On the Existence and Uniqueness of Solutions to Stochastic Differential Equations Driven by G-Brownian Motion with Integral-Lipschitz Coefficients

Xue-peng BAI1,2, Yi-qing LIN1,2,†

1Institut de Recherche Mathématique de Rennes, Université de Rennes 1, 35042 Rennes Cedex, France
(†E-mail: yiqing.lin@univ-rennes1.fr)

2School of Mathematics, Shandong University, 250100 Jinan, China

Abstract In this paper, we study the existence and uniqueness of solutions to stochastic differential equations driven by G-Brownian motion (GSDEs) with integral-Lipschitz coefficients.

Keywords G-Brownian motion; G-expectation; G-stochastic differential equations; G-backward stochastic differential equations; integral-Lipschitz condition

2000 MR Subject Classification 60H10

Introduction

Motivated by uncertainty problems, risk measures and the super-hedging in finance, Peng$^{[9,10]}$ introduced a framework of G-expectation, in which a new type of Brownian motion was constructed and the related stochastic calculus has been established. As a counterpart in the classical framework, stochastic differential equations driven by G-Brownian motion (GSDEs) have been studied by Gao$^{[4]}$ and Peng$^{[10]}$. In these works, the solvability of GSDEs under Lipschitz conditions has been obtained by the contraction mapping theorem.

Typically, a GSDE is of the following form:

$$X(t) = x + \int_0^t b(s, X(s))ds + \int_0^t h(s, X(s))d\langle B, B \rangle_s + \int_0^t g(s, X(s))dB_s, \quad 0 \leq t \leq T, \quad (1.1)$$

where $x \in \mathbb{R}^n$ is the initial value, B is the G-Brownian motion and $\langle B, B \rangle$ is the quadratic variation process of B.

In this paper, we study the solvability of the GSDE (1.1) under a so-called integral-Lipschitz condition:

$$|b(t, x_1) - b(t, x_2)|^2 + |h(t, x_1) - h(t, x_2)|^2 + |g(t, x_1) - g(t, x_2)|^2 \leq \rho(|x_1 - x_2|^2), \quad (1.2)$$

where $\rho : (0, +\infty) \to (0, +\infty)$ is a continuous increasing and concave function that vanishes at 0+ and satisfies

$$\int_0^1 \frac{dr}{\rho(r)} = +\infty.$$
A typical example of (1.2) is
\[|b(t, x_1) - b(t, x_2)|^2 + |h(t, x_1) - h(t, x_2)|^2 + |g(t, x_1) - g(t, x_2)|^2 \leq |x_1 - x_2|^2 \ln \frac{1}{|x_1 - x_2|}. \]
Furthermore, we consider the GSDE (1.1) under a “weaker” condition on \(b \) and \(h \):
\[|b(t, x_1) - b(t, x_2)| + |h(t, x_1) - h(t, x_2)| \leq \rho(|x_1 - x_2|), \quad (1.3) \]
where \(\rho \) satisfies the same conditions as in (1.2). A typical example of (1.3) is
\[|b(t, x_1) - b(t, x_2)| + |h(t, x_1) - h(t, x_2)| \leq |x_1 - x_2| \ln \frac{1}{|x_1 - x_2|}. \]

In the classical framework, Watanabe and Yamada[16,19] and Fang and Zhang[3] proved the pathwise uniqueness of solutions to finite-dimensional SDEs under some non-Lipschitz condition. In addition to that, Yamada[19] found an explicit way to construct the solutions by successive approximation. On the other hand, Hu and Lerner[6] worked on the SDEs in infinite dimension under the integral-Lipschitz conditions (1.2) and (1.3). They established both the pathwise uniqueness and successive approximations of the solutions. Corresponding to the result in Watanabe and Yamada[19], Lin[8] obtained a pathwise uniqueness result for non-Lipschitz GSDEs when the coefficient \(g \) is bounded.

In this article, we present both the existence and uniqueness results for GSDE (1.1) under the integral-Lipschitz conditions (1.2) and (1.3). These results are obtained by a technique similar to that in Hu and Lerner[6]. This paper is organized as follows: Section 2 gives the necessary preliminaries in the \(G \)-framework. Section 3 proves the existence and uniqueness theorem for GSDEs with integral-Lipschitz coefficients and Section 4 studies the case for \(G \)-backward stochastic differential equations (GBSDEs).

2 Preliminaries

The main purpose of this section is to recall some results in the \(G \)-framework. The reader interested in a more detailed description of these notions is referred to Denis et al.[2], Gao[4] and Peng[10].

2.1 \(G \)-Brownian Motion and \(G \)-expectation

Adapting the approach in Peng[10], let \(\Omega \) be a given nonempty fundamental space and \(\mathcal{H} \) a linear space of real functions defined on \(\Omega \) such that (1) \(1 \in \mathcal{H} \); (2) \(\mathcal{H} \) is stable with respect to bounded Lipschitz functions, i.e., for all \(n \geq 1 \), \(X_1, \cdots, X_n \in \mathcal{H} \) and \(\varphi \in C_{b,lip}(\mathbb{R}^n) \), it holds also \(\varphi(X_1, \cdots, X_n) \in \mathcal{H} \).

Definition 2.1. A sublinear expectation \(\mathbb{E}[\cdot] \) on \(\mathcal{H} \) is a functional \(\mathbb{E}[\cdot] : \mathcal{H} \to \mathbb{R} \) with the following properties: for each \(X, Y \in \mathcal{H} \), we have

1. **Monotonicity:** if \(X \geq Y \), then \(\mathbb{E}[X] \geq \mathbb{E}[Y] \);
2. **Preservation of constants:** \(\mathbb{E}[c] = c \), for all \(c \in \mathbb{R} \);
3. **Sub-additivity:** \(\mathbb{E}[X] - \mathbb{E}[Y] \leq \mathbb{E}[X - Y] \);
4. **Positive homogeneity:** \(\mathbb{E}[\lambda X] = \lambda \mathbb{E}[X] \), for all \(\lambda \in \mathbb{R}^+ \).

The triple \((\Omega, \mathcal{H}, \mathbb{E}) \) is called a sublinear expectation space.

Definition 2.2. A random vector \(Y = (Y_1, \cdots, Y_n) \in \mathcal{H}^n \) is said to be independent of \(X \in \mathcal{H}^m \) under \(\mathbb{E}[\cdot] \) if for each test function \(\varphi \in C_{b,lip}(\mathbb{R}^{n+m}) \) we have
\[\mathbb{E}[\varphi(X, Y)] = \mathbb{E}[\varphi(x, Y)]_{x=X}. \]
Definition 2.2. Let $X = (X_1, \cdots, X_n) \in \mathcal{H}^n$ be a given random vector. We define

$$F_X[\varphi] := E[\varphi(X)], \quad \varphi \in C_{b,lip}(\mathbb{R}^n).$$

Then, the functional $F_X[\cdot]$ is called the distribution of X under $E[\cdot]$.

Now we begin to introduce the definition of G-Brownian motion and G-expectation.

Definition 2.3. A d-dimensional random vector X in a sublinear expectation space (Ω, \mathcal{H}, E) is called G-normal distributed if for each $\varphi \in C_{b,lip}(\mathbb{R}^d)$,

$$u(t, x) := E[\varphi(x + \sqrt{t}X)], \quad t \in \mathbb{R}^+, \quad x \in \mathbb{R}^d,$

is the viscosity solution to the following PDE defined on $\mathbb{R}^+ \times \mathbb{R}^d$:

$$\begin{cases}
\frac{\partial u}{\partial t} - G(D^2 u) = 0; \\
u|_{t=0} = \varphi,
\end{cases}$$

where $G = G_X(A) : \mathbb{S}^d \rightarrow \mathbb{R}$ is defined by

$$G_X(A) := \frac{1}{2} \mathbb{E}[\langle AX, X \rangle]$$

and $D^2 u = (\partial^2_{x_i x_j} u)_{i,j=1}^d$.

In particular, $E[\varphi(X)] = u(1, 0)$ defines the distribution of X. By Theorem 2.1 in Chapter I of Peng [10], there exists a bounded and closed subset Γ of \mathbb{R}^d, such that for each $A \in \mathbb{S}^d$, $G_X(A)$ can be represented as

$$G_X(A) = \frac{1}{2} \sup_{\gamma \in \Gamma} \text{tr}[\gamma \gamma^T A].$$

Defining a subset $\Sigma := \{\gamma \gamma^T : \gamma \in \Gamma\}$ in \mathbb{S}^d, the G-normal distribution can be denoted by $N(0, \Sigma)$.

Let Ω be the space of all \mathbb{R}^d-valued continuous paths $(\omega_t)_{t \geq 0}$ that start from 0 and B the canonical process. We assume moreover that Ω is a metric space equipped with the following distance:

$$\rho(\omega^1, \omega^2) := \sum_{N=1}^{\infty} 2^{-N} \left(\max_{0 \leq t \leq N} (\|\omega^1_t - \omega^2_t\|_1) \wedge 1 \right).$$

For a fixed $T \geq 0$, we set

$$L^0_{ip}(\Omega_T) := \{\varphi(B_{t_1}, \cdots, B_{t_n}) : n \geq 1, 0 \leq t_1 \leq \cdots \leq t_n \leq T, \varphi \in C_{b,lip}(\mathbb{R}^{d \times n})\}.$$
where \(\psi(x_1, \ldots, x_j) := \mathbb{E}[\phi(x_1, \ldots, x_j, B_{t_{j+1}} - B_{t_j}, \ldots, B_{t_n} - B_{t_{n-1}})] \). Moreover, the mapping \(\mathbb{E}[,|\Omega_j| : L^0(\Omega_T) \to L^0(\Omega_j) \) can be continuously extended to \(\mathbb{E}[,|\Omega_j| : L^1_G(\Omega_T) \to L^1_G(\Omega_j) \).

2.2 G-capacity

Derived in Denis et al.\([2]\), G-expectation can be formulated as an upper expectation of a weakly compact family of probability measures. This family is related to the set \(\Gamma \) mentioned in the last subsection, which is a bounded and closed subset of \(\mathbb{R}^d \) that characterizes the G-function \(G(\cdot) \).

