Self-organized computational rewrite language L predicating an optimal thermodynamic cosmic birth-order automorphic evolution of intelligent life, and consciousness, as nature’s IT

Peter J. Marcer¹, Peter Rowlands² and Walter Schempp³

¹ Le Richelieu, 139 Ave du 15ieme Corps, 83700, St Raphael, France, email: marcerpeter@gmail.com
² Physics Department, University of Liverpool, Oliver Lodge Laboratory, Oxford St, Liverpool. L69 7ZE, UK, email: p.rowlands@liverpool.ac.uk
³ Lehrstuhl fuer Mathematik 1, University of Siegen, D-57078 Siegen, Germany, email: schempp@mathematik.uni-siegen.de

Abstract. This autonomous self-governed explanation of the cosmological thermodynamics of entirely novel states of matter (as in a renormalization group approach) includes the currently accepted fundamentals of physics, chemical valence, the periodic table and the basic neuroscience architecture/Nature’s IT of the sentient evolution of intelligent life; with notably, the DNA/RNA molecular biology of the genetic code, Standard Model elementary particle quantum physics, non-standard mathematical analysis and consciousness. Automorphic representations demonstrably have a 'rest of the universe' phenomenology which features: the zitterbewegung; the U1 unitary geometry of Standard model/chemical valence Lamb shift; the Aharonov-Bohm and Casimir effects; the single RNA and double DNA helices of biomolecular chemistry; the neuron/glial/microtubule//brain/mind/self. This anticipates the rewrite computation both of Turing and of L itself, in addition to mathematical analysis, natural semantic language capabilities and consciousness, as all inherent in the human genome/self, creating a new starting point for more of Nature's IT wonders to come.

1. Nature's sentient 3+1 IT versus digital IT and the AI automation paradox

Experimentally proven 3+1 object image capture by any form of illumination, independent of any observer, is verifiable by one step reference beam 3+1 encoding that allows subsequent one step reference beam 3+1 image decoding. It also has 3+1 object/object image coincidence, where the sentient observer's sensor/eye/ear/etc supplies the necessary reference beam, and similarly any electron has its own 3+1 'rest of the universe' de Broglie 'radar and holography', from near cosmic time zero! [1-13] Clearly, only 3+1 object image/3+1 object coincidence makes life tenable. (A 'rest of the universe' criterion solves the conundrum of perception's subjectivity as it makes objective communication possible by allowing many observers to share different 3+1 images of the same external object and specifically of themselves even when they are by their selves.) And it makes sense that a sentient observer's sensor/eye/ear/etc should capture the entire 3+1 object image of the external 'reality manifold'frame presented to it when this can be done in one step and then transferred directly to the brain for immediate associative memory storage and identification/recognition against past experience/ data starting from an empty brain!
2. The fundamental nilpotent criterion

Nilpotent Quantum Mechanics (NQM), as presented by Marcer and Rowlands (2017) [14], is grounded on Rowlands’ extensively researched and well-referenced 2007 World Scientific book, *Zero to Infinity* [15] and some earlier publications [16-28]. It also follows from on and connects with earlier work by Rowlands on the foundations of physics and the Dirac equation [29-42]; by Marcer into the thermodynamic foundations of computing/IT [43-69], and Schempp, on quantum holography, neurocomputer architectures and magnetic resonance imaging [7-10]. Other contributing work includes that on DNA by Hill and Rowlands [70-72], and Dubois’ concept of anticipatory computational systems [73]. NQM predicated the Logic of Self-Organised Systems [62] to include the sentient Evolution of Intelligence [58] as naturally biogenically manifest on Earth, where NQM is defined as the systemic unique birthorder automorphism of the NQM fermion X automorphisms \((i\kappa + ip + jm)\) predicated by \(L(X)\), Rowlands’ universal rewrite language of computational productions [74-75]. Specifying the fundamental nilpotent criterion \(X^2E^2p^2m^2=0\) (where \(i=\sqrt{-1}\) and \(k\), \(i\), \(j\) are the quaternion units) this concerns any NQM system’s Energy \(E\), momentum \(p\) and mass \(m\), in relation to the Nilpotent Dirac Group (NDG) of unique fermions \(X\neq 0\). As research shows, the elementary particle physics of Standard Model QM and of the DNA/RNA molecular biology of the genetic code both exhibit NDG symmetries and symmetry breaking, in the form of its 64 part algebra as it relates to the Dirac group’s 5-part gamma algebra. That is, it can be postulated that the \(\Lambda=T/U\) and \(C\equiv G\) regulating the valent connectivity of the entire biosphere/Gaia concerns \(SU(2)\) and \(SU(3)\) as in quantum physics. Thus, NDG is the fundamental physical nexus behind an endless automorphic evolution of all life, in a systemic near maximally thermodynamic self-organised cosmos where this takes place through an endless ‘Russian Doll’ hierarchy of autonomous self-governed units, as QM Carnot Engines [76]. In addition to physics and biology, neuroscience, computation and mathematical analysis, are all representations of the self-organized, autonomous, self-governed hierarchical automorphic rewrite Language system \(L(X)\).

