Abstract
We consider Hamiltonian models representing an arbitrary number of spin $1/2$ fermion quantum fields interacting through arbitrary processes of creation or annihilation of particles. The fields may be massive or massless. The interaction form factors are supposed to satisfy some regularity conditions in both position and momentum space. Without any restriction on the strength of the interaction, we prove that the Hamiltonian identifies to a self-adjoint operator on a tensor product of antisymmetric Fock spaces and we establish the existence of a ground state. Our results rely on new interpolated N_τ estimates. They apply to models arising from the Fermi theory of weak interactions, with ultraviolet and spatial cutoffs.

Keywords Quantum field theory · Weak interactions · Ground state · N_τ estimates

Mathematics Subject Classification 81Q10 · 81T99

1 Introduction and statement of the main results

In this paper, we consider a finite number of interacting fermion fields of spin $1/2$. Each field is associated with a different species of particles. The free energy is
\[
H_f = \sum_{i=1}^{n} \int \omega_i(k_i) b^*_i(\xi_i) b_i(\xi_i) \, d\xi_i,
\]
(1.1)

where \(\xi_i = (k_i, \lambda_i) \in \mathbb{R}^3 \times \{-1/2, 1/2\} \), with \(k_i \) the momentum variable and \(\lambda_i \) the spin variable for the \(i \)th particle. Moreover, \(b^*_i(\xi_i) \), where \(b^*_i \) stands for \(b^*_i \) or \(b_i \), are the usual fermionic creation and annihilation operators for the \(i \)th particle acting in a Fock space over \(L^2(\mathbb{R}^3 \times \{-1/2, 1/2\}) \). Precise definitions will be given in Sect. 1.1.

The relativistic dispersion relations \(\omega_i(k_i) \) are defined by

\[
\omega_i(k_i) = \sqrt{k_i^2 + m_i^2},
\]

with \(m_i \geq 0 \) the mass of the \(i \)th field. The interaction terms are of the form

\[
\int G(\xi_1, \ldots, \xi_n) b^*_1(\xi_1) \ldots b^*_p(\xi_p) b_{p+1}(\xi_{p+1}) \ldots b_n(\xi_n) \, d\xi_1 \ldots d\xi_n + \text{h.c.,}
\]
(1.2)

the first term representing a process where \(p \) particles are created while \(n - p \) particles are annihilated, with \(0 \leq p \leq n \). The second term, which is the Hermitian conjugate of the first one, represents the inverse process. In the previous equation, the interaction form factor \(G \) is supposed to be square integrable, which makes (1.2) a well-defined quadratic form. The interaction Hamiltonian that we consider in this paper, \(H_I \), is given by the sum over all possible processes of interaction terms of the form (1.2); see the next section. Formally, the total Hamiltonian is then defined by \(H = H_f + H_I \).

Important physical examples of processes that can be described by such a model arise from the Fermi theory of weak interactions. For instance, the weak decay of a muon into an electron, a muon neutrino and an electron antineutrino, or the scattering of an electron with an electron neutrino is well described at low energy by the Fermi theory (see, e.g., [12, Chapter 2]). Considering the formal Hamiltonian associated with the Lagrangian of the theory, and introducing ultraviolet and spatial cutoffs, one obtains an expression of the form above. Note that, in such processes, four spin 1/2 fermion fields interact. More details on the Fermi theory of weak interactions, as well as other examples, will be given in Sect. 1.3.

We emphasize that, in the model we consider, the masses of the fields may vanish. Physically, while in the classical version of the Standard Model of quantum field theory, neutrinos were supposed to be massless, it is now experimentally established that they have a small positive mass. Nevertheless, massless neutrinos are still considered in the physics literature as they constitute relevant approximations if one computes the first terms of the scattering cross sections corresponding to weak decay processes. Moreover, models involving massless quasi-fermions, such as Weyl fermions (see, e.g., [14, Section 2.7] or [22, Chapter 2]), are frequently studied, and we think it is mathematically interesting to study a general model covering both the massive and the massless cases.

