Supporting Information

Rational Domain Swaps Reveal Insights About Chain Length Control by Ketosynthase Domains in Fungal Non-Reducing Polyketide Synthases

Ting Liu, James F. Sanchez, Yi-Ming Chiang, Berl R. Oakley, and Clay C. C. Wang

Table of Contents

Supplemental Methods	S2
Supplemental Discussion on 1 and products in equilibrium	S5
Table S1. Products from NR-PKSs used in this study	S6
Table S2. A. nidulans strains used in this study	S7
Table S3. Primers used in this study	S9
Table S4. 1H and 13C NMR data for compounds 5 and 4	S11
Figure S1. Gene deletion and domain swap strategies in this study	S12
Figure S2. UV-Vis and ESIMS spectra (negative mode) of compounds 5 and 4.	S13
Figure S3. HMBC correlations of compounds 5 and 4.	S14
Supplemental References	S15
Figure S4. 1H NMR spectrum of compound 5	S16
Figure S5. 13C NMR spectrum of compound 5	S17
Figure S6. 1H NMR spectrum of compound 4	S18
Figure S7. 13C NMR spectrum of compound 4	S19
Supplemental Methods

Fungal strains and molecular genetic manipulations

A. nidulans strains used in this study are listed in Table S1. All primers used in this study are listed in Table S2.

Gene deletions were carried out in LO4852 for AN3386 and in LO2026 for the other 8 PKS genes by replacing the target gene with the selection marker, *Aspergillus fumigatus pyroA* (*AfpyroA*) gene (Figure S1A). Chimeric PKS genes were constructed after gene deletion. For SAT domain swaps as shown in Figure S1B, the *afoE* SAT plus a 120bp upstream promoter region was replaced with a DNA cassette containing 1) a selection marker [*Aspergillus fumigatus pyrG* (*AfpyrG*) or *riboB* (*AfriboB*) gene] followed by 2) a 401bp *A. nidulans alcA* promoter [*alcA(p)*] followed by 3) the SAT portion of a donor gene starting from the start codon and ending at the selected junction site, so that the chimeric gene was under the control of the *alcA* promoter. This strategy was also applied to the extended domain swap between AN3386 and *afoE* except that the donating portion of AN3386 and receiving region of *afoE* were extended.

Two ~1000bp-fragments upstream and downstream of each targeted DNA region were amplified from *A. nidulans* genomic DNA by PCR and fused together with the replacement cassette by fusion PCR. Protoplast production and transformation were carried out as described. Three to five transformants for each genotype were analyzed by diagnostic PCR with three primer sets. When the external primers in the first round of PCR were used, the difference in the sizes of targeted DNA region before and after replacement allowed the determination of correct gene replacement. When one of the external primers and the primer located inside the cassette were used, the correct mutant gave the PCR product of the expected size, otherwise no product was present.

Fermentation and LC-MS analysis

For fermentation, 2.5x10⁷ spores of each *A. nidulans* strain were grown in 25 mL liquid LMM medium (15 g/L lactose, 6 g/L NaNO₃, 0.52 g/L KCl, 0.52 g/L MgSO₄·7H₂O, 1.52 g/L KH₂PO₄, and 1 ml/L trace elements) in 125 mL flasks at 37°C with shaking at 180 rpm and supplemented with uracil (1 g/L), uridine (10 mM), riboflavin (2.5 mg/L), or pyridoxine (0.5 mg/L) when necessary. For *alcA(p)*-inducing conditions, cyclopentanone at a final concentration of 10 mM was added to the medium after 18 h of incubation. Culture medium was collected 48 h after cyclopentanone induction by filtration and extracted once with the same volume of EtOAc. The mycelium collected was subsequently soaked in 25 mL of MeOH and 25mL of MeOH/DCM (1:1) and respectively sonicated for 1 h. After removal of the cell debris by filtration, MeOH and MeOH/DCM (1:1) were combined,
concentrated, resuspended in 25 mL of ddH$_2$O, and extracted with the same volume of EtOAc once. The EtOAc layer was evaporated in vacuo, redissolved in 0.2 mL of 20% DMSO/MeOH, and 10 µL was injected for HPLC-DAD-MS analysis.

