Lenvatinib Combined With a PD-1 Inhibitor as Effective Therapy for Advanced Intrahepatic Cholangiocarcinoma

Lulu Xie†, Jingzheng Huang†, Linling Wang†, Wenhui Ren†, Hao Tian†, Anhong Hu†, Jun Liang†, Yuqing Jiao†, Yali Li†, Qunfang Zhou†*, and Wenjing Zhang‡*

1Department of Minimally Invasive Interventional Radiology and Department of Radiology, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China, 2Department of Ultrasound, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China

Background: Lenvatinib combined with a PD-1 inhibitor has obtained a satisfactory antitumor effect in several solid tumors. However, the efficacy and tumor response of lenvatinib with a PD-1 inhibitor in advanced intrahepatic cholangiocarcinoma still need further exploration.

Methods: This is a single-arm study for the assessment of the efficacy and tolerability of lenvatinib with a PD-1 inhibitor in intrahepatic cholangiocarcinoma patients who had chemotherapy failure. Efficacy was evaluated based on the Response Evaluation Criteria in Solid Tumors RECIST Version 1.1 (RECIST 1.1).

Results: A total of 40 patients with advanced intrahepatic cholangiocarcinoma were enrolled after the chemorefractory effect. The median progression-free survival was 5.83 ± 0.76 months. The 3-month and 6-month progression-free survival rates were 80.0% and 32.5%, respectively. The median overall survival was 14.30 ± 1.30 months. The 12-month and 18-month overall survival rates were 61.4% and 34.7%. The 3-month RECIST 1.1 evaluation was that seven patients (17.5%) showed partial response, 23 patients (57.5%) had stable disease, and 10 patients (25.0%) had progressive disease. The objective response rate was 17.5%, and the disease control rate was 75.0%. All the recorded any-grade adverse events inducing treatment termination were controllable, and there were no AE-related deaths.

Conclusion: Our study showed that a combination of lenvatinib with the PD-1 inhibitor could be an effective treatment for advanced intrahepatic cholangiocarcinoma after the chemorefractory effect.

Keywords: advanced intrahepatic cholangiocarcinoma, lenvatinib, PD-1 inhibitor, combination therapy, chemotherapy failure
INTRODUCTION

Intrahepatic cholangiocarcinoma (ICC) is a hepatobiliary tumor with a high death rate, which presents an unsatisfactory prognosis with 10% of 5-year overall survival (OS) and a median OS of approximately 24 months (Kelley et al., 2020). ICC ranks second and accounts for approximately 10% of primary liver malignancy (Chun and Jayle, 2017). The symptoms of ICC are insidious and nonspecific which include abdominal discomfort, weight loss, indigestion, or asymptomatic elevation of liver functions on routine laboratory testing, and only a minority of patients are diagnosed at an early stage with the tumor removed by surgery (Esnáola et al., 2016). Therefore, most patients present in the advanced stage will require effective systemic therapy. Currently, the established first-line treatment was gemcitabine and cisplatin, and the second-line treatment was FOLFOX systemic chemotherapy (Rizvi et al., 2018). However, the efficacy of these approaches is still unsatisfactory, and patients easily develop the chemorefractory effect (Moeini et al., 2016). There is now no uniform therapy for advanced ICC after chemotherapy failure. The shortage of available therapeutic regimens has plagued the oncologists exploring new strategies.

Lenvatinib is an oral tyrosine kinase inhibitor that restrains the vascular endothelial growth factor receptor (VEGFR) 1–3, fibroblast growth factor receptors (FGFR) 1–4, and platelet-derived growth factor receptor (Kudo et al., 2018). Due to the advantage of inhibiting tumors with multiple pathways, this multitargeted tyrosine kinase inhibitor is being used for the treatment of many tumors (Hao and Wang, 2020). Immunotheapy has emerged as a major tool in cancer treatment with the recent success of trials with PD-1/PD-L1 axis blockade (Balar and Weber, 2017). Programmed death-1 (PD-1) is a checkpoint molecule on T cells, which plays a vital role in controlling tumor progression through immune responses (Balar and Weber, 2017). Studies have proved that a combination of therapies involving lenvatinib and the PD-1 inhibitor could produce a synergistic effect, and lenvatinib with the PD-1 inhibitor has an augment antitumor effect than alone (Kimura et al., 2018). This combination of lenvatinib and the PD-1 inhibitor now has been applied for the treatment of many cancers including hepatocellular carcinoma, renal cell carcinoma, thyroid cancer, and endometrial carcinoma (Motzer et al., 2015; Schlumberger et al., 2015; Finn et al., 2020; Makker et al., 2020). The combination of lenvatinib and a PD-1 inhibitor is efficacious and promising, and the combination is considered to be a good pair of active drugs in malignancy therapy (Wang et al., 2019).

