Regional Variation of Avoidable Hospitalisations: An Observational Study

Niklaus Gygli
University Hospital Basel

Franziska Zúñiga
University of Basel

Michael Simon (✉ m.simon@unibas.ch)
University Hospital Bern

Research Article

Keywords: Avoidable hospitalisations, ambulatory care sensitive conditions, Switzerland, primary health care, regional variation

DOI: https://doi.org/10.21203/rs.3.rs-431898/v1

License: ☕️ ① This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background Primary health care is subject to regional variation, which may be due to unequal and inefficient distribution of services. One key measure of such variation are avoidable hospitalisations, i.e., hospitalisations for conditions that could have been dealt with in situ by sufficient primary health care provision. Particularly, avoidable hospitalisations for ambulatory care-sensitive conditions (ACSCs) are a substantial and growing burden for health care systems that require targeting in health care policy.

Aims Using data from the Swiss Federal Statistical Office (SFSO) from 2017, we applied small area analysis to visualize regional variation to comprehensively map avoidable hospitalisations for five ACSCs from Swiss nursing homes, home care organisations and the general population.

Methods This retrospective observational study used data on all Swiss hospitalisations in 2017 to assess regional variations of avoidable hospitalisations for angina pectoris, congestive heart failure, chronic obstructive pulmonary disease, diabetes complications and hypertension. We used small areas (MedStat), utilisation-based hospital service areas (HSAs), and administrative districts (Cantons) as geographic zones. The outcomes of interest were age and sex standardised rates of avoidable hospitalisations for ACSCs in adults (>15 years). Our inferential analyses used linear mixed models with Gaussian distribution.

Results We identified 46,479 hospitalisations for ACSC, or 4.3% of all hospitalisations. Most of these occurred in the elderly population for congestive heart failure and COPD. The median rate of avoidable hospitalisation for ACSC was 1,080 (IQR 893 – 1,274) per 100,000 inhabitants. We found substantial regional variation for HSAs and administrative districts as well as disease-specific regional patterns.

Conclusions Differences in continuity of care might be key drivers for regional variation of avoidable hospitalisations for ACSCs. These results provide a new perspective on the functioning of primary care structures in Switzerland and call for novel approaches in effective primary care delivery.

Background

Primary health care is vital to population health. However, regional variability of its quality and accessibility may lead to unequal and inefficient distribution of services. One key measure of this variability is the rate of avoidable hospitalizations, i.e., those for conditions that could have been treated with appropriate chronic disease management in place in primary health care (1-3). In addition to incurring considerable extra costs, treating these conditions in hospital disrupts the affected patients’ normal care provision (4, 5).

Ambulatory care-sensitive conditions (ACSC) support the measurement and comparison of rates of avoidable hospitalisations. These were originally defined by international organisations such as the Organisation for Economic Co-operation and Development (OECD) and further developed by scientific experts (3). Avoidable hospitalisations for ACSCs are most common in the elderly population and increase with age (6, 7). Chronic conditions account for up to 60 % of total avoidable hospitalisations and their respective costs (6, 7). Additionally, ACSCs account for up to 48 % of annual emergency department visits and 20% of overall hospitalisations (7-10). The total cost of avoidable hospitalisations for ACSCs are a growing economic burden for health care systems (6, 7, 11). Approximately 42% of hospitalized nursing home residents are referred for ACSCs, thus generating unnecessary costs of up to 102 million Swiss francs annually in Switzerland (12). Furthermore, there is a socio-economic gradient, with lower ACSC rates in higher income regions (13). However, it is unclear how different settings and respective primary healthcare providers handle ACSC. Therefore, especially for the elderly population, it is vital not only to assess total rates of avoidable ACSC-based hospitalisations, but also to differentiate between the involved settings.

We identified five conditions that are both commonly used in health services research literature and highly prevalent amongst chronically ill populations (1-3, 5-7, 10). In descending order of occurrence, these are: congestive heart failure, chronic obstructive pulmonary disease (COPD), diabetes complications, hypertension and angina pectoris.

A large proportion of hospitalisations for these conditions are deemed preventable, i.e., they can normally be positively influenced via effective chronic disease management by primary care providers (10).
Switzerland offers a unique opportunity to explore regional variations in avoidable hospitalisations. Because of its status as a confederation, Swiss health law includes relatively high levels of regional autonomy, allowing regions to establish their own care structures and approaches (14). Mandatory health insurance with varying deductibles and primary care—mostly provided by general practitioners with freedom of choice for patients—provides the basis for all administrative districts (14). Activity-based funding to reimburse hospitals has been used since 2012 (15).

Overall, the Swiss primary health care system is stable and fully functional. Switzerland is the world's second-highest per capita spender on health care (2, 16-19), and considering that income is relatively equally distributed across the country, administrative districts are offered similar preconditions to establish their primary care structures. A recent study of ACSC Swiss contexts showed a 12-fold level of variation among small regions. That particular study was restricted to certain regions of Switzerland and provided limited insight into regional patterns regarding diagnoses and primary care provision in different settings (2).

Employing small area analysis with data from the Swiss federal statistical office, we sought to establish the first complete epidemiological map of avoidable hospitalisations for our five selected ACSCs from Swiss nursing homes, home care organisations and the general population. The results offer a new perspective on regional variation concerning the distribution, the evaluation and planning of primary health care services for the chronically ill population.

