Recent advances in screening active components from natural products based on bioaffinity techniques

Xiaofang Houa,c, Meng Sunb,c, Tao Baoa,c, Xiaoyu Xiea,c, Fen Weia,c, Sicen Wanga,c,*

a School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
b College of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an 712046, China
c Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi’an 710061, China

Received 23 February 2020; received in revised form 19 March 2020; accepted 31 March 2020

Abstract Natural products have provided numerous lead compounds for drug discovery. However, the traditional analytical methods cannot detect most of these active components, especially at their usual low concentrations, from complex natural products. Herein, we reviewed the recent technological advances (2015–2019) related to the separation and screening bioactive components from natural resources, especially the emerging screening methods based on the bioaffinity techniques, including biological chromatography, affinity electrophoresis, affinity mass spectroscopy, and the latest magnetic and optical methods. These screening methods are uniquely advanced compared to other traditional methods, and they can fish out the active components from complex natural products because of the affinity between target and components, without tedious separation works. Therefore, these new tools can reduce the time

Abbreviations: AAs, amaryllidaceous alkaloids; ABCA1, ATP-binding cassette transporter A1; ACE, affinity capillary electrophoresis; APTES, 3-aminopropyl-triethoxysilane; ASMS, affinity selection mass spectrometry; ChE, cholesterol efflux; CMC, Cell membrane chromatography; CMMCNTs, Cell membrane magnetic carbon nanotube; CMSP, Cell membrane stationary phase; CNT, carbon nanotubes; EGFR, epidermal growth factor receptor; Fe3O4-NH2, aminated magnetic nanoparticles; FP, fluorescence polarization; HCS, high content screen; HTS, high throughput screen; HUVEC, human umbilical vein endothelial cells; IMER, immobilized enzyme microreactor; MAO-B, monoamine oxidases B; MNP, immobilized on nanoparticles; MPTS, 3-mercaptopropyl-trimethoxysilane; MS, mass spectrometry; MSPE, magnetic solid-phase extraction; PD, Parkinson’s disease; PMG, physcion-8-O-D-monoglucoside; RGD, arginine-glycine-aspartic acid; SPR, surface plasmon resonance; STAT3, signal transducer and activator of transcription 3; TCMS, traditional Chinese medicines; Topo I, topoisomerase I; TYR, tyrosinase; TYR-MNPs, tyrosinase-immobilized magnetic nanoparticles; UF, affinity ultrafiltration; XOD, xanthine oxidase; α1A-AR, α1A-adrenergic receptor.

*Corresponding author. Tel.: +86 29 82656788; fax: +86 29 82655451.
E-mail address: wangsc@mail.xjtu.edu.cn (Sicen Wang).

Peer review under responsibility of Institute of Materia Medica, Chinese Academy of Medical Sciences and Chinese Pharmaceutical Association.

https://doi.org/10.1016/j.apsb.2020.04.016
2211-3835 © 2020 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Numerous phytoconstituents from natural resources have been reported to induce pharmacodynamic responses in the body in an additive or synergistic manner. More than 70% of 1562 newly approved drugs from natural origins were introduced between 1981 and 2014. However, the complex matrices of natural products usually contain therapeutically active components at low concentrations. The sample preparation processes of the traditional analytical methods are unable to detect these active components especially at their usual low concentrations. Many investigations adopted the function-based approaches including the extraction and isolation of these therapeutically active components, followed by extensive pharmacological assays. The bio-guided assays are selected based on ethnopharmacological approaches, simple isolated enzyme assays where the mixture is tested against a particular target, and phenotypic assays in which the growth, viability, or function of a cell or a tissue is monitored. And, cellular systems are studied in more sophisticated approaches which are often labor-intensive, expensive, and inefficient. However, very low concentrations of the active components could be difficult to detect through conventional analytical and separation techniques. Therefore, researchers designed more efficient experimental assays and the screening technologies to identify the valued components.

The term “dereplication” was introduced by Beutler et al. in 1990 as “a process of quickly identifying known chemotypes”. Their goal was to evaluate the activity of a range of natural products extracts with simple receptor binding assays, and to investigate multiple interacting pairs involved in biological systems, including antigen—antibody, receptor—ligand, enzyme— inhibitor/activator, and protein—protein interactions. These methods include affinity chromatography, ligand fishing, affinity electrophoresis, magnetic separation screening, spectrum-based methods including fluorescence polarization, and surface plasmon resonance (SPR), etc. The principles and applications of these methods have been discussed in this review.

2. On-line screening based on chromatography or electrophoresis

Here, an on-line screening method refers to those which can integrate screening, separation, identification or activity assay procedures in a single automatic instrument. Undoubtedly, chromatographic, electrophoresis and mass spectroscopic methods can meet this requirement. Guo et al. have reviewed the applications of bio-affinity chromatography for screening active compounds from natural products. Various biomolecules or cells have been immobilized onto the surface of supports for screening the target compounds. Herein, we have explained some of the latest applications (during 2015–2019).

2.1. Cell membrane chromatography (CMC)—HPLC—mass spectrometry (MS/MS)

CMC was first proposed by He et al. in 1996, which has been proven to be an effective method for screening active components interacting with specific receptors in natural products such as traditional Chinese medicines (TCMs). This method utilizes the integrated cell membrane to study the interaction between ligands and transmembrane receptors. Cell membrane stationary phase (CMSM) is prepared by immobilizing cell membranes containing specific receptors on silica carriers and packing them into a steel column. When crude extracts pass through the CMC column, the ligands with high affinity can be retained on the column, while nonspecific analytes are eluted quickly. CMC, when combined with multidimensional chromatography or HPLC—MS, can better screen, separate and identify the active components. Fig. 1 shows the diagrams of the instrument equipment and the principle of a 10-port switching valve. In Fig. 1A, the CMC part and HPLC—MS/MS are connected through a 10-port switching valve and designated as the 1st and the 2nd dimensions, respectively. CMC screens the active components, and the HPLC—MS/MS identifies them. In the valve position (Fig. 1B), A was the analysis status, and B was the enrichment of retention fractions status. Table 1 shows some applications of various CMC combined with LC—MS/MS system, which have been utilized for screening active compounds from TCMs in the last five years.
will be improved. At the early stage of CMC, the membrane was immobilized on the surface of a silica-based adsorbent. In recent years, Ding et al. improved the stability of the CMC column using APTES or MPTS to modify silica. Another simple CMC method called the “relative standard method” was developed to determine K_D values. The K_D value of a positive drug with a known target receptor was determined by frontal affinity chromatography (FAC). Other ligands’ K_D was calculated by comparing the ratio of retention time between the standard drug and other ligands on the CMC column. A stepwise frontal affinity chromatography model for drug and protein interaction was established, in which the K_D values could be determined within 30 min. Therefore, there are many challenges needed be taken in the development of CMC methods.

