Protein carbonyl determination by a rhodamine B hydrazide-based fluorometric assay

Christos D. Georgiou⁵, Dimitrios Zisimopoulos⁴,¹, Vasiliki Argyropoulou⁴,¹, Electra Kalaitzopoulou⁴,¹, Panayiotis V. Ioannou⁴, George Salachas⁴, Tilman Grune⁴

¹ Department of Biology, University of Patras, Patras, Greece
² Department of Chemistry, University of Patras, Patras, Greece
³ Department of Agricultural Technology, TEI of Western Greece, Patras, Greece
⁴ Department of Molecular Toxicology, German Institute of Human Nutrition, Nuthetal, Germany

ARTICLE INFO

Keywords:
Fluorometric method
Rhodamine B hydrazide
Protein carbonyls
Protein oxidation
Oxidative stress
DNA

ABSTRACT

A new fluorometric assay is presented for the ultrasensitive quantification of total protein carbonyls, and is based on their specific reaction with rhodamine B hydrazide (RBH), and the production of a protein carbonyl-RBH hydrazone the fluorescence of which (at ex/em 560/585 nm) is greatly enhanced by guanidine-HCl. Compared to the fluorescein-5-thiosemicarbazide (FTC)-based fluorometric assay, the RBH assay uses a 24-fold shorter reaction incubation time (1 h) and at least 1000-fold lower protein quantity (2.5 µg), and produces very reliable data that were verified by extensive standardization experiments. The protein carbonyl group detection sensitivity limit of the RBH assay, based on its standard curve, can be as low as 0.4 pmol, and even lower. Counting the very low protein limit of the RBH assay, its cumulative and functional sensitivity is 8500- and 800-fold higher than the corresponding ones for the FTC assay. Neither hemeproteins hemoglobin and cytochrome c nor DNA interfere with the RBH assay.

1. Introduction

The biological importance of protein carbonylation as a marker of oxidative stress, the mechanisms of protein carbonyl formation, the involvement of carbonylated proteins in various biological phenomena and diseases, and their partial recognition/decomposition by proteasomes have been extensively discussed in a previous study [1]. In the same study, the numerous 2,4-dinitrophenylhydrazine (DNPH)-based assays for protein carbonyl identification (quantification in total protein samples or their qualitative spatial distribution in cells) have been also examined, together with their limitations and other reliability problems (due to non-standardized protein fractionation protocols, DNA and sulfenic acid interference among other factors).

There are also numerous non-DNPH-based methods for the quantitation of protein carbonyls by non-fluorescent and fluorescent hydrazides. Indicatively, the non-fluorescent sodium cyanoborohydride has been coupled with fluoresceinamine (FINH₂) for the identification of the FINH₂-carbonyl derivative by HPLC and mass spectrometry (MS) [2]. However, the resulting FINH₂ derivatives are degraded by acid hydrolysis to non-fluorescent decarboxylated derivatives [3]. Alternatively, the non-fluorescent biotin hydrazide [4,5] can track carbonylated proteins via fractionation techniques (e.g., microcapillary LC) and their specific identification by MS [6]. Moreover, biotin hydrazide-labeled total proteins can be detected by streptavidin-coupled peroxidase-catalyzed chemiluminescence of immunoblots [7].

On the other hand, fluorescent hydrazides have been mostly used for qualitative protein carbonyl assessment. For example, coumarin hydrazide (which also fluoresces in free form) has been used in microscopy imaging of cellular protein (and lipid) carbonyls [8]. Biotin hydrazide-labeled total proteins are semi quantitatively evaluated by streptavidin-coupled fluorescence in Western immunoblots [9]. This coupling is also combined by use of SDS [10,11] and carbonyl reduction with tritiated (³H-labeled) sodium borohydride [12]. Sensitivity and non-reliance on antibodies (which are prone to non-specific background noise and contamination of endogenous immunoglobulins) are the main advantages of the biotin hydrazide-labeling techniques. Fluorescent Bodipy, Cy3 and Cy5 hydrazide (they also fluoresce in their free forms) have been used to semi quantitatively detect derivatized total proteins...
fractionated in a two-dimensional gel, which overcomes the need of Western blotting and immunodetection, thereby shortening procedure time and increasing accuracy [13]. Other methods use the fluorescent (also in free form) probes fluorescein hydrazide [14] and fluorescein thiosemicarbazide (FTC) [14–17] for the fluorometric determination of total protein carbonyl groups after fractionation on PAGE. However, the aforementioned fluorescent methods have not been developed for the routine quantification of the carbonyl content in total protein samples. Currently, this need is served by a method based on fluorescein-5-thiosemicarbazide (FTC) [14,15,17]. However, the FTC assay (has been offered as a commercial kit) has the following limitations, which necessitate the development of a more reliable fluorescent assay.

### 1.1. The fluorometric FTC assay: limitations

To illustrate the limitations of the FTC assay a briefly outline of the principle of this assay is needed: Protein carbonyls are incubated for 24 h (or overnight) with 0.2 mM FTC at pH 6.0, followed by removal of the unreacted (free) fluorescent FTC by 16% TCA protein precipitation, and 3 × -wash of the resulting protein pellet with acetone [17]. The main limitations of the FTC assay are as follows:

1. The protein precipitation step by TCA alone has been shown that is quite ineffective for protein recovery (e.g., recovery can be as low as 24% [18]), and also results in loss of the acid soluble proteins.
2. The assay is applicable only to samples with high in protein content, e.g. on 5 mg ml⁻¹ for human plasma and up to 10 mg ml⁻¹ protein [17].
3. The FTC assay loses further in sensitivity because the TCA-precipitated and 3 × acetone-washed protein must be solubilized in 6 M guanidine hydrochloride (gndHCl), which quenches the fluorescence of the protein carbonyl-FTC hydrazone, and to overcome this the resulting hydrazone solution must be 10-fold diluted. The dilution step is also required to minimize interference in the accurate determination of the solubilized protein concentration by the employed BCA assay [17].
4. Another crucial uncertainty of the FTC assay is that although it uses a 1:1 fluorescent molar stoichiometry between the protein carbonyl-FTC hydrazone and the FTC reagent used for the standard curve [17]) claimed to be based on a previous study [14], the existence of such stoichiometry is not reported by the referred study.
5. The question of DNA interference has not been addressed for the FTC assay.

The aforementioned limitations of the FTC assay illustrate the need for the development of a new fluorometric assay that is simple, fast, reproducible, and highly sensitive both in the routine analysis of total protein samples at the μg level and with very low carbonyl content. A standardized methodology for sample protein fractionation is reported elsewhere [1].

The present study addresses the aforementioned limitations of the FTC assay by developing a new fluorometric assay based on rhodamine B hydrazide (RBH). It is based on the reaction of RBH with isolated protein samples (at pH 3), their subsequent precipitation with a combination of deoxycholate (DOC) and trichloroacetic acid (TCA), the solubilization of the protein carbonyl-RBH hydrazone in near saturation guanidine hydrochloride (gndHCl) at pH 5, and its subsequent fluoroscent quantification (at ex/em 560/585 nm).

