Interferometry with Entangled Atoms

Ulvi Yurtsever

Quantum Computing Technologies Group, Jet Propulsion Laboratory, California Institute of Technology
4800 Oak Grove Drive, Pasadena, California 91109-8099.

(Received: January 4, 2022)

PACS numbers: 39.20.+q, 03.75.Dg, 03.67.-a, 03.67.Lx

1. Introduction

Inertial sensors based on matter-wave interferometry are a rapidly developing technology [1—4]. One class of such sensors are gradiometers designed to measure linear acceleration gradients, typically gradients caused by inhomogeneities in the gravitational potential. The state-of-the-art design [4] for an atom-wave gravity gradiometer consists of a pair of atom-wave accelerometers separated spatially by a fixed distance and direction. Each of the two accelerometers contains an ensemble of laser-cooled atoms, through which a common pair of (counter-propagating) Raman laser beams are pulsed in a carefully controlled sequence to drive Rabi oscillations between atomic ground-state hyperfine levels. The sequence and timing of the laser pulses are adjusted so that the hyperfine ground and excited states of any single atom interfere during the atom’s motion through the laser field. At the end of the sequence, the probability of finding an atom in its excited hyperfine state is a simple function of a relative phase, which accumulates between successive pulses in proportion to the atom’s acceleration (relative to the inertial frame defined by the laser beam) averaged over its flight time. Subsequently, the resulting pair of observations of this phase (one for each ensemble) can be subtracted to obtain a measurement of the relative acceleration, and, upon dividing the result by the separation length, a measurement of the acceleration gradient. I will give a more quantitative review of this quantum interferometry technique in Sect. 2 below. A detailed description of the experimental setup can be found in [4] (see esp. Fig. 1 there).

Even though subtracting the two acceleration measurements allows a number of correlated noise sources to cancel out as common modes [1], it is still desirable to avoid such differencing of two nearly-equal measured quantities which are corrupted by (uncorrelated) noise. In this letter, I will show that by prior-entangling (prior to the laser pulsing sequence) the quantum states of atoms in the two ensembles (such that every entangled pair has one atom in each ensemble) it becomes possible to encode the relative-acceleration information directly in a single interference phase, thereby eliminating the need for the differencing of two separate phase measurements. This idea is inspired by the recent discovery of a similar quantum algorithm which uses entangled states to synchronize atomic clocks non-locally [3]. The Quantum Clock Synchronization (QCS) algorithm relies on preparing the atoms “stabilizing” each atomic clock in a special entangled quantum state whose time evolution reduces to a pure multiplicative phase as long as each atom in the pair evolves under the same unitary transformation. By contrast, the Entangled Quantum Interferometry (EQI) algorithm to be described below relies on transforming the pair’s quantum state into a sensor which senses the difference between unitary evolutions of the entangled atoms. Put another way, the EQI algorithm is a spatial analogue of the QCS algorithm, in exactly the same sense as atomic clocks are temporal analogues of quantum (atom-wave) interferometers.

2. Overview of matter-wave gravity gradiometry

Consider an atom in its internal ground state \(|0\rangle\), moving through the inertial frame defined by the Raman beams of an atom interferometer. [Here “inertial frame” has the same meaning as in general relativity: in the presence of a gravitational field, my coordinate system will always be locally-Minkowski (free-falling, or geodesic-normal coordinates) so that the gravitational potential and its first derivatives vanish at the origin.] The wave function can be written as a tensor product of the atom’s internal and external Hilbert-space states:

\[
\Psi_{\chi,\vec{p}}(\vec{x}, t) = |0\rangle \otimes \int a(\vec{k}, \omega) e^{i(\vec{k} \cdot \vec{x} - \omega t)} d^3k \equiv |0\rangle \otimes \psi(\vec{x}, t),
\]

(1)

where \(a(\vec{k}, \omega)\) defines the wave packet representing the external (space-time) part \(\psi(\vec{x}, t)\) of the quantum state, \(\omega\) is related to \(\vec{k}\) via the usual dispersion relation (plus an additive constant corresponding to the atom’s internal energy level), and \(\vec{p}\) denotes the average (in general time-dependent) momentum:
\[p = \langle \psi | -i\hbar \nabla |\psi \rangle = (2\pi)^3 \int \hbar \vec{k} \left| a(\vec{k}, \omega) \right|^2 d^3k. \] (2)