The solvent gradient for HPLC was 95% MeCN/H$_2$O (solvent B) in 5% MeCN/H$_2$O (solvent A), both containing 0.05% formic acid: 0% B from 0 to 5 min, 0 to 100% B from 5 to 35 min, maintained at 100% B from 35 to 40 min, 100 to 0% B from 40 to 45 min, and re-equilibration with 0% B from 45 to 50 min. Conditions for MS included a capillary voltage 5.0 kV, a sheath gas flow rate at 60 arbitrary units, an auxiliary gas flow rate at 10 arbitrary units, and the ion transfer capillary temperature at 350°C. HPLC-DAD-MS analysis was carried out using a ThermoFinnigan LCQ Advantage ion trap mass spectrometer with a reverse phase C$_{18}$ column (Alltech Prevail C$_{18}$; particle size, 3 µm; column, 2.1 by 100 mm) at a flow rate of 125 µL/min.

Isolation and identification of secondary metabolites

For structure elucidation of compound 5 which was mainly produced in mycelium, 4.0x108 spores of CW1335 were cultivated in 400 mL liquid LMM medium in 2000 mL flasks (total 5 flasks) at 37°C with shaking at 180 rpm and induced with cyclopentanone at 18 h. The culture mycelium was collected through filtration 48 h after induction, and soaked in 200 mL of MeOH twice followed by 1 h sonication. After removal of the cell debris by filtration, MeOH was combined, concentrated, resuspended in 50 mL of ddH$_2$O, and extracted with the same volume of EtOAc three times. The crude extract evaporated from EtOAc layer (40.45 mg) was then purified by reverse-phase HPLC with a Phenomenex Luna C$_{18}$ column (5-µm particle size; 250 by 21.2 mm) at a flow rate of 5.0 mL/min and measured by a UV detector at 254 nm. The gradient system was 100% MeCN (solvent B) in 5% MeCN/H$_2$O (solvent A), both containing 0.05% trifluoroacetic acid, as follows: equilibration with 0% solvent B from 0 to 5 min, 0% to 100% solvent B from 5 to 35 min, 100% solvent B from 35 to 40 min, 100% to 0% solvent B from 40 to 43 min, and reequilibration with 0% solvent B from 43 to 48 min. Compound 5 (8.57 mg) was eluted at 35.0 min.

The NMR data for compound 5 were highly similar to that of established compound 2. It has a molecular formula of C$_{17}$H$_{26}$O$_3$ on the basis of its HRESIMS, 13C NMR, and DEPT spectroscopic data, representing five indices of hydrogen deficiency (IHD). The 1H and 13C NMR spectra of 5 exhibited signals for a C$_9$H$_{19}$ alkyl side chain [$^\delta$H 0.87 (3H, t, J= 7.0 Hz), 1.13 – 1.28 (12H), 1.49 (2H, m), and 2.72 (2H, t, J = 7.8 Hz); $^\delta$C 13.4 ~ 32.8], a downfield methyl group [$^\delta$H 1.88 (3H, s); $^\delta$C 6.6 (q)] and an aldehyde group [$^\delta$H 9.97 (1H, s, H-1) and $^\delta$C 193.2 (d, C-1)] attached to an aromatic ring[$^\delta$H 6.29 (1H, s); $^\delta$C 108.6 ~ 164.0], which highly resembles data of the penta-substitute aromatic moiety and aliphatic side chain of the known compound 2. The 2D NMR (gHMOC, gHMBC, and
gCOSY) analysis also assisted in assigning the structure of compound 5.

For structure elucidation of compound 4, CW1339 was grown in 30 mL of liquid LMM (total 80 flasks) and harvested as described in “Fermentation and LC-MS analysis” section. The culture medium was collected through filtration, extracted twice with an equal volume of EtOAc, and evaporated as described above. The crude extract (241.2 mg) was applied to a Merck Si gel column (230 to 400 mesh; ASTM) and eluted with CHCl₃/MeOH mixtures of increasing polarity (fraction A, 1:0; fraction B, 49:1; fraction C, 19:1; fraction D, 9:1; and fraction E, 7:3). Fraction E (27.81 mg) was further purified by reverse-phase HPLC with a Phenomenex Luna C₁₈ column (5-µm particle size; 250 by 21.2 mm) at a flow rate of 10.0 mL/min and measured by a UV detector at 254 nm. The gradient system was MeCN (solvent B) in 5% MeCN/H₂O (solvent A), both containing 0.05% trifluoroacetic acid, as follows: equilibration with 0% solvent B from 0 to 5 min, 0% to 100% solvent B from 5 to 35 min, 100% solvent B from 35 to 40 min, 100% to 0% solvent B from 40 to 43 min, and reequilibration with 0% solvent B from 43 to 48 min. Compound 4 (1.67 mg) eluted at 35.0 min.

