On the Time–Modulation of the $\beta^+–$Decay Rate of H–like 140Pr$^{58+}$ Ion

A. N. Ivanova,b, E. L. Kryshenc, M. Pitschmannd, P. Kienleb,d

aAtominstutit der Österreichischen Universitäten, Technische Universität Wien, Wiedner Hauptstrasse 8-10, A-1040 Wien, Österreich
bStefan Meyer Institut für subatomare Physik Österreichische Akademie der Wissenschaften, Boltzmanngasse 3, A-1090, Wien, Österreich
cPetersburg Nuclear Physics Institute, 188300 Gatchina, Orlova roscala 1, Russian Federation and
dPhysik Department, Technische Universität München, D-85748 Garching, Germany

(Dated: June 16, 2008)

According to recent experimental data at GSI, the rates of the number of daughter ions, produced by the nuclear K–shell electron capture (EC) decays of the H–like ions 140Pr$^{58+}$ and 142Pm$^{60+}$, are modulated in time with periods $T_{EC} \approx 7$ sec and amplitudes $a_{EC} \approx 0.20$. Study of a possible time–dependence of the nuclear positron β^+ decay rate of the H–like 140Pr$^{58+}$ ion. We show that the time–dependence of the β^+ decay rate of the H–like 140Pr$^{58+}$ ion as well as any H–like heavy ions cannot be observed. This result can be used as a prediction for future analysis of the time–dependence of the β^+ decay rates of the H–like heavy ions 140Pr$^{58+}$ and 142Pm$^{60+}$ at GSI for the test of the measuring method.

PACS: 12.15.Ff, 13.15.+g, 23.40.Bw, 26.65.+t

INTRODUCTION

The experimental investigation of the EC–decays of the H–like ions 140Pr$^{58+}$ and 142Pm$^{60+}$, 140Pr$^{58+}$ \rightarrow 140Ce$^{58+}$ $+$ ν and 142Pm$^{60+}$ \rightarrow 142Nd$^{60+}$+ν, carried out at the Experimental Storage Ring (ESR) at GSI in Darmstadt [1], showed modulation in time with periods $T_{EC} \approx 7$ s if the rates of the number $N_d^{EC}(t)$ of daughters ions 140Ce$^{58+}$ and 142Nd$^{60+}$, respectively (see Fig.1).

By the number of daughter ions is defined by

$$dN_d^{EC}(t)/dt = \lambda_{EC}(t) N_m(t), \quad \lambda_{EC}(t) = \lambda_{EC} \left\{ 1 + a_{EC} \cos \left(2\pi \frac{t}{T_{EC}} + \phi \right) \right\},$$

where ϕ and a_{EC} are the phase and the amplitude of the time–dependent term, which are not well–measured quantities [2, 3].

In turn, periods of the time–modulation T_{EC} are measured well and equal to $T_{EC} = 7.06(8)$ s and $T_{EC} = 7.10(22)$ s for 140Ce$^{58+}$ and 142Nd$^{60+}$, respectively [1]. Such a periodic dependence has been explained in [4, 5, 6] in terms of the massive neutrino mixing with the period T_{EC} equal to

$$T_{EC} = \frac{4\pi \gamma M_m}{(\Delta m^2_{21})_{GSI}},$$

where M_m is the mass of the mother ion [6], $\gamma = 1.45$ is the Lorentz factor [1] and $(\Delta m^2_{21})_{GSI} = 2.22(4) \times 10^{-4} eV^2$, calculated in [4] for the experimental value $T_{EC} = 7\ s$ [1]. A relation of the value $(\Delta m^2_{21})_{GSI} = 2.22(4) \times 10^{-4} eV^2$ to the KamLAND experimental data $(\Delta m^2_{21})_{KamLAND} = 0.20 \pm 0.05 \times 10^{-4} eV^2$ [5] has been investigated and obtained in [6].

