ON HERMITE-HADAMARD INEQUALITIES FOR DIFFERENTIABLE \(\lambda\)-PREINVEX FUNCTIONS VIA RIEMANN-LIOUVILLE FRACTIONAL INTEGRALS

ABDULLAH AKKURT, M. ESRA YILDIRIM, AND HÜSEYIN YILDIRIM

Abstract. In this paper, we consider a new class of convex functions which is called \(\lambda\)-preinvex functions. We prove several Hermite–Hadamard type inequalities for differentiable \(\lambda\)-preinvex functions via Fractional Integrals. Some special cases are also discussed.

1. INTRODUCTION

The convexity property of a given function plays an important role in obtaining integral inequalities. Proving inequalities for convex functions has a long and rich history in mathematics. Let \(f: I \subseteq \mathbb{R} \to \mathbb{R}\) be a convex mapping defined on the interval \(I\) of real numbers and \(a, b \in I\) with \(a < b\). The following inequality:

\[
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_a^b f(x)dx \leq \frac{f(a) + f(b)}{2}.
\]

is known in the literature as Hermite-Hadamard inequality for convex mappings. Note that some of the classical inequalities for means can be derived from (1.1) for appropriate particular selections of the mapping \(f\). Both inequalities hold in the reversed direction if \(f\) is concave.

Over the last decade, this classical inequality has been improved and generalized in a number of ways; there have been a large number of research papers written on this subject, (see, [1]-[20]) and the references therein.

A significant generalization of convex functions is that of invex functions introduced by Hanson in [9]. Ben-Israel and Mond [3] introduced the concept of preinvex functions, which is a special case of invexity. Noor [10]-[13] has established some Hermite-Hadamard type inequalities for preinvex and logpreinvex functions. In recent papers Barani, Ghazanfari, and Dragomir in [4] presented some estimates of the right hand side of a Hermite–Hadamard type inequality in which some preinvex functions are involved. His class of nonconvex functions include the classical convex functions and its various classes as special cases. For some recent results related to this nonconvex functions, see the papers ([11],[12],[14]).

Now, we will give some definitions, lemmas and notations which we use later in this work.

Key words and phrases. Fractional Hermite-Hadamard inequalities, preinvex functions, Riemann-Liouville Fractional Integral.

M.E. Yıldırım was partially supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK Programme 2228-B).

2010 Mathematics Subject Classification. 26A33, 26D15, 41A55.
Definition 1. (15) Let \( f \in L[a, b] \). The Riemann-Liouville fractional integral \( J^\alpha_a f \) and \( J^\alpha_b f \) of order \( \alpha > 0 \) with \( a > 0 \) are defined by

\[
J^\alpha_a f(x) = \frac{1}{\Gamma(\alpha)} \int_a^x (x-t)^{\alpha-1} f(t) \, dt, \quad 0 \leq a < x \leq b
\]

\[
J^\alpha_b f(x) = \frac{1}{\Gamma(\alpha)} \int_x^b (t-x)^{\alpha-1} f(t) \, dt, \quad 0 \leq a < x \leq b
\]

Where \( \Gamma \) is the gamma function.

Definition 2. (6) The incomplete beta function is defined as follows:

\[
B_x(a, b) = \int_0^x t^{a-1} (1-t)^{b-1} \, dt,
\]

Here \( x \in [0, 1], a, b > 0 \).

Definition 3. (2) Gaussian hypergeometric function defined by

\[
2F_1(a, b; c; z) = \frac{1}{\beta(b, c-b)} \int_0^1 t^{b-1} (1-t)^{c-b-1} (1-zt)^{-a} \, dt
\]

Here \( c > b > 0, |z| < 1 \).

Definition 4. (19) A function \( f : I \subseteq \mathbb{R} \to \mathbb{R} \) is said to belong to the class \( MT(I) \) if \( f \) is positive and \( \forall x, y \in I \) and \( t \in (0, 1) \) satisfies the inequality:

\[
f(tx + (1-t)y) \leq \frac{\sqrt{t}}{2\sqrt{1-t}} f(x) + \frac{\sqrt{1-t}}{2\sqrt{t}} f(y).
\]

Definition 5. A function \( f : I \subseteq \mathbb{R} \to \mathbb{R} \) is said to a \( \lambda \)-\( MT \)-convex function or said to belong to the class \( \lambda-MT(I) \) if \( f \) is positive and \( \forall x, y \in I, \lambda \in (0, \frac{1}{2}] \) and \( t \in (0, 1) \) satisfies the inequality:

\[
f(tx + (1-t)y) \leq \frac{\sqrt{t}}{2\sqrt{1-t}} f(x) + \frac{(1-\lambda)\sqrt{1-t}}{2\lambda\sqrt{t}} f(y).
\]

Meanwhile, Sarikaya et al. (10) presented the following important integral identity including the first-order derivative of \( f \) to establish many interesting Hermite–Hadamard-type inequalities for convexity functions via Riemann–Liouville fractional integrals of the order \( \alpha \in \mathbb{R}^+ \).