The NMR data for compound 4 were also highly similar to that of established compound 2. The mass difference and the ¹³C NMR resonance at 176.6 were indicative of a carboxylic acid functionality. 2D NMR experiments established the C₁₈ position of the carboxylic acid and fully corroborated our proposed structure.

Compound Identification

Nuclear magnetic resonance (NMR) spectra of 1 and 4 were respectively collected on a Varian Mercury Plus 400 spectrometer and a Varian 400-MR 2-Channel NMR Spectrometer.

Compound 1: brown solid; For UV and ESI-MS data, see Figure S2; For ¹H and ¹³C NMR data, see Table S3.

Compound 4: yellow solid; For UV and ESI-MS data, see Figure S2; For ¹H and ¹³C NMR data, see Table S3.
Supplemental Discussion on 1 and products in equilibrium

Compound 1 in the current text was the product of a genetic knock out in an earlier project. The minor products as marked with an asterisk in the current text were isolated and characterized by NMR, using acetone-d_6. We had found that their spectra matched that of the major product. Given this result and the chemical structure of the major product, we reasoned that the minor products were cyclic hemiacetals in equilibrium with the major product. The identity of the solvent may affect the equilibrium. We have now performed HRMS analysis of compound 1 and the minor products. In positive mode the measured masses for 1a, and 1b were 299.1639, and 299.1658, respectively, corresponding to metabolites with a molecular formula of C$_{19}$H$_{23}$O$_3$ [M+H-H$_2$O]$^+$. For 1 the parent ion of 317.1753 is observed (C$_{19}$H$_{25}$O$_4$ [M+H]$^+$), but the spectrum also displays a minor peak of 299.1642 (C$_{19}$H$_{23}$O$_3$ [M+H-H$_2$O]$^+$).

