COMPLETE FAMILIES OF COMMUTING FUNCTIONS
FOR COISOTROPIC HAMILTONIAN ACTIONS

ERNEST B. VINBERG AND OKSANA S. YAKIMOV A

ABSTRACT. Let G be an algebraic group defined over a field F of characteristic zero with $g = \text{Lie} G$. The dual space g^* equipped with the Kirillov-Kostant bracket is a Poisson variety and each irreducible G-invariant subvariety $X \subset g^*$ carries the induced Poisson structure. We prove that there is a set $\{f_1, \ldots, f_l\} \subset F[X]$ of algebraically independent polynomial functions, which pairwise commute with respect to the Poisson bracket, such that $l = (\dim X + \text{tr.deg} F(X)^G)/2$. We also discuss several applications of this result to complete integrability of Hamiltonian systems on symplectic Hamiltonian G-varieties of corank zero and 2.

INTRODUCTION

In this paper, we study Hamiltonian actions of algebraic groups on affine varieties focusing on the non-reductive case. The ground field F is assumed to be of characteristic zero, but not necessarily algebraically closed. Let us start with main definitions in the general algebraic setting.

Definition 1. Let \mathcal{A} be a commutative associative F-algebra equipped with an additional anticommutative bilinear operation $\{ , \} : \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{A}$ called a Poisson bracket such that

$$\{a, bc\} = \{a, b\}c + b\{a, c\},$$
$$\{a, \{b, c\}\} + \{b, \{c, a\}\} + \{c, \{a, b\}\} = 0$$

for all $a, b, c \in \mathcal{A}$. Then \mathcal{A} is called a Poisson algebra. An ideal $I \subset \mathcal{A}$ is said to be Poisson if $\{I, \mathcal{A}\} \subset I$; a homomorphism $\varphi : \mathcal{A} \rightarrow \mathcal{B}$ of Poisson algebras is said to be Poisson if $\varphi(\{x, y\}) = \varphi(x) \varphi(y)$ for all $x, y \in \mathcal{A}$. The Poisson centre of \mathcal{A} is the Poisson subalgebra $Z \mathcal{A} := \{a \in \mathcal{A} | \{a, \mathcal{A}\} = 0\}$. A subalgebra $\mathcal{B} \subset \mathcal{A}$ is said to be Poisson-commutative if $\{\mathcal{B}, \mathcal{B}\} = 0$.

Let \mathcal{P} be a Poisson algebra. Assume that \mathcal{P} has no zero-divisors and $\text{tr.deg} \mathcal{P} < \infty$. Let Der($\mathcal{P}, \text{Quot} \mathcal{P}$) stand for the set of all Quot-\mathcal{P}-valued derivations of the algebra \mathcal{P} regarded just as a commutative associative algebra. This is a linear space over Quot-\mathcal{P} of dimension $\text{tr.deg} \mathcal{P}$. Each $\varphi \in \mathcal{P}$ gives rise to a derivation ad(φ), where $\text{ad}(\varphi) \cdot \psi = \{\varphi, \psi\}$ for all $\psi \in \mathcal{P}$. Let $V(\mathcal{P}) := \langle \text{ad}(\varphi) | \varphi \in \mathcal{P} \rangle$ be the subspace of Der($\mathcal{P}, \text{Quot} \mathcal{P}$) spanned by the inner derivations. Then $\dim V(\mathcal{P})$ (the dimension over Quot-\mathcal{P}) is said to be the rank of \mathcal{P}, usually denoted by $\text{rk} \mathcal{P}$.

2010 Mathematics Subject Classification. 17B63, 53D17.

Key words and phrases. Symplectic variety, Poisson algebra, Coisotropic action, Coadjoint representation.

The first author is partially supported by the RFBR Grant 16-01-00818; the second author is partially supported by the Graduiertenkolleg GRK 1523 “Quanten- und Gravitationsfelder”.

1
If the ground field \(\mathbb{F} \) is algebraically closed and the algebra \(\mathcal{P} \) is finitely generated, then \(\text{Der}(\mathcal{P}, \text{Quot}\mathcal{P}) \) can be viewed as the space of rational vector fields on the affine algebraic variety \(\text{Spec}\mathcal{P} \). The inner derivations of \(\mathcal{P} \) are then interpreted as the Hamiltonian vector fields.

Next, set \(\omega(\text{ad}(\varphi), \text{ad}(\psi)) := \{ \varphi, \psi \} \). Since \(\text{ad}(\varphi) = 0 \) for each \(\varphi \in \mathbb{Z}\mathcal{P} \), \(\omega \) is a non-degenerate skew-symmetric bilinear form on \(V(\mathcal{P}) \) over \(\text{Quot}\mathcal{P} \). Hence, in particular, \(\text{rk}\mathcal{P} \) is even. It is not difficult to see that \(V(\mathcal{P}) \) and \(\omega \) do not change if we pass to the localisation of \(\mathcal{P} \) by a multiplicative subset of \(\mathbb{Z}\mathcal{P} \).

Definition 2. A Poisson algebra \(\mathcal{P} \) is said to be symplectic, if \(V(\mathcal{P}) = \text{Der}(\mathcal{P}, \text{Quot}\mathcal{P}) \), or, in other words, if \(\text{rk}\mathcal{P} = \text{tr.deg}\mathcal{P} \).

Definition 3. A Hamiltonian action of a (finite-dimensional) Lie algebra \(\mathfrak{q} \) on a symplectic algebra \(\mathcal{P} \) is a linear map \(\rho : \mathfrak{q} \to \mathcal{P} \) such that \(\rho([\xi, \eta]) = \{ \rho(\xi), \rho(\eta) \} \) for all \(\xi, \eta \in \mathfrak{q} \) and each \(p \in \mathcal{P} \) is contained in an \(\text{ad}(\rho(\mathfrak{q})) \)-invariant finite-dimensional subspace of \(\mathcal{P} \).

In what follows, we assume that \(\rho \) is injective and consider \(\mathfrak{q} \) as a Lie subalgebra of \(\mathcal{P} \). The Poisson subalgebra \(\mathcal{P}(\mathfrak{q}) \subset \mathcal{P} \), generated by \(\mathfrak{q} \), is called the Noether subalgebra.

Let \(\mathcal{P} \) be a symplectic algebra and \(\mathcal{A} \subset \mathcal{P} \) a Poisson subalgebra. Let \(U(\mathcal{A}) \subset V(\mathcal{P}) \) be the subspace spanned over \(\text{Quot}\mathcal{P} \) by the derivations \(\text{ad}(\varphi) \) with \(\varphi \in \mathcal{A} \).

Definition 4. A Hamiltonian action \(\mathfrak{q} \hookrightarrow \mathcal{P} \) is said to be coisotropic if the subspace \(U(\mathcal{P}(\mathfrak{q})) \) is coisotropic with respect to \(\omega \).

The main result of the paper is the following theorem.

Theorem 1. For any coisotropic Hamiltonian action of a Lie algebra \(\mathfrak{q} \) on a symplectic algebra \(\mathcal{P} \), the subalgebra \(\mathcal{P}(\mathfrak{q}) \) contains a Poisson-commutative subalgebra of transcendence degree \(\frac{1}{2}\text{rk}\mathcal{P} \).

With a few preparations it follows from a more geometric statement. Let \(\mathfrak{g} = \text{Lie}G \) be the Lie algebra of a connected algebraic (or a Lie) group \(G \), and \(\mathcal{S}(\mathfrak{g}) \) be the symmetric algebra of \(\mathfrak{g} \). Then \(\mathcal{S}(\mathfrak{g}) \) is a Poisson algebra and the algebra \(\mathfrak{g} \) acts on it in the sense of Definition 3. The same holds for any quotient of \(\mathcal{S}(\mathfrak{g}) \) by a \(G \)-invariant ideal \(I \triangleleft \mathcal{S}(\mathfrak{g}) \) (which is automatically a Poisson ideal).

Theorem 2. Let \(I \triangleleft \mathcal{S}(\mathfrak{g}) \) be a prime \(G \)-invariant ideal. Set

\[
I(I) := \text{tr.deg}(\mathcal{S}(\mathfrak{g})/I) - \frac{1}{2}\text{rk}(\mathcal{S}(\mathfrak{g})/I).
\]

Then there are Poisson-commuting algebraically independent functions \(f_1, \ldots, f_{I(I)} \in \mathcal{S}(\mathfrak{g})/I \).

In case \(I = 0 \), the existence of a Poisson-commutative subalgebra \(\mathcal{A} \subset \mathcal{S}(\mathfrak{g}) \) with \(\text{tr.deg}\mathcal{A} = I(\mathfrak{g}^*) \) was conjectured by Mishchenko and Fomenko [13], and proved by Sadetov [15]. A clearer treatment of this result is given by Bolsinov [2]. Note that of course the image of a Poisson-commutative subalgebra \(\mathcal{A} \subset \mathcal{S}(\mathfrak{g}) \) remains Poisson-commutative in \(\mathcal{S}(\mathfrak{g})/I \). However, transcendence degree may sink far below \(I(I) \). Our proof of Theorem 2 follows the same strategy as the proofs of Sadetov and Bolsinov for \(\mathcal{S}(\mathfrak{g}) \). Note that
in the general case our functions \(f_1, \ldots, f_l(I) \in S(g)/I \) do not extend to Poisson-commuting functions in \(S(g) \).

