Calculating error bars for neutrino mixing parameters

H. R. Burroughs¹, B. K. Cogswell¹, J. Escamilla-Roa¹, D. C. Latimer², and D. J. Ernst¹
¹Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235 and ²Department of Physics, Reed College, Portland, Oregon 97202

One goal of contemporary particle physics is to determine the mixing angles and mass-squared differences that constitute the phenomenological constants that describe neutrino oscillations. Of great interest are not only the best fit values of these constants but also their errors. Some of the neutrino oscillation data is statistically poor and cannot be treated by normal (Gaussian) statistics. To extract confidence intervals when the statistics are not normal, one should not utilize the value for $\Delta \chi^2$ versus confidence level taken from normal statistics. Instead, we propose that one should use the normalized likelihood function as a probability distribution; the relationship between the correct $\Delta \chi^2$ and a given confidence level can be computed by integrating over the likelihood function. This allows for a definition of confidence level independent of the functional form of the χ^2 function; it is particularly useful for cases in which the minimum of the χ^2 function is near a boundary. We present two pedagogic examples and find that the proposed method yields confidence intervals that can differ significantly from those obtained by using the value of $\Delta \chi^2$ from normal statistics. For example, we find that for the first data release of the T2K experiment the probability that θ_{13} is not zero, as defined by the minimum confidence level at which the value of zero is not allowed, is 92%. Using the value of $\Delta \chi^2$ at zero and assigning a confidence level from normal statistics, a common practice, gives the over estimation of 99.5%.

PACS numbers: 14.60.Pq
Keywords: neutrino oscillations, three neutrinos, θ_{13}

Neutrino oscillations is the unique experimentally observed phenomenon that goes beyond the standard model of the electroweak interaction. Assuming the observations can be understood within the context of three neutrino flavors, a coherent picture of the global data is sought in terms of two mass-squared differences, three mixing angles, and one CP phase. In order to extract these parameters from the data, a model of each experiment is developed. The model results for the experiment are then compared to the data through a choice of a particular statistic, often expressed as a χ^2 function. For a sufficiently large data set, normal (Gaussian) statistics can be assumed, and the χ^2 function is defined as:

$$
\chi^2(\{a_j\}) =: \sum_i \left(\frac{n_i^{\text{th}}(\{a_j\}, \{c_k\}) - n_i^{\text{exp}})^2}{\sigma_i^2} \right) + \sum_k \left(\frac{(c_k - c_k^{\text{th}})^2}{\sigma_k^2} \right),
$$

(1)

where $\{a_j\}$ is a set of parameters, the mixing angles and mass-squared differences, to be determined; $\{c_k\}$ is a set of systematic errors; n_i^{exp} are the experimental data points; $n_i^{\text{th}}(\{a_j\}, \{c_k\})$ are the theoretical predictions of the data; σ_i are the statistical errors for the data points; c_k^{th} are the best estimates of the systematic errors; and σ_k the errors for the systematics. The systematic error parameters are usually treated as nuisance parameters and $\chi^2(\{a_j\})$ is minimized with respect to these parameters, often using the pull method [4], for each set of the parameters $\{a_j\}$. The best fit parameters are then the values of the a_j which minimize $\chi^2(\{a_j\})$.

Neutrino oscillations require that we must also deal with small statistical samples. In particular, the recent T2K results [2] report a total of six observed neutrino events, binned by energy into sets containing zero, one, or two counts each. Despite this paucity, the data is a significant indicator that θ_{13} is non-zero. The Super-K atmospheric data afford another example. Though it provides relatively stringent bounds upon the mixing angle θ_{23} and the “atmospheric” mass-squared difference, the data also impact the determination of θ_{13}. The Super-K experiment provides an upper bound for the angle and shows a slight preference for negative values of θ_{13} [3, 4].

The sensitivity of the data to θ_{13} can be traced to sub-GeV neutrinos with very long baselines [5] and the MSW resonances that occur for normal hierarchy in the 3 to 7 GeV range [4]. The statistical significance of the data in these two regions is low and the resulting χ^2 is not well represented by a quadratic so that the assumption of Gaussian statistics is tenuous.

