Reconfigurable exciton-plasmon interconversion for nanophotonic circuits

Hyun Seok Lee1,2, Dinh Hoa Luong1,2, Min Su Kim1,2, Youngjo Jin1,2, Hyun Kim1,2, Seokjoon Yun1,2 & Young Hee Lee1,2

The recent challenges for improving the operation speed of nanoelectronics have motivated research on manipulating light in on-chip integrated circuits. Hybrid plasmonic waveguides with low-dimensional semiconductors, including quantum dots and quantum wells, are a promising platform for realizing sub-diffraction limited optical components. Meanwhile, two-dimensional transition metal dichalcogenides (TMDs) have received broad interest in optoelectronics owing to tightly bound excitons at room temperature, strong light-matter and exciton-plasmon interactions, available top-down wafer-scale integration, and band-gap tunability. Here, we demonstrate principal functionalities for on-chip optical communications via reconfigurable exciton-plasmon interconversions in ~200-nm-diameter Ag-nanowires overlapping onto TMD transistors. By varying device configurations for each operation purpose, three active components for optical communications are realized: field-effect exciton transistors with a channel length of ~32 μm, field-effect exciton multiplexers transmitting multiple signals through a single NW and electrical detectors of propagating plasmons with a high On/Off ratio of ~190. Our results illustrate the unique merits of two-dimensional semiconductors for constructing reconfigurable device architectures in integrated nanophotonic circuits.

1 Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Suwon 440-746, Korea. 2 Department of Energy Science, Sungkyunkwan University, Suwon 440-746, Korea. Correspondence and requests for materials should be addressed to H.S.L. (email: hs.lee@skku.edu) or to Y.H.L. (leeyoung@skku.edu).
Photonics for light manipulation have the potential to meet the recent information technology demands of high-speed and massive data processing. Electrical switches, wavelength converters and multiplexers are crucial components for integrating optical circuits. Quantum well (QW)-based excitonic transistors, in which exciton flux excited by photons diffuses along the QW channel and switched by the gate modulation of channel potential, are promising devices to realize high-speed interconnections. Nevertheless, short-lived excitons and the finite exciton binding energy critically limit the operation to low temperatures within the limited channel length of typically less than 3 µm. Moreover, a wavelength conversion, that converts an optical signal to a desired wavelength, and a multiplexing technique, that delivers various signals through a single optical guide, are essential to designing the reconﬁgurable optical communication systems. Although various methods for the wavelength conversion and multiplexing have been developed in conventional technologies based on ﬁbre optics and photonic waveguides, the optical diffraction limit is a fundamental obstacle to reducing the optical component sizes to nanometers. Surface plasmon polaritons (SPPs), which are the electromagnetic waves coherently coupled with electron plasma in metals, have the potential to overcome these issues because they allow a strong localization of optical energy at the metal-dielectric interface at a sub-wavelength scale. Therefore, the use of metallic nanostructures for plasmonic waveguides allows for light manipulation at a nanoscale.

Meanwhile, recently emerged 2D semiconductors have unique merits for nanophotonics. The absence of dangling bonds allows for various combinations of van der Waal heterostructures and adaptability with various substrate choices, in contrast with the cumbersome epitaxial growth of QWs in limited substrates and processes. The 2D layered structure of transition metal dichalcogenides (TMDs) offers an unique merits for nanophotonics. The absence of dangling bonds allows for various combinations of van der Waal heterostructures and adaptability with various substrate choices, in contrast with the cumbersome epitaxial growth of QWs in limited substrates and processes. The 2D layered structure of transition metal dichalcogenides (TMDs) offers an unique merits for nanophotonics. The absence of dangling bonds allows for various combinations of van der Waal heterostructures and adaptability with various substrate choices, in contrast with the cumbersome epitaxial growth of QWs in limited substrates and processes.

Here, we demonstrate the crucial optical components for nanophotonic circuits using reconﬁgurable exciton-to-plasmon and plasmon-to-exciton interconversions. To realize these concepts, we introduce Ag-nanowires (NWs) for SPP waveguides to 2D semiconductor devices. The Ag-NW waveguides and their

![Figure 1](https://example.com/figure1.png)