Given these factors, this combination could be an effective treatment for advanced ICC and prolong the survival of patients. Lin J et al. reported that lenvatinib with pembrolizumab was promising in alternative patients with refractory bile tract carcinoma, and the therapeutic outcomes were delightful as a non–first-line treatment (Lin et al., 2020). Ding Y et al. reported that chemotherapy, tiselizumab, and lenvatinib could be an effective therapeutic regimen for preoperative advanced intrahepatic ICC conversion therapy (Ding et al., 2021). These studies have inspired clinical investigations of applying the regimen in patients with advanced ICC. However, studies that reported lenvatinib with a PD-1 inhibitor on advanced ICC are few, so there is still a necessity for clinical evidence to further obtain knowledge of this combination therapy. In this report, we focused on lenvatinib combined with a PD-1 inhibitor in patients with advanced ICC after chemotherapy failure.
mortality risk) for ALBI score >-2.60 and ≤ -1.39), and grade 3 (highest mortality risk) for ALBI score >-1.39 (Hiraoka et al., 2019).

Treatment and Assessment of the Response

All patients accepted contrast material–enhanced CT or MRI within 2 weeks before lenvatinib administration. Information regarding the information of initiation, completion of treatment, initial dose, dose modifications, and adverse events (AEs) during treatment was systematically collected. The prescription dosage of lenvatinib was 12 mg (for patients with a bodyweight ≥ 60 kg) or 8 mg (for patients with a bodyweight <60 kg) orally once a day. For the PD-1 inhibitor, the PD-1 inhibitor (tislelizumab) dose was applied according to the drug instructions.

Follow-Up

The follow-up period for this study was terminated on 30 June 2021. Laboratory tests including CA-125, albumin, bilirubin, aspartate transaminase (AST), alanine transaminase (ALT), and prothrombin time (PT) were performed to evaluate the treatment response and liver function every six weeks after treatment. Patients were evaluated at least once every six weeks after treatment. Each follow-up visit involved performing screening abdominal imaging (e.g., abdominal, chest, bone, brain CT, and/or MRI). Target tumors were selected to a maximum of two lesions per organ and five lesions in total. The minimum size for measurability is greater than 1 cm. The tumor imaging response was evaluated according to the Response Evaluation Criteria in Solid Tumors version 1.1 (Schwartz et al., 2016). In brief, the complete response (CR) was defined as the disappearance of arterial enhancement in the tumor. Partial response (PR) was defined as $\geq 30\%$ shrinking in the diameter of the targeted tumors. Progressive disease (PD) was defined as at least a 20% increase in the sum of the diameter of the targeted tumors or the appearance of a new lesion. Stable disease (SD) neither met the CR nor PR and PD. The primary endpoint for the study was overall survival (OS), and the secondary endpoint was progression-free survival (PFS). OS was defined as the time from accepting lenvatinib and the PD-1 inhibitor to death or the last follow-up, and the PFS was defined as the time from the date of accepting lenvatinib and the PD-1 inhibitor to tumor progression or the last follow-up.

Statistical Analysis

The data were presented as a summary of the baseline characteristics, therapeutic efficacies, and AEs. The 3- and 6-
month PFS and 6-, 12-, and 18-month OS were all estimated by the Kaplan–Meier method. The hazard ratio (HR) of each clinical factor was estimated by Cox proportional hazard modeling.

