Diseases of the macula, such as age-related macular degeneration (AMD) and diabetic macular edema, are leading causes of visual impairment in developed countries. Animal models of macular conditions can further detail the mechanisms of their pathogenesis and reveal new insights into developing novel interventions. Nonhuman primates (NHPs) are a compelling animal model for studying macular diseases as they are the only mammals beside humans to possess a true macula. NHPs, such as rhesus macaques, exhibit some forms of inherited retinal degenerations and spontaneously develop age-related soft drusen similar to those in human AMD. Soft drusen are subretinal deposits that form between the retinal pigment epithelium (RPE) and basal lamina, appearing clinically as yellow-white elevations with indistinct borders ranging from 30 to 100 μm. Preclinical testing in NHPs can accelerate the translation of novel interventions to human trials, including pharmacologic agents or gene therapies. However, developing therapies for non-vascular AMD and other age-related maculopathies for which no treatments currently exist require disease biomarkers or endpoints to demonstrate efficacy, preferably through means that are noninvasive and nonterminal, such as live ocular imaging technologies.

Quantitative fundus autofluorescence (qAF) is an imaging modality that has the potential to monitor changes in the RPE. Lipofuscin accumulates in the RPE, and its well-characterized fluorophore, A2E, exhibits a unique autofluorescence (AF) signal with the commonly used 488-nm blue laser excitation stimulus. By comparing to an internal
reference fluorescence standard in the device, qAF imaging allow repeatable, quantitative measurements of fundus AF for an eye, which can be followed over time to assess changes from interventions or disease progression. In humans, normative values for qAF intensities have been established for healthy eyes, and with age until 75 to 80 years, then appears to decrease. Changes in eyes with age-related macular degeneration (AMD). Macular dystrophies, such as Stargardt disease, Best disease, bull’s eye maculopathies, and pseudoxanthoma elasticum, as well as retinitis pigmentosa, Because qAF may serve as a measure of macular disease status or response to therapies, we sought to study qAF signals over the lifespan of adult rhesus macaques and in eyes with age-related soft drusen.

METHODS
Study Animals
Rhesus macaques (Macaca mulatta) of different ages underwent complete ophthalmic examinations as part of a study to identify animals with ophthalmic abnormalities at the California National Primate Research Center (CNPRC). Animals with healthy eyes and aged animals with drusenoid lesions were included in this study, whereas those with any other ophthalmic abnormalities or underwent any systemic or surgical interventions were excluded. Study protocols at CNPRC followed guidelines of the Association for Research in Vision and Ophthalmology (ARVO) Statement for the Use of Animals in Ophthalmic and Vision Research, complied with National Institutes of Health (NIH) guide for the Care and Use of Laboratory Animals, and were approved by the University of California, Davis Institutional Animal Care and Use Committee. Macaques were sedated with intramuscular injection of ketamine, midazolam, and dexmedetomidine. Mydriasis was achieved with tropicamide (Bausch and Lomb, Tampa, FL, USA) and phenylephrine (Paragon Biosciences, Northbrook, IL, USA), and cyclopentolate (Akorn, Lake Forest, IL, USA). All macaques underwent a comprehensive eye examination including portable slit lamp examination, indirect ophthalmoscopy, rebound tonometry (TonoVet; Icare, Vantaa, Finland), A-scan biometry (Sonomed 300A + PacScan Plus A-Scan; Carleton Optical, Buckinghamshire, UK), and external anterior segment photography (Rebel T3; Canon, Tokyo, Japan). Fundus imaging included color fundus photography (Figs. 1A, 1B) (CF-1; Canon, Tokyo Japan), spectral-domain optical coherence tomography (SD-OCT) (Figs. 1C, 1D), qualitative fundus AF, and qAF imaging (Figs. 1E–1H) using the Spectralis HRA+OCT device (Heidelberg Engineering, Heidelberg, Germany) with a modified chin-rest to accommodate the facial contour of macaques. An artificial tear solution (GenTeal; Alcon, Geneva, Switzerland) was used to maintain the ocular surface during entirety of imaging. Ophthalmic and general health of the animals were reviewed.

