Genomics Enabled Breeding Strategies for Major Biotic Stresses in Pea (*Pisum sativum* L.)

Ashok Kumar Parihar, Jitendra Kumar, Debjyoti Sen Gupta, Amrit Lamichaney, Satheesh Naik SJ, Anil K. Singh, Girish P. Dixit, Sanjeev Gupta and Faruk Toklu

1 Crop Improvement Division, ICAR-Indian Institute of Pulses Research (ICAR-IIPR), Kanpur, India, 2 All India Coordinated Research Project on Chickpea, ICAR-IIPR, Kanpur, India, 3 Indian Council of Agricultural Research, New Delhi, India, 4 Department of Field Crops, Faculty of Agricultural, Cukurova University, Adana, Turkey

Pea (*Pisum sativum* L.) is one of the most important and productive cool season pulse crops grown throughout the world. Biotic stresses are the crucial constraints in harnessing the potential productivity of pea and warrant dedicated research and developmental efforts to utilize omics resources and advanced breeding techniques to assist rapid and timely development of high-yielding multiple stress-tolerant–resistant varieties. Recently, the pea researcher’s community has made notable achievements in conventional and molecular breeding to accelerate its genetic gain. Several quantitative trait loci (QTLs) or markers associated with genes controlling resistance for fusarium wilt, fusarium root rot, powdery mildew, ascochyta blight, rust, common root rot, broomrape, pea enation, and pea seed borne mosaic virus are available for the marker-assisted breeding. The advanced genomic tools such as the availability of comprehensive genetic maps and linked reliable DNA markers hold great promise toward the introgression of resistance genes from different sources to speed up the genetic gain in pea. This review provides a brief account of the achievements made in the recent past regarding genetic and genomic resources’ development, inheritance of genes controlling various biotic stress responses and genes controlling pathogenesis in disease causing organisms, genes/QTLs mapping, and transcriptomic and proteomic advances. Moreover, the emerging new breeding approaches such as transgenics, genome editing, genomic selection, epigenetic breeding, and speed breeding hold great promise to transform pea breeding. Overall, the judicious amalgamation of conventional and modern omics-enabled breeding strategies will augment the genetic gain and could hasten the development of biotic stress-resistant cultivars to sustain pea production under changing climate. The present review encompasses at one platform the research accomplishment made so far in pea improvement with respect to major biotic stresses and the way forward to enhance pea productivity through advanced genomic tools and technologies.

Keywords: biotic stresses, genomics, proteomics, marker assisted breeding, speed breeding
INTRODUCTION

Pea (Pisum sativum L.), being cultivated throughout the world, either for food, fodder, and feed, is considered an important winter season food legume (Rubiales et al., 2019; Parihar et al., 2020). Cotyledons’ color of pea grains varies from yellow, green, and orange that are used in the human diet in different forms such as dal, stew, chhola, vegetables, snacks, soup, chat, and flour, while whole seeds are mainly used as animal feed (Mahajan et al., 2018; Singh et al., 2018). Nutritionally, pea seeds are considered to have about 21–33% protein and 56–74% carbohydrate, with an average iron, selenium, zinc, and molybdenum of about 97, 42, 41, and 12 ppm, respectively (Parihar et al., 2016, 2021). Therefore, it serves as an important ingredient in providing nutritional security for resources poor people in developing countries. Moreover, its consumption minimizes the risk of several chronic diseases such as diabetes (Marinangeli and Jones, 2011), subsides blood cholesterol levels (Ekvall et al., 2006), improves cardiovascular health (Singh et al., 2013), possesses cancer prevention attributes (Kalt, 2001; Steer, 2006), administers body weight, and improves gastrointestinal affairs (Fernando et al., 2010; Lunde et al., 2011).

It is being cultivated widely across many countries in the world (Parihar et al., 2021). Its worldwide cultivated area has increased from 6.58 to 8.09 mha and production from 10.44 to 16.21 mt since 2010. Canada, Russia, China, India, and the United States are the major pea-producing countries (Parihar et al., 2020); however, the United States shares the highest total production of pea (39.33%), followed by Europe (36.98%) and Asia (18.09%). At present, its average productivity is about 2.0 t/ha globally, which recorded an increase of about 36% in a decade (2007–2017), but the potential productivity of this crop is up to 5.0 t/ha in several countries including Netherland, Denmark, Belgium, Germany, and Finland harvests about 3.45–5.01 t/ha (Toker and Mutlu, 2005; Chatterton et al., 2015; Desgroux et al., 2016; Wu et al., 2018). Several insect pests such as pod borer complex [Helicoverpa armigera (Hübner), Etiaella zinckenella (Treitschke), and Polyommatus boeticus L.], bruchid (Bruchus pisorum L.) pea leaf weevil (Sitona lineatus L.), leaf miners [Chromatomyia horticola (Goureau)], stem fly [Melanagromyza phaseseoli (Vanschuytbroeck)], aphids [Acrystosiphon pisum (Harris)], and cut worms [Agrotis ipsilon (Hufnagel)] seriously reduce the yield of pea by affecting the crop growth (Sharma, 2000; Yadav and Patel, 2015; Yadav et al., 2019). Pod damage of about 40% has been observed in pea due to pod borer complex infestation (Dahiya and Naresh, 1993).

The development of resistant cultivars to the biotic and abiotic stresses is an outstanding tactic to enhance the productivity of any crop including pea. Therefore, knowledge of the genetics of disease and pest resistance is essentially required to breed the resistant/tolerant cultivars. In addition to this, genomic advances especially the accessibility of draft genome sequence of pea (Kreplak et al., 2019) have facilitated the identification of the genes responsible for disease and pest resistance/tolerance and also helped in uncovering the genetics of quantitatively inherited resistance of several major diseases and pests. Moreover, genomics has also facilitated modernizing the conventional breeding for rapid and precise development of resistant cultivars in crop plants including pea. Information on genetics, genomics, and breeding of biotic stress resistance in pea is scattered and only limited attempts were made to review the different aspects of biotic stress resistance (Fondevilla and Rubiales, 2012; Smykal et al., 2012; Rubiales et al., 2015; Tayeh et al., 2015a). Recently, Mahajan et al. (2018) discussed the genetic improvement in pea in relation to biotic stresses; however, the information provided was largely related to legumes in general and in brief about pea. Thus, an effort is made through this review to make available the comprehensive information pertaining to genetic and genomic advancement at one platform as well as to share a futuristic road map using modern genomic and genetic tools in pea breeding that could aid the crop breeders in developing high-yielding multiple stress resilient pea cultivars.
CURRENT STATUS OF GENETIC RESOURCES

Genetic improvement in a target crop species requires availability and judicious exploitation of genetic resources. Globally, more than 98,000 pea accessions, comprised of advanced breeding lines (13%), landraces (38%), mutant stocks (5%), wild species (2.6%), and cultivars (34%), are available and conserved in diverse genebanks (Smykal et al., 2013, 2015; Warkentin et al., 2015; Rubiales et al., 2019; Coyne et al., 2020). The National Institute for Agricultural Research (INRA), France, Australian Grains Genebank (AGG), N.I. Vavilov Research Institute of Plant Industry, Russia, US Department of Agriculture (USDA), United States, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany, and International Center for Agricultural Research in the Dry Areas (ICARDA), Lebanon are the six leading active pea germplasm repositories in the world with about 8,839, 7,432, 6,790, 6,827, 5,343, and 4,596 accessions, respectively (Figure 1). The National Germplasm Repositories of various countries also hold a good number of pea accessions such as 4,558 accessions in Italy, 3,837 in China, 4,484 in India, 3,298 in the United Kingdom, 2,896 in Poland, 2,849 in Sweden, 2,311 in Ukraine, and 2,110 in Australia. Besides, other countries hold > 1,000 accessions of Pisum in their national germplasm treasury (Figure 1). Interestingly, the National Genebank of Israel possesses a collection of crop wild relatives (CWRs) such as Pisum fulvum and P. sativum subsp. elatius var. pumilio, which contributes to about 2% of the entire preserved germplasm (Smykal et al., 2013, 2015; Warkentin et al., 2015). This share of CWR has accessions to P. fulvum (706), P. s. subsp. elatius (624), P. s. subsp. sativum (syn. P. humile/syracium; 1562), and P. abyssinicum (540) (Smykal et al., 2013). Besides CWR and cultivated accessions, 575 and 122 accessions of pea mutant stocks are also available at the John Innes Collection, the United Kingdom and the Institute of Plant Genetics Resources Collection, Bulgaria, respectively (Smykal et al., 2015). A Targeted Induced Local Lesions in Genomes (TILLING) population of 9,000 lines (Coyne et al., 2020) and fast neutron generated deletion mutant resources (around 3,000 lines) are also available, which are being exploited to identify various developmental genes (Smykal et al., 2015).

Internationally, several web-portals have been developed using the database of pea genetic resources such as the European Cooperative Program on Plant Genetic Resources, Cool Season Food Legume Database, Genetic Resources Information Network and System-wide Information Network for Genetic Resources, and KnowPulse for keeping records and disseminating the information related to pea genetic resources.

Crop wild relatives that include Pisum species and subspecies are in general a source of countless fascinating traits including various yield attributing parameters (Mikić et al., 2013). Besides, it is a source of resistance to several biotic stresses, e.g., pea seed weevil (Clement et al., 2002, 2009), PM (Fondevilla et al., 2007b; Esen et al., 2019), PR (Barilli et al., 2010), AB (Jha et al., 2012), and broomrape (Fondevilla et al., 2005). The significance of CWR has been demonstrated by successfully introducing a novel dominant gene (Er3), responsible for resistance to E. pisi from P. fulvum (Sharma and Yadav, 2003; Fondevilla et al., 2008a). Moreover, some P. fulvum accessions were reported to show resistance against bruchid, broomrape, and Mycosphaerella pinodes and are subsequently being utilized in hybridization programs (Fondevilla et al., 2005; Coyne et al., 2020). Similarly, resistance to PR (Barilli et al., 2010, 2018) and AB (Fondevilla et al., 2005; Jha et al., 2012) has been observed in P. fulvum. Diversity for the eIF4E gene and novel alleles for virus resistance has also been identified from CWR (Ashby et al., 2011; Konecná et al., 2014). In a recent report, the relationship between neoplasms and pea weevil (Bruchus pisorum L.) damage was not established in F1 and F2 derived from the inter-specific crosses of P. sativum subsp. sativum (with neoplasms) and P. sativum subsp. elatius (without neoplasms) in field conditions (Sari et al., 2020).

Interestingly, the germplasm with the least commercial acceptance in terms of colored seed coat and flowers was accredited as a wonderful resistance source for root rot diseases (Grunwald et al., 2003; Weeden and Porter, 2007) and Aphanomyces (Hamon et al., 2011). Most significantly, the resistance to different biotic stresses can also be transferred from Lathyrus species that are harbored in the tertiary pea gene pool (Patto et al., 2007, 2009), preferably through the utilization of contemporary biotechnological techniques. Most recently, super-early progeny derived from an interspecific cross between P. sativum and P. fulvum flowered in 13–17 days and set pod in 18–29 days after emergence. Such progeny could be used as a complementary to “speed breeding,” to generate more than six generations per year in an appropriate climate compartment (Sari et al., 2021). Significant contributions have been made toward the identification of resistant genetic resources for major biotic stresses in pea (Table 1), which might be utilized in breeding programs and further genetic analysis for the identification of new resistance genes.

CURRENT KNOWLEDGE ON GENETICS FOR DISEASE RESISTANCE

Knowledge of genes controlling disease resistance is important to accelerate the success of any breeding program (Shashikumar et al., 2010). Understanding gene action/effects operating in a particular breeding population helps to select a suitable parent for hybridization and breeding procedure for making genetic improvements of resistance against that disease (Sharma et al., 2013). Notably, the pea is acknowledged as the original model organism and was utilized in the finding of Mendel’s laws of inheritance, which laid the foundation for modern plant genetics. In the recent years, inheritance has been studied for resistance attributes of disease in pea by several researchers (Lampricht, 1948; Yarnell, 1962; Blixt, 1974; Gritton, 1980; Kalloo and Bergh, 1993; Kumar et al., 2006; Amin et al., 2010), and genes were identified and mapped using conventional gene mapping approaches. Varieties with inbuilt resistance are the most appropriate, competent, and economic strategies for...
tackling biotic stresses. Therefore, comprehensive efforts have been made to understand the inheritance of biotic stresses. Inheritance study for PM revealed that it is being operated by two recessive genes (er1 and er2) and one dominant gene (Er3) (Fondevilla et al., 2007a). A recent report illustrated that PM resistance is operated via er1 owing to the non-functioning of gene PsMLO1 (Humphry et al., 2011). The gene er2 is reported to provide complete resistance to PM but is efficient only in location-specific breeding (Tiwari et al., 1997; Fondevilla et al., 2006), while gene Er3 confers resistance in P. fulvum (Fondevilla et al., 2007a, 2010).