Method

Design and sample

This retrospective analysis used routine health care data of all Swiss hospitals (20) from 2017, as provided by the Swiss Federal Statistical Office (SFSO). To assess the suitability of eligible diagnoses we used a set of quality indicators provided by the OECD to compare the quality of health care provision between countries. As the OECD Health Care Quality Indicator Project uses avoidable hospitalisations for ACSCs as a quality measure for chronic disease management in primary care (3, 21), we included four prominent chronic conditions from their list of indicators: congestive heart failure, chronic obstructive pulmonary disease (COPD), diabetes complications and hypertension (3, 21). A fifth indicator, angina pectoris, is commonly used in similar settings (6, 7). ICD 10 codes for these conditions can be found in table 1. Consistent with the OECD criteria, we included all hospitalisations in the population aged 15+ and not referred from other hospitals or rehabilitation clinics (3, 21).

Data sources

Data for this study were extracted from the SFSO's annual census report and from the medical statistical data collected by Swiss hospitals on all hospitalisations. Census data included age and gender distribution for each small area (22). All Swiss hospitals collect medical data continuously in compliance with Swiss federal law and provide them annually to the SFSO (23). Patients hospitalised multiple times were assigned to multiple cases with unique anonymized patient identifiers to allow us to track their hospital admissions throughout the year.

Geographic areas

We used the Swiss acute care hospitals' and administrative districts' (cantons) utilisation-based hospital service areas (HSA) for geographical analyses. HSAs and cantons are compatible with MedStat's geographical units used in Switzerland to provide anonymized data on patients' residences based on small geographical areas. Census data and data on patients' residences were provided by the SFSO. Each MedStat unit is home to approximately 10,000 inhabitants and is contained within a single HSA or canton (24). Based on discharge data from the Swiss acute care hospitals, HSAs are defined and maintained by the SFSO (25). Switzerland currently contains 705 MedStat areas, 61 HSAs and 26 cantons.

Using HSAs and MedStat areas is an established approach to analysing area-specific medical data (2). It ensures compatibility of the medical statistical data for hospitals with census data across all three levels (MedStat, HSA, canton).

Variables and measurements
All variables used are described in the SFSO’s variable specifications for medical statistical data for hospitals and are applicable to the 2017 dataset (26). Variables include data on diagnosis, locational and sociodemographic characteristics, as well as determinants of hospital stay, admission and discharge (table 2).

Statistical procedures

All analyses were performed using R 3.5.2 (27). The SFSO provided the dataset without missing data of the relevant variables. We performed descriptive analyses on the dataset after filtering out hospitalisations that were referrals from other hospitals or rehabilitation clinics or were patients under the age of 15. The dataset provided information on whether and when each patient was rehospitalised. With these data we calculated rehospitalisation rates within the given year. We also calculated comorbidity scores for each patient using the Elixhauser comorbidity score and the “comorbidity 0.5.3” software package (28, 29). Used to provide a condensed score for all defined comorbidities for each patient, the Elixhauser comorbidity score theoretically ranges from -19 to +89, with higher scores indicating more comorbidities (28, 29).

To determine the number of hospitalisations for each stratum, data were aggregated to each level (MedStat, HSA, canton), each diagnosis group and care structure. Rates were calculated using the number of admissions for avoidable hospitalisations as numerator and the population of each small area (MedStat) over the age of 15 as denominator and multiplied by 100,000. The rates for each small area were standardized for sex and age using direct standardisation based on the 2013 standard population for the European Union (EU) (30). We then calculated median rates of avoidable hospitalisation per 100,000 adult inhabitants, as well as interquartile ranges (IQR) for all ACSCs and care structures for all HSAs (n=61) and cantons (n=26). Outliers - datapoints 1.5 times the IQR above the upper or below the lower quartile -, were assessed individually and kept in the dataset.

For inferential statistical analysis we used linear mixed models with Gaussian distribution to assess regional variation using the “lme4” software package (31). ICC 1s were calculated for the HSA and canton levels using the package “RptR” with bootstrap set at 2,000 (32). ICC 1 values above 0.05 were considered meaningful (33). Models were calculated with random effects for HSAs and cantons.

For geographic visualisation we used SFSO-provided geodata. The “sf 0.8.1” and “tidyverse 1.3.0” software packages were used to merge the geodata with the dataset and compute spatial visualisations (34, 35).

Results

Characteristics of avoidable hospitalisations

The data from 2017 included 287 hospitals and specialized clinics that reported to the SFSO. This included all Swiss hospitals (20). In 2017, SFSO medical statistical data recorded 1,468,245 hospitalisations. Excluding paediatric hospitalisations (<15 years) and those resulting from referrals from other hospitals or rehabilitation clinics left 1,076,716. From this number, we identified and included 46,479 with main diagnoses corresponding with one of our selected ACSCs, possibly indicating avoidable hospitalisations. Figure 1 illustrates the sample selection process. Our sample amounted to 4.3 % of all hospitalisations from primary health care in the adult population. We observed a median length of stay of 6 (IQR 2-10) days for avoidable hospitalisations for ACSC and a median Elixhauser comorbidity score of 4.5 (IQR 4.0–5.0). In 46.8 % of hospital admissions for ACSC in 2017, physicians referred cases to the hospital. Overall, 78.2 % of admissions for were referred as emergencies and 21.5 % were scheduled. Mortality rate in ACSC cases was 4.1 % and the rehospitalisation rate was 30.0 %. The age distribution regarding hospitalisations for ACSCs is illustrated in figure 2. We found that 90.2% of such hospitalisations for ACSCs came from home, while 2.1% were patients using home care services. Cases from nursing homes amounted to 4.7 % of avoidable hospitalisations for ACSCs and 3 % of cases came from psychiatric, penal, other or unknown institutions. For more details on sample characteristics see Tables 3 and 4.

Regional Variation
For this study, Switzerland was divided into 705 small areas (MedStat) with a median population size of 10,665 (IQR: 8,261–14,356). These occupied 61 hospital service areas (HSA) with a median population of 95,353 (IQR: 64,748–163,939). The 26 Swiss cantons provided the highest level for this analysis, with a median population of 234,857 (IQR: 75,384–393,331).

