History of arthrology in the mirror of numismatics

Abstract. The main goal was to analyze the history of arthrology using numismatic materials. The numismatics (from the Latin “numisma” – coin), a branch of historical science, that was originated in the 19th century and closely related to economics, politics, culture and law, which includes the study of coins, medals and plaques. The history of arthrology is best illustrated by various forms of medal art (exonum or paranumism), and the medal became the prototype of a commemorative (memorial) coin. This work presents a catalog of 157 numismatic materials (138 medals, 15 plaques, 4 coins), including some unique ones, presented for the first time, the stages of development of the study of the use of therapeutic factors were reflected, there are references to significant historical events, brief biographies of physicians (62 persons) were mentioned, who made an invaluable contribution to the formation of this scientific discipline. On the medals, can be found the portraits of the founders of the world arthrology, the ancient Indian doctor Charaka and the ancient Greek physician Aretaeus, as well as the portraits of the Ukrainian doctors – Agapetus of Pechersk, E. YO. Mukhin, O. A. Kysil, D. F. Chebotaryov. The work contains the following sections: “Inception of arthrology”, “Structure and function of joints”, “Osteoarthritis”, “Gouty arthritis”, “Rheumatoid arthritis”, “Infectious and infectious-allergic (reactive) arthritis”, “Tuberculous arthritis”, “Others arthrites”. Unfortunately, so far the memory of famous doctors of the past has not been sufficiently marked by the release of numismatic products, so in the future we hope for a systematic approach to this matter, for the purposeful promotion of interesting materials of such small forms of art.

Keywords: medicine; arthrology; history; numismatics

Introduction

The term “numismatics” is derived from the Latin word “numisma” (piece of currency), also referring to “holding or owning as a custom or usage, using customarily” or “usage, custom”. In this regard, the “coin” (a flat disc or piece of metal with an official stamp, used as money; unit of cost) turned into a derivative of “full flat disc or piece of metal with an official stamp, used customarily” or “usage, custom”. In this regard, the “coin” (a flat disc or piece of metal with an official stamp, used as money; unit of cost) turned into a derivative of “full measure, legal norm”. Dating back to the 19th century, numismatics is a branch of historical science associated with economics, politics, culture and law [1]. The numismatic stock includes coins, medals and plaquettes (from French “small plaque”, “a small low relief sculpture in bronze or other materials”). The history of arthrology is best reflected by various forms of medallic art (exonumia or paranumismatics) [2]. The medal was a precursor of memorial coin [3]. At present, the field of medical numismatics includes over 20 thousand of coins and memorial medals [4]. The first medically-oriented coins feature the image of god Asclepius with his snake-entwined staff, or caduceus [5]. The invention of a metal coin with certifying images and inscriptions was made in two neighboring communities of Ageides, the kingdom of Lydia situated at the Western coast of Asia Minor (685 BC) and the Aegean island in Greece (between the Peloponnesus and Attica peninsulae). It should be emphasized that the images of medicine featured as far back as the ancient coins of Greece and Rome [6].

The aim of this study is to evaluate the development of international arthrology reflected on the numismatic stock. For the first time, we have analyzed 157 coins, medals and plaquettes collected into a certain catalogue with
a short review of historical events; the thorough collection and description process taking many years. We have used the following conventional signs: [] — coin, [] — medal, [] — medal with a pendant, [■] — plaquette.

Inception of arthrology

The arthrology has a long-standing history. Back in the ancient times, the doctor Charaka (300 BC - ?) (Fig. 1) residing in Kapistala, and was being one of the key proponents of Ayurveda, wrote the earliest medical tract “Samhitā”, presented the facts on the locomotor apparatus and treatment of the articular disorders. Charaka made a classification of arthritis, dividing them into Nija (internal) and Agantu (external), and attributed their progress from Dosha and Kaladja disorders (time-related changes) [7]. The term of “arthritis” as a common denominator for the articular disorders was widely used by the Ephesus medical school disciple, the ancient Greek physician Aretaeus of Cappadocia (~80-135) (Fig. 2) [8].

