Impact of Craniocerebral Hypothermia and Cryopreserved Cord Blood on Reproductive Function of Male Rats with Chronic Alcohol Intoxication

Abstract: In this work, we have studied the impact of chronic alcohol intoxication (CAI) on reproductive function in male rats. Prolonged alcohol abuse has been shown to significantly reduce the manifestation rate of sexual activation and testosterone level in blood serum of male rats with CAI following exposure to a receptive female, as well as to change their seminal fluid composition. The rhythmic craniocerebral hypothermia (rCCH), combined with the administration of cryopreserved cord blood leukoconcentrate (cCBL) ensured to a greater extent the dynamics of functional integrity recovery of the CAI-altered reproductive system in male rats, compared to each of these methods used solely. The authors have hypothesized the rCCH and cCBL to activate the hypothalamic-pituitary system, affecting thereby the testosterone synthesis and spermatogenesis stimulation.

Key words: chronic alcohol intoxication, rhythmic craniocerebral hypothermia, cryopreserved cord blood leukoconcentrate, reproductive function, rats.

A reduced sex drive can affect both women and men due to a constant stress and high psycho-emotional loading in modern lifestyle. The attempts to solve this problem with alcohol intake, worsen this state even more, by transferring it from functional pathology into organic.

Currently, the alcoholism is officially recognized as a disease (F10.2–F11), which alters the physical and mental state. For the first time, the term ‘alcoholic disease’ was proposed by M. Huss (1849), as the reflection of a systemic disease, that he considered to be a result of toxic ethanol damage to internal organs (brain, liver, heart, stomach, pancreas, intestines, etc.) [27]. To date, a damaging effect of ethanol has been reported [1, 6, 9] as caused by

Key words: alcohol intoxication, rhythmic craniocerebral hypothermia, cryopreserved cord blood leukoconcentrate, reproductive function, rats.

A reduced sex drive can affect both women and men due to a constant stress and high psycho-emotional loading in modern lifestyle. The attempts to solve this problem with alcohol intake, worsen this state even more, by transferring it from functional pathology into organic.

Currently, the alcoholism is officially recognized as a disease (F10.2–F11), which alters the physical and mental state. For the first time, the term ‘alcoholic disease’ was proposed by M. Huss (1849), as the reflection of a systemic disease, that he considered to be a result of toxic ethanol damage to internal organs (brain, liver, heart, stomach, pancreas, intestines, etc.) [27]. To date, a damaging effect of ethanol has been reported [1, 6, 9] as caused by
Встановлено, що ХАІ впливає на репродуктивну систему як прямим шляхом (надає токсичний ефект), так і опосередковано (модулює функціональні стани гіпоталамо-пітуючої системи) [15, 21], викликає тривалу нейрорадиацію, змінює нейропередачу та синаптичну пластичність [13]. Тому відновлення функціональної повноцінності репродуктивної системи вимагає активного впливу на нейромедіаторні системи для забезпечення адекватної активності нейроендорічних функцій. Терапія гіпоталамічного нейроендорічного синдрому потребує нетрадиційних методів лікування, які дозволяють здійснювати контрольований спрямований вплив на комплекс структур центральної нервоїв системи (ЦНС), що забезпечують повноцінність функціональних реакцій системи епіфіз-гіпоталамус-гіпофіз [7, 8]. Одержані в Інституті проблем кріобіології і кріомедицини НАН України (ІПКіК НАН України) результати показали, що ритмічні холодові впливи дозволяють отримати терморегуляторну реакцію, яка виражається в адекватній відповіді нейрогуморальних процесів гіпоталамо-гіпофізарної системи в умовах періодично розширення меж температурного гомеостазу. Ця терморегуляторна реакція сприяє зміні спрямованості нейротрансмітерних процесів, нейрогуморальних і вегетативних реакцій протягом тимчасового інтервалу впливу [7, 8, 370].

The findings, obtained at the Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine (IPCC of NAS of Ukraine) have demonstrated the rhythmic cold exposures to enable obtaining a thermoregulatory response, expressed as an adequate reaction of neurohumoral processes of hypothalamic-pituitary-gonadal system. This thermoregulatory response ensured a change in the direction of neurotransmitter processes, neurohumoral and autonomic responses in dynamics of exposure [11, 12].

The studies implemented at the IPCC of NAS of Ukraine have also shown an efficient application of cryopreserved cord blood (cCB) to correct various disorders of body’s functional systems, especially neuroendocrine and reproductive ones [2, 4, 13].

To date, of topicality are the social and medical problem of CAI and the possibility of rCCH to provide the impact on not only metabolic processes, but functional state of integrated systems (nervous, endocrine, immune, reproductive) as well. One of the major consequences, associated with alcohol abuse is sexual dysfunction. Men of all ages experience sexual dysfunction as a serious psychological trauma [7].

