SUZAKU OBSERVATIONS OF SUBHALOS IN THE COMA CLUSTER

TORU ŠASAKI, KYOKO MATSUSHITA, KOSUKE SATO, AND NOBUHIRO OKABE

1 Department of Physics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan; j1213703@ed.tus.ac.jp, matsushita@rs.kagu.tus.ac.jp
2 Department of Physical Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
3 Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583, Japan

Received 2015 February 9; accepted 2015 April 9; published 2015 June 12

Abstract

We observed three massive subhalos in the Coma cluster with Suzaku. These subhalos, labeled “ID 1,” “ID 2,” and “ID 32,” were detected with a weak-lensing survey using Subaru/Suprime-Cam, and are located at the projected distances of 1.4\,r_{500}, 1.2\,r_{500}, and 1.6\,r_{500} from the center of the Coma cluster, respectively. The subhalo “ID 1” has a compact X-ray excess emission close to the center of the weak-lensing mass contour, and the gas mass to weak-lensing mass ratio is about 0.001. The temperature of the emission is about 3\,keV, which is slightly lower than that of the surrounding intracluster medium (ICM) and that expected for the temperature versus mass relation of clusters of galaxies. The subhalo “ID 32” shows an excess emission whose peak is shifted toward the opposite direction from the center of the Coma cluster. The gas mass to weak-lensing mass ratio is also about 0.001, which is significantly smaller than regular galaxy groups. The temperature of the excess is about 0.5\,keV and significantly lower than that of the surrounding ICM and far from the temperature versus mass relation of clusters. However, there is no significant excess X-ray emission in the “ID 2” subhalo. Assuming an infall velocity of about 2000\,km\,s^{-1}, at the border of the excess X-ray emission, the ram pressures for “ID 1” and “ID 32” are comparable to the gravitational restoring force per area. We also studied the effect of the Kelvin–Helmholtz instability to strip the gas. Although we found X-ray clumps associated with the weak-lensing subhalos, their X-ray luminosities are much lower than the total ICM luminosity in the cluster outskirts.

Key words: galaxies: clusters: individual (Coma Cluster) – X-rays: galaxies: clusters

1. INTRODUCTION

Galaxy clusters are the largest self-gravitating bound systems in the universe and are composed of thousands of galaxies, the intracluster medium (ICM), and dark matter. The ICM covers a total mass range of roughly \(10^{13–14}\,\text{M}_\odot\) and is bound to the potential of the dark matter halo, which covers that of \(10^{14–15}\,\text{M}_\odot\). Therefore, the gravity of the dark matter halo plays the most important role in cluster evolution and structure formation. Numerical simulations with the cold dark matter (CDM) model predict that the galaxy clusters form through the merger or accretion of a smaller system like galaxy groups. Since the dynamical timescale of galaxy clusters is comparable to the Hubble time, the outskirts of the galaxy clusters still maintain the evolution effects via the accretion of the substructures. The central region of these accreting objects is expected to have survived until recently as subhalos in the cluster host halo.

The mass distribution of subhalos provides us with information on the mass assembly of the galaxy cluster. Okabe et al. (2014a) surveyed and measured the mass of subhalos in the Coma cluster using weak-lensing observations with Subaru/Suprime-Cam. Thanks to the large apparent size, they detected 32 cluster subhalos whose mass range is \(\sim 2–50 \times 10^{12}\,\text{h}^{-1}\,\text{M}_\odot\). They first confirmed that the subhalo mass function, \(dn/d\ln M_{\text{sub}}\), is well represented with a single power law or a Schechter function. The best-fit indices of each model are \(\sim 1\), which agree well with the CDM model prediction on the sub-scale of the cluster. Stacked signals of subhalos were well represented with a sharply truncated Navarro–Frenk–White (NFW) mass model (Navarro et al. 1995) as expected from a tidal destruction model. For the three most massive subhalos whose mass are higher than \(\sim 1 \times 10^{13}\,\text{h}^{-1}\,\text{M}_\odot\), they measured the mass and truncation radius of each subhalo. One of them is a famous substructure of the Coma cluster around the NGC 4839 group.

If subhalos in the cluster outskirts still possess some amount of their hot gas and are not excluded in X-ray analysis, the derived ICM density would be overestimated. The recent Suzaku observations reported that the entropy of the ICM, which is a useful parameter for the thermodynamical history, shows flatter profiles beyond \(r_{500}\) than expectations from pure gravitational heating (Bautz et al. 2009; George et al. 2009; Reiprich et al. 2009; Hoshino et al. 2010; Kawaharada et al. 2010; Akamatsu et al. 2011, 2012; Simionescu et al. 2011, 2013; Urban et al. 2011, 2014; Sato et al. 2012, 2014; Walker et al. 2012a, 2012b, 2013; Ichikawa et al. 2013; Okabe et al. 2014b). Since the gas fraction in the Perseus cluster assuming hydrostatic equilibrium exceeds the cosmic baryon fraction, Simionescu et al. (2011) claimed the effect of gas clumpiness, although a Chandra observation showed no significant excess X-ray sources in the outskirts (Urban et al. 2014).

