Transmutation of 129I Containing Nuclear Waste by Proton Bombardment

I Kambali

Center for Accelerator Science and Technology, National Nuclear Energy Agency (BATAN), Yogyakarta, Indonesia
E-mail: imamkey@batan.go.id

Abstract. As a long-lived nuclear waste, iodine (129I) which is primarily generated from nuclear fission of uranium or plutonium is considered harmful to human and environment. Therefore, proper steps are required to treat the radioactive isotope. In this work, we propose transmutation of 129I isotope using cyclotron-based proton bombardment. The TALYS code was employed to calculate nuclear cross-sections of various nuclear reactions possible to transmute 129I into short-lived radionuclides or stable isotopes. Twelve different nuclear reactions, namely (p,n), (p,2n), (p,3n), (p,nα), (p,d), (p,2p), (p,3He), and (p,t), which have significant cross-sections (greater than 1 mb) were analyzed. Based on the nuclear reactions, there were 6 possible stable isotopes produced from proton bombardment of 129I, such as 129Xe, 128Xe, 127I, 126Te, 125Te and 130Xe. Short-lived radionuclides such as 129mXe (half life = 8.88 days), 129Xe (half life = 36.35 days), 129Xe (half life = 62.9 seconds), 127I (half life = 24.99 minutes), 127Te (half life = 9.35 hours) and 127Te (half life = 106.1 days) could also be possibly produced from the proton irradiation of 129I nuclear waste. To sum up, the longest radionuclide could be generated from proton bombardment of 129I nuclear waste is 127Te (half life = 106.1 days), which is a lot shorter than 129I (half life = 1.57x107 years). This theoretical study indicates that transmutation of 129I nuclear waste by proton bombardment into short-lived radionuclides is greatly feasible. Current available cyclotrons in Indonesia may be employed to help transmute 129I into short-lived radionuclides or stable isotopes. This theoretical study can be used as a reference for future 129I nuclear waste if proton beams are employed in the transmutation.

1. Introduction

Nuclear reactor is a source of neutrons which can be used to produce various medical radioisotopes such as technetium-99m (99mTc) [1], lutetium-177 (177Lu) [2-3], samarium-153 (153Sm) [4] and many others which are employed in both diagnostic and therapeutic procedures in nuclear medicine. While nuclear reactor can be very useful for radioisotope production it is, on the other hand, a source of nuclear waste. Nuclear fission occurs when neutrons interact with uranium or plutonium fuel. This fission reaction produces various long-lived radioactive isotopes, including technetium-99 (99Tc), plutonium-242 (242Pu), neptunium-237 (237Np), iodine-129 (129I) [5], tin-126 (126Sn), selenium-79 (79Se), zirconium-93 (93Zr), caesium-135 (135Cs) and palladium-107 (107Pd). Therefore, maximum precaution should be implemented to the long-lived radioactive isotopes.

Origen 2 code-based theoretical research on transmutation of nuclear waste using thermal and fast neutrons has been reported elsewhere which found that transmutation factor was reduced to 0.8–0.5 after 1000 years when the spent nuclear fuel was irradiated with thermal neutrons [6]. Accelerator driven...
A neutron source has also been studied which suggested production of thermal and fast neutrons for nuclear waste transmutation [7-9]. Irani et al [10] suggested the use of laser for transmutation of ^{126}Sn into short-lived nuclear medicine ^{125}Sn. Other important work on nuclear waste transmutation has reported proton beams as feasible source for nuclear waste transmutation [11-12], while fusion-driven system has also been highlighted elsewhere [13-15].

As mentioned above, iodine-129 (^{129}I) is one of the long-lived radioactive isotopes found in nuclear waste and is primarily produced from the fission of uranium or plutonium in nuclear reactor. It emits beta particle with average energy of 40 keV and has half life of 1.57x107 years. Due to its very long half life and beta emission, it is considered harmful to radiation workers; thus nuclear waste containing ^{129}I should be properly treated. This work aims at theoretically studying the possibility of transmutation of 129 nuclear waste into short-lived and stable isotopes by proton bombardment. The feasible paths are analyzed from their nuclear cross-sections should proton beams be employed as the incident particle. In addition, the end-products of the interactions are also highlighted and discussed from their half life. The proton sources are expected from medium and high energy cyclotron commercially available worldwide. To the best of the author knowledge, there has been no published reference on transmutation of ^{129}I using proton beam.

