SUPPLEMENTAL DATA

Biochemistry ???, 000-000 (200?)

Robert L. Eoff1, Jennifer B. Stafford1, Jozsef Szekely, Carmelo J. Rizzo, Martin Egli, F. Peter Guengerich, and Lawrence J. Marnett

Structural and functional analysis of Sulfolobus solfataricus Y-family DNA polymerase Dpo4-catalyzed bypass of the malondialdehyde-deoxyguanosine adduct

CONTENTS

Figure S1. Comparison of Dpo4-catalyzed incorporation of dCTP and dATP opposite M1dG and N2-OPdG.

Table S1. Observed and theoretical MS fragmentation for Dpo4-catalyzed incorporation of C opposite M1dG in the sequence with C to the 5’ side of the adduct.

Table S2. Observed and theoretical MS fragmentation for Dpo4-catalyzed incorporation of C opposite M1dG in the sequence with C to the 5’ side of the adduct with blunt-end addition of A.

Table S3. Observed and theoretical MS fragmentation for Dpo4-catalyzed incorporation of C opposite M1dG in the sequence with C to the 5’ side of the adduct with blunt-end addition of C.

Table S4. Observed and theoretical MS fragmentation for Dpo4-catalyzed incorporation of A opposite M1dG in the sequence with C to the 5’ side of the adduct.

Table S5. Observed and theoretical MS fragmentation for Dpo4-catalyzed incorporation of A opposite M1dG in the sequence with C to the 5’ side of the adduct with blunt-end addition of A.

Table S6. Observed and theoretical MS fragmentation for Dpo4-catalyzed incorporation of A opposite M1dG in the sequence with C to the 5’ side of the adduct with blunt-end addition of G.

Table S7. Observed and theoretical MS fragmentation for Dpo4-catalyzed incorporation of two As opposite M1dG in the sequence with C to the 5’ side of the adduct.

Table S8. Observed and theoretical MS fragmentation for Dpo4-catalyzed incorporation of A opposite M1dG in the sequence with C to the 5’ side of the adduct followed by a frameshift deletion at the next base.
Table S9. Observed and theoretical MS fragmentation for Dpo4-catalyzed incorporation of A opposite M1dG in the sequence with C to the 5’ side of the adduct followed by insertion of CGG.

Table S10. Observed and theoretical MS fragmentation for Dpo4-catalyzed incorporation of A opposite M1dG in the sequence with C to the 5’ side of the adduct followed by insertion of CG.

Table S11. Observed and theoretical MS fragmentation for Dpo4-catalyzed generation of a -1 frameshift deletion during M1dG bypass in the sequence with C to the 5’ side of the adduct.

Table S12. Observed and theoretical MS fragmentation for Dpo4-catalyzed incorporation of T opposite M1dG in the sequence with C to the 5’ side of the adduct.

Table S13. Observed and theoretical MS fragmentation for Dpo4-catalyzed incorporation of C opposite M1dG in the sequence with T to the 5’ side of the adduct.

Table S14. Observed and theoretical MS fragmentation for Dpo4-catalyzed incorporation of C opposite M1dG in the sequence with T to the 5’ side of the adduct with blunt-end addition of A.

Table S15. Observed and theoretical MS fragmentation for Dpo4-catalyzed incorporation of C opposite M1dG in the sequence with T to the 5’ side of the adduct with blunt-end addition of C.

Table S16. Observed and theoretical MS fragmentation for Dpo4-catalyzed incorporation of C opposite M1dG in the sequence with T to the 5’ side of the adduct with blunt-end addition of G.

Table S17. Observed and theoretical MS fragmentation for Dpo4-catalyzed incorporation of C opposite M1dG in sequence with T to the 5’ side of the adduct followed by GGG.

Table S18. Observed and theoretical MS fragmentation for Dpo4-catalyzed incorporation of A opposite M1dG in sequence with T to the 5’ side of the adduct followed by T.

Table S19. Observed and theoretical MS fragmentation for Dpo4-catalyzed incorporation of 5’-ATGAA-3’.

Table S20. Observed and theoretical MS fragmentation for Dpo4-catalyzed incorporation of 5’-ATGGA-3’.

Table S21. Observed and theoretical MS fragmentation for Dpo4-catalyzed incorporation of 5’-ATGAAG-3’.
Table S22. Observed and theoretical MS fragmentation for Dpo4-catalyzed incorporation of A opposite M1dG in sequence with T to the 5’ side of the adduct with blunt-end addition of A.

Table S23. Observed and theoretical MS fragmentation for Dpo4-catalyzed incorporation of A opposite M1dG in sequence with T to the 5’ side of the adduct with blunt-end addition of C.

