Privacy Preservation in Distributed Subgradient Optimization Algorithms*

Youcheng Lou, Lean Yu and Shouyang Wang

Abstract

Privacy preservation is becoming an increasingly important issue in data mining and machine learning. In this paper, we consider the privacy preserving features of distributed subgradient optimization algorithms. We first show that a well-known distributed subgradient synchronous optimization algorithm, in which all agents make their optimization updates simultaneously at all times, is not privacy preserving in the sense that the malicious agent can learn other agents’ subgradients asymptotically. Then we propose a distributed subgradient projection asynchronous optimization algorithm without relying on any existing privacy preservation technique, where agents can exchange data between neighbors directly. In contrast to synchronous algorithms, in the new asynchronous algorithm agents make their optimization updates asynchronously. The introduced projection operation and asynchronous optimization mechanism can guarantee that the proposed asynchronous optimization algorithm is privacy preserving. Moreover, we also establish the optimal convergence of the newly proposed algorithm. The proposed privacy preservation techniques shed light on developing other privacy preserving distributed optimization algorithms.

Keywords: Privacy preservation, distributed optimization, asynchronous optimization.

1 Introduction

Distributed optimization and learning have attracted much research attention in recent years due to their wide applications in engineering, machine learning, data mining and
operations research [1, 2, 5, 6, 8, 9, 11, 16, 19, 20]. In a centralized design, all data collected from the studied problem needs to be transmitted to a central location. However, this transmission mechanism may incur prohibitively high cost. A desirable way is to accomplish the optimization or learning task in a distributed setting, in which each agent takes partial knowledge about this task and all agents can exchange data with their neighbors via an underlying network graph.

A widely studied problem is the sum objective optimization problem \(\min \sum_{i=1}^{n} f_i \), where \(f_i \) is agent \(i \)'s objective function and can be known only by agent \(i \) [1, 2, 5, 6, 7, 8, 13, 14, 15]. This group of agents can solve the optimization problem in a cooperative way by agents’ local optimization updates and local data sharing between neighbors. Nedic and Ozdaglar proposed a distributed subgradient algorithm with a constant stepsize to solve this sum objective optimization problem and presented a convergence error between the generated estimates and the optimal objective value in terms of model parameters in [1]. Then Nedic et. al proposed a distributed subgradient time-varying stepsize algorithm to solve a more general sum objective constrained optimization problem in [2]. The optimal convergence was established under mild assumptions of boundedness of subgradients, joint connectivity of network graphs and the classical stochastic approximation conditions. Duchi et al. proposed a dual averaging algorithm, where various sharp convergence bounds as a function of the network size and network graphs were provided in [6]. Moreover, distributed alternating direction method of multipliers were also studied with faster convergence rate compared to gradient-based algorithms in [7, 8].

In these existing distributed optimization algorithms [1, 2, 5, 6, 7, 8], in order to accomplish the task agents need to share their data with their neighbors. However, this may lead to privacy disclosure. Privacy preservation is becoming an increasingly important issue in applications involving sensitive data, especially in distributed settings [24, 25]. Clearly, it is desirable that on one hand, agents can jointly solve the optimization problem, while on the other hand, agents’ privacy can be effectively preserved. In fact, some work have also been done on designing privacy preserving algorithms to solve optimization problems [16, 17, 18, 19, 20, 21].

The existing privacy preserving methods can be roughly classified into two classes: cryptograph-based approaches [27] and non-cryptograph-based approaches [17, 19, 21, 22, 26]. In cryptograph-based methods, many mechanisms are designed to encrypt the data needed to be transmitted and decrypt the received data so that the privacy is not disclosed. The low efficiency of cryptograph-based methods has motivated much research on developing non-cryptograph-based methods. An important non-cryptograph-based method is the \(\varepsilon \)-differential privacy approach [17, 19, 21, 26], which typically employs a randomization perturbation method. An disadvantage of this approach is that the sensitivity of the
considered algorithm is usually hard to accurately estimate, and then in order to ensure
the pre-specified privacy preserving level quantified by ε, the added random noise is re-
quired to have higher covariance, which in return degrades the optimality significantly
[18].

In this paper, we will consider the privacy preserving features of distributed subgradi-
ent optimization algorithms. Agents’ privacy may refer to the parameters in the objective
functions [18], convex constraint sets [21] or the subgradients of objective functions [16].
Similar to [16], in this paper the subgradients of agents’ objective functions are defined
as agents’ privacy that needs to be protected. In our problem domain, we assume that
there is a malicious agent that does not follow the algorithm truthfully and can transmit
any data to its neighbors. This malicious agent will keep a record of all data shared with
its neighbors in order to discover other agents’ subgradients.

We will first show that in the well-known distributed subgradient synchronous opti-
mization algorithm in which all agents make their optimization updates simultaneously,
the malicious agent can asymptotically discover other agents’ subgradients for almost all
adjacency matrices when this malicious agent can communicate with all other agents and
the stepsize is diminishing. In this sense this synchronous optimization algorithm is not
privacy preserving. Then we will design a new distributed subgradient projection asyn-
crachronous optimization algorithm and establish its optimal convergence. Different from the
existing synchronous algorithms where all agents make their optimization updates simulta-
nously after taking a weighted average of the received data from their neighbors, in our
asynchronous algorithm at each time all agents make their optimization updates asyn-
crachronously and the optimization update time sequences are different for different agents.
When currently some agent does not make its own optimization update, this agent just
takes the weighted average of the received data from its neighbors as the next step’s
estimate without any optimization update. Moreover, we also artificially introduce a pro-
jection set, which combines with the asynchronous optimization update mechanism can
effectively prevent the privacy disclosure. The main contribution of this paper is that we
show that the well-known distributed subgradient synchronous optimization algorithm
is not privacy preserving under some cases, and propose a new privacy preserving dis-
tributed subgradient projection asynchronous optimization algorithm without employing
any cryptograph-based and differential privacy technique following detailed convergence
analysis.

Our work is closely related to the recent work [16], in which Yan et al. considered the
privacy preservation problems of their proposed distributed subgradient online learning
synchronous optimization algorithm and showed that their algorithm has intrinsic privacy-
preserving properties. The authors also presented the necessary and sufficient conditions
to ensure the privacy preserving properties. Different from the work by Yan et al. [16], we consider the static distributed optimization instead of dynamical (online learning) optimization in order to highlight the main contribution. In fact, the current results can be generalized to the dynamical cases. In this paper, we relax the assumption that the malicious agent knows the adjacency matrix of the network graph used in [16] considering that in practice any agent is hard to obtain this adjacency matrix, especially in large scale networks and distributed settings. Compared with [1, 2, 5], besides the optimal convergence, we also consider the privacy preserving properties of distributed algorithms. Moreover, different from the cryptograph-based and differential privacy techniques studied in [17, 19, 21, 22, 26, 27], the data in our algorithm can be transmitted directly between neighbors and we do not use any additional privacy preservation technique to disguise agents’ data.

The rest of the paper is organized as follows. In Section 2, we present some preliminaries on the well-known distributed subgradient synchronous optimization algorithm (DSSOA) and the problem formulation of the interested privacy preserving problems. In Subsections 3.1 and 3.2, we consider the adjacency matrix discovery problems of a special case of DSSOA, i.e., the distributed consensus algorithms, and the DSSOA, respectively. In Section 4, we present our privacy preserving distributed subgradient projection asynchronous optimization algorithm and establish its optimal convergence. Finally, some concluding remarks are given in Section 5.

2 Preliminaries and Problem Formulation

In this section, we first introduce a well-known distributed subgradient synchronous optimization algorithm and then state the interested privacy preserving problems of this algorithm.

