso, J. Carron, A. Challinor, H. C. Chiang, J. Chluba, L. P. L. Colombo, C. Combet, D. Contreras, B. P. Crill, F. Cuttaia, P. de Bernardis, G. de Zotti, J. Delabrouille, J. M. Delouis, E. Di Valentino, J. M. Diego, O. Doré, M. Douspis, A. Ducout, X. Dupac, S. Dusini, G. Efstathiou, F. Elsner, T. A. Enßlin, H. K. Eriksen, Y. Fantaye, M. Farhang, J. Fergusson, R. Fernandez-Cobos, F. Finelli, F. Forastieri, M. Frailis, A. A. Fraisse, E. Franceschi, A. Frolov, S. Galeotta, S. Galli, K. Ganga, R. T. Génova-Santos, M. Gerbino, T. Ghosh, J. González-Nuevo, K. M. Górski, S. Gratton, A. Gruppuso, J. E. Gudmundsson, J. Hamann, W. Handley, F. K. Hansen, D. Herranz, S. R. Hildebrandt, E. Hivon, Z. Huang, A. H. Jaffe, W. C. Jones, A. Karakci, E. Keihänen, R. Keski-Rahja, K. Kivier, J. Kim, T. S. Kisner, L. Knox, N. Krachmalnicoff, M. Kunz, H. Kurki-Suonio, G. Lagache, J. M. Lamarre, A. Lasenby, M. Lattanzi, C. R. Lawrence, M. Le Jeune, P. Lemos, J. Lesgourgues, F. Levrier, A. Lewis, M. Liguori, P. B. Lilje, M. Lilley, V. Lindholm, M. López-Camacho, P. F. Lubin, Y. Z. Ma, J. F. Macías-Pérez, G. Maggio, M. Maino, N. Mandolesi, A. Mangilli, A. Marcos-Caballero, M. Mari, P. G. Martin, M. Martinelli, E. Martín-Navarro, S. Mattarrese, N. Mauri, J. D. McEwen, P. R. Meinhold, A. Melchiorri, A. Mennella, M. Migliaccio, M. Millea, S. Mitra, M. A. Miville-Deschênes, D. Molinari, L. Montier, G. Morgante, A. Moss, P. Natoli, H. U. Norgaard-Nielsen, L. Pagano, D. Paolo, B. Partridge, G. Patanchon, H. V. Peiris, F. Perotto, V. Pettorino, F. Piacentini, L. Polastri, G. Polenta, J. L. Puget, J. P. Rachen, M. Reinecke, M. Remazeilles, A. Renzi, G. Rocha, C. Rosset, G. Roudier, J. A. Rubiño-Martín, B. Ruiz-Granados, L. Salvati, M. Sandri, M. Savelainen, D. Scott, E. P. S. Shellard, C. Sirignano, G. Sirri, L. D. Spencer, R. Sunyaev, A. S. Suur-Uski, J. A. Tauber, D. Tavagnacco, M. Tenti, L. Toffolatti, M. Tomasi, T. Trombetti, L. Valenzi, J. Valiviita, B. Van Tent, L. Vibert, P. Vielva, F. Villa, N. Vittorio, B. D. Wandelt, I. K. Wehus, M. White, S. D. M.
White, A. Zacchei, and A. Zonca. Planck 2018 results. VI. Cosmological parameters. *Astronomy and Astrophysics*, 641:A6, September 2020.

6. Wendy L. Freedman, Barry F. Madore, Taylor Hoyt, In Sung Jang, Rachael Beaton, Myung Gyoon Lee, Andrew Monson, Jill Neeley, and Jeffrey Rich. Calibration of the Tip of the Red Giant Branch. *The Astrophysical Journal*, 891(1):57, March 2020.

