Finite-volume formalism in the $2 \overset{H_I+H_I}{\longrightarrow} 2$ transition: an application to the lattice QCD calculation of double beta decays

Xu Feng, 1,2,3,4,∗ Lu-Chang Jin, 5,6,† Zi-Yu Wang, 1 and Zheng Zhang 1

1 School of Physics, Peking University, Beijing 100871, China
2 Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
3 Center for High Energy Physics, Peking University, Beijing 100871, China
4 State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
5 Department of Physics, University of Connecticut, Storrs, CT 06269, USA
6 RIKEN-BNL Research Center, Brookhaven National Laboratory, Building 510, Upton, NY 11973

(Dated: May 6, 2020)

Abstract

We present the formalism for connecting a second-order electroweak $2 \overset{H_I+H_I}{\longrightarrow} 2$ transition amplitudes in the finite volume (with two hadrons in the initial and final states) to the physical amplitudes in the infinite volume. Our study mainly focus on the case where the low-lying intermediate state consists of two scattering hadrons. As a side product we also reproduce the finite-volume formula for $2 \overset{H_I}{\longrightarrow} 2$ transition, originally obtained by Briceño and Hansen in Ref. [1]. With the available finite-volume formalism, we further discuss how to treat with the finite-volume problem in the double beta decays $nn \rightarrow ppee\bar{\nu}\bar{\nu}$ and $nn \rightarrow ppee$.

∗ xu.feng@pku.edu.cn
† ljin.luchang@gmail.com
I. INTRODUCTION

Lattice QCD provides a well-established non-perturbative approach to solve the quantum chromodynamics (QCD) theory of quarks and gluons. Using the high-performance supercomputers, the quarks and gluons are enclosed and simulated in a discretized, finite-volume lattice. Controlling the various systematic effects such as lattice discretization effects, finite-volume effects, and unphysical quark mass effects is required for lattice QCD calculation to make the high-precision predication from first principles. On the other hand, in some cases the study of the systematic effects is much more than the reduction of the uncertainty. It could lead to the new methodology to solve the interesting physics problems. For example, the study of the pion mass dependence from lattice QCD interplays with the chiral perturbation theory, yielding a deeper understanding of the chiral dynamics of QCD. Another example is the pioneering work on the finite-volume formalism by Lüscher \cite{2–4}. It allows us to connect the discrete energy spectrum calculated from lattice QCD to the infinite-volume scattering phase and has played an important role in understanding the hadron spectra and hadron-hadron scattering.

The finite-volume formalism generically includes three topics.

- Finite-volume energy quantization relates the discrete energy in the finite volume to the scattering phase in the infinite volume. The best examples under well investigation are the pion-pion scattering in the isospin $I = 2$ \cite{5–15}, $I = 1$ (\(\rho\) resonance relevant) \cite{16–31}, and $I = 0$ (\(\sigma\) resonance and disconnected diagrams relevant) \cite{32–38} channels. Due to the good signals provided by the pion-pion system, a lot of attentions are paid to these scattering channels in the past years. For more lattice calculations of scattering amplitudes, we refer to a recent review \cite{39}.

- Lellouch-Lüscher relation \cite{40} connects the finite-volume matrix element with two hadrons in either initial or final state to the physical matrix element in the infinite volume. Such examples include $0 \mathrel{\leftrightarrow} 2$ decays e.g. the timelike pion form factor \cite{22, 29, 31, 41}, $1 \mathrel{\leftrightarrow} 2$ decays including $K \mapsto \pi\pi$ \cite{42–46} and $\pi\pi \mapsto \pi\gamma^*$ transition \cite{47–49} and $2 \mathrel{\leftrightarrow} 2$ decays recently studied in Refs. \cite{1, 50}.

- Finite-volume formula for long-distance electroweak amplitudes \cite{51–53} relates the bilocal matrix element in the finite volume to the physical one in the infinite volume.
This formalism is first developed to solve the finite-volume problem for K_L-K_S mixing \cite{54, 57} and has been used for other second-order electroweak processes such as rare kaon decays \cite{58, 63}. Recently the formalism is generalized in Ref. \cite{64} to access more long-distance observables.

It is found by Ref. \cite{53} that the above three finite-volume formulae can be derived in a uniform way in the framework of quantum field theory using the techniques of Kim, Sachrajda and Sharpe (KSS) \cite{65}.

In this work, we present the derivation of the finite-volume formula for long-distance electroweak amplitudes with two hadrons in both initial and final states ($2 \to 2$). We consider the scattering process with two channels, which are mixed by the electroweak interaction. We label these two channels by α and β. The master formula is given as

$$
\frac{d(\phi + \delta_\alpha^{(0)})}{dE} \Delta E_\alpha + \Delta \delta_\alpha = \frac{1}{4} \cot(\phi + \delta_\beta^{(0)}) |(E, \text{in, } \beta | H_I | E, \text{in, } \alpha)|^2, \quad \text{at } E = E_\alpha^{(0)},
$$

(1)

where $E_\alpha^{(0)}$ is discrete energy for initial/final state without non-QCD correction. ΔE_α is the energy shift when turning on the second-order electroweak interaction, and it equals to the $2 \to 2$ finite-volume matrix element calculated on the lattice. ϕ is a known, kinematic function, originally introduced by Lüscher in Eq. (6.12) of Ref. \cite{3}. $\delta_\alpha^{(0)}$ is the strong scattering phase for the initial/final state and $\delta_\beta^{(0)}$ is the scattering phase for the low-lying two-hadron intermediate state. Here we consider the case that the lowest intermediate state consists of two interacting hadrons. $\Delta \delta_\alpha$ is the shift in the total scattering phase with the existence of non-QCD interaction. It is equivalent to the infinite-volume $2 \to 2$ matrix element as we explain later. The derivation is performed using the perturbative approach proposed by Lellouch and Lüscher \cite{40} together with the coupled-channel finite-volume energy quantization condition \cite{66, 67}. As a side product, we also obtain the finite-volume formula for $2 \to 2$ transition for the special case that the current J carries the vanishing momentum. For more general cases, we refer to Refs. \cite{1, 50}.

