Introduction

For a long time, to survive, the human body has adapted to lack of nutrition including energy, salt, and water. With excess nutrition, the burden of obesity is a growing problem worldwide although malnutrition still remains unsolved in undeveloped areas. The problem is the imbalance between energy intake and expenditure that leads to various human disorders. Many scientists have studied the mechanisms of the energy balance which help them understand variable disorders of cells, tissues, organs and the whole body. All of endocrine system, body energy stores and central nervous system interact together for an efficient energy balance of the human body (Fig. 1). The reason why obesity-associated hypertension is increasingly recognized as an important phenotype is that both obesity and hypertension are components of the metabolic syndrome (including type 2 diabetes mellitus and dyslipidemia). These are all major risk factors for cardiovascular disease. The consequence of obesity is an alarming increase in adults, even in children. Otherwise, obesity increases the risk for type 2 diabetes mellitus, cardiovascular disease, cancers, and musculoskeletal disorder, and pulmonary disease1). Although obesity is an important
risk factor for diabetes and hypertension, the two most common etiologies of chronic kidney disease, obesity itself may potentiate kidney injury. In many researches, independent of kidney injury, obesity is also associated with the development of hypertension. However, the mechanisms underlying obesity-associated hypertension have not yet been clearly understood. In this review, we briefly summarize several mechanisms that provide the understandings of obesity-associated hypertension.

Putative mechanisms of obesity-associated hypertension

There are a large number of hypothetical mechanisms via which obesity is able to cause hypertension (Fig. 2)\(^2\). They include the renin-angiotensin-aldosterone system (RAAS), the sympathetic nervous system (SNS), metabolic dysregulation (including hyperinsulinemia, adipokine imbalance, and increased inflammatory cytokines).

Activation of the RAAS is a key contributing factor in obesity\(^3\). Angiotensin II, a potent vasoconstrictor and aldosterone with other RAAS metabolites have been known to underlie obesity-associated hypertension. Several mechanisms (including the SNS stimulation of renin release) have been considered to cause RAAS activation. Recent studies have reported the RAAS activation in adipose tissue, especially visceral adipocytes with the generation of angiotensin II and aldosterone.

Hyperinsulinemia in obesity is a possible factor in obesity-associated hypertension. Insulin induces the activation of the SNS\(^2\). Insulin also has a direct action on the kidney to stimulate sodium retention. As adipokine, leptin produced in adipocytes, suppresses appetite potently and stimulates the SNS. Leptin deficiency causes severe obesity in animals and humans. Both insulin-mediated and leptin-mediated SNS activation may be considered as mechanisms compensated in obese patients to stabilize weight and restore energy balance by stimulating sympathetically mediated thermogenesis with consequent enhancement of energy expenditure\(^2\).

Another contributing factor in obesity-associated hypertension is vascular stiffness which is influenced by adipokines such as leptin and hyperinsulinemia in obesity\(^4\). There are also oxidative stress and inflammation that leads to endothelial dysfunction. Decreased nitric oxide impairs vascular relaxation leading to vasoconstriction for hypertension.

There are three major factors among the leading hypotheses regarding the underlying mechanisms responsible for obesity-associated hypertension. They are adipose tissue dysfunction, activation of the RAAS, and endothelial dysfunction.

