Gas reactions under intrapore condensation regime within tailored metal–organic framework catalysts

Iker Agirrezabal-Telleria1,4, Ignacio Luz2,4, Manuel A. Ortuño3,4, Mikel Oregui-Bengoechea1, Iñaki Gandarias1, Núria López3, Marty A. Lail2 & Mustapha Soukri2

Production of 1-butene, a major monomer in polymer industry, is dominated by homogeneous protocols via ethylene dimerization. Homogeneous catalysts can achieve high selectivity but require large amounts of activators and solvents, and exhibit poor recyclability; in turn, heterogeneous systems are robust but lack selectivity. Here we show how the precise engineering of metal–organic frameworks (MOFs) holds promise for a sustainable process. The key to the (Ru)HKUST-1 MOF activity is the intrapore reactant condensation that enhances ethylene dimerization with high selectivity (> 99% 1-butene) and high stability (> 120 h) in the absence of activators and solvents. According to spectroscopy, kinetics, and modeling, the engineering of defective nodes via controlled thermal approaches rules the activity, while intrapore ethylene condensation accounts for selectivity and stability. The combination of well-defined actives sites with the concentration effect arising from condensation regimes paves the way toward the development of robust MOF catalysts for diverse gas-phase reactions.
Linear α-olefins, derived from light alkene oligomerization reactions, are broadly used as lubricants and co-monomers in polymer synthesis, and represent one of few examples for which homogeneous catalysts are still employed in bulk chemical production. Transition-metal compounds selectively convert light alkenes into industrially-relevant products, but their limited recyclability and excessive use of solvent and activators present environmental and economic limitations. The search for robust heterogeneous catalysts is still a challenge as they do not show well-defined sites and lack the high selectivity reported for homogeneous counterparts.

Metal–organic frameworks (MOFs) hold promise to get the best ingredients from both worlds, i.e., selective and well-defined catalytic sites distributed on porous solids. While typical pristine MOFs are hardly reactive during ethylene dimerization, recent advances in defect-engineering synthetic methods enable tailoring a broad range of lattice defects that enhance catalytic activity11. However, there are several challenges to render these materials into practice in large-scale processes. For instance, remarkable ethylene dimerization turnovers were obtained using Ni-containing MOFs12–20, but they still require large amounts of activators (up to 500 equivalents per active metal) to generate the active species. Moreover, the Ni-MOF catalysts undergo fast deactivation22. Given the narrow channels in MOFs, we propose the use of intrapore reactant condensation21 to provide catalyst stability during gas-phase reactions at mild temperatures.

Here, we present heterogeneous catalysis and defect synthesis methods for (Ru)HKUST-1 that allow controlled defect engineering and present unique activity, selectivity, and stability in ethylene dimerization. The thermal engineering of defects yields catalytically active species with remarkable activity in the absence of activators, high selectivity to 1-butene (>99% selectivity), and long-time stability (>120 h) under intrapore ethylene condensation regime. We prove that active Ru–H sites created through economic and versatile thermal approaches behave the same as those prepared via conventional ligand-engineered methods. Kinetic, spectroscopic, and theoretical methods provide new insights on the nature and concentration of catalytic sites and demonstrate the kinetic consequences of intrapore reactant condensation on the stability of MOF catalysts. The exquisite control over well-defined active sites combined with intrapore liquid regime opens new research opportunities to develop heterogeneous porous systems that work at wider temperature ranges than those under liquid phase.

Results
Ligand-engineered defective MOF catalysts. In order to tailor an active and stable MOF catalyst for ethylene dimerization, we chose the (Ru)-HKUST-1 material, which is amenable to include lattice defective sites without compromising the framework structure (Fig. 1)7,22. Previously, defective (Ru)HKUST-1, prepared via controlled in-synthesis incorporation of coordinatively deficient pyridine-3,5-dicarboxylate ligands, led to the formation of robust metal–hydride species upon H2 exposure at 150 °C23,24. Inspired by these results, we propose a new experimental set up where such defective MOFs can efficiently catalyze ethylene dimerization in the absence of activators.

