Supporting Information

Discovery of Mercaptopropanamide-substituted Aryl Tetrazoles as New Broad-Spectrum Metallo-β-lactamase Inhibitors

Yu-Hang Yan,a Jian Chen,a Zhen Zhan,a Zhu-Jun Yu,a Gen Li,a Li Guo,a Guo-Bo Li,a Yong Wu,a Yongxiang Zheng *a

a Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Sichuan 610041, China. E-mail:

Contents

Table S1. Data collection and refinement statistics for VIM-2 PDB codes: 7CJL.....................2

Figure S1. The dose–response curves of target compounds (in Table 1 and Table 2) inhibiting the representative MBL enzymes. ..3

Table S2. MICs of meropenem (MEM) in the absence or presence of 13a against VIM-2-producing E. coli strain. ...7

Chemical Synthesis of Target Compounds..7

Spectral Data ..13
Table S1. Data collection and refinement statistics for VIM-2 PDB codes: 7CJL.

Structure	VIM-2: 13a
PDB ID	7CJL
Radiation Source	SSRF Beamline BL19U1
Space Group	P 2 1 2 1 2 1
Unit Cell	45.356
Dimensions	90.132
a, b, c (Å)	125.849
Unit Cell	90.00
Dimensions	90.00
α, β, γ ('°)	90.00
*Mol/ASU	2
Resolution Range	45.066-1.789 (1.834-1.789)
(outer shell) (Å)	
Number of Unique Reflections	42398
Completeness (%)	85.48
I/σ(I) (outer shell)	1.42
Rmerge (outer shell)	0.158
Wilson B Factor (Å²)	20.15
Overall B Factor (Å²)	29.39
Protein B Factor (Å²)	29.05
Ligand B Factor (Å²) (occupancy)	46.17
Water B Factor (Å²)	32.19
ΔRMSD from Ideal Bond Length (Å)	0.019
RMSD from Ideal
Angles (°) 1.130
R_work (%) 20.53
R_free (%) 24.64

*Mol/ASU = molecules per asymmetric unit; †RMSD = root mean square deviation.

Figure S1. The dose–response curves of target compounds (in Table 1 and Table 2) inhibiting the representative MBL enzymes.
Table S2. MICs of meropenem (MEM) in the absence or presence of 13a against VIM-2-producing *E. coli* strain.

Assay No.	Inhibitor 13a Concentration (μM)	Meropenem	E. coli-VIM-2 MIC (μg/mL)	E. coli MIC (μg/mL)
1	200	+	4	<0.125
2	100	+	4	<0.125
3	50	+	8	<0.125
4	25	+	8	<0.125
5	200	-	>64	>64
6	100	-	>64	>64
7	50	-	>64	>64
8	25	-	>64	>64
9	-	+	8	<0.125

Chemical Synthesis of Target Compounds

Synthesis

All solvents were analytical reagent (AR) and commercially available and used without further
purification. All the reactions were monitored by thin-layer chromatography (TLC) and were visualized using UV light. The product purification was done using silica gel column chromatography. Thin-layer chromatography (TLC) characterization was performed with precoated silica gel GF254 (0.2 mm), while column chromatography characterization was performed with silica gel (100-200 mesh). ¹H NMR and ¹³C NMR spectra were recorded with tetramethylsilane (TMS, δ = 0.00 ppm) as the internal standard. ¹H NMR spectra were recorded at 400 or 600 MHz (Varian) and ¹³C NMR spectra were recorded at 100 or 150 MHz (Varian). Shifts are reported in ppm downfield from CDCl₃ (δ = 7.26 ppm) or DMSO-d₆ (δ = 2.50 ppm; H₂O signal was found at δ = 3.34 ppm) for ¹H NMR and chemical shifts for ¹³C NMR spectra are reported in ppm relative to the central CDCl₃ (δ = 77.0 ppm) or DMSO-d₆ (δ = 39.6 ppm). Coupling constants were given in Hz. All target compounds were purified to >95% purity, as determined by the high-performance liquid chromatography (HPLC). The HPLC analysis was performed on Waters 2695 HPLC system equipped with a Kromasil C18 column (4.6 mm × 250 mm, 5 μm).