According to the reported data, the frequency of sexual dysfunction in people suffering from alcoholism is up to 83.0% [10, 14, 22]. Chronic alcohol intoxication (CAI) can be the main cause of male infertility associated with alcohol abuse in most cases (96%). This is due to a functional state of endocrine glands (alcohol interferes with testosterone (Ts) release from Leydig cells) [6] and the neuroendocrine regulation impairment of the early stages of spermatogenesis, a decrease in total number of mature spermatozoa and increasing pathospermia and asthenozoospermia [15].

The CAI was established to affect the reproductive system both directly (via a toxic effect) and indirectly (by modulating a functional state of the hypothalamic-pituitary-gonadal system) [9, 18], to cause a prolonged neuroadaptation, and alter the neurotransmission and synaptic plasticity [1]. Therefore, restoring the functional integrity of reproductive system necessitates an active influence on neuromediator systems in order to ensure an adequate activity of neuroendocrine functions. The therapy of hypothalamic neuroendocrine syndrome should include the non-standard methods, enabling to control targetedly the complex of central nervous system (CNS) structures, which provide the integrity of functional responses of the pineal gland-hypothalamus-pituitary system. We suggested the rhythmic craniocerebral hypothermia (rCCH) as likely referred to these methods [11, 12].
Наукові дослідження, проведені в ІПКіК НАН України, також довели ефективність використання кріоконсервованої кордової крові (кКК) для корекції різних порушень функціональних систем організму, зокрема нейроендоцірної та репродуктивної [1, 3, 17].

На сьогодні актуальними є соціально-медична проблема ХАІ і можливість рКЦГ підвищувати прояв центральних (парадоксальних) ефектів системно введенних лікарських препаратів і потенціювати їх дію, а також можливість застосування рКЦГ та кКК у терапії спровокованих токсичною репродуктивними порушеннями, що завдячується високим вмістом токсичних речовин у крові [9, 11]. Такі дослідження можуть визначити нові підходи до корекції репродуктивних порушень, зокрема нейроендокринних, в умовах екстремальних обставин (травма, хронічна інтоксикація) [1, 2, 11, 13, 14].

Тому метою даного дослідження було визначення дії рКЦГ, кріоконсервованого лейкоконцентрату кордової крові (кЛККК) та їх поєднаного застосування на порушену внаслідок ХАІ репродуктивну функцію самців щурів.

Матеріали та методи
Дослідження виконували на статевозрілих 12-місячних щурів-самцях. Експерименти були проведеної на базі наукових підрозділів ІПКіК НАН України відповідно до Закону України ‘Про захист тварин від жорстокого поводження (№ 3447-IV від 21.02.2006 р.) при дотриманні вимог Комітету з біоетики Інституту, узгоджених із положеннями “Європейської конвенції з захисту хребетних тварин, які використовуються для експериментальних та інших наукових цілей” (м. Страсбург, 1986).

Інтактні тварини знаходились в умовах віварію ІПКіК НАН України на стандартному харчовому раціоні з вільним доступом до їжі та води.

Хронічну алкогольну інтоксикацію щурів починали з 3-місячного віку [4] та продовжували протягом усього періоду експерименту.

Тварин було поділено на 5 груп (n = 15 у кожній): 1 – інтактні щури; 2 – щури з ХАІ (контроль ХАІ); 3 – щури з ХАІ, яким проводили процедуру рКЦГ (рКЦГ); 4 – щури з ХАІ, яким вводили кЛККК (кЛККК); 5 – щури з ХАІ, до яких застосовували поєднані методи впливу (рКЦГ + кЛККК).

Для проведення рКЦГ використовували апарат “АТГ-01” (Росія), який забезпечував переривчасту подачу холодного повітря з температурою 4–6°C при частоті впливу 0,05–0,2 Гц. Ритмічну КЦГ проводили одноразово, при цьому ректальна температура не опускалася нижче 35°C [1].

Готову кріоконсервовану суспензію лейкоцитарних клітин (лейкоконцентрат) кордової кро- ві людини [12] отримували в кріобанку ІПКіК НАН України.
Rats were studied in the evening at low light levels in a standard plastic cage (52 × 33 × 20 cm), divided into 2 compartments by a transparent perforated barrier, through which the olfactory and visual contacts between animals could occur. The time, during which the male actively examined the barrier and a number of its approaches to it, were recorded. A 10-min testing was performed when no female was present behind the barrier (assessment of a spontaneous activity) and while a receptive female was in the adjacent compartment (evaluation of a female-stimulated male activity near the barrier).

Under conditions, when any contact between animals was excluded (receptive female was separated from male by a transparent perforated barrier), we assessed the pronouncement of sexual motivation by male behavior within 10 min, as well as by hormonal activation of testosterone (Ts) level in blood serum, which increased in rats on the 20th–40th min following exposure to a receptive female [3].