With regard to PR resistance, it was reported to be operated by a single dominant gene (Ruf) (Tyagi and Srivastava, 1999); however, the polygenic nature of gene action (Singh and Ram, 2001) and partial dominance of a single gene in conjunction with minor and additive genes (2–3) (Singh et al., 2012) have also been found recently. A single dominant gene governs resistance toward races 1 and 2 of F. oxysporum f. pisi, pea enation mosaic virus, F. solani f. sp. pisi, brown root rot, bacterial blight, downy mildew, and other root rot diseases of pea, whereas a recessive gene regulates resistance to pea seed borne mosaic virus (sbm), yellow bean mosaic virus (mo), pea mosaic virus (pmv), and bean virus (Amin et al., 2016; Mohan et al., 2013). However, Davidson et al. (2004) reported downy mildew to be controlled by a single dominant gene and two complementary recessive genes. The nature of inheritance of AB and FRR resistance has been reported to be regulated by many genes (Kraft, 1992; Fondevilla et al., 2007b; Carrillo et al., 2014b; Iha et al., 2017). The pod resistance for pea weevil is quantitatively controlled whereas the seed resistance is operated by three (pwr1, pwr2, and pwr3) major recessive alleles (Byrne et al., 2008). The neoplasm appearance on pods is controlled by a single dominant gene and its expressivity is influenced by one or a combination of environmental factors (Sari et al., 2020).

EXPLOITATION OF GENETIC KNOWLEDGE THROUGH TRADITIONAL BREEDING APPROACHES FOR BIOTIC STRESS RESISTANCE

Numerous biotic stresses including FW, AB, PM, PR, FRR, and CRR are serious threats to pea production (Bohra et al., 2014). These diseases are reported to occur in a severe form in almost all the pea growing countries. Therefore, efforts have been made to exploit the available genetic knowledge of resistance through conventional breeding for these key biotic stresses for developing resistant cultivars (Fondevilla and Rubiales, 2012; Ghafoor and McPhee, 2012). To develop high yielding pea cultivars possessing PM resistance, three genes, namely, er1, er2, and Er3 have been exploited successfully using conventional breeding approaches (Heringa et al., 1969; Fondevilla et al., 2007c). The er1 gene has the highest existence in resistant pea accessions followed by the er2 gene, which is harbored in restricted accessions (Tiwari et al., 1997). Therefore, the er1 gene that provides resistance through the pre-penetration resistance mechanism has been largely exploited in most pea improvement programs worldwide (Fondevilla et al., 2006). PR is another serious disease, scattered across the countries where the pea is being cultivated. Resistance to PR has been reported to be polygenic (Singh et al., 2012) and oligogenic (Vijayalakshmi et al., 2005). AB or black spot disease is one of the most devastating diseases of peas causing yield setbacks of up to 60% (Xue et al., 1996; Liu et al., 2016). Being seed borne, the rate of transmission from seed to sapling...
TABLE 1 | Potential resistance source of different biotic stresses in field pea.

Biotic stress	Germplasm/variety/wild relatives	Country	References
Powdery mildew	9057, 9370, 9375, 10609, 10612, 18293, 18412, 19598, 19611, 19618, 19727, 19750, 19782, 20126,	Pakistan	Azmat et al., 2012
	20152, 20171, It-96, No. 267, and No. 380, Medora, PS9910188, PS810765, PS810324, Striling,		
	PS0010128, PS8 10240, PS710048, PS810191, 3272, 3273, Litter, Franklin, and Fallon		
	P. fulvum (P660-4)	Spain	Fondevilla et al., 2007b
	HFP4, EC598878, EC598538, EC598757, EC598704, EC598729, EC598853, EC598655, EC598816,	India	Rana et al., 2013
	EC381866, IC278261, IC267142, IC218988, IC208378, IC208366, LE 25, ATC 823, KPMR-10, T-10,		
	P-185, 6533, 6587, Jl 210, DMR 4, DMR 7, DMR 20, HFP 9907 B, Pant Pea -42, VL Matar 42, IPFD		
	99-13, IPFD 1-10, Pant P 8, Pant 9, HFP 8711 and HUDP 15, IPFD 1-10,		
	Highlight, AC Tamor, Tara, Mexique 4, Stratagem, Jl 210, Jl 1961, Jl 1210, Jl 2480,		
	Glenroy, Kiley, Mukta, M257-3-6, M257-5-1, PSI 11, ATC 1181, GPHA-9, GPHA-19, JI2480, JI-4,	Ethiopia	Assen, 2020
	FC-1, Pant P 11, HUDP 16, JPBB-3, HUP 14	India	Katoch et al., 2010
	Nepal, Snowpeak		
	PI 193856, PI 193835, JI0130, Forrimeax, Jl2546, PI-277852, ZP1328, Cherokee,	Spain	Martin-Sanz et al., 2012
	Corallo, Lincoln, Jl2385, PM29, PM232, PM33, Jl1829, ZP1282, ZP0104, ZP1301, ZP0123, ZP0188	Spain	Martin-Sanz et al., 2012
	Mycosphaerella blight (Mycosphaerella piniodes)	Canada	Jha et al., 2012
	CN 112432, CN 112441, CN 112513, P. fulvum (P651), Radley, P-4039, P-4107, Pea weevil		
Downey mildew		Indian	
Pea seed-borne mosaic		Australian	
virus (PsBmV)		Ethiopian	
Pseudomonas syringae		Spanish	
pv. pisi (race 6, 8)		Spanish	
Pseudomonas syringae		Spanish	
pv. Pisi (race 8)		Spanish	
Mycosphaerella blight		Turkish	
(Mycosphaerella piniodes)		Turkey	
Pulse beetle (Callosobruchus chinensis L.)		Turkey	
Fusarium root rot		United States	
(Fusarium solani f. sp. pisi)		United States	
Fusarium oxysporum f. sp. pisi		Spain	
for A. pisi and P. pinodes is 40–100% (Maude, 1966; Xue, 2000), with an ability to remain viable on seeds for 5–7 years (Wallen, 1955). To date, the absolute resistant source for AB has not been identified; however, a prominent scale of resistance was found in accession (P651) of P. fulvum, which is being actively utilized in pea improvement (Wroth, 1998; Sindhru et al., 2014). The polygenic inheritance pattern of AB makes the development of resistant cultivars through conventional breeding very difficult. The FRR is considered a serious bottleneck in harnessing the full potential of a cultivar (Bisby, 1918; Jones, 1923). The condensed soil with a temperature of 18–24°C is the ideal thermal regime for the proliferation of FRR (Kraft and Boge, 2001). Unfortunately, complete resistance to this disease is yet to be explored; however, genetic sources carrying partial tolerance to this disease are			
TABLE 2 | Available genetic maps for different biotic stresses in field pea (*Pisum sativum* L.).

S. No.	Population	Population size	Type of population	Markers	Marker type	Total map distance (cM)	References
Powdery mildew (*Erysiphe pisi*)							
1	Kaspa × Yarrum	106	RIL	821	SSR and SNPs	1910	Sudheesh et al., 2014
2	Kaspa × ps1771	106	RIL	852	SSR and SNPs	1545	Sudheesh et al., 2014
3	C2 × Messire	100	F2	720	RAPD/SCAR	–	Fondevilla et al., 2008a
4	Slow × JI1794	51	RIL	200	RAPD/RFLP	–	Timmerman et al., 1994
5	Almota × 88V1.11	111	F2	200	RAPD/RFLP	–	Timmerman et al., 1994
6	Lincoln/JI2480	111	F2	152	SSR	51.9	Katoch et al., 2010
7	Radley × Highlight	99	F2:3	416	RAPD/SCAR	–	Timmerman et al., 1998
8	PG 3 × PG 3	208	F2	633	RAPD/SCAR	–	Shrivastava et al., 2012
9	Majoret × 955180	192	F2	315	SSR	49.9	Ek et al., 2005
10	Solara × Friele-derived mutant	230	F2	585	ISSR, RAPDs, AFLPs	66.4	Pereira et al., 2010
Rust (*Uromyces pisi, Uromyces fabae*)							
1	IFPI3260 × IFPI3251	94	F3	146	RAPDs and STSs	1283.3	Barilli et al., 2010
2	HUVP 1 × FC 1	136	RIL	153	SSRs, RAPD, and STSs	634	Rai et al., 2011
3	IFPI3260 × IFPI3251	84	RIL	12,058	DArT, SNP, SSR, and STSs	1877.45	Barilli et al., 2018
Ascochyta blight (*Mycosphaerella pinodes*)							
1	JI1089 × JI296	–	–	–	–	–	Clulow et al., 1991
2	Erygel × 661	174	F2	62	RFLP, RAPD	560	Dirlewaner et al., 1994
3	Carneval × MP1401	88	RILs	239	AFLPs, RAPDs, and STSs	1274	Timmerman-Vaughan et al., 2002
4	A26 × Rovar and A88 × Rovar	148	F2	99	RAPDs, RFLPs, AFLPs, and STSs	930	Timmerman-Vaughan et al., 2004
5	JI296 × DP	135	RIL	206	RAPD, SSR and STS	1061	Proux et al., 2004
6	P665 × Messire	111	RIL	303	SSRs	1188.97	Fondevilla et al., 2008b
7	P665 × Messire	111	RIL	248	SSRs	1119.46	Fondevilla et al., 2011; Carrillo et al., 2014a,b
8	Alfetta × P651	51	RIL	10,985	SNPs (GBS)	86.3	Jha et al., 2017
9	Carema × CDC Striker	134	RIL	3389	SNPs	1008.8	Gai et al., 2018
Fusarium root rot (*Fusarium solani f. sp. pisi*)							
1	Carman × Reward	71	RIL	213	Microsatellite markers (SSRs)	53.1	Feng et al., 2011
2	DSP (W6 17516) × 90–2131 (PI 557501)	111	RIL	10 gene based markers	CAPS and dCAPS	1323	Coyne et al., 2015
3	Baccara × PI 180693	178	RILs	914	SNPs	1073	Coyne et al., 2019
4	JI1794 × Slow	51	RILs	–	–	1289	Timmerman-Vaughan et al., 1996; Hance et al., 2004
5	Afghanistan*(sym2) × A1078-239	19	–	–	–	–	Weeden and Porter, 2007
6	CMG × P1220174	225	RILs	–	–	–	Weeden and Porter, 2007

(Continued)
TABLE 2 | (Continued)

S. No.	Population	Population size	Type of population	Markers	Marker type	Total map distance (cM)	References
1	K586 × Torsdag	139	RILs	355	RAPD	1139	Lauca et al., 1998
2	“Lifter”/Radley	393, 187	RILs	13	CAPS, SSR	–	Jain et al., 2015
3	Shawnee × Bohatyr	187	RILs	272	RAPDs and SSRs	1716	McPhee et al., 2012
4	Green Arrow × PI 179449	80	RILs	72	TRAP	–	Kwon et al., 2013
5	Puget × 90–2079	127	RILs	324	AFLPs, RAPDs, SSRs, ISSRs, STSs, isozymes	1094	Pilet Nayel et al., 2002; Loridon et al., 2005; Hamon et al., 2013
6	Puget × 90–2079	127	RILs	324	AFLPs and RAPDs	1523	Pilet Nayel et al., 2005
7	Baccara × PI180693, Baccara × 652	356	RILS	224	SSRs, RAPD and RGA	1652	Hamon et al., 2011
8	Baccara × PI180693	178	RIL	4620	SNPs	705.2	Hamon et al., 2011, 2013; Duarte et al., 2014; Tayeh et al., 2015a
9	DSP × 90–2131	111	RILs	168	RAPDs, RFLPs and SSRs	1046	Hamon et al., 2013
10	Pea-Aphanomyces collection	175	–	13,204	SNPs	NA	Desgroux et al., 2016
11	Pea accessions	266	–	14,157	SNPs	NA	Desgroux et al., 2018
12	MN313 × OSU1026	45	–	–	–	–	Weeden et al., 2000
13	JI15 × JI399	77	RILs	151	RFLPs	1700	Ellis et al., 1992
14	Vinco × Hurst’sGreenshaft, Partridge × EarlyOnward	–	–	–	–	–	Hunter et al., 2001
15	JI281 × JI399	53	RILs	421	RFLPs	2300	Hall et al., 1997
16	P665 × Messire	111	RILs	248	RAPD, STSs, SSR, and EST	1188.58	Fondevilla et al., 2012
17	P665 × Messire	111	RILs	246	RAPD, STSs, SSR and EST	1188.58	Fondevilla et al., 2012
18	Pennant × ATC113	270	RILs	155	SSRs	2686	Aryamanesh et al., 2014
19	P665 × Messire	108	RILs	6540	SNPs (DArTseq platform)	2503	Aznar-Fernández et al., 2020
20	P. fulvum IFPI3260 × P. fulvum IFPI3251	84	–	12,058	DArT, SNP, SSR and STS	1877.45	Barilli et al., 2020
21	88V1.11 × 425	88	F2	–	RFLP, RAPD, allozyme	–	Timmerman et al., 1993

available in pea (Gretenkort and Helsper, 1993; Porter, 2010). Noteworthy, the majority of the colored flower accessions portrayed a good level of resistance to FRR as compared to white colored flower accessions (Grunwald et al., 2003). Also, the polygenic inheritance of this disease has made the development of resistant varieties more complicated (Muehlbauer and Kraft, 1973; Kraft, 1992). FW is another severe production menace scattered around the world caused by *Fusarium oxysporum* f. sp. *pisi* and causes absolute yield loss under appropriate environmental circumstances (Aslam et al., 2019). The most favorable soil temperature for FW disease development is 23–27°C. In total, 11 different races of fusarium have been discovered considering its virulence (Gupta and Gupta, 2019); of them, races 1 and 2 have become cosmopolitan; on the contrary, races 5 and 6 are prevailing in some areas (Bani et al., 2018). Among these races, race 1 is considered the most devastating and dominating (Kraft and Pfleger, 2001). Being a soil-borne pathogen, it may outlast for a prolonged period below the ground without pea crop (Gupta and Gupta, 2019). McPhee et al. (1999) recognized resistance sources against races 1 and 2 and used them to breed resistant cultivars. Interestingly, one CWR accession (PI 344012) having resistance to races 1 and 2 has been identified. Knowledge of inheritance is vital for incorporating any attribute of interest in the targeted genotype. Therefore,
the inheritance pattern of resistance to *Fop* races 1, 5, and 6 have been studied and confirmed that it is monogenic with dominance in nature, while resistance to race 2 is regulated quantitatively (McPhee et al., 1999, 2012; Rispaï and Rubiales, 2014; Bani et al., 2018). The monogenic dominant resistance is successfully introgressed in many pea cultivars (McPhee, 2003). The integration of quantitatively operated resistance in a targeted background is a cumbersome task wherein molecular markers can support significantly to accelerate the introgression process. For such traits, visual selection always remains long-lasting and labor exhaustive. Thus, modern genomic tools and techniques have paved a way for questing, utilizing, and choosing the naturally available sources of resistance against FW in pea (McClendon et al., 2002; Smykal et al., 2012).