Let \(\mathbb{P}_0 \) be the Wiener measure on \(\Omega, \mathcal{F} \) the filtration generated by the canonical process \(B \) and \(\mathcal{A}_{[0, +\infty)} \) the collection of all \(\Gamma \)-valued progressively measurable processes. For each \(\theta \in \mathcal{A}_{[0, +\infty)} \), let \(\mathbb{P}_\theta \) be the probability measure introduced by the following strong formulation:

\[
\mathbb{P}_\theta := \mathbb{P}_0 \circ (X_\theta)^{-1},
\]

where \(X_\theta := (\int_0^t \theta_s dB_s)_{t \geq 0}, \mathbb{P}_0 \)-a.s. We set \(\mathcal{P} := \{ \mathbb{P}_\theta : \theta \in \mathcal{A}_{[0, +\infty)} \} \) and denote by \(\mathcal{P}_G \) the closure of \(\mathcal{P} \) under the topology of weak convergence.

Consider a capacity formulated by upper probability:

\[
\mathcal{C}(A) := \sup_{\mathbb{P} \in \mathcal{P}_G} \mathbb{P}(A), \quad A \in \mathcal{B}(\Omega).
\]

By Proposition 50 in Denis et al.\([2]\), \(\mathcal{P}_G \) is weakly compact and thus, \(\mathcal{C}(\cdot) \) is a Choquet capacity. Then, we have the following notion of “quasi-surely” (q.s.).

Definition 2.7. A set \(A \in \mathcal{B}(\Omega) \) is called polar if \(\mathcal{C}(A) = 0 \). A property is said to hold quasi-surely if it holds outside a polar set.

On the other hand, we set for each \(X \in L^0(\Omega_T), \)

\[
\overline{\mathbb{E}}[X] := \sup_{\mathbb{P} \in \mathcal{P}_G} \mathbb{E}_\mathbb{P}[X].
\]

In (2.1), \(\mathbb{E}_\mathbb{P}[X] \) exists under each \(\mathbb{P} \in \mathcal{P}_G \), so \(\overline{\mathbb{E}}[X] \) is well defined. By Theorem 52 in Denis et al.\([2]\), this upper expectation \(\overline{\mathbb{E}}[\cdot] \) is consistent with G-expectation \(\mathbb{E}[\cdot] \) on \(L^1_G(\Omega_T) \), i.e.,

\[
\overline{\mathbb{E}}[X] = \mathbb{E}[X], \quad \text{for all } X \in L^1_G(\Omega_T).
\]

Thus, from now on, we do not distinguish these two notations \(\mathbb{E}[\cdot] \) and \(\overline{\mathbb{E}}[\cdot] \).

By the definitions of \(\mathbb{E}[\cdot] \) and \(\mathcal{C}(\cdot) \), we can easily deduce the following Markov inequality and the upwards monotone convergence theorem in the G-framework:

Lemma 2.8. Let \(X \in L^0(\Omega_T) \) and for some \(p > 0 \), \(\mathbb{E}[|X|^p] < +\infty \). Then, for each \(M > 0 \),

\[
\mathcal{C}(|X| > M) \leq \frac{\mathbb{E}[|X|^p]}{M^p}.
\]

Theorem 2.9. Let \(\{X^n\}_{n \in \mathbb{N}} \subset L^0(\Omega_T) \) be a sequence such that \(X^n \uparrow X, \text{ q.s.} \), and there exists a \(\mathbb{P} \in \mathcal{P}_G, \mathbb{E}_\mathbb{P}[X^n] > -\infty \), then \(\overline{\mathbb{E}}[X^n] \uparrow \overline{\mathbb{E}}[X] \).

Unlike the classical downward monotone convergence theorem, the one in the G-framework only holds true for a sequence from a subset of \(L^0(\Omega_T) \) (cf. Theorem 31 in [2]).

Theorem 2.10. Let \(\{X^n\}_{n \in \mathbb{N}} \subset L^1_G(\Omega_T) \) be a sequence such that \(X^n \downarrow X, \text{ q.s.} \), then \(\overline{\mathbb{E}}[X^n] \downarrow \overline{\mathbb{E}}[X] \).
Moreover, by a classical argument, we have the following Fatou’s lemma and the inequality of Jensen type in the G-framework.

Lemma 2.11. Assume that $\{X^n\}_{n \in \mathbb{N}}$ is a sequence in $L^0(\Omega_T)$ and there exists a $Y \in L^0(\Omega_T)$ that satisfies $\mathbb{E}[|Y|] < +\infty$ such that for all $n \in \mathbb{N}$, $X^n \geq Y$, q.s., then

$$\mathbb{E}\left[\liminf_{n \to +\infty} X^n\right] \leq \liminf_{n \to +\infty} \mathbb{E}[X^n].$$

Proof. From (2.1) and by the classical Fatou-Lebesgue theorem, we have for each $P \in \mathcal{P}_G$,

$$E_P\left[\liminf_{n \to +\infty} X^n\right] \leq \liminf_{n \to +\infty} E_P[X^n] \leq \liminf_{n \to +\infty} \sup_{P \in \mathcal{P}_G} E_P[X^n] = \liminf_{n \to +\infty} \mathbb{E}[X^n].$$

Taking the supremum of the left-hand side over all $P \in \mathcal{P}_G$, we can easily obtain the desired result. \square

Lemma 2.12. Let $\rho : \mathbb{R} \to \mathbb{R}$ be an increasing and concave function, then for each $X \in L^0(\Omega_T)$, the following inequality holds:

$$\mathbb{E}[\rho(X)] \leq \rho(\mathbb{E}[X]).$$

A representation theorem for $L^p_G(\Omega_T)$ can also be found in [2]:

Theorem 2.13.

$$L^p_G(\Omega_T) = \{X \in L^0(\Omega_T) : X \text{ has a q.c. version, } \lim_{N \to +\infty} \mathbb{E}[|X|^p 1_{|X| > N}] = 0\}.$$

This definition of $L^p_G(\Omega_T)$ is more explicit to verify than the original one given by the completion of $L^0_{ip}(\Omega_T)$.

2.3 G-stochastic Calculus

In Peng [10], generalized Itô integrals with respect to G-Brownian motion and a generalized Itô formula are established.

Definition 2.14. A partition of $[0, T]$ is a finite ordered subset $\pi^N_{[0,T]} = \{t_0, t_1, \ldots, t_N\}$ such that $0 = t_0 < t_1 < \cdots < t_N = T$. We set

$$\mu(\pi^N_{[0,T]}) := \max_{k=0,1,\ldots,N-1} |t_{k+1} - t_k|.$$

For each $p \geq 1$, we define

$$M^p_G([0,T]):= \left\{\eta \in \left(\sum_{k=0}^{N-1} \xi_k 1_{[t_k,t_{k+1})}(t) : \xi_k \in L^0_{ip}(\Omega_{t_k})\right)\right\},$$

and we denote by $M^p_G([0,T])$ the completion of $M^p_G([0,T])$ under the norm:

$$\|\eta\|_{M^p_G([0,T])} := \left(\frac{1}{T} \int_0^T \mathbb{E}[|\eta_t|^p] \, dt\right)^{\frac{1}{p}}. \quad (2.2)$$
Remark 2.15. By Definition 2.14, if η is an element in $M^2_G([0,T])$, then there exists a sequence $\{\eta^n\}_{n \in \mathbb{N}}$ in $M^0_G([0,T])$, such that $\lim_{n \to +\infty} \int_0^T \mathbb{E}|\eta_t^n - \eta_t| dt = 0$. It is readily observed that for $t \in [0,T]$, λ-a.e., $\mathbb{E}|\eta_t^n - \eta_t| \to 0$ and thus, η_t is an element in $L^2_B(\Omega_t)$, λ-a.e.

Let $a = (a_1, \ldots, a_d)^T$ be a given vector in \mathbb{R}^d and $B^a = (a,B)$, where (a,B) denotes the scalar product of a and B.

Definition 2.16. For each $\eta \in M^2_G([0,T])$ with the form:

$$\eta_t = \sum_{k=0}^{N-1} \xi_k 1_{(t_k,t_{k+1})}(t),$$

we define

$$\mathcal{I}_{[0,T]}(\eta) = \int_0^T \eta_t dB^a_t := \sum_{k=0}^{N-1} \xi_k (B^a_{t_{k+1}} - B^a_{t_k}),$$

doing the mapping can be continuously extended to $\mathcal{I}_{[0,T]} : M^2_G([0,T]) \to L^2_B(\Omega_T)$. Then, for each $\eta \in M^2_G([0,T])$, the stochastic integral is defined by

$$\int_0^T \eta_t dB^a_t := \mathcal{I}_{[0,T]}(\eta).$$

Let $\langle B^a \rangle$ denote the quadratic variation process of B^a, which is formulated in $M^2_G([0,T])$ by

$$\langle B^a \rangle_t := \lim_{\mu(\pi^n_{[0,T]}) \to 0} \sum_{k=0}^{N-1} (B^a_{t_{k+1}} - B^a_{t_k})^2 = (B^a)^2 - 2 \int_0^t B^a_s dB^a_s.$$

We define

$$\sigma_{aaTv} := \sup_{\gamma \in T} (\gamma\gamma_{\mathbb{R}^dTv}).$$

By Corollary 5.7 in Chapter III of [9], we have

$$\langle B \rangle_t \in \mathcal{T}_\Sigma := \{t \times \gamma_{\mathbb{R}^dTv} : \gamma \in \Gamma\}, \quad 0 \leq t \leq T.$$

Therefore, for each $0 \leq s \leq t \leq T$,

$$\langle B^a \rangle_t - \langle B^a \rangle_s \leq \sigma_{aaTv}(t-s). \quad (2.3)$$

Definition 2.17. We define the mapping $Q_{[0,T]} : M^1_G([0,T]) \to L^1_B(\Omega_T)$ as follows:

$$Q_{[0,T]}(\eta) = \int_0^T \eta_t d(B^a)_t := \sum_{k=0}^{N-1} \xi_k ((B^a)^{t_{k+1}}_{t_{k+1}} - (B^a)^{t_{k}}_{t_{k+1}}),$$

and we extend it to $Q_{[0,T]} : M^1_G([0,T]) \to L^1_B(\Omega_T)$. This extended mapping defines $\int_0^T \eta_t d(B^a)_t$ for each $\eta \in M^1_G([0,T])$.