7. Kenneth C. Wong, Sherry H. Suyu, Geoff C. F. Chen, Cristian E. Rusu, Martin Millon, Dominkie Sluse, Vivien Bonvin, Christopher D. Fassnacht, Stefan Taubenberger, Matthew W. Auger, Simon Birrer, James H. H. Chan, Frederic Courbin, Stefan Hilbert, Olga Tihhonova, Tommaso Treu, Adriano Agnello, Xuheng Ding, Inh Jee, Eiichiro Komatsu, Anowar J. Shajib, Alessandro Sonnenfeld, Roger D. Blandford, Léon V. E. Koopmans, Philip J. Marshall, and Georges Meylan. H0LiCOW – XIII. A 2.4 per cent measurement of H_0 from lensed quasars: 5.3σ tension between early- and late-Universe probes. *Monthly Notices of the Royal Astronomical Society*, 498(1):1420–1439, October 2020.

8. T. Treu and P. J. Marshall. Time delay cosmography. *The Astronomy and Astrophysics Review*, 24:11, July 2016.

9. Sherry H. Suyu, Tzu-Ching Chang, Frédéric Courbin, and Teppei Okumura. Cosmological Distance Indicators. *Space Science Reviews*, 214(5):91, Aug 2018.

10. S. Refsdal. On the possibility of determining Hubble’s parameter and the masses of galaxies from the gravitational lens effect. *Monthly Notices of the Royal Astronomical Society*, 128:307, 1964.

11. K. C. Wong, S. H. Suyu, M. W. Auger, V. Bonvin, F. Courbin, C. D. Fassnacht, A. Halkola, C. E. Rusu, D. Sluse, A. Sonnenfeld, T. Treu, T. E. Collett, S. Hilbert, L. V. E. Koopmans, P. J. Marshall, and N. Rumbaugh. H0LiCOW - IV. Lens mass model of HE 0435-1223 and blind measurement of its time-delay distance for cosmology. *Monthly Notices of the Royal Astronomical Society*, 465:4726–4753, April 2019.

12. S. Birrer, T. Treu, C. E. Rusu, V. Bonvin, C. D. Fassnacht, J. H. H. Chan, A. Agnello, A. J. Shajib, G. C.-F. Chen, M. Auger, F. Courbin, S. Hilbert, D. Sluse, S. H. Suyu, K. C. Wong, P. Marshall, B. C. Lemaux, and G. Meylan. H0LiCOW - IX. Cosmographic analysis of the doubly imaged quasar SDSS 1206+4332 and a new measurement of the Hubble constant. *Monthly Notices of the Royal Astronomical Society*, 498(1):1440–1468, October 2020.

13. Cristian E. Rusu, Kenneth C. Wong, Vivien Bonvin, Dominique Sluse, Sherry H. Suyu, Christopher D. Fassnacht, James H. H. Chan, Stefan Hilbert, Matthew W. Auger, Alessandro Sonnenfeld, Simon Birrer, Frederic Courbin, Tommaso Treu, Geoff C. F. Chen, Aleksi Halkola, Léon V. E. Koopmans, Philip J. Marshall, and Anowar J. Shajib. H0LiCOW XII. Lens mass model of WFI2033-4723 and blind measurement of its time-delay distance and H_0. *Monthly Notices of the Royal Astronomical Society*, 498(1):1440–1468, October 2020.

14. Geoff C.-F. Chen, James H. H. Chan, Vivien Bonvin, Christopher D. Fassnacht, Karina Rojas, Martin Millon, Fred Courbin, Sherry H. Suyu, Kenneth C. Wong, Dominique Sluse, Tommaso Treu, Anowar J. Shajib, Jen-Wei Hsueh, David J. Lagattuta, Léon V. E. Koopmans, Simona Vegetti, and John P. McKean. Constraining the microlensing effect on time delays with a new time-delay prediction model in H_0 measurements. *Monthly Notices of the Royal Astronomical Society*, 481(1):1115–1125, Nov 2018.

15. Geoff C. F. Chen, Christopher D. Fassnacht, Sherry H. Suyu, Léon V. E. Koopmans, David J. Lagattuta, John P. McKean, Matt W. Auger, Simona Vegetti, and
Tommaso Treu. SHARP - VIII. J 0924+0219 lens mass distribution and time-delay prediction through adaptive-optics imaging. *Monthly Notices of the Royal Astronomical Society*, April 2022.