The need for this cumbersome subscript notation \(\Psi_{0, p} \) will become clear in a moment. Since the two Raman beams are detuned in frequency by an amount \(\Omega \) which corresponds to the energy difference between the ground and excited states \(|0 \rangle \) and \(|1 \rangle \), they might stimulate the ground-state atom to absorb a photon from one beam and emit a lower frequency photon into the other, resulting in a transition to the excited state \(|1 \rangle \). This stimulated transition gives the atom a net momentum kick in the amount \(\hbar (\vec{k}_1 - \vec{k}_2) \equiv \hbar \vec{K} \), where \(\vec{k}_1, \vec{k}_2 (|\vec{k}_1| > |\vec{k}_2|) \) denote the wave vectors corresponding to the (counterpropagating) Raman beams. [As the vectors \(\vec{k}_i, i = 1, 2 \), point in opposite directions, the magnitude of \(\vec{K} \) is typically twice that of \(\vec{k}_i \). Note that \(\Omega \) is the total energy absorbed by the atom, which includes not only the transition energy (within the appropriate bandwidth), but also the recoil contribution.] The wave function of the same atom excited in this way from its ground state can then be decomposed, similarly to Eq. (1), in the form

\[\Psi_{1, p+h\vec{K}}(\vec{x}, t) = |1\rangle \otimes \int a(\vec{k}, \omega) e^{i[(\vec{k}+\vec{K}) \cdot \vec{x} - (\omega + \Omega)t]} d^3k = |1\rangle \otimes \psi(\vec{x}, t) e^{i(\vec{K} \cdot \vec{x} - \Omega t)}. \] (3)

Since the wave packet \(\psi(\vec{x}, t) \) is common to both the ground and excited state wave functions, I will suppress it (as an overall “normalization” factor) in what follows. Note that whenever an atom interrogated in the interferometer is excited from its ground state \(|0\rangle \) to the internal excited state \(|1\rangle \) by Raman pulses, it always picks up an associated excess energy-momentum \((\vec{K}, \Omega) \) as specified in Eq. (3); in other words, the excited atom’s total quantum state becomes \(|1\rangle : p + h\vec{K} \). Conversely, a stimulated transition in the reverse direction results in the transformation \(|1\rangle : p \rightarrow |0\rangle : p - h\vec{K} \). This correlation between an atom’s internal state and its momentum during the laser interrogation process is the key feature enabling atom interferometry [6].

In the interferometer, atoms are manipulated by laser pulses of two basic kinds: A Hadamard pulse \(H_{\pm} \) (a \(\pi/2 \) pulse followed by the spin operator \(\sigma_z \)), whose action is

\[H_{\pm}|0 : p\rangle = \frac{1}{\sqrt{2}} (|0 : p\rangle + |1 : p + h\vec{K}\rangle), \]
\[H_{\pm}|1 : p + h\vec{K}\rangle = \frac{1}{\sqrt{2}} (|0 : p\rangle - |1 : p + h\vec{K}\rangle). \] (4)

and a “double” Hadamard pulse \(H_{\sigma} \) (a \(\pi \) pulse followed by the spin operator \(\sigma_z \)), whose action is

\[H_{\sigma}|0 : p\rangle = |1 : p + h\vec{K}\rangle, \]
\[H_{\sigma}|1 : p + h\vec{K}\rangle = |0 : p\rangle. \] (5)

Consider a single atom’s flight across the laser field during the interrogation phase: Initially, at times \(t < t_1 \), say, the atom is in the ground state \(|0 : p\rangle \). At time \(t = t_1 \) the first \(H_{\pm} \) pulse hits, and the atom’s state becomes (up to an overall phase factor which I will always ignore):

\[\Psi(t_1) = \frac{1}{\sqrt{2}} \left(|0 : p\rangle + |1 : p + h\vec{K}\rangle \right). \] (6)

