Simple, Accurate Parsing with an All-Fragments Grammar

Mohit Bansal and Dan Klein
UC Berkeley
Independence Assumptions of PCFG

Strong Independence
- lexical selection or agreement?

This Work (SIMPLE!)

Bod (1993)
Goodman (1996)

Collins (1999)
Johnson (1998)
Petrov et al. (2006)
All-Fragments Grammar G

DERIVATIONS

FRAGMENTS

exponential # of rules!!

$\omega(d) = \prod_{f \in d} \omega(f)$

$t_{max} = \arg\max_t \sum_{d \in t} \omega(d)$
Fragment (data-oriented) Approach

The number of fragments is exponential in the length of the sentence!!
G^I - Implicit Representation of G

SYMBOLS:
- Base: X
- Indexed: X_i

RULES:
- Continue: $X_i \rightarrow Y_j Z_k$
- End: $X_i \rightarrow X$
- Begin: $X \rightarrow X_i$

Goodman (1996)

of rules = $|\text{treebank B}|$
Example

Training Data

Rules

NP-1

DT-2

NN-3

The

cat

NP-4

DT-5

NN-6

A

dog

NP-1

DT-2

NN-3

The

cat

NP-4

DT-5

NN-6

A

dog

DT-2

NN-3

DT-5

NN-6

DT

NN

END

DT-2

NN-3

DT-5

NN-6

DT

NN

BEGIN

CONT
Parsing a Novel Test Sentence

Training Data

NP-1
 DT-2 NN-3
 The cat

NP-4
 DT-5 NN-6
 A dog

Test Parse

NP
 DT NN
 The dog

NP-1
 DT-2 NN-3
 The dog

NP-4
 DT-5 NN-6
 The dog

Novel Test Sentence

The dog

Derivation 1

Derivation 2
Equivalence of G and G^I

- Each derivation d in G reproducible in G^I

- Multiple derivations in G^I correspond to same d in G, differing in indices
Weights for Implicit Grammar

RULES

- **CONT:** $X_i \rightarrow Y_j Z_k$
- **END:** $X_i \rightarrow X$
- **BEGIN:** $X \rightarrow X_i$

WEIGHTS

- $\omega_{BODY} (\omega_{LEX})$
- ω_{SWITCH}

\[
\frac{1}{\# \text{ frags rooted at } X}
\]

JUST 3 PARAMETERS!
Character-level Parsing

words split into characters
Coarse-to-Fine Inference

\[
\frac{P_{IN}(X, i, j) \cdot P_{OUT}(X, i, j)}{P_{IN}(root, 0, n)} < \text{threshold}
\]

Charniak et al. (2005, 2006)
Coarse-to-Fine Inference

“Fine” Grammar

```
NP-1
  \(\text{DT-2} \quad \text{NN-3}\)
  \(\text{NP-4}\)
    \(\text{DT-5} \quad \text{NN-6}\)
```

“Coarse” Grammar

```
NP
  \(\text{DT} \quad \text{NN}\)
```

For same accuracy,
- 40x speed up
- 10x memory reduction

AVERAGE OVER INDICES

PCFG
Packed Graph Encoding

Tree-to-graph encoding
Savings from Packed Graph Encoding

- 1.4x speed up
- memory-usage < 4GB

Word-level Parsing

Indexed symbols (million)

Trees | Graph
1.90 | 0.90

Character-level Parsing

Indexed symbols (million)

Trees | Graph
12.28 | 1.11

− 20x speed up
− memory-usage < 8GB
Fragments Complement Refinements

Condition	F1 (dev ≤ 40)
No-Refine (Raw PCFG)	71.3
Basic-Refine (P=H=1)	80.0
All-Frag + No-Refine	85.7
All-Frag + Basic-Refine	88.4
Parsing Accuracy

Decoding Objective	dev (≤ 40)	test (≤ 40)	test (all)
Max-Constituent¹	**88.4**	**88.5**	**87.6**

Decoding Objective	dev (≤ 40)	test (≤ 40)	test (all)
Max-Constituent¹	**88.2**	**88.0**	**87.1**

¹Goodman (1996)
Full-scale Parsing

*word-level parsing results on dev-set (≤ 40)
Final WSJ Results

F1 (test ≤ 40)

- Post and Gildea (2009): 82.6
- Zuidema (2007): 83.8
- Cohn et al. (2009): 84.0
- All-Frag + Basic Refine: 88.5
- All-Frag + Addn Refine: 88.7

*word-level parsing
*Addn Refine = Deterministic (NON-HEAD) annotation of Klein and Manning (2003)
* Cohn et al. - test all Zuidema - dev ≤ 100
Final WSJ Results

Method	F1 Score
All-Frag + Basic Refine	88.5
All-Frag + Addn Refine	88.7
Collins (1999)	88.6
Petrov and Klein (2007)	90.6

- **This Paper**
- **Refinement-based Parsers**
Other Language Results

German

	This Work	Dubey (2005)	Petrov and Klein (2008)
F1 (test ≤ 40)	79.8	76.3	81.5

French

	This Work	Arun and Keller (2005)	Petrov and Klein (2008)
F1 (test ≤ 40)	78.0	78.9	80.1
Conclusions

- Practical, full-scale parsing with an all fragments grammar
 - Indexed grammar boils down to only 2-3 hyperparameters
 - Practical with natural coarse-to-fine projections and graph encodings
- Fragments complement refinements
 - Simple refinement + fragments F1 ≈ Collins 99
 - Accurate without an explicit lexicon
 - Zero training

Parsing Model	F1 (test ≤ 40)	F1 (test all)
Collins (1999)	88.6	88.2
Our Model	88.7	88.1
Thank you!

Questions?

Berkeley

NLP