Review

A review on ethno-medicinal plants used in traditional medicine in the Kingdom of Saudi Arabia

Riaz Ullaha,⇑, Ali S. Alqahtani a,b, Omar M.A. Noman a, Abdulaziz M. Alqahtani b, Samir Ibenmoussa c, Mohammed Bourhia c

a Medicinal Aromatic and Poisonous Plants Research Center (MAPPRC), College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
b Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
c Laboratory of Chemistry, Biochemistry Nutrition, and Environment, Faculty of Medicine and Pharmacy, University Hassan II, Casablanca, Morocco

Abstract

The traditional medicine based on medicinal plants in the Kingdom of Arabia Saudia presents a strong relationship belonging to natural remedies, health, diet, and folk healing practice recognized by a specific culture. The aim of the current study is to carry out an ethnobotanical review on medicinal plants used in traditional medicine in the Kingdom of Arabia Saudia including information on plant species, used parts, preparation method as well as medical uses. Earlier published data in journals, textbooks, periodicals, websites, and databases written in pharmacological evidence of Saudi medicinal plants were based on gathering information. The present review work reported that 96 species belonging to 47 families have been used in Saudi Pharmacopeia. Amaranthaceae has the highest number of plant species (7) followed by Asteraceae, Apocynaceae, and Fabaceae with 5 plant species in each. The inventoried plant species in the current work are frequently used for the treatment of various illnesses and to ensure the medication safety of Saudi people. The biological analysis of plant form used in Saudi natural remedies showed the dominance of herb and subshrub form with a percentage of 43% and 30% respectively. The most used preparation method of plant drugs, which used in Saudi Alternative medicine was decoction and infusion. The whole plant, leaves, seeds, and aerial parts were the most useful plant parts in natural preparation in Saudi traditional medicine with a percentage of 29%, 28%, 7%, and 5% respectively as reported in the present review work. The present review work gives big data about medicinal plants used in traditional medicine in the Kingdom of Saudi Arabia including data about plant species, used parts, preparation method as well as medical uses.

Keywords:
Medicinal plants
Saudi Arabia
Ethnopharmacology
Traditional medicine
Folk medicine
1. Introduction

Medicinal plants have become a worldwide topic drawing an impact on world health. Herbal medicine has played a crucial role in the maintenance of the healthcare system of the wide population throughout the world (Akerere, 1988). This is majorly enhanced in less-developed or developing countries, where the history use of traditional medicine interrupted. The knowledge and the progress of the medical benefits of herbs have grown in both, developing and developed countries (Organization, 1998). Medicinal herbs have constituted the basis of alternative medicine and lead to be the main pathway for conceptualizing new drugs (Newman et al., 2000). At an earlier time of the nineteenth century, more than 80% of Medicine was formulated from plants, and especially after the scientific revolution, the field of herbal medicine has conducted the evolvement of the pharmaceutical industry where the synthesized drugs noticeable (Shinwari and Qaiser, 2011). The larger use of medicinal plants in the treatment of diseases is due to one hand that plants or their derivatives are considered as safe and effective drugs, as well as with fewer secondary effects and are low in cost (Odhav et al., 2013). The alternative medicine knowledge based on the use of plants in treatment represents an inheritance passed from generation to upcoming over centuries either verbally or in writing, taking into account that the traditional inheritance may be facing extinction if it is not transmitted to next generation and still limited to former only (Schulze, 2017).

Folk medicine took place in the Kingdom of Arabia Saudia by 1940 with less demand for traditional medicine. Meanwhile, since 1990 the Saudi people changed their thinking towards traditional medicine and have increased its use in common life (Organization, 2001). Numerous ethnobotanical surveys carried out in Saudi Arabia showed that a large proportion of Saudi citizens are dependent on traditional medicine whether alone or associated with modern medicine (Bodeker and Ong, 2005).

An ethnopharmacological survey targeted the use of medicinal plants belong Saudi citizens showed that 80% of the interviewed have used herbal medicine for medications. It was reported in another study that 20% and 70% of the asked people using the herbal medicine for chronic and acute conditions respectively (Alanzi et al., 2016).

The usage of herbal medicine belongs the Saudi patients in the treatment of diseases like cancer, asthma, neurological and hepatic diseases was reported around 55%, 80% and 42.3%,90% respectively (Jazieh et al., 2012; Al Moamary, 2008; Mohammad et al., 2015). 81.2% of Saudi citizens living in Riyadh city were asked about their opinion regarding the use of herbal medicine, they consider that the use of this model of medicine in treatment is still safe and harmless as reported previously (Suleiman, 2014). Another study took place in Jeddah reported among diabetic patients 64% prefer to use herbs to control diabetes. In this study, it was reported that 55.1% of Jeddah citizens prefer the use of plants rather than synthesized drugs and around 75.2% simultaneously use both, herbs and prescribed drugs (Kamel et al., 2017).

