Title
A dataset of Tanaidacea from the Iberian Peninsula and surrounding areas

Permalink
https://escholarship.org/uc/item/49c98569

Journal
Biogeographia – The Journal of Integrative Biogeography, 36(0)

ISSN
1594-7629

Authors
Garcia Herrero, Alvaro
Martinez, Alejandro
Garcia-Gomez, Guillermo

et al.

Publication Date
2021

DOI
10.21426/B636050361

Supplemental Material
https://escholarship.org/uc/item/49c98569#supplemental

License
https://creativecommons.org/licenses/by/4.0/ 4.0

Peer reviewed
A dataset of Tanaidacea from the Iberian Peninsula and surrounding areas

ÁLVARO GARCÍA HERRERO1,2,3,*, ALEJANDRO MARTÍNEZ3, GUILLERMO GARCÍA-GÓMEZ3,4, NURIA SÁNCHEZ1, GRAHAM BIRD5, DIEGO FONTANETO3, FERNANDO PARDOS1

1 Department of Biodiversity, Ecology and Evolution, Faculty of Biology, University Complutense of Madrid, José Antonio Novais 12, 28040 Madrid (Spain)
2 Freelance marine environmental consultant, Arroyo de los sauces 11, 28430 Alpedrete (Spain)
3 National Research Council of Italy (CNR), Water Research Institute (IRSA), Molecular Ecology Group (MEG), Largo Tonolli 50, 28922 Verbania (Italy)
4 Department of Earth, Oceans and Ecological Sciences, School of Environmental Sciences, University of Liverpool, 4 Brownlow Street, L69 3GP Liverpool (United Kingdom)
5 Independent, Waikanae, Kāpiti Coast 5036 (New Zealand)
* corresponding author, email: alvarogarcia27@hotmail.es

Keywords: Apseudomorpha, Atlantic, Biodiversity, Macaronesia, Mediterranean, Open data, Tanaidomorpha.

SUMMARY

We describe a dataset on the crustacean Order Tanaidacea from the coasts of the Iberian Peninsula and surrounding seas, including the archipelagos of the Azores, Madeira, Savage, and the Canary Islands. The dataset gathers the records from all available sources published between 1828 to 2019, which were collected following a standardized Google Scholar search and cross checking each article’s reference lists. For each record, the dataset includes taxonomic, geographical, and ecological information, as well as remarks regarding the sampling methods. The dataset was further completed with 52 additional unpublished records obtained from screening the collections of the University Complutense of Madrid gathered from 35 shallow water surveys. Furthermore, 698 records from different oceanographic deep-sea campaigns have also been included. In total, 3456 records from 186 species in 22 families have been compiled. The dataset organises the current published and unpublished knowledge on
tanaidaceans in the area and, by making it open access, it will allow comparisons of the distribution of tanaidaceans in zoogeographic studies.

INTRODUCTION

Databases are efficient tools to compile useful information, and are becoming increasingly used in marine ecology (Gerovasileiou et al. 2016, Hudson et al. 2016). A rising number of open access databases has been released during the last decade, many of them focused on different animal groups, such as rotifers (Garlaschè et al. 2020), polychaete annelids (Pagliosa et al. 2014), corals (Madin et al. 2016), amphipods (Horton et al. 2013), and fishes (Froese and Pauli 2019). These databases gathered and organized valuable information on target organisms, which would be otherwise scattered in the literature, making the data readily available to address different biological and ecological questions based on spatially explicit occurrence data. Research in biogeography, conservation science, or focused on the analyses of historical trends has already largely benefited from these databases (Stein 2003).

Tanaidaceans (tanaids) represent an order of peracaridan crustaceans with around 1400 described species. This relatively low diversity, particularly when compared to the more than 6000 described species for other groups of peracaridans such as amphipods and isopods, most likely reflects the low attention that the group has received historically rather than its actual diversity (Appeltans et al. 2012, Błażewicz-Paszkowycz et al. 2012) that 22,600–56,500 species of tanaids might be waiting to be described (Appeltans et al. 2012), a hard task given the small number of zoologists currently engaged with the systematics of the group. Furthermore, tanaids are important from an ecological perspective, as they are part of the hyperbenthos, act as shallow burrowers, and play a key role in marine food webs (Mees & Jones 1997). Due to their ecological preferences, tanaids have been also used as bioindicators in several ecological studies (Vizzini et al. 2002, Ambrosio et al. 2014). Despite this importance, no worldwide tanaid databases are freely available to date. At regional level, a checklist of tanaids occurring in Greek Seas is available (Koulouri et al. 2020).

We here present the first open access database for tanaids from the Iberian Peninsula and adjacent archipelagos, including geographical and ecological data, along with remarks on different sampling methods. The database encompasses mainly marine waters of Spain and Portugal, but also part of the Moroccan and Atlantic French maritime coastal areas due to their geographic proximity to the Iberian Peninsula. We expect that this database will make future research questions targeting large-scale diversity patterns of the group more amenable, possibly helping to disentangle complex historical processes such as the colonisation of the Mediterranean after the Messinian Crisis or the drivers of shallow water endemism in the Macaronesian archipelagos.

MATERIALS AND METHODS

Geographical and ecological data

In order to allow the inclusion of all references related to the Iberian Peninsula, a bounding box of 6°E, 48°N, 34°W, 20°S was established as the geographic limit of the survey. Thereby, the Gulf of Biscay is included with the Celtic Sea as the northern limit, and the Porcupine Bight the north western one; the Balearic Sea is included as far as the Menorca Slope; the Portuguese and Spanish Atlantic archipelagos (Azores, Madeira, Savage Islands, and Canary Islands) are also included within these limits.

The geographical information was coded to allow the use of different spatial scales in diversity pattern analyses; thus, the study
area was firstly subdivided in oceans, secondly in (marine) provinces, and finally in ecoregions, included as additional geographical information. This geographically nested structure is based on climatic and ecological data developed for marine ecosystems monitoring and conservation known as Marine Ecoregions of the World (MEOW), covering all coasts and shelf waters to 200 nautical miles offshore (Spalding et al. 2007, 2012). Given the specificity of the area with the presence of different archipelagos, we further divided some of the MEOW, gaining a larger resolution for future studies related to the Iberian Peninsula, totalling ten ecoregions from the five MEOW ecoregions. The subdivision was performed using the software QGIS 3.10 (QGIS Development Team 2020) and the shape file is reported as Supplementary File 1. Nested within “Western Mediterranean”, an additional ecoregion called “Balearic Islands” was used to enable studies on specific diversity from the archipelago, distinguishing it from the peninsular coast. The Macaronesian ecoregion known as “Azores Canaries Madeira” was divided in those archipelagos (“Azores”, “Madeira”, and “Canary and Savage Islands”) following the same rationale (see Freitas et al. 2019). The ecoregion known as “South European Atlantic Shelf” was divided in “Gulf of Biscay”, “Portugal”, and “Gulf of Cadiz” in order to obtain a clear separation between gulfs, which are different regarding oceanographic conditions. “Alboran Sea” and “Saharan Upwelling” were not modified. After doing these additional divisions, the ecoregions of the dataset were: “Alboran Sea”, “Azores”, “Balearic Islands” (nested in “Western Mediterranean”), “Canary and Savage Islands”, “Gulf of Biscay”, “Gulf of Cadiz”, “Madeira”, “Portugal”, “Saharan Upwelling”, and “Western Mediterranean” (without the Balearic Islands) (Figure 1).
Figure 1. Ecoregion boundaries as used to cluster the records of the dataset. The map reports the ecoregions with the legend to their acronyms, together with the georeferenced localisation of the records described in this paper, differently coloured for published (Bibliographic survey) and unpublished data.

Table 1. Shallow water samples deposited at the collection of the Meiofauna Laboratory (Universidad Complutense de Madrid), with identification of the sampling point, the name of the locality, geographic coordinates as Latitude (N) and Longitude (E) in WGS84 reference system, date of sampling, sampling method, sampling area in m², type of habitat, associated vegetation, type of sediment, and sampling depth in m. N/A means not available.

Sampling point	Locality	Latitude (N)	Longitude (E)	Date	Sampling method	Area (m²)	Habitat	Associated vegetation	Sediment	Depth (m)
15.09.14.1B	Ría de Ferrol	43.462	-8.281	14.09.2015	Higgins dredge	N/A	Soft bottom		N/A	N/A
15.09.18.1B	Ría de Ferrol	43.463	-8.276	18.09.2015	Higgins dredge	N/A	Soft bottom		N/A	Fine sand
15.09.18.2B	Ría de Ferrol	43.464	-8.281	18.09.2015	Higgins dredge	N/A	Soft bottom		N/A	Fine sand
16.03.11.1B	Ría de Vigo	42.250	-8.828	11.03.2016	Parcel	0.32	Algae	*Corallina sp*	N/A	Intertidal
16.03.11.2B	Ría de Vigo	42.250	-8.828	11.03.2016	Parcel	0.32	Algae	*Corallina sp*	N/A	Intertidal
16.03.12.1B	Ría de Arosa Cova Des Coll, Mallorca Túnel de la Atlántida, Lanzarote	42.566	-8.890	12.03.2016	Parcel	0.32	Algae	*Corallina sp*	N/A	Intertidal
09.11.13	Cova Des Coll, Mallorca Túnel de la Atlántida, Lanzarote	39.430	3.265	13.11.2009	Jar	N/A	Sponges	N/A	N/A	20
08.03.22	Túnel de la Atlántida, Lanzarote	29.157	-13.430	22.03.2008	Jar	N/A	Soft bottom	N/A	Coarse sand	30-40

