Coordinated Regulation of Biosynthetic and Regulatory Genes Coincides with Anthocyanin Accumulation in Developing Eggplant Fruit

John R. Stommel and Judith M. Dumm
U.S. Department of Agriculture, Agriculture Research Service, Beltsville Agricultural Research Center, Genetic Improvement of Fruits and Vegetables Laboratory, Building 010A, BARC-West, 10300 Baltimore Avenue, Beltsville, MD 20705

ABSTRACT. Violet to black pigmentation of eggplant (Solanum melongena L.) fruit is caused by anthocyanin accumulation. Model systems demonstrate the role of regulatory genes in the control of anthocyanin biosynthesis. Anthocyanin structural gene transcription requires the expression of at least one member of each of three transcription factor families: MYB, MYC, and WD. To determine the molecular genetic basis for anthocyanin pigmentation in eggplant fruit, we used real-time polymerase chain reaction (PCR) to evaluate the expression of anthocyanin biosynthetic (Chs, Dfr, Ans) and regulatory (Myc, Myb, Myc, Wd) genes in S. melongena genotypes that produce fruit with dark violet (‘Classic’) or white (‘Ghostbuster’) coloration, respectively. Transcript levels and anthocyanin content were evaluated in fruit at various stages of development ranging from small post-anthesis fruit to full-sized marketable fruit. Anthocyanin content increased 9-fold in developing violet-colored ‘Classic’ fruit, whereas low but detectable concentrations were found in white ‘Ghostbuster’ fruit. Chs, Dfr, and Ans transcript levels as well as Myb and Myc transcript levels were significantly higher in ‘Classic’ in comparison with ‘Ghostbuster’ fruit at comparable stages of fruit development with greatest differences observed for Ans transcript levels. Myb and Myc transcript levels increased in developing ‘Classic’ fruit coincident with increasing anthocyanin content. Myb and Wd transcript levels were not coordinated with changes in biosynthetic transcript levels or anthocyanin concentration.

Received for publication 1 Oct. 2014. Accepted for publication 21 Jan. 2015. Mention of trade names or commercial products is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.

Corresponding author. E-mail: john.stommel@ars.usda.gov.
of 1) MYB proteins characterized by R2 and R3 imperfect repeats of the conserved DNA-binding motif; 2) MYC proteins defined by a conserved basic helix-loop-helix domain consisting of a presumed DNA binding basic region and a protein–protein dimerization motif; and 3) WD40 repeat proteins with a characteristic 40 residue core containing a glycine-histidine dipeptide at the N-terminus and a tryptophan-aspartate dipeptide at the C-terminus.

Gene families with multiple copies of anthocyanin biosynthetic and regulatory genes have been described within various species (Dooner et al., 1991; Du et al., 2012; Griesbach, 2005; Mol et al., 1996). Evolutionary studies indicate that these multiple copies likely arose from gene duplication followed by sequence divergence (Purugganan and Wessler, 1994). Resulting variation in function of these genes, particularly for regulatory genes, is responsible for differences in pigmentation and patterns of tissue- or developmental-specific pigmentation within and between species. We previously characterized tissue-specific regulation of the anthocyanin biosynthetic pathway in pepper (Capsicum annuum L.), demonstrating differential expression of biosynthetic and regulatory genes coincident with anthocyanin pigmentation in accessions with divergent pigmentation (Stommel et al., 2009). Here, we extend those findings on anthocyanin gene regulation to eggplant, a related Solanaceous species.

Material and Methods

Plant material and growing conditions. The S. melongena hybrid cultivar Classic bears fruit with characteristic purple pigmentation restricted to the fruit peel and the hybrid ‘Ghostbuster’ bears uniform white-colored fruit. ‘Classic’ and ‘Ghostbuster’ were produced from seed and grown at the Beltsville Agricultural Research Center, Beltsville, MD, during the summer (June to September) season under standard greenhouse conditions without supplementary lighting. Six 7-week-old plants of each cultivar were transplanted to 5.7-L pots containing a 65% to 75% sphagnum peat moss plus perlite soil-free mix (Pro-Mix HP Mycorrhizae; Premier Tech Horticulture, Quakertown, PA). Pots were distributed in a glasshouse (lat. 39°1’38.96” N, long. 76°55’35.67” W) with climate control (heating started at temperatures below 20 °C and cooling at temperatures above 24 °C) using a completely randomized design. Plants were trained on bamboo canes and spaced 0.8 m between rows and 0.7 m apart within the row. Fertilization was applied on a constant feed basis with drip irrigation throughout the growing cycle. Final concentrations of 144 mg L⁻¹ nitrogen, 42 mg L⁻¹ phosphorus, 221 mg L⁻¹ potassium, 106 mg L⁻¹ calcium, 50 mg L⁻¹ magnesium, and 34 mg L⁻¹ sulfur in the dilute fertilizer solution were supplemented with micronutrients applied in final concentrations of 2.8 mg L⁻¹ iron, 1.3 mg L⁻¹ boron, 0.18 mg L⁻¹ copper, 0.62 mg L⁻¹ manganese, 0.18 mg L⁻¹ zinc, 0.09 mg L⁻¹ molybdenum, and 8.8 mg L⁻¹ chlorine.