2. Materials and Methods

In this present theoretical study, pure radioactive waste containing ^{129}I radioisotope only was simulated as a target, while proton beams of up to 200 MeV were employed as the incident particles. Nuclear reactions as a result of the proton bombardments were then analyzed from their nuclear cross-sections using the TALYS code [16-17]. In this work, the Talys code version 1.9 was used to compute nuclear cross-sections of several reactions. Twelve (12) different nuclear reactions, namely (p,n), (p,2n), (p,g), (p,d), (p,α), (p,t), (p,np), (p,2p), (p,2n), (p,2n), and (p,He-3) which have significant cross-sections (greater than 1 mb) were analyzed and the resulting isotopes were predicted. The TALYS code has been widely used in the studies of various radioisotope production [18-26], though it has never been used to study transmutation of nuclear waste. Experimental research on ^{57}Co and ^{57}Ni productions have also been reportedly used the TALYS code [27].

3. Results and Discussion

3.1 Isotopes produced from (p,n), (p,2n), (p,3n), (p,np) and (p,2np) nuclear reactions

Based on the TALYS calculated nuclear cross-sections of (p,n), (p,2n), (p,3n), (p,np) and (p,2np) nuclear reactions between proton and ^{129}I, (p,2n) reaction has the highest cross-section of up to 1070 mb whereas (p,3n) has the second highest cross-section (936 mb) as shown in Figure 1. The three other nuclear reactions, i.e. (p,n), (p,np) and (p,2np) have cross-sections of less than 310 mb. Proton bombardment of ^{129}I via (p,n) nuclear reaction results in production of stable isotope ^{129}Xe. The threshold energy for $^{129}\text{I}(p,n)^{129}\text{Xe}$ is 0.63 MeV. Another possible isotope production from (p,n) reaction is formation of short-live radionuclide ^{129}Xe (half life = 8.88 days) via $^{129}\text{I}(p,n)^{129}\text{Xe}$ which decays through isomeric transition (IT).

Proton irradiation of ^{129}I through (p,2n) nuclear reaction could generate stable isotope ^{128}Xe with threshold energy of 7.56 MeV for $^{129}\text{I}(p,2n)^{128}\text{Xe}$ reaction. There are two possible radionuclides produced from (p,3n) nuclear reaction, i.e. ^{127}Xe via $^{129}\text{I}(p,3n)^{127}\text{Xe}$ and ^{127}mXe through $^{129}\text{I}(p,3n)^{127}\text{mXe}$. Radionuclide ^{127}Xe decays through β^+ emission with half life of 36.35 days, whereas ^{127}mXe radionuclide decays via isomeric transition (IT) with half life of 62.9 seconds.
Proton bombardment of 129I via (p,np) nuclear reaction results in formation of short-lived 128I radionuclide (half life = 24.99 minutes) which decays by beta emission. The threshold energy for 129I(p,np)128I is 8.91 MeV. On the other hand, proton irradiation of 129I through (p,2np) nuclear reaction could produce stable isotope 127I with threshold energy 15.8 MeV. The complete nuclear data for (p,n), (p,2n), (p,3n), (p,np) and (p,2np) nuclear reactions are summarized in Table 1.

![Figure 1. TALYS calculated nuclear cross-section of (p,n), (p,2n), (p,3n), (p,np) and (p,2np).](image)

Proton bombardment of 129I via (p,np) nuclear reaction results in formation of short-lived 128I radionuclide (half life = 24.99 minutes) which decays by beta emission. The threshold energy for 129I(p,np)128I is 8.91 MeV. On the other hand, proton irradiation of 129I through (p,2np) nuclear reaction could produce stable isotope 127I with threshold energy 15.8 MeV. The complete nuclear data for (p,n), (p,2n), (p,3n), (p,np) and (p,2np) nuclear reactions are summarized in Table 1.

Table 1. Possible isotopes produced as a result of proton-bombarded 129I for (p,n), (p,2n), (p,3n), (p,np) and (p,2np) nuclear reactions

Isotope	Nuclear Reaction	Threshold energy (MeV)	Decay mode	Half life
129Xe	129I(p,n)129Xe	0.63	Stable	-
129mXe	129I(p,2n)129mXe	0.63	IT	8.88 d
128Xe	129I(p,3n)128Xe	7.56	Stable	-
128Te	128Te(p,3n)128Te	17.2	β	36.35 d
128Xe	129I(p,np)128Xe	8.91	β	24.99 m
128I	129I(p,2np)128I	15.8	stable	-

3.2 Isotopes produced from (p,α), (p,d), (p,2p), (p,nα), (p,γ), (p,He), and (p,t) nuclear reactions

Based on the TALYS calculated nuclear cross-sections of (p,α), (p,d), (p,2p), (p,nα), (p,γ), (p,He), and (p,t) nuclear reactions between proton and 129I, (p,d) reaction has the highest cross-section of up to 26.8 mb whereas (p,2p) has the second highest cross-section (23.3 mb) as shown in Figure 2. The five other nuclear reactions, i.e. (p,α), (p,nα), (p,γ), (p,He), and (p,t) have cross-sections of less than 15 mb.

