Characterization of a Family with Rare Deletions in CNTNAP5 and DOCK4 Suggests Novel Risk Loci for Autism and Dyslexia

Alistair T. Pagnamenta, Elena Bacchelli, Maretha V. de Jonge, Ghazala Mirza, Thomas S. Scerri, Fiorella Minopoli, Andreas Chiocchetti, Kerstin U. Ludwig, Per Hoffmann, Silvia Paracchini, Ernesto Lowy, Denise H. Harold, Jade A. Chapman, Sabine M. Klauck, Fritz Poustka, Renske H. Houben, Wouter G. Staal, Roel A. Ophoff, Michael C. O’Donovan, Julie Williams, Markus M. Nöthen, Gerd Schulte-Körne, Panos Deloukas, Jiannis Ragoussis, Anthony J. Bailey, Elena Maestrini, Anthony P. Monaco, and the International Molecular Genetic Study Of Autism Consortium

Background: Autism spectrum disorders (ASDs) are characterized by social, communication, and behavioral deficits and complex genetic etiology. A recent study of 517 ASD families implicated DOCK4 by single nucleotide polymorphism (SNP) association and a microdeletion in an affected sibling pair.

Methods: The DOCK4 microdeletion on 7q31.1 was further characterized in this family using QuantiSNP analysis of 1M SNP array data and reverse transcription polymerase chain reaction. Extended family members were tested by polymerase chain reaction amplification of junction fragments. DOCK4 dosage was measured in additional samples using SNP arrays. Since QuantiSNP analysis identified a novel CNTNAP5 microdeletion in the same affected sibling pair, this gene was sequenced in 143 additional ASD families. Further polymerase chain reaction-restriction fragment length polymorphism analysis included 380 ASD cases and suitable control subjects.

Results: The maternally inherited microdeletion encompassed chr7:110,663,978-111,257,682 and led to a DOCK4-IMMP2L fusion transcript. It was also detected in five extended family members with no ASD. However, six of nine individuals with this microdeletion had poor reading ability, which prompted us to screen 606 other dyslexia cases. This led to the identification of a second DOCK4 microdeletion co-segregating with dyslexia. Assessment of genomic background in the original ASD family detected a paternal 2q14.3 microdeletion disrupting CNTNAP5 that was also transmitted to both affected siblings. Analysis of other ASD cohorts revealed four additional rare missense changes in CNTNAP5. No exonic deletions of DOCK4 or CNTNAP5 were seen in 2091 control subjects.

Conclusions: This study highlights two new risk factors for ASD and dyslexia and demonstrates the importance of performing a high-resolution assessment of genomic background, even after detection of a rare and likely damaging microdeletion using a targeted approach.

Key Words: Autistic, CNTNAP5, CNV, DOCK4, dyslexia, neurexin

Autism spectrum disorders (ASDs) are a subset of complex neurodevelopmental disorders characterized by deficits in three core domains: 1) reduced reciprocal social interaction, 2) impaired ability to communicate, and 3) a narrow range of interests and repetitive behaviors. Autism spectrum disorders are clinically heterogeneous and often show comorbidity with other conditions such as epilepsy and learning disability (1,2).

Although autism has consistently been shown to demonstrate high levels of heritability, it has only recently become clear that many of the genes recently implicated in autism are involved with the initiation and maintenance of synaptic connections. For example, a pathway-based analysis using data from the first published ASD genome-wide single nucleotide polymorphism (SNP) association study implicated the cadherin gene family. Stronger enrichment was seen when these 25 cadherins were combined with three neurexins and five neurexin-related CNTNAP genes (3). Mutations in neuroligins proteins, which interact with neurexins across the synaptic cleft, were associated with autism before neurexins were implicated (4). Other studies have shown that genomic copy number variations (CNVs) also play a significant role in autism susceptibility (5,6). Hemizygous disruption of the neurexin 1 gene (ARXV1) was first seen in sisters with ASD (7). In addition, rare structural variants involving CNTNAP2 have also recently been associated with autism susceptibility (8,9).

From the The Wellcome Trust Centre for Human Genetics (ATP, GM, TSS, SP, EL, JR, APm), University of Oxford, Oxford, United Kingdom; Department of Biology (EB, FM, EM), University of Bologna, Bologna, Italy; Department of Child and Adolescent Psychiatry (MVD), RHH, WGS, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands; Division of Molecular Genome Analysis (AC, SMK), German Cancer Research Center, Heidelberg, Germany; Department of Genomics (KUL, PH, MMN), Life & Brain Center, and Institute of Human Genetics (KUL, PH, MMN), University of Bonn, Bonn, Germany; MRC Centre for Neuropsychiatric Genetics and Genomics (DHH, JAC, MCO, JW), Cardiff, United Kingdom; Department of Child and Adolescent Psychiatry (FP), Psychosomatics and Psychotherapy, Goethe-University, Frankfurt/Main, Germany; Department of Medical Genetics and Rudolf Magnus Institute of Neuroscience (RAO), University Medical Center Utrecht, Utrecht, The Netherlands; University of California Los Angeles Center for Neurobehavioral Genetics (RAO), Los Angeles, California; Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy (GS-K), Ludwig-Maximilians-University Munich, Munich, Germany; Welcome Trust Sanger Institute (PD), Welcome Trust Genome Campus, Hinxton, United Kingdom; and University Department of Psychiatry (AJB), Warneford Hospital, Oxford, United Kingdom.

Address correspondence to Anthony P. Monaco, Ph.D., Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7BN, UK; E-mail: anthony.monaco@well.ox.ac.uk.

Received Nov 16, 2009; revised Jan 15, 2010; accepted Feb 1, 2010.