Another remark is in order concerning the spin of the particles. The spinor space for a field of massive Dirac fermions is four-dimensional. Splitting into particles and antiparticles, this corresponds to a state space given as a direct sum of two antisym-
metric Fock spaces over $L^2(\mathbb{R}^3 \times (-1/2, 1/2))$ (hence two fermion fields of spin $1/2$). Proceeding analogously for a massless Dirac field with a two-dimensional spinor space should lead to a direct sum of two antisymmetric Fock spaces over $L^2(\mathbb{R}^3)$. To keep uniform notations, however, we consider only spin $1/2$ fermionic fields, regardless of the masses of the associated particles. The spin degrees of freedom do not play any relevant role in our analysis, anyway.

Our first main concern will be to show that the formal Hamiltonian H defines a self-adjoint operator on Fock space. An obvious obstruction is that the kinetic energy is only quadratic in the creation and annihilation operators, while the interaction Hamiltonian is of order n. Nevertheless, using that all particles involved are fermions, an argument due to Glimm and Jaffe [11] shows that, if all interaction form factors G belong to the Schwartz space of rapidly decreasing functions, then H_I is a bounded operator. In particular, H identifies to a self-adjoint operator. In fact, inspecting the proof of [11, Proposition 1.2.3], one can see that, to apply the argument, it is actually sufficient that all G belong to the domain of some power of the harmonic oscillator. Still, this condition imposes a constraint on the infrared behavior of the form factors which is much too strong to cover physically realistic cases. To circumvent this problem, our strategy will consist in applying suitable interpolation arguments in order to obtain refined N_r estimates. The latter can then be applied to the abstract model studied here, with only mild regularity assumptions on the infrared behavior of the form factors. Note that, as may be expected, the regularity assumptions that we will have to impose will be slightly stronger in the case of massless fields than in the massive case. The refined N_r estimates, combined with a perturbation argument, will allow us to obtain the self-adjointness of H.

Once the self-adjointness of H is established, our next concern will be to prove the existence of a ground state. In the case where all fields are massive, we will adapt an argument of [10], while in the more difficult case where some fields are supposed to be massless, we will employ an induction argument and follow the approach of [13]. In both cases, the proof will have to rely on the refined N_r estimates established previously, instead of the classical ones.

The remainder of this section is organized as follows: In Sect. 1.1, we define precisely the model considered in this paper; next, we state our main results in Sect. 1.2. Section 1.3 is concerned with examples arising from the Fermi theory of weak interactions.

1.1 The model

As mentioned above, we consider in this paper an abstract class of models representing a finite number, n, of interacting fermion fields. The total Hilbert space is the tensor product of n antisymmetric Fock spaces,

$$\mathcal{H} := \bigotimes_{i=1}^{n} \mathcal{F}, \quad \mathcal{F} := \mathbb{C} \oplus \bigoplus_{l=1}^{\infty} \otimes_{a}^{l} \left(L^2\left(\mathbb{R}^3 \times \left\{ -\frac{1}{2}, \frac{1}{2} \right\} \right) \right). \tag{1.3}$$

Here \otimes_{a}^{l} stands for the antisymmetric tensor product. Throughout the paper, we use the notation $\xi = (k, \lambda) \in \mathbb{R}^3 \times \left\{ -\frac{1}{2}, \frac{1}{2} \right\}$, i.e., k stands for the momentum variable and λ
the spin variable. Moreover, to distinguish between the \(n \) different species of particles, the variable corresponding to the \(i \)th Fock space will be denoted by \(\xi_i = (k_i, \lambda_i) \).

The free Hamiltonian, acting on \(\mathcal{H} \), is the sum of the second quantizations of the free relativistic energy of \(n \) particles of masses \(m_i \geq 0 \),

\[
H_f := \sum_{i=1}^{n} H_{f,i},
\]

where \(H_{f,i} \) acts on the \(i \)th Fock space and is given by

\[
H_{f,i} := d \Gamma (\omega_i(k_i)), \quad \omega_i(k_i) := \sqrt{k_i^2 + m_i^2}, \quad m_i \geq 0.
\]

