Diagonalizing "compact" operators on Hilbert W*-modules

M. Frank and V. M. Manuilov

Abstract. For W*-algebras A and self-dual Hilbert A-modules M we show that every self-adjoint, "compact" module operator on M is diagonalizable. Some specific properties of the eigenvalues and of the eigenvectors are described.

Keywords: diagonalization of "compact" operators, Hilbert W*-modules, W*-algebras, eigenvalues, eigenvectors

AMS subject classification: Primary 47C15, secondary 46L99, 46H25, 47A75.

The goal of the present short note is to consider self-adjoint, "compact" module operators on self-dual Hilbert W*-modules (which can be supposed to possess a countably generated W*-predual Hilbert W*-module, in general) with respect to their diagonalizability. Some special properties of their eigenvalues and eigenvectors are described. A partial result in this direction was recently obtained by V. M. Manuilov [10,11] who proved that every such operator on the standard countably generated Hilbert W*-module $l_2(A)$ over finite W*-algebras A can be diagonalized on the respective A-dual Hilbert A-module $l_2(A)'$. The same was shown to be true for every self-adjoint bounded module operator on finitely generated Hilbert C*-modules over general W*-algebras by R. V. Kadison [5,6,7] and over commutative AW*-algebras by K. Grove and G. K. Pedersen [4] sometimes earlier. M. Frank has made an attempt to find a generalized version of the Weyl-Berg theorem in the $l_2(A)'$ setting for some (abelian) monotone complete C*-algebras which should satisfy an additional condition, as well as a counterexample, cf. [2]. Further results on generalizations of the Weyl-von Neumann-Berg theorem can be found e. g. in papers of G. J. Murphy [12], S. Zhang [15,16] and H. Lin [9].

We go on to investigate situations where non-finite W*-algebras appear as coefficients of the special Hilbert W*-modules under consideration (Proposition 5), and where arbitrary self-dual Hilbert W*-modules are considered (Theorem 9). The applied techniques are rather different from that in [10,11]. By the way, the results of V. M. Manuilov in [10,11] are obtained to be valid for arbitrary self-adjoint, "compact" module operators on the self-dual Hilbert A-module $l_2(A)'$ over finite W*-algebras (Proposition 3). This generalizes [10] since in the situation of finite W*-algebras A the set of "compact" operators on $l_2(A)$ may be definitely smaller than that on $l_2(A)'$, and the latter may not contain all bounded module operators on $l_2(A)'$, in general. We characterize the role of self-duality for getting adequate results in the finite W*-case (Proposition 4). The final
result of our investigations is Theorem 9 describing the diagonalizability of "compact" operators on self-dual Hilbert W*-modules in a great generality.

We consider Hilbert W*-modules \(\{\mathcal{M}, \langle ., . \rangle\} \) over general W*-algebras \(A \), i.e. (left) \(A \)-modules \(\mathcal{M} \) together with an \(A \)-valued inner product \(\langle ., . \rangle : \mathcal{M} \times \mathcal{M} \to A \) satisfying the conditions:

(i) \(\langle x, x \rangle \geq 0 \) for every \(x \in \mathcal{M} \).

(ii) \(\langle x, x \rangle = 0 \) if and only if \(x = 0 \).

(iii) \(\langle x, y \rangle = \langle y, x \rangle^* \) for every \(x, y \in \mathcal{M} \).

(iv) \(\langle ax + by, z \rangle = a\langle x, z \rangle + b\langle y, z \rangle \) for every \(a, b \in A, x, y, z \in \mathcal{M} \).

(v) \(\mathcal{M} \) is complete with respect to the norm \(\|x\| = \|\langle x, x \rangle\|_A^{1/2} \).

We always suppose, that the linear structures of the W*-algebra \(A \) and of the (left) \(A \)-module \(\mathcal{M} \) are compatible, i.e. \(\lambda(ax) = (\lambda a)x = a(\lambda x) \) for every \(\lambda \in \mathbb{C}, a \in A, x \in \mathcal{M} \). Let us denote the \(A \)-dual Banach \(A \)-module of a Hilbert \(A \)-module \(\{\mathcal{M}, \langle ., . \rangle\} \) by \(\mathcal{M}' = \{r : \mathcal{M} \to A : r - A - \text{linear and bounded}\} \).