We find that the KSS approach \cite{65} treats the finite-volume problem in a thorough and fundamental way using Poisson summation formula. Many new developments of the finite-volume formalism are made progress along the direction proposed by KSS. On the other hand, the approach invented by Lellouch and Lüscher \cite{40} creates another possibility that one can obtain the finite-volume formalism in a relatively simple way as the finite-volume
information is already incorporated inside Lüscher’s quantization condition and it is not necessary to investigate it again using Poisson summation formula.

The paper is organized as follows. In Sect. II we discuss the discrete energy shift in the finite volume due to the existence of the $2 \rightarrow 2$ transition. In Sect. III we discuss the infinite-volume scattering amplitude relevant for the $2 \rightarrow 2$ transition. In Sect. IV the energy shift is related to the scattering amplitude using the coupled-channel quantization condition and thus the finite-volume formalism Eq. (1) is obtained. In Sect. V we discuss the applications of the finite-volume formalism to the double beta decays.

II. $2 \rightarrow 2$ TRANSITION IN THE FINITE VOLUME

We consider the full Hamiltonian including both QCD and non-QCD interactions as

$$H^L = H_0^L + H_I^L,$$ \hspace{1cm} (2)

where H_0^L stands for the pure strong interaction and H_I^L indicates the non-QCD ones, e.g. electromagnetic or weak interactions. The superscript L reminds us that all the interactions are constrained by a finite volume.

When the interaction H_I is turned on, it is possible that two independent strong scattering (or bound) channels are mixed by the non-QCD interaction. For example, in the double beta decay, the 1S_0 two-nucleon state can mix with the 3S_1 state. To specify this character of the $2 \rightarrow 2$ transition, we assign two low-lying eigenstates of the Hamiltonian H_0^L as α and β, which satisfy the normalization conditions

$$L\langle \alpha | H_0^L | \alpha \rangle^L = E_\alpha^{(0)}, \hspace{1cm} L\langle \beta | H_0^L | \beta \rangle^L = E_\beta^{(0)}, \hspace{1cm} L\langle \beta | H_0^L | \alpha \rangle^L = 0,$$ \hspace{1cm} (3)

and $E_\alpha^{(0)}$ and $E_\beta^{(0)}$ are the corresponding energy eigenvalues. These two states are independent when turning off the non-QCD interactions but mix with each other when turning on these interactions. In the finite volume, the spectra of QCD Hamiltonian is discrete and it allows for multiple nearly-degenerate states. Here we focus on only one of them and classify all the other states as $|n_\alpha\rangle^L$ and $|n_\beta\rangle^L$, where $|n_\alpha\rangle^L$ and $|n_\beta\rangle^L$ have the same quantum number as $|\alpha\rangle^L$ and $|\beta\rangle^L$, respectively. We introduce the projectors

$$Q = \sum_{n=\alpha,\beta} |n\rangle^{LL} \langle n|, \hspace{1cm} P = 1 - Q,$$ \hspace{1cm} (4)
to construct a two-state subspace.

The eigenvalue equation for the full Hamiltonian is given by

\[(H_0^L + H_I^L)|n\rangle_I^L = E_n|n\rangle_I^L.\]

(5)

In the notation of the eigenstate \(|n\rangle_I^L\) the subscript \(I\) is used to indicate the existence of the non-QCD interaction. Acting \(P\) and \(Q\) on the above equation, we have

\[H_0^LP|n\rangle_I^L + PH_I^L(Q + P)|n\rangle_I^L = E_nP|n\rangle_I^L,\]

\[H_0^LQ|n\rangle_I^L + QH_I^L(Q + P)|n\rangle_I^L = E_nQ|n\rangle_I^L.\]

(6)

This results in

\[PH_I^LQ|n\rangle_I^L = (E_n - H_0^L - PH_I^LP)|n\rangle_I^L,\]

\[QH_I^LP|n\rangle_I^L = (E_n - H_0^L - QH_I^LQ)|n\rangle_I^L.\]

(7)

Inserting \(P|n\rangle_I^L = P(E_n - H_0^L - PH_I^LP)^{-1}PH_I^LQ|n\rangle_I^L\) into the second line of Eq. (7), we have

\[QH_I^LP(E_n - H_0^L - PH_I^LP)^{-1}PH_I^LQ|n\rangle_I^L = (E_n - H_0^L - QH_I^LQ)|n\rangle_I^L.\]

(8)

By neglecting the \(O(H_I^3)\) terms, we obtain the equations

\[(\tilde{H}_0 + \tilde{H}_I)Q|n\rangle_I^L = E_nQ|n\rangle_I^L,\]

(9)

with

\[\tilde{H}_0 = H_0^L + QH_I^LQ, \quad \tilde{H}_I = QH_I^LP(E_n - H_0^L)^{-1}PH_I^LQ.\]

(10)

The existence of the nonzero solutions for equations

\[L\langle\alpha|\tilde{H}_0 + \tilde{H}_I|\alpha\rangle^L + L\langle\alpha|\tilde{H}_0 + \tilde{H}_I|\beta\rangle^L = E_\alpha L\langle\alpha|\alpha\rangle^L,\]

\[L\langle\beta|\tilde{H}_0 + \tilde{H}_I|\alpha\rangle^L + L\langle\beta|\tilde{H}_0 + \tilde{H}_I|\beta\rangle^L = E_\beta L\langle\beta|\alpha\rangle^L,\]

(11)

requires that the secular equation holds

\[\begin{vmatrix}
 L\langle\alpha|\tilde{H}_0 + \tilde{H}_I|\alpha\rangle^L - E_\alpha & L\langle\alpha|\tilde{H}_0 + \tilde{H}_I|\beta\rangle^L \\
 L\langle\beta|\tilde{H}_0 + \tilde{H}_I|\alpha\rangle^L & L\langle\beta|\tilde{H}_0 + \tilde{H}_I|\beta\rangle^L - E_\beta
\end{vmatrix} = 0.\]

(12)

For the general case with \(E_\alpha^{(0)} \neq E_\beta^{(0)}\), the solution of \(E_\alpha\) is given by

\[E_\alpha = E_\alpha^{(0)} + \Delta E_\alpha, \quad \Delta E_\alpha = \frac{|L\langle\beta|H_I^L|\alpha\rangle^L|^2}{E_\alpha^{(0)} - E_\beta^{(0)}} + \sum_{n_\beta \neq \beta} \frac{|L\langle n_\beta|H_I^L|\alpha\rangle^L|^2}{E_\alpha^{(0)} - E_{n_\beta}^{(0)}}.\]

(13)
The energy shift ΔE_α is exactly the finite-volume long-distance matrix element obtained from a lattice QCD calculation.

