Dualism of the $4f$ electrons and high-temperature antiferromagnetism of the heavy-fermion compound YbCoC$_2$

D. A. Salamatin1,2, N. Martin3, V. A. Sidorov1, N. M. Chctelkatchev1,4, M. V. Magnitskaya1,5, A. E. Petrova1,5, I. P. Zibrov1, L. N. Fomicheva1, Jing Guo6, Cheng Huang6, Liling Sun6, and A. V. Tsvyashchenko1

1Institute for High Pressure Physics, Russian Academy of Sciences, 14 Kaluzhskoe shosse, 108840 Troitsk, Russia
2Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region, Russia
3Université Paris-Saclay, CNRS, CEA, Laboratoire Léon Brillouin, 91191 Gif-sur-Yvette, France
4Ural Federal University, 19 Mira str., 620002 Ekaterinburg, Russia
5P.N. Lebedev Physical Institute of the Russian Academy of Sciences, 53 Leninskiy prospekt, 119991 Moscow, Russia
6Institute of Physics, Chinese Academy of Sciences, 100190 Beijing, P. R. China

Abstract

We report on the first study of the noncentrosymmetric ternary carbide YbCoC$_2$. Our magnetization, specific heat, resistivity and neutron diffraction measurements consistently show that the system behaves as a heavy-fermion compound, displaying an amplitude-modulated
magnetic structure below the Néel temperature reaching $T_N = 33$ K under pressure. Such a large value, being the highest among the Yb-based systems, is explained in the light of our ab initio calculations, which show that the 4f electronic states of Yb have a dual nature – i.e., due to their strong hybridization with the 3d states of Co, 4f states expose both localized and itinerant properties.

The dual nature of the 5f and 4f-electrons, i.e. the coexistence of localized and itinerant states in a variety of actinide and rare-earth (RE) heavy-fermion systems (e.g., UPt$_3$, UPd$_2$Al$_3$ [Takahashi et al. 1996], UGe$_2$ [Troc et al. 2012], Yaouanc et al. [2002], Haslbeck et al. [2019], PuCoGa$_5$ [Booth et al. 2012], YbRh$_2$Si$_2$ [Danzenbächer et al. 2011], YbAl$_3$ [Ebihara et al. 2000]) is the subject of an intense discussion. A theory for the electronic excitations in uranium compounds, based on the localization of two 5f electrons, was developed by Zwicknagl and Fulde [Zwicknagl and Fulde 2003]. The standard model for 4f-electrons in RE metals and their compounds is that an integral number of 4f electrons are assumed being localized at each RE ion site. This applies to both “normal” REs, where a single 4f configuration of given occupation is stable, and to mixed-valent cases, where fluctuations between states with different integral 4f occupations take place.

The nature of magnetism (itinerant or localized) and the competition between ordered and disordered ground states in these mixed-valent (“abnormal”) RE elements (Ce, Eu and Yb), remain a major challenge in condensed matter physics. In this context, the Kondo effect and the Ruderman–Kittel–Kasuya–Yosida (RKKY) interaction arising between itinerant and localized 4f-electrons play essential roles, as originally pointed out by Doniach [Doniach 1977].

The noncentrosymmetric carbide YbCoC$_2$, first synthesized more than 30 years ago [Jeitschko and Gerss 1986], represents an interesting platform for studying such physics. Here, we report on the first study of its bulk magnetic and transport properties at ambient and elevated pressure, complemented by neutron diffraction measurements and ab initio calculations. We show that YbCoC$_2$ is a heavy-fermion compound with an amplitude modulated incommensurate magnetic order. Its Néel temperature is the highest among Yb$^{3+}$-based systems, exceeding the previous record value belonging to β-YbAlB$_4$ [Tomita et al. 2016]. Taken together, our experimental and numerical results indicate that the dual nature of the 4f electrons is essential for understanding the magnetic and transport properties of YbCoC$_2$.

2
The transition from localized to itinerant electron states signifying the onset of large-range electronic correlations, is also of great interest. In lanthanides this effect is related to Ce, the first element with a single 4\textit{f} electron level. The Yb intermetallic compounds are usually considered as being dominated by two valence states, where Yb3+ ions can be seen as \textit{f}-hole analogs of Ce. Owing to such an electronic configuration, one can anticipate a dual character of 4\textit{f} states in YbCoC\textsubscript{2}, with transitions from localized states to itinerant ones. Heavy-fermion magnetism in Yb-based systems with localized 4\textit{f} electrons mainly occurs in compounds where the ordering temperatures is low (typically, \(T_N < 10\) K), for instance in YbNi\textsubscript{3} [Rojas et al. 2012], Yb-NiSn [Kasaya et al. 1992], YbPtGe [Katoh et al. 2009], Tsuji et al. 2015, YbPdGe [Tsuji et al. 2015], Enoki et al. 2012 or YbRh\textsubscript{2}Si\textsubscript{2} [Gegenwart et al. 2002], YbPtBi [Fisk et al. 1991], Ueland et al. 2014. In fact, many such compounds displaying antiferromagnetic (AFM) order, \(T_N\) is even below 1 K (e.g., YbIr\textsubscript{2} [Willis et al. 1985], YbPd [Pott et al. 1985], YbX (X = N, P, As) [Ott et al. 1985] and YbXCu\textsubscript{2} (X = Au, Pd) [Rossel et al. 1987]). [Few exceptions are YbBe\textsubscript{13} (\(T_N = 1.3\) K) [Walter et al. 1985], Yb\textsubscript{3}Pd\textsubscript{4} (\(T_N = 3\) K) [Pollit et al. 1985] and YbB\textsubscript{2} (\(T_N = 5.7\) K) [Avila et al. 2003].] At atmospheric pressure, the highest magnetic transition temperature is \(T_N = 20\) K observed recently in \(\alpha\)-YbAl\textsubscript{1-x}Mn\textsubscript{x}B\textsubscript{4} for \(x = 0.27\) [Suzuki et al. 2018]. The pressure-induced magnetic ordering was found in the heavy-fermion superconductor \(\beta\)-YbAlB\textsubscript{4} [Tomita et al. 2015], where the magnetic transition temperature increases up to 32 K, obtained under the external pressure \(P\) of 8 GPa [Tomita et al. 2016].