Hilbert W*-modules have some very nice properties in contrast to general Hilbert C*-modules: First of all, the \(A \)-valued inner product can always be lifted to an \(A \)-valued inner product on the \(A \)-dual Hilbert \(A \)-module \(\mathcal{M}' \) via the canonical embedding of \(\mathcal{M} \) into \(\mathcal{M}' \), \(x \to \langle ., x \rangle \), turning \(\mathcal{M}' \) into a (left) self-dual Hilbert \(A \)-module, \((\mathcal{M}')' \).

Moreover, one has the following criterion on self-duality:

Proposition 1. [1, Thm. 3.2] Let \(A \) be a W*-algebra and \(\{\mathcal{M}, \langle ., . \rangle\} \) be a Hilbert \(A \)-module. Then the following conditions are equivalent:

(i) \(\mathcal{M} \) is self-dual.

(ii) The unit ball of \(\mathcal{M} \) is complete with respect to the topology \(\tau_1 \) induced by the semi-norms \(\{f(\langle ., . \rangle)^{1/2}\} \) on \(\mathcal{M} \), where \(f \) runs over the normal states of \(A \).

(iii) The unit ball of \(\mathcal{M} \) is complete with respect to the topology \(\tau_2 \) induced by the linear functionals \(\{f(\langle ., x \rangle)\} \) on \(\mathcal{M} \) where \(f \) runs over the normal states of \(A \) and \(x \) runs over \(\mathcal{M} \).

Furthermore, on self-dual Hilbert W*-modules every bounded module operator has an adjoint, and the Banach algebra of all bounded module operators is actually a W*-algebra. And last but not least, every bounded module operator on a Hilbert W*-module \(\{\mathcal{M}, \langle ., . \rangle\} \) can be continued to a unique bounded module operator on its \(A \)-dual Hilbert W*-module \(\mathcal{M}' \) preserving the operator norm. (Cf. [13].)

We want to consider (self-adjoint,) "compact" module operators on Hilbert W*-modules. By G. G. Kasparov [8] an \(A \)-linear bounded module operator \(K \) on a Hilbert \(A \)-module \(\{\mathcal{M}, \langle ., . \rangle\} \) is "compact" if it belongs to the norm-closed linear hull of the elementary operators

\[\{\theta_{x,y} : \theta_{x,y}(z) = \langle z, x \rangle y, x, y \in \mathcal{M}\} \]

The set of all "compact" operators on \(\mathcal{M} \) is denoted by \(K_A(\mathcal{M}) \). By [13, Thm. 15.4.2] the C*-algebra \(K_A(\mathcal{M}) \) is a two-sided ideal of the set of all bounded, adjointable module
operators $\text{End}_A^*(\mathcal{M})$ on \mathcal{M}, and both these sets coincide if and only if \mathcal{M} is algebraically finitely generated as an A-module, (cf. also [3, Appendix]). This will be used below. Since we are going to investigate single "compact" operators we make the useful observation that both the range of a given "compact" operator and the support of it are Hilbert C*-modules generated by countably many elements with respect to the norm topology or at least with respect to the τ_1-topology, (cf. Proposition 1). Hence, without loss of generality we can restrict our attention to countably generated Hilbert W*-modules and their W*-dual Hilbert W*-modules.

We are especially interested in the Hilbert W*-module

$$l_2(A) = \{ \{ a_i : i \in \mathbb{N} \} : a_i \in A, \sum_i a_i a_i^* \text{ converges with respect to } \| \cdot \|_A \}$$

$$\langle \{ a_i \}, \{ b_i \} \rangle = \| \cdot \|_A - \lim_{N \to \infty} \sum_{i=1}^{N} a_i b_i^* ,$$

and in its A-dual Hilbert W*-module

$$l_2(A)' = \{ \{ a_i : i \in \mathbb{N} \} : a_i \in A, \sup_{N \in \mathbb{N}} \left\| \sum_{i=1}^{N} a_i a_i^* \right\| < \infty \}$$

$$\langle \{ a_i \}, \{ b_i \} \rangle = w^* - \lim_{N \to \infty} \sum_{i=1}^{N} a_i b_i^* ,$$

because of G. G. Kasparov’s stabilization theorem [8], stating that every countably generated Hilbert C*-module over a unital C*-algebra A is a direct summand of $l_2(A)$.