As Figure 1 in the main text shows, there is no clear sign of the hemiacetal forms of 2 and 4. The equilibrium may favor the hemiacetals less than with 1, but it cannot be discounted that equilibrium was not reached before the samples underwent the LC/MS experiment.
Gene	Starter unit[†]	Product released from NR-PKS	Protein homology with AfoE^a	Supplemental references
AN3386	![Image 1](image1.png)	39%	3	
AN0150	![Image 2](image2.png)	28%	4	
AN3230	![Image 3](image3.png)	43%	3	
AN6000	![Image 4](image4.png)	28%	5, 6	
AN6448	![Image 5](image5.png)	32%	3, 7	
AN7903	![Image 6](image6.png)	57%	3	
AN7909	![Image 7](image7.png)	25%	8, 9	
AN8209	![Image 8](image8.png)	34%	10	
AN8383	![Image 9](image9.png)	30%	3, 11, 12	
Table S2. A. nidulans strains used in this study	\[\text{genotype}\]			
---	-----------------			
strain	**related mutation(s)**			
LO2026	stcJΔ	pyrG89; pyrA4; nkuA::argB; riboB2; stcJ::AfriboA		
CW1062	stcJΔ; mdpGΔ	pyrG89; pyrA4; nkuA::argB; riboB2; stcJ::AfriboA; mdpG::AfpyroA		
CW1093	stcJΔ; mdpGΔ; SAT\[^{pfc}\];::alcA(p)-SATmdpG	pyrG89; pyrA4; nkuA::argB; riboB2; stcJ::AfriboA; mdpG::AfpyroA; SAT\[^{pfc}\];::AfpyrG-alcA(p)-SATmdpG		
CW1068	stcJΔ; pkfAΔ	pyrG89; pyrA4; nkuA::argB; riboB2; stcJ::AfriboA; pkfA::AfpyroA		
CW1097	stcJΔ; pkfAΔ; SAT\[^{pfc}\];::alcA(p)-SAT\[^{pfc}\]	pyrG89; pyrA4; nkuA::argB; riboB2; stcJ::AfriboA; pkfA::AfpyroA; SAT\[^{pfc}\];::AfpyrG-alcA(p)-SAT\[^{pfc}\]		
CW1071	stcJΔ; aptAΔ	pyrG89; pyrA4; nkuA::argB; riboB2; stcJ::AfriboA; aptA::AfpyroA		
CW1102	stcJΔ; aptAΔ; SAT\[^{pfc}\];::alcA(p)-SAT\[^{pfc}\]	pyrG89; pyrA4; nkuA::argB; riboB2; stcJ::AfriboA; aptA::AfpyroA; SAT\[^{pfc}\];::AfpyrG-alcA(p)-SAT\[^{pfc}\]		
CW1074	stcJΔ; pkbAΔ	pyrG89; pyrA4; nkuA::argB; riboB2; stcJ::AfriboA; pkbA::AfpyroA		
CW1107	stcJΔ; pkbAΔ; SAT\[^{pfc}\];::alcA(p)-SAT\[^{pfc}\]	pyrG89; pyrA4; nkuA::argB; riboB2; stcJ::AfriboA; pkbA::AfpyroA; SAT\[^{pfc}\];::AfpyrG-alcA(p)-SAT\[^{pfc}\]		
CW1080	stcJΔ; pkeAΔ	pyrG89; pyrA4; nkuA::argB; riboB2; stcJ::AfriboA; pkeA::AfpyroA		
CW1114	stcJΔ; pkeAΔ; SAT\[^{pfc}\];::alcA(p)-SAT\[^{pfc}\]	pyrG89; pyrA4; nkuA::argB; riboB2; stcJ::AfriboA; pkeA::AfpyroA; SAT\[^{pfc}\];::AfpyrG-alcA(p)-SAT\[^{pfc}\]		
CW1084	stcJΔ; orsAΔ	pyrG89; pyrA4; nkuA::argB; riboB2; stcJ::AfriboA; orsA::AfpyroA		
CW1117	stcJΔ; orsAΔ; SAT\[^{pfc}\];::alcA(p)-SAT\[^{pfc}\]	pyrG89; pyrA4; nkuA::argB; riboB2; stcJ::AfriboA; orsA::AfpyroA; SAT\[^{pfc}\];::AfpyrG-alcA(p)-SAT\[^{pfc}\]		
CW1086	stcJΔ; wAΔ	pyrG89; pyrA4; nkuA::argB; riboB2; stcJ::AfriboA; wA::AfpyroA		
CW1122	stcJΔ; wAΔ; SAT\[^{pfc}\];::alcA(p)-SAT\[^{pfc}\]	pyrG89; pyrA4; nkuA::argB; riboB2; stcJ::AfriboA; wA::AfpyroA; SAT\[^{pfc}\];::AfpyrG-alcA(p)-SAT\[^{pfc}\]		
CW1092	stcJΔ; auxAΔ	pyrG89; pyrA4; nkuA::argB; riboB2; stcJ::AfriboA; auxA::AfpyroA		
CW1127	stcJΔ; auxAΔ; SAT\[^{pfc}\];::alcA(p)-SAT\[^{pfc}\]	pyrG89; pyrA4; nkuA::argB; riboB2; stcJ::AfriboA; auxA::AfpyroA; SAT\[^{pfc}\];::AfpyrG-alcA(p)-SAT\[^{pfc}\]		
LO4852	STΔ; alcA(p)-AN3380.1; alcA(p)-AN3381.1	pyrG89; pyrA4; nkuA::argB; riboB2; stcA::WA; ANID_03381.1-ANID_03380.1::AfpyrG-alcA(p)-ANID_03381.1-alcA(p)-ANID 03380.1		
LO4925	STΔ; alcA(p)-AN3380.1; alcA(p)-AN3381.1; alcA(p)-AN3386.1	pyrG89; pyrA4; nkuA::argB; riboB2; stcA::WA; ANID_03381.1-ANID_03380.1::AfpyrG-alcA(p)-ANID_03381.1-alcA(p)-ANID 03380.1; ANID_03386.1::AfriboB-alcA(p)-ANID 03386.1		
CW1331	STΔ; alcA(p)-AN3380.1; alcA(p)-AN3381.1; AN3386.1Δ	pyrG89; pyrA4; nkuA::argB; riboB2; stcA::WA; ANID 03381.1-ANID 03380.1::AfpyrG-alcA(p)-ANID 03381.1-alcA(p)-ANID 03380.1; ANID 03386.1::AfpyroA		
CW1335	STΔ; alcA(p)-AN3380.1; alcA(p)-AN3381.1; AN3386.1Δ; SAT\[^{pfc}\];::alcA(p)-SAT\[^{pfc}\]	pyrG89; pyrA4; nkuA::argB; riboB2; stcA::WA; ANID 03381.1-ANID 03380.1::AfpyrG-alcA(p)-ANID 03381.1-alcA(p)-ANID 03380.1; ANID 03386.1::AfpyroA; SAT\[^{pfc}\];::AfriboB-alcA(p)-SAT\[^{pfc}\]		
AN3386.1Δ; (SAT-KS-AT)$^{\text{abc}}$::alcA(p)-(SAT-KS-AT)$^{\text{AN3386.1}}$	ANID_03381.1-alcA(p)-ANID_03380.1; ANID_03386.1::AfpyroA; (SAT-KS-AT)$^{\text{abc}}$::AfriboB-alcA(p)-(SAT-KS-AT)$^{\text{ANID_03386.1}}$			
-------------	---------------------------------			
STΔ; alcA(p)-AN3380.1; alcA(p)-AN3381.1;	pyrG89; pyroA4; nkuA::argB; riboB2; stcA-WΔ;			
CW1344	ANID_03381.1-ANID_03380.1::AfpyrG-alcA(p)-			
AN3386.1Δ; (SAT-KS-AT-PT)$^{\text{abc}}$::alcA(p)-(SAT-KS-AT-PT)$^{\text{AN3386.1}}$	ANID_03380.1::AfpyroA; (SAT-KS-AT-PT)$^{\text{abc}}$::AfriboB-alcA(p)-(SAT-KS-AT-PT)$^{\text{ANID_03386.1}}$			
Table S3. Primers used in this study.

