Measurements of ϕ_2 and ϕ_3 at Belle

Atsuko Kibayashi for the Belle Collaboration
High Energy Accelerator Research Organization (KEK), Tsukuba, Japan
E-mail: atsuko@post.kek.jp

Abstract. We report recent measurements of the Cabibbo-Kobayashi-Maskawa quark-mixing matrix angles ϕ_2 and ϕ_3 based on a large data sample of $B\bar{B}$ pairs collected with the Belle detector at the KEKB asymmetric-energy e^+e^- collider operating at the $\Upsilon(4S)$ resonance. We employ the time-dependent CP violation in $B \to \pi\pi, \rho\pi$ and $\rho\rho$ decays to determine ϕ_2, and CP violation in the interferences between $b \to c$ and $b \to u$ transitions to extract ϕ_3.

1. Introduction
In the standard model (SM), CP violation is attributed to an irreducible complex phase in the Cabibbo-Kobayashi-Maskawa (CKM) weak interaction quark-mixing matrix [1]. The unitarity of the CKM matrix implies the relation $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$ in the complex plane, and measurements of the angles of the triangle, $\phi_2 \equiv \arg[-V_{td}V_{tb}^*/V_{ud}V_{ub}^*]$ and $\phi_3 \equiv \arg[-V_{ud}V_{ub}^*/V_{cd}V_{cb}^*]$, give crucial tests of the CKM unitarity.

We present recent measurements of the angles ϕ_2 and ϕ_3 based on a large data sample of $B\bar{B}$ pairs collected with the Belle detector [2] at the KEKB e^+e^- asymmetric-energy (3.5 on 8 GeV) collider [3] operating at the $\Upsilon(4S)$ resonance.

2. ϕ_2 Measurements
The CKM angle ϕ_2 is determined from the time-dependent CP asymmetry in B^0 decays into $\pi^+\pi^-$, $(\rho\pi)^0$, $\rho^+\rho^-$ and $\omega^+\omega^-$ [4].

In the $\Upsilon(4S) \to B^0\bar{B}^0$ decay chain, one B^0 decays into a CP eigenstate f_{CP} at time t_{CP}, while the other decays into a flavor specific final state f_{tag} at time t_{tag}. The time-dependent decay rate is [5]

$$P^q(\Delta t) = \frac{e^{-|\Delta t|/\tau_{B^0}}}{4\tau_{B^0}}[1 + q\{S_{f_{CP}}\sin(\Delta m_d\Delta t) + A_{f_{CP}}\cos(\Delta m_d\Delta t)]}],$$

(1)

where $\Delta t = t_{CP} - t_{tag}$, τ_{B^0} is the B^0 lifetime, Δm_d is the mass difference between the two B mass eigenstates, and $q = +1(-1)$ when $f_{tag} = B^0(\bar{B}^0)$. $S_{f_{CP}}$ and $A_{f_{CP}}$ are the mixing-induced and direct CP-violating parameters, respectively. For $f_{CP} = \pi^+\pi^-$ or $\rho^+\rho^-$, $S_{f_{CP}} = \sqrt{1 - A_{f_{CP}}^2}\sin(2\phi_2 + \kappa)$, where κ is a decay mode dependent extra phase caused by the $b \to d$ “penguin” pollution and can be determined using isospin relations [6].

We measure the CP-violating parameters in $B^0 \to \pi^+\pi^-$ decays using 1464±65 signal events extracted from a data sample of $535 \times 10^6 B\bar{B}$ pairs: $A_{\pi\pi} = +0.55 \pm 0.08$(stat) ± 0.05(syst) and
\[S_{\pi\pi} = -0.61 \pm 0.10 \text{(stat)} \pm 0.04 \text{(syst)}. \] We observe large direct \(CP \) violation with the significance of 5.5 standard deviations (\(\sigma \)) and measure \(\phi_2 = (97 \pm 11)^\circ \) [7].