Adipose tissue dysfunction: Obesity-induced inflammation

Excess energy-induced fat accumulation contributes to the harmful disorder of many tissues, such as the pancreas, liver, skeletal muscle, heart, and vessels\(^5\). Multiple molecular mechanisms affect on the development of obesity-related complications. Recent data provides that the innate inflammatory activity might be an important role in the pathophysiology of obesity-related diseases\(^6\). In particular, the inflammatory cells of monocytes/macrophages are considered as an important contributing factor. Obesity is accompanied by infiltration and activation of macrophages in adipose tissue, leading to chronic inflammation of adipose tissue. Adipose tissue has been reported by Hotamisligil et al. that it is an important organ of obesity-induced inflammation determined by expressing proin-
flammatory molecules7. The phenotypic changes of adipocytes occur into hypertrophy and an inflammatory response in an autocrine and paracrine manner to impair adipocyte function, including insulin signaling9. Recently the inflammatory molecules of adipose tissue for understanding these mechanisms have been recognized5-7. Adipose tissue has been considered as an important source of obesity-induced inflammation by the inflammatory molecules, such as tumor necrosis factor-\(\alpha \) (TNF-\(\alpha \)), interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), and inducible nitric oxide (iNOS)6,7). Despite adipose tissue not only secreting inflammatory mediators, but it also responds to inflammatory signals. They express various receptors for cytokines, chemokines, and growth factors. However, a contribution of adipocytes to secretion of proinflammatory adipokines is low in most instances. Interestingly in metabolic disorders, this low-grade inflammatory response in adipose tissue can occur persistently, which is different from that in autoimmune diseases. Recently, an inflammation in adipose tissue has been reported in the infiltration of immune cells such as monocytes/macrophages. Thus, the view for the role of adipose tissue has been extended into an immunologically-active organ9).

The molecular mechanisms underlying monocyte/macrophage recruitment to adipose tissue is not clearly understood. A recent review revealed that various stimuli, including lipopolysaccharide and free fatty acids, activate the intracellular transcriptional nuclear factor kappa B (NF-\(\kappa \)B) pathway via TNF receptor 1, IL-6 receptor, and toll-like receptor (TLR)-4. The NF-\(\kappa \)B pathway plays a bridging role in the innate immunity with metabolism9,10). Of note, recent studies observed that obesity induces adipose tissue inflammation infiltrated by distinct immune cells, especially macrophages and T lymphocytes11,12). Macrophages might be largely responsible for the enhanced inflammatory activity of adipose tissue in obesity. In addition, obesity changed the phenotype of macrophage in adipose tissue13). Macrophages might have a heterogenic function in response to different stimuli. In the lean and insulin-sensitive milieu, macrophages are polarized toward M2 or “alternatively activated” macrophages. Excess nourished status induces hypertrophic changes in adipocytes secreting chemokines, that are differentiated into M1 or “classical” polarized macrophages. M1-polarized macrophages release TNF-\(\alpha \), IL-6, IL-10, and iNOS that cause activation of the NF-\(\kappa \)B pathway in adipocytes14). Eventually the specific macrophage population of adipose tissue is involved in obesity-related adipose tissue inflammation, which is tightly linked to insulin resistance15,16).

Adipokines and neuropeptides: A link between the adipose tissue and hypertension

Adipose tissue is a highly metabolic organ with pleiotropic functions far beyond the mere storage of energy. Adipose tissue produce and secrete several molecules such as leptin, resistin, adiponectin, and visfatin, as well as cytokines such as TNF-\(\alpha \), IL-6, MCP-1, and IL-1. These adipokines are stimulated via the intracellular signaling pathways that regulate inflammation of adipose tissue.

Leptin is a peptide hormone secreted from adipose tissue into circulation. It has effects on the hypothalamus to decrease appetite and stimulate sympathetic activity leading to induce hypertension. These actions are mediated by two pathways, which are through either the propiomelanocortin-derived peptides-\(\alpha \)-melanocyte-stimulating hormone (MSH)-driven by high leptin levels, or agouti-related peptide and neuropeptide Y (NPY). MSH bind to melanocortin receptors to stimulate the SNS, elevate energy expenditure and activate the hypothalamus-pituitary-adrenal axis. Normally, NPY is suppressed by high leptin level, but, interestingly, NPY, overexpressed in the leptin-resistant state of obesity, rather activate the SNS leading to hypertension.

Other peptide such as adiponectin, ghrelin, and endocannabinoids are related with insulin resistance to be involved with obesity-associated hypertension.