Since atoms are well-localized spatially, their wave functions \(\Psi(\vec{x}, t) \) are sharply peaked around their average position \(\langle \Psi(t) | \vec{x} | \Psi(t) \rangle \) at all times \(t \). When an atom is excited by Raman pulses to a superposition of its internal states, its distribution becomes bimodal, but still sharply peaked around the two positions (modes). Therefore, to a very good approximation, I can follow the evolution of the atom’s wave function during its flight in the interferometer by examining it in the vicinity of the atom’s (average) position(s) as a function of time \(t \). (See [3] for a more rigorous treatment.) Accordingly, at any time \(t \) after \(t_1 \) and before the next Raman pulse hits, the state Eq. (6) evolves, according to Eqs. (1)–(3), as

\[\Psi(t) = \frac{1}{\sqrt{2}} \left[|0 : p\rangle + e^{iK(x_t-x_{t1})-i\Omega(t-t_1)} |1 : p + h\vec{K}\rangle \right], \]
\[\forall t: t_1 \leq t < t_2, \] (7)

where \(x_t \equiv x(t) \), \(x_{t1} \equiv x(t_1) \) etc. is shorthand notation for the atom’s position at the different times, and an overall phase factor as well as the common wave packet \(\psi(\vec{x}, t) \) are suppressed as advertised. At a time \(t = t_2 > t_1 \), an \(H_\pm \) pulse hits, and the atom’s new state becomes

\[\Psi(t_2) = \frac{1}{\sqrt{2}} \left[|1 : p + h\vec{K}\rangle + e^{iK(x_2-x_{t1})-i\Omega(t_2-t_1)} |0 : p\rangle \right]. \] (8)

At any time \(t \) after \(t_2 \) and before the next pulse, the state Eq. (8) evolves as

\[\Psi(t) = \frac{1}{\sqrt{2}} \left[e^{iK(x_2-x_{t1})-i\Omega(t_2-t_1)} |1 : p + h\vec{K}\rangle + e^{iK(x_{t1}-x_{t2})-i\Omega(t_2-t_1)} |0 : p\rangle \right], \]
\[\forall t: t_2 \leq t < t_3. \] (9)

At time \(t = t_3 \), the second and last \(H_{\pm} \) pulse hits, and transforms \(\Psi(t) \) into the state

\[\Psi(t_3) = \frac{1}{2} \left[e^{iK(x_3-x_{t2})-i\Omega(t_3-t_2)} (|0 : p\rangle - |1 : p + h\vec{K}\rangle) + e^{iK(x_{t2}-x_{t3})-i\Omega(t_2-t_1)} (|0 : p\rangle + |1 : p + h\vec{K}\rangle) \right]. \] (10)

So as a result of the pulse sequence \(H_{\pm} - H_{\pm} - H_{\pm} \), an atom which enters the interferometer in the ground state
term, where T is the time scale.

Here the magnitude of the inertia acceleration component is much larger (as is typically the case) than the interrogation time T, measurement of the phase Θ following the pulse sequence $H_x - H_\pi - H_x$ yields a direct measurement of the inertial acceleration component $\vec{K} \cdot \vec{a}$.

3. Interferometry with entangled atoms

For a gradient measurement, ordinarily it is necessary to apply two separate but simultaneous measurements of acceleration to two different ensembles of atoms separated by a fixed distance. By using atoms whose internal states are pairwise entangled in a distributed fashion, however, it is possible to obtain the acceleration gradient information with just one phase measurement as I will show now:

Start, at time $t = t_1$, with atoms in the two ensembles A and B in the pairwise entangled initial state

$$
\Psi(t_1) = \frac{1}{\sqrt{2}} \left(|0: \vec{p}_A\rangle_A |1: \vec{p}_B + h\vec{K}\rangle_B - |1: \vec{p}_A + h\vec{K}\rangle_A |0: \vec{p}_B\rangle_B \right).
$$

