Initial data release and announcement of the Fish10K: Fish 10,000 Genomes Project

Guanngyi Fan1,5,*, Yue Song1,*, Xiaoyun Huang1,*, Liandong Yang2,*, Suyu Zhang1, Mengqi Zhang1, Xianwei Yang1, Yue Chang1, He Zhang1,5, Yongxin Li3, Shanshan Liu1, Lili Yu1, Inge Seim8,9, Chenguang Feng3, Wen Wang3, Kun Wang3, Jing Wang4,6,7, Xin Xu5, Huanming Yang1,5, Nansheng Chen4,6,7,†, Xin Liu1,5,† & Shunping He2,†.

1BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
2Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
3Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi’an, China.
4CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong 266071, China
5BGI-Shenzhen, Shenzhen 518083, China
6Marine Ecology and Environmental Science Laboratory, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong 266237, PR China
7Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266400, PR China
8Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China;
9Comparative and Endocrine Biology Laboratory, Translational Research Institute-Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane 4102, Queensland,
Abstract

With more than 30,000 species, fish are the largest and most ancient vertebrate group. Despite their critical roles in many ecosystems and human society, fish genomics lags behind work on birds and mammals. This severely limits our understanding of evolution and hinders progress on the conservation and sustainable utilization of fish.

Here, we announce the Fish10K project, an international collaborative project or initiative, aiming to sequence 10,000 representative fish genomes under a systematic context within ten years, and officially welcome collaborators to join this effort. As a step towards this goal, we herein describe a feasible workflow for the procurement and storage of biospecimens, and sequencing and assembly strategies. To illustrate, we present the genomes of ten fish species from a cohort of 93 species chosen for technology development.

Keywords: Fish10K, fish, genome sequencing, phylogenetics, evolution, stLFR
Background

Fish genomes sequenced to date

As of writing, genome assemblies are publicly available for less than 1% of fish species (216 species of 56 orders) (Supplementary Table 1). Their assembly length ranges from 302.36 Mb (Diretmus argenteus) to 3.81Gb (Zeus faber), with an average length of 813.74 Mb. The average scaffold N50 and contig N50 values are 8.53 Mb and 860.51 Kb, while the median scaffold N50 and contig N50 are 406.7Kb and 20.3Kb, respectively. There are 97 species with a scaffold N50 of more than 1Mb, of which 31 have a contig N50 above 1Mb (Figure 1). These genomes has fueled a number of studies on the phylogeny and evolution of fish (e.g., the African coelacanth genome and tetrapod evolution), evolutionary processes of specific fish subgroups (e.g., elephant shark genome illustrating the phylogenetic relationship of Chondrichthyes as a sister group to bony vertebrates) [1], genetic mechanisms of adaptation to different environments (e.g. the deep-sea Mariana Trench snailfish and cave-dwelling fish) [2], and specific biological processes (for example, the tonguefish Cynoglossus semilaevis genome for understanding ZW sex chromosome evolution) [3]. Nevertheless, the current fish genome sequencing results are only a drop in the ocean, and numerous critical research questions remain to be resolved. A non-exhaustive list includes gaining a comprehensive and clear understanding of fish phylogeny, genome size diversity and chromosome evolution, diverse environmental adaptations, morphology evolution, respiratory system, immune system, the evolution and function of ultra-conservative (UCE) and conserved nonexonic elements.
The era of genome consortiums

With the rapid development of DNA sequencing technology, this is the time for large-scale, collaborative genomic studies. The first such project was the Genome 10K (G10K) Project established in 2009, which aimed to sequence and assemble genomes of about 10,000 vertebrate species [4]. Further advances in sequencing have extended this vision. The Vertebrate Genomes Project (VGP) was launched in 2017 to generate chromosome-level, haplotype-phased genome assemblies of vertebrate species [5]. The Bird 10,000 Genomes Project (B10K) was initiated [6] after the successful phylogenomic study on 45 avian genomes in 2014 [7]. The B10K projects aims to sequence and assemble all known bird species in three phases. Similar efforts have been made for bats [8], plants [9], and other species [10, 11]. Despite current challenges in funding, sampling, sequencing, assembly, and data analysis, these projects have already made substantial progress. For fish, which makes up more than half of all vertebrate species, no projects at the similar scale has been initiated. The only large-scale genomic study to our knowledge was Fish-T1K, which aimed to sequence the transcriptomes (RNA-seq) of ray-finned fishes [12]. However, the insights gained from transcriptome data alone is relatively limited. Accelerating fish genomics by large-scale genome sequencing efforts would undoubtedly boost research into fish biodiversity, speciation, adaptation, as well as aiding the conservation and sustainable utilization of fish.

The Fish10K Genome Project
We here announce the Fish10K Genome Project, aiming to sample, sequence, assemble, and analyze genomes of 10,000 fish species. We are proposing an effective and integrated workflow, in which major genomics challenges are addressed, to construct high-quality reference genomes. Through developing and applying effective analysis methods, we will be able to address critical evolutionary and biological research questions related to fish. In order to prove the efficiency of our workflow and the feasibility of this large-scale genome project, we are releasing ten high-quality genomes as part of a pilot project. We hope the released genomes, along with the other genomes generated by Fish10K, will be valuable resources for fish researchers as well as to fishery industry.
Main text

Feasibility test and the release of ten fish genomes

In order to establish cost-effective strategies and assess the feasibility of a large-scale genome project, we initiated a pilot study in June 2017. Over the last two years, we went on four expeditions across lakes, rivers, and coastal waters of China, collecting 324 fish species. After careful documentation of sample information and species identification, the tissues of 93 species were selected for DNA extraction and sequencing. We used single tube long fragment reads technology (stLFR) [13] and the DNBSEQ platform to sequence the species, generating long read (Nanopore or PacBio) and Hi-C data for a subset. In this way, we were able to test the feasibility of three different sequencing and assembly strategies (Figure 2): stLFR data alone (synthetic long reads generated using second-generation sequencing platform) (Strategy I); stLFR data combined with low-depth, long reads (~10× raw Nanopore data to fill in the gaps) (Strategy II); and high-depth long reads (~80× raw Nanopore data) combined with second generation short reads (either short insert size libraries or stLFR) (Strategy III). We have sequenced all the 93 species using stLFR (Supplementary Table 2), 26 species using Nanopore at low depth, and 13 using Nanopore at high depth. To date, we have assembled the genomes of 48 species, which are currently undergoing curation, and are finishing assembly for the remaining 57. For the 48 assembled fish genomes, the average contig N50 and the average scaffold N50 are 1.53 Mb and 5.20 Mb, respectively. The average Benchmarking Universal Single-Copy Orthologs (BUSCO) [14] completeness estimate is 93.48%
(Supplementary Table 3). A comparison of assembly statistics revealed that assemblies generated with Strategy II and Strategy III were more continuous, achieving an average contig N50 of 3.99 Mb and an average scaffold N50 of 9.51 Mb. They are notably superior to Strategy I (average contig N50 of 79.04 Kb and average scaffold N50 of 4.73 Mb). To illustrate our effort, we are releasing the genomes of ten representative bony fish genomes covering the three assembly strategies.
Table 1). The contig N50s of seven of these genomes are more than 1 Mb and a minimum 93% of BUSCO genes were found, indicating the genome assemblies are of high quality. Three genomes were assembled at chromosome-level, with more than 92% scaffold-anchored ratio using Hi-C data.

The Fish10K Genome Project: from 100 to 10,000

With the experience gained in the Fish10K pilot study and our published results, we believe that the project can scale-up. Thus, we are proposing a roadmap (Figure 3) in which we will construct high-quality reference genomes for representative species in all orders (Phase I) and families (Phase III) in concert with the generation of draft genome sequences for additional related species (Phase III).