To evaluate a hormonal component of sexual behavior (Ts level), the blood was sampled from tail, by cutting off 3–4 mm of its tip under light (for a minute) ether anesthesia. Blood was sampled under sexual activation (20 min after exposure to a receptive female at an adjacent compartment) and without it (baseline hormone level). The Ts content in blood serum was determined with the enzyme-linked immunosorbent assay (ELISA) using the Testosterone-IFA standard commercial kits (XEMA Co. Ltd., Russia) according to the manufacturer’s techniques.

For spermatogenesis assessment, there were determined the spermatozoa parameters (their total number in ejaculate, percentage of living motile, dead and defective spermatozoa). The ejaculate was examined with light microscope in Goryaev’s chamber, the results were expressed as a percentage.

The ejaculate for study was collected from rats by oxytocin stimulation (intraperitoneally, 0.2 ml / animal) [8]. A drop of ejaculate (~50 μl) was taken using a 1 ml eye pipette or syringe without needle. The resulting ejaculate was diluted with saline of 37°C up to 2 ml volume, then placed in a thermostat at 37°C for 30 min. Afterwards, 0.1 ml of diluted ejaculate was supplemented to the vial, containing 0.9 ml of saline [8, 23].

The findings were statistically processed using the Excel software (Microsoft, USA). The obtained digital data were presented as the mean (M) and the mean error (m). In a multiple comparison, Student’s t-test with Bonferroni corrections was used. The differences were considered significant at p < 0.05.
ном із температурою 37°C до об’єму 2 мл, поміщали в термостат при температурі 37°C на 30 хв. Потім 0,1 мл розведеного еякулю додавали в пробірку, яка містила 0,9 мл фізіологічного розчину [6, 24].

Статистичну обробку результатів проводили за допомогою пакета прикладних програм «Excel» («Microsoft», США). Отримані цифрові дані представляли у вигляді середньої арифметичної величини (M) і похибки середньої арифметичної величини (s). При множинному порівнянні використовували t-критерій Стьюдента з поправкою Бонферроні. Відмінності вважали значущими при р < 0,05.

Результати та обговорення
Статева поведінка належить до біологічно релевантних форм поведінки та реалізується у вигляді певної послідовності поведінкових актів. Самці шурів у підготовчій (пошуковій) фазі, яка дозволяє тварині досягти контакту з об’єктом мети, демонструють такі форми поведінки: самець переміщується вздовж перегородки, обнюхує самку, встає на задні лапи, торкаючись перегородки двома лапами або однією передньою, засовує ніс в отвори або гнався їх краї в спробах подолати перегородку та проникнути до самки. Подібна поведінка є основною поведінковою характеристикою статевої мотивації, а число підходів до перегородки здебільшого відображає рухову активність і загальне збудження тварини [2, 11]. Слід зазначити, що така статева мотивація притаманна й чоловікам [22].

Результати аналізу складових статевої мотиваційної поведінки самців шурів із ХАІ свідчать про те, що показники залицяльної поведінки (кількість наближень до перегородки та тривалість цих наближень) значно відрізнялися від показників інтактних тварин при незмінній спонтанній активності (72 і 56,25% відповідно) (табл. 1). Таким чином, довготривала вживання алкоголю істотно знижує інтерес до осіб протилежної статі, викликаючи так званий ефект ‘нейтралізації’ [6, 24]. Як видно з табл. 1, реєстрований нами відносно нерівні прогресивна активність (72 і 56,25% відповідно) (Table 1). Thus, a long-term alcohol consumption significantly (p < 0.05) reduced the interest to the opposite-sex species, by causing the so-called ‘sex neutralization’ effect.

The disorders in sexual behavior in CAI rats were likely the result of an altered metabolism of sex hormones, which formed the background for proper functioning of regulation centers of sexual behavior [20]. A reduced concentration of the primary male sex hormone (Ts) in blood serum entailed a decrease in sexual activity [23].

Table 1 showed the baseline Ts level we recorded in males of group 2 (CAI) to be 46.16% (p < 0.05) lower vs. the intact control, while after exposure to a receptive female, the stimulated Ts rate was 73.81% lower as compared with this index in group 1.

The performance of rCCH session significantly increased the manifestation rate of sexual motivation in experimental males if compared with the group 2 (CAI). For example, the time of active examination of barrier by male and a number of its approaches to it in group 3 (+rCCH) exceeded the control indices of group 2 by 98 and 57%, respectively (Table 1). Herewith, the indices of baseline and stimulated Ts in males differed from similar indices in CAI rats by 28.57 and 72.72%, respectively.

The cCBL administration significantly enhanced the sexual behavior of experimental animals as well, by increasing the time of barrier examination and a number of approaches to it by 83.93 and 42.86%, respectively, if compared with the similar indices in CAI rats. The level of baseline and stimulated Ts...
Воно, у той час як після пред'явлення самцям рецептивної самки показник стимульованого Тс був нижче за такий у групі 1 на 73,81%.

