Morbidities and Mortality in Patients with Hereditary Thrombotic Thrombocytopenic Purpura

Tracking no: ADV-2021-005760R3

Azra Borogovac (University of Oklahoma Health Sciences Center, United States) Jessica Reese (University of Oklahoma Health Sciences Center, United States) Samiksha Gupta (University of Oklahoma Health Sciences Center, United States) James George (University of Oklahoma Health Sciences Center, United States)

Abstract:
Hereditary thrombotic thrombocytopenic purpura (hTTP) is a rare disorder caused by severe ADAMTS13 deficiency. Major morbidities and death at a young age are common. Although ADAMTS13 replacement can prevent morbidities and death, current regimens of plasma prophylaxis are insufficient. We identified 226 patients with hTTP in 96 reports published from 2001 through 2020. In 202 patients the age at diagnosis was reported; 117 were female, 85 were male. The difference was caused by diagnosis of 34 women during pregnancy, suggesting that many men and nulliparous women are not diagnosed. Eighty-three patients had severe jaundice at birth; hTTP was suspected and effectively treated in only 3 infants. Of the 217 patients who survived infancy, 73 (34%) had major morbidities, defined as stroke, kidney or cardiac injury, that occurred at a median age of 21 years. Sixty-two patients had stroke; 13 strokes occurred in children (less than or equal to)10 years old. Of the 54 patients who survived their initial major morbidity and were subsequently followed, 37 (69%) had sustained or subsequent major morbidities. Of the 39 patients who were followed past age 40, 20 (51%) had experienced a major morbidity. Compared to age and gender-matched United States population, probability of survival was lower at all ages, beginning at birth. Prophylaxis was initiated in 45 patients with a major morbidity; in 11 (28%) a major morbidity recurred after prophylaxis had begun. Increased recognition of hTTP and more effective prophylaxis begun at a younger age are required to improve health outcomes.

Conflict of interest: No COI declared

COI notes:

Preprint server: No;

Author contributions and disclosures: Borogovac: Created the concept of the manuscript, did the literature search, reviewed each article, organized and interpreted the data, contributed to the writing of each draft Reese: Organized the data, did the statistical analyses, created the Figures, proofread each draft Gupta: Contributed to the literature search, reviewed most articles, assisted Borogovac in data organization and interpretation George: Created the concept of the manuscript, reviewed each article, interpreted the data, wrote the first and successive drafts of the manuscript

Non-author contributions and disclosures: No;

Agreement to Share Publication-Related Data and Data Sharing Statement: Emails to the corresponding author

Clinical trial registration information (if any):
Morbidities and Mortality in Patients with Hereditary Thrombotic Thrombocytopenic Purpura

Azra Borogovac, MD\textsuperscript{1}, Jessica A. Reese, PhD\textsuperscript{2}, Samiksha Gupta, MD\textsuperscript{1}, James N. George, MD\textsuperscript{1,2}

\textsuperscript{1}Hematology-Oncology Section, Department of Medicine, College of Medicine
\textsuperscript{2}Department of Biostatistics & Epidemiology, Hudson College of Public Health
University of Oklahoma Health Sciences Center, Oklahoma City, OK

Running title: Morbidities and mortality of hereditary TTP

Regular Article, Thrombosis and Hemostasis

Keywords: hereditary thrombotic thrombocytopenic purpura, stroke, acute kidney injury, end-stage kidney disease, myocardial infarction, cardiomyopathy, congestive heart failure,

Words
Abstract: 244
Text: 3844
Figures: 3
Tables: 4
References: 45
Supplemental Material: 4 Tables

Corresponding author:
James N. George, M.D.
Hematology-Oncology Section, Department of Medicine, College of Medicine
Department of Biostatistics & Epidemiology, Hudson College of Public Health
The University of Oklahoma Health Sciences Center
801 NE 13th Street
Oklahoma City, OK 73104
E-mail: james-george@ouhsc.edu

Authors’ E-mail addresses:
azra-borogovac@ouhsc.edu
jessica-reese@ouhsc.edu
samiksha-gupta@ouhsc.edu
Key Points

More women (117) than men (85) were diagnosed with hereditary TTP. The difference was caused by 34 women who were diagnosed during pregnancy.

Half of patients with hereditary TTP who were over age 40 had had stroke, kidney injury requiring dialysis, and/or severe cardiac injury.

Abstract

Hereditary thrombotic thrombocytopenic purpura (hTTP) is a rare disorder caused by severe ADAMTS13 deficiency. Major morbidities and death at a young age are common. Although ADAMTS13 replacement can prevent morbidities and death, current regimens of plasma prophylaxis are insufficient. We identified 226 patients with hTTP in 96 reports published from 2001 through 2020. In 202 patients the age at diagnosis was reported; 117 were female, 85 were male. The difference was caused by diagnosis of 34 women during pregnancy, suggesting that many men and nulliparous women are not diagnosed. Eighty-three patients had severe jaundice at birth; hTTP was suspected and effectively treated in only 3 infants. Of the 217 patients who survived infancy, 73 (34%) had major morbidities, defined as stroke, kidney or cardiac injury, that occurred at a median age of 21 years. Sixty-two patients had stroke; 13 strokes occurred in children ≤10 years old. Of the 54 patients who survived their initial major morbidity and were subsequently followed, 37 (69%) had sustained or subsequent major morbidities. Of the 39 patients who
were followed past age 40, 20 (51%) had experienced a major morbidity. Compared to age and gender-matched United States population, probability of survival was lower at all ages, beginning at birth. Prophylaxis was initiated in 45 patients with a major morbidity; in 11 (28%) a major morbidity recurred after prophylaxis had begun. Increased recognition of hTTP and more effective prophylaxis begun at a younger age are required to improve health outcomes.
Introduction

Hereditary thrombotic thrombocytopenic purpura (hTTP) has a long history but accurate diagnosis has only been recently available.\(^1\) In the first report of hTTP in 1975, 3 of the 4 affected children in one family died.\(^2\) The exacerbation of hTTP with pregnancy was recognized in 1976. Two sisters had their initial symptoms in the third trimester of their first pregnancy; both died.\(^3\) In 1977, plasma infusion was recognized as effective treatment.\(^4\) In 1998, a severe deficiency of plasma von Willebrand-cleaving protease was identified as the etiology of hTTP.\(^5,6\) In 2001 biallelic \textit{ADAMTS13} mutations were identified in 7 patients of 4 families.\(^7\) Documentation of biallelic \textit{ADAMTS13} mutations confirms the diagnosis of hTTP. The first large case series of patients with documented hTTP was published in 2011, describing that the times of greatest risk are in newborn infants and pregnant women.\(^8,9\) These observations have been confirmed by the reports of the United Kingdom (UK)\(^10\) and International\(^11\) Hereditary TTP Registries.