The current review was conducted to gather information about the plants used by Saudi citizens in traditional medicine, such as to highlight the description of medicinal plants including local name, the parts used, the preparation methods as well as traditional uses.

2. Materials and methods

2.1. Study area

Saudi Arabia is the third biggest country in the Asian continent after China and India. Geographically, the Kingdom of Saudi Arabia is found on the Arabian Peninsula in the Middle East, located east of the Red Sea and west of the Persian Gulf.

Its coordinates are defined as 2500N, 04500E. It covers most of the Arabian Peninsula area and is connecting Africa and Eurasia (Fig. 1).

2.2. Data collection

Previously published data in journals, textbooks, periodicals, websites, databases and folklore information written in pharmacological profile and traditional uses of Saudi medicinal plants were checked for collecting information.

3. Results and discussion

3.1. Ethnomedical data about medicinal plants used in traditional medicine in the Kingdom of Saudi Arabia

The fruits of the present review of ethnomedical plants used in traditional medicine in the Kingdom of Saudi Arabia are summarised in Table 1.

The present survey reported that 96 species springing from 47 families have been used in Saudi Pharmacopeia (Table 1). Amaranthaceae has the highest number of plant species (7) Followed by Asteraceae, Apocynaceae, and Fabaceae with 5 plant species in each. The present data were in accordance with other previous literature (Alfarhan et al., 1998a), in which it was reported that these mentioned families were the mostly used in traditional medicine in Saudi Arabia.

Data presented in Table 1 shows several plant species, frequently used for the treatment of various illnesses associated with skin and stomach diseases, respiratory tract infections, tuberculosis antipyretic, inflammations, anasarca, cancer, astringent, convulsions, cough, cramps, diarrhea, dysentery, headache, hypertension, snakebite, sores decreasing thirst, enhancing hunger monitor of adverse outcomes, medication safety, diuretic, alterative, antiperiodic and purgative.

The most cited plant families in the present work were Asteraceae, Fabaceae, Lamiaceae, Amaranthaceae, Asteraceae, Asclepiadaceae, Apocynaceae, Acanthaceae, Apiaceae and Poaceae, Annonaceae, Zingiberaceae, and Brassicaceae. All these plant families, as well as others reported in the present review, have been previously investigated in Saudi’s flora (Alfarhan et al., 1998a; b; Hostettmann et al., 2000).

It was reported that herbal medicine used traditionally for disease treatment, also used as a precursor for the development of several promising drugs (Balunas and Kinghorn, 2005; Hostettmann et al., 2000). The present work highlights these practices from an ethnopharmacological survey by targeting 96 medicinal plant species frequently used by almost all Saudi Arabian people (Table 1).
3.2. Biological form of plants used in Saudi Arabia traditional medicine

The biological analysis of plants used in Saudi natural remedies showed the dominance of herb and subshrub forms with a percentage of 43% and 30% respectively. The shrub and tree were also reported with a low percentage of 6% and 21% respectively (Table 2). These results were in agreement with earlier found data which reported that the most biological form of plants used in traditional medicine was subshrub, shrub, and herb (Bourhia et al., 2019).

3.3. Preparation method of plant drugs

According to our review report, the commonly used preparation methods of plant drugs in Saudi alternative medicine were decoc-tion and infusion. Maceration at room temperature, powder mixed with honey-milk-oil, cooked, uncooked plants and external use were also documented with lower values.

3.4. Plant parts used

Leaves, whole plant, seeds, and aerial parts were the commonly used parts in natural preparation in Saudi traditional medicine with a percentage of 29%, 28%, 7%, and 5% respectively as reported in the present review work. Roots, stem, latex, bulb, fruits, and bark were also presented with a low percentage (Fig. 2).

Desiring to contribute to the conservation priorities of herbal knowledge of various medicinal plants of Saudi Arabia and to make it easy and familiarized with disease treatment, the present compilation was carried out.

According to previously reported data, the knowledge of traditional medicine could be facing extinction if it is not inherited from the previous generation to the upcoming. Several factors inducing loss of this knowledge associated with local culture, physical and biological environments such as lack of expertise of the modern people, acculturation, and rural exodus (Bourhia et al., 2019).

It was reported that ethnic and religious people throughout the world, to know the vegetal diversity of one another because a huge number of plant species have been facing extinction due to the pressure exercised by the consumers and environmental conditions. The phenomena of plant extinction could translate to lose at least one potential drug every two years (Robertson, 2008a). Each plant species lost due to extinction could represent not only the loss of healthcare saving cures for special diseases but also the loss of a probable primary metabolite like protein-or vitamin-rich foods (Robertson, 2008b).

In order to protect the germplasm of plants and to ensure sustainability, the public should learn the importance of herbal med-
Table 1
Summary of ethnopharmacological data about medicinal plants used in the Kingdom of Saudi Arabia.