RESULTS

Patient Characteristics
A total of 61 patients were enrolled for drug administration, and 40 patients were included for analyses (Figure 1). The median patient age was 53.0 years (range, 43.0–58.8), and 31 patients (77.5%) were males, and nine patients (22.5%) were females. In total, 28 (70.0%) patients had an ECOG performance status of 1, and 16 patients (40.0%) had HBV infection. All patients with hepatitis received regular antiviral therapy during lenvatinib and PD-1 inhibitor treatment. A total of 30 (72.5%) patients had poor tumor differentiation, and 32 (80.0%) patients had metastases, including intrahepatic, lymph nodes, lung, and bone metastases. A total of 25 patients (62.5%) received local therapy or surgery before lenvatinib and PD-1 inhibitor treatment (Table 1).

In the cohort, all patients had a regular follow-up, and the clinical responses were assessed. Overall, 19 of the 40 (47.5%) patients exhibited a decrease in the tumor size from the baseline (Figure 2). The median progression-free survival (PFS) was 5.83 ± 0.76 (95% CI, 4.34–7.33) months (Table 2). The 3-month and 6-month PFS rates were 80% and 32.5% (Figure 3A), respectively. In total, 11 patients were still alive during the follow-up period. The median overall survival (OS) was 14.30 ± 1.30 (95% CI: 11.76–16.84) months (Table 2). The 12-month and 18-month OS rates were 61.4% and 34.7% (Figure 3B). The 3-month RECIST 1.1 evaluation was that seven (17.5%) patients showed partial response (PR), 23 (57.5%) had stable disease (SD), and 10 (25.0%) had progressive disease (PD). The objective response rate (ORR) was 17.5%, and the disease control rate (DCR) was 75.0% (Table 2). We further determined the clinical benefit rate (CBR, PFS ≥ 6 months) in all assessment-available patients. The CBR was 32.5% (Table 2).

All the recorded any-grade adverse events (AEs) inducing treatment termination were controllable, and there were no AE-related deaths. The most common AEs (any grade) were decreased appetite, hypertension, fatigue, and diarrhea (Table 3). For AE grade ≥3, the most common were hypertension and proteinuria (Table 3). Most AEs occurring during treatment were safe and tolerated.

PFS and OS Analysis
Cox-regression analysis results regarding the prognostic factors of PFS or OS were further analyzed. Univariate analysis revealed that intrahepatic metastases, lymph nodes metastases, lung metastases, bone metastases, and ALBI grade 2 were correlated with poorer PFS. Multivariate analysis illustrated that intrahepatic metastasis (HR = 3.08, 95% CI: 1.23–7.67, and p = 0.016) and ALBI grade 2 (HR = 3.84, 95% CI: 1.42–10.03, and p = 0.005) were related to poorer PFS (Table 4). Univariate analysis revealed that intrahepatic metastases, lymph nodes metastases, lung metastases, and bone metastases were correlated with poorer OS. Multivariate analysis illustrated that
intrahepatic metastasis (HR = 9.02, 95% CI: 1.80–45.07, and $p = 0.007$) was related to poorer OS (Table 5).

DISCUSSION

The therapeutic strategy for advanced ICC is challenging worldwide as the ICC usually indicates a poor prognosis. Surgical resection is the only potentially curative treatment for ICC; however, the 5-year OS rate was 15–40% (Weber et al., 2015). For advanced or recurrent ICC, the first-line treatment was chemotherapy. However, patients usually developed refractory; then, the second-line therapy was varied and disappointed (Sirica et al., 2019). PD-1 inhibitor-based immune therapy has obtained significant improvement in several tumors, including melanoma, lung cancer, and head and neck malignancies (Sui et al., 2018; Gavrielatou et al., 2020; Guo et al., 2020). However, immune monotherapy faces many challenges in biliary cancer. Studies showed that the efficacy of the PD-1 inhibitor alone in biliary cancer remains unsatisfactory (Ueno et al., 2019). In the Makoto et al. study, combined therapy of biliary tract cancer (nivolumab PD-1 inhibitor and chemotherapy) achieved obvious better benefits than the PD-1 inhibitor alone (Ueno et al., 2019).

