Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
A structural view of the SARS-CoV-2 virus and its assembly
Nathan J Hardenbrook¹ and Peijun Zhang¹,²,³

The SARS-CoV-2 pandemic that struck in 2019 has left the world crippled with hundreds of millions of cases and millions of people dead. During this time, we have seen unprecedented support and collaboration amongst scientists to respond to this deadly disease. Advances in the field of structural biology, in particular cryoEM and cryo-electron tomography, have allowed unprecedented structural analysis of SARS-CoV-2. Here, we review the structural work on the SARS-CoV-2 virus and viral components, as well as its cellular assembly process, highlighting some important structural findings that have made significant impact on the protection from and treatment of emerging viral infections.

Addresses
¹ Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
² Electron Bio-Imaging Centre, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
³ Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, OX3 7BN, UK

Corresponding author: Zhang, Peijun (peijun.zhang@strubi.ox.ac.uk)

Current Opinion in Virology 2022, 52:123–134
This review comes from a themed issue on Virus structure and expression
Edited by José R Castón and Adam Zlotnick
For complete overview about the section, refer Virus structure & Expression (2022)
Available online 4th December 2021
https://doi.org/10.1016/j.coviro.2021.11.011
1879-6257/© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Introduction
In November 2002, an outbreak of an atypical pneumonia struck the Guangdong province of China [1]. A novel coronavirus, later named SARS-CoV, was identified as the cause of the epidemic, with a case fatality rate of 9.7% [2–5]. This was followed by the Middle eastern respiratory syndrome coronavirus (MERS-CoV) outbreak in 2012, with a very high case fatality rate of 34% [5]. In 2019, the world was hit by another strain of coronavirus, SARS-CoV-2. SARS-CoV-2 has a much lower fatality rate that increases steeply with age. However, it has a far higher transmission rate than SARS-CoV or MERS-CoV [5]. SARS-CoV-2 pandemic that struck in 2019 has left the world traumatized. With over 200 million cases, and 4 million deaths as of October 1st, 2021, this pandemic has made it abundantly clear how fast a deadly virus can overwhelm our current medical resources, and heavily impact the global economy and everyone’s life.

During this time, we have seen unprecedented collaboration and support amongst scientists to develop methods of testing, treatment, and produce effective vaccines against SARS-CoV-2 showing that vaccines can be created quickly in response to such a global crisis [6]. Structural knowledge of the virus and its viral components is critical for the development of novel treatments and vaccines. Structural biology has provided structural information for the development of vaccines for SARS-CoV-2 that utilize the spike, as well as the development of potential therapeutics targeting the main protease (MPro) [7**,8*,9]. Other protein factors, such as the papain protease (PLPro) and RNA-dependent RNA polymerase (RdRp) also present promising targets for therapeutic treatment [10–12,13**]. Following the outbreak, an astounding number of protein structures from the SARS-CoV-2 virus have been determined, among which over 1400 atomic models deposited in the RCSB protein databank (PDB) and 600 electron densities in the Electron Microscopy DataBank (EMDB) (as of October 1st, 2021). These structures reveal how the virus infects its host and provide the basis for development of the COVID-19 vaccines and novel therapeutics [14,15,16*]. Here we review major structural efforts on the virus, viral components, and its assembly process.

Molecular architecture of the SARS-CoV-2 virus
Recent breakthroughs in cryo-electron tomography (cryoET) and subtomogram averaging (STA) have allowed for unprecedented structural analysis of molecular complexes in their native state to near-atomic resolution [17–22]. Several groups have used cryoET STA to image intact SARS-CoV-2 virions, providing insight into their molecular architecture and organization [23**,24**,25*,26*]. SARS-CoV-2 virions take roughly spherical or ellipsoidal shape with an average diameter of 108 ± 8 nm [24**,25*]. The external surface of the virion is covered with surface spike proteins (S) in a primarily prefusion conformation, with a small fraction of S in its postfusion form (Figures 1 and 2b) [23**,24**,25*,26*]. S appears as a flexible head on a stalk, able to tilt up to 90° relative to the membrane, with the majority appearing to tilt less than 50° (Figure 2b) [23**,24**,26*]. This flexibility is provided
by hinges in the stalk region (Figure 2b) [24**,26*]. The surface of the S trimer is heavily glycosylated, with each S monomer containing 22 glycosylated sites [27]. This glycan coat, paired with the flexibility of SARS-CoV-2 spikes, enables them to scan the host cell surface and bind with the cell receptor ACE2 while shielded from neutralizing antibodies [24**,26*]. The viral outer membrane contains the membrane protein (M) and envelope protein (E) (Figure 1b). Within the lumen of the virion are the ribonucleoprotein (RNP) complexes consisting of the nucleocapsid protein (N) and the viral genome, responsible for the packaging of the RNA genome of the virus, with estimates of 30-35 RNPs per virion (Figure 1b) [24**]. The non-structural proteins (Nsps) Nsp1-16 are produced from self-cleavage of the precursor polyproteins Pplα and Pp1ab by viral proteases [11]. PLPro (Nsp3) cleaves three sites resulting in free Nsp1-3, while MPro (Nsp5) is responsible for the remaining 11 cleavage sites [11]. This allows the Nsps to perform their functions in the host cell ranging from RdRp (Nsp12) and helicase (Nsp13) functions, generating double membrane vesicles for viral genome replication, transcription, and RNA transport (Figure 1a).

Spike glycoprotein

The coronavirus surface S glycoprotein is a ~600 kDa trimer, one of the largest known class 1 fusion proteins. Located on the outer envelope of the virion, it plays a critical role in viral infection through recognition of the host cell receptors and by mediating the fusion of the viral and host cell membranes. S also has been shown to elicit a strong immune response, making it the primary target for the recently developed vaccines for SARS-CoV-2 necessary to stem the COVID-19 pandemic [28–31]. The SARS-CoV-2 S gene encodes a ~1300 amino acid precursor protein which is then activated through proteolytic cleavage into an amino (N)-terminal S1 subunit.
(~700 amino acids), and a carboxyl (C)-terminal S2 subunit (~600 amino acids) with a single transmembrane (TM) region anchor (Figure 2a). The S1 and S2 subunits form a heterodimer, that in turn oligomerize into a trimer resulting in the formation of the surface spike on the virion (Figure 2b–c) [32**]. The S1 subunit consists primarily of an N-terminal domain (NTD) and a receptor binding domain (RBD), as well as two C-terminal domains (Figure 2a, c). S2 consists of a fusion peptide, heptad repeat (HR1), central helix region, connector domain (CD), heptad repeat 2 (HR2), and the transmembrane region (Figure 2a,c) [32**]. In its prefusion form, the S protein appears to have two conformations: the ‘RBD down’ conformation and the ‘RBD up’ conformation (Figure 2d). In its trimeric prefusion form, the ‘RBD’ down, ‘one RBD up’, and ‘two RBD up’ conformations have been observed [23**,24**,32**]. During infection, the RBD of SARS-CoV-2 binds to angiotensin converting enzyme 2 (ACE2) on the surface of target cells before undergoing viral uptake and fusion (Figure 2e) [33,34,35–37]. ACE2 has only been shown to bind RBDs in the ‘up’ conformation [33,34*]. The RBD site has been shown to be of importance in neutralizing SARS-CoV-2 by targeting S with neutralizing antibodies [33,38,39*,40*,41–51]. The cryoEM structures of most antibodies bound to S have at least one RBD in the ‘up’ conformation, similar to ACE2 (Figure 2e) [33,38,39*,52,53]. However, several other antibodies and antibody fragments such as V11 ab8 can bind RBDs in the ‘down’ conformation (Figure 2e) [33,41,45,54]. Other antibodies bind to other regions of S, such as the NTD [55–58]. While the glycosylation of S is thought to shield it from antibody recognition, some neutralizing antibodies can still bind to glycans-containing epitopes, allowing immune response [59–61]. Previous studies of SARS-CoV have found two proline substitutions at residues 986 and 987 (Figure 2a,c) stabilize S in its prefusion form, which elicits a strong immune response [7**,62]. S stabilized with this two-proline mutation has been used in the development of both the Moderna and Pfizer mRNA vaccines [14,15].

During infection, the S1 subunit is shed and S2 undergoes a large conformational change compared to its prefusion state (Figure 2c) [32**,63]. This structural re-arrangement brings the fusion peptide and transmembrane domain together at the same end of the spike molecule, resulting in the insertion of the fusion peptide into the host membrane (Figure 2c) [32**,63]. HR1 and CD form an extended, three-stranded coiled-coil (Figure 2c) [32*]. During this transition, it is thought that the glycans mask the accessible surface of the S2 subunit, protecting it from antibody recognition [27]. For a more detailed review of the SARS-CoV-2 spike, please refer to Zhang, J., et al. (2021). ‘Structure of SARS-CoV-2 spike protein.’ Current Opinion in Virology 50: 173–182.