The goal of our study was to determine the health outcomes and survival of hTTP patients. We reviewed the clinical course of 226 patients described in 96 reports. We documented the age of initial symptoms and the age of diagnosis. We identified major morbidities and deaths and the ages that they occurred. We evaluated the effectiveness of plasma prophylaxis for prevention of major morbidities. We calculated survival compared to the age and gender-matched
United States (US) population. Understanding the clinical course of patients with hTTP is essential for providing effective preventive management.

**Methods**

To identify published reports of individual hTTP patients, we searched MEDLINE and PubMed from 2001, when the etiology of hTTP was first defined, through December 2020, using our previously published search strategy. We included all patients whose genetic and clinical data were described. We defined stroke, kidney injury and cardiac injury as major morbidities because of their high risk for persistent or recurrent organ injury and health impairment. We combined transient ischemic attack with stroke, which we report as stroke, because most reports did not describe magnetic resonance imaging, which is essential to confirm or exclude cerebral infarction. We defined kidney injury as requiring for renal replacement therapy, which commonly indicates persistent or progressive impairment of kidney function. We selected renal replacement therapy, often described as hemodialysis, as our definition of kidney injury because it was a consistent and uniform term that was apparent in the descriptions of the patients’ clinical course. We recognize that requiring renal replacement therapy may underestimate the potential for long-term kidney injury. Cardiac injury was defined as myocardial infarction, congestive heart failure or cardiomyopathy.
We compared the probability of survival of hTTP patients to the expected values based on the life expectancy of the 2017 United States (US) reference population obtained from the Centers for Disease Control and Prevention lifetables. We acknowledge that the US population may be an imprecise comparison for these patients’ deaths, since only 15 (7%) of the 226 patients were from the US, where the life expectancy is 79 years. This limitation may not affect our observation that the probability of survival of patients with hTTP was decreased, since the life expectancy may be greater in other countries with more reported patients (e.g., Japan, 48 (21%) patients, life expectancy, 84 years). We used the age at death and gender to determine the expected probability of survival. If the authors did not report death, we used age at the time of publication as a surrogate for the time of last follow-up and censoring. We used Kaplan-Meier methods with point-wise limits and right censoring to estimate the probability of survival and the corresponding 95% confidence interval and to compare between males and females. We used a logrank test to determine if the probability of survival differed between males and females.

Results

Patient selection

Ninety-five articles reported clinical data on 208 patients with hTTP documented by biallelic ADAMTS13 mutations. We included 17 additional patients reported in these articles who were siblings (or father) of patients with hTTP and who had clinical features of TTP and/or autopsy evidence for...
thrombotic microangiopathy but died without ADAMTS13 sequence analysis. One additional patient was diagnosed with TTP by ADAMTS13 activity <10% prior to her death during her first pregnancy. After her death, hTTP was diagnosed when single allele ADAMTS13 mutations were identified in both of her parents and her brother.\textsuperscript{16} We describe these 18 patients with their citations in Table S1. Table S2 provides demographic, genetic and clinical data, country of origin, citation, and purpose for publication for each of the 226 patients. The patients were from 26 countries; 194 (86\%) were from Europe, Japan, Israel and the US, countries which have similar health care and life expectancy (79-84 years\textsuperscript{15}).

**Diagnosis**

Ten (5\%) of the 208 patients who had biallelic ADAMTS13 mutations were asymptomatic (Table S3). Eight of these 10 patients (7 families) were siblings of previously diagnosed patients; one patient was the father. These 9 patients were identified by ADAMTS13 sequence analysis of family members. The other patient was a 17 year-old woman who was evaluated following discovery of asymptomatic thrombocytopenia on a routine laboratory test. Her evaluation revealed ADAMTS13 activity <2\%. Subsequent ADAMTS13 sequence analysis confirmed the diagnosis of hTTP.\textsuperscript{17}

Among all 226 patients, 216 were symptomatic. The age of initial symptoms was reported for 204 patients; the median age was 2 years (Table 1). Eighty-
three (42%) of these 204 patients had severe jaundice at birth; anemia and thrombocytopenia were often described. Nine of these 83 newborn infants died soon after birth (Table S1). hTTP was suspected in 1 of these 9 infants before death, but she died when her parents refused plasma exchange. ADAMTS13 sequence analysis confirmed the diagnosis of hTTP after her death. ADAMTS13 sequence analysis confirmed the diagnosis in 2 other infants in whom hTTP was first suspected after death. The other 6 infants who died had clinical and/or autopsy features consistent with TTP. They were older siblings of patients who were subsequently diagnosed with hTTP. In 3 of the 74 surviving infants, hTTP was promptly suspected, effectively treated and subsequently confirmed. Among the remaining 71 infants, 37 were treated with empirical whole blood exchange transfusion. hTTP was diagnosed in these 71 patients at ages 1 month-21 years (median age, 5 years).

Among the 216 symptomatic patients, the age of diagnosis was reported for 202 patients. The median age was 16 years; 117 patients were female, 85 were male (Table 1). Figure 1 illustrates the age of diagnosis. For patients age 0-19 years, the frequency of diagnosis of boys (58) and girls (56) was similar; 2 girls were diagnosed during pregnancy. For patients age ≥40 years, the frequency of diagnosis of men (12) and women (11) was also similar; 1 woman was diagnosed during pregnancy. For patients age 20-39 years, the frequency of diagnosis of men (15) was much less than the diagnosis of women (50). The difference was caused by diagnosis of women during pregnancy (31). Omitting
the 34 diagnoses of hTTP during pregnancy, the frequency of diagnosis in women (83) and men (85) was similar across all ages. For men, the frequency of diagnosis steadily decreased after age 10.