RBH has never been used for the quantification of protein carbonyls, except as a tag in reactive carbonyl containing short peptides (fused to T4 lysozyme or synthesized on filter paper for colorimetric assays of the peptide-hydrazone interaction), used for site-specific protein labeling [19]. The only time RBH has been used to quantify a hydrazone derivative was with diaethyl (by formation of a hydrazone bond with one of its two carbonyl groups [20]); also for the quantification of malondialdehyde in biological fluids (via derivatization of its aldehyde group, and HPLC quantification [21]). Other than these cases, RBH has been used for the quantification of the following molecules via their direct/indirect oxidation and decompose of RBH to its fluorescent product rhodamine B: peroxynitrite (via direct oxidation of RBH [22]; H₂O₂ (via iron-tetrasulfonatophthalocyanine catalysis), and also biomolecules that produce H₂O₂ via catalysis by their oxidase (such as glucose via glucose oxidase) [23]; Cu²⁺ (by its binding to the spir- olactam amide ring of RBH, thereby hydrolyzing it to rhodamine B [24]); NO indirectly (it converts NO₂ to NO to N₂O₅, which, via nitrosylation, converts the hydrazide amino group of RBH to diazonium group, the 5-membered ring of which is opened to form an azide intermediate that is converted into rhodamine B) [25]; hemoglobin and cytochrome c (via RBH hydrolysis to rhodamine B after RBH incorporation in detergent sodium dodecylbenzene sulfonate micelles [26,27]).

However, the aforementioned RBH oxidants are not expected to pose any interference problems with the RBH assay, (i) because the assay is not applied on whole homogenates but only on isolated protein fractions (possibly coexisting with hemoglobin and cytochrome c, the interference of which, and of DNA, will be investigated), and (ii) these oxidant molecules are not bound to proteins (not even the readily reacting with proteins peroxynitrite [28]). Nonetheless, ROS-oxidized proteins may contain organic hydroperoxides (PrOOH [29]) with oxi- dative properties similar to H₂O₂, and could oxidize RBH to rhodamine B. However, PrOOH will be destroyed by diethiothreitol (DTT) when pre- treating samples by a standardized protein fractionation procedure suggested for quantifying protein carbonyls (Described in Supplement Section V of the ntrDNPH assay [1]); DTT reduces organic hydroperoxides (e.g. of lipids) to alcohols [30], and also eliminates thyzadine reactive sulenic groups in ROS-oxidized Cys residues. However, even using non-DTT-treated protein samples that oxidize RBH to rhodamine B in the reaction mixture of the RBH assay, rhodamine B will not interfere because it is removed from the RBH-treated protein by DOC-TCA-precipitation of the latter (and its subsequent solubilization for the quantification of the protein carbonyl-RBH hydrazone).

Nonetheless, the RBH assay will be extensively standardized in order to address possible unreliability and interference and considerations. Besides suggesting use of the aforementioned standardized protein fractionation procedure, which also removes DNA [1], the following standardization studies will be performed: 1. RBH assay parameters (pH, reaction time, fluorescence maximization and stability of the protein carbonyl-RBH hydrazone) will be developed on control proteins (BSA, lysozyme, pepsin) that will be artificially carbonylated (by Fenton-generated hydroxyl radical oxidation, ox) and decarbonylated (by NaBH₄ reduction, red); the RBH assay will be cross-checked on the control protein pairs BSAox/red, lysozymeox/red, and pepsinox/red. 2. Two-fold titration experiments will be performed on the RBH assay to establish the molar stoichiometry of the reaction between RBH and protein carbonyl groups (thereby allowing the investigation of using RBH for the assay's standard curve): (i) titration of a known concentration of RBH by known concentrations of protein carbonyls (from control BSAox, determined by the control ntrDNPH assay [1]); (ii) titration of a known concentration of BSAox carbonyls by known concentrations of RBH. 3. Statistical data coincidence comparisons will be performed between the RBH assay and the control ntrDNPH assay, using known carbonyl concentrations of BSAox mixed at known ratios with BSAred (decarbonylated control). The ntrDNPH assay is used as comparison control because (i) the reaction mechanism of protein carbonyls with DNPH is well known, and (ii) the reliability in mea- suing them with DNPH has been maximized with the ntrDNPH assay [1]. 4. The carbonyl content of indicative protein samples will be tested with the RBH assay against their artificially decarbonylated (via NaBH₄ reduction) counterparts, and will be compared with that determined by the control ntrDNPH assay. 5. Finally, the RBH assay will be tested for interference by DNA (in case samples are not treated by the afore- mentioned standardized protein fractionation procedure), hemoglobin, and cytochrome c.
2. Materials and methods

2.1. Reagents

Acetone (AC; Merck, cat. no. 01-6300117)
Ammonium iron (II) sulfate hexahydrate (NH₄)₂Fe(SO₄)₂·6H₂O; Sigma, cat. no. 215406
Butylated hydroxyanisol (BHA; Sigma-Aldrich, cat. no. B1253)
Bovine serum albumin (BSA; Sigma, cat. no. A9418)
Chloroform (CHCl₃; Merck, cat. no. 1.02445)
Citrac acid monohydrate (Sigma, cat no. C1909)
Coommasie Brilliant Blue G-250 (CBB G-250; Serva, cat. no. C.I. 42655)
Cytochrome c from equine heart (cyt.c; Sigma, cat. no. C2506)
Deoxycholic acid, sodium salt (DOC; Sigma-Aldrich, cat. no. D6750)
2,4-Dinitrophenylhydrazine (DNPH; Sigma, cat. no. D198501)
DNA type III from salmon testes (Sigma, cat. no. D1626)
Ethanol, absolute (EtOH; Merck cat. no. 159010)
DNA type III from salmon testes (Sigma, cat. no. D1626)
Ethylendiaminetetraacetic acid disodium (EDTA; Merck, cat. no. 106578)
Guanidine-HCl (gndHCl; Sigma, cat. no. G4505)
Hydrazine hydrate (Sigma, cat. no. 225819)
Hydrochloric acid (HCl, ≥ 37% w/w; Fluka, cat. no. 84415)
Hemoglobin from equine (Hb; Sigma, cat. no. H4632)
Hydrogen peroxide (H₂O₂; 30% w/w, Merck, cat. no. 107209)
Lysozyme from chicken egg white (Sigma, cat. no. L6876)
DNA type III from salmon testes (Sigma, cat. no. D1626)
Ethanol, absolute (EtOH; Merck cat. no. 159010)
Lysozyme from chicken egg white (Sigma, cat. no. L6876)
DNA type III from salmon testes (Sigma, cat. no. D1626)
Ethanol, absolute (EtOH; Merck cat. no. 159010)
Sodium (tri-) phosphate dodecahydrate (Na₃PO₄·12H₂O; Merck, cat. no. 106580)
Sodium borohydride (NaBH₄; Sigma, cat. no. 213462)
Rhodamine B (Sigma, cat. no. R6626)
Sodium (di-) phosphate (Na₂HPO₄·2H₂O; Sigma, cat. no. 106578)
Rhodamine B hydrazide (RBH): RBH was synthesized according to a published procedure [20,22]. The product was recrystallized from methanol-acetone as a colorless solid with purity > 98% by TLC (yield: ~ 0.28 g), and identified by HPLC-MS. RBH is supplied by Synchem UG & Co. KG, Germany (order number: am005; http://www.synchem.de/chemical_Rhodamine%20B%20hydrazide.html), Hangzhou Sage Chemical Co., Ltd. China (cat # SGC29826) as Spiro[1H-isooindole-1,9′-(9H]xanthen)-3(2H)-one,2-amino-3′,6′-bis(diethylylamino)-](http://sagechem.lookchem.com/products/CasNo-74317-53-6-Spiro-1H-isooindole-1-9′-9H]xanthen-3 to 2H-one-2-amino-3′-6′-bis-diethylamino—11049789.html), and Cayman Chemical (item no 23133; https://www.caymanchem.com/product/23133). RBH has been previously offered by Sigma-Aldrich (prod. no 83684) but it is currently discontinued.