3. The 'rest of the Universe', '5th force, dark matter’ Feature of \(L(X)\).

In \(L(X)\), Rowlands’ universal rewrite language, the most notable feature is that changes in each emergent fermion state \(X\) automatically leads to corresponding changes in its environment/vacuum state/rest of the universe, predicated here to concern geometric phase \(\theta\) (Resta 1997 [77] The Berry Phase; Berry, 1984 Geometric Phases in Physics [78]) so that the parametric Hamiltonian \(H(E,p,m)\) \(E^2p^2m^2=0\) is the fundamental nilpotent criterion predicated above. This allows each \(H\) to be dealt with as if it were isolated from any larger unity where, ultimately, \(H(X)\) in an incomplete universe defines the First Law and Second Laws of Thermodynamics; and, as \(L(X)\)’s universal attractor, specifies its systemic birhorder automorphisms, additionally subject novel observable gauge invariant parametric effects predicated new novel states of matter \(X(E,p,m)\). In Weyl (1929) [79], the units (identified by Galois) as of fundamental importance to the solution of algebraic equations, form a composition series composed of fundamental maximal invariant subgroups \(g_0=g,g_1,g_2,\ldots, g_{n-1},g_n=1\), so that the factor groups \(g/g\) are simple. Weyl quotes Millikan ‘Never in the history of science has a subject (spectroscopy/valence) sprung so suddenly from a state of complete obscurity and unintelligibility to a condition of full illumination and predictability as has this field since the year 1913’. As he points out any electron/fermion in the shell structure of any atomic element/periodic table can be interchanged with any other, without changing the element’s chemical valence properties and so this must also apply to \(L(X)\) itself in relation to both NDG and the complete symmetry infinite linear permutation Galois Group of automorphisms hypothesized to constitute the linear quantum superposition of the U1 field prior to the change in the environment induced by the emergence of the next \(X\), i.e. of normalized permutations (divided by \((n!)\)) which then constitute a roll of the dice as the means by which evolution is proofread/advances.

4. NQM very briefly summarised

This summary postulates that Nilpotent Quantum Mechanics [14], including quantum physics, may be
best understood as the algebraic study of groups as the automorphisms of fields, i.e. as Galois theory. This is, for example, as used in Conway's non-standard mathematical analysis equivalent to Zermelo-Fraenkel set theory, where automorphisms (of the number/ordinal fields) are generated by means of the generalised Dedekind cut 'division algebra' and the system's unique birther automorphism provides the whole analysis of number/Turing computation, in the simplest possible way, as sums, products, inverses, groups, algebraic and transcendental extensions of successively more complicated well defined concepts of the analysis. Rowlands' universal computational rewrite language L shows, that L(X) defines a quantum system's unique irreversible birther automorphism in terms of the splitting field of its fermion states X. That is, each X automatically leads to corresponding changes in its environment (vacuum state/splitting field of its fermion states X. That is, each X leads to corresponding changes in its environment and its environment defines a quantum system's unique irreversible birthorder automorphism in terms of the products, inverses, groups, algebraic and transcendental extensions of successively more complicated number/Turing computation, in the simplest possible way, as sums, products, inverses, groups, algebraic and transcendental extensions of successively more complicated well defined concepts of the analysis.

5. The Cosmos as a quantum coherent unity of its automorphisms

The theory predicates that the cosmos most likely has a quantum gauge coherent unity that holds at all 3+1 space-time scales, so that L(X) represents the system's unique birther automorphism or Second Law of thermodynamics behaviour without time reversible symmetry. This is independently known to be the case: from the quantum thermodynamics of the quantum Carnot engine which leads to entirely new states of matter and includes the classical Second Law; from Berry's geometric/topological/tautologous phase, which also hypothesizes there exists a Hamiltonian without time reversal symmetry; and also from the parametric mapping of any Hamiltonian onto itself (as an attractor) to find its stable and unstable points, which, as the basis of the methodology of Wilson's renormalization group methodology, determines its material phases of matter, i.e. H(X). Such material phase transitions of matter its stable and unstable critical points are found by mapping a Hamiltonian onto itself. [80-82]