**Major Morbidities**

One or more of the 3 major morbidities occurred in 73 (34%) of the 217 patients, excluding the 9 infants who died soon after birth (Table 1). Thirty-eight (52%) of the 73 patients were women. Each of these patients is described in Table S4 with their type of morbidity, age at the time of their initial morbidity, age of their last follow-up or death, subsequent morbidities and prophylaxis. The median ages for initial occurrence of the 3 morbidities were similar, 20-23 years. The initial occurrence of major morbidities was almost always associated with thrombocytopenia, however exacerbations of hTTP are often not as discrete as the acute episodes of acquired immune TTP. Stroke was the most common major morbidity. Sixty-two (29%) of all 217 patients had a stroke. Stroke occurred equally among women (28%) and men (29%). Thirteen (21%) of the 62 patients with stroke were ≤10 years old. Risk factors for stroke (e.g., hypertension) were rarely reported. Six (8%) of the 73 patients died at the time of their initial major morbidity; 13 patients had no subsequent follow-up. Thirty-seven (69%) of the 54 surviving patients, who had continued follow-up for a median of 10 years (range, 1-47 years), had a sustained or recurrent major morbidity. Twenty-one patients had a recurrent stroke; 14
developed end-stage kidney disease (EKSD). Two patients had kidney transplantation (Tables 2, S4).

Table 3 presents the occurrence and frequency of major morbidities. The frequency of initial major morbidities increased with each decade of life. Table 3 also presents the cumulative frequency of major morbidities, including patients who survived a previous major morbidity and continued to be followed. Among all 212 patients for whom follow-up was reported, 39 had follow-up after age 40; 20 (51%) had experienced a major morbidity. All 4 patients with continued follow-up to age ≥70 experienced a major morbidity. Figure 2 illustrates these data for each of the 73 patients, presenting the age of initial occurrence of a major morbidity and duration of follow-up. This figure illustrates that initial major morbidities consistently occurred across all ages, with the highest cumulative frequency at ages 20-40 years.

**Prophylaxis**

Prophylactic treatment was reported for 110 (53%) of the 207 symptomatic patients who survived infancy. Prophylaxis began at a median age of 14 years (range, newborn\(^{21}\)-70 years\(^{23}\)). Prophylaxis was almost always with plasma, commonly described as 1-3 units of plasma at 2-3 week intervals. In some patients, plasma was given to maintain the platelet count above a certain level (e.g., 20,000\(^{24}\)-100,000/\(\mu\)L\(^{25}\)). Two patients received plasma-derived Factor VIII
concentrates that contain ADAMTS13 (Koate, BPL 8Y). The benefit of prophylaxis was rarely described.

To describe prophylaxis use and effectiveness more clearly, we analyzed the 54 patients with major morbidities who survived their initial morbidity and continued to be followed (Table S4). Thirty-nine (72%) of the 54 patients were managed with prophylaxis; the age when prophylaxis began was reported for 37 patients. Seven patients had begun prophylaxis before their first occurrence of a major morbidity; 9 patients began at the time of their first major morbidity; 21 patients began 1-40 years after their first major morbidity, often at the time of a recurrent major morbidity. A major morbidity recurred in 11 (28%) patients following the beginning of prophylaxis (Table 2). Among the 15 patients who were not reported to have prophylaxis, recurrent stroke and/or progression of kidney injury to ESKD occurred in 7 (47%) patients.

**Death**

Thirty-two (14%) of the 226 patients died (Figure 1). Each of these deaths is described in Table S1. Among all 32 deaths, 18 (56%) occurred before age 20, 9 boys and 9 girls. At age 20 and older, the frequency and age of deaths appeared to be different between men and women. Nine men died after age 20, one or more in each decade. Four women died during pregnancy at ages 20-26; one woman died at age 55. Deaths could be distinguished in 4 distinct categories:
neonatal deaths, deaths in children, deaths during pregnancy and deaths in adults (excluding deaths occurring during pregnancy) (Table 1).

Nine infants died soon after birth with extreme hyperbilirubinemia caused by severe hemolysis; 5 were girls, 4 were boys. One boy had an autopsy documenting systemic microvascular thrombosis.

Nine children, ages 2-13, died; 4 were girls, 5 were boys. Although none of the 9 children had a preceding major morbidity, they had previous acute episodes of severe thrombocytopenia and microangiopathic hemolytic anemia. Only one girl, age 3, had been previously diagnosed with TTP. Five of the children had autopsies documenting systemic microvascular thrombosis.

Deaths of four women, ages 20-26, were associated with pregnancy. Three women died at 20, 23 and 28 weeks’ gestation; one woman died postpartum. None of the 4 women had a preceding major morbidity; none had been previously diagnosed with TTP. One woman had an autopsy documenting systemic microvascular thrombosis.

Ten adults, 9 men and 1 woman, ages 21-79, died. Eight patients had been previously diagnosed with hTTP. Nine patients had preceding major morbidities; one man died at age 23 with no previous major morbidity. Six patients had ESKD for 1-19 (median, 9) years preceding their death. One of
these 6 patients and 2 additional patients had strokes 14-19 (median, 6) years preceding their death. One man had a myocardial infarction 17 years preceding his death.

Beginning at birth, survival of patients with hTTP was significantly less than the age and gender-matched US population (Figure 3A). At age 10, the estimated survival of patients with hTTP was 92% (95% CI, 88-96%) compared to 99% for the US population. At age 40, the estimated survival of patients with hereditary TTP was 82% (95% CI, 75-89%) compared to 96% for the US population. After age 30 the survival of women appeared to be greater than men (Figure 3B), although the difference was not significant.