Previously it has been established that the magnetic structure of the \(R\)CoC\textsubscript{2} compounds (where \(R\) is a heavy RE element), isostuctural to YbCoC\textsubscript{2}, is ferromagnetic (FM). The magnetic moments usually point along the \(a\) axis [Schfer et al. 1997], except in DyCoC\textsubscript{2} where they lie in the \(ac\) plane [Amanai et al. 1995]. The magnetic susceptibility measurements in YCoC\textsubscript{2} and the refinements of neutron powder diffraction patterns of other \(R\)CoC\textsubscript{2} compounds indicate that the Co and C ions are non-magnetic [Schfer et al. 1990], [Amanai et al. 1995]. Notably, the Curie temperature for \(R\)CoC\textsubscript{2} compounds deviates from the de Gennes law [De Gennes, P.G. 1962], [Schfer et al. 1997], indicating the importance of the interactions beyond RKKY in the stabilization of the magnetic order in this series and calls for further studies of the nature of magnetism in these systems.

Polycrystalline samples of YbCoC\textsubscript{2} were synthesized by melting Yb, Co and C (see Ref. Tsvyashchenko 1984) at 8 GPa and 1500-1700 K using
Figure 1: (a) Temperature-dependence of the magnetic susceptibility χ of YbCoC$_2$, measured in the external magnetic field $B=300$ Oe (blue points). The red line is the fit of a modified Curie-Weiss law to the $T=28$–300 K data (see the text for details). Inset: isothermal magnetization of YbCoC$_2$ measured in the $B=0$–9 T field range at $T=2$ and 50 K. (b) Temperature-dependence of the heat capacity C_p of YbCoC$_2$ (blue points). The red line is the fit of two Debye laws to the high-temperature data, extrapolated down to $T \to 0$ (see the text). Inset: the low-temperature part of C_p/T vs. T^2. The red line is the linear approximation of C_p/T vs. T^2 extended down to 0 K. (c) Pressure-dependence of the magnetic transition temperature T_m measured in the toroid and diamond-anvil (DAC) high-pressure cells (blue squares and light blue circles, respectively). The red line is the approximation with the function $f(P-P_0)\alpha$, where $f = 18.6$ K/GPa$^{1/5}$, $P_0 = -5.7$ GPa and $\alpha = 1/5$. Inset: temperature-dependence of the isobaric electrical resistance, measured at $P = 2.8$–12.9 GPa.

Toroid high-pressure cell. The Rietveld analysis of x-ray and neutron diffraction data at $T = 300$ K shows that the compound crystallizes in an orthorhombic structure of the CeNiC$_2$-type (space group Amm2, no. 38), similar to other RE carbides RCoC$_2$. High-pressure X-ray diffraction measurements performed at the 15U beamline of the Shanghai Synchrotron Radiation Facility (China) show that the orthorhombic crystal structure is preserved up to 37 GPa. A fit of a Murnaghan equation of state volume vs. pressure data yields a bulk modulus $B_0 = 176(23)$ GPa, with its first pressure derivative $B'_0 = 9(1)$. The bulk magnetic properties of YbCoC$_2$ were studied by vibrating sample magnetometry (VSM) using a physical property measurement system (PPMS). The electrical resistivity measurements were performed on bulk polycrystalline samples using a lock-in detection technique [Petrova et al. 2005]. The high-pressure resistance measurements
below 5 GPa were performed in a miniature clamped Toroid-type device with glycerine–water (3:2) liquid as the pressure transmitting medium. For higher pressures a diamond-anvil cell (DAC) with NaCl as the pressure transmitting medium was used.

The magnetic susceptibility $\chi(T)$ measured in the magnetic field $B = 300$ Oe exhibits a sharp peak, indicative of an AFM-like transition at $T_N = 25.6(2)$ K (Fig. 1a). In the $T = 28$–300 K-range, $\chi(T)$ can be well-described by a modified Curie–Weiss law $\chi = \chi_0 + C^*/(T - \theta)$, where χ_0^* is a temperature-independent term, C^* - the Curie constant and θ - the Weiss constant. The effective magnetic moment deduced from this approximation is $\mu_{\text{eff}} = 4.31(1) \, \mu_B$ per formula unit (f.u.), a value close to that of the free Yb$^{3+}$ ion (4.54 μ_B). The small positive Weiss constant $\theta = 2.4(1)$ K reveals the presence of weak ferromagnetic correlations and a small value of the ratio $f_s = \theta/T_N \approx 0.09 << 1$ indicates a weak level of spin frustration in the system.

The inset of Fig. 1a shows field-dependences of the bulk magnetization M measured in the $B = 0$–9 T-range at $T = 2$ and 50 K. At $T = 50$ K, $M(H)$ has a smooth linear character, typical of a paramagnet. In contrast, the curve measured at $T = 2$ K $< T_N$ first increases linearly up to ≈ 6 T, until a field-induced ferromagnetic transition with a hysteresis of about 0.2 T takes place in the ≈ 6–8 T-range. M does not fully saturate at the highest field of 9 T and reaches a value of $\approx 1.6 \, \mu_B$/f.u., which stands well-below the theoretical saturation moment for the full Yb$^{3+}$ multiplet ($\mu_s = 4.0 \, \mu_B$).