The resident of the Czech Moravia, the graduate of the Prague University (1387), the Roman Catholic archbishop of Prague (who is considered the founding father of arthrology in France and Bohemia), physician Sigismund Albicus (1358-1427) (Fig. 3-4) in his tract “Praxis medendi”, published in 1484 in Leipzig (Germany), summarized contemporary (for his time) ideas of diagnostics and treatment of articular disorders. The Swiss physician Felix Plater (1536-1614) (Fig. 5), originating from Basel and graduating from the Montpellier University in France, wrote a 3-volume “Praxeos medicae opus” making a fundamental review of locomotor apparatus diseases, and classified articular disorders in his book “Observationum Medicinalium” (1614), making the first description of palmar aponeurosis [9]. The famous Englishman William Harvey (1578-1657) (Fig. 6-12) who was born in Folkestone (county of Kent) and graduated from the College of Physicians in Cambridge for the first time in the history of medicine started to differentiate among the types of arthritis, while his predecessors referred to all the articular disorders as “gout” [10].

The articular structure and function

The first microscopic studies of locomotor tissues were performed by the Italian scholar, graduate of the Roman University, Giovanni Alfonso Borelli (1608-1679) (Fig. 13). The morphological changes of joints were thoroughly examined by two Italians — Giorgio Armeno Baglivi (~1668-1707) (Fig. 14), born in the Croatian Dubrovnik, and Domenico Felice Antonio Cotugno (1736-1822) (Fig. 15), born at Ruvo di Puglia (Province of Bari), who graduated from University of Naples. The former predominantly performed the microscopic studies of periarticular muscle fibers and tendons and described physiological disorders of the joints by means of the mechanical terminology as he considered the locomotor functions to be similar to the machine operations. The German physician Bernhard Siegfried Albinus (1697-1770) (Fig. 16), born at Frankfurt on the Oder and studying medicine in Leiden (the Neth-
erlands) and Paris (France), was one of the first scholars exploring the bone, joint and muscle structure. In 1719, Bernhard Siegfried Albinus was appointed professor of the practice of medicine and obtained the anatomical chair at Leiden University, later he became the honorary member of Saint-Petersburg Academy of Science (from 1753) and the member of the Royal Society of London (from 1764).

William Hunter (1718-1783) (Fig. 17-18), the Scottish physician born at Long Calderwood (now a part of East Kilbride, South Lanarkshire) and graduate of the University of Glasgow, is known for his studies of anatomy and physiology of hip joint (from 1743) (one should emphasize the fact that an intense international exploration of arthritis-associated articular cartilage’s structure and biochemistry started only in 1900) [11, 12].

In Austria, the studies of synovial joint cavities and description of newly-discovered bones and fasciae, vertebral, costal and clavicular anomalies, as well as of canalis cruropopliteus were performed by the resident of Bohemia, graduate of the Charles University in Prague Wenzel Gruber (1814-1890) (Fig. 19). While working at the at the Hôtel-Dieu hospital in Paris, the famous French scholar Marie François Xavier Bichat (1771-1802) (Fig. 20-24), born in Thoirette and graduating from the University of Leiden (the Netherlands), made a scientific classification of articular tissues which, according to his opinion, were combined into systems forming the movement organ [13].

There are several tracts, also worthy of mentioning, by Peter Franzewich Lesgaft (1837-1909) (Fig. 25-30), born in Saint-Petersburg and graduating from Imperial Medical-Surgical Academy in 1861, such as “On bones connecting to one another”, “On forces keeping the articular surfaces in junction”, “On complex joints”, “On the muscle anomaly-caused changes of the articular surfaces”. He distinguished between simple and complex joints (congruent and incongruent) and suggested the key principles of bone articulation, elaborating the concept of synovial folds and proving the synovium’s role as “a liquid meniscus”.

