A SIMPLE SEPARABLE C*-ALGEBRA NOT ISOMORPHIC TO ITS OPPOSITE ALGEBRA

N. CHRISTOPHER PHILLIPS

Abstract. We give an example of a simple separable C*-algebra which is not isomorphic to its opposite algebra. Our example is nonnuclear and stably finite, has real rank zero and stable rank one, and has a unique tracial state. It has trivial K_1, and its K_0-group is order isomorphic to a countable subgroup of \mathbb{R}.

0. Introduction

The purpose of this note is to give an example of a simple separable C*-algebra which is not isomorphic to its opposite algebra. By the opposite algebra A^{op} of a C*-algebra A, we mean the algebra A with the multiplication reversed but all other operations, including the scalar multiplication, the same. (The opposite algebra is isomorphic to the complex conjugate algebra, via the map $x \mapsto x^*$.) The existence of type I C*-algebras not isomorphic to their opposites has been known for some time; early examples are due to Raeburn and P. Green, and several examples with additional interesting properties are given in [13]. It has been known for some time that there are von Neumann factors, with separable preduals, of type II$_1$ [4] and type III [3] which are not isomorphic as von Neumann algebras to their opposites. A C*-algebra isomorphism of von Neumann algebras is necessarily a von Neumann algebra isomorphism, by Corollary 5.13 of [16], so these are simple C*-algebras not isomorphic to their opposite algebras. However, one wants separable examples.

We construct our example by applying a method of Blackadar [1] to the type II$_1$ factor of Corollary 7 of [4]. The resulting C*-algebra is nonnuclear and stably finite, has real rank zero [2] and stable rank one [15], and has a unique tracial state. It has trivial K_1, and its K_0-group is order isomorphic to a countable subgroup of \mathbb{R}. However, we have little control over other properties. In particular, we can’t specify which subgroups of \mathbb{R} occur, although we can show that there are uncountably many of them.

The recent work on classification of simple nuclear C*-algebras, for example [12] and [2] in the purely infinite case and [3] and [4] in the stably finite case, suggests that all simple nuclear C*-algebras might be isomorphic to their opposites. The algebras A and A^{op} always have the same Elliott invariant, and the nonisomorphism $A \not\cong A^{\text{op}}$ in our example shows one way in which the Elliott conjecture goes wrong when the nuclearity condition is dropped. Other examples of nonisomorphic simple separable nonnuclear C*-algebras with the same Elliott invariant are known. The algebras have been distinguished by the Haagerup invariant [14];
proof of Theorem 4.3.8 of \cite{[12]}, which finite dimensional operator spaces can be embedded in the algebra (\cite{[14]}; proof of Theorem 4.3.11 of \cite{[12]}), quasidiagonality (\cite{[7], [14]}), approximate divisibility (Theorem 1.4 of \cite{[5]}; also see Remark 4.3.2 of \cite{[12]}), and tensor indecomposability of an associated von Neumann algebra (\cite{[7]}). None of these methods is capable of distinguishing a C*-algebra from its opposite algebra.

1. Blackadar’s result and some analogs

A key ingredient of our construction is the following result of Blackadar, Proposition 2.2 of \cite{[1]}.

\textbf{Lemma 1.1.} Let N be a simple C*-algebra, and let $A \subset N$ be a separable C* subalgebra. Then there exists a simple separable C* subalgebra B with $A \subset B \subset N$.

To obtain the other properties necessary for our construction, we need to know that it is possible to find separable intermediate subalgebras preserving other properties from the large algebra. To just prove the existence of a separable simple C*-algebra not isomorphic to its opposite, we only need the next lemma, on traces. The remaining lemmas will be used to show that the algebra can be chosen to have additional good properties. Some are already implicit in previous work.

\textbf{Lemma 1.2.} Let N be a unital C*-algebra, and let $A \subset N$ be a separable C* subalgebra. Then there exists a separable C* subalgebra B with $A \subset B \subset N$ such that every tracial state on B is the restriction of a tracial state on N.

\textit{Proof:} For any C*-algebra D, let $[D, D]$ denote the linear span of the commutators $[a, b] = ab - ba$ with $a, b \in D$. Also, we let, for any $d \in D$ and $S \subset D$,

$$\text{dist}(d, S) = \inf \{\|d - x\| : x \in S\}.$$

Without loss of generality A contains the identity of N. We construct inductively separable C* subalgebras $B_n \subset N$ such that:

- $B_0 = A$.
- $B_0 \subset B_1 \subset B_2 \subset \cdots$.
- For every $b \in B_n$, we have $\text{dist}(b, [B_{n+1}, B_{n+1}]) = \text{dist}(b, [N, N])$.