0006-3223/$36.00
doi:10.1016/j.biopsych.2010.02.002

BIOL PSYCHIATRY 2010;68:320–328 © 2010 Society of Biological Psychiatry
further implicating this gene family. Drosophila orthologues of CNTNAP2 and NRXN1 can both reorganize synaptic morphology and regulate another synaptic protein bruchpilot (10). It is thus proposed that a shared synaptic mechanism underlies the similar clinical outcomes for patients with NRXN1 or CNTNAP2 mutations.

An emerging trend from recent literature is that many microdeletion syndromes exhibit considerable phenotypic variability. For instance, variable dosage of CNTNAP2 has also been documented in epilepsy and schizophrenia (11), while deletion of 15q13.3 has been implicated in autism (12), generalized learning disability (13), epilepsy (14), and schizophrenia (15). One possible hypothesis is that additional CNVs elsewhere in the genome may act as genetic modifiers. In support of this hypothesis, recent studies on schizophrenia have detected more than one rare CNV > 100 kb within the same affected individual (16).

The autism susceptibility locus 1 (AUTS1), situated on chromosome 7q, has been identified in at least four genome-wide linkage scans (17–20) and two meta-analyses (21,22). A recent fine-mapping study, using both family-based and case-control association analyses, detected SNPs within DOCK4 (dendritic marker of cytokinesis 4) and IMMP2L (IMMP inner mitochondrial membrane protease-like) that may be indexing autism susceptibility factors. A rare genomic deletion disrupting both DOCK4 and IMMP2L was also detected and shown to be transmitted to both members of an affected sibling pair (ASP), further implicating this gene family. Drosophila orthologues of DOCK4, has also been linked to attention-deficit/hyperactivity disorder (27). To understand its potential effect, we first characterized the IMMP2L-DOCK4 deletion and resulting fusion transcript at base-pair resolution, using a variety of methods. Due to reports of additional neurological and psychiatric disorders in the extended family, relatives for whom DNA was available were also screened for this deletion. The finding that three relatives with poor reading ability had also inherited the same deletion led us to further assess an additional dyslexia cohort for genomic variants in this gene region.

We also assessed the genomic background in the autism family with the IMMP2L-DOCK4 deletion and detected a second rare microdeletion disrupting CNTNAP5 in the ASP. As this gene is related to CNTNAP2, it was sequenced in additional ASD families from the International Molecular Genetic Study of Autism Consortium (IMGSAC) cohort to search for other rare variants that might be of etiological relevance to autism.

Methods and Materials

Clinical Details

The Dutch multiplex autism family 15-0084 volunteered to participate in the IMGSAC research study, as approved by the medical ethical commission of the University Medical Center Utrecht. Extended family members were also asked to participate and donate saliva samples. Informed consent was obtained from all participants. Case reports for the proband (15-0084-003), his affected brother (15-0084-004), and other family members are given in Supplement 1.

Clinical Assessment

Social communication ability was assessed in all participating family members using the Social Responsiveness Scale (SRS) (28). Depending on the age of the participant, either the children’s version or the adult informant version was used. The t scores are reported for the SRS children’s version. For adults, t scores are unavailable, so the total scores are compared with the mean total scores in the Dutch population (Ilse L. Noens, Ph.D., written communication to MVdJ, November 2009). The participants with a formal diagnosis of autism scored within the severe range of the SRS. The total SRS scores of the unaffected family members are all between the mean and +1 SD. Reading and spelling ability were assessed by means of a short battery of Dutch word reading, nonword reading, text reading, and spelling tests. An overall evaluation of communication ability and reading capacity is presented in Table S1 in Supplement 1.

DNA Extraction

DNA was extracted from the saliva samples of the extended family using the Oragene DNA Extraction Kit (DNA Genotek, Ontario, Canada), following the manufacturer’s protocol. DNA from family 15-0084 had been extracted, as described previously (18).

1M SNP Array and CNV Analysis

A total of 750 ng of genomic DNA was run on the single-sample Infinium 1M SNP BeadArray (Illumina, San Diego, California) according to manufacturer’s instructions, with default SNP clustering. Log R ratios and B allele frequencies were used to call CNVs using the QuantiSNP algorithm (29), with L = 2M, expectation-maximization iterations = 50, MaxCopy = 4, and correcting for local GC content. High confidence calls with log Bayes Factor > 10 were used, whereby we expected approximately one false CNV call per sample.

Long-Range Polymerase Chain Reaction, Quantitative Multiplex PCR of Short Fluorescent Fragments, and CNV Validation

Long-range polymerase chain reaction (PCR) was carried out with Bio-X-ACT long DNA polymerase (Bioline, London, United Kingdom) using the manufacturer’s suggested protocol. Primers TTTACCTTTTGGGTTGCTA and TGGAGCTGGGAATTAAAAA were used to amplify across the IMMP2L-DOCK4 deletion. Nested CNTNAP5 primer sequences are available on request.

Quantitative Multiplex PCR of Short Fluorescent Fragments (QMPSF) was performed as previously described (30), using DNA from 197 multiplex IMGSAC families (320 affected individuals) and 461 Caucasian United Kingdom control subjects available from the European Collection of Cell Cultures. The QMPSF primers (sequences available on request) were designed in DOCK4 exons 1, 8, 15, 25, 31, and 52 to complement our previous QMPSF analysis, which included IMMP2L exons and the last exon of DOCK4 (25). Exon 7 of the RNF20 gene was co-amplified as a control exon.

To ensure that all reported CNV results were verified by at least two methods, DNA samples from extended family members were also tested using quantitative PCR and/or 44 k array-based comparative genomic hybridization (Agilent, Santa Clara, California).