Table S24. Observed and theoretical MS fragmentation for Dpo4-catalyzed incorporation of 5’-AGTG-3’.

Table S25. Observed and theoretical MS fragmentation for Dpo4-catalyzed incorporation of 5’-ATG-3’.

Table S26. Observed and theoretical MS fragmentation for Dpo4-catalyzed incorporation of 5’-ATGA-3’.

Table S27. Observed and theoretical MS fragmentation for Dpo4-catalyzed incorporation of 5’-ATGAGC-3’.

Table S28. Observed and theoretical MS fragmentation for Dpo4-catalyzed incorporation of G opposite M1dG in sequence with T to the 5’ side of the adduct with blunt-end addition of C.

Table S29. Observed and theoretical MS fragmentation for Dpo4-catalyzed incorporation of 5’-AGTGAA-3’.
Figure S1. Comparison of Dpo4-catalyzed incorporation of dCTP and dATP opposite M₁dG and N²-OPdG. A, Dpo4 (5 nM) was incubated with radiolabeled 18/23-mer DNA (50 nM, substrate 1), the indicated dNTP (1 mM), and MgCl₂ (5 mM). Four different conditions, which are described in the materials and methods section, were used to analyze Dpo4 catalysis opposite the ring open (condition 2) and closed (conditions 1, 3, and 4) forms of the lesion. The data was fit by linear regression to calculate the velocity of dNTP incorporation: dCTP condition 1 (■): $v = 2.0 \pm 0.2 \text{ s}^{-1} \times 10^3$, y-intercept = $1.5 \pm 0.3 \text{ nM}$; dCTP condition 2 (□): $v = 1.9 \pm 0.6 \text{ s}^{-1} \times 10^3$, y-intercept = $3.8 \pm 0.7 \text{ nM}$; dCTP condition 3 (●): $v = 2.8 \pm 0.6 \text{ s}^{-1} \times 10^3$, y-intercept = $3.7 \pm 0.7 \text{ nM}$; dCTP condition 4 (○): $v = 1.9 \pm 0.6 \text{ s}^{-1} \times 10^3$, y-intercept = $3.5 \pm 0.6 \text{ nM}$; B, Results for dATP incorporation. dATP condition 1 (■): $v = 11.2 \pm 0.1 \text{ s}^{-1} \times 10^3$; dATP condition 2 (□): $v = 10.6 \pm 0.2 \text{ s}^{-1} \times 10^3$; dATP condition 3 (●): $v = 13.8 \pm 0.4 \text{ s}^{-1} \times 10^3$; dATP condition 4 (○): $v = 11.6 \pm 0.2 \text{ s}^{-1} \times 10^3$. All velocities are normalized to enzyme concentration and reported in units of s⁻¹ × 10³.
Table S1
Observed and theoretical MS fragmentation for Dpo4-catalyzed insertion of C opposite M1dG followed by accurate full-length extension.

5'-pTCCGTGA-3'

Fragment Assignment	Observed	Theoretical
5'-pT (a2-B, -1)	481.2	481.0
5'-pTC (a3-B, -1)	770.2	770.1
5'-pTCC (a4-B, -1)	1059.1	1059.1
5'-pTCCG (a5-B, -1)	1388.0	1388.2
(a5-B, -2)	693.6	693.6
5'-pTCCGT (a6-B, -1)	1691.9	1692.2
(a6-B, -2)	845.6	845.6
p-CCGTGA-3' (w6, -2)	934.6	934.6
p-CGTGA-3' (w5, -1)	1581.2	1581.2
p-GTGA-3' (w4, -1)	1292.1	1292.2
p-TGA-3' (w3, -1)	963.1	963.2
p-GA-3' (w2, -1)	658.9	659.1
p-A-3' (w1, -1)	330.0	330.0
Table S2

Observed and theoretical MS fragmentation for Dpo4-catalyzed insertion of C opposite M1dG followed by accurate full-length extension and blunt-end addition of A.

5’-pTCCGTGAA-3’

Fragment Assignment	Observed	Theoretical
5’-pT (a2-B, -1)	481.2	481.0
5’-pTC (a3-B, -1)	770.1	770.1
5’-pTCC (a4-B, -1)	1059.1	1059.1
5’-pTCCG (a5-B, -1)	1388.0	1388.2
(a5-B, -2)	693.6	693.6
5’-pTCCGT (a6-B, -1)	1692.0	1692.2
(a6-B, -2)	845.7	845.6
5’-pTCCGTG (a7-B, -2)	1010.2	1010.1
p-CCGTGAA-3’ (w7, -2)	1091.2	1091.1
p-CGTGAA-3’ (w6, -1)	1894.0	1894.3
(w6, -2)	946.6	946.6
p-GTGAA-3’ (w5, -1)	1605.1	1605.3
p-TGAA-3’ (w4, -1)	1276.1	1276.1
p-GAA-3’ (w3, -1)	972.2	972.2
p-AA-3’ (w2, -1)	643.2	643.1
p-A-3’ (w1, -1)	330.2	330.0
Table S2
Observed and theoretical MS fragmentation for Dpo4-catalyzed insertion of C opposite M1dG followed by accurate full-length extension and blunt-end addition of C.

