EMBEDDING THEOREMS FOR FLEXIBLE VARIETIES

SHULIM KALIMAN

Abstract. Let Z be an affine algebraic variety and X be a smooth flexible variety. We develop some criteria under which Z admits a closed embedding into X. In particular, we show that if $\dim X \geq \max(2 \dim Z + 1, \dim TZ)$ and X is isomorphic (as an algebraic variety) to a special linear group or to a symplectic group, then Z admits a closed embedding into X.

1. Introduction

All algebraic varieties which appear in this paper are considered over an algebraically closed field k of characteristic zero. If Z is an affine algebraic variety and TZ is its Zariski tangent bundle then we call $ED(Z) = \max(2 \dim Z + 1, \dim TZ)$ the embedding dimension of Z. Holme’s theorem [Hol, Theorem 7.4] (later rediscovered in [Ka91] and [Sr]) states that Z admits a closed embedding into any affine space \mathbb{A}^n with $n \geq ED(X)$. In the smooth case (when $ED(Z) = 2 \dim Z + 1$) this fact was proven earlier by Swan [Swan, Theorem 2.1]. The latter result is sharp - examples of smooth irreducible d-dimensional affine algebraic varieties with $d \geq \frac{n}{2}$ such that they do not admit closed embeddings in \mathbb{A}^n were constructed in [BMS]. Recently Feller and van Santen [FvS21] proved that if X is an affine variety isomorphic to a simple linear algebraic group and Z is smooth, then Z admits a closed embedding into X, provided that $\dim X > ED(Z)$. They also proved that for every n-dimensional algebraic group G (with $n > 0$) there exist smooth irreducible d-dimensional affine algebraic varieties with $d \geq \frac{n}{2}$ such that they do not admit closed embeddings in G [FvS21, Corollary 4.4]. In particular, their embedding result is optimal if the dimension of X is even. However, they did not know whether their result is sharp in the case the dimension of X is odd and a specific question posed in [FvS21] asks whether a smooth affine algebraic variety of dimension 7 can be embedded properly into $SL_4(k)$. We consider a more general situation. Namely, starting from dimension 2 affine spaces and linear algebraic groups without nontrivial characters are examples of so-called flexible varieties. Recall that a normal quasi-affine variety X of dimension at
least 2 is flexible if $\text{SAut}(X)$ acts transitively on the smooth part X_{reg} of X where $\text{SAut}(X)$ is the subgroup of the group $\text{Aut}(X)$ of algebraic automorphisms of X generated by all one-parameter unipotent subgroups (in what follows one-parameter unipotent groups will be called \mathbb{G}_a-groups and \mathbb{G}_a^m will stand for the m-th power of a \mathbb{G}_a-group). The main results of this paper are the following.

Theorem 1.1. Let X be a smooth flexible variety equipped with a \mathbb{G}_a^m-action such that the minimal dimension of its orbits is n. Suppose that Z is an affine variety such that $\dim Z \leq n$ and $\text{ED}(Z) \leq \dim X$. Then there exists a closed embedding of Z into X.

Theorem 1.2. Let X be isomorphic (as an algebraic variety) to a connected linear algebraic group $G \neq \mathbb{G}_a$ without nontrivial characters. Suppose that $G' \cong \mathbb{G}_a^{m'}$ and $G'' \cong \mathbb{G}_a^{m''}$ are subgroups of G such that $G' \cap G''$ coincides with the identity element of G. Let Z be an affine algebraic variety such that $\dim Z \leq m' + m''$ and $\text{ED}(Z) \leq \dim X$. Then there exists a closed embedding of Z into X.

Theorems 1.1 and 1.2 imply the following.

Corollary 1.3. Let X be a smooth flexible variety equipped with a free \mathbb{G}_a^l-action. Let Z be an affine algebraic variety of dimension at most $n + l$ such $\dim X + n \geq \text{ED}(Z)$. Suppose that $\psi : X \times \mathbb{A}^n \to Y$ is a finite morphism onto a normal variety Y and S is a closed subvariety of Y such that it contains Y_{sing} and $\dim Z < \text{codim}_Y S$. Then Z admits a closed embedding into Y with the image contained in $Y \setminus S$.

Corollary 1.4. Let X be isomorphic (as an algebraic variety) either to a special linear group $\text{SL}_n(k)$ or to a symplectic group $\text{Sp}_{2n}(k)$ and Z be an affine algebraic variety such that $\text{ED}(Z) \leq \dim X$. Then there exists a closed embedding of Z into X.

In particular, the question of Feller and van Santen has a positive answer. Corollary 1.4 can be extended to semi-simple Lie groups whose Lie algebras are direct sums of simple Lie algebras with Dynkin diagrams A_n or C_n. In fact, we have more.

Corollary 1.5. Let Z be an affine algebraic variety, X be an algebraic variety of the form $\mathbb{A}^{n_0} \times G_1 \times G_2 \times \ldots \times G_l$ where each G_i is either $\text{SL}_{m_i}(k)$ or $\text{Sp}_{2m_i}(k)$. Suppose that $\varphi : X \to Y$ is a finite morphism into a normal variety Y, $\text{ED}(Z) \leq \dim Y$ and S is a closed subvariety of Y containing Y_{sing} such that $\dim Z < \text{codim}_Y S$. Then Z admits a closed embedding into Y with the image contained in $Y \setminus S$.

The proofs of Theorems 1.1 and 1.2 are heavily based on the theory of flexible varieties and the technique developed in [AFKKZ], [Ka20], [KaUd] and [Ka21] whose survey can be found in Section 2. As a part of this survey we describe injective immersions of affine algebraic varieties.
EMBEDDING THEOREMS FOR FLEXIBLE VARIETIES

into smooth flexible varieties. In section 3 we consider a surjective morphism \(\varphi : A^t \to X \) (every flexible variety \(X \) admits such morphism) and for a closed subvariety \(Z \) of \(A^t \) we develop a criterion of properness of the morphism \(\varphi|_Z : Z \to X \). Checking the validity of the criterion for injective immersions under the assumptions of Theorems 1.1 and 1.2 we prove these theorems in sections 4 and 5.

Acknowledgement. The author is grateful to L. Makar-Limanov, Z. Reichstein and A. Dvorsky for useful consultations and the referee who simplified some proofs and caught mistakes in the original versions of this paper.