We measure the \(CP \)-violating parameters in \(B^0 \rightarrow \rho^+\rho^- \) decays: \(A = +0.16 \pm 0.21 \text{(stat)} \pm 0.07 \text{(syst)} \) and \(S = +0.19 \pm 0.30 \text{(stat)} \pm 0.07 \text{(syst)} \) using the same data sample. We find two “flat-top” \(\phi_2 \) solutions; the solution consistent with the SM is \(61^\circ < \phi_2 < 107^\circ \) at the 68% confidence level [8].

Another technique to extract \(\phi_2 \) is to use a time-dependent Dalitz plot analysis of the decay \(B^0 \rightarrow (\rho\pi)^0 \rightarrow \pi^+\pi^-\pi^0 \). This method provides \(\phi_2 \) without discrete ambiguities [9]. We perform the full Dalitz and isospin analysis, and obtain a constraint on the \(\phi_2 \), \(68^\circ < \phi_2 < 95^\circ \), at the 68.3% confidence interval for the solution consistent with the SM using a data sample of \(449 \times 10^6 \) \(B\bar{B} \) pairs [10].

The \(B^0 \rightarrow a_1^+\pi^- \) decay is also sensitive to \(\phi_2 \). A method is proposed to extract the angle from this decay [11]. We measure the branching fraction with a data sample of \(353 \times 10^6 \) \(B\bar{B} \) pairs, \(\mathcal{B}(B^0 \rightarrow a_1^+\pi^-) \times \mathcal{B}(a_1^+ \rightarrow \pi^+\pi^-\pi^-) = (14.9 \pm 1.6 \pm 2.3) \times 10^{-6} \), where the first and second errors are statistical and systematic, respectively [12].

3. \(\phi_3 \) Measurements

We make use of the interferences between \(b \rightarrow c\bar{u}s \) and \(b \rightarrow u\bar{c}s \) transitions in the decay of \(B^- \rightarrow DK^+ \) to extract the CKM angle \(\phi_3 \).

Gronau, London and Wyler (GLW) proposed to use \(D \) decays into \(CP \) eigenstates: \(D_1 = K^+K^- \), \(\pi^+\pi^- \) (\(CP \)-even) and \(D_2 = K_S^0\pi^0 \), \(K_S^0\omega \), \(K_S^0\phi \) (\(CP \)-odd) [13]. We measure

\[
A_{1,2} = \frac{BR(B^- \rightarrow D_{1,2}K^-) - BR(B^+ \rightarrow D_{1,2}K^+)}{BR(B^- \rightarrow D_{1,2}K^-) + BR(B^+ \rightarrow D_{1,2}K^+)}
\]

\[
= \frac{2r_B \cos \delta \sin \phi_3}{1 + r_B^2 + 2r_B \cos \delta' \cos \phi_3},
\]

where \(\delta' = \delta_B (\delta_B + \pi) \) for \(D_1 \) (\(D_2 \)), and \(\delta_B \) is the strong phase difference. Using a data sample of \(275 \times 10^6 \) \(B\bar{B} \) pairs, we obtain \(A_1 = 0.06 \pm 0.14 \text{(stat)} \pm 0.05 \text{(syst)} \) and \(A_2 = -0.12 \pm 0.14 \text{(stat)} \pm 0.05 \text{(syst)} \) [14]. These measurements can be used to constrain \(\phi_3 \) through a global fit [15].

Atwood, Dunietz and Soni (ADS) [16] pointed out that \(CP \) violation effects are enhanced if the final state is chosen such that the interfering amplitudes are comparable. In the decay of \(B^- \rightarrow D(\rightarrow K^+\pi^-)K^- \), two decay transitions are involved: the color-allowed \(B \) decay followed by the doubly Cabibbo-suppressed \(D \) decay and color-suppressed \(B \) decay followed by the Cabibbo-allowed \(D \) decay. The interference term between the two amplitudes is sensitive to \(\phi_3 \). We calculate a ratio of branching fractions

\[
R_{DK} = \frac{BR(B^- \rightarrow D(\rightarrow K^+\pi^-)K^-)}{BR(B^- \rightarrow D(\rightarrow K^-\pi^-)K^-)} = r_B^2 + r_D^2 + r_Br_D \cos \phi_3 \cos \delta,
\]