Here we obtain Eq. (13) using the second-order degenerate perturbation theory. In fact Eq. (13) is the standard result from the second-order perturbation theory and we expect the derivation could be simpler using the common perturbation theory.

III. $2^{H_I+H_I} \rightarrow 2$ TRANSITION IN THE INFINITE VOLUME

Now we consider the $2^{H_I+H_I} \rightarrow 2$ transition in the infinite volume. For simplicity we only discuss the case that the low-lying intermediate state is given by a two-particle scattering state or a one-particle bound state. For the former, the transition amplitude involves the input of a 2×2 scattering S-matrix. For the latter, a single-channel S-matrix is relevant.

A. Process of $2^{H_I} \rightarrow 2^{H_I}$

We first consider the scattering state by turning off the non-QCD interactions. In the infinite volume, we use $|E, \text{in}, \alpha\rangle$ to describe the incoming scattering state and $\langle E, \text{out}, \alpha|\rangle$ for the outgoing scattering state. The low-lying intermediate scattering state is described by $|E, \text{in}, \beta\rangle$. For simplicity, here we only consider the S-wave scattering. The relevant normalization condition is assigned as

$$\langle E', \text{in}, \beta|E, \text{in}, \alpha\rangle = 2\pi\delta(E - E')\delta_{\alpha\beta}. \quad (14)$$

The scattering S-matrix is defined as

$$\begin{pmatrix} \langle E', \text{out}, \alpha|E, \text{in}, \alpha\rangle & \langle E', \text{out}, \beta|E, \text{in}, \alpha\rangle \\ \langle E', \text{out}, \alpha|E, \text{in}, \beta\rangle & \langle E', \text{out}, \beta|E, \text{in}, \beta\rangle \end{pmatrix} = 2\pi\delta(E - E')S, \quad S = \begin{pmatrix} e^{2i\delta_\alpha^{(0)}} & 0 \\ 0 & e^{2i\delta_\beta^{(0)}} \end{pmatrix}. \quad (15)$$

Without non-QCD interactions, there is no mixing between α and β states. Thus S is a diagonal matrix with $\delta_\alpha^{(0)}$ and $\delta_\beta^{(0)}$ the scattering phases for pure strong interaction. We use $|\alpha'\rangle$ and $|\beta'\rangle$ to stand for the excited states, which have the same quantum number as $|E, \text{in}, \alpha\rangle$ and $|E, \text{in}, \beta\rangle$, respectively. We assume that the threshold energy E_{th} for these excited states are above the energy region we are interested in.

When turning on the non-QCD interactions, the scattering state for full Hamiltonian
\[H = H_0 + H_I \] is given by

\[|E, \text{in}, \alpha \rangle_I = |E, \text{in}, \alpha \rangle + G_E^{(+)} H_I |E, \text{in}, \alpha \rangle_I, \]

(16)

where

\[G_E^{(+)} = \frac{1}{E - H_0 + i \varepsilon} = \mathcal{P} \mathcal{V} \frac{1}{E - H_0} - i \pi \delta(E - H_0) \]

(17)
is the standard Green’s function. With non-QCD interactions, we parameterize the \(S \)-matrix following Refs. \[66, 67] \)

\[S_I = \begin{pmatrix} c e^{2i \delta_\alpha} & \alpha s \epsilon^{i \delta_\alpha + i \delta_\beta} \\ \alpha s \epsilon^{i \delta_\alpha + i \delta_\beta} & c e^{2i \delta_\beta} \end{pmatrix}, \]

(18)

where the real values \(c \) and \(s \) satisfy the relation \(c^2 + s^2 = 1 \). This parameterization makes the derivation of the finite-volume formalism very straightforward. (In some other cases, e.g. in the \(K \to \pi \pi \) decay where \(I = 0 \) and \(I = 2 \pi \pi \) states mix due to the existence of electromagnetic interactions \[68], it is simpler to use the parameterization proposed by Ref. \[69].)

It is useful to relate the \(S \)-matrix to the \(T \)-matrix using the relation \(S = 1 + iT \). After turning on the non-QCD interaction, the change of the \(T \) matrix is given by

\[\Delta T = -i \begin{pmatrix} c e^{2i \delta_\alpha} - e^{2i \delta_\alpha^{(0)}} & \alpha s \epsilon^{i \delta_\alpha + i \delta_\beta} \\ \alpha s \epsilon^{i \delta_\alpha + i \delta_\beta} & c e^{2i \delta_\beta} - e^{2i \delta_\beta^{(0)}} \end{pmatrix}. \]

(19)

On the other hand, the matrix of \(\Delta T \) can be constructed using the scattering state through

\[\Delta T = - \begin{pmatrix} \langle E, \text{out}, \alpha | H_I | E, \text{in}, \alpha \rangle_I & \langle E, \text{out}, \beta | H_I | E, \text{in}, \alpha \rangle_I \\ \langle E, \text{out}, \alpha | H_I | E, \text{in}, \beta \rangle_I & \langle E, \text{out}, \beta | H_I | E, \text{in}, \beta \rangle_I \end{pmatrix}. \]

(20)

We can make the perturbative expansion of \(\Delta T \). Up to \(O(H_I^2) \), we find

\[\Delta T = - \begin{pmatrix} e^{2i \delta_\alpha^{(0)}} (K_\alpha - i |J|^2/2) & e^{i \delta_\alpha^{(0)} + i \delta_\beta^{(0)}} J \\ e^{i \delta_\alpha^{(0)} + i \delta_\beta^{(0)}} J^* & e^{2i \delta_\beta^{(0)} (K_\beta - i |J|^2/2)} \end{pmatrix}, \]

(21)

where

\[K_\alpha = \mathcal{P} \mathcal{V} \int \frac{dE'}{2\pi} \frac{\langle |E', \beta | H_I | E, \text{in}, \alpha \rangle^2}{E - E'} + \oint_{\beta'} \frac{\langle |\beta' | H_I | E, \text{in}, \alpha \rangle^2}{E - E_{\beta'}}, \]

\[J = e^{i \delta_\beta^{(0)} - i \delta_\alpha^{(0)}} (E, \beta | H_I | E, \text{in}, \alpha). \]