Proton bombardment of 129I via (p,α) nuclear reaction results in production of stable isotope 126Te. The threshold energy for 129I(p,α)126Te reaction is 0 MeV. When proton is irradiated to 129I, then another possible radionuclide generation is 129I which decays by beta emission at half life of 24.99 minutes via 129I(p,d)129I nuclear reaction. The threshold energy for 129I(p,d)129I reaction is 6.67 MeV. While very long half life 128Te radionuclide (half life = 7.7x10^24 y) maybe produced from 129I(p,2p)128Te nuclear reaction, the resulting 128Te can simultaneously transmute into short-lived 128I radionuclide (half life = 24.99 minutes) by further proton bombardment via 128Te(p,n)128I reaction. The threshold energy for 128Te(p,n)128I reaction itself is 2.08 MeV. It should be noted that Te-128 separation from the nuclear waste is not required since once it is generated, the incoming proton beam directly irradiate it to form 128I radionuclide.
Proton irradiation of 129I through (p,nα) nuclear reaction could possibly generate two isotopes, either stable isotope 126Te with threshold energy of 2.71 MeV for 129I(p,2n)128Xe reaction or radionuclide 125Te. Radionuclide 125Te decays via isomeric transition (IT) with half life of 57.40 days. For proton bombardment of 129I through (p,γ) nuclear reaction, stable isotope 130Xe maybe produced. Again, there are two possible radionuclides produced from (p,He) nuclear reaction, i.e. 127Te via 129I(p,3n)127Te reaction and 127mTe through 129I(p,He)127mTe reaction. Radionuclide 127Te decays through β emission with half life of 9.35 hours, whereas 127mTe radionuclide decays via isomeric transition (IT) with half life of 106.1 days. Furthermore, stable isotope 129I could possibly be generated as a result of 129I(p,t)127I nuclear reaction with threshold energy of 2.08 MeV. The complete nuclear data for (p,α), (p,d), (p,2p), (p,nα), (p,γ), (p,He), and (p,t) nuclear reactions are summarized in Table 2.

Table 2. Possible produced isotopes as a result of proton-bombarded 129I for (p,α), (p,d), (p,2p), (p,nα), (p,γ), (p,He), and (p,t) nuclear reactions

Isotope	Nuclear Reaction	Threshold energy (MeV)	Decay mode	Half life
126Te	129I(p,α)126Te	0	Stable	-
127I	129I(p,d)127I	6.67	β	24.99 m
128Te	129I(p,2p)128Te	6.86	2β	7.7x10$^{-1}$ y
128I	129I(p,n)128I	2.08	β	24.99 m
129Te	129I(p,nα)129Te	2.71	Stable	-
127I	129I(p,α)127I	2.71	IT	57.40 d
129Xe	129I(p,γ)129Xe	0	Stable	-
127Te	129I(p,He)127Te	7.93	β	9.35 h
127mTe	129I(p,He)127mTe	7.93	IT	106.1 d
129I	129I(p,t)129I	2.08	stable	-

Currently, there are 3 available cyclotrons in Indonesia which may be employed for transmutation of 129I nuclear waste. The three cyclotrons are 9 MeV cyclotron in Gading Pluit Hospital, Jakarta, 11 MeV cyclotron in Dharmais Cancer Hospital and 18 MeV cyclotron in Siloam Hospital, Jakarta. Based on the energy characteristics of protons generated from the three cyclotrons, it is expected that the three cyclotrons would be capable of slightly different radionuclides, depending on the accelerated proton energy and the threshold energy. As discussed earlier in Table 1 and Table 2, nearly all isotopes are
possible to be produced using the three cyclotrons, except for ^{127}Xe and ^{127m}Xe which can be generated using 18 MeV cyclotron in Siloam Hospital since their threshold energies are 17.2 MeV.