Ophthalmic Imaging
Animals underwent confocal scanning laser ophthalmoscopy and SD-OCT in near-infrared reflectance mode (820 nm) using the Spectralis HRA+OCT system (Heidelberg Engineering). SD-OCT images were captured as 20° x 20° volume scans consisting of 193 horizontal raster B-scans and 1024 A-scans per B-scan, centered on the fovea, in high-resolution mode with 25 scans averaged for each B-scan using the Heidelberg eye tracking Automatic Real-Time software. Then the device was turned to qAF mode to capture 30° x 30° qAF images with excitation light of 488 nm and a long-pass barrier filter transmitting between 500 and 680 nm, calibrated with an internal master fluororescent reference. Photobleaching was performed once before qAF imaging by exposing the retina to 488-nm blue excitation light for 30 seconds. The qAF images were captured from the central macula, with intensity adjusted using an internal fluorescence reference to enable quantification of AF and normalizing AF units given minor variations in laser power and detector sensitivity in-between imaging sessions, with sensitivity kept at 90% for each imaging session. The variations in axial length and loss of light through ocular medium were accounted for by adjusting the age at the time the animal was imaged. The details of qAF imaging methodology have been described previously.

The qAF8 Measurements
In each eye, three series of 12 successive images were acquired in rapid succession with the animal under sedation. The mean image of each of the three sequences was computed using Heidelberg’s proprietary qAF module. These image sets were then graded independently by two readers (KL and TT) who were masked to the identity of each animal. Image quality was determined qualitatively by both graders, with discrepancies reconciled by open arbitration, and images deemed uninterpretable excluded from analyses. The qAF values were acquired via fitting the Delori grid pattern centered at the fovea with the largest extent of the grid tangential to the optic disc margin as described by Delori et al. to measure mean gray levels (GLs) of the fundus as compared with the reference. The method accounts for factors that may vary marginally from session-to-session, including laser off-set, laser power, and detector sensitivity. Retina vessels were automatically segmented from the areas selected and excluded from analysis. The mean qAF8 value for each image was computed as the average of the eight perifoveal middle segments of the Delori grid placed over qAF maps (Figs. 1G, 1H). Color-coded qAF maps demonstrate the Delori grid overlay, with vessels automatically segmented and excluded from analysis, and qAF measurements normalized to the internal standard at the top of Figures 1G and 1H. Black is an absence of qAF, light blue/teal is approximately 250 to 350 qAF units for the average of the eight perifoveal middle segments of the Delori grid placed over qAF maps (Figs. 1G, 1H). Color-coded qAF maps demonstrate the Delori grid overlay, with vessels automatically segmented and excluded from analysis, and qAF measurements normalized to the internal standard at the top of Figures 1G and 1H. Black is an absence of qAF, light blue/teal is approximately 250 to 350 qAF units for the average in healthy humans, and white is the theoretical maximal at 1200 qAF units although pathological states in humans reach approximately 800 to 900 qAF units. The final mean qAF8 value was the arithmetic mean of up to three mean images per eye and averaged between the two independent graders.

Focal qAF Measurements
For measuring focal qAF levels over individual drusen, we exported AF images into ImageJ version 1.52p (National Institutes of Health, Bethesda, MD, USA) to measure the gray values at the apex of lesions located within the perifoveal middle ring of the Delori grid corresponding to the qAF8 area, then normalized to the reference similar to methods previously described. Briefly, individual drusen lesions were identified and labeled manually from SD-OCT images.
FIGURE 1. Multimodal imaging with qAF in rhesus macaques. (A–B) Color fundus photographs, (C–D) SD-OCT, (E–F) blue-peak qAF, and (G–H) qAF measurements of rhesus macaque eyes with normal fundus (A,C,E,G) or age-related soft drusen (B,D,F,H). Soft drusen appear as dome-shaped deposits between the RPE and Bruch’s membrane (arrow) on SD-OCT. The dashed yellow lines in (E) and (F) represent the location of the SD-OCT images depicted in panels (C) and (D), respectively. For qAF8 measurements, the selected eight middle segments of the Delori grid pattern are labeled as: (1) temporal, (2) superotemporal, (3) superior, (4) superonasal, (5) nasal, (6) inferonasal, (7) inferior, and (8) inferotemporal octants. Vessels are automatically segmented and excluded, and qAF measurements were normalized to the internal standard shown at the top of panels (G) and (H). The color-coded scale is based on qAF units. Scale bars = 500 μm.

by another masked grader (YW), and gray values were measured at each point above drusen lesions in the perifoveal ring, as well as the standard reference for that image by a second grader (YS). Focal qAF levels were calculated using the equation described by Delori et al. The zero signal GL0, which is a measurement of base GL by the detector, was set to 12 to reflect mean GLs in standard darkroom imaging conditions. The reference calibration factor was set.
to 231 for the Spectralis imaging device. The scaling factor was adjusted based on average age-dependent axial lengths and corneal curvatures.

Finally, the transmission of ocular media was adjusted based on age of the macaque using a 3:1 age ratio for rhesus macaques to humans.