2. Flexible varieties

Let us start with the main definitions for the theory of flexible varieties.

Definition 2.1. (1) Given an irreducible algebraic variety \(A \) and a map \(\varphi : A \to \text{Aut}(X) \) we say that \((A, \varphi)\) is an algebraic family of automorphisms of \(X \) if the induced map \(A \times X \to X \), \((\alpha, x) \mapsto \varphi(\alpha).x\) is a morphism (see [Ra]).

(2) If we want to emphasize additionally that \(\varphi(A) \) is contained in a subgroup \(G \) of \(\text{Aut}(X) \), then we say that \(A \) is an algebraic \(G \)-family of automorphisms of \(X \).

(3) In the case when \(A \) is a connected algebraic group and the induced map \(A \times X \to X \) is not only a morphism but also an action of \(A \) on \(X \) we call this family a connected algebraic subgroup of \(\text{Aut}(X) \).

(4) Following [AFKKZ, Definition 1.1] we call a subgroup \(G \) of \(\text{Aut}(X) \) algebraically generated if it is generated as an abstract group by a family \(G \) of connected algebraic subgroups of \(\text{Aut}(X) \).

Definition 2.2. (1) A nonzero derivation \(\delta \) on the ring \(A \) of regular functions on an affine algebraic variety \(X \) is called locally nilpotent if for every \(a \in A \) there exists a natural \(n \) for which \(\delta^n(a) = 0 \). This derivation can be viewed as a vector field on \(X \) which we also call locally nilpotent. The set of all locally nilpotent vector fields on \(X \) will be denoted by \(\text{LND}(X) \). The flow of \(\delta \in \text{LND}(X) \) is an algebraic \(\mathbb{G}_a \)-action on \(X \), i.e., the action of the group \((\mathbb{k}, +)\) which can be viewed as a one-parameter unipotent group \(U \) in the group \(\text{Aut}(X) \) of all algebraic automorphisms of \(X \). In fact, every \(\mathbb{G}_a \)-action is a flow of a locally nilpotent vector field (e.g., see [Fr, Proposition 1.28]).

(2) If \(X \) is a quasi-affine variety, then an algebraic vector field \(\delta \) on \(X \) is called locally nilpotent if \(\delta \) extends to a locally nilpotent vector field \(\tilde{\delta} \) on some affine algebraic variety \(Y \) containing \(X \) as an open subset such that \(\tilde{\delta} \) vanishes on \(Y \setminus X \) where \(\text{codim}_C(Y \setminus X) \geq 2 \). Note that under this assumption \(\delta \) generates a \(\mathbb{G}_a \)-action on \(X \) and we use again the notation \(\text{LND}(X) \) for the set of all locally nilpotent vector fields on \(X \).
Definition 2.3. (1) For every locally nilpotent vector fields δ and each function $f \in \text{Ker} \, \delta$ from its kernel the field $f\delta$ is called a replica of δ. Recall that such a replica is automatically locally nilpotent.

(2) Let \mathcal{N} be a set of locally nilpotent vector fields on X and $G_N \subset \text{Aut}(X)$ denotes the group generated by all flows of elements of \mathcal{N}. We say that G_N is generated by \mathcal{N}.

(3) A collection of locally nilpotent vector fields \mathcal{N} is called saturated if \mathcal{N} is closed under conjugation by elements in G_N and for every $\delta \in \mathcal{N}$ each replica of δ is also contained in \mathcal{N}.

Definition 2.4. Let X be a normal quasi-affine algebraic variety of dimension at least 2, \mathcal{N} be a saturated set of locally nilpotent vector fields on X and $G_N = G_N \subset \text{Aut}(X)$ denotes the group generated by all flows of elements of \mathcal{N}. We say that G_N is generated by \mathcal{N}.

Definition 2.4. Let X be a normal quasi-affine algebraic variety of dimension at least 2, \mathcal{N} be a saturated set of locally nilpotent vector fields on X and $G_N = G_N \subset \text{Aut}(X)$ denotes the group generated by all flows of elements of \mathcal{N}. We say that G_N is generated by \mathcal{N}.

Definition 2.4. Let X be a normal quasi-affine algebraic variety of dimension at least 2, \mathcal{N} be a saturated set of locally nilpotent vector fields on X and $G_N = G_N \subset \text{Aut}(X)$ denotes the group generated by all flows of elements of \mathcal{N}. We say that G_N is generated by \mathcal{N}.

Notation 2.5. Further in this paper X is always a smooth quasi-affine variety and G is a group acting transitively on X such that G is algebraically generated by a collection \mathcal{G} of connected algebraic subgroups of G. Given a sequence $\mathcal{H} = (H_1, \ldots, H_s)$ of elements of \mathcal{G} we consider the map

$$
(1) \quad \Phi_{\mathcal{H}} : H \times X \longrightarrow X \times X, \quad (h_s, \ldots, h_1, x) \mapsto ((h_s \cdot \ldots \cdot h_1).x, x)
$$

where $H = H_s \times \ldots \times H_1$. By $\varphi_{\mathcal{H}} : H \longrightarrow X$ we denote the restriction of $\Phi_{\mathcal{H}}$ to $H \times x_0$ where x_0 is a fixed point of X.

Proposition 2.6. Suppose that \mathcal{G} is closed under conjugation by G.

Then a sequence $\mathcal{H} = (H_1, \ldots, H_s)$ can be chosen so that for a dense open subset U of H the morphism $\Phi_{\mathcal{H}}$ is smooth on $U \times X$ (in particular, $\varphi_{\mathcal{H}}$ is smooth on U).

(2) Let $\mathcal{H} = (H_1, \ldots, H_s)$ be as in (1) and H be any element \mathcal{G}. Then the sequence H_1, \ldots, H_m, H (resp. H, H_1, \ldots, H_m) satisfies the conclusions of (1) as well.

(3) Furthermore, increasing the number of elements in \mathcal{H} one can suppose that the codimension of $H \setminus U$ in H is arbitrarily large.

Proof. The first statement follows from [AFKKZ, Proposition 1.16], the second statement follows from [Ka20, Proposition 1.10]) and the third one from [AFKKZ, p. 778, footnote].