2.1 A Distributed Subgradient Synchronous Optimization Algorithm

Consider a network consisting of \(n \) agents with node set \(\mathcal{V} = \{1, \ldots, n\} \). The communication among agents can be described by a directed graph \(\mathcal{G} = (\mathcal{V}, \mathcal{E}) \), where arc \((j, i) \in \mathcal{E}\) means that agent \(i \) can receive the data sent by agent \(j \). Here node \(j \) is said to be node \(i \)'s neighbor if \((j, i) \in \mathcal{E}\). Let \(\mathcal{N}_i = \{j \mid (j, i) \in \mathcal{E}\} \) denote the set of node \(i \)'s neighbors. Associated with graph \(\mathcal{G} \), there is usually a nonnegative adjacency matrix \(\tilde{A} = (a_{ij}) \in \mathbb{R}^{n \times n} \) to characterize the weights among agents, where the entries \(a_{ij} \) are nonnegative and \(a_{ij} \) is positive if and only if \((j, i) \in \mathcal{E}\). Graph \(\mathcal{G} \) is said to be strongly connected if there exists a path from \(i \) to...
for each pair of nodes \(i, j \in V \). The objective of this network is to cooperatively solve the sum optimization problem

\[
\min_{x \in \mathbb{R}^m} \sum_{i=1}^{n} f_i(x)
\]

where \(f_i : \mathbb{R}^m \to \mathbb{R} \) is the convex objective function of agent \(i \) to be minimized. In a distributed setting, each agent only knows its own objective function.

A possible algorithm for solving (1) is the following distributed subgradient synchronous optimization algorithm (DSSOA) [1]:

\[
x_{i}(k+1) = \sum_{j \in N_i} a_{ij} x_j(k) - \alpha_k d_i(k), \quad k \geq 0, \quad d_i(k) \in \partial f_i(x_i(k)), \quad i = 1, \ldots, n,
\]

where \(x_{i}(k) \) is agent \(i \)'s estimate for the optimal solution of (1) at time \(k \); \(0 < \alpha_k \leq \alpha^* \) is the stepsize, \(\alpha^* > 0 \); \(\partial f_i(x_i(k)) \) is the subdifferential that contains all subgradients of \(f_i \) at \(x_i(k) \). In algorithm (2), before agents generate their estimates at the next step, they first take a weighted average of the estimates received from their neighbors, and then make an optimization update following a negative gradient direction. Here we say that algorithm (2) is synchronous since all agents make their optimization updates simultaneously.

\textbf{Remark 2.1} In [1], Nedic and A. Ozdaglar proposed the algorithm (2) with a constant stepsize \(\alpha_k \equiv \alpha \) to solve optimization problem (1), where the convergence error between agents’ estimates and the optimal function value is presented in terms of the constant stepsize and some other algorithm parameters. In [2], Nedic et al. considered a more general constrained optimization problem \(\min_{x \in K} \sum_{i=1}^{n} f_i(x) \) and proposed a distributed subgradient projection algorithm

\[
x_{i}(k+1) = P_K \left(\sum_{j \in N_i} a_{ij} x_j(k) - \alpha_k d_i(k) \right), \quad k \geq 0
\]

with a time-varying stepsize. Following this, many distributed subgradient algorithms emerge under various scenarios, for example, to deal with inexact subgradients with errors [3] and random network graphs [4, 14].

We next introduce three basic assumptions on the connectivity of the network graph, adjacency matrix and the boundedness of subgradients [1, 2, 5, 9, 16].

\textbf{Assumption 1}: The graph \(G \) is strongly connected.

\textbf{Assumption 2}: The adjacency matrix \(A \) is doubly stochastic, i.e., \(\sum_{j=1}^{n} a_{ij} = \sum_{j=1}^{n} a_{ji} = 1 \) for all \(i \).

\textbf{Assumption 3}: The subgradients of \(f_i \) are bounded, i.e., there is \(L > 0 \) such that

\[
\sup_{q \in \bigcup \partial f_i(x)} |q| \leq L, \quad \forall x \in \mathbb{R}^m,
\]
here we use \(| \cdot | \) to denote the Euclidean norm of a vector in \(\mathbb{R}^m \).

Although each agent only knows its own objective function, surprisingly this simple weighted average information exchange mechanism can make the network achieve an optimal consensus, as indicated in the following theorem, which can be found in Proposition 2 in [2].

Theorem 2.1 Consider DSSOA \(^{(2)}\) with Assumptions 1, 2, 3, \(\sum_{k=0}^{\infty} \alpha_k = \infty \) and \(\sum_{k=0}^{\infty} \alpha_k^2 < \infty \). Then the network will achieve an optimal consensus, i.e., there exists \(x^* \in \arg \min \sum_{i=1}^{n} f_i \) such that \(\lim_{k \to \infty} x_i(k) = x^* \), \(i = 1, \ldots, n \).

2.2 Problem Formulation

In algorithm \(^{(2)}\), agents need to share their data (the estimates for the optimal solutions) with their neighbors in order to solve the sum objective optimization problem. This direct information exchange may lead to privacy leakage. Recently, privacy preservation becomes an increasingly important issue in machine learning and data mining fields in distributed settings.

It is desirable that on one hand, agents can jointly accomplish the desired task, while on the other hand, agents’ private information can be effectively protected. However, most of the existing distributed optimizations algorithms including the subgradient algorithm \(^{(2)}\) mainly focus on the algorithm design and optimal convergence analysis, but not the privacy preservation problems (referring to those algorithms in [1, 2, 5, 6]) except the \(\varepsilon \)-differentially private methods, in which typically a random perturbation technique is used to prevent privacy disclosure [17, 19, 21] and cryptograph-based methods [27]. A disadvantage of differentially private methods is that the sensitivity of the studied algorithm is extremely hard to accurately estimate, and consequently, it is necessary that the added noise has higher covariance for ensuring the desired privacy preservation level. This in return degrades the optimality significantly. Moreover, it is usually a trade-off between the desired privacy accuracy requirement specified by the parameter \(\varepsilon \) and the optimality of the solutions. Moreover, a main disadvantage of cryptograph-based methods is that agents need to encrypt the data needed to be shared and decrypt the received data from their neighbors frequently, which incurs in low efficiency.

In this paper, we define agents’ subgradients as their private information, similar to the setting in [16]. In our problem domain, we assume there is a malicious agent that may not follow the algorithm truthfully and can transmit any data to its neighbors. We call those agents that follows the algorithm truthfully as regular agents. The malicious agent will keep a record of all the exchanged data with its neighbors and try to discover its neighbors’ subgradients.
In this paper, we are interested in the following two problems:

(i) Is the existing distributed synchronous algorithm (2) privacy preserving in the sense that the malicious agent can discover other agents’ subgradients based on the exchanged data between neighbors?

(ii) If algorithm (2) is not privacy preserving, can we design a privacy preserving distributed subgradient algorithm that does not employ any cryptograph-based and differentially private technique?

For the first problem, in Section 3 we will investigate the privacy preserving features of the DSSOA (2), in which information are shared directly between neighbors and all agents make their optimization updates simultaneously. The results show that for almost all adjacency matrices the malicious agent can learn the adjacency matrix of the network graph asymptotically when this malicious agent can receive all other agents’ estimates. This implies that DSSOA (2) is not privacy preserving since this malicious agent can discover other agents’ subgradients by some simple calculations.

For the second problem, in Section 4 we will propose a new distributed subgradient projection asynchronous optimization algorithm, in which agents first take a weighted average of the received estimates from their neighbors and then either make an optimization update following a subgradient direction to generate the next step’s estimates or just take the weighted average as the next step’s estimates. Different from DSSOA (2), in the newly proposed asynchronous optimization algorithm, agents make their optimization updates asynchronously and the optimization time sequences for different agents may be different. This newly proposed asynchronous optimization mechanism and the introduced projection set can effectively protect agents’ subgradient information.

3 Adjacency Matrix Discovery

In this section, we investigate the adjacency matrix discovery problem of DSSOA (2). Clearly, if the malicious agent can obtain the adjacency matrix of the network graph and observe all other regular agents’ estimates, then the malicious node can discover other agents’ subgradients by simple subtraction calculations by noticing that the stepsizes for all agents are the same in synchronous algorithm (2). We will first consider the adjacency matrix discovery problem of distributed consensus algorithms, which is a special case of DSSOA (2) with trivial objective functions, and establish some necessary and sufficient conditions to ensure that the adjacency matrix can/cannot be discovered. Then for DSSOA (2) we will show that the malicious agent can discover the adjacency matrix asymptotically under mild conditions by transmitting some appropriate data sequence to other regular agents.
In the work by Yan et al. [16], it is assumed that the malicious agent knows the adjacency matrix in advance. Different from it, here we do not enforce this assumption since in practice, usually it is extremely hard to obtain this adjacency matrix, especially in large scale directed networks, taking into account the following two reasons: first, the adjacency matrix captures the global network information and then generally agents cannot obtain it in a distributed setting; second, agents are not willing to leak the weights assigned to their neighbors to other agents from the viewpoint of privacy preservation.

