In silico functional dissection of saturation mutagenesis: Interpreting the relationship between phenotypes and changes in protein stability, interactions and activity

Douglas E. V. Pires1,2,*, Jing Chen1,†, Tom L. Blundell1 & David B. Ascher1,*

Despite interest in associating polymorphisms with clinical or experimental phenotypes, functional interpretation of mutation data has lagged behind generation of data from modern high-throughput techniques and the accurate prediction of the molecular impact of a mutation remains a non-trivial task. We present here an integrated knowledge-driven computational workflow designed to evaluate the effects of experimental and disease missense mutations on protein structure and interactions. We exemplify its application with analyses of saturation mutagenesis of DBR1 and Gal4 and show that the experimental phenotypes for over 80% of the mutations correlate well with predicted effects of mutations on protein stability and RNA binding affinity. We also show that analysis of mutations in VHL using our workflow provides valuable insights into the effects of mutations, and their links to the risk of developing renal carcinoma. Taken together the analyses of the three examples demonstrate that structural bioinformatics tools, when applied in a systematic, integrated way, can rapidly analyse a given system to provide a powerful approach for predicting structural and functional effects of thousands of mutations in order to reveal molecular mechanisms leading to a phenotype.

Missense or non-synonymous mutations are nucleotide substitutions that alter the amino acid sequence of a protein. Their effects can range from modifying transcription, translation, processing and splicing, localization, changing stability of the protein, altering its dynamics or interactions with other proteins, nucleic acids and ligands, including small molecules and metal ions. The advent of high-throughput techniques including sequencing and saturation mutagenesis has provided large amounts of phenotypic data linked to mutations. However, one of the hurdles has been understanding and quantifying the effects of a particular mutation, and how they translate into a given phenotype. One approach to overcome this is to use robust, accurate and scalable computational methods to understand and correlate structural effects of mutations with disease.

Over the past twenty years, multiple in silico approaches to predict how mutations affect protein stability have been developed based on various evolutionary and physicochemical hypotheses. These include methods that seek to understand the effects of amino acid substitutions from the protein sequence alone, and those that exploit the extensive structural information now available for many proteins. The sequence-based approaches include, amongst others, the well established and widely used methods SIFT1 and PolyPhen2. Our lab developed one of the pioneering structure-based approaches, SDM3, 4, which uses environment-specific substitution tables of protein

1Department of Biochemistry, Sanger Building, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK. 2Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Avenida Augusto de Lima 1715, Belo Horizonte, 30190-002, Brazil. *Present address: College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China PRC. *These authors contributed equally to this work. Correspondence and requests for materials should be addressed to D.E.V.P. (email: douglas.pires@cpqrr.fiocruz.br) or D.B.A. (email: dascher@svi.edu.au or da382@cam.ac.uk)
families to derive a statistical potential energy function. Subsequently, in silico methods based on a variety of evolutionary and physical chemical hypotheses have been proposed for predicting the effects of mutations on protein stability\(^3\)-\(^10\). More recently, we have used machine learning and graph-based signatures to represent the three-dimensional environment of the wild-type residue and have developed mCSM-Stability, which quantitatively predicts the change upon mutation in the Gibbs free energy (\(\Delta G\)) of folding\(^11\). By combining these two different approaches we were able to develop an optimized consensus method, DUET, which takes advantage of their relative strengths\(^12\).

To date, significantly less attention has been focused on understanding the effects of mutations on the recognition of binding partners, including proteins, nucleic acids and other ligands. These properties are much more difficult to predict from the amino acid sequence alone. Several methods have been recently proposed in an attempt to understand how mutations on protein interfaces affect binding affinity\(^9\),\(^13\)-\(^16\), although there is still significant room for improvement\(^17\). In order to bridge this gap, we have developed methods based on graph signatures to predict accurately changes upon mutation in protein-protein (mCSM-PPI) and protein-nucleic acid (mCSM-NA) affinities\(^11\), and more recently efforts to predict the changes in protein-ligand affinity (mCSM-Lig)\(^18\).