We shall use the notion of a perfect (algebraic) G-family of automorphisms of X (see [Ka21, Definition 2.7]). Without stating the formal definition of such families we need to emphasize some of their properties.
Proposition 2.7. ([Ka21, Proposition 2.8]) Let \mathcal{A} be a perfect G-family of automorphisms of a smooth G-flexible variety X and $H_0 \in \mathcal{G}$. Then $H_0 \times \mathcal{A}$ and $\mathcal{A} \times H_0$ are also perfect G-families of automorphisms of X. Furthermore, \mathcal{A} satisfies the transversality theorem ([AFKKZ, Theorem 1.15], see also [Ka21, Theorem 2.2]), e.g., if Z and W are subvarieties of X with $\dim Z + \dim W < \dim X$, then one has $\alpha(Z) \cap W = \emptyset$ for a general $\alpha \in \mathcal{A}$.

Theorem 2.8. Let X be a smooth quasi-affine G-flexible variety, \mathcal{A} be a perfect G-family of automorphisms of X, Q be a normal algebraic variety and $\varphi : X \to Q$ be a dominant morphism. Suppose that Q_0 is a smooth open dense subset of Q, X_0 is an open subset of X contained in $\varphi^{-1}(Q_0)$ and

\[X_0 \times_{Q_0} X_0 = 2 \dim X - \dim Q. \]

Let Y be the closure of $\bigcup_{x \in X_0} \ker \{ \varphi_* : T_x X_0 \to T_{\varphi(x)} Q_0 \}$ in TX and

\[\dim Y = 2 \dim X - \dim Q. \]

Then Y is an open subset of X and $\dim Z < \codim_{\varphi^{-1}(Q_0)}(\varphi^{-1}(Q_0) \setminus X_0)$. Then for a general element $\alpha \in \mathcal{A}$ the morphism $\varphi|_{\alpha(Z) \cap X_0} : \alpha(Z) \cap X_0 \to Q_0$ is an injective immersion.

Proof. In the case of $X_0 = \varphi^{-1}(Q_0)$ the statement is the combination of [Ka21, Theorem 2.6] and [Ka21, Proposition 2.8(5)]. In the general case the proof goes without change if one observes that $\alpha(Z)$ does not meet $\varphi^{-1}(Q_0) \setminus X_0$ for a general $\alpha \in \mathcal{A}$ by the transversality theorem. \hfill \Box

Proposition 2.9. Let the assumptions and conclusions of Proposition 2.6 hold. Suppose that H itself is an F-flexible variety. Let Z be a locally closed reduced subvariety of H with $\dim Z \leq \dim X$ (and by the conclusions of Proposition 2.6 with $\dim Z < \codim_H(H \setminus U)$). Then for a general element $\beta \in \mathcal{B}$ in any perfect F-family \mathcal{B} of automorphisms of H the morphism $\varphi_H|_{\beta(Z)} : \beta(Z) \to X$ is an injective immersion.

Proof. Since $\varphi_H|_U : U \to X$ is a smooth morphism Formulas (2) and (3) hold with $\varphi : X \to Q, Q_0$ and X_0 replaced by $\varphi_H : H \to X, X$ and U, respectively. Hence, the desired conclusion follows from Theorem 2.8. \hfill \Box

Corollary 2.10. Let the assumptions and conclusions of Proposition 2.6 hold and Z be an affine algebraic variety with $\dim Z \leq \dim X$ (and by the conclusions of Proposition 2.6 with $\dim Z < \codim_H(H \setminus U)$). Suppose that each element of \mathcal{G} is a unipotent group, i.e. $H \simeq \mathbb{G}_t^r$ where $t \geq \dim X$. Then Z can be treated as a closed subvariety of H and for a general element $\beta \in \mathcal{B}$ in any perfect F-family \mathcal{B} of automorphisms of H the morphism $\varphi_H|_{\beta(Z)} : \beta(Z) \to X$ is an injective immersion.
Proof. The first statement follows from Holme’s theorem and the second from Proposition 2.9.

Since every smooth flexible variety X admits a morphism $\varphi_H : H \to X$ as in Corollary 2.10 we have the following.

Theorem 2.11. ([Ka21, Theorem 3.7]) Let Z be an affine algebraic variety and X be a smooth quasi-affine flexible variety of dimension at least $\text{ED}(Z)$. Then Z admits an injective immersion into X.

Remark 2.12. It is worth mentioning that if $\varphi : Z \to X$ is an injective immersion, then it may happen that Z is not isomorphic to $\varphi(Z)$. As an example one can consider the morphism $\mathbb{A}^1 \setminus \{1\} \to \mathbb{A}^2$, $t \mapsto (t^2 - 1, t(t^2 - 1))$. It maps $\mathbb{A}^1 \setminus \{1\}$ onto the polynomial curve given in \mathbb{A}^2 by the equation $y^2 = x^2(x + 1)$.

We have also in our disposal the following slightly improved version of ([Ka21, Theorem 3.2].

Theorem 2.13. Let $\psi : X \to Y$ be a finite morphism where X is a smooth flexible variety and Y is normal. Let Z be a quasi-affine algebraic variety which admits a closed embedding in X and has $\text{ED}(Z) \leq \dim X$. Suppose also that S is a closed subvariety of Y such that it contains Y_{sing} and $\dim Z < \text{codim}_Y S$. Then Z admits a closed embedding in Y with the image contained in $Y \setminus S$.

Proof. One can treat Z as a closed subvariety of X. By [AFKKZ, Theorem 1.15] there exists an algebraic family A of automorphisms of X such that for a general $\alpha \in A$ the variety $\alpha(Z)$ does not meet $\psi^{-1}(S)$. By Proposition 2.7 enlarging A we can suppose that it is a perfect family. Theorem 2.8 and [Ka21, Proposition 2.9] imply now that $\psi|_{\alpha(Z)} : \alpha(Z) \to Y_{\text{reg}} \subset Y$ is an injective immersion. Since ψ is finite $\psi|_{\alpha(Z)}$ is also proper. Hence, we are done.

3. Criterion of Properness

Notation 3.1. In this section an affine space $H = \mathbb{A}^1$ is equipped with a fixed coordinate system. This coordinate system defines an embedding $H \hookrightarrow \mathbb{P}^d = \bar{H}$ and we let $D = H \setminus H$. By $\varphi : H \to X$ we denote a surjective morphism onto a smooth quasi-affine algebraic variety X (of positive dimension) with irreducible fibers and by $\psi : \bar{H} \dashrightarrow \bar{X}$ we denote the rational map into a completion \bar{X} of X extending φ.