Biogeographia 36: a008 García Herrero et al., 2021
Date	Location	Latitude	Longitude	Year	Contractor	Type	Material	Depth	Offshore Features
08.03.23	Túnel de la Atlántida, Lanzarote	29.157	-13.430	2008	N/A	Soft bottom	N/A Coarse sand	30-40	N/A
11.04.11.1B	Isla Cristina	37.204	-7.342	2011	Higgins dredge	Soft bottom	N/A Gravel	4	N/A
11.04.12.3B	Isla Cristina	37.143	-7.351	2011	Higgins dredge	Soft bottom	N/A Fine sand	12	N/A
10.07.24.3B	Almuñecar	36.724	-3.708	2010	Higgins dredge	Soft bottom	N/A Mud	20	N/A
10.07.24.4B	Almuñecar	36.724	-3.721	2010	Higgins dredge	Soft bottom	N/A Coarse sand	18	N/A
12.05.02.1B	Málaga	36.419	-5.163	2012	Higgins dredge	Soft bottom	N/A Sandy mud	35	N/A
12.05.02.2B	Málaga	36.436	-5.079	2012	Higgins dredge	Soft bottom	N/A Muddy sand	20	N/A
12.05.02.3B	Málaga	36.402	-5.158	2012	Higgins dredge	Soft bottom	N/A Sandy mud	35	N/A
12.05.02.4B	Málaga	36.368	-5.202	2012	Higgins dredge	Soft bottom	N/A Sandy mud	36	N/A
12.05.02.5B	Málaga	36.390	-5.179	2012	Higgins dredge	Soft bottom	N/A Mud	36	N/A
15.05.19.2B	Carboneras	36.993	-1.891	2015	Higgins dredge	Soft bottom	N/A Sandy mud	18	N/A
15.05.19.3B	Carboneras	36.989	-1.889	2015	Higgins dredge	Soft bottom	N/A Coarse sand	12	N/A
15.05.19.5B	Carboneras	36.992	-1.887	2015	Higgins dredge	Soft bottom	N/A Gravel	8	N/A
15.05.19.6B	Carboneras	36.989	-1.898	2015	Higgins dredge	Soft bottom	N/A Mud	7	N/A
97.03.24.1B	Garrucha	37.153	-1.792	1997	Higgins dredge	Soft bottom	N/A Coarse sand	15	N/A
10.12.07.1B	Águilas	37.370	-1.600	2010	Parcel	Soft bottom	N/A N/A	26	N/A
10.12.07.2B	Águilas	37.419	-1.498	2010	Parcel	Soft bottom	N/A N/A	14	N/A
15.05.21.1B	Santa Pola	38.186	-0.541	2015	Higgins dredge	Soft bottom	N/A N/A	5	N/A
15.07.27.2B	Santa Pola	38.186	-0.541	2015	Higgins dredge	Soft bottom	N/A N/A	5	N/A
15.07.29.2SR	Santa Pola	38.207	-0.505	2015	Parcel	Soft bottom	N/A Plant Posidonia oceanica (Rhizome sediment)	4	N/A
15.07.30.2R	Santa Pola	38.207	-0.505	2015	Parcel	Soft bottom	N/A Plant Posidonia oceanica (Rhizome)	N/A	8
16.03.03.1SR	Santa Pola	38.207	-0.505	2016	Parcel	Soft bottom	N/A Plant Posidonia oceanica (Rhizome sediment)	N/A	5
16.03.03.4SR	Santa Pola	38.207	-0.505	2016	Parcel	Soft bottom	N/A Plant Posidonia oceanica (Rhizome sediment)	N/A	5
16.03.03.6SR	Santa Pola	38.207	-0.505	2016	Parcel	Soft bottom	N/A Plant Posidonia oceanica (Rhizome sediment)	N/A	5
16.03.03.7SR	Santa Pola	38.207	-0.505	2016	Parcel	Soft bottom	N/A Plant Posidonia oceanica (Rhizome sediment)	N/A	5
97.03.27.1B	Denia	38.850	-0.135	1997	Higgins dredge	Soft bottom	N/A Mud	15	N/A
97.03.27.2B	Denia	38.836	-0.154	1997	Higgins dredge	Soft bottom	N/A Fine sand	12	N/A
Depth limits were categorised following the zonation by Templado et al. (2012), developed to analyse the species assemblages of marine habitats in Spain. These groups are categorised with the discrete variable “depthZonation”, including: “Mediolittoral”, “Infralittoral”, “Circalittoral”, “Bathyal”, and “Abyssal”. In parallel to this detailed zonation of depth, we also used a coarser separation into “Deep” and “Shallow” water through a variable named “deepShallow”, selecting the boundary of 200 m depth to discriminate between shallow and deep waters, as it is the generally regarded limit between the continental shelf and slope, and was commonly used in previous tanaid studies (Błażewicz-Paszkowycz et al. 2012).

Bibliographic survey

All published records of tanaids within the geographic limits of the study area have been gathered and analysed. For that purpose, we searched in Google Scholar for all the references published with the keywords “Tanaidacea”, “Anisopoda” and “Tanaidae” since 1828 until 2019 included, retaining those reporting records for the selected area. All the available information was extracted and included in a dataset.

Unpublished records

The dataset was complemented with other records of tanaids from material collected between 1967 and 2016.

First, shallow water specimens deposited at the collection of the Meiofauna Laboratory (Universidad Complutense de Madrid) were analysed. Such samples were collected from intertidal to 40 meters depth in 35 sampling points along the Iberian Peninsula, as well as Canary and Balearic Islands (Table 1), in the following localities: Ría de Ferrol, Ría de Vigo, Ría de Arosa, and Isla Cristina (Atlantic coast), Almuñecar, Málaga, Carboneras, Garrucha, Águilas, Santa Pola, and Denia (Mediterranean coast), Cova des Coll cave (Mallorca, Balearic Islands) and Túnel de la Atlántida lava tube (Lanzarote, Canary Islands). Techniques for sampling sediments varied across environments but were consistent with the methods used in the literature of the group. Samples from caves were collected by fully trained cave divers using 1l jar (see Martínez et al. 2019, Martínez et al. 2021) whereas samples from Posidonia oceanica and Corallina sp. were collected by scuba diving using standard corers with a surface of 20x20cm. Other subtidal collections were obtained with a Higgins meiobenthic dredge operated from a small vessel. Fauna was extracted from the sediment using either the bubble and blot or MgCl₂ decantation techniques (Higgins and Thiel 1988, Sørensen and Pardos, 2008). Individuals retained in a 62 µm mesh sieve were either bulk fixed in formalin and posteriorly preserved in 20% ethylene glycol or sorted alive and preserved in 100% ethanol. Tanaid specimens were mounted individually in a modified Hoyer’s medium or in Fluoromount-G® and then examined with an Olympus BX51 microscope equipped with differential interference contrast (DIC) optics and an Olympus DP70 camera at the Meiofauna Laboratory (Universidad Complutense, Madrid).

Second, 698 unpublished records from different oceanographic campaigns have been included in our dataset. These records belong to BALGIM, BIOGAS I–XI, EPI-VI, INCAL, NORATLANTE CH08, POLYGAS A, SARSIA, THALASSA 71 and THALASSA 73 campaigns carried out between 1967 and 1986 by France and the United Kingdom, in order to study the deep-sea from the Gulf of Cadiz, Alboran Sea and Gulf of Biscay. Sampling and extraction techniques can be consulted in the cruise reports associated to those campaigns when available (Laubier 1969, 1972, 1973, 1974a, 1974b, 1976; Cabioch 1971, 1973;
Chardy 1972, 1974; Desbruyeres 1978, 1979, 1980a, 1980b, 1981; Reyss 1973; Bouchet 1984).

RESULTS

Summary statistics

A total of 137 published sources (Table 2) was found and included in the dataset, providing 2706 records. The published sources included 122 research articles in peer-reviewed journals, 7 doctoral theses, and 9 sources of various types (e.g. environmental reports or regional inventories). In addition, the newly collected material preserved at the Meiofauna Laboratory in Universidad Complutense de Madrid added other 52 unpublished shallow water records (codified as source number 137: shallow water samples), and the deep-sea oceanographic cruises added 698 records (codified as source number 138: deep-sea cruises).

Table 2. List of bibliographic sources for each ecoregion. Acronyms are explained in Figure 1.

ID	authorAndYear	ALB	AZO	BAL	BIS	CAN	CA	MAD	PO	SAH	WES
1	Milne Edwards, H. (1828)				X						
2	Norman, A.M. & Stebbing, T.R.R. (1886)		X			X	X				
3	Sars, G.O. (1886)										
4	Dolfus, A. (1897)	X					X				
5	Dolfus, A. (1898)	X	X	X	X		X				
6	Tattersall, W.M. (1911)										
7	Stephensen, K. (1915)										X
8	Monod, T.H. (1925)										X
9	Wolff, T. (1956)	X	X								
10	Menzies, R.J. (1957)										
11	Lang, K. (1968)										
12	Anadón, R. (1975)										
13	Gardiner, L.F. (1975)										
14	MacPherson, E. (1980)										
15	Băcescu, M. (1981)										
16	Băcescu, M. (1982a)										
17	Băcescu, M. (1982b)										
18	Bibiloni, M.A. (1983)										
19	Kudinova-Pasternak, R.K. (1983)										
20	Băcescu , M. (1984)										
21	Bird, G.J. & Holdich, D.M. (1984)										
22	Aguirrezabalaga, F. et al. (1985)										
23	Băcescu, M. (1985)										

24 Holdich, D.M. & Bird, G.J. (1985) | | | | | | | | | | |
25	Gutu, M. (1986)										
26	Rodrigues, A.M. & Dauvin, J.C. (1987)										
27	Bird, G.J. & Holdich, D.M. (1988)										
28	Junoy, J. & Viéitez, J.M. (1988)										
29	Vicente, C.A. et al. (1988)										
30	Bird, G.J. & Holdich, D.M. (1989)										
31	Sieg, J. & Bird, G. (1989)										
32	Bamber, R.N. (1990)										
33	Pérez-Ruaza, A. & Sanz, M.C. (1993)										
34	San Vicente, C. & Sorbe, J.C. (1993)										
35	Sanz, M.C. (1993)										
36	da Fonseca, L.C. et al. (1995)										
37	Garmendia, J.M. et al. (1998)										

