Comment on “Searching for flavor dependence in nuclear quark behavior”

O. Hen, F. Hauenstein, D.W. Higinbotham, G.A. Miller, E. Piasetzky, A. Schmidt, E.P. Segarra, M. Strikman, and L.B. Weinstein

1Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
2Old Dominion University, Norfolk, Virginia 23529
3Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606
4Department of Physics, University of Washington, Seattle, WA 98195
5School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel
6Pennsylvania State University, University Park, PA, 16802

(Dated: May 7, 2019)

Weinstein, et. al [1] [PRL 106, 052301 (2011)] and Hen, et. al [2] [PRC 85, 047301 (2012)] observed a correlation between the EMC effect and the amount of short range correlated (SRC) pairs in nuclei which implies that quark distributions are different in SRC pairs as compared with free nucleons. Schmookler, et. al [3] [Nature 566, 354 (2019)] bolstered this by showing that the EMC data can be explained by a universal modification of the structure of nucleons in neutron-proton SRC pairs and presented the first data-driven extraction of this universal modification function (UMF).

Arrington and Fomin [4] [arxiv 1903.12535] attempt to gain insight into the correlation between the EMC effect and SRCs by distinguishing between correlated nucleon pairs at high-virtuality (HV) vs. high local-density (LD). However, there is an inconsistency in their derivations of the UMFs, F_{LL} and F_{LD}^{uni}, causing a non-physical difference between them for asymmetric nuclei. In addition, the combinatorial scaling they used to extract high-LD np, pp and nn pairs from measured HV np pairs is contradicted by realistic ab-initio Quantum Monte-Carlo (QMC) calculations.

Ref. [4] attempts to study universal pair modification functions (UMF) for two cases: high-virtuality (HV) np-SRC pairs and SRC pairs at high local density (LD). High-LD NN pairs are defined as having small separation with either high or low relative momenta. HV pairs have both high momentum and small separation, making them a subset of high-LD pairs.

I. UNIVERSAL FUNCTION DERIVATION

Eq. 1 in Ref. [4] was derived in [3] by modeling F_A^{2n} as:

$$F_A^{2n}|_{HV} = (Z - n_{npHV}^{A}) F_{2n}^P + (N - n_{npHV}^{A}) F_{2n}^N$$
$$+ n_{npHV}^A (F_{2n}^{pHV} + F_{2n}^{nHV})$$
$$= Z F_{2n}^P + N F_{2n}^N + n_{npHV}^A (\Delta F_{2n}^{pHV} + \Delta F_{2n}^{nHV}),$$

where n_{npHV}^A is the number of HV np-SRC pairs in nucleus A, F_{2n}^{pHV} and F_{2n}^{nHV} are the modified proton and neutron structure functions, and $\Delta F_{2n}^{pHV} = F_{2n}^{pHV} - F_{2n}^P$ (and similarly for the ΔF_{2n}^{nHV}). All of the functions F depend on $x = Q^2/2m\omega$. This assumes that almost all HV (i.e., high momentum) nucleons belong to np-SRC pairs and neglects the contribution of nn and pp pairs. This approximation was shown experimentally and theoretically to be good to better than 10% [5]. The corresponding UMF is given by:

$$F_{uni}^{HV} = n_{npHV}^d \frac{\Delta F_{2}^{pHV} + \Delta F_{2}^{nHV}}{F_2^P}$$
$$= \frac{F_2^A}{F_2} - (Z - N) \frac{F_2^P}{F_2} - N$$

Ref. [4] compares F_{uni}^{HV} with what they claim to be an equivalent expression for the high-LD assumption F_{uni}^{LD}. Their function, Eq. 2 of Ref. [4], can be obtained by assuming the UMF is related to the modified EMC-SRC correlation between the slope of R_A^{EMC} for $0.3 \leq x_B \leq 0.7$ and $R_A^{EMC} = \frac{A}{2N} \frac{A - 1}{Z}$. However, there is no theoretical justification for equating this expression with the left-hand side of Eq. 2. Thus, it cannot be consistently compared with F_{uni}^{HV}.

