Supplementary Information

Targefrin: a potent agent targeting the ligand binding domain of EphA2

Carlo Baggio1,2, Parima Udompholkul1,2, Luca Gambini1, and Maurizio Pellecchia1,*

1Division of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, CA 92521, USA.

2These authors contributed equally to this work.

*Corresponding author: Maurizio Pellecchia, Ph.D. email: Maurizio.Pellecchia@ucr.edu

Table of Contents.

- Supplementary Table S1 reports mass spectroscopy data of investigated compounds. Page S3
- Supplementary Table S2 reports tested agents with 4-phenyl-L-phenylalanine fixed in position 4 and relative K_d values (nM) from ITC. Page S5
- Supplementary Table S3 reports tested agents with 4-(2-Methylphenyl)-L-phenylalanine fixed in position 4 and relative K_d values (nM) from ITC. Page S6
- Supplementary Figure S1 reports the synthetic scheme used to prepare monomeric peptides. Page S7
- Supplementary Figure S2 reports the synthetic scheme used to prepare dimeric peptides. Page S8
- Supplementary Figure S3 reports the synthetic scheme used to prepare targefrin-motif. Page S9
- Supplementary Figure S4 reports the synthetic scheme used to prepare targefrin-dimer-motif. Page S10
- Supplementary Figure S5 reports the synthetic scheme used to prepare targefrin-PTX. Page S11
- Supplementary Figure S6 reports the synthetic scheme used to prepare targefrin-dimer-PTX. Page S12
- Supplementary Figure S7 reports the synthetic scheme used to prepare targefrin-dimer-TAMRA. Page S13
- Supplementary Figure S8 reports HPLC traces of keys compounds. Page S14
- Supplementary Figure S9 reports pharmacokinetics studies. Page S16
- Supplementary Figure S10 reports uncropped western blots that generated the data in Figures 4, 5 and 8. Page S17
- Supplementary Figure S11 reports cell migration assay of BxPC3 at 12 h (relative to Figure 9). Page S20
• Supplementary Figure S12 reports cell viability assay of MIA PaCa-2 treated with targefrin or ephrinA1-Fc. Page S21
• Supplementary Figure S13 reports chemistry analysis for mice treated with targefrin-dimer. Page S22
• Supplementary Figure S14 reports repeated doses toxicity studies with targefrin-dimer-PTX versus PTX alone. Page S23
Table S1. Mass-spectrometry data of investigated compounds. All the compounds were analyzed using an Agilent 6545 QTOF LC/MS instrument.

