Sustainable carbon capture via halophilic and alkaliphilic cyanobacteria: the role of light and bicarbonate

Wenfan Ye¹, ², Ao Xia¹, ², *, Cheng Chen¹, ², Qiang Liao¹, ², Yun Huang¹, ², Xianqing Zhu¹, ², Xun Zhu¹, ²

¹Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China.
²Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China.

ARTICLE INFO

Article history:
Received 30 May 2020
Received in revised form 14 July 2020
Accepted 23 July 2020
Available online 1 September 2020

Keywords:
Biogas upgrading
Spirulina platensis
Light attenuation
Bicarbonate Fermentation

ABSTRACT

The two-step photosynthetic biogas upgrading process, which combines CO₂ capture by carbonate solution and carbonate regeneration by using aquatic microbial oxygenic photoautotrophs (i.e., cyanobacteria, algae, and diatoms), may provide a potential alternative to the commercial routes used for gaseous biofuel upgrading. Such a process not only provides a green and low energy intensive biogas upgrading pathway but also converts CO₂ in biogas into high value biomass. To improve the upgrading performance, the effects of light intensity and NaHCO₃ concentration on the growth and the HCO₃⁻ transformation characteristics of halophilic and alkaliphilic Spirulina platensis were investigated in this study. Experimental results showed that the light attenuation of S. platensis culture was significant. Increasing light intensity up to 210 μmol m⁻² s⁻¹ effectively improved the S. platensis growth and photosynthetic pigment accumulation. S. platensis could grow in the range of 0.05 to 0.6 M NaHCO₃ and a maximum biomass concentration of 1.46 g L⁻¹ was achieved under an optimal growth condition of 0.1 M NaHCO₃, which was 65.9% higher than at 0.05 M NaHCO₃. Moreover, the bicarbonate utilization efficiency reached 42.0%. Finally, in a case study, a biogas stream at a flow rate of 800 m³ h⁻¹ could generate biomass up to 344 kg h⁻¹, corresponding an energy value of 5591 MJ h⁻¹.

© 2020 BRTeam. All rights reserved.

Please cite this article as: Ye W., Xia A., Chen C., Liao Q., Huang Y., Zhu X., Zhu X. Sustainable carbon capture via halophilic and alkaliphilic cyanobacteria: the role of light and bicarbonate. Biofuel Research Journal 27 (2020) 1195-1204. DOI: 10.18331/BRJ2020.7.3.3
1. Introduction

Biogas production from crop straw, animal manure and other wastes through anaerobic fermentation has significant energy and environmental benefits (Horvath et al., 2016; Xia et al., 2016; Scarlat et al., 2018; Kamissoko et al., 2019). Biogas is mainly composed of 40%-75% CH\(_4\), 15%-50% CO\(_2\), and other components such as O\(_2\) (0-1%), N\(_2\) (0-2%), water vapour (1%-10%), H\(_2\)S (0-10,000 ppm), ammonia (0-100 ppm), siloxanes (0-0.02%), and halogenated hydrocarbons (VOC < 0.6%) (Munoz et al., 2015; Ryczekbosh et al., 2011). High levels of CO\(_2\) reduce the calorific value of biogas, increase the emission of carbon monoxide and hydrocarbons during combustion, and contribute to the greenhouse effect. Biogas can be upgraded by decarbonization to obtain high quality biomethane, which is an important alternative to conventional natural gas.

Conventional physical/chemical technologies for biogas upgrading such as water, organic solvent and chemical scrubbing, pressure swing adsorption, membrane separation, and cryogenic separation are currently available commercially, but these technologies have high requirements for operation conditions, complex equipment structure, and high energy consumption, which limit their economic and environmental sustainability for biogas upgrading (Khan et al., 2017). Energy requirements of these technologies range between 0.12 to 0.77 kWh m\(^{-3}\) of upgraded biogas (consuming 3%-6% of the energy of the produced biogas), while the capital investment costs are 0.10-0.40 € m\(^{-3}\) of biogas (Patterson et al., 2011; Xia et al., 2015; Gotz et al., 2016).

Alternatively, photosynthetic biogas upgrading can utilize aquatic microbial oxygenic photoautotrophs (AMOPs) to fix CO\(_2\) while obtaining microbial biomass that can be used for further production of high added products (Dismukes et al., 2008; Mata et al., 2010; Kumar et al., 2015; Gotz et al., 2016). One of the major bottlenecks of direct biogas upgrading by using AMOPs is the release of photosynthetic oxygen, which leads to contamination of biomethane and a potential explosive hazard (Posadas et al., 2015; Franco-Morgado et al., 2018). In contrast, two-step photosynthetic biogas upgrading separates the two processes of AMOPs cultivation and biogas upgrading and is considered as an effective solution to reduce the oxygen content in upgraded gaseous biofuel (Toledo-Cervantes et al., 2017).