5'-pTCCGTGAC-3'

Fragment Assignment	Observed	Theoretical
5'-pT (a2-B, -1)	481.1	481.0
5'-pTC (a3-B, -1)	770.2	770.1
5'-pTCC (a4-B, -1)	1059.2	1059.1
5'-pTCCG (a5-B, -1)	1387.8	1388.2
5'-pTCCGT (a6-B, -1)	1691.8	1692.2
(a6-B, -2)	845.6	845.6
5'-pTCCGTG (a7-B, -2)	1010.0	1010.1
p-CCGTGAC-3' (w7, -2)	1079.0	1079.2
p-CGTGAC-3' (w6, -1)	1869.8	1870.3
(w6, -2)	934.4	934.6
p-GTGAC-3' (w5, -1)	1581.1	1581.2
p-TGAC-3' (w4, -1)	1252.0	1252.2
p-GAC-3' (w3, -1)	948.1	948.1
p-AC-3' (w2, -1)	619.2	619.1
p-C-3' (w1, -1)	-	306.0
Table S4
Observed and theoretical MS fragmentation for Dpo4-catalyzed insertion of A opposite M1dG followed by accurate full-length extension.

Fragment Assignment	Observed	Theoretical
5’-pT (a2-B, -1)	481.1	481.0
5’-pTC (a3-B, -1)	770.1	770.1
5’-pTCA (a4-B, -1)	1083.0	1083.1
5’-pTCAG (a5-B, -1)	1412.2	1412.2
(a5-B, -2)	705.6	705.6
5’-pTCAGT (a6-B, -1)	1715.9	1716.2
(a6-B, -2)	857.7	857.6
p-CAGTGA-3’ (w6, -2)	946.6	946.6
p-AGTGA-3’ (w5, -1)	1605.1	1605.3
p-GTGA-3’ (w4, -1)	1292.2	1292.2
p-TGA-3’ (w3, -1)	963.2	963.2
p-GA-3’ (w2, -1)	659.2	659.1
p-A-3’ (w1, -1)	330.2	330.0
Table S5
Observed and theoretical MS fragmentation for Dpo4-catalyzed insertion of A opposite M1dG followed by accurate full-length extension and blunt-end addition of A.

Fragment Assignment	Observed	Theoretical
5'-pT (a2-B, -1)	481.1	481.0
5'-pTC (a3-B, -1)	770.2	770.1
5'-pTCA (a4-B, -1)	1083.1	1083.1
5'-pTCAG (a5-B, -1)	1411.9	1412.2
(a5-B, -2)	705.1	705.6
5'-pTCAGT (a6-B, -1)	1715.9	1716.2
(a6-B, -2)	857.6	857.6
5'-pTCAGTG (a7-B, -2)	1022.1	1022.1
p-CAGTGAA-3’ (w7, -2)	1103.1	1103.2
p-AGTGAA-3’ (w6, -1)	1918.0	1918.3
(w6, -2)	958.6	958.6
p-GTGAA-3’ (w5, -1)	1605.0	1605.3
p-TGAA-3’ (w4, -1)	1276.1	1276.1
p-GAA-3’ (w3, -1)	972.0	972.2
p-AA-3’ (w2, -1)	643.2	643.1
p-A-3’ (w1, -1)	-	330.0
Table S6
Observed and theoretical MS fragmentation for Dpo4-catalyzed insertion of A opposite M1dG followed by accurate full-length extension and blunt-end addition of G.

5'-pTCAGTGAG-3'

Fragment Assignment	Observed	Theoretical
5'-pT (a2-B, -1)	481.2	481.0
5'-pTC (a3-B, -1)	770.0	770.1
5'-pTCA (a4-B, -1)	1083.2	1083.1
5'-pTCAG (a5-B, -1)	1412.2	1412.2
5'-pTCAGT (a6-B, -1)	1716.1	1716.2
(a6-B, -2)	857.6	857.6
5'-pTCAGTG (a7-B, -2)	1022.0	1022.1
p-CAGTGAG-3' (w7, -2)	1110.8	1111.2
p-AGTGAG-3' (w6, -1)	1933.9	1934.3
(w6, -2)	966.0	966.6
p-GTGAG-3' (w5, -1)	1621.2	1621.3
p-TGAG-3' (w4, -1)	1292.1	1292.2
p-GAG-3' (w3, -1)	988.2	988.2
p-AG-3' (w2, -1)	659.1	659.1
p-G-3' (w1, -1)	-	346.0
Table S7
Observed and theoretical MS fragmentation for Dpo4-catalyzed insertion of A opposite M1dG followed by insertion of 5’-ATGA-3’.