2.2. Cellular membrane affinity chromatography (CMAC)

A transmembrane protein (GLUT1 transporter) was firstly immobilized by Yang et al. in 1995, which demonstrated that transmembrane protein-based stationary phases could be used for studying ligand–protein interactions. Based on this work, Ruin Moaddel and Irving W. Wainer developed the CMAC method in 1998. In their work, the cellular membranes obtained from an HEK293 cell line expressing the $\alpha_3\beta_4$ nicotinic acetylcholine receptor (nAChR) were entrapped in lipid monolayers and used to study the binding of ligand to the nAChR using frontal affinity chromatography. Therefore, the CMAC technique utilizes the immobilization of a target transmembrane protein onto a stationary phase. The target protein is isolated by homogenizing and solubilizing cell lines followed by immobilization on the IAM-PC stationary phase. This process requires many reagents, such as protease inhibitors and detergents, to maintain the activity of the transmembrane proteins. This column is commercially available at a high price. Therefore, CMC is easier preparation and cheaper compared to CMAC.

2.3. Comparison between CMC and CMAC

For both CMC and CMAC methods, transmembrane proteins are collected from tissues, native cell lines and transfected cell lines; these methods can be used for the initial screening of bioactive components from natural products and the investigation of the affinity interaction between drugs and target receptors; both CMC and CMAC can determine the dissociation constant (K_D) through frontal affinity chromatography (FAC), nonlinear chromatography (NLC), and zonal elution chromatography.

For CMC, the whole-cell membrane was used to prepare the stationary phase, which can retain the original structure and activity of the transmembrane proteins. While in the CMAC method, transmembrane proteins were isolated by homogenizing and solubilizing cell lines followed by immobilization on the IAM-PC stationary phase. This process requires many reagents, such as protease inhibitors and detergents, to maintain the activity of the transmembrane proteins. This column is commercially available at a high price. Therefore, CMC is easier preparation and cheaper compared to CMAC.

2.4. Online solid-phase extraction (SPE)–HPLC–MS/MS

SPE is a widely used sample preparation technique. The analytes are immobilized in a solid sorbent during the sampling process and then recovered by elution. The on-line SPE–LC method is realized through a switching valve in HPLC–MS/MS; this process is faster, high throughput, and automatic. For enhancing the selectivity of the absorbents and analytes, Bagnati et al. firstly prepared an immunoaffinity column (50 mm × 2 mm i. d.) with a commercial immunoaffinity gel (containing antibodies against dexamethasone) for online extraction and purification of dexamethasone and betamethasone in bovine urine.

Recently, an enzyme-based SPE mode has been reported for screening enzyme inhibitors from natural products. Wang et al. have developed a monolith-based AChE-IMER for screening AChEIs from the 70% ethanol extracts of Corydalis yanhusuo.
shown in Fig. 2. AChE-ICERs and control-ICERs were prepared through immobilizing AChE onto the surface of a poly (glycidyl methacrylate-co-ethylene dimethacrylate) [poly (GMA-co-EDMA)] monolithic support and installed in parallel as SPE columns to establish a comparative online ligand fishing platform.

2.5. Affinity capillary electrophoresis (ACE)

ACE was firstly proposed by Chu et al.\(^5\). As an effective, rapid, and microscale separation technology, close to physiological conditions, ACE plays a crucial role in studying macromolecular interactions\(^6\). In the ACE method, enzymes are the most suitable biomolecules for screening\(^6,7\). The schematic diagram of the capillary enzyme assay process and the capillary electropherogram of the reaction mixture is shown in Fig. 3A. Due to reusability of the enzyme, the immobilized capillary enzyme reactor (Fig. 3B) would be helpful for screening inhibitors in a complex mixture using CE\(^8\). According to the different enzyme incubation processes, the ACE screening method has two modes, off-line and on-line\(^9\). In the off-line screening mode, the enzymatic reaction is completed out of capillary and the reaction product is analyzed by electrophoresis\(^10\). In the on-line mode, the steps including reaction, separation, and detection are carried out in capillary.

For screening active components from natural products based on CE, immobilized enzyme microreactor (IMER) is the favored technique\(^1\). In IMER, the enzyme is immobilized in the capillary.
to fabricate the enzymatic reaction. The immobilization of enzyme renders high enzyme activity, relatively good stability and reusability. Additionally, the adsorption of the enzyme can be prevented in the capillaries, which will help improve the efficiency of separation. However, the IMER is not applicable in the enzymatic reaction system, because the buffer for incubation is different from the buffer for separation. Cheng and Chen fabricated IMERs for screening tyrosinase inhibitors and trypsin inhibitors from TCMs. They also demonstrated the molecular interaction between enzymes and inhibitors using molecular docking. Zhao et al. established a CE method combined with the pressure mediated microanalysis and electrophoretically mediated microanalysis to study enzyme kinetics and inhibition kinetics of \(\alpha \)-glucosidase. The convenient, low-cost and effective in-capillary enzymatic assay could screen the \(\alpha \)-glucosidase inhibitors from 9 natural flavonoids. The monolithic column was considered as support with high-efficiency for enzyme immobilization. Zhang et al. fabricated a pepsin IMER for enzymatic kinetics analysis and inhibitor screening by covalently immobilizing pepsin in a polymer monolithic column. The prepared capillary could screen the pepsin inhibitors from 9 natural products. Some researchers developed IMER combing with mass spectrometry for screening inhibitors. This model demonstrated its applicability and validity using tacrine, galanthamine and the alkaloid uleine as the reference inhibitors for butyrylcholinesterase.

3. Off-line screening based on new materials and mass spectrometry methods

3.1. Affinity selection-mass spectrometry screening (ASMS)

ASMS was proposed firstly to detect the binding of small sub-sets of ligands to a protein. In the direct ASMS mode, protein–ligand complex is directly detected by MS. The active component is identified through calculation of the difference mass value between the complex and the protein. The disadvantage of this approach is that the ionization process may fully or partially distort the protein–ligand complexes; appropriate MS parameters for each type of complex are challenging and time-consuming. In addition, the mass of the protein–ligand complex is not substantially different from that of the protein itself, even when a binding event is detected, the exact mass of the ligand is difficult to calculate. In another ASMS mode, the protein–ligand complex is isolated, and the ligands are dissociated and identified. Sometimes, the ligands bind weakly and nonspecifically to the protein, and they also can be detected as protein binders in the ASMS assay. This method suffers from a higher incidence of false-positive hits. To solve this problem, Desaire’s group developed a method for identifying the tightest-binding lead compounds for target proteins with no false positive identifications. In their approach, the protein and the ligands are incubated together, and
the non-binders are separated for detection. They compared the mass spectrum of non-binders before and after incubating with the target.