**Discussion**

Our analysis of these 226 case reports increases our understanding of the lives of patients with hTTP. However, long-term health outcomes remain uncertain because confirmation of the diagnosis of hTTP has only been possible within the past 20 years. Of the 226 case report patients, 160 (71%) were reported after 2010, when measurements of ADAMTS13 activity became commonly available.

Major morbidities are common in patients with hTTP. Among the 217 patients who survived their neonatal days, 73 (34%) had stroke, kidney injury requiring renal replacement therapy and/or cardiac injuries (infarction, cardiomyopathy...
or congestive heart failure). The frequencies of all major morbidities were similar in women and men. Major morbidities consistently occurred across all ages, beginning at birth. Half of patients ≥40 years old had experienced one or more of these 3 major morbidities. Among the major morbidities, the occurrence of stroke (62 patients, 27%) was much more common than myocardial infarction (5 patients, 2%). This disparity was also apparent in the reports of the UK (stroke, 25%; myocardial infarction, 0)\textsuperscript{10} and International (stroke, 31%; myocardial infarction, 4%)\textsuperscript{11} Hereditary TTP Registries (Table 4).

The young age of occurrence of stroke in patients with hTTP is similar to the reported age of stroke in patients with sickle cell anemia.\textsuperscript{12, 29} Similar to hTTP, myocardial infarction is much less common than stroke in patients with sickle cell anemia.\textsuperscript{29} In patients with sickle cell anemia, strokes occur in the cerebral vessels with the lowest blood flow.\textsuperscript{30} Brain imaging studies, similar to the published studies of patients with sickle cell disease, were not reported in these patients with hTTP. The much greater frequency of stroke compared to myocardial infarction in both hTTP and sickle cell disease may be caused by their similar embolic obstruction of normal vessels, in contrast to the vascular disease that causes stroke and myocardial infarction in most people.

Among all 32 deaths, 9 occurred in the first days of life. Failure to recognize hereditary TTP in newborn infants with extreme hyperbilirubinemia caused by severe hemolysis is common.\textsuperscript{8} Among all 226 case report patients, 83 (37%)
newborn infants had severe hyperbilirubinemia. Only 3 infants were suspected to have hTTP, appropriately treated and survived.\textsuperscript{21, 22} The diagnosis of hTTP should be considered in all newborn infants who have severe hyperbilirubinemia. Although documentation of ADAMTS13 deficiency may require several days, empirical plasma infusion is a simple, life-saving treatment.

Exacerbation of hTTP in newborn infants is caused by the occurrence of high-velocity, turbulent blood flow through the patent ductus arteriosus\textsuperscript{31} as pulmonary vascular resistance decreases after birth.\textsuperscript{32} Turbulent blood flow increases thrombotic risk by causing the ultra-large multimers of von Willebrand factor in patients with hTTP to unfold, exposing their platelet binding sites\textsuperscript{33} and allowing assembly into bundles.\textsuperscript{34} The thrombotic risk caused by platelet binding to VWF is supported by the prompt effectiveness of caplacizumab, which blocks platelet binding to VWF, in patients with acquired, immune TTP.\textsuperscript{35}

Nine deaths occurred in children, ages 2-13 years. None of the children had a preceding major morbidity and only one had been previously diagnosed with hTTP. Combining the deaths in children with the neonatal deaths, 9 occurred in boys and 9 occurred in girls.
Four deaths occurred in women, ages 20-26, associated with pregnancy. Severe complications during pregnancy almost always occur in women with hTTP. In our previous analysis of pregnancies in 35 women with undiagnosed hTTP, 34 (97%) had severe complications. Exacerbation of hTTP with pregnancy may be caused by turbulent blood flow, similar to the exacerbation of hTTP in newborn infants. The high-velocity, turbulent blood flow of maternal spiral arterioles that supply the developing placenta may expose platelet binding sites on VWF and create bundles of VWF. hTTP causes placental arteriolar thrombosis and infarction, described as maternal vascular malperfusion. The placental pathology of severe preeclampsia and HELLP syndrome is also described as maternal vascular malperfusion. The similar placental pathology is consistent with the similar clinical features (thrombocytopenia, microangiopathic hemolytic anemia) of hTTP, severe preeclampsia and HELLP syndrome. An additional risk for exacerbation of hTTP during pregnancy is the increase of VWF. In healthy pregnancies, the plasma concentration of VWF antigen increases throughout pregnancy to reach 3-fold pre-pregnancy level at 38 weeks’ gestation.

Excluding the 4 women whose deaths were associated with pregnancy, 10 deaths occurred in adults, 9 men and 1 woman, ages 21-79. Nine had preceding major morbidities; 8 had been previously diagnosed with hTTP.
The frequencies of diagnosis and death emphasize the gender disparities among adults with hTTP. More women (117) than men (85) were diagnosed with hTTP. The difference occurred at ages 20-39 and was caused by the frequent diagnosis of hTTP during pregnancy.\(^8, 10\) Excluding the 34 women who were diagnosed during pregnancy, the number of women (83) and men (85) diagnosed with hTTP and the ages when they were diagnosed were similar (Figure 1). This observation suggests that many men and nulliparous women with hTTP are not diagnosed.

Among reported deaths in patients ≥30 years old, there are more men (7) than women (1). Fewer deaths among older women is also suggested in our survival analysis (Figure 3B). This survival disparity may also be related to pregnancy. Women may have died during pregnancy with unrecognized hTTP. Death during pregnancy may be attributed to other causes that are much more common, such as severe preeclampsia and HELLP syndrome. Misdiagnosis may occur because both the clinical and pathologic features of severe preeclampsia and HELLP syndrome are similar to hTTP.\(^37-39\) Although the clinical features are similar, hTTP may occur earlier during gestation than severe preeclampsia and HELLP syndrome. The gestational age at death of the 3 women who died during pregnancy was 20, 23 and 28 weeks, when preeclampsia and HELLP syndrome rarely occur.\(^41\) Another possible reason for fewer deaths in women after age 30 may be that subsequent management of
women who are diagnosed and effectively treated during pregnancy could prevent subsequent deaths.