In other words, in some subset (which my measurements will be directed at) of ensemble A, every atom is entangled with some atom in ensemble B, and, at some initial time $t = t_1$, each entangled pair is (upto an overall phase) in the state Eq. (17). Focus attention now on a single such entangled pair. Since the state Eq. (17) is an energy eigenstate of the total internal Hamiltonian, its explicit time evolution consists of a pure multiplicative phase only. Implicitly, it evolves in time kinematically with the inertial motion of the atoms; according to Eqs. (1)–(3), this evolution takes the form

$$
\Psi(t) = \frac{1}{\sqrt{2}} \left[e^{i\vec{K} \cdot (\vec{x}_{A1} - \vec{x}_{B1})} |0: \vec{p}_A\rangle_A |1: \vec{p}_B + h\vec{K}\rangle_B - e^{i\vec{K} \cdot (\vec{x}_{A1} - \vec{x}_{A1})} |1: \vec{p}_A + h\vec{K}\rangle_A |0: \vec{p}_B\rangle_B \right],
$$

where $\vec{x}_{A1} \equiv \vec{x}_A(t)$, $\vec{x}_{B1} \equiv \vec{x}_B(t)$, etc., and, an overall phase factor as well as the common wave packet $\psi_A(\vec{x}_A, t)\psi_B(\vec{x}_B, t)$ are suppressed as in Eq. (7) above.

For increased readability, let me introduce the following abbreviation which I will use throughout the rest of this letter: for $E = A$, B,

$$
|0\rangle_E \equiv |0: \vec{p}_E\rangle_E, \quad |1\rangle_E \equiv |1: \vec{p}_E + h\vec{K}\rangle_E.
$$

Now suppose that, at a time $t = t_2 > t_1$, a common H_π pulse is applied to both atoms A and B (simultaneously) in the state Eq. (18). Then the new state of the pair at $t = t_2$ becomes

$$
\Psi(t_2) = \frac{1}{\sqrt{2}} \left[e^{i\vec{K} \cdot (\vec{x}_{B2} - \vec{x}_{B1})} |1\rangle_A |0\rangle_B - e^{i\vec{K} \cdot (\vec{x}_{A1} - \vec{x}_{A1})} |0\rangle_A |1\rangle_B \right].
$$

At any time t after t_2 and before the next pulse, the state Eq. (20) evolves as

$$
\Psi(t) = \frac{1}{\sqrt{2}} \left[e^{i\vec{K} \cdot (\vec{x}_{A1} - \vec{x}_{A2} + \vec{x}_{B2} - \vec{x}_{B1})} |1\rangle_A |0\rangle_B - e^{i\vec{K} \cdot (\vec{x}_{B1} - \vec{x}_{B2} + \vec{x}_{A2} - \vec{x}_{A1})} |0\rangle_A |1\rangle_B \right],
$$

$\forall t : t_2 \leq t < t_3$.
At a time \(t = t_3 > t_2 \), a final, common \(H_{\pi} \) pulse is applied to the entangled pair \(A \) and \(B \), and transforms the state Eq. (21) into

\[
\Psi(t_3) = \frac{1}{2\sqrt{2}} \left[e^{i(\Phi A_{32} + \Phi B_{21})} |0\rangle_A - |1\rangle_A \right] |0\rangle_B + |1\rangle_B \\
- e^{i(\Phi A_{32} + \Phi B_{21})} \left(|0\rangle_A + |1\rangle_A \right) (|0\rangle_B - |1\rangle_B) \right] ,
\]

where, for \(i, j = 1, 2, 3, \ldots \),

\[
\Phi_{ij} \equiv \vec{K} \cdot (\vec{x}_{Ai} - \vec{x}_{Aj}), \quad \Phi_{ij} \equiv \vec{K} \cdot (\vec{x}_{Bi} - \vec{x}_{Bj}) .
\]

After absorbing a factor of \(e^{i(\Phi A_{32} + \Phi B_{21})} \) into the overall phase multiplying \(\Psi(t_3) \), Eq. (22) takes the more manageable form

\[
\Psi(t_3) = \frac{1}{2\sqrt{2}} \left[e^{i\Phi} \left(|0\rangle_A - |1\rangle_A \right) \left(|0\rangle_B + |1\rangle_B \right) \\
- \left(|0\rangle_A + |1\rangle_A \right) \left(|0\rangle_B - |1\rangle_B \right) \right] ,
\]

with the phase observable \(\Phi \) given by

\[
\Phi \equiv \Phi_{A_{32}} + \Phi_{B_{21}} - \Phi_{B_{32}} - \Phi_{A_{21}} \\
= \vec{K} \cdot (\Delta \vec{x}_3 - 2 \Delta \vec{x}_2 + \Delta \vec{x}_1) ,
\]

