Magnetically tunable Feshbach resonances in Li+Er

Maykel L. González-Martínez
Laboratoire Aimé Cotton, CNRS, Université Paris-Sud, ENS Cachan, Bât. 505, Campus d’Orsay, 91405 Orsay, France

Piotr S. Żuchowski
Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, ul. Grudziadzka 5/7, 87-100 Torun, Poland

(Dated: August 29, 2016)

We explore the magnetic Feshbach spectra of ultracold ground-state Li+Er systems. Our calculations predict many tunable resonances at fields below 1000 G that could be stably tuned in ultracold experiments. We show that Li+Er spectra are much less congested than those of systems involving heavier highly-magnetic atoms and exhibit non-chaotic properties. These features would facilitate identifying and addressing individual resonances. We derive a simple model for the mass-scaling shifting of low-field resonances that may simplify designing experiments with different Er bosonic isotopes. Our work establishes Li+Er as very promising systems for quantum simulation, precision measurements and the formation of polar magnetic molecules.

PACS numbers: 34.50.Cx, 37.10.-x, 67.85.-d

Ultracold species make it possible to build state-selected quantum systems with controllable interactions, which open the door to exploring fascinating phenomena. Among their many applications [1, 2], ultracold systems can be used as quantum simulators [3, 4], to study condensed-matter physics [5, 7] and quantum-controlled chemistry [8, 10], to develop quantum information devices [11, 12] and ultraprecise spectroscopy [13, 14]. Tunable Feshbach resonances [16] are powerful tools to control the interaction and scattering properties of ultracold species, making many of these applications possible. Moreover, they are essential in the most successful scheme to date to produce ultracold molecules: The magneto- or photoassociation of ultracold atoms [17–19] followed by coherent [20–22] transfer of the created molecules to their rovibrational ground states. Having the possibility to address and tune across selected Feshbach resonances is thus key in ultracold experiments.

Recent advances in cooling highly-magnetic atoms such as Cr(7S) [23, 25], Dy(5I) [26, 27] and Er(4H) [28, 29] open exciting opportunities for tunability and control [30]. The interaction between these atoms, however, leads to highly congested Feshbach spectra with many overlapping resonances per gauss [31, 33]. This makes it impractical to assign quantum labels to individual resonances and may be a challenge to interaction “tailoring” and molecule formation.

In this paper, we study magnetic s-wave Feshbach resonances in binary mixtures of ground-state Li atoms and bosonic Er isotopes. The Li+Er system may be specially appealing for ultracold experiments in optical lattices: Dipolar species with tunable interactions are key to studying the effects of long-range anisotropies, quantum magnetism, disorder and quantum collective behavior [10, 25, 34–36]. Very importantly, such Feshbach resonances may be used for magnetoassociation of LiEr molecules, starting from ground-state atoms in order to avoid limiting background losses [37]. Ground-state LiEr molecules have both magnetic and electric dipole moments [38], and may be controlled with applied electric and magnetic fields which further enhances their applicability [13, 34–36]. In addition, Er is a heavy atom thus ultracold LiEr may be used to study the time variation of fundamental constants [13, 14], while the extreme mass imbalance in the system makes it specially well-suited for exploring Efimov physics [41].

We carried out coupled-channel calculations using the theory in Ref. [42]. The Hamiltonian can be written

$$\hat{H} = -\frac{h^2}{2\mu} \frac{d^2}{dR^2} R + \frac{\hbar^2 \hat{L}^2}{2\mu R^2} + \hat{H}_{Li} + \hat{H}_{Er} + \hat{U},$$

where μ is the reduced mass for the collision, R is the interatomic distance and \hat{L} is the space-fixed operator for the end-over-end rotation. \hat{H}_{Li} and \hat{H}_{Er} describe the isolated atoms and are taken to be

$$\hat{H}_{Li} = b_{F,Li} \hat{F}_{Li} \cdot \hat{s}_{Li} + (g_S \mu_B \hat{s}_{Li} - g_A \mu_N \hat{n}_{Li}) \cdot B;$$

$$\hat{H}_{Er} = a_{Er} \hat{F}_{Er} \cdot \hat{s}_{Er} + (g'_L \mu_B \hat{S}_{Er} + g_S \mu_B \hat{S}_{Er}) \cdot B.$$ (2)

Here, i_{Li} and \hat{s}_{Li} are the Li nuclear and electronic spin operators, while \hat{F}_{Er} and \hat{s}_{Er} denote the Er electronic orbital and spin operators (all bosonic Er isotopes have zero nuclear spin); B is the external magnetic field. $g_S \approx 2$, $g_A \approx 2$, $g'_L \approx 1$ are the electron, Li nuclear and orbital g factors, while μ_B and μ_N are the Bohr and nuclear magnetons. The hyperfine coupling constants for ^6Li and the nuclear g factors were taken from Refs. [43, 44]. The spin-orbit coupling constant for Er, $a_{Er} = -1159.7215 \times h c m^{-1}$, was calculated from the splitting between the two lowest Er states, $^3\text{H}_6$ and $^3\text{H}_5$.