Overall, the median unadjusted rate of avoidable hospitalisation was 489 (IQR 396–592, min. 102, max. 1,677) per 100,000 adult inhabitants. The overall sex- and age-standardized median rate of avoidable hospitalisation for ACSC was 1,080 (IQR 893-1.274, min. 317, max. 3.033) per 100,000 adult inhabitants. On the HSA level, we found median sex- and age-standardized rates of 1,113 (IQR: 961–1,208, min. 754, max. 1,581) avoidable hospitalisations for ACSC per 100,000 adult inhabitants. On the cantonal level we calculated a median sex- and age-standardized rate of 1,062 (IQR 978-1,208, min. 800, max. 2,208) avoidable ACSC hospitalisations per 100,000 adult inhabitants. On the HSA level the ICC 1 was 0.16 (95% CI: 0.09-0.24); on the cantonal level, it was 0.20 (95% CI: 0.09-0.31).

Table 5 describes unadjusted and direct age- and sex-standardized rates per 100,000 inhabitants for the observed ACSC and respective ICC 1 values for the HSA and cantonal levels. Table 6 describes unadjusted and direct age- and sex-standardized rates per 100,000 inhabitants for the observed settings and respective ICC 1 values for the HSA and cantonal levels. A geographical representation of total sex- and age-standardized rates of avoidable hospitalisation for ACSC per 100,000 adult inhabitants of all 705 small (MedStat) areas is provided in figure 3. Additional maps for the three settings (home, nursing home and home care) and for the various diagnostic groups (angina pectoris, congestive heart failure, COPD, diabetes complications and hypertension) are available in the supplementary materials.

Discussion

This study provides the first complete mapping of avoidable hospitalisations for ACSCs in Switzerland in 2017. Using small area analysis to determine regional variation for various ACSCs and primary care structures, we found substantial regional variation with distinct disease-specific regional patterns. Standardized for sex and age, the overall degree of regional variation was higher than in other European countries i.e. Denmark, England Portugal, Slovenia and Spain (36).

General characteristics

Our results suggest that 4.3% of all hospitalisations in 2017 were avoidable. Furthermore, we observed a gradual increase in avoidable hospitalisations for ACSCs in the population above 65 years of age, peaking at the 80-84-year age group. This pattern is consistent with results from a similar study that investigated avoidable hospitalisations for ACSCs in France (6).

More specifically, consistent with previous studies in Germany, we found that hospitalisations for congestive heart failure and COPD account for a substantial fraction of avoidable hospitalisations (7, 10). About half of the identified cases were referred to hospital by physicians, with roughly three quarters of patients admitted to hospital as emergencies.

Our sample's Elixhauser comorbidity scores were rather high at 4.5 (IQR 4.0-5.0) compared to those measured by van Walraven et al. (2009), who recorded a median score of 0 (IQR 0-8). This indicates, that our population had more comorbidities present, than a regular hospital cohort. Additionally, the high number of emergency admissions suggest that the admitted patients had experienced a profound deterioration of their already fragile health prior to admission with multiple comorbidities. Interestingly, about 30% of cases are readmitted to hospital within the year 2017, indicating challenges in primary health care provision, especially regarding self-management and monitoring of early warning signs.

When addressing overall unadjusted rates of avoidable hospitalisations for ACSCs, we found similar results for four of our diagnoses of interest (congestive heart failure, COPD, diabetes complications and hypertension) also used in a similar study by Berlin et al. (2014) in the Swiss context (2). Compared with that study's findings, our overall unadjusted rates of avoidable hospitalisations for ACSCs indicate an increase of 2.7% over a seven year period (2). However, compared to similar studies in Swiss, French and German contexts (2, 6, 7), this increase is actually quite low.

Standardized rates of avoidable hospitalisations for ACSCs in Switzerland were high in the European context; likewise, regional variations for the ACSCs of interest were considerably higher in Switzerland than in other European countries (36).
Regional Variation

The findings suggest a high degree of variation amongst HSA and cantons regarding avoidable hospitalisations for all ACSCs. Moreover, we found pronounced geographical patterns based on both diagnosis and setting. Most prominently, variation in the management of angina pectoris shows substantial variation in Switzerland’s northern and north-eastern regions. Interestingly, when assessing rates of congestive heart failure, these patterns shift towards the southwest. Regarding hypertension, though, we found consistently lower rates in the southwest. While these patterns indicate some of the challenges HSAs and cantons face in providing specialized primary health care for different diseases, they also underscore the importance of differentiating between diseases and visualizing results to address issues in primary health care provision.

The broad regional variation for the various diagnoses may reflect specific regional (cantonal) approaches to primary care provision. Evidence supports the possibility that socioeconomic, demographic and provider specific determinants contribute to the emergence of avoidable hospitalisations for ACSCs (13, 17, 37-40). Switzerland’s primary health care system is stable and functional, and its income inequality quite low (2, 16-19). Rather than access to affordable medical advice, contributing factors might include regional differences in compensation structures for both primary and hospital care, as well as the proximity and density of hospitals, primary health care networks and regional public health programs. While it remains unclear just how these factors affect the rates of ACSC-related hospitalisation, minimizing those rates will demand an understanding of the contributing factors.

Contributing Factors and Impulse for Health Policy

Evidence suggests that physician density, healthcare accessibility, resources for primary health care and continuity of care are all related to rates of avoidable hospitalisation for ACSCs (2, 41-45). In Switzerland, except in some isolated alpine regions, accessibility to primary health care is consistently high (46), i.e., resources for primary health care were reinforced in 2014, and physician density is sufficient. More physicians might actually lower healthcare efficiency: several studies suggest that high physician density can inflate demand for health care services (2, 40, 47).