Fig. 1b displays the temperature-dependence of the heat capacity C_P, obtained in the 2-180 K range. Around T_N, the $C_P(T)$ curve exhibits a lambda anomaly, with a maximum at ≈ 26 K, which is consistent with the bulk AFM-like transition deduced from the $\chi(T)$ data. The heat capacity jump at T_N is equal to $\Delta C_P(T_N) = 14.64$ J/mol-K. This value is close to the one calculated for an amplitude modulated magnetic structure for Yb$^{3+}$, namely 13.43 J/mol-K [Blanco et al., 1991]. The heat capacity at $T > 30$ K was approximated by $C_{\text{fit}}(T) = m_1 D(T, \Theta_1) + m_2 D(T, \Theta_2)$, where D is the Debye function, with the characteristic temperatures $\Theta_1 = 516(11)$ K and $\Theta_2 = 176(7)$ K. The best fit was obtained with the coefficients $m_1 = 2.49(4)$ and $m_2 = 0.79(5)$. The magnetic entropy of the transition computed according to $S_m(T) = \int_{1.9 \, K}^{T} C_m(T) / T \, dT$, where $C_m(T) = C_P(T) - C_{\text{fit}}(T)$ is the magnetic part of heat capacity, amounts to 3.91 J/mol-K at $T = 30$ K. This value is about 70 % of that expected for a magnetic doublet ground state and
is most likely due to Kondo screening [Blanco et al., 1994]. The Sommerfeld coefficient obtained from the \(C_P \) data just above \(T_N \), is \(\gamma = 190(1) \) mJ/mol-K\(^2\) (see inset of Fig. 1b). This value suggests a considerable enhancement of the effective electron mass in YbCoC\(_2\) comparable with other heavy-fermion compounds [Katano et al., 2017, Motoya et al., 1997]. The low temperature upturn in \(C_P/T \) (see the inset of Fig. 1b) indicates that there is a possibility of the second magnetic transition in YbCoC\(_2\) similar to the incommensurate-commensurate magnetic transition in CeNiC\(_2\) [Motoya et al., 1997].

As shown in Fig. 1c, the electrical resistance increases monotonically with temperature revealing the metallic character of YbCoC\(_2\). Because of the coherent scattering of charge carriers in the magnetically ordered state, the resistance drops down below the AFM-like transition temperature (see inset of Fig. 1c). Interestingly, the transition temperature \(T_m \), determined from the onset of the resistance, increases with external pressure up to 33.2(3) K at \(P = 13 \) GPa.
Figure 3: The DMFT band structure (a) and DOS (b) at $T = 250$ K. The DOS is in arb. units and the Fermi energy is set to zero. (c) The LDA+U calculations: the magnetic moment per formula unit and its partial contributions as functions of U_{eff}. The green line is the spin moment of Co, the violet line is the spin moment of Yb, the cyan line is the orbital moment of Yb, the red line is the total moment of Yb and the blue line is the total magnetic moment.

In order to elucidate the magnetic structure of YbCoC$_2$, we have used neutron powder diffraction (NPD) on the thermal instrument G4-1 (Laboratoire Léon Brillouin). The low temperature patterns display an additional peak at low angles (see Fig. 2a). The square-root of the integrated intensity
of this peak depends on temperature (see Fig. 2b) and may be approximated with the function \(\sigma_0(1 - T/T_C)^\beta \), with the critical exponent \(\beta = 0.24(4) \) and the critical temperature \(T_C = 26.9(7) \) K. This peak can be indexed with the wave vector \((0, 0, k_z)\), where \(k_z \) is temperature-dependent (see Fig. 2c). The best refinement of the magnetic part of neutron powder diffraction pattern is achieved by assuming an amplitude modulated (sine-wave) structure of \(\text{Yb}^{3+} \) magnetic moments, pointing along the \(a \) axis with the amplitude 1.32(7) \(\mu_B \) at \(T = 1.3 \) K. Such a value of magnetic moment is typical for Yb in magnetic compounds [Tsujii et al. 2015], [Chattopadhyay et al. 2018], [Yaouanc et al. 2016], [Ueland et al. 2014] and may be attributed to the crystal electric field effects and a partial screening due to the Kondo mechanism. The structure locks into a commensurate state with \(k_z = 1/4 \) at \(T_{\text{lock-in}} \approx 8 \) K.

The \textit{ab initio} simulations of \(\text{YbCoC}_2 \) were performed using the Wien2k package [Blaha et al. 2018] within the density functional theory (DFT) and the local density approximation (LDA), with the spin-orbit coupling (SOC) taken into account. The 4\(f \) electrons of the Yb ion were explicitly treated as valent and not completely localized, and as such were allowed to and hybridize with all other states. The calculations started from the experimental lattice parameters measured in this work, with subsequent relaxation of internal atomic coordinates. In these initial DFT-LDA calculations (\(T = 0 \) K), a nonmagnetic (paramagnetic) ground state of \(\text{YbCoC}_2 \) was determined, whereas no magnetic solution turned out to be stable.

From the band structure and density of states (DOS) of paramagnetic \(\text{YbCoC}_2 \) it follows [sup] that 4\(f \) states of Yb are present at the Fermi energy (\(E_F \)), and the main contribution to the total DOS at \(E_F \) stems from the strongly hybridized ytterbium \(f \)- and cobalt \(d \)-states. The energy bands in the vicinity of \(E_F \) are flat, which indicates a strong enhancement of the electron mass to a value typical for heavy-fermion systems.

To treat strong electron correlations in the Yb 4\(f \) shell adequately, we further employed the combination of DFT-LDA [Blaha et al. 2018] and dynamical mean field theory (DMFT) [Kotliar et al. 2006] as implemented in the eDMFT package [Haule et al. 2010]. Since the DMFT method is not applicable to the low-temperature region, for simulations of the magnetic state of \(\text{YbCoC}_2 \) observed experimentally below 30 K we have used the LDA+\(U \) approach [Anisimov et al. 1993], [Liechtenstein et al. 1995] in the Wien2k implementation, which can perform zero-temperature calculations with accounting for correlation effects of 4\(f \) electrons.

The band structure and DOS computed at \(T = 250 \) K using DMFT are
shown in FIG. 3(a, b). The evaluated number of 4f electrons is about 13.05, i.e. the valence of Yb is actually equal to three. There is a certain similarity between the DFT and DMFT results in the number of 4f electrons and in the position of the bands and corresponding DOS peaks. Within both approaches, the Fermi energy falls into a steep slope of the 4f DOS whose maximum is very close to E_F. Apparently, the proximity of 4f peak to E_F and the resulting relatively high $N(E_F)$, as well as a significant f–d hybridization, favour the high magnetic transition temperature for YbCoC$_2$.

In our LDA+U simulations of the magnetic state only the 4f electron correlations were taken into account. The positions of the bands are found to shift downwards with increasing $U_{\text{eff}} = U - J$ (where U and J are the standard on-site Coulomb interaction constants). We obtained a stable FM ordering with the periodicity of the crystal lattice. The total magnetic moment and its main partial atomic contributions as functions of U_{eff} are depicted in Fig. 3(c). The largest partial contribution (including both the spin and orbital terms) is μ_{Yb} directed along the a axis in accordance with the experimental data and drawn in Fig. 3(c) as the red line. This is the magnetic moment of the Yb site which increases with U_{eff}. The magnetic moment of Co is smaller tending to zero with increasing U_{eff}, whereas the magnetic moments at carbon sites and in the interstitial region are negligible at any U_{eff}.