Drusen Volume and Height Measurements

Soft drusen in macaques were identified from funduscopy and confirmed on SD-OCT as dome-shaped sub-RPE mounds as previously reported (Fig. 1D). Drusen volumes were measured from SD-OCT images across the central 5-mm circular regions centered on the fovea, using the Duke Optical Coherence Tomography Retinal Analysis Program (DOCTRAP, version 62.0, Duke University, Durham, NC, USA) employed in previous human and NHP studies.

Briefly, segmentation boundaries along the RPE and Bruch’s membrane were automatically determined from every horizontal B-scan using DOCTRAP, followed by manual refinement by a masked grader (YW). Individual drusen lesions were identified and labeled as described earlier. Abnormal thickening of the RPE-drusen complex more than two standard deviations greater than mean age-matched normative data (16.5 ± 2.7 μm) as reported were used to generate drusen maps and measure drusen heights and volume.

Immunohistochemistry

Immunohistochemistry was performed on rhesus macaque eyes as described previously. Briefly, eyes were fixed with 4% paraformaldehyde (PFA) on necropsy, and anterior segments, lens, and vitreous were dissected out within 30 minutes of collection. The remaining posterior eye cups were fixed with 4% PFA for 2 hours at room temperature and washed with phosphate buffered saline (PBS) 4 times for 15 minutes. Followed by cryoprotection with 30% sucrose overnight at 4°C, tissues were embedded in optimal cutting temperature compound and cryosectioned at 18-μm thickness. Consecutive sections enabled comparison of native AF with fluorescence immunolabeling using anti-C5b9 antibody (ab55811; Abcam, Cambridge, MA, USA) to label druse contents, and anti-RPE65 antibody (mab5428; Millipore, Burlington, MA, USA) to label RPE cells. For AF detection, the section was mounted with mounting media after washing with PBS 3 times for 15 minutes. For immunohistochemistry, sections were blocked with 10% normal donkey serum for 30 minutes, then incubated in primary antibody for 1 to 2 hours at room temperature, followed by detection with Alexa Fluor-conjugated secondary antibodies (Thermo Fisher Scientific, Waltham, MA, USA). Images were captured using a confocal microscope (FV1000; Olympus America, San Jose, CA, USA).

Statistics

The mean qAF8 was transformed to logarithmic scale for multivariable regression analysis. A two-level hierarchical generalized linear model (primary unit of analysis was an eye; secondary was the animal) was fitted with log of qAF8 serving as the dependent variable, and demographic (age, sex) and ocular findings (no lesion, punctate lesions, soft drusen) as independent factors. Interocular agreement coefficient was calculated using the Bland-Altman method for differences (log [qAF right eye] – log [qAF left eye]). Intersession repeatability was calculated as (10CR – 1)*100% where the coefficient of repeatability (CR) was calculated as ± 1.96 [log (qAF81) – log (qAF82)]. Three calculations were made for the combination of three sessions per eye. Intraclass correlation coefficients were used to determine the intergrader reliability. Data were downloaded and managed in Microsoft Excel (Microsoft Corporation, Redmond, WA, USA); statistical analyses were performed using Stata 16 (Stata Corp, College Station, TX, USA). Significance was set as P value < 0.05.

RESULTS

Study Eyes

Forty-three (43) eyes of 26 animals had qAF images of adequate quality for analysis after excluding eyes with poor image quality or significant lens opacity based on slit lamp examination. The mean age of the animals was 18.8 ± 8.2 years, with 65.4% females (Table). Mean axial length was 19.85 ± 0.67 mm, which trended to long lengths with age as expected (linear regression coefficient, β1 = 0.027, P = 0.062), and was not significantly different between males and females (19.85 ± 0.63 mm vs. 19.84 ± 0.70 mm; P = 0.99). Most control eyes showed no visible lesions on SD-OCT (Figs. 1C, 1E), whereas some eyes exhibited soft drusen as seen on funduscopy and appeared as dome-shaped sub-RPE deposits on SD-OCT (Figs. 1B, 1D).

qAF8 in Aging and Eyes with Drusen

Overall, qAF8 values were variable between individual animals, with mean qAF8 of 88.6 ± 31.6 across the study population, and increased with age (P < 0.001; Table) by a factor of 1.03 per year (Fig. 2A). We did not observe an inflection point as seen in older human subjects, but female animals showed greater qAF intensity than male counterparts similar to human studies (P = 0.047; Table; Fig. 2B). The qAF signal was slightly elevated in the nasal region, but the difference was consistent across the octants (Fig. 2C). Neither eye laterality nor axial length were associated with qAF8 intensity (P = 0.229).

