Highly Optimized Full-Core Reactor Simulations on Summit

Paul Fischer,1,2,3 Elia Merzari,4,5 Misun Min,1 Stefan Kerkemeier,1 Yu-Hsiang Lan,1,2 Malachi Phillips,2 Thilina Rathnayake,2 April Novak,1 Derek Gaston,7 Noel Chalmers,9 Tim Warburton 9

Abstract

Nek5000/RS is a highly-performant open-source spectral element code for simulation of incompressible and low-Mach fluid flow, heat transfer, and combustion with a particular focus on turbulent flows in complex domains. It is based on high-order discretizations that realize the same (or lower) cost per gridpoint as traditional low-order methods. State-of-the-art multilevel preconditioners, efficient high-order time-splitting methods, and runtime-adaptive communication strategies are built on a fast OCCA-based kernel library, libParanumal, to provide scalability and portability across the spectrum of current and future high-performance computing platforms. On Summit, Nek5000/RS has recently achieved an milestone in the simulation of nuclear reactors: the first full-core computational fluid dynamics simulations of reactor cores, including pebble beds with > 350,000 pebbles and 98M elements advanced in less than 0.25 seconds per Navier-Stokes timestep. With carefully tuned algorithms, it is possible to simulate a single flow-through time for a full reactor core in less than six hours on all of Summit.

Keywords
Nek5000, NekRS, Scalability, Spectral Element, Incompressible Navier–Stokes, Exascale

1 Introduction

We present first-ever large-eddy simulation of full reactor cores. Our elliptic-operator kernels sustain > 1 TFLOPS FP64 on V100s and demonstrate 80% parallel efficiency at ≈ 2.5M gridpoints per V100 with 0.1–0.25 second timesteps for Navier-Stokes problems using 50–60B gridpoints on Summit. We measure time-to-solution and provide scalability studies on full-scale system of Summit. We demonstrate four-fold reduction in solution time through algorithmic advances based on our semi-implicit spectral element method (SEM) approach with advanced preconditioning strategies utilizing mixed precision.

We are interested in the modeling and simulation of nuclear reactor cores, one the historic challenges associated with computing from its onset Merzari et al. (2021a); Bajorek (2015). The numerical simulation of nuclear reactors is an inherently multi-physics problem involving fluid dynamics, heat transfer, radiation transport (neutrons) and material and structural dynamics.

In particular we will focus here on the modeling of turbulent heat and mass transfer in the core, which remains the most computationally expensive physics to be solved at the continuum level Grötzbach and Wörner (1999); Merzari et al. (2017). In fact, because of the complexity and range of scales involved in reactor cores (1 µm – 10m), simplifications involving homogenization (e.g., treating the core effectively as porous medium) or Reynolds averaging have been historically necessary Novak et al. (2021); Cleveland and Greene (1986). Such approaches, while very powerful and useful for design, require modeling closures that are expensive or impossible to develop and validate, especially at the appropriate scale, and lead to design compromises in terms of operational margins and economics Roelofs (2018).

In the past 10 years, simulation on leadership computing platforms has been critical to improving informed analysis Merzari et al. (2020b). In fact, starting in 2009, turbulence-resolving simulations, such as direct numerical simulation (DNS) or wall-resolved large eddy simulation (LES), of small portions of the reactor core called fuel assemblies (e.g., 100 rods, 10cm tall) have emerged. These simulations have provided invaluable insight into the physics involved in turbulent heat and mass transfer in reactor cores. However, the simulation of a full reactor core has been elusive due to the sheer size of the system (e.g., 10,000 rods, 2–3m tall), limiting the use of such techniques, especially for multiphysics simulations that require full core analysis.

1 Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL 60439
2 Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801
3 Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
4 Nuclear Science and Engineering Division, Argonne National Laboratory, Lemont, IL 60439
5 Department of Nuclear Engineering, Penn State, University Park, PA 16802
6 Department of Mechanical Engineering, Aristotle University, Thessaloniki, Greece
7 Idaho National Laboratory, Idaho Falls, ID 83415
8 AMD Research, Advanced Micro Devices Inc., Austin, TX 78735
9 Department of Mathematics, Virginia Tech, Blacksburg, VA 24061

Corresponding author:
Misun Min, Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL 60439
Email: mmin@mcs.anl.gov
Given the increased interest in advanced carbon-free nuclear fission reactors worldwide, such turbulence-resolution full core simulations will be invaluable to provide benchmark datasets for improved reduced-resolution models (including advanced porous media models). This will in turn lead to reduced uncertainty, and ultimately to improved economics. In 2019 [Merzari et al. (2020a)] we provided a timeline for full-core LES calculations and we estimated that a full exascale machine would be necessary. Thanks to several major innovations in Nek5000/NekRS, this goal was recently achieved on pre-exascale machines. We present here the first full-core computational fluid dynamics (CFD) calculations to date.

In this article, we demonstrate that it is possible to realize a single flow-through-time in just six hours of wall-clock time when running on all of Summit (27648 NVIDIA V100s). It is thus realistic to expect that reactor designers could consider parametric analysis on future exascale platforms, which will be substantially larger than Summit.