The interval of U_{eff} between 1.3 and 3.5 eV has been considered as optimal, corresponding to the experimental situation. The change in U_{eff} in this interval does not lead to a strong variation of the magnetic moments and band positions. The Yb moment varies from 0.9 to 1.3 μ_B, which correlates well with the experimental observations. The model of ferromagnetic alignment used in the calculations turned out to be quite reasonable, because the period of experimental modulated magnetic structure is about four times that of the crystal lattice. Moreover the Yb magnetic moments are co-directed to each other within the crystallographic unit cell (see the inset in Fig. 2b). Thus, our LDA+U calculations demonstrate that YbCoC$_2$ possesses a stable magnetic ordering with the magnetization predominantly located at the Yb sites.

A wealth of experimental and numerical results presented in this study, unambiguously establishes that the noncentrosymmetric YbCoC$_2$ is an unusual heavy-fermion system, displaying incommensurate antiferromagnetic ordering with the transition temperature reaching 33 K under pressure. The nature of its magnetic structure is surprising in itself, since the isostructural compounds $RCoC_2$ (where $R = \text{Gd–Tm}$) display FM ordering. This fact is
well captured by our *ab initio* calculations, which also reproduce the direction of the Yb magnetic moments and, quantitatively, their amplitude. As a key result, we reveal a strong hybridization between the 4f states of Yb and the 3d orbitals of Co. We believe that this feature is instrumental in explaining the robustness of the magnetic order and its enhancement under applied external pressure. Another appealing finding concerns the evolution of the magnetic structure with pressure. Indeed, a fine-tuning of the tight competition between RKKY and Kondo interactions is a well-proven route towards the observation of quantum criticality, exotic forms of superconductivity and novel strange metallic states.

Acknowledgement

This work was supported by Russian Science Foundation: D.A.S., V.A.S., A.E.P., and A.V.T. acknowledge the support of their experimental work (grant by the RSF No. 17-12-01050); N.M.C. and M.V.M. are grateful for support of their theoretical calculations (Grant RSF 18-12-00438). The results of calculations were obtained using computational resources of MCC NRC ‘Kurchatov Institute’ (http://computing.nrcki.ru/) and supercomputers at Joint Supercomputer Center of RAS (JSCC RAS). We also thank the Uran supercomputer of IMM UB RAS for access.
Supplementary Information

Abstract

We present supplementary information on the details of experimental techniques and ab initio calculations discussed in the main text.

Experimental techniques

The purity of constituent elements of YbCoC$_2$ were 99.7% for Yb, 99.9% for Co and 99.99% for C. For high-pressure x-ray diffraction measurements at the 15U beamline of the Shanghai Synchrotron Radiation Facility a monochromatic x-ray beam with a wavelength of 0.6199 Å was employed and silicon oil was used as a pressure-transmitting medium. The pressure for all measurements in the DACs was determined by the ruby fluorescence method Mao et al. [1986].

X-ray powder diffraction measurements at room temperature and ambient pressure were performed using the diffractometer Guinier camera G670, Huber (Cu-K$_{\alpha1}$). This XRD pattern was analyzed with GSAS software Larson and Drezele [2000]. NPD patterns were analyzed with the Rietveld and Le Bail methods using FULLPROF software Rodriguez-Carvajal [1993]. The measured lattice constants are in agreement with previous determinations Jeitschko and Gerss [1986].

Structure

The unit cell of this structure is shown in together with its first Brillouin zone (right). Planes of Yb ions perpendicular to the a direction alternate with the planes of Co and C ions shifted along the a direction by a/2 (see FIG. S4). The C ions exist as dimers with the C-C nearest distance of 1.55 Å, double bonds between them shown with green sticks. Red sticks indicate the nearest distance between two Yb ions equal to the a lattice period (3.44 Å), which hardly assumes essential direct exchange between localized 4f electrons of Yb. The impurity of high-pressure phase of non-magnetic ytterbium oxid (YbO) with a fraction of less than 5% wt. was also found in the samples.

X-ray diffraction patterns of YbCoC$_2$ obtained at different pressures are presented in FIG. S5. The dependencies of the lattice constants and unit
cell volume of YbCoC$_2$ under high pressure up to 37 GPa are presented in FIG. S6.

The results of Rietveld refinements of XRD and NPD patterns at room temperature and atmospheric pressure are presented in Table 1.

Fig. S 4: XRD pattern for YbCoC$_2$ at room temperature and $P = 0$ GPa (the obtained lattice parameters are listed in Table 1). The experimental points (red marks), the calculated profiles (green line) and their difference (purple line) are shown. The bars in the lower part of the graph represent the calculated Bragg reflections that correspond to the YbO impurity phase (upper row, red color) and YbCoC$_2$ (lower row, blue color). Inset: The unit cell (generated using the VESTA software [Momma and Izumi 2011]), with the red, blue and green balls corresponding to Yb, Co and C ions (left) and the first Brillouin zone (right) of the Amm2 structure of YbCoC$_2$.

Resistivity

The relative resistivity above $T = 40$ K could be well fitted with the model $\rho_{\text{fit}}^{-1}(T) = \rho_p^{-1} + \rho_{\text{B-G}}^{-1}(T)$ (see FIG. S7), where ρ_p - temperature-independent parallel resistivity and $\rho_{\text{B-G}}(T) = \rho_0 + A_{\text{el-ph}} T (\frac{T}{\Theta_D})^4 \int_0^{\Theta_D/T} x^5 \left(\frac{e^x-1}{1-e^{-x}}\right) dx$ where ρ_0 - residual resistivity and the second term is contribution to the resistivity from electron-phonon scattering approximated by Bloch-Gruneisen
Fig. S 5: X-ray diffraction patterns of YbCoC$_2$ at different pressures.

law with $n = 5$ ($A_{\text{el-ph}}$ - electron-phonon coupling constant and Θ_D - Debye temperature). The best fit was obtained with the following parameters $\rho_p = 2.46(6)$, $\rho_0 = 1.62(2)$, $A_{\text{el-ph}} = 0.015(4)$ K$^{-1}$ and $\Theta_D = 412(3)$ K. It is interesting to note that Debye temperature determined from the resistivity is close to the average value of Debye temperature obtained from the heat capacity measurements (from heat capacity $<\Theta_D>$ = $\frac{m_1\Theta_1 + m_2\Theta_2}{m_1 + m_2}$ = 434(5) K).
The careful study of the difference between measured and fitted resistivities did not reveal any anomalies above the antiferromagnetic transition temperature. The temperature derivative of the resistivity at $P = 0$ GPa near antiferromagnetic transition temperature shows a peak with a maximum at $T = 26.1(7)$ K (see inset to FIG. S7).