In pea under congruent circumstances particularly under excess moisture in the soil, CRR reduces grain yield significantly by severe damage to the root framework and subsequent wilting of the infected plant (Wu et al., 2018). Unfortunately, the existing old school disease management approaches such as crop rotation and seed treatments are incapable of controlling this disease completely, owing to the prolonged persistence of the pathogen in the form of oospores, which can contaminate crops at any phase. Consequently, resistant cultivar development has been advocated as an ultimate aim in the pea breeding scheme. Few accessions of pea having moderate resistance to CRR have been identified and subsequently used in breeding programs for developing cultivars (Pilet Nayel et al., 2002, 2005; Roux-Duparque et al., 2004; Moussart et al., 2007; Pilet Nayel et al., 2007; Hamon et al., 2011; McGee et al., 2012; Conner et al., 2013; Hamon et al., 2013; Lavaud et al., 2015). However, polygenic inheritance of this disease and its linkage with some objectionable attributes such as lengthy internodes, anthocyanin content, and delayed-flowering made it difficult to breed CRR-tolerant cultivars (Marx et al., 1972; Pilet Nayel et al., 2002).

TOWARD GENOMIC-BASED DISEASE AND INSECT-PEST RESISTANCE BREEDING

Mapping Gene/Quantitative Trait Loci Using Molecular Markers

Traditional gene mapping could not be used widely to map the genes/quantitative trait loci (QTLs) regulating disease resistance because of narrow variability and their polygenic inheritance pattern. Moreover, quantitatively inherited traits are highly influenced by environmental conditions; therefore, the DNA-based markers are widely exploited to map genes/QTLs regulating quantitatively inherited traits in pea. In this crop, DNA-based markers that include STMS (Haghnazari et al., 2005); ISSR (Lázaro and Aguinagalde, 2006), SRAP (Esposito et al., 2007), SNP (Duarte et al., 2014), IRAP (Smykal et al., 2008a), RBIP (Smykal et al., 2008b), EST-SSR (Teshome et al., 2015), and SSR (Handerson et al., 2014; Negisho et al., 2017; Mohamed et al., 2019) have been developed and successfully utilized to compute genetic variations. However, similar to other crop species, only SSR makers have become popular owing to their low cost, rapidness, polymorphism, and reliable (Snowdon and Friedt, 2004). More recently, next-generation sequencing has authorized the quick discovery of SNPs and the development of an array for genotyping in pea (Leonforte et al., 2013; Duarte et al., 2014; Sindhu et al., 2014). The initial linkage maps were developed in pea utilizing various molecular markers, which were further used in mapping genes/QTLs controlling biotic stress tolerance. The genes such as *er1, er2, and Er3* and their alleles conferring resistance to PM have been mapped using different types of markers (Table 2). In pea, sequencing of cDNA belonging to *PsMLO1* has identified a new allele *er1-6* of gene *er1* that has been validated by a closely linked specific SSR marker (Sun et al., 2016). In addition to this, alleles, namely, *er1-8* and *er1-9* have been mapped using co-dominant functional markers and validated in pea (Sun et al., 2019). The single dominant gene controlling FW resistance has also been mapped using dominant and co-dominant markers (Jiang, 2013), which were not appropriate for marker-assisted selection (MAS) due to their poor linkage with gene and dominant nature. Thus, Jain et al. (2015) recently designed a co-dominant CAPS marker with 94% accuracy and found that it was helpful in the selection of resistance toward *F. oxysporum* race 1. QTL mapping has been followed for genes regulating partial or intricate inherited resistance and recognized major or minor QTLs for biotic stress tolerance in pea. For example, molecular mapping has identified one major gene (*Ruf*)/QTL (*Up1, Qruf*) and one minor QTL (*Qruf1*) for PR resistance (Vijayalakshmi et al., 2005; Barilli et al., 2010; Rai et al., 2011). However, markers associated with these genes/QTLs were not close enough (>5.0-cm distance) for utilization in MAS. Further validation of markers linked with QTL *Qruf* and *Qruf1* did not show complete discrimination between PR susceptible and resistant genotypes limiting their application for marker-assisted breeding (MAB) (Singh et al., 2015). However, high-density molecular maps based on SNP makers and the use of isogenic lines (NILs) and heterogeneous inbred family (HIF) populations have provided opportunities for fine mapping of the genes/QTLs and identified more closely linked markers for precise MAS (Mohan et al., 1997; Tuinstra et al., 1997). The SNP marker-mediated linkage mapping has identified three QTLs (*UpDSI, UpDSIV, and UpDSIV.2*) for PR resistance (Barilli et al., 2018). For AB resistance, various QTL mapping studies have recognized various genomic regions concerned with the regulation of resistance (Table 3; Timmerman-Vaughan et al., 2002; Taran et al., 2003; Fondevilla et al., 2008b). Recently, Jha et al. (2015) have identified SNPs within the linked genes, namely, *RGAG3A* (*RGAG3Ap103*) and *PsDof1* (*PsDof1p308*), which displayed a noteworthy relationship with AB resistance. Correspondingly in another report association of nine QTLs with resistance to AB has been reported in an interspecific population derived by crossing *P. sativum* (Alfetta) and *P. fulvum* (P651), of which, only QTLs *abI-III-1* and *abI-IV-2* were found to be stable over the locations/years (Jha et al., 2016), which were further fine mapped in HIF populations (Jha et al., 2017). Furthermore, selective genotyping was done utilizing genotyping-by-sequencing (GBS)
in RILs recognizing eight novel SNP markers within the ab1-IV-2 QTL with no extra SNPs in the QTL abIII-1. Similarly, several QTLs explaining phenotypic variation up to 53.4% for polygenic inherited FRR resistance have been recognized using SSR and SNP markers (Coyne et al., 2019). The genome-wide association study (GWAS) refined or validated the previously reported QTLs and identified new loci for resistance to *A. euteiches* (Desgroux et al., 2016), which identified 52 QTLs including six previously identified QTLs for its resistance. However, Desgroux et al. (2018) employed a comparative GWAS approach for resistance to *A. euteiches* in a large set of contrasting pea genotypes (266) using 14,157 SNP markers and identified 11 genomic intervals having significant association with resistance to *A. euteiches* and also confirmed numerous QTLs reported previously. One SNP marker, mapped to the major QTL *Ac-Ps7.6*, was linked with disease resistance and root system architecture, which can be employed in regular pea breeding programs to reduce root rot incidence in pea.

MARKER-ASSISTED SELECTION

A close association of markers with a trait of interest is the prerequisite of MAS, which identifies the target traits without assessing their phenotype in the early generation (Tayeh et al., 2015a). Both biparental and association mapping approaches have been utilized in the identification of closely associated markers with genes controlling disease resistance in pea. Such gene-linked markers control resistance to PM (Lakshmana Reddy et al., 2015), pea enation or seed borne mosaic virus (Swisher Grimm and Porter, 2020), FW (Jiang, 2013; Kwon et al., 2013), PR (Singh et al., 2015; Barilli et al., 2018), AB (Carrillo et al., 2014b; Jha et al., 2015, 2017), FRR (Coyne et al., 2019), and CRR (Lavaud et al., 2015; Desgroux et al., 2016) are available for MAB. The marker-assisted backcrossing (MABC) has been successfully used for the introgression of QTLs for *Aphanomyces* root rot (ARR) resistance into several recipient genotypes (Hamon et al., 2013; Lavaud et al., 2015). During the recent years, efforts were made to identify markers closely linked with disease resistance genes. However, such markers are not being widely used in the MAB program for developing resistant cultivars due to their poor linkage with target traits. These efforts have proved the utility of MABC and MAS in pea improvement. Accessibility of the reference genome will pave the way toward finding the genes of interest and understanding the genetic background of individuals at the genome level by deploying molecular markers responsive to high-throughput genotyping.

GENOMICS FOR UNDERSTANDING THE COMPLEX GENETICS OF BIOTIC STRESS RESPONSE AND IDENTIFICATION OF CANDIDATE GENES

Resistance in the host plant can occur at different stages during compatibility interaction between pathogen and host. Therefore, many mechanisms, metabolic pathways, and proteins are involved in the host plant and pathogen compatibilities. Thus, many genes have to be expressed to control these metabolic pathways or proteins for completing the infectivity of the pathogen with the host plant. Functional knowledge of these genes can help to understand the genetics involved in host plant resistance, which can further be utilized to develop resistant cultivars against a disease. During the recent years, genomic advances have made it possible to know the candidate genes involved in plant resistance by analyzing transcripts of genes expressed during host–pathogen interaction.

Transcriptomics

Transcriptome analysis has been used to know functional genes responsible for resistance in host plants in many food legumes including pea. In pea, different approaches have been used to recognize the genes responsible for disease and pest resistance (Fondevilla et al., 2011). In the case of white mold *Sclerotinia sclerotiorum* (Lib.) de Bary), 2,840 host expressed sequence tags (ESTs) (pea) and 966 pathogen ESTs (*S. sclerotiorum*) were identified manifesting exclusively amid the host–pathogen interface, of which about 10% of pea ESTs demonstrated their alliance with genes concerned to its defense against various biotic or abiotic stress, whereas about 9% of *S. sclerotiorum* ESTs exhibited their association with genes reguating pathogenicity or virulence (Zhuang et al., 2012). In another study, microarray analysis investigated gene expression alteration associated with contagion with *D. pinodes* in pea where 346 genes were found to be regulated differentially between resistant and susceptible response, which was responsible mainly for cell wall build-up, phytoalexin and phenylpropanoid metabolism, genes encoding pathogenesis-associated (PR) proteins, and detoxification processes (Fondevilla et al., 2011). The use of deepSuperSAGE identified 17,561 different UniTags, of which about 70% were known sequences from pea or other plants. Among these, 509 UniTags were differentially articulated (Fondevilla et al., 2014). A similar approach was adopted to identify the candidate genes controlling resistance to bacterial blight infection and found a set of about 651 UniTags that expressed differentially between the resistant and susceptible genotypes (Martín-Sanz et al., 2016). In another study, a transcriptome analysis was used to identify the genes and understand the resistance mechanism against *P. pisi* and *A. euteiches* and identified nearly 574 and 817 genes, respectively that were differentially articulated in response to *A. euteiches* contamination at 6 h post-inoculation (hpi) and 20 hpi, respectively, whereas 544 and 611 genes were expressed differentially against *P. pisi* at 6 and 20 hpi, respectively (Hosseini et al., 2015). These genes were associated with phenylpropanoid metabolism, strengthening of the cell wall, and hormonal (jasmonic acid, auxin, and ethylene) signaling (Hosseini et al., 2015). In a comparative transcriptome analysis, contrast responding genotypes to *E. pisi* infection have identified 2,755 transcripts suggesting altered gene expression between the susceptible and resistant genotypes. This study further identified glycolysis as the major pathway of ATP production during pathogen growth and identified genes responsible for putative receptor and regulatory sequences involved in the defense system of resistant genotypes (Bhosle and Makandar, 2021). This
TABLE 3 | Genomic region or markers associated with resistance to different biotic stresses in field pea (Pisum sativum L.).