Figure 1 | Photon-plasmon-exciton conversion and exciton flux modulation. (a) An Ag-NW overlapped on the monolayer MoS2 FET. Incident laser (λ0) at the end of NW is converted to SPP (SPP0). The propagating SPP0 along the NW is absorbed in MoS2, and the λ1 exciton is generated at the NW/MoS2 overlapping region. The λ1 flux is modulated by VG. (b) Cross-section at the NW/MoS2 overlapping region and optical field map calculated using an FDTD method, implying optical mode confinement near the NW. (c) PL image overlaid with false-coloured MoS2 flakes and the NW. Scale bar: 5 µm. Green arrow: λ0 position. Red-dashed circle: PL collection position. (d) PL spectra as a function of VG ranging from −100 V (On state) to 100 V (Off state). (e) Integrated PL intensity curve (left axis) and the calculated Fermi level (EF, right axis) as a function of VG. (f) On/Off ratio of the integrated intensity as a function of laser power (Pex).
hybrids have been well investigated for various purposes because of low ohmic losses and sub-diffraction limited dimensions.2,27,28 Using Ag-NW-hybridized 2D semiconductor devices with various configurations, three active components for optical communications are realized: field-effect exciton transistors, field-effect exciton multiplexers and electrical detectors of propagating plasmons.

Results

Electrical modulation of plasmon-induced exciton flux. Figure 1a depicts a schematic for the photon-plasmon-exciton conversion process and electrical modulation of the exciton flux. A 200-nm-diameter Ag-NW for SPP waveguides is partially overlapped with a monolayer MoS\(_2\) field-effect transistor (FET) on an SiO\(_2\) (300 nm)/Si wafer. The laser light (\(\lambda_0 = 514\) nm) is focused to the left end of the NW and \(\lambda_0\) is coupled to SPP (SPP0) in the NW20,26 (see Methods). The SPP0 propagates along the NW in the axial direction with a tightly confined optical near-field20,26,29 (Fig. 1b). The near-field of SPP0 is absorbed in MoS\(_2\) layers and excites excitons (\(\lambda_1 \approx 660\) nm) at the NW/MoS\(_2\) overlapping region26,30 (see Supplementary Note 1 and Supplementary Fig. 1), where the exciton fluxes are modulated by gate bias (\(V_G\)) for excess carrier doping13,24.

Figure 1c shows the photoluminescence (PL) image overlaid with the sample schematic of the MoS\(_2\) flake and NW, where the green arrow is the \(\lambda_0\) position and the red-dashed circle indicates the PL collection position. Figure 1d shows the PL spectra as a function of \(V_G\) ranging from \(-100\) V (On state) to \(100\) V (Off state). The PL intensity increases gradually as \(V_G\) is reduced. The Fermi level was calculated from the excess electron and hole densities derived from the back-gate capacitance as a function of \(V_G\), as plotted in Fig. 1e, where the charge neutrality point near \(-50\) V is taken as a reference24 (see Supplementary Note 2 and Supplementary Fig. 2), consistent with the intrinsic \(n\)-type doping state in MoS\(_2\). While the Fermi level increases due to the increased electron carriers at high \(+\,\,V_G\), the PL intensity gradually decreases in proportion to \(E_p\), which is attributed to the Pauli blocking effect for excitons24. With increasing \(n\)-doping (\(V_G > -50\) V), the photoexcited electrons are suppressed by Pauli blocking effect and do not contribute to excitonic emission. Consequently, neutral excitons decrease and negative trions increase. Conversely, with increasing \(p\)-doping (\(V_G < -50\) V), the Pauli blocking disappears. As a result, both neutral excitons and positive trions increase, and thus, a total exciton flux for \(p\)-doping case is larger than that for \(n\)-doping case (see Supplementary Fig. 3a). Figure 1f shows an On/Off ratio of exciton fluxes as a function of input laser power (\(P_{\text{in}}\)). The On/Off ratio reaches a factor of 7 at \(P_{\text{in}} = 0.1\) mW and details are discussed in Supplementary Note 3 and Supplementary Fig. 3.

Exciton transistor via exciton-plasmon interconversions. We demonstrate field-effect exciton transistors with a long channel length (\(\sim 32\) \(\mu\)m) via plasmon-to-exciton and exciton-to-plasmon interconversions. Figure 2a depicts the operation principle, where MoS\(_2\)-FET is located in the middle of the NW. The SPP0 coupled from \(\lambda_0\) is absorbed in the MoS\(_2\) layer (as discussed in Fig. 1a) and generates exciton (\(\lambda_1\)). The generated \(\lambda_1\) is recoupled to SPP1 and propagates along the NW (Fig. 2a). Finally, the SPP1 is converted to \(\lambda_1\) via scattering at the right end of NW (see Methods). Figure 2b shows an optical micrograph and PL image of the hybrid device. The green arrow is the \(\lambda_0\) illumination, the red arrow near the NW/MoS\(_2\) overlapping region is the \(\lambda_1\) emission and the red spot at the right end of the NW (blue-dashed circle) is a PL collection position for Fig. 2c. In the \(\lambda_1\) emission region, the propagating SPP0 along the NW is converted to SPP1 via exciton-plasmon interconversion and the propagating SPP1 is monitored by the \(\lambda_1\) scattering at the right end of NW. Clear On (\(V_G = -100\) V) and Off (\(V_G = 100\) V) states of the PL are displayed in Fig. 2c. Notably, the demonstrated channel length reaches \(\sim 32\) \(\mu\)m at room temperature, \(\sim 10\) times longer than that of QW-
based excitonic transistors (∼3 μm) at low temperatures. In the Ag-NW, the corresponding 1/e SPP propagation lengths are calculated to 12–31 μm for 620–760 nm visible light (see Methods), which quantitatively agrees with our experimental results. Even longer propagation length of ∼50 μm at a visible range has been demonstrated in patterned Ag films by the CMOS process on a wafer scale. These length scales are compatible with current nanoelectronics. Moreover, TMDs with smaller bandgaps for long wavelengths can allow even longer SPP propagation.