The EC–decay rate of the H–like 140Pr$^{58+}$ ion, averaged over time $\langle \lambda_{EC}(t) \rangle = \lambda_{EC}$, as well as the β^+–decay rate of the 140Pr$^{58+}$ \rightarrow 140Ce$^{58+}$ + $e^+ + \nu$ decay have been also measured at GSI [8]: $\lambda_{EC} = 0.00219(6)\ s^{-1}$ and $\lambda_{EC} = 0.00161(10)\ s^{-1}$ with the ratio $R_{EC/\beta^+} = 1.36(9)$.

The calculation of the EC and β^+ decay rates of the H–like 140Pr$^{58+}$ ion as well as the He–like 140Pr$^{57+}$ ion has been carried out in [8]

$$\lambda_{EC} = \frac{1}{2F + 1} \left(\frac{3}{2} |M_{GT}|^2 \right) \langle |\psi_{1s}^{(Z)}|^2 \rangle \frac{Q_{\beta^+}^2}{\pi},$$

$$\lambda_{\beta^+} = \frac{2}{2F + 1} \left(\frac{|M_{GT}|^2}{4\pi^3} \right) f(Q_{\beta^+}, Z - 1),$$

where $F = 1/2$ is the total angular momentum of the H–like 140Pr$^{58+}$, $Q_{H} = (3348 \pm 6)\ keV$ and $Q_{\beta^+} = (3396 \pm 6)\ keV$ are the Q–values of the 140Pr$^{58+}$ \rightarrow 140Ce$^{58+}$ + $e^+ + \nu$ and 140Pr$^{58+}$ \rightarrow 140Ce$^{57+}$ + $e^+ + \nu$ decays, respectively; M_{GT} is the nuclear matrix element of the Gamow–Teller transition

$$M_{GT} = -2g_AG_FV_{ud} \int d^3x \overline{\Psi_d(r)} \Psi_m(r),$$

where $\Psi_d(r)$ and $\Psi_m(r)$ are the wave functions of the daughter and mother nuclei, respectively, and $\Psi_d(r) \approx \rho(r)$ is the nuclear matter density $\rho(r)$ having the Woods–Saxon shape with $R = 1.1 A^{1/3}\ fm$ and diffuseness parameter $a = 0.50\ fm$ [10]. Then, $\psi_{1s}^{(Z)}$ is the Dirac wave function of
the bound electron in the ground state, \(Z = 59 \) is the electric charge of the mother nucleus \(^{140}\text{Pr}^{59+}\).

The average value of the Dirac wave function of the bound electron \(\langle \psi_{1s}(Z) \rangle \) is defined by \(\bar{a} \)

\[
\langle \psi_{1s}(Z) \rangle = \int d^3x \frac{\psi_{1s}(Z)}{\sqrt{\rho(r)}} = \frac{1.66}{\bar{a}_B}
\]

where \(\bar{a}_B = 1/m_e Z \alpha = 897 \text{ fm} \) for the electron mass \(m_e = 0.511 \text{ MeV} \) and the fine-structure constant \(\alpha = 1/137.036 \). In the \(\beta^+ \)-decay rate \(f(Q_{\beta^+}, Z - 1) = (2.21 \pm 0.03) \text{ MeV}^5 \) is the Fermi integral \(\bar{a} \). The theoretical prediction for the ratio \(R_{EC/\beta^+}^{th} \) is \[R_{EC/\beta^+}^{th} = \frac{3\pi^2 Q_H^2}{f(Q_{\beta^+}, Z - 1)} = 1.40(4), \]

which agrees well with the experimental data \(R_{EC/\beta^+}^{exp} = 1.36(9) \).

According to \(\bar{a} \), a time-dependence of the rate of the number of daughter ions in the \(\beta^+ \)-decay of the H-like \(^{140}\text{Pr}^{58+}\) ion has not been studied experimentally until now.

In this paper we apply a theoretical approach, developed in \[4, 5, 6\] for the analysis of the time-modulation in the \(EC \)-decay of the H-like \(^{140}\text{Pr}^{58+}\), to the study of the time-dependence of the \(\beta^+ \)-decay rate of the H-like \(^{140}\text{Pr}^{58+}\) ion. Its experimental investigation should be a stringent test of the applied single-ion Schottky mass-measurement method.

