In this paper we present a new polynomial function for calculating the local phase transformation temperature (Ae_3) between the austenite + ferrite and the fully austenitic phase fields during heating and cooling of steel:

$$Ae_3({}^\circ C) = c_0 + \sum_{X} c_{Xk} X^k + \sum_{X,Y,k,m} c_{XLYm} X^k Y^m + \sum_{X,Y,Z,k,m,n} c_{XLYmZn} X^k Y^m Z^n$$

Article Info

Received 31 May 2016
Received in revised form 6 October 2016
Accepted 17 November 2016
Available online 9 December 2016

Abstract

In this paper we present a new polynomial function for calculating the local phase transformation temperature (Ae_3) between the austenite + ferrite and the fully austenitic phase fields during heating and cooling of steel:

$$Ae_3({}^\circ C) = c_0 + \sum_{X} c_{Xk} X^k + \sum_{X,Y,k,m} c_{XLYm} X^k Y^m + \sum_{X,Y,Z,k,m,n} c_{XLYmZn} X^k Y^m Z^n$$
The dataset includes the terms of the function and the values for the polynomial coefficients for major alloying elements in steel. A short description of the approximation method used to derive and validate the coefficients has also been included. For discussion and application of this model, please refer to the full length article entitled “The role of aluminium in chemical and phase segregation in a TRIP-assisted dual phase steel” http://dx.doi.org/10.1016/j.actamat.2016.05.046 (Ennis et al., 2016) [1]. © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

Specifications Table

Subject area	Steel metallurgy
More specific subject area	Phase transformations
Type of data	Tables and equations
How data was acquired	The approximation of the Ae_3 temperature was constructed in two steps: in the first step a large number of compositions with the associated Ae_3 temperatures were generated; this was followed by multiple regression to find a suitable approximation
Data format	Analysed – Contributions to polynomial coefficients in carbon para-equilibrium equation
Experimental factors	Numerical analysis was carried out on model alloys generated from MTDATA [2] and resulted in the polynomial function, which is described in more detail in this paper.
Experimental features	The approximation of the Ae_3 temperature was constructed in two steps: in the first step a large number of compositions with the associated Ae_3 temperatures were generated; this was followed by multiple regression to find a suitable approximation
Data source location	N/A
Data accessibility	Data is within this article.

Value of the data

- Improved polynomial relationship of phase transformation temperature for major alloying elements in steel.
- Can be directly used to compute phase transformation temperature for any alloy within the computed range.
- Compares well with full thermodynamic model data, but with simple polynomial function.

Table 1

Maximum valid compositions (wt. %) and calculated value of Ae_3 from the approximation.

[C]	Mn	Cr	Si	Al	Maximum calculated Ae_3
0.8	2.5	1.0	1.5	2.0	910 °C
This function can be seen as an extension of the Andrews expression [3], see Eq. (1), to include the role of carbon and aluminium on critical transformation temperature:

$$Ae_3 \degree C = 910 - 25C_{Mn} + 60C_{Si} - 11C_{Cr}$$ (1)

Where Ae_3 temperature is expressed in °C and concentrations in wt. %.

1. Data

There are three tables used to describe the numerical approximation of the Ae_3 temperature:

Contributions to	Product of elements	Constant	Units
c_0^*	[intercept]	918.6	°C
Al		161.4	°C/wt. %
Cr		-9.4	
Mn		-57.1	
Si		50.2	
AlCr		-4.2	°C/(wt. %)2
AlMn		-18.2	
A1Si		16.0	
CrMn		-3.6	
MnSi		-1.9	
Al2		19.4	
Cr2		1.1	
Mn2		1.5	
Si2		5.0	
Al3		-0.9	°C/(wt. %)3
Mn3		0.4	
Al2Cr		1.1	
Al2Mn		3.5	
Al2Si		-1.2	
Mn3Cr		0.8	
Mn3Si		-0.5	

Contributions to	Product of elements	Constant	Units
c_1^*	[C]	-720.0	°C/wt. %
[C]Al		-380.2	°C/(wt. %)2
[C]Cr		-12.4	
[C]Mn		108.6	
[C]Si		-122.1	
[C]MnCr		9.7	°C/(wt. %)3
[C]Al2		-11.3	
[C]Si2		-5.9	

Contributions to	Product of elements	Constant	Units
c_2^*	[C]2	1608.4	°C/(wt. %)2
[C]2Al		399.9	°C/(wt. %)3
[C]2Mn		-212.4	
[C]2Si		71.4	

Contributions to	Product of elements	Constant	Units
c_3^*	[C]3	-2981.2	°C/(wt. %)3
[C]3Al		-188.1	°C/(wt. %)4
[C]3Mn		259.7	