Recent advances in experimental approaches have integrated saturation mutagenesis coupled to a biological assay output as a tool to facilitate the high-resolution, functional dissection of mutations\(^19\),\(^20\). However, understanding the functional consequence of these mutations, and how they are linked to the experimental phenotype, remains a very complex and multifactorial task. Here we present a knowledge-driven computational workflow that can be easily implemented in a pipeline to analyze the structural and functional effects of mutations (Fig. 1). This approach is contingent upon a good understanding of the protein (both structure and function) and the system being mutated, as highlighted at the top of Fig. 1. The workflow then uses structural methods to explore the molecular mechanisms of mutations and their links to the biological effects experimentally observed.

The lariat debranching enzyme DBR1

Findlay and colleagues reported in Nature a CRISPR/Cas9 cleavage system coupled with multiplex homology-directed repair to perform saturation editing of a conserved 25 amino acid region of the RNA lariat debranching enzyme DBR1, an essential gene. They coupled this to a growth-based assay to evaluate the phenotypic effects of over 170 distinct missense mutations. The authors noted a weak correlation between the sequence-based predictor CADD\(^21\) and PolyPhen-2\(^22\) with the phenotypic output. This region is quite highly conserved, leading to PolyPhen and CADD predicting most mutations as damaging\(^7\). We therefore applied our

![Figure 1. A proposed computational mutation analysis workflow.](image-url)
Figure 2. Noncovalent interaction networks in DBR1. (A) shows depicts interactions between Manganese ion and the DRB1-RNA complex. The ion is coordinated by a series of interactions within the protein as well as with the RNA molecule. Mutations on these residues would, therefore, disrupt manganese binding, affecting catalytic activity directly. (B,C) depicts noncovalent interaction network of mutated residues in the DRB1-RNA complex. Mutated residues are depicted in green and the RNA fragment in blue. Hydrogen bonds are depicted as red dotted lines, hydrophobic interactions in green and ring-ring interactions in grey. Panel B shows residue Trp99 performing a series of hydrophobic and ring interactions. Mutation from tryptophan to glycine would destabilize the protein given the loss of interactions leading to a loss of entropy when folding. Panel C shows residue His85, whose mutations are predicted to also affect RNA binding affinity. His85 makes a series of inter and intramolecular ring interactions that would be lost by a mutation to serine.

workflow in an attempt to analyse the molecular mechanism underlying the phenotypic effects of these mutations (Figure S1).

Figure S2 shows the growth response distribution (average log2-enrichment score between replicates) of the 172 missense mutations reported by Findlay and colleagues19 and considered in this analysis, ranging from residues 84 to 108 of human DBR1. There is a bimodal distribution of the phenotypic effects of the mutations, with a distinct division of the experimental data into two different (and balanced) groups: a) minimum or no reduced growth (on the right) and b) highly reduced growth (on the left). Mutations were classified in one of the two groups accordingly, using an average log-enrichment score threshold of \(-3\). Due to the essential nature of DBR1, and the design of the experiments, the change of growth could be directly related to the point mutations in DBR119.

The workflow described here to study the effects of mutations relies upon the availability of high quality experimental or predicted protein structures. The DBR1 family is highly conserved and redundant, with human DBR1 previously shown to rescue yeast mutants23. As no experimental structure of DBR1 was available, high-confidence homology models were built of residues 2-349 of the apo- and RNA-bound protein. This region of DBR1 adopts an MPE fold24. The crystal structures of the homologue DCR1 (PDB codes: 4PEF, 4PEH and 4PEI24) were used to identify the location of the catalytic manganese (Fig. 2A) and the RNA binding site.

Manganese Coordinating Residues. DBR1 is a phosphodiesterase with a catalytic manganese coordinated by Asp9, Asn84, His174 and His226 (Fig. 2A). It would be expected that mutations affecting one of these residues would disrupt manganese binding, and hence activity, leading to reduced growth. Among the mutations analyzed, 19 (11%) were of Asn84. As predicted these were all associated with very low log-enrichment scores and hence greatly reduced growth (p < 0.001 by two-tailed Z-test). Analysis by mCSM-metal confirmed all mutations of Asn84, but no others, were deleterious to manganese binding. As these mutations could be explained from the expected altered catalytic activity, they were therefore removed from the structural analyses below.

