Signatures of the primordial Universe from its emptiness

Francisco-Shu Kitaura1, Chia-Hsun Chuang1, Yu Liang2, Cheng Zhao2, Charlining Tao3,4, Sergio Rodríguez-Torres4,5,6, Daniel J. Eisenstein7, Héctor Gil-Marín8,9, Jean-Paul Kneib10, Cameron McBride6, Will Percival11, Ashley J. Ross12,13, Ariel G. Sánchez14, Jeremy Tinker15, Rita Tojeiro16, Mariana Vargas-Magana17, Gong-Bo Zhao18,11
Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam, Germany

1 Tsinghua Center of Astrophysics & Department of Physics, Tsinghua University, Beijing 100084, China.
2 CPPM, Université Aix-Marseille, CNRS/IN2P3, Case 907, 13288 Marseille Cedex 9, France
3 Instituto de Física Teórica, (UAM/CSIC), Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
4 Campus of International Excellence UAM+CSIC, Cantoblanco, E-28049 Madrid, Spain
5 Departamento de Física Teórica M8, Universidad Autónoma de Madrid (UAM), Cantoblanco, E-28049 Madrid, Spain
6 Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138, USA
7 Sorbonne Universités, Institut Lagrange de Paris (ILP), 98 bis Boulevard Arago, 75014 Paris, France
8 Laboratoire de Physique Nucléaire et de Hautes Energies, Université Pierre et Marie Curie, 4 Place Jussieu, Tour 22, 75005 Paris, France
9 Laboratoire d’Astrophysique, Ecole polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
10 Aix Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR 7326, F-13388, Marseille, France
11 Institute of Cosmology & Gravitation, University of Portsmouth, Dennis Sciama Building, Portsmouth PO1 3FX, UK
12 Center for Cosmology and AstroParticle Physics, The Ohio State University, Columbus, OH 43210, USA
13 Max-Planck-Institut für extraterrestrische Physik, Giessenbachstr., 85741 Garching, Germany
14 Center for Cosmology and Particle Physics, New York University, 4 Washington Place, NY 1003, New York, USA
15 University of St Andrews, North Haugh, St Andrews Fife, KY16 9SS, UK
16 Instituto de Física, Universidad Nacional Autónoma de México, Apdo. Postal 20-364, México D.F.
17 National Astronomy Observatories, Chinese Academy of Science, Beijing, 100012, People’s Republic of China
18 Tsinghua University, Beijing, 100084, China.

Sound waves from the primordial fluctuations of the Universe imprinted in the large-scale structure, called baryon acoustic oscillations (BAOs), can be used as standard rulers to measure the scale of the Universe. These oscillations have already been detected in the distribution of galaxies. Here we propose to measure BAOs from the troughs (minima) of the density field. Based on two sets of accurate mock halo catalogues with and without BAOs in the seed initial conditions, we demonstrate that the BAO signal cannot be obtained from the clustering of classical disjoint voids, but is clearly detected from overlapping voids. The latter represent an estimate of all troughs of the density field. We compute them from the empty circumspheres centres constrained by tetrahedra. Our theoretical models based on an unprecedented large set of detailed simulated void catalogues are remarkably well confirmed by observational data. We use the largest recently publicly available sample of Luminous Red Galaxies from SDSS-III BOSS DR11 to unveil for the first time a BAO detection from voids in observations. Since voids are nearly isotropically expanding regions, their centres represent the most quiet places in the Universe, keeping in memory the cosmos origin, and providing a new promising window in the analysis of the cosmological large-scale structure from galaxy surveys.

PACS numbers: 98.80.-k, 98.80.Es,98.65.Dx

In the primordial baryon-photon plasma of our Universe, over-pressured regions triggered sound waves which stalled at the recombination epoch, imprinting spheres of overdensity fluctuations, measureable in the matter power-spectrum as an oscillatory pattern, the so-called baryon acoustic oscillations (BAOs). Any dark matter tracer should encode this signal in its spatial distribution either at early or late cosmic times after cosmic recombination [1]. In fact these oscillations have been already detected in the cosmic microwave background anisotropies [6,8], in the distribution of galaxies [9-14], and more recently in the distribution of the Lyman alpha forest [15,17]. For a review on BAOs and their cosmological implications see Aubourg et al. [18].