Proposition 3.2. Let $\pi : Y \to \bar{H}$ be a resolution of the indeterminacy set of ψ, (i.e., H is naturally contained as an open dense subset in Y and $\chi := \psi \circ \pi : Y \to \bar{X}$ is a proper morphism). Let $V = \chi^{-1}(X) \setminus H$ and $W = \pi(V)$. Suppose that Z is a closed subvariety of H and Z is its closure in \bar{H}. Then $\varphi|_Z : Z \to X$ is a proper morphism if and only if $\bar{Z} \cap W = \emptyset$.

Proof. Let $\hat{Z} = \pi^{-1}(\bar{Z}) \cap V$. Note that $\varphi|_Z = \chi|_Z$ is proper if and only if $\hat{Z} = \emptyset$. Note also that $\pi(\hat{Z}) = \bar{Z} \cap W$. In particular, $\hat{Z} = \emptyset$ if and only if $\bar{Z} \cap W = \emptyset$. This yields the desired conclusion. □

Definition 3.3. We call the set W as in Proposition 3.2 the improperness set of φ.

It is easy to see that if $\dim Z > \operatorname{codim}_D D$, then $\bar{Z} \cap W \neq \emptyset$. Hence, in the rest of this section we describe some conditions which guarantee that $\operatorname{codim}_D W$ is sufficiently large.

Proposition 3.4. Let Notation 3.1 hold and G be a subgroup of the group of affine transformations of H (in particular, the natural action of G extends to H). Suppose that G acts on X so that the morphism $\varphi : H \to X$ is equivariant. Then \bar{X} and a resolution $\pi : Y \to \bar{H}$ of the indeterminacy points of ψ can be chosen such that G acts on Y and π is equivariant.

Proof. By Sumihiro’s theorem [Su] we can suppose that the G-action on X extends to a G-action on \bar{H}. Then ψ is an equivariant rational map into a complete variety and the desired conclusion follows from the Reichstein-Youssin theorem [ReYo]. □

Proposition 3.5. Under the assumptions of Proposition 3.4 suppose that G acts on H by translations (in particular, the G-action on D is trivial) and the minimal dimension of orbits of G in X is m. Then the codimension of the improperness set W of φ in D is at least m.

Proof. Let U be an irreducible component of V where V is as in Proposition 3.2. Since $\chi|_U : U \to X$ is equivariant the dimension of a general G-orbit in U is at least m. Since the G-action on D is trivial a general fiber of $\pi|_U : U \to \pi(U) \subset D$ contains a G-orbit. Hence $\dim \pi(U) \leq \dim U - m$. Since $\dim U \leq \dim D$ we have the desired conclusion. □

Proposition 3.6. Suppose that the assumptions of Proposition 3.4 hold, G acts on H by translations and the dimension of general orbits of G in X is n. Let $R \subset X$ be the union of non-general orbits of G. Suppose that $\chi(U)$ is not contained in R for every irreducible component U of V where V is as in Proposition 3.2. Then the codimension of the improperness set W of φ in D is at least n.

Proof. Since $\chi|_U : U \to \chi(U) \subset X$ is equivariant the dimension of a general G-orbit in U is at least the same as the dimension of general G-orbits in $\chi(U)$. By the assumption, the latter dimension is n. Since a general fiber of $\pi|_U : U \to \pi(U) \subset D$ contains a general G-orbit one has $\dim \pi(U) \leq \dim U - n \leq \dim D - n$ which concludes the proof. □

4. Main Theorem I

The aim of this section is the following.
Theorem 4.1. Let X be a smooth flexible variety equipped with a G_a^m-action such that the minimal dimension of its orbits is n. Suppose that Z is an affine variety such that $\dim Z \leq n$ and $\text{ED}(Z) \leq \dim X$. Then there exists a closed embedding of Z into X.

Let us start with the following.

Lemma 4.2. Let G' be a G_a^m-subgroup of $\text{SAut}(X)$ acting on X. Consider the natural G'-action on $X \times X$ given by $(g, x_1, x_2) \mapsto (g.x_1, x_2)$. Let $\Phi_H : H \times X \to H \times X, (h, x) \mapsto (h.x, x)$ be as in Proposition 2.6. Then H can be chosen such that H is an affine space equipped with a free G'-action for which Φ_H is G'-equivariant (where G' acts on $H \times X$ by $(g, h, x) \mapsto (g.h, x)$). Furthermore, H can be equipped with a coordinate system such that G' acts on H by translations.

Proof. We can suppose that G in Notation 2.5 is the collection of all G_a-subgroups of $\text{SAut}(X)$ which implies that H is an affine space. By Proposition 2.6(2) we can also suppose that

$$H = (H_1, \ldots, H_s, H_{s+1}, \ldots, H_{s+m})$$

where H_{s+1}, \ldots, H_{s+m} are commuting G_a-groups generating G'. Let $g' = (h^0_{s+m}, \ldots, h^0_{s+1}) \in G' = H_{s+m} \times \cdots \times H_{s+1}$ and $h = (h_{s+m}, \ldots, h_1) \in H = H_{s+m} \times \cdots \times H_1$. Suppose that the G'-action on H is given by

$$(g', h) \mapsto (h_{s+m}h^0_{s+m}, \ldots, h_{s+1}h^0_{s+1}, h_s, \ldots, h_1).$$

(4) Commutativity and Formula (1) imply that $\Phi_H(g'.h, x) = (g'.(h.x), x)$ which yields the first statement. One can equip each $H_i \cong H^1$ with a coordinate ζ_i (with the zero element of H_i corresponding to $\zeta_i = 0$). This yields the coordinate system $(\zeta_{s+m}, \ldots, \zeta_1)$ on H. In this coordinate system the action of g' given by Formula (4) is a translation and we are done.