Lemma 1. Let \( f : [a, b] \to \mathbb{R} \) be a once differentiable mapping on \( (a, b) \) for \( a < b \). If \( f' \in L[a, b] \), there is a following equality for fractional integrals

\[
\frac{f(a) + f(b)}{2} = \frac{\Gamma(\alpha + 1)}{2(b-a)^\alpha} [J^\alpha_a f(b) + J^\alpha_b f(a)]
\]

\[
= \frac{b-a}{2} \frac{1}{\Gamma(\alpha)} \int_0^1 [(1-t)^\alpha - t^\alpha] f'(ta + (1-t)b) \, dt.
\]

Also, Wang et al. (20) presented the following inequality.
Lemma 2. Let \( f : [a, b] \to \mathbb{R} \) be a twice differentiable mapping on \((a, b)\) for \(a < b\). If \( f'' \in L[a, b] \), there is following equality for fractional integrals

\[
\frac{f(a) + f(b)}{2} - \frac{\Gamma(\alpha + 1)}{2(b - a)^\alpha} \left[ J^\alpha_a f (b) + J^\alpha_b f (a) \right]
\]

(1.8)

\[
= \frac{(b - a)^2}{2} \int_0^1 \left[ \frac{1 - (1 - t)^\alpha + 1 - t^{\alpha + 1}}{\alpha + 1} \right] f'' (ta + (1 - t)b) \, dt.
\]

In [5], Dragomir and Agarwal established the following result connected with the right part of (1.7):

Theorem 1. Let \( f : I^\circ \subseteq \mathbb{R} \to \mathbb{R} \) be a differentiable mapping on \( I^\circ \), \( a, b \in I \) with \( a < b \). If \(|f'|\) is convex on \([a, b]\), then the following inequality holds:

\[
\frac{f(a) + f(b)}{2} - \frac{1}{b - a} \int_a^b f(x) \, dx \leq \frac{b - a}{8} \left[ |f'(a)| + |f'(b)| \right].
\]

Lemma 3. (18) For any \( A_1 > A_2 \geq 0 \) and \( p \geq 1 \), \( (A_1 - A_2)^p \leq A_1^p - A_2^p \).

Lemma 4. (17) For \( t \in [0, 1] \), we have

\[
(1 - t)^m \leq 2^{1-m} - t^m \quad \text{for} \ m \in [0, 1],
\]

\[
(1 - t)^m \geq 2^{1-m} - t^m \quad \text{for} \ m \in [1, \infty).
\]

Let \( \mathbb{R}^n \) be Euclidian space and \( K \) is said to be nonempty closed in \( \mathbb{R}^n \). Let \( f : K \to \mathbb{R} \) and \( \eta : K \times K \to \mathbb{R} \) be a continuous functions.

Definition 6. (10) Let \( u \in K \). The set \( K \) is said to be invex at \( u \) according to \( \eta \) if

\[
(11) \quad u + t \eta(v, u) \in K
\]

for all \( u, v \in K \) and \( t \in [0, 1] \).

Definition 7. Let \( f : I \subseteq \mathbb{R} \to \mathbb{R} \) be a nonnegative function. A function \( f \) on the set \( K_\eta \) is said to be \( \lambda \)-preinvex function according to bifunction \( \eta \) and \( \forall u, v \in I \), \( t \in (0, 1) \), then

\[
(12) \quad f(u + t \eta(v, u)) \leq \frac{\sqrt{t}}{2\sqrt{1-t}} f(v) + \frac{(1 - \lambda) \sqrt{1-t}}{2 \lambda \sqrt{t}} f(u).
\]

Remark 1. In Definition 7 if we choose \( \lambda = \frac{1}{2} \), and \( \eta(v, u) = v - u \). Definition 7 reduces to Definition 4;

\[
f(tv + (1 - t)u) \leq \frac{\sqrt{t}}{2\sqrt{1-t}} f(v) + \frac{\sqrt{1-t}}{2 \sqrt{t}} f(u).
\]

Remark 2. In Definition 7 if we choose \( \eta(v, u) = v - u \). Definition 7 reduces to Definition 5;

\[
f(tv + (1 - t)u) \leq \frac{\sqrt{t}}{2\sqrt{1-t}} f(v) + \frac{(1 - \lambda) \sqrt{1-t}}{2 \lambda \sqrt{t}} f(u).
\]

Our goal in this paper is to state and prove the Hermite-Hadamard type inequality for preinvex functions via Riemann-Liouville Fractional Integrals. In order to achieve our goal, we first give two important lemmas and then by using these identities we prove some integral inequalities.
2. Main Results

We need the following lemma [8].

Lemma 5. Let \( A \subseteq \mathbb{R} \) be an open invex subset with respect to \( \eta : A \times A \to \mathbb{R} \) and \( a, b \in A \) with \( a < a + \eta(b, a) \). If \( f : A \to \mathbb{R} \) is a differentiable function such that \( f' \in L [a, a + \eta(b, a)] \) then, the following equality holds:

\[
(2.1) \quad \frac{f(a) + f(a + \eta(b, a))}{2} - \frac{\Gamma(\alpha + 1)}{2(\eta(b, a))^{\alpha}} \left[ \int_{a}^{a + \eta(b, a)} f(x) dx + J_{a}^{\alpha}(x - a) \right] f' (a + (1 - t) \eta(b, a)) dt.
\]

Proof. Integrating by part and changing the variable of definite integral yield

\[
\int_{0}^{1} [(1 - t)^{\alpha} - t^{\alpha}] f'(a + (1 - t) \eta(b, a)) dt = \left[ \frac{f(a + (1 - t) \eta(b, a))}{-\eta(b, a)} \right]^{1}_{0}
\]

\[
- \frac{\alpha}{\eta(b, a)} \int_{0}^{1} [(1 - t)^{\alpha - 1} + t^{\alpha - 1}] f(a + (1 - t) \eta(b, a)) dt
\]

\[
= \frac{f(a) + f(a + \eta(b, a))}{\eta(b, a)} - \frac{\alpha}{\eta(b, a)} \left[ \int_{a}^{a + \eta(b, a)} f(x) dx + \int_{a}^{a + \eta(b, a)} (x - a) f(x) dx \right]
\]