As shown in Figure 1, in the first step, the carbon dioxide content of biogas can be efficiently captured by carbonate solution forming bicarbonate. In the second step, bicarbonate is used as a carbon source for AMOPs cultivation. AMOPs can absorb and utilize bicarbonate through carbon concentration mechanism and produce organic carbon through photosynthesis. During their growth and metabolism, the pH of the medium increases gradually, leading to carbonate regeneration and realizing the carbonate/bicarbonate cycle (Xia et al., 2015).

To improve the efficiency of the photosynthetic biogas upgrading, improving AMOPs growth and the carbonate regeneration rate are very important. A number of studies have reported AMOPs cultivation using concentrated CO\(_2\) at various concentrations. However, very few studies

Abbreviations

AMOPs	Aquatic microbial oxygenic photoautotrophs
APC	Allophycocyanin
C	Carbon content of cyanobacteria biomass (%)
CaCl\(_2\)	Calcium chloride
CaO	Cyanobacteria biomass concentration
CH\(_4\)	Methane
Chl-a	Chlorophyll-a
Co(NO\(_3\))\(_2\)	Cobalt(II) nitrate
CO\(_2\)	Carbon dioxide
CO\(_2\)-	Carbonate
CuSO\(_4\)	Copper(II) sulphate
DCW	Biomass concentration (g L\(^{-1}\))
FeSO\(_4\)	Iron(II) sulphate
H\(_2\)O	Water
H\(_2\)BO\(_3\)	Boric acid
HCO\(_3\)-	Bicarbonate
\(k_0\)	The total extinction coefficient, including the extinction coefficient \(k_e\) caused by the liquid medium and the extinction coefficient \(k_c\) caused by the cyanobacteria biomass
\(k_c\)	Potassium sulphate
\(l\)	The distance the light penetrates through cyanobacteria suspension
\(M_t\)	Dry biomass(g)
MgSO\(_4\)	Magnesium sulphate
MnCl\(_2\)	Manganese(II) chloride
Na\(_2\)CO\(_3\)	Sodium carbonate
Na\(_2\)MoO\(_4\)	Sodium molybdate
NaCl	Sodium chloride
NaHCO\(_3\)	Sodium bicarbonate
NaNO\(_3\)	Sodium nitrate
NO\(_3\)-	Nitrate
PC	Phycocyanin
TIC	Input total inorganic carbon (g L\(^{-1}\))
\(V_r\)	Solvent volume (L)
\(Y_{PC}\)	The content of phycocyanin (%)
ZnSO\(_4\)	Zinc sulphate
have focused on the impacts of environmental parameters on carbon utilization and AMOPs growth during the two-step photosynthetic biogas upgrading process. Unlike AMOPs grown in a CO2 environment, only bicarbonate is employed as carbon source in these systems. Moreover, gas spargers may not be required in such AMOPs systems, thereby leading to different growth and carbon fixation behaviours for AMOPs.

The cyanobacteria (also known as blue green microalgae) *Spirulina platensis* is tolerant to high alkalinity and high salinity conditions and is considered as a candidate for photosynthetic biogas upgrading (Xia et al., 2015). The effect of light transmission on microalgae growth is a primary point of concern (Carvalho et al., 2011; Cheng et al., 2013). Sun et al. (2018b) found that light attenuation reduced the light utilization efficiency of *Chlorella vulgaris*. It should be noted that filamentous *S. platensis* has completely different light absorption and scattering characteristics from spherical *C. vulgaris*. Nevertheless, there is also a lack of relevant research.

The innovation of this study is that it comprehensively investigates the effect of environmental parameters on the growth and bicarbonate transformation characteristics in the suspension of cyanobacteria cells (Zhang et al., 2015), where light represents the cyanobacteria biomass, as shown in Equation 1.

$$I = I_0 \cdot \exp(-k_b I)$$

where *I* represents the output light intensity, *I₀* denotes the incident light intensity, and *I* refers to the distance the light penetrates through cyanobacteria suspension. *k₀* is the total extinction coefficient, including the extinction coefficient *kₛ* caused by the liquid medium and the extinction coefficient *kₐ* caused by the cyanobacteria biomass, as shown in Equation 2.

$$k_0 = k_s C_b + k_w$$

where *Cₜ* represents the cyanobacteria biomass concentration.