An interrogation of FishBase [15] and “Fishes of the world” (5th ed.) [16] revealed information on 34,115 fish species from ~5,000 genera, ~529 families, and ~80 orders (Supplementary Table 2). The species were divided into six lineages (Elasmobranchii, Holocephali, Actinopterygii, Sarcopterygii, Cephalaspidomorphi, and Myxini), in which Elasmobranchii and Holocephali belong to Chondrichthyes (cartilaginous fishes); and Actinopterygii and Sarcopterygii belong to Osteichthyes (bony fishes). As mentioned above, there are reference genomes available for at least one species of 56 orders, while for the rest of the orders reference genomes are required. Also, there are fish orders with a large number of species (e.g., Perciformes has 62 families; Siluriformes has 40 families; and Scorpaeniformes has 39 families), suggesting that additional high-quality reference genomes are required to represent the diverse biological characteristics. Thus, in Phase I we aim to sequence 450 bony
fish and 50 cartilages fish species, covering all 80 orders (Supplementary Table 2). In Phase II, we aim to sequence approximately 3,000 species, covering almost all ~500 fish families. In Phase III, we will sequence ~6,500 fish genomes, covering ~5,000 genera.

Sampling, sequencing, assembly, and annotation

Sampling is a critical challenge in any large-scale genome consortium. We propose a centralised sampling mode (i.e., mirroring our 93-species pilot phase), with several sampling centres set up to collect samples. In addition to these sampling centres, we would like to obtain further samples from around the world. To make sure we have enough information for further analysis and to maximise the value of the genome data, we propose a sampling standard. The associated meta-data was designed to include as much information as possible, stressing the importance of collecting images of each specimen and adequate storage conditions (frozen or voucher specimen).

For sequencing, we propose to use both second- and third-generation sequencing technologies to generate high-quality genome assemblies. Based on our pilot study, and considering the feasibility of obtaining the required amount of high molecular DNA, we have chosen a ‘stLFR data + low-depth Nanopore data + Hi-C data’ strategy (Strategy II in Figure 2) for the majority of the species. For more complex genomes, we will generate high-depth Nanopore sequence data to ensure that good assemblies can be achieved (Strategy III, ‘stLFR data + high-depth Nanopore data + Hi-C data’; Figure 2). For key species (to be determined by the working groups; see below), we will employ a Pacific Biosciences circular consensus sequencing (CCS) long
high-fidelity (HiFi) approach, allowing the generation of highly-accurate long reads [17]. For the large-scale sequencing of 6,000 species in Phase III, we propose to employ stLFR alone (Strategy I in Figure 2). For a diploid species with a genome size of less than 10Gb (generated using our preferred Strategy II), we will require the contig N50 and scaffold N50 to be longer than 1Mb and 10Mb, respectively, and (if applicable) to anchor more than 90% of the assembled sequences to chromosomes. The same criteria will apply to assemblies generated using a high-depth long read strategy (Strategy III). For assemblies generated using stLFR sequencing alone (Phase III) assemblies must have a contig N50 and scaffold N50 longer than 100 Kb and 1Mb, respectively. All assemblies must have a BUSCO completeness estimate higher than 90%. Finally, genome feature annotations (e.g., repeat and gene annotations) will be performed using well-established in-house pipelines.

Fish10k data sharing

Per the Fort Lauderdale [18] and Toronto International Data Release Workshop guidelines [19], all sequencing data (including raw data, assemblies, and annotations) will be deposited in the appropriate INSDC databases, alongside GigaDB and China National Gene Bank (CNGB). The website of Fish10K (http://icg-ocean.genomics.cn/index.php/fish10kintroduction) will provide detailed information on the project status, as well as continuously updated information on the sequenced species. It also provides a portal for data download (in particular for assembled genomes).
Organisation of Fish10K consortium

Fish10K has been initiated by a core group of researchers, forming the steering committee of Fish10K (Figure 4). The steering committee oversees the project and is responsible for fundraising, expanding the steering committee, organising the scientific groups and species groups, and coordinating sampling, sequencing, assembly, and analysis strategies. The steering committee is also responsible for the generation of genomic data. Various scientific groups will focus on technical and scientific questions related to this project. The scientific groups, which will have advance access to all generated data, will include a sampling group, a sequencing and assembly group, and a series of groups focusing on different fish-related scientific questions. We wish to receive proposals from researchers who would like to take part in scientific groups. We also invite researchers who are studying fish species which are rare or extinct to join Fish10K as members in the species group (with or without associated funding for sequencing). In addition to obtaining the genome sequences of their area of interest, joining the consortium provides immediate access to all genomes currently being assembled by Fish10K.

Conclusions

Fish10K will generate an unprecedented, comprehensive data set of fish, the largest and most diverse vertebrate group. Our effort will allow us to complete the genomic tree for fish and, in concert with other projects such as VGP and B10K, vertebrates in general.
Abbreviations

B10K: Bird 10,000 Genomes Project
VGP: Vertebrate Genomes Project
EBP: Earth BioGenome Project
Fish-T1K: Transcriptomes of 1,000 Fishes Project
Fish10K: Fish 10,000 Genomes Project
CNGB: China National Gene Bank
stLFR: single tube Long Fragment Read
NCBI: National Center for Biotechnology Information

Data availability

The ten fish genome assemblies in the pilot have been deposited in the CNSA (https://db.cngb.org/cnsa/) of CNGBdb with accession codes CNP0000597 and CNP0000691.

Author contributions

S-P. H., Q. Q., N-S. C., X.X., X. L., W. W. and G-Y. F. conceived and designed the study. L-D. Y., M-Q. Z., S.-S. L., and D.S., C. performed sample collection and sequencing. Y. S., S.-Y. Z., and X.-Y. H. performed assembly and annotation. X. L., Y. S., and G. F. wrote the manuscript. Y.-X. L., N.-S. C., and all other authors revised and read the manuscript.
Acknowledgements

Thanks Dr. Inge Seim help us to polish the English writing of this manuscript.

