Notes on a Theorem of Benci-Gluck-Ziller-Hayashi

FENGYING LI* AND SHIQING ZHANG†

The School of Economic and Mathematics, Southwestern University of Finance and Economics, Chengdu 611130, China
Mathematical School, Sichuan University, Chengdu610064 , China

Abstract

We use constrained variational minimizing methods to study the existence of periodic solutions with a prescribed energy for a class of second order Hamiltonian systems with a \(C^2 \) potential function which may have an unbounded potential well. Our result can be regarded as complementary to the well-known theorem of Benci-Gluck-Ziller and Hayashi.

Key Words: \(C^2 \) second order Hamiltonian systems, periodic solutions, constrained variational minimizing methods.

2000 Mathematical Subject Classification: 34C15, 34C25, 58F.

1. Introduction

Based on the earlier works of Seifert([20]) in 1948 and Rabinowitz([18,19]) in 1978 and 1979, Benci ([4]), and Gluck-Ziller ([11]), and Hayashi([13]) published work examining the periodic solutions for second order Hamiltonian systems

\[
\ddot{q} + V'(q) = 0 \quad (1.1)
\]

\[
\frac{1}{2}|\dot{q}|^2 + V(q) = h \quad (1.2)
\]

with a fixed energy. Utilizing the Jacobi metric and very complicated geodesic methods with algebraic topology, they proved the following general theorem:

Theorem 1.1 Suppose \(V \in C^2(R^n, R) \). If the potential well

\[
\{ x \in R^n | V(x) \leq h \}
\]
is bounded and non-empty, then the system (1.1)-(1.2) has a periodic solution with energy h.

Furthermore, if $V'(x) \neq 0$, $\forall x \in \{x \in \mathbb{R}^n | V(x) = h\}$, then the system (1.1)-(1.2) has a nonconstant periodic solution with energy h.

For the existence of multiple periodic solutions for (1.1)-(1.2) with compact energy surfaces, we can refer to Groessen([12]) and Long[14] and the references therein.

In 1987, Ambrosetti-Coti Zelati[2] successfully used Clark-Ekeland’s dual action principle and Ambrosetti-Rabinowitz’s Mountain Pass theorem to study the existence of T-periodic solutions of the second-order equation

$$-\ddot{x} = \nabla U(x),$$

where

$$U = V \in C^2(\Omega; \mathbb{R})$$

such that

$$U(x) \to \infty, x \to \Gamma = \partial \Omega;$$

with $\Omega \subset \mathbb{R}^n$ a bounded convex domain. Their principle result is the following:

Theorem 1.2 Suppose

1. $U(0) = 0 = \min U$
2. $U(x) \leq \theta(x, \nabla U(x))$ for some $\theta \in (0, \frac{1}{2})$ and for all x near Γ (superquadraticity near Γ)
3. $(U''(x)y, y) \geq k|y|^2$ for some $k > 0$ and for all $(x, y) \in \Omega \times \mathbb{R}^N$.

Let ω_N be the greatest eigenvalue of $U''(0)$ and $T_0 = (2/\omega_N)^{1/2}$. Then $-\ddot{x} = \nabla U(x)$ has for each $T \in (0, T_0)$ a periodic solution with minimal period T.

The dual variational principle and Mountain Pass Lemma again proved the essential ingredients for the following theorem of Coti Zelati-Ekeland-Lions [8] concerning Hamiltonian systems in convex potential wells.

Theorem 1.3 Let Ω be a convex open subset of \mathbb{R}^n containing the origin O. Let $V \in C^2(\Omega, \mathbb{R})$ be such that

(V1). $V(q) \geq V(O) = 0, \forall q \in \Omega$
(V2). $\forall q \neq O, V''(q) > 0$
(V3). $\exists \omega > 0$, such that

$$V(q) \leq \frac{\omega}{2} ||q||^2, \forall ||q|| < \epsilon$$

and
(V4). \(V''(q)^{-1} \to 0, \|q\| \to 0 \) or, \((V4)'\). \(V''(q)^{-1} \to 0, q \to \partial \Omega \).

