Three-Photon Decay of J/ψ from Lattice QCD

Yu Meng, Chuan Liu, Ke-Long Zhang

Peking University

APLAT-2020, 6 August 2020
The rare decay $J/\psi \to 3\gamma$ acts as a probe of higher-order QCD effects.

Experimental difficulties: poor knowledge of matrix element
- Crystal Ball, $B < 5.5 \times 10^{-5}$, PRL 44,712(1980)
- CLEOc, $B = (1.2 \pm 0.3 \pm 0.2) \times 10^{-5}$, PRL 101,101801(2008)
- BESIII, $B = (1.13 \pm 0.18 \pm 0.2) \times 10^{-5}$, PRD 87,032003(2013)

Theoretical difficulties: perturbation fails
- For $\eta_c \to 2\gamma$, both photons are hard with half energies of the charmonium, perturbation is expected to work better;
- For $J/\psi \to 3\gamma$, there exits a soft photon, hindering the perturbation calculation.

We present the first lattice calculation for rare decay $J/\psi \to 3\gamma$.
Y.Meng, C.Liu and K-L.Zhang.(2019).
Decay amplitude on lattice

\[M(t_f, t; t', t_i) = \epsilon_\mu \epsilon_\nu \epsilon_\rho \epsilon_\alpha M_{\mu \nu \rho \alpha} \]

\[M_{\mu \nu \rho \alpha} = \frac{e^3}{Z(p) E(p) (t_f - t)} \times \int dt' e^{-\omega_2 |t' - t|} \int dt_i e^{-\omega_1 |t_i - t|} \]

\[\times \sum_{x, y, z} e^{i(q_3 \cdot z + q_2 \cdot y + q_1 \cdot x)} \langle 0 | \hat{T} \{ O^\alpha_{J/\psi}(0, t_f) j_\rho(z, t) j_\nu(y, t') j_\mu(x, t_i) \} | 0 \rangle \]

- Local current \(j_\mu(x) = Z_V Q_c \bar{c} \gamma_\mu c(x) \);
- Using 'sequential' method to calculate the four-point function;
- The three photons can’t be on-shell simultaneously, with virtualities \(Q_i^2 \).
Decay amplitude \rightarrow decay width

- Conventional: amplitude parameterization. For $\eta_c \rightarrow 2\gamma$:

$$
\mathcal{M}_{\mu\nu} = 2\left(\frac{2}{3}e\right)^2 m_{\eta_c}^{-1} F(Q_1^2, Q_2^2) \epsilon_{\mu\nu\rho\sigma} q_1^\rho q_2^\sigma, \quad \Gamma(\eta_c \rightarrow 2\gamma) = \pi \alpha_e^2 (\frac{16}{81}) m_{\eta_c} |F(0,0)|^2
$$

J.J.Dudek and E.G.Edwards.(2006)

- For three-photon case: $\mathcal{M}_{\mu\nu\rho\alpha}(q_1, q_2, q_3) = \sum_{\text{perm}} \mathcal{M}_{\mu\nu\rho\alpha}(q_1, q_2, q_3)$

$$
\mathcal{M}_{\mu\nu\rho\alpha}(q_1, q_2, q_3) = \mathcal{F}_{123} \frac{1}{q_1 \cdot q_3} \left(\frac{q_3^\mu q_1^\rho}{q_1 \cdot q_3} - g_{\mu\rho} \right) q_1^\alpha \left(\frac{q_3^\nu}{q_2 \cdot q_3} - \frac{q_1^\nu}{q_1 \cdot q_2} \right) \\
+ \mathcal{G}_{123} \left[\frac{1}{q_2 \cdot q_3} \left(\frac{q_1^\alpha q_3^\mu}{q_1 \cdot q_3} - g^{\alpha\mu} \right) \left(\frac{q_1^\nu q_2^\rho}{q_1 \cdot q_2} - g^{\nu\rho} \right) + \frac{1}{q_1 \cdot q_3} \left(\frac{q_1^\nu}{q_1 \cdot q_2} - \frac{q_3^\nu}{q_2 \cdot q_3} \right) \left(q_1^\rho g^{\alpha\mu} - q_1^\alpha g^{\mu\rho} \right) \right] \\
+ \mathcal{H}_{123} \frac{1}{q_1 \cdot q_3} \left(\frac{q_1^\alpha q_3^\mu}{q_1 \cdot q_3} - g^{\alpha\mu} \right) \left(\frac{q_3^\nu q_2^\rho}{q_2 \cdot q_3} - g^{\nu\rho} \right)
$$

G.S.Adkins.(1996).

