Natural boundaries for the Smoluchowski equation and affiliated diffusion processes

Philippe Blanchard and Piotr Garbaczewski

BiBoS,Fakultät der Physik,Universität Bielefeld,D-33615 Bielefeld,Germany

Abstract

The Schrödinger problem of deducing the microscopic dynamics from the input-output statistics data is known to admit a solution in terms of Markov diffusions. The uniqueness of solution is found linked to the natural boundaries respected by the underlying random motion. By choosing a reference Smoluchowski diffusion, we automatically fix the Feynman-Kac potential and the field of local accelerations it induces. We generate the family of affiliated diffusions with the same local dynamics, but different inaccessible boundaries on finite, semi-infinite and infinite domains. For each diffusion process a unique Feynman-Kac kernel is obtained by the constrained (Dirichlet boundary data) Wiener path integration. As a by-product of the discussion, we give an overview of the problem of inaccessible boundaries for the diffusion, and bring together (sometimes viewed from unexpected angles) results which are little known, and dispersed in publications from scarcely communicating areas of mathematics and physics

1permanent and current address: Institute of Theoretical Physics, University of Wrocław, PL-50 209 Wrocław, Poland: partially supported by the KBN grant No 20060 91 01
1 The Schrödinger problem: microscopic dynamics from the input-output statistics

According to M. Kac\cite{1} any kind of time development (be it deterministic or essentially probabilistic), which is analyzable in terms of probability, deserves the name of the stochastic process.

Given a dynamical law of motion (for a particle as example), in many cases one can associate with it (compute or approximate the observed frequency data) a probability distribution and various mean values. In fact, it is well known that inequivalent finite difference random motion problems may give rise to the same continuous approximant (e.g. the diffusion equation representation of discrete processes). As well, in the study of nonlinear dynamical systems\cite{2}, given almost any (for the purposes of our discussion, basically one-dimensional) probability density, it is possible to construct an infinite number of deterministic finite difference equations, whose iterates are chaotic and which give rise to this a priori prescribed density.

The inverse operation of deducing the detailed (possibly individual, microscopic) dynamics, which either implies or is consistent with the given probability distribution (and eventually with its own time evolution) cannot thus have a unique solution.

If we disregard the detailed nature (like its chaotic, jump process, random walk, phase space process with friction etc. implementations) of the given process, it appears\cite{3,4} that the standard Brownian motion and/or the broad class of Markovian diffusions incorporating the Wiener noise input, provide satisfactory approximations for a large variety of phenomena. It especially pertains to the explicit modelling of any unknown in detail physical process in terms of the input-output statistics (conditional probabilities and averages) of random motions with a finite time of duration.

From now on, we shall confine our attention to continuous Markov processes, whose random variable $X(t), t \geq 0$ takes values on the real line \mathbb{R}, and in particular can be restricted (constrained) to remain within the interval $\Lambda \subset \mathbb{R}$, which may be finite or (semi-) infinite but basically an open set. Its boundaries $\partial \Lambda$ (endpoints) will be denoted r_1, r_2 with $-\infty \leq r_1 < r_2 \leq \infty$.

In the above input-output statistics context, let us invoke a probabilistic problem, originally due to Schrödinger\cite{5-7}:
\begin{equation}
\text{given two strictly positive (on an open interval) boundary probability distributions } \rho_0(x), \rho_T(x) \text{ for a process with the time of duration } T \geq 0. \text{ Can we uniquely identify the stochastic process interpolating between them?}
\end{equation}

Perhaps unexpectedly in the light of our previous comments, the answer is known\cite{6,7} to be affirmative, if we assume the interpolating process to be Markovian. In fact, we get here a unique Markovian diffusion, which is specified by the joint probability distribution
\begin{equation}
m(A, B) = \int_A dx \int_B dy m(x, y)
\end{equation}
\[\int dy \, m(x, y) = \rho_0(x) \]
\[\int dx \, m(x, y) = \rho_T(y) \]

where
\[m(x, y) = \Theta_*(x, 0) k(x, 0, y, T) \Theta(y, T) \]

and the two unknown (not necessarily Lebesgue integrable) functions \(\Theta_*(x, 0), \Theta(y, T) \) come out as solutions of the same sign of the integral identities (1). Provided we have at our disposal a bounded strictly positive integral kernel \(k(x, s, y, t), 0 \leq s < t \leq T \). Then:
\[\Theta_*(x, t) = \int k(0, y, x, t) \Theta_*(y, 0) dy \]

and the sought for interpolation has a probability distribution \(\rho(x, t) = (\Theta_* \Theta)(x, t), t \in [0, T] \). The transition density
\[p(y, s, x, t) = k(y, s, x, t) \frac{\Theta(x, t)}{\Theta(y, s)} \]

with \(s \leq t \) is a fundamental solution \(p \rightarrow \delta(x - y) \) as \(t \downarrow s \) of the forward Kolmogorov (i.e. Fokker-Planck) equation with a diffusion constant \(D > 0 \) (this choice narrows slightly the allowed framework):
\[\partial_t p = D \Delta_x p - \nabla_x (bp) \]
\[\rho(x, t) = \int p(y, s, x, t) \rho(y, s) dy \]

with \(\rho_0(x) = \rho(x, 0) \) and the drift \(b(x, t) \) given by:
\[b(x, t) = 2D \frac{\nabla \Theta}{\Theta}(x, t) \]

The backward diffusion equation is solved by the same transition density
\[\partial_s p = -D \Delta_y p - b \nabla_y p \]

\[p = p(y, s, x, t), s \leq t, b = b(y, s) \]

and we deal here with a unique diffusion process, whose transition density is a common fundamental solution for both the backward and forward Kolmogorov equations.
To understand the role of the integral kernel \(k(y, s, x, t) \) in (1)-(7) let us assume that \(\Theta(x, t) \) is given in the form (drifts are gradient fields as a consequence):

\[
\Theta(x, t) = \pm \exp \Phi(x, t) \Rightarrow b(x, t) = 2D\nabla \Phi(x, t)
\]

\(x \in (r_1, r_2) \)

and insert (4) to the Fokker-Planck equation (5). Then if \(p(y, s, x, t) \) is to solve (5), the kernel \(k(y, s, x, t) \) must be a fundamental solution of the generalised diffusion equation:

\[
\partial_t k = D \nabla^2 x k - \frac{1}{2} \Omega(x, t) k
\]

\(k(y, s, x, t) \to \delta(x - y) \text{ as } t \downarrow s \)

\[
\Omega(x, t) = 2D[\partial_t \Phi + \frac{1}{2} \left(\frac{b^2}{2D} + \nabla b \right)]
\]

and to guarantee (3), it must display the semigroup composition properties.

Notice that (4),(9) imply that the backward diffusion equation (7) takes the form of the adjoint to (10):

\[
\partial_s k = -D \nabla_y k + \frac{1}{2} \Omega(y, s) k
\]

\[k = k(y, s, x, t) \]

If the process takes place in-between boundaries at infinity \(r_1 = -\infty, r_2 = +\infty \), the standard restrictions on the auxiliary potential \(\Omega \) (Rellich class \([15,16]\)) and hence on the drift potential \(\Phi(x, t) \), yield the familiar Feynman-Kac representation of the fundamental solution \(k(y, s, x, t) \) common for (10) and (11):

\[
k(y, s, x, t) = \int \exp[-\frac{1}{2D} \int_s^t \Omega(X(u), u) du] d\mu(s, y | t, x)
\]

which integrates \(\exp[-(1/2D) \int_s^t \Omega(X(u), u) du] \) weighting factors with respect to the conditional Wiener measure i.e. along all sample paths of the Wiener process which connect \(y \) with \(x \) in time \(t - s \). See e.g. also Refs.17,18. More elaborate discussion is necessary, if at least one of the boundary points is not at infinity.