García Herrero et al., 2021 Biogeographia 36: a008
ID	authorAndYear	ALB	AZO	BAL	BIS	CAN	CAD	MAD	POR	SAH	WES	
38	Sánchez-Moyano, J.E. & García-Gómez, J.C. (1998)				X							
39	Brito-Castro, M.C. (1999)											
40	Cunha, M.R. et al. (1999)											
41	Marquiegui, M.A. & Claude-Sorbe, J. (1999)	X										
42	Mucha, A.P. & Costa, M.H. (1999)											
43	San Vicente, C. & Sorbe, J.C. (1999)											
44	Conradi, M. et al. (2000)											
45	Sanchez-Moyano, J.E. et al. (2000)	X										
46	Chicharo, L. et al. (2002)											
47	Gutu, M. (2002)											
48	Martínez, J. et al. (2002)	X										
49	Alves, F. et al. (2003)											
50	Cartes, J.E. et al. (2003)	X										
51	Castellanos, C. et al. (2003)											
52	Sanz, M.C. et al. (2003)											
53	Bird, G.J. (2004)											
54	Puente Trueba, A. et al. (2004)	X										
55	Marín-Guirao, M. et al. (2005)											
56	Munilla, T. & San Vicente, C. (2005)											
57	Dirección General de Aguas (2006)	X										
58	Larsen, K. et al. (2006)											
59	Martínez, J. & Adarraga, I. (2006)											
60	Patricio, J. et al. (2006)											
61	Pereira, S.P. et al. (2006)											
62	Sanz-Lazaro, C. & Marín, A. (2006)	X										
63	Sevilla, J.R. et al. (2006)											
64	Viéitez, J.M. (2006)											
65	Błażewicz-Paszkowycz, M. (2007)											
66	Echevarri, B. (2007)	X										
67	Laborda, A.J. (2007)	X										
68	Lourido, A. et al. (2008a)											
69	Lourido, A. et al. (2008b)											
70	Moreira, J. et al. (2008a)											
71	Moreira, J. et al. (2008b)	X										
72	Bamber, R. & Costa, A.C. (2009)											
73	Cacabelos, E. et al. (2009)											
74	Guerra-García, J.M. et al. (2009)											
75	Moreira, J. et al. (2009)											
76	Tato, R. et al. (2009)											
77	Varela, C. et al. (2009)											
78	Bamber, R. (2010)											
79	Barroso, A.C. (2010)											
80	De la Ossa Carretero, J.A. et al. (2010)	X										
81	El Bakali, M. et al. (2010)	X										
82	Guerra-García, J.M. et al. (2010)	X										

8 Biogeographia 36: a008 García Herrero et al., 2021
ID	Reference	Multiple Measures	Multiple Factors	Multiple Summary	Multiple Efficacy
92	Riera, R. et al. (2011)				
93	Sanchez-Moyano, J.E. & Garcia-Asencio, I. (2011)				
94	Bamber, R. (2012)		X	X	
95	Esquete, P. et al. (2012)				
96	Guerra-García, JM. et al. (2012)		X	X	X
97	Larsen, K. (2012a)				
98	Larsen, K. (2012b)			X	
99	Larsen, K. et al. (2012)				X
100	Riera, R. et al. (2012a)				
101	Riera, R. et al. (2012b)		X	X	X
102	Riera, R. et al. (2012c)		X		
103	Bongiorni, L. et al. (2013)		X		
104	Conde, A. et al. (2013)				
105	Larsen, K. & Froufe, E. (2013)				
106	Riera, R. et al. (2013a)				
107	Riera, R. et al. (2013b)				
108	Riera, R. et al. (2013c)				
109	Rueda, J. et al. (2013)				
110	Bird, G.J. (2014)				
111	Cuvelier, D. et al. (2014)			X	
112	GESHA (2014)				
113	Larsen, K. (2014)		X		
114	Quispe, J.I. (2014)				
115	Tuya, F. et al. (2014)				
116	Zubikarai, N. et al. (2014)				
117	Bird, G.J. (2015)				
118	Esquete, P. et al. (2015)		X		
119	Navarro-Barranco, C. et al. (2015)				
120	Terrón-Sigler, A. (2015)				
121	Vollette, P. & Thirion, J.M. (2015)				
122	Esquete, P. et al. (2016)			X	
123	Gaviria-O'Neill, K. et al. (2016)				
124	Sampaio, L. et al. (2016)				X
125	Terron-Sigler, A. et al. (2016)				X
Table 3. Description of the 45 variables reported in the dataset, with information on: concordance to Darwin Core Standards (DwC), the type of variable (e.g. taxonomic, sampling-related, geographic, etc.), description, units (when meaningful, e.g. m², cm³, etc.), and storage type (e.g. text, categorical, continuous, etc.).

Variables	DwC	Type	Description	Units	Storage type
catalogNumber	Yes	NA	Unique identifier for the record within the data set or collection, from 1 to 2307	Unique identifier	Unique
order	Yes	Taxonomic	Name of the order of the record	Text	Text
suborder	No	Taxonomic	Name of the suborder of the record	Text	Text
superfamily	No	Taxonomic	Name of the superfamily of the record	Text	Text
family	Yes	Taxonomic	Name of the family of the record	Text	Text
subfamily	No	Taxonomic	Name of the subfamily of the record	Text	Text
genus	Yes	Taxonomic	Name of the genus of the record	Text	Text
subgenus	Yes	Taxonomic	Name of the subgenus of the record	Text	Text
scientificName	Yes	Taxonomic	Name of the species of the record, as reported in WoRMS	Text	Text
originalNameUsage	Yes	Taxonomic	Name of the species as reported in the original publication	Text	Text
scientificNameAuthorship	Yes	Taxonomic	Species authorship	Text	Text
occurrenceID	Yes	Taxonomic	Aphia database species number	Unique identifier	Unique
month	Yes	Sampling-related	Month when sampled as reported in the original publication	Categorical	Categorical
year	Yes	Sampling-related	Year when sampled as reported in the original publication	Categorical	Categorical
fieldNumber	Yes	Sampling-related	Name of the sampling station as reported in the original publication	Text	Text
samplingProtocol	Yes	Sampling-related	Method of sampling as reported in the original publication	Categorical	Categorical
samplingDesign	No	Sampling-related	2 levels: "Quantitative", "Qualitative"	Categorical	Categorical
samplingArea	No	Sampling-related	Obtained or calculated through the original publication	m²	Continuous
samplingVolume	No	Sampling-related	Obtained or calculated through the original publication	cm³	Continuous
occurrenceStatus	Yes	Sampling-related	2 levels: "Abundance" defines if the number of individuals is defined in the	Categorical	Categorical
original publication; "Occurrence" defines if just the presence of the species is cited. Number of individuals found as reported in the original publication. Only filled if variable occurrenceStatus is coded as "Abundance".

Variables	**DwC**	**Type**	**Description**	**Units**	**Storage type**
individualCount | Yes | Sampling-related | | Continuos |
waterBody | Yes | Geographical | 2 levels: "Atlantic", "Mediterranean" | Categorical |
province | No | Geographical | 2 levels: "Lusitania", "Mediterranean" | Categorical |
ecoregion | No | Geographical | 10 levels: "Gulf of Biscay", “Portuguese”, “Gulf of Cadiz”, “Saharan Upwelling”, “Alboran Sea”, “Western Mediterranean”, “Balearic Islands” (nested in “Western Mediterranean”), “Azores”, “Madeira”, “Canary and Savage Islands” | Categorical |
locality | Yes | Geographical | Locality where the species was found as reported in the original publication | Text |
cavernousEnvironment | No | Geographical | 2 levels: "Yes", "No" | Categorical |
islandGroup | Yes | Geographical | Name of the archipelago | Text |
decimalLatitude | Yes | Geographical | As reported in the original publication and converted to WGS84 reference system | Continuous |
decimalLongitude | Yes | Geographical | As reported in the original publication and converted to WGS84 reference system | Continuous |
minimumDepthInMeters | Yes | Geographical | Minimum depth when a range is provided | m | Continuous |
maximumDepthInMeters | Yes | Geographical | Maximum depth when a range is provided | m | Continuous |
depthZonation | No | Ecological | 5 levels: "Mediolittoral", "Infralittoral", "Circalittoral", “Bathyal”, “Abyssal” | Categorical |
deepShallow | No | Ecological | 2 levels: "Shallow", "Deep" | Categorical |
substratumNature | No | Ecological | 3 levels: "Inorganic", "Vegetal organic", "Animal organic" | Categorical |
substratum | No | Ecological | Description of the faunal substratum as reported in the original publication. If "Substratum nature" is codified as 1) "Inorganic"; 3 levels: "Hard bottom" (more than 2mm of granulometric size), "Soft bottom" (less than 2 mm of granulometric size), "Organic origin"; 2) "Vegetal organic"; 2 levels: "Algae", "Plantae" 3) "Animal organic"; Description of the faunal substratum as reported in the original publication. | Categorical |
associatedVegetalSpecies | No | Ecological | "Inorganic": Description of the sediment as reported in the original publication | Text |
sediment | No | Ecological | "Inorganic": Description of the sediment as reported in the original publication | Text |
waterTemperature | No | Ecological | As reported in the original publication | Celsius | Continuous |
pH | No | Ecological | As reported in the original publication | pH scale | Continuous |
organicMatter | No | Ecological | As reported in the original publication | % | Continuous |
dissolvedOxygen | No | Ecological | As reported in the original publication | mg/L | Continuous |
referenceID | No | Bibliographic | Reference identification number linked to the Dataset bibliography list (Table 2) | Unique identifier |
authorAndYear | No | Bibliographic | Short reference just including authors and year of the original publication | Text |
publicationYear | No | Bibliographic | Year when source was published | Text |
associatedReference | Yes | Bibliographic | Full reference of the source | Text |

García Herrero et al., 2021 Biogeographia 36: a008
The dataset from published and unpublished sources gathered a total of 3456 records (Supplementary File 2). The records cover all ten ecoregions and a wide bathymetry, from 0 to 5370 m in depth (Supplementary File 3).

Of the total number of records, 3001 (86.8%) are provided at species level encompassing a total of 186 species; out of the 455 remaining records, 40 correspond to individuals identified at family level, 402 correspond to individuals identified at genus level, whereas 13 potentially address 5 species that were published as doubtful (e.g. flagged as cf. in the source publication). Overall, the records correspond to 22 families, in addition to 14 species that are considered as incertae sedis (Supplementary File 3). Records from both extant tanaid suborders, Tanaidomorpha Sieg, 1980 and Apseudomorpha Sieg, 1980, are represented in the dataset. Tanais dulonii (Audouin, 1826) is the species with the highest number of records, 255 in total. Furthermore, 5 species accumulated 100 or more records: Apseudopsis latreillii (Milne Edwards, 1828) with 195 records, Chondrochelia dubia (Krøyer, 1842) with 178, Sphyrapus malleolus Norman & Stebbing, 1886 with 169 records, Paranarthura insignis Bird & Holdich, 1989 with 109 records, and Apseudes talpa (Lilljeborg, 1864) with 100.

The ecoregion that accumulates the highest number of species is the Gulf of Biscay (212 species, 1749 records), followed by the Saharan Upwelling Zone (80 species, 411 records), the Gulf of Cadiz (70 species, 184 records), the Alboran Sea (38 species, 254 records), Azores (32 species, 81 records), the Western Mediterranean (25 species, 270 records), the Canary and Savage Islands (19 species, 113 records), Portugal (16 species, 226 records), the Balearic Islands (12 species, 109 records) and Madeira (5 species, 10 records). Additionally, 49 records of 24 species were within our geographical boundary but outside the ecoregions we defined (records outside ecoregions in Figure 1). Tanais dulonii is the only species recorded in all the ecoregions. Ecoregions covered by each bibliographic source can be found in Table 2.