(22)

Here we have used the simplified symbol \(\oint_{\beta'} \equiv \sum_{\beta'} \int_{E_\text{th}}^{E_\text{inf}} \frac{dE_{\beta'}}{2\pi} \). Under the symmetry of the time reversal invariance, \(J \) is a real quantity. By exchanging \(\alpha \) and \(\beta \) for \(K_\alpha \), one gets the expression for \(K_\beta \).
Equating Eqs. (19) and (21), we obtain

\[s = -J, \quad \Delta \delta_\alpha \equiv \delta_\alpha - \delta_\alpha^{(0)} = -\frac{K_\alpha}{2}, \quad \Delta \delta_\beta \equiv \delta_\beta - \delta_\beta^{(0)} = -\frac{K_\beta}{2}. \]

(23)

B. Process of \(H_1 \rightarrow 1 \rightarrow H_2 \)

For the \(H_1 + H_1 \rightarrow H_2 \rightarrow 2 \) process with a deeply bound intermediate state, the first example comes from \(\pi \pi \rightarrow K \rightarrow \pi \pi \) in L. Lellouch and M. Lüscher’s work [40]. Later, H. Meyer extended it to the case of \(\pi \pi \rightarrow W \rightarrow \pi \pi \) [41], where a massive gauge boson \(W \) is introduced and annihilate with an auxiliary vector field to obtain a finite-volume formula for the timelike pion form factor. In Ref. [51], N. Christ used again the \(\pi \pi \rightarrow K \rightarrow \pi \pi \) transition amplitude to obtain a finite-volume correction for the \(K_L - K_S \) mass difference. Here we include the process of \(H_1 \rightarrow 1 \rightarrow H_2 \) simply for the completeness of the discussion.

If \(\beta \) is a deeply bound state, it is not necessary to introduce a \(2 \times 2 \) \(S \)-matrix. The correction to the \(T \)-matrix due to the non-QCD interaction is given by

\[\Delta T = -\langle E, \text{out}, \alpha | H_f | E, \text{in}, \alpha \rangle. \]

(24)

Using Eq. (16) and inserting the \(|\beta\rangle \) and \(|\beta'\rangle \) states into \(\Delta T \) one can obtain

\[\Delta T = -e^{2i\delta^{(0)}_\beta} \left(\frac{|\langle \beta | H_f | E, \text{in}, \alpha \rangle|^2}{E - E_\beta} + \oint \frac{|\langle \beta' | H_f | E, \text{in}, \alpha \rangle|^2}{E - E_{\beta'}} \right). \]

(25)

It results in

\[\Delta \delta_\alpha \equiv \delta_\alpha - \delta_\alpha^{(0)} = -\hat{K}_\alpha, \quad \hat{K}_\alpha = \frac{|\langle \beta | H_f | E, \text{in}, \alpha \rangle|^2}{E - E_\beta} + \oint \frac{|\langle \beta' | H_f | E, \text{in}, \alpha \rangle|^2}{E - E_{\beta'}}. \]

(26)

IV. FINITE-VOLUME FORMALISM

In this section we present the finite-volume formalism which connects the matrix elements that can be calculated in the finite volume using lattice QCD to the infinite-volume transition amplitudes.

We first discuss the \(H_1 \rightarrow 2 \rightarrow H_2 \) transition. The coupled-channel finite-volume energy quantization condition has been first established by Refs. [66, 67] in 2005 using the quantum mechanics. Later, there have been a number of papers studying the generalization of Lüscher’s quantization condition to multiple channels [69–73]. For example, in Ref. [69], quantization condition is extended to quantum field theory using the KSS approach [65].
When turning on the non-QCD interaction, we adopt the quantization condition from Refs. [66, 67]

\[
(e^{-2i(\phi+\delta_\alpha)} - c)(e^{-2i(\phi+\delta_\beta)} - c) + s^2 = 0, \quad \text{at } E = E_\alpha, \tag{27}
\]

where the angle ϕ is a known function of discrete, finite-volume energy E [3]. (By multiplying a factor of $e^{2i\delta_\alpha + 2i\delta_\beta}$, Eq. (27) can reproduce Eq. (34) in Ref. [66].) When turning off the non-QCD interaction we have

\[
e^{-2i(\phi+\delta_\alpha^{(0)})} - 1 = 0, \quad \text{at } E = E_\alpha^{(0)}. \tag{28}
\]

Comparing Eqs. (27) and (28) and using the relation $s^2 = |\langle E, \text{in}, \beta | H_I | E, \text{in}, \alpha \rangle|^2$ given in Eq. (23), we obtain the master formula given in Eq. (1). We copy it here for the sake of an easier read

\[
\frac{d\left(\phi + \delta_\alpha^{(0)}\right)}{dE} \Delta E_\alpha + \Delta \delta_\alpha = \frac{1}{4} \cot \left(\phi + \delta_\beta^{(0)}\right) |\langle E, \text{in}, \beta | H_I | E, \text{in}, \alpha \rangle|^2, \quad \text{at } E = E_\alpha^{(0)}, \tag{29}
\]

where ΔE_α is the finite-volume matrix element defined in Eq. (13) and $\Delta \delta_\alpha$ is the infinite-volume matrix element defined in Eq. (23). It is not surprising that the finite-volume correction formula takes the form of Eq. (29) as the initial/final state receives a correction of Lellouch-Lüscher factor $\frac{d\left(\phi + \delta_\alpha^{(0)}\right)}{dE}$ and the intermediate state receives a correction of factor $\cot \left(\phi + \delta_\beta^{(0)}\right)$ as first obtained by Refs. [52, 53]. It is known that the energy quantization condition can be used for a shallow bound state through the analytical continuation [74, 75]. Thus the master formula derived here can be extended from a scattering state to a shallow bound state.