Trait	Marker name and type	Gene/QTLs	Distance (cM)	Linkage group	References
Fusarium root rot *(Fusarium solani f. sp. Pisum)*	AA416/SSR, AB60/SSR	QTL	NA	VII	Feng et al., 2011
	CAPS/ dCAPS	Fsp-Ps2.1, Fsp-Ps6.1, Fsp-Ps3.1, Fsp-4.1, Fsp-Ps7.1	8.9–28.5	Ila, Ilb, VI, VII	Coyne et al., 2015
	Ps900203/SNP, Ps900299/SNP	Fsp-Ps 2.1, Fsp-Ps3.2, Fsp-Ps3.3	23.5–49.3	II, III	Coyne et al., 2019
Rust *(Uromyces fabae)*	SC10-92360/RAPD, SCR1-71,1000/RAPD	Ruf	10.8–24.5	–	Vijayalakshmi et al., 2005
	AA446/SSR, AA505/SSR, AD146/SSR, AA416/SSR	Qruf, Qruf1	7.3–10.8	VII	Rai et al., 2011
	AA121/SSR, AD147/SSR	Qruf2	6.0	I	Rai et al., 2016
Rust *(U. pisi)*	OPY11,1316/RAPD, OPV17,1078/RAPD	Up1	6–13.4	III	Barilli et al., 2010
	AD280/SSR, 3567800/DArT, 3563695/DArT, 3569323/DArT, UpDSII, UpDSIV, UpDSIV.2	UpDSII, UpDSIV, UpDSIV.2	1.5–5.0	II, IV	Barilli et al., 2018
Fusarium wilt *(Fusarium oxysporum f. sp. Pisum)*	p254/RFLP	Fw	6.0	IV	Dirlewanger et al., 1994
	ACG:CAT_222/AFLP, ACC:CTG_1151/AFLP, Y15_1050/RAPD/15_999/SCAR	Fw	1.4–4.6	III	McClendon et al., 2002
	AD134_213/SSR, AA5_225/SSR, AAS_235/SSR, AB111_166/SSR, AD73/SSR, AB30/SSR	Fw	2.5–12.3	III	Lordin et al., 2005
	AD865_178/SSR	Fw	1.2	III	Kwon et al., 2013
	Fw_Trap_480/SCAR, Fw_Trap_340/SCAR, Fw_Trap_220/SCAR	Fw	0.5–3.9	III	Jain et al., 2015
Fusarium wilt, race 2	PSMPsAD171/SSR	Fnw	–	–	McPhee et al., 2004
	AC22,185/SSR, AD171,197/SSR, AB70_203/SSR, AD180,161/SSR, AD885_284	Fnw 4.1, Fnw 3.1, Fnw 3.2	–	3, 4	McPhee et al., 2012
Fusarium wilt, Race 5	U693a/RAPD, T3_650/RAPD	FwF	5.6–5.8	II	Okubara et al., 2002
Powdery mildew	Astp	FwF	9.1	II	Coyne et al., 2000
	OPD10_650/RAPD	er-1	9.8	VI	Dirlewanger et al., 1994
	ScOPD-10_650/SCAR	er-1	2.1	VI	Timmerman et al., 1994
	OPL-6_1300/RAPD, Sc-OPE-16_1300/RAPD	er-1	3.7	VI	Rakshit, 1997
	Sc-OPO-18_1300/RAPD	er-1	2–4	VI	Tiwari et al., 1998
	ScOPD-10_650_SCAR	er-1	0.0	VI	Tiwari et al., 1998
	OPD-6_1200/RAPD, OPD-17_1200/RAPD	er-1	3.4	VI	Janila and Sharma, 2004
	PSMPsAD60/SSR, PSMPsAA374/SSR, PSMPsA5/SSR, PSMDA51/SSR	er-1	10.4–14.9	VI	Ek et al., 2005; Lordin et al., 2005
	SCW4_627, SCAB_1874	Er-3	2.8	IV	Fondevilla et al., 2008a

(Continued)
TABLE 3 (Continued)

Trait	Marker name and type	Gene/QTLs	Distance (cM)	Linkage group	References
OPW04_637/RAPD, OPC04_640/RAPD, OPF14_1103/RAPD, OPAH06_539/RAPD, OPAAG06_1240/RAPD, OPAB01_874	Er-3	0.0–6.3	IV	Fondevilla et al., 2006a	
B9/RAPD, Act2B/RAPD, OD15/RAPD, BC210/RAPD, BC483/RAPD, OB11/RAPD, BC407/RAPD	er-1	8.2	VI	Tonguç and Weeden, 2010	
OPX17_1400/ScX17_1400	er-2	2.6	III	Katoch et al., 2010	
OPO061005/SCAR, OPT06_650/SCAR and AGG/CAC125/SCAR, OPE161800/SCAR and A5420y/SSR	er-1	0.5–23.0	VI	Pereira et al., 2010	
OPB18/RAPD	er-1	11.2	VI	Nisar and Ghafoor, 2011	
OPB18_430	er-1	11.2	VI	Nisar and Ghafoor, 2011	
GIM-300/Smi8/CAPS	er1-5	–	VI	Pavan et al., 2011	
ScOPX04_650/SCAR, ScOPD-10_650/SCAR	er-1	0.6–2.8	VI	Srivastava et al., 2012	
er1-1/AshHPI-B/CAPS, er1-4/Ags1/CAPS, er1-2/MGB/STS, er1-3/Xba1/dCAPS, er1-5/HRM54/HFM	er1-1, er1-4, er1-2, er1-3, er1-5	–	VI	Pavan et al., 2013	
c5DNAmet, PSMPSAD60	er-1	8.1–15.4	VI	Sun et al., 2015	
AD60/SSR, c5DNAmet	er-1	8.1–15.4	VI	Sun et al., 2015	
c5DNAmet, PSMPSAD60	er-1	9.0–11.9	VI	Wang et al., 2015	
ScOPD10_650/SCAR, ScOPE16_1600/SCAR, PSMPSAD60/SSR, PSMPSA5/SSR, c5DNAmet, InDel111–120	er-1	4.2–26.2	VI	Sun et al., 2016	
SNP1121/SNP	er1-6	4.2	VI	Sun et al., 2016	
AD60/SSR, c5DNAmet/SSR	er1-6	8.8–22.8	VI	Sun et al., 2016	
KASPar-er1-1, KASPar-er1-3, KASPar-er1-4, KASPar-er1-5, KASPar-er1-6, KASPar-er1-7, KASPar-er1-10, KASPar-er1-11	er-1	–	VI	Ma et al., 2017	
c5DNAmet, AA200/SSR, PSMPSAD51/SSR, OPX04_880/SSR, KASPar-er1-8 and KASPar-er1-9	er1-8, er1-9	0.0	VI	Sun et al., 2019	
P393/RFLP	-	–	IV	Weeden et al., 2000	
Common root rot (Aphanomyces euteiches)					
E7M4.251/AFLP, N14.950/RAPD, U326.190/RAPD, E3MS.167/AFLP	Aph 1, Aph 2, Aph 3	–	Mb	Pilet Nayel et al., 2002	
E7M4.251/AFLP, U370.900/RAPD, U326.190/RAPD, E3MS.167/AFLP	Aph 1, Aph 2, Aph 3	0.2–20.0	Mb	Pilet Nayel et al., 2005	
AF1864458, AA176, A08_2000, X03_1000, E12_1100	Total 135QTLs most stable QTLS (Ae-Ps1.2, Ae-Ps2.2, Ae-Ps3.1, Ae-Ps4.1 and Ae-7.6)	–	I, II, III, IV, V, VI, VII	Hamon et al., 2011	
X03_1000, AB70, A19_800, AF016458, AA430942, E8M2_280, IJB114, J14_850, AB122b	27 Meta QTLs 2 MOTL-Ae25, MOTL-Ae26	–	I, II, III, IV, V, VII	Hamon et al., 2013	
AA446_486, PA8, AB23-376, AA430942, AB145-364, AD57-300, AA175-282, AB112-402, AB38, AC75-297, PD21-226	Ae-Ps7.6, Ae-Ps4.5, Ae-Ps2.2, Ae-Ps3.1, Ae-Ps5.1	–	II, III, IV, V, VII	Lavaud et al., 2015, Lavaud et al., 2016	
AA122, AA387, AB101	52 QTLs Major QTLs (Ae-Ps4.4-4.5, Ae-Ps7.6)	–	IV, VII	Desgroux et al., 2016	
Ps115429/SNP	Ae-Ps7.6	–	VII	Desgroux et al., 2018	

(Continued)
Trait (organism)	Marker name and type	Gene/QTLs	Distance (cM)	Linkage group	References
Ascochyta Blight (Peyronellaea pinodes)	p227/RFLP, p105/RFLP, p236/RFLP	QTL	-	IV, II	Dirlewanger et al., 1994
	c206/RFLP, M02-835/RAPD, sM2PS-234/SCAR M27/SCAR, J12-1400/RAPD, C12-480/RAPD, W17-150/RAPD, P346/RFLP, sY16-112/SCAR M2P2-193/AFLP, sB17-509/SCAR, S15-1320/RAPD	Asc1.1, Asc2.1, Asc3.1, Asc3.2, Asc4.2, Asc4.3, Asc5.1, Asc7.1, Asc7.2, Asc7.3	-	I, II, III, IV, V, VII	Timmerman-Vaughan et al., 2002, 2004, 2016
	AFLP/RAPD/STS V03-1200/RAPD, PSmPSAA175/SSR, PSMSA999/SSR, G04-950/RAPD, E08-988/RAPD	Asc1.1, Asc2	-	II, IV, VI	Taran et al., 2003
	DRR230-b, PsDoF1	Asc3.1, Asc3.2, Asc4.2, Asc4.3, Asc5.1, Asc7.1, Asc7.2, Asc7.3	-	III, V, VI, VII	Prioul et al., 2004
Ascochyta Blight (Didymella pinodes)	PsDoF1p308/SNP, RGA-G3Ap103/SNP	MplII.1, MplII.2, MplV.1, MplV.2	-	III, VII	Jha et al., 2015
	PsC8780p118, PsC8315p219, PsC2081p3867, PsC7497p542, PsC13000p248, PsC4701p407	-	-	I-IV, IV, VII	Jha et al., 2016
	Sc33287_25420/SNP, Sc34405_60551/SNP, Sc33468_44352/SNP, Sc12012_67096/SNP	ablI-1, ablI-2, ablI-2.1, ablI-2.2	-	II, IV, V, III	Jha et al., 2017
	PsC1846p336 - Sc3030_71736 - PsC8865_149928 - Sc7388_112888/SNP	QTLs	-	IIb	Gali et al., 2018
	sC8780p118/SNP	QTL ablII-1	-	III	Jha et al., 2019
Pea common Mosaic virus	p252	mo	15.9	III	Dirlewanger et al., 1994
Pea seed-borne mosaic virus (PSbMV)	GS185/RFLP	sbm-1	8.0	II	Timmerman et al., 1993
	G05_2537/RAPD, L01_910/RAPD, P446/RFLP, sG05_2537/SSTS	sbm-1	4.0	II	Frew et al., 2002
Pea enation mosaic virus (PEMV)	CNGC, tRNAMet2	En	1.3-2.5	III	Jain et al., 2013
White mold (Scolerotinia sclerotiorum)	Chr5LG3_562563492, Chr5LG3_568430003, Chr5LG3_568430003, Chr5LG3_568449806	13 QTLS	-	III	Mahini et al., 2020
Pea weevil (Bruchus pisorum)	3548681/DaT, 3551908/DaT, 3549194/DaT, 3522459/DaT, 3549249/DaT, 3549680/DaT, 3568590/DaT, 3568934/DaT, 3535012/DaT, 3535633/DaT, 3537595/DaT, 3537104/DaT, 3568629/DaT, 3563655/DaT	BpSLI, BpSLII and BpSLIII, BpLDI	-	I, II, IV	Aznar-Fernández et al., 2020
Pea Aphid (Acrystosiphon pisum)	OPW5387/RAPD, OPJ121504/OPO61121	Psy1 and Psy2	-	III, VI	Fondevilla et al., 2012
Pseudomonas syringae pv. Syringae	STS P48	Ocp1	-	III	Valderama et al., 2004
Broomrape (Orobanche crenata)	OPM4_490/OPK6_887, agpl1_SNP2/MSU515_SNP3, OP210_576/Sugtrans/SNP3, s11/SNP1/OPRS4_699	MplII.5, MplV.3, MplV.2	-	II, III, V	Carrillo et al., 2014b
	PsC1846p336 - Sc3030_71736 - PsC8865_149928 - Sc7388_112888/SNP	QTLs	-	IIb	Gali et al., 2018
	sC8780p118/SNP	QTL ablII-1	-	III	Jha et al., 2019

TABLE 3 (Continued)
information of disease resistant candidate genes can further be utilized for the development of functional markers for MAB.