To consistently compare F_{uni}^{HV} and F_{uni}^{LD}, Eq. 1 needs to be re-written for high-LD pairs, which include nn $(n_{nn}^{A,LD})$ and pp $(n_{pp}^{A,LD})$ pairs:

$$F_{2n}^{A}|_{LD} = (Z - n_{npld}^{A} - 2n_{ppld}^{A}) F_{2n}^P +$$
$$\quad (N - n_{npld}^{A} - 2n_{npld}^{A}) F_{2n}^N +$$
$$n_{npld}^{A} (F_{2n}^{ppld} + F_{2n}^{npld}) + 2n_{ppld}^{A} F_{2n}^{ppld} + 2n_{npld}^{A} F_{2n}^{npld}$$

$$\quad = Z F_{2}^P + N F_{2}^N +$$
$$\quad n_{npld}^{A} [(1 + \frac{Z - 1}{N}) \Delta F_{2}^{ppld} + (1 + \frac{N - 1}{N}) \Delta F_{2}^{npld}],$$

where $n_{npld}^{A} = n_{npld}^{A} \frac{Z(Z-1)}{2NZ}$, $n_{npld}^{A} = n_{npld}^{A} \frac{N(N-1)}{2NZ}$. As ΔF_{2}^{ppld} and ΔF_{2}^{npld} have different nucleus-dependent coefficients, unless one assumes a constant relation between them, Eq. 3 cannot be used to extract
an equivalent UMF to F_{univ}^{HV} (i.e. equation that has the same left-hand side as Eq. 2).

If instead we assume symmetric nuclei ($N = Z$) we get Eq. 2 of Ref. [4]:

$$F_{univ}^{LD} = n_{nPLD}^d \frac{\Delta F_{p}^{PLD} + \Delta F_{n}^{PLD}}{F_{2}^{d}} = \frac{E_{A}^{4}/A^{2} - 1}{2NZ R_{2}} (4)$$

Therefore, the difference between F_{univ}^{HV} and F_{univ}^{LD} comes primarily from the use of Eq. 4 (that is only comparable to F_{univ}^{HV} for symmetric nuclei) for asymmetric nuclei. This is done by defining the isoscalar-corrected EMC ratio $R_{EMC}^{A} = E_{A}^{4}/A^{2}/\chi_{isospin}$ and assuming that R_{EMC}^{A} for asymmetric nuclei equals E_{A}^{4}/A^{2} for a symmetric nucleus with the same A but $Z = A/2$.

This assumption is unjustified, especially if the EMC effect in asymmetric nuclei is flavor-dependent. Moreover, it is not consistently applied to F_{univ}^{HV}, which leads to an artificial difference between F_{univ}^{HV} and F_{univ}^{LD}. This difference is largely driven by the $(Z - N)E_{pp}^{4}/F_{2}^{d}$ term that was artifically removed from F_{univ}^{LD}, but not from F_{univ}^{HV}. This is inconsistent with the flavor dependence being studied and casts doubt on the entire HV LD comparison of Ref. [4].

In addition, Arrington and Fomin logarithmically fit the A-dependence of the slopes of F_{univ}^{HV} and F_{univ}^{LD} (Fig. 3 [4]) in order to show which one is more consistent with A-independence. However, they failed to note that a one-parameter constant fit to dF_{univ}^{HV}/dx already gives a χ^{2}/dof of 0.83 and their two-parameter over-fitting gives χ^{2}/dof of 0.34 (Fig. 1). For F_{univ}^{LD} constant and logarithmic fits give reduced χ^{2}/dof of 1.3 and 1.5 respectively, again indicating that a constant fit is more appropriate [7].

II. COMBINATORIAL SCALING

The combinatorial relations assumed for n_{nPLD}^{d}, n_{nPLD}^{n}, and n_{ppPLD}^{A} are also questionable. LD and HV correspond to different dynamical pictures as HV pairs are predominantly D-wave while high-LD have increased S-wave contributions.