By multiplying the both sides of (2.2) by \( \frac{\eta(b, a)}{2} \), we have:

\[
\frac{f(a) + f(a + \eta(b, a))}{2} - \frac{\Gamma(\alpha + 1)}{2(\eta(b, a))^{\alpha + 1}} \left[ \int_{a}^{a + \eta(b, a)} f(x) dx + J_{a}^{\alpha}(x - a) \right] f' (a + (1 - t) \eta(b, a)) dt.
\]

Lemma 5 is thus proved. \( \square \)

Remark 3. In Lemma 5 if we choose \( \eta(b, a) = b - a \), Lemma 5 reduces to Lemma 7.

Theorem 2. Let \( A \subseteq \mathbb{R} \) be an open invex subset with respect to \( \eta : A \times A \to \mathbb{R} \) and \( a, b \in A \) with \( a < a + \eta(b, a) \). Suppose that \( f : A \to \mathbb{R} \) is a differentiable function such that \( f' \in L [a, a + \eta(b, a)] \). If \( |f'| \) is \( \lambda \)-preinvex function on \( [a, a + \eta(b, a)] \) then
the following inequality for fractional integrals with $\alpha > 0$ holds:

$$\left| \frac{f(a) + f(a + \eta(b,a))}{2} - \frac{\Gamma(\alpha + 1)}{2 \eta(b,a)} \left[ J_{a+}^{\alpha} f(a + \eta(b,a)) + J_{(a+\eta(b,a))}^{\alpha} - f(a) \right] \right|$$

$$\leq \eta(b,a) \left[ (1 - t)^{\alpha} - t^{\alpha} |f'(a + (1 - t) \eta(b,a))| dt \right]$$

$$\leq \frac{\eta(b,a)}{2} \left[ \frac{\sqrt{T}}{2 \lambda^{1/4}} |f'(a)| + \frac{(1 - \lambda) \sqrt{T}}{2 \lambda^{1/4}} |f'(b)| \right]$$

$$+ \frac{\eta(b,a)}{2} \left[ \frac{\sqrt{T}}{2 \lambda^{1/4}} |f'(a)| + \frac{(1 - \lambda) \sqrt{T}}{2 \lambda^{1/4}} |f'(b)| \right]$$

$$\leq \frac{\eta(b,a)}{8} \left[ f'(a) + 1 - \lambda \left| f'(b) \right| \right] \left\{ \frac{2 \sqrt{\pi} \Gamma(\alpha + \frac{3}{2})}{\Gamma(\alpha + 2)} - \frac{\sqrt{\pi} \Gamma(\alpha + \frac{1}{2})}{\Gamma(\alpha + 2)} - 4 B_{\frac{1}{2}} (\alpha + \frac{3}{4}, \frac{1}{4}) \right\}$$

$$+ \frac{2^{-\alpha} \left( (4 \alpha^2 + 18 \alpha + 19) \right)_{2} F_{1} (1, \alpha + 2; \frac{1}{2}; \frac{1}{2}) - 2(\alpha + 2) \left( (4 \alpha^2 + 18 \alpha + 19) \right)_{2} F_{1} (1, \alpha + 2; \frac{1}{2}; \frac{1}{2})}{4 \alpha^2 + 8 \alpha + 3}$$

$$+ \frac{2^{-\alpha} \left( -\alpha + 2^{\alpha+1} \right)_{2} F_{1} (\frac{1}{2}; \frac{1}{2} - \alpha; \frac{1}{2}; \frac{1}{2})}{\alpha(\alpha + 1)} \right\}.$$ 

**Proof.** By using Definition 7 and Lemma 9, we have:

The proof is done.

**Remark 4.** If we take $\eta(b,a) = b - a$, $\lambda = \frac{1}{2}$ and $\alpha = 1$ in Theorem 2, Theorem 2 reduces to Theorem 4.
Theorem 3. Let $A \subseteq \mathbb{R}$ be an open invex subset with respect to $\eta : A \times A \to \mathbb{R}$ and $a, b \in A$ with $a < a + \eta(b, a)$. Suppose that $f : A \to \mathbb{R}$ is a differentiable function such that $f' \in L[a, a + \eta(b, a)]$. If $|f'|^q$ is $\lambda$-preinvex function on $[a, a + \eta(b, a)]$ for some fixed $q > 1$ then the following inequality holds:

$$\left| \frac{f(a) + f(a + \eta(b, a))}{2} - \frac{\Gamma(\alpha + 1)}{2(\eta(b, a))^\alpha} \left[ J_a^\alpha f(a + \eta(b, a)) + J_{(a+\eta(b,a))}^\alpha f(a) \right] \right|$$

$$\leq \frac{\eta(b, a)}{2} \left( \frac{\pi}{4} \right)^{\frac{1}{q}} \left( 2 - \frac{2^{1-\alpha p}}{p\alpha + 1} \right)^{\frac{1}{q}} \left[ |f'(a)|^q + \left( \frac{1}{\lambda} \right) |f'(b)|^q \right]^{\frac{1}{q}}$$

where $\alpha \in [0, 1]$ and $\frac{1}{p} + \frac{1}{q} = 1$.

