Genetic association between angiotensin converting enzyme gene in Saudi obese women established gestational diabetes; Non-replication of case-control studies in insertion and deletion polymorphism

Abdulaziz A. Alodhayani

Department of family and community Medicine, College of Medicine, King Saud University, Riaydh, Saudi Arabia

Corresponding author

Dr. Abdulaziz A. Alodhayani,

Email: drodhayani12@yahoo.com

Running title: Genetic association studies in pregnant women
Abstract

Introduction: Gestational diabetes mellitus (GDM) is defined as carbohydrate intolerance detected during pregnancy and resolves after delivery. Presently, GDM was identified with biochemical but not with molecular analysis. Therefore, this study investigated the genetic, biochemical, clinical association between ACE polymorphism in GDM women.

Methods: In this case-control study, 400 pregnant women were selected to inspect the ACE genotyping. Two hundred GDM cases were compared with 200 non-GDM subjects. Genotyping was carried out with direct primer sequence followed with 3% agarose gel electrophoresis.

Results: Statistical association was identified between GDM and non-GDM subjects with D allele, ID genotype and dominant model (D vs I: OR-1.62 [95%CI: 1.09-2.41]; p=0.01; ID vs II: OR-1.58 [95%CI: 1.02-2.42]; p=0.03; DD+ID vs II; OR-1.62 [95%CI: 1.09-2.40]; p=0.01). When comparison was carried out in obese and non-obese of GDM subjects' negative association was confirmed (p>0.05) and Weight cum BMI associated positively with ACE II, ID and DD genotypes (p=0.07 and p=0.02).

Conclusion: This results confirm positive association with ACE variant in GDM subjects; confirms the association between GDM and obesity in Saudi women. However, future studies should be implement in other diseases in Saudi as well as GDM with obesity studies in global populations to rule out the diseases.

Keywords: Gestational diabetes, obesity, ACE polymorphism, Saudi women
Introduction

Pregnant condition of women with undiagnosed diabetes reveals varying degree of glucose intolerance is defined as gestational diabetes mellitus (GDM), globally effecting 1.1%-14.3% during pregnancy and has ~35.6%-69% of recurrent risk.1 Earlier studies have addressed ~3-65% of GDM women developed type 2 diabetes mellitus (T2DM) during 5-16 years after the index pregnancy.2 Human and Animal studies research revealed GDM and T2DM have characterized β-cell dysfunction, insulin resistance and defects in insulin action.3 T2DM and GDM share the common pathophysiology and predisposing factors.4 Family history of GDM is one of the major risk factor for the pregnant women to prone chronic diseases as T2DM, obesity (weight gain) and hypertension.5 Adapting the western life style with uncontrolled diet, may be obese during childhood and epigenetic changes could be the main cause for weight gain.6 A significant risk factor for GDM has been documented as maternal health, macrosomia and cesarean delivery.7 Born neonates to GDM mother will have risk of low blood glucose other complications such as jaundice, pre-eclampsia, polycythemia and respiratory related syndromes.8 All types of diabetes such as T1DM, T2DM, GDM and specific types of diabetes due to other causes has genetic com--ponent. However genetic knowledge in diabetes accumulating progressively in diabets etiology and potential treatment of our updated knowledge in diabetes was not utilizing opportunities for modified management of diabetes in pregnancy.9 Importance of single nucleotide polymorphisms (SNPs) studies in coding and non-coding regions of specific
genes was to understand the pathophysiology of human diseases for improving diagnosis, prevention, treatment and disease-causing genes. Approximately, 90% of sequence variants in humans are in DNA sequences that code for proteins. Genetic scientists have documented the significant progress in detecting genetic diseases. Angiotensin converting enzyme (ACE) gene is one of the important biomarker identifying in all multifactorial diseases mainly diabetes as T1DM, T2DM, GDM, New onset of diabetes after transplantation, diabetic nephropathy and retinopathy. Previous studies have exposed as Renin angiotensin system may play an important role in T2DM nephropathy. ACE gene functional polymorphism consist of Insertion and deletion (I/D) was identified with ACE plasma levels, first genetic variant connected with human physical performance are strong linkage disequilibrium with genetic factors. It appears on chromosome 17q23 with 26 exons, 25 introns which are 44,770 bp in size and on 16th intron I allele consist of 287 bp of non-coding Alu repeat sequence is absent in D allele, confirms II, ID and DD genotypes. However, limited studies have been implemented in GDM disease as well as in Saudi population. Therefore, this study aims to investigate the insertion and deletion polymorphism in the ACE gene in Saudi women effected with GDM.
Materials and methods

