ABSTRACT

Introduction: There are still many gaps in research concerning the effect of different physical training modalities on sleep quality in the population underwent coronary artery bypass graft (CABG) surgeries. Objective: The purpose of this study was to compare the effect of different exercise types on sleep quality and functional capacity after CABG. Material and Methods: 80 Participants aged 45-65 years were randomized to two groups: aerobic group (AG), and combined aerobic and resistance group (ARG). Training lasted ten consecutive weeks with 30 uninterrupted sessions. The actigraph together with Pittsburg Sleep Quality Index (PSQI) were used in sleep quality assessment. Six-minute walk test (6MWT) was used in assessment of functional capacity. The actigraph (Actiwatch Minimitter Company, Incorporated (INC) - Sunriver, OR, USA) was placed on the non-dominant wrist and activities were monitored continuously while being recorded at one-minute intervals. The participants kept the device for a period of 96 hours, filled PSQI, and did 6MWT before the first and last training sessions. Results: There was significant decrease in the mean value of sleep latency, fragmentation index, light sleep duration and sleep quality scores (p<0.01); and significant increase in total sleep duration, deep sleep duration, number of points on the actigraphy, sleep efficiency and functional capacity in both (AG) and (ARG) (p<0.01), that difference was more significant in the aerobic group (AG) (p<0.01). Conclusions: Both modes of exercise (aerobic alone and combined aerobic and resistance exercises) can improve sleep quality and functional capacity, but isolated aerobic exercise can do that more significantly.

Keywords: Sleep Deprivation; Exercise; Coronary Artery Bypass; Actigraphy.
INTRODUCTION

Poor sleep quality (SQ) is common among patients after coronary artery bypass graft surgery (CABG). The results of a systematic review showed that more than 50% of patients experienced sleep problems through hospitalization and 6 months after heart surgery. Factors that influence sleep disturbance during hospitalization and 6 months after discharge includes physical and environmental factors (e.g., pain, cardiac function, and noise) affecting the SQ of the patients. Poor SQ interferes with the cardiac patients' quality of life. And because of the ongoing obesity epidemic, previous estimates of sleep-disordered breathing prevalence require updating. We estimated the prevalence of sleep-disordered breathing in the United States for the periods of 1988-1994 and 2007-2010 using data from the Wisconsin Sleep Cohort Study, an ongoing community-based study that was established in 1988 with participants randomly selected from an employed population of Wisconsin adults. A total of 1,520 participants who were 30-70 years of age had baseline polysomnography studies to assess the presence of sleep-disordered breathing. Participants were invited for repeat studies at 4-year intervals. The prevalence of sleep-disordered breathing was modeled as a function of age, sex, and body mass index, and estimates were extrapolated to US body mass index distributions estimated using data from the National Health and Nutrition Examination Survey. The current prevalence estimates of moderate to severe sleep-disordered breathing (apnea-hypopnea index, measured as events/hour, ≥15) were used to estimate the prevalence of moderate to severe sleep-disordered breathing in the United States for the periods of 1988-1994 and 2007-2010.

METHODS

Our hypothesis here was that the two proposed forms of exercise (aerobic and combined aerobic and resisted exercises) would affect sleep quality and functional capacity as well in the same positive way.

MATERIAL AND METHODS

The investigation conforms with the principles outlined in the Declaration of Helsinki (Br Med J 1964; ii: 177). Approval of Research Ethical committee of faculty of physical therapy, Cairo University was taken for this study on 3/12/2017 under number: PT.REC/012/001805 and a written informed consent for patient information and images to be published was provided by the patients. This randomized controlled trial include a completed CONSORT flow chart and conducted in accordance with CONSORT guidelines.