Primer	Sequence (5’→3’)
AN0150.1F1	TGACTGAACCTGCTAGGC
AN0150.1F2	GAACCCGGAGCTGGAGTAAC
AN0150.1F3	CGAAGAGGGTGAAGACATG
AN0150.1F4	GCATAGTGCTCTCTCGACAGCAGCAG
AN0150.1R5	GGTTAGGACCGCCAAATG
AN0150.1R6	CATTATACTCGGCTATTG
SWAP.F1	GCAAGTGACGCACTTCCGAT
SWAP.F2	GCTTCTCCTAGAACAT
SWAP.R3	CGAAGAGGGTGAAGACATG
AN0150swap_F4	ATCTCTACCTCGGCTCAAATGGAAGGTCTCGACATGCA
AN0150swap_R5	TGACTTCTCTCCTGAGTAAATGGAAGGTCTCGACATGCA
SWAP.R7	CGTCTTACAGGTACCTGAT
SWAP.R8	CGCGCTCTCGGTATGCAAATGGAAGGTCTCGACATGCA
AN3230.1F1	GTTCCCACTCTGCTGCTAATC
AN3230.1F2	AGTTGAAAGGGTGAGTCAAATGGAAGGTCTCGACATGCA
AN3230.1F3	CGAAGAGGGTGAAGACATG
AN3230.1F4	GCATAGTGCTCTCTCGACAGCAGCAG
AN3230.1R5	ATATACATCGTGCCGGTGTCAT
AN3230.1R6	TACCGTCCAGCTCATGATAATGGAAGGTCTCGACATGCA
AN3230swap_F4	ATCTCTACCTCGGCTCAAATGGAAGGTCTCGACATGCA
AN3230swap_R5	TGACTTCTCTCCTGAGTAAATGGAAGGTCTCGACATGCA
AN3230swap_F6	CGCTTCAGCTCAGGCACTAGGCAAATGGAAGGTCTCGACATGCA
AN6448.1F1	TGCAGGCAGAAGCAGTAAATGGAAGGTCTCGACATGCA
AN6448.1F2	GAAATGCTCGACGCTGAAATGGAAGGTCTCGACATGCA
AN6448.1F3	CGAAGAGGGTGAAGACATG
AN6448.1F4	GCATAGTGCTCTCTCGACAGCAGCAG
AN6448.1R5	AGAACAAGCGAGTACAG
AN6448.1R6	GGGAAGGAGGATGACATG
AN6448swap_F4	ATCTCTACCTCGGCTCAAATGGAAGGTCTCGACATGCA
AN6448swap_R5	TGACTTCTCTCCTGAGTAAATGGAAGGTCTCGACATGCA
AN6448swap_F6	CGCTTCAGCTCAGGCACTAGGCAAATGGAAGGTCTCGACATGCA
AN7903.1F1	GATGTATGTTACGCTCGTACG
AN7903.1F2	CCGTGAGCAGACATCAG
AN7903.1R3	CGAAGAGGGTGAAGACATG
AN7903.1F4	GCATAGTGCTCTCTCGACAGCAGCAG
AN7903.1R5	GAAATGCTCGACGCTGAAATGGAAGGTCTCGACATGCA
AN7903.1R6	TGACTTCTCTCCTGAGTAAATGGAAGGTCTCGACATGCA
AN7903swap_F4	ATCTCTACCTCGGCTCAAATGGAAGGTCTCGACATGCA
AN7903swap_R5	TGACTTCTCTCCTGAGTAAATGGAAGGTCTCGACATGCA
AN7903swap_F6	CGCTTCAGCTCAGGCACTAGGCAAATGGAAGGTCTCGACATGCA
AN7909.1F1	GACAGGATAATCTCGGACAG
AN7909.1F2	CATACCTGCGGAGTACAG
AN7909.1R3	CGAAGAGGGTGAAGACATG
AN7909.1F4	GCATAGTGCTCTCTCGACAGCAGCAG