It should also mentioned, that the famous Ukranian anatomist and surgeon Ephrem Yosypovich Mukhin (1766-1850) (Fig. 31), was born at the village of Zarozhne, who graduated from the Yelisavetgrad Medical-Surgical School, back in 1815, he published a pioneer study “Foundations of science on the mucous bursae of human body” and included a chapter of “synovitis-afflicted mucous bursae” into the tract “Course of anatomy”. The problem of synovial fluid’s viscosity changes and the role of intra-articular hyaluronic acid in the destruction of articular joint and inflammation of articular membrane were studied by the Hungarian morphologist-arthrologist Tivadar Huzella (1886-1950) (Fig. 32-33), born in Oradea and graduating from the University of Budapest. Further on, the French scientist Jean-Émile Sabrazès (1867-1943) (Fig. 34-35), born in Saint-Paul-de-Fenouillet and graduating from the University of Bordeaux, was studying the
morphological bone structure, synovial environment of the joints and the periarticular tissue damage caused by the locomotor apparatus tumors.

Osteoarthritis

The chronic articular diseases of the joints were treated by the monk *Agapetus* (?-1095) (Fig. 36-38) in Kiev Pechersk Lavra, an Orthodox Christian saint and doctor, by massaging the periarticular muscles and rubbing ointments, fats and irritating herbal tinctures of roots and plants into them. It should be mentioned that Agapetus was suffering from a severe peripheral osteoarthritis and spondyloarthritis of thoracic and lumbar spine by himself, this fact was being confirmed by the forensic exams of his spine. The descendant of London and student of the Cambridge University, the famous British physician *William Heberden* (1710-1801) (Fig. 39) was the first to describe the dense painless nodules located at the distal interphalangeal hand joints and associated with osteoarthritis, while in 1765 he explored various articular conditions, all of them combined under the concept of “rheumatism” [14]. Similar nodules, though located over the proximal interphalangeal hand articulation were described by Charles-Joseph Bouchard (1837-1915) (Fig. 40-41), the well-known French physician, taught at the Universities of Lyon and Paris, who considered the arthritis-attributed articular hyperemia to be the product of local blood circulation changes under the influence of the vasomotor-irritating agents [15].

Since 1851, the degenerative pathologies of the spine, ankle and hip joints were explored by *Leopold Ritter von Dittel* (1815-1898) (Fig. 42-44), born at Fulnek (now the Czech Republic) and student of the Vienna University (1840), as well as by *Eduard Albert* (1841-1900) (Fig. 45-46), descendant of Žamberk, Bohemia, the Czech physician who first studied the osteoarthritis-affected joint mechanics with a further surgical correction of movements. The methods of orthopedic and non-surgical treatment of gonarthrosis and coxarthrosis were elaborated by *Gyula Dollinger* (1849-1937) (Fig. 47-49), born in Pest and graduate of the Budapest University (1875). His fellow citizen *Jendrassik Ernő* (1858-1921) (Fig. 50-51), born in Kolozsvar, Transylvania (now part of Romania), who graduated from the same Budapest University (though 5 years later) started to investigate the pathology of periarticular tissues affected by osteoarthritis and suggested his own concept of the hereditary nature of degenerative locomotor disorders. Under the tutelage of *Dmytro Fedorovych Chebotaryov* (1908–2005) (Fig. 52-53), the famous Ukrainian physician born in Kyiv, the researchers started to investigate the osteoarthritis, spondyloarthritis and osteoporosis in the elderly and old people. According to the cardinal vector of research activities, the Institute of Gerontology by the USSR Academy of Medical Sciences was equipped by the sector of clinical gerontology and geriatrics of locomotor apparatus.

Gouty arthritis

The ancient Roman medical visionary, *Claudius Galenus* (129-201) (Fig. 54-71), was born in Pergamon (Asia Minor), studied the gout-caused articular disorders and...
made the first description of the so-called “gout lumps” (tophi), explaining the bone-articular changes at the younger age by the presence of “bone-forming force” in the human body. He stated that “ischias, gout and arthritis are one and the same condition by their nature”. The hypothesis on the toxic substance present in the gout-afflicted joints and seeping into the body “drop by drop” was formulated for the first time by Hildegard of Bingen (1098-1179) (Fig. 72-75), the German Benedictine abbess from Rupertsberg, a crag at the confluence of the Nahe and the Rhine, who was born in Bermersheim (Rhine-Hesse).

