Comparison of the robust parameters estimation methods for the two-parameters Lomax distribution
Muhammad Shakeel¹, Nazia Rehmat² and Muhammad Ahsan ul Haq*¹

Abstract: Accurate and precise estimation of parameters in distribution theory is of immense significance. Imprecise and biased estimation of a probability distribution can lead to invalid and erroneous results. In this study, we investigate the Lomax distribution and introduced new four robust point estimation methods such as L-moments, trimmed L-moments, probability weighted moments, and generalized probability weighted moments (GPWM). We compare the efficiency of these methods with traditional method of moments based on performance measures such as bias, root-mean-square error and total deviation criteria using simulation study. We concluded that trimmed L-moments ascertained to be the superior method when the shape parameter is smaller (q < 3) and this assessment is equally valid for larger sample sizes, however, GPWM performs better for higher values of the shape parameter.

Keywords: robust estimation; L-moments; trimmed L-moments; probability weighted moments; generalized probability weighted moments; Lomax distribution

1. Introduction
Lomax distribution proposed by Lomax in 1954, conditionally known as Pareto type II distribution is widely used in variety of contexts. Originally, it was introduced for modeling of business failure data, size of cities, reliability modeling, and lifetime testing in engineering as well as in survival analysis.
Hassan and Al-Ghamdi (2009). Some authors applied it to income and wealth data (Atkinson & Harrison, 1978; Harris, 1968), and firm size and queuing problems (Johnson, Kotz, & Balakrishnan, 1994). Bryson (1974) suggested this distribution as an alternative to the exponential distribution for heavy-tailed data sets.

Myhre and Saunders (1982) applied Lomax distribution using the right censored data. Lingappaiah (1986) proposed procedures of estimation for this distribution. Ahsanullah (1991) and Balakrishnan and Ahsanullah (1994) have investigated distributional properties and moments of record values from Lomax distribution. Vidondo, Prairie, Blanco, and Duarte (1997) used this for modeling on size spectra data in aquatic ecology. Childs, Balakrishnan, and Moshref (2001) gave order statistics from non-identical right-truncated Lomax distribution and provided the applications. Bayesian estimation method was used for evaluation of Lomax survival function (Howlader & Hassain, 2002). Non-Bayesian and Bayesian estimators of the sample size in the case of type-I censored samples from the Lomax distribution have been proposed by Abd-Elfattah, Alaboud, and Alharby (2007).

Hassan and Al-Ghamdi (2009) used Lomax distribution for determination of optimal times of changing level of stress for simple stress plans under a cumulative exposure model. Abd-Elfattah and Alharbey (2010) estimated the parameters of Lomax distribution based on generalized probability weighted moments (GPWM). Nasiri and Hosseini (2012) also studied Lomax distribution regarding the MLE and various Bayesian estimation based on record values. Ma and Shi (2013) investigated the estimation of the parameters of Lomax distribution based on type-II progressively hybrid censored samples. Both maximum likelihood and Bayesian estimates for the distribution parameters under square error loss function were obtained. Rao, Durgamamba, and Kantam (2014) proposed a new probability acceptance sampling plan, size-biased Lomax model for lifetime random variable. Al-Noor and Alwan (2015a) compared the Bayes, empirical Bayes, and Non-Bayes estimators for the shape parameter of the Lomax distribution via the Monte Carlo simulation. Ahmad, Ahmad, and Ahmed (2015) obtained the Bayes estimators of the shape parameters of the Lomax distribution by employing the Jeffery’s and extension of Jeffery’s prior using Al-Bayyati’s loss function, squared error loss function, and precautionary loss function.

Due to its broad applicability, some generalized forms of Lomax distribution were derived and studied like Exponentiated Lomax (Abdul-Moniem & Abdel-Hameed, 2012), Kumaraswamy Exponentiated Lomax (Batal & Kareem, 2014), Marshall-Olkin extended-Lomax (Ghitany, Al-Awadhi, & Alkhalfa, 2007), McDonald Lomax (Lemonte & Cordeiro, 2013), Kumaraswamy-generalized Lomax (Shams, 2013), Exponential Lomax (El-Bassiony, Abdo, & Shahen, 2015), Transmuted Lomax (Ashour & Eltehiwy, 2013), Transmuted Exponentiated Lomax Distribution (Ashour & Eltehiwy, 2013), and Weibull-Lomax (Tahir, Cordeiro, Mansoor, & Zubair, 2015). The bivariate forms were also introduced; bivariate Lomax (Attia et al., 2014a), bivariate generalized Lomax (Attia et al., 2014b). Nayak (1987) suggested multivariate Lomax distribution and compute its properties and usefulness in reliability theory.