Saudi subjects

Ethical approval was the initial step which was granted from King Saud University (KSU). This case-control study was designed from Department of obstetrics and gynecology. Altogether, 400 Saudi subjects signed the consent form were recruited based on inclusion and exclusion criteria.16 and divided as GDM ($n=200$) and non-GDM ($n=200$), also termed as control subjects. Overall, 5 ml of the peripheral white blood cells were collected from each patient and divided them into (a) coagulant blood (3 ml) was used for the reconfirmation of GDM as well as for lipid analysis and (b) 2 ml of the EDTA blood was used for the separation of genomic DNA for molecular analysis.17

Anthropometric and Biochemical analysis

Saudi women’s Body Mass Index (BMI) were calculated with recorded height and weight by well trained-experienced female nurses. Age, mean gestational age, Hypertension and family history was recorded. Screening of glucose intolerance was performed in all the pregnant women ($n=400$) between 24-28 gestational weeks. Glucose challenge test (GCT) was initial preliminary screening test carried out and abnormal GCT was processed for oral glucose tolerance test (OGTT) with 100 grams of glucose. Positive turned subjects were considering as GDM and negative subjects were as non-GDM. Glucose analysis confirmation was carried out with American Diabetes Association Criteria. The details of GCT and OGTT values and protocol were described in Al-Hakeem et al17 study.
Remaining serum sample was used for lipid profile analysis. Separately, fasting and post-prandial blood parameters were measured for biochemical analysis.

Molecular analysis

AccuVis Bio DNA kits were used to extract the genomic DNA from white cells and extracted DNA was quantified with NanoDrop to check the quality of DNA. The forward and reverse oligonucleotides and PCR amplification conditions were selected from earlier study\(^{14}\), direct PCR was implemented for genotyping and successful amplification was confirmed with 3% agarose gel. Insertion band indicates 490bp and deletion band indicates 190bp; However, heterozygous band indicates 490 and 190 bp respectively.

Statistical analysis

Anthropometric, biochemical and clinical characteristics between GDM and non-GDM subjects were expressed as mean±standard deviation. Genotype, allele frequencies and chi-square (χ^2), 95% confidence intervals (CI) and p values were calculated within the Saudi subjects. Gene counting protocol was followed for calculating the alleles and Hardy-Weinberg equilibrium (HWE) was resolved to test the ACE alleles. Anova analysis for variance was also studied for genotype and clinical details.

Results

Non-genetic analysis

Baseline characteristics of GDM and non-GDM subjects of anthropometric, biochemical and clinical details are tabulated in Table 1. GDM subjects were elder than control
subjects comparing with the age, height, weight and BMI. Significant difference was observed with age, weight and BMI (p<0.05). As shown in Table 1, the biochemical parameters as FBS, PPBG, GCT, OGTT (fasting, 1st, 2nd and 3rd hours) and lipid profile such as TC, TG, HDL-C (but not LDL-C) were statistically associated with GDM comparing to non-GDM subjects (p<0.05). Family histories of T2DM and GDM were shown to be statistical significant (p<0.05).

Molecular genotype analysis

The genotypes of I28005D polymorphism were in HWE (p>0.05) with the call rates of >95%. The association observed with GDM and non-GDM subjects in ACE variants are tabulated in 2nd table. The wild type genotype frequencies were higher in non-GDM subjects compared to the GDM cases i.e., 57.5% and 45.5% respectively; heterozygous cum homozygous variants were high in GDM cases i.e., 40% and 32% in ID genotypes and 14.5% and 10.5% in DD genotypes. The statistical significance was observed in D allele, ID genotype and Dominant model in GDM cases (D vs I: OR-1.62 [95%CI: 1.09-2.41]; p=0.01; ID vs II: OR-1.58 [95%CI: 1.02-2.42]; p=0.03; DD+ID vs II; OR-1.62 [95%CI: 1.09-2.40]; p=0.01). After adjusting the age and BMI dominant model was associated in GDM cases (DD+ID vs II; OR-1.60 [95%CI: 1.07-2.44]; p=0.04). Combination of GDM with and without obesity subjects were compared with ACE alleles/ genotypes, are tabulated in Table 3. The combination of GDM and Obesity cases were 54.5%, whereas, non-obesity and GDM subjects are 45.5%. The DD genotypes were found to be more in
GDM/Obesity cases i.e., 18.3% but none of the allele and genotypes were found to be statistical association [D vs I: OR-1.48 (0.97-2.25); p=0.06 and DD+ID vs II: OR-1.45 (0.83-2.54); p=0.19). However, adjusted sex and BMI also failed to show positive association (DD+ID vs II: OR-1.24 (0.80-2.58); p=0.32).