Proof. By using Definition 7, Lemma 5 and Hölder’s inequality, we have:

$$\left| \frac{f(a) + f(a + \eta(b, a))}{2} - \frac{\Gamma(\alpha + 1)}{2(\eta(b, a))^\alpha} \left[ J_a^\alpha f(a + \eta(b, a)) + J_{(a+\eta(b,a))}^\alpha f(a) \right] \right|$$

$$\leq \frac{\eta(b, a)}{2} \left( \frac{\pi}{4} \right)^{\frac{1}{q}} \left( 2 - \frac{2^{1-\alpha p}}{p\alpha + 1} \right)^{\frac{1}{q}} \left[ |f'(a)|^q + \left( \frac{1}{\lambda} \right) |f'(b)|^q \right]^{\frac{1}{q}}$$

where $\alpha \in [0, 1]$ and $\frac{1}{p} + \frac{1}{q} = 1$.

Remark 5. In Theorem 3, if we choose $\eta(b, a) = b - a$, then we have:

$$\left| \frac{f(a) + f(b)}{2} - \frac{\Gamma(\alpha + 1)}{2(b - a)^\alpha} \left[ J_a^\alpha f(b) + J_b^\alpha f(a) \right] \right|$$

$$\leq \frac{b - a}{2} \left( \frac{\pi}{4} \right)^{\frac{1}{q}} \left( 2 - \frac{2^{1-\alpha p}}{p\alpha + 1} \right)^{\frac{1}{q}} \left[ |f'(a)|^q + \left( \frac{1}{\lambda} \right) |f'(b)|^q \right]^{\frac{1}{q}}.$$
Remark 6. In Theorem 3 if we choose $\eta(b,a) = b-a$ and $\alpha = 1$, then we have:

$$\left| \frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_a^b f(x)dx \right|$$

$$\leq \frac{b-a}{2} \left[ \frac{\pi}{4} f'(a)^q + \frac{\pi}{4} \left( \frac{1}{\lambda} \right) |f'(b)|^q \right]^\frac{1}{q} \left( \frac{2}{\lambda} \right)^\frac{1}{q}.$$

Remark 7. In Theorem 3 if we choose $\eta(b,a) = b-a$, $\lambda = 1/2$ and $\alpha = 1$, then we have:

$$\left| \frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_a^b f(x)dx \right|$$

$$\leq \frac{b-a}{8} \pi \left[ |f'(a)|^q + |f'(b)|^q \right]^\frac{1}{q} \left( \frac{2}{\lambda} \right)^\frac{1}{q}.$$

Theorem 4. Let $A \subseteq \mathbb{R}$ be an open invex subset with respect to $\eta : A \times A \to \mathbb{R}$ and $a, b \in A$ with $a < a + \eta(b,a)$. Suppose that $f : A \to \mathbb{R}$ is a differentiable function such that $f' \in L[a, a + \eta(b,a)]$. If $|f'|^q$ is $\lambda-$preinvex function on $[a, a + \eta(b,a)]$ for some fixed $q > 1$ then the following inequality holds:

$$\left| \frac{f(a) + f(a + \eta(b,a))}{2} - \frac{\Gamma(\alpha + 1)}{2(\eta(b,a))^{\alpha+1}} \left[ J_{a+}^{\alpha} f(a + \eta(b,a)) + J_{(a+\eta(b,a))^{-}}^{\alpha} f(a) \right] \right|$$

$$\leq \left( \frac{1-2^{-\alpha}}{\alpha+1} \right)^\frac{1}{2+1/q} \eta(b,a) \left[ |f'(a)|^q + \frac{1}{\lambda} |f'(b)|^q \right]$$

$$\times \left\{ \frac{2\sqrt{\pi} \Gamma(\alpha+\frac{3}{2})}{\Gamma(\alpha+2)} - \frac{\sqrt{\pi} \Gamma(\alpha+\frac{1}{2})}{\Gamma(\alpha+2)} - 4B_{\frac{1}{2}}(\alpha+\frac{3}{2}, \frac{1}{2}) \right. + \frac{2^{-\alpha} \left( - (4\alpha^2 + 18\alpha + 19) \right)_2F_1 (1, \alpha + 2; \frac{1}{2}; \frac{1}{2}) - 2(\alpha + 2) \left( 2F_1 (1, \alpha + 2; \frac{1}{2}; \frac{1}{2}) \right)}{4\alpha^2 + 8\alpha + 3}$$

$$\left. + \frac{2^{-\alpha} \left( - \alpha + 2\alpha^2 + \frac{1}{2} \right)_2F_1 \left( -\frac{1}{2}, \frac{1}{2} - \alpha; \frac{1}{2}; \frac{1}{2} \right) - 1 \right) \left. \frac{1}{\alpha(\alpha+1)} \right\}^{1/q}.$$
Remark 8. In Theorem 4, if we choose \( \eta(b,a) = b - a \) and \( \alpha = 1 \), then we have:

\[
\left| \frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_a^b f(x) dx \right| \leq \left( \frac{1}{4} \right)^{\frac{2}{3+1/q}} \frac{b-a}{2^{1+1/q}} \left[ |f'(a)|^q + \frac{1-\lambda}{\lambda} |f'(b)|^q \right].
\]
Remark 9. In Theorem 3, if we choose \( \eta(b,a) = b - a \), \( \lambda = 1/2 \) and \( \alpha = 1 \), then we have:

\[
\left| \frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_a^b f(x) \, dx \right| \leq 2^{\alpha} \frac{b-a}{8} \left[ \left| f'(a) \right|^2 + \left| f'(b) \right|^2 \right].
\]

