A De Novo Floral Transcriptome Reveals Clues into Phalaenopsis Orchid Flower Development

Jian-Zhi Huang¹, Chih-Peng Lin²,⁴, Ting-Chi Cheng¹, Bill Chia-Han Chang²,³, Shu-Yu Cheng¹, Yi-Wen Chen¹, Chen-Yu Lee¹*, Shih-Wen Chin¹*, Fure-Chyi Chen¹*

¹ Department of Plant Industry, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan, ² Yourgene Bioscience, Shu-Lin District, New Taipei City 23863, Taiwan, ³ Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria 3010, Australia, ⁴ Department of Biotechnology, School of Health Technology, Ming Chuan University, Gui Shan District, Taoyuan 333, Taiwan

* culee@mail.npust.edu.tw (CYL); swchin@mail.npust.edu.tw (SWC); fchen@mail.npust.edu.tw (FCC)

Abstract

Phalaenopsis has a zygomorphic floral structure, including three outer tepals, two lateral inner tepals and a highly modified inner median tepal called labellum or lip; however, the regulation of its organ development remains unelucidated. We generated RNA-seq reads with the Illumina platform for floral organs of the Phalaenopsis wild-type and peloric mutant with a lip-like petal. A total of 43,552 contigs were obtained after de novo assembly. We used differentially expressed gene profiling to compare the transcriptional changes in floral organs for both the wild-type and peloric mutant. Pair-wise comparison of sepals, petals and labellum between peloric mutant and its wild-type revealed 1,838, 758 and 1,147 contigs, respectively, with significant differential expression. PhAGL6a (CUFF.17763), PhAGL6b (CUFF.17763.1), PhMADS1 (CUFF.36625.1), PhMADS4 (CUFF.25909) and PhMADS5 (CUFF.39479.1) were significantly upregulated in the lip-like petal of the peloric mutant. We used real-time PCR analysis of lip-like petals, lip-like sepals and the big lip of peloric mutants to confirm the five genes’ expression patterns. PhAGL6a, PhAGL6b and PhMADS4 were strongly expressed in the labellum and significantly upregulated in lip-like petals of the peloric mutant. We used real-time PCR analysis of lip-like petals, lip-like sepals and the big lip of peloric mutants to confirm the five genes’ expression patterns. PhAGL6a, PhAGL6b and PhMADS4 were strongly expressed in the labellum and significantly upregulated in lip-like petals of peloric-mutant flowers. In addition, PhAGL6b was significantly downregulated in the labellum of the big lip mutant, with no change in expression of PhAGL6a. We provide a comprehensive transcript profile and functional analysis of Phalaenopsis floral organs. PhAGL6a PhAGL6b, and PhMADS4 might play crucial roles in the development of the labellum in Phalaenopsis. Our study provides new insights into how the orchid labellum differs and why the petal or sepal converts to a labellum in Phalaenopsis floral mutants.
Introduction

Orchids (Orchidaceae) represent one of the largest families of flowering plants, with more than 25,000 species [1]. Orchid production has become a worldwide important business in the floricultural industry. Potted *Phalaenopsis* is one of the most popular orchids in the trade. The *Phalaenopsis* genus belongs to the Orchidaceae, comprised of approximately 66 species [2], with distribution throughout tropical Asia from Taiwan and Sikkhim, in India, to Australia and the larger islands of the Pacific Ocean [2]. *Phalaenopsis* flowers have a zygomorphic floral structure, including three sepals (in the first floral whorl) and two petals as well as a highly modified inner median tepal called a labellum in the second floral whorl. In addition, *Phalaenopsis* flowers are highly evolved with a gynostemium or column because of the fusion of the male and female reproductive organs [3]. The use of tissue culture technology to massively produce elite *Phalaenopsis* orchid clones has been widely adopted by the orchid industry. However, unpredictable mutations or somaclonal variation may occur during tissue culture. Somaclonal variation, characterized by phenotypic changes of genetic or epigenetic origin [4], has been extensively studied in several plants. Such variation includes morphological traits such as flower color and morphologic features, leaf morphologic features and color, plant height, resistance to disease, improved quality and higher yield [5]. The labellum-like petal of the peloric mutant of *Phalaenopsis* is more common than in other somaclonal variants. Occasionally, a rare sepal peloric mutant has been observed. The orchid peloric mutant is thus valuable for investigating flower development at both morphological and molecular levels.

The genetic and molecular basis of floral organogenesis has been extensively studied in the model species *Arabidopsis thaliana* and *Antirrhinum majus* [6–9] and led to the evolving ABCDE model of five major classes of homeotic selector genes: A, B, C, D and E. Most of these key floral regulatory genes are the MADS-box gene family encoding MIKC-type MADS domain proteins that function as transcription factors (TFs) [10,11]. A- and E-class genes control the development of sepals in the first whorl [12]. A-, B- and E-class genes work together to regulate petal formation in the second whorl, whereas B-, C- and E-class genes control stamen development in the third whorl. C- and E-class genes determine carpel development in the fourth whorl. D-class genes are involved in ovule development [7,13,14]. In *Arabidopsis*, the A-class genes include *APETALA1* (*AP1*) and *APETALA2* (*AP2*) [15,16]. The B-class genes are represented by *APETALA3* (*AP3*) and *PISTILLATA* (*PI*) [17,18], the C-class gene *AGAMOUS* (*AG*) [19], the D-class gene *SEEDSTICK/AGAMOUS-LIKE11* (*STK/AGL11*) [19] and the E-class genes *SEPALLATAS* (*SEP1*, *SEP2*, *SEP3*, and *SEP4*) [12,20].

The function of ABCDE model genes appear to be conserved across the angiosperms and provide detailed explanations for their floral morphologic features. However, study of the model has focused primarily on herbaceous plants and has not explained completely how diverse angiosperms evolved. The functions of many other expressed genes during floral development remain obscure [21,22]. The flower of orchid is similar to that of eudicots, with sepals and petals in the first and second whorls. However, during floral initiation in orchid, one of the petals develops into a labellum, which is a distinctive feature of a highly modified floral part for an unusual plant species for the study of flower development [23]. Despite its unique floral morphologic features, the molecular mechanism of floral development in orchid remains largely unclear, and more research is needed to identify genes involved in floral differentiation.

Previous studies of orchid floral development have depicted the involvement of certain MADS box genes, including members of the *AP1, AP3/PI, DEF/GLO, AG, AGL6 and SEP* sub-families. Orchid A-class genes, such as *ORAP11* and *ORAP13* from *Phalaenopsis* [24], *OMADS10* from *Oncidium* [25] and four MADS genes (*DOMADS2, DthyrFL1, DthyrFL2 and DthyrFL3*) from *Dendrobium* [26,27] have been identified. Four B-class *DEF*-like MADS-
box genes expressed differently between the wild-type and peloric mutants with lip-like petals in *Phalaenopsis* [28,29]. In addition, *OitaDEF*-like genes exert a key function in the diversification of tepals and lip in *Orchis italica* [30]. A putative floral organ identity gene, OMADS3 (a paleoAP3 gene), isolated from *Oncidium* implied it to be an A-function gene regulating floral formation and initiation [31]. In addition, three paleoAP3 genes, OMADS5, OMADS3 and OMADS9, and one PISTILLATA gene, OMADS8, were characterized in *Oncidium* orchid [32]. In *Habenaria*, three DEF-like genes were identified, with *HrGLO1* and *HrGLO2* expressed in sepal, petals and column, but *HrDEF* expression detected only in petals and column [33]. C-class and D-class genes were identified from four orchid species: *Phalaenopsis* (*PhalAG1*, *PhaLAG2*) [34], *Dendrobium* (*DthyrAG1*, *DthyrAG2*) [26], *Dendrobium* (*DcOAG1*, *DcOAG2*) [35] and AGAMOUS-like genes, denoted CeMADS1 and CeMADS2, from *Cymbidium* [36]. Orchid E-class and AGL-6 genes were identified from *Oncidium* and OMADS11 in the LOFSEP subclade, OMADS6 in the SEP3 subclade, and OMADS1 and OMADS7 in the AGL6 subclade [25,37]. However, this research is in line with current thoughts on how major evolutionary changes in the genetic basis of organ identity were established by gene duplication and the separation of functions. We have a long way to go to fully understand the role of MADS-box genes in orchid evolution.