Plant family	Plant species	Local name	Used parts	Medicinal uses/activities	References
Malvaceae	Abutilon	Verdc	Whole plant	Antimicrobial	(Akbar and Al-Yahya, 2011)
	pannosum		Aerial	Boils, inflamed purulent wounds, and swellings	(El-Ghazali et al., 2010)
	Malva parviflora		Aerial	Haemorrhae, diarrhoea, scurry, dysentery scurry, and colds	(Al-Musayeb et al., 2012)
Fabaceae	Acacia arabica		Whole plant	Skin and stomach diseases, Curative for chronic rheumatism and tumor	(Marwat et al., 2012)
	Rhazya stricta	Harmal	Aerial parts	Regulate blood glucose, athelminetic, antiscorbutic, astrigent, stomachic and toothache.	(Kaunda and Zhang, 2017)
Apocynaceae	Carissa edulis		Leaves and	Used in bones dislocations, wounds, skin infections, paralysis and painful joints	(Ghazanfar, 1994)
	Adenium	Adnah	Whole herb and bark	Sthma, diabetes mellitus, corns	(Bokhari, 2009a)
	arabicum		Areal parts	Headache	(Bokhari, 2009)
	Nerium	Difla	Flower, Leaves, Roots	Reducing blood glucose	(Al-Shaqua et al., 2015)
	oleander		Phloem	Anthemillic night-blindness	(El-Ghazali et al., 2010)
	Adenium	Adne	Areal parts	Diuretic, antimicrobial effect, and central nervous system stimulation	(El-Ghazali et al., 2015)
	obesum		Whole plant	Toothache	(El-Ghazali et al., 2010)
Boraginaceae	Alkanna	–	Plant	Diuretic, antiperiodic purgative, astringent stomachache, bowel complaints piles, boils and skin eruptions.	(Al-Asmari et al., 2017)
	hispidissima	Keha	Whole plant	Antihypergaemic, -urothlic , astringent Purgative, diuretic and demulcent	(Adepu et al., 2013)
	Aerva	Tourism	Whole plant	Treating hepatitis, tight chest, bronchitis, asthma	(Bokhari, 2009)
	javanica			Emollient in scorpion sting	(Saqib and Janbaz, 2016)
	Anisotes	Roth	Leaves	Diuretic, blood purifier, treatment of piles, strangury, and abortifacient used as an abortifacient	(Adel-Kader et al., 2018)
	asperns	Medh	Leaves	Antipyretic, diuretic, emollient, expectorant, stomachic. leucorrhoea and leprosy	(Watt and Breyer-Brandwjik, 1962)
	Aerva	Shult	Leaves	Purgative, diuretic and demulcent	(Chopra, 1956)
	lanata			Treating leukemia and cancer	(Yadav et al., 2007)
	Achyrantes	Malwat	Whole plant	Diuretic and tonic, laxative	(Champy, 2011)
	asperns	Tamil	Leaves	Treating of leukaemia and cancer	(Madaan and Kumar, 2012)
	Alternanthera sessilis	Tamil	Leaves	Antimycobacterial, Antifungal, psychoactive, insecticides, hallucinogenic and insecticides	(Al-Asmari et al., 2014)
	Amaranthus spinosus	Qutaifa	Stem,	Emollient in scorpion sting	(Jirovetz et al., 2003)
	Amaranthus coudatus	Kaf	Leaves	Diuretic, blood purifier, treatment of piles, strangury, and abortifacient used as an abortifacient	(Watt and Breyer-Brandwjik, 1962)
	Amaranthus viridi	Shae	whole herb	Antipyretic, diuretic, emollient, expectorant, stomachic. leucorrhoea and leprosy	(Chopra, 1956)
	Chenopodium ambrosiodes	Errwa	Leaves	Diuretic and tonic, laxative	(Champy, 2011)
	Annona squamosa	Qishda	Leaves, roots	Treatment of leukaemia and cancer	(Madaan and Kumar, 2012)
	Carum carvi	Karawiya	Root	Neurological digestive, for gynaecological and urological problems, Infusion, ground Analgesic	(Alqethami et al., 2017)
	Conium	Hemlock	Flower and stem leaves	Treatment of diseases of the prostate, liver, and spleen	(Al-Asmari et al., 2014)
	maculatum crispus	Magdnus	Leaves	Antimycobacterial, Antifungal, psychoactive, insecticides, hallucinogenic and insecticides	(Jirovetz et al., 2003)
	Aneithum	Dill	whole herb	Antimycobacterial, Antifungal, psychoactive, insecticides, hallucinogenic and insecticides	(Abdel-Kader et al., 2018)
	Desmdirchis retrospiciens	Gholtha	Areal	Chickenpox- smallpoxmeasles	(Abdel-Kader et al., 2018)
	Monolluma quadrangula	Gelf	Parts	Influenza-diabetes	(Abdel-Kader et al., 2018)
	Sarcozoonia viminale	Al Ashr	latex	Wounds	(Abdel-Kader et al., 2018)
	Ceropegia variegata	Drat Elkelt	Aerial part	Taeafuge	(Abdel-Kader et al., 2018)
Asteceae	Artemisia judaica	Beithran	Areal parts	Cough – cold	(Abdel-Kader et al., 2018)
	Achillea fragrantisma	Gaisom	Leaves	Used as anti-inflammatory, antimicrobial activity	(Saidnia et al., 2011)
	Artemisia herba-alba	Chih	Leaves	Dental hygiene, abdominal pain, colic and liver failure	(Mohammed et al., 2018)