Let us notice that the time independence of \(\Omega \) is granted if either \(\Phi \) is independent of time, or depends on time at most linearly. Then the standard expression \(\exp[-H(t - s)](y, x) \) for the kernel \(k \) clearly reveals the involved semigroup properties, with \(H = -D \nabla + (1/2D)\Omega(x) \) being the essentially self adjoint operator on its (Hilbert space) domain.
2 Natural boundaries make diffusions unique

We shall make one more step narrowing slightly the scope of our discussion by admitting
diffusions (1)-(7) whose drift fields are time-independent: $\partial_t b(x, t) = 0$ for all x. We know that both the free Brownian motion and the Brownian motion in a field of force in the
Smoluchowski approximation, belong to this class of processes. We know also that the
boundary value problems for the Smoluchowski equation have a profound physical signif-
cance, albeit the attention paid to various cases is definitely unbalanced in the literature. It
is then interesting to observe that the situation we encounter in connection with (1)-(7)
is very specific from the point of view of Feller’s classification of one-dimensional diffusions encompassing effects of the boundary data. Our case is precisely the Feller diffusion respecting (confined between) the natural boundaries. An equivalent statement is
that boundary points r_1, r_2 are inaccessible barriers for the process i.e. there is no positive
probability that any of them can be reached from the interior of (r_1, r_2) within a finite
time for all $X(0) = x \in (r_1, r_2)$, see e.g. Refs. 10, 11 and 12, chap. III.4.

In the mathematical literature a clear distinction is made between the backward and forward Kolmogorov equations. The backward one defines the transition density
of the process, while the forward (Fokker-Planck) one determines the probability distrib-
ution of diffusion. With a given backward equation one can usually associate the
whole family of forward (Fokker-Planck) equations, whose explicit form reflects the particular choice of boundary data. This fundamental distinction seemingly evaporates in our
previous discussion (1)-(11), but it is by no means incidental. In fact, according to Feller:
in order that there exists one and only one (homogeneous; $p(y, s, x, t) = p(t - s; y, x)$)
process satisfying $-\partial_t u = D \Delta u + b \nabla u$ in a finite or infinite interval $r_1 < x < r_2$ it is
necessary and sufficient that both boundaries are inaccessible (the probability to reach
either of them within a finite time interval must be zero).

A general feature of the inaccessible boundary problems is that the density of diffusion vanishes at the boundaries $\rho(r_1) = 0 = \rho(r_2)$. This property is shared with, more
familiar in the realm of the statistical physics, absorbing barrier processes. The link is indeed very close: conventionally the absorbing barrier process is defined on the closed
interval $[R_1, R_2]$, however we can always consider it on the open set (R_1, R_2). Theorem 7
of Ref. 10 states that, if the boundaries $r_1 < R_1 < R_2 < r_2$ are inaccessible for the process,
then transition densities of the absorbing barrier process on (R_1, R_2) as $R_1 \to r_1, R_2 \to r_2$
converge to the unique (!) transition density of the diffusion with unattainable boundaries
on (r_1, r_2). It implies that locally, the inaccessible boundary problem, in principle can be
modelled (approximated) to an arbitrary degree of accuracy by the absorbing barrier
process.

It is interesting to notice that the classification of Feller’s boundaries in the homogeneous case (time independent drifts, continuous but not necessarily bounded in the interval

\[\frac{\partial}{\partial t} \rho(x, t) = D \frac{\partial^2}{\partial x^2} \rho(x, t) + b \frac{\partial}{\partial x} \rho(x, t) \]

for all x. We know that both the free Brownian motion and the Brownian motion in a field of force in the
Smoluchowski approximation, belong to this class of processes. We know also that the
boundary value problems for the Smoluchowski equation have a profound physical signif-
cance, albeit the attention paid to various cases is definitely unbalanced in the literature. It
is then interesting to observe that the situation we encounter in connection with (1)-(7)
is very specific from the point of view of Feller’s classification of one-dimensional diffusions encompassing effects of the boundary data. Our case is precisely the Feller diffusion respecting (confined between) the natural boundaries. An equivalent statement is
that boundary points r_1, r_2 are inaccessible barriers for the process i.e. there is no positive
probability that any of them can be reached from the interior of (r_1, r_2) within a finite
time for all $X(0) = x \in (r_1, r_2)$, see e.g. Refs. 10, 11 and 12, chap. III.4.

In the mathematical literature a clear distinction is made between the backward and forward Kolmogorov equations. The backward one defines the transition density
of the process, while the forward (Fokker-Planck) one determines the probability distrib-
ution of diffusion. With a given backward equation one can usually associate the
whole family of forward (Fokker-Planck) equations, whose explicit form reflects the particular choice of boundary data. This fundamental distinction seemingly evaporates in our
previous discussion (1)-(11), but it is by no means incidental. In fact, according to Feller:
in order that there exists one and only one (homogeneous; $p(y, s, x, t) = p(t - s; y, x)$)
process satisfying $-\partial_t u = D \Delta u + b \nabla u$ in a finite or infinite interval $r_1 < x < r_2$ it is
necessary and sufficient that both boundaries are inaccessible (the probability to reach
either of them within a finite time interval must be zero).

A general feature of the inaccessible boundary problems is that the density of diffusion vanishes
at the boundaries $\rho(r_1) = 0 = \rho(r_2)$. This property is shared with, more
familiar in the realm of the statistical physics, absorbing barrier processes. The link is indeed very close: conventionally the absorbing barrier process is defined on the closed
interval $[R_1, R_2]$, however we can always consider it on the open set (R_1, R_2). Theorem 7
of Ref. 10 states that, if the boundaries $r_1 < R_1 < R_2 < r_2$ are inaccessible for the process,
then transition densities of the absorbing barrier process on (R_1, R_2) as $R_1 \to r_1, R_2 \to r_2$
converge to the unique (!) transition density of the diffusion with unattainable boundaries
on (r_1, r_2). It implies that locally, the inaccessible boundary problem, in principle can be
modelled (approximated) to an arbitrary degree of accuracy by the absorbing barrier
process.

It is interesting to notice that the classification of Feller’s boundaries in the homogeneous case (time independent drifts, continuous but not necessarily bounded in the interval

\[\frac{\partial}{\partial t} \rho(x, t) = D \frac{\partial^2}{\partial x^2} \rho(x, t) + b \frac{\partial}{\partial x} \rho(x, t) \]
\((r_1, r_2)\) follows from investigating the Lebesgue integrability of the Hille functions (see Refs. 9, 11, 20 for more details):

\[
L_1(x) = \exp[-\frac{1}{D} \int_{x_0}^{x} b(y) \, dy] = \exp[-2\Phi(x) - \Phi(x_0)]
\]

\[
L_2(x) = L_1(x) \int_{x_0}^{x} \frac{dz}{L_1(z)} = \exp[-2\Phi(x)] \int_{x_0}^{x} \exp[2\Phi(z)] \, dz
\]

where \(x \in (r_1, r_2)\) and we have used (9) in the above. Apparently, the \(\Phi(x_0)\) contribution in \(L_1(x)\) is irrelevant, and the integrability of \(\exp[\pm \Phi(x)]\) matters here.