The issue of regional variation and the high rates of avoidable hospitalisation for ACSCs despite high accessibility to and adequate resourcing for primary care might be an indication that continuity of care plays a crucial role. Continuity of care should focus on a team-based approach to reduce fragmentation of care and improve patient safety and quality of care (48). Focussing of chronic care management might provide useful guidance to improve continuity of care. Chronic care management in Switzerland is still predominately provided by primary care physicians. With Switzerland’s primary care physician workforce aging this may eventually lead to a shortage of general practitioners and disrupt chronic care management (16). Chronic care management for specific populations might therefore require novel roles in care delivery for the chronically ill (49). Interventions to reduce hospitalisations for ACSC include specialized home care, promotion of self-management and the integration of primary and secondary care (50). Complementary to established primary care models nurse-led models can be part of such interventions. Advanced practice nurses already play crucial roles in specialized and primary care delivery, improving outcomes in chronic care management, e.g., reduced hospitalisations or improved blood pressure management, as compared to established models of care (51, 52). Advanced practice roles such as nurse practitioners can perform many tasks of chronic care management such as promoting self-management and care coordination. However, such roles are currently underdeveloped in Switzerland and limited to a small number of collaborative efforts (53, 54). Hence, nurses can only provide limited resources in Switzerland. Collaboration with different primary care providers such as physiotherapists, dietitians, occupational therapists is crucial to address self-management and ultimately reduce hospitalisations for ACSC. Swiss health policy makers could address these challenges by promoting these approaches to bridge the gap in chronic care management and to improve continuity of care.

The geographical representation and small area approach differentiated by diagnosis and care structure highlight the various Swiss regions’ relative success at minimizing avoidable hospitalisations. There is a need to understand the specific context and its impact on continuity of care. Health policy makers should address these regional variations with a distinct focus on strengthening continuity of care for the chronically ill.

Strengths And Limitations
This study offers the first complete map of avoidable hospitalisations for ACSCs in Switzerland. There are, however, several limitations. Selection criteria for ACSCs differ in the literature and interpretations differ regarding the preventability of certain ACSC-related hospitalizations (5). Moreover, we cannot discriminate between clinically avoidable or necessary hospitalisations beyond the information provided within the routine dataset. Further, this study did not account for sociodemographic or socioeconomic differences such as education and income. Nor did it examine behavioural or cultural factors affecting the use of hospitals and primary care or account for the distribution of healthcare structures, e.g. the number of nursing homes within an area. Still, the study offers a new perspective on regional variation of avoidable hospitalisations for ACSCs in Switzerland. On the other hand, one of this study's strengths is the inclusion of the most prevalent ACSCs for chronic conditions. This will help first to identify well-functioning primary care services in regions to inform and enable health policy adjustments.

Conclusion

This study identified substantial regional variation in and comparably high rates of avoidable ACSC-based hospitalisation in Switzerland. We suspect that differences in continuity of care are predominantly responsible for these regional variations. As ACSCs account for an increasing number of hospitalisations in Switzerland, indicating a need for multidisciplinary care models of care that allow increased continuity of care, they should be dealt with specifically at the health policy level. Further research is needed to model and assess the impact of different primary care models on ACSCs.

List Of Abbreviations

ACSC Ambulatory Care Sensitive Conditions
AH Avoidable Hospitalisations
COPD Chronic Obstructive Pulmonary Disease
HSA Utilisation-based Hospital Service Areas
ICC 1, 2 Intraclass Correlation 1, 2
ICD-10 International Classification of Disease 10
IQR Interquartile Range
MedStat Regional cluster of approximately 10 000 Inhabitants
OECD Organisation for Economic Co-operation and Development
SwissDRG Swiss Diagnostic Related Groups (reimbursement system for medical services)
SFSO Swiss Federal Statistical Office
ZIP-Code Zone Improvement Plan Code

Declarations

Ethics approval and consent to participate
Data was accessed through a data protection contract with the Swiss Federal Statistics Office based on article 22 of the Swiss Federal Act on Data Protection. The data is routinely collected and de-identified and therefore exempt from further ethical approval. Consent to participation was not applicable.

Consent for publication
Availability of data and materials

The data of this study are available from the Federal Statistical Office of Switzerland, Departments of Health Services and Public Health ("Sektionen Gesundheitsversorgung, Gesundheit der Bevölkerung") upon application. Further information are available here: https://www.bfs.admin.ch/bfs/de/home/statistiken/gesundheit/erhebungen/ms.html

Competing interests

The authors declare that they have no competing interests.

Funding

This study did not receive external funding. Expenses for data delivery from the SFSO were covered by internal Institute of Nursing Science funding.

Authors' contributions

MS, FZ and NG developed the idea of the study. NG prepared and analyzed the data. NG, MS and FZ interpreted the results. NG drafted the manuscript while MS and FZ provided critical feedback and revision of the manuscript. All authors read and approved the final manuscript.

Acknowledgements

We thank Marcel Widmer from the SFSO and OBSAN who provided crucial additional data and insight for this analysis. We also thank Timo Grossenbacher who provided the tutorial and code for the geographical mapping of the data in R.