To understand the transformative leap enabled by Nek5000/NekRS and in particular NekRS, it is instructive to examine coupled simulations in pebble beds. Before NekRS, the largest pebble bed calculations in the literature involved the order of 1000 pebbles with RANS [Van Staden et al. (2018)] and 100 pebbles with LES [Yildiz et al. (2020)]. In this manuscript we describe calculations that reach over the active section of the full core for the Mark-I Flouride Cooled High Temperature Reactor (352,625 pebbles) [Andreades et al. (2016)].

Cardinal [Merzari et al. (2021b)] couples NekRS to OpenMC, a Monte Carlo solver for neutron transport, and to MOOSE, a multi-physics framework that has been used to solve the complex physics involved in fuel performance. The coupled simulations of the Mark-I reactor have been performed on Summit with 6 MPI ranks per node corresponding to the 6 GPUs on each node. NekRS simulates the flow and temperature distribution around the pebbles on the GPUs; OpenMC solves neutron transport on the CPU using 6 threads for each MPI rank; and MOOSE solves unsteady conduction in the fuel pebbles on the CPU. MOOSE can also incorporate more complex fuel performance models (BISON) including fission production and transport. Coupled simulations on Summit have been performed for pebble counts ranging from 11,145 pebbles on 100 nodes to 352,625 pebbles (full core) on 3000 nodes. In all cases, NekRS consumes ≈ 80% of the runtime.

Figure 1(left) represents the temperature distribution inside the pebbles and on the surface during a heat-up transient (i.e., temperature starting from a constant temperature everywhere) for the 127,602 pebble case. These coupled simulations, which would have been considered impossible only a few years ago, demonstrate that the majority of the computational cost is in the thermal-fluids solve, which is the focus of this study.

2 Algorithms

Our focus is on the incompressible Navier-Stokes (NS) equations for velocity (u) and pressure (p),

$$\frac{Du}{Dt} := \frac{\partial u}{\partial t} + u \cdot \nabla u = \frac{1}{Re} \nabla^2 u - \nabla p, \quad \nabla \cdot u = 0, \quad (1)$$

where $Re = UL/\nu \gg 1$ is the Reynolds number based on flow speed U, length scale L, and viscosity ν. (The equation for temperature is similar to (1) without the pressure, which makes it much simpler.) From a computational standpoint, the long-range coupling of the incompressibility constraint, $\nabla \cdot u = 0$, makes the pressure substep intrinsically communication intensive and a major focus of our effort as it consumes 60-80% of the run time.

NekRS is based on the spectral element method (SEM) [Patera (1984)], in which functions are represented as N-th-order polynomials on each of E elements, for a total mesh resolution of $n = EN^3$. While early GPU efforts for Nek5000 were on OpenACC ports [Markidis et al. (2015) and Otten et al. (2016) for NekCEM], NekRS originates from two code suites, Nek5000 [Fischer et al. (2008)] and libParanal [Swirydowicz et al. (2019); Karakus et al. (2019)], which is a fast GPU-oriented library for high-order methods written in the open concurrent compute abstraction (OCCA) for cross-platform portability [Medina et al. (2014)].

The SEM offers many advantages for this class of problems. It accommodates body-fitted coordinates through isoparametric mappings domain from the reference element, $\Omega := [-1, 1]^3$ to the individual (curvilinear-brick) elements Ω^e. On Ω, solutions are represented in terms of N-th-order tensor-product polynomials,

$$u(x)|_{\Omega^e} = \sum_{j=0}^N \sum_{k=0}^N \sum_{i=0}^N u_{ijk} h_i(r) h_j(s) h_k(t), \quad (2)$$

*The time required for a particle to be advected by the flow through the entire domain.
where the h,s are stable nodal interpolants based on the Gauss-Lobatto-Legendre (GLL) quadrature points $(\xi_i, \xi_j, \xi_k) \in \Omega$ and $x = x^r(r,s,t)$ on Ω^r. This form allows all operator evaluations to be expressed as fast tensor contractions, which can be implemented as BLAS3 operations† in only $O(N^4)$ work and $O(N^3)$ memory references$[\text{Deville et al. (2002)}, \text{Orszag (1980)}. This low complexity is in sharp contrast to the $O(N^6)$ work and storage complexity of the traditional p-type FEM. Moreover, hexahedral (hex) element function evaluation is about six times faster per degree-of-freedom (dof) than tensor-based tetrahedral (tet) operator evaluation$[\text{Moxey et al. (2020)}. By diagonalizing one direction at a time, the SEM structure admits fast block solvers for local Poisson problems in undeformed and (approximately) in deformed elements, which serve as local smoothers for p-multigrid (pMG)$[\text{Lottes and Fischer (2005)}, \text{C}^0$ continuity implies that the SEM is communication minimal: data exchanges have unit-depth complexity and involve minimal communication. C^0 continuity allows all operator evaluations to be expressed as stencils, independent of i,j,k indexing avoids much of the indirect addressing associated with fully unstructured approaches, such that high-order SEM implementations can realize significantly higher throughput (millions of dofs per second, MDOFS) than their low-order counterparts$[\text{Fischer et al. (2020b)}]. Figures 2(a) and (b) show the performance of libParanumal on a single NVIDIA V100 for the local spectral element Poisson operator (without communication) as a function of kernel tuning (described in$[\text{Fischer et al. (2020b)}$), polynomial order $p \equiv N$, and problem size n. We see that the performance saturates at the roofline for all cases when $E = 4096$ in (a) and at $n \approx 250,000$ for $p = 7–8$ in (b). As we discuss in the sequel, because of communication overhead, we need $n/P \approx 2–3$ million to sustain 80% parallel efficiency in the full Navier–Stokes case on Summit, where P is the number of V100s employed in the simulation.