3.2. Affinity ultrafiltration (UF)—HPLC—MS/MS

UF was firstly employed by Luong in 1998 to purify trypsin. Choi et al. firstly developed the ultrafiltration LC—MS method to screen the inhibitors of quinone reductase-2 from the extracts of the marine sediment bacteria and Humulus lupulus L. According to the principle (Fig. 4), the ligand—receptor complexes could be retained using an appropriate membrane for ultrafiltration, while impurities would pass through. Secondly, the ligands were released from the complexes using certain solvents. Thirdly, the ligands were identified and quantified by HPLC—MS/MS. This analytical process can maintain the natural conformation of the protein targets, and accurately reflect the physiological conditions for the interaction between the protein targets and small-molecule drugs. Protein targets can be reused in this approach, which is particularly important for some expensive or rare targets.

Many research groups have used affinity UF—HPLC—MS to study the interactions between the chemical components from natural products and biological target proteins. Chen et al. investigated the interactions between amaryllidaceous alkaloids (AAs) from Lycoris radiata and Topo I using affinity UF combined with HPLC—ESI/MS. The results show that 11 AAs specifically bound to Topo I, and hippeastrine displayed the highest enrichment factor. In another study, eight potential components were isolated from Rhamnus davurica using affinity UF—HPLC—MS. α-Glycosidase was investigated as a key target for treating type 2 diabetes. Chen et al. developed affinity UF—HPLC—ESI-MS method to screen α-glucosidase inhibitors from Gymnema sylvestre extracts. A total of 9 components were considered as potential α-glucosidase inhibitors. Unfortunately, the ultrafiltration technique required repeated manual washing procedures to remove the unbound components. Some components with weak interactions can also be removed. Therefore, this method is inappropriate for investigating the dissociation constant between bioactive components and targets.

3.3. Magnetic material-based methods

Compared to the traditional methods, magnetic materials are more useful for screening natural products. Based on the particle size, magnetic materials can be divided into magnetic beads, magnetic nanoparticles, and other magnetic materials. Magnetic particles were firstly prepared by Guesdon and Avrameas in 1977. Later various magnetic beads were fabricated by modifying the surface of the particles with isocyanate-, epoxy-, and vinyl groups. The functional groups couple the spacer arms with amino, hydroxy or carboxylic end groups. Strongly hydrophilic substances from both natural and synthetic origin could be attached to the surface (Fig. 5). Magnetic beads can easily and flexibly handle any volume (either large or micro liter scale) of biological samples without repeated pipetting and centrifuging. Many applications with magnetic beads have been used in bioassays (such as antibody or DNA). Moaddel et al. firstly developed magnetic beads immobilized with HSA or SIRT6 protein for ligand fishing in chemical therapeutics and medicinal plant extracts. Many studies have demonstrated that magnetic bead-based approaches can quickly separate and identify active components from complex mixtures, and the integration with liquid chromatography and mass spectrometry helps elucidate the structures of these components accurately. Most of the investigations focused on the screening of different enzyme inhibitors including lipase, transglycosylase, α-glucosidase, acetylcholinesterase, xanthine oxidase, angiotensin converting enzyme, and α-amylase inhibitors. For example, neviraminidase was immobilized onto the surface of amine-terminated magnetic beads to screen neviraminidase inhibitors. Based on the enzymatic activity, 12 compounds were screened from different herbal secondary metabolites. Despite various advantages of magnetic beads, as described above, few challenges, including the effective desorption of the ligands from the target, are yet to be solved.
In recent years, magnetic solid-phase extraction (MSPE) based on enzyme immobilized on nanoparticles (MNP) has become increasingly popular owing to their large surface area, and easiness for surface modification and magnetic separation. Many macromolecules, such as α-glucosidase110, pancreatic lipase111, folic acid112, BSA113, and aptamers114, have been immobilized on the surface of MNP and used to screen active components from natural resources.

Parkinson’s disease (PD), also known as tremor paralysis, is a common degenerative disease of the central nervous system, which causes severe disability in elderly persons. Monoamine oxidases B (MAO-B) inhibitor is a widely recognized target for anti-PD drugs. Some researchers immobilized MAO-B onto MNP to screen inhibitors from \textit{C. fraxini} and \textit{P. granatum}115. Tyrosinase (TYR) catalyzes two crucial reactions in the melanogenesis, namely oxidation of monophenols to diphenols, and diphenols to \textit{o}-quinone that ultimately transforms to melanin116. TYR is involved in the pathogenesis of Parkinson’s disease and skin diseases117. Therefore, tyrosinase inhibitors have received tremendous attention118. Liu et al.119 immobilized TYR on the surface of aminated magnetic nanoparticles (Fe\textsubscript{3}O\textsubscript{4}–NH\textsubscript{2}). The immobilized TYR showed enhanced pH and temperature endurances reusability, storage stability and higher catalytic activity compared to free TYR. Immobilized TYR was applied for screening inhibitors.

Figure 5 Workflow of the screening method using magnetic particles/nanoparticles.

Figure 6 Schematic illustration for high expression of EGFR HEK293 cell membrane coated magnetic nanoparticles for extracting bioactive compounds. Reproduced by the permission of Ref.~119 Copyright © 2019 The Royal Society of Chemistry.
from 11 TCMs. Chen et al.33 developed a microplate assay integrating TYR-immobilized magnetic nanoparticles (TYR-MNPs) and a homemade magnetic microplate for high-throughput screening compounds, which could interact with the active sites of the enzyme, or copper chelators and bind more strongly than TYR to copper ions, thus distinguishing them from antioxidants or TYR substrates. Integration with a homemade magnetic microplate enables high-throughput inhibitor screening. Cell membrane cloaked nanoparticles have exhibited great potential drug discovery. In our group, Hu et al.120 developed a novel method by immobilizing epidermal growth factor receptor (EGFR) HEK 293 cell membrane on MNP. Fig. 6120 shows that Fe₃O₄ particles have been synthesized as a magnetic core. After coating with a SiO₂ shell, Fe₃O₄ nanoparticle surfaces were covered with polar silanol groups (Si–OH), which helped in the easy absorption of the cell membrane. An optimized amount of the cell membrane with the special self-fusion characteristics could fully cloak the Fe₃O₄@SiO₂. Using this material, benzoylmesaconine and hypaconitine were identified in Radix Aconiti34. Based on this method, they also developed a novel dual functionalization carbon nanotubes (CNT) modified with magnetic nanoparticles and high α₁₁₄-adrenergic receptor (α₁₁₄-AR) expression HEK 293 cell membrane. Fig. 734 shows that the MCNTs nanomaterials have been prepared through the electrostatic interaction between MNPs and the surface of CNTs–OH. α₁₁₄-AR highly expressed cell membrane was camouflaged on magnetic CNTs. This functionalized cell membrane magnetic carbon nanotube (CMMCNTs) was employed as a drug discovery platform to screen potential α₁₁₄-AR antagonists from Radix Aconiti34. Two bioactive compounds, namely lappaconitine and benzoylmesaconine were screened out using this method.