Definition 2. Let A be a W*-algebra and let $\{ \mathcal{M}, \langle \cdot, \cdot \rangle \}$ be a self-dual Hilbert A-module possessing a countably generated Hilbert A-module as its A-predual. A bounded module operator T on \mathcal{M} is diagonalizable if there exists a sequence $\{ x_i : i \in \mathbb{N} \}$ of non-trivial elements of \mathcal{M} such that:

(i) $T(x_i) = \Lambda_i x_i$ for some elements $\Lambda_i \in A, (i \in \mathbb{N})$,

(ii) The Hilbert A-submodule generated by the elements $\{ x_i \}$ inside \mathcal{M} has a trivial orthogonal complement.

(iii) The elements $\{ x_i : i \in \mathbb{N} \}$ are pairwise orthogonal, and the values $\{ p_i = \langle x_i, x_i \rangle : i \in \mathbb{N} \}$ are projections in A.

(iv) The equality $\Lambda_i p_i = \Lambda_i$ holds for the projection $p_i, (i \in \mathbb{N})$.

Note, that the eigenvalues and the eigenvectors are not uniquely determined for the operator T since $T(x) = \Lambda x$ implies $T(y) = \Lambda' y$ for $\Lambda' = u \Lambda u^*$ and $y = ux$ for all unitaries $u \in A$. Moreover, the eigenvalues of T do not belong to the center of A, in general. Consequently, $T(ax) = a(\Lambda x) \neq \Lambda(ax)$, in general. That is, eigenvectors are often not one-to-one related to T-invariant A-submodules of the Hilbert A-module \mathcal{M} under consideration.

Now, we start our investigations decomposing A into components of prescribed type with respect to its direct integral representation. Denote by p that central projection of A dividing A into a finite part pA and into an infinite part $(1 - p)A$. That means, that with respect to the direct integral decomposition of A the fibers are almost everywhere factors of type $I_n, n < \infty$, or II_1 inside pA and almost everywhere factors of type I_∞ or II_∞ or III inside $(1 - p)A$. Analogously, the Hilbert A-module $l_2(A)$ decomposes into the direct sum of two Hilbert A-modules $l_2(A) = l_2(pA) \oplus l_2((1 - p)A)$, and every bounded A-linear operator T on $l_2(A)$ splits into the direct sum $T = pT \oplus (1 - p)T$.
where each part acts only on the respective part of the Hilbert A-module non-trivially and at the same time as an A-linear operator. Consequently, we can proceed considering W*-algebras A of coefficients of prescribed type. Our first goal is to revise the case of finite W*-algebras investigated by V. M. Manuilov. There the set $K_A(l_2(A)'')$ does not coincide with the set $\text{End}_A(l_2(A)'')$, and there are always self-adjoint, bounded module operators T on $l_2(A)''$ which can not be diagonalized. For example, consider a self-adjoint, bounded linear operator T_o on a separable Hilbert space H being non-diagonalizable, (cf. Weyl’s theorem). Using the decomposition $l_2(A) = H \otimes A$ one obtains a self-adjoint, bounded module operator T on $l_2(A)$ by the formula $T(a \otimes h) = a \otimes T_o(h), \ (a \in A, \ h \in H)$. The operator T extends to an operator on $l_2(A)'$, and T can not be diagonalizable by assumption. Surprisingly, V. M. Manuilov proved that every self-adjoint, ”compact” operator on the standard countably generated Hilbert W*-module $l_2(A)$ over finite W*-algebras A can be diagonalized on the respective A-dual Hilbert A-module $l_2(A)'$. A careful study of his detailed proofs at [10], [11] brings to light that for finite W*-algebras with infinite center the continuation of the ”compact” operators to the respective A-dual Hilbert A-module is not only a proof-technical necessity, but it is of principal character. Self-duality has to be supposed to warrant the diagonalizability of all self-adjoint ”compact” module operators on $\mathcal{M} \subseteq l_2(A)'$ in the finite case, and the key steps of the proof can be repeated one-to-one. Consequently, we give the generalized formulation of V. M. Manuilov’s diagonalization theorem for the finite case, and we show additionally that self-duality is an essential property of Hilbert W*-modules for finding a (well-behaved) diagonalization of arbitrary ”compact” module operators on them, in general.

