Assessment of Cytotoxic, Antioxidant, Thrombolytic, Anti Inflammatory and Antimicrobial Activity of *Curcuma longa* Linn, *Cissus quadrangularis* and *Boerhaavia diffusa* Herbal Mixture - An *In vitro* Study

Y. Dinesh, R. Abilasha, Pratibha Ramani and S. Rajeshkumar

Department of Oral Pathology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, India.

Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, India.

Authors’ contributions

This work was carried out in collaboration among all authors. Author DY author designed, analyzed, interpreted and prepared the manuscript. Authors AR, PR, RK guided and review the manuscript. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JPRI/2021/v33i60B34805

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/79214

ABSTRACT

Background and Aim: Plants play an important role in drug research, and the pharmaceutical industry is heavily reliant on natural products for new drug development. Curcumin, a natural compound contained in the rhizomes of the plant *Curcuma longa* Linn., has been shown to have anti-inflammatory properties in scientific studies. *Cissus quadrangularis* L. is a fleshy plant that can be found all over the world, especially in Asia, Africa, and a few other warm tropical areas. *Boerhaavia diffusa* L. (Nyctaginaceae) is present in the tropical regions of India, South America, and Africa. B. diffusa roots are commonly used in Ayurveda to treat various ailments. The aim of
the study is to assess the cytotoxic, antioxidant and thrombolytic, anti-inflammatory and antimicrobial properties of the aqua-alcoholic extract of the herbal mixture (Curcuma longa Linn + Cissus quadrangularis + Boerhaavia diffusa)

Methods: Aqua-alcoholic extract of mixture of Curcuma longa Linn, Cissus quadrangularis and Boerhaavia diffusa was prepared. Phytochemical in-vitro studies were done using the CCB mixture cytotcticity by brine shrimp lethality assay, antioxidant activity by DPPH assay, anti-inflammatory activity by albumin denaturation assay, antimicrobial activity against Staphylococcus aureus, Streptococcus mutans, Escherichia coli and Candida albicans by agar well diffusion method, thrombolytic activity by clot lysis assay.

Results: The CCB mixture showed good cytotoxic activity at varying concentration in brine shrimp lethality assay, increasing antioxidant activity with DPPH assay, increasing thrombolytic activity, increasing anti-inflammatory activity with increasing concentration, the anti-microbial activity was not efficient as positive controls.

Conclusion: In this in-vitro study the CCB mixture shows improved cytotoxic, antioxidant, thrombolytic, anti-inflammatory and antimicrobial activity. Further studies on invivo animal and human clinical trials needs to be done.

Keywords: In-vitro study; cytotoxic; antioxidant; anti-inflammatory; antimicrobial; thrombolytic; herbal study.

1. INTRODUCTION

Plants play an important role in drug production, and the pharmaceutical industry relies heavily on natural products to produce new drugs [1,2]. According to a WHO survey, folk medicine is used by 80% of the world's population for primary health care [3]. Clinical microbiologists enjoy experimenting with medicinal plants in search of new medicines to develop [4,5]. Due to its legacy and heritage, India has a wealth of experience in the fields of health care, including Siddha, Homeopathy, Unani, and Ayurveda [6,7]. Medicinal plants have long played a significant role in the spiritual, meditative, and spiritual lives of tribal people in India, and such plants have long played a significant role in the spiritual, meditative, and spiritual lives of tribal people (Princeton et al. 2020), (Mathew et al. 2020).

Curcumin, a natural compound found in the rhizomes of the plant Curcuma longa Linn., has been shown in experimental studies to have anti-inflammatory properties. Curcuma longa has been clinically validated for its anti-inflammatory properties in traditional medical systems for decades (Sridharan et al. 2019), (R et al. 2020). Curcumin inhibited the development of arachidonic acid, cyclooxygenase, lipoxygenase, cytokines (interleukins and tumor necrosis factor), nuclear factor-B, and steroidal hormones. Curcumin has been shown to stabilize the lysosomal membrane and cause oxidative phosphorylation uncoupling, as well as possessing a high oxygen radical scavenging activity, which accounts for its anti-inflammatory properties. Since ancient times, turmeric root has been used as a spice in India and other Asian countries. It's also commonly used as a medicine, particularly for the treatment of inflammatory conditions [8]. Over the years, curcumin has been studied for a number of medicinal purposes. It has been shown to help cure a host of illnesses, including diabetes, autoimmune disorders, and cancers [9–11]. Curcumin is a pleiotropic molecule that interacts with a wide range of inflammatory targets, including TNF and interleukins (ILs) [12] (Antony et al. 2021), (Sarode et al. 2021). Curcumin has also been shown to have antimicrobial action against fungi (13) and a wide range of Gram-positive and Gram-negative bacteria In vitro.