3 Implementation

Our decision to use OCCA was motivated by the need to port fast implementations to multiple-node architectures featuring Cuda, HIP, OpenMP, etc., without major revisions to code structure. Extensive tuning is required, which has been addressed in libParanumal (e.g.,$[\text{Starydowicz et al. (2019), Fischer et al. (2020b)}$). Figures 2(a) and (b) show the performance of libParanumal on a single NVIDIA V100 for the local spectral element Poisson operator (without communication) as a function of kernel tuning (described in$[\text{Fischer et al. (2020b)}$), polynomial order $p \equiv N$, and problem size n. We see that the performance saturates at the roofline for all cases when $E = 4096$ in (a) and at $n \approx 250,000$ for $p = 7–8$ in (b). As we discuss in the sequel, because of communication overhead, we need $n/P \approx 2–3$ million to sustain 80% parallel efficiency in the full Navier–Stokes case on Summit, where P is the number of V100s employed in the simulation.

NekRS is based on libParanumal and leverages several of its high-performance kernels, including features such as overlapped communication and computation. It also inherits decades of development work from Nek5000, which has scaled to millions of ranks on Sequoia and Mira. As shown in Fig. 2(c), the 80% parallel efficiency mark for Nek5000 on Mira is at $n/P \approx 4000$ (where P is the number of ranks), in keeping with the strong-scale analysis of$[\text{Fischer et al. (2015)}$ and the results obtained through cross-code comparisons in$[\text{Fischer et al. (2020b)}$ with the high-order deal.ii and MFEM libraries$[\text{Arndt et al. (2017), Anderson et al. (2020)}].

Time advancement in NekRS is based on k-th order operator splitting ($k=2$ or 3) that decouples (1) into separate advection, pressure, and viscous substeps. The nonlinear advection terms are advanced by using backward differencing (BDFk) applied to the material derivative (e.g., $Du/Dr \approx \frac{1}{\Delta t}(3u^m - 4u^{m-1} + u^{m-2})$ for $k=2$), where values u^{m-r} along the characteristic are found by solving an explicit hyperbolic subproblem, $\frac{\partial w}{\partial t} = -u \cdot \nabla w$ on $[m-1,m]$ $[\text{Patel et al. (2019); Maday et al. (1990)}]$. For stability (only), the variable-coefficient hyperbolic problem is dealt with by using Gaussian–Legendre

1For example, with $D_{i\hat{t}} := \frac{du}{dt} |_{\xi_i}$, the first derivative takes the form $u_{r,s,j,k} = \sum_{r,s,j,k} D_{i\hat{t}} u_{r,s,j,k}$, which is readily implemented as an $N_p \times N_p$ matrix times an $N_p \times N_p$ matrix, with $N_p = N + 1$.}
quadrature on \(N_q > N \) quadrature points [Malm et al. (2013)]. The characteristics approach allows for Courant numbers, \(\text{CFL} := \max_{x \in \Omega} \frac{\Delta t}{|u_i/\Delta x_i|} \), significantly larger than unity (CFL=2–4 is typical), thus reducing the required number of implicit Stokes (velocity-pressure) substeps per unit time interval.

Each Stokes substep requires the solution of 3 Helmholtz problems—one for each velocity component—which are diagonally dominant and efficiently treated by using Jacobic-preconditioned conjugate gradient iteration (Jacobi-PCG), and a Poisson solve for the pressure, which bypasses the need to track fast acoustic waves. Because of long-range interactions that make the problem communication intensive, the pressure Poisson solve is the dominant substep (≈80% of runtime) in the NS time-advancement. To address this bottleneck, we use a variety of acceleration algorithms, including \(p \)-multigrid (pMG) preconditioning, projection-based solvers, and projection-based initial guesses.

The tensor-product structure of spectral elements makes implementation of pMG particularly simple. Coarse-to-fine interpolations are cast as efficient tensor contractions, \(y_f = (\hat{J} \otimes \hat{J} \otimes \hat{J}) y_{gg} \), where \(\hat{J} \) is the 1D polynomial interpolation operator from the coarse GLL points to the fine GLL points. Like differentiation, interpolation is on the reference element, so only a single \(J \) matrix (of size \(N+1 \) or less) is needed for the entire domain, for each pMG level. Smoothers for pMG include Chebyshev-accelerated point-Jacobi, additive Schwarz [Lottes and Fischer (2005), and Chebyshev-accelerated overlapping Schwarz. The Schwarz smoothers are implemented by solving local Poisson problems on domains extended into adjacent elements by one layer. Thus, for an \(8 \times 8 \times 8 \) brick (\(N = 7 \), one solves a \(10 \times 10 \times 10 \) local problem, \(A^e \bar{y}^e = \bar{b}^e \), using fast diagonalization (FDM) [Deville et al. (2002)].

\[
\bar{y}^e = (S_x \otimes S_y \otimes S_z) \Lambda^{-1} (S^T_x \otimes S^T_y \otimes S^T_z \bar{b}^e),
\]