Proteomics
Disease and pest infestation trigger changes in the protein profile of the host plant. Knowledge of such protein profiles responsible for compatible interaction between host and pathogen can help in better understanding the host plant resistance mechanism at the molecular level. In addition to this, the abundance of specific proteins can be used as the markers for differentiating resistant and susceptible genotypes, which can be utilized in resistance breeding. Therefore, during the recent years, efforts have been made on proteomic analysis for diseases and pests in pea. Resistance to AB is a complex trait, and infection of this disease alters proteins and their abundance. First protein markers linked to AB resistance have been utilized in resistant and susceptible genotypes. Subsequently, quantitative estimation of these proteins was done in a mapping population for the detection of putative protein markers linked with AB resistance and explored its possible use in breeding (Castillejo et al., 2020). This study eventually developed a group of potential protein markers for resistance to AB and advocated a molecular mechanism against AB resistance in pea. Previously, the proteomic approach identified changes in host proteins during infection of downy mildew in a susceptible cultivar of pea (Amey et al., 2008), of which the levels of eight proteins [PI176 (protein accession number P13239), ABR17 (protein accession number Q06931), glycine-rich RNA-binding protein (protein accession number P49311), cytosolic GAPDH (protein accession number P34922), chloroplastic GAPDH (protein accession number P12858), photosystem I reaction center subunit II (protein accession number Q95781), ATP synthase epsilon chain (protein accession number P05039), and photosystem I iron sulfur center (protein accession number P10793)] increased significantly in the infected leaves of the susceptible plant. Identification of these proteins provided the base for the advancement to reveal molecular defense mechanisms to P. viciae infection (Amey et al., 2008). In another study, proteomic analysis of PM susceptible and resistant genotypes resulted in the identification of proteins concerned with photosynthetic activity and carbon metabolism, signal transduction functions, protein synthesis, and protein degradation, which aids in understanding the mechanisms of E. pisi resistance in pea (Curto et al., 2006). Similarly, in a recent study, proteomic analysis was done for PM isolates infecting susceptible pea cultivar and identified proteins involved in virulence and pathogenesis through signal transduction, secondary metabolite formation, and stress functions (Bheri et al., 2019). For understanding the resistance mechanism to Acrystosiphon pisum (pea aphid), a serious pest of pea, proteomic analysis between contrasting genotypes identified the proteins mostly corresponding to amino acid metabolism, carbohydrate metabolism, folding or degradation, stress response, photosynthesis, signal transduction, and transcription or translation suggesting the role of different metabolic pathways in controlling resistance to this pest (Carrillo et al., 2014a). Thus, proteomic analysis has provided better insight into the molecular mechanism underlying disease and pest resistance in pea, and hence, it is further required to enhance the understanding of the molecular mechanism of quantitatively inherited diseases and pests resistance in pea.

FUTURE BREEDING STRATEGIES FOR DEVELOPING CULTIVARS RESISTANT TO BIOTIC STRESSES

Development of Functional Markers
Poor association of molecular markers with genes/QTLs controlling disease resistance has led to their limited use for MAS in pea breeding programs. Therefore, the development of the functional markers within targeted genes/QTLs controlling the disease resistance is important for this purpose. Earlier, few efforts have been made to develop functional markers for the er1 gene controlling PM in pea (Sun et al., 2016, 2019). A functional co-dominant CAPS marker with 94% accuracy was found useful for the selection of resistance genes responsible for F. oxysporum race 1 (Jain et al., 2015). Furthermore, next-generation sequencing also assisted in developing functional SNP markers from genes/QTLs governing resistance to different diseases in pea. For example, SNP markers within two candidate genes (PsDo1 and RGA-G3A) were identified for AB resistance (Jha et al., 2015). Association mapping with a large number of SNP markers developed through next-generation sequencing identified SNP marker, associated with a major QTL AeP5.7.6 responsible for reducing ARR severity and root system architecture (RSA). Therefore, the identified genes for RSA could be utilized in improving ARR incidence in pea. Furthermore, the availability of a reference genome sequence of pea along with a high-throughput next-generation genotyping platform provides the opportunity to identify the candidate genes for targeted traits and development of functional markers linked with disease resistance genes for marker-assisted breeding in pea.

Toward Genomic Selection in Pea
For obtaining maximum genetic gain with more accuracy, genomic selection (GS) using molecular markers is a promising approach. This can help to improve biotic stress resistance, which is a primary breeding objective of the pea genetic improvement program. This approach is more useful for improving quantitatively inherited disease resistance in pea. It uses genome-wide molecular markers associated with resistance genes for predicting and selecting high breeding value lines. In a recent review, different models used in GS were discussed in detail; particularly, the use of multivariate GS models (MTGS) over single trait GS (STGS) was presented (Budhlakoti et al., 2019). Multi-trait GS (MTGS) methods may provide more accurate genomic-estimated breeding values (GEBVs). Several MTGS methods were used for GS, e.g., the multivariate mixed model approach (Jia and Jannink, 2012; Klápské et al., 2020), Bayesian multi-trait model (Jia and Jannink, 2012; Cheng et al., 2018), multivariate regression with covariance estimation (MRCE) (Rothman et al., 2010), and conditional Gaussian graphical model (cGGM) (Chiquet et al., 2017).
Jia and Jannink (2012) presented three multivariate linear models (i.e., GBLUP, Bayes A, and Bayes Cτ) and compared them with univariate models. Most of the successful events of the utilization of GS in biotic stress resistance were in cereal crops. In wheat, GS was used for three types of rust, Fusarium head blight, septoria tritici blotch, PMD, tan spot, and Stagonospora nodorum blotch (Budhlakoti et al., 2022). The genomic prediction accuracies for these diseases ranged from 0.14 to 0.85 (Daetwyler et al., 2010; Rutkoski et al., 2012; Mirdita et al., 2015; Juliana et al., 2019; Sarinelli et al., 2019). Similarly, in the case of rice, GS has been used in blast disease tolerance (Huang et al., 2019). In maize, GS has been used against Stenocarpella maydis causing ear rot (Dos Santos et al., 2016) and heavy infestation of Striga (Badu-Apraku et al., 2019). In the case of barley, for Fusarium head blight, the prediction accuracy was 0.72 (Lorenz et al., 2012; Sallam and Smith, 2016). Through limited reports of the use of genomic selection to improve biotic stresses in pea are available, efforts have been made to know the impact of the marker density, statistical method, and/or the training population size for evaluating genomic prediction accuracy using the number of seeds per plant, thousand seed weight, and flowering time. Such information provides opportunities for developing GS strategies (Tayeh et al., 2015b), which is important for biotic stress tolerance in pea.

Mining Allelic Variants for Resistance Genes

Breeding for improving a trait requires ample availability of diversity in germplasm for the targeted traits. In pea, a large collection of genetic resources is available, which are a reservoir of undiscovered allelic variants for many traits (Tanksley and McCouch, 1997; Smykal et al., 2012). This large collection may have new resistant allele(s) of the gene(s) controlling disease incidence in pea. For mining such alleles from germplasm, there is a need to test the entire germplasm for their response following a specific screening protocol, which is not only time-consuming but also expensive. However, current genomic tools have provided an opportunity to uncover the allelic variation, especially for those monogenic traits for which candidate genes are already known (Robaglia and Caranta, 2006; Hofinger et al., 2011; Reeves et al., 2012). The use of such genomic tools increases the identification of allelic variants for resistance genes by screening the wild and cultivated germplasm in several crops (Bhullar et al., 2009). In pea, eukaryotic translation initiation factor 4E provides resistance against many potyviruses. Therefore, gene eIF4E encoding this factor has been used for the identification of allelic diversity among 2,803 pea accessions, which resulted in the identification of four eIF4E-A-B-C-S variants, whose distribution was geographically linked, suggesting its independent evolution (Konecná et al., 2014). This study has opened an avenue of research for the identification of new allelic variants for complex diseases of a pea.

Toward Epigenetic Breeding

Transgenerational epigenetic variation, which transfers steadily to the next generation, becomes one of the important strategies for breeding climate-resilient cultivars in crop plants. These variations cause alteration in gene expression through DNA methylation or histone modification (Kumar et al., 2019). Identification or genome-wide mapping of epigenetic markers can help the breeder to manipulate epigenomic variability toward the development of climate resilient crop varieties. This epigenetic variation was detected in host plant resistance against a broad array of plant pathogens such as fungi, bacteria, viruses, nematodes, oomycetes, and herbivorous insects (Espinas et al., 2016; Ramirez-Prado et al., 2018; Alonso et al., 2019). For example, in soybean, methylene has been identified for compatible interaction of roots with cyst nematodes (Rambani et al., 2015). In pea, differences have been detected for methylations among plants, which were propagated through in vitro culture for a long time (Smykal et al., 2007). Artificially induced and naturally occurring epigenetic variations controlling plant disease resistance were identified, and similar efforts are required to identify epigenetic variation responsible for polygenetically inherited disease resistance in pea. In pea, no potential genetic sources for resistance are available so far for many serious diseases, and hence, new epigenetic alleles can be generated using promising approaches such as induced genespecific DNA methylation and epigenome editing (Zhi and Chang, 2021). Thus, epigenetic breeding has a great potential for improving disease resistance in pea.

Genome Editing

In pea, insect pests and diseases are the major yield-limiting factors and hence pose a substantial threat to food security globally. In recent years, genome editing or modification has revolutionized the functional analyses of genes and the introduction of new alleles for the trait of interest into commercial crop plants (Mushtaq et al., 2019). Different approaches of genome editing have been developed for this purpose; however, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (CRISPR-Cas9), meganucleases, transcription activator-like effector nucleases (TALENs), and zinc-finger nucleases (ZNFs) are being used extensively for genetic improvement (Mushtaq et al., 2019). In crop plants, susceptibility (S) or resistance (R) genes have been considered eventual targets intended for escalating crop protection (Singh et al., 2016; Ren et al., 2017). These genes were identified as the best candidate for gene editing for conferring disease or pest resistance in a crop (Das et al., 2019b). In addition to this, editing of most conserved regions of multiple viral genomes using multiplex CRISPR/Cas9 system also helped in conferring disease resistance in various crops by interfering with their duplication and progress (Iqbal et al., 2016). In pea, the transcriptomic analysis provides elucidation of the genes and pathways concerned with disease or pest resistance. Moreover, the study of expression alteration, modification, and interaction of protein during the plant-pathogen interface provided knowledge of key proteins involved in pathogenesis. This information is a useful repository for editing or modification of the genome of a crop or realtered pathogen toward the development of resistant cultivars (Barakate and Stephens, 2016). In addition to this, genome editing can be used to alter epi-alleles...
or to generate new epi-alleles involved in disease resistance (Latutrie et al., 2019).

Transgenic Technology

In pea, limited resistance sources are available among cross-compatible germplasm for several devastating diseases and insect pests such as FRR, CRR, PR, alfalfa mosaic virus, and bruchids. Therefore, transferring resistance genes from other non-cross-compatible species is one of the ways to develop resistant cultivars, possibly by developing transgenic plants. However, genetic transformation in pea is not easy when compared to other legume crops due to difficulties in transformation and plant regeneration (Svabova et al., 2005; Warkentin et al., 2015). Although, during the recent years, advances in biotechnology have made possible the development of transgenics in pea for diseases and insect pests. For example, transgenic lines with two chimeric genes encoding the coat protein (CP) of alfalfa mosaic virus (AMV) strain NZ1 have been developed and tested under greenhouse and field conditions for improved AMV resistance in pea. However, results showed partial virus resistance of transgenic lines having genetically modified AMV CP sequences (Timmerman-Vaughan et al., 2001). In another study, two antifungal genes (chitinase and glucanase) for resistance to fungal diseases have been transferred using genetic transformation, and transgenic pea has been developed by stacking these genes (Amian et al., 2011). Weevils are the most devastating insect of food legumes including pea. Genetic resistance to this insect is not available currently in cross-compatible germplasm. However, a gene for alpha-amylase inhibitor-1 (αAI) has been identified in the common bean that completely protects from weevil destruction. This has been transferred through a genetic transformation in pea, and developed transgenic lines showed resistance to this pest. Moreover, αAI transgenic peas are found to be less allergenic than beans or non-transgenic peas in mice (Reiner et al., 2013).

In a more recent study, four antifungal genes, 1-3 β glucanase (G), endochitinase (C) (belonging to the PR proteins family), polygalacturonase inhibiting proteins (PGIPs) (P), and stilbene synthase (V), have been transformed for disease tolerance in European pea cultivars. This resulted in the development of transgenic lines having an individual antifungal gene or all four genes that were stacked through hybridization. However, the resistance of these transgenic lines against FRR was not consistent over the years in confined field trials probably due to lower relative gene expression in the roots (Kahlon et al., 2018). Although, these studies showed the possibility of developing transgenic pea against major diseases and insect pests. Thus, transgenic technologies have great promise but the economic

![FIGURE 2](https://www.frontiersin.org) Genomic-assisted breeding strategies for biotic stress tolerance.
benefits of genetically modified (GM) pea will need to surpass the regulatory costs, time, and labor involved in bringing a GM crop to market. In addition to this, more research experiments are required on issues associated with genetically modified crops, such as discrete changes in the molecular architecture, cellular function, and antigenicity of the expressed protein translated from the transferred gene in the transgenic plants. In pea, transgenic expression of a plant protein (alpha-amylase inhibitor-1) from the common bean, which is a non-native host of pea, led to the synthesis of a structurally modified form of this inhibitor. The effect of this modified protein has been studied in mice and found that non-native proteins in transgenic plants may lead to structural modification with altered immunogenicity (Prescott et al., 2005).

Speed Breeding

Environmental conditions play an instrumental role in making crop plants susceptible to biotic stresses. The changing environmental condition due to global warming provides opportunities for evolving new races and pathogens, which has significantly raised concern for meeting global food security. Therefore, there is an urgent need of developing resistant cultivars within a short period of time. However, present breeding approaches take several years to develop the resistant cultivars, and hence, the current improvement rate is inadequate to meet the future food demands. Elongated generation advancement time of crops is one of the key reasons for delay in the development of improved resistant cultivars against biotic stresses. Therefore, in recent years, speed breeding has emerged as a powerful tool for accelerating crop research and breeding as several workers have developed speed breeding protocols in pea for shortening the breeding time (Ghosh et al., 2018; Watson et al., 2018; Cazzola et al., 2020). These speed breeding techniques along with new biotechnological tools available in pea can accelerate the development of resistant cultivars against new emerging pathogens or races due to climate changes in the following way:

- Taking 4–5 breeding generations in a year could substantially reduce the time span to release a variety.
- Development of RIL mapping populations within a short period of time using speed breeding can help in the rapid identification of QTLs for disease resistance and their use in the breeding program for developing improved resistant cultivars.
- The MABC for introgression of QTLs/genes controlling disease resistance can be faster through speed breeding leading to the rapid development of improved and resistant cultivars.
- The amalgamation of speed breeding with other modern breeding and biotechnological techniques such as genome editing, genomic selection, and high-throughput genotyping has great potential for accelerating the genetic gain toward the development of biotic stress-tolerant cultivars.