Cissus quadrangularis L. is a fleshy plant found throughout the world, especially in Asia, Africa, and a few other warm tropical areas. It's one of India's most famous dishes. The whole plant is used as a digestive aid (Pachana) as well as a palliative and roborant in Ayurveda. C. quadrangularis contains a lot of ascorbic acid, carotenoids, flavonoids, and steroids. C. quadrangularis also has anti-inflammatory, antihelminthic, antifungal, antihemorrhoidal, analgesic, and antibacterial effects.

Boerhaavia diffusa L. (Nyctaginaceae) is an annual herbaceous plant found in the tropical regions of India, South America, and Africa. Jaundice, dyspepsia, nephrotic disease, convulsions, spleen enlargement, stomach pain, tension, and inflammation are all conditions that B. diffusa roots are used to treat in Ayurveda [14].
(Hannah R et al. 2021), (Chandrasekar et al. 2020). Despite the fact that a methanol extract of B. diffusa (whole plant) has been shown to have antiproliferative and antiestrogenic properties [15], an ethanol extract has been shown to have hepatoprotective, immunomodulatory, and anti-inflammatory properties [15–17].

The Nyctaginaceae family includes the herbaceous B. diffusa Linn. It can be found in the tropics and subtropics all over the world. It’s been used for millennia by indigenous and aboriginal cultures, as well as in Ayurvedic or natural herbal medicine [18,19]. Pharmacological trials have shown that B. diffusa has diuretic, anti-inflammatory, antifibrinolytic [20], anticonvulsant [21], and hepatoprotective properties. Diabetes, tension, dyspepsia, stomach pain, inflammation, jaundice, spleen enlargement, and congestive heart failure are all treated with B. diffusa in Ayurvedic medicine in India and Unani medicine in Arab countries. The aim of the study is to assess the cytotoxic, antioxidant, thrombolytic antiinflammatory and antimicrobial properties of the herbal mixture.

2. MATERIALS AND METHODS

2.1 Collection of Plants

Curcuma longa Linn rhizomes, leaves of *Cissus quadrangularis* and *Boerhaavia diffusa* were collected in Chennai during the month of April 2021 and was washed thoroughly and shade dried. The dried plant material was finely powdered and grounded using a slender blender. The extraction was done by hydro-distillation method.

2.2 Preparation of Herbal Mixture

The materials used are plant extract, thermal electric heater, distilled water, ethanol, blood, refrigerator, petridish plates, miller hinton agar, sabouraud dextrose agar, beakers, test tube, test tube holder, ELISA plate, brine shrimps, eppendorfs. 5 grams of turmeric, 5 grams of *Cissus quadrangularis*, and 5 grams of *Boerhaavia diffusa* are combined in a beaker of 50 milliliters of ethanol and 50 milliliters of distilled water. Placed in a shaker for 24 hours. The herbal mixture was condensed and reduced to 75 ml after heating at 25-30 degrees Celsius. The herbal mixture is then purified and boiled for 10 minutes at 25 degrees Celsius. After that, the herbal solution is moved to a bottle for further examination.

2.3. Cytotoxic Activity

2.3.1 Brine shrimp lethality assay

Salt water preparation

Weighing 2g of iodine-free salt and dissolving it in 200 mL of purified water 10-12 ml of saline water was poured onto 6 well ELISA pots. 10 nauplii were gradually added to each well (20L, 40L, 60L, 80L, 100L). The herbal mixtures were then inserted at the appropriate concentration range. For 24 hours, the plates were incubated.