Their characteristic scale can be used as a standard ruler to measure the evolving scale of the Universe and to constrain the nature of its driving force, the dark energy component. For this reason a large number of surveys have focused on measuring BAOs, or have included them as an integral part of their science, such as the 2dFGRS [19], the SDSS [20], the WiggleZ [21], the BOSS [22], the SDSS-IV/eBOSS, the DESI/BigBOSS [23], the DES [24], the LSST [25], the J-PAS [26], the 4MOST [27], or the EUCLID survey [28].
Ever since the first detection of the giant Boötes void in 1981 [29] and with the nascent era of galaxy surveys, more evidence for the existence of voids has been found. The presence of voids in the large-scale structure was considered a manifestation of cosmological structure formation transforming the homogenous Universe into a complex cosmic web structure. This picture was confirmed through numerical simulations [see e.g. 30–32]. The classification of voids based on galaxy surveys has turned into a common practice, see e.g. the CIA [33, 34]; the IRAS [35]; Las Campanas [36]; the PSCz [37]; the 2dFRGS [38, 40]; the DEEP2 [41]; the 2MRS [42]; and the SDSS survey [43, 45]. Nevertheless, voids are usually considered to be very large rare objects, as compared to galaxies. Their probability distribution function can be used to constrain cosmology in an analogous way to galaxy clusters [49]. The statistics of voids has been studied for a long time [e.g. 50–54], and an excursion set formalism analogous to the one describing the formation of haloes (the compact collapsed dark matter objects hosting galaxies) has been developed [55, 56]. Those studies hint towards a hierarchical picture, in which voids can form merger trees through cosmic evolution [59]. Considerable efforts have been done to understand the nature and evolution of voids through theoretical studies with semi-analytic studies [e.g. 60, 61] and simulations [e.g. 62–68].

Nevertheless, there are many different definitions of voids [55, 65, 66, 69–77], which do not necessarily agree with each other [see e.g. 78].

From a practical perspective, voids have recently been proposed to give additional cosmological constraints, not only according to their statistics, but also according to their shape. The void ellipticity was proposed to probe dark energy [79, 82]. However, their sparse population and low signal-to-noise ratio has made them less interesting for clustering analysis. Only little work can be found on the measurement of the correlation function of voids, see however [83, 84], and in particular the recent pioneering study on observations [85].

In this work, we propose for the first time to use the troughs of the density field (from now on: void tracers), meaning the minima in the overdensity field, to obtain additional measurements of the BAOs from the ones corresponding to galaxies. We have developed a Delaunay triangulation void finder based on empty circumspheres constrained by tetrahedra of galaxies (DIVE: Zhao et al.; companion paper). Our voids are close to the classical definition as spherical underdense regions [see e.g. 40, 50], including, however, as a crucial difference, overlapping spheres, since we are interested in the distribution of troughs of the density field, and account in this way for the shape of empty regions. Our definition crucially increases the statistics of void tracers by about two orders of magnitude in contrast to previous studies, in which voids are treated as large connected regions, which do not overlap at all, or only marginally [see e.g. 40, 53, 55]. The speed of the DIVE void finder has been determinant for this project taking only of the order of minutes to find all the void tracers associated to about half million objects and with little memory requirements (on a single core: \(\sim 18 \) mns and \(\sim 5 \) Gb, respectively).

In Liang et al. (companion paper) we have studied for the first time the BAO signal from this void definition on mock catalogues predicting a characteristic correlation function, which includes dips on scales smaller and larger to the BAO peak. These features were exploited to develop a model independent signal-to-noise estimator, used in turn to determine the radius cuts which provide the optimal signal-to-noise ratio for the BAO signal.

In this work we aim to extend the signal-to-noise estimator to detect the BAO signal from voids based on observational data.