References

1. Venkatesh B, Lee AP, Ravi V, Maurya AK, Lian MM, Swann JB, et al. Elephant shark genome provides unique insights into gnathostome evolution. 2014;505 7482:174.
2. Wang K, Shen Y, Yang Y, Gan X, Liu G, Hu K, et al. Morphology and genome of a snailfish from the Mariana Trench provide insights into deep-sea adaptation. 2019;3 5:823.
3. Chen S, Zhang G, Shao C, Huang Q, Liu G, Zhang P, et al. Whole-genome sequence of a flatfish provides insights into ZW sex chromosome evolution and adaptation to a benthic lifestyle. Nature genetics. 2014;46 3:253.
4. Koepfl K-P, Paten B, Scientists GKCo and O’Brien SJJARAB. The Genome 10K Project: a way forward. 2015;3 1:57-111.
5. Vertebrate Genomes Project (VGP). https://genome10k.soe.ucsc.edu/vertebrate-genomes-project/. Accessed 10 September 2019.
6. Zhang GJN. Genomics: Bird sequencing project takes off. 2015;522 7554:34.
7. Zhang G, Li C, Li Q, Li B, Larkin DM, Lee C, et al. Comparative genomics reveals insights into avian genome evolution and adaptation. 2014;346 6215:1311-20.
8. BAT 1K. https://bat1k.ucd.ie/. Accessed 27 September 2019.
9. Cheng S, Melkonian M, Smith SA, Brockington S, Archibald JM, Delaux P-M, et al. 10KP: A phylodiverse genome sequencing plan. 2018;7 3:giy013.
10. DNAZOO. https://www.dnazoo.org/. Accessed 27 September 2019.
11. Ostrander EA, Wang G-D, Larson G, vonHoldt BM, Davis BW, Jagannathan V, et al. Dog10K: An international sequencing effort to advance studies of canine domestication, phenotypes, and health. 2019.
12. Sun Y, Huang Y, Li X, Baldwin CC, Zhou Z, Yan Z, et al. Fish-T1K (Transcriptomes of 1,000 Fishes) Project: large-scale transcriptome data for fish evolution studies. 2016;5 1:18.
13. Wang O, Chin R, Cheng X, Wu MKY, Mao Q, Tang J, et al. Efficient and unique cobarcoding of second-generation sequencing reads from long DNA molecules enabling cost-effective and accurate sequencing, haplotyping, and de novo assembly. Genome research. 2019;29 5:798-808.
14. Waterhouse RM, Seppey M, Simao FA, Manni M, Ioannidis P, Klioutchnikov G, et al. BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol Biol Evol. 2017;35 3 doi:10.1093/molbev/msx319.
15. FishBase. https://www.fishbase.se/search.php. Accessed 10 September 2019.
16. Nelson JS, Grande TC and Wilson MV. Fishes of the World. John Wiley & Sons; 2016.
17. Wenger AM, Peluso P, Rowell WJ, Chang P-C, Hall RJ, Concepcion GT, et al. Highly-accurate long-read sequencing improves variant detection and assembly of a human genome. 2019:519025.
18. The Fort Lauderdale Agreement. Reaffirmation and Extension of NHGRI Rapid Data Release Policies: Large-scale Sequencing and Other Community Resource Projects. Available at: https://www.genome.gov/10506537/reaffirmation-and-extension-of-nhgri-rapid-data-release-policies. Accessed 10 September 2019.
19. Birney E, Hudson TJ, Green ED, Gunter C, Eddy S, Rogers J, et al. Prepublication data sharing. 2009;461 7261:168-70.
Figures and Tables

Figure 1. Assembly statistics of fish genomes in public databases. a) Summary of genome size. b, c) N50 statistics. A scaffold is a series of contigs that can be linked. N50 is the sequence length of the shortest contig (or contig) at 50% of the total genome length.
Figure 2. The sequencing and assembly strategies. In the preferred strategy (Strategy II), high-quality DNA fragments (≥40Kb) are used to construct a stLFR library which is sequenced using the DNBSEQ platform. Low-sequencing-depth long reads are only used to improve the continuity of highly complex regions (increase the contig N50). In the alternative Strategy I, high-depth long reads are used to construct contigs, while low-depth stLFR reads are used to polish the contig and link the scaffolds. Hi-C data is used to generate a chromosome-level assembly.

Figure 3. The roadmap and organisation of Fish10K. Fish10K is divided into three phases, based on the evolutionary relationship of fish, and three working groups (steering committee, scientific groups, and species groups).
Figure 4. Phylogenetics tree of fish. Jawed vertebrates (gnathostomes) are divided into two major groups, cartilaginous fishes (Chondrichthyes; in orange) and bony vertebrates (Osteichthyes; in blue and green). Bony fishes are grouped into two subgroups (Sarcopterygii; green) and (Actinopterygii; blue). The number of families and species of the five largest orders are labeled. The remaining ten orders of bony fish (Caproiformes, Callionymiformes, Gobiesociformes, Icosteiformes, Lepisosteiformes, Moroniformes, Scombrolabraciformes, Scorpaeniformes, Trachichthyiformes and Trachiniformes) and two orders of cartilaginous fish (Rhinopristiformes and Squatiniformes) are not included in the phylogenetic tree, due to their uncertain position.
Table 1. Assembly statistics of the ten released genome assemblies. An asterisk (*) denotes a chromosome-level genome assembly (Hi-C data generated).

Strat	Species	Estimated genome size (Mb)	Assembly size (Mb)	Scaffold N50 (bp)	Contig N50 (bp)	BUSC (%)	Anchored (%)
I	*Diodon holocanthus*	722.9	643.4	6,098,089	2,149,931	95.7	--
	Heterotis niloticus	743.4	669.7	9,615,753	2,307,881	97.6	96.8
	Oxyeleotris marmorata	589.7	502.6	13,190,768	1,270,297	92.9	--
	Datnioides pulcher	623.1	595.7	9,741,635	2,175,996	97.2	--
	Chaetodon trifasciatus	698.5	668.3	9,974,986	1,859,054	97.3	--
II	*Naso vlamingii*	961.4	861.3	5,736,754	182,642	97.80	--
	Chelmon rostratus	711.4	638.9	2,627,953	294,414	98.40	94.40
	Helostoma temminckii	729.7	635.4	913,351	95,536	96.30	91.80
III	*Pseudobrama simoni*	940.9	929.1	13,799,189	13,799,189	95.70	--
	Rhodeus ocellatus	850.5	902.4	4,198,183	4,198,183	94.50	--
Table 2. Sample collection template.

Specie	Le	We	S	M	Intes	Mu	Li	Time	Place	longitu	Photo	Sampli	Identificat	Status	
Sebastiscus	11.	27	♂					2019	Xiam	N24°		Dr.	Prof. He	Living	
marmotarius	7														
Pisodon		12	♂					2019	Ning	N24°		Dr.	Prof. He	Fresh	
cancrivorus	13.	35	♀					2019	Hang	N24°		Dr.	Prof. He	Frozen	
Odontobutis	3														

Note: Table columns include species, length (cm), weight (g), sex (♂ or ♀), intensity (), and other relevant information for collection and identification purposes.
Supplementary information

Supplementary Table 1. Assembly information of publicly available fish genomes. Extant fishes are divided into three major classes, among which Actinopterygii (ray-finned fishes) account for more than half.

