The $\eta_c\gamma$ Transition Form Factor

Thorsten Feldmann

Department of Theoretical Physics, University of Wuppertal, D-42097 Wuppertal, Germany

Abstract

The $\eta_c\gamma$ transition form factor is calculated within a perturbative approach. It is shown that the Q^2 dependence of the form factor is well determined in the region where experimental data is expected in the near future.

1. Introduction

Pseudoscalar meson-photon transition form factors (see Fig. 1) at large momentum transfer Q^2 have attracted the interest of many theoreticians during the last years, stimulated by the CLEO measurements. At the upper end of the measured Q^2 range the CLEO data for the $\pi\gamma$ form factor only deviate by about 15% from the limiting value $\sqrt{2f_\pi}/Q^2$ which is predicted by QCD. The data allow for a rather precise determination of the pion’s light-cone wave function, and we find, within the modified hard scattering approach (mHSA), a value of -0.01 ± 0.1 for the expansion coefficient B_2 at the scale $\mu = 1$ GeV (see Fig. 1). The situation is more complicated for the $\eta\gamma$ and the $\eta'\gamma$ form factors due to the mixing and $SU(3)_F$ flavor symmetry breaking. A determination of the decay constants and the mixing angle from the $\eta\gamma$ and $\eta'\gamma$ transition form factors is also possible.

Figure 1: Meson-Photon transition form factors in e^+e^- collisions (left). The $\pi\gamma$ form factor: experimental data and mHSA fit (right).

There is a fourth form factor of the same type, namely the $\eta_c\gamma$ form factor which is neither experimentally nor theoretically known. Since a measurement of that form factor up to a momentum transfer of about 10 GeV2 seems feasible, a theoretical analysis and prediction of it is desirable and has been performed by us recently.

*Contribution to 11th International Workshop on Progress in Heavy Quark Physics, Rostock, September 20-22, 1997.

†Supported by Deutsche Forschungsgemeinschaft
2. The perturbative approach

In analogy to the $\pi\gamma$ case we employ a perturbative approach on the basis of a factorization of short- and long-distance physics. Observables are then described as convolutions of a perturbatively calculable hard scattering amplitude T_H and a universal (process-independent) hadronic light-cone wave function Ψ of the η_c's leading $c\bar{c}$ Fock state which embodies soft non-perturbative physics,

$$F_{\eta_c\gamma}(Q^2) = \int_0^1 dx \int \frac{d^2\vec{k}_\perp}{16\pi^3} \Psi(x, \vec{k}_\perp) T_H(x, \vec{k}_\perp, Q). \quad (1)$$

Here x is the usual meson's momentum fraction carried by the c quark, and \vec{k}_\perp denotes its transverse momentum. In the present case the mass of the charm quarks already provides a large scale, which allows the application of the perturbative approach even for zero virtuality of the probing photon, $Q^2 \to 0$; and for heavy quarks a Sudakov factor in (1) can be ignored. The hard scattering amplitude in leading order is easily calculated. With one photon being almost on-shell ($q_1^2 \approx 0$) and the virtuality of the second photon denoted as $q_2^2 = -Q^2$, this leads to (with $\bar{x} = (1-x)$)

$$T_H(x, \vec{k}_\perp, Q) = \frac{e_c^2 2\sqrt{6}}{x Q^2 + m_c^2 + x \bar{x} M_{\eta_c}^2 + \vec{k}_\perp^2} + (x \leftrightarrow \bar{x}) + O(\alpha_s) \quad (2)$$

where $M_{\eta_c} (= 2.98 \text{ GeV})$ is the mass of the η_c meson, and $m_c \simeq M_{\eta_c}/2$ is the charm quark mass. The charge of the charm quark in units of the elementary charge is denoted by e_c. For the η_c wave function,

$$\Psi(x, \vec{k}_\perp) = \frac{f_{\eta_c}}{2\sqrt{6}} \phi(x) \Sigma(\vec{k}_\perp), \quad (3)$$

we use a form adapted from Bauer, Stech and Wirbel. Here f_{η_c} is the decay constant (corresponding to $f_\pi = 131$ MeV), and $\phi(x)$ is the quark distribution amplitude which is parameterized as

$$\phi(x) = N_\phi \ x \bar{x} \ exp\left[-a^2 M_{\eta_c}^2 (x - x_0)^2\right]. \quad (4)$$

