Wearable wireless power systems for ‘ME-BIT’ magnetoelectric-powered bio implants

Fatima T Alrashdan 1, Joshua C Chen 1, Amanda Singer 1, Benjamin W Avants 1, Kaiyuan Yang 1 and Jacob T Robinson 1,2

1 Rice University, Houston, TX 77005, United States of America
2 Baylor College of Medicine, Houston, TX 77030, United States of America
E-mail: jtrobinson@rice.edu

Keywords: wearable system, implantable device, bioelectronics, magnetoelectric effect, wireless power transfer

Abstract
Objective. Compared to biomedical devices with implanted batteries, wirelessly powered technologies can be longer-lasting, less invasive, safer, and can be miniaturized to access difficult-to-reach areas of the body. Magnetic fields are an attractive wireless power transfer modality for such bioelectronic applications because they suffer negligible absorption and reflection in biological tissues. However, current solutions using magnetic fields for mm sized implants either operate at high frequencies (>500 kHz) or require high magnetic field strengths (>10 mT), which restricts the amount of power that can be transferred safely through tissue and limits the development of wearable power transmitter systems. Magnetoelastic (ME) materials have recently been shown to provide a wireless power solution for mm-sized neural stimulators. These ME transducers convert low magnitude (<1 mT) and low-frequency (∼300 kHz) magnetic fields into electric fields that can power custom integrated circuits or stimulate nearby tissue.

Approach. Here we demonstrate a battery-powered wearable magnetic field generator that can power a miniaturized MagnetoElectric-powered Bio ImplanT ‘ME-BIT’ that functions as a neural stimulator. The wearable transmitter weighs less than 0.5 lbs and has an approximate battery life of 37 h. Main results. We demonstrate the ability to power a millimeter-sized prototype ‘ME-BIT’ at a distance of 4 cm with enough energy to electrically stimulate a rat sciatic nerve. We also find that the system performs well under translational misalignment and identify safe operating ranges according to the specific absorption rate limits set by the IEEE Std 95.1-2019. Significance. These results validate the feasibility of a wearable system that can power miniaturized ME implants that can be used for different neuromodulation applications.

1. Introduction

Bioelectronics is transforming the medical field through engineered implants that can deliver precise, personalized, and long term therapies that are difficult to achieve using traditional pharmaceuticals [1–7]. One example application for bioelectronics is neural stimulation. Neural stimulators modulate the electrical activity of the nervous system providing effective treatment for a wide range of neurological and psychiatric disorders [8–12].

Miniaturization is an important goal for bioelectronic devices like neural stimulators. By making devices smaller, one can reduce invasiveness and improve accessibility to difficult-to-reach areas of the body. However, on-board batteries used to power a device are often a bottleneck in reducing the device footprint. Moreover, the infections, movement, and breakage associated with wires that connect the battery and stimulator impose serious risks to the patient’s health and require periodic battery replacement surgeries [13]. To make extremely miniaturized bioelectronics, it is necessary to eliminate batteries in favor of wireless power and data transfer.

Several methods are proposed in the literature including acoustic [14], electromagnetic [15, 16], and magnetic technologies with the latter comprising magnetothermal [17, 18], magnetoelastic (ME)
[19–21], and inductive coupling [22]. While there are advantages to each approach, the physics of wireless data and power transfer imposes performance tradeoffs [23]. Using ultrasound waves to transmit both power and data has been demonstrated for miniaturized ‘Stimdust’ motes [14]; however, ultrasound impedance mismatches between bone and tissue typically limit ultrasonic technology to soft tissue applications. In addition, because the ultrasound waves are typically focused by the transmitter, power and data transfer efficiency is sensitive to translational misalignment with the external transceiver. Likewise, the misalignment between the transmitter and the receiver coils limits the power received by the inductively coupled sub-millimeter neurostimulator reported in [22]. While misalignment has minor effects on the wireless power link of the RF implantable rectenna proposed in [16], a high operating frequency limits the amount of power that can be delivered safely to the implant. Although the magnetothermal techniques used to heat magnetic nanoparticles operate in the frequency range of a few hundred kHz where tissue absorption is low, the requirement for a relatively large magnetic field typically more than 10 mT at the location of the nanoparticles requires benchtop field generators that are not easily moved. The large size is due to the fact that these generators typically operate at kW power levels, and are often water-cooled [17, 18].

Magnetolectrics is a promising solution for millimeter-sized bioelectronic devices due to the large power density and ability to operate with low amplitude magnetic fields (<10 mT) at frequencies in the 100–500 kHz band where tissue absorption is low [24]. This technology utilizes a bi-layer thin film of magnetostriective and piezoelectric materials that transduce the magnetic field energy to electric energy that can be used to power implanted electronics or stimulate nearby tissues. For example, a mm-sized ME film activated using a low amplitude and low-frequency magnetic field has been used to successfully provide therapeutic deep brain stimulation (DBS) in a freely moving rodent model for Parkinson’s disease [19]. Exploiting the CMOS technology, the first programmable neural implant leveraging the ME effect (MagNI) has been proposed in [20, 21, 25]. MagNI has a miniaturized volume of 8.2 mm³ and can deliver programmable bi-phasic current stimulation for different neurostimulation applications. ME micro-resonators operating at GHz frequencies can also be used to power ultra-small low-power devices [26, 27].

While proof-of-principle ME technologies show promise for wireless bioelectronics, many applications require a portable system that includes a wearable solution for data and power transfer. For instance, the spinal cord stimulator used for chemotherapy-induced pain could need up to 6–12 h of use per day [28]. Likewise, patients must use an auricular vagus nerve stimulator (VNS) used for depression and epilepsy treatment [29] and chronic pain [30] daily for at least 3–4 sessions.