Species	NCBI Taxonomy ID	Assembly level	Total sequence length (bp)	Number of scaffolds	Scaffold N50 (bp)	Number of contigs	Contig N50 (bp)	Accession Number	
Acanthochaenus luetkenii	473344	Scaffold	545,759,480	91,087	8,444	131,532	5,636	GCA_900312575.1	
Acanthochromis polyacanthus	80966	Scaffold	991,584,656	30,414	334,400	159,493	16,099	GCF_002109545.1	
Acipenser ruthenus	7906	Scaffold	1,732,545,901	215,913	219,750	446,905	24,377	GCA_004119895.1	
Ageneiosus marmoratus	2066578	Scaffold	1,030,000,983	16,063	223,139	169,048	7,741	GCA_003347165.1	
Amphiprion ocellaris	80972	Scaffold	844,902,565	6.637	1,216,136	67,543	23,456	GCA_000751415.1	
Amphiprion percula	161767	Chromosome	908,955,932	366	38,416,550	1,048	3,123,421	GCA_003047355.2	
Anabarilius grahami	495550	Scaffold	991,887,266	80,398	4,459,447	131,192	36,058	GCA_003731715.1	
Anarrhichthys ocellatus	433405	Scaffold	612,774,492	10,816	5,717,598	33,924	41,757	GCA_004355925.1	
Anguilla anguilla	7936	Scaffold	1,018,701,900	501,148	59,657	865,467	2,544	GCA_000695075.1	
Anguilla japonica	7937	Scaffold	966,917,315	83,292	36,264,158	276,102	11,014	GCA_003597225.1	
Anguilla rostrata	7938	Scaffold	1,413,032,609	79,209	86,641	307,316	7,355	GCA_001606085.1	
Anoplogaster cornuta	88656	Scaffold	404,844,788	108,625	4,562	128,159	3,719	GCA_900683385.1	
Anoplopoma fimbria	229290	Contig	699,326,415	80,506	5,156	208,447	22,306	GCA_000499045.1	
Antennarius striatus	241820	Scaffold	441,856,641	70,398	9,774	103,068	6,086	GCA_0090303275.1	
Aphyosomion australis	52653	Scaffold	868,348,903	12,236	1,435,212	30,782	119,465	GCA_006937985.1	
Arapaima gigas	113544	Scaffold	667,351,951	60,052	285,171	70,752	64,954	GCA_007844225.1	
Archocentrus centrarchus	63155	Chromosome	932,930,362	188	35,590,001	926	2,146,538	GCF_007364275.1	
Arctogadus glacialis	185735	Scaffold	428,791,846	139,389	3,702	151,920	3,282	GCA_0090303235.1	
Species	Scaffold/Chromosome	Start	End	Length	Identities	Unique CDS	GCF Identifier		
-----------------------------	---------------------	-------	------	---------	------------	------------	----------------		
Astatotilapia burtoni	Scaffold	8153	8001	1194190	69074	21886	GCF_000239415.1		
Astatotilapia calliptera	Chromosome	8154	249	38669361	739	4438245	GCF_900246225.1		
Astyanax mexicanus	Chromosome	7994	2415	3577769	3030	1767240	GCF_000372685.2		
Austrofundulus limaeus	Scaffold	52670	29785	1098383	168369	8097	GCF_001266775.1		
Batbygadus melanobranchus	Scaffold	630650	92290	6483	112630	4956	GCA_900302375.1		
Benthosema glaciale	Scaffold	125796	143923	6111	188319	4393	GCA_900323375.1		
Beryx splendens	Scaffold	88663	117400	5987	151933	4286	GCA_900312565.1		
Betta splendens	Chromosome	158456	70	20129463	398	2497747	GCF_900634795.2		
Boleophthalmus pectiniostris	Scaffold	150288	16620	2375822	108947	20437	GCF_000788275.1		
Boreogadus saidae	Scaffold	44932	137701	3572	147911	3221	GCA_900302515.1		
Borostomias antarcticus	Scaffold	473354	104734	5368	133045	3928	GCA_900323325.1		
Bregmaceros cantorri	Scaffold	630652	258566	5922	319170	4452	GCA_900302395.1		
Brosme brosme	Scaffold	81638	114910	4650	136096	3682	GCA_900302425.1		
Brotula barbata	Scaffold	432164	29854	45752	59402	17578	GCA_900303265.1		
Callopanchax todi	Scaffold	60409	9724	1656350	45972	52012	GCA_006937965.1		
Carapus acus	Scaffold	1491482	46699	16922	70747	9554	GCA_900312935.1		
Carassius auratus	Chromosome	7957	6216	22763433	8463	821153	GCF_003368295.1		
Coryphaenoides rupestris	Scaffold	163118	47680	159738	82633	20848	GCA_002895965.1		
Cottoperca gobio	Chromosome	56716	322	25156145	766	633090	GCF_900634415.1		
Cottus rhenum	Scaffold	446433	164693	7249	490620	2129	GCA_001455555.1		
Cynoglossus semilaevis	Chromosome	244447	31181	509861	62912	27008	GCF_000523025.1		
Cyprinodon variegatus	Scaffold	28743	9259	835301	110959	20803	GCF_000732505.1		
Cyprinus carpio	Chromosome	7962	9378	7828959	53088	75080	GCF_000951615.1		
Cytopsis rosea	Scaffold	1176755	7082	150231	4843	GCA_900302355.1			
Danio rerio	Chromosome	7955	1917	7379053	19725	1422317	GCF_000002035.6		
Danionella dracula	Scaffold	623740	996	10287669	1611	2300191	GCA_900490495.1		
Danionella translucida	Scaffold	623744	27639	340819	36005	133131	GCA_007224835.1		
Denticeps clupeoides	Chromosome	299321	460	22793177	924	3059612	GCF_900700375.1		
Species	Assembly	Chromosome	base pairs	predicted gene number	predicted protein number	GenBank Accession			
-------------------------------	----------	------------	------------	------------------------	--------------------------	----------------------------			
Dicentrarchus labrax	Scaffold	13489	675,917,103	25	26,439,989	GCA_000689215.1			
Diretmoides pauciradiatus	Scaffold	1415272	672,603,014	147,686	6,032	GCA_900660315.1			
Diretmus argentus	Scaffold	88682	302,363,458	107,968	3,367	GCA_900660295.1			
Echeinicus naucrates	Chromosome	173247	544,229,245	38	23,287,306	GCF_000963305.1			
Electrophorus electricus	Scaffold	8005	551,880,868	8,786	613,956	GCF_003665695.1			
Epinephelus lanceolatus	Chromosome	310571	1,087,399,367	4,200	46,227,939	GCA_005281545.1			
Erpetoichthys calabaricus	Chromosome	27687	3,811,038,701	1,885	199,226,436	GCF_900747795.1			
Esox lucius	Chromosome	8010	940,906,975	811	37,550,661	GCF_004634155.1			
Fundulus heteroclitus	Scaffold	8078	1,021,898,560	10,180	1,252,252	GCF_000826765.1			
Gadicus argentus	Scaffold	185737	396,767,394	123,363	3,951	GCA_900302595.1			
Gadus chalcogrammus	Scaffold	1042646	448,868,398	130,159	4,335	GCA_900302575.1			
Gambusia affinis	Scaffold	33528	598,663,367	2,943	6,651,460	GCA_003097735.1			
Gasterosteus aculeatus	Scaffold	69293	467,452,432	10,242	3,715,221	GCA_006229165.1			
Gephyroberyx darwini	Scaffold	334984	535,045,983	55,277	18,145	GCA_900660455.1			
Gouania willdenowi	Chromosome	441366	937,150,793	441	38,978,045	GCF_900634775.1			
Guentherus altiva	Scaffold	1263181	539,598,795	189,411	3,201	GCA_900312595.1			
Haplochromis nyererei	Scaffold	303518	830,133,247	7,236	2,525,540	GCF_000239375.1			
Hippocampus comes	Scaffold	109280	493,775,940	37,377	2,034,572	GCF_001891065.1			
Holocentrus rufus	Scaffold	722565	649,757,301	58,113	21,389	GCA_900302615.1			
Hoplostethus atlanticus	Scaffold	96778	520,173,038	58,279	15,562	GCA_900660355.1			
Hucho hucho	Scaffold	62062	2,487,549,814	71,639	287,338	GCA_003317085.1			
Hypophthalmichthys molitrix	Scaffold	13095	1,104,676,189	107,095	314,181	GCA_004764525.1			
Hypophthalmichthys nobilis	Scaffold	7965	1,012,063,666	121,326	83,012	GCA_004193235.1			
Hypoplectrus puella	Scaffold	146810	612,290,098	14,375	24,210,077	GCA_900610375.1			
Genus	Symbol	Chromosome	Scaffold/Chromosome	Location (Mb)	Nucleotide Length (Mb)	Accession Number			
-----------------------	--------	------------	---------------------	--------------	------------------------	-----------------			
Ictalurus punctatus	7998	Chromosome	1,002,389,428	3,163	26,676,597	GCA_004006655.2			
Kryptolebias hermaphroditus	1747188	Chromosome	683,986,837	5,211	27,459,464	GCA_007896545.1			