5’-pTCAATGA-3'

Fragment Assignment	Observed	Theoretical
5’-pT (a2-B, -1)	481.1	481.0
5’-pTC (a3-B, -1)	770.0	770.1
5’-pTCA (a4-B, -2)	541.0	541.1
5’-pTCAA (a5-B, -1)	1395.8	1396.2
(a5-B, -2)	697.6	697.6
5’-pTCAAT (a6-B, -1)	1700.0	1700.2
(a6-B, -2)	849.7	849.6
p-CAATGA-3’ (w6, -2)	938.7	938.6
p-AATGA-3’ (w5, -1)	1589.1	1589.3
p-ATGA-3’ (w4, -1)	1276.2	1276.2
p-TGA-3’ (w3, -1)	963.0	963.2
p-GA-3’ (w2, -1)	659.2	659.1
p-A-3’ (w1, -1)	329.9	330.0
Table S8
Observed and theoretical MS fragmentation for Dpo4-catalyzed insertion of A opposite M1dG followed by insertion of 5'-TGA-3'.

5'-pTCATGA-3'

Fragment Assignment	Observed	Theoretical
5'-pT (a2-B, -1)	481.1	481.0
5'-pTC (a3-B, -1)	770.0	770.1
5'-pTCA (a4-B, -1)	1083.2	1083.1
5'-pTCAT (a5-B, -1)	1387.7	1387.2
(a5-B, -2)	693.2	693.1
p-CATGA-3' (w5, -1)	1565.8	1565.3
(w5, -2)	782.6	782.1
p-ATGA-3' (w4, -1)	1276.1	1276.2
p-TGA-3' (w3, -1)	963.2	963.2
p-GA-3' (w2, -1)	659.2	659.1
p-A-3' (w1, -1)	330.2	330.0
Table S9
Observed and theoretical MS fragmentation for Dpo4-catalyzed insertion of A opposite M1dG followed by insertion of 5’-CGG-3’.

Fragment Assignment	Observed	Theoretical
5’-pT (a2-B, -1)	481.0	481.0
5’-pTC (a3-B, -1)	770.2	770.1
5’-pTCA (a4-B, -1)	1083.0	1083.1
5’-pTCAC (a5-B, -1)	1372.1	1372.2
	685.7	685.6
p-CACGG-3’ (w5, -1)	1565.9	1565.2
	782.6	782.6
p-ACGG-3’ (w4, -1)	1277.0	1277.2
p-CGG-3’ (w3, -1)	964.1	964.1
p-GG-3’ (w2, -1)	675.2	675.1
p-G-3’ (w1, -1)	346.2	346.0
Table S10
Observed and theoretical MS fragmentation for Dpo4-catalyzed insertion of A opposite M1dG followed by insertion of 5'-CG-3'.

Fragment Assignment	Observed	Theoretical
5'-pT (a2-B, -1)	481.1	481.0
5'-pTC (a3-B, -1)	770.5	770.1
5'-pTCA (a4-B, -1)	1083.1	1083.1
p-CACG-3' (w4, -1)	1237.2	1237.2
p-ACG-3' (w3, -1)	948.1	948.2
p-CG-3' (w2, -1)	635.2	635.1
p-G-3' (w1, -1)	346.2	346.0

Table S11
Observed and theoretical MS fragmentation for Dpo4-catalyzed generation of a -1 frameshift deletion during M1dG bypass.

Fragment Assignment	Observed	Theoretical
5'-pT (a2-B, -1)	481.1	481.0
5'-pTC (a3-B, -1)	770.1	770.1
5'-pTCG (a4-B, -1)	1099.1	1099.1
5'-pTCGT (a5-B, -1)	1402.9	1403.1
(a5-B, -2)	701.2	701.1
p-CGTGA-3' (w5, -2)	790.1	790.1
p-GTGA-3' (w4, -1)	1292.1	1292.2
p-TGA-3' (w3, -1)	963.1	963.2
p-GA-3' (w2, -1)	659.2	659.1
p-A-3' (w1, -1)	330.2	330.0
Table S12
Observed and theoretical MS fragmentation for Dpo4-catalyzed insertion of T opposite M$_1$dG followed by accurate full-length extension.