The normalization constant N_ϕ is determined from the usual requirement $\int_0^1 dx \phi(x) = 1$. The distribution amplitude (3) exhibits a pronounced maximum at x_0 and is exponentially damped in the endpoint regions. Furthermore, Σ is a Gaussian shape function which takes into account the finite transverse size of the meson,

$$\Sigma(\vec{k}_\perp) = 16\pi^2 a^2 \exp[-a^2 \vec{k}_\perp^2]. \quad (5)$$

The decay constant of the η_c meson is not accessible in a model-independent way at present. Usually, one estimates f_{η_c} in a non-relativistic approach which provides a connection between f_{η_c} and the well-determined decay constant of the J/ψ, $f_{\eta_c} \simeq f_{J/\psi} = 409$ MeV. However, the α_s corrections are large, and the relativistic corrections are usually large and model-dependent.

\[1\] Higher Fock state contributions to the $\eta_c\gamma$ form factor are suppressed by powers of α_s/m_c^2. However, higher Fock states can be important in other decays of heavy quarkonia.
The parameters entering the wave function are further constrained by the Fock state probability P_{cc}. One expects $0.8 \leq P_{cc} < 1$ for a charmonium state (for smaller values of P_{cc} one would not understand the success of non-relativistic potential models for these states). Since the perturbative contribution to the $\eta_c\gamma$ form factor only mildly depends on the value of P_{cc}, we use $P_{cc} = 0.8$ as a constraint for the transverse size parameter a. For $f_{\eta_c} = 409$ MeV this leads to a reasonable value $a = 0.97$ GeV.

The two photon decay width $\Gamma[\eta_c \to \gamma\gamma]$, the experimental value of which still suffers from large uncertainties16, can be directly related to the $\eta_c\gamma$ transition form factor at $Q^2 = 0$

$$\Gamma[\eta_c \to \gamma\gamma] = \frac{\pi a^2 M_{\eta_c}^3}{4} |F_{\eta_c\gamma}(0)|^2$$

One may use this decay rate as a normalization condition for $F_{\eta_c\gamma}(Q^2 = 0)$ and present the result in the form $F_{\eta_c\gamma}(Q^2)/F_{\eta_c\gamma}(0)$. In this way the perturbative QCD corrections at $Q^2 = 0$ to the $\eta_c\gamma$ transition form factor are automatically included, and also the uncertainties in the present knowledge of f_{η_c} do not enter our predictions.

3. Results and Conclusions

![Graph](image)

Figure 2: The predictions for $Q^2 F_{\eta_c\gamma}(Q^2)$ scaled to $\Gamma[\eta_c \to \gamma\gamma] = 6$ keV in the leading order of the perturbative approach (for $P_{q\bar{q}}=0.8$). The dashes indicate the Q^2 region where QCD corrections may alter the predictions slightly.

In Fig. 2 we present the result for the transition form factor $Q^2 F_{\eta_c\gamma}$ scaled to a partial width $\Gamma[\eta_c \to \gamma\gamma]$ of 6 keV. In order to discuss the qualitative features of our result in a rather simple fashion, one can restrict oneself to first order corrections to the collinear ($\vec{k}_\perp^2 \simeq 0$) and peaking approximation ($x \simeq x_0$), which can be expressed by the small quantity $\langle k_\perp^2 \rangle = 1/2a^2 \ll M_{\eta_c}^2$. For $Q^2 \leq M_{\eta_c}^2$ one then obtains the following approximation10

$$F_{\eta_c\gamma}(Q^2) \simeq \frac{4 e^2 f_{\eta_c}}{Q^2 + M_{\eta_c}^2 + 2 \langle \vec{k}_\perp^2 \rangle} \simeq \frac{F_{\eta_c\gamma}(0)}{1 + Q^2/(M_{\eta_c}^2 + 2 \langle \vec{k}_\perp^2 \rangle)}$$