Ab initio calculations

We employed the density-functional-theory (DFT), DFT+U, and DFT+DMFT methods to theoretically explore electronic and magnetic properties of YbCoC$_2$, with local density approximation (LDA) for exchange-correlation potential. The spin-orbit coupling (SOC) was taken into account.

Our *ab initio* DFT-LDA simulations were performed using the relativistic APW+lo method as implemented in Wien2k package [Blaha et al. 2018]. For core electrons, SOC effects were included self-consistently by solving the radial Dirac equation. For valence states, the SOC was evaluated by the second-variational step [MacDonald et al. 1980] using scalar-relativistic
Table 1: The crystallographic parameters of YbCoC$_2$ (space group $Amm2$) obtained at $T = 300$ K and $P = 0$ GPa

Parameter	Value (X-ray)	Value (Neutron)
a (Å)	3.4391(1)	3.4411(9)
b (Å)	4.4948(1)	4.4881(13)
c (Å)	5.9987(1)	5.9925(15)
z(Co)	0.6146(9)	0.643(24)
y(C)	0.172(2)	0.154(4)
z(C)	0.331(1)	0.311(6)
U_{iso}(Yb) (Å2)	0.0176(2)	0.0
U_{iso}(Co) (Å2)	0.0175(8)	0.0
U_{iso}(C) (Å2)	0.0306(34)	0.0

![Resistivity graph](image)

Fig. S 7: Measured resistivity relative to the value of resistivity at $T = 80$ K for YbCoC$_2$ at $P = 0$ GPa. The absolute value of resistivity at $T = 298$ K is 680 $\mu\Omega$ cm. Blue points: experimental data, red line: fit with parallel resistor and Bloch-Gruneisen model (see text for details). Inset: the temperature derivative of resistivity at low temperatures.

The eigenvectors. Since the SOC term is large only near the core, the corresponding contributions to the Hamiltonian were only evaluated inside the MT spheres surrounding the atoms. The MT-radii of Yb, Co, and C were...
set to 2.50, 1.98, and 1.25 \(r_B \), respectively. The convergence factor \(R_{\text{min}}K_{\text{max}} \) was set to 8.0, where \(R_{\text{min}} \) is the minimal MT-radius and \(K_{\text{max}} \) is the plane-wave cut-off parameter, \(K_{\text{max}}^2 \approx 560 \, \text{eV} \). This, together with the reciprocal space resolution of \(2\pi \times 0.03 \, \text{Å}^{-1} \) employed to sample the Brillouin zone (BZ) ensured the total energy convergence of about \(10^{-7} \, \text{eV} \). The calculations were made at experimental lattice periods found in this work. Starting from the experimental atomic positions, we did the geometry relaxation to allow the internal atomic coordinates to change, until the residual atomic forces were converged down to 3 meV/Å. The 4\(f \) electrons of Yb were explicitly treated as valent.

FIG. S8(a,b) presents the band structure and density of states (DOS) calculated within DFT-LDA. The DOS near Fermi energy (\(E_F \)) is mainly contributed by the hybridized 4\(f \)-Yb and 3\(d \)-Co states. The corresponding Fermi surface (FS) topology in the first BZ is shown in FIG. S8(c,d), with standard notation for the high-symmetry points. Two FS sheets related to the two spin channels of SOC are formed by the 49th and 50th bands (blue and red lines in the band structure, respectively) that cross \(E_F \). The 3rd sheet formed by the 48th band (black line) and consisting of tiny hole-like pockets in the \(\Gamma Z \) direction is not shown.

In nonmagnetic YbCoC\(_2\), a calculated value of the DOS at the Fermi level \(N(E_F) \) is about of 9 st./eV = 21 mJ/(mol K\(^2\)) per formula unit. As in case of other Yb-based metallic compounds, our DFT-LDA simulations (made with experimental lattice periods) demonstrate very high sensitivity of \(N(E_F) \) to the choice of calculation parameters and numerical accuracy, because \(E_F \) falls at a very steep slope of the high 4\(f \) peak. So our estimate of \(N(E_F) \) is only indicative.

We used the LDA+DMFT approach as implemented in the eDMFT package [Haule et al., 2010]. The continuous-time quantum Monte Carlo (QMC-DMFT) impurity solver [Haule, 2007] was employed. The magnetic state at low temperatures was studied with the Wien2k package [Blaha et al., 2018] using the LDA+U method [Anisimov et al., 1993]. We used the rotationally invariant version of this method, with the parameter \(U_{\text{eff}} = U - J \).
Fig. S 8: (a, b) The DFT band structure and density of states (DOS), correspondingly; the DOS is mainly contributed by hybridized 4f-Yb and 3d-Co states, other contributions are much smaller and not shown. (c, d) The Fermi surface sheets corresponding to the 49th and 50th bands, with standard notation for high-symmetry points of Brillouin zone. The FS was generated using the XCRYSDEN software [Kokalj 2003].

References

See Supplemental Material below of the main text which includes Refs. Petrova et al. [2005], Mao et al. [1986], Rodríguez-Carvajal [1993], Larson and Dreze [2000], MacDonald et al. [1980], Momma and Izumi [2011], for the additional details on the experimental and computational methods.