We do the induction step; the base case is the same. Given B_n, choose a countable dense subset $S \subset B_n$. For $b \in S$ and $m \in \mathbb{N}$, choose $l(b, m) \in \mathbb{N}$ and $y_{b, m, 1}, y_{b, m, 2}, \ldots, y_{b, m, l(b, m)}, z_{b, m, 1}, z_{b, m, 2}, \ldots, z_{b, m, l(b, m)} \in N$ such that

$$\left\| b - \sum_{j=1}^{l(b, m)} [y_{b, m, j}, z_{b, m, j}] \right\| < \frac{1}{m} + \text{dist}(b, [N, N]).$$

Take B_{n+1} to be the separable C* subalgebra of N generated by B_n and the countable set

$$\{y_{b, m, j}, z_{b, m, j} : b \in S, m \in \mathbb{N}, 1 \leq j \leq l(b, m)\}.$$

For $c \in B_n$ and $\varepsilon > 0$, choose $b \in S$ with $\|c - b\| < \frac{1}{3}\varepsilon$, choose $m \in \mathbb{N}$ with $\frac{1}{m} < \frac{1}{3}\varepsilon$, and set

$$s = \sum_{j=1}^{l(b, m)} [y_{b, m, j}, z_{b, m, j}] \in [B_{n+1}, B_{n+1}].$$
Then \(\text{dist}(c, [N, N]) < \frac{1}{n} \epsilon + \text{dist}(b, [N, N]) \), whence
\[
\|c - s\| \leq \|c - b\| + \|b - s\| < \frac{1}{n} \epsilon + \frac{1}{m} + \text{dist}(b, [N, N]) < \epsilon + \text{dist}(c, [N, N]).
\]
Since \(\epsilon > 0 \) is arbitrary, this gives
\[
\text{dist}(c, [B_{n+1}, B_{n+1}]) \leq \text{dist}(c, [N, N]),
\]
which completes the induction step.

Now set
\[
B = \bigcup_{n=0}^{\infty} B_n.
\]
It is clear that for every \(b \in \bigcup_{n=0}^{\infty} B_n \),
\[
\text{dist}(b, [B, B]) = \text{dist}(b, [N, N]),
\]
and equality easily follows for all \(b \in B \). It is now immediate that
\[
\text{dist}(b, [B, B]) = \text{dist}(b, [N, N])
\]
for all \(b \in B \). This implies that the inclusion of \(B \) in \(N \) defines an isometric linear map
\[
T: B/[B, B] \to N/[N, N].
\]

Let \(\tau: B \to \mathbb{C} \) be any tracial state. We construct a tracial state \(\sigma \) on \(N \) such that \(\sigma|_B = \tau \). By continuity and the trace property, \(\tau \) induces a linear functional \(\tau: B/[B, B] \to \mathbb{C} \) with \(\|\tau\| = 1 \). The Hahn-Banach Theorem provides a linear functional \(\omega: N/[N, N] \to \mathbb{C} \) such that \(\omega \circ T = \tau \) and \(\|\omega\| = 1 \). Let \(\sigma: N \to \mathbb{C} \) be the composition of \(\omega \) with the quotient map \(N \to N/[N, N] \). Then \(\sigma|_B = \tau \), and in particular \(\sigma(1) = 1 \). Since \(\|\sigma\| = 1 \), it follows that \(\sigma \) is a state. Moreover, \(\sigma \) is a trace because it vanishes on \([N, N]\). So \(\sigma \) is the required tracial state.

Lemma 1.3. Let \(N \) be a unital \(C^\ast \)-algebra, and let \(A \subset N \) be a separable \(C^\ast \) subalgebra. Then there exists a separable \(C^\ast \) subalgebra \(B \) with \(A \subset B \subset N \) such that \(\text{tsr}(A) \leq \text{tsr}(N) \).

Proof: Without loss of generality \(A \) contains the identity of \(N \). Following Definition 1.4 and Proposition 1.6 of [15], we let \(r = \text{tsr}(N) \) and we construct \(B \) in such a way that the space \(\text{Lg}_r(B) \subset B^r \) (Notation 1.3 of [15]), consisting of all \(b = (b_1, b_2, \ldots, b_r) \in B^n \) such that \(\{b_1, b_2, \ldots, b_r\} \) generates \(B \) as a left ideal, is dense in \(B^r \).