Amplitudes of the \(\beta^+ \)-Decay of the H-Like \(^{140}\text{Pr}^{58+}\) Ion

Following \[4\], for the calculation of the time-modulation of the \(\beta^+ \)-decay rate of the H-like \(^{140}\text{Pr}^{58+}\) ion we use time-dependent perturbation theory. The Hamilton operator \(H_W(t) \) of the weak interactions is given by

\[
H_W(t) = \frac{G_F}{\sqrt{2}} V_{ud} \sum_j U_{ej}
\]

\[
\times \int d^3 \rho [\bar{\psi}_n(x) \gamma^\mu (1-gA\gamma^5) \psi_p(x)]
\]

\[
\times [\bar{\psi}_\nu_j(x) \gamma_\mu (1-\gamma^5) \psi_{\nu^-}(x)]
\]

with standard notations \[4\]. In our analysis neutrinos \(\nu_j \) \((j = 1, 2, 3) \) are Dirac particles with masses \(m_j \) \((j = 1, 2, 3) \) \[4\].

The amplitude of the \(\beta^+ \)-decay of the H-like \(^{140}\text{Pr}^{58+}\) ion with undetected neutrino we define as a coherent sum of the amplitudes of the \(\beta^+ \)-decays \(^{140}\text{Pr}^{58+} \rightarrow ^{140}\text{Ce}^{57+} + e^+ + \nu_j \) \[4, 6\]

\[
M_{F_{M_F} \rightarrow F'}(t) = -i \sum_j \int_{-\infty}^t dt \times \langle \nu_j(\vec{k}_j)e^+(p_+)d(\vec{q})|H_W(\tau)|m(0)d\rangle d\tau, \]

where \(m \) and \(d \) are the mother ion \(^{140}\text{Pr}^{58+}\) and the daughter ion \(^{140}\text{Ce}^{57+}\), respectively. The mother ion is taken in the state \(^{140}\text{Pr}^{58+}=1/2^+\) with \(F = 1/2 \) and \(M_F = \pm 1/2 \) and in the rest frame \[4\]. In turn, the daughter \(^{140}\text{Ce}^{57+}\) ion is a H-like ion in the state with \(F' = 1/2 \) and \(M_{F'} = \pm 1/2 \).

The wave function of the neutrino \(\nu_j \) we define in the form of a wave packet \[4, 6\]

\[
\psi_{\nu_j}(\vec{r}, t) = (2\pi \delta^2)^{3/2} \int \frac{d^3 k}{(2\pi)^3} e^{-\frac{i}{2} \delta^2 (\vec{k} - \vec{k}_j)^2} \times e^{i\vec{k} \cdot \vec{r} - i E_j(\vec{k})t} u_{\nu_j}(\vec{k}, \sigma_j). \]

where a spatial smearing of the neutrino \(\nu_j \) is determined by the parameter \(\delta \), \(\vec{k}_j \) is the neutrino momentum and \(E_j(\vec{k}) = \sqrt{\vec{k}^2 + m_j^2} \) is the energy of a plane wave with the momentum \(\vec{k} \), \(u_{\nu_j}(\vec{k}, \sigma_j) \) is the Dirac bispinor of the neutrino \(\nu_j \) \[4\]. In the limit \(\delta \rightarrow \infty \), due to the relation

\[
(2\pi \delta^2)^{3/2} e^{-\frac{1}{2} \delta^2 (\vec{k} - \vec{k}_j)^2} \rightarrow (2\pi)^3 \delta(3)(\vec{k} - \vec{k}_j),\]
the wave function \(\Phi \) reduces to the form of a plane wave \([1]\).

