Translation regulation in the spinal dorsal horn – A key mechanism for development of chronic pain

Shannon N. Tansleya,b, Calvin Wonga, Sonali Uttama, Jeffrey S. Mogila,b,c, and Arkady Khoutorskya,c,*

aDepartment of Anesthesia, McGill University, Montréal, QC H3A 0G1, Canada
bDepartment of Psychology, McGill University, Montréal, QC H3A 1B1, Canada
cAlan Edwards Centre for Research on Pain, McGill University, Montréal, QC H3A 0G1, Canada

Abstract

Chronic pain is a pathological condition characterized by long-lasting pain after damaged tissue has healed. Chronic pain can be caused and maintained by changes in various components of the pain pathway, including sensory neurons, spinal cord and higher brain centers. Exaggerated sensitivity and responsiveness of spinal nociceptive circuits, representing maladaptive plasticity, play key roles in the amplification of peripheral signals in chronic pain conditions. This spinal amplification mechanism profoundly contributes to the development and maintenance of chronic pain hypersensitivity in response to peripheral injury, and in some cases occurs independently of the peripheral stimulus. Long-lasting changes in the activity of spinal neurons are caused by alterations in their cellular proteome, which relies on \textit{de novo} gene expression. Recent evidence indicates that translational control of gene expression plays a major role in determining protein levels, and is intricately involved in different forms of intrinsic and synaptic plasticity. In this review, we summarize findings supporting a key role for translational control in spinal cord-dependent mechanisms of chronic pain, and present recent approaches to reverse persistent pain by targeting these mechanisms.

Introduction

Peripheral injury causes acute pain, which is essential for an organism’s survival by ensuring quick withdrawal from harmful or potentially harmful stimuli. Under most circumstances, pain resolves shortly after damaged tissue heals. However, in some cases, the pain does not subside and persists after full tissue recovery. This type of pain, called chronic pain, does not serve any protective function and is likely driven by pathological changes that can arise in different components of the pain pathway. Long-lasting sensitization of primary sensory neurons and spinal nociceptive circuits, and plastic changes in brain regions, have all been associated with enhanced transmission and sensation of pain. In this review, we will focus...
on the spinal cord dorsal horn, which integrates inputs from peripheral and descending pathways to generate an output that is transmitted up to the brain. First, we will briefly describe the mechanisms underlying the sensitization of spinal pain circuits, and then present evidence for the role of translational control in the regulation of these processes.

Mechanisms underlying sensitization of spinal nociceptive circuits

In chronic pain conditions, repeated or intense noxious stimuli lead to maladaptive plastic changes along the pain pathway, including a sensitization of spinal nociceptive circuits, a phenomenon known as central sensitization (Woolf, 2011). Central sensitization is considered to be a key mechanism underlying the development of persistent hypersensitivity states (Latremoliere and Woolf, 2009). Alterations in several cellular processes can contribute to central sensitization, including enhanced postsynaptic response of spinal neurons to neuro-transmitter release from primary afferents (Ikeda et al., 2003, 2004), reduced inhibitory tone as a result of decreased excitability of spinal inhibitory interneurons (Guo and Hu, 2014; Torsney and MacDermott, 2006), and inefficient GABAergic and glycinergic neurotransmission (Coull et al., 2003), as well as modulation of descending pathways (Ossipov et al., 2014). An imbalance of excitatory versus inhibitory activity in central sensitization leads to enhanced excitability of spinal nociceptive circuitry, which causes an amplification of the peripheral signal. Central sensitization results in a reduced pain threshold (allodynia), an increase in the perceptual response to noxious stimuli (hyperalgesia), and a recruitment of peripheral inputs from non-injured areas, causing an expansion of the receptive field (secondary hyper-algesia).

Translational control of neuronal plasticity

Long-lasting modulation of intrinsic excitability and synaptic functions relies on new gene expression. Gene expression can be modulated at different steps: transcription, mRNA translation, mRNA and protein stability, and post-translational modifications of protein. Translational control allows for the modulation of the cellular proteome by regulating the efficiency by which mRNA is translated into proteins. It provides neurons with a mechanism to quickly and locally respond to intracellular stimuli and extracellular cues by modifying their cellular or synaptic proteome.

Translational control mechanisms

mRNA translation can be divided into three stages: initiation, elongation and termination. Initiation is the rate limiting step for translation and therefore is tightly regulated by several mechanisms (Sonenberg and Hinnebusch, 2009). At their 5′ end, all nuclear transcribed eukaryotic mRNAs contain a structure called 7 methylguanosine triphosphate (m7Gppp), termed the “cap”. This structure facilitates ribosome recruitment to the mRNA (Fig. 1). The 3′ end of the mRNA contains a poly(A) tail that protects mRNA from degradation, and binds poly(A)-binding protein (PABP). The mechanisms regulating translation initiation can be divided into two major categories: (1) regulation of the recruitment of the ribosome to the cap at the 5′ end of mRNA (via phosphorylation of translation initiation factors such as 4E-BPs, eIF4E and eIF2a), and (2) regulation of translation at the 3′ end of mRNA via controlling the length of the poly(A) tail (e.g. by CPEB).
Ribosome recruitment requires a group of translation initiation factors, termed eIF4 (eukaryotic initiation factor 4). A critical member of this group is eIF4F, which is a three-subunit complex (Edery et al., 1983; Grifo et al., 1983) composed of (1) eIF4A (an RNA helicase), (2) eIF4E, which specifically interacts with the cap structure (Sonenberg et al., 1979) and (3) eIF4G, a large scaffolding protein that binds to both eIF4E and eIF4A. eIF4G serves as a modular scaffold that assembles the protein machinery to direct the ribosome to the mRNA (Fig. 1). eIF4E generally exhibits the lowest level of expression of all eukaryotic initiation factors. It plays a central role in cap-recognition, and due to its low levels of expression, it is considered the rate-limiting step for translation, and a major target for regulation. The assembly of eIF4F is promoted by the mechanistic target of rapamycin complex 1 (mTORC1), which phosphorylates and thereby inactivates translational repressors, the eIF4E-binding proteins (4E-BP1, 4E-BP2 and 4E-BP3). 4E-BPs repress the formation of the eIF4F complex by competing with eIF4G for a common binding site on eIF4E. Upon phosphorylation by mTORC1, 4E-BP binding to eIF4E is reduced, allowing eIF4F complex formation and initiation of translation. mTORC1 also phosphorylates its second major downstream effectors, p70 S6 kinases (S6K1/2), which regulate translation initiation (via eIF4B), translation elongation (via eEF2K) and ribosome biogenesis (via ribosomal protein S6).

eIF4E activity is also regulated via phosphorylation at serine 209 by MNK1/2 (mitogen-activated protein kinase (MAPK) interacting protein kinases 1/2) downstream of ERK (extracellular-signal-regulated kinase) (Fig. 1). This phosphorylation event is associated with increased rates of translation initiation (Gkogkas et al., 2014; Scheper et al., 2002), although the exact underlying molecular mechanism remains unknown.

