PopP2 interacts with PAD4 in an acetyltransferase activity-dependent manner and affects plant immunity
Sung Un Huh

Department of Biology, Kunsan National University, Gunsan, Republic of Korea

ABSTRACT
Plant pathogenic bacteria inject many of the effector proteins into host cell to manipulate host protein and promote pathogen development. Only a few effectors can be recognized by plant immune receptors called nucleotide-binding domain and leucine-rich repeat-containing proteins (NLRs). Enhanced disease susceptibility1 (EDS1) is an important regulator of plant basal and NLR receptor-triggered immunity. EDS1/PAD4 or EDS1/SAG101 heterodimers are recruited by Toll-interleukin1-receptor domain NLRs (TNLs) to transcriptionally mobilize resistance pathways. Type III effector PopP2 contributes to Ralstonia solanacearum virulence. PopP2 has an acetyltransferase activity and is recognized by Arabidopsis NLR pair RPS4/RRS1-1-R. On the other hand, PopP2 avirulence function is dependent on its enzymatic activity but target proteins in the host cell are still largely unknown. In this study, we found EDS1 and PAD4 are new host targets of PopP2 effector. Arabidopsis PAD4 lipase-like domain protein physically associates with enzymatic active PopP2 protein but not inactive PopP2C321A. PAD4-PopP2 interaction is disrupted by EDS1 immune regulator but not SAG101. We propose that acetyltransferase activity of PopP2 might confer specificity to PAD4 to manipulate plant immunity. As a counter strategy, EDS1 associates with PAD4 to form heterodimeric immune regulator complexes for activating basal resistance and interfering PopP2 physical interaction.

Keywords
lipase-like protein; PAD4; EDS1; ralstonia effector; PopP2; acetylation
not associations. yltransferase - protein Figure Figure 1b). Similarly, we performed co-IP with EDS1 and PopP2. EDS1 interacts with both PopP2 and PopP2C321A protein (Figure 2a) but PopP2/EDS1 interaction exhibited quite weak signals in coIP. EDS1 also shows no acetylation via acetyl-lysine specific antibody (Figure 2b). These data demonstrate that enzymatic active PopP2 specifically targets PAD4. EDS1 also associates with PopP2 independent of acetyltransferase enzymatic activity.

Next, we investigated whether EDS1 can disrupt PopP2/PAD4 associations. As shown in Figure 3a, PAD4 coIPs with PopP2 but not PopP2C321A protein. PAD4/PopP2 associations are disrupted by co-expression of EDS1 protein. To confirm this result, we used bimolecular fluorescence complementation (BiFC) assay. As expected, very weak BiFC signals between PopP2C321A-cCFP and nVenus-PAD4 were observed in the nucleus (Figure 3b). A strong BiFC signal between PopP2-cCFP and nVenus-PAD4 was observed in the nucleus but not co-expressed EDS1-Myc protein (Figure 3b), suggesting that formation of EDS1/PAD4 heterodimeric complexes might attenuate PopP2/PAD4 association.

We also tested the effect of PAD4 and SAG101 on PopP2 association using co-IP and BiFC assays in N. benthamiana leaves. In co-IP, PAD4 shows no association with SAG101 because of the absence of EDS1 (Figure 3a). PAD4/PopP2 interaction was not significantly altered by SAG101 co-expression both co-IP and BiFC (Figure 3a,b). These results indicated that EDS1 specifically inhibited PAD4/PopP2 association when transiently co-expressed in N. benthamiana.

To determine the effect of disruption of PopP2 interaction, we tested bacterial growth using P. syringae pv. tomato (Pto) DC3000-delivered AvrRps4N:PopP2149−488 system in Ws-2, rrs1-1, eds1-1, and 35S::EDS1 x 35S::PAD4 (rrs1-1 background) transgenic Arabidopsis plants. As expected,
Ws-2 Arabidopsis plants contained RRS1-R immune receptor exhibited strong effector triggered immunity but not rrs1-1 (Figure 3c). Mutant eds1-1 showed enhanced susceptibility to bacteria although RRS1-R still recognized PopP2. Overexpressing transgenic plants of PAD4/EDS1 in rrs1-1 showed strong basal defense (Figure 3c), suggesting that formation of EDS1/PAD4 dimeric complexes might have a role in inhibition of PopP2 interaction to enhanced plant immunity.