Gene expression. Fruit peel was sliced from developing fruit, frozen in liquid nitrogen, and stored at −80 °C. Replicate samples were collected for each of four fruit developmental stages ranging from small fruit enclosed in the calyx (stage w) to glossy full size marketable fruit (stage z) (mean fruit weight ± SE of stages w, x, y, and z for ‘Classic’ and ‘Ghostbuster’, respectively: w = 2.7 ± 0.6 g, 1.9 ± 0.3 g, stage x = 7.3 ± 0.9 g, 7.7 ± 0.7 g, stage y = 50.0 ± 13.5 g, 37.7 ± 0.2 g, stage z = 645.8 ± 27.7 g, 350.8 ± 19.1 g). Each developmental stage was represented by four replicates obtained from individual fruit of each cultivar. Total RNA for individual samples was isolated from ≈1000 mg frozen tissue using the Rneasy Plant Mini Kit with the optional DNase digest (Qiagen, Valencia, CA). RNA quantity was recorded using a spectrophotometer (ND1000; NanoDrop Technologies, Wilmington, DE) and integrity and quantification confirmed using a 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA).

Real-time PCR was used to compare flavonoid gene expression (Chs, Dfr, AnS, Myb, Myc, Wd) between anthocyanin-pigmented and non-pigmented tissues collected from contrasting genotypes. Degenerate primer sets from Petunia ×hybrida Vilm. (Griesbach and Beck, 2005) were used to generate PCR products. PCR products amplified using degenerate primers were cloned and sequenced to identify gene products with homology to published flavonoid gene sequences. The sequences were used to design S. melongena gene-specific primers (Table 1). Multiple Myb products with sequence homology to flavonoid related Myb clones from potato (Solanum tuberosum L.) and tomato (Solanum lycopersicum L.) were identified and designated Myb_a and Myb_c, respectively. The sequences of amplified products were used to develop S. melongena gene-specific primers (Table 1).

For real time PCR, cDNA synthesis was performed with 1 µg RNA using the iScript™ cDNA Synthesis Kit (Bio-Rad, Hercules, CA). Real-time PCR amplification of the cDNA was carried out as described by Lightbourn et al. (2007) using the iCycler IQ™ Multicolor Real-Time Detection System (Bio-Rad). Results were normalized to the expression of β-tubulin (Tub) where degenerate primers were designed based on gene sequences reported in GenBank (Table 1; Lightbourn et al., 2007). The efficiency of reaction kinetics and R values were tabulated and found to fall within the range of 95% to 105% (efficiency) and 0.98 to 1.0 (R value). Threshold values [Ct (iQ™ 5 Version 2.0; Bio-Rad)] were manually checked for SD > 0.5 within triplicate reactions. so of Tub values across fruit development stages and cultivars were ≈ 1.0. Relative gene expression was normalized to the reference gene as described (Lightbourn et al., 2007).

Flavonoid analysis. Analytical high-performance liquid chromatography (HPLC) (Griesbach et al., 1991) was used to quantify anthocyanin pigments in fruit peel tissue. Sample collection for anthocyanins was equivalent to that described for gene expression studies except duplicate samples were collected for each replicate from each of the four fruit developmental stages. Anthocyanins were extracted in acidified methanol (1% HCl), vaporized to dryness, washed with acetone, and re-solubilized in acidified methanol. HPLC characterization of anthocyanidins was performed on a 7.8 × 300-mm column of 5-µm Bondapak C18 (Waters Corp., Milford, MA) using a 30-min linear gradient of 0% to 10% (v/v) acetonitrile in aqueous 1.5% (v/v) phosphoric acid and 15% (v/v) acetic acid followed by a 10-min linear increase to 20% (v/v) acetonitrile and held at 20% (v/v) acetonitrile for an additional 20 min. Flow rate was 1.0 mL·min⁻¹ and detection was by absorption at 540 nm. Anthocyanins were identified as previously described (Lightbourn et al., 2008). Anthocyanin content was determined by measuring sample peak areas obtained from replicate samples of each cultivar using Maxima software (Waters Corp.). The relative amount of pigment was calculated as the mean of the area of absorption per gram fresh weight.
Table 1. *Solanum melongena* gene-specific primers for real-time polymerase chain reaction amplification of flavonoid biosynthetic and regulatory genes.

