Drought tolerance of transgenic rice overexpressing maize \(C_{4}-PEPC \) gene related to increased anthocyanin synthesis regulated by sucrose and calcium

Y.F. HE1,3, Y.F. XIE3, X. LI1,2*, J. YANG1,2

Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China1
Jiangsu Collaborative Innovation Center for Modern Crop Production, Yangzhou 225009, P.R. China2
College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, P.R. China3

Abstract

In order to reveal the role of sucrose (Suc) in early drought response in plants, transgenic rice (\textit{Oryza sativa} L.) plants overexpressing the maize (\textit{Zea mays} L.) \(C_{4}\)-phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) gene (\(C_{4}\)-pepc) (PC) and their untransformed wild type (WT) were used under 12 \% (m/v) polyethylene glycol 6000 to simulate drought conditions. The results showed that PC has higher relative water content, the increased Suc content, and anthocyanin accumulation than WT during PEG treatment. By spraying 1 \% Suc and 1 \% Suc non-metabolic analog, turanose, on these plants, Suc in PC leaves increased anthocyanin content and Ca2+ content. Further experiments using the Ca2+ chelator (EGTA), Ca2+ channel antagonist (ruthenium red), and absicic acid inhibitor (nordihydroguaiaretic acid), showed that, in PC plants, Suc content is closely related to the expression of sucrose nonfermenting-1-related protein kinases 2 (SnRK2x) such as SAPK8, SAPK9, and SAPK10 via absicic acid, and the SnRK3 such as SnRK3.3, SnRK 3.4, and SnRK3.21 via Ca2+ and calcineurin B-like as well. Furthermore, the target genes associated with anthocyanin synthesis phenylalanine ammonia lyase, chalcone isomerase, chalcone synthase, flavonoid-3-hydrogenase, flavonoid-3'-hydrogenase, dihydroflavonone reductase, and anthocyanin synthase, their regulated genes basic helix-loop-helix (bHLH) proteins OsB1 and OsB2, R2R3-MYB transcription factor OsCI, and some transcription factors (constitutively photomorphogenic 1, elongated hypocotyl 5, and \textit{purple acid phosphatase gene 2}) in PC plants also increased via Suc and Ca2+ during the PEG treatment. Some Suc transporter genes OsSUT1 and OsSUT5 in PC lines during PEG treatment further showed an enhancement for the function of the signal of Suc. Thereby, increasing anthocyanin biosynthesis via Suc and Ca2+ signaling cascade is one of the important mechanisms on drought tolerance in the PC lines.

Additional key words: anthocyanin, calcium, \(C_{4}\)-pepc, drought response, rice, SnRK, sucrose, \textit{Oryza sativa}.

Introduction

The \(C_{4} \) cycle serves as a ‘CO\textsubscript{2}’ pump that concentrates CO\textsubscript{2} in the leaf and suppresses photorespiration (Dai \textit{et al.} 1993). Under conditions of drought, high temperature, and nitrogen or CO\textsubscript{2} limitation, \(C_{4} \) plants...
have a competitive advantage over C₄ plants (Zhu et al. 2010). Therefore, introducing the C₄-type photosynthetic cycle to C₃ plants such as rice to build "C₄ Rice" will be an important scientific strategy to address food security in the future (Von Caemmerer et al. 2012). One of the successful approaches to increase rice yield in the present climate scenario involves the introduction of C₄ genes (phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31), pyruvate orthophosphate (Pi) dikinase (PPDK, EC 2.7.9.1), NADP-dependent malate dehydrogenase (NADP-MDH, EC 1.1.1.82), and NADP-dependent malic enzyme (NADP-ME, EC 1.1.1.40)) into C₃ plants (Ku et al. 1999, Bandyopadhyay et al. 2007, Taniguchi et al. 2008, Doubrnerová Hýsková et al. 2014, Sen et al. 2017). Among them, most of the transgenic rice plants overexpressing C₄-PEPC also displayed increased photosynthetic efficiency and tolerance to photo-oxidation, reduced photorespiration, increased drought and low nitrogen tolerance, and a significant increase in grain yield (Jiao et al. 2002, Fukayama et al. 2003, Bandyopadhyay et al. 2007, Taniguchi et al. 2008, Gu et al. 2013, Lian et al. 2014, Chen et al. 2014, Ding et al. 2015, Huo et al. 2017, Tang et al. 2018). These results suggest that strengthening C₄-PEPC genes may be one of the important strategies to increase grain yield and stress tolerance in C₃ plants, synergistically. However, the molecular mechanism of the better balance between high grain yield and stress tolerance in the transgenic rice plants overexpressing C₄-pepc (the following abbreviations as PC) is still to be established.

Phosphoenolpyruvate carboxylase (PEPC) is a tightly controlled enzyme located at the core of plant C₄-metabolism that catalyses the irreversible β-carboxylation of PEP to form oxaloacetate and Pi (Chollet et al. 1996). The critical role of PEPC in assimilating atmospheric CO₂ during C₄ and Crassulacean acid metabolism photosynthesis has been studied extensively (O'Leary et al. 2011). Most PEPCs in plant showed allosteric inhibition by malate and activation by glucose 6-phosphate and it also can be regulated by irradiance, sugar, and nutrition condition (Lepiniec et al. 1994, Nimmo 2003). Our previous research also showed that PEPC in transgenic rice was regulated by phosphatidic acid (PA) (Li et al. 2011), H₂O₂ (Ren et al. 2014), NO (Chen et al. 2014), and Ca²⁺ (Qian et al. 2015a,b, Liu et al. 2017). The mechanism on how does the transgenic rice overexpressing C₄-PEPC sense the second messengers is not known.