To design a wearable system for ME implants, it is important to understand the working principles of both the transmitter and receiver and the design challenges associated with the coupling between them. Also, one should take into account the misalignment issues that are inevitable due to relative body motion, the movement of the device inside the body, and the difficulty that comes with patients wearing the transmitter belt to align the system properly. Moreover, since ME technology utilizes magnetic fields for power transfer, it is important to ensure that the field exposure has no adverse effects on the user’s health.

In our previous work [20, 21], we have proposed a conceptual design for a transmitter system that can be assembled in a wearable belt and power ME implants for spinal cord stimulation (SCS) applications. In this paper, we demonstrate a prototype of a battery-powered wearable system capable of generating a low-amplitude (~1 mT) and low-frequency (~100 kHz) magnetic field sufficient to generate several mW of power in millimeter-sized ME implant at a distance up to 4 cm. We first present the receiver and transmitter design theory and compare the simulation results to the experimental results. We then show the experimental results of the overall system performance at different distances, and translational misalignments. To validate the efficacy of our system in an in vivo environment, we demonstrate its ability to electrically stimulate the sciatic nerve of a rat with a transmitter-to-receiver distance of 4 cm. We further verify the system’s compliance with the IEEE C95.1-2019 safety standard by using COMSOL multiphysics software to model the brain and study the effects of magnetic field exposure on the implant’s surrounding tissue.

2. System overview

Here we describe a proof-of-concept wearable wireless power transfer (WPT) system for Magnetoelectric-powered Bio ImplanT or ‘ME-BIT’ (figure 1). We define these general ME-powered implants as having a ME material to harvest data and power, and a rectifier circuit (figures 1(b) and (d)). To power these millimeter-sized bioelectronic implants we designed a light-weight transmitter that combines custom drive electronics, wire coil, batteries, and a Bluetooth module integrated into a wearable belt as shown in figure 1(c). This transmitter system weighs less than 0.5 lbs and can generate a sufficient magnetic field to power the ME-BIT at an implantation depth of up to 4 cm.

In addition to providing power to the implant, this system can modulate the amplitude and frequency of the field to send data to the digitally programmable ME-BIT for neural interfaces ‘MagNI’
or to control the stimulation waveform of analog ME-BIT neural simulators [19]. Moreover, the same system can be used to power the ME-BITs used in different neurostimulation applications including the DBS, VNS, and SCS by adjusting the transmitter coil position in the head, neck, and back respectively (figure 1(a)). We will discuss the receiver and transmitter characteristics and design specifications in the following sub-sections.

2.1. Receiver

Our ME-BIT utilizes a thin bilayer film of two smart materials, Metglas (magnetostrictive) and PZT-5 (piezoelectric), with the two layers bonded using epoxy as shown in figure 2(a). The film length, width, Metglas layer thickness, and PZT-5 layer thickness are denoted by \(l, w, t_m, \) and \(t_p \) respectively. The working principle depends on the material behavior of changing its properties in response to external stimuli like a magnetic field, electric field, or mechanical stress.

Applying an alternating magnetic field \(H_{ac} \) along the longitudinal direction of the Metglas layer excites a longitudinal mechanical strain. Due to the nonlinear characteristics of the magnetostrictive material, a significant mechanical strain can only develop when an additional bias field \(H_{dc} \) is applied [31]. An optimal \(H_{dc} \) would shift the operating point of the Metglas layer to the inflection point of the magnetic field-strain curve at which the derivative of mechanical strain with respect to the magnetic field is maximum as shown in figure 2(b) [32]. Mechanical coupling between the layers leads to the transfer of strain from the Metglas layer to the PZT-5 layer through the interfacial epoxy layer. This coupling induces an alternating electric voltage across the laminate's thickness. The transduction of the magnetic energy to electric energy through the elastic coupling between the two laminates is what we refer to as the ME effect.

For WPT applications, it is important to quantify the electric energy that can be harvested by the receiver in response to a certain magnetic field as well as evaluating the transduction efficiency and the parameters affecting it. The electric energy harvested by the ME transducer depends on the ME coupling between the two laminates which is usually evaluated using the ME voltage coefficient \(\alpha \). \(\alpha \) is defined as the change in the film’s output electric voltage \(V \) in response to a change in the applied magnetic field \(H_{ac} \) such that:

\[
\alpha = \frac{dV}{dH_{ac}}. \tag{1}
\]

According to the equivalent circuit model developed in [33, 34] and depicted in figure 2(c), the open circuit ME voltage coefficient is expressed as:
The mechanical impedance is mainly a function of the mechanical quality factor Q, the resonant frequency $\omega_r = \frac{f_r}{2\pi}$ and $Z = Av\rho$ given that the cross-sectional area $A = A_1 + A_2$ where A_1, A_2 represents the cross-sectional area of the PZT-5 and Metglas laminates respectively, the geometric ratio $n = \frac{A_1}{A_1 + A_2} = \frac{l_1}{l_1 + l_2}$, the average density $\rho = \frac{\rho_p + (\rho_p/\rho_m)(k/\pi)}{A_1 + A_2}$ and the sound velocity $v = \frac{1}{\sqrt{\frac{\rho_m}{\rho_p}}}$. All material constants used to calculate the ME coupling coefficient are defined and listed in table 1.