\(e = 1, \ldots, E \), where each 1D matrix of eigenvectors, \(S_x \), is \(10 \times 10 \), and \(\Lambda \) is a diagonal matrix with only 1,000 nonzeros. The leading complexity is \(\approx 12 \times 10^4 \) operations for the application of \(S_x \) and \(S^T_y \) (implemented as \texttt{dgemm}), with \(\approx 2,000 \) loads per element (for \(\bar{b}^e \) and \(\Lambda \)). By contrast, \(A^e \), if formed, would have 1 million nonzeros for each element, \(\Omega_e \), which would make work and storage prohibitive. The fast low-storage tensor decomposition is critical to performance of the SEM, as first noted in the seminal paper of Orszag [Orszag (1980)]. Note that the communication for the Schwarz solves is also very low. We exchange face data only to get the domain extensions—meaning 6 exchanges per element instead of 26. This optimization yields a 10% speedup in runs at the strong-scale limit. (We have also implemented a restricted additive Schwarz (RAS) variant, that does not require communication after the local solve, which cuts communication of the smoother by a factor of two.) Further preconditioner cost savings are realized by performing all steps of pMG in 32-bit arithmetic. On Summit, which has a limited number of NICs per node, this approach is advantageous because it reduces the off-node bandwidth demands by a factor of two.

Projection Is Key. For incompressible flows, the pressure evolves smoothly in time, and one can leverage this temporal regularity by projecting known components of the solution from prior timesteps. For any \(n \times L \) subspace of \(\mathbb{R}^m \) with \(A \)-orthonormal\(^3 \) basis \(p_L = [\bar{p}_1, \ldots, \bar{p}_L] \), the best-fit approximation to the solution of \(A\bar{p} = \bar{b} \) is \(\bar{p} = P_L \bar{p} \), where \(P_L \bar{p} \) can be computed with a single all-reduce of length \(L \leq 30 \). The residual for the reduced problem \(A\bar{p} = \bar{b} \) has a significantly smaller norm such that relatively few GMRES iterations are required to compute \(\delta\bar{p} \). We augment the space \(P_L \bar{p} \) with one round of classical Gram-Schmidt orthogonalization, which requires only a single all-reduce. (This approach is stable because \(\delta\bar{p} \) is nearly \(A \)-orthogonal to \(P_L \bar{p} \)) In Sec. 7, we take \(L_{\max} = 30 \) before restarting the approximation space, which yields a 1.7 speedup in NS solution time compared to \(L=0 \).

We remark that this projection algorithm is one of the few instances in distributed-memory computing where one can readily leverage the additional memory that comes with increasing the number of ranks, \(P \). For low rank counts, one cannot afford 30 vectors (each of size \(n/P \) per rank) and must therefore take \(L < 30 \), which results in suboptimal performance, as observed in the strong-scaling results of Sec. 5. With increasing \(P \), this solution algorithm improves because more memory is available for projection.

\(^3\)Here \(A \) is the discrete equivalent of \(-\nabla^2 \), which is symmetric positive definite (SPD).
Subsequent to projection, we use (nonsymmetric) pMG-preconditioning applied to either flexible conjugate gradients (FlexCG) or GMRES. FlexCG uses a short recurrence and thus has lower memory and communication demands, whereas GMRES must retain \(K \) vectors for \(K \) iterations. With projection and a highly optimized preconditioner, however, we need only \(K \leq 5 \), which keeps both memory and work requirements low while retaining the optimal projective properties of GMRES. For the full NS solution with \(n=51B \), GMRES outperforms FlexCG by about 3.3\% on \(P=27648 \) V100s.

Autotuned Communication. On modern GPU platforms, one needs \(n_{\text{gs}} \approx 2.5 \) M points per GPU to realize \(\approx 80\% \) efficiency [Fischer et al. (2020a)]. For \(N=7 \), this implies \(E_{\text{g}} \approx 7300 \) elements per MPI rank (GPU), which provides significant opportunity for overlapping computation and communication because the majority of the elements are in the subdomain interior. NekRS supports several communication strategies for the SEM gather-scatter (gs) operation, which requires an exchange-and-sum of shared interface values: (a) pass-to-host, pack buffers, exchange; (b) pack-on-device, copy to host, exchange; and (c) pack-on-device, exchange via GPUDirect. They can be configured to overlap nonlocal gs communication with processor-internal gs updates and other local kernels (if applicable).

During gs-setup, the code runs a trial for each scenario and picks the fastest option. We note that processor adjacency is established in \(\log P \) time through Nek5000’s gslib utility, which has scaled to billions of points on millions of ranks. The user (or code) simply provides a global ID for each vertex, and gslib identifies an efficient communication pattern to effect the requisite exchange. (For \(n = 51B \), setup time on all of Summit is 2.8 s.)

The computational mesh can have a profound influence on solution quality and on the convergence rate of the iterative solvers. We developed a code to generate high-quality meshes for random-packed spherical beds that was used in all pebble-bed cases shown. It is based on a tessellation of Voronoi cells with sliver removal to generate isotropic mesh distributions. The tessellated Voronoi facets are projected onto the sphere surfaces to sweep out hexahedral subdomains that are refined in the radial direction to provide boundary-layer resolution. This approach yields about 1/6 the number of elements as earlier tet-to-hex conversion approaches, which allows us to elevate the local approximation order for the same resolution while providing improved conditioning and less severe CFL constraints.