Among geriatric macaques, eyes with soft drusen had decreased qAF8 values after adjusting for age and sex (P = 0.045; Table; Fig. 2A), with an average reduction of 41% compared with age-matched control eyes without drusen (P = 0.003; Fig. 2D). In eyes with soft drusen, greater drusen volume also showed a trend toward lower qAF8 levels but did not reach statistical significance (R² = 0.572, P = 0.204).

Focal qAF of Soft Drusen Lesions

Although the mean qAF8 values were lower in eyes with drusen, the individual drusen lesions themselves appeared hyperautofluorescent based on focal qAF measurements over drusen lesions compared with the surrounding perifoveal region background (Fig. 3A). The most hyperautofluorescent lesions corresponded in location to the largest drusen measured from SD-OCT (Fig. 3B). Focal qAF levels measured over perifoveal drusen lesions identified from SD-OCT drusen maps (Figs. 3C, 3D) appeared greater than the isoeccentric region of the macula (P < 0.001; Fig. 3E), and were associated with drusen height (R² = 0.391, P < 0.001; Fig. 3F). On immunohistochemistry of soft drusen from two animals that underwent necropsy, RPE exhibited AF at
Table. Factors Associated with qAF in Adult Rhesus Macaques

Variable	n (%)	qAF₈ Mean (SD)	Univariate Regression	Multivariable Regression				
		B	95% CI	P Value	Adjusted B	95% CI	P Value	
Age (per year)								
1–9 years	8 (18.6%)	63.6 (22.5)	1.02	1.01–1.03	0.003	1.03	1.02–1.04	<0.001
10–18 years	10 (23.3%)	78.6 (21.1)	1.30	1.03–1.64	0.029	1.25	1.01–1.57	0.047
19–28 years	25 (58.1%)	100.6 (32.1)	1.15	0.92–1.47	0.229	0.68	0.47–0.99	0.045
Sex		Reference						
Male	13 (30.2%)	73.8 (28.3)	Reference					
Female	30 (69.8%)	95.0 (31.1)	1.30	1.03–1.64	0.029	1.25	1.01–1.57	0.047
Laterality		Reference						
Left eye	24 (55.8%)	84.0 (31.5)	Reference					
Right eye	19 (44.2%)	94.4 (31.5)	1.15	0.92–1.47	0.229	0.68	0.47–0.99	0.045
Drusen		Reference						
No drusen	37 (86.0%)	92.8 (31.6)	0.70	0.51–0.95	0.021	0.68	0.47–0.99	0.045
Soft drusen	6 (14.0%)	59.8 (16.9)	1.13	0.95–1.34	0.168			

* The qAF values were transformed to log base 10 for normalization during multilevel regression and the coefficients are retransformed in above models.

CI, confidence interval.

qAF imaging sessions with mean bias values approximating zero. Bland-Altman plots show minimal differences between qAF and three, and ± first and second session, which are acceptable with a CR of ± 2.8% for mean qAF₈. Interobserver agreement based on intraclass correlation coefficient was excellent at 0.934 for mean qAF₈. Interobserver repeatability was acceptable with a CR of ± 4.11% qAF units between the first and second session, ± 4.82% between sessions two and three, and ± 4.76 between sessions one and three. Bland-Altman plots show minimal differences between qAF imaging sessions with mean bias values approximating zero (Fig. 4).

Reliability of qAF Measurements

In animals in which both eyes underwent qAF measurements (16 animals and 32 eyes), the interocular agreement coefficient was ± 23.8% of mean qAF₈. The interobserver agreement based on intraclass correlation coefficient was excellent at 0.934 for mean qAF₈. Interobserver repeatability was acceptable with a CR of ± 4.11% qAF units between the first and second session, ± 4.82% between sessions two and three, and ± 4.76 between sessions one and three. Bland-Altman plots show minimal differences between qAF imaging sessions with mean bias values approximating zero (Fig. 4).

Discussion

In this study, we provided normative values for qAF levels in adult rhesus macaques, and found that qAF₈ levels increased with age, consistent with qAF studies in humans up to age 75 years, and in macaque eyes measuring gray values from conventional AF images. We also found that female animals had higher qAF intensities than males, similar to humans. Although females may have smaller eyes than males, as in human emmetropes, Axial lengths were similar between males and females in our cohort of animals, and axial length differences. Also, axial lengths were similar between males and females in our cohort of animals, and axial length showed no association with qAF₈ on regression analysis. In macaque eyes with drusen, mean qAF₈ levels were reduced compared with age-matched normals, as seen in early and intermediate AMD patients. Together these results suggest that decreased RPE lipofuscin may be associated with AMD or AMD-like features in both humans and macaques.

