Argumentando a favor do uso combinado de inibidores de SGLT2 e agonistas do receptor GLP1 para proteção cardiorrenal
Making a case for the combined use of SGLT2 inhibitors and GLP1 receptor agonists for cardiorenal protection

Author Information

Vikas S. Sridhar1
Lisa Dubrofsky1
Jacinthe Boulet2
David Z. Cherney1,3,4

1University of Toronto, Department of Medicine, Division of Nephrology, Toronto General Hospital, Toronto, Ontario, Canada.
2University of Montreal, Department of Medicine, Division of Cardiology, Montreal, Quebec, Canada.
3University of Toronto, Banting and Best Diabetes Centre, Toronto, Ontario, Canada.
4University of Toronto, Departments of Physiology and Pharmacology and Toxicology, Toronto, Ontario, Canada.

Resumo

Inibidores do cotransporter-2 de glicose sódica (SGLT2) e agonistas do receptor peptídeo-1 do tipo glucagon (GLP-1RA) foram inicialmente aprovados para melhorar o controle glicêmico no tratamento da diabetes tipo 2. Os ensaios clínicos também demonstraram efeitos benéficos em relação aos parâmetros cardiovasculares e renais. Além de melhorar o controle glicêmico, essas terapias promovem perda de peso e redução da pressão arterial quando usadas individualmente, e de forma aditiva quando usadas em conjunto. Consequentemente, tirar proveito de mecanismos de ação complementares com o uso combinado dessas duas classes de agentes para melhorar ainda mais os resultados cardiorrenais é conceitualmente atraente, mas ainda precisa ser explorado em detalhes em ensaios clínicos. Nesta revisão, discutimos os mecanismos propostos para proteção renal, benefícios clínicos e eventos adversos associados ao uso individual e combinado de inibidores de SGLT2 e GLP-1RA. O tratamento do diabetes tipo 2 mudou significativamente nos últimos anos, passando do controle exclusivamente glicêmico para o tratamento simultâneo de comorbidades associadas em uma população de pacientes com risco significativo de doença cardiovascular e progressão da doença renal crônica. É nessa perspectiva que procuramos delinear a justificativa para o uso sequencial e/ou combinado de inibidores de SGLT2 e GLP-1RA em pacientes com diabetes tipo 2.

Palavras-chave: Inibidores do Transportador 2 de Sódio-Glicose; Diabetes Mellitus Tipo 2; Receptor do Peptídeo Semelhante ao Glucagon 1; Nefropatias Diabéticas; Doenças Cardiovasculares; Insuficiência Cardíaca.

Abstract

Sodium glucose cotransporter-2 (SGLT2) inhibitors and glucagon-like peptide-1 receptor agonists (GLP-1RA) were initially approved to improve glycemic control in the treatment of type 2 diabetes. Clinical trials have also demonstrated beneficial effects with regards to cardiovascular and renal parameters. Beyond improving glycemic control, these therapies promote weight loss and lower blood pressure when used individually, and in an additive manner when used together. Accordingly, taking advantage of complementary mechanisms of action with the combined use of these two classes of agents to further improve cardiorenal outcomes is conceptually appealing, but has yet to be explored in detail in clinical trials. In this review, we discuss proposed mechanisms for renal protection, clinical benefits, and adverse events associated with the individual and combined use of SGLT2 inhibitors and GLP-1RA. The management of type 2 diabetes has significantly changed over the last few years, moving away from solely glycemic control towards the concurrent management of associated comorbidities in a patient population at significant risk of cardiovascular disease and progression of chronic kidney disease. It is from this perspective that we seek to outline the rationale for the sequential and/or combined use of SGLT2 inhibitors and GLP-1RA in patients with type 2 diabetes.

Keywords: Sodium-Glucose Transporter 2 Inhibitors; Diabetes Mellitus, Type 2; Glucagon-Like Peptide-1 Receptor; Diabetic Nephropathies; Cardiovascular Diseases; Heart Failure.
INTRODUÇÃO

Com base nos resultados de estudos cardiovasculares recentes (CVOT) usando terapias mais recentes para reduzir a glicemia, as diretrizes da prática clínica para tratamento do diabetes tiveram um foco renovado na proteção cardiorrenal em pacientes com risco significativo de doença cardiovascular (CV) e renal. Em contraste com outros agentes hipoglicemiantes, os inibidores de contransporte-2 de glicose sódica (SGLT2) e os agonistas do receptor do peptídeo 1 do tipo glucagon (GLP-1RA) demonstraram individualmente benefícios CV e renais, como descrito abaixo. Além disso, o uso combinado dessas classes de medicamentos em pacientes com DM2 é atraente devido a possíveis sinergias mecânicas e clínicas. Neste artigo, revisamos os mecanismos e os benefícios clínicos dos inibidores da SGLT2 e GLP-1RA, e descrevemos a justificativa para seu uso sequencial ou combinado em pessoas com diabetes tipo 2 (DM2).

MECANISMOS PROPOSTOS PARA proteção renal

INIBIDORES DE SGLT2

É importante ter uma visão geral das principais hipóteses apresentadas para explicar a proteção cardiorrenal por inibidores de SGLT2. Revisões detalhadas de mecanismos relacionados à proteção cardiorrenal foram publicadas em outros periódicos.1-3 Os mecanismos indiretos - aqueles que não são diretamente atribuíveis às vias renais intrínsecas - que podem ser protetores, incluem: 1) Controle glicêmico aprimorado, com maior sensibilidade à insulina; 2) perda de peso corporal; e 3) redução da pressão arterial (PA), possivelmente por redução da rigidez arterial e modulação das vias neuro-hormonais.4-7 Também há vários efeitos renais diretos propostos, incluindo:2-3,8 1) Pressão intraglomerular reduzida, ativando o feedback tubuloglomerular (FTG) com base na natriurese tubular proximal aguda,9-12 levando à vasoconstricção arteriolar aferente, particularmente no cenário de hiperfiltração renal;13-19 2) Supressão de fatores pró-inflamatórios e pró-fibróticos nos rins, possivelmente via redução de hipercalemia e suprimindo o sistema renina-angiotensina-aldosterona (SRAA)20,24 e também reduzindo a pressão intraglomerular; e 3) redução da isquemia renal por múltiplas vias, reduzindo a lesão renal25,26. Embora não se saiba qual dessas hipóteses esteja mais intimamente relacionada à proteção renal, existe maior corpo de evidências experimentais e em humanos demonstrando alterações na hipertensão glomerular, o que também poderia explicar o rápido efeito anti-proteinúrico alcançado com esses agentes e o rápido, e clinicamente relevante, “mergulho” reversível na TFGe observada com esses agentes.27,28