16. A. J. Shajib, S. Birrer, T. Treu, A. Agnello, E. J. Buckley-Geer, J. H. H. Chan, L. Christensen, C. Lemon, H. Lin, M. Millon, J. Poh, C. E. Rusu, D. Sluse, C. Spinello, G. C. F. Chen, T. Collett, F. Courbin, C. D. Fassnacht, J. Frieman, A. Galan, D. Gilman, A. More, T. Anguita, M. W. Auger, V. Bonvin, R. McMahon, G. Meylan, K. C. Wong, T. M. C. Abbott, J. Annis, S. Avila, K. Bechtol, D. Brooks, D. Brout, D. L. Burke, A. Carnero Rosell, M. Carrasco Kind, J. Carretero, F. J. Castander, M. Costanzi, L. N. da Costa, J. De Vicente, S. Desai, J. P. Dietrich, P. Doel, A. Drlica-Wagner, A. E. Evrard, D. A. Finley, B. Flaugher, P. Fosalba, J. García-Bellido, D. W. Gerdes, D. Gruen, R. A. Gruendl, J. Gschwend, G. Gutierrez, D. L. Hollowood, K. Honscheid, D. Huterer, D. J. James, T. Jeltema, E. Krause, N. Kuropatkin, T. S. Li, M. Lima, N. MacCrann, M. A. G. Maia, J. L. Marshall, P. Melchior, R. Miquel, R. L. C. Ogando, A. Palmese, F. Paz-Chinchón, A. A. Plazas, A. K. Romer, A. Roodman, M. Sako, E. Sanchez, B. Santiago, V. Scarpine, M. Schubnell, D. Scolnic, M. Smith, M. Soares-Santos, E. Suchyta, G. Tarle, D. Thomas, A. R. Walker, and Y. Zhang. STRIDES: a 3.9 per cent measurement of the Hubble constant from the strong lens system DES J0408-5354. *Monthly Notices of the Royal Astronomical Society*, 494(4):6072–6102, March 2020.

17. LSST Science Collaboration, Paul A. Abell, Julius Allison, Scott F. Anderson, John R. Andrew, J. Roger P. Angel, Lee Armus, David Arnett, S. J. Asztalos, Tim S. Axelrod, Stephen Bailey, D. R. Ballantyne, Justin R. Barkert, Wayne A. Barkhouse, Jeffrey D. Barr, L. Felipe Barrientos, Aaron J. Barth, James G. Bartlett, Andrew C. Becker, Jason B. Bell, Timothy C. Beers, Joseph P. Bernstein, Rahul Biswas, Michael R. Blanton, Joshua S. Bloom, John J. Bochanski, Pat Boeshar, Kirk D. Borne, Marusa Bradac, W. N. Brandt, Carrie R. Bridge, Michael E. Brown, Robert J. Brunner, James S. Bullock, Adam J. Burgasser, James H. Burge, David L. Burke, Phillip A. Cargile, Srinivasan Chandrasekharan, George Charitas, Steven R. Chesley, You-Hua Chu, David Cinabro, Mark W. Claire, Charles F. Claver, Douglas Clowe, A. J. Connolly, Kem H. Cook, Jeff Cooke, Asantha Cooray, Kevin R. Covey, Christopher S. Culliton, Roeland de Jong, Willem H. de Vries, Victor P. Debattista, Francisco Delgado, Ian P. Dell’Antonio, Saurav Dhillon, Rosanne Di Stefano, Mark Dickinson, Benjamin Dilday, S. G. Djorgovski, Gregory Dobler, Ciro Donalek, Gregory Dubois-Felsmann, Josef Durech, Ardis Elsasdomir, Michael Eracleous, Laurent Eyer, Emilio E. Falco, Xiaohui Fan, Christopher D. Fassnacht, Harry C. Ferguson, Yanga R. Fernandez, Brian D. Fields, Douglas Finkbeiner, Eduardo E. Figueroa, Derek B. Fox, Harold Francke, James S. Frank, Josh Friedman, Sebastien Fromenteau, Muhammad Furqan, Gaspar Galaz, A. Gal-Yam, Peter Garnavich, Eric Gawiser, John Geary, Perry Gee, Robert R. Gibson, Kirk Gilmore, Emily A. Grace, Richard F. Green, William J. Gressler, Carl J. Grillmair, Salmon Habib, J. S. Haggerty, Mario Hamuy, Alan W. Harris, Suzanne L. Hawley, Alan F. Heavens, Leslie Hebb, Todd J. Henry, Edward Hileman, Eric J. Hilton, Keri Hoadley, J. B. Holberg, Matt J. Holman, Steve B. Howell, Leopoldo Infante, Zeljko Ivezić, Suzanne H. Jacoby, Bhuvnesh Jain, R. Jedicke, M. James Jee, J. Garrett Jernigan, Saurabh W. Jha, Kathryn V. Johnston, R. Lynne Jones, Mario Juric, Mikko Kaasalainen, Styliani, Kafka, Steven M. Kahn, Nathan A. Kaib, Jason Kalirai, Jeff Kantor, Mansi M. Kasliwal, Charles R. Keeton, Richard Kessler, Zoran Knezevic, Adam Kowalski, Victor L. Krabbendam, K. Simon Krughoff, Shrin-
18. M. Oguri and P. J. Marshall. Gravitationally lensed quasars and supernovae in future wide-field optical imaging surveys. *Monthly Notices of the Royal Astronomical Society*, 405:2579–2593, July 2010.