For two given vectors $a, \overline{a} \in \mathbb{R}^d$, the mutual variation process of B^a and $B^{\overline{a}}$ is defined by

$$\langle B^a, B^{\overline{a}} \rangle_t := \frac{1}{4} ((B^a + B^{\overline{a}})^t - (B^a - B^{\overline{a}})^t).$$

Then, for each $\eta \in M^2_G([0,T]),$

$$\int_0^T \eta_t d(B^a, B^{\overline{a}})_t := \frac{1}{4} \left(\int_0^T \eta_t d(B^a + B^{\overline{a}})_t - \int_0^T \eta_t d(B^a - B^{\overline{a}})_t \right).$$
In view of the formulation of G-expectation (2.1) and the property of the quadratic variation process \(_t\) in the G-framework (2.3), the following BDG type inequalities are obvious (cf. Theorems 2.1 and 2.2 in [3]).

Lemma 2.18. Let \(p \geq 1, \ a, \bar{a} \in \mathbb{R}^d, \ \eta \in M^p_G([0, T]) \) and \(0 \leq s \leq t \leq T \). Then,

\[
\mathbb{E} \left[\sup_{s \leq u \leq t} \left| \int_s^u \eta_r d\langle B^a, B^{\bar{a}} \rangle_r \right|^p \right] \leq \left(\frac{\sigma(a+a, \eta + \bar{a}, \eta + \bar{a})}{4} \right)^p (t-s)^{p-1} \int_s^t \mathbb{E}[|\eta_r|^p] \, dr.
\]

Lemma 2.19. Let \(p \geq 2, \ a \in \mathbb{R}^d, \ \eta \in M^p_G([0, T]) \) and \(0 \leq s \leq t \leq T \). Then,

\[
\mathbb{E} \left[\sup_{s \leq u \leq t} \left| \int_s^u \eta_r dB_r^a \right|^p \right] \leq C_p \sigma_{ab}^{p/2} (t-s)^{p-1} \left(\int_s^t \mathbb{E}[|\eta_r|^p] \, dr \right),
\]

where \(C_p > 0 \) is a constant independent of \(a, \eta \) and \(\Gamma \).

At the end of this subsection, we introduce the following G-Itô formula that can be found as Proposition 6.3 in Chapter III of [9]. For each \(0 \leq s \leq t \leq T \), consider an \(n \)-dimensional G-Itô process:

\[
X^i_t = X^i_s + \int_s^t b^i_u \, du + \sum_{i,j=1}^d \int_s^t h^{ij}_u \, dB^i_u + \sum_{i,j=1}^d \int_s^t g^{ij}_u \, dB^j_u, \quad \nu = 1, \ldots, n.
\]

Lemma 2.20. Let \(\Phi \in C^2(\mathbb{R}^n) \) be a real function with bounded derivatives such that \(\{ \partial^2_{x^i x^j} \Phi \}_{i,j=1}^n \) are uniformly Lipschitz. Let \(b^i, h^{ij} \) and \(g^{ij} \in M^2_G([0, T]), \ \nu = 1, \ldots, n, \ i, j = 1, \ldots, d \) be bounded processes. Then, we have

\[
\Phi(X_t) - \Phi(X_s) = \int_s^t \partial_x \Phi(X_u) b^i_u \, du + \int_s^t \partial_x \Phi(X_u) h^{ij}_u \, dB^i_u + \int_s^t g^{ij}_u \, dB^j_u \bigg|_s^t + \frac{1}{2} \int_s^t \partial^2_{x^i x^j} \Phi(X_u) g^{ij}_u \, dB^i_u \bigg|_s^t,
\]

in which the equality holds in the sense of \(L^2_G(\Omega_t) \).

Remark 2.21. In (2.4), we adopt the Einstein convention, i.e., the repeated indices \(\nu, \mu, i \) and \(j \) imply summation.

3 Solvability of GSDEs with Integral-Lipschitz Coefficients

In this section, we give our main result of this paper, that is, the existence and uniqueness theorems for GSDEs with integral-Lipschitz coefficients. From now on, \(C \) denotes a positive constant whose value may vary from line to line.

3.1 Formulation to GSDEs and Assumptions

We rewrite (1.1) into the following form:

\[
X(t) = x + \int_0^t b(s, X(s)) \, ds + \sum_{i,j=1}^d \int_0^t h_{ij}(s, X(s)) \, dB^i_s \bigg|_0^t + \sum_{j=1}^d \int_0^t g_j(s, X(s)) \, dB^j_s, \quad 0 \leq t \leq T,
\]

(3.1)
Assumption 3.2. For each \(t \in [0, T] \) and \(x, x_1, x_2 \in \mathbb{R}^n \),

\[
(H1) \left| b(t, x_1) - b(t, x_2) \right|^2 + \left| h(t, x_1) - h(t, x_2) \right|^2 + \left| g(t, x_1) - g(t, x_2) \right|^2 \leq \beta(t)^2 \rho_1(|x_1 - x_2|^2);
\]

\[
(H2) \left| b(t, x) \right|^2 + \left| h(t, x) \right|^2 + \left| g(t, x) \right|^2 \leq \beta(t)^2 + \beta_2^2 |x|^2,
\]

where \(\beta : [0, T] \to \mathbb{R}^+ \) is square integrable, \(\beta_1 \in M^2_G([0, T]) \), \(\beta_2 \in \mathbb{R}^+ \) and \(\rho : (0, +\infty) \to (0, +\infty) \) is a continuous increasing and concave function that vanishes at 0+ and satisfies

\[
\int_0^1 \frac{dr}{\rho(r)} = +\infty.
\]

(3.2)

Assumption 3.3. For each \(t \in [0, T] \) and \(x, x_1, x_2 \in \mathbb{R}^n \),

\[
(H1') \left\{ \begin{array}{l}
\left| b(t, x_1) - b(t, x_2) \right| + \left| h(t, x_1) - h(t, x_2) \right| \leq \beta(t) \rho_1(|x_1 - x_2|); \\
\left| g(t, x_1) - g(t, x_2) \right|^2 \leq \beta(t)^2 \rho_2(|x_1 - x_2|^2);
\end{array} \right.
\]

(\(H2'\)) \(|b(t, x)|^p + |h(t, x)|^p + |g(t, x)|^p \leq \beta_1(t)^p + \beta_2^p |x|^p,
\)

where \(\beta : [0, T] \to \mathbb{R}^+ \) is square integrable, for some \(p > 2 \), \(\beta_1 \in M^p_G([0, T]) \), \(\beta_2 \in \mathbb{R}^+ \) and both \(\rho_1, \rho_2 : (0, +\infty) \to (0, +\infty) \) are continuous increasing and concave functions that vanish at 0+ and satisfy (3.2). We assume moreover that

\[
\rho_3(r) := \frac{\rho_2(r^2)}{r}, \quad r \in (0, +\infty),
\]

is also a continuous increasing and concave function that vanishes at 0+ and satisfies

\[
\int_0^1 \frac{dr}{\rho_1(r) + \rho_3(r)} = +\infty.
\]

Remark 3.3. We give an example to show that (H1') is “weaker” than (H1). If we set

\[
\left\{ \begin{array}{l}
\rho_1(r) = r \ln \frac{r}{1}; \\
\rho_2(r) = r \ln \frac{1}{r},
\end{array} \right. \quad r \in (0, +\infty),
\]

then (H1') is satisfied but (H1) is not.

To ensure that (3.1) is well defined, all the integrands in (3.1) should be in \(M^2_G([0, T]; \mathbb{R}^n) \). Thus, we need the following lemma:

Lemma 3.4. For some \(q \geq 1 \), \(\zeta \) is a function that satisfies for each \(x \in \mathbb{R}^n \), \(\zeta(\cdot, x) \in M^q_G([0, T]; \mathbb{R}^n) \). We assume moreover that, for each \(x, x_1, x_2 \in \mathbb{R}^n \):

(\(A1\)) \(\left| \zeta(t, x_1) - \zeta(t, x_2) \right| \leq \beta(t) \gamma(|x_1 - x_2|) \);

(\(A2\)) \(\left| \zeta(t, x) \right| \leq [\beta_1(t) + \beta_2|x|] \),

where \(\beta : [0, T] \to \mathbb{R}^+ \) is \(q \)-integrable, \(\beta_1 \in M^q_G([0, T]) \), \(\beta_2 \in \mathbb{R}^+ \) and \(\gamma : (0, +\infty) \to (0, +\infty) \) is an increasing function vanishes at 0+. Then, for each \(X \in M^q_G([0, T]; \mathbb{R}^n) \), \(\zeta(\cdot, X) \) is an element in \(M^q_G([0, T]; \mathbb{R}^n) \).

Remark 3.5. When \(q = 2 \), all the coefficients in the GSDE (3.1) satisfy both (A1) and (A2) under either Assumption 3.1 or 3.2. Therefore, the \(G \)-stochastic integrals in the GSDE (3.1)
are well defined for any solution \(X \in M^2_G([0,T];\mathbb{R}^n) \). We postpone the proof of this lemma to the appendix.

3.2 Main Result

As a starting point, we first refer to an inequality in Bihari\(^1\) (Bihari’s inequality). Then, we prove the existence and uniqueness theorem for the GSDE (3.1) under Assumption 3.1.

Lemma 3.6. Let \(\rho : (0, +\infty) \to (0, +\infty) \) be a continuous and increasing function that vanishes at 0+ and satisfies (3.2). Let \(u \) be a measurable and non-negative function defined on \((0, +\infty)\) that satisfies

\[
 u(t) \leq a + \int_0^t \kappa(s)\rho(u(s))\,ds, \quad t \in (0, +\infty),
\]

where \(a \in \mathbb{R}^+ \) and \(\kappa : [0,T] \to \mathbb{R}^+ \) is Lebesgue integrable. We have

1. If \(a = 0 \), then \(u(t) = 0, \quad t \in (0, +\infty) \), \(\lambda \)-a.e.;
2. If \(a > 0 \), we define

\[
 v(t) := \int_{t_0}^t \frac{1}{\rho(s)}\,ds, \quad t \in \mathbb{R}^+,
\]

where \(t_0 \in (0, +\infty) \), then

\[
 u(t) \leq v^{-1}(v(a) + \int_0^t \kappa(s)\,ds).
\]

Theorem 3.7. Under Assumption 3.1, there exists a unique process \(X \in M^2_G([0,T];\mathbb{R}^n) \) that satisfies the GSDE (3.1).