Проведення сеансу рКЦГ порівняно з групою 2 (ХАІ) значуще підвищувало вираженість статевої мотивації у експериментальних самців. Так, показник часу активного дослідження самцем перегородки і число його підходів до перегородки в групі 3 (рКЦГ) перевищували контрольні показники групи 2 на 98 і 57% відповідно (табл. 1). При цьому рівень вихідного та стимульногоТс у самців відрізнявся від такого у щурів із ХАІ на 28,57 і 72,72% відповідно.

Введення кЛККК також значуще активізувало статеву поведінку експериментальних тварин, збільшуючи час дослідження перегородки на 83,93% і число підходів до перегородки на 42,86% порівняно з групою 2, i. e. the time of barrier examination and approach number to it were 178.57 and 100% higher, respectively, wherein the stimulated Ts level exceeded the corresponding comparison index by 209% (Table 1).

The most pronounced alterations of sexual activity in CAI rats were observed after administering both rCCH and cCBL (group 5). To day 30, after rCCH and cell therapy performance, the males from this group displayed significantly higher rates of sexual motivation than in group 2, i. e. the time of barrier examination and approach number to it were 178.57 and 100% higher, respectively, wherein the stimulated Ts level exceeded the corresponding comparison index by 209% (Table 1).

Thus, a combined application of rCCH and cCBL ensured an increase in manifestation rate of sexual activation and Ts level in blood serum of male rats with CAI after exposure to a receptive female.
з групою 2 на 178.57% (час дослідження перегородки) і 100% (число підходів до перегородки), при цьому рівень стимульованого Тс перевищував відповідний показник порівняння на 209% (табл. 1).

Таким чином, поєднане застосування rКЦГ і cКЛКК сприяє підвищенню показників виразності статевої активації та рівня Тс у сироватці крові самців щурів із ХАІ після пред’явлення рецептивної самки.

Аналіз сім’яної рідини самців щурів, на думку деяких авторів [9, 14], може відображати глибину патологічних зрушень у статевій сфері. Кількісні та якісні параметри зміни еякуляту у щурів можуть служити значущим критерієм адаптаційних і дезадаптаційних процесів, що відбуваються в організмі під впливом різних зв’язків з союрою природою терапевтичних заходів. Нами показано, що в еякуляті інтанківих самців кількість життєздатних рухливих сперматозоїдів складає в середньому 93%, в той час як ХАІ призводить до значних змін кількісних і якісних показників стану сім’яної рідини. Під впливом ХАІ у експериментальних тварин (група 2) розвивається олігозооспермія (у щурів визначається зниження загальної кількості сперматозоїдів на 59%), некроспермія (кількість мертвих статевих клітин зростає до 33,7%) та тератозооспермія (істотне збільшення морфологічно дефектних гамет збільшується до 59%). Число сперматозоїдів складає в середньому 93%, в той час як ХАІ знижує кількість живих рухливих сперматозоїдів) (табл. 2).

Застосування rКЦГ або введення cКЛКК значуще змінювало всі досліджувані параметри сім’яної рідини щурів. Поєднане застосування rКЦГ і cКЛКК продемонструвало переваги над використанням цих методів поодинці у вигляді самостійного впливу (табл. 2). Так, у групі 4 показано значущі зміни показників (порівняно з групами 2 і 3), які характеризують рухливість сперматозоїдів і їх морфологічну повноцінність. Це можна інтерпретувати як позитивну динаміку в зниженій токсичному впливу алкоголю на репродуктивну функцію самців щурів.

Отримані результати свідчать про те, що аналіз сперми самців щурів може відображати глибину патологічних зрушень у статевій сфері у вумовах ХАІ і виразність процесів, які відбуваються в організмі під впливом алкоголю, rКЦГ і введення cКЛКК.

Таким чином, поєднане застосування rКЦГ і cКЛКК сприяє підвищенню всіх досліджуваних показників репродуктивної активності самців щурів із ХАІ, що виражається в підвищенні їх статевої активності та рівня Тс в сироватці крові після пред’явлення рецептивної самки, а також в значному поліпшенні стану сперматозоїдів в еякуляті. altertions in quantitative and qualitative indices of seminal fluid state. Under CAI effect, the experimental animals (group 2) showed the development of oligozoospermia (total sperm count was decreased by 59%), necropermia (a number of dead sperm increased up to 33.7%) and teratozoospermia (significant increase in morphologically defective spermatozoa) (Table 2).

Either rCCH or cCBL administration significantly altered all the studied parameters of seminal fluid in rats. A combined use of rCCH and cCBL demonstrated the advantages over the application of these methods solely as an independent exposure (Table 2). For example, the group 4 demonstrated the significant changes in the indices (compared with groups 2 and 3), which characterized the spermatozoa motility and their morphological integrity. This can be interpreted as a positive dynamics in reducing a toxic alcohol effect on reproductive function in male rats.

These findings implied that the sperm analysis in male rats could reflect the severity of pathological shifts in sexual sphere under CAI and serve as a significant criterion for the processes, occurring in a body under alcohol, rCCH and cCBL impacts.