where \(r_B = |A(D^0 \rightarrow K^+\pi^-)/A(D^0 \rightarrow K^-\pi^+)| = 0.060 \pm 0.003 \), \(\delta = \delta_B + \delta_D \), and \(\delta_D \) is the strong phase difference between the two \(D \) decay amplitudes. With a data sample of \(386 \times 10^6 \) \(B\bar{B} \) pairs no significant signal for \(B^- \rightarrow D(\rightarrow K^+\pi^-)K^- \) is found; we measure \(R_{DK} = (0.0^{+8.4}_{-7.9} \pm 1.0) \times 10^{-3} \), where the first (second) error is statistical (systematic), and we set a limit \(r_B < 0.18 \) at the 90% confidence level [17].

One of the promising modes for the extraction of \(\phi_3 \) is the three body states such as \(D^0 \) and \(\bar{D}^0 \) to \(K_S^0\pi^+\pi^- \). The decays of \(B^- \rightarrow D^0K^- \) and \(\bar{D}^0 \) \(K^- \) have the same final state so that the two amplitudes interfere [18]. Assuming no \(CP \) violation in neutral \(D \) decays, the \(B^+ \) and \(B^- \)
The combination of factorization and SU(3) symmetry assumptions, and lattice QCD calculations. We obtain the partially reconstructed decay amplitudes are

\[M(B^+) = f(m_{B^+}^2, m_{\pi}^2) + r_B e^{i\phi_3 + i\delta} f(m_{B^+}^2, m_{\pi}^2), \]

\[M(B^-) = f(m_{B^-}^2, m_{\pi}^2) + r_B e^{-i\phi_3 + i\delta} f(m_{B^-}^2, m_{\pi}^2), \]

where \(m_{B^+}^2 \) (\(m_{B^-}^2 \)) is the invariant mass of \(K^0 \pi^+ (K^0 \pi^-) \) decay, obtained using a huge number of \(e^+ e^- \rightarrow \overline{c}\bar{c} \) continuum events, \(r_B = |A(B^- \rightarrow D^0 K^-)/A(B^- \rightarrow D^0 K^0)| \), and \(\delta \) is the strong phase difference between them. The value \(r_B \) is given by the ratio \(|V_{ub} V_{cs}/V_{ub} V_{us}| \sim 0.38 \) and the color suppression factor, and is estimated to be in the range 0.1 \(\sim 0.2 \). Fitting the Dalitz plot distributions in the decays of \(B^- \rightarrow D^{(*)} K^{(*)-} \) simultaneously, the parameters \(\phi_3 \), \(r_B \) and \(\delta \) are obtained. From the combination of \(B^- \rightarrow D K^- \), \(B^- \rightarrow D^* K^- \) with \(D^* \rightarrow D \pi^0 \) and \(B^- \rightarrow DK^{*-} \) with \(K^{*-} \rightarrow K^0 \pi^- \) modes, we obtain \(\phi_3 = 53^\circ \pm 15^\circ \) (stat) \(\pm 3^\circ \) (syst) \(\pm 9^\circ \) (model) in a data sample of \(386 \times 10^6 B\overline{B} \) pairs [19].