where \(\Delta \vec{x} \equiv \vec{x}_A - \vec{x}_B \) and \(\Delta \vec{x}_i \equiv \vec{x}_{Ai} - \vec{x}_{Bi} \) for \(i, j = 1, 2, 3, \ldots \). Collecting terms in Eq. (24),

\[
\Psi(t_3) = \frac{1}{2\sqrt{2}} \left[(e^{i\Phi} - 1) |0\rangle_A |0\rangle_B + (e^{i\Phi} + 1) |0\rangle_A |1\rangle_B \\
- (e^{i\Phi} + 1) |1\rangle_A |0\rangle_B - (e^{i\Phi} - 1) |1\rangle_A |1\rangle_B \right] .
\]

The phase \(\Phi \) can now be observed by measuring the relative abundance in the state \(\Psi(t_3) \) of those pairs in which both atoms are in their excited states. [Even though \(\Psi(t_3) \) is not stationary, its time evolution consists of pure phases multiplying each of the coefficients in Eq. (26), so the observation time is not critical.] Specifically, according to Eq. (26), the fraction \(P_{11} \) of those pairs in which both the \(A \)-atom and the \(B \)-atom are in the excited state \(|1\rangle \) is given by

\[
P_{11} = \frac{1}{8} |e^{i\Phi} - 1|^2 = \frac{1}{2} \sin^2 \left(\frac{\Phi}{2} \right) .
\]

On the other hand, if the Raman pulses making up the sequence \(-H_\pi - H_{\pi}^\dagger \) are aligned in time as before so that \(t_2 = t_1 + T \) and \(t_3 = t_2 + T \) for some common interrogation time \(T \), we can write, using Eq. (25),

\[
\Phi = \vec{K} \cdot \Delta \vec{x}(t_2) T^2 + O(T^3) ,
\]

where the magnitude of the \(O(T^3) \) remainder is again down by a factor of order \(T/T_a \) relative to the first (acceleration) term, with \(T_a \) denoting the timescale over which the atoms’ acceleration varies. As long as the time scale \(T_a \) is much larger than the interrogation time \(T \), measurement of the single phase observable \(\Phi \) following the pulse sequence \(-H_\pi - H_{\pi}^\dagger \) on the entangled pair Eq. (17) yields a direct measurement of the inertial acceleration gradient \(\vec{K} \cdot \Delta \vec{a} = \vec{K} \cdot (\vec{a}_A - \vec{a}_B) \) between the ensembles \(A \) and \(B \). Signal sensitivity of \(\Phi \) to the acceleration gradient \(\Delta \vec{a} \) can be enhanced using tricks similar to the one discussed in the note [9].

4. Producing the entangled atom pairs

A number of methods for entangling two-level atoms have been discussed in the literature and some implemented in experiments. For completeness, I will sketch two such methods which can be used to produce states of the form Eq. (17).

One method, originally proposed in Cabrillo et. al. [10], involves pumping two spatially separated atoms \(A \) and \(B \) into their excited states, so that the joint system is initially in the product state

\[
|1\rangle_A |1\rangle_B .
\]

A single-photon detector, which cannot (even in principle) distinguish the atom from which a detected photon arrives, is placed halfway between the atoms. Such a detection scheme can be implemented either by using a detector which is inherently insensitive to the direction of the photon that triggers it, or by using two detectors situated at the output ports of a symmetric beam-splitter on which the light paths from the two atoms are symmetrically impinging, thus erasing the which-path information. When one of the atoms makes a transition to its ground state, and the detector registers the emitted photon, the result of its measurement is to put the combined two-atom system into the entangled state

\[
\frac{1}{\sqrt{2}} \left(|0\rangle_A |1\rangle_B + e^{i\phi} |1\rangle_A |0\rangle_B \right) ,
\]

where the phase \(\phi \) is a measure of the relative delay between the paths reaching the detectors from \(A \) versus from \(B \), and can be adjusted to have any desired value [e.g. as in Eq. (17)] by adjusting the position of the detector relative to the atoms.