3.4. Surface plasmon resonance (SPR)

SPR spectroscopy is used for detecting biomolecular binding interactions. In SPR, one molecular partner is immobilized on a metallic film. Then light excites the surface plasmons on the metal; when the ligand binds to the immobilized molecule, a detectable change in the surface plasmon signal can be observed96. In the pharmaceutical analysis, scientists can monitor almost any type of molecular interaction in different types of biological molecules (including serum proteins, oligomers, antibodies, and enzymes) using SPR biosensors. Zhang et al.121 developed an on-line SPR–HPLC–MS/MS method for analyzing human serum albumin binders from Radix Astragali. This application was not widely used due to the incompatibility of the pressure of the SPR and HPLC system. In most cases, natural products were screened by high throughout methods or molecular docking. Then, the binding affinity of the specific compounds to be the biomolecules was using SPR122–124. Cao et al.125 immobilized TNF-R1 on the SPR sensor surface and R. officinale was screened out from four TCMs. Combining with UPLC–QTOF/MS, the bioactive compound was identified as physcion-8-O-β-D-monoglucoside (PMG). Wang et al.126 used a novel interactomics approach, Nematic Protein Organisation Technique (NPOT), for identifying ATP-binding cassette transporter A1 (ABCA1), a key membrane transporter contributing to cholesterol efflux (ChE), as a direct binding target of evodiamine. The binding of evodiamine to ABCA1 was confirmed by SPR experiments. Chen et al.127 developed a SPR biosensor-based active ingredients recognition system (Fig. 8127) and applied to screen the signal transducer and activator of

Figure 7 The schematic illustration of preparation and application of CMMCNTs. Reprinted with permission from Ref. 34 Copyright © 2018 Elsevier.
transcription 3 (STAT3) ligands from medicinal herbs. Nine candidate compounds were fished out.

In drug discovery, SPR-based screening methods are the most promising tools for high throughput screening, since they can monitor the interactions of low-molecular-weight compounds even at low concentrations. SPR can be coupled with other emerging technologies, and novel sensing materials for developing sustainable in vitro methods and improving drug candidates.

3.5. Fluorescence polarization assay (FP)

FP is an intrinsically powerful technique for the rapid and homogeneous analysis of molecular interactions in biological/chemical systems. The basic principle of FP is shown in Fig. 9. A fluorescent probe is excited with polarized light, and emission intensity is measured as FP. An unbound fluorescent inhibitor (red) shows a fast tumbling, resulting in a higher depolarized emission signal. The fluorescent probe binds to a larger protein, resulting in a slow tumbling and a higher polarized emission signal. This technique has been successfully used in monitoring enzyme kinetics, protein–protein interactions, DNA diagnostics, biological interactions and high throughput screening in drug discovery.

Cornish’s group modified this method and constructed a broadly applicable high-throughput screening for small-molecule targets. The assay requires a target receptor and a reporter molecule, which can couple the target molecule with a fluorophore. The target molecules compete with the reporter for binding to the common receptor. Thus, the target concentration is inversely proportional to the ratio of bound to unbound reporter molecules, which can be measured by FP. They used the receptor FKBP12 and reporter molecule FK506-fluorescein to construct FP assay for screening FK506 (tacrolimus) from Streptomyces tsukubaensis in 384-well, round, black-bottom plates. Berg’s group used the STAT5a FP–based binding assay for HTS of chemical libraries comprising a total of 3289 natural products and/or known bioactive substances. NF023 and NF449 display improved selectivity for the SH2 domains of STATa/b and NF449 was the most active candidate among the STATa/b SH2 domain inhibitors. Dysregulation of MLL1 catalytic function is relevant to mixed-lineage leukemia and targeting WDR5–MLL1 interaction could be a promising therapeutic strategy for leukemia harboring MLL1 fusion proteins. Ye et al. discovered several small-molecule inhibitors with potent inhibitory activities in vitro against WDR5–MLL1 interaction through FP-based high throughput screening.

3.6. Other materials

In recent years, cell-based detection methods have attracted wide attention in drug development. By 2D tissue or 3D cultural on a hydrogel-based chip, hollow fibers, and cell-based assays have been used for screening natural products. For example, Li et al. proposed a cell-based SPE model for screening potential bioactive compounds from Ligusticum chuanxiong. They functionalized the poly(oligo (ethylene glycol) methacrylate)-modified amino microspheres using an arginine-glycine-aspartic acid (RGD) peptide. Human umbilical vein endothelial cells (HUVEC) were immobilized on the surface of modified microspheres through the high affinity of RGD and integrin on HUVEC.
The column exhibited good stability after 14 days of intensive sampling. Three bioactive compounds were identified, and two of which were 3-butyl hexahydroisobenzofuran-1(3H)-1 and tetra-methylpyrazine. For some reason, these methods are not widely used now.

4. Conclusions and perspective

Overall, the screening methods based on affinity techniques successfully employed for revealing the healing mechanism of natural products, finding the active components from the complex natural products, and facilitating drug discovery. However, many challenges should be solved in the future: 1) In affinity techniques, non-specific absorption will lead to false-positive results, so non-specific absorption should be reduced in those techniques. 2) Normally, the healing effect of a natural product depends upon its multi-targets, so multi-targets screening methods should be developed. 3) Combinative technologies, such as combing affinity screening, LC–MS/MS and NMR can greatly improve the screening and identification process of unknown active components. 4) Biosensors, such as SPR or SPR combined with an imaging system, should be developed for readily achieving high-throughput real-time label-free biosensing in two-dimensional (2D) microarrays and parallelly monitoring multiple molecular interactions.

Acknowledgments

This research was supported by the National Natural Science Foundation of China (No. 81673398), the “the World-Class Universities (Disciplines) and the Characteristic Development Guidance Funds for the Central Universities (No. PY3A012, China)”, the China Postdoctoral Science Foundation (2018M643681), and the Natural Science Foundation of Shaanxi Province (No. 2017JQ8024, China).