Contributions to	Product of elements	Constant	Units
c_4^*	[C]4	4051.0	°C/(wt. %)4
[C]4Cr		17.3	°C/(wt. %)5
[C]4Mn		-94.5	

Contributions to	Product of elements	Constant	Units
c_5^*	[C]5	-3388.1	°C/(wt. %)5
[C]5Si		1227.8	°C/(wt. %)6

- This function can be seen as an extension of the Andrews expression [3], see Eq. (1), to include the role of carbon and aluminium on critical transformation temperature:

- Where Ae_3 temperature is expressed in °C and concentrations in wt. %.
Table 1 gives the maximum valid composition range based on the model alloys used. Table 2 lists the contribution of each element to the polynomial coefficients in the derived function given in Eq. (6) in Ref. [1]:

\[Ae_3(\text{C}) = c_0 + \sum_{x,k} c_{x,k}X^k + \sum_{x,y,k,m} c_{x,y,k,m}X^kY^m + \sum_{x,y,z,k,m,n} c_{x,y,z,k,m,n}X^kY^mZ^n \]

(2)

where \(Ae_3 \) temperature is expressed in °C and concentrations in wt. %. Under para-equilibrium conditions carbon is the only chemical element that changes its concentration during transformation and to avoid repetitive calculations it is advantageous to write \(Ae_3 \) as a polynomial in carbon, \([\text{C}]\), as follows:

\[Ae_3 = \sum_i c_i^* [\text{C}]^i \]

(3)

The relationships of \(c_i^* \) to the constants, \(c_i \), are listed in Table 3.

2. Experimental design, materials and methods

The approximation of the \(Ae_3 \) temperature was constructed in two steps: in the first step a large number of compositions with the associated \(Ae_3 \) temperatures were generated; this was followed by multiple regression to find a suitable approximation. For each run, a total of 100,000 \(Ae_3 \) temperatures were generated with \([\text{C}] < 0.8 \) wt. % and within the range of validity for all other chemical elements given in Table 1. The value of each chemical element was chosen independently of all the other elements and was taken from a uniform distribution between 0 and the maximum allowed content. The SAS procedure ’reg’ with the option ‘selection=stepwise’ chose terms from a large bank that contributed significantly to \(Ae_3 \). Terms that did not improve the fit to the data were not included. The bank of terms consisted of:

- Chemical elements.
- Chemical elements squared.
- \([\text{C}]\), Mn, Al and Si to the third power.
- \([\text{C}]^4\), \([\text{C}]^5\), and \([\text{C}]^6\).
- The product of \([\text{C}]\), Mn, Al and Si with all other elements.
- The product of \([\text{C}]^2\), \([\text{C}]^3\), \([\text{C}]^4\), Mn^2, Al^2, and Si^2 with the other elements.
- \([\text{C}]\)MnCr.

Since the starting temperature for the model is 910 °C, all calculated \(Ae_3 \) temperatures higher than this value are assigned the starting value. Calculated \(Ae_3 \) temperatures higher than 910 °C should be approached with caution, because some extrapolation will have taken place. This is especially true for Al and Si compositions at the upper end of the valid range.

A measure of success of the approximation is the difference between the full MTDATA expressions and the values obtained from the approximation. The standard deviation of the approximation is 4.9 °C,
which is much smaller than the undercooling at which nucleation is assumed to take place, with an offset of 0.0 °C. The fit for Ae_3 was also determined for a second, independent set of 100,000 Ae_3 temperatures. The differences between the two sets were small; the differences with Andrews’ expression, Eq. (1) are somewhat larger, with an average difference of 11 °C and a standard deviation of 22 °C.

Acknowledgments

This work was made possible by the facilities and support of Tata Steel, the Diamond-Manchester Collaboration and the Research Complex at Harwell, funded in part by the EPSRC (EP/I02249X/1).

Transparency document. Supplementary material

Transparency document data associated with this paper can be found in the online version at http://dx.doi.org/10.1016/j.dib.2016.11.073.

References

[1] B.L. Ennis, E. Jimenez-Melero, R. Mostert, M.B. Santillana, P.D. Lee, The role of aluminium in chemical and phase segregation in a TRIP-assisted dual phase steel, Acta Mater. 115 (2016) 132–142. http://dx.doi.org/10.1016/j.actamat.2016.05.046.
[2] R.H. Davies, A.T. Dinsdale, J.A. Gisby, MTDATA – thermodynamic and phase equilibrium software from the National Physics Laboratory, Calphad 26 (2002) 229–271. http://dx.doi.org/10.1016/S0364-5916(02)00036-6.
[3] K.W. Andrews, Empirical formulae for the calculation of some transformation temperatures, J. Iron Steel Inst. 203 (1965) 721–729.