Proof. We begin with the proof of the uniqueness. Suppose \(X(\cdot; x_i) \in M^2_G([0,T];\mathbb{R}^n) \) is a solution to the GSDE (3.1) with initial value \(x_i, \quad i = 1, 2 \), then we calculate

\[
 |X(t; x_1) - X(t; x_2)|^2 \leq C \left(|x_1 - x_2|^2 + \left| \int_0^t (b(s, X(s; x_1)) - b(s, X(s; x_2)))\,ds \right|^2 \right.
\]
\[
 + \left. \left| \sum_{i,j=1}^d \int_0^t (h_{ij}(s, X(s; x_1)) - h_{ij}(s, X(s; x_2)))d(B^i_t, B^j_t) \right|^2 \right.
\]
\[
 + \left. \left| \sum_{i,j=1}^d \int_0^t (g_{ij}(s, X(s; x_1)) - g_{ij}(s, X(s; x_2)))dB^i_t \right|^2 \right).
\]

By the BDG type inequalities and (H1), we deduce

\[
 \mathbb{E}\left[\sup_{0 \leq s \leq t} \left| \int_0^s (b(r, X(r; x_1)) - b(r, X(r; x_2)))\,dr \right|^2 \right] \leq C \int_0^t |\beta(s)|^2 \mathbb{E}[\rho(|X(s; x_1) - X(s; x_2)|^2)] \,ds;
\]

\[
 \mathbb{E}\left[\sup_{0 \leq s \leq t} \left| \int_0^s (h_{ij}(r, X(r; x_1)) - h_{ij}(r, X(r; x_2)))d(B^i_t, B^j_t) \right|^2 \right] \leq C \int_0^t |\beta(s)|^2 \mathbb{E}[\rho(|X(s; x_1) - X(s; x_2)|^2)] \,ds
\]

\[
 \mathbb{E}\left[\sup_{0 \leq s \leq t} \left| \int_0^s (g_{ij}(r, X(r; x_1)) - g_{ij}(r, X(r; x_2)))dB^i_t \right|^2 \right] \leq C \int_0^t |\beta(s)|^2 \mathbb{E}[\rho(|X(s; x_1) - X(s; x_2)|^2)] \,ds
\]
and

\[
E \left[\sup_{0 \leq s \leq t} \left| \int_0^s (g_j(r, X(r; x_1)) - g_j(r, X(r; x_2))) dB_t^j \right|^2 \right] \leq C \int_0^t |\beta(s)|^2 E[\rho(|X(s; x_1) - X(s; x_2)|^2)]\, ds.
\]

Set

\[
u(t) := \sup_{0 \leq s \leq t} E[|X(s; x_1) - X(s; x_2)|^2],
\]

then

\[
u(t) \leq C \left(|x_1 - x_2|^2 + \int_0^t |\beta(s)|^2 E[\rho(|X(s; x_1) - X(s; x_2)|^2)]\, ds \right).
\]

As \(\rho \) is an increasing and concave function, by Lemma 2.12, we have

\[
u(t) \leq C \left(|x_1 - x_2|^2 + \int_0^t |\beta(s)|^2 E[\rho(\sup_{0 \leq r \leq s} E[|X(r; x_1) - X(r; x_2)|^2])]\, ds \right)
\]

\[
\leq C \left(|x_1 - x_2|^2 + \int_0^t |\beta(s)|^2 (\rho(u(s)))\, ds \right).
\]

By Lemma 3.6, we obtain

\[
u(t) \leq v^{-1} \left(v(C|x_1 - x_2|^2) + C \int_0^t |\beta(s)|^2\, ds \right).
\]

In particular, if \(x_1 = x_2 \), then \(\nu(t) = 0, \ 0 \leq t \leq T \), which implies the pathwise uniqueness.

Now we start to prove the existence. We define a Picard sequence \(\{X^m(\cdot)\}_{m \in \mathbb{N}} \) by the following procedure:

\[
X^0(t) = x, \quad 0 \leq t \leq T,
\]

and

\[
X^{m+1}(t) = x + \int_0^t b(s, X^m(s))\, ds + \sum_{i,j=1}^d \int_0^t h_{ij}(s, X^m(s))\, dB_t^j + \sum_{j=1}^d \int_0^t g_j(s, X^m(s))\, dB_t^j, \quad 0 \leq t \leq T. \tag{3.3}
\]

By Lemma 3.4, the sequence \(\{X^m(\cdot)\}_{m \in \mathbb{N}} \) is well defined in \(M^2_G([0, T]; \mathbb{R}^n) \).

First, we establish an a priori estimate for \(\{E[|X^m(t)|^2]\}_{m \in \mathbb{N}} \). From (3.3), by the BDG type inequalities, we may deduce

\[
E[|X^{m+1}(t)|^2] \leq C \left(|x|^2 + \int_0^t E[|\beta_1(s)|^2 + \beta_2^2 |X^m(s)|^2]\, ds \right)
\]

\[
\leq C \left(|x|^2 + \int_0^t E[|\beta_1(s)|^2]\, ds + \beta_2^2 \int_0^t E[|X^m(s)|^2]\, ds \right).
\]

Set

\[
p(t) := C e^{C \beta_2 t} \left(|x|^2 + \int_0^t E[|\beta_1(s)|^2]\, ds \right).
\]
then \(p(\cdot) \) is the solution to the following ordinary differential equation:

\[
p(t) = C \left(|x|^2 + \int_0^t \mathbb{E}[|\beta_s|^2] ds + \beta_2^2 \int_0^t p(s) ds \right).
\]

By recurrence, it is easy to verify that for each \(m \in \mathbb{N} \),

\[
\mathbb{E}[|X^m(t)|^2] \leq p(t),
\]

the right-hand side of which is continuous and therefore, bounded on \([0, T]\).

Secondly, for each \(k, m \in \mathbb{N} \), we define

\[
u_{k+1, m}(t) := \sup_{0 \leq s \leq t} \mathbb{E}[|X^{k+1+m}(s) - X^{k+1}(s)|^2].
\]

By the definition of the sequence \(\{X^m(\cdot)\}_{m \in \mathbb{N}} \), we have

\[
X^{k+1+m}(t) - X^{k+1}(t) = \int_0^t (b(s, X^{k+m}(s)) - b(s, X^{k}(s))) ds
\]

\[
+ \sum_{i,j=1}^d \int_0^t (h_{ij}(s, X^{k+m}(s)) - h_{ij}(s, X^{k}(s))) d\langle B^i, B^j \rangle_s
\]

\[
+ \sum_{j=1}^d \int_0^t (g_j(s, X^{k+m}(s)) - g_j(s, X^{k}(s))) dB^j_s.
\]

By an argument similar to the one in the proof of the uniqueness, we obtain

\[
u_{k+1, m}(t) \leq C \int_0^t |\beta(s)|^2 \rho(u_{k,m}(s)) ds.
\]

Set

\[
u_k(t) := \sup_{m \in \mathbb{N}} u_{k,m}(t), \quad 0 \leq t \leq T,
\]

then

\[
0 \leq \nu_{k+1}(t) \leq C \int_0^t |\beta(s)|^2 \rho(\nu_k(s)) ds. \tag{3.4}
\]

Finally, we define

\[
\alpha(t) := \limsup_{k \to +\infty} \nu_k(t), \quad 0 \leq t \leq T,
\]

which is uniformly bounded by \(4p(t) \). Applying the Fatou-Lebesgue theorem to (3.4), we have

\[
0 \leq \alpha(t) \leq C \int_0^t \beta^2(s) \rho(\alpha(s)) ds.
\]

By Lemma 3.6, we deduce

\[
\alpha(t) = 0, \quad 0 \leq t \leq T,
\]

which implies that \(\{X^m(\cdot)\}_{m \in \mathbb{N}} \) is a Cauchy sequence under the norm \(\sup_{0 \leq t \leq T} (\mathbb{E}[|\cdot|^2])^{\frac{1}{2}} \), which is stronger than the \(M_2^d([0, T]; \mathbb{R}^n) \) norm (2.2). Therefore, one can find a process \(X \in M_2^d([0, T]; \mathbb{R}^n) \) that satisfies

\[
\sup_{0 \leq t \leq T} \mathbb{E}[|X^m(t) - X(t)|^2] \to 0, \quad \text{as } m \to +\infty.
\]
Moreover, it is readily observed that
\[
\mathbb{E} \left[\sup_{0 \leq t \leq T} \left| \int_0^t (b(s, X^m(s)) - b(s, X(s))) ds \right|^2 \right]
\]
\[+ \sum_{i,j=1}^d \mathbb{E} \left[\sup_{0 \leq t \leq T} \left| \int_0^t (h_{ij}(s, X^m(s)) - h_{ij}(s, X(s))) d(B^i_s, B^j_s) \right|^2 \right]
\]
\[+ \sum_{i=1}^d \mathbb{E} \left[\sup_{0 \leq t \leq T} \left| \int_0^t (g_j(s, X^m(s)) - g_j(s, X(s))) dB^j_s \right|^2 \right]
\]
\[\leq C \int_0^T |\beta(t)|^2 \rho(\mathbb{E}[|X^m(t) - X(t)|^2]) \, dt
\]
\[\leq C \rho \left(\sup_{0 \leq t \leq T} \mathbb{E}[|X^m(t) - X(t)|^2] \right). \tag{3.5}
\]

By the continuity of \(\rho\) and \(\rho(0+) = 0\), we know that \(\rho(\sup_{0 \leq t \leq T} \mathbb{E}[|X^m(t) - X(t)|^2]) \to 0\) and the left-hand side of (3.5) converges to 0. Thus, \(\{X^m(\cdot)\}_{m \in \mathbb{N}}\) is a successive approximation to \(X\), which is a solution to the GSDE (3.1) in \(M^2_G([0, T]; \mathbb{R}^n)\).