Real-Time-PCR

Total RNA was extracted from blood samples stored in RNAlater solution using RiboPure Blood Kit (Ambion, Austin, Texas), according to the manufacturer’s instructions. Comple-
imentary DNA (cDNA) was synthesized from 500 ng of total RNA using the Superscript III First Strand Synthesis SuperMix for quantitative real-time PCR (qRT-PCR) and random hexamers (Invitrogen, Eugene, Oregon). Semi-quantitative PCR was performed on 1/20th of the cDNA template prepared as described above, with two primer pairs specific for DOCK4 (available on request) and the third designed to amplify the fusion transcript (IMMP2L-x26fus-F: ATTCCTCTCAAGAGCAATC; DOCK4-x26fus-R: TTCCTGTCCCTATTACGACAA), using standard PCR conditions. The PCR was repeated using an increasing number of cycles (from 25 to 40). The PCR products were run on 2% agarose gels in the presence of GelRed (Biotium, Hayward, California).

DOCK4 expression was also evaluated by qRT-PCR using SYBR-green (Applied Biosystems, Foster City, California) with two DOCK4 specific primer pairs and the housekeeping gene GUSB as a control gene. Amplification of serial cDNA dilutions was performed to calculate PCR efficiencies. For each sample, expression was measured in triplicate, with mean values used for calculations. Quantification was calculated using the comparative C_t method (31).

NeuroDys Cohort and Additional Control CNV Data

DNA from 232 probands from the NeuroDys dyslexia cohort (http://www.neurodys.com), 643 unrelated Dutch control subjects (32), and 1448 control subjects from the British 1958 Birth Cohort (http://www.b58gene.sgul.ac.uk) were run on the Infinium 550 K SNP BeadArray (Illumina), according to manufacturer’s instructions. Another 374 cases from the NeuroDys cohort were run on the Infinium 300K SNP BeadArray (Illumina). Copy number variation calling was carried out, as described above. Samples were collected following informed consent. The study was approved by the relevant ethics committees.

CNTNAP5 Sequencing and Bioinformatic Analysis

Polymerase chain reaction products containing all 24 CNTNAP5 exons and intron-exon boundaries were purified using Exonuclease I (NEB, Ipswich, Massachusetts) and shrimp alkaline phosphatase (USB, Cleveland, Ohio). Sanger sequencing was carried out using BigDye v3.1 (Applied Biosystems). Primers for exons 14, 18, and 22 are listed below; other primer sequences are available on request. Sample selection strategy is presented in Supplement 1. Exon 14 was amplified with primers TCCAGATATTTTCAGCTAGTTC and GGGGGAGCTCCAGTGTAT and standard PCR conditions. The PCR was repeated using an increasing number of cycles (from 25 to 40). The PCR products were run on 2% agarose gels, using GelRed (Biotium, Hayward, California). DOCK4 expression was also evaluated by qRT-PCR using SYBR-green (Applied Biosystems, Foster City, California) with two DOCK4 specific primer pairs and the housekeeping gene GUSB as a control gene. Amplification of serial cDNA dilutions was performed to calculate PCR efficiencies. For each sample, expression was measured in triplicate, with mean values used for calculations. Quantification was calculated using the comparative C_t method (31).

Table 1. QuantiSNP Data for the IMMP2L-DOCK4 and CNTNAP5 Gene Loci

Sample ID	Chr	Start (bp)	End (bp)	Length (bp)	SNP
15-0084-002	7	110,654,771	111,256,808	602,037	rs214475
15-0084-003	7	110,666,487	111,256,808	590,321	rs37715
15-0084-004	7	110,254,457	111,266,360	1,011,903	rs10279573
15-0084-005	7	110,247,163	111,266,360	1,019,197	rs1569122
15-0084-001	2	124,836,663	125,063,827	227,164	rs11688892
15-0084-002	2	124,836,663	125,063,827	227,164	rs11688892
15-0084-004	2	124,829,445	125,111,265	281,820	rs7578650

Number	Copy	Log Bayes Factor	Gene(s)
179	1	543.06	DOCK4, IMMP2L
175	1	777.48	DOCK4, IMMP2L
310	1	169.92	DOCK4, IMMP2L
311	1	208.85	DOCK4, IMMP2L
84	1	117.45	CNTNAP5
84	1	313.38	CNTNAP5
94	1	60.77	CNTNAP5

All digestion products were visualized on 1.8% agarose gels, stained with SYBR safe (Invitrogen). Caucasian control samples included Human Random Control panels available from the European Collection of Cell Cultures, additional German control DNAs, and also DNA from parents of anorexia patients. In addition, 380 unrelated German ASD patients (34) were screened for the c.2756C > T mutation creates an alternative restriction site, resulting in fragments of 179 bp and 311 bp.

Results

In a recent CNV scan of the AUTS1 locus, we detected a ~ 600 kilobase (kb) deletion involving IMMP2L and DOCK4 in an autistic ASP. Quantitative PCR had been used to show that the distal breakpoint lay between exons 14 and 31 of DOCK4 (23). To further resolve the deletion at both extremities, DNA samples from the family were run on 1M SNP arrays. Over 1M SNPs were called for all five family members, with low rates of Mendelian error (Table S2 in Supplement 1). Using QuantiSNP, the IMMP2L-DOCK4 deletion was the most confidently detected CNV, with a log Bayes Factor of 777 in proband 15-0084-003 (Table 1 and Table S3 in Supplement 1). These array data were consistent with our previous studies that showed that the deletion had been transmitted from the reading-impaired mother (15-0084-002) to all three children (two boys with autism and their reading-impaired sister). However, as the QuantiSNP CNV calls were
inconsistent in terms of deletion size, visual inspection of the log R ratio and B allele frequencies within BeadStudio software (Illumina) allowed us to determine that the proximal deletion breakpoint lay between rs37713 and rs37715, while the distal breakpoint was situated between rs6966622 and rs10238664. This resolution was sufficient to allow the design of suitable long-range PCR primers. Amplification across the deletion breakpoint followed by Sanger sequencing allowed precise characterization of the 594-kb deletion (Figure 1A). The ACTCYAGCC motif observed at either end of the chr7:110,663,978-111,257,682 deletion (National Center for Biotechnology Information build 36 coordinates) suggested that some sequence similarity-driven process may have originally led to this deletion.