The weak-lensing mass estimation of cluster main halos is complementary to X-ray observations. In the cluster outskirts, the hydrostatic mass with Suzaku is significantly lower than the weak-lensing mass with the Subaru telescope (Kawaharada et al. 2010; Ichikawa et al. 2013; Okabe et al. 2014b; Mochizuki et al. 2015). Okabe et al. (2014b) discussed how the bivariate scaling functions of the electron density and temperature indicate that entropy flattening of the outskirts of the galaxy clusters is caused by the steepening of temperature profiles. Deviations from hydrostatic equilibrium have been discussed in Kawaharada et al. (2010), Ichikawa et al. (2013),
Table 1
Properties of the Coma Cluster Subhalos

ID	M_{200}^a	M^b	r^c	(R.A., decl.)d	N_H^e	Distancef
	M_{200}^a	M^b	r^c	(J2000.0)	N_H^e	(arcmin/r$_{200}$)
1	15.42 ± 2.79	14.26 ± 0.55	3.86 ± 0.14	12°55′34″5, + 27°31′33″7	8.6	61.8/1.42
2	8.79 ± 4.69	8.7	51.6/1.18
32	45.95 ± 7.57	47.75 ± 13.42	9.21 ± 0.83	13°01′41″0, + 29°03′14″4	9.5	71.2/1.63

a The name of subhalos (Okabe et al. 2014a).
b The projected weak-lens mass of the subhalos (Okabe et al. 2014a).
c The best-fit mass with truncated NFW model (Okabe et al. 2014a).
d The truncation radius derived from Okabe et al. (2014a).
e For “ID 1” and “ID 2,” the center of the subhalos determined from the mass contour. The center of “ID 32,” however, is derived from the weak-lensing signal peak since the difference between the weak-lensing signal peak and the mass contour is significantly smaller than the Suzaku point-spread function.
f The Galactic hydrogen column density (Kalberla et al. 2005).

Okabe et al. (2014b), and Mochizuki et al. (2015). Hoshino et al. (2010) proposed another idea in which electron temperature is lower than the ion temperature in these regions, since heating the electrons takes a longer time than that of the ion after accretion shocks and mergers.

With weak-lensing mass measurements of subhalos, we can search X-ray clumps associated with these subhalos efficiently with X-ray observations. In this paper, we describe the X-ray properties of three massive subhalos whose mass is greater than $\sim 9 \times 10^{12} h^{-1} M_\odot$, detected by Subaru weak-lensing observations of the Coma cluster (Okabe et al. 2014a). Excluding the NGC 4839 subgroup, we observed two of the most massive subhalos with Suzaku. We also observed a smaller subhalo, whose total mass is $\sim 9 \times 10^{12} h^{-1} M_\odot$. We summarize the observations and data preparation in Section 2.

3. ANALYSIS AND RESULTS

3.1. X-ray Images and Surface Brightness Profiles

In Figure 1, we present combined XIS images of subhalos in a 0.5–2.0 keV energy band. Here, the difference in the exposure times is corrected with the exposure map generated by the “xisexpmapgen” Ftools task. In addition, we also corrected the vignetting effect using a flat image at 1 keV. We created surface brightness profiles from these images of individual subhalos along the direction to the center of the Coma cluster, (R.A., decl.) = $(12^h59^m44^s81, 27^\circ56'49''92)$. The resultant surface brightness profiles are shown in Figure 3.

As shown in Figures 2(a) and 3(a), an excess emission is seen around the center of the “ID 1” mass contour. The surface brightness profile shows that most of the excess emission is confined within $2r_e$ ($0.6r_e$) from the mass center. In contrast, the “ID 2” subhalo does not show any excess emission: the brightness profile gradually increases toward the Coma cluster center as shown in Figure 3(b).

http://heasarc.nasa.gov/docs/Suzaku/processing/criteria_xis.html

http://heasarc.gsfc.nasa.gov/docs/suzaku/analysis/expomap.html
located in the northern part and shifts about $3'(0.3\,r)$ away from the subhalo center toward the west. In contrast, the brightness of most of the southern part is consistent with that of the background region, although there are two peaks at $\sim 6'$ offsets to the east and the west. We extracted spectra around these two excesses. Since their spectra are relatively hard and fitted with a power-law model, the southern peaks are possibly caused by background point sources.

3.2. Spectral Fitting

We extracted spectra over subhalo regions and background regions as shown in Figure 4. The regions around point sources brighter than 1×10^{13} erg s$^{-1}$ cm$^{-2}$ in $2.0-10.0$ keV were excluded from the spectral analysis. Since the mass contours of the subhalo “ID 1” in linear scale are elongated, we extracted spectra over an elliptical region whose semimajor and semiminor axes are 1.0 and 1.6r, respectively. Here, we excluded a circular region around a background galaxy group (Okabe et al. 2014a), plotted as a dashed circle in Figure 4. To study background emissions including the ICM contribution, we extracted spectra over an square region (hereafter “ID 1 BGD”), excluding the elliptical region. For the “ID 32” subhalo, we extracted spectra over two semicircular regions (hereafter “south” or “north” regions) of the subhalo out to the truncation radius. The background spectra for “ID 32” were extracted from the FOV of the “ID 32 BGD” observation.

The spectral fitting was carried out using XSPEC 12.8.1g and the extended C-statistic estimator. The spectra were binned to have at least one count per channel. We used the energy ranges of 0.5–7.0 keV and 0.7–7.0 keV for the BI and FI detectors, respectively. We excluded the energy band around the Si-K edge (1.82–1.84 keV) because its response was not modeled correctly.

We assumed that the X-ray emissions from “ID 1 BGD” and “ID 32 BGD” consist of the Galactic emissions from the Local Hot Bubble (LHB) and the Milky Way Halo (MWH), the cosmic X-ray background (CXB), and the ICM of the Coma cluster. The LHB and MWH were modeled with a thermal plasma model (apec model; Smith et al. 2001) without and with Galactic absorption, apec$_{\text{LHB}}$ and phabs$_{\text{GAL,MW}}$ x apec$_{\text{MWH}}$, respectively. Here, phabs$_{\text{GAL}}$ indicates the Galactic absorption using phabs model in the XSPEC package, and the column density of each subhalo direction is summarized in Table 1. The temperature of the apec$_{\text{LHB}}$ was fixed at 0.1 keV, while its normalization was a free parameter. We also allowed the temperature and normalization of the apec$_{\text{MWH}}$ to vary. For the LHB and MWH, the redshift and abundance were fixed to be 0 and 1 solar, respectively. The CXB emission was described by an absorbed power-law model with a photon of index $\Gamma = 1.4,$