Following \([1] \) and \([9]\) we obtain the amplitudes of the \(\beta^+ \)-decay

\[
\mathcal{M}_{\frac{1}{2}+, \frac{1}{2}, \frac{1}{2}}(t) = -\sqrt{2M_mE_d}\mathcal{M}_{\text{GT}} \frac{2\pi\delta^2}{2\sqrt{2}} \times e^{it} \sum U_{e\gamma} e^{-\frac{i}{2}(\bar{k}_d + \bar{p}_+ + k_f^2)} \left(\frac{1}{\Delta E_j(\bar{k}_j)} \right) \frac{1}{i\varepsilon} \right)
\]

\[
\mathcal{J}_{\frac{1}{2}+, \frac{1}{2}, \frac{1}{2}}(t) = -\sqrt{2M_mE_d}\mathcal{M}_{\text{GT}} \frac{2\pi\delta^2}{2\sqrt{2}} \times e^{it} \sum U_{e\gamma} e^{-\frac{i}{2}(\bar{k}_d + \bar{p}_+ + k_f^2)} \left(\frac{1}{\Delta E_j(\bar{k}_j)} \right) \frac{1}{i\varepsilon} \right)
\]

For the calculation of the amplitudes Eq.(11) we have carried out the integration over \(\bar{k} \) with the \(\delta \)-function \((2\pi\delta^2)^3(\vec{k} + \vec{k}_d + \vec{p}_+)\) and denoted \(\Delta E_j(\bar{k}_j) = E_d(\bar{k}_d) + E_+(\bar{p}_+) + E_j(\bar{k}_j) - M_m \), where \(E_d(\bar{k}_d) \), \(E_+(\bar{p}_+) \) and \(E_j(\bar{k}_j) \) are energies of the daughter ion, positron and neutrino \(\nu_j \), \(\vec{k}_d \), \(\vec{p}_+ \) and \(\vec{k}_j \) are their momenta and \(M_m \) is the mother ion mass. For the calculation of the integral over time we have used the \(\varepsilon \)-regularization \([3]\). Finally the parameter \(\varepsilon \) should be taken in the limit \(\varepsilon \rightarrow 0 \).

Time-dependence of the \(\beta^+ \)-Decay Rate of the H-Like \(^{140}\text{Pr}^{58+} \) Ion

According to \([3]\), the first step to the calculation of the time-dependent \(\beta^+ \)-decay rate \(\lambda_{\beta^+}(t) \) of the H-like \(^{140}\text{Pr}^{58+} \) ion is the calculation of the rate of the neutrino spectrum \(\lambda_{\nu}(t) \). It is defined by \([3]\)

\[
\frac{dN_{\nu}(t)}{dt} = \frac{1}{2F + 1} \frac{1}{\pi^2 (\pi\delta^2)^{3/2}} \int \mathcal{M}_{F,M_F \rightarrow F',M_{F'}}(t)^2 \times F(\lambda - 1, E_+) \frac{d^3k_\nu}{(2\pi)^32E_d (\pi\delta^2)^{3/2}} \frac{d^3p_+}{(2\pi)^32E_+} \]

where \(F(\lambda - 1, E_+) \) is the Fermi function \([11]\) (see also \([9]\) describing the Coulomb repulsion between the positron and the nucleus \(^{140}\text{Ce}^{58+} \). It is equal to \([11]\)

\[
F(\lambda - 1, E_+) = \left(1 + \frac{1}{2} \gamma \right) \frac{4(2R_{\nu})^2\gamma}{\Gamma^2(3 + 2\gamma)} e^{-\frac{\pi(Z - 1)E_+}{p_+}} \right) \frac{\Gamma^2(1 + \gamma - i\alpha(Z - 1)E_+)}{\Gamma^2(1 + \gamma + i\alpha(Z - 1)E_+)} \right)^2, \]

where \(p_+ = \sqrt{E_d^2 - m_e^2} \), \(R = 5.712 \) fm, \(Z = 59 \) and \(\gamma = \sqrt{1 - ((Z - 1)\alpha)^2} - 1 \).