Gene symbol	Primer sequence (5’ - 3’)	
Chs	Forward TTG CCT AGC ATC AAG AGA AGG AGC	Reverse AGG AGG AAT TCA AGC GCA TGT GTG
	Reverse ATC TTC TTA GCA TAT ATG AAG ACG TCC AAG TCG	Forward TCC AAG GAC CCT GAG AAT GAA G
Dfr	Reverse TTG TGG TAC ACT TGA GTG GGA GGA	Forward TTA CGT CTT CTT TCT CTT CTC C T
Ans	Reverse TAT GAG CTT CGA CGC CAA GTG CTA	Forward TCC TTC AAA CGA CGA TGT TAT TCT T
MybB	Reverse TGG CTA CCA TCA AGA CTA AGC GCA	Forward ACA TGC AAA GAC ATC ATT AGT ACG
MybC	Reverse Dfr Forward TTG CCT AGC ATC AAG AGA AGG AGC	Reverse AGA CCT CAG CAA CAC TGG TTG AGT
Myc	Reverse TTT TGG TCA ACT TGA GTG GGA GGA	Forward TTA CGT CTT CTT TCT CTT CTC C T
Wd	Reverse TGG CTA CCA TCA AGA CTA AGC GCA	Reverse TCC TTC AAA CGA CGA TGT TAT TCT T
Tub	Reverse Chs Forward TTG CCT AGC ATC AAG AGA AGG AGC	Forward ACC ATT CGG ATT CGG TCA AGT CCT
	Reverse Dfr Forward TTG CCT AGC ATC AAG AGA AGG AGC	Reverse TTT TGG TCA ACT TGA GTG GGA GGA

*Chs = chalcone synthase; Dfr = dihydroflavonol reductase; Ans = anthocyanidin synthase; Tub = tubulin.

Results

The *S. melongena* cultivars Classic and Ghostbuster produce characteristically dark violet and white-colored fruit, respectively (Fig. 1). Delphinidin-3-p-coumaroylrutinoside-5-glucoside was identified as the major anthocyanin present in fruit peels of ‘Classic’ and ‘Ghostbuster’. Anthocyanin concentration increased 9-fold during early fruit development (stages w, x, y) in ‘Classic’ and subsequently declined 5-fold in full-sized fruit (stage z) (Table 2). Very low but detectable anthocyanin concentrations were found in ‘Ghostbuster’. Anthocyanin concentration in fruit peels of this white-pigmented genotype did not change significantly during fruit development and were approximately 145- to 1000-fold lower relative to those found in ‘Classic’ at comparable stages of fruit development.

The presence of measureable anthocyanin concentration in epidermal tissues of violet as well as white-colored fruit of these two genotypes indicated that functional anthocyanin biosynthetic pathways were present. The expression of regulatory genes (Myc, MybB, MybC, Wd) that comprise the MYB-MYD-WD transcription factor complex and key biosynthetic genes (Chs, Dfr, Ans) were evaluated to characterize the genetic mechanism underlying differences observed in fruit pigmentation of these cultivars.