Table 2
Suzaku Observation Logs for Coma Cluster Subhalos

Field Name	Sequence Number	Date-Obs.	(R.A., decl.)	Exposure
ID 1	808022010	2013 Jun 10T14:12:00	12h55'm38's/0, 27°31'00.1"	18.4
ID 2	808021010	2013 Jun 10T00:39:15	12h55'm55's/3, 27°45'17.6"	23.7
ID 32	808019010	2013 Jun 8T09:04:42	13h01'm36's/1, 29°01'40.8"	26.4
ID 32 BGD	808020010	2013 Jun 8T01:38:51	13h01'm00's/7, 28°45'46.'	20.2

* Start date of observation, written in the DATE-OBS keyword of the event FITS files.
* Average pointing direction of the XIS, written in the RA NOM and DEC NOM keywords of the event FITS files.
* Exposure time after screening.
phabs\textsubscript{GAL} \times \text{power} – \text{law}\textsubscript{CXB}. The normalization of power – \text{law}\textsubscript{CXB} was estimated beyond the virial radius of the Coma cluster as described in the Appendix.

The ICM emission was modeled with a thermal plasma model with the Galactic absorption, phabs\textsubscript{GAL} \times \text{apec}\textsubscript{ICM}. The temperature, normalization, and abundance were allowed to vary, except for the abundance for “ID 32 BGD” which was fixed at 0.2 solar. The redshift of the ICM component was fixed at the value of the Coma cluster, $z = 0.0231$. Thus, we used the following model formula for the spectra for “ID 1 BGD” and “ID 32 BGD”: constant \times (\text{apec}\textsubscript{LHB} + \text{phabs}\textsubscript{GAL} \times (\text{apec}\textsubscript{MWH} + \text{apec}\textsubscript{ICM} + \text{power} – \text{law}\textsubscript{CXB})). Here, the constant is a normalization parameter for the difference in relative normalizations among XIS detectors.

For the subhalo regions, we added an extra thermal plasma model, phabs\textsubscript{GAL} \times \text{apec}\textsubscript{subhalo}. We allowed the temperature and normalization of the \text{apec}\textsubscript{subhalo} of “ID 1” and “ID 32” to vary. The abundance for “ID 1” was a free parameter but that for “ID 32” was fixed at 0.2 solar, since we cannot constrain the abundance. Even if the abundance was fixed to be 0.1 or 0.3 solar, the results did not change.

The redshift of the \text{apec}\textsubscript{subhalo} was also fixed at the value of the Coma cluster. Thus, we modeled the spectra extracted from subhalo regions as the following formula: constant \times (\text{apec}\textsubscript{LHB} + \text{phabs}\textsubscript{GAL} \times (\text{apec}\textsubscript{MWH} + \text{apec}\textsubscript{ICM} + \text{apec}\textsubscript{subhalo} + \text{power} – \text{law}\textsubscript{CXB})). We finally fitted the spectra extracted for each subhalo region and the corresponding background region simultaneously, assuming that the X-ray background components have the same surface brightness, temperature, and abundances. Here, relative normalizations of the three XIS detectors were allowed to vary.

The fitting results are summarized in Table 3. Figure 5 shows the best-fit spectra of the background regions. The ICM temperatures for the “ID 1” and “ID 32” regions, 4.33\(_{–0.37}^{+0.60}\) and 5.19\(_{–0.83}^{+1.04}\) keV, respectively, are consistent with previous results of the southwest and northwest directions (Simionescu et al. 2013) at similar distances from the cluster center, respectively. Although the error range is fairly large, the ICM abundance of “ID 1” was also consistent with that in Simionescu et al. (2013).

The temperatures and normalizations of the Galactic components are consistent between “ID 1” and “ID 32.” The normalization of the LHB derived from the “ID 1” and “ID 32” spectral fits is consistent with that for the region at 110’–130’ (Appendix). However, the temperature and normalization of MWH are significantly different from those derived for the 110’–130’ region. When we use the temperature and normalizations of the the Galactic components obtained from 110’–130’ region, and fitted the spectra of the subhalo regions, the temperature and normalization of “ID 1” and the “north” region of “ID 32” did not change within statistical errors, although the temperature of the “south” region of “ID 32” decreased to about 0.1 keV. Considering the possible spatial variation of the Galactic components, we adopted the results of the simultaneous fits using “ID 1 BGD” and “ID 32 BGD.”

3.3. Fitting Results of the Subhalo Components

Figure 5 also shows the best-fit spectra of the subhalo regions. The fitting results of the subhalo components are summarized in Table 3. The spectra for the subhalo and background regions were well represented with our model.
The temperatures of each subhalo component are lower than that of the surrounding ICM. For "ID 1," the temperature is $-2.71^{+0.59}_{-0.59}$ keV and is cooler than the ICM component, $-4.33^{+0.37}_{-0.37}$ keV. The temperatures "north" and "south" of "ID 32" are about $-0.55^{+0.07}_{-0.13}$ and $-0.29^{+0.13}_{-0.07}$ keV, respectively. These values are significantly lower than the surrounding ICM temperature, $5.19^{+0.83}_{-0.83}$ keV. The abundance of the subhalo "ID 1" component is consistent with that of the surrounding ICM. The luminosity of the "ID 1" component is about 2×10^{41} erg s$^{-1}$ at 0.5–2.0 keV energy range and those of the "north" and "south" regions of "ID 32" are $\sim2 \times 10^{41}$ erg s$^{-1}$ and $\sim7 \times 10^{40}$ erg s$^{-1}$ at the same energy range, respectively.