Author contributions

Sicen Wang and Xiaofang Hou designed the study. Xiaofang Hou drafted the manuscript. Meng Sun, Tiao Bao, Xiaoyu Xie and Fen, Wei were major contributors in reviewing the manuscript. Based on the contributions, Xiaofang Hou was listed as the first author while Sicen Wang was the correspondence. All authors read and approved the final manuscript.

Conflicts of interest

No potential conflict of interest was reported by the authors.

References

1. Isgut M, Rao M, Yang C, Subrahmanyan V, Rida PC, Aneja R. Application of combination high-throughput phenotypic screening and target identification methods for the discovery of natural product-based combination drugs. *Med Res Rev* 2018;38:504–24.
2. Newman DJ, Cragg GM. Natural products as sources of new drugs from 1981 to 2014. *J Nat Prod* 2016;79:629–61.
3. van der Krieken SE, Popeijus HE, Bendik I, Bohlundor B, Konings MCJM, Tayyeb J, et al. Large-scale screening of natural products transactivating peroxisome proliferator-activated receptor alpha identifies 9,5-hydroxy-10E,12Z,15Z-octadecatrienoic acid and cymarin as potential compounds capable of increasing apolipoprotein A–I transcription in human liver cells. *Lipids* 2018;53:1021–30.
4. Ren W, Han LY, Luo MY, Bian BL, Guan M, Yang H, et al. Multi-component identification and target cell-based screening of potential bioactive compounds in toad venom by UPLC coupled with high-resolution LTQ-Orbitrap MS and high-sensitivity Qtrap MS. *Anal Bioanal Chem* 2018;410:4419–35.
5. Lewis RA, Li JJ, Allenby NE, Errington J, Hayles J, Nurse P. Screening and purification of natural products from actinomycetes that affect the cell shape of fission yeast. *J Cell Sci* 2017;130:3173–85.
6. Chan KM, Yue GG, Li P, Wong EC, Lee JK, Kennelly EJ, et al. Screening and analysis of potential anti-tumor components from the stipe of *Ganoderma sinense* using high-performance liquid chromatography/time-of-flight mass spectrometry with multivariate statistical tool. *J Chromatogr A* 2017;1487:162–7.
7. Brusotti G, Cesari I, Dementaro A, Caccialanza G, Massolini G. Isolation and characterization of bioactive compounds from plant resources: the role of analysis in the ethnopharmacological approach. *J Pharmaceut Biomed Anal* 2014;87:218–28.
8. Cesa S, Sisto F, Zengin G, Scaccabarozzi D, Kokolakis AK, Scatritto MM, et al. Phytochemical analyses and pharmacological screening of Neem oil. *South Afr J Bot* 2019;120:331–7.
9. Deng YH, Wang NN, Zou ZX, Zhang L, Xu KP, Chen AF, et al. Multi-target screening and experimental validation of natural products from selaginella plants against Alzheimer’s disease. *Front Pharmacol* 2017;8:539.
10. Zulfiqar B, Jones AJ, Sykes ML, Shelper TB, Davis RA, Avery VM. Screening a natural product-based library against kinetoplastid parasites. *Molecules* 2017;22:1715.
11. Li SN, Liu S, Liu ZQ, Liu CM, Song FR, Pi ZF. Bioactivity screening, extraction, and separation of lactate dehydrogenase inhibitors from *Polygala tenuifolia* Willd. based on a hyphenated strategy. *J Separ Sci* 2017;40:1385–95.
12. Selby M, Delosh R, Laudemann J, Ogle C, Reinhart R, Silvers T, et al. 3D models of the NCi60 cell lines for screening oncology compounds. *SLAS Discovery* 2017;22:473–83.
13. Wang J, Wu MY, Tan JQ, Li M, Lu JH. High content screening for drug discovery from traditional Chinese medicine. *Chin Med* 2019;14:5.
14. Beutler JA, Alvarado AB, Schauflerger DE, Andrews P, McCloud TG. Dereplication of phorbol bioactives: *Lynbyngha majuscula* and *Croton canavus*. *J Nat Prod* 1990;53:867–74.
15. Hubert J, Nuzillard JM, Renault JH. Dereplication strategies in natural products discovery process. *Phytochemistry Rev* 2015;16:55–95.
16. Gaudencio SP, Pereira F. Dereplication: racing to speed up the natural products discovery process. *Nat Prod Rep* 2015;32:779–810.
17. Zhao C, Chen YJ, Fang J, Fan JL, Tong CY, Liu XY, et al. DNase-targeted natural product screening based on a sensitive and selective DNase I detecting system. *RSC Adv* 2017;7:30911–8.
18. Pan P, Cai Z, Zhuang C, Chen X, Chai Y. Methodology of drug screening and target identification for new necroptosis inhibitors. *J Pharm Anal* 2019;9:71–6.
19. Xu M, Zheng MM, Liu GZ, Zhang M, Kang JW. Screening of break point cluster region Abelson tyrosine kinase inhibitors by capillary electrophoresis. *J Chromatogr A* 2018;1537:128–34.
20. Wang XY, Chen XF, Gu YQ, Cao Y, Yuan YF, Hong ZY, Chai YF. Progress of cell membrane chromatography and its application in screening active ingredients of traditional Chinese medicine. *Chin J Anal Chem* 2018;46:1695–702.
21. Wang L, Liu YF, Luo Y, Huang KY, Wu ZQ. Quickly screening for potential alpha-glucosidase inhibitors from guava leaves tea by bio-affinity ultrafiltration coupled with HPLC–ESI-TOF/MS method. *J Agric Food Chem* 2018;66:1576–82.
22. Yang HM, Yao WB, Wang YH, Shi L, Su R, Wan DB, et al. High-throughput screening of trioxy DNA binders from complicated...
samples by 96-well plate format in conjunction with peak area-fading UHPLC—Orbitrap MS. Analyst 2017;142:670–5.

23. Muhammad S, Han SL, Xie XY, Wang SC, Aziz MM. Overview of online two-dimensional liquid chromatography based on cell membrane chromatography for screening target components from traditional Chinese medicines. J Separ Sci 2017;40:299—313.

24. Zhuo RJ, Liu H, Liu NN, Wang Y. Ligand fishing: a remarkable strategy for discovering bioactive compounds from complex mixture of natural products. Molecules 2016;21:1516.

25. Bai Y, Zhou WD, Mu XM, Zhang Q, Yu C, Di B, et al. Covalent immobilization of human placental 17 alpha-hydroxysteroid dehydrogenase type 1 onto glutaraldehyde activated silica coupled with LC—TOF/MS for anti-cancer drug screening. Appl Biochem Biotechnol 2017;182:482—94.

26. Zhu JF, Yi XJ, Liu WH, Xu YC, Chen SQ, Wu YJ. Immobilized fusion protein affinity chromatography combined with HPLC—ESI-Q-TOF-MS/MS for rapid screening of PPAR gamma ligands from natural products. Talanta 2017;165:508—15.