ID	Sequence	Calcd [M]	Obs. [M+H]^+ (m/z)
147B4 2	H$_2$N-YSA-Bip-PDSVPFRP-COH$_2$	1456.7080	1457.7160
152B6 3	H$_2$N-YSA-(Thyronine)-PDSVPFRP-COH$_2$	1488.7038	1489.7111
152A5 4	H$_2$N-YSA-(2-MeO-Bip)-PDSVPFRP-COH$_2$	1486.7245	1487.7335
152A11 5	H$_2$N-YSA-(4-Cl-Bip)-PDSVPFRP-COH$_2$	1490.6750	1491.6783
152A12 6	H$_2$N-YSA-(2,6DiMeO-Bip)-PDSVPFRP-COH$_2$	1516.7351	1517.7389
152B1 7	H$_2$N-YSA-(4-Me-Bip)-PDSVPFRP-COH$_2$	1470.7296	1471.7347
152B2 8	H$_2$N-YSA-(2-Me-Bip)-PDSVPFRP-COH$_2$	1470.7296	1471.7366
152C11 9	H$_2$N-YSA-(2-CF$_3$-Bip)-PDSVPFRP-COH$_2$	1524.7013	1525.7113
152D1 10	H$_2$N-YSA-(2Me-4MeO-Bip)-PDSVPFRP-COH$_2$	1500.7402	1501.7491
152A1 11	MorphAcAcid-YSA-Bip-PDSVPFRP-COH$_2$	1583.7773	1584.7852
152A9 12	PiperazineAcAcid-YSA-Bip-PDSVPFRP-COH$_2$	1582.7932	1583.7960
152A7 13	H$_2$N-WSA-Bip-PDSVPFRP-COH$_2$	1479.7299	1480.7402
152A4 14	H$_2$N-(5-OH-Trp)SA-Bip-PDSVPFRP-COH$_2$	1495.7248	1496.7326
152C7 15	H$_2$N1Nal-SA-Bip-PDSVPFRP-COH$_2$	1490.7347	1491.7431
152C8 16	H$_2$N-2Nal-SA-Bip-PDSVPFRP-COH$_2$	1490.7347	1491.7432
152C9 17	H$_2$N-(Me-Tyr)-SA-Bip-PDSVPFRP-COH$_2$	1470.7296	1471.7389
152C10 18	H$_2$N-(2-NO$_2$-Phe)SA-Bip-PDSVPFRP-COH$_2$	1485.7041	1486.7136
152D5 19	H$_2$N-(2-NH$_2$-Phe)-SA-Bip-PDSVPFRP-COH$_2$	1455.7299	1456.7380
152D12 20	H$_2$N-(pyridyl-Ala)-SA-Bip-PDSVPFRP-COH$_2$	1441.7143	1442.7207
152C5 21	H$_2$N-Y-L-A-Bip-PDSVPFRP-COH$_2$	1482.7660	1483.7757
152D8 22	H$_2$N-Y-T-A-Bip-PDSVPFRP-COH$_2$	1470.7296	1471.7438
152A8 23	H$_2$N-YSA-Bip-PDS-Chg-PFRP-COH$_2$	1496.7452	1497.7493
152D6 24	PiperazAcAcid-(2Nal)-L-A-(2-CF$_3$-Bip)-PDS-Chg-P-(4Cl-Phe)-RP-COH$_2$	1784.8457	1785.8530
152D11 25	PiperazAcAcid-(2NH$_3$-Phe)-SA-(2-CF$_3$-Bip)-PDS-Chg-PFRP-COH$_2$	1689.8279	1690.8374
152E1 26	PiperazAcAcid-(2NH$_2$-Phe)-L-A-(2-CF$_3$-Bip)-PDS-Chg-PFRP-COH$_2$	1715.8800	(z = 3) 573.3014
			(z = 2) 858.9478
Targefrin (152E2) 27	PiperazAcAcid-(2NH$_2$-Phe)-L-A-(2-CF$_3$-Bip)-PD-A-Chg-PFRP-COH$_2$	1699.8850	(z = 3) 567.9696
			(z = 2) 851.4519
Targefrin-dimer 152E3 28	[PiperazAcAcid-(2-NH$_2$-Phe)-L-A-(2-CF$_3$-Bip)-PD-A-Chg-PFRP]$_2$-K-COH$_2$	3625.8848	(z = 5) 726.3855
			(z = 4) 907.7288
			(z = 3) 1209.9690
152E5 29	[PiperazAcAcid-(2-NH$_2$-Phe)-L-A-(2-CF$_3$-Bip)-PD-A-Chg-PFRP-(β-Ala)]$_2$-K-COH$_2$	3653.9161	(z = 5) 731.9890
			(z = 4) 914.7353
			(z = 3)
152E6 30	[PiperazAcAcid-(2-NH₂-Phe)-L-A-(2-CF₃-Bip)-PD-A-Chg-PFRP-(GABA)]₂-K-CONH₂	3681.9474	
---------------------------	--	------------	
	(z = 5) 737.5954 (z = 4) 921.7432 (z = 3) 1228.6543		
Targetfrin- PTX 152F1	[PiperazAcAcid-(2-NH₂-Phe)-L-A-(2-CF₃-Bip)-PD-A-Chg-PFRP-G- (Linker)-PTX	2972.4522	
	(z = 4) 744.1197 (z = 3) 991.8244 (z = 2) 1487.2337		
Targetfrin- dimer- PTX 152E4	[PiperazAcAcid-(2-NH₂-Phe)-L-A-(2-CF₃-Bip)-PD-A-Chg-PFRP]₂-KGK-(Linker)-PTX	4898.4519	
	(z = 6) 817.5799 (z = 5) 980.8969 (z = 4) 1225.6179 (z = 3) 1633.8200		
Targetfrin- dimer- TAMRA 152E7	[PiperazAcAcid-(2-NH₂-Phe)-L-A-(2-CF₃-Bip)-PD-A-Chg-PFRP]₂-KGK-(Linker)-TAMRA	4461.3179	
	(z = 7) 638.3418 (z = 6) 744.3911 (z = 5) 893.0693 (z = 4) 1116.0822		
152B8 31	PiperazineAcAcid-YSA-Bip-PDS-Chg-PFRP-CONH₂	1622.8245	
	1623.8279		
152D7 32	PiperazAcAcid-YSA-(Bip)-PDS-Chg-P-(4Cl-Phe)-RP-CONH₂	1656.7856	
	1657.7900		
152D9 33	PiperazAcAcid-Y-L-A-(Bip)-PDS-Chg-PFRP-CONH₂	1648.8766	
	1649.8886		
152D10 34	PiperazAcAcid-(2Nal)-SA-(Bip)-PDS-Chg-PFRP-CONH₂	1656.8453	
	1657.8520		
152B12 35	PiperazineAcAcid-YSA-(2Me-Bip)-PDS-Chg-PFRP-CONH₂	1636.8402	
	1637.8480		
152C12 36	PiperazAcAcid-(2Nal)-L-A-(2Me-Bip)-PDS-Chg-P-(4Cl-Phe)-RP-CONH₂	1730.8740	
	(z = 2) 866.9478		
152D2 37	PiperazAcAcid-Y-L-A-(2Me-Bip)-PDS-Chg-P-(4Cl-Phe)-RP-CONH₂	1696.8533	
	1697.8605		
Table S2. Tested agents with 4-phenyl-L-phenylalanine fixed in position 4 and relative K\textsubscript{d} values (nM) from ITC.