We construct inductively separable \(C^\ast \) subalgebras \(B_n \subset N \) such that:
- \(B_0 = A \).
- \(B_0 \subset B_1 \subset B_2 \subset \cdots \).
- \(B_n^r \subset \text{Lg}_n(B_{n+1}) \) for all \(n \).

We do the induction step; the base case is the same. Choose a suitable norm on \(N^r \). Let \(S \) be a countable dense subset of \(B_n^r \). For each \(b \in S \) and \(m \in \mathbb{N} \), use \(\text{tsr}(N) = r \) to choose
\[
x_{b, m} = (x_{b, m, 1}, x_{b, m, 2}, \ldots, x_{b, m, r}) \in \text{Lg}_r(N)
\]
such that \(\|x_{b, m} - b\| < 1/m \). By definition, there are
\[
y_{b, m, 1}, y_{b, m, 2}, \ldots, y_{b, m, r} \in N
\]
such that
\[
y_{b, m, 1}x_{b, m, 1} + y_{b, m, 2}x_{b, m, 2} + \cdots + y_{b, m, r}x_{b, m, r} = 1.
\]
Take B_{n+1} to be the separable C*-subalgebra of N generated by B_n and the countable set

$$\{x_{b,m,j}, y_{b,m,j} : b \in S, m \in \mathbb{N}, \text{ and } 1 \leq j \leq r\}.$$

Clearly each $x_{b,m}$ is in $Lg_r(B_{n+1})$, so the induction step is complete.

Now set

$$B = \bigcup_{n=0}^{\infty} B_n.$$

We have

$$B^r = \bigcup_{n=1}^{\infty} B^r_{n-1} \subset \bigcup_{n=1}^{\infty} Lg_r(B_n) \subset Lg_r(B),$$

whence $\text{tsr}(B) \leq r$.

Lemma 1.4. Let N be a C*-algebra, and let $A \subset N$ be a separable C*-subalgebra. Then there exists a separable C*-subalgebra B with $A \subset B \subset N$ such that $\text{RR}(A) \leq \text{RR}(N)$.

Proof: The proof is the same as for Lemma 1. Let \mathcal{B} be a separable C*-algebra. Following Lemma 1, we simply adjust the indexing and consider only $Lg_{r+1}(B) \cap (B_m)_{r+1}^+$, etc.

Lemma 1.5. Let N be a C*-algebra, and let $A \subset N$ be a separable C*-subalgebra. Then there exists a separable C*-subalgebra B with $A \subset B \subset N$ such that the map $K_0(B) \to K_0(N)$ is injective and induces an order isomorphism of $K_0(B)$ with a subgroup of $K_0(N)$.

Proof: Unitizing, we may assume that N is unital and A contains the identity of N.

If D is a unital C*-algebra, we write $u \sim_D v$ for unitaries u, v in some matrix algebra $M_m(D)$ which are homotopic in the unitary group $U(M_m(D))$. We also write $p \sim_D q$ for projections $p, q \in M_m(D)$ which are Murray-von Neumann equivalent in $M_m(D)$, and $p \precsim_D q$ if p is Murray-von Neumann equivalent to a subprojection of q in $M_m(D)$. Finally, we write 1_m for the identity of $M_m(D)$.

We construct inductively separable C*-subalgebras $B_n \subset N$ such that:

- $B_0 = A$.
- $B_0 \subset B_1 \subset B_2 \subset \cdots$.
- For $m \in \mathbb{N}$ and $u \in U(M_m(B_n))$, if $u \sim_N 1_m$ then $u \sim_{B_{n+1}} 1_m$.
- For $m \in \mathbb{N}$ and projections $p, q \in M_m(B_n)$, if $p \sim_N q$ then $p \sim_{B_{n+1}} q$.
- For $m \in \mathbb{N}$ and projections $p, q \in M_m(B_n)$, if $p \precsim_N q$ then $p \precsim_{B_{n+1}} q$.

