Fluorinated organic compounds have attracted great attention in the field of medicinal chemistry owing to their unique physical and chemical properties, bioavailability, lipophilicity, and metabolic stability.1–4 This is especially true in the pharmaceuticals and agrochemicals, where fluorine is often considered a bioisostere of hydrogen. At present, about 30% of all agrochemicals (such as pyroxsulam and fluxapyroxad and so on) and 20% of all pharmaceuticals (such as 5-fluorouracil and norfloxacin and so on) incorporate at least one fluorine atom.5 As such, many efforts have been put into the development of fluorinated molecules based on the C–F bond formation in the past decade.6–10

Chromones and their derivatives are found in numerous natural products and pharmaceuticals11–13 that show many biological activities, such as monoamine oxidase inhibitors and antitubercular activity.14–18 They also exist widely in pigments, dyes, and essential nutrients for the human body.19–22 Consequently, the development of effective methods to construct these heterocyclic scaffolds, especially C3-functionalized analogs, has been studied extensively.23–31

Furthermore, enaminoles have been recognized as a class of available and powerful synthetic building blocks owing to their versatile reactivity in a variety of organic transformations,32–38 which were widely used in syntheses of many heterocyclic39–47 and fused heterocyclic compounds.48–56 Recently, many efforts have been devoted to develop new methods for the synthesis of 3-functionalized chromones from o-hydroxyarylenaminones via the electrophile-triggered cyclization reaction (Scheme 1(a)).29,30,57–66 As far as the reactions of enaminoles with fluorination reagents are concerned, a difluorination of enaminoles to access difluorinated carbonyl compounds by virtue of Selectfluor (1-chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(tetrafluoroborate), cheap and easily available) as the fluorine source was reported by Shreeve’s group in 2005.67 In 1996, Bolós’s group68 synthesized 3-fluorochromones from o-hydroxyarylenaminones by using 1-fluoro-2,4,6-trimethylpyridinium triflate (NFTP) as the fluorine source, but it still suffers from more expensive fluorination reagent and substrate scope. Therefore, the development of an efficient method using Selectfluor as a fluorine source would be valuable. In 2017, the groups of Zhao69 and Xu70 developed a Selectfluor-triggered tandem cyclization of o-hydroxyarylenaminones to obtain 3,3-difluorinated 2-amino-substituted

Selectfluor-triggered fluorination/cyclization of o-hydroxyarylenaminones: A facile access to 3-fluoro-chromones

Yanqin Wang, Biao Hu, Qiaohe Zhang, Siyun Zhao, Yuxuan Zhao, Biao Zhang and Fuchao Yu

Abstract
A fast and efficient Selectfluor-triggered fluorination/cyclization reaction of o-hydroxyarylenaminones has been successfully developed. The reaction successfully provides an expedient method for the synthesis of 3-fluoro-chromones promoted by potassium carbonate, which shows readily available starting materials and is easy to operate. In addition, a plausible mechanism of this tandem cyclization reaction was proposed where 4H-chromen-4-one, 2-(dimethylamino)-3,3-difluorochroman-4-one, and 3,3-difluoro-2-hydroxychroman-4-one were not found to be the reactive intermediates. Moreover, these novel compounds have been obtained in moderate to good yields, and their structures have been confirmed by 1H NMR, 13C NMR, and high-resolution mass spectrometry.

Keywords
3-fluoro-chromones, Selectfluor, o-hydroxyarylenaminones, fluorination/cyclization

Date received: 21 February 2020; accepted: 10 April 2020

Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, P.R. China

Corresponding author:
Fuchao Yu, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650504, P.R. China.
Email: yufuchao05@126.com

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
In moderate yields (35%–60%). Furthermore, \(\alpha \)-hydroxyarylenaminones \(1n-1r \) with multisubstituents were compatible with the transformation as well, leading to the corresponding products \(3n-3r \) in 42–48 yields.

To gain insight into the mechanistic details of this fluorination/cyclization reaction, several control experiments were performed (Scheme 2). First, when the reaction of 4\(H \)-chromen-4-one \(4 \) with Selectfluor \(2 \) was performed under standard conditions, the expected product \(3a \) was not observed at all (Scheme 2(a)).