AGONISTAS DO RECEPTOR GLP-1

O GLP-1RA também pode ter efeitos “indiretos” e “diretos”, contribuindo para a proteção dos rins. Com relação aos mecanismos indiretos, as terapias com GLP-1RA têm uma variedade de efeitos no metabolismo que podem ser protetores cardiorrenais, incluindo níveis reduzidos de glicose pós-prandial, estimulando a secreção de insulina, reduzindo a liberação de glucagon e a gliconeogênese hepática, e retardando o esvaziamento gástrico.29 O GLP-1RA atua adicionalmente a nível do sistema nervoso central, aumentando a saciedade, causando a perda de peso.30-32 O GLP-1RA também pode reduzir a pressão arterial através de efeitos no endotélio e por aumentar a frequência cardíaca (FC) através da estimulação do nó sinoatrial e do sistema nervoso simpático (SNS).33,34 Esses agentes também parecem ter efeitos antiateroscleróticos através de vários mecanismos, incluindo efeitos anti-inflamatórios ao nível da parede do vaso e redução da disfunção endotelial35,36,37 o que também poderia proteger o rim. Os efeitos benéficos renais diretos propostos incluem: 1) natriurese, contribuindo para a redução da pressão arterial; 2) redução da albuminúria, possivelmente mediada pela supressão de vias inflamatórias; e 3) redução da inflamação renal e mecanismos relacionados ao estresse oxidativo.38-40 As vias que levam à natriurese induzida por GLP-1RA não são claras, e uma possibilidade seria a inibição do antiporter de permutador de hidrogênio-3 de sódio (NHE3) no túbulo proximal.41,42 Apesar dessa natriurese proximal, diferentemente da inibição do SGLT2, o bloqueio da reabsorção de sódio nesse nível do néfron com GLP-1RA não leva a uma queda característica e reversível na TFGe com essas terapias. Embora a hemodinâmica glomerular permaneça inalterada com o GLP-1RA, essas terapias estão ligadas a uma rápida redução da albuminúria, possivelmente com base em vias anti-inflamatórias diretas do GLP-1, que podem não ser dependentes da natriurese.43,44

IMPACTO DOS INIBIDORES SGLT2 E GLP-1RA NO CONTROLE GLICÊMICO, PRESSÃO ARTERIAL E PESO

Os inibidores de GLP-1RAs e SGLT2 têm efeitos clínicos benéficos no controle glicêmico, pressão arterial e perda de peso, quando usados sozinhos ou juntos.
Em termos de efeitos glicêmicos, os GLP-1RAs reduzem a HbA1c média em 0,55-1,2% em comparação ao placebo em pacientes com DM2, com efeitos exagerados observados com agentes de ação mais prolongada. Os efeitos redutores da glicose dos inibidores da SGLT2 são obtidos via glucosúria e são comparativamente modestos, reduzindo a HbA1c em 0,5-0,7% em pacientes com função renal normal, e efeitos menores são observados em pacientes com DRC estágio 3 ou 4.2,44 Ambos os agentes também têm efeitos hemodinâmicos sistêmicos. O GLP-1RA reduz a PA sistólica e diastólica em graus variados, com estimativas de 1,2 - 4,6 mmHg sistólica/0 - 1,1 mmHg diastólica.45,46 Um estudo que utilizou monitoramento ambulatorial por 24 horas da pressão arterial por cinco semanas relatou um efeito sistólico mais robusto, com redução de 5 mmHg da PA com liraglutídeo, com efeito neutro na PA diastólica.47 Os efeitos na pressão arterial são independentes do controle glicêmico e da perda de peso.31 A redução da pressão arterial com GLP-1RA está associada a aumentos da FC em 2-3 batimentos por minuto em grandes ensaios clínicos, e de até 6 a 10 batimentos por minuto em estudos de monitoramento por 24 horas.34,45 Os inibidores da SGLT2 têm um efeito médio de redução da PA de 3,8 mmHg sistólica/1,4 mmHg diastólica em comparação com o placebo, um efeito que parece ser amplamente independente da redução basal da pressão arterial e da HbA1c, e preservado em pacientes com DRC.2,4,7 Inibidores da SGLT2 não afetam a frequência cardíaca.48 Finalmente, os dois agentes promovem a perda de peso. O GLP-1RA induz perda de peso variando de 0,2-7,2 kg, com aproximadamente 50% dos pacientes atingindo uma perda de peso ≥5% durante o tratamento.49 Os inibidores de SGLT2 levam a uma modesta redução de peso de 2-3 kg, incluindo perda de líquido e de tecido adiposo. A magnitude da perda de peso induzida por inibidor de SGLT2 é amplamente preservada em pacientes com DRC.6,44

Com base em seus distintos mecanismos de ação e efeitos clínicos, os inibidores de GLP-1RAs e SGLT2 podem ter efeitos renais e sistêmicos complementares, levando ao interesse no potencial de seu uso combinado. No entanto, existem dados limitados sobre o uso combinado de GLP-1RAs mais a inibição de SGLT2 na melhoria do controle glicêmico, pressão sanguínea e peso. Às 28 semanas, o ensaio clínico randomizado de fase três (ECR) DURATION-8, com terapia dupla com um inibidor de SGLT2 (dapagliflozina) e um GLP-1RA (exenatida uma vez por semana) mostrou reduzir a HbA1c em 0,4% a mais do que qualquer um dos agentes isoladamente, em pacientes com uma HbA1c inicial entre 8 e 12%, ilustrando que a resposta glicêmica à terapia dupla é menor que a aditiva.50 Na conclusão do DURATION-8, a PA sistólica foi reduzida em 1,3 mmHg para pacientes em monoterapia com exenatida, 1,8 mmHg para pacientes em monoterapia com dapagliflozina, e 4,2 mmHg naqueles em terapia combinada, apoiando um efeito aditivo de redução da pressão arterial da terapia combinada.50 O DURATION-8 demonstrou um efeito aditivo da terapia dupla na indução de perda de peso, com perda adicional de 1,87 kg e 1,20 kg em relação ao exenatida e dapagliflozina como agente único, respectivamente.50

Dados adicionais vêm do AWARD-10, um ECR de fase três de 24 semanas de placebo versus terapia complementar com o dulaglutide GLP-1RA em pacientes com inibição inicial do SGLT251 e SUSTAIN-9; um estudo de 30 semanas em terapia com o semaglutide GLP-1RA para a inibição basal do SGLT2.52 Ambos os ensaios incluíram pacientes com limite inferior inicial de HbA1c de 7% (HbA1c média de 8%).51,52 A terapia adicional com dulaglutide 1,5 mg semanal (mas não 0,75 mg) à inibição basal do SGLT2 no AWARD-10 resultou em 0,9 kg de perda de peso adicional em comparação com o placebo, enquanto a terapia complementar com semaglutide 1 mg semanalmente em SUSTAIN-9 resultou em uma perda de peso adicional de 3,1 kg versus placebo.51,52 Um estudo separado avaliou a terapia dupla com dapagliflozina e exenatida em 50 pacientes com obesidade, mas sem DM2 em um RCT de centro único.53 Às 24 semanas, os pacientes no grupo ativo alcançaram 4,1 kg a mais de perda de peso que o placebo, com 36% (versus 4,2% no placebo) atingindo ≥5% de perda de peso corporal.53

Apesar do que se sabe sobre os efeitos da terapia combinada sobre HbA1c, peso e pressão arterial, pouco se sabe sobre outros mecanismos associados à proteção cardiorenal em resposta à terapia combinada, como natriurese e hemodinâmica renal. Nas seções a seguir, descrevemos os benefícios cardiorenais individuais desses agentes, antes de esboçar uma proposta para seu uso combinado.
BENEFÍCIOS CARDIORENAIOS DE INIBIDORES DE SGLT2 E AGONISTAS DE RECEPTOR GLP-1 DE RESULTADOS DE ENSAIOS RENAIOS E CARDIOVASCULARES

