Current research in life and environmental sciences is dedicated to chemosensors able to detect metals of biological interest such as zinc and iron or other toxic and carcinogenic, as cadmium, mercury, chromium, lead. Recently, a new chemosensor strategy of “single chemosensor for multiple metals” has emerged. For this scope, many fluorescent sensors for Cd(II) and Zn(II) have been designed and synthesized, as ligand systems or in polymeric matrices [1–3]. The data presented in this article include experimental data on the of a pyridyl/phenolic/benzothiazole functionalized colorimetric receptor (BPAP) and its selectively recognise Fe(III) and Fe(II) ions with visible, naked eye colour changes and fluorometric selectivity towards Zn²⁺ and Cd²⁺ ions in aqueous medium.

This article is submitted as a companion paper to Caruso et al. (2018) [4].

© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Specifications Table

Subject area	Chemistry, Materials Science
More specific subject area	Electro-optic field sensors
Type of data	Crystal data and structure refinement, NMR spectrum, tables and figure
How data was acquired	NMR recorded in DMSO using Bruker Spectrometers operating at 400 MHz.
	UV-Visible and fluorescence spectra recorded with JASCO spectrometers.
	Single crystals X-ray structural analysis performed on a BrukerNoniusKappaCCD diffractometer equipped with Oxford Cryostream apparatus.
Data format	Raw data and their elaborations
Experimental factors	The data concerns structural information, UV/Vis calculation and some spectroscopic raw data
Experimental features	Elaboration of X-ray diffraction data and UV/Vis curves
Data source location	Naples, Italy
Data accessibility	Data is within this article

Value of the data

- The data show some molecular structure of BPAP along a and c axes.
- The data report relevant structural data of BPAP and its zinc complex (lengths and angles).
- The data report Job's plot analysis for the binding Zn(II) and Cd(II) with ligand system.
- 1H NMR and 13C NMR of BPAP and BPAP metal complexes are reported.

1. Data

The data presented in this article are related to the research article entitled “A real-time tripodal colorimetric/fluorescence sensor for multiple target metal ions” [4]. Recently an impressive progress has been done toward the design and synthesis of novel sensitive ligands and fluorescent materials [5–8]. The data presented here include experimental data on the of a pyridyl/phenolic/benzothiazole functionalized colorimetric receptor (BPAP) and its selectively recognise Fe(III) and Fe(II) ions with visible, naked eye colour changes and fluorometric selectivity towards Zn$^{2+}$ and Cd$^{2+}$ ions in aqueous medium.

The following data are a necessary support for the identification of materials and properties of the ligand system and its complexes.

2. Experimental design, materials and methods

Structural analysis of single crystals of ligand and its Zinc complex has been performed on a BrukerNoniusKappaCCD diffractometer equipped with Oxford Cryostream apparatus (graphite monochromated MoK$_α$ radiation, $λ = 0.71073$ Å, CCD rotation images, thick slices, $φ$ and $ω$ scans to fill asymmetric unit). Semiempirical absorption corrections (SADABS [9]) were applied. Both the two structures were solved by direct methods (SIR97 program [10]) and anisotropically refined by the full matrix least-squares method on F^2 against all independent measured reflections using SHELXL-2016 [11] and WinGX software [12]. Crystal data and structure refinement details are reported in Table 1. Relevant bond lengths and angle are reported in Table 2. The figures were generated using ORTEP-3 [13] and Mercury CSD 3.9 [14] programs. Molecular structure of BPAP along a axis is shown in Fig. 1. Molecular structure of the complex Zn–BPAP along c axis is shown in Fig. 2.
Table 1
Structural data and refinement details for BPAP and Zn-BPAP.

	BPAP	Zn-BPAP
CCDC number	1582069	1582070
Empirical formula	C23H22N4O2S	C23H22Cl2N4O2Szn
Formula weight	418.50	554.77
Temperature (K)	298(2)	173(2)
Wavelength (Å)	0.71073	0.71073
Crystal system (Å)	Triclinic	Monoclinic
Space group	P -1	P2₁/c
a (Å)	7.2950(15)	18.542(5)
b (Å)	16.3670(18)	14.650(3)
c (Å)	18.592(2)	17.217(2)
α (°)	77.506(8)	90.
β (°)	87.794(11)	92.373(13)
γ (°)	85.826(11)	90.
Volume (Å³)	2160.9(6)	4672.8(17)
Z4	8	
Dcalc (Mg/m³)	1.286	1.577
F(000)	880	2272
Crystal size (mm)	0.480 × 0.150 × 0.020	0.200 × 0.060 × 0.040
θ range (°)	2.333 to 25.996	2.602 to 27.022
Reflections collected / unique	19,458 / 8234 [R(int) = 0.0671]	39,344 / 10,013 [R(int) = 0.1524]
Refl. method	Full-matrix least-squares on F²	Full-matrix least-squares on F²
Data / restraints / parameters	8234 / 0 / 556	10,013 / 0 / 609
Goodness-of-fit on F²	1.034	1.079
Final R indices [I > 2σ(I)]	R1 = 0.0628, wR2 = 0.1340	R1 = 0.0787, wR2 = 0.1561
R indices (all data)	R1 = 0.1416, wR2 = 0.1695	R1 = 0.1891, wR2 = 0.2013
Largest diff. peak and hole (eÅ⁻³)	0.448 and −0.283	0.800 and −0.878

Table 2
Selected bond lengths (Å) and angles (°).

