A note on three dimensional good sets

K. GOWRI NAVADA

Department of Mathematics, Periyar University, Salem - 636011, India
E-mail: gnavada@yahoo.com

2000 Mathematics Subject Classification: primary 60A05, 47A35, secondary 28D05, 37Axx

Abstract. We show that as in the case of \(n \)-fold Cartesian product for \(n \geq 4 \), even in 3-fold Cartesian product, a related component need not be full component.

Key words. Good set; full set; full component; related component; geodesic; boundary of a good set.

Introduction and Preliminaries

The purpose of this note is to answer two questions about good sets raised in [3] and [4] for the case \(n = 3 \).

Let \(X_1, X_2, \ldots, X_n \) be nonempty sets and let \(\Omega = X_1 \times X_2 \times \cdots \times X_n \) be their Cartesian product. We will write \(\overrightarrow{x} \) to denote a point \((x_1, x_2, \ldots, x_n) \in \Omega \).

For each \(1 \leq i \leq n \), \(\Pi_i \) denotes the canonical projection of \(\Omega \) onto \(X_i \).

A subset \(S \subset \Omega \) is said to be good, if every complex valued function \(f \) on \(S \) is of the form:

\[
f(x_1, x_2, \ldots, x_n) = u_1(x_1) + u_2(x_2) + \cdots + u_n(x_n), \quad (x_1, x_2, \ldots, x_n) \in S,
\]

for suitable functions \(u_1, u_2, \ldots, u_n \) on \(X_1, X_2, \ldots, X_n \) respectively ([3], p. 181).

For a good set \(S \), a subset \(B \subset \bigcup_{i=1}^{n} \Pi_i S \) is said to be a boundary set of \(S \), if for any complex valued function \(U \) on \(B \) and for any \(f : S \rightarrow \mathbb{C} \) the equation (1) subject to

\[
u_i|_{B \cap \Pi_i S} = U|_{B \cap \Pi_i S}, \quad 1 \leq i \leq n,
\]

admits a unique solution. For a good set there always exists a boundary set ([3], p. 187).

A subset \(S \subset \Omega \) is said to be full, if \(S \) is maximal good set in \(\Pi_1 S \times \Pi_2 S \times \cdots \times \Pi_n S \).

A set \(S \subset \Omega \) is full if and only if it has a boundary consisting of \(n - 1 \) points ([3], Theorem 3, page 185).

If a set \(S \) is good, maximal full subsets of \(S \) form a partition of \(S \). They are called full components of \(S \) ([3], p. 183).

Two points \(\overrightarrow{x}, \overrightarrow{y} \) in a good set \(S \) are said to be related, denoted by \(\overrightarrow{x} R \overrightarrow{y} \), if there exists a finite subset of \(S \) which is full and contains both \(\overrightarrow{x} \) and \(\overrightarrow{y} \). \(R \) is an equivalence relation, whose equivalence classes are called related components of \(S \). The related components of \(S \) are full subsets of \(S \) (ref. [3]).

First we prove that when the dimension \(n = 3 \), a full component need not be a related component, by giving an example of a full set with infinitely many related components.

Consider a countable set \(T \) which consists of the following points:

\[
\begin{align*}
\overrightarrow{a_1} &= (x_1, x_2, x_3) \\
\overrightarrow{a_2} &= (y_1, y_2, x_3) \\
\overrightarrow{a_3} &= (y_1, x_2, z_3) \\
\overrightarrow{a_4} &= (\alpha_1, \alpha_2, \alpha_3)
\end{align*}
\]
\[a_5 = (\alpha_4, \alpha_5, \alpha_3) \]
\[a_6 = (\alpha_1, \alpha_5, \alpha_3) \]
\[a_7 = (\alpha_4, \alpha_2, x_3) \]
\[a_8 = (x_1, y_2, \alpha_3) \]
\[a_9 = (\alpha_6, \alpha_7, \alpha_8) \]
\[a_{10} = (\alpha_9, \alpha_{10}, \alpha_8) \]
\[a_{11} = (\alpha_6, \alpha_{10}, \alpha_3) \]
\[a_{12} = (\alpha_9, \alpha_7, x_3) \]
\[a_{13} = (x_1, \alpha_2, \alpha_8) \]

\[\ldots \]
\[a_{5n-1} = (\alpha_{5n-4}, \alpha_{5n-3}, \alpha_{5n-2}) \]
\[a_{5n} = (\alpha_{5n-1}, \alpha_{5n}, \alpha_{5n-2}) \]
\[a_{5n+1} = (\alpha_{5n-4}, \alpha_{5n}, \alpha_{5n-7}) \]
\[a_{5n+2} = (\alpha_{5n-1}, \alpha_{5n-3}, x_3) \]
\[a_{5n+3} = (x_1, \alpha_{5n-8}, \alpha_{5n-2}) \]

\[\ldots \]