In this section, we without loss of generality assume that agent n is the malicious agent, agents $1, 2, ..., n - 1$ (regular agents) are the malicious agent’s neighbors and the induced subgraph generated by all regular agents is strongly connected.

3.1 A Special Case: Distributed Consensus Algorithms

In this subsection, we first consider a special case of DSSOA (2) with trivial (constant) objective functions. In this case, algorithm (2) induces to

$$x_i(k + 1) = \sum_{j \in \mathcal{N}_i} a_{ij} x_j(k), \quad i = 1, ..., n, \quad k \geq 0. \tag{3}$$

Without loss of generality, in this subsection we assume $m = 1$ for notational simplicity. Next we will investigate whether the malicious agent n can discover the adjacency matrix based on the exchanged data with other agents. Note that the malicious agent does not follow the algorithm truthfully and can transmit any data to all other regular agents with the aim to discover other agents’ subgradient information. Let $\{u(k)\}_{k \geq 0}$ be a data sequence that the malicious agent n transmits to other agents (i.e., $x_n(k) = u(k)$ for all $k \geq 0$). Partition adjacency matrix \bar{A} into

$$\bar{A} = \begin{pmatrix} A & b \\ * & * \end{pmatrix},$$

$$b = (a_{1n}, ..., a_{(n-1)n})' \in \mathbb{R}^{n-1}, \quad A \in \mathbb{R}^{(n-1) \times (n-1)},$$

where $'$ denotes the transpose of a vector. Then we rewrite (3) as a compact form:

$$x(k + 1) = Ax(k) + bu(k), \quad k \geq 0, \tag{4}$$

where $x(k) = (x_1(k), ..., x_{n-1}(k))'$. We also denote $b = (b_1, ..., b_{n-1})'$ for simplicity. In control community, (4) is referred to as a single-input control system. Note that $b_i > 0$ for all i since we assume in this section that all regular agents are the malicious agent’s neighbors. When there is no confusion, here we roughly call the weight pair (A, b) describing the weights within regular agents and that between regular agents and the malicious agent as the adjacency matrix. In the following, we formally introduce the definition of adjacency
matrix discovery. Recall that a vector is said to be a stochastic vector if it is nonnegative and the sum of its components is one, and a matrix is said to be a stochastic matrix if all its rows are stochastic vectors.

Definition 3.1 (Adjacency Matrix Discovery) We say that the adjacency matrix \((A, b)\) of \((4)\) cannot be discovered by the malicious agent if there exists another stochastic matrix \((A^*, b^*)\) with each component of \(b^*\) being positive such that for any sequence \(\{u(k)\}_{k \geq 0}\), \(x^*(k) = x(k)\) for all \(k \geq 0\), where \(\{x^*(k)\}_{k \geq 0}\) are the estimates generated by the algorithm

\[
x^*(k + 1) = A^* x^*(k) + b^* u(k), \quad k \geq 0
\]

with \(x(0) = x^*(0)\), and can be discovered by the malicious agent otherwise.

Theorem 3.1 The adjacency matrix \((A, b)\) of algorithm \((4)\) cannot be discovered if and only if the following matrix equations with variable \(z\) have at least two solutions:

\[
\begin{align*}
(A - z) A^k b &= 0, & k = 0, 1, \ldots, n - 2, \\
(A - z) A^k x(0) &= 0, & k = 0, 1, \ldots, n - 2,
\end{align*}
\]

subject to \(z \in \mathbb{R}^{n \times (n-1)}\), \((z, b)\) is a stochastic matrix.

Proof. (Necessity). According to the definition of adjacency matrix discovery, there exists another stochastic matrix \((A^*, b^*)\) \(\neq (A, b)\) such that the two estimate sequences generated by algorithm \((4)\) with respective \((A, b)\) and \((A^*, b^*)\) are identical for any sequence \(\{u(k)\}_{k \geq 0}\). Then

\[
(A - A^*) x(k) + (b - b^*) u(k) = 0, \quad k \geq 0.
\]

As a result, \(b = b^*\), and consequently, \((A - A^*) x(k) = 0\) for any \(k \geq 0\). Therefore, \((A - A^*) x(0) = 0\). From \((A - A^*) x(1) = 0\) and \(x(1) = Ax(0) + bu(0)\), we can find that \((A - A^*) b = 0\) and \((A - A^*) Ax(0) = 0\). Analogously, from \((A - A^*) x(2) = (A - A^*) (A^2 x(0) + Abu(0) + bu(1))\) we can obtain that \((A - A^*) Ab = 0, (A - A^*) A^2 x(0) = 0\). Other equations can be obtained in a similar way.

(Sufficiency). The sufficiency can be shown directly from the sufficiency condition and the fact that each \(A^k, k \geq n - 1\) can be expressed as a linear combination of \(A^r, r = 0, 1, \ldots, n - 2\). We complete the proof. \(\square\)

Let \(\text{span}\{p_1, \ldots, p_l\}\) and \(\text{rank}\{p_1, \ldots, p_l\}\) denote the subspace generated by vectors \(p_1, \ldots, p_l\), and the rank of vectors \(p_1, \ldots, p_l\), respectively. Also let \(\mathbf{1}\) denote the vector of all ones in \(\mathbb{R}^{n-1}\). The following two corollaries can be obtained directly from Theorem 3.1.

Corollary 3.1 If

\[
\text{span}\{ \mathbf{1}, b, Ab, \ldots, A^{n-2} b, x(0), Ax(0), \ldots, A^{n-2} x(0) \} = \mathbb{R}^{n-1}, \quad (5)
\]

then the adjacency matrix \((A, b)\) of algorithm \((4)\) can be discovered.
Corollary 3.2 If single-input control system (4) is completely controllable (equivalently, \(\text{rank}(b, Ab, ..., A^{n-2}b) = n - 1 \)), then the adjacency matrix \((A, b)\) of algorithm (4) can be discovered.

From Corollaries 3.1 and 3.2 we can find that for almost all adjacency matrices except a zero Lebesgue measure weight set, the adjacency matrix \((A, b)\) of algorithm (4) can be discovered by the malicious agent. The following is a necessary and sufficient condition that the adjacency matrix can be discovered for a special class of graphs.

Theorem 3.2 Assume there is a node \(i, i \neq n\) in graph \(G\) such that each node \(j, j \neq i, j \neq n\) is a neighbor of this node. Then the adjacency matrix \((A, b)\) of algorithm (4) can be discovered if and only if (5) holds.

Proof. The sufficiency can be obtained from Corollary 3.1. We now show by contradiction the necessity. We assume without loss of generality that nodes 2, ..., \(n - 1\) are node 1’s neighbors. As a result, all components of the first row of \(A\), which is denoted as \(a\), are positive. Select a nonzero vector \(c \in \text{span}\{1, b, Ab, ..., A^{n-2}b, x(0), Ax(0), ..., A^{n-2}x(0)\}^\perp\) with sufficiently small components such that all components of \(a - c\) are positive (\(^\perp\) denotes the orthogonal complement of a subspace). Then the matrix \(z\) with the first row being \(a - c\) and all other rows are the same as that of \(A\) is also a solution of the matrix equations in Theorem 3.1. This contradicts Theorem 3.1 and then the necessity follows. The proof is completed.

We next present a necessary and sufficient condition when the network contains three agents.

Theorem 3.3 Consider algorithm (4) with a completely connected graph and \(n = 3\). Then the adjacency matrix \((A, b)\) of algorithm (4) cannot be discovered if and only if \(b_1 = b_2, x_1(0) = x_2(0)\) and \(a_{11} + a_{12} = a_{21} + a_{22}\).