If \(L_1(x)\) is not Lebesgue integrable on \([x_0, R]\), where \(R = r_1\) or \(r_2\), then \(R\) stands for the natural repulsive boundary of the diffusion. If \(L_1(x)\) is integrable but \(L_2(x)\) is not, then \(R\) is a natural attractive boundary for the process, both being inaccessible. As indicated in Ref. 9 there is no universally established terminology and a certain discrimination between Feller’s and the Gihman-Skorohod definition is possible, albeit without consequences for our discussion.

Following Ref. 12 let us denote \(P_x[\tau_R < \infty]\) a probability that a process originating from \(x \in (r_1, r_2)\) would hit the point \(R\) at the moment \(\tau_R\) for the first time. Then, the inaccessibility of boundaries can be expressed by the statements:

right boundary, \(\forall x < R, P_x[\tau_R < \infty] = 0\)

left boundary, \(\forall x > R, P_x[\tau_R < \infty] = 0\)

For the natural boundary, \(R\) is inaccessible from the interior of \((r_1, r_2)\) and the interior of \((r_1, r_2)\) is inaccessible from \(R\). Following this terminology:

(i) An inaccessible boundary is called attractive, if for any \(\epsilon > 0\) there exists \(\delta > 0\) such that \(P_x[\lim_{t \to \infty} X(t) = R] > 1 - \epsilon\) for all \(x \in (R, R + \delta)\) in case of the left, while \(x \in (R - \delta, R)\) in case of the right boundary.

(ii) An inaccessible (left) boundary is called repelling, if for any \(x > R\) and \(y < x\) we have \(P_y[\tau_x < \infty] = 1\).

Remark 1: The standard (unrestricted) Brownian motion on \(R^1\) is the most obvious example of diffusion with natural boundaries. It is not quite trivial to construct explicit examples, if one of the boundaries is not at infinity. The classic example of diffusion on the half-line with natural boundaries at 0 and \(+\infty\) is provided by the so-called Bessel process\(^{11,21}\), with the diffusion (backward) generator \(L_a = \triangle_x + \frac{1 + 2a}{x} \nabla_x\) (we absorb the diffusion constant \(D\) in the rescaled time parameter). The point \(r_1 = 0\) is never reached with probability one if \(a \geq 0\). In case of \(a = 0\), the transition density reads\(^{21}\):

\[
p(t; x_0, x) = \text{const} \frac{x}{2t} \exp[-\frac{(x^2 + x_0^2)}{4t}] I_0\left(\frac{x x_0}{2t}\right)
\]
where the modified Bessel function (Ref.22, chap.7) is given by
\[I_0(\alpha) = \sum_{j=0}^{\infty} \frac{\alpha^{2j}}{(2j)!^2}. \]
Another (less explicit, as given in the form of estimates for the transition density) example pertains\(^{23}\) to the diffusion equation with the one dimensional harmonic oscillator potential on the half-line \(x \geq a > 0\). The related constrained path integrals are considered in Refs.24,25.

As mentioned before, diffusions with inaccessible barriers might have drifts which are unbounded on \((r_1, r_2)\). Hence, our discussion definitely falls into the framework of diffusion processes with singular drift fields\(^{26,27}\), see also Refs.28-33, which is not covered by standard monographs on stochastic processes. Particularly illuminating in this respect is the analysis of Ref.26 where for quite general diffusions, the unattainability of nodal sets (on which the probability density vanishes) in a finite time was demonstrated, in the sense that \(P_x[\tau_R = \infty] = 1\). This crucial property (valid for diffusions with natural boundaries as well) allows to extend the theory of stochastic differential equations and integrals to diffusions, whose drifts show up a bad (unboundedness or divergence to infinity) behaviour when approaching the boundaries.

We skip the standard details concerning the probability space, filtration and the process adapted to this filtration (see however Refs.22,34,35) and notice that a continuous random process \(X(t), t \in [0, T]\) with a probability measure \(P\) is called a process of the diffusion type if its drift \(b(x)\) obeys:
\[
P\left[\int_0^T |b(X(t))| \, dt < \infty \right] = 1 \quad (15)
\]
and, given the standard Wiener process (Brownian motion) \(W(t)\), the integral identity (\(D\) constant and positive) holds true \(P\)-almost surely (except possibly on sets of \(P\)-measure zero). It means that \(W(t) = \frac{1}{\sqrt{2D}}[X(t) - \int_0^t b(X(s)) \, ds]\) is a standard Wiener process with respect to the probability measure \(P\) of the process \(X(t)\).

For diffusions with natural boundaries, we remain within the regularity interval of \(b(X(t))\) for all (finite) times, and (15) apparently is valid. Therefore, the standard rules of the stochastic Itô calculus\(^{20}\) can be adopted to relate the Fokker-Planck equation (7) with the natural boundaries to the diffusion process \(X(t)\), which\(^{35}\) "admits the stochastic differential"
\[
dX(t) = b(X(t)) dt + \sqrt{2D} dW(t) \quad (17)
\]
\[X(0) = x_0, \; t \in [0, T]\]
for all (finite) times. The weak (in view of assigning the density \(\rho_0(x)\) to the random variable \(X(0)\)) solution of (17) is thus well defined.

For stochastic differential equations of the form (17), the explicit Wiener noise input, because of (9) implies that irrespective of whether natural boundaries are at infinity or not, the Cameron-Martin-Girsanov\(^{37-39}\) method of measure substitutions which parallel
transformations of drifts, is applicable. Even though the drifts are generally unbounded on \((r_1, r_2)\) and the original theory\([37–39]\) is essentially based on the boundedness demand. It is basically due to the fact that the probabilistic Cameron-Martin formula relating the probability measure \(P_X\) of \(X(t)\) with the Wiener measure \(P_W\) (strictly speaking it is the Radon-Nikodým derivative of one measure with respect to another) reduces to the familiar Feynman-Kac formula\([17,18,8,14,30,36]\) (with the multiplicative normalisation). The problem of the existence of the Radon-Nikodým derivative (and this of the absolute continuity of \(P_X\) with respect to \(P_W\), which implies that sets of \(P_W\)-measure zero are of \(P_X\)-measure zero as well) is then replaced by the standard functional analytic problem\([15,16]\) of representing the semigroup operator kernel via the Feynman-Kac integral with respect to the conditional Wiener measure.

The Feynman-Kac formula is casually viewed to encompass the unrestricted (the whole of \(\mathbb{R}^n\)) motions, however it is known to be localizable, and its validity extends also to finite and semi-infinite subsets of \(R^1\) (more generally) as demonstrated in the context of the statistical mechanics of continuous quantum systems\([16,23,40–44]\). More specifically, it refers to the Dirichlet boundary conditions for self-adjoint Hamiltonians, which ensure their essential self-adjointness (to yield the Trotter formula).