Lemma 6. Let \( A \subseteq \mathbb{R} \) be an open invex subset with respect to \( \eta: A \times A \rightarrow \mathbb{R} \) and \( a, b \in A \) with \( a < a + \eta(b,a) \). If \( f: A \rightarrow \mathbb{R} \) is a differentiable function such that \( f'' \in L[a, a + \eta(b,a)] \) then, the following equality holds:

\[
(2.3) \quad \frac{(\eta(b,a))^2}{2(\alpha+1)} \int_0^1 \left[ 1 - (1-t)^{\alpha+1} - t^{\alpha+1} \right] f''(a + (1-t) \eta(b,a)) \, dt.
\]

\[
(2.4) \quad \frac{1}{\eta(b,a)} \left( \int_0^1 [(1-t)^\alpha - t^\alpha] f'(a + (1-t) \eta(b,a)) \, dt \right)
\]

Motivated by Lemma 5, then:

\[
\frac{1}{\eta(b,a)} \left( \int_0^1 [(1-t)^\alpha - t^\alpha] f'(a + (1-t) \eta(b,a)) \, dt \right)
\]

By multiplying the both sides of (2.4) by \( \frac{(\eta(b,a))^2}{2} \), we have:

\[
\frac{f(a) + f(a + \eta(b,a))}{2} - \frac{\Gamma(\alpha+1)}{2(\eta(b,a))^{\alpha+2}} \left[ J_{a+}^\alpha f(a + \eta(b,a)) + J_{(a+\eta(b,a))}^\alpha f(a) \right]
\]

\[
= \frac{(\eta(b,a))^2}{2} \int_0^1 \frac{1 - (1-t)^{\alpha+1} - t^{\alpha+1}}{\alpha + 1} f''(a + (1-t) \eta(b,a)) \, dt.
\]

The proof is done. \( \Box \)
Remark 10. In Lemma 7, \( \eta(b, a) = b - a \). Lemma 7 reduces to Lemma 2:
\[
\frac{f(a) + f(b)}{2} - \frac{\Gamma(\alpha + 1)}{2(b-a)^\alpha} \left[J_{a^+}^\alpha f(b) + J_{b^-}^\alpha f(a)\right] = \frac{(b-a)^2}{2} \int_0^1 \left[1 - (1 - t)^{\alpha+1} - t^{\alpha+1}\right] \frac{f''(ta + (1-t)b)}{\alpha + 1} \, dt.
\]

Theorem 5. Let \( A \subseteq \mathbb{R} \) be an open invex subset with respect to \( \eta : A \times A \to \mathbb{R} \) and \( a, b \in A \) with \( a < a + \eta(b, a) \). Suppose that \( f : A \to \mathbb{R} \) is a differentiable function such that \( f'' \in L[a, a + \eta(b, a)] \). If \( f'' \) is \( \lambda \)-preinvex function on \( [a, a + \eta(b, a)] \) then the following inequality for fractional integrals with \( \alpha > 0 \) holds:
\[
\left| f(a) + f(a + \eta(b, a)) \right| - \frac{\Gamma(\alpha + 1)}{2(\eta(b, a))^\alpha} \left[J_{a^+}^\alpha f(a + \eta(b, a)) + J_{(a+\eta(b, a))^-}^\alpha f(a)\right] \\
\leq \frac{(\eta(b, a))^2}{4(\alpha + 1)} \left(\frac{\pi}{2} - \frac{\sqrt{\pi} \Gamma(\alpha + \frac{3}{2})}{\Gamma(\alpha + 2)}\right) \left\{ |f''(a)| + \left(\frac{1 - \lambda}{\lambda}\right) |f''(b)| \right\}.
\]

Proof. By using Definition 7 and Lemma 6 we have:
\[
\left| f(a) + f(a + \eta(b, a)) \right| - \frac{\Gamma(\alpha + 1)}{2(\eta(b, a))^\alpha} \left[J_{a^+}^\alpha f(a + \eta(b, a)) + J_{(a+\eta(b, a))^-}^\alpha f(a)\right] \\
\leq \frac{(\eta(b, a))^2}{2(\alpha + 1)} \int_0^1 \left|1 - (1 - t)^{\alpha+1} - t^{\alpha+1}\right| \frac{f''(a + (1-t)\eta(b, a))}{\alpha + 1} \, dt \\
\leq \frac{(\eta(b, a))^2}{2(\alpha + 1)} \int_0^1 \left|1 - (1 - t)^{\alpha+1} - t^{\alpha+1}\right| \left(\frac{\sqrt{7}}{2\sqrt{1-t}} |f''(a)| + \left(\frac{1 - \lambda}{\lambda}\right) \frac{\sqrt{1-t}}{2\lambda\sqrt{t}} |f''(b)| \right) \, dt \\
\leq \frac{(\eta(b, a))^2}{2(\alpha + 1)} \left\{ \left|f''(a)\right| \int_0^1 \left(1 - (1 - t)^{\alpha+1} - t^{\alpha+1}\right) \frac{\sqrt{7}}{\sqrt{1-t}} \, dt \\
+ \frac{1 - \lambda}{\lambda} \left|f''(b)\right| \int_0^1 \left(1 - (1 - t)^{\alpha+1} - t^{\alpha+1}\right) \frac{\sqrt{1-t}}{\sqrt{t}} \, dt \right\} \\
\leq \frac{(\eta(b, a))^2}{4(\alpha + 1)} \left(\frac{\pi}{2} - \frac{\sqrt{\pi} \Gamma(\alpha + \frac{3}{2})}{\Gamma(\alpha + 2)}\right) \left\{ |f''(a)| + \left(\frac{1 - \lambda}{\lambda}\right) |f''(b)| \right\}.
\]