Then, for every \(T < \frac{2\pi}{\sqrt{\omega}} \), the system (1.1) has a solution with minimal period \(T \).

In Theorems 1.2 and 1.3, the authors assumed the convex conditions for potentials and potential wells in order to apply Clark-Ekeland’s dual variational principle. We observe that Theorems 1.1-1.3 essentially make the assumption

\[
V(x) \to \infty, x \to \Gamma = \partial \Omega
\]

so that all potential wells are bounded. We wish to generalize Theorems 1.1-1.3 from two directions: (1) We dispense with the convex assumption on potential functions, (2) \(V(x) \) can be uniformly bounded, and the potential well can be unbounded.

In 1987, D.Offin ([16]) generalized Theorem 1.1 to some non-compact cases for \(V \in C^3(R^n, R) \) under complicated geometric assumptions on the potential wells; however, these geometric conditions appear difficult to verify for concrete potentials. In 2009, Berg-Pasquotto-Vandervorst ([5]) studied the closed orbits on non-compact manifolds with some complex topological assumptions.

Using simpler constrained variational minimizing method, we obtain the following result:

Theorem 1.4 Suppose \(V \in C^2(R^n, R) \), \(h \in R \) satisfies

1. \(V(-q) = V(q) \)
2. \(V'(q)q > 0, \forall q \neq 0 \)
3. \(3V'(q)q + (V''(q)q, q) \neq 0, \forall q \neq 0 \)
4. \(\exists \mu_1 > 0, \mu_2 \geq 0 \), such that
 \[
 V'(q) \cdot q \geq \mu_1 V(q) - \mu_2
 \]
5. \(\lim_{|q| \to \infty} \text{sup} |V(q) + \frac{1}{2}V''(q)q| \leq A \)

Then the system (1.1) – (1.2) has at least one non-constant periodic solution with the given energy \(h \).

Corollary 1.5 Suppose \(V(q) = a|q|^{2n}, a > 0 \), then the system \(\forall h > 0, (1.1) - (1.2) \) has at least one non-constant periodic solution with the given energy \(h \).

Remark 1 Suppose \(V(x) \) is the following well-known \(C^\infty \) function:

\[
V(x) = e^{-\frac{1}{|x|}}, \forall x \neq 0; \\
V(0) = 0.
\]

Then \(V(x) \) satisfies \((V_1) - (V_5) \) if we take \(\mu_1 = \mu_2 > 0 \) and \(A = 1 \) in Theorem 1.4, but \((V_6) \) does not hold.

Proof In fact, it’s easy to check \((V_1) - (V_5) \):
1. It’s obvious for \((V_1) \).
(2). For \((V_2)\) and \((V_3)\), we notice that
\[
V'(x)x = \frac{1}{|x|} e^{\frac{1}{|x|}} > 0, \forall x \neq 0,
\]
\[
(V''(x)x, x) = e^{\frac{1}{|x|}} \left(-\frac{2}{|x|} + \frac{1}{|x|^2} \right)
\]
\[
3V'(x)x + (V''(x)x, x) = e^{\frac{1}{|x|}} \left(\frac{1}{|x|} + \frac{1}{|x|^2} \right) > 0, \forall x \neq 0.
\]

(3). For \((V_4)\), we set
\[
w(x) = \left(\frac{1}{|x|} - \mu_1 \right) e^{\frac{1}{|x|}}; \quad x \neq 0, w(0) = 0.
\]
We will prove \(w(x) > -\mu_1\); in fact,
\[
w'(x) = \left[\frac{1}{|x|} - (1 + \mu_1) \right] \frac{x}{|x|^2} e^{\frac{1}{|x|}}; x \neq 0, w'(0) = 0.
\]
From \(w'(x) = 0\), we have \(x = -\frac{1}{1+\mu_1}\) or 0 or \(\frac{1}{1+\mu_1}\).