With the exception of Chs transcript level in stage z fruit of ‘Classic’ and ‘Ghostbuster’, significant differences between ‘Classic’ and ‘Ghostbuster’ Chs, Dfr, and Ans transcript occurred at all stages of fruit development. Chs and Dfr transcript levels were approximately 750- and 5700-fold greater, respectively, in ‘Classic’ vs. ‘Ghostbuster’ in stage y fruit, coincident with peak measures of anthocyanin concentration (Table 3). The greatest fold difference in structural gene expression was for Ans, where transcript levels were 353,000-fold greater in stage y fruit of ‘Classic’ in comparison with ‘Ghostbuster’. In violet-pigmented epidermal tissue of ‘Classic’ fruit, transcript levels for all three genes increased between stage w and stage y coincident with increases in anthocyanin concentration. ‘Classic’ Chs and Dfr transcript levels increased 4-fold, and Ans transcript increased 6-fold in small developing fruit between stage w and stage y. Biosynthetic transcript levels for ‘Classic’ decreased 4.5- to 14-fold between stage y and stage z, coincident with declines in anthocyanin concentration of full-sized fruit. Similar to anthocyanin concentration in developing ‘Ghostbuster’ fruit, transcript levels for all three biosynthetic genes were relatively unchanged throughout fruit development. Myb products with sequence homology to flavonoid-related Myb clones from tomato and potato were identified in developing eggplant fruit and designated MybB and MybC, respectively. MybB transcript levels were up to 10-fold greater in developing fruit of ‘Classic’ vs. ‘Ghostbuster’ but exhibited little or no change throughout fruit development in either cultivar and were present at low levels relative to those for MybC (Table 4). Significant differences between ‘Classic’ and ‘Ghostbuster’ transcript levels were found at all stages of fruit development. MybC and Myc transcript levels were up to 14.5- and 288-fold greater in ‘Classic’ vs. ‘Ghostbuster’ fruit at comparable stages of fruit development. MybC transcript level in ‘Classic’ fruit increased 2.6-fold between stage w and stage y, and Myc transcript increased over 7.7-fold in developing fruit coincident with increasing biosynthetic transcript level and anthocyanin concentration. Transcript for both regulatory genes subsequently declined in market-sized fruit (stage z) coincident with declines in biosynthetic transcript level and anthocyanin concentration. Little or no change in MybC or Myc was observed in ‘Ghostbuster’. Wd transcript increased approximately 2-fold in ‘Classic’ between stage w and stage y as biosynthetic transcript level and anthocyanin concentration increased. However, transcript levels in ‘Classic’ vs. ‘Ghostbuster’ were not significantly different at comparable stages of fruit development. Wd transcript level was relatively unchanged during fruit development in ‘Ghostbuster’ and increased in market-sized fruit of both cultivars relative to smaller stage y fruit.

Discussion

Despite the importance of eggplant worldwide as a food crop and considerable interest in eggplant fruit secondary metabolites for their nutritive value, little research has been conducted to understand the molecular mechanisms that control anthocyanin accumulation in this crop. Early genetic studies describing
the inheritance of eggplant fruit pigmentation (Tigchelaar et al., 1968) and more recent anthocyanin pigmentation-linked quantitative trait loci studies (Barchi et al., 2012; Cericola et al., 2014) support the action of multiple genetic factors that influence anthocyanin pigmentation. Using a genome-wide association mapping approach, Cericola et al. (2014) identified 56 single nucleotide polymorphism (SNP) markers associated with anthocyanin pigmentation. Ten of these SNP loci, scattered over five chromosomes, were associated with fruit color. Synteny between eggplant and other Solanaceous species enabled speculation on possible orthologs associated with fruit color. Eggplant fruit color-associated markers identified on chromosome 10 were syntenic with chromosomal regions in tomato and potato harboring anthocyanin-related genes, namely, UDP-glucose:flavonoid-3-O-glucosyltransferase (3GT) and two MYB transcription factors that regulate the genes encoding CHS and DFR and influence tissue specific anthocyanin expression (Cericola et al., 2014).

We report differential expression of Chs, Dfr, and Ans biosynthetic genes in eggplant fruit with violet vs. white fruit color as a result of high vs. very low anthocyanin concentration, respectively. All three biosynthetic genes were highly expressed in violet fruit relative to white fruit. Upregulation of both MybC and Myc regulatory genes, coincident with increased expression of anthocyanin biosynthetic genes and anthocyanin concentration in developing fruit post-anthesis through market maturity stages of development, suggest that differential expression of MybC and Myc are important determinants of anthocyanin accumulation in these genotypes. Whereas MybC with sequence homology to a tomato Myb clone was differentially expressed in eggplant fruit, MybB with sequence homology to a potato Myb clone did not exhibit differential expression and was expressed at very low levels relative to MybC. Zhang et al. (2014) recently reported upregulation of anthocyanin biosynthetic genes and Myb in violet anthocyanin-pigmented eggplant fruit 12 to 15 d post-anthesis. The investigators did not observe differential expression of Myc. Anthocyanin pigmentation of small developing fruit enclosed in the calyx suggests that ‘Classic’ carries the dominant Puc (Pigment under calyx) allele (Tigchelaar et al., 1968) and that anthocyanin synthesis in this cultivar is not light-dependent.