2.1.1. Factors affecting ME voltage coefficient

We study the ME-transducer geometric and fabrication properties that affect the ME coupling hence the transduction efficiency of the ME receiver. Specifically we find that the ME voltage coefficient is independent of the area of the film and increases as the interface coupling factor k, the thickness ratio a, or the mechanical quality factor Q increases. Moreover, the resonance frequency of the film is shifted to the right as the length, interface coupling factor, or thickness ratio decreased whereas it is independent of the mechanical quality factor.

Our modeling shows that the ME voltage coefficient is a function of the frequency, material properties, and geometry. The ME coupling is also affected by the interfacial epoxy layer characteristics. As reported in [35], the ME coupling coefficient decreases as the thickness of the bonding layer increases, or Young’s modulus of the bonding material decreases. To account for this imperfect coupling, authors in [34] introduced an interface coupling factor k, $0 < k < 1$, defined as the percentage of the mechanical stress transferred from the magnetostrictive layer to the piezoelectric layer.

Table 1. Material properties of Metglas and PZT-5 laminates.

	PZT-5	Metglas
Material density $kg m^{-3}$	7800	7180
(ρ_p, ρ_m)		
Elastic compliance $m^2 N^{-1}$	19.2×10^{-12}	9.09×10^{-12}
(δ_p, δ_m)		
Piezoelectric/piezomagnetic coefficient V/Oe	-190×10^{-12}	8.25×10^{-9}
(d_p, d_m)		
Relative permittivity/ permeability (ε_p, μ_m)	1800	45000

\[
\alpha = \frac{\phi_p}{2\pi C_0} \frac{\phi_m}{Z_m},
\]

where $\phi_m = w t_m d_{m,31}$, and $\phi_p = w d_{p,31}$ are the magneto-elastic and electro-elastic coupling factors, C_0 is the clamping capacitance of the PZT-5 laminate, and Z_m represents the mechanical impedance.

Figure 3 depicts the general trends of the calculated ME voltage coefficient considering the variation of the area, quality factor, interface coupling factor, and thickness ratio $a = l_p/l_m$. To begin with, the film is assumed to have a 6 mm \times 3 mm perfectly coupled Metglas and PZT-5 layers with a thickness ratio of 5.2, and a quality factor of 35.

The ME voltage coefficient is:

2.1.1.1. Independent of area

In figure 3(a), the aspect ratio of the film l/b is fixed to 3, and the length is varied from 4 to 8 mm. While the ME voltage coefficient is not affected by changes in the film area, the resonant frequency decreases as the length increases. Although both length and width are changed, the resonant frequency of the fundamental mode is only determined by the length as defined earlier ($\omega_r = \frac{2\pi f_r}{f}$).

2.1.1.2. Increased with larger interface coupling factors

The bonding layer characteristics significantly affect the film performance as shown in figure 3(b), where a stronger coupling between the magnetostrictive and piezoelectric layers results in a higher ME voltage coefficient. However, achieving perfect coupling is limited by the available bonding materials and the fabrication process.

2.1.1.3. Increased with larger piezoelectric to magnetostrictive thickness ratios

The ME voltage coefficient is also significantly affected by the ratio between the two laminate thicknesses as shown in figure 3(c). A thicker piezoelectric layer compared to the magnetostrictive layer is more desirable.
2.1.1.4. Increased with larger mechanical quality factors
A larger mechanical quality factor results in stronger ME coupling as depicted in figure 3(d). This factor is usually used to quantify the strain amplification in the ME laminate and is defined as the ratio between the resonant frequency and the 3 dB frequency bandwidth [36]. As can be seen for films with the same resonant frequency, the ones with higher Q have narrower bandwidth.

2.1.2. Factors affecting the ME receiver impedance
In addition to the voltage profile of the ME film, it is important to study the impedance characteristics to optimize the output power and better match the film with the load impedance. Here we find that, at the resonance frequency, the film impedance is dominated by the resistive part and its magnitude mainly depends on the material properties and film’s geometry.

The equivalent impedance of the film \(Z_T \) can be defined as the parallel combination of the mechanical impedance \(Z_m \) reflected at the electric part and the clamping capacitor \(C_0 \) impedance as shown in figure 2(d):

\[
Z_T = Z_m//\frac{1}{j\omega C_0}.
\]

(3)

Figure 4 shows the calculated real and imaginary parts of the equivalent impedance of the film defined as the base case previously which has a resonant frequency of 242 kHz. As can be seen, the film impedance is dominated by the real component of the impedance at the resonant frequency, while the imaginary part is more significant off-resonance. Since our system will operate at the resonant frequency to ensure efficient performance, we focused on the characteristics of the real part of the equivalent impedance.

Our model shows that the real impedance is also a function of the frequency, material properties, and geometry. The real impedance magnitude:

2.1.2.1. Decreases with width and increases with aspect ratio
In figure 5(a) the length of the film is fixed to 6 mm whereas the width is changed such that the aspect ratio varies from 1 to 5. Clearly, the resonant frequency does not significantly change since the length is fixed (figure 5(a)), however, the magnitude of the real impedance decreases as the width increases. Also, the impedance is linearly proportional to the aspect ratio.

2.1.2.2. Increases with larger interface coupling factors
The interface coupling factor affects both the impedance amplitude and the resonance frequency as shown in figure 5(b), a stronger coupling results in larger impedance and a lower resonance frequency.

2.1.2.3. Increases with larger piezoelectric to magnetostrictive thickness ratios
As shown in figure 5(c), the thickness ratio can noticeably change the impedance and frequency such that a thicker PZT layer with respect to the Metglas layer results in a larger impedance magnitude and lower resonance frequency.