Authors' information

This section is optional. Not applicable

Footnotes

Not applicable

References

1. Agency for Healthcare Research and Quality (AHRQ). AHRQ Quality Indicators—Guide to Prevention Quality Indicators: Hospital Admission for Ambulatory Care Sensitive Conditions Rockville, MD: Agency for Healthcare Research and Quality; 2001.
2. Berlin C, Busato A, Rosemann T, Djalali S, Maessen M. Avoidable hospitalizations in Switzerland: a small area analysis on regional variation, density of physicians, hospital supply and rurality. BMC Health Serv Res. 2014;14:289.
3. OECD. Health at a Glance 2017: OECD Indicators. OECD Publishing, Paris. 2017.
4. Billings J, Anderson GM, Newman LS. Recent findings on preventable hospitalizations. Health Aff (Millwood). 1996;15(3):239-49.
5. Purdy S, Griffin T, Salisbury C, Sharp D. Ambulatory care sensitive conditions: terminology and disease coding need to be more specific to aid policy makers and clinicians. Public Health. 2009;123(2):169-73.
6. Weeks WB, Ventelou B, Paraponaris A. Rates of admission for ambulatory care sensitive conditions in France in 2009-2010: trends, geographic variation, costs, and an international comparison. Eur J Health Econ. 2016;17(4):453-70.

7. Fischbach D. [Hospital Costs of Ambulatory Care-Sensitive Conditions in Germany]. Gesundheitswesen. 2016;78(3):168-74.

8. Health at a Glance: Europe 2018 [Internet]. 2018 [cited 19.5.2020].

9. Frick J, Mockel M, Muller R, Searle J, Somasundaram R, Slagman A. Suitability of current definitions of ambulatory care sensitive conditions for research in emergency department patients: a secondary health data analysis. BMJ Open. 2017;7(10):e016109.

10. Sundmacher L, Fischbach D, Schuettig W, Naumann C, Augustin U, Faisst C. Which hospitalisations are ambulatory care-sensitive, to what degree, and how could the rates be reduced? Results of a group consensus study in Germany. Health Policy. 2015;119(11):1415-23.

11. Skinner J. Causes and Consequences of Regional Variations in Health Care. 2 ed: Elsevier; 2011.

12. Muench U, Simon M, Guerbaai RA, De Pietro C, Zeller A, Kressig RW, et al. Preventable hospitalizations from ambulatory care sensitive conditions in nursing homes: evidence from Switzerland. Int J Public Health. 2019;64(9):1273-81.

13. Roos LL, Walld R, Uhanova J, Bond R. Physician visits, hospitalizations, and socioeconomic status: ambulatory care sensitive conditions in a canadian setting. Health Serv Res. 2005;40(4):1167-85.

14. Cartier T, Senn N, Comuz J. Switzerland. Building primary care in a changing Europe: Case studies. Observatory Studies Series. 40. Copenhagen (Denmark): European Observatory on Health Systems and Policies; 2015.

15. Statuten der SwissDRG AG [Internet]. 2009 [cited 19.5.2020]. Available from: https://www.swissdrg.org/application/files/4414/8104/3373/Statuten_SwissDRG-AGd.pdf.

16. Marshall M, Klazinga N, Leatherman S, Hardy C, Bergmann E, Pisco L, et al. OECD Health Care Quality Indicator Project. The expert panel on primary care prevention and health promotion. Int J Qual Health Care. 2006;18 Suppl 1:21-5.

17. Bevölkerung: Stand und Entwicklung [Internet]. 2018 [cited 19.5.2020]. Available from: https://www.bfs.admin.ch/bfs/de/home/statistiken/bevoelkerung/stand-entwicklung.html.

18. Global Health Expenditure Database [Internet]. 2018 [cited 19.5.2020]. Available from: http://apps.who.int/nha/database/Home/Index/en.

19. OECD. In It Together: Why Less Inequality Benefits All. Paris: OECD Publishing; 2015.

20. Krankenhausstatistik 2015 – Standardtabellen [Internet]. Bundesamt für Statistik (BFS). 2017 [cited 19.5.2020].

21. Marshall M, Klazinga N, Leatherman S, Hardy C, Bergmann E, Pisco L, et al. OECD Health Care Quality Indicator Project. The expert panel on primary care prevention and health promotion. Int J Qual Health Care. 2006;18 Suppl 1:21-5.

22. Bevölkerung: Stand und Entwicklung [Internet]. 2018 [cited 19.5.2020]. Available from: https://www.bfs.admin.ch/bfs/de/home/statistiken/bevoelkerung/stand-entwicklung.html.

23. Swiss Federal Statistical Office (SFSO). Medizinische Statistik der Krankenhäuser: Detailkonzept 2014.

24. Medstat-Regionen [Internet]. 2018 [cited 19.5.2020]. Available from: https://www.bfs.admin.ch/bfs/de/home/statistiken/gesundheit/nomenklaturen/medsreg.html.

25. Klauss G, Staub L, Widmer M, Busato A. Hospital service areas – a new tool for health care planning in Switzerland. BMC Health Serv Res. 2005;5:33.

26. Variablen der Medizinischen Statistik Spezifikationen gültig ab 1.1.2019 [Internet]. 2019 [cited 19.5.2020]. Available from: https://www.bfs.admin.ch/bfs/de/home/statistiken/gesundheit/erhebungen/ms.assetdetail.7066232.html.

27. R Core Team. R: A language and environment for statistical computing. 3.5.2. ed. Vienna, Austria2019.

28. van Walraven C, Austin PC, Jennings A, Quan H, Forster AJ. A modification of the Elixhauser comorbidity measures into a point system for hospital death using administrative data. Med Care. 2009;47(6):626-33.

29. Gasparini A. comorbidity: An R package for computing comorbidity scores. Journal of Open Source Software. 2018;3.

30. Eurostat Task Force. Revision of the European Standard Population Luxemburg: European Union; 2013.

31. Bates D, Mächler, M., Bolker, B., & Walker, S. : Fitting linear mixed-effects models using lme4. Journal of Statistical Software. 2015;67(1).
32. Stoffel MA, Nakagawa S, Schielzeth H. rptR: repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods in Ecology and Evolution. 2017;8(11):1639-44.