A second method, recently investigated in detail by Haroche and coworkers [11] is (in very rough outline) the following: Start with a single-mode cavity whose excitation frequency is tuned to \(\Omega \). Send the pair of atoms \(A \) and \(B \) into the cavity one after the other, with atom \(B \) first. Initially, both atoms and the cavity are in their ground states:

\[
|0\rangle_A |0\rangle_B |0\rangle_{EM} ,
\]

where \(|0\rangle_{EM} \) denotes the vacuum state of the cavity. After atom \(B \) is in the cavity, apply a \(\pi/2 \)-pulse on it, which transforms the state Eq. (30) into
\[\frac{1}{\sqrt{2}} |0\rangle_A (|0\rangle_B |1\rangle_{EM} - |1\rangle_B |0\rangle_{EM}) . \]

When both atoms are in the cavity, apply a second, \(\pi \)-pulse, this time on the atom \(A \), thereby transforming the state Eq. (31) into

\[\frac{1}{\sqrt{2}} (|1\rangle_A |0\rangle_B - |0\rangle_A |1\rangle_B) \otimes |0\rangle_{EM} , \]

which, for the atom-pair \(A \) and \(B \), is in the desired form Eq. (17) up to an overall phase factor. Considering that a number of proof-of-principle experiments confirming it have already been performed successfully \([1]\), this method (or, more precisely, a suitable variant which maintains the necessary correlation between atomic energy levels and linear momentum as discussed Sect. 2 above) is likely to be the method of choice in practical implementations of the entangled-atom gradiometry algorithm.

5. Quantifying the improvement

To what extent does the entangled-interferometry technique proposed in Sect. 3 represent an improvement over the standard, “classical” atom-wave gradiometry as reviewed in Sect. 2? To answer this question quantitatively, I will now carry out a simple analysis of the improvement in the signal-to-noise ratio expected with entangled-interferometry.

I will take the differential phase-shift as my observed signal, so in a gradient measurement with both classical and entangled interferometry, the signal is the dimensionless quantity

\[S = \bar{K} \cdot \Delta \bar{a} \cdot T^2 , \]

where \(\bar{a} \equiv \bar{x} \), and other symbols are defined as in Eqs. (16) and (28), with the same approximation that allows neglecting terms of order \(O(T^3) \) being assumed implicitly. In this discussion, for ease of notation I will label the two atomic ensembles by \(i = 1, 2 \) as opposed to by \(A \) and \(B \) before (in Sects. 2—3). In a “classical” gradient measurement, two ensembles containing \(M \) atoms each are used to obtain the two acceleration measurements, which are later differenced to obtain the signal

\[S = \Theta_1 - \Theta_2 , \]

where the phase observables \(\Theta_i \) are related to the observed abundance (fluorescence) of excited-state atoms in each ensemble \(i = 1, 2 \) via Eq. (14):

\[\sin^2 \left(\frac{\Theta_i}{2} \right) = \frac{M_i}{M} . \]

Here \(M_i \) denotes the number of excited-state atoms at the end of the interrogation process in ensemble \(i, i = 1, 2 \).

For comparison, imagine a similar experiment using the entangled algorithm of Sect. 3, involving \(M \) pairs of entangled atoms interrogated in the pulse sequence of Eqs. (17)—(23) with the same interrogation-time constant \(T \). At the end of that sequence, the number of atom pairs \(M_{11} \) in which both atoms end up in their excited states is measured, which yields the signal

\[S = \Phi , \]

where according to Eq. (27)

\[\frac{1}{2} \sin^2 \left(\frac{\Phi}{2} \right) = \frac{M_{11}}{M} . \]

For simplicity, I will now make the additional assumption that the only sources of noise in both kinds of signal measurements (classical and entangled) are (i) phase noise, and (ii) shot noise due to the statistical fluctuations in the observed numbers of excited atoms: in \(M_1 \) and \(M_2 \) for the classical case, and in \(M_{11} \) for the entangled case. I will assume a binomial distribution for these random variables with \(M \) trials and with probabilities \(P_1 \), \(P_2 \), and \(P_{11} \), respectively. The expected RMS shot noise in each number measurement \(M_i \) is then given by

\[\Delta M_i \equiv \sqrt{ <M_i^2> - <M_i>^2 } = \sqrt{P_i(1-P_i)M} , \]

and the expected RMS noise in \(M_{11} \) is, similarly,

\[\Delta M_{11} \equiv \sqrt{ <M_{11}^2> - <M_{11}>^2 } = \sqrt{P_{11}(1-P_{11})M} . \]