- It is a redundant process for lattice simulation.
The three-body decay width:

\[
\Gamma_3 = \frac{1}{3!} \frac{1}{2m} \int \frac{d^3q_1}{(2\pi)^3 2\omega_1} \frac{d^3q_2}{(2\pi)^3 2\omega_2} \frac{d^3q_3}{(2\pi)^3 2\omega_3} (2\pi)^4 \delta(p - q_1 - q_2 - q_3) |M|^2
\]

\[
= \frac{m}{1536\pi^3} \int_0^1 dx \int_{1-x}^1 dy |M|^2, \quad x \equiv 1 - 2q_2 \cdot q_3/m^2, \quad y \equiv 1 - 2q_1 \cdot q_2/m^2
\]

New approach: amplitude summation, define \(\mathcal{T} \) function

\[
\mathcal{T} \equiv |M|^2 = \frac{1}{3} \sum_{\mu\nu\rho\alpha} \sum_{\lambda_1 \lambda_2 \lambda_3 \lambda_0} |\epsilon^\lambda_1_\mu \epsilon^\lambda_2_\nu \epsilon^\lambda_3_\rho \epsilon^\lambda_0_\alpha \mathcal{M}_{\mu\nu\rho\alpha}|^2 = \frac{1}{3} \sum_{\mu\nu\rho\alpha} |\mathcal{M}_{\mu\nu\rho\alpha}|^2
\]

The decay width of \(J/\psi \rightarrow 3\gamma \):

\[
\Gamma(J/\psi \rightarrow 3\gamma) = \frac{m_{J/\psi}}{1536\pi^3} \int_0^1 dx \int_{1-x}^1 dy \mathcal{T}(x, y)
\]
Input parameters

- **Photon momenta:**
 - On-shell as possible: fix photon 1 and 3 on-shell exactly, minimize Q_2;
 - The (x, y) cover the physical region as possible, i.e. $x \in [0, 1], y \in [1 - x, 1]$;
 - Fewer momenta to meet above requirements.

Ensemble	Q_1^2	Q_3^2	n_1	n_3	n_2	ω_1	ω_2	ω_3	x	y	$Q_2^2(GeV^2)$
I	0	0	111	-1-1-2	001	0.4680	0.6525	0.2134	0.7017	0.9783	-0.1541
	0	0	111	-20-1	1-10	0.4680	0.5967	0.2692	0.7017	0.8946	-0.4096
	0	0	002	11-1	-1-1-1	0.5343	0.4680	0.3316	0.8011	0.7017	-0.6077
	0	0	002	11-2	-1-10	0.5343	0.6525	0.1471	0.8011	0.9783	-0.5690
II	0	0	210	-1-11	-10-1	0.4257	0.3320	0.2905	0.8123	0.6335	0.0932
	0	0	002	10-2	-100	0.3810	0.4257	0.2415	0.7269	0.8123	0.1857
	0	0	002	11-1	-1-1-1	0.3810	0.3320	0.3352	0.7269	0.6335	0.0187

- **On-shell fitting:**

\[
\mathcal{T}(x, y, Q_1^2, Q_2^2, Q_3^2) = \mathcal{T}(x, y) + \text{const} \times \sum_i Q_i^2
\]

- **Twisted Mass Ensembles:**

Ens	β	a(fm)	V/a^4	$a\mu_{\text{sea}}$	m_π(MeV)	N_{conf}
I	3.9	0.085	$24^3 \times 48$	0.004	315	40
II	4.05	0.067	$32^3 \times 64$	0.003	300	20
Input parameters

- *xy*-distribution

- Exchange symmetry: \(T(x, y, z) = T(y, x, z) = \ldots \)

- Current renormalization constant: \(Z_{V}^{I,II} = 0.6347(26), 0.6640(27) \).

\[
Z^{(\mu)}_{V} = \frac{p^{\mu}}{E(p)} \frac{1/2 \sum_{k} \Gamma^{(2)}_{\psi_{k}\psi_{k}}(p, t_{\text{source}} = T/2, t_{\text{sink}} = 0)}{\sum_{k} \Gamma^{(3)}_{\psi_{k}\gamma_{\mu}\psi_{k}}(p, t_{\text{source}} = T/2, t_{\text{sink}} = 0, t)}
\]

J.J.Dudek, E.G.Edwards and D.G.Richards.(2006)
Matrix elements

- **Four-point function** $\mathcal{M}_{\mu\nu\rho\alpha}$:

- **On-shell fitting**: $\mathcal{T}(x, y, Q_1^2, Q_2^2, Q_3^2)$
Cubic spline interpolation

- **Decay width:**
 \[\Gamma(J/\psi \to 3\gamma) = 1.530(15)\text{eV}, 1.715(47)\text{eV} \]

- **Existing problems:**
 - The intermediate contribution \(J/\psi \to \gamma\eta_c \to 3\gamma \) to be removed;
 - Estimate the systematical error caused by cubic spline interpolation, for the region without data covered.
Dalitz analysis

- **Dalitz variables:**

\[
\frac{M(\gamma\gamma)_{l^g/s_m}}{m_{J/\psi}} = \max \left\{ \sqrt{1 - x}, \sqrt{1 - y}, \sqrt{x + y - 1} \right\}
\]

- Dalitz plot is the direct observable for the experiments.
- Bands in Dalitz plot indicate the intermediate two-body states.

