Annual variability in sound acorn production was regulated by a generalist seed predator weevil in *Quercus serrata*

Kimiko Hirayama¹*, Kenta Mizo¹, Manaka Tatsuno², Mizuki Yoshikawa², Chieri Tachikawa²

¹ Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Hangi-cho 1-5, Shimogamo, Sakyo-ku, Kyoto, Japan
² Faculty of Life and Environmental Sciences, Kyoto Prefectural University, Hangi-cho 1-5, Shimogamo, Sakyo-ku, Kyoto, Japan

*Corresponding author: Kimiko Hirayama
Email: khirayam@gmail.com
Tel & Fax: +81757035682

Acknowledgment

We thank the staff of the Kamigamo Experimental Station, Kyoto University for their permission to use the forest for our study. We are grateful to Akihiro Sumida for advice for statistical analyses and critical reading of the first manuscript. We also thank the members of the laboratory for research assistance. This study was funded by JSPS KAKENHI Grand Number 18K05750.
Abstract

Highly variable and synchronous seed production within a population (‘masting’) could be from either synchronised high annual variability in floral initiation (‘flower masting’) or synchronised floral abortion until maturity (‘fruit maturation masting’). We investigated the demographic processes of the female organs from flowering to seed maturity, including each type of insect damage identified, in Quercus serrata in six individuals within a stand from 2014 to 2020, western Japan. Although the annual production of sound acorns was significantly correlated with that of female flowers, the annual variability in sound acorn production within an individual was significantly higher and their synchrony increased, compared to those of female flowers. The annual production of female flowers was positively correlated with the temperature difference in April between the previous and flowering years. However, their fluctuation was low, which was neither affected by seed and flower production in the previous year nor contributed to predator starvation. Key-factor analyses revealed that reproductive loss due to oviposition and sap suction by Mechoris ursulus, a generalist seed predator weevil for oak species, was the largest and most important factor that contributed to the annual variation in the total pre-dispersal loss of Q. serrata. The survival rate from female flowers to sound
acorns was strongly predicted by the temperature in June, corresponding to the emergence of adult *M. ursulus*. This study suggests that highly variable and synchronous sound seed production can be proximately regulated by seed predation when the main predator is a generalist.

**Keywords**

annual variability in seed production, seed predator, oak species, masting

**Statements and Declarations**

We have no conflict of interest to declare.

**Introduction**

Highly variable seed production, which synchronises among individuals within a population, usually termed ‘masting’, has been observed in many long-lived plant species (Kelly 1994, Kelly and Sork 2002). Because masting requires plants to delay reproduction, it is assumed that masting occurs as a selective advantage through ‘one or more economies of scales’, such as
predator satiation and pollination efficiency, in which an occasional large reproductive effort is more efficient than regular smaller ones (Norton and Kelly 1988, Kelly and Sork 2002). In contrast to the ultimate-level hypothesis, masting is regulated by proximate-level mechanisms, such as responses to variability in internal resources and weather cues, which do not necessarily require ultimate-level benefits (Crone and Rapp 2014, Pearse et al. 2016). Identifying the factors that proximately produce variability in seed production would lead to an understanding the adaptive meaning of masting.

Pearse et al. (2016) suggested that the production of a mast seed crop can be the product of either high initial flower production (‘flower masting’) or high proportion of flowers maturing into seeds (‘fruit maturation masting’). In flower masting, the success rate of pollination and maturation into fruit will be high during high-flowering years, induced by weather cues or resources. In fruit maturation masting, flower or seed abortion during pre-dispersal stages, owing to factors not related to flowering size, e.g., weather condition during pollination and/or fruit growing, causes variation in seed crops, which may occur even in the absence of any selective advantage (Espelta et al. 2008, Perez-Ramos et al. 2010). In addition, Montesinos et al. (2012) reported not all mast flowering episodes resulted in mast seeding.
Therefore, to determine the real factors causing masting and their relative contribution, clarifying the demographic process of female reproductive organs from flowering to seed maturity in each individual within a population in the long term, together with the effects of weather and resources, would be needed.

For fagaceous species, whose masting behaviour has been reported in many previous studies (e.g., Sork et al. 1993, Kelly and Sork 2002, Shibata et al. 2002, Kon et al. 2005, Espelta et al. 2008, Perez-Ramos et al. 2010, Koenig and Knops 2014, Koenig et al. 2015, Pesendorfer et al. 2016, Schermer et al. 2019, Moreira et al. 2019), predation pressure on their female reproductive organs (i.e., acorns) is known to be high (Kon et al. 2005, Hirayama et al. 2017, Xiao et al. 2017, Bogdziewicz et al. 2018). Kon et al. (2005) investigated the relative contribution of pollination failure and insect predation to the annual fluctuation of seed crops for *Fagus crenata* by monitoring the female reproductive organs from flowering to seed maturity in five beech forests. They indicated that the effect of insect predation on seed production was larger than that of pollination failure, although both factors significantly affected fluctuations in seed production. As in their study, the quantitative evaluation of insect predation on the demographic process during the pre-dispersal stage would be important for
understanding masting behaviour in fagaceous species, although few studies have reported on it (Fukumoto and Kajimura 2005, Hirayama et al. 2017).

Previous studies indicated that pre-dispersal predation in fagaceous species occurs soon after flowering up to maturity by various insects and that oviposition by adult insects and predation by hatched larvae usually occur at specific periods during the pre-dispersal phase (Fukumoto and Kajimura 2001, Hirayama et al. 2017). Koenig et al. (2003) suggested that seed predator characteristics, such as size, mobility, abundance, lifespan, and degree of specialisation, act as selection pressures in the seed production patterns of plants. Therefore, distinguishing each type of insect damage and evaluating its effect on the demographic process during the pre-dispersal stage might explain the real cause of fluctuations in seed production of fagaceous species.

In this study, we investigated the demographic processes from flowering to seed maturity, including each type of insect damage identified, for six individuals of *Quercus serrata* within a forest stand from 2014 to 2020. First, we analysed intra-individual variability and inter-individual synchrony within a population in both annual flower and sound acorn production in relation to weather and resources, examined in previous studies as mentioned above. Second,
key factor analyses were conducted to assess the relative importance of each demographic factor that can contribute to annual fluctuations in sound acorn production during the pre-dispersal stage in individuals. Based on these results, we proposed a novel mechanism affecting annual variability in seed production in plant species whose main seed predator during the pre-dispersal stage is a generalist: insect predation can proximately induce highly variable and synchronous sound seed production within a population.

Materials and Methods

Study site and species

We conducted our study at the Kamigamo Experimental Station, Kyoto University (35°4′21″N, 135°45′43″E; 145 m a.s.l.) in western Japan, which has hot and humid summers and moderately cold winters. The rainy season occurs annually during the transition from spring to summer, from the beginning of June to the middle of July. Based on the data recorded from 1986 to 2015 at the station office (142 m a.s.l.), the mean annual temperature and precipitation were 14.7°C and 1578 mm, respectively (Kamigamo Experimental Station, unpublished data). The forest soils were Inceptisol (Soil Survey Staff 2010) derived from Mesozoic sedimentary rocks.
(Geological Survey of Japan, AIST 2015). The study area was covered with a secondary forest
dominated by *Chamaecyparis obtusa*, *Q. serrata*, *Q. glauca*, and *Ilex pedunculosa*.