19. Yashar D. Hezaveh, Laurence Perreault Levasseur, and Philip J. Marshall. Fast automated analysis of strong gravitational lenses with convolutional neural networks. *Nature*, 548(7669):555–557, August 2017.

20. Laurence Perreault Levasseur, Yashar D. Hezaveh, and Risa H. Wechsler. Uncertainties in Parameters Estimated with Neural Networks: Application to Strong Gravitational Lensing. *The Astrophysical Journal Letters*, 850(1):L7, November 2017.

21. Johann Brehmer, Siddharth Mishra-Sharma, Joeri Hermans, Gilles Louppe, and Kyle Cranmer. Mining for dark matter substructure: Inferring subhalo population properties from strong lenses with machine learning. *The Astrophysical Journal*, 886(1):49, 2019.

22. Sebastian Wagner-Carena, Ji Won Park, Simon Birrer, Philip J Marshall, Aaron Roodman, Risa H Wechsler, LSST Dark Energy Science Collaboration, et al. Hierarchical inference with bayesian neural networks: An application to strong gravitational lensing. *The Astrophysical Journal*, 909(2):187, 2021.

23. Joshua Yao-Yu Lin, Hang Yu, Warren Morningstar, Jian Peng, and Gilbert Holder. Hunting for Dark Matter Subhalos in Strong Gravitational Lensing with Neural Networks. In *34th Conference on Neural Information Processing Systems*, 10 2020.

24. Ji Won Park, Sebastian Wagner-Carena, Simon Birrer, Philip J Marshall, Joshua Yao-Yu Lin, Aaron Roodman, LSST Dark Energy Science Collaboration, et al. Large-scale gravitational lens modeling with bayesian neural networks for accurate
and precise inference of the hubble constant. *The Astrophysical Journal*, 910(1):39, 2021.

25. Robert Morgan, Brian Nord, Simon Birrer, Joshua Yao-Yu Lin, and Jason Poh. deepplenstronomy: A dataset simulation package for strong gravitational lensing. *J. Open Source Softw.*, 6(58):2854, 2021.

26. Warren R Morningstar, Yashar D Hezaveh, Laurence Perreault Levassuer, Roger D Blandford, Philip J Marshall, Patrick Putzky, and Risa H Wechsler. Analyzing interferometric observations of strong gravitational lenses with recurrent and convolutional neural networks. *arXiv preprint arXiv:1808.00011*, 2018.

