transporter CorC in numerous *P. multocida* sequences deposited in GenBank. The sequence of Tn7407, including the alternative integration site, matched closely the sequence of a bovine *P. multocida* isolated in 2013 in the USA (GenBank accession no. CP015567) (Figure 1b). This finding underlined the wide distribution of highly similar ICEs with variable resistance regions among epidemiologically unrelated *P. multocida* from cattle.

The results of the study showed the occurrence of MDR *P. multocida* and *M. haemolytica* isolates carrying unusual resistance genes within multiresistance-mediating ICEs, which have so far not been described in Europe. These elements might enhance the spread of resistance genes among the respective pathogens and diminish treatment options for BRD in the future.

Acknowledgements
We thank Petra Krienke for technical support generating the MiSeq reads.

Funding
This study was supported by internal funding. T.S. was funded by the German Federal Ministry of Health (BMG) within the ZooSeq MinION-Zoo project, grant number ZMV11-2519NIK704. A.B., A.L.-B. and S.S. were financially supported by the German Federal Ministry of Education and Research (BMBF) as part of the Research Network Zoonotic Diseases, project number 01K12009D. A.B. and A.L.-B. were also funded by the German Federal Ministry of Food and Agriculture (BMEL) based on a decision of the Parliament of the Federal Republic of Germany, granted by the Federal Office for Agriculture and Food (BLE; grant number 2820H5002).

Transparency declarations
None to declare.

Supplementary data
Table S1 is available as Supplementary data at JAC Online.

References
1. Campbell J. Bacterial Pneumonia in Cattle: *Mannheimia haemolytica*-associated Bovine Respiratory Disease. https://www.merckvetmanual.com/respiratory-system/respiratory-diseases-of-cattle/bacterial-pneumonia-in-cattle.
2. Michael GB, Bossé JT, Schwarz S. Antimicrobial resistance in *Pasteurellaceae* of veterinary origin. *Microbial Spectr* 2016; 4.
3. Eidam C, Poehlein A, Leimbach A et al. Analysis and comparative genomics of ICEMh1, a novel integrative and conjugative element (ICE) of *Mannheimia haemolytica*. *J Antimicrob Chemother* 2015; 70: 93–7.
4. Michael GB, Kadlec K, Sweeney MT et al. ICEPmu1, an integrative conjugative element (ICE) of *Pasteurella multocida*: analysis of the regions that comprise 12 antimicrobial resistance genes. *J Antimicrob Chemother* 2012; 67: 84–90.
5. Michael GB, Kadlec K, Sweeney MT et al. ICEPmu1, an integrative conjugative element (ICE) of *Pasteurella multocida*: structure and transfer. *J Antimicrob Chemother* 2012; 67: 91–100.
6. Cameron A, Zaheer R, McAllister TA. Emerging variants of the integrative and conjugant element ICEMh1 in livestock pathogens: structural insights, potential host range, and implications for bacterial fitness and antimicrobial therapy. *Front Microbiol* 2019; 10: 2608.
7. CLSI. *Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated From Animals—Fifth Edition: VET01S*. 2020.
8. Nonaka L, Maruyama F, Suzuki S et al. Novel macrolide-resistance genes, mef(C) and mph(G), carried by plasmids from *Vibrio* and *Photobacterium* isolated from sediment and seawater of a coastal aquaculture site. *Lett Appl Microbiol* 2015; 61: 1–6.
9. Toprak E, Veres A, Michel J-B et al. Evolutionary paths to antibiotic resistance under dynamically sustained drug selection. *Nat Genet* 2011; 44: 101–6.
10. Vester B, Douthwaite S. Macrolide resistance conferred by base substitutions in 23S rRNA. *Antimicrob Agents Chemother* 2001; 45: 1–12.