Our focus on Chs, Dfr, and Ans biosynthetic genes does not preclude differential regulation of other anthocyanin biosynthetic genes as determinants of observed fruit pigmentation. However, differential MybC and Myc expression in violet- vs. white-colored fruit suggests that regulation of anthocyanin
biosynthesis and resulting fruit color in these genotypes is associated with expression of these transcription factors. In well-studied plant systems including *Arabidopsis thaliana* (L.) Heynh., *Zea mays* L., *P. syriaca*, and *Vitis vinifera* L. (Du et al., 2012; Dubos et al., 2010; Feller et al., 2011; Fournier-Level et al., 2010; Griesbach, 2005; Matus et al., 2008), multiple MYB encoding genes have been reported. In *A. thaliana*, 13 or more MYBs are related to the regulation of flavonoid metabolism and control specific anthocyanin biosynthetic enzymes and/or tissue specificity and may be redundant with other members of the MYB gene family (Dubos et al., 2010). Similarly, in grape, numerous anthocyanin MYBs were identified. However, only two MYBs located on chromosome 2 differentiated presence vs. absence of anthocyanin-pigmented fruit color (Fournier-Level et al., 2010; Matus et al., 2008). More recently, a candidate gene association study of grape accessions with a diverse range of fruit color identified fruit anthocyanin-associated transcription factors that included a MYC encoded on chromosome 2 and two MYBs, one identified on chromosome 9 and a second of unknown location (Cardoso et al., 2012). Similarly, discrete regulation of fruit anthocyanin content by one or several anthocyanin MYBs and MYCs has been reported for other Solanaceous species including pepper (Stommel et al., 2009) and tomato (Gonzali et al., 2009) and roseaceous fruits including apple (*Malus domestica* Borkh.) and pear (*Pyrus communis* L.) (Jaakola, 2013). Our results demonstrating differential regulation of MYB and MYC coincident with fruit anthocyanin pigmentation are congruent with these results. Functional studies are needed to confirm the biological roles of these eggplant transcription factors.

The role of the MYC-MYB-WD40 regulatory protein complex is well accepted for its role in anthocyanin biosynthesis

Table 2. Anthocyanin content in fruit peel of anthocyanin-pigmented ('Classic' and non-pigmented ('Ghostbuster') eggplant fruit.

Genotype	Anthocyanin content (peak area/gram fresh wt tissue) × 10^4	
Stage	Classic	Ghostbuster
w	1.64±0.7 a	19.6 a
x	4.15±3.9 b	5.3 a
y	15.14±8.0 c	15.4 a
z	2.95±5.7 b	20.3 a

Table 3. Relative expression for eggplant anthocyanin structural genes in anthocyanin-pigmented ('Classic') and non-pigmented ('Ghostbuster') fruit peels.

Gene	Stage	Chs	Dfr				
		Classic	Ghostbuster	Classic	Ghostbuster	Classic	Ghostbuster
w	0.57±0.15	0.01±3×10^-4	1.36±0.32	0.001±2×10^-4	0.53±0.22	5×10^-5±2×10^-5	
x	0.87±0.36	0.003±0.002	2.97±0.47	0.001±2×10^-4	1.02±0.26	4×10^-5±2×10^-5	
y	2.27±0.38	0.003±0.002	5.73±0.71	0.001±1×10^-4	3.18±0.51	9×10^-4±2×10^-4	
z	0.16±0.06	0.002±1×10^-4	1.26±0.30	0.002±5×10^-4	0.69±0.18	6×10^-4±2×10^-4	

Table 4. Relative expression for eggplant anthocyanin regulatory genes in anthocyanin-pigmented ('Classic') and non-pigmented ('Ghostbuster') fruit peels.

Gene	Stage	MybA	MybC	Myc	Wd			
		Classic	Ghostbuster	Classic	Ghostbuster	Classic	Ghostbuster	
w	7×10^-4±6×10^-4	7×10^-3±3×10^-3	0.08±0.04	0.01±0.005	0.15±0.02	0.009±0.003	0.42±0.09	0.99±0.62
x	2×10^-4±2×10^-4	4×10^-2±2×10^-3	0.05±0.01	0.02±0.004	0.39±0.08	0.005±0.001	0.87±0.26	0.69±0.17
y	1×10^-4±8×10^-5	8×10^-4±2×10^-4	0.21±0.03	0.02±0.004	1.15±0.07	0.004±0.001	0.86±0.14	0.85±0.16
z	2×10^-4±8×10^-6	1.8×10^-3±9×10^-5	0.03±0.01	0.002±4×10^-4	0.83±0.24	0.003±3×10^-4	2.99±0.85	2.02±0.17