CONCLUSION AND PERSPECTIVES

Pea is an important and exceptionally high-yielding cool season pulse crop in the world. Numerous biotic stresses are the key constraints in harnessing the full production potential of a pea, of which fungal diseases such as PM, FW, FRR, AB, CRR, and PR causing infection during different growth stages are devastating to the crop. Nevertheless, sincere efforts have been made to elevate the productivity and production of pea, but many more milestones are yet to be achieved for making it a resilient crop to upcoming challenges. Several major and minor genes/QTLs governing important biotic stresses in pea have been dissected and mapped using existing genomic tools, nevertheless, not utilized to a large extent in regular pea breeding programs. The reliable DNA markers flanking the genes/QTLs of interest could accelerate the introgression of resistance from the resistance sources using the genomic-assisted protocol to speed up the pea breeding program accomplishments more efficiently and precisely. Updated research efforts are warranted for the amalgamation of next-generation genomics and phenomics in pea improvement programs. The schematic diagram explains how different genomic approaches can be combined to accelerate the success of a pea breeding program (Figure 2). This figure also explains the combined use of genetic resources, genomic resources, and advanced biotechnological tools in the pea improvement program for the development of biotic stress-resistant cultivars. Underlying resistance mechanisms for AB, PM, and pea aphids have been elucidated using different pathogenic resistance proteins pertinent to the genes and pathways involved in pathogen resistance. However, more concentrated efforts are needed in the future on proteomic and transcriptomic analyses to untangle the disease and pest resistance mechanism in pea at the molecular level and to validate the sequencing results at the functional level for the identification of candidate genes controlling biotic stress resistance. This information will be certainly useful for editing or modification of crop genomes or realtered pathogens to develop resistant cultivars. Genome-wide association and genomic selection, which elucidate specific genetic variations at the genome scale, should be judiciously used for the identification of several gene(s)/QTLs exerting smaller effects on the biotic stress resistance. The transgenic technology should be exploited to let researchers utilize the variability existing outside the crop’s primary/secondary gene pool and also offer an opportunity to conquer crossability constraints. In addition, induced gene-specific DNA methylation and epigenome editing can be exploited to generate new epigenetic alleles for different biotic stresses. Most recently, speed breeding or rapid generation advancement protocols developed for shortening breeding times (4–5 cycles/year) have emerged as a potent technology for accelerating genetic gain in pea. Though, several tools and technologies are in hand judicious use to reap the best of them is challenging, certainly, there is a huge scope to achieve new heights in productivity enhancement by breeding biotic stress-resistant pea cultivars.
AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct, and intellectual contribution to the work, and approved it for publication.

REFERENCES

Alonso, C., Medrano, M., Perez, R., Canto, A., ParraTabla, V., and Herrera, C. M. (2019). Interspecific variation across angiosperms in global DNA methylation: phylogeny, ecology and plant features in tropical and Mediterranean communities. New Phytol. 224, 949–960. doi: 10.1111/nph.16046

Amey, R. C., Schleicher, T., Slinn, J., Lewis, M., Macdonald, H., Neill, S. J., et al. (2008). "Proteomic analysis of a compatible interaction between Pisum sativum (pea) and the downy mildew pathogen Peronospora viciae". In The Downy Mildews: Genetics, Molecular Biology and Control. eds A. Lebeda, P. T. N. Spencer-Phillips, and B. M. Cooke (Dordrecht: Springer). 41–55. doi: 10.1007/978-1-4020-8973-2_5

Amian, A. A., Papenbrook, J., Jacobsen, H. J., and Hassan, F. (2011). Enhancing transgenic pea (Pisum sativum L.) resistance against fungal diseases through stacking of two antifungal genes (chitinase and glucanase). GM Crops 2, 104–109. doi: 10.4161/gmcr.2.11.16125

Amin, A., Mushtaq, F., Singh, P. K., Wani, K. P., Spaldon, S., and Nazir, N. (2010). Genetics and breeding of pea-a review. Int. J. Curr. Res. 10, 28–34. doi: 10.3923/ijpjjp.2015.28.31

Aryamanesh, N., Zeng, Y., Byrne, O., Hardie, D. C., Al-Salhi, A. M., Khan, T., et al. (2014). Identification of genome regions controlling coryledon, pod wall/seed coat and pod wall resistance to pea weevil through QTL mapping. Theor. Appl. Genet. 127, 489–497. doi:10.1007/s00122-013-2234-2

Ashby, I. J., Stevenson, C. E. M., Jarvis, G. E., Lawson, D. M., and Maule, A. J. (2011). Structure-based mutational analysis of EF4E in relation to sbm1 resistance to pea seed-borne mosaic virus in pea. PLoS One 6:15873. doi: 10.1371/journal.pone.0015873

Aslam, S., Ghazanfar, M. U., Munir, N., and Hamid, M. I. (2019). Managing fusarium wilt of pea by utilizing different application methods of fungicides. Pak. J. Phytopathol. 31, 81–88. doi:10.33666/phytopathol.031.01.0482

Assen, K. Y. (2020). Diversity analysis and identification of promising powdery mildew resistance genotypes in field pea (Pisum sativum L.). Amer. J. Biol. Environ. Stat. 6, 7–16. doi:10.11648/ajbes.20200601.12

Azmat, M. A., Khan, A. A., Saeed, A., Ashraf, M., and Niaz, S. (2012). Screening pea germplasm against Erysiphe polygoni for disease severity and latent period. Int. J. Veg. Sci. 18, 153–160. doi: 10.1081/ajves.19315260.2011.92571

Aznar-Fernández, T., Barilli, E., Cobos, M. J., Kilian, A., Carling, J., and Rubiales, D. (2020). Identification of quantitative trait loci (QTL) controlling resistance to pea weevil (Brachus pisorum) in a high-density integrated DArTseq SNP-based genetic map of pea. Sci. Rep. 10:33. doi:10.1038/s41598-019-56987-7

Badu-Apraku, B., Talabi, A. O., Fakorede, M. A. B., Fasanmade, Y., Gedil, M., Aznar-Fernández, T., Barilli, E., Cobos, M. J., Kilian, A., Carling, J., and Rubiales, D. (2020). Breeding Strategies for Biotic Stresses in Pea

FUNDING

This publication has received funding support for open access fee payment from Cukurova University, Agricultural Faculty, Field Crops Department, Adana, Turkey.
Chatterton, S., Bowness, R., and Harding, M. W. (2015). First report of root rot of field pea caused by *Aphanomyces euteiches* in Alberta. *Can. Plant Dis. 99*, 288. doi: 10.1094/PDIS-09-14-0905-PDN

Chaudhary, R. G., and Naimuddin. (2000). “Pea diseases in Indian perspective and their economic management,” in *Advances in Plant Disease Management*, eds U. Narain, K. Kumar, and M. Srivastava (New Delhi: Advance Publishing Concept), 47–60.

Cheng, H., Kizilkaya, K., Zeng, J., Garrick, D., and Fernando, R. (2018). Genomic prediction from multiple-trait-bayesian regression methods using mixture priors. *Genetics* 209, 89–103. doi: 10.1534/GENETICS.118.300650/-/DC1

Cheng, P., Holdsworth, W., Ma, Y., Coney, C. J., Mazourek, M., Grusak, M. A., et al. (2015). Association mapping of agronomic and quality traits in USDA pea single-plant collection. *Mol. Breed.* 35, 1–13.

Chiquet, J., Mary-Huard, T., Robin, S., and Robin, S. (2017). Structured regularization for conditional gaussian graphical models. *Stat. Comput.* 27, 789–804. doi:10.1007/s11222-016-9654-1

Clement, S. L., Hardie, D. C., and Elberson, L. R. (2002). Variation among *Pisum sativum* x *Pisum fulvum* interspecific crosses. *Plant Breed.* 128, 478–485. doi: 10.1111/j.1439-0523.2008.01603.x

Cullow, S. A., Lewis, B. G., and Matthews, P. (1991). A pathotype classification for *Ascochyta pinodes*. *J. Phytopathol.* 131, 322–332. doi: 10.1111/j.1439-0434.1991.001203.x

Conner, R. L., Chang, K. F., Hwang, S. F., Warkentin, T. D., and McRae, K. B. (2013). Assessment of tolerance for reducing yield losses in field pea caused by *Aphanomyces* root rot. *Can. J. Plant Sci.* 93, 473–482. doi:10.4141/cjps2012-183

Coyne, C. J., Inglis, A. D., Whitehead, S. J., McClendon, M. T., and Muehlbauer, F. J. (2000). Chromosomal location of *Fwf*, the *Fusarium wilt race* 5 resistance gene in *Pisum sativum*. *Pisum Genet.* 32, 20–22.

Coyne, C. J., Kumar, S., von Wettberg, E. J., Marques, E., Berger, J. D., Redden, R. I., et al. (2020). Potential and limits of exploitation of crop wild relatives for pea, lentil, and chickpea improvement. *Legum. Sci.* 2:e36.

Coyne, C. J., Pilet-Nayel, M. L., McGee, R. J., Porter, L. D., Smykal, P., and Grunwald, N. J. (2015). Identification of QTL controlling high levels of partial resistance to *Fusarium solani f. sp. pisi* in pea. *Plant Breed.* 134, 446–453. doi:10.1111/pbr.12287

Coyne, C. J., Porter, L. D., Boutet, G., Ma, Y., McGee, R. J., Lesné, A., et al. (2019). Confirmation of *Fusarium* root rot resistance QTL Fps-Pr 2.1 of pea under controlled conditions. *BMC Plant Biol.* 19:98. doi:10.1186/s12870-019-1699-Curto, M., Camafote, E., Lopez, J. A., Maldonado, A. M., Rubiales, D., and Jorrín, J. V. (2006). A proteomic approach to study pea (*Pisum sativum*) responses to powdery mildew (*Erysiphe pisi*). *Proteomics* 6, S163–S174. doi:10.1002/pmic.20050396

Daetwyler, H. D., Hickey, J. M., Henshall, J. M., Dominik, S., Gredler, B., Van der Werf, J. H. J., et al. (2010). Accuracy of estimated genomic breeding values for component raffinose modify fecal microbial composition in healthy adults. *BMC Genomics.* 11:240. doi:10.1186/1471-2164-15-126

Ek, M., Eklund, M., Von Post, R., Daytég, C., Henriksson, T., Weibull, P., et al. (2005). Microsatellite markers for powdery mildew resistance in pea (*Pisum sativum L.*). *Hereditas* 142, 86–91. doi:10.1111/j.1600-5223.2005.01906.x

Ekvall, J., Stegnmark, R., and Nyman, M. (2006). Content of low molecular weight carbohydrates in vining pea (*Pisum sativum*) related to harvest time, size and brine grade. *Food Chem.* 94, 513–519. doi:10.1016/j.foodchem.2004.11.044

Ellis, T. H., Turner, L., Hellens, R. P., Lee, D., Harker, C. L., Enard, C., et al. (1992). Linkage maps in pea. *Genetics* 130, 649–663. doi:10.1093/genetics/130.3.649

Esen, A., Sari, H., Erler, F., Adak, A., Sari, D., Eker, T., et al. (2019). Screening and selection of accessions in the genus *Pisum* for resistance to pulse beetle (*Callosobruchus chinensis L.*). *Euphytica* 215, 1–9. doi:10.1007/978-3-319-23534-9_1

Espinas, N. A., Saez, H., and Saijo, Y. (2016). Epigenetic control of defense signaling and priming in plants. *Front Plant Sci.* 7:1201. doi: 10.3389/fpls.2016.01201

Esposito, M. A., Martin, E. A., Cravero, V. P., and Country, E. (2007). Characterization of pea accessions by SRAP's markers. *Sci. Hortic.* 113, 329–335. doi:10.1016/j.scienta.2007.04.006

FAO (2021). *Food and Agriculture Organization Statistics*. Available online at: https://www.fao.org/faostat/en/#data/QCL (accessed October, 2021).