Entre ensaios clínicos de grande porte que envolvem inibidores da SGLT2 e GLP-1RA, existe apenas um estudo dedicado a resultado renal publicado até o momento. O estudo CREDEENCE envolveu pacientes com DM2, macroalbuminúria e TFGe 30-90 mL/min/1,73m². Neste estudo envolvendo o inibidor da SGLT2, canagliflozina versus placebo, o risco do desfecho primário - duplicação da creatinina sérica, rim em estágio terminal, morte renal ou morte CV - foi reduzida em 30% com canagliflozina. Mais recentemente, o estudo DAPA-DRC (NCT03036150), que avaliou os desfechos renais com dapagliflozina em pacientes com DRC proteinúrica (\geq25 e \leq75 mL/min/1,73m²) com ou sem diabetes, foi interrompido precocemente devido à eficácia avassaladora da dapagliflozina. O estudo EMPA-KIDNEY (NCT03594110) está similarmente avaliando o efeito da empagliflozina em pacientes com doença renal crônica diabética (DRD) ou doença renal crônica não-diabética (DRCND), e tem um limite inferior de inclusão, TFGe \geq20 mL/min/1,73m². Até que os resultados desses estudos estejam disponíveis, os CVOTs e o CREDEENCE respondem pelo atual conjunto de dados relacionados à proteção renal em uma grande coorte de pacientes com uma série de doenças renais e cardiovasculares basais relacionadas à DM2.

INIBIDORES DE SGLT2

Antes do CREDEENCE, três CVOTs avaliaram inibidores de SGLT2 em coortes de participantes com diferentes graus de risco CV e renal. O EMPA-REG OUTCOME incluiu 7020 pacientes com doença cardiovascular aterosclerótica estabelecida (DCVAC), enquanto o ensaio CANVAS Program incluiu 10.142, com dois terços portadores de DCVAC. O DECLARE TIMI-58, mais recente, teve 17.160 pacientes, com aproximadamente 40% apresentando DCVAC. Além disso, as coortes de estudo também apresentaram diferenças na saúde renal basal, com a maior TFGe basal média do DECLARE TIMI-58.

O EMPA-REG OUTCOME demonstrou reduções significativas no endpoint primário do MACE de 3 pontos, mortalidade CV, mortalidade geral e hospitalização por insuficiência cardíaca (HIC) em toda a coorte e em subgrupos com função renal e proteinúria basais variadas. Nas análises de desfechos renais, Wanner et al. relataram uma redução de risco de 39% para o composto renal na progressão da albuminúria, duplicação da creatinina sérica ou doença renal terminal (DRT) ou morte renal. É importante ressaltar que cada componente - além da morte renal - foi reduzido e os benefícios renais foram consistentes em vários subgrupos, incluindo aqueles com DRC basal. Além dos efeitos nos desfechos renais “duros”, a empagliflozina também resultou em uma queda reversível da TFGe após aproximadamente 4 semanas de terapia. Após 4 semanas, a TFGe foi melhor preservada em comparação com o placebo, um efeito que foi maior em pacientes com macroalbuminúria basal, do que nos pacientes tratados com placebo, que perderam \approx20 mL/min/1,73m² ao longo de 3,1 anos em comparação com \approx10 mL/min/1,73m² no braço tratado com empagliflozina. Curiosamente, as reduções de albuminúria no EMPA-REG OUTCOME persistiram em participantes com albuminúria basal mesmo após o clearance da droga, sugerindo alterações estruturais renais além dos simples efeitos hemodinâmicos. Finalmente, os benefícios renais foram independentes da redução da HbA1c, enquanto o hematócrito/hemoglobina - como marcadores de hemoconcentração com natriurese - esteve mais associado à proteção cardiovascular. Isso corrobora a hipótese de que a proteção contra complicações relacionadas ao diabetes é independente das melhorias metabólicas com os inibidores de SGLT2.

Posteriormente à publicação do estudo EMPA-REG OUTCOME, o Programa CANVAS divulgou seus resultados. Este estudo compreendeu uma coorte intermediária de risco CV e também demonstrou reduções significativas no MACE, sem melhorias individuais na mortalidade por qualquer causa ou cardiovascular. Presunciando o CREDEENCE, a canagliflozina rebaixou significativamente o composto de duplicação sustentada da creatinina sérica, DRGE ou morte renal, reduziu o declínio anual da TFGe em 1,2 mL/min/1,73 m³/ano, e o UACR diminuiu 18% na coorte geral. Dois anos depois, o DECLARE-TIMI 58 foi concluído e relatou o impacto da inibição do SGLT2 com dapagliflozina na menor coorte de risco cardiovascular. Além de uma redução de 27% no desfecho co-primário de morte por CV ou HIC (amplamente impulsionado pela redução de HIC), a dapagliflozina reduziu o risco de declínio de 40% na TFGe para <60 mL/min/1,73m², DRT ou morte renal por 47%. As taxas de risco para os resultados CV e mortalidade foram geralmente semelhantes entre os níveis basais de TFGe e albuminúria, além de uma menor FC na TFGe comprometida com o grupo de albuminúria.
Esses resultados demonstram um papel consistente para a proteção cardiorrenal com inibidores da SGLT2 em uma população de risco renal relativamente baixo, presumivelmente no início de seu curso da doença.

O benefício da inibição da SGLT2 na HIC também foi demonstrado no estudo DAPA-HF, que incluiu participantes com insuficiência cardíaca e fração de ejeção reduzida (ICFEm) com e sem DM2. A dapagliflozina foi eficaz na redução do risco do desfecho primário - composto de piora da insuficiência cardíaca, morte cardiovascular ou consulta de urgência por insuficiência cardíaca - em participantes com e sem DM2. Os benefícios no endpoint composto primário estavam presentes nos principais grupos basais de características clínicas, incluindo o uso de terapias para insuficiência cardíaca de fundo. No DAPA-HF, a dapagliflozina foi bem tolerada, mesmo em idosos participantes do estudo.

Em análises secundárias, houve uma tendência para reduzir o risco de desfecho renal composto (declínio sustentado de ≥50% na TFGe/DRGe/morte renal - IC 0,71, IC 95% 0,44-1,16), com a ressalva de que as taxas de eventos eram baixas. Os pesquisadores também relataram uma separação significativa nas curvas de declive da TFGe favorecendo a dapagliflozina, mesmo quando estratificadas pelo status de DM2.

Agonistas do Receptor GLP-1

Até o momento, sete CVOTs avaliando GLP-1RA foram publicados, combinando um total de 56.004 pacientes. Metanálises múltiplas confirmam um benefício em termos de reduções no MACE em pacientes com DCVAC estabelecida e reduções no risco de acidente vascular cerebral. Os benefícios do GLP-1RA naqueles sem DCVAC estabelecido e na redução do risco de HIC são menos claros, e estudos individuais ainda não demonstraram proteção contra a HIC.

Para a proteção renal, foram relatados benefícios com o GLP-1RA, embora menos substanciais em comparação com os que foram estabelecidos na literatura sobre inibidores de SGLT2. Nas análises renais secundárias pré-especificadas do LEADER, a macroalbuminúria persistente de início recente, duplicação persistente da creatinina sérica, necessidade de terapia renal substitutiva (TRS) e a morte por doença renal foram reduzidas com uma taxa de risco de 0,78 e um NNT de 67 (IC 95% 0,67-0,92; P = 0,003).