To this end, first we define a control sample of accurate mock galaxy catalogues performed with the PATCHY-code [86]. In particular, we have produced 100 mocks for each of the following cases: catalogues with and without baryon acoustic oscillations ("wiggle" and "non-wiggle"
the BAO peak and a singularity around the size (diameter) of the smallest void (∼30 h^{-1} Mpc) due to the void exclusion effect can also be clearly seen in that Fig. 1. Importantly, the BAO peak is not only seen in the residual after extracting the “non-wiggle” from the “wiggle” mock catalogues (see lower panel in Fig. 1), but directly in the correlation function based on the catalogues containing the BAO signal in the seed perturbations (see upper panel Fig. 1). This is not the case when analysing disjoint voids (see Fig. 2). The oscillation patterns seen in the correlation functions are not related to the BAOs, but are due to hard sphere exclusion effects when the filling factor is high [see 11], as they can be found both in the “wiggle” and “non-wiggle” mock catalogues. There are only tiny differences in the modulation of these oscillations caused by BAOs which can only be found in the residuals with large error bars (compare upper and lower panels in Fig. 2).

We have verified that the majority of the void tracers considered are located in expanding regions and that they are anti-correlated to the haloes, hereby demonstrating that our definition of voids yields additional tracers of the large-scale structure (see Zhao et al.; companion paper).

To detect the void tracer BAO signature in observations, we need to consider mocks resembling the BOSS DR11 CMASS sample in our analysis, including survey geometry, radial selection effects, bias evolution and redshift space distortions (RSDs).

This work uses data from the Data Release DR11 92 of the Baryon Oscillation Spectroscopic Survey (BOSS) 93. The BOSS survey uses the SDSS 2.5 meter telescope at Apache Point Observatory 94 and the spectra are obtained using the double-arm BOSS spectrograph 95. The data are then reduced using the algorithms described in 96. The target selection of the CMASS and LOWZ samples, together with the algorithms used to
create large scale structure catalogues (the MKSAMPLE code), are presented in Reid et al. [97].

We compute the voids (with radii $\geq 16 \ h^{-1} \text{ Mpc}$) and the corresponding correlation functions for 1,000 BOSS DR11 CMASS MultiDark patchy mocks [89]. These galaxy mocks have been calibrated with N-body based reference catalogues from the BigMultiDark simulation [89] and made publicly available [101]. The radius cut was determined to provide the optimal signal-to-noise ratio for the BAO signal (see Liang et al.; companion paper).

We follow the methodology presented in Liang et al. (companion paper) to deal with the survey geometry and radial selection function. In particular, we use the angular mask from the DR11 galaxy catalogue to filter out the voids identified outside the survey area to construct the observed DR11 void catalogue and the corresponding set of synthetic BOSS DR11 CMASS MultiDark patchy void lightcone catalogues. To compute the two-point correlation functions, we need to construct a random void catalogue with the same geometry (in both angular and radius directions) as the BOSS DR11 CMASS data. To that purpose we combine 50 BOSS DR11 CMASS MultiDark patchy void catalogues and reassign the redshift randomly picked from observed data [a.k.a. shuffle method, e.g. see 14]. This procedure will produce random void catalogues with geometry consistent with the observed data. We avoid using the random galaxy catalogue for the random void catalogue, since the distribution of the voids is different, especially at the boundaries of the survey.

We finally take the BOSS DR11 data and apply the same analysis algorithms, using the same settings. A plot of the sky projection of the galaxies and their corresponding void tracers clearly illustrates how these tracers trace different regions of the cosmic web (see Fig. 3). The result of these computations show a remarkable agreement between the theoretical prediction and the observations even towards large scales in contrast to galaxies (see Fig. 3). Here we use the “wiggle” and “non-wiggle” simulations to construct the templates of the fitting models to estimate the significance of the BAO detection.