All other reagents used were of the highest purity.

2.2. Part A. Protocol of the RBH assay

The following RBH assay procedure has been developed after standardization of its following parameters: assay reaction pH (previously studied for the reaction of RBH with diacetyl’s carbonyls [20]); assay reaction time, optimum pH and excitation/emission (ex/em) wavelengths for attaining maximum fluorescence (units, FU) and stability over time; establishment of the molar stoichiometry of the reaction between RBH and protein carbonyl groups, which is 1:1 and allows the use of RBH for constructing the standard curve of the RBH assay. Standardization experiments were performed on certain control protein (BSA ox/red, lysozyme ox/red, and BSA ox/red at different pH values). The standardization experiments were performed on certain control protein (BSA ox/red, lysozyme ox/red, and BSA ox/red at different pH values).

2.2.1. Instrumentation

Balance (Kern, 770/65/6J)
Bench top centrifuge (Hermle, model Z206A)
Glass Pasteur pipettes (internal diameter 0.5 cm, 22 cm long, by Hirschmann Laborgeräte GmbH & Co, Germany)
Microcentrifuge clear tubes, 1.5 and 2 ml (VWR, cat. no. 89000-028)
Micropipettes (adjustable volume) 2.5 μl, 10 μl, 20 μl, 100 μl, 200 μl, 1 ml, and tips (Eppendorf Research)
Microcuvette for absorbance measurements (12.5 × 12.5 × 45 mm external dimensions, 4 mm internal window and 9 mm bottom, 1.16 ml, quartz; Starna 9/B/9/Q/10)
Microcuvette for fluorescence measurements (45 × 4 mm, 0.5 ml, quartz; Starna SOG/Q), fitted in a Starna FCA4 adapter
pH meter (Metrohm, 827 pHlab)
Speedvac apparatus for vacuum drying
Spectrophotometer (Shimadzu, model RF-1501)
Spectrophotometer (Hitachi, model UV–VIS U-1800)
Dialysis membrane (Spectrum Laboratories Inc Spectra/Por 4-Dialysis Membrane Tubing, MWCO 12–14,000)

Fig. 1. RBH assay mechanism. Formation of a fluorescent protein carbonyl-RBH hydrazone by the reaction of protein carbonyls with RBH, and subsequent opening of the RBH spirocyclic lactam ring. The non-fluorescent spirolactam amide ring of free RBH is also opened by the assay buffer 33/17 mM C/P 8 M gndHCl, pH 5, resulting in a fluorescent RBH hydrazone at a 1:1 M fluorescence equivalence with the protein carbonyl-RBH hydrazone.
2.2.2. Procedure (timing 90 min)

small amounts of protein (its minimum protein limit is ~ 2.5 µg).

solubilize, keeping in mind that the RBH assay requires extremely

is also used for further dilution of the (in minimum volume) protein

pellets may become gel-like when re-thawed after storage at
25 °C, because the FU of any RBH

must be visible if the pellet is small. Thus, while vortexing, scrap this invisible

precipitated), which may not be visible if the pellet is small. Thus, therefore,

should be kept at ≤ 12, since above it protein S-S bonds are unstable at 25 °C
(at pH ~ 13, i.e., at 0.2 M NaOH [31]).

2.2.2. Procedure (timing 90 min)

1. In each of two 1.5 ml-microcentrifuge tubes (one for sample, S, and
one for sample blank, SB) mix 50 µl 132/68 mM C/P−0.4 M gndHCl buffer,
ph 3, with 140 µl of an appropriate dilution (with 50 mM NaOH) of the sample protein solution. For highest accuracy prepare
S and SS in three dilutions at 2.5–50 µg protein. Then to both tubes
add 5 µl 1.4 M HCl, and then add 5 µl 1 M RBH in the S tube, and
5 µl absolute EtOH in the SB tube, and incubate in the dark for 1 h
at 37 °C (until maximum formation of the protein carbonyl-RBH hydrazone). If sample protein solubilize is of limited quantity, SB can be prepared only for the lowest dilution, and its netFU₅₆₅ (see step 4) can be proportionally extended as controls to the other S dilutions. The simplest way to separate (and discard) unreacted RBH from the protein carbonyl-RBH hydrazone and collect the entire protein in the S and SB reaction mixtures is by ultrafiltration using commercially
available microcentrifugal filter devices (such as the Amicon Ultra-0.5 ml 10 K and the Centriprep Ultracel YM-10 by Millipore, with 10 K denoting that the filter of this particular microcentrifugal device type has a 10,000-nominal molecular weight limit). This procedure is described in the following step 1.1. In the absence of such ultrafilter device the procedure continues in step 2.

1. Place the contents of the S and the SB tube in separate micro-
centrifugal filter devices (e.g. Amicon Ultra-0.5 ml 10 K),
centrifuge (at 15,000g for 15 min at 4 °C) and wash the retained
protein (from the unreacted RBH and the other assay reagents)
2× with 0.5 ml ddH₂O and 1× with 0.5 ml 3/17 mM C/P−8 M gndHCl buffer, pH 5 (each wash followed by centrifugation). Then, solubilize unreacted RBH-washed protein (that is retained on the filter) in the S and SB microcentrifugal filter device protein
with 300 µl (or higher, depending of the volume of the quartz
cuvette in use) 33/17 mM C/P−8 M gndHCl buffer, pH 5, and collect the S and SB solubilizes by centrifugation after reversing the position of the filter device in its microcentrifuge tube holder (see user guide for more details). Since this and similar devices recover the protein with > 95% efficiency there is no need to re-
determine its concentration in the solubilizes. Then, measure the FU of the S against the FU of the SB solubilize, and convert to pmol carbonyls µg⁻¹ protein as described in the subsequent step 4.

2. After 1 h incubation in step 1, add to both tubes 4 µl 1% DOC (final 0.02% in the 0.2 ml assay reaction mixture) and incubate for 10 min at RT. Then, add 22 µl 100% TCA (final 10%; for histones see the following IMPORTANT NOTE 1) and incubate for 15 min in an ice-
water bath. Precipitate proteins in the cloudy solution by cen-
trifugation at 16,000g for 5 min at 4 °C, wash the resulting protein pellet 2× with 0.5 ml cold 100% acetone (see following IMPORTANT NOTE 2) each time, followed by centrifugation at 16,000g for 5 min at 4 °C, and dry the pellet (in a speedvac apparatus, or over a steam of air or nitrogen gas) for 10 min at RT. At this point, the S pellet contains the protein carbonyl-RBH hydrazone, and the SB pellet any interfering components present also in the S pellet (for protein pellet storage see following IMPORTANT NOTE 3).