Let \(\mathcal{F}_{\text{fin}}(\mathcal{S}) \) be the subset of \(\mathcal{F} \) consisting of vectors \((\varphi_0, \varphi_1, \ldots) \in \mathcal{F} \) such that, for all \(l \in \mathbb{N}^* \), \(\varphi_l \in \otimes_{a=1}^{l} L^2(\mathbb{R}^3 \times (-1/2, 1/2)) \) identifies to a function in the Schwartz space \(\mathcal{S}(\mathbb{R}^3; \mathbb{C}^2) \) and \(\varphi_l = 0 \) for all but finitely many \(l \)'s. We recall that, in the sense of quadratic forms on \(\mathcal{F}_{\text{fin}}(\mathcal{S}) \times \mathcal{F}_{\text{fin}}(\mathcal{S}) \), \(H_{f,i} \) is given by Eq. (1.1), where \(b^*_{i}(\xi_i) \), respectively \(b_{i}(\xi_i) \), stands for the fermionic creation operator-valued distribution, respectively annihilation operator-valued distribution, acting on the \(i \)th Fock space. The following anti-commutation relations are supposed to hold:

\[
\{ b_{i}(\xi_{i}), b^*_{j}(\xi'_{j}) \} = \delta(\xi_{i} - \xi'_{j}), \quad \{ b_{i}(\xi_{i}), b_{j}(\xi'_{j}) \} = \{ b^*_{i}(\xi_{i}), b^*_{j}(\xi'_{j}) \} = 0, \quad \{ b^*_{i}(\xi_{i}), b^*_{j}(\xi_{j}) \} = 0, \quad i < j,
\]

for all \(i, j \in \{1, \ldots, n\} \). Note that the third equation means that, following the convention described in [24, Sections 4.1 and 4.2], we suppose that creation or annihilation operators associated with different species of particles anti-commute. Our analysis can be straightforwardly modified if one adopts the convention that they commute instead.

In what follows, we use the notation

\[
\int f(\xi_i)d\xi_i = \sum_{\lambda_i \in \{-\frac{1}{2}, \frac{1}{2}\}} \int_{\mathbb{R}^3} f(k_i, \lambda_i)dk_i.
\]

The interaction Hamiltonian is given by

\[
H_I := \sum_{p=0}^{n} \sum_{\{i_1, \ldots, i_n\} \in \mathcal{I}_p} \left(H^{(p)}_{I; i_1, \ldots, i_n} \left(G^{(p)}_{i_1, \ldots, i_n} \right) + \text{h.c.} \right), \quad (1.4)
\]

where we have set

\[
\mathcal{I}_p := \{(i_1, \ldots, i_n) = \{1, \ldots, n\}, \quad i_1 < \cdots < i_p, \quad i_{p+1} < \cdots < i_n, \quad i_1 < i_{p+1}\}, \quad (1.5)
\]
and

\[H_{I,i_1,...,i_p}^{(p)} \left(G_{i_1,...,i_n}^{(p)} \right) := \int G_{i_1,...,i_n}(\xi_1, \ldots, \xi_n) b_{i_1}^* (\xi_{i_1}) \cdots b_{i_p}^* (\xi_{i_p}) b_{i_{p+1}} (\xi_{i_{p+1}}) \cdots b_{i_n} (\xi_{i_n}) d\xi_1 \cdots d\xi_n. \]

If \(p = 0 \) in (1.5), it should be understood that the conditions \(i_1 < \cdots < i_p \) and \(i_1 < i_{p+1} \) are empty, and likewise if \(p = 1, p = n - 1 \) or \(p = n \). As mentioned above, physically, the expression of \(H_{I,i_1,...,i_p}^{(p)} \left(G_{i_1,...,i_n}^{(p)} \right) \) represents an interaction process where a particle of each species labeled by \(i_1, \ldots, i_p \) is created, while a particle of each species labeled by \(i_{p+1}, \ldots, i_n \) is annihilated. Summing over \(I_p \) ensures that all possible creation or annihilation processes are considered. (In particular, the condition \(i_1 < i_{p+1} \) appearing in the definition of \(I_p \) ensures that each process is not considered twice due to the presence of the Hermitian conjugate term.)

Assuming that \(G \) is square integrable, it is not difficult to verify (see [21, Theorem X.44]) that \(H_{I,i_1,...,i_p}^{(p)} \left(G_{i_1,...,i_n}^{(p)} \right) \) defines a quadratic form on

\[\left(\hat{\otimes}_{i=1}^n \mathcal{F}_{\text{fin}}(S) \right) \times \left(\hat{\otimes}_{i=1}^n \mathcal{F}_{\text{fin}}(S) \right), \]

where \(\hat{\otimes} \) stands for the algebraic tensor product.