Sugar, which can act as an osmoprotectant and/or antioxidant, can play a protective role in different plant processes, including growth and development, stress response, and yield formation (Proels and Hückelhoven 2014, Kunz et al. 2014, Li and Sheen 2016, Wen et al. 2017). More recently, sugar can also be involved in the complex signalling networks with other signals such as plant hormones, nitrogen signals, and optical signals during plant growth and development, but the clear evidence is limited (Sami et al. 2016, He et al. 2016). Sugars can regulate pyruvate phospho dikinase (PPDK) gene, C₃ malic enzyme gene (ME1) and C₄ PEP carboxylase (PEPC1) gene in maize (Sheen 1999). Sucrose supply also enhanced PEPC phosphorylation in in vitro Solanum tuberosum (Sima and Desjardins 2001). Our previous research has shown that there is an abundance of photosynthetic products such as total soluble sugars in transgenic rice plants overexpressing C₄-pepc when compared with untransformed rice plants (wild type, WT) during the later growth stages of rice (Li and Wang 2013). PEPC effectively alleviated oxidative damage and enhanced drought tolerance in PC via increases in Suc decomposition (Zhang et al. 2017a). Furthermore, PC plants were more reliant on the hexokinase sugar signaling pathway than on abscisic acid (ABA) pathway under drought conditions (Wu et al. 2017). PEPC has been reported to be involved in the synthesis of secondary metabolites, such as anthocyanins (Xie et al. 2016). Our previous research showed that the increased shikimic acid content in flag leaves was found especially in PC leaves (Li et al. 2010). DCMU experiments showed that inhibition of photosynthetic electron transfer induces anthocyanin synthesis in PC rice in response to drought (He et al. 2018). Much research on anthocyanin induced by sugar have been widely reported in many colored plants (Zhang et al. 2014). Whether more content of sugar in PC, especially Suc, is also involved in the regulation of anthocyanin synthesis under drought condition has not been studied.

Sucrose nonfermenting-1-related protein kinase (SnRKs) in plants links the sugar signaling and stress, which has three subfamilies as SnRK1, SnRK2, and SnRK3 (Zhang et al. 2017b). SnRK1 expression in PC rice lines is also up-regulated under drought stress conditions (Liu et al. 2017). SnRK2 is a plant-specific protein kinase family and key signal transducers in the ABA pathway. SnRK2 family has 10 members (SAPK1-10) in Oryza sativa (Hrabak et al. 2003). Overexpression of TaSnRK2.4, TaSnRK2.7, TaSnRK2.8, or maize ZmSAPK8 enhanced the tolerance of Arabidopsis to drought, 2 % PEG, 5 % glycerol (Xu et al. 2009). More recently, our research suggested that PC can decrease the expression of calcineurin B-like (CBL) and SnRK3s by increasing glucose (Glu), participate in the stomatal regulation via NO, maintain relative water content (RWC), keep stable photosynthetic capacity, conferring drought tolerance (Zhang et al. 2018). These studies suggested that different SnRKs family genes might play important roles in PC rice for drought tolerance.

The aim of this study, was to investigate the interaction between Suc and some signal molecules such as ABA and Ca²⁺ on anthocyanin synthesis in PC lines during drought treatment. This study can help further understanding of the mechanisms underlying drought tolerance in crops and offer a theoretical basis on the high yield and stress tolerance observed in PC rice.

Materials and methods

Plants and experimental conditions: We used the transgenic rice (Oryza sativa var. japonica L.) line in which the maize C₄-pepc gene is over-expressed (named PC). The C₄-pepc gene is an 8.8-kb fragment containing
all exons, introns, the promoter (from -1212), and the terminator sequence (about 2.5 kb) of the pepc gene (Matsuoka and Minami 1989). We used 11th generation plants (Qian et al. 2015b) derived from third generation plants (Ku et al. 1999). WT rice plants (cv. Kitaake) were used as the control. All plants were grown in nutrient media consisting of 1.425 mM NH$_4$NO$_3$, 0.323 mM NaH$_2$PO$_4$, 0.513 mM K$_2$SO$_4$, 0.998 mM CaCl$_2$, 1.643 mM MgSO$_4$, 0.009 mM MnCl$_2$, 0.075 mM (NH$_4$)$_2$MoO$_4$, 0.019 mM H$_2$BO$_3$, 0.155 mM CuSO$_4$, 0.036 mM FeCl$_3$, 0.070 mM citric acid, and 0.152 mM ZnSO$_4$ (Yoshida et al. 1976). Plants were maintained in a growth room at 28—30 °C and 70 % relative humidity with a 16-h photoperiod (photosynthetic photon flux density of 400 μmol m$^{-2}$s$^{-1}$). The nutrient solution was refreshed every 2 d. When four mature leaves were fully expanded, the plants were harvested for subsequent analyses.

Treatments: To simulate drought conditions, plants were transferred to culture solution containing 12 % (m/v) PEG 6000 (Liu et al. 2017). Samples were collected at 0, 2, 4, 8, and 12 h, frozen in liquid nitrogen, and stored at -80 °C for further analyses. For the exogenous sugar treatment, the plants were divided into three groups; one group was sprayed with 1 % Suc nutrient solution (Yoshida et al. 1976), one group with 1 % turanose nutrient solution (Yoshida et al. 1976), and the control group with distilled water in the dark for pretreatment. The pretreated plants were then transferred to the conditions with 30 °C and a photosynthetic photon flux density of 400 μmol m$^{-2}$s$^{-1}$ for 10 h. The photosynthetic parameters of the leaves of the treated plants were measured the following day after being kept in the light for 4 h. The plants were then transferred to culture media containing PEG 6000 and incubated at 400 μmol m$^{-2}$s$^{-1}$ for 4 h. Photosynthetic parameters were measured after different treatments.

The plants were cut at the base of the stem and placed in beakers wrapped in aluminum foil containing different treatment solutions [distilled water, 10 mM EGTA, 80 μM ruthenium red (RR) (Qian et al. 2015a), or 100 μM nordihydroguaiaretic acid (NDGA)] for 1 h. Samples were then treated with 5 % PEG-6000 for 0—4 h at 28 °C. The samples were collected after 4-h treatment. Distilled water was used as a control. After treatment, the second leaf was collected from each detached seedling, immediately frozen in liquid nitrogen, and stored at -80 °C for further analysis.

Measurement of RWC: To measure the RWC, 10 leaf discs (0.5 cm in diameter) per replicate were removed from the central third of the leaves using a circular cutter. The discs were weighed to determine the fresh mass (FM), and then floated on water at 4°C in the dark. After 18 h, the water saturated mass (WSM) was measured. After treatment, discs were dried at 75°C and DM was measured. The RWC (%) was calculated as follows: RWC = (FM − DM)/(WSM − DM) × 100 (Qian et al. 2015a).

Measurement of net photosynthetic rate: Photosynthetic parameters of rice lines were conducted using an open gas exchange system, equipped with blue- and red-radiation sources to measure photosynthesis under 1000 μmol m$^{-2}$s$^{-1}$ and a 500 mmol s$^{-1}$ flow rate (LI-6400; Li-Cor, Lincoln, NE, USA) (Li et al. 2011). The photosynthetic parameters were also analyzed between 9:00 and 11:00 in outdoor conditions (25—30 °C, a 67—79 % relative humidity, a photosynthetic photon flux density of 1000 ± 10 μmol m$^{-2}$s$^{-1}$, and a CO$_2$ concentration of 390.0 ± 10.5 μmol mol$^{-1}$) using the second leaf of each plant. Each measurement was conducted four times in independent trials, using five replicates per treatment.