\square

Proof of Theorem 4.1. Let the conclusions of Lemma 4.2 hold, $\varphi_H : H \to X$ be the restriction of Φ_H to $H \times x_0, x_0 \in X$ and U be as in Proposition 2.6. By Holme’s theorem we can treat Z as a closed subvariety of H and by Proposition 2.6(3) we can suppose $\dim Z < \text{codim}_H(H \setminus U)$. By Proposition 3.5 and Lemma 4.2 the improperness set W of φ_H is of codimension at least n in $D = \overline{H \setminus H = \mathbb{P}^t \setminus \mathbb{A}^t}$. For any perfect family A of automorphisms on H and a general $\alpha \in A$ the morphism $\varphi_H|_{\alpha(Z)} : \alpha(Z) \to X$ is an injective immersion by Corollary 2.10. Let $K = \text{SL}_{s+m}(k)$ where $t = s + m$. Then we have the natural K-action on \overline{H} such that D is invariant under it and the restriction of the action to D is transitive. By Proposition 2.7 $K \times A$ is still a perfect $\text{SAut}(H)$-family of automorphisms of H. That is, for a general $(\beta, \alpha) \in K \times A$ the morphism $\varphi_H|_{\beta \circ \alpha(Z)} : \beta \circ \alpha(Z) \to X$ is still an injective immersion. Let P be the intersection of D with the closure of $\beta \circ \alpha(Z)$ in \overline{H}, i.e., $\dim P \leq n - 1$. Since the restriction of the K-action to D is transitive, P does not meet W for a general $(\beta, \alpha) \in K \times A$ by
[AFKKZ, Theorem 1.15]. Hence, \(\varphi_H|_{\beta\alpha(Z)} : \beta \circ \alpha(Z) \to X \) is proper by Proposition 3.2 and we are done.

Corollary 4.3. Let \(X \) be a smooth flexible variety equipped with a free \(G_a \)-action. Let \(Z \) be an affine algebraic variety of dimension at most \(n + l \) such dim \(X + n \geq \text{ED}(Z) \). Suppose that \(\psi : X \times A^n \to Y \) is a finite morphism onto a normal variety \(Y \) and \(S \) is a closed subvariety of \(Y \) such that it contains \(Y_{\text{sing}} \) and dim \(Z < \text{codim}_Y S \). Then \(Z \) admits a closed embedding into \(Y \) with the image contained in \(Y \setminus S \).

Proof. Since \(X \times A^n \) admits a free \(G_{a}^{n+l} \)-action, by Theorem 4.1 there is a closed embedding of \(Z \) into \(X \times A^n \). Hence, the desired conclusion follows from Theorem 2.13. \(\square \)

Corollary 4.4. Let \(X \) be isomorphic (as an algebraic variety) to a special linear group \(\text{SL}_n(k) \) and \(Z \) be an affine variety with \(\text{ED}(Z) \leq \text{dim} X \). Suppose also that \(\text{dim} Z \leq m = \frac{n^2}{4} \) if \(n \) is even and \(\text{dim} Z \leq m = \frac{n^2-1}{4} \) if \(n \) is odd. Then \(Z \) admits a closed embedding into \(X \).

Proof. Let \(I \) be the identity matrix in \(\text{SL}_n(k) \). For even \(n \) consider the set \(G' \) of all matrices of the form \(I + A \) where \(A = [a_{ij}] \) is the matrix such that \(a_{ij} = 0 \) as soon as \(i \leq \frac{n}{2} \) or \(j > \frac{n}{2} \). If \(n \) is odd, then we require that \(a_{ij} = 0 \) as soon as \(i \leq \frac{n-1}{2} \) or \(j > \frac{n+1}{2} \). In both cases \(G' \) is a \(G_a^m \)-group acting freely on \(X \) with multiplication given by \((I + A) \cdot (I + A') = I + (A + A') \). Thus, the desired conclusion follows from Theorem 4.1. \(\square \)

5. **Main Theorem II**

Notation 5.1. In this section \(X \) is always isomorphic (as an algebraic variety) to a connected linear algebraic group \(G \neq G_a \) without nontrivial characters. By \(\mathcal{G} \) we denote the collection of all \(G_a \)-subgroups of \(G \) (the absence of nontrivial characters implies that such subgroups generate \(G \)). In particular, if \(\mathcal{H} = (H_1, \ldots, H_s) \) is a sequence in \(\mathcal{G} \), then the affine space \(H = H_s \times \cdots \times H_1 \) is equipped with a natural coordinate system as in Lemma 4.2. Recall that we have a morphism \(\Phi_{\mathcal{H}} : H \times X \to X \times X \) given by \(\Phi_{\mathcal{H}}(h,x) = ((h_s \cdot \cdots \cdot h_1).x,x) \) for \(h = (h_s, \ldots, h_1) \in H_s \times \cdots \times H_1 \). Since we suppose that \(G \) acts on \(X \) naturally (i.e., \(g.x \) coincides with the product \(gx \)) \(\Phi_{\mathcal{H}}(h,x) = (hx,x) \) where \(h \) in the right-hand side is treated as the element \(h_s \cdot \cdots \cdot h_1 \) of \(G \). We also suppose that \(G' \) is a \(G_a^m \)-subgroup of \(G \) which acts on \(H \) in the manner described in Lemma 4.2.

Our aim is to strengthen Theorem 4.1 for such \(X \) and, in particular, to improve Corollary 4.4. Let us start with some technical facts.

Lemma 5.2. Let Notation 5.1 hold, \(\text{pr}_1 : X \times X \to X \) be the natural projection to the first factor and \(\Phi_{\mathcal{H}}^1 = \text{pr}_1 \circ \Phi_{\mathcal{H}} : H \times X \to X \). Let \(\Lambda : G' \times G \times H \times X \to H \times X, (g',g,h,x) \mapsto (g'.h,xg^{-1}) \), \(\Delta : G' \times
implies the following.

From now on we suppose that the conclusions of Lemma Notation 5.4.

Lemma 5.3. Let the assumptions of Lemma 5.2 hold, \(\bar{H} \) be a \(G' \times \) G-equivariant completion of \(H \times X \) and \(\Psi : \bar{H} \rightarrow \bar{X} \times \bar{X} \) (resp. \(\Psi_1 : H \rightarrow \bar{X} \times \bar{X} \)) be the rational extension of \(\Phi_\mathcal{H} \) (resp. \(\Phi_1 \)). Then a resolution \(\pi : Y \rightarrow \bar{H} \) of the indeterminacy points of \(\Psi \) can be chosen such that the \(G' \times G \)-action on \(H \times X \) extends to \(Y \) and the morphisms \(\lambda = \Psi \circ \pi : Y \rightarrow \bar{X} \times \bar{X} \) and \(\chi = \Psi_1 \circ \pi : Y \rightarrow \bar{X} \) are \(G' \times G \)-equivariant.