33. Snijders TA, Bosker RJ. Multilevel analysis: An introduction to basic and advanced multilevel modeling: Sage; 2011.

34. Pebesma E. Simple Features for R: Standardized Support for Spatial Vector Data. The R Journal. 2018;1(10):439–46.

35. Wickham H AM, Bryan J, Chang W, McGowan LD, François R, Grolemund G, Hayes A, Henry L, Hester J, Kuhn M, Pedersen TL, Miller E, Bache SM, Müller K, Ooms J, Robinson D, Seidel DP, Spinu V, Takahashi K, Vaughan D, Wilke C, Woo K, Yutani H. Welcome to the tidyverse. Journal of Open Source Software. 2019;4(43).

36. Thygesen LC, Christiansen T, Garcia-Armesto S, Angulo-Pueyo E, Martinez-Lizaga N, Bernal-Delgado E. Potentially avoidable hospitalizations in five European countries in 2009 and time trends from 2002 to 2009 based on administrative data. Eur J Public Health. 2015;25 Suppl 1:35-43.

37. Roos LL, Dragan R, Schrot RJ. Pediatric ambulatory care sensitive conditions: Birth cohorts and the socio-economic gradient. Can J Public Health. 2017;108(3):e257-e64.

38. Schilling Mendonca C, Bielefeldt Leotti V, Soares Dias-da-Costa J, Harzheim E. Hospitalizations for primary care sensitive conditions: association with socioeconomic status and quality of family health teams in Belo Horizonte, Brazil. Health Policy Plan. 2017;32(10):1368-74.

39. Orueta JF, Garcia-Alvarez A, Grandes G, Nuno-Solinis R. Variability in potentially preventable hospitalisations: an observational study of clinical practice patterns of general practitioners and care outcomes in the Basque Country (Spain). BMJ Open. 2015;5(5):e007360.

40. Busato A, Kunzi B. Primary care physician supply and other key determinants of health care utilisation: the case of Switzerland. BMC Health Serv Res. 2008;8:8.

41. Edwards ST, Prentice JC, Simon SR, Pizer SD. Home-based primary care and the risk of ambulatory care-sensitive condition hospitalization among older veterans with diabetes mellitus. JAMA Intern Med. 2014;174(11):1796-803.

42. Lin W, Huang IC, Wang SL, Yang MC, Yaung CL. Continuity of diabetes care is associated with avoidable hospitalizations: evidence from Taiwan's National Health Insurance scheme. Int J Qual Health Care. 2010;22(1):3-8.

43. Rosano A, Loha CA, Falvo R, van der Zee J, Ricciardi W, Guasticchi G, et al. The relationship between avoidable hospitalization and accessibility to primary care: a systematic review. European journal of public health. 2013;23(3):356-60.

44. van Loenen T, van den Berg MJ, Westert GP, Faber MJ. Organizational aspects of primary care related to avoidable hospitalization: a systematic review. Fam Pract. 2014;31(5):502-16.

45. Atun R, Gurul-Urganci I, Hone T, Pell L, Stokes J, Habicht T, et al. Shifting chronic disease management from hospitals to primary care in Estonian health system: analysis of national panel data. J Glob Health. 2016;6(2):020701.

46. Jörg R, Lenz N, Wetz S, Widmer M. Ein Modell zur Analyse der Versorgungsdichte: Herleitung eines Index zur räumlichen Zugänglichkeit mithilfe von GIS und Fallstudie zur ambulanten Grundversorgung in der Schweiz (Obsan Bericht 01/2019). Schweizerisches Gesundheitsobservatorium (OBSAN): Schweizerisches Gesundheitsobservatorium (OBSAN); 2019.

47. Bundesratsbeschluss über das Ergebnis der Volksabstimmung vom 18. Mai 2014 [Internet]. 2014 [cited 19.5.2020]. Available from: https://www.admin.ch/opc/de/federal-gazette/2014/6349.pdf.

48. American Association of Family Physicians. Definition of Continuity of Care 2015 [Available from: https://www.aafp.org/about/policies/all/continuity-of-care-definition.html.

49. Sahli R, Jungi M, Christ E, Adrian G. „Chronic Care Management“-Programm in der hausärztlichen Praxis. Swiss Medical Forum. 2019;19(0708):113-6.

50. Purdy S. Avoiding hospital admissions: What does the research evidence say? The Kings Fund. 2010.

51. Laurant M, van der Biezen M, Wijers N, Watananirun K, Kontopantelis E, van Vught AJ. Nurses as substitutes for doctors in primary care. Cochrane Database Syst Rev. 2018;7:CD001271.

52. Martinez-Gonzalez NA, Djalali S, Tandjung R, Huber-Geismann F, Markun S, Wensing M, et al. Substitution of physicians by nurses in primary care: a systematic review and meta-analysis. BMC Health Serv Res. 2014;14:214.

53. Gysin S, Sottas B, Odermatt M, Essig S. Advanced practice nurses' and general practitioners' first experiences with introducing the advanced practice nurse role to Swiss primary care: a qualitative study. BMC Fam Pract. 2019;20(1):163.
54. Burke RE, Guo R, Prochazka AV, Misky GJ. Identifying keys to success in reducing readmissions using the ideal transitions in care framework. BMC Health Serv Res. 2014;14:423.