Measurement of the total soluble sugar content and content of different sugars: Soluble sugar content determination was performed as described by Li and Wang (2013). Sucrose content was determined using the method of Halhoul and Kleinberg (1972) whereas Glu and fructose (Fru) content was determined as described by Yordanov and Georgieva (2004). The absorbance of the reaction mixtures of Suc, Glu, and Fru was measured at 290, 505, and 285 nm, respectively.

Measurement of proline content and anthocyanin content: The proline content was measured at 520 nm using the method of Bates et al. (1973). Anthocyanin content was measured at 657 nm as described by Rabino and Mancinelli (1986).

Measurement of NO, calcium ion, H$_2$O$_2$ and ABA content: The NO, calcium ion, and H$_2$O$_2$ content in leaves was measured as described by Murphy and Noack (1994), Qian et al. (2015b), and Patterson et al. (1984), respectively. Abscisic acid (ABA) content was determined by competitive enzyme-linked immunosorbent assay (ELISA) using the protocol of Dong et al. (2014). Abscisic acid was detected using an anti-ABA antibody and quantified according to the instructions of the ABA ELISA.

Measurement of PEPC activity: Phosphoenolpyruvate carboxylase (EC 4.1.1.31) activity was measured as described by Giglioli-Guivarch et al. (1996).

Extraction of total RNA and real-time quantitative PCR (qPCR): Total RNA was extracted using an RNA simple total RNA kit (Tiangen, Beijing, China), according to the manufacturer’s instructions. Reverse transcription reactions were conducted using a TaKaRa PrimeScript RT Master Mix perfect real time kit (TaKaRa, Dalian, China). Real time qPCR analysis was conducted using an ABI 7300 real-time PCR system (Applied Biosystems, Foster City, CA, USA) using the method recommended in the TaKaRa SYBR Premix Ex Taq II kit. The reaction mixture contained 10 mm3 of SYBR® Premix Ex Taq II (TaKaRa), 0.4 mm3 of ROX reference dye (TaKaRa), upstream and downstream primers (each 0.1 pmol dm$^{-3}$), 2 mm3 of cDNA template, and ddH$_2$O to a volume of 20 mm3. The reaction program was as follows: 94°C for 1 min followed by 40 cycles of 94°C for 15 s, 60°C for 45 s, and 72°C for 45 s. We used the StepOnePlus real-time PCR system (v. 2.0, Applied Biosystems) for these analyses. The following gene primers
were used for qPCR analysis (Table 4 Suppl.).

Data processing and analysis: Data were analyzed by one-way ANOVA and least significant difference multiple comparison tests (P< 0.05) using SPSS 19.0 for Windows statistical software (SPSS, Chicago, IL, USA). The qPCR data were analyzed using the 2^ΔΔCt method (Livak and Schmittgen 2001).

Results

In this study, PEPC activity and the respective gene expression in PC rice was significantly higher than in WT under 12% PEG 6000 treatment while those in WT plants did not change significantly during the similar treatment (Fig. 1A). The relative water content (RWC) of PC and WT plants decreased significantly as treatment time increased, with the RWC of PC lines found to be significantly higher than that of WT after 2 h and 4 h treatment (Fig. 1B). The soluble sugar content increased in both the PC and WT lines with increased time of PEG treatment; the soluble sugar content of PC plants was always significantly higher than that of WT plants (Fig. 1C). Proline content showed a similar trend to that observed for soluble sugar content (Fig. 1D). Similarly, the Suc content showed an upward trend as the plants with increasing time of PEG treatment, with a significantly higher Suc content found in the PC lines when compared with the WT plants (Fig. 1E). There were concomitant changes in Suc and anthocyanin under the PEG treatment and the content of anthocyanin in the PC lines were significantly higher than in WT lines at any PEG treatment time point (Fig. 1F). Glu and Fru showed similar trends, with both decreasing in PEG-treated PC and WT lines when compared with untreated controls. As treatment time increased, there was a slight decrease in the content of both Glu and Fru, with the content in the PC lines always significantly higher than in WT lines (Fig. 1G, H).

Elongated hypocotyl 5 (HY5) is a photomorphogenesis promoting a basic leucine zipper transcription factor that is degraded by constitutively photomorphogenic 1 (COP1) ubiquitin ligase in the darkness. HY5 regulates anthocyanin biosynthesis by inducing the transcriptional activation of the MYB75/PAP1 transcription factor in Arabidopsis (Zhang et al. 2006, Shin 2013a). In this study (Table 1), the transcription of OsCOP1 peaked after 30 min of PEG treatment in PC lines and was significantly higher in these lines than in WT plants; however, as the treatment time increased, the difference between WT and PC reduced. The OsHY5 showed a similar expression pattern to OsCOP1 in PC lines. At the same time, the regulatory genes OsB1 and OsB2 encoded basic helix-loop-helix (bHLH) proteins and OsC1 encodes an R2R3-MYB transcription factor involved in anthocyanin biosynthesis (Sakamoto et al. 2001). OsB1, OsB2, and OsC1 had the expression patterns similar to OsCOP1 and OsHY5 in PC lines during PEG treatment; their levels in WT plants were also similar during the treatment. The structural genes involved in anthocyanin biosynthesis including phenyl-alanine ammonia-lyase gene (PAL), chalcone isomerase (CHI), chalcone synthase (CHS), flavonoid-3'-hydrogenase (F3H), flavonoid-3'-hydrogenase (F3'H), dihydoraflovone reductase (DFR), anthocyanin reductase (ANR), anthocyanin reductase (LAR), and anthocyanin synthase (ANS) were also measured synchronously. The transcriptions of *OsPAL*, *OsCHI*, *OsCHS*, *OsF3H*, and *OsDFR* showed similar expression patterns to those of the regulatory genes *OsB1* and *OsB2* in PC lines. Those of *OsANS* increased as the treatment time increased in both PC and WT lines but were significantly higher in the PC lines. Conversely, *OsF3'H* expression first increased then decreased in both lines as the treatment time increased, and the expression in WT lines was significantly higher than in the PC lines.