Based on the above observations and previous reports, a plausible mechanism for the synthesis of 3-fluoro-chromones 3 was shown in Scheme 3. Initially, \(\alpha \)-hydroxyarylenaminone formed species 7 via imine–enamine tautomerization, which rapidly quenched with Selectfluor to deliver species 8. Then, the intermediate 9 could be generated through keto–enol tautomerization, which sequentially produced the cyclic species 10 and released a molecule of HBF₄. The subsequent deamination ultimately generated the desired 3-fluoro-chromone 3a.
Conclusion

In conclusion, we successfully developed a facile and general approach accessing a range of 3-fluoro-chromones from \(o \)-hydroxyarylenaminones. Importantly, several species, such as 4\(H \)-chromen-4-ones; 2-(dimethylamino)-3,3-difluorochroman-4-ones; and 3,3-difluoro-2-hydroxychroman-4-ones, are proved not to be the reactive intermediates during the reaction process. This transformation involves the Selectfluor-triggered fluorination of the enaminone moiety, followed by subsequent intramolecular cyclization and deamination.

Experimental

All compounds were fully characterized by spectroscopic data. The nuclear magnetic resonance (NMR) spectra were recorded on a DRX600 spectrometer (1H: 600MHz, 13C: 150MHz), chemical shifts (\(\delta \)) are expressed in ppm, and J values are given in Hz, and deuterated CDCl\(_3\) was used as solvent. The reactions were monitored by thin-layer chromatography (TLC) using silica gel GF254. The melting points were determined on XT-4A melting point apparatus and are uncorrected. High-resolution mass spectrometry (HRMS) was performed on an Agilent liquid chromatography–mass spectrometry (LC/MS) time-of-flight (TOF) instrument.

Compounds 1a–1r were prepared according to the literature. Selectfluor was purchased from Adams-beta and Aldrich Corporation Limited.

General procedure for the synthesis of 3-fluoro-chromones 3a–3r

0.5-mmol-substituted \(o \)-hydroxyarylenaminones 1, 1.1-mmol Selectfluor 2 (389.4mg), 0.5-mmol K\(_2\)CO\(_3\) (69mg), and 2.0-mL MeCN were charged into a 10-mL Ace Glass pressure tube, and the mixture was stirred at 100 °C for 0.5 h until 1 was completely consumed. The mixture was

Entry	\(R \)	Yield (%)	Entry	\(R \)	Yield (%)
1	6-H (1a)	60	10	7-F (1j)	49
2	6-OMe (1b)	53	11	7-Cl (1k)	49
3	6-Me (1c)	57	12	7-Br (1I)	38
4	6-F (1d)	40	13	8-F (1m)	35
5	6-Cl (1e)	45	14	6-Me, 8-Me (1n)	48
6	6-Br (1f)	42	15	6-Cl, 8-Me (1o)	46
7	6-NO\(_2\) (1g)	45	16	6-Me, 8-NO\(_2\) (1p)	44
8	7-OMe (1h)	51	17	6-Cl, 8-Cl (1q)	45
9	7-Me (1i)	53	18	6-Cl, 8-Br (1r)	42

\(^{a}\)Reaction conditions: 1 (0.5 mmol), 2 (1.1 mmol), and K\(_2\)CO\(_3\) (1.0 equiv.) in 2 mL of MeCN, stirred at 100 °C for 0.5 h.

\(^{b}\)Isolated yields.
cooled to room temperature. Quenched with water (15 mL), and then EtOAc (15 mL x 3) was added. The organic phase was washed with water (10 mL), dried over Na₂SO₄, concentrated, and purified by flash column chromatography to afford 3-fluoro-chromenes 3.

3-Fluoro-4H-chromen-4-one (3a): Yield: 60%; white solid; m.p. 163–165°C; 1H NMR (600 MHz, CDCl₃); δ 8.32 (dd, J = 8.0, 1.3 Hz, 1H, C=CH), 8.18 (d, J = 3.4 Hz, 1H, ArH), 7.75–7.73 (m, 1H, ArH), 7.54 (d, J = 8.5 Hz, 1H, ArH), 7.47 (t, J = 7.6 Hz, 1H, ArH); 13C NMR (150 MHz, CDCl₃); δ 170.6 (d, J = 15.5 Hz, C=O), 154.9 (C9), 149.4 (d, J = 249.2 Hz, C2), 142.9 (d, J = 40.0 Hz, C1), 134.1 (C7), 126.0 (d, J = 3.4 Hz, C5), 125.3 (C6), 124.8 (d, J = 7.7 Hz, C4), 118.4 (C8); HRMS (TOF ES⁺): m/z calcd for C₁₁H₉FO₂⁺ [(M + H)⁺], 165.0346; found, 165.0348.