The dataset

This dataset is composed of one unique table (as a xlsx file), in which each row represents the single record of a tanaid species in one geographical point. 45 additional variables are reported for each record (Table 3). These included a unique identifier per each record, 11 variables addressing taxonomic ranks (e.g. Order, Family, etc.), 9 referring to sampling (e.g. method, area, volume, etc.), 10 representing geographic information (e.g. province, ecoregion, coordinates, etc.), 10 detailing ecological data (e.g. type of substratum, water temperature, etc.), and 4 describing exclusively bibliographic (author, year of publication, etc.) (Table 3). The dataset is available as supplementary material to this paper (Supplementary File 2).

Dataset

Dataset name: Tanaidacea from Iberian Peninsula and surrounding areas Dataset.
Format name: xlsx.
Character encoding: UTF 8.
Standards: 23 of the 45 columns in the dataset follow Darwin Core Standards (DwC). The others do not, since there are no available DwC correspondences.
Distribution: The dataset is included as supplementary material (Supplementary File 2) as .xlsx file, and can be accessed online at: XXXX.
Date of publication: 24th July 2021.
Date of last revision: 5th May 2021.
Update policy: None.

Language: English (except for local names of some localities).

Resource citation: García-Herrero, A., Martínez, A., García-Gómez, G., Sánchez, N., Bird, G., Fontaneto, D. & Pardos, F. (2021). A dataset of Tanaidacea from the Iberian Peninsula and surrounding areas. Accessed online at: XXX.

Management details

Database manager: Álvaro García Herrero.

Temporal coverage: From 1828 to 2019.

Record basis: Literature records and a collection of 50-years sampling campaigns (1967 to 2016).

Sampling methods: The dataset was created by joining records included in the available literature and the collections of the University Complutense in Madrid, plus an array of samples from different oceanographic cruises.

Funding grants: Spanish Ministry for Agriculture and Environment (Project CGL2013 42908 P), funded the Iberian Peninsula field sampling.

Geographic data

Geographic range: The dataset covers the Iberian Peninsula and Spanish and Portuguese archipelagos (Azores, Madeira, Salvage Islands, Canary Islands, and Balearic Islands), and surrounding areas. This includes Moroccan and Saharan coasts, as well as Algeria until the coastal city El Aouana. Geographical range has been built by using and modifying MEOW (Spalding et al. 2007). In the North, the Gulf of Biscay was included until the Celtic Sea northern limit, and the Porcupine northwest limits; in the East, the Balearic Sea was included until the Menorca Slope; in the South, the limit was the Western Sahara limit; in the West, the limit was the Azores Exclusive Economic Zone boundary.

Bounding box: 6°E, 48°N, 34°W, 20°S; WGS84 reference system.

Countries: Algeria, France, Morocco (including Western Sahara), Portugal, Spain, United Kingdom (Gibraltar).

Sampling design: MEOW was used to cover all the surrounding Iberian Peninsula waters. Some ecoregions were modified in order to gain a larger resolution for future studies and can be found as Supplementary File 1.

Biogeographic region: Mediterranean Sea, North-east Atlantic Ocean, and Macaronesia.

Quality control for geographic data: Quality control was performed using QGIS 3.10, by displaying coordinates within the MEOW boundaries. Anomalous records were individually analysed and amended.

Ecological data

Habitat type: Habitats were reported as they were found in the original literature. Some examples include gravel, coarse sand, mud, Posidonia oceanica meadows, Zostera spp. meadows, or algae.

Depth: Depth range varies from intertidal to 5370 meters. Depth limits were categorised following the zonation by Templado et al. (2012). The boundary limit between shallow waters and deep sea was established in 200 meters.

Quality control for ecological data: Assignment of each record to any depth category and habitat was verified with the current knowledge regarding the ecology of each species, if available.

Literature search
Literature search method: Online webtool Google Scholar was used to search all the available literature from 1849 to 2019, including the words “Tanaidacea”, “Anisopoda” and “Tanaidae”. From all the resulted literature, the records for the selected area were retained.

Literature list: See Table 2.

Quality control for literature data: The completeness of the literature was confirmed repeating the search twice and cross-checking with the literature lists reported in each paper.

Taxonomy

Taxonomic ranks: All extant Tanaidacea taxa were considered in this database, including the two currently accepted suborders Tanaidomorpha and Apseudomorpha.

Species names: Both current accepted name (according to WoRMS) and species name as originally reported in each source have been compiled in the dataset, in different columns.

Taxonomic methods: Field sampled tanaids were identified to the lowest possible taxonomic rank following the available literature and WoRMS resources.

Taxonomic specialist: Álvaro García Herrero and Graham Bird.

Quality control for taxonomic data: All included taxonomic ranks have been verified by using WoRMS resource.

Taxonomic and ecological remarks: Unidentified species at genus level in the literature were named in the dataset in consecutive numerical order with the aim to keep morphotypes separated. Cryptocopoides arcticus (Hansen, 1887) is considered a complex of cryptic species (Błażewicz-Paszkowycz, University of Lodz, personal communication). Furthermore, records for Chondrochelia dubia (Krøyer, 1842) could represent identification mistakes of Chondrochelia savignyi (Krøyer, 1842) (See Bamber 2010). Several records from the deep ocean are dubious as they belong to the predominantly shallow water family Tanaididae (Błażewicz-Paszkowycz et al. 2012). Those are: Hexapleomera robusta (Moore, 1894) recorded at 2440 and 2684 meters, Tanais dulongii (Audouin, 1826) recorded at 525 meters, and Parasinelobus chevreuxi (Dollfus, 1898) recorded at 2114 and 2704 meters. Furthermore, Sampaio et al. (2016) reported the shallow apseudomorph species Apsulopsis latreillii (Milne Edwards, 1828) across a depth range from 37 to 140 meters, without clarifying whether the species was found across all the range or only in the upper parts of the range, which seems more likely given the other records in the area. While we compiled here the information as shown in the original literature, these remarks should be considered when these data will be used in further analyses.

AUTHOR CONTRIBUTION

AGH, GGG, NS, AM and FP planned the study and sampled the shallow water tanaids. AGH identified the shallow water tanaids and surveyed the literature and compiled the needed information for the dataset. GB sampled and identified the deep-sea cruises data. FP and DF provided facilities and support both in the laboratory and field sampling. All authors contributed to the writing to additions and comments to the text.

ACKNOWLEDGEMENTS

Authors want to acknowledge all the people involved in making this possible. In the Canary Islands, Enrique Dominguez and Ralf Schoenermark assisted our sampling at Túnel de la Atlántida. Furthermore, the unmatched support of Geoparque Lanzarote and Chinijo (especially Elena Mateo) is always there and
highly appreciated. Samples from Cova des Coll cave were collected by Dr. Thomas M. Iliffe (Texas A&M University), always happy to help in any cavernous matter. Sampling from Garrucha and Denia were obtained and sorted by Dr. Jesús Benito (Universidad Complutense de Madrid), pioneer of meiofaunal studies in Spain. A Graña Biological Station (Universidade de Santiago de Compostela), Toralla Marine Science Station (Universidade de Vigo), and Santa Pola Marine Research Center – CIMAR (Universidad de Alicante), and especially Andrés Izquierdo and Alfonso Ramos, allowed us to use their research facilities to perform different sampling campaigns. We also acknowledge Buceo Carboneras diving club, because of its warm welcome in Almería. AGH wants to acknowledge Patricia Esquete (Universidade de Aveiro) for her invaluable help and mentoring in the tanaids world knowledge. Last, authors want to show gratitude to an anonymous reviewer that improved the manuscript.

SUPPLEMENTARY FILES

Supplementary File 1. Compressed archive in .rar format with shape files for the subdivision in ecoregions.

Supplementary File 2. Dataset in .xlsx format.

Supplementary File 3. Number of records for each species in each ecoregion, including depth range, when available. *: Cryptic species complex (Błażewicz-Paszkowycz, pers. comm.). **: Probable misleading identification with C. savignyi. NA: Depth range not available. ●: at least one record on vegetals. □: at least one record inside caves. #: deep ID may be incorrect. ^: maximum depth (140 m) comes from a reported depth range of 37-140 m.

REFERENCES

Aguirrezabalaga, F., Arraras, M.D., Arteche, I., Romero, A. Ruiz de Ocenda, M. Torres, JA., Uriz, M.J., Zabala, M. & Ibanez, M. (1985) Contribución al conocimiento de la fauna marina de la costa vasca III. Lurralde, 8, 121-140.

Alves, F., Chicaro, L., Nogueira, A. & Regala, J. (2003) Changes in benthic community structure due to clam dredging on the Algarve coast and the importance of seasonal analysis. Journal of the Marine Biological Association of the United Kingdom, 83, 719-729. DOI: 10.1017/S0025315403007707H

Ambrosio, E.G., Ferreira, A.C. & Capítulo, A.R. (2014) The potential use of Sinelobus stanfordi (Richardson, 1901) (Crustacea, Tanaidacea) as a biological indicator of water quality in a temperate estuary of South America. Limnetica, 33 (1), 139-152. DOI: 10.23818/limn.33.11

Anadón, R. (1975) Aportación al conocimiento de la fauna bentónica de la ría de Vigo (NW de España). Investigación Pesquera, 39 (1), 199-218.

Băcescu, M. (1981). Nouvelle contributions a la connaissance de la faune d Apseudoidea Leach 1914 (Crustacea Tanaidacea) des eaux profondes du nord-est de l’Atlantique. Travaux du Museum National d’Histoire naturelle “Grigore Antipa”, 23, 33-71.

Băcescu, M. (1982a) Sur la position systematique de Leviapseudes hanseni (Lang, 1968) emend. Travaux du Muséum d’Histoire naturelle “Grigore Antipa”, 24, 69-77.

Băcescu, M. (1982b). Carpoapseudes laubieri sp.n. et Carpoapseudes curticarpus sp.n. del Atlantique de NE (Bassin ouest-europeen) et quelques details nouveaux sur la valabilite du genre. Travaux du Museum National d’Histoire naturelle “Grigore Antipa”, 24, 55-68.

Băcescu, M. (1984). Leviapseudes drachi sp.n. Leviapseudes segonzaci gasconicus sp.n. et la cle des especes connnues de Leviapseudes. Travaux du Museum National d’Histoire naturelle “Grigore Antipa”, 26, 25-34.
Băcescu, M. (1985). Apseudoidea (Crustacea Tanaidacea). In: Peuplements profonds du Golfe de Gascogne (eds: L. Laubier & C. Monniot) IFREMER: pp. 435-440.