Call the first three points of \(T \) as \(D_0 \) and for \(n \geq 1 \), let \(D_n \) denote the first \(3 + n \) points of \(S \). Let \(A_0 = D_0 \) and for \(n \geq 1 \) let \(A_n = D_n \setminus D_{n-1} \). Then it is easy to see that every \(D_n \) is good and has three point boundary. All the three points of the boundary of \(D_n \) cannot come from the coordinates of points in \(D_{n-1} \): because, if all of them occur as coordinates in \(D_{n-1} \), they form a boundary for \(D_{n-1} \). Given any function \(f \) on \(D_n \), there is a solution \(u_1, u_2, u_3 \) on \(D_{n-1} \) such that

\[f(u_1, u_2, u_3) = u_1(w_1) + u_2(w_2) + u_3(w_3), \quad (w_1, w_2, w_3) \in D_{n-1}. \]

But then \(f(a_{5n+3}) \) fixes the value of \(u_3(\alpha_{5n-2}) \) by the following equation:

\[u_3(\alpha_{5n-2}) = f(a_{5n+3}) - u_1(x_1) - u_2(\alpha_{5n-8}) \]

When we substitute this value of \(u_3(\alpha_{5n-2}) \) in the remaining four points of \(A_n \), we get a set of linearly dependent equations. This shows that the boundary of \(D_n \) contains at least one of the five coordinates, \(\alpha_{5n-4}, \alpha_{5n-3}, \alpha_{5n-2}, \alpha_{5n-1} \) or \(\alpha_{5n} \), which are introduced in \(A_n \). One can observe the following properties of the points in the set \(A_n \): any \(k \) points of \(A_n \) has at least \(k \) coordinates introduced in \(A_n \), (i.e., they do not occur as coordinates in \(D_{n-1} \)). If we take a singleton \(\{ \tilde{a}_i \} \) in \(D_{n-1} \), any set of \(k \) points of \(A_n \) has at least \((k+1)\) coordinates which do not occur as coordinates of \(\tilde{a}_i \).

\(T \) is good as every finite subset of \(T \) is good. It cannot have a boundary \(B \) with more than two points: If \(|B| = 3\), we can choose a \(n \) sufficiently large such that all the three points of \(b \) occur as coordinates in \(D_{n-1} \). Then \(B \) is a boundary of \(D_n \) which is not possible as observed above. If \(|B| > 3\), we can choose \(n \) sufficiently large so that \(k = |B \cup \bigcup_{i=1}^{3} \Pi_i D_n| \geq 4 \). Then these \(k \) points form a boundary of \(D_n \) which is again not possible. So the boundary of \(T \) consists of only two points which shows that \(T \) is full.

We prove that no finite subset \(A \) of \(T \) other than singleton is full: Set \(|A \cap A_i| = k_i \) for \(i \geq 0 \). Let \(i_1 < i_2 < \cdots < i_l \) be such that \(k_{i_j} \neq 0 \) for \(j = 1, 2, \ldots, l \) and \(k_i = 0 \) for all other \(i \). If \(k_{i_1} > 1 \), no subset other than singleton of \(A_n \) is full, the set \(A \cap A_{i_1} \) is not full. When we add the points of \(A \cap A_{i_2} \) to \(A \cap A_{i_1} \) (as we are adding \(k_{i_2} \) points) we will be adding at least \(k_{i_2} \) new coordinates. So the set \(A \cap (A_{i_1} \cup A_{i_2}) \) is not full. Similarly when we keep adding \(A \cap A_{i_j} \) to the set \(A \cap (\bigcup_{k<j} A_{i_k}) \) the number of coordinates added is at least equal to the number of points added. So at each step \(A \cap (\bigcup_{k<j} A_{i_k}) \) is not full. In this way we get \(A = A \cap (\bigcup_{k<l} A_{i_k}) \) is also not full. If \(k_{i_2} = 1 \), in the first step when we add points of \(A \cap A_{i_2} \) to the singleton set \(A \cap A_{i_1} \) the new coordinates added is at least \(k_{i_2} + 1 \). So \(A \cap (A_{i_1} \cup A_{i_2}) \) is not full. In the remaining steps as we keep adding points from \(A \cap A_{i_j} \), the number of coordinates added is at least equal to the number of points added. So in the end we get \(A \) is not full.
For any n, let $\vec{b}_n = (\alpha_{5n-1}, y_2, z_3)$ and consider the set $F_n = D_n \cup \vec{b}_n$. We show that the geodesic between the points \vec{a}_1 and \vec{a}_{5n+3} in F_n is the whole set F_n. To show that F_n is full, consider the matrix M_n whose rows correspond to the points $\vec{a}_2, \vec{a}_3, \ldots, \vec{a}_{5n+3}, \vec{b}_n$ and columns correspond to the coordinates $y_1, y_2, z_3, \alpha_1, \alpha_2, \ldots, \alpha_{5n}$. This is a $5n + 3 \times 5n + 3$ matrix:

