Mg-doped and chemo-thermally treated ZnO nanoflowers for ethanol sensing

Santanu Maity (smaity@cegess.iiests.ac.in)
IIEST Shibpur: Indian Institute of Engineering Science and Technology
IIEST Shibpur: Indian Institute of Engineering Science and Technology
https://orcid.org/0000-0001-6220-8163

PP Sahu
Tezpur University

Tiju Thomas
IIT Madras: Indian Institute of Technology Madras

Research Article

Keywords: Nanoflower, ethanol gas sensor, Mg doped ZnO, chemo-thermal, surface states

DOI: https://doi.org/10.21203/rs.3.rs-164155/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

ZnO nanostructures are promising for a wide range of applications, including gas sensors. Ethanol sensing using ZnO remains unexplored though. In this paper, we report ethanol-sensing using un-doped ZnO nano flowers and Mg doped ZnO nano flowers. These are grown using a rather simple chemo-thermal process, making this a plausibly scalable technology. To study the structural and morphological properties of undoped ZnO and Mg doped ZnO nanoflowers, Raman spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), x-ray diffraction and Field Emission Scanning Electron Microscopy (FESEM) are carried out. Ethanol sensing properties of undoped ZnO and Mg doped ZnO nanoflower devices are investigated toward different ethanol concentration (concentration range of 1–600 ppm at 100°C–200°C). Our findings show that 15% Mg doped ZnO nano flower is better than ZnO nano flower for ethanol gas-sensing applications.

Introduction:

Zinc oxide (ZnO) has proven to be a rather versatile semiconductor material with several attractive properties such as direct and wide band gap (3.37 eV), non-toxicity and biocompatibility (hence eco-friendliness), and an exciton binding energy of ~60 meV [1-5]. ZnO, in its various morphologies offer different properties. For instance, wires, rods, tubes, nanocages, nanocombs, nanorings, nanosprings, nanobows, nanodiscs, and belts have been developed for a wide range of applications. These applications range is from water treatment [6-7], sensing, diode fabrication [8-9] etc). These nanostructures with improved surface-to-volume ratios and high one-dimensional electron mobility along growth directions, offer prospects for manufacturing advanced compound semiconductor devices [10-18]. Today ZnO is being deployed for applications such as gas sensors, solar cells, photodetectors, and liquid crystal displays [19-21]. Sensing, which is the target application in this study, has been one of the areas wherein ZnO has been found to be impactful [22-24]. However especially ethanol sensing using ZnO based nanostructures remains largely unexplored. It is in the context of this gap, that this work is carried out.

In this paper Mg doped and chemo-thermally treated zinc oxide (ZnO) nanoflowers are grown for ethanol sensing. Evaluation of the sample is carried out using techniques such as Raman spectroscopy, Fourier Transform Infrared Spectra (FTIR), x-ray diffraction, and scanning electron microscopy (SEM). It is also observed that ethanol sensing performance improves with increase of Mg doping percentage from 5% to 15%.

Fabrication Methods:

A p-type 2 inch diameter silicon wafer is treated through SC (standard cleaning)-I and SC-II to remove organic, ionic contaminants and thin oxide layer. Thin ZnO film (60nm) is deposited using a dielectric sputtering system with 100mm diameter and ~5mm thicker sputtering target. Radio-frequency for the sputtering is 13.56 MHz with 1.5 x 10^6 Torr vacuum, 99.9% pure Argon atmosphere and ~179W of RF
power. The deposition of ZnMgO using two different doping concentrations of 5% and 15% (using two different targets) is carried out using the same deposition technique. The RF power at the time of ZnMgO deposition is varied from 60W to 200 W. The oxygen and argon percentage are changed at the time of deposition to get better quality of film.

The deposition of gold (Au- 50 nm) and aluminium (Al-60nm) is carried out using a 4 target E-beam evaporator system. The photolithography step is carried out to form the contact and electrode using a double side aligner (DSA) with SPR 700-1.8 photo resist, 500rpm-3000rpm-500rpm rotational speed, and MF319 developer.

Growth of ZnO/ZnMgO nanoflower, on the sputter deposited ZnMgO film is carried out through chemo thermal method. This is done using a glass beaker, which contains a substrate holder. This holder is used to fix the patterned substrate, and a magnetic starrer is used during the entire chemo-thermal process. Zinc acetate di-hydrate (Zn(O$_2$CCH$_3$)$_2$(H$_2$O)$_2$) and Hexamethamine (C$_6$H$_{12}$O$_4$) at molar ratio 15:10 is mixed in de ionized water (DI-water). The experiment is carried out for 4hr to 6hr at a constant temperature of 85 °C. Figure 1 represents the scanning electron microscopic image of ZnO/ZnMgO nano flower.