First we prove Theorem 2 in case of a reductive \(g \), see Section 3. In the general case, we argue by induction on \(\dim g \), see Section 5. We remark that the number \(l(I) \) does not change under field extensions.

Some applications of Theorems 1 and 2 to integrable Hamiltonian systems are discussed in Section 2.

1. SYMPLECTIC ALGEBRAS AND HAMILTONIAN ACTIONS

Consider a Poisson algebra \(\mathcal{P} \). Assume that \(\mathcal{P} \) has no zero-divisors and that \(\text{tr.deg} \mathcal{P} < \infty \).

For each subalgebra \(C \subset \mathcal{P} \), let \(C^{-1} \mathcal{P} \) denote the localisation of \(\mathcal{P} \) by the subset of all non-zero elements of \(C \). Clearly \(C^{-1} \mathcal{P} \) is a subset of the field \(\text{Quot} \mathcal{P} \). The Poisson structure uniquely extends from \(\mathcal{P} \) to \(\text{Quot} \mathcal{P} \) and for any multiplicative system \(S \subset \mathcal{P} \) the localisation \(\mathcal{P}_S \) is a Poisson subalgebra of \(\text{Quot} \mathcal{P} \). In particular, this is true for \(C^{-1} \mathcal{P} \). If \(C \subset \mathcal{Z} \mathcal{P} \), then \(C^{-1} \mathcal{P} \) can be regarded as a Poisson algebra over the field \(\text{Quot} C \).

Definition 5. A Poisson algebra \(\mathcal{P} \) is said to be **separable** if \(\text{tr.deg} \mathcal{Z} \mathcal{P} + \text{rk} \mathcal{P} = \text{tr.deg} \mathcal{P} \).

Roughly speaking, \(\mathcal{P} \) is separable if generic symplectic leaves of the underlying Poisson affine variety \(X = \text{Spec}(\mathcal{P} \otimes_{\mathcal{F}} \mathcal{F}) \) are separated by the “central” functions, elements of \(\mathcal{Z} \mathcal{P} \otimes_{\mathcal{F}} \mathcal{F} \).

If \(\mathcal{P} \) is a separable Poisson algebra, then \((\mathcal{Z} \mathcal{P})^{-1} \mathcal{P} \) is a symplectic algebra over \(\text{Quot} \mathcal{Z} \mathcal{P} \), see Definition 2.

Example 6. Let \(W \) be a finite-dimensional vector space over \(\mathcal{F} \) equipped with a non-degenerate skew-symmetric bilinear form \(\omega \). Then \(\omega \) defines a Poisson bracket on the symmetric algebra \(S(W) \) by the formula

\[
\{x, y\} := \omega(x, y) \quad \text{for all } x, y \in W.
\]

This Poisson algebra \((S(W), \omega) \) is symplectic and \(V(S(W)) = \text{Quot}S(W) \otimes_{\mathcal{F}} W \) with the same (extended) form \(\omega \).

The algebra \(S(W) \) has a natural grading, with grading components being \(S^k(W) \), and \(\{S^k(W), S^l(W)\} \subset S^{k+l-2}(W) \). Hence \(q := \mathcal{F} + W + S^2(W) \) is a Lie subalgebra and \(n := \mathcal{F} + W \) is an ideal of \(q \). Note that \(n \) is a Heisenberg algebra. The map

\[
q \rightarrow \text{Der} n
\]

\[
\delta \mapsto \text{ad}(\delta)|_n
\]

is an epimorphism of Lie algebras with the kernel \(\mathcal{F} \) and \(S^2(W) \) is mapped isomorphically onto the Lie algebra \(\mathfrak{sp}(W) \) of the symplectic group \(\text{Sp}(W, \omega) \). Note also that the centraliser of \(n \) in \(S(W) \) coincides with \(\mathcal{F} \).

Example 7. Let \(q \) be a (finite-dimensional) Lie algebra over \(\mathcal{F} \). Then \(S(q) \) is a Poisson algebra with the usual Kirillov-Kostant bracket. The corresponding symplectic vector space \(V(S(q)) \) can be constructed as follows. Set \(\mathbb{K} := \text{Quot}S(q) \). Recall that \(\mathbb{K} \) is also a
Poisson algebra. Set further \(\tilde{\omega}(\xi, \eta) := [\xi, \eta] \) for all \(\xi, \eta \in \mathfrak{q} \). Since \(\tilde{\omega}(\xi, \eta) \in \mathbb{K} \), this formula defines a skew-symmetric bilinear form on a \(\mathbb{K} \)-vector space \(\tilde{V} := \mathfrak{q} \otimes_\mathbb{F} \mathbb{K} \). (In a basis of \(\mathfrak{q} \), \(\tilde{\omega} \) is just the structural matrix.) Then \(V(S(\mathfrak{q})) = \tilde{V}/\text{Ker}\tilde{\omega} \). Let us say that \(\mathfrak{q} \) is **separable** if \(\text{tr.deg} \mathfrak{z} S(\mathfrak{q}) = \text{tr.deg} \mathfrak{z} \mathbb{K} \). A Lie algebra \(\mathfrak{q} \) is separable if and only if \(S(\mathfrak{q}) \) is separable. In that case \((\mathfrak{z} S(\mathfrak{q}))^{-1} S(\mathfrak{q}) \) is a symplectic algebra over \(\text{Quot}\mathfrak{z} S(\mathfrak{q}) \).

The next two statements follow easily from the construction of \((V(P), \omega) \) and Definition 2.

Proposition 8. Let \(P \) be a symplectic algebra and \(\mathcal{A} \subset P \) a Poisson subalgebra. Let \(U(\mathcal{A}) \subset V(P) \) be a subspace spanned over \(\text{Quot} P \) by the derivations \(\text{ad}(\phi) \) with \(\phi \in \mathcal{A} \). Then

1. \(\dim_{\text{Quot} P} U(\mathcal{A}) = \text{tr.deg} \mathcal{A} \);
2. \(\text{rk} \omega_{U(\mathcal{A})} = \text{rk} \mathcal{A} \);
3. \(U(\mathcal{A})/\text{Ker} w_{U(\mathcal{A})} = \text{Quot} P \otimes_{\text{Quot} \mathcal{A}} V(\mathcal{A}) \).

Proposition 9. Let \(\mathcal{A}, \mathcal{B} \subset P \) be two Poisson subalgebras of a symplectic algebra \(P \). Then \(\{\mathcal{A}, \mathcal{B}\} = 0 \) if and only if the subspaces \(U(\mathcal{A}) \) and \(U(\mathcal{B}) \) are orthogonal with respect to \(\omega \).

Combining Propositions 8 and 9, we get that if \(\{\mathcal{A}, \mathcal{B}\} = 0 \), then \(\text{tr.deg} \mathcal{A} + \text{tr.deg} \mathcal{B} \leq \text{rk} P \).

From now on assume that \(P \) is symplectic and that we have a Hamiltonian action of a Lie algebra \(\mathfrak{q} \) on \(P \), see Definition 3. Set

\[P^q := \{ \phi \in P \mid \{q, \phi\} = 0 \} = \mathfrak{z}_P(P(q)). \]

As above, \(\text{tr.deg} P(q) + \text{tr.deg} P^q \leq \text{rk} P \). A Hamiltonian action is said to be **separable** if \(\text{tr.deg} P(q) + \text{tr.deg} P^q = \text{rk} P \). It is possible to characterise separable Hamiltonian coisotropic actions.

Proposition 10. A separable Hamiltonian action \(q \mapsto P \) is coisotropic if and only if \(\{P^q, P^q\} = 0 \).

Proof. Recall that for a separable action, the orthogonal complement of \(U(P(q)) \) coincides with \(U(P^q) \). Hence the action \(q \mapsto P \) is coisotropic if and only if \(U(P^q) \subset V(P) \) is an isotropic subspace. According to Proposition 9, this condition is equivalent to the Poisson-commutativity of \(P^q \).

Proposition 11. Theorem 1 follows from Theorem 2.

Proof. The subalgebra \(P(q) \subset P \) is isomorphic to some Poisson quotient \(S(q)/I \), where \(I \lhd S(\mathfrak{g}) \) is a Poisson ideal. In particular, \(I \) is \(G \)-invariant. Since \(P \) is a domain, the algebra \(S(q)/I \) is also a domain. By Theorem 2, \(S(q)/I \) contains a Poisson-commutative subalgebra \(\mathcal{A} \) with \(\text{tr.deg} \mathcal{A} = l \), where

\[l = \text{tr.deg} P(q) - \frac{1}{2} \text{rk} P(q). \]

Combining Definition 4 and Proposition 8, we see that

\[\text{rk} P(q) = \text{rk} P - 2(\text{rk} P - \text{tr.deg} P(q)) = 2\text{tr.deg} P(q) - \text{rk} P \]

and therefore \(l = \frac{1}{2} \text{rk} P \). \(\square \)
2. Geometric realisation and Applications

Suppose that \(X \) is an irreducible affine variety defined over \(\mathbb{F} \). Let \(X(\mathbb{F}) \) denote the set of its points over the algebraic closure of \(\mathbb{F} \). As usual \(\mathbb{F}[X] \) and \(\mathbb{F}(X) := \text{Quot} \mathbb{F}[X] \) stand for the algebras of regular and rational functions on \(X \), respectively. Our convention is that \(\mathbb{F}[X(\mathbb{F})] = \mathbb{F}[X] \otimes_{\mathbb{F}} \mathbb{F} \). All subvarieties of \(X \), all differential forms on \(X \), and all morphisms of \(X \) are supposed to be defined over \(\mathbb{F} \).