3-Fluoro-6-methoxy-4H-chromen-4-one (3b): Yield: 53%; white solid; m.p. 174–176°C; 1H NMR (600 MHz, CDCl₃); δ 8.03 (d, J = 2.6 Hz, 1H, C=CH), 7.60 (t, J = 8.4 Hz, 1H, ArH), 7.06 (dd, J = 8.5, 0.7 Hz, 1H, ArH), 6.84 (d, J = 8.3 Hz, 1H, ArH), 4.00 (s, 3H, ArOCH₃); 13C NMR (150 MHz, CDCl₃); δ 170.3 (d, J = 16.5 Hz, C=O), 160.4 (d, J = 2.8 Hz, C6), 157.9 (C9), 149.6 (d, J = 245.7 Hz, C2), 140.7 (d, J = 40.5 Hz, C1), 138.5 (C4), 134.3 (C5), 110.3 (C7), 106.2 (C8), 56.5 (OCH₃). HRMS (TOF ES⁺): m/z calcd for C₁₃H₁₂FO₂⁺ [(M + H)⁺], 195.0452; found, 195.0452.

3-Fluoro-6-nitro-4H-chromen-4-one (3c): Yield: 42%; yellow solid; m.p. 179–181°C; 1H NMR (600 MHz, CDCl₃); δ 8.45 (d, J = 2.4 Hz, 1H, ArH), 8.19 (d, J = 3.3 Hz, 1H, C=CH), 7.82 (dd, J = 8.9, 2.5 Hz, 1H, ArH), 7.44 (d, J = 8.9 Hz, 1H, ArH); 13C NMR (150 MHz, CDCl₃); δ 169.3 (d, J = 16.0 Hz, C=O), 154.9 (C9), 149.3 (d, J = 250.5 Hz, C2), 143.2 (d, J = 40.1 Hz, C1), 137.2 (C7), 128.6 (d, J = 3.4 Hz, C5), 126.2 (d, J = 8.1 Hz, C4), 120.3 (C8), 119.0 (C6). HRMS (TOF ES⁺): m/z calcd for C₁₃H₁₀BrF₂O⁺ [(M + H)⁺], 242.9451; found, 242.9451.

3-Fluoro-6-nitro-4H-chromen-4-one (3d): Yield: 53%; white solid; m.p. 138–140°C; 1H NMR (600 MHz, CDCl₃); δ 8.20 (d, J = 9.0 Hz, 1H, ArH), 8.10 (d, J = 3.3 Hz, 1H, C=CH), 7.03 (dd, J = 9.0, 2.3 Hz, 1H, ArH), 6.88 (d, J = 2.3 Hz, 1H, ArH), 3.93 (s, 3H, ArOCH₃); 13C NMR (150 MHz, CDCl₃); δ 170.0 (d, J = 15.9 Hz, C=O), 164.4 (C7), 157.7 (C9), 149.4 (d, J = 248.7 Hz, C2), 142.4 (d, J = 40.5 Hz, C1), 127.3 (d, J = 3.5 Hz, C5), 118.6 (d, J = 7.4 Hz, C4), 115.0 (C6), 100.3 (C8), 56.0 (OCH₃). HRMS (TOF ES⁺): m/z calcd for C₁₃H₁₀FNO₂⁺ [(M + H)⁺], 210.0197; found, 210.0196.

3-Fluoro-6-nitro-4H-chromen-4-one (3e): Yield: 51%; white solid; m.p. 137–139°C; 1H NMR (600 MHz, CDCl₃); δ 8.19 (d, J = 8.2 Hz, 1H, ArH), 8.13 (d, J = 3.4 Hz, 1H, C=CH), 7.31 (s, 1H, ArH), 7.28 (d, J = 4.0 Hz, 1H, ArH), 2.52 (s, 3H, ArOCH₃); 13C NMR (150 MHz, CDCl₃); δ 170.5 (d, J = 15.6 Hz, C=O), 156.0 (C9), 149.3 (d, J = 248.7 Hz, C2), 145.7 (C7), 142.6 (d, J = 40.0 Hz, C8), 126.9 (C1), 125.7 (d, J = 3.3 Hz, C6), 122.6 (d, J = 7.5 Hz, C5), 118.0 (C3), 21.8 (C13). HRMS (TOF ES⁺): m/z calcd for C₁₃H₁₂F₂O₂⁺ [(M + H)⁺], 179.0503; found, 179.0503.