The proof is done. \( \square \)

Remark 11. In Theorem 5 if we take \( \eta(b, a) = b - a \), we have:
\[
\left| f(a) + f(b) \right| - \frac{\Gamma(\alpha + 1)}{2(b-a)^\alpha} \left[J_{a^+}^\alpha f(b) + J_{b^-}^\alpha f(a)\right] \\
\leq \frac{(b-a)^2}{4(\alpha + 1)} \left(\frac{\pi}{2} - \frac{\sqrt{\pi} \Gamma(\alpha + \frac{3}{2})}{\Gamma(\alpha + 2)}\right) \left\{ |f''(a)| + \left(\frac{1 - \lambda}{\lambda}\right) |f''(b)| \right\}.
\]
Proof. By using Definition 7, Lemma 6 and Hölder’s inequality we have:
\[
|f(a) + f(b)| - \frac{1}{b-a} \int_a^b f(x)dx | \leq \frac{\pi (b-a)^2}{64} \left\{ |f''(a)| + \left( \frac{1-\lambda}{\lambda} \right) |f''(b)| \right\}.
\]

Remark 12. In Theorem 5, if we take \(\eta(b, a) = b - a\) and \(\alpha = 1\), we have:
\[
\left| \frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_a^b f(x)dx \right| \leq \frac{\pi (b-a)^2}{64} \left\{ |f''(a)| + \left( \frac{1-\lambda}{\lambda} \right) |f''(b)| \right\}.
\]

Remark 13. In Theorem 5, if we take \(\eta(b, a) = b - a\), \(\lambda = \frac{1}{2}\) and \(\alpha = 1\), we have:
\[
\left| \frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_a^b f(x)dx \right| \leq \frac{\pi (b-a)^2}{64} \left\{ |f''(a)| + |f''(b)| \right\}.
\]

Theorem 6. Let \(A \subseteq \mathbb{R}\) be an open invex subset with respect to \(\eta : A \times A \rightarrow \mathbb{R}\) and \(a, b \in A\) with \(a < a + \eta(b, a)\). Suppose that \(f : A \rightarrow \mathbb{R}\) is a differentiable function such that \(f'' \in L[a, a + \eta(b, a)]\). If \(|f''|^q\) is a \(\lambda\)-preinvex function on \([a, a + \eta(b, a)]\) for some fixed \(q > 1\) then the following inequality holds:
\[
\left| \frac{f(a) + f(a + \eta(b, a))}{2} - \frac{1}{2} \int_0^a f(y)dy \right| \leq \frac{(\eta(b, a))^2}{2(\alpha + 1)} (1 - 2^{-\alpha}) \frac{\pi}{4} \left( |f''(a)|^q + \frac{1-\lambda}{\lambda} |f''(b)|^q \right)^{\frac{1}{q}}.
\]

where \(\alpha \in [0, 1]\) and \(\frac{1}{p} + \frac{1}{q} = 1\).

Proof. By using Definition 7, Lemma 6 and Hölder’s inequality we have:
\[
\left| \frac{f(a) + f(a + \eta(b, a))}{2} - \frac{1}{2} \int_0^a f(y)dy \right| \leq \frac{(\eta(b, a))^2}{2(\alpha + 1)} \left( \int_0^1 \left| 1 - (1-t)^{\alpha+1} - t^{\alpha+1} \right| dt \right) \left( \int_0^1 |f''(a + (1-t)\eta(b, a))|^q dt \right)^{\frac{1}{q}}.
\]

\[
\leq \frac{(\eta(b, a))^2}{2(\alpha + 1)} \left( \int_0^1 (1 - 2^{-\alpha})^p dt \right)^{\frac{1}{p}} \left( \int_0^1 \left( |f''(a)|^q + \frac{1-\lambda}{\lambda} \frac{1}{2} |f''(b)|^q \right)^q dt \right)^{\frac{1}{q}}.
\]

The proof is done. \(\square\)

Remark 14. In Theorem 6, if we take \(\eta(b, a) = b - a\), we have:
\[
\left| \frac{f(a) + f(b)}{2} - \frac{1}{2} \int_a^b f(x)dx \right| \leq \frac{(b-a)^2}{2(\alpha + 1)} (1 - 2^{-\alpha}) \frac{\pi}{4} \left( |f''(a)|^q + \frac{1-\lambda}{\lambda} |f''(b)|^q \right)^{\frac{1}{q}}.
\]
Remark 15. In Theorem 7 if we take \( \eta(b,a) = b - a \) and \( \alpha = 1 \), we have:

\[
\left| \frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_a^b f(x) \, dx \right| \leq \frac{(b-a)^2}{8} \left( \frac{\pi}{4} \right) \left( |f''(a)|^q + \frac{1-\lambda}{\lambda} |f''(b)|^q \right)^{\frac{1}{q}}.
\]

Remark 16. In Theorem 7 if we take \( \eta(b,a) = b - a \), \( \lambda = \frac{1}{2} \) and \( \alpha = 1 \), we have:

\[
\left| \frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_a^b f(x) \, dx \right| \leq \frac{(b-a)^2}{8} \left( \frac{\pi}{4} \right) \left( |f''(a)|^q + |f''(b)|^q \right)^{\frac{1}{q}}.
\]