Predicted Highly Destabilizing Mutations. Using the apo model of DBR1, as well as that bound to an RNA substrate analogue, the change in stability caused by the missense mutations was quantitatively predicted by mCSM-Stability, SDM and DUET. Amongst the mutations, 27 (17% of the non-catalytic mutations) were predicted to be highly destabilizing (\(\Delta G < -2\) Kcal/mol) by mCSM-Stability, for example see Fig. 2B. These were associated with reduced growth (p = 0.037 by two-tailed Z-test), with 70% having average log-enrichment scores lower than \(-3\).

Mutations Predicted to Reduce PPI Affinity. Since the protein interacting partners of DBR1 have not yet been characterized, mCSM-PPI41 could not be used to assess the effects of the mutations upon their interactions. In addition, the residues mutated were either buried or located in the RNA-binding region. Furthermore, analysis with Crescendo did not support a role of these residues in mediating a protein-protein interaction25.

Mutations Predicted to Greatly Reduce RNA Affinity. We used the model of DBR1 in complex with an RNA substrate analogue and mCSM-NA to predict the effect of the mutations upon RNA binding affinity. mCSM-NA predicted 25 mutations (16% of the non-catalytic mutations) to be highly destabilizing to RNA binding (\(\Delta G < -2\) Kcal/mol). These mutations presented a clear reduction in cell growth (p = 0.011 by the two-tailed Z-test), with 76% having a log-enrichment score below \(-3\). This effect is exemplified by the interactions that some of the wild-type residues make in the RNA binding pocket (Fig. 2C). There was some overlap with the previous group of mutations, as 13 of these mutations (44%) were also predicted to be highly destabilizing by mCSM-Stability. By integrating these two predicted effects we were able to train a binary classifier based on
protein stability and/or RNA binding affinity and predicted using mCSM-Stability, SDM, DUET and mCSM-NA.

suggested that the phenotypic effects of over three quarters of the mutations could be explained by alterations in

ρ

observed by the authors using CADD (predicted effects on RNA affinity by mCSM-NA and the experimentally measured reduced growth, higher than

characterized by Findlay and colleagues19. We had observed with the mild mutations that taking into consider-

ation and

terns between the in silico consensus score, generating linear models that can describe different partitions of the data, better associating pat-

bined the predictions from SDM, mCSM-Stability and mCSM-NA together with the flag for catalytic residues in a

PolyPhen-2 (AUC

predicted effects on RNA affinity by mCSM-NA and the experimentally measured reduced growth, higher than

= 0.667, over a reduced set of 160 missense mutations), as depicted on Fig. 3, left graph. This

This suggests that the phenotypic results of approximately 80% of the DBR1 mutations that cannot be explained by large changes in stability, RNA affinity or metal binding, can be explained by changes in RNA binding affinity and protein stability together. This is consistent with the idea that missense mutations can have a multitude of effects on a protein function.

Categorical Analysis of All DBR1 Experimental Mutations. No clear correlation between the experimental measurement and stability changes alone was initially observed on the full data set (ρ < 0.1 for mCSM-Stability and DUET and ρ = 0.14 for SDM). A weak correlation of ρ = 0.35 was observed between the predicted effects on RNA affinity by mCSM-NA and the experimentally measured reduced growth, higher than observed by the authors using CADD (ρ = 0.30).

Ideally we wished to generate a model that could explain the phenotypic effects of most of the mutations characterized by Findlay and colleagues19. We had observed with the mild mutations that taking into consider-

ation effects on both stability and RNA affinity could explain a majority of phenotypic effects. Therefore, using mCSM-NA and stability predictions and by flagging the metal coordinating residues, we trained a binary classi-

fier using the Random Forest algorithm26. We were able to achieve an accuracy of 78% with an AUC = 0.82, with accuracy of 78% (combined using the Random Forest algorithm26, evaluated by leave-one-out cross validation), as shown in the ROC curve on Fig. 3, left graph. Also by combining the predictions from DUET, mCSM-Stability and mCSM-NA, using a simple linear Regression Model Tree27, we observed a correlation with the average phe-

notypic results (ρ = 0.56. Fig. 3, center graph).