The founder father of the academic microscopy, Antonie Philips van Leeuwenhoek (Thonis) (1632-1723) (Fig. 76-80), raised in Delft and elected to the Royal Society (from 1680), drew a first microscopic picture of uric acid crystals derived from the gout tophi. Another Dutchman, the graduate of Leiden University Herman Boerhaave (1668-1738) (Fig. 81-85), at about the same time, attributed the articular inflammation attending the gouty arthritis to “the friction of particles congested in the minuscule blood vessels” while the pathological processes affecting the locomotor apparatus — to “the principles of mechanics, hydrostatics and hydraulics” along the restricted mechanistic lines.

Thomas Sydenham (1624-1689) (Fig. 86-92), also known as “the father of the British medical science” or “the British Hippocrates”, was born in Dorset and studied at the Oxford University. He was reported to delve into the study of gout (“chronic arthritis”) due to his own affliction of over 30 years. Thomas Sydenham left a detailed description of acute articular syndrome’s typical attack. Another Englishman born in Ipswich and graduating from the University College London, Alfred Baring Garrod (1819-1907) (Fig. 93) performed his classic “thread experiment” in 1848: the thread when immersed into the gout patient’s blood got covered with crystals of uric acid compounds. In 1857, he demonstrated the uric acid deposition in the gout patients’ cartilages; in 1858, he coined the term “rheumatoid arthritis” distinguishing between this condition and gouty arthritis, though in 1892 it received its correct name [16]. The significant contributions into the gout studies were made by the graduate of the Cambridge University (1779), the Scottish physician David Pitcairn (1749-1809) (Fig. 94-95) and in half a century, by the French scientist, Rene-Albert Gutmann (1885-1981) (Fig. 96-97) (of the German descent).

Rheumatoid arthritis

The author of a famous “Treatise on rheumatic gout, or chronic rheumatic arthritis of all the joints” published in 1857 and describing what in the modern conceptual system is referred to as “rheumatoid arthritis”, the Irish physician originating in Dublin, Robert Adams (1791-1875) (Fig. 98) was suffering from this condition himself. The course of rheumatoid arthritis and effectiveness of rheumatoid arthritis treatments were researched by the resident of Lyon, the French scientist Pierre Raveau (1899-1971) (Fig. 99-100), while the issues of fascia injuries and rheumatoid arthritis-af-
licted parafascial joint condition as well as the method of articular redressing and obsolete articular deviation renovated in case of this disease was studied by the Paris-born Guillaume Dupuytren (1778-1835) (Fig. 101-103) [9].

The “Father of the British pediatrics”, born in Highbury, London, and educated at the Cambridge University (1893), Sir George Frederic Still (1868-1941) (Fig. 104-105) in his paper published in “Lancet” journal in 1902 describing a specific form of children arthritis (juvenile idiopathic arthritis) attended by fever, skin lesions and internal organic disorders. Further on, he presented children with aggressive types of arthritis associated with severe self-regulation disorders, though with a normal intellect. In 1923, the Austrian physician studying medicine in Prague and Strasbourg Rudolf Jaksh von Wartenhorst (1855-1947) (Fig. 106) reported cases of arthritis or absence of arthritis in children, singling out polichondropathy, or “relapsing polychondritis”, this name devised in 1960.

Infectious and infectious-allergic (reactive) arthritis

Back in the 16th century, the Italian scientist of Padua, Gerolamo (Geronimo) Cardano (1501-1576) (Fig. 107-111) suggested that the arthritis is caused by live creatures, invisible to the human eye due to their small size [17]. In the 19th century, the syphilitic arthritis was described by the two French researchers, born and educated in Paris, Jean-Alfred Fournier (1832-1914) (Fig. 112-113) and Jean-Martin Charcot (1825-1893) (Fig. 114-118) (general and degenerative articular conditions were combined in one group — “deforming arthritis”, the interaction among the synovial membrane, periarticular ligaments and muscles was confirmed) [18]. Another Frenchman, the Parisian-born graduate of the Prague University, Émile Charles Achard (1860-1944) (Fig. 119-121) studied the problem of diagnostics and treatment of reactive salmonella arthritis, while the Russian physician, born in Saint-Petersburg, Sergey Sergeyevich Yakovlev (1855-1933) (Fig. 122) described the gonorrhea arthritis.