Here we use direct catalytic evidences to learn on ethylene dimerization site requirements in (Ru)HKUST-1 MOFs containing 25% of pyridine-3,5-dicarboxylate linkers, namely MOF1,25. Figure 2a shows ethylene dimerization turnover frequencies (TOFs) vs. time on stream at 50 °C using different pre-treated MOF1,25. As discussed later, we consider one active Ru atom per defective node to calculate TOF values. The reaction pressure (4.2 MPa) and temperature (50 °C) conditions in Fig. 2a lead to the remarkable stabilization of active species, facilitated by the intrapore condensation of ethylene reactants within MOF1,25, as discussed in next sections. After N2 treatment at 200 °C to remove labile adsorbates (purple line), MOF1,25 exhibits dimerization activity after an induction period with 99% selectivity to 1-butene (Fig. 2a). Slow induction periods reflect the limited capacity of ethylene to form active Ru–H species at dimerization conditions (50 °C). Interestingly, further exposure to H2 at 150 °C (blue line) produces a catalyst with initial rates one order of magnitude higher than those found previously24, while maintaining high selectivity (Supplementary Fig. 7). The catalytic differences in Fig. 2a are attributed to the facile formation of Ru–H species in ligand-engineered open metal sites under H2 atmosphere at 150 °C (vide infra). The generation of Ru–H species is optimized at 150 °C in H2 without involving the degradation of the porous framework (see N2 physisorption in Supplementary Fig. 2). Higher pre-treatment temperatures (200 °C in H2) lead to complete MOF degradation into metallic Ru particles (Supplementary Fig. 4). The catalytic role of Ru–H species is supported by quenching under oxidizing environments (O2 at 150 °C, orange line in Fig. 2a), leading to inactive Ru species and induction periods in contact with ethylene. The results in Fig. 2a show compelling evidences on the role of Ru–H species in ligand-engineered defective MOFs to achieve stable alkene dimerization turnovers in the absence of co-catalysts and solvents.

To evaluate the (Ru)HKUST-1 pre-treatment effects in ethylene dimerization (Fig. 2a), we turn to IR spectroscopy. Figure 2b shows in-situ IR spectroscopic data of MOF1,25 after successive gas pre-treatments. The two bands at 2059 and 1978 cm−1, as reported in literature23. Periodic density functional theory (DFT) calculations evidence the facile formation of Ru–H species via a heterolytic H–H bond breaking process under H2 atmosphere (Supplementary Fig. 27). After CO exposure (green line), MOF1,25 exhibits two additional intense stretching vibrations at 2082 and 2015 cm−1, which correspond to single carbonyl species bonded to Ru2+ and Ru3+. The latter were previously identified as partially reduced Ru (0 < δ < 2)23,28. Moreover, a C = O stretching band appears at 1656 cm−1, which is assigned to Ru(II)–formyl species29 coming from CO reduction via Ru–H. Even after N2 purging at 30 °C, these CO-adsorbed species are stable, suggesting the remarkable binding strength of CO to Ru species. At 30 °C, IR spectra rule out the presence of either sym-/asymmetric Ru(CO)2 gem-dicarbonyl or Ru2(CO)
bridged-carbonyl species, as compared to \(-80^\circ C\) DFT-computed C=O frequencies of 1950–2050 cm\(^{-1}\) for CO and 1600–1700 cm\(^{-1}\) for formyl are in line with experimental data (Supplementary Fig. 28). MOF\(_{25}\) treated at 200 °C in N\(_2\) also shows the bands that correspond to Ru–H species, and their presence is also confirmed by the initial dimerization activity and the induction period in contact with ethylene at 50 °C (Fig. 2a). These evidences suggest that active Ru–H species within the defects of (Ru)HKUST-1 can also be formed via thermal approaches in contact with N\(_2\) as discussed in the next section.

Thermal-engineered defective MOF catalysts. Based on the above-mentioned catalytic and spectroscopic evidences for MOF\(_{25}\) (Fig. 2), together with a potential partial decarboxylation of linkers at high temperature\(^{31}\), we next examine the generation of defects and Ru–H sites via a controlled thermal approach. We start from pristine (Ru)HKUST-1 without any pyridine-3,5-defective node.