27. de Moraes MC, Cardoso CL, Seidl C, Moaddel R, Cass QB. Targeting anti-cancer active compounds: affinity-based chromatographic assays. Curr Pharmacogenomics 2016;22:5976—87.

28. Lin YY, Wang C, Hou YJ, He Hz, Huang LM, Yang L, et al. The human mast cell line-1 cell membrane chromatography coupled with HPLC—ESI-MS/MS method for screening potent anaphylactic components from chuanxinlian injection. Biomed Chromatogr 2017;31:e4015.

29. He XS, Zhang P, Saqib M, Hou XF, Wang SC. Screening active anti-breast cancer compounds from Cortex Magnoliae Officinalis by MCF-7 cell membrane chromatography coupled with UHPLC—ESI-MS/MS. Anal Methods 2017;9:4828—36.

30. Chen L, Wang X, Liu YP, Di X. Dual-target screening of bioactive components from traditional Chinese medicines by hollow fiber-based ligand fishing combined with liquid chromatography-mass spectrometry. J Pharmaceut Biomed Anal 2017;143:269—76.

31. Ouimet CM, D’Amico CI, Kennedy RT. Advances in capillary electrophoresis and the implications for drug discovery. Exper Opin Drug Discov 2017;12:213—24.

32. Liu DM, Chen J, Shi YP. Screening of enzyme inhibitors from traditional Chinese medicine by magnetic immobilized alpha-glucosidase coupled with capillary electrophoresis. Talanta 2017;164:548—55.

33. Chen CY, Lu YH, Lin JT, Hu CC, Fuh CB, Tsai H. Quick screening of true tyrosinase inhibitors from natural products using tyrosinase-immobilized magnetic nanoparticles and a magnetic microplate. J Chin Chem Soc 2018;65:1075—81.

34. Bu Y, Hu Q, Ke R, Sui Y, Xie X, Wang S. Cell membrane camouflage magnetic nanoparticles as a biomimetic drug delivery platform. Chem Commun 2018;54:13427—30.

35. Zhang XY, Tang QQ, Mi TJ, Zhao SJ, Wen K, Guo LC, et al. Dual-wavelength fluorescence polarization immunosensor to increase information content per sensor: applications for simultaneous detection of total aflatoxins and family zearalenones in maize. Food Contr 2018;87:100—8.

36. Olanu A, Bala C, Jaffrezic-Renault N, Aboul-Enein HY. Surface plasmon resonance (SPR) biosensors in pharmaceutical analysis. Crit Rev Anal Chem 2015;45:97—105.

37. Guo JL, Lin H, Wang JC, Lin YJ, Zhang TT, Jiang ZJ. Recent advances in bio-affinity chromatography for screening bioactive compounds from natural products. J Pharmaceut Biomed Anal 2019;165:182—97.

38. Arora S, Saxena V, Ayatv BV. Affinity chromatography: a versatile technique for antibody purification. Methods 2017;116:84—94.

39. He LC, Yang GD, Geng XD. Enzymatic activity and chromatographic characteristics of the cell membrane immobilized on silica surface. Chin Sci Bull 1999;44:826—31.

40. He LC, Wang SC, Geng XD. Coating and fusing cell membranes onto a silica surface and their chromatographic characteristics. Chromatographia 2001;54:71—6.
Screening active components from natural products based on bioaffinity techniques

56. Ding X, Cao Y, Yuan Y, Gong Z, Liu Y, Zhao L, et al. Development of APTES-decorated HepG2 cancer stem cell membrane chromatography for screening active components from Salvia miltiorrhiza. Anal Chem 2016;88:12081–9.

57. Ma W, Yang L, Ly Y, Fu J, Zhang Y, He L. Determine equilibrium dissociation constant of drug-membrane receptor affinity using the cell membrane chromatography relative standard method. J Chromatogr A 2017;1503:12–20.

58. He X, Sui Y, Wang S. Stepwise frontal affinity chromatography model for drug and protein interaction. Anal Bioanal Chem 2018;410:5807–15.

59. Yang Q, Lundahl P. Immobilized proteoliposome affinity chromatography for quantitative analysis of specific interactions between solutes and membrane proteins. Interaction of cytochalasin B and α-glucose with the glucose transporter Glu 1. Biochemistry 1995;34:7289–94.

60. Zhang Y, Yao X, Kellar KJ, Wainer IW. Immobilized nicotinic receptor stationery phase for on-line liquid chromatographic determination of drug—receptor affinities. Anal Biochem 1998;264:22–5.

61. Singh NS, Habicht KL, Moaddel R, Shimoo R. Development and characterization of mitochondrial membrane affinity chromatography columns derived from skeletal muscle and platelets for the study of mitochondrial transmembrane proteins. J Chromatogr B 2017;1055–6:144–8.

62. Moaddel R, Wainer IW. The preparation and development of cellular membrane affinity chromatography columns. Nat Protoc 2009;4:197–205.

63. Bagnati R, Ramazza V, Zucchi M, Simonella A, Leone F, Bellini A, et al. Analysis of dexamethasone and betamethasone in bovine urine by purification with an “on-line” immunosensitive chromatography—high-performance liquid chromatography system and determination by gas chromatography—mass spectrometry. Anal Biochem 1996;235:119–26.

64. Wang L, Zhao Y, Zhang Y, Zhang T, Kool J, Somsen GW, et al. Online screening of acetylsalicylase inhibitors in natural products using monolith-based immobilized capillary enzyme reactors combined with liquid chromatography—mass spectrometry. J Chromatogr A 2018;1563:135–43.

65. Peng MJ, Shi SY, Chen L, Zhang SH, Cai P, Chen XQ. Online coupling solid-phase ligand-fishing with high-performance liquid chromatography—diode array detector—tandem mass spectrometry for rapid screening and identification of xanthine oxidase inhibitors in natural products. Anal Bioanal Chem 2016;408:6693–701.

66. Chu YH, Avila LZ, Biueyck HA, Whitesides GM. Use of affinity capillary electrophoresis to measure binding constants of ligands to proteins. J Med Chem 1992;35:2915–7.

67. Shimura K, Kasi K. Affinity capillary electrophoresis: a sensitive tool for the study of molecular interactions and its use in microscale analyses. Anal Biochem 1997;251:1–16.

68. Zhang B, Chen Z. Screening of catepsin B inhibitors in traditional Chinese medicine by capillary electrophoresis with immobilized enzyme microreactor. J Pharmaceut Biomed Anal 2019;176:112811.