Bamber, R. (2012) Littoral Tanaidacea from Macaronesia: allopatry and provenance in recent habitats. Journal of the Marine Biological Association of the United Kingdom, 92, 1095-1116. DOI: 10.1017/S0025314412000252

Bamber, R.N. & Costa, A.C. (2009) The Tanaidaceans of São Miguel, Azores, with description of two new species, and a new record from Tenerife. Açoreana, 6, 183-200.

Bamber, R.N. (1990) A new species of Zeuxo (Crustacea: Tanaidacea) from the French Atlantic Coast. Journal of Natural History, 24, 1587-1596. DOI: 10.1080/00222930.1990.100770911

Bamber, R.N. (2010) In the footsteps of Henrik Nikolaj Krøyer: the rediscovery and redescription of Leptochelia savignyi (Krøyer, 1842) sensu strict (Crustacea: Tanaidacea: Leptocheliidae). Proceedings of the Biological Society of Washington, 123 (4), 289-311. DOI: 10.2988/10-14.1

Barroso, A.C. (2010) Macrobenthic colonisation and secondary production in the artificial reefs of Algarve coast. Doctoral Thesis. Directed by Luís Cancela da Fonseca. Universidade do Algarve (Portugal).

Bibiloni, M.A. (1983) Estudio faunístico del litoral de Blanes: V. Sistemática de moluscos y artrópodos (crustáceos y picnogónidos). Miscellanea Zoológica, 7, 43-52.

Biodiversity Data bank of the Canary Islands (2021) Accessed at: https://www.biodiversidad canarias.es/biota/?lang=en

Bird, G.J. (2004) Tanaidacea (Crustacea) of the Northeast Atlantic: non-filiform species of Anarthruridae Lang from the Atlantic Margin. Zootaxa, 471, 1-44. DOI: 10.11646/zootaxa.471.1.1

Bird, G.J. (2014) Tanaidacea (Crustacea: Peracarida) of the North-east Atlantic: the genera Leptognathioides and Portaratum of the ‘Atlantic Margin’. Journal of Natural History, 48 (29-30), 1771-1815. DOI: 10.1080/00222933.2014.896475

Bird G.J. (2015) Tanaidacea (Crustacea: Peracarida) of the northeast Atlantic: Chauliopleona Dojiri and Sieg 1997 and Saurotipleona n. gen. from the Atlantic Margin. Journal of Natural History, 49 (25-26), 1507-1547. DOI: 10.1080/00222933.2015.1005715

Bird, G.J., & Holdich, D.M. (1984) New deep-sea leptognathiid tanaids (Crustacea, Tanaidacea) from the north-east Atlantic. Zoologica Scripta, 13 (4), 285-315. DOI: 10.1111/j.1463-6409.1984.tb00044.x

Bird, G.J., & Holdich, D.M. (1988) Deep-sea Tanaidacea (Crustacea) of the North-east Atlantic: the tribe Agathotanaini. Journal of Natural History, 22 (6), 1591-1621. DOI: 10.1080/00222938800771001

Bird, G.J. & Holdich, D.M. (1989) Tanaidacea (Crustacea) of the north-east Atlantic: the subfamily Pseudotanainae (Pseudotanaidae) and the family Nototanaidae. Zoological Journal of the Linnean Society, 97, 233-298. DOI: 10.1111/j.1096-3642.1989.tb00548.x

Błażewicz-Paszkowycz, M. (2007) A Revision of the Family Typhlotanaidae Sieg 1984 (Crustacea: Tanaidacea) with Remarks on the Nototanaidae Sieg 1976. Zootaxa, 1598, 1-141. DOI: 10.11646/zootaxa.1598.1.1

Błażewicz-Paszkowycz, M., Bamber, R. & Anderson, G. (2012) Diversity of Tanaidacea (Crustacea: Peracarida) in the world’s oceans – How far have we come? PLoS ONE, 7 (4), e33068. DOI: 10.1371/journal.pone.0033068

Błażewicz-Paszkowycz, M., Bamber, R.M. & Cunha, MR. (2011a) Apsedemorph tanaidaceans (Crustacea: Peracarida) from mud-volcanoes in the Gulf of Cadiz (Northeast Atlantic). Zootaxa, 2919, 1-36. DOI: 10.11646/zootaxa.2919.1.1
Błazewicz-Paszkowycz, M., Bamber, R.M. & Cunha, M.R. (2011b) New tanaidomorph Tanaidacea (Crustacea: Peracarida) from submarine mud-volcanoes in the Gulf of Cadiz (North-east Atlantic). Zootaxa, 2769, 1-53. DOI: 10.11646/zootaxa.2769.1.1

Bongiorni, L., Ravara, A., Parretti, P., Santos, R.S., Rodrigues, C.F., Amaro, T. & Cunha, M. (2013) Organic matter composition and macrofaunal diversity in sediments of the Condor Seamount (Azores, NE Atlantic). Deep-Sea Research II, 98, 75–86. DOI: 10.1016/j.dsr2.2013.08.006

Bouchet, P. (1984). BALGIM cruise, RV Cryos. DOI: 10.17600/84001611

Brito-Castro, M.C. (1999) Estudio de las comunidades Intersticiales del sebadal (Cymodocea nodosa) en canarias con especial referencia a los anélidos poliquetos. Doctoral Thesis. Directed by Jorge Nuñez Fraga. Universidad de La Laguna (Tenerife, Spain).

Cabioch, L. (1971) THALASSA 71. Station Biologique de Roscoff. Roscoff, France. http://www.ifremer.fr/biocean/acces_gb/rapports/Appel_2cruisefr.html?numcruise=46

Cabioch, L. (1973) THALASSA 73. Station Biologique de Roscoff. Roscoff, France. http://www.ifremer.fr/biocean/acces_gb/rapports/Appel_2cruisefr.html?numcruise=53

Cacabelos, E., Gestoso, L. & Troncoso, J. (2009) Inventario de la macrofauna bentónica de sustratos blandos de la Ensenada de San Simón (NO España). Boletín de la Real Sociedad Española de Historia Natural. Sección biológica, 103 (1-4), 103-119.

Cartes, J.E., Jaume, D. & Madurell, T. (2003) Local change in the composition and community structure of suprabenthic peracarid crustaceans on the bathyal Mediterranean. Influence of environmental factors. Marine Biology, 143, 745-758. DOI: 10.1007/s00227-003-1090-z

Carvalho, A.N., Pereira, F., Piló, D., Gaspar, M.G. & Esquete, P. (2019) Tanaidaceans (Crustacea: Peracarida: Apseudidae) from southern Portugal with description of the new species Apseudopsis formosus, report of five first records and a biogeographic overview: unexpected expansion or understudied hotspot? Marine Biodiversity, 49, 2813-2835. DOI: 10.1007/s12526-019-01011-4

Castellanos, C., Hernández-Vega, S. & Junoy, J. (2003) Cambios bentónicos en la ría de Foz (Lugo) tras la construcción de un espigón. Boletín Instituto Español de Oceanografía, 19, 205-217.

Census of Diversity of Abyssal Marine Life (CeDAMar) (2021) Accessed at: www.cedamar.org

Chardy, P. (1972) BIOGAS 01 cruise, RV Perle. DOI: 10.17600/72005411

Chardy, P. (1974) BIOGAS 04 cruise, RV Jean Charcot. DOI: 10.17600/74001511

Chicharo, L., Chicharo, A., Gaspar, M., Alves, F. & Regala, J. (2002) Ecological characterization of dredged and non dredged bivalve fishing areas off south Portugal. Journal of the Marine Biological Association of the United Kingdom, 82, 41-50. DOI: 10.1017/S0025315402005167

Conde, A., Novais, J.M. & Dominguez, J. (2013) Multivariate analysis applied to agglomerated macrobenthic data from an unpolluted estuary. Marine Environmental Research, 87-88, 112-121. DOI: 10.1016/j.marenvres.2013.04.005

Conradi, M., Lopez-Gonzales, P.J., Cervera, J.L. & García-Gomez, J.C. (2000) Seasonality and spatial distribution of peracarids associated with the bryozoan Bugula neritina in Algeciras Bay, Spain. Journal of Crustacean Biology, 20 (2), 334-349. DOI: 10.1163/20021975-99990045

Cunha, M.R., Sorbe, J.C. & Moreira, M.H. (1999) Spatial and seasonal changes of brackish peracaridan assemblages and their relation to some environmental variables in two tidal channels of the Ria de Aveiro (NW Portugal). Marine Ecology Progress Series, 190, 69-87. DOI: 10.3354/meps190069

Cuvelier, D., Beesau, J., Ivanenko, V.N., Zeppilli, D., Sarradin, P.M. & Serrazin, J. (2014) First insights into macro- and meiofaunal colonisation patterns on paired wood slate substrata at Atlantic deep sea hydrothermal
vents. Deep-Sea Research I, 87, 70-81. DOI: 10.1016/j.dsr.2014.02.008

da Fonseca, L.C., Guerreiro, J. & Gil, J. (1995) Note on the macrozoobenthos of the upper level sediments of Porto Santo Island (Madeira, Portugal). Boletim do Museu Municipal do Funchal (História Natural), Suplemento 4.

De Almeida, P. (2017) Development of tools for the ecological quality status assessment of rocky shore benthic macroinvertebrate communities. Doctoral Thesis. Directed by João Carlos de Sousa Marques. 208 pp. Universidade de Coimbra (Portugal).

de Juan, S. & Cartes, J.E. (2011) Influence of environmental factors on the dynamics of macrobenthic crustaceans on soft bottoms of the Ebro Delta continental shelf (NW Mediterranean). Scientia Marina, 75 (4), 691-700. DOI: 10.3989/scimar.2011.75n4691

De la Ossa Carretero, J.A., Del-Pilar-Ruso, Y., Giménez-Casalduero, F. & Sánchez-Lizaso, J.L. (2010) Sensitivity of tanaid Apseudes latreillei (Milne-Edwards) populations to sewage pollution. Marine Environmental Research, 69 (5), 309-317. DOI: 10.1016/j.marenvres.2009.12.005

Desbruyères, D. (1978). BIOGAS 07 cruise, RV Cryos. DOI: 10.17600/78002911

Desbruyères, D. (1979) BIOGAS 08 cruise, RV Le Noroit. DOI: 10.17600/79003011

Desbruyères, D. (1980a) BIOGAS 09 cruise, RV Capricorne. DOI: 10.17600/80002211

Desbruyères, D. (1980b) BIOGAS 10 cruise, RV Cryos. DOI: 10.17600/80009111

Desbruyères, D. (1981) BIOGAS 11 cruise, RV Jean Charcot. DOI: 10.17600/81005511

Dirección General de Aguas (2006) Condiciones de Referencia de las Tipologías de las Masas de Agua Costeras. Parámetros Indicadores que Definen los Límites entre los Estados Ecológicos. Directiva Marco del Agua. Gobierno de Canarias. Consejería de Infraestructuras, transportes y vivienda, 99 pp.