Hidetaka Amanai, Hideya Onodera, Masayoshi Ohashi, Satoru Matsuo, Hiroshi Yamauchi, Yasuo Yamaguchi, and Noriaki Sato. Magnetic properties of the ternary carbide DyCoC$_2$ studied by magnetization measurements, neutron diffraction and 161Dy mssbauer spectroscopy. *Journal of Magnetism and Magnetic Materials*, 148(3):413 – 418, 1995. ISSN 0304-8853. doi:https://doi.org/10.1016/0304-8853(95)00024-0. URL http://www.sciencedirect.com/science/article/pii/0304885395000240
V. I. Anisimov, I. V. Solovyev, M. A. Korotin, M. T Czyżyk, and G. A. Sawatzky. Density-functional theory and nio photoemission spectra. *Phys. Rev. B*, 48:16929–16934, Dec 1993. doi:10.1103/PhysRevB.48.16929. URL https://link.aps.org/doi/10.1103/PhysRevB.48.16929.

M.A. Avila, S.L. Budko, C. Petrovic, R.A. Ribeiro, P.C. Canfield, A.V. Tsvyashchenko, and L.N. Fomicheva. Synthesis and properties of YbB₂. *Journal of Alloys and Compounds*, 358(1):56 – 64, 2003. ISSN 0925-8388. doi:https://doi.org/10.1016/S0925-8388(03)00051-3. URL http://www.sciencedirect.com/science/article/pii/S0925838803000513.

P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, R. Laskowski, F. Tran, and L.D. Marks. *WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties*. Karlheinz Schwarz, Techn. Universitat Wien, Austria, 2018. ISBN 3-9501031-1-2. URL http://susi.theochem.tuwien.ac.at/index.html.

J. A. Blanco, D. Gignoux, and D. Schmitt. Specific heat in some gadolinium compounds. ii. theoretical model. *Phys. Rev. B*, 43:13145–13151, Jun 1991. doi:10.1103/PhysRevB.43.13145. URL https://link.aps.org/doi/10.1103/PhysRevB.43.13145.

J. A. Blanco, M. de Podesta, J. I. Espeso, J. C. Gómez Sal, C. Lester, K. A. McEwen, N. Patrikios, and J. Rodríguez Fernández. Specific heat of CeNiₓPt₁₋ₓ pseudobinary compounds and related dilute alloys. *Phys. Rev. B*, 49:15126–15132, Jun 1994. doi:10.1103/PhysRevB.49.15126. URL https://link.aps.org/doi/10.1103/PhysRevB.49.15126.

C.H. Booth, Yu Jiang, D.L. Wang, J.N. Mitchell, P.H. Tobash, E.D. Bauer, M.A. Wall, P.G. Allen, D. Sokaras, D. Nordlund, T.-C. Weng, M.A. Torrez, and J.L. Sarrao. Multiconfigurational nature of 5f orbitals in uranium and plutonium intermetallics. *Proceedings of the National Academy of Sciences*, 109(26):10205–10209, 2012. ISSN 0027-8424. doi:10.1073/pnas.1200725109. URL https://www.pnas.org/content/109/26/10205.

S. Chattopadhyay, V. Simonet, V. Skumryev, A. A. Mukhin, V. Yu. Ivanov, M. I. Aroyo, D. Z. Dimitrov, M. Gospodinov, and E. Resouche. Single-crystal neutron diffraction study of hexagonal multiferroic YbMnO₃ under a magnetic field. *Phys. Rev. B*, 98:134413, Oct 2018.
S. Danzenbächer, D. V. Vyalikh, K. Kummer, C. Krellner, M. Holder, M. Höppner, Yu. Kucherenko, C. Geibel, M. Shi, L. Patthey, S. L. Molodtsov, and C. Laubschat. Insight into the f-derived fermi surface of the heavy-fermion compound YbRh$_2$Si$_2$. Phys. Rev. Lett., 107: 267601, Dec 2011. doi:10.1103/PhysRevLett.107.267601 URL https://link.aps.org/doi/10.1103/PhysRevLett.107.267601

De Gennes, P.G. Polarisation de charge (ou de spin) au voisinage d’une impureté dans un alliage. J. Phys. Radium, 23(10):630–636, 1962. doi:10.1051/jphysrad:019620023010063000 URL https://doi.org/10.1051/jphysrad:019620023010063000

S. Doniach. The kondo lattice and weak antiferromagnetism. Physica B+C, 91:231 – 234, 1977. ISSN 0378-4363. doi:https://doi.org/10.1016/0378-4363(77)90190-5 URL http://www.sciencedirect.com/science/article/pii/0378436377901905

Takao Ebihara, Yoshihiko Inada, Masao Murakawa, Shinya Uji, Chieko Terakura, Taichi Terashima, Etsuji Yamamoto, Yoshinori Haga, Yoshichika Nuki, and Hisatomo Harima. Heavy fermions in YbAl$_3$ studied by the de haas-van alphen effect. Journal of the Physical Society of Japan, 69 (3):895–899, 2000. doi:10.1143/JPSJ.69.895 URL https://doi.org/10.1143/JPSJ.69.895

Kentaro Enoki, Yusuke Hirose, Shingo Yoshiuchi, Kiyohiro Sugiyama, Fuminori Honda, Tetsuya Takeuchi, Etsuji Yamamoto, Yoshinori Haga, Masayuki Hagiwara, Koichi Kindo, Rikio Settai, and Yoshichika Nuki. Electronic and magnetic properties in heavy fermion ferromagnet YbPdGe. Journal of the Physical Society of Japan, 81(Suppl.B):SB056, 2012. doi:10.1143/JPSJS.81SB.SB056 URL https://doi.org/10.1143/JPSJS.81SB.SB056

Z. Fisk, P. C. Canfield, W. P. Beyermann, J. D. Thompson, M. F. Hundley, H. R. Ott, E. Felder, M. B. Maple, M. A. Lopez de la Torre, P. Visani, and C. L. Seaman. Massive electron state in YbBiPt. Phys. Rev. Lett., 67:3310–3313, Dec 1991. doi:10.1103/PhysRevLett.67.3310 URL https://link.aps.org/doi/10.1103/PhysRevLett.67.3310
P. Gegenwart, J. Custers, C. Geibel, K. Neumaier, T. Tayama, K. Tenya, O. Trovarelli, and F. Steglich. Magnetic-field induced quantum critical point in YbRh$_2$Si$_2$. *Phys. Rev. Lett.*, 89:056402, Jul 2002. doi:10.1103/PhysRevLett.89.056402. URL https://link.aps.org/doi/10.1103/PhysRevLett.89.056402.