Proof. The sufficiency is straightforward. In fact, when the sufficient conditions hold, any nonnegative matrix \(\begin{pmatrix} z_1 & z_2 \\ z_3 & z_4 \end{pmatrix}\) satisfying \(z_1 + z_2 = z_3 + z_4 = a_{11} + a_{12}\) is a solution of the matrix equations in Theorem 3.1. Now we show the necessity by contradiction. Hence first suppose \(x_1(0) \neq x_2(0)\). Then from \((A - z)x(0) = 0\) and \((z, b)\) is a stochastic matrix, we have that \(a_{11}x_1(0) + a_{12}x_2(0) = z_1x_1(0) + z_2x_2(0)\) and \(a_{11} + a_{12} = z_1 + z_2\). That is,

\[
\begin{pmatrix}
 x_1(0) & x_2(0) \\
 1 & 1
\end{pmatrix}
\begin{pmatrix}
 a_{11} - z_1 \\
 a_{12} - z_2
\end{pmatrix} = 0.
\]

The above equation implies that \(z_1 = a_{11}\), \(z_2 = a_{12}\) due to \(x_1(0) \neq x_2(0)\). Similarly, we can show \(z_3 = a_{21}\), \(z_4 = a_{22}\). This implies that the matrix equations in Theorem 3.1 has
a unique solution, which yields a contradiction. Then \(x_1(0) = x_2(0) \). Analogously, from \((A-z) Ax(0) = 0\) we can also prove that the two entries of \(Ax(0) \) are the same. Therefore, it follows that \(a_{11} + a_{12} = a_{21} + a_{22} \). From the first matrix equation in Theorem 3.1 we can also show that \(b_1 = b_2 \) in a similar way. The proof is completed. \(\square \)

We now consider the problem the malicious agent how to discover the adjacency matrix \((A, b)\) by choosing an appropriate sequence \(\{u(k)\}_{k \geq 0} \) when condition (5) holds.

Theorem 3.4 Assume (5) holds. Then the adjacency matrix \((A, b)\) of distributed algorithm (4) can be discovered by choosing

\[
\begin{align*}
 u(0) &= u(1) = \cdots = u(n-2) = 0, \\
 u(n-1) &= \cdots = u(2n-2) = 1.
\end{align*}
\]

Proof. From Corollary 3.1 we know that the adjacency matrix \((A, b)\) of algorithm (4) can be discovered when (5) holds. Clearly, by (4) we have the matrix equation

\[
(1, x(1), \ldots, x(n), x(n+1), \ldots, x(2n-1))
\]

\[
= (A, b) \begin{pmatrix} 1 & x(0) & \cdots & x(n-1) & x(n) & \cdots & x(2n-2) \\ 1 & u(0) & \cdots & u(n-1) & u(n) & \cdots & u(2n-2) \end{pmatrix}
\]

\[
= (A, b) \begin{pmatrix} 1 & x(0) & \cdots & A^{n-1} x(0) + \sum_{r=0}^{n-2} A^{n-2-r} b_u(r) & A^n x(0) + \sum_{r=0}^{n-1} A^{n-1-r} b_u(r) & \cdots & A^{2n-2} x(0) + \sum_{r=0}^{2n-3} A^{2n-3-r} b_u(r) \\ 1 & u(0) & \cdots & 0 & 0 & \cdots & 0 \end{pmatrix}
\]

Rewrite the above matrix equation as \(Z = (A, b) Y \). If matrix \(Y \) has full row rank, then \((A, b)\) is uniquely determined by

\[
(A, b) = ZY' (YY')^{-1}.
\]

Note that the square matrix \(YY' \) is invertible if and only if \(Y \) is full row rank. We next show that the matrix \(Y \) has full row rank under condition (5) by choosing \(u(0), \ldots, u(2n-2) \) given in this theorem.

Letting \(u(0) = u(1) = \cdots = u(n-2) = 0 \) and \(u(n-1) = \cdots = u(2n-2) = 1 \) in \(Y \) yields the matrix

\[
\begin{pmatrix} 1 & x(0) & \cdots & A^{n-2} x(0) & A^{n-1} x(0) + b_u & \cdots & A^{2n-2} x(0) + \sum_{r=0}^{2n-3} A^{2n-3-r} b_u \\ 1 & 0 & \cdots & 0 & 1 & \cdots & 0 \end{pmatrix}
\]

\((6)\)

Noticing that any \(A^k, k \geq n-1 \) can be expressed as a linear combination of \(I \) (the identity matrix), \(A, \ldots, A^{n-2} \), we can find that the matrix in (6) is certainly full row rank. We complete the proof. \(\square \)

3.2 Adjacency Matrix Discovery of DSSOA

In this subsection, we consider the adjacency matrix discovery problem of DSSOA (2). Clearly, (2) can be written as the following compact form:

\[
x(k + 1) = Ax(k) + bu(k) - \varepsilon(k), k \geq 0,
\]

(7)
where $\varepsilon(k) = (\varepsilon_1(k), ..., \varepsilon_{n-1}(k))^T$, $\varepsilon_i(k) = \alpha_k d_i(k)$.

We first present a useful lemma for the following analysis.

Lemma 3.1 Assume Assumptions 1, 2, 3 hold. Then the estimates $x_i(k), i, k$ generated by algorithm (7) are bounded if the $u(k), k \geq 0$ transmitted by the malicious agent to other agents are bounded.

Proof. By Assumption 3, we have $|\varepsilon_i(k)| \leq \alpha_k L \leq \alpha^* L$. It is also easy to see $||A||_\infty := \max_{1 \leq i \leq n-1} \sum_{j=1}^{n-1} a_{ij} = \max_{1 \leq i \leq n-1} (1-b_i) < 1$. From (7) by induction we have $x(k+1) = A^{k+1}(x(0) + \sum_{r=0}^{k} A^{k-r}(bu(r) - \varepsilon(r))), k \geq 0$. The proceeding three relations imply that for any k,

$$||x(k+1)||_\infty \leq ||A||_\infty^{k+1}||x(0)||_\infty + \sum_{r=0}^{k} ||A||_\infty^{k-r}(u^* + \alpha^* L)$$

$$\leq ||x(0)||_\infty + \frac{u^* + \alpha^* L}{1-||A||_\infty} < \infty,$$

where $u^* := \sup_{k \geq 0} |u(k)|$ is a finite number by hypothesis. Then the proof is completed. \(\square\)

Theorem 3.5 Consider distributed algorithm (7) with Assumptions 1, 2, 3. Suppose $\text{rank}(b, Ab, ..., A^{n-2}b) = n-1$ and $\lim_{k \to \infty} \alpha_k = 0$. Then the adjacency matrix (A, b) of algorithm (7) can be discovered asymptotically by choosing an appropriate sequence $\{u(k)\}_{k \geq 0}$.

Proof. Denote $s_{r,k} = r(2n-1) + k, r \geq 0, k = 0, ..., 2n-2$ and let $u(s_{r,0}) = u(s_{r,1}) = \cdots = u(s_{r,n-2}) = 0, u(s_{r,n-1}) = u(s_{r,n}) = \cdots = u(s_{r,2n-2}) = 1$ for each $r \geq 0$. Similar to the analysis in the proof of Theorem 3.4,

$$(A, b) = Z_r Y'_r (Y_r Y'_r)^{-1} + (0, \varepsilon(s_{r,1} - 1), ..., \varepsilon(s_{r,2n-1} - 1)) Y'_r (Y_r Y'_r)^{-1},$$

where $Z_r = (1, x(s_{r,1}), x(s_{r,2}), ..., x(s_{r,2n-1}))$, Y_r has the same definition as the matrix given in (6) by replacing $x(0)$ with $x(s_{r,1} - 1)$. We can find that if $\text{rank}(b, Ab, ..., A^{n-2}b) = n-1$, then $Y_r Y'_r$ is full row rank and hence the inverse $(Y_r Y'_r)^{-1}$ exists.

By Lemma 3.1, the estimates $x_i(k), i, k$ are bounded. Then $Y_r Y'_r, r \geq 0$ are bounded and as a result, we can show by contradiction that $(Y_r Y'_r)^{-1}, r \geq 0$ are also bounded based on the following two conclusions:

(i) If $B_r C_r = I$ (the identity matrix) for any r and $\lim_{r \to \infty} B_r = B$, where the inverse B^{-1} exists, then $\lim_{r \to \infty} C_r = B^{-1}$;
(ii) Under the rank condition \(\text{rank}(b, Ab, ..., A^{n-2}b) = n - 1 \), the inverse of \(Y_r Y_r' \) exists for any \(x(s_{r,1} - 1) \) when we view \(Y_r Y_r' \) as a matrix function with variable \(x(s_{r,1} - 1) \) in a bounded closed set.