Important notes: 1. Since histones are acid-soluble proteins, TCA in
step 2 needs to be set at final 33% (by addition of 0.1 ml 100% TCA
to the 0.204 ml mix). 2. When vortexing with 0.5 ml acetone, part of
the protein pellet may spread as a thin layer on the internal wall
of the centrifuge tube (and above its bottom where the main pellet
is precipitated), which may not be visible if the pellet is small. Thus, while vortexing, scrap this invisible film downwards the internal walls by the round tip of a metallic spatula, and caution should be taken to wet carefully this area with the buffer used to solubilize the pellet described in step 3. 3. Both the S and SB protein pellets can be stored almost indefinitely at ~ 25 °C, because the FU of any RBH released from a possible hydrolysis of the protein carbonyl-RBH hydrazone bond in the dry protein pellets will equal to its FU while bound to the protein carbonyl when the pellets will be solubilized and measured as in step 4.

3. Solubilize the DOC-TCA precipitated/acetone-washed S and SB protein pellets from step 2 in 50 µl 33/17 mM C/P−8 M gndHCl buffer, ph 5, by repeated wetting of the internal sides above the 0.5 ml level (by pumping/emptying the 50 µl with the pipette, fol-
lowed by vigorous vortexing) of the microcentrifuge tube (see IMPORTANT NOTE 2 in step 2), and collect the 50 µl solubilize at the bottom of the tube by a brief centrifugation. Then, withdraw 10 µl of the 50 µl solubilize (the 20%) and mix with 90 µl ddH₂O. This will dilute the 8 M gndHCl component of the 33/17 mM C/P−8 M gndHCl buffer (ph 5) by 10 fold (further dilution is also done with ddH₂O) for protein determination (as stated elsewhere [32]),
Table 1
Sensitivity of the RBH assay vs the FTC assay.

| Assays | RBH [FTC] | RBH/FTC sensitivity ratio |
|--------|-----------|--------------------------|
| A. Carbonyl detection limit (in pmol) | 0.415* | 10.6 |
| B. Minimum protein (in µg) | ≥ 2.5 | 800 |
| C. Minimum protein (in µg) per 1 mmole carbonyl at its detection limit | 6024 | 75.5 |

* Values for the RBH assay are based on a sensitivity limit of 0.5 pmole RBH in 0.3 ml 33/17 mM C/P–8 M gndHCl buffer (pH 5) that produces an accurately measured value of 100 FU by the spectrophotometer in use (Shimadzu model RF-1501, set at 10 nm width slit and high sensitivity, using a 0.3 ml stdDNPH assay [17]). Since the latter limit is determined at 443 pmoles in the functional sensitivity limit (= AxC) 2500 800.

Cumulative sensitivity limit (= AxB) 1.038 ~ 8500
Functional sensitivity limit (= AsC) 2500 800

Important notes: 1. Any DNA present in the S and SB can be solubilized in the 33/17 mM C/P–8 M gndHCl buffer, pH 5 (this is shown in supplement's Part II). Test of DNA interference on the RBH assay, and forms a clear viscous pellet at the bottom of the centrifuge tube. Centrifugation should be performed at 25 °C because the highly concentrated gndHCl solution forms gndHCl crystals at low temperature. 2. Fluorescence measurements among different samples should be made after having washed the cuvette sequentially with ddH2O (to remove any gndHCl remnants deposited in the internal walls of cuvette from the previous sample), 100% MetOH (to remove any free RBH/RBH hydrazone remnants), ddH2O, and finally with the 33/17 mM C/P–8 M gndHCl buffer. Washing the cuvette only with the 33/17 mM C/P–8 M gndHCl buffer may be sufficient when measuring increasing fold dilutions of the same sample as those described in the subsequent IMPORTANT NOTE 4.

3. To ensure that RBH (at 25 µM) is in excess compared to the unknown protein carbonyls during reaction, at least 3 proportional dilutions (containing 2.5–50 µg) of the unknown sample protein solution should be tested for achieving correspondingly proportional FU values. 4. If the FU value of the S solubilize exceeds the FU scale of the spectrophotometer in use, it is appropriately diluted with 33/17 mM C/P–8 M gndHCl buffer, pH 5, and its FU is re-measured. 5. The molar fluorescence of the RBH assay is stable for at least 2 days in the dark at RT.

The netFU and netFUs values per protein quantity (designated pq; fully designated netFU_{5/50} and netFUs_{3/50}; respectively) are divided by the protein quantity contained in the corresponding 40 µl S- and SB-pellet solubilizates (and determined as in step 3). Then, the net FU of the protein carbonyl (pc)-RBH hydrazone per pc in the S solubilize (designated net_{5/50}) is given by the formula:

\[ \text{net}_{5/50} = \text{netFU}_{5/50} - \text{netFUs}_{3/50} \]

The net_{5/50} (determined for and being proportional to at least three sample dilutions) is calculated from the netFU_{5/50} and netFUs_{3/50} difference after converting the netFU and netFUs values to carbonyl pmol (and dividing them by the corresponding protein quantity, e.g. in µg, determined as in step 3) by the RBH standard curve; its construction is described in the Supplement's Part I. Standardization of the RBH assay, Section IV, which is made with the same solution of 33/17 mM C/P–8 M gndHCl buffer (pH 5) that is used throughout the procedure (the standard curve is also used for determining the assay's sensitivity; see Table 1).

Caution: 1. The netFU_{5/50} and netFUs_{3/50} should be determined separately because the quantity of their precipitated protein in step 2 may differ (although they start with same protein quantity). 2. Given that protein carbonyl-RBH hydrazone fluorescence is measured in the 33/17 mM C/P–8 M gndHCl buffer (pH 5) where gndHCl is at near maximum solubility, for achieving repeatability in the concentration of gndHCl in this buffer, the commercial gndHCl reagent in use should be kept desiccated because it is highly hygroscopic.

Important notes: 1. The highest possible sensitivity of the RBH assay is attained by standardizing the 33/17 mM C/P buffer (pH 5) at gndHCl saturation (satur) concentration, and when the background fluorescence of the 33/17 mM C/P–gndHCl_{satur} (or at 8 M gndHCl) buffer (pH 5) is at minimum level attained using assay reagents of the highest purity. Given that saturation is temperature dependent, the 33/17 mM C/P -
2.2.3. Statistical treatment of raw data and assay statistical precision

The RBH assay was tested on protein fractions from various sources

### Table 2

| Heme proteins                                                                 | carbonyl nmoles mg⁻¹ protein |
|--------------------------------------------------------------------------------|-----------------------------|
| Cyt- carnitine                                                              | 1.15 ± 0.09 (1.09 ± 0.15)   |
| Cyt- oxidase                                                                | 0.05 ± 0.01* (0)            |
| Hbα oxidase                                                                 | 5.15 ± 0.07 (5.30 ± 0.15)   |
| Hbα red                                                                     | 0.08 ± 0.03* (0)            |

DNA: its non-specific binding with RBH*

Tested DNA quantity: in mg and in corresponding (nmoles carbonyls): b

| 0.1 mg | 0.2 mg |
|--------|--------|
| (360)  | (612)  |
| (0 or 0%)b | (0 or 0%)b |
| [0.09 or 0.03%]b | [0.18 or 0.03%]b |

**Notes on heme protein interference.**

*Carbonyl content (nmoles mg⁻¹ protein) of cyt-carnitine (MW 12,000) and Hbα oxidase (MW 64,500), compared to their heme content (83 and 62 nmoles, respectively) mg⁻¹, is 80- and 10-fold lower, respectively, which suggests no heme interference on the RBH assay.

bValues in parentheses, determined by the ntrDNPH assay, have been previously reported [1].

bCarbonyl values for cyt-carnitine and Hbα oxidase obtained by the RBH assay are indicative to its very high detection limit (Table 1).