The scientist Alexandre Émile Jean Yersin (1863-1943) (Fig. 123-124), was born in Aubonne (Switzerland) and educated at Lausanne, Switzerland; and then at Marburg, Germany. He discovered the gram-negative Enterobacteriaceae of Yersiniaceae family and described the Yersinia arthritis. In 1886, the Australian Melbourne-born Sir David Bruce (1855-1931) (Fig. 125-126) educated at the University of Edinburgh (1881) discovered the “Maltese micrococcus” (Micrococcus Melitensis) named this way because the brucellosis arthritis-producing agent was found at the island of Malta. In 1818, Sir Benjamin Collins Brodie (1783-1862) (Fig. 127), the graduate of the London University, born in in Winterslow, Wiltshire, published a well-known tract «Pathological and surgical observations on the diseases of the joints», describing the so-called “urethro-oculo-articular syndrome” (now it is known that it is most often caused by Chlamydia trachomatis).
Tuberculosis arthritis

The founders of juvenile and adult tuberculosis arthritis studies in France were Étienne Sauroel (1882-1965) (Fig. 128), who was born in Moulins-sur-Allier and educated at the University of Paris, Henri Louis Gaston Rocher (1876-1957) (Fig. 129-130), who was born in Gironde and educated at the University of Bordeaux, and Pierre Ingelrance (1898-1980) (Fig. 131-132), raised in Lille, and François Tobe (1880-1961) (Fig. 133). In the USSR, the children phthisioarthritis was founded by Timofey Petrovich Krasnobayev (1865-1952) (Fig. 134), was born in Smolensk and educated at the Moscow University. The London-born Percival Pott (1714-1788) (Fig. 135-137) launched the study of tuberculous spondylitis, also known as “Pott disease” or “Pott hump”, in the 18th century [19], while the two graduates of the Lyon University — Antonin Poncet (1849-1913) (Fig. 138) and Henri Marie René Leriche (1879-1955) (Fig. 139) — described the toxico-alergic reactive tuberculosis arthritis with no bone destruction which they named “tuberculous rheumatism” («Le rhumatisme tuberculeux») in 1909 [20]. It is worthy of mentioning that back in 1912 they reported that the said rheumatism (Poncet’s disease) occurs due to the effect of tuberculous toxin on the articular tissues.

Other arthritides

According to France, the “father” of rheumatology was the Parisian physician Guillaume De Bayou (1538-1616) (Fig. 140), who introduced the term “rheumatism” into the scientific literature and emphasized that arthritis is a manifestation of the systemic nature of the disease. He wrote: «In arthritis, the pain recurs at certain intervals and at certain periods. Arthritis in the joint is a rheumatism in the whole body». Rheumatoid arthritis in adults was studied in detail by the Frenchman Jean-Baptiste Bouillot (1796-1881) (Fig. 141) and the native Muscovite Grigory Ivanovich Sokolsky (1807-1886) (Fig. 142), and in children — a native of Kiev, where he graduated from the University of St. Volodymyr (1883), Ukrainian pediatrician Oleksandr Andriyovych Kysil (1880-1961) (Fig. 143).

In 1892, a native of the Vyatka province of the Russian Empire, a graduate of the St. Petersburg Medical and Surgical Academy (1878) Vladimir Mikhailovich Bekhterev (1857-1927) (Fig. 144-150) in an article entitled “Woodiness of the spine with its curvature as a special form of the disease” described ankylosing spondylitis, and in the journal "Neurological Bulletin" presented the work “On the fusion and woodiness of the spine”. Peculiarities of juvenile ankylosing spondylitis were established by the French physician Georges Riffat (1923-2016) (Fig. 151), who pointed to a direct relationship between articular cartilage lesions and bone mineral compactness, developed the diagnosis of exostoses and tendinitis in children and methods of treatment. A native of Mugeln (near Oshatz, Northern Saxony), who studied in Freiburg and Leipzig, the German scientist Christian Georg Schmorl (1861-1932) (Fig. 152) described diffuse idiopathic skeletal hyperostosis (“seneile ankylosing spondylitis” tissue, ligaments and tendons, and later began to use contrast radiological methods of the spine in ankylosing spondylitis.