We do the induction step; the base case is the same. Thus, suppose that B_n has been found. Since two unitaries u and v with $\|u - v\| < 2$ are homotopic, and since B_n is separable, for each m there are only countably many homotopy classes $[u]$ of unitaries $u \in M_m(B_n)$. Let S_0 be the set of all pairs $(m, [u])$ with $m \in \mathbb{N}$ and $u \in U(M_m(B_n))$ such that $u \sim_N 1_m$. Then S_0 is countable. For each $(m, [u]) \in S_0$, choose a unitary path $t \mapsto w(t)$ in $M_m(N)$ with $w_0 = u$ and $w_1 = 1$, choose $0 = t_0 < t_1 < \cdots < t_k = 1$ such that $\|w(t_j) - w(t_{j-1})\| < 2$ for $1 \leq j \leq k$, and let $T_0^{(m,[u])}$ be the subset of N consisting of all matrix entries of all $w(t_j)$. Then let T_0 be the countable set

$$T_0 = \bigcup_{(m,[u]) \in S_0} T_0^{(m,[u])}.$$
It is easy to see from the transitivity of homotopy that whenever \(u \in U(M_m(B_n)) \) satisfies \(u \sim_N 1_m \), then also \(u \sim_D 1_m \) for any C*-algebra \(D \) containing \(B_n \) and \(T_0 \).

Since projections \(p \) and \(q \) with \(\|p - q\| < 1 \) are Murray-von Neumann equivalent, each \(M_m(B_n) \) contains only countably many Murray-von Neumann equivalence classes of projections. A similar construction produces a countable subset \(T_1 \subset N \) such that whenever \(p, q \in M_m(B_n) \) are projections which are Murray-von Neumann equivalent in \(M_r(N) \) but not in \(M_m(B_n) \), then there exist projections \(p_0, q_0 \in M_m(B_n) \) and a matrix \(s \in M_m(N) \) such that \(p_0 \sim_{B_m} p \) and \(q_0 \sim_{B_m} q \), such that all the entries of \(s \) are in \(T_1 \), and such that \(s^*s = p_0 \) and \(ss^* = q_0 \). It follows that whenever projections \(p, q \in M_m(B_n) \) satisfy \(p \sim_N q \), then \(p \sim_D q \) for any C*-algebra \(D \) containing \(B_n \) and \(T_1 \). By essentially the same method, one can construct a countable subset \(T_2 \subset N \) such that whenever \(D \) is a C*-algebra containing \(B_n \) and \(T_0 \), and whenever \(p, q \in M_m(B_n) \) are projections such that \(p \preceq_N q \), then \(p \preceq_D q \).

The induction step is now completed by taking \(B_{n+1} \) to be the C* subalgebra of \(N \) generated by \(B_n \cup T_0 \cup T_1 \cup T_2 \).

Now set \(B = \bigcup_{n=0}^{\infty} B_n \).

For every \(m \) and every \(u \in U(M_m(B)) \) such that \(u \sim_N 1_m \), there is \(n \) and \(v \in U(M_m(B_n)) \) such that \(v \sim_B u \). So \(v \sim_{B_{n+1}} 1_m \), whence \(u \sim_B 1_m \). This implies that \(K_1(B) \to K_1(N) \) is injective. By a similar argument, for every \(m \) and for any two projections \(p, q \in M_m(B_n) \) such that \(p \sim_N q \), we have \(p \sim_B q \). Therefore \(K_0(B) \to K_0(N) \) is injective. It remains to prove that \(K_0(B) \to K_0(N) \) is an order isomorphism onto its image. Since this map preserves order, we need only show that if \(\eta \in K_0(B) \) is a class whose image in \(K_0(N) \) is positive, then \(\eta > 0 \). So let \(p, q \) be projections in matrix algebras over \(B \) such that \(\eta = [q] - [p] \), and let \(e \) be a projection in some matrix algebra over \(N \) such that \([q] - [p] = [e] \) in \(K_0(N) \). Without loss of generality there is \(n \) such that \(p \) and \(q \) are in matrix algebras over \(B_n \). Replacing \(p \) and \(q \) by \(p \oplus 1_r \) and \(q \oplus 1_r \) (which are still in matrix algebras over \(B_n \)) for suitable \(r \), we may assume that in a suitable matrix algebra \(M_m(N) \), we can write \(q = p_0 + c_0 \) with \(p_0 \sim_N p \) and \(c_0 \sim_N e \). In particular, \(p \preceq_N q \). By construction \(p \preceq_{B_{n+1}} q \), whence \(p \preceq_B q \). It follows that \(\eta = [q] - [p] > 0 \) in \(K_0(B) \).