3.4. The Representative Background Structure Fitting

Background galaxy groups are located within the "ID 1" and "ID 32" subhalo regions at $z = 0.418$ (Wen et al. 2009) and $z = 0.189$ (Hao et al. 2010), respectively (Okabe et al. 2014a). If the weak-lensing signals were mostly caused by the corresponding background galaxy groups, the virial mass, M_{vir}, would be $1–3 \times 10^{15} M_\odot$ for "ID 1" and several times $10^{14} M_\odot$ for "ID 32" (Okabe et al. 2014a). For such massive clusters, we expect that the ICM temperatures and ICM luminosities exceed 10 keV and 10^{45} erg s$^{-1}$ for "ID 1," respectively, and several keV and several times 10^{44} erg s$^{-1}$ for "ID 32," respectively. Therefore, we refitted the Suzaku spectra using redshifts of the background galaxy groups. As a result, the temperature increased to ~4 and 0.8 keV for "ID 1" and the "north" region of "ID 32," respectively, and the X-ray luminosity became $\sim10^{44}$ erg s$^{-1}$ and 2×10^{43} erg s$^{-1}$ in the 0.5–2.0 keV range, respectively. These temperatures and X-ray luminosities are far below the expected values assuming that the weak-lensing signals come from the background galaxy groups. Thus, it is unlikely that the excess emissions and weak-lensing signals come from the background galaxy groups, and are fairly associated with the Coma cluster.
3.5. The Gas Mass Estimation

To estimate the gas mass of each subhalo, we first approximated the spherical symmetry and assumed constant density up to 2.5 and 6′ for “ID 1” and “ID 32,” respectively, which correspond to ~0.6 r_i for each subhalo, since beyond these radii the excess emission was not detected. The best-fit normalization in the spectral fitting leads us to derive average electron density within the extracted region of each subhalo.

The resultant average electron densities of “ID 1,” and the “south” and “north” regions of “ID 32” are (5.3 ± 0.6) × 10^{-4} cm^{-3}, (2.0 ± 0.8) × 10^{-4} cm^{-3}, and (2.4 ± 0.4) × 10^{-4} cm^{-3}, respectively. Integrating the electron densities out to 0.6 r_i, the derived gas mass are (2.1 ± 0.2) × 10^{10} M_{\odot}, (6.8 ± 1.2) × 10^{10} M_{\odot}, and (5.8 ± 2.2) × 10^{10} M_{\odot} for “ID 1” and the “north” and “south” regions of “ID 32,” respectively.

We also estimated the electron density profiles by deprojecting radial profiles of the surface brightness centered on the center of the mass contour and the X-ray peak of “ID 1” and “ID 32” subhalos, respectively. We integrated the electron density profiles out to 0.6 r_i, within which the X-ray emissions of each subhalo are detected. The derived gas mass of “ID 1” and “ID 32” are (1.5 ± 0.1) × 10^{10} M_{\odot} and (9.5 ± 0.5) × 10^{10} M_{\odot}, respectively. Comparing these values with those assuming constant electron density, the systematic uncertainties in the gas mass would be about a factor of two to three.

Using the radial profiles of the electron density profile and the temperatures of “ID 1” and the “north” region of “ID 32” derived from the spectral fits, radial profiles of the thermal gas pressure, P = n_e kT, out to ~0.6 r_i, were estimated and plotted in Figure 6. Since the surface brightness and temperature of the ICM component surrounding “ID 1” and “ID 32” are close to those of the southwest direction and the azimuthal averages excluding the southwest direction derived by Simionescu et al. (2013), we compared our pressure profiles with those derived by Simionescu et al. (2013). The thermal pressure at 0.5 r_i of “ID 1” is slightly higher than that of the southwest direction. That in 0.3–0.5 r_i of “ID 32” is slightly below the ICM pressure.

We also estimated the gas mass assuming that the excess emission comes from background galaxy groups located within the “ID 1” and “ID 32” subhalo regions. The calculation methods are the same as mentioned in the previous paragraphs. Assuming flat density profiles, the total gas mass for “ID 1” and “ID 32” are (1.8 ± 0.2) × 10^{13} M_{\odot} and (1.3 ± 0.8) × 10^{13} M_{\odot}, respectively. By deprojecting the surface profiles, we estimated the gas mass by integrating the calculated density profiles. The resultant gas masses are (1.3 ± 0.1) × 10^{13} M_{\odot} and (1.3 ± 0.1) × 10^{13} M_{\odot} for “ID 1” and “ID 32,” respectively.

4. DISCUSSION

We observed three massive subhalos detected by the weak-lensing survey with Subaru, “ID 1,” “ID 2,” and “ID 32,” which are located at the Suzaku projected distances of 1.4 r_{500}, 1.2 r_{500}, and 1.6 r_{500} from the center of the Coma cluster, respectively. Excess X-ray emission has been detected from “ID 1” and “ID 32,” while “ID 2” has no significant excess emission. Temperatures of these subhalos were lower than that of the surrounding ICM. In Section 4.1, we compare the M_{gas}–M_{total} and kT–M_{total} relations between subhalos and regular galaxy groups. We estimate the ram pressure and mass-loss rate caused by the Kelvin–Helmholtz instability in Section 4.2. As discussed in Simionescu et al. (2011), the clumping in the galaxy clusters leads us to overestimate the electron density. In Section 4.3, we study the effect of the subhalos on the density and temperature measurements.
Subhalo Components