Recently, next-generation deep-sequencing technology such as Solexa/Illumina RNA-seq and digital gene expression (DGE) have provided new approaches for studying global transcriptome profiling of species that lack reference genome information [38]. RNA-seq is widely used with model and non-model organisms to obtain massive sequence data for molecular marker development, gene discovery and transcriptome profiling [39–44]. So far, transcriptomic analyses have been performed with vegetative and reproductive tissues of *Phalaenopsis* [39,42], *Oncidium* leaf and floral buds [45], *Cymbidium* non-pseudobulb shoot and floral buds [46], *Orchis italica* floral buds [47] and *Ophrys* vegetative and reproductive tissues [48]. However, RNA-seq technology has not been used for transcriptomic analysis of floral-organ development in *Phalaenopsis*.

To better understand floral-organ development of *Phalaenopsis* orchid at the molecular level, we used RNA-seq technology to investigate the expression of a large number of genes, with emphasis on those differentially expressed in floral-organ development of the wild-type and peloric mutant of *Phalaenopsis*. To gain a comprehensive understanding of the *Phalaenopsis* floral development and related processes, we dissected sepal, petal and labellum of 0.2-cm wild-type and peloric mutant flower buds for RNA extraction and detailed transcriptome analysis. Differentially expressed transcripts and their expression patterns were analyzed, and several potential candidate transcripts were found to be regulator factors involved in floral development. We identified genes that are significantly differentially expressed in floral organs by comparing the wild-type and peloric mutant. Our study reveals the functional differentiation and coordination of floral organs and provides insights into possible regulatory networks underlying the development of floral buds in *Phalaenopsis*.

Materials and Methods

Plant material

Three distinct floral mutants in petal, sepal or labellum (lip) were used for this study. Wild-type (normal) and peloric petal mutant plants of the orchid hybrid *Phalaenopsis* Brother Spring Dancer ‘KHM190’ (Fig 1 and Fig A in S1 File) were obtained from I-Hsin Biotechnology (Chiaiyi, Taiwan). Wild-type *Phalaenopsis aphrodite* and its lip-like sepal mutant (peloric sepal) were from own collection. Wild-type flower of *Phalaenopsis* ‘NPU1458’ and its petal-like lip (big lip) mutant was from a breeding population. Wild-type and mutant plants were all...
grown in fan-and-pad greenhouse of National Pingtung University of Science and Technology (Pingtung, Taiwan) under natural day light and controlled temperature from 27 to 30°C. Flowering plants were maintained in a cooling greenhouse at 20/26°C (night/day) temperature. Virus-infected plants were determined by use of RT-PCR with virus-specific primers of *Cymbidium mosaic virus* (CymMV) and *Odontoglossum ringspot virus* (ORSV) and excluded. For all experiments, sepal, petal and labellum (lip) organs of 0.2-cm flower buds, which were collected from several clone plants derived from tissue culture to provide sufficient source of total RNAs, were collected (Fig A in S1 File), immersed in liquid nitrogen, and stored at —80°C.

RNA extraction and deep sequencing

RNA was isolated from frozen orchid tissues by the TriSolution method (GeneMark, Taipei) [49]. RNA solution was treated with RNase-free DNase I (Promega, Taipei) to eliminate contaminating DNA. RNA quantity and quality were evaluated by the automated electrophoresis system (Experion, Bio-Rad). RNA samples with RNA quality indicator (RQI) >8 were sent to Yourgene Bioscience on dry ice (New Taipei City, Taiwan) for mRNA purification and cDNA construction. The cDNA library for transcriptome sequencing was constructed with use of the Illumina TruSeq RNA sample prep kit. An amount of 5 μg total RNA was directly fragmented.

![Figure 1](https://example.com/figure1.png)

Fig 1. Flowers of wild-type and peloric mutant of *Phalaenopsis* Brother Spring Dancer ‘KHM190’. (A) Wild-type and (B) peloric mutant flower. Bar = 1 cm. (C) Scanning electron microscopy of petal of floral buds at early developmental stages of (a), (b) wild-type and (c), (d) peloric-mutant flower. Bar = 500 μm.

doi:10.1371/journal.pone.0123474.g001
after the oligo-T purification step. The first- and second-strand cDNA was synthesized from
the fragmented RNA with random hexamer primers, then underwent end repair, A-tailing,
adaptor ligation, size-selection of the range 320–420 bp (approximately insert size 200–300 bp)
and then PCR amplification for 15 cycles. The products were loaded onto flow cell channels at
12 pM for pair-end 100 bp×2 sequencing with the Illumina HiSeq 2000 platform (Yourgene
Bioscience, New Taipei City, Taiwan).

De novo assembly and analysis of Illumina reads

Before the transcriptome assembly, the clean reads were obtained from raw sequencing reads
by removing adaptor sequences, reads with more than 5% unknown nucleotides, and low-
quality reads (reads containing more than 50% bases with Q-value ≤ 20). For de novo
assembly, we pooled all trimmed reads from samples and adopted Velvet (v1.2.07) [50] with distinct
k-mer values (35, 45, 55, 65 and 75), followed by Oases (v0.2.06) [51]. The pair-read insert
average size was set to 260 bases, with a standard deviation of 10%. Finally, the transcript data-
sets assembled at different k-mer values were merged by use of Oases with default settings
(k-mer = 55).

Transcriptome annotation

Functional annotation of the contigs involved a local BLASTx search with our assembly
against the NCBI Nr database (significant E-value threshold ≤ 1e⁻⁵). From the search results,
to determine gene functions of the sequences, the Blast2GO program was used to obtain gene
ontology (GO) annotation according to biological process cellular component and molecular
function ontologies [52,53]. Pathway assignments were performed according to the KEGG
pathway database [54] with BLASTx and E-value threshold 1e⁻⁵. Protein domain annotations
involved use of RPS-BLAST 2.2.23 against the Pfam database (ver. 25.0) with the best hit and
an E-value ≤ 1e⁻⁵ [55,56].

Identification of differentially expressed transcripts

To evaluate the expression of raw transcript, we first mapped trimmed reads to raw transcript
sequence using gapped alignment mode of the program Bowtie 2.2.1.0 [57]. After alignment,
we quantified raw transcript expression with the software package eXpress 1.3.0 [58]. The
value of read counts from eXpress would be the input of DESeq [59], an R software package,
was used to test for differential expression. Genes with differential expression of at least two-
fold change at P ≤ 0.05 between normal and mutant floral organs were identified with the dis-
persion estimates obtained using blind method in DESeq package.

Real-time PCR analysis

Quantitative real-time RT-PCR and data analysis involved the ABI PRISM 7300 Sequence De-
tection System (Applied Biosystems) with SYBR Green PCR Master Mix (Applied Biosystems).
Total RNA was isolated from *Phalaenopsis* sepal, petal and lip tissue. To remove contaminating
DNA, RNA samples were treated with DNase I and used for first-strand cDNA synthesis by
priming with oligo (dT)$_{25}$ and catalyzed with Superscript II Reverse Transcriptase (Invitrogen)
at 42°C for 1.5 h. The primers for the transcripts investigated were designed on the basis of
open reading frame sequences for each gene with use of Primer Express (Applied Biosystems).
The thermal cycling condition was 10 min at 95°C, and 40 cycles of 15 sec at 95°C and 1 min at
60°C. Before running real-time PCR, primer efficiency was evaluated by use of both gene-spe-
cific and internal-control Actin primers [49,60] (S1 Table) at 50-, 150- and 300-nM
combinations as described [49]. We chose the 150-nM concentration for both the target and Actin genes as the most suitable combination. Each sample was amplified in triplicate. With the housekeeping gene Actin, the relative expression level of target genes was presented as 2^ΔC_T by the ΔC_T method (Applied Biosystems).