2. Materials and Methods

2.1. Cyanobacterium strain and culture

The haloalkaliphilic cyanobacterium strain *S. platensis* FACHB-439 was purchased from the Freshwater Algae Culture Collection of Hydrobiology, Chinese Academy of Science (China). The cyanobacterium was grown on the Schlösser (1982) medium: 13.61 g L⁻¹ NaHCO₃, 4.03 g L⁻¹ Na₂CO₃, 2.50 g L⁻¹ NaNO₃, 0.50 g L⁻¹ K₂HPO₄, 1.00 g L⁻¹ K₂SO₄, 1.00 g L⁻¹ NaCl, 0.20 g L⁻¹ MgSO₄·7H₂O, 0.04 g L⁻¹ CaCl₂·2H₂O, 0.01 g L⁻¹ FeSO₄·7H₂O, 2.86 mg L⁻¹ H₃BO₃, 1.86 mg L⁻¹ MnCl₂·4H₂O, 0.22 mg L⁻¹ ZnSO₄·7H₂O, 0.39 mg L⁻¹ Na₂MoO₄·2H₂O, 0.08 mg L⁻¹ CuSO₄·5H₂O, and 0.05 mg L⁻¹ Co(NO₃)₂·6H₂O. Culturing was conducted with a polymethyl methacrylate column photobioreactor (120 mm outer diameter, 3 mm thick, and 200 mm high), containing 1500 mL of the medium with the operational conditions of shaking at 300 rpm and temperature at 33 °C. All cultivation experiments were conducted with an identical inoculated initial OD₅₇₀ value of 0.27.

2.2. Light attenuation characteristics of cyanobacteria

The Lambert Beer’s law was used to describe the light attenuation characteristics in the suspension of cyanobacteria cells (Zhang et al., 2015), as shown in Equation 1.

$$I = I_0 \cdot \exp(-k_b I)$$

where *I* represents the output light intensity, *I₀* denotes the incident light intensity, and *I* refers to the distance the light penetrates through cyanobacteria suspension. *k₀* is the total extinction coefficient, including the extinction coefficient *kₛ* caused by the liquid medium and the extinction coefficient *kₐ* caused by the cyanobacteria biomass, as shown in Equation 2.

$$k_0 = k_s C_b + k_w$$

where *Cₜ* represents the cyanobacteria biomass concentration.

To determine the coefficients *kₛ* and *kₐ*, the incident light intensity in the internal surface of the photobioreactor was measured by a light quantum meter, and was set to 120 µmol m⁻² s⁻¹ by adjusting the luminous power of a surface light source. The output light intensity of 42 different combinations were simultaneously tested: 7 different levels of *Cₜ* from 0
chlorophyll-a (Chl-a), and carotenoid. The Chl-a (mg L\(^{-1}\)) were assayed according to Equations 3 and 5.

\[
\text{Chl-a} = 16.72A_{655} - 9.16A_{652.4} \quad (\text{Eq. 4})
\]

\[
\text{Carotenoid} = (1000A_{470} - 1.63 \cdot \text{Chl-a})/221 \quad (\text{Eq. 5})
\]

The phycobiliprotein of \(S. \text{platensis}\) includes phycocyanin (PC) and allophycocyanin (APC). The PC (g L\(^{-1}\)) and APC (g L\(^{-1}\)) were measured according to the method of Manirafasha et al. (2018), as shown in Equations 6 and 7.

\[
\text{PC} = (A_{635} - 0.474A_{652})/5.34 \quad (\text{Eq. 6})
\]

\[
\text{APC} = (A_{652} - 0.208A_{453})/5.09 \quad (\text{Eq. 7})
\]

The content of phycocyanin \(Y_{PC}\) (%) was calculated according to Equation 8 (Silveira et al., 2008).

\[
Y_{PC} = \left(\frac{c\times V}{M_{E}}\right) \times 100\% \quad (\text{Eq. 8})
\]

where \(V\) (L) represents the solvents volume and \(M_{E}\) (g) is the dry biomass.

Table 1. Fitted values of \(k_{b}\) under different cyanobacteria biomass concentrations.

\(C_{3}\) (g L\(^{-1}\))	0	0.067	0.225	0.414	0.484	0.593	0.706
\(I_{0}\) (μmol m\(^{-2}\) s\(^{-1}\))	120	120	120	120	120	120	120
\(k_{b}\) (cm\(^{-1}\))	0.1613	0.3946	0.9478	1.5529	1.6742	2.3659	2.3896
\(R^{2}\)	0.9404	0.9278	0.9987	0.9956	0.9976	0.9867	0.9990

Please cite this article as: Ye W., Xia A., Chen C., Liao Q., Huang Y., Zhu X., Zhu X. Sustainable carbon capture via halophilic and alkaliphilic cyanobacteria: the role of light and bicarbonate. Biofuel Research Journal 27 (2020) 1195-1204. DOI: 10.18331/BRJ2020.7.3.3
and 50-500 μm in length), which leads to a serious light shielding and light attenuation phenomenon. The results indicated that high light intensity may be favourable for the photosynthetic carbon fixation of *S. platensis*.