27. Adam Coogan, Konstantin Karchev, and Christoph Weniger. Targeted likelihood-free inference of dark matter substructure in strongly-lensed galaxies. In *34th Conference on Neural Information Processing Systems*, 10 2020.

28. Bryan Ostdiek, Ana Diaz Rivero, and Cora Dvorkin. Extracting the subhalo mass function from strong lens images with image segmentation. *The Astrophysical Journal*, 927(1), 3 2022.

29. Bryan Ostdiek, Ana Diaz Rivero, and Cora Dvorkin. Image segmentation for analyzing galaxy-galaxy strong lensing systems. *Astron. Astrophys.*, 657:L14, 2022.

30. Hareesh Thuruthipilly, Adam Zadrozny, and Agnieszka Pollo. Finding strong gravitational lenses through self-attention. *arXiv preprint arXiv:2110.09202*, 2021.

31. Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing systems*, 30, 2017.

32. Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. In *9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021*. OpenReview.net, 2021.

33. Sayak Paul and Pin-Yu Chen. Vision transformers are robust learners. In *AAAI*, 2022.

34. Maithra Raghu, Thomas Unterthiner, Simon Kornblith, Chiyuan Zhang, and Alexey Dosovitskiy. Do vision transformers see like convolutional neural networks? In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors, *Advances in Neural Information Processing Systems*, 2021.

35. Simon Birrer and Adam Amara. lenstronomy: Multi-purpose gravitational lens modelling software package. *Physics of the Dark Universe*, 22:189–201, Dec 2018.

36. Simon Birrer, Anowar J. Shahib, Daniel Gilman, Aymeric Galan, Jelle Aalbers, Martin Millon, Robert Morgan, Giulia Pagano, Ji Won Park, Luca Teodori, Nicolas Tessore, Madison Ueland, Lyne Van de Vyvere, Sebastian Wagner-Carena, Ewoud Wempe, Lilan Yang, Xuheng Ding, Thomas Schmidt, Dominique Sluse, Ming Zhang, and Adam Amara. lenstronomy ii: A gravitational lensing software ecosystem. *Journal of Open Source Software*, 6(62):3283, 2021.

37. S. H. Suyu, M. W. Auger, S. Hilbert, P. J. Marshall, M. Tewes, T. Treu, C. D. Fassnacht, L. V. E. Koopmans, D. Sluse, R. D. Blandford, F. Courbin, and G. Meylan. Two Accurate Time-delay Distances from Strong Lensing: Implications for Cosmology. *The Astrophysical Journal*, 766:70, April 2013.

38. R. Barkana. Fast Calculation of a Family of Elliptical Mass Gravitational Lens Models. *The Astrophysical Journal*, 502:531, August 1998.

39. J. L. Sérsic. *Atlas de galaxias australes*. Cordoba, Argentina: Observatorio Astronomico, 1968, 1968.
40. J. E. Krist and R. N. Hook. NICMOS PSF variations and tiny tim simulations. In S. Casertano, R. Jedrzejewski, T. Keyes, and M. Stevens, editors, *The 1997 HST Calibration Workshop with a New Generation of Instruments*, p. 192, page 192, January 1997.

41. G. C.-F. Chen, S. H. Suyu, K. C. Wong, C. D. Fassnacht, T. Chiueh, A. Halkola, I. S. Hu, M. W. Auger, L. V. E. Koopmans, D. J. Lagattuta, J. P. McKean, and S. Vegetti. SHARP - III. First use of adaptive-optics imaging to constrain cosmology with gravitational lens time delays. *Monthly Notices of the Royal Astronomical Society*, 462:3457–3475, November 2016.