A second major translational control mechanism is mediated by the translation initiation factor, eIF2 (composed of three subunits) (Sonenberg and Hinnebusch, 2009), via phosphorylation of its α subunit (Fig. 1). Translation initiation requires the formation of a ternary complex composed of the initiator (Met-tRNA\textsubscript{Met}) and the GTP-bound eIF2\textsubscript{a}. At the end of each round of ribosome recruitment, there is a recycling of inactive GDP-bound eIF2\textsubscript{a} to active GTP-bound eIF2 by the guanine nucleotide exchange factor (GEF), eIF2B (Pavitt et al., 1998). Phosphorylation of eIF2\textsubscript{a} at serine 51 inhibits the activity of eIF2B, reducing ternary complex formation and thereby inhibiting protein synthesis. Paradoxically, eIF2\textsubscript{a} phosphorylation stimulates translation of mRNAs containing upstream open reading frames (uORFs) in their 5′ UTRs, such as ATF4 and CHOP. eIF2\textsubscript{a} is phosphorylated in response to different cellular stress conditions via activation of eIF2\textsubscript{a} kinases (PERK, PKR, GCN2 and HRI) (Trinh and Klann, 2013). Phosphorylation of eIF2\textsubscript{a} is largely involved in the regulation of general translation, whereas eIF4E-dependent translational control regulates the translation of a distinct subset of mRNAs, many of which are involved in proliferation, growth and synaptic plasticity.

Translation is also regulated via 3′ end-mediated mechanisms. Translation of mRNAs containing the cytoplasmic polyadenylation elements (CPE) at their 3′ UTR is regulated by the cytoplasmic polyadenylation element-binding protein (CPEB) (Richter and Klann, 2009). CPEB binds CPE and stimulates the prolongation of the poly(A) tail by regulating the polyadenylation apparatus composed of poly(A) polymerase Gld2, deadenylase PARN, and
translational factor neuroguidin (Ngd) (Ivshina et al., 2014; Udagawa et al., 2012). Elongation of the mRNA poly(A) tail leads to stabilization of the mRNA and enhanced binding of the poly(A)-binding protein (PABP), which facilitates translation initiation by simultaneously binding to both the poly(A) tail and eIF4G, resulting in mRNA circularization (Gray et al., 2000; Kahvejian et al., 2001). This mechanism has been shown to regulate the translation of CamkIIα and Nr2a mRNAs (Huang et al., 2002; Wu et al., 1998).

Synaptic plasticity

Synaptic plasticity refers to the ability of the synapse to strengthen or weaken in response to experience or stimuli. The predominant cellular model for synaptic plasticity is long-term potentiation (LTP), which is thought to underlie learning and memory (Morris, 2003). Co-activation of pre- and post-synaptic compartments triggers calcium in-flux into neurons, stimulating several signaling pathways to promote transcription and translation of plasticity-related genes. The newly synthesized mRNAs are either subsequently translated in the cell body or transported to synapses where they are locally translated (Jung et al., 2014; Tom Dieck et al., 2014). The local protein synthesis model is consistent with the presence of translation machinery (ribosomes and translation factors) and mRNAs in, or close to dendritic spines (Steward and Fass, 1983; Steward and Levy, 1982). Moreover, LTP-inducing stimulation causes ribosomes to move from dendritic shafts to spines with enlarged synapses (Ostroff et al., 2002). Protein synthesis in dendrites occurs in response to various forms of stimulation (Kang and Schuman, 1996; Scheetz et al., 2000) and is essential for long-term plasticity (Huber et al., 2000; Kang and Schuman, 1996). Accordingly, studies in the hippocampus, amygdala and cortex have demonstrated a key role of translational control in the protein synthesis-dependent late phase of long-term potentiation (L-LTP), long-term depression (LTD) and learning and memory (Costa-Mattioli et al., 2009). Inhibition of translation with anisomycin or inhibitors of mTORC1 impairs L-LTP and long-term memory (LTM) (Cammalleri et al., 2003; Tang et al., 2002). Neuronal activity and behavioural training lead to a reduction in eIF2α phosphorylation, resulting in suppression of LTD and stimulation of L-LTP and long-term memory (Costa-Mattioli et al., 2005; Costa-Mattioli et al., 2007; Costa-Mattioli and Sonenberg, 2006; Di Prisco et al., 2014). Regulation of translation via CPEB and PABP has been also shown to control L-LTP and LTM (Alarcon et al., 2004; Khoutorsky et al., 2013; Richter, 2007; Udagawa et al., 2012).

Most of the current knowledge on the role of translational control in neuroplasticity has been derived from experiments in the hippocampus, however recent studies show that similar mechanisms regulate activity-dependent long-term modification of synaptic strength in other brain areas including cortex, amygdala, and spinal cord (Belelovsky et al., 2005; Buffington et al., 2014; Khoutorsky et al., 2015; Khoutorsky and Price, 2017; Melemedjian and Khoutorsky, 2015; Parsons et al., 2006).