The robust parameter estimation procedures such as L-moments, trimmed L-moments (TL-moments), Probability weighted moments (PWM), and GPWM are being vastly employed in the field of economics, meteorology, hydrology, and climatology, in particular when extreme observation exist in data. L-moments introduced by Hosking (1990), TL-moments by Elamir and Seheult (2003), PWM pioneered by Greenwood, Landwehr, Matalas, and Wallis (1979), and GPWM proposed by Rasmussen (2001). Some researchers; Jamjoom and Alsaiary (2013), Bilková (2014), Gomes and Guillou (2014), Li, Zuo, Zhuang, and Zhu (2014), Naveed-Shahzad, Asghar, Shehzad, and Shahzadi (2015), Abdul-Moniem and Seham (2015), Ahmad, Abbas, Aslam, and Ahmed (2015) and Shakeel, Haq, Hussain, Abdulhamid, and Faisal (2016) used these methods for different probability distributions.
All the methods mentioned above except GPWM are not yet derived and discussed for Lomax distribution in the literature according to our knowledge. So in this paper, we derived four estimation methods for Lomax distribution such as L-moments, TL-moments, PWM, and GPWM and compared their performance and efficiency with the traditional method of moments via using a comparative and comprehensive Monte Carlo simulation study.

2. The Lomax distribution

The probability density function of Lomax distribution with shape parameter \(q \) and scale parameter \(b \) is

\[
f(x) = \frac{q b^q}{(x + b)^{q+1}} \quad x \geq b, \ b > 0, \ q > 0
\]

(1)

The cumulative, inverse cumulative distribution functions, mean, and \(r \)th moments about origin of the Lomax distribution are

\[
F(x) = 1 - \left(\frac{b}{x + b} \right)^q
\]

(2)

\[
x(F) = b \left((1 - F)^{-\frac{1}{q}} - 1 \right)
\]

(3)

\[
E(x) = \frac{b}{(q - 1)}
\]

(4)

\[
E(x^r) = \frac{r! b^r}{(q - 1) \ldots (q - r)}
\]

(5)

3. L-moments

Hosking (1990) introduced the L-moments as an analogous to the conventional moments. These are estimated by a linear combination of order statistics. L-moments can be defined for any random variable whose mean only exists (Hosking, 2007). They are more resistant to the influence of sample variation and robust to the outliers in the data (Abdul-Moniem & Selim, 2009). L-moments are often proved to be a more efficient parameter estimation method of a parametric distribution than maximum likelihood method, especially for small samples.

Let \(X \) be a continuous random variable with distribution function \(F(x) \) and quantile function \(Q(x) \), then the L-moments of \(r \)th order random variable are

\[
\lambda_r = \frac{1}{r} \sum_{j=0}^{r-1} (-1)^j \binom{r}{j} E(\lambda_{r-j}) \quad r = 1, 2, 3 \ldots
\]

(6)

Expected value of \(r \)th order statistics of a random sample of size \(n \) has the form

\[
E(\lambda_{r-j}) = \frac{n!}{(r - 1)! (n - r)!} \int_0^1 Q(F)^{r-j-1} (1 - F)^{n-r} dF
\]

(7)

Let \(x_1, x_2, x_3, \ldots, x_n \) be a sample and \(x_{(1)} \leq x_{(2)} \leq x_{(3)} \leq \cdots \leq x_{(n)} \) an ordered sample, then the \(r \)th unbiased empirical L-moments can be written as

\[
l_r = \left(\begin{array}{c} n \\ r \end{array} \right)^{-1} \sum_{i=1}^{n} \sum_{1 \leq i < j \leq n} \frac{1}{r} \sum_{j=0}^{r-1} (-1)^j \binom{r}{j} x_{(r-j)} \quad r = 1, 2, \ldots n
\]

(8)
Using Equation (6), the L-moments of the Lomax distribution can be derived

\[\lambda_1 = \frac{b}{q - 1} \]

\[\lambda_2 = \frac{qb}{(q - 1)(2q - 2)} \]

Estimators of L-moments are

\[\hat{q} = \frac{l_2}{2l_2 - l_1} \text{ and } \hat{b} = \frac{l_2^2 - l_1l_2}{2l_2 - l_1} \]

4. Trimmed L-moments

A robust alternative modification of L-moments introduced with the name of TL-moments by Elamir and Seheult (2003). It is the natural generalization of L-moments that does not require the mean of underlying distribution to exist as it is the case of Cauchy distribution (Hosking, 2007). Initially, TL-moments were developed as supplement for other methods, particularly when dealing with outliers in the data (Abu El-Magd, 2010). In fact, the expected value of order statistics

\[E \left(\frac{X_{r+t} - j}{r+t} \right) \]

is replaced by

\[E \left(\frac{X_{r+t} - j}{r+t} + t_1 - j + t_2 \right) \] in L-moments where the increased size is the total amount of trimming. Thus, the \(r \)th-order TL-moments are denoted as \(\lambda_r^{(t_1,t_2)} \).

\[\lambda_r^{(t_1,t_2)} = \frac{1}{r} \sum_{j=0}^{r-1} (-1)^j \binom{r-1}{j} E \left(X_{r+t-1-j} + t_1 + t_2 \right) \] \(r = 1, 2, \ldots \) (9)

TL-moments reduce to L-moments if we put \(t_1 = t_2 = 0 \) in the above equation. Here, only the symmetric case of TL-moments \(t_1 = t_2 = t \) is considered in this study. For the symmetric case, above Equation (9) can be rewritten as

\[\lambda_r^{(t)} = \frac{1}{r} \sum_{j=0}^{r-1} (-1)^j \binom{r-1}{j} E \left(X_{r+t-j} + 2t \right) \] \(r = 1, 2, \ldots \) (10)