Envelope protein
Along with M, the coronavirus E protein is one of the major membrane components in SARS-CoV-2. E is a small, 8.5 kDa protein consisting of 75 amino acid residues. In coronaviruses, E is a cationic selective viroporin, forming a channel across the endoplasmic reticulum-Golgi intermediate compartment (ERGIC) membrane. In SARS-CoV, E mediates the budding and release of viruses [64*]. Deletions of E have been shown to attenuate the virus, while mutations abolishing channel activity reduce pathogenicity [65]. This provides a target for potential antiviral drug development as well as a potential vaccine candidate in SARS-CoV-2.

Despite its importance, until recently the E protein structure remained elusive. An NMR structure of the transmembrane domain structure of SARS-COV-2 E was determined using solid state NMR in phospholipid bilayers [64*]. This work reveals that E consists of a compact and rigid homopentameric helical bundle transmembrane domain (Figure 3a). The central portion of the TM domain contains four hydrophobic residues lining the core, narrowing the radius to ~2 Å. As this would only permit a single file of water molecules and partially dehydrate any ions that move through the pore, this structure may represent a closed state of SARS-CoV-2 E [64*]. The E transmembrane domain provides a potential novel target for small molecules which could target the polar Asn15 or the acidic Glu8 residues to occlude the N-terminal entrance of the channel (Figure 3a) [64*].

Nucleocapsid protein
The major protein component of the SARS-CoV-2 inside of the virion is the nucleocapsid (N) protein. N is responsible for binding the genomic RNA within the virion and packaging it into the ribonucleoprotein (RNP) complex. N proteins have a variety of functions beyond packaging, with the SARS-CoV-2 N protein found to interfere with RNA interference (RNAi) [66] and function as a viral suppressor of RNAi (VSR) in cells (Table 1).

In SARS-CoV-2, the N protein consists of the three intrinsically disordered regions: the N-arm, central linker region (LKR), and C-tail, as well as the two structural domains: the NTD (Figure 3b, green) and CTD (Figure 3b, orange/blue) [67]. Previous work on SARS-CoV has shown that the NTD serves as the RNA-binding domain, while the CTD functions as a dimerization domain [68].

In SARS-CoV-2, N protein forms dimers through the CTD interactions (Figure 3b) [67,69–71]. N proteins form RNP complexes with the viral genome. These RNPs are thought to be linked to neighboring in a ‘beads on a string’
Structures of other viral components. (a) Top and side view of the transmembrane domain of SARS-CoV-2 E in lipid bilayers with hydrophobic residues in red (PDB 7K3G) [64]. (b) Crystal structures of N NTD (green, PDB 7CDZ) [67] and CTD dimer (blue and orange, PDB 7CE0) [67] and 13.1 Å cryoET/STA density map of the RNP complex (grey, EMD-30429) [24]. (c) Crystal structure of the SARS-CoV-2 Main Protease dimer (Npro, left, PDB 6Y2E) [25] and Papain-like Protease (PLpro, right, PDB 6WZU) [11]. The Mpro catalytic dyad His41 and Cys145 are shown in red and orange, respectively and the N-terminal finger of each protease is shown in magenta. The PLpro ubiquitin-like domain is shown in brown and catalytic domain in rose. (d) CryoEM structure of Nsp1 bound within the mRNA entrance channel of 40S ribosome subunit, with a close-up surface representation of the ribosome showing Nsp1 helices within entrance channel (PDB 6Z0K) [77]. (e) Crystal structure of Nsp2\textsubscript{1-276} (light blue) (PDB 7EXM) [68]. (f) CryoEM structure of the Nsp3 macrodomain (blue) in complex with ADP-ribose (orange) (PDB 6W02) [82]. (g) CryoEM structure of the SARS-CoV-2 Nsp13-RTC complex with RNA (PDB 6FEZ) [88]. (h) CryoEM structure of the cap(0)-RTC complex consisting of Nsp9/10/14 bound to the Nsp13-RTC complex (PDB 7EIZ) [96]. (i) Crystal structure of the Nsp16 (light yellow) and Nsp10 (dark blue) heterodimer with an RNA cap analog (cyan) and S-adenosyl methionine or SAM (red) with an occupied adenosine binding pocket (magenta) (PDB 6WKS) [98]. (j) Crystal structure of the Nsp15 hexameric endonuclease (PDB 6WWW) [99]. (k) CryoEM structure of ORF3a dimer in lipid nanodiscs. TM: Transmembrane domain. CD: Cytosolic Domain (PDB 6XDC and EMD-2136) [102]. (l) Crystal structure of ORF7a (pink) (PDB 7C1S) [103]. Disulfide bonds shown in green (m) Crystal structure of the ORF8 homodimer (tan and cyan) (PDB 7JTL) [104]. Disulfides conserved with ORF7a (green), intermembrane disulfide (yellow) and ORF8-specific disulfide (magenta) are shown. (n) CryoEM structure of ORF9b (red) bound to TOM70 (gold) (PDB 7KDT) [105].

Table 1

| SARS-CoV-2 gene products and structures (PDB and EMDB) |
|---------------------------------|---------|-----------|-------|
Protein or complex	PDB ID	EMD ID	Ref.
Nsp1	6ZOK	EMD-11321	[77]
Nsp2\textsubscript{1-276}	7EXM	EMD-86918	[80]
Nsp3 Macro Domain	6W02	EMD-78765	[82]
Nsp3 PLpro	6WZU	EMD-33610	[11]
Nsp5 Mpro	6Y2E	EMD-22160	[88]
Nsp13-RTC	6XEZ	EMD-55500	[98]
cap(0)-RTC	7EIZ	EMD-55500	[95**]
Nsp10/Nsp16	6WKS	EMD-31146	[98]
Nsp15 NendoU	6WWW	EMD-11321	[99]
S Prefusion (RBD Down)	6XR8	EMD-22922	[32**]
S (Postfusion)	6XRA	EMD-22922	[32**]
S Prefusion (one RBD up)	6VYB	EMD-21457	[62]
S Prefusion-ACE2	7DF4	EMD-30681	[34**]
S\textsubscript{N\textsubscript{N\textsubscript{O\textsubscript{T}}}Y\textsubscript{T}} Prefusion-Fab ab1	7MJU	EMD-23875	[33]
S\textsubscript{N\textsubscript{N\textsubscript{O\textsubscript{T}}}Y\textsubscript{T}} Prefusion-V\textsubscript{R} ab8	7MJH	EMD-23873	[33]
E	7K3G	EMD-6486	[64**]
N NTD	7CDZ	EMD-8873	[67]
N CTD	7CE0	EMD-8873	[67]
N (cryo-STA)	6XDC	EMD-30429	[24**]
ORF3a	7C1S	EMD-22136	[103]
ORF7a	7C1S	EMD-22136	[103]
ORF8	7JTL	EMD-22136	[104]
ORF9b	7KDT	EMD-22829	[106]

Main protease and papain-like protease

One attractive drug target for SARS-CoV-2 is non-structural protein 5 (Nsp5), the main protease (Mpro). Mpro, a 3C-like protease, is responsible for processing 11 Mpro-specific sites on the two SARS-CoV-2 polyproteins Pp1a and Pp1ab into 16 nonstructural proteins (Nsp1-16) [73,74]. The crystal structure of Mpro was recently determined (Figure 3c, blue and cyan) [8*,16**]. Mpro consists of three domains, a chymotrypsin-like domain I and piconavirus 3C protease-like domain II, as well as domain III, consisting of 5 antiparallel α-helices that regulates dimerization [8*]. Dimerization is essential for the enzymatic function of Mpro, with the N-terminal residue (N-finger) in each protomer squeezed between domains II manner [72]. CryoET STA has revealed a reverse G-shaped architecture of RNPs in intact virions (Figure 3b, grey) [24**]. Because of the limited resolution, it remains unclear how the individual N proteins and RNA are organized within the vRNP [24**,72]. Fitting in previously determined structures of the NTD and CTD domains from SARS-CoV into the cryo-STA map seems to indicate a decamer of N proteins forming the base unit of the RNP, with the electrostatic potential on the decamer surface suggesting the RNA winds around the N protein dimers [24**], although further work and analysis remains necessary. This ‘beads on a string’ mechanism of genome packaging would maintain the high steric flexibility of the vRNPs necessary to allow the unusually large genome to be packaged efficiently within the budding virions [72].
and III of the parent protomer and domain II of the partner protomer (Figure 3c), interacting with Glu166 of the partner and shaping the substrate binding pocket [8,75]. The binding pocket of MPro is located between domains I and II, with a Cys-His catalytic dyad (Figure 3c) functioning as the active site. MPro targets a Leu-Gln((Ser, Ala, Gly) recognition sequence (with □ denoting the cleavage site) [8]). As no known human proteases have the same specificity as MPro, MPro appears to be an ideal target for therapeutic development [8,16,73]. The structure of MPro was then used to develop an α-ketoamide inhibitor that targets the active site of SARS-CoV-2 MPro as the basis of therapeutic development [8]. In addition, the structure of MPro was determined with N3, a mechanism-based inhibitor and used for further inhibitor discovery using in silico analysis [16**].