After 24 hours, the ELISA plates were examined and counted for the amount of live nauplii present, which was then measured using the formula below (Fig. 1).

\[
\text{number of dead nauplii/number of dead nauplii+number of live nauplii} \times 100
\]

Fig. 1. figure showing brine shrimp lethality assay

2.4. Antioxidant Activity

2.4.1 DPPH method

DPPH assay was used to test the antioxidant activity of the herbal mixture. Diverse concentration (2-10ug/ml) of the herbal mixture was mixed with 1ml of 0.1mM DPPH in methanol and 450ul of 50mM Tris HCL buffer (pH 7.4) and incubated for 30 minutes (Fig. 2). Later, the reduction in the quantity of DPPH free radicals was assessed dependent on the absorbance at 517 nm. BHT was employed as control. The percentage of inhibition was determined from the following equation,

\[
\text{% inhibition} = \frac{\text{Absorbance of control} - \text{Absorbance of test sample}}{\text{Absorbance of control}} \times 100
\]
2.5 Thrombolytic Activity

5 ml of venous blood drawn from a volunteer, which was placed in seven separate pre-weighed sterile microcentrifuge tubes and incubated at 37°C for 45 minutes (Fig. 3). After the clot had formed, the fluid from each microcentrifuge tube was fully released, and the clot weight was calculated by subtracting the weight of the clot-containing tube from the weight of the tube alone. 500 µL of streptokinase (SK) was added to the microcentrifuge tubes as a positive control, and 500 µL of distilled water was added to the microcentrifuge tubes as a negative non-thrombolytic control. The herbal mixture is added at varying concentrations. After that, all of the tubes were incubated at 37°C for 90 minutes to check for clot lysis. The released fluid was discarded during incubation, and the tubes were weighed again to see if there was a difference in weight after the clot was disrupted.

Fig. 2. Figure represents samples of herbal mixture for antioxidant study

Clot lysis value = weight of clot before mixture - weight of clot after mixture

2.6 Anti Inflammatory Activity

The herbal mixture was assessed for the anti-inflammatory activity by Albumin Denaturation Assay. The mixture was tested by the following convention proposed by Muzushima and Kabayashi with specific alterations (Pratik Das et al., 2019). The herbal mixture comprising of 0.05 mL of *Curcuma longa* Linn, *Cissus quadrangularis*, *Boerhaavia diffusa* of various fixation (10 µl, 20 µl, 30 µl, 40 µl, 50 µl) was added to 0.45 mL of bovine serum albumin (1% aqueous solution) and the pH of the mixture was acclimated to 6.3 utilising a modest quantity of 1N hydrochloric acid. These samples were incubated at room temperature for 20 minutes and then heated at 55°C in a water bath for 30 minutes (Fig. 4). The samples were cooled and the absorbance was estimated spectrophotometrically at 660 nm. The standard used in this study was Diclofenac Sodium utilised as a control.

Percentage of protein denaturation was determined utilising the following equation.

\[
\text{% inhibition} = \frac{\text{Absorbance of control} - \text{Absorbance of sample}}{\text{Absorbance of control}} \times 100
\]

2.7 Antimicrobial Activity- Agar Well Diffusion Method

2.7.1 Antibacterial activity

Antibacterial activity of the herbal mixture against *Staphylococcus aureus*, *Streptococcus mutans* and *Escherichia coli* strains. This activity was carried out on MHA agar to establish the zone of inhibition. Muller hinton agar was prepared and sterilized at 120 pounds for 45 minutes. The media was poured onto the sterilized plates and set aside to solidify. The test species were swabbed after the wells were cut with a well cutter. The plates were filled with herbal mixture of various concentrations and incubated for 24 hours at 37°C. The zone of inhibition was assessed after the incubation period (Fig. 5)

2.7.2 Antifungal activity

The agar well diffusion assay uses *Candida albicans* as the research pathogen. The medium was prepared with Sabouraud's Dextrose Agar. The wells were swabbed with test species and herbal mixture of various concentrations were applied to the prepared and sterilized medium. The plates were incubated for 48-72 hours at 28°C.
Fig. 4. picture represents herbal mixture - CCB at varying concentrations in albumin denaturation assay

Fig. 5. picture showing herbal mixture - CCB at varying concentrations for Culture method

C. The zone of inhibition was assessed after the incubation period (Fig. 5).

3. RESULTS

Brine shrimp lethality activity of the herbal mixture showed less mortality suggesting low toxicity and the control showed no mortality. The cytotoxicity assay revealed the alive nauplii at varying concentrations from 5µl to 80 µl was 10, 7, 9, 9, 9 and all the nauplii were alive in the control in Table 1. The least number of alive nauplii was found at 10 µl in Fig. 6.