Proposition 3. (cf. [10], [11, Thm.4.1]) Let A be a W*-algebra of finite type. Then every self-adjoint, ”compact” module operator K on $l_2(A)'$ is diagonalizable. The sequence of eigenvalues $\Lambda_n : n \in \mathbb{N}$ of K has the property $\lim_{n \to \infty} \|\Lambda_n\| = 0$. The eigenvalues $\Lambda_n : n \in \mathbb{N}$ of K can be chosen in such a way that $\Lambda_2 \leq \Lambda_4 \leq \ldots \leq 0 \leq \ldots \leq \Lambda_3 \leq \Lambda_1$. Moreover, for positive operators K without kernel the eigenvectors $\{x_n : n \in \mathbb{N}\}$ may possess the property $\langle x_n, x_n \rangle = 1_A, \ (n \in \mathbb{N})$, in addition.

For the detailed (but extended) proof of this proposition see [11], (also [10]). The proving technique relies mainly on spectral decomposition theory of operators and on the center-valued trace on the finite W*-algebra A.

Proposition 4. Let A be a finite W*-algebra with infinite center. Consider a Hilbert A-module \mathcal{M} such that $l_2(A) \subset \mathcal{M} \subseteq l_2(A)'$. Then the following two statements are equivalent:

(i) $\mathcal{M} = l_2(A)'$, i.e., \mathcal{M} is self-dual.

(ii) Every positive ”compact” module operator is diagonalizable inside \mathcal{M} with comparable inside the positive cone of A eigenvalues.

Proof. Note, that $l_2(A) \neq l_2(A)'$ by assumption. Denote the standard orthonormal basis of $l_2(A)$ by $\{e_n : n \in \mathbb{N}\}$. If the center of A is supposed to be infinite dimensional then one finds a sequence of pairwise orthogonal non-trivial projections $\{p_n : n \in \mathbb{N}\} \in Z(A)$ summing up to 1_A in the sense of w^*-convergence. Fix a sequence of positive non-
zero numbers \(\{\alpha_n : n \in \mathbb{N}\} \) monotonically converging to zero. The bounded module operator \(K \) defined by

\[
K(e_1) = (\sum_{n=1}^{\infty} \alpha_n p_n e_n), \quad K(e_j) = \alpha_j p_j e_1 \quad \text{for} \quad j \neq 1
\]

is a ”compact” operator on \(l_2(A) \). It easily continues to a ”compact” operator on \(\mathcal{M} \).

As an exercise one checks that the eigenvalues of \(K \) are \(\{\alpha_1 p_1, \alpha_2 p_2, \cdots, 0, \cdots, -\alpha_2 p_2\} \) (ordering by sign and norm and taking into account (iii) and (iv) of Definition 2), and that the appropriate eigenvectors are

\[
\{p_1 e_1, 1/\sqrt{2}p_2(e_1 + e_2), 1/\sqrt{2}p_3(e_1 + e_3), \cdots, (1_A - p_n)e_n : n \in \mathbb{N}\}, \cdots
\]

\[
\cdots, 1/\sqrt{2}p_3(e_1 - e_3), 1/\sqrt{2}p_2(e_1 - e_2)\}.
\]

The only way of making the eigenvalues comparable inside the positive cone of \(A \) preserving Definition 2, (iii)-(iv) is to sum up the positive and the negative eigenvalues separately. But, then the resulting eigenvector

\[
x = (1_A + (1 + 1/\sqrt{2})(1_A - p_1), 1/\sqrt{2}p_2, 1/\sqrt{2}p_3, \cdots, 1/\sqrt{2}p_n, \cdots),
\]

corresponding to the only positive eigenvalue \(\sum_{n=1}^{\infty} \alpha_n p_n \) of \(K \) does not belong to \(\mathcal{M} \) any longer by assumption. This shows one implication. The converse implication follows from Proposition 6.

The second big step is to investigate the case of infinite \(W^* \)-algebras as coefficients of the Hilbert \(W^* \)-modules under consideration. The result is characteristic for the situation in self-dual Hilbert \(W^* \)-modules over infinite \(W^* \)-algebras, and quite different from that in the finite \(W^* \)-case, and elsemore, from the classical Hilbert space situation.

Proposition 5. Let \(A \) be a \(W^* \)-algebra which possesses infinitely many pairwise orthogonal, non-trivial projections \(\{p_i : i \in \mathbb{N}\} \) equivalent to \(1_A \) and summing up to \(1_A \) in the sense of \(w^* \)-convergence of the sum \(\sum_i p_i = 1_A \). Then the Hilbert \(A \)-module \(l_2(A)' \) equipped with its standard \(A \)-valued inner product is isomorphic to the Hilbert \(A \)-module \(\{A, (\cdot, \cdot)_A\} \), where \((a, b)_A = ab^* \).