4 Performance Measurements

Our approach to performance assessment is both top-down and bottom-up. The top-down view comes from extensive experience on CPUs and GPUs of monitoring timing breakdowns for large-scale Navier-Stokes simulations with Nek5000 and NekRS. The bottom-up perspective is provided through extensive GPU benchmarking experience of the OCCA/libParanumal team (e.g. Medina et al. (2014); Świropyśłowicz et al. (2019)).

Every NekRS job tracks basic runtime statistics using a combination of MPI_Wtime and cudaDeviceSynchronize or CUDA events. These are output every 500 time steps unless the user specifies otherwise. Timing breakdowns roughly follow the physical substeps of advection, pressure, and viscous-update, plus tracking of known communication bottlenecks. Table 1 illustrates the standard output and how it is used in guiding performance optimization. We see a pre-tuning case that used default settings (which might be most appropriate for smaller runs). This case, which corresponds to 352K-pebble case \((E=98M, N=8) \) on all of Summit indicates that 45\% of the time is spent in the coarse-grid solve and that the pressure solve constitutes 90\% of the overall solution time. Armed with this information and an understanding of multigrid, it is clear that a reasonable mitigation strategy is to increase the effectiveness of the smoothers at the higher levels of the pMG-V-cycles. As discussed in Sec. 7, this indeed was a first step in optimization—we switched from Chebyshev-Jacobi to Chebyshev-Schwarz with 2 pre- and post-smoothings, and switched the level schedule from \(N = 8, 5, 1 \) to \(N = 8, 6, 4, 1 \), where \(N = 1 \) corresponds to the coarse grid, which is solved using Hypre on the CPUs. Additionally, we see in the pre-tuning column that projecting the pressure onto \(L = 8 \) previous-timestep solutions accounted for \(< 1 \) s of the compute time, meaning that we could readily boost dimension of the approximation space, \(R(P_L) \) to \(L = 30 \). With these and other optimizations, detailed in the next section, the solution time is reduced by a factor of two, as seen in the post-tuning column. In particular, we see that the coarse-grid solve, which is a perennial worry when strong-scaling (its cost must scale at least as \(\log P \), rather than \(1/P \) [Fischer et al. (2015); Tufo and Fischer (2001)], is reduced to a tolerable 11\%.

For GPU performance analysis, we use NVIDIA’s profiling tools. Table 2 summarizes the kernel-level metrics for the critical kernels, which are identified with NVIDIA’s Nsight Systems and listed in Table 3. The principal kernels are consistent with those noted in Table 1 namely, the pMG smoother and the characteristics-based advection update. The kernel-level metrics (SOL DRAM, SOL L1/TEX Cache, SM utilization) of Table 2 were obtained with NVIDIA’s Nsight compute profiler. They indicate that the leading performance limiter (LPL) of most kernels is the global memory bandwidth but in some cases the shared memory utilization is also significant. However two kernels are clearly shared memory bandwidth bound. All kernels achieve a near roofline performance (RL) defined as \(>70\% \) maximum

Operation	pre-tuning	post-tuning		
time (s)	%	time (s)	%	
computation	1.19+03	100	5.47+02	100
advection	5.82+01	5	4.49+01	8
viscous update	5.38+01	5	5.98+01	11
pressure solve	1.08+03	90	4.39+02	80
precondition	9.29+02	78	3.67+02	67
coarse grid	5.40+02	45	6.04+01	11
projection	6.78+00	1	1.21+01	2
dotp	4.92+01	4	1.92+01	4

Table 1. Default NekRS statistics output, provided every 500 timesteps for each run, each user. This table shows results for the 352K pebble geometry of Fig. 1 on \(P=27648 \) V100s on Summit.
We measured the average wall time per step in seconds, \(t_{\text{step}} \), using 101-200 steps for simulations with \(Re_p = 5000 \). The approximation order is \(N = 7 \), and dealiased is used with \(N_q = 9 \). We use projection in time, CHEBY+ASM, and flexible PCG for the pressure solves with tolerance 1.e-04. The velocity solves use Jacobi-PCG with tolerance 1.e-06. BDF3+EXT3 is used for timestepping with \(\Delta t = 3.0e-04 \), corresponding to CFL=0.54. The pressure iteration counts, \(p_i \sim 2 \), are lower for these cases than for the pebble cases, which have \(p_i \sim 8 \) for the same timestep and preconditioner. The geometric complexity of the rod bundles is relatively mild compared to the pebble beds. Moreover, the synthetic initial condition does not quickly transition to full turbulence. We expect more pressure iterations in the rod case (e.g., \(p_i \sim 4-8 \)) once turbulent flow is established.

Pebble Bed–Full Core
The main target of our study is the full core for the pebble bed reactor (Fig. 1, center), which has 352,625 spherical pebbles and a fluid mesh comprising \(E = 987,820,676 \) elements of order \(N = 8 \) (\(n \approx 51B \)). In this case, we consider the characteristics-based timestepping with \(\Delta t = 4 \cdot 4^{-4} \), corresponding to Courant numbers of \(CFL \approx 2 \) and 4. Table 5 lists the battery of tests considered for this problem, starting with the single-sweep Chebyshev-Additive Schwarz (1-Cheb-ASM) pMG smoother, which is the default choice for smaller (easier) problems. As noted in the preceding section, this choice and the two-smoothings Chebyshev-Jacobi (2-Cheb-Jac) option yield very high coarse-grid solve costs because of the relative frequency in which the full V-cycle must be executed. Analysis of the standard NekRS output suggested that more smoothings at the finer levels would alleviate the communication burden incurred by the coarse-grid solves. We remark that, on smaller systems, where the coarse-grid solves are less onerous, one might choose a different optimization strategy.