Let \(G \) be a connected linear algebraic group over \(\mathbb{F} \) with \(g = \text{Lie} G \). An algebraic action of \(G \) on \(X \) gives rise to a representation of \(G \) (and of \(g \)) on \(\mathbb{F}[X] \).

Definition 12 (Geometric version of Definition 3). Suppose that \(Y \) is an affine variety such that \(\mathbb{F}[Y] \) is a Poisson algebra. An algebraic action \(G \times Y \rightarrow Y \) is said to be **Hamiltonian** if there is a \(G \)-equivariant map, called the moment map, \(\mu: Y \rightarrow g^* \) such that \(\mu^*: S(g) \rightarrow \mathbb{F}[Y] \) is a Poisson homomorphism and \(\{\mu^*(\xi), h\} = \xi \cdot h \) for all \(\xi \in g \), \(h \in \mathbb{F}[Y] \).

Suppose that we have a Hamiltonian action \(G \times Y \rightarrow Y \). Then each function in \(\mu^*(S(g)) \) is called a **Noether integral** on \(Y \). Their most important property is given by the Noether theorem: \(\{\mathbb{F}(Y)^G, \mu^*(S(g))\} = 0 \). The kernel of \(\mu^* \) is a Poisson ideal of \(S(g) \), say \(I \), and therefore \(S(g)/I \) is a Poisson quotient of \(S(g) \).

Let \(I \subset S(g) \) be a \(G \)-invariant prime ideal. Being \(G \)-invariant implies that \(\{g, I\} \subset I \). In other words \(I \) is a Poisson ideal. Set \(X = \text{Spec}(S(g)/I) \). Then \(\mathbb{F}[X] \) is a Poisson algebra and \(X \) is a Poisson variety. Set

\[
I(X) := (\dim X + \text{tr.deg} \mathbb{F}(X)^G)/2.
\]

It follows from Rosenlicht’s theorem, that

\[
I(X) = \frac{1}{2} (\dim X + (\dim X - \max_{\gamma \in X(\mathbb{F})} \dim (g \gamma))) = \dim X - \frac{1}{2} \max_{\gamma \in X(\mathbb{F})} \dim (g \gamma),
\]

where \(X(\mathbb{F}) \subset (g \otimes_{\mathbb{F}} \mathbb{F})^* \) and \(g \gamma = T_\gamma(G \gamma) \). Let \(R \subset \mathbb{F}[X] \) be a Poisson commutative subalgebra. Take \(\gamma \in X(\mathbb{F}) \) such that the orbit \(G \gamma \) is of maximal possible dimension. The subspace

\[
\langle d_{\gamma} a \mid a \in R \rangle \subset T_\gamma^* X(\mathbb{F}) \subset g \otimes_{\mathbb{F}} \mathbb{F},
\]

spanned over \(\mathbb{F} \) by the differentials \(d_{\gamma} a \), is isotropic with respect to the symplectic form \(\gamma(x, y) = \gamma([x, y]) \) (here \(x, y \in g \otimes_{\mathbb{F}} \mathbb{F} \)). Hence the dimension of this subspace is less than or equal to \(I(X) \) and also \(\text{tr.deg} R \leq I(X) \). A family \(\{f_1, \ldots, f_i(X)\} \subset \mathbb{F}[X] \) is said to be **complete** if \(\{f_i, f_j\} = 0 \) for all \(i, j \) and \(f_1, \ldots, f_{i(X)} \) are algebraically independent.

From now until the end of this section, assume that the geometric points of an irreducible affine variety \(M \) form a dense subset of \(M(\mathbb{F}) \). Suppose further that there is a non-degenerate closed regular 2-form \(\varnothing \) on the smooth locus of \(M(\mathbb{F}) \). Then \(\varnothing \) induces a Poisson bracket on \(\mathbb{F}(M) \), and \(\mathbb{F}(M) \) is a symplectic Poisson algebra in the sense of Definition 2. The variety \(M \) is said to be **symplectic** if \(\mathbb{F}[M] \) is a Poisson subalgebra of \(\mathbb{F}(M) \), i.e., if \(\{\mathbb{F}[M], \mathbb{F}[M]\} \subset \mathbb{F}[M] \). In that case \(\mathbb{F}[M] \) is a symplectic algebra as well. This is always the case for normal affine varieties. Set \(2n := \dim_{\mathbb{F}} M = \text{tr.deg} \mathbb{F}(M) \). A family of functions \(\{f_1, \ldots, f_n\} \subset \mathbb{F}(M) \) such that \(\{f_i, f_j\} = 0 \) for all \(i \) and \(j \) is said to be **complete** if the
f_i's are algebraically independent. A complete family of functions generates a Poisson-commutative subalgebra $\mathcal{A} \subset \mathbb{F}(M)$ with $\text{tr.deg}\, \mathcal{A} = n$.

The simplest example of a symplectic variety is an even-dimensional vector space V equipped with a non-degenerate skew-symmetric bilinear form ω. Each Lagrangian decomposition $V = V_+ \oplus V_-$ gives us a complete family of linear functions on V, namely, one has to take a basis of V_+. Another familiar example is the cotangent bundle of a smooth irreducible affine variety Y, $M = T^*Y$, equipped with the canonical symplectic structure. Here $\mathbb{F}[Y]$ is a Poisson commutative subalgebra of $\mathbb{F}[M]$. Since $\dim M = 2\dim Y$, the subalgebra $\mathbb{F}[Y]$ contains a complete family of functions on M.

It is a challenging open problem to prove that for each affine symplectic variety M, the Poisson algebra $\mathbb{F}[M]$ contains a complete family.

Suppose $h \in \mathbb{F}[M]$. Let η_h be the vector field on the smooth locus of M uniquely defined by the formula $dh = \omega(\eta_h, \cdot)$. Then η_h defines a Hamiltonian dynamical systems on M, and any function f on M such that $\{h, f\} = 0$ is called a first integral of this system. The intersection of the level hypersurfaces of first integrals is stable with respect to the flow generated by η_h. Thus, to understand dynamical properties of η_h, it is desirable to construct as many independent first integrals as possible. The triple (M, ω, h) is said to be completely integrable if there are algebraically independent first integrals f_1, \ldots, f_n such that $\{f_i, f_j\} = 0$ and $2n = \dim M$.

Let (M, ω) be a symplectic affine variety and $G \times M \to M$ a Hamiltonian algebraic action. Write M^{reg} for the smooth locus of M. For each $x \in M^{\text{reg}}$, let $(gx)^\perp \subset T_xM$ denote the orthogonal complement of gx taken with respect to ω. The function

$$x \mapsto \dim (gx \cap (gx)^\perp)$$

is constant on a non-empty open subset $U \subset M^{\text{reg}}$ and its value d on U is called the defect of the action $G \times M \to M$ (see [16, Chapter II, §3]).

Definition 13. The corank of $G \times M \to M$, denoted by $\text{cork}\, M$, is defined by the formula

$$\text{cork}\, M := \min_{x \in M^{\text{reg}}} \dim (gx)^\perp - d.$$

In other words, it equals the rank of the form $\omega|_{(gx)^\perp}$ for generic $x \in M^{\text{reg}}$. A Hamiltonian action of G on a symplectic variety M is said to be coisotropic if $\text{cork}\, M = 0$, i.e., if $(gx)^\perp \subset gx$ for generic $x \in M^{\text{reg}}$.

Theorem 3 (A geometric version of Theorem 1). Let $G \times M \to M$ be a coisotropic Hamiltonian action on a symplectic variety M and let $\mu : M \to g^*$ be the corresponding moment map. Then there are functions $f_1, \ldots, f_n \in S(g)$, where $n = \dim M/2$, such that $\{\mu^*(f_1), \ldots, \mu^*(f_n)\}$ is a complete family on M.