Fragment Assignment	Observed	Theoretical
5'-pT (a2-B, -1)	481.0	481.0
5'-pTC (a3-B, -1)	770.0	770.1
5'-pTCT (a4-B, -1)	1073.9	1074.1
5'-pTCTG (a5-B, -1)	1403.5	1403.1
(a5-B, -2)	701.2	701.1
5'-pTCTGT (a6-B, -1)	1707.6	1707.2
(a6-B, -2)	853.0	853.1
p-CTGTGA-3' (w6, -2)	942.7	942.1
p-TGTGA-3' (w5, -1)	1595.9	1596.2
p-GTGA-3' (w4, -1)	1292.5	1292.2
p-TGA-3' (w3, -1)	963.1	963.2
p-GA-3' (w2, -1)	659.1	659.1
p-A-3' (w1, -1)	328.6	330.0
Table S13
Observed and theoretical MS fragmentation for Dpo4-catalyzed insertion of C opposite M1dG followed by accurate full-length extension.

5'-pTCCATGA-3'

Fragment Assignment	Observed	Theoretical
5'-pT (a2-B, -1)	481.1	481.0
5'-pTC (a3-B, -1)	770.1	770.1
5'-pTCC (a4-B, -1)	1059.1	1059.1
5'-pTCCA (a5-B, -1)	1372.0	1372.2
(a5-B, -2)	685.7	685.6
5'-pTCCAT (a6-B, -1)	1676.0	1676.2
p-CCATGA-3’ (w6, -1)	1853.8	1854.3
(w6, -2)	926.7	926.6
p-CATGA-3’ (w5, -1)	1565.1	1565.3
(w5, -2)	782.2	782.1
p-ATGA-3’ (w4, -1)	1276.2	1276.2
p-TGA-3’ (w3, -1)	963.2	963.2
p-GA-3’ (w2, -1)	659.2	659.1
p-A-3’ (w1, -1)	330.1	330.0
Table S14
Observed and theoretical MS fragmentation for Dpo4-catalyzed insertion of C opposite M1dG followed by accurate full-length extension and blunt-end addition of A.

5'-pTCCATGAA-3'

Fragment Assignment	Observed	Theoretical	
5'-pT (a2-B, -1)	481.1	481.0	
5'-pTC (a3-B, -1)	770.1	770.1	
5'-pTCC (a4-B, -1)	1059.0	1059.1	
5'-pTCCA (a5-B, -1)	1372.0	1372.2	
	(a5-B, -2)	685.6	685.6
5'-pTCCAT (a6-B, -1)	1675.8	1676.2	
	(a6-B, -2)	837.6	837.6
5'-pTCCATG (a7-B, -2)	1002.1	1002.1	
p-CCATGAA-3' (w7, -2)	1083.2	1083.2	
p-CATGAA-3' (w6, -1)	1877.9	1878.3	
	(w6, -2)	938.6	938.6
p-ATGAA-3' (w5, -1)	1589.1	1589.3	
	(w5, -2)	794.2	794.1
p-TGAA-3' (w4, -1)	1275.9	1276.2	
p-GAA-3' (w3, -1)	972.2	972.2	
p-AA-3' (w2, -1)	643.2	643.1	
p-A-3' (w1, -1)	330.1	330.0	
Table S15
Observed and theoretical MS fragmentation for Dpo4-catalyzed insertion of C opposite M1dG followed by accurate full-length extension and blunt-end addition of C.

5’-pTCCATGAC-3’

Fragment Assignment	Observed	Theoretical
5’-pT (a2-B, -1)	481.1	481.0
5’-pTC (a3-B, -1)	770.1	770.1
5’-pTCC (a4-B, -1)	1058.9	1059.1
5’-pTCCA (a5-B, -1)	1371.9	1372.2
5’-pTCCAT (a6-B, -2)	837.4	837.6
5’-pTCCATG (a7-B, -2)	1002.1	1002.1
p-CCATGAC-3’ (w7, -2)	1071.5	1071.2
p-CATGAC-3’ (w6, -2)	926.4	926.6
p-ATGAC-3’ (w5, -1)	1565.0	1565.3
p-TGAC-3’ (w4, -1)	1252.1	1252.2
p-GAC-3’ (w3, -1)	948.0	948.2
p-AC-3’ (w2, -1)	619.1	619.1
p-C-3’ (w1, -1)	306.1	306.0
Table S16
Observed and theoretical MS fragmentation for Dpo4-catalyzed insertion of C opposite M1dG followed by accurate full-length extension and blunt-end addition of G.