A second, papain-like protease (PLPro), encoded in Nsp3, is the protease responsible for cleaving the remaining three cleavage of polyproteins [10]. The crystal structure of PLPro has also been determined [11,76], showing that PLPro contains two domains: a small, N-terminal ubiquitin-like domain, and a catalytic domain with a ‘thumb-palm-fingers’ architecture (Figure 3c). The catalytic active site sits between the thumb and palm domains and contains a canonical cysteine protease catalytic triad, recognizing a Leu-X-Gly-Gly□(XX) sequence [11]. PLPro can recognize the C-terminal sequence of ubiquitin. This makes development of a PLPro inhibitor more challenging, as care must be taken to ensure any inhibitor doesn’t interfere with host ubiquitinases [73].

Other non-structural proteins

The structures of several other non-structural proteins from SARS-CoV-2 have been reported as potential targets for therapeutics. Nsp1 functions as a host shutoff factor, binding the mRNA entrance channel of ribosome complex. A cryoEM structure of Nsp1-ribose shows its C-terminal forming two α-helices binding within the entrance channel of the 40S subunit (Figure 3d) [77–79]. Helix 1 (residues 153–160) interact with the ribosome helix 18 through hydrophobic interactions, while helix 2 (residues 166–178) interact with the phosphate backbone of helix 18 through conserved arginine residues R171 and R175, allowing it to inhibit translation of host mRNA [77–79].

While the full-length structure of Nsp2 remains undetermined, recently the N-terminal domain of Nsp2 (Nsp21–276) has solved [80]. This structure reveals the Nsp21–276 structure to be a novel zinc finger domain consisting of three zinc fingers. ZnF1, ZnF2, and ZnF3 (Figure 3e) [80]. A large, positively charged region on the surface of Nsp21–276 was then shown to be able to bind to dsDNA. By chelating the Zn with EDTA and using mutagenesis, Nsp21–276 appears to bind to DNA through this charged surface, with the zinc fingers not being directly involved [80]. While this provides insight into the potential function Nsp21–276, the role of Nsp2 in SARS-CoV-2 infection remains unknown [80].

Along with PLPro, Nsp3 contains a macrodomain responsible for removal of ADP-ribose from ADP-ribosylation sites during infection, potentially playing an important role in disrupting host ADP-ribosylation [81–83]. As ADP-ribosylation has been linked to innate immune response, this macrodomain may provide an attractive target for drug development. This macrodomain has a baseball glove-like structure, with an ADP-ribose-binding pocket (Figure 3f) [81–83]. A structural comparison of the binding site crystallized with a variety of substrates suggests high structural plasticity within the binding site, presenting an opportunity for rational targeting of small molecule inhibitors [84]. This pocket has been shown to bind GS-441524, a remdesivir metabolite, supporting the hypothesis that the macrodomain represents a promising drug target [84].

Nsp12, the RdRp, is essential for the synthesis of viral RNA and the primary target for RNA analog therapeutics such as remdesivir [12,13**,85]. On its own, Nsp12 has low polymerase activity. Upon addition of Nsp7 and Nsp8 cofactors and formation of a holo-RdRp:RNA complex with scaffold RNA made up of template RNA (t-RNA) and primer RNA (p-RNA), the polymerase activity of Nsp12 is greatly improved [86]. The holo-RdRp:RNA complex consists of a single Nsp7/Nsp8 heterodimer bound to Nsp12, as well as a single Nsp8 at a separate Nsp12 binding site [13**,85–87]. CryoEM structures of the holo-RdRp complex with its cofactors Nsp7 and Nsp8 reveal that Nsp12 (Figure 3g blue) contains an RNA polymerase domain as well as a nidoivirus RdRp-associated nucleotidyltransferase (NiRAN) domain connected by an interface domain. The Nsp7-Nsp8 #1 heterodimer (Figure 3g, yellow and dark green) binds above the thumb subdomain of Nsp12, sandwiching Nsp12 finger extension loops between them and stabilizing this conformation. This interaction is primarily mediated by Nsp7, with Nsp8 contributing very little to the interaction with the polymerase domain. Nsp8 #2 (Figure 3g, green) binds to the finger subdomain of the Nsp12 polymerase domain and interacts with the interface domain of Nsp12 [86]. Nsp8 contains helical N-terminal extensions which interact with the RNA as it exits the complex, potentially promoting polymerase activity by stabilizing the exiting RNA [13**].

Nsp13 is a helicase that interacts with the holo-RdRp:RNA complex, forming the Nsp13-replication-transcription complex (Nsp13-RTC) essential for replication and transcription (Figure 3g) [88–91]. Nsp13 contains two canonical RecA ATPase domains, as well as three
domains unique to nidovirus helicases: an N-terminal zinc-binding domain (ZBD), a stalk, and a 1b domain. The Nsp13-RTC complex can exist in two isoforms, with either a single Nsp13 or two Nsp13 proteins bound (Figure 3g) [88–91]. The Nsp13 ZBD domains interact with the Nsp8 N-terminal extensions. Nsp13 #1 (Figure 3g, dark orange) also interacts with the thumb domain of Nsp12 (Figure 3g, blue), while the first RecA domain interacts with the head of Nsp8 #1 (Figure 3g, dark green) as well as Nsp7 (Figure 3g, yellow). The overall architecture of the Nsp13-RTC complex places the Nsp13 RNA-binding channel directly in the path of t-RNA strand. The holo-RdRp complex translocates in the 3′-5′ direction, while the Nsp13 helicase is positioned to translocate on the RNA strand in the 5′-3′ direction, opposite the RdRp. This is thought to provide back-tracking along the t-RNA and play a role in maintaining transcription-replication fidelity [88,91].

The Nsp9 in its crystal structure forms a dimer, with each monomer containing a unique fold limited to coronavirus [92]. The structure consists of an enclosed six-stranded β-barrel with outward projecting loops connecting the β-strands with a projected N-terminal β-strand and a C-terminal α-helix make up dimerization interface, allowing it to dimerize. Nsp10 from SARS-CoV-2 is a non-classic zinc finger protein, containing two zinc finger motifs. Nsp10 acts as a co-factor, necessary for stimulation of Nsp14 and Nsp16 [93]. Nsp14 is a bifunctional protein, consisting of an N-terminal exoribonuclease domain (ExoN) and a C terminal domain guanine-N7-MTase involved in capping [94,95**]. The overall structure of Nsp10/Nsp14-ExoN consists of the Nsp14-ExoN leaning along the Nsp10 monomer, with peripheral regions of Nsp14-ExoN interacting with most regions of Nsp10 [94]. Nsp10/14 associate with the Nsp13-RTC complex, mediated by an Nsp9-Nsp12 interaction, forming a cap0-RTC complex (Figure 3h) [90,95**]. This cap0-RTC complex can form dimers, positioning the Nsp14 ExoN domain facing the Nsp12 reaction center, revealing a potential mechanism for Nsp14 to exert its proofreading activity [95**].

Nsp16 is S-adenosylmethionine-dependent methyltransferase (SAM-MTase) essential for methylation of the viral RNA cap [96,97]. The overall structure of Nsp10/Nsp16 is of an Nsp16 monomer on top of an Nsp10 monomer [96]. Nsp16 takes on a canonical SAM-MTase fold, containing an RNA-binding groove and a S-adenosylmethionine (SAM) binding pocket occupied by SAM. A crystal structure of Nsp10/Nsp16 complexed with an RNA cap analog in the RNA-binding groove revealed the organization of the catalytic pocket in the presence of SAM and substrate (Figure 3i). This structure also showed an adenosine binding pocket opposite the catalytic pocket, not found in any other strains of coronavirus [98].

The Nsp15 (NendoU) of SARS-CoV-2 forms a hexameric endonuclease with a uridine specificity [99,100]. Nsp15 contains three domains: an N-terminal oligomerization domain, a middle domain, and an endoU catalytic domain [99]. Crystal structures reveal that Nsp15 oligomerizes into a hexameric form, made up of a dimer of trimers with the endoU catalytic domains located on opposite ends of the hexamer (Figure 3j). While its role in SARS-CoV-2 infection remains unclear, studies in other viruses suggest it may have multiple cleavage targets important for accumulation of viral RNA and preventing RNA-activated immune responses [100]. The cryoEM structures of Nsp15 both in presence and absence of 5′-UMP reveal that in the absence of substrate, the endoU domain appears to wobble, resulting in a loss of local resolution. This series of cryoEM and crystal structures of Nsp15 provide insight into how it targets RNA and could provide a drug target for nucleotide analogs such as Tipracil [100,101].

Open reading frame accessory proteins

ORF3a from SARS-CoV-2 is a conserved protein across the Sarbecovirus subgenus, which includes SARS-CoV. ORF3a has been implicated in apoptosis and inhibition of autophagy. ORF3a has been proposed form an ion channel, the second viroporin in the SARS-CoV-2 genome. However, the function of ORF3a during infection remains unknown. The cryoEM structure of ORF3a was recently determined in lipid nanodiscs, revealing that ORF3a forms a dimeric or tetrameric ion channel [102]. ORF3a is composed of a transmembrane domain (TM) of three helices per protomer, TM1, TM2, and TM3 that connect to a cytosolic domain (CD) extending into the cytosol (Figure 3k). In the dimeric form, two of these protomers come together to form the ORF3a ion channel. The CD is made up of eight-stranded β-sheet sandwich, with the inner sheets from each protomer forming a stable hydrophobic core. In its tetrameric form, two ORF3a dimers come together through interactions between TM3/CD linker region, as well as B1/B2 of neighbouring dimers.