Proof. Suppose, the equivalence of the projections \(\{p_i : i \in \mathbb{N}\} \) with \(1_A \) is realized by partial isometries \(\{u_i : i \in \mathbb{N}\} \in A, p_i = u_i u_i^*, 1_A = u_i^* u_i \). Then the mapping

\[
S : l_2(A)' \to A, \quad \{a_i\} \to w^* - \text{lim(finite } \sum_i a_i u_i^*)
\]

with the inverse mapping

\[
S^{-1} : A \to l_2(A)' , \quad a \to \{au_i\}
\]

realizes the isomorphism of \(l_2(A)' \) and of \(A \) as Hilbert \(A \)-modules because of Proposition 1.

Corollary 6. Let \(A \) be a \(W^* \)-algebra of infinite type. Then every bounded module operator \(T \) on \(l_2(A)' \) is diagonalizable, and the formula

\[
T(\{a_i\}) = \langle\{a_i\}, \{u_i\} \rangle \Lambda_T \{u_i\}
\]

holds for every \(\{a_i\} \in l_2(A)' \), some \(\Lambda_T \in A \) and the partial isometries \(\{u_i\} \in A \) described in the previous proof.

Proof. Every \(W^* \)-algebra of type \(I_\infty, II_\infty \) or III possesses a set of partial isometries with properties described at Proposition 3. The same is true for \(W^* \)-algebras consisting only of parts of these types. Now, translate the operator \(T \) on \(l_2(A)' \) to an operator
Let \(A \) and vice versa using Proposition 3, and take into account that every bounded module operator on \(A \) is a multiplication operator with a concrete element (from the right).

Corollary 7. Let \(A \) be a \(W^* \)-algebra without any fibers of type \(\text{I}_n \), \(n < \infty \), and \(\Pi_1 \) in its direct integral decomposition. Let \(\mathcal{M} \) be a self-dual Hilbert \(A \)-module possessing a countably generated \(A \)-predual Hilbert \(A \)-module. Then every bounded module operator \(T \) on \(\mathcal{M} \) is diagonalizable, and the formula
\[
T(x) = (x, u)\Lambda_T u
\]
holds for every \(x \in \mathcal{M} \), some \(\Lambda_T \in A \) and a universal for all \(T \) eigenvector \(u \in \mathcal{M} \).

Proof. Since \(\mathcal{M} \) has a countably \(A \)-Hilbert module as its \(A \)-predual, \(\mathcal{M} \) is a direct summand of the Hilbert \(A \)-module \(l_2(A)' \) by G. G. Kasparov's stabilization theorem ([8]). Hence, one has to show the assertion for the self-dual Hilbert \(A \)-module \(l_2(A)' \) only. For further use denote the projection from \(l_2(A)' \) onto \(\mathcal{M} \) by \(P \). Consider the direct integral decomposition of \(A \) over its center. Therein every fiber is a \(W^* \)-factor of type \(\text{I}_\infty \), \(\Pi_\infty \) or \(\text{III} \) by assumption. Putting it into the \(l_2(A)' \)-context one obtains that \(A \) is isomorphic to \(l_2(A)' \) either applying Corollary 6 fiberwise or constructing a suitable set of partial isometries \(\{u_i\} \in A \) to make use of Proposition 5. Then in the same way as there the diagonalization result turns out for arbitrary bounded module operators \(T \) on \(l_2(A)' \). To get the formula of Corollary 7 one has only to set \(u = P(\{u_i\}) \).

Remark. Let \(A \) be a \(\text{I}_\infty \)-factor, for example. Then there are self-adjoint elements \(\Lambda_T \) in \(A \) which cannot be diagonalized in a stronger sense. More precisely, there is no way of representing any such operator as a sum \(\sum \lambda_i P_i \) with \(\lambda_i \in C = Z(A) \) and \(P_i = P_i^* = P_i^2 \in A \) because of Weyl’s theorem. Therefore, the Corollaries 6 and 7 are the strongest results one could expect.