The boundedness of \((Y_r Y_r')^{-1}, r \geq 0 \) combines with the hypothesis condition \(\lim_{k \to \infty} \alpha_k = 0 \) imply that the second term in (8) tends to zero. Then we conclude that \((A, b) \) can be discovered asymptotically in the sense that \(\lim_{r \to \infty} |Z_r Y_r' (Y_r Y_r')^{-1} - (A, b)| = 0 \). We complete the proof.

We can find that the diminishing stepsize condition \(\lim_{k \to \infty} \alpha_k = 0 \) given in Theorem 3.5 naturally holds under the condition \(\sum_{k=0}^{\infty} \alpha_k^2 < \infty \), which is sufficient by Theorem 2.1 and somehow necessary for the optimal convergence of subgradient algorithms. The result in theorem 3.5 implies that the synchronous optimization algorithm (2) is not privacy preserving in the sense that the malicious agent can discover the adjacency matrix and then other agents’ subgradients asymptotically by choosing an appropriate data sequence transmitted to other regular agents. In fact, according to the proof of Theorem 3.5, \(\lim_{r \to \infty} A_r = A, \lim_{r \to \infty} b_r = b \), where \((A_r, b_r) \) is the matrix pair such that \(Z_r Y_r' (Y_r Y_r')^{-1} := (A_r, b_r) \). Then we can find that regular agents’ subgradients at any time \(k \) can be obtained approximately by

\[
\frac{A_r x(k) + b_r u(k) - x(k + 1)}{\alpha_k}
\]

with sufficiently large \(r \). Under the assumption that the malicious agent knows the adjacency matrix, Yan et al. showed that the malicious agent can discover other regular agents’ subgradients if and only if all other regular agents are the malicious agent’s neighbors [16]. This is consistent with our result.

4 A Distributed Subgradient Projection Asynchronous Optimization Algorithm

In last section, we showed that when the malicious agent can observe all other regular agents’ estimates, for almost all adjacency matrices except a zero Lebesgue measure weight set, DSSOA (2) is not privacy preserving in the sense that the adjacency matrix and then regular agents’ subgradients can be discovered by the malicious agent asymptotically. In this section, we will propose a new privacy preserving distributed subgradient projection asynchronous optimization algorithm and strictly establish its optimal convergence.

The main design idea of the newly proposed privacy preserving distributed subgradient projection asynchronous optimization algorithm is that agents make their optimization updates asynchronously and we artificially introduce a projection set in the estimate iterations.
\textbf{Distributed Subgradient Projection Asynchronous Optimization Algorithm:}

\[
x_i(k+1) = \begin{cases}
 P_X\left(\sum_{j \in \mathcal{N}_i} a_{ij}x_j(k) - \frac{1}{r}d_i(k)\right), & \text{if } k = \kappa_i(r) \text{ for some } r; \\
 P_X\left(\sum_{j \in \mathcal{N}_i} a_{ij}x_j(k)\right), & \text{otherwise},
\end{cases}
\]

where \(P_X \) denotes the convex projection operator, \(\kappa_i(r) \) is the time when agent \(i \) makes its \(r \)-th time optimization update, \(\{\kappa_i(r)\}_{r \geq 1} \) is referred to as agent \(i \)'s optimization update time sequence, which is deterministic and only known by agent \(i \). Note that in algorithm (9) agents make their optimization updates asynchronously and the optimization update time sequences are different for different agents. Here we artificially introduce a bounded convex projection set \(X \), which is known by all agents and contains all the optimal points of \(\min \sum_{i=1}^{n} f_i \). We can find that both the optimal solutions of \(\min \sum_{i=1}^{n} f_i \) and \(\min_X \sum_{i=1}^{n} f_i \) are identical.

In asynchronous algorithm (9), after taking a weighted average of the estimates received from its neighbors, each agent will take a subgradient optimization step and a projection onto set \(X \) to generate the estimate at the next step if the current time is this agent’s optimization update time, and will just take the projection of the weighted average onto set \(X \) as the estimate at the next step otherwise. Here agent \(i \)'s optimization update time sequence \(\{\kappa_i(r)\}_{r \geq 1} \) can be given by agent \(i \) in advance before algorithm execution, and can also be correspondingly defined depending on whether agents make their optimization updates at \(k \geq 0 \).

\textbf{Remark 4.1} In algorithm (9), after taking a weighted average of the estimates received from their neighbors and before generating the estimates at the next step, agents choose to make an optimization update or not. That is, agents make their optimization updates just at some times. In fact, this intermittent optimization update mechanism have appeared in the literature, for instance, [10, 12, 13, 14, 15]. In [13, 14, 15] agents choose to make their optimization updates or not randomly, and the stepsize is random and taken as the inverse (or the power of the inverse) of the number of all optimization update times up to the current time. Different from them, the stepsize is deterministic in our algorithm. In fact, we can find that the randomized unconstrained optimization algorithms are not privacy preserving in some sense since based on the results in last section, the malicious node can discover other agents’ stepsizes and then the subgradients with a positive probability if the malicious agent takes the full knowledge of the adjacency matrix and can observe all other agents’ estimates.

\textbf{Remark 4.2} The stepsize choice is extremely important for the optimal convergence of distributed subgradient algorithms. In fact, Theorems 4.2 and 4.4 in [9] show that for a
network graph with doubly stochastic adjacency matrix, the optimal convergence of the sum objective function may be not achieved if the stepsizes are different for different agents. In fact, both the left eigenvector of adjacency matrix and the stepsizes determine the weighted sum objective function to be minimized. However, the results in last section show that the identical stepsize design and simultaneous optimization update mechanism make synchronous algorithm (2) not privacy preserving. In the new asynchronous algorithm (9), the stepsize is taken as the inverse of the times that agents make their optimization updates up to the current time, similar to that in [13, 14, 15]. The following result shows that the optimal convergence can still be guaranteed provided that for each agent, the number of its optimization update times is the same over different time intervals with the same length.

Remark 4.3 In cryptograph-based methods [27], agents need to encrypt the estimates needed to be shared with their neighbors and decrypt the received estimates so that agents’ privacy cannot be disclosed. In differential privacy methods [17, 19, 21, 22, 26], agents need to add random noises on the estimates needed to transmitted to protect agents’ privacy. Different from them, in our algorithm (9), the estimates can be transmitted directly between neighbors without any additional technique to disguise agents’ estimates. It reveals that only the asynchronous optimization update mechanism can ensure that the proposed algorithm is privacy preserving.

Remark 4.4 In algorithm (9), for the unconstrained optimization problem \(\min \sum_{i=1}^{n} f_i \), we artificially introduce a projection set from the viewpoint of privacy preservation. We can find that algorithm (9) also works for the constrained optimization problem \(\min_{X} \sum_{i=1}^{n} f_i \), where \(X \) can be taken as a subset that contains all the optimal solutions of \(\min_{X} \sum_{i=1}^{n} f_i \). In fact, the authors in [16] have shown that in presence of projection set, the malicious agent cannot discover the subgradients for any network graph in their model.

4.1 Privacy Preserving Properties

Before establishing the optimal convergence of algorithm (9), in this subsection we first roughly illustrate that algorithm (9) is privacy preserving from the two aspects of projection set \(X \) and asynchronous optimization update mechanism.