In the classical measurement [Eqs. (34)—(35)], the shot noise contribution to each \(\Theta_i \) measurement can be written as

\[N_i = \frac{\partial \Theta_i}{\partial M_i} \Delta M_i \quad i = 1, 2 . \]

Since the two measurements of \(\Theta_i \) are completely independent, the total variance (noise squared) in the quantity \(S = \Delta \Theta \) is the sum of the variances in each \(\Theta_i \):

\[N_c = (N_1^2 + N_2^2)^{\frac{1}{2}} \approx \sqrt{2} N_1 = \sqrt{2} \frac{\partial \Theta_1}{\partial M_1} \Delta M_1 , \]

where the approximate equality holds because of the assumption that the signal \(S \ll 1 \). Substituting Eqs. (35), (38) and (14) in Eq. (41) gives

\[N_c = \left(\frac{2}{M} \right)^{\frac{1}{2}} . \]

In the entangled measurement, according to Eqs. (36)—(37)
\begin{equation}
S = \Phi = 2 \arcsin \sqrt{\frac{2M_{11}}{M}} \approx 2 \sqrt{2} \sqrt{\frac{M_{11}}{M}},
\end{equation}

and the shot noise contribution is

\begin{equation}
N_e = \frac{\partial \Phi}{\partial M_{11}} \Delta M_{11} = \left(2 \left(1 - p_{11} \right) \right)^{\frac{1}{2}} \approx \left(\frac{2}{M} \right)^{\frac{1}{2}},
\end{equation}

where the second equality follows from Eq. (39), and the third by the assumption that the signal $S \ll 1$. Remarkably, the shot noise contributions in the classical and entangled measurements are identical. Since a typical classical gradient measurement operates in a regime where the number of atoms M in each ensemble i is large enough to make shot noise negligible \cite{4}, the same operating conditions will make it negligible also in the entangled case, and therefore phase noise is the dominant source of error in both kinds of measurement.

To compare phase-noise performance of the two kinds of measurement, I will model the noise as simply proportional to the magnitude of the fluorescence signal \cite{4}:

\begin{equation}
< \Theta_i^2 > - < \Theta_i >^2 = \sigma^2 \sin^2 \frac{< \Theta_i >}{2}, \quad i = 1, 2
\end{equation}

for the classical case, and

\begin{equation}
< \Phi_i^2 > - < \Phi_i >^2 = \sigma^2 \frac{1}{2} \sin^2 \frac{< \Phi_i >}{2}, \quad i = 1, 2
\end{equation}

in the entangled case, where σ is a constant. By the same arguments as above [Eqs. (40)–(41)], the phase noise in the differential acceleration signal is, for the classical case

\begin{equation}
N_c \approx \sqrt{2} \sigma \sin \frac{< \Theta_i >}{2},
\end{equation}

and for the entangled case

\begin{equation}
N_e = \frac{1}{\sqrt{2}} \sigma \sin \frac{< \Phi_i >}{2}.
\end{equation}

Therefore the ratio of phase noise in the entangled measurement to that in the classical measurement can be written in the form [cf. Eqs. (36), (34), and (33)]

\begin{equation}
\frac{N_e}{N_c} = \frac{1}{2 \sin \frac{< \Phi_i >}{2}^2} \approx \frac{1}{2} \frac{< \Phi_i >}{< \Theta_i >} \approx \frac{1}{2} \frac{\| \Delta \vec{a} \|}{\| \vec{a} \|}.
\end{equation}

For a typical measurement performed on earth with a 1m separation between the two atomic ensembles, the earth’s ~ 3000E gradient field (1E$=10^{-9}$sec$^{-2}$) and 1g gravity suggests suppression of phase noise via entanglement by a factor of up to 1.5×10^{-7}, or more than six orders of magnitude. For measurements performed in spacecraft in low earth orbit, the ambient acceleration $\| \vec{a} \|$ will be due to non-isolated common-mode vibrations originating from drag forces acting on the spacecraft. Therefore, for a gradiometer in low earth orbit (common-mode accelerations due to atmospheric drag being typically of order 10^{-5}g or higher) the phase-noise suppression N_e/N_c via entangled interferometry can be expected to be a reduced but still significant two orders of magnitude or better.