* maykel.gonzalez-martinez@u-psud.fr
pzuch@fizyka.umk.pl
assuming Russel-Saunders coupling. \hat{H} describes all interactions between the atoms and includes the electronic potential \hat{V} and the direct dipolar interaction between the atoms magnetic moments \hat{H}_{dip}. Following Krems et al. we decompose \hat{V} into functions with well-defined total spin S and space-fixed spin projection M_S, which are then expanded in Legendre polynomials—assuming that $|S_L| = 5$ is conserved at all values of R. The expansion coefficients, $V_k^S(R)$ ($k = 0, 2, \ldots, 2E_{\text{Er}}$), are linear combinations of the Born-Oppenheimer potentials \tilde{V}_k; these can be split into isotropic $V_{k\neq0}^S$ and anisotropic V_k^S terms, the latter depending only on the energy differences between Born-Oppenheimer states.

The interaction between $\text{Li}(^2S)$ and $\text{Er}(^3\text{H})$ gives rise to twelve electronic states: six states corresponding to $|\Lambda| = 0, \ldots, I_{\text{Er}}$—the absolute value of the projection of the electronic orbital angular momentum onto the interatomic axis—for each S, $S_- = \frac{1}{2}$ and $S_+ = \frac{3}{2}$. We calculated the short-range interaction energies for all $\text{Li}(^2S)+\text{Er}(^3\text{H})$ states using the complete active space self-consistent field method (CASSCF) implemented in MOLPRO [47]. The active space includes 1s2s orbitals for Li and 4f6s6p orbitals for Er. We used the high-quality uncontracted aug-cc-pVQZ basis sets by Prascher et al. [48] for the Li atom. For Er, we used the quasirelativistic effective core potential by Dolg et al. [49] (ECP28MWB) for the first 28 electrons, with uncontracted s and p shells, to which we added h functions with exponent 0.45. The basis was augmented with extra diffused functions using the even-tempered scheme in MOLPRO [47]. The $\text{Li}+\text{Er}$ states lie relatively close in energy and special care is needed to avoid their mixing. We start our ab initio calculations at large $R = 50$ a.u., calculating the starting orbitals by merging those of the isolated atoms; this way, we obtain properly 22-fold degenerate states for Li+Er. In each following calculation, we take a step inwards in R and use the orbitals converged from the precedent geometry as starting orbitals. We obtain potentials corresponding to pure $\Lambda = 0, \ldots, I_{\text{Er}}$ states by controlling the Λ quantum number of the molecule.

With this scheme, we get realistic short-range energy differences between all Li+Er potentials, and thus realistic anisotropies $V_{k\neq0}^S$, from our CASSCF calculations. The active space, however, is not sufficiently large for describing the Li+Er dispersion accurately, which mainly affects the V_0^S isotropic terms. This can be fixed by noting that the dispersion interaction in analogous systems is relatively spin-independent, with the spin-dependent exchange-dispersion energy being typically very small [50]. We further assumed that the spin-independent dispersion interaction in Li+Er is similar to that in Li+Yb, which is supported by the similarity of their isotropic dispersion coefficients (1.594 a.u. for Li+Yb [51] and 1.508 a.u. for Li+Er—see calculation details below). We used the Heisenberg spin-exchange model [52] [53] for the isotropic potentials, $V_0^S(R) = V_0^S(R) - 2J_0(R)|_{\text{Li}+\text{Yb}}$, and replaced the spin-independent term V_0 with the LiYb potential obtained by Zhang and coworkers using the best

FIG. 1. (Color online) Calculated interaction anisotropies in Li+Er for low (solid) and high (dotted) total electronic spin.
Figure 2 shows the predicted magnetic field dependence of the Li+166Er scattering length, depicting many Feshbach resonances of widths between 0.1 and 50 G that are very promising candidates for precise tuning and magnetoassociation. These resonances are immune to background losses since both species interact in their absolute ground state. We located 35–69 resonances below 1000 G for 6Li/7Li+166Er, and calculated mean densities of \(\bar{\rho}_{\text{Li}} = 0.0364\ G^{-1}\) and \(\bar{\rho}_{\text{Li}} = 0.0730\ G^{-1}\). The combination of light and heavy species yields a much wider rovibrational spacing than for a heavy+heavy system, hence Li+Er Feshbach spectra are much less congested than others involving highly-magnetic atoms [31–33].