Result Analysis:

To confirm the formation of flower shaped nanostructures of ZnO, scanning electron micrography (SEM) is performed (Figure 1). It is clear that the ZnO/ZnMgO nano flower with 15:10 mM solution concentration and 4.50 hrs reaction time shows uniform nano structure formation on the sputter-deposited film (15% doped Mg:ZnO sample) (Figure 1(a)). Interestingly as doping concentration decreases, the uniformity of nano rods reduces (shown in Figure 1(b)). Also for the undoped sample, the uniformity and crystallinity is less than that of the sample with 5% and 15% Mg doped ZnO. This is evident from Figure 1(c), x-ray diffraction (XRD) and photo luminescence (PL) measurements. The crystallinity of all the samples is confirmed through x-ray diffraction (XRD) measurement.

Figure 2 shows the normalized XRD spectra of pure ZnO and Mg-doped ZnO nano flower at 5%, 15% doped and un-doped samples respectively. Figure 2 shows the High Resolution x-ray Diffraction (HRXRD) images of (a) pure ZnO (b) 15 mol% Mg-doped ZnO, (c) 5 mol% Mg-doped ZnO nano flower structures. The XRD pattern exhibit three major diffraction peaks which are assigned to (100), (002), and (101), respectively. These are consistent with the hexagonal wurtzite structure (JCPDS card No. 01-079-2205). It is observed from the XRD pattern that the position of XRD peaks shifted towards higher angle which indicates some lattice doping of the Mg atoms. With increasing Mg doping concentrations, shifts towards larger angles are observed; this is due to the smaller ionic radius of Mg$^{2+}$ compared to Zn$^{2+}$ [25-27].

In order to investigate the vibrational properties of the un-doped and 15% Mg doped ZnO nano flower structures, Raman spectroscopic analysis is carried out with the 514nm excitation wavelength. Figure 3 represents a Raman spectroscopic analysis of un-doped and 15% Mg doped sample. Raman peak shifts
occur for three reasons; first due to phonon confinement effects, second due to lattice strain, and third due to oxygen vacancies. The 15% Mg doped ZnO nano flower shows the shift of the signals, when compared to the un-doped ZnO (which shows a rather weak Raman peak intensity). Also the Raman peak is broadened for the Mg doped ZnO. The peak at 587 cm\(^{-1}\) is shows maximum shift (assigned to the E\(_1\) (LO) mode) due to the formation of defects like oxygen vacancies.

Also to confirm the Mg doped in ZnO sample the Fourier Transform Infrared Spectra (FTIR) is carried out (as shown in Figure 4). FTIR data for ZnO and 15% Mg doped ZnO sample is recorded in the wavelength region 4000–300 cm\(^{-1}\). The band stretches at ~480 cm\(^{-1}\). This is due to the Zn–O stretching mode in the ZnO lattice; the band at 1684 cm\(^{-1}\) is due to the first overtone of the crucial stretching mode of O-H. The band stretches at ~3316 cm\(^{-1}\) due to Mg-O stretching mode. A wide absorption band in the region of 3316 cm\(^{-1}\) is due to the stretching vibration mode of a hydroxyl group.

Figure 5 shows the response of un-doped ZnO at 180 °C, and 15% Mg doped ZnO at 150 °C. Ethanol is introduced in various concentrations. Sensing is carried out on ethanol gas molecules based on adsorption and desorption. It is clearly visible that the linear increase in the response is due to availability of active surface sites for the adsorption of ethanol molecules. In this case, the surface doping of Mg into the ZnO is most likely responsible for the enhanced sensing performance. Interestingly Mg doped ZnO also has enhanced recovery characteristics when compared with un-doped ZnO based samples (as shown in Figure 6). This indicates that the Mg doped system (likely containing MgO on the surface), in fact has rather shallow defect states.

It is evident that sensing response gets better with increasing temperatures. Figure 6 (b) shows that 15% Mg doped ZnO senses better than un-doped ZnO at low temperature (140 °C). This is because of mainly two reasons. First, ZnO has larger (apparent) defect density when compared to ZnMgO. Furthermore, ZnMgO-ZnO results in p-n junction (heterojunction) diode and the built-in potential reduces the recombination at the defect states. Also, it is seen from Figure 6(b) that at low gas concentration, 15% Mg doped ZnO shows better performance than un-doped ZnO.