Notation 5.4. From now on we suppose that the conclusions of Lemma 5.3 hold and we denote the extension of the \(\Lambda \)-action on \(H \times X \) to \(Y \) by the same letter \(\Lambda \) and the extension of the \(\Delta_1 \)-action to \(\bar{X} \) by the same letter \(\Delta_1 \). For a \(G'' \)-subgroup \(G'' \) of \(G \) we consider the quotient morphism \(\gamma : G \rightarrow Q = G''/G \). The fiber of this morphism over a point \(q \in Q \) is a right coset of \(G'' \) denoted by \(C_q \). Fixing an isomorphism \(G \simeq X \) we treat \(C_q \) as a subset of \(X \) and let \(H_q = H \times C_q \). Finally, by \(Y_q \) we denote the closure of \(H_q \) in \(Y \).

Lemma 5.5. Let Notation 5.4 hold and \(\chi_q : Y_q \rightarrow \bar{X} \) be the restriction of \(\chi \). Suppose that \(V_q = \chi_q^{-1}(X) \setminus H_q \) and \(R \) is a proper closed subvariety of \(X \). Then for a general \(q \in Q \) there is no irreducible component \(U_q \) of \(V_q \) with \(\chi_q(U_q) \) contained in \(R \).

Proof. Note that \(V_q = (\chi^{-1}(X) \cap Y_q) \setminus H_q = (\chi^{-1}(X) \setminus (H \times X)) \cap Y_q = Y_q \cap V \) where \(V = \chi^{-1}(X) \setminus (H \times X) \). Since \(\bar{X} \times X \) is \(\Delta_1 \)-invariant \(\chi^{-1}(\bar{X} \setminus X) \) is \(\Delta_1 \)-invariant. Since \(H \times X \) is also \(\Lambda \)-invariant, so is \(V = Y \setminus (\chi^{-1}(\bar{X} \setminus X) \cup (H \times X)) \). Note that the \(\Lambda \)-action yields a transitive action on the collection \(\{H \times C_q\}_{q \in Q} \) and, therefore, on \(\{Y_q\}_{q \in Q} \) and, consequently, on \(\{V_q\}_{q \in Q} \). Thus, \(V = \bigcup_{q \in Q} V_q \) is a \(\Lambda \)-orbit of \(V_{q_0} \) where \(q_0 \) is any point in \(Q \). Let \(q_0 \) be the coset \(G'' \). Note that the action of any element of the subgroup \(G' \times G'' \subset G' \times G \) preserves \(H \times C_{q_0} \) and, therefore, \(V_{q_0} \). Hence, the image of \(V_{q_0} \) under the action of \((g', g) \in G' \times G \) is completely determined by \(\hat{\gamma}(g) \) where \(\hat{\gamma} : G \rightarrow G/G'' =: \hat{Q} \) is the quotient morphism. Let \(q \) be the image of \(\hat{\gamma}(g) \) under the map \(\hat{Q} \rightarrow Q \) induced \(G \rightarrow G, g \mapsto g^{-1} \). The description
of the Λ-action in Lemma 5.2 implies that $(g', g)V_{g_0} = V_q$. Note also that every irreducible component U_{g_0} of V_{g_0} is preserved by the action of $G' \times G''$ since the latter subgroup is connected. Hence, $(g', g)U_{g_0}$ is a well-defined irreducible component U_q of V_q depending only on $\gamma(g)$. This implies that $\bigcup_{q \in Q} U_q$ is the Λ-orbit of U_{g_0}. Thus, $\chi(\bigcup_{q \in Q} U_q) = X$ because χ is equivariant and the Δ_1-action is transitive on X. In particular, $\chi_q(U_q)$ is not contained in R for a general $q \in Q$. This yields the desired conclusion. \hfill \square

Lemma 5.6. Let the assumptions of Lemma 5.5 hold, q be a general point of Q and $C_q = G''g_0$. Then H_q is an affine space equipped with a coordinate system such that in this system the group $G' \times (g_0^{-1}G''g_0)$ acts on H_q freely by translations.

Proof. The space H_q is affine since it is isomorphic to $H \times G''$. Lemma 4.2 yields a free action of G' on the first factor, while $g_0^{-1}G''g_0$ acts on the second by multiplications from the right. Note also that if H is equipped with a coordinate system from Lemma 4.2 and G'' with a coordinate system induced by the structure of a \mathbb{G}_m^*-subgroup, then $G' \times g_0^{-1}G''g_0$ acts on H_q by translations. Hence, we are done. \hfill \square

Lemma 5.7. A completion \bar{H} of $H \times X$ in Lemma 5.3 can be chosen such that for every $q \in Q$ the closure H_q of H_q in H is a projective space that is the completion of H_q associated with the coordinate system from Lemma 5.6.

Proof. By [Gro58, Theorem 3] the quotient morphism $\gamma : G \to Q$ is a principal G''-bundle which is locally trivial in the Zariski topology. Let $\{Q_i\}$ be a cover of Q by open subsets over which γ admits sections $\sigma_i : Q_i \to G$. The coordinate system on H (from Lemma 4.2) allows us to treat H as \mathbb{G}_m^*-group. Thus, $\tau : H \times G \to Q$ is a principal $H \times G''$-bundle whose fiber $\tau^{-1}(q) = H_q$ and we have the trivialization isomorphisms

$$\eta_i : Q_i \times H \times G'' \to \tau^{-1}(Q_i), (q, h, g'') \mapsto (h, g''\sigma_i(q)) \in H_q$$

with the transition functions

$$\kappa_{ij} : Q_{ij} \times H \times G'' \to Q_{ij} \times H \times G'', (q, h, g'') \mapsto (q, h, g''\sigma_i(q)\sigma_j(q)^{-1}).$$

Consider the G-action on Q such that $g \in G$ sends $q = G''g_0$ to $G''g_0g^{-1}$ and the set

$$S_{ij} = \{(g', g, q, h, g'') \in G' \times G \times Q_i \times H \times G'' | g.q \in Q_j\}.$$