As shown in Table 1, both MOF\(_{25}\) and MOFL0 exhibit similar catalytic activity and formation of the Ru–H active site (Fig. 1b), which contains a combination of ligand-engineered (25.0%) and thermal-engineered (8.2%) defects. XPS data indicate the remarkable structural stability of the thermal-engineered MOF\(_{25}\) structure and the absence of Ru nanoparticles up to 300 °C (orange line, Fig. 3c).

![Fig. 2](image-url) Catalytic activity and formation of the Ru-H active site in MOF\(_{25}\). a Ethylene dimerization TOFs at 50 °C and 4.2 MPa ethylene after activation of MOF\(_{25}\) in N\(_2\) at 200 °C, in N\(_2\) at 200 °C + H\(_2\) at 150 °C, and in N\(_2\) at 200 °C + H\(_2\) at 150 °C + O\(_2\) at 150 °C. Active Ru corresponds to one metal atom per defective node. b IR spectra after subsequent treatments for MOF\(_{25}\): N\(_2\) at 200 °C, H\(_2\) at 150 °C, and CO at 30 °C. All spectra are shown after N\(_2\) flushing.
this versatile procedure to conventional ligand engineering approaches as a function of defect content.

Role of defects in selective ethylene dimerization. In order to evaluate the influence of the type and number of defects on catalytic activity, we prepared and tested a series of ligand- and thermal-engineered MOFs. For ligand-engineered samples (% of defects): MOFL10 (20.4%), MOFL25 (33.3%), and MOFL50 (51.0%). For thermal-engineered samples (% of defects): MOFL0−200 (5.0%), MOFL0−200 (13.4%), MOFL0−300 (38%), MOFL0−350 (71.4%), and MOFL0−400 (95.0%).

Figure 4a, b plot ethylene dimerization TOFs per total Ru in the MOF and per active Ru sites, respectively, as a function of measured defect contents for ligand- (blue) and thermal-engineered (green) MOFs. Figure 4a shows a volcano shape with a maximum TOF regardless of the method employed to create defects. The increase in activity parallels the higher concentration of active sites in both ligand- and thermal-engineered MOFs is the same and that they behave as single ensemble catalysts. In-situ FTIR data indicate the presence of bound ethyl intermediates when MOF catalysts are exposed to ethylene (Supplementary Fig. 10). The optimized MOFL25 catalyst presents a TOF of ca. 200 h⁻¹, which is comparable to related gas-phase systems under flow conditions: 16¹⁴, 252¹³, and 1570¹² h⁻¹ (Supplementary Table 4).

To get insights on the reaction mechanism and selectivity to dimers, we turn to computational modeling at periodic DFT level (see Computational Details). We use a unit cell of ca. 26 × 26 × 26 Å³, which prevents a spurious concentration of defect sites when computing periodic images. Benchmark calculations indicate that PBE-D2 is suitable to describe the electronic structure of (Ru) HKUST-1 (Supplementary Table 5). We computed the ethylene dimerization via a Cossee–Arlman mechanism¹⁵,³⁴,³⁵ using a ligand-engineered defective node. Figure 4c shows the model L-1 used in the simulations (Supplementary Fig. 26) and the reaction profile in blue. From the active Ru–H species 3, ethylene binds to Ru forming 5 with an adsorption energy of 0.89 eV. Species 5 undergoes insertion via TS5 with a relative energy barrier of 0.26 eV. The resulting ethyl species binds a second ethylene as in 7, which inserts into the Ru–C bond via TS7 with...
an energy barrier of 0.91 eV. Such C–C bond formation appears to be the rate-determining step, where ethyl intermediates are potential resting states of the catalytic cycle in line with in-situ FTIR (Supplementary Fig. 10). The butyl intermediate (8) quickly undergoes β-H elimination through a barrierless process via TS8 to form 1-butene (9). Direct desorption of 1-butene via 10 takes only 1.09 eV; alternatively, at high ethylene pressures, ethylene can directly substitute 1-butene from 9 to 11.