Isso foi, no entanto, impulsionado por uma redução na macroalbuminúria persistente de início recente, embora o número de resultados renais ‘duros’ fosse baixo - 120 de 9340 pacientes necessitaram de TRS, 184 de 9430 tiveram uma duplicação na creatinina sérica. Em uma população semelhante, o SUSTAIN-6 comparou o semaglutide com o placebo e demonstrou uma redução na nefropatia nova ou em piora com uma taxa de risco de 0,64 (IC 95% 0,46-0,88; P = 0,005), novamente um efeito baseado em um risco menor de progressão da albuminúria. Em uma análise exploratória do resultado renal do REWIND, o dulaglutide reduziu o resultado composto da primeira ocorrência de nova macroalbuminúria (UACR> 33,9 mg/mmol), um declínio sustentado na TFGe de 30% ou mais a partir da linha de base ou TRS crônica (HR 0,85, 95% IC 0,77-0,93; p = 0,0004) - também impulsionado pela redução da nova macroalbuminúria.

Talvez os dados mais convincentes para a proteção renal, além da redução da albuminúria, decorram do estudo AWARD-7. Este estudo avaliou o dulaglutide contra insulina glargina em 577 pacientes com DRC moderada a grave (estágios 3-4, com uma TFGe média aproximada de 38 mL/min/1,73m²) para o desfecho primário da redução da HbA1c em 26 semanas e resultados secundários de TFGe e UACR. Por design, a redução glicêmica entre os dois braços de tratamento foi semelhante. Apesar da equipe glicêmica, o dulaglutide foi associado a um menor declínio na TFGe em um ano, particularmente em pacientes com macroalbuminúria basal, que também alcançaram a maior redução na proporção de albumina/creatinina na urina com a dose mais alta de 1,5 mg de dulaglutide. Esta observação importante enfatiza que, semelhante aos benefícios renais alcançados com os inibidores da SGLT2, os efeitos do GLP-1RA no rim provavelmente são independentes da glicose.

Como Usar Estes Agentes Juntos?

Como observado em ensaios como o DURATION-8, quando usados em conjunto, os inibidores da SGLT2 e o GLP-1RA conferem benefícios adicionais ao controle glicêmico, pressão arterial e perda de peso. No entanto, atualmente não há ensaios clínicos completos avaliando o impacto do inibidor combinado de SGLT2 mais GLP-1RA no uso cardiovascular nos desfechos renais.
Uma coorte pós-hoc de propensão do estudo EXSCEL com o exenatida GLP-1RA demonstrou que a adição da exenatida em pacientes em um contexto em que a inibição da SGLT2 tendia a exibir melhorias no MACE e na mortalidade por todas as causas, e taxas mais lentas de declínio renal comparados aos pacientes que não usam inibidor da SGLT2. Na prática clínica, é provável que os inibidores de SGLT2 e GLP-1RA sejam iniciados sequencialmente. Em consonância com várias diretrizes da prática clínica, recomendamos uma abordagem centrada no paciente, visando as comorbidades cardiorrenais e os fatores de risco relacionados ao diabetes, considerando o risco de eventos adversos, a preferência do paciente e o custo do tratamento (Figura 1).

Em pacientes obesos com DM2 sem outras comorbidades, enquanto ambos os agentes promovem perda de peso, o GLP-1RA pode ser preferido como o primeiro agente, devido à maior perda de peso na faixa superior dos inibidores de SGLT2, particularmente com o liraglutídeo e o semaglutide de ação mais prolongada. Além disso, a perda de peso com inibidores da SGLT2 pode ser limitada por adaptações compensatórias, incluindo hiperfagia. De fato, o liraglutídeo 3 mg por dia é aprovado como agente de perda de peso quando usado como complemento de uma dieta calórica reduzida e atividade física. Dada a heterogeneidade significativa na perda de peso com GLP-1RA, respostas inadequadas podem levar à adição de inibição de SGLT2 à luz dos resultados do DURATION-8 e do AWARD-10.

Entre os pacientes com DM2 e DCVAC estabelecida, os inibidores de GLP-1RA e SGLT2 reduzem o MACE em quantidades semelhantes, e é indicado o início de qualquer classe. Esses pacientes podem subsequentemente ser candidatos principais à terapia combinada. Em pacientes com DM2 e múltiplos fatores de risco para DCVAC, mas sem doença estabelecida, as metanálises não detectaram um benefício no MACE para os inibidores de GLP-1RA ou SGLT2. Outras considerações podem incluir o tipo de DCVAC de base. Por exemplo, o semaglutide e o dulaglutide demonstraram reduções no risco de acidente vascular cerebral, e efeitos similares foram relatados na classe como um todo em metanálises. Consequentemente, pode ser razoável iniciar preferencialmente em pacientes com DM2 e uma história de acidente vascular cerebral, e um GLP-1RA como o primeiro agente antes de usar um inibidor de SGLT2.

Em pacientes com DM2 e insuficiência cardíaca, principalmente ICFEr, a inibição de SGLT2 deve ser priorizada, além de outras terapias orientadas por diretrizes, como demonstrado no estudo DAPA-HF. Além disso, várias metanálises demonstraram reduções no HIC com inibidores de SGLT2, reduções que não foram demonstradas com o GLP-1RA. Além disso, os resultados do estudo FIGHT, em que pacientes com ICFEr foram randomizados para liraglutide versus placebo, sugerem uma tendência a danos. Uma razão possível para esta observação poderia ser os efeitos cronotrópicos opostos dos inibidores de SGLT2 e GLP-1RA discutidos nas seções acima.
Os efeitos cronotrópicos do GLP-1RA podem ser particularmente deletários em pacientes com insuficiência cardíaca com maior atividade simpática, contribuindo para a morbimortalidade.34,80 Por outro lado, os inibidores da SGLT2 não estão associados ao aumento da FC, apesar da natriurese/diurese osmótica e redução da pressão arterial e do volume plasmático, sugerindo redução da atividade do SNS.6,81 A adição de GLP-1RA aos inibidores de SGLT2 em pacientes com IC com DM2 pode ser considerada uma história concomitante de DCVAC. Resta ver se os inibidores de SGLT2 diminuem os aumentos na FC quando usados em combinação com o GLP-1RA.

Finalmente, em pacientes com DM2 com DKD, particularmente naqueles com alto risco de progressão, os resultados do CREDENCE e das análises secundárias por CVOT corroboram fortemente o uso de inibidores da SGLT2. Os resultados esperados da DAPA-DRC e do EMPA-Rim também podem justificar o uso de inibidores de SGLT2 na DRC com proteinúria não diabética. A proteinúria persistente e/ou a hiper tensão, apesar do bloqueio máximo do RAAS em dose máxima e do uso de inibidor de SGLT2, podem levar em consideração a adição de GLP-1RA. É importante ressaltar que os benefícios da inibição do SGLT2 foram amplamente demonstrados em coortes de estudo que já fazem tratamentos de fundo que são protetores cardiorrenais, como o bloqueio do RAAS. O bloqueio do RAAS e os inibidores da SGLT2 estão associados a quedas significativas mediadas pela hemodinâmica renal na TFG, o que pode limitar seu uso em pacientes com função renal nos limites mais baixos dos critérios de inclusão de ensaios clínicos (\textless{}30 mL/min no estudo CREDENCE ou \textless{}25 mL/min no estudo DAPA-CKD). A adição de GLP-1RA neutro à inibição de RAAS hemodinamicamente ativa ou inibição de SGLT2 pode ser desejável em tais circunstâncias, dados seus possíveis benefícios renais diretos que são independentes dos efeitos agudos de queda na TFG.