Results

Phalaenopsis floral morphogenesis in the wild-type and peloric mutant

The Phalaenopsis flower features bilateral symmetry with two whorls of tepals and a central gynostemium (Fig 1A). The three petal-like sepals include one at the top and two in the lower lateral positions. The flower has two lateral petals and a specialized, enlarged, flamboyant bottom petal, called a labellum. The gynostemium (column) is a reproductive organ with pistil and stigma organs fused together (Fig 1A). Flowers of peloric mutants are radially symmetrical with lip-like petals due to abnormal protrusion of upper cell layers and may lose their pollinia in severe cases (Fig 1B). Visible differences in the development of wild-type and peloric-mutant floral buds began at stage 2 (0.2-cm bud), with an asymmetric shape of petals. At this stage, the petals in the peloric mutant mimicked the labellum in shape, whereas its sepals were similar to those of the wild-type (Fig A in S1 File). Scanning electron microscopy revealed the stage-2 peloric mutant flower with an abnormal fin-like protrusion on both petals (Fig 1C).

Assembly of high-quality Phalaenopsis flower transcriptomes

To obtain an overview of the Phalaenopsis flower transcriptome profiles of stage-2 buds, when the peloric petal began to appear, we used RNA-seq for sequencing six cDNA preparations from sepal, petal and labellum tissues of both the wild-type and peloric mutant and generated 100-bp paired-end reads. Deep-sequencing of the six cDNA samples produced 36,697,424, 58,805,774, 41,084,182, 48,504,500, 78,458,762 and 65,091,470 clean paired-end reads for wild-type and peloric-mutant sepal, petal and labellum transcriptomes, respectively (Table 1). The mean read length was 90 bp. The raw data were submitted to and are available at NCBI and can be accessed in the Short Read Archive (NS: SRX396172; PS: SRX396784; NP: SRX396785; PP: SRSX396786; NL: SRX396787; PL: SRX396788). All clean reads were assembled by Velvet and Oases and produced 752,203 assemblies (transcripts). We then chose the one with highest confidence score of a locus or if two isoforms of the same locus have the same confidence

Table 1. Summary of Phalaenopsis floral-organ transcriptome assembly.

Total no. of transcripts	NS	PS	NP	PP	NL	PL
Raw data						
Total no. of reads	39,281,522	63,691,838	43,899,068	51,106,016	81,707,498	67,469,926
Total nucleotides (nt)	3,967,433,722	6,432,875,638	4,433,805,868	5,161,707,616	8,252,457,298	6,814,462,526
High-quality reads	36,697,424	58,805,774	41,084,182	48,504,500	78,458,762	65,091,470
Assembly*						
Maximum CDS length (bp)	4,816					
Mean CDS length (bp)	1,081					
Total CDS length (bp)	24,915,746					
N50 size (bp)	2,094					
GC percentage	43.36					

NS, wild-type sepal; PS, peloric sepal; NP, wild-type petal; PP, peloric petal; NL, wild-type labellum; PL, peloric labellum (PL)

* All reads mixed.

doi:10.1371/journal.pone.0123474.t001
score, then the longer one was selected as unigenes. Finally, we obtained 43,552 contigs with a mean length of 1081 nt and a median length of 532 nt. The size distribution of the contigs is in Fig B in S1 File.

Annotation of predicted proteins

We annotated, classified, and functionally mapped the 43,552 contig sequences based on BLASTx (cut-off E-value $\leq 1e^{-5}$) searches of four public protein databases: NCBI non-redundant (Nr) database, gene ontology (GO) database, Kyoto Encyclopedia of Genes and Genomes (KEGG) database, Enzyme Commission (EC) and Pfam (Fig 2; Fig 3 and S2 Table). Among 43,552 contig sequences, significant BLAST hits were found for 28,193 (64.7%) sequences, with no hit found for 15,359 (35.3%) sequences. From the Nr annotations, for the top hits, 44.4% of the annotated sequences (E-value $1e^{-5}$-$1e^{-50}$) matched available plant sequences (Fig 2A). The species distribution based on Nr annotation is shown in Fig 2B, with the top matches being Vitis, Oryza, Zea, Populus and Ricinus.

Functional annotation and classification of Phalaenopsis floral transcriptome

GO assignments were used to classify the functions of the predicted Phalaenopsis flower-tissue transcripts. With Nr annotation, we used the Blast2GO 2.3.5 program to obtain GO
annotations. In all, 4,609 GO annotations were assigned to 19,712 Phalaenopsis flower-tissue contigs, and the terms were summarized into three main GO categories and 49 GO functional groups (Fig 3A). We found 26 subsets within the Biological Process category, 8 within the Cellular Component category and 15 within the Molecular Function category (Fig 3A). Of these, 16,565 (84.0%) comprised the largest category of molecular function, followed by biological process (14,892, 75.6%) and cellular component (14,678, 74.5%) (S3 Table). Thus, the most abundant contigs were related to cellular and metabolic functions in the Biological Process category; cellular component, cell part and organelle functions in the Cellular Component category and molecular function, binding and catalytic activity in the Molecular Function category. Details of the gene annotation for significant hits of the three contig sets are in S3 Table.

To identify biological pathways activated in the flower tissues of Phalaenopsis, the assembled contigs were annotated with Enzyme Commission (EC) numbers from BLASTX alignments against the KEGG database (E-value ≤ 1e-5). A total of 3,724 transcripts were assigned to 139 KEGG pathways; of these 1,679 transcripts, EC numbers were also assigned (S4 Table). The top 15 KEGG pathways observed for Phalaenopsis flower tissue contigs are shown in Fig 3B. A large proportion of such contigs belonged to purine metabolism (map00230), starch and
sucrose metabolism (map00500), pyrimidine metabolism (map00240), thiamine metabolism (map00730) and amino sugar and nucleotide sugar metabolism (map00520). The top 15 abundant enzyme classes for *Phalaenopsis* flower tissue contigs were dehydrogenase, synthase, ligase, reductase, kinase and transaminase (Fig 3C and S5 Table).

Identification of protein-coding domains

We obtained the conserved domain information for the transcriptome in the Pfam database [61] using RPS-BLAST, which scans a set of pre-calculated position-specific scoring matrices with a protein query. Comparison of the 43,552 contigs against the Pfam domain database with E-value cutoff 1×10^{-5} and domain coverage $>$50% resulted in 9,607 contigs matching at least one protein domain model. The most abundant protein domains in *Phalaenopsis* flower buds were the pentatricopeptide repeat (PPR, pfam01535; PPR, pfam01535; PPR, pfam12854), followed by the leucine-rich repeat (LRR, pfam13855), pentatricopeptide repeat (PPR, pfam13812), leucine-rich repeat (LRR, pfam12799), and WD40 (WD40, pfam00400) domains (Fig 3D and S6 Table).

Global changes of transcriptome profile in wild-type and peloric-mutant flower organs

To identify differentially expressed genes (DEGs) between the wild-type and peloric-mutant flower tissues (sepal, petal and labellum) (Fig 1A and 1B), we determined relative expression levels from our RNA-seq data (43,552 contigs) using DEseq [46]. We found 1,838 distinct contig sequences between the peloric sepal (PS) and wild-type sepal (NS) libraries: 820 were upregulated and 1,018 downregulated in the peloric-mutant sepal (Fig 4). We found 758 distinct contig sequences between the peloric petal (PP) and wild-type petal (NP) libraries: 363 were upregulated and 395 downregulated in the peloric-mutant petal. We found 1,147 distinct contig sequences between the peloric labellum (PL) and wild-type labellum (NL) libraries: 854 were upregulated and 293 downregulated in the peloric-mutant labellum (Fig 4). The expression levels and annotation of these differentially expressed contig sequences are in S7 Table.