**Notes on DNA interference.**

DNA % interference is defined as the number of nmoles DNA carbonyl groups (shown by the 1st number in parentheses) that are detected by the RBH assay out of theoretical 100 nmoles contained in the tested quantity of DNA. This is expressed as %, and is shown as such by the 2nd number in parentheses.

bValues are nmoles DNA carbonyls contained in the tested DNA (0.1 and 0.2 mg), and are derived from the correspondence of 1 µg DNA to 3.06 nmoles carbonyls as shown elsewhere [1].

bZero values in parentheses (designating same quantities as those in parentheses explained in table’s Note ‘a’) are derived from the fluorescence values of the RBH assay’s solubilization solution due to the absence of solubilized DNA (after the initial solubilization of its pellet in NaOH). The obtained zero values of carbonyls are explained by the observation that the RBH assay’s pH-5-adjusted solubilization solution does not solubilize the DNA that precipitates during the application of the assay (see article’s Part C: Standardization of the RBH assay against possible interfering factors). Therefore, the zero value can be due either to the non-solubilization of DNA or to the overrunning of the sensitivity limit of the assay to detect the RBH reagent that may be non-specifically bound on the minor quantity of DNA that may have been solubilized. DNA insolubility in the solubilization solution of the RBH assay is the main mechanism by which this assay does not exhibit RBH-DNA interference (even at its minor degree determined 0.03%) when testing carbonyls in protein samples that may be contaminated with DNA.

bValues in brackets (designating same quantities as those in parentheses explained in table’s Note ‘a’) are derived from the fluorescence values of the RBH assay’s pH-5-adjusted solubilization solution, measured after initially subjecting the insoluble DNA precipitate to NaOH solubilization (as also described in the preceding table Note ‘c’), and then mixing the resulting solubilize with the corresponding assay solubilization solutions. The DNA pellet alkaline pre-solubilization procedure is employed in order to determine the degree (0.03%) of the non-specific interference of DNA on the RBH assay.

### Table 3

| Samples | RBH nmoles mg⁻¹ protein |
|---------|-------------------------|
| Control proteins |
| BSAuntr | 22.9 ± 1.8              |
| BSAred | 0                      |
| Indicative sample proteins: cytoplasmic / histone (ratio) |
| Cauliflower B. oleracea (CBO) |
| GBSuntr | 9.3 ± 0.79 / 1.7 ± 0.11 (5.5) |
| CBuntr  | 0                      |
| Rat Liver (RL) |
| LIuntr  | 24.9 ± 1.9 / 1.0 ± 0.09 (25) |
| LIred   | 0                      |
| Rat Brain Stem (RBS) |
| RBsuntr | 0.62 ± 0.05 / 0.60 ± 0.07 (1) |
| RBred   | 0                      |
| Human blood protein carbonyls |
| Serum carbonyl | FTC assay |
| Subjects | RBH | ntrDNPH | FTC assay |
| Males   | 1.08 ± 0.07d,e | 1.09 ± 0.07d,e | −0.43 [17] |
| Females | 1.14 ± 0.09d,e | 1.17 ± 0.09d,e |

**IMPORTANT NOTE:** The present study did not perform the FTC assay because the assumed by the assay stoichiometry 1:1 for the protein carbonyl-FTC hydrazone and the FTC reagent (used to construct the assay’s standard curve [17]) is not supported by the referred literature [14].

a Control lysozymeax/red, pepsinax/red were also tested and gave analogous results (data not shown).

b Values for cytoplasmic and histone protein fractions are shown by the numbers left and right to the separating slash, respectively, while the values in parenthesis represent their cytoplasmic/histone carbonyl content ratio. Histone carbonyls were not detected by the much lower in sensitivity ntrDNPH assay [1]. Values are averages from at least 5 independent measurements (SD, not shown, is < 10% of the average).

c Values (in nmoles mg⁻¹) are averages (± SD) from 10 male and 10 middle age female middle age subject females. Values by the ntrDNPH assay are from previous study [1].

d Comparison of the new assays for the same and between sex; there is no statistical difference for values statistically significant at p < 0.05.

e Comparison between males and females for the three assays; there is a ~30% statistical difference for the stdDNPH assay for values statistically significant at p < 0.05.

f Carbonyl values determined by the FTC assay (on plasma from unspecified gender) are listed for comparison with the RBH assay.

### (Tables 2, 3). Protein carbonyl content is expressed as mean (of at least 5 independent experiments) ± standard deviation (SD), and statistically analyzed by the package SPSS Inc, 2001, Release 11.0.0, USA. Carbonyl values from human serum, in particular, are mean of 10/10 male/female human subjects in middle age ± SD, after checking for equality of error variances between values of males and females (Levene’s test) with two-way ANOVA analysis of variance (to identify significant differences between values), and with the parametric post-hoc multiple comparison Bonferroni test (p < 0.05).

The RBH assay is statistically analyzed for precision assessed both during a single analytical run (within-run, within-day precision or repeatability) and with time (between-run, between day repeatability, also named intermediate precision). For determining the minimum statistical variation of the protein carbonyls quantified by the RBH assay, at least three successive dilutions of human serum samples are analyzed the same day of blood collection, and their mean value is calculated. The within-day % coefficient variation is calculated as SD×100/mean, and
the variance of intermediate precision ($\sigma_{\text{inter}}$) is defined as the sum of between day variance ($\sigma_{\text{within}}^2$) that is associated with the day-to-day variation, and the variance of repeatability ($\sigma_{\text{within}}^2$).

2.3. Part B. Standardization of the RBH assay by statistical comparison with the control ntrDNPH assay for data coincidence

The RBH assay is compared for data coincidence against the control ntrDNPH assay [1] for two reasons: (i) the reaction mechanism of protein carbonyls with DNPH has been established after numerous studies; the reliability of measuring protein carbonyls with DNPH has been established by the development of the ntrDNPH assay: Protein carbonyls are measured by the two assays in a series of BSAox, lysozymeox and pepsinox samples mixed at various proportions with their corresponding proteinred pairs (depleted of protein carbonyls), while keeping constant the total protein concentration. Specifically, the two assays are used to measure the protein carbonyls of increasing quantities of e.g. BSAox in mixture with decreasing quantities of BSAred (that is, at various BSAox/red ratios, each tested in triplicates) and at a fixed total protein mix. These mean values are then used to determine the Pearson correlation of these values, and to perform a Bland-Altman plot comparison analysis between the assays (Fig. 2), using Prism 6 by GraphPad Software.

2.4. Part C. Standardization of the RBH assay against possible interfering factors

2.4.1. Heme proteins

As already mentioned in Introduction, RBH has been used for the quantification of Hb and cyt.c which hydrolyze it to rhodamine B [26,27]. Since this study does not elucidate the mechanism of RBH reaction with Hb and cyt.c, we investigated a possible interference by these heme proteins on the RBH assay using as comparison control the ntrDNPH assay [1]. Possible protein heme interference on the RBH assay was tested (against the ntrDNPH) on untreated (untr) preparations (untr preparations) of Hb and cyt.c (designated Hbunt and cyt.cunt, respectively), using decarboxylated (NaBH4-reduced) Hbred and cyt.cred as additional control. Protein carbonyls were determined on 50–150 µg heme proteins (from 2-mg ml−1 stock solutions, by dilution of their 10-mg ml−1 initial stocks; their preparation is shown in the Supplement's Part I. Standardization of the RBH assay, Section I), against their untreated preparations of same protein quantities (Table 2).