Eventos Adversos

Os inibidores da SGLT2 são bem tolerados, sendo as infecções genitais micóticas o efeito colateral mais comum e a cetoacidose diabética, uma complicação rara, mas potencialmente grave.82 Relatos de lesão renal aguda (LRA) não foram substanciados, com os três CVOTs e o CREDENCE relatando reduções da LRA.83 Um aumento do risco de amputação dos membros inferiores foi observado no CANVAS e em alguns outros estudos, mas não no CREDENCE,84,85,86 sugerindo que essa não é mais uma grande preocupação. O GLP-1RA tem sido associado a efeitos gastrointestinais dependentes da dose, incluindo náusea, vômito e diarreia em aproximadamente 5 a 10\% das pessoas.85 Estudos em animais e dados observacionais sobre os riscos de pancreatite e câncer medular da tireóide não têm sido corroborados nos CVOTs.86,87 Análises post-hoc mais recentes mostraram que o GLP-1RA é seguro e bem tolerado em pacientes com doença renal.88,89

O GLP-1RA possui um mecanismo de ação dependente de glicose e baixas taxas de hipoglicemia.90 O risco de hipoglicemia é similarmente baixo com a inibição do SGLT2, porque os efeitos na excreção urinária de glicose são reduzidos em níveis mais baixos de glicose.2 É importante ressaltar que não houve aumento do risco de hipoglicemia com a terapia dupla no DURATION-8, e risco mínimo no AWARD-10 e no SUSTAIN-9.50-52 No geral, esses estudos sugerem um perfil de segurança aceitável com terapia combinada e nenhum sinal específico para risco aumentado de efeitos adversos (Figura 2).

![Figura 2. Monitoramento e considerações sobre efeitos colaterais.](image-url)
CONCLUSÕES

O uso de inibidores de SGLT2 e GLP1-RA individualmente aumentou significativamente nos últimos anos. Com o surgimento de ensaios clínicos em populações de pacientes não diabéticos, demonstrando benefícios desses agentes nos resultados cardiovasculares e renais, espera-se que o uso desses medicamentos seja mais uma opção terapêutica para nefrologistas, cardiologistas e neurologistas. Esperamos que seu uso combinado aumente de maneira semelhante, principalmente em pacientes com múltiplas comorbidades. Com relação ao seu uso individual, questões importantes permanecem sem resposta, incluindo se o GLP-1RA reduz ou não o risco de doença renal terminal ou duplicação da creatinina sérica em coortes com DRD basal - uma questão sendo atualmente avaliada no estudo FLOW em andamento com semaglutide. Além disso, não se sabe se existe um limite inferior da função renal para proteção cardiorrenal com qualquer classe de medicamento, especialmente em pacientes com condições não diabéticas. Finalmente, pacientes com diabetes tipo 1 e receptores de transplante de órgão sólido, particularmente receptores de transplante renal, são outras populações nas quais é necessária uma investigação maior quanto ao uso desses agentes. Por fim, com base nos dados de estudos que utilizam terapias individuais, é agora de extrema importância elucidar o papel da terapia combinada com inibidor de SGLT2-GLP1-RA como estratégia para reduzir as complicações cardiorrenais.

AGRADECIMENTOS

D.Z.I.C. é apoiado pelo Departamento de Medicina da Universidade de Toronto, por mérito e recebe apoio do CIHR, Diabetes Canada, e do Heart and Stroke Richard Lewar Centre of Excellence e da Heart and Stroke Foundation of Canada. V.S.S. é financiado pelo Programa de Treinamento para Cientistas Clínicos da Universidade de Toronto.

DECLARAÇÕES

D.Z.I.C. recebeu honorários de consultoria ou honorários de palestrante ou ambos da Janssen, Bayer, Boehringer Ingelheim-Eli, Lilly, Astrazeneca, Merck & Co. Inc., Prometic, Sanofi, Novo Nordisk e Esperion e recebeu fundos operacionais da Janssen, Boehringer Ingelheim-Eli, Lilly, Sanofi, Astrazeneca, Merck & Co. Inc e Novo Nordisk. VSS, LD e JB não têm conflitos de interesses.

CONTRIBUIÇÃO DO AUTOR

Vikas S. Sridhar, Lisa Dubrofsky, Jacinthe Boulet, David Z. Cherney contribuíram substancialmente para a concepção ou desenho do estudo; coleta, análise ou interpretação de dados; redação ou revisão crítica do manuscrito; e aprovação final da versão a ser publicada.

CONFLITO DE INTERESSES

Os autores declaram não ter conflito de interesses relacionado à publicação deste manuscrito.

REFERÊNCIAS BIBLIOGRÁFICAS

1. Lytvyn Y, Bjornstad P, Van Raalte DH, Heerspink HL, Cherney DZI. The new biology of diabetic kidney disease-mechanisms and therapeutic implications. Endocr Rev. 2020;41(12):819-9.
2. Heerspink HJL, Perkins BA, Fitchett DH, Huisen M, Cherney DZI. Sodium glucose cotransporter 2 inhibitors in the treatment of diabetes mellitus: cardiovascular and kidney effects, potential mechanisms, and clinical applications. Circulation. 2016 Sep;134(10):752-72.
3. Heerspink HJL, Kosiborod M, Inzucchi SE, Cherney DZI. Renoprotective effects of sodium-glucose cotransporter-2 inhibitors. Kidney Int. 2018 Jul;94(1):26-39.
4. Cherney DZI, Cooper ME, Tikkanen I, Pfarr E, Johansen OE, Woerle HJ, et al. Pooled analysis of phase III trials indicate contrasting influences of renal function on blood pressure, body weight, and HbA1c reductions with empagliflozin. Kidney Int. 2018 Jan;93(1):231-44.
5. Cherney DZI, Perkins BA. Sodium-glucose cotransporter 2 inhibition in type 1 diabetes: simultaneous glucose lowering and renal protection?. Can J Diabetes. 2014 Oct;38(5):356-63.
6. Cherney DZI, Perkins BA, Soleymanlou N, Har R, Fagan N, Johansen OE, et al. The effect of empagliflozin on arterial stiffness and heart rate variability in subjects with uncomplicated type 1 diabetes mellitus. Cardiovasc Diabetol. 2014 Jan;13(28).
7. Sternlicht H, Bakris GL. Blood pressure lowering and sodium-glucose co-transporter 2 inhibitors (SGLT2is): more than osmotic diuresis. Curr Hypertens Rep. 2019 Feb;21(2):1-12.
8. Goldenberg RM, Berall M, Chan CTM, Cherney DZI, Lovshin JA, Senior PA, et al. Managing the course of kidney disease in adults with type 2 diabetes: from the old to the new. Can J Diabetes. 2017 Aug;42(3):325-34.
9. Bjornstad P, Laffel L, Vassilopoulou WV, Simons G, Hantel S, Von Eynatten M, et al. Acute effect of empagliflozin on fractional excretion of sodium and eGFR in youth with type 2 diabetes. Diabetes Care. 2018 Aug;41(8):e129-e30.
10. Jiménez DL, Cherney DZI, Bjornstad P, Castilla-Guerra I, González JPM. Antihyperglycemic agents as novel natriuretic therapies in diabetic kidney disease. Am J Physiol Renal Physiol. 2018 Nov;315(5):F1406-F15.
11. Lovshin JA, Cherney DZ. Sodium transport in diabetes: two sides to the coin. Nat Rev Nephrol. 2018 Dec;15:125-6.
12. Rajasekeran H, Lytvyn Y, Cherney DZI. Sodium-glucose co-transporter 2 inhibition and cardiovascular risk reduction in patients with type 2 diabetes: the emerging role of natriuresis. Kidney Int. 2016 Mar;89(3):524-6.
13. Cherney DZI, Perkins BA, Soleymanlou N, Maione M, Lai V, Lee A, et al. Renal hemodynamic effect of sodium-glucose co-transporter 2 inhibition in patients with type 1 diabetes mellitus. Circulation. 2014 Feb;129(5):587-97.
14. Kidokoro K, Cherney DZI, Bozovic A, Nagasu H, Satoh M, Kanda E, et al. Evaluation of glomerular hemodynamic function by empagliflozin in diabetic mice using in vivo imaging. Circulation. 2019 Jul;140(4):303-15.
Uso combinado de inibidores de SGLT2 e agonistas do receptor GLP1