In conclusion, this study provides evidence that PopP2 effector targets both immune regulator EDS1 and PAD4 to suppress plant immunity. Basically, immune regulator EDS1/PAD4 heterodimeric complex can elevate plant basal defense signaling. Moreover, Phytophthora capsici effector PcAvh103 interacts with EDS1 to disrupt EDS1/PAD4 and inhibit plant defense signaling, suggesting that EDS1 and PAD4 might be general effector targets.21,23 On the other hand, EDS1 disrupts PAD4/PopP2 interaction but not SAG101. This result consistent with disruption of EDS1/AvrRps4 interaction by PAD4.21 Notably, we found PAD4 only associates with enzymatic active PopP2. It is possible that acetylation activity of PopP2 might modified PAD4 protein to enhance protein interaction affinity. We failed detection of acetylation in EDS1 and PAD4 using acetyl-lysine specific antibody and it might be required more specific method applications. Further studies are still needed to explore the PAD4 acetylation by PopP2 to understand host target modification. We therefore propose that PopP2 acetyltransferase activity may be required to specific interaction with host target proteins to suppress plant immunity. As a counter strategy, plant EDS1 makes heterodimeric immune regulator
complexes with PAD4 for activating basal resistance and interfering PopP2 physical interaction.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was supported by the Next-Generation BioGreen 21 Program [Project No. PJ01365301], Rural Development Administration, Republic of Korea.

ORCID

Sung Un Huh (http://orcid.org/0000-0003-2288-9579

References

1. Savary S, Willocquet L, Pethybridge SJ, Esker P, McRoberts N, Nelson A. The global burden of pathogens and pests on major food crops. Nat Ecol Evol. 2019;3:430–439. doi:10.1038/s41559-018-0793-y.

2. van Esse HP, Reuter TL, van der Does D. Genetic modification to improve disease resistance in crops. New Phytol. 2020;225:70–86. doi:10.1111/nph.15967.

3. Zhang ZM, Ma KW, Gao L, Hu Z, Schwizer S, Ma W, et al. Mechanism of host substrate acetylation by a YopJ family effector. Nat Plants. 2017;3:17115. doi:10.1038/nplants.2017.115.

4. Nishad R, Ahmed T, Rahman VJ, Kareem A. Modulation of plant defense system in response to microbial interactions. Front Microbiol. 2020;11:1298. doi:10.3389/fmicb.2020.01298.

5. Betsuyaku S, Katou S, Takebayashi Y, Sakakibara H, Nomura N, Fukuda H. Salicylic acid and jasmonic acid pathways are activated in spatially different domains around the infection site during effector-triggered immunity in arabidopsis thaliana. Plant Cell Physiol. 2018;59:8–16. doi:10.1093/pcp/pcx181.
6. Bhandari DD, Lapin D, Kracher B, Von Born P, Bautor J, Niehnd K, Parker JE. An EDS1 heterodimer signalling surface enforces timely reprogramming of plant immunity genes in Arabidopsis. Nat Commun. 2019;10:772. doi:10.1038/s41467-019-08783-0.

7. Baggs EL, Monroe JG, Thanki AS, O’Grady R, Schudoma C, Haerty W, et al. Convergent loss of an EDS1/PAD4 signalling pathway in several plant lineages reveals coevolved components of plant immunity and drought response. Plant Cell. 2020;32:2158–2177. doi:10.1105/tpc.19.00903.

8. Zhu S, Jeong RD, Venugopal SC, Lapchyk L, Navarre D, Kachroo A, Kachroo P. SAG101 forms a ternary complex with EDS1 and PAD4 and is required for resistance signaling against turnip crinkle virus. PLoS Pathog. 2011;7:e1002318. doi:10.1371/journal.ppat.1002318.

9. Hayward AC. Biology and epidemiology of bacterial wilt caused by pseudomonas solanacearum. Annu Rev Phytopathol. 1991;29:65–87. doi:10.1146/annurev.py.29.090191.000433.

10. Zheng X, Liu B, Zhu Y, Wang J, Zhang H, Wang Z. Bacterial community diversity associated with the severity of bacterial wilt disease in tomato fields in southeast China. Can J Microbiol. 2019;65:538–549. doi:10.1139/cjm-2018-0637.