Tables

Table 1

Condition	ICD-10 Codes	Source
Angina pectoris	I20 I24.0 I24.8 I24.9	Purdy et al.
Congestive heart failure	I11.0 I50 J81	OECD
COPD	J20 J40 J41 J42 J43 J44 J47	OECD
Diabetes Complications	E10.0-E10.8 E11.0-E11.8 E12.0-E12.8 E13.0-E13.8 E14.0-E14.8	OECD
Hypertension	I10 I11.9	OECD
Variable	Options/Measurement	Remarks
---	--	--
Geographic variables		
Canton	Factor with 26 levels, all Swiss cantons	~10 000 inhabitants in each subarea
Hospital service areas (HSA)	Factor with 61 levels	
MedStat area	Factor with 705 levels, place of residence in a subarea of a Swiss canton/HSA	
Sociodemographic variables		
Gender	Factor with 2 levels	
Age at admission	5-year age groups (15-19; 20-24; 25-29; ...)	
Main diagnosis	ICD-10-GM Code	Main reason for admission upon discharge
Supplementary information for main diagnosis	ICD-10-GM Code	Additional information
Secondary diagnosis and supplementary information	ICD-10-GM Code	
Characteristics of admission		
Place of residence prior to admission	Factor with 13 levels (home, home with home care, nursing home, residential care, psychiatric facility, psychiatric facility in same institution, other hospital or birth house, ward in same institution, penal institution, other, unknown, rehabilitation clinic, other institution/ same institution)	Where was the patient prior to admission?
Type of admission	Factor with 7 levels (emergency, scheduled admission, birth, internal referral, referral from other clinic within 24 hours, other, unknown)	How was the patient admitted? Birth means that child is born at institution
Referred by …	Factor with 8 levels (self, next of kin, rescue service (police, ambulance), physician, non-medical profession, sociomedical services, justice department, other, unknown)	Who initiated the referral to hospital?
Characteristics of stay		
Length of stay (OECD)	In days	Length of stay incl. day of admission
Characteristics of discharge

Decision for discharge
Factor with 7 levels (initiative of care providers, initiative of patient, initiative of third party, internal referral, deceased, other, unknown)

Who initiated the discharge?

Place of residence after discharge
Factor with 13 levels (home, nursing home, residential care, psychiatric facility, psychiatric facility in same institution, rehabilitation clinic, other institution/ same institution, other hospital or birth house, ward in same institution, penal institution, other, unknown, death)

Where was the patient discharged to?

Treatment after discharge
Factor with 8 levels (no treatment necessary, ambulatory care, ambulatory nursing care (e.g., home care), inpatient care, rehabilitation (in-/outpatient), other, unknown, death)

Days to next hospitalisation
In days
Within the year 2017

Table 3
Sample Characteristics by Diagnosis

Diagnosis	N (%)	Physician Contact prior to Admission n (%)	Admission as Emergency n (%)	Admission as Emergency n (%)	Scheduled Admission n (%)	Rehospitalisations (within 2017) n (%)	Mortality n (%)	Median Length of Stay (IQR)	Median Elixhauser Index Score (IQR)
Cases of AH for ACSC in Switzerland	46,479 (100% a)	21,763 (46.8% b)	36,353 (78.2% a)	10,016 (21.5% a)	13,952 (30.0% a)	1,912 (4.1% a)	6 (2-10)	4.5 (4.0-5.0)	
Angina Pectoris	5,707 (12.3% a)	4,135 (72.4% b)	2,436 (42.7% b)	3,267 (57.2% b)	1,486 (26.0% b)	40 (0.7% b)	2 (1-3)	4.0 (4.0-5.0)	
Congestive Heart Failure	17,514 (37.7% a)	7,506 (42.9% b)	15,472 (88.3% b)	1,975 (11.3% b)	5,506 (31.4% b)	1,379 (7.9% b)	8 (5-13)	5.0 (4.0-5.0)	
COPD	13,313 (28.6% a)	5,525 (41.5% b)	10,815 (81.2% b)	2,473 (18.6% b)	4,253 (31.9% b)	407 (3.1% b)	6 (3-9)	4.5 (4.0-5.0)	
Diabetes Complications	6,140 (13.2% a)	3,354 (54.6% b)	4,332 (70.5% b)	1,796 (29.2% b)	1,900 (30.9% b)	80 (1.3% b)	7 (3-11)	4.5 (4.0-5.0)	
Hypertension	3,805 (8.2% a)	1,243 (32.7% b)	3,298 (86.7% b)	505 (13.3% b)	807 (21.2% b)	6 (0.2% b)	2 (1-5)	5.0 (4.0-5.0)	

Legend: ACSC = Ambulatory Care Sensitive Condition / AH = Avoidable Hospitalisation / IQR = Interquartile Range

a = as percentage of total ACSC Admissions for 2017

b = as percentage of respective subgroup of ACSC admissions for 2017

*Some admissions were coded as “other” and “unknown” thus percentages do not add up to 100%
Table 4
Sample Characteristics by Care Structure

	N (%)	Physician Contact prior to Admission n (%)	Admission as Emergency n (%)	Scheduled Admission n (%)	Rehospitalisations (within the Year) n (%)	Mortality n (%)	Median Length of Stay in Days (IQR)	Median Elixhauser Index Scores (IQR)
Overall cases of AH for ACSC in Switzerland	46,479 (100% a)	21,763 (46.8% a)	36,353 (78.2% a)	10,016 (21.5% a)	13,952 (30.0% a)	1,912 (4.1% a)	6 (2-10)	4.5 (4.0-5.0)
Cases of AH for ACSC from Home*	41,924 (90.2% a)	19,783 (47.2% b)	32,368 (77.2% b)	9,526 (22.7% b)	12,716 (30.3% b)	1,546 (3.7% b)	6 (2-10)	4.0 (4.0-5.0)
Cases of AH for ACSC from Nursing Homes*	2,186 (4.7% a)	985 (45.1% b)	1,925 (88.1% b)	242 (11.1% b)	564 (25.8% b)	228 (10.4% b)	7 (5-12)	4.5 (4.0-5.0)
Cases of AH for ACSC from Home Care*	972 (2.1% a)	365 (37.6% b)	894 (92.0% b)	77 (8.0% b)	367 (37.8% b)	61 (6.3% b)	9 (6-14)	5.0 (4.0-5.0)