69. Tang ZM, Kang JW. Enzyme inhibitor screening by capillary electrophoresis with an on-column immobilized enzyme microreactor created by anionic binding technique. Anal Chem 2006;78:2514–20.

70. Ma HF, Bai Y, Li J, Chang YX. Screening bioactive compounds from natural product and its preparations using capillary electrophoresis. Electrophoresis 2018;39:260–74.

71. Qi Y, Li Y, Bao JI. Development of a capillary electrophoresis method for analyzing adenosine deaminase and purine nucleoside phosphorylase and its application in inhibitor screening. Anal Biochem 2016;506:31–44.

72. Roblova V, Bittova M, Kuban P, Kuban V. Capillary electrophoresis fingerprinting and spectrophotometric determination of antioxidant potential for classification of Mentha products. J Separ Sci 2016;39:2862–8.

73. Huang S, Paul P, Ramana P, Adams E, Augustijns P, Van Schepdael A, et al. Advances in capillary electrophoretically mediated microanalysis for on-line enzymatic and derivatization reactions. Electrophoresis 2018;39:97–110.
94. Fu YW, Luo JY, Qin JA, Yang MH. Screening techniques for the identification of bioactive compounds in natural products. J Pharmaceut Biomed Anal 2019;168:189–200.

95. Guesdon JL, Avraamela S. Magnetic solid phase enzyme-immunoassay. Immunotechnology 1977;14:443–7.

96. Moaddel R, Marszall MP, Bighi F, Yang Q, Duan X, Wainer IW. Automated ligand fishing using human serum albumin-coated magnetic beads. Anal Chem 2007;79:5414–7.

97. Yasuda M, Wilson DR, Fugmann SD, Moaddel R. Synthesis and characterization of SIRT6 protein coated magnetic beads: identification of a novel inhibitor of SIRT6 deacetylase from medicinal plant extracts. Anal Chem 2011;83:7400–7.

98. Zhang YY, Wang QQ, Liu RJ, Zhou H, Crommen J, Moaddel R, et al. Rapid screening and identification of monoamine oxidase-A inhibitors from Corydalis Rhizome using enzyme-immobilized magnetic beads method. J Chromatogr A 2019;1592:1–8.

99. Wang T, Li DP, Yu BY, Qi J. Screening inhibitors of xanthine oxidase from natural products using enzyme immobilized magnetic beads by high-performance liquid chromatography coupled with tandem mass spectrometry. J Separ Sci 2017;40:1877–86.

100. Rush MD, Walker EM, Prehna G, Burton T, van Breemen RB. A magnetic dendritic microbead affinity selection screen (MagMASS) using mass spectrometry for ligands to the retinoid X receptor-alpha. J Am Soc Mass Spectrom 2017;28:479–85.

101. Zhu YT, Ren XY, Yuan L, Liu YM, Liang J, Liao X. Fast identification of lipase inhibitors in oolong tea by using lipase functionalised Fe3O4 magnetic nanoparticles coupled with UPLC–MS/MS. J Chromatogr A 2018;1573:521–6.

102. Wu WS, Cheng WC, Cheng TJR, Wong CH. Affinity-based screen for inhibitors of bacterial transglycosylase. J Am Chem Soc 2018;140:2752–5.

103. Wang Z, Li QX, Chen MH, Liu FY, Han C, Kong LY, et al. A strategy for screening of alpha-glucosidase inhibitors from Morus alba root bark based on the ligand fishing combined with high-performance liquid chromatography mass spectrometer and molecular docking. Talanta 2018;180:337–45.

104. Wubshet SG, Brighente IMC, Moaddel R, Staerk D. Magnetic ligand fishing as a targeting tool for HPLC–HRMS–SPE–NMR: alpha-glucosidase inhibitor ligands and alkylresorcinol glycosides from eucaenia cathariniana. J Nat Prod 2015;78:2657–65.

105. Vanzioni KL, Ainsworth S, Brunyceal B, Herzig V, Seraus MGL, Somsen GW, et al. Rapid ligand fishing for identification of acetylcholinesterase-binding peptides in snake venom reveals new properties of dendrotoxins. Toxicon 2018;152:1–8.

106. Vanzioni KL, Vieira LCC, Correa AG, Moaddel R, Cass QB. Acetylcholinesterase immobilized on modified magnetic beads as a tool for screening a compound library. Microchim Acta 2015;182:2209–13.

107. de Almeida FG, Vanzioni KL, Cass QB. Angiotensin converting enzyme immobilized on magnetic beads as a tool for ligand fishing. J Pharmaceut Biomed 2017;132:59–64.

108. Cen Y, Xiao AP, Chen XQ, Liu LL. Screening and separation of alpha-amylase inhibitors from Solanum nigrum with amylase-functionalized magnetic graphene oxide combined with high-speed counter-current chromatography. J Separ Sci 2017;40:4780–7.

109. Zhao YM, Wang LH, Luo SF, Wang QQ, Moaddel R, Zhang TT, et al. Magnetic beads-based neuraminidase enzyme microreactor as a drug discovery tool for screening inhibitors from compound libraries and ligands from natural products. J Chromatogr A 2018;1568:123–30.

110. Zhang S, Wu D, Li H, Zhu JH, Hu WP, Lu MH, et al. Rapid identification of alpha-glucosidase inhibitors from Dioscorea opposita Thumb peel extract by enzyme functionalized Fe3O4 magnetic nanoparticles coupled with HPLC–MS/MS. Food Function 2017;8:3219–27.

111. Chen T, Wei Y, Zhang L. Screening and identification of pancreatic lipase inhibitors in Polygonum cuspidatum with enzyme-immobilized magnetic nanoparticles and LC–MS/MS. Nat Prod Res Dev 2017;29:198–205. 216.

112. Liu W, Nie L, Li F, Aguilar ZP, Xu H, Xiong YH, et al. Folic acid conjugated magnetic iron oxide nanoparticles for nondestructive separation and detection of ovarian cancer cells from whole blood. Biomater Sci 2016;4:159–66.

113. Liu L, Leng J, Yang X, Liao L, Chen Y, Xiao A, et al. Rapid screening and identification of BSA bound ligands from Radix Astragali using BSA immobilized magnetic nanoparticles coupled with HPLC–MS. Molecules 2016;21:1471.

114. Kuo FY, Lin WL, Chen YC. Affinity capture using peptide-functionalized magnetic nanoparticles to target Staphylococcus aureus. Nanoscale 2016;8:9217–25.

115. Jiang X, Yuan Y, Chen L, Liu Y, Xiao M, Hu Y, et al. Monoamine oxidase B immobilized on magnetic nanoparticles for screening of the enzyme’s inhibitors from herbal extracts. Microchem J 2019;146:1181–9.