The possibilities of unrecognized hereditary TTP suggest that the current prevalence estimate of hereditary TTP, 0.5-2.0 cases per million population,\(^1\) is an underestimate. One report described a search for hTTP in Central Norway using multiple case-finding strategies.\(^{42}\) These data reported an estimated prevalence of hereditary TTP of 16.7 cases per million population. This estimate was supported by identifying the common pathologic \textit{ADAMTS13} mutations, c.4143insA and p.R1060W, in 0.33-1.0\% of blood donors.\(^{42}\) As measurements of \textit{ADAMTS13} activity become more common, more patients with hereditary TTP will be identified.

Morbidities and deaths in patients with hereditary TTP are preventable by replacement of \textit{ADAMTS13}. In spite of the apparent simplicity of plasma prophylaxis, only 39 (72\%) of the 54 patients with major morbidities who survived and continued to be followed were described as receiving prophylaxis. Major morbidities recurred in 28\% of patients receiving prophylaxis and in 47\% of patients not receiving prophylaxis. Plasma prophylaxis may not be used
more often because the usual regimen, 10-15 ml/kg/2 weeks,\textsuperscript{1} is a major lifetime inconvenience. Also, current regimens of plasma prophylaxis may be insufficient. The International Hereditary TTP Registry has documented that the incidence of acute TTP episodes was not different between patients who received prophylaxis (0.36/person-year [95% CI 0.29-0.44]) and patients without regular plasma prophylaxis (0.41/person-year [95% CI 0.30-0.56]).\textsuperscript{43} More frequent infusions and larger volumes of plasma are more effective\textsuperscript{10} and have contributed to the successful management of women with hTTP during pregnancy.\textsuperscript{43}

When recombinant ADAMTS13 is approved, prophylaxis will become simpler and may become more common. In the initial clinical trial, infusion of 40 U/kg of recombinant ADAMTS13 (vial concentration, 300 U/ml) in 9 patients was anticipated to achieve \textit{in vivo} ADAMTS13 activity of 100%. ADAMTS13 activity of 94\% was achieved, with a half-life of 2.8 days.\textsuperscript{44} These preliminary data suggest that prophylaxis with recombinant ADAMTS13 may be effective and conveniently self-administered.

With effective and convenient prophylactic treatment for patients with hTTP, management questions will become whom to treat and when to begin. Lifetime prophylaxis beginning at the time of diagnosis may be the optimal management. For asymptomatic and minimally symptomatic patients, careful follow-up without prophylaxis may be sufficient. However, apparently minor
symptoms, such as headache, lethargy and abdominal pain, can resolve and platelet counts can increase with plasma prophylaxis.\textsuperscript{10} This suggests that microvascular thrombosis with organ ischemia may occur without severe symptoms.

It is also essential to focus on the patients’ general health. Preventive measures, such as not smoking, regular exercise and a healthy diet, are essential to decrease risk for stroke. Optimal general medical care for risk factors, such as hypertension\textsuperscript{45} and diabetes, is also essential.

An important limitation of our data is the short duration of patient follow-up. Patient follow-up was not an objective of many case reports and long-term follow-up is rarely reported because confirmation of the diagnosis of hereditary TTP has only been possible for 20 years.\textsuperscript{7} Another limitation of our data is that case reports may describe exceptional patients. However, the validity of our data is supported by the purpose for publication of these case reports. For 146 (65\%) patients, the purpose was to describe \textit{ADAMTS13} mutations (Table S2); the patients’ clinical features were described as supportive data. Validity of our case report data is also supported by the similarity of our data describing gender, age of diagnosis, frequency of stroke and myocardial infarction, and death to the data reported by both the United Kingdom and International Hereditary TTP Registries (Table 4).\textsuperscript{10, 11} Strengths of our case report data are the description of clinical outcomes of individual patients and the inclusion of
patients not eligible for Registry enrollment (e.g., infants who died). Although inclusion of patients without genetic confirmation may risk including patients without hTTP, it may provide a more accurate estimate of mortality.

These data describe our current knowledge of the health outcomes of patients with hTTP. With more common use of ADAMTS13 measurements there will be greater recognition of these patients. More common use of ADAMTS13 measurements will identify hereditary TTP as a cause of severe hyperbilirubinemia in newborn infants, stroke in children and young adults and severe complications during pregnancy. More frequent identification of patients with hTTP and more convenient prophylaxis will prevent major morbidities and deaths.
Acknowledgments: None. This project was supported by authors’ salaries of the University of Oklahoma Health Sciences Center. There was no external support.

Authorship
Contributions:

- **Borogovac**: Created the concept of the manuscript, did the literature search, reviewed each article, organized and interpreted the data, contributed to the writing of each draft
- **Reese**: Organized the data, did the statistical analyses, created the Figures, proofread each draft
- **Gupta**: Contributed to the literature search, reviewed most articles, assisted Borogovac in data organization and interpretation
- **George**: Created the concept of the manuscript, reviewed each article, interpreted the data, wrote the first and successive drafts of the manuscript

Conflict of Interest Disclosure: None of the authors have have competing financial interests.

Correspondence:
James N. George, M.D.
Hematology-Oncology Section, Department of Medicine, College of Medicine
Department of Biostatistics & Epidemiology, Hudson College of Public Health
The University of Oklahoma Health Sciences Center
801 NE 13th Street
Oklahoma City, OK 73104
E-mail: james-george@ouhsc.edu

Data sharing statement
For data sharing, contact the corresponding author: james-george@ouhsc.edu.
REFERENCES