3.2. Effect of light intensity on growth and carbon fixation

The biomass concentration and residual NO$_3^-$ concentration in cyanobacteria suspension under different light intensities changed with cultivation time. As light intensity increased from 80 to 210 μmol m$^{-2}$ s$^{-1}$, the maximum biomass concentration significantly increased from 0.67 to 0.98 g L$^{-1}$ (Fig. 3a). Moreover, the maximum specific growth rate of 1.64 d$^{-1}$ was observed at a light intensity of 210 μmol m$^{-2}$ s$^{-1}$, which was 1.42 times higher than the minimum light intensity condition. Liu et al. (2014) found that compared to low light intensity conditions, the maximum biomass concentration of *Chlorella* sp. and *Scenedesmus obliquus* sp. reached 1.4 g L$^{-1}$ with a light intensity of 6800 lux. The NO$_3^-$ concentration in cyanobacteria suspension decreased with increasing light intensity. On the 10$^\text{th}$ day, the residual concentration of NO$_3^-$ at the light intensity of 210 μmol m$^{-2}$ s$^{-1}$ decreased by 43.7% from the initial stage, which was the largest decrease recorded (Fig. 3b). Bicarbonate utilization efficiency under the light intensity of 210 μmol m$^{-2}$ s$^{-1}$ was 1.5 times higher than the minimum light intensity condition. These results suggested that high light intensity could facilitate the growth and carbon fixation of cyanobacteria. However, the biomass concentration or nutrient absorption efficiency at the light intensity of 210 μmol m$^{-2}$ s$^{-1}$ was not significantly different from that of the light intensity of 150 μmol m$^{-2}$ s$^{-1}$. Therefore, methods to increase cyanobacteria biomass could include not only increasing light intensity but also suppressing light attenuation, through methods such as periodic harvesting of cyanobacteria or development of a novel photobioreactor that can decrease the distance from light incident surface or alter light/dark cycle frequency (Ye et al., 2019).

S. platensis biomass can be used to extract high value-added products, such as pigments, including Chl-a, carotenoid, and phycocyanin (Lima et al., 2018). As shown in Figure 4a, the contents of Chl-a and carotenoid in cyanobacteria cells increased with increasing light intensity. PC is a blue-coloured accessory photosynthetic pigment and mainly captures light energy by absorbing light over a range of wavelengths (such as orange-yellow light) that chlorophyll uses insufficiently (Eriksen, 2008a). It has multiple applications in antioxidants, cosmetics, medicines, and health products production (Klavzunić et al., 2015). The PC concentration at the light intensity of 210 μmol m$^{-2}$ s$^{-1}$ was 0.89 g L$^{-1}$, which was 14.9% of the dry biomass. (Fig. 4b). There was no significant difference in the contents of Chl-a, carotenoid and phycobiliprotein under different light intensities, possibly because light intensity was not the primarily limiting factor of pigment accumulation at this time. del Rio-Chanona et al. (2015) found that the *Spirulina* biomass concentration in outdoor raceway ponds hardly exceeded 0.8 g L$^{-1}$, and the PC content was only approximately 7% of the dry biomass. Göksan and Kilç (2009) and de Jesus et al. (2018) also found that lower light intensity was not conducive to biomass and PC accumulation of *Spirulina*. Therefore, the optimal light intensity of 210 μmol m$^{-2}$ s$^{-1}$ was selected for further trials.

3.3. Effect of NaHCO$_3$ concentration on growth and carbon fixation

The biomass concentration of *S. platensis* changed dramatically at different NaHCO$_3$ concentrations, as shown in Figure 5a. The results showed that the maximum biomass concentration of 1.46 g L$^{-1}$ was observed on the 8$^\text{th}$ day under an optimal growth condition of 0.1 M NaHCO$_3$, which was 65.9% higher than 0.05 M NaHCO$_3$. Compared with the cell growth of 0.1 M NaHCO$_3$, partial inhibition occurred in 0.05, 0.3, and 0.6 M, and severe inhibition occurred in 1.0 M. On the 9$^\text{th}$ day, the residual concentration of NO$_3^-$ at 0.1 M NaHCO$_3$ decreased by 48.7% from the initial stage, which was the largest decrease recorded (Fig. 5b). The bicarbonate utilization efficiency decreased with increasing NaHCO$_3$. Please cite this article as: Ye W., Xia A., Chen C., Liao Q., Huang Y., Zhu X., Zhu X. Sustainable carbon capture via halophilic and alkaliphilic cyanobacteria: the role of light and bicarbonate. Biofuel Research Journal 27 (2020) 1195-1204. DOI: 10.18331/BRJ2020.7.3.3
concentration from 0.1 M to 0.6 M, and maximum bicarbonate utilization efficiency of 42.0% was achieved at 0.1 M NaHCO₃, which was 7.8 times higher than at 0.6 M NaHCO₃. This was because the carbon content of 0.05 M NaHCO₃ was too low that limited cyanobacteria growth. Moreover, salinity can seriously affect osmotic pressure, nutrient absorption rate, and suspension characteristics of microalgae cells (Pisal et al., 2005; Razzak et al., 2013). High salinity may lead to reduced activity of various enzymes or transporters in cells and consumption of more energy for maintaining the osmotic pressure balance (Ho et al., 2014). The effect of NaHCO₃ concentration on salinity in cyanobacteria suspension during cultivation was also investigated. The results showed that the salinity of the medium increased with the increase of NaHCO₃ concentration. During the cultivation, the maximum salinity of cyanobacteria solution ranged from 5.03‰ to 36.70‰ when NaHCO₃ concentration ranged from 0.05 M to 1.0 M, respectively. Therefore, high NaHCO₃ concentration led to a serious salt stress on cyanobacteria cells. Additionally, the pH of 0.1 M NaHCO₃ was too high (close to 12) at the late stage of cyanobacteria cultivation, which inhibited the growth of cyanobacteria cells, resulting in an obvious reduction in biomass concentration compared with the maximum value.