*Q. serrata* is a deciduous oak native to East Asia that belongs to the subgenus *Quercus*
section *Prinus* (Iwatsuki et al. 2006). This species is widely distributed in temperate regions
and is often found in secondary forests in Japan. *Q. serrata* is monoecious, anemophilous,
flowers in spring (during late April and early May in the study site; K. H., personal observation),
and requires one year to mature acorns. According to the observation of flower buds using a
stereomicroscope, Hashizume et al. (2003) found that differentiation of primordia of staminate
inflorescences within the buds occurred from late June to late August of the previous year of
flowering, and pollen grains were formed in early or middle April of the following year. They
also reported that the differentiation of pistillate flowers was initiated in early August of the
previous year of flowering, perianth differentiation occurred in late August, young pistillate
flowers grew rapidly in mid-April in the following year, and pistil differentiation was observed
approximately 10 days before anthesis. After flowering, fruit development occurred until late
September; first, the cupules, which enclose the acorns, develop and then enlarge, and after that,
the acorns protrude from the cupules and grow rapidly from mid-August (Matsuda 1982, K. H., unpublished data). Mature acorns mainly fall in mid-October.

During the stages after flowering up to maturity, the female reproductive organs of *Q. serrata* are continuously attacked by various insects, either larvae or adults, during specific periods (Fukumoto and Kajimura 2001, Hirayama et al. 2017). At the study site, we observed that female reproductive organs produced galls due to cynipid wasps approximately from early June, damaged due to sap suction by adults of weevils (mainly *Mechoris ursulus* (Roelofs)) approximately from early July, oviposited by *Kobuzo rectirostris* (Roelofs) approximately from middle August, oviposited by *M. ursulus* approximately from late August, and oviposited by *Curculio* spp. approximately from September (K. H., personal observation). We also observed female reproductive organs damaged by moth larvae of various species: *Pammene nemorosa* Kuznetzov, *Cydia danilevskyi* (Kuznetzov), and *Assara inouei* Yamanaka were mainly identified, while many other unidentified species feeding on the female reproductive organs of *Q. serrata* appeared to exist (K. H. personal observation).

**Sampling and classifying design of female reproductive organs**
We selected six *Q. serrata* individuals (diameter at breast height (DBH) ± SD, 35.4 ± 6.8 cm; height, 18.4 ± 2.2 m; canopy area, 45.2 ± 42.2 m²). These trees were within a natural stand where a number of *Q. serrata* trees were mixed. Regarding fagaceous species within the stand, *Q. glauca*, *Q. sessilifolia*, and *Castanopsis cuspidata* were also mixed to a lesser extent. We set three seed traps (0.5 m² surface area with a circular mouth) under the crown of each sampled tree on 13 May 2014. Each seed trap was made of polyethylene cloth (mesh size, 1 mm) and positioned approximately 1.2 m above the ground. The contents of the traps were collected twice a month from May 2014 to March 2021, and all female reproductive organs (both pistillate flowers and acorns) of *Q. serrata* were sorted in the laboratory. We first classified the organs into four categories based on the size (length and width of the organs) and the condition of the organs: (A) sound (attaining mature acorn size [13 mm in length, 7 mm in width] with sound cotyledons), (B) immature with no signs of damage (failing to attain mature seed size and/or with undeveloped cotyledons, including pistillate flowers); (C) organs with some signs of damage other than being broken (exhibiting a gnaw mark, a penetrating hole, larval frass, deformation, and/or discolouration; mainly caused by insects), and (D) the organs that were broken (mainly caused by vertebrate predation), as described by Hirayama et al. (2017). The
organs classified into category (D) were low in our study system (0–1.4 % of all female reproductive organs falling during one year in each tree).

When we classified the organs into category (C), we dissected them and observed them using a stereomicroscope. Based on larval faeces, feeding traces, penetration and oviposition scars, and/or larvae inside, we classified the damage into the following types: (a) sap suction by adult weevils, mainly by *M. ursulus*, (b) damaged by moth larvae, (c) oviposition by *M. ursulus*, (d) oviposition by weevils other than *M. ursulus*, mainly by *K. rectirostris*, (e) damaged by cynipid wasps, and (f) others, as described by Hirayama et al. (2017). In addition, we reared the larvae from the female reproductive organs and observed the feeding and/or oviposition patterns of the adults on the organs (K. H. personal observation). Based on this, we confirmed our classification of insect damage types. For each type of insect damage, the mean ± SE of the length of the organs was recorded, which reflected the developmental stage of the organs (Matsuda 1982, K. H. unpublished data). These measurements for each of the types of damage were as follows: (a) 5.82 ± 0.06 cm, (b) 9.13 ± 0.28 cm, (c) 13.29 ± 0.13 cm, (d) 12.11 ± 0.29 cm, and (e) 4.64 ± 0.06 cm, respectively. They were determined to be statistically different from each other based on Tukey’s multiple comparison test (*P*<0.05) after conducting a linear mixed
model (LMM) with the length of acorns as the response variable and each type of insect damage as the explanatory variable, with each individual tree as a random factor.

Analyses

Annual variability in the number of female flowers and sound acorns

We defined the sum of the number of female reproductive organs that fell into the seed traps for each individual (total area, 1.5 m²) in a year (flowering to the end of the following March) as the annual number of female flowers. To detect intra-individual variability in the production of female flowers and sound acorns, we calculated the coefficient of variation for the annual numbers of female flowers and sound acorns during the seven-year observation for each of the six individuals ($CV_i$) and their means ($\overline{CV}_i$). To identify inter-individual synchrony in the production of female flowers and sound acorns within a population, we calculated pairwise correlation coefficients of the female flower and sound acorn numbers (both log-transformed after adding 1 to reduce the correlation between the mean and the variance and avoid excluding zero data) during the seven years for each pair of all individuals (Pearson’s correlation coefficient; $r_p$), and then obtained the means of all these pairs ($\overline{r}_p$), as suggested by Koenig et
To obtain 95% confidence intervals in $C_V$ and $T_p$ values, we performed sets of 1000 bootstrap trials, in which the annual number of female flowers and sound acorns were randomly replaced from the observed values for each individual over a seven-year period.

We performed a generalised linear mixed model (GLMM) with a log link and negative binomial error distribution to evaluate whether the annual number of sound acorns per individual is related to female flowers. The annual number of sound acorns (non-log-transformed) was designated as the response variable. The annual number of female flowers, which were log-transformed after adding 1, was the explanatory variable, and the individual tree was treated as a random factor. To explore the effect of the previous flower and/or acorn production per individual on their current amount, we also conducted GLMM analyses with a log link and negative binomial error distribution. The annual numbers of female flowers or sound acorns (non-log-transformed) in the year ($t_i$) were designated as the response variables, whereas those in the year before ($t_{i-1}$) were designated as the explanatory variables. These explanatory variables were log-transformed by the addition of 1. Individual trees were treated as random factors.
To assess whether the annual fluctuation in the number of female flowers per individual was related to pre-dispersal insect damage, we performed two GLMM analyses with logit link and binomial error distribution, in accordance with Shibata et al. (2002). In the first analysis, to examine whether individual-level predation satiation occurred in years with high production of female flowers, the proportion of the female organs damaged by insects during one year per individual was designated as the response variable, and the log-transformed annual number of flowers per individual was the explanatory variable. In the second analysis, to examine whether annual fluctuations in the production of female flowers per individual contribute to the individual-level predator starving effect, the proportion of the female organs damaged by insects during one year per individual was designated as the response variable, and the log-transformed ratio of the annual number of female flowers per individual in the year \( t_i \) to the year before \( t_{i-1} \) was designated as the explanatory variable. In both analyses, the number of broken acorns (mainly due to vertebrate predation) was excluded from calculating the proportion of the female organs damaged by insects, and the individual tree was treated as a random factor. When the annual number of female flowers per individual was zero, the data were excluded from the analysis.
Relationships between weather variables and the annual production of female flowers and survival rate from female flowers to sound acorns