J Antimicrob Chemother 2022; 77: 2035–2037
https://doi.org/10.1093/jac/dkac134
Advance Access publication 27 April 2022

HIV-1 non-B resistance mutations and natural polymorphisms to integrate strand transfer inhibitors in recently diagnosed patients in Gabon, Central Africa

Jéordy D. Engone-Ondo1, Michelle Bignouma2, Pamela Boundzanga Moussavou3,4, Amahani Gafou2, Abdoulaye Diane1, Leslie Monica Yangawagou4, Roland-Fabrice Kassa Kassa2, Richard Onanga2, Augustin Mounga-Onédémé1,3 and Avelin F. Aghokeng3,5*

1Unité des infections rétrovirales et pathologies associées, Centre International de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon; 2Unité de recherche et d’Analyses Médicales, Laboratoire de Bactériologie, Centre International de Recherches Médicales de Franceville, Franceville, Gabon; 3Unité Mixte de Recherche sur le VIH et les Maladies Infectieuses Associées, (CIRMF-SSM), Libreville, Gabon; 4Hôpital Marcel Abeke de Moanda, Moanda, Gabon; 5MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France

*Corresponding author. E-mail: avelin.aghokeng@ird.fr
Integrase strand transfer inhibitors (INSTIs) are drugs used to combat HIV infection and have been approved by the US FDA since 2007. This drug class includes raltegravir and elvitegravir for the first generation, and dolutegravir, cabotegravir and bictegravir for the second generation. They target the strand transfer reaction of the HIV proviral DNA 3’ ends to the cellular DNA and thus inhibit viral replication.1 Due to the increasing levels of HIV drug resistance to NNRTIs in resource-limited countries (RLCs), the WHO has recently recommended INSTIs in combination with NRTIs as the preferred first-line regimen for people living with HIV and initiating or failing ART in RLCs.2

Overall, we recruited 103 individuals tested positive for the first-time for HIV-1 infection. Women represented 58.2% of this population (\(n=60\)) and the median age was 37 years (IQR 28–44). All participants were treatment naive and reported no history of ARV exposure. Drug resistance genotyping was successfully carried out for all and three participants were excluded because of epidemiological relationship indicated by the obtained phylogeny. For the remaining 100 sequences representing our final study population, the HIV-1 subtype distribution was as follows:
CRF02_AG (46%), A1 (17%), D (7%), CRF45_cpx (5%), G (7%), CRF37_cpx (7%), H (4%), CRF11_cpx (4%), F2 (2%), CRF06_cpx (1%), CRF09_cpx (1%), and Unknown (6%). These 100 sequences, that cover at least amino acid positions 66 to 263 of the HIV integrase gene (Figure 1), were interpreted using the HIV French Resistance algorithm (http://www.hivfrenchresistance.org). Two primary drug resistance mutations, T97A and E157Q, were found in 4 (4%) and 5 (5%) of the sequences, respectively, resulting in an overall drug resistance prevalence of 9%. T97A is a polymorphic accessory mutation reported in up to 4% of viruses from untreated persons. This mutation reduces elvitegravir susceptibility by about 3-fold and can markedly reduce raltegravir and dolutegravir susceptibility when combined with other INSTI resistance mutations.6,5 E157Q is frequently reported at low frequencies (<5%) in INSTI-naive persons, and confers potential resistance to raltegravir and elvitegravir, but minimal or no resistance to second generation of INSTIs.6,7 Recent phenotypic assessments of this mutation in context of CRF02_AG viruses showed a fold change in EC50 of 1.1, 1.9 and 2.4 for raltegravir, dolutegravir and elvitegravir, respectively,6 stressing the need for more surveillances of this mutation in a HIV-1 non-B context, especially in settings where CRF02_AG viruses predominate as in Gabon and in other African countries.