First, when agents’ “estimates” \(\sum_{j \in N_i} a_{ij}x_j(k) - \frac{1}{\Delta}d_i(k) \) locate outside the projection set \(X \), from the property of convex projection operator

\[
P_X(z) = P_X(P_X(z) + \lambda(z - P_X(z)))^{1}, \forall z \notin X, \lambda \geq 0,
\]

\[1\]This property of convex projection operator follows from the fact that \(w = P_X(z) \) if and only if \((z - w)'(y - w) \leq 0 \) for any \(y \in X \). This fact can be shown directly from the definition of convex projection.
we know that the malicious agent cannot infer other agents’ subgradients at time k based on its received estimates even though the malicious agent knows the adjacency matrix, while when they locate inside set X, algorithm (9) evolves in the form:

$$x_i(k + 1) = \begin{cases}
\sum_{j \in \mathcal{N}_i} a_{ij} x_j(k) - \frac{1}{r} d_i(k), & \text{if } k = \kappa_i(r) \text{ for some } r; \\
\sum_{j \in \mathcal{N}_i} a_{ij} x_j(k), & \text{otherwise.}
\end{cases}$$

This also reveals that the malicious agent cannot discover other agents’ subgradients at time k based on the following reasons. On one hand, even if the adjacency matrix (A, b) has been obtained by the malicious agent and the malicious agent can observe all other regular agents’ estimates, but note that since the malicious agent does not know whether regular agents $i, i \neq n$ make their optimization updates at time k, so in this asynchronous algorithm, knowing $x_i(k + 1) - \sum_{j \in \mathcal{N}_i} a_{ij} x_j(k)$ cannot help the malicious agent discover the subgradients; on the other hand, even if the malicious agent also knows that agent i makes its optimization update at time k, which helps the malicious agent discover $\frac{1}{r} d_i(k)$ from $x_i(k + 1) - \sum_{j \in \mathcal{N}_i} a_{ij} x_j(k)$, but this malicious agent still cannot discover the subgradient since it does not know the stepsize $1/r$ considering that the optimization update time sequences are different for different agents and each agent only knows its own update time sequence.

As a sum, we can roughly conclude that when agents are far from the projection set X, both the projection set and the asynchronous optimization update mechanism can effectively protect agents’ privacy and when agents are close to the desired optimal solution $x^* \in \arg \min \sum_{i=1}^{n} f_i$ (the optimal convergence will be proven in the following Theorem), it is the asynchronous optimization update mechanism that mainly protects agents’ privacy.

4.2 Optimal Convergence

In this subsection, we will establish the optimal convergence of the newly proposed asynchronous projection optimization algorithm (9). We next make an assumption on agents’ optimization update time sequences $\{\kappa_i(r)\}_{r \geq 1}, i = 1, \ldots, n$.

Assumption 4: There exists an integer $T > 0$ such that for each agent $i, 1 \leq t_i(r_1) = t_i(r_2) < \infty, \forall r_1, r_2$, where

$$t_i(r) = \left| \left\{ s \mid rT \leq \kappa_i(s) < (r + 1)T \right\} \right|$$

denotes the times of agent i’s optimization updates on interval $[rT, (r + 1)T)$.

Assumption 4 requires that each agent makes its own optimization update with a constant number of times within any time interval with some fixed common length. Note
that the numbers of optimization updates within the time interval with the fixed length may be different for different agents. We can see that Assumption 4 holds if each agent makes its optimization update in a periodic way, no matter whether the periods of agents’ optimization updates are the same.

We now establish the optimal convergence of algorithm (9).

Theorem 4.1 (Optimal Convergence) Consider distributed subgradient projection asynchronous optimization algorithm (9) with Assumptions 1, 2 and 4. Then the network will achieve an optimal consensus, i.e., there exists $x^* \in \arg \min \sum_{i=1}^{n} f_i$ such that $\lim_{k \to \infty} x_i(k) = x^*, \ i = 1, \ldots, n$.

Proof. First it follows from $x_i(k) \in X$ that $\sum_{j \in N_i} a_{ij} x_j(k) \in X$ by Assumption 2 and the convexity of X. Then for $k \geq 1$, algorithm (9) can be re-written as

$$x_i(k + 1) = \begin{cases} \sum_{j \in N_i} a_{ij} x_j(k) + \omega_i(k), & \text{if } k = \kappa_i(r) \text{ for some } r; \\ \sum_{j \in N_i} a_{ij} x_j(k), & \text{otherwise}, \end{cases}$$

where

$$\omega_i(k) = P_X \left(\sum_{j \in N_i} a_{ij} x_j(k) - \frac{1}{r} d_i(k) \right) - \sum_{j \in N_i} a_{ij} x_j(k).$$

Here we still use L to denote the upper bound of subgradients of objective functions,

$$L := \sup_{q \in \bigcup_{x \in X, f_i(x)}} |q|,$$

which is a finite number due to the boundedness of X and the convexity of f_i. This implies that Assumption 3 holds. Therefore,

$$|\omega_i(k)| \leq \frac{1}{r} |d_i(k)| \leq \frac{1}{r} L$$

and then it follows from Assumption 4 that $\lim_{k \to \infty} |\omega_i(k)| = 0$, where we use the property of convex projection operator $|P_X(y) - z| \leq |y - z|$ for any $y \in \mathbb{R}^m$ and $z \in X^2$ and the fact that $\sum_{j \in N_i} a_{ij} x_j(k) \in X$. As a result, algorithm (9) will achieve a consensus, i.e., $\lim_{k \to \infty} h(k) = 0$ by Theorem 1 in [23], where

$$h(k) = \max_{i,j} |x_i(k) - x_j(k)|.$$

2This property of convex projection operation comes from Lemma 1 (b) in [2].
Let \(x^* \in \text{arg min}_X \sum_{i=1}^n f_i \). Then by applying the similar analysis for distributed subgradient algorithms in [1, 2, 9], we have that when \(k = \kappa_i(r) \) for some \(r \),

\[
|x_i(k + 1) - x^*|^2 \\
= |P_X\left(\sum_{j \in N_i} a_{ij} x_j(k) - \frac{1}{r} d_i(k) \right) - x^*|^2 \\
\leq \left| \sum_{j \in N_i} a_{ij} x_j(k) - \frac{1}{r} d_i(k) - x^* \right|^2 \\
\leq \left| \sum_{j \in N_i} a_{ij} x_j(k) - x^* \right|^2 + \frac{|d_i(k)|^2}{r^2} - 2 \frac{r}{2} (x_i(k) - x^*)' d_i(k) + \frac{2L}{r} |x_i(k) - \sum_{j \in N_i} a_{ij} x_j(k)| \\
\leq \sum_{j \in N_i} a_{ij} |x_j(k) - x^*|^2 + \frac{L^2}{r^2} - 2 \frac{2}{r} (f_i(x_i(k)) - f_i(x^*)) + \frac{2L}{r} |x_i(k) - \sum_{j \in N_i} a_{ij} x_j(k)| \\
\leq \sum_{j \in N_i} a_{ij} |x_j(k) - x^*|^2 + \frac{2L}{r} \left(|x_i(k) - \sum_{j \in N_i} a_{ij} x_j(k)| + |x_i(k) - \bar{x}(k)| \right) \\
\leq \sum_{j \in N_i} a_{ij} |x_j(k) - x^*|^2 + \frac{L^2}{r^2} - 2 \frac{2}{r} (f_i(\bar{x}(k)) - f_i(x^*)) + \frac{4L}{r} h(k),
\]

where \(\bar{x}(k) = \frac{1}{n} \sum_{i=1}^n x_i(k) \) denotes the average of agents’ estimates at time \(k \). Moreover, when \(k \neq \kappa_i(r) \) for any \(r \), we have

\[
|x_i(k + 1) - x^*|^2 = \left| \sum_{j \in N_i} a_{ij} x_j(k) - x^* \right|^2 \leq \sum_{j \in N_i} a_{ij} |x_j(k) - x^*|^2.
\]

Summarizing the above two cases, we have

\[
|x_i(k + 1) - x^*|^2 \leq \sum_{j \in N_i} a_{ij} |x_j(k) - x^*|^2 + \chi_{i,k} \left(\frac{L^2}{r^2} - 2 \frac{2}{r} (f_i(\bar{x}(k)) - f_i(x^*)) + \frac{4L}{r} h(k) \right),
\]

where

\[
\chi_{i,k} = \begin{cases}
1, & \text{if } k = \kappa_i(r) \text{ for some } r; \\
0, & \text{otherwise}
\end{cases}
\]

Taking the sum of the above inequality over \(i = 1, \ldots, n \), by the double stochasticity in Assumption 2 we have

\[
\sum_{i=1}^n |x_i(k + 1) - x^*|^2 \leq \sum_{i=1}^n |x_i(k) - x^*|^2 + \sum_{i=1}^n \chi_{i,k} \left(\frac{L^2}{r^2} - 2 \frac{2}{r} (f_i(\bar{x}(k)) - f_i(x^*)) + \frac{4L}{r} h(k) \right)
\]