S9
Blue and red sequences are tails that anneal to the selection marker (AfpyroA or AfriboB) fragment during fusion PCR. Green sequence is a tail that anneals to the alcA promoter fragment during fusion PCR.
Table S4. NMR data for compounds 5 and 4 (400 and 100 MHz). \(^a\)

position	\(\delta_c\) (5 (acetone-\(d_6\)))	\(\delta_H\) (5 (acetone-\(d_6\)))	\(\delta_c\) (4 (CD$_3$OD))	\(\delta_H\) (4 (CD$_3$OD))
1	193.2 (CH)	9.97 (s)	193.7 (CH)	9.80 (s)
2	111.6 (C)	—	112.7 (C)	—
3	163.7 (C)	—	164.3 (C)	—
4	108.6 (C)	—	110.2 (C)	—
5	163.0 (C)	—	163.4 (C)	—
6	109.1 (CH)	6.29 (s)	110.5 (CH)	6.26 (s)
7	146.7 (C)	—	138.1 (C)	—
8	31.2 (CH$_2$)	2.72 (t, 7.8)	45.4 (CH$_2$)	4.01 (s)
9	32.8 (CH$_2$)	1.49 (m)	209.0 (C)	—
10	29.2\(^b\) (CH$_2$)	1.13-1.28	41.8 (CH$_2$)	2.58 (t, 7.4)
11	29.2\(^b\) (CH$_2$)	1.13-1.28	23.5 (CH$_2$)	1.57 (m)
12	29.2\(^b\) (CH$_2$)	1.13-1.28	29.1\(^b\) (CH$_2$)	1.23-1.38
13	29.1\(^b\) (CH$_2$)	1.13-1.28	29.0\(^b\) (CH$_2$)	1.23-1.38
14	31.7 (CH$_2$)	1.13-1.28	29.0\(^b\) (CH$_2$)	1.23-1.38
15	22.4 (CH$_2$)	1.13-1.28	28.9\(^b\) (CH$_2$)	1.23-1.38
16	13.4 (CH$_3$)	0.74 (t, 7.0)	24.9 (CH$_2$)	1.57 (m)
17	6.3 (CH$_3$)	1.88 (s)	33.8 (CH$_2$)	2.27 (t, 7.4)
18		176.6 (C)	—	
19		6.1 (CH$_3$)	2.01 (s)	

\(^a\)Figures in parentheses are multiplicities and coupling constants \((J)\) in Hz.