The couplings responsible for these resonances have been studied for analogous systems, cf., Refs. [37, 42, 46]. These involve orbital- and/or spin-anisotropies from the electronic potentials, with the widest resonances due to states dominated by low L quantum numbers. The general trends in our calculations support this reasoning. The widest resonances in Fig. 2 (\(\Delta B > 10\ G\)) correspond to states with over 55% and up to 45% compositions from \(L = 0\) and 2, respectively, which are mainly coupled to the initial state by \(V_{S}^{S}\) terms. An intermediate resonance “class” (1 < \(\Delta B < 5\ G\)) arises from states with over 30% composition of \(L = 4\), and less than 15% of \(L = 0\), involving \(V_{S}^{S}\) coupling terms. Narrower resonances are due to states with non-negligible higher-order orbital excitations of the complex, \(L \geq 6\). Removing high-order anisotropies \(V_{\geq 4}^{S}\), however, does not affect the overall resonance pattern since indirect mechanisms involving \(V_{\leq 4}^{S}\) terms also couple the resonant states to the continuum. The contribution from dipole-dipole interactions is very small compared to that of the potential terms and was found to be negligible, as for Li+Yb [37].

Studying the statistics of the calculated Feshbach spectra is key to unraveling their most general and robust properties. We performed an analysis similar to that of Frisch and coworkers [32], with added G-tests and Bayes’ logarithmic likelihood ratio (LLR) calculations. Figure 3 shows the nearest-neighbour spacing (NNS) distribution and the number variance for the calculated \(6,7Li+166Er\) Feshbach spectra—predictions from the Poisson and Wigner-Dyson models are added for comparison. Table I summarizes all statistical tests performed and details on the fits to Brody NNS distributions. All our tests indicate that Li+Er Feshbach spectra arise from weakly-interacting levels exhibiting very low spectra rigidity and level repulsion, with Poisson-like models providing a significantly better description of the spectra. These are all characteristics of non-chaotic spectra and make it possible to identify and tune selected individual Feshbach resonances for interaction tailoring and/or magnetoassociation.

Erbium has five bosonic isotopes and the change in Li+Er reduced mass with respect to that of Li+166Er is about \(\pm 0.1\%)\ for \(6,7Li\). The small changes in \(\mu\), together with the non-chaotic nature and relatively low densities of the spectra all support and would simplify predicting the Feshbach spectra for different Er isotopes. If \(\delta E_{v}\) is the isotopic shift in the binding energy of a near-dissociation molecular state and \(\delta\mu_{\text{res}}\) is the difference between the magnetic moments of the molecule and free atoms (at resonance), the isotopic shift in resonance position, \(\Delta B_{\text{res}} \approx \delta E_{v}/\delta\mu_{\text{res}}\), may be estimated for an
TABLE I. Summary of statistical tests and/or model fitting to Li+166Er Feshbach spectra (\(\chi\) and \(G\) are reduced quantities).

Lithium isotope	\(\chi^2\)-test	Poisson	Wigner-Dyson	G-test	Poisson	Wigner-Dyson	Bayes’ LLR	Two-gap correlation	Fit to Brody distribution		
\(^6\)Li	\(\chi^2 = 0.760\)	\(\chi^2 = 2.53\)	\(G = 0.982\)	\(G = 2.08\)	\(\log [P(x	H_P)/P(x	H_{WD})]\)	3.30	\(\eta_p = 0.306\)	\(\eta = 0.0738\)	(MSE = 0.0101)
\(^7\)Li	\(\chi^2 = 1.40\)	\(\chi^2 > 10^{10}\)	\(G = 0.760\)	\(G = 8.06\)	\(\log [P(x	H_P)/P(x	H_{WD})]\)	32.9	\(\eta_p = 0.161\)	\(\eta = 0.241\)	(MSE = 0.00379)

\(R^{-6}\) potential to be \[33, 36\]

\[\delta B_{\text{res}} \approx \frac{3H_{D,1}^2}{2\delta \mu_{\text{res}}} \left(v_{WKB} \right)^2 \left(v + \frac{1}{2} \right) \left(1 - \frac{\mu_2}{\mu_1} \right), \quad (3)\]

where we approximated \(\delta E_v \approx (dE_v/d\mu)|_{\mu_1}(\mu_2 - \mu_1)\). Both the parameter \(H_{D,1} \approx 3.4346 \ h \left(\mu_1 C_{6,0} \right)^{-1/2}\) and the WKB noninteger quantum number at dissociation, \(v_{WKB} \approx (1/\pi) \arctan \left(1 - a_{6,1}/a_1 \right) - 3/8\)—with \(a_1 \approx 4.47799 (2\mu_1 C_{6,0}/h^2)^{1/4}\)—are calculated for a reference system. As expected, Eq. (3) shows that \(\delta B_{\text{res}} > 0\) if \(\mu_2 > \mu_1\), and viceversa (\(\delta \mu_{\text{res}} < 0\) in our case). Eq. (3) suggests that it may be possible to estimate the position of an equivalent resonance in a different isotopologue, while experiments may extract key information on background scattering lengths, quantum numbers and non-adiabatic effects from isotopic resonance shifts.