In ORF3a, the lower half of the TM region contains a polar cavity with a lower tunnel, open to the cytosol, and an upper tunnel, likely open to the membrane. While most ion channels contain a central pore, in the case of ORF3a the extracellular TM region forms a hydrophobic seal [102]. Some ion channels have evolved pathways of external groves or tunnels on membrane-facing surfaces of the channel. ORF3a contains a distinct membrane-facing hydrophilic groove between TM2 and TM3, connected to the upper tunnel. Mutations in this region alter ion permeability, supporting the hypothesis of these external grooves are involved in ion transport [102]. As deletions of ORF3a have lowered viral titer and mortality in mice, this may provide a target for novel therapeutic development.
Several other small open reading frame protein structures have also been recently determined.

The crystal structure of the ectodomain of ORF7a has recently been determined, revealing an Ig-like fold structure consisting of seven β-strands organized into two tightly packed β-sheets stabilized by two disulfide bonds (Figure 3l) [103]. ORF7a has been shown to interact with CD14+ monocytes with high efficiency [103]. While it functions as an immunomodulating factor and triggers an inflammatory response, the mechanism of ORF7a’s interaction with CD14+ remains unknown [103].

ORF8 has been shown to disrupt IFN-I signalling in cells, as well as downregulate MHC-I. The crystal structure of ORF8 has been determined, revealing a homodimeric Ig-like fold (Figure 3m) [104]. This dimer is linked by an intermolecular disulfide bond. This Ig-like fold is stabilized by two disulfide bonds conserved between ORF7a and ORF8. ORF8 also contain an ORF8-specific region distinct from other Ig-like folds, containing a third ORF8-specific disulfide bond [104]. While many interactors for ORF8 have been identified, its mechanism of action remains unclear, necessitating more structural work of ORF8 in complex with host factors [104].

The structures of ORF9a provide structural insight into its mechanism for interfering with type 1 interferon immune response by targeting TOM70 [105,106]. TOM70 forms a surface receptor for the translocate of the outer membrane (TOM) complex in mitochondria, playing a key role in relaying antiviral signalling from mitochondrial antiviral signalling (MAVS) to the TANK-binding kinase 1 through recruitment of protein binding heat shock protein 90 (Hsp90), ultimately resulting in interferon response [105]. Upon binding to TOM70, ORF9b takes on a helical conformation that binds within a deep pocket of TOM70 C-terminal domain (CTD) (Figure 3n) [105,106]. This binding appears to stabilize TOM70 and allosterically inhibit recruitment of Hsp90, ultimately suppressing interferon response [105].

Virus assembly in the context of host cell

One of the major advantages provided by advances in cryoET is cryo-focused ion beam scanning electron microscopy (cryoFIB/SEM). CryoFIB/SEM uses a focused ion beam to create 150–250 nm thick cell lamella, which can then be imaged using cryoET to determine macromolecular complex structures in situ [17]. This method was used for imaging the SARS-CoV-2 virions at different stages over the course of infection, allowing high resolution characterization of viral structure and replication (Figure 4a–b) [72,107**]. Using cryoFIB/SEM, double membrane vesicles (DMV) in fixed SARS-CoV-2 infected cells were revealed to contain multiple copies of a membrane-spanning pore complex (Figure 4c) thought to be composed of Nsp3 and other unknown proteins [107**,108*]. Newly synthesized RNA is hypothesized to be transported out of DMVs through the transmembrane portals for subsequently protein production and virus assembly [72,107**]. S is transported in its trimeric prefusion form to assembly sites via small transport vesicles that then fuse with single membrane vesicles (SMV) where virus assembly takes place (Figure 4d) [107**]. CryoET imaging of early budding events revealed a positively curved membrane decorated with S on the luminal side, and vRNPs on the cytosolic side (Figure 4e) [72]. S clusters with the SMV near the electron-dense areas with encapsidated RNPs, ultimately leading to budding [107**]. In SMVs, S trimers show a polarized distribution and is likely mobile, allowing them to redistribute during the budding process [72].

Future perspective

The SARS-CoV-2 pandemic has brought the importance of scientific research to the forefront of the media and public’s view. The unprecedented collaboration has
given us the tools and insights needed to develop not one, several vaccines in record time. The two-proline motif that was identified in previous MERS-CoV and SARS-CoV work to stabilize S in its prefusion conformation [109] has been used in the development of both the Pfizer and Moderna mRNA vaccines, increasing the efficacy [7**,14,15]. CryoET has also been shown to be valuable in validating the post-translational processing and glycosylation of S in the ChAdOx1 nCoV-19 vaccine in human cells, providing a useful tool for checking future vaccine efficacy [110].

However, as the virus continues to spread and mutate, further research will be important in determining new vaccine and therapeutic targets, as it is unlikely that we will be able to eradicate SARS-CoV-2 anytime soon. The structure of MPro has already resulted in the direct design of inhibitors, as well as being used for virtual screening of thousands of compounds for potential inhibitors [8*,16**]. Pfizer has recently developed a novel MPro inhibitor, PF-07321332, the first orally administered MPro inhibitor to begin clinical trials [111]. Structures of S from variants could provide the basis for future vaccine development and provide insight into how variants evade immune response [112]. Structural work on the RdRp bound by nucleoside analogs presents it as a promising target for novel therapeutic development. Most recently, the inhibitor molnupiravir which causes an error catastrophe during replication, has been approved for use in the UK (as of 4th November 2021) [113].

Other proteins, such as Nsp3 macroadomain, also provide promising candidates for therapeutic development. As the Nsp3 macroadomain has been shown to bind remdesivir metabolite, it is a prime therapeutic target [84]. E also provides an interesting target, as deletions of E or blocking abolishing channel activity have shown promise in SARS-CoV [65]. Small molecules designed to target the acidic or polar residues at the N-terminal could provide an effective target [64*]. Structural work on PLpro also shows promise towards the development of novel inhibitors [10,11].

Several proteins and complexes from SARS-CoV-2 still elude structure determination. The structure of the major structural protein M has yet to be determined, leaving many questions as to how it interacts with both S and its role in viral genome packaging. While the N-terminal domain of Nsp2 has been determined, a structure of the full-length protein structure has yet to be published. Additional non-structural proteins that have not had their structures determined include Nsp4, Nsp6, and Nsp11. Another complex of interest that eludes structure determination is the membrane pore complex in DMVs. Amongst the accessory proteins, ORF3b, ORF7, ORF7b, ORF9c, and ORF10 have yet to be described structurally. In addition, while structures of ORF7a and ORF8 have been determined, structural insight into their mechanisms of action within the host remain unknown [103,104]. As structural techniques improve, it will become more feasible to address the structures of these elusive proteins and their interactions with host factors. Further work on the molecular architecture of SARS-CoV-2 proteins and their host factor interactions could provide the foundation for new developments in antiviral therapies and vaccines, such as work to further stabilize S in its prefusion conformation [109,114].

Conflict of interest statement
Nothing declared.

Acknowledgements
The author thanks Luiza Mendonça for critical reading of the manuscript. This work was supported by the Wellcome Trust Investigator Award (206422/Z/17/Z), the BBSRC grant (BB/S003339/1), the ERC AdG grant (101021133) and the N.I.H. grants (AI150481, AI29862).

References and recommended reading

Papers of particular interest, published within the period of review, have been highlighted as:

- of special interest
- of outstanding interest

1. Feng D, De Vlas SJ, Feng LO, Han XN, Zhao WJ, Sheng S, Yang H, Jia ZW, Richards JD, Cao WC: The SARS epidemic in mainland China: bringing together all epidemiological data. Trp Med Int Health 2009, 14:4-13.

2. Drosten C, Gunther S, Preisler W, van der Werf S, Brodt HR, Becker S, Rabenau H, Panning M, Kolesnikova L, Fouchier RA et al.: Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 2003, 348:1967-1976.

3. Ksiazek TG, Erdman D, Goldsmith CS, Zaki SR, Peret T, Emery S, Tong S, Urbani C, Comer JA, Lim W et al.: A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 2003, 348:1953-1966.

4. Peiris JSM, Lai ST, Poon LLM, Guan Y, Yam LYC, Lim W, Nicholls J, Yee WKS, Yan WW, Cheung MT et al.: Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 2003, 361:1319-1325.

5. Petersen E, Koopmans M, Go U, Hamer DH, Petrosillo N, Castelli F, Storgaard M, Al Khalili S, Simonsen L: Comparing SARS-CoV-2 with SARS-CoV and influenza pandemics. Lancet Infect Dis 2020, 20:e238-e244.