No significant differences in the ABA content in WT and PC lines were observed during the first 2 h of PEG treatment alone (Fig. 2A). However, the PC lines had higher ABA content after 4 - 8 h (Fig. 2A). An ABA synthesis inhibitor, nordihydroguaiaretic acid (NDGA), was used in this study combined with PEG-treatment for 4 h (NDGA+PEG). We observed the decrease in the net photosynthetic rate in both rice lines, but the decrease in PC line was significantly lesser than that in the WT (Fig. 2B) and as well as stomatal conductance (Fig. 2C) after 4 h-PEG treatment alone. NDGA+PEG treatment further decreased both net photosynthetic rate and stomatal conductance in two lines and finally eliminated completely the differences between these lines. The transcriptions of *SAPK8*, *SAPK9*, and *SAPK10* were up-regulated after 2-8 h-PEG treatment alone only in the PC rice lines (Fig. 2D–F). The NDGA+PEG treatment decreased transcriptions of these genes in PC lines during the PEG treatment and also eliminated completely the differences between two lines during PEG treatment alone. This indicated that ABA is involved in the regulation of *SAPK8*, *SAPK9*, and *SAPK10* in PC lines at the transcription level during the early drought response. Furthermore, we also observed that the transcriptions of *OsB1*, *OsB2, and *OsC1* showed similar patterns to those of *SAPK8*, *SAPK9*, and *SAPK10* after 4-h PEG treatment alone in PC lines. However, NDGA+PEG treatment only partly decreased the *OsB1*, *OsB2* and *OsC1* expressions in the WT and PC lines and did not eliminate the differences between two lines with higher levels observed in PC rice plants (Fig. 3A–C). This suggests that, in addition to ABA-dependent SnRK2, there might be other factors which can regulate the synthesis of anthocyanin in PC lines under drought conditions.

We further sprayed these plants with 1 % Suc or 1 % turanose (Tur; a Suc non-metabolic analog) to observe the regulation of PEPC activity in this study. Table 1 Suppl. shows that PEPC activity in PC lines was much higher than in WT lines under the PEG treatment alone; PEPC activity was not lower in PC lines after Suc or Tur treatments. However, we did not observe any differences in PEPC activity between the Suc- and Tur-treated PC lines (Table 1 Suppl.). Notably, we observed that Suc mitigated the degree of water loss associated with simulated drought conditions, only in PC lines. Spraying with Suc and Tur decreased the soluble sugar content in both PC and WT
Fig. 1. Changes in phosphoenolpyruvate carboxylase (PEPC) activity (A), relative water content (B), soluble sugar content (C), soluble protein content (D), sucrose (Suc) content (E), anthocyanin content (F), glucose (Glu) and fructose (Fru) content (H) in the leaves of C₄-phosphoenolpyruvate carboxylase gene transgenic rice type (PC) and wild type (WT) plants under PEG 6000-simulated drought treatment. CK - control with distilled water; PEG - 4h-PEG 6000 treatment alone. Data are means ± SEs from measurements of at least three independent experiments with different letters used to indicate significant differences at $P < 0.05$.
To further verify the role of Ca$^{2+}$ in the synthesis of anthocyanin in PC rice lines, the Ca$^{2+}$ chelator (EGTA) and Ca$^{2+}$ channel antagonist (ruthenium red, RR) were used before the PEG treatment. Three SnRK3s genes, OsSnRK3.1, OsSnRK3.4, and OsSnRK3.21 increased significantly during PEG treatment alone, while EGTA and RR treatment eliminated the up-regulation of OsSnRK3.1, OsSnRK3.4 and OsSnRK3.21 expression in PC lines; no significant differences in WT lines with any of the three treatments were observed (Table 2 Suppl.). These results confirmed that calcium signal positive regulated certain SnRK3 genes such as OsSnRK3.1, OsSnRK3.4, and OsSnRK3.21 in PC lines. Calcineurin B-like can sense both Ca$^{2+}$ and sugar signals in plants. But the CBL family itself does not have kinase activity and they must recruit the related protein kinases to form complexes for transmitting signals. Fortunately, SnRK3 has CBL-related protein kinase function and jointly respond to stress by sensing intracellular Ca$^{2+}$ signal and sugar signal (Zhang et al. 2017b). The expressions of CBL genes (OsCBL1,
OsCBL3, and OsCBL10) in PC lines were similar as expression of SnRK3s under the same treatments (Table 2 Suppl.), indicated the SnRK3-CBL-related protein kinases via Ca\(^{2+}\) were also involved in the drought response of PC lines. Obviously, these results are the opposite of the results of Glu observed by Zhang et al. (2018), where the interaction on SnRK3 via Suc and Ca\(^{2+}\) has a positive effect in PC lines under drought conditions.

Moreover, the expression of anthocyanin biosynthesis-related OsB1, OsB2, OsC1 and OsPAP2 (purple acid phosphatase gene 2) (Table 3 Suppl.) also increased in PEG-treated PC lines similarly as the CBL and SnRK3 genes. At the same time, OsCHS, OsDFR, and OsANS were also regulated by Ca\(^{2+}\). Treatments with EGTA+PEG or RR+PEG significantly reduced their transcriptions. Taken together, these results suggest that Ca\(^{2+}\) signaling in PC lines can participate as a part of the positive effect on regulation of the regulatory and structural genes of anthocyanin synthesis through CBL/SnRK3 during the early drought response.

Under drought conditions, the unique accumulation of sucrose in PC rice lines was synchronized with anthocyanin content, the transcriptions respective genes related to anthocyanin synthesis, suggesting the role of Suc as a signal molecule in drought response of PC lines. Therefore, we further followed transcriptions of some gene related to sucrose signaling in plants pretreated with Ca\(^{2+}\) inhibitors. The soluble sugar content (Fig.5A), Suc content (Fig.5B), the transcription of OsSUT1 (Fig.5C) and OsSUT5 (Fig.5D) in PC lines were higher than those in WT, especially under PEG treatment. Pretreated with Ca\(^{2+}\) inhibitors, level of the four parameters mentioned above was reduced during PEG treatment. The results indicated that calcium ions, as the upstream component, participates
in the gene expression and content of soluble sugars and Suc related to the Suc signaling in PC. We still observed that under inhibitor pretreatments, the levels in PC were still higher than those in WT, indicating that there might be other factors involved in regulation on the Suc signalling.