116. Lai X, Wichers HJ, Soler-Lopez M, Dijkstra BW. Structure of human tyrosinase related protein 1 reveals a binuclear zinc active site important for melanogenesis. Angew Chem Int Ed 2017;56:9812–5.

117. Carballo-Carbajal I, Laguna A, Romero-Gimenez J, Cuadros T, Bove J, Martinez-Vicente M, et al. Brain tyrosinase overexpression implicates age-dependent neuremelin production in Parkinson’s disease pathogenesis. Nat Commun 2019;10:973.

118. Chai W, Huang Q, Lin M, Ou-Yang C, Huang W, Wang Y, et al. Condensed tannins from longan bark as inhibitor of tyrosinase: structure, activity, and mechanism. J Agric Food Chem 2018;66:908–17.

119. Liu D, Chen J, Shi Y. Tyrosinase immobilization on aminated magnetic nanoparticles by physical adsorption combined with covalent crosslinking with improved catalytic activity, reusability and storage stability. Anal Chim Acta 2018;1006:90–8.

120. Hu Q, Bu Y, Zhen X, Xu K, Ke R, Xie X, et al. Magnetic carbon nanotubes conjugated with cell membrane as a drug discovery platform for selective extraction of bioactive compounds from natural products. Chem Eng J 2019;364:269–79.

121. Zhang Y, Shi S, Guo J, You Q, Feng D. On-line surface plasmon resonance—high performance liquid chromatography—tandem mass spectrometry for analysis of human serum albumin binders from Radix Astragali. J Chromatogr A 2015;1393:92–9.

122. Chen LD, Cao Y, Zhang H, Lv D, Zhao Y, Liu Y, et al. Network pharmacology-based strategy for predicting active ingredients and potential targets of Ylangylang tablet for treating heart failure. J Ethnopharmacol 2018;219:359–68.

123. Zhang ZJ, Tang HL, Huang Y, Wang J, Qiu L, Hu Z, et al. Screening of an anti-inflammatory peptide from Hydrophis cyanocinctus and analysis of its activities and mechanism in DSS-induced acute colitis. Sci Rep 2016;6:25672.

124. Liu XF, Wang K, Duan NJ, Lan Y, Ma PC, Zheng H, et al. Computational prediction and experimental validation of low-affinity target of triptolide and its analogues. RSC Adv 2015;5:34572–9.

125. Cao Y, Li YH, Lv DY, Chen XF, Chen LD, Zhu ZY, et al. Identification of a ligand for tumor necrosis factor receptor from Chinese herbs by combination of surface plasmon resonance biosensor and UPLC–MS. Anal Bioanal Chem 2016;408:5539–67.

126. Wang L, Eftekhari P, Schachner D, Ignatova ID, Palme V, Schilcher N, et al. Novel interactomics approach identifies ABCA1 as a target of triptolide and its analogues. Sci Rep 2018;8:11061.

127. Chen LD, Cao Y, Zhang H, Lv D, Zhao Y, Liu Y, et al. Network pharmacology-based strategy for predicting active ingredients and potential targets of Yangxinhishi tablet for treating heart failure. J Ethnopharmacol 2018;219:359–68.

128. Liu XF, Wang K, Duan NJ, Lan Y, Ma PC, Zheng H, et al. Computational prediction and experimental validation of low-affinity target of triptolide and its analogues. RSC Adv 2015;5:34572–9.

129. Cao Y, Li YH, Lv DY, Chen XF, Chen LD, Zhu ZY, et al. Identification of a ligand for tumor necrosis factor receptor from Chinese herbs by combination of surface plasmon resonance biosensor and UPLC–MS. Anal Bioanal Chem 2016;408:5539–67.

130. Wang L, Eftekhari P, Schachner D, Ignatova ID, Palme V, Schilcher N, et al. Novel interactomics approach identifies ABCA1 as a target of triptolide and its analogues. Sci Rep 2018;8:11061.
Screening active components from natural products based on bioaffinity techniques

130. Berg A, Berg T. A small-molecule screen identifies the anti-trypanosomal agent suramin and analogues NF023 and NF449 as inhibitors of STAT5a/b. *Bioorg Med Chem Lett* 2017;27:3349–52.

131. Ye X, Zhang R, Lian F, Zhang W, Lu W, Han J, et al. The identification of novel small-molecule inhibitors targeting WDR5–MLL1 interaction through fluorescence polarization based high-throughput screening. *Bioorg Med Chem Lett* 2019;29:638–45.

132. Barata D, van Blitterswijk C, Habibovic P. High-throughput screening approaches and combinatorial development of biomaterials using microfluidics. *Acta Biomater* 2016;34:1–20.

133. Li F, Song Y, Wu J, Chen X, Hu S, Zhao H, et al. Hollow fibre cell fishing and hollow fibre liquid phase microextraction research on the anticancer coumarins of *Radix Angelicae Dahuricae* in vitro and in vivo. *J Liq Chromatogr Relat Technol* 2019;42:79–88.

134. Li M, Hu S, Chen X, Wang R, Bai X. Research on major antitumor active components in Zi-Cao-Cheng-Qi decoction based on hollow fiber cell fishing with high performance liquid chromatography. *J Pharmaceut Biomed* 2018;149:9–15.

135. Wu D, Chen X, Hu S, Bai X. Study on major antitumor components in Yinchenhao decoction in vitro and in vivo based on hollow fiber cell fishing coupled with high performance liquid chromatography. *J Chromatogr B* 2017;1060:118–25.

136. Feng M, Chen X, Ge X, Bai X. Study of anti-renal cancer ingredients in *Scutellaria barbata* on hollow fibre cell fishing and hollow fibre liquid phase microextraction. *Curr Pharmaceut Anal* 2017;13:367–77.

137. Zhang R, Hu S, Chen X, Bai X. Screening and research of anti-cancer matrine components based on hollow fiber cell fishing with high-performance liquid chromatography. *Chromatographia* 2016;79:125–36.

138. Wang C, Hu S, Chen X, Bai X. Screening and quantification of anticancer compounds in traditional Chinese medicine by hollow fiber cell fishing and hollow fiber liquid/solid-phase microextraction. *J Sep Sci* 2016;39:1814–24.

139. Li S, Chen X, Hu S, Yan H, Bai X. Screening of bioactive compounds and research of possible targets based on hollow fiber cell fishing with high performance liquid chromatography. *Anal Methods-UK* 2015;7:3124–33.

140. Li Q, Wang J, Liu G, Sun H, Bian L, Zhao X, et al. Screening bioactive compounds from *Ligusticum chuanxiong* by high density immobilized human umbilical vein endothelial cells. *Anal Bioanal Chem* 2015;407:5783–92.