6. Krammer F: SARS-CoV-2 vaccines in development. Nature 2020, 586:516-527.

7. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh C-L, Abiona O, Graham BS, McLellan JS: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020, 367:1260-1263

In this study, the atomic-level resolution structure of S stabilized by the double proline mutation was determined at 3.5-Å resolution. This structure, containing the double proline mutation used in vaccines, reveals the overall architecture of the SARS-CoV-2 trimer with one RBD in the receptor accessible ‘up’ conformation. This study also reveals that SARS-CoV-2 S binds to ACE2 10 times more tightly than the corresponding S from SARS-CoV, while antibodies for SARS-CoV S did not bind to the SARS-CoV-2 S.

8. Zhang L, Lin D, Sun X, Curth U, Drosten C, Saueringher L, Becker S, Rok X, Hilgenfeld R: Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved a-ketoamide inhibitors. Science 2020, 368:409-412

This study reveals the crystal structure of unliganded SARS-CoV-2 MPro, revealing its dimeric structure. The authors use this structure as a basis to
develop a potent α-ketoamide inhibitor for MPro of SARS-CoV-2 based on their previous coronavirus inhibitors and determined the crystal structure of the MPro-inhibitor complex. This paper provides framework for the development of antiviral drugs for treatment of SARS-CoV-2.

9. Bangaru S, Oзоровский G, Turner HL, Антанасиевич А, Huang D, Wang X, Torres JL, Diedrich JK, Tian JH, Portnoff AD et al.: Structural analysis of full-length SARS-CoV-2 spike protein from an advanced vaccine candidate. Science 2020, 370:1089-1094.

10. Klemm T, Ebert G, Calleja DJ, Allison CC, Richardson LW, Bernardini JP, Lu BG, Kuchel NW, Grothmann C, Shibata Y et al.: Mechanism and inhibition of the papain-like protease, PLPro, of SARS-CoV-2. EMBO J 2020, 39:1-17.

11. Osipluk J, Azizi SA, Dvorkin S, Endres M, Jedrzejczak R, Jones KA, Kang S, Kathayat RS, Kim Y, Lisnyak VG et al.: Structure of papain-like protease from SARS-CoV-2 and its complexes with non-covalent inhibitors. Nat Commun 2021, 12:1-9.

12. Peng Q, Peng R, Yuan B, Wang M, Zhao J, Fu L, Qi J, Shi Y: Structural basis of SARS-CoV-2 polymerase inhibition by favipiravir. Innovation (United States) 2021, 2:100080.

13. Wang Q, Wu J, Wang H, Gao Y, Liu Q, Mu A, Ji W, Yan L, Zhu Y, Zhu C et al.: Structural basis for RNA replication by the SARS-CoV-2 polymerase. Cell 2020, 182:417-428.e413 This study determined cryoEM structures of the SARS-CoV-2 RdRP in complex, essential for RNA replication and transcription. This complex, made up of Nsp12, Nsp7, and Np8, with RNA, is determined both before and after RNA translocation, revealing the structural rearrangements that occur to accommodate the nucleic acids. It also reveals the mechanism of remdesivir inhibition of the RdRP.

14. Corbett KS, Edwards DK, Leist SR, Abiona OM, Boyogul-Barnum S, Gillespie RA, Himansu S, Schaffer A, Ziwawa CT, DiPiazza AT et al.: SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature 2020, 586:567-571.

15. Polack FP, Thomas SJ, Kitchin N, Abalon J, Gurtman A, Lockhart S, Perez JL, Perez Marc G, Moreira ED, Zerbini C et al.: Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N Engl J Med 2020, 383:2603-2615.

16. Jin Z, Du X, Xu Y, Deng Y, Liu M, Zhao Y, Zhang B, Li X, Zhang L, Peng C et al.: Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature 2020, 582:289-293 This study determined the first structure of MPro from SARS-CoV-2 bound to an inhibitor, as well as the first structure deposited in the Protein Databank from SARS-CoV-2. The authors then use this structure for identification of potential inhibitors for “hit” and test in Vero cells, identifying ebselen and cinanserin as a potential therapeutic treatment for SARS-CoV-2. Overall, it details a high-throughput pipeline from structure determination to identification of approved pharmaceuticals with clinical potential for treatment of SARS-CoV-2.

17. Zhang P: Advances in cryo-electron tomography and subtomogram averaging and classification. Curr Opin Struct Biol 2019, 58:249-258.

18. Schur KOM, Obr M, Hagen WJH, Wan W, Jakobi AJ, Kirkpatrick JM, Sachse C, Kräusslich H-G, Briggs JAG: An atomic model of HIV-1 capsid-SP1 reveals structures regulating assembly and maturation. Science 2016, 353:506-508.

19. Mendonça L, Sun D, Ning J, Liu J, Kotecha A, Olek M, Frosto T, Fu X, Himes BA, Kleinpeter AB et al.: CryoET structures of immature HIV gag reveal six-helix bundle. Commun Biol 2021, 4:1-9.

20. Himes BA, Zhang P: emClarity: software for high-resolution cryo-electron tomography and subtomogram averaging. Nat Methods 2018, 15:955-961.

21. Tegunov D, Xue L, Dienemann C, Cramer P, Mahamid J: Multiparticle cryo-EM refinement with M visualizes ribosome-antibiotic complex at 3.5Å in cells. Nat Methods 2021, 18:186-193.

22. Sutton G, Sun D, Fu X, Kotecha A, Hecksel CW, Clare DK, Zhang P, Stuart DI, Boyce M: Assembly intermediates of orthorovirus captured in the cell. Nat Commun 2020, 11:1-7.

23. Ke Z, Otto J, Qu K, Cortese M, Zila V, McKeane L, Nakane T, Zivanov J, Neufeld CJ, Carikan B et al.: Structures and distributions of SARS-CoV-2 spike proteins on intact virions. Nature 2020, 588:498-502

In this study, cryoET/STA is used to image intact virions, revealing the structures of S trimers in situ on the virion surface. It reveals a distribution of approximately 97% of S in the prefusion conformation, with 3% in the postfusion conformation. Using single-particle analysis on the S-trimers, they were able to determine high-resolution structures of S in its prefusion and postfusion conformations on the virion surface.

24. Yao H, Song Y, Chen Y, Wu N, Xu J, Sun C, Zhang J, Weng T, Zhang Z, Wu Z et al.: Molecular architecture of the SARS-CoV-2 virus. Cell 2020, 183:730-738.e713

In this study, cryoET/STA was used to study the molecular architecture of SARS-CoV-2 virions. Along with revealing native structures of S proteins in prefusion and postfusion conformations on the virion surface, it also revealed the native conformation of RNP’s and their higher-order assemblies within the virion. This work provides high-resolution insight into the overall architecture of intact SARS-CoV-2 virions.

25. Liu C, Mendonça L, Yang Y, Gao Y, Chen C, Liu J, Ni T, Ju B, Liu C, Tang X et al.: The architecture of inactivated SARS-CoV-2 with postfusion spikes revealed by Cryo-EM and Cryo-ET. Structure 2020, 28:1218-1224.e1214

This paper performed cryoET/STA on SARS-CoV-2 virions focusing on determining the in situ structure of S in its postfusion conformation. Virions were treated with n-propanol as an inhibition reagent that is used in several inactivated virus vaccine candidates. These inactivated viruses exhibit primarily postfusion S, suggesting potential implications for the antigenicity of vaccines utilizing inactivated viruses.

26. Turowna B, Sikora M, Schürmann C, Hagen WJH, Welsch S, Blanc FEC, von Bülow S, Gecht M, Bagola K, Hörner C et al.: In situ structural analysis of SARS-CoV-2 spike reveals flexibility mediated by three hinges. Science 2020, 370:203-208 This study uses cryoET/STA to determine structures of S on intact virion surfaces. The authors were able to perform local refinement on the stalk of S. This has revealed three hinges, which provides insight into the mechanisms through which S connects to the viral membrane and gains its flexibility.

27. Watanabe Y, Allen JD, Wrapp D, McLellan JS, Crispin M: Site-specific glycan analysis of the SARS-CoV-2 spike. Science 2020, 369:330-333.

28. Du S, Cao Y, Zhu Q, Yu P, Qi F, Wang G, Du X, Bao L, Deng W, Zhu H et al.: Structurally resolved SARS-CoV-2 antibody shows high efficacy in severely infected hamsters and provides a potent cocktail pairing strategy. Cell 2020, 183:1013-1023.e1013

29. Zost SJ, Gilchuk P, Case JB, Binshtein E, Chen RE, Nikola JP, Sieverd A, Redy JX, Norgaard RS et al.: Potently neutralizing and protective human antibodies against SARS-CoV-2. Nature 2020, 584:443-449.

30. Robbiani DF, Gaebler C, Muecksch F, Lorenzi JCC, Wang Z, Cho A, Agudelo M, Barnes CO, Gazumyan A, Finkin S et al.: Convergent antibody responses to SARS-CoV-2 in convalescent individuals. Nature 2020, 584:437-442.