Redshift	kT (keV)	Z (solar)	Norma	Luminosityb (1044 erg s$^{-1}$)	Fluxb (10$^{-13}$ erg s$^{-1}$ cm$^{-2}$)	
“ID 1”	0.0231	2.71$^{+0.99}_{-0.59}$	0.13$^{+0.36}_{-0.13}$	5.72$^{+1.32}_{-1.32}$	1.78$^{+0.39}_{-0.35}$	1.48$^{+0.24}_{-0.29}$
“ID 32” north	0.0231	0.52$^{+0.07}_{-0.13}$	0.2 (fixed)	2.80$^{+0.42}_{-0.42}$	1.76$^{+0.40}_{-0.40}$	1.44$^{+0.14}_{-0.32}$
“ID 32” south	0.0231	0.29$^{+0.13}_{-0.07}$	0.2 (fixed)	2.05$^{+1.58}_{-1.06}$	0.67$^{+0.29}_{-0.48}$	0.54$^{+0.21}_{-0.41}$
“ID 1”	0.418	3.83$^{+1.02}_{-0.82}$	0.09$^{+0.24}_{-0.09}$	9.83$^{+1.92}_{-1.91}$	(3.88$^{+1.00}_{-1.00}$)$\times 10^{2}$	1.50$^{+0.21}_{-0.15}$
“ID 32” north	0.189	0.90$^{+0.07}_{-0.13}$	0.2 (fixed)	3.51$^{+0.51}_{-0.51}$	(1.74$^{+0.28}_{-0.30}$)$\times 10^{2}$	1.66$^{+0.35}_{-0.20}$
“ID 32” south	0.189	0.68$^{+0.19}_{-0.41}$	0.2 (fixed)	1.09$^{+0.65}_{-0.41}$	(5.24$^{+1.85}_{-3.53}$)$\times 10^{1}$	0.49$^{+0.28}_{-0.32}$

a The normalization of the apec components divided by the solid angle, Ω^{+}, assuming a uniform sky of 20o radius, $\text{Norm} = \int n_e n_H dV/\pi r_{5000}^2$.

b The energy range is 0.5–2.0 keV.

4.1. Comparison of the Gas Mass Fraction and Temperature with Other Clusters

The gas mass and weak-lensing mass of “ID 1” and “ID 32” are plotted in Figure 7(a). The gas mass fraction, or the gas mass to weak-lensing mass ratio, of these two subhalos is about 0.001. Here, we used the gas mass derived from integrating the radial profiles of the electron density. We compared these gas mass fractions of the subhalos with the gas mass to hydrostatic mass ratios of clusters and groups of galaxies. Since the mean density within the truncation radius of subhalos “ID 1” and “ID 32” is about 6600 times and 27,000 times higher than the critical density of the universe, respectively, we calculated the gas mass and hydrostatic mass at a radius within which each average density is the same as each subhalo’s overdensity, using Chandra results by Vikhlinin et al. (2006). The gas mass fractions of these clusters correlate well with the hydrostatic mass, and are about 0.02–0.1, which are about one to two orders of magnitude higher than those of the subhalos. If these subhalos had been regular groups before infalling onto the Coma cluster, they should have lost most of their gas.

In Figure 7(b), we also compared the relation of the temperature and total mass (kT–M_{total} relation) of the subhalos and clusters. Here, we also calculated the temperature and hydrostatic mass of the Chandra clusters in Vikhlinin et al. (2006) at the radius of the same over densities, or r_{5000} for “ID 1” and r_{7000} for “ID 32.” The temperature of “ID 1” is slightly lower than expected by the kT–M_{total} relation of the clusters. For “ID 32,” the temperature of the subhalo is several times lower than those of the kT–M_{total} relation of the clusters.

4.2. The Effect of Ram Pressure Stripping

The observed low gas mass fraction and morphologies of the excess emission indicate that the gas in the infalling subhalos has been stripped via the ram pressure of the surrounding ICM. The subhalo would be unable to hold the interstellar materials when the ram pressure exceeds the gravitational restoring force per area. At the truncation radius, the fraction of the ram pressure to the gravitational restoring force per area (Takizawa 2006)

$$ \text{Ratio} = \frac{P_{\text{ram}}}{F_{\text{grav}}/\text{Area}} = 1.3 \left(\frac{r_{t}}{100 \text{ kpc}} \right)^4 \left(\frac{n_e}{10^{-5} \text{ cm}^{-3}} \right) \times \left(\frac{M_{\text{subhalo}}}{10^{13} M_\odot} \right)^{-1} \left(\frac{M_{\text{gas,subhalo}}}{10^{10} M_\odot} \right)^{-1} \left(\frac{v_{\text{gal}}}{2500 \text{ km s}^{-1}} \right)^2 \frac{v_{\text{gal}}^2}{10} \tag{1} $$

is a useful parameter to investigate the present stripping effect. Here, the n_e, M_{ICM}, v_{gal}, r_t, M_{subhalo}, and $M_{\text{gas,subhalo}}$ are the electron density of the ICM, velocity of the subhalo, truncation radius, mass of the subhalo, and gas mass of the subhalo, respectively. By adopting those parameters of the subhalos and ICM, we calculated the ram pressure to the gravitational force per area ratio as a function of the subhalo moving velocity and plotted it in Figure 8. We also estimated the ratio at the 0.6 r_t, which corresponds to the border of the excess X-ray emission. The ram pressure should have been lower than the present value when infalling on the outer regions, since the ICM density decreases with the distance from the cluster center.

Since NGC 4807 and IC 4088 are located near the center of the mass contours of “ID 1” and “ID 32” (see Figure 1), respectively, these galaxies are likely representative galaxies of these subhalos. The recession velocities of NGC 4087 and IC 4088 are 6989 and 7095 km s$^{-1}$ (NASA/IPAC Extragalactic Database), respectively. Considering that of the Coma cluster, 6925 km s$^{-1}$, the velocities in line of the sight of these galaxies are 64 and 170 km s$^{-1}$, respectively. As shown in Figure 8, if these subhalos are moving toward the line of sight, the ratio of the ram pressure to the gravitational force in a unit area is orders of magnitudes lower than the unity. Even if...
Figure 5. Spectra of (a) "ID 1 BGD," (b) the subhalo region spectra of "ID 1," (c) "ID 32 BGD," and (d) and (e) "north" and "south" regions of the subhalo "ID 32," respectively. The spectra were rebinned here for display purposes only. Upper panels show the NXB subtracted XIS 1 spectra (black crosses). The subhalo component is plotted by the (red) bold line. The ICM, CXB, LHB, and MWH components are indicated by (blue) dotted, (magenta) dash–dotted, (cyan) thin, and (green) dashed lines, respectively, and the gray solid line indicates the sum of these background components. The lower panels show the data-to-model ratios. The gray diamonds in the lower panels in (b), (d), and (e) show those without the subhalo component. In the lower panels in (b), (d), and (e), the gray diamonds show the data-to-model ratio without subhalo component, in which the ratio indicates that the subhalo component cannot be negligible.
they are moving perpendicular to the line of sight with the infall velocity, their gas beyond 0.6 r1 can be stripped via ram pressure stripping.