6. Future work

The Entangled Quantum Interferometry algorithm as presented here can be generalized to design sensors of other “distributed” quantities (such as higher derivatives of the gravitational curvature tensor); these generalizations will be discussed in a future publication.

ACKNOWLEDGMENTS

I would like to acknowledge valuable discussions with Lute Maleki and Nan Yu of the JPL Frequency Standards Laboratory, and with John Clauser, Jonathan Dowling, Dmitry Strekalov, and Colin Williams of the JPL Quantum Computing Technologies group. The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration, and was supported by a contract with the National Reconnaissance Office.

\begin{thebibliography}{9}
\bibitem{1} Atom Interferometry, edited by P. R. Berman, Academic Press, New York, 1997.
\bibitem{2} M. Kasevich and S. Chu, Phys. Rev. Lett. \textbf{67}, 181 (1991).
\bibitem{3} M. Kasevich and S. Chu, Appl. Phys. \textbf{B 54}, 321 (1992).
\bibitem{4} M. J. Snadden \textit{et al.}, Phys. Rev. Lett. \textbf{81}, 971 (1998).
\bibitem{5} R. Jozsa, D. S. Abrams, J. P. Dowling and C. P. Williams, Phys. Rev. Lett. \textbf{85}, 2010 (2000).
\bibitem{6} D. J. Wineland, J. J. Bollinger, W. M. Itano, F. L. Moore, and D. J. Heinzen, Phys. Rev. \textbf{A 46}, R6797 (1992).
\bibitem{7} Ch. J. Borde, Phys. Lett. \textbf{A 140}, 10 (1989), and K. Moler, D. S. Weiss, M. Kasevich and S. Chu, Phys. Rev. \textbf{A 45}, 342 (1992).
\bibitem{8} R. Friedberg and S. R. Hartmann, Phys. Rev. \textbf{A 48}, 1446 (1993), and P. Storey and C. Cohen-Tannoudji, J. Phys. II France \textbf{4}, 1999 (1994).
\bibitem{9} Signal sensitivity in this acceleration measurement can be improved by employing more complicated pulsing sequences. For example, consider the pulse sequence

$$H_{\varphi} \otimes H_{\pi} .$$

where, for example, $H_{\varphi} \otimes H_{\pi}$ denotes that the two successive pulses are supposed to be applied one after the other with zero time delay, and H_{φ} the “minus-pi” pulse defined by [cf. Eqs. (5)]

$$H_{\varphi}|0 : \vec{p}\rangle = |1 : \vec{p} - h \vec{K}\rangle,$$

$$H_{\varphi}|1 : \vec{p}\rangle = |0 : \vec{p} + h \vec{K}\rangle .$$

\end{thebibliography}
(An H_π pulse turns into an $H_{(\pi)}$ pulse upon switching the detuning order of the two Raman beams in such a way that the sign flip $\vec{K} \to -\vec{K}$ results.) Following through a calculation similar to the one between Eqs. (6) and (13), it is straightforward to show that an atom initially in the ground state $|0 : \vec{p}\rangle$ ends up, at the end of the longer pulse sequence above, in a superposition state of the form Eq. (13) where the phase Θ is now given by $\Theta = 3 \vec{K} \cdot \vec{a} T^2 + O(T^3)$. Hence a factor of 3 improvement in the acceleration signal compared to the sequence $H_\pi \to H_\pi \to H_\pi$. [See, for example, \(\text{[1]}\) (p. 388) and references cited therein for a discussion on this and similar techniques for boosting detection sensitivity.]

[10] C. Cabrillo, J. I. Cirac, P. Garcia-Fernandez, and P. Zoller, Phys. Rev. A 59, 1025 (1999).

[11] E. Hagley, X. Maitre, G. Nogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Haroche, Phys. Rev. Lett. 79, 1 (1997); A. Jabs, \url{http://xxx.lanl.gov/abs/quant-ph/9811042}; A. Rauschenbeutel, P. Bertet, S. Osnaghi, G. Nogues, M. Brune, J. M. Raimond, and S. Haroche, \url{http://xxx.lanl.gov/abs/quant-ph/0105062}.