Consequently these representations of the productions/machine order code of the universal computational rewrite language L and its unique infinite alphabet, with its formal system of four rules characterized by duality, self-similarity and holism, is one where the successive alphabets generated by the create process, i.e. (alphabet)(alphabet)→(new alphabet) leads to a regular series of identically closed anti-commutative cycles, each of which commutes with all the others (i.e. all the terms have a unique identity because they have a unique partner). As the proofreading process (subalphabet)(alphabet)(alphabet)→(alphabet) confirms, the concatenation (AB)(AB) is commutative, →(R), or anticommutative, →(R*), with only the anticommutative options lead to something new. That is, the generation process is a one-arm irreversible bifurcation, where this can be identified, quantum physically, with the fermions X as its sources. And in [14], L (which is Rowlands’ self-organised universal nilpotent rewrite language with an infinite alphabet) then predicates a natural system/cosmology close to the thermodynamic ideal where the First Thermodynamic Conservation Law H=E^2-p^2-m^2=0 of Energy E momentum p and mass m is the system’s universal attractor (that as above factorizes into the nilpotent Dirac Group fermion solution space X≠0; X.X=0=(ikE+ip+jm)(ikE+ip+jm)=E^2-p^2-m^2=0; with i=√-1 and k ij identified as the quaternion units onto which electromagnetic, strong and weak charge are projected. L(X) also defines the irreversible Second Law of thermodynamics with a Dirac group unit element I; and 3. the nilpotent Dirac equation (∓kE±ip+jm)Aexp(-i(Et+p.r)=0 shows holds differently on different time (t) and space (r) scales.
6. A computational context, where group theory supersedes apps.

In universal Turing digital representations, i.e. programs, apps, etc, each unique computational input ideally leads to a unique computable output, subject to cumulative error propagation, time limitations of exponential complexity, the Halting problem and the AI automation paradox. However, in the methodology of computational rewrite production system languages, a program rewritten as productions via an alphabet of unique symbols for hardware to interpret, not only ensures such a canonical ideal but the program's efficient tractable error free execution. Here, we have a methodology, by which digital algorithms are efficiently programmed/produced' using a finite alphabet, but also, as we have hypothesised, that is in use by the human brain, explaining how canonically a write/read associative memory of such productions might be sentiently compiled and accumulated, leading to semantic alphabetic language capabilities.

These are in agreement with the experimentally confirmed thermodynamics of a Quantum Carnot Engine (a generalization of its classical counterpart) that leads to entirely new states of matter and perhaps hot running [78]). For quantum phase coherence \[\theta\] alters ideal Carnot heat engine action from \[\eta = 1 - T_c/T_h\] where \(T_c\) and \(T_h\) are the low and high temperature entropy sink and source (as required by the classical Second Law of Thermodynamics) to \[\eta_0 = \eta - \theta\cos \theta\] when \(T_c = T_h\). So such heat engine action is even possible in a single heat bath hypothesized self-governed autonomous cosmology where each unit \(1_x\) similarly can be an autonomous self-governed DNA/RNA biogenetic life form/QCE leading to entirely new/novel states of matter/alphabetic signals of thought, i.e. the emergence of new material phase transitions. Furthermore this now normalized unit group formalization itself may be given a universal computational rewrite language \(L'\) with an alphabet of just 4 symbols representing the axioms of group theory (in place of \(L\)'s rewrite four fixed rules of an alphabet, a start 'axiom', rewrite productions and a stopping criteria used by Rowlands and Diaz) i.e. closure, associative law, unit element and inverse element. These lead to those of the 64 triples of DNA/RNA genetic code as the symmetries and symmetry breaking of the nilpotent Dirac Group. And, clearly in this case, \(L'\) which we today label group theory says, will 'in the passage of time' bootstrap itself into existence as a nature language capability of a DNA life form (of which we ourselves as the human genome constitute an experimental validation) together with the universal computational rewrite language \(L\) (including Turing computation!) and that of the DNA/RNA genetic code itself! This tells us that these languages are tautologous, and concern the quantum geometric phase \(\theta\) as a tautological one form \(\theta\). In this structure, there is now an even more compact mathematical formal language, category theory represented by object labelled arrows corresponding to the 'passage of time' i.e. signal inputs followed by signal outputs, the result of a labelled computational process, which here concerns a self-adjoint commutative Lie diagram representing the known fundamental spectral theorem of Hilbert and Von Neumann on the Hilbert space. (As in Wittgenstein's semantic principle [83], 'there is necessarily only one proposition for each fact that answers to it and that the sense of a proposition cannot be expressed except by repeating it, i.e. each individual is a unique, quantum automaton [84].) And since the passage of time is a dissipative process governed by the Hamiltonian \(H\) then there exists a Liouvillian \(\mathcal{L}[H, _] = \mathcal{H} \otimes 1 - 1 \otimes \mathcal{H} \otimes [L, L] = 0 \& [T, L] = i\) where \(t\) is time and \(T\) an 'internal' clock/time may exist. i.e.

\[0.1 = 0\] is the canonical one form, and \(d\theta\) the 2 form on the associated symplectic manifold, such that

\[d\theta = 0\] represents the physical principle of least action, as is implicit in the existence of \(H\).