The unbiased sampled TL-moments corresponding to population TL-moments are defined as by the Asquith (2015)

\[l_r^{(t)} = \frac{1}{r} \sum_{j=r-t}^{n-t} \left[\frac{(-1)^j \binom{r-1}{j} \binom{i-1}{r+t-j-1} \binom{n-i}{t+j} \binom{n}{r+2t}}{\binom{n}{r+2t}} \right] x_{in} \] (11)

The TL-moments for Lomax distribution for \(t = 1 \) using Equation (10) are

\[\lambda_1^{(1)} = \frac{5qb - b}{(2q - 1)(3q - 1)} \]

\[\lambda_2^{(1)} = \frac{6q^2b}{(2q - 1)(3q - 1)(4q - 1)} \]

The estimators of the Lomax distribution parameters \(b \) and \(q \) by means of TL-moments can be obtained in terms of \(l_1^{(1)} \) and \(l_2^{(1)} \) by equating \(\lambda_1^{(1)} \) to \(l_1^{(1)} \) and \(\lambda_2^{(1)} \) to \(l_2^{(1)} \),

\[\hat{b} = \frac{l_1^{(1)}(2q - 1)(3q - 1)}{5q - 1} \]

\[\hat{q} = \frac{l_2^{(1)}}{2l_2^{(1)} - l_1^{(1)}} \]
Putting the value of \(q \) which is given below

\[
\hat{q} = \frac{9f_1^{(1)} \pm \sqrt{(f_1^{(1)})^2 + 24f_1^{(1)}f_2^{(3)}}}{2(20f_2^{(1)} - 6f_1^{(1)})}
\]

5. Probability weighted moments (PWM)

Greenwood et al. (1979) proposed PWMs that is the generalization of usual moments of the probability distribution. It is simple, unbiased, stable, and particularly attractive when the cumulative distribution function \(F_X(x) \) of a distribution has a closed form expression (Munir, Saleem, Aslam, & Ali, 2013). It is commonly used for estimating the parameters of the distributions that are analytically expressible in quantile form such as, Wakeby and Tukey’s Lambda distribution (Elsherpieny, Hassan, & El Haroun, 2014). Let \(X \) be the random variable with cdf \(F_X(x) \), then the PWM is expressed as:

\[
M_{p,u,v} = E \left[X^p \{ F_X(x) \}^u \{ (1 - F_X(x)) \}^v \right]
\]

where \(p, u, \) and \(v \) are integers numbers. If the inverse distribution function \(Q(F) \) can be written in closed form, then an alternative form of the PWM is derived as

\[
M_{p,u,v} = \int_0^1 Q(F)^p F^u (1 - F)^v dF
\] \hspace{1cm} (12)

If \(u = v = 0 \) and \(p \) is non-negative, then \(M_{p,0,0} \) is the non-central conventional moments. Particularly useful special cases of PWM are \(\alpha = M_{1,0,v} \) and \(\beta_u = M_{1,u,0} \).

Let \(x_{(1)} < x_{(2)} < x_{(3)} < \cdots < x_{(n)} \) be a random sample of size \(n \) from the distribution function \(F(x) \) and \(x_{(1)} < x_{(2)} < \cdots < x_{(n)} \) be the corresponding ordered sample. Landwehr, Matalas, and Wallis (1979) proposed sampled unbiased estimators of PWM as

\[
\hat{\alpha} = M_{1,0,0} = n^{-1} \sum_{j=1}^{n} \frac{(j - 1)(j - 2) \cdots (j - u)}{(n - 1)(n - 2) \cdots (n - u)} x_{(j)}
\] \hspace{1cm} (13)

The general expression of PWM is given in Equation (12).

The PWM for the Lomax distribution is derived as follows using the Equation (12).

\[
M_{1,0,0} = \alpha_0 = \frac{qb}{q - 1} - b \quad \text{and} \quad M_{1,0,1} = \alpha_1 = \frac{qb}{q - 1} - b - \frac{bq^2}{(q - 1)(2q - 1)} + \frac{b}{2}
\]

The estimators’ manifestations of the Lomax distribution parameters \(b \) and \(q \) by means of PWM are obtained in terms of \(\hat{M}_{1,0,0} \) and \(\hat{M}_{1,0,1} \) by equating \(M_{1,0,0} \) to \(\hat{M}_{1,0,0} \) and \(M_{1,0,1} \) to \(\hat{M}_{1,0,1} \).

\[
\hat{q} = \frac{2\hat{M}_{1,0,1} - \hat{M}_{1,0,0}}{4\hat{M}_{1,0,1} - \hat{M}_{1,0,0}}
\]

\[
\hat{b} = \frac{2\hat{M}_{1,0,0}\hat{M}_{1,0,1}}{\hat{M}_{1,0,0} - 4\hat{M}_{1,0,1}}
\]