While IMMP2L shows variable dosage at a similar rate in autism cases and in control subjects (23), there were no exonic deletions of DOCK4 listed in the Database of Genomic Variants (DGV) (March 2009 release, http://projects.tcag.ca/variation/) (35). We assessed the frequency of DOCK4 CNVs in 197 additional multiplex IMGSAC autism families (320 affected individuals) and 461 Caucasian control subjects using six exonic QMPSF probes. No additional DOCK4 deletions or duplications were seen in ASD families, besides the deletion in family 15-0084 described above and the duplication in family 13-3023 reported previously (23). No CNVs were seen in the control subjects.

Recent studies have shown that deletions that extend from one gene to the next can lead to potentially deleterious fusion transcripts (16). As IMMP2L and DOCK4 are transcribed in the same direction, we assessed whether the presence of the deletion results in a fusion transcript. Indeed, RT-PCR and Sanger sequencing detected a fusion transcript that was not present in control RNA. The IMMP2L section of the DOCK4-IMMP2L fusion transcript is out of frame. Only two novel amino acids (Valine-Serine) would be translated, immediately followed by a premature stop codon (Figure 1B). It is thus likely to be subject to nonsense-mediated-decay, consistent with semiquantitative RT-PCR data suggesting that this fusion transcript was present at low levels in relation to the wild-type transcript. Expression of the normal DOCK4 transcript was evaluated by qRT-PCR in the mother with the deletion and found to be 30% to 50% lower compared with the father with normal copy number.

Long-range PCR was used to screen the mother’s extended family for this 594 kb IMMP2L-DOCK4 deletion. The presence of

Figure 1. Molecular characterization of the IMMP2L-DOCK4 deletion. (A) Shows sequence electropherogram from the long-range PCR product spanning the deletion, aligned with the BeadStudio plots of the log R ratio and B allele frequency data from the 1M SNP array for 15-0084-003. Red plot indicates 1 Mb moving-window average of the log R ratio across the region chr7:109.5-112.5 Mb. (B) Shows sequence from RT-PCR product showing evidence of a transcript that fuses DOCK4 exon 26 onto IMMP2L exon 4. PCR, polymerase chain reaction; RT-PCR, real-time-polymerase chain reaction; SNP, single nucleotide polymorphism.
the deletion in the proband’s brother, sister, mother, uncle, and
two cousins, all of whom performed poorly on reading assessment
(Figure 2, Table S1 in Supplement 1), suggested that this
deletion may also act as a risk factor for dyslexia. These findings
led us to assess the NeuroDys cohort comprising 606 unrelated
individuals with dyslexia that were tested for CNVs using In-
finitum SNP arrays. There was a deletion of DOCK4 exons 38 to
52 (detected on the 300K array, log Bayes Factor = 44, validated
by QMPSF and quantitative PCR) in a single dyslexia case, but
no exonic deletions of DOCK4 were detected in 2091 control
samples tested on the 550 K SNP array (p = .225, Fisher’s exact
test). This 132 kb deletion was transmitted from a father reported
to have had dyslexia in childhood. Both the father and son
presented with slow reading speed. The unaffected sister had not
inherited the deletion.

To assess the genomic context of the IMMP2L-DOCK4 deletion
in family 15-0084, all 43 CNVs detected in the proband with
log Bayes Factor > 10 were analyzed. While most other CNVs
were well represented in the DGV, one on chromosome 2 was
notable (Figure 3A). This was the second highest ranking CNV,
detected with log Bayes Factor of 313 (Table 1 and Table S3 in
Supplement 1). This 227 kb deletion removes exons 4 to 11 of
CNTNAP5. There were no exonic deletions of this gene listed in
Supplement 1). This 227 kb deletion removes exons 4 to 11 of
CNTNAP5. There were no exonic deletions of this gene listed in
the DGV or in 2091 control samples tested on the 550K SNP
array. Nested long-range PCR was used to validate this deletion
and resolve the breakpoints to 6 kb LINE-1 elements. Segregation
analysis indicated that this deletion had been transmitted from
the father to both autistic sons but not to their dyslexic sister
(Figure 2, Table 1).

Interestingly, the father with the CNTNAP5 deletion was
reported to exhibit various autistic traits, although he declined
formal testing. In addition, various neuropsychiatric traits were
described in members of his extended family, including eight
others with reported impairments in social communication. We
hypothesized that these relatives may have inherited the same
deletion of CNTNAP5. However, DNA was only available for the
proband’s paternal aunt (who was reported to have schizophren-
bia) and she did not carry the proband’s paternal aunt (who was reported to have schizophre-

