Antibiotic stewardship interventions in hospitals in low-and middle-income countries: a systematic review

Christophe Van Dijck, Erika Vlieghe & Janneke Arnoldine Cox

Objective To review the effectiveness of antibiotic stewardship interventions in hospitals in low- and middle-income countries.

Methods We searched MEDLINE®, Embase®, Cochrane Central Register of Controlled Trials and regional indexes for studies of interventions to improve appropriate prescribing and use of antibiotics for hospitalized patients in low- and middle-income countries. We included controlled trials, controlled before-and-after studies and interrupted time-series studies published up to December 2017. We report prescribing, clinical and microbiological outcomes using a narrative approach.

Findings We screened 7342 original titles and abstracts, assessed 241 full-text articles and included 27 studies from 2 low-income and 11 middle-income countries. We found a medium (11 studies) or high risk (13 studies) of bias. Generally, all types of interventions (structural, persuasive and enabling) and intervention bundles were reported to improve prescribing and clinical outcomes. However, the studied interventions and reported outcomes varied widely. The most frequent intervention was procalcitonin-guided antibiotic treatment (8 of 27 studies, all randomized controlled trials). The intervention was associated with a relative risk for patients receiving antibiotics ranging between 0.40 and 0.87.

Conclusion The majority of studies reported a positive effect of hospital antibiotic stewardship interventions. However, we cannot draw general conclusions about the effectiveness of such interventions in low- and middle-income countries because of low study quality, heterogeneity of interventions and outcomes, and under-representation of certain settings. To strengthen the evidence base, action needs to be taken to address these shortcomings.

Introduction

Antibiotic resistance is a problem of global importance. Representative data on the extent of the problem in low- and middle-income countries are relatively scarce, but high levels of resistance are increasingly being reported worldwide. Misuse and overuse of antibiotics in humans and animals is one of the main drivers of antibiotic resistance. Antibiotic stewardship, that is, interventions designed to optimize use of antibiotics, is therefore one of the key actions of the World Health Organization (WHO) Global Action Plan to contain antibiotic resistance. Stewardship interventions are typically classified as structural (such as the introduction of new diagnostic tests to guide antibiotic treatment), persuasive (such as expert audit of prescriptions and feedback advice to prescribers), enabling (such as guidelines or education on antibiotic use) or restrictive (such as expert approval for use of certain antibiotics). Often, different interventions are combined in antibiotic stewardship bundles.

Several systematic reviews showed that antibiotic stewardship interventions for hospitalized patients increased compliance with local antibiotic policies and improved clinical patient outcomes. These reviews included mainly or exclusively papers from high-income countries. Whether these results also apply to low- and middle-income countries is unclear. The organization of health-care system, availability of diagnostic testing and appropriate antibiotics, infection prevention and control practices and prescribing practices (such as over-the-counter availability of antibiotics) differs markedly between high-income countries and low- and middle-income countries. These differences may affect the implementation and effectiveness of antibiotic stewardship interventions in these settings.

Many hospitals in low- and middle-income countries are setting up antibiotic stewardship programmes. To better inform the selection of antibiotic stewardship interventions, we systematically reviewed the literature for studies that describe the effect of these interventions on clinical, microbiological or antibiotic prescribing outcomes in hospitalized patients in low- and middle-income countries.

Methods

The review protocol including the complete search strategy has been registered at the PROSPERO international prospective register of systematic reviews (CRD42016042019). We included studies on antibiotic stewardship interventions for hospitalized patients in low- and middle-income countries. Stewardship interventions were defined as any intervention aiming to improve appropriate prescribing of antibiotics. A summary of the search strategy is shown in Box 1. Low- and middle-income countries were defined according to the World Bank criteria. To be included, studies had to report at least one prescribing outcome (such as defined daily doses per 100 bed-days), clinical outcome (such as mortality) or microbiological outcome (such as proportion of bacterial isolates with antibiotic resistance). We included (non)randomized controlled trials, cluster randomized controlled trials, controlled before–after studies and interrupted time-series studies if these contained at least three points of comparison.

Abstracts in العربية, 中文, Français, Русский и Español at the end of each article.

1 Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijkstraat 10, B-2650 Edegem, Belgium.
2 Unit of Internal Medicine and Infectious Diseases, University Hospital Antwerp, Antwerp, Belgium.
3 Unit of Tropical Laboratory Medicine, Institute of Tropical Medicine, Antwerp, Belgium.
4 Correspondence to Christophe Van Dijck (email: christophe.vandijck@gmail.com).

(Submitted: 4 October 2017 – Revised version received: 26 December 2017 – Accepted: 8 January 2018 – Published online: 28 February 2018)
We screened 7342 abstracts, selected 241 full-text articles and included 27 studies.21-24 12 interrupted time-series, 9 randomized controlled trials, 3 cluster randomized controlled trials and 3 non-randomized controlled trials (Fig. 1). The studies were performed between 1996 and 2015 in 13 different countries. Two countries were considered low-income at the time of the study, one country transitioned from low to lower-middle income and the remaining were middle-income countries. Nine studies were conducted in multiple hospitals (range 2–65) but the majority was single-centre (18 studies). The interventions were implemented hospital-wide (10 studies) or on specific wards (17 studies) and targeted therapeutic prescriptions (20 studies), surgical prophylaxis (3 studies) or a combination of those (4 studies; Table 1).

Risk of bias assessment

For the 12 interrupted time-series studies the risk of bias was low (3 studies), medium (8 studies) or high (1 study; Fig. 2). The main risks of bias were that the intervention was not independent of other changes (5 studies) and that incomplete data were not adequately addressed (5 studies). For the 15 (non) randomized trials the risk of bias was medium (3 studies) or high (12 studies). The main risks of bias included the absence of baseline outcome measurement (14 studies), lack of protection against contamination (prescribers could have been involved in treatment of both the intervention and control group; 11 studies), non-random or unclear randomization methods (8 studies) and incomplete data not being adequately addressed (7 studies).

Structural interventions

Structural interventions were reported by 12 studies,21-24 eight of which were randomized controlled trials of the effect of using serum procalcitonin levels to guide antibiotic treatment (Table 2).21-24
Table 1. Characteristics of studies included in the review of antibiotic stewardship interventions in hospitals in low- and middle-income countries