Lipofuscin is deposited in the RPE as a metabolic byproduct of the visual cycle and accumulates with normal aging. However, the role of lipofuscin as a contributing factor to AMD development and progression has been a subject of controversy. The qAF appears to increase with age, female sex, and smoking, which are all risk factors associated with AMD. Accumulation of A2E, a major component of lipofuscin, leads to RPE toxicity. However, although increased AF has been observed in eyes with exudative AMD and borders of geographic atrophy, qAF levels are decreased in early and intermediate AMD, particularly in eyes with reticular pseudodrusen—a major risk factor for advanced atrophic AMD. Interestingly, although focal measurements over individual drusen lesions show variable AF in both macaques and humans, we found that macaque drusen generally appear hyperautofluorescent compared with surrounding areas, with higher focal qAF levels associated with larger drusen. By contrast, human drusen are usually hypautofluorescent with a surrounding ring of hyperautofluorescence, at least when observed using conventional fundus cameras different from the scanning laser ophthalmoscopy–based AF imaging employed in this study. This distinction may be attributed to differences seen on histology showing hypertrophic RPE overlying macaque drusen as compared with RPE atrophy overlying drusen in humans because we did not detect significant AF signal within drusen contents using similar wavelengths on ex vivo histological sections taken from these animals. Our findings are also consistent with studies using SD-OCT imaging, in which soft drusen in macaques demonstrate homogenous internal reflectivity, whereas those in humans exhibit greater heterogeneity in reflectivity with variable internal substructures. Thus our data suggests both localized and global impact on lipofuscin distribution in eyes with drusen and AMD in primate species. As the pathogenesis of AMD is complex and multifactorial, including oxidative stress, lipid accumulation, immune dysregulation, and vascular changes, the role of lipofuscin accumulation among these factors remains unclear. Future biochemical measurements and more robust histological correlations may help further explore the relationship between qAF signal, lipofuscin accumulation, and soft drusen biogenesis in rhesus macaques.
We previously described a distinct phenotype of fine, punctate retinal lesions that are attributed to accumulation of lipid droplets within individual RPE cells in a process known as lipoidal degeneration.7 In longitudinal studies, these punctate lesions did not appear to be precursors to soft drusen or increase the risk for drusen development. In our study, we found a subset of eyes with these punctate lesions, which exhibited similar qAF8 levels to age-matched eyes without fundus findings, and supports our hypothesis that lipoidal degeneration is not related to soft drusen or AMD.8

NHPs are potentially important animal models of AMD because they possess a true macula similar to humans and spontaneously develop soft drusen that has similar components and ultrastructure67 and share similar genetic susceptibility loci.68–70 However, despite reported drusen
prevalence of up to 47% in some colonies, Rhesus macaques do not develop advanced, atrophic AMD, or risk features for atrophy, such as reticular pseudodrusen. Factors that may account for this reduced susceptibility in macaques include differences in genetics, diet, environmental exposures, pigmentation, and aging. Rhesus monkeys age at an approximate rate of 3:1 compared with humans. However, aged macaques in our cohort did not exhibit the decline in qAF intensity seen in human eyes after age 75 to 80 years, even though we sampled animals near the end of their lifespan. This difference in age-related qAF changes may explain in part the less severe phenotype of age-related maculopathy in macaques compared with human AMD.

It is important to note that although lipofuscin may be the primary fluorophore contributing to the AF signal,
CONCLUSIONS

The current study is limited by a small sample size of animals and limited image quality of some eyes that were excluded from the study. However, our data had a low within-eye CR at ±5.09% to 5.78% for mean qAF8, which demonstrates greater reliability than human studies that typically range from 9% to 24%. We also did not account for AF signal attenuation due to nuclear sclerosis or other media opacities, although eyes with visible ocular pathology were excluded. Finally, we focused on the perifoveal region for quantifying average qAF8, even though only a portion of the drusen lesions may be in the same region. Future longitudinal studies to spatially correlate qAF signals with drusen evolution over time may provide additional insight into soft drusen pathogenesis in this NHP model of AMD.