Ref. [4] assumes the high-LD ratio of np pairs to pp pairs, $\rho_{np}^{A}(r)/\rho_{pp}^{A}(r)$, equals $NZ/[Z(Z - 1)]/2 \approx 2$ for symmetric nuclei. However, ab-initio calculations for 12C, 16O and 40Ca [3,9] indicate that this ratio is only 2 at large-r (> 3 fm), but increases at small-r (< 1 fm) by a factor of 2 to 4 (see Fig. 2), implying a much smaller pp and nn pair contribution at small-r.

Therefore the contribution of high-LD pp and nn pairs should be reduced from the simplistic combinatorial calculation by a factor of 2 to 4, reducing the difference between F_{univ}^{HV} and F_{univ}^{LD} from a factor of 2.5 to about 1.5. Furthermore, in the spin-0 channel, even for asymmetric nuclei, calculations show the same abundances of small-r nn, pp, and np pairs, contrary to combinatorial expectations [11].

Recent work [12] even showed that NN-pair scaling coefficients at small-r are the same for a remarkable range of NN potentials (i.e. they are scale- and scheme-independent) and consistent with measured values of $a_{2}(A/d)$ without requiring any combinatorial scaling.

III. PAIR C.M. MOTION CORRECTIONS

Ref. [4] also distinguish between scaling of HV and high-LD pairs by defining separate scale factors: a_{2} (HV) and
R_2 (high-LD). The two are related by a multiplicative factor arising from the center of mass (c.m.) motion of SRC pairs.

c.m. motion effects can increase the measured (e,e) cross-section ratio that is used to extract a_2. Correcting for this enhancement is reasonable. However, it should be applied in the extraction of the relative number of either high-LD or HV pairs and requires detailed modeling of the nuclear spectral function $^{[13]}$. The application of this correction only for the high-LD case, again, leads to an artificial difference between the two approaches.

Quantitatively, Ref. $^{[10]}$ estimated the c.m. correction to be 20% for medium and heavy nuclei, using a simplistic one-dimensional smearing of the deuteron momentum distribution. This procedure ignored the three-dimensional nature of the problem and, most importantly, the phase-space correlations that significantly affect the measured electron scattering cross section. A more detailed study $^{[15]}$, accounting for these and other effects, suggested a 70% correction factor.

IV. HV VS. LD SCALING

QMC calculations extract pair distributions in both coordinate ($\rho^{NN,\alpha}_{N,N,\alpha}(r)$) and momentum space ($\eta^{NN,\alpha}_{N,N,\alpha}(k)$). These densities were shown to both factorize as $^{[10]}$, $^{[11]}$, $^{[14]}$ $^{[16]}$ $^{[22]}$:

$$\eta^{NN,\alpha}_{N,N,\alpha}(k > k_F) = C^{A}_{NN,\alpha} \times |\psi_{NN,\alpha}(k)|^2,$$
$$\rho^{NN,\alpha}_{N,N,\alpha}(r < 1 fm) = C^{A}_{NN,\alpha} \times |\psi_{NN,\alpha}(r)|^2,$$

where α marks the pair spin-isospin state and $\psi_{NN,\alpha}$ are zero-energy solutions of the two-body Schrodinger equation for state α. Their k- and r-space representations are related by a Fourier transform that does not change their normalization. $C^{A}_{NN,\alpha}$ are nucleus-dependent scale factors that (A) account for the many-body dynamics and (B) are the same in both k- and r-space for all spin-isospin channels. This single scaling factor at both small distance and large momentum is inconsistent with the Ref. $^{[4]}$ concept of small-r, low-k correlated pairs.

Eq. 5 was shown $^{[10]}$, $^{[11]}$, $^{[14]}$ to reproduce QMC calculations at high-k and small-r to 10% for $A = 4, 40$ nuclei and describes electron-scattering data using the same scaling factors $C^{A}_{NN,\alpha}$ as obtained from the QMC calculations.

Therefore, ab-initio calculations do not support the existence of different high-k and small-r scaling factors as used by Ref. $^{[4]}$, shown complete physical equivalence in the many-body dynamics of HV and high-LD pairs.