15. Rajasekaran H, Lytvyn Y, Bozovic A, Lovshin JA, Diamandis E, Catrran D, et al. Urinary adenosine excretion in type 1 diabetes. Am J Physiol Renal Physiol. 2017 Aug;313(2):F184-F91.

16. Skrtic M, Cherney DZ. Sodium-glucose cotransporter-2 inhibition and the potential for renal protection in diabetic nephropathy. Curr Opin Nephrol Hypertens. 2015 Jan;24(1):96-103.

17. Skrtic M, Yang GK, Perkins BA, Soleymanolou N, Lytvyn Y, Von Eynatten M, et al. Characterisation of glomerular haemodynamic responses to SGLT2 inhibition in patients with type 1 diabetes and renal hyperfiltration. Diabetologia. 2014 Dec;57(12):2599-602.

18. Van Bommel EJM, Lytvyn Y, Perkins BA, Soleymanolou N, Fagan NM, Koitka-Weber A, et al. Renal hemodynamic effects of sodium-glucose cotransporter 2 inhibitors in hyperfiltering people with type 1 diabetes and people with type 2 diabetes and normal kidney function. Kidney Int. 2020 Apr;97(4):631-5.

19. Van Bommel EJM, Muskiet MHA, Van Baar MBJ, Tonneijck L, Smits MM, Emanuel AL, et al. The renal hemodynamic effects of the SGLT2 inhibitor dapagliflozin are caused by post-glomerular vasodilatation rather than pre-glomerular vascular constriction in metformin-treated patients with type 2 diabetes in the randomized, double-blind RED trial. Kidney Int. 2020 Jan;97(1):202-12.

20. Burns KD, Cherney D. Renal angiotensinogen and sodium-glucose cotransporter-2 inhibition: insights from experimental diabetic kidney disease. Am J Nephrol. 2019;49(4):328-30.

21. Cherney D, Perkins BA, Lytvyn Y, Heerspink H, Rodriguez-Ortiz ME, Mischak H. The effect of sodium/glucose cotransporter 2 (SGLT2) inhibition on the urinary proteome. PLoS ONE. 2017;12(10):e0186910.

22. Cherney DZI, Perkins BA, Soleymanolou N, Xiao F, Zimpelmann JZ, Woerle HJ, et al. Sodium glucose cotransporter-2 inhibition and intrarenal RAS activity in people with type 1 diabetes. Kidney Int. 2014 Nov;86(5):1057-64.

23. Dekkers CCJ, Petrykiv S, Laverman GD, Cherney DZ, Gansevoort RT, Heerspink HJL. Effects of the SGLT-2 inhibitor dapagliflozin on glomerular and tubular injury markers. Diabetes Obes Metab. 2018 Aug;20(8):1988-93.

24. Kopecky C, Lytvyn Y, Domenig O, Antlanger M, Kovarik JJ, Kaltenecker CC, et al. Molecular regulation of the renin-angiotensin system by sodium-glucose cotransporter 2 inhibition in type 1 diabetes mellitus. Diabetologia. 2019 Jan;62(6):1090-3.

25. Van Raalte DH, Cherney DZI. Sodium glucose cotransporter 2 inhibition and renal ischemia: implications for future clinical trials. Kidney Int. 2018 Sep;94(3):459-62.

26. Verma S, McMurray JJV, Cherney DZI. The metabolodiuretic promise of sodium-dependent glucose cotransporter 2 inhibition: the search for the sweet spot in heart failure. JAMA Cardiol. 2017 Sep;2(9):939-40.

27. Cherney D, Lund SS, Perkins BA, Groop PH, Cooper ME, Kaspers S, et al. The effect of sodium glucose cotransporter 2 inhibition with empagliflozin on microalbuminuria and macroalbuminuria in patients with type 2 diabetes. Diabetologia. 2016 Sep;59(9):1860-70.

28. Cherney DZI, Zinman B, Inuzucci SE, Koitka-Weber A, Mattheus M, Von Eynatten M, et al. Effects of empagliflozin on the urinary albumin-to-creatinine ratio in patients with type 2 diabetes and established cardiovascular disease: an exploratory analysis from the EMPA-REG OUTCOME randomised, placebo-controlled trial. Lancet Diabetes Endocrinol. 2017 Aug;5(8):610-21.

29. Drucker DJ. The cardiovascular biology of glucagon-like peptide-1. Cell Metab. 2016 Jul;24(1):15-30.

30. Verdicchio C, Flint A, Gutzwiller JP, Hellström PM, Long SJ, Morgan LM, et al. Meta-analysis of the effect of glucagon-like peptide-1 (7–36) amide on ad libitum energy intake in humans. J Clin Endocrinol Metab. 2001 Sep;86(9):4382-9.

31. Flint A, Raben A, Astrup A, Holst JJ. Glucagon-like peptide 1 promotes satiety and suppresses energy intake in humans. J Clin Invest. 1998 Feb;101(3):315-20.

32. Nogueiras R, Perez-Tilve D, Veyrat-Durebeix C, Morgan DA, Varela L, Haynes WG, et al. Direct control of peripheral lipid deposition by CNS GLP-1 receptor signaling is mediated by the sympathetic nervous system and blunted in diet-induced obesity. J Neurosci. 2009 May;29(18):5916-25.

33. Katout M, Zhu H, Rutsky J, Shah P, Brook RD, Zhong J, et al. Effect of GLP-1 mimetics on blood pressure and relationship to weight loss and glycaemia lowering: results of a systematic meta-analysis and meta-regression. Am J Hypertens. 2014 Jan;27(1):130-9.

34. Lorenz M, Lawson F, Owens D, Raccah D, Roy-Duval C, Lehmann A, et al. Differential effects of glucagon-like peptide-1 receptor agonists on heart rate. Cardiovasc Diabetol. 2017;16:6.

35. Lomberg J, Vejlstrup N, Kelbaek H, Botker HE, Kim WM, Mathiasen AB, et al. Exenatide reduces reperfusion injury in patients with S1-segment elevation myocardial infarction. Eur Heart J. 2012 Jun;33(12):1491-9.

36. Park CW, Kim HW, Ko SH, Lim JH, Ryu GR, Chung HW, et al. Long-term treatment of glucagon-like peptide-1 analog exendin-4 ameliorates diabetic nephropathy through improving metabolic anomalies in db/db mice. J Am Soc Nephrol. 2007 Apr;18(4):1227-38.