The first step in optimization was thus to increase the number of smoothings (2-Cheb-ASM) and to increase the number of pMG levels to four, with \(N = 8, 6, 4, 1 \) (where 1 is the coarse grid). These steps yielded a 1.6x speed-up over the starting point. Subsequently, we boosted, \(L \), the number of prior solutions to use as an approximation space for the projection scheme from 8 to 30, which yielded an additional factor of 1.7, as indicated in Fig. 3.

Given the success of projection and additional smoothing, which lowered the FlexCG iteration counts to <6, it seemed clear that GMRES would be viable. A downside of GMRES is that the memory footprint scales as \(K \), the maximum number of iterations and the work (and potentially, communication) scales as \(K^2 \). With \(K \) bounded by 6, these complexities are not onerous and one need not worry about losing the projective property of GMRES by having to use a restarted variant. Moreover, with so few vectors, the potential of losing orthogonality of the Arnoldi vectors is diminished, which means that classical Gram-Schmidt can be used and one thus has only a single all-reduce of a vector of length < \(K \) in the orthogonalization step.

The next optimizations were focused on the advection term. First, we reduced the number of quadrature points from \(N_q = 13 \) to 11 (in each direction). Elevated quadrature is necessary for stability, but not for accuracy. While one can prove stability for \(N_q \geq 3N/2 \) [Malm et al. 2013], it is
Not mandatory and, when using the characteristics method, which visits the advection operator at least four times per timestep, it can pay to reduce N_q as long as the flow remains stable. Second, we increased Δt by a factor of 2, which requires 2 subcycles to advance the hyperbolic advection operator (i.e., doubling its cost), but does not double the number of velocity and pressure iterations. Case (f) in Table 5 shows that the effective cost (based on the original Δt) is $t_{\text{step}} = 0.188$ s. In case (g) we arrive almost at $t_{\text{step}} = 0.18$ s by turning off all I/O to stdout for all timesteps modulo 1000. The net gain is a factor of 3.8 over the starting (default) point.

Pebble Bed Strong-Scale

Table 4 shows three strong scale studies for the pebble bed at different levels of optimization, with the final one corresponding to Case (f) of Table 5. The limited memory on the GPUs means that we can only scale from $P = 9216$ to 27648 for these cases and in fact cannot support $L = 30$ at $P = 9216$, which is why that value is absent from the table.

As noted earlier, a fair comparison for the last set of entries would be to run the $P = 9216$ case with a smaller value of L—it would perform worse, which would give a scaling advantage to the $L = 30$ case. This advantage is legitimate, because $L = 30$ is an improved algorithm over (say) $L = 8$, which leverages the increase memory resources that come with increasing P.

Rapid Turn-Around

Remarkably, the performance results presented here imply that it is now possible to simulate a single flow-through time for a full core in less than six hours when using all of Summit for these simulations. The analysis proceeds as follows. In the nondimensional units of this problem, the domain height is $L_z = 130$ units, while the mean flow speed in the pebble region is $U \approx 1/\phi$, where $\phi = 0.36$ is the void fraction in the packed bed. The nondimensional flow-through time is thus $L_z/U \approx 130 \times 0.36 = 46.6$ (modulo a reduction of the flow speed in the upper and lower plena). The timestep size from the final two rows of Table 5 is 8×10^{-4}, corresponding to 58250 steps for a single flow-through time, which, at 0.361 seconds per step, corresponds to 5.84 hours of wall-clock time per flow-through time.

6 Conclusions

The simulations of full nuclear reactor cores described here are ushering in a new era for the thermal-fluids and coupled analysis of nuclear systems. The possibility of simulating such systems in all their size and complexity was unthinkable until recently. In fact, the simulations are already being used to benchmark and improve predictions obtained with traditional methods such as porous media models. This is important because models currently in use were not developed to predict well the change in resistance that occurs in the cross section due to the restructuring of the pebbles in...
the near wall region. This is a well known gap hindering the deployment of this class of reactors. Beyond pebble beds, the fact that such geometry can be addressed with such low time-to-solution will enable a broad range of optimizations and reductions in uncertainty in modeling that were until now not achievable in nuclear engineering. The impact will extend to all advanced nuclear reactor design with the ultimate result of improving their economic performance. This will in turn serve broadly the goal of reaching a carbon-free economy within the next few decades.

The study presented here demonstrates the continued importance of numerical algorithms in realizing HPC performance, with up to a four-fold reduction in solution times realized by careful choices among a viable set of options. This optimization was realized in relatively short time (a matter of days) by having a suite of solution algorithms and implementations available in NekRS—no single strategy is always a winner. For users, who often have a singular interest, being able to deliver best-in-class performance can make all the difference in productivity. In Nek5000 and NekRS, we support automated tuning of performance can make all the difference in productivity.