As there are no disruptions of CNTNAP5 reported in eight
recent whole genome CNV scans listed in the Autism Chromo-
some Rearrangement Database (http://projects.tcag.ca/autism,
December 2009 update), we decided to further assess the
potential role of rare CNTNAP5 variants in ASD, by sequencing
all 24 exons and intron-exon boundaries for probands from 143
ASD families. Three nonsynonymous mutations were detected
in Caucasian ASD probands that were not present in dbSNP build
130 (36). The first was a c.2141G > T transversion in exon 14 that
predicts a proline to arginine change at position 714 (P714R) of
the amino acid sequence (Figure 3B) in the fibrinogen C-terminal
domain. This mutation was maternally transmitted to both af-
fected sons but not to their unaffected sister (Figure S1A in
Supplement 1). Although position 714 (P714R) is not conserved
through evolution (bioinformatics analysis predicted this change
to be benign), the loss of a proline residue may alter protein
structure. Using PCR-restriction fragment length polymorphism
(RFLP), this mutation was detected in only 1/932 Caucasian
control chromosomes. The second mutation was a c.2756C
>T transition in exon 18 that predicts a threonine to methionine
(T919M) change (Figure 3C) in the laminin G-like 3 domain. This
mutation, found in a German family, was maternally transmitted
to both affected children but not to their two unaffected siblings
(Figure S1B in Supplement 1). Based on the alignment of
homologous protein sequences around position 919, bioinfor-
matic analysis predicted that this amino acid substitution is likely
to have a damaging effect. Using PCR-RFLP, this variant was not
detected in 1222 Caucasian control chromosomes, of which 660
were German. The third mutation was a c.3502G > A transition
in exon 22 that predicts a valine to isoleucine (V1168I) change
(Figure 3D) within the laminin G-like 4 domain. This mutation,
found in another German family, was maternally transmitted to
both affected children but not to their unaffected brother (Figure S1C in
Supplement 1). Although this is a relatively minor amino acid
change (both are aliphatic residues and hence bioinformatic
analysis predicted this change to be benign), V1168I is highly

![Figure 2](https://www.sobp.org/journal)

Figure 2. Inheritance pattern of the IMMP2L-DOCK4 deletion within the extended family. Long-range PCR products of 3087 bp are visible only where this
deletion is present. Gel lanes are aligned with the pedigree, with proband indicated by an arrow. The size of relevant bands in the DNA ladder are indicated
in base pairs. Dark shading indicates ADI-defined autism, lighter shading indicates Asperger syndrome or autistic features, and diagonal stripes indicate
dyslexic diagnosis or reading impaired. Asterisk indicates presence of CNTNAP5 deletion. ADI, Autism Diagnostic Interview; bp, base pair; PCR, polymerase
chain reaction.
conserved across species. The PCR-RFLP assay also did not detect this change in 1232 control chromosomes, of which 692 were German.

The two changes that were not detected in control subjects (T919M and V1168I) were further assessed by PCR-RFLP in a cohort of 380 unrelated German ASD patients. While no additional cases of T919M were detected, the V1168I mutation was seen in a second German ASD case. Therefore, in total, this change was found in 2 of 523 ASD probands and 0 of 616 control subjects (p = .211). However, in this second family, the mutation had not been transmitted to an affected brother (Figure S1D in Supplement 1).

The exon 22 RFLP assay for V1168I was also able to detect a c.3584C>T transition polymorphism that predicts a threonine to methionine (T1195M) change. In total, this polymorphism (rs34165507) was detected at a 3.1% minor allele frequency in ASD cases (32 of 1046 chromosomes) compared with 2.9% in control subjects (36 of 1232 chromosomes).

Finally, DNA from the ASD proband 15-0084-003 was also sequenced to determine whether the paternally inherited CNTNAP5
Discussion

In our earlier study, coincident SNP association and CNV data in AUTS1 implicated the IMMP2L-DOCK4 gene region in ASD susceptibility (23). In contrast, another study using 7q-linked ASD families did not see association in this gene region (37). This discrepancy may be because the two studies used different markers. In addition, the negative study may have been underpowered, as only 30 families were used and the markers density was insufficient for CNV analysis to be performed.

In the study described here, characterization of the 594 kb deletion described earlier (23) using a high-density genome-wide microarray has led to the discovery of a second rare deletion within the same affected individuals disrupting the CNTNAP5 gene. We hypothesize that both CNVs contribute to the array of phenotypes seen in family 15-0084. This study thus demonstrates the importance of performing a high-resolution assessment of genomic background, even after the detection of a rare and likely damaging CNV using a targeted approach.

The rare 594 kb deletion results in an IMMP2L-DOCK4 fusion transcript. Future studies should determine whether this is a common property of deletions. The deletion was also detected in the affected boys’ sister, mother, and five members of their extended family. Although only 15-0084-004 had been formally diagnosed as being dyslexic, the finding that the reading abilities of 6 of 9 individuals with the deletion were weak or very weak, and two other individuals were in the low-average range (Table S1 in Supplement 1) led us to further assess the potential role of DOCK4 deletions in dyslexia. Another DOCK4 deletion was detected in one case that showed co-segregation with dyslexia within the nuclear family. Combining QMPSF and 550 K SNP array data was consistent with the DGV, indicating IMMP2L dosage to be variable in control subjects, while exonic deletions of DOCK4 were undetectable in > 2500 control subjects. In contrast to recent CNV studies on attention-deficit/hyperactivity disorder (38), our data therefore suggest that haploinsufficiency of IMMP2L might be benign, with deletions of DOCK4 more likely to be of etiological relevance. Although larger studies would be required to reach formal significance and confirm the relevance of DOCK4 to reading ability, it is worth noting that 1) case-control analysis does not consider the segregation seen, and 2) a previous study of 11 large Finnish dyslexia pedigrees detected linkage at 7q32 (maximum nonparametric genome-wide linkage score of 2.77) 17.4 Mb distal to DOCK4 (39).

DOCK4 functions as a guanine nucleotide exchange factor (GEF), which activates both Rap1 and Rac1 small guanosine triphosphate (GTP)ases by exchanging bound guanosine diphosphate for free GTP (40) and thus acts as a positive regulator of dendritic growth in neuronal cell lines (24). Interestingly, a previous study found five families with rare nonsynonymous variants in another GEF (cAMP-GEFII), which co-segregated with ASD (41). Further studies to elucidate the role of DOCK4 in human neuronal cell lines and more generally the role of GEF regulators of small GTPases in autism and dyslexia are now warranted.