37. Kodera R, Shikata K, Katoaka HU, Takatsuka T, Miyamoto S, Sasaki M, et al. Glucagon-like peptide-1 receptor agonist ameliorates renal injury through its anti-inflammatory action without lowering glucose level in a rat model of type 1 diabetes. Diabetologia. 2011 Apr;54(4):965-78.

38. Mazidi M, Karimi E, Rezaie P, Ferns GA. Treatment with GLP1 receptor agonists reduce serum CRP concentrations in patients with type 2 diabetes mellitus: a systematic review and meta-analysis of randomized controlled trials. J Diabetes Complications. 2017 Jul;31(7):1237-42.

39. Tonneijck L, Muskiet MHA, Smits MM, Van Bommel EJ, Heerspink HJL, Van Raalte DH, et al. Glomerular hyperfiltration in diabetes: mechanisms, clinical significance, and treatment. J Am Soc Nephrol. 2017 Apr;28(4):1023-39.

40. Muskiet MH, Tonneijck L, Smits MM, Kramer MHF, Diamant M, Joles JA, et al. Acute renal haemodynamic effects of glucagon-like peptide-1 receptor agonist exenatide in healthy overweight men. Diabetes Obes Metab. 2016 Feb;18(2):178-85.

41. Tonneijck L, Smits MM, Muskiet MHA, Hoekstra T, Kramer MHF, Danser AHJ, et al. Acute renal effects of the GLP-1 receptor agonist exenatide in overweight type 2 diabetes patients: a randomised, double-blind, placebo-controlled trial. Diabetologia. 2016 Jul;59(7):1492-503.

42. Pyke C, Heller RS, Kirk RK, Orskov C, Redzid-Runge S, Kaasrup P, et al. GLP-1 receptor localization in monkey and human tissue: novel distribution revealed with extensively validated monoclonal antibody. Endocrinology. 2014 Apr;155(4):1280-90.

43. Htike ZZ, Zaccardi F, Papamargaritis D, Webb DR, Khunti K, Davies MJ. Efficacy and safety of glucagon-like peptide-1 receptor agonists in type 2 diabetes: a systematic review and mixed-treatment comparison analysis. Diabetes Obes Metab. 2017 Apr;19(4):524-36.

44. Neuen BL, Cherney DZ, Zardine MJ, Perkovic V. Sodium-glucose cotransporter inhibitors in type 2 diabetes: thinking beyond glucose lowering. CMAJ. 2019 Oct;191(41):E1128-E35.

45. Sun F, Wu S, Guo S, Yu K, Yang Z, Li L, et al. Impact of GLP-1 receptor agonists on blood pressure, heart rate and hypertension among patients with type 2 diabetes: a systematic review and network meta-analysis. Diabetes Res Clin Pract. 2015 Aug;110(1):26-37.

46. Marso SP, Daniels GH, Brown-Forand K, Kristensen P, Mann JFE, Nauck MA, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016 Jul;375(4):311-22.

47. Liakos A, Lambadiari V, Bargiota A, Kitsios K, Avramidis I, Kotsa K, et al. Effect of liraglutide on ambulatory blood pressure in patients with hypertension and type 2 diabetes: a randomized, double-blind, placebo-controlled trial. Diabetes Obes Metab. 2019 Mar;21(3):517-24.
Uso combinado de inibidores de SGLT2 e agonistas do receptor GLP1

49. Babenko AY, Savitskaya DA, Kononova YA, Trofimova YA, Simanenko VA, Vasilyeva EY, et al. Predictors of effectiveness of glucagon-like-peptide-1 receptor agonist therapy in patients with type 2 diabetes and obesity. J Diabetes Res. 2019;2019:1365162.

50. Frias JP, Guja C, Hardy E, Ahmed A, Dong F, Öhman P, et al. Exenatide once weekly plus dapagliflozin once daily versus exenatide or dapagliflozin alone in patients with type 2 diabetes inadequately controlled with metformin monotherapy (DURATION-8): a 28-week, multicentre, double-blind, phase 3, randomised controlled trial. Lancet Diabetes Endocrinol. 2016 Dec;4(12):1004-16.

51. Ludvik B, Frias JP, Tinahones FJ, Wainstein J, Jiang H, Robertson KE, et al. Dulaglutide as an add-on therapy to SGLT2 inhibitors in patients with inadequately controlled type 2 diabetes (AWARD-10): a 24-week, randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 2018 May;6(5):370-81.

52. Zinman B, Bhosekar V, Busch R, Holst I, Ludvik B, Thielek D, et al. Semaglutide once weekly as an add-on to SGLT-2 inhibitor therapy in type 2 diabetes (SUSTAIN 9): a randomised, placebo-controlled, placebo-crossover trial. Lancet Diabetes Endocrinol. 2019 May;7(5):356-67.

53. Lundkvist P, Sjöström CD, Amini S, Pereira MJ, Johnsson E, Eriksson JW. Dapagliflozin once-daily and exenatide once-weekly dual therapy: a 24-week randomized, placebo-controlled, phase II study examining effects on body weight and prediabetes in obese adults without diabetes. Diabetes Obes Metab. 2017 Jan;19(1):49-60.

54. Perkovic V, Jardine MJ, Neal B, Bomppoint S, Heerspink HJL, Charytan DM, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 2019 Jun;380(24):2295-306.

55. Neal B, Perkovic V, Maahffey KW, Zeeuw D, Fulcher G, Erondu N, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017 Aug;377(7):644-57.

56. Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019 Jan;380(4):347-57.

57. Wanner C, Lachin JM, Inzucchi SE, Fitchett D, Matthieu M, George J, et al. Empagliflozin and clinical outcomes in patients with type 2 diabetes mellitus, established cardiovascular disease, and chronic kidney disease. Circulation. 2018 Jan 18;137(2):119-29.

58. Wanner C, Inzucchi SE, Lachin JM, Fitchett D, Von Eynatten M, Matthieu M, et al. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med. 2016 Nov;375(18):323-34.

59. Cooper ME, Inzucchi SE, Zinman B, Hantel S, Von Eynatten M, Wanner C, et al. Glucose control and the effect of empagliflozin on kidney outcomes in type 2 diabetes: a multistate analysis from the EMPA-REG OUTCOME Trial. Am J Kidney Dis. 2019 Nov;74(5):713-5.

60. Inzucchi SE, Zinman B, Fitchett D, Wanner C, Ferramini E, Shumacher M, et al. How does empagliflozin reduce cardiovascular mortality? Insights from a mediation analysis of the EMPA-REG OUTCOME Trial. Diabetes Care. 2018 Feb;41(2):356-63.

61. Neuen BL, Ohkuma T, Neal B, Matthews DR, Zeeuw D, Maahffey KW, et al. Cardiovascular and renal outcomes with canagliflozin according to baseline kidney function. Circulation. 2018 Oct;138(15):1537-50.

62. Ohkuma T, Van Gaal L, Shaw W, Maahffey KW, Zeeuw D, Mathews DR, et al. Clinical outcomes with canagliflozin according to baseline body mass index: results from post hoc analyses of the CANVAS Program. Diabetes Obes Metab. 2020 Apr;22(4):530-9.

63. Perkovic V, Zeeuw D, Maahffey KW, Fulcher G, Erondu N, Shaw W, et al. Canagliflozin and renal outcomes in type 2 diabetes: results from the CANVAS Program randomised clinical trials. Lancet Diabetes Endocrinol. 2018 Sep;6(9):691-704.