We obtained daily precipitation data and mean daily temperature (average of the daily maximum and minimum values) from 2012 to 2020 from the Kamigamo Experimental Station office. Weather variables were chosen considering the differentiation process of the reproductive organs in flower buds, as mentioned above (Hashizume et al. 2003), for the analyses of annual variability in female flower number per individual; monthly average temperature (average of mean daily temperatures for one month), and precipitation from April to September one year before flowering and from March to April in the flowering year were considered. We also calculated the difference between a year and its previous year for all variables, according to methods described by Kelly et al. (2013), who suggested that the differential cue might cause masting behaviour. We checked for multicollinearity among all variables using a variance inflation factor (VIF), where a VIF > 10 was considered to indicate multicollinearity (Quinn and Keough 2002). If one variable was highly correlated with another variable based on the VIF value, we adopted one variable of the two (Online Resource 1). We
then performed GLMM models, which were a log link and negative binomial error distribution, with the annual number of female flowers per individual (non-log-transformed) as the response variable, each adopted weather variable as the explanatory variable, and the individual tree as a random factor. We selected five weather variables based on a comparison of the models using the Akaike information criterion (AIC); the lower the AIC value, the better the model. We then created GLMM models based on a subset of the five selected variables. The best model was determined using the AIC value, as calculated from the R package MuMIn (Barton 2020), which calculates all possible models extracted from the full model. When there were models with fewer parameters whose ΔAIC was < 2 from the top model, we adopted the simplest model (with the fewest parameter) as the best model. This was because models with ΔAIC between 0 and 2 were considered to have equivalent and substantial empirical support (Burnham and Anderson 2002).

For the analyses of survival rate from female flowers to sound acorns per individual per year, we chose average daily temperature and total precipitation during the flowering periods of *Q. serrata* (15 April to 10 May based on K. H., personal observation) and the monthly values from April to September based on the phenology of the acorn development (Matsuda
1982, K. H. unpublished data; Online Resource 2). The VIF value indicated that all variables were less than 10, which confirmed that multicollinearity among these weather variables was not a serious concern. We constructed GLMM models, which were a log link and negative binomial error distribution, with the annual number of sound acorns (non-log-transformed) as the response variable and each weather variable as the explanatory variable. The annual number of female flowers was an offset variable, and the individual trees were treated as random factors. We determined the best model, which describes the relationship between the survival rate of female flowers and weather variables using the same method in the analyses of annual variability in female flower number as mentioned above.

Relative contribution of each type of reproductive loss during the pre-dispersal phase

Key factor analysis (Podoler and Rogers 1975) was used to estimate the relative contribution of factors that influenced plant reproductive potential to the observed variation in total pre-dispersal losses. The reproductive losses due to factor $k_i$ and the total pre-dispersal loss ($K$) were calculated for each year in each individual tree as follows:

$$k_i = \log_{10}(N_{i-1} + 1) - \log_{10}(N_i + 1)$$
\[ K = \sum_{i=1}^{n} k_i \]

where \( N_i \) is the number of female reproductive organs that remained after mortality due to factor \( i \) (the number per total area of 1.5 m\(^2\) per individual), and \( n \) represents the number of factors. We added 1 to those numbers before log-transformation to avoid excluding zero data.

The slope of the regression of \( k_i \) on \( K \) was used to determine the relative impact of each factor on the total variation in the reduction of potential reproductive output (Jordano 1989, Traveset 1994, Fukumoto and Kajimura 2005, Hirayama et al. 2017): the higher regression value contributes more to changes in the total mortality (Podoler and Rogers 1975). In this study, to identify the slope of the regression between \( k_i \) and \( K \), we performed a LMM with each \( k_i \) as the response variable, \( K \) as the explanatory variable, and the individual tree as a random factor.

Based on the phenological observation (K. H. personal observation) and size of the organs suffered from each type of insect damage, as mentioned above, we determined the seasonal order of factors damaging the organs as follows:

1. damaged by cynipid wasps
2. sap suction by adult weevils, mainly by *M. ursulus*
3. damaged by moth larvae
oviposition by weevils other than *M. ursulus*, mainly by *K. rectirostris*

(5) oviposition by *M. ursulus*

Damage caused by other insects and vertebrate predation was assumed to be lower in order than insect damage because it usually occurred when the acorns had reached maturity. Meanwhile, reproductive loss due to abortion of pistillate flowers and immature acorns was assumed to occur before insect damage in the analysis.

All analyses were performed using R 4.1 (R Core Team 2021).

Results

Annual variability in the numbers of female flowers and sound acorns

The annual numbers of sound acorns exhibited higher inter-year variation than those of female flowers for all individual trees (Fig. 1). $\overline{CV_i}$ for the number of sound acorns was significantly higher (1.51) than that for the number of female flowers (0.50) based on their 95% confidence intervals using the bootstrap method (Table 1). The annual number of sound acorns was significantly correlated with that of female flowers (Fig. 2 and Online Resource 3). However, there were many cases where the production of sound acorns was very low despite the large
production of female flowers in a year. Synchrony was stronger in the production of sound
acorns (0.68) than that of female flowers (0.32), although average pairwise correlations in both
productions were significantly positive (Table 1). There were no significant effects of annual
production of female flowers or sound acorns on their production in the following year (Online
Resource 3 and 4).

The proportions of insect-damaged organs to the production of female flowers ranged
from 0.18-0.83 (Fig. 3) for individual trees over the seven years. While the GLMM analysis
indicated that their proportions significantly decreased with increasing the annual number of
female flowers, change in annual numbers of female flowers between successive years did not
significantly affect their proportions (Fig. 3 and Online Resource 5).

Relationships between weather variables and the annual production of female flowers and
survival rate from female flowers to sound acorns

For the annual number of female flowers per individual, in the models selected based on AIC
values, five weather variables which were highly correlated with them were: the change in
average April temperature from one year before flowering to the flowering year (ΔAprT(t_i)),

19
the precipitation in May in one year before flowering, the change in average May temperature from two years before flowering to one year before flowering, the average temperature in April the year before flowering, the average temperature in April in the flowering year (Online Resource 6). Among them, $\Delta AprT(t_i)$, which was positively related to the annual number of female flowers, was selected as the best model for predicting their production (Online Resource 7 and Table 2).

For the survival rate from female flowers to sound acorns per individual, in the models selected based on AIC values, the five weather variables which were highly related to them were: the average temperature in June, the average temperature during the flowering period from 15 April to 10 May, the precipitation in April, the average temperature in April, and the average temperature in May (Online Resource 8). Among them, the average temperature in June, which was positively related to the survival rate, was selected as the best model for the prediction (Online Resource 9 and Table 2).