In the limit of $E_\beta^{(0)} \to E_\alpha^{(0)}$, both ΔE_α and $\cot \left(\phi + \delta_\beta^{(0)}\right)$ in Eq. (29) become singular. By equating the residue of the poles, we obtain

\[
h_i' \left|\langle \beta | H_I^{(0)} | \alpha \rangle\right|^2 h_i' = \frac{1}{4} |\langle E, \text{in}, \beta | H_I | E, \text{in}, \alpha \rangle|^2, \quad \text{at } E = E_\alpha^{(0)} \text{ and } E_\beta^{(0)} \to E_\alpha^{(0)}, \tag{30}
\]

where $h_i = \phi + \delta_i^{(0)}$ and $h_i' = dh_i/dE$ for $i = \alpha, \beta$. We thus reproduce the finite-volume correction formula for the $2 \to 2$ transition matrix with the current J carrying zero momentum, which is first obtained by Ref. [1].

For the $2 \to 1 \to 2$ transition, the corresponding finite-volume formula is given by

\[
\frac{d\left(\phi + \delta_\alpha^{(0)}\right)}{dE} \Delta E_\alpha + \Delta \delta_\alpha = 0, \tag{31}
\]

where ΔE_α is given by Eq. (13) and $\Delta \delta_\alpha$ is given by Eq. (26).
V. APPLICATION TO DOUBLE BETA DECAYS

Observation of neutrinoless double beta (0ν2β) decays would prove neutrinos as Majorana fermions and lepton number violation in nature. As a result the study of double beta decays attracts a lot of interests from both experimental and theoretical sides. Current knowledge of second-order weak-interaction nuclear matrix elements needs to be improved, as various nuclear models lead to discrepancies on the order of 100% [76]. A promising approach to improving the reliability of the theoretical predication is to combine the chiral effective field theory (χEFT) [77–84] with lattice QCD and then provide well-constrained few-body inputs to ab initio many-body calculations [76]. Efforts have been invested to calculate double beta decays in both pion [85–89] and nucleon [90, 91] sector from lattice QCD.

We start the discussion of the finite-volume problem for the double beta decays in the pion sector, taking the $\pi^-\pi^- \rightarrow \pi^-\nu \rightarrow ee$ and $\pi^- \rightarrow \pi^0\nu \rightarrow \pi^+ee$ as examples. If we only consider the hadronic particles, the former process is a $2 \rightarrow 1 \rightarrow 0$ transition and the latter is a $1 \rightarrow 1 \rightarrow 1$ transition. However, one needs to pay attention to the finite-volume effects caused by the massless neutrino in the intermediate state. For the case of $\pi^-\pi^- \rightarrow \pi^-\nu \rightarrow ee$ transition, there are two sources of power-law finite-volume effects [86]. One arises from the $\pi^-\pi^-$ initial state and is corrected by the inclusion of Lellouch-Lüscher factor. The other one originates from the massless neutrino and is estimated as an $O(L^{-2})$ effect by using the QED$_L$ technique. In the study of $\pi^- \rightarrow \pi^0\nu \rightarrow \pi^+ee$ transition [88], a novel method called infinite-volume reconstruction [92] is used to treat the massless neutrino in the intermediate state. This method reduces the usual power-law finite-volume effect induced by the neutrino-pion loop to an exponentially suppressed effect. With the finite-volume corrections, Refs. [86, 88] produce the lattice results for the double beta decay amplitudes, which are well consistent with the χEFT formula [79] and much more accurate than the estimates from the phenomenological study [93]. In an exploratory study [87], Detmold and Murphy make an attempt to use massive neutrino for $\pi^- \rightarrow \pi^0\nu \rightarrow \pi^+ee$ and then study the neutrino mass dependence. (In a recent work [89], the authors use the massless neutrinos in their latest results, where power-law finite-volume effect is a relevant issue.) We consider the massive neutrino a good solution to the finite-volume problem particularly in 0ν2β decay $nn \rightarrow ppee$ as we will explain below. A similar idea to use the massive photon as an infrared regularization scheme for lattice QCQ+QED can be found in Ref. [94].
A. $2\nu\beta$ decay $nn \to ppee\nu\nu$

The pioneering lattice QCD calculation of $nn \to ppee\nu\nu$ has been performed by NPLQCD collaboration [90, 91]. At the physical pion mass, it is well known that the 1S_0 is a scattering state while 3S_1 is a shallow bound state below the threshold and a scattering state above the threshold. In general, we can treat the shallow bound state as a two-body system and use the finite-volume formula, Eq. (1), to relate the lattice results of finite-volume $nn \to ppee\nu\nu$ matrix element to the infinite-volume decay amplitude.

B. $0\nu\beta$ decay $nn \to ppee$

The finite-volume problem for $0\nu\beta$ decay $nn \to ppee$ is more complicated for two reasons. First, the neutrino, proton and neutron in the low-lying intermediate states form a three-body system. Second, the massless neutrino enclosed in a finite-size box results in an additional power-law finite-volume effect. Although Ref. [92] developed the infinite-volume reconstruction method to eliminate the power-law finite-volume effects for the system with a massless photon and a stable hadron in the low-lying intermediate state, it is much harder to do this for a system with a massless neutrino and two hadrons in the intermediate state.

Pointing out by Ref. [81], a leading-order, short-range contribution needs to be introduced in the χEFT study of the $nn \to ppee$ decay. Such short-range contribution breaks down Weinberg’s power-counting scheme. New local operators need to be introduced in the effective action to account for this contribution. Our goal of the lattice calculation is to calculate the low energy constants for these new local operators. Fortunately these low energy constants are irrelevant with the ultrasoft region where neutrino’s energy is much smaller than the pion mass. Besides, the ultrasoft information from the $nn \to ppee$ decay is not very useful for the heavy-nuclei $0\nu\beta$ decay. In that case, the ultrasoft neutrino can feel the complete nucleus instead of just the nucleons. One would rely on the ab initio many-body theory to treat the nuclei properly.

We thus propose to introduce a nonzero mass for neutrino to remove the ultrasoft contribution. For simplicity, the neutrino mass can be chosen the same as the pion mass. Such choice would unavoidably introduce the unphysical effects. However, as far as the lattice QCD calculation and the χEFT use the same unphysical neutrino mass, the low energy
constants can be determined in a clean way. Compared to the other IR regulator such as the QED$_t$ technique, introducing the massive neutrino is relatively simpler for χEFT. As far as the nonzero neutrino mass is introduced, at the threshold of dibaryon, the three particles in the intermediate state cannot be on shell simultaneously. Thus one can effectively treat the double beta decay as a $2 \rightarrow 2$ system with the current J given by two weak operators. The formula in Eq. (30) can be applied to this case.