6. Generalized probability weighted moments

Rasmussen (2001) proposed GPWM as an extension of PWM. It is used to estimate the parameters of such probability distributions that can be expressed in inverse form. The PWM only considers the non-negative integers on the exponent while GPWM method is unrestricted to the smallest non-negative integers on the exponent (Abd-Effattah & Alharbey, 2010). The common practice of GPWM of order \(p = 1 \) and \(v = 0 \) take the following form
The PWM involves consideration of $u = 0$ and $u = 1$ in the above equation for a two parametric distribution while GPWM method considers $u = u_1$ and $u = u_2$ where u_1 and u_2 are either to be small or non-negative integers on the exponent. The empirical estimate of GPWM

$$\hat{M}_{1,u,0} = \frac{1}{n} \sum_{i=1}^{n} x_i \left(\frac{i - 0.35}{n} \right)^u$$

The GPWM estimator expressions for Lomax distribution are taken from Abd-Elfattah and Alharbey (2010).

$$M_{1,u_1,0} = b \left[\beta \left(\mu_1 + 1, 1 - \frac{1}{q} \right) - \frac{1}{\mu_1 + 1} \right]$$

$$M_{1,u_2,0} = b \left[\beta \left(\mu_2 + 1, 1 - \frac{1}{q} \right) - \frac{1}{\mu_2 + 1} \right]$$

Now, the GPWM estimators of Lomax distribution in terms of $\hat{M}_{1,u_1,0}$ and $\hat{M}_{1,u_2,0}$ are obtained as:

$$\hat{b} = \left[\frac{\beta \left(\mu_2 + 1, 1 - \frac{1}{q} \right) - \frac{1}{\mu_2 + 1}}{\hat{M}_{1,u_2,0}} \right]^{-1}$$

$$\hat{M}_{1,u_2,0} \left[\beta \left(\mu_2 + 1, 1 - \frac{1}{q} \right) - \frac{1}{\mu_2 + 1} \right] - \hat{M}_{1,u_1,0} \left[\beta \left(\mu_2 + 1, 1 - \frac{1}{q} \right) - \frac{1}{\mu_2 + 1} \right] = 0 \quad (14)$$

For the solution of the shape parameter in Equation (14), an iterative technique is applied using uniroot function in R software.

7. Monte Carlo simulation study

Monte Carlo simulation is designed to examine the sampling behavior of the estimation methods; Methods of Moments (MM), L-moments (LM), TL-moments (TLM), PWM, and GPWM. The accuracy of the estimates is compared by employing the performance measures Root-mean-square error (RMSE), biases and total deviation (TD). A simulation study is conducted by setting different sample sizes $n = 50, 100, 200, 500, and 1,000$ as well as taking the different combination of shape and scale parameter values $(q, b) \in (2, 1), (2, 2), (3, 2), (2, 3), (4, 2)$. All the estimates are calculated from 20,000 repeated samples. The package lmomco (Asquith, 2015) in R software is used for calculating sample L-moments, TL-moments, and PWM. The results of our simulation study are presented in Tables 1–5.

We can assess the accuracy of these estimators in terms of bias, mean-square-error, and TD. The results show that bias decreases by increasing the sample size. The bias reduces to zero for large sample size ($n > 500$) and estimates approaching to their true parametric values. On the other side with increasing value of actual parameters, bias is increased tremendously. This similar pattern examined for both parameters q and p. When the parameter values for the pairs $(q, b) = (2, 1), (2, 2), (2, 3)$ are small especially the shape parameter, bias of the TL-moments is small. The RMSE decreases with increasing sample size. Using the goodness of fit criteria’s, the TL-moments appear relatively better than other competitive estimation methods for all sample sizes. But as the value of shape parameter increases i.e. $(3, 2)$ and $(4, 2)$, GPWM performs better than MM, LM, TLM, and PWM. It can also be observed from the results that all the considered robust estimation methods perform better than MM under all the criteria’s, from small to large sample values and for all pairs of parameters settings.
Table 1. Comparison of the estimation methods for \((q = 2, b = 1)\)

\(n\)	Bias \(\hat{q}\)	Bias \(\hat{b}\)	RMSE \(\hat{q}\)	RMSE \(\hat{b}\)	T.D \(\hat{q}\)	T.D \(\hat{b}\)
50	0.8344	0.5877	0.7487	0.4344	1.0497	0.6226
	0.9424	0.5323	4.5734	3.7022	1.0049	0.8088
100	0.4898	0.3297	0.4891	0.3239	0.4819	0.3249
	0.5633	0.3919	1.5198	1.3123	0.5746	0.5585
200	0.2388	0.1596	0.1942	0.1313	0.3646	0.1499
	0.2757	0.1903	0.9795	0.8947	0.2790	0.2284
500	0.3416	0.2381	0.3474	0.2419	0.3409	0.2392
	0.3582	0.2883	0.7848	0.7029	0.1255	0.0738
750	0.0785	0.0527	0.0627	0.0424	0.0106	0.0712
	0.1235	0.0854	0.6713	0.6375	0.0919	0.0487
1,000	0.2417	0.1679	0.2254	0.1565	0.2415	0.1683
	0.2529	0.2392	0.6232	0.5703	0.0723	0.0346

Table 2. Comparison of the estimation methods for \((q = 2, b = 2)\)