Relative contribution of each type of reproductive loss during the pre-dispersal phase
Except in 2014 and 2020, when the production of sound acorns was high for all individuals, the number of female organs tended to be greatly reduced by sap suction by adult weevils (Fig. 4, stage 3-4) and by oviposition by *M. ursulus* for all individuals (stage 6-7). Reproductive losses due to abortion of pistillate flowers and immature acorns (stage 1-2) and oviposition by weevils other than *M. ursulus*, mainly by *K. rectirostris* (stage 5-6), were not significantly related to total pre-dispersal loss, while reproductive losses due to almost all types of insect damage were significantly related to the total pre-dispersal loss (Table 3). Among the types of insect damage, the slope of the regression on the total pre-dispersal loss was the highest in oviposition by *M. ursulus*, followed by sap suction by adult weevils, mainly by *M. ursulus* (Table 3 and Online Resource 10).

**Discussion**

Although the annual production of female flowers per *Q. serrata* individual significantly influenced the annual production of sound acorns (Fig. 2), the annual fluctuation of female flower production was significantly lower than that of sound acorn production (Fig. 1 and Table 1). Previous studies have suggested that the annual variability of flower production is affected
by weather conditions during floral initiation and development and their internal resource
dynamics in plants (Kelly and Sork 2002, Pearse et al. 2016). Miyazaki et al. (2014)
demonstrated that nitrogen concentration in the shoot at the time of floral initiation positively
correlated with flowering intensity in the following year for the masting species *F. crenata*,
supporting the resource budget model, which assumes that the fluctuation of reproductive
efforts could be induced by resource depletion after heavy flowering (Isagi et al. 1997, Satake
and Iwasa 2000). However, for *Q. serrata*, the annual production of female flowers was not
affected by both the annual production of female flowers and sound acorns in the previous year
(Online Resource 4), indicating that internal resources were not important for their annual
variability. On the other hand, their production was affected by the change in average April
temperature from one year before flowering to the flowering year (Table 2). Because April is
the period when pistil differentiation in female flowers occurs immediately before flowering
(Hashizume et al. 2003), the weak fluctuation of annual female flower production may be
induced by a weather cue, as suggested by Kelly et al. (2013).

Both the amplitude of variation and synchrony between individuals increased in sound
acorn production, compared with those in female flower production (Fig. 1 and Table1),
implying that synchronised floral or seed abortion until maturity would work in sound acorn production patterns in *Q. serrata*. For most of the 1-yr *Quercus* species, which require one year to develop acorns, their annual seed production has a relationship with spring temperatures when pollination occurs (Koenig and Knops 2014): higher spring temperature results in higher phenological synchrony during the flowering season, contributing to increased pollen availability and fertilisation success (Koenig et al. 2015, Bogdziewicz et al. 2020). After fertilisation, acorn development has been reported to be strongly affected by water stress during the summer and/or by resource supply, resulting in in synchronous fluctuation in mature acorn production (Espelta et al. 2008, Perez-Ramos et al. 2010). However, for *Q. serrata*, the survival rate of female flowers was not positively related to spring temperature, nor negatively related to summer precipitation (Online Resource 8). Moreover, reproductive loss due to abortion of pistillate flowers and immature acorns, mainly caused by intrinsic factors (Jordano 1989, Traveset 1994), was not correlated with the total pre-dispersal loss (Fig. 4, Table 3, and Online Resource 10), and the annual production of sound acorns was not affected by either female flowers or sound acorns in the previous year (Online Resource 3). The annual variability in total pre-dispersal loss was significantly influenced by almost all types of insect damage. Therefore,
synchronised floral or seed abortion until maturity in *Q. serrata* is not caused by plant internal
mechanisms, such as pollination failure nor resource limitation, but by insect damage.

Among the types of insect damage, reproductive loss, owing to oviposition and sap
suction by *M. ursulus*, was the largest and most important factor that contributed to the annual
variation of total pre-dispersal loss in *Q. serrata* (Fig. 4, Table 3, and Online Resource 10). In
our study area, adult *M. ursulus* began to emerge from middle to late July after one winter (K. H.
personal observation). They sucked sap from immature acorns using their proboscis
immediately after emerging, and oviposited eggs in each acorn (one egg per acorn) from mid-
August (K. H. personal observation). The survival rate from female flowers to sound acorns
was strongly predicted by the average temperature in June (Table 2), which corresponds to the
emergence of adult *M. ursulus*. The higher temperature in June probably enhanced the
emergence of *M. ursulus* adults earlier, resulting in a phenological mismatch between their sap
suction behaviour and acorn growth in *Q. serrata*; however, further long-term studies are
required to clarify this mechanism.

Even though the effect of insect damage on acorn survival was so large in *Q. serrata*,
their weak fluctuation in annual female flower production did not contribute to the predator
starvation at the individual level (Fig. 3 and Online Resource 5). Although predator satiation may occur when the amount of annual female flower production exceeded a certain threshold, predation rates were often high even at the high amount of the flower production (Fig. 3 and Online Resource 5). Selection for predator satiation and starvation depends on various factors of seed predators’ characteristics, including the size, mobility, abundance, lifespan, and degree of specialisation (Koenig et al. 2003, Bogdziewicz et al. 2021). For species with specialist seed predators, it has been reported that high fluctuations in flowering intensity contribute to starvation and satiation of predators (Kelly and Sullivan 1997, Kon et al. 2015). In contrast, a main seed predator of *Q. serrata*, *M. ursulus*, is a generalist weevil that predates on various kinds of acorns of oak species (K. H. personal observation, Imai and Hirayama 2013, Hirayama et al. 2017, Hirayama et al. 2019); however, they prefer oak species with scale-like cupules, such as *Q. serrata* (Hirayama et al. 2017). Ims (1990) predicted that the mechanisms that promote within-group reproductive synchrony are unlikely to have evolved when predators have a typical generalist-type of functional response and can switch favourable prey with high offspring densities. Accordingly, for *Q. serrata*, weak fluctuations in annual female flower production, which only correlated with the weather variable, might have adapted to the
generalist seed predator. The result of this study suggests that insect predation during the pre-
dispersal stage can proximately induce highly variable and synchronous sound seed production
for plant populations, which main seed predator is a generalist.

Author Contributions

KH conceived the ideas and designed methodology; CH, MY, MT and KM collected the data;
KH analyzed the data and wrote the manuscript. All authors contributed the drafts and gave
final approval for publication.

References

Barton K (2020) Mu-MIn: Multi-model inference. https://cran.r-
project.org/web/packages/MuMIn/index.html.

Bogdziewicz M, Espelta JM, Munoz A, Aparicio JM, Bonal R (2018) Effectiveness of
 predator satiation in masting oaks is negatively affected by conspecific density.