$$
\begin{bmatrix}
1 & 1 & 0 & 0 & 0 & 0 & 0 & \ldots & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 & \ldots & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & \ldots & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & \ldots & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & \ldots & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & \ldots & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \ldots & 1 & 1 & 1 & 0 & 0 \\
\ldots & \ldots \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \ldots & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & \ldots & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \ldots & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & \ldots & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 & \ldots & 0 & 0 & 0 & 1 & 0 \\
\end{bmatrix}
$$

It has an inverse given by
This shows that F_n is full. To show that it is the geodesic between the points $\overline{a_1}$ and $\overline{a_{5n+3}}$ in F_n, we show that any proper subset A of F_n containing these two points is not full. If possible suppose such a set A is full. Then A has to contain the point $\overline{b_n}$ because no subset of D_n, other than singleton, is full.

Let $k = |F_n| - |A|$. As A is full there exists at least k coordinates of points of F_n which donot occur as coordinates in the points of A. (Because otherwise adding these k points we get F_n and we will be adding less than k coordinates. If A is full then F_n cannot be good.) Let S denote these k coordinates. The set S cannot contain $x_1, x_2, x_3, a_{5n-1}, a_{5n-2}, a_{5n-8}, x_2$ and z_3 as these are used by the points of A. Among these k coordinates let k_i be the number which are introduced in A_i, $0 \leq i \leq n$. For $i \geq 1$, we have $0 \leq k_i \leq 5$ and $k_0 = 0$ or 1. If $0 \leq k_1 < 5$ for some $i \geq 1$, (or if $k_0 = 1$ for $i = 0$) the k_i coordinates of S introduced in A_1 are used in at least $k_1 + 1$ points of A_i. So if $k_0 = 1$ or $0 < k_1 < 5$ for some $i \geq 1$, then more than k points of F_n cannot be in A which is a contradiction.

In the case $k_1 = 0$ and $k_i = 5$ for $i \geq 1$, clearly there exists an $i \geq 1$ with $k_i = 5$. But in this case we have $k_{n-1} = k_n = 0$. If $k_i = 5$, then $A \cap A_i = \phi$ and if $k_i = 0$, then $A \cap A_i = A_i$. Let j be an index such that $j_0 = 5$ and $j_{j+1} = 0$. Then $A \cap A_{j+1} = A_{j+1}$ which is a contradiction because A_{j+1} uses coordinates introduced in A_j which are not used by points of A. This shows A is not full.

It can be seen that the 5 rows of M_{5n-1}, from $(5m-1)th$ row to $(5m+3)rd$ row, have row sums bounded by $C_1 + C_2 \sum_{j=1}^m \frac{1}{3^n}$ for some constants C_1 and C_2, independent of n. This shows that as in higher dimensions, in the three dimensional case also uniform boundedness of lengths of geodesics is not a necessary condition for boundedness of solutions of (1) for bounded function f.

4
Acknowledgement: I thank Prof. M G Nadkarni for suggesting the problem, fruitful discussions and encouragement.

References:

[1] Cowsik R C, Klopotowski A and Nadkarni M G, When is $f(x, y) = u(x) + v(y)$?, *Proc. Indian Acad. Sci. (Math. Sci.*) 109 (1999) 57-64.

[2] Klopotowski A, Nadkarni M G and Bhaskara Rao K P S, When is $f(x_1, x_2, \ldots, x_n) = u_1(x_1) + u_2(x_2) + \ldots + u_n(x_n)$?, *Proc. Indian Acad. Sci. (Math. Sci.*) 113 (2003) 77-86.

[3] Klopotowski A, Nadkarni M G and Bhaskara Rao K P S, Geometry of good sets in n-fold Cartesian products, *Proc. Indian Acad. Sci. (Math. Sci.*) 114 (2004) 181-197.

[4] Nadkarni M G, Kolmogorov’s superposition theorem and sums of algebras, *The Journal of Analysis* vol. 12 (2004) 21-67.

[5] Gowri Navada K, Some remarks on good sets, *Proc. Indian Acad. Sci. (Math. Sci.*) 114 (2004) 389-397.

[6] Gowri Navada K, Some further remarks on good sets, to appear in *Proc. Indian Acad. Sci. (Math. Sci.*)*.