2.1.2.4. Increases with larger mechanical Q factor
As can be seen in figure 5(d), the magnitude of the real impedance is linearly proportional to the magnitude of the mechanical quality factor, whereas the resonance frequency is independent of Q.

2.2. Transmitter
To generate sufficient magnetic fields to power the implanted ME-BIT, we designed a battery-powered transmitter system as shown in figure 6(a). A rechargeable lithium-ion battery connected to an
H-bridge converter drives a pulsed alternating current through a resonant circuit of an inductive coil and capacitor bank in series. Three parameters characterize the coil’s pulsed current: the frequency, duty, and pulse frequency as shown in figure 6(b). These parameters determine the magnetic field generated by the coil which directly affects the voltage induced at the ME transducer terminal. The user can set these parameters using a mobile application that communicates them through Bluetooth to the driver circuit that combines an HM-19 Bluetooth module, Teensy LC microcontroller, and custom electronics to generate the H-bridge switching signals accordingly.

To power implanted devices using a wearable system, one needs to efficiently generate a sufficient magnetic field at a distance from the coil surface, therefore, the design of the transmitter coil is specially important. For the transmitter coil, we tested using a circular coil that can be wrapped around the patient’s waist and its corresponding magnetic field with 10 A excitation current. We built a 3D model of both coils using COMSOL multiphysics and computed the magnetic field norm values using the AC/DC module as shown in figure 7. The circular coil has a major radius of 15 cm whereas the spiral coil outer radius is 2.8 cm. For the same excitation current of 10 A, the spiral coil has higher magnetic field at a distance compared to the circular coil. In addition, the spiral coil has a more compact size and superior misalignment tolerance [37–39].

The inductance of the spiral coil can be calculated as [40]:

$$L = \mu_0 N^2 \left(D_{out} + D_{in} \right) \left[\ln \left(\frac{2.46}{\gamma} \right) + 0.2 \gamma^2 \right], \quad (4)$$

where N is the turns number, D_{in} is the inner diameter, D_{out} is the outer diameter, $\gamma = \frac{D_{out} - D_{in}}{D_{out} + D_{in}}$ and μ_0 is the free space permeability $= 4\pi \times 10^{-7}$ H (m T)$^{-1}$.

As mentioned in the previous sub-section, the implanted ME-BIT is sensitive to the direction of the magnetic field and reaches a maximum response when the field lines are parallel to its long axis therefore it is critical to determine the magnetic field spatial distribution and its components to place the mote at the optimal position/orientation.

Using the model of the spiral coil shown in figure 7(a) (15 turns, 1.5 cm inner diameter, and 5.6 cm outer diameter) we studied the spatial distribution of the generated magnetic field as can be seen in figure 8, the grey arrows represent the pattern of the magnetic field lines and are proportional to the field magnitude. As shown here, the magnetic field lines are parallel to the z-direction at the center of the coil and bend toward the coil edges as the radial distance from the center increases.

We evaluated the field distribution of the magnitude of the z-, x-, and y-components at different vertical distances from the coil surface as shown in figure 9.

As can be seen, the z-component has a maximum value at the center of the coil and decays with an increase in the distance from the coil surface and the radial distance from the center. On the other hand, the x-component has a symmetric distribution around the y-axis and zero along the y-axis whereas the y-component has a symmetric distribution around the x-axis and zero along the x-axis itself. As expected, since we have a circular coil, the x and y components are of equal magnitude and the y-component distribution is shifted by 90° compared to the x-component distribution. Moreover,
the \(x \)- and \(y \)-components have a lower magnitude compared to the \(z \)-component and their maximum is shifted from the center.

3. System performance

To demonstrate that we can create a wearable system capable of powering our ME-BIT implants, we built a prototype transmitter as shown in figure 10(a). This system is powered by a set of four 3.7 V, 2000 mAh rechargeable Lithium-ion batteries as depicted in figure 10(a). The batteries are connected to the resonant circuit through an H-bridge that turns the input DC current into pulsed AC current based on the switching signals provided by the driver circuit. To generate the switching signals, the HM-19 module connected to the driver circuit receives the stimulus parameters set by the user through a mobile application and communicated via Bluetooth. Based on the received parameters, the Teensy LC microcontroller and custom electronics determine the timing and voltage levels to generate the switching signals accordingly. A resonant circuit of a circular spiral coil connected in series to a capacitor is used to generate the alternating magnetic field required to activate the ME film, moreover, a permanent magnet is used to provide a bias field to ensure efficient transduction.

For the proof-of-concept ME receiver, we fabricated a 7 mm \(\times \) 3 mm bilayer film of 30 \(\mu \)m thick layer of Metglas 2605SA1 (Metglas Inc) attached using HARDMAN® epoxy to a 270 \(\mu \)m thick layer of PZT-5A4E (Piezo Inc) as shown in figure 10(c).

To measure the film ME voltage coefficient, we placed the film at the center of the spiral coil such that it is long axis is parallel to the \(z \)-axis then we measured the open-circuit voltage and magnetic field strength at different frequencies to compute the ME voltage coefficient as shown in figure 11(a). As can be seen, the film’s mechanical resonant frequency is around 222 kHz at which it has a maximum ME voltage coefficient of 0.5 V Oe\(^{-1}\). Fitting the measured data to the equivalent circuit model mentioned in section 2.2 suggests that the film has an interfacial coupling factor of 0.43 and a mechanical quality factor of 41. Figure 11(b) shows the calculated and measured real impedance of the film, at the resonance frequency, the film has a maximum resistive impedance of 1700 \(\Omega \).