Oecologia 186:983-993. https://doi.org/10.1007/s00442-018-4069-7
Bogdziewicz M, Pesendorfer M, Crone EE, Perez-Izquierdo C, Bonal R (2020) Flowering synchrony drives reproductive success in a wind-pollinated tree. Ecol. Lett. 23:1820-1826. https://doi.org/10.1111/ele.13609

Bogdziewicz M et al. (2021) Seed predation selects for reproductive variability and synchrony in perennial plants. New Phytol. 229:2357-2364. https://doi.org/10.1111/nph.16835

Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New York, NY USA

Crone EE, Lesica P (2006) Pollen and water limitation in Astragalus scaphoides, a plant that flowers in alternate years. Oecologia 150:40-49. https://doi.org/10.1007/s00442-006-0506-0

Crone EE, Rapp JM (2014) Resource depletion, pollen coupling, and the ecology of mast seeding. Ann. N. Y. Acad. Sci. 1322:21-34. https://doi.org/10.1111/nyas.12465

Espelta JM, Cortes P, Molowny-Horas R, Sanchez-Humanes B, Retana J (2008) Masting mediated by summer drought reduces acorn predation in Mediterranean oak forests. Ecology 89:805-817. https://doi.org/10.1890/07-0217.1
Fukumoto H, Kajimura H (2001) Guild structures of seed insects in relation to acorn development in two oak species. Ecol. Res. 16:145-155. https://doi.org/10.1111/j.1440-1703.2001.00380.pp.x

Fukumoto H, Kajimura H (2005) Cumulative effects of mortality factors on reproductive output in two co-occurring *Quercus* species: which mortality factors most strongly reduce reproductive potential? Can. J. Bot. 83:1151-1158. https://doi.org/10.1139/b05-090

Geological Survey of Japan AIST (2015) Seamless digital geological map of Japan 1:200,000. May 29, 2015 version.

Hashizume H, Taniguchi S, Lee JH (2003) Initiation and development of flower buds in *Quercus serrata* Thunb. Appl. For. Sci. 12:29-33.

Hirayama D, Okada M, Nanami S, Itoh A (2019) Correlation between the shoot-cutting behavior of the acorn weevil and the reproductive traits of host fagaceous trees. Plant Species Biol. 34:184-191. https://doi.org/10.1111/1442-1984.12246

Hirayama K, Imai T, Enomoto K, Tachikawa C (2017) Annual variability in acorn production and pre-dispersal damage to acorns of four fagaceous species in two adjacent forest
stands with different mixed ratios in western Japan. Popul. Ecol. 59:343-354.

https://doi.org/10.1007/s10144-017-0595-0

Imai T, Hirayama K (2013) Oviposition characteristics of *Mechoris ursulus* Roelofs on acorns of *Quercus variabilis* and *Quercus serrata* in a secondary urban forest, Kyoto City. Forest Pest 62:3-9.

Ims RA (1990) The ecology and evolution of reproductive synchrony. Trends Ecol. Evol. 5:135-140. https://doi.org/10.1016/0169-5347(90)90218-3

Isagi Y, Sugimura K, Sumida A, Ito H (1997) How does masting happen and synchronize? J. Theor. Biol. 187:231-239. https://doi.org/10.1006/jtbi.1997.0442

Iwatsuki K, Boufford DE, Ohba H (2006) Flora of Japan, Vol. IIa. Kodansha, Tokyo

Jordano P (1989) Pre-dispersal biology of *Pistacia lentiscus* (Anacardiaceae): cumulative effects on seed removal by birds. Oikos 55:375-386. https://doi.org/10.2307/3565598

Kelly D (1994) The evolutionary ecology of mast seeding. Trends Ecol. Evol. 9:465-470. https://doi.org/10.1016/0169-5347(94)90310-7

Kelly D et al. (2013) Of mast and mean: differential-temperature cue makes mast seeding insensitive to climate change. Ecol. Lett. 16:90-98. https://doi.org/10.1111/ele.12020
Kelly D, Sork VL (2002) Mast seeding in perennial plants: why, how, where? Annu. Rev. Ecol. Syst. 33:427-447. https://doi.org/10.1146/annurev.ecolsys.33.020602.095433

Kelly D, Sullivan JJ (1997) Quantifying the benefits of mast seeding on predator satiation and wind pollination in *Chionochloa pallens* (Poaceae). Oikos 78:143-150. https://doi.org/10.2307/3545810

Koenig WD et al. (2003) Dissecting components of population-level variation in seed production and the evolution of masting behavior. Oikos 102:581-591. https://doi.org/10.1034/j.1600-0706.2003.12272.x

Koenig WD, Knops JM, Carmen WJ, Pearse IS (2015) What drives masting? The phenological synchrony hypothesis. Ecology 96:184-192. https://doi.org/10.1890/14-0819.1

Koenig WD, Knops JMH (2014) Environmental correlates of acorn production by four species of Minnesota oaks. Popul. Ecol. 56:63-71. https://doi.org/10.1007/s10144-013-0408-z

0408-z
Kon H, Noda T, Terazawa K, Koyama H, Yasaka M (2005) Evolutionary advantages of mast seeding in *Fagus crenata*. J. Ecol. 93:1148-1155. https://doi.org/10.1111/j.1365-2745.2005.01040.x

Matsuda K (1982) Studies on the early phase of the regeneration of Konara oak (*Quercus serrata* Thunb.) secondary forest I. Development and premature abscissions of Konara oak acorns. Japanese J. Ecol. 32:293-302. https://doi.org/10.18960/seitai.32.3_293

Miyazaki Y et al. (2014) Nitrogen as a key regulator of flowering in *Fagus crenata*: understanding the physiological mechanism of masting by gene expression analysis. Ecol. Lett. 17:1299-1309. https://doi.org/10.1111/ele.12338

Montesinos D, García-Fayos P, Verdú M (2012) Masting uncoupling: mast seeding does not follow all mast flowering episodes in a dioecious juniper tree. Oikos 121:1725-1736. https://doi.org/10.1111/j.1600-0706.2011.20399.x

Moreira X et al. (2019) Weather cues associated with masting behavior dampen the negative autocorrelation between past and current reproduction in oaks. Am. J. Bot. 106:51-60. https://doi.org/10.1002/ajb2.1210
Norton DA, Kelly D (1988) Mast seeding over 33 years by *Dacrydium cupressinum* Lamb. (rimu) (Podocarpaceae) in New Zealand: the importance of economies of scale. Funct. Ecol. 2:399-408. https://doi.org/10.2307/2389413

Pearse IS, Koenig WD, Kelly D (2016) Mechanisms of mast seeding: resources, weather, cues, and selection. New Phytol. 212:546-562. https://doi.org/10.1111/nph.14114

Perez-Ramos IM, Ourcival JM, Limousin JM, Rambal S (2010) Mast seeding under increasing drought: results from a long-term data set and from a rainfall exclusion experiment. Ecology 91:3057-3068. https://doi.org/10.1890/09-2313.1

Pesendorfer MB, Koenig WD, Pearse IS, Knops JMH, Funk KA, Whitney K (2016) Individual resource limitation combined with population-wide pollen availability drives masting in the valley oak (*Quercus lobata*). J. Ecol. 104:637-645. https://doi.org/10.1111/1365-2745.12554

Podoler H, Rogers D (1975) A new method for the identification of key factors from life-table data. J. Anim. Ecol. 44:85-114. https://doi.org/10.2307/3853

Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, Cambridge
R Core Team (2021) R: A language and environment for statistical computing. R foundation
for statistical computing. https://www.R-project.org/.