The changes in TIC (including HCO₃⁻, CO₃²⁻, and CO₂) concentration in cyanobacteria suspension with cultivation time could also indirectly explain the growth and carbon fixation characteristics of cyanobacteria. Compared to the

initial stage, as NaHCO₃ concentration increased from 0.1 to 1.0 M, the TIC concentration on the 9th day significantly decreased by 62.0% to 19.7%. Additionally, the reduced TIC concentration at 0.1 M NaHCO₃ was 1.3 times higher than that of 0.05 M NaHCO₃ (Fig. 6). It could be observed that carbonate was effectively regenerated during the growth and metabolism of cyanobacteria, to reduce the energy consumption of absorbent regeneration and operating cost (Chi et al., 2011). The HCO₃⁻ content on the 2nd day was 29.5% and 57.1% of the remaining TIC content at 0.05 M and 0.1 M NaHCO₃, respectively, while it was reduced to 2.2% and 1.1% on 5th day. The results showed that the carbonate regeneration rate was high under 0.05 M and 0.1 M NaHCO₃. Nevertheless, 0.05 M NaHCO₃ was seriously insufficient for cyanobacteria growth.

As shown in Figure 7a, the maximum Chl-a concentration of 20.48 mg L⁻¹ was achieved at 0.1 M NaHCO₃, which was 4.4 times higher than that at 0.05 M NaHCO₃. The carotenoid concentration at 0.1 M NaHCO₃ was 1.6 times higher than at 0.05 M NaHCO₃. Bicarbonate significantly changed the biomass and various biochemical components such as pigments in the microalgae cells. These findings were in line with those of the previous studies (Chi et al., 2013; White et al., 2013; Pancha et al., 2015; Nayak et al., 2018). However, the salt stress caused by high NaHCO₃ concentration (0.3 to 1.0 M) on cyanobacteria cells was serious, and inhibited the growth and pigment accumulation of cyanobacteria.
Fig. 6. Variations in TIC (including HCO$_3^-$, CO$_3^{2-}$, and CO$_2$) concentrations in cyanobacteria suspension under different NaHCO$_3$ concentrations: (a) 0.05 M, (b) 0.1 M, (c) 0.3 M, (d) 0.6 M, and (e) 1.0 M.
Compared with the maximum biomass concentration at 0.1 M NaHCO₃, while possessing promising capabilities to regenerate carbonate. Lower. Compared to freshwater microalgae species, these results demonstrated that the maximum PC concentration of 0.91 g L⁻¹ was achieved at 0.3 M NaHCO₃, which was 3.2 times higher than at 0.05 M NaHCO₃. The PC content of 0.3 M NaHCO₃ accounted for 13.7% of dry biomass, which was 2.6 times higher than that of 0.1 M NaHCO₃. Studies found that unfavourable environments lead to the decomposition of phycobiliprotein (especially PC) to provide nutrients needed for cyanobacteria growth, thus maintaining the normal metabolic function of cyanobacteria (Eriksen, 2008b). Compared with the maximum biomass concentration at 0.1 M NaHCO₃, the value on the 9th day decreased by 11.5% due to the high pH of the later growth stage. Therefore, the phycobiliprotein content of 0.1 M NaHCO₃ was much lower. Compared to freshwater microalgae species, these results demonstrated that S. platensis had a favourable tolerance to high saline-alkaline environments while possessing promising capabilities to regenerate carbonate.