The RAAS and adipose tissue

Clinical trials for hypertension have presented the result...
of lower incidence of diabetes mellitus among patients treated with RAAS inhibitor than other classes of anti-hypertensive drugs. Despite these studies were performed on patients with hypertension or congestive heart failure, a relative risk for new-onset diabetes mellitus was reduced in a meta-analysis of randomized controlled trials. Moreover, the activity of RAAS is also associated with the metabolic syndrome such as obesity. Interestingly, mature adipocytes express all components of RAAS, including angiotensinogen, angiotensin-converting enzyme, as well as angiotensin type 1 (AT1) and angiotensin type 2 (AT2) receptors. Angiotensinogen mRNA in murine and human adipocytes was identified in the late 1980s. Angiotensinogen is produced predominantly from white adipose tissue and liver. Adipose angiotensinogen is involved in adipose tissue growth and blood pressure regulation. Plasma angiotensinogen has been thought to be a reflection of hepatic production. However, Massiéra F et al. investigated whether adipose angiotensinogen is released locally and into the blood stream using transgenic mice with angiotensinogen expression restricted to adipose tissue. They demonstrated that angiotensinogen produced by adipose tissue has an influence on both the local tissue and systemic circulation, which supports a role of adipose angiotensinogen in obesity-associated hypertension. Consistently, angiotensinogen expression in adipose tissue of obesity of rats and humans were demonstrated. Elsewhere, other RAAS components, including angiotensin converting enzyme, renin, renin receptor, AT1 receptor, AT2 receptor, and Mas receptor are produced from adipose tissue. This data suggest a local tissue RAAS also works at adipocyte level. As a result, angiotensin II decreases glucose uptake and lipid storage in adipocyte. On the other hand, receptor antagonist of either AT1 or AT2 decreased glucose uptake and restored lipid contents in adipocyte. In addition, there is rare evidence for the action of angiotensin II on other receptors such as Mas receptor. Therefore, the exact role of angiotensin II and angiotensin receptor in the mechanisms of adipocyte metabolism, remains unclear.

Microvascular dysfunction and insulin resistance

Endothelial dysfunction and arterial stiffness are considered an independent predictor for the progression of cardiovascular events and chronic kidney disease contributing to systolic hypertension. Elderly people have a greater chance to progress into those changes, but young obese people present similar changes in them. Inflammation and oxidative stress in adipose tissue are important to interact with the microvascular endothelium in the mechanisms of obesity-associated hypertension. Especially inflammation and oxidative stress in visceral perivas-
circular adipose tissue are associated with augmented systemic inflammation and oxidative stress. Finally, they are strongly interrelated through a vicious cycle, leading to endothelial dysfunction and vascular hypertrophy, where microvascular endothelium-dependent vasodilatation is impaired in response to vasodilators such as insulin. Increased microvascular resistance raises blood pressure and decreases blood flow in organs including skeletal muscle, leading to metabolic disorder. Otherwise interestingly, various stimuli of free fatty acid, angiotensin II, proinflammatory molecules induce vascular insulin resistance. Insulin signaling pathways in vascular endothelial cell are based on the balance between vasoconstriction and vasodilatation. Through insulin receptor, insulin receptor substrate-1 (IRS-1), PI3K, Akt, endothelial NO synthase (eNOS), and nitric oxide (NO) consist of vasodilatory pathway. On the other hand, the activation of extracellular signal-regulated kinase 1/2 (ERK 1/2), mitogen activated phosphate kinase (MAPK), and endothelin-1 (ET-1) lead to vasoconstriction. TNFα, angiotensin II, and free fatty acid produced from perivascular adipose tissue activate Akt pathway, but not ERK1/2 pathway. However, adiponectin stimulates AMPK and inhibit MAPK, leading to the activation of eNOS. Therefore, a regulatory link between microvascular and perivascular adipose tissue inflammation and adipokine synthesis are provided to explain the mechanism of obesity-associated hypertension.

Conclusion

Obesity has been implicated in increasing the risk for cardiovascular diseases. The complex interactions between obesity and hypertension still raise many questions regarding the exact mechanisms to prove cause and effect of them. Further research focusing on both adipokines and neuropeptides may provide simultaneously the new therapeutic target of obesity and hypertension (Fig. 4). A better understanding of the pathophysiology of obesity-associated hypertension may promise the possible self-control for appetite and blood pressure in the near future.