To generate a magnetic field that resonates with the ME film, the pulsed current parameters are set via Bluetooth as follows: frequency = 100 Hz, pulse frequency = 222 kHz, and duty = 0.012. The pulse frequency is set based on the film resonant frequency, while the frequency and the duty values can be changed based on the application. For the resonant circuit, a coil with the same features mentioned in section 2.1 (\(D_{in} = 1.5 \text{ cm} \), \(D_{out} = 5.6 \text{ cm} \), \(N = 15 \)) is made using 1 mm thick Litz wires to minimize the skin effect. The measured inductance of the coil is 7.3 \(\mu \)H, hence, a 70 nF capacitor is used. This setting results in 54 mA DC current being drawn from the batteries, therefore, the system can operate continuously for up to 37 h.

As mentioned in previous sections, the dominant component of the magnetic field at the coil’s center is the \(z \)-component, so we placed the film at the center of the coil such that its longer axis is parallel to the \(z \)-axis. In addition to the AC magnetic field, a permanent magnet is used to provide a DC bias field of 3 mT. We note that for some surgical approaches it may be preferred to place the long axis of the film parallel to the skin rather than perpendicular as described here. In that case, the film can still be powered by simply shifting the coil so that the film is not directly under the coil center. In that case the fringing \(x \) or \(y \) components of the magnetic field can be used to power devices that lie parallel to the skin’s surface figure 9(a).

To measure the maximum power, the film is connected to a resistive load of 1700 \(\Omega \), the load voltage is measured and the load power is computed as \(P = \frac{V^2}{R} \) as shown in figure 12(a). As the distance from the coil increases, the magnetic field decays resulting in lower output power from the ME film. Nevertheless, we can achieve an output power of 1.8 mW at a 3 cm distance where the applied magnetic field at that distance is equal to approximately 0.5 mT. Although for some applications the load impedance can not match the optimal value, an impedance matching network can be used to deliver the maximum available power.

The normalized value of the film’s output voltage, power, applied magnetic field and the square of the field as a function of the vertical distance are shown in figure 12(b). As mentioned in section 2.2, the voltage is a linear function of the applied magnetic field whereas the power is proportional to the square of the magnetic field.
The efficiency of the WPT is shown in figure 13(a). As can be seen, the efficiency has a maximum value of 1% at the coil surface and decays as the distance between the transmitter coil and ME film increases.

To measure how robust the power transfer efficiency is to positional misalignments we measured the film’s output voltage for different displacements relative to the optimal coupling position. Figure 13(b) shows the normalized value of the z component of the magnetic field and the output voltage of the film as it is shifted radially from the coil center at different vertical distances from the coil. The long axis of the film is maintained parallel to the z-axis, in this case, the output voltage of the film is directly related to the z component of the magnetic field which decays radially as mentioned previously. We find that 80% and 50% of the maximum voltage can still be maintained at the film terminal with 10 and 20 mm shifts, respectively (figure 13(b)). This misalignment tolerance is due to the fact that the voltage of the ME film is directly proportional to the applied ac magnetic field as mentioned in section 2.1, and that the spiral coil has a high magnetic field uniformity as shown in figure 7.

Moreover, due to the flux concentration properties of the Metglas layer, the ME power link shows improved angular misalignment tolerance compared to inductive coupling as reported in [21].

4. In vivo electrical stimulation for sciatic nerve

As a proof-of-concept, we demonstrate that our wireless transmitter can power an ME film at a distance of 4 cm in phosphate buffer solution (PBS) with enough
energy to stimulate rat sciatic nerve in-vivo. Demonstrating the ability to power an implant at a depth of 4 cm in a rodent model is challenging due to the fact that most nerve targets are with 1 cm of the skin's surface. Therefore, to characterize the in vivo transmitter performance at an implant depth of 4 cm, which is relevant for human applications, we used the experimental setup shown in figure 14(a). The ME film encapsulated with 20 µm of Parylene-C is submerged in PBS at a distance of 4 cm from a transmitter coil. The film is connected to platinum electrodes that are placed into contact with the sciatic nerve of the rat. Since neurons are unresponsive to the high frequency ME voltages, we incorporated a commercial diode in parallel with the ME film to rectify the signal and modulated the field to a lower frequency (as shown previously in [19]). By pulsing the applied alternating magnetic field we were able to deliver a rectified voltage envelop of 1 Hz over the 222 kHz carrier frequency that was tuned to the film resonance (figures 14(b) and (c)). When we tuned the carrier frequency to the ME resonance we observed leg kick, which conformed that the voltage generated by the ME film was able to stimulate the nerve. Furthermore, we recorded the resulting compound muscle action potentials through EMG recording needles placed in the plantar muscles of the rat foot as shown in figure 14(d), blue line). To confirm that the stimulation was the result of the voltage produced by the ME film, we removed the DC bias magnet, which reduces the amplitude of the ME voltage. In the absence of the DC bias we observed no EMG response of leg kick (figure 14(d), red line).

5. Safety analysis

Comparing the magnetic and electric fields generated by our transmitter to the IEEE Std C95.1-2019 exposure limits we find that our transmitter is well within the range of safe exposure levels. Transmitting a time-varying magnetic field through the conductive biological tissues will induce an electric field according to Maxwell's equations. The induced electric field drives an electrical current through the tissue resulting in heat dissipation that could be detrimental to the tissue’s health. The generated heat depends on two frequency-dependent properties of the tissue: the dielectric permittivity and the electrical conductance.