Moreover, the maximum PC concentration of 0.91 g L⁻¹ was achieved at 0.3 M NaHCO₃, which was 3.2 times higher than at 0.05 M NaHCO₃. The PC content of 0.3 M NaHCO₃ accounted for 13.7% of dry biomass, which was 2.6 times higher than that of 0.1 M NaHCO₃. Studies found that unfavourable environments lead to the decomposition of phycobiliprotein (especially PC) to provide nutrients needed for cyanobacteria growth, thus maintaining the normal metabolic function of cyanobacteria (Eriksen, 2008b). Compared with the maximum biomass concentration at 0.1 M NaHCO₃, the value on the 9th day decreased by 11.5% due to the high pH of the later growth stage. Therefore, the phycobiliprotein content of 0.1 M NaHCO₃ was much lower. Compared to freshwater microalgae species, these results demonstrated that S. platensis had a favourable tolerance to high saline-alkaline environments while possessing promising capabilities to regenerate carbonate.

3.4. Design and application for photosynthetic biogas upgrading system

According to the experimental results of cyanobacteria cultivation, a case study was carried out to set up a photosynthetic biogas upgrading system. The biogas production of this project to treat cow manure and straw was set at 800 m³ h⁻¹ and S. platensis was selected as the working cyanobacteria species. Since after capturing the CO₂ of biogas, the 0.05 M NaHCO₃ absorbent was conducive to cyanobacteria growth, the average biomass productivity of S. platensis was recorded at 0.2 g L⁻¹ d⁻¹ under the condition of 0.1 M NaHCO₃. Moreover, producing 1 t of AMOPs biomass fixes approximately 1.83 tons of CO₂ (Chisti, 2007). Accordingly, the amount of total biomass produced was 344 kg h⁻¹ when the cyanobacteria fixed all the CO₂ contained in the produced biogas. Therefore, the cultivation volume of cyanobacteria in the column photobioreactor was 41280 m³. The low calorific value of biogas with 60%-65% CH₄ is 20-25 MJ m⁻³ (Angelidaki et al., 2018). According to Xia et al. (2014), the calorific value of S. platensis was calculated to be 19.15 kJ g⁻¹ VS. Given the fact that the volatile solids content accounts for 85% of the microalgae total solids (Sun et al., 2018a), the total calorific value of microalgae could reach 5591 MJ h⁻¹, which is equivalent to 280 m³ h⁻¹ of biogas. This made up one third of the system’s biogas production, indicating that the photosynthetic biogas upgrading had a promising development potential.

4. Conclusions

The halophilic and alkaliphilic S. platensis was demonstrated to be a potential candidate for sustainable carbon capture and biogas upgrading. Severe light attenuation was observed in filamentous S. platensis culture; the extinction coefficient in S. platensis was 2.8 times higher than that of spherical C. vulgaris. The maximum biomass concentration was 0.98 g L⁻¹ at the light intensity of 210 μmol m⁻² s⁻¹, which was 47.6% higher than that of 80 μmol m⁻² s⁻¹. NaHCO₃ concentration significantly affected cyanobacteria biomass and pigment production. The optimal biomass concentration of 1.46 g L⁻¹ was achieved at an NaHCO₃ concentration of 0.1 M, which was 65.9% higher than that of 0.05 M NaHCO₃. Meanwhile, the bicarbonate utilization efficiency reached 42.0%. Cyanobacteria biomass of up to 344 kg h⁻¹ could be generated with the biogas flow rate of 800 m³ h⁻¹, corresponding to an energy value of 5591 MJ h⁻¹ (i.e., that of one third of the biogas produced).

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2016YFB0601002), the National Natural Science Foundation of China (No. 51961165104), the State Key Program of National Natural Science of China (No. 51836001), the Venture & Innovation Support Program for Chongqing Overseas Returnees (No. cx2019040), and the Young Elite Scientists Sponsorship Program by CAST (2018QNRC001).

References

[1] Angelidaki, I., Treu, L., Tsapkos, P., Luo, G., Campanaro, S., Wenzel, H., Kougias, F.G., 2018. Biogas upgrading and utilization: current status and perspectives. Biotechnol. Adv. 36(2), 452-466.
[2] Bahr, M., Díaz, I., Dominguez, A., Gonzalez Sanchez, A., Muñoz, R., 2014. Microalgal-biotechnology as a platform for an integral biogas upgrading and nutrient removal from anaerobic effluents. Environ. Sci. Technol. 48(1), 573-581.
[3] Carvalho, A.P., Silva, S.O., Baptista, J.M., Malcata, F.X., 2011. Light requirements in microalgal photobioreactors: an overview of biophotonic aspects. Appl. Microbiol. Biotechnol. 89(5), 1275-1288.
[4] Cheng, Y., Luo, X., Zheng, Z., 2013. Effects of various LED light qualities and light intensity supply strategies on purification of slurry from anaerobic digestion process by Chlorophyta vulgaris. Int. Biodeterior. Biodegrad. 79, 81-87.
[5] Chi, Z., Elloy, F., Xie, Y., Hu, Y., Chen, S., 2014. Selection of microalgae and cyanobacteria strains for bicarbonate-based integrated
carbon capture and algae production system. Appl. Biochem. Biotechnol. 172(1), 447-457.