5'-pTCCATGAG-3'

Fragment Assignment	Observed	Theoretical
5'-pT (a2-B, -1)	481.1	481.0
5'-pTC (a3-B, -1)	770.1	770.1
5'-pTCC (a4-B, -1)	1058.9	1059.1
5'-pTCCA (a5-B, -1)	1371.9	1372.2
5'-pTCCAT (a6-B, -2)	837.4	837.6
5'-pTCCATG (a7-B, -2)	1002.1	1002.1
p-CCATGAG-3’ (w7, -2)	1090.9	1091.2
p-CATGAG-3’ (w6, -2)	946.4	946.6
p-ATGAG-3’ (w5, -1)	1604.6	1605.3
(w5, -2)	802.3	802.1
p-TGAG-3’ (w4, -1)	1292.2	1292.2
(w4, -2)	645.7	645.6
p-GAG-3’ (w3, -1)	988.8	988.2
p-AG-3’ (w2, -1)	659.2	659.1
p-G-3’ (w1, -1)	346.0	346.0
Table S17
Observed and theoretical MS fragmentation for Dpo4-catalyzed insertion of C opposite M1dG followed by insertion of 5'-GGG-3'.

Fragment Assignment	Observed	Theoretical
5'-pT (a2-B, -1)	481.1	481.0
5'-pTC (a3-B, -1)	770.1	770.1
5'-pTCC (a4-B, -1)	1059.1	1059.1
5'-pTCCG (a5-B, -1)	1387.2	1388.2
p-CCGGG-3' (w5, -1)	1582.2	1582.2
(w5, -2)	789.9	790.6
p-CGGG-3' (w4, -1)	1293.2	1293.3
p-GGG-3' (w3, -1)	1004.4	1004.2
p-GG-3' (w2, -1)	675.1	675.1
p-G-3' (w1, -1)	346.2	346.0

Table S18
Observed and theoretical MS fragmentation for Dpo4-catalyzed insertion of 5'-AT-3'.

Fragment Assignment	Observed	Theoretical
5'-pT (a2-B, -1)	481.0	481.0
5'-pTC (a3-B, -1)	770.1	770.1
p-CAT-3' (w3, -1)	923.2	923.2
p-AT-3' (w2, -1)	634.2	634.1
p-T-3' (w1, -1)	321.2	321.0
Table S19
Observed and theoretical MS fragmentation for Dpo4-catalyzed incorporation of 5’-ATGAA-3’.

Fragment Assignment	Observed	Theoretical
5’-pT (a2-B, -1)	481.2	481.0
5’-pTC (a3-B, -1)	770.1	770.1
5’-pTCA (a4-B, -1)	1083.0	1083.1
5’-pTCAT (a5-B, -1)	1371.9	1387.2
(a5-B, -2)	693.6	693.1
5’-pTCATG (a6-B, -1)	1715.7	1716.2
(a6-B, -2)	857.7	857.6
p-CATGAA-3’ (w6, -2)	938.6	938.6
p-ATGAA-3’ (w5, -1)	1589.2	1589.3
(w5, -2)	794.2	794.1
p-TGAA-3’ (w4, -1)	1276.1	1276.2
p-GAA-3’ (w3, -1)	972.2	972.2
p-AA-3’ (w2, -1)	643.2	643.1
p-A-3’ (w1, -1)	330.0	330.0
Table S20
Observed and theoretical MS fragmentation for Dpo4-catalyzed incorporation of 5’-ATGGA-3’.

5’-pTCATGGA-3’

Fragment Assignment	Observed	Theoretical
5’-pT (a2-B, -1)	481.1	481.0
5’-pTC (a3-B, -1)	770.1	770.1
5’-pTCA (a4-B, -1)	1083.1	1083.1
5’-pTCAT (a5-B, -1)	1387.2	1387.2
(a5-B, -2)	693.3	693.1
5’-pTCATG (a6-B, -1)	1715.8	1716.2
(a6-B, -2)	857.6	857.6
p-CATGGA-3’ (w6, -1)	1893.9	1894.3
(w6, -2)	946.7	946.6
p-ATGGA-3’ (w5, -1)	1605.1	1605.3
(w5, -2)	802.0	802.1
p-TGGA-3’ (w4, -1)	1291.9	1292.2
p-GGA-3’ (w3, -1)	988.1	988.2
p-GA-3’ (w2, -1)	659.2	659.1
p-A-3’ (w1, -1)	330.2	330.0
Table S21
Observed and theoretical MS fragmentation for Dpo4-catalyzed incorporation of 5’-ATGAAG-3’.