![Fig 4](https://example.com/fig4.png)

Fig 4. Changes in gene expression profiles between wild-type and peloric-mutant floral organs. The number of up- and downregulated genes in peloric sepal (PS) and wild-type sepal (NS), peloric petal (PP) and wild-type petal (NP), and peloric labellum (PL) and wild-type labellum (NL). Six libraries were summarized.

doi:10.1371/journal.pone.0123474.g004
Functional analysis of DEGs based on RNA-seq data

From the functional annotation of the *Phalaenopsis* flower tissue transcriptomes, the GO annotation of DEGs was obtained and underwent GO functional enrichment analysis, specifically the PS vs NS, PP vs NP and PL vs NL comparisons. GO annotation analysis involved groups of genes with greater than two-fold differential expression (\(\log_2 \text{ratio} \geq 1 \) and \(\log_2 \text{ratio} \leq -1 \), \(P < 0.05 \)) in *Phalaenopsis* flower organs. Under PS vs NS, PP vs NP and PL vs NL, the DEGs were classified into 21, 18, and 20 categories of biological processes, respectively, 8 categories each on the basis of cellular components, and 13, 13, and 12 categories on the basis of molecular function (Fig C in S1 File).

Differential expression of TFs in flower organs

TFs bind DNA and target the assembly of protein complexes to regulate transcript levels of target gene expression [62]. In this study, we performed global TF classification for differentially expressed transcripts and found 878 that were differentially expressed between the wild-type and peloric mutant among *Phalaenopsis* floral organs (sepal, petal and labellum) (S8 Table), including members of the AP2/ERF, ARF, bHLH, homeobox, MADS, MYB and NAC families. This information is valuable in providing a deeper insight into the role of TFs during *Phalaenopsis* wild-type and peloric-mutant floral-organ development. From DEseq analysis, most TF families from the most abundant transcripts were significantly downregulated and some were upregulated (S8 Table) in the peloric mutant. TFs with previously reported roles in *Phalaenopsis* floral-organ development included *PeMADS4*, which is among the most abundant MADS-box proteins expressed in the *Phalaenopsis* floral organs analyzed. The *PeMADS4* transcript was detected in the wild-type *Phalaenopsis* labellum and ectopically expressed in the petal of the peloric mutant that transformed to a lip-like petal [29]. Another two candidate TFs (CUFF.17763 and CUFF.17763.1), upregulated in lip-like as compared with normal petals, encode a putative TF belonging to the MADS-box gene family that are homologous to *AGL6*-like genes (S8 Table). Some TF families, such as the AP2, homeobox, MYB and NAC family, will be further discussed below. A more in-depth analysis is necessary to determine how these gene families linked to molecular and cellular changes are activated during *Phalaenopsis* floral organ development.

RNA-seq expression validation by real-time PCR

The Illumina RNA-seq data were validated by real-time PCR analysis of selected genes with RNA isolated from floral organs (sepal, petal and labellum) of the 0.2-cm bud stage of both the wild-type and peloric mutant (Fig 1A and 1B). We selected 27 transcripts with differential expression patterns for real-time PCR analysis and performed a one-by-one comparison of each transcript by real-time PCR and RNA-seq. A total of 21 contigs showed differential expression in agreement with the RNA-seq data (Fig D in S1 File and S9 Table). Three transcripts showing upregulation in the RNA-seq results (CUFF.1482.1, CUFF.40149.1 and CUFF.29848.1) were slightly downregulated in the real-time PCR analysis, one transcript showing downregulation in the RNA-seq results (CUFF.39479.1) was slightly upregulated in the real-time PCR analysis and two transcripts showing downregulation in the RNA-seq results (CUFF.19890.3 and CUFF. 29789.2) did no show significant difference in the real-time PCR analysis. These two methods yield completely opposite results that genome analyzer provides a holistic picture of all the isoforms of a gene into consideration, whereas the expression by real-time PCR is specific to the isoform of the gene into consideration owing to the use of gene specific primers. Overall, the real-time PCR results agreed well with the RNA-seq data.
PhAGL6 may be involved in labellum development of the *Phalaenopsis* flower

To reveal putative roles in labellum development of *Phalaenopsis* flower, we evaluated the association of the expression of five TFs (*PhMADS1, PhMADS4, PhMADS5, PhAGL6a* and *PhAGL6b*) in the floral organs (sepal, petal, labellum and gynostemium) and different floral morphologic features of *Phalaenopsis* orchid mutants (lip-like petal, lip-like sepal, and big lip) from our collection ([Fig 5; Fig E in S1 File](#fig5)). We estimated the association of the expression of the five TFs and labellum development by real-time PCR. The *PhMADS1* transcript was highly expressed in the gynostemium ([Fig 6](#fig6)). The expression of *PhMADS5* was significantly reduced in lip-like petals of peloric-mutant flowers ([Fig 6A](#fig6A)) but not in the lip-like sepal of peloric-mutant flowers ([Fig 6B](#fig6B)). The expression of three TFs (*PhMADS4, PhAGL6a* and *PhAGL6b*) was increased in the labellum of the wild-type and mutant ([Fig 6](#fig6)). In contrast, *PhMADS4* and *PhAGL6b* transcripts were significantly reduced in the labellum of the big-lip mutant ([Fig 6C](#fig6C)). Furthermore, the transcript levels of *PhAGL6a* and *PhAGL6b* were significantly increased in the lip-like petal and lip-like sepal of peloric- mutant flowers ([Fig 6A and 6B](#fig6A and 6B)). Thus, *PhMADS4, PhAGL6a* and *PhAGL6b* may play different roles in the development of the labellum in *Phalaenopsis*, especially *PhAGL6b* in peloric-mutant flowers and labellum development.

Discussion

Construction of an informative floral-organ transcriptome for *Phalaenopsis*

Although the transcriptome of *Phalaenopsis* orchid has been reported previously with expressed sequence tags obtained through Sanger sequencing [49,63], three Roche 454 and Illumina
platforms, and three Roche 454 and Illumina sequence datasets available in NCBI [40,43,45], an in-depth comparison of the orchid floral organ transcriptome to reveal developmental cues was lacking. In this study, we used the Illumina HiSeq 2000 sequencing platform to generate six transcriptome sequence datasets of different floral organs (sepal, petal and labellum) from the Phalaenopsis wild-type and peloric mutant. The assembled contigs of Phalaenopsis floral organs were further analyzed to generate a functional characterization of the transcriptome and differential expression analysis. We assembled the contigs of the six libraries and obtained 43,552 transcripts; 64.7% of the contigs returned a significant BLAST result. The top five plant species with BLAST hits to annotated contigs were Vitis, Oryza, Zea, Populus and Ricinus (Fig 2B), for which the annotations of their genomes are comprehensive and largely accepted. Among 43,552 Phalaenopsis transcripts, 19,712 had GO annotations, 3,724 mapped to 139 pathways of KEGG, and 9,607 matched at least one protein domain with Pfam (Fig 3A, 3B and 3D). Thus, many unique processes and diverse pathways are involved in Phalaenopsis floral organ development.

Genes commonly expressed in floral organs

Transcript expression profiling is often compared among different developmental stages, different plant organs, or plants under different growth conditions [44,64–67]. In the present study, we identified many genes showing transcriptional changes in the Phalaenopsis floral organ by comparing the wild-type and peloric mutant. We identified 1,838 (PS vs. NS, 820 upregulated, 1,018 downregulated), 758 (PP vs. NP, 363 upregulated, 395 downregulated) and 1,147 (PL vs. NL, 854 upregulated, 293 downregulated) DEGs that were differentially expressed by greater than two-fold at $P < 0.05$ significance (Fig 4 and S7 Table). Most of these genes were involved in regulating flower development, such as floral meristem transformation or establishment of the floral meristem into different types of floral organs [13,68–70]. Our global transcript profiles provide a comprehensive high-resolution analysis of gene expression changes associated with Phalaenopsis floral-organ development.
From these DEGs, genes and TFs identified included floral homeotic MADS-box genes, MYB genes and NAC TFs (S8 Table) whose putative functions were linked to the morphogenesis of *Phalaenopsis* flower buds. By using the DEGs datasets, and computational and statistical analyses, this study led to the identification of genes that are likely involved in the control of key developmental processes during *Phalaenopsis* floral-organ development. Further functional characterization of the DEGs by GO functional analysis revealed an additional 42 (PS vs NS), 39 (PP vs NP) and 40 (PL vs NL) categories involved in biochemistry, metabolism, growth and regulation of biological processes (Fig C in S1 File). This DEG information will be valuable to elucidate floral organ development and to find novel floral-organ-related genes specific to *Phalaenopsis* orchids.