2.4.2. DNA

DNA has been claimed to interfere with the 2,4-dinitrophenylhydrazine (DNPH)-based photometric assays without elucidation of the interference mechanism [33–35]. However, it was found that this interference is not due to DNPH’s direct reaction with the carbonyl groups in the T, C and G bases of DNA but to its non-specific binding to DNA [1]. Since RBH contains also an active hydrazine group, we investigated the possible interference of the RBH assay with DNA (Table 2). The detailed experimental procedure is shown in the Supplement’s Part II. Test of DNA interference on the RBH assay.

2.5. Part D. Calculations and expected results on indicative samples

2.5.1. RBH assay optimal standardization parameters

The shortest reaction time (1 h) for protein carbonyl-RBH hydrazone adduct formation was obtained in the presence of the chaotropic reagent gndHCl (Suppl. Fig. 1), but only at up to 0.1 M. GndHCl at 0.1 M is high enough to induce an effective access of RBH to protein carbonyls due to the partial unfolding it causes to proteins [36], but low enough as to not prevent (via its H-bond disrupting action) the electrostatic association of RBH with proteins and its subsequent reaction with their carbonyls. Another important finding of this study is that the net fluorescence units (FU) of the BSAred (and also the pepsinred and lysozymeox control (corrected for the fluorescence of the sample blank) are zero, and similarly the FU of the reagent blank, which shows that the 2× acetone wash procedure in the RBH assay completely eliminates any RBH non-specific binding to proteins.

The maximum fluorescence specific activity (FSA) of the protein carbonyl-RBH hydrazone adduct takes place at pH 5 as a function of gndHCl concentration. It reaches a ~130-fold increase at 8 M gndHCl (Suppl. Fig. 2), and it further increases by at least 3-fold at saturated gndHCl concentration (data not shown). It should be noted that the pH profile of the maximum FSA value of the protein carbonyl-RBH hydrazone in the absence of urea or gndHCl (dotted line in Suppl. Fig. 2) is very similar to that obtained by the corresponding hydrazone formed by the reaction of RBH with diacetyl [20]. The maximum FSA increase of the protein carbonyl-RBH hydrazone that is caused by gndHCl may be due to its 3 amino groups compared to the 2 amino groups of the non-effective urea, and possibly because of its higher chaotropic
potential than of urea [36]. Moreover, the FSA of the protein carbonyl-RBH hydrazone is stable at 4°C (and at pH 5) in the dark even after 2 days (data not shown). This is expected by the known stability of the hydrazones bonds at the pH range 5–9 [37].

The molar stoichiometry of the reaction of RBH with protein carbonyls was found to be 1:1 by the performed titration experiments (Suppl. Fig. 3A,B), and was also proven by the identical slopes of both the standard curves of RBH and of protein carbonyls (Suppl. Fig. 3C). It is also in accordance to the proposed RBH assay reaction mechanism (Fig. 1), which proceeds via the opening of the non-fluorescent cyclic spirolactam ring amide of RBH. This opening can take place either via a low pH-proton-induced conformation change of RBH [20], or by the gndHCl in the assay buffer (33/17 mM C/P–8 M gndHCl, pH 5) as the stoichiometry 1:1 suggests, or during the reaction of RBH (at acidic pH) with the protein carbonyls (and the formation of the hydrazone bond). Therefore, the molar carbonyl content of a protein can be easily determined fluorometrically by the RBH assay, by using an RBH standard curve the slope of which sets the sensitivity limit of the RBH assay. However, the RBH standard curve slope at 8 M gndHCl is minimum (Suppl. Fig. 3C), because its value increases ~ 3-fold at saturated gndHCl concentration in the C/P buffer (data not shown), which, consequently, near triples the sensitivity detection of the RBH assay (Table 1). At 8 M gndHCl, the detection sensitivity limit of the RBH assay can be as low as 2 nM (or 0.4 pmol in 0.2 ml for a minimum 100 FU), and it can be even lower depending on the S/N ratio and the sensitivity of the spectrophotometer in use. This makes it almost 600-fold more sensitive than the ntrDNPH assay [1]. Thus, the RBH assay represents a reliable alternative for protein samples below the ntrDNPH assay's sensitivity limit.

In contrast, gndHCl in the FTC assay quenches the fluorescence of the protein carbonyl-FTC hydrazone [14], and this may contribute to its ~ 11-fold lower sensitivity (carbonyl detection sensitivity limit) compared to that of the RBH assay (Table 1). Additionally, the combination of DOC with TCA in the precipitation of the protein sample in the RBH assay is highly efficient (~ 95%) even for protein samples at ~ 2.5 µg [38,39], which constitutes and the minimum protein quantity limit of the RBH assay. Moreover, DOC-TCA combination causes the co-precipitation and of the acid soluble proteins (they co-precipitate together with the bound on DOC). On the other hand, TCA alone used by the FTC assay does not precipitate acidic soluble proteins, let alone the recovery of proteins by TCA precipitation alone can be as low as 24% [18]. Indeed, considerable protein loss (acid soluble proteins included) has been reported during precipitation with TCA alone [17]. Considering all these above factors and also the RBH assays’ minimum protein quantity requirement, its cumulative and functional sensitivity is 8500- and 800-fold higher, respectively, than those of the fluorescent FTC assay (Table 1). The advantages of the RBH assay over the FTC assay are outlined in Table 4.

The FBH assay can be further simplified by omission of the DOC-TCA protein precipitation step. The unreacted RBH in the assay reaction mixture can be separated from the protein by retaining the protein fraction in the filter component of an ultrafiltration microcentrifugal filter device such as those commercially available (e.g. Amicon Ultra-0.5 ml 10 K). The RBH assay may be also modified to analyze RBH-treated carbonylated proteins subjected to SDS denaturing protein gel electrophoresis. Removal of unreacted RBH from the gel can be achieved by a solvent (e.g. MetOH/acetone) wash, incubation of the gel in the 8 M gndHCl C/P buffer, pH 5, and visualization (by fluorescence emission) of the carbonyl content in protein-RBH hydrazones separated on the gel in bands. Electrophoretic separation of the proteins in the sample may be performed after or before their reaction with RBH, whereby in the latter case RBH should react with the protein bands on the gel.

2.5.2. Statistical precision of the RBH assay and comparison with the ntrDNPH assay for data coincidence

The RBH assay was also analyzed for the closeness (precision) in individual measures of protein carbonyls when applied repeatedly to multiple aliquots of a single biological sample, and between days. The within-day % coefficient variation for the RBH assay is < 3.5% and the variance of intermediate precision (or between day repeatability) is < 4.0%. The statistical coincidence of the carbonyl values obtained by the RBH and ntrDNPH assays for the same sample is tested by measuring the protein carbonyls of BSAox against BSAred at various BSAox/red ratios and at a fixed total quantity (each tested in triplicate), and their means (from the triplicates) are statistically compared (similar data are obtained with lysozymeox/red and pepsinox/red Protein mixtures). As shown in Fig. 2A, the mean values of protein carbonyls for each sample obtained by these two assays have an excellent Pearson correlation (r = 0.993, at confidence interval 95%). Nonetheless, this correlation actually measures the strength of the relation between the variable measured by two assays and not the agreement between them [40]. This is evaluated by subjecting these data to a Bland-Altman plot analysis, which shows that the differences with the RBH assay against the ntrDNPH assay are not statistically significant (Fig. 2B).