Authors, year	Study design	Country	Setting	Participants	Intervention details	Intervention type	Target illness
Weinberg et al., 2003	Interrupted time-series	Colombia	2 referral hospitals	Surgeons performing caesarean sections	Bundle Guidelines on surgical antibiotic prophylaxis, structural changes (availability of prophylactic antibiotics), educational campaign	Bundle	Surgical site infections after caesarean section
Perez et al., 2003	Interrupted time-series	Colombia	2 university hospitals	Hospital A: all prescribers; hospital B: anaesthesiologists and intensive care unit staff	Bundle Prescription form with (un)restricted antibiotics; educational campaign; reminders in the workplace	Bundle	Surgical site infections after caesarean section
Gülmezoglu et al., 2007	Cluster randomized controlled trial	Mexico and Thailand	22 non-university maternity hospitals	Physicians, midwives, interns, students	Structural Access to WHO's online Reproductive Health Library and workshops on its use	Structural	Surgical site infections after caesarean section
Hadi et al., 2008	Interrupted time-series	Indonesia	1 teaching hospital	All prescribers of 5 internal medicine wards	Bundle Enabling Antibiotic guidelines; education for prescribers	Bundle	NR
Özkaya et al., 2009	Non-randomized controlled trial	Turkey	1 university hospital	Paediatric emergency department residents	Structural Antibiotic initiation guided by influenza rapid test versus no laboratory investigation	Structural	Mild influenza-like illness
Rattanaumpawan et al., 2010	Non-randomized controlled trial	Thailand	1 public university hospital	All prescribers	Persuasive Audit and feedback to prescribers by infectious diseases specialist	Persuasive	NR
Long et al., 2011	Randomized controlled trial	China	1 university hospital	Emergency department physicians	Structural Antibiotic initiation and discontinuation guided by serum procalcitonin level versus routine care	Structural	Community-acquired pneumonia
Maravić-Stojković et al., 2011	Randomized controlled trial	Serbia	Cardiac surgery and intensive care unit staff	Antibiotic initiation guided by serum procalcitonin level versus routine care (based on clinical signs, C-reactive protein level and leucocyte count)	Structural	Infections after coronary artery bypass surgery	
Shen et al., 2011	Cluster randomized controlled trial	China	1 tertiary hospital	All prescribers of 2 pulmonary wards	Persuasive Audit and feedback to prescribers by clinical pharmacist	Persuasive	Respiratory tract infections
Opondo et al., 2011	Cluster randomized controlled trial	Kenya	8 district hospitals	Nurses, clinical and medical officers	Bundle Guidelines for treatment of non-bloody diarrhoea; education for prescribers	Bundle	Non-bloody diarrhoea
Bucher et al., 2012	Randomized controlled trial	Peru	1 public hospital	Nurses, clinical and medical officers	Structural Antibiotic initiation guided by faecal rotavirus rapid test in combination with a basal leukocyte count and faecal leukocyte test only	Structural	Acute diarrhoea
Magedanz et al., 2012	Randomized controlled trial	Brazil	1 university hospital	Cardiology department physicians	Structural Restriction of certain antibiotics; audit and feedback	Structural	Acute diarrhoea
Qin et al., 2012	Randomized controlled trial	China	1 municipal hospital	Intensive care unit staff	Structural Audit and feedback to prescribers by clinical pharmacist	Structural	NR

(continues...)

Bull World Health Organ 2018;96:266–280 doi: http://dx.doi.org/10.2471/BLT.17.203448
Authors, year	Study design	Country	Setting	Participants	Intervention type	Intervention details	Target illness
Ding et al., 2013	Randomized controlled trial	China	1 tertiary hospital	Respiratory ward physicians	Structural	Antibiotic initiation and discontinuation guided by serum procalcitonin level versus routine care (based on clinical experience, sputum bacteriology results and leukocyte count)	Acute exacerbation of idiopathic pulmonary fibrosis
Aiken et al., 2013	Interrupted time-series	Kenya	1 public referral hospital	Nursing, medical and operating theatre staff	Bundle	Guidelines on surgical antibiotic prophylaxis; clinician education; patient education posters; audit and feedback to prescribers	Surgical site infections
Oliveira et al., 2013	Randomized controlled trial	Brazil	2 public university hospitals	Intensive care unit staff	Structural	Antibiotic discontinuation guided by serum procalcitonin level versus C-reactive protein test	Sepsis or septic shock
Tang et al., 2013	Randomized controlled trial	China	1 university hospital	Emergency department physicians	Structural	Antibiotic initiation guided by serum procalcitonin level versus routine care	Acute asthma exacerbation
Chandy et al., 2014	Interrupted time-series	India	1 private tertiary hospital	All prescribers	Enabling	Implementation and dissemination of antibiotic prescribing guidelines	NR
Long et al., 2014	Randomized controlled trial	China	1 university hospital	Emergency department physicians	Structural	Antibiotic initiation guided by serum procalcitonin level versus routine care	Acute asthma exacerbation
Najafi et al., 2015	Randomized controlled trial	Islamic Republic of Iran	1 university hospital	Intensive care unit staff	Structural	Antibiotic initiation guided by serum procalcitonin level versus routine care	Severe inflammatory response syndrome
Bao et al., 2015	Interrupted time-series	China	65 public hospitals (30 tertiary; 35 secondary)	All prescribers	Bundle	Implementation of a nationally imposed multifaceted antibiotic stewardship programme	NR
Sun et al., 2015	Interrupted time-series	China	15 public tertiary hospitals	All prescribers	Bundle	Implementation of a nationally imposed multifaceted antibiotic stewardship programme	NR
Gong et al., 2016	Interrupted time-series	China	1 tertiary paediatric hospital	Paediatricians	Bundle	Antibiotic guidelines and prescribing restrictions; audit and feedback to prescribers by pharmacists and infection control physicians; financial penalties according to number of noncompliant prescriptions	NR
Brink et al., 2016	Interrupted time-series	South Africa	47 private hospitals	Physicians, other clinical staff and managers	Persuasive	Audit and feedback to prescribers by a pharmacist	NR
Li et al., 2017	Non-randomized controlled trial	China	6 university hospitals	Physicians of 8 intensive care units	Persuasive	Audit and feedback to prescribers by a pharmacist versus no intervention	NR
Tuon et al., 2017	Interrupted time-series	Brazil	1 university hospital	All prescribers	Structural	Mobile phone application providing antibiotic prescribing guidance	NR
Wattal et al., 2017	Interrupted time-series	India	1 tertiary hospital	Surgeons of 45 units	Persuasive	Audit and feedback to prescribers; focus group discussions per specialty	NR

NR: not reported; WHO: World Health Organization.

* The content of routine care was not specified.
Five of these studies reported antibiotic use as the outcome. All of them found a significant decrease in the percentage of patients receiving antibiotics in the procalcitonin group compared with routine care or C-reactive protein testing. RR ranged between 0.40 and 0.87.17–21

Five studies reported patient deaths as the outcome and found no significant effect of procalcitonin-guided antibiotic use on in-hospital or 30-day mortality.17,20,22–24

A non-randomized controlled trial among 97 patients in a Turkish emergency department studied the effect of introducing a rapid diagnostic test for influenza-like disease.26 A lower percentage of tested patients were prescribed antibiotics compared with patients given clinical examination only (RR: 0.68; 95% CI: 0.56 to 0.82). In a randomized controlled trial among 201 patients in a Peruvian emergency department, use of a rapid test for rotavirus was associated with fewer patients receiving antibiotics (RR: 0.59; 95% CI: 0.41 to 0.84).25

In a cluster-randomized controlled trial in Mexico and Thailand health-care staff were given access to the WHO’s online Reproductive Health Library and workshops on its use.27 Thereafter, it was left open to the 22 participating hospitals whether certain activities, including antibiotic stewardship, were implemented. After 10–12 months, no significant difference was found in the proportion of caesarean sections in which antibiotic prophylaxis was given, when comparing the 22 intervention hospitals to the 18 control hospitals (difference in adjusted rate in Mexico was 19.0%; 95% CI: −8.0 to 46.0% and in Thailand was 4.6%; 95% CI: −17.7 to 26.9%).