Case	Solver	Smoother	L	N_p	Δt	v_i	p_i	t_{step}	Eff
(a)	FlexCG	1-Cheb-ASM:851	8	13	4e-4	3.6	22.8	.68	
(b)	FlexCG	2-Cheb-Jac:851	8	13	4e-4	17.5	557		
(c)	"	2-Cheb-ASM:851	8	13	4e-4	3.6	12.8	.648	
(d)	"	2-Cheb-ASM:8641	8	13	4e-4	3.6	12.8	.648	
(e)	GMRES	"	30	13	4e-4	3.5	4.6	.240	
(f)	"	"	30	11	8e-4	5.7	7.2	.376	
(g)	"	"	30	11	8e-4	5.7	7.2	.361 (no I/O)	

Table 5. Progression of algorithmic trials. See Fig. 3 for Cases (d, l), L=0:30.

Table 6. NekRS Strong Scale using BDF2 with characteristic.

Node	GPU	L	N_n	N_p	Δt	v_i	p_i	t_{step}	Eff
1536	9216	4.3	4608	3840	3072	2304	1536	4e-4	1.00
2304	13824	3.6	4608	3840	3072	2304	13824	3.6	84.6
3072	18432	2.7	4608	3840	3072	2304	13824	3.6	84.6
3840	23040	2.1	4608	3840	3072	2304	13824	3.6	57.9
4608	27684	1.8	4608	3840	3072	2304	13824	3.6	57.9

Acknowledgments

This material is based upon work supported by the U.S. Department of Energy, Office of Science, under contract DE-AC02-06CH11357 and by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of two U.S. Department of Energy organizations (Office of Science and the National Nuclear Security Administration) responsible for the planning and preparation of a capable exascale ecosystem, including software, applications, hardware, advanced system engineering and early testbed platforms, in support of the nation’s exascale computing imperative.

The research used resources at the Oak Ridge Leadership Computing Facility at Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC05-00OR22725 and at the Argonne Leadership Computing Facility, under Contract DE-AC02-06CH11357.

References

Abdel fattah A, Bara V, Beams N, Bleile R, Brown J, Camier JS, Carson R, Chalmers N, Dobrev V, Dudouit Y, Fischer P, Karakus A, Kerkemeier S, Kolev T, Lan YH, Merzari E, Min M, Phillips M, Rathnayake T, Rieben R, Stitt T, Tomboulides A, Tomov S, Tomov V, Vargas A, Warburton T and Weiss K (2020) GPU algorithms for efficient exascale discretizations. *Parallel Comput.* submitted.

Anderson R, Andrej J, Barker A, Bramwell J, Camier JS, Dobrev JCV, Dudouit Y, Fisher A, Kolev T, Pazner W, Stowell M, Tomov V, Akkerman I, Dahm J, Medina D and Zampini S (2020) MFEM: A modular finite element library. *Computers & Mathematics with Applications* DOI:10.1016/j.camwa.2020.06.009.

Andreades C, Cisneros AT, Choi JK, Chong AY, Fratoni M, Hong S, Huddar LR, Huff KD, Kendrick J, Krumwiede DL et al. (2016) Design summary of the mark-i pebble-bed, fluoride salt–cooled, high-temperature reactor commercial power plant. *Nuclear Technology* 195(3): 223–238.

Arndt D, Bangert W, Davydov D, Heister T, Heltai L, Kronbichler M, Maier M, Pelteret J, Turcksin B and Wells D (2017) The deal.ii library, version 8.5. *J. Num. Math.* 25(3): 137–145. [URL](http://www.dealii.org)

Bajorek SM (2016) A regulator’s perspective on the state of the art in nuclear thermal hydraulics. *Nuclear Science and Engineering* 184(3): 305–311.

Chalmers N, Karakus A, Austin AP, Swirydowicz K and Warburton T (2020) libParanumal. [URL](https://github.com/paranumal/libparanumal)
Cleveland J and Greene SR (1986) Application of thermi-
konvek code to accident analyses of modular pebble bed high-
temperature reactors (htr's). Technical report, Oak Ridge
National Lab.

Deville M, Fischer P and Mund E (2002) High-order methods for
incompressible fluid flow. Cambridge: Cambridge University
Press.

Fischer P, Heisey K and Min M (2015) Scaling limits for PDE-
based simulation (invited). In: 22nd AIAA Computational Fluid
Dynamics Conference, AIAA Aviation. AIAA 2015-3049.

Fischer P, Kerkemeier S, Min M, Lan YH, Phillips M, Rathnayake
T, Merzari E, Tomboulides A, Karakus A, Chalmers N and
Warburton T (2020a) NekRS, a GPU-accelerated spectral
element Navier–Stokes solver. Parallel Comput. submitted.

Fischer P, Lottes J and Kerkemeier S (2008) Nek5000: Open source
spectral element CFD solver. http://nek5000.mcs.anl.gov and
https://github.com/nek5000/nek5000 .

Fischer P, Min M, Rathnayake T, Dutta S, Kolev T, Dobrev V,
Camier JS, Kronbichler M, Warburton T, Świrydowicz K and
Brown J (2020b) Scalability of high-performance PDE solvers.
Int. J. of High Perf. Comp. Appl. 34(5): 562–586. URL
https://doi.org/10.1177/1094342020915762.

Fischer P, Schmitt M and Tomboulides A (2017) Recent develop-
fments in spectral element simulations of moving-domain prob-
lems, volume 79. Fields Institute Communications, Springer,
pp. 213–244.