2.5.3. Heme protein and DNA possible interference

Heme proteins HB and cyt.c were investigated for interference with the RBH assay because RBH has been used for their quantification as well. However, the presumed quantification mechanism does not involve any adduct formation between these heme proteins and RBH, but its hydrolysis to the fluorescent rhodamine B (which presumably increases its fluorescence by incorporation in the micelles of the detergent sodium dodecylbenzene sulfonate [26,27]). Nonetheless, we

| Table 4 |
|----------------------------------|
| Advantages of the RBH assay over the FTC assay. |

| RBH assay | FTC assay |
|-----------------|-----------------|
| The fluorescence of the protein carbonyl-RBH hydrazone is greatly increased by gndHCl. Requires samples with minute protein quantity (~ 2.5 µg), and is only limited by the protein recovery of its DOC-TCA precipitation step (see below) and by the sensitivity limit of the assay. The assay’s minimum protein limit of 2.5 µg is possible because of the use of an ultrasensitive protein quantification assay [32]. The RBH assay can use protein quantities even lower than 2.5 µg if its DOC-TCA protein precipitation step is replaced by the use of microcentrifugal filter devices (e.g. Amicon Ultra-0.5 ml 10 K), described in step 1.1 of the article’s Part A. Protocol of the RBH assay. Protein recovery of the RBH assay’s DOC-TCA precipitation step is ≥ 90% even for protein samples as low as 2–5 µg [38,39]. Since DOC co-precipitates also acid soluble proteins, the carbonyls of such proteins are also measured by the RBH assay. | The fluorescence of the protein carbonyl-FTC hydrazone is quenched by gndHCl. Requires samples of high protein concentration (2–10 mg ml⁻¹). Accounting the fluorescence quenching by gndHCl of the carbonyl-FTC hydrazone and the at least 2000-fold higher protein quantity limit of the FTC assay, its cumulative and functional sensitivity is at least 8500- and 800-fold lower, respectively than those of the RBH assay (Table 1). Given that the recovery of proteins by TCA precipitation can be as low as 24% [18], protein recovery by the FTC assay’s TCA precipitation step is not only very ineffective but the acid soluble proteins in the sample are also lost. All these add up to assay’s unreliability and very low sensitivity. Very long assay reaction incubation time (overnight, up to 24 h) Unstable fluorescent hydrazone Low reproducibility, DNA interference. |

Very short assay reaction incubation time (1 h); 24-fold shorter than that of the FTC assay Stable fluorescent hydrazone (for 2 days in the dark at RT). High reproducibility, no DNA interference. | |
investigated any possible interference of these heme proteins on the RBH assay as follows: We applied the RBH assay on untreated (untr) and artificially decarbonylated (NaBH₄-reduced) Hb and cyt.c (Hb_untr, cyt_c_untr and Hb_red, cyt_c_red, respectively), and compared it with the control ntrDNPH assay [1]. Both assays give same protein carbonyl values (in nmole mg⁻¹ protein) for each of the untreated heme proteins (Table 2). However, only the RBH assay was able to measure the extremely low carbonyl background in Hb_untr and cyt_c_untr (64- and ~ 23 fold lower than that for the Hb_red and cyt_c_red, respectively) due to its > 800-fold more sensitive carbonyl detection limit in comparison to that of the ntrDNPH assay. For comparison, the stoichiometric 1:1 heme-DNA interference on the RBH assay is presented in the Supplement’s Part II. Test of DNA interference on the RBH assay, and explanations on the de-
finition of this particular interference and of the results are presented in the notes of Table 2. Washing conditions of untreated RBH employed in the RBH assay proved to be 100% effective; DNA interference is zero (Table 2; data in parentheses). This result proves that there is no direct reaction of RBH with DNA, as this was also shown with DNPH [1]. Let alone that DNA proved to be insoluble in the protein-RBH hydrazone C/P - gndHCl solubilization buffer of the RBH assay. This finding also suggests that the only possible RBH-DNA association will be non-spe-
cific, and for the RBH assay was found to be statistically insignificant (0.03%). Therefore, no removal of DNA from protein samples is required when using the RBH assay.

2.5.4. Standardization of the RBH assay on indicative samples

The RBH assay was tested on indicative samples for carbonyl con-
tent (Table 3) in the cytoplasmic and histone protein fractions (isolated as described in the Supplement’s Section IV of the ntrDNPH assay [1]). Histone fraction was also used to test the assay’s detection limit for protein fractions present in cells in very low quantities. Moreover, histone fraction was also chosen in order to introduce its carbonyl concentration levels as a possible indirect indicator for the oxidative status of chromosomal (and microbial) DNA. Histones protect nuclear DNA from oxidative damage by free radicals, but they them-
selves are also sensitive to oxidative damage in the process. Mitochondrial DNA, on the other hand, is not protected in its close proximity to the radical production site (the electron transport chain), because of the absence of histones. Histones are the major protein components of chromatin with many roles. They are necessary for transcription and replication processes through DNA detachment/re-
atachment, which, however, can be influenced by the potential cross-linking of oxidatively damaged histones with DNA. Moreover, mod-
ification of histones by ROS such as H₂O₂ can alter their ionic charge and affect their functions in gene expression and chromatin integrity. Thus, oxidatively modified histones must be efficiently degraded by nuclear proteasomes to maintain chromatin integrity. Extensive reviews for these processes and the various roles of histones are presented elsewhere [41-43]. Therefore, the carbonyl content of histones can be an indicator, possibly clinical as well, of various biological processes and diseases, and its accurate determination is very important in studies that investigate the various roles of histones. Moreover, due to proximity of DNA with histones their carboxylation can be also used as an indirect indicator of DNA damage, possibly in comparison to DNA fragmentation [44,45] or to other markers of DNA oxidative mod-
ification.

Histone carbonyls have been determined by the stdDNPH assay [33] and by immunodetection [46]. For example, histone carbonyls were estimated in rat nuclei by the stdDNPH assay (at ~ 5 and ~ 11 nmol mg⁻¹ protein from liver and spleen, respectively), and their levels (2-
fold higher than in proteins from mitochondria and cytoplasm) were attributed to an extensive modification of their lysine and arginine resi-
dues [47]. However, these carbonyl values were obtained by the proteins in the supernatant fraction resulting after streptomycin-DNA precipitation, and they are erroneous because they do not belong to histones since these positively charged proteins are expected to co-
precipitate with DNA. The second immunodetection approach for his-
tone carboxyl evaluation (with anti-DNP antibody on SDS-gels, and estimation by Western blotting [46]) is semi quantitative, and has been used to assess H1-carboxyls in bovine organs [48], while a recent modification (oxy-2D-Triton-Acetic acid-Urea Western blot method) has been used to assess histone carboxylation (in arbitrary units) in proliferating cells [49]. Moreover, the immunodetection methods are not suitable for the accurate evaluation of the oxidative modification of histones because of other factors affecting the variability of the ob-
tained data [50]. Nor are other methods that require samples with high protein content (such as the standard DNPH and FTC assays), in light of the fact that histones constitute small fraction of total proteins (espe-
cially in plant tissues).