After the integration over the phase volume of the daughter ion, the directions of the positron momentum \(\vec{p}_+ \) and the limit \(\varepsilon \rightarrow 0 \) we arrive at the following expression for the rate of the neutrino spectrum

\[
\frac{dN_{\nu}(t)}{dt} = \frac{1}{2F + 1} \frac{\mathcal{M}_{\text{GT}}^2}{\pi^2 (\pi\delta^2)^{3/2}} \times \int_{m_N}^{Q_{\nu} - m_e} \frac{(2\pi)\delta(Q_{\nu} - m_e - E_+ - E_\nu) E_\nu}{(2\pi)^32E_d (\pi\delta^2)^{3/2}} \frac{d^3k_\nu}{(2\pi)^32E_d (\pi\delta^2)^{3/2}} \times \cos \left[\left(\sqrt{E_\nu^2 + m_e^2} - \sqrt{E_d^2 + m_e^2} \right) t \right] \times F(\lambda - 1, E_+) \sqrt{E_d^2 - m_e^2} E_+ dE_+, \]

where \(\Delta \bar{k}_{ij} = (\bar{k}_i - \bar{k}_j)/2 \) and \(e^{-\delta^2(\Delta \bar{k}_{ij})^2} \) are kept as input parameters \([3]\).

For the calculation of the r.h.s of Eq.(14) we have set neutrino masses zero everywhere except in the energy difference \(E_i(\bar{k}_i) - E_j(\bar{k}_j) \) \([3]\). Then, due to the exponential function \(e^{-\delta^2(\bar{k}_i - \bar{k}_j)^2/2} \) the neutrino momenta are constrained by \(\bar{k}_i \approx \bar{k}_j = \bar{k} \) \([3]\). In such an approximation we get \(E_i(\bar{k}_i) \approx E_\nu = |\bar{k}| \) and \(E_i(\bar{k}_i) - E_j(\bar{k}_j) = \sqrt{E_\nu^2 + m_e^2} - \sqrt{E_d^2 + m_e^2} \).

In terms of the rate of the neutrino spectrum the time-dependent \(\beta^+ \)-decay rate is defined by \([3]\)

\[
\lambda_{\beta^+}(t) = \int \frac{d^3k}{(2\pi)^32E_d} \frac{1}{\pi^2 (\pi\delta^2)^{3/2}} \frac{dN_{\nu}(t)}{dt}. \]
FIG. 2: Time–dependence of the β^+–decay rate of the H–like 140Pr$^{58+}$ ion on the time–interval equal to $2T_{EC} = 14\text{s}$.

For $\theta_{13} = 0$ (see also [4]) we deal with two–neutrino mass–eigenstates and obtain

$$\frac{\lambda_{\beta^+}(t)}{\lambda_{\beta^+}} = 1 + R_{\beta^+}(t), \quad (16)$$

where λ_{β^+} is given by Eq.(4) and $R_{\beta^+}(t)$ is equal to

$$\begin{align*}
R_{\beta^+}(t) & = \sin 2\theta_{12}^* \delta^2(\Delta E) \int_{m_e}^{Q_{\beta^+} - m_e} dE \frac{E}{E^*} \\
& \times \sqrt{E^2 - m_e^2} \left(Q_{\beta^+} - m_e - E^* \right)^2 F(Z-1, E^*) \\
& \times \cos \left[\left(\sqrt{(Q_{\beta^+} - m_e - E^*)^2 + m_e^2} \right)^2 - \frac{1}{2} \right]. \quad (17)
\end{align*}$$

For the numerical calculations we use $\sin 2\theta_{12} = 0.20$ [4] and $Q_{\beta^+} = 3396(6)\text{keV}$ [4].

The time–dependent part of the β^+–decay rate of the H–like 140Pr$^{58+}$ ion on the time–interval equal to $2T_{EC} = 14\text{s}$, i.e. two periods of the time–modulation of the EC–decay rate of the H–like 140Pr$^{58+}$ ion, is shown in Fig. 2. For the calculation of $R_{\beta^+}(t)$ we have used neutrino masses $m_j(R)$, obtained in [8] and corrected by the interaction of massive neutrinos with the strong Coulomb field of the daughter nucleus 140Ce$^{58+}$ [3]. It is seen that the β^+–decay rate varies in time much faster than the EC–decay rate of the H–like 140Pr$^{58+}$ ion.