Antoine Georges, Gabriel Kotliar, Werner Krauth, and Marcelo J. Rozenberg. Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions. *Rev. Mod. Phys.*, 68:13–125, Jan 1996. doi:10.1103/RevModPhys.68.13. URL https://link.aps.org/doi/10.1103/RevModPhys.68.13.

F. Haslbeck, S. Säubert, M. Seifert, C. Franz, M. Schulz, A. Heinemann, T. Keller, Pinaki Das, J. D. Thompson, E. D. Bauer, C. Pfleiderer, and M. Janoschek. Ultrahigh-resolution neutron spectroscopy of low-energy spin dynamics in uge$_2$. *Phys. Rev. B*, 99:014429, Jan 2019. doi:10.1103/PhysRevB.99.014429. URL https://link.aps.org/doi/10.1103/PhysRevB.99.014429.

Kristjan Haule. Quantum monte carlo impurity solver for cluster dynamical mean-field theory and electronic structure calculations with adjustable cluster base. *Phys. Rev. B*, 75:155113, Apr 2007. doi:10.1103/PhysRevB.75.155113. URL https://link.aps.org/doi/10.1103/PhysRevB.75.155113.

Kristjan Haule, Chuck-Hou Yee, and Kyoo Kim. Dynamical mean-field theory within the full-potential methods: Electronic structure of CeIrIn$_5$, CeCoIn$_5$, and CeRhIn$_5$. *Phys. Rev. B*, 81:195107, May 2010. doi:10.1103/PhysRevB.81.195107. URL https://link.aps.org/doi/10.1103/PhysRevB.81.195107.

W. Jeitschko and M.H. Gerss. Ternary carbides of the rare earth and iron group metals with CeCoC$_2$- and CeNiC$_2$-type structure. *Journal of the Less Common Metals*, 116(1):147 – 157, 1986. ISSN 0022-5088. doi:https://doi.org/10.1016/0022-5088(86)90225-0. URL http://www.sciencedirect.com/science/article/pii/0022508886902250.

Mitsuo Kasaya, Hiroyuki Suzuki, Takeshi Yamaguchi, and Kenichi Katoh. Magnetic properties of new ternary rare earth compounds rpt(pd)sb. *Journal of the Physical Society of Japan*, 61(11):4187–4192, 1992.
Susumu Katano, Kohei Shibata, Kotaro Nakashima, Hideaki Yoshimura, and Yohei Matsubara. Competition between superconductivity and magnetism in non-centrosymmetric La$_{1-x}$Ce$_x$NiC$_2$. *Journal of the Physical Society of Japan*, 86(10):104704, 2017. doi:10.7566/JPSJ.86.104704. URL https://doi.org/10.7566/JPSJ.86.104704.

Kenichi Katoh, Seisuke Nakagawa, Giichi Terui, and Akira Ochiai. Magnetic and transport properties of single-crystal YbPtGe. *Journal of the Physical Society of Japan*, 78(10):104721, 2009. doi:10.1143/JPSJ.78.104721. URL https://doi.org/10.1143/JPSJ.78.104721.

Anton Kokalj. Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale. *Computational Materials Science*, 28(2):155 – 168, 2003. ISSN 0927-0256. doi:https://doi.org/10.1016/S0927-0256(03)00104-6. URL http://www.sciencedirect.com/science/article/pii/S0927025603001046.

G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O. Parcollet, and C. A. Marianetti. Electronic structure calculations with dynamical mean-field theory. *Rev. Mod. Phys.*, 78:865–951, Aug 2006. doi:10.1103/RevModPhys.78.865. URL https://link.aps.org/doi/10.1103/RevModPhys.78.865.

A.C. Larson and R.B. Von Dreele. General structure analysis system (gsas). *Los Alamos National Laboratory Report LAUR*, 86-748, 2000. URL http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.ccp14.ac.uk/ccp/ccp14/ftp-mirror/gsas/public/gsas/manual/GSASManual.pdf.

A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen. Density-functional theory and strong interactions: Orbital ordering in mott-hubbard insulators. *Phys. Rev. B*, 52:R5467–R5470, Aug 1995. doi:10.1103/PhysRevB.52.R5467. URL https://link.aps.org/doi/10.1103/PhysRevB.52.R5467.

A H MacDonald, W E Picket, and D D Koelling. A linearised relativistic augmented-plane-wave method utilising approximate pure spin basis
functions. *Journal of Physics C: Solid State Physics*, 13(14):2675–2683, May 1980. doi:10.1088/0022-3719/13/14/009 URL https://doi.org/10.1088%2F0022-3719%2F13%2F14%2F009.

H. K. Mao, J. Xu, and P. M. Bell. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. *Journal of Geophysical Research: Solid Earth*, 91(B5):4673–4676, 1986. doi:10.1029/JB091iB05p04673. URL https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/JB091iB05p04673.

Koichi Momma and Fujio Izumi. *VESTA3* for three-dimensional visualization of crystal, volumetric and morphology data. *Journal of Applied Crystallography*, 44(6):1272–1276, Dec 2011. doi:10.1107/S0021889811038970 URL https://doi.org/10.1107/S0021889811038970.

Kiyoichiro Motoya, Keisuke Nakaguchi, Noriaki Kayama, Kazunori Inari, Jun Akimitsu, Koichi Izawa, and Toshizo Fujita. Magnetic properties of CeNiC$_2$ structure by macroscopic and microscopic measurements. *Journal of the Physical Society of Japan*, 66(4):1124–1129, 1997. doi:10.1143/JPSJ.66.1124.

H.R. Ott, H. Rudigier, and F. Hulliger. Low-temperature phase transitions in Yb monopnictides. *Solid State Communications*, 55(2):113 – 116, 1985. ISSN 0038-1098. doi:https://doi.org/10.1016/0038-1098(85)90259-5. URL http://www.sciencedirect.com/science/article/pii/0038109885902595.

Alla E. Petrova, Vladimir A. Sidorov, and Sergei M. Stishov. High-pressure helium gas apparatus and hydrostatic toroid cell for low-temperatures applications. *Physica B: Condensed Matter*, 359-361:1463 – 1465, 2005. ISSN 0921-4526. doi:https://doi.org/10.1016/j.physb.2005.01.454. URL http://www.sciencedirect.com/science/article/pii/S0921452605004850.