To evaluate entropic contributions, we estimate the relative Gibbs energies for the C–C bond formation step, 7 to TS7, and the alkene desorption process, 9–10. The resulting Gibbs (electronic) energy barriers are 0.91 (0.91) and 0.68 (1.09) eV, respectively, which further supports the C–C bond formation as the rate-determining step of the catalytic cycle. We also studied the reaction mechanism using a thermal-engineered defective node. Figure 4c shows the model used in the calculations T-1 (Supplementary Fig. 26) and the reaction profile in green. Similar energies were observed, with a barrier of 0.93 eV (cf. 0.91 eV) for the C–C bond-forming step and 1.14 eV (cf. 1.09 eV) for alkene desorption. The kinetic resemblance between ligand- and thermal-engineered active sites toward dimerization is in line with previous experimental results (Fig. 4a, b).

The dimerization mechanism in Fig. 4c takes place on one metal atom, which allows defining TOFs per Ru atom per defective node (Figs. 2a and 4b). To further explore the role of the second metal, we prepared a periodic structure with a node containing only one Ru atom (Supplementary Fig. 30) and computed the desorption of 1-butene. Interestingly, we found a significantly higher value of 1.74 eV, compared to 1.09 eV for the bimetallic node. It seems that the second metal plays a key electronic role favoring the alkene desorption. Bader analyses located positive charges of +0.95 |e−| on Ru in the bimetallic

Fig. 4 Effects of ligand- and thermal-engineered defects on catalytic activity. a Turnover frequencies per total Ru as a function of measured defects via ligand (blue) and thermal (green) approaches. b Turnover frequencies per active Ru as a function of measured defects via ligand (blue) and thermal (green) approaches. c Computed reaction mechanism and energy profile for ethylene dimerization via ligand- (L, blue) and thermal-engineered (T, green) defective MOFs.
Stability of MOF catalysts under intrapore condensation. After characterization and reactivity studies, we next evaluate the stability of these catalysts during ethylene dimerization with respect to reaction conditions. Figure 5a shows ethylene dimerization TOFs for H2-activated MOFL25 as a function of systematic changes in temperature (at constant 4.2 MPa) and ethylene pressure (at constant 50 °C). Stable TOFs are achieved at temperatures below 60 °C (at 4.2 MPa) or pressures above 3.3 MPa (at 50 °C). However, high temperatures (>60 °C, 4.2 MPa) or low pressures (<3.6 MPa, 50 °C) lead to fast deactivation rates. Such deactivation occurs via the irreversible binding of oligomer products in secondary reactions of primary dimer products, as evidenced by the curved shape of ethylene dimerization rate data at high ethylene conversion (100 °C in Fig. 5a).

Figure 5b shows first-order deactivation constants (k_d) as a function of ethylene relative saturation pressures (P/P_sat). Deactivation is accurately measured by k_d within small changes in conversion for MOFL25. Figure 5b shows a continuous increase in k_d values below P/P_sat of 0.4, whereas deactivation is undetectable at P/P_sat above 0.4. Such reaction conditions and the narrow micropores of MOFL25 (1.5 nm diameter) suggest that active site stabilization is related to the intrapore condensation of ethylene molecules. We use N2 uptakes as surrogate to estimate ethylene intrapore condensation at reaction conditions (Supplementary Fig. 3). These analyses indicate that kinetically-relevant pores are liquid-filled at P/P_sat above 0.4. Condensation within MOF pores also leads to very high selectivity for C4 among products (>99%) and 1-butene (primary C4 product, Supplementary Fig. 6), as liquid ethylene promotes the desorption of bound alkenes by substitution and prevents the formation of larger oligomers. To support such claim, we estimated the Gibbs energy difference associated with the ligand exchange from 9 to 11 (Fig. 4c) using reported entropies in gas and liquid phases. The electronic energy difference to exchange 1-butene by ethylene is endothermic by 0.20 eV. The resulting Gibbs energy differences in low-pressure (ethylene in gas phase) and high-pressure (ethylene in liquid phase to model intrapore condensation) are +0.01 and −0.33 eV, respectively. The exothermicity of the process only under intrapore condensation conditions further proves the benefits of our experimental protocol.