In what follows, we establish the existence and uniqueness theorem to GSDE (3.1) under Assumption 3.2 instead of Assumption 3.1.

Theorem 3.8. Under Assumption 3.2 there exists a unique process \(X \in M^2_G([0, T]; \mathbb{R}^n)\) that satisfies GSDE (3.1).

Proof. We start with the proof of existence. Similar to (3.3), we define a sequence of processes \(\{X^m\}_{m \in \mathbb{N}}\) as follows:
\[X^0(t) = x, \quad 0 \leq t \leq T;\]
and
\[X^{m+1}(t) = x + \int_0^t b(s, X^m(s)) ds + \sum_{i,j=1}^d \int_0^t h_{ij}(s, X^m(s)) d(B^i_s, B^j_s)
\] \[+ \sum_{j=1}^d \int_0^t g_j(s, X^{m+1}(s)) dB^j_s, \quad 0 \leq t \leq T. \tag{3.6}\]

Owing to Theorem 3.7, the sequence \(\{X^m\}_{m \in \mathbb{N}}\) is well defined in \(M^2_G([0, T]; \mathbb{R}^n)\).

We notice that the coefficients in (3.6) cannot not be bounded. In order to apply the G-Itô formula, we shall firstly construct, for each \(m \in \mathbb{N}\), a sequence of G-Itô processes that approximates \(X^m\), and whose coefficients are all truncated. These sequences are given by the following steps:

Step 1: For each \(N \in \mathbb{N}\), we set
\[\zeta^N(t, x) = \begin{cases} \zeta(t, x), & \text{if } |\zeta(t, x)| \leq N; \\ N\zeta(t, x)/|\zeta(t, x)|, & \text{if } |\zeta(t, x)| > N, \end{cases} \tag{3.7}\]
where \(\zeta = b, \ h_{ij}\) or \(g_j\), \(i, j = 1, \cdots, d\), respectively. It is easy to verify that \(b^N, h^N_{ij}\) and \(g^N_j\) still satisfy (H1’) and (H2’).
Step 2: For each $m \in \mathbb{N}$, we define

$$X^{m+1,N}(t) = x + \int_0^t b^N(s, X^m(s)) \, ds + \sum_{i,j=1}^d \int_0^t h^N_{ij}(s, X^m(s)) \, d(B^i, B^j)_s$$

$$+ \sum_{j=1}^d \int_0^t g^N_j(s, X^{m+1}(s)) \, dB^j_s, \quad 0 \leq t \leq T.$$

By Lemma 3.4, the sequence $\{X^{m,N}(\cdot)\}_{N \in \mathbb{N}}$ is also well defined in $M^2_{\mathcal{F}}([0, T]; \mathbb{R}^n)$.

Let us now establish an a priori estimate for $\{\mathbb{E}[|X^m(t)|^p]\}_{m \in \mathbb{N}}$. By (H2) and the BDG type inequalities,

$$\mathbb{E}[|X^{m+1}(t)|^p] \leq C \left(|x|^p + \int_0^t \mathbb{E}[|\beta_1(s)|^p] \, ds + \beta_2^p \int_0^t \mathbb{E}[|X^m(s)|^p] \, ds \right).$$

By induction, we obtain that $\mathbb{E}[|X^m(t)|^p] \leq p'(t)$, where $p'(\cdot)$ is the solution to the following ordinary differential equation with coefficients in (3.8):

$$p'(t) = C \left(|x|^p + \int_0^t \mathbb{E}[|\beta_1(s)|^p] \, ds + \beta_2^p \int_0^t p'(s) \, ds \right).$$

Since $p'(\cdot)$ is continuous and bounded on $[0, T]$, we have

$$\sup_{m \in \mathbb{N}} \sup_{0 \leq t \leq T} \mathbb{E}[|X^m(t)|^p] \leq M < +\infty. \quad (3.9)$$

Fixing $m > 0$, we calculate

$$\sup_{0 \leq t \leq T} \mathbb{E}[|X^{m,N}(t) - X^m(t)|]$$

$$\leq \mathbb{E} \left[\int_0^T |b^N(t, X^m(t)) - b(t, X^m(t))| \, dt \right]$$

$$+ \sum_{i,j=1}^d \mathbb{E} \left[\int_0^T |h^N_{ij}(t, X^m(t)) - h_{ij}(t, X^m(t))| \, d(B^i, B^j)_s \right]$$

$$+ \sup_{0 \leq t \leq T} \sum_{j=1}^d \mathbb{E} \left[\int_0^t (g^N_j(s, X^{m+1}(s)) - g_j(s, X^{m+1}(s))) \, dB^j_s \right].$$

By the definition of the truncated coefficients and the BDG type inequalities, we deduce that

$$\sup_{0 \leq t \leq T} \mathbb{E}[|X^{m,N}(t) - X^m(t)|]$$

$$\leq \int_0^T \mathbb{E}[|b(t, X^m(t))| \mathbf{1}_{|b(t, X^m(t))| > N}] \, dt$$

$$+ C \left(\sum_{i,j=1}^d \int_0^T \mathbb{E}[|h_{ij}(t, X^m(t))| \mathbf{1}_{|h_{ij}(t, X^m(t))| > N}] \, dt \right)$$

$$+ \sum_{j=1}^d \left(\int_0^T \mathbb{E}[|g_j(t, X^{m+1}(t))|^{2 \mathbf{1}_{|g_j(t, X^{m+1}(t))| > N}}] \, dt \right)^{\frac{1}{2}}. \quad (3.10)$$
By Lemma 3.4, for each \(m \in \mathbb{N} \), \(h_i(\cdot, X^m) \), \(h_{ij}(\cdot, X^m) \), \(g_j(\cdot, X^m) \in M^2_G([0, T]; \mathbb{R}^n) \), \(i = 1, \ldots, d \). Then, by Remark 2.15 and Theorem 2.13 along with Lebesgue’s dominated convergence theorem, the right-hand side of (3.10) converges to 0. Therefore,

\[
\sup_{0 \leq t \leq T} \mathbb{E}[|X^{m,N}(t) - X^m(t)|] \longrightarrow 0, \quad \text{as } N \to +\infty. \tag{3.11}
\]

Since \(|x|\) is not a \(C^2(\mathbb{R}^n) \) function, we have to approximate \(|x|\) by a sequence of \(C^2(\mathbb{R}^n) \) functions, i.e., \(\{F_\varepsilon(x)\}_{\varepsilon>0} \), where

\[
F_\varepsilon(x) := (|x|^2 + \varepsilon)^{\frac{1}{2}}, \quad x \in \mathbb{R}^n.
\]

We notice that

\[
F_\varepsilon(x) \geq \varepsilon^{\frac{1}{2}}, \quad \left| \frac{\partial F_\varepsilon(x)}{\partial x_i} \right| \leq 1; \quad \left| \frac{\partial^2 F_\varepsilon(x)}{\partial x_i \partial x_j} \right| \leq \frac{2}{F_\varepsilon(x)},
\]

and thus, \(\frac{\partial F_\varepsilon(x)}{\partial x_i}, \frac{\partial^2 F_\varepsilon(x)}{\partial x_i \partial x_j}, \ i, j = 1, \ldots, n \), are uniformly Lipschitz.

Fixing an \(\varepsilon \in (0, +\infty) \), we define

\[
\Delta F^{k,m,N}_\varepsilon(t) := F_\varepsilon(\Delta X^{k,m,N}(t)) - F_\varepsilon(\Delta X^{k,m}(t)),
\]

where

\[
\Delta X^{k,m,N}(t) = X^{k+m,N}(t) - X^{k,N}(t)
\]

and

\[
\Delta X^{k,m}(t) = X^{k+m}(t) - X^{k}(t).
\]

We apply the \(G \)-Itô formula to \(F_\varepsilon(\Delta X^{k+1,m,N}(t)) \) and take \(G \)-expectation on both sides. Then, from (3.12) and by the BDG type inequalities, it is easy to show that

\[
\mathbb{E}[F_\varepsilon(\Delta X^{k+1,m,N}(t))]
\]

\[
\leq \int_0^t \mathbb{E}[|b^N(s, X^{k+m,N}(s)) - b^N(s, X^{k,N}(s))|] \, ds
\]

\[
+ C \left(\sum_{i,j=1}^d \int_0^t \mathbb{E}[|h^N_{ij}(s, X^{k+m,N}(s)) - h^N_{ij}(s, X^{k,N}(s))|] \, ds \right.
\]

\[
+ \left. \sum_{j=1}^d \int_0^t \mathbb{E} \left[\frac{|g_j^N(s, X^{k+m+1,N}(s)) - g_j^N(s, X^{k+1,N}(s))|^2}{F_\varepsilon(\Delta X^{k+1,m,N}(s))} \right] \, ds \right), \quad 0 \leq t \leq T. \tag{3.13}
\]

By (H1’) and Lemma 2.12, we deduce from (3.13) that

\[
\mathbb{E}[F_\varepsilon(\Delta X^{k+1,m,N}(t))] \leq C \int_0^t \beta(s) \left(\rho_1(\mathbb{E}[|\Delta X^{k,m,N}(s)|]) + \mathbb{E} \left[\rho_2(\frac{|\Delta X^{k+1,m,N}(s)|^2}{F_\varepsilon(\Delta X^{k+1,m,N}(s))}) \right] \right) \, ds. \tag{3.14}
\]