ID	R\textsubscript{1}	R\textsubscript{2}	R\textsubscript{3}	R\textsubscript{4}	R\textsubscript{5}	Kd (nM) - ITC
152B8 (31)	![Structure](image)	![Structure](image)	![Structure](image)	![Structure](image)	H	54
152D7 (32)	![Structure](image)	![Structure](image)	![Structure](image)	![Structure](image)	Cl	68
152D9 (33)	![Structure](image)	![Structure](image)	![Structure](image)	![Structure](image)	H	39
152D10 (34)	![Structure](image)	![Structure](image)	![Structure](image)	![Structure](image)	H	74
Table S3. Tested agents with 4-(2-Methylphenyl)-L-phenylalanine fixed in position 4 and relative K_d values (nM) from ITC.

ID	R_1	R_2	R_3	R_4	R_5	K_d (nM) - ITC	IC50 (nM)
152B12 (35)	![Structure](structure_152B12.png)	![Structure](structure_152B12.png)	![Structure](structure_152B12.png)	![Structure](structure_152B12.png)	H	8.6	22.7
152C12 (36)	![Structure](structure_152C12.png)	![Structure](structure_152C12.png)	![Structure](structure_152C12.png)	![Structure](structure_152C12.png)	Cl	---	30.8
152D2 (37)	![Structure](structure_152D2.png)	![Structure](structure_152D2.png)	![Structure](structure_152D2.png)	![Structure](structure_152D2.png)	Cl	49	16.5
Figure S1. Synthetic scheme for the synthesis of Targefrin. Conditions: (a) Rink Amide resin + 3 equiv. of Fmoc-Pro-OH, 3 equiv. of DIC, 1 equiv. of OximaPure, in 4.5 mL of DMF. Reaction for 5 min at 90°C in the microwaved-assisted Liberty Blue peptide synthesizer. (b) Fmoc deprotection with 20% N-methylpiperidine in DMF twice for 3 min at 90°C in the microwaved-assisted Liberty Blue peptide synthesizer; (c) Peptides growth using previous conditions on Liberty Blue system; (d) TFA/TIS/water/phenol (94:2:2:2), 5 h, rt.
Figure S2. Synthetic scheme for the synthesis of Targefrin-dimer. Conditions: (a) Rink Amide resin + 3 equiv. of Fmoc-Lys(Fmoc)-OH, 3 equiv. of DIC, 1 equiv. of OximaPure, in 4.5 mL of DMF. Reaction for 5 min at 90°C in the microwaved-assisted Liberty Blue peptide synthesizer; (b) Fmoc deprotection with 20% N-methylpiperidine in DMF twice for 3 min at 90°C in the microwaved-assisted Liberty Blue peptide synthesizer; (c) Peptides growth using previous conditions but using double equivalents for dimer growth: 6 equiv. of Fmoc-Amino Acid, 6 equiv. of DIC, 2 equiv. of OximaPure, in 4.5 mL of DMF. Reaction for 5 min at 90°C in the microwaved-assisted Liberty Blue peptide synthesizer; (d) TFA/TIS/water/phenol (94:2:2:2), 5 h, rt.
Figure S3. Synthetic scheme for the synthesis of compound Targetrin-motif. Conditions: (a) Rink Amide resin + 3 equiv. of Fmoc-Lys(ivDde)-OH, 3 equiv. of HATU, 3 equiv. of OximaPure, and 5 equiv. of DIPEA in 1 mL of DMF, 1 h, rt; (b) Fmoc deprotection with 20% piperidine in DMF twice; (c) 3 equiv. of Fmoc-Gly-OH, 3 equiv. of HATU, 3 equiv. of OximaPure, and 5 equiv. of DIPEA in 1 mL of DMF, 1 h, rt; (d) Peptides growth using previous conditions or LibertyBlue; (e) ivDde deprotection using 4% N$_2$H$_2$ in DMF (3 × 5 mL), rt; (f) 3 equiv. of 5-Hexynoic acid, 3 equiv. of HATU, 3 equiv. of OximaPure, and 5 equiv of DIPEA in 1 mL of DMF, 1 h, at rt; (g) TFA/TIS/water/phenol (94:2:2:2), 5 h, rt.