The ultrasensitive RBH assay of the present study was shown to be the most appropriate assay for the accurate quantification of histones, especially for the small quantities that are isolated from plant tissues (Table 3). Indicatively, carboxylation of histones was assessed in the unstressed plants B. oleracea and L. sativa, and was 3- and 25-fold lower, respectively, than in their cytoplasmic proteins. Such difference was not observed in cytoplasmic proteins fractionated from normal rat brain stem and intestine tissue (Table 3). The RBH assay is also tested on carboxylated and decarbonylated control proteins such as BSAox/red (lysozymexox/red, pepsinox/red were also tested), and was compared with the ntrDNPH assay on total proteins from human blood serum carbonyl content. Comparison were also made with the protein carbonyl values in human blood serum/plasma determined by the FTC assay (Table 3). Both RBH and ntrDNPH assays produce statistically same carbonyl values for human serum, as this was verified by the statistical com-
parison of both assays for data coincidence (Fig. 2). However, variation is observed with the carbonyl values determined by the FTC assay on human blood serum, which can be attributed to certain interfering factors stated elsewhere [17].

Lastly, the RBH assay was tested on carboxylated cellulose-based polysaccharides (See Supplement’s Part III. Test of the RBH assay on carboxylated polysaccharides), given their carbonyl content can be estimated by the control ntrDNPH assay [1]. It was found that the minimum required incubation time for fluorescence stabilization of the polysaccharide-RBH product was 2h (in contrast to the established 1-hr incubation for protein carbonyls) to obtain a measurable FU value. However, the carbonyl content value (in nmoles carbonyls mg⁻¹ polysaccharide) for CMCelluNaClO-carynlated obtained by the RBH assay was ~ 25 fold-lower than that obtained by the ntrDNPH assay [1]. Besides this inconsistency, no proportionality was obtained with the RBH assay for the various polysaccharide quantities tested, while the fluorescence of the RBH-CMCelluNaClO-carynlated product was quite unstable over time (its FU reached zero after storage for 1 day at 4 °C). It is concluded that the RBH assay cannot be applied on polysaccharides, and that the ntrDNPH assay is the assay of choice.

2.6. Caveats

Interfering reagents possibly present in various sample treatments can be canceled out by sample dilution and/or by testing in the ap-
propriate sample blank. For example, DTT (used to pretreat the protein sample by a standardized procedure mentioned in the article’s Part A. Protocol of the RBH assay) does not interfere at 25 mM in the RBH assay reaction mixture.
References

[1] C.D. Georgiou, D. Zisimopoulos, V. Argyropoulou, E. Kalaitzopoulou, G. Salachas, T. Grune, Protein and cell wall polysaccharide carbonyl determination by a neutral pH 2,4-dinitrophenylhydrazine-based photometric assay, Redox Biol. 17 (2018) 128–142.

[2] B. Daneshvar, H. Frandsen, H. Autrup, L. Dragsted, O. gamma-Glutamyl semicarbazide assay of protein carbonyl residues in serum and liver proteins, Free Radic. Biol. Med. 40 (2006) 1021–1026.

[3] C. Georgiou, S. Pirog, M. Dziedzicka-Wasylewska, J.M. Bland, D.G. Altman, Statistical methods for assessing agreement between two different methods of clinical measurement, Lancet 1 (1986) 307–310.

[4] J.M. Bland, D.G. Altman, Statistical methods for assessing agreement between two methods of clinical measurement, Lancet 1 (1986) 307–310.

[5] B. Alvarez, R. Radi, Peroxynitrite reactivity with amino acids and proteins, Amino Acids 25 (3-4) (2003) 295–311.

[6] C. Georgiou, D. Zisimopoulos, T. Grune, D. Weber, C.D. Georgiou, Method for the simultaneous determination of free/protein malondialdehyde and lipid/protein hydroperoxides, Free Radic. Biol. Med. 59 (2013) 27–35.

[7] K.J. Nelson, D. Parsonage, Measurement of peroxiredoxin activity, Curr. Protoc. Toxicol. 49 (2011) (7.10): 7.10.1–7.10.28.

[8] J.M. Florence, Degradation of protein disulfide bonds in dilute alkali, Biochem. J. 189 (1980) 507–520.

[9] K. Grintzalis, V. Sotiropoulou, Detection of protein carbonyls in aging liver tissue: a fluorescent probe for diacetyl detection, J. Fluoresc. 18 (2008) 163–168.

[10] C.D. Georgiou, I. Papapostolou, K. Grintzalis, Protocol for the quantitative assessment of protein carbonyls in subcellular fractions isolated from liver and spleen of old and young rats, Electrophoresis 31 (2010) 3573–3579.

[11] S.O. Vanczák, J. Pustelnik, G.I. Makhankov, Determination of carbonyl content in oxidatively modified DNA, Anal. Biochem. 339 (2005) 223–231.

[12] D. Steiner, M. Pichler, Determination of protein carbonyls in lysates using 2,4-dinitrophenylhydrazine, Arch. Biochem. Biophys. 320 (1995) 106–114.

[13] S. Luo, N.B. Wehr, Protein carbonylation: avoiding pitfalls in the 2,4-dinitrophenylhydrazine assay, Redox Rep. 14 (2009) 159–166.

[14] C.D. Georgiou, J.L. García-Giménez, A.M. Ledesma, I. Esmoris, C. Romá-Mateo, P. Sanz, J. Viña, Peroxynitrite reactivity with amino acids and proteins, Amino Acids 25 (3-4) (2003) 295–311.

[15] C.D. Georgiou, I. Papapostolou, K. Grintzalis, Redox regulation of the proteasomal system, Redox Biol. 2 (2014) 224–231.

[16] Y.F. Yang, X.Q. Guo, Y.B. Zhao, Development of a novel rhodamine-type fluorescent probe to determine peroxynitrite, Talanta 57 (2002) 883–890.

[17] C.D. Georgiou, J. Zou, Application of rhodamine B hydrazide as a new fluorogenic indicator in the highly sensitive determination of hydrogen peroxide and glucose based on the catalytic effect of iron(III)-tetratsulfonato-phthalocyanine, Microchim. Acta 157 (2007) 133–138.

[18] D. Vajs, F. Ford, A.W. Czarnik, A long-wavelength fluorescent chemodosimeter selective for Cu(II) ion in water, J. Am. Chem. Soc. 119 (1997) 7386–7387.

[19] C.M. Wu, Y.H. Chen, K. Dayananda, T.W. Shiue, C.H. Hung, W.F. Liaw, P.Y. Chen, Y.M. Wang, Sensitivity evaluation of rhodamine B hydrazide towards nitric oxide and its application for macrophage cells imaging, Anal. Chim. Acta 708 (1–2) (2011) 141–148.

[20] X.-F. Yang, X.-Q. Guo, H. Li, Fluorimetric determination of hemoglobin using spiro form rhodamine B hydrazide in a micellar medium, Talanta 61 (2003) 439–445.

[21] Y. Shen, X.F. Yang, Y. Wu, S. Li, Sensitive fluorimetric determination of cytochrome C with spirocyclic rhodamine B hydrazide in micellar medium, J. Fluoresc. 18 (2008) 163–168.

[22] B. Alvarez, R. Radi, Peroxynitrite reactivity with amino acids and proteins, Amino Acids 25 (3-4) (2003) 295–311.

[23] K. Grzintalik, D. Zisimopoulos, T. Grune, D. Weber, C.D. Georgiou, Method for the simultaneous determination of free/protein malondialdehyde and lipid/protein hydroperoxides, Free Radic. Biol. Med. 59 (2013) 27–35.