Kryptolebias marmoratus	37003	Chromosome	1,002,389,428	3,163	26,676,597	GCA_004006655.2			
Labeo rohita	84645	Scaffold	1,484,730,970	13,623	9,998	GCF_000084025.1			
Laius bergylta	56723	Scaffold	805,480,521	13,466	11,327	GCF_000084025.1			
Laemonema laureysi	1784819	Scaffold	306,494,646	8,652	4,715	GCF_000084025.1			
Lamprologus guttatus	81370	Scaffold	849,277,706	208,230	5,222	GCF_000084025.1			
Larimichthys crocea	215358	Chromosome	657,939,657	9,998	27,037,660	GCF_000084025.1			
Lates calcarifer	8187	Scaffold	668,481,366	3,808	1,191,366	GCF_000084025.1			
Lepisosteus oculatus	7918	Chromosome	945,878,036	2,106	6,928,108	GCF_000084025.1			
Lesueurigobius sanzi	136564	Scaffold	810,626,388	130,360	11,480	GCF_000084025.1			
Leuciscus waleckii	155063	Scaffold	752,538,629	4,888	21,959,719	GCF_000084025.1			
Liparis tanakae	230148	Scaffold	498,979,456	27,878	375,216	GCF_000084025.1			
Lota lota	69944	Scaffold	397,499,185	106,616	4,892	GCF_000084025.1			
Maccullochella peeli	135761	Scaffold	633,241,041	18,198	109,974	GCF_000084025.1			
Macquaria australasica	135765	Scaffold	675,976,139	2,962	845,515	GCF_000084025.1			
Macrocephalus berglas	473319	Scaffold	399,875,629	118,318	4,291	GCF_000084025.1			
Malacosteus occidentalis	630739	Scaffold	350,339,566	95,829	4,932	GCF_000084025.1			
Mastacembelus armatus	205130	Chromosome	591,935,101	122	25,090,313	GCF_000084025.1			
Maylandia zebra	106582	Chromosome	957,485,262	1,690	32,660,920	GCF_000084025.1			
Melanogrammus aeglefinus	8056	Scaffold	652,790,733	8,420	209,126	GCF_000084025.1			
Melanocephalus zugmayeri	181410	Scaffold	432,902,915	82,409	7,633	GCF_000084025.1			
Merlango angolensis	8058	Scaffold	423,942,190	122,642	4,444	GCF_000084025.1			
Merluccius capensis	89947	Scaffold	414,317,329	110,925	4,774	GCF_000084025.1			
Merluccius merlangus	8063	Scaffold	401,034,705	102,914	5,117	GCF_000084025.1			
Species	Accession	Length	N50	N90	Length in Genbank	Accession in Genbank			
-----------------------------	-------------	----------------	---------	---------	---------------------	----------------------			
Merluccius polli	89951	Scaffold 401,149,128	113,894	4,482	138,586	GCA_900312625.1			
Micropterus floridanus	225391	Contig 1,001,521,525	249,768	10,978	20,386	GCA_002592385.1			
Micichthys miyay	240162	Scaffold 619,300,777	6,294	1,145,539	20,386	GCA_001593715.1			
Mola mola	94237	Scaffold 639,451,992	5,552	8,766,736	51,826	GCA_001698575.1			
Molva molva	163112	Scaffold 437,480,619	111,875	5,266	133,189	GCA_900323295.1			
Monocentris japonica	181435	Scaffold 556,023,515	52,108	18,672	109,034	GCA_900323365.1			
Mora moro	248765	Scaffold 344,961,111	100,621	4,433	125,652	GCA_900303205.1			
Morone chrysops	46259	Scaffold 620,984,155	84,096	51,932	111,517	GCA_003610055.1			
Morone saxatilis	34816	Scaffold 598,109,547	629	25,942,274	70,506	GCA_004916995.1			
Muraenolepis marmorata	487677	Scaffold 416,390,766	138,928	3,555	152,594	GCA_900302325.1			
Myxocephalus scorpius	8097	Scaffold 520,316,443	85,863	9,473	127,441	GCA_900312955.1			
Myripristis jacobus	371672	Scaffold 720,396,841	64,974	21,306	121,390	GCA_900302555.1			
Myripristis murdjan	586833	Chromosome 835,254,674	87	34,950,760	340	GCF_902150065.1			
Neogobius melanostomus	47308	Contig 1,003,738,541	1,364	2,817,412	2,817,412	GCA_007210695.1			
Neolamprologus brichardi	32507	Scaffold 847,910,432	9,099	4,430,025	118,197	GCF_000239395.1			
Nibea alliflora	240163	Scaffold 574,466,150	11,977	2,154,052	34,769	GCA_900327885.1			
Nothobranchias furzeri	105023	Chromosome 1,242,518,059	6,013	15,858,201	74,941	GCF_001465895.1			
Nothobranchias kahtae	321403	Scaffold 1,122,656,415	34,756	1,178,460	101,919	GCA_006942095.1			
Notothenia coriceps	8208	Scaffold 636,613,682	38,657	217,655	72,571	GCF_000735185.1			
Oncorhynchus kisutch	8019	Chromosome 2,369,932,239	22,813	1,266,128	97,074	GCF_002021735.1			
Oncorhynchus mykiss	8022	Chromosome 2,178,999,613	139,800	1,670,138	559,855	GCF_002163495.1			
Oncorhynchus nerka	8023	Chromosome 1,927,141,915	38,027	1,058,586	57,813	GCF_006149115.1			
Oncorhynchus tshawytscha	74940	Chromosome 2,425,713,975	15,946	1,728,323	69,485	GCF_002872995.1			
Ophiodon elongatus	225387	Scaffold 635,567,917	18,379	5,092,707	52,084	GCA_004358465.1			
Oplegnathus fasciatus	163134	Scaffold 766,301,214	4,149	1,126,915	66,839	GCA_003416845.1			
Opsanus beta	95145	Scaffold 1,028,783,780	345,629	3,335	371,656	GCA_900660325.1			
Species	Type	Scaffold	Length	N50 (bp)	N90 (bp)	CDS (Mb)	GC (%)	GCA Accession	
-------------------------	-----------	----------	------------	----------	----------	----------	---------	------------------------	
Oreochromis aureus	Scaffold	918,937,175	12,951	1,102,239	61,878	60,340	GCA_005870065.1		
Oreochromis niloticus	Chromosome	1,005,681,550	2,460	38,839,487	3,010	2,923,640	GCF_001858045.2		
Oreochromis spilurus	Contig	764,974,731	221,829	11,852			GCA_005870065.1		
Oryzias javanicus	Chromosome	809,679,899	254	35,390,520	751	3,558,013	GCA_003999625.1		
Oryzias latipes	Chromosome	734,057,086	25	31,218,526	516	2,530,934	GCF_002234675.1		
Oryzias melastigma	Scaffold	779,469,774	8,603	23,737,187	56,275	30,057	GCF_002922805.1		
Osmerus eperlanus	Scaffold	342,758,722	73,274	6,820	99,348	4,524	GCA_900302275.1		
Oxygynocypris stewartii	Scaffold	1,849,224,471	26,281	257,093	257,093	257,093	GCA_005870065.1		
Pachypanchax playfairii	Scaffold	669,774,067	4,488	3,173,794	19,608	76,641	GCA_006937955.1		
Pagrus major	Scaffold	875,465,402	886,260	4,644	1,164,42	2,822	GCA_002897255.1		
Pampus argentus	Scaffold	350,448,509	298,139	1,586	532,813	1,001	GCA_000697985.1		
Pangasianodon hypophthalmus	Scaffold	715,760,110	567	14,288,580	23,339	62,522	GCF_003671635.1		
Parablenius parvicornis	Scaffold	599,249,148	66,539	16,796	129,811	7,343	GCA_900302745.1		
Paralichthys olivaceus	Chromosome	545,775,252	7,202	3,817,360	38,614	30,544	GCA_001904815.2		
Parambassis ranga	Chromosome	551,012,959	156	22,993,012	1,677	5,080,925	GCF_00634625.1		
Paramormyrops kingseleyae	Chromosome	799,421,083	4,667	1,731,158	47,999	37,656	GCF_002872115.1		
Parassudis fraserbrunneri	Scaffold	707,987,062	156,389	6,391	213,462	4,177	GCA_900302295.1		
Perca flavescens	Chromosome	877,456,336	268	37,412,490	1,097	4,268,950	GCF_004354835.1		
Perca flavatilis	Scaffold	958,225,486	31,105	6,260,519	100,821	18,196	GCA_003412525.1		
Percopsis transmontana	Scaffold	458,089,168	53,197	15,180	88,141	8,161	GCA_900302285.1		
Periophthalmus schlosseri	Scaffold	679,761,122	46,662	39,308	85,749	16,946	GCA_000787095.1		
Periophthalmus magmopinnatus	Scaffold	701,696,780	26,060	296,161	76,770	28,254	GCA_000787105.1		
Phycis blennoides	Scaffold	416,766,999	62,684	10,640	132,164	4,532	GCA_900302315.1		
Phycis phyctis	Scaffold	346,335,180	100,771	4,502	120,694	3,458	GCA_900302335.1		
Pimephales promelas	Scaffold	1,219,326,373	73,057	60,380	215,176	7,468	GCA_000700825.1		