We also estimated the mass-loss rate caused by Kelvin–Helmholtz instabilities since the gas in the center of “ID32” seems to be removed. Nulsen (1982) estimated the mass-loss rate caused by viscous stripping via Kelvin–Helmholtz instabilities, \(M_{KH} \approx \pi r_D^2 \rho_{ICM} v_{gal} \). Here, \(r_D \) and \(\rho_{ICM} \) are the disk radius and gas density of the ICM, respectively. The mass-loss rate can convert

\[
M_{KH} \approx 25 \left(\frac{n_e}{10^{-3} \text{ cm}^{-3}} \right) \left(\frac{r_D}{100 \text{ kpc}} \right)^2 \times \left(\frac{v_{gal}}{2500 \text{ km s}^{-1}} \right) \left(\frac{M_\odot}{M_e^{-1}} \right)
\]

We assumed that \(r_D \) is same as the truncation radius. Using the velocity of line of sight of each subhalo, the results of the mass-loss rate were \(M_{KH} \approx 6 \ M_\odot \text{yr}^{-1} \), for “ID1” and \(\approx 60 \ M_\odot \text{yr}^{-1} \) for “ID32.” In contrast, adopting the infall velocity, the mass-loss rates of “ID1” and “ID32” are 180 and 680 \(M_\odot \text{yr}^{-1} \), respectively. Considering the timescales for the mass-loss of 520 and 390 Myr for “ID1” and “ID32,” respectively, infalling from the virial radius of the Coma cluster, the total mass-loss rates from adopting the infall velocity the subhalo are about \(9 \times 10^{10} \) and \(3 \times 10^{11} \) \(M_\odot \) for “ID1” and “ID32,” respectively. These values of mass are more massive than current gas mass of the both subhalos. Therefore, the destruction of gas by the Kelvin–Helmholtz instability explains the very low gas fraction of the “ID1” and “ID32” subhalos. However, the mass-loss rate would be smaller with magnetic fields that suppress the destruction by Kelvin–Helmholtz instability.

4.3. The Contribution of the X-ray Emission of Subhalos to the ICM

Suzaku enables us to measure the entropy profiles of the galaxy clusters out to the virial radius (Bautz et al. 2009; George et al. 2009; Reiprich et al. 2009; Hoshino et al. 2010; Kawaharada et al. 2010; Akamatsu et al. 2011, 2012; Simionescu et al. 2011, 2013; Urban et al. 2011, 2014; Humphrey et al. 2012; Walker et al. 2012a, 2012b, 2013; Sato et al. 2012, 2014; Ichikawa et al. 2013; Okabe et al. 2014b; Mochizuki et al. 2015). Contrary to the prediction of the accretion shock heating model prediction, the entropy of galaxy clusters shows flat profiles beyond \(r_{500} \). Simionescu et al. (2011) interpreted gas density in the outskirts to be overestimated due to gas clumping and the entropy is

Table 4

Suzaku Observation Logs for the CXB Estimation

Field Name	Sequence No.	Obs. Date	(R.A., decl.)	Exposure
East 10"	806037010	2011 Jun 19T14:09:55	13h07m48s6, 27°53m08s5	11.1
East 120"	806038010	2011 Jun 20T01:23:51	13h08m27s4, 27°53m06s9	13.8
NW 110"	806045010	2011 Jun 22T17:48:52	12h56m18s6, 29°33m08s3	14.1
NW 120"	806046010	2011 Jun 23T06:03:44	12h56m00s8, 29°41m27s2	11.9

* a Start date of observation, written in the DATE-OBS keyword of the event FITS files.
* b Average pointing direction of the XIS, written in the RA_NOM and DEC_NOM keywords of the event FITS files.
* c Exposure time after screening.

Table 5

The Background Fitting Results

Norm\(a_{\text{XS}}\)	\(kT_{\text{SWH}}\) (keV)	Norm\(a_{\text{CXB}}\)	Norm\(N_{\text{CXB}}\)
\(11.4^{+1.4}_{-1.4}\)	\(0.31^{+0.02}_{-0.02}\)	\(0.84^{+0.15}_{-0.15}\)	\(1.01^{+0.02}_{-0.02}\)

* a The normalization of the apec components divided the solid angle, \(\Omega\), assuming a uniform sky of 20° radius, \(\text{Norm} = \int n_e n_h dV / [4\pi (1 + 3)D^2 / \Omega \times 10^{-17} \text{ cm}^{-5} \text{ 400}\pi \text{ arcmin}^{-2}\).
* b The normalization of power law is in units of photons cm\(^{-2}\) s\(^{-1}\) keV\(^{-1}\) 400\(\pi\) arcmin\(^{-2}\) at 1 keV.

Figure 6. Thermal pressure profile of “ID 1” centered on the mass center (open circles) and that of “ID 32” centered on the X-ray peak (open stars). The dotted (magenta) and dashed (green) lines indicate the ICM pressure range of the southwest direction and azimuthal average excluding the southwest direction derived by Simionescu et al. (2013).
underestimated. However, observing the Perseus cluster outskirts with Chandra, the number of detected sources is consistent with the background sources (Urban et al. 2014). With X-ray and weak-lensing joint analysis, Okabe et al. (2014b) discussed that entropy flattening of the outskirts of the galaxy clusters caused by the steepening of the temperature profiles, rather than the flattening of the gas density.