Formally, the total Hamiltonian that we will study is given by

\[H = H_f + H_I. \] (1.6)

It is a well-defined quadratic form on \(\left(\hat{\otimes}_{i=1}^n \mathcal{F}_{\text{fin}}(S) \right) \times \left(\hat{\otimes}_{i=1}^n \mathcal{F}_{\text{fin}}(S) \right) \).

1.2 Results

Before stating our main results, we introduce some notations. Let

\[[n_1, n_2] := \{n_1, n_1 + 1, \ldots, n_2\}, \quad [n_1, n_2]_{i_0} := \{n_1, n_1 + 1, \ldots, n_2\}\backslash\{i_0\}, \]

for any integers \(n_1 < n_2 \) and \(i_0 \). We distinguish massive and massless particles,

\[[1, n] = [1, n]^\succ \cup [1, n]^0, \]

with

\[[1, n]^\succ := \{i \in [1, n], m_i > 0\}, \quad [1, n]^0 := \{i \in [1, n], m_i = 0\}. \]

We set in addition

\[[1, n]_{i_0}^\succ := [1, n]^\succ \backslash\{i_0\} \quad \text{if } i_0 \in [1, n]^\succ, \quad [1, n]_{i_0}^\succ := [1, n]^\succ \quad \text{if } i_0 \notin [1, n]^\succ, \]
and likewise for $\llbracket 1, n \rrbracket^0_{i_0}$.

Given operators A_1, \ldots, A_n, we adopt the convention that

$$\prod_{i \in [1,n]} A_i u := A_1 \cdots A_n u,$$

for any $u \in D(A_1 \cdots A_n) = \{ v \in D(A_n), A_n v \in D(A_1 \cdots A_{n-1}) \}$, where $D(A)$ stands for the domain of an operator A.

Recalling the notation $\xi = (k, \lambda) \in \mathbb{R}^3 \times \{-1/2, 1/2\}$, we let

$$h^j_i := -\frac{\partial^2}{\partial k^2_{i,j}} + k^2_{i,j}$$

be the harmonic oscillator in one dimension corresponding to the variable $k_{i,j}$, with

$$k_{i,j} = (k_{i,1}, k_{i,2}, k_{i,3}).$$

The corresponding operator acting on the variable $k_{i,j}$ in $\otimes_{i=1}^n L^2(\mathbb{R}^3 \times \{-1/2, 1/2\})$ is denoted by the same symbol. In other words, for $G \in \otimes_{i=1}^n L^2(\mathbb{R}^3 \times \{-1/2, 1/2\})$

$$(h^j_i G)(\xi_1, \ldots, \xi_n) = -\frac{\partial^2 G}{\partial k^2_{i,j}}(\xi_1, \ldots, \xi_n) + k^2_{i,j} G(\xi_1, \ldots, \xi_n),$$

with $\xi_i = (k_{i,1}, k_{i,2}, k_{i,3}, \lambda_i)$.

Our main results are summarized in the following two theorems. The first one shows that H identifies to a self-adjoint operator on H. The second one establishes the existence of a ground state for H, under stronger assumptions on the kernels $G_{i_1,\ldots,i_n}^{(p)}$.

Theorem 1.1 (Self-adjointness) Let $i_0 \in [1, n]$ and $\varepsilon > 0$. Suppose that, for all $p \in [0, n]$ and all set of integers $\{i_1, \ldots, i_n\} \in \mathcal{P}$,

$$G_{i_1,\ldots,i_n}^{(p)} \in D\left(\prod_{i \in [1,n]_{i_0}^p} (h^j_i)^\frac{1}{2} - \frac{1}{n-\varepsilon + \varepsilon}\right) \left(\prod_{j \in [1,3]} (h^j_i)^\frac{1}{2} - \frac{\varepsilon}{n-\varepsilon + \varepsilon}\right).$$

Then the quadratic form H defined in (1.6) extends to a self-adjoint operator on H with domain

$$D(H) = D(H_f).$$

Moreover, H is semi-bounded from below and any core for H_f is a core for H.