Planiliza	Contig	747,342,729	1,453	3,973,280	3,973,280	3,973,280	GCA_005024645.1		
Species	Accession	Chromosome	Length (bp)	N50 (bp)	N100 (bp)	GCF or GCA Accession			
-------------------------	-----------	------------	-------------	----------	-----------	----------------------			
haematochella									
Poecilia formosa	48698	Scaffold	748,923,461	3,985	1,574,226	GCF_000485575.1			
Poecilia latipinna	48699	Scaffold	815,144,743	17,988	279,200	GCF_001443285.1			
Poecilia mexicana	48701	Scaffold	801,711,499	18,105	275,316	GCF_001443325.1			
Poecilia reticulata	8081	Chromosome	731,622,281	3,029	5,270,359	GCF_000636315.1			
Pollachius virens	8060	Scaffold	394,927,939	116,705	4,344	GCA_900312635.1			
Polymixia japonica	81385	Scaffold	554,895,936	92,198	9,571	GCA_900302305.1			
Poropantius haungchuchieni	357532	Scaffold	760,177,161	625,277	2,931	GCA_900323345.1			
Pseudochromis fuscus	280673	Contig	657,041,210	52,042	24,689	GCA_900323345.1			
Pseudopleuronectes yokohamae	245875	Contig	547,831,023			GCA_000787555.1			
Pangitius pungitius	134920	Scaffold	441,089,565	7,847	302,682	GCA_003399555.1			
Pygocentrus nattereri	42514	Scaffold	1,285,352,492	283,518	1,440,044	GCF_001682695.1			
Regalecus glesne	81389	Scaffold	656,003,707	105,196	9,773	GCA_900302585.1			
Reinhardtius hippoclosoidei	111784	Scaffold	677,540,803	4,453	17,640,195	GCA_006182925.2			
Rhamphochromis esox	163638	Scaffold	71,295,074	55,751	1,324	GCA_000150935.1			
Rondeletia loricata	88713	Scaffold	568,597,941	103,827	7,469	GCA_900302605.1			
Salarias fasciatus	181472	Chromosome	797,507,141	203	32,729,575	GCF_00148845.1			
Salmo salar	8030	Chromosome	2,966,890,203	241,573	1,366,254	GCF_000233375.1			
Salmo trutta	8032	Chromosome	2,371,880,186	1,441	52,209,666	GCF_001001165.1			
Salvelinus alpinus	8036	Chromosome	2,169,553,147	16,702	1,018,695	GCF_000910315.2			
Sander lucioperca	283035	Scaffold	900,461,225	1,312	4,929,547	GCA_008315115.1			
Sardina pilchardus	27697	Scaffold	949,617,276	117,259	96,617	GCA_900499035.1			
Scartelaos histophorus	166764	Scaffold	695,008,792	156,044	15,105	GCA_000787155.1			
Scleropages formosus	113540	Chromosome	784,563,014	72	31,084,684	GCF_000964775.1			
Scopthalmus maximus	52904	Chromosome	524,979,463	22	24,811,384	GCA_003186165.1			
Sebastes aleutianus	214485	Scaffold	899,650,391	10,489	340,062	GCA_001910805.2			
Sebastes koreanus	290523	Contig	725,092,264		147,157	GCA_004335335.1			
Sebastes minor	214483	Scaffold	681,652,711	166,448	7,676	GCA_001910765.2			
Sebastes nigrocinctus	72089	Scaffold	746,044,620	15,872	116,274	GCA_000475235.3			
Species	ID	Type	Chromosome	Start	End	Length	BaseCounts	GC, %	RefSeq
------------------------------	--------	---------------	------------	----------	----------	---------	------------	---------	----------
Sebastes norvegicus	394699	Scaffold	717,740,616	75,627	16,564	117,709	9,467	46%	GCA_900302655.1
Sebastes nudus	1617787	Contig	724,045,237						GCA_0044335365.1
Sebastes rubrivinctus	72099	Scaffold	756,296,653	68,206	30,046	136,109	13,541	11%	GCA_0000475215.1
Sebastes schlegelii	214486	Contig	728,476,695						GCA_0044335315.1
Sebastes steindachneri	201708	Scaffold	648,011,071	279,232	4,288	1,089,36	6,131	16%	GCA_001910785.2
Selene dorsalis	179366	Scaffold	528,779,420	36,113	32,464	85,660	11,209	13%	GCA_900302345.1
Seriola dumerili	41447	Scaffold	677,686,174	34,656	5,812,906	41,188	249,509	36%	GCF_002260705.1
Seriola lalandi	302047	Scaffold	766,364,468	7,606	411,616	63,278	37,711	15%	GCA_003054885.1
Seriola quinqueradiata	8161	Scaffold	639,269,536	384	5,610,255	1,312	872,227	16%	GCA_002217815.1
Seriola rivoliana	173321	Scaffold	666,141,578	1,343	9,509,606	3,939	740,108	13%	GCA_002994505.1
Simochromis diagramma	43689	Scaffold	848,827,444	823	8,960,300	1,764	2,231,376	22%	GCA_000408965.1
Sinocyclocheilus anshuensis	1608454	Scaffold	1,632,718,266	85,682	1,284,143	254,423	17,271	11%	GCF_001515605.1
Sinocyclocheilus grahmani	75366	Scaffold	1,750,287,761	31,277	1,156,368	168,074	29,353	13%	GCF_001515645.1
Sinocyclocheilus rhinoceros	307959	Scaffold	1,655,786,410	164,173	945,738	314,963	18,758	12%	GCF_001515625.1
Sparus aurata	8175	Chromosome	833,595,063	176	35,791,275	1,224	2,862,625	36%	GCA_000880675.1
Sphaeramia orbicularis	375764	Chromosome	1,342,662,642	340	57,165,184	1,764	2,360,121	22%	GCF_002148555.1
Spondiosoma canthus	50595	Scaffold	680,472,139	47,064	28,198	97,735	11,633	13%	GCA_900302685.1
Stegastes partitus	144197	Scaffold	800,491,834	5,818	411,659	42,060	43,010	17%	GCF_000690725.1
Stylephorus chordatus	409996	Scaffold	488,488,587	128,468	4,684	170,584	3,373	9%	GCA_900312615.1
Symphodus melops	171736	Scaffold	533,823,763	50,156	21,275	95,080	9,362	13%	GCA_900323315.1
Syngnathus acus	161584	Chromosome	324,331,233	87	14,974,571	130	11,959,915	14%	GCA_901709675.1
Tachysurus falvidraco	1234273	Scaffold	713,810,725	663	3,653,474	2,402	980,445	12%	GCF_003724035.1
Takifugu bimaculatus	433685	Chromosome	371,675,663	22	16,786,025	1,055	1,398,332	4%	GCA_000426145.1
Takifugu flavidus	433684	Chromosome	366,286,831	867	15,676,631	1,111	4,357,567	12%	GCA_003711565.2
Takifugu rubripes	31033	Chromosome	384,126,662	128	16,705,553	530	3,136,617	14%	GCF_001000725.2
Temulosa ilisha	373995	Scaffold	815,647,530	124,209	188,026	131,117	129,889	13%	GCA_003651195.1
Thalassoma bifasciatum	76338	Scaffold	1,095,910,316	379,332	155,821	397,893	122,955	13%	GCA_008086565.1
Thunnus	8236	Scaffold	728,212,003	38,995	46,920	84,919	16,808	11%	GCA_900302625.1
albacares	Thunnus orientalis	8238	Contig	684,497,465	133,062	8,235	GCA_000418415.1		
--------------------	------------------------	------	--------	-------------	---------	-------	----------------		
	Thunnus thynnus	8237	Scaffold	648,208,697	354,425	3,045	450,338	2,430	GCA_003231725.1
	Thymallus thynallus	36185	Chromosome	1,564,834,359	3,831	32,985,317	204,386	31,774	GCA_004348285.1
	Trachinotus ovatus	17339	Scaffold	648,062,395	138	29,494,812	749	1,846,793	GCA_900607315.1
	Trachyrincus murrayi	241836	Scaffold	452,416,606	40,927	19,998	114,476	6,231	GCA_900323305.1
	Trachyrincus scabres	562814	Scaffold	369,861,760	80,958	6,379	119,164	3,900	GCA_900303215.1
	Triplophysa silaroides	422203	Scaffold	583,428,323	1,002	2,872,994	1,039	2,549,348	GCA_006030095.1
	Trisopterus minutus	80722	Scaffold	334,717,091	106,116	3,976	122,084	3,248	GCA_900302415.1
	Typhlichthys subterraneus	940470	Scaffold	555,559,596	84,841	9,654	106,331	7,314	GCA_900302405.1
	Xiphophorus couchianus	32473	Chromosome	688,541,509	68	30,550,352	297	15,315,838	GCF_001444195.1
	Xiphophorus hellerii	8084	Chromosome	733,126,988	85	26,465,357	561	7,119,835	GCA_003331165.1
	Zeus faber	64108	Scaffold	610,433,400	135,758	6,332	172,424	4,642	GCA_900323335.1
Supplementary Table 2. List of the 93 species sequenced in the Fish10K pilot study. An asterisk (*) denotes that a species could not be classified by morphological classification and need further evidence (i.e. genomics data) to be classified.