There are five members of the human contactin-associated protein family (CNTNAP1–5). These transmembrane proteins are predominantly expressed in the central nervous system and are thought to be involved in cell recognition and adhesion. Of the five, CNTNAP5 is perhaps the least well-studied. However, null mutations of one of the three mouse orthologs (Caspr5-2) result in perinatal lethality, while heterozygous animals show no obvious phenotype (42). A nonsynonymous SNP in CNTNAP5 was recently identified in a genome-wide pharmacogenomic study as potentially influencing the effect of the drug risperidone on negative symptoms in schizophrenia (43). Only a single human case with deletion of CNTNAP5 has been described previously (44). This patient harbored a complex de novo chromosomal rearrangement involving chromosomes 1, 2, and 15 and exhibited learning disability and language impairment but did not meet the criteria for ASD. Fine-mapping studies using fluorescence in situ hybridization and array-based comparative genomic hybridization indicated that the complex rearrangement involved eight separate breakpoints. Although the authors suggest that the cryptic deletion of CNTNAP5 may underlie the phenotype seen in this patient, the complexity of the genomic rearrangement complicates interpretation.

Given the role of related neurexin genes in synapse function, the absence of exonic deletions of CNTNAP5 from 2091 control subjects, and the deletion’s co-segregation with ASD in family 15-0084, we hypothesized that other rare variants in this gene may influence ASD susceptibility. To examine this possibility, sequencing was carried out in 143 multiplex families. The co-segregation with ASD seen in three of the four families and the scarcity of the three novel missense mutations in control subjects is consistent with rare variants of this gene playing a role in ASD susceptibility. The CNTNAP5 analysis undertaken here has only included multiplex ASD families. This type of family is less likely to harbor de novo ASD risk factors than are sporadic ASD cases (6). Further studies into the potential role of CNTNAP5 in ASD should use sporadic cases to complement the work described here. Additional studies should also help determine the effect of these mutations on synapse function.

In conclusion, our data suggest that exonic deletions of DOCK4 may act as a risk factor for reading impairment while rare variants in CNTNAP5 may confer ASD susceptibility. Genomic disruption of both genes may have an additive effect and in this family appears to result in a more severe ASD phenotype. These data add to the emerging theme that the same genomic variants, in combination with distinct genetic backgrounds, may contribute to different phenotypes.

Funding for this work was from the Nancy Lurie Marks Family Foundation, the Simons Foundation, the Wellcome Trust (075491/Z/04), Deutsche Forschungsgemeinschaft, and from the European Union in the Sixth Framework Program, LifeScienceHealth, project title Dyslexia genes and neurobiological pathways (NeuroDyn, 018696). Funding for the Dutch control data was from National Institute of Mental Health. We acknowledge use of DNA from the British 1958 Birth Cohort collection, funded by the United Kingdom Medical Research Council Grant G0000934 and the Wellcome Trust Grant 068545/Z/02.

We thank Laura Winchester for assisting with QuantiSNP analysis, Elham Sadighi Akba and Samantha JL Knight (both funded by the NIH Biomedical Research Centre, Oxford) for array-based comparative genomic hybridization, and Kinga Przibilla for polymerase chain reaction-restriction fragment length polymorphism screening.

In addition to named authors ATP, EB, MVdJ, FM, AC, SMK, FP, WGS, AJB, EM, and APM, other members of International...
Molecular Genetic Study of Autism Consortium include: Nuala H. Sykes, Ines Sousa, Richard Holt, and Kirsty Wing, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom; Michael L. Rutter, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, London, United Kingdom; Simon Wallace, Kathy White, Marc Coutanche, Suzanne Foley, Katy Renshaw, Kerstin Wittmeyer, and Magdalena Laskiewicz, Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, United Kingdom; Patrick F. Bolton, Department of Child and Adolescent Psychiatry, Institute of Psychiatry, London, United Kingdom; Gillian Baird and Vicky Slonims, Newcomen Centre, Guy’s Hospital, London, United Kingdom; Zoe Docherty, Stephen Abbs, Caroline Ogilvie, and Pamela Warburton, Regional Genetics Center, Guy’s Hospital, London, United Kingdom; Andrew Pickles, Health Sciences, University of Manchester, Manchester, United Kingdom; Jonathan Green, Catherine Aldred, and Julie-Anne Wilkinson, Psychiatry Research Group, University of Manchester, Manchester, United Kingdom; Ann Le Costeur, Jeremy R. Parr, Tom Berney, and Helen McConachie, Newcastle University, Institute of Health and Society and Institute of Neuroscience, Newcastle upon Tyne, United Kingdom; Emma Weisblatt, University of Cambridge Clinical School, Cambridge, United Kingdom; Lennart Pedersen and Dementiafri Hjorte, Center for Autism, Herlev, Denmark; Torben Isager and Ester Õstlind Sorensen, Borre-og Ungdomspsykiatrisk Center, Glostrup, Denmark; Karen Brandum-Nielsen, Kennedy Centre, Glostrup, Denmark; Bernadette Rogé, Carine Mantoulan, and Matthé Tauber, Centre d’Etudes et de Recherches en Psychopathologie, Université de Toulouse Le Mirail, Toulouse, France; Gabriele Schmötzker, Effichia Dukets, Christine M Freitag, Sabine Feineis Matthews, and Sabine Schlitt, Klinik für Psychiatrie, Psychosomatik und Psychotherapie des Kindes- und Jugendalters, J W Goethe University Frankfurt, Frankfurt, Germany; Annemarie Pousta *, Bärbel Felder, and Geeta Pakalapati, Division of Molecular Genome Analysis, German Cancer Research Center, Heidelberg, Germany; Sven Bölte, Klinik für Psychiatrie und Psychotherapie des Kindes- und Jugendalters, Zentralinstitut für Seelische Gesundheit, Mannheim, Germany; John Tsiantis, Katerina Papanikolaou, Elena Giouroukou, and Elena Palikosta, University Department of Child Psychiatry, Agia Sophia Children’s Hospital, Athens, Greece; Fabiola Ceroni, Department of Biology, University of Bologna, Bologna, Italy; Agatino Battaglia, Tiziana Filippi, Raffaella Tancredi, Barbara Parrini, and Roberta Igliozzi, Stella Maris Clinical Research Institute for Child and Adolescent Neuropsychiatry, Calambrone (Pisa), Italy; Herman Van Engeland, Chantal Kemper, Marjolijn Langemeijer, Channa Hijmans, and Frederick Koop, Department of Child and Adolescent Psychiatry, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands; Catherine Lord, Autism and Communicative Disorders Centre, University of Michigan, Ann Arbor, Michigan; Edwin H. Cook, Stephen J. Gutier, and Jeff Salt, Institute for Juvenile Research, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois; Bennett L. Leventhal, Department of Child and Adolescent Psychiatry, New York University and New York University Child Study Center, New York, New York; Fred Volkmar, Child Study Centre, Yale University, New Haven, Connecticut; Eric Fombonne, Division of Psychiatry, McGill University, Montreal Children’s Hospital, Montreal, Quebec, Canada; Janine A. Lamb, Centre for Integrated Genomic Medical Research, University of Manchester, Manchester, United Kingdom. *Deceased.