Relation between ACE genotypes and glucose values

ACE genotypes were compared with weight gain as well as with the biochemical analysis described in detail in table 4. DD genotypes were found to be highly gained the weight, prone to increase BMI when compared with ID and II genotypes (p=0.007 and p=0.02). Comparison between II, ID and DD genotypes showed the relation with glucose values such as FBS, PPBG, GCT and OGTT fasting (p<0.05). The mean of FBS levels were found to be high in ID genotype (4.21±11.25; p=0.0001), PPBG seems to be high in DD genotype (10.64±2.43; p=0.001), GCT was seems to be 2.48±4.22 in DD genotype (p=0.07) and fasting values of OGTT was seems to be high in II genotype as 4.28±2.05 (p=0.0005).

Discussion

The aim of this current study was to investigate the association between ACE I28005D polymorphism and expansion of GDM in the Saudi population. Results of this study exposed significant association between ACE alleles, heterozygous genotype and with dominant model (p<0.05). The inconsistency association occurs in other genotypes with and without adjusting through age and BMI could be attributed small sample size in
single exploration and ethnic variations. Genetic etiology with GDM has similar overlap with T2DM; molecular tests for complex diabetes were not beneficial clinically but obliging for MODY disease efficacy for managing family risk and pregnancy treatment.\(^9\) GDM Incidence was increasing simultaneously with the pandemic in T2DM and obesity in an income developing countries.\(^8\) The prevalence of GDM in Saudi Arabia was increased from 12-18% and simultaneously, maternal obesity is also increasing in the global world and recent study implemented the stringent guidelines for analysis and diagnosis of GDM incidence increasing burden of Obesity care.\(^18, 19\) Obesity is known as weight gain or extra fat accumulates and links with the human BMI. Obesity is known as risk factor for T2DM as well as GDM during pregnancy and in this study, relation has been confirmed with obesity and GDM women. Allele and genotype association was not observed when compared between GDM with and without obesity (\(p>0.05\); Table 3). Earlier studies were carried out in different global populations and reported as not associated with D allele with glucose metabolism, T2DM and CAD\(^{20-22}\), but when comparison was carried out between weight and BMI with ACE genotypes in GDM subjects, statistical association were observed in Anova analysis (\(p<0.05\); Table 4). Current results are similar with Thailand women.\(^23\) The relation between T2DM and GDM are still controversy and connection between diabetes and ACE have been molded through Renin angiotensin aldosterone system (RAAS), plays a vital role in hypertension and considered as endocrine system and RAAS.
genes have the correlation between glucose metabolism and hypertension. Angiotensin II appear in RAAS effect glucose metabolism, involved in DM pathogenesis through insulin signal transduction, glucose uptake reduction, β-cells of pancreas inducing oxidative stress. ACE is one of genes appear in RAAS group. There are limited studies performed in GDM with ACE variants; However, studies shown to be both positive and negative association. Earlier meta-analysis study performed in Arab populations concluded D allele associated with T2DM, and this current study was in agreement with this meta-analysis report. In Saudi population, limited studies have been performed in various diseases with ACE polymorphism and results concludes both positive/negative association. Other meta-analysis reports performed in different diabetic diseases confirm significant association.