Conclusion:

To conclude, ZnO nano flowers are grown on sputter-deposited Mg doped ZnO. This material is found to be promising for ethanol sensing. Presence of Mg indeed improves the sensing performance. It is seen that 15% Mg doped ZnO shows faster sensing response than the rest.

References

1. J. Pearton, D. P. Norton, and K. Ip; Recent progress in processing and properties of ZnO; Prog. Mater. Sci. 50, 293 (2005).
2. Rai, Y.S. Kim, H.M. Song, M.K. Song, Y.T. Yu, The role of gold catalyst on the sensing behavior of ZnO nanorods for CO and NO\(_2\) gases, Sens. Actuators B B165(2012) 133–142.
3. Ran Yoo, Andreas T. Güntner, Yunji Park, Hyun Jun Rim, Hyun-Sook Lee, Wooyoung Lee, Sensing of acetone by Al-doped ZnO, Sensors and Actuators B: Chemical, Volume 283, 15 March 2019, Pages 107-115

4. Roman Viter, Maryna Savchuk, Nickolay Starodub, Zigmas Balevicius, Saulius Tumenas, Almira Ramanaviciene, Daniels Jevdokimovs, Donats Erts, Igor Iatsunskyi, Arunas Ramanavicius, Photoluminescence immunosensor based on bovine leukemia virus proteins immobilized on the ZnO nanorods, Sensors and Actuators B: Chemical, 285, 601 - 606, year 2019, doi = https://doi.org/10.1016/j.snb.2019.01.054.

5. Khranovskyy, T. Ekblad, R. Yakimova, and L. Hultman; Surface morphology effects on the light-controlled wettability of ZnO nanostructures; Appl. Surf. Sci. 258, 8146 (2012).

6. Niya Mary Jacob, Praveena Kuruva, Giridhar Madras, and Tiju Thomas, Purifying Water Containing Both Anionic and Cationic Species Using a (Zn, Cu)O, ZnO, and Cobalt Ferrite Based Multiphase Adsorbent System, Ind. Eng. Chem. Res. 2013, 52, 46, 16384–16395

7. Sefiu A. Rasaki, Tiju Thomas, Yang Minghui, Co-precipitation strategy for engineering pH-tolerant and durable ZnO@MgO nanospheres for efficient, room-temperature, chemisorptive removal of Pb(II) from water. Journal of Environmental Chemical Engineering, 7(2).

8. Santanu Maity, Tiju Thomas, Hybrid-Organic-Photodetector Containing Chemically Treated ZnMgO Layer With Promising and Reliable Detectivity, Responsivity and Low Dark Current, 19, 193-200, IEEE Transactions on Device and Materials Reliability, 2019.

9. Santanu Maity, Biswajit Das, Reshmi Maity, Niladri Pratap Maity, Koushik Guha, K. Srinivasa Rao, Improvement of quantum and power conversion efficiency through electron transport layer modification of ZnO/perovskite/PEDOT: PSS based organic heterojunction solar cell, Solar Energy, Volume 185, June 2019, Pages 439-444.

10. R. Niranjan, K.S. Preetam, N. Datta, M. Kaur, A.K. Debnath, D.K. Aswal, S.K. Gupta, Room temperature H2S sensor based on Au modified ZnO nanowires, Sens. Actuators B 186 (2013) 718–726.

11. Gao P X and Wang Z L, Mesoporous Polyhedral Cages and Shells Formed by Textured Self-Assembly of ZnO Nanocrystals, 2003 J. Am. Chem. Soc. 125 11299

12. Wang Z L, Kong X Y and Zuo J M, Induced growth of asymmetric nanocantilever arrays on polar surfaces, 2003 Phys. Rev. Lett. 91 185502

13. Kong X Y, Yong D, Yang R and Wang Z L, Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts, 2004 Science 303 1348

14. Kong X Y and Wang Z L 2003, Spontaneous Polarization-Induced Nanohelixes, Nanosprings, and Nanorings of Piezoelectric Nanobelts, Nano Lett. 3 1625

15. Gao P X, Ding Y, Mai W, Hughes W L, Lao C S and Wang Z L, Conversion of zinc oxide nanobelts into superlattice-structured nanohelices, 2005 Science 309 1700