Transcriptional regulation in *Phalaenopsis* floral organs

Regulation of gene expression via TF binding is the primary mechanism by which dynamic complex processes of development and differentiation are controlled [71,72]. The specification of different types of floral organs is a key process regulated by the floral homeotic genes. These genes encode TFs that act in a combinatorial manner to regulate floral-organ developmental programs [6,73,74]. In the present study, we identified 878 TFs using global TF classification for the differentially expressed transcripts. Subsets of TF families were associated with functions in cell differentiation (bZIP, bHLH and MYB), meristem maintenance (homeobox, NAC and YABBY), floral-organ development (MADS and TCP) and other roles in hormone-mediated signalling by auxin (Aux/IAA, ARF), GA (GRAS and Dof) or ethylene (AP2/ERF). The bHLH family contains genes regulating flower development, such as controlling floral-organ formation as well as the morphogenesis of sepals, petals, stamens and anthers in *Arabidopsis* [75–77], *Eschscholzia californica* [78] and rice [79]. The *Phalaenopsis* bHLH families showed complex expression profiles (S7 Table), which suggests their intricate roles in floral-organ development. Further investigation of bHLH TFs are required to verify floral-development regulation and interaction between these factors and other genes during early labellum and lip-like petal differentiation. The MYB transcription factors have conserved DNA binding domains and some have been known to regulate floral development [80–82]. Most of the *Phalaenopsis* MYB TFs in our RNA-seq data showed marked differential expression among the floral organs examined (S8 Table). Of the four MYB TFs, two (CUFF.26564.1 and CUFF.22705.1) were highly expressed in lip-like petals and the other two (CUFF.15031.1 and CUFF.15465.1) were upregulated in wild-type petals, which suggests different roles played by the four MYBs in petal organ development. The homeobox genes encode a group of transcriptional regulators that control meristem, floral and leaf maintenance and development [83–87]. In our RNA-seq data, one homeobox protein, **KNOTTED-1-like 3** (CUFF.39041.1), was upregulated in lip-like petals. The roles of **KNOTTED-1** genes such as **HIRZINA** and **INVAGINATA** in spur development have been reported in snapdragon (*Antirrhinum majus*) and *Linaria vulgaris* [83,88]. **HIRZINA** and **INVAGINATA** also induced sac-like outgrowths and distally dissected corolla tubes on flowers when constitutively expressed in transgenic tobacco [83]. Of note, **KNOTTED-1-like 3** was ectopically expressed in *Phalaenopsis* lip-like petal, which suggests its probable function in inducing callosity structure and a sawtooth petal formation.

The MADS-box genes encode a family of TFs that are the best-studied floral TF family so far. Members of this family play prominent roles in floral organ specification [11,89]. In our study, the MADS-box TFs showed different expression profiles: four (CUFF.17763, CUFF.17763.1, CUFF.25909 and CUFF.36625.1) were upregulated and one (CUFF.39479.1) was downregulated in lip-like petals of the peloric mutant (S8 Table). In *Phalaenopsis*, **PeMADS4** plays an important role in labellum development because its transcript was
restricted to the labellum and lip-like petals of the peloric mutant [29]. Furthermore, the absence of OMADS5 expression is necessary for the formation of the large lips and the conversion of the sepal or petal into lips in Oncidium peloric mutants [32]. In our DEGs and real-time PCR analysis, we identified one transcript encoding PeMADS4 with higher expression in labellum and lip-like petals (Fig 6A), which is similar to findings by Tsai et al. (2004) [29]. Two members of the AGL6-like MADS-box subfamily were upregulated in the lip-like petal of peloric mutants and the labellum (Fig 6A, 6B and 6C). The AGL6-like genes define floral organ and meristem identity in Arabidopsis, rice, petunia and maize [64,90–93]. The AGL6-like genes from our Phalaenopsis floral transcriptomes might also play an important role in maintaining labellum development. Ectopic expression of AGL6-like genes in transgenic Phalaenopsis petals may reveal their function.

PhAGL6-like and PhMADS4 are critical candidate regulators of labellum development in Phalaenopsis

To reveal the regulation of five MADS genes (PhMADS1, PhMADS4, PhMADS5, PhAGL6a and PhAGL6b) in floral-organ development in Phalaenopsis, we examined their expression in different floral morphogens of Phalaenopsis orchid mutants (lip-like petal, lip-like sepal and big lip). The increased PhMADS4 transcript level in labellum and gynostemium of wild-type plants suggests its positive role in both labellum and gynostemium formation (Fig 6A, 6B and 6C). The PhMADS4 transcript level was 5.05-fold higher in lip-like petals of peloric mutant flowers than in wild-type petals (Fig 6A). In addition, the PhMADS4 transcript was also 1.48-fold increased in mutant lip-like sepal organ and 0.55-fold decreased in big-lip organs (Fig 6B and 6C). The results from these two different flower mutants suggest that PhMADS4 might be involved in labellum development and lip-like petal formation, as reported by Tsai et al. (2004) [29]. However, in the lip-like sepal of peloric mutants, PhMADS4 might play only a minor role in the conversion of the sepal into a labellum. The increased PhMADS4 transcript may be a secondary effect of sepal conversion into a lip-like structure. This assumption still requires further investigation. The expression of PhMADS5 was upregulated in sepal and petals but upregulated only in gynostemium of the big-lip mutant. PhMADS5 transcript level was slightly but significantly decreased (0.297-fold) in lip-like petals and decreased (0.56-fold) in lip-like sepal. This finding implies that PhMADS5 may be related to petal and sepal development. In all wild-types and peloric mutants examined, PhMADS1 transcript expression was stronger in the gynostemium than sepal, petal and labellum (Fig 6A, 6B and 6C), as reported by Chen et al. (2012) [94]. PhMADS1 is a C-function homeotic gene, which is associated with the formation of gynostemiums [94].

The expression of two AGL6-like TFs (PhAGL6a and PhAGL6b) was increased in the labellum of both the wild-type and lip-like petal mutant (Fig 6A). Furthermore, the expression of PhAGL6a and PhAGL6b was significantly increased in the lip-like petal of peloric mutant flowers. AGL6-like genes may be a positive regulator of labellum formation. Ectopic expression AGL6-like genes in petal or sepal may convert them into a lip-like structure. In contrast, down-regulation of AGL6-like genes in the labellum may affect labellum development. As a further test of the significance of these assumptions, we examined the expression patterns of PhAGL6a and PhAGL6b in the lip-like petal, lip-like sepal and big lip of peloric mutant flowers. As expected, PhAGL6a and PhAGL6b were ectopically expressed in the lip-like petal and lip-like sepal organs in peloric mutants. In addition, the expression of PhAGL6b was reduced in the labellum of the big-lip mutant, with no change in expression of PhAGL6a. In summary, PhMADS4, PhAGL6a and PhAGL6b together play different roles in maintenance of labellum development. For petal and sepal mutants converted into a lip-like structure, PhMADS4,
PhAGL6a and PhAGL6b are ectopically expressed in the peloric petal and sepal (Fig 7). Alternatively, PhMADS4 and PhAGL6b may be critical and involved in the labellum converting into a big lip (Fig 7).

Conclusions

We examined global transcriptome landscapes from six floral organ tissues of the wild-type and peloric-mutant Phalaenopsis orchid and identified preferentially expressed genes within and among floral organ developmental tissues. By comparing genes showing floral-organ-preferential expression patterns between the wild-type and peloric mutant, we identified DEGs across a wide range of transcript abundances. Cumulative counts of contigs that mapped to predicted gene models enabled the identification of functionally interesting genes and gene families with altered expression in peloric mutants. Functional analysis and characterization of the differentially expressed genes provides new insight into peloric floral morphogenesis, in particular regarding the role of regulation for floral organ development. We provide a comprehensive list of genes that might be involved in labellum formation and petal conversion into a labellum process. Many TF genes, especially MADS-box genes were expressed in floral organs. We identified the MADS-box genes PhAGL6a, PhAGL6b and PhMADS4 as potential regulatory components of labellum development based on conversion of the petal or sepal mutant into a lip-like structure. Our study gives new insights into exploring PhAGL6a, PhAGL6b and
PhMADS4 transgenic plants as a tool to investigate labellum development and petal or sepal conversion into a labellum in *Phalaenopsis* orchids. Our results provide a strong basis for future research into floral organ development in *Phalaenopsis* orchid.