Feng, J., Wang, R., Chang, K. G., Conner, R. L., Hwang, S. F., Strelkov, S. E., et al. (2011). Identification of microsatellite markers linked to quantitative trait loci controlling resistance to *Fusarium* root rot in field pea. *Can. J. Plant Sci.* 91, 199–204. doi:10.4141/cjps10-0176

Fondevilla, S., Avila, C. M., Cubero, J. I., and Rubiales, D. (2005). Response to powdery mildew in pea: a review. *Agron. Sustain. Dev.* 32, 401–409. doi:10.1007/s10439-011-0033-1

Fondevilla, S., Carver, T. L. W., Moreno, M. T., and Rubiales, D. (2007a). Identification of common genomic regions controlling resistance to *Fusarium* root rot in field pea. *Can. J. Plant Sci.* 87, 43–52. doi:10.1007/s10681-011-0460-8

Fondevilla, S., Torres, A. M., Moreno, M. T., and Rubiales, D. (2007b). *Ascochyta pinodes in a germplasm collection of Pisum sativum.* *Can. J. Plant Sci.* 87, 329–335. doi:10.1007/s10681-011-01106-4

Fondevilla, S., Avila, C. M., Cubero, J. I., and Rubiales, D. (2005). Response to *Ascochyta pinodes* in a germplasm collection of *Pisum* spp. *Plant Breed.* 124, 313–315. doi:10.1111/j.1439-0523.2005.01104.x

Fondevilla, S., Carver, T. L. W., Moreno, M. T., and Rubiales, D. (2006). Macromolecular and histological characterization of genes er1 and er2 for powdery mildew resistance in pea.*Eur. J. Plant Pathol.* 115, 309–321. doi: 10.1007/s10658-006-9015-6

Fondevilla, S., Torres, A. M., Moreno, M. T., and Rubiales, D. (2007b). Identification of a new gene for resistance to powdery mildew in *Pisum sativum*, a wild relative of pea. *Front. Plant Sci.* 5, 181–184. doi:10.1270/jsbbs.5181

Fondevilla, S., Carver, T. L. W., Moreno, M. T., and Rubiales, D. (2007a). Identification and characterization of sources of resistance to *Erysiphe pisi* in *Pisum sativum*. *Plant Breed.* 126, 113–119. doi: 10.1111/j.1439-0523.2006.01312.x
Fondevilla, S., Cubero, J. I., and Rubiales, D. (2007c). Inheritance of resistance to Mycosphaerella pinodes in two wild accessions of Pisum. Eur. J. Plant Pathol. 119, 53–58. doi: 10.1007/s10651-006-0665-6

Fondevilla, S., Fernández-Aparicio, M., Satovic, Z., Emeran, A. A., Torres, A. M., Moreno, M. T., et al. (2010). Identification of quantitative trait loci for specific mechanisms of resistance to Orobanche crenata Forsk. in pea (Pisum sativum L.). Mol. Breed. 25, 259–272. doi: 10.1007/s10814-009-9330-7

Fondevilla, S., Krajinski, F., Kuster, H., Cubero, J. I., and Rubiales, D. (2011). Identification of genes differentially expressed in a resistance reaction to Mycosphaerella pinodes in pea using micro-array technology. BMC Genomics 12:28. doi: 10.1186/1471-2164-12-28

Fondevilla, S., Martín-Sanz, A., Satovic, Z., Fernández-Romero, M. D., Rubiales, D., and Caminero, C. (2012). Identification of quantitative trait loci involved in resistance to Pseudomonas syringae pv. syringae in pea (Pisum sativum L.). Euphytica 186, 805–815. doi: 10.1007/s10681-011-0592-x

Fondevilla, S., Rötter, B., Krezdorn, N., Jungling, R., Winter, P., and Rubiales, D. (2014). Identification of genes involved in resistance to Didymella pinodes in pea by deepSuperSAGE transcriptome profiling. Plant Mol. Biol. Rep. 32, 258–269. doi: 10.1016/j.ipmb.2011.03-02-01-01-01-04-6

Fondevilla, S., Rubiales, D., Moreno, M. T., and Torres, A. M. (2008a). Identification and validation of RAPD and SCAR markers linked to the gene Er3 conferring resistance to Erysiphe pisi DC in pea. Mol. Breed. 22, 193–200. doi: 10.1007/s10814-008-9166-6

Fondevilla, S., Rubiales, D., Zatovic, S., and Torres, A. M. (2008b). Mapping of quantitative trait loci for resistance to Mycosphaerella pinodes in Pisum sativum subsp. sativum. Mol. Breed. 21, 439–445. doi: 10.1007/s10814-007-9144-4

Frew, T. J., Russell, A. C., and Timmerman-Vaughan, G. M. (2002). Sequence tagged site markers linked to the sbm1 gene for resistance to pea seed borne mosaic virus in pea. Plant Breeding. 121, 512–516.

Gali, K. K., Liu, Y., Sindhu, A., Diapari, M., Shunnugam, A. S., Arganosa, G., et al. (2018). Construction of high-density linkage maps for mapping quantitative trait loci for multiple traits in field pea (Pisum sativum L.). BMC Plant Biol. 18:172. doi: 10.1186/s12870-018-0075-5

Ghafoor, A., and McPhee, K. (2012). Marker assisted selection (MAS) for Fusarium resistance in pea. Crop Sci. 52, 2462–2468. doi: 10.2135/cropsci2012.04.0242

Grunwald, N. J., Coffman, V. A., and Kraft, J. M. (2003). Sources of partial resistance to root rot in the Pisum sativum population. J. Gen. Breed. 59:145.

Hagedorn, D. J., and Gritton, E. T. (1973). Inheritance of resistance to the pea enation mosaic virus. Phytopathology 63, 1130–1133. doi: 10.1094/phyto-63-1130

Haghnavaz, A., Samimi-Fard, R., Najafi, J., and Mardi, M. (2005). Genetic diversity of four sources of resistance in pea. Genetics and Breeding Strategies for Biotic Stresses in Pea. 167–189. doi: 10.5958/0978-1-4020-0665-6

Huang, M., Balimponya, E. G., Mgonja, E. M., McHale, L. K., Luki-Kihupi, A., Wang, G. L., et al. (2019). Use of genomic selection in breeding rice (Oryza sativa L.) for resistance to rice blast (Magnaporthe oryzae). Mol. Breeding. 39, 1–16.

Hybridization of Crop Plants

Hunter, P. J., Ellis, N., and Taylor, J. D. (2001). Association of dominant loci for resistance to Pseudomonas syringae pv. linkage groups II, VI and VII of Pisum sativum. Theor. Appl. Genet. 103, 129–135. doi: 10.1007/s001220010105

Hybridization of Crop Plants

Jain, S., Weeden, N. F., Kumar, A., Chittem, K., and McPhee, K. (2015). Functional codominant marker for the Fw gene conferring resistance to Fusarium wilt race 1 in pea. Crop. Sci. 55, 2639–2646. doi: 10.2135/cropsci2015.02.0102

Jain, S., Weeden, N. F., Porter, L. D., Eigenbrode, S. D., and McPhee, K. (2013). Finding linked markers for efficient selection of pea enation mosaic virus resistance in pea. Crop. Sci. 53, 2392–2399.

Janila, P., and Sharma, B. (2004). RAPD and SCAR markers for powdery mildew resistance in pea. J. Gen. Breed. 52, 2462–2468. doi: 10.2135/cropsci2012.04.0242

Jha, A. B., Taran, B., Diapari, M., Sindhu, A., Shunmugam, A., Bett, K., et al. (2012). Allele diversity analysis to identify SNPs associated with ascochyta blight resistance in pea using heterogeneous inbred families. Crop. Sci. 52, 866–867. doi: 10.2135/cropsci2011.05021.x

Jha, A. B., Gali, K. K., Banniza, S., and Warkentin, T. D. (2019). Validation of SNP markers associated with ascochyta blight resistance in pea. Can. J. Plant Sci. 99, 243–249. doi: 10.1139/cjps-2018-0211

Jha, A. B., Gali, K. K., Taran, B., and Warkentin, T. D. (2017). Fine mapping of QTLs for ascochyta blight resistance in pea using heterogeneous inbred families. Front. Plant Sci. 8, 765. doi: 10.3389/fpls.2017.00765

Jha, A. B., Taran, B., Diapari, M., Sindhu, A., Shunnugam, A., Bett, K., et al. (2015). Allele diversity analysis to identify SNPs associated with ascochyta blight resistance in pea. Euphytica 202, 189–197. doi: 10.1007/s10681-014-1254-6

Jia, A. B., Taran, B., Stonehouse, R., and Warkentin, T. D. (2016). Identification of QTLs associated with improved resistance to ascochyta blight in an interspecific pea recombinant inbred line population. Crop. Sci. 56, 2926–2939. doi: 10.2135/cropsci2016.01.0001

Jia, A. B., Taran, B., and Banniza, S. (2012). Identification of molecular markers and marker-assisted breeding in plants,” in Plant Breeding from Laboratories to Fields, ed. S. B. Andersen (Rijeka: InTech), 45–83.
McPhee, K. E., Tullu, A., Kraft, J. M., and Muehlbauer, F. J. (1999). Resistance to Fusarium wilt race 2 in the Pisum core collection. J. Am. Soc. Hortic. Sci. 124, 28–31. doi: 10.21273/jashis.124.1.28

Mikic, A., Smykal, P., Keniger, C., Vishnyakova, M., Sarukhanyan, N., Akopian, J., et al. (2013). The bicentenary of the research on ‘beautiful’vavilovia (Vavilovia formosa), a legume crop wild relative with taxonomic and agronomic potential. Bot. J. Linn. Soc. 172, 524–531. doi: 10.1111/boj.12060

Mirdita, V., He, S., Zhao, Y., Korzun, V., Bothe, R., Ebmeyer, E., et al. (2015). Potential and limits of whole genome prediction of resistance to Fusarium head blight and Septoria tritici blotch in a vast Central European elite winter wheat population. Theor. Appl. Genet. 128, 2471–2481. doi: 10.1007/s00122-015-2602-1

Mohamed, A., Garcia-Martinez, S., Carbonell, M. L. P., Jose ñ Ruiz, J., and Boubaker, M. (2019). Assessment of genetic diversity among local pea (Pisum sativum L.) accessions cultivated in the arid regions of Southern Tunisia using agro-morphological and SSR molecular markers. Genet. Resour. Crop Evol. 66, 1189–1203. doi: 10.1007/s10722-019-00784-8

Mohan, M., Nair, S., Bhagwat, A., Krishna, T. G., Yano, M., Bhatia, C. R., et al. (2006). Screening of Pisum sativum L.) germplasm against Mycosphaerella pinodes in pea for new breeding prospects, “ in Proceedings of the 3rd International Aphanomyces workshop on legumes, Rennes, 36.

Pilet Nayel, M. L., Coyne, C., Hamon, A., Lesne’, A., Le Goff, I., Esnault, R., et al. (2004). Mapping of quantitative trait loci for partial resistance to Fusarium root rot in pea for new breeding prospects,” in Proceedings of the 3rd international Aphanomyces workshop on legumes, Rennes, 36.

Porter, L. D. (2010a). Identification of tolerance to Fusarium root rot in wild pea germplasm with high levels of partial resistance. Pisum Genet. 42, 1–6.

Prestcott, V. E., Campbell, P. M., Moore, A., Mattes, J., Rothenberg, M. E., Foster, P. S., et al. (2005). Transgenic expression of bean alpha-amylase inhibitor in pea results in altered structure and immunogenicity. J. Agric. Food Chem. 53, 9023–9030. doi: 10.1021/jf050594v

Prioul, S., Frankewitz, A., Deniot, G., Morin, G., and Baranger, A. (2004). Mapping of quantitative trait loci for partial resistance to Aphanomyces root rot in pea. Theor. Appl. Genet. 106, 28–39. doi: 10.1007/s00122-002-0985-2

Rai, R., Singh, A. K., Chand, R., Srivastava, C. P., Joshi, A. K., and Singh, B. D. (2016). Genomic regions controlling components of resistance for pea (Pisum sativum L.) at the seedling and adult plant stages. Theor. Appl. Genet. 130, 1232–1234. doi: 10.1007/s00122-016-1543-2

Rai, R., Singh, A. K., Chand, R., Srivastava, C. P., Joshi, A. K., and Singh, B. D. (2016a). Genomic regions controlling components of resistance for pea (Pisum sativum L.) at the seedling and adult plant stages. Theor. Appl. Genet. 130, 1232–1234. doi: 10.1007/s00122-016-1543-2

Rakshit, S. (1997). Biochemical and molecular analyses of powdery mildew resistance in pea (Pisum sativum L.). Ph. D. Dissertation. New Delhi: Indian Agricultural Research Institute.