18
As a result,
\[
\sum_{i=1}^{n} |x_i((s+1)T) - x^*|^2 \leq \sum_{i=1}^{n} |x_i(sT) - x^*|^2 + \sum_{k=sT}^{(s+1)T-1} \sum_{i=1}^{n} \frac{L^2}{r^2} \chi_{i,k}^2 - \sum_{k=sT}^{(s+1)T-1} \sum_{i=1}^{n} \chi_{i,k} \frac{2}{r} (f_i(\bar{x}(k)) - f_i(x^*)) + \sum_{k=sT}^{(s+1)T-1} \sum_{i=1}^{n} \chi_{i,k} \frac{4L}{r} h(k)
\]
\[
:= \sum_{i=1}^{n} |x_i(sT) - x^*|^2 + \mu_1(s) + \mu_2(s) + \mu_3(s)
\]

We next estimate the sum of the second, third and fourth term in (12) over \(s \geq 1 \).
Then by the condition \(t_i(s_1) = t_i(s_2) \) for all \(s_1, s_2 \) in Assumption 4, we have
\[
\sum_{s=1}^{\infty} \mu_1(s) = \sum_{s=1}^{\infty} \sum_{i=1}^{n} \frac{t_i(s)}{t_i(0)} \left(t_i(0) + \cdots + t_i(s-1) \right)^{L^2} \geq \sum_{s=1}^{\infty} \sum_{i=1}^{n} \frac{t_i(s)}{t_i(0)} \left(t_i(0) + \cdots + t_i(s-1) \right)^{L^2} < \infty
\]

We also have
\[
\mu_2(s) = -\sum_{i=1}^{n} \sum_{r=1}^{n} t_i(s) \frac{2}{t_i(0) + \cdots + t_i(s-1) + r} \left(f_i(\bar{x}(\kappa_i(t_i(0) + \cdots + t_i(s-1) + r))) - f_i(x^*) \right)
\]
\[
= -\sum_{i=1}^{n} \sum_{r=1}^{n} t_i(s) \frac{2}{t_i(0) + \cdots + t_i(s-1)} \left(f_i(\bar{x}(sT)) - f_i(x^*) \right)
\]
\[
- \sum_{i=1}^{n} \sum_{r=1}^{n} \frac{t_i(s)}{t_i(0) + \cdots + t_i(s-1)} \left(f_i(\bar{x}(\kappa_i(t_i(0) + \cdots + t_i(s-1) + r))) - f_i(\bar{x}(sT)) \right)
\]
\[
- \sum_{i=1}^{n} \sum_{r=1}^{n} \frac{2}{t_i(0) + \cdots + t_i(s-1) + r - t_i(0) + \cdots + t_i(s-1)} \left(f_i(\bar{x}(\kappa_i(t_i(0) + \cdots + t_i(s-1) + r))) - f_i(x^*) \right)
\]
\[
\leq -\sum_{i=1}^{n} \left(f_i(\bar{x}(sT)) - f_i(x^*) \right)
\]
\[
+ \sum_{i=1}^{n} t_i(s) \frac{2L}{t_i(0) + \cdots + t_i(s-1)} \max_{sT \leq r < (s+1)T} |\bar{x}(r) - \bar{x}(sT)|
\]
\[
+ \sum_{i=1}^{n} \sum_{r=1}^{n} \frac{2Lr}{(t_i(0) + \cdots + t_i(s-1))^2} \max_{sT \leq r < (s+1)T} |\bar{x}(r) - x^*|.
\]
Taking the average of the two sides of (10), by Assumption 2 we have

$$\bar{x}(k + 1) = \bar{x}(k) + \frac{1}{n} \sum_{i=1}^{n} \chi_{i,k} \omega_i(k)$$

and then

$$\max_{sT \leq r < (s+1)T} |\bar{x}(r) - \bar{x}(sT)| \leq \sum_{k=sT}^{(s+1)T-2} \frac{1}{n} \sum_{i=1}^{n} \chi_{i,k} |\omega_i(k)|$$

$$\leq \frac{1}{n} \sum_{i=1}^{n} \sum_{r=1}^{t_i(s)} \frac{L}{t_i(0) + \cdots + t_i(s-1) + r}$$

$$\leq \frac{L}{s}.$$

This implies

$$\sum_{s=1}^{\infty} \sum_{i=1}^{n} \frac{2Lt_i(s)}{t_i(0) + \cdots + t_i(s-1)} \max_{sT \leq r < (s+1)T} |\bar{x}(r) - \bar{x}(sT)|$$

$$\leq \sum_{s=1}^{\infty} \frac{2L^2n}{s^2} < \infty.$$

(14)

Moreover, we also have

$$\sum_{s=1}^{\infty} \sum_{i=1}^{n} \sum_{r=1}^{t_i(s)} \frac{2Lr}{(t_i(0) + \cdots + t_i(s-1))^2} \max_{sT \leq r < (s+1)T} |\bar{x}(r) - x^*|$$

$$\leq \sum_{s=1}^{\infty} \sum_{i=1}^{n} \sum_{r=1}^{t_i(s)} \frac{2L\zeta r}{(t_i(0) + \cdots + t_i(s-1))^2}$$

$$\leq \sum_{s=1}^{\infty} \frac{1}{s^2} \sum_{i=1}^{n} \frac{2L\zeta (1 + t_i(0)) t_i(0)}{(t_i(0))^2}$$

$$< \infty,$$

(15)

where $\zeta = \sup_s \max_{sT \leq r < (s+1)T} |\bar{x}(r) - x^*| < \infty$ by the boundedness of X and the fact $\bar{x}(r) \in X$. Combining with (13), (14) and (15) together, we have

$$\sum_{s=1}^{\infty} \left(\mu_2(s) + \frac{2}{s} \sum_{i=1}^{n} (f_i(\bar{x}(sT)) - f_i(x^*)) \right) < \infty.$$

(16)

By the similar arguments given in the proof of Lemma 4.3 in [9], we can also show
that
\[
\sum_{s=1}^{\infty} \mu_3(s) \leq \sum_{s=1}^{\infty} \sum_{i=1}^{n} \sum_{r=1}^{t_i(s)} \frac{4L}{i} + \cdots + t_i(s-1) + r \max_{sT \leq k < (s+1)T} h(k) \\
\leq \sum_{s=1}^{\infty} \sum_{i=1}^{n} \sum_{r=1}^{t_i(s)} \frac{4L}{i} + \cdots + t_i(s-1) \max_{sT \leq k < (s+1)T} h(k) \\
= \sum_{s=1}^{\infty} \frac{4Ln}{s} \max_{sT \leq k < (s+1)T} h(k) < \infty.
\]
By (11), (12), (16) and (17), we have
\[
\sum_{i=1}^{n} |x_i((s+1)T) - x^*|^2 \leq \sum_{i=1}^{n} |x_i(sT) - x^*|^2 - \frac{2}{s} \sum_{i=1}^{n} (f_i(\bar{x}(sT)) - f_i(x^*)) \\
+ \mu_1(s) + \mu_2(s) + \frac{2}{s} \sum_{i=1}^{n} (f_i(\bar{x}(sT)) - f_i(x^*)) + \mu_3(s)
\]
with
\[
\sum_{s=1}^{\infty} (\mu_1(s) + \mu_2(s) + \frac{2}{s} \sum_{i=1}^{n} (f_i(\bar{x}(sT)) - f_i(x^*)) + \mu_3(s)) < \infty.
\]
Then we conclude that the limit lim_{s \to \infty} |x_i(sT) - x^*|^2 exists and \(\sum_{s=1}^{\infty} \frac{2}{s} \sum_{i=1}^{n} (f_i(\bar{x}(sT)) - f_i(x^*)) < \infty\). Since \(\sum_{s=1}^{\infty} \frac{2}{s} = \infty\),
\[
\liminf_{s \to \infty} \sum_{i=1}^{n} (f_i(\bar{x}(sT)) - f_i(x^*)) = 0.
\]
Let \(\{\bar{x}(sT)\}_{r \geq 0}\) be a subsequence of \(\{\bar{x}(sT)\}_{s \geq 0}\) such that lim_{r \to \infty} \(\sum_{i=1}^{n} (f_i(\bar{x}(sT)) - f_i(x^*)) = 0\). From the boundedness of \(\{\bar{x}(sT)\}\), we know that there exists a subsequence \(\{\bar{x}(s^rT)\}_{k \geq 0}\) of \(\{\bar{x}(sT)\}_{r \geq 0}\) such that the limit lim_{k \to \infty} \(\bar{x}(s^rT) = \hat{x}\) exists. Therefore, it follows from the continuity of \(f_i\) and the closedness of \(X\) that \(\hat{x} \in \arg\min_{X} \sum_{i=1}^{n} f_i\). By replacing \(x^*\) with \(\hat{x}\), we can also similarly show that the limit lim_{k \to \infty} \(\sum_{i=1}^{n} |x_i(sT) - \hat{x}|^2\) exists. This combines with lim_{k \to \infty} \(\bar{x}(s^rT) = \hat{x}\) and what we have shown that the consensus is achieved imply that \(\lim_{s \to \infty} \sum_{i=1}^{n} |x_i(sT) - \hat{x}|^2 = 0\).
We complete the proof. □