1. Kremer Hovinga JA, George JN. Hereditary thrombotic thrombocytopenic purpura. New Eng J Med 2019;381(17):1653-62.
2. Wallace DC, Lovric A, Clubb JS, Carseldine DB. Thrombotic thrombocytopenic purpura in 4 siblings. Am J Med. 1975;58:724-34.
3. Fuchs WE, George JN, Dotin LN, Sears DA. Thrombotic thrombocytopenic purpura. Occurrence two years apart during late pregnancy in two sisters. JAMA 1976;235(19):2126.
4. Byrnes JJ, Khurana M. Treatment of thrombotic thrombocytopenic purpura with plasma. New Eng J Med 1977;297:1386-89.
5. Furlan M, Robles R, Galbusera M, et al. Von Willebrand factor-cleaving protease in thrombotic thrombocytopenic purpura and the hemolytic-uremic syndrome. New Engl J Med 1998;339(22):1578-84.
6. Tsai HM, Lian EC-Y. Antibodies to von-Willebrand factor-cleaving protease in acute thrombotic thrombocytopenic purpura. New Eng J Med 1998;339(22):1585-94.
7. Levy GG, Nichols WC, Lian EC, et al. Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura. Nature 2001;413(6855):488-94.
8. Fujimura Y, Matsumoto M, Isonishi A, et al. Natural history of Upshaw-Schulman syndrome based on ADAMTS13 gene analysis in Japan. J Thromb Haemost 2011;9 (Suppl 1):283-301.
9. Fujimura Y, Matsumoto M, Kokame K, et al. Pregnancy-induced thrombocytopenia and TTP, and the risk of fetal death, in Upshaw-Schulman syndrome: a series of 15 pregnancies in 9 genotyped patients. Br J Haematol 2009;144(5):742-54.
10. Alwan F, Vendramin C, Liesner R, et al. Characterization and treatment of congenital thrombotic thrombocytopenic purpura. Blood 2019;133(15):1644-51.
11. van Dorland HA, Mansouri Taleghani M, Sakai K, et al. The International Hereditary Thrombotic Thrombocytopenic Purpura (TTP) Registry: Key findings at enrollment until 2017. Haematologica 2019;104(10):2107-15.
12. Borogovac A, George JN. Stroke and myocardial infarction in hereditary thrombotic thrombocytopenic purpura: similarities to sickle cell anemia. Blood Advances 2019;4(23):3973-76.
13. Easton JD, Saver JL, Albers GW, et al. Definition and evaluation of transient ischemic attach. Stroke 2009;40(6):2276-93.
14. Forni LG, Darmon M, Ostermann M, et al. Renal recovery after acute kidney injury. Intensive Care Med 2017;43(6):855-66.
15. Organization WH. Life expectancy and Healthy life expectancy, data by country, 2019. 2020.
16. Tanaka H, Tenkumo C, Mori N, et al. Case of maternal and fetal deaths due to severe congenital thrombotic thrombocytopenic purpura (Upshaw-Schulman syndrome) during pregnancy. J Obstet Gynecol Res 2014;40(1):247-49.
17. Hassenpflug WA, Obser T, Oyen F, et al. Genetic and functional characterization of ADAMTS13 variants in a patient cohort of Upshaw-Schulman syndrome investigated in Germany. Thromb Haemost 2018;118:709-22.
18. Lv H, Wang Z, Yang L, et al. Neonate with congenital thrombotic thrombocytopenic purpura: a case report of a de novo compound heterozygote mutation in ADAMTS13 gene and review of literature. Clin Lab 2020;66(4):677-85.
19. Sharma D, Shastry S, Pandita A, Sharma P. Congenital thrombotic thrombocytopenic purpura: Upshaw-Schulman syndrome: a cause of neonatal death and review of literature. Journal of Maternal-Fetal and Neonatal Medicine 2016;29(12):1977-79.
20. Hager HB, Andersen MT. A neonate presenting with jaundice, anemia, and thrombocytopenia. Blood 2018;131(14):1627.

21. Tsuji M, Shiraishi I, Kokame K, et al. Severe hemolysis and pulmonary hypertension in a neonate with Upshaw-Schulman syndrome. Pediatrics 2016;138(6):e20161565.

22. Lehmburg K, Wolf A, Klaassen I, et al. Inherited thrombotic thrombocytopenic purpura (Upshaw-Schulman syndrome) as differential diagnosis to neonatal septicemia with disseminated intravascular coagulation - a case series. Z. Geburtsh Neonatal 2017;221:39-42.

23. Tenison E, Asif A, Sheridan M. Congenital thrombotic thrombocytopenic purpura presenting in adulthood with recurrent cerebrovascular events. BMJ Case Reports 2019;12(10):e229481.

24. Pimanda JE, Maekawa A, Wind T, et al. Congenital thrombotic thrombocytopenic purpura in association with a mutation in the second CUB domain of ADAMTS13. Blood 2004;103:627-29.

25. Palla R, Lavoretano S, Lombardi R, et al. The first deletion mutation in the TSP1-6 repeat domain of ADAMTS13 in a family with inherited thrombotic thrombocytopenic purpura. Hamostaseologie 2008;94(2):289-93.

26. Peyvandi F, Mannucci PM, Valsecchi C, et al. ADAMTS13 content in plasma-derived factor VIII/von Willebrand concentrates. Amer J Hematol 2013;88(10):895-98.

27. Scully M, Gattens M, Khair K, Liesner R. The use of intermediate purity factor VIII concentrate BPL 8Y as prophylaxis and treatment in congenital thrombotic thrombocytopenic purpura. Brit j Haematol 2006;135:101-04.

28. Joly BS, Stepnanian A, Hajage D, et al. Evaluation of a chromogenic commercial assay using VWF-73 peptide for ADAMTS13 activity measurement. Thrombosis Research 2014;134(5):1074-80.

29. Powars DR, Chan LS, Hiti A, Ramicone E, Johnson C. Outcome of sickle cell anemia. A 4-decade observational study of 1056 patients. Medicine 2005;84(6):363-76.

30. Ford AL, Ragan DK, Fella S, et al. Silent infarcts in sickle cell disease occur in the border zone region and are associated with low cerebral blood flow. Blood 2018;132(16):1714-23.

31. Fujimura Y, Lammle B, Tanabe S, et al. Patent ductus arteriosus generates neonatal hemolytic jaundice with thrombocytopenia in Upshaw-Schulman syndrome. Blood Advances 2019;3(21):3191-95.

32. Jain A, Mohamed A, Kavanaugh B, et al. Cardiopulmonary adaptation during the first day of life in human neonates. J Pediat 2018;200(1):50-57.