Combining the strategy with antiangiogenic molecular target drugs or chemotherapy could improve the efficacy of immunotherapies and has shown promising clinical results (Rizvi et al., 2018). Mei K et al. have reported that camrelizumab combined with apatinib has achieved promising results in the treatment of advanced ICC. The medium PFS and OS were 1.9 and 13.4 months (Mei et al., 2021). These results were superior to the previously reported efficacy of apatinib alone in ICC (Hu et al., 2020). Lin J et al. reported that lenvatinib with pembrolizumab was considered a non-first-line therapy in treating refractory bile tract carcinoma, and this study obtained ORR which was 25%, and the DCR was 78.1%. The median PFS was 4.9 months, and the 6-month PFS rate was 33.7%. The median OS was 11.0 months, and the 1-year OS rate was 39.4% (Lin et al., 2020).

TABLE 4 | Univariate and multivariate analyses of prognostic factors on progression-free survival (PFS) in 40 patients with advanced ICC after chemotherapy failure.

Variable	Comparison	Univariate and multivariate analyses	HR (95% CI)	P	HR (95% CI)	P
Tumor differentiation	Moderate vs. poor		1.09 (0.53–2.25)	0.816		
Macrovascular invasion	No vs. yes		2.34 (0.42–1.82)	0.723		
Intrahepatic metastases	No vs. yes		2.34 (1.15–4.7)	0.019	3.08 (1.23–7.67)	0.016
Lymph nodes metastases	No vs. yes		2.72 (1.35–5.48)	0.005	1.95 (0.86–4.40)	0.109
Lung metastases	No vs. yes		5.03 (2.13–11.84)	< 0.001	1.97 (0.76–5.15)	0.165
Bone metastases	No vs. yes		2.49 (1.06–5.89)	0.037	1.47 (0.61–3.50)	0.390
ALBI grade	1 vs. 2		3.94 (1.71–9.07)	0.001	3.84 (1.42–10.03)	0.005
ECOG status	0 vs. 1		0.74 (0.37–1.47)	0.387		
Hepatitis	No vs. yes		1.42 (0.74–2.74)	0.289		
Surgery	Yes vs. no		1.35 (0.68–2.65)	0.388		
TACE	Yes vs. no		0.92 (0.48–1.79)	0.811		
Ablation	Yes vs. no		0.92 (0.42–2.02)	0.842		
Sex	Female vs. male		1.36 (0.64–2.89)	0.432		
Smoking	No vs. yes		1.22 (0.63–2.36)	0.564		

Bold values means the $P<0.05$.

TABLE 5 | Univariate and multivariate analyses of prognostic factors on overall survival (OS) in 40 patients with advanced ICC after chemotherapy failure.

Variable	Comparison	Univariate and multivariate analyses	HR (95% CI)	P	HR (95% CI)	P
Tumor differentiation	Moderate vs. poor		1.42 (0.62–3.25)	0.404		
Macrovascular invasion	No vs. yes		0.92 (0.40–2.11)	0.847		
Intrahepatic metastases	No vs. yes		5.32 (2.01–14.15)	0.001	9.02 (1.90–45.07)	0.007
Lymph node metastases	No vs. yes		2.66 (1.11–6.38)	0.029	1.67 (0.67–4.29)	0.269
Lung metastases	No vs. yes		3.31 (1.40–7.83)	0.006	1.90 (0.75–5.13)	0.173
ALBI grade	1 vs. 2		0.49 (0.22–1.11)	0.088		
ECOG status	0 vs. 1		0.94 (0.40–2.18)	0.876		
Hepatitis	No vs. yes		1.32 (0.49–3.58)	0.579		
Surgery	Yes vs. no		1.98 (0.88–4.49)	0.101		
TACE	Yes vs. no		1.46 (0.62–3.40)	0.386		
Ablation	Yes vs. no		1.50 (0.70–3.22)	0.294		
Sex	Female vs. male		1.67 (0.72–3.31)	0.261		
Smoking	No vs. yes		0.92 (0.49–1.72)	0.784		

Bold values means the $P<0.05$.