Scheme 3. Proposed mechanism.
3,7-Difluoro-4H-chromen-4-one (3j): Yield: 49%; white solid; m.p. 113–115°C; 1H NMR (600 MHz, CDCl3): δ 8.35–8.33 (m, 1H, ArH), 8.17 (d, J = 3.2 Hz, 1H, C=CH), 7.23–7.20 (m, 2H, ArH), 3.17 (s, 3H, ArCH3); 13C NMR (150 MHz, CDCl3): δ 169.7 (d, J = 16.1 Hz, C=O), 165.8 (d, J = 256.6 Hz, C7), 156.8 (d, J = 13.5 Hz, C9), 149.4 (d, J = 250.4 Hz, C2), 143.1 (dd, J = 40.5, 1.4 Hz, C1), 128.6 (dd, J = 10.7, 3.5 Hz, C5), 121.7 (d, J = 7.8 Hz, C4), 114.5 (d, J = 23.1 Hz, C6), 105.1 (d, J = 25.6 Hz, C8). HRMS (TOF ES+): m/z calcd for C10H10FO4+ ([M + H]+), 213.0325; found, 213.0320.

7-Chloro-3-fluoro-4H-chromen-4-one (3k): Yield: 49%; yellow solid; m.p. 136–138°C; 1H NMR (600 MHz, CDCl3): δ 8.25 (d, J = 8.6 Hz, 1H, ArH), 8.16 (d, J = 3.3 Hz, 1H, C=CH), 7.56 (d, J = 1.8 Hz, 1H, ArH), 7.44 (dd, J = 8.6, 1.7 Hz, 1H, ArH); 13C NMR (150 MHz, CDCl3): δ 169.8 (d, J = 16.0 Hz, C=O), 155.8 (C9), 149.4 (d, J = 250.6 Hz, C2), 143.0 (d, J = 40.3 Hz, C1), 140.5 (C7), 127.4 (d, J = 3.4 Hz, C5), 126.3 (C6), 123.4 (d, J = 8.0 Hz, C4), 118.4 (C8). HRMS (TOF ES+): m/z calcd for C11H9ClFO3+ ([M + H]+), 232.9567; found, 232.9571.

3,8-Difluoro-4H-chromen-4-one (3l): Yield: 38%; white solid; m.p. 168–170°C; 1H NMR (600 MHz, CDCl3): δ 8.16 (m, 1H, ArH, and C=CH), 7.74 (d, J = 1.0 Hz, 1H, ArH), 7.59 (d, J = 8.6 Hz, 1H, ArH); 13C NMR (150 MHz, CDCl3): δ 169.9 (d, J = 16.0 Hz, C=O), 155.8 (C9), 149.4 (d, J = 250.8 Hz, C2), 143.0 (d, J = 40.3 Hz, C1), 129.1 (C6), 128.6 (C7), 127.4 (d, J = 3.4 Hz, C5), 123.7 (d, J = 8.0 Hz, C4), 121.5 (C8). HRMS (TOF ES+): m/z calcd for C10H8F2O3+ ([M + H]+), 242.9451; found, 242.9452.

8-Bromo-3-fluoro-4H-chromen-4-one (3m): Yield: 35%; white solid; m.p. 156–158°C; 1H NMR (600 MHz, CDCl3): δ 8.24 (d, J = 3.2 Hz, 1H, C=CH), 8.09–8.07 (m, 1H, ArH), 7.73–7.79 (m, 1H, ArH), 7.43–7.39 (m, 1H, ArH); 13C NMR (150 MHz, CDCl3): δ 169.7 (d, J = 16.0, 2.6 Hz, C=O), 151.3 (C9), 149.5 (d, J = 250.9 Hz, C2), 144.7 (d, J = 10.9 Hz, C9), 142.8 (d, J = 40.8 Hz, C1), 126.8 (d, J = 7.8 Hz, C4), 125.3 (d, J = 6.6 Hz, C5), 121.1 (t, J = 4.0 Hz, C6), 119.8 (s, J = 16.5 Hz, C17). HRMS (TOF ES+): m/z calcd for C11H9BrFO2+ ([M + H]+), 242.9451; found, 242.9452.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The study received financial support from the National Natural Science Foundation of China (21402070 and 21961018) and the
Analytical & Testing Foundation of Kunming University of Science and Technology (2017T20130137).