2. The main result

Our main result will follow from the following proposition, using a suitable choice of the type II\(_1\) factor.

Proposition 2.1. Let \(N \) be a type II\(_1\) factor with separable predual and with trace \(\tau \). Let \(G_0 \) be a countable subgroup of \(K_0(N) \), which we identify with \(\mathbb{R} \) via \(\tau \). Then there exists a simple separable unital weak operator dense C*-subalgebra \(A \subset N \) such that \(\text{tsr}(A) = 1 \), \(RR(A) = 0 \), \(K_1(A) = 0 \), the map \(K_0(A) \to K_0(N) \) induces an order isomorphism of \(K_0(A) \) with a subgroup of \(K_0(N) \) containing \(G_0 \), and \(A \) has as unique tracial state the restriction \(\tau|_A \).

Proof: Let \(S \subset N \) be a countable subset which is weak operator dense in \(N \). For each \(g \in G_0 \) with \(g > 0 \), choose an integer \(m(g) > 0 \) and a projection \(p_g \in M_{m(g)}(N) \) such that \(\tau(p_g) = g \). Let \(P \subset N \) be the unital C*-subalgebra of \(N \) generated by \(S \) and all the matrix entries of all \(p_g \) for \(g \in G_0 \cap (0, \infty) \). Then \(P \) is separable and the image of the map \(K_0(P) \to K_0(N) \) contains \(G_0 \).
We now construct by induction on \(n \) separable subalgebras \(A_n, B_n, C_n, D_n, \) and \(E_n \) with
\[
P \subset A_0 \subset B_0 \subset C_0 \subset D_0 \subset E_0 \subset \cdots \subset A_n \subset B_n \subset C_n \subset D_n \subset E_n \subset \cdots
\]
and such that, for all \(n \), we have:
- \(A_n \) is simple.
- \(B_n \) has as unique tracial state the restriction \(\tau|_{A_n} \).
- \(\text{tsr}(C_n) = 1 \).
- \(\text{RR}(D_n) = 0 \).
- The map \(K_0(E_n) \to K_0(N) \) is an order isomorphism onto its image and the map \(K_1(E_n) \to K_1(N) \) is injective.

The base case is the same as the induction step, using \(P \) in place of \(E_n \), so we do only the induction step. Suppose the subalgebras have been constructed through \(E_n \). Use Lemma 1.1 to choose a simple separable C* subalgebra \(A_{n+1} \) with \(A_n \subset A_{n+1} \subset N \). Use Lemma 1.2 to choose a separable C* subalgebra \(B_{n+1} \) with \(A_{n+1} \subset B_{n+1} \subset N \) such that every tracial state on \(B_{n+1} \) is the restriction of a tracial state on \(N \). The invertible elements in \(N \) are dense, since in the polar decomposition \(x = s(a^*a)^{1/2} \) of any \(x \in N \) we can first replace the partial isometry by a unitary and then, with an error of \(\varepsilon \), replace \((a^*a)^{1/2} \) by \((a^*a)^{1/2} + \varepsilon \cdot 1 \). So we can use Lemma 1.3 to choose a separable C* subalgebra \(C_{n+1} \) with \(B_{n+1} \subset C_{n+1} \subset N \) such that \(\text{tsr}(C_{n+1}) = 1 \). Use Lemma 1.4 and \(\text{RR}(N) = 0 \) to choose a separable C* subalgebra \(D_{n+1} \) with \(C_{n+1} \subset D_{n+1} \subset N \) such that \(\text{RR}(D_{n+1}) = 0 \). Use Lemma 1.5 to choose a separable C* subalgebra \(E_{n+1} \) with \(D_{n+1} \subset E_{n+1} \subset N \) such that the map \(K_1(E_{n+1}) \to K_1(N) \) is injective and such that the map \(K_0(E_{n+1}) \to K_0(N) \) induces an order isomorphism onto its image.