Reconfigurable exciton-plasmon interconversions. The exciton-plasmon interconversion is more reconfigurable for advanced device architectures. Figure 3a illustrates the operation principle for wavelength multiplexers. Laterally arrayed TMD-FETs, having different bandgaps, are interconnected by an Ag-NW. The excitonic emission wavelength of TMD1, TMD2 and TMD3 corresponds to wavelengths λ1, λ2 and λ3 (λ1 < λ2 < λ3), respectively. With the laser (λ0) incident on the NW/TMD1 overlapping region, the exciton corresponding to λ1 (> λ0) is generated from TMD1. The λ1 is coupled to SPP1 near the NW without momentum matching via the Förster resonance energy transfer of excitons to plasmons. The generated SPP1 propagates along the NW, encounters TMD2 and excites λ2, which is partially absorbed in TMD2. The similarly generated λ2 propagates along the NW and then excites λ3 in TMD3 and generates SPP3. Eventually, λ1, λ2 and λ3 are multiplexed in the three SPP modes, which are detected at the NW end (see Supplementary Notes 4 and 5 and Supplementary Figs 4 and 5). During this multiplexing process, electrostatic doping of TMD-FETs modulates the exciton fluxes for optical switching information. Notably, the λ0 is simply converted to multiple wavelengths via sequential exciton-to-plasmon and plasmon-to-exciton interconversion processes, where excitonic wavelengths are determined by the bandgaps of the TMDs.

Figure 3d shows the device structure and experimental setup required to prove such a concept. Monolayer MoS2 and WSe2...
Electrical detection of plasmons with high On/Off ratios. The propagating plasmons are also detectable by electrical signals, which is another key component for nanophotonic circuits. Figure 4a shows the device structure and experimental setup to prove such a concept using the device for Fig. 2. The SPP0 generated by λ_0 is absorbed in the MoS$_2$ layer (as discussed in Figs 1 and 2). The absorbed SPP0 generates electron-hole pairs which are separated to a plasmonic photocurrent via plasmon-to-charge conversion\cite{30,34}, under an applied drain bias at the MoS$_2$ FET (Fig. 4b). Figure 4c shows I_D-V_G curves of the Ag-NW overlapped MoS$_2$ FET for a dark state and under λ_0 illuminations at the NW end with various P_{ex}. The SPP0 induced photocurrents (for On state) are two orders of magnitude higher than the dark current (Off state). The photocurrent increases with V_D because of an increased drift velocity of photocarriers and a reduced carrier transit time\cite{35}. Figure 4d shows On/Off ratios of I_D in proportion to P_{ex} for various V_D. The maximum On/Off ratio reaches \sim190 for $P_{\text{ex}} = 5$ mW and $V_D = 1$ V.

Discussion

In summary, we have demonstrated the crucial optical components for nanophotonic circuits using the reconfigurable exciton-plasmon interconversion and efficient exciton flux modulation of TMDs in various Ag-NW/TMD hybrid architectures at room temperature. The exciton transistor was realized by partially overlapping the Ag-NW on TMD-FETs. The laser-coupled-plasmon propagates through the Ag-NW channel and sequentially excites excitons of TMD-FETs where the exciton flux was modulated by electrical gate doping. Wavelength multiplexing devices were realized by interconnecting Ag-NW to laterally arrayed TMD-FETs having different bandgaps via the sequential exciton-plasmon interconversions. The electrical detections of propagating plasmons along the Ag-NW with a high On/Off ratio were also realized in the Ag-NW hybridized TMD-FET. Our demonstrations of the reconfigurable exciton-plasmon interconversions in various device architectures pave a way to realize various optical components for nanophotonic integrated circuits having advantages of adaptability in wavelength selection and scalability.