\(n\)	Bias \(\hat{q}\)	Bias \(\hat{b}\)	RMSE \(\hat{q}\)	RMSE \(\hat{b}\)	T.D \(\hat{q}\)	T.D \(\hat{b}\)
50	1.5093	1.9291	0.6616	0.7721	1.125	1.4761
	1.4761	1.6047	2.8917	4.979	1.7192	1.0497
100	0.4906	0.6600	0.4134	0.5473	0.4792	0.6446
	0.6226	0.8718	1.4685	2.5934	3.0871	2.1331
200	0.2395	0.3222	0.1814	0.2418	0.2327	0.314
	0.2740	0.3813	0.9587	1.7622	0.6238	0.8785
500	0.1080	0.1446	0.0558	0.0737	0.1075	0.1417
	0.1235	0.1693	0.6709	1.2696	0.2809	0.2116
750	0.0758	0.1019	0.0440	0.0587	0.0769	0.1035
	0.0864	0.1166	0.5869	1.1249	0.2737	0.3813
1,000	0.0612	0.0809	0.0317	0.0422	0.0607	0.0806
	0.0718	0.0967	0.5418	1.0431	0.2415	0.3357

Page 7 of 11
Table 3. Comparison of the estimation methods for ($q = 2, b = 3$)

n	qLM	bLM	qTLM	bTLM	qPWM	bPWM	qGPWM	bGPWM	qMME	bMME
50	0.9280	1.928	0.4138	0.9273	0.5133	1.0496	0.4138	0.9169	1.8769	4.8715
	14.216	30.511	12.425	29.139	5.682	12.6211	40.0486	87.9628	91.343	181.39
RMSE	1.1067	0.5160	0.60652	0.6654	2.5623					
T.D	0.2694	0.2104	0.2754	0.3012	1.3879					
100	0.4760	0.9651	0.2071	0.4118	0.5479	1.0896	0.3827	0.8728	1.3136	3.4173
	2.8792	5.958	2.2267	4.1319	3.1599	6.7979	22.996	38.032	30.359	75.471
RMSE	0.5597	0.2408	0.6372	0.4823	1.7959					
T.D	0.2694	0.2104	0.2754	0.3012	1.3879					
200	0.2315	0.4609	0.1790	0.3627	0.2362	0.4718	0.2555	0.5203	0.9855	2.6854
	0.6042	1.2690	2.9925	5.0667	0.6205	1.3155	0.6236	1.7473	1.2585	3.1758
RMSE	0.1214	0.0682	0.1261	0.1482	0.9796					
T.D	0.0890	0.0479	0.0916	0.1062	0.8610					
500	0.1047	0.1519	0.0415	0.0814	0.0785	0.1570	0.0876	0.1873	0.5910	1.6964
	0.2762	0.5756	0.2719	0.5685	0.2806	0.5859	0.2882	0.6161	0.6801	1.8585
RMSE	0.0890	0.0479	0.0916	0.1062	0.8610					
T.D	0.0890	0.0479	0.0916	0.1062	0.8610					
750	0.0581	0.1172	0.0304	0.0605	0.0596	0.1192	0.0717	0.1497	0.5417	1.5612
	0.2385	0.4980	0.2274	0.4756	0.2405	0.5019	0.2542	0.6091	0.6179	1.6939
RMSE	0.06812	0.0354	0.0695	0.0858	0.7913					

Table 4. Comparison of the estimation methods for ($q = 3, b = 2$)

n	qLM	bLM	qTLM	bTLM	qPWM	bPWM	qGPWM	bGPWM	qMME	bMME
50	1.4473	1.0450	2.600	2.5472	0.3502	0.2238	0.1652	0.1091	2.8013	2.4849
	97.415	100.13	155.59	147.034	158.687	126.209	103.334	142.69	117.88	
RMSE	1.2462	2.5736	0.2286	0.1096	2.1762					
T.D	1.3026	1.1151	0.8484	0.2709	1.5600					
100	1.7345	1.4488	1.2330	0.9971	1.1245	0.9471	0.3541	0.3057	1.9718	1.8056
	54.303	44.225	35.1629	27.964	35.541	28.398	49.956	52.112	47.6756	
RMSE	0.3394	0.4002	0.2605	0.4036	1.2438					
T.D	1.0224	0.1578	0.1154	0.1392	0.5236					
200	0.4550	0.3755	0.5321	0.4456	0.4077	0.2493	0.5403	0.4469	1.5626	1.4459
	2.8362	2.2767	17.711	14.459	10.829	9.3365	8.9769	7.3288	20.598	19.7417
RMSE	0.3394	0.4002	0.2605	0.4036	1.2438					
T.D	0.0833	0.0997	0.0781	0.0947	0.4087					
500	0.1638	0.1355	0.2110	0.1749	0.1083	0.1275	0.1839	0.1558	0.6501	0.6137
	0.6729	0.5755	1.0511	0.8857	0.6575	0.5613	0.6869	0.5875	1.0819	0.9765
RMSE	0.1224	0.1578	0.1154	0.1392	0.5236					
T.D	0.0833	0.0997	0.0781	0.0947	0.4087					
750	0.1119	0.0920	0.1329	0.1108	0.1049	0.0862	0.1244	0.1064	0.5042	0.4813
	0.5119	0.4361	0.6976	0.5880	0.5099	0.4352	0.5302	0.4559	0.8474	0.7720
RMSE	0.0833	0.0997	0.0781	0.0947	0.4087					
T.D	0.0833	0.0997	0.0781	0.0947	0.4087					
1,000	0.0823	0.0679	0.0960	0.0791	0.0788	0.0647	0.0922	0.0770	0.4201	0.4019
	0.4322	0.3686	0.5476	0.4618	0.4258	0.3592	0.4438	0.3807	0.7206	0.6595
RMSE	0.0614	0.0716	0.0586	0.0692	0.3410					
8. Conclusion