V. CONCLUSIONS

The underlying cause of the EMC effect is an open question with far reaching implications for our understanding of QCD effects in the nuclear medium. The original observations of the EMC-SRC correlation $^{[1]}$ and UMF extraction $^{[3]}$, raises an interesting and relevant question about the mechanism driving this physics.

We explained that inclusive electron scattering data fundamentally cannot answer this question and pointed to a collection of quantitative issues with the analysis of Ref. $^{[4]}$.

Acknowledgments

This work was supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Award Numbers DE-FG02-97ER41014, DE-FG02-94ER40818, DE-FG02-96ER-40960, and DE-AC05-06OR23177 under which Jefferson Science Associates operates the Thomas Jefferson National Accelerator Facility, the Pazy foundation, and the Israeli Science Foundation (Israel) under Grants Nos. 136/12 and 1334/16.

[1] L. B. Weinstein, E. Piasetzky, D. W. Higinbotham, J. Gomez, O. Hen, and R. Shneor, Phys. Rev. Lett. 106, 052301 (2011).
[2] O. Hen, E. Piasetzky, and L. B. Weinstein, Phys. Rev. C 85, 047301 (2012).
[3] B. Schmookler et al. (CLAS), Nature 566, 354 (2019).
[4] J. Arrington and N. Fomin (2019), 1903.12535v1.
[5] M. Duer et al. (CLAS), Phys. Rev. Lett. 122, 172502 (2019), 1810.05343.
[6] J. Arrington, A. Daniel, D. B. Day, N. Fomin, D. Gaskell, and P. Solvignon, Phys. Rev. C 86, 065204 (2012).
[7] R. Andrae, T. Schulze-Hartung, and P. Melchior, arXiv e-prints arXiv:1012.3754 (2010), 1012.3754.
[8] R. B. Wiringa, R. Schiavilla, S. C. Pieper, and J. Carlson, Phys. Rev. C 89, 024305 (2014).
[9] D. Lonardoni, A. Lovato, S. C. Pieper, and R. B. Wiringa, Phys. Rev. C 96, 024326 (2017), 1705.04337.
[10] R. Cruz-Torres, A. Schmidt, G. A. Miller, L. B. Weinstein, N. Barnea, R. Weiss, E. Piasetzky, and O. Hen, Phys. Lett. B 785, 304 (2018), 1710.07966.
[11] R. Weiss, R. Cruz-Torres, N. Barnea, E. Piasetzky, and O. Hen, Phys. Lett. B 780, 211 (2018).
[12] J. E. Lynn, D. Lonardoni, J. Carlson, J. W. Chen, W. Detmold, S. Gandolfi, and A. Schwenk (2019), 1903.12587.
[13] C. Ciofi degli Atti, L.L. Frankfurt, L.P. Kaptari and M.I. Strikman, Phys. Rev. C 96, 055206 (2007).
[14] R. Weiss, I. Korover, E. Piasetzky, O. Hen, and N. Barnea, Phys. Lett. B 791, 242 (2019), 1806.10217.
[15] M. Vanhalst, J. Ryckebusch, and W. Cosyn, Phys. Rev.
[16] R. Weiss, B. Bazak, and N. Barnea, Phys. Rev. C\textbf{92}, 054311 (2015), 1503.07047.

[17] J. Ryckebusch, M. Vanhalst, and W. Cosyn, Journal of Physics G: Nuclear and Particle Physics \textbf{42}, 055104 (2015).

[18] C. Ciofi degli Atti and H. Morita, Phys. Rev. C\textbf{96}, 064317 (2017), 1708.05168.

[19] C. Ciofi degli Atti, C. B. Mezzetti, and H. Morita, Phys. Rev. C\textbf{95}, 044327 (2017).

[20] M. Alvioli, C. Ciofi degli Atti, and H. Morita, Phys. Rev. C\textbf{94}, 044309 (2016).

[21] M. Alvioli, C. Ciofi Degli Atti, L. P. Kaptari, C. B. Mezzetti, and H. Morita, Int. J. Mod. Phys. E\textbf{22}, 1330021 (2013), 1306.6235.

[22] T. Nef, H. Feldmeier, and W. Horiuchi, Phys. Rev. C\textbf{92}, 024003 (2015).