Satake A, Iwasa Y (2000) Pollen coupling of forest trees: forming synchronized and periodic
reproduction out of chaos. J. Theor. Biol. 203:63-84.
https://doi.org/10.1006/jtbi.1999.1066

Schermer E et al. (2019) Pollen limitation as a main driver of fruiting dynamics in oak
populations. Ecol. Lett. 22:98-107. https://doi.org/10.1111/ele.13171

Shibata M et al. (2002) Synchronized annual seed production by 16 principal tree species in a
temperate deciduous forest, Japan. Ecology 83:1727-1742.
https://doi.org/10.2307/3071991

Soil Survey Staff (2010) Keys to soil taxonomy, 11th edn. Natural Resource Conservation
Service, Department of Agriculture, Washington DC

Sork VL, Bramble J, Sexton O (1993) Ecology of mast-fruiting in three species of north
American deciduous oaks. Ecology 74:528-541. https://doi.org/10.2307/1939313

Traveset A (1994) Cumulative effects on the reproductive output of Pistacia terebinthus
(Anacardiaceae). Oikos 71:152-162. https://doi.org/10.2307/3546182
Xiao Z et al. (2017) Seed-predator satiation and Janzen-Connell effects vary with spatial scales for seed-feeding insects. Ann. Bot. 119:109-116. https://doi.org/10.1093/aob/mcw224
Table 1 Mean individual variability ($\overline{CV}_i$) and mean synchrony between trees ($\overline{r}_p$) in the annual number of female flowers and sound acorns of *Q. serrata*.

|                | Female flowers | Sound acorns    |
|----------------|----------------|-----------------|
| $\overline{CV}_i$ | 0.50 (0.36-0.58) | 1.51 (1.02-1.72) |
| $\overline{r}_p$  | 0.32 (-0.16-0.27) | 0.68 (-0.16-0.24) |

Numbers in parentheses indicate 95% confidence intervals using the bootstrap method.
Table 2 The best model predicting the annual number of female flowers and survival rate from female flowers to sound acorns from the weather variables using a GLMM.

|                           | Estimate | SE  | z-Value | P    |
|---------------------------|----------|-----|---------|------|
| **The number of female flowers** |          |     |         |      |
| (Intercept)               | 6.599    | 0.142 | 46.46   | <0.001 |
| Changes in average temperature in April from one year before flowering to the flowering year | 0.222    | 0.073 | 3.06    | 0.002 |
| **The survival rate from female flowers to sound acorns** |          |     |         |      |
| (Intercept)               | -41.410  | 4.881 | -8.57   | <0.001 |
| average temperature in June | 1.741    | 0.222 | 7.85    | <0.001 |
Table 3 The results of LMMs test indicating the regression of each reproductive loss due to main factors on the total pre-dispersal loss ($K$).

|                          | Estimate | SE  | $t$-Value | $P$   |
|--------------------------|----------|-----|-----------|-------|
| **Abortion of female flowers and immature acorns** |          |     |           |       |
| (Intercept)              | 0.361    | 0.060 | 6.029    | <0.001|
| Total $K$                | -0.019   | 0.025 | -0.783   | 0.439 |
| **Damaged by cynipid wasps** |          |     |           |       |
| (Intercept)              | -0.015   | 0.013 | -1.135   | 0.268 |
| Total $K$                | 0.026    | 0.006 | 4.427    | <0.001|
| **Sap suction by adult weevils, mainly by *M. ursulus*** |          |     |           |       |
| (Intercept)              | -0.010   | 0.100 | -0.103   | 0.919 |
| Total $K$                | 0.274    | 0.050 | 5.445    | <0.001|
| **Damaged by moth larvae** |          |     |           |       |
| (Intercept)              | -0.041   | 0.039 | -1.077   | 0.288 |
| Total $K$                | 0.108    | 0.020 | 5.336    | <0.001|
| **Oviposition by weevils other than *M. ursulus*, mainly by *K. rectirostris*** |          |     |           |       |
| (Intercept)              | 0.036    | 0.032 | 1.112    | 0.273 |
| Total $K$                | 0.030    | 0.017 | 1.755    | 0.087 |
| **Oviposition by *M. ursulus*** |          |     |           |       |
| (Intercept)              | -0.199   | 0.118 | -1.680   | 0.101 |
| Total $K$                | 0.448    | 0.062 | 7.218    | <0.001|
**Figure legends**

**Fig. 1** Annual variability in the number of (a) female flowers and (b) sound acorns for each individual tree.

**Fig. 2** The relationship between the annual number of female flowers and sound acorns for each individual tree over seven years. Different letters indicate different individuals. The regression line is a predicted relationships based upon the result of the GLMM ($P < 0.05$) testing the effects of the number of female flowers per year ($t_1$) on the number of sound acorns per year ($t_i$). Individual trees were treated as a random factor.

**Fig. 3** The relationship of the proportion of the female organs damaged by insects during one year to (a) the annual number of female flowers and (b) the ratio of the number of female flowers in the current year to that in the previous year for each individual. Different letters indicate different individuals. When the number of flowers was zero, the data were excluded. The regression line is a predicted relationships based upon the result of the GLMM ($P < 0.05$)
testing the effects of the annual number of female flowers per year \((t_i)\) on the proportion of the organs damaged by insects during a year \((t_i)\). Individual trees were treated as a random factor.

**Fig. 4** Reduction in the number of female reproductive organs for each individual throughout the successive stages for each observed year. Stage 1, female flowers (i.e., initial number of the organs); stage 2, organs remaining after abortion in the immature stage; stage 3, organs remaining after being damaged by cynipid wasps; stage 4, organs remaining after being attacked through sap suction by adult weevils; stage 5, organs remaining after being damaged by moth larvae; stage 6, organs remaining after oviposited by weevils other than *Mechoris ursulus*; stage 7, organs remaining after oviposited by *M. ursulus*; stage 8, organs remaining after other damage mainly due to animals (i.e., number of sound acorns).
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Supplementary Information

Annual variability in sound acorn production was regulated by a generalist seed predator weevil in *Quercus serrata*

Kimiko Hirayama\(^1\)*, Kenta Mizo\(^1\), Manaka Tatsuno\(^2\), Mizuki Yoshikawa\(^2\), Chieri Tachikawa\(^2\)

\(^1\) Graduate School of Life and Environmental Sciences, Kyoto Prefectural University,
Hangi-cho 1-5, Shimogamo, Sakyo-ku, Kyoto, Japan

\(^2\) Faculty of Life and Environmental Sciences, Kyoto Prefectural University,
Hangi-cho 1-5, Shimogamo, Sakyo-ku, Kyoto, Japan

*Corresponding author: Kimiko Hirayama

Email: khirayama@gmail.com
**Online resource 1** Data of weather variables which were analysed in relation to the production of female flowers.