5’-pTCATGAAG-3’

Fragment Assignment	Observed	Theoretical
5’-pT (a2-B, -1)	481.1	481.0
5’-pTC (a3-B, -1)	770.1	770.1
5’-pTCA (a4-B, -1)	1083.0	1083.1
5’-pTCAT (a5-B, -2)	692.8	693.1
5’-pTCATG (a6-B, -2)	857.6	857.6
5’-pTCATGA (a7-B, -2)	1014.1	1014.1
p-CATGAAG-3’ (w7, -2)	1103.6	1103.2
p-ATGAAG-3’ (w6, -2)	958.6	958.7
p-TGAAG-3’ (w5, -1)	1606.2	1605.3
(w5, -2)	801.9	802.1
p-GAAG-3’ (w4, -1)	1301.4	1301.2
(w4, -2)	650.2	650.1
p-AAG-3’ (w3, -1)	972.0	972.2
p-AG-3’ (w2, -1)	659.1	659.1
p-G-3’ (w1, -1)	346.2	346.0
Table S22
Observed and theoretical MS fragmentation for Dpo4-catalyzed insertion of A opposite M1dG followed by accurate full-length extension and blunt-end addition of A.

Fragment Assignment	Observed	Theoretical
5’-pT (a2-B, -1)	481.1	481.0
5’-pTC (a3-B, -1)	770.1	770.1
5’-pTCA (a4-B, -1)	1083.0	1083.1
5’-pTCAA (a5-B, -1)	1396.1	1396.2
(a5-B, -2)	697.6	697.6
5’-pTCAAT (a6-B, -1)	1700.2	1700.2
(a6-B, -2)	849.6	849.6
5’-pTCAATG (a7-B, -2)	1014.1	1014.1
p-CAATGAA-3’ (w7, -2)	1095.1	1095.2
p-AATGAA-3’ (w6, -1)	1902.3	1902.3
(w6, -2)	950.8	950.7
p-ATGAA-3’ (w5, -1)	1588.6	1589.3
(w5, -2)	794.2	794.1
p-TGAA-3’ (w4, -1)	1276.0	1276.2
(w4, -2)	637.6	637.6
p-GAA-3’ (w3, -1)	972.1	972.2
p-AA-3’ (w2, -1)	643.2	643.1
p-A-3’ (w1, -1)	330.2	330.0
Table S23

Observed and theoretical MS fragmentation for Dpo4-catalyzed insertion of A opposite M1dG followed by accurate full-length extension and blunt-end addition of C.

5'-pTCAATGAC-3'

Fragment Assignment	Observed	Theoretical
5'-pT (a2-B, -1)	481.1	481.0
5'-pTC (a3-B, -1)	770.1	770.1
5'-pTCA (a4-B, -1)	1083.2	1083.1
5'-pTCAA (a5-B, -1)	1393.1	1396.2
(a5-B, -2)	697.9	697.6
5'-pTCAAT (a6-B, -2)	1701.1	1700.2
(a6-B, -2)	849.4	849.6
5'-pTCAATG (a7-B, -2)	1014.2	1014.1
p-CAATGAC-3' (w7, -2)	1083.2	1083.2
p-AATGAC-3' (w6, -1)	1877.9	1878.3
(w6, -2)	938.6	938.6
p-ATGAC-3' (w5, -1)	1565.2	1565.3
(w5, -2)	782.2	782.1
p-TGAC-3' (w4, -1)	1252.1	1252.2
(w4, -2)	625.7	625.6
p-GAC-3' (w3, -1)	948.2	948.2
p-AC-3' (w2, -1)	619.2	619.1
p-C-3' (w1, -1)	306.2	306.0
Table S24
Observed and theoretical MS fragmentation for Dpo4-catalyzed incorporation of 5'-AGTG-3'.

5'-pTCAGTG-3'

Fragment Assignment	Observed	Theoretical
5'-pT (a2-B, -1)	481.1	481.0
5'-pTC (a3-B, -1)	770.1	770.1
5'-pTCA (a4-B, -1)	1083.0	1083.1
5'-pTCAG (a5-B, -1)	1412.4	1412.4
	705.7	705.6
p-CAGTG-3' (w5, -1)	1582.2	1581.2
	789.9	790.1
p-AGTG-3' (w4, -1)	1292.2	1292.2
p-GTG-3' (w3, -1)	979.2	979.2
p-TG-3' (w2, -1)	650.2	650.1
p-G-3' (w1, -1)	346.2	346.0

Table S25
Observed and theoretical MS fragmentation for Dpo4-catalyzed incorporation of 5'-ATG-3'.

