Data Article

Microstructure and chemical analysis data of polyurethane-silver nanoparticles/graphene nanoplates composite fibers

Seung-Woo Kim, Sung-Nam Kwon**, Seok-In Na*

Professional Graduate School of Flexible and Printable Electronics, Department of Flexible and Printable Electronics, Polymer Materials Fusion Research Center, Chonbuk National University, Jeonju-si, 54896, South Korea

Abstract

In this data article, we provide field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray spectroscopy (EDS) images of wet-spun polyurethane (PU)-silver nanoparticles (AgNPs)/graphene nanoplatelets (GNPs) composite fibers according to the content of AgNPs and GNPs. In addition, microstructural changes of PU-AgNPs/GNPs composite fibers due to heat treatment at various temperatures are provided. The data collected in this article is directly related to our research article “Stretchable and Electrically Conductive Polyurethane- Silver/Graphene composite fibers prepared by wet-spinning process” [1].

© 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Data

The data presented in this article consists of a series of FE-SEM images of PU-AgNPs/GNPs composite fibers with AgNPs and GNPs content and their thermal treated samples. In addition, surface and cross-sectional EDS images of PU-AgNPs/GNPs composite fibers were provided. As shown in Figs. 1–4, we prepared the wet-spun PU-AgNPs composite fibers with 30, 40, and 50 vol% AgNPs and observed the surface microstructure changes of PU-AgNPs composite fibers with various content of AGNPs and GNPs were prepared by wet-spinning. A 1 cm fiber was selected randomly and observed their surface morphology and chemical composition.

Fig. 5 shows the microstructure and EDS mapping images of the wet-spun PU-AgNPs/GNPs composite fibers with 40 vol% AgNPs and 2.5, 5.0, 7.5, and 10 vol% GNPs. As shown in Fig. 5, the It is observed that the AgNPs uniformly distributed in the PU-AgNPs/GNPs composite system by EDS analysis of Ag element. The EDS chemical element mapping images of the PU-AgNPs composite fiber shows that the AgNPs were uniformly dispersed in the entire system. Because C element mapping images represents carbon in both the PU matrix and GNPs, it is difficult to distinguish C signal of GNPs directly from C element mapping.

2. Experimental design, materials and methods

The PU-AgNPs/GNPs composite fibers were prepared by wet-spinning method [1]. And then, the PU-AgNPs/GNPs composite fibers were thermally cured at 90, 110, 130, and 150 °C for 10 minutes. In order to perform surface analysis, 1 cm of fiber was selected randomly, and the microstructure of the wet-spun PU-AgNPs and PU-AgNPs/GNPs composite fibers were examined using field emission scanning electron microscopy (FE-SEM; JSM–7100F, Jeol). The EDS chemical element mapping images were obtained simultaneously using energy dispersive X-Ray spectroscopy (EDS) interconnected with FE-SEM instrument.
Fig. 1. Surface FE-SEM and EDS images of the wet-spun PU-AgNPs composite fibers with the various AgNPs contents and thermal treated at 90 °C.

Fig. 2. Surface FE-SEM and EDS images of the wet-spun PU-AgNPs composite fibers with the various AgNPs contents and thermal treated at 110 °C.
Fig. 3. Surface FE-SEM and EDS images of the wet-spun PU-AgNPs composite fibers with the various AgNPs contents and thermal treated at 130 °C.

Fig. 4. Surface FE-SEM and EDS images of the wet-spun PU-AgNPs composite fibers with the various AgNPs contents and thermal treated at 150 °C.
Acknowledgements

This work was supported by the Pioneer Research Center Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (MSIP) (NRF-2013M3C1A3065528), the Ministry of Science, ICT and Future Planning of the republic of Korea and the Institute of Information & communications Technology Promotion of Korea (R7520-16-0010), the Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education (NRF-2017R1D1A1B03035797), and the selection of a research-oriented professor of Chonbuk National University in 2019.

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

[1] Seung-Woo Kim, Sung-Nam Kwon, Seok-In Na, Stretchable and Electrically Conductive Polyurethane- Silver/Graphene composite fibers prepared by wet-spinning process, Compos. B Eng. 167 (2019) 573–581.