Remark 2: It is perhaps worthwhile to say a few words about the situation when the process, in principle can reach or cross the boundary (nodal surface of the probability density in higher dimensions) in a finite time. As before we limit our discussion to the stationary Markov diffusion process and assume that the drift \(b\) is a gradient \(\sim \nabla \rho/\rho\). If \(\rho = \exp\Phi\) where \(\rho^{1/2}\) is not an element of the Sobolev space \(H_{\text{loc}}^1(\mathbb{R}^d)\) (i.e. is not integrable on bounded sets, with its first derivative), then it is known\([49]\) that the process can reach or cross the set \(N_+ = \{x \in \mathbb{R}^d | \rho = 0\}\). It is possible\([63]\) to formulate a useful criterion (easy to generalize to higher dimensions) for a “tunelling” (transmission) through a chosen point in \(R^1\), let it be the origin \(x = 0\). Let us take \(b \sim \nabla \Theta/\Theta\). The dynamics is given by the energy form on \(L^2(\mathbb{R}, dx)\) i.e. \(E[f_1, f_2] = \int \nabla f_1 \nabla f_2 \rho(x) \, dx\) where obviously \(\rho = \Theta \Theta^* = \Theta^2\), compare e.g. (1)-(7). If \(\rho(x) \leq A |x|\) in the close vicinity of the origin, at least on one side, then there is no tunelling through \(x = 0\). The process cannot cross this point, but may be absorbed or reflected. One needs a bit stronger restriction to prevent the diffusion from hitting the node: non-transmission and non-hitting are not equivalent concepts, although there is no communication between diffusions on the positive and negative semi-axis respectively. On the other hand, if \(\rho(x) \geq A |x|^\alpha\) with \(0 < \alpha < 1\) in a neighbourhood of the origin, then there is a particle transmission (tunelling) through \(x = 0\). As observed in Ref.63, according to Feller’s classification of boundaries, 0 stands for the regular boundary in this case.
3 Hydrodynamic representation: local conservation laws and the Newtonian dynamics in mean

Let us emphasize the importance of (17), and of the Itô differential formula induced by (17) for smooth functions of the random variable $X(t)$. Its first consequence is that given $p(y, s, x, t)$, for any smooth function of the random variable the forward time derivative in the conditional mean can be introduced\cite{4,7,20,27} (we bypass in this way the inherent non-differentiability of sample paths of the process)

$$\lim_{\Delta t \to 0} \frac{1}{\Delta t} \left[\int p(x, t, y, t + \Delta t)f(y, t + \Delta t)dy - f(x, t) \right] = (D_+ f(X(t), t) = (\partial_t + b \nabla + D \Delta) f(X(t), t)$$

$$X(t) = x$$

so that the second forward derivative associates with our diffusion the local field of accelerations:

$$(D^2_+ X)(t) = (D_+ b)(X(t), t) = (\partial_t b + b \nabla b + D \Delta b)(X(t), t) = \nabla \Omega(X(t), t)$$ \hspace{1cm} (19)

with the (auxiliary potential $\Omega(x, t)$ introduced before in the formula (10). Since we have given $\rho(x, t)$ for all $t \in [0, T]$, the notion of the backward transition density $p_*(y, s, x, t)$ can be introduced as well

$$\rho(x, t)p_*(y, s, x, t) = p(y, s, x, t)\rho(y, s)$$ \hspace{1cm} (20)

which allows to define the backward derivative of the process in the conditional mean (cf.Refs.8,45-47 for a discussion of these concepts in case of the most traditional Brownian motion)

$$\lim_{\Delta t \to 0} \frac{1}{\Delta t} \left[x - \int p_*(y, t - \Delta t, x, t)ydy \right] = (D_- X)(t) = b_*(X(t), t) = [b - 2D \nabla \ln \rho](X(t), t)$$

$$D_- f(X(t), t) = (\partial_t + b_* \nabla - D \Delta)f(X(t), t)$$ \hspace{1cm} (21)

Apparently, the validity of (19) (cf.Refs.7,14,27 for related considerations) extends to $(D^2_+ X)(t)$ as well ,and there holds

$$(D^2_+ X)(t) = (D^2_- X)(t) = \partial_t v + v \nabla v + \nabla Q = \nabla \Omega$$ \hspace{1cm} (22)

$$v(x, t) = \frac{1}{2}(b + b_*)(x, t), \quad u(x, t) = \frac{1}{2}(b - b_*)(x, t) = D \nabla \ln \rho(x, t)$$
\[Q(x, t) = 2D^2 \frac{\Delta \rho^{1/2}}{\rho^{1/2}} \]

Clearly, if \(b \) and \(\rho \) are time-independent, then (22) reduces to the identity

\[v \nabla v = \nabla (\Omega - Q) \quad (23) \]

while in case of constant (or vanishing) current velocity \(v \), the acceleration formula (22) reduces to

\[0 = \nabla (\Omega - Q) \quad (24) \]

which establishes a very restrictive relationship\(^{48-52}\) between the auxiliary potential \(\Omega(x) \) (and hence the drift \(b(x) \)) and the probability distribution \(\rho(x) \) of the stationary diffusion. The pertinent random motions have their place in the mathematically oriented literature\(^{48-53}\).

Let us notice that (22) allows to transform the Fokker-Planck equation (7) into the familiar continuity equation, so that the diffusion process \(X(t) \) admits a recasting in terms of the manifestly hydrodynamical local conservation laws (we adopt here the kinetic theory lore)

\[
\begin{align*}
\frac{\partial \rho}{\partial t} &= -\nabla (\rho v) \\
\frac{\partial v}{\partial t} + v \nabla v &= \nabla (\Omega - Q) \\
\rho_0(x) &= \rho(x, 0), \quad v_0(x) = v(x, 0)
\end{align*}
\]

which form a closed (in fact, Cauchy) nonlinearly coupled system of differential equations, strictly equivalent to the previous (7), (19).

In view of the natural boundaries (where the density \(\rho(x, t) \) vanishes), the diffusion respects a specific ("Euclidean looking") version of the Ehrenfest theorem\(^{14}\):

\[E[\nabla Q] = 0 \Rightarrow \quad (26) \]

\[\frac{d^2}{dt^2} E[X(t)] = \frac{d}{dt} E[v(X(t), t)] = E[(\partial_t v + v \nabla v)(X(t, t))] = E[\nabla \Omega(X(t), t)] \]

Notice that the auxiliary potential of the form \(\Omega = 2Q - V \) where \(V \) is any Rellich class representative, defines drifts of Nelson’s diffusions\(^{14, 47}\) for which \(E[\nabla Q] = 0 \Rightarrow E[\nabla \Omega] = -E[\nabla V] \) i.e. the "standard looking" form of the second Newton law in the mean arises.

At this point it seems instructive to comment on the essentially hydrodynamical features (compressible fluid/gas case) of the problem (25), where the "pressure" term \(\nabla Q \) is quite annoying from the traditional kinetic theory perspective\(^{54, 55}\). Although (25) has a conspicuous Euler form, one should notice that if the starting point of our discussion would be a typical Smoluchowski diffusion\(^8\) (7), (17) whose drift is given by the Stokes formula (i.e. is proportional to the external force \(F = -\nabla V \) acting on diffusing molecules), then its
external force factor is precisely the one retained from the original Kramers phase-space formulation\cite{3,4,9} of the high friction affected random motion. In the Euler description of fluids and gases, the very same force which is present in the Kramers (or Boltzmann in the traditional discussion) equation, should reappear on the right-hand-side of the local conservation law (momentum balance formula)\cite{25}. Except for the harmonic oscillator example, in view of \cite{10} it is generally not the case in application to diffusion processes.