Although MOFL25 starts to deactivate at P/P_sat below 0.4, it can be regenerated in H2 at 150 °C (Supplementary Fig. 7). Such mild conditions are more feasible than high temperatures and oxidizing environments used in typical catalyst regeneration procedures. This suggests that the regeneration mechanism proceeds through Ru-catalyzed hydrogenation of bound alkenes rather than oligomer-desorption pathways.

The long-term stable rates, enabled by controlled intrapore ethylene condensation, indicate that the crystalline and porous structure of MOFs is maintained during catalytic conditions or regeneration steps. Such enhanced stability is independent of the synthetic protocol to create catalytic sites. Figure 5c shows turnover numbers (TONs) under intrapore liquid ethylene regime for ligand- (MOFL25 and MOFL10 H2-activated at 150 °C) and thermal-engineered (MOFL0, pre-treated at 300 °C in N2) catalysts, with values of 13,000. Our TON results outstand over reported Ru-based MOF catalysts and are comparable to the 16,000 reported for state-of-the-art Ni-MOF catalysts. Both ligand and thermal approaches lead to materials with remarkable stability, showing a mean life of one order of magnitude larger than Ni-MOF systems requiring co-catalysts or organic solvents.

In summary, we have developed a method for tailoring MOF defects via thermal-based protocols, resulting in defective nodes that behave as well-defined active sites for ethylene dimerization with remarkable activity (TOF of ca. 200 h−1) and high selectivity (99% to 1-butenes). Moreover, we demonstrated that working under reactant intrapore condensation regime within thermal-engineered defective MOFs provides outstanding stability (>120h) to these catalytic systems (TON of 13,000). Such enhanced stability represents a significant advancement in the field of synthesis and performance of porous catalysts for ethylene dimerization reactions. Due to the absence of co-catalysts and solvents, such intrapore condensation effects in narrow-pore MOFs open
exciting opportunities for the design of competitive procedures in terms of process intensification, safety, and production costs in other reactions involving gaseous reactants and structured catalysts.

Methods

MOF synthesis. (Ru)HKUST-1 containing 8% (MOF$_{\text{Ru}}$), 10% (MOF$_{\text{Rh}}$), and 25% (MOF$_{\text{Ir}}$) of ligand-engineered defects were prepared by combining the appropriate mixture of organic ligands 1,3,5-benzenetricarboxylic acid and pyridine-3,5-dicarboxylic acid with Ru precursor [Ru$_2$(CH$_3$COO)$_4$Cl], under solvothermal conditions at 160 °C according to literature. In a typical synthesis, 1 g of Ru precursor, 650 mg of the selected mixture of organic ligand, 5 ml of acetic acid and 25 ml of H$_2$O were loaded into a 100-ml autoclave and heated at 160 °C for 24 h. The resulting powder was thoroughly washed with H$_2$O in a filtration funnel and purified in a Soxhlet apparatus with MeOH. All the samples were evacuated at 150 °C under vacuum.

Ru precursor [Ru$_2$(CH$_3$COO)$_4$Cl] was prepared by mixing 10 g of (CH$_3$)$_2$CO$_2$H (40 wt.%Ru) and 12 g of LiCl(anhydrous), previously evacuated at 80 °C overnight in a vacuum oven, with 70 ml of acetic anhydride and 350 ml of glacial acetic acid.

The mixture was stirred and refluxed for 2–4 days until the solution turned into reddish color. After cooling down, the Ru precursor was collected by filtration and was thoroughly washed with acetone.

Ethylene dimerization reaction tests. Ethylene dimerization rates to butene products were measured in a high-pressure tubular reactor integrated in a fully-automated lab-scale reaction unit. As-prepared MOF samples (50 mg) were diluted in inert SiO$_2$ (1:20 mass, Davisil-62, Sigma-Aldrich). Activation tests on ligand-engineered MOF samples were carried out in N$_2$ until desired setpoint and ethylene (99.9%, Air Liquide) was introduced at a flow rate of 1 s$^{-1}$ with a built-in TCD detector, and with the reactor downstream connected to a benchtop quadrupole mass spectrometer (TA). To mimic the MOF activation procedures as described in manuscript in N$_2$ or H$_2$, 100 mg sample was first degassed at 200 °C for 1 h (in He (50 ml/min), and then treated at 150 °C for 1 h with H$_2$ (50 ml/min). The TCD calibration was performed with H$_2$ concentrations varied from 0% to 100% in Ar and a background test with an empty reactor at the same reaction condition was performed to create a baseline.