Figure S4. Synthetic scheme for the synthesis of compound *Targefrin-dimer-motif*. Conditions: (a) Rink Amide resin + 3 equiv. of Fmoc-Lys(ivDde)-OH, 3 equiv. of HATU, 3 equiv. of OximaPure, and 5 equiv. of DIPEA in 1 mL of DMF, 1 h, rt. (b) Fmoc deprotection with 20% N-methylpiperidine in DMF twice. (c) 3 equiv. of Fmoc-Gly-OH, 3 equiv. of HATU, 3 equiv. of OximaPure, and 5 equiv. of DIPEA in 1 mL of DMF, 1 h, rt. (d) 3 equiv. of Fmoc-Lys(Fmoc)-OH, 3 equiv. of HATU, 3 equiv. of OximaPure, and 5 equiv. of DIPEA in 1 mL of DMF, 1 h, rt. (e) Peptides growth double equivalents for dimer growth: 6 equiv. of Fmoc-Amino Acid, 6 equiv. of DIC, 2 equiv. of OximaPure, in 4.5 mL of DMF. Reaction for 5 min at 90°C in the microwaved-assisted Liberty Blue peptide synthesizer. (f) ivDde deprotection using 4% N2H2 in DMF (3 x 5 mL), rt; (g) 3 equiv. of 5-Hexynoic acid, 3 equiv. of HATU, 3 equiv. of OximaPure, and 5 equiv of DIPEA in 1 mL of DMF, 1 h, at rt; (h) TFA/TIS/water/phenol (94:2:2:2), 5 h, rt.
Figure S5. Synthetic scheme for the synthesis of Targefrin-PTX. Conditions: (a) Targefrin-moif crude, 1 equiv. of PTX-Azide in 4 mL of 4:1 DMSO:water solution. Add 50 uL of CuSO4 1M and 50 uL of Sodium Ascorbate 1M. Mix at rt for 48 h.
Figure S6. Synthetic scheme for the synthesis of Targefrin-dimer-PTX. Conditions: (a) Targefrin-dimer-motif crude, 1 equiv. of PTX-Azide in 4 mL of 4:1 DMSO:water solution. Add 50 uL of CuSO$_4$ 1M and 50 uL of Sodium Ascorbate 1M. Mix at rt for 48 h.
Figure S7. Synthetic scheme for the synthesis of Targefrin-dimer-TAMRA. Conditions: (a) Targefrin-dimer-motif crude, 1 equiv. of 5-TAMRA-Azide in 4 mL of 4:1 DMSO:water solution. Add 50 uL of CuSO4 1M and 50 uL of Sodium Ascorbate 1M. Mix at rt for 48 h.
Figure S8. HPLC traces for tested compounds. Analytical run was accomplished using Atlantis T3 3µm 4.6x150 mm (H₂O/ACN gradient from 20% to 100% in 45 min). All compounds displayed purity > 95%.

Targefrin

![Chromatogram](image1)

Targefrin-dimer

![Chromatogram](image2)
Targefrin-PTX

Targefrin-dimer-PTX
Figure S9. Pharmacokinetics studies. Preliminary pharmacokinetic (PK) studies with Targetrin-dimer. The agent has been injected IV via the tail vein at a concentration of 50 mg/Kg in a formulation of 80% PBS, 10% Tween 80, and 10% Ethanol. Note that this formulation resulted in a clear solution containing 20mg/ml of Targetrin-dimer. $C_{\text{max}} \sim 650 \text{ ng/mL}$ after 2 hours from the injection. Estimated $t_{1/2} \sim 15 \text{ hr}$.

![Graph showing concentration vs time](image-url)
Figure S10. Duplicate experiments reporting uncropped western blots that generated the data in Figures 4, 5 and 8.