In this study, we used four robust estimation methods such as L-moments, TL-moments, PWM, and GPWM for two-parameter Lomax distribution. Conventional method of moments was also employed to judge the relative performance of the proposed robust estimation methods. We derived the mathematical expressions of LM, TLM, PWM, GPWM, and MM. We assessed the performance of these methods through a simulation study. Therefore, it is concluded that trimmed L-moments perform better for this distribution for small values of both shape and scale parameters. However, the GPWM appears better than method of moments, L-moments, trimmed L-moments, and PWM for large values of shape parameter.

Table 5. Comparison of the estimation methods for \((q = 4, b = 2)\)

\(n\)	\(q_{LM}\)	\(b_{LM}\)	\(q_{TLM}\)	\(b_{TLM}\)	\(q_{PWM}\)	\(b_{PWM}\)	\(q_{GPWM}\)	\(b_{GPWM}\)	\(q_{MM}\)	\(b_{MM}\)	
50	Bias	6.9772	4.4725	1.0482	0.2594	5.3477	3.1412	0.6603	0.1305	4.4688	2.9285
	RMSE	801.21	562.68	476.59	265.01	602.83	355.96	201.487	117.45	455.023	291.486
	T.D	3.9805	0.3917	2.9075	0.2303	2.5814					
100	Bias	1.6388	0.9512	0.4442	0.2150	7.0434	4.19795	0.0137	0.0506	0.7079	0.8742
	RMSE	226.24	137.64	206.99	124.31	589.46	686.747	92.066	57.468	449.525	267.719
	T.D	0.8813	0.2186	1.8598	0.0287	0.6141					
200	Bias	1.1300	0.7146	1.2567	0.8952	0.8411	0.6323	1.1336	0.6883	1.6237	1.0304
	RMSE	50.469	31.786	83.460	50.614	355.13	233.99	33.673	20.151	46.762	29.2682
	T.D	0.6398	0.7618	0.5264	0.6276	0.9211					
500	Bias	0.3082	0.1844	0.6213	0.3698	0.2972	0.1787	0.3410	0.2063	0.8249	0.5242
	RMSE	1.6192	1.021	7.2728	4.5319	1.3889	0.8425	1.3813	0.8450	1.8175	1.1258
	T.D	0.1693	0.3402	0.1637	0.1884	0.4683					
750	Bias	0.1966	0.1171	0.3441	0.2043	0.1896	0.1136	0.2205	0.1325	0.5799	0.3712
	RMSE	0.9043	0.5523	1.7764	1.0632	0.8937	0.5669	0.9212	0.5618	1.2806	0.7989
	T.D	0.1077	0.1882	0.1042	0.1213	0.3305					
1,000	Bias	0.1412	0.0848	0.2332	0.1378	0.1390	0.0826	0.1455	0.0876	0.4555	0.2926
	RMSE	0.7359	0.4501	1.1541	0.6878	0.7381	0.4510	0.7329	0.4484	1.0395	0.6529
	T.D	0.0777	0.1272	0.0760	0.0802	0.2602					

Funding
The authors received no direct funding for this research.

Author details
Muhammad Shakeel
E-mail: shakeel_shera@yahoo.com
Nazia Rehmat
E-mail: rehmatnazia@yahoo.com
Muhammad Ahsan ul Haq
E-mail: ahsanshani36@gmail.com
ORCID ID: http://orcid.org/0000-0002-0902-8080

1 Department of Statistics, Government College of Science, Wahdat Road, Lahore, Pakistan.
2 College of Statistical and Actuarial Sciences, University of the Punjab, Lahore, Pakistan.

Citation information
Cite this article as: Comparison of the robust parameters estimation methods for the two-parameters Lomax distribution, Muhammad Shakeel, Nazia Rehmat & Muhammad Ahsan ul Haq, Cogent Mathematics (2017), 4: 1279397.

References
Abd-Elfattah, A. M., Alaboud, F. M., & Alharby, A. H. (2007). On sample size estimation for Lomax distribution. Australian Journal of Basic and Applied Sciences, 1, 373–378.
Abd-Elfattah, A. M., & Alharbey, A. H. (2010). Estimation of Lomax parameters based on generalized probability weighted moment. Journal of King Saud University - Science, 22, 171–184.
Abdul-Moniem, I. B., & Abdel-Hameed, H. F. (2012). On exponentiated Lomax distribution. International Journal of Mathematical Archive, 3, 2144–2150.
Abdul-Moniem, I. B., & Selim, Y. M. (2009). TL-moments and L-moments estimation for the generalized Pareto distribution. Applied Mathematical Sciences, 3, 43–52.
Abdul-Moniem, I. B., & Abdel-Hameed, H. F. (2012). On exponentiated Lomax distribution. International Journal of Mathematical Archive, 3, 2144–2150.
Abdul-Moniem, I. B., & Selim, Y. M. (2009). TL-moments and L-moments estimation for the generalized Pareto distribution. Applied Mathematical Sciences, 3, 43–52.
Abu El-Magd, N. A. A. (2010). TL-moments of the exponentiated generalized extreme value distribution. Journal of Advanced Research, 1, 351–359.