Then $\eta_j^{-1} \circ \Lambda \circ (\text{id, } \eta_i) : S_{ij} \to Q_j \times H \times G''$ is given by

$$(5) \quad (g', g, q, h, g'') \mapsto \eta_j^{-1}((g', g) \eta_i(q, h, g'')) = (g.q, g'h, g''\tilde{y}_{ij}'''),$$

where $G'' \ni \tilde{y}_{ij}' = \sigma_i(q)g^{-1}(\sigma_j(g,q))^{-1}$. Equip $H \times G'' \simeq \mathbb{A}^t$ (where $t = s + m''$) with the coordinate system $\tilde{\zeta} = (\zeta_1, \ldots, \zeta_t)$ from Lemma 5.6.
If $\zeta \in \mathbb{A}^t$ are the coordinates of (h, g'') and $\tilde{\zeta}^0(g, q)$ are the coordinates of $(\tilde{0}, \tilde{g}'_j) \in H \times G''$, then the coordinate form of Formula (5) is

$$ (g', g, q, \tilde{\zeta}) \mapsto \eta^{-1}(\tilde{g}', g, q, \tilde{\zeta}) = (g, q, \tilde{\zeta} + \tilde{\zeta}^0(g, q)). \quad (6) $$

There is the natural embedding $\mathbb{A}^t \hookrightarrow \mathbb{P}^t$ where \mathbb{P}^t is equipped with the coordinate system $\tilde{\xi} = (\xi_0 : \xi_1 : \ldots : \xi_t)$ such that $\xi_i = \zeta_i \xi_0$ for $i \geq 1$ and $\xi_0 \neq 0$. Since κ_{ij} are translations over Q_{ij} the isomorphisms η_{ij} extend to the trivialization isomorphisms $\tilde{\eta}_i : Q_i \times \mathbb{P}^t \to \tilde{\tau}_i^{-1}(Q_i)$ where $\tilde{\tau}_i : \widetilde{H \times G} \to Q_i$ is the proectivization of the bundle $\tau : H \times G \to Q$. For $\tilde{S}_{ij} = \{(g', g, q, \tilde{\xi}) \in G' \times G \times Q_i \times \mathbb{P}^t | g.q \in Q_j \}$ formula (6) admits the extension to the morphism $\tilde{S}_{ij} \to Q_j \times \mathbb{P}^t$ sending $((g', g, q, \tilde{\xi})$ to $(g.q, \xi + \zeta^0(g, q))$ where $\zeta^0(g, q) = (\xi_0 : \xi_1(g, q) : \ldots : \xi_t(g, q))$ with $\xi_i(g.q) = \xi_i(g, q)\xi_0$ for $i \geq 1$. Such morphisms yield the isomorphisms $(\text{id}, \tilde{\eta}_i)(\tilde{S}_{ij}) \to \tilde{\tau}_j^{-1}(Q_j)$ which are in turn the extensions of Λ restricted to $(\text{id}, \eta_i)(S_{ij})$. Hence, we have a $(G' \times G)$-action on $\widetilde{H \times G}$ extending Λ. Thus, a $(G' \times G)$-equivariant completion of $H \times G$ yields H which concludes the proof.

Theorem 5.8. Let X be isomorphic (as an algebraic variety) to a connected linear algebraic group $G \neq \mathbb{G}_a$ without nontrivial characters. Suppose that $G' \simeq \mathbb{G}^m_a$ and $G'' \simeq \mathbb{G}^m_a$ are subgroups of G such that $G' \cap G''$ coincides with the identity element of G. Let Z be an affine variety such that $\dim Z \leq m' + m''$ and $\text{ED}(Z) \leq \dim X$. Then there exists a closed embedding of Z into X.

Proof. Let $q \in Q$, $C_q = G''g_0$, H_q and Y_q be as in Notation 5.4 and Lemma 5.6 (i.e., $H_q \simeq \mathbb{A}^t$ is an affine space). Consider the group $F = G' \times (g_0^{-1}G''g_0)$ and the F-actions on H_q and X that are the restrictions of Λ and Δ_t from Lemma 5.2, respectively. By Lemma 5.2 the morphism $\varphi_q = \Phi^1_{H_q} : H_q \to X$ is F-equivariant. By Lemma 5.6 H_q is equipped with a coordinate system such that F acts on H_q by translations. Let $\psi_q : H_q \to X$ be the rational extension of φ_q to the projective space \mathbb{P}^t which is the completion of H_q associated with the coordinate system. By Lemmas 5.3 and 5.7 we can suppose that $\pi_q = \pi |_{Y_q} : Y_q \to \widetilde{H_q}$ is a F-equivariant resolution of the indeterminacy points of ψ_q. Hence, by Proposition 3.6 and Lemma 5.5 we can suppose that the codimension of the improperness set W_q of φ_q in $D_q = H_q \setminus H_q$ is at least the dimension of general orbits of F in X. Treating g_0 as a point in $X \simeq G$ we see that the F-orbit of g_0 has dimension $m' + m''$. Thus, the dimension of general F-orbits is at least $m' + m''$ and $\text{codim}_{D_q} W_q \geq m' + m''$.

Let $K = \text{SL}_t(\mathbf{k})$ and \mathcal{A} be a perfect family \mathcal{A} of automorphisms on H_q. By Holme’s theorem we can treat Z as a closed subvariety of H_q. Arguing as in the proof of Theorem 4.1 we see that for a general $(\beta, \alpha) \in K \times \mathcal{A}$ the morphism $\varphi_q |_{\beta \circ \alpha(Z)} : \beta \circ \alpha(Z) \to X$ is an injective
immersion. Let P be the intersection of D_q with the closure of $\beta \circ \alpha(Z)$ in \hat{H}_q, i.e., $\dim P \leq m' + m'' - 1$. Since the natural K-action on H_q extends to the action on \hat{H}_q so that its restriction to D_q is transitive, P does not meet W_q for a general $(\beta, \alpha) \in K \times \mathcal{A}$ by [AFKKZ, Theorem 1.15]. Hence, $\varphi_{q|\beta \circ \alpha(Z)} : \beta \circ \alpha(Z) \to X$ is proper by Proposition 3.2 and we are done.

Corollary 5.9. Let X be isomorphic (as an algebraic variety) either to a special linear group $\text{SL}_n(k)$ or to a symplectic group $\text{Sp}_{2n}(k)$ and Z be an affine algebraic variety such that $\text{ED}(Z) \leq \dim X$. Then there exists a closed embedding of Z into X.