Given the potential of magnetic and electric fields to heat tissue, the IEEE Std C95.1-2019 set the limits of the electric and magnetic field exposure in the 0 Hz–300 GHz that would ensure safe operation and protect against adverse health effects in humans [41]. The compliance with the standard implies meeting the electrostimulation limits when working below 100 kHz, the thermal limits above 5 MHz, and both limits when working in the transition region between 100 kHz and 5 MHz. The electrostimulation limit is set by the dosimetric reference limit that is expressed as the electric field in the transition region, whereas the thermal limit is expressed by the specific absorption rate (SAR) that is defined as [41]:

$$\text{SAR} = \frac{\sigma |E|^2}{\rho},$$

where σ is the conductivity of the tissue (S m$^{-1}$), ρ is the density of the tissue (kg m$^{-3}$), and E is the RMS electric field strength (V m$^{-1}$).

Since our system works in the 100 s kHz range, both the electric field and the SAR limits should be met to ensure safe operation. To calculate these values, we modeled the seven-layers brain model reported in [42] using COMSOL. The model includes seven distinct layers of the brain tissues: skin, fat, cortical bone, dura, cerebrospinal fluid (CSF), grey matter, and white matter as shown in figure 15(a).

For a ME film with a length in the range of 3–10 mm, the resonance frequency is expected to be within the 100–500 kHz range as shown in figure 3, therefore, we analyzed the system’s compliance with the safety limits at this range. The properties of the tissues at these frequencies are listed in table 4.
Figure 15. (a) Seven-layer brain tissue model, (b) RMS values of the magnetic field for a vertical cross-section at $x = 0$ such that 0.5 mT peak value is generated at 3 cm, (c) Max RMS electric field associated with magnetic field in (b) across the different brain tissues at 100, 250, 500 kHz (solid lines), IEEE Std C95.1-2019 electric field safety limits (dashed lines).

As reported in the IEEE Std C95.1-2019, the limit of the SAR in unrestricted environment is 2 W kg$^{-1}$, whereas the limit of the electric field for the head tissues for persons in unrestricted environment is given by:

$$E(f) = 2.94 \times 10^{-4} f,$$

where f is the frequency of the applied magnetic field.

Figure 15(a) shows the model of the transmitter coil and brain tissues with a transverse area of 100 mm \times 100 mm. The magnetic fields, electric fields, and the average SAR are computed for the different layers using the magnetic and electric field modules available in COMSOL. Based on this model, we computed the magnetic field distribution through the different tissues such that a ~ 0.4 mT peak value is generated at 4 cm. Figure 15(b) depicts the distribution of the RMS values of the magnetic field for a vertical cross-section at $x = 0$, at which we expect maximum field strength, moreover, the maximum values at each layer are listed.

The generated electric field associated with this magnetic field strength depends on the operating frequency. Assuming the worst case scenario which is continuous exposure of magnetic field, the maximum value at each layer of the RMS electric field is shown in figure 15(c), the dashed lines represent the safety limit at each frequency, as can be seen, the electric field values are lower than the safety limits for all frequencies. The values of the SAR averaged over 10 g for each layer are listed in table 2. All values are below the safety limit of 2 W kg$^{-1}$. It can be noted that the largest SAR value is for the CSF layer due to its high conductivity across the different frequencies whereas the largest electric field is generated at the skin layer as it is the closest to the coil. Further, to determine the maximum magnetic field values that can be transferred safely through the tissue in this frequency range we computed the electric field value at the skin layer and the SAR values at the CSF layer for different magnetic field exposure. As can be seen in figure 16, a maximum value of 8 mT can be generated at the coil surface and transmitted through tissue safely.

6. Conclusion

This work demonstrates a proof of principle lightweight, battery-powered wearable transmitter system that can power a miniaturized ME neural stimulator and has a battery life of 37 h. The working principle, theory, and design of the transmitter and receiver are reported. The proposed system is capable of wirelessly powering a miniaturized 7×3 mm Metglas/PZT-5 ME receiver at a distance of 4 cm with

![Figure 16](image-url)
Table 3. Comparison with state of the art wearable systems for wireless powered implants.

Application	This work	[44]	[45]	[46]	[47]
Wireless link	Magnetoelectric	Inductive coupling	RF	Inductive coupling	Ultrasonic
Operating frequency	240 kHz	1.3 MHz	954 MHz	250 kHz	1.8 MHz
Implant size	21 mm²	350 mm²	120 mm²	113 mm²	0.56 mm²
Operating distance	4 cm	4 cm	11 cm	1 cm	1.4 cm
Power source	Battery	Battery	Signal generator and power amplifier	DC supply	Battery
WPT efficiency	1%	3.5%	8%	8%	N/A
Test model	Rat	Saline	Ovine	Air	Tissue phantom
Battery lifetime	37 h	N/A	N/A	N/A	1.25 h

enough energy to stimulate the sciatic nerve of a rat *in vivo*. Moreover, the experimental results show that the system performs well under translational misalignment. We also provide some general guidelines for how the size, composition, and quality factors of ME films affect energy harvesting performance. Compared to the state-of-the-art wearable solutions for wirelessly powered implants (table 3), our system utilizes rechargeable batteries to power the transmitter coil that generates sufficient magnetic fields to power deeply implanted miniaturized ME stimulators. Moreover, our system operates at a low-frequency range where tissue absorption of the magnetic field is negligible. Finally, using a COMSOL model of brain tissue we computed the magnetic field, electric field, and SAR values to verify the system compliance with the IEEE C95.1-2019 safety standard across the operating frequency range.