Galois theory is the algebraic study of groups of automorphisms of a field in which one associates an extension field with a given algebraic equation and there always exists a unique birthingriding automorphism of the field; so that potentially (as shown above) \(H(X)\) provides a basis for the First, Second and Third laws of Thermodynamics and probability theory in the same universal quantum mechanical group theoretic explanation! Galois theory thus tells us that there exists a universal theory of everything computational, described below, in which each unique canonical input-output, is one (of an infinity) of tractable roots/solutions of a single mathematical group (currently scientifically largely unrecognised in this computational context), where parallelism across all its computational processes is quantum linear superposition so that this group takes the form of the general linear complete group of permutations.
7. Some applications (reread Introduction)
The conundrum of perception’s objectivity/subjectivity is resolved in this self-governed system by the
fact the object image of an object is a phase conjugate dynamic '3+1 holographic' one that coincides
external to the observer (or outer automorphism) with that of the 3+1 unique object itself i.e. 'a rest of
the universe' geometric phase objectivity, the 3+1 basis of which is common to the perception of all
sentient observers. This is one that makes communication between different observers possible. Just a
snap of ones fingers demonstrates this; listen where do you hear the snap?

We are suggesting that the reader should realise that if a theory of everything computable is an
algebraic equation then we will all know two ways to solve it!! That is, \(i = +\sqrt{-1} \) and \(-\sqrt{-1} \) because these
make the factorization of any algebraic equation into all its roots/solutions possible! And as Galois
theory tells us all such roots forms a mathematical group, which in the case of quantum mechanics,
one can postulate concerns quantum linear superposition, i.e. the complete linear group \(\text{Gl}_n \) of
permutations, which needs no independent basis for probability theory & has a complete Lie algebra
\(\text{gl}_n \) of potential solutions in terms of the Lie group germ \(\text{Gl}_n \); i.e. Lie brackets \([a,b]\) where \(a, b \)
commute (i.e. is Abelian) which together with \([c,d]\) the Clifford bracket/group germ and \(c,d \) anti-
commute, define the entire quantum solution space, of bosons and fermions \(X \) respectively. (Such Lie
and Clifford group germs are a means to tractable solutions to problems because the notation \((,) \)
signifies a control process that always returns control to the interval \((, \) i.e. to the group/one of its
members and in particular the group unit \(I \) (signifying normalization) – a safety critical means which
returns control to the control interval. [85]) And so, as is experimentally validated currently, quantum
mechanics consists solely of the unique fermions (Pauli exclusion) and their bosons interactions.

Moreover, Lie \([a,b]\)s are a diffeomorphic generalization of the classical differential operator, i.e.
such group germs concern an exponential differentiable operator with a differentiable (logarithmic)
inverse. It says that Heisenberg uncertainty and exponential complexity can both be overcome, by
means of the 3D unipotent Heisenberg Lie Group and its 3D nilpotent Lie algebra \(g \), in the form of the
Heisenberg sphere/geometric qubit [7, 8, 10]. That is, \([i,-i]\) determines all such solutions, using the 3D
Heisenberg Lie group \(G \) nilpotent Lie algebra \(g \), as used by Schepm as the fundamental mathematical
basis for the optimal control of Magnetic Resonance Imaging machines; a neural architecture of brains
working by non-degenerate quantum holography; and black hole astrophysics (e.g. published in Acta
Systematica 2018). Thus the Lie and Clifford bracket and Lie diffeomorphism determine a quantum
mechanical system of solutions where the indeterminate units \(i \) become determinate and do so
quantum mechanically in what is known as geometric/Berry phase \(\theta \) where \(\exp(i(\theta-\pi))=-1 \) & only
relative phases can be measured (the initial fixed phase itself is known to be indeterminate). Such
computation is thus characterized by \(\pi \), as Deutsch (1985) [86] shows in his Royal Society paper on the
universal quantum computer, where the Church Turing Hypothesis is replaced by the Church
Turing Principle that one QM system may perfectly simulate another; and, as found experimentally in
mammals, '\(\pi = \) visual cortex' by Miller [87]. (This is explained as due to Berry phase in [63] and in a
letter to Science, dated 6 December 2010, published in [63].)

Such Lie and Clifford group germs are the means to tractable solutions to problems because the
notation \((,) \) signifies a tractable control process that always returns control to the interval \((, \) i.e. to
the group/one of its members and in particular the group unit \(I \) (signifying normalization) and as such
is a solution/root as represented by its Lie algebra. An example can be found in U1 electromagnetism
where an electron is the source of photons which also act as clocks, i.e. quanta \(hv \) having frequency \(v \),
and the \(1 \) tells us electromagnetic phenomenon are calculable over the whole cosmos unit \(1 \). Time,
therefore, is not just a scalar where special relativity holds with respect to clocks. It has a direction and
so is irreversible. Again, in respect to the Dirac delta function \(\delta \) in the Dirac bra/ket formalism, where
\((,) \) is written as \(< | > \), and \(\delta \) acts as a Heaviside operator equivalent to the singular Green’s function
\(G \) (Schwartz distribution) that permits the corresponding description by means of an integral formula,
as in Feynman's sum of histories approach to quantum mechanics, i.e. \(G(r,t,r',t') = \delta(t-t' -|r -r'|/c)/4\pi|r-
r'| \) (a description interpreted as arising from the field bosons in question) implies that the fermion (re)
source \(S_{\text{opf}} \) has an inverse \(F = (\text{OP})^{-1} S_{\text{opf}} \) exists and is calculable. And the normalized group unit \(I \)
tell us that such units corresponding probabilistically to autonomous self-governed systems within an autonomous -governing cosmos, must also be represented by some form of division algebra, where that of the following continued fraction suggests itself, because every irrational number may be so represented, for \(1+1/(1+1/1+1/1+ \ldots \ldots \ldots = (1 + \sqrt{5})/2 \), the golden mean, is the finite limit/birthorder automorphism of field of continued fractions such that 1 is modulus |1| and so this field automorphism is that of solutions of group of units |1|=1 with respect to \(r \cdot r' \) is represented by its modulus. That is, they both concern the modular groups consisting of all Mobius transformations and have modular representations over a field of prime characteristic, which concerns a rational invertible transformation of the complex plane \(w=(az+b)/(cz+d) \) and are conformal mappings where \(ad \neq bc \), i.e. meriphormic where the poles are the fermions.