A DPPH assay was done to analyse the antioxidant property which showed moderate antioxidant properties of the CCB mixture at increasing concentrations from 10µl to 50µl was 37.3, 42.6, 57.8, 77, 86.5 but the values were not more than the standard values Table 2. The significantly increasing antioxidant activity was evident as the concentration increases in Fig. 7.
Clot lysis assay was done to assess the thrombolytic activity of the herbal mixture at varying concentrations from 200 µl to 1000 µl with the clot lysis value of 0.089g, 0.087g, 0.132g, 0.128g, 0.214g, 0.211g and 0.04 g clot lysis value for positive and negative control respectively in Table 3. The clot lysis was found to be the highest at 1000 µl which was significantly similar to the positive control in Fig. 8.

Albumin denaturation assay was done to determine the anti-inflammatory activity of the herbal mixture, the results showed the % inhibition at varying concentrations of the herbal mixture from 10µl to 50µl in 660 nm wavelength 54.6, 58.3, 68.2, 77.6, 87.3 in Table 4. The highest percentage inhibition was seen in 50µl when compared to standard in Fig. 9.

Agar well diffusion method was done to demonstrate antimicrobial activity. Antibacterial activity was done in mueller hinton agar for Staphylococcus aureus, Streptococcus mutans and Escherichia coli strains. There were no significant good results on all 3 bacterial strains. Antifungal activity was done in Sabouraud's Dextrose Agar for Candida albicans and moderate antifungal activity was found when compared to the control in Table 5. The zone of inhibition in the agar well is represented as a bar chart in Fig. 10.

Table 1. Table representing the brine shrimp cytotoxicity assay on the herbal mixture at varying concentration and negative control, alive nauplii in the well after incubation

Cytotoxic activity	5µl	10µl	20µl	40µl	80µl	Control
10	7	9	9	9	9	10

![Fig. 6. bar chart representing the number of nauplii alive in brine shrimp cytotoxicity assay on the herbal mixture at varying concentration and negative control](image)

Table 2. Table representing the antioxidant activity of the herbal mixture CCB at varying concentration under the wavelength of 517nm and compared with the standard values

Antioxidant activity	Size	Standard	CCB
	10µl	76.56	37.3
	20µl	78.52	42.6
	30µl	85.63	57.8
	40µl	88.68	77
	50µl	93.15	86.5
Fig. 7. bar chart representing the antioxidant activity of the herbal mixture CCB at varying concentration under the wavelength of 517nm and compared with the standard values.

Table 3. Table representing the thrombolytic activity of the herbal mixture at varying concentration, positive and negative control and the clot lysis values after incubation.

Thrombolytic Activity	Volume of blood	Weight of clot after 45 mins	Volume of mixture	Weight of clot after 90 mins	Clot lysis Value
	200µl	1.453g	200µl	1.364g	0.089g
	400µl	1.508g	400µl	1.421g	0.087g
	600µl	1.422g	600µl	1.290g	0.132g
	800µl	1.479g	800µl	1.351g	0.128g
	1000µl	1.545g	1000µl	1.331g	0.214g
Positive control	1.548g	Positive control	1.337g	0.211g	
Negative control	1.620g	Negative control	1.580g	0.04g	

Fig. 8. bar chart representing the thrombolytic activity of the herbal mixture at varying concentration, positive and negative control and the clot lysis values after incubation.

Table 4. Table represents the antiinflammatory activity of the herbal mixture-CCB at varying concentration under 660nm wavelength.

Anti-inflammatory activity	Size	Standard	CCB
	10µl	47	54.6
	20µl	60	58.2
	30µl	72	68.2
	40µl	78	77.6
	50µl	84	87.3
Fig. 9. Bar chart represents the anti-inflammatory activity of the herbal mixture - CCB at varying concentration under 660nm wavelength.

Table 5. Table represents antimicrobial activity of the herbal mixture - CCB at varying concentration and a positive control.

Antimicrobial activity	25µl	50µl	100µl	Positive control
E. faecalis	9	10	10	38
C. albicans	9	10	10	12
S. aureus	9	11	11	26
S. mutans	9	9	11	27

Fig. 10. Bar graph represents antimicrobial activity of the herbal mixture - CCB at varying concentration and a positive control.