Translational control in spinal plasticity

Studies of spinal LTP and central sensitization have demonstrated a significant overlap with underlying mechanisms known in hippocampal LTP and memory formation (Ji et al., 2003;
Price and Inyang, 2015). LTP of extracellular field potentials in the superficial dorsal horn of the spinal cord can be induced by electrical stimulation of afferent C fibers (Liu and Sandkuhler, 1995), noxious stimulation of peripheral tissue, and nerve damage (Sandkuhler and Liu, 1998; Zhang et al., 2004). Stimulation of the sciatic nerve with the LTP-inducing protocol produced long-lasting allodynia and thermal hyperalgesia (Ying et al., 2006; Zhang et al., 2005), suggesting that spinal LTP might be a cellular model of injury-induced hyperalgesia (Sandkuhler, 2007). A unique feature of spinal LTP is that it exhibits activity-dependent potentiation of both activated synapses, causing homosynaptic potentiation, as well as non-activated synapses, leading to heterosynaptic potentiation (Kronschlager et al., 2016; Latremoliere and Woolf, 2009). Hetero-synaptic potentiation, which is not present in the cortex or hippo-campus, is the major form of synaptic plasticity in the spinal cord. Heterosynaptic LTP is a key mechanism for the development of distinct forms of activity-dependent central sensitization manifested by a response to low threshold afferents (allodynia) and spread of pain sensitivity to non-injured areas (secondary hyperalgesia) (Latremoliere and Woolf, 2009).

Inhibition of protein synthesis with either cyclohexamide or anisomycin blocked the late-phase of spinal LTP elicited by C-fiber stimulation but did not affect the induction (early) phase (Hu et al., 2003). Thus, similar to hippocampal LTP, spinal LTP exhibits two distinct phases, an early phase that is protein synthesis independent, and a late-phase that is protein synthesis-dependent (Bliss and Collingridge, 1993). Moreover, $\text{Eif}4\text{ebp1}^{-/-}$ mice lacking the translational repressor 4E-BP1 show a reduced threshold for the induction of spinal LTP as well as an increased extent of potentiation (Khoutorsky et al., 2015). These results indicate that spinal LTP exhibits bidirectional dependence on protein synthesis, and suggest that stimulation of mRNA translation in spinal neurons might facilitate the sensitization of spinal nociceptive circuitry and accompanied hypersensitivity in chronic pain conditions.

Evidence for a central role of translational control in chronic pain conditions

Numerous studies have documented increased activity in signaling pathways upstream of mRNA translation in spinal neurons following acute noxious peripheral stimulation and also in chronic pain conditions. Intraplantar capsaicin (Geranton et al., 2009) or carrageenan (Norsted Gregory et al., 2010) injection increases the number of phosphorylated-S6 (p-S6)-positive neurons in the spinal cord. Likewise, the phosphorylation of mTOR and its two major downstream effectors, S6 and 4E-BP1, are enhanced in the dorsal horn of the spinal cord following acute peripheral inflammation induced with carrageenan (Norsted Gregory et al., 2010) and formalin (Xu et al., 2011). mTORC1 signaling also increases in the dorsal horn of the spinal cord in models of chronic pain including chronic inflammation-induced pain caused by complete Freund’s adjuvant (CFA) (Liang et al., 2013), bone cancer-induced pain (Shih et al., 2012) and nerve injury (Zhang et al., 2013). Consistent with the activation of mTORC1, the signaling of upstream kinases such as PI3K and AKT is also upregulated in these conditions in the dorsal horn of the spinal cord (Pezet et al., 2008; Xu et al., 2011).
The functional role of the stimulation of protein synthesis in spinal neurons following peripheral injury has been extensively studied using various pharmacological approaches. Subcutaneous injection of formalin elicits a biphasic pain response. The early phase pain behaviour (0–10 min) is mediated by activation of nociceptors, whereas the second phase (10–50 min) is thought to result from sensitization of spinal pain circuits. Intrathecal administration of the protein synthesis inhibitor anisomycin, or mTORC1 inhibitor rapamycin, profoundly reduces nocifensive behaviour in the second phase of the formalin test but not the first phase (Asante et al., 2009; Kim et al., 1998; Price et al., 2007; Xu et al., 2011). Consistent with the behavioural effects, formalin-induced hyperexcitability in wide dynamic range dorsal horn spinal neurons is inhibited by rapamycin (Asante et al., 2009). Additionally, intrathecal rapamycin alleviates capsaicin-induced secondary mechanical hyperalgesia, which is caused by sensitization of the spinal cord neurons to the input from capsaicin-insensitive Aδ nociceptors (Geranton et al., 2009).

Inhibition of mTORC1 also efficiently alleviates hypersensitivity in chronic models of pain including chronic inflammation-induced pain (Liang et al., 2013; Norsted Gregory et al., 2010), bone cancer-induced pain (Shih et al., 2012) and neuropathic pain (Asante et al., 2010; Cui et al., 2014; Zhang et al., 2013). Pharmacological evidence for the central role of protein synthesis and its master regulator mTORC1 in the spinal cord in the regulation of hypersensitivity is supported by genetic manipulations of different components of the mTORC1 pathway. For example, mechanical hypersensitivity can be caused by activation of the mTORC1 pathway via spinal deletion of TSC2 (Xu et al., 2014), an upstream repressor of mTORC1, or by spinal ablation of 4E-BP1, a repressor of eIF4F complex formation and cap-dependent translation (Khoutorsky et al., 2015). All together, these studies indicate that mTORC1 activity and protein synthesis are upregulated in the dorsal horn of the spinal cord in multiple acute and chronic pain conditions, and their inhibition efficiently alleviates nociceptive behaviour and pain hypersensitivity.

Another important phenomena in which translational control in the spinal cord plays a central role is “hyperalgesic priming” (Reichling and Levine, 2009). Peripheral tissue injury, causing a transient hypersensitivity, leads to persistent sensitization or “priming” of the nociceptive pathway to subsequent insults (Reichling and Levine, 2009). This form of plasticity persists for many weeks and models a clinical situation of increased risk to develop chronic pain in patients with recurrent tissue injuries. The induction of hyperalgesic priming is mediated via brain-derived neurotrophic factor (BDNF)-dependent activation of the mTORC1 and eIF4F complex formation in the spinal cord, which stimulate the synthesis of PKCλ and PKMζ (Asiedu et al., 2011; Melemedjian et al., 2013). Interestingly, spinal LTP is enhanced in primed animals (Chen et al., 2018), supporting the role of synaptic plasticity in this process. Notably, PKCλ and PKMζ play key roles in the expression and maintenance of hippocampal LTP and memory storage, further demonstrating the similarity between molecular mechanisms underlying persistent pain and memory.