Psoriatic arthritis was described at the first time by a graduate of the University of Paris, the French physician Jean-Louis Marc Alibert (1768-1837) (Fig. 153) [21], and the nature of bone resorption in psoriatic arthropathy was studied by a native of Great Yarmouth (Noford, Blystok, Great At St. Bartholomew’s Hospital in London, James Paget (1814-1899) (Fig. 154), who, moreover, first observed deforming osteitis in 1877. The first who presented joint damage in sarcoidosis in 1869 was the English physician Jonathan Hutchinson (1828-1913) (Fig. 155), who was born in Selby, Yorkshire, and received his medical education at St. Bartholomew's Hospital in 1850. American scientist, Nobel Prize winner (1934), a native of Ashland, graduated from Yale University in 1900, then Johns Hopkins University in Baltimore George Hoyt Whipple (1878-1976) (Fig. 156), in 1907 he described a disease accompanied by migrating arthritis, cough, diarrhoea, malabsorption syndrome, and enlarged mesenteric lymph nodes. In his report, he wrote about the “many microorganisms in the form of rods”, which he found by staining with silver in the lymph node sections of patients with such inflammation of the joints [14]. The second American, a native of Ferguson (Missouri), a graduate of Cornell University Joseph Lee Hollander (1910-2000) (Fig. 157) in 1961 demonstrated the presence of hydroxyapatite in the synovial fluid of patients with joint pathology, gave rise to the study of chondrocalcinosis.

Conclusions

In conclusion, we note that the primary task facing historians of medicine is to perpetuate the memory of prominent physicians. The study of arthropy necessarily includes an in-depth acquaintance with its history. As the English writer RL Stevenson (1850-1894) said, "memories are magical clothes that do not wear out from use,” and his compatriot O. Wilde (1854-1900) claimed: “Our only duty to history is constantly rewrite it”. Unfortunately, the memory of famous doctors of the past is not sufficiently marked by the release of numismatic products, so in the future we hope for a systematic approach to this case, the purposeful promotion of rheumatology by numismatics, which provides a clear example for studying the history of arthrology, education of doctors. We look forward to the appearance of new interesting materials of such small forms of fine art.

Conflict of interest. The authors state that there is no conflict of interest, and the authors did not receive financial support from the individuals or organizations for the study, fees and other forms of reward.

Information on the contribution of each co-author. Syniachenko O.V. — collection numismatic material and writing text.
Івермолова М.В. — дизайн і концепт роботи.
Верзилова С.М. — аналіз історії артрології.
Ливентсова К.В. — приготування ілюстрацій.
Синяченко Т.Ю. — приготування нумізматичних матеріалів.
Верзилова С.Ф. — приготування нумізматичних матеріалів.

References

1. Kunzmann R. The Saint Eligius, his life and work and his traces in numismatics. Schweiz Arch Tierheilkd. 2014;156(1):1-13. https://doi.org/10.1177/0967772016676784.

2. Syeniachenko OV, Golovach IV, Iermolayeva MV, et al. Revmatolohiya v oblychchyakh: numizmatychno-biohrafichnyy kataloh [Rheumatology in the face: numismatic and biographical catalog]. Kramators’k: Drukars’kyy dim; 2019. 180 p. (in Ukrainian).

3. Pearn J. Enduring biographic heritage - Medical numismatics. J Med Biogr. 2019;27(2):108-115. https://doi.org/10.1177/0967772016676784.

4. Mayer R. The history of a medal (part 2). Rev Med Brux. 2011;32(6):553-559. (in French).

5. Dequeker J, Luyten FP. The history of osteoarthritis-osteoarthrosis. Ann Rheum Dis. 2008;67(1):5-10. https://doi.org/10.1093/rheumatology/keq007.

6. Deshpande S. History of rheumatology. Med J DY Patil Univ 2014;7(3):119-23. https://doi.org/10.1155/2012/259408.

7. Savoia P. Skills, Knowledge, and Status: The Career of an Early Modern Italian Surgeon. Bull Hist Med. 2019;93(1):27-54. https://doi.org/10.1353/bhm.2019.0001.