4. DISCUSSION

Many medicinal plants have been used as herbal medicines to treat a variety of infectious diseases all over the world. In developed countries, medicinal schemes continue to play an important role as therapeutic remedies for primary care. While herbal preparations are often used as self-medication for acute ailments, herbal medicine practitioners prefer to treat chronic illnesses. Patients of allergies, eczema, premenstrual syndrome, rheumatoid arthritis, migraine, menopause, and irritable bowel syndrome may be on a normal caseload. Herbalists don’t normally cure acute psychiatric or musculoskeletal disorders; instead, the goal of herbal medicine is to achieve long-term changes in health. Practitioners sometimes refer to treating the disease’s “underlying cause,” and may administer herbs to fix dysfunctional habits rather than only treating the symptoms [22].

Our study showed significantly good thrombolytic activity when compared to positive and negative control. The highest thrombolytic activity was evident at 1000 µl and the least at 200 µl. The activity was found increasing with increasing concentrations. Our study showed significantly good antioxidant properties when compared to the standard. At 50 µl concentration the highest reading was noted as 86.5 using DPPH assay and further analysing in wavelength of 517 nm. The efficiency decreases with decreasing concentrations. The least efficiency was found in 10µl. The varying concentrations showed varying absorbance at 517 nm wavelength, at 10µl, 20µl,
The brine shrimp test is a rapid, economical and easy bioassay for determining the lethality of plant extracts, which correlates relatively well with cytotoxic and anti-tumor properties in most cases [23]. The majority of the time, a desired biological response is due to a combination of bioactive plant components, rather than a single component [24]. As a result, biological activity must be tested on crude extracts. The brine shrimp lethality assay has proven to be a useful tool for tracking natural product biological activities. In our study the lethality of the brine shrimp nauplii was very less. The existence of antitumor compounds in herbal mixtures may explain why plant extract is cytotoxic. Yogesh et al in his study demonstrated Woodfordia fruticosa kurz flowers to be moderately toxic on using brine shrimp lethality assay [25].

The DPPH assay is a common method for evaluating antioxidant molecules’ free radical scavenging abilities by quenching the stable colored DPPH radical. Plant extracts containing antioxidants scavenge the radicals produced by DPPH, providing an ambitious framework for future in vivo studies. Studies suggests that phytochemicals such as phenolics and flavonoids have the ability to donate hydrogen and quench DPPH radicals. Sugapriya et al in her study analysed the thrombolytic activity and found Cissus quadrangularis had good thrombolytic activity [26].

Traditional anti-inflammatory and antimicrobial herbal therapies or plants range from the rapidly growing flora of woods to those grown in farm fields (Alsawalha et al. 2019), (Yu et al. 2020), (Shree et al. 2019). They've been studied, examined, and proven to have anti-inflammatory properties, or they're being checked now. All around the world, these herbs grow spontaneously or are cultivated specially for this purpose. As a result of advances in herbal medicine, new and popular herbs have arisen [27].

In our study good anti-inflammatory properties were evident when compared to the standard. The highest antiinflammatory effect was evident at 50µl using albumin denaturation assay. Laksmi et al. found that A. muricata leaf extract had anti-inflammatory activity by inhibiting the inflammatory mediators TNF-, IL-1, IL-6, and nitric oxide in an in vitro trial [28]. Maroon et al. [29] compiled a list of natural anti-inflammatory substances. Sen et al. [30] examined and tested the anti-inflammatory efficacy of the methanolic fraction of a chloroform extract of Pluchea indica roots. Goldberg et al. [31] used the mouse paw edema test to investigate the anti-inflammatory ability of aqueous extract Achillea millefolium and discovered a 35 percent reduction in oedema. Lee et al. [32] discovered that the leaves of Hedera rhombea bean have anti-inflammatory properties. Chandra et al. [33] detected anti-inflammatory behaviors of ethanolic root extract of Swertia chirata (Gentianaceae) in a carrageenan-induced rat paw edema model. The anti-inflammatory effects of Sida cordifolia L. were investigated by Franzotti et al. [34] Ojewole [35] discovered that Bryophyllum pinnatum (Crassulaceae) aqueous leaf extract has anti-inflammatory properties.