Supporting Information

S1 File. Supporting figures.
(DOC)

S1 Table. Real-time PCR primers used in this work.
(XLSX)

S2 Table. Overview of *Phalaenopsis* floral-organ transcriptome sequencing and assembly.
(XLSX)

S3 Table. GO categories assigned with *Phalaenopsis* floral-organ contigs.
(XLSX)

S4 Table. KEGG pathway categories assigned with *Phalaenopsis* floral-organ contigs.
(XLSX)

S5 Table. EC number categories assigned with *Phalaenopsis* floral-organ contigs.
(XLSX)

S6 Table. Pfam domains in *Phalaenopsis* floral-organ contigs.
(XLSX)

S7 Table. Transcripts differentially expressed between peloric-mutant and wild-type flowers.
(XLSX)

S8 Table. Summary of the annotated transcription factors.
(XLSX)

S9 Table. DEseq of selected genes in peloric-mutant and wild-type flower.
(XLSX)

Acknowledgments

We thank Yourgene Bioscience for assistance of technical works.

Author Contributions

Conceived and designed the experiments: JZH CYL SWC FCC. Performed the experiments: JZH CPL TCC SYC YWC. Analyzed the data: JZH CPL BCHC. Contributed reagents/materials/analysis tools: FCC CYL BCHC. Wrote the paper: JZH FCC.

References

1. Pridgeon AM, Cribb PJ, Chase MW, Rasmussen FN (2005) Genera Orchidacearum: Epidendroideae (Part One). Oxford: Oxford University Press. 696 p.
2. Christenson EA (2001) *Phalaenopsis*. Portland Oregon: Timber Press. 330 p.
3. Rudall PJ, Bateman RM (2002) Roles of synorganisation, zygomorphy and heterotopy in floral evolution: the gynostemium and labellum of orchids and other ilioid monocots. Biol Rev Camb Philos Soc 77: 403–441. PMID: 12227521
4. Kaeppler SM, Kaeppler HF, Rhee Y (2000) Epigenetic aspects of somaclonal variation in plants. Plant Mol Biol 43: 179–188. PMID: 10999403
5. Miguel C, Marum L (2011) An epigenetic view of plant cells cultured in vitro: somaclonal variation and beyond. J Exp Bot 62: 3713–3725. doi: 10.1093/jxb/err155 PMID: 21617249
6. Coen ES, Meyerowitz EM (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353: 31–37. PMID: 1715520
7. Theissen G (2001) Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol 4: 75–85. PMID: 11163172
8. Theissen G, Saedler H (1995) MADS-box genes in plant ontogeny and phylogeny: Haeckel’s ‘biogenetic law’ revisited. Curr Opin Genet Dev 5: 628–639. PMID: 8664551
9. Weigel D, Meyerowitz EM (1994) The ABCs of floral homeotic genes. Cell 78: 203–209. PMID: 7913881
10. Alvarez-Buylla ER, Pelaz S, Liljegren SJ, Gold SE, Burgeff C, Ditta GS, et al. (2000) An ancestral MADS-box gene duplication occurred before the divergence of plants and animals. Proc Natl Acad Sci U S A 97: 5328–5333. PMID: 10805792
11. Theissen G, Becker A, Di Rosa A, Kanno A, Kim JT, Münster T, et al. (2000) A short history of MADS-box genes in plants. Plant Mol Biol 42: 115–149. PMID: 10688133
12. Ditta G, Pinyopich A, Robles P, Pelaz S, Yanofsky MF (2004) The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Curr Biol 14: 1935–1940. PMID: 15530395
13. Krizek BA, Fletcher JC (2005) Molecular mechanisms of flower development: an armchair guide. Nat Rev Genet 6: 688–698. PMID: 16151374
14. Theissen G, Melzer R (2007) Molecular mechanisms underlying origin and diversification of the angiosperm flower. Ann Bot 100: 603–619. PMID: 17670752
15. Jofuku KD, den Boer BG, Van Montagu M, Okamura JK (1994) Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6: 1211–1225. PMID: 7919989
16. Mandel MA, Yanofsky MF (1995) A gene triggering flower formation in Arabidopsis. Nature 377: 522–524. PMID: 7566148
17. Goto K, Meyerowitz EM (1994) Function and regulation of the Arabidopsis floral homeotic gene PISTIL-LATA. Genes Dev 8: 1548–1560. PMID: 7958839
18. Jack T, Brockman LL, Meyerowitz EM (1992) The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell 68: 683–697. PMID: 1346756
19. Pinyopich A, Ditta GS, Savidge B, Liljegren SJ, Baumann E, Wisman E, et al. (2003) Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature 424: 85–88. PMID: 12840762
20. Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF (2000) B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405: 200–203. PMID: 10821278
21. Ferrario S, Immink RG, Angenent GC (2004) Conservation and diversity in flower land. Curr Opin Plant Biol 7: 84–91. PMID: 14732446
22. Kramer EM, Hall JC (2005) Evolutionary dynamics of genes controlling floral development. Curr Opin Plant Biol 8: 13–18. PMID: 15653394
23. Cozzolino S, Widmer A (2005) Orchid diversity: an evolutionary consequence of deception? Trends Ecol Evol 20: 487–494. PMID: 16701425
24. Chen D, Guo B, Hexige S, Zhang T, Shen D, Ming F (2007) SQUA-like genes in the orchid Phalaenopsis are expressed in both vegetative and reproductive tissues. Planta 226: 369–380. PMID: 17377807
25. Chang YY, Chiu YF, Wu JW, Yang CH (2009) Four orchid (Oncidium Gower Ramsey) AP1/AGL9-like MADS box genes show novel expression patterns and cause different effects on floral transition and formation in Arabidopsis thaliana. Plant Cell Physiol 50: 1425–1438. doi: 10.1093/pcp/pcp087 PMID: 19541596
26. Skipper M, Johansen LB, Pedersen KB, Frederiksen S, Johansen BB (2006) Cloning and transcription analysis of an AGAMOUS- and SEEDSTICK ortholog in the orchid Dendrobium thyrsiflorum (Reichb. f.). Gene 366: 266–274. PMID: 16236468
27. Yu H, Goh CJ (2000) Identification and characterization of three orchid MADS-box genes of the AP1/AGL9 subfamily during floral transition. Plant Physiol 123: 1325–1336. PMID: 10938351
28. Mondragon-Palomino M, Theissen G (2011) Conserved differential expression of paralogous DEFICIENS- and GLOBOSA-like MADS-box genes in the flowers of Orchidaceae: refining the ‘orchid code’. Plant J 66: 1008–1019. doi: 10.1111/j.1365-313X.2011.04560.x PMID: 21435045
29. Tsai WC, Kuo HJ, Chiang MH, Chen WH, Chen HH (2004) Four DEF-like MADS box genes displayed distinct floral morphogenetic roles in Phalaenopsis orchid. Plant Cell Physiol 45: 831–844. PMID: 15295066
30. Aceto S, Sica M, De Paolo S, D’Argenio V, Cantiello P, Salvatore F, et al. (2014) The analysis of the inflorescence miRNome of the orchid Orchis italica reveals a DEF-like MADS-box gene as a new miRNA target. PLoS One 9: e97839. doi: 10.1371/journal.pone.0097839 PMID: 24832004

31. Hsu HF, Yang CH (2002) An orchid (Oncidium Gower Ramsey) AP3-like MADS gene regulates floral formation and initiation. Plant Cell Physiol 43: 1198–1209. PMID: 12407200

32. Chang YY, Kao NH, Li JY, Hsu WH, Liang YL, Wu JW, et al. (2010) Characterization of possible roles for B class MADS box genes in regulation of perianth formation in orchid. Plant Physiol 152: 837–853. doi: 10.1104/pp.109.147116 PMID: 20018605

33. Kim SY, Yun PY, Fukuda T, Ochiai J, Toshiaki K, et al. (2007): Expression of a DEFI-CIENS-like gene correlates with the differentiation between sepal and petal in the orchid, Habenaria radiata (Orchidaceae). Plant Sci 172: 319–326.