Proof. Let $I < S(g)$ be the kernel of μ^*. Then I is a prime Poisson ideal of $S(g)$. Set $X := \text{Spec}(S(g)/I)$ and take $x \in M$. Using the fact that M is a symplectic variety and the property $\{\mu(\xi), h\} = \xi \cdot h$ of the moment map, see Definition 12, one deduces that the kernel of $d\mu_x$ coincides with $(gx)^\perp$, cf. [16, Chapter II, §2]. Therefore, $\dim X = \max_{x \in M} \dim (gx)$.
and $\max_{Y \in \mathcal{F}} \dim_{\mathcal{F}}(gY) = \max_{x \in M} \dim_{\mathcal{F}}(gx) - d$. Choose $x \in M$ such that $\dim(gx)$ is maximal. Then

$$l(X) = l(I) = \dim(gx) - \frac{1}{2}(\dim(gx) - d) = (\dim(gx) + d)/2 = (\dim M - \text{cork} M)/2.$$

Clearly, $2l(X) = \dim M$ if and only if the action $G \times M \to M$ is coisotropic. By virtue of Theorem 2, there is a complete family $\{f_i\}$ in $S(g)/I = \mathbb{F}[X]$. Since $\text{cork} M = 0$ and μ^* is a Poisson homomorphism, $\{\mu^*(f_i)\}$ is a complete family on M. \quad \square

Corollary. A Hamiltonian action $G \times M \to M$ is coisotropic if and only if there is a complete family of Noether integrals on M; or, equivalently, each G-invariant Hamiltonian system on M is completely integrable in the class of Noether integrals.

Theorem 4. Let $G \times M \to M$ be a Hamiltonian action with $\text{cork} M = 2$. Then there is a complete family in $\mathbb{F}(M)$. If in addition generic $G(\mathbb{F})$-orbits on $M(\mathbb{F})$ are separated by regular invariants, then there is a complete family in $\mathbb{F}[M]$.

Proof. Let $I \subset S(g)$ be the kernel of μ^*. Set $X := \text{Spec}(S(g)/I)$. Then $l(X) = \dim M/2 - 1$. By Theorem 2, there are functions $f_1, \ldots, f_{l(X)} \in S(g)$ such that their restrictions to X form a complete family. Set $R := \mu^*(S(g))$. Let $\langle d_i R \rangle$ be the subspace of $T^*_x M$ spanned over \mathbb{F} by all differentials $d_i f$ with $f \in R$. Since $(gX)^\perp$ is the kernel of $d\mu_x$, we have $\langle d_i R \rangle = \text{Ann}((gX)^\perp)$. By Rosenlicht’s theorem, generic $G(\mathbb{F})$-orbits on $M(\mathbb{F})$ are separated by rational invariants. Therefore, $\langle d_i (\mathbb{F}(M)^G) \rangle = \text{Ann}(gX)$ for generic $x \in M$. Since the action $G \times M \to M$ is not coisotropic, $(gX)^\perp \not\subset gX$ and there is at least one $h \in \mathbb{F}(M)^G$ such that functions $\{h, \mu^*(f_1), \ldots, \mu^*(f_{l(X)})\}$ are algebraically independent. Recall that $\{\mathbb{F}(M)^G, R\} = 0$. Thus, $\{h, \mu^*(f_1), \ldots, \mu^*(f_{l(X)})\}$ is a complete family on M. If generic $G(\mathbb{F})$-orbits on $M(\mathbb{F})$ are separated by regular invariants, then $\mathbb{F}(M)^G = \text{Quot} \mathbb{F}[M]^G$ and we can choose h in $\mathbb{F}[M]^G$. \quad \square

Let us say a few words about cotangent bundles. It was already mentioned that a complete family always exists here. But the construction of Theorems 2 and 3 provides other examples of complete families, which can be useful for other Hamiltonian systems.

Suppose that $M = T^*X$, where X is a G-variety. Then M possesses a canonical G-invariant symplectic structure such that the action of G is Hamiltonian. If the action $G \times M \to M$ is coisotropic, then X has an open G-orbit [5]. For reductive G one can say more.

Suppose \mathbb{F} is algebraically closed, G is reductive, and X is smooth. By a result of Knop [8, Sections 6&7], the action of G on T^*X is a coisotropic if and only if a Borel subgroup B of G has on open orbit on X. Normal varieties having an open B-orbit are said to be spherical. It was known before that if X is spherical and $X = G/H$, where H is a reductive subgroup of G, then each G-invariant Hamiltonian system on T^*X is integrable within the class of Noether integrals, see [5, 11, 7]. Here we lift the assumption that H is reductive. Smooth affine spherical varieties are classified (under mild technical constraints) in [9]. It would be interesting to study complete families on their cotangent bundles.
By the same result of Knop [8], the action of G on T^*X is of corank 2 if and only if $\text{tr}.\deg \mathcal{F}(X)^B = 1$, i.e., X has complexity 1. Theorem 4 provides also (hopefully) interesting completely integrable systems for these cotangent bundles.

Other well-studied coisotropic actions on cotangent bundles are related to Gelfand pairs. Suppose that $\mathcal{F} = \mathbb{R}$ and $M = T^*X$, where $X = G/K$ is a Riemannian homogeneous space. Then X is called commutative or the pair (G,K) is called a Gelfand pair if the action $G \times M \to M$ is coisotropic. Gelfand pairs can be characterised by the following equivalent conditions.

(i) The algebra $\mathcal{D}(X)^G$ of G-invariant differential operators on X is commutative.

(ii) The algebra of K-invariant measures on X with compact support is commutative with respect to convolution.

(iii) The representation of G on $L^2(X)$ has a simple spectrum.

Theorem 3 and its corollary provide two more equivalent conditions.

(iv) There is a complete family of Noether integrals on T^*X.

(v) Each G-invariant Hamiltonian system on M is completely integrable in the class of Noether integrals.

According to [16], if G/K is a Gelfand pair and $G = L \rtimes N$ is a Levi decomposition of G such that $K \subset L$, then $\mathbb{R}[n]^L = \mathbb{R}[n]^K$ and n is at most two-step nilpotent. These conditions guarantee that the construction of a complete family on $\mu(M)$ would have at most three induction steps. Thus, one can hope for explicit formulas for our commuting families and applications to physical problems. Gelfand pairs are partly classified in [17, 19] and completely in [20].

3. THE REDUCTIVE CASE

In this section, G is a connected reductive algebraic group. Here one can apply a very powerful tool, the so called “argument shift method”. It was used by Manakov [10], Mishchenko and Fomenko [12], and Bolsinov [1] in constructions of complete families on g^* and coadjoint G-orbits. The reader is referred to [6, Chapter 4] for a thorough exposition and historical remarks. Let us briefly outline this method.

Let r be the rank of g. Choose any set F_1, \ldots, F_r of free generators of $\mathbb{F}[g^*]^G$. For any $a \in g^*$, let \mathcal{F}_a denote the finite set

$$\{F_i, \partial_a F_i, \partial_a^2 F_i, \ldots, \partial_a^{k(i)} F_i \mid i = 1, \ldots, r, k(i) = \deg F_i - 1\} \subset S(g).$$

Then $\{\mathcal{F}_a, \mathcal{F}_a\} = 0$, see e.g. [14, Sections 1.12, 1.13]. Here we should mention that this fact is stated in [14] for $\mathbb{F} = \mathbb{C}$, but the proofs are valid over all fields of characteristic zero.

Recall that the index of a Lie algebra q is the minimum of dimensions of stabilisers q_ξ over all covectors $\xi \in q^*$, i.e., $\text{ind}q = \min_{\xi \in q^*} \dim q_\xi$. Note that $\text{ind}q = \text{tr}.\deg \mathcal{F}(q^*)^g$ and that $\dim q - \text{ind}q$ is the rank of the Poisson algebra $S(q)$ as defined in the Introduction.
Proposition 14. [1, Theorem 2] Suppose that \mathfrak{g} is a complex reductive Lie algebra and $\xi \in \mathfrak{g}^*$. Then there is $a \in \mathfrak{g}^*$ such that the restriction of \mathcal{F}_a to the coadjoint orbit $G\xi$ contains $\frac{1}{2}\dim(G\xi)$ algebraically independent functions if and only if $\text{ind}\, \mathfrak{g}_\xi = \text{ind}\, \mathfrak{g}$.

The proof of Theorem 2 in [1] uses only linear algebra and can be repeated for any algebraically closed field of characteristic zero. We are going to use the result also for $\mathbb{F} \neq \mathbb{C}$.

Proposition 15. If \mathfrak{g} is reductive and $\xi \in \mathfrak{g}^*$, then $\text{ind}\, \mathfrak{g}_\xi = \text{ind}\, \mathfrak{g}$.

The statement of Proposition 15 is known as Elashvili’s conjecture. For the classical Lie algebras, it is proved in [18] under the assumption that $\text{char}\, \mathbb{F}$ is good for \mathfrak{g}. W. de Graaf used a computer program to verify the conjecture for the exceptional Lie algebras, see [4]. An almost conceptual proof of Elashvili’s conjecture is given in [3]. (The authors still have to rely on computer calculations for a few orbits.)

Let $\hat{\mathcal{V}}_{a,\xi} \subseteq T^*_\xi(\mathfrak{g}^*)$ be the \mathbb{F}-linear span of the differentials $\{d_\xi F \mid F \in \mathcal{F}_a\}$ and let $\mathcal{V}_{a,\xi}$ be the restriction of $\hat{\mathcal{V}}_{a,\xi}$ to $T^*_\xi(G\xi) = \mathfrak{g}_\xi$. Since the orbit $G\xi$ is a symplectic variety and the subspace $\mathcal{V}_{a,\xi}$ is isotropic, we get $2\dim \mathcal{V}_{a,\xi} \leq \dim(G\xi)$. The restriction of \mathcal{F}_a to $G\xi$ contains a complete family if and only if there is $a' \in \mathfrak{a}$ such that $2\dim \mathcal{V}_{a',\xi} = \dim(G\xi)$.