One interrupted time-series study evaluated the implementation of an antibiotic treatment guide through a free-of-charge mobile application (Table 3). Twenty-four months after the intervention there were significant increases in the defined daily doses per 1000 bed-days of recommended antibiotics (amikacin and cefepime) and a significant decrease in non-recommended antibiotics ($p = 0.02$). Use of other non-recommended antibiotics (me- ropenem, ciprofloxacin and polymyxin) did not decrease significantly.28

Study design, authors	Risk of bias criteria*	Overall riskb	
Interrupted time-series	A B C D E F G H I J K L M	Medium	
Weinberg et al., 2001			
Perez et al., 2001			
Maini et al., 2006			
Magderanz et al., 2012			
Aiken et al., 2013			
Chandy et al., 2014			
Soo et al., 2015			
Yuen et al., 2015			
Gong et al., 2016			
Sinik et al., 2016			
Ioan et al., 2017			
Attal et al., 2017			
Cluster randomized controlled trial	A B C D E F G H I J K L M	Medium	
Gülmezoglu et al., 2007			
Opondo et al., 2011			
Them et al., 2011			
Non-randomized controlled trial	A B C D E F G H I J K L M	High	
Gökaya et al., 2009			
Ratanamongwan et al., 2010			
Y et al., 2017			
Randomized controlled trial	A B C D E F G H I J K L M	High	
Gong et al., 2011			
Manic et al, 2011			
Kutcher et al., 2012			
Oliveira et al., 2013			
Tang et al., 2013			
Ling et al., 2014			
Nagel et al., 2015			

* The criteria were: A: intervention independent of other changes; B: shape of intervention pre-specified; C: intervention unlikely to affect data collection; D: knowledge of allocated interventions adequately prevented during study; E: seasonality taken into account; F: incomplete outcome data adequately addressed; G: study free from selective outcome reporting; H: adequate allocation sequencing; I: adequate allocation concealment; J: baseline outcome measures similar; K: baseline characteristics similar; L: any blinding reported; M: study protected against contamination.

b The risk of bias was considered low if all criteria were scored as low, medium if one or two criteria were scored as medium or high, and high if more than two criteria were scored as medium or high.28
Table 2. Outcomes of interventions to improve appropriate prescribing and use of antibiotics in hospitals in low- and middle-income countries: controlled trials

Intervention type and study design	Study duration, weeks	No. of patients	Data summary	Outcome measure	Effect size	P
Structural intervention						
Procalcitonin guidance						
Randomized controlled trial	201	172	No. of patients receiving antibiotics: 72/86 in procalcitonin group; 79/86 in routine care group	RR of receiving antibiotic (95% CI)	0.87 (0.79 to 0.96)	0.01
	NR	205	No. of patients receiving antibiotics: 19/102 in procalcitonin group; 48/103 in routine care group	RR of receiving antibiotic (95% CI)	0.40 (0.25 to 0.63)	0.01
	154	78	No. of deaths: 3/102 in procalcitonin group; 3/103 in routine care group	RR of in-hospital death (95% CI)	0.88 (0.33 to 2.35)	0.80
Randomized controlled trial	133	71	No. of deaths: 7/35 in procalcitonin group; 8/36 in standard 14 days of antibiotics group	RR of in-hospital death (95% CI)	0.90 (0.37 to 2.22)	0.99
	141	97	No. of deaths: 21/50 in procalcitonin group; 21/47 in routine care group	RR of in-hospital death (95% CI)	0.92 (0.59 to 1.44)	0.84
	283	265	No. of patients receiving antibiotics: 59/132 in procalcitonin group; 95/133 in routine care group	RR of receiving antibiotic (95% CI)	0.63 (0.50 to 0.78)	0.01
	133	180	No. of patients receiving antibiotics: 44/90 in procalcitonin group; 79/90 in routine care group	RR of receiving antibiotic (95% CI)	0.56 (0.44 to 0.70)	0.01
	52	60	No. of deaths: 5/30 in procalcitonin group; 4/30 in routine care group	RR of in-hospital death (95% CI)	1.25 (0.37 to 4.21)	0.71
Rapid diagnostic testing						
Non-randomized controlled trial	21	97	No. of patients receiving antibiotics: 34/50 in influenza rapid diagnostic test group; 47/47 in routine care group	RR of receiving antibiotic (95% CI)	0.68 (0.56 to 0.82)	0.01
Randomized controlled trial	26	201	No. of patients receiving antibiotics: 29/100 in faecal leukocyte + rotavirus rapid test group; 50/101 in faecal leukocyte test only group	RR of receiving antibiotic (95% CI)	0.59 (0.41 to 0.84)	0.03
Library access plus workshops	43 to 52	1000 to 1022 per hospital	Mean % of operations with antibiotic prophylaxis: Mexico: 25.8 in intervention group; 6.5 in control group; Thailand: 26.0 in intervention group; 14.7 in control group	% of operations with antibiotic prophylaxis: difference in adjusted rate (95% CI)	Mexico: 19 (−8 to 46); Thailand: 5 (−18 to 27)	0.12 0.66

(continues . . .)
Persuasive interventions

Four studies evaluated the effect of audit and feedback to prescribers on individual patient cases by pharmacists (3 studies) or infectious diseases specialists (1 study).29,30,32,35 A non-randomized controlled trial including 577 patients in eight intensive care units reported a decrease of duration of antibiotic treatment of −1.0 day (P = 0.03) (Table 2).30 Another non-randomized controlled trial of 948 patients in a public university hospital reported a decrease of duration on antibiotic treatment of −3.7 days (P < 0.01) and a decrease in mean length of hospital stay of −1.6 days (P = 0.03).32 A cluster randomized trial found no significant difference in mean length of hospital stay among 436 patients (0.3 days; P = 0.8).29 An interrupted time-series study in 47 private hospitals in South Africa found a decreasing trend of antibiotic use during the implementation phase of the intervention (−0.56 defined daily doses per 100 bed-days per month; P < 0.01; Table 3).29 The trend was sustained in the 20 months post-implementation (−0.20 defined daily doses per 100 bed-days per month; P < 0.05).

An interrupted time-series study evaluated the effect of audit and feedback at the departmental level in 35 surgical wards. Three months after the intervention a significant decrease in defined daily doses per 100 bed-days was reported in 3 out of 35 wards (immediate decreases of −66.5%, −46.1% and −26.4% respectively; P < 0.05).31

Enabling interventions

Two interrupted time-series studies studied the effect of enabling interventions on antibiotic prescribing (Table 3).34,35 A study in an Indonesian hospital subsequently studied the development of treatment guidelines which were officially presented, followed by education and then refresher education. The authors reported a significant decrease of −31.9 defined daily doses per 100 bed-days (P = 0.03) after guideline development and a significant increase of +38.2 defined daily doses per 100 bed-days (P < 0.05) after education. The net effect of the intervention remains unclear.34 Another study in an Indian hospital evaluated the effect of an antibiotic policy guideline which was first developed and introduced, then revised and made available as booklet and lastly revised and made available through the intranet. The authors initially reported a baseline rising trend in antibiotic use of +0.95 defined daily doses per 100 bed-days per month (P < 0.01) which levelled off after the first two interventions and declined by −0.37 defined daily doses per 100 bed-days per month (P < 0.01) after the last intervention.35

Intervention bundles

Eight studies evaluated bundles combining different interventions.36–43 A cluster randomized controlled trial in eight Kenyan hospitals compared a bundle containing guidelines, education and face-to-face feedback to prescribers with a similar, but less intensive bundle (fewer hours of training, written feedback; Table 2).37 Comparing prescriptions for 594 children in intervention hospitals and 566 children in control hospitals showed that the intensive bundle was associated with a non-significant absolute risk reduction in inappropriate use of antibiotics for non-bloody diarrhoea of 41% (95% CI: −6 to 88%). The other seven studies all used an interrupted time-series design (Table 3). One study in two Colombian hospitals implemented antibiotic prophylaxis