It’s easy to see that \(w(x)\) is strictly increasing on \((-\infty, -\frac{1}{1+\mu_1}]\) and \([0, \frac{1}{1+\mu_1}]\) but strictly decreasing on \([\frac{1}{1+\mu_1}, 0]\) and \([\frac{1}{1+\mu_1}, +\infty)\). We notice that
\[
\lim_{|x| \to +\infty} w(x) = -\mu_1,
\]
and
\[
w(0) = 0.
\]
So
\[
w(x) > -\mu_1.
\]
When we take \(\mu_2 = \mu_1 > 0\), \((V_4)\) holds.

(4). For \((V_5)\), we have
\[
V(x) + \frac{1}{2} V'(x)x = e^{\frac{1}{|x|}} (1 + \frac{1}{2} \frac{1}{|x|}) < 1, \forall x \neq 0;
\]
\[
V(0) + \frac{1}{2} V'(0)0 = 0.
\]

Corollary 1.6 Given any \(a > 0\), \(n \in \mathbb{N}\), suppose \(V(x) = a|x|^{2n} + e^{\frac{1}{|x|}}, x \neq 0, V(0) = 0\). Then \(\forall h > 1\), the system \((1.1) - (1.2)\) has at least one non-constant periodic solution with the given energy \(h\).

Remark 2 The potential \(V(x)\) in Remark 1 is noteworthy since the potential function is non-convex and bounded which satisfies neither of the conditions of Theorems 1.1-1.3, Offin’s geometrical conditions, nor Berg-Pasquotto-Vandervorst’s complex topological assumptions. Notice the special properties for our potential well. It is a
bounded set if $h < 1$, but for $h \geq 1$ it is \mathbb{R}^n - an unbounded set. We also notice that the symmetrical condition on the potential simplified our Theorem 1.4 and it's proof; it seems interesting to observe to obtain non-constant periodic solutions if the symmetrical condition is deleted.

2 A Few Lemmas

Let

$$H^1 = W^{1,2}(\mathbb{R}/\mathbb{Z}, \mathbb{R}^n) = \{ u : R \rightarrow \mathbb{R}^n, u \in L^2, \dot{u} \in L^2, u(t + 1) = u(t) \}$$

Then the standard H^1 norm is equivalent to

$$\| u \| = \| u \|_{H^1} = \left(\int_0^1 |\dot{u}|^2 dt \right)^{1/2} + | \int_0^1 u(t) dt |.$$

Lemma 2.1 ([1]) Let

$$M = \{ u \in H^1 | \int_0^1 (V(u) + \frac{1}{2} V''(u) u) dt = h \}.$$

If (V_3) holds, then M is a C^1 manifold with codimension 1 in H^1.

Let

$$f(u) = \frac{1}{4} \int_0^1 |\dot{u}|^2 dt \int_0^1 V'(u)u dt$$

and $\tilde{u} \in M$ be such that $f'(\tilde{u}) = 0$ and $f(\tilde{u}) > 0$. Set

$$\frac{1}{T^2} = \frac{\int_0^1 V'(\tilde{u})\tilde{u} dt}{\int_0^1 |\dot{\tilde{u}}|^2 dt}.$$

If (V_2) holds, then $\tilde{q}(t) = \tilde{u}(t/T)$ is a non-constant T-periodic solution for (1.1)-(1.2).

When the potential is even, then by Palais's symmetrical principle ([17]) and Lemma 2.1, we have

Lemma 2.2 ([1]) Let

$$F = \{ u \in M | u(t + 1/2) = -u(t) \}$$

and suppose $(V_1) - (V_3)$ holds. If $\tilde{u} \in F$ be such that $f'(\tilde{u}) = 0$ and $f(\tilde{u}) > 0$,then $\tilde{q}(t) = \tilde{u}(t/T)$ is a non-constant T-periodic solution for (1.1)-(1.2). In addition, we have

$$\forall u \in F, \int_0^1 u(t) dt = 0.$$

Recall the following two classic results.
Lemma 2.3 (Sobolev-Rellich-Kondrachov\cite{15},\cite{22})
\[W^{1,2}(\mathbb{R}/\mathbb{Z}, \mathbb{R}^n) \subset C(\mathbb{R}/\mathbb{Z}, \mathbb{R}^n) \]
and the imbedding is compact.