4. Conclusion

Possible transmutation of nuclear waste containing ^{129}I has been theoretically studied using proton beam as incident particle. Possible nuclear reactions and produced isotopes was determined from the TALYS 2017 calculated nuclear cross-sections. Twelve different nuclear reactions, i.e. (p,n), (p,2n), (p,3n), (p,g), (p,d), (p,α), (p,t), (p,np), (p,2p), (p,2np), (p,α) and (p,He) which have significant cross-sections (greater than 1 mb) were analyzed and the produced stable isotopes and radionuclides were highlighted. Based on this study, there were 6 possible stable isotopes produced from proton bombardment of ^{129}I, i.e. ^{129}Xe, ^{128}Xe, ^{127}I, ^{126}Te, ^{125}Te and ^{130}Xe. In addition, there were 7 short-lived radionuclides such as ^{129m}Xe (half life = 8.88 days), ^{127}Xe (half life = 36.35 days), ^{127m}Xe (half life = 62.9 seconds), ^{129}I (half life = 24.99 minutes), ^{127m}Te (half life = 9.35 hours) and ^{127}Te (half life = 106.1 days) could also be possibly produced from the proton irradiation of ^{129}I nuclear waste. It is clear that the longest radionuclide could be generated from proton bombardment of ^{129}I nuclear waste is ^{127m}Te (half life = 106.1 days), which is a lot shorter than ^{129}I (half life = 1.57×10^7 years). In addition, current available cyclotrons (9, 11 and 18 MeV cyclotrons) in Indonesia may be employed to help transmute ^{129}I into short-lived radionuclides or stable isotopes.

References

[1] Boustani E, Ranjbar H, Rahimian A 2019 Applied Radiation and Isotopes 147 121
[2] Golabian A, Hosseini MA, Ahmadi M, Soleimani B, Rezvanifard M 2018 Applied Radiation and Isotopes 131 62
[3] Ponsard B 2014 Nuclear Medicine and Biology 41 648
[4] Soleimani B, Hosseini MA, Rezvanifard M, Ahmadi M, Ebadati J 2018 Applied Radiation and Isotopes 139 195
[5] Ojovan MI, Lee WE, Kalmykov SN 2019 Long-Lived Waste Radionuclides (Amsterdam: Elsevier Ltd.) chapter 12 pp 155 – 166
[6] Ivanov NV, Kazansky YA, Karpovich GV 2017 Nuclear Energy and Technology 3 220
[7] Ripani M 2013 Annals of Nuclear Energy 62 590
[8] Stanculescu A 2013 Annals of Nuclear Energy 62 607
[9] Chen Z, Wu Y, Yuan B, Pan D 2015 Annals of Nuclear Energy 75 723
[10] Irani E, Sadighi SK, Zare S, Sadighi-Bonabi R 2012 Energy Conversion and Management 64 466
[11] Kenciglowa EM, Harms AA 1981 Nuclear Instruments and Methods 185 393
[12] Polozov SM, Fertman AD 2013 Atomic Energy 113 192
[13] Hong BG 2014 Fusion Engineering and Design 89 2493
[14] Hong Bg, Oh P 2015 International Journal of Hydrogen Energy 40 15153
[15] Hong SH, Kim MH 2018 Nuclear Engineering and Technology 50 1060
[16] Koning AJ, Rochman D 2012 Nuclear Data Sheets 113 2841
[17] Koning AJ , Rochman D, Sublet J-Ch., Dzysiuk N, Fleming M, van der Marck S 2019 Nuclear Data Sheets 155 1
[18] Kambali 2018 Journal of Physics: Conference Series 1120 012010
[19] Kambali I 2018 Journal of Physics: Conference Series 1116 032013
[20] Kambali I 2018 Journal of Physics: Conference Series 1120 012011 44 81
[21] Kambali I 2019 Journal of Physics: Conference Series 1153 012106
[22] Kambali I 2017 Makara J. Science 21 125
[23] Kambali I 2014 Atom Indonesia 40 129
[24] Kambali I, Wibowo FA 2019 Journal of Physics: Conference Series 1198 022003
[25] Wibowo FA, Kambali I 2019 Journal of Physics: Conference Series 1198 022008
[26] Kambali I, Suryanto H, Kardinah, Parwanto, Huda N, Listiawadi FD, Astarina H, Ismuha RR 2019 *International Journal of Technology* **10** 300

[27] Suryanto H, Kambali I 2018 *Atom Indonesia* **44** 81