Bacterial infections can cause a variety of human diseases, ranging from self-limiting illnesses to potentially fatal medical conditions if left untreated. Nonetheless, antibiotic resistance is on the increase as a result of widespread use, rendering previously treatable pathogens untreatable. In the case of other infectious agents, globalization has aided the spread of (resistant) strains [36] (Subramanyam et al. 2018), (Jeevanandan and Thomas 2018). Curcumin has been shown to suppress strains of Staphylococcus, Streptococcus, Helicobacter, and Pseudomonas, among others.

Among the most common infectious diseases are bacterial infections. As a result, over 50 years of intensive research has been conducted in order to develop new antimicrobial medicines derived from various sources (Ponnulakshmi et al. 2019), (Sunaram et al. 2019). Despite advances in antibacterial agent production, the development of multidrug-resistant bacteria has necessitated the development of new antibacterial agents [37]. The antimicrobial study on aqua alcoholic extract of the herbal mixture demonstrated the zone of inhibition value of the herbal mixture.

Inhibition zone of the ethanol extract of these plants was calculated where three were found to be sensitive against E.faecalis, C.albicans, S.aureus, S.mutans. However, the ethanol extract of Curcuma longa Linn, Cissus quadrangularis, and Boerhaavia diffusa was found to have more effective antimicrobial activity showing its maximum efficacy for both bacteria.
and fungi. Data from the literature, as well as our results, reveal the great potential of plant extracts as antibacterial and antifungal agents, in spite of the fact that they have not been completely investigated, more studies need to be conducted. Therefore, our results revealed the importance of plant oils when associated with antibiotics, to control resistant bacteria, which are becoming a threat to human health.

6. CONCLUSION

Curcuma longa Linn, *Cissus quadrangularis*, and *Boerhaavia diffusa* have also been used in the diet for centuries as flavoring agents and topical agents for a number of ailments. The improved cytotoxic, antioxidant, thrombolytic, anti-inflammatory and antimicrobial activity of the CCB mixture was shown in this study. We discovered that the extract of the CCB mixture has a variety of pharmacological activities in the current research. In the current study, we discovered that the extract of the CCB herbal mixture has a range of pharmacological activities. This study has paved the way for the plant's future application in drug development and a variety of herbal mixtures with less side effects.

NOTE

The study highlights the efficacy of "HERBAL" which is an ancient tradition, used in some parts of India. This ancient concept should be carefully evaluated in the light of modern medical science and can be utilized partially if found suitable.

CONSENT

It is not applicable.

ETHICAL APPROVAL

It is not applicable.

COMPETING INTERESTS

 Authors have declared that no competing interests exist.

REFERENCES

1. Sen M, Dash B. A review on phytochemical and pharmacological aspects of *Cissus quadrangularis* L [Internet]. International Journal of Green Pharmacy. 2012;6:169. Available: http://dx.doi.org/10.4103/0973-8258.104924

2. Sadiya Z, Malathi R, Latha V, Sibi G. A review on efficacy of *Cissus quadrangularis* in pharmacological mechanisms [Internet]. International Journal of Clinical Microbiology and Biochemical Technology. 2020;3:049–53. Available: http://dx.doi.org/10.29328/journal.icmbt.10010

3. Mohamed IET, El Tahir Mohamed I, El Nur Ebes, El Nur Abdel Rahman M. The antibacterial, antiviral activities and phytochemical screening of some Sudanese medicinal plants [Internet]. EurAsian Journal of BioSciences. 2010;8–16. Available: http://dx.doi.org/10.5053/ejobios.2010.4.0.2

4. Patel M. Research Scholar, Microbiology Department, B. P. Baria Science Institute, Navsari, India., et al. Preliminary phytochemical screening and antibacterial activity of Indian medical plants against human pathogens [Internet]. International Journal of Advanced Research. 2017;5:1459–64. Available: http://dx.doi.org/10.21474/ijar01/5204

5. Sridevi KT, Sridevi T, K. Dept of Biotechnology, Maharaja Co-Education Arts and Science College, Perundhurai, et al. Study on the phytochemical analysis and antioxidants, antimicrobial activity of medicinal plants against fish pathogen [Internet]. Journal of Medical Science And clinical Research; 2015. Available: http://dx.doi.org/10.18535/jmscr/v3i10.15

6. Sharma J, Kumar P. Comparative study of antimicrobial activity and phytochemical screening of serial extracts from leaves and fruit of aegle marmelos and carica papaya [Internet]. International Journal of Pharmacy and Pharmaceutical Sciences. 2017;9:119. Available: http://dx.doi.org/10.22159/ijpps.2017v9i12.20228