From (3.12), we know that \(F_\varepsilon(x) \) is uniformly Lipschitz. Based on this fact and (3.11), we obtain

\[
\sup_{0 \leq t \leq T} \mathbb{E}[|\Delta F^{k+1,m,N}_\varepsilon(t)|]
\]

\[
\leq \sup_{0 \leq t \leq T} \mathbb{E}[|\Delta X^{k+1,m,N}(t) - \Delta X^{k+1,m}(t)|]
\]

\[
\leq \sup_{0 \leq t \leq T} \mathbb{E}[|X^{k+1,m,N}(t) - X^{k+1,m,N}(t)|]
\]

\[
\quad + \sup_{0 \leq t \leq T} \mathbb{E}[|X^{k+1,m,N}(t) - X^{k+1,m+N}(t)|] \longrightarrow 0, \quad \text{as } N \to +\infty. \tag{3.15}
\]
Since \(\rho_1, \rho_2 : (0, +\infty) \to (0, +\infty) \) are concave and vanish at 0+, for each \(\delta \in (0, +\infty) \), we can find a positive constant \(K_\delta \) such that for each \(x \in [\delta, +\infty) \), \(\rho_1(x), \rho_2(x) \leq K_\delta x \). Fixing a \(\delta > 0 \) and \(M \in (\delta, +\infty) \), we calculate

\[
\sup_{0 \leq t \leq T} \mathbb{E} \left[\frac{\rho_2(\Delta X^{k+1,m}(t))^2}{F_\varepsilon(\Delta X^{k+1,m,N}(t))} \right] \leq 2^{t} K_\delta \sup_{0 \leq t \leq T} \mathbb{E}[|\Delta X^{k+1,m}(t)|^21_{|\Delta X^{k+1,m}(t)|^2 > M}] + \varepsilon^{-1} \rho_2(M) \sup_{0 \leq t \leq T} \mathbb{E}[|\Delta F_\varepsilon^{k+1,m,N}(t)|].
\]

On account of (3.15) and by Hölder’s inequality and Lemma 2.8,

\[
\limsup_{N \to +\infty} \sup_{0 \leq t \leq T} \mathbb{E} \left[\frac{\rho_2(\Delta X^{k+1,m}(t))^2}{F_\varepsilon(\Delta X^{k+1,m,N}(t))} - \frac{\rho_2(\Delta X^{k+1,m}(t))^2}{F_\varepsilon(\Delta X^{k+1,m}(t))} \right] \leq \frac{2K_\delta}{\varepsilon^{2} M^{p-2}} \sup_{0 \leq t \leq T} \mathbb{E}[|\Delta X^{k+1,m}(t)|^p].
\]

As \(M \) can be arbitrary large and \(\mathbb{E}[|\Delta X^{k+1,m}(t)|^p] \) is finite from (3.9), we deduce

\[
\lim_{N \to +\infty} \sup_{0 \leq t \leq T} \mathbb{E} \left[\frac{\rho_2(\Delta X^{k+1,m}(t))^2}{F_\varepsilon(\Delta X^{k+1,m,N}(t))} \right] = 0.
\]

Due to (3.15) again, the left-hand side of (3.14) converges to \(\mathbb{E}[F_\varepsilon(\Delta X^{k+1,m}(t))], \) as \(N \to +\infty \). Then, by the Fatou-Lebesgue theorem, we have

\[
\mathbb{E}[F_\varepsilon(\Delta X^{k+1,m}(t))] \leq C \limsup_{N \to +\infty} \int_0^t \beta(s) \left(\rho_1(\mathbb{E}[\Delta X^{k,m}(s)]) + \mathbb{E} \left[\frac{\rho_2(\Delta X^{k+1,m}(s))^2}{F_\varepsilon(\Delta X^{k+1,m,N}(s))} \right] \right) ds \\
\leq C \int_0^t \beta(s) \left(\rho_1(\mathbb{E}[\Delta X^{k,m}(s)]) + \limsup_{N \to +\infty} \mathbb{E} \left[\frac{\rho_2(\Delta X^{k+1,m}(s))^2}{F_\varepsilon(\Delta X^{k+1,m,N}(s))} \right] \right) ds \\
= C \int_0^t \beta(s) \left(\rho_1(\mathbb{E}[\Delta X^{k,m}(s)]) + \mathbb{E} \left[\frac{\rho_2(\Delta X^{k+1,m}(s))^2}{F_\varepsilon(\Delta X^{k+1,m}(s))} \right] \right) ds.
\]

Letting \(\varepsilon \to 0 \), \(F_\varepsilon(\Delta X^{k+1,m}(t)) \downarrow |\Delta X^{k+1,m}(t)| \). By Remark 2.15, for \(t \in [0, T] \), \(\lambda \)-a.e., \(\Delta X^{k+1,m}(t) \) belongs to \(L_p^0(\Omega) \). One the other hand, for each \(\varepsilon > 0 \), \(F_\varepsilon(x) \) is Lipschitz in \(x \), then \(F_\varepsilon(\Delta X^{k+1,m}(t)) \) is also an element in \(L_p^0(\Omega) \). By Theorem 2.10, (H1’) and Lemma 2.12, we obtain \(\mathbb{E}[F_\varepsilon(\Delta X^{k+1,m}(t))] \right) \leq \mathbb{E}[\Delta X^{k+1,m}(t)] \) and the following inequality:

\[
\mathbb{E}[|\Delta X^{k+1,m}(t)|] \leq C \int_0^t \beta(s) \left(\rho_1(\mathbb{E}[\Delta X^{k,m}(s)]) + \mathbb{E} \left[\frac{\rho_2(\Delta X^{k+1,m}(s))^2}{|\Delta X^{k+1,m}(s)|} \right] \right) ds \\
\leq C \int_0^t \beta(s) \left(\rho_1(\mathbb{E}[\Delta X^{k,m}(s)]) + \mathbb{E} \left[\frac{\rho_2(\Delta X^{k+1,m}(s))^2}{|\Delta X^{k+1,m}(s)|} \right] \right) ds \\
= C \int_0^t \beta(s) \left(\rho_1(\mathbb{E}[\Delta X^{k,m}(s)]) + \rho_3(\mathbb{E}[\Delta X^{k+1,m}(s)]) \right) ds.
\]

Borrowing the notations in the proof of Theorem 3.7, we rewrite (3.17) into a simpler form:

\[
u_{k+1,m}(t) \leq C \int_0^t \beta(s)(\rho_1(u_{k,m}(s)) + \rho_3(u_{k+1,m}(s))) ds.
\]
Taking the supremum of the left-hand side over all \(m \in \mathbb{N} \), we have
\[
0 \leq v_{k+1}(t) \leq C \int_0^t \beta(s)(\rho_1(v_k(s)) + \rho_3(v_{k+1}(s)))ds,
\]
and it follows that
\[
0 \leq \alpha(t) \leq C \int_0^t \beta(s)(\rho_1(\alpha(s)) + \rho_3(\alpha(s)))ds.
\]
By (H1') and Lemma 3.6, we deduce that the last equality in (3.18) may be easily deduced by Lemma 2.8. Letting
\[
\lim_{T \to +\infty} \sup_{0 \leq t \leq T} \mathbb{E}|X^m(t) - X(t)|^p = 0,
\]
as \(N \to +\infty \).

By a classical argument, there exists a process \(X(\cdot) \in M_G^1([0, T]; \mathbb{R}^n) \) and a subsequence \(\{X^{m_k}(\cdot)\}_{k \in \mathbb{N}} \subset \{X^m(\cdot)\}_{m \in \mathbb{N}} \) such that for each \(t \in [0, T] \),
\[
X^{m_k}(t) \to X(t), \text{ q.s., as } l \to +\infty.
\]
By the a priori estimate (3.9) and Lemma 2.11, we know
\[
\lim_{l \to +\infty} \sup_{0 \leq t \leq T} \mathbb{E}|X^{m_l}(t) - X(t)|^p = \sup_{l \to +\infty} \mathbb{E}\liminf_{l \to +\infty} |X^{m_l}(t) - X^{m_l}(t)|^p.
\]
Fixing a \(\delta \in (0, +\infty) \), we calculate
\[
\lim_{m \to +\infty} \sup_{0 \leq t \leq T} \mathbb{E}|X^m(t) - X(t)|^2
\]
\[
\leq \delta^2 + \limsup_{m \to +\infty} \sup_{0 \leq t \leq T} \mathbb{E}|X^m(t) - X(t)|^2 1_{\{|X^m(t) - X(t)| > \delta\}}
\]
\[
\leq \delta^2 + \limsup_{m \to +\infty} \sup_{0 \leq t \leq T} \left(\frac{\mathbb{E}|X^m(t) - X(t)|^p}{M^p} \right) \delta \left(\mathbb{E}1_{\{|X^m(t) - X(t)| > \delta\}} \right)^{\frac{p-2}{p}}
\]
\[
\leq \delta^2 + M\sup_{0 \leq t \leq T} \left(\mathbb{E}1_{\{|X^m(t) - X(t)| > \delta\}} \right)^{\frac{p-2}{p}}.
\]
Because
\[
\lim_{m \to +\infty} \sup_{0 \leq t \leq T} \mathbb{E}|X^m(t) - X(t)| = 0,
\]
the last equality in (3.18) may be easily deduced by Lemma 2.8. Letting \(\delta \to 0 \), we obtain
\[
\lim_{m \to +\infty} \sup_{0 \leq t \leq T} \mathbb{E}|X^m(t) - X(t)|^2 = 0.
\]
On the other hand, fixing a \(\delta \in (0, +\infty) \), we have the following inequality in a way similar to (3.16):
\[
\limsup_{m \to +\infty} \int_0^t \beta^2(s) \mathbb{E}(|\rho_1(|X^m(t) - X(t)|)|^2) \, dt
\]
\[
\leq C(\rho_1(\delta^2))^2 + K\sup_{0 \leq t \leq T} \mathbb{E}|X^m(t) - X(t)|^2
\]
\[
= C(\rho_1(\delta^2))^2.
\]
As δ may be chosen to be arbitrarily small, by (H1'), we deduce
\[
\lim_{m \to \infty} E \left[\sup_{0 \leq r \leq T} \left| \int_0^t (b(s, X^m(s)) - b(s, X(s))) ds \right|^2 \right] = 0
\]
and
\[
\lim_{m \to \infty} E \left[\sup_{0 \leq r \leq T} \left| \int_0^t (h_{ij}(s, X^m(s)) - h_{ij}(s, X(s))) d(B^i, B^j)_s \right|^2 \right] = 0, \quad i, j = 1, \ldots, d.
\]
Moreover, by the BDG type inequalities and Lemma 2.12, we may also deduce
\[
\limsup_{m \to +\infty} \left[\sup_{0 \leq t \leq T} \left| \int_0^t (g_j(s, X^m(s)) - g_j(s, X(s))) dB^j_s \right|^2 \right] = 0, \quad j = 1, \ldots, d.
\]
In view of the above arguments, we conclude that $X \in M^2_{\mathbb{L}}([0, T]; \mathbb{R}^n)$ is a solution to the GSDE (3.1).