The authors declare no biomedical financial interests or potential conflicts of interest.

Supplementary material cited in this article is available online.

1. Fombonne E (2005): The changing epidemiology of autism. J Appl Res Intellect Disabil 18:281–294.
2. Spence SJ, Schneider MT (2009): The role of epilepsy and epileptiform EEGs in autism spectrum disorders. Pediatr Res 65:599–606.
3. Wang K, Zhang H, Ma D, Bucan M, Glessner JT, Abrahams BS, et al. (2009): Common genetic variants on 5p14.1 associate with autism spectrum disorders. Nature 459:528–533.
4. Jamain S, Quach H, Betancur C, Rastam M, Colineaux C, Gillberg IC, et al. (2003): Mutations of the X-linked genes encoding neurologins NLGN3 and NLGN4 are associated with autism. Nat Genet 34:27–29.
5. Marshall CR, Noor A, Vincent JB, Lionel AC, Feuk L, Skaug J, et al. (2008): Structural variation of chromosomes in autism spectrum disorder. Am J Hum Genet 82:477–488.
6. Sebat J, Lakshmi B, Malhotra D, Troge J, Lese-Martin C, Walsh T, et al. (2007): Strong association of de novo copy number mutations with autism. Science 316:445–449.
7. Szatmari P, Paterson AD, Zwaigenbaum L, Roberts W, Brian J, Liu XQ, et al. (2007): Mapping autism risk loci using genetic linkage and chromosomal rearrangements. Nat Genet 39:319–328.
8. Bakalkalouglu B, O’Roak BJ, Louvi A, Gupta AR, Abelson JF, Morgan TM, et al. (2008): Molecular cytogenetic analysis and resequencing of contactin associated protein-like 2 in autism spectrum disorders. Am J Hum Genet 82:165–173.
9. Roxi E, Verri AP, Patricelli MG, Destefani V, Ricca I, Vetro A, et al. (2008): A 12Mb deletion at 7q33-q35 associated with autism spectrum disorders and primary amenorrhea. Eur J Med Genet 51:631–638.
10. Zweier C, de Jong EK, Zweier M, Orrico A, Ousager LB, Collins AL, et al. (2009): CNTNAP2 and NRXN1 are mutated in autosomal-recessive Pitt–Hopkins-like mental retardation and determine the level of a common synaptic protein in Drosophila. Am J Hum Genet 85:655–666.
11. Friedman JI, Vrijenhoek T, Markx S, Janssen IM, van der Vliet WA, Faas BH, et al. (2008): Molecular cytogenetic analysis and resequencing of contactin associated protein-like 2 in autism spectrum disorders. Am J Hum Genet 82:165–173.
12. Paternicò MG, Destefani V, Ricca I, Vetro A, et al. (2008): A 12Mb deletion at 7q33-q35 associated with autism spectrum disorders and primary amenorrhea. Eur J Med Genet 51:631–638.
13. Sharp AJ, Mefford HC, Li K, Baker C, Skinner C, Stevenson RE, et al. (2008): A recurrent 15q13.3 microdeletion syndrome associated with mental retardation and seizures. Nat Genet 40:322–328.
14. Heilig I, Mefford HC, Sharp AJ, Guiomponi M, Fichera M, Franke A, et al. (2009): 15q13.3 microdeletions increase risk of idiopathic generalized epilepsy. Nat Genet 41:160–162.
15. Stefanosson H, Rujescu D, Wulff H, Muñoz A, Lesch KP, Steinberg S, et al. (2008): A 15q13.3 microdeletion segregates with autism. J Med Genet 45:232–236.
16. Walsh T, McClellan JM, McCarthy SE, Addington AM, Pierce SB, Cooper GM, et al. (2008): Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science 320:539–543.
17. Barrett S, Beck JC, Bernier R, Bisson E, Braun TA, Casavant TL, et al. (1999): An autosomal genomic screen for autism. Collaborative linkage study of autism. Am J Med Genet 88:609–615.
18. International Molecular Genetic Study of Autism Consortium (1998): A full genome screen for autism with evidence for linkage to a region on chromosome 7q. International Molecular Genetic Study of Autism Consortium. Hum Mol Genet 7:571–578.
19. Schellenberg GD, Dawson G, Sung YJ, Estes A, Munson J, Rosenthal E, et al. (2006): Evidence for multiple loci from a genome scan of autism kindreds. Mol Psychiatry 11:1049–1060, 1979.
20. Shao Y, Wolpert CM, Raiford KL, Menold MM, Donnelly SL, Ravan SA, et al. (2006): Genomic screen and follow-up analysis for autistic disorder. Am J Med Genet 114:99–105.
21. Badner JA, Gershon ES (2002): Regional meta-analysis of published data supports linkage of autism with markers on chromosome 7. Mol Psychiatry 7:56–66.
22. Trikalinos TA, Karvouni A, Zintzaras E, Yliuukko-Oja T, Peltonen L, Jarvela I, Ioannidis JP (2006): A heterogeneity-based genome search meta-analysis for autism-spectrum disorders. Mol Psychiatry 11:29–36.
23. Maestrini E, Pagnamenta AT, Lamb JA, Bacchelli E, Sykes NH, Sousa I, et al. (2009): High-density SNP association study and copy number variation analysis of the AUTS1 and AUTS5 loci implicate the IMMP2L-DOCK4 gene region in autism susceptibility [published online ahead of print April 28]. Mol Psychiatry.