Translational control in opioid-induced tolerance and hyperalgesia

Sensitization of spinal circuits can be caused not only by peripheral tissue damage and subsequent activation of C fibers, but also by aberrant spinal plasticity in response to drugs.
Opioid-induced tolerance and hyperalgesia are two examples of such plasticity, which is commonly observed in both animal models and human patients (Sjogren et al., 1993). Opioid-induced hyperalgesia is caused by chronic opioid administration, which can paradoxically lead to central sensitization and pain (Kim et al., 2014; Lee et al., 2013). Although the etiology of opioid-induced hyperalgesia is poorly understood, there are several proposed mechanisms, including the activation of NMDA receptors and protein kinase C (PKC), upregulation of spinal dynorphins, and stimulation of descending facilitatory pathways (Lee et al., 2011). Opioid-induced tolerance occurs during long-term opioid treatment, requiring escalating doses of opioids to obtain the consistent levels of analgesic effect (Chu et al., 2006). The mechanisms underlying opioid-induced tolerance involve opioid receptor desensitization and down-regulation (Allouche et al., 2014; Williams et al., 2013).

Repeated intrathecal administration of morphine is sufficient to cause tolerance and hyperalgesia, suggesting that spinal cord plasticity plays a central role in these phenomena. Interestingly, a selective µ-opioid agonist, DAMGO, stimulates the AKT/mTORC1 axis and its downstream effectors 4E-BP1 and p70 S6 in non-neuronal cell lines stably expressing the µ-opioid receptor (Polakiewicz et al., 1998). This in vitro finding was confirmed in an in vivo mouse study showing that repeated intrathecal morphine injections strongly induce mTORC1 signaling, and increase eIF4F complex formation and mRNA translation via activation of the µ-opioid receptor (Xu et al., 2014). Remarkably, inhibition of mTORC1 with rapamycin not only alleviated the development of the morphine-induced tolerance and hyperalgesia, but also reversed the fully established tolerance and hyperalgesia after 6 days of daily morphine administration. The mechanisms by which mTORC1 inhibition decrease the opioid-induced tolerance and hyperalgesia remain unknown. It is tempting to speculate that morphine-induced maladaptive spinal plasticity requires mTORC1 and protein synthesis for its induction and maintenance. Consistent with this hypothesis, mTORC1 inhibition attenuated the upregulation of dorsal horn PKCγ, neuronal nitric oxide synthase (nNOS), and CamKIIα, three key molecules involved in spinal plasticity as well as morphine-induced tolerance and hyperalgesia (Xu et al., 2014). A recent study suggested that opioid-induced tolerance and hyperalgesia require the activity of µ-opioid receptors in nociceptors (Corder et al., 2017). Intrathecal injections are known to target both dorsal root ganglia (DRG) and the spinal cord. Since intrathecal administration of mTORC1 inhibitors can block mTORC1 activity in the DRG, an alternative approach should be used with a selective inhibitor of the mTORC1 in the spinal cord but not in the DRG, for example by spinal intra-parenchymal viral injection to downregulate mTORC1.

New approaches to reverse the established sensitization by targeting spinal reconsolidation

New gene expression is required for the induction phase of spinal sensitization, but not for its maintenance. As soon as sensitization is established, it is no longer sensitive to the inhibition of protein synthesis (Asiedu et al., 2011; Melemedjian et al., 2013). Likewise, memory formation is sensitive to protein synthesis inhibitors at the acquisition stage, but once the memories are formed, they are consolidated into a stable and protein synthesis-
independent trace. The consolidated memories can be retrieved by exposure to a conditional stimulus, rendering it to a labile state that requires protein synthesis and mTORC1 activity for further reconsolidation (Lee et al., 2017; Nader et al., 2000). The fragile nature of the memory trace after the retrieval provides an opportunity to erase it by pharmacological targeting of protein synthesis and mTORC1. The central role of mTORC1 in reconsolidation has been demonstrated for memories associated with electrical foot shock and addictive substances (Barak et al., 2013; Blundell et al., 2008; Stoica et al., 2011), raising the possibility that inhibition of mTORC1 is a potential approach to erase the memory of an adverse event, such as in posttraumatic stress disorder (PTSD). The phenomenon of reconsolidation has been also demonstrated in the spinal cord (Bonin and De Koninck, 2014; Bonin and De Koninck, 2015). Intraplantar capsaicin-induced sensitization was insensitive to protein synthesis inhibition when it was fully established, but became anisomycin-sensitive following reactivation of spinal pain pathways with the second capsaicin administration. Transformation of the established capsaicin-induced sensitization into a labile state requires the activation of second-order spinal neurons and the activity of CaMKIIa and ERK, two molecules involved in spinal synaptic plasticity.

The central role of synaptic plasticity in the reconsolidation phenomenon is further supported by LTP experiments (Bonin and De Koninck, 2014). The fully established spinal LTP could be reversed when the second tetanic stimulation was delivered in the presence of anisomycin. All together, these results show that the established hyperalgesia and spinal LTP could be rendered labile by reactivation of pain circuits, further demonstrating an intimate link between persistent pain and the LTP of spinal nociceptive circuits (Ji et al., 2003). Spinal pain reconsolidation-like effects have also been demonstrated in a model of hyperalgesic priming. The activation of dopamine D1/D5 receptors coupled with anisomycin reversed persistent sensitization in primed animals (Kim et al., 2015).

The results of pain reconsolidation studies provide a potential novel therapeutic avenue to abolish established sensitization of nociceptive circuits in the spinal cord in chronic pain states. Reactivating the pain memory trace and transforming it into the labile state might allow for erasure of persistent pain via blocking reconsolidation using protein-synthesis inhibitors. Notably, the re-opening of the reconsolidation window by spinal application of AMPA and NMDA could be used for a variety of chronic pain states, where the sensitisation-inducing stimulus is unknown or may no longer be relevant.