42. Geoff C.-F. Chen, Christopher D. Fassnacht, Sherry H. Suyu, Cristian E. Rusu, James H. H. Chan, Kenneth C. Wong, Matthew W. Auger, Stefan Hilbert, Vivien Bonvin, Simon Birrer, Martin Millon, Léon V. E. Koopmans, David J. Lagattuta, John P. McKean, Simona Vegetti, Frederic Courbin, Xuheng Ding, Aleksi Halkola, Inh Jee, Anowar J. Shajib, Dominique Sluse, Alessandro Sonnenfeld, and Tommaso Treu. A SHARP view of H0LiCOW: H₀ from three time-delay gravitational lens systems with adaptive optics imaging. *Monthly Notices of the Royal Astronomical Society*, 490(2):1743–1773, December 2019.

43. Geoff C.-F. Chen, Tommaso Treu, Christopher D. Fassnacht, Sam Ragland, Thomas Schmidt, and Sherry H. Suyu. Point spread function reconstruction of adaptive-optics imaging: meeting the astrometric requirements for time-delay cosmography. *Monthly Notices of the Royal Astronomical Society*, 508(1):755–761, November 2021.

44. Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database. In *2009 IEEE Conference on Computer Vision and Pattern Recognition*, pages 248–255, 2009.

45. Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davidson, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural language processing. In *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations*, pages 38–45, Online, October 2020. Association for Computational Linguistics.

46. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image Recognition. *arXiv e-prints*, page arXiv:1512.03385, December 2015.

47. Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett, editors, *Advances in Neural Information Processing Systems 32*, pages 8024–8035. Curran Associates, Inc., 2019.

48. Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In Maria Florina Balcan and Kilian Q. Weinberger, editors, *Proceedings of The 33rd International Conference on Machine Learning*, volume 48 of *Proceedings of Machine Learning Research*, pages 1050–1059, New York, New York, USA, 20–22 Jun 2016. PMLR.

49. Alex Kendall and Yarin Gal. What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? *arXiv e-prints*, page arXiv:1703.04977, March 2017.
50. Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. *arXiv e-prints*, page arXiv:1412.6980, December 2014.