11. Mukaihara T, Tamura N, Iwabuchi M. Genome-wide identification of a large repertoire of Ralstonia solanacearum type III effector proteins by a new functional screen. Mol Plant Microbe Interact. 2010;23:251–262. doi:10.1094/MPMI-23-3-0251.

12. Tasset C, Bernoux M, Jauneau A, Pouzet C, Briere C, Kieffer-Jacquino S, Rivas S, Marco Y, Deslandes L, et al. Autoacetylation of the Ralstonia solanacearum effector PopP2 targets a lysine residue essential for RRS1-R-mediated immunity in Arabidopsis. PLoS Pathog. 2010;6:e1001202. doi:10.1371/journal.ppat.1001202.

13. Sarris PF, Duxbury Z, Huh SU, Ma Y, Segonzac C, Sklenar J, Derbyshire P, Cevik V, Rallapalli G, Saujat S, et al. A plant immune receptor detects pathogen effectors that target WRKY transcription factors. Cell. 2015;161:1089–1100. doi:10.1016/j.cell.2015.04.024.

14. Deslandes L, Olivier J, Peeters N, Feng DX, Khounlotham M, Boucher C, Sommich I, Genin S, Marco Y. Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus. Proc Natl Acad Sci U S A. 2003;100(13):8024–8029. doi:10.1073/pnas.1230660100.

15. Le Roux C, Huet G, Jauneau A, Camborde L, Tremousaygue D, Kraut A, Zhou B, Levaillant M, Adachi H, Yoshioka H, et al. A receptor pair with an integrated decoy converts pathogen disabling of transcription factors to immunity. Cell. 2015;161(5):1074–1088. doi:10.1016/j.cell.2015.04.025.

16. Jones RM, Wu H, Wentworth C, Collier-Hyams L, Neish AS. Salmonella AvrA coordinates suppression of host immune and apoptotic defenses via JNK pathway blockade. Cell Host Microbe. 2008;3:233–244.

17. Paquette N, Conlon J, Sweet C, Rus F, Wilson L, Pereira A, Rosadini C, Goutagny N, Weber ANR, Lane WS, et al. Serine/threonine acetylation of TGFbeta-activated kinase (TAK1) by Yersinia pestis YopJ inhibits innate immune signaling. Proc Natl Acad Sci U S A. 2012;109:12710–12715. doi:10.1073/pnas.1008203109.

18. Ustun S, Konig P, Guttman DS, Bornke F. HopZ4 from Pseudomonas syringae, a member of the HopZ type III effector family from the YopJ superfamily, inhibits the proteasome in plants. Mol Plant Microbe Interact. 2014;27:611–623. doi:10.1094/MPMI-12-13-0363-R.

19. Lee AH, Hurley B, Felsensteiner C, Yea C, Krushumova W, Bartetzko V, Wang PW, Quach V, Lewis JD, Liu YC, et al. A bacterial acetyltransferase destroys plant microtubule networks and blocks secretion. PLoS Pathog. 2012;8(2):e1002523. doi:10.1371/journal.ppat.1002523.

20. Bernoux M, Timmers T, Jauneau A, Briere C, de Wit P, Marco Y, et al. RD19, an Arabidopsis cysteine protease required for RRS1-R-mediated resistance, is relocalized to the nucleus by the Ralstonia solanacearum PopP2 effector. Plant Cell. 2008;20:2252–2264. doi:10.1105/tpc.108.058685.

21. Huh SU, Cevik V, Ding P, Duxbury Z, Ma Y, Tomlinson L, Sarris PF, Jones JDG. Protein-protein interactions in the RPS4/RRS1 immune receptor complex. PLoS Pathog. 2017;13(5):e1006376. doi:10.1371/journal.ppat.1006376.

22. Sohn KH, Segonzac C, Rallapalli G, Sarris P, Wu OY, Williams SJ, et al. The nuclear immune receptor RPS4 is required for RRS1L.H1-dependent constitutive defense activation in Arabidopsis thaliana. PLoS Genet. 2014;10(e1004655). doi:10.1371/journal.pgen.1004655.

23. Li Q, Wang J, Bai T, Zhang M, Jia Y, Shen D, Zhang M, Dou D. A Phytophthora capsici effector suppresses plant immunity via interaction with EDS1. Mol Plant Pathol. 2020;21:502–511. doi:10.1111/mpp.12912.