16. Hughes WL and Wang Z L Formation of Piezoelectric Single-Crystal Nanorings and Nanobows, 2004 J. Am. Chem. Soc. 126, 6703
17. Gao P X, Lao C S, Yong D and Wang Z L, Metal/semiconductor core/shell nanodisks and nanotubes, 2006 Adv. Funct. Mater. 16 53
18. Li F, Ding Y, Gao P, Xin X and Wang Z L 2004, Single-crystal hexagonal disks and rings of ZnO: low-temperature, large-scale synthesis and growth mechanism, Angew. Chem. 116 5350.
19. S. Hwang, S.J. Kim, J.K. Choi, J. Choi, H. Ji, G.T. Kim, G. Cao, J.H. Lee, Synthesis and gas sensing characteristics of highly crystalline ZnO–SnO2 core–shell nanowires, Sens. Actuators B 148 (2010) 595–600.
20. Lucas Gonçalves Dias Mendonça NIM, Torikai Delson, Ibrahim Ricardo Cury, Simoes Eliphas Wagner. ABCM Symp Ser Mechatron 2008;3:580.
21. Ito S, Murakami TN, Comte P, Liska P, Grätzel C, Nazeeruddin MK, et al. Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%, Thin Solid Films 2008;516:4613.
22. Hsu K, Hsiao C, Lee Y, Chen, Liu D, Origin of the Electroluminescence from Annealed-ZnO/GaN Heterojunction Light-Emitting Diodes, Materials 2015, 8(11), 7745-7756; https://doi.org/10.3390/ma8115417.
23. Van Han, N.D. Hoa, P. Van Tong, H. Nguyen, and N. Van Hieu, Single-crystal zinc oxide nanorods with nanovoids as highly sensitive NO2 nanosensors, Mater. Lett. 94, 41 (2013).
24. Liu, Z. Guo, F. Meng, Y. Jia, T. Luo, M. Li, and J. Liu, Novel Single-Crystalline Hierarchical Structured ZnO Nanorods Fabricated via a Wet-Chemical Route: Combined High Gas Sensing Performance with Enhanced Optical Properties, Cryst. Growth Des. 9, 1716 (2009).
25. Lin, S.-J. Chang, W.-S. Chen, and T.-J. Hsueh, Novel Single-Crystalline Hierarchical Structured ZnO Nanorods Fabricated via a Wet-Chemical Route: Combined High Gas Sensing Performance with Enhanced Optical Properties, RSC Adv. 6, 11146 (2016)
26. Sengupta, A. Ahmed, and R. Labar; Structural and optical properties of post annealed Mg doped ZnO thin films deposited by the sol–gel method; Mater. Lett. 109, 265 (2013).
27. Ji, Y. Song, Y. Xiang, K. Liu, C. Wang, and Z. Ye; Characterization of MgxZn1-xO thin films prepared by sol–gel dip coating; J. Cryst. Growth 265, 537 (2004).
28. Hartini Ahmad Rafaie1, Roslan Md. Nor, and Yusoff Mohd Amin, Magnesium doped ZnO nanostructures synthesis using citrus aurantifolia extracts: Structural and field electron emission properties, Mater. Express, Vol. 5, No. 3, 2015, doi:10.1166/mex.2015.1227
29. F. Lin, H. M. Cheng, H. C. Hsu and W. F. Hsieh, Band gap engineering and spatial confinement of optical phonon in ZnO quantum dots, Appl. Phys. Lett., 2006, 88, 263117–263120.
30. Tiwari, M. Park, C. Jin, H. Wang, D. Kumar and J. Narayan, J. Mater. Res., 2002, 17, 2480–2487.
31. Jiang, J. J. Zhou, H. F. Fang, C. Y. Wang, Z. L. Wang and S. S. Xie, Hierarchical Shelled ZnO Structures Made of Bunched Nanowire Arrays, Adv. Funct. Mater., 2007, 17, 1303–1310.
32. Umar, S. H. Kim, Y. S. Lee, K. S. Nahm and Y. B. Hahn, J. Cryst. Growth, 2005, 282, 131–136.
33. Bhaskar, P. S. Dobal, B. K. Rai, R. S. Katiyar, H. D. Bist, J. O. Ndap and A. Burger, Photoluminescence study of deep levels in Cr-doped ZnSe, J. Appl. Phys., 1999, 85, 439.

34. G. Yu, C. Li and S. G. Liu, Effect of PSS on morphology and optical properties of ZnO, J. Colloid Interface Sci., 2008, 326, 433;

35. G. Yu, Y. R. Su and B. Cheng, Template-free fabrication and enhanced photocatalytic activity of hierarchical macro- /mesoporous titania, Adv. Funct. Mater., 2007, 17, 1984;

36. G. Yu, L. Yue, S. G. Liu, B. B. Huang and X. Y. Zhang, Hydrothermal preparation and photocatalytic activity of mesoporous Au–TiO$_2$ nanocomposite microspheres, J. Colloid Interface Sci., 2009, 334, 58.