Dolfus, A. (1898) Campagnes de la Melita. Tanaidae recortes par M. Ed. Chevreux dans l’Atlantique et dans la Méditerranée. Mémorires de la Société Zoologique de France, 11, 35-47.

Dolfus, A. (1897) Note préliminaire sur les Tanaidae recueillis aux Açores pendant les Campagnes de l’Hirondelle (1887-1888). Bulletin de la Société Zoologique de France, 22, 207-215.

Echevarri Erasun, B. (2007) Estudio de los efectos sobre el medio litoral derivados de la implantación de saneamientos integrales en la costa cantábrica. Doctoral Thesis. Directed by José A. Juanes de la Peña & Gerardo García-Castrillo Riesgo. 266 pp. Universidad de Cantabria (Spain).

El Bakali, M., Talbaoui, M. & Bendriss, A. (2010) Regime alimentaire de Rouget de roche de la côte nord ouest méditerranéenne du Maroc. Bulletin de l’Institut Scientifique, Rabat, section Sciences de la Vie, 32 (2), 87-93.

Espinosa, F., Ostalé-Valriberas, E., Maestre, M., González, A.R., Ouerghi, A., Sghaier, Y.R., & Bazairi, H. (2019) Sighting of a red coral [Corallium rubrum (Linnaeus, 1758)] population living at Gibraltar Strait. Regional Studies in Marine Science, 29, 100641. DOI: 10.1016/j.rsma.2019.100641

Esquete, P. & Cunha, M. (2017) The Apseudomorpha (Crustacea: Tanaidacea) of the Gulf of Cadiz and Horseshoe Continental Rise (NE Atlantic): A taxonomic review with new records, species, and ecological data. Zootaxa, 4276 (1), 61-95. DOI: 10.11646/zootaxa.4276.1.3

Esquete, P. & Cunha, M. (2018) Additions to the Tanaidomorpha (Crustacea: Tanaidacea) from mud volcanoes and coral mounds of the Gulf of Cadiz and Horseshoe Continental Rise. Zootaxa, 4377 (4), 517-541. DOI: 10.11646/zootaxa.4377.4.3

Esquete, P. & Fernandez-Gonzalez, V. (2017) Description, systematics and ecology of a new tanaidacean (Crustacea, Peracarida) species from mediterranean fish farms. Helgoland Marine Research, 70, 27. DOI: 10.1186/s10152-016-0480-9
Esquete, P., Bamber, R.N., Moreira, J. & Troncoso, J. (2012) *Apseudopsis adami*, a new species of tanaidacean (Crustacea: Peracarida) from the NW Iberian Peninsula: postmarsupial development and remarks on morphological characters. Helgoland Marine Research, 66, 601-619. DOI: 10.1007/s10152-012-0295-2

Esquete, P., Moreira, J. & Troncoso, J. (2011) Peracarid assemblages of *Zostera* meadows in an estuarine ecosystem (O Grove inlet, NW Iberian Peninsula): spatial distribution and seasonal variation. Helgoland Marine Research, 65, 445-455. DOI: 10.1007/s10152-010-0234-z

Esquete, P., Ramos, R. & Riera, R. (2016) New data on the Tanaidacea (Crustacea: Peracarida) from the Canary Islands, with a description of a new species of *Apseudopsis*. Zootaxa, 4093 (2), 248-260. DOI: 10.11646/zootaxa.4093.2.6

Esquete, P., Rubal, M., Veiga, P. & Troncoso, J. (2015) A new heterochelous tanaidacean *Tanaissus* (Paratananoidea: Tanaissuidae) from the north-west Iberian Peninsula. Zootaxa, 3995 (1), 189-202. DOI: 10.11646/zootaxa.3995.1.17

Estudio integral de la cuenca del río Pas. Andice. Grupo de Emisarios Submarinos e Hidráulicos. 237 pp.

Foveau, A., Pezy, J.P., Baux, N., Baffreau, A., Bachelet, Q., Chouquet, B., Dancie, C., Ruellet, T. & Dauvin, J.C. (2018) Range extension of the tanaidid *Zeuxo holdichi* (Bambrer, 1990) along the northern coast of France? Cahiers de Biologie Marine, 59, 329-333. DOI: 10.21411/CBM.A.58345007

Freitas, R., Romeiras, M., Silva, L., Cordeiro, R., Madeira, P., González, J. A., Wirtz, P. Falcón, J., Brito, A., Floeter, S.R., Afonso, P., Porteiro, F., Viera-Rodríguez, A. M., Neto, A.I., Haroun, R., Farminhão, J., Rebelo, A. C., Baptista, L., Melo, C.S., Martínez, A., Núñez, J., Berning, B., Johnson, M. E., & Ávila, S. P. (2019) Restructuring of the ‘Macaronesia’ biogeographic unit: A marine multi-taxon biogeographical approach. Scientific Reports, 9 (1), 1-18. DOI: 10.1038/s41598-019-51786-6

Froese, R. & Pauly, D. (2019) Editors. FishBase. World Wide Web electronic publication. Accessed at: www.fishbase.org, version (12/2019).

García-Herrero, A., Sánchez, N., García-Gómez, G., Pardos, F. & Martínez, A. (2019) Two new stygophilic tanaidomorphs (Peracarida, Tanaidacea) from Canary Islands and Southeastern Iberian Peninsula. Marine Biodiversity, 49 (23), 107-130. DOI: 10.1007/s12526-017-0763-7

Gardiner L.F. (1975) The systematics postmarsupial development and ecology of the deep-sea family Neotanaidae (Crustacea: Tanaidacea). Smithsonian Contributions to Zoology, 170, 1-265. DOI: 10.5479/si.00810282.170

Garlaschè, G., Karimullah, K., Iakovenko, N., Velasco-Castrillón, A., Karel J., Guidetti, R., Rebecchi, L., Cecchetto, M., Schiaparelli, S., Jersabek, C.D., De Smet, W.H., Fontaneto, D. (2020) A data set on the distribution of Rotifera in Antarctica. Biogeographia – The Journal of Integrative Biogeography, 35, 17-25. DOI: 10.21426/B635044786

Garmendia, J.M., Sánchez-Mata, A. & Mora, J. (1998) Inventario de la macrofauna bentónica de sustratos blandos submareales de la Ría de Ares y Betanzos (NO de la Península Ibérica). Nova Acta Científica Compostelana (Biologia), 8, 209-231. http://hdl.handle.net/10347/6691

Gavira-ONeill, K., Guerra-García, J.M., Moreira, J. & Ros, M. (2016) Mobile epifauna of the invasive bryozoan *Tricellaria inopinata*. Is there a potential invasional meltdown? Marine Biodiversity, 48, 1169-1178. DOI: 10.1007/s12526-016-0563-5.

Gerovasileiou, V., Martínez, A., Álvarez, F., Boxshall, G., Humphreys W.F., Jaume D., Becking, L.E., Muricy, G., van Hengstum, P., Dekeyzer, S., Decock, W., Vanhorne, B., Vandepitte, L., Bailey, N., Iliffe, T. (2016) World Register of marine Cave Species (WoRCS): a new Thematic Species Database for marine and anchialine cave biodiversity. Research Ideas and Outcomes, 2, e10451. DOI: 10.3897/rio.2.e10451
Guerra-García, J.M., Cabezas, P., Baeza-Rojano, E., Espinosa, F. & García-Gómez, C. (2009) Is the north side of the Strait of Gibraltar more diverse than the south side? A case study using the intertidal peracarids (Crustacea: Malacostraca) associated to the seaweed Corallina elongata. Journal of the Marine Biological Association of the United Kingdom, 89 (2), 387-397. DOI: 10.1017/S0025315409002938

Guerra-García, J.M., Baeza-Rojano, E., Cabezas, M.P. & García-Gómez, J.C. (2010) Vertical distribution and seasonality of peracarids crustaceans associated with intertidal macroalgae. Journal of Sea Research, 65, 256-264. DOI: 10.1016/j.seares.2010.12.001

Guerra-García, J.M., Ros, M. & Sánchez, J.A. (2009) Isopods, tanaids and cumaceans (Crustacea, Peracarida) associated to the seaweed Stypocaulon scoparium in the Iberian Peninsula. Zoologia Baetica, 20, 35-48.

Guerra-García, J.M., Ros, M., Izquierdo, D. & Soler-Hurtado, M.M. (2012) The invasive Asparagopsis armata versus the native Corallina elongata: Differences in associated peracarid assemblages. Journal of Experimental Marine Biology and Ecology, 416, 121-128. DOI: 10.1016/j.jembe.2012.02.018

Gutu, M. (1986) Description of Apseudes olimpiae n.sp. and of Tanabnormia cornicauda n.g., n.sp. (Crustacea, Tanaidae). Travaux du Muséum National d’Histoire naturelle “Grigore Antipa”, 28, 37-48.

Gutu, M. (2002) Contribution to the knowledge of the genus Apseudes Leach, 1814 (Crustacea: Tanaidae, Apseudomorpha) from the Mediterranean Basin and North African Atlantic. Travaux du Muséum National d’Histoire naturelle “Grigore Antipa”, 44, 19-39.

Higgins RP (1988) Kinorhyncha. In: Higgins RP, Thiel H (eds). Introduction to the study of meiofauna. Smithsonian Institution Press, Washington DC, pp. 328–331.

Holdich, D.M. & Bird, G.J. (1985). A preliminary report on dikonophoran tanaids (Crustacea). Peuplements profonds du Golfe de Gascogne Campagnes BIOGAS. Brest IFREMER, 441-447.

Horton, T., Lowry, J., De Broyer, C. et al. (2020) World Amphipoda Database. Accessed at http://www.marinespecies.org/amphipoda on 2020-06-08. DOI: 10.14284/368

Hudson, L., Newbold, T., Contu, S. et al. (2016) The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project. Ecology and Evolution, 7 (1), 145-188. DOI: 10.1002/ece3.2579

Junoy, J. & Viéitez, J.M. (1988) Crustáceos intermareales de sustrato blando de la Ría de Foz (Lugo). Actas III Congreso Ibérico de Entomología, 529-540.