7. Kala CP, Dhyani PP, Sajwan BS. Developing the medicinal plants sector in northern India: challenges and opportunities [Internet], Vol. 2. Journal of Ethnobiology and Ethnomedicine; 2006. Available: http://dx.doi.org/10.1186/1746-4269-2-32

8. Soleimani V, Sahebkar A, Hosseinzadeh H. Turmeric (*Curcuma longa*) and its major constituent (curcumin) as nontoxic and safe substances: Review [Internet].
Phytotherapy Research. 2018;32:985–95. Available:http://dx.doi.org/10.1002/ptr.6054

9. Gupta SC, Patchva S, Aggarwal BB. Therapeutic roles of curcumin: Lessons learned from clinical trials [Internet]. The AAPS Journal. 2013;15,195–218. Available: http://dx.doi.org/10.1208/s12248-012-9432-8

10. Marchiani A, Rozzo C, Fadda A, Delogu G, Ruzza P. Curcumin and curcumin-like molecules: From spice to drugs [Internet]. Current Medicinal Chemistry. 2013;21:204–22. Available: http://dx.doi.org/10.2174/092986732102131206115810

11. Gupta SC, Patchva S, Koh W, Aggarwal BB. Discovery of curcumin, a component of golden spice, and its miraculous biological activities [Internet]. Clinical and Experimental Pharmacology and Physiology. 2012;39:283–99. Available:http://dx.doi.org/10.1111/j.1440-1681.2011.05648.x

12. Aggarwal BB, Gupta SC, Sung B. Curcumin: an orally bioavailable blocker of TNF and other pro-inflammatory biomarkers [Internet]. British Journal of Pharmacology. 2013;169:1672–92. Available:http://dx.doi.org/10.1111/bph.12131

13. Neelofar K, Shreaz S, Rimple B, Muralidhar S, Nikhat M, Khan LA. Curcumin as a promising antioxidant of clinical interest [Internet]. Canadian Journal of Microbiology, 2011;57:204–10. Available:http://dx.doi.org/10.1139/w10-117

14. Achari B, Bandypadhyay S, Basu K, Pakrashi SC. Studies on indian medicinal plants, part LXXIX [Internet]. Tetrahedron. 1985;41:107–10. Available:http://dx.doi.org/10.1016/s0040-4020(01)83474-8

15. Sreeja S, Sreeja S. An In vitro study on antiproliferative and antiestrogenic effects of Boerhaavia diffusa L. extracts [Internet]. Journal of Ethnopharmacology. 2009;126:221–5. Available:http://dx.doi.org/10.1016/j.jep.2009.08.041

16. Mehrotra S, Mishra KP, Maurya R, Srimal RC, Singh VK. Immunomodulation by ethanolic extract of Boerhaavia diffusa roots [Internet]. International Immunopharmacology. 2002;2:987–96. Available:http://dx.doi.org/10.1016/s1567-5769(02)00031-0

17. Piegang BN, Ndjadue FST, Tene M, Bomba FDT, Tseguem PP, Nguelefack TB. Antinociceptive, anti-inflammatory and antioxidant effects of Boerhavia coccinea extracts and fractions on acute and persistent inflammatory pain models. J Basic Clin Physiol Pharmacol [Internet]; 2020. Available:http://dx.doi.org/10.1515/jbcpp-2020-0118

18. Dhawan BN. Anti-viral activity of indian plants [Internet]. Proceedings of the national academy of sciences, India Section B: Biological Sciences. 2012;82:209–24. Available: http://dx.doi.org/10.1007/s40011-011-0016-7

19. Dhar U, Rawal RS, Upeti J. Setting priorities for conservation of medicinal plants — A case study in the Indian Himalaya [Internet]. Biological Conservation. 2000;95,57–65. Available: http://dx.doi.org/10.1016/s0006-3207(00)00010-0

20. Jain GK, Khanna NM. ChemInform abstract: Punarnavoside: A new antifibrinolytic agent from Boerhaavia diffusa Linn [Internet]. ChemInform. 1989;20,. Available: http://dx.doi.org/10.1002/chin.198934353

21. Mudgal V. Studies on medicinal properties of convolvulus pluricaulis and Boerhaavia diffusa [Internet]. Planta Medica. 1975;28,62–8. Available:http://dx.doi.org/10.1055/s-0028-1097830