Conclusions

Maladaptive plasticity in the spinal cord is a key mechanism for sensitization of pain circuits and the subsequent development of pain. A central role of translational control in the regulation of synaptic and intrinsic neuronal plasticity in the spinal cord provides an opportunity to target translation control mechanisms to reverse the sensitization state. Recently discovered approaches to open the reconsolidation window by peripheral or central reactivation of nociceptive circuits or activation of dopaminergic pathways provide a promising therapeutic avenue. To fully understand the role and mechanisms of action of translation control in pathological pain states, it is essential to identify the subsets of differentially translated mRNAs in different cell types, pain states and phases of spinal cord

Neurobiol Pain. Author manuscript; available in PMC 2019 March 21.
sensitization. This information would provide an invaluable resource for better understanding the molecular mechanisms underlying the sensitization of spinal pain circuits and chronication of pain.

References

Alarcon JM, Hodgman R, Theis M, Huang YS, Kandel ER, Richter JD, 2004 Selective modulation of some forms of schaffer collateral-CA1 synaptic plasticity in mice with a disruption of the CPEB-1 gene. Learn. Mem 11, 318–327. [PubMed: 15169862]

Allouche S, Noble F, Marie N, 2014 Opioid receptor desensitization: mechanisms and its link to tolerance. Front. Pharmacol 5, 280. [PubMed: 25566076]

Asante CO, Wallace VC, Dickenson AH, 2009 Formalin-induced behavioural hypersensitivity and neuronal hyperexcitability are mediated by rapid protein synthesis at the spinal level. Mol. Pain 5, 27. [PubMed: 19500426]

Asante CO, Wallace VC, Dickenson AH, 2010 Mammalian target of rapamycin signaling in the spinal cord is required for neuronal plasticity and behavioral hypersensitivity associated with neuropathy in the rat. J. Pain 11, 1356–1367. [PubMed: 20452291]

Asiedu MN, Tillu DV, Melemedjian OK, Shy A, Sanoja R, Bodell B, Ghosh S, Porreca F, Price TJ, 2011 Spinal protein kinase M zeta underlies the maintenance mechanism of persistent noiceptive sensitization. J. Neurosci 31, 6646–6653. [PubMed: 21543593]

Barak S, Liu F, Ben Hamida S, Yowell QV, Neasta J, Kharazia V, Janak PH, Ron D, 2013 Disruption of alcohol-related memories by mTORC1 inhibition prevents relapse. Nat. Neurosci 16, 1111–1117. [PubMed: 23792945]

Belelovsky K, Elkobi A, Kaphzan H, Nairn AC, Rosenblum K, 2005 A molecular switch for translational control in taste memory consolidation. Eur. J. Neurosci 22, 2560–2568. [PubMed: 16307598]

Bliss TV, Collingridge GL, 1993 A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39. [PubMed: 8421494]

Blundell J, Kouser M, Powell CM, 2008 Systemic inhibition of mammalian target of rapamycin inhibits fear memory reconsolidation. Neurobiol. Learn. Mem 90, 28–35. [PubMed: 18316213]

Bonin RP, De Koninck Y, 2014 A spinal analog of memory reconsolidation enables reversal of hyperalgesia. Nat. Neurosci 17, 1043–1045. [PubMed: 24997764]

Bonin RP, De Koninck Y, 2015 Reconsolidation and the regulation of plasticity: moving beyond memory. Trends Neurosci 38, 336–344. [PubMed: 25987442]

Buffington SA, Huang W, Costa-Mattioli M, 2014 Translational control in synaptic plasticity and cognitive dysfunction. Annu. Rev. Neurosci 37, 17–38. [PubMed: 25032491]

Cammalleri M, Lutjens R, Berton F, King AR, Simpson C, Francesconi W, Sanna PP, 2003 Time-restricted role for dendritic activation of the mTOR-p70S6K pathway in the induction of late-phase long-term potentiation in the CA1. Proc. Natl. Acad. Sci. U.S.A 100, 14368–14373. [PubMed: 14623952]

Chen WH, Chang YT, ChenYC, Cheng SJ, Chen CC, 2018 Spinal PKC/ERK signal pathway mediates hyperalgesia priming. Pain

Chu LF, Clark DJ, Angst MS, 2006 Opioid tolerance and hyperalgesia in chronic pain patients after one month of oral morphine therapy: a preliminary prospective study. J. Pain 7, 43–48. [PubMed: 16414554]

Corder G, Tawfik VL, Wang D, Sypek EI, Low SA, Dickinson JR, Sotoudeh C, Clark JD, Barres BA, Bohlen CJ, Scherrer G, 2017 Loss of mu opioid receptor signaling in nociceptors, but not microglia, abrogates morphine tolerance without disrupting analgesia. Nat. Med 23, 164–173. [PubMed: 28092666]

Costa-Mattioli M, Gobert D, Harding H, Herdy B, Azzi M, Bruno M, Bidinosti M, Ben Mamou C, Marcinkiewicz E, Yoshida M, Imataka H, Cuello AC, Seidah N, Sossin W, Lacaille JC, Ron D, Nader K, Sonenberg N, 2005 Translational control of hippocampal synaptic plasticity and memory by the eIF2alpha kinase GCN2. Nature 436, 1166–1173. [PubMed: 16121183]

Neurobiol Pain. Author manuscript; available in PMC 2019 March 21.
Costa-Mattioli M, Gobert D, Stern E, Gamache K, Colina R, Cuello C, Sossin W, Kaufman R, Pelletier J, Rosenblum K, Knjivic K, Lacaille JC, Nader K, Sonenberg N, 2007 eIF2alpha phosphorylation bidirectionally regulates the switch from short- to long-term synaptic plasticity and memory. Cell 129, 195–206. [PubMed: 17418795]

Costa-Mattioli M, Sonenberg N, 2006 Translational control of long-term synaptic plasticity and memory storage by eIF2alpha. Crit. Rev. Neurobiol 18, 187–195. [PubMed: 17725521]

Costa-Mattioli M, Sossin WS, Klann E, Sonenberg N, 2009 Translational control of long-lasting synaptic plasticity and memory. Neuron 61, 10–26. [PubMed: 19146809]