Furthermore, Berry postulates that there is a (now known) quantum system with an unknown Hamiltonian operator without time reversal symmetry in the form of the Zeta function where, by Riemann's Hypothesis all Zeta's zeros lie on the line \(x=1/2 \) in the upper half complex plane \((x,y) \). Can it therefore be coincidence that quantum mechanics defined by Lie commutator \([,] \) and Clifford anti-commutative bracket \(\{ , \} \) group germs, has a universal self-governed rewrite language \(L \) with an infinite alphabet that Rowlands finds determines a Hamiltonian \(H=0 \) that is that of the First Thermodynamic Conservation Law, while also satisfying the Second Law of Thermodynamics in the form of \(H \)'s fermion Hamiltonian path in the quantum cosmology postulated here, and additionally concerning the Standard Model elementary particle physics described by the \(U(1) \), \(SU(2) \) and \(SU(3) \) Lie Group and its Lie algebras defining the electromagnetic, weak and strong force fields respectively.

Amazingly, too, we are all aware of group theory use with respect to our own human biology, in relation to blood groups where the 4 basic types are O, A, B and AB, and O is indeterminate, that is, it can be transfused by anyone. That is, we ourselves are a living proof of its Galois correctness. In addition, the Blue Planet Earth/Biosphere/Gaia also perfectly stimulates the Heisenberg sphere/ universal qubit which both acts as a quantum cosmological clock for the emergence of autonomous, self-governed life forms, and allows us to understand the mystery of time, as the gauge invariant cosmological phenomenon of geometric phase \(\theta \). This is the exact feature of how analogue clocks on Earth endlessly display the passage of relative time, such that time is irreversible, with a fixed past, an ever changing present, and an uncertain and largely indeterminate future.

We can also postulate that the heart is a quantum clock/engine, i.e. a qubit/Heisenberg sphere/(4-chambered) pump that optimally controls the flow of blood throughout the body by quantum linear superposition, so that in whatever activity the living being is engaged, there is optimal control and each subunit/organ inputs the oxygenated blood supply it needs and outputs/recycles the used blood supply at ideally the clock frequency each organ/body part and its current activity demand. And this even includes immune system self-repair and the fighting of disease/harmful bacteria/viruses including their detection. It may even include sexual attraction when two hearts, as we say, beat as one, i.e. become a quantum Cooper pair so as to change each individual's behaviour entirely. For quantum hearts have now solitonic properties and so may even interact with themselves, as probably happens in the self-repair of the body and mind, because they have a well-defined holographic trace transform/cranial sacral system as the basis of sentient self-governance as well a holographic transform shown to be the quantum basis of sentient/sensory perception and the brain's holographic optimally controlled associative filter bank memory.

8. Appendix: General relativity and quantum mechanics are compatible
The discovery/algebraic formalization of a First Law of Thermodynamics of matter predicating the nilpotent Dirac equation as autonomous self-governance set out herein, says that ‘matter tells 3D+1 space-time how to curve and that 3D+1 space-time tells matter how to move’, the central essential feature of Einstein's General Relativity (EGR) in this predicated quantum cosmology. Here, the self-adjointness of the Fundamental Spectral Theorem of Hilbert and Von Neumann expressed as Lie commutative diagram/Lie group germ already referred to above, defines the covariance necessary to EGR. It concerns by two commutative vector spaces in NQM, i.e. the dualistic geometry of manifolds,
where Amari [88] explains the geodesic behaviour in terms of two Riemannian metrics coupled one to the other such that there is a dually flat manifold having two different criteria of linearity or flatness; implying the existence of mutually dual/conjugate bases in their tangent space. One has tangent vectors along the co-ordinate curves θ_i so that $g_{\theta\theta}(\theta)$ defines the metric while the second has its exponential dual z_i concerns $g^{ab}(z)$ such that δ_{ab} is the Kronecker delta, so θ is a linear coordinate system with exponential derivatives/flatness and z is its flatness dual. Amari demonstrates a Pythagorean/orthogonal relationship between the two duals, and the two coordinate systems are connected by a Legendre transform.