34. Song IJ, Nakamura T, Fukuda T, Yokoyama J, Ito T, Ichikawa H, et al. (2006) Spatiotemporal expression of duplicate AGAMOUS orthologues during floral development in Phalaenopsis. Dev Genes Evol 216: 301–313. PMID: 16463041

35. Xu Y, Teo LL, Zhou J, Kumar PP, Yu H (2006) Floral organ identity genes in the orchid Dendrobium crumenatum. Plant J 46: 54–68. PMID: 16553895

36. Wang SY, Lee PF, Lee YI, Hsiao YY, Chen YY, Pan ZJ, et al. (2011) Duplicated C-class MADS-box genes reveal distinct roles in gynostemium development in Cymbidium ensifolium (Orchidaceae). Plant Cell Physiol 52: 563–577. doi: 10.1093/pcp/pct015 PMID: 21278368

37. Hsu HF, Huang CH, Chou LT, Yang CH (2003) Ectopic expression of an orchid (Oncidium Gower Ramsey) AGL6-like gene promotes flowering by activating flowering time genes in Arabidopsis thaliana. Plant Cell Physiol 44: 783–794. PMID: 12941870

38. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10: 57–63. doi: 10.1038/nrg2484 PMID: 19015660

39. Brautigam A, Mullick T, Schliesky S, Weber AP (2011) Critical assessment of assembly strategies for non-model species mRNA-Seq data and application of next-generation sequencing to the comparison of C(3) and C(4) species. J Exp Bot 62: 3093–3102. doi: 10.1093/jxb/err029 PMID: 21398430

40. Hsiao YY, Chen YW, Huang SC, Pan ZJ, Fu CH, Chen W, et al. (2011) Gene discovery using next-generation pyrosequencing to develop ESTs for Phalaenopsis orchids. BMC Genomics 12: 360. doi: 10.1186/1471-2164-12-360 PMID: 21749684

41. O’Rourke JA, Yang SS, Miller SS, Bucciarelli B, Liu J, Rydeen A, et al. (2013) An RNA-Seq transcriptome analysis of orthophosphate-deficient white lupin reveals novel insights into phosphorus acclimation in plants. Plant Physiol 161: 705–724. doi: 10.1104/pp.111.209254 PMID: 23197803

42. Raju NL, Gnanesh BN, Lekha P, Jayashree B, Pande S, Hiremath PJ, et al. (2010) The first set of EST resource for gene discovery and marker development in pigeonpea (Cajanus cajan L.). BMC Plant Biol 10: 45. doi: 10.1186/1471-2164-10-45 PMID: 20222972

43. Su CL, Chao YT, Alex Chang YC, Chen WC, Chen CY, Lee AY, et al. (2011) De novo assembly of expressed transcripts and global analysis of the Phalaenopsis aphrodite transcriptome. Plant Cell Physiol 52: 1501–1514. doi: 10.1093/pcp/pct097 PMID: 21771864

44. Uddenberg D, Reimegard J, Clapham D, Almqvist C, von Arnold S, Emanuelsson O, et al. (2013) Early cone setting in Picea abies acrocona is associated with increased transcriptional activity of a MADS box transcription factor. Plant Physiol 161: 813–823. doi: 10.1104/pp.112.207746 PMID: 23221834

45. Chang YY, Chu YW, Chen CW, Leu WM, Hsu HF, Yang CH (2011) Characterization of Oncidium ‘Gower Ramsey’ transcriptomes using 454 GS-FLX pyrosequencing and their application to the identification of genes associated with flowering time. Plant Cell Physiol 52: 1532–1545. doi: 10.1093/pcp/pct101 PMID: 21785129

46. Zhang J, Wu K, Zeng S, Teixeira da Silva JA, Zhao X, Tian CE, et al. (2013) Transcriptome analysis of Cymbidium sinense and its application to the identification of genes associated with floral development. BMC Genomics 14: 279. doi: 10.1186/1471-2164-14-279 PMID: 23617896

47. De Paolo S, Salvemini M, Gaudio L, Aceto S (2014) De novo transcriptome assembly from inflorescence of Orchis italica: analysis of coding and non-coding transcripts. PLoS One 9: e102155. doi: 10.1371/journal.pone.0102155 PMID: 25025767

48. Sedeek KE, Qi W, Schauer MA, Gupta AK, Poveda L, Xu S, et al. (2013) Transcriptome and proteome data reveal candidate genes for pollinator attraction in sexually deceptive orchids. PLoS One 8: e64621. doi: 10.1371/journal.pone.0064621 PMID: 23734209

49. Chen YH, Tsai YJ, Huang JZ, Chen FC (2005) Transcription analysis of peloric mutants of Phalaenopsis orchids derived from tissue culture. Cell Res 15: 639–657. PMID: 16117854

50. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18: 821–829. doi: 10.1101/gr.074492.107 PMID: 18349386
51. Schulz MH, Zerbino DR, Vingron M, Birney E (2012) Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics 28: 1086–1092. doi: 10.1093/bioinformatics/bts094 PMID: 22368243

52. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25: 25–29. PMID: 10802651

53. Conesa A, Gotz S (2008) Blast2GO: A comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics 2008: 619832. doi: 10.1155/2008/619832 PMID: 18483572

54. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28: 27–30. PMID: 10592173

55. Chen TW, Gan RC, Wu TH, Huang PJ, Lee CY, Chen YY, et al. (2012) FastAnnotator—an efficient transcript annotation web tool. BMC Genomics 13 Suppl 7: S9. doi: 10.1186/1471-2164-13-S7-S9 PMID: 23281853

56. Finn RD, Mistry J, Schuster-Bockler B, Griffiths-Jones S, Hollich V, Lassmann T, et al. (2006) Pfam: clans, web tools and services. Nucleic Acids Res 34: D247–251. PMID: 16381856

57. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9: 357–359. doi: 10.1038/nmeth.1923 PMID: 22388286

58. Roberts A, Pachter L (2013) Streaming fragment assignment for real-time analysis of sequencing experiments. Nat Methods 10: 71–73. doi: 10.1038/nmeth.2251 PMID: 23160280

59. Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11: R106. doi: 10.1186/gb-2010-11-10-r106 PMID: 20979621

60. Yuan XY, Jiang SH, Wang MF, Ma J, Zhang XY, Cui B (2014) Evaluation of internal control for gene expression in Phalaenopsis by quantitative real-time PCR. Appl Biochem Biotechnol 173: 1431–1445. doi: 10.1007/s12010-014-0951-x PMID: 24811734

61. Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, et al. (2014) Pfam: the protein families database. Nucleic Acids Res 42: D222–230. doi: 10.1093/nar/gkt1223 PMID: 24288371

62. Wu S, Gallagher KL (2012) Transcription factors on the move. Curr Opin Plant Biol 15: 645–651. doi: 10.1016/j.pbi.2012.09.010 PMID: 23031575

63. Hsiao YY, Tsai WC, Kuoh CS, Huang TH, Wang HC, Wu TS, et al. (2006) Comparison of transcripts in Phalaenopsis bellina and Phalaenopsis equestris (Orchidaceae) flowers to deduce monoterpene biosynthesis pathway. BMC Plant Biol 6: 14. PMID: 16836766

64. Li P, Ponnala L, Gandotra N, Wang L, Si Y, Tausta SL, et al. (2010) The developmental dynamics of the maize leaf transcriptome. Nat Genet 42: D222–230. doi: 10.1038/ng.1223 PMID: 24288371

65. Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, et al. (2014) Pfam: the protein families database. Nucleic Acids Res 42: D222–230. doi: 10.1093/nar/gkt1223 PMID: 24288371