Frontiers in Pharmacology | www.frontiersin.org 5 June 2022 | Volume 13 | Article 894407
In our study, the ORR was 17.5%, and the DCR was 75.0%. The median PFS and 6-month PFS rates were 5.8 months and 32.5%. The median OS was 14.3 months, and the 12-month and 18-month rates were 61.4%. Our results were in accordance with the research of Lin et al. (2020).

Ueno M et al. demonstrated lenvatinib as monotherapy for advanced biliary tract cancer, and the ORR was 11.5%. The median PFS was 3.19 months, and the median OS was 7.35 months (Ueno et al., 2020). Our study was better than Ueno M’s results. Lenvatinib combined with PD-1 inhibitors have provided new ideas for advanced ICC. Previous studies have proved that lenvatinib could enhance the antitumor efficacy of PD-1 inhibitors by restraining angiogenesis (Shigeta et al., 2020). Thus, the combination of these two agents is promising and satisfactory when they are used in patients with refractory ICC. Compared with the previous reports, our study focused on ICC with chemotherapy failure, and patients were in a more advanced stage than the published literature. We found that the combination therapy of lenvatinib and the PD-1 inhibitor was effective and competent for ICC patients in a more advanced stage. A well-designed prospective trial with other second-line treatments is needed to determine the precise efficacy and safety of this combination therapy, or a further trial of this combined regimen with chemotherapy as first-line therapy is promising.

However, there were some limitations to our study; first, it was a retrospective study, so there is a need to develop a prospective trial to evaluate this combination therapy as second-line therapy in advanced ICC. Second, the small sample of our study limits more information on factors related to the prognosis; further reports with more patients and a multicenter study are needed to get more comprehensive results. Third, this study was the real-world application of lenvatinib and the PD-1 inhibitor, and it is impossible to exclude interference from the doctor and patients in terms of treatment.

In summary, our research provides evidence that a combination of lenvatinib with the PD-1 inhibitor could be an effective treatment for ICC after the chemorefractory effect. This combination could achieve controllable safety and good efficacy, thereby providing a new treatment option for advanced ICC.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusion of this article will be made available by the authors, without undue reservation.

ETHICS STATEMENT

The studies involving human participants were reviewed and approved by the Ethics Committee of the Second Affiliated Hospital of Guangzhou Medical University. The participants provided their written informed consent to participate in this study.

AUTHOR CONTRIBUTIONS

Conceptualization: LX and JH; data curation: QZ, LW, JH, and WZ; formal analysis: QZ, WR, and HT; data analysis: LX and QZ. Funding acquisition: QZ; investigation: LX, JH, and AH; methodology: JL, YJ, and YL; project administration: QZ and WZ; resources: QZ, JH, and WZ; original draft: LX and JH; writing—review and editing: LX, QZ, and WZ.

FUNDING

This research was funded by the National Natural Science Foundation of China (82102082).

REFERENCES

Balar, A. V., and Weber, J. S. (2017). PD-1 and PD-L1 Antibodies in Cancer: Current Status and Future Directions. *Cancer Immunol. Immunother.* 66, 551–564. doi:10.1007/s00262-017-1954-6

Chun, Y. S., and Jayle, M. (2017). Systemic and Adjuvant Therapies for Intrahepatic Cholangiocarcinoma. *Cancer Control* 24, 1073274817729241. doi:10.1177/1073274817729241

Ding, Y., Han, X., Sun, Z., Tang, J., Wu, Y., and Wang, W. (2021). Systemic Sequential Therapy of CisGem, Tislelizumab, and Lenvatinib for Advanced Intrahepatic Cholangiocarcinoma Conversion Therapy. *Front. Oncol.* 11, 691380. doi:10.3389/fonc.2021.691380

Esnaola, N. F., Meyer, J. E., Karachristos, A., Maranki, J. L., Camp, E. R., and Denlinger, C. S. (2016). Evaluation and Management of Intrahepatic and Extrahepatic Cholangiocarcinoma. *Cancer* 122, 1349–1369. doi:10.1002/cncr.29692