Persuasive interventions

Persuasive intervention

Study design	Study duration, weeks	No. of patients	Data summary	Outcome measure	Effect size	P
Audit and feedback on individual patient cases						
Non-randomized controlled trial	17	948	Mean no. of days of hospitalization: 30.4 in intervention group, 30.7 in control group	Mean difference in hospital length of stay (95% CI), days	−0.3 (−3.3 to −3.0)	0.80
Cluster randomized controlled trial	43	436	Mean no. of days of treatment: 12.7 in intervention group, 16.4 in control group	Mean difference in treatment duration, days	−3.7 (−5.2 to −2.2)	0.01
Non-randomized controlled trial	9	874	Median no. of days of treatment: 4.0 in intervention group, 5.0 in control group	Difference in median no. of days of treatment	1.0	0.03

Intervention bundle

Study design	Study duration, weeks	No. of patients	Data summary	Outcome measure	Effect size	P
Treatment guidelines plus education plus audit and feedback						
Cluster randomized controlled trial	77	1160	No. of patients receiving antibiotics for inappropriate indication: 313/594 in intervention group, 437/566 in control group	Absolute risk reduction for receiving antibiotic for inappropriate indication (95% CI)	41 (−6 to 88)	0.08

CI: confidence interval; DDD: defined daily doses; NR: not reported; RR: relative risk.

* Per protocol analysis.

* Different collection periods in different hospitals.

Note: Intention-to-treat analysis results are reported unless indicated otherwise. When significant P-values were not specified, we assumed P < 0.05 as significant.

Systematic reviews

Antibiotic stewardship in low- and middle-income countries

Christophe Van Dijck et al.

Table 2

Table 3

272 Bull World Health Organ 2018;96:266–280 | doi: http://dx.doi.org/10.2471/BLT.17.203448

(. . .continued)
Table 3. Outcomes of interventions to improve appropriate prescribing and use of antibiotics in hospitals in low- and middle-income countries: interrupted time-series studies

Intervention	Study segments (duration in weeks)	No. of data points per segment (no. of observations per data point)	Outcome measure	Effect size*	P
Structural interventions					
Mobile phone application	S1: Pre-intervention (52)	12 (NR)	DDD per 1000 bed-days	Baseline trend NR	N/A
	S2: Post-intervention (52)			Trend increased for amikacin	0.02
				Trend increased for cefepime	0.01
				Trend decreased for piperacillin	0.02
				Trend decreased for meropenem	0.44
				Trend decreased for polymyxin	0.34
				Trend decreased for ciprofloxacin	0.08
Persuasive interventions					
Audit and feedback on individual patient cases	S1: Pre-intervention (70)	16 (NR)	DDD per 100 bed-days	Baseline level NR	N/A
	S2: Implementation (104)			Baseline trend +0.064/month	0.62
	S3: Post-intervention (86)			Trend change −0.56/month	0.01
Audit and feedback at department level	S1: Pre-intervention (52)	12 (NR)	DDD per 100 bed-days	Baseline level NR	N/A
	S2: Post-intervention (13)			Baseline trend: increasing in 1/35 wards	0.05
				Level decreased in 3/35 wards	0.05
Enabling interventions					
Treatment guidelines	S1: Pre-intervention (16)	9 (14)	DDD per 100 bed-days	Baseline level NR	N/A
	S2: Guideline development (14)	6 (14)		Baseline trend: −1.0 per 14 days	0.53
	S3: Guideline declaration (8)	4 (26)		Trend change: −31.9	0.03
	S4: Teaching sessions (8)	4 (27)		Trend change: +2.1 per 14 days	0.52
	S5: Refresher course (8)	5 (15)		Trend change: −29.2	0.11
Treatment guidelines	S1: Pre-intervention (86)	20 (NR)	DDD per 100 bed-days	Baseline level NR	N/A
	S2: Guideline preparation and booklet dissemination (94)	22 (NR)		Baseline trend: +0.05 per month	0.01
	S3: No new intervention (104)	24 (NR)		Level change: NR	N/A
	S4: Guideline revision and booklet dissemination (104)	24 (NR)		Trend change: +0.31 per month	0.01
	S5: Guideline revision and booklet with electronic dissemination (86)	20 (NR)		Level change: NR	N/A

(continues...)
Intervention Study segments (duration in weeks) No. of data points per segment (no. of observations per data point) Outcome measure Effect size

Intervention bundles	Study segments (duration in weeks)	No. of data points per segment (no. of observations per data point)	Outcome measure	Effect size
Treatment guidelines plus structural changes³⁹	Hospital A			
S1: Pre-intervention (13)	3 (308)	% of operations with surgical site infection		
Baseline level: 13.9				
Baseline trend: NR^c				
Level change: −9.8				
Trend change: NR^c	N/A			
NR				
0.01				
NR				
S2: Guideline introduction with structural changes (30)	7 (272)			
S3: Post-intervention (21)	5 (217)			
Hospital A				
S1: Pre-intervention (13)	3 (308)	% of caesarean sections with administration of antibiotic prophylaxis		
Baseline level: 47.5				
Baseline trend: NR^c				
Level change: +31.6				
Trend change: NR^c	N/A			
NR				
0.01				
NR				
S2: Guideline introduction with structural changes (30)	7 (272)			
S3: Post-intervention (21)	5 (217)			
Hospital A				
S1: Pre-intervention (13)	3 (396)	% of caesarean sections with administration of antibiotic prophylaxis		
Baseline level: 5.1				
Baseline trend: NR^c				
Level change: +5.4 per month				
Trend change: NR^c 0.01	N/A			
NR				
0.01				
NR				
S2: Guideline introduction with structural changes (39)	9 (1026)			
S3: Post-intervention (52)	12 (709)			
Hospital A				
S1: Pre-intervention (13)	3 (308)	% of caesarean sections with administration of antibiotic prophylaxis within 1 hour of delivery		
Baseline level: 32.5				
Baseline trend: NR^c				
Level change: 62.2				
Trend change: NR^c 0.01	N/A			
NR				
0.01				
NR				
S2: Guideline introduction with structural changes (30)	7 (272)			
S3: Post-intervention (21)	5 (217)			
Hospital A				
S1: Pre-intervention (13)	3 (396)	% of caesarean sections with administration of antibiotic prophylaxis within 1 hour of delivery		
Baseline level: 30.8				
Baseline trend: +18.4 per month				
Level change: −18.7 per month				
Trend change: −15.2				
Trend change: −20	N/A			
0.01				
NR				
0.01				
NR				
NR				
0.01				
NR				
S2: Guideline introduction with structural changes (39)	9 (1026)			
S3: Post-intervention (52)	12 (709)			
Prescription form plus education plus reminders⁴⁰	Hospital A			
S1: Pre-intervention (103)	103 (NR)	% of operations with incorrect timing of antibiotic prophylaxis		
Baseline level: NR^c				
Baseline trend: NR^c				
Level change: −20				
Trend change: NR	N/A			
NR				
0.01				
NR				
S2: Post-intervention (42) | 42 (NR) | | | |

(continues...)