The strength of this current study was implemented the purely Saudi women to identify the accurate risk in the Saudi population. The non-Saudi women has been excluded as this is a major part of this study. The another strength of this study were compared the obesity with and without GDM subjects in the Saudi women (Table 3). This case-control study has performed with limited and equal number of sample size i.e., 200 in GDM; 200 in Non-GDM subjects and heterogeneity cannot be excluded as it appears in Saudi population. The limitations of this study could be confirm as (i) skipping of ACE levels (ii) implemented only risk variant (I28005), and (iii) performed limited statistics as this was a
case-control study and (iii) skipped to incorporate hypertension values of the pregnant women.

In conclusion, current study confirms the positive association with ACE variant in GDM subjects; confirms the relation between GDM and obesity in Saudi women. However, future studies should be implement in other diseases in Saudi as well as GDM and obesity studies in global populations. Meta-analysis studies may give the feedback with ACE gene associated with GDM disease.

Conflict of Interest: None

Acknowledgement: This study was supported by the college of Medicine Research Centre, Deanship of Scientific Research, King Saud University, Riyadh, Kingdom of Saudi Arabia. I am truly thankful to Prof Alharbi towards his support for this research article.

References

1. Cao JL, Zhang L, Li J, et al. Up-regulation of miR-98 and unraveling regulatory mechanisms in gestational diabetes mellitus. *Sci Rep*. 2016; 6: 32268.
2. Nabuco A, Pimentel S, Cabizuca CA, et al. Early diabetes screening in women with previous gestational diabetes: a new insight. *Diabetology & metabolic syndrome*. 2016; 8: 61.
3. Cui J, Xu X, Yin S, Chen F, Li P and Song C. Meta-analysis of the association between four CAPN10 gene variants and gestational diabetes mellitus. *Archives of gynecology and obstetrics*. 2016; 294: 447-53.
4. Khan IA, Shaik NA, Kamineni V, Jahan P, Hasan Q and Rao P. Evaluation of Gestational Diabetes Mellitus Risk in South Indian Women Based on MTHFR (C677T) and FVL (G1691A) Mutations. *Frontiers in pediatrics*. 2015; 3: 34.
5. Tobias DK, Zhang C, Chavarro J, et al. Healthy dietary patterns and long-term weight change among women with a history of gestational diabetes mellitus. *International journal of obesity (2005)*. 2016.
6. Hellmuth C, Lindsay KL, Uhl O, et al. Association of maternal pre-pregnancy BMI with metabolomic profile across gestation. *International journal of obesity (2005)*. 2016.
7. Kenna LA, Olsen JA, Spelios MG, Radin MS and Akirav EM. beta-Cell death is decreased in women with gestational diabetes mellitus. *Diabetology & metabolic syndrome*. 2016; 8: 60.
8. Mitanech D, Yzydorczyk C, Siddeek B, Boubred F, Benahmed M and Simeoni U. The offspring of the diabetic mother—short- and long-term implications. *Best practice & research Clinical obstetrics & gynaecology*. 2015; 29: 256-69.
9. Kleinberger JW, Maloney KA and Pollin TI. The Genetic Architecture of Diabetes in Pregnancy: Implications for Clinical Practice. *American journal of perinatology*. 2016.
10. Khan IA, Vattam KK, Jahan P, Hasan Q and Rao P. Importance of glucokinase -258G/A polymorphism in Asian Indians with post-transplant and type 2 diabetes mellitus. *Intractable & rare diseases research*. 2016; 5: 25-30.
11. Risch N and Merikangas K. The future of genetic studies of complex human diseases. *Science (New York, NY)*. 1996; 273: 1516-7.
12. Aggarwal P, Agarwal N, Das N and Dalal K. Association of polymorphisms in angiotensin-converting enzyme gene with gestational diabetes mellitus in Indian women. *International journal of applied & basic medical research*. 2016; 6: 31-7.
13. Johara A-M. Interaction with angiotensin-converting enzyme-encoding gene in female infertility: Insertion and Deletion polymorphism studies. *Saudi Journal of Biological Sciences*. 2016.
14. Poornima S, Subramanyam K, Khan IA and Hasan Q. The insertion and deletion (I28005D) polymorphism of the angiotensin I converting enzyme gene is a risk factor for osteoarthritis in an Asian Indian population. *Journal of the renin-angiotensin-aldosterone system: JRAAS*. 2015; 16: 1281-7.
15. You FJ and Shen DM. Association between angiotensin-converting enzyme insertion/deletion polymorphisms and the risk of heart disease: an updated meta-analysis. *Genetics and molecular research: GMR*. 2016; 15: 15017194.
16. Alharbi KK, Khan IA, Eldesouky MH, Al-Hakeem MM and Abotalib Z. The genetic polymorphism in the STK11 does not affect gestational diabetes. *Acta biochimica Polonica*. 2015; 62: 569-72.
17. Al-Hakeem MM, Abotalib Z, Alharbi KK, Khan IA and Mohammed AA. Insertion and deletion polymorphism in the alpha-2B adrenoceptor gene in pregnant women ripens gestational diabetes mellitus. *Saudi J Biol Sci*. 2016; 23: 128-34.
18. Koning SH, Scheuneman KA, Lutgers HL, et al. Risk stratification for healthcare planning in women with gestational diabetes mellitus. *The Netherlands journal of medicine*. 2016; 74: 262-9.
19. Wahabi HA, Fayed AA, Alzeidan RA and Mandil AA. The independent effects of maternal obesity and gestational diabetes on the pregnancy outcomes. *BMC endocrine disorders*. 2014; 14: 47.
20. Chuang LM, Chiu KC, Chiang FT, et al. Insertion/deletion polymorphism of the angiotensin I-converting enzyme gene in patients with hypertension, non-insulin-
dependent diabetes mellitus, and coronary heart disease in Taiwan. *Metabolism: clinical and experimental*. 1997; 46: 1211-4.