Finn, R. S., Ikeda, M., Zhu, A. X., Sung, M. W., Baron, A. D., Kudo, M., et al. (2020). Phase Ib Study of Lenvatinib Plus Pembrolizumab in Patients with Unresectable Hepatocellular Carcinoma. *J. Clin. Oncol.* 38, 2960–2970. doi:10.1200/JCO.20.00808

Garvialatou, N., Doumas, S., Economopoulos, P., Foukas, P. G., and Psyrri, A. (2020). Biomarkers for Immunotherapy Response in Head and Neck Cancer. *Cancer Treat. Rev.* 84, 101977. doi:10.1016/j.ctrv.2020.101977

Guo, W., Ma, J., Guo, S., Wang, H., Wang, S., Shi, Q., et al. (2020). A20 Regulates the Therapeutic Effect of Anti-PD-1 Immunotherapy in Melanoma. *J. Immunother. Cancer* 8, e302–e310. doi:10.1634/theoncologist.2019-0407

Hiroaka, A., Kumada, T., Michitaka, K., and Kudo, M. (2019). Newly Proposed ALBI Grade and ALBI-T Score as Tools for Assessment of Hepatic Function and Prognosis in Hepatocellular Carcinoma Patients. *Liver Cancer* 8, 312–325. doi:10.1159/000494844

Hu, Y., Lin, H., Hao, M., Zhou, Y., Chen, Q., and Chen, Z. (2020). Efficacy and Safety of Apatinib in Treatment of Unresectable Intrahepatic Cholangiocarcinoma: An Observational Study. *Cancer Manag. Res.* 12, 5345–5351. doi:10.2147/CMAR.S254955

Kelley, R. K., Bridgewater, J., Gores, G. J., and Zhu, A. X. (2020). Systemic Therapies for Intrahepatic Cholangiocarcinoma. *J. Hepatol.* 72, 353–363. doi:10.1016/j.jhep.2019.10.009

Kimura, T., Kato, Y., Ozawa, Y., Kodama, K., Ito, J., Ichikawa, K., et al. (2018). Immunomodulatory Activity of Lenvatinib Contributes to Antitumor Activity in the Hepa-1-6 Hepatocellular Carcinoma Model. *Cancer Sci.* 109, 3993–4002. doi:10.1111/cas.13806

Kudo, M., Finn, R. S., Qin, S., Han, K. H., Ikeda, K., Piscaglia, F., et al. (2018). Lenvatinib versus Sorafenib in First-Line Treatment of Patients with Unresectable Hepatocellular Carcinoma: A Randomised Phase 3 Non-inferiority Trial. *Lancet* 391, 1163–1173. doi:10.1016/S0140-6736(18)30207-1
Lin, J., Yang, X., Long, J., Zhao, S., Mao, J., Wang, D., et al. (2020). Pembrolizumab Combined with Lenvatinib as Non-first-line Therapy in Patients with Refractory Biliary Tract Carcinoma. *Hepatobiliary Surg. Nutr.* 9, 414–424. doi:10.21037/hbsn-20-338

Makker, V., Taylor, M. H., Aghajanian, C., Oaknin, A., Mier, J., Cohn, A. L., et al. (2020). Lenvatinib Plus Pembrolizumab in Patients with Advanced Endometrial Cancer. *J. Clin. Oncol.* 38, 2981–2992. doi:10.1200/JCO.19.02627

Mei, K., Qin, S., Chen, Z., Liu, Y., Wang, L., and Zou, J. (2021). Camrelizumab in Combination with Apatinib in Second-Line or Above Therapy for Advanced Primary Liver Cancer: Cohort A Report in a Multicenter Phase Ib/II Trial. *J. Immunother. Cancer* 9, e002191. doi:10.1136/jitc-2020-002191

Moeini, A., Sia, D., Bardesey, N., Mazzaferro, V., and Llovet, J. M. (2016). Molecular Pathogenesis and Targeted Therapies for Intrahepatic Cholangiocarcinoma. *Clin. Cancer Res.* 22, 291–300. doi:10.1158/1078-0432.CCR-14-3296