33. Dong JF, Moake JL, Nolasco L, et al. ADAMTS-13 rapidly cleaves newly secreted ultralarge von Willebrand factor multimers on the endothelial surface under flowing conditions. Blood 2002;100(12):4033-39.

34. Zheng Y, Chen J, Lopez JA. Flow-driven assembly of VWF fibres and webs in in vitro microvessels. Nature Communications 2015;6(7858):1-11.

35. Chander DP, Loch MM, Cataland SR, George JN. Caplacizumab therapy without plasma exchange for acquired thrombotic thrombocytopenic purpura. New Engl J Med 2019;381(1):92-94.

36. Kasht R, Borogovac A, George JN. Frequency and severity of pregnancy complications in women with hereditary thrombotic thrombocytopenic purpura. Amer J Hematology 2020;95(11):E316-E18.

37. Ernst LM. Maternal vascular malperfusion of the placental bed. APMIS 2018;126(7):551-60.

38. Avery EJ, Kenney SP, Byers BD, et al. Thrombotic thrombocytopenic purpura masquerading as preeclampsia with severe features at 13 weeks' gestation. Amer J Hematology 2020;95(10):1216-20.

39. George JN, Nester CM, McIntosh JJ. Syndromes of thrombotic microangiopathy associated with pregnancy. Hematology - Am Soc Hematol Educ Program 2015;2015:644-48.
40. Drury-Stewart DN, Lannert KW, Chung DW, et al. Complex changes in von Willebrand factor-associated parameters are acquired during uncomplicated pregnancy. PLOS One 2014;9(11):e112935.

41. Perez Botero J, Reese JA, George JN, McIntosh JJ. Severe thrombocytopenia and microangiopathic hemolytic anemia in pregnancy: a guide for the consulting hematologist. Amer J Hematology 2021;Published online 23 August 2021.

42. von Krogh AS, Quist-Paulsen P, Waage A, et al. High prevalence of hereditary thrombotic thrombocytopenic purpura in central Norway: from clinical observations to evidence. J Thromb Haemost 2016;14:73-82.

43. Tarasco E, Butikofer L, Friedman KD, et al. Annual incidence and severity of acute episodes in hereditary thrombotic thrombocytopenic purpura. Blood 2021;137(25):3563-75.

44. Scully M, Knobl P, Kentouche K, et al. A recombinant human ADAMTS-13: first-in-human study evaluating pharmacokinetics, safety and tolerability in cTTP patients. Blood 2017;130(19):2055-63.

45. Borogovac A, Tarasco E, Kremer Hovinga JA, George JN. Hypertension in patients with hereditary TTP. eJHaem 2020:1-2.
Table 1. Health outcomes of 226 patients with hereditary TTP

| Patients |  |
|----------|---|
| All patients | 226 |
| Female | 129 (57%) |
| Patients with symptoms of TTP* | 216 |
| Female | 121 (56%) |
| Patients with age of 1st symptoms reported | 204 |
| Female | 114 (56%) |
| Patients with age of diagnosis reported | 202 |
| Female | 117 (58%) |

**Age (years; median, range)**

| 1st symptoms | 2 (0-63) |
| Diagnosis | 16 (0-77) |
| Death (n=32 [14%])** |  |
| Neonatal (n=9) | 0-17 days |
| Pregnancy (n=4) | 23 (20-26) |
| Children (n=9) | 5 (2-13) |
| Adults (n=10) | 40 (21-79) |
| Last follow-up*** | 23 (0-79) |

**Major morbidities**

| Patients† | 73 (34%) |
| Age of initial morbidity (years; median, range) | 21 (1 day-77) |
| Female | 38 (52%) |
| Types of major morbidities†† |  |
| Stroke | 62 (27%) |
| Kidney injury | 23 (10%) |
| Cardiac injury | 8 (4%) |

*Ten patients who had no symptoms of TTP were diagnosed with hTTP by documentation of biallelic ADAMTS13 mutations. They are described in Table S3.

**Nine patients died during their first days of life. When these neonatal deaths were excluded, the frequency of death was 11%, the youngest age was 2 years and the median age was 22 years.

***Age at last follow-up was not reported for 5 of the 194 surviving patients.

†Percent of 217 patients, omitting the 9 infants who died at birth.

††18 of the 73 patients initially had 2 of the 3 categories of morbidities; 1 patient initially had all 3 morbidities. Cardiac injuries were myocardial infarction (5 patients), cardiomyopathy (2 patients) and congestive heart failure (1 patient).
| Initial major morbidity | 73 |
|-------------------------|----|
| Death                   | 6 (8%) |
| No follow-up            | 13 (18%) |

**Surviving patients** (with follow-up) | 54

| Duration of follow-up (years; median, range) | 10 (1-47) |
|---------------------------------------------|-----------|
| No subsequent morbidities                   | 17 (31%) |
| Subsequent morbidities*                     | 37 (69%) |
| TIA/Stroke                                 | 21 |
| Other neurologic abnormalities              | 6 |
| (hemiparesis, cognitive impairment)         |   |
| Acute kidney injury (without ESKD)          | 2 |
| ESKD                                        | 14 |
| (2 patients, kidney transplants)            |   |
| Cardiac injury                              | 2 |
| (cardiomyopathy, congestive heart failure)  |   |
| Deaths attributed to subsequent morbidities | 8 |
| (stroke, 5; ESKD, 3)                        |   |

**Prophylaxis** (54 surviving patients) | 39 (72%)

| Patients |   |
|----------|----|
| Prophylaxis began: |   |
| Before initial major morbidity | 7 |
| At the time of initial major morbity | 9 |
| After initial major morbidity | 21 |
| Not reported | 2 |

Recurrence of major morbidity after prophylaxis | 11 (28%)