Acknowledgement

This work was supported by a grant from a special grant from Korea University.

References

1. Kramer H: Obesity and chronic kidney disease. Contrib Nephrol 151:1-18, 2006
2. Landsberg L, Aronne LJ, Beilin LJ, Burke V, Igel LI, Lloyd-Jones D, et al.: Obesity-related hypertension: pathogenesis, cardiovascular risk, and treatment: a position paper of The Obesity Society and the American Society of Hypertension. J Clin Hypertens (Greenwich) 15:14-33, 2013
3. Aghamohammadzadeh R, Heagerty AM: Obesity-related hypertension: epidemiology, pathophysiology, treatments, and the contribution of perivascular adipose tissue. Ann Med 44 Suppl 1:S74-84, 2012
4. Westerbacka J, Vehkavaara S, Bergholm R, Wilkinson I, Cockcroft J, Yki-Jarvinen H: Marked resistance of the ability of insulin to decrease arterial stiffness characterizes human obesity. Diabetes 48:821-827, 1999
5. Matsuzawa Y: The metabolic syndrome and adipocyto-
5. Ferrante AW, Jr.: Obesity-induced inflammation: a metabolic dialogue in the language of inflammation. J Intern Med 262:408-414, 2007
6. Hotamisligil GS, Shargill NS, Spiegelman BM: Adipose tissue macrophage and tumour necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259:87-91, 1993
7. Hotamisligil GS, Peraldi P, Budavari A, Ellis R, White MF, Spiegelman BM: IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance. Science 271:665-668, 1996
8. Schaffler A, Scholmerich J: Innate immunity and adipose tissue biology. Trends Immunol 31:228-235, 2010
9. Majdalawieh A, Ro HS: Regulation of Ikappa Balpha function and NF-kappaB signaling: AEBP1 is a novel proinflammatory mediator in macrophages. Mediators Inflamm 2010:823-821, 2010
10. Nishimura S, Manabe I, Nagasaki M, Eto K, Yamashita H, Ohsugi M, et al.: CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat Med 15:914-920, 2009
11. Feurer M, Herrero L, Cipolletta D, Naa z A, Wong J, Nayer A, et al.: Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat Med 15:930-939, 2009
12. Lumeng CN, Bodzin JL, Saltiel AR: Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 117:175-184, 2007
13. Cai D, Yuan M, Frantz DF, Melendez PA, Hansen L, Lee J, et al.: Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nat Med 11:183-190, 2005
14. Wentworth JM, Naselli G, Brown WA, Doyle L, Phipson B, Smyth GK, et al.: Pro-inflammatory CD11c+CD206+ adipose tissue macrophages are associated with insulin resistance in human obesity. Diabetes 59:1648-1656, 2010
15. Zeyda M, Gollinger K, Kriechuber E, Kiefer FW, Neuhof er A, Stulnig TM: Newly identified adipose tissue macrophage populations in obesity with distinct chemokine and chemokine receptor expression. Int J Obes (Lond) 34:1648-1694, 2010
16. Hansson L, Lindholm LH, Niskanen L, Lanke J, Hedner T, Niklason A, et al.: Effect of angiotensin-converting-enzyme inhibition compared with conventional therapy on cardiovascular morbidity and mortality in hypertension: the Captopril Prevention Project (CAPPP) randomised trial. Lancet 353:611-616, 1999
18. Yusuf S, Sleight P, Pogue J, Bosch J, Davies R, Dagenais G: Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. N Engl J Med 342:142-153, 2000
19. Dahlof B, Devereux RB, Kjeldsen SE, Julius S, Beavers G, de Faire U, et al.: Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet 359:995-1003, 2002
20. Engeli S: Role of the renin-angiotensin-aldosterone system in the metabolic syndrome. Contrib Nephrol 151:122-134, 2006
21. Engeli S, Negrel R, Sharma AM: Physiology and pathophysiology of the adipose tissue renin-angiotensin system. Hypertension 35:1270-1277, 2000
22. Campbell DJ, Habener JF: Cellular localization of angiotensinogen gene expression in brown adipose tissue and mesentery: quantification of messenger ribonucleic acid abundance using hybridization in situ. Endocrinology 121:1616-1626, 1987
23. Massiera F, Bloch-Faure M, Ceiler D, Murakami K, Fukamizu A, Gasc JM, et al.: Adipose angiotensinogen is involved in adipose tissue growth and blood pressure regulation. FASEB J 15:2727-2729, 2001
24. Hainault I, Nebout G, Turban S, Ardouin B, Ferre P, Quignard-Bouangle A: Adipose tissue-specific increase in angiotensinogen expression and secretion in the obese (fa/fa) Zucker rat. Am J Physiol Endocrinol Metab 282:ES59-66, 2002
25. Van Harmelen V, Ariapart P, Hoffstedt J, Lundkvist I, Bringman S, Arner P: Increased adipose angiotensinogen gene expression in human obesity. Obes Res 8:337-341, 2000
26. Engeli S, Bohnke J, Gorzelniak K, Janke J, Schling P, Rader M, et al.: Weight loss and the renin-angiotensin-aldosterone system. Hypertension 45:356-362, 2005
27. Thatcher S, Yiannikouris F, Gupte M, Cassis L: The adipose renin-angiotensin system: role in cardiovascular disease. Mol Cell Endocrinol 302:111-117, 2009
28. Yvan-Charvet L, Even P, Bloch-Faure M, Guerre-Millo M, Moustaid-Moussa N, Ferre P, et al.: Deletion of the angiotensin type 2 receptor (AT2R) reduces adipose cell size and protects from diet-induced obesity and insulin resistance. Diabetes 54:991-999, 2005
29. Kouyama R, Suganami T, Nishida J, Tanaka M, Toyoda
T, Kiso M, et al.: Attenuation of diet-induced weight gain and adiposity through increased energy expenditure in mice lacking angiotensin II type 1a receptor. Endocrinology 146:3481-3489, 2005