21. Grammer TB, Renner W, von Karger S, Boehm BO, Winkelmann BR and Maerz W. The angiotensin-I converting enzyme I/D polymorphism is not associated with type 2 diabetes in individuals undergoing coronary angiography. *(The Ludwigshafen Risk and Cardiovascular Health Study).* *Molecular genetics and metabolism*. 2006; 88: 378-83.

22. Wang Y, Ng MC, So WY, et al. Prognostic effect of insertion/deletion polymorphism of the ace gene on renal and cardiovascular clinical outcomes in Chinese patients with type 2 diabetes. *Diabetes care*. 2005; 28: 348-54.

23. Kongubol A and Phupong V. Prepregnancy obesity and the risk of gestational diabetes mellitus. *BMC pregnancy and childbirth*. 2011; 11: 59.

24. Rahimi Z, Moradi M and Nasri H. A systematic review of the role of renin angiotensin aldosterone system genes in diabetes mellitus, diabetic retinopathy and diabetic neuropathy. *Journal of research in medical sciences : the official journal of Isfahan University of Medical Sciences*. 2014; 19: 1090-8.

25. Dostalova Z, Bienertova-Vasku AJ, Vasku A, Gerychova R and Unzeitig V. [Insertion-deletion polymorphism in the gene for angiotensin-converting enzyme (I/D ACE) in pregnant women with gestational diabetes]. *Ceska gynekologie / Ceska lekarska spolecnost J Ev Purkyne*. 2006; 71: 369-73.

26. Khan IA, Jahan P, Hasan Q and Rao P. Angiotensin-converting enzyme gene insertion/deletion polymorphism studies in Asian Indian pregnant women biochemically identifies gestational diabetes mellitus. *Journal of the renin-angiotensin-aldosterone system : JRAAS*. 2014; 15: 566-71.

27. Al-Rubeaan K, Siddiqui K, Saeb AT, Nazir N, Al-Naqeb D and Al-Qasim S. ACE I/D and MTHFR C677T polymorphisms are significantly associated with type 2 diabetes in Arab ethnicity: a meta-analysis. *Gene*. 2013; 520: 166-77.

28. Alazhary NM, Morsy MM and Al-Harbi KM. Angiotensin-converting enzyme gene insertion deletion (ACE I/D) polymorphism in Saudi children with congenital heart disease. *European review for medical and pharmacological sciences*. 2015; 19: 2026-30.

29. Algasham A, Ismail H, Dewaidar M and Settin AA. Methylenetetrahydrofolate reductase and angiotensin-converting enzyme gene polymorphisms among Saudi population from Qassim region. *Genetic testing and molecular biomarkers*. 2009; 13: 817-20.

30. Alharbi KK, Kashour TS, Al-Hussaini W, et al. Association of angiotensin converting enzyme gene insertion/deletion polymorphism and familial hypercholesterolemia in the Saudi population. *Lipids in health and disease*. 2013; 12: 177.