I-Patients:

After the sign of the written consent forms, eighty patients (n=80) who have underwent CABG surgery since 6-8 weeks were included in this two-parallel arm study. They aged from 45-65. They were recruited during a time period of 6 months from the cardiac surgery department at the National heart institute in Cairo, Egypt and randomization was performed using the sealed envelope approach, to two groups with allocation ratio of 1:1. The two groups are aerobic group (AG) and combined aerobic and resistance group (ARG).
Inclusion criteria

Patients who had undergone CABG surgery since 6-8 weeks, their ages ranges from 45 and 65 years old, medically stable, did CABG-only treatment (not combined with valve replacement surgery), current complaint of poor SQ (score > 2 of the SQ scale) and with body mass index ≤ 35 kg/m² (to lessen the risk of obstructive sleep apnea) were only included in the study.

Exclusion criteria

Any patient was known to have any unstable medical condition; history of chronic insomnia for at least one year before surgery, indicated for receiving treatments for depression and/or anxiety or sleep medications, or with any known musculoskeletal or neurological conditions that might interfere with the execution or the assessment of the exercise, was excluded from the study.

II- Instrumentation

A- Evaluation methods:

The Pittsburgh Sleep Quality Index (PSQI) is a subjective self-report questionnaire that assesses sleep quality over a 1-month time interval in different populations.14

Actigraphy

Actigraphy is a valid objective tool to assist in determining sleep patterns in wide range of people ranging from normal, healthy to patients suspected of certain sleep disorders, and from infant to adults populations.20

Six minute walk test (6MWT)

The 6 Minute Walk Test is a valid sub-maximal exercise test used in assessment of aerobic capacity for patients with different cardiopulmonary disorders. Changes in functional capacity can be determined by the distance covered over a time of 6 minutes.21 AIMS AND OBJECTIVES: Walking speed is an important performance variable, but information on the minimal clinically important difference (MCID)

Rate of perceived exertion (RPE)

The RPE scale is a subjective method used in the measurement of the intensity of exercise, also known as Borg/modified Borg scale. The modified Borg RPE scale is a valid numerical scale that ranges from six to twenty, where 6 means “no exertion at all” or “very very light” as written and 20 means “maximal exertion” or “very very hard” as stated in the scale. Individuals describe their level of exertion during physical activity through choosing a number from this scale.22

B- Treatment options

Aerobic exercise

Intensity: 13-15 on modified BORG scale (somewhat hard to hard), Time: The exercise program consisted of 5 minutes warm-up, 30 minutes of moderate aerobic exercises and 10 minutes cool-down, respectively, Frequency: 3 sessions/week, and Duration: 10 weeks.18

Resistance exercise:

Intensity: 30% then progress to 50-60% of one repetition maximum (1RM), Time: The exercise program consisted of 5 minutes warm-up, 30 minutes of nine exercises were selected in the following circuit order: 1) Leg Press 45º; 2) Bench Press; 3) Extensor Bench; 4) Handle Front; 5) Flexor Bench-Sitting; 6) Upright Row; 7) Planter Flexion; 8) Seated Row; and 9) Abdominals, and 10 minutes cool-down, respectively, Frequency: 3 sessions/week, and Duration: 10 weeks.23

III- Procedures

A- Assessment procedure:

All patients were assessed before the first and last sessions via 6MWT to assess their functional capacity, 1RM to assess the resistance exercise intensity used, PSQI questionnaire and wrist actigraph (Actiwatch Minimitter Company, INC – Sunriver, OR, USA) to assess their sleep quality. Actigraph was placed on the non-dominant wrist and activities were monitored continuously and recorded at one minute intervals during wakefulness and sleep. The times of wakefulness and sleep were determined individually by means of a diary kept by the volunteers, together with the times calculated by the actigraph monitor. The participants kept the device for a period of 96 hours before the first and the last training session. The device was removed only at bath time and replaced to the wrist immediately after. The information was collected by the device and recorded by a validated algorithm (Minimitter Company - USA) and transferred to closed technology software installed in a computer. After analysis of the exams, the data were plotted on a spreadsheet for statistical treatment.