For small sample sizes, it is standard usage to employ a χ^2 function defined in terms of Poisson statistics,

$$
\chi^2(\{a_j\}) =: \sum_i 2 \left(\frac{n_i^{\text{th}}(\{a_j\}, \{c_k\}) - n_i^{\text{exp}}}{n_i^{\text{exp}}} \right) \log \left(\frac{n_i^{\text{th}}(\{a_j\}, \{c_k\})}{n_i^{\text{exp}}} \right) + \sum_k \left(\frac{(c_k - c_k^{\text{th}})^2}{\sigma_k^2} \right),
$$

(2)

where b_i is a theoretical estimate of background events. The best fit parameters remain the values of the a_j at the minimum value of $\chi^2(\{a_j\})$. In addition to being valid for small sample sizes, this χ^2 allows for the treatment of
the situation where it is not possible to cleanly separate the signal from the background. Background estimates are usually assessed through Monte Carlo simulations of the experimental detection and then inserted into Eq. (2).

For large sample sizes, the Poisson χ^2 limits to the normal statistic χ^2, thus allowing its use for data where some bins have good statistics but some have poor statistics, as is the case for atmospheric data.

Herein, we address the question as to how one should extract the errors on these parameters at a given confidence level. A common practice is to use the value of $\Delta \chi^2 = \chi^2 - \chi^2_{\text{min}}$ that corresponds to the desired confidence level as found from normal statistics, and then define the allowed region for the parameter a as lying within the interval $[a_o - \delta_1, a_o + \delta_2]$ where $\chi^2(a_o \pm \delta_{1,2}) = \chi^2_{\text{min}} + \Delta \chi^2$ with a_o corresponding to the best fit. For example, in a review on θ_{13} phenomenology [6], the authors quote the 90% CL for $\sin^2 \theta_{13}$ computed by several groups. As this mixing angle is small and the parametrization of the mixing angle is strictly positive, it is near zero, the boundary of the parameter space. By observation, it is apparent that the χ^2 for this parameter is manifestly not a quadratic and thus does not correspond to normal statistics. The authors state that their results on θ_{13} should be taken with some grain of salt, and in particular the numbers given for various confidence levels should be understood only as approximate, and should always be understood in terms of the $\Delta \chi^2$ value.

We propose a method for extracting allowed regions for a single parameter at a given confidence level that does not depend on the use of normal statistics. Instead, we take a Bayesian approach and interpret the normalized likelihood function with a flat prior as a probability distribution function. The likelihood function, \mathcal{L} is defined in terms of the χ^2 function by

$$\chi^2(\{a_i\}) = -2 \log \mathcal{L}(\{a_i\}).$$ \hspace{1cm} (3)

For a single parameter a, normal statistics give $\chi^2 = (a - a_o)^2/\sigma^2$ and $\mathcal{L} = \exp(-(a - a_o)^2/2 \sigma^2)$, where σ is the one standard deviation error for a. For a compact parameter space, with the mixing angles, one can assuredly normalize \mathcal{L}; for the mass-squared differences, the likelihood function falls off rapidly enough so that normalization is possible for these parameters as well. We will hereafter work with a normalized likelihood function, $\overline{\mathcal{L}}$.

We begin with a brief summary of marginalization, as this leads directly to our proposal for determining error bars. Generally, the χ^2 function and the maximum likelihood function are a function of n parameters, $\{a_i\}$. Here these are the two mass-squared differences and the three mixing angles. Suppose we wish to extract information about one particular parameter, say a_1, in light of the knowledge of the remaining $n - 1$ parameters. Marginalization tells us how to do so

$$\overline{\mathcal{L}}(a_1) = \int da_2 da_3 \ldots da_n \overline{\mathcal{L}}(\{a_i\}).$$ \hspace{1cm} (4)

This follows simply because the normalized likelihood function is a probability distribution function; hence, $\overline{\mathcal{L}}(a_1)$ is also a probability distribution function.

Dropping the subscript 1 for simplicity, we note that the probability \mathcal{P} that the parameter a lies between a_{min} and a_{max} is

$$\mathcal{P}(a_{\text{min}}, a_{\text{max}}) = \int_{a_{\text{min}}}^{a_{\text{max}}} \overline{\mathcal{L}}(a) da.$$ \hspace{1cm} (5)

We choose two pedagogic examples to demonstrate our results.