Proof. Suppose that G' is the G_a^n-subgroup of $\text{SL}_n(k)$ (in particular, it is a unipotent abelian subgroup of a maximal dimension by [Ma45]) as in the proof of Corollary 4.4 and G'' is the subgroup that consists of the transposes of elements of G'. Note that $G' \cap G'' = e$ (where e is the identity element of G) and $\dim G' = \dim G'' \geq \frac{\dim X}{2}$. Hence, $\dim Z \leq \dim G' + \dim G''$ since $\text{ED}(Z) \leq \dim X$ and, thus, $\dim Z \leq \frac{\dim X - 1}{2}$. Similarly, for $X \simeq \text{Sp}_{2n}(k)$ the maximal dimension of a unipotent abelian subgroup G' is greater than $\frac{\dim X}{2}$ by [Ma45] (see also [Law]). Furthermore, G' can be chosen so that in a root space decomposition its Lie algebra is generated by subspaces with positive roots [Law, page 7]. Replacing these positive roots by the corresponding negative roots we get the Lie algebra of a maximal unipotent abelian subgroup G' such that $\dim G'' = \dim G'$ and $G' \cap G'' = e$. Hence, $\dim Z \leq \dim G' + \dim G''$ as before and Theorem 5.8 implies the desired conclusion. \qed

In a more general setting we have the following.

Corollary 5.10. Let Z be an affine algebraic variety, X be an algebraic variety of the form $\mathbb{A}^{n_0} \times G_1 \times G_2 \times \ldots \times G_l$ where each G_i is either $\text{SL}_{n_i}(k)$ or $\text{Sp}_{2n_i}(k)$. Suppose that $\varphi : X \to Y$ is a finite morphism into a normal variety Y, $\text{ED}(Z) \leq \dim Y$ and S is a closed subvariety of Y containing Y_{sing} such that $\dim Z < \text{codim}_Y S$. Then Z admits a closed embedding into Y with the image contained in $Y \setminus S$.

Proof. By Theorem 2.13 it suffices to consider the case of $Y = X$. Since X is isomorphic as an algebraic variety to a linear algebraic group $G = \mathbb{G}_a^{n_0} \times G_1 \times G_2 \times \ldots \times G_l$ Theorem 5.8 implies that it is enough to construct $\mathbb{G}_a^{n_0}$-subgroups G' and G'' of G such that $G' \cap G'' = e$ and $\dim Z \leq \dim G' + \dim G''$. The proof of Corollary 5.9 implies that one can find similar subgroups G_i' and G_i'' in each factor G_i of G such that $\dim G_i' + \dim G_i'' \geq \frac{\dim G_i}{2}$. Thus, letting $G_i' = \mathbb{G}_a^{n_0} \oplus \bigoplus_{r=1}^{n_0} G_i'$ and $G_i'' = \bigoplus_{r=1}^{n_0} G_i''$ we see that $\dim Z \leq \dim G_i' + \dim G_i''$ since $\dim Z \leq \frac{\dim G_i}{2}$. This yields the desired conclusion. \qed
Remark 5.11. If G is a simple Lie group whose Dynkin diagram differs from A_n or C_n, then there is no unipotent abelian subgroup of G whose dimension is at least $\dim G - 1$ [Ma45]. Hence, for such groups and a smooth Z our method is less effective than the one in [FvS21].

References

[AFKKZ] I. V. Arzhantsev, H. Flenner, S. Kaliman, F. Kutzschebauch, M. Zaidenberg, Flexible varieties and automorphism groups. Duke Math. J. 162 (2013), no. 4, 767–823.

[BMS] S. Bloch, M. Pavaman Murthy, L. Szpiro, Zero cycles and the number of generators of an ideal, 38, 1989, Colloque en l’honneur de Pierre Samuel (Orsay, 1987), pp. 51-74.

[FvS21] P. Feller, I. van Santen, Existence of embedding of smooth varieties into linear algebraic groups, J. of Alg. Geom. (to appear), arXiv:2007.16164.

[FKZ] H. Flenner, S. Kaliman, and M. Zaidenberg, A Gromov-Winkelmann type theorem for flexible varieties, J. Eur. Math. Soc. (JEMS) 18 (2016), no. 11, 2483-2510.

[Fr] G. Freudenburg, Algebraic Theory of Locally Nilpotent Derivations, Encyclopaedia of Mathematical Sciences, Springer, Berlin-Heidelberg-New York, 2006.

[Gro58] A. Grothendieck, Torsion homologique et sections rationnelles, Anvenaux de Chow et Applications, Séminaire Claude Chevalley, 1958, exposé n. 5, 1-29.

[Hol] A. Holme, Embedding-obstruction for singular algebraic varieties in \mathbb{P}^N, Acta Math. 135 (1975), no. 3-4, 155-185.

[Ka91] S. Kaliman, Extensions of isomorphisms between affine algebraic subvarieties of k^n to automorphisms of k^n, Proc. Amer. Math. Soc. 113 (1991), no. 2, 325-334.

[Ka20] S. Kaliman, Extensions of isomorphisms of subvarieties in flexible varieties, Transform. Groups 25 (2020), no. 2, 517-575.

[Ka21] S. Kaliman, Lines in affine toric varieties, Israel J. of Mathematics, TBD (2022) 1-29, DOI 10.1007/s11856-022-2332-4.

[KaUd] S. Kaliman, D. Udumyan, On automorphisms of flexible varieties, Adv. Math. 396 (2022), Paper No. 108112, 43 pp. 14R10 (14L30).

[Law] R. Lawther, Maximal abelian sets of roots, Mem. Amer. Math. Soc. 250 (2017), no. 1192, vii+219 pp.

[Ma45] A. Malcev, Commutative subalgebras of semi-simple Lie algebras, (Russian) Bull. Acad. Sci. URSS. Sér. Math. [Izvestia Akad. Nauk SSSR] 9 (1945), 291-300.

[Ra] C. P. Ramanujam, A note on automorphism groups of algebraic varieties, Math. Ann. 156 (1964), 25–33.

[ReYo] Z. Reichstein, B. Youssin, Equivariant resolution of points of indeterminacy, Proc. Amer. Math. Soc. 130 (2002), no. 8, 2183 -2187.

[Su] H. Sumihiro, Equivariant completion, J. Math. Kyoto Univ., 14:1 (1974), 1-14.

[Sr] V. Srinivas, On the embedding dimension of an affine variety, Math. Ann., 289 (1991), no. 1, 25-132.

[Swan] R. G. Swan, A cancellation theorem for projective modules in the metastable range, Invent. Math. 27 (1974), 23-43.