24. Ueda S, Fujimoto S, Hiramoto K, Negishi M, Katoh H (2008): Dock4 regulates dendritic development in hippocampal neurons. J Neurosci Res 86:3052–3061.

25. Diaz-Anzaldua A, Joober R, Riviere JB, Dion Y, Lesperance P, Chouinard S, et al. (2004): Association between 7q31 markers and Tourette syndrome. Am J Med Genet A 127A:17–20.

26. Petek E, Windpassinger C, Vincent JB, Cheung J, Boright AP, Scherer SW, et al. (2001): Disruption of a novel gene (IMMP2L) by a breakpoint in 7q31 associated with Tourette syndrome. Am J Hum Genet 68:848–858.

27. de Silva MG, Elliott K, Dahl HH, Fitzpatrick E, Wilcox S, Delatycki M, et al. (2003): Disruption of a novel member of a sodium/hydrogen exchanger family and DOCK3 is associated with an attention deficit hyperactivity disorder-like phenotype. J Med Genet 40:733–740.

28. Constantino JN, Gruber CP (2005): Social Responsiveness Scale (SRS) Manual. Los Angeles: Western Psychological Services.

29. Colella S, Yau C, Taylor JM, Mirza G, Butler H, Clouston P, et al. (2007): QuantiSNP: An objective Bayes Hidden-Markov Model to detect and accurately map copy number variation using SNP genotyping data. Nucleic Acids Res 35:2013–2025.

30. Saugier-Veber P, Goldenberg A, Drouin-Garraud V, de la Rochebrochard C, Layet V, Drouot N, et al. (2006): Simple detection of genomic microdeletions and microduplications using QMPSF in patients with idiopathic mental retardation. Eur J Hum Genet 14:1009–1017.

31. Pfaffl M (2001): A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45.

32. Stefansson H, Ophoff RA, Steinberg S, Andreassen OA, Cichon S, Rujescu D, et al. (2009): Common variants conferring risk of schizophrenia. Nature 460:744–747.

33. Ramensky V, Bork P, Sunyaev S (2002): Human non-synonymous SNPs: Server and survey. Nucleic Acids Res 30:3894–3900.

34. Klauck SM, Felder B, Kolb-Kokocinski A, Schuster C, Chioocchetti A, Schupp I, et al. (2006): Mutations in the ribosomal protein gene RPL10 suggest a novel modulating disease mechanism for autism. Mol Psychiatry 11:1073–1084.

35. Irafate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, Qi Y, et al. (2004): Detection of large-scale variation in the human genome. Nat Genet 36:949–951.

36. Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, Sirotkin K (2001): dbSNP: The NCBI database of genetic variation. Nucleic Acids Res 29:308–311.

37. Hutcheson HB, Olson LM, Bradford Y, Folstein SE, Santangelo SL, Sukcliff J, Haines JL (2004): Examination of NRCA3, LRRN3, KIAA0716, and LAMB1 as autism candidate genes. BMC Med Genet 5:12.

38. Elia J, Gai X, Xie HM, Perin JC, Geiger E, Glessner JT, et al. (2009): Rare structural variants found in attention-deficit hyperactivity disorder are preferentially associated with neurodevelopmental genes [published online ahead of print June 23]. Mol Psychiatry.

39. Kaminen N, Hannula-Jouppi K, Kestila M, Lahermo P, Muller K, Kaaranen M, et al. (2003): A genome scan for developmental dyslexia confirms linkage to chromosome 2p11 and suggests a new locus on 7q32. J Med Genet 40:340–345.

40. Pannekoek WJ, Kooistra MR, Zwartkruis FJ, Bos JL (2009): Cell-cell junction formation: The role of Rap1 and Rap1 guanine nucleotide exchange factors. Biochim Biophys Acta 1788:790–796.

41. Bacchelli E, Blasi F, Biondolillo M, Lamb JA, Bonora E, Barnby G, et al. (2003): Screening of nine candidate genes for autism on chromosome 2q reveals rare nonsynonymous variants in the CAMP-GEFII gene. Mol Psychiatry 8:916–924.

42. Weichenhan D, Traut W, Gongrich C, Himmelbauer H, Busch L, Monyer H, Winking H (2008): A mouse translocation associated with Caspr5-2 disruption and perinatal lethality. Mamm Genome 19:675–686.

43. McClay JL, Adkins DE, Aberg K, Stroup S, Perkins DO, Vladimirov VI, et al. (2009): Genome-wide pharmacogenomic analysis of response to treatment with antipsychotics [published online ahead of print September 1]. Mol Psychiatry.

44. Ballarati L, Recalcati MP, Bedeschi MF, Lalatta F, Valtorta C, Bellini M, et al. (2009): Cytogenetic, FISH and array-CGH characterization of a complex chromosomal rearrangement carried by a mentally and language impaired patient. Eur J Med Genet 52:218–223.