References

[1] Hoffmann W C 1966 The Lie algebra of visual perception J Math Psychol 3 65-98
[2] Hoffman W C 1989 The Visual Cortex is a Contact Bundle Applied Mathematics and Computation 32 137-167
[3] Noboli R 1985 Schrodinger Wave Holography in the Brain Cortex Phys Rev A 32(6) 3618-3626
[4] Noboli R 1987 Ionic Waves, in Animal Tissues Phys Rev A 35(4) 1901-1922
[5] Eccles J C 1986 Do mental events cause neural events analogously to the probability fields of quantum mechanics, Proc Roy Soci Lon B 240 433-451 : 1994 How the Self controls its Brain, Springer-Verlag (Eccles’ hypotheses are partially based on the truly remarkable observed fact of the working of the human neural synapse, where on neural firing a single synaptic vesicle containing 10^4 molecules of some neural transmitter is released probabilistically from the hexagonal vesicular grid across the synaptic gap to provide the synaptic gain!)
[6] Marcer P J 1987 Quantum Models of Visual and Acoustic Perception, a Holographic Ear, a Holophonic Ear? Proceedings 7th International Congress of Cybernetics and Systems London September 7-11 1 140-144
[7] Schempp W 1986 Harmonic Analysis in the Heisenberg Group with Applications in Signal Theory Pitman Research Notes in Mathematics series 147 Longman Scientific and Technical
[8] Schempp W 1992 Quantum Holography and Neuro-computer Architectures Journal of Mathematical Imaging and Vision 2 279-326
[9] Schempp W 1998 Magnetic Resonance Imaging: Mathematical Foundations and Applications Wiley-Liss New York Chichester Wienheim
[10] Schempp W 1993 Bohr’s Indetermincy Principle in Quantum Holography, Self-adaptive Neural Network Architectures, Cortical Self-Organization, Molecular Computers, Magnetic Resonance Imaging and Solitonic Nanotechnology Nanobiology 2 109-164
[11] Pribram K H 1991 Brain and Perception: Holonomy and Structure in Figural Processing (New Jersey: Lawrence Eribaum Associates)
[12] Sutherland J 1999 Holographic / Quantum Neural Technology, Systems and Applications ISCAS 313-334
[13] Perus M and Bischof H 2003 The Most Natural Procedure for Quantum Image Processing International Journal of Computing Anticipatory Systems 246-257
[14] Marcer P and Rowlands P 2017 Nilpotent quantum mechanics: analogs and applications Frontiers in Physics 5 article 28 1-8
[15] Rowlands P 2007 Zero to Infinity The Foundations of Physics (Singapore: World Scientific)
[16] Rowlands P 1994 An algebra combining vectors and quaternions: A comment on James D Edmonds’ paper Speculat Sci Tech 17 279-282
[17] Rowlands P 1996 Some interpretations of the Dirac algebra Speculat Sci Tech 19 243-51
[18] Rowlands P 1998 The physical consequences of a new version of the Dirac equation in Hunter G Jeffers S and Vigier J-P (eds), Causality and Locality in Modern Physics and Astronomy: Open Questions and Possible Solutions (Dordrecht: Kluwer Academic Publishers) 397-402
[19] Rowlands P and Cullerne, J P 2001 The connection between the Han-Nambu quark theory, the Dirac equation and fundamental symmetries Nuclear Physics A 684 713-5
[20] Rowlands P and Cullerne, J P 2002 Can gravity be included in grand unification? in Amoroso R L, Hunter G, Kafatos M and Vigier J-P (eds) Gravitation and Cosmology: From the Hubble Radius to the Planck Scale (Dordrecht: Kluwer) 279-86
[21] Rowlands P and Cullerne, J P 2001 The Dirac algebra and grand unification arXiv:quant-ph/0106111
[22] Rowlands P and Cullerne, J P 2001 QED using the nilpotent formalism arXiv:quant-ph/0109069
[23] Rowlands P 2003 The nilpotent Dirac equation and its applications in particle physics, arXiv:quant-ph/0301071
[24] Rowlands P 2004 Symmetry breaking and the nilpotent Dirac equation, AIP ConferenceProceedings 718 102-115
[25] Rowlands P 2005 Removing redundancy in relativistic quantum mechanics arXiv:org:physics/0507188 and Prespacetime Journal 31 issue 1 1311-1354 (2012)
[26] Rowlands P 2006 Fermion interactions and mass generation in the nilpotent formalism AIP Conference Proceedings 839 225-35
[27] Rowlands P 2008 What is vacuum? arXiv:08100224 and Prespacetime Journal 31 issue 14 1356-1386 (2012)
[28] Rowlands P 2010 Physical interpretations of nilpotent quantum mechanics arXiv: 10041523 and Prespacetime Journal 31 issue 14 1404-1441 (2012)
[29] Rowlands P 1983 The fundamental parameters of physics Speculat Sci Tech 6 69-80
[30] Rowlands P 1991 The Fundamental Parameters of Physics: An Approach towards a Unified Theory (Liverpool: PD Publications)
[31] Rowlands P 2001 A foundational approach to physics arXiv:physics/0106054 and Prespacetime Journal 31, issue 14 1278-1310 (2012)
[32] Rowlands P Cullerne J P and Koberlein B D 2001 The group structure bases of a foundational approach to physics arXiv:physics/0110092
[33] Rowlands P 2009 Are There Alternatives to Our Present Theories of Physical Reality? arXiv:09123433 and Prespacetime Journal 31 issue 14 1387-1403 (2012)
[34] Rowlands P 2010 Symmetry in physics from the foundations, Symmetry 24 41-56
[35] Rowlands P 2013 Space and antispase in Amoroso R L, Kauffman L H and Rowlands P (eds) The Physics of Reality Space, Time, Matter, Cosmos (Singapore: World Scientific) 29-37
[36] Rowlands P 2014 The Foundations of Physical Law (Singapore: World Scientific)
[37] Rowlands P 2014 A dual space as the basis of quantum mechanics and other aspects of physics, in Amson J C and Kauffman L H (eds) Scientific Essays in Honor of H Pierre Noyes on the Occasion of His 90th Birthday (Singapore: World Scientific) 318-338
[38] Rowlands P 2015 Dual vector spaces and physical singularities in Amoroso R L Kauffman L H and Rowlands P (eds) Unified Field Mechanics Natural Science Beyond the Veil of Spacetime (Singapore: World Scientific) 92-101
[39] Rowlands P 2015 How Schrödinger’s Cat Escaped the Box (Singapore: World Scientific)
[40] Rowlands P 2017 How symmetries become broken Symmetry 28 Number 3 244-254
[41] Rowlands P and Rowlands S 2018 Representations of the nilpotent Dirac matrices in Amoroso R L, Kauffman L H Rowlands P and Albertini G (eds) Unified Field Mechanics II: Formulations and Empirical Tests (Singapore: World Scientific) 26-33
[42] Marcer P J 1984 Is human learning an outcome of natural computational processes? Speculat Sci Tech 7 5 259-267
[43] Marcer P J 1985 A solution to the problem of intelligence and human learning – the thermodynamics of computation, the basis for an ultimate theory of Everything Speculat Sci Tech 9 4247-258
[44] Marcer P J 1986 Commonsense, what is it? presented at British Theoretical Computer Science
Colloquium, University of Warwick March 24-26

