Measurements of the $t\bar{t}$ production cross section at the Tevatron Run II CDF experiment using b-tagging

Henri Bachacou

Lawrence Berkeley National Laboratory
1 cyclotron road, Bldg 50B-5239
Berkeley CA 94720

Received (Day Month Year)
Revised (Day Month Year)

We present measurements of the $t\bar{t}$ production cross section in b-tagged lepton + jets events from $p\bar{p}$ collisions at 1.96 TeV using the CDF detector at Fermilab. B-jets are tagged with either a secondary vertex algorithm, or a soft lepton tagger that identifies muons from B hadron semileptonic decays. With Tevatron Run II data, we estimate the $t\bar{t}$ signal fraction in two different ways: by estimating the various background contributions, and by fitting directly the leading jet transverse energy spectrum for the signal and background contributions. A subset of the sample, with two secondary vertex tagged jets, yields a production cross section consistent with the inclusive measurements. Results are consistent with a Standard Model $t\bar{t}$ signal and current measurements of the top quark mass.

Keywords: top; CDF; Tevatron

1. Introduction

The Tevatron (Run II) collides protons and anti-protons head-on at a center-of-mass energy of 1.96 TeV. In such collisions, the Standard Model (SM) predicts a $t\bar{t}$ production cross section of $\sigma_{t\bar{t}} = 6.7^{+0.7}_{-0.5}$ pb at $m_t = 175$ GeV/c^2. Top quarks are expected to decay almost exclusively to a W boson and a b quark. When one W decays leptonically, the $t\bar{t}$ event contains a high transverse momentum lepton, missing energy from the unrecorded neutrino, and 4 high transverse momentum jets, 2 of which originate from b quarks. We use this decay channel to measure the total $t\bar{t}$ production cross section. A deviation from the predicted value would be an indication of new physics either in the production mechanism or in the top decay.

We select events with an isolated electron E_T (muon P_T) greater than 20 GeV, missing $E_T > 20$ GeV and at least 3 jets with $E_T > 15$ GeV and $|\eta| < 2.0$. Finally, we require at least one jet in the event to be identified as a heavy flavor jet, either using a secondary vertex algorithm (SECVTX), or a soft lepton tagger (SLT) that identifies muons from B hadron semileptonic decays. The analyzes using SECVTX (resp. SLT) are based on 162 pb^{-1} (resp. 194 pb^{-1}) of data. The CDF detector is described in detail elsewhere.
2 Henri Bachacou

2. Measurement with secondary vertex b-tagging.

We optimize the event selection by requiring that the total transverse energy in the event (H_T, the scalar sum of all jets E_T, lepton p_T, and missing E_T) be larger than 200 GeV. The SECVTX algorithm selects tracks within the jet with large impact parameter to reconstruct secondary vertices. Jets containing a secondary vertex more than 3σ away form the primary vertex (in the plane transverse to the beam) are identified as b-jets. After tuning the simulation on a control sample, the efficiency for tagging at least one jet in a $t\bar{t}$ event that passes all other selection requirements is $(53 \pm 4)\%$. The main sources of background are $W +$ Heavy Flavor events, $W +$ light jets events where one jet is wrongly tagged, and QCD events that fake a W signal; they are estimated with techniques that use both Monte Carlo and data control samples. We expect 13.8 ± 2.0 background events and observe 48 events in the data; we measure a cross section of $5.36 ^{+1.2} _{-1.1} (\text{stat.}) ^{+1.3} _{-1.2} (\text{syst.})\, \text{pb}$.

The sub-sample of events with at least two tagged jets contains 8 events, compared to an expected background of 0.9 ± 0.2 events, from which we measure a cross section of $5.4 \pm 2.2 (\text{stat.}) \pm 1.1 (\text{syst.})\, \text{pb}$.

3. Measurement with SECVTX using a kinematic fit.

Instead of explicitly evaluating the contribution to the sample from backgrounds, one can extract the $t\bar{t}$ fraction by fitting some kinematic variable in the data. The leading jet E_T variable was chosen for this purpose. Template shapes for the background are evaluated from the data; the template shape for $t\bar{t}$ is from Monte Carlo.
Measurements of the $t\bar{t}$ production cross section at CDF using b-tagging

The fit (Fig. 3) measures a $t\bar{t}$ fraction of $(67^{+13}_{-16})\%$, leading to a cross section of $6.0^{+1.5}_{-1.8}(\text{stat.}) \pm 0.8(\text{syst.})$ pb.

4. Measurement with soft muon b-tagging.

The muon SLT algorithm matches tracks in the central drift chamber with segments in the muon chambers. It uses a global χ^2 built from the matching distributions, to define a pseudo-likelihood variable, L, that separates muon candidates from background. A jet is considered "tagged" if it contains an SLT muon with $P_T > 3$ GeV/c, with $L < 3.5$ and within $\Delta R < 0.6$ of the jet axis. Efficiency and fake rate are measured on control samples. Backgrounds are estimated with techniques similar to Sec. 2. We expect 11.6 ± 1.5 background events, and observe 20, and we measure a cross section of $4.2^{+2.9}_{-1.9}(\text{stat.}) \pm 1.4(\text{syst.})$ pb. Fig. 4 shows the jet multiplicity of the candidates compared to the expected background.

References

1. M. Cacciari, et al., JHEP 404, 68 (2004).
2. F. Abe, et al., Nucl. Instrum. Methods Phys. Res. A 271, 387 (1988); D. Amidei, et al., Nucl. Instrum. Methods Phys. Res. A 350, 73 (1994); F. Abe, et al., Phys. Rev. D 52, 4784 (1995); P. Azzi, et al., Nucl. Instrum. Methods Phys. Res. A 360, 137 (1995); The CDFII Detector Technical Design Report, Fermilab-Pub-96/390-E