Thus, a combined use of rCCH and cCBL ensured an increase in all the studied indices of reproductive activity in male rats with CAI, showing the enhancement of their sexual activity and Ts level in blood serum following exposure to a receptive female, and a considerable improvement of sperm quality in ejaculate, collected from experimental animals.

To date, the recognizing of alcoholism as a brain disease is undeniable. Like other chronic diseases, it manifests with a complex of behavioral disorders, resulting from interaction of genetic, biological, psychosocial factors and environmental impacts [17, 20, 24]. Chronic alcohol intoxication provokes a constant additional release of neurotransmitters, causes their functional deficiency, threatens the body’s vital functions and as a result, entails the development of deep impairments in emotional sphere, memory and behavior.

The sexual dysfunction under CAI effect we determined during the experiment, are also specific to men. Some authors [22, 23] described the manifestations of low libido and erectile dysfunction up to the introitus failure together with a sharp decrease in Ts level under alcohol abuse. These effects might be a result of impact of ethanol and various impurities in alcoholic beverages on 'pre-testicular' regulatory level of reproductive system.

It is known, that ethanol within the strong alcoholic drinks belongs to biologically active substances of broad pharmacological spectrum. But, as not an
На даний час незаперечне визначення алкоголізму як захворювання мозку, що подібне за своїм перебігом до інших хронічних хвороб і проявляється комплексом поведінкових порушень, які є результатом взаємодії генетичних, біологічних, психосоціальних факторів і впливу навколишнього середовища [20, 23, 25]. Хронічна алкоголельна інтоксикація провокує постійне додаткове вивільнення нейромедіаторів, викликає функціональний дефіцит нейротрансмітерів, що загрожує життєдіяльності організму і, як наслідок, призводить до розвитку глибоких порушень емоційної сфери, пам’яті та поведінки.

Розлади сексуальних реакцій під впливом ХАІ, які були визначені нами в експерименті, притаманні й чоловікам. У деяких роботах [24, 26] описано прояві зниження лібідо та ослаблення ерекції аж до неможливості інтротоїту на тлі різкого зниження рівня Тс внаслідок злоїхування алкоголем. Дані ефекти можуть бути обумовлені впливом етанолу та різних домішок, які містяться в алкоголельних напоях, на «передтесткулярний» рівень регуляції репродуктивної системи.

Відомо, що етиловий спирт, який входить до складу міцних алкоголельних напоїв, належить до біологічно активних речовин широкого фармаакологічного спектру дії. Однак він не є чужорідним організму субстратом, а тому практично безперешкодно проникає в мозок і виявляється там майже в такій концентрації, як і в крові, що й обумовлює його безпосередній вплив на ЦНС [20, 25]. Відомо також, що вищою ланкою регуляції статевої функції є кора головного мозку, за допомогою якої зорові, слухові та нюхові подразники формують у підкіркових центрах процеси преректальної спрямованості. Головною в забезпеченні статевої функції є підкоркова зона – гіпоталамо-гіпофізарний лімбіко-ретикулярний комплекс [24].

Перспективним напрямом клінічної медицини слід вважати моделювання неспецифічних захисних механізмів головного мозку, спрямованих на роз’єднання патологічних зв’язків, тобто на створення умов для саморегуляції головного alien substrate for living organisms, it can almost freely get into the brain, and be found there in virtually the same concentration as in blood, stipulating thereby its direct effect on CNS [17, 24].

The cerebral cortex, through which the pro-erectile processes are formed by visual, auditory and olfactory stimuli in subcortical centers, is also well known to be the highest link in sexual function regulation. The subcortical area, i.e. hypothalamus-pituitary and limbic-reticular complexes, is primary in sexual function ensuring [23].

The simulation of non-specific protective mechanisms of the brain, aimed to separate the pathological connections, namely a biodaptive regulation of homeostatic processes, i.e. creating the conditions for brain self-regulation, recovery of energy resources, should be considered as a promising trend in clinical medicine. The ways of cold exposures, wherein the hypothalamus as the center of neurotransmitter regulatory mechanisms of emotions and mental behaviors, is also a morphofunctional center of thermoregulatory system, may be relevant and advanced in this direction. The rCCH is one of the therapeutic methods of cold exposure. It enabled a successful targeted regulation of the blood-brain barrier permeability to correct the neurotransmitter processes in the CNS. The therapeutic effects observed in rCCH may be stipulated by body’s
мозку, відновлення його енергетичних ресурсів. Актуальними та перспективними в цьому напрямку можуть бути способи холодового впливу, за яких гіпоталамус, як центр нейромедіаторних регуляторних механізмів емоцій і психічних форм поведінки, є також морфофункціональним центром системи терморегуляції. Одним із терапевтичних методів холодового впливу є рКЦГ. За його допомогою вдало реалізовано можливості спрямованої регуляції продуктивності гематоенцефалного бар’єра для корекції нейротрансміттерних процесів у ЦНС. Схильність ефектів, які спостерігаються при рКЦГ, можуть бути пов’язані з тим, що організм реагує на вплив холоду не тільки системою терморегуляції, а й усіма можливими адаптаційними механізмами з урахуванням гіпоталамо-гіпофізарно-адреналової, імунної та ендокринної систем. До найбільш важливих фізіологічних дій холоду при рКЦГ належать зміни діяльності вищих вегетативних центрів і систем нейроендохринної регуляції, що безпосередньо відповідають за температурний гомеостаз організму [7, 8].