Combining Propositions 14 and 15, we obtain the following assertion.

Proposition 16. Suppose that $\mathbb{F} = \overline{\mathbb{F}}$. Then for each $\xi \in \mathfrak{g}^*$, there is $a \in \mathfrak{g}^*$ such that $2\dim \mathcal{V}_{a,\xi} = \dim(G\xi)$.

Proof of Theorem 2 in the reductive case. Let I be a prime Poisson ideal of $\mathcal{S}(\mathfrak{g})$ and $X(\overline{\mathbb{F}})$ a closed subvariety of $(\mathfrak{g} \otimes \overline{\mathbb{F}})^*$ defined by I.

Choose a set of homogeneous generators $\{F_1, \ldots, F_r\} \subseteq \mathbb{F}[\mathfrak{g}^*]^G$. Let \hat{F}_i denote the restriction of F_i to X. Each fibre of the quotient morphism $X(\overline{\mathbb{F}}) \to X(\overline{\mathbb{F}})//G(\overline{\mathbb{F}})$ contains finitely many G-orbits. Hence for generic $\xi \in X(\overline{\mathbb{F}})$ the differentials $\{d_\xi \hat{F}_i \mid i = 1, \ldots, r\}$ generate a subspace of dimension $m := \dim X - \dim(G\xi)$. According to Proposition 16, there is an element $a \in (\mathfrak{g} \otimes \overline{\mathbb{F}})^*$ such that the restriction of \mathcal{F}_a to $G(\overline{\mathbb{F}})\xi$ contains a complete family, i.e., $2\dim \mathcal{V}_{a,\xi} = \dim(G(\overline{\mathbb{F}})\xi)$. There is an open subset of such elements. In particular, we may (and will) assume that $a \in \mathfrak{g}^*$. Then \mathcal{F}_a is a subset of $\mathcal{S}(\mathfrak{g})$. Each differential $d_\xi \hat{F}_i$ is zero on \mathfrak{g}_ξ. Therefore

$$\dim \langle d_\xi f \mid f \in \mathcal{F}_a/(\mathcal{F}_a \cap I) \rangle = m + \dim(G\xi)/2 = (m + \dim X)/2 = \ell(X)$$

and the restriction of \mathcal{F}_a to X contains a complete family. \hfill \Box

4. Auxiliary results

In this section, we collect several facts concerning structural properties of algebraic Lie algebras. They will be used in the proof of the main theorem.

Recall that a $(2n+1)$-dimensional Heisenberg Lie algebra over \mathbb{F} is a Lie algebra \mathfrak{h} with a basis $\{x_1, \ldots, x_n, y_1, \ldots, y_n, z\}$ such that $n \geq 1$, $[x_i, x_j] = [y_i, y_j] = 0$, $[h, z] = 0$, and $[x_i, y_j] = \delta_{ij}z$. Recall also that a Lie ideal $a \triangleleft \mathfrak{q}$ is said to be a characteristic ideal if it is stable under all automorphisms of the Lie algebra \mathfrak{q}.
Lemma 17. Suppose that n is a nilpotent Lie algebra such that each commutative characteristic ideal of n is one-dimensional. Then n is a Heisenberg algebra.

Proof. Let z be the centre of n. Then $\dim z = 1$. Consider the upper central series of n

$$z = n_0 \subset n_1 \subset n_2 \subset \cdots \subset n_{k-1} \subset n_k = n,$$

i.e., n_i/n_{i-1} is the centre of n/n_{i-1}. The centre of n_1 is a commutative characteristic ideal of n. Hence, it is one-dimensional and coincides with z. Therefore n_1 is a Heisenberg algebra. Let $z_n(n_1)$ be the centraliser of n_1 in n. Clearly, $z_n(n_1)$ is an ideal in n and $n_1 \cap z_n(n_1) = z$.

We claim that $n = n_1 + z_n(n_1)$. Indeed, let $z \in n$. Then $[z, n_1] \subset n_0$ and there is an element $z_0 \in n_1$ such that $[z - z_0, n_1] = 0$.

Let z_0 be the centre of $z_n(n_1)/z$. Since $n/z = (n_1/z) \oplus (z_n(n_1)/z)$ is the direct sum of two ideals, z_0 lies in the centre of n/z. Thus, $z_0 \subset (n_1/z)$ and $z_0 = 0$. Since $z_n(n_1)/z$ is a nilpotent Lie algebra, we have $z_n(n_1)/z = 0$, and $n = n_1$ is a Heisenberg algebra. □

Let N be the unipotent radical of an affine algebraic group G. Set $n := \text{Lie}N$. For any action $P \times Y \rightarrow Y$ let Y/P stand for the set of P-orbits on Y.

Lemma 18. Suppose that n is a Heisenberg Lie algebra and the centre z of n lies in the centre of g.

Given a non-zero $\alpha \in z^*$, set $Y_\alpha := \{\gamma \in g^* \mid \gamma(z) = \alpha\}$. Then $Y_\alpha/N = \text{Spec} \mathbb{F}[Y_\alpha]^N$; the natural action of G/N on Y_α/N is Hamiltonian in the sense of Definition 12 and the moment map $\mu : Y_\alpha/N \rightarrow (g/n)^*$ is a G-isomorphism.

Proof. Choose a Levi decomposition $G = L \ltimes N$ and let V be an L-invariant complement of z in n. Set $S_\alpha := \{\gamma \in g^* \mid \gamma(V) = 0, \gamma(z) = \alpha\}$. In other words, $S_\alpha = (g/n)^* + \tilde{\alpha}$, where $\tilde{\alpha} \in g^*$, $\tilde{\alpha}(V) = 0$, $\tilde{\alpha}(l) = 0$, and $\tilde{\alpha}(z) = \alpha$. Clearly $S_\alpha \subset Y_\alpha$. Each point $\gamma \in Y_\alpha$ can be uniquely presented as a sum

$$\gamma = \beta + \text{ad}^* (\eta) \cdot \tilde{\alpha} + \tilde{\alpha}, \text{ where } \beta(n) = 0 \text{ and } \eta \in V.$$

Thus $N\gamma \cap S_\alpha = \gamma - \text{ad}^* (\eta) : \gamma + \frac{1}{2} (\text{ad}^* (\eta))^2 : \gamma = \{pr\}$. We obtain the isomorphism $\mu : Y_\alpha/N \rightarrow (g/n)^*$, where $\mu(N\gamma)$ is the unique point in $N\gamma \cap S_\alpha$. Therefore Y_α/N is an algebraic variety (an affine space) and $\mathbb{F}[Y_\alpha]^N = \mathbb{F}[Y_\alpha]^N$. For the rest of the proof, we fix the isomorphism $(g/n)^* \cong \Gamma^*$ given by the Levi decomposition $g = l \oplus n$ and the induced isomorphisms $S_\alpha \cong (\Gamma^* + \tilde{\alpha}) \cong \Gamma^*$, where the last one is given by choosing $\tilde{\alpha}$ as the origin.

For each $\gamma \in S_\alpha$ and $l \in L$, we have $\mu(l \cdot N\gamma) = l\gamma - \tilde{\alpha} = l(\gamma - \tilde{\alpha}) = l \cdot \mu(N\gamma)$. This shows that μ is G-equivariant.

It remains to prove that μ^* is a homomorphism of the Poisson algebras $S(g/n)$ and $\mathbb{F}[Y_\alpha]^N$, i.e., to show that $\{\mu^*(f_1), \mu^*(f_2)\} = \mu^*(\{f_1, f_2\})$ for all $f_1, f_2 \in S(g/n)$.

Let $\gamma \in S_\alpha$. The identification $S(g/n) \cong S(l) \subset S(g)$ gives us that

$$\{f_1, f_2\} (\gamma) = \{f_1, f_2\} (\gamma - \tilde{\alpha}) = \{f_1, f_2\} (\mu(N\gamma)) = \mu^*(\{f_1, f_2\})(N\gamma).$$

The last step is to prove that $\{\mu^*(f_1), \mu^*(f_2)\}(N\gamma) = \{f_1, f_2\}(\gamma)$. It is well-known that $G\gamma$ is a symplectic leaf of Y_α and g^*. Also $L\gamma$ is a symplectic leaf of S_α. We have

$$T_\gamma(G\gamma) = T_\gamma(L\gamma) \oplus T_\gamma(N\gamma),$$

where $T_\gamma(L\gamma) = l\gamma$ and $T_\gamma(N\gamma) = n\gamma$ are orthogonal,
one can deduce that

\[\{ \mu^*(f_1), \mu^*(f_2) \} (N\gamma) = \{ F_1, F_2 \} (\gamma). \]

Clearly, the functions \(F_1 \) and \(F_2 \) are \(N \)-invariant, hence \(d_Hf_i(\eta\gamma) = 0 \). Thus \(\{ F_1, F_2 \} (\gamma) = \{ F_1\vert_{LY}, F_2\vert_{LY} \} (\gamma) = \{ f_1, f_2 \} (\gamma) \) and we are done. \(\square \)

Corollary. In the setting of Lemma 18, we have

\[(\mathbb{F}[g^*][1/z])^N \cong \mathcal{S}(g/n) \otimes_\mathbb{F} \mathbb{F}[z, 1/z] \subset \mathcal{S}(g/n) \otimes_\mathbb{F} \mathbb{F}(z^*), \]

where \(z \) is a non-zero element of \(z \). Moreover, if \(X(\mathbb{F}) \subset (g \otimes_\mathbb{F} \mathbb{F})^* \) is a closed \(G(\mathbb{F}) \)-invariant subset defined over \(\mathbb{F} \) and such that \(z|_X(\mathbb{F}) \neq 0 \), then \((\mathbb{F}[X][1/z])^N \) is a Poisson quotient of \(\mathcal{S}(g/n) \otimes_\mathbb{F} \mathbb{F}[z, 1/z] \).