Theorem 7. Let \( A \subseteq \mathbb{R} \) be an open interval subset with respect to \( \eta : A \times A \to \mathbb{R} \) and \( a, b \in A \) with \( a < a+\eta(b,a) \). Suppose that \( f : A \to \mathbb{R} \) is a differentiable function such that \( f'' \in L[a, a + \eta(b,a)] \). If \( |f''|^{\eta} \) is \( \lambda \)-preinvex function on \([a, a + \eta(b,a)]\) for some fixed \( q > 1 \) then the following inequality holds:

\[
\left| \frac{f(a) + f(a + \eta(b,a))}{2} - \frac{\Gamma(\alpha+1)}{2(\eta(b,a))^{\alpha}} \left[ J_{a+\eta(b,a)}^{\alpha} f(a + \eta(b,a)) + J_{(a+\eta(b,a))}^{\alpha} f(a) - f(a) \right] \right|
\]

\[
\leq \frac{(\eta(b,a))^2}{2(\alpha+1)} \left( \frac{\alpha}{\alpha + 2} \right)^{\frac{1}{4}} \left( \frac{\pi}{2} - \frac{1-\lambda}{\Gamma(\alpha+2)} \right)^{1/4} \left( \frac{|f''(a)|^q}{2 \alpha + 1} + \frac{1-\lambda}{\lambda} |f''(b)|^q \right)^{1/4}.
\]

where \( \alpha \in [0,1] \) and \( \frac{1}{p} + \frac{1}{q} = 1 \).

Proof. By using Definition 7, Lemma 6 and Power Mean’s inequality, we have:

\[
\left| \frac{f(a) + f(a + \eta(b,a))}{2} - \frac{\Gamma(\alpha+1)}{2(\eta(b,a))^{\alpha}} \left[ J_{a+\eta(b,a)}^{\alpha} f(a + \eta(b,a)) + J_{(a+\eta(b,a))}^{\alpha} f(a) - f(a) \right] \right|
\]

\[
\leq \frac{(\eta(b,a))^2}{2(\alpha+1)^{\alpha}} \left( \int_0^1 \left| 1 - (1-t)^{\alpha+1} - t^{\alpha+1} \right| f''(a + (1-t) \eta(b,a)) \, dt \right)^{\frac{1}{q}}
\]

\[
\times \left( \int_0^1 \left| 1 - (1-t)^{\alpha+1} - t^{\alpha+1} \right| \left( \frac{\pi}{2} - \frac{1-\lambda}{\Gamma(\alpha+2)} \right) \left( \frac{|f''(a)|^q}{2 \alpha + 1} + \frac{1-\lambda}{\lambda} |f''(b)|^q \right)^{1/4} \right)^{\frac{1}{q}}
\]

\[
\leq \frac{(\eta(b,a))^2}{2(\alpha+1)^{\alpha}} \left( \int_0^1 \left| 1 - (1-t)^{\alpha+1} - t^{\alpha+1} \right| \, dt \right)^{\frac{1}{q}}
\]

\[
\times \left( \int_0^1 \left| 1 - (1-t)^{\alpha+1} - t^{\alpha+1} \right| \left( \frac{\sqrt{q}}{2\sqrt{1-t}} |f''(a)|^q + \frac{(1-\lambda)\sqrt{1-q}}{2\lambda\sqrt{t}} |f''(b)|^q \right) \, dt \right)^{\frac{1}{q}}
\]
\[ \leq \left( \frac{(\eta(b,a))^2}{2(\alpha+1)} \right)^{1-\frac{1}{q}} \left( \frac{\alpha}{\alpha+2} \right)^{\frac{1}{q}} \left( \frac{|f''(b)|^q}{2} \right)^{\frac{1}{q}} \int_0^1 \left[ 1 - (1-t)^{\alpha+1} - t^{\alpha+1} \right] \frac{\sqrt{t}}{\sqrt{1-t}} dt \]

\[ + \left( \frac{1-\lambda}{2} \right) \frac{|f''(b)|^q}{2} \int_0^1 \left[ 1 - (1-t)^{\alpha+1} - t^{\alpha+1} \right] \frac{\sqrt{t}}{\sqrt{1-t}} dt \]

\[ \leq \left( \frac{(\eta(b,a))^2}{2(\alpha+1)} \right)^{1-\frac{1}{q}} \left( \frac{\alpha}{\alpha+2} \right)^{\frac{1}{q}} \left( \frac{\pi}{2} - \sqrt{\pi} \frac{\Gamma^2(\alpha+\frac{3}{2})}{\Gamma(\alpha+2)} \right)^{\frac{1}{q}} \left( \frac{|f''(a)|^q}{2} + \frac{1-\lambda}{\lambda} \frac{|f''(b)|^q}{2} \right)^{\frac{1}{q}}. \]

The proof is done. □

**Remark 17.** In Theorem 7 if we take \( \eta(b,a) = b - a \), we have;

\[ \left| \frac{f(a) + f(b)}{2} - \frac{\Gamma(\alpha+1)}{2(b-a)\alpha} \left[ J_a^\alpha f(b) + J_b^\alpha f(a) \right] \right| \]

\[ \leq \left( \frac{(b-a)^2}{2(\alpha+1)} \right)^{1-\frac{1}{q}} \left( \frac{\alpha}{\alpha+2} \right)^{\frac{1}{q}} \left( \frac{\pi}{2} - \sqrt{\pi} \frac{\Gamma^2(\alpha+\frac{3}{2})}{\Gamma(\alpha+2)} \right)^{\frac{1}{q}} \left( \frac{|f''(a)|^q}{2} + \frac{1-\lambda}{\lambda} \frac{|f''(b)|^q}{2} \right)^{\frac{1}{q}}. \]