Following the hydrodynamic tradition let us analyze the issue in more detail. We consider a reference volume (control interval) \([\alpha, \beta]\) in \(R^1\) (or \(\Lambda \subset R^1\)), which at time \(t \in [0, T]\) comprises a certain fraction of particles (fluid constituents), for an instant of course. Since we might deal with a flow (proportional to the current velocity \(v(x,t)\),\cite{22}) the time rate of particles loss by the volume \([\alpha, \beta]\) at time \(t\), is equal to the flow outgoing through the boundaries, i.e.

\[
-\partial_t \int_{\alpha}^{\beta} \rho(x,t)dx = \rho(\beta,t)v(\beta,t) - \rho(\alpha,t)v(\alpha,t)
\]

which is a consequence of the continuity equation. To analyze the momentum balance, let us allow\cite{56} for an infinitesimal deformation of the boundaries of \([\alpha, \beta]\) to have entirely compensated the mass (particle) loss \(27\)

\[
[\alpha, \beta] \rightarrow [\alpha + v(\alpha,t)\Delta t, \beta + v(\beta,t)\Delta t]
\]

Effectively, we pass then to the locally co-moving frame. It implies

\[
\lim_{\Delta t \to 0} \frac{1}{\Delta t} \left[\int_{\alpha+v_\alpha\Delta t}^{\beta+v_\beta\Delta t} \rho(x,t+\Delta t)dx - \int_{\alpha}^{\beta} \rho(x,t)dx \right] =
\]

\[
= \lim_{\Delta t \to 0} \frac{1}{\Delta t} \left[\int_{\alpha+v_\alpha\Delta t}^{\beta} \rho(x,t)dx + \Delta t \int_{\alpha}^{\beta} (\partial_t \rho)dx + \int_{\beta}^{\beta+v_\beta\Delta t} \rho(x,t)dx \right] = 0
\]

Let us investigate what happens to the local flows \((\rho v)(x,t)\), if we proceed in the same way (leading terms only are retained):

\[
\int_{\alpha+v_\alpha\Delta t}^{\beta+v_\beta\Delta t} (\rho v)(x,t+\Delta t)dx - \int_{\alpha}^{\beta} (\rho v)(x,t)dt \sim
\]

\[
\sim -(\rho v^2)(\alpha,t)\Delta t + (\rho v^2)(\beta,t)\Delta t + \Delta t \int_{\alpha}^{\beta} [\partial_t (\rho v)]dx
\]

Because of \(25\) we have

\[
\partial_t (\rho v) = -\nabla(\rho v^2) + \rho \nabla(\Omega - Q)
\]

11
and the rate of change of momentum associated with the control volume $[\alpha, \beta]$ is

$$\lim_{\Delta t \to 0} \frac{1}{\Delta t} \left[\int_{\alpha + v_\alpha \Delta t}^{\beta + v_\beta \Delta t} (\rho v)(x, t + \Delta t) - \int_{\alpha}^{\beta} (\rho v)(x, t) \right] = \int_{\alpha}^{\beta} \rho \nabla(\Omega - Q) \, dx$$

(31)

However,

$$\nabla Q = \frac{\nabla P}{\rho}$$

(32)

$$P = D^2 \rho \Delta \ln \rho$$

and consequently

$$\int_{\alpha}^{\beta} \rho \nabla(\Omega - Q) \, dx = \int_{\alpha}^{\beta} \rho \nabla \Omega \, dx - \int_{\alpha}^{\beta} \nabla P \, dx =$$

$$= E[\nabla \Omega]_a^b + P(\alpha, t) - P(\beta, t)$$

(33)

Clearly, $\nabla \Omega$ refers to the Euler-type volume force, while ∇Q (or more correctly, P) refers to the "pressure" effects entirely due to the particle transfer rate through the boundaries of the considered volume. The latter property can be consistently attributed to the Wiener noise proper: it sends particles away from the areas of larger concentration. See e.g. Refs. 14, 45-47 and also Ref. 46 for a discussion of the Brownian recoil principle, which reverses the originally Wiener flows.

As it appears, the validity of the stochastic differential representation (17) of the diffusion (5) implies the validity of the hydrodynamical representation (25) of the process. It in turn gives a distinguished status to the auxiliary potential $\Omega(x, t)$ of (10)-(12). We encounter here [8, 14] a fundamental problem of what is to be interpreted by a physicist (observer) as the external force field manifestation in the diffusion process. Should it be dictated by the drift form [3, 4, 9, 57] following Smoluchowski and Kramers, or rather by $\nabla \Omega$ entering the evident (albeit "Euclidean looking") second Newton law respected by the diffusion? In the standard derivations of the Smoluchowski equation, the deterministic part (force and friction terms) of the Langevin equation is postulated. What however, if the experimental data pertain to the local conservation laws like (25) and (27), and there is no direct (experimental) access to the microscopic dynamics?

If the field of accelerations $\nabla \Omega$ is taken as the primary defining characteristics of diffusion we deal with, then we face the problem of deducing all drifts, and hence diffusions, which give rise to the same acceleration field, and thus form a class of dynamically equivalent diffusions.
4 Feynman-Kac kernels on finite and semi-infinite domains with inaccessible boundaries: dynamically equivalent diffusions

Let us analyze the second consequence of the unattainability of the boundaries, which via (15) gives rise to (17). On the same footing as in case of (15), we have satisfied another probabilistic identity:

\[P[\int_0^T b^2(X(t))dt < \infty] = 1 \]

(34)

For a diffusion \(X(t) \) with the differential (17), Theorem 6 of Ref.35 states that (34) is a sufficient and necessary condition for the absolute continuity of the measure \(P = P_X \) with respect to the Wiener measure \(P_W \). Since, for any (Borel) set \(A, P_W(A) = 0 \) implies \(P_X(A) = 0 \), the Radon-Nikodym theorem applies\(^{[34]}\) and densities of these measures can be related. It is worthwhile to mention the demonstration due to Fukushima\(^{[49]}\) that the mutual absolute continuity (the previous implication can be reversed) holds true for most measures we are interested in.

In the notation (12), the conditional Wiener measure \(d\mu[s, y | t, x] \) gives rise to the familiar heat kernel, if we set \(\Omega = 0 \) identically. It in turn induces the Wiener measure \(P_W \) of the set of all sample paths, which originate from \(y \) at time \(s \) and terminate (can be located) in the Borel set \(A \) after time \(t - s \):

\[P_W[A] = \int_A dx \int d\mu[s, y | t, x] = \int_A d\mu \]

(35)

where, for simplicity of notations, the \((y, t-s) \) labels are omitted and \(\int d\mu[s, y | t, x] \) stands for the standard\(^{[16]}\) path integral expression for the heat kernel.

Having defined an Itô diffusion \(X(t) \), (5), (17) with the natural boundaries, we are interested in the analogous (with respect to (35)) path measure \(P_X \):

\[P_X[A] = \int_A dx \int d\mu_X[s, y | t, x] = \int_A d\mu_X \]

(36)

The absolute continuity \(P_X \ll P_W \) implies the existence of the strictly positive Radon-Nikodym density, which we give in the Cameron-Martin-Girsanov form\(^{[34,35]}\)

\[\frac{d\mu_X}{d\mu}[s, y | t, x] = \exp[\int_s^t \frac{1}{2D} b(X(u))dX(u) - \frac{1}{2} \int_s^t \frac{1}{2D} [b(X(u))]^2du] \]

(37)

Notice that the standard normalisation appears, if we set \(D = 1/2 \) which implies \(D\Delta \to \frac{1}{2}\Delta \) in the Fokker-Planck equation.
On account of our demand (9) and the Itô formula for \(\Theta(X(t), t) \) we have

\[
\frac{1}{2D} \int_s^t b(X(t)) dX(t) = \Theta(X(t), t) - \Theta(X(s), s) - \int_s^t du [\partial_t \Theta + \frac{1}{2} \nabla b](X(u), u)
\]

so that, apparently

\[
\frac{d\mu_X}{d\mu}[s, y \mid t, x] = \exp[\Theta(X(t), t) - \Theta(X(s), s)] \exp[-\frac{1}{2D} \int_s^t \Omega(X(u), u) du]
\]

with \(\Omega = 2D\partial_t \Theta + D\nabla b + (1/2)b^2 \) introduced before in (10), by means of the substitution of (4) in the Fokker-Planck equation.