General procedure 1: Synthesis of 5-phenyl-2H-tetrazole (compound 2)

To a 250 mL round-bottomed flask was added benzonitrile (20 mmol), sodium azide (1.44 g, 22 mmol), zinc bromide (4.50 g, 20 mmol) and 40 mL of water. The reaction mixture was refluxed for 24 h with vigorous stirring. After cooled to rt, HCl (3 N, 30 mL) and ethyl acetate (100 mL) were added, and vigorous stirring was continued until no solid was present and the aqueous layer had a pH of 1. The organic layer was isolated and the aqueous layer extracted with ethyl acetate (100 ml × 3). The combined organic layers were evaporated, 200 mL of 0.25 N NaOH was added, and the mixture was stirred for 30 min until the original precipitate was dissolved and a suspension of zinc hydroxide was formed. The suspension was filtered, and the solid washed with 20 mL of 1 N NaOH. To the filtrate was added 40 mL of 3 N HCl with vigorous stirring causing 5-phenyltetrazole to precipitate. The tetrazole was filtered and washed with HCl (3 N, 3 × 20 mL) and dried in a drying oven to furnish the 5-phenyl-2H-tetrazole as a white powder (87%).

General procedure 2: Synthesis of compounds 3a-3h

To a stirred suspension of 5-phenyl-2H-tetrazole (1.0 equiv) in CH₃CN (2.5 ml/1 mmol) was added corresponding iodoalkanes (1.1 equiv) and K₂CO₃ (2.0 equiv), and the mixture was heated at reflux for 4 h. After cooling, the mixture was concentrated in vacuo, and the residue was partitioned between ethyl acetate and distilled water. The organic layers were collected, washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure and the residue was subjected to flash chromatography to give compounds 3a-3h in 55%-83% yields.
General procedure 3: Ortho-C-H amidation reactions of compounds 3a-3h

Compounds 3a-3h (0.2 mmol), 3-phenyloxazolidinone (0.24 mmol), [Cp*RhCl₂]₂ (0.01 mmol) and Ag₂SO₄ (0.02 mmol) were charged into a sealed tube, to which was added 1,2-dichloroethane (2.0 mL). The reaction mixture was stirred at 80°C for 24 h. After cooled to room temperature, the solvent was removed under reduced pressure and the residue was purified by silica gel chromatography using petroleum ether/ethyl acetate as the eluent to afford the corresponding amides (4a-4h) in 54-85% yields.

General procedure 4: Synthesis of compounds 5a-5h

To a stirred solution of amides (4a-4h, 1.0 equiv) in ethanol was added sodium hydroxide. The reaction mixture was stirred at 80 °C for about 1 h. After cooled to room temperature, the solvent was removed under reduced pressure and the residue was purified by silica gel chromatography using petroleum ether/ethyl acetate as the eluent to afford the corresponding amides (5a-5h) in 71-92% yields.

General procedure 5: Synthesis of compounds 6a-6i

To a stirred solution of different carboxylic acids (1.5 equiv) in DCM was added isobutyl chloroformate (1.0 equiv) and 4-methylmorpholine (1.0 equiv). The reaction mixture was stirred at -5 °C for 30 minutes to activate isobutyl chloroformate. After that, dichloromethane solution of corresponding amine was dropwise added into the reaction mixture, which was stirred at room temperature for 12 h. After completion (monitored by TLC), the solvent was removed under reduced pressure and the residue was purified by silica gel chromatography using petroleum ether/ethyl acetate to afford 6a-6i in 72-83% yields.

General procedure 6: Synthesis of compounds 7a-7i

To a stirred solution of thioesters (6a-6i, 1.0 equiv) in methanol was added 1 N ammonium hydroxide solution and the resulting mixture was stirred for 2 h at room temperature under argon. After that, 1 N hydrochloric acid solution (15 ml/1 mmol) was added and the methanol was distilled off. The product was extracted with ethyl acetate and the organic phase was washed with water and saturated sodium chloride solution successively and then dried over Na₂SO₄. After distilling off the
ethyl acetate, the residue was purified by means of column chromatography on silica gel with petroleum ether/ethyl acetate as an eluent to furnish the target compounds 7a-7i in 90%-95% yields.