Giraldo F (????) The nonhydrostatic unified model of the ocean
(numo). https://frankgiraldo.wixsite.com/mysite/numo .

Grötzbach G and Wörner M (1999) Direct numerical and large eddy
simulations in nuclear applications. International Journal of Heat and Fluid Flow
20(3): 222–240.

Karakus A, Chalmers N, Świrydowicz K and Warburton T (2019)
A gpu accelerated discontinuous galerkin incompressible flow
solver. J. Comp. Phys. 390: 380–404.

Kreiss H and Oliger J (1972) Comparison of accurate methods for
the integration of hyperbolic problems. Tellus 24: 199–215.

Lottes JW and Fischer PF (2005) Hybrid multigrid/Schwarz
algorithms for the spectral element method. J. Sci. Comput.
24: 45–78.

Mady Y, Patera A and Rannquist E (1990) An operator-integration-
factor splitting method for time-dependent problems: Application
to incompressible fluid flow. J. Sci. Comput. 5: 263–292.

Malm J, Schlatter P, Fischer P and Henningson D (2013)
Stabilization of the spectral-element method in convection
dominated flows by recovery of skew symmetry. J. Sci.
Comput. 57: 254–277.

Markidis S, Gong J, Schliephake M, Laure E, Hart A, Henty D,
Heisey K and Fischer P (2015) Openacc acceleration of the
Nek5000 spectral element code. Int. J. of High Perf. Comp.
Appl. 1094342015576846.

Medina DS, St-Cyr A and Warburton T (2014) OCCA: A
unified approach to multi-threading languages. preprint
arXiv:1403.0968 .

Merzari E, Cheung FB, Bajorek SM and Hassan Y (2021a) 40th
anniversary of the first international topical meeting on nuclear
reactor thermal-hydraulics: Highlights of thermal-hydraulics
research in the past four decades. Nuclear Engineering and
Design 373: 110965.

Merzari E, Fischer P, Min M, Kerkemeier S, Obabko A, Shaver
D, Yuan H, Yu Y, Martinez J, Brockmeyer L et al. (2020a)
Toward exascale: overview of large eddy simulations and direct
numerical simulations of nuclear reactor flows with the spectral
element method in nek5000. Nuclear Technology 206(9):
1308–1324.

Merzari E, Obabko A, Fischer P and Auciero M (2020b) Wall
resolved large eddy simulation of reactor core flows with the
spectral element method. Nuclear Engineering and Design
364: 110657.

Merzari E, Obabko A, Fischer P, Halford N, Walker J, Siegel A
and Yu Y (2017) Large-scale large eddy simulation of nuclear
reactor flows: Issues and perspectives. Nuclear Engineering
and Design 312: 86–98.

Merzari E, Yuan H, Min M, Shaver D, Rahman R, Shriwise
P, Romano P, Talamo A, Lan YH, Gaston D et al. (2021b)
Cardinal: A lower length-scale multiphysics simulator for
pebble-bed reactors. Nuclear Technology : 1–23.

Moxey D, Amici R and Kirby M (2020) Efficient matrix-free high-
order finite element evaluation for simplicial elements. SIAM
J. Sci. Comput. 42(3): C97–C123.

Novak A, Carlsen R, Schunert S, Balestra P, Reger D, Slay-
baugh R and Martineau R (2021) Pronghorn: A multidimen-
sional coarse-mesh application for advanced reactor thermal
hydraulics. Nuclear Technology : 1–32.

Orszag S (1980) Spectral methods for problems in complex
gameometry. J. Comput. Phys. 37: 70–92.

Otten M, Gong J, Mametjanov A, Vose A, Levesque J, Fischer P and
Min M (2016) An MPI/OpenACC implementation of a high
order electromagnetics solver with GPUDirect communication.
Int. J. High Perf. Comput. Appl. .

Patel S, Fischer P, Min M and Tomboulides A (2019) A
characteristic-based, spectral element method for moving-
domain problems. J. Sci. Comput. 79: 564–592.

Patera A (1984) A spectral element method for fluid dynamics :
laminar flow in a channel expansion. J. Comput. Phys. 54: 468–
488.

Ravikumar K, Appelhans D and Yeung P (2019) Acceleration of
extreme scale pseudo-spectral simulations of turbulence using
asynchronism. In: Proc. of the Int. Conf. for High Perf. Comp.,
Net., Storage and Analysis.

Roeofs F (2018) Thermal hydraulics aspects of liquid metal cooled
nuclear reactors. Woodhead Publishing.

Świrydowicz K, Chalmers N, Karakus A and Warburton T (2019)
Acceleration of tensor-product operations for high-order finite
element methods. Int. J. of High Performance Comput. App.
33(4): 735–757.

Tufo H and Fischer P (2001) Fast parallel direct solvers for coarse-
grid problems. J. Parallel Distrib. Comput. 61: 151–177.

Van Staden M, Neykov B and Mulder E (2018) Explicit modelling
of randomly packed pebble bed using rans cfd modelling. Proc.
HTR-2018 : 8–10.

Yildiz MA, Botha G, Yuan H, Merzari E, Kurwitz RC and Hassan
YA (2020) Direct numerical simulation of the flow through a
randomly packed pebble bed. Journal of Fluids Engineering
142(4).