Example 8. Consider the \(C^* \)-algebra \(A \) of all \(2 \times 2 \)-matrices on the complex numbers. Set \(\mathcal{M} = A^2 \) with the usual \(A \)-valued inner product. Consider the ("compact") bounded module operator \(K = \theta_{x,x} + \theta_{y,y} \) for
\[
x = \left(\left(\begin{array}{cc} 1 & 0 \\ 0 & 3 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right) \right), \ y = \left(\left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 2 & 0 \\ 0 & 2 \end{array} \right) \right) .
\]

Eigenvectors of \(K \) are \(x, y \in A^2 \), for example, and the respective eigenvalues are
\[
\Lambda_x = \left(\begin{array}{cc} 1 & 0 \\ 0 & 9 \end{array} \right), \ \Lambda_y = \left(\begin{array}{cc} 4 & 0 \\ 0 & 4 \end{array} \right) .
\]

Remark, that one can not compare these eigenvalues as elements of the positive cone of \(A \). But, making another choice one arrives at that situation described at Proposition 6:
\[
x_1 = \left(\left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right) \right), \ x_2 = \left(\left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right), \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right) \right) .
\]
Then the respective eigenvalues are
\[
\Lambda_1 = \left(\begin{array}{cc} 1 & 0 \\ 0 & 4 \end{array} \right), \ \Lambda_2 = \left(\begin{array}{cc} 4 & 0 \\ 0 & 9 \end{array} \right) .
\]
and they can be ordered as well as the eigenvectors \(x_1, x_2 \) are units. Last but not least, dropping out condition (iv) of Definition 2 one can correlate \(K \)-invariant submodules of \(\mathcal{M} \) and eigenvectors of \(K \). Simply, set

\[
x_1 = \left(\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \right),
\]

\[
x_2 = \left(\begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} \right).
\]

In this case the corresponding eigenvalues are

\[
\Lambda_1 = \left(\begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix}, \begin{pmatrix} 0 & 4 \\ 0 & 9 \end{pmatrix} \right).
\]

They can be ordered in the positive cone of \(A \). But, the eigenvectors corresponding to the \(K \)-invariant submodules of \(\mathcal{M} \) can not be selected to be units any longer.

Theorem 9. Let \(A \) be a \(W^* \)-algebra and \(\mathcal{M} \) be a self-dual Hilbert \(A \)-module. Then every self-adjoint, ”compact” module operator on \(\mathcal{M} \) is diagonalizable. The sequence of eigenvalues \(\{ \Lambda_n : n \in \mathbb{N} \} \) of \(K \) has the property \(\lim_{n \to \infty} \| \Lambda_n \| = 0 \). The eigenvalues \(\{ \Lambda_n : n \in \mathbb{N} \} \) of \(K \) can be chosen in such a way that \(\Lambda_2 \leq \Lambda_4 \leq \ldots \leq 0 \leq \ldots \leq \Lambda_3 \leq \Lambda_1 \), and that \(\{ \Lambda_n : n \geq 3 \} \) are contained in the finite part of \(A \).

Proof. Both the \(\tau_1 \)-closure of the range and of the support of \(K \) are self-dual Hilbert \(C^* \)-modules possessing countably generated \(A \)-predual Hilbert \(A \)-modules because of the ”compact”ness of \(K \). Hence, without loss of generality one can restrict the attention to self-dual Hilbert \(W^* \)-modules with countably generated \(W^* \)-modules formed as the \(\tau_1 \)-completed direct sum of range and support of \(K \). As usual, on the kernel of \(K \) one has the eigenvalue zero and a suitable system of eigenvectors. Now, gluing Corollary 4 and Proposition 6 together the theorem turns out to be true in the special case \(\mathcal{M} = l_2(A)' \), (cf. the remarks in the beginning of the present note). The only loss may be that the eigenvalues are not units, in general. Because of G. G. Kasparov’s stabilization theorem ([8]) \(\mathcal{M} \) possesses an embedding into \(l_2(A)' \) as a direct summand by assumption. Therefore, every self-adjoint, ”compact” module operator \(K \) on \(\mathcal{M} \) can be continued to a unique such operator on \(l_2(A)' \) preserving the norm, simply applying the rule \(K|_{\mathcal{M}^\perp} = 0 \). The eigenvectors of this extension are elements of \(\mathcal{M} \). The Hilbert \(A \)-module \(\mathcal{M}^\perp \) belongs to its kernel. This shows the theorem.