General procedure 7: Meta-C-H nitration reactions of 9a-9j

Compound 9a-9j (0.2 mmol), Cu(NO$_3$)$_2$·3H$_2$O (0.3 mmol), Ru$_3$(CO)$_{12}$ (0.15 mmol), PPh$_3$(0.06 mmol) and PhI(TFA)$_2$ (0.22 mmol) were charged into a sealed tube, to which was added HFIP (2.0 mL). The reaction mixture was stirred at 100 °C for 24 h. After cooled to room temperature, the solvent was removed under reduced pressure and the residue was purified by silica gel chromatography using petroleum ether/ethyl acetate as the eluent to afford the corresponding meta-nitration products 10a-10j in 81-90% yields.

General procedure 8: Synthesis of compounds 11a-11j

To a stirred solution of compounds 10a-10j (1.0 equiv) in methanol was added palladium on charcoal (10 mol%, 2.0 equiv) under hydrogen atmosphere. The reaction mixture was stirred at room temperature for about 3 h. After removal of the catalyst by filtration through celite and evaporation of the solvent under reduced pressure, the organic solvent was removed and the residue was purified by column chromatography to give compounds 11a-11j in 68-81% yields.

General procedure 9: Synthesis of compounds 12a-12k and 13a-13k

Compounds 12a-12k were synthesized according to general procedure 5. Compounds 13a-13k were synthesized according to general procedure 6.

The total yields and characterization data of all target compounds are as follows.

(S)-N-(2-(2H-tetrazol-5-yl)phenyl)-3-mercapto-2-methylpropanamide (7a) 34% yield, 96.5% HPLC purity. 1H NMR (400 MHz, DMSO-d$_6$) δ 10.65 (s, 1H), 8.28 (d, J = 8.0 Hz, 1H), 7.89 (d, J = 8.0 Hz, 1H), 7.57 (t, J = 8.0 Hz, 1H), 7.32 (t, J = 8.0 Hz, 1H), 2.80-2.56 (m, 3H), 2.35 (t, J = 8.0 Hz, 1H), 1.22 (d, J = 4.0 Hz, 3H) ppm. 13C NMR (100 MHz, DMSO-d$_6$) δ 173.13, 154.40, 136.91, 131.75, 128.89, 124.27, 122.50, 114.13, 45.18, 27.27, 16.85 ppm. ESI-MS m/z: 264.1 [M + H]+.

(S)-3-mercapto-2-methyl-N-(2-(2-methyl-2H-tetrazol-5-yl)phenyl)propanamide (7b) 30% yield, 97.3% HPLC purity. 1H NMR (400 MHz, CDCl$_3$) δ 10.82 (s, 1H), 8.71 (d, J = 8.0 Hz, 1H),
8.19 (d, J = 8.0 Hz, 1H), 7.47 (t, J = 8.0 Hz, 1H), 7.20 (t, J = 8.0 Hz, 1H), 4.46 (s, 3H), 3.01 – 2.94 (m, 1H), 2.78 – 2.64 (m, 2H), 1.57 (t, J = 8.0 Hz, 1H), 1.40 (d, J = 8.0 Hz, 3H) ppm. 13C NMR (100 MHz, CDCl$_3$) δ 173.90, 164.97, 137.61, 131.87, 128.78, 124.11, 121.61, 114.67, 47.37, 40.24, 28.57, 17.88 ppm. ESI-MS m/z: 278.1 [M + H]+.

(S)-N-(2-(2-ethyl-2H-tetrazol-5-yl)phenyl)-3-mercapto-2-methylpropanamide (7c) 32% yield, 96.9% HPLC purity. 1H NMR (400 MHz, CDCl$_3$) δ 10.87 (s, 1H), 8.71 (d, J = 8.0 Hz, 1H), 8.20 (d, J = 8.0 Hz, 1H), 7.46 (t, J = 8.0 Hz, 1H), 7.19 (t, J = 8.0 Hz, 1H), 4.75 (q, J = 8.0 Hz, 2H), 3.01 – 2.93 (m, 1H), 2.80 – 2.62 (m, 2H), 1.57 (t, J = 8.0 Hz, 3H), 1.40 (d, J = 8.0 Hz, 3H) ppm. 13C NMR (150 MHz, Methanol-d$_4$) δ 175.76, 164.94, 137.57, 131.97, 129.68, 125.55, 123.60, 117.85, 49.84, 47.77, 28.50, 17.53, 14.75 ppm. ESI-MS m/z: 292.1 [M + H]+.