³⁹Guidelines were not the only intervention in these segments.
⁴⁰Although the intervention was described as a prescription form, it was actually part of a more extensive training program.
^cResults are not reliable (NR) as they are based on very few data points.
Antibiotic stewardship in low- and middle-income countries

Systematic reviews

Bull World Health Organ 2018;96:266–280
doi: http://dx.doi.org/10.2471/BLT.17.203448

Intervention	Study segments (duration in weeks)	No. of data points per segment (no. of observations per data point)	Outcome measure	Effect sizea	P
Antibiotic restrictions plus audit and feedback⁴¹	S1: Pre-intervention (129)	30 (NR)	Antibiotic use, DDD per 100 bed-days	Baseline level: NR	N/A
	S2: Antibiotic restrictions plus audit and feedback by infectious diseases specialist (94)	22 (NR)	Baseline trend +1.2 per month	Level change: −1.3	0.8
	S3: Antibiotic restrictions plus audit and feedback by pharmacist (86)	20 (NR)	Trend change: −2.7 per month	Level change: +4.7	0.4
Timing study	S1: Pre-intervention (26)	26 (NR)	% of operations with incorrect timing of antibiotic prophylaxis	Baseline level: 99%	N/A
	S2: Post-intervention (40)	40 (NR)	Baseline trend: NR	Level decreased^b	0.01
	S3: Post-intervention (104)	20 (NR)	Trend decreased^b	Level change: +4.7	0.4
Infection study	S1: Pre-intervention (26)	6 (223)	% of operations with surgical site infection	Baseline level: NR	N/A
	S2: Post-intervention (39)	9 (223)	Baseline trend: NR	Level change: −0.7 per month	0.03
Outcome A	S1: Pre-intervention (52)	12 (NR)	% of patients receiving antibiotic	Baseline level: NR	N/A
	S2: Implementation (52)	12 (NR)	Baseline trend +0.3 per month	Level change: −2.3	0.05
	S3: Post-intervention (104)	24 (NR)	Trend decrease	Level change: −2.3 per month	0.01
Outcome B	S1: Pre-intervention (52)	12 (NR)	Antibiotic use, DDD per 100 bed-days	Baseline level: NR	N/A
	S2: Implementation (52)	12 (NR)	Baseline trend: −0.4 per month	Level change: +2.8	0.2
	S3: Post-intervention (104)	24 (NR)	Trend change: −2.2 per month	Level change: −7.1	0.01
Multifaceted antibiotic stewardship programme⁴²	S1: Pre-intervention (334)	26 (58)	% of patients receiving antibiotic	Baseline level: 74.7	N/A
	S2: Post-intervention (78)	6 (750)	Baseline trend: −0.3 per quarter	Level change: −7.3	0.04
	S3: Financially punished audit and feedback (60)	14 (446 727)	Trend change: −1.5 per quarter	Level change: 59.0	N/A
Treatment guidelines plus antibiotic restrictions plus audit and feedback³⁸	S1: Pre-intervention (17)	4 (375 985)	% of patients receiving antibiotic	Baseline level: 59.0	N/A
	S2: Guidelines and restrictions (21)	5 (424 702)	Baseline trend: −3.0 per month	Level change: −3.0	0.2
	S3: Financially punished audit and feedback (60)	14 (446 727)	Trend change: −0.4 per month	Level change: −9.0	0.01

DDD: defined daily doses; N/A: not applicable; NR: not reported; RR: relative risk; S: segment.

^a In interrupted times-series studies the linear curve which summarizes the outcome data in each study segment can be defined by its level (y-intercept) and trend (slope). Level change reflects the difference of the level of the current segment compared with the level of the previous segment. Trend change reflects the difference of the trend of the current segment compared to the trend of the previous segment.

^b The authors reported no values for level or trend changes.

^c The authors reported that there were no significant changes but with no values for levels or trend changes.
guidelines for caesarean sections, immediate availability of antibiotics in the operating theatre and feedback to surgeons about surgical site infections. The study reported a significant increase in the percentage of caesarean section births in which prophylaxis was administered (immediate increase by +31.6% in hospital A; \(P < 0.01 \) and gradual increase by +5.4% per month in hospital B; \(P < 0.01 \)), an increase in antibiotic administration within 1 hour of delivery (immediate increase by 62.2% in hospital A only; \(P < 0.01 \)) and a significant decrease in the monthly rate of surgical site infections with 9.8% (\(P < 0.01 \)) in hospital A.

In another study in a Kenyan hospital, surgical antibiotic prophylaxis guidelines were implemented, combined with training, personal feedback to prescribers and patient information posters. The proportion of operations with incorrect timing of antibiotic prophylaxis significantly decreased (no values reported) and the percentage of surgical site infections decreased after the intervention by −0.7% per month (\(P = 0.03 \)).

Another Colombian study introduced an antibiotic prescription form containing a list of restricted antibiotics with information on dosing intervals and an educational campaign. The study found a decrease of 20% (\(P < 0.01 \)) in the proportion of operations with incorrect timing of surgical prophylaxis.

In a Chinese study, guidelines and antibiotic restrictions were introduced, followed by individual prescriber audit and feedback, with financial penalties and revocation of prescribing privileges in case of non-compliance. Before the intervention the proportion of patients on antibiotic treatment was decreasing significantly by −3% per month from a baseline level of 59% (\(P = 0.01 \)). After the first intervention, no significant changes were reported. After the second intervention, a sudden drop of −9% (\(P = 0.01 \)) was observed, followed by a steady increase of +3% per month (\(P = 0.01 \)) in the next 14 months. The net effect of the intervention bundle remains unclear.

A study in a Brazilian cardiology hospital first introduced restriction of certain antibiotics with individual audit and feedback to prescribers by an infectious disease specialist and subsequently more comprehensive audit and feedback by a pharmacist. Before the intervention, the total antibiotic consumption significantly increased during 30 months (+1.2 defined daily doses per 100 bed-days per month; \(P < 0.01 \)). This trend decreased after the first intervention (−2.7 per month; \(P < 0.01 \)) and increased after the second (+1.2 per month; \(P < 0.01 \)). The net effect of the intervention bundle remains unclear.

Two Chinese studies looked at the implementation of a multifaceted national antibiotic stewardship programme, containing structural changes, antibiotic restriction, education, guidelines, and audit and feedback, in 65 and 15 secondary and tertiary public hospitals respectively. Participation was compulsory and financial punishment for hospitals and disciplinary actions for individual prescribers could be imposed. Both studies reported a significant decrease in antibiotic use after the intervention. One study reported a decreasing trend of −2.2 defined daily doses per 100 bed-days per month (\(P < 0.01 \)). The other study reported a decrease in the proportion of patients receiving antibiotics (−7.3%; \(P = 0.04 \)).

Discussion

In this systematic review the majority of the included studies reported a positive effect of antibiotic stewardship interventions for hospitalized patients. This is in line with previously published systematic reviews on stewardship interventions in hospitals, which did not focus specifically on low- and middle-income countries. However, we cannot make general recommendations to guide the selection of antibiotic stewardship interventions due to limitations of the included studies, including the low quality of methods, variations and shortcomings in outcome reporting, under-representation of certain settings, heterogeneity of the interventions and variations in implementation strategy.