66. Sweetman C, Wong DC, Ford CM, Drew DP (2012) Transcriptome analysis at four developmental stages of grape berry (Vitis vinifera cv. Shiraz) provides insights into regulated and coordinated gene expression. BMC Genomics 13: 691. doi: 10.1186/1471-2164-13-691 PMID: 23227855

67. Wang X, Liu D, Li A, Sun X, Zhang R, Wu L, et al. (2013) Transcriptome analysis of tomato flower pedicel tissues reveals abscission zone-specific modulation of key meristem activity genes. PLoS One 8: e55238. doi: 10.1371/journal.pone.0055238 PMID: 2390523

68. Jack T (2004) Molecular and genetic mechanisms of floral control. Plant Cell 16 Suppl: S1–S17. PMID: 15020744

69. Lohmann JU, Weigel D (2002) Building beauty: the genetic control of floral patterning. Dev Cell 2: 135–142. PMID: 11832239

70. Wellmer F, Alves-Ferreira M, Dubois A, Riechmann JL, Meyerowitz EM (2006) Genome-wide analysis of gene expression during early Arabidopsis flower development. PLoS Genet 2: e117. PMID: 16789830

71. Riechmann JL, Ratcliffe OJ (2000) A genomic perspective on plant transcription factors. Curr Opin Plant Biol 3: 423–434. PMID: 11019812

72. Zhang JZ (2003) Overexpression analysis of plant transcription factors. Curr Opin Plant Biol 6: 430–440. PMID: 12972043

73. Bowman JL, Smyth DR, Meyerowitz EM (1991) Genetic interactions among floral homeotic genes of Arabidopsis. Development 112: 1–20. PMID: 1685111

74. Honma T, Goto K (2001) Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409: 525–529. PMID: 11206550
75. Groszmann M, Bylstra Y, Lampugnani ER, Smyth DR (2010) Regulation of tissue-specific expression of SPATULA, a bHLH gene involved in carpel development, seedling germination, and lateral organ growth in Arabidopsis. J Exp Bot 61: 1495–1508. doi: 10.1093/jxb/erp015 PMID: 20176890

76. Szecsi J, Joly C, Bordji K, Varaux E, Cock JM, Dumas C, et al. (2006) BIGPETALp, a bHLH transcription factor is involved in the control of Arabidopsis petal size. EMBO J 25: 3912–3920. PMID: 16902407

77. Zhang W, Sun Y, Timofejeva L, Chen C, Grossniklaus U, Ma H (2006) Regulation of Arabidopsis tapetum development and function by DYSFUNCTIONAL TAPETUM1 (DYT1) encoding a putative bHLH transcription factor. Development 133: 3085–3095. PMID: 16831835

78. Zahn LM, Ma X, Altman NS, Zhang Q, Wall PK, Tian D, et al. (2009) Stage-specific retarded gene expression in Arabidopsis is associated with the activity of a specific MYB transcription factor in the ventral petal of Arabidopsis majus flowers. Development 132: 359–370. PMID: 15604096

79. Li N, Zhang DS, Liu HS, Yin CS, Li XX, Liang WQ, et al. (2012) The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development. Plant Cell 18: 2999–3014. PMID: 17138695

80. Corley SB, Carpenter R, Copes L, Coen E (2005) Floral asymmetry involves an interplay between TCP and MYB transcription factors in Antirrhinum. Proc Natl Acad Sci U S A 102: 5068–5073. PMID: 15790677

81. Galego L, Almeida J (2002) Role of DIVARICATA in the control of dorsoventral asymmetry in Antirrhinum flowers. Genes Dev 16: 880–891. PMID: 11937495

82. Perez-Rodriquez M, Jaffe FW, Butelli E, Glover BJ, Martin C (2005) Development of three different cell types is associated with the activity of a specific MYB transcription factor in the ventral petal of Antirrhinum majus flowers. Development 132: 359–370. PMID: 15604096

83. Box MS, Dodsworth S, Rudall PJ, Bateman RM, Glover BJ (2011) Characterization of Linaria KNOX genes suggests a role in petal-spur development. Plant J 68: 703+–714. doi: 10.1111/j.1365-313X.2011.04721.x PMID: 21790812

84. Box MS, Dodsworth S, Rudall PJ, Bateman RM, Glover BJ (2012) Flower-specific KNOX phenotype in Antirrhinum majus. J Exp Bot 63: 4811–4819. doi: 10.1093/jxb/ers152 PMID: 22771852

85. Chatterjee M, Bermudez-Lozano CL, Clancy MA, Davis TM, Folta KM (2011) A strawberry KNOX gene regulates leaf, flower and meristem architecture. PLoS One 6: e24752. doi: 10.1371/journal.pone.0024752 PMID: 21949748

86. Lenhard M, Jurgens G, Laux T (2002) The WUSCHEL and SHOOTMERISTEMLESS genes fulfil complementary roles in Arabidopsis shoot meristem regulation. Development 129: 3195–3206. PMID: 12070094

87. Shani E, Burko Y, Ben-Yaakov L, Berger Y, Amsellem Z, Goldshmidt A, et al. (2009) Stage-specific regulation of Solanum lycopersicum leaf maturation by class 1 KNOTTED1-LIKE HOMEobox proteins. Plant Cell 21: 3078–3092. doi: 10.1105/tpc.109.068148 PMID: 19820191

88. Golz JF, Keck EJ, Hudson A (2002) Spontaneous mutations in KNOX genes give rise to a novel floral structure in Antirrhinum. Curr Biol 12: 515–522. PMID: 11937019

89. Ng M, Yanofsky MF (2001) Function and evolution of the plant MADS-box gene family. Nat Rev Genet 2: 186–195. PMID: 11256070

90. Duan Y, Xing Z, Diao Z, Xu W, Li S, Du X, et al. (2012) Stage-specific regulation of Osmads6-5, a null allele, reveals that OsMADS6 is a critical regulator for early flower development in rice (Oryza sativa L.). Plant Mol Biol 80: 429–442. doi: 10.1007/s11103-012-9558-2 PMID: 22933119

91. Koo SC, Bracko O, Park MS, Schwab R, Chun HJ, Park KM, et al. (2010) Control of lateral organ development and flowering time by the Arabidopsis thaliana MADS-box gene AGAMOUS-LIKE6. Plant J 62: 807–816. doi: 10.1111/j.1365-313X.2010.04192.x PMID: 20230491

92. Rijpkema AS, Zethof J, Gerats T, Vandenbussche M (2009) The petunia AGL6 gene has a SEPAL-LIKE function in floral patterning. Plant J 60: 1–9. doi: 10.1111/j.1365-313X.2009.03917.x PMID: 19453449

93. Thompson BE, Bartling L, Whipple C, Hall DH, Sakai H, Schmidt R, et al. (2009) bearded-ear encodes a MADS box transcription factor critical for maize floral development. Plant Cell 21: 2578–2590. doi: 10.1105/tpc.109.07751 PMID: 19749152

94. Chen YY, Lee PF, Hsiao YY, Wu WL, Pan ZJ, Lee YI, et al. (2012) C- and D-class MADS-box genes from Phalaenopsis equestris (Orchidaceae) display functions in gynostemium and ovule development. Plant Cell Physiol 53: 1053–1067. doi: 10.1093/pcp/pcs048 PMID: 22499266
Author/s:
Huang, J-Z; Lin, C-P; Cheng, T-C; Chang, BC-H; Cheng, S-Y; Chen, Y-W; Lee, C-Y; Chin, S-W; Chen, F-C

Title:
A De Novo Floral Transcriptome Reveals Clues into Phalaenopsis Orchid Flower Development

Date:
2015-05-13

Citation:
Huang, J.-Z., Lin, C.-P., Cheng, T.-C., Chang, B. C.-H., Cheng, S.-Y., Chen, Y.-W., Lee, C.-Y., Chin, S.-W. & Chen, F.-C. (2015). A De Novo Floral Transcriptome Reveals Clues into Phalaenopsis Orchid Flower Development. PLOS ONE, 10 (5), https://doi.org/10.1371/journal.pone.0123474.

Persistent Link:
http://hdl.handle.net/11343/260410

File Description:
Published version

License:
CC BY