This suggests that the phenotypic results of approximately 80% of the DBR1 mutations that cannot be explained by large changes in stability, RNA affinity or metal binding, can be explained by changes in RNA binding affinity and protein stability together. This is consistent with the idea that missense mutations can have a multitude of effects on a protein function.

Mutations Predicted to Have Mild Effects on Stability or RNA Binding. We were, however, interest-
ed in exploring further those 112 missense mutations that were not predicted to have a large effect either on stability or RNA binding. Neither changes in protein stability nor RNA affinity, taken separately, correlated strongly enough with the phenotypic results to explain their mechanism (ρ = 0.22 for mCSM-Stability and ρ = 0.48 for mCSM-NA).

In theory mutations could destabilize the protein, alter RNA binding or a combination of the two. Therefore the predicted changes in stability and RNA binding affinity from mCSM were used to train a binary classification model to predict whether a given mutation resulted in reduced growth. This achieved an AUC = 0.82, with

accuracy of 78% (% combined using the Random Forest algorithm26, evaluated by leave-one-out cross validation), as shown in the ROC curve on Fig. 3, left graph. Also by combining the predictions from DUET, mCSM-Stability and mCSM-NA, using a simple linear Regression Model Tree27, we observed a correlation with the average phe-

notypic results (ρ = 0.56. Fig. 3, center graph).

This suggests that the phenotypic results of approximately 80% of the DBR1 mutations that cannot be explained by large changes in stability, RNA affinity or metal binding, can be explained by changes in RNA binding affinity and protein stability together. This is consistent with the idea that missense mutations can have a multitude of effects on a protein function.

Regression Analysis of All DBR1 Experimental Mutations. Using a Regression Model Tree27, we combined the predictions from SDM, mCSM-Stability and mCSM-NA together with the flag for catalytic residues in a consensus score, generating linear models that can describe different partitions of the data, better associating pat-

terns between the in silico analysis with the phenotypic outcome. A correlation of ρ = 0.64 on 10-fold cross validation and ρ = 0.65 on leave-one-out cross validation was obtained (Fig. 3, right graph). This could be extrapolated to predict the expected phenotypic effects of mutations to the rest of the model- allowing rapid identification of
regions of potential interest (Fig. 4). This highlights, as expected, that key residues involved in manganese coordination and RNA binding are likely to have the greatest effects on cell growth.

Interestingly, the outlier mutations tended to have very low log-enrichment scores (Fig. S3). While it is typical for extreme effects to be poorly fitted by machine-learning methods, it is also possible that the observed reduced growth of these mutations could be due to other effects that we have not considered here, for example changes in levels of transcription or translation. A complete prediction performance comparison before and after 10% outlier removal is available on Table S1 of Supplementary Material.

The yeast transcription factor Gal4

Kitzman and colleagues20 presented in Nature Methods a programmed allelic series saturation mutagenesis of residues 2–64 of the yeast transcription factor Gal4, essential for the metabolism of galactose and melibiose. This was coupled to a reporter assay, which allowed them to link the effects of 1083 missense mutations to changes in cell growth in the presence of a selectable marker. A histogram of the effects of the mutations in growth response distribution (log2-enrichment) is shown in Figure S4, with those mutations presenting a log-enrichment score of lower than −3 classified as leading to reduced growth. In an attempt to analyse the molecular mechanism underlying the phenotypic effects of these mutations we applied our workflow (Figure S5). The X-ray crystal structure of Gal4 from Saccharomyces cerevisiae in complex with DNA has been solved (PDB ID: 3COQ28), and was used for this analysis.

Zinc coordinating residues. Gal4 DNA recognition and transcriptional activation were known to be mediated by a Zn2,Cys6 binuclear cluster29–33, and this was confirmed by the experimental structures of Gal4 and its molecular interactions with DNA28,34,35. The pair of Zn2+ ions help maintain the fold of the DNA-binding residues and are coordinated by six conserved cysteine residues within the protomer (Fig. 5A). Approximately 90% of mutations (98/110) identified as affecting metal coordination were experimentally observed to lead to reduced growth, with average log-enrichment scores lower than −3. This was consistent with mCSM-metal predictions that the majority of mutations at any of these positions would lead to loss of zinc binding and disrupted function of Gal4, and were strongly correlated with reduced growth (p < 0.001 by two-tailed Z-test).