Legend: ACSC = Ambulatory Care Sensitive Condition / AH = Avoidable Hospitalisation / IQR = Interquartile Range

a = as percentage of total ACSC Admissions for 2017

b = as a percentage of the respective subgroup of ACSC Admissions for 2017

*Hospitalisations from psychiatric institutions, penitentiaries or other were not included, therefore the numbers of cases do not total 46,479
Table 5
Unadjusted and Standardized Rates of Avoidable Hospitalisation for ACSCs by Diagnosis and Intraclass Correlation Coefficients for the Levels of Analysis

	Unadjusted Median Overall Rate per 100,000 Adult Inhabitants (IQR)	ICC 1 for HSA with Unadjusted Rates (95% CI)	ICC 1 for Canton with Unadjusted Rates (95% CI)	Age and Sex Standardized Median Overall Rate per 100,000 Adult Inhabitants (IQR)	ICC 1 for HSA with Age and Sex Standardized Rates (95% CI)	ICC 1 for Canton with Age and Sex Standardized Rates (95% CI)
Overall rates of AH for ACSCs in Switzerland	489 (396 - 592)	0.29 (0.19 - 0.39)	0.35 (0.19 - 0.48)	1080 (893 - 1274)	0.16 (0.09 - 0.24)	0.20 (0.09 - 0.31)
Angina Pectoris	61 (39 - 90)	0.47 (0.36 - 0.57)	0.70 (0.55 - 0.80)	122 (81 - 185)	0.50 (0.38 - 0.59)	0.72 (0.56 - 0.81)
Congestive Heart Failure	166 (125 - 212)	0.16 (0.08 - 0.23)	0.12 (0.05 - 0.22)	400 (312 - 500)	0.15 (0.07 - 0.22)	0.12 (0.04 - 0.21)
COPD	135 (101 - 185)	0.24 (0.15 - 0.33)	0.30 (0.15 - 0.43)	293 (220 - 396)	0.14 (0.07 - 0.21)	0.17 (0.07 - 0.28)
Diabetes Complications	68 (46 - 92)	0.17 (0.09 - 0.25)	0.11 (0.04 - 0.20)	141 (95 - 190)	0.10 (0.04 - 0.17)	0.07 (0.01 - 0.14)
Hypertension	42 (25 - 62)	0.32 (0.22 - 0.42)	0.34 (0.19 - 0.48)	79 (49 - 118)	0.31 (0.21 - 0.41)	0.35 (0.19 - 0.48)

Legend: 95% CI = 95% Confidence Interval / ACSC = Ambulatory Care Sensitive Condition / AH = Avoidable Hospitalisation / HSA = Hospital Service Area ICC 1 = Intraclass Correlation Coefficient 1 / IQR = Interquartile Range
Table 6

Unadjusted and Standardized Rates of Avoidable Hospitalisations for ACSC by Care Structure and Intraclass Correlation Coefficients for the Levels of Analysis

	Unadjusted Median Overall Rate per 100,000 Adult Inhabitants (IQR)	ICC 1 for HSA with Unadjusted Rates (95% CI)	ICC 1 for Canton with Unadjusted Rates (95% CI)	Age and Sex Standardized Median Overall Rate per 100,000 Adult Inhabitants (IQR)	ICC 1 for HSA with Age and Sex Standardized Rates (95% CI)	ICC 1 for Canton with Age and Sex Standardized Rates (95% CI)
Overall rates of AH for ACSC in Switzerland	489 (396 - 592)	0.29 (0.19 - 0.39)	0.35 (0.19 - 0.48)	1.080 (893 - 1.274)	0.16 (0.09 - 0.24)	0.20 (0.09 - 0.31)
Rates of AH for ACSC from Home	468 (385 - 571)	0.32 (0.21 - 0.41)	0.38 (0.22 - 0.51)	974 (812 - 1.150)	0.19 (0.11 - 0.27)	0.27 (0.13 - 0.40)
Rates of AH for ACSC from Nursing Homes	19 (5 - 39)	0.18 (0.10 - 0.27)	0.17 (0.07 - 0.27)	36 (5 - 76)	0.08 (0.01 - 0.14)	0.08 (0.01 - 0.16)
Rates of AH for ACSC from Home Care	0 (0 - 16)	0.51 (0.39 - 0.60)	0.28 (0.15 - 0.41)	0 (0 - 33)	0.35 (0.19 - 0.49)	0.19 (0.04 - 0.35)

Legend: 95% CI = 95% Confidence Interval / ACSC = Ambulatory Care Sensitive Condition / AH = Avoidable Hospitalisation / HSA = Hospital Service Area ICC 1 = Intraclass Correlation Coefficient 1 / IQR = Interquartile Range

Figures
Figure 1
Flow Diagram of Sample Selection Process
Figure 2

Age Distribution of Hospitalisations and Corresponding Diagnosis
Figure 3

Hospitalisations for all Ambulatory Care Sensitive Conditions in Switzerland in 2017. Cantonal borders are indicated by bold white lines; lakes appear in blue. Note: The designations employed and the presentation of the material on this map do not imply the expression of any opinion whatsoever on the part of Research Square concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. This map has been provided by the authors.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- SupplementaryMaterials.docx
- Figure4.SupplementarymaterialsHospitalis.png
- Figure5.SupplementarymaterialsHospitalis.png
- Figure6.SupplementarymaterialsHospitalis.png
- Figure7.SupplementarymaterialsHospitalis.png
- Figure8.SupplementarymaterialsHospitalis.png
- Figure9.SupplementarymaterialsHospitalis.png
- Figure10.SupplementarymaterialsHospitali.png
- Figure11.SupplementarymaterialsHospitali.png