(continued on next page)
Plant family	Plant species	Local name	Used parts	Medicinal uses/activities	References	
Fabaceae	Lupinus albus	Trimees	Seeds	Diuretic, emmenagogue, hypoglycemic and vermifuge	(Knecht et al., 2006)	
	Trigonella foenum-graecum	Lhelba	Seeds	Anti-diabetic, anti-inflammatory, diuretic, antiradicalic	(Mehrifarir et al., 2011)	
	Alhagi graecorum	Aqool	Whole plant	Analgesic, Anti haemorrhoides, anti-tussine, Anti haemorrhoides, aphrodisiac, diuretic and laxative	(El-Shabasy, 2016)	
	Alhagi maurorum	Al -Agool	Leaves	Antioxidant, antinociceptive, antiseptic, antihypertensive, expectorant, carminative, diuretic, emmenagogue and sedative, taken in whooping cough, bronchitis and colds	(Ahmad et al., 2000; Leung, 1980)	
	Astragalus spinosus	Bobrai	Stem and leaves	Good digestion, migraine, depression, kidney malfunction and skin infections	(Adhani et al., 2014)	
	Olearia azetoni	Lebes	Leaves	Gingivitis, otitis, icterus, cough, Aesthetic, liver diseases, thrush, dental caries, oesophageal swelling, ulcers, oedemas, wound demulcent, emollient, cholagogue, calculi and diabetes.	(Hashmi et al., 2015)	
	Allium cepa	Basar	Bulb	Assam, Mizarom, Nagaland, Meghalaya, Arunachal Pradesh and Sikkim	(Borborah et al., 2014)	
	Allium sativum	Thom	Bulbs	Anti-septic, anti-hypertensive	(Abdallah, 2017)	
	Allium ampeloprasum	–	Leaves	Antimicrobial	(Alamri and Moustafa, 2012)	
	Aloe vera	sebra	Whole plant	As laxative, peptic ulcers, in asthma, and diabetes	(Syed et al., 1996)	
	Asphodelus tenuifolius	Broque	seeds	Colds, haemorrhoids and rheumatic pain	(Abdel-Mogib and Basaib, 2002)	
	Opuntia ficus-indica	Tin Shokai	Stems and fruits	Antidiabetic, Hypoglycemic	(Osuna-Martínez et al., 2014)	
	Ficus indicus	Gethgath	Whole herb	Used to treat leukemia, wound healing	(Bedir et al., 2000)	
	Azadirachta indica	Neem	Whole plant	Used as antifungal	(Aly and Bafeel, 2010)	
	Lamiaceae	Teucrimum polium	Giadah	Leaves	Hypolipidemic, Hypoglycemic, treat liver disease, jaundice, diabetes, fertility problems and cancer.	(Djordjevic et al., 2018; Ljubuncic et al., 2005)
	Salvia officinalis	Meramiah	Leaves	Treatment of heartburn and bloating	(Ghorbani and Esmaeizadeh, 2017)	
	Acanthaceae	Belpharis ciliaris	Shok aldab	Whole herb	Used to treat toothache and skin wounds	(El-Ghazali et al., 2017)
	Lauraceae	Cinnamomum burmannii	Ghr	Leaves	Analgesic, anti-diabetic, anti-arthritis, anti-thrombotic	(Al-Dhubiab, 2012)
	Laurus nobilis	Ghr	Leaves	Astringent, stomachic, stimulant and narcotic	(Chalumeau and Benito-espinal, 1984)	
	Capparidaceae	Cadaba farinose	Asef	Whole herb	Used as a purgative, antihelminthic, emmenagogue, antiphilptic, aperient, a remedy for dysentery, fever, cough and lungs problem	(El-Shabasy, 2016)
	Capparis cartilaginea	Shafallah	Whole herb	Antiseptic, laxative, antiseptic and anti-inflammatory	(Al-Shawawi, 1996)	
	Capparis deciduas	Tandhab	Whole herb	Analgesic, aphrodisiac carminative, laxative and diaphoretic, antihelminthic and emmenagogue	(Ageel et al., 1986)	
	Caralluma sinaica	Did Elkalba	Whole plant	Antiprotozoal	(Al-Musayib et al., 2012)	
	Lythraceae	Punica granatum	Roumon	Fruit	Cancer, cardiovascular disease, diabetes	(Bhowmik et al., 2013)
	Myrtaceae	Syzygium aromaticum	Kronful	Flower	Treatment of toothache, mouth, throat inflammation and gastrointestinal disorders.	(Bhowmik et al., 2012)
	Pedaliaceae	Sesamum indicum L.	Snsim	Seeds	Improve nutritional status prevention of diseases	(Moazzami and Kamal-Eldin, 2009)
	Ranunculaceae	Nigella sativa	Hbsoura	Seeds	Monitor of adverse outcomes, medication safety, patient compliance	(Al Jaouni et al., 2012)
Table 1 (continued)