[46] Marc P J Resconi G and Jessel M 1988 A Universal Control Theory and one of its Applications the brain modelled as an analogical or stochastic recursive machine Proceedings of 4th International Conference on Systems Research, Informatics and Cybernetics Baden Baden August 15-21 Section III paper 3

[47] Marc P J 1988 Quantum Perception and Cognition a more appropriate model of neural and mental processes? in Lasker G (ed) Proceedings of 4th International Conference on Systems Research, Informatics and Cybernetics Baden Baden August 15-21, Section III paper 9

[48] Marc P J 1991 Surreal Models of Arithmetic Kybernetes 20 4 55-58

[49] Marc P J and Schempp W 1996 A Mathematically Specified Template for DNA and the Genetic Code, in terms of the physically realizable Processes of Quantum Holography in Fedorec A and Marc P J (eds), Proceeding of Greenwich (University) Symposium on Living Computers 45-62

[50] Marc P J and Schempp W 1997 Model of the Neuron Working by Quantum Holography Informatica 21 519-534

[51] Marc P J and Schempp W 1998 The brain as a conscious system International Journal of General Systems 27 1/3 231-248

[52] Marc P J and Schempp W 1998 The Model of the Prokayote Cell as an Anticipatory System Working by Quantum Holography International Journal of Computing Anticipatory Systems 2 307-315

[53] Marc P J and Mitchell E 2001 What is consciousness? In Van Loocke P (ed) The Physical Nature of Consciousness, Advances in Consciousness Research series (Amsterdam: John Benjamins BV) 145-174

[54] Marc P J 2001 Anticipation and Meaning AIP Proceedings 573 ed 20-27

[55] Gariaev P Birstein B Iarochenko A Leonova K A Marc P J Kemptf U and Tertishy G 2001 The DNA-wave International Journal of Computing Anticipatory Systems 10 290-310

[56] Gariaev P Birstein B Iarochenko A Leonova K A Marc P J Kaempf U and Tertishy G 2002 Fractal Structure in DNA Code and Human Language: Towards a Semiotics of Biogenetic Information International Journal of Computing Anticipatory Systems 12 255-273

[57] Marc P J Mitchell E Rowlands P and Schempp W 2004 Zenergy: the Phaeonemion of Dark Energy that Fuels the Natural Structures of the Universe International Journal of Computing Anticipatory Systems 16 189-202