When screening titles and abstracts, we found 153 articles that reported on stewardship activities in a hospital setting, but 126 of those were excluded because of the study design (mainly bio-as-prone uncontrolled before-after studies). So, although antibiotic stewardship is taking place and is being studied in low- and middle-income countries, most studies fall short methodologically. The studies we did include were also generally of low quality. For those with a randomized study design, a major risk of bias was contamination, meaning that prescribers could be involved in treatment of both the intervention and control groups. Because it may not be feasible to randomize individual prescribers, wards or hospitals to overcome this bias, interrupted time-series design has been recommended as an alternative. In interrupted time-series, data are collected continuously, and trends and outcome levels are compared before and after the intervention. To minimize bias and confounding, interrupted–time-series should meet certain requirements: a minimum of 12 data points before and after intervention, 100 observations per data point and the use of analytic techniques or models. These requirements were seldom met by the included studies. Poor quality of methods is a consistent theme among reviews of antibiotic stewardship in countries of all income levels and this issue needs to be addressed to strengthen the evidence base.

Many of the included studies focused on a quantitative reduction in antibiotic prescribing. However, stewardship is not merely concerned with a reduction in antibiotic use, but in finding the balance between the potency of antibiotics and their potentially hazardous effects. The goal is to improve patient outcomes, decrease antibiotic resistance and increase cost-effectiveness of care. Therefore, it is recommended that clinical outcomes (including adverse events), microbiological and cost-effectiveness outcomes are reported in all stewardship studies. Most of the studies included in this review failed to do so. There is an ongoing debate about which parameters should be reported to accurately reflect the above-mentioned outcomes.

This generally leads to a wide variety of reported parameters, as we observed in our review. This lack of uniformity limits comparison and aggregation of data. Also, for low- and middle-income settings, the measurement of certain clinical or microbiological outcomes, for example infection with *Clostridium difficile*, may be challenging if not impossible. Defining feasible outcome measures that can be uniformly applied in low- and middle-income countries should be prioritized. In the meantime, parameters that are easy to assess, such as mortality or hospital length of stay, should be reported by every stewardship study.
The majority of studies were performed in tertiary care centres in urban areas in middle-income countries, which limits the generalizability of the results. Large differences exist in terms of resources, organization, prescription practices and financing between countries and between facilities within countries. The intervention most frequently studied in our review was the implementation of procalcitonin testing. Although this intervention showed promising results, it may not be feasible to implement in many health-care settings in low- and middle-income countries. In addition, good quality evidence from non-tertiary or rural hospitals in low-income countries is lacking. Studies focusing on these settings should therefore be prioritized.

The effectiveness of the interventions varied across the studies, even those that implemented similar interventions. This is likely due to differences in the intervention or the implementation strategy, which may have been adapted to fit local circumstances. A detailed description of the intervention and the implementation strategy is therefore mandatory to interpret the study findings. Stewardship interventions in hospitals usually aim to change individual prescriber’s behaviour. This behaviour is influenced by social norms, attitudes and beliefs. These are therefore important determinants of the effectiveness of the intervention and should be an integral part of studies of stewardship interventions. For this reason, collaboration with behavioural scientists has been recommended.

None of the included studies reported behaviour determinants.

Our review has several limitations.

We defined a broad search strategy, allowing different settings, participants, interventions and outcomes to be included. This strategy provides a good overview of what evidence is available, but limits the generalizability of the findings. Moreover, to ensure the validity of the results, studies had to fulfil high methodological standards to be included. This led to discarding numerous lower quality studies. Also, we did not include studies that only reported cost (effectiveness) as an outcome, as these require a different analysis model. Lastly, due to publication bias (not reporting negative results) and language restrictions we may have missed certain studies.

We conclude that, based on the currently available evidence, general recommendations regarding the effectiveness of stewardship interventions in low- and middle-income countries cannot be made. As many hospitals in low- and middle-income countries are setting up antibiotic stewardship programmes, what should be the way forward? On the basis of our findings, we suggest the following actions should be prioritized to strengthen the evidence base: (i) provision of methodological and statistical support for commonly used, complex study designs such as interrupted-time-series; (ii) seeking consensus on relevant and feasible outcome measurements for low- and middle-income countries; (iii) performing methodologically solid studies in settings such as non-tertiary, rural and public hospitals in low-income countries; and (iv) accurate descriptions of interventions, implementation strategies and inclusion of behavioural aspects. While awaiting the effect of these actions, the current lack of evidence should not prevent health-care workers from engaging in stewardship. Evidence and examples both from high- and low-and middle-income countries can inspire and provide guidance in the meantime.

Acknowledgments

The authors thank Tine Verdonck, Johan van Griensven, Kristien Wouters and Jan Jacobs.

Funding: Janneke Cox received unrestricted funding from the Baillet-Latour fund.

Competing interests: None declared.
低收入和中等收入国家的医院对抗生素的管理干预措施：系统评价

目的：评估低收入和中等收入国家的医院对抗生素的管理干预措施的有效性。

方法：我们分别在 MEDLINE®、Embase®、Cochrane 临床对照试验中心注册数据库中进行检索，用于研究干预措施，以改善低收入和中等收入国家住院患者适当的开具处方和使用抗生素。我们包括了发表至 2017 年 12 月的对照试验、前后对照研究和续时间序研究。我们使用叙述性方法来报告处方、临床和微生物结果。

结果：我们筛选了 7342 条原始文献和摘要，评估了 241 篇全文文献，其中包括来自 2 个低收入国家和 11 个中等收入国家的 27 项研究。我们发现了中等（11 项研究）或高等（13 项研究）偏倚风险。普遍来说，所有类型的干预措施（结构型、劝导型和授权型）和干预组合措施据报告改善处方和临床结果。然而，研究的干预措施和结果的差异很大。最常见的干预措施是降钙素原指导的抗生素治疗（所有 27 例随机对照试验研究中有 8 例采用此干预措施）。此干预措施对接受抗生素治疗患者的相对危险范围为 0.40 至 0.87。

结论：大多数研究报告了医院抗生素管理干预措施的积极效果。然而，由于研究质量较低、干预措施及其结果的异质性以及某些背景的代表性不足，我们不能确定这些干预措施在低收入和中等收入国家的有效性得到一般性结论。为了加强证据基础，需要采取措施来解决这些不足。

Résumé

Revue systématique des interventions visant à promouvoir une utilisation rationnelle des antibiotiques en milieu hospitalier, dans les pays à revenu faible et intermédiaire

Objectif Étudier l’efficacité des interventions visant un usage plus rationnel des antibiotiques dans les hôpitaux de pays à revenu faible et intermédiaire.

Méthodes Nous avons consulté MEDLINE®, Embase®, le registre central Cochrane des essais contrôlés ainsi que des index régionaux afin de rechercher des études portant sur des interventions menées pour améliorer la prescription et l’usage des antibiotiques pour les patients hospitalisés, dans des pays à revenu faible et intermédiaire. Nous avons inclus des essais contrôlés, des études contrôlées avant/après et des études en séries temporelles interrompues, publiés jusqu’à décembre 2017. Nous évoquons ici, en adoptant une approche narrative, les résultats obtenus en termes de prescription et aux niveaux clinique et microbiologique.