In the measurement of the time–dependence of the β^+–decay rate of the H–like 140Pr$^{58+}$ ions the time–spectrum of the decay is defined by the time–intervals $\Delta T = 5 \times \Delta T_{\text{bin}}$, caused by 5 bins with the length $\Delta T_{\text{bin}} = 64\text{ms}$ each. This leads to the experimental value of the β^+–decay rate, averaged over the time–interval $\Delta T = 5 \times \Delta T_{\text{bin}} = 0.32\text{s}$. Due to the rapid variations of $R_{\beta^+}(t)$ a modulation of the time–dependence of the β^+–decay rate $\lambda_{\beta^+}(t)$ of the H–like 140Pr$^{58+}$ ion is not observable in an experiment.

CONCLUSION

We have studied the time–dependence of the β^+–decay rate $\lambda_{\beta^+}(t)$ of the H–like 140Pr$^{58+}$ ion. For the calculation of $\lambda_{\beta^+}(t)$ we have followed the approach, proposed in [3]–[9], as applied to the explanation of the time–modulation of the EC–decay rate of the H–like 140Pr$^{58+}$ ion. We have found that the time–dependent term of the β^+–decay rate varies very rapidly in time, which makes such a time–dependence unobservable. This result can be used as a prediction for future analysis of the time–dependence of the β^+–decay rates of the H–like heavy ions 140Pr$^{58+}$ and 142Pm$^{58+}$ at GSI for the test of the measuring method.

* Electronic address: ivanov@kph.tuwien.ac.at

[1] Yu. A. Litvinov et al. (the GSI Collaboration), Phys. Lett. B 664, 162 (2008).
[2] F. Bosch, “Observation of non-exponential Decays of Hydrogen-like 140Pr and 142Pm Ions”, Invited talk at Annual Meeting of ENtApP N6/WP1 “Physics of Massive Neutrinos”, 19 May – 22 May of 2008 on Milos Island, Greece.
[3] P. Kienle, “Time Modulation of the Electron Capture Decay due to Neutrino Mixing”, Invited talk at Annual Meeting of ENtApP N6/WP1 “Physics of Massive Neutrinos”, 19 May – 22 May of 2008 on Milos Island, Greece.
[4] A. N. Ivanov, R. Reda, and P. Kienle, On the time–modulation of the K–shell electron capture decay of H-like 140Pr$^{58+}$ ions produced by neutrino–flavour mixing, nucl–th/0801.2121.
[5] A. N. Ivanov, E. L. Kryshen, M. Pitschmann, and P. Kienle, Neutrino masses from the Darmstadt oscillations, nucl–th/0804.1311.
[6] A. N. Ivanov, P. Kienle, E. L. Kryshen, M. Pitschmann, Massive neutrinos and “Darmstadt oscillations”, Invited talk at Annual Meeting of ENtApP N6/WP1 “Physics of Massive Neutrinos”, 19 May – 22 May of 2008 on Milos Island, Greece.
[7] W.–M. Yao et al., J. Phys. G 33, 156, 471 (2006).
[8] Yu. A. Litvinov et al. (the GSI Collaboration) Phys. Rev. Lett. 99, 262501 (2008).
[9] A. N. Ivanov, M. Faber, R. Reda, and P. Kienle, Weak decays of H-like 140Pr$^{58+}$ and He-like 140Pr$^{57+}$ ions, nucl-th/0711.3184 (to appear in PRC).
[10] N. Cottingham and D. A. Greenwood, in An introduction to nuclear physics, Cambridge University Press, Second Edition, 2001.
[11] H. F. Schopper, in Weak interactions and nuclear beta decay, North–Holland Publishing Co., Amsterdam, 1966.