Now set
\[
A = \bigcup_{n=0}^{\infty} A_n = \bigcup_{n=0}^{\infty} B_n = \bigcup_{n=0}^{\infty} C_n = \bigcup_{n=0}^{\infty} D_n = \bigcup_{n=0}^{\infty} E_n.
\]
We verify that \(A \) has the required properties. Obviously \(A \) is separable. The algebra \(A \) is weak operator dense in \(N \) because it contains \(S \). From \(A = \bigcup_{n=0}^{\infty} A_n \) and simplicity of the \(A_n \), a standard argument shows that \(A \) is simple. Any trace \(\tau_0 \) on \(A \) must restrict to a trace on each \(B_n \), necessarily \(\tau|_{B_n} \). Since \(\bigcup_{n=0}^{\infty} B_n \) is dense in \(A \), it follows that \(\tau_0 = \tau|_{A} \). On the other hand, clearly \(\tau|_{A} \) is a trace on \(A \). We have \(\text{tsr}(A) = 1 \) by Theorem 5.1 of [13], because \(A = \lim C_n \) and \(\text{tsr}(C_n) = 1 \) for all \(n \). It is clear that \(\text{RR}(A) = 0 \), because \(A = \lim D_n \) and \(\text{RR}(D_n) = 0 \) for all \(n \).

Finally, using the relation \(A = \lim E_n \), a slightly easier version of the argument of the last paragraph of the proof of Lemma 1.7 shows that the map \(K_1(A) \to K_1(N) \) is injective and the map \(K_0(A) \to K_0(N) \) is an order isomorphism onto its image. Since \(K_1(N) = 0 \), this immediately gives \(K_1(A) = 0 \). Moreover, since \(P \subset A \) it follows that \(G_0 \) is contained in the image of \(K_0(A) \).

Theorem 2.2. Let \(G_0 \) be a countable subgroup of \(R \). Then there exists a simple separable stably finite unital C* subalgebra \(A \) with \(A \not= A^{\text{op}} \) and such that \(A \) has stable rank one and real rank zero, \(K_1(A) = 0 \), the group \(K_0(A) \) is isomorphic as a scaled ordered group to a countable subgroup of \(R \) containing \(G_0 \), and \(A \) has a unique tracial state.

Proof: Let \(N \) be the type II \(\Pi_1 \) factor of Corollary 7 of [13], which is not isomorphic as a von Neumann algebra to \(N^{\text{op}} \). Apply Proposition 2.1 with this \(N \) and with...
G₀ as in the hypotheses, and let A be the resulting C*-algebra. The only property
that is not immediate is the nonisomorphism A ≠ A^{op}.

Suppose that there is an isomorphism φ: A → A^{op}. Let τ₀ be the unique trace
on A, and let τ₀^{op} be τ₀ regarded as a trace on A^{op}. Let π and π^{op} be the Gelfand-
Naimark-Segal representations of A and A^{op} associated with τ₀ and τ₀^{op}. Then
τ₀ = π₀^{op} o φ by uniqueness of the traces, whence π is unitarily equivalent to π^{op} o φ.
It follows that π^{op}(A^{op})'' is isomorphic as a von Neumann algebra to π(A)''

We claim that π(A)'' ≅ N. Let τ be the trace on N, and note that Proposition 2.3
gives τ|ₐ = τ₀. We may assume that N is represented in the canonical way on the
Hilbert space L²(N, τ); this is just the Gelfand-Naimark-Segal representation of N
associated with τ. All we need to know about it is contained in Proposition III.3.12
of [4]. The Hilbert space Hₜ of the representation π is by construction a subspace
of L²(N, τ). We show below that the C*-algebra A is dense in N in the norm
∥a∥₂ = τ(a^* a)^{1/2} associated with L²(N, τ). Since A is contained in Hₜ, it follows
that Hₜ = L²(N, τ). Therefore, using weak operator density of A in N, we get
π(A)'' = N, proving the claim.

To prove the density statement, let x ∈ N. Write x = a + ib with a, b ∈ N_{sa}.
Using the Kaplansky Density Theorem, Theorem 2.3.3 of [4], and the fact that
the strong operator topology is metrizable on bounded sets when the predual is
separable, find bounded sequences (aₙ) and (bₙ) in A_{sa} such that aₙ → a and
bₙ → b in the strong operator topology. Set xₙ = aₙ + ibₙ ∈ A. Then xₙ → x
and xₙ^{*} → x^{*} in the strong operator topology. Since multiplication is jointly strong
operator continuous on bounded sets, it follows that (xₙ − x)^* (xₙ − x) → 0 in the
strong operator topology. The trace τ is strong operator continuous, so ∥xₙ − x∥₂
= τ((xₙ − x)^* (xₙ − x)) → 0. This proves density.