Remark. For commutative \(AW^* \)-algebras \(A \) the statement of Theorem 9 is still true by [4]. The general \(AW^* \)-case is open at present because of two crucial unsolved problems in the \(AW^* \)-theory: (i) Are the self-adjoint elements of \(M_n(A) \), \(n \geq 2 \), diagonalizable for arbitrary (monotone complete) \(AW^* \)-algebras \(A \), or not? (ii) Does every finite (monotone complete) \(AW^* \)-algebra possess a center-valued trace, or not?

Remark. One can extend the statement of Theorem 9 to the case of normal, ”compact” module operators dropping out only the ordering of the eigenvalues. To see this note that for normal elements \(K \) of the \(C^* \)-algebra \(K_A(\mathcal{M}) \) there always exists a self-adjoint element \(K' \in K_A(\mathcal{M}) \) such that \(K \) is contained in that \(C^* \)-subalgebra of \(End_A(\mathcal{M}) \) generated by \(K' \) and by the identity operator. Applying functional calculus inside the \(W^* \)-algebra \(End_A(\mathcal{M}) \) the result turns out. Beside this, it would be interesting to investigate some more general variants of the Weyl-von Neumann-Berg theorem for appropriate bounded module operators on (self-dual) Hilbert \(W^* \)-submodules over (finite) \(W^* \)-algebras \(A \) as those obtained by H. Lin, G. J. Murphy and S. Zhang.
Acknowledgement. The second author thanks for the partial support by the Russian Foundation for Fundamental Research (grant no. 94-01-00108a) and by the International Science Foundation (grant no. MGM 000). The research work was carried out during a stay at Leipzig which was part of a university cooperation project financed by Deutscher Akademischer Austauschdienst. We are very appreciated to the referees for their remarks on the first version of the present work.

References

[1] Frank, M.: Self-duality and C*-reflexivity of Hilbert C*-modules. Zeitschr. Anal. Anwendungen 9(1990), 165-176.
[2] Frank, M.: Hilbert C*-modules over monotone complete C*-algebras and a Weyl-Berg type theorem. preprint 3/91, Universität Leipzig, NTZ, 1991. To appear in Math. Nachrichten.
[3] Frank, M.: Geometrical aspects of Hilbert C*-modules. preprint 22/93, København University, Matematisk Institut, 1993.
[4] Grove, K. and G. K. Pedersen: Diagonalizing matrices over C(X). J. Functional Analysis 59(1984), 64-89.
[5] Kadison, R. V.: Diagonalizing matrices over operator algebras. Bull. Amer. Math. Soc. 8(1983), 84-86.
[6] Kadison, R. V.: Diagonalizing matrices. Amer. J. Math. 106(1984), 1451-1468.
[7] Kadison, R. V.: The Weyl theorem and block decompositions. In: Operator Algebras and Applications, v. 1, Cambridge: Cambridge University Press 1988, pp. 109-117.
[8] Kasparov, G. G.: Hilbert C*-modules: The theorems of Stinespring and Voiculescu. J. Operator Theory 4(1980), 133-150.
[9] Lin, H.: The generalized Weyl - von Neumann theorem and C*-algebra extensions. In: Algebraic Methods in Operator Theory. (eds.: R. Curto and P. E. T. Jørgensen), Birkhäuser, Boston - Basel - Berlin, 1994.
[10] Manuilov, V. M.: Diagonalization of compact operators on Hilbert modules over W*-algebras of finite type (in russ.) Uspekhi Mat. Nauk 49(1994), no. 2, 159-160.
[11] Manuilov, V. M.: Diagonalization of compact operators on Hilbert modules over W*-algebras of finite type (in engl.) submitted to Annals Global Anal. Geom., 1994.
[12] Murphy, G. J.: Diagonality in C*-algebras. Math. Zeitschr. 199(1988), 199-229.
[13] Paschke, W. L.: Inner product modules over B*-algebras. Trans. Amer. Math. Soc. 182(1973), 443-468.
[14] Wegge-Olsen, N. E.: K-theory and C*-algebras - a friendly approach. Oxford University Press, Oxford-New York-Tokyo, 1993.
[15] Zhang, S.: Diagonalizing projections in the multiplier algebras and matrices over a C*-algebra. Pacific J. Math. 145(1990), 181-200.
[16] Zhang, S.: K1-groups, quasidiagonality and interpolation by multiplier projections. Trans. Amer. Math. Soc. 325(1991), 793-818.

Received on June 28, 1994; revised on November 4, 1994.
To appear in *Zeitschrift für Analysis und ihre Anwendungen (ZAA)* v. 14(1995), no. 1, 33-41.