[58] Marc P J and Rowlands P 2007 How intelligence evolved? Quantum Interaction, Papers from the AAAI Spring Symposium, Technical Report SS-07-08

[59] Marc P J and Rowlands P 2008 Artificial Intelligence and Nature's Fundamental Process Proceedings of Second International Conference on Quantum Interactions 2 March 19-26

[60] Marc P J and Rowlands P 2009 The Grammatical Universe and the Laws of Thermodynamics AIP Conference Proceedings 1303 161-167

[61] Marc P J and Rowlands P 2010 Further Evidence in support of the Universal Nilpotent Grammatical Computational Paradigm of Quantum Physics AIP Conference Proceedings 1316 90-101

[62] Marc P J and Rowlands P 2010 The ‘Logic’ of Self-Organizing Systems, AAAI Technical Reports 2010-08-020

[63] Marc P J and Rowlands P 2013 A Computational Unification of Scientific Law: Spelling out a Universal Semantic For Physical Reality in Amoroso R L Kauffman L H and Rowlands P (eds.), The Physics of Reality Space, Time, Matter, Cosmos (Singapore: World Scientific) 50-59

[64] Marc P J and Rowlands P 2014 Information, Bifurcation & Entropy in the Universal Rewrite System, 203-216

[65] Marc P J and Rowlands P 2014 Is the Human Brain Quantum Mechanical? International Journal of Computer Anticipatory Systems 27 217-226
[66] Marcer P J and Rowlands P 2014 Universal Rewrite and Self-Organization International Journal of Computer Anticipatory Systems 27 227-246

[67] Marcer P J and Rowlands P 2014 Computational tractability – beyond Turing? in Richard L Amoroso, Louis H. Kauffman and Peter Rowlands (eds.), Unified Field Mechanics Natural Science Beyond the Veil of Spacetime Proceedings of the IX Symposium Honoring Noted French Mathematical Physicist Jean-Pierre Vigier, World Scientific, 2015, 33-38

[68] Marcer P J and Rowlands P 2015 Natural self-organization and artificial intelligence in Dubois D and Lasker G (eds) Proceedings of 28th International Conference on Systems Research, Informatics and Cybernetics Baden Baden 1 36-41

[69] Marcer P J Rowlands P and Schempp W 2017 a Universal Self-Organized Semantic Turing Language Explanation of Natural Biogenic Intelligence as Experimentally Validated on Earth Proc Intern Institute for Advanced Studies in Dubois D and Lasker G (eds) Proceedings of 29th International Conference on Systems Research, Informatics and Cybernetics Baden Baden 1 71-75

[70] Hill, V J and Rowlands P 2008 Nature’s code AIP Conference Proceedings 1051 117-126

[71] Hill, V J and Rowlands P 2010 Nature’s fundamental symmetry breaking International Journal of Computing Anticipatory Systems 25 144-159

[72] Hill, V J and Rowlands P 2010 The numbers of Nature’s code International Journal of Computing Anticipatory Systems 25 160-175

[73] Dubois D 1998 Computing Anticipatory Systems with Incursion and Hyperincursion AIP Conference Proceedings 37 3-29

[74] Rowlands P and B Diaz 2002 A universal alphabet and rewrite system, arXiv:csOH/0209026

[75] Diaz B and Rowlands P 2005 A computational path to the nilpotent Dirac equation, International Journal of Computing Anticipatory Systems 16 203-18

[76] Scully M et al 2003 Extracting work from a single heat bath via vanishing quantum coherence Science 299 862-4

[77] Resta R 1997 Polarization as a Berry Phase (inset The Berry (Geometric) Phase Europhysics News 28 18-20

[78] Berry M V 1986 Riemann's Zeta function: a model for Quantum Chaos? in Seliman T H and Nishinoka H (eds) Springer Research Notes in Physics (Berlin: Springer) 263 1-17

[79] Berry M V 1988 The Geometric Phase Scientific American December 26-32;

[80] Weyl H 1929 Theory of Groups and Quantum Mechanics (Dover)

[81] Wilson K G 1983 The Renormalization Group and Critical phenomena Reviews of Modern Physics 553 583-600

[82] Dubois D Marcer P J Mitchell E and Schempp W 2001 Self Reference, the Dimensionality and Scale of Quantum Mechanical Effects, Critical Phenomena and Qualia International Journal of Computing Anticipatory Systems 13 340-359

[83] Wittgenstein L 1975 Philosophical Remarks (Oxford University Press)

[84] Albert D Z 1983 On quantum mechanical automata Phys Lett A 98 5/6 249-252

[85] Clement B E. P Coveney P V and Marcer P J Surreal numbers and optimal encodings for universal computation as a physical process1993 CCAI Journal for the integrated study of AI, cognitive science and applied epistemology 10 1/2 149-163.

[86] Deutsch D 1985 The Church-Turing principle, and the universal quantum computer Proc Roy Soc A 400, 97-117

[87] Miller K D 2010 π = visual cortex Science 330 1059–60

[88] Amari S 1991 Neural Nets 4 443-451