TGA measurements. X-ray Photoelectron Spectroscopy (XPS) was performed using a monochromatized Al Kα source (hv = 1486.6 eV), operated at 225 W, on a Kratos Axis Ultra DLD with a pass energy for narrow scan spectra of 20 eV, corresponding to an instrument resolution of ~600 meV. Survey spectra were collected with a pass energy of 80 eV. Spectral fitting was performed using Casa XPS analysis software. Spectral positions were corrected by shifting the primary C 1s core level position to 285.0 eV, and curves were fitted with quasi-Voigt lines following Shirley background subtraction.

Computational details. All calculations reported in the manuscript were performed at periodic DFT level using the Vienna Ab-initio Simulation Package (VASP) [90]. The PBE functional [91] was used together with Grimme’s D2 dispersion scheme and modified parameters for transition metals [92]. Core electrons were described by projector augmented wave (PAW) [93] and valence electrons in plane waves with a kinetic energy cutoff of 450 eV. The Brillouin zone was sampled at the Γ-point through the Monkhorst-Pack method. Transition states were located with the climbing image nudged elastic band method. The assessment of the minima and transition states was performed by diagonalizing the numerical Hessian matrix obtained by 0.01 Å displacements. Selected cluster calculations were computed at the DFT level using Gaussian09 for benchmark purposes (Supplementary Table 5). All inputs and final structures can be found in the ioChem-BD repository [94].

Data availability

The data that support this article and other available are available from the corresponding authors upon request. The computational data can be freely accessed through the ioChem-BD repository (https://doi.org/10.19061/iochem-bd-1-83).

Received: 13 February 2019 Accepted: 11 April 2019
Published online: 06 May 2019

References

1. Gollwitzer, A., Dietel, T., Kretschmer, W. P. & Kempe, R. A broadly tunable binary transition metal and support platform for heterogeneous catalysis with MOFs. Angew. Chem. Int. Ed. 2019, 58, 10820–10823.
2. Petrini, A. et al. Metal–organic frameworks: a versatile and broadly tunable support material for heterogeneous catalysis. Eur. J. Inorg. Chem. 2018, 463–490.
3. Chichak, M. et al. Characterization and functionalization of a Ru–Zn–V–Mo–Bi–Co–Fe–P–C heterogeneous catalyst: a new approach for the selective catalytic reduction of NO with CO and C$_2$H$_4$. J. Phys. Chem. Lett. 2017, 8, 2092–2098.
4. Chen, C. Designing catalysts for olefin polymerization and copolymerization: beyond electronic and steric tuning. Nat. Rev. Chem. 2018, 2, 6–18.
5. Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal–organic frameworks. Science 2011, 334, 1230444 (2014).
6. Rogge, S. M. J. et al. Metal–organic and covalent organic frameworks as single-site catalysts. Chem. Soc. Rev. 2016, 45, 3134–3184 (2017).
7. Cui, X., Li, W., Ryabchuk, P., Junge, K. & Beller, M. Bridging homogeneous and heterogeneous catalysis by heterogeneous single-metal-site catalysts. Nat. Catal. 2018, 1, 385–397.
8. Luz, I., Llabrés i Xamena, F. X. & Corma, A. Bridging homogeneous and heterogeneous catalysis with MOFs: “Click” reactions with Cu-MOF catalysts. J. Catal. 2014, 293, 136–140 (2010).
9. Fang, Z., Bueken, B., De Vos, D. E. & Fischer, R. A. Defect-engineered metal–organic frameworks. Angew. Chem. Int. Ed. 2014, 53, 7234–7254 (2015).
10. Dissegna, E., Epp, K., Heinz, W. R., Kieslich, G. & Fischer, R. A. Defective metal–organic frameworks. Adv. Mater. 2018, 30, 1704501 (2018).
11. Canivet, J., Vandichel, M. & Farrusseng, D. Origin of highly active metal–organic framework catalysts: defects! Defects! Dalton Trans. 2015, 4090–4099 (2016).
12. Zhang, W. et al. Impact of synthesis parameters on the formation of defects in MOF catalysts. J. Phys. Chem. Lett. 2017, 8, 931–937.
13. Sholl, D. S. & Lively, R. P. Defects in metal organic frameworks. Eur. J. Inorg. Chem. 2018, 1704501 (2018).
14. Petrini, A. et al. Defects in metal–organic frameworks: opportunity or challenge? J. Phys. Chem. Lett. 2015, 6, 3437–3444 (2015).
15. Madrahimov, S. T. et al. Gas-phase dimerization of ethylene under mild conditions catalyzed by MOF materials containing (bp)NiP$_2$ complexes. ACS Catal. 2015, 5, 6713–6718 (2015).
Li, Z. Schweitzer, et al. Sintering-resistant single-site nickel catalyst supported by metal–organic framework. J. Am. Chem. Soc. 138, 1977–1982 (2016).