51. Elcio Abdalla, Guillermo Franco Abellán, Amin Aboubrahim, Adriano Agnello, Özgür Akarsu, Yashar Aghasi, Mario Ballardini, Vernon Barger, Spyros Basilakos, Ronaldo C. Batista, Elia S. Battistelli, Richard Battye, Micol Benetti, David Benisty, Asher Berlin, Paolo de Bernardis, Emanuele Berti, Bohdan Bidenko, Simon Birrer, John P. Blakeslee, Kimberly K. Boddy, Clecio R. Bom, Alexander Bonilla, Nicola Borghi, François R. Bouchet, Matteo Braglia, Thomas Buchert, Elizabeth Buckley-Geer, Erminia Calabrese, Robert R. Caldwell, David Camarena, Salvatore Capozziello, Stefano Casertano, Geoff C. F. Chen, Jens Chluba, Angela Chen, Hsin-Yu Chen, Anton Chudaykin, Michele Cicoli, Craig J. Copi, Fred Courbin, Francis-Yan Cyr-Racine, Bożena Czerny, Maria Dainotti, Guido D’Amico, Anne-Christine Davis, Javier de Cruz Pérez, Jaume de Haro, Jacques Delabrouille, Peter B. Denton, Suhail Dhawan, Keith R. Dienes, Eleonora Di Valentino, Pu Du, Dominique Eckert, Celia Escamilla-Rivera, Agnès Ferté, Fabio Finelli, Pablo Fosalba, Wendy L. Freedman, Noemi Frusciane, Enrique Gaztañaga, William Giarrè, Elena Giusarma, Adrián Gómez-Valent, Will Handley, Ian Harrison, Luke Hart, Dhiraj Kumar Hazra, Alan Heavens, Asta Heinesen, Hendrik Hildebrandt, J. Colin Hill, Natalie B. Hogg, Daniel E. Holz, Deanna C. Hooper, Nikoo Hosseinzadeh, Dragan Huterer, Mustapha Ishak, Mikhail M. Ivanov, Andrew H. Jaffe, In Sung Jang, Karsten Jedamzik, Raul Jimenez, Melissa Joseph, Shahab Joudaki, Marc Kamionkowski, Tanvi Karwal, Lavrentios Kazantzidis, Ryan E. Keeley, Michael Klasen, Eiichiro Komatsu, Léon V. E. Koopmans, Suresh Kumar, Luca Lamagna, Ruth Lazkoz, Chung-Chi Lee, Julien Lesgourgues, Jackson Levi Said, Tiffany R. Lewis, Benjamin L’Huillier, Matteo Lucca, Roy Maartens, Lucas M. Macri, Danny Marfatia, Valerio Marra, Carlos J. A. P. Martins, Silvia Masi, Sabino Mattarella, Arindam Mazumdar, Alessandro Melchiorri, Olga Mena, Laura Mersini-Houghton, James Mertens, Dinko Milaković, Yuto Minami, Vivian Miranda, Cristian Moreno-Pulido, Michele Moresco, David F. Mota, Emil Mottola, Simone Mozzon, Jessica Muir, Aukn Mukherjee, Suvodip Mukherjee, Pavel Naselsky, Pran Nath, Savvas Nesseris, Florian Niedermann, Alessio Notari, Rafael C. Nunes, Eoin Ó Colgáin, Kayla A. Owens, Emre Özüker, Francesco Pace, Andronikos Paliathanasis, Antonella Palmese, Supriya Pan, Daniela Paoloetti, Santiago E. Perez Bergliaffa, Leandros Perivolaropoulos, Dominic W. Pesce, Valeria Pettorino, Oliver H. E. Philcox, Levon Pogosian, Vivian Poulin, Gaspard Poulot, Marco Raveri, Mark J. Reid, Fabrizio Renzi, Adam G. Riess, Vivian I. Sabla, Paolo Salucci, Vincenzo Salzano, Emmanuel N. Saridakis, Bangalore S. Sathyaprakash, Martin Schalm, Nils Schöneberg, Dan Scolnic, Anjan A. Sen, Neelima Sehgal, Arman Shafieloo, M. M. Sheikh-Jabbari, Joseph Silk, Alessandra Silvestri, Foteini Silara, Martin S. Sloth, Marcelle Soares-Santos, Joan Solà Peracaula, Yu-Yang Songsheng, Jorge F. Soriano, Denitsa Staicova, Glenn D. Starkman, István Szapudi, Elsa M. Teixeira, Brooks Thomas, Tommaso Treu, Emery Trotta, Carsten van de Bruck, J. Alberto Vazquez, Licia Verde, Luca Visinelli, Deng Wang, Jian-Min Wang, Shao-Jiang Wang, Richard Watkins, Scott Watson, John K. Webb, Neal Weiner, Amanda Weltman, Samuel J. Witte, Radoslaw Wojtak, Anil Kumar Yadav, Wei-Qiang Yang, Gong-Bo Zhao, and Miguel Zumalacárregui. Cosmology intertwined: A review of the particle physics, astrophysics, and cosmology associated with the cosmological tensions and anomalies. *Journal of High Energy Astrophysics*, 34:49–211, June 2022.
52. S. H. Suyu, T. Treu, R. D. Blandford, W. L. Freedman, S. Hilbert, C. Blake, J. Braatz, F. Courbin, J. Dunkley, L. Greenhill, E. Humphreys, S. Jha, R. Kirshner, K. Y. Lo, L. Macri, B. F. Madore, P. J. Marshall, G. Meylan, J. Mould, B. Reid, M. Reid, A. Riess, D. Schlegel, V. Scowcroft, and L. Verde. The Hubble constant and new discoveries in cosmology. ArXiv e-prints (1202.4459), February 2012.

53. E. E. Falco, M. V. Gorenstein, and I. I. Shapiro. On model-dependent bounds on H(0) from gravitational images Application of Q0957 + 561A.B. The Astrophysical Journal Letters, 289:L1–L4, February 1985.

54. M. V. Gorenstein, E. E. Falco, and I. I. Shapiro. Degeneracies in Parameter Estimates for Models of Gravitational Lens Systems. The Astrophysical Journal, 327:693, April 1988.