Predicted Highly Destabilising Mutations. Using the available crystal structure of the Gal4-DNA complex28, the stability change upon mutation was predicted using mCSM-Stability, SDM and DUET. Mutations predicted by mCSM-Stability to be highly destabilizing (ΔΔG < −2 Kcal/mol) were highly associated with reduced growth (p = 0.003 by two-tailed Z-test), with almost 70% of mutations (46/67) presenting average log-enrichment scores lower than −3 (for an example see Fig. 5B). This proportion increased to 85% for mutations (28/33) predicted to have an even greater effect (ΔΔG < −2.5 Kcal/mol).

Mutations Predicted to Greatly Reduce PPI Affinity. Gal4 function is dependent upon binding DNA as a homodimer29,30,34,35. The crystal structure of Gal4 in complex with DNA revealed the dimerisation interface consisted of an intertwined helical bundle29. Mutations that would disrupt homodimer formation were therefore predicted would be associated with reduced growth (Fig. 5C). 61% of mutations (19/31) predicted by mCSM-PPI to greatly reduce protein-protein affinity (ΔΔG < −2.0 Kcal/mol) presented a log-enrichment score lower than −3. This proportion increased to 77% (7/9) for the most debilitating mutations (ΔΔG < −2.5 Kcal/mol) that were associated with reduced growth.

Mutations Predicted to Greatly Reduce DNA Binding Affinity. Gal4 is a transcriptional activator that recognises a consensus 17-base-pair sequence29–33, with similar sequences located upstream of Gal4-regulated genes. Decreasing the binding affinity to this sequence, for instance by interfering with the interactions established by the wild type (Fig. 5D), would reduce expression of the selectable resistance marker and lead to reduced growth. Mutations predicted by mCSM-NA to greatly disrupt DNA binding (ΔΔG < −2.0 Kcal/mol) were
strongly associated with reduced growth ($p = 0.004$ by two-tailed Z-test), with 74% of mutations (26/35) presenting a log-enrichment score lower than -3.

Regression and Classification Analysis of All Gal4 Experimental Mutations. None of the individual predictions from each method correlated well with the experimental data (mCSM-Stability $\rho = 0.21$; SDM $\rho = 0.20$; DUET $\rho = 0.26$; mCSM-PPI $\rho = 0.21$; mCSM-NA $\rho = 0.11$). This reflects the observation that the mutations exert a range of effects on Gal4, from destabilising the protein, to disrupting its interactions with DNA or within the homodimer.

Using a Random Forest to train a binary classifier using predictions from mCSM-Stability, SDM, DUET, mCSM-PPI and mCSM-NA we were able to correctly classify 81% of the mutations (AUC = 0.86).

A correlation of $\rho = 0.69$ was obtained on 10-fold cross validation, by linearly combining these predictions using a Regression Model Tree. A regression plot of the obtained model is shown in Fig. 6. A heatmap analysis of the effects of the mutations on protein stability and DNA affinity (Fig. 7) shows the predicted variability of effects on protein stability and DNA affinity on the structures and how they are together complementary to the experimental phenotype. As observed with DBR1, the outlier mutations tended to have very low log-enrichment scores (Figure S6 of Supplementary material).

Mutations on von Hippel-Lindau disease and risk of renal carcinoma

von Hippel-Lindau (VHL) disease is an inherited condition caused by mutations on the VHL gene which are associated with propensity for tumours, including clear cell renal cell carcinoma (ccRCC). In a recent work, Gossage and colleagues\cite{36} assembled a database of 121 missense mutations on VHL linked with experimental and clinical data, including associations with ccRCC. This was used to develop a pipeline, Symphony, to study mutations in this protein and predict risk of ccRCC by integrating different methods. From the original data set, 62 mutations were categorized as high risk and the remaining 59 as low risk of ccRCC and were used as training...
set. An additional set of 173 mutations was used as test set. We have applied our new pipeline to these mutations in order to assess its performance in correlating mutation effects with clinical outcomes (Figure S7).