Now we turn to the proof of uniqueness. Suppose $X_1, X_2 \in M^2_{\mathbb{L}}([0, T]; \mathbb{R}^n)$ are two solutions that satisfy the GSDE (3.1), borrowing the notations in the proof of existence, we define for each $N \in \mathbb{N}$,
\[
(X^1)^N(t) = x + \int_0^t b^N(s, X^1(s)) ds + \sum_{i,j=1}^d \int_0^t h_{ij}^N(s, X^1(s)) dB^i_s \quad 0 \leq t \leq T;
\]
\[
(X^2)^N(t) = x + \int_0^t b^N(s, X^2(s)) ds + \sum_{i,j=1}^d \int_0^t h_{ij}^N(s, X^2(s)) dB^i_s \quad 0 \leq t \leq T.
\]
Following a similar procedure in the proof of the existence, we know that $\{(X^1)^N\}_{N \in \mathbb{N}}$ and $\{(X^2)^N\}_{N \in \mathbb{N}}$ converge to X^1 and X^2, respectively in $M^1_{\mathbb{L}}([0, T]; \mathbb{R}^n)$ and we have
\[
E[F_{\varepsilon}((X^1)^N(t) - (X^2)^N(t))] \leq C \int_0^t \beta(s) \left(\rho_1(E[|X^1(s) - X^2(s)|]) \right) + \rho_2(E[|X^1(s) - X^2(s)|]) ds.
\]
Letting $N \to +\infty$ and $\varepsilon \to 0$, we deduce
\[
E[|X^1(t) - X^2(t)|] \leq C \int_0^t \beta(s) \left(\rho_1(\mathbb{E}[|X^1(s) - X^2(s)|]) \right) + \rho_3(\mathbb{E}[|X^1(s) - X^2(s)|]) ds.
\]
Thus,
\[
\sup_{0 \leq s \leq t} E[|X^1(s) - X^2(s)|] \leq C \int_0^t \beta(s) \left(\rho_1 + \rho_3 \left(\sup_{0 \leq u \leq s} \mathbb{E}[|X^1(u) - X^2(u)|] \right) \right) ds.
\]
Finally, Lemma 3.6 gives the uniqueness result.

\begin{remark}
Fang and Zhang\cite{3} proved a pathwise uniqueness result for the classical SDEs by a stopping time technique, where ρ is not necessary to be concave. Although we do have a
\end{remark}
similar stopping time technique, Lemma 3.3 in [16] is not true in the \(G \)-framework, because for an \(M^1_G([0,T];\mathbb{R}^n) \) process \(\xi \), it is difficult to verify whether \(\Phi(\xi) \) (using the notations in that paper) satisfies Definition 4.4 in [6] or not. This means that the \(G \)-stochastic integrals in the proof of that lemma, whose upper limit involves a stopping time, cannot be well defined. Fang and Zhang\(^{[7]}\) also derived an existence result by the well-known Yamada-Watanabe theorem, which says that the existence of weak solution and pathwise uniqueness imply the existence of strong solution. In the \(G \)-framework, the corresponding Yamada-Watanabe theorem are unfortunately not available.

4 Solvability of \(G \)-backward Stochastic Differential Equations

In this section, we prove the existence and uniqueness theorem for the following GBSDE:

\[
Y_t = \mathbb{E} \left[\xi + \int_t^T f(s, Y_s)ds + \sum_{i,j=1}^d \int_t^T h_{ij}(s, Y_s)dB^i(s) \bigg| \Omega_t \right], \quad 0 \leq t \leq T, \tag{4.1}
\]

where \(\xi \in L^1_\mathbb{F}(\Omega_T;\mathbb{R}^n) \) and \(f, g_{ij} \) are given functions that satisfy for each \(x \in \mathbb{R}^n \), \(f(\cdot, x) \), \(h_{ij}(\cdot, x) \in M^1_G([0,T];\mathbb{R}^n) \), \(i, j = 1, \ldots, d \).

We assume moreover that, for each \(t \in [0,T] \) and \(y, y_1, y_2 \in \mathbb{R}^n \):

\begin{enumerate}
 \item[(H1\(^*\))] \(|f(t, y_1) - f(t, y_2)| + |h(t, y_1) - h(t, y_2)| \leq |\beta(t)| \rho(|y_1 - y_2|) \);
 \item[(H2\(^*\))] \(|f(t, y)| + |h(t, y)| \leq \beta_1(t) + \beta_2|y| \),
\end{enumerate}

where \(\beta : [0,T] \rightarrow \mathbb{R}^+ \) is Lebesgue integrable, \(\beta_1 \in M^1_G([0,T]) \), \(\beta_2 \in \mathbb{R}^+ \) and \(\rho : (0, +\infty) \rightarrow (0, +\infty) \) is a continuous increasing and concave function that vanishes at 0+ and satisfies (3.2).

Theorem 4.1. Under the assumptions above, (4.1) admits a unique solution \(Y \in M^1_G([0,T];\mathbb{R}^n) \).

Proof. Let \(Y_1, Y_2 \in M^1_G([0,T];\mathbb{R}^n) \) be two solutions of (4.1), then

\[
Y_1^t - Y_2^t = \mathbb{E} \left[\xi + \int_t^T f(s, Y_1^s)ds + \sum_{i,j=1}^d \int_t^T h_{ij}(s, Y_1^s)dB^i(s) \bigg| \Omega_t \right] - \mathbb{E} \left[\xi + \int_t^T f(s, Y_2^s)ds + \sum_{i,j=1}^d \int_t^T h_{ij}(s, Y_2^s)dB^i(s) \bigg| \Omega_t \right].
\]

Due to the sub-additivity of \(\mathbb{E}|.| \Omega_t \), we obtain

\[
|Y_1^t - Y_2^t| \leq \mathbb{E} \left[\left| \int_t^T (f(s, Y_1^s) - f(s, Y_2^s))ds \right| \bigg| \Omega_t \right] + \sum_{i,j=1}^d \mathbb{E} \left[\left| \int_t^T (h_{ij}(s, Y_1^s) - h_{ij}(s, Y_2^s))dB^i(s) \bigg| \Omega_t \right].
\]

Taking \(G \)-expectation on both sides and using the BDG type inequalities and Lemma 2.12, we have

\[
\mathbb{E}|Y_1^t - Y_2^t| \leq \mathbb{E} \left[\int_t^T (f(s, Y_1^s) - f(s, Y_2^s))ds \right] + \sum_{i,j=1}^d \mathbb{E} \left[\int_t^T (h_{ij}(s, Y_1^s) - h_{ij}(s, Y_2^s))dB^i(s) \bigg| ds \right] \leq C \int_t^T \rho(\mathbb{E}|Y_1^s - Y_2^s|)ds.
\]
Set
\[u(t) = \mathbb{E}[|Y_t^1 - Y_t^2|], \]
then
\[u(t) \leq K \int_t^T \rho(u(s))ds. \]
By Lemma 3.6, we deduce
\[u(t) = 0, \quad 0 \leq t \leq T, \]
which yields the pathwise uniqueness.

For the proof of existence, we define a sequence of processes \(\{Y^m\}_{m \in \mathbb{N}} \) as follows:
\[Y^0(t) = 0, \quad 0 \leq t \leq T; \]
and
\[Y^{m+1}(t) = \mathbb{E}\left[\zeta + \int_t^T f(s, Y^m_s)ds + \sum_{i,j=1}^d \int_t^T h_{ij}(s, Y^m_s)d\langle B^i, B^j \rangle_s \bigg| \Omega_t \right], \quad 0 \leq t \leq T. \]
The rest of the proof goes in a similar way to the proof of Theorem 3.7, so we omit it. \(\Box \)

Remark 4.2. We notice that the definition of the GBSDE above is not the typical one (cf. (3.1) in [4]), in which the generator \(f \) involves \(Z \), i.e., the integrand of the Itô type G-stochastic integral with respect to \(G \)-Brownian motion. Based on the great efforts of many authors, such as Xu and Zhang\(^{[17]} \), Soner et al.\(^{[13]} \) and Song\(^{[14,15]} \), Peng et al.\(^{[11]} \) have given a complete theory for \(G \)-martingale representation. Subsequently, Hu et al.\(^{[5]} \) have derived a complete existence and uniqueness theorem for nonlinear GBSDEs with a generator \(f \) that is uniformly Lipschitz in both \(y \) and \(z \).

An extensive study to GBSDEs is meaningful because there will be numerous possible applications of GBSDEs in finance, for example, pricing and robust utility maximization in a model with a non-dominated class of probability measures.

Appendix

In the appendix, we give the proof of Lemma 3.4 in three steps. First of all, we consider the simplest case when \(\zeta \) is uniformly Lipschitz in \(x \). Then, we prove this lemma for all \(\zeta \) that is uniformly bounded. To generalize the result to the case that \(\zeta \) is unbounded, we need to define a sequence of truncated functions \(\{\zeta^N\}_{N \in \mathbb{N}} \) as (3.7) and complete the proof with the help of Theorem 2.13. Now, we begin with the following lemmas.

Lemma 5.1. For some \(p \geq 1 \), \(\zeta \) is a function that satisfies \(\zeta(\cdot, x) \in \mathcal{M}_G^p([0, T]; \mathbb{R}^n) \) for each \(x \in \mathbb{R}^n \). We assume moreover that \(\zeta(\cdot, x) \) satisfies the Lipschitz condition, i.e., for each \(t \in [0, T] \) and each \(x_1, x_2 \in \mathbb{R}^n \), \(|\zeta(t, x_1) - \zeta(t, x_2)| \leq C_L|x_1 - x_2| \). Then, for each \(X \in \mathcal{M}_G^p([0, T]; \mathbb{R}^n) \), \(\zeta(\cdot, X) \) is an element in \(\mathcal{M}_G^p([0, T]; \mathbb{R}^n) \).