Lemma 2.4 (Eberlein-Smulian \cite{21}) A Banach space \(X \) is reflexive if and only if any bounded sequence in \(X \) has a weakly convergent subsequence.

Definition 2.1 (Tonelli,\cite{15}) Let \(X \) be a Banach space and \(M \subset X \). If it the case that for any sequence \(\{x_n\} \subset M \) strongly convergent to \(x_0 \) \((x_n \to x_0)\), we have \(x_0 \in M \), then we call \(M \) a strongly closed (closed) subset of \(X \); if for any \(\{x_n\} \subset M \) weakly convergent to \(x_0 \) \((x_n \rightharpoonup x_0)\), we have \(x_0 \in M \), then we call \(M \) a weakly closed subset of \(X \).

Let \(f : M \to \mathbb{R} \).
(i). If for any \(\{x_n\} \subset M \) strongly convergent to \(x_0 \), we have
\[\liminf f(x_n) \geq f(x_0), \]
then we say \(f(x) \) is lower semi-continuous at \(x_0 \).
(ii). If for any \(\{x_n\} \subset M \) weakly convergent to \(x_0 \), we have
\[\liminf f(x_n) \geq f(x_0), \]
then we say \(f(x) \) is weakly lower semi-continuous at \(x_0 \).

Using his variational principle, Ekeland proved

Lemma 2.5 (Ekeland\cite{9}) Let \(X \) be a Banach space and \(F \subset X \) a closed (weakly closed) subset. Suppose that \(\Phi \) defined on \(X \) is Gateaux-differentiable and lower semi-continuous (or weakly lower semi-continuous) and that \(\Phi|_F \) restricted on \(F \) is bounded from below. Then there is a sequence \(x_n \subset F \) such that
\[\Phi(x_n) \to \inf_F \Phi \quad \text{and} \quad \|\Phi|_F'(x_n)\| \to 0. \]

Definition 2.2 (\cite{9,10}) Let \(X \) be a Banach space and \(F \subset X \) a closed (weakly closed) subset. Suppose that \(\Phi \) defined on \(X \) is Gateaux-differentiable. If it is true that whenever \(\{x_n\} \subset F \) such that
\[\Phi(x_n) \to c \quad \text{and} \quad \|\Phi|_F'(x_n)\| \to 0, \]
then \(\{x_n\} \) has a strongly convergent (weakly convergent) subsequence, we say \(\Phi \) satisfies the \((PS)_{c,F} \) \(((WPS)_{c,F}) \) condition at the level \(c \) for the closed subset \(F \subset X \).

Using Lemma 2.5, it is easy to prove the following lemma.

Lemma 2.6 Let \(X \) be a Banach space,
(i). Let \(F \subset X \) be a closed subset. Suppose that \(\Phi \) defined on \(X \) is Gateaux-differentiable and lower semi-continuous and bounded from below on \(F \). If \(\Phi \) satisfies \((PS)_{\inf \Phi, F}\) condition, then \(\Phi \) attains its infimum on \(F \).

(ii). Let \(F \subset X \) be a weakly closed subset. Suppose that \(\Phi \) defined on \(F \) is Gateaux-differentiable and weakly lower semi-continuous and bounded from below on \(F \). If \(\Phi \) satisfies \((WPS)_{\inf \Phi, F}\) condition, then \(\Phi \) attains its infimum on \(F \).

3 The Proof of Theorem 1.4

We prove the Theorem as a sequence of claims.

Claim 3.1 If \((V_1) - (V_6)\) hold, then for any given \(c > 0 \), \(f(u) \) satisfies the \((PS)_{c,F}\) condition; that is, if \(\{u_n\} \subset F \) satisfies

\[
f(u_n) \to c > 0 \quad \text{and} \quad f|_F'(u_n) \to 0, \tag{3.1}\]

then \(\{u_n\} \) has a strongly convergent subsequence.