**Remark 18.** In Theorem 7 if we take \( \eta(b,a) = b - a \) and \( \alpha = 1 \), we have;

\[ \left| \frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_a^b f(x) dx \right| \leq \frac{(b-a)^2}{4} \left( \frac{1}{3} \right)^{\frac{1}{q}} \left( \frac{\pi}{8} \right)^{\frac{1}{q}} \left( \frac{|f''(a)|^q}{2} + \frac{1-\lambda}{\lambda} \frac{|f''(b)|^q}{2} \right)^{\frac{1}{q}}. \]

**Remark 19.** In Theorem 7 if we take \( \eta(b,a) = b - a \), \( \lambda = \frac{1}{2} \) and \( \alpha = 1 \), we have;

\[ \left| \frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_a^b f(x) dx \right| \leq \frac{(b-a)^2}{4} \left( \frac{1}{3} \right)^{\frac{1}{q}} \left( \frac{\pi}{8} \right)^{\frac{1}{q}} \left( \frac{|f''(a)|^q}{2} + \frac{1-\lambda}{\lambda} \frac{|f''(b)|^q}{2} \right)^{\frac{1}{q}}. \]
References

[1] Barani, A.; Ghazanfari, A.G.; Dragomir, S.S.: Hermite-Hadamard inequality for functions whose derivatives absolute values are preinvex. J. Inequal. Appl. 2012, 247 (2012)
[2] Abramowitz M, Stegun IA, editors. Handbook of mathematical functions with formulas, graphs, and mathematical tables. New York: Dover; 1965.
[3] A. Ben-Israel, B. Mond, What is invexity?, The Journal of the Australian Mathematical Society, Series B-Applied Mathematics 28(1) (1986) 1-9.
[4] A. Barani, A.G. Ghazanfari, S.S. Dragomir, Hermite-Hadamard inequality through prequasi-invex functions, RGMIA Research Report Collection 14 Article 64 (2011) 1-11.
[5] S. S. Dragomir, R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett., 11 (1998), 91-95.
[6] Di Donato, A. R., Jarnagin, M. P: The efficient calculation of the incomplete beta-function ratio for half-integer values of the parameters. Math. Comput. 21, 652-662 (1967)
[7] Deng, J, Wang, J: Fractional Hermite-Hadamard inequalities for \((\alpha, m)\) logarithmically convex functions.J.Inequal.Appl.2013, Article ID 364(2013)
[8] Işcan, İmdat. “Hermite-Hadamard’s Inequalities for Preinvex Function via Fractional Integrals and Related Fractional Inequalities.” American Journal of Mathematical Analysis 1.3 (2013): 33-38.
[9] M.A. Hanson, On sufficiency of the Kuhn-Tucker conditions, Journal of Mathematical Analysis and Applications 80 (1981) 545-550.
[10] M.A. Noor and K.I. Noor, Generalized preinvex functions and their properties. Journal of Appl. Math. Stochastic Anal., 2006(12736), 1–13, doi:10.1155/JAMSA/2006/12736
[11] M.A. Noor, Hadamard integral inequalities for product of two preinvex function,Nonlinear Analysis Forum 14 (2009) 167-173.
[12] M.A. Noor, Some new classes of nonconvex functions, Nonlinear Functional Analysis and its Applications 11 (2006) 165-171.
[13] M.A. Noor, On Hadamard integral inequalities involving two log-preinvex functions, Journal of Inequalities in Pure and Applied Mathematics 8(3) (2007) 1-14.
[14] R. Pini, Invexity and generalized convexity, Optimization 22 (1991) 513-525.
[15] Samko, S.G.; Kilbas, A.A.; Marichev, O.I.: Fractional Integrals and Derivatives, Theory and Applications, Gordon and Breach, Yverdon, Switzerland, 1993
[16] Sarikaya, MZ, Set, E, Yaldiz, H, Başak, N: Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math.Comput. Model. 57, 2403-2407(2013)
[17] M. Zeki Sarikaya, Necmettin Alp and Hakan Bozkurt, On Hermite-Hadamard Type Integral Inequalities for preinvex and log-preinvex functions, Contemporary Analysis and Applied Mathematics, Vol.1, No.2, 237-252, 2013.
[18] S., Ermeydan and H., Yıldırım, Riemann-Liouville Fractional Hermite-Hadamard Inequalities for differentiable \(\lambda\)-preinvex functions, (Accepted.)
[19] Tunç M., and Yıldırım, H., On MT-convexity, http://arxiv.org/pdf/1205.5453.pdf.(2012). (preprint)
[20] Wang, J, Li, X, Feckan, M, Zhou, Y: Hermite-Hadamard-type inequalities for Riemann-Liouville fractional integrals via two kinds of convexity. Appl. Anal. (2012).doi:10.1080/00036811.2012.727986

[Department of Mathematics, Faculty of Science and Arts, University of Kahramanmaras Sütçü İmam, 46000, Kahramanmaras, Turkey
E-mail address: abdullahmat@gmail.com

[Department of Mathematics, Faculty of Science, University of Cumhuriyet, 58140, Sivas, Turkey
E-mail address: mesra@cumhuriyet.edu.tr

[Department of Mathematics, Faculty of Science and Arts, University of Kahramanmaras Sütçü İmam, 46000, Kahramanmaras, Turkey
E-mail address: hyildir@ksu.edu.tr]