Two additional mutations, L74M and L74I, considered as potentially associated with resistance to INSTIs were identified at rates of 3% and 21%, respectively, 24% overall, and in almost all HIV-1 subtypes of our study panel, with CRF02_AG viruses predominantly represented. These mutations are known as polymorphic and have been reported in HIV-1 non-B viruses, with higher frequencies (>10%) reported in CRF02_AG strains.8 By themself, L74I and L74M have minimal, if any, effect on INSTI susceptibility.9 However, they can affect INSTI susceptibility if present with other mutations such as T66K, V75I and E92Q.10

In summary, we report here an overall high frequency of INSTI resistance mutations in ART-naive populations. Most of these mutations are known as associated with resistance to the first generation of INSTIs, including raltegravir and elvitegravir; drugs that are still recommended for neonautes' treatment in RLCs by the WHO. The impact of these mutations on second generation INSTIs such as dolutegravir, cabotegravir and bictegravir is limited, but their contribution to resistance can significantly increase if they are associated with other INSTI resistance mutations. The recent introduction of dolutegravir-based first-line regimens in RLCs will rapidly result in millions of patients receiving INSTI-based treatments in contexts where routine treatment monitoring is still one of the major challenges and acquisition of resistant viruses a major threat. Our results stress the need for continuous surveillance of drug resistance in naive and ART-experienced populations in these settings.

Sequence accession number

The newly reported integrase sequences have been submitted to GenBank under accession numbers OM877162–OM877261.

Ethical considerations

The study was conducted in accordance with the Declaration of Helsinki and was approved by the Gabon National Ethics Committee for Research (0011/2013/SG/CNE).

Acknowledgements

We thank all patients who participated in this study, the medical staff and the Gabonese national health authorities for providing the research authorizations.

Funding

This work was supported by the Centre International de Recherches Médicales de Franceville (CIRMF), Gabon, and the Institut de Recherche pour le Développement (IRD), France.

Transparency declarations

None to declare.

References

1. Hazuda DJ, Felock P, Witmer M et al. Inhibitors of strand transfer that prevent integration and inhibit HIV-1 replication in cells. Science 2000; 287: 646–50.
2. WHO. Update of recommendations on first- and second-line antiretroviral regimens. https://apps.who.int/iris/bitstream/handle/10665/325892/WHO-CDS-HIV-19.15-eng.pdf.
3. Rhee SY, Grant PM, Tzou PL et al. A systematic review of the genetic mechanisms of dolutegravir resistance. J Antimicrob Chemother 2019; 74: 3135–49.
4. Fransen S, Gupta S, Danovich R et al. Loss of raltegravir susceptibility by human immunodeficiency virus type 1 is conferred via multiple nonoverlapping genetic pathways. J Viral 2009; 83: 11440–6.
5. Naeger LK, Harrington P, Komatsu T et al. Effect of dolutegravir functional monotherapy on HIV-1 vireological response in integrase strand transfer inhibitor resistant patients. Antivir Ther 2016; 21: 481–8.
6. Charpentier C, Malet I, Andre-Garnier E et al. Phenotypic analysis of HIV-1 E157Q integrase polymorphism and impact on virological outcome in patients initiating an integrase inhibitor-based regimen. J Antimicrob Chemother 2018; 73: 1039–44.
7. Malet I, Delelis O, Valantin MA et al. Mutations associated with failure of raltegravir treatment affect integrase sensitivity to the inhibitor in vitro. Antimicrob Agents Chemother 2008; 52: 1351–8.
8. Rhee SY, Gonzales MJ, Kantor R et al. Human immunodeficiency virus reverse transcriptase and protease sequence database. Nucleic Acids Res 2003; 31: 298–303.
9. Goethals O, Vos A, Van Ginderen M et al. Primary mutations selected in vitro with raltegravir confer large fold changes in susceptibility to first-generation integrase inhibitors, but minor fold changes to inhibitors with second-generation resistance profiles. Virology 2010; 402: 338–46.
10. Katlama C, Soulie C, Caby F et al. Dolutegravir as monotherapy in HIV-1-infected individuals with suppressed HIV viremia. J Antimicrob Chemother 2016; 71: 2646–50.