Mutations predicted to greatly affect protein stability and protein-protein affinity. The available structure of VHL in complex with Elongin B, Elongin C and a HIF-1α peptide (PDB ID: 1LM8) was used in this study. 77% of mutations (17/22) predicted as highly destabilizing by DUET ($\Delta \Delta G < -2.0$ Kcal/mol) were associated with high risk of ccRCC, a proportion consistent with mCSM-Stability (76%–16/21) and SDM (76%–32/42). All mutations (3/3) predicted to disrupt the protein-protein complex were classified as high-risk (examples depicted in Fig. 8A,B). This is consistent with the idea that risk of ccRCC is directly related to the impact of the mutation on VHL structure and function.

Predicting risk of ccRCC for all mutations on VHL. A Random Forest binary classifier was trained using stability and protein-protein affinity change predictions from mCSM-Stability, SDM, DUET and mCSM-PPI. ccRCC risk was predicted with 98% sensitivity and 93% specificity, which is consistent with the results described by Gossage et al. Predicting low risk, while most mutation associated with other tumours (pheochromocytoma) and polycythemia were predicted as low-risk for ccRCC, also consistent with what was obtained by Symphony.

Figure 6. Performance analysis on regression on Gal4 mutations. The graph shows regression results on 10-fold cross validation for the predictive model trained on the complete set of mutations (1083) on Gal4. Fitted log(enrichment) scores using DUET, SDM, mCSM-Stability, mCSM-PPI and mCSM-NA are combined using linear equations compared to the average phenotypic results obtained by Kitzman et al. (2015). Pearson’s correlation coefficient (ρ) is shown in the bottom-right part of each graph and at the top-left after 10% outlier removal. Outliers are depicted in red.

Figure 7. Heatmap of the average predicted and experimental changes upon mutation on Gal4. The figure shows the average prediction per residue in stability (left), DNA affinity (middle) and experimental measurement of enrichment score (right). Residues were coloured in a scale from blue to red indicating the average effect from stabilizing to destabilizing as predicted by mCSM-Stability, mCSM-NA or the degree of reduced cell growth as described experimentally. It is interesting to notice the predicted variability of effects on protein stability and DNA affinity on the structures and how they are together complementary to the experimental phenotype.
Dissecting the effects of mutations is a complicated task, but we present here a computational pipeline capable of explaining experimental data and which provides a promising avenue for understanding the role of mutations in evolution, the emergence and progression of diseases and as a cornerstone for guiding current and the next generation of treatments. Combining predictors into a single model can also be a valuable clinical tool, allowing the rapid analysis of novel mutations. For example, by combining multiple predictions, a classifier (Symphony) was able to identify mutations in VHL associated with renal cell carcinoma with high levels of sensitivity and specificity. This showed that changes in protein stability and protein-protein interactions were important in order to predict the clinical phenotypes.

Dissecting the effects of mutations is a complicated task, but we present here a computational pipeline capable of explaining experimental data and which provides a promising avenue for understanding the role of mutations in evolution, the emergence and progression of diseases and as a cornerstone for guiding current and the next generation of treatments.

Methods
Homology modelling of DBR1. Models of apo DBR1 and DBR1 in complex with RNA, comprising residues 2-349, were generated using Modeller and MacroModel (Schrodinger, New York, NY) using the X-ray structure of the homologous protein homogentisate 1,2-dioxygenase as a template.