Figure 4. Expt 1

Figure 4. Expt 2

Figure 5. BxPC3 Expt 1

Figure 5. BxPC3 Expt 2

Figure 5. PANC-1 Expt 1

Figure 5. PANC-1 Expt 2
Figure S11. Cell migration assay of BxPC3 from Figure 9 at 12 h. A) Cell migration assay of BxPC3 treated with 2 μg/mL ephrinA1-Fc and 10 μM targefrin or the indicated doses of targefrin-dimer. The yellow lines displayed initial scratches made at 0 h while the black lines displayed the location that the cells had migrated to after 12 h. B) Targefrin-dimer significantly inhibited cell migration at 12 h in a dose-dependent manner as shown by decreases in relative wound density. ***p < 0.01, ****p < 0.0001, as determined by a one-way analysis of variance using Dunnett’s post-test analysis.
Figure S12. Cell viability assay of MIA PaCa-2 at 72 h. A) MIA PaCa-2 cells were treated with 1 µg/mL ephrinA1-Fc, different doses of Targefrin or Targefrin-dimer for 72 h. Percent confluence was monitored with the IncuCyte S3 live-cell analysis system and percent cell viability was calculated by normalizing the confluency of the treatments to that of the DMSO control. Percent cell viability was not significantly affected across all the treatments, as determined by a two-way analysis of variance using Bonferroni post-test analysis. B) Time-response curves for the percent confluence of MIA PaCa-2 cells after the indicated treatments.
Figure S13. Blood chemistry analysis for mice treated with Targefrin-dimer. 5 Balb/c mice were treated with Targefrin-dimer 20 mg/mL (80% PBS, 10% Tween 80, 10% Ethanol) to obtain 50 mg/kg doses. After 24 hr mice were sacrificed and full chemistry panel analysis was conducted as listed below.

Analyte Name	Units	Reference Ranges	153E3/ IV #24	153E3/ IV #25	153E3/ IV #26	153E3/ IV #27	153E3/ IV #28	
Albumin	ALB	g/dL	2.5 - 4.8	3.1	3.6	3.7	4.1	3.0
Alkaline Phosphatase	ALP	U/L	62 - 209	95	107	102	105	76
Alanine Transaminase	ALT	U/L	28 - 132	182	88	64	50	244
Amylase	AMY	U/L	1691 - 3615	927	979	938	828	830
Bilirubin, total	TBIL	mg/dL	0.1 - 0.9	0.3	0.3	0.3	0.3	0.3
Blood Urea Nitrogen	BUN	mg/dL	18 - 29	15	14	15	14	21
Calcium	CA	mg/dL	5.9 - 9.4	9.4	9.6	9.9	10.2	9.4
Phosphorus	PHOS	mg/dL	6.1 - 10.1	7.0	7.0	6.3	5.5	9.2
Creatinine	CRE	mg/dL	0.2 - 0.8	0.3	0.2	0.2	0.5	0.3
Glucose	GLU	mg/dL	90 - 192	143	156	168	182	155
Sodium	NA+	mmol/L	126 - 182	158	156	155	159	156
Potassium	K+	mmol/L	4.7 - 6.4	6.5	6.8	7.0	7.1	7.2
Total Protein	TP	g/dL	3.6 - 6.6	5.0	5.2	5.2	5.7	4.9
Globulin, calculated	GLOB	g/dL	N/A	1.8	1.6	1.6	1.7	1.8
Figure S14: Repeated doses toxicity studies with Targefrin-dimer-PTX versus PTX alone. Balc/c mice received equimolar doses of PTX or targefrin-dimer-PTX daily (IV), and body weight were measured daily. FD = found dead. By day 5 all 3 mice in the PTX treated group were found dead. Mice treated with targefrin-dimer-PTX were lethargic after the first doses but recovered. No signs of toxicity were noted in the mice treated with targefrin-dimer.

Mouse ID	Treatment	Body weight (g)				
		Monday	Tuesday	Wednesday	Thursday	Friday
6	Targefrin-Dimer-PTX	26.17	25.33	25.71	25.82	26.28
7	Targefrin-Dimer-PTX	25.63	24.98	25.14	24.21	24.71
8	Targefrin-Dimer-PTX	26.17	25.33	26.08	25.71	25.1
9	PTX	23.77	23.22 (FD)	-----	-----	-----
10	PTX	23.92	23.63 (FD)	-----	-----	-----
11	PTX	23.61	21.82	21.85	21.95	22.11 (FD)
12	Targefrin-dimer	24.48	24.14	23.83	23.21	22.94
13	Targefrin-dimer	22.63	22.25	22.71	22.58	22.11
14	Targefrin-dimer	24.07	23.34	23.55	23.61	23.98