J. AMER. SOC. HORT. SCI. 140(2):129–135. 2015.
(Koes et al., 2005). Numerous investigations have demonstrated that all three transcription factors are required for anthocyanin production. **Myb** and **Myc** provide one of the best examples of combinatorial plant gene regulation. Together with the **WD40** protein, **MYB** and **MYC** provide extensive regulatory function in plants and result in new phenotypic traits by virtue of variation in the **MYC** or, more commonly, the **MYB** component (Ramsay and Glover, 2005). *Z. mays MybC1* and **MycLe** are two of the alleles that are well studied. They have been expressed in a number of plant species (Bovy et al., 2002; Bradley et al., 1998; Goldsborough et al., 1996; Lloyd et al., 1992; Quattrocchio et al., 1993) in which they either enhanced the amount of anthocyanin produced or activated biosynthesis in unpigmented tissues. We reported differential regulation of both **Myb** and **Myc** in pepper genotypes with dichotomous anthocyanin pigmentation (Stommel et al., 2009). Ma et al. (2008) reported that *Myb* as well as **Myc** expression were required to elicit high levels of anthocyanin accumulation in *Phalaenopsis amabilis* (L.) Blume flowers. In *P. ×hybrida*, the combination **MycAn1/MycAn2** induces anthocyanin pigmentation in the flower; **MycAn1/MybAn4** induces anthocyanin pigmentation in the anthers; whereas the **MycAn1/MybD9ps** combination induces vacuolar acidification (Quattrocchio et al., 2006). Neither regulatory gene alone was sufficient to influence anthocyanin content. Differences in the threshold requirements for these regulatory genes to activate anthocyanin production also differ in different plants. In mammalian cells, both the **MYC** protein and mRNA have relatively short half-lives (Sharova et al., 2009). As a result, its temporal level and functionality in transcription factor complexes is dependent on transcription rate or promoter strength.

Numerous studies have documented the role of plant **MYB** proteins in conferring tissue- and cell-specific anthocyanin regulation and their influence on regulatory control of multiple aspects of epidermal cell differentiation (Koes et al., 2005; Quattrocchio et al., 2006). Relative to **MYB** proteins, plant **MYC** proteins have been studied less extensively. This class of transcription factors was first identified in *Z. mays* where they determine the timing, amount, and distribution of anthocyanin pigmentation (Ludwig et al., 1989). The N-terminal region of plant **Myc** bHLH transcription factors has an ~190 amino acid N-terminus that defines the **MYB**-interacting region. After this interaction domain is an activation domain that is responsible for transactivation of biosynthetic gene promoters in the anthocyanin pathway. Pattanaik et al. (2006) demonstrated that a lysine to methionine substitution in the interaction domain of **MYC-RP** of *Perilla frutescens* (L.) Britt. resulted in a 50-fold increase in transactivation activity. Ectopic expression of **MYC-RP** in transgenic tobacco (*Nicotiana tabacum* L.) resulted in increased anthocyanin accumulation relative to expression of the wild-type gene. Pattanaik et al. (2006) also documented **MYC** variants from *Antirrhinum majus* L. that showed increased transactivation of the *A. thaliana Chs* promoter. Changes in the interaction domain likely influence anthocyanin biosynthesis through 1) increased transactivation strength of respective **MYC** variants; 2) increased transactivation strength and improved interaction of **MYC** variants with **MYB** proteins; or 3) more stable bHLH-MYB-WD complexes resulting in enhanced anthocyanin production (Pattanaik et al., 2008).

In the current study, **Wd** expression was constitutive in both violet anthocyanin-pigmented eggplant fruit and white fruit with very low anthocyanin concentration. **Wd** transcript levels were comparable in both genotypes and were not differentially regulated coincident with anthocyanin accumulation. Similarly, differential **Wd** expression was not observed in *P. amabilis* (Ma et al., 2009) or pepper (Stommel et al., 2009). Despite lack of differential regulation, the essential role of **WD40** proteins in the transcription factor complex is highlighted in recent studies (Aguilar-Barragan and Ochoa-Alejo, 2014) where silencing of **Wd** resulted in significant reduction of anthocyanin biosynthetic genes. All of these observations are consistent with the proposed model for the **MYC-MYB-WD40** regulatory protein complex where **WD40** serves as a platform for interaction with **MYC** that in turn interact with **MYBs** (Koes et al., 2005). **MYB** and **MYC** appear to be sufficient in providing specificity in the regulatory complex, which binds to structural gene promoters to initiate gene expression.

Available studies document diversity in anthocyanin-related **MYB**, **MYC**, and **WD40** transcription factors. DNA as well as protein binding sites of **MYB**, **MYC**, and **WD40** proteins impose differential constraints on variability that can be tolerated in these proteins so that structure and functionality can be maintained (Ramsay and Glover, 2005; Streisfeld et al., 2011). Nonetheless, sufficient variation exists among one or multiple components of the transcription factor complex to produce varied anthocyanin composition and concentration and tissue and temporal specificity observed for anthocyanin biosynthesis. Our results on coordinated regulation of anthocyanin biosynthetic and regulatory genes in *S. melongena* further illustrate diversity within and among these transcription factors in Solanaceous species and more distant genera.

Literature Cited

Aguilar-Barragan, A. and N. Ochoa-Alejo. 2014. Virus-induced silencing of **MYB** and **WD40** transcription factor genes affects the accumulation of anthocyanin in chili pepper fruit. *Biol. Plant.* 58:567–574.