Liu, J. et al. Beyond the active site: Tuning the activity and selectivity of a metal–organic-framework-supported Ni catalyst for ethylene dimerization. J. Am. Chem. Soc. 140, 11174–11178 (2018).

Metgter, E. D., Brozek, C. K., Comito, R. J. & Dinç, M. Selective dimerization of 1-butenes with a porous catalyst. ACS Cent. Sci. 2, 148–153 (2016).

Ji, P. et al. Transformation of metal–organic framework secondary building units into hexanuclear Zr-alkyl catalysts for ethylene polymerization. J. Am. Chem. Soc. 139, 11325–11328 (2017).

Metgter, E. D., Comito, R. J., Hendon, C. H. & Dinç, M. Mechanism of single-site molecule-like catalytic ethylene dimerization in Ni-MFU-4l. J. Am. Chem. Soc. 139, 757–762 (2017).

Canivet, J., Agudo, S., Schuereman, Y. & Farrusseng, D. MOF-supported selective ethylene dimerization single-site catalysts through one-pot post-synthetic modification. J. Am. Chem. Soc. 135, 4195–4198 (2013).

Milnar, A. N. et al. Selective propene oligomerization with nickel(II)-based metal–organic frameworks. ACS Catal. 4, 717–721 (2014).

Metgter, E. D. et al. Highly selective heterogeneous ethylene dimerization with a scalable and chemically robust MOF catalyst. ACS Sustain. Chem. Eng. 7, 6654–6661 (2019).

Agirrezabal-Telleria, I. & Iglesia, E. Stabilization of active, selective, and regenerative Ni-based dimerization catalysts by condensation of ethene within metal-organic frameworks. J. Catal. 352, 505–514 (2017).

Marx, S., Kleist, W. & Baiker, A. Synthesis, structural properties, and catalytic behavior of Cu-BTC and mixed-linker Cu-BTC-PyDC in the oxidation of benzene derivatives. J. Catal. 281, 76–87 (2016).

Kozuchuk, O. et al. Multifunctional, defect-engineered metal–organic frameworks with ruthenium centers: sorption and catalytic properties. Angew. Chem. Int. Ed. 53, 7058–7062 (2014).

Zhang, W. et al. Ruthenium metal–organic frameworks with different defect types: Influence on porosity, sorption, and catalytic properties. Chem. Eur. J. 22, 14297–14307 (2016).

Bullock, R. M. & Helm, M. L. Molecular electrocatalysts for oxidation of hydrogen using earth-abundant metals: Showing protons around with proton relay. Acc. Chem. Res. 48, 2017–2026 (2015).

Fiorio, J. L., López, N. & Rossi, L. M. Gold–ligand–catalyzed selective hydrogenation of alkenes into cis-alkenes via H_2 heterolytic activation by frustrated Lewis Pairs. ACS Catal. 7, 2973–2980 (2017).

Fiorio, J. L. et al. Accessing frustrated Lewis pair chemistry through robust Gold‡ N-doped carbon for selective hydrogenation of alkenes. ACS Catal. 8, 3516–3524 (2018).