|                       | Flowering year ($t_i$) |
|-----------------------|------------------------|
|                       | 2014  | 2015  | 2016  | 2017  | 2018  | 2019  | 2020  |
| AprT($t_{i-1}$)       | average Apr. temp. in year ($t_{i-1}$) |
|                       | 12.1  | 12.3  | 13.5  | 14.2  | 12.8  | 14.5  | 11.8  |
| ΔAprT($t_{i-1}$)      | change in average Apr. temp. from year ($t_{i-2}$) to year ($t_{i-1}$)*1 |
|                       | -0.7  | 0.2   | 1.1   | 0.7   | -1.3  | 1.7   | -2.6  |
| AprP($t_{i-1}$)       | Apr. precipitation in year ($t_{i-1}$)*2 |
|                       | 111.5 | 85.0  | 170.0 | 163.0 | 149.5 | 157.0 | 102.5 |
| ΔAprP($t_{i-1}$)      | change in Apr. precipitation from year ($t_{i-2}$) to year ($t_{i-1}$)*3 |
|                       | -23.0 | -26.5 | 85.0  | -7.0  | -13.5 | 7.5   | -54.5 |
| MayT($t_{i-1}$)       | average May temp. in year ($t_{i-1}$) |
|                       | 18.2  | 17.7  | 19.1  | 18.9  | 19.0  | 18.0  | 18.5  |
| ΔMayT($t_{i-1}$)      | change in average May temp. from year ($t_{i-2}$) to year ($t_{i-1}$) |
|                       | 0.9   | -0.5  | 1.4   | -0.2  | 0.1   | -1.0  | 0.5   |
| MayP($t_{i-1}$)       | May precipitation in year ($t_{i-1}$) |
|                       | 52.0  | 78.5  | 133.0 | 144.0 | 74.0  | 214.0 | 87.5  |
| ΔMayP($t_{i-1}$)      | change in May precipitation from year ($t_{i-2}$) to year ($t_{i-1}$)*1 |
|                       | -6.0  | 26.5  | 54.5  | 11.0  | -70.0 | 140.0 | -126.5|
| JunT($t_{i-1}$)       | average June temp. in year ($t_{i-1}$) |
|                       | 23.7  | 22.4  | 20.9  | 21.5  | 20.3  | 21.5  | 21.8  |
| ΔJunT($t_{i-1}$)      | change in average June temp. from year ($t_{i-2}$) to year ($t_{i-1}$) |
|                       | 2.3   | -1.2  | -1.6  | 0.6   | -1.1  | 1.2   | 0.3   |
| JunP($t_{i-1}$)       | June precipitation in year ($t_{i-1}$)*2 |
|                       | 169.0 | 64.5  | 281.5 | 261.5 | 205.0 | 251.0 | 140.5 |
| ΔJunP($t_{i-1}$)      | change in June precipitation from year ($t_{i-2}$) to year ($t_{i-1}$)*3 |
|                       | -117.0 | -104.5 | 217.0 | -20.0 | -56.5 | 46.0   | -110.5 |

2
|                        | average July temp. in year \((t_{i-1})\) | \(\Delta JulT\) \((t_{i-1})\) | \(\Delta JulP\) \((t_{i-1})\) | \(\Delta AugT\) \((t_{i-1})\) | \(\Delta AugP\) \((t_{i-1})\) | \(\Delta SepT\) \((t_{i-1})\) | \(\Delta SepP\) \((t_{i-1})\) | \(\Delta MarT\) \((t_{i})\) | \(\Delta MarP\) \((t_{i})\) |
|------------------------|----------------------------------------|-------------------------------|------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|
| JulT\((t_{i-1})\)      | 28.1                                   | 25.8                          | 25.6                         | 26.1                          | 26.9                          | 27.9                          | 25.0                          | 28.6                          | 26.0                          |
| JulP\((t_{i-1})\)      | 156.5                                  | 129.5                         | 447.5                        | 113.0                         | 243.0                         | 487.0                         | 253.0                         | 102.5                         | 458.0                         |
| \(\Delta JulT\) \((t_{i-1})\) | 1.7                                    | -2.3                          | -0.2                         | 0.5                           | 0.8                           | 1.0                           | -2.9                          | 0.8                           | -2.6                          |
| \(\Delta JulP\) \((t_{i-1})\)  | -262.0                                 | -27.0                         | 318.0                        | -334.5                        | 130.0                         | 244.0                         | -234.0                        | -46.5                         | 355.5                         |
| \(\Delta AugT\) \((t_{i-1})\) | 0.8                                    | -2.6                          | 0.6                          | 0.7                           | -0.4                          | 0.6                           | 0.1                           | 9.5                           | -2.7                          |
| \(\Delta AugP\) \((t_{i-1})\) | -46.5                                  | 355.5                         | -249.0                       | -83.0                         | 13.0                          | -12.0                         | 246.5                         | -6.5                          | 112.5                         |
| \(\Delta SepT\) \((t_{i-1})\) | -0.9                                   | -2.7                          | -0.1                         | 2.5                           | -2.2                          | 0.4                           | 2.6                           | 7.1                           | 7.5                           |
| \(\Delta SepP\) \((t_{i-1})\) | 272.0                                  | -293.5                        | 79.5                         | 191.0                         | -210.0                        | 228.0                         | -323.5                        | -1.3                          | 0.5                           |
| \(\Delta MarT\) \((t_{i})\) | -1.3                                   | 0.5                           | 0.5                          | -1.9                          | 2.9                           | -1.6                          | 1.2                           | 18.0                          | -9.0                          |
| \(\Delta MarP\) \((t_{i})\) | 167.0                                  | 158.0                         | 62.5                         | 68.5                          | 143.5                         | 77.5                          | 99.0                          | 100.5                         | -9.0                          |
|                         | year $(t_i-1)$ to year $(t_i)$ | AprT$(t_i)$ | ΔAprT$(t_i)$ | AprP$(t_i)$ | ΔAprP$(t_i)$ |
|-------------------------|--------------------------------|------------|-------------|------------|-------------|
| average Apr. temp. in year $(t_i)$ | 12.3 13.5 14.2 12.8 14.5 11.8 11.0 | 0.2       | 1.1 0.7 -1.3 1.7 -2.6 -0.8 | 85.0 170.0 163.0 149.5 157.0 102.5 126.0 | -26.5 85.0 -7.0 -13.5 7.5 -54.5 23.5 |

Temperature is in °C; precipitation is in mm. Variables marked *1, *2, and *3 were highly correlated with each other and had been found to have a high VIF value (>10). We adopted one variable from each pair.
Online Resource 2 Data of weather variables which were analysed in relation to survival rate from female flowers to sound acorns.

|                | Flowering and acorn maturing year ($t_i$) |
|----------------|-------------------------------------------|
|                | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 |
| Apr15T ($t_i$) | 14.6  | 16.3  | 15.5  | 15.4  | 15.7  | 14.8  | 14.3  |
| Apr15P($t_i$)  | 82.5  | 67.5  | 106.5 | 102.0 | 206.5 | 59.5  | 72.5  |
| AprT($t_i$)    | 12.3  | 13.5  | 14.2  | 12.8  | 14.5  | 11.8  | 11.0  |
| AprP($t_i$)    | 85.0  | 170.0 | 163.0 | 149.5 | 157.0 | 102.5 | 126.0 |
| MayT($t_i$)    | 17.7  | 19.1  | 18.9  | 19.0  | 18.0  | 18.5  | 18.5  |
| MayP($t_i$)    | 78.5  | 133.0 | 144.0 | 74.0  | 214.0 | 87.5  | 116.5 |
| JunT($t_i$)    | 22.4  | 20.9  | 21.5  | 20.3  | 21.5  | 21.8  | 22.7  |
| JunP($t_i$)    | 64.5  | 281.5 | 261.5 | 205.0 | 251.0 | 140.5 | 271.0 |
| JulT($t_i$)    | 25.8  | 25.6  | 26.1  | 26.9  | 27.9  | 25.0  | 24.2  |
| JulP($t_i$)    | 129.5 | 447.5 | 113.0 | 243.0 | 487.0 | 253.0 | 636.0 |
| AugT($t_i$)    | 26.0  | 26.6  | 27.3  | 26.9  | 27.6  | 27.7  | 28.7  |
| AugP($t_i$)    | 458.0 | 209.0 | 126.0 | 139.0 | 127.0 | 373.5 | 17.5  |
| SepT($t_i$)    | 21.4  | 21.3  | 23.7  | 21.5  | 21.9  | 24.5  | 23.7  |
| SepP($t_i$)    | 112.5 | 192.0 | 383.0 | 173.0 | 401.0 | 77.5  | 131.0 |