Koulouri, P., Gerovasileiou, V., Bailly, N. & Dounas, C. (2020) Tanaidacea of Greece: a preliminary checklist. Biodiversity Data Journal, 8, e47184. DOI: 10.3897/BDJ.e47184

Kudinova-Pasternak, R.K. (1983) The abyssal Tanaidacea (Crustacea) of the Iberian and west-european hollows of the Atlantic Ocean. Zoologicheskii Zhurnal, 62 (8), 1170-1176.

Laborda, A.J. (2007) CRAI-Experimental, Colecciones Zoológicas ULE, Colección de Malacostráceos.

Lang, K. (1968) Deep-Sea Tanaidacea. Galathea, 9, 23-120.

Larsen, K. & Froufe, E. (2013) A new polymorphic species of Leptochelia (Crustacea: Tanaidae) from Guinea Bissau, West Africa, with comments on genetic variation within Leptochelia. African Invertebrates, 54 (1), 105-125. DOI: 10.5733/afin.054.0105

Larsen, K. (2012) Tanaidacea (Crustacea) from Macaronesia II. The deep-water fauna from the Azores archipelago, Portugal. Zootaxa, 3250, 26-42. DOI: 10.11646/zootaxa.3250.1.2
Larsen, K. (2012) Tanaidacea (Peracarida) from Macaronesia I. The deep-water fauna off the Selvagen Islands, Portugal. Crustaceana, 85 (4-5), 571-589. DOI: 10.1163/156854012X63376

Larsen, K., Błażewicz-Paszkowycz, M. & Cunha, M. (2006) Tanaidacean (Crustacea Peracarida) fauna from chemically reduced habitats. The Lucky Strike hydrothermal vent system, Mid Atlantic ridge. Zootaxa, 1187, 1-36. DOI: 10.11646/zootaxa.1187.1.1

Larsen, K., Nagaoka, R. & Fruofe, E. (2012) Tanaidacea (Crustacea) from Macaronesia III. The shallow-water Tanaidomorpha from the Cape Verde archipelago. Zootaxa, 3498, 24-44. DOI: 10.11646/zootaxa.3498.1.2

Lucena-Moya, P., Abrain, R., Pardo, I., Hermida, B. & Domínguez, M. (2010) Invertebrate species list of coastal lagoons in the Balearic Islands. Transit. Waters Bulletin, 4, 1-11. DOI: 10.1285/i1825229Xv4n1p1

MacPherson, E. (1980) Food and feeding of Chimera monstrosa, in the western Mediterranean. Journal du Conseil / Conseil Permanent International pour l'Exploration de la Mer, 39(1), 26-29.

Madin, J., Anderson, K., Andreasen, M. et al. (2016) The Coral Trait Database, a curated database of trait information for coral species from the global oceans. Scientific Data 3, 160017. DOI: 10.1038/sdata.2016.17

Mamouridis, V., Cartes, J.E., Parra, S., Fanelli, A. & Saiz Salinas, J.I. (2011) A temporal analysis on the dynamics of deep sea macrofauna. Influence on environmental variability off Catalonia coasts (W Mediterranean). Deep-Sea Research I, 58, 323-337. DOI: 10.1016/j.dsr.2011.01.005

Marín-Guirao, M., Cesar, L.A., Marín, A., Lloret, J. & Vita, R. (2005) Establishing the ecological quality status of soft-bottom mining impacted coastal water bodies in the scope of the Water Framework Directive. Marine Pollution Bulletin, 50 (4), 374-387. DOI: 10.1016/j.marpolbul.2004.11.019

Marquiegui, M.A. & Claude-Sorbe, J. (1999) Influence of near-bottom environmental conditions on the structure of bathyal macrobenthic crustacean assemblages from the Capbreton canyon (Bay of Biscay, NE Atlantic). Acta Oecologica, 20 (4), 353-362.

Martínez, A., Di Domenico, M., Leasi, F., et al. (2019) Patterns of diversity of soft-bodied meiofauna in an oceanic island, Lanzarote (Canary Islands). Marine Biodiversity, 49 (5), 2033-2055. DOI: 10.1007/s12526-019-01007-0

Martínez, A., García-Gómez, G., García-Herrero, A., Sánchez, N., Pardos, F., Izquierdo-Muñoz, A., Fontaneto, D. & Mammola, S. (2021) Habitat differences filter functional diversity of low dispersive microscopic animals (Acari, Halacaridae). Hydrobiologia, in press. DOI: 10.1007/s10750-021-04586-x
Martínez, J. & Adarraga, I. (2006) Programa de vigilancia y control de la introducción de especies invasoras en los ecosistemas litorales de la costa vasca. 1. Costa de Gipuzkoa. Sociedad Cultural de Investigación Submarina.

Martínez, J., Adarraga, I., López, E. & Sorbe, J.C. (2002) Cuatro nuevas citas de anélidos y crustáceos para las costas atlánticas europeas. Resúmenes del XII Simposio Ibérico de Estudios del Bentos Marino. Gibraltar-Línea de I Concepción, pp. 115-116.

Mees, J. & Jones, M.B. (1997) The hyperbenthos. Oceanography and Marine Biology, 35, 212.

Menzies, R.J. (1957) The tanaidacean *Leptognathia hastata* from abyssal depth in the Atlantic. Annals and Magazine of Natural History, 10 (12), 68-69. DOI: 10.1080/00222935708655928

Milne Edwards, H. (1828) Mémoire sur quelques Crustacés nouveaux. Annales des Sciences Naturelles, Ser. 1, 13, 287-301.

Monod, T.H. (1925) Tanaidaces et isopodes aquatiques de l’afrique occidentale et septentrionale. Bulletin de la Societe des Sciences Naturelles du Maroc, Tome V, nº6.

Moreira, J., Gestoso, L. & Troncoso, J. (2009) Inventario de la macrofauna bentónica de sedimentos submareales de la Ensenada de Baiona. Boletín de la Real Sociedad de Historia Natural, Sección Biología, 103 (1-4), 103-119.

Moreira, J., Gestoso, L. & Troncoso, J.C. (2008) Diversity and temporal variation of peracarid fauna (Crustacea: Peracarida) in the shallow subtidal of a sandy beach: Playa América (Galicia, NW Spain). Marine Ecology, 29 (1), 12-18. DOI: 10.1111/j.1439-0485.2007.00195.x

Moreira, J., Lourido, A. & Troncoso, J. (2008) Diversity and distribution of Peracarid Crustaceans in shallow subtidal soft bottoms at the Ensenada de Baiona (Galicia, NW Spain). Crustaceana, 81 (9), 1069-1089. DOI: 10.1163/156854008X360815

Mucha, A.P. & Costa, M.H. (1999) Macrozooobenthic community structure in two Portuguese estuaries. Relationship with organic enrichment and nutrient gradients. Acta Oecologica, 20 (4), 363-376. DOI: 10.1016/S1146-609X(99)00130-7

Munilla, T. & San Vicente, C. (2005) Suprabenthic biodiversity of Catalan beaches (NW Mediterranean). Acta Oecologica, 27 (2), 81-91. DOI: 10.1016/j.actao.2004.09.006

Navarro-Barranco, C., Guerra-García, J.M., Sánchez-Tocino, L., Ros, M., Florido, M. & García-Gómez, J.C. (2015) Colonization and successional patterns of the mobile epifaunal community along an environmental gradient in a marine cave. Marine Ecology Progress Series, 521, 105-115. DOI: 10.3354/meps11126

Navarro-Barranco, C., Muñoz-Gómez, B., Saiz, D., Ros, M., Guerra-García, J.M., Altamirano, M., & Moreira, J. (2019) Can invasive habitat-forming species play the same role as native ones? The case of the exotic marine macroalga *Rugulopteryx okamurae* in the Strait of Gibraltar. Biological Invasions, 21 (11), 3319-3334. DOI: 10.1007/s10530-019-02049-y

Norman, A.M., & Stebbing, T.R.R. (1886) V. On the Crustacea Isopoda of the ‘Lightning’, ‘Porcupine’, and ‘Valorous’ Expeditions. Part I. - Apseudidae, Tanaidae, Anthuridae. Transactions of the Zoological Society of London. 12 (4), 77-141.

OCEANA (2010) Alegaciones al informe de sostenibilidad ambiental (ISA) del plan director de infraestructuras del puerto de Pasaia. 28pp.

Pacios, I., Guerra-García, J.M., Baaza-Rojano, E. & Cabezas, M.P. (2011) The non-native seaweed *Asparagopsis armata* supports a diverse crustacean assemblage. Marine Environmental Research, 71, 275-282. DOI: 10.1016/j.marenvres.2011.02.002

Pagliosa, R.P., Doria, G.J., Misturini, D. et al. (2014) T-HOD: NONATObase: a database for Polychaeta (Annelida) from the Southwestern Atlantic Ocean. Database. DOI: 10.1093/database/bau002

Patricio, J., Salas, F., Pardal, M.A., Jorgensen, S.V. & Marques, J.C. (2006) Ecological indicators performance during a recolonisation field
experiment and its compliance with ecosystem theories. Ecological Indicators, 6, 43-57. DOI: 10.1016/j.ecolind.2005.08.016

Pereira, S.P., Lima, F.P., Queiroz, N.C., Riberiro, P.A. & Santos, A.M. (2006) Biogeographic patterns of intertidal macroinvertebrates and their association with macroalgae distribution along the Portuguese coast. Marine Biodiversity, 183, 185-192. DOI: 10.1007/s10750-005-1115-3

Pérez-Ruzafa, A. & Sanz, M.C. (1993) Tipicación de las poblaciones de dos especies de tanidáceos del Mar Menor (Spain). Publicación Especial Instituto Español de Oceanografía, 11 pp.

Puente Trueba, A., Ondiviela, B., Echávarri, B., Juanes, J. & García-Castrillo, G. (2004) Las comunidades bentónicas de la bahía de Santander. Locustella, Anuario de la Naturaleza de Cantabria, 2, 58-69.

QGIS Development Team (2020) QGIS Geographic Information System. Open Source Geospatial Foundation Project.

Quispe, J.I. (2014) Dinámica espacio-temporal del ictioplancton del Mar Menor (Spain) (SE de España) y factores ambientales asociados. Doctoral Thesis. Directed by Marcos Diego Concepción & Ángel Pérez Ruzafa. 552 pp. Universidad de Murcia (Spain).