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).

Acknowledgments

The authors would like to thank Gauri Bhave for helpful discussions and proofreading. The authors thank the NIH HEAL initiative for supporting this work through Grant No. 1U18EB029353.

Appendix. Brain tissues properties

The density, relative permittivity, and conductivity of the brain tissues are listed in table 4.
Table 4. Brain tissues properties at 100, 250, 500 kHz for each layer.

Tissue	Density kg m⁻³	Frequency = 100 kHz	Frequency = 250 kHz	Frequency = 500 kHz		
	εᵣ	σ	εᵣ	σ	εᵣ	σ
Skin	1.12 × 10⁶	4.5 × 10⁻⁴	1.10 × 10⁶	1.46 × 10⁻³	1.06 × 10⁷	4.36 × 10⁻³
Fat	1.01 × 10⁶	4.34 × 10⁻²	6.78 × 10⁶	4.36 × 10⁻²	5.68 × 10⁷	4.38 × 10⁻²
Cortical bone	2.28 × 10⁶	2.08 × 10⁻²	1.97 × 10⁶	2.12 × 10⁻²	1.75 × 10⁷	2.22 × 10⁻²
Dura	3.26 × 10⁶	5.02 × 10⁻¹	2.82 × 10⁶	5.02 × 10⁻¹	2.64 × 10⁷	5.03 × 10⁻¹
CSF	1.09 × 10⁶	2	1.09 × 10⁶	2	1.09 × 10⁷	2
Grey matter	3.22 × 10⁶	1.34 × 10⁻¹	1.75 × 10⁶	1.43 × 10⁻¹	1.19 × 10⁷	1.52 × 10⁻¹
White matter	2.11 × 10⁶	8.18 × 10⁻²	1.11 × 10⁶	8.85 × 10⁻²	7.12 × 10⁷	9.47 × 10⁻²

References

[1] Vitale F and Litt B 2017 Bioelectronics: the promise of leveraging the body’s circuitry to treat disease Bioelectron. Med. 1 3–7
[2] 2017 Durable miniaturized bioelectronics Nat. Biomed. Eng. 1 0053
[3] 2019 Fitter in-body bioelectronics Nat. Biomed. Eng. 3 1–2
[4] Lorach H et al 2015 Photovoltaic restoration of sight with high visual acuity Nat. Med. 21 476–82
[5] Gianchetti M, Laschi C, Menciassi A and Dario P 2018 Biomedical applications of soft robotics Nat. Rev. Mater. 3 143–53
[6] Afanasenka D et al 2020 Rapid prototyping of soft bioelectronic implants for use as neuromuscular interfaces Nat. Biomed. Eng. 4 1010–22
[7] Bhave G, Chen J C, Singer A, Sharma A and Robinson J T 2021 Distributed sensor and actuator networks for closed-loop bioelectronic medicine Mater. Today 46 1235–35
[8] Fan B and Li W 2015 Miniaturized optogenetic neural implants: a review Lab Chip 15 3838–55
[9] Das R, Moradi F and Heidari H 2020 Biointegrated and wirelessly powered implantable brain devices: a review IEEE Trans. Biomed. Circuits Syst. 14 343–58
[10] Deer T R et al 2020 A review of the bioelectric implications of stimulation of the peripheral nervous system for chronic pain conditions Bioelectron. Med. 6 9
[11] Williams N R and Okum M S 2013 Deep brain stimulation (DBS) at the interface of neurology and psychiatry J. Clin. Invest. 123 4546–56
[12] Cocchi L and Zalesky A 2018 Personalized transcranial magnetic stimulation in psychiatry Biol. Psychiatry 3 731–41
[13] Deer T R and Stewart C D 2008 Complications of spinal cord stimulation: identification, treatment and prevention Pain Med. 9 S93–S101
[14] Pfech D K et al 2020 A wireless millimetre-scale implantable neural stimulator with ultrasonically powered bidirectional communication Nat. Biomed. Eng. 4 207–22
[15] Muejeeb-U-Rahman M, Adalain D, Chang C-F and Scherer A 2015 Optical power transfer and communication methods for wireless implantable sensing platforms J. Biomed. Opt. 20 095012
[16] Liu C, Guo Y-X, Sun H and Xiao S 2014 Design and safety considerations of an implantable rectenna for far-field wireless power transfer IEEE Trans. Antennas Propag. 62 5798–806
[17] Munsbi R, Qadri S M, Zhang Q, Castellanos Rubio L, del Pino P and Pralle A 2017 Magnetothermal genetic deep brain stimulation of motor behaviors in awake, freely moving mice eLife 6 e27069
[18] Chen R, Romero G, Christiansen M G, Mohr A and Anikeeva P 2015 Wireless magnetothermal deep brain stimulation Science 347 1477–80
[19] Singer A et al 2020 Magnetoelectric materials for miniature, wireless neural stimulation at therapeutic frequencies Neuron 107 631–43
[20] Yu Z, Chen J C, Avants B W, He Y, Singer A, Robinson J T and Yang K 2020 34.3 An 8.2 mm³ implantable neurostimulator with magnetoelectric power and data transfer 2020 IEEE Int. Solid-State Conf. (ISSCC) pp 510–12
[21] Yu Z, Chen J C, Alrashdan F T, Avants B W, He Y, Singer A, Robinson J T and Yang K 2020 MagniLe, a magnetoelectrically powered and controlled wireless neurostimulating implant IEEE Trans. Biomed. Circuits Syst. 14 1241–52
[22] Freeman D K et al 2017 A sub-millimeter, inductively powered neural stimulator Front. Neurosci. 11 659
[23] Singer A and Robinson J T 2021 Wireless power delivery techniques for miniature implantable bioelectronics Adv. Healthcare Mater. 2010664
[24] Thimot J and Shepard K L 2017 Bioelectronic devices: wirelessly powered implants Nat. Biomed. Eng. 1 1–2
[25] Yu Z, Chen J C, He Y, Alrashdan F T, Avants B W, Singer A, Robinson J T and Yang K 2020 Multi-site bio-stimulating implants magnetoelectrically powered and individually programmed by a single transmitter 2021 IEEE Custom Integrated Conf. (CICC) pp 1–2
[26] Nan T et al 2017 Acoustically actuated ultra-compact NEMS magnetoelectric antennas Nat. Commun. 8 296
[27] Zaeimabadi M et al 2021 Ultra-compact Dual-band smart NEMS magnetoelectric antennas for simultaneous wireless energy harvesting and magnetic field sensing Nat. Commun. 12 3141
[28] Cata J P, Cordella J V, Burton A W, Hasenbusch S J, Weng H-R and Dougherty P M 2004 Spinal cord stimulation relieves chemotherapy-induced pain: a clinical case report J. Pain Symptom Manage. 27 72–8
[29] Kanias E et al 2019 Current directions in the auricular vagus nerve stimulation II—an engineering perspective Front. Neurosci. 13 772
[30] Kampschür S, Kanias E and Széles J C 2013 New approaches in multi-punctual percutaneous stimulation of the auricular vagus nerve 2013 6th Int. IEEE/EMBS Conf. on Neural Engineering (NER) pp 263–6
[31] Dapino M J 2004 On magnetostriuctive materials and their use in adaptive structures Struct. Eng. Mech. 17 303–29
[32] Tu C et al 2019 Mechanical-resonance-enhanced thin-film magnetoelectric heterostructures for magnetometers, mechanical antennas, tunable RF inductors and filters Materials 12 2259
[33] Dong S, Li J-F and Viehland D 2006 Magnetoelectric coupling, efficiency and voltage gain effect in piezoelectric-piezomagnetic laminate composites J. Mater. Sci. 41 97–106
[34] Truong B D 2020 Fundamental issues in magnetoelectric transducers: magnetic field sensing versus wireless power transfer systems IEEE Sens. J. 20 5322–8
[35] Filippov D A, Galichyan T A and Latelin V M 2014 Influence of an interlayer bond on the magnetoelectric effect in the
layered magnetostrictive-piezoelectric structure Appl. Phys. A 116 2167–71