64. Mosenzon O, Wiviott SD, Cahn A, Rozenberg A, Yanuv I, Goodrich EL, et al. Effects of dapagliflozin on development and progression of kidney disease in patients with type 2 diabetes: an analysis from the DECLARE–TIMI 58 randomised trial. Lancet Diabetes Endocrinol. 2019 Aug;7(8):606-17.

65. Zelniker TA, Raz I, Mosenzon O, Dwyer JP, Heerspink HJL, Cahn CA, et al. Effect of dapagliflozin on cardiovascular outcomes in patients with type 2 diabetes according to baseline renal function and albuminuria status: insights from DECLARE-TIMI 58. Eur Heart J. 2019 Aug;40(Suppl 1):ehz747.0052.

66. McMurray JJV, Solomon SD, Inzucchi SE, Kober L, Kosi- rod MN, Martinez FA, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019 Nov;381(21):1995-2008.

67. Docherty KF, Jhund PS, Inzucchi SE, Kober L, Kosiborod MN, Martinez FA, et al. Effects of dapagliflozin in DAPA-HF according to background heart failure therapy. Eur Heart J. 2020 Jul;41(25):2379-92.

68. Martinez FA, Serenelli M, Nicolau JC, Petrie MC, Chiang CE, Tereshchenko S, et al. Efficacy and safety of dapagliflozin in heart failure with reduced ejection fraction according to age: insights from DAPA-HF. Circulation. 2020 Jan;141(2):100-11.

69. Zelniker TA, Wiviott SD, Raz I, Im KA, Goodrich EL, Fur tado RHM, et al. Comparison of the effects of glucagon-like peptide receptor agonists and sodium-glucose cotransporter 2 inhibitors for prevention of major adverse cardiovascular and renal outcomes in type 2 diabetes mellitus. Circulation. 2019 Apr;139(17):2022-31.

70. Kristensen SL, Nørgaard R, Jhund PS, Docherty KF, Sattar N, Preis D, et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet Diabetes Endocrinol. 2019 Oct;7(10):776-85.

71. Giugliano D, Maiorino MI, Bellastella G, Longo M, Chiodini P, Esposito K. GLP-1 receptor agonists for prevention of cardiovascular outcomes in type 2 diabetes: an updated meta-analysis including the REWIND and PIO NEER 6 trials. Diabetes Obes Metab. 2019 Nov;21(11):2576-80.

72. Mann JFE, Orsted DD, Brown-Frandsen K, Marso SP, Poult er NR, Rasmussen S, et al. Liraglutide and renal outcomes in type 2 diabetes. N Engl J Med. 2017 Aug;377(9):839-48.

73. Marso SP, Bain SC, Consoli A, Eliaszewicz FG, Jódar E, Leiter LA, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016 Nov;375(19):1834-44.

74. Gerstein HC, Colhoun HM, Dagenais GR, Diaz R, Lakshman na M, Masis P, et al. Dulaglutide and renal outcomes in type 2 diabetes: an exploratory analysis of the REWIND randomised, placebo-controlled trial. Lancet. 2019 Jul;394(10193):131-8.

75. Gerstein HC, Colhoun HM, Dagenais GR, Diaz R, Lakshman na M, Masis P, et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial. Lancet. 2019 Jul;394(10193):121-30.

76. Tuttle KR, Lakshmanan MC, Rayner B, Busch RS, Zimmermann AG, Woodward DB, et al. Dulaglutide versus insulin glargine in patients with type 2 diabetes and moderate-to-severe chronic kidney disease (AWARD-7): a multicentre, open-label, randomised trial. Lancet Diabetes Endocrinol. 2018 Aug;6(8):605-17.

77. Clegg LE, Penland RC, Bachina S, Boulton DW, Threussor M, Heerspink HJL, et al. Effects of exenatide and open-label SGLT2 inhibitor treatment, given in parallel or sequentially, on mortality and cardiovascular and renal outcomes in type 2 diabetes: insights from the EXSCEL trial. Cardiovasc Diabetol. 2018 Oct;17(1):138.

78. Brown E, Wilding JPH, Barber TM, Alam U, Cuthbertson DJ. Weight loss variability with SGLT2 inhibitors and GLP-1 receptor agonists in type 2 diabetes mellitus and obesity: mechanistic possibilities. Obes Rev. 2019 Jun;20(6):816-28.

79. Devenny JJ, Godonis HE, Harvey SJ, Rooney S, Cullen MJ, Pellemountier MA. Weight loss induced by chronic dapagliflozin treatment is attenuated by compensatory hyperphagia in diet-induced obese (DIO) rats. Obesity (Silver Spring). 2012 Aug;20(8):1643-52.
80. Margulies KB, Hernandez AF, Redfield MM, Givertz MM, Oliveira GH, Cole R, et al. Effects of liraglutide on clinical stability among patients with advanced heart failure and reduced ejection fraction: a randomized clinical trial. JAMA. 2016 Aug;316(5):500-8.
81. Herat LY, Magno AL, Rudicka C, Hricova J, Carnagarin R, Ward NC, et al. SGLT2 inhibitor-induced sympathoinhibition: a novel mechanism for cardiorenal protection. JACC Basic Transl Sci. 2020 Jan;5(2):169-79.
82. Fitchett D. A safety update on sodium glucose co-transporter 2 inhibitors. Diabetes Obes Metab. 2019 Apr;21(Suppl 2):34-42.
83. Menne J, Dumann E, Haller H, Schmidt BMW. Acute kidney injury and adverse renal events in patients receiving SGLT2-inhibitors: a systematic review and meta-analysis. PLoS Med. 2019 Dec;16(12):e1002983.
84. Chang HY, Singh S, Mansour O, Bakh S, Alexander GC. Association between sodium-glucose cotransporter 2 inhibitors and lower extremity amputation among patients with type 2 diabetes. JAMA Intern Med. 2018 Sep;178(9):1190-8.
85. Prasad-Reddy L, Isaacs D. A clinical review of GLP-1 receptor agonists: efficacy and safety in diabetes and beyond. Drugs Context. 2015 Jul;4:212283.
86. Storgaard H, Cold F, Gluud LL, Vilsboll T, Knop FK. Glucagon-like peptide-1 receptor agonists and risk of acute pancreatitis in patients with type 2 diabetes. Diabetes Obes Metab. 2017 Jun;19(6):906-8.
87. Bethel MA, Patel RA, Thompson VP, Merrill P, Reed SD, Li Y, et al. Changes in serum calcitonin concentrations, incidence of medullary thyroid carcinoma, and impact of routine calcitonin concentration monitoring in the EXenatide Study of Cardiovascular Event Lowering (EXSCEL). Diabetes Care. 2019 Jun;42:1075-80.
88. Mann JFE, Fonseca VA, Poulter NR, Raz I, Idorn T, Rasmussen S, et al. Safety of liraglutide in type 2 diabetes and chronic kidney disease. Clin J Am Soc Nephrol. 2020 Apr;15(4):465-73.
89. Cherney DZ, Turtle KR. Liraglutide for the treatment of type 2 diabetes and safety in diabetic kidney disease: liraglutide and diabetic kidney disease. Clin J Am Soc Nephrol. 2020 Mar;15:444-6.
90. Garber AJ. Long-acting glucagon-like peptide 1 receptor agonists: a review of their efficacy and tolerability. Diabetes Care. 2011 May;34(Suppl 2):S279-84.