VI. Conclusion

In this work we derive the finite-volume formula which connects a $2 \frac{H_I + H_I}{l} \rightarrow 2$ transition amplitudes in the finite volume to the physical amplitudes in the infinite volume. We discuss the cases with low-lying intermediate state consisting of two scattering hadrons or single stable hadron. Using the idea originally proposed by Lellouch and Lüscher the derivation is simple and straightforward. As a side product, we reproduce the finite-volume formalism for $2 \frac{J}{l} \rightarrow 2$ transition previously obtained by Ref. [1].

We discuss the application of the finite-volume formula of the $2 \frac{H_I + H_I}{l} \rightarrow 2$ transition to the lattice QCD calculation of the double beta decay. In the case of $nn \rightarrow ppee$ decay, we propose to use the massive neutrino to avoid the complication of the finite-volume problem induced by the long-range massless neutrino.

Acknowledgments

We gratefully acknowledge many helpful discussions with our colleagues from the RBC-UKQCD Collaboration. We warmly thank N. H. Christ, V. Cirigliano, W. Dekens, E. Mereghetti and A. Walker-loud for useful discussion. X.F., Z.Y.W. and Z.Z. were supported in part by NSFC of China under Grant No. 11775002. L.C.J acknowledges support by DOE grant DE-SC0010339.

[1] R. A. Briceño and M. T. Hansen, Phys. Rev. D94, 013008 (2016) arXiv:1509.08507 [hep-lat]
[2] M. Luscher, Commun. Math. Phys. 105, 153 (1986)
[3] M. Luscher, Nucl. Phys. B354, 531 (1991)
[4] M. Luscher, *Nucl. Phys. B364*, 237 (1991).

[5] T. Yamazaki *et al.* (CP-PACS), *Phys. Rev. D70*, 074513 (2004), arXiv:hep-lat/0402025 [hep-lat].

[6] S. R. Beane, P. F. Bedaque, K. Orginos, and M. J. Savage (NPLQCD), *Phys. Rev. D73*, 054503 (2006), arXiv:hep-lat/0506013 [hep-lat].

[7] S. R. Beane, T. C. Luu, K. Orginos, A. Parreno, M. J. Savage, A. Torok, and A. Walker-Loud, *Phys. Rev. D77*, 014505 (2008), arXiv:0706.3026 [hep-lat].

[8] X. Feng, K. Jansen, and D. B. Renner, *Phys. Lett. B 684*, 268 (2010), arXiv:0909.3255 [hep-lat].

[9] J. J. Dudek, R. G. Edwards, M. J. Peardon, D. G. Richards, and C. E. Thomas, *Phys. Rev. D83*, 071504 (2011), arXiv:1011.6352 [hep-ph].

[10] S. R. Beane, E. Chang, W. Detmold, H. W. Lin, T. C. Luu, K. Orginos, A. Parreno, M. J. Savage, A. Torok, and A. Walker-Loud (NPLQCD), *Phys. Rev. D85*, 034505 (2012), arXiv:1107.5023 [hep-lat].

[11] Z. Fu, *Phys. Rev. D87*, 074501 (2013), arXiv:1303.0517 [hep-lat].

[12] K. Sasaki, N. Ishizuka, M. Oka, and T. Yamazaki (PACS-CS), *Phys. Rev. D89*, 054502 (2014), arXiv:1311.7226 [hep-lat].

[13] J. J. Dudek, R. G. Edwards, and C. E. Thomas, *Phys. Rev. D86*, 034031 (2012), arXiv:1203.6041 [hep-ph].

[14] C. Helmes, C. Jost, B. Knippschild, C. Liu, J. Liu, L. Liu, C. Urbach, M. Ueding, Z. Wang, and M. Werner (ETM), JHEP *09*, 109 (2015), arXiv:1506.00408 [hep-lat].

[15] C. Culver, M. Mai, A. Alexandru, M. Döring, and F. X. Lee, *Phys. Rev. D100*, 034509 (2019), arXiv:1905.10202 [hep-lat].

[16] S. Aoki *et al.* (CP-PACS), *Phys. Rev. D76*, 094506 (2007), arXiv:0708.3705 [hep-lat].

[17] X. Feng, K. Jansen, and D. B. Renner, *Phys. Rev. D83*, 094505 (2011), arXiv:1011.5288 [hep-lat].

[18] C. B. Lang, D. Mohler, S. Prelovsek, and M. Vidmar, *Phys. Rev. D84*, 054503 (2011), [Erratum: Phys. Rev.D89,no.5,059903(2014)], arXiv:1105.5636 [hep-lat].

[19] S. Aoki *et al.* (CS), *Phys. Rev. D84*, 094505 (2011), arXiv:1106.5365 [hep-lat].

[20] C. Pelissier and A. Alexandru, *Phys. Rev. D87*, 014503 (2013), arXiv:1211.0092 [hep-lat].

[21] J. J. Dudek, R. G. Edwards, and C. E. Thomas (Hadron Spectrum),
[22] X. Feng, S. Aoki, S. Hashimoto, and T. Kaneko, Phys. Rev. D91, 054504 (2015), arXiv:1412.6319 [hep-lat].

[23] D. J. Wilson, R. A. Briceno, J. J. Dudek, R. G. Edwards, and C. E. Thomas, Phys. Rev. D92, 094502 (2015), arXiv:1507.02599 [hep-ph].

[24] G. S. Bali, S. Collins, A. Cox, G. Donald, M. Göckeler, C. B. Lang, and A. Schäfer (RQCD), Phys. Rev. D93, 054509 (2016), arXiv:1512.08678 [hep-lat].

[25] J. Bulava, B. Fahy, B. Hörz, K. J. Juge, C. Morningstar, and C. H. Wong, Nucl. Phys. B910, 842 (2016), arXiv:1604.05593 [hep-lat].

[26] D. Guo, A. Alexandru, R. Molina, and M. Döring, Phys. Rev. D94, 034501 (2016), arXiv:1605.03993 [hep-lat].

[27] Z. Fu and L. Wang, Phys. Rev. D94, 034505 (2016), arXiv:1608.07478 [hep-lat].

[28] C. Alexandrou, L. Leskovec, S. Meinel, J. Negele, S. Paul, M. Petschlies, A. Pochinsky, G. Rendon, and S. Syritsyn, Phys. Rev. D96, 034525 (2017), arXiv:1704.05439 [hep-lat].