Acknowledgments

Supported by the California National Primate Research Center pilot grant program and base grant NIH P51OD011107. Glenn C. Yiu is supported by NIH K08 EY026101, NIH R21 EY031108, the E. Matilda Ziegler Foundation for the Blind, the Barr Foundation for Retinal Research, ARVO Foundation, and the Macula Society. Ala Moshiri is supported by NIH K08 EY027463, NIH U24 EY029904, and the Barr Foundation for Retinal Research. Sara M. Thomasy is supported by NIH R01 EY016134, NIH U01 ES027288, and NIH U24 EY029904. Tu M. Tran is supported by Fight for Sight SS-19-001. Sina Farsiu is supported in part by the Unrestricted Research to Prevent Blindness Grant to Duke University and the National Institutes of Health Core Grant, P30EY005722. No funding organizations had any role in the design or conduct of this research. The content is solely the responsibility of the authors and does not necessarily represent
References

1. Flaxman SR, Bourne RRA, Resnikoff S, et al. Global causes of blindness and distance vision impairment 1990-2020: a systematic review and meta-analysis. Lancet Glob Health. 2017;5:e1221–e1254.
2. Moshiri A, Shen R, Kim S, et al. A nonhuman primate model of inherited retinal disease. J Clin Invest. 2019;129:863–874.
3. Peterson SM, McGill TJ, Puthussery T, et al. Bardet-Biedl syndrome in rhesus macaques: a nonhuman primate model of retinitis pigmentosa. Exp Eye Res. 2019;189:107825.
4. McBride JL, Neuringer M, Ferguson B, et al. Discovery of a CLN7 model of Batten disease in non-human primates. Neurobiol Dis. 2018;119:65–78.
5. Monaco WA, Wormington CM. The rhesus monkey as an animal model for age-related maculopathy. Optom Vis Sci. 1990;67:532–537.
6. Stafford TJ, Anness SH, Fine BS. Spontaneous degenerative maculopathy in the monkey. Ophthalmology. 1984;91:513–521.
7. Yiu G, Tieu E, Munevac C, et al. In vivo multimodal imaging of drusenoid lesions in rhesus macaques. Sci Rep. 2017;7:15013.
8. Yiu G, Chung SH, Mollhoff IN, et al. Long-term evolution and remodeling of soft drusen in rhesus macaques. Invest Ophthalmol Vis Sci. 2020:61:32.
9. Spaide RF, Curcio CA. Drusen characterization with multimodal imaging. Retina. 2010;30:1441–1454.
10. Zhao T, Zhang J, Zhang Y, et al. Vascular endothelial growth factor receptor 2 antibody, BC001, attenuates laser-induced choroidal neovascularization in rhesus monkeys (Macaca mulatta). J Ocul Pharmacol Ther. 2015;31:611–616.
11. Todorich B, Yiu G, Hahn P. Current and investigational pharmacotherapeutic approaches for modulating retinal angiogenesis. Expert Rev Clin Pharmacol. 2014;7:375–391.
12. Lai CM, Shen WY, Branok M, et al. Long-term evaluation of AAV-mediated sFlt-1 gene therapy for ocular neovascularization in mice and monkeys. Mol Ther. 2005;12:659–668.
13. Yiu G, Chung SH, Mollhoff IN, et al. Suprachoroidal and subretinal injections of AAV using transscleral microneedles for retinal gene delivery in nonhuman primates. Mol Ther Methods Clin Dev. 2020;16:179–191.
14. Delori F, Greenberg JP, Woods RL, et al. Quantitative measurements of autofluorescence with the scanning laser ophthalmoscope. Invest Ophthalmol Vis Sci. 2011;52:9379–9390.
15. Reiter GS, Told R, Baratsitis M, et al. Repeatability and reliability of quantitative fundus autofluorescence imaging in patients with early and intermediate age-related macular degeneration. Acta Ophthalmol. 2019;97:e526–e532.
16. Allingham MJ, Nie Q, Lad EM, et al. Semiautomatic segmentation of rim area focal hyperautofluorescence predicts progression of geographic atrophy due to dry age-related macular degeneration. Invest Ophthalmol Vis Sci. 2016;57:2283–2289.
17. Sparrow JR, Yoon KD, Wu Y, Yamamoto K. Interpretations of fundus autofluorescence from studies of the bisretinoids of the retina. Invest Ophthalmol Vis Sci. 2010;51:4351–4357.
37. Willoughby AS, Vuong VS, Cunefare D, et al. Choroidal changes after suprachoroidal injection of triamcinolone acetonide in eyes with macular edema secondary to retinal vein occlusion. *Am J Ophthalmol*. 2018;186:144–151.

38. Chiu SJ, Li XT, Nicholas P, Toth CA, Izatt JA, Farsiu S. Automatic segmentation of seven retinal layers in SD OCT images congruent with expert manual segmentation. *Optics Express*. 2010;18:19413–19428.