For Example 1, we consider the extraction of θ_{13} with $-\pi/2 \leq \theta_{13} \leq \pi/2$ from the global analysis in Ref. [2]. [Note: This analysis does not contain the recent data...]

![FIG. 1: $\Delta \chi^2$ versus the mixing angle θ_{13} as taken from the global analysis given in Ref. [3].](image1)

![FIG. 2: $\Delta \chi^2$ versus $\sin^2 2\theta_{13}$ for the T2K first data release [2] as taken from the analysis in Ref. [3]. The curve depicted is calculated for positive θ_{13} and normal hierarchy.](image2)
find that there is a 90% probability that \(\sin^2 2\theta_{13} \) is not zero. Similarly for Fig. 2 we can show \(\Delta \chi^2 \) is not quadratic, but the minimum is near the lower bound of zero.

In Figs. 3 and 4, we examine the relationship between \(\Delta \chi^2 \) and the confidence level for our two examples, comparing our results with those from normal statistics. In both figures, the [red] dashed curves utilize the normalized likelihood function, while the [blue] solid curves employ normal statistics. In Table I we present the same information for some commonly used confidence levels.

A simple application of Eq. 5 would be to ask what is the probability calculated from Fig. 1 that \(\theta_{13} \) is less than zero. The result is 80%. Similarly for Fig. 2 we can find that there is a 90% probability that \(\sin^2 2\theta_{13} \leq 0.17 \).

To define a confidence level for the parameter \(a \), we choose a value for \(\Delta \chi^2 \), find the two points \(a_0 \pm \delta_1 \) that correspond to the chosen \(\Delta \chi^2 \), and integrate the likelihood function \(\mathcal{L}(a) \) from \(a_0 - \delta_1 \) to \(a_0 + \delta_2 \). The integral yields the confidence level associated with the particular value of \(\Delta \chi^2 \). If you desire a particular confidence level, pick an initial guess for \(\Delta \chi^2 \), such as the value from normal statistics, calculate the actual confidence level for this value and then repeat the process until you find the appropriate \(\Delta \chi^2 \) that produces the desired confidence level.

For our two examples, we plot in Figs. 3 and 4 the error bars on \(\theta_{13} \) and \(\sin^2 2\theta_{13} \), respectively, as they vary with the confidence level. Notice the errors are asymmetric in both cases. In Fig. 4 we see that the lower error bar for \(\sin^2 2\theta_{13} \) extends to zero and then remains there as the confidence level increases. This demonstrates the point that, if the the best fit parameter is near a boundary of the parameter space, the confidence level will not be well approximated by the normal statistic, as \(\Delta \chi^2 \) is not quadratic.

In Fig. 5 and 6, we examine the relationship between \(\Delta \chi^2 \) and the confidence level for our two examples, comparing our results with those from normal statistics. In both figures, the [red] dashed curves utilize the normalized likelihood function, while the [blue] solid curves employ normal statistics. In Table I we present the same information for some commonly used confidence levels.

We see that at low confidence levels there is a large difference between either example and the normal statistics result. For example, from Table I we see that for Example 1 the 68% confidence level corresponds to a \(\Delta \chi^2 \) that is a factor of 1.7 larger than the normal statistics value of 1.00, and for Example 2 the \(\Delta \chi^2 \) is a factor of 0.7 lower than the normal statistics. For Example 1, we can understand why the correct \(\Delta \chi^2 \) is larger than the normal statistics values up to the 99% confidence level. This is because the \(\Delta \chi^2 \) curve in Fig. 1 is more pointed than a quadratic, and it thus takes a higher value of \(\Delta \chi^2 \) to get a given percentage below that value. Also for Example 1, the correct and the normal statistics value are nearly equal at a confidence level of 99%, but this is accidental as the two confidence level curves intersect at a single point in this region. For Example 2, we see that the \(\Delta \chi^2 \) is always below the normal statistics value. This feature will continue upward as the lower bound gets stuck at zero, and only the upper bound contributes above the chosen value of \(\Delta \chi^2 \), reducing that quantity by a factor of approximately one half.