Plant family	Plant species	Local name	Used parts	Medicinal uses/activities	References
Rhamnaceae	Ziziphus spina christi	Sider	Leaves	Treatment of pulmonary ailments and fevers	(Asgarpanah and Haghighat, 2012)
Zingiberaceae	Curcuma longa	Karcum	Roots	Relieving gas, improving digestion, regulating menstruation, relieving arthritis, antioxidant, anti-inflammatory, antiplatelet, antimicrobial and cholesterol lowering	(Benzie and Wachtel-Galor, 2011)
	Zingiber officinalis	Zingabil	Rhizome	Treatment of heart diseases and lungs, relief cough and cold, throat infection and besides	(Kumar Gupta and Sharma, 2014)
Tamaricaceae	Tamarix aphylla	Athil	Leaves Rhizome	Infection of wound, Stomach ache	(El-Ghazali et al., 2010)
Liliaceae	Asphodelus fistulosus	Al-Himaar	Aerial parts	Stimulant, laxative, diuretic and crushed treatment of ulcer; used to make cakes of boiled, anthelmintic and Stomach ache	(Qureshi et al., 2010)
Poaceae	Dactyloctenium aegyptium	Behma	Whole herbs	Wound sepsis	(El-Ghazali et al., 2010)
	Panicum turgidum	Temam	Whole herb	Eye infection	(El-Ghazali et al., 2010)
	Cynodon dactylon	Thil	Whole plant	Treatment of anasarca, cancer, convulsions, cough, cramps, diarrhea, dysentery, headache, hypertension, snakebite, sores	(Nagori and Solanki, 2011)
Brassicaceae	Farsetia aegyptica	Jerbaa	Whole herb	Toothache, gingivitis and rheumatism	(Sakkir et al., 2012; El-Ghazali et al., 2010)
	Eruca sativa	Roucka	Seeds	Anticancer, antiulcer, diuretic	(JAAFAR and JAAFAR, 2019)
Papaveraceae	Anastatica hierochuntica	Khaf	Whole herb	Anti-diabetic activity	(Rahman et al., 2002)
	Argemone Mexicana	Maryam	Whole plant	Facilitate maternity	(Akbar and Al-Yahya, 2011)
Polygonaceae	Emex spinosa	Hambaaz	Whole herb	Appetizer, biliousness, and to stimulate appetite	(El-Ghazali et al., 2010)
	Calligonum comosum	Artaa	Whole herb	Anti-inflammatory and anti-ulcer effect	(Kamil et al., 2000)
Asclepiadaceae	Calotropis procera	Oshar	Latex	Used to treat psoriasis, leishmaniasis, and skin infections	(El-Ghazali et al., 2010)
Chenopodiaceae	Anabasis setifera	Hand	Leaves	Anti-inflammatory	(Abdou et al., 2013)
Caesalpinaceae	Cassia italica	Sanamakka	Whole herb	Laxative and urinary tract purifier	(El-Ghazali et al., 2010)
Resedaceae	Reseda muricata Pres.	Danban	Fruit	Menstruation tonic	(El-Ghazali et al., 2010)
Euphorbiaceae	Chrozophora oblongifolia	Tannom	Roots	Heating	(Sher and Aldosari, 2013)
	Acalypha fruticosa	mchacha root	Root in goat bone soup and drink the soup to treat liver problems	(Sripathi and Sankari, 2010)	
	Acalypha indica	Anama	whole herb	Cure from bronchitis, and asthma, pneumonia	(Yusuf et al.)
Tamaricaceae	Tamarix aphylla	Cedaar	Leaves	Treating wounds	(Emad and Gamal, 2013)
Zygophyllaceae	Tribulus terrestris	Tikandu	Seeds	Tonic, diuretic, and aphrodisiac	(Al-Asmari et al., 2014)
Typhaceae	Typha domingensis	Pardey	Whole plant	Cardiac depression	(Akbar and Al-Yahya, 2011)
Tiliaceae	Grewia tenax Aub	Aerial parts		Liver disorder	(Al-Said et al., 2011)

Table 2
Plant species and habits.