Discussion

Phosphoenolpyruvate carboxylase in C₄ plants has been widely concerned by both scientists and breeders as a key functional gene for improved photosynthetic efficiency and tolerance to drought and low N of C₃ plants such as rice and wheat (Long et al. 2015). Drought stress induces a variety of signal transduction pathways, such as Ca²⁺, H₂O₂, NO, and ATP in PC lines, leading to a significant increase in PEPC activity and gene expressions (Bandyopadhyay et al. 2007, Ding et al. 2015, Liu et al. 2015, Qian et al. 2015a, Qian et al. 2015b, Huo et al. 2017, Liu et al. 2017). In this paper, Suc in PC lines was involved in the regulation of anthocyanin synthesis via SnRK2s-ABA and SnRK3s-Ca²⁺-CBL, conferring a stronger drought tolerance.

In plants, sugar functions not only as substrates for energy production, but also together with hormones, to form an integral part of the plant signaling network regulating stress and defense responses (Li and Sheen 2016). Although sugar signaling has been extensively studied in plant cells, most results obtained from various experimental methods and systems proved that Glu and Suc are the key components of response to different stresses (Dalchau and Kay 2011, Tognetti et al. 2013, Van den Ende et al. 2014, Daloso et al. 2016, Wang et al. 2016, Wang et al. 2017). However, not all plants exhibit the same responses to different stresses, and there are significant variations between genotypes (Welfare et al. 2002). Sucrose is the most common form in which carbon is transported from source tissues via the phloem. When Suc arrives in sink tissues, it is unloaded from the phloem and cleaved by acid invertases both in the cell wall and vacuoles or by Suc synthase (SuS) and neutral/alkaline invertases in the cytosol, chloroplasts, and mitochondria (Barratt et al. 2009). There are two sites of the phosphorylation in Suc synthase (S15 and S170, or their equivalent) and the site S15 can be linked to sugar availability through Ca²⁺-dependent protein kinases (CDPKs) in phosphorylation of Suc synthase (Hardin et al. 2004), and/or a sugar-responsive Ca²⁺-independent SnRKs (Zhang et al. 2017a). Previous research indeed observed synchronization with a higher sugar decomposition rate exhibiting higher activities of Suc phosphate synthase, SuS, acid invertase, neutral invertase, and transcript levels of VIN1, CIN1, NIN1, SUT2, SUT4, and SUT5 in PC lines during PEG treatment (Zhang et al. 2017b). But, these results of PC lines were obtained from leaf disc in vitro. In this paper, using the intact rice seedlings, the results show that the high Suc content in PC lines was concomitant with high transcript levels of the SnRK2s and SnRK3s family genes, as a positive effector, during PEG treatment.

Many stress-inducible protein kinase families are activated by ABA and other stress signals. These include mitogen-activated protein kinases (MAPKs) (MAPK Group 2002, Danquah et al. 2014), CDPKs (Ludwig et al. 2004), and SnRKs (Dong et al. 2012). The SnRKs are the key compositions between sugar signaling and stress signaling with members divided into three subfamilies: SnRK1, SnRK2, and SnRK3 (Hanson and Smeekens 2009, Zhang et al. 2017a). The SnRK1 is a central integrator of stress and energy signaling in plants causing extensive reprogramming gene transcription and controlling plant growth (Baena-González et al. 2007). Sucrose activates
SnRK1, and this kinase is required for the Suc signal transduction leading to starch synthesis and SuS induction in potato (Tiessen et al. 2003). However, KIN10/KIN11 (the members of the SnRK1 subfamily that are the closest relatives of SNF1 and AMPK of yeast and mammals, respectively) activities are repressed by Suc in maize protoplasts. The SnRK1 may be different in autotrophic and heterotrophic tissues and depends on the physiological status of the cells (Baena-González et al. 2007). The amounts of SnRK1s in PC lines were higher than in WT in response to drought stress (Liu et al. 2017). The SnRK2s are positive regulators of ABA signaling (Boneh et al. 2012). Nitric oxide suppresses ABA signaling in guard cells by S-nitrosylation of SnRK2.6 (also known as OPEN STOMATA1) (Wang et al. 2015). But, in this study, we did not observe the different changes of NO and H$_2$O$_2$, but Ca$^{2+}$ between PC and WT during the PEG treatment, particularly in exogenous Suc treatment. Calcium, protein kinases (PKs) (Ohto et al. 1995, Iwata et al. 1998, Wang et al. 2001, Raíces et al. 2003) and protein phosphatases (PPs) (Takeda et al. 1994, Ohto et al. 1995, Wang et al. 2001, Ciereszko et al. 2002, Siedlecka et al. 2003) are...
involved in intracellular Suc signaling processes. The PC can regulate related genes through downstream-dependent protein kinases including CPK4, CPK9, SnRK1A, OsK24, and Osk35 and some transcription factor genes NAC6 and bZIP60 via Ca\(^{2+}\) signaling during the early drought response (Liu et al. 2017). The CBLs in plants can sense Ca\(^{2+}\) signaling (Zhu et al. 2013) but then must transmit signals only by recruiting SnRK3 (Batistic and Kudla 2009). Calcium B-type phosphatase 1 acts as a calcium signaling-related protein that senses intracellular Ca\(^{2+}\) and Glu signaling and regulates stomata by interacting with SnRK3 in response to stress (Sanyal et al. 2015, Sibaji et al. 2017). Pharmacological tests of sugar and calcium inhibitors in this study also show that Suc had also some relationships with calcium signal on the regulation of anthocyanin synthesis involved in drought tolerance in a CBL-SnRK3-dependent manner.

Anthocyanin accumulation as one of the important stress responses in plant is also concerned for studying the signaling network including sugar and hormones (Teng et al. 2005, Das et al. 2011, Zhang et al. 2014). Members of three protein families, R2R3-MYB transcription factors, bHLH transcription factors, and WD Repeat Proteins (WDR) interact to form a complex (MBW), which activates anthocyanin biosynthesis (Dong et al. 2014, Zhang et al. 2014, Shin et al. 2016). Sucrose in conjunction with transcription factors, such as MYB75/PAP1, encodes one of quantitative trait loci for Suc-induced anthocyanin accumulation (SIAA1). It is considered to be the most effective inducer of anthocyanin biosynthesis in Arabidopsis thaliana (Teng et al. 2005, Guo et al. 2011). These signals can stimulate kinase cascades by activating SnRK, which can then induce downstream transcription factors such as MYB75 and HY5. The OsCOP1 and OsHY5 were selected as positive regulators in rice through the transcriptional activation of MYB75 (Zhang et al. 2006, Shin 2013a). In this study, during PEG treatment, the transcripts of OsCOP1 and OsHY5 in PC lines were induced more than those in WT and also more than three transcription factor genes (OsB1, OsB2, and OsC1) and six structure genes (OsPAL, OsCHI, OsCHS, OsF3H, OsDFR and OsANS) related to anthocyanin biosynthesis via Suc.