39. Lee JY, Chiu SJ, Srinivasan PP, et al. Fully automatic software for retinal thickness in eyes with diabetic macular edema from images acquired by cirrus and Spectralis systems. *Invest Ophthalmol Vis Sci*. 2013;54:7595–7602.

40. Smit-McBridge Z, Nguyen J, Elliott GW, et al. Effects of aging and environmental tobacco smoke exposure on ocular and plasma circulatory microRNAs in the rhesus macaque. *Mov. Vis. 2018;4:633–646.

41. Folgar FA, Yuan EL, Sevilla MB, et al. Drusen volume and retinal pigment epithelial abnormal thinning volume predict 2-year progression of age-related macular degeneration. *Ophthalmology*. 2016;123;50.e1.

42. Vuong VS, Moissesse E, Cunefare D, Farsiu S, Moshiri A, Yiu G. Repeatability of choroidal thickness measurements on enhanced depth imaging optical coherence tomography using different posterior boundaries. *Am J Ophthalmol*. 2016;169:104–112.

43. Wong SS, Vuong VS, Cunefare D, Farsiu S, Moshiri A, Yiu G. Macular fluid reduces reproducibility of choroidal thickness measurements on enhanced depth optical coherence tomography. *Am J Ophthalmol*. 2017;184:108–114.

44. Armenti S, Bokhour A, Lo D, Smith T. Quantitative fundus autofluorescence in pseudophakic patients. *Invest Ophthalmol Vis Sci*. 2015;56:2824.

45. Bhardwaj V, Rajeshbhai GP. Axial length, anterior chamber depth-a study in different age groups and refractive errors. *J Clin Diagn Res*. 2013;7:2211–2212.

46. Sparrow JR. Quantitative fundus autofluorescence. *JAMA Ophthalmol*. 2017;135:403.

47. Smith RT. Quantitative fundus autofluorescence-reply. *JAMA Ophthalmol*. 2017;135:403–404.

48. Davies S, Elliott MH, Floor E, et al. Photocytotoxicity of lipofuscin in human retinal pigment epithelial cells. *Free Radic Biol Med*. 2001;31:256–265.

49. Sparrow JR, Nakanishi K, Parish CA. The lipofuscin fluorophore A2E mediates blue light-induced damage to retinal pigmented epithelial cells. *Invest Ophthalmol Vis Sci*. 2000;41:1981–1989.

50. Holz FG, Bellman C, Staudt S, Schutt F, Volcker HE. Fundus autofluorescence and development of geographic atrophy in age-related macular degeneration. *Invest Ophthalmol Vis Sci*. 2001;42:1051–1056.

51. Spaide RF. Fundus autofluorescence and age-related macular degeneration. *Ophthalmolology*. 2003;110:392–399.

52. von Ruckmann A, Fitzke FW, Bird AC. Fundus autofluorescence in age-related macular disease imaged with a laser scanning ophalmoscope. *Invest Ophthalmol Vis Sci*. 1997;38:478–486.

53. Delori FC, Fleckner MB, Goger DG, Weiter JJ, Dorey CK. Auto fluorescence distribution associated with drusen in age-related macular degeneration. *Invest Ophthalmol Vis Sci*. 2000;41:496–504.

54. Lois N, Owens SL, Coco R, Hopkins J, Fitzke FW, Bird AC. Fundus autofluorescence in patients with age-related macular degeneration and high risk of visual loss. *Am J Ophthalmol*. 2002;133:341–349.

55. Curcio CA, Zanzottera EC, Ach T, Balaratnasingam C, Freund KB. Activated retinal pigment epithelium, an optical coherence tomography biomarker for progression in age-related macular degeneration. *Invest Ophthalmol Vis Sci*. 2017;58:BIO211–BIO226.

56. Tan ACS, Pilgrim MG, Fearn S, et al. Calcified nodules in retinal drusen are associated with disease progression in age-related macular degeneration. *Sci Transl Med*. 2018;10;eaat544.

57. Zhang Q, Chenrek MA, Bhatia S, et al. Comparison of histologic findings in age-related macular degeneration with RPE flatmount images. *Mov. Vis. 2019;25:70–78.

58. Veerappan M, El-Hage-Sleiman AM, Tai V, et al. Optical coherence tomography reflective drusen substructures predict progression to geographic atrophy in age-related macular degeneration. *Ophthalmology*. 2016;123:2554–2570.

59. Sleiman K, Veerappan M, Winter KP, et al. Optical coherence tomography predictors of risk for progression to non- neovascular atrophic age-related macular degeneration. *Ophthalmology*. 2017;124:1764–1777.