Coull JA, Boudreau D, Bachand K, Prescott SA, Nault F, Sik A, De Koninck P, de Koninck Y, 2003 Trans-synaptic shift in anion gradient in spinal lamina I neurons as a mechanism of neuropathic pain. Nature 424, 938–942. [PubMed: 12931188]

Cui J, He W, Yi B, Zhao H, Lu K, Ruan H, Ma D, 2014 mTOR pathway is involved in ADP-evoked astrocyte activation and ATP release in the spinal dorsal horn in a rat neuropathic pain model. Neuroscience 275, 395–403. [PubMed: 24976516]

Di Prisco GV, Huang W, Buffington SA, Hsu CC, Bonnen PE, Placzek AN, Sidrauski C, Knjivic K, Kaufman RJ, Walter P, Costa-Mattioli M, 2014 Translational control of mGluR-dependent long-term depression and object-place learning by eIF2alpha. Nat. Neurosci 17, 1073–1082. [PubMed: 24974795]

Edery I, Humbelin M, Darveau A, Lee KA, Milburn S, Hershey JW, Trachsel H, Sonenberg N, 1983 Involvement of eukaryotic initiation factor 4A in the cap recognition process. J. Biol. Chem 258, 11398–11403. [PubMed: 6604056]

Geranton SM, Jimenez-Diaz L, Torsney C, Tochiki KK, Stuart SA, Leith JL, Lumb BM, Hunt SP, 2009 A rapamycin-sensitive signaling pathway is essential for the full expression of persistent pain states. J. Neurosci 29, 15017–15027. [PubMed: 19940197]

Gkogkas CG, Khutorsky A, Cao R, Jafarnejad SM, Prager-Khutorsky M, Giannakas N, Kaminari A, Fragkouli A, Nader K, Price TJ, Konicek BW, Graff JR, Tzinia AK, Lacaille JC, Sonenberg N, 2014 Pharmacogenetic inhibition of eIF4E-dependent Mmp9 mRNA translation reverses fragile X syndrome-like phenotypes. Cell Rep 9, 1742–1755. [PubMed: 25466251]

Gray NK, Coller JM, Dickson KS, Wickens M, 2000 Multiple portions of poly(A)-binding protein stimulate translation in vivo. EMBO J 19, 4723–4733. [PubMed: 10970864]

Grifo JA, Tahara SM, Morgan MA, Shatkin AJ, Merrick WC, 1983 New initiation factor activity required for globin mRNA translation. J. Biol. Chem 258, 5804–5810. [PubMed: 6853548]

Guo D, Hu J, 2014 Spinal presynaptic inhibition in pain control. Neuroscience 283, 95–106. [PubMed: 25255936]

Hu NW, Zhang HM, Hu XD, Li MT, Zhang T, Zhou LJ, Liu XG, 2003 Protein synthesis inhibition blocks the late-phase LTP of C-fiber evoked field potentials in rat spinal dorsal horn. J. Neurophysiol 89, 2354–2359. [PubMed: 12740398]

Huang YS, Jung MY, Sarkissian M, Richter JD, 2002 N-methyl-D-aspartate receptor signaling results in Aurora kinase-catalyzed CPEB phosphorylation and alpha CaMKII mRNA polyadenylation at synapses. EMBO J 21, 2139–2148. [PubMed: 11980711]

Huber KM, Kayser MS, Bear MF, 2000 Role for rapid dendritic protein synthesis in hippocampal mGluR-dependent long-term depression. Science 288, 1254–1257. [PubMed: 10818033]

Ikeda H, Heinke B, Ruscieweiyh R, Sandkuhler J, 2003 Synaptic plasticity in spinal lamina I projection neurons that mediate hyperalgesia. Science 299, 1237–1240. [PubMed: 12595694]

Ikeda H, Stark J, Fischer H, Wagner M, Drdla R, Jager T, Sandkuhler J, 2006 Synaptic amplifier of inflammatory pain in the spinal dorsal horn. Science 312, 1659–1662. [PubMed: 16778058]

Ivshina M, Lasko P, Richter JD, 2014 Cytoplasmic polyadenylation element binding proteins in development, health, and disease. Annu. Rev. Cell Dev. Biol 30, 393–415. [PubMed: 25068488]

Ji RR, Kohno T, Moore KA, Woolf CJ, 2003 Central sensitization and LTP: do pain and memory share similar mechanisms? Trends Neurosci 26, 696–705. [PubMed: 14624855]

Jung H, Gkogkas CG, Sonenberg N, Holt CE, 2014 Remote control of gene function by local translation. Cell 157, 26–40. [PubMed: 24679524]

Neurobiol Pain. Author manuscript; available in PMC 2019 March 21.
Kahvejian A, Roy G, Sonenberg N, 2001 The mRNA closed-loop model: the function of PABP and PABP-interacting proteins in mRNA translation. Cold Spring Harb. Symp. Quant Biol 66, 293–300. [PubMed: 12762031]

Kang H, Schuman EM, 1996 A requirement for local protein synthesis in neurotrophin-induced hippocampal synaptic plasticity. Science 273, 1402–1406. [PubMed: 8703078]

Khoutorsky A, Bonin RP, Sorge RE, Gkogkas CG, Pawlowski SA, Jafarnejad SM, Pitcher MH, Alain T, Perez-Sanchez J, Salter EW, Martin L, Ribeiro-da-Silva A, De Koninck Y, Cervero F, Mogil JS, Sonenberg N, 2015 Translational control of nociception via 4E-binding protein 1: eLife 4.