*10 patients had multiple subsequent major morbidities.
ESKD, end-stage kidney disease
Table 3. First occurrence of major morbidities and duration of subsequent follow-up

| Age  | 73 patients with major morbidities | All 212 patients for whom follow-up was reported |
|------|-----------------------------------|-------------------------------------------------|
|      | 1st occurrence of a major morbidity<sup>1</sup> | 1st occurrence + survivors of a previous major morbidity<sup>2</sup> | Patients with continued follow-up | Frequency of patients who have had a major morbidity<sup>3</sup> |
| 0-9  | 12 (6%)                           | 12                                              | 212                              | 6%                                    |
| 10-19| 21 (12%)                          | 25                                              | 170                              | 15%                                   |
| 20-29| 17 (13%)                          | 30                                              | 129                              | 23%                                   |
| 30-39| 11 (14%)                          | 28                                              | 79                               | 35%                                   |
| 40-49| 7 (18%)                           | 20                                              | 39                               | 51%                                   |
| 50-59| 4 (18%)                           | 14                                              | 22                               | 64%                                   |
| 60-69| 0                                 | 8                                               | 11                               | 73%                                   |
| 70-79| 1 (25%)                           | 4                                               | 4                                | 100%                                  |

These data describe only the first occurrences of a major morbidity. They document the steadily increasing frequency of patients who have had the 1<sup>st</sup> occurrence of a major morbidity. Recurrent major morbidities are not addressed. These data are also presented in Figure 2, to illustrate the initial occurrence of major morbidities across all ages and the duration of subsequent follow-up after the initial major morbidity. These data do not include the 9 patients who died in their first days after birth and the 5 patients for whom no follow-up was reported. The initial occurrence of a major morbidity and the subsequent clinical course of each the 73 patients are reported in Table S4.

<sup>1</sup>Age of patients at the time of their first occurrence of a major morbidity. The percent is the fraction of all patients with continued follow-up at each age.

<sup>2</sup>Age of patients at the time of the first occurrence of a major morbidity plus patients who had a previous major morbidity and continued to survive and be followed.

<sup>3</sup>The frequency of major morbidities among all patients who continued to be followed at each decade of age, calculated from columns 3 and 4.
Table 4. Comparison of hereditary TTP patients described in case reports to hereditary TTP patients reported by the United Kingdom and International Hereditary TTP Registries

| Data                                      | UK Hereditary TTP Registry\textsuperscript{10} | International Hereditary TTP Registry\textsuperscript{11} | Case Reports Hereditary TTP Patients |
|-------------------------------------------|-----------------------------------------------|------------------------------------------------------------|-------------------------------------|
| Year of publication                       | 2019                                          | 2019                                                      | 2021                                |
| Patients (No.)                            | 73                                            | 120                                                       | 226\*                               |
| Female (No., %)                           | 51 (70%)                                      | 62 (52%)                                                  | 129 (57%)                           |
| Age: Diagnosis (median, range)            | 24 (newborn-71)                               | 17 (newborn-70)                                           | 16 (newborn-77)                     |
| Age: Last follow-up (median, range)       | NA                                            | NA                                                       | 23 (0 days-79)                      |
| Age: 1\textsuperscript{st} symptoms (median, range) | 18 (newborn-67)                               | 5 (newborn-70)                                            | 2 (newborn-63)                      |
| 1\textsuperscript{st} symptoms: at birth | NA                                            | 30 (25%)                                                  | 81 (36%)                            |
| Stroke (No., %)                           | 18 (25%)                                      | 37 (31%)                                                  | 62 (27%)                            |
| Stroke (Age) (median, range)              | NA                                            | NA                                                       | 22 (1 day-77)                       |
| Myocardial infarction (No., %)            | 0                                             | 5 (4%)                                                    | 5 (2%)                              |
| Myocardial infarction (Age)               | NA                                            | NA                                                       | 20 (3-53)                           |
| Death (No., %)                            | 5 (7%)                                        | NA                                                       | 11 (5%)\*                           |
| Death (Age) (median, range)               | NA                                            | NA                                                       | 7 (newborn-79)                      |

Sixty-eight (30\%) of the Case Report patients were included in the International Registry\textsuperscript{11}. There were no Case Report patients included in the UK Registry\textsuperscript{10}. *Case Report data include 21 patients who died but who would not have been enrolled in the Registries: 18 patients who died without \textit{ADAMTS13} sequence analysis and 3 patients who had \textit{ADAMTS13} sequence confirmation but who died in their first days of life. Including these 21 deaths, the frequency of death would be 14\%.
FIGURE LEGENDS

Figure 1. Ages of diagnosis and death in patients with hereditary TTP. Age of diagnosis was reported for 202 (89%) of the 226 patients (85 male, 117 female). Deaths were reported for 32 patients (18 male, 14 female). Patients whose age of diagnosis or death occurred at a decade marker are counted in the following decade. Newborn infants (NB) are distinguished from children ages 0-9 because of their neonatal recognition by severe hyperbilirubinemia. Twelve infants were diagnosed at birth; nine died. The diagnosis of newborn infants occurred within several days of birth. Among the other children ages 0-9 years, the youngest child diagnosed with hereditary TTP was a 1 month old girl; the youngest death was in a 2 year old boy.

Figure 2. Age of occurrence and follow-up of major morbidities in patients with hereditary TTP. Each of the 73 patients is illustrated at the age of their initial major morbidity by a dot (living) or open circle (died). If the patient survived their initial major morbidity and was subsequently followed, the duration of survival or follow-up is indicated by the horizontal line. These data are also presented in Table 3.

Figure 3. Survival of patients with hereditary TTP. The survival data are from 221 patients, excluding 5 patients for whom the duration of follow-up was not reported. 3A. The probability of survival of the patients with hereditary TTP was compared to the age and gender-matched US population values using
Kaplan-Meier methods. The difference between the patients with hereditary TTP and the expected deaths in the US population was determined using 95% confidence intervals for the patients’ deaths. Beginning at birth, the 95% confidence intervals did not overlap with the survival line for the US population. 3B. The probabilities of survival of male and female patients with hereditary TTP were calculated separately, also using Kaplan-Meier methods and a log-rank test to determine differences. The 95% confidence intervals are illustrated by red for female and blue for male.
Figure 2

- Last follow-up
- Death

73 Individual Patients

Age (Years)