Résultats Nous avons sélectionné 7342 résumés et titres originaux, évalué 241 articles dans leur version intégrale et inclus 27 études, pour 2 pays à faible revenu et 11 pays à revenu intermédiaire. Nous avons identifié un risque de biais moyen (11 études) ou élevé (13 études). En règle générale, ces publications indiquent que tous les types d’interventions (structurelles, persuasives et capacitantes) ainsi que toutes les interventions combinées ont permis d’améliorer les résultats en termes de prescription et au niveau clinique. Cependant, les interventions étudiées et les résultats publiés sont extrêmement variés. L’intervention la plus fréquente a consisté à guider les antibiothérapies en utilisant la procalcitonine (8 études sur 27; toutes correspondent à des essais contrôlés randomisés). Pour les patients, cette intervention a été associée à un risque relatif de prescription d’antibiotiques compris entre 0.40 et 0.87.

Conclusion La majorité des études font état d’un effet positif des interventions visant à promouvoir l’usage rationnel des antibiotiques en milieu hospitalier. Néanmoins, nous ne pouvons pas tirer de conclusions générales sur l’efficacité de ces interventions dans les pays à revenu faible ou intermédiaire, compte tenu de la mauvaise qualité des études, de l’hétérogénéité des interventions et des résultats ainsi que de la sous-représentation de certains contextes. Pour consolider les données disponibles, des actions doivent être entreprises afin de combler ces lacunes.
Antibiotic stewardship in low- and middle-income countries

Resumen
Intervenciones de administración de antibióticos en países con ingresos bajos y medios: una revisión sistemática

Objetivo
Revisar la eficacia de las intervenciones de administración de antibióticos en hospitales de países con ingresos medios y bajos.

Métodos
Se realizaron búsquedas en MEDLINE®, Embase®, en el Registro Central de Ensayos Controlados Cochrane y en índices regionales en relación a estudios de intervenciones para mejorar la prescripción y el uso adecuado de antibióticos para pacientes hospitalizados en países con ingresos medios y bajos. Incluimos ensayos controlados, estudios controlados de tipo antes y después y estudios de series de tiempo interrumpido publicados hasta diciembre de 2017. Informamos acerca de los resultados de prescripción, clínicos y microbiológicos usando un enfoque narrativo.

Resultados
Revisamos 7342 títulos originales y resúmenes, evaluamos 241 artículos de texto completos, incluidos 27 estudios de 2 países con ingresos bajos y 11 con ingresos medios. Encontramos riesgo medio de sesgo (11 estudios) o riesgo alto (13 estudios). Por lo general, se informó de que todos los tipos de intervenciones (estructurales, persuasivas y permisivas) y conjuntos de intervenciones mejoran los resultados de prescripción y los resultados clínicos. Sin embargo, las intervenciones estudiadas y los resultados sobre los que se informó variarían considerablemente. La intervención más frecuente fue el tratamiento antibiotic guiado de procalcitonina (8 de 27 estudios, todos ellos ensayos controlados aleatorizados). La intervención se asoció a un riesgo relativo para pacientes que recibían antibióticos que oscilan entre 0,40 y 0,87.

Conclusión
La mayoría de los estudios informaron sobre un efecto positivo de las intervenciones hospitalarias con administración de antibióticos. Sin embargo, no podemos extraer conclusiones generales acerca de la efectividad de tales intervenciones en países con ingresos medios y bajos debido a la baja calidad del estudio, a la heterogeneidad de las intervenciones y los resultados y a la baja representación de ciertas regiones. Para fortalecer la base de las evidencias, es necesario tomar medidas para abordar estas deficiencias.

Referencias
1. Holmes AH, Moore LS, Sundsfjord A, Steinbakk M, Regmi S, Karkey A, et al. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet. 2016 Jan 9;387(10044):176–87. doi: http://dx.doi.org/10.1016/S0140-6736(15)30047-0 PMID: 26603922
2. Antimicrobial resistance: global report on surveillance. Geneva: World Health Organization, 2014.
3. Leopold SJ, van Lett F, Tarekgi H, Schultz C. Antimicrobial drug resistance among clinically relevant bacterial isolates in sub-Saharan Africa: a systematic review. J Antimicrob Chemother. 2014 Sep;69(9):2337–53. doi: http://dx.doi.org/10.1093/jac/dku067 PMID: 2489668
4. Lestari ES, Severin JA, Verbrugh HA. Antimicrobial resistance among pathogenic bacteria in Southeast Asia. Southeast Asian J Trop Med Public Health. 2012 Mar-Apr;43(2):385–422. PMID: 23082591
5. Lawmamraun A, Duse A, Watta C, Zaidi AK, Werthem HF, Supradit N, et al. Antibiotic resistance—the need for global solutions. Lancet Infect Dis. 2013 Dec;13(12):1057–68. doi: http://dx.doi.org/10.1016/S1473-3099(13)70318-9 PMID: 2425248
6. The evolving threat of antimicrobial resistance: options for action. Geneva: World Health Organization, 2012.
7. Global action plan on antimicrobial resistance. Geneva: World Health Organization, 2015.
8. Davey P, Marriott CA, Scott CL, Chanani E, McNeil K, Brown E, et al. Interventions to improve antibiotic prescribing practices for hospital inpatients. Cochrane Database Syst Rev. 2017 Jul 2;2:CD003543. PMID: 28178770
9. Schuts EC, Hulshier MEJL, Mouton JW, Verduin CM, Stuart JWTc, Overbeek HWP, et al. Current evidence on hospital antimicrobial stewardship objectives: a systematic review and meta-analysis. Lancet Infect Dis. 2016 Jul;16(7):847–56. doi: http://dx.doi.org/10.1016/S1473-3099(16)00065-7 PMID: 26947670
10. Honda H, Ohmagari N, Tokuda Y, Mattar C, Warren DK. Antimicrobial stewardship in inpatient settings in the Asia Pacific Region: a systematic review and meta-analysis. Clin Infect Dis. 2017 May 15;64(10):1440–1483.201710971x PMID: 25107143
11. Cox JA, Vlieghe E, Mendelson M, Werthem H, Ndegwa L, Villegas MV, et al. Antibiotic stewardship in low- and middle-income countries: the same but different? Clin Microbiol Infect. 2017 Nov;23(11):812–8. doi: http://dx.doi.org/10.1016/j.cmi.2017.07.010 PMID: 28712667
12. Howard P, Pulcini C, Levy Har A, West RM, Gould IM, Harbarth S, et al.; ESCMID Study Group for Antimicrobial Policies (ESGAP); ISC Group on Antimicrobial Stewardship. An international cross-sectional survey of antimicrobial stewardship programmes in hospitals. J Antimicrob Chemother. 2015 Apr;70(4):1245–55. PMID: 25527272
13. Van Dijck C, Cox JA, Vlieghe E. The impact of antibiotic stewardship interventions in hospitalized patients in low- and middle-income countries: a systematic literature review. PROSPERO International prospective register of systematic reviews. [Internet]. York: University of York, 2016. Available from: http://www.crd.york.ac.uk/PROSPERO/display_record.php?ID=CRD40210042109 [cited 2018 Jan 3].
14. World Bank country and lending groups [internet]. Washington: World Bank, 2016. Available from: http://data.worldbank.org/about/country-and-lending-groups [cited 2016 Jan 24].
15. Suggested risk of bias criteria for EPOC reviews [Internet]. London: Cochrane. 2017. Available from: http://epoc.cochrane.org/epoc-specific-resources-review-authors [cited 2017 Dec 17].
16. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009 Jul 21;6(7):e1000097. doi: http://dx.doi.org/10.1371/journal.pmed.1000097 PMID: 19621072
17. Ding J, Chen Z, Feng K. Procalcitonin-guided antibiotic use in acute exacerbations of idiopathic pulmonary fibrosis. Int J Med Sci. 2013 05 20;10(7):903–7. doi: http://dx.doi.org/10.7150/ijms.4792 PMID: 23788136
18. Long W, Deng X, Zhang Y, Lu G, Xie J, Tang J. Procalcitonin guidance for reduction of antibiotic use in patients hospitalized with 12-month follow-up. Crit Care. 2014 09 21;18(5):471. doi: http://dx.doi.org/10.1186/s13054-014-0471-7 PMID: 25189222
19. Maravic-Stojkovic V, Lausevic-Vuk L, Jovic M, Rankovic A, Borzanovic M, Marinovic J. Procalcitonin-based therapeutic strategy to reduce antibiotic use in patients after cardiac surgery: a randomized controlled trial. Srp Arh Celok Lek. 2011 Nov-Dec;139(11-12):736–42. doi: http://dx.doi.org/10.2298/SARH1112736M PMID: 22338468