(S)-3-mercapto-2-methyl-N-(2-(2-propyl-2H-tetrazol-5-yl)phenyl)propanamide (7d) 38% yield, 97.7% HPLC purity. 1H NMR (600 MHz, CDCl$_3$) δ 10.87 (s, 1H), 8.72 (d, J = 6.0 Hz, 1H), 8.21 (d, J = 12.0 Hz, 1H), 7.48 (t, J = 12.0 Hz, 1H), 7.19 (t, J = 12.0 Hz, 1H), 4.67 (t, J = 6.0 Hz, 2H), 3.00 – 2.95 (m, 1H), 2.78 – 2.64 (m, 2H), 2.16 – 2.10 (m, 2H), 1.57 (t, J = 12.0 Hz, 1H), 1.40 (d, J = 6.0 Hz, 3H) ppm. 13C NMR (100 MHz, Chloroform-d) δ 173.50, 164.40, 137.32, 131.45, 128.47, 123.70, 121.21, 114.49, 55.21, 47.06, 28.25, 22.95, 17.53, 11.14 ppm. ESI-MS m/z: 306.1 [M + H]+.

(S)-N-(2-(2-butyl-2H-tetrazol-5-yl)phenyl)-3-mercapto-2-methylpropanamide (7e) 43% yield, 98.2% HPLC purity. 1H NMR (400 MHz, CDCl$_3$) δ 10.86 (s, 1H), 8.71 (d, J = 8.0 Hz, 1H), 8.21 (d, J = 8.0 Hz, 1H), 7.46 (t, J = 8.0 Hz, 1H), 7.19 (t, J = 8.0 Hz, 1H), 4.70 (t, J = 8.0 Hz, 2H), 3.01 – 2.94 (m, 1H), 2.79 – 2.63 (m, 2H), 2.07 (p, J = 8.0 Hz, 2H), 1.57 (t, J = 8.0 Hz, 1H), 1.40 (d, J = 6.0 Hz, 3H), 1.03 (t, J = 12.0 Hz, 3H) ppm. 13C NMR (150 MHz, CDCl$_3$) δ 173.49, 164.35, 137.30, 131.43, 128.46, 123.69, 121.19, 114.48, 53.36, 47.05, 31.33, 28.24, 19.73, 17.52, 13.47 ppm. ESI-MS m/z: 320.1 [M + H]+.

(S)-N-(2-(3-isobutyl-3H-1,2,4-triazol-5-yl)phenyl)-3-mercapto-2-methylpropanamide (7f) 42% yield, 98.5% HPLC purity. 1H NMR (400 MHz, CDCl$_3$) δ 10.88 (s, 1H), 8.72 (d, J = 8.0 Hz, 1H), 8.22 (d, J = 8.0 Hz, 1H), 7.47 (t, J = 8.0 Hz, 1H), 7.20 (t, J = 8.0 Hz, 1H), 4.52 (d, J = 8.0 Hz, 2H), 3.02 – 2.95 (m, 1H), 2.80 – 2.64 (m, 2H), 2.52 – 2.41 (m, 1H), 1.57 (t, J = 8.0 Hz, 1H), 1.41 (d, J = 4.0 Hz, 3H), 1.03 (d, J = 8.0 Hz, 6H) ppm. 13C NMR (100 MHz, CDCl$_3$) δ 173.53, 164.38, 137.35, 131.49, 128.50, 123.73, 121.24, 114.50, 60.58, 47.10, 29.84, 29.40, 28.27, 19.95, 17.55 ppm. ESI-MS m/z: 320.1 [M + H]+.