5 Conclusion

In this paper, we considered the privacy preserving features of distributed subgradient optimization algorithms. We first show that an existing distributed subgradient synchronous optimization algorithm is not privacy preserving in the sense that the malicious agent can
learn other agents’ subgradients asymptotically for almost all adjacency matrices except a zero Lebesgue measure weight set. We also proposed a new distributed subgradient projection asynchronous optimization algorithm, in which agents make their own optimization updates asynchronously and each agent only knows its own optimization update time sequence. The artificially introduced convex projection set and the asynchronous optimization mechanism can effectively protect agents’ private information. Moreover, we also shown the optimal convergence of the newly proposed asynchronous algorithm. Other interesting problems, including investigating privacy preserving properties of other distributed optimization algorithms such as subgradient random algorithms [13, 14, 15], dual averaging algorithm [6] and ADMM [7, 8], and developing other privacy preserving algorithms using the proposed privacy preservation techniques in this paper, are still under investigation.

References

[1] A. Nedić and A. Ozdaglar, “Distributed subgradient methods for multi-agent optimization,” IEEE Trans. Autom. Control, vol. 54, no. 1, pp. 48-61, Jan. 2009.

[2] A. Nedić, A. Ozdaglar, and P. A. Parrilo, “Constrained consensus and optimization in multi-agent networks,” IEEE Trans. Autom. Control, vol. 55, no. 4, pp. 922-938, Apr. 2010.

[3] S. S. Ram, A. Nedić, and V. V. Veeravalli, “Distributed stochastic subgradient projection algorithms for convex optimization,” J. Optim. Theory Appl., vol. 147, no. 3, pp. 516-545, Jul. 2010.

[4] I. Lobel and A. Ozdaglar, Distributed subgradient methods for convex optimization over random networks, IEEE Trans. Automat. Control, 56 (2011) 1291-1306.

[5] B. Johansson, M. Rabi, and M. Johansson, “A randomized incremental subgradient method for distributed optimization in networked systems,” SIAM J. Optim., vol. 20, no. 3, pp. 1157-1170, 2010.

[6] J. C. Duchi, A. Agarwal, and M. J. Wainwright, “Dual averaging for distributed optimization: Convergence analysis and network scaling,” IEEE Trans. Autom. Control, vol. 57, no. 3, pp. 592-606, Mar. 2012.

[7] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Foundations and Trends in Machine Learning, vol. 3, no. 1, pp. 1-122, Jul. 2011.
[8] W. Shi, Q. Ling, K. Yuan, G. Wu, and W. Yin, “On the linear convergence of the ADMM in decentralized consensus optimization,” *IEEE Trans. Sig. Proc.*, vol. 62, no. 7, pp. 1750-1761, Apr. 2014.

[9] Y. Lou, Y. Hong, L. Xie, G. Shi, and K. H. Johansson, “Nash equilibrium computation in subnetwork zero-sum games with switching communications,” *IEEE Trans. Autom. Control*, vol. 61, no. 10, Oct. 2016, to appear. A previous Arxiv version is available at http://arxiv.org/abs/1312.7050

[10] Y. Lou, G. Shi, K. H. Johansson, and Y. Hong, “Convergence of random sleep algorithms for optimal consensus,” *Systems & Control Letters*, vol. 62, no. 12, pp. 1196-1202, Dec. 2013.

[11] Y. Lou, G. Shi, K. H. Johansson, and Y. Hong, “Approximate projected consensus for convex intersection computation: Convergence analysis and critical error angle,” *IEEE Trans. Autom. Control*, vol. 59, no. 7, pp. 1722-1736, Jul. 2014.

[12] G. Shi and K. H. Johansson, “Randomized optimal consensus of multi-agent systems,” *Automatica*, vol. 48, no. 12, pp. 3018-3030, Dec. 2012.

[13] D. Jakovetic, D. Bajovic, N. Krejic, and N. Krklec-Jerinkic, “Distributed gradient methods with variable number of working nodes,” Available at http://arxiv.org/abs/1504.04049

[14] K. Srivastava and A. Nedić, “Distributed asynchronous constrained stochastic optimization,” *IEEE J. Selec. Top. Sig. Process.*, vol. 5, no. 4, pp. 772-790, Aug. 2011.

[15] A. Nedić, “Asynchronous broadcast-based convex optimization over a network,” *IEEE Trans. Autom. Control*, vol. 56, no. 6, pp. 1337-1351, Jun. 2011.

[16] F. Yan, S. Sundaram, S. Vishwanathan, and Y. Qi, “Distributed autonomous online learning: Regrets and intrinsic privacy-preserving properties,” *IEEE Trans. Know. Data Eng.*, vol. 25, no. 11, pp. 2483-2493, Nov. 2013.

[17] Z. Huang, S. Mitra, and N. Vaidya, “Differentially private distributed optimization,” *Proc. 2015 International Conf. Distributed Computing and Networking*, Article 4, 2015.

[18] P. C. Weeraddana, G. Athanasiou, M. Jakobsson, C. Fischione, and J. S. Baras, “On the privacy of optimization approaches,” available at http://arxiv.org/abs/1210.3283v3, 2014.
[19] C. Li, P. Zhou, G. Chen, and Y. Jiang, “Differentially private distributed online learning,” Available at http://arxiv.org/abs/1505.06556

[20] S. Han, W. Ng, L. Wan, and V. Lee, “Privacy-preserving gradient-descent methods,” *IEEE Trans. Know. Data Eng.*, vol. 22, no. 6, pp. 884-899, Jun. 2010.

[21] S. Han, U. Topcu, and G. J. Pappas, “Differentially private distributed constrained optimization,” Available at http://arxiv.org/abs/1411.4105, 2014.

[22] G. M. Fung and O. L. Mangasarian, “Privacy-preserving linear and nonlinear approximation via linear programming,” *Optimization Methods and Software*, vol. 28, no. 1, pp. 207-216, Feb. 2013.

[23] L. Wang and L. Guo, “Robust consensus and soft control of multi-agent systems with noises,” *J. Syst. Sci. Complexity*, vol. 21, no. 3, pp. 406-415, Sep. 2008.

[24] R. Agrawal and R. Srikant, “Privacy-preserving data mining,” In *Proc. ACM SIGMOD International Conference on Management of Data*, pp. 439-450, 2000.

[25] J. Vaidya, C. Clifton, and M. Zhu, *Privacy-Preserving Data Mining*, Springer-Verlag, 2005.

[26] C. Dwork. Differential privacy: A survey of results. In *Theory and Applications of Models of Computation*, pages 1-19. Springer, 2008.

[27] O. Goldreich. *The Foundations of Cryptography*, vol. 2, Cambridge University Press, Cambridge, UK, 2004.

Youcheng Lou and Shouyang Wang
Academy of Mathematics and Systems Science
Chinese Academy of Sciences
Beijing 100190, China
Email: louyoucheng@amss.ac.cn, sywang@amss.ac.cn

Lean Yu
School of Economics and Management
Beijing University of Chemical Technology
Beijing 100029, China
Email: yulean@amss.ac.cn