Barchi, L., S. Lanteri, E. Portis, G. Valè, A. Volante, L. Pulcini, T. Ciriacci, N. Acciari, V. Barbierato, L. Toppino, and G.L. Rotino. 2012. A RAD tag derived marker based eggplant linkage map and the location of QTLs determining anthocyanin pigmentation. *PLO One* 7:e43740.

Bovy, A., R. de Vos, M. Kemper, E. Schijlen, M. Almenar Perteko, S. Muir, G. Collins, S. Robinson, M. Verhoeven, S. Hughes, C. Santos-Buelga, and A. van Tunen. 2002. High-flavonol tomatoes resulting from the heterologous expression of the maize transcription factor genes *LC* and *CI*. *Plant Cell* 14:2509–2526.

Bradley, J.M., K.M. Davies, S.C. Deroles, S.J. Bloor, and D.H. Lewis. 1998. The maize *Le* regulatory gene up regulates the flavonoid biosynthetic pathway of petunia. *Plant J.* 13:381–392.

Cardoso, S., W. Lau, J.E. Dias, P. Fevereiro, and N. Maniatis. 2012. A candidate-gene association study for berry color and anthocyanin content in *Vitis vinifera* L. *PLO One* 7:E4602.

Cericola, F., E. Portis, S. Lanteri, L. Toppino, L. Barchi, N. Acciari, L. Pulcini, T. Sala, and G.L. Rotino. 2014. Linkage disequilibrium and genome-wide association analysis for anthocyanin pigmentation and fruit color in eggplant. *BMC Genomics* 15:896.

Close, D.C. and C.L. Beadle. 2003. The ecophysiology of foliar anthocyanin. *Bot. Rev.* 69:149–161.

Daunay, M.C., S. Aubert, A. Frary, S. Doganlar, R.N. Lester, G. Barendse, G. van der Weerden, J.W. Hennart, J. Haanstra, F. Dauphin, and E. Julian. 2004. Eggplant (*Solanum melongena*) fruit colour: Pigments, measurements and genetics. *Proc. XIth EUCARPIA Mtg. Genetics and Breeding of Capsicum and Eggplant, Noordwijkhout, The Netherlands, 17–19 May 2004.* p. 108–116.
Myc Fournier-Level, A., T. Lacombe, L. Le Cunff, J.M. Boursiquot, and Feller, A., K. Machemer, E.L. Braun, and E. Grotewold. 2011. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant J. 66:927–933.

Goldsbrough, A.P., Y. Tong, and J.I. Yoder. 1996. Le as a non-destructive visual reporter and transposition excision marker gene for tomato. Plant J. 9:927–933.

Gonzali, S., A. Mazzucato, and P. Perata. 2009. Purple as a tomato: Towards high anthocyanin tomatoes. Trends Plant Sci. 14:237–241.

Griesbach, R.J. 2005. Biochemistry and genetics of flower color. Plant Breed. Rev. 25:89–114.

Griesbach, R.J., S. Asen, and B.A. Leonhardt. 1991. Petunia hybridiana anthocyanins acylated with caffeic acid. Phytochemistry 30:1729–1731.

Griesbach, R.J. and R.M. Beck. 2005. Sequence analysis of the chalcone synthase gene in four Petunia taxa. J. Amer. Soc. Hort. Sci. 130:360–365.

Gross, J. 1991. Pigments in vegetables: Chlorophylls and carotenoids. AVI, New York, NY.

Harborne, J.B. 1994. The flavonoids: Advances in research since 1986. Chapman and Hall, London, UK.

He, J.A. and M.M. Giusti. 2010. Anthocyanins: Natural colorants with health-promoting properties. Annu. Rev. Food Sci. Technol. 1:163–187.

Ichiyanagi, T., Y. Kashiwada, Y. Shida, Y. Ikeshiro, T. Kaneyuki, and T. Konishi. 2005. Nasunin from eggplant consists of cis-trans isomers of delphinidin 3-[4-(p-coumaroyl)-L-rhamnosyl (1–6)glucopyranoside]-5-glucopyranoside. J. Agr. Food Chem. 53:9472–9477.

Jaakola, L. 2013. New insights into the regulation of anthocyanin biosynthesis in fruits. Trends Plant Sci. 18:477–483.

Koes, R., W. Verweij, and F. Quattrocchio. 2005. flavonoids: A colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci. 10:236–242.

Lightbourn, G.J., J.R. Griesbach, J.A. Novotny, B.A. Clevidence, D.D. Rao, and J.R. Stommel. 2008. Effects of anthocyanin and carotenoid combinations on foliage and immature fruit color of Capscium annuum L. J. Hered. 99:105–111.