30. Santos SH, Fernandes LR, Mario EG, Ferreira AV, Porto LC, Alvarez-Leite JI, et al.: Mas deficiency in FVB/N mice produces marked changes in lipid and glycemic metabolism. Diabetes 57:340-347, 2008

31. Takahashi N, Li F, Hua K, Deng J, Wang CH, Bowers RR, et al.: Increased energy expenditure, dietary fat wasting, and resistance to diet-induced obesity in mice lacking renin. Cell Metab 6:506-512, 2007

32. Jayasooriya AP, Mathai ML, Walker LL, Begg DP, Denton DA, Cameron-Smith D, et al.: Mice lacking angiotensin-converting enzyme have increased energy expenditure, with reduced fat mass and improved glucose clearance. Proc Natl Acad Sci USA 105:6531-6536, 2008

33. Yvan-Charvet L, Quignard-Boulange A: Role of adipose tissue renin-angiotensin system in metabolic and inflammatory diseases associated with obesity. Kidney Int 79:162-168, 2011

34. Lee MH, Song HK, Ko GJ, Kang YS, Han SY, Han KH, et al.: Angiotensin receptor blockers improve insulin resistance in type 2 diabetic rats by modulating adipose tissue. Kidney Int 74:890-900, 2008

35. Cavalcante JL, Lima JA, Redheuil A, Al-Mallah MH: Aortic stiffness: current understanding and future directions. J Am Coll Cardiol 57:1511-1522, 2011

36. Aroor AR, Demarco VG, Jia G, Sun Z, Nistala R, Meininger GA, et al.: The Role of Tissue Renin-Angiotensin-Aldosterone System in the Development of Endothelial Dysfunction and Arterial Stiffness. Front Endocrinol (Lausanne) 4:161, 2013

37. De Boer MP, Meijer RI, Wijnstok NJ, Jonk AM, Houben AJ, Stehouwer CD, et al.: Microvascular dysfunction: a potential mechanism in the pathogenesis of obesity-associated insulin resistance and hypertension. Microcirculation 19:5-18, 2012

Copyright © 2013 The Korean Society of Electrolyte Metabolism