In case of natural boundaries at infinity, the connection with the Feynman-Kac formula (12) is obvious, and we have

\[
P_X[A] = \int_A \frac{d\mu_X}{d\mu}[s, y \mid t, x] d\mu[s, y \mid t, x]
\]

where the second integral refers to the path integration of the Radon-Nikodym density with respect to the conditional Wiener measure, see e.g. Refs. 17, 18, 48-53, 58.

In the context of (40) and (12) we can safely assert that the pertinent processes \((X(t) \) and \(W(t) \)) have coinciding sets of sample paths. The stochastic process ”realizes” them merely (via sampling) with a probability distribution (frequency) different from this for the Wiener process \(W(t) \).

The situation drastically changes, if we wish to exploit the ”likelihood ratio” formulas (37), (39) for diffusions confined between the unattainable (natural) boundaries, at least one of which is not at infinity. In view of the absolute continuity of \(P_X \) with respect to \(P_W \), we must be able to select a subset of Wiener paths which coincide with these admitted by the process \(X(t) \), except on sets of measure zero (both with respect to \(P_X \) and \(P_W \)).

We face here a nontrivial problem of the existence of integral kernels for (Schrödinger) semigroup operators on a bounded or semi-bounded domain. The constrained version of the formulas (40), (12) should then integrate over a restricted set of Wiener paths: some of them must be totally excluded, some must ”avoid” certain areas (Wiener exclusion of Ref. 42). This problem was solved in the context of the quantum statistical mechanics [40–43, 16] where the Dirichlet boundary data for self-adjoint Hamiltonian are casually associated with the completely absorptive boundaries (cf. also Refs. 30-33, 36). The reason is clear, if one lends priority to the Brownian motion proper, since there is no natural way for the standard Brownian motion (Wiener process) to prohibit it from reaching or passing any conceivable boundary, except for killing (stopping) the process, when it is going to happen.

The most transparent way towards the localised Feynman-Kac representation of the Dirichlet (Schrödinger) semigroup on the (originally[36] bounded) domain \(\Lambda \) is by
introducing the first exit time T_Λ for the Brownian path started inside Λ (a concrete sample path is labelled by ω):

$$T_\Lambda(\omega) = \inf \{ t > 0; X_t(\omega) \in \Lambda \}$$ \hspace{1cm} (41)

Then, the integral kernel of the (essentially self-adjoint on Λ, with the Dirichlet boundary data) Hamiltonian $H_\Lambda = (-D\Delta + (1/2D)\Omega)_\Lambda$ is to be given by the conditional expectation:

$$\exp(-tH_\Lambda)(s, y, t, x) = E_{y,t-s}[\exp[-\int_s^t \Omega(X_u)du]; t < T_\Lambda \mid X_t = X(t) = x]$$ \hspace{1cm} (42)

which is an integration (40) restricted to these Brownian paths which while originating from $y \in \Lambda$ at time s, are conditioned to reach $x \in \Lambda$ at time t, without crossing (but possibly touching) the boundary $\partial \Lambda$ of Λ.

Another way to write down (42) is possible if we define a function $\alpha_\Lambda(\omega)$ on the event set (event = sample path):

$$\alpha_\Lambda = \begin{cases}
1, & \text{if } X_t(\omega) \in \Lambda \text{ for all } t \in [0, T] \\
0, & \text{otherwise}
\end{cases} \hspace{1cm} (43)$$

Here α_Λ is measurable with respect to the conditional Wiener measure, and then e.g. (35) can be replaced by the constrained path integral[23,40–43]:

$$P_\Lambda[A] = \int_A dx \int \alpha_\Lambda(\omega) d\mu_\omega [s, y \mid t, x] = \int_A d\mu_\Lambda$$ \hspace{1cm} (44)

where $A \subset \Lambda$ and ω is the sample path label (omitted in (35) to simplify notations).

The analysis[23,40,41] of special sets of Wiener measure zero is quite illuminating at this point. Namely, the integral (44) in addition to paths which are strictly interior to Λ, admits also paths which do touch the boundary $\partial \Lambda$ of Λ for at least one instant $t \in [0, T]$. Fortunately[23,40,41], the P_Λ measure of the set of such (unwanted) trajectories is equal zero.

Let us now consider a diffusion $X(t)$ which lives in Λ and for which $\partial \Lambda$ is a natural boundary. Obviously no sample path of $X(t)$ can reach (touch) $\partial \Lambda$ in a finite time. By the absolute continuity $P_X \ll P_W$ argument, we know that sets of P_W measure zero are the P_X measure zero sets as well. Hence, (44) implies an apparent modification of (36):

$$P_X[A] = \int_A dx \int \alpha_\Lambda(\omega) \frac{d\mu_X}{d\mu}[s, y \mid t, x] d\mu_\omega [s, y, t, x]$$ \hspace{1cm} (45)

applicable to the diffusion $X(t)$ with the natural boundary $\partial \Lambda$. The Radon-Nikodym density is given by (39) and the path integral representation (42) is apparently valid for the involved (compare e.g. (4) again) Feynman-Kac kernel.
Except for the set of measure zero, the process $X(t)$ is characterised by the common with the standard Brownian motion $W(t)$ ensemble of sample trajectories, whose "realisations" by $X(t)$ are appropriately (Cameron-Martin/Feynman-Kac) weighted.

Although for each choice of the natural boundary $\partial \Lambda$ there is a unique diffusion, which respects it, we can devise a method of foliating the set of all considered diffusions into dynamically equivalent classes. We shall call diffusions dynamically equivalent, if they generate the same, a priori given field of local accelerations $b \nabla b + D \triangle b = \nabla \Omega$ in their domain of definition. It amounts to making a definite functional choice for $\nabla \Omega(x), x \in \mathbb{R}^1$, and then classifying all natural boundaries, which are consistent with this choice (let us emphasize that $\frac{1}{2} b^2 + D \nabla b = \Omega$ is to hold true modulo a constant).

Following Ref. 8 we can always consider a given, unrestricted in \mathbb{R}^1 Smoluchowski diffusion, as the reference one. Let $\Omega(x)$ be its auxiliary potential, and $\nabla \Omega$ the induced field of local accelerations. What are the diffusions with natural boundaries, which are dynamically equivalent to this reference one?

On purely technical grounds, the answer is simultaneously provided in the framework of Nelson’s stochastic mechanics [4, 7, 8, 14, 18, 26–30, 48–53, 58] and of Zambrini’s Euclidean quantum mechanics [7, 8, 50–53, 58, 59]. The pertinent homogeneous diffusions belong to the overlap of these two theoretical schemes and are uniquely specified by the nodal structure of stationary solutions of the Schrödinger-type equation: with D replacing $\hbar/2m$ in the original quantum evolution problem, and the Schrödinger potential being equal $\Omega(x)$ modulo an additive (renormalisation) constant. The ground state process would correspond to the chosen Smoluchowski diffusion.