31. Letko M, Marzi A, Munster V: Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol 2020, 5:562-569.

32. Cai Y, Zhang J, Xiao T, Peng H, Sterling SM, Walsh RM, Rawson S, Pits-Olocho S, Chen B: Distinct conformational states of SARS-CoV-2 spike protein. Science 2020, 369:1588-1592

In this study, the authors determined structures of full-length native S in both its prefusion and postfusion conformations at 2.9Å and 3.0Å resolution, respectively, using SPA. The structure of S in its prefusion conformation was determined with all three RBPs in the ‘down’ orientation. Most notably, it provides high resolution structural information of S in its postfusion conformation, revealing strategic decoration by glycans.

33. Zhu X, Mannar D, Srivastava SS, Berezk AM, Demers JP, Saville JW, Leopold K, Li W, Dimitrov DS, Tuttle KS et al.: Cryo-electron microscopy structures of the N501Y SARS-CoV-2 spike protein in complex with ACE2 and 2 potent neutralizing antibodies. PLoS Biol 2021, 19:1-17.

34. Xu C, Wang Y, Liu C, Zhang C, Han W, Hong X, Wang Y, Hong Q, Wang S, Zhao Q et al.: Conformational dynamics of SARS-CoV-
2 trimeric spike glycoprotein in complex with receptor ACE2 revealed by cryo-EM. *Sci Adv* 2021, 7:1-14.

This study provides structural insight into the interaction between S and ACE2. The structure of S in complex with ACE2 was determined using SPA to 3.8-Å resolution. This data suggests that binding of ACE2 to S changes the population landscape of S from primarily a primarily 'RBD down' pretransition state to a primarily ACE2-bound open state.

35. Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q: Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. *Science* 2020, 367:1444-1448.

36. Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, Zhang Q, Shi X, Wang G, Zhang L et al.: Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. *Nature* 2020, 581:215-220.

37. Shang J, Ye G, Shi K, Wan Y, Luo C, Alhara H, Geng Q, Anabach A, Li F: Structural basis of receptor recognition by SARS-CoV-2. *Nature* 2020, 581:221-224.

38. Lv Z, Deng YQ, Ye Q, Cao L, Sun CY, Fan C, Huang W, Sun S, Sun Y, Zhulet et al.: Structural basis for neutralization of SARS-CoV-2 and SARS-CoV by a potent therapeutic antibody. *Science* 2020, 369:1505-1509.

39. Zhou D, Duyvesteyn HME, Chen CP, Huang CG, Chen TH, Shih SR, Lin YC, Cheng CY, Cheng SH, Huang YC et al.: Structural basis for the neutralization of SARS-CoV-2 by an antibody from a convalescent patient. *Nat Struct Mol Biol* 2020, 27:950-958.

In this study, the authors cloned human monoclonal antibodies from plasmablasts isolated from a patient infected with SARS-CoV-2. They were able to identify an antibody, EY6A, which binds to the RBD of the SARS-CoV-2 S. Interestingly, this antibody binds at a conserved epitope separate from the ACE2 binding site and neutralizes SARS-CoV-2. This work paired crystallography of the RBD of S with SPA of S bound by the mAb, providing detailed structural insight into the binding of EY6A to S and providing a potential target for therapeutics to neutralize SARS-CoV-2 as well as related viruses.

40. Dejnirattisai W, Zhou D, Ginn HM, Duyvesteyn HME, Supasa P, Case JB, Zhao Y, Walter TS, Montzer AJ, Liu C et al.: The antigenic anatomy of SARS-CoV-2 receptor binding domain. *Cell* 2021, 184:2383-2390 e212.

In this study, the authors screened 377 SARS-CoV-2 monoclonal antibodies (mAbs) from 42 patients, identifying a group of neutralizing antibodies which bind the RBD of S. The authors used both crystallography and cryo-EM to define 19 structural antibodies bound to either isolated RBD (crystallography) or (cryoEM). These structures allowed them to map the binding of neutralizing antibodies on the RBD surface. This work identified novel binding modes of mAbs of these neutralizing antibodies, with mAb-blocking the RBD-receptor interaction. They also identified potent mAbs which bound the NTD of S.

41. Hsu J, Le Bas A, Ruza RR, Duyvesteyn HME, Mikoja M, Malinauskas T, Tan TK, Rajal P, Dumoux M, Ward PN et al.: Neutralizing nanobodies bind SARS-CoV-2 spike RBD and block interaction with ACE2. *Nat Struct Mol Biol* 2020, 27:846-854.

42. Hsu J, Zhao Y, Ren J, Zhou D, Duyvesteyn HME, Ginn HM, Carque L, Malinauskas T, Ruza RR, Shah PNK et al.: Neutralization of SARS-CoV-2 by destruction of the prefusion spike. *Cell Host Microbe* 2020, 28:445-454 e446.

43. Starr TN, Czudnochocki N, Liu Z, Zatta F, Park YJ, Addetia A, Pinto D, Beltramelli M, Hernandez P, Greaney AJ et al.: SARS-CoV-2 RBD antibodies that maximize breadth and resistance to escape. *Nature* 2021, 597:97-102.

44. Barnes CO, Jette CA, Abernathy ME, Dam KA, Esswein SR, Gristick HB, Maluytin AG, Sharaf NG, Huey-Tubman KE, Lee YE et al.: SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies. *Nature* 2020, 588:682-687.

45. Sun D, Sang Z, Kim YJ, Xiang Y, Cohen T, Belford AK, Huet A, Conway JF, Sun J, Taylor DJ et al.: Potent neutralizing nanobodies resist convergent circulating variants of SARS-CoV-2 by targeting diverse and conserved epitopes. *Nat Commun* 2021, 12:4876.

46. Yang Z, Wang Y, Jin Y, Zhu Y, Wu Y, Li C, Kong Y, Song W, Tian X, Zhan W et al.: A non-AECE competing human single-domain antibody confers broad neutralization against SARS-CoV-2 and circulating variants. *Signal Transduct Target Ther* 2021, 8:378.

47. Banach BB, Cerutti G, Fahad AS, Shen CH, Oliveira De Souza M, Katsamba PS, Tsybovsyky Y, Wang P, Nair MS, Huang Y et al.: Paired heavy- and light-chain signatures contribute to potent SARS-CoV-2 neutralization in public antibody responses. *Cell Rep* 2021, 37:109771.

48. Ahmad J, Jiang J, Boyd LF, Zeher A, Huang R, Xia D, Natarajan K, Margulies DH: Structures of synthetic nanobody-SARS-CoV-2 receptor-binding domain complexes reveal distinct sites of interaction. *J Biol Chem* 2021, 297:101202.

49. Emico JM, Zhao H, Chen RE, Liu Z, Case JB, Ma M, Schmitz AJ, Rau MJ, Fitzpatrick JA, Shi PY et al.: Structural mechanism of SARS-CoV-2 neutralization by two murine antibodies targeting the RBD. *Cell Rep* 2021, 37:109881.

50. Kramer KJ, Johnson NV, Shiakolas AR, Suryadevara N, Periasamy S, Raju N, Williams JK, Wrapp D, Zost SJ, Walker LM et al.: Potent neutralization of SARS-CoV-2 variants by an antibody with an uncommon genetic signature and structural mode of spike recognition. *Cell Rep* 2021, 37:109784.

51. Cerutti G, Rapp M, Guo Y, Bahna F, Bimela J, Reddem ER, Yu J, Wang P, Liu L, Huang Y et al.: Structural basis for accommodation of emerging B.1.351 and B.1.1.7 variants by two potent SARS-CoV-2 neutralizing antibodies. *Structure* 2021, 29:655-663 e654.

52. Yan R, Wang R, Ju B, Yu J, Zhang Y, Liu N, Wang J, Zhang Q, Chen P, Zhou B et al.: Structural basis for bivalent binding and inhibition of SARS-CoV-2 infection by human potent neutralizing antibodies. *Cell Res* 2021, 31:517-525.

53. Song D, Wang W, Dong C, Ning Z, Liu X, Liu C, Du G, Sha C, Wang K, Liu J et al.: Structure and function analysis of a potent human neutralizing antibody CA521FALA against SARS-CoV-2. *Commun Biol* 2021, 4:1-11.

54. Fedry J, Hurdiss DL, Wang C, Li W, Obal G, Drulyle I, Du W, Howes SC, van Kuppeveld FJM, Förster F et al.: Structural insights into the cross-neutralization of SARS-CoV and SARS-CoV-2 by the human monoclonal antibody 4D7. *Sci Adv* 2021, 7:44-47.

55. Chi X, Yan R, Zhang J, Zhang G, Zhang Y, Hao M, Zhang Z, Fan P, Dong Y, Yang Y et al.: A neutralizing human antibody binds to the N-terminal domain of the spike protein of SARS-CoV-2. *Science* 2020, 369:650-655.

56. Zhang L, Cao L, Gao XS, Zheng BY, Deng YQ, Li JX, Feng R, Bian Q, Guo XL, Wang N et al.: A proof of concept for neutralizing antibody-guided vaccine design against SARS-CoV-2. *Nat Rev Rev* 2021, 8:mrw053.