\(^b\)Values in the same column may be interchanged.
Figure S1. Gene deletion (A) and domain swap (B) strategies in this study. Promoter is abbreviated as P.
Figure S2. UV-Vis and ESIMS spectra (negative mode) of compounds 5 and 4.
Figure S3. HMBC correlations of compounds 5 and 4.
Supplemental References

(1) Szewczyk, E.; Nayak, T.; Oakley, C. E.; Edgerton, H.; Xiong, Y.; Taheri-Talesh, N.; Osmani, S. A.; Oakley, B. R. *Nat Protoc* **2006**, *1*, 3111-3120.

(2) Bok, J. W.; Chiang, Y.-M.; Szewczyk, E.; Reyes-Dominguez, Y.; Davidson, A. D.; Sanchez, J. F.; Lo, H.-C.; Watanabe, K.; Strauss, J.; Oakley, B. R.; Wang, C. C. C.; Keller, N. P. *Nat Chem Biol* **2009**, *5*, 462-464.

(3) Ahuja, M.; Chiang, Y.M.; Chang, S.L.; Praseuth, M.B.; Entwistle, R.; Sanchez, J.F.; Lo, H.C.; Yeh, H.H.; Oakley, B.R.; Wang, C.C.C. *J Am Chem Soc* **2012**, *134*, 8212-8221.

(4) Chiang, Y.M.; Szewczyk, E.; Davidson, A.D.; Keller, N.P.; Oakley, B.R.; Wang, C.C.C.; Oakley, B.R. *Appl Environ Microbiol* **2010**, *76*, 2067-2074.

(5) Szewczyk, E.; Chiang, Y.M.; Oakley, C.E.; Davidson, A.D.; Wang, C.C.C.; Oakley, B.R. *Appl Environ Microbiol* **2008**, *74*, 7607-7612.

(6) Li, Y.; Chooi, Y.H.; Sheng, Y.; Valentine, J.S.; Tang, Y. *J Am Chem Soc* **2011**, *133*, 15773-15785.

(7) Sanchez, J.F.; Entwistle, R.; Corcoran, D.; Oakley, B.R.; Wang, C.C.C. *MedChemComm* **2012**, *3*, 997-1002.

(8) Schroechck, V.; Seherlach, K.; Nutzmann, H.W.; Shelest, E.; Schmidt-Heck, W.; Schuemann, J.; Martin, K.; Hertweck, C.; Brakhage, A.A. *Proc Natl Acad Sci U S A* **2009**, *106*, 14558-14563.

(9) Sanchez, J.F.; Chiang, Y.M.; Szewczyk, E.; Davidson, A.D.; Ahuja, M.; Oakley, C.E.; Bok, J.W.; Keller, N.P.; Oakley, B.R.; Wang, C.C.C. *Mol Biosyst* **2010**, *6*, 587-593.

(10) Watanabe, A.; Fujii, I.; Sankawa, U.; Mayorga, M.E.; Timberlake, W.E.; Ebizuka, Y. *Tetrahedron Lett* **1999**, *40*, 91-94.

(11) Nielsen, M.L.; Nielsen, J.B.; Rank, C.; Klejnstrup, M.L.; Holm, D.M.; Brogaard, K.H.; Hansen, B.G.; Frisvad, J.C.; Larsen, T.O.; Mortensen, U.H. *FEMS Microbiol Lett* **2011**, *321*, 157-166.

(12) Chiang, Y. M.; Szewczyk, E.; Davidson, A. D.; Keller, N.; Oakley, B. R.; Wang, C. C. *J Am Chem Soc* **2009**, *131*, 2965.
Figure S4. 1H NMR of compound 5
S16
Figure S5. 13C NMR of compound 5
Figure S6. 1H NMR of compound 4
Figure S7. 13C NMR of compound 4