Proof First, we prove the constrained set \(F \neq \emptyset \) under our assumptions. Using the notation of [1], for \(a > 0 \) let

\[
g_u(a) = g(au) = \int_0^1 [V(au) + \frac{1}{2} V'(au) au] dt. \tag{3.2}\]

By the assumption \((V_3)\), we have

\[
\frac{d}{da} g_u(a) \neq 0 \tag{3.3}\]

and so \(g_u \) is strictly monotone. By \((V_5)\), we have

\[
\lim_{a \to +\infty} g_u(a) \leq A \tag{3.4}\]

By \((V_4)\), we notice that

\[
g_u(0) = V(O) \leq \frac{\mu_2}{\mu_1}. \tag{3.5}\]

So for \(V(O) < h < A \), the equation \(g_u(a) = h \) has a unique solution \(a(u) \) with \(a(u)u \in M \).

By \(f(u_n) \to c \), we have

\[
\frac{1}{4} \int_0^1 |\dot{u}_n(t)|^2 dt \cdot \int_0^1 V'(u_n) u_n dt \to c, \tag{3.6}\]

and by \((V_4)\) we have
$$h = \int_0^1 (V(u_n) + \frac{1}{2} < V'(u_n), u_n >) dt \leq \left(\frac{1}{\mu_1} + \frac{1}{2} \right) \int_0^1 V'(u_n) u_n dt + \frac{\mu_2}{\mu_1}. \quad (3.7)$$

By (3.6) and (3.7) we have

$$\int_0^1 V'(u_n) u_n dt \geq \frac{h - \frac{\mu_2}{\mu_1}}{\frac{1}{2} + \frac{1}{\mu_1}}. \quad (3.8)$$

Condition (V_6) provides \(h > \frac{\mu_2}{\mu_1} \). Then (3.6) and (3.8) imply \(\int_0^1 |\dot{u}_n(t)|^2 dt \) is bounded and \(\|u_n\| = \|\dot{u}_n\|_{L^2} \) is bounded.

We know that \(H^1 \) is a reflexive Banach space, so by the embedding theorem, \(\{u_n\} \) has a weakly convergent subsequence which uniformly strongly converges to \(u \in H^1 \). The argument to show \(\{u_n\} \) has a strongly convergent subsequence is standard, and we can refer to Lemma 3.5 of Ambrosetti-Coti Zelati [1].

Claim 3.2 \(f(u) \) is weakly lower semi-continuous on \(F \).

Proof For any \(u_n \subset F \) with \(u_n \rightharpoonup u \), by Sobolev’s embedding Theorem we have the uniform convergence:

$$|u_n(t) - u(t)|_\infty \to 0.$$

Since \(V \in C^1(R^n, R) \), we have

$$|V(u_n(t)) - V(u(t))|_\infty \to 0.$$

By the weakly lower semi-continuity of norm, we have

$$\liminf \left(\int_0^1 |\dot{u}_n|^2 dt \right)^{\frac{1}{2}} \geq \left(\int_0^1 |\dot{u}|^2 dt \right)^{\frac{1}{2}}.$$

Calculating we see

$$\liminf \left(\int_0^1 |\dot{u}_n|^2 dt \right) \geq \int_0^1 |\dot{u}|^2 dt,$$

and

$$\liminf f(u_n) = \liminf \frac{1}{4} \int_0^1 |\dot{u}_n|^2 dt \int_0^1 V'(u_n) u_n dt \geq \frac{1}{4} \int_0^1 |\dot{u}|^2 dt \int_0^1 V''(u) u dt = f(u).$$

Claim 3.3 \(F \) is a weakly closed subset in \(H^1 \).

Proof This follows easily from Sobolev’s embedding Theorem and \(V \in C^1(R^n, R) \).