Similarly π^{op}(A^{op})'' ≅ N^{op}. But now we have contradicted the property N ≠
N^{op}. □

3. Consequences and open problems

Recall that any real C*-algebra B has a complexification B_C = B ⊗_R C, which
is a complex C*-algebra with a conjugate linear automorphism a ⊗ ζ → a ⊗ ζ. (We refer to Part II of [8]
for the general theory of real C*-algebras.) In particular, B_C^{op} ≅ B_C. Therefore we obtain the following corollary.

Corollary 3.1. There exists a simple separable stably finite unital C* subalgebra
A which is not isomorphic to the complexification of any real C*-algebra.

Remark 3.2. The algebras in Theorem 2.4 are not nuclear, because they are weak
operator dense in a factor N which is not hyperfinite. One can certainly force them
to be nonexact, and it seems unlikely that the construction can be made to produce
exact C*-algebras.

Remark 3.3. Theorem 2.4 produces uncountably many mutually nonisomorphic
examples, because no countable union of countable subgroups of R can contain all
countable subgroups of R.

We close by giving several open problems.

Problem 3.4. Let F be a simple unital AF algebra. Find a simple separable stably
finite unital C* subalgebra A with A ≠ A^{op} and such that tsr(A) = 1, RR(A) = 0,
and A has the same Elliott invariant as F.
As far as we can tell, the methods of [14] will not work, because there is no reason to think the property $A \not\sim A^\text{op}$ is preserved through the steps of the construction there.

Problem 3.5. Find a more natural example of a simple separable C*-algebra A with $A \not\sim A^\text{op}$.

The obvious approach is to try a C*-algebraic version of the constructions of [3] or [4], both of which involve crossed products.

Problem 3.6. Is there a purely infinite simple separable C*-algebra A such that $A \not\sim A^\text{op}$?

The methods here don’t seem to apply to the infinite case. One might hope that a C*-algebraic version of the construction of [3] could produce such an example.

Problem 3.7. Is there a separable exact C*-algebra A such that $A \not\sim A^\text{op}$?

REFERENCES

[1] B. Blackadar, *Weak expectations and nuclear C*-algebras*, Indiana Univ. Math. J. **27** (1978), 1021–1026.

[2] L. G. Brown and G. K. Pedersen, *C*-algebras of real rank zero, *J. Funct. Anal.** **99** (1991), 131–149.

[3] A. Connes, *A factor not anti-isomorphic to itself*, Ann. of Math. **101** (1975), 536–554.

[4] A. Connes, *Sur la classification des facteurs de type II*, C. R. Acad. Sci. Paris Ser. A **281** (1975), 13–15.

[5] K. J. Dykema and M. Rørdam, *Purely infinite simple C*-algebras arising from free product constructions*, Canad. J. Math. **50** (1998), 323–341.

[6] G. A. Elliott, G. Gong, and L. Li, *On the classification of simple inductive limit C*-algebras, II: The isomorphism theorem*, preprint.

[7] L. Ge and N. C. Phillips, *Nonisomorphic simple exact C*-algebras with the same Elliott and Haagerup invariants*, preprint.

[8] K. R. Goodearl, *Notes on Real and Complex C*-Algebras*, Shiva Publishing Ltd., Nantwich, 1982.

[9] E. Kirchberg, *The classification of purely infinite C*-algebras using Kasparov’s theory*, preliminary preprint (3rd draft).

[10] H. Lin, *Classification of simple C*-algebras with tracial topological rank zero*, preprint.

[11] G. K. Pedersen, *C*-Algebras and their Automorphism Groups*, Academic Press, London, New York, San Francisco, 1979.

[12] N. C. Phillips, *A classification theorem for nuclear purely infinite simple C*-algebras*, Doc. Math. **5**(2000), 49–114 (electronic).

[13] N. C. Phillips, *Continuous-trace C*-algebras not isomorphic to their opposite algebras*, International J. Math. **12**(2001), 263–275.

[14] N. C. Phillips, *Examples of nonisomorphic nonnuclear simple stably finite C*-algebras with the same Elliott invariants*, in preparation.

[15] M. A. Rieffel, *Dimension and stable rank in the K-theory of C*-algebras*, Proc. London Math. Soc. Ser. 3 **46** (1983), 301–333.

[16] Ş. Strătilă and L. Zsidó, *Lectures on von Neumann algebras*, translated from the Romanian by S. Telean, Editura Academiei, Bucharest and Abacus Press, Tunbridge Wells, 1979.

[17] M. Takesaki, *Theory of Operator Algebras I*, Springer-Verlag, New York, Heidelberg, Berlin, 1979.