Proof. Suppose first that \(\mathbb{F} = \overline{\mathbb{F}} \). Then \(X(\mathbb{F}) = X \). Set \(X_\alpha := X \cap Y_\alpha \). Then \(S_\alpha \cap X_\alpha \) defines a section of \(X_\alpha/N \), i.e., \(X_\alpha/N \cong X_\alpha \cap S_\alpha \cong S_\alpha \), where \(S_\alpha \subset (g/n)^* \) is a \(G \)-invariant (Poisson) subvariety. Therefore \((\mathbb{F}[X][1/z])^N \) is a Poisson quotient of \(\mathcal{S}(g/n) \otimes_\mathbb{F} \mathbb{F}[z, 1/z] \).

Consider now the general case. The Galois group \(\text{Gal}_\mathbb{F}(\overline{\mathbb{F}}) \) of the field extension \(\mathbb{F} \subset \overline{\mathbb{F}} \) acts on \((\mathbb{F}[X][1/z])^N \) and on \(\mathcal{S}(g/n) \otimes_\mathbb{F} \mathbb{F}[z, 1/z] \). Taking its fixed points on both sides, we see that the statement holds. \(\square \)

Remark 19. From Lemma 18 one can deduce that \(\mathbb{F}(g^*)^G = \mathbb{F}((g/n)^*)^{G/N} \otimes_\mathbb{F} \mathbb{F}(z^*) \). In particular, in this case \(\mathbb{F}(g^*)^G \) is a rational field.

Let \(H \triangleleft N \) be a connected commutative normal subgroup of \(G \) with \(\text{Lie} H = h \).

Lemma 20. Fix \(\alpha \in h^* \) and let \(Y_\alpha \) be the preimage of \(\alpha \) under the natural restriction \(g^* \to h^* \). Then \(Y_\alpha/H = \text{Spec} \mathbb{F}[Y_\alpha]^H \) and the restriction map \(\pi_\alpha : Y_\alpha \to (g_\alpha)^* \) defines an isomorphism \(Y_\alpha/H \cong (g_\alpha/h)^* \times \{ \alpha \} \).

Proof. Let \(\gamma \in g_\alpha, \xi \in h, \eta \in g \). Then

\[(\xi - \gamma)(\eta) = \gamma(\eta, \xi) - \alpha(\eta, \xi) = -\langle \eta, \alpha \rangle(\xi). \]

Note that \(\xi(\gamma) = 0 \) and therefore \(H\gamma = \gamma + h\gamma = \gamma + (g_\alpha)^* \). Each non-zero fibre of the natural \(G_\alpha \)-equivariant restriction \(\pi_\alpha : Y_\alpha \to (g_\alpha)^* \) is exactly one \(H \)-orbit. Let us fix a decomposition \(g = g_\alpha \oplus m \). Choose any \(\alpha \in g^* \) such that \(\alpha(m) = 0 \) and \(\alpha|_h = \alpha \). Then \(Y_\alpha = (g/h)^* + \alpha \) and \(\pi_\alpha(Y_\alpha) \cong (g_\alpha/h)^* \times \{ \alpha \} \cong (g_\alpha/h)^* \times \{ \alpha \} \). \(\square \)

Until Lemma 23, we assume that \(\mathbb{F} = \overline{\mathbb{F}} \). Suppose that \(X \subset g^* \) is a closed \(G \)-invariant subset. Let \(r_\alpha \subset h^* \) denote the image of \(X \) under the restriction \(g^* \to h^* \). Set \(K := \mathbb{F}(r_\alpha) \) and

1. \(\hat{g} := \{ \xi \in g \otimes_\mathbb{F} K \mid \bar{\xi}(h) = 0 \} \),
2. \(\hat{h} := \{ \xi \in h \otimes_\mathbb{F} K \mid \alpha(\bar{\xi}(\alpha)) = 0 \text{ for each } \alpha \in r_\alpha \text{ such that } \bar{\xi}(\alpha) \text{ is defined} \} \).

Then \(\hat{g} \) is the Lie algebra of all rational maps \(\xi : r_\alpha \to g \) such that \(\bar{\xi}(\alpha) \in g_\alpha \) whenever \(\bar{\xi}(\alpha) \) is defined.
Since \mathfrak{h} is a commutative ideal of \mathfrak{g}, we have $\mathfrak{h} \otimes \mathbb{K} \triangleleft \mathfrak{g}$. Moreover, \mathfrak{h} is also an ideal of \mathfrak{g}. The main object of our interest is the quotient Lie algebra $\mathfrak{g} := \hat{\mathfrak{g}}/\hat{\mathfrak{h}}$. Another way to define this Lie algebra is to say that $\hat{\mathfrak{g}} := \{\xi \in \mathfrak{g} \otimes \mathbb{K} \mid [\xi, \mathfrak{h}] (\mathfrak{h}) = 0\}$.

Set $\mathcal{A} := (\mathbb{F}[X] \otimes \mathbb{F}[\mathfrak{h}])^H = \mathbb{F}[X]^H \otimes \mathbb{F}[\mathfrak{h}] \mathbb{K}$. Then the algebra \mathcal{A} carries a natural Poisson structure induced from $\mathbb{F}[X]$.

Lemma 21. Suppose that $\mathbb{F} = \overline{\mathbb{F}}$. Then \mathcal{A} is a Poisson quotient of $S(\tilde{\mathfrak{g}})$.

Proof. The elements of \mathcal{A} and $S(\tilde{\mathfrak{g}})$ are linear combinations of rational functions on \mathfrak{h} with coefficients from $\mathbb{F}[X]^H$ or $S(\mathfrak{g})$, respectively. Thus, it suffices to verify the claim at generic $\alpha \in \mathfrak{h}$.

Fix a vector space decomposition $\mathfrak{g} = \mathfrak{g}_\alpha \oplus \mathfrak{m}$ and let $s : \{\alpha\} \times (\mathfrak{g}_\alpha/\mathfrak{h})^* \to \text{Ann}(\mathfrak{m}) \subset \mathbb{Y}_\alpha$ be the corresponding section of π_α. Then $S_\alpha := \text{Im} s$ is a closed subset of \mathbb{Y}_α and by Lemma 20, $S_\alpha \cap X \cong \pi_\alpha(\mathbb{Y}_\alpha \cap X) \cong (X \cap \mathbb{Y}_\alpha)/H$. Let $\mathcal{A}_\alpha \subset \mathcal{A}$ be the subset of elements that are defined at α. Then for generic $\alpha \in \mathfrak{h}$, we have a surjective map

$$
\varepsilon_\alpha : \mathcal{A}_\alpha \rightarrow \mathbb{F}[\mathbb{Y}_\alpha \cap X]^H \cong \mathbb{F}[S_\alpha \cap X].
$$

At the same time, $\tilde{\mathfrak{g}}(\alpha) := \{\xi(\alpha) \mid \xi \in \hat{\mathfrak{g}}, \xi(\alpha) \text{ is defined}\} = \mathfrak{g}_\alpha$ for generic $\alpha \in \mathfrak{h}$. The algebra $\tilde{\mathfrak{g}}(\alpha) := \{\xi(\alpha) \mid \xi \in \tilde{\mathfrak{g}}, \xi(\alpha) \text{ is defined}\}$ is a 1-dimensional central extension of $\mathfrak{g}_\alpha/\mathfrak{h}$. We have $(\mathfrak{g}_\alpha/\mathfrak{h}) \oplus \mathbb{F}w$ with the Lie bracket

$$
[\xi + \mathfrak{h}, \eta + \mathfrak{h}] := ([\xi, \eta] + \mathfrak{h}) + \tilde{\mathfrak{g}}(\alpha)[\xi, \eta]w \text{ for all } \xi, \eta \in \mathfrak{g}_\alpha,
$$

where $\tilde{\alpha} \in \mathfrak{g}_\alpha^*$ is a linear function such that $\tilde{\alpha}_w = \alpha$. Hence $(\tilde{\mathfrak{g}}(\alpha))^* = (\mathfrak{g}_\alpha/\mathfrak{h})^* \times \mathbb{F}\tilde{\alpha}$ and $S_\alpha \cap X$ is a closed subset of $(\tilde{\mathfrak{g}}(\alpha))^*$.