B. Pollit, D. Drkop, and P. Weidner. Magnetic ordering of mixed valent Yb$_3$Pd$_4$. *Journal of Magnetism and Magnetic Materials*, 47-48:583 – 585, 1985. ISSN 0304-8853. doi:https://doi.org/10.1016/0304-8853(85)90501-3. URL http://www.sciencedirect.com/science/article/pii/0304885385905013.
R. Pott, W. Boksch, G. Leson, B. Politt, H. Schmidt, A. Freimuth, K. Keulerz, J. Langen, G. Neumann, F. Oster, J. Röhler, U. Walter, P. Weidner, and D. Wohlleben. Magnetic order and other phase transitions in mixed-valent YbPd. *Phys. Rev. Lett.*, 54:481–484, Feb 1985. doi:10.1103/PhysRevLett.54.481. URL https://link.aps.org/doi/10.1103/PhysRevLett.54.481.

Juan Rodriguez-Carvajal. Recent advances in magnetic structure determination by neutron powder diffraction. *Physica B: Condensed Matter*, 192(1):55 – 69, 1993. ISSN 0921-4526. doi:https://doi.org/10.1016/0921-4526(93)90108-I. URL http://www.sciencedirect.com/science/article/pii/092145269390108I.

D. P. Rojas, L. Fernández Barquín, C. Echevarria-Bonet, and J. Rodríguez Fernández. YbNi$_2$: A heavy fermion ferromagnet. *Solid State Communications*, 152:1834–1837, October 2012. doi:10.1016/jssc.2012.07.001.

C. Rossel, K. N. Yang, M. B. Maple, Z. Fisk, E. Zirngiebl, and J. D. Thompson. Strong electronic correlations in a new class of Yb-based compounds: YbXCu$_4$ (X = Ag, Au, Pd). *Phys. Rev. B*, 35:1914–1918, Feb 1987. doi:10.1103/PhysRevB.35.1914. URL https://link.aps.org/doi/10.1103/PhysRevB.35.1914.

W. Schfer, G. Will, P.A. Kotsanidis, and J.K. Yakinthos. Magnetic properties of RCoC$_2$ (R = Y, Gd, Tb) compounds. *Journal of Magnetism and Magnetic Materials*, 88(1):13 – 17, 1990. ISSN 0304-8853. doi:https://doi.org/10.1016/S0304-8853(97)90005-6. URL http://www.sciencedirect.com/science/article/pii/S0304885397900056.

W. Schfer, W. Kockelmann, G. Will, J.K. Yakinthos, and P.A. Kotsanidis. Magnetic structures of rare earths R in RCoC$_2$ and RNiC$_2$ compounds. *Journal of Alloys and Compounds*, 250(1):565 – 568, 1997. ISSN 0925-8388. doi:https://doi.org/10.1016/S0925-8388(96)02564-9. URL http://www.sciencedirect.com/science/article/pii/S0925838896025649.

Shintaro Suzuki, Kou Takubo, Kentaro Kuga, Wataru Higemoto, Takashi U. Ito, Takahiro Tomita, Yasuyuki Shimura, Yosuke Matsumoto, Cedric Bareille, Hiroki Wadati, Shik Shin, and Satoru Nakatsuji, 2018.
Takashi Takahashi, Noriaki Sato, Takayoshi Yokoya, Ashish Chainani, Takayuki Morimoto, and Takemi Komatsubara. Dual character of 5f electrons in UPd$_2$Al$_3$ observed by high-resolution photoemission spectroscopy. *Journal of the Physical Society of Japan*, 65(1):156–159, 1996. doi:10.1143/JPSJ.65.156 URL https://doi.org/10.1143/JPSJ.65.156.

Takahiro Tomita, Kentaro Kuga, Yoshiya Uwatoko, Piers Coleman, and Satoru Nakatsuji. Strange metal without magnetic criticality. *Science*, 349(6247):506–509, 2015. ISSN 0036-8075. doi:10.1126/science.1262054. URL https://science.sciencemag.org/content/349/6247/506.

Takahiro Tomita, Kentaro Kuga, Yoshiya Uwatoko, and Satoru Nakatsuji. Pressure-induced magnetic transition exceeding 30 K in the Yb-based heavy-fermion β-YbAlB$_4$. *Phys. Rev. B*, 94:245130, Dec 2016. doi:10.1103/PhysRevB.94.245130 URL https://link.aps.org/doi/10.1103/PhysRevB.94.245130.

R. Troč, Z. Gajek, and A. Pikul. Dualism of the 5f electrons of the ferromagnetic superconductor UGe$_2$ as seen in magnetic, transport, and specific-heat data. *Phys. Rev. B*, 86:224403, Dec 2012. doi:10.1103/PhysRevB.86.224403 URL https://link.aps.org/doi/10.1103/PhysRevB.86.224403.

Naohito Tsujii, Kenichi Katoh, Lukas Keller, Andreas Dnni, Noriki Terada, and Hideaki Kitazawa. Magnetic structure of the ferromagnetic kondo-lattice compounds YbPtGe and YbPdGe. *Journal of Physics: Condensed Matter*, 27(32):325601, jul 2015. doi:10.1088/0953-8984/27/32/325601. URL https://doi.org/10.1088%2F0953-8984%2F27%2F32%2F325601.

A.V. Tsvyashchenko. High pressure synthesis of RE$_6$Cu$_{23}$ compounds (RE = Tb, Dy, Yb, Lu). *Journal of the Less Common Metals*, 99(2):L9 – L11, 1984. ISSN 0022-5088. doi:https://doi.org/10.1016/0022-5088(84)90231-5 URL http://www.sciencedirect.com/science/article/pii/0022508884902315.

B. G. Ueland, A. Kreyssig, K. Prokeš, J. W. Lynn, L. W. Harriger, D. K. Pratt, D. K. Singh, T. W. Heitmann, S. Sauerbrei, S. M. Saunders, E. D. Mun, S. L. Bud’ko, R. J. McQueeney, P. C. Canfield, and A. I. Goldman. Fragile antiferromagnetism in the heavy-fermion compound YbBiPt. *Phys.