Reyss, D. (1973) BIOGAS 02 cruise, RV Jean Charcot. DOI: 10.17600/73002411

Riera, R., Núñez, J., Brito, M.C. & Tuya, F. (2012a) Diferencias en la diversidad, estructura y variabilidad de la comunidad meiofaunal entre el medio intermareal y el submareal. Ciencias marinas, 38 (4), 677-693. DOI: 10.773/cm.v38i4.2077

Riera, R., Delgado, J.D., Rodríguez, M., Monterroso, O. & Ramos, E. (2012b) Macrofaunal communities of threatened subtidal mäerl seabeds on Tenerife (Canary Islands, north-east Atlantic Ocean) in summer. Acta Oceanologica Sinica, 31 (1), 98-105. DOI: 10.1007/s13131-012-0181-4

Riera, R., Monterroso, Ó. & Núñez, J. (2012c) Effects of granulometric gradient on macrofaunal assemblages in Los Cristianos harbour (Tenerife, Canary Islands). Arquipelago. Life and Marine Sciences, 29, 33-49.

Riera, R., Núñez, J. & Brito, M.C. (2013) Temporal dynamics of shallow subtidal meiofaunths from a beach in Tenerife (Canary Islands, NE Atlantic). Acta Oceanologica Sinica, 32 (8), 44-54. DOI: 10.1007/s13131-013-0340-2

Riera, R., Rodríguez, M. & Monterroso, O. (2011) Macroinfaunal assemblages in sandy seabeds of San Blas (SE Tenerife, Canary Islands, NE Atlantic Ocean). Viañaea, 39, 65-76.

Riera, R., Rodríguez, M., Ramos, E., Monterroso, O. & Delgado, J.D. (2013) Hard and soft bottom macrozoobenthos in subtidal communities around an inactive harbour area. Vie et milieu - Life and environment, 63 (1), 23-34.

Riera, R., Tuya, F., Rodríguez, M., Monterroso, O. & Ramos, E. (2013) Confounding response of macrofauna from a confluence of impacts. Acta Oceanologica Sinica, 32 (10) 74-81. DOI: 10.1007/s13131-013-0368-3

Rodrigues, A.M. & Dauvin, J.C. (1987) Crustacés pécarides de la Ria de Alvor (Portugal) (côte du Sud du Portugal). Cahiers de Biologie Marine, 2, 207-223.

Rueda, J., Mesquita-Joanes, F., Valentín, A. & Dies, B. (2013) Check-list of the aquatic macroinvertebrates of “Ullal de Baldoví” spring pond (Sueca, Valencia, Spain) after a restoration program. Boletín de la Real Sociedad Española de Historia Natural, Sección Biología, 107, 57-65.

Sampaio, L., Mamede, R., Ricardo, F., Magalhaes, L., Rocha, H., Martins, R., Dauvin, J., Rodrigues, A.M. & Quintino, V. (2016) Soft-sediment crustacean diversity and distribution along the Portuguese continental shelf. Journal of Marine Systems, 163, 43-60. DOI: 10.1016/j.jmarsys.2016.06.011
San Vicente, C. & Sorbe, J.C. (1993) Estudio comparado del suprabentos de una playa catalana y otra vasca. Metodología y resultados preliminares. Publicaciones del Instituto Español de Oceanografía, 11.

San Vicente, C. & Sorbe, J.C. (1999) Spatio temporal structure of the suprabenthic community from Creixell beach (western Mediterranean). Acta Oecologica, 20 (4), 377-389. DOI: 10.1016/S1146-609X(99)00129-0

Sanchez-Moyano, J.E. & Garcia-Asencio, I. (2011) Crustacean assemblages along the Guadiana River estuary (SW Iberian Peninsula). Journal of the Marine Biological Association of the United Kingdom, 91 (1), 127-138. DOI: 10.1017/S0025315410001074

Sanchez-Moyano, J.E. & García-Gómez, J.C. (1998) The arthropod community, especially crustacea, as a bioindicator in Algeciras Bay based on spatial distribution. Journal of Coastal Research, 14 (3), 1119-1133.

Sanchez-Moyano, J.E., Garcia-Adiego, E.M., Estacio, F.J. & Garcia-Gomez, J.C. (2000) Effect of environmental factors on the spatial distribution of the epifauna of the alga Halopteris scoparia in Algeciras Bay, Southern Spain. Aquatic Ecology, 34, 355-367. DOI: 10.1023/A:1011411414342

Sanz, M.C. (1993) Contribución al estudio de los crustáceos litorales del Mediterráneo Occidental (Tanaidáceos). Doctoral Thesis. Directed by Jaume Isern Arús & José Castelló Escandell. 688 pp. Universidad de Barcelona (Spain).

Sanz, M.C., Riera, R., Brito, M.C. & Núñez, J. (2003) Primera aportación al conocimiento de los tanaidáceos (Malacostracea: Tanaidacea) de las Islas Canarias. Revista Academica Canaria de Ciencia, 15 (3-4), 69-76.

Sanz-Lázaro, C. & Marín, A. (2006) Benthic recovery during open sea fish farming abatement in Western Mediterranean, Spain. Marine Environmental Research, 62 (5), 374-387. DOI: 10.1016/j.marenvres.2006.05.006

Sars, G.O. (1886) Nye bidrag til kundskaben om Middelhavets inverebratfauna. III. Middelhavets saxisopoder (Isopoda Chelifera). pp. 263-368.

Sevilla, J.R., Aguilar-Alberola, J.A. & Mezquita i Juanes, F. (2006) Contribución al conocimiento de los crustáceos (Arthropoda, Crustacea) de las Malladas de la Devesa del Parque Natural de la Albufera (Valencia). Boletín de la Asociación Española de Entomología, 30 (1-2), 9-29.

Sieg, J. & Bird, G. (1989) Remarks on the genus Mesotanais Dollfus, 1987. Redescription of the type-species and description of M. elongatus sp. nov. Bulletin du Museum National d’Histoire Naturelle Paris, 11 (4), 165-182.

Sorbe, J.C., Frutos, I., & Aguirrezabalaga, F. (2010) The benthic fauna of slope pockmarks from the Kostarrenkala area (Capbreton canyon, SE Bay of Biscay). Munibe. Ciencias Naturales, 58, 85-98.

Sørensen, M.V. & Pardos, F. (2008) Kinorhynch systematics and biology an introduction to the study of kinorhynchs, inclusive identification keys to the genera. Meiofauna Marina, 16, 21-73

Spalding, M.D., Agostini, V.N., Rice, J., & Grant, S.M. (2012) Pelagic provinces of the world: a biogeographic classification of the world’s surface pelagic waters. Ocean & Coastal Management, 60, 19-30. DOI: 10.1016/j.ocecoaman.2011.12.016

Spalding, M.D., Fox, H.E., Allen, G.R., Davidson, N., Ferdaña, Z.A., Finlayson, M. & Lourie, S.A. (2007) Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. BioScience, 57 (7), 573-583. DOI: 0.1641/B570707

Stein, D.L. (2003) Integrating Biological databases. Nature Reviews Genetics, 4, 337-345. DOI: 10.1038/nrg1065

Stephensen, K. (1915) Isopoda, Tanaidacea, Cumacea, Amphipoda (excl. Hyperiidea). Report on the Danish Oceanographic expeditions 1908-10 to the Mediterranean and adjacent Seas.

Tato, R., García-Regueira, X., Moreira, J. & Urgorri, V. (2009) Inventario faunístico del
intermareal rocoso de dos localidades de la costa occidental gallega tras el vertido del Prestige. Nova Acta Científica Compostelana, 18, 75-94.

Tattersall, W.M. (1911) Part 43. Marine Isopoda and Tanaidacea. Proceedings of the Royal Irish Academy. Section A: Mathematical and Physical Sciences, 31, (1-3), 43.1-43.6

Templado, J., Ballesteros, E., Galparsoro, I., Borja, A., Serrano, A., Marín, L., & Brito, A. (2012) Inventario Español de Hábitats y Especies Marinos. Ministerio de Agricultura, Alimentación y Medio Ambiente. Gobierno de España, Madrid. 229 pp.

Terrón-Sigler, A. (2015) Conservation biology of the endangered orange coral *Astroides calycularis*. Doctoral Thesis. Directed by Free Espinosa Torre. 237 pp. Universidad de Sevilla (Spain).

Terrón-Sigler, A., León-Muez, D., Peñalver-Duque, P. & Espinosa, F. (2016) Diets of peracarid crustaceans associated with the orange coral *Astroides calycularis* in Southern Spain. Mediterranean Marine Science, 17 (1), 170-173. DOI: 10.12681/mms.1298

Tuya, F., Png-Gonzalez, L., Riera, R., Haroun, R. & Espino, F. (2014) Ecological structure and function differs between habitats dominated by seagrasses and green seaweeds. Marine Environmental Research, 98, 1-13. DOI: 10.1016/j.marenvres.2014.03.015

Varela, C., Moreira, J. & Urgorri, V. (2009) Inventario de la fauna asociada a hidrozoos en la ría de Ferrol (NO Península Ibérica). Nova Acta Científica Compostelana, 18, 95-109.

Vicente, C.A., Ibáñez, M., Miner, A. & D’Elbee, J. (1988) Estudio de las rías Guipuzcoanas. Primeros datos sobre el estudio de la ría del Oria. Lurralde, 11, 179-199.

Viéitez, J.M. (2006) Macrofauna intermareal de las playas del litoral atlántico y cantábrico español. Croizatia, 2, 83-106.

Vizzini, S., Sara, G., Michener, R.H., & Mazzola, A. (2002) The role and contribution of the seagrass *Posidonia oceanica* (L.) Delile organic matter for secondary consumers as revealed by carbon and nitrogen stable isotope analysis. Acta Oecologica, 23 (4), 277-285. DOI: 10.1016/S1146-609X(02)01156-6

Vollette, P. & Thirion, J.M. (2015) Inventarrie de la faune des estrans rocheux calcaires de l'estuaire de La Gironde. Annales de la Société des Sciences Naturelles de la Charente-Inférieure, 10 (6), 593-598

Wolff, T. (1956) Crustacea Tanaidacea from depths exceeding 6000 meters. Pages 187-241, In: Bruun, A., Greve, S., Spärck, R., & Wolff, T. (eds.), Galathea Report: Scientific Results of the Danish Deep-Sea Expedition Round the World 1950-52, Vol. 2. Danish Science Press, Copenhagen.

WoRMS Editorial Board (2020) World Register of Marine Species. Available from http://www.marinespecies.org at VLIZ. Accessed 2020-06-08. DOI: 10.14284/170

Zubikarai, N., Borja, A., and Muxika, I. (2014) Assessment of benthic hard substratum communities responses to changes in the management of anthropogenic pressures in the Basque coast. Revista de Investigación Marina, AZTI-Tecnalia, 21 (3), 40-88.

Submitted: 20 October 2020
First decision: 9 February 2021
Accepted: 3 June 2021
Edited by Francesco Maria Angelici