Therefore \mathcal{A} is a quotient of $S(\tilde{\mathfrak{g}})$. Since the Poisson structure on \mathcal{A} is induced from $\mathbb{F}[X]$ and X is a Poisson subvariety of $\tilde{\mathfrak{g}}^*$, it is indeed a Poisson quotient. \hfill \Box

Remark 22. Informally speaking, \mathcal{A} is the algebra of functions on the set \tilde{X} of all rational morphisms $\psi : \mathfrak{h} \rightarrow X$ such that $\psi(\alpha) \in (X \cap S_\alpha)$. Here \tilde{X} is also a set of the H-invariant rational morphisms $\psi : \mathfrak{h} \rightarrow X$ such that $\psi(\alpha) \in (X \cap \mathbb{Y}_\alpha)$.

If $\mathbb{F} \neq \overline{\mathbb{F}}$, then it is better to work with ideals. Let $I \subset S(\mathfrak{g})$ be a G-invariant prime ideal. Set $I_0 = I \cap S(\mathfrak{h})$ and let $\mathfrak{h} \subset \mathfrak{h}^*$ be the subvariety defined by I_0. Now $\mathbb{K} = \text{Quot}S(\mathfrak{h})/I_0$ and

$$
\tilde{\mathfrak{g}} := \{\xi \in \mathfrak{g} \otimes \mathfrak{h} \mathbb{K} \mid \{\xi, \mathfrak{h}\} \subset I_0 \otimes \mathbb{K}\}.
$$

Finally set $\tilde{\mathcal{P}} := (S(\tilde{\mathfrak{g}})/I)^{\mathfrak{h}} \otimes \mathbb{F}[\mathfrak{h}] \mathbb{K}$.

Lemma 23. Let \mathbb{F} be any field of characteristic zero. Then $\tilde{\mathcal{P}}$ is a Poisson quotient of $S(\tilde{\mathfrak{g}})$.

Proof. In case $\mathbb{F} = \overline{\mathbb{F}}$, $\tilde{\mathfrak{g}}$ coincides with the quotient $\hat{\mathfrak{g}}/\hat{\mathfrak{h}}$, where $\hat{\mathfrak{g}}$ and $\hat{\mathfrak{h}}$ are defined by Formulas (1) and (2). In the general case, we have $\tilde{\mathfrak{g}} \otimes \overline{\mathbb{F}} = \mathfrak{g} \otimes \mathbb{F}/h \otimes \mathbb{F}$. By Lemma 21, $\tilde{\mathcal{P}} \otimes \overline{\mathbb{F}}$ is a Poisson quotient of $S(\tilde{\mathfrak{g}}) \otimes \mathbb{F}$. The Galois group $\text{Gal}_\mathbb{F}(\overline{\mathbb{F}})$ of the field extension $\mathbb{F} \subset \overline{\mathbb{F}}$ acts on both these Poisson algebras. By taking fixed points of $\text{Gal}_\mathbb{F}(\overline{\mathbb{F}})$, we conclude that $\tilde{\mathcal{P}}$ is a Poisson quotient of $S(\tilde{\mathfrak{g}})$. \hfill \Box
5. Inductive Argument

Let $I \triangleleft S(\mathfrak{g})$ be a G-invariant (i.e., Poisson) prime ideal, set $X = \text{Spec}(S(\mathfrak{g})/I)$. Then $\mathcal{P} := \mathbb{F}[X] = S(\mathfrak{g})/I$ is a Poisson algebra. In this section, we construct a complete family in $\mathbb{F}[X]$.

Proof of Theorem 2. Set $n := \dim X = \text{tr.deg} \mathcal{P}$, $m := \dim X - \text{rk} \mathcal{P}$. Then $n - m$ is the dimension of a generic $G(\mathbb{F})$-orbit on $X(\mathbb{F})$, and $l = l(X) = (n + m)/2$. The task is to construct l functions $f_i \in S(\mathfrak{g})$ such that $\{f_i, f_j\} \in I$ and their restrictions to $X(\mathbb{F})$ are algebraically independent. We argue by induction on $\dim \mathfrak{g}$. At first it is assumed that \mathfrak{g} is algebraic. The case of a non-algebraic Lie algebra \mathfrak{g} is treated at the very end.

- In case of a reductive G, Theorem 2 is proved in Section 3. Assume therefore that G is not reductive. If I contains a non-trivial ideal $\mathfrak{c} \triangleleft \mathfrak{g}$, then $\mathbb{F}[X]$ is Poisson quotient of $S(\mathfrak{g}/\mathfrak{c})$ and we can replace \mathfrak{g} by $\mathfrak{g}/\mathfrak{c}$ without loss of generality. Below we assume that $I \cap \mathfrak{g} = 0$.

- Let n be the nilpotent radical of \mathfrak{g} and $N \subset G$ the connected subgroup with $\text{Lie} N = n$.

- Suppose that n is a Heisenberg Lie algebra and $\mathfrak{z} = [n, n]$ is a central subalgebra of \mathfrak{g}. Then Lemma 18 applies. Let $z \in \mathfrak{z}$ be a non-zero element. Since $\mathfrak{z} \not\subset I$, we have $z_{|X(\mathbb{F})} \neq 0$.

Set $\mathcal{P} := (\mathcal{P}[1/z])^N$. By Lemma 18, \mathcal{P} is a Poisson quotient of $S(\mathfrak{g}/n) \otimes_{\mathbb{F}} \mathbb{F}[z, 1/z]$. The Lie algebra \mathfrak{g}/n is reductive, therefore there are pairwise commuting functions $f_1, \ldots, f_k \in S(\mathfrak{g}/n) \otimes \mathbb{F}(\mathfrak{z}^*)$ such that their images form a complete family in \mathcal{P}. After multiplying by a common denominator, we may assume that each f_i lies in $S(\mathfrak{g}/n)$.

Choose a decomposition $n = V_+ \oplus V_- \oplus \mathfrak{z}$, where V_+ and V_- are commutative subalgebras. Recall that $n_\gamma = \mathfrak{z}$ for generic $\gamma \in X$. In case $\mathbb{F} = \mathbb{F}$, one can say immediately that a generic (G/N)-orbit on $\tilde{X} := \text{Spec} \mathcal{P}$ has dimension $(n - d) - (\dim n - 1)$. Hence $l(\tilde{X}) = l(X) - (\dim n - 1)/2$ in case $S(\mathfrak{z}) \cap I \neq 0$; and $l(\tilde{X}) = l(X) - (\dim + 1)/2$ otherwise. Since the numbers $l(X)$ and $l(\tilde{X})$ do not change under field extensions, the same equalities hold over any \mathbb{F}.

If $S(\mathfrak{z}) \cap I = 0$, then f_1, \ldots, f_k together with a basis of $V_+ \oplus \mathfrak{z}$ give us a complete commutative family on X. If $S(\mathfrak{z}) \cap I \neq 0$, then we add a basis of V_+ to $\{f_i\}$ and again obtain a complete family on X.

- If the previous case does not hold, then either n is a Heisenberg Lie algebra such that $[n, n]$ is not a central subalgebra of \mathfrak{g}, or n contains a commutative characteristic ideal \mathfrak{h} such that $\dim \mathfrak{h} > 1$, see Lemma 17. In both cases, there is a commutative ideal $\mathfrak{h} \subset n$ of \mathfrak{g} such that either $[\mathfrak{g}, \mathfrak{h}] \neq 0$ or $\dim \mathfrak{h} > 1$. Set $I_0 := I \cap S(\mathfrak{h})$ and let \mathfrak{r}_0 be the subvariety of \mathfrak{h}^* defined by I_0. By definition, $\mathfrak{r}_0(\mathbb{F})$ coincides with the image of the natural projection $X(\mathbb{F}) \to (\mathfrak{h} \otimes_{\mathbb{F}} \mathbb{F})^*$. The connected unipotent subgroup $H = \exp(\mathfrak{h}) < G$ will play a rôrle in the proof.

Set $\mathbb{K} := \mathbb{F}(\mathfrak{r}_0) = \text{Quot} S(\mathfrak{h})/I_0$. Consider the Lie algebra $\bar{\mathfrak{g}} := \{\xi \in \mathfrak{g} \otimes_{\mathfrak{h}} \mathbb{K} \mid \{\xi, \mathfrak{h}\} \subset I_0 \otimes \mathbb{K}\}$ and also set $\mathcal{P} := \mathcal{P}^h \otimes_{\mathbb{F}[\mathfrak{r}_0]} \mathbb{K}$. By Lemma 23, \mathcal{P} is a Poisson quotient of $S(\bar{\mathfrak{g}})$.

We claim that \mathcal{P} contains no zero-divisors. Indeed, suppose $x, y \in \mathcal{P}$ and $xy = 0$. After multiplying x and y by suitable elements of the field $\mathbb{F}(\mathfrak{r}_0)$, we may assume that $x, y \in \mathcal{P}^h$. Since \mathcal{P} is a domain, either $x = 0$ or $y = 0$.