Fuchao Yu
https://orcid.org/0000-0001-5557-3824

Supplemental material
Supplemental material for this article is available online.

References
1. Purser S, Moore PR, Swallow S, et al. Chem Soc Rev 2008; 37: 320.
2. Liang T, Neumann C and Ritter T. Angew Chem Int Ed 2013; 52: 8214.
3. Wang J, Sánchez-Roselló M, Aceña JL, et al. Chem Rev 2014; 114: 2432.
4. Gouverneur V and Seppelt K. Chem Rev 2015; 115: 563.
5. Furuuya T, Kamlet AS and Ritter T. Nature 2011; 473: 470.
6. Hollingworth C and Gouverneur V. Chem Commun 2012; 48: 2929.
7. Lin JH and Xiao JC. Tetrahedron Lett 2014; 55: 6147.
8. Campbell MG and Ritter T. Chem Rev 2015; 115: 612.
9. Pietta PG.
10. Petrone DA and Lautens JY.
11. Campbell MG and Ritter T. Angew Chem Int Ed 2019; 58: 13443.
12. Liang T, Neumann C and Ritter T. J Org Chem 2016; 81: 7683.
13. Khadem S and Marles RJ. Molecules 2012; 17: 191.
14. Matin A, Gavande N, Kim MS, et al. J Med Chem 2009; 52: 6835.
15. Yao N, Chen CY, Wu CY, et al. J Med Chem 2011; 54: 4339.
16. Emami S and Ghanbarimasir Z. Eur J Med Chem 2015; 93: 539.
17. Cagide F, Silva T, Reis J, et al. Chem Commun 2015; 51: 2832.
18. Reis J, Cagide F, Chavarria D, et al. J Med Chem 2016; 59: 8879.
19. Wei DG, Yang GF, Wan J, et al. J Agric Food Chem 2005; 53: 1604.
20. Bryan MC, Biswas K, Peterkin TAN, et al. Bioorg Med Chem Lett 2012; 22: 619.
21. Feng L, Maddox MM, Alam MZ, et al. J Med Chem 2014; 57: 8398.
22. Williams DA, Zaidi SA and Zhang Y. Bioorg Med Chem Lett 2014; 24: 1489.
23. Kim D and Hong S. Org Lett 2011; 13: 4466.
24. Samanta R, Bauer JO, Strohmann C, et al. Org Lett 2012; 14: 5518.
25. Miliutina M, Ejar SA, Iaroshenko VO, et al. Org Biomol Chem 2016; 14: 495.
26. Olomola TO, Klein R, Kaye PT, et al. Tetrahedron 2016; 72: 392.
27. Gao Y, Wei L, Liu Y, et al. Org Biomol Chem 2017; 15: 4631.
28. Wang R, Han J, Li C, et al. Org Biomol Chem 2018; 16: 2479.
29. Guo Y, Xiang Y, Wei L, et al. Org Lett 2018; 20: 3971.
30. Wang M, Tang BC, Ma JT, et al. Org Biomol Chem 2019; 17: 1535.
31. Qian J, Lin Z, Wang Z, et al. J Org Chem 2019; 84: 6395.
32. Tang Y, Chen Y, Liu H, et al. Tetrahedron Lett 2018; 59: 3703.
33. Gao P, Wang J, Bai Z, et al. Org Lett 2018; 20: 3627.
34. Zhao MN, Zhang J, Ren ZH, et al. Org Lett 2018; 20: 3088.
35. Wang F, Sun W, Wang Y, et al. Org Lett 2018; 20: 1256.
36. Yu Q, Zhang Y and Wan JP. Green Chem 2019; 21: 3436.
37. Xia B, Chen W, Zhao Q, et al. Org Lett 2019; 21: 2583.
38. Li D, Li S, Peng C, et al. Chem Sci 2019; 10: 2791.
39. Zhang ZJ, Ren ZH, Wang YY, et al. Org Lett 2013; 15: 4822.
40. Wang J, Zhou Y, Liu Y, et al. Green Chem 2016; 18: 402.
41. Zhao X, Zhang Y, Deng J, et al. J Org Chem 2017; 82: 12682.