Example: The notorious (albeit exceptional) harmonic attraction

Let us consider the Sturm-Liouville problem on $L^2(\mathbb{R})$

$$-D \triangle \psi + \frac{\omega^2 x^2}{4D} \psi = \epsilon \psi$$ \hspace{1cm} (46)

The substitutions: $\alpha^4 = \omega^2/4D^2$, $\lambda = \epsilon/\omega, x = \xi/\alpha$ give rise to the equivalent eigenvalue problem

$$(-\frac{1}{2} \triangle _\xi + \frac{\xi^2}{2}) \phi = -\lambda \phi$$ \hspace{1cm} (47)

$$\phi(\xi) = \psi(\frac{\xi}{\alpha}) = \psi(x)$$

with the well known solution (normalised relative to x)

$$\lambda_n = n + \frac{1}{2} \leftrightarrow \epsilon_n = (n + \frac{1}{2}) \omega, n = 0, 1, 2, ...$$

16
\[
\psi_n(x) = \phi_n(\xi) = \left(\frac{\alpha}{2^{n+1}\sqrt{\pi}}\right)^{1/2} e^{\exp\left[-\frac{\xi^2}{2}\right]} H_n(\xi)
\]

\[H_0 = 1, \ H_1 = 2\xi, H_2 = 2(2\xi^2 - 1), H_3 = 4\xi(2\xi^2 - 3), \ldots
\]

Except for \(n = 0\) the solutions \(\phi_n(\xi)\) are not positive definite and change sign at nodes. We have

- \(n = 0\), \(\psi_0(x) > 0\), \(x \in (-\infty, +\infty)\)
- \(n = 1\), \(\psi_1(x) > 0\), \(x \in (0, +\infty)\)
 \(\psi_1(x) < 0\), \(x \in (-\infty, 0)\)
- \(n = 2\), \(\psi_2(x) > 0\), \(x \in (-\infty, -1/\sqrt{2}) \cup (1/\sqrt{2}, +\infty)\)
 \(\psi_2(x) < 0\), \(x \in (-1/\sqrt{2}, +1/\sqrt{2})\)
- \(n = 3\), \(\psi_3(x) > 0\), \(x \in (-\sqrt{3}/2, 0) \cup (\sqrt{3}/2, \infty)\)
 \(\psi_3(x) < 0\), \(x \in (-\sqrt{3}/2, 0) \cup (0, \sqrt{3}/2)\)

and so on. It is convenient to continue further considerations with respect to the rescaled \(\xi = \alpha x\) variables, in view of the form \(-\frac{1}{2}\Delta \xi + \frac{\xi^2}{2} = H\) of the Hamiltonian predominantly used in the mathematical physics literature\[16\]. To proceed in this notational convention it is enough to set \(x \rightarrow \xi\) and \(D \rightarrow \frac{1}{2}\) in the formulas (1)-(12) and thus utilize \(b = \nabla \Theta/\Theta, \Omega = \frac{1}{2}(b^2 + \nabla b), \nabla \Omega = b \nabla b + \frac{1}{2}\Delta b\).

Although in (1)-(12) we need \(\Theta, \Theta_*\) of the same sign, and \(\rho(x)\) to be strictly positive, we can first make a formal identification \(\Theta = \Theta_* = \phi_n, n = 0, 1, 2, \ldots\) and notice that

- \(n = 0\), \(b_0 = -\xi \rightarrow \Omega_0 = \frac{\xi^2}{2} - \frac{1}{2}\)
- \(n = 1\), \(b_1 = \frac{1}{\xi} - \xi \rightarrow \Omega_1 = \frac{\xi^2}{2} - \frac{3}{2}\)
- \(n = 2\), \(b_2 = \frac{4\xi}{2\xi^2 - 1} - \xi \rightarrow \Omega_2 = \frac{\xi^2}{2} - \frac{5}{2}\)
- \(n = 3\), \(b_3 = \frac{1}{\xi} + \frac{4\xi}{2\xi^2 - 3} \rightarrow \Omega_3 = \frac{\xi^2}{2} - \frac{7}{2}\)

Obviously \(\nabla \Omega_n = \xi\) for all \(n\). Irrespective of the fact that each of \(b_n, n > 0\) shows singularities, the auxiliary potentials are well defined for all \(x\), and for different values of \(n\) they acquire an additive renormalisation \(-\lambda_n = -(n + \frac{1}{2})\).

The case of \(n = 0\) is a canonical\[16,23\] example of the Feynman-Kac integration, and the classic Mehler formula involves the Cameron-Martin-Girsanov density (39) as well.
Indeed, the integral kernel \(\exp(-Ht)(y, x) = k(y, 0, x, t) \) for \(H = -\frac{1}{2} \Delta + (\frac{1}{2}x^2 - \frac{1}{2}) \) is known to be given by the formula:

\[
k(y, 0, x, t) = \frac{\pi^{-1/2}(1 - e^{-2t})^{-1/2} \exp\left[-\frac{x^2 - y^2}{2} - \frac{(e^{-t}y - x)^2}{1 - e^{-2t}}\right]}{\sqrt{\pi}} \tag{49}
\]

\[
(e^{-Ht}\Theta)(x) = \int k(y, 0, x, t)\Theta(y)dy
\]

where the integrability property

\[
\int k(y, 0, x, t)\exp\left[\frac{x^2 - y^2}{2}\right]dy = 1 \tag{50}
\]

is simply a statement (cf.(39)) pertaining to the transition density (4) of the homogeneous diffusion, which preserves the Gaussian distribution \(\rho(x) = (\Theta\Theta_\ast)(x) = \frac{\alpha}{\sqrt{2\pi}}\exp(-\xi^2) \).

The case \(n=1 \) automatically induces the (ergodic according to Ref.53) decomposition of the diffusion process into two independent, non-communicating components, each being confined between the natural boundaries \((-\infty, 0)\) and \((0, \infty)\), respectively. The pertinent processes have the same Feynman-Kac weight in the general expression (45) for their probability measures. Notice that we deal here with processes on the half-line, whose drift \(b_1 = \frac{1}{\xi} - \xi \) has a singularity of the Bessel type, when the diffusion is to approach the point 0, see e.g. Ref.60 for a related discussion. It suggests that the construction of the probability measure on the half-line can be accomplished by directly starting from the Bessel process with natural boundaries at 0 and \(\infty \). Namely, the rescaled form of the backward Bessel generator

\[
L_a = \frac{1}{2}\Delta \xi + \frac{1 + 2a}{2\xi}\nabla \xi \tag{51}
\]

with \(x = \sqrt{2}\xi, a \geq 0 \), corresponds to the transition density of the diffusion with inaccessible boundaries

\[
p(t; \xi_0, \xi) = \text{const} \frac{\xi}{t} \exp\left[-\frac{\xi^2 + \xi_0^2}{2t}\right] I_a\left(\frac{\xi\xi_0}{t}\right) \tag{52}
\]

where \(I_a(\alpha) \) is the modified Bessel function. A particular choice of \(a = 1/2 \) i.e. \(I_{1/2}(\alpha) = \sqrt{\frac{2}{\pi\alpha}}\sinh\alpha \) provides us (in the notational convention (47)) with a conservative diffusion whose field of drifts is \(b(\xi) = \frac{1}{\xi} \). This diffusion can be directly compared (in the sense of Girsanov, see\([14, 18, 37, 38, 58, 60, 64]\)) to the unrestricted harmonic diffusion considered previously: the drift transformation from \(\frac{1}{\xi} \) to \(\frac{1}{\xi} - \xi \) induces a corresponding transformation of probability measures. Effectively it amounts to replacing in (45) the restricted (to the semi-axis) conditional Wiener measure by the conditional Bessel measure, which automatically respects the boundaries, and next evaluating the Radon-Nikodym derivative of
the harmonic measure with respect to the Bessel measure. The corresponding Cameron-
Martin-Girsanov (likelihood ratio) formula can be found in Ref. 17.

The decomposition into non-communicating diffusions with natural boundaries is
characteristic of all \(n > 0 \) solutions of (47). However all of them induce the same local field
of accelerations \(\nabla \Omega(\xi) = \xi \).