We studied the effect of subhalo luminosities on the estimation of electron densities when these subhalos are not excluded from spectral analysis. The observed X-ray flux of the excess emissions of “ID 1” and “ID 32” are $(1-2) \times 10^{-13} \text{erg s}^{-1} \text{cm}^{-2}$ in the 0.5–2.0 keV energy band. Considering that the threshold of the detection of point sources with a 10 ks Suzaku exposure is about $10^{-14} \text{erg s}^{-1} \text{cm}^{-2}$ in the 2.0–10.0 keV range, if similar subhalos are located in other clusters, most of them would be below the detection threshold flux of Suzaku. We note that regions around subhalos like “ID 9,” or the southwest subcluster around NGC 4839, can be easily excluded from spectral analysis of clusters observed with Suzaku because of their very high X-ray luminosities.

Within the projected distance of 1.2–1.6 r_{500} where the two subhalos are located, the ICM gas mass would be several times $10^{13} M_\odot$, which is estimated using the weighted average of the radial profiles of electron density observed with Suzaku by Simionescu et al. (2011), excluding the southwest direction, where the X-ray luminous subhalo “ID 9” is located. Thus, the ICM gas mass is two orders of magnitude higher than the gas mass of excess emission of “ID 1” and “ID 32.” The 0.5–2.0 keV luminosities of these two subhalos are a few times $10^{41} \text{erg s}^{-1}$ and are negligible when compared to the X-ray luminosity of the Coma cluster within 1.2–1.6 r_{500}, $\sim 10^{43} \text{erg s}^{-1}$, which is also estimated using the average of ICM temperature and normalization observed with Suzaku (Simionescu et al. 2013) excluding the southwest direction. Although Okabe et al. (2014a) detected 32 subhalos with weak-lensing observations, most of them are less massive and located within r_{500}. As a result, we can conclude that the X-ray emission of the subhalos does not affect the overestimation of the gas mass of the Coma cluster.

In order to evaluate the bias in the ICM temperature measurements, we extracted spectra again from FOVs observed around each subhalo, and fitted the spectra with the ICM and background model. The temperature of the ICM did not change within the statistic error range, since the total flux of the subhalos is one to two orders of magnitude lower than that of the ICM. If the number of subhalos is much higher, they may affect on the temperature and density measurements. Therefore, we created mock spectra, assuming two thermal components.
for clumps and surrounding ICM emission, by changing the flux ratio of two components. When we simulated a sum of mock spectra of 2 and 1 keV emissions for the ICM and subhalo whose flux is half that of the ICM, respectively, the derived temperature with a single temperature model became 1.2 keV, which is 40% lower than the original ICM temperature, and the electron density was also overestimated by 30%. This indicates the entropy to be low biased by 50%. Thus, if there are many clumps enough to increase the normalization of the ICM for changing the entropy profiles, the temperature bias is more significant.

Simionescu et al. (2013) derived the entropy of the Coma cluster beyond \(r_{500} \approx 47' \pm 1' \) derived from Planck Collaboration et al. (2013), and the entropy profile is consistent with the accretion shock heating model (Pratt et al. 2010). Here, the \(r_{500} \) derived from weak-lensing analysis (Okabe et al. 2010) is well consistent with that from the Planck Collaboration et al. (2013). Since there is no evidence for entropy flattening like other clusters and pressure excesses, they suggested that the gas clumps are easily destroyed in a dynamical active cluster. Therefore, their discussion is consistent with our study that a gas clump does not affect the gas density estimation of the Coma cluster.

5. SUMMARY AND CONCLUSIONS

We observed the three massive subhalos, “ID 1,” “ID 2,” and “ID 32,” which are detected from a Subaru weak-lensing analysis (Okabe et al. 2014a), with Suzaku. The weak-lensing survey of subhalos in the outskirts of the galaxy cluster enables us to efficiently carry out follow-up X-ray observations of gas subhalo candidates associated with weak-lensing-detected subhalos.

While the excess emission is seen around the center of the “ID 1” mass contour, the “ID 32” subhalo shows that the emission peak is shifted in the northern part or outer side of the Coma cluster center. In contrast to above two subhalos, the “ID 2” subhalo does not show any excess emission. The spectral analysis indicated that the temperature of the subhalo gas is significantly lower than the surrounding ICM. By deprojecting the surface brightness profiles, we derived the gas mass of each subhalo. The total gas mass of “ID 1” and “ID 32” is \(2 \times 10^{10} \) and \(1 \times 10^{11} M_{\odot} \), respectively. Compared to the \(kT-M_{\text{total}} \) and \(M_{\text{gas}}-M_{\text{total}} \) relation of regular galaxy groups, the gas fractions of the subhalos are much lower than regular galaxy groups. Adopting the infall velocity estimated from the best-fit NFW profile derived by weak-lensing analysis of the Coma cluster (Okabe et al. 2010), beyond 0.6 times the truncation radius of the subhalos, or at the border of the excess X-ray emission, the ram pressure is effective in removing the gas. With the infall velocity, the total amount of the removed gas mass from the subhalos via Kelvin–Helmholtz instabilities is about \(9 \times 10^{10} \) and \(3 \times 10^{11} M_{\odot} \) for “ID 1” and “ID 32,” respectively. The luminosities of the subhalos are about two orders of magnitude lower than that of the Coma cluster outskirts and do not affect the gas mass estimate of the ICM.

We thank the anonymous referee for carefully reading the manuscript and providing valuable comments. We also thank all members of the Suzaku operation team and the XIS calibration team. We acknowledge the support of a Grant-in-Aid for Scientific Research from the MEXT, No. 25400235 (K.M.), 25800112 (K.S.), and 26800097 (N.O.). This work was supported by “World Premier International Research Center Initiative (WPI Initiative)” and the Funds for the Development of Human Resources in Science and Technology under MEXT, Japan.