5'-pTCATG-3'

Fragment Assignment	Observed	Theoretical
5'-pT (a2-B, -1)	481.1	481.0
5'-pTC (a3-B, -1)	770.1	770.1
5'-pTCA (a4-B, -1)	1083.1	1083.1
p-CATG-3' (w4, -1)	1252.1	1252.2
p-ATG-3' (w3, -1)	963.1	963.2
p-TG-3' (w2, -1)	650.2	650.1
p-G-3' (w1, -1)	345.9	346.0
Table S26
Observed and theoretical MS fragmentation for Dpo4-catalyzed incorporation of 5’-ATGA-3’.

5’-pTCATGA-3’

Fragment Assignment	Observed	Theoretical
5’-pT (a2-B, -1)	481.2	481.0
5’-pTC (a3-B, -1)	770.1	770.1
5’-pTCA (a4-B, -1)	1083.2	1083.1
5’-pTCAT (a5-B, -1)	1386.9	1387.2
	693.2	693.1
p-CATGA-3’ (w5, -1)	1565.1	1565.3
	782.2	782.1
p-CATG-3’ (w4, -1)	1276.1	1276.2
	637.6	637.6
p-ATG-3’ (w3, -1)	963.1	963.2
p-TG-3’ (w2, -1)	659.2	659.1
p-G-3’ (w1, -1)	330.2	330.0
Table S27
Observed and theoretical MS fragmentation for Dpo4-catalyzed insertion of 5’-ATGAGC-3’.

Fragment Assignment	Observed	Theoretical
5’-pT (a2-B, -1)	481.0	481.0
5’-pTC (a3-B, -1)	770.2	770.1
5’-pTCA (a4-B, -1)	1083.0	1083.1
5’-pTCAT (a5-B, -2)	693.2	693.1
5’-pTCATG (a6-B, -2)	857.6	857.6
5’-pTCATGA (a7-B, -2)	1014.5	1014.1
p-CATGAGC-3’ (w7, -2)	1090.9	1091.2
p-ATGAGC-3’ (w6, -2)	946.7	946.6
p-TGAGC-3’ (w5, -1)	1581.4	1581.3
p-GAGC-3’ (w4, -1)	1276.9	1276.2
p-AGC-3’ (w3, -1)	948.1	948.2
p-GC-3’ (w2, -1)	635.2	635.1
p-C-3’ (w1, -1)	306.2	306.0
Table S28
Observed and theoretical MS fragmentation for Dpo4-catalyzed insertion of G opposite M1dG followed by accurate full-length extension and blunt-end addition of C.

5'-pTCGATGAC-3'

Fragment Assignment	Observed	Theoretical
5'-pT (a2-B, -1)	481.2	481.0
5'-pTC (a3-B, -1)	770.1	770.1
5'-pTCG (a4-B, -1)	1099.0	1099.1
5'-pTCGA (a5-B, -1)	1412.2	1412.2
5’-pTCGAT (a6-B, -2)	857.7	857.6
5’-pTCGATG (a7-B, -2)	1022.0	1022.1
p-CGATGAC-3’ (w7, -2)	1090.9	1091.2
p-GATGAC-3’ (w6, -2)	946.7	946.6
p-ATGAC-3’ (w5, -1)	1565.0	1565.3
(w5, -2)	782.2	782.1
p-TGAC-3’ (w4, -1)	1252.1	1252.2
p-GAC-3’ (w3, -1)	948.2	948.2
p-AC-3’ (w2, -1)	619.1	619.1
p-C-3’ (w1, -1)	306.1	306.0
Table S29
Observed and theoretical MS fragmentation for Dpo4-catalyzed insertion of A opposite M1dG followed by insertion of 5’-GTGAA-3’.

5’-pTCAGTGAA-3’

Fragment Assignment	Observed	Theoretical
5’-pT (a2-B, -1)	481.1	481.0
5’-pTC (a3-B, -1)	770.1	770.1
5’-pTCA (a4-B, -1)	1083.0	1083.1
5’-pTCAG (a5-B, -1)	1411.8	1412.2
5’-pTCAGT (a6-B, -2)	857.6	857.6
5’-pTCAGTG (a7-B, -2)	1022.1	1022.1
p-CAGTGAC-3’ (w7, -2)	1103.6	1103.2
p-AGTGAC-3’ (w6, -2)	958.6	958.6
p-GTGAA-3’ (w5, -1)	1606.3	1606.3
(w5, -2)	802.1	802.1
p-TGAA-3’ (w4, -1)	1276.1	1276.2
p-GAA-3’ (w3, -1)	972.0	972.2
p-AA-3’ (w2, -1)	643.1	643.1
p-A-3’ (w1, -1)	330.1	330.0