[29] C. Andersen, J. Bulava, B. Hörz, and C. Morningstar, Nucl. Phys. B939, 145 (2019), arXiv:1808.05007 [hep-lat].

[30] M. Werner et al., Eur. Phys. J. A56, 61 (2020), arXiv:1907.01237 [hep-lat].

[31] F. Erben, J. R. Green, D. Mohler, and H. Wittig, Phys. Rev. D101, 054504 (2020), arXiv:1910.01083 [hep-lat].

[32] Q. Liu (RBC, UKQCD), Proceedings, 27th International Symposium on Lattice field theory (Lattice 2009): Beijing, P.R. China, July 26-31, 2009, PoS LAT2009, 101 (2009), arXiv:0910.2658 [hep-lat].

[33] R. A. Briceno, J. J. Dudek, R. G. Edwards, and D. J. Wilson, Phys. Rev. Lett. 118, 022002 (2017), arXiv:1607.05900 [hep-ph].

[34] L. Liu et al., Phys. Rev. D96, 054516 (2017), arXiv:1612.02061 [hep-lat].

[35] R. A. Briceno, J. J. Dudek, R. G. Edwards, and D. J. Wilson, Phys. Rev. D97, 054513 (2018), arXiv:1708.06667 [hep-lat].

[36] Z. Fu and X. Chen, Phys. Rev. D98, 014514 (2018), arXiv:1712.02219 [hep-lat].

[37] D. Guo, A. Alexandru, R. Molina, M. Mai, and M. Döring, Phys. Rev. D98, 014507 (2018), arXiv:1803.02897 [hep-lat].
[38] T. Wang and C. Kelly, *Proceedings, 36th International Symposium on Lattice Field Theory (Lattice 2018): East Lansing, MI, United States, July 22-28, 2018*, PoS LATTICE2018, 276 (2019).

[39] R. A. Briceno, J. J. Dudek, and R. D. Young, *Rev. Mod. Phys.* 90, 025001 (2018), arXiv:1706.06223 [hep-lat].

[40] L. Lellouch and M. Luscher, *Commun. Math. Phys.* 219, 31 (2001), arXiv:hep-lat/0003023 [hep-lat].

[41] H. B. Meyer, *Phys. Rev. Lett.* 107, 072002 (2011), arXiv:1105.1892 [hep-lat].

[42] T. Blum et al., *Phys. Rev. Lett.* 108, 141601 (2012), arXiv:1111.1699 [hep-lat].

[43] T. Blum et al., *Phys. Rev.* D86, 074513 (2012), arXiv:1206.5142 [hep-lat].

[44] T. Blum et al., *Phys. Rev.* D91, 074502 (2015), arXiv:1502.00263 [hep-lat].

[45] Z. Bai et al. (RBC, UKQCD), *Phys. Rev. Lett.* 115, 212001 (2015), arXiv:1505.07863 [hep-lat].

[46] R. Abbott et al., (2020), arXiv:2004.09440 [hep-lat].

[47] R. A. Briceño, J. J. Dudek, R. G. Edwards, C. J. Shultz, C. E. Thomas, and D. J. Wilson, *Phys. Rev. Lett.* 115, 242001 (2015), arXiv:1507.06622 [hep-ph].

[48] R. A. Briceño, J. J. Dudek, R. G. Edwards, C. J. Shultz, C. E. Thomas, and D. J. Wilson, *Phys. Rev.* D93, 114508 (2016), arXiv:1604.03530 [hep-ph].

[49] C. Alexandrou, L. Leskovec, S. Meinel, J. Negele, S. Paul, M. Petschlies, A. Pochinsky, G. Rendon, and S. Syritsyn, *Phys. Rev.* D98, 074502 (2018), arXiv:1807.08357 [hep-lat].

[50] A. Baroni, R. A. Briceño, M. T. Hansen, and F. G. Ortega-Gama, *Phys. Rev.* D100, 034511 (2019), arXiv:1812.10504 [hep-lat].

[51] N. H. Christ (RBC, UKQCD), in *Proceedings, 28th International Symposium on Lattice field theory (Lattice 2010): Villasimius, Italy, June 14-19, 2010* (2010) arXiv:1012.6034 [hep-lat].

[52] N. H. Christ, G. Martinelli, and C. T. Sachrajda, *Proceedings, 31st International Symposium on Lattice Field Theory (Lattice 2013): Mainz, Germany, July 29-August 3, 2013*, PoS LATTICE2013, 399 (2014), arXiv:1401.1362 [hep-lat].

[53] N. H. Christ, X. Feng, G. Martinelli, and C. T. Sachrajda, *Phys. Rev. D* 91, 114510 (2015), arXiv:1504.01170 [hep-lat].

[54] N. H. Christ, T. Izubuchi, C. T. Sachrajda, A. Soni, and J. Yu (RBC, UKQCD), *Phys. Rev.* D88, 014508 (2013), arXiv:1212.5931 [hep-lat].
[55] Z. Bai, N. H. Christ, T. Izubuchi, C. T. Sachrajda, A. Soni, and J. Yu,
Phys. Rev. Lett. 113, 112003 (2014), arXiv:1406.0916 [hep-lat].

[56] Z. Bai, Proceedings, 34th International Symposium on Lattice Field Theory (Lattice 2016): Southampton, UK, July 24-30, 2016, PoS LATTICE2016, 309 (2017), arXiv:1611.06601 [hep-lat].

[57] B. Wang, (2020), arXiv:2001.06374 [hep-lat].

[58] N. H. Christ, X. Feng, A. Portelli, and C. T. Sachrajda (RBC, UKQCD),
Phys. Rev. D92, 094512 (2015), arXiv:1507.03094 [hep-lat].

[59] N. H. Christ, X. Feng, A. Portelli, and C. T. Sachrajda (RBC, UKQCD),
Phys. Rev. D93, 114517 (2016), arXiv:1605.04442 [hep-lat].

[60] N. H. Christ, X. Feng, A. Juttner, A. Lawson, A. Portelli, and C. T. Sachrajda,
Phys. Rev. D94, 114516 (2016), arXiv:1608.07585 [hep-lat].