Figure 8. Noncovalent interaction networks in VHL. Mutated residues are depicted in green. Proximal hydrophobic interactions are depicted in small dots, ring-ring interactions in grey and donor-pi interactions in blue. (Panel A) shows residue Phe136 performing a dense network of hydrophobic and ring interactions. Mutation to serine is predicted to be highly destabilizing, given the removal of a large portion of the side chain and consequent loss of interactions. Panel B shows residue Trp88, whose mutations are predicted to also affect protein-protein affinity. Trp88 establishes a network of ring interactions, as well as donor-pi interactions within its chain and with the HIF-1α peptide. Mutations to arginine or serine would disrupt these strong interactions, destabilize the region as well as the protein-protein interface, reducing affinity.
crystal structures of apo DCR1 (PDB code: 4PEF) and in complex with a substrate analogue, synthetic RNA that mimics the RNA lariat branchpoint (PDB codes: 4PEH and 4PEI) from Entamoeba histolytica (35% sequence identity with human DBR1). The models were then minimized using the MMP94s forcefield in Sybyl-X 2.1.1 (Ceritara L.P., St Louis, MO), with the final structure having more than 95% of residues in the allowed region of a Ramachandran plot. Following previous approaches42–44, a manganese ion was manually added to the active site after comparison with the manganese-bound DCR1 structures indicated the conformation of residues in the manganese-binding motif were identical in the two proteins. The root mean square deviation (RMSD) between the models and the templates was 0.21–0.22 Å. The quality of the models was confirmed with Verify3D45 (data not shown). Model structures were examined using Pymol.

Predicting the structural effects of mutations. The effects of the mutations on the stability of DBR1 and Gal4 were analyzed by mCSM-Stability11, SDM4 and DUET12 using both the apo and ligand-bound models. The predicted changes in stability of DBR1 were also predicted by I-Mutant26, PoPMuSiC 28, Foldx15 and AutoMute246, however as they did not show an improved correlation over mCSM or DUET (Table S3) they were not used further in the analysis and we have not presented them here. As part of the SDM predictive method, all the mutants were modeled using Andante47; however, these were not needed for the mCSM and DUET predictions. The effects of the mutations on manganese coordination by DBR1 and zinc binding by Gal4 were also assessed by mCSM-metal, which is still under development for other metal classes. The effects of the mutations on the affinity of DBR1 for RNA and Gal4 for DNA were analyzed by mCSM-NA11 using the model of the complexes. The effects of the mutations on the affinity of the Gal4 homodimer and the VHL-Elongin B/C-HIF-1α complex were predicted by mCSM-PII13. All the predictions for DBR1 are shown in Table S4.

Machine learning methods. For classification tasks we used the Random Forest algorithm26,68 to train predictive models. This is an ensemble-learning method where multiple decisions trees are induced over a random subset of features and decide the output via majority voting. It is considered one of the best and more robust classification algorithms capable of dealing with large data sets. For regression tasks we used Regression Model Trees, specifically the M5P algorithm27. The model creates a decision tree that divides the data in subgroups based on the input attributes. A linear regression model is then created within each subgroup. The algorithms used are implemented and available via the Weka toolkit69. For both classification and regression experiments, models were evaluated under 10-fold cross validation and also leave-one-out cross validation for DBR1.

Evaluation metrics for predictive models. Classification models were evaluated based on the Area under ROC curve (AUC). Values for AUC range from 0 to 1. A perfect binary classifier would give an AUC of 1, while a random classifier would render an AUC of 0.5. The correctly classified instances (accuracy = tp/tn / (tp + tn + fp + fn)) as well as sensitivity (tp/(tp + fn)) and specificity (tn/(tn + fp)) were also used when applicable. Regression models were evaluated based on the Pearson’s correlation coefficient. Correlation values range from −1 to 1. A value of 1 denotes perfect positive correlation, −1 a perfect negative correlation, while random variables are expected to give a correlation close to 0. As a standard procedure in machine learning, Pearson correlation coefficients are evaluated on the complete data set and after 10% outlier removal in order to assess the fit of the model to the majority of data points, minimising possible large effects from a small proportion of the data (i.e., giving an estimate of performance in 90% of the data).