Noel, H. et al. CO adsorption on a mixed-valence ruthenium metal–organic framework studied by UVH-FTIR spectroscopy and DFT calculations. J. Phys. Chem. C. 117, 5658–5666 (2013).

Smith, G., Cole-Hamilton, D. J., Thornton-Pett, M. & Hushouse, M. B. The preparation and characterisation of cationic formyl complexes of ruthenium (II), crystal and molecular structure of the complex trans-bis[1,2-bis(diphenylphosphino)ethane-P‡][carbonyl (deuterioformyl)ruthenium(II)] hexafluoroantimonate-dichloromethane(1/1). J. Chem. Soc., Dalton Trans. 0, 2501–2507 (1983).

Matsubu, J. C., Yang, V. N. & Christopher, P. Isolated metal active site coordination and stability control catalytic CO$_2$ reduction selectivity. J. Am. Chem. Soc. 137, 3076–3084 (2015).

Lee, K. J., Lee, J. H., Jeoung, S. & Moon, H. R. Transformation of metal–organic frameworks/coordination polymers into functional nanostructured materials: experimental approaches based on mechanistic insights. Acc. Chem. Res. 50, 2684–2692 (2017).

Winter, K. & Barton, D. The thermal decomposition of benzoic acid. Can. J. Chem. 48, 3797–3801 (1970).

Yoon, J. W. et al. Controlled reducibility of a metal–organic framework with coordinatively unsaturated sites for preferential gas sorption. Angew. Chem. Int. Ed. 49, 5949–5952 (2010).

Bernaes, V. et al. Computationally guided discovery of a catalytic cobalt-decorated metal–organic framework for ethylene dimerization. J. Phys. Chem. C 120, 23576–23583 (2016).

Pellizzieri, S. et al. Catalytic descriptors and electronic properties of single-site catalysts for ethene dimerization to 1-butenes, Catal. Today 312, 149–157 (2018).

Ye, J., Galgardi, L., Truhlár, D. G. & Cramer, C. J. Single Ni atoms and N$_2$ clusters have similar catalytic activity for ethylene dimerization. J. Catal. 354, 278–286 (2017).

Oien, S. et al. Probing reactive platinum sites in UiO-67 zirconium metal–organic frameworks. Chem. Mater. 27, 1042–1056 (2015).

Gonzalez, M. I., Oktawiec, J. & Long, J. R. Ethylene oligomerization in metal–organic frameworks bearing nickel(II) 2,2′-bipyridine complexes. Faraday Discuss. 201, 351–367 (2017).

NIST. NIST Chemistry WebBook, SRD 69, https://webbook.nist.gov/chemistry/.

Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

Grime, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comp. Chem. 27, 1787–1799 (2006).

Almora-Barrios, N., Carchini, G., Blotski, P. & López, N. Costless derivation of dispersion coefficients for metal surfaces. J. Chem. Theory Comput. 10, 5002–5009 (2014).

Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

Monkhorst, H. J. Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

Henkelman, G. & Jónsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978–9983 (2000).

Canivet, J., Aguado, S., Schuurman, Y. & Farrusseng, D. MOF-supported transformation of metal–organic frameworks with ruthenium centers: sorption and catalytic properties. J. Catal. 286 (2017).

Ortuño, M. A. Database ioChem-BD, https://doi.org/10.19061/iochem-bd-1-83.

Acknowledgements

This work was financially supported by the research fund from Basque Government (IT993–16) and RTI international funds. M.A.O. and N.L. acknowledge BSC-RES for generous computer resources (RES-QCM-2018–2–0020). M.A.O. acknowledges the “Juan de la Cierva-Incorporación” programme from MINECO (IJC1–2016–29762) and the “Beatriu de Pinós” programme from AGAUR (2017-BP-00039).

Author contributions

L.A.T. contributed to dimerization reactions; M.O.B. and I.G. contributed to IR measurements; L.L., M.S., and M. L. contributed to MOF synthesis and characterization (XRD, TGA-MS, and XPS); M.A.O. contributed to DFT computation and N. L. contributed to the manuscript writing. All authors contributed to the design of experiments and modeling.

Additional information

Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-019-10013-6.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

Journal peer review information: Nature Communications thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.