22. Vickers A, Zollman C, Lee R. Herbal medicine. West J Med. 2001;175(2):125–8.

23. Ilj U, Umaru IJ. Cytotoxicity brine shrimp activity of leptadenia hastata (PER) Decne leaves, stem-bark and root extract [Internet]. International Journal of Biochemistry & Physiology. 2018;3. Available:http://dx.doi.org/10.23880/jibp-16000127

24. Banti CN, Hadjikakou SK. Evaluation of toxicity with brine shrimp assay. Bio Protoc. 2021;11(2):e3895.

25. Baravalia Y, Vaghasiya Y, Chanda S. Brine shrimp cytotoxicity, anti-inflammatory and analgesic properties of woodfordia fruticosa kurz flowers. Iran J Pharm Res. 2012 Summer;11(3):851–61.
26. Dhanasekaran S. Phytochemical characteristics of aerial part of Cissus quadrangularis (L) and its in-vitro inhibitory activity against leukemic cells and antioxidant properties [Internet]. Vol. 27, Saudi Journal of Biological Sciences. 2020;1302–9. Available: http://dx.doi.org/10.1016/j.sjbs.2020.01.005

27. Yatoo MI, Gopalakrishnan A, Saxena A, Parray OR, Tufani NA, Chakraborty S, et al. Anti-inflammatory drugs and herbs with special emphasis on herbal medicines for countering inflammatory diseases and disorders - A review. Recent Pat Inflamm Allergy Drug Discov. 2018;12(1):39–58.

28. Abdul Wahab SM, Jantan I, Haque MA, Arshad L. Exploring the leaves of L. as a source of potential anti-inflammatory and anticancer agents. Front Pharmacol. 2018;9:661.

29. Maroon JC, Bost JW, Maroon A. Natural anti-inflammatory agents for pain relief. Surg Neurol Int. 2010;1:80.

30. Sen T, Nag Chaudhuri AK. Antiinflammatory evaluation of a Pluchea indica root extract [Internet]. Vol. 33, Journal of Ethnopharmacology. 1991;135–41. Available: http://dx.doi.org/10.1016/0378-8741(91)90172-a

31. Goldberg AS, Mueller EC, Eigen E, Desalva SJ. Isolation of the anti-Inflammatory principles from Achillea millefolium (Compositae) [Internet]. Journal of Pharmaceutical Sciences. 1969;58:938–41. Available:http://dx.doi.org/10.1002/jps.2600580805

32. Lee IR, Lee MS, Choi KA, Seo EK. Pharmacological activities and the constituents of the leaves of Hedera rhombea Bean (II): On the constituents of the leaves [Internet]. Archives of Pharmacal Research. 1993;16:331–5. Available: http://dx.doi.org/10.1007/bf02977526

33. Kaushik S, Jain P, Sapatpathy T, Purabiya P, Roy A. Evaluation of anti-arthritic and anti-inflammatory activities of Martynia annua L. Ethanolic extract [Internet]. Clinical Phytoscience. 2021;7. Available:http://dx.doi.org/10.1186/s40816-021-00250-y

34. Franzotti EM, Santos CVF, Mourão RHV, Andrade MR, Antonioli AR. Anti-inflammatory, analgesic activity and acute toxicity of Sida cordifolia L. (Malva-branca) [Internet]. Journal of Ethnopharmacology. 2000;72L273–7. Available:http://dx.doi.org/10.1016/s0378-8741(00)00205-1

35. Ojewole JAO. Antinociceptive, anti-inflammatory and antidiabetic effects of Bryophyllum pinnatum (Crassulaceae) leaf aqueous extract [Internet]. Journal of Ethnopharmacology. 2005;99:13–9. Available:http://dx.doi.org/10.1016/j.jep.2005.01.025

36. Praditya D, Kirchhoff L, Brünig J, Rachmawati H, Steinmann J, Steinmann E. Anti-infective Properties of the Golden Spice Curcumin. Front Microbiol. 2019;10:912.

37. Hamilton WL, Wenlock R. Antimicrobial resistance: A major threat to public health [Internet]. Cambridge Medicine Journal; 2016. Available:http://dx.doi.org/10.7244/cmj.2016.01.001

© 2021 Dinesh et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here: https://www.sdiarticle5.com/review-history/79214