	BPAP	**Zn-BPAP**
Molecule A		
C9-O1	1.219(4)	1.212(4)
C9-N2	1.357(8)	1.357(5)
S1-C8	1.746(3)	1.742(4)
S1-C6	1.734(4)	1.730(4)
Zn1-N2	2.207(6)	2.213(6)
Zn1-N3	2.182(6)	2.165(6)
Zn1-N4	2.157(6)	2.140(6)
Zn1-Cl1	2.250(3)	2.289(2)
Zn1-Cl2	2.288(3)	2.282(2)
Molecule B		
C8-N2-C9	1.262(3)	1.260(3)
N2-C9-C10	1.158(3)	1.153(3)
O1-C9-N2	1.22(4)	1.12(4)
All crystal data were deposited at Cambridge Crystallographic Data Centre with assigned number CCDC 1582069 (BPAP) and 1582070 (Zn-BPAP). These data can be obtained free of charge from www.ccdc.cam.ac.uk/data_request/cif.

NMR spectra were recorded in DMSO using a Bruker Spectrometer operating at 400 MHz. For BPAP, both 1H and 13C NMR are reported in Figs. 3 and 4. In Fig. 5, 1H NMR spectrum of Zn-BPAP is shown.
Job’s plot measurement of Zn$^{2+}$ and Cd$^{2+}$ (Fig. 6) has been performed on 500μM solutions of Zn (II) chloride (or Cd(II) chloride) in bidistilled water (pH 6.25) and 500μM of BPAP in ethanol. Volumes of 3.00, 2.75, 2.50, 2.00, 1.50, 1.00, 0.50, 0.25 and 0 mL of the solution of ligand were taken and transferred to vials and volumes of 0, 0.25, 0.50, 1.00, 1.50, 2.00, 2.50, 2.75, 3.00 mL of metal ion added, each vial having a total volume of 3.0 mL. Fluorescence spectra were recorded at room temperature after shaking each vial for a few seconds.
Acknowledgements

Financial support from the Italian Ministry of Education, University and Research (MIUR) [grant number 300395FRB16] is gratefully acknowledged.

Transparency document. Supporting information

Transparency data associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2018.06.096.
[1] U. Caruso, B. Panunzi, A. Roviello, M. Tingoli, A. Tuzi, Two aminobenzothiazole derivatives for Pd (II) and Zn (II) coordination: synthesis, characterization and solid state fluorescence, Inorg. Chem. Commun. 14 (1) (2011) 46–48.

[2] F. Borbone, U. Caruso, M. Causà, S. Fusco, B. Panunzi, A. Roviello, et al., Series of O, N, O-tridentate ligands zinc (II) complexes with high solid-state photoluminescence quantum yield, Eur. J. Inorg. Chem. 2014 (16) (2014) 2695–2703.

[3] U. Caruso, B. Panunzi, A. Roviello, A. Tuzi, Fluorescent metallopolymers with Zn (II) in a Schiff base/phenoxide coordination environment, Inorg. Chem. Commun. 29 (2013) 138–140.

[4] R. Diana, U. Caruso, S. Concilio, S. Piotto, A. Tuzi, B. Panunzi, A real-time tripodal colorimetric/fluorescence sensor for multiple target metal ions, Dyes Pigment. 155 (2018) 249–257.

[5] F. Borbone, U. Caruso, S.D. Palma, S. Fusco, S. Nabha, B. Panunzi, et al., High solid state photoluminescence quantum yields and effective color tuning in polyvinylpyridine based zinc (II) metallopolymers, Macromol. Chem. Phys. 216 (14) (2015) 1516–1522.

[6] F. Borbone, U. Caruso, S. Concilio, S. Nabha, B. Panunzi, S. Piotto, et al., Mono-, di-, and polymeric pyridinoylhydrazone ZnII complexes: structure and photoluminescent properties, Eur. J. Inorg. Chem. 2016 (6) (2016) 818–825.

[7] F. Borbone, U. Caruso, S. Concilio, S. Nabha, S. Piotto, R. Shikler, et al., From cadmium (II)-arylylhydrazone complexes to metallopolymers with enhanced photoluminescence. A structural and DFT study, Inorg. Chim. Acta 458 (2017) 129–137.

[8] D. Acierno, E. Amendola, S. Bellone, L. Ferrara, P. Iannelli, H.-C. Neitzert, et al., Synthesis and luminescent properties of a new class of nematic oxadiazole containing poly-ethers for PLED, J. Noncryst. Solids 338 (2004) 278–282.

[9] SADABS B. 1; Bruker AXS Inc., Madison, Wisconsin, USA. 2001.

[10] A. Altomare, M.C. Burla, M. Camalli, G.L. Cascarano, C. Giacovazzo, A. Guagliardi, et al., SIR97: a new tool for crystal structure determination and refinement, J. Appl. Crystallogr. 32 (1) (1999) 115–119.

[11] G.M. Sheldrick, Crystal structure refinement with SHELXL, Acta Crystallogr. Sect. C: Struct. Chem. 71 (1) (2015) 3–8.

[12] L.J. Farrugia, WinGX and ORTEP for Windows: an update, J. Appl. Crystallogr. 45 (4) (2012) 849–854.

[13] L.J. Farrugia, ORTEP-3 for Windows—a version of ORTEP-III with a Graphical User Interface (GUI), J. Appl. Crystallogr. 30 (5) (1997) (565–).

[14] C.F. Macrae, I. Bruno, J.A. Chisholm, P.R. Edgington, P. McCabe, E. Pidcock, et al., Mercury CSD 2.0—new features for the visualization and investigation of crystal structures, J. Appl. Crystallogr. 41 (2) (2008) 466–470.