(S)-N-(2-(2-benzyl-2H-tetrazol-5-yl)phenyl)-3-mercapto-2-methylpropanamide (7g) 37% yield, 96.4% HPLC purity. 1H NMR (600 MHz, CDCl$_3$) δ 10.69 (s, 1H), 8.69 (d, J = 12.0 Hz, 1H), 8.22 (d, J = 6.0 Hz, 1H), 7.47 – 7.40 (m, 6H), 7.18 (t, J = 6.0 Hz, 1H), 5.85 (s, 2H), 2.96 – 2.90 (m, 1H), 2.65 – 2.61 (m, 2H), 1.52 (t, J = 6.0 Hz, 1H), 1.34 (d, J = 6.0 Hz, 3H) ppm. 13C NMR (150
MHz, CDCl₃) δ 173.47, 164.70, 137.25, 132.86, 129.43, 129.32, 128.73, 128.57, 123.71, 121.15, 114.32, 57.35, 47.04, 28.21, 17.51 ppm. ESI-MS m/z: 354.1 [M + H]+.

N-(2-(2H-tetrazol-5-yl)phenyl)-3-mercaptopropanamide (7h) 41% yield, 97.8% HPLC purity. ¹H NMR (400 MHz, Methanol-d₄) δ 8.17 (d, J = 8.0 Hz, 1H), 7.66 (d, J = 8.0 Hz, 1H), 7.34 (t, J = 8.0 Hz, 1H), 7.09 (t, J = 8.0 Hz, 1H), 2.68 – 2.62 (m, 2H), 2.59 – 2.57 (m, 2H) ppm. ¹³C NMR (100 MHz, Methanol-d₄) δ 180.16, 164.50, 146.07, 140.94, 137.39, 133.55, 131.57, 122.79, 50.66, 28.58 ppm. ESI-MS m/z: 250.0 [M + H]+.

N-(2-(2-methyl-2H-tetrazol-5-yl)phenyl)-3-mercaptopropanamide (7i) 35% yield, 96.9% HPLC purity. ¹H NMR (400 MHz, CDCl₃) δ 10.76 (s, 1H), 8.67 (d, J = 8.0 Hz, 1H), 8.17 (d, J = 8.0 Hz, 1H), 7.47 (t, J = 8.0 Hz, 1H), 7.19 (t, J = 8.0 Hz, 1H), 4.45 (s, 3H), 2.94 (d, J = 8.0 Hz, 2H), 2.84 (t, J = 8.0 Hz, 2H), 1.71 (t, J = 8.0 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 169.55, 164.45, 137.07, 131.41, 128.33, 123.66, 121.05, 114.09, 42.22, 39.82, 20.21 ppm. ESI-MS m/z: 264.1 [M + H]+.

(S)-S-(3-((2-(2H-tetrazol-5-yl)phenyl)amino)-2-methyl-3-oxopropyl)ethanethioate (6a) 55% yield, 97.3% HPLC purity. ¹H NMR (400 MHz, CDCl₃) δ 10.83 (s, 1H), 8.72 (d, J = 8.0 Hz, 1H), 8.19 (d, J = 8.0 Hz, 1H), 7.47 (t, J = 8.0 Hz, 1H), 7.19 (t, J = 8.0 Hz, 1H), 4.46 (s, 3H), 3.00 – 2.95 (m, 1H), 2.83 – 2.74 (m, 1H), 2.69 – 2.65 (m, 1H), 1.40 (d, J = 8.0 Hz, 3H) ppm.

N-(2-(2H-tetrazol-5-yl)phenyl)isobutyramide (8) 51% yield, 97.5% HPLC purity. ¹H NMR (400 MHz, DMSO-d₆) δ 10.12 (s, 1H), 8.45 (s, 1H), 7.76 (d, J = 8.0 Hz, 1H), 7.68 (d, J = 8.0 Hz, 1H), 7.52 (t, J = 8.0 Hz, 1H), 2.67 – 2.60 (m, 1H), 1.13 (d, J = 8.0 Hz, 6H) ppm. ¹³C NMR (100 MHz, DMSO-d₆) δ 175.55, 155.67, 140.27, 129.75, 124.63, 121.66, 121.39, 117.52, 34.96, 19.41 ppm. ESI-MS m/z: 232.1 [M + H]+.