We make a cubic spline fit from the “wiggle” and “non-wiggle” MultiDark patchy mocks correlation function, $\xi_{w}(s)$ and $\xi_{nw}(s)$, respectively, with s being the separation between two void tracers based on the galaxy distribution in redshift space. These two functions are the basis to construct the “wiggle” model and “non-wiggle” model for determining the BAO significance. In particular, we apply the following models in the fitting range $60 < r < 160 \ h^{-1} \text{ Mpc}$. First a “wiggle” model:

$$\xi_{th}(s) = A \ [\xi_{w}(s/\alpha) - \xi_{nw}(s/\alpha)] + \xi_{nw}(s/\alpha) + a_0 + a_1/s + a_2/s^2 \quad (1)$$

where α is the rescaling factor of BAO, A is the BAO damping factor, and the polynomial models the systematics for the overall shape following Anderson et al. [14]. And second a “non-wiggle” model:

$$\xi_{th}(s) = \xi_{nw}(s/\alpha) + a_0 + a_1/s + a_2/s^2 \quad (2)$$

which can be obtained from setting $A = 0$ in the “wiggle” model Eq. 1.

Relying on these models we find a BAO detection with a significance of 3.2σ (see Fig. 4). We have used the covariance matrices derived from the set of 1,000 mocks to do this analysis analogously to Anderson et al. [14]. As a first approximation we assume in the “wiggle” and “non-wiggle” models that RSDs can be modelled by a damping term. We plan to investigate RSDs in detail in future work. Incompleteness, veto mask, and the fiber collision are taken into account in the DR11 CMASS mock catalogues, and accordingly in the void catalogues computations. We do not see in the CMASS void correlation function any strong systematic effects, i.e. strong deviations in the correlation function towards large scales, as it was seen with the CMASS galaxy correlation function [101 102]. The correlation function behaves very much like the theoretical correlation function from the lightcone mocks. With the optimal radius cut used in this study we found that the number density of voids is insensitive to the number density of galaxies (see Fig. 4 in Zhao et al; companion paper). This would explain, why a varying number density of galaxies caused by stellar density systematics, does not have a significant impact on the void density across the sky.

A question arises when we measure the clustering of voids: what is the information gain from void tracers directly computed from the distribution of galaxies? or how covariant are these tracers to the galaxies themselves? The construction of void troughts follows the intuitive physical picture of filling the gaps complementary to the high density peaks occupied by the galaxies. Luminous Red Galaxies (LRGs) are known to reside in high density regions [see e.g. 88]. We are, thus, extending the information on the density fluctuations ($\delta = \rho/\bar{\rho} - 1$) to underdense regions ($\delta < 0$), which based on this galaxy distribution are otherwise set to a constant value ($\delta = -1$). We note, that small voids are equivalent to groups of quartets of galaxies residing in high density regions (see Zhao et al; companion paper), and hence, are expected to deliver redundant information to the galaxies themselves. This is not the case for the large voids considered in this study. In fact, it is clear, that the Delaunay voids we construct from tetrahedra of galaxies encode higher order statistics, further constrained by imposing the circumspheres to be empty, which strongly depends on gravitational evolution of the morphology of the cosmic web, and hence, on all the n-point statistics of the density field [in particular the 3-point statistics, 103]. Moreover, our prior knowledge on the radius cut selecting empty circumspheres located in expanding void regions, based on tidal field computations of the underlying dark matter field in simulations (see Zhao et al; companion paper), implicitly incorporates knowledge on the void regions beyond the one present in the galaxy distribution. By analysing the clustering of the troughs (constructed upon the galaxies) we are including higher order information [see 50], potentially circumventing a more com-
complicated mathematical formalism needed to extract the full information encoded in the three-dimensional distribution of galaxies. The actual information gain we can get from combining void tracers with galaxies in a multi-tracer analysis remains to be investigated, and whether voids will improve the cosmological constraints from galaxy clustering alone. This analysis may yield little added value in the presence of data covering the underdense cosmic density field, with e.g. considerably higher number densities, than that provided by LRGs. Nevertheless, since void tracers are expected to be less affected by gravitational pull, BAO reconstruction techniques [104] could be less necessary for these tracers, and they may thus, yield a less cosmology dependent estimate of the linear correlation function. We will investigate this in future work.