Table 5. Comparison of the estimation methods for \((q = 4, b = 2)\)
Ahmad, A., Ahmad, S. P., & Ahmed, A. (2015). Bayesian analysis of shape parameter of Lomax distribution using different loss functions. International Journal of Statistics and Mathematics, 2, 55–65.

Ahmad, I., Abbas, A., Aslam, M., & Ahmed, I. (2015). Total annual rainfall frequency analysis in Pakistan using methods of L-moments and TL-moment. Science International, 27, 2339–2345.

Ahsanullah, M. (1991). Record values of the Lomax distribution. Statistics Neerlandica, 45, 21–29. http://dx.doi.org/10.1111/j.1467-9575.1991.tb01290.x

Al-Noor, N. H., & Alwan, S. S. (2015). Non-bayes and empirical bayes estimators for the reliability and failure rate functions of Lomax distribution. Transactions on Engineering and Sciences, 3, 20–29.

Al-Noor, N. H., & Alwan, S. S. (2015). Non-bayes and empirical bayes estimators for the shape parameter of Lomax distribution. Mathematical Theory and Modeling, 5, 17–27.

Ashour, S. K., & Eltehiwy, M. A. (2013). Transmuted exponentiated Lomax distribution. Australian Journal of Basic and Applied Sciences, 7, 658–667.

Asquith, V. H. (2013). Imomco: L-moments, trimmed L-moments, L-comoments, and many distributions. R package version 2.1.4.

Atkinson, A. B., & Harrison, A. J. (1978). Distribution of personal wealth in Britain. Cambridge: Cambridge University Press.

Attia, A. F., Shaban, S. A., & Amer, Y. M. (2014a). Estimation of the bivariate generalized Lomax distribution parameters based on censored samples. International Journal of Contemporary Mathematical Sciences, 9, 257–267. http://dx.doi.org/10.12988/ijcms.2014.4329

Attia, A. F., Shaban, S. A., & Amer, Y. M. (2014b). Parameter estimation for the bivariate Lomax distribution based on censored samples. Applied Mathematical Sciences, 8, 1711–1721. http://dx.doi.org/10.12988/ams.2014.42120

Balakrishnan, N., & Ahsanullah, M. (1994). Relations for single and product moments of record values from Lomax distribution. Sankhyā: The Indian Journal of Statistics, Series B, 56, 140–146.

Batal, I. E. L., & Kareaem, A. (2014). Statistical properties of Kumaraswamy exponentiated Lomax distribution. Journal of Modern Mathematics and Statistics, 8(1), 1–7.

Bilková, D. (2014). L-moments and TL-moments as an alternative tool of statistical data analysis. Journal of Applied Mathematics and Physics, 2, 919–929. http://dx.doi.org/10.4236/jamp.2014.21004

Bryson, M. C. (1974). Heavy-tailed distributions: Properties and tests. Technometrics, 16, 61–68. http://dx.doi.org/10.1080/00401706.1974.10489150

Childs, A., Balakrishnan, N., & Moshef, M. (2001). Order statistics from non-identical right-truncated Lomax random variables with applications. Statistical Papers, 42, 187–206. http://dx.doi.org/10.1007/s003620100050

Elamir, E. A., & Seheult, A. H. (2003). Trimmed L-moments. Computational Statistics & Data Analysis, 43, 299–314. http://dx.doi.org/10.1016/S0167-9473(02)00250-5

El-Bassiouny, A. H., Abd, N. F., & Shenah, H. S. (2013). Exponential Lomax distribution. International Journal of Computer Applications, 121, 24–29. http://dx.doi.org/10.5120/160204713

Elsheripieny, E., Hasson, A. S., & El Hourani, N. M. (2014). Application of generalized probability weighted moments for skew normal distribution. Asian Journal of Applied Sciences, 2010, (ISSN: 1321–0893).

Ghitany, M. E., Al-Awadhi, F. A., Al-Khatahtbeh, L. A. (2007). Marshall–Olkin extended Lomax distribution and its application to censored data. Communications in Statistics—Theory and Methods, 36, 1855–1866. http://dx.doi.org/10.1080/03610920601126571

Gomes, M. I., & Guillou, A. (2014). Extreme value theory and statistics of univariate extremes: A review. International Statistical Review, 83, 263–292. doi:10.1111/insr.12058

Greenwood, J. A., Landwehr, J. M., Matalas, N. C., & Wallis, J. R. (1979). Probability weighted moments: Definition and relation to parameters of several distributions expressable in inverse form. Water Resources Research, 15, 1049–1054. http://dx.doi.org/10.1029/WR015i005p01049

Harris, C. M. (1968). The pareto distribution as a queue service discipline. Operations Research, 16, 307–313. http://dx.doi.org/10.1287/opre.16.2.307

Hassan, A. S., & Al-Ghamdi, A. S. (2009). Optimum step stress accelerated life testing for Lomax distribution. Journal of Applied Sciences Research, 5, 2153–2164.