A theoretically clean technique to extract \(\sin(2\phi_1 + \phi_3) \) is to measure the time-dependent decay rate of \(B^0 \rightarrow D^{(*)+} \pi^\pm \) [20], which can be mediated by both Cabibbo-favored decay (CFD) and doubly-Cabibbo-suppressed decay (DCSD) amplitudes, \(V_{ub}^* V_{ud} \) and \(V_{ub}^* V_{us} \), having a relative weak phase \(\phi_3 \). The mixing-induced CP-violating parameter is \(S^+ = 2(1-L)R \sin(2\phi_1 + \phi_3 \pm \delta)/(1+R^2) \), where \(L = 0 \) (1) for the \(D \pi \) (\(D^* \pi \)) decay, \(R \sim 0.02 \) is the ratio of magnitude of DCSD to CFD, \(\delta \) is their strong phase difference, and \(S^+ \) (\(S^- \)) measures the CP-violating parameter in \(B^0 \) decays into \(D^{(*)+} \pi^- \) (\(D^{(*)-} \pi^+ \)). We find an indication of CP violation in \(B^0 \rightarrow D^- \pi^+ \) and \(B^0 \rightarrow D^\star+ \pi^- \) decays at 2.2\(\sigma \) and 2.5\(\sigma \) levels, using fully reconstructed \(D^{(*)+} \) events and partially reconstructed \(D^\star \) events from a data sample of \(386 \times 10^6 B\overline{B} \) pairs, respectively [21]. To constrain \(\phi_3 \), we need to use the measured branching fractions of \(B \rightarrow D^{(*)+} \pi \), a combination of factorization and SU(3) symmetry assumptions, and lattice QCD calculations. We obtain the lower limit on \(\sin(2\phi_1 + \phi_3) \) of 0.52 (0.44) for \(D \pi \) (\(D^* \pi \)) modes at the 68\% confidence level.

[1] N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963); M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
[2] A. Abashian et al. (Belle Collaboration), Nucl. Instr. and Meth. A 479, 117 (2002); A. Kibayashi, Nucl. Instr. and Meth. A 569, 1 (2006).
[3] S. Kurokawa and E. Kitakami, Nucl. Instr. and Meth. A 499, 1 (2003), and other papers included in this volume.
[4] Throughout this paper, the inclusion of the charge conjugate mode decay is implied unless otherwise stated.
[5] A. B. Carter and A. I. Sanda, Phys. Rev. Lett. 45, 952 (1980); A. B. Carter and A. I. Sanda, Phys. Rev. D 23, 1567 (1981); I. I. Bigi and A. I. Sanda, Nucl. Phys. 193, 85 (1981); M. Gronau, Phys. Rev. Lett. 63, 1451 (1989).
[6] M. Gronau and D. London, Phys. Rev. Lett. 65, 3381 (1990).
[7] H. Ishino et al. (Belle Collaboration), Phys. Rev. Lett. 98, 211801 (2007).
[8] A. Somov, A.J. Schwartz et al. (Belle Collaboration), Phys. Rev. D 76, 011104(R) (2007).
[9] A.E. Snyder and H.R. Quinn, Phys. Rev. D 48, 2139 (1993).
[10] A. Kusaka, C.C. Wang, H. Ishino et al. (Belle Collaboration), Phys. Rev. Lett. 98, 221602 (2007).
[11] M. Gronau and J. Zupan, Phys. Rev. D 73, 057502 (2006).
[12] K. Abe et al. (Belle Collaboration), arXiv:0706.3279v3 [hep-ex]
[13] M. Gronau and D. London, Phys. Lett. B 253, 483 (1991); M. Gronau and D. Wyler, Phys. Lett. B 265, 172 (1991).
[14] K. Abe et al. (Belle Collaboration), Phys. Rev. D 73, 051106(R) (2006).
[15] J. Charles et al. (CKMfitter group), Eur. Phys. J. C 41, 1 (2005); M. Bona et al. (UTfit group), JHEP 0507, 028 (2005).
[16] D. Atwood, I. Dunietz and A. Soni, Phys. Rev. Lett. 78, 3257 (1997); Phys. Rev. D 63, 036005 (2001).
[17] K. Abe et al. (Belle Collaboration), arXiv:hep-ex/0508048.
[18] A. Girz, Y. Grossman, A. Soffer, J. Zupan, Phys. Rev. D 68, 054018 (2003).
[19] A. Poluektov et al. (Belle Collaboration), Phys. Rev. D 73, 112009 (2006).
[20] I. Dunietz and R.G. Sachs, Phys. Rev. D 37, 3186 (1988); 39, 3515(E) (1989); I. Dunietz, Phys. Lett. B 427, 179 (1998).
[21] F.J. Ronga, T.R. Sarangi et al. (Belle Collaboration), Phys. Rev. D 73, 092003 (2006).