42. Liu Z, Wu P, He Y, et al. Adv Syn Catal 2018; 360: 4381.
43. Wu M, Jiang Y, An Z, et al. Adv Syn Catal 2018; 360: 4236.
44. Wang YB, Wu QH, Zhou ZP, et al. Angew Chem Int Ed 2019; 58: 13443.
45. Du XX, Zi QX, Wu YM, et al. Green Chem 2019; 21: 1505.
46. Lao Q, Huang R, Xiao Q, et al. J Org Chem 2019; 84: 1999.
47. Liu J, Li Q, Cao ZM, et al. J Org Chem 2019; 84: 1797.
48. Wang H, Li L, Lin W, et al. Org Lett 2012; 14: 4598.
49. Jiang B, Li QY, Tu SJ, et al. Org Lett 2012; 14: 5210.
50. Cao CP, Lin W, Hu MH, et al. Chem Commun 2013; 49: 6983.
51. Tang M, Zhao JJ, Wu Q, et al. Synthesis 2017; 49: 2035.
52. Wang BQ, Zhang CH, Tian XX, et al. Org Lett 2018; 20: 660.
53. Jiang TS, Zhou Y, Dai L, et al. Tetrahedron Lett 2019; 60: 2078.
54. Sun J, Sun QS and Yan CG. Org Chem Front 2019; 6: 3555.
55. Li K, Chen L, Fan YX, et al. J Org Chem 2019; 84: 11971.
56. Zhao P, Wu X, Zhou Y, et al. Org Lett 2019; 21: 2708.
57. Xiang H and Yang C. Org Lett 2014; 16: 5686.
58. Zhang XZ, Ge DL, Chen SY, et al. RSC Adv 2016; 6: 66320.
59. Akram MO, Bera S and Patil NT. Chem Commun 2016; 52: 12306.
60. Xiang H, Zhao Q, Tang Z, et al. Org Lett 2017; 19: 146.
61. Zhong S, Liu Y, Cao X, et al. Chem Cat Chem 2017; 9: 465.
62. Lin YF, Fong C, Peng WL, et al. J Org Chem 2017; 82: 10855.
63. Guo Y, Xiang Y, Wei L, et al. Org Lett 2018; 20: 3971.
64. Mrug GP, Myshko NV, Bondarenko SP, et al. J Org Chem 2019; 84: 7138.
65. Gao Y, Liu Y and Wan JP. J Org Chem 2019; 84: 2243.
66. Bagle PN, Mane MV, Sancheti SP, et al. Org Lett 2019; 21: 335.
67. Peng W and Shreeve JM. J Org Chem 2005; 70: 5760.
68. Bolós J, Gubert S, Anglada L, et al. J Med Chem 1996; 39: 2962.
69. Zhao Q, Xiang H, Xiao JA, et al. J Org Chem 2017; 82: 9837.
70. Xu J, Kuang Z and Song Q. Chin Chem Lett 2018; 29: 963.
71. Kandula V, Thota PK, Mallesham P, et al. Synlett 2019; 30: 2295.
72. Zhao QL, Xia PJ, Zheng L, et al. Tetrahedron 2020; doi: https://doi.org/10.1016/j.tet.2019.130833.
73. Yu F, Yan S, Hu L, et al. Org Lett 2011; 13: 4782.
74. Yu FC, Zhou B, Xu H, et al. Tetrahedron Lett 2015; 56: 837.
75. Yu FC, Zhou B, Xu H, et al. Tetrahedron 2015; 71: 1036.
76. Xu H, Zhou P, Huang R, et al. Tetrahedron Lett 2016; 57: 4965.
77. Xu H, Zhou P, Zhou B, et al. RSC Adv 2016, 6: 73760.
78. Xu H, Zhou B, Zhou P, et al. Chem Commun 2016; 52: 8002.
79. Zhou P, Hu B, Li L, et al. J Org Chem 2017; 82: 13268.
80. Zhou P, Hu B, Yang J, et al. Eur J Org Chem 2017; 7256.
81. Zhou P, Hu B, Zhao S, et al. Tetrahedron Lett 2018; 59: 3116.
82. Hu B, Zhou P, Rao K, et al. Tetrahedron Lett 2018; 59: 1438.
83. Kantevari S, Patpi SR, Addla D, et al. ACS Comb Sci 2011; 13: 427.
84. Hernández S, Moreno I, SanMartin R, et al. J Org Chem 2010; 75: 434.