З огляду на численні наукові публікації та проведені клінічні дослідження [3, 10] значним є інтерес до клітин кордової крові та можливості їхнього застосування. Зокрема, раніше нами показано вплив кКК на процеси корекції ЦНС і структуру головного мозку щурів, схильних до реакцій на вплив холоду. Проте можливі переваги поєднаного застосування методів рКЦГ та введення кКК [1].

Фізіологічні особливості реакцій організму та його функціональних систем припускають на тільки самостійне застосування методів рКЦГ та введення кКК, але й поєднане. У даному випадку можливе взаємне потенціювання дії з урахуванням можливостей і особливостей кожного методу впливу і структур патологічного процесу.

Можна вважати, що поєднане застосування рКЦГ і кЛКК у наших експериментальних умовах здатні підтримувати функціональні система терморегуляції та введення кКК, але й поєднане. У такому випадку можливі переваги поєднаного застосування методів рКЦГ і введення кКК [1].

Фізіологічні особливості реакцій організму та його функціональних систем припускають на тільки самостійне застосування методів рКЦГ та введення кКК, але й поєднане. У такому випадку можливе взаємне потенціювання дії з урахуванням можливостей і особливостей кожного методу впливу і структур патологічного процесу.

Можна вважати, що поєднане застосування рКЦГ і кЛКК у наших експериментальних умовах здатні підтримувати функціональні система терморегуляції та введення кКК, але й поєднане. У такому випадку можливе взаємне потенціювання дії з урахуванням можливостей і особливостей кожного методу впливу і структур патологічного процесу.

Можна вважати, що поєднане застосування рКЦГ і кЛКК у наших експериментальних умовах здатні підтримувати функціональні система терморегуляції та введення кКК, але й поєднане. У такому випадку можливе взаємне потенціювання дії з урахуванням можливостей і особливостей кожного методу впливу і структур патологічного процесу.
жувалися вихідний та стимулюваний рівні тестос-
терону (на 46,1 та 73,81% відповідно) та загальна кількість сперматозоїдів (на 59%), при цьому зро-
стало кількість морфологічно дефектних (на 40%) та мертвих (на 31.9%) статевих клітин в еякуляті, що призводило до значущого зниження показа-
ників вираженості статевої активізації.

2. Пояснене застосування РКЦ і введення кЛККК більшою мірою сприяло від-
новленню експериментальної повністю зміненої в результаті ХАІ репродуктивної системи сам-
ців щурів, ніж окреме використання кожного з вищевказаних методів впливу. Про що свідчило значне підвищення статевої активності та рівня тестостерону в сироватці крові після предъяв-
лення шкур реципіентної самки (на 209%), а та-
кож покращення стану сперматозоїдів в еякуляті (загальна кількість клітин зростала на 91,3%, від-
соток рухливих клітин – на 44,2%).

Література

1. Айдарова ВС, Бабіччук ВГ, Кудокоцева ОВ, і др. Экспери-
ментальное обоснование применения лечебной гипотер-
мии и клеточной терапии при дисциркуляторной анге-
гии в медицине. 2009; (2): 23–6. Russian.

2. Амстиславская ТГ, Осипов КВ. Половая активация самцов 
внешних видов экспериментального стресса. Современные техноло-
гии и клеточная терапия при дисциркуляторной энцефало-
патии у крыс линии SHR. Часть 2. Структурные изменения в 
ткани головного мозга. Проблемы криобиологии и криомедици-
ни. 2011; 6(1): 138–43. Russian.

3. Гольцев АН, Калиниченко ТА. Пуповинная кордовая кровь
человека как источник гемопоетических клеток для клини-
ческого применения. Часть 1. Характеристика гемопоетиче-
ского потенциала. Проблемы криобиологии. 1998; (1): 3–24.

4. Гриценко ВИ, Ковалев ГА, Петренко АЮ, і др. Регенератив-
но-пластическая терапия алкогольных висцеропатий. Київ: 
Наук. Думка; 2010. 152 с.

5. Криштал ЕВ, Марченко БГ, Криштал ТВ. Мотивационный
тренинг как одна из составляющих психотерапевтической 
коррекции нарушенной здоровья семьи при задержке психо-
сексуального развития у мужчин. Медицина психологии. 2013; 
(3): 14–9.

6. Крылова ЕВ, Потемина ТЕ, Корягин АС, Нестеров ГА. [Preventive 
effect of bee royal jelly on rat spermatogenesis indices during 
acute heat stress]. Bulletin of the Nizhny Novgorod University 
N.I. Lobachevsky. 2011; 6(1): 138–43. Russian.