which reveals that, to a very good approximation, the predictions for the scaled $\eta_c\gamma$ form factor are rather insensitive to the details of the wave function. Only the mean transverse momentum following from it is required, leading to an effective pole mass of $\sqrt{M_{\eta_c}^2 + 2 \langle k_\perp^2 \rangle} = 3.15$ GeV which is very close to the value of the J/ψ mass that one
would have inserted in the vector meson dominance model. The deviation from the full result amounts only to 4% at $Q^2 = 10$ GeV2, which is likely smaller than the expected experimental errors in a future measurement of the $\eta_c\gamma$ form factor. These considerations nicely illustrate that the Q^2 dependence of the $\eta_c\gamma$ form factor is well determined. The main uncertainty of the prediction resides in the normalization, i.e. the η_c decay constant or the value of the form factor at $Q^2 = 0$.

Let us briefly discuss, how α_s corrections may modify the leading order result for the $\eta_c\gamma$ form factor: One has to consider two distinct kinematic regions. First, if $Q^2 < \sim M^2_{\eta_c}$ one can neglect the evolution of the wave function, and one is left with the QCD corrections to the hard scattering amplitude T_H, which have been calculated in the peaking and collinear approximation to order α_s. For the scaled form factor the α_s corrections at Q^2 and at $Q^2 = 0$ cancel to a high degree, and even at $Q^2 = 10$ GeV2 the effect of the α_s corrections is less than 5%.

Secondly, for $Q^2 \gg M^2_{\eta_c}$ one can neglect the quark and meson masses and arrives at the same situation as for the pions. The α_s corrections to the hard scattering amplitude and the evolution of the wave function with Q^2 are known. For very large values of Q^2 the asymptotic behavior of the transition form factor is completely determined by QCD, since any meson distribution amplitude evolves into the asymptotic form $\phi(x) \to \phi_{as}(x) = 6x \bar{x}$,

$$F_{\eta_c\gamma}(Q^2) \to \frac{2e^2 f_{\eta_c}}{Q^2} \int_0^1 dx \frac{\phi(x)}{x} \to \frac{8 f_{\eta_c}}{3 Q^2} \cdot (\ln Q^2 \to \infty) \quad (8)$$

A precise measurement of the strength of the $\eta_c\gamma$ transition form factor may serve to determine the decay constant f_{η_c} (see (4)). Though attention must be paid to the fact that the obtained value of f_{η_c} is subject to large QCD corrections (about of the order 10-15% for $Q^2 \lesssim 10$ GeV2) which should be taken into account for an accurate extraction of the η_c decay constant.

1. CLEO collaboration, V. Savinov et al., (1995), hep-ex/9507005.
2. CLEO collaboration, J. Gronberg et al., (1997), hep-ex/9707031.
3. G.P. Lepage and S.J. Brodsky, Phys. Rev. D22 (1980) 2157.
4. P. Kroll and M. Raulfs, Phys. Lett. B387 (1996) 848.
5. R. Jakob, P. Kroll and M. Raulfs, J. Phys. G22 (1996) 45.
6. I.V. Musatov and A.V. Radyushkin, (1997), hep-ph/9702443.
7. J. Botts and G. Sterman, Nucl. Phys. B325 (1989) 62.
8. T. Feldmann and P. Kroll, (1997), Wuppertal Univ. WUB 97-28.
9. P. Aureneche et al., (1996), hep-ph/9601317.
10. T. Feldmann and P. Kroll, (1997), hep-ph/9709203, (to appear in Phys. Lett. B).
11. J. Bolz, P. Kroll and G.A. Schuler, Phys. Lett. B392 (1997) 198.
12. J. Bolz, P. Kroll and G.A. Schuler, (1997), hep-ph/9704378, to be published in Z. Phys. C.
13. S.J. Brodsky and M. Karliner, Phys. Rev. Lett. 78 (1997) 4682, hep-ph/9704379.
14. M. Wirbel, B. Stech and M. Bauer, Z. Phys. C29 (1985) 637.
15. R. Barbieri et al., Nucl. Phys. B154 (1979) 535.
16. Particle Data Group, R.M. Barnett et al., Phys. Rev. D54 (1996) 1.
17. M.A. Shifman and M.I. Vysotskii, Nucl. Phys. B186 (1981) 475.
18. E. Braaten, Phys. Rev. D28 (1983) 524.