Plant species	Habit	Photograph
Rhazya stricta	Subshrub	![Rhazya stricta](image1)
Adenium obesum	Tree	![Adenium obesum](image2)
Nerium oleander	Subshrub	![Nerium oleander](image3)
Blepharis maderaspatensis	Herb	![Blepharis maderaspatensis](image4)

(continued on next page)
Plant species	Habit	Photograph
Anisotes trisulcus	Shrub	![Shrub](image)
Aerva javanica	Subshrub	![Subshrub](image)
Achyranthes aspera	Herb	![Herb](image)
Aerva lanata	Herb	![Herb](image)
Alternanthera sessilis	Herb	![Herb](image)
Amaranthus spinosus	Herb	![Herb](image)
Chenopodium ambrosioides	Herb	![Herb](image)
Annona squamosa	Tree	![Tree](image)
Carum carvi	Herb	![Herb](image)
Plant species	Habit	Photograph
-------------------------	-----------	------------
Artemisia herba-alba	Subshrub	![Artemisia herba-alba](image1)
Francoeuria crispa	Subshrub	![Francoeuria crispa](image2)
Loranthus acaciae Zucc.	Tree	![Loranthus acaciae Zucc.](image3)
Capparis spinosa	Subshrub	![Capparis spinosa](image4)
Oymphopogon citrates	Subshrub	![Oymphopogon citrates](image5)
Lantana camara	Subshrub	![Lantana camara](image6)
Ocimum basilicum	Herb	![Ocimum basilicum](image7)
Allium cepa	Herb	![Allium cepa](image8)
Opuntia Ficus-indica	Shrub	![Opuntia Ficus-indica](image9)
Lupinus albus	Herb	![Lupinus albus](image10)
Trigonella foenum-graecum	Herb	![Trigonella foenum-graecum](image11)
Teucrium polium	Subshrub	![Teucrium polium](image12)
Salvia officinalis	Herb	![Salvia officinalis](image13)
Cinnamomum burmannii	Tree	![Cinnamomum burmannii](image14)
Laurus nobilis	Shrub	![Laurus nobilis](image15)
Punica granatum	Tree	![Punica granatum](image16)
Syzygium aromaticum	Tree	![Syzygium aromaticum](image17)
Sesamum indicum	Herb	![Sesamum indicum](image18)
Plant species	Habit	Photograph
------------------------	----------	------------
Nigella sativa	Herb	![Nigella sativa](image)
Ziziphus spina christi	Tree	![Ziziphus spina christi](image)
Curcuma longa	Herb	![Curcuma longa](image)
Cassia italica	Subshrub	![Cassia italica](image)
Zingiber officinale	Herb	![Zingiber officinale](image)
Tamarix aphylla	Tree	![Tamarix aphylla](image)
Asphodelus fistulosus	Herb	![Asphodelus fistulosus](image)
Dactyloctenium aegyptium	Herb	![Dactyloctenium aegyptium](image)
Panicum turgidum	Subshrub	![Panicum turgidum](image)
Cynodon dactylon	Herb	![Cynodon dactylon](image)

Plant species	Habit	Photograph
Farssetia aegyptiaca	Herb	![Farssetia aegyptiaca](image)
Eruca sativa	Herb	![Eruca sativa](image)
Emex spinosa	Herb	![Emex spinosa](image)
Anabasis setifera	Subshrub	![Anabasis setifera](image)
Malva parviflora	Herb	![Malva parviflora](image)
Reseda muricata Presl.	Herb	![Reseda muricata Presl.](image)
Chrozophora oblongifolia	Subshrub	![Chrozophora oblongifolia](image)
Tribulus terrestris	Herb	![Tribulus terrestris](image)
Grewia tenax	Tree	![Grewia tenax](image)
Plant species	Habit	Photograph
---------------------	-------------	------------
Abutilon pannosum	Subshrub	
Acacia arabica	Tree	
Carissa edulis	Tree	
Olea europaea	Tree	
Adenium arabicum	Subshrub	
Catharanthus roseu	Herb	
Albizzia lebbeck	Tree	
Alkanna orientalis	Subshrub	
Arnebia hispissima	Subshrub	

Plant species	Habit	Photograph
Achyranthes aspera	Herb	
Amaranthus caudatus	Subshrub	
Amaranthus viridi	Herb	
Anethum graveolens	Subshrub	
Anvillea garcinitii	Subshrub	
Allium ampeloprasum	Herb	
Asphodelus tenufolius	Subshrub	
Alhagi graecorum	Subshrub	

(continued on next page)
icine and all tools should be serving this inheritance. The people need to become acquainted with the medicinal plant uses, not only but to cultivate the plants on the farms, gardens even in their houses if possible for enriching the plant diversity. Rational use of medicinal plants in medication minimizes the high cost of treatment with modern medicine and minimizes the side effects due to the use of modern drugs (Saganuwan, 2009).