Methods

Sample preparation. The MoS$_2$, WS$_2$, and WSe$_2$ monolayer flakes were synthesized on an SiO$_2$ (300 nm)/Si substrate using a chemical vapour deposition method\cite{36}. The synthesized monolayer TMD flakes were transferred onto an SiO$_2$ (300 nm)/Si wafer via the conventional poly(methyl methacrylate) (PMMA) support method\cite{36}. The Ag-NW with a diameter of \sim200 nm (PlasmaChem Corp.; dispersed in isopropyl alcohol) was transferred onto the flake-transferred samples and dried under ambient conditions. The electrical contacts to the TMDs were fabricated by the metal evaporation of Cr/Au (10/50 nm) and e-beam lithography patterning method, where an Si wafer was used to apply the back-gate bias. Finally, the samples were covered with a \sim400-nm-thick PMMA (950 K PMMA, Micro-Cem Corp., 4% in chlorobenzene) layer to protect the NW from degradation under ambient conditions\cite{25}.

Characterization. The I_D–V_G measurements in the MoS$_2$-FET were performed at $V_G = 1$ V using an electrical characterization system (Kiethley 4200-SCS, Kiethley Instruments). The PL spectra under the V_G application (Kiethley 6487 picoammeter/voltage source, Kiethley Instruments) to the Si substrate and the photocurrents generated by plasmons (Agilent B2902A, Agilent Technologies) were measured at room temperature by using a lab-constructed confocal microscope. A laser beam with a wavelength of 514 nm was focused on the sample using an objective lens (×100, numerical aperture, 0.9). The PL spectra at the desired positions were collected using a pinhole detector under the illumination of the focused laser at other positions, where the laser beam and pinhole positions were controlled by a micromanipulator. The spectra were recorded using a spectrometer and a cooled charge-coupled device camera\cite{25}.

SPP propagation length analysis. SPP modes for the configuration of PMMA/Ag-NW on an SiO$_2$ (300 nm)/Si substrate were analysed using a finite-difference time-domain numerical simulation (Lumerical Solutions, Inc.) method. The $1/e$ SPP propagation lengths were derived as a function of wavelength from the lowest loss mode among the possible confined modes near the NW\cite{25}.

Coupling and decoupling of SPPs at distal ends of Ag-NWs. To couple the SPP waveguide modes along the Ag-NW axis by the light illumination, the momentum mismatch for longitudinal mode between the SPPs and the incoming photons should be compensated\cite{29,37}. The light scattering can be used to provide additional
wavevectors. When the focused laser light is illuminated at the midsection of the NWs, a cylindrically symmetric shape of the NWs cannot provide the light scattering in the axial direction, and thus, the propagation of SPP modes along the NW is negligible. However, when light is illuminated at the end of the NW, the light scattering provides additional wavevectors in all directions because the symmetric shape is broken at the distal edge of the NWs. Therefore, the momentum mismatch between the SPPs and the photons is compensated. As a result, the SPP waveguide modes can be activated. In the reverse process, when the propagating SPP modes face the distal end of the NWs, the SPPs are decoupled to radiative emissions but not at the NW midsection.23,37

Data availability. The data that support the findings of this study are available from the corresponding authors H.S.L and Y.H.L on request.

References

1. Ozbay, E. Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311, 189–193 (2006).
2. Fang, Y. R. & Sun, M. T. Nanoplasmic waveguides: towards applications in integrated nanophotonic circuits. Light-Sci. Appl. 4, e294 (2015).
3. Sun, Z. P., Martinez, A. & Wang, F. Optical modulators with 2D layered materials. Nat. Photonics 10, 227–238 (2016).
4. Bozinovic, N. et al. Terahertz-scale orbital angular momentum mode division multiplexing in fibers. Science 340, 1545–1548 (2013).
5. Dai, D. X. & Bowers, J. E. Silicon-based on-chip multiplexing technologies and devices for Peta-bit optical interconnects. Nanophotonics 3, 283–311 (2014).
6. Ishikawa, H., Watanabe, S. & Kuwatsuka, H. Wavelength conversion from the corresponding authors H.S.L and Y.H.L on request.

Data availability. The data that support the findings of this study are available from the corresponding authors H.S.L and Y.H.L on request.

Acknowledgements

This work was supported by the Institute for Basic Science of Korea (IBS-R011-D1).

Author contributions

H.S.L. designed and developed the work. H.S.L., D.H.L. and Y.J. performed experimental samples. H.S.L., D.H.L., M.S.K. and Y.J. performed experiments. H.S.L conducted the writing. All authors discussed the results. H.S.L. analysed and acquires this paper at http://www.nature.com/numerics communications

Additional information

Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available at http://npg.nature.com/permissions/

How to cite this article: Lee, H. S. et al. Reconfigurable exciton-plasmon interconversion for nanophotonic circuits. Nat. Commun. 7, 13663 doi: 10.1038/ncomms13663 (2016).

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/