Dalitz plot

![Dalitz plot](image)
Dalitz analysis

- Removing the $\gamma\eta_c$ contribution by setting the cut $M_{\text{cut}} = m_{\eta_c}$

 \begin{align*}
 (a) & : \sqrt{1-x} > M_{\text{cut}}/m_{J/\psi} \\
 (b) & : \sqrt{1-y} > M_{\text{cut}}/m_{J/\psi} \\
 (c) & : \sqrt{x+y-1} > M_{\text{cut}}/m_{J/\psi}
 \end{align*}

 \[\Rightarrow 0.031\text{eV(Ens.I)}, \quad 0.034\text{eV(Ens.II)} \]

- Regarding the region without \((x, y)\) covered as systematic error, i.e.

 \begin{align*}
 (A) & \quad x \in [0.1, 0.3], \; y \in [1-x, 1] \\
 (B) & \quad x \in [1-y, 1], \; x \in [0.1, 0.3]
 \end{align*}

 \[\Rightarrow 0.243\text{eV(Ens.I)}, \quad 0.274\text{eV(Ens.II)} \]

- The pure decay width:

 \[\Gamma(J/\psi \rightarrow 3\gamma) = 1.499(15)(243) \text{ eV}; \quad 1.681(47)(274) \text{ eV} \]
$\mathcal{B}(J/\psi \rightarrow 3\gamma) = 2.13(14)(89) \times 10^{-5}$
Dalitz plot in experiments

- BESIII

\[\mathcal{B} = (1.13 \pm 0.18 \pm 0.2) \times 10^{-5}, \quad N_{J/\psi} = 389. \]
Dalitz plot on lattice

- Normalized \mathcal{T}-function distribution:

$$\tilde{T}(x, y) = \frac{T^{int}(x, y)}{\int_0^1 dx \int_{1-x}^1 dy T^{int}(x, y)}$$

- No obvious bands on vertical region for the range $M(\gamma\gamma)_{sm} \in [0.1, 0.16], [0.5, 0.6], [0.9, 1]$, which correspond to the dominant sources $\gamma\pi_0/\eta/\eta'$ in experiments.
Importance of Dalitz analysis

- Providing a direct comparison with the experiments.

- The parametric analytical expression for the $T_{a \rightarrow 0}(x, y)$ could be used as the theoretical input for the matrix element of $J/\psi \rightarrow 3\gamma$ for the experiments.

- The J/ψ events in BESIII are 100 times greater than ever before, a higher precision result of $J/\psi \rightarrow 3\gamma$ could be expected with $T_{a \rightarrow 0}(x, y)$ utilized.

TABLE III. Summary of the relative systematic uncertainties. $B_{3\gamma}$ and $B_{J\eta\epsilon}$ stand for the measurements of branching fractions $B(J/\psi \rightarrow 3\gamma)$ and $B(J/\psi \rightarrow \gamma\epsilon, \epsilon \rightarrow \gamma\gamma)$, respectively. A dash (–) means the uncertainty is negligible.

Source	$B_{3\gamma}$	$B_{J\eta\epsilon}$
Signal model	15	–
$\eta\epsilon$ width	–	5
$\eta\epsilon$ line shape	1	1
Resolution	3	9
$M(\pi^+\pi^-)$ recoil window	4	4
π^0, η, η' rejection	0.5	5
PWA model	2	2
Photon detection	3	3
Tracking	2	2
Number of good photons	0.5	0.5
Kinematic fit and χ^2_{4C} requirenent	2	2
Fitting	5	5
Number of $\psi(3686)$	0.8	0.8
$B(\psi(3686) \rightarrow \pi^+\pi^- J/\psi)$	1.2	1.2
Total	18	14

Taken from BESIII.
New result for $\eta_c \rightarrow 2\gamma$

- Previous results:

Methods	$B \times 10^{-4}$	$\delta B \times 10^{-4}$	Refs
Quenched Wilson	0.83	0.50	J.J.Dudek et al.(2006)
$N_f = 2$ twisted mass	0.351	0.004	CLQCD(2016)
NRQCD	3.1 \sim3.2	-	F.Feng(2017)
Exp	1.57	0.12	PDG(2018)

- Amplitude summation:

- $\Gamma : \epsilon_\mu \epsilon_\nu \rightarrow -g_{\mu \nu}$
- $\Gamma_W : \epsilon_\mu \epsilon_\nu \rightarrow -g_{\mu \nu} + (q_\mu^i \bar{q}_\nu^i + \bar{q}_\mu^i q_\nu^i)/2\omega_i^2$

$B(\eta_c \rightarrow 2\gamma) = 1.29(3)(18) \times 10^{-4}$

PRD 102,034502(2020).
Conclusion

- We present the first lattice calculation for $J/\psi \rightarrow 3\gamma$;
- A new method is proposed to calculate multi-photon decay directly, by summing over final and initial state polarizations.
- The Dalitz analysis on lattice is suggested.
- The new method is applied for $\eta_c \rightarrow 2\gamma$, and a most reliable result is obtained.

Outlook

- A new strategy is in progress for $J/\psi \rightarrow 3\gamma$, the large systematic error can be avoided.
- The $T_{a \rightarrow 0}(x, y)$ is our next target, be applied for the experiments to avoid the large systematic uncertainty.
Thank you!