Sucrose can stimulate the production of anthocyanin
through SnRK kinase that has a very close relationship with Ca²⁺, NO, and ABA signals (Tossi et al. 2011, Van den Ende et al. 2014, Sibaji et al. 2017). Abscisic acid can regulate the synthesis of anthocyanin through MYBs and other transcription factors (Shimada et al. 2006, Van den Ende et al. 2014). Previous studies have shown that SnRK2 genes, such as SAPK8, SAPK9, and SAPK10, can respond to osmotic stress in an ABA-dependent manner (Kobayashi et al. 2005). In this study, OsB1, OsB2, and OsC1 of PC were partly regulated by ABA from the data of ABA inhibitor experiment. Calcium signaling can transmit sugar signaling to anthocyanin biosynthesis by Suc absorption (Shin et al. 2013b) that relies on interaction with SnRK3 (Sibaji et al. 2017). In this study, Ca²⁺ signaling also increased the transcript amounts of regulatory genes and structural genes related to anthocyanin biosynthesis in PC under drought stress, and the same holds for expressions of Suc transfer genes (OsSUT1 and OsSUT3). These results further show the important role of Ca²⁺ on Suc-induced anthocyanin accumulation response to drought.

It needs to be pointed out that we did not observe any differences in PEPC activity between the Suc- and Tur-treated PC lines indicating that the PEPC activity of the PC lines was regulated by these sugars but not Suc-specific regulation. Coupe et al. (2006) found that the nature of the signal transported from CO₂-fed source leaves to the SAM, where stomata development is inhibited, was fully compatible with Suc and proposed that Suc might be involved as a signal molecule in plant responses to elevated CO₂ (Coupe et al. 2006). Overexpression of C₄-PEPC in rice lines indeed increases CO₂ content in PC lines (Ku et al. 1999), which suggests that the change of CO₂ content, might play roles on the regulation of anthocyanin synthesis via Suc and Ca²⁺. This need to be proved in the future.

In summary, Suc in the PC lines is closely associated with signaling pathways including SnRK2 via ABA, and SnRK3 via Ca²⁺ and CBL. Once drought treatment happened by Suc, SnRK2, and SnRK3 were activated by different signal messages. Some transcription factors (COPI, HY5, MYBs, and bHLHs) increased, then these regulatory genes induced higher transcript amounts, therefore an increase in anthocyanin content conferring drought tolerance in the PC lines. Combining the previously published data with the results in this study, we have summarized the drought tolerant mechanism underlying the regulation of anthocyanin biosynthesis via Suc and Ca²⁺ in PC lines (Fig. 6).