57. Cerutti G, Guo Y, Wang P, Nair MS, Wang M, Huang Y, Yu J, Liu L, Katsamba PS, Bahna F et al.: Neutralizing antibody S-7 defines a distinct site of vulnerability in SARS-CoV-2 spike N-terminal domain. *Cell Rep* 2021, 37:109928.

58. Cerutti G, Guo Y, Zhou T, Gorman J, Lee M, Rapp M, Reddem ER, Yu J, Bahna F, Bimela J et al.: Potent SARS-CoV-2 neutralizing antibodies directed against spike N-terminal domain target a single supersite. *Cell Host Microbe* 2021, 29:619-633 e617.

59. Pinto D, Park YJ, Beltramelli M, Walls AC, Tortorici MA, Bianchi S, Jaconi S, Culap K, Zatta F, de Marco A et al.: Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. *Nature* 2020, 583:290-295.

60. Rapp M, Guo Y, Reddem ER, Yu J, Liu L, Wang P, Cerutti G, Katsamba P, Bahna F et al.: Modular basis for potent SARS-CoV-2 neutralization by a prevalent VH1-2- derived antibody class. *Cell Rep* 2021, 35:108950.

61. Du S, Liu P, Zhang Z, Xiao T, Yasimai A, Huang W, Wang Y, Cao Y, Xie XS, Xiao J: Structures of SARS-CoV-2 B.1.351 neutralizing antibodies provide insights into cocktail design against concerning variants. *Cell Rep* 2021, 31:1130-1133.

62. Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D: Structure, function, and dynamics of the SARS-CoV-2 spike glycoprotein. *Cell* 2020, 181:281-292.e286.
63. Fan X, Cao D, Kong L, Zhang X: Cryo-EM analysis of the post-fusion structures of the SARS-CoV spike glycoprotein. Nat Commun 2020, 11:1-10.

64. Mandala VS, McKay MJ, Schcherbakov AA, Dregni AJ, Kolocouris A, Hong M: Structure and drug binding of the SARS-CoV-2 envelope protein transmembrane domain in lipid bilayers. Nat Struct Mol Biol 2020, 27:1202-1208.

In this study, the structure of the transmembrane domain of E was determined in lipid bilayers using solid state NMR. This structure revealed that the transmembrane domain of E forms a five-helix bundle surrounding a narrow pore, providing the first structural insight into SARS-CoV-2 E.

65. Nieto-Torres JL, DeDiego ML, Verdá-Báguena C, Jiménez-Guardé JM, Regla-Nava JA, Fernandez-Delgado R, Castaño-Rodriguez C, Alcaraz A, Torres J, Aguillera VM et al.: Severe acute respiratory syndrome coronavirus envelope protein ion channel activity promotes virus fitness and pathogenesis. PLoS Pathog 2014, 10:e1004077.

66. Mu J, Xu J, Zhang L, Shu T, Wu D, Huang M, Ren Y, Li X, Geng Q, Xu Y et al.: SARS-CoV-2-encoded nucleocapsid protein acts as a viral suppressor of RNA interference in cells. Sci China Life Sci 2020, 63:1413-1416 Science China Press.

67. Peng Y, Du N, Lei Y, Dorje S, Qi J, Luo T, Gao GF, Song H: Structures of the SARS-CoV-2 nucleocapsid and their perspectives for drug design. EMBO J 2020, 39:1-12.

68. Chang C-K, Hsu Y-L, Chang Y-H, Chao F-A, Wu M-C, Huang Y-S, Hu C-K, Huang T-H: Multiple nucleic acid binding sites and intrinsic disorder of severe acute respiratory syndrome coronavirus nucleocapsid protein: implications for ribonucleocapsid protein packaging. J Virol 2009, 83:2255-2264.

69. Ye Q, West AMV, Silletti S, Corbett KD: Architecture and self-assembly of the SARS-CoV-2 nucleocapsid protein. Protein Sci 2020, 29:1890-1901.

70. Kang S, Yang M, Hong Z, Zhang L, Huang Z, Chen X, He S, Zhou Z, Zhou Z, Chen Q et al.: Crystal structure of SARS-CoV-2 nucleocapsid protein RNA binding domain reveals potential unique drug targeting sites. Acta Pharm Sin B 2020, 10:1228-1238.

71. Zinzula L, Basquin J, Bohn S, Beck F, Klumpe S, Pfeifer G, Nagy I, Bracher A, Hartl FU, Baumeister W: High-resolution structure and biophysical characterization of the nucleocapsid phosphoprotein dimerization domain from the Covid-19 severe acute respiratory syndrome coronavirus 2. Biochem Biophys Res Commun 2021, 538:54-62.

72. Klein S, Cortese M, Winter SL, Wachsmuth-Melm M, Neufeldt CJ, Cerikan B, Stanifer ML, Boulant S, Bartenschlager R, Chlanda P: SARS-CoV-2 structure and replication characterized by in situ cryo-electron tomography. Nat Commun 2020, 11:1-10.

73. Ulrich S, Nitsche C: The SARS-CoV-2 main protease as drug target. Bioorg Med Chem Lett 2020, 30:127377.

74. Lee J, Worrall LJ, Vuckovic M, Rosell FI, Gentile F, Ton AT, Caveney NA, Ban F, Cherkasov A, Paetzel M et al.: Crystallographic structure of wild-type SARS-CoV-2 main protease acyl-envelope intermediate with physiological C-terminal autoprocessing site. Nat Commun 2020, 11:1-9.

75. Douangamath A, Fearon D, Gehrtz P, Krojer T, Lukacik P, Oxen CD, Resnick E, Strain-Damereil C, Aimon A, Abranyi-Balogh P et al.: Crystallographic and electrophilic fragment screening of the SARS-CoV-2 main protease. Nat Commun 2020, 11:947.

76. Shin D, Mukherjee R, Grewe D, Bojkova D, Baek K, Bhattacharya A, Schulz L, Widera M, Mehdiyopour AR, Tascher G et al.: Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity. Nature 2020, 587:657-662.

77. Schubert K, Karoussis ED, Jomaa A, Scaiola A, Echeverria B, Gurzeler LA, Leibundgut M, Thiel V, Mühlemann O, Ban N: SARS-CoV-2 Nsp1 binds the ribosomal mRNA channel to inhibit translation. Nat Struct Mol Biol 2020, 27:959-966.

78. Thoms M, Buschauer R, Amelismeier M, Koeppke L, Denk T, Hirschberger M, Kratzt H, Hayn M, Mackens-Kirian T, Cheng J et al.: Structural basis for translational shutdown and immune evasion by the Nsp1 protein of SARS-CoV-2. Science 2020, 369:1249-1255.

79. Yuan S, Peng L, Park JJ, Hu Y, Devarkar SC, Dong MB, Shen Q, Wu S, Shen C, Lomakin IB et al.: Nonstructural protein 1 of SARS-CoV-2 is a potent pathogenicity factor redirecting host protein synthesis machinery toward viral RNA. Mol Cell 2020, 80:1055-1066 e1056.

80. Ma J, Chen Y, Wu W, Chen Z: Structure and function of N-terminal zinc finger domain of SARS-CoV-2 NSP2. Virol Sin 2021, 36:1104-1112.

81. Lin MH, Chang SC, Chiu YC, Jiang BC, Wu TH, Hsu CH: Structural, biophysical, and biochemical elucidation of the SARS-CoV-2 nonstructural protein 3 macro domain. ACS Infect Dis 2020, 6:2970-2978.

82. Michalska K, Kim Y, Jedrzejczak R, Maltseva NI, Slos L, Endres M, Joachimach A: Crystal structures of SARS-CoV-2 ADP-ribose phosphatase: from the apo form to ligand complexes. JUCR 2020, 7:814-824.

83. Frick DN, Virdi RS, Vukanovic N, Dahal N, Silvaggi NR: Molecular basis for ADP-ribose binding to the Mac1 domain of SARS-CoV-2 nsp3. Biochemistry 2020, 59:2608-2615.

84. Ni X, Schröder M, Olieric V, Sharpe ME, Hernandez-Olmos V, Proschak E, Merk D, Knapp S, Chákaud A: Structural insights into plasticity and discovery of remdeivir metabolites OS-441524 binding in SARS-CoV-2 macrodomain. ACS Med Chem Lett 2021, 12:603-609.

85. Gao Y, Yan L, Huang Y, Liu F, Zhao Y, Cao L, Wang T, Sun Q, Ming Z, Zhang L et al.: Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science 2020, 368:779-782.

86. Peng Q, Peng R, Yuan B, Zhao J, Wang M, Wang X, Wang Q, Sun Y, Fan Z, Qi J et al.: Structural and biochemical characterization of the nsp12-nsp7-nsp8 core polymerase complex from SARS-CoV-2. Cell Rep 2020, 31:107774.

87. Hillen HS, Kokic G, Farmung L, Dienemann C, Tegunov D, Cramer P: Structure of replicating SARS-CoV-2 polymerase. Nature 2020, 584:154-156.