B- Intervention procedures

After the initial evaluation and the execution of the above procedures, the participants were randomized to two groups: aerobic group (AG), and combined aerobic and resistance group (ARG). Training lasted ten consecutive weeks with sessions held three times a week on alternate days for a total of 30 uninterrupted sessions. All sessions were held in the morning.24

AG group trained on a treadmill. Each session started and ended with five minutes of warm-up and ten minutes of cool-down, respectively. The subjects performed 20 minutes of continuous aerobic exercise from the 1st to the 4th week, with progression to 30 minutes of continuous aerobic exercise from the 5th to the 10th week.25 During exercise, heart rate (HR) values were measured continuously on the treadmill screen.

ARG subjects did the same as AG group, in addition to completing one circuit (1st to 4th week) and was progressed to 2 circuits (5th to 10th week) with intensity of 30% then progressed to 50 to 60% RM. The rest between stations (type of equipment) is one minute, with each station consisting of a series of 15 repetitions for the upper limbs and 20 repetitions for the trunk and lower limbs.26 At the end of each station, HR and perceived effort according to the modified Borg scale were recorded.
Eighty patients were included in this study; as they were randomly assigned into two groups, Group (A) was aerobic group (AG); it included 40 patients who did isolated aerobic exercises. While, Group (B) was the aerobic and resisted group (ARG); it included 40 patients who did combined aerobic and resisted exercises. Both training interventions lasted ten consecutive weeks with 30 uninterrupted sessions (3 sessions/week). The sleep parameters were measured via PSQI questionnaire and actigraph at equivalent time-points at the beginning and at the end of the study for both groups, and functional capacity was measured by 6MWT. This study demonstrated that two and half month regimen of regular exercise improved all aspects of sleep quality and functional capacity in both groups, but more significantly in aerobic group. The current work reflects that exercise in general is a proper behavioural intervention to improve sleep quality and functional capacity after CABG. This result comes in agreement with many systematic reviews like those conducted by Ashcraft KA et al27, Chennaoui et al28, and Cable et al29 who confirmed the positive benefits of exercise on sleep quality and functional capacity.

RESULTS

I- Patients clinical and demographic characteristics:

Eighty patients (n=80) with CABG were included in the study, 40 received aerobic exercise training program (AG) and another 40 received combined aerobic and resistance exercise training program (ARG). Their mean ± SD values for age, weight, height (in meter), BMI, resting heart rate (in beat/min), and duration post-CABG (6-8) weeks were calculated and there was non-significant difference between both groups (p>0.05). (Table 1).

Variable	The AG group (n=40)	The ARG group (n=40)	T value	P value
Age (year)	54.17±6.52	53.65±4.79	0.31	0.76**
Weight (kg)	90.7±6.36	90.04±5.38	0.38	0.71**
Height (meter)	1.69±0.03	1.67±0.02	1.81	0.08**
Body mass index (kg/m²)	31.92±2.58	32.22±2.3	-0.41	0.68**
Duration of CABG (weeks)	6.96±0.83	7±0.85	-0.18	0.86**

*Level of significance at P<0.05. * = significant ** =NS: non-significant.

II- Sleep measurements

In spite that there was significant decrease in the mean value of Sleep Latency, fragmentation index, light sleep duration and sleep quality scores (3=very bad, 2=bad, 1=good and 0=very good) (P <0.01) and significant increase in total sleep duration, deep sleep duration, number of points gained on the actigraphy, and sleep efficiency in both the aerobic group (AG) and combined aerobic and resisted group (ARG) (P <0.01), that difference was more significant in the aerobic exercise training group (AG) (P <0.01) (Figures 1 and 2).

III- Functional capacity

Despite there was significant increase in the Functional capacity mean value in both groups, (P <0.01) that difference was more significant in the aerobic exercise training group (AG) (P=0.02), (Figure 2).