References

Baena-González, E., Rolland, F., Thevelein, J.M., Sheen, J.A.: Central integrator of transcription networks in plant stress and energy signaling. - Nature 448: 938-942, 2007.
Bandopadhyay, A., Datta, K., Zhang, J., Yang, W., Raychaudhuri, S., Miyao, M., Datta, S.K.: Enhanced photosynthesis rate in genetically engineered indica rice expressing PEPC gene cloned from maize. - Plant Sci. 172: 1204-1209, 2007.
Bates, L.S., Waldren, R.P., Teare, E.D.: Rapid determination of free proline for water stress studies. - Plant Soil 39: 205-207, 1973.
Batistic, O., Kudla, J.: Plant calcineurin B-like proteins and their
interacting protein kinases. - Biochim. biophys. Acta 1790: 985-992, 2009.
Barratt, D.H., Derbyshire, P., Findlay, K., Pike, M., Wellner, N., Lunn, J., Feil, R., Simpson, C., Maule, A.J., Smith, A.M.: Normal growth of Arabidopsis requires cytosolic invertase but not mutants. - Food Chem. 129: 1080-1087, 2011.
Boneh, U., Biton, L., Zheng, C.L., Schwartz, A., Ben-Ari, G.: Characterization of potential ABA receptors in Vitis vinifera. - Plant Cell Rep. 31: 311-321, 2012.
Chen, P.B., Li, X., Huo, K., Wei, X.D., Dai, C.C.: Promotion of photosynthesis in transgenic rice over-expressing of maize C₄ phosphoenolpyruvate carboxylase gene by nitric oxide donors. - J. Plant Physiol. 171: 458-466, 2014.
Chollet, R., Vidal, J., O’Leary, M.: Phosphoenolpyruvate carboxylase: a ubiquitous, highly regulated enzyme in plants. - Annu. Rev. Plant Physiol. Plant mol. Biol. 47: 273-298, 1996.
Ciereszko, I., Kleeckowski, L.A.: Effects of phosphate deficiency and sugars on expression of rab18 in Arabidopsis: hexokinase-dependent and okadaic acid-sensitive transduction of the sugar signal. - Biochim. biophys. Acta 1579: 43-49, 2002.
Coupe, S.A., Palmer, B.G., Lake, J.A., Overy, S.A., Oxborough, K., Woodward, F.I., Gray, I.E., Quick, W.P.: Systemic signaling of environmental cues in Arabidopsis leaves. - J. exp. Bot. 57: 329-341, 2006.
Dai, Z., Ku, M.S.B., Edwards, G.E.: C₄ photosynthesis: the CO₂ concentrating mechanism and photorespiration. - Plant Physiol. 103: 83-90, 1993.
Dalchau, N., Kay, S.A.: The circadian oscillator gene GIGANTEA mediates a long-term response of the Arabidopsis thaliana circadian clock to sucrose. - Plant Physiol. 149: 5104-5109, 2011.
Daloso, D.M., Dos, A.L., Fernie, A.R.: Roles of sucrose in guard cell regulation. - New Phytol. 211: 809-818, 2016.
Danquah, A., De Zellicourt, A., Colcombet, J., Hirt, H.: The role of ABA and MAPK signaling pathways in plant abiotic stress responses. - Biotechnol. Adv. 32: 40-52, 2014.
Das, P.K., Bang, G., Choi, S.B., Yoo, S.D., Park, Y.I.: Photosynthesis-dependent anthocyanin pigmentation in Arabidopsis. - Plant Signal. Behav. 6: 1-4, 2011.
Ding, Z.S., Sun, X.F., Huang, S.H., Zhou, B.Y., Zhao, M.: Response of photosynthesis to short-term drought stress in rice seedlings overexpressing C₄ phosphoenolpyruvate carboxylase from maize and millet. - Photosynthetica 53: 1-8, 2015.
Dong, W., Niu, L., Gu, J., Gao, F.: Isolation of a WD40-repeat gene regulating anthocyanin biosynthesis in storage roots of purple-fleshed sweet potato. - Acta. Physiol. Plant 36: 1123-1132, 2014.
Dong, X.F., Cui, N., Wang, L., Zhao, X.C., Qu, B., Li, T.L., Zhang, G.L.: The SnRK protein kinase family and the function of SnRK1 protein kinase. - Int. J. Agr. Biol. 14: 196-200, 2012.
Doubenrova-Hýsková, V., Miedzińska, L., Dobrá, J., Vaňková, D., Dong, X.F., Cui, N., Wang, L., Zhao, X.C., Qu, B., Li, T.L., Ding, Z.S., Sun, X.F., Huang, S.H., Zhou, B.Y., Zhao, M.: Effects of sucrose in guard cell regulation. - New Phytol. 211: 809-818, 2016.
Hrabak, E.M., Chan, C.W., Gribskov, M., Harper, J.F., Choi, J.H., Halford, N., Kudla, J., Luan, S., Nimmo, H.G., Sussman, M.R., Thomas, M., Walker-Simmons, K., Zhu, J.K., Harmon, A.C.: The Arabidopsis CDPK-SnRK superfamily of protein kinases. - Plant Physiol. 132:666-680, 2003.
Huo, K., Li, X., He, Y.F., Wei, X.D., Lu, W., Zhao, C.F., Wang, C.L.: Exogenous ATP enhance signal response of suspension cells of transgenic rice (Oryza sativa L.) expressing maize C₄ PEPC encoded phosphoenolpyruvate carboxylase under PEG treatment. - Plant Growth. Regul. 82: 55-67, 2017.
Jiao, D.M., Huang, X., Li, X., Chi, W., Kuang, T.Y., Zhang, Q.D., Ku, M.S.B., Cho, D.: Photosynthetic characteristics and tolerance to photo-oxidation of transgenic rice expressing C₄ photosynthesis enzymes. - Photosynth. Res. 72: 85-93, 2002.
Ku, M.S.B., Agarie, S., Nomura, M., Fukayama, H., Tsuchida, H., Ono, K., Hirose, S., Toki, S., Miyao, M., Matsuoka, M.: High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants. - Nat. Biotechnol. 17: 76-80, 1999.
Kunz, S., Pesquet, E., Kleeckowski, L.A.: Functional dissection of sugar signals affecting gene expression in Arabidopsis thaliana. - PLoS ONE 9: e100312, 2014.
Kobayashi, Y., Murata, M., Minami, H., Yamamoto, S., Kagaya, Y., Hoho, T., Yamamoto, A., Hattori, T.: Abscisic acid-activated SNRK2 protein kinases function in the gene-regulation pathway of ABA signal transduction by phosphorylating ABA response element-binding factors. - Plant J. 44:939-949, 2005.
Lepiniec, L., Vidal, J., Chollet, R., Gadal, P., Cretin, C.: Phosphoenolpyruvate carboxylase: structure, regulation and evolution. - Plant Sci. 99: 111-124, 1994.
Li, L., Sheen, J.: Dynamic and diverse sugar signaling. - Curr. Opin. Plant Biol. 33: 116-125, 2016.
Li, X., Ren, C.G., Wang, M., Gone, L.J., Liu, W., Cao, K., Wang, C., Cong, W., Zhou, Y.L.: Relationship between plant hormone contents and yield in PEPC transgenic rice with high photosynthesis efficiency. - Jiangsu Agi. Sci. 26: 449-455, 2010.
Li, X., Wang, C., Ren, C.G.: Effects of 1-butanol, neomycin and calcium on the photosynthetic characteristics of pepe transgenic rice. - AFR. J. Biotechnol. 10: 17466-17476, 2011.
Li, X., Wang, C.: Physiological and metabolic changes of transgenic rice plant with increased activity of phosphoenolpyruvate carboxylase during flowering stage. - Acta. Physiol. Plant 35: 1503-1512, 2013.
Gu, J.F., Qiu, M., Yang, J.C.: Enhanced tolerance to drought in transgenic rice plants overexpressing C₄ photosynthesis enzymes. - Crop J. 1: 105-114, 2013.
Lian, L., Wang, X.W., Zhu, Y.S., He, W., Cai, Q.H., Xie, H.A., Zhang, M.Q., Zhang, J.F.: Physiological and photosynthetic characteristics of *indica* Hang2 expressing the sugarcane PEPG gene. - Mol. Biol. Rep. 41: 2189-2197, 2014.

Liu, X.L., Li, X., Qian, B.Y.: Photosynthetic and physiological regulation of C4 phosphoenolpyruvate carboxylase transgenic rice (*Oryza sativa*) by exogenous Ca2+. - Chin. Bull. Bot. 50: 206-216, 2015.

Liu, X., Li, X., Zhang, C., Dai, C.C., Zhou, Y.J., Ren, C.G.: Phosphoenolpyruvate carboxylase regulation in C4-PETC-expressing transgenic rice during early responses to drought stress. - Physiol. Plantarum. 159: 178-200, 2017.

Livak, K.J., Schmittgen, T.D.: Analysis of relative gene expression data using realtime quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25: 402-408, 2001.

Long, S.P., Marshall-Colon A., Zhu, X.G.: Meeting the global food demand of the future by engineering crop photosynthesis and yield potential. - Cell 161: 56-66, 2015.

Ludwig, A.A., Romeis, T., Jones, J.D.: CDPK-mediated signaling pathways: specificity and crosstalk. - J. exp. Bot. 55:181-188, 2004.

Matsuoka, M., Minami, E.I.: Complete structure of the gene for phosphoenolpyruvate carboxylase from maize. - European J. Biochem. 181: 593, 1989.

Murphy, M.E., Noack, E.: Nitric oxide assay using hemoglobin method. - Methods Enzymol. 233: 240-250, 1994.

Nimmo, H.G.: Control of the phosphorylation of phosphoenolpyruvate carboxylase in higher plants. - Arch. Biochem. Biophys. 414: 189-196, 2003.

Ohno, M., Nakamura, K.: Sugar-induced increase of calcium-dependent protein kinases associated with the plasma membrane in leaf tissues of tobacco. - Plant Physiol. 109: 973-981,1995.