Lightbourn, G.J., J.R. Stommel, and R.J. Griesbach. 2007. Epistatic interactions influencing anthocyanin gene expression in Capsicum annuum. J. Amer. Soc. Hort. Sci. 132:824–829.

Lloyd, A.M., V. Walbot, and R.W. Davis. 1992. Arabidopsis and Nicotiana anthocyanin production activated by maize regulators R and Cl. Science 258:1773–1775.

Ludwig, S.R., L.F. Habera, S.L. Dellaporta, and S.R. Wessler. 1989. Lc, a member of the maize R gene family responsible for tissue specific anthocyanin production, encodes a protein similar to transcriptional activators and contains the myc-homology region. Proc. Natl. Acad. Sci. USA 86:7092–7096.

Ma, H., M. Pooler, and R. Griesbach. 2008. Ratio of Myc and Myb transcription factors regulates anthocyanin production in orchid flowers. J. Amer. Soc. Hort. Sci. 133:133–138.

Ma, H., M. Pooler, and R. Griesbach. 2009. Anthocyanin regulatory/structural gene expression in Phalaenopsis Blume. J. Amer. Soc. Hort. Sci. 134:88–96.

Matus, J.T., F. Aqua, and P. Arce-Johnson. 2008. Analysis of the grape MYB R2R3 subfamily reveals expanded wine quality-related clades and conserved gene structure organization across Vitis and Arabidopsis genomics. BMC Plant Biol. 8:83.

Mol, J., G. Jenkins, E. Schafer, and D. Weiss. 1996. Signal perception, transduction, and gene expression involved in anthocyanin biosynthesis. Crit. Rev. Plant Sci. 15:525–557.

Pattanaik, S., C.H. Xie, Q. Kong, K.A. Shen, and L. Yuan. 2006. Directed evolution of plant basic helix-loop-helix transcription factors for the improvement of transactivation properties. Biochim. Biophys. Acta 1759:308–318.

Pattanaik, S., C.H. Xie, and L. Yuan. 2008. The interaction domains of the plant Myc-like bHLH transcription factors can regulate the transactivation strength. Planta 227:707–715.

Pojer, E., F. Mattivi, D. Johnson, and C.S. Stockley. 2013. The case for anthocyanin consumption to promote human health: A review. Comprehensive Rev. Food Sci. Food Safety 12:483–508.

Ramos, N.A. and B.J. Glover. 2005. MYB-bHLH-WD40 protein complex and the evolution of cellular diversity. Trends Plant Sci. 10:63–70.

Sadilova, E., F.C. Stintzing, and R. Carle. 2006. Anthocyanins, colour and antioxidant properties of eggplant (Solanum melongena L.) and violet pepper (Capsicum annuum L.) peel extracts. Z. Naturforsch. C 61:527–535.

Schemske, D.W. and H.D. Bradshaw. 1999. Pollinator preference and the evolution of floral traits in monkeyflowers (Mimulus). Proc. Natl. Acad. Sci. USA 96:11910–11915.

Sharova, L.V., A.A. Sharov, T. Nedorezov, Y. Piao, N. Shaik, and M.S.H. Ko. 2009. Database for mRNA half-life of 19 977 genes obtained by DNA microarray analysis of pluripotent and differentiating mouse embryonic stem cells. DNA Res. 16:45–58.

Stommed, J.R., G.J. Lightbourn, B.S. Winkel, and R.J. Griesbach. 2009. Transcription factor families regulate the anthocyanin biosynthetic pathway in Capsicum annuum. J. Amer. Soc. Hort. Sci. 134:244–251.

Streisfeld, M.A., D. Liu, and M.D. Rausher. 2011. Predictable patterns of constraint among anthocyanin-regulating transcription factors in Ipomoea. New Phytol. 191:264–274.

Tanchev, S.S., P.J. Ruskov, and C.F. Timberlake. 1970. The anthocyanins of Bulgarian aubergine (Solanum melongena). Phytochemistry 9:1681–1682.

Tigchelaar, E.C., J. Janick, and H.T. Erickson. 1968. The genetics of anthocyanin coloration in eggplant (Solanum melongena L.). Proc. Natl. Acad. Sci. USA 53:3101–3113.

Zhang, Y., Z. Hu, G. Chu, C. Huang, S. Tian, Z. Zhao, and G. Chen. 2014. Anthocyanin accumulation and molecular analysis of anthocyanin biosynthesis-associated genes in eggplant (Solanum melongena L.). J. Agr. Food Chem. 62:2906–2912.