7. Крисхченко VI, Kovaľ’ov’A, PetrenkoAYu, et al. [Regenerative-
plastic therapy of alcoholic visceropathies]. Kyiv: Naukova 
Dumka; 2010. Russian. 152 p.

8. Леманн М, Ли С, Канг СС, Джемес П. Системный администрирован
ство алкоголя в репродуктивной системе самца при различ-
ных видах экспериментального стресса. Вестник университета им.
Н.И. Лобачевского. 2019; 29(1): 58–72.

9. Лемакин И. Мотивационный тренинг как одна из составляющих 
психо-пластической терапии алкогольных висцеропатий. Київ: 
Наук. Думка; 2010. Russian. 152 p.

10. Ломакин ИИ. Обоснование методов лечебного охлаждения в 
tерапии хронического алкоголизма. Проблемы криобиологии. 
2008; 18(3): 383–5.

11. Ломакин ИИ. Применение методов лечебного охлаждения в 
tерапии хронической алкогольной интоксикаци-
и. Проблемы криобиологии. 2012; 22(3): 355.

12. Ломакин ИИ. Применение методов лечебного охлаждения в 
tерапии хронической алкогольной интоксикаци-
и. Проблемы криобиологии. 2012; 22(3): 355.

13. Ломакин ИИ. Применение методов лечебного охлаждения в 
tерапии хронической алкогольной интоксикаци-
и. Проблемы криобиологии. 2012; 22(3): 355.

14. Ломакин ИИ. Применение методов лечебного охлаждения в 
tерапии хронической алкогольной интоксикаци-
и. Проблемы криобиологии. 2012; 22(3): 355.

References

1. Abrahao KP, Salinas AG, Lovering DM. Alcohol and the brain:
neuronal molecular targets, synapses, and circuits. Neuron. 
2017; 96 (6):1223–38.

2. Aidarova VS, Babiichuk VG, Kudokotseva OV, et al. Experimental 
substantiation of therapeutic hypothermia and cell therapy 
application at dyscicularruply encephalopathy in SHR rats. Part 
2. Structural changes in brain tissue. Probi Cryobiol Cryomed. 
2019; 29(1): 58–72.

3. Amstislavskaya TG, Osipov KV. [Sexual arousal in the male 
rat: behavioral and hormonal response]. Bulyleten’ Siberisko-
go Otdeleninya Rossisskoy Akademii Meditsinskikh Nauk. 2003; 
(3): 112–4. Russian.

4. Goltsev AN, Kalinichenko TA. Human umbilical cord blood 
as the source of hemopoietic cells for clinical application. Part 1. Characteristics of hemopoietic potential. Problems of 
Cryobiology. 1998; (1): 3–24.

5. Grishchenko VI, Kovaľ’ov’A, PetrenkoAYu, et al. [Regenerative-
plastic therapy of alcoholic visceropathies]. Kyiv: Naukova 
Dumka; 2010. Russian. 152 p.

6. Herman M, Lee S, Kang SS, James P. Systemic administration of 
alcohol to adult rats inhibits Leydig cell activity: time course of 
effect and role of nitric oxide. Alcoholism. Clin Exp Res. 2006; 
30(9): 1479–91.

7. Krishtal EV, Marchenko VG, Krishtal TV. [Motivational training of 
family health at psychosexual development retardation in men]. 
Medychna Psycholohiia. 2013; (3): 14–9. Russian.

8. Krylova EV, Potemina TE, Korygin AS, Nesterov GA. [Preventive 
effect of bee royal jelly on rat spermatogenesis indices during 
acute heat stress]. Bulletin of the Nizhny Novgorod University 
N.I. Lobachevsky. 2011; 6(1): 138–43. Russian.

9. Lasek AW. Effects of ethanol on brain extracellular matrix 
implications for alcohol use disorder. Alcohol Clin Exp Res. 
2016; 40(10): 2030–42.

10. Lee ACK, Ho LM, Yip AWC, et al. The effect of alcohol drinking 
on erectile dysfunction in Chinese men. Int J Impot Res. 2010; 
22: 272–8.

11. Lomakin II. Substantiation of medical cooling methods in 
therapy of chronic alcoholism. Problems of Cryobiology. 2008; 
18(3): 383–5.

12. Lomakin II, Babiichuk GA. Use of medical cooling methods 
against chronic alcohol intoxication. Problems of Cryobiology. 
2012; 22(3): 355.

13. Martynova YuV, Babiichuk VG, Sirotenko LA, et al. 
Neurohumoral changes in rats of different age groups on the 
background of injection of cryopreserved cord blood nucleated 
cells. Adv Gerontol. 2016; 6(4): 304–10.

14. Pendharkar S, Mattoo SK, Grover S. Sexual dysfunctions in 
alcohol-dependent men: a study from north India. Indian J Med 
Res. 2016; 144(3): 393–9.