References
1. Deng, Z., Chuaqui, C. & Singh, J. Structural interaction fingerprint (SIFt): a novel method for analyzing three-dimensional protein-ligand binding interactions. J Med Chem 47, 337–344 (2004).
2. Adzhubei, I. A. et al. A method and server for predicting damaging missense mutations. Nat Methods 7, 248–249 (2010).
3. Topham, C. M., Srinivasan, N. & Blundell, T. L. Prediction of the stability of protein mutants based on structural environment-dependent amino acid substitution and propensity tables. Protein Eng 10, 7–21 (1997).
4. Worth, C. L., Preissner, R. & Blundell, T. L. SDM–a server for predicting effects of mutations on protein stability and malfunction. Nucleic Acids Res 39, W215–222 (2011).
5. Capriotti, E., Fariselli, P. & Casadio, R. A neural-network-based method for predicting protein stability changes upon single point mutations. Bioinformatics 20 Suppl 1, i63–68 (2004).
6. Capriotti, E., Fariselli, P. & Casadio, R. I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Res 33, W306–310 (2005).
7. Cheng, J., Randall, A. & Baldi, P. Prediction of protein stability changes for single-site mutations using support vector machines. Proteins 62, 1125–1132 (2006).
8. Dehouck, Y. et al. Fast and accurate predictions of protein stability changes upon mutations using statistical potentials and neural networks: PoPMuSiC-2.0. Bioinformatics 25, 2537–2543 (2009).
9. Guerois, R., Nielsen, J. E. & Serrano, L. Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations. J Mol Biol 320, 369–387 (2002).
10. Parthiban, V., Gromiha, M. M. & Schomburg, D. CUPSPAT: prediction of protein stability upon mutations. Nucleic Acids Res 34, W239–242 (2006).
11. Pires, D. E., Ascher, D. B. & Blundell, T. L. mCSM: predicting the effects of mutations in proteins using graph-based signatures. Bioinformatics 30, 335–342 (2014).
12. Pires, D. E., Ascher, D. B. & Blundell, T. L. DUET: a server for predicting effects of mutations on protein stability using an integrated computational approach. Nucleic Acids Res 42, W314–319 (2014).
13. am Busch, M. S. et al. Testing the Coulomb/Accessible Surface Area solvent model for protein stability, ligand binding, and protein design. BMC Bioinformatics 9, 148 (2008).
14. Pokala, N. & Handel, T. M. Energy functions for protein design: adjustment with protein-protein complex affinities, models for the unfolding rate, and negative design of solubility and specificity. J Mol Biol 347, 203–227 (2005).
15. Schymkowitz, J. et al. The FoldX web server: an online force field. Nucleic Acids Res 33, W382–388 (2005).
16. Betts, M. J. et al. Mechismo: predicting the mechanistic impact of mutations and modifications on molecular interactions. Nucleic Acids Res 43, e10 (2015).
Interpreting the relationship between phenotypes and changes in protein stability, interactions and activity.

How to cite this article

The authors declare no competing financial interests.

Additional Information

Approved the manuscript for publication.

Author Contributions

D.E.V.P. and D.B.A. analyzed the data and prepared the figures, predictions and correlations for DBR1. D.E.V.P. and D.B.A. prepared the models, conceived, designed and supervised the study. J.C. ran the initial stability predictions and The Wellcome Trust for facilities and support [to T.L.B.]. Funding for open access charge: The Wellcome Minas), Brazil [to D.E.V.P.]; NHMRC CJ Martin Fellowship [APP1072476 to D.B.A.]; University of Cambridge and The Wellcome Trust for facilities and support [to T.L.B.]. Funding for open access charge: The Wellcome Newton Fund RCUK-CONFAP Grant awarded by The Medical Research Council (MRC) and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) [to D.E.V.P. T.L.B. and D.B.A.]. Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and René Rachou Research Center (CPqRR/FIOCRUZ Minas), Brazil [to D.E.V.P.]; NHMRC CJ Martin Fellowship [APP1072476 to D.B.A.]; University of Cambridge and The Wellcome Trust for facilities and support [to T.L.B.]. Funding for open access charge: The Wellcome Trust.

Author Contributions

D.B.A. prepared the models, conceived, designed and supervised the study. J.C. ran the initial stability predictions and correlations for DBR1. D.E.V.P. and D.B.A. analyzed the data and prepared the figures, predictions and correlations presented in the manuscript. D.B.A., D.E.V.P. and T.L.B. wrote and revised the paper. All authors approved the manuscript for publication.

Additional Information

Supplementary information accompanies this paper at http://www.nature.com/srep

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Pires, D. E. V. et al. In silico functional dissection of saturation mutagenesis: Interpreting the relationship between phenotypes and changes in protein stability, interactions and activity. Sci. Rep. 6, 19848; doi: 10.1038/srep19848 (2016).