Claim 3.4 The functional \(f(u) \) has positive lower bound on \(F \)
Proof By the definitions of \(f(u) \) and \(F \) and the assumption \((V_2)\), we have

\[
 f(u) = \frac{1}{4} \int_0^1 |\dot{u}|^2 dt \int_0^1 (V'(u)u) dt \geq 0, \forall u \in F.
\]

Furthermore, we claim that

\[
 \inf f(u) > 0;
\]

otherwise, \(u(t) = \text{const} \), and by the symmetrical property \(u(t + 1/2) = -u(t) \) we have \(u(t) = 0, \forall t \in R \). But by assumptions \((V_4)\) and \((V_6)\) we have

\[
 V(0) \leq \frac{\mu_2}{\mu_1} < h,
\]

which contradicts the definition of \(F \) since \(V(0) = h \) if we have \(0 \in F \). Now by Lemmas 3.1-3.4 and Lemma 2.6, we see that \(f(u) \) attains the infimum on \(F \), and we know that the minimizer is nonconstant.

Acknowledgements

The authors sincerely thank Professor P. Rabinowitz who brought the paper of D. Offin ([16]) to our attention.

References

[1] A. Ambrosetti, V. Coti Zelati, Closed orbits of fixed energy for singular Hamiltonian systems, Arch. Rat. Mech. Anal. 112(1990), 339-362.

[2] A. Ambrosetti, V. Coti Zelati, Solutions with minimal period for Hamiltonian systems in a potential well, Ann. Inst. H. Poincare, Analyse Non Lineare 4(1987), 235-242.

[3] A. Ambrosetti, P. Rabinowitz, Dual variational methods in critical point theory and applications, J. of Functional Analysis, 14(1973), 349-381.

[4] V. Benci, Closed geodesics for the Jacobi metric and periodic solutions of prescribed energy of natural Hamiltonian systems, Ann. Inst. Henri Poincare Anal. Non Lineaire 1(1984), 401-412.

[5] J. Berg, F. Pasquotto, R. Vandervorst, Closed characteristics on non-compact hypersurfaces in \(R^{2n} \), Math. Ann. 343(2009), 247-284.

[6] K. C. Chang, Infinite dimensional Morse theory and multiplicity problems, Birkhauser, 1993.

[7] G. Cerami, Un criterio di esistenza per i punti critici su varietà illimitate, Rend. dell. accademia di sc. lombardo 112(1978), 332-336.

[8] V. Coti Zelati, I. Ekeland and P. L. Lions, Index estimates and critical points of functionals not satisfying Palais-Smale, Ann. Scuola Norm Sup. Pisa 17(1990), 569-581.
[9] I. Ekeland, Convexity Methods in Hamiltonian Mechanics, Springer, 1990.

[10] N. Ghoussoub, D. Preiss, A general mountain pass principle for locating and classifying critical points, Ann. Inst. Henri Poincare Anal. NonLineaire 6 (1984), 321-330.

[11] H. Gluck and W. Ziller, Existence of periodic motions of conservative systems, in Seminar on minimal submanifolds, E. Bombieri Ed., Princeton Univ. Press, 1983.

[12] E. W. C. Van Groesen, Analytical mini-max methods for Hamiltonian break orbits with a prescribed energy, JMAA 132 (1988), 1-12.

[13] K. Hayashi, Periodic solutions of classical Hamiltonian systems, Tokyo J. Math., 1983.

[14] Y. Long, Index Theory for Symplectic Paths with Applications, Basel: Birkhauser, 2002.

[15] J. Mawhin, M. Willem, Critical Point Theory and Applications, Springer, 1989.

[16] D. Offin, A class of periodic orbits in classical mechanics, JDE, 66 (1987), 90-117.

[17] Palais R., The principle of symmetric criticality, CMP 69 (1979), 19-30.

[18] P. H. Rabinowitz, Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math. 31 (1978), 157-184.

[19] P. H. Rabinowitz, Periodic solutions of a Hamiltonian systems on a prescribed energy surface, JDE 33 (1979), 336-352.

[20] H. Seifert, Periodischer bewegungen mechanischer system, Math. Zeit 51 (1948), 197-216.

[21] K. Yosida, Functional Analysis, Springer, Berlin, 1978.

[22] W. P. Ziemer, Weakly differentiable functions, Springer, 1989.