O’Leary, M. H.: Carbon isotope fractionation in plants. - Phytochemistry 20: 553-567,1981.

Patterson, B.D., Mackac, E.A., Ferguson, I.B.: Estimation of hydrogen peroxide in plant extracts using titanium (IV). -Anal. Biochem. 139: 487-492, 1984.

Proels, R.K., Hückelhoven, R.: Cell-wall invertases, key enzymes in the modulation of plant metabolism during defense responses. - Mol. Plant Pathol. 15: 858-864,2014.

Qian, B.Y., Li, X., Liu, X.L., Chen, P.B., Ren, C.G., Dai, C.C.: Enhanced drought tolerance in transgenic rice over-expressing of maize Ca2+, phosphoenolpyruvate carboxylase gene via NO and Ca2+. - J. Plant Physiol. 175: 9-20, 2015b.

Qian, B.Y., Li, X., Liu, X.L., Wang, M.: Improved oxidative tolerance in suspension-cultured cells of C4-PETC transgenic rice by H2O2 and Ca2+ under PEG-6000. - J. Integr. Plant Biol. 57: 534-549, 2015a.

Rabin, I., Mancinelli, A.L.: Light, temperature, and anthocyanin production. - Plant Physiol. 81: 922-924, 1986.

Ren, C.G., Li, X., Liu, X.L., Wei, X.D., Dai, C.C.: Hydrogen peroxide regulated photosynthesis in C4 *pepc* transgenic rice. - Plant Physiol. Biochem. 74: 218-229,2014.

Sakamoto, W., Ohmori, T., Kageyama, K., Miyazaki, C., Saito, A., Murata, M., Noda, K., Maekawa, M.: The purple leaf (Pl) locus of rice: The Plw allele has a complex organization and includes two genes encoding basic helix-loop-helix proteins involved in anthocyanin biosynthesis. - Plant Cell Physiol. 42: 982-991, 2001.

Sami, F., Yusuf, M., Faizan, M., Faraz, A., Hayat, S.: Role of sugars under abiotic stress. - Plant Physiol. Biochem. 109: 54-61, 2017.

Sangwal, S.K., Pandey, A., Pandey, G.K.: The CBL-CIPK signaling module in plants: a mechanistic perspective. - Physiol. Plant. Plant 155: 89-108, 2015.
assimilation. – Funct. Plant Biol. 43: 105-113, 2016.
Wang, X.Q., Zheng, L.L., Lin, H., Yu, F., Sun, L.H., Li, L.M.: Grape hexokinases are involved in the expression regulation of sucrose synthase-and cell wall invertase-encoding genes by glucose and ABA. - Plant Mol Biol. 94:61-78, 2017.
Wang, P., Du, Y., Hou, Y.J., Zhao, Y., Hsu, C.C., Yuan, F., Zhu, X., Tao, W.A., Song, C., Zhu, J.K.: Nitric oxide negatively regulates abscisic acid signaling in guard cells by S-nitrosylation of OST1. - PNAS 112:613-618, 2015.
Welfare, K., Yeo, A.R., Flowers, T.J.: Effects of salinity and ozone, individually and in combination, on the growth and ion contents of two chickpea (Cicer arietinum L.) varieties. - Environ. Pollut. 120:397-403, 2002.
Wen, Z., Lunn, J.E., Feil, R., Wang, Y.F., Zhao, J.J., Tao, H.X., Guo, Y.P., Zhao, Z.Y.: Trehalose 6-phosphate signal is closely related to sorbitol in apple fruit (Malus domestica Borkh. cv. Gala). - Biol. Open 6: 260-268, 2017.
Wu, M.Y., Li, X., He, Y.F., Zhang, C., Yan, T.: Drought response in overexpression of maize phosphoenolpyruvate carboxylase rice seedlings treated by inhibitors of ABA and HXK pathway. - Bull. Bot. Res. 37:402-415, 2017.
Xie, Y., Tan, H.J., Ma, Z.X., Huang, J.R.: DELLA proteins promote anthocyanin biosynthesis via sequestering MYB2 and JAZ suppressors of the MYB/bHLH/WD40 complex in Arabidopsis thaliana. - Mol. Plant 9:711-721, 2016.
Xu, Z.S., Liu, L., Ni, Z.Y., Liu, P., Chen, M., Li, L.C., Chen, Y.F., Ma, Y.Z.: W55a encodes a novel protein kinase that is involved in multiple stress responses. - J. Integr. Plant Biol. 51:58-66, 2009.
Yordanov, N.D., Georgieva, E.: EPR and UV spectral study of gamma-irradiated white and burned sugar, fructose and glucose. - Spectrochim. Acta A. Mol. Biomol. Spectrosc. 60: 1307-1314, 2004.
Yoshida, S., Forno, D.A., Cock, J.H., Gomez, K.A.: Laboratory Manual for Physiological Studies of Rice. - IRRI, Los Baños, pp 61-64, 1976.
Zhang, C., Li, X., He, Y.F., Zhang, J.F., Yan, T., Liu, X.L.: Physiological investigation of C4-phosphoenolpyruvate-carboxylase-introduced rice line shows that sucrose metabolism is involved in the improved drought tolerance. - Plant Physiol. Biochem. 115:328-342, 2017a.
Zhang, J.F., Li, X., Xie, Y.F.: The function of sucrose nonfermenting-1 related protein kinases in stress signaling. - Chin. Bullet. Bot. 52: 346-357,2017b.
Zhang, J.F., Li, X., He, Y.F., Xie, Y.F.: Physiological mechanism on drought tolerance enhanced by exogenous glucose in C4-pec rice. - Acta Agron. Sin. 44: 82-94, 2018.
Zhang, Y., Butelli, E., Martin, C.: Engineering anthocyanin biosynthesis in plants. - Cur. Opin. Plant Biol. 19:81-90, 2014.
Zhang, Y.C., Gong, S.F., Li, Q.H., Sang, Y., Yang, H.Q.: Functional and signaling mechanism analysis of rice CRYPTOCHROME 1. - Plant J. 46: 971-983, 2006.
Zhu, S., Zhou, X.P., Wu, X.M., Jiang, Z.H.: Structure and function of the CBL–CIPK Ca2+-decoding system in plant calcium signaling. Plant Mol. Biol. Rep. 31:1193-1202, 2013.
Zhu, X.G., Long, S.P., Ort, D.R.: Improving photosynthetic efficiency for greater yield. – Annu. Rev. Plant Biol. 61: 235-261, 2010.