[61] Z. Bai, N. H. Christ, X. Feng, A. Lawson, A. Portelli, and C. T. Sachrajda,
Phys. Rev. Lett. 118, 252001 (2017), arXiv:1701.02858 [hep-lat].

[62] Z. Bai, N. H. Christ, X. Feng, A. Lawson, A. Portelli, and C. T. Sachrajda,
Phys. Rev. D98, 074509 (2018), arXiv:1806.11520 [hep-lat].

[63] N. H. Christ, X. Feng, A. Portelli, and C. T. Sachrajda (RBC, UKQCD),
Phys. Rev. D100, 114506 (2019), arXiv:1910.10644 [hep-lat].

[64] R. A. Briceño, Z. Davoudi, M. T. Hansen, M. R. Schindler, and A. Baroni,
Phys. Rev. D 101, 014509 (2020), arXiv:1911.04036 [hep-lat].

[65] C. Kim, C. Sachrajda, and S. R. Sharpe, Nucl. Phys. B 727, 218 (2005),
arXiv:hep-lat/0507006.

[66] S. He, X. Feng, and C. Liu, JHEP 07, 011 (2005), arXiv:hep-lat/0504019.

[67] C. Liu, X. Feng, and S. He, Int. J. Mod. Phys. A 21, 847 (2006), arXiv:hep-lat/0508022.

[68] N. Christ and X. Feng, EPJ Web Conf. 175, 13016 (2018), arXiv:1711.09339 [hep-lat].

[69] M. T. Hansen and S. R. Sharpe, Phys. Rev. D 86, 016007 (2012), arXiv:1204.0826 [hep-lat].

[70] M. Lage, U.-G. Meissner, and A. Rusetsky, Phys. Lett. B681, 439 (2009),
arXiv:0905.0069 [hep-lat].

[71] V. Bernard, M. Lage, U. G. Meissner, and A. Rusetsky, JHEP 01, 019 (2011),
arXiv:1010.6018 [hep-lat].

[72] M. Doring, U.-G. Meissner, E. Oset, and A. Rusetsky, Eur. Phys. J. A47, 139 (2011).
S. Aoki, N. Ishii, T. Doi, T. Hatsuda, Y. Ikeda, T. Inoue, K. Murano, H. Nemura, and K. Sasaki (HAL QCD), Proc. Japan Acad. B 87, 509 (2011) [arXiv:1106.2281 [hep-lat]].

S. Beane, P. Bedaque, A. Parreno, and M. Savage, Phys. Lett. B 585, 106 (2004) [arXiv:hep-lat/0312004].

S. Sasaki and T. Yamazaki, Phys. Rev. D 74, 114507 (2006) [arXiv:hep-lat/0610081].

J. Engel and J. Menéndez, Rept. Prog. Phys. 80, 046301 (2017) [arXiv:1610.06548 [nucl-th]].

V. Cirigliano, W. Dekens, M. Graesser, and E. Mereghetti, Phys. Lett. B 769, 460 (2017) [arXiv:1701.01443 [hep-ph]].

V. Cirigliano, W. Dekens, J. de Vries, M. Graesser, and E. Mereghetti, JHEP 12, 082 (2017) [arXiv:1708.09390 [hep-ph]].

V. Cirigliano, W. Dekens, E. Mereghetti, and A. Walker-Loud, Phys. Rev. C 97, 065501 (2018) [Erratum: Phys.Rev.C 100, 019903 (2019)], arXiv:1710.01729 [hep-ph].

S. Pastore, J. Carlson, V. Cirigliano, W. Dekens, E. Mereghetti, and R. Wiringa, Phys. Rev. C 97, 014606 (2018) [arXiv:1710.05026 [nucl-th]].

V. Cirigliano, W. Dekens, J. De Vries, M. L. Graesser, E. Mereghetti, S. Pastore, and U. Van Kolck, Phys. Rev. Lett. 120, 202001 (2018) [arXiv:1802.10097 [hep-ph]].

V. Cirigliano, W. Dekens, J. de Vries, M. Graesser, and E. Mereghetti, JHEP 12, 097 (2018) [arXiv:1806.02780 [hep-ph]].

V. Cirigliano, W. Dekens, J. De Vries, M. Graesser, E. Mereghetti, S. Pastore, M. Piarulli, U. Van Kolck, and R. Wiringa, Phys. Rev. C 100, 055504 (2019) [arXiv:1907.11254 [nucl-th]].

W. Dekens, J. de Vries, K. Fuyuto, E. Mereghetti, and G. Zhou, (2020) [arXiv:2002.07182 [hep-ph]].

A. Nicholson et al., (2018) [arXiv:1805.02634 [nucl-th]].

X. Feng, L.-C. Jin, X.-Y. Tuo, and S.-C. Xia, Phys. Rev. Lett. 122, 022001 (2019) [arXiv:1809.10511 [hep-lat]].

W. Detmold and D. Murphy, PoS LATTICE2018, 262 (2019) [arXiv:1811.05554 [hep-lat]].

X.-Y. Tuo, X. Feng, and L.-C. Jin, Phys. Rev. D 100, 094511 (2019) [arXiv:1909.13525 [hep-lat]].

W. Detmold and D. Murphy (NPLQCD), (2020) [arXiv:2004.07404 [hep-lat]].
[90] B. C. Tiburzi, M. L. Wagman, F. Winter, E. Chang, Z. Davoudi, W. Detmold, K. Orginos, M. J. Savage, and P. E. Shanahan, Phys. Rev. D 96, 054505 (2017), arXiv:1702.02929 [hep-lat].

[91] P. E. Shanahan, B. C. Tiburzi, M. L. Wagman, F. Winter, E. Chang, Z. Davoudi, W. Detmold, K. Orginos, and M. J. Savage, Phys. Rev. Lett. 119, 062003 (2017), arXiv:1701.03456 [hep-lat].

[92] X. Feng and L. Jin, Phys. Rev. D 100, 094509 (2019), arXiv:1812.09817 [hep-lat].

[93] B. Ananthanarayan and B. Moussallam, JHEP 06, 047 (2004), arXiv:hep-ph/0405206.

[94] M. G. Endres, A. Shindler, B. C. Tiburzi, and A. Walker-Loud, Phys. Rev. Lett. 117, 072002 (2016), arXiv:1507.08916 [hep-lat].