DISCUSSION

In this study we aimed to find an adjusted exercise protocol as a behavioural intervention to alleviate sleep deprivation that may happen after CABG surgery and improve functional capacity as well.
Effect of different types of exercise on sleep deprivation predicted ultra-performance under sleep deprivation

Meta-analysis conducted by Yang et al. investigated how regular exercise impacts sleep quality in middle-aged and older adults with sleep complaints. Results indicated moderate effects in the favourable direction for regular exercise on sleep quality, and determined the acute and chronic effects of resistance exercise on sleep quantity and quality. Chronic resistance exercise improves all aspects of sleep, with the greatest benefit for sleep quality. That was also flowing with our findings as well.

In our study, sleep parameters and functional capacity were improved in both groups, but more improvement was noticed with the aerobic group. These results come in parallel with de Vries JD, who did a two-parallel arm study on 97 subjects to investigate to what extent a low-intensity exercise intervention is effective in improving sleep quality, self-efficacy, and physical fitness. Results underlined the value of low-intensity exercise for subjects with high levels of study-related problems.

However, that was contradicting to Bonardi et al. who examined the effect of different types of exercises on sleep quality on ninety women who were randomized to three groups: aerobic group (AG), combined aerobic and resistance group (ARG), and control untrained group (CG). Training lasted for same period like our study, but actigraph only was used in the assessment purposes. They reported that both groups (AG and ARG) got the same benefits of exercise on sleep quality without significant difference between aerobic exercises alone and combined aerobic and resisted exercises.

Literature postulated many theories about the mechanism of exercise on sleep quality improvement, these postulations include: Thermodnamic effect, anxiety reduction, increase in serotonin and subsequent antidepressant effects, immunologic alterations, and improvement in quality of life, and many other explanations for improvement of functional capacity with exercise including: cardiac remodeling, cardiac growth and vascular remodeling due to cellular and molecular adaptations in response to exercise.

Limitations:
This study has several limitations. First, the sex differences in outcomes are representative of periporative practice in Cairo. Similar research needs to be conducted in other settings to confirm the generalizability of our findings. Second, our data sources lacked some relevant detailed information such as smoking history. The inability to measure, and thereby adjust for, differences in such characteristics could have explained, in part, the differences in improvement rates observed in this study. Third, sample size was quite small and that was because many patients refused to share in the study when they knew that they may do resistance exercises after CABG, claiming that it is very risky exercise, and that highlight the importance of a dedicated research towards patient education about the value and safety of cardiac rehabilitation methods used after cardiac surgeries.

ACKNOWLEDGEMENTS:
The authors acknowledge Assistant Prof. Dr Ashraf AbdelElaal, Assistant Professor of physical therapy for cardiovascular/respiratory disorders and geriatrics, Cairo University, who assisted a lot in the statistical part of the results section.

FUNDING ACKNOWLEDGMENT:
“The author acknowledges funding received from the European Society of Cardiology in form of an E.S.C Nursing Grant”.