Species	stLFR (Gb)	Hi-C (Gb)	ATAC-seq (Gb)	RNA-seq (Gb)	Nanopore (Gb)
Mormyrus caschive Linnaeus	119.39	142.63	12.56	18.32	9.61
Campylomormyrus elephas	121.14	40.10	12.38	in prep.	in prep.
Semaprochilodus insignis	120.65	78.58	11.26	Fail	in prep.
Panaque nigrolineatus	118.51	in prep.	13.78	18.14	11.33
Glossolopsis incisus	121.70	in prep.	10.80	19.56	9.80
Kahlia marginata	114.67	71.48	12.84	in prep.	in prep.
Distichodus sexfasciatus	125.09	in prep.	1.88	17.58	14.12
Megalops atlanticus	117.61	in prep.	9.06	22.36	in prep.
Nemacheilidae*	115.22	143.26	in prep.	in prep.	in prep.
Helostoma temminckii	117.99	98.46	8.98	Fail	11.11
Asterophysus batrachus	319.01	in prep.	in prep.	in prep.	in prep.
Callichthyidae*	114.60	in prep.	in prep.	in prep.	in prep.
Syn prep.donit nigriventris	114.76	in prep.	in prep.	in prep.	in prep.
Sahyadria denisonii	116.50	in prep.	in prep.	in prep.	in prep.
Iriatherina werneri	123.63	in prep.	in prep.	in prep.	in prep.
Pantodon buchholzi	99.81	in prep.	in prep.	in prep.	in prep.
Boulengerella lucia	122.82	68.36	11.12	22.80	in prep.
Crossocheilus oblongus	122.12	in prep.	in prep.	in prep.	in prep.
Kryptopterus bicirrhis	123.83	in prep.	in prep.	in prep.	in prep.
Acestrorhynchus altus	125.46	sequencing	6.50	19.40	12.06
Moin prep.tremis palembangensis	121.83	82.08	17.54	18.36	in prep.
Tetraodon flaviatilis	122.42	sequencing	10.12	19.32	in prep.
Hydrocynus vittatus	92.93	56.64	5.14	21.30	12.75
Tetraodon palembangensis	120.40	19.00	11.12	20.64	12.32
Species	Value 1	Value 2	Value 3	Value 4	Value 5
--	---------	---------	---------	---------	---------
Malapterurus electricus	118.87	124.02	8.96	16.22	9.47
Naso vlamingii	131.47	sequencing	in prep.	18.86	12.13
Centropyge bicolor	130.47	134.61	in prep.	in prep.	in prep.
Synchiropus splendidus	130.25	sequencing	in prep.	12.44	in prep.
Corynoidichthys haematopterus	364.22	in prep.	in prep.	in prep.	in prep.
Diedon holocanthes	127.52	sequencing	in prep.	22.86	11.66
Chelmon rostratus	134.64	134.22	in prep.	in prep.	in prep.
Auchenipterus glanis occidentalis	128.79	19.24	5.82	17.84	10.15
Heterotis niloticus	119.30	21.24	10.06	23.02	10.46
Crenicichla johanna	120.14	136.03	8.56	19.88	10.79
Hydrolycus armatus	120.76	54.46	7.80	18.48	in prep.
Macrochirichthys macrochirius	114.39	66.38	9.72	21.38	10.27
Hesperus odor	118.61	66.66	2.68	22.26	11.73
Salminus brasiliensis	120.54	73.60	10.96	25.50	12.05
Metynnis lippincottianus	341.02	in prep.	in prep.	in prep.	12.33
Polypterus endlicheri	336.58	in prep.	in prep.	in prep.	in prep.
Brachyplatystoma tigrinum	94.44	in prep.	in prep.	in prep.	in prep.
Syn prept. donis flavitaeniatus	73.88	in prep.	in prep.	in prep.	in prep.
Hexanematichthys leptaspis	85.30	in prep.	in prep.	in prep.	in prep.
Leporinus frederici	302.09	in prep.	in prep.	in prep.	in prep.
Garra orientalis	99.14	in prep.	in prep.	in prep.	in prep.
Gyrius prept. cheilus*	98.65	137.06	8.36	22.88	11.19
Aplocheilus lineatus	97.10	in prep.	in prep.	in prep.	in prep.
Phenacogrammus interruptus	104.41	in prep.	in prep.	in prep.	in prep.
Apteroin prept. tus albifrons	108.95	in prep.	in prep.	in prep.	10.00
Hoplias aimara	95.89	in prep.	in prep.	in prep.	in prep.
Lethrinus*	126.19	in prep.	in prep.	in prep.	11.38
Therapon oxyrhynchus	124.76	in prep.	in prep.	in prep.	18.53
Eleotridae*	125.74	in prep.	in prep.	in prep.	19.64
Species	Length	Status 1	Status 2	Status 3	Status 4
-----------------------------	--------	----------	----------	----------	----------
Datnioides pulcher	122.38	in prep.	in prep.	in prep.	11.24
Rhin prep.gobius gierinusa	133.18	in prep.	in prep.	in prep.	11.60
Chaetodon trifasciatus	128.29	in prep.	in prep.	in prep.	10.32
Cobitis sinensis	130.76	in prep.	in prep.	in prep.	in prep.
Eleotris oxycephala	137.64	in prep.	in prep.	in prep.	in prep.
Harpadon nehereus	131.32	in prep.	in prep.	in prep.	in prep.
Sillago japonica	129.92	in prep.	in prep.	in prep.	in prep.
Brachius orientalis	137.34	in prep.	in prep.	in prep.	in prep.
Apogonidae*	131.97	in prep.	in prep.	in prep.	in prep.
Triacanthus bicuculatus	134.93	in prep.	in prep.	in prep.	in prep.
Anabas testudineus	130.97	in prep.	in prep.	in prep.	in prep.
Latijanas fulviflamma	134.98	in prep.	in prep.	in prep.	in prep.
Bostrychus sinensis	135.54	in prep.	in prep.	in prep.	in prep.
Urein prep.scopiformes	134.82	in prep.	in prep.	in prep.	in prep.
Arothron hispidus	133.51	in prep.	in prep.	in prep.	in prep.
Abudefduf vaigiensis	132.93	in prep.	in prep.	in prep.	in prep.
Gymn prep thorax	140.25	in prep.	in prep.	in prep.	in prep.
Mois prep. pterus albus	136.21	in prep.	in prep.	in prep.	in prep.
Eleotris oxycephala	125.41	in prep.	in prep.	in prep.	in prep.
Sillaginidae*	115.00	in prep.	in prep.	in prep.	in prep.
Gerres acinaces	118.53	in prep.	in prep.	in prep.	in prep.
Platycephalidae	131.16	in prep.	in prep.	in prep.	in prep.
Sillaginidae*	122.42	in prep.	in prep.	in prep.	in prep.
Inimicus japonicus	126.58	in prep.	in prep.	in prep.	in prep.
Platycephalidae	118.44	in prep.	in prep.	in prep.	in prep.
Johnius grypotus	120.79	in prep.	in prep.	in prep.	in prep.
Gobiidae*	131.75	in prep.	in prep.	in prep.	in prep.
Psodooin prep.phis cancrivorus	126.37	in prep.	in prep.	in prep.	in prep.
Leiognathus breviostris	121.58	in prep.	in prep.	in prep.	in prep.
Species	Length	Status 1	Status 2	Status 3	Status 4
-------------------------------	--------	----------	----------	----------	----------
Hemibarbus labeo	130.99	in prep.	in prep.	in prep.	in prep.
Zebrasoma veliferum	139.93	in prep.	in prep.	in prep.	in prep.
Siganus unimaculatus	139.93	in prep.	in prep.	in prep.	in prep.
Chaetodon auriga	138.54	in prep.	in prep.	in prep.	in prep.
Carassioides cantonensis	121.21	in prep.	in prep.	in prep.	in prep.
Varicorhinus lepturus	119.60	in prep.	in prep.	in prep.	in prep.
Carassioides cantonensis	124.74	in prep.	in prep.	in prep.	in prep.
Balitora brucei	96.75	in prep.	in prep.	in prep.	in prep.
Opsarichthys bidens	141.76	in prep.	in prep.	in prep.	in prep.
Chain prep. dichthys erythropterus	141.25	in prep.	in prep.	in prep.	in prep.
Supplementary Table 3. Assembly statistics of other 38 fish genome assemblies.
An asterisk (*) denotes cartilaginous fish. A scaffold is a series of contigs that can be linked. N50 is the sequence length of the shortest contig (or contig) at 50% of the total genome length. BUSCO (Benchmarking Universal Single-Copy Orthologs) is a standard qualitative measure for assessing genome quality and completeness based on evolutionarily informed expectations of gene contents from near-universal single-copy orthologs. The highest BUSCO score is 100%. A higher BUSCO score indicates a better quality of the annotated genome.