55. P. Schneider and D. Sluse. Mass-sheet degeneracy, power-law models and external convergence: Impact on the determination of the Hubble constant from gravitational lensing. Astronomy and Astrophysics, 559:A37, November 2013.

56. D. Xu, D. Sluse, P. Schneider, V. Springel, M. Vogelsberger, D. Nelson, and L. Hernquist. Lens galaxies in the Illustris simulation: power-law models and the bias of the Hubble constant from time delays. Monthly Notices of the Royal Astronomical Society, 456:739–755, February 2016.

57. M. Gomer and L. L. R. Williams. Galaxy-lens determination of H_0: constraining density slope in the context of the mass sheet degeneracy. Journal of Cosmology and Astroparticle Physics, 2020(11):045, November 2020.

58. C. S. Kochanek. Overconstrained gravitational lens models and the Hubble constant. Monthly Notices of the Royal Astronomical Society, 493(2):1725–1735, April 2020.

59. Kfir Blum, Emanuele Castorina, and Marko Simonović. Could Quasar Lensing Time Delays Hint to a Core Component in Halos, Instead of H_0 Tension? The Astrophysical Journal Letters, 892(2):L27, April 2020.

60. M. Millon, A. Galan, F. Courbin, T. Treu, S. H. Suyu, X. Ding, S. Birrer, G. C. F. Chen, A. J. Shajib, D. Sluse, K. C. Wong, A. Agnello, M. W. Auger, E. J. Buckley-Geer, J. H. H. Chan, T. Collett, C. D. Fassnacht, S. Hilbert, L. V. E. Koopmans, V. Motta, S. Mukherjee, C. E. Rusu, A. Sonnenfeld, C. Spinello, and L. Van de Vyvere. TDCOSMO. I. An exploration of systematic uncertainties in the inference of H_0 from time-delay cosmography. Astronomy and Astrophysics, 639:A101, July 2020.

61. X. Ding, T. Treu, S. Birrer, G. C. F. Chen, J. Coles, P. Denzel, M. Frigo, A. Galan, P. J. Marshall, M. Millon, A. More, A. J. Shajib, D. Sluse, H. Tak, D. Xu, M. W. Auger, V. Bonvin, H. Chand, F. Courbin, G. Despali, C. D. Fassnacht, D. Gilman, S. Hilbert, S. R. Kumar, J. Y. Y. Lin, J. W. Park, P. Saha, S. Vegetti, L. Van de Vyvere, and L. L. R. Williams. Time delay lens modelling challenge. Monthly Notices of the Royal Astronomical Society, 503(1):1096–1123, May 2021.

62. S. Birrer, A. J. Shajib, A. Galan, M. Millon, T. Treu, A. Agnello, M. Auger, G. C. F. Chen, L. Christensen, T. Collett, F. Courbin, C. D. Fassnacht, L. V. E. Koopmans, P. J. Marshall, J. W. Park, C. E. Rusu, D. Sluse, C. Spinello, S. H. Suyu, S. Wagner-Carena, K. C. Wong, M. Barnabè, A. S. Bolton, O. Czoske, X. Ding, J. A. Frieman, and L. Van de Vyvere. TDCOSMO. IV. Hierarchical time-delay cosmography – joint inference of the Hubble constant and galaxy density profiles. Astronomy and Astrophysics, 643:A165, November 2020.

63. Geoff C.-F. Chen, Christopher D. Fassnacht, Sherry H. Suyu, Akin Yildirim, Eiichiro Komatsu, and José Luis Bernal. TDCOSMO. VI. Distance measurements in time-delay cosmography under the mass-sheet transformation. Astronomy and Astrophysics, 652:A7, August 2021.
64. Amitpal S. Tagore, David J. Barnes, Neal Jackson, Scott T. Kay, Matthieu Schaller, Joop Schaye, and Tom Theuns. Reducing biases on H_0 measurements using strong lensing and galaxy dynamics: results from the EAGLE simulation. *Monthly Notices of the Royal Astronomical Society*, 474(3):3403–3422, March 2018.