It is not yet possible to calculate quantitatively correct \textit{ab-initio} Li+Er potentials, hence the robustness of our conclusions need to be assessed for their possible dependence on these. The energy of the top vibrational state may be estimated from the Van der Waals coefficient \(C_{6,0}\) and reduced mass \(\mu\) to lie between 0 and \(13h^2/(\mu R_{\text{vdW}}^2) \approx 6.3 \times h\) GHz—where the characteristic length scale, \(R_{\text{vdW}} = \frac{1}{2}(2\mu C_{6,0}/h^2)^{1/4}\). The smallest difference between the magnetic moments of a scattering state and an \(L = 0\)-supported bound state is \(\mu_B\). The largest magnetic field at which resonances from such levels might occur is thus \(6.3 \times h\) GHz/\(\mu_B \approx 5.000\) G. Resonances resulting from larger magnetic moment differences may appear at much lower fields, however, \(5.000\) G is the smaller relevant range to study the dependence of our results on the interaction potentials.

Figure 4 shows a contour plot of the scattering length \(a\) for \(^7\)Li+166Er as a function of the magnetic field, \(B\), and a parameter \(\lambda\) used to scale the isotopic potentials, \(V_0^{\text{IS}} = \lambda V_0^{\text{IS}}\). To keep a practical computational cost, the calculations neglect hyperfine terms and use \(L_{\text{max}} = 6\). The approximations preserve the main resonant features—compare with Fig. 2(b)—while the broadest resonances (\(\Delta B > 5\) G) are most apparent at the grid’s resolution. Fig. 4 reveals that there always exist broad magnetic Feshbach resonances at relatively low fields. Additionally, it shows that \(\lambda = 1\) is statistically representative for a much wider \(\lambda\) range, except around 0.985 and 1.025 for which the background scattering length becomes very large and enhances all resonance widths.

This work provides robust theoretical evidence that low-field magnetic Feshbach resonances immune to background losses exist for Li+Er, with widths \(\Delta B > 0.1\) well within current experimental resolution. Li+Er spectra are predicted to be non-chaotic, while remaining conveniently dense, in contrast with other systems involving highly-magnetic atoms such as Er+Er \[32\]. The predicted resonances may be resolved and independently addressed thus opening the door for precise tuning of Li+Er interactions and/or magnetooassociation into LiEr molecules. The characteristics of the spectra make it also possible to predict resonance positions for different isotopologues from measurements on a reference system, which would greatly simplify experiments with various Er isotopes and give key insight into non-adiabatic effects.

M.L.G.M. acknowledges funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under Grant Agreement No. 330623. P.S.Z. acknowledges funding from the Polish National Science Center (NCN) grant DEC-2012/07/B/ST2/00235.
[55] T.-S. Ho and H. Rabitz, J. Chem. Phys. 104, 2584 (1996).
[56] K. T. Tang, Phys. Rev. 177, 108 (1969).
[57] A. Derevianko, S. G. Porsev, and J. F. Babb, At. Data Nucl. Data Tables 96, 323 (2010).
[58] M. Lepers, J.-F. Wyart, and O. Dulieu, Phys. Rev. A 89, 022505 (2014).
[59] X. Chu, A. Dalgarno, and G. C. Groenenboom, Phys. Rev. A 75, 032723 (2007).
[60] R. V. Krems, J. Klos, M. F. Rode, M. M. Szczęśniak, G. Chałasiński, and A. Dalgarno, Phys. Rev. Lett. 94, 013202 (2005).
[61] A. A. Buchachenko, G. Chałasiński, and M. M. Szczęśniak, Eur. Phys. J. D 45, 147 (2007).
[62] J. M. Hutson and S. Green, computer code MOLSCAT, version 14, CCP6, Daresbury (1994).
[63] M. L. González-Martínez and J. M. Hutson, Phys. Rev. A 75, 022702 (2007).
[64] J. M. Hutson, computer code FIELD, version 1 (2011).
[65] R. J. Le Roy and R. B. Bernstein, J. Chem. Phys. 52, 3869 (1970).
[66] G. F. Gribakin and V. V. Flambaum, Phys. Rev. A 48, 546 (1993).
[67] B. Gao, J. Phys. B: At. Mol. Opt. Phys. 37, 4273 (2004).