8. Balusinoff O. Jean-Martin Charcot (1825-1893): A Treatment Approach Gone Astray?. Eur Neurol. 2017;78(5-6):296-306. https://doi.org/10.1159/000481940.

Information about authors

O.V. Syniachenko, MD, PhD, Corresponding member of NAS of Ukraine, Honorary Scientist and Technician of Ukraine, Lyman, Head of Department of Internal medicine 1, Donetsk National Medical University of Health Ministry of Ukraine, Lyman, Ukraine

M.V. Iermolayeva, MD, PhD, Professor, Department of Internal medicine 1, Donetsk National Medical University of Health Ministry of Ukraine, Lyman, Ukraine

S.M. Verzilova, PhD, Associate Professor, Donetsk National Medical University Ministry of Health of Ukraine, Lyman, Ukraine

K.V. Liventsova, Donetsk National Medical University of Health Ministry of Ukraine, Lyman, Ukraine

T.Yu. Syniachenko, PhD, Donetsk National Medical University Ministry of Health of Ukraine, Lyman, Ukraine

S.F. Verzilova, Donetsk National Medical University Ministry of Health of Ukraine, Lyman, Ukraine

Синяченко О.В., Єрмолаєва М.В., Верзилова С.М., Ливентсова К.В., Синяченко Т.Ю., Верзилова С.Ф.

Історія артрології в дзеркалі нумізматики

Резюме. Метою роботи був аналіз історії артрології за нумізматичними матеріалами. Галузь історичної науки нумізматика (від лат. *numisma* — «монета») зародилася в XIX столітті й стала тісно пов’язаною з економікою, політикою, культурою та правом, включаючи в себе тематичне вивчення monet, медалей і плакет. Найкраще історію артрології ілюструють різні форми медальєрного образотворчого мистецтва (екзномія, або паранумізматика), а медалі стала прообразом пам’ятної (меморіальної) монети. У даній роботі подано каталог 157 нумізматичних матеріалів (138 монет, медалей і плакет).
Синяченко О.В., Ермолаева М.В., Верзилов С.Н., Ливенцова Е.В., Синяченко Т.Ю., Верзилова С.Ф.
Донецкий национальный медицинский университет, г. Лиман, Украина

История артрологии в зеркале нумизматики

Резюме. Целью работы был анализ истории артрологии по нумизматическим материалам. Отрасль исторической науки нумизматика (от лат. numisma — «монета») зародилась в XIX веке и стала тесно связанный с экономикой, политикой, культурой и правом, включает в себя тематическое изучение монет, медалей и плакет. Лучше всего историю артрологии илюстрируют различные формы медальерного изобразительного искусства (экзонумия, или паранумизматика), а медаль стала прообразом памятной (мемориальной) монеты. В данной работе представлен каталог 157 нумизматических материалов (138 медалей, 15 плакет, 4 монеты), в том числе некоторых уникальных, впервые приведенных, отражены этапы развития изучения использования лечебных факторов, есть ссылки на значительные исторические события, упоминаются среди контактов биографии медиков (62 персоны), внешних неоценимые вклад в формирование этой научной дисциплины. На медалях можно встретить портреты основоположников мировой артрологии, древневостоковского врача Чараку и древнегреческого Аретея, а также украинских медиков — Агапита Печерского, Е.И. Мухина, А.А. Киселя, Д.Ф. Чеботарева. Работа содержит следующие разделы: «Зарождение артрологии», «Структура и функция суставов», «Остеоартрит», «Подагрический артрит», «Ревматоидный артрит», «Инфекционный и инфекционно-аллергический (реактивный) артрит», «Туберкулезный артрит», «Другие артриты». К большому сожалению, пока память о знаменитых врачах прошлого недостаточно отмечена выпуском нумизматической продукции, поэтому в будущем надеемся на планомерный подход к этому делу, на целенаправленную пропаганду достижений ревматологии средствами нумизматики, которая подает наглядный пример для изучения истории артрологии, способствует по- вышению уровня образованности врачей. Авторы рассчитывают на появление новых интересных материалов таких малых форм изобразительного искусства.

Ключевые слова: медицина; артрология; история; нумизматика