[36] Yu H, Zeng M, Wang Y, Wan J G and Liu J-M 2005 Magnetoelastic resonance-bandwidth broadening of Terfenol-D/epoxy-Pb(Zr,Ti)O3 bilayers in parallel and series connections Appl. Phys. Lett. 86 032508

[37] Imura T 2020 Magnetic resonance coupling phenomenon and basic characteristics Wireless Power Transfer: Using Magnetic and Electric Resonance Coupling Techniques ed T Imura (Singapore: Springer) pp 71–92

[38] Orekan T, Zhang P and Shih C 2018 Analysis, design and maximum power-efficiency tracking for underwater wireless power transfer IEEE Trans. Emerg. Sel. Top. Power Electron. 6 843–54

[39] Sampath J P K, Alphones A and Shimasaki H 2016 Coil design guidelines for high efficiency of wireless power transfer (WPT) 2016 IEEE Region 10th Conf. (TENCON) pp 726–9

[40] Nguyen M Q, Hughes Z, Woods P, Seo Y-S, Rao S and Chiao J-C 2014 Field distribution models of spiral coil for misalignment analysis in wireless power transfer systems IEEE Trans. Microw. Theory Tech. 62 920–30

[41] IEEE Standard C95.1-2019 2019 IEEE standard for safety levels with respect to human exposure to electric, magnetic, and electromagnetic fields, 0 Hz to 300 GHz (Revision of IEEE Std C95.1-2005/Incorporates IEEE Std C95.1-2019/Cor 1-2019) pp 1–312

[42] Hout S and Chung J-Y 2019 Design and characterization of a miniaturized implantable antenna in a seven-layer brain phantom IEEE Access 7 162062–9

[43] Hasgall P, Di Gennaro F, Baumgartner C, Neufeld E, Gosselin M, Payne D, Klingenberg A and Kuster N 2015 IT’IS database for thermal and electromagnetic parameters of biological tissues Version 3.0

[44] Seo Y-S, Hughes Z, Isom D, Nguyen M Q, Deb S, Rao S and Chiao J-C 2012 Wireless power transfer for a miniature gastrostimulator 2012 42nd European Conf. pp 229–32

[45] Asif S M, Iftikhar A, Hansen J W, Khan M S, Ewert D L and Braaten B D 2019 A novel RF-powered wireless pacing via a rectenna-based pacemaker and a wearable transmit-antenna array IEEE Access 7 1139–48

[46] Basar M R, Ahmad M Y, Cho J and Ibrahim F 2018 An improved wearable resonant wireless power transfer system for biomedical capsule endoscope IEEE Trans. Ind. Electron. 65 7772–81

[47] Piech D K, Kay J E, Boser B E and Maharbiz M M 2017 Rodent wearable ultrasound system for wireless neural recording 2017 39th Annual Int. Conf. IEEE Engineering in Medicine and Biology Society (EMBC) pp 221–5