(S)-N-(3-(2H-tetrazol-5-yl)phenyl)-3-mercapto-2-methylpropanamide (13a) 34% yield, 97.8% HPLC purity. ¹H NMR (400 MHz, DMSO-d₆) δ 173.49, 140.04, 129.88, 124.73, 124.68, 121.73, 121.63, 117.55, 44.55, 27.19, 17.40 ppm. ESI-MS m/z: 264.1 [M + H]+.

(S)-N-(3-(2-ethyl-2H-tetrazol-5-yl)phenyl)-3-mercapto-2-methylpropanamide (13b) 40% yield, 98.2% HPLC purity. ¹H NMR (400 MHz, CDCl₃) δ 8.22 (s, 1H), 7.88 (d, J = 8.0 Hz, 1H), 7.80 (d, J = 8.0 Hz, 2H), 7.43 (t, J = 8.0 Hz, 1H), 4.68 (q, J = 8.0 Hz, 2H), 2.98 – 2.85 (m, 1H), 2.64 – 2.57 (m, 2H), 1.67 (t, J = 8.0 Hz, 3H), 1.60 (t, J = 8.0 Hz, 1H), 1.31 (d, J = 4.0 Hz, 3H) ppm. ¹³C NMR (150 MHz, CDCl₃) δ 173.05, 164.57, 138.27, 129.68, 128.15, 122.70, 121.83, 118.10, 48.46, 46.23, 28.07, 17.51, 14.57 ppm. ESI-MS m/z: 292.1 [M + H]+.
(S)-3-mercapto-2-methyl-N-(3-(2-propyl-2H-tetrazol-5-yl)phenyl)propanamide (13c) 42% yield, 98.6% HPLC purity. ¹H NMR (400 MHz, CDCl₃) δ 8.22 (s, 1H), 7.89 (d, J = 8.0 Hz, 1H), 7.80 (d, J = 8.0 Hz, 1H), 7.74 (s, 1H), 7.44 (t, J = 8.0 Hz, 1H), 4.60 (t, J = 8.0 Hz, 2H), 2.97 – 2.88 (m, 1H), 2.64 – 2.58 (m, 2H), 2.12 – 2.03 (m, 3H), 1.60 (t, J = 8.0 Hz, 1H), 1.32 (d, J = 8.0 Hz, 3H), 0.98 (t, J = 8.0 Hz, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 173.17, 164.69, 138.42, 129.86, 128.33, 122.86, 121.95, 118.22, 54.95, 46.43, 28.24, 23.01, 17.70, 11.12 ppm. ESI-MS m/z: 306.1 [M + H]+.

(S)-3-mercapto-2-methyl-N-(3-(2-butyl-2H-tetrazol-5-yl)phenyl)propanamide (13d) 38% yield, 98.6% HPLC purity. ¹H NMR (400 MHz, CDCl₃) δ 8.24 (s, 1H), 7.90 (d, J = 8.0 Hz, 1H), 7.82 (d, J = 8.0 Hz, 2H), 7.45 (t, J = 8.0 Hz, 1H), 4.45 (d, J = 4.0 Hz, 2H), 3.00 – 2.89 (m, 1H), 2.65 – 2.57 (m, 2H), 2.48 – 2.38 (m, 1H), 1.61 (t, J = 8.0 Hz, 1H), 1.33 (d, J = 8.0 Hz, 3H), 0.99 (d, J = 8.0 Hz, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 173.12, 164.53, 138.34, 129.73, 128.17, 122.73, 121.86, 118.12, 60.20, 46.28, 30.98, 29.22, 28.11, 19.78, 17.57 ppm. ESI-MS m/z: 320.1 [M + H]+.

N-(3-(2H-tetrazol-5-yl)phenyl)-3-mercaptopropanamide (13e) 33% yield, 96.9% HPLC purity. ¹H NMR (400 MHz, DMSO-d₆) δ 10.55 (s, 1H), 8.25 (d, J = 8.0 Hz, 1H), 7.58 (t, J = 8.0 Hz, 1H), 7.34 (t, J = 8.0 Hz, 1H), 2.78 – 2.70 (m, 4H), 2.51 – 2.46 (m, 1H) ppm. ¹³C NMR (100 MHz, DMSO-d₆) δ 170.06, 154.68, 137.22, 132.16, 129.42, 124.71, 123.03, 114.64, 41.45, 20.01 ppm. ESI-MS m/z: 250.0 [M + H]+.