60. Datta S, Cano M, Ebrahimi K, Wang L, Handa JT. The impact of oxidative stress and inflammation on RPE degeneration in non- neovascular AMD. *Prog Retin Eye Res*. 2017;60:201–218.

61. Curcio CA. Soft drusen in age-related macular degeneration: biology and targeting via the oil spill strategies. *Invest Ophthalmol Vis Sci*. 2018;59:AMD160–AMD181.

62. Jun S, Datta S, Wang L, Pegany R, Cano M, Handa JT. The impact of lipids, lipid oxidation, and inflammation on AMD, and the potential role of miRNAs on lipid metabolism in the RPE. *Exp Eye Res*. 2019;181:346–355.

63. Ambati J, Atkinson JP, Gelfand BD. Immunology of age-related macular degeneration. *Nat Rev Immunol*. 2013;13:438–451.

64. Anderson DH, Radeke MJ, Gallo NB, et al. The pivotal role of the complement system in aging and age-related macular degeneration: hypothesis re-visited. *Prog Retin Eye Res*. 2010;29:95–112.

65. Lee SC, Tran S, Amin A, et al. Retinal vessel density in exudative and nonexudative age-related macular degeneration on optical coherence tomography angiography. *Am J Ophthalmol*. 2020;212:7–16.

66. Snyder K, Yazdanyar A, Mahajan A, Yiu G. Association between the cilioiretinal artery and choroidal neovascularization in age-related macular degeneration: a secondary analysis from the age-related eye disease study. *JAMA Ophthalmol*. 2018;136:1008–1014.

67. Umeda S, Suzuki MT, Okamoto H, et al. Molecular composition of drusen and possible involvement of anti-retinal autoimmunity in two different forms of macular degeneration in cynomolgus monkey (*Macaca fascicularis*). *FASEB J*. 2005;19:1683–1685.

68. Francis PJ, Appukuttan B, Simmons E, et al. Rhesus monkeys and humans share common susceptibility genes for age-related macular disease. *Hum Mol Genet*. 2008;17:2675–2680.

69. Singh KK, Krawczak M, Dawson WW, Schmidtko J. Association of HTRA1 and ARMS2 gene variation with drusen formation in rhesus macaques. *Exp Eye Res*. 2009;88:479–482.

70. Pahl I, Spangenberg A, Schubert S, Schonmann U, Schmidtko J, Stuhrmann M. Characterization of the 1q26-orthologue in rhesus monkeys corroborates a functional connection between ARMS2 and HTRA1. *Exp Eye Res*. 2012;98:75–78.

71. Olin KL, Morse LS, Murphy C, et al. Trace element status and the potential role of miRNAs on lipid metabolism in the rhesus macaque (Macaca mulatta) with macular drusen. *Proc Soc Exp Biol Med*. 1995;208:370–377.

72. Davis RT, Leathers CW. *Behaviour and Pathology of Aging in Rhesus Monkeys*. New York: Alan R. Liss, Inc.; 1985.

73. Zanzottera EC, Ach T, Huisingh C, Messinger JD, Spaide RF, Curcio CA. Visualizing retinal pigment epithelium
phenotypes in the transition to geographic atrophy in age-related macular degeneration. *Retina*. 2016;36(suppl 1):S12–S25.

74. Ach T, Tolstik E, Messinger JD, Zarubina AV, Heintzmann R, Curcio CA. Lipofuscin redistribution and loss accompanied by cytoskeletal stress in retinal pigment epithelium of eyes with age-related macular degeneration. *Invest Ophthalmol Vis Sci*. 2015;56:3242–3252.

75. Feeney L. Lipofuscin and melanin of human retinal pigment epithelium. Fluorescence, enzyme cytochemical, and ultrastructural studies. *Invest Ophthalmol Vis Sci*. 1978;17:583–600.

76. Curcio CA, Messinger JD, Sloan KR, McGwin G, Medeiros NE, Spaide RF. Subretinal drusenoid deposits in non-neovascular age-related macular degeneration: morphology, prevalence, topography, and biogenesis model. *Retina*. 2013;33:265–276.

77. Durairaj C, Chastain JE, Kompella UB. Intraocular distribution of melanin in human, monkey, rabbit, minipig and dog eyes. *Exp Eye Res*. 2012;98:23–27.

78. Charng J, Tan R, Luu CD, et al. Imaging lenticular autofluorescence in older subjects. *Invest Ophthalmol Vis Sci*. 2017;58:4940–4947.