Temperature is in °C; precipitation is in mm.
Online Resource 3 The results of GLMMs testing the effects of the number of female flowers per year ($t_i$), in year ($t_{i-1}$) and the number of sound acorns per year ($t_{i-1}$), on the number of sound acorns per year ($t_i$). Individual trees were treated as a random factor.

|                          | Estimate | SE    | z-Value | P    |
|--------------------------|----------|-------|---------|------|
| (Intercept)              | -7.66    | 3.11  | -2.46   | 0.014|
| $log_{10}$ [the number   | 3.94     | 1.08  | 3.64    | <0.001|
| of female flowers in     |          |       |         |      |
| year ($t_i$) +1]         |          |       |         |      |
| (Intercept)              | 6.441    | 2.463 | 2.61    | 0.009|
| $log_{10}$ [the number   | -1.325   | 0.891 | -1.49   | 0.137|
| of female flowers in     |          |       |         |      |
| year ($t_{i-1}$) +1]     |          |       |         |      |
| (Intercept)              | 3.352    | 0.619 | 5.41    | <0.001|
| $log_{10}$ [the number   | -0.474   | 0.558 | -0.85   | 0.40 |
| of sound acorns in       |          |       |         |      |
| year ($t_{i-1}$) +1]     |          |       |         |      |
The results of GLMMs testing the effects of the number of female flowers per year \((t_{i-1})\) and the number of sound acorns per year \((t_{i-1})\) on the number of female flowers per year \((t_i)\). Individual trees were treated as a random factor.

|                         | Estimate | SE  | z-Value | P    |
|-------------------------|----------|-----|---------|------|
| (Intercept)             | 6.176    | 0.699 | 8.83    | <0.001 |
| \(\log_{10} \) [the number of female flowers in year \((t_{i-1}) +1]\] | 0.147    | 0.250 | 0.59    | 0.56  |
| (Intercept)             | 6.757    | 0.202 | 33.53   | <0.001 |
| \(\log_{10} \) [the number of sound acorns in year \((t_{i-1}) +1]\] | -0.222   | 0.165 | -1.34   | 0.18  |
Online Resource 5 The results of GLMMs testing the effects of the annual number of female flowers per year ($t_i$) and the ratio of the annual number of female flowers per year ($t_i$) to the year before ($t_{i-1}$) on the ratio of the organs damaged by insects during a year ($t_i$). Individual trees were treated as a random factor.

|                          | Estimate | SE  | z-Value | P       |
|--------------------------|----------|-----|---------|---------|
| (Intercept)              | -0.474   | 0.620 | -0.76   | 0.44    |
| $\log_{10}$ [the number of female flowers in year ($t_i$)] | -0.132   | 0.218 | -0.61   | 0.54    |
| (Intercept)              | -0.800   | 0.085 | -9.42   | <0.001  |
| $\log_{10}$ [the number of female flowers in year ($t_i$) / year ($t_{i-1}$)] | -0.099   | 0.142 | -0.70   | 0.49    |
Online Resource 6 Five explanatory variables selected based on lower AIC of GLMM models which tested the relationship between the annual female flowers and each of weather variables. Individual trees were treated as a random factor. See Online Resource 1 for an abbreviation of the weather parameters.

|                | (Intercept) | Estimate | SE   | z-Value | P    | AIC  |
|----------------|-------------|----------|------|---------|------|------|
| ΔAprT (tₙ)     | 6.599       | 0.222    | 0.073| 3.064   | 0.002| 632.7|
| MayP(tₙ₋₁)     | 7.224       | -0.006   | 0.002| -2.925  | 0.003| 633.5|
| ΔMayT (tₙ₋₁)   | 6.555       | 0.269    | 0.147| 1.837   | 0.066| 637.2|
| AprT(tₙ₋₁)     | 9.366       | -0.213   | 0.119| -1.783  | 0.075| 637.5|
| AprT(tₙ)       | 4.650       | 0.151    | 0.088| 1.712   | 0.087| 637.7|

Temperature is in °C; precipitation is in mm.
Online Resource 7 The top models extracted from the full model using the selected five explanatory variables are shown based on the results of AIC values. Numerical values indicated estimated values of the models. See Online Resource 1 for an abbreviation of the weather parameters.

|          | AprT($t_{t-1}$) | ΔMayT ($t_{t-1}$) | MayP($t_{t-1}$) | AprT($t_t$) | ΔAprT ($t_t$) | AIC |
|----------|-----------------|-------------------|----------------|-------------|----------------|-----|
| 6.599    |                 |                   |                |             | 0.222          | 632.7 |
| 5.448    |                 | -0.005            | 0.133          |             | 633.0          |
| 7.224    |                 | -0.006            |                |             | 633.5          |
| 6.909    |                 | -0.003            | 0.143          |             | 633.6          |
| 3.776    | 0.308           | -0.011            |                |             | 633.8          |
| 6.568    | 0.136           |                   |                | 0.189       | 633.8          |

Temperature is in °C; precipitation is in mm.
Online Resource 8 Five explanatory variables selected based on lower AIC of GLMM models which tested the relationship between the survival rate from female flowers to sound acorns and each of weather variables. Individual trees were treated as a random factor. See Online Resource 2 for an abbreviation of the weather parameters.

|              | (Intercept) | Estimate | SE   | z-Value | P       | AIC   |
|--------------|-------------|----------|------|---------|---------|-------|
| JunT(t)      | -41.407     | 1.741    | 0.222| 7.850   | <0.001  | 323.9 |
| Apr15T(t)    | 20.998      | -1.609   | 0.292| -5.511  | <0.001  | 338.9 |
| AprP(t)      | 1.512       | -0.037   | 0.007| -4.954  | <0.001  | 339.2 |
| MayT(t)      | 34.766      | -2.063   | 0.519| -3.979  | <0.001  | 344.7 |
| AprT(t)      | 6.761       | -0.783   | 0.192| -4.075  | <0.001  | 346.4 |

Temperature is in °C; precipitation is in mm.
Online Resource 9 The top models extracted from the full model using the selected five explanatory variables are shown based on the results of AIC values. Numerical values indicated estimated values of the models. See Online Resource 2 for an abbreviation of the weather parameters.

| (Intercept) | Apr15T(t_i) | AprT(t_i) | AprP(t_i) | MayT(t_i) | JunT(t_i) | AIC  |
|-------------|-------------|-----------|-----------|-----------|-----------|------|
| -22.960     | 1.397       | -0.758    |           | -1.285    | 1.449     | 322.5|
| -41.410     |             |           |           |           | 1.741     | 323.9|
| -32.790     |             | -0.011    |           |           | 1.409     | 323.9|
| -48.670     | 0.637       |           | -0.016    | -0.517    | 1.727     | 324.4|
| -26.430     |             |           | -0.517    | 1.488     | 324.5     |
| -23.640     | 1.401       | -0.750    | -0.001    | -1.260    | 1.455     | 324.5|

Temperature is in °C; precipitation is in mm.
The proportion of each reproductive loss during the pre-dispersal phase and the proportion of each reproductive loss for each individual over seven years. Different letters indicate different individuals. When the number of flowers was zero, the data were excluded.

**Online Resource 10** The relationship between the sum of reproductive loss during the pre-dispersal phase and the proportion of each reproductive loss for each individual over seven years. Different letters indicate different individuals. When the number of flowers was zero, the data were excluded.