Khoutorsky A, Price TJ, 2017 Translational control mechanisms in persistent pain. Trends Neurosci

Khoutorsky A, Yanagiya A, Gkogkas CG, Fabian MR, Prager-Khoutorsky M, Cao R, Gamache K, Bouthiette F, Parsyan A, Sorge RE, Mogil JS, Nader K, Lacaille JC, Sonenberg N, 2013 Control of synaptic plasticity and memory via suppression of poly(A)-binding protein. Neuron 78, 298–311. [PubMed: 23622065]

Kim SH, Stoica N, Soghomonyan S, Bergese SD, 2014 Intraoperative use of remifentanil and opioid induced hyperalgesia/acute opioid tolerance: systematic review. Front. Pharmacol 5, 108. [PubMed: 24847273]

Kim SJ, Thomas KS, Calejesan AA, Zhuo M, 1998 Macromolecular synthesis contributes to nociceptive response to subcutaneous formalin injection in mice. Neuropharmacology 37, 1091–1093. [PubMed: 9833638]

Kim JY, Tillu DV, Quinn TL, Mejia GL, Shy A, Asiedu MN, Murad E, Schumann AP, Totsch SK, Sorge RE, Mantyh PW, Dussor G, Price TJ, 2015 Spinal dopaminergic projections control the transition to pathological pain plasticity via a D1/D5-mediated mechanism. J. Neurosci 35, 6307–6317. [PubMed: 25904784]

Kronsclager MT, Drdla-Schutting R, Gassner M, Honsek SD, Teuchmann HL, Sandkuhler J, 2016 Gliogenic LTP spreads widely in nociceptive pathways. Science 354, 1144–1148. [PubMed: 27934764]

Latremoliere A, Woolf CJ, 2009 Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J. Pain 10, 895–926. [PubMed: 19712899]

Lee C, Lee HW, Kim JN, 2013 Effect of oral pregabalin on opioid-induced hyperalgesia in patients undergoing laparo-endoscopic single-site urologic surgery. Korean J. Anesthesiol 64, 19–24.

Lee JLC, Nader K, Schiller D, 2017 An update on memory reconsolidation updating. Trends Cogn. Sci 21, 531–545. [PubMed: 28495311]

Lee M, Silverman SM, Hansen H, Patel VB, Manchkanti L, 2011 A comprehensive review of opioid-induced hyperalgesia. Pain Physician 14, 145–161. [PubMed: 21412369]

Liang L, Tao B, Fan L, Yaster M, Zhang Y, Tao YX, 2013 mTOR and its downstream pathway are activated in the dorsal root ganglion and spinal cord after peripheral inflammation, but not after nerve injury. Brain Res 1513, 17–25. [PubMed: 23583278]

Liu XG, Sandkuhler J, 1995 Long-term potentiation of C-fiber-evoked potentials in the rat spinal dorsal horn is prevented by spinal N-methyl-D-aspartic acid receptor blockade. Neurosci. Lett 191, 43–46. [PubMed: 7659287]

Melemedjian OK, Khoutorsky A, 2015 Translational control of chronic pain. Prog. Mol. Biol. Transl. Sci 131, 185–213. [PubMed: 25744674]

Melemedjian OK, Tillu DV, Asiedu MN, Mandell EK, Moy JK, Blute VM, Taylor CJ, Ghosh S, Price TJ, 2013 BDNF regulates atypical PKC at spinal synapses to initiate and maintain a centralized chronic pain state. Mol. Pain 9, 12. [PubMed: 23510079]

Morris RG, 2003 Long-term potentiation and memory. Philos. Trans. R. Soc. Lond. B Biol. Sci 358, 643–647. [PubMed: 12740109]

Nader K, Schaefer GE, Le Doux JE, 2000 Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature 406, 722–726. [PubMed: 10963596]

Norsted Gregory E, Codeluppi S, Gregory JA, Steinauer J, Svensson CI, 2010 Mammalian target of rapamycin in spinal cord neurons mediates hypersensitivity induced by peripheral inflammation. Neuroscience 169, 1392–1402. [PubMed: 20538043]

Ossipov MH, Morimura K, Porreca F, 2014 Descending pain modulation and chronification of pain. Curr. Opin. Support Palliat Care 8, 143–151. [PubMed: 24752199]
Ostroff LE, Fiala JC, Allwardt B, Harris KM, 2002 Polyribosomes redistribute from dendritic shafts into spines with enlarged synapses during LTP in developing rat hippocampal slices. Neuron 35, 535–545. [PubMed: 12165474]

Parsons RG, Gafford GM, Helmstetter FJ, 2006 Translational control via the mammalian target of rapamycin pathway is critical for the formation and stability of long-term fear memory in amygdala neurons. J. Neurosci 26, 12977–12983. [PubMed: 17167087]

Pavitt GD, Ramaiah KV, Kimball SR, Hinnebusch AG, 1998 eIF2 independently binds two distinct eIF2B subcomplexes that catalyze and regulate guanine-nucleotide exchange. Genes Develop 12, 514–526. [PubMed: 9472020]

Pezet S, Marchand F, D’Mello R, Grist J, Clark AK, Malcangio M, Williams RJ, McMahon NB, 2008 Phosphatidylinositol 3-kinase is a key mediator of central sensitization in painful inflammatory conditions. J. Neurosci 28, 4261–4270. [PubMed: 18417706]

Polakiewicz RD, Schieferl SM, Gingras AC, Sonenberg N, Comb MJ, 1998 mu-Opioid receptor activates signaling pathways implicated in cell survival and translational control. J. Biol. Chem 273, 23534–23541. [PubMed: 9722592]

Price TJ, Inyang KE, 2015 Commonalities between pain and memory mechanisms and their meaning for understanding chronic pain. Prog. Mol. Biol. Transl. Sci 131, 409–434. [PubMed: 25744681]

Price TJ, Rashid MH, Millecamps M, Sanoja R, Entrena JM, Cervero F, 2007 Decreased nociceptive sensitization in mice lacking the fragile X mental retardation protein: role of mGluR1/5 and mTOR. J. Neurosci 27, 13958–13967. [PubMed: 18094233]

Reichling DB, Levine JD, 2009 Critical role of nociceptor plasticity in chronic pain. Trends Neurosci 32, 611–618. [PubMed: 19781793]

Richter JD, 2007 CPEB: a life in translation. Trends Biochem. Sci 32, 279–285. [PubMed: 17481902]

Richter JD, Klann E, 2009 Making synaptic plasticity and memory last: mechanisms of translational regulation. Genes Develop 23, 1–11. [PubMed: 19136621]

Sandkuhler J, 2007 Understanding LTP in pain pathways. Mol. Pain 3, 9. [PubMed: 17407590]

Sandkuhler J, Liu X, 1998 Induction of long-term potentiation at spinal synapses by noxious stimulation or nerve injury. Eur. J. Neurosci 10, 2476–2480. [PubMed: 9749775]