15. Ponizovsky AM. Clinical and psychosocial factors associated 
with quality of life in alcoholdependent men with erectile 
dysfunction. J Sex Med. 2008; 5(10): 2347–58.

16. Potyomina TE, Kuznetsova SV, Lyalayev VA. [Alteration of the 
testosterone level in sera of adult rats injected with cryopreserved 
cord blood nucleated cells. by 91.3 and 44.2%, respectively].
10. Романов ЮА, Романов АЮ. Ткани перинатального происхождения – уникальный источник клеток для регенеративной медицины. Часть I. Пуповинная кровь. Неонатология: новости, мнения, обсуждение. 2018; 6(2): 64–77.

11. Тихонова МА, Амстиславская ТГ. Использование модели половой активации для фенотипирования самцов линий мышей и крыс с закрепленными селекцией нарушениями поведения. Вавиловский журнал генетики и селекции. 2015; 19(4): 413–9.

12. Цуцаєва АО, Грищенко ВІ, Кудокоцева ОВ, та ін. Заготівля, кріобіологія і кріомедицина. Київ: Навчальний друк; 2000. 16 с.

13. Abrahao KP, Salinas AG, Lovinger DM. Alcohol and the brain: neuronal molecular targets, synapses, and circuits. Neuron. 2017; 96 (6):1223–38.

14. Herman M, Lee S, Kang SS, James P. Systemic administration of alcohol to adult rats inhibits Leydig cell activity: time course of effect and role of nitric oxide. Alcoholism. Clin Exp Res. 2006; 30(9): 1479–91.

15. Lasek AW. Effects of ethanol on brain extracellular matrix: implications for alcohol use disorder. Alcohol Clin Exp Res. 2016; 40(10): 2030–42.

16. Lee ACK, Ho LM, Yip AWC, et al. The effect of alcohol drinking on erectile dysfunction in Chinese men. Int J Impot Res. 2010; 22: 272–8.

17. Martynova YuV, Babychuk VG, Sirotenko LA, et al. Neurohumoral changes in rats of different age groups on the background of injection of cryopreserved cord blood nucleated cells. Adv Gerontol. 2016; 6(4): 304–10.

18. Pendharkar S, Mattoo SK, Grover S. Sexual dysfunctions in alcohol-dependent men: A study from north India. Indian J Med. Res. 2016; 144(3): 393–9.

19. Ponizovsky AM. Clinical and psychosocial factors associated with quality of life in alcohol-dependent men with erectile dysfunction. J Sex Med. 2008; 5(10): 2347–58.

20. Rachdaoui N, Sarkar DK, Phil D. Pathophysiology of the effects of alcohol abuse on the endocrine system. Alcohol Res. 2017; 38(2): 255–76.

21. Rasmussen DD, Wilkinson CW, Raskind MA. Chronic daily ethanol and withdrawal: long-term changes in plasma testosterone regulation, but no effect on GnRH gene expression or plasma LH concentrations. Endocrine. 2003; 22(2): 143–50.

22. Roney JR, Lukaszewski AW, Simmons ZL. Rapid endocrine responses of young men to social interactions with young women. Horm Behav. 2007; 52(3): 326–33.

23. Sansone A, Di Dato C, de Angelis C, et al. Smoke, alcohol and drug addiction and male fertility. Reprod Biol Endocrinol [Internet]. 2018 Jan 18 [cited 2020 Jun 11]; 16(1): 3. Available from: https://rbej.biomedcentral.com/articles/10.1186/s12958-018-0320-7

24. Siembida J, Frończuk P, Morylowska-Toloska J, et al. An overlooked issue: sexual dysfunctions in men addicted to alcohol. Curr Probl Psychiatry 2018; 19(2): 112–24.

25. Schill WB, Comhaire FN, Hargreave TB. Andrology for the clinician. Berlin, Heidelberg: Springer-Verlag; 2011.

26. Shim J-H, Kim Y-T, Kim S, Baek H-M. Volumetric reductions of subcortical structures and their localizations in alcohol-dependent patients. Front Neurol. [Internet]. 2019 Mar 19 [cited 2020 Jun 11]; 10: 247. Available from: https://www.frontiersin.org/articles/10.3389/fneur.2019.00247/full

27. Tikhonova MA, Amstislayaska TG. [Phenotyping the males of mouse and rat strains with genetically defined behavioral disturbances in a model of sexual activation]. Vavilovskii Zhurnal Genetiki i Selektsii. 2015; 19(4): 413–9. Russian.

28. Tsutsaeva AO, Grischenko VI, Kudokotsaeva OV, et al. [Procurement, cryopreservation and clinical application of hemopoietic cells of human cord blood]. Methodical Recommendations. Kharkiv: 2000. Russian. 16 p.

29. Weber MF, Smith DP, O’Connell DL, et al. Risk factors for erectile dysfunction in a cohort of 108 477 Australian men. Med J Aust. 2013; 199: 107–11.