REFERENCES:
1. Ranjbaran S, Dehdari T, Sadeghniat-Haghkhi K, Majdabadi MM. Poor sleep quality in patients after coronary artery bypass graft surgery: An intervention study using the PRECEDE-PROCEED model. J Tehran Univ Hear Cent. 2015;10(1):1–8.
2. Souza SA de, Lorenzi-Filho G, Feltnn MIZ, Ykeda DS, Nerbsass FB. Effects of massage therapy on sleep quality after coronary artery bypass graft surgery. Clinics. 2011;65(11):1105–10.
3. Liao WC, Huang CY, Huang TY, Hwang SL. A systematic review of sleep patterns and factors that disturb sleep after heart surgery. J Nurs Res. 2011;19(4):275–88.
4. Peppard PE, Young T, Barnet JH, Palta M, Hagen EW, Hla KM. Increased prevalence of sleep-disordered breathing in adults. Am J Epidemiol. 2013;177(9):1006–14.
5. Dianatkah M, Ghaeli P, Tidazas AH, Karimi A, Salehimaran A, Bina P, et al. Evaluating the potential effect of melatonin on the post-cardiac surgery sleep disorder. J Tehran Univ Hear Cent. 2015;10(3):122–8.
6. Tobaldini E, Costantino G, Solbianti M, Cogliari C, Kara T, Nobili L. Sleep, sleep deprivation, autonomic nervous system and cardiovascular diseases. Neurosci Biobehav Rev [Internet]. 2017 Mar 1 [cited 2019 Apr 17];74:321–9. Available from: https://www.sciencedirect.com/science/article/pii/S0197434116302184
7. Chair SY, Wang Q, Cheng HY, Lo SWS, Li XM, Wong EML, et al. Relationship between sleep quality and cardiovascular disease risk in Chinese post-menopausal women. BMC Womens Health. 2017;17(1):1–7.
8. de Vries JD, van Hooff MLM, Geurts SAE, Kompier MAJ. Exercise as an Intervention to Reduce Study-Related Fatigue among University Students: A Two-Arm Parallel Randomized Controlled Trial. PLoS One. 2016;11(3):e0152137.
9. Mendelson M, Borowik A, Michaller A, Perrin C, Monneret D. ORIGITAL. NAL RESEARCH. 2015;6:26–32.
10. Zhong QY, Gelaye B, Sánchez SE, Williams MA. Psychometric Properties of the Pittsburgh Sleep Quality Index (PSQI) in a Cohort of Peruvian Pregnant Women. J Clin Sleep Med. 2015;11(8):869–77.
11. Aulians KW, Goldsman SE, Fawkes D, Suryda K, Wang L, Song Y, et al. A Pilot Study of Shoulder Placement for Actigraphy in Children. Behav Res. 2016;12(2):138–47.
12. Walsh J, Eastwood PR, Straker LM, Slater JA, King S, Botsis T. Assessing sleep using hip and wrist actigraphy. Sleep Biol Rhythms. 2015;13(2):172–80.
13. Stingeni L, Raponi F, Hansel C, Agostinelli D, Lisi P. Le correlazioni clinico-anamnestiche e i risultati dei test cutanei allergodiagnostici nelle reazioni avverse cutanee-mucose ad antibioterrieri sistemicini. Ann Ital Di Dermatologia Allergol Clin e Sper. 2011;65(1):28–33.
14. Mollayeva T, Thurairajah P, Burton K, Mollayeva S, Shapiro CM, Colon-tonio A. The Pittsburgh sleep quality index as a screening tool for sleep dysfunction in clinical and non-clinical samples: A systematic review and meta-analysis. Sleep Med Rev [Internet]. 2016 Feb 1 [cited 2019 Mar 11];25:52–73. Available from: https://www.sciencedirect.com/science/article/pii/S1087079215002016?via%3Dihub
15. Bonardi JMF, Lima LG, Campos GO, Bertani RF, Morogui JC, Ferroli E, et al. Effect of different types of exercise on sleep quality of elderly subjects. Sleep Med [Internet]. 2016;25:122–9. Available from: http://dx.doi.org/10.1016/j.sleep.2016.06.025
16. Hinz A, Glaesmer H, Brähler E, Löffler M, Engel C, Enzenbach C, et al. Sleep quality in the general population: psychometric properties of the Pittsburgh Sleep Quality Index, derived from a German community sample of 9284 people. Sleep Med [Internet]. 2017 Feb 1 [cited 2019 Apr 21];20:56–73. Available from: https://www.sciencedirect.com/science/article/pii/S1389945163000441
17. Landry GJ, Best JR, Liu-Ambrose T. Measuring sleep quality in older adults: A comparison using subjective and objective methods. Front Aging Neurosci. 2015;7(SEP):1–10.
18. Adkins KW, Goldman SE, Fawkes D, Surdyka K, Wang L, Song Y, et al. Relationship between sleep quality and cardiovascular disease risk in Chinese post-menopausal women. BMC Womens Health. 2017;17(1):1–7.
19. CONSORT. CONSORT 2010 Flow Diagram Follow-Up: 2010;2010.
20. Ancoli-Israel S, Cole R, Alessi C, Chambers M, Moorcroft W, Pollak CP. Cpr_Actigraphy. 2003; (April 2002).
21. Bohannon RW, Crouch R. Minimal clinically important difference for change in 6-minute walk test distance of adults with pathology: a systematic review. J Eval Clin Pract. 2017;23(2):377–81.
22. Mane E, Memushaj L, Luisiana Memushaj. 2018;(August):83–90. Available from: https://doi.org/10.5281/zenodo.1412109
23. Fairman CM, Hyde PN, Focht BC. Resistance training interventions across the cancer control continuum: a systematic review of the implementation of resistance training principles. 2017;677–85.
24. Yamakaka Y, Hashimoto S, Takasu NN, Tanahashi Y, Nishida S, Homma S, et al. Morning and evening physical exercise differentially regulate the autonomic nervous system during nocturnal sleep in humans. 2019;1112–21.
25. Chen Lj, Fox KR, Ku PW, Chang YW. Effects of Aquatic Exercise on Sleep in Older Adults with Mild Sleep Impairment: a Randomized Controlled Trial. Int J Behav Med [Internet]. 2016;23(4):501–6. Available from: http://dx.doi.org/10.1007/s12529-015-9492-0
26. Mazzochi JW. Resistance Exercise Timing Effects On Blood Pressure and Sleep Architecture In Pre-hypertensives. Med Sci Sport Exerc. 2017;46:666.