88. Chen J, Malone B, Llewellyn E, Grasso M, Shelton PMM, Olinares PDB, Maruthi CT, Yang Y, Ge H, Liu Y, Gao W et al.: Structural basis for helicase-polymerase coupling in the SARS-CoV-2 replication-transcription complex. Cell 2020, 182:1560-1573 e1513.

89. Yuan L, Zhang Y, Ge J, Zheng L, Gao Y, Wang T, Jia Z, Wang H, Huang Y, Li M et al.: Architecture of a SARS-CoV-2 mini replication and transcription complex. Nat Commun 2020, 11:1-6.

90. Yuan L, Ge J, Zheng L, Zhang Y, Gao Y, Wang T, Huang Y, Yang G, Gao S, Li M et al.: Cryo-EM structure of an extended SARS-CoV-2 replication and transcription complex reveals an intermediate state in cap synthesis. Cell 2021, 184:184-193 e110.

91. Malone B, Chen J, Wang Q, Llewellyn E, Choi YJ, Olinares PDB, Cao X, Hernandez C, Eng ET, Chait BT et al.: Structural basis for backtracking by the SARS-CoV-2 replication-transcription complex. Proc Natl Acad Sci U S A 2021, 118.

92. Littler DR, Gull BS, Colson RN, Rossjohn J: Crystal structure of the SARS-CoV-2 non-structural protein 9, Nsp9. iScience 2020, 23:101258.

93. Rogstam A, Nyblom M, Christensen S, Sele C, Talibov VO, Lindvall T, Rasmussen AA, André I, Fisher Z, Knecht W et al.: Crystal structure of non-structural protein 10 from severe acute respiratory syndrome coronavirus-2. Int J Mol Sci 2020, 21:1-15.

94. Lin S, Chen H, Chen Z, Yang F, Ye F, Zhang Y, Yang J, Lin X, Sun H, Wang L et al.: Crystal structure of SARS-CoV-2 nsp10 bound to nsp14-ExoN domain reveals an exonuclease binding with both structural and functional integrity. Nucleic Acids Res 2021, 49:5382-5392.

95. Yan L, Yang Y, Li M, Zhang Y, Zheng L, Ge J, Huang YC, Liu Z, Wang T, Gao S et al.: Coupling of N7-methyltransferase and 3'-
5’ exoribonuclease with SARS-CoV-2 polymerase reveals mechanisms for capping and proofreading. Cell 2021, 184:3474-3485.e3411.

In this study, authors determined the structure of the cap(0)-RTC complex, consisting of seven Nsp5. This complex provides a basis for understanding co-transcriptional capping of mRNA. Both a monomeric and dimeric cap(0)-RTC are observed, suggesting a mechanism for Nsp14 ExoN to perform its proofreading activity.

96. Lin S, Chen H, Ye F, Chen Z, Yang F, Zheng Y, Cao Y, Qiao J, Yang S, Lu G: Crystal structure of SARS-CoV-2 nsp10/nsp16 2’-O-methylase and its implication on antiviral drug design. Signal Transduct Target Ther 2020, 5:1-8.

97. Rosas-Lemus M, Minasov G, Shuvalova L, Inmis NL, Kiryukhina O, Brunzel A, Satchell KJ: High-resolution structures of the SARS-CoV-2 2’-O-methyltransferase reveal strategies for structure-based inhibitor design. Sci Signal 2020, 13.

98. Viswanathan T, Arya S, Chan SH, Qi S, Dai N, Misra A, Park JG, Oladunni F, Kovalskyy K, Krahn M, Godzik A, Michalska K, Joachimiak A: Crystal structure of Nsp15 endoribonuclease NendoU from SARS-CoV-2. Protein Sci 2020, 29:1596-1605.

99. Kim Y, Jedrzejczak R, Maltseva NI, Wilamowski M, Endres M, Godzik A, Michalska K, Joachimiak A: Crystal structure of Nsp15 endoribonuclease NendoU from SARS-CoV-2. Nat Commun 2020, 11:1-7.

100. Pilcon MC, Frazier MN, Dillard LB, Williams JG, Kocaman S, Krahn JM, Perera L, Hayne CK, Gordon J, Stewart ZD et al.: Cryo-EM structures of the SARS-CoV-2 endoribonuclease Nsp15 reveal insights into nucleic specificity and dynamics. Nat Commun 2021, 12:1-12.

101. Kim Y, Wower J, Maltseva N, Chang C, Jedrzejczak R, Wilamowski M, Kang S, Nicolaeucu V, Randall G, Michalska K et al.: Tipiracil binds to uridine site and inhibits Nsp15 endoribonuclease NendoU from SARS-CoV-2. Cell Biol 2021, 4:1-11.

102. Kern DM, Sorum B, Mali SS, Hoel CM, Sridharan S, Remis JP, Tovar DB, Koeha A, Bautista DM, Brohawn SC: Cryo-EM structure of SARS-CoV-2 ORF3a in lipid nanodiscs. Nat Struct Mol Biol 2021, 28:573-582.

103. Zhou Z, Huang C, Zhou Z, Huang Z, Su L, Kang S, Chen X, Chen Q, He S, Rong X et al.: Structural insight reveals SARS-CoV-2 ORF7a as an immunomodulating factor for human CD14(+)/monocytes. J Science 2021, 24:102187.

104. Flower TG, Buffalo CZ, Hocy RM, Allaire M, Ren X, Hurley JH: Structure of SARS-CoV-2 ORF8, a rapidly evolving immune evasion protein. Proc Natl Acad Sci U S A 2021, 118.

105. Gao X, Zhu K, Qin B, Olieric V, Wang M, Cui S: Crystal structure of SARS-CoV-2 Orf8b in complex with human TOM70 suggests unusual virus-host interactions. Nat Commun 2021, 12:2843.

106. Gordon DE, Hiatt J, Bouhadou M, Rezeij V, Luferts S, Braberg H, Jureka AS, Obernier K, Guo JZ, Batra J et al.: Comparative host-coronavirus protein interaction networks reveal pan-viral disease mechanisms. Science 2020, 370.

107. Mendonça L, Howe A, Gilchrist JB, Sheng Y, Sun D, Knight ML, Zanetti-Domingues LC, Bateman B, Krebs A-S, Chen L et al.: Correlative multi-scale cryo-imaging unveils SARS-CoV-2 assembly and egress. Nat Commun 2021, 12:1-10.

This study presents a multi-scale platform for imaging SARS-CoV-2 infected cells, pairing together cryoFIB/SEM and soft X-ray cryo-tomography with cryoET/STA. This work provides information on the major structural events occurring during infection from viral replication and transport, viral assembly and budding, to egress.

108. Wolff G, Limpens RWAL, Zevenhoven-Dobbe JC, Laugks U, Zheng S, de Jong AWM, Koning RI, Agard DA, Grünewald K, Koster AJ et al.: A molecular pore spans the double membrane of the coronavirus replication organelle. Science 2020, 369:1395-1398.

This study uses cryo-ET reveals the portal spanning both membranes of the DMV in MHV and SARS-CoV-2. Before this work, it remained unclear how the newly synthesized viral genome and mRNAs could travel to the host cytosol for translation and packaging for viral replication. This study revealed that a component of the MHV portal is Nsp3, suggesting that Nsp3 may also constitute a component of the SARS-CoV-2 portal.

109. Pallesen J, Wang N, Corbett KS, Wrapp D, Kirchdoerfer RN, Turner HL, Cotrell CA, Becker MM, Wang L, Shi W et al.: Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen. Proc Natl Acad Sci U S A 2017, 114:E7348-E7357.

110. Watwane Y, Mendonça L, Allen ER, Howe A, Lee M, Allen JD, Chawla H, Pulido D, Donnellan F, Davies H et al.: Native-like SARS-CoV-2 spike glycoprotein expressed by ChAdOx1 nCoV-19/AZD1222 vaccine. ACS Cent Sci 2021, 7:594-602.

111. Vandyck K, Deval J: Considerations for the discovery and development of 3-chymotrypsin-like cysteine protease inhibitors targeting SARS-CoV-2 infection. Curr Opin Virol 2021, 49:36-40.

112. Cai Y, Zhang J, Xiao T, Lavine CL, Rawson S, Peng H, Zhu H, Anand K, Tong P, Gautam A et al.: Structural basis for enhanced infectivity and immune evasion of SARS-CoV-2 variants. Science 2021, 373:642-648.

113. Kabinger F, Stiller C, Schmitzova J, Dienenmann C, Kokic G, Hillen HS, Hoberant C, Kramer P: Mechanism of molnupiravird-induced SARS-CoV-2 mutagenesis. Nat Struct Mol Biol 2021, 28:740-746.

114. Hishe L-C, Goldsmith JA, Schaum JM, DiVenedere AM, Kuo H-C, Javanmardi K, Le KC, Wrapp D, Lee AG, Liu Y et al.: Structure-based design of prefusion-stabilized SARS-CoV-2 spikes. Science 2020, 369:1501-1505.