The question that remains to be answered is “What is the probability that \(\theta_{13} \) is or is not zero?” The correct answer to this question is that the probability that \(\theta_{13} = 0 \) is zero; the probability it is not zero is one. No-
tice that θ_{13} can be taken to lie between $-\pi/2$ and $+\pi/2$ and zero is a single point out of the continuum. Thus the question is an ill-posed one. The more meaningful question is “What is the maximum confidence level at which zero is not an allowed value?” Consider Example 1, for normal statistics, we find $\Delta \chi^2(0) = 2.0$ at $\theta_{13} = 0$ so that we might claim that the mixing angle is nonzero at a confidence level of 84%. Using the likelihood function for Example 1, we find θ_{13} is non-zero at the 72% confidence level, knowing that we are here using the language somewhat loosely. For Example 2, the likelihood function excludes $\theta_{13} = 0$ as an allowed value at the 92% confidence level. The $\Delta \chi^2$ value at $\theta_{13} = 0$ of 7.97 would give, using normal statistics, 99.5%. Why do we find this large over estimation? From Fig. 2 we see that below the minimum $\Delta \chi^2$ rises quite rapidly while above the minimum $\Delta \chi^2$ rises slowly. This combination will always yield an over estimation of the confidence level extracted from a single point on the lower, rapidly rising curve. As the example case of T2K presented here is typical, present claims which calculate the confidence level from normal statistics will overestimate the confidence that zero is excluded from the allowed region for θ_{13}.

In summary, we propose that confidence level and error bars be calculated based on the understanding that the normalized likelihood function is a probability distribution function for whatever statistic is chosen to do the analysis. The confidence level is then given by an integral over the normalized likelihood function, an implicit assumption in the marginalization procedure. We find that this alters the error bars we assign to parameters, and that in the case of the minimum being near to an end point of the independent variable, such as in the case of $\sin^2 2\theta_{13}$, the change that this procedure makes can be particularly significant. Further, we note that the question of what is the probability that θ_{13} is not zero is more carefully worded as what is the maximum confidence level at which the allowed region for θ_{13} does not include the value zero. Using this definition, published confidence levels for non-zero θ_{13} based on the normal statistics relationship of $\Delta \chi^2$ to confidence level are found to be over estimations.

ACKNOWLEDGMENTS

The work of B. K. C. is supported, in part, by US Department of Education Grant P200A090275, the work of D. J. E. is supported, in part, by US Department of Energy Grant DE-FG02-96ER40975; the work of J. E-R. is supported, in part, by CONACyT, Mexico.
[1] G. Fogli, E. Lisi, A. Marrone, D. Montanino, and A. Palazzo, Phys.Rev. D66, 053010 (2002).
[2] K. Abe et al. (T2K), Phys. Rev. D85, 031103 (2012).
[3] J. E. Roa, D. C. Latimer, and D. J. Ernst, Phys.Rev. C81, 015501 (2010).
[4] J. Escamilla, D. C. Latimer, and D. J. Ernst, Phys. Rev. Lett. 103, 061804 (2009).
[5] D. Latimer and D. Ernst, Phys.Rev. C71, 062501 (2005).
[6] M. Mezzetto and T. Schwetz, J.Phys.G G37, 103001 (2010).
[7] B. K. Cogswell, H. R. Burroughs, J. Escamilla-Roa, D. C. Latimer, and D. J. Ernst, in preparation (2012).
[8] R. Wendell et al. (Super-Kamiokande Collaboration), Phys.Rev. D81, 092004 (2010).
[9] P. Adamson et al. (The MINOS Collaboration), Phys.Rev.Lett. 106, 181801 (2011), 5 pages, 4 figures.
[10] P. Adamson et al. (MINOS Collaboration), Phys.Rev. D84, 071103 (2011).
[11] P. Adamson et al. (MINOS Collaboration), Phys.Rev.Lett. 107, 181802 (2011).
[12] Y. Abe et al. (DOUBLE-CHOOZ Collaboration) (2011), 1112.6353.
[13] F. An et al. (DAYA-BAY Collaboration) (2012), 1203.1669.