ACKNOWLEDGMENTS

The authors thank Michael Wood-Vasey, Christian Wagner, Marcos Pellejero Ibáñez, Juan E. Betancort-Rijo, Anatoly Klypin, Gustavo Yepes, and Francisco Prada for useful discussions. FSK thanks support from the Leibniz Society for the Karl-Schwarzschild fellowship. YL, CZ, and CT acknowledge support by Tsinghua University. HGM thanks support from the University of Virginia, University of Washington, Institute for Extraterrestrial Physics, New Mexico State University, the Brazilian Participation Group, Brookhaven National Laboratory, Carnegie Mellon University, University of Florida, the French Participation Group, the German Participation Group, Harvard University, the Instituto de Astrofísica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, Max Planck Institute for Extraterrestrial Physics, New Mexico State University, University of Virginia, the Spanish Participation Group, University of Tokyo, University of Utah, Vanderbilt University, University of Virginia, University of Washington, and Yale University.

[1] P. J. E. Peebles and J. T. Yu, Astrophys. J. 162, 815 (1970).
[2] R. A. Sunyaev and Y. B. Zeldovich, Astr.Spa.Sci. 7, 3 (1970).
[3] C. Blake and K. Glazebrook, Astrophys. J. 594, 665 (2003), astro-ph/0301632.
[4] H.-J. Seo and D. J. Eisenstein, Astrophys. J. 633, 575 (2005), astro-ph/0507338.
[5] D. N. Spergel et al., Rev.Astr.Astrophys. 148, 175 (2003), astro-ph/0302209.
[6] E. Komatsu et al., Rev.Astr.Astrophys. 192, 18 (2011), arXiv:1001.4538 [astro-ph.CO].
[7] G. Hinshaw et al., Rev.Astr.Astrophys. 208, 19 (2013), arXiv:1212.5226.
[8] Planck Collaboration, Astr.Astrophys. 571, A1 (2014), arXiv:1303.5062.
[9] S. Cole et al., MNRAS 362, 505 (2005), astro-ph/0501174.
[10] D. J. Eisenstein et al., Astrophys. J. 633, 560 (2005), astro-ph/0501177.
[11] W. J. Percival et al., MNRAS 401, 2148 (2010), arXiv:0907.1660 [astro-ph.CO].
[12] C. Blake et al., MNRAS 418, 1707 (2011), arXiv:1108.2635.
[13] F. Beutler et al., MNRAS 416, 3017 (2011), arXiv:1106.3366.
[14] L. Anderson et al., MNRAS 441, 24 (2014), arXiv:1312.4877.
[15] N. G. Busca et al., Astr.Astrophy. 552, A96 (2013), arXiv:1211.2616 [astro-ph.CO].
[16] A. Slosar et al., J.Cosm.Astrophys. 4, 026 (2013), arXiv:1301.3459.
[17] T. Delubac et al., Astr.Astrophy. 574, A59 (2015), arXiv:1404.1801.
[18] É. Aubourg et al., ArXiv e-prints (2014), arXiv:1411.1074.
[19] M. Colless et al., MNRAS 328, 1039 (2001), astro-ph/00106498.
[20] D. G. York and SDSS Collaboration, AJ 120, 1579 (2000), astro-ph/0006396.
[21] M. J. Drinkwater et al., MNRAS 401, 1429 (2010), arXiv:0911.4246 [astro-ph.CO].
[22] M. White et al., Astrophys. J. 728, 126 (2011), arXiv:1010.4915 [astro-ph.CO].
[23] D. Schlegel et al., ArXiv e-prints (2011), arXiv:1106.1706 [astro-ph.IM].
[24] J. Frieman and Dark Energy Survey Collaboration, in American Astronomical Society Meeting Abstracts, American Astronomical Society Meeting Abstracts, Vol. 221 (2013) p. 335.01.