Motzer, R. J., Hutson, T. E., Glen, H., Michaelson, M. D., Molina, A., Eisen, T., et al. (2015). Lenvatinib, Everolimus, and the Combination in Patients with Metastatic Renal Cell Carcinoma: A Randomised, Phase 2, Open-Label, Multicentre Trial. *Lancet Oncol.* 16, 1473–1482. doi:10.1016/S1470-2045(15)00290-9

Rizvi, S., Khan, S. A., Hallameier, C. L., Kelley, R. K., and Gores, G. J. (2018). Cholangiocarcinoma - Evolving Concepts and Therapeutic Strategies. *Nat. Rev. Clin. Oncol.* 15, 95–111. doi:10.1038/nrclinonc.2017.157

Schlumberger, M., Tahara, M., Wirth, L. J., Robinson, B., Brose, M. S., Elisei, R., et al. (2015). Lenvatinib versus Placebo in Radiodine-Refractory Thyroid Cancer. *N. Engl. J. Med.* 372, 621–630. doi:10.1056/NEJMoa1406470

Schwartz, L. H., Litière, S., de Vries, E., Ford, R., Gwyther, S., Mandrekar, S., et al. (2016). RECIST 1.1-Update and Clarification: From the RECIST Committee. *Eur. J. Cancer* 62, 132–137. doi:10.1016/j.ejca.2016.03.081

Shigeta, K., Datta, M., Hato, T., Kitahara, S., Chen, I. X., Matsui, A., et al. (2020). Dual Programmed Death Receptor-1 and Vascular Endothelial Growth Factor Receptor-2 Blockade Promotes Vascular Normalization and Enhances Antitumor Immune Responses in Hepatocellular Carcinoma. *Hepatology* 71, 1247–1261. doi:10.1002/hep.30889

Sirica, A. E., Gores, G. J., Groopman, J. D., Selaru, F. M., Strazzabosco, M., Wei Wang, X., et al. (2019). Intrahepatic Cholangiocarcinoma: Continuing Challenges and Translational Advances. *Hepatology* 69, 1803–1815. doi:10.1002/hep.30289

Sui, H., Ma, N., Wang, Y., Li, H., Liu, X., Su, Y., et al. (2018). Anti-PD-1/PD-L1 Therapy for Non-small-cell Lung Cancer: Toward Personalized Medicine and Combination Strategies. *J. Immunol. Res.* 2018, 6984948. doi:10.1155/2018/6984948

Ueno, M., Ikeda, M., Morizane, C., Kobayashi, S., Ohno, I., Kondo, S., et al. (2019). Nivolumab Alone or in Combination with Cisplatin Plus Gemcitabine in Japanese Patients with Unresectable or Recurrent Biliary Tract Cancer: A Non-randomised, Multicentre, Open-Label, Phase 1 Study. *Lancet Gastroenterol. Hepatol.* 4, 611–621. doi:10.1016/S2468-1253(19)30086-X

Ueno, M., Ikeda, M., Sasaki, T., Nagashima, F., Mizuno, N., Shimizu, S., et al. (2020). Phase 2 Study of Lenvatinib Monotherapy as Second-Line Treatment in Unresectable Biliary Tract Cancer: Primary Analysis Results. *BMC Cancer* 20, 1105. doi:10.1186/s12885-020-02365-4

Wang, D., Lin, J., Yang, X., Long, J., Bai, Y., Yang, X., et al. (2019). Combination Regimens with PD-1/PD-L1 Immune Checkpoint Inhibitors for Gastrointestinal Malignancies. *J. Hematol. Oncol.* 12, 42. doi:10.1186/s13045-019-0730-9

Weber, S. M., Ribero, D., O’Reilly, E. M., Kokudo, N., Miyazaki, M., and Pawlik, T. M. (2015). Intrahepatic Cholangiocarcinoma: Expert Consensus Statement. *HPB (Oxford)* 17, 669–680. doi:10.1111/hpb.12441

World Medical Association (2015). World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects. *JAMA* 310, 2191–2194. doi:10.1001/jama.2013.281053

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors, and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Xie, Huang, Wang, Ren, Tian, Hu, Liang, Jiao, Li, Zhou and Zhang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.