Scheetz AJ, Nairn AC, Constantine-Paton M, 2000 NMDA receptor-mediated control of protein synthesis at developing synapses. Nat. Neurosci 3, 211–216. [PubMed: 10700251]

Scheper GC, van Kollenburg B, Hu J, Luo Y, Goss DJ, Proud CG, 2002 Phosphorylation of eukaryotic initiation factor 4E markedly reduces its affinity for capped mRNA. J. Biol. Chem 277, 3303–3309. [PubMed: 11723111]

Shih MH, Kao SC, Wang W, Yaster M, Tao YX, 2012 Spinal cord NMDA receptor-mediated activation of mammalian target of rapamycin is required for the development and maintenance of bone cancer-induced pain hypersensitivities in rats. J. Pain 13, 338–349. [PubMed: 22341316]

Sjogren P, Jonsson T, Jensen NH, Drenck NE, Jensen TS, 1993 Hyperalgesia and myoclonus in terminal cancer patients treated with continuous intravenous morphine. Pain 55, 93–97. [PubMed: 8278214]

Stoica L, Zhu PJ, Huang W, Zhou H, Kozma SC, Costa-Mattioli M, 2011 Selective pharmacogenetic inhibition of mammalian target of Rapamycin complex I (mTORC1) blocks long-term synaptic plasticity and memory storage. Proc. Natl. Acad. Sci. U.S.A 108, 3791–3796. [PubMed: 21307309]
Tang SJ, Reis G, Kang H, Gingras AC, Sonenberg N, Schuman EM, 2002 A rapamycin-sensitive signaling pathway contributes to long-term synaptic plasticity in the hippocampus. Proc. Natl. Acad. Sci. U.S.A 99, 467–472. [PubMed: 11756682]

Tom Dieck S, Hanus C, Schuman EM, 2014 SnapShot: local protein translation in dendrites. Neuron 81 (958–958), e951.

Torsney C, MacDermott AB, 2006 Disinhibition opens the gate to pathological pain signaling in superficial neurokinin 1 receptor-expressing neurons in rat spinal cord. J. Neurosci 26, 1833–1843. [PubMed: 16467532]

Trinh MA, Klann E, 2013 Translational control by eIF2alpha kinases in long-lasting synaptic plasticity and long-term memory. Neurobiol. Learn. Mem 105, 93–99. [PubMed: 23707798]

Udagawa T, Swanger SA, Takeuchi K, Kim JH, Nakem J, Lorenz LJ, Zukan RS, Bassell GJ, Richter JD, 2012 Bidirectional control of mRNA translation and synaptic plasticity by the cytoplasmic polyadenylation complex. Mol. cell 47, 253–266. [PubMed: 22727665]

Williams JT, Ingram SL, Henderson G, Chavkin C, von Zastrow M, Schulz S, Koch T, Evans CJ, Christie MJ, 2013 Regulation of mu-opioid receptors: desensitization, phosphorylation, internalization, and tolerance. Pharmacol. Rev 65, 223–254. [PubMed: 23321159]

Woolf CJ, 2011 Central sensitization: implications for the diagnosis and treatment of pain. Pain 152, S2–15. [PubMed: 20961685]

Wu L, Wells D, Tay J, Mendis D, Abbott MA, Barnitt A, Quinlan E, Heynen A, Fallon JR, Richter JD, 1998 CPEB-mediated cytoplasmic polyadenylation and the regulation of experience-dependent translation of alpha-CaMKII mRNA at synapses. Neuron 21, 1129–1139. [PubMed: 9856468]

Xu Q, Fitzsimmons B, Steinauer J, O’Neill A, Newton AC, Hua XY, Yaksh TL, 2011 Spinal phosphoinositide 3-kinase-Akt-mammalian target of rapamycin signaling cascades in inflammation-induced hyperalgesia. J. Neurosci 31, 2113–2124. [PubMed: 21307248]

Xu JT, Zhao JY, Zhao X, Ligons D, Tiwari V, Atianjoh FE, Lee CY, Liang L, Zang W, Njoku D, Raja SN, Yaster M, Tao YX, 2014 Opioid receptor-triggered spinal mTORC1 activation contributes to morphine tolerance and hyperalgesia. J. Clin. Invest 124, 592–603. [PubMed: 24382350]

Ying B, Lu N, Zhang YQ, Zhao QZ, 2006 Involvement of spinal glia in tetanically sciatic stimulation-induced bilateral mechanical allodynia in rats. Biochem. Biophys. Res. Commun 340, 1264–1272. [PubMed: 16406240]

Zhang W, Sun XF, Bo JH, Zhang J, Liu XJ, Wu LP, Ma ZL, Gu XP, 2013 Activation of mTOR in the spinal cord is required for pain hypersensitivity induced by chronic constriction injury in mice. Pharmacol. Biochem. Behav 111, 64–70. [PubMed: 23948070]

Zhang XC, Zhang YQ, Zhao QZ, 2005 Involvement of nitric oxide in long-term potentiation of spinal nociceptive responses in rats. Neuroreport 16, 1197–1201. [PubMed: 16012348]

Zhang HM, Zhou LJ, Hu XD, Hu NW, Zhang T, Liu XG, 2004 Acute nerve injury induces long-term potentiation of C-fiber evoked field potentials in spinal dorsal horn of intact rat. Sheng Li Xue Bao 56, 591–596. [PubMed: 15497039]
Fig. 1.
Translational control mechanisms. Signaling pathways upstream of translation can be stimulated by activation of several membrane receptors. The activation of these receptors leads to subsequent stimulation of (A) RAS/RAF/ERK pathway and the phosphorylation of eIF4E, and (B) the activation of PI3K/AKT/mTORC1 pathway. mTORC1 phosphorylates and inhibits the translational repressor 4E-BP, resulting in increased eIF4F complex formation, which promotes the recruitment of the ribosome to the cap structure at the 5′ end of the mRNA. This mechanism controls translation of a specific subset of mRNAs. (C) Translation is also regulated via eIF2α pathway, which controls both general translation and translation of mRNAs containing uORFs at their 5′ UTR (e.g. ATF4 and CHOP).