4. Conclusion

All the medicinal plants reported in the current review work have been used in Saudi traditional medicine for the treatment of different human diseases. However, the investigated plants in the present review need further studies covering specific screening of natural products, pharmacological and biological activities as well as a safety control. These Data Open window for Researches to use it and develop new molecules as well as, to continue studying the effects of extracts and isolated chemicals derived from these plants for their health benefits, in important diseases.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Table 2 (continued)

Plant species	Habit	Photograph
Astragalus spinosus	Subshrub	![Image](image1.png)
Azadirachta Indica	Tree	![Image](image2.png)
Belpharis ciliaris	Subshrub	![Image](image3.png)
Cadaba farinose	Shrub	![Image](image4.png)
Capparis cartilagnia	Subshrub	![Image](image5.png)
Capparis deciduas	Shrub	![Image](image6.png)
Anastatica hierochuntica	Subshrub	![Image](image7.png)
Caralluma sinaica	Herb	![Image](image8.png)
Argemone Mexicana	Herb	![Image](image9.png)
Calligonum comosum	Saushrub	![Image](image10.png)
Calotropis procera	Shrub	![Image](image11.png)
Acalypha fruticosa	Subrub	![Image](image12.png)
Acalypha indica	Herb	![Image](image13.png)
Typha domingensis	Herb	![Image](image14.png)
Acknowledgments

The authors extend their appreciation to the Deanship of Scientific Research at King Saud University, Riyadh, Saudi Arabia for funding this work through research group No. 14-314.