Rambani, A., Rice, J. H., Liu, J., Lane, T., Ranjan, P., Mazarei, M., et al. (2015). The methylome of soybean roots during the compatible interaction with the soybean cyst nematode. Plant Physiol. 168, 1364–1377. doi: 10.1104/pp.115.280562

Ramirez-Prado, J. S., Abulfaraj, A. A., Rayapuram, N., Benhamed, M., and Hirt, H. (2018). Plant immunity: from signaling to epigenetic control of defense. Trends Plant. Sci. 23, 833–844. doi: 10.1016/j.tplants.2018.06.004

Rana, J. C., Banyal, D., Sharma, K. D., Sharma, M. K., Gupta, S. K., and Yadav, A. (2013). Screening of pea germplasm for resistance to powdery mildew. Euphytica 196, 271–282. doi: 10.1007/s10681-012-0798-6

Reeves, P. A., Panella, L. W., and Richards, C. M. (2012). Retention of agronomically important variation in germplasm core collections: implications for allele mining. Theor. Appl. Genet. 124, 1155–1171. doi: 10.1007/s00122-011-1776-4
Reiner, D., Lee, K., Higgins, T. J., and Epstein, M. M. (2013). Genetically modified α-amylase inhibitor peas are not specifically allergenic in mice. Clin. Transl. Allergy 3:1. doi: 10.1186/2191-0365-3-1

Ren, Y., Singh, R. P., Basnet, B. R., Lan, C. X., Huerta-Espino, J., Lagudah, E. S., et al. (2017). Identification and mapping of adult plant resistance loci to leaf rust and stripe rust in common wheat cultivar Kundan. Plant Dis. 101, 456–463. doi: 10.1094/PDIS-06-16-0890-re

Rispail, N., and Roubichas, D. (2014). Identification of sources of quantitative resistance to Fusarium oxysporum f. sp. medicaginis in Medicago truncatula. Plant Dis. 98, 667–673. doi: 10.1094/pdis-03-13-0217-re

Rобагия, C., and Caranta, C. (2006). Translation initiation factors: a weak link in plant RNA virus infection. Trends Plant Sci. 11, 40–45. doi: 10.1016/j.tplants.2005.11.004

Rothman, A. J., Levina, E., and Zhu, J. (2010). Sparse multivariate regression with covariance estimation. J. Comput. Graph. Stat. 19, 947–962. doi: 10.1198/jcgs.2010.091988

Roux-Duparque, M., Beitel, C., Decaux, B., Moussart, A., Alamie, J., Pilet-Nayel, M. L., et al. (2004). "Breeding peas for resistance to Aphanomyces root rot: current main outputs of three breeding programmes," in Proceedings of the 5th European Conference on Grain Legumes, Dijon, 133.

Rубиас, D., Fondevilla, S., Chen, W., Gentzbittel, L., Higgins, T. J., Castillejo, M. A., et al. (2015). Achievements and challenges in legume breeding for pest and disease resistance. Crit. Rev. Plant Sci. 34, 195–236. doi: 10.1080/07352689.2014.988445

Rубиас, D., Gonzalez-Bernal, M. I., Warkentin, T., Buckert, T., VaPatto, M. C., McPhee, K., et al. (2019). "Advances in pea breeding," in The Achieving Sustainable Cultivation of Vegetables, ed. G. Hochmuth (Cambridge: BurleighDodds Science Publishing).

Rutkoski, J., Benson, J., Jia, Y., Brown-Guedira, G., Jannink, J. L., and Sorrells, M. E., et al. (2019). Training population selection and use of fixed effects to optimize covariance estimation.

Singh, R., and Ram, H. (2001). Inheritance of days to flowering and rust resistance in pea (Pisum sativum L.). Agronomy 2, 2225–2241. doi: 10.1007/s00122-001-1379-9

Singh, R., and Ram, H. (2001). Inheritance of days to flowering and rust resistance in peas. Res. Crops 2, 414–418.

Singh, R., Babu, S., Avasthe, R. K., Singh, A., Yadav, G. S., Pashte, V., et al. (2018). Screening of field pea varieties for rice-fallow areas under organic management conditions in NE Himalayas. Ann. Agric. Res. 39, 246–250.

Singh, V. K., Khan, A. W., Saxena, R. K., Kumar, V., Kale, S. M., Sinha, P., et al. (2016). Next-generation sequencing for identification of candidate genes for Fusarium wilt and sterility mosaic disease in pigeonpea (Cajanus cajan). Plant Biotechnol. J. 14, 1183–1194. doi: 10.1111/pbi.12470

Smykàł, P., Aubert, G., Burstin, J., Cойне, C. J., Ellis, N. T., Flavell, A. J., et al. (2012). (Pisum sativum L.) in the genomic era. Agronomy 2, 74–115.

Smykàł, P., Clarke, C., Robert, R., and Nigel, M. (2013). "Peas," in The Genetic and Genomic Resources of Grain Legume Improvement, eds M. Singh, H. D. Upadhyaya, and I. S. Bish (Amsterdam: Elsevier), 41–80.

Smykàł, P., Cойне, C. J., Ambrose, M. J., Mаxted, N., Schаefer, H., Blair, M. W., et al. (2015). Legume crops phylogeny and genetic diversity for science and breeding. Crit. Rev. Plant Sci. 34, 43–104.

Smykàł, P., Horácкё, J., Dostálовá, R., and Hybl, M. (2008a). Variety discrimination in pea (Pisum sativum L.) by molecular, biochemical and morphological markers. J. Appl. Genet. 49, 155–166. doi: 10.1007/BF03195609

Smykàł, P., Hybl, M., Corаnder, J., Jarkovský, J., Flavell, A. J., and Griga, M. (2008b). Genetic diversity and population structure of pea (Pisum sativum L.) varieties derived from combined retro- transposon, microsatellite and morphological marker analysis. Theor. Appl. Genet. 117, 413–424. doi: 10.1007/s00122-008-0785-4

Smykàł, P., Valledor, L., Rodriguez, R., and Griga, M. (2007). Assessment of genetic and epigenetic stability in long-term in vitro shoot culture of pea (Pisum sativum L.). Plant Cell Rep. 26, 1985–1998. doi: 10.1007/s00207-007-0413-9

Snowdon, R. J., and Friedw, W. (2004). Molecular markers in brassica oilseed breeding: current status and future possibilities. Plant Breed. 123, 1–8. doi: 10.1111/j.1439-0523.2003.00968.x

Srivastava, R. K., Mishra, S. K., Singh, A. K., and Mohapatra, T. (2012). Development of a coupling-phase SCAR marker linked to the powdery mildew resistance gene 'er1' in pea (Pisum sativum L.). Eutypica 186, 855–866. doi: 10.1007/s10681-012-0650-z

Steer, T. E. (2006). Phytochemicals – a future in functional foods? Food Sci. Technol. Bull. 3, 23–29. doi: 10.1615/1437-2137

Sudheesh, S., Lombardi, M., Leonforte, A., Cogan, N. O., Materne, M., Forster, J. W., et al. (2014). Consensus genetic map construction for field pea (Pisum sativum L.), trait dissection of biotic and abiotic stress tolerance and development of a diagnostic marker for the er1 powdery mildew resistance gene. Plant Mol. Biol. Rep. 33, 1391–1403. doi: 10.1111/j.1105-0143-0837-7

Sun, S., Deng, D., Duan, C., Zong, X., Xu, D., He, Y., et al. (2019). Two novel er1 alleles conferring powdery mildew (Erysiphe pisi) resistance identified in a worldwide collection of pea (Pisum sativum L.) germplasm. Int. J. Mol. Sci. 20:5071. doi: 10.3390/ijms20205071

Sun, S., Fu, H., Wang, Z., Duan, C., Zong, X., and Zhu, Z. (2016). Discovery of a novel er1 allele conferring powdery mildew resistance in Chinese pea (Pisum sativum L.) landraces. PLoS One 11(4):e0147624. doi: 10.1371/journal.pone.0147624

Sun, S., Wang, Z., Fu, H., Duan, C., Wang, X., and Zhu, Z. (2015). Resistance to powdery mildew in the pea cultivar Xucai 1 is conferred by the gene er1. Crop J. 3, 489–499. doi: 10.1016/j.cj.2015.07.006

Swahava, L., Smykàł, P., Griga, M., and Ondреj, V. (2005). Agrobacterium-mediated transformation of Pisum sativum in vitro and in vivo. Biol. Plant. 49, 361–370. doi: 10.1007/s10535-005-0009-6

Swisher Grimm, K. D., and Porter, L. D. (2020). Development and validation of KASP markers for the identification of pea seedborne mosaic virus Pathotype P1 resistance in Pisum sativum. Plant Dis. 104, 1824–1830. doi: 10.1094/PDIS-09-19-2020-RE

Tanksley, S., and McCouch, S. (1997). Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277, 1063–1066. doi: 10.1126/science.277.5329.1063

Taran, B., Warkentin, T., Somers, D., Miranda, D., Vandenbergh, A., Blade, S., et al. (2003). Identification of quantitative trait loci for plant height, lodging resistance and reaction to mycosphaerella blight in pea (Pisum sativum L.) using an AFLP-based linkage map. Theor. Appl. Genet. 107, 1482–1491. doi: 10.1007/s00122-003-1379-9
Tayeh, N., Aluome, C., Falque, M., Jaquijn, F., Klein, A., Chauveau, A., et al. (2015a). Development of two major resources for pea genomics: the GenoPea 13.2K SNP Array and a high density, high resolution consensus genetic map. Plant J. 84, 1257–1273. doi: 10.1111/tpj.13070

Tayeh, N., Aubez, G., Pilet-Nayel, M. L., Lejeune-Hénaut, L, Warkentin, T. D., and Burstin, I. (2015b). Genomic tools in pea breeding: genomic status and perspectives. Front. Plant Sci. 6:1037. doi: 10.3389/fpls.2015.01037

Teshome, A., Bryngelsson, T., Dagne, K., and Geleta, M. (2015). Assessment of genetic diversity in Ethiopian field pea (Pisum sativum L.) accessions with newly developed EST-SSR markers. BMC Genetics 16:102. doi: 10.1186/s12863-015-0261-5

Timmerman-Vaughan, G. M., Moya, L., Frew, T. J., Murray, S. R., and Crowhurst, R. (2016). Ascochyta blight disease of pea (Pisum sativum L.): defence-related candidate genes associated with QTL regions and identification of epistatic QTL. Theor. Appl. Genet. 129, 879–896. doi: 10.1007/s00122-016-2669-3

Timmerman, G. M., Frew, T. J., Miller, A. L., Weeden, N. F., and Jermyn, W. A. (2010). Identification and mapping of molecular markers linked to er1 gene in pea (Pisum sativum L.), using populations from two crosses. Theor. Appl. Genet. 109, 1620–1631. doi: 10.1007/s00122-009-1779-5

TonguÁ, M., and Weeden, N. F. (2010). Identification and mapping of molecular and repulsion phase RAPD markers for powdery mildew resistance gene er-1 in pea (Pisum sativum L.). using populations from two crosses. Theor. Appl. Genet. 93, 431–439. doi: 10.1007/s00122-009-1877-X

Wang, Z., Fu, H., Sun, S., Duan, C., Xu, W., Yang, X., et al. (2015). Identification of powdery mildew resistance gene in pea line X9002. Acta Agron. Sin. 41, 515–523. doi: 10.3724/sp.1006.2015.00515

Warkentin, T. D., Rashid, K. Y., and Xue, A. G. (1996). Fungicidal control of powdery mildew in field pea. Can. J. Plant Sci. 76, 933–935. doi: 10.4141/cjps96-156

Warkentin, T. D., Smykal, P., Coyne, C. J., Weeden, N., Domoney, C., Bing, D., et al. (2015). “Pea (Pisum sativum L.) in The Grain Legumes. Series Handbook of Plant Breeding,” ed. A. M. De Ron (New York, NY: Springer Science Business Media), 37–83.

Watson, A., Ghosh, S., Williams, M. J., Cuddy, W. S., Simmonds, J., Rey, M. D., et al. (2016). Speed breeding is a powerful tool to accelerate crop research and breeding. Nat. Plants 4, 23–29. doi: 10.1038/nat Plants 4, 23–29. doi: 10.1038/nat.14177-017-0083-8

Weeden, N. F., and Porter, L. (2007). The genetic basis of Fusarium root rot tolerance in the ‘Afghanistan’ pea. Pisum Genet. 39, 35–36.

Weeden, N. F., Mcgee, R., Grau, C. R., and Muehbauer, F. J. (2000). A gene influencing tolerance to common root rot is located on linkage group IV. Pisum Genet. 32, 53–55.

Wicker, E., Mousart, A., Duparque, M., and Rouxel, F. (2003). Further contributions to the development of a differential set of pea cultivars (Pisum sativum) to investigate the virulence of isolates of Aphanomyces euteiches. Eur. J. Plant Pathol. 109, 47–60.

Xue, A. G. (2000). Effect of seed-borne Mycoplasma pinodes and seed treatments on emergence, foot rot severity, and yield of field pea. Can. J. Plant Pathol. 22, 248–253. doi: 10.1080/0706066009500471

Xue, A. G., Warkentin, T. D., and Kenaschuk, E. O. (1996). “Mycoplasma blight of field pea—potential damage and fungicide control,” in Proceedings of Manitoba Agri-Forum, Winnipeg, MB, 5–6.

Yadav, A., Singh, V., Yadav, A., and Singh, H. (2019). Studies on succession of insect pest complex associated with pea at Bikaner. J. Entomol. Zool. Stud. 7, 1606–1608.

Yadav, S. K., and Patel, S. (2015). Insect-pest complex on Pisum sativum L. and their natural enemies at Pantnagar. J. Plant Dev. Sci. 7, 839–841.

Yarnell, S. H. (1962). Cytogenetics of the vegetable crops. III. Legumes. A. Garden peas, Pisum sativum L. Bot. Rev. 28, 465–537. doi: 10.1007/bf02866753

Zhi, P., and Chang, C. (2021). Exploiting epigenetic variations for crop disease resistance improvement. Front. Plant Sci. 12:953. doi: 10.3389/fpls.2021.62932

Zhuang, L. L., Ambrose, M., Rameau, C., Weng, L., Yang, J., Hu, X. H., et al. (2012). LATHYROIDES, encoding a WUSCHEL-related Homeobox1 transcription factor, controls organ lateral growth, and regulates tendril and dorsal petal identities in garden pea (Pisum sativum L.). Mol. Plant 5, 1333–1345. doi: 10.1093/mp/ssb067

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.