Proof. Without loss of the generality, we only give the proof of the one dimensional case. Suppose that \(X \) can be approximated by a sequence \(\{X^N\}_{N \in \mathbb{N}} \subset \mathcal{M}_G^p([0, T]) \) of the form below:
\[X^N_t := \sum_{k=0}^{N-1} \xi_k 1_{(t_k, t_{k+1})}(t), \]
where \(\xi_k \in L^0_{ip}(\Omega_{t_k}) \), then
\[\int_0^T \mathbb{E}[|\zeta(t, X^N_t) - \zeta(t, X_t)|^p]dt \leq C_L \int_0^T \mathbb{E}[|X^N_t - X_t|^p]dt \to 0, \quad \text{as} \ N \to +\infty. \]
Lemma 5.2. Fixing a $T \geq 1$, η is an element in $L^p_{ip}(\Omega_1)$, then $\zeta(\cdot, \eta)1_{[1,T]}(\cdot) \in M^p_G([0,T])$. In what follows, we prove this assertion.

Proof. Suppose $\phi \in \mathcal{C}_0^\infty$ such that for all $i \in I$, $\supp(\phi_i) \subset N_\eta([0,T])$. It suffices to prove that $\zeta(\cdot, \eta)\phi_i(\eta)1_{[1,T]}(\cdot) \in M^p_G([0,T])$, $i = 1, \ldots, N(n)$, which is given by the following lemma.

Lemma 5.2. Fixing a $T \geq 1$, let X be an element in $M^p_G([0,T])$ and η is an element in $L^p_{ip}(\Omega_1)$, then $\eta X 1_{[1,T]}(\cdot) \in M^p_G([0,T])$.

Proof. Suppose X can be approximated by a sequence $\{X^N\}_{N \in \mathbb{N}} \subset M^p_G([0,T])$ of the form below:

$$X^N_t := \sum_{k=0}^{N-1} \xi_k 1_{[t_k, t_{k+1})}(t),$$

then $X 1_{[1,T]}(\cdot)$ can be approximated by a sequence $\{\overline{X}^N\}_{N \in \mathbb{N}} \subset M^p_G([0,T])$:

$$\overline{X}^N_t := \sum_{k=0}^{N-1} \xi_k 1_{[t_k \vee 1, t_{k+1} \vee 1]}(t),$$

where $\xi_k \in L^p_{ip}(\Omega_{t_k})$. We define a sequence $\{\tilde{X}^N\}_{n \in \mathbb{N}}$ by

$$\tilde{X}^N_t := \sum_{k=0}^{N-1} \alpha_k 1_{[t_k, t_{k+1})}(t),$$

where

$$\alpha_k := \begin{cases} 0, & \text{if } t_{k+1} < 1; \\ \eta \xi_k, & \text{if } t_{k+1} \geq 1. \end{cases}$$

Since $L^p_{ip}(\Omega_1) \subset L^0_{ip}(\Omega_{t \vee 1})$ and $L^0_{ip}(\Omega_{t \vee 1})$ is closed under multiplication, we deduce that $\{\tilde{X}^N\}_{N \in \mathbb{N}} \subset M^p_G([0,T])$. Moreover,

$$|\tilde{X}^N_t - \eta X_t 1_{[1,T]}(t)| \leq |\eta|X^N_t - \eta X_t 1_{[1,T]}(t) \leq M|X^N_t - X_t|, \quad 0 \leq t < T,$$
where M is the bound of η. This implies that $\eta X \mathbf{1}_{[1,T]}(\cdot)$ is the limit of \bar{X}^N under the $M^p_G([0,T])$ norm (2.2).

Proof of Lemma 3.4. Let $J \in C^\infty(\mathbb{R}^n)$ be a non-negative function satisfies $\text{supp}(J) \subset B(0,1)$ and

$$\int_{\mathbb{R}^n} J(x) dx = 1.$$

For each $\lambda > 0$, we set

$$J_\lambda(x) = \frac{1}{\lambda^n} J(\frac{x}{\lambda})$$

and

$$\zeta_\lambda(t, x) = \int_{\mathbb{R}^n} J_\lambda(x-y) \zeta(t, y) dy.$$

We assume that ζ is uniformly bounded, then ζ_λ is uniformly Lipschitz in x. By Lemma 5.1, we have $\zeta_\lambda(\cdot, X) \in M^p_G([0,T]; \mathbb{R}^n)$. To deduce the desired result, we only need to show that $\zeta(\cdot, X)$ is the limit of $\zeta_\lambda(\cdot, X)$ under the $M^p_G([0,T]; \mathbb{R}^n)$ norm (2.2).

Fixing a $\lambda > 0$, we calculate

$$|\zeta_\lambda(t, x) - \zeta(t, x)| \leq \int_{\mathbb{R}^n} J_\lambda(y) |\zeta(t, x-y) - \zeta(t, x)| dy.$$

Therefore,

$$\int_0^T \mathbb{E}[|\zeta_\lambda(t, X(t)) - \zeta(t, X(t))|^q] dt \leq \int_0^T \mathbb{E} \left[\left| \int_{\mathbb{R}^n} J_\lambda(y) |\zeta(t, X(t)-y) - \zeta(t, X(t))| dy \right|^q \right] dt \leq \int_0^T \|\beta(t)\|^q \left(\int_{\mathbb{R}^n} J_\lambda(y) \gamma(|y|) dy \right)^q dt \leq \|\gamma(\lambda)\|^q \int_0^T \|\beta(t)\|^q dt \leq C \|\gamma(\lambda)\|^q \rightarrow 0, \quad \text{as } \lambda \rightarrow 0.$$

For an unbounded function ζ, we construct a sequence of processes $(\zeta^N)_{n \in \mathbb{N}}$ as (3.7). Fixing an $N \in \mathbb{N}$, we have

$$\int_0^T \mathbb{E}[|\zeta^N(t, X(t)) - \zeta(t, X(t))|^q] dt \leq \int_0^T \mathbb{E}[|\zeta(t, X(t))|^q \mathbf{1}_{\{|\zeta(t, X(t))| > N\}}] dt \leq \int_0^T \mathbb{E}[|\beta_1(t) + \beta_2[X(t)]|^{q} \mathbf{1}_{\{|\beta_1(t) + \beta_2[X(t)]| > N\}}] dt \leq C \left(\int_0^T \mathbb{E}[|\beta_1(t)|^q] dt + \int_0^T \mathbb{E}[|\beta_2[X(t)]|^{q} \mathbf{1}_{\{|\beta_2[X(t)]| > N\}}] dt \right) \leq C \left(\int_0^T \mathbb{E}[|\beta_1(t)|^q] dt + \int_0^T \mathbb{E}[|X(t)|^q] dt \right). \quad (5.1)$$

Since β_1 and X are $M^p_G([0,T])$ processes, by Remark 2.15 and Theorem 2.13 along with Lebesgue’s dominated convergence theorem, the right-hand side of (5.1) converges to 0. This yields the desired result.

Acknowledgements. The authors express special thanks to Prof. Ying Hu, who provided both the initial inspiration for the work and useful suggestions.
References

[1] Bihari, I. A generalization of a lemma of bellman and its application to uniqueness problems of differential equations. Acta Math. Acad. Sci. Hung., 7: 81–94 (1956)

[2] Denis, L., Hu, M., Peng, S. Function spaces and capacity related to a sublinear expectation: application to G-Brownian motion paths. Potential Anal., 34(2): 139–161 (2011)

[3] Fang, S., Zhang, T. A study of a class of stochastic differential equations with non-Lipschitzian coefficients. Probab. Theory Related Fields, 132(3): 356–390 (2005)

[4] Gao, F. Pathwise properties and homomorphic flows for stochastic differential equations driven by G-Brownian motion. Stochastic Process. Appl., 119(10): 3356–3382 (2009)

[5] Hu, M., Ji, S., Peng, S., Song, Y. Backward stochastic differential equations driven by G-Brownian motion. Stochastic Process. Appl., 124(1): 759–784 (2014)

[6] Hu, Y., Lerner, N. On the existence and uniqueness of solutions to stochastic equations in infinite dimension with integral-Lipschitz coefficients. J. Math. Kyoto Univ., 42(3): 579–598 (2002)

[7] Li, X., Peng, S. Stopping times and related Itô’s calculus with G-Brownian motion. Stochastic Process. Appl., 121(7): 1492–1508 (2011)

[8] Lin, Q. Some properties of stochastic differential equations driven by the G-Brownian motion. Acta Math. Appl. Sinica (English Ser.), 29(5): 923–942 (2013)

[9] Peng, S. G-expectation, G-Brownian motion and related stochastic calculus of Itô type. In: Stochastic analysis and applications, Abel Symp., Vol.2, ed. by F.E., Benth, G. Di Nunno, T. Lindstrom, B. Øksendal, T. Zhang, Springer-Verlag, Berlin, 2007, 541–567

[10] Peng, S. Nonlinear expectations and stochastic calculus under uncertainty. arXiv:1002.4546v1

[11] Peng, S., Song, Y., Zhang, J. A complete representation theorem for G-martingales. arXiv:1201.2629v2

[12] Rockafellar, R. T. Convex analysis. Princeton University Press, Princeton, N.J., 1970

[13] Soner, H. M., Touzi, N., Zhang, J. Martingale representation theorem under G-expectation. Stochastic Process. Appl., 121(2): 265–287 (2011)

[14] Song, Y. Some properties on G-evaluation and its applications to G-martingale decomposition. Sci. China Math., 54(2): 287–300 (2011)

[15] Song, Y. Uniqueness of the representation for G-martingales with finite variation. Electron. J. Probab., 17(24): 1–15 (2012)

[16] Watanabe, S., Yamada, T. On the uniqueness of solutions of stochastic differential equations II. J. Math. Kyoto Univ., 11: 553–563 (1971)

[17] Xu, J., Zhang, B. Martingale characterization of G-Brownian motion. Stochastic Process. Appl., 119(1): 232–248 (2009)

[18] Yamada, T. On the successive approximation of solutions of stochastic differential equations. J. Math. Kyoto Univ., 21(3): 501–515 (1981)

[19] Yamada, T., Watanabe, S. On the uniqueness of solutions of stochastic differential equations. J. Math. Kyoto Univ., 11: 155–167 (1971)