31. Alharbi KK, Khan IA, Abed AS and Syed R. Insertion/Deletion polymorphisms do play any role in G6PD deficiency individuals in the Kingdom of the Saudi Arabia. *Bioinformation*. 2013; 9: 49-53.
32. Al-Harbi KM, Almuzaini IS, Morsy MM, Abdelaziz NA, Al-Balawi AM and Abdallah AM. Angiotensin-converting enzyme gene insertion/deletion polymorphism in Saudi patients with rheumatic heart disease. Saudi medical journal. 2015; 36: 176-80.
33. Al-Hazzani A, Daoud MS, Ataya FS, Fouad D and Al-Jafari AA. Renin-angiotensin system gene polymorphisms among Saudi patients with coronary artery disease. Journal of biological research (Thessalonike, Greece). 2014; 21: 8.
34. Dzimiri N, Basco C, Moorji A and Meyer BF. Angiotensin-converting enzyme polymorphism and the risk of coronary heart disease in the Saudi male population. Archives of pathology & laboratory medicine. 2000; 124: 531-4.
35. Saddick SY. Angiotensin converting enzyme gene polymorphism studies: A case-control study. Saudi J Biol Sci. 2015; 22: 327-31.
36. Niu W, Qi Y, Gao P and Zhu D. Angiotensin converting enzyme D allele is associated with an increased risk of type 2 diabetes: evidence from a meta-analysis. Endocrine journal. 2010; 57: 431-8.
37. Xu HY, Liu MM, Wang X and He XY. Association of angiotensin-converting enzyme insertion/deletion polymorphism with type 1 diabetic nephropathy: a meta-analysis. Renal failure. 2016: 1-8.
38. Yu ZY, Chen LS, Zhang LC and Zhou TB. Meta-analysis of the relationship between ACE I/D gene polymorphism and end-stage renal disease in patients with diabetic nephropathy. Nephrology (Carlton, Vic). 2012; 17: 480-7.
39. Alharbi KK, Khan IA, Abotalib Z and Al-Hakeem MM. Insulin receptor substrate-1 (IRS-1) Gly927Arg: correlation with gestational diabetes mellitus in Saudi women. BioMed research international. 2014; 2014: 146495.
Table 1: Clinical features of pregnant women ripens with and without diabetes

Characteristics	GDM Cases (n=200)	non-GDM (n=200)	p value
Age (Years)	32.4±5.7	31.3±6.0	0.04
Weight (Kg)	77.1±13.3	74.8±12.0	0.007
Height (cm)	158.5±5.9	157.8±5.3	0.16
BMI (kg/m²)	34.4±4.6	33.3±4.2	0.006
Gestational Age (weeks)	30.27±5.7	NA	NA
FBS (mmol/L)	5.0±0.9	4.5±0.8	0.0001
PPBG (mmol/L)	6.8±2.0	4.9±1.8	0.0001
GCT (mmol/L)	9.5±1.8	6.3±1.5	0.0001
OGTT (Baseline) (mmol/L)	5.2±1.1	4.5±0.8	0.0001
OGTT (1st hour) (mmol/L)	10.7±1.8	8.0±1.7	0.0001
OGTT (2nd hour) (mmol/L)	9.2±1.8	6.7±1.6	0.0001
OGTT (3rd hour) (mmol/L)	5.6±1.7	4.5±1.3	0.0001
TG (mmol/L)	2.3±1.8	1.7±0.9	0.0001
TC (mmol/L)	5.7±1.2	5.2±1.0	0.0001
HDL-C (mmol/L)	0.91±0.3	0.64±0.2	0.0001
LDL-C (mmol/L)	3.7±0.9	3.7±1.0	1.000
Family History of T2DM (n %)	120 (60%)	55 (18.3%)	0.0001
Family History of GDM (n %)	46 (23%)	13 (4.3%)	0.0001
Rx (Diet/Insulin)	180 (90%)/ 20 (10%)	NA	NA

All continuous variables represented by Mean ± standard deviation. Independent sample t-test is done comparing GDM and non-GDM subjects. Categorical variables compared using chi-square analysis. NA = Not applicable/ Not analyzed.