Although the existence of the Feynman-Kac kernels (and thus of the transition den-
sities and the diffusions themselves) is here granted, it is generally not easy to give analytic
expressions for them. However, in view of (44), the numerical simulation of each diffusion
problem encountered before, is definitely in the reach. Our discussion was basically one-
dimensional and restricted to stationary cases, nevertheless extensions to time-dependent
(non-stationary) processes and to higher dimensions (much of the outlined structure is
preserved) are available.

References
1. M. Kac, J. Logan, in: Fluctuation phenomena, eds. E. W. Montroll, J. L. Lebowitz,
North-Holland, Amsterdam, 1976
2. M. C. Mackey, L. Glass, From clocks to chaos: rhythms of life, Princeton Univ.
Press, Princeton, 1988
3. S. Chandrasekhar, Rev. Mod. Phys. 15, (1943), 1
4. E. Nelson, Dynamical theories of the Brownian motion, Princeton Univ.
Press, Princeton, 1967
5. E. Schrödinger, Ann. Inst. Henri Poincare, 2, (1932), 269
6. B. Jamison, Z. Wahrsch. verw. Geb., 30, (1974), 65
7. J. C. Zambrini, J. Math. Phys. 27, (1986), 3207
8. P. Garbaczewski, Phys. Lett. A 178, (1993), 7
9. N. G. van Kampen, Stochastic processes in physics and chemistry, second ed.,
North-Holland, Amsterdam, 1992, see also \([61,62]\)
10. W. Feller, Trans. Am. Math. Soc. 77, (1954), 1
11. W. Feller, Ann. Math. 55, (1952), 468
12. I. Gihman, A. Skorohod, Theory of stochastic processes, vol. III, Springer,
Berlin, 1979
13. R. L. Stratonovich, Select. Transl. in Math. Stat. Prob., 10, (1971), 273
14. P. Garbaczewski, Relative Wiener noises and the Schrödinger dynamics
in external force fields, Univ. Kaiserslautern preprint No KL-TH-93/12
15. M. Reed, B. Simon, Methods of modern mathematical physics, vol. II,
Academic Press, NY, 1975
16. J. Glimm, A. Jaffe, Quantum physics: a functional integral point of view,
17.R.Carmona,in:(eds)C.Dellacherie,P.A.Meyer,M.Weil,Lecture Notes in Math.,vol.721,Springer,Berlin,1979
18.A.Blaquiere,in:Modeling and Control of Systems,(ed)A.Blaquiere,Lect. Notes in Control and Inform.Sci.,vol.121,Springer,Berlin,1989
19.A.T.Bharucha-Reid,Elements of the theory of Markov processes and their applications,McGraw-Hill,New York,1960
20.C.W.Gardiner,Handbook of stochastic methods,Springer,Berlin,1985
21.S.A.Molchanov,Theory Prob.Appl.12,(1967),310
22.S.Karlin,H.M.Taylor,A first course in stochastic processes,Academic Press,New York,1967
23.J.Ginibre,Some applications of functional integration in statistical mechanics,in:Statistical mechanics and field theory,(eds)C.DeWitt,R.Stora,Gordon and Breach,New York,1971
24.D.C.Khandekar,S.V.Lawande,Phys.Reports,137,(1986),115
25.D.C.Khandekar,S.V.Lawande,J.Math.Phys.16,(1975),384
26.Ph.Blanchard,S.Golin,Commun.Math.Phys.109,(1987),421
27.Ph.Blanchard,Ph.Combe,W.Zheng,Mathematical and physical aspects of stochastic mechanics,Lect. Notes in Physics,vol.281,Berlin,Springer,1987
28.W.A.Zheng,Ann.Inst.Henri Poincare,B 21,(1985),103
29.E.Carlen,Commun.Math.Phys.94,(1984),293
30.R.Carmona,in:Taniguchi Symp.PMMP,Katata 1985,Academic Press,Boston,1987
31.M.Nagasawa,Prob.Theory Relat.Fields,82,(1989),109
32.R.Aebi,Prob.Theory Relat.Fields,96,(1993),107
33.M.Nagasawa,H.Tanaka,Z.Wahrscheinlichkeitstheorie und verw.Geb.68,(1985),247
34.R.S.Liptser,A.N.Shiryayev,Statistics of random processes,vol.I,Springer,1977
35.R.S.Liptser,A.N.Shiryayev,Math.USSR Izv.6,(1972),839
36.R.Carmona,J.Lacroix,Spectral theory of random Schrödinger operators,Birkhäuser,Boston,1990
37.R.Cameron,W.Martin,Trans.Am.Math.Soc.58,(1945),184
38.I.Girsanov,Theory Prob.Appl.5,(1960),285
39.N.Bouleau,F.Hirsch,Dirichlet forms and analysis on Wiener space,de Gruyter,Berlin,1991
40.O.Bratteli,D.W.Robinson,Operator algebras and quantum statistical mechanics,vol.II,Springer,Berlin,1981
41.N.Angelescu,G.Nenciu,Commun.Math.Phys.29,(1973),15
42.B.Simon,Adv.Math.30,(1978),268
43. B. Simon, Functional integration and quantum physics, Academic Press, NY, 1980
44. M. Reed, B. Simon, Methods of modern mathematical physics, vol. IV, Academic Press, NY, 1978
45. P. Garbaczewski, Phys. Lett. A 162, (1992), 129
46. P. Garbaczewski, J. P. Vigier, Phys. Rev. A 46, (1992), 4634
47. P. Garbaczewski, Phys. Lett. A 172, (1993), 208
48. M. D. Donsker, S. Varadhan, in: Functional integration and its applications, (ed) A. M. Arthurs, Clarendon Press, Oxford, 1975
49. M. Fukushima, in: Mathematics + Physics, vol. 1, (ed) L. Streit, World Scientific, Singapore, 1985, see also [63]
50. S. Albeverio, R. Høegh-Krohn, J. Math. Phys. 15, (1974), 1745
51. H. Ezawa, J. R. Klauder, L. A. Shepp, Ann. Phys. (NY), 88, (1974), 65
52. S. Albeverio, R. Høegh-Krohn, L. Streit, J. Math. Phys. 18, (1977), 907
53. S. Albeverio, R. Høegh-Krohn, Z. Wahrsch. verw. Geb., 40, (1977), 1
54. A. De Masi, E. Presutti, Mathematical methods for hydrodynamic limits, Lect. Notes Math. vol 1501, Springer, Berlin, 1991
55. H. Spohn, Large scale dynamics of interacting particles, Springer, Berlin, 1991
56. E. I. Verriest, D. R. Shin, Int. J. Theor. Phys. 32, (1993), 333
57. E. W. Larsen, Z. Schuss, Phys. Rev. B 18, (1978), 2050
58. F. Guerra, Phys. Reports 77, (1981), 263
59. S. Albeverio, K. Yasue, J. C. Zambrini, Ann. Inst. Henri Poincare, 49, (1989), 259
60. W. A. Zheng, P. A. Meyer, in: (eds) J. Azema, M. Yor, Lect. Notes Math. vol. 1059, Springer, Berlin, 1984
61. W. Horsthemke, R. Lefever, Noise-induced transitions, Springer, Berlin, 1984
62. H. Risken, The Fokker-Planck equation, Springer, Berlin, 1989
63. S. Albeverio, M. Fukushima, W. Karwowski, L. Streit, Commun. Math. Phys. 81, (1981), 501
64. H. Narnhofer, J. R. Klauder, J. Math. Phys. 17, (1976), 1201