APPENDICES:

1. CABG: coronary artery bypass grafting
2. AG: aerobic group
3. ARG: combined aerobic and resistance group
4. PSQI: Pittsburg sleep quality index
5. 6MWT: six minute walk test
6. INC: incorporated
7. USA: united states of America
8. SQ: sleep quality
9. CVD: cardiovascular disease
10. N: number
11. RPE: rate of perceived exertion
12. 1RM: one repetition maximum
13. SD: standard deviation
14. EXT: exercise training
27. Ashcraft KA, Peace RM, Befof AS, Dewhirst MW, Jones LW. Ef fi cacy and Mechanisms of Aerobic Exercise on Cancer Initiation, Progression, and Metastasis: A Critical Systematic Review of In Vivo Preclinical Data. 2016;76(14):12–4.
28. Chennaoui M, Arnal P, Sauvet F, Léger D. Sleep and exercise: A reciprocal issue? Sleep Med Rev [Internet]. 2015 Apr 1 [cited 2019 Mar 11];20:59–72. Available from: https://www.sciencedirect.com/science/article/pii/S1087079214000720?via%3Dihub
29. Cable NT. Basic science behind the cardiovascular benefits of exercise. 2019;50(2):1–6.
30. Yang P, Ho K, Chen H, Chien M. Exercise training improves sleep quality in middle-aged and older adults with sleep problems: a systematic review. J Physiother [Internet]. 2012;58(3):157–63. Available from: http://dx.doi.org/10.1016/S1836-9553(12)70106-6
31. Kovacevic A, Mavros Y, Heisz JJ, Fiatarone Singh MA. The effect of resistance exercise on sleep: A systematic review of randomized controlled trials. Sleep Med Rev [Internet]. 2018 Jun 1 [cited 2019 Mar 12];39:52–68. Available from: https://www.sciencedirect.com/science/article/pii/S1087079216301526
32. Baratina VG, Oliveira EM, Phillips MI, Negrão CE, Fernandes T. Aerobic exercise training promotes physiological cardiac remodeling involving a set of microRNAs. Am J Physiol Circ Physiol. 2015;309(4):H543–52.