Hosking, J. R. M. (1990). L-moments: Analysis and estimation of distributions using linear combinations of order statistics. Journal of the Royal Statistical Society. Series B (Methodological), 52, 105–124.

Hosking, J. R. M. (2000). Some theory and practical uses of trimmed L-moments. Journal of Statistical Planning and Inference, 137, 3026–3038. http://dx.doi.org/10.1016/j.jspi.2006.12.002

Howlader, H. A., & Hassim, A. M. (2002). Bayesian survival estimation of Pareto distribution of the second kind based on failure-censored data. Computational Statistics & Data Analysis, 38, 301–314. http://dx.doi.org/10.1016/S0167-9473(01)00039-1

Jamjoom, A., & Alsalay, Z. (2013). TL-moments and L-moments for order statistics from non-identically distributed random variables with applications. Journal of American Science, 9, 102–105.

Johnson, N., Kotz, S., & Balakrishnan, N. (1994). Continuous univariate distribution (Vol. 1, 2nd ed.) New York, NY: John Wiley.

Landwehr, J. M., Matalas, N. & Wallis, J. (1979). Probability weighted moments compared with some traditional techniques in estimating Gumbel parameters and quantiles. Water Resources Research, 15, 1055–1064. http://dx.doi.org/10.1029/WR015i005p01053

Lemonte, A. J., & Cordeiro, G. M. (2013). An extended Lomax distribution. A Journal of Theoretical and Applied Statistics, 47, 800–816.

Li, X., Zhuo, Y., Zhuang, X., & Zhu, H. (2014). Estimation of fracture trace length distributions using probability weighted moments and L-moments. Engineering Geology, 168, 69–85. http://dx.doi.org/10.1016/j.enggeo.2013.10.025

Lingappapillai, G. S. (1986). On the pareto distribution of second kind (Lomax distribution). Revista Colombiana de Matematicas, 16, 1711–1721.

Ma, Y., & Shi, Y. (2011). Inference for Lomax distribution based on type-II progressively hybrid censored data. Journal of Physical Sciences, 17, 33–41.

Munir, R., Saleem, M., Aslam, M., & Ali, S. (2013). Comparison of different methods of parameters estimation for Pareto Model. Caspian Journal of Applied Sciences Research, 2, 45–56.

Myhre, J., & Saunders, S. (1982). Screen testing and conditional probability of survival. Lecture Notes-Monograph Series, 166–178.

Mo, Y., & Shi, Y. (2011). Exponential Lomax distribution. Computer Applications, 212, 24–29. http://dx.doi.org/10.5120/160204713

Nasiri, P., & Hosseini, S. (2012). Statistical inferences for Lomax distribution. A Journal of Theoretical and Applied Statistics, 2, 179–188.

Nasiri, P., & Hosseini, S. (2012). Statistical inferences for Lomax distribution based on record values (Bayesian and classical). Journal of Modern Applied Statistical Methods, 11, 179–188.

Naveed-Shahzad, M., Asghar, Z., Shehzad, F., & Shahzadi, M. (2015). Parameter estimation of power function distribution with TL-moments. Revista Colombiana de Estadistica, 38, 321–334. http://dx.doi.org/10.15446/rcosl.v38n2.51663
Nayak, T. K. (1987). Multivariate Lomax distribution: Properties and usefulness in reliability theory. *Journal of Applied Probability*, 24, 170–177. http://dx.doi.org/10.1017/S0021900200030709

Rao, R. S., Durgamamba, A. N., & Kantam, R. R. L. (2014). Acceptance sampling plans: Size biased Lomax model. *Universal Journal of Applied Mathematics*, 2, 176–183.

Rasmussen, P. F. (2001). Generalized probability weighted moments: Application to the generalized Pareto distribution. *Water Resources Research*., 37, 1745–1751. http://dx.doi.org/10.1029/2001WR900014

Shakeel, M., Haq, M. A., Hussain, I., Abdulhamid, A. M., & Faisal, M. (2016). Comparison of two new robust parameter estimation methods for the power function distribution. *PLOS One*, 11, e0160692. http://dx.doi.org/10.1371/journal.pone.0160692

Shams, T. M. (2013). The Kumaraswamy-generalized Lomax distribution. *Middle-East Journal of Scientific Research*, 17, 641–646.

Tohir, M. H., Cordeiro, G. M., Mansoor, M., & Zubair, M. (2015). The Weibull-Lomax distribution: Properties and applications. *Hacettepe Journal of Mathematics and Statistics*, 44, 481–480.

Vidondo, B., Prairie, Y. T., Bianco, J. M., & Duarte, C. M. (1997). Some aspects of the analysis of size spectra in aquatic ecology. *Limnology and Oceanography*, 42, 184–192. http://dx.doi.org/10.4319/lo.1997.42.1.0184