References

Abdallah, E.M., 2017. In vitro antibacterial evaluation of fresh garlic juice (Allium sativum L.) cultivated in sudan. Acad. J. Life Sci. 3, 89–93.
Abdel-Kader, M.S., Hazmi, A.M., Elmalki, O.A., Alqasoumi, S.I., 2018. A survey on traditional plants used in Al Khobah village. Saudi Pharm. J. 26, 817–821.
Abdel-Moibid, M.,Basaf, S.A., 2002. Two new naphthalene and anthraquinone derivatives from Asphodelus tenuifolius. Pharm. 57, 286–287.
Abdou, A.M., Abdallah, H.M., Mohamed, M.A., Fawzy, G.A., Abdel-Naim, A.B., 2013. A new anti-inflammatory triterpene saponin isolated from Anabasis setifera. Arch. Pharm. Res. 36, 715–722.
Adepu, A., Narala, S., Ganji, A., Chilvalar, S., 2013. A review on natural plant: Aerva lanata. Int. J Pharm Sci. 3, 398–402.
Aftani, P., Malathi, N., Chamundeeswari, D., 2014. Pharmacognostic evaluation of leaves of Ocimum basilicum linn: the Lamiaceae family. J. Chem. Pharm. Sci. 7, 250–253.
Ageel, A.M., Parmar, N.S., Mossa, J.S., Al-Yahya, M.A., Al-Said, M.S., Tariq, M., 1986. Anti-inflammatory activity of some Saudi Arabian medicinal plants. Agents Actions 17, 379–384.
Ahmad, I., Mehmood, Z., Mohammad, F., Ahmad, S., 2000. Antimicrobial potency and synergistic activity of five traditionally used Indian medicinal plants. Antimicrob. Potency Synerg. Act. Five Tradit. Used Indian Med. Plants. 22, 173–176.
Ahmad, W., Jantan, I., Bukhari, S.N., 2016. Tinospora crispa (L.) Hook. f. & Thomson: a review of its ethnobotanical, phytochemical, and pharmacological aspects. Front. Pharmacol. 7, 59.
Ahkbar, S., Al-Yahya, M.A, 2011. Screening of Saudi plants for phytoconstituents, pharmacological and antimicrobial properties. Aust. J. Med. Herbal. 23, 76.
Akeele, O., 1988. Medicinal plants and primary health care: an agenda for action. Fitosfera 59, 355–363.
Al Jourisi, S.K., Halawa, T., Hussein, A., Al Najjar, S., Almuhayawi, M.S., Harakeh, S., 2017. Nigella sativa and Saudi honey diminish infections and improve the survival in a costmann’s syndrome patient: Case report. J. Appl. Hematol. 8, 119.
Al Moamary, M.S., 2008. Unconventional therapy use among asthma patients in a tertiary care center in Riyadh, Saudi Arabia. Ann. Thorac. Med. 3, 48–53.
Alamri, S.A., Moustafa, M.F., 2012. Antimicrobial properties of some medicinal plants used traditionally in Saudi Arabia. J. Appl. Anim. Res. 38, 39–44.
Al-Moamary, M.S., 2008. Unconventional therapy use among asthma patients in a tertiary care center in Riyadh, Saudi Arabia. Ann. Thorac. Med. 3, 48–53.
Al-Moamary, M.S., 2008. Unconventional therapy use among asthma patients in a tertiary care center in Riyadh, Saudi Arabia. Ann. Thorac. Med. 3, 48–53.
Al-Moamary, M.S., 2008. Unconventional therapy use among asthma patients in a tertiary care center in Riyadh, Saudi Arabia. Ann. Thorac. Med. 3, 48–53.
Al-Moamary, M.S., 2008. Unconventional therapy use among asthma patients in a tertiary care center in Riyadh, Saudi Arabia. Ann. Thorac. Med. 3, 48–53.
Al-Moamary, M.S., 2008. Unconventional therapy use among asthma patients in a tertiary care center in Riyadh, Saudi Arabia. Ann. Thorac. Med. 3, 48–53.
Al-Moamary, M.S., 2008. Unconventional therapy use among asthma patients in a tertiary care center in Riyadh, Saudi Arabia. Ann. Thorac. Med. 3, 48–53.
Al-Moamary, M.S., 2008. Unconventional therapy use among asthma patients in a tertiary care center in Riyadh, Saudi Arabia. Ann. Thorac. Med. 3, 48–53.
Al-Moamary, M.S., 2008. Unconventional therapy use among asthma patients in a tertiary care center in Riyadh, Saudi Arabia. Ann. Thorac. Med. 3, 48–53.
Al-Moamary, M.S., 2008. Unconventional therapy use among asthma patients in a tertiary care center in Riyadh, Saudi Arabia. Ann. Thorac. Med. 3, 48–53.
Al-Moamary, M.S., 2008. Unconventional therapy use among asthma patients in a tertiary care center in Riyadh, Saudi Arabia. Ann. Thorac. Med. 3, 48–53.
Al-Moamary, M.S., 2008. Unconventional therapy use among asthma patients in a tertiary care center in Riyadh, Saudi Arabia. Ann. Thorac. Med. 3, 48–53.
Al-Moamary, M.S., 2008. Unconventional therapy use among asthma patients in a tertiary care center in Riyadh, Saudi Arabia. Ann. Thorac. Med. 3, 48–53.
Al-Moamary, M.S., 2008. Unconventional therapy use among asthma patients in a tertiary care center in Riyadh, Saudi Arabia. Ann. Thorac. Med. 3, 48–53.
Al-Moamary, M.S., 2008. Unconventional therapy use among asthma patients in a tertiary care center in Riyadh, Saudi Arabia. Ann. Thorac. Med. 3, 48–53.
Al-Moamary, M.S., 2008. Unconventional therapy use among asthma patients in a tertiary care center in Riyadh, Saudi Arabia. Ann. Thorac. Med. 3, 48–53.
Al-Moamary, M.S., 2008. Unconventional therapy use among asthma patients in a tertiary care center in Riyadh, Saudi Arabia. Ann. Thorac. Med. 3, 48–53.
Al-Moamary, M.S., 2008. Unconventional therapy use among asthma patients in a tertiary care center in Riyadh, Saudi Arabia. Ann. Thorac. Med. 3, 48–53.
Al-Moamary, M.S., 2008. Unconventional therapy use among asthma patients in a tertiary care center in Riyadh, Saudi Arabia. Ann. Thorac. Med. 3, 48–53.
Al-Moamary, M.S., 2008. Unconventional therapy use among asthma patients in a tertiary care center in Riyadh, Saudi Arabia. Ann. Thorac. Med. 3, 48–53.
Al-Moamary, M.S., 2008. Unconventional therapy use among asthma patients in a tertiary care center in Riyadh, Saudi Arabia. Ann. Thorac. Med. 3, 48–53.
Al-Moamary, M.S., 2008. Unconventional therapy use among asthma patients in a tertiary care center in Riyadh, Saudi Arabia. Ann. Thorac. Med. 3, 48–53.
Al-Moamary, M.S., 2008. Unconventional therapy use among asthma patients in a tertiary care center in Riyadh, Saudi Arabia. Ann. Thorac. Med. 3, 48–53.
Al-Moamary, M.S., 2008. Unconventional therapy use among asthma patients in a tertiary care center in Riyadh, Saudi Arabia. Ann. Thorac. Med. 3, 48–53.
Al-Moamary, M.S., 2008. Unconventional therapy use among asthma patients in a tertiary care center in Riyadh, Saudi Arabia. Ann. Thorac. Med. 3, 48–53.
Al-Moamary, M.S., 2008. Unconventional therapy use among asthma patients in a tertiary care center in Riyadh, Saudi Arabia. Ann. Thorac. Med. 3, 48–53.
Al-Moamary, M.S., 2008. Unconventional therapy use among asthma patients in a tertiary care center in Riyadh, Saudi Arabia. Ann. Thorac. Med. 3, 48–53.
Al-Moamary, M.S., 2008. Unconventional therapy use among asthma patients in a tertiary care center in Riyadh, Saudi Arabia. Ann. Thorac. Med. 3, 48–53.
Al-Moamary, M.S., 2008. Unconventional therapy use among asthma patients in a tertiary care center in Riyadh, Saudi Arabia. Ann. Thorac. Med. 3, 48–53.