N-(3-(1-methyl-1H-tetrazol-5-yl)phenyl)-3-mercaptopropanamide (13f) 45% yield, 97.4% HPLC purity. ¹H NMR (400 MHz, CDCl₃) δ 8.81 (s, 1H), 8.12 (s, 1H), 7.89 (d, J = 8.0 Hz, 1H), 7.48 (t, J = 8.0 Hz, 1H), 7.42 (d, J = 8.0 Hz, 1H), 4.20 (s, 3H), 2.89 (q, J = 8.0 Hz, 2H), 2.79 (t, J = 8.0 Hz, 2H), 1.69 (t, J = 8.0 Hz, 1H) ppm. ¹³C NMR (150 MHz, CDCl₃) δ 170.01, 154.34, 139.16, 129.98, 123.79, 123.71, 122.56, 119.96, 41.12, 35.31, 20.18 ppm. ESI-MS m/z: 264.1 [M + H]+.

N-(3-(2-methyl-2H-tetrazol-5-yl)phenyl)-3-mercaptopropanamide (13g) 51% yield, 97.8% HPLC purity. ¹H NMR (400 MHz, CDCl₃) δ 8.20 (s, 1H), 8.07 (s, 1H), 7.83 (d, J = 8.0 Hz, 1H), 7.74 (d, J = 8.0 Hz, 1H), 7.39 (t, J = 8.0 Hz, 1H), 4.36 (s, 3H), 2.88 (q, J = 8.0 Hz, 2H), 2.71 (t, J = 8.0 Hz, 2H), 1.70 (t, J = 8.0 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 169.61, 164.78, 138.37, 129.72, 127.94, 122.65, 121.95, 118.18, 41.25, 39.59, 20.29 ppm. ESI-MS m/z: 264.1 [M + H]+.

N-(3-(2-methyl-2H-tetrazol-5-yl)phenyl)-2-mercatoacetamide (13h) 36% yield, 98.3% HPLC purity. ¹H NMR (600 MHz, Methanol-d₄) δ 8.31 (s, 1H), 7.80 (d, J = 6.0 Hz, 1H), 7.68 (d, J = 6.0 Hz, 1H), 7.43 (t, J = 6.0 Hz, 1H), 4.38 (s, 3H), 3.33 (s, 2H) ppm. ¹³C NMR (150 MHz, Methanol-d₄) δ 171.70, 165.92, 140.49, 130.60, 129.22, 123.37, 122.80, 119.07, 39.95, 29.31 ppm. ESI-MS m/z: 250.0 [M + H]+.

(S)-N-(3-(2H-1,2,3-triazol-2-yl)phenyl)-3-mercapto-2-methylpropanamide (13i) 43% yield, 97.9% HPLC purity. ¹H NMR (400 MHz, CDCl₃) δ 8.41 (s, 1H), 7.89 (s, 1H), 7.80 (d, J = 8.0 Hz, 1H), 7.48 (t, J = 8.0 Hz, 1H), 4.28 (s, 3H), 2.89 (q, J = 8.0 Hz, 2H), 2.71 (t, J = 8.0 Hz, 2H), 1.69 (t, J = 8.0 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 170.01, 154.68, 137.22, 132.16, 129.42, 124.71, 123.03, 114.64, 41.45, 20.01 ppm. ESI-MS m/z: 250.0 [M + H]+.
96.3% HPLC purity. 1H NMR (400 MHz, CDCl$_3$) δ 8.28 (s, 1H), 8.12 (s, 1H), 7.79 – 7.76 (m, 3H), 7.58 (d, $J = 8.0$ Hz, 1H), 7.37 (t, $J = 8.0$ Hz, 1H), 2.93 – 2.86 (m, 1H), 2.63 – 2.53 (m, 2H), 1.57 (t, $J = 8.0$ Hz, 1H), 1.27 (d, $J = 8.0$ Hz, 4H) ppm. 13C NMR (150 MHz, CDCl$_3$) δ 173.30, 140.16, 138.66, 135.59, 129.88, 119.03, 114.69, 110.71, 46.17, 28.04, 17.51 ppm. ESI-MS m/z: 263.1 [M + H]$^+$.