Strategy	Species	Assembly size (bp)	Scaffold N50 (bp)	Contig N50 (bp)	BUSCO
I	*Raja porosa*	3,047,746,089	2,182,378	16,150	---
	Acestrorhynchus altus	955,799,133	9,632,287	48,769	94.0%
	Monotremus palembangensis	359,992,882	5,706,744	213,105	96.3%
	Tetraodon fluviatilis	326,757,569	7,010,509	47,398	96.0%
	Hydrocynus vittatus	1,007,380,147	3,263,334	25,092	88.7%
	Tetraodon palembangensis	359,651,202	7,038,803	218,260	96.2%
	Malapterurus electricus	798,763,704	3,588,439	48,402	90.3%
	Centropyge bicolor	681,516,296	4,420,410	115,524	96.2%
	Synchiropus splendidus	535,219,047	7,262,416	117,146	96.3%
	Auchenoglanis occidentalis	767,889,523	6,633,917	110,792	93.5%
	Crenicichla johanna	826,044,049	2,355,403	60,889	96.6%
	Hydrolycus armatus	806,097,948	3,692,170	20,392	86.0%
	Macrochirichthys	835,452,375	6,246,214	56,429	87.8%
	macrochirius				
	Hepsetus odoe	860,429,938	5,143,489	43,947	93.8%
	Salminus brasiliensis	942,321,778	2,364,359	39,978	89.3%
	Metynnis lippincottianus	1,347,978,869	1,154,248	21,525	89.1%
	Therapon oxyrhynchus	724,925,999	11,684,578	50,940	90.5%
	Rhinogobius giurinus	973,105,242	4,063,184	25,681	84.8%
Fish Name	List	Abundance	Stunting	Survival Efficiency	
---------------------------	-------------	-----------	----------	---------------------	
Mormyrus caschive	Linnaeus	819,947,615	1,532,218	48,123	89.6%
Megalops atlanticus		1,033,524,629	7,259,301	65,702	95.4%
Kuhlia marginata		674,579,433	4,757,558	40,209	92.8%
Semaprochilodus insignis		1,178,289,156	1,780,909	29,765	80.9%
Distichodus sexfasciatus		814,422,444	1,048,871	31,524	89.4%
Glossolepis incisus		889,156,884	1,422,316	32,279	91.0%
Campylomormyrus elephas		905,010,418	1,613,581	30,544	92.5%
II	Parabramis pekinensis	984,227,144	---	5,486,023	95.90
Pseudolaubuca sinensis		806,127,291	---	11,561,046	96.00
Redfin culter		1,102,622,456	---	2,126,716	94.60
Toxabramis swinhonis		1,038,263,990	---	1,754,830	93.70
Squaliobarbus curriculus		1,066,071,259	---	1,664,874	95.40
Ochetobibus elongatus		929,258,157	---	3,217,609	95.90
Opsariichthys bidens		841,061,991	---	5,688,910	94.60
Nicholsicypris normalis		854,847,741	---	2,288,299	95.50
Yaoshanicus arcus		835,190,039	---	5,992,616	96.40
Xenocypris argentea		1,033,647,724	---	5,841,742	96.30
Gymnocypris scolistomus		969,320,259	---	1,907,468	92.00
Supplementary Table 4. Statistics of the existing fish species. Based on data from FishBase web site (accessed 10 September 2019) and “Fishes of the world” (5th ed.). Actinopterygii belong to Osteichthyes, whose number of species accounts for most all fishes.

Type	Class	Order	Family	Species
Chondrichthyes	Elasmobranchii	12	51	1,190
	Holocephali	1	3	56
Osteichthyes	Actinopterygii	67	475	32,869
Total		80	529	34,115
Supplementary Table 5. An Excel file with all the species list of Phase I.