APPENDIX

THE CXB ESTIMATION

For estimations of the CXB level, we extracted the spectra beyond 110\(^{9}\) offset observations, which corresponds to 2.5 \(r_{500} \) (Okabe et al. 2010), excluding the south region from the Coma cluster, whose observation logs are shown in Table 4. We searched for point-like sources with the “wavdetect” tool in CIAO in the 0.5–2.0 and 2.0–5.0 keV images. We also excluded the area around the hot pixels. The flux level of the faintest source was about \(1 \times 10^{-13} \) erg s\(^{-1}\) cm\(^{-2}\) in 2.0–10.0 keV with a power-law model of a fixed photon index, \(\Gamma = 1.7 \). We assumed that the background emission was composed of two thermal Galactic emissions, the LHB and the MWH, and the CXB. The LHB and MWH were modeled by non-absorbed and absorbed thermal plasma models (apec; Smith et al. 2001). The CXB was modeled by an absorbed power-law model. We also convolved the Galactic absorption with photoelectric absorption model, phabs. The column density was fixed to be \(8.5 \times 10^{19} \) cm\(^{-2}\) (Kalberla et al. 2005). Therefore, we modeled the spectra by the following formula, constant \(\times (\text{apec}_{\text{LHB}} + \text{phabs} \times (\text{apec}_{\text{MWH}} + \text{power} – \text{law})) \). Although the temperature of the LHB was fixed at 0.1 keV, the normalization was allowed to vary. The temperature and normalization of the MWH were free parameters. The photon index of the CXB was fixed at 1.4, and the normalization was allowed to vary. The fitting results are summarized in Table 5. The derived CXB normalization was consistent with Kushino et al. (2002). The parameters of the LHB and MWH are comparable with previous results (Simionescu et al. 2013).

REFERENCES

Akamatsu, H., de Plaa, J., Kastra, J., et al. 2012, PASJ, 64, 49
Akamatsu, H., Hoshino, A., Ishisaki, Y., et al. 2011, PASJ, 63, 1019
Akamatsu, H., Inoue, S., Sato, T., et al. 2013, PASJ, 65, 89
Bautz, M. W., Miller, E. D., Sanders, J. S., et al. 2009, PASJ, 61, 1117
Colless, M., & Dunn, A. M. 1996, ApJ, 458, 435
George, M. R., Fabian, A. C., Sanders, J. S., Young, A. J., & Russell, H. R. 2009, MNRAS, 395, 657
Hao, J., McKay, T. A., Koester, B. P., et al. 2010, ApJS, 191, 254
Hoshino, A., Henry, J. P., Sato, K., et al. 2010, PASJ, 62, 371
Humphrey, P. J., Buote, D. A., Brightenti, F., et al. 2012, ApJ, 748, 11
Ichikawa, K., Matsushita, K., Okabe, N., et al. 2013, ApJ, 766, 90
Ishisaki, Y., Maeda, Y., Fujimoto, R., et al. 2007, PASJ, 59, 113
Kalberla, P. M. W., Burton, W. B., Hartmann, D., et al. 2005, A&A, 440, 775
Kawaharada, M., Okabe, N., Umetsu, K., et al. 2010, ApJ, 714, 423
Kushino, A., Ishisaki, Y., Morita, U., et al. 2002, PASJ, 54, 327
Lodders, K. 2003, ApJ, 591, 1220
Mochizuki, Y., Matsushita, K., Sato, K., et al. 2015, ApJ, submitted
Navarro, J. F., Frenk, C. S., & White, S. D. M. 1995, MNRAS, 275, 720
Nulsen, P. E. J. 1982, MNRAS, 198, 1007
Okabe, N., Futamase, T., Kajisawa, M., & Kuroshima, R. 2014, ApJ, 784, 90
Okabe, N., Okura, Y., & Futamase, T. 2010, ApJ, 713, 291
Okabe, N., Umetsu, K., Tamura, T., et al. 2014, PASJ, 66, 99
Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2013, A&A, 554, 14
Pratt, G. W., Arnaud, M., Piffaretti, R., et al. 2010, A&A, 511, A185
Reiprich, T. H., Hudson, D. S., Zhang, Y.-Y., et al. 2009, A&A, 501, 899

7 http://cxc.harvard.edu/ciao
8 http://www.astro.isas.ac.jp/suzaku/doc/suzakumemo/suzakumemo-2010-01.pdf
Sato, K., Matsushita, K., Yamasaki, N. Y., Sasaki, S., & Ohashi, T. 2014, PASJ, 66, 85
Sato, T., Sasaki, T., Matsushita, K., et al. 2012, PASJ, 64, 95
Simionescu, A., Allen, S. W., Mantz, A., et al. 2011, Sci, 331, 1576
Simionescu, A., Werner, N., Urban, O., et al. 2013, ApJ, 775, 4
Smith, R. K., Brickhouse, N. S., Liedahl, D. A., & Raymond, J. C. 2001, ApJL, 556, L91
Struble, M. F., & Rood, H. J. 1999, ApJS, 125, 35
Takizawa, M. 2006, PASJ, 58, 925
Urban, O., Simionescu, A., Werner, N., et al. 2014, MNRAS, 437, 3939

Urban, O., Werner, N., Simionescu, A., Allen, S. W., & Böhringer, H. 2011, MNRAS, 414, 2101
Vikhlinin, A., Kravtsov, A., Forman, W., et al. 2006, ApJ, 640, 691
Walker, S. A., Fabian, A. C., Sanders, J. S., & George, M. R. 2012b, MNRAS, 424, 1826
Walker, S. A., Fabian, A. C., Sanders, J. S., George, M. R., & Tawara, Y. 2012a, MNRAS, 422, 3503
Walker, S. A., Fabian, A. C., Sanders, J. S., Simionescu, A., & Tawara, Y. 2013, MNRAS, 432, 554
Wen, Z. L., Han, J. L., & Liu, F. S. 2009, ApJS, 183, 197