Set $\tilde{X} := \text{Spec} \tilde{F}$. Then $\tilde{X} \subset \tilde{g}^*$ is Poisson subvariety defined over \mathbb{K}. Let us compute $l(\tilde{X})$. In order to simplify notation, we do it in case $F = \overline{F}$. (The numbers $l(X)$ and $l(\tilde{X})$ do not change under field extensions.)

Let k be the dimension of a generic H-orbit on X. Note that k is also the dimension of a generic G-orbit in F_k. Since \mathfrak{h} is an algebraic Lie algebra consisting of nilpotent elements, we have $F(X)^H = \text{Quot} F[X]^H$. Therefore generic H-orbits on X are separated by regular H-invariants and $\text{tr.deg} F^\mathfrak{h} = n - k$. Hence $\text{tr.deg} \tilde{F} = n - k - \dim F^\mathfrak{h}$.

Next, $\mathbb{K}(\tilde{X}) = F(X)^H \otimes_{\mathbb{K}} \mathbb{K}$. Recall that \tilde{X} is a Poisson subvariety of \tilde{g}^*. In particular, the Poisson centre $\mathbb{Z}\mathbb{K}(\tilde{X})$ of $\mathbb{K}(\tilde{X})$ coincides with $\mathbb{K}(\tilde{X})^{\mathfrak{h}}$. Because \mathfrak{h} is commutative, $\mathfrak{h} \subset F[X]^H$. Therefore the Poisson centre $\mathbb{Z}F(X)^H$ is equal to the Poisson centraliser

$$R := \{ f \in F(X) \mid \{ f, F[X]^H \} = 0 \}.$$

Clearly R contains both $F[F^\mathfrak{h}]$ and $\mathbb{Z}F(X) = F(X)^{\mathfrak{h}}$. For generic $\gamma \in X$ we have $\dim(\mathfrak{h}|_{\mathfrak{g}^\gamma}) = \dim(\mathfrak{h}\gamma) = k$. Since all functions in $F(X)^{\mathfrak{h}}$ are constant on G-orbits, the subspace of $T_\gamma X$ generated by $d_F[F^\mathfrak{h}]$ and $d_F(F(X)^{\mathfrak{h}})$ has dimension $d + k$. Hence, $\text{tr.deg} R \geq d + k$. By a simple dimension reason $\text{tr.deg} R = d + k$. Since $\mathbb{Z}\mathbb{K}(\tilde{X}) = \mathbb{Z}F(X)^H \otimes_F \mathbb{K}$, we get $\text{tr.deg} \mathbb{K}(\tilde{X})^{\mathfrak{h}} = d + k - \dim F^\mathfrak{h}$. Thus

$$l(\tilde{X}) = (\dim \tilde{X} + \text{tr.deg.} \mathbb{K}(\tilde{X})^{\mathfrak{h}})/2 = (n - k - \dim F^\mathfrak{h} + d + k - \dim F^\mathfrak{h})/2 =$$

$$= (n + d)/2 - \dim F^\mathfrak{h} = l(X) - \dim F^\mathfrak{h}.$$

It remains to show that the dimension of \tilde{g} over $F(F^\mathfrak{h})$ is less than $\dim g$. If this is not the case, then $\tilde{g} = g \otimes_F \mathbb{K}$ and $\hat{\mathfrak{h}} = 0$ (here $\hat{\mathfrak{h}}$ is the same as in (2)). From the first equality we get $[\mathfrak{g}, \mathfrak{h}] \subset I_0$, hence $[\mathfrak{g}, \mathfrak{h}] = 0$; and by the second one, $\dim \mathfrak{h} = 1$. Together these conclusions contradict the initial assumptions on \mathfrak{h}.

Applying the inductive hypothesis to \tilde{X}, we construct $l(X) - \dim F^\mathfrak{h}$ functions $\tilde{f}_i \in S(\tilde{g})$ such that their restrictions give us a complete commutative family on \tilde{X}. After multiplying them by a suitable element of \mathbb{K}, we may assume that $\tilde{f}_i \in S(g)$. The remaining $\dim F^\mathfrak{h}$ functions we get from $S(\mathfrak{h})$.

- Suppose now that g is a non-algebraic Lie algebra. If the nilpotent radical $n < g$ contains a characteristic ideal \mathfrak{h} such that either $\dim \mathfrak{h} > 1$ or $[\mathfrak{g}, \mathfrak{h}] \neq 0$, then the above “commutative” part of the proof (decreasing of $\dim g$) goes without any alteration. If $n = 0$, then g is reductive and algebraic. It remains to consider the “Heisenberg” case.

Choose any decomposition $n = V \oplus J$ and any non-zero $\alpha \in n^*$ with $\alpha(V) = 0$. Then $\tilde{l} := \{ \xi \in g \mid [\xi, V] \subset V \}$ is a subalgebra such that $\tilde{l} \cap n = J$ and $\tilde{l} + n = g$. Since J lies in the centre of g, the subgroup $\tilde{L} = \exp(\tilde{l}) \subset G$ can play the role of L in the proof of Lemma 18. Here the conclusion is that $(\mathbb{F}[X][1/z])^{\tilde{Y}} \cong \mathbb{F}[\tilde{X}][1/z]$, where $\tilde{X} = X \cap \tilde{l}^\circ$ is the intersection in the scheme sense, and $\tilde{l}^* = \text{Ann}(V) \subset g^*$. The reduction from g to \tilde{l} still works, because $l(\tilde{X}) = l(X) - \frac{1}{2} \dim V$.

\[\square\]

REFERENCES

[1] A.V. Bolsinov, A completeness criterion for a family of functions in involution constructed by the argument shift method, Soviet Math. Dokl., 38 (1989), no. 1, 161–165.
A. V. Bolsinov, Complete families of polynomials in involution in Poisson algebras: a proof of the Mishchenko-Fomenko conjecture, Trudy of the seminar on vector and tensor analysis, MSU, 26 (2005), 87–109 (in Russian).

J.-Y. Charbonnel and A. Moreau, The index of centralizers of elements of reductive Lie algebras. Doc. Math., 15 (2010), 387–421.

W. de Graaf, Computing with nilpotent orbits in simple Lie algebras of exceptional type, LMS J. Comput. Math., 11 (2008), 280–297.

V. Guillemin and S. Sternberg, Multiplicity-free spaces, J. Diff. Geometry, 19 (1984), 31–56.

A. T. Fomenko and V. V. Trofimov, Integrable systems on Lie algebras and symmetric spaces, Advanced Studies in Contemporary Mathematics, 2; Gordon and Breach Science Publishers, New York, 1988.

A. T. Huckleberry and T. Wurzbacher, Multiplicity-free complex manifolds, Math. Annalen, 286 (1990), 261–280.

F. Knop, Weylgruppe und Momentabbildung, Invent. Math. 99 (1990), 1–23.

F. Knop and B. Van Steirteghem, Classification of smooth affine spherical varieties, Transformation groups, 11 no. 3, (2006), 495–516.

S. V. Manakov, A remark on the integration of the Euler equations of the dynamics of an n-dimensional rigid body, Funct. Anal. Appl., 10 (1976), no. 4, 93–94 (in Russian).

I. V. Mikityuk, On the integrability of invariant Hamiltonian systems with homogeneous configuration spaces, Math. USSR Sbornik 57 (1987), 527–546.

A. S. Mishchenko and A. T. Fomenko, Euler equation on finite-dimensional Lie groups, Math. USSR, Izv. 12 (1978), 371–389.

A. S. Mishchenko and A. T. Fomenko, Generalised Liouville method of integration of Hamiltonian systems, Funct. Anal. Appl., 12 (1978), 113–121.

A. M. Perelomov, Integrable systems of classical mechanics and Lie algebras, Birkhäuser Verlag, 1990.

S. T. Sadetov, A proof of the Mishchenko-Fomenko conjecture, Dokl. Akad. Nauk, 397 (2004), no. 6, 751–754; English translation in Doklady Math., 70 (2004), no. 1, 634–638.

E. B. Vinberg, Commutative homogeneous spaces and coisotropic actions, UMN 56 (2001), no. 1, 3–62; English translation in Russian Math. Surveys 56, no. 1 (2001), 1–60.

E. B. Vinberg, Commutative homogeneous spaces of Heisenberg type, Trans. Moscow Math. Soc., 64 (2003), 47–80.

O. Yakimova, The centralisers of nilpotent elements in classical Lie algebras, Funct. Anal. Appl., 40, no. 1 (2006), 42–51.

O. S. Yakimova, Principal Gelfand pairs, Transformation groups, 11 no. 2, (2006), 305–335.

O. S. Yakimova, Gelfand pairs, Dissertation, Rheinischen Friedrich-Wilhelms-Universität Bonn, 2004, Bonner Mathematische Schriften, 374 (2005). (http://bib.math.uni-bonn.de/downloads/bms/BMS-374.pdf)

E-mail address: vinberg@zebra.ru

O. Yakimova, Institut für Mathematik, Friedrich-Schiller-Universität Jena, Jena, 07737, Deutschland
E-mail address: oksana.yakimova@uni-jena.de