[6] Chi, Z., Xie, Y., Elloy, F., Zheng, Y., Hu, Y., Chen, S., 2013. Bicarbonate-based integrated carbon capture and algae production system with alkalilophilic cyanobacterium. Bioresour. Technol. 133, 513-521.

[7] Chi, Z., O’Fallon, J.V., Chen, S., 2011. Bicarbonate produced from cell capture for algae culture. Trends Biotechnol. 29(11), 537-541.

[8] Chisti, Y., 2007. Biodiesel from microalgae. Biotechnol. Adv. 25(3), 294-306.

[9] Collos, Y., Morfet, F., Sciandra, A., Waser, N., Larson, A., Harrison, P.J., 1999. An optical method for the rapid measurement of micromolar concentrations of nitrate in marine phytoplankton cultures. J. Appl. Phycol. 11(2), 179-185.

[10] de Jesus, C.S., da Silva Uebel, L., Costa, S.S., Miranda, A.L., do Moraes, E.G., de Moraes, M.G., Costa, J.A.V., Nunes, I.L., de Souza Ferreira, E., Druzian, J.J., 2018. Outdoor pilot-scale cultivation of Spirulina sp LEB-18 in different geographic locations for evaluating its growth and chemical composition. Bioresour. Technol. 256, 86-94.

[11] del Rio-Chanona, E.A., Zhang, D., Xie, Y., Manirafasha, E., Jing, K., 2015. Dynamic simulation and optimization for Arthrospira platensis growth and C-phycocyanin production. Ind. Eng. Chem. Res. 54(43), 10606-10614.

[12] Dismukes, G.C., Carrieri, D., Bennett, N., Ananyev, G.M., Posewitz, M.C., 2008. Aquatic phototrophs: efficient alternatives to land-based crops for biofuels.Curr. Opin. Biotechnol. 19(3), 235-240.

[13] Eriksen, N.T., 2008a. Production of phycocyanin—a pigment with applications in biotechnology, biology, foods and medicine. Appl. Microbiol. Biotechnol. 80(1), 1-14.

[14] Eriksen, N.T., 2008b. The technology of microalgal culturing. Biotechnol. Lett. 30(9), 1525-1536.

[15] Franco-Morgado, M., Toledo-Cervantes, A., Gonzalez-Sanchez, A., Lebrero, R., Munoz, R., 2018. Integral (VOC, CO2, mercaptans and H2S) photosynthetic biogas upgrading using innovative biogas and digestate supply strategies. Chem. Eng. J. 354, 363-369.

[16] Schlösser, U.G., 1982. Sammlung von algenkulturen. Ber. Deutsch. Bot. Ges. 95(1), 181-276.

[17] Göksan, T., Kilic, C., 2009. Growth and biochemical composition of Spirulina platensis Geitler in summer period under the conditions of Çanakkale, Turkey. Asian J. Chem. 21(6), 4947-4950.

[18] Gotz, M., Lefebvre, J., Mors, F., Koch, A.M., Graf, F., Bajohr, S., Reimert, R., Kolb, T., 2016. Renewable power-to-gas: a technological and economic review. Renewable Energy. 85, 1371-1390.

[19] Harmut, A., 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Method Enzymol. 148, 350-382.

[20] Ho, S.H., Ye, X., Hasunuma, T., Chang, J.S., Kondo, A., 2014. Perspectives on engineering strategies for improving biofuel production from microalgae-A critical review. Biotechnol. Adv. 32(8), 1448-1459.

[21] Kamasoko, R., Jingura, R.M., Parawira, W., Sanyika, W.T., 2019. Optimization of pretreatment methods that enhance biomethane production from crop residues-a systematic review. Bioresour. J. 6(4), 1080-1089.

[22] Kebede, E., Ahlgren, G., 1996. Optimum growth conditions and light utilization efficiency of Spirulina platensis (=equal Paraphysomonas fusiformis) (Cyanophyta) from Lake Chitu, Ethiopia. Hydrobiologia. 332(2), 99-109.

[23] Khan, F.U., Otman, M.H.D., Hashim, H., Matsaura, T., Ismail, A.F., Rezaei-DashArzhandi, M., Azeele, I.W., 2017. Biogas as a renewable energy fuel—a review of biogas upgrading, utilisation and storage. Energy Convers. Manage. 129, 622-653.

[24] Horváth, I.S., Tabatabaei, M., Karimi, K., Kumar, R., 2016. Recent developments in biogas production—A review. Biofuels. 7(4), 494-502.

[25] S. Forgacs and colleagues. 2018. Reduction of volatile fatty acids in sewage sludge using biogas upgrading technologies. Bioresour. Technol. 255, 1-14.