Bull World Health Organ 2018;96:266–280 doi: http://dx.doi.org/10.2471/BLT.17.203448 279
Antibiotic stewardship: mild to moderate-income countries

21. Tang J, Long W, Yan L, Zhang Y, Xie J, Li G, et al. Procalcitonin guided antibiotic therapy of acute exacerbations of asthma: a randomized controlled trial. BMC Infect Dis. 2013 13:1713:1-596. doi: http://dx.doi.org/10.1186/1471-2334-13-596 PMID: 2341820

22. Najafi A, Khodadadian A, Sanatkar M, Shariat Moharani R, Rezadi F, Ahmadi A, et al. The comparison of procalcitonin guidance administrator antibiotics with empiric antibiotic therapy in critically ill patients admitted in intensive care unit. Acta Med Iran. 2015;53(9):562–7. PMID: 26553084

23. Oliveira CF, Botoni RA, Oliveira CR, Silva CB, Pereira HA, Serufo JC, et al. Procalcitonin versus C-reactive protein for guiding antibiotic therapy in sepsis: a randomized trial. Crit Care Med. 2013 Oct;41(10):2336–43. doi: http://dx.doi.org/10.1097/CCM.0b013e318286e969 PMID: 23921272

24. Qu R, JY, Ling Y, Ye CY, Yang SM, Liu YY, et al. Procalcitonin is a good tool to guide duration of antibiotic therapy in patients with severe acute pancreatitis. A randomized prospective single-center controlled trial. Saudi Med J. 2012 Apr;33(4):382–7. PMID: 22485232

25. Bucher A, Rivaux G, Briceño D, Hulcu L. [Use of a rapid rotavirus test in prescription of antibiotics in acute diarrhea in pediatrics: an observational, randomized, controlled study]. Rev Gastroenterol Peru. 2012 Jan-Mar;32(1):1–5. Spanish. PMID: 22476173

26. Özkan E, Cambaz M, Çiçek Y, Mele F, Geyik M, Samanci N. The effect of rapid diagnostic testing for influenza on the reduction of antibiotic use in paediatric emergency department. Acta Paediatr. 2009 Oct;98(10):1589–92. doi: http://dx.doi.org/10.1111/j.1651-2227.2009.01384.x PMID: 19555447

27. Gülmezoglu AM, Langer A, Piaggio G, Lumbiganon P, Villar J, Grimshaw J. Cluster randomised trial of a once, multifaceted educational intervention based on the WHO Reproductive Health Library to improve obstetric practices. BJOG. 2007 Jan;114(1):16–23. doi: http://dx.doi.org/10.1111/j.1471-0528.2006.01091.x PMID: 17010115

28. Tuoan FF, Gasparetto J, Wollmann LC, Mora TP. Mobile health application to assist doctors in antibiotic prescription – an approach for antibiotic stewardship. Braz J Infect Dis. 2017 Nov;21(6):660–4. doi: http://dx.doi.org/10.1016/j.bjid.2017.08.002 PMID: 28941393

29. Brink AJ, Messina AP, Feldman C, Richards GA, Becker PJ, Goff DA, et al. Impact of active, multifaceted educational intervention with an antimicrobial stewardship program across 47 South African hospitals: an implementation study. J Clin Epidemiol. 2017 Apr;34(2):290–4. doi: http://dx.doi.org/10.1016/j.amepre.2016.07.020 PMID: 28282886

30. Li Z, Cheng B, Zhang K, Xie G, Wang Y, Hou J, et al. Significant reduction of antibiotic consumption and patients’ costs after an action plan in China, 2010–2014. PLoS One. 2015 03 13;10(3):e0118868. doi: http://dx.doi.org/10.1371/journal.pone.0118868 PMID: 25767891

31. Sun J, Shen X, Li M, He L, Guo S, Skoog G, et al. Changes in patterns of antibiotic use in Chinese public hospitals (2005–2012) and a benchmark comparison with Sweden in 2012. J Glob Antimicrob Resist. 2015 Jun;3(2):95–102. doi: http://dx.doi.org/10.1016/j.jgar.2015.03.001 PMID: 27873677

32. The WHO Reproductive Health Library [Internet]. Geneva, World Health Organization; 2017. Available from: https://extranet.who.int/rhl [cited 2017 Dec 17].

33. de Kraker MEA, Abbas M, Hutbner B, Harbarth S. Good epidemiological practice: a narrative review of appropriate scientific methods to evaluate the impact of antimicrobial stewardship interventions. Clin Microbiol Infect. 2017 Nov;23(11):e189–215. doi: http://dx.doi.org/10.1016/j.cmi.2017.05.019 PMID: 28571767

34. Hulscher MEJL, Prins JM. Antibiotic stewardship: does it work in hospital care? A review of the evidence base. Clin Microbiol Infect. 2017 Nov;23(11):799–805. doi: http://dx.doi.org/10.1016/j.cmi.2017.07.017 PMID: 28750920

35. Barlam TF, Cosgrove SE, Abbo LM, MacDougall C, Schuetz AN, Septimus EJ, et al. Implementing an antibiotic stewardship program: guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. Clin Infect Dis. 2016 05 15;62(10):e51–77. doi: http://dx.doi.org/10.1093/cid/ciw118 PMID: 27080992

36. Morris AM. Antimicrobial stewardship programs: appropriate measures and metrics to study their impact. Crit Care Options Infect Dis. 2014 06;2(2):101–12. doi: http://dx.doi.org/10.1007/s40506-014-0015-3 PMID: 25999796

37. Moehring RW, Anderson DJ, Cochran RL, Hicks LA, Srinivasan A, Dodds ASHLEY ES; Structured Taskforce of Experts Working at Reliable Standards for Stewardship (STEWARDS) Panel. Expert consensus on metrics to assess the impact of patient-level antimicrobial stewardship interventions in acute-care settings. Clin Infect Dis. 2017 Feb 16;64(3):377–83. doi: http://dx.doi.org/10.1093/cid/ciw77 PMID: 27072866

38. Chanani E, Edwards B, Sirdulis N, Alexandrou B, Sibley E, Mullert D, et al. Behavior change strategies to influence antimicrobial prescribing in acute care: a systematic review. Clin Infect Dis. 2011 Oct;53(7):651–62. doi: http://dx.doi.org/10.1093/cid/cir445 PMID: 21890770