(S)-N-(6-(2H-1,2,3-triazol-2-yl)benzo[d][1,3]dioxol-4-yl)-3-mercapto-2-methyl propanamide (13j) 42% yield, 97.9% HPLC purity. 1H NMR (400 MHz, CDCl$_3$) δ 10.57 (s, 1H), 8.11 (s, 1H), 7.85 (s, 2H), 7.49 (s, 1H), 6.02 (s, 2H), 2.94 – 2.84 (m, 1H), 2.94 – 2.57 (m, 2H), 1.50 (t, $J = 8.0$ Hz, 1H), 1.31 (d, $J = 8.0$ Hz, 3H) ppm. 13C NMR (100 MHz, CDCl$_3$) δ 172.89, 147.49, 144.14, 134.67, 124.77, 122.89, 103.52, 103.13, 102.18, 46.68, 29.82, 28.20, 17.24 ppm. ESI-MS m/z: 307.0 [M + H]$^+$.

(S)-3-mercapto-N-(2-methoxy-5-(6-methoxypyridazin-3-yl)phenyl)-2-methylpropanamide (13k) 37% yield, 98.1% HPLC purity. 1H NMR (400 MHz, CDCl$_3$) δ 8.94 – 8.93 (m, 1H), 8.03 (dd, $J = 8.0$, 4.0 Hz, 1H), 7.97 (s, 1H), 7.84 (d, $J = 8.0$ Hz, 1H), 7.02 (d, $J = 8.0$ Hz, 2H), 4.16 (s, 3H), 3.96 (s, 3H), 2.99 – 2.90 (m, 1H), 2.66 – 2.60 (m, 2H), 1.60 (t, $J = 8.0$ Hz, 1H), 1.35 (d, $J = 8.0$ Hz, 3H) ppm. 13C NMR (150 MHz, CDCl$_3$) δ 172.88, 164.12, 154.56, 149.12, 148.98, 127.79, 127.73, 123.03, 118.61, 117.86, 110.66, 56.03, 55.01, 46.60, 28.11, 17.62 ppm. ESI-MS m/z: 334.1 [M + H]$^+$.

N-(3-(2H-tetrazol-5-yl)phenyl)isobutyramide (14) 52% yield, 98.5% HPLC purity. 1H NMR (400 MHz, DMSO-d$_6$) δ 10.65 (s, 1H), 8.34 (d, $J = 8.0$ Hz, 1H), 7.90 (d, $J = 8.0$ Hz, 1H), 7.56 (t, $J = 8.0$ Hz, 1H), 7.30 (t, $J = 8.0$ Hz, 1H), 7.25 – 7.28 (m, 1H), 1.16 (d, $J = 8.0$ Hz, 6H). 13C NMR (150 MHz, DMSO-d$_6$) δ 175.18, 154.41, 137.25, 131.76, 128.73, 123.85, 121.96, 113.41, 36.02, 19.29 ppm. ESI-MS m/z: 232.1 [M + H]$^+$.

Spectral Data

1H and 13C NMR Spectra of Compound 7a
1H and 13C NMR Spectra of Compound 7b
1H Spectra of Compound 7c
1H and 13C NMR Spectra of Compound 7d
1H and 13C NMR Spectra of Compound 7e
1H and 13C NMR Spectra of Compound 7f
1H and 13C NMR Spectra of Compound 7g
1H and 13C NMR Spectra of Compound 7h

[Image of the NMR spectra]
1H and 13C NMR Spectra of Compound 7i
1H Spectra of Compound 6a
1H and 13C NMR Spectra of Compound 13a
^{1}H and ^{13}C NMR Spectra of Compound 13b
1H and 13C NMR Spectra of Compound 13c
^{1}H and ^{13}C NMR Spectra of Compound 13d
1H and 13C NMR Spectra of Compound 13e
1H and 13C NMR Spectra of Compound 13f
1H and 13C NMR Spectra of Compound 13g
1H and 13C NMR Spectra of Compound $13h$
1H and 13C NMR Spectra of Compound 13i
1H and 13C NMR Spectra of Compound 13j
1H and 13C NMR Spectra of Compound 13k
1H and 13C NMR Spectra of Compound 14