[26] Munoz, R., Meier, L., Diaz, I., Jeison, D., 2015. A review on the state-of-the-art of physical/chemical and biological technologies for biogas upgrading. Rev. Environ. Sci. Bio/Tech. 14(4), 727-759.

[27] Nayak, M., Suh, W.I., Lee, B., Chang, Y.K., 2018. Enhanced carbon utilization efficiency and FAME production of Chlorella sp HS through combined supplementation of bicarbonate and carbon dioxide. Energy Convers. Manage. 156, 45-52.

[28] Pancha, I., Chokshi, K., Ghosh, T., Palival, C., Maurya, R., Mishra, S., 2015. Bicarbonate supplementation enhanced biofuel production potential as well as nutritional stress mitigation in the microalga Scenedesmus sp CCN107. Bioresour. Technol. 193, 315-323.

[29] Patterson, T., Estives, S., Dinsdale, R., Guwy, A., 2011. An evaluation of the policy and techno-economic factors affecting the potential for biogas upgrading for transport fuel use in the UK. Energy Policy. 39(3), 1806-1816.

[30] Pisal, D.S., Lele, S.S., 2005. Carotenoid production from microalgae. Indian J. Biotechnol. 4(4), 476-483.

[31] Posadas, E., Serejo, M.L., Bianco, S., Perez, R., Garcia-Encina, P.A., Munoz, R., 2015. Minimization of biomethane oxygen concentration during biogas upgrading in algal-bacterial photobioreactors. Algal Res. 12, 221-229.

[32] Razzak, S.A., Hossain, M.M., Lucky, R.A., Bassi, A.S., de Lasa, H., 2013. Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing—a review. Renew. Sust. Energy Rev. 27, 622-653.

[33] Roy, R.N., Roy, L.N., Vogel, K.M., Porter-Moore, C., Pearson, T., Good, C.E., Miller, F.J., Campbell, D.M., 1993. The dissociation constants of carbonic acid in seawater at salinities 5 to 45 and temperatures 0 to 4°C. Mar. Chem. 44(2-4), 249-267.

[34] Ryckebosch, E., Drouillon, M., Veruaeren, H., 2011. Techniques for transformation of biogas to biomethane. Biomass Bioenergy. 35(5), 1633-1645.

[35] Horváth, T.S., Tabatabaei, M., Karimi, K., Kumar, R., 2016. Recent developments in biogas production—a review. Biofuels Res. J. 3(2), 394-402.

[36] Scarlat, N., Dallemand, J.F., Fahl, F., 2018. Biogas: developments and perspectives in Europe. Renewable Energy. 129, 457-472.

[37] Silveira, S.T., de Menezes Quines, L.K., Burket, C.A.V., Kalil, S.J., 2008. Separation of phycocyanin from Spirulina platensis using ion exchange chromatography. Bioprocess. Biosyst. Eng. 31(5), 477-482.

[38] Sun, Y., Liao, Q., Huang, Y., Xia, A., Fu, Q., Zhu, X., Zheng, Y., 2016. Integrating planar waveguides doped with light scattering nanoparticles into a flat-plate photobioreactor to improve light distribution and microalgal growth. Bioresour. Technol. 220, 215-224.

[39] Sun, C., A., Liao, Q., Fu, Q., Huang, Y., Zhu, X., Wei, P., Lin, R., Murphy, J.D., 2018a. Improving production of volatile fatty acids and hydrogen from microalgae and rice residue: effects of physicochemical characteristics and mix ratios. Appl. Energy. 230, 1082-1092.

[40] Sun, Y., Liao, Q., Huang, Y., Xia, A., Fu, Q., Zhu, X., Fu, J., Li, J., 2018b. Application of growth-phase based light-feeding strategies to simultaneously enhance Chlorella vulgaris growth and lipid accumulation. Bioresour. Technol. 256, 421.
absorption column on photosynthetic biogas upgrading in algal-bacterial photobioreactors. Bioresour. Technol. 225, 336-342.

[47] Velazquez-Lucio, J., Rodriguez-Jasso, R.M., Colla, L.M., Saenz-Galindo, A., Cervantes-Cisneros, D.E., Aguilar, C.N., Fernandes, B.D., Ruiz, H.A., 2018. Microalgal biomass pretreatment for bioethanol production: a review. Biofuel Res. J. 5(1), 780-791.

[48] White, D.A., Pagarett, A., Rooks, P., Ali, S.T., 2013. The effect of sodium bicarbonate supplementation on growth and biochemical composition of marine microalgae cultures. J. Appl. Phycol. 25(1), 153-165.

[49] Xia, A., Cheng, J., Ding, L.K., Lin, R.C., Song, W.L., Zhou, J.H., Cen, K.F., 2014. Enhancement of energy production efficiency from mixed biomass of Chlorella pyrenoidosa and cassava starch through combined hydrogen fermentation and methanogenesis. Appl. Energy. 120, 23-30.