For any $\Lambda > 0$, we set $B_\Lambda := \{ \xi = (k, \lambda) \in \mathbb{R}^3 \times \{-1/2, 1/2\}, |k| \leq \Lambda \}$.

\[\Xi \text{ Springer} \]
Theorem 1.2 (Existence of a ground state) Under the conditions of Theorem 1.1, suppose in addition that there exists $1 \leq r < 2$ such that, for all $i' \in \llbracket 1, n \rrbracket^0$, p and i_1, \ldots, i_n as in the statement of Theorem 1.1 and all $\Lambda > 0$,

$$\int_{B_\Lambda} |k_{i'}|^{-2r} \left\| (SG^{(p)}_{i_1,i_2,\ldots,i_n})(\xi_1, \xi_2, \ldots) \right\|_2^r d\xi_{i'} < \infty, \quad (1.8)$$

and

$$\int_{B_\Lambda} |k_{i'}|^{-r} \left\| (S(\nabla k_{i'} G^{(p)}_{i_1,i_2,\ldots,i_n}))(\xi_1, \xi_2, \ldots) \right\|_2^r d\xi_{i'} < \infty, \quad (1.9)$$

where S stands for the operator

$$S := \left(\prod_{i \in \llbracket 1, n \rrbracket^0 \setminus i_0} (h_i^j)^{\frac{1}{2} - \frac{1}{6} - \frac{1}{n} + \epsilon} \right) \left(\prod_{j \in \llbracket 1, 3 \rrbracket} (h_j^i)^{\frac{1}{2} - \frac{5}{6} \frac{1}{n} + \epsilon} \right),$$

on $L^2((\mathbb{R}^3 \times \{-1/2, 1/2\})^n)$. Then H has a ground state, i.e., $E := \inf \sigma(H)$ is an eigenvalue of H.

We emphasize that our results hold without any restriction on the strength of the interaction. This means that, if one introduces a coupling constant g into the model and studies the Hamiltonian $H_g = H_f + gH_1$, then H_g is self-adjoint and has a ground state for all values of $g \in \mathbb{R}$. In the next section, we give concrete examples ensuring that the conditions on the kernels $G^{(p)}_{i_1,i_2,\ldots,i_n}$ stated in the previous theorems are satisfied.

1.3 Applications to mathematical models of the weak interactions

As mentioned above, the main examples we have in mind of physical models of the form studied in this paper come from the Fermi theory of weak interactions.

Fermions involved in the Lagrangian of the Standard Model are quarks and leptons. Each fermion is a Dirac particle with spin 1/2 and is distinct from its antiparticle. There are six quarks, up (u), down (d), strange (s), charm (c), bottom (b), top (t), and six leptons $e^-, \nu_e, \mu^-, \nu_\mu, \tau^-, \nu_\tau$, where ν_e (respectively ν_μ and ν_τ) is the electron neutrino (respectively the muon neutrino and the tau neutrino).

We are mainly interested in the quark and lepton Lagrangian, which arises by taking the normal Dirac kinetic energy and replacing the ordinary derivative by the covariant one. See [14,24,25] and [17, Section 6.2, (6.11)]. This Lagrangian is used to calculate quark and lepton interactions. The full Lagrangian of the fermions is the sum of the lepton electroweak Lagrangian and the quark QCD Lagrangian. It is a finite sum of terms involving two fermions with spin 1/2 together with gauge bosons. See [17]. Hamiltonian models of the weak interaction involving two fermion fields and one boson field have been studied in [1,4,6–8].
Well-known physical examples of interacting fermion fields with spin 1/2 are given by the Fermi theory of weak interactions with $V - A$ (vector–axial vector) coupling. In these examples, the Fermi theory is associated with an effective low-energy electroweak Lagrangian obtained by the contraction of the propagators of the gauge bosons W^\pm and Z in low-energy electroweak processes. See, e.g., [14, Chapter 5]. For instance, the weak decay of a muon into an electron, a muon neutrino and an electron antineutrino,

$$\mu^- \rightarrow e^- + \nu_\mu + \bar{\nu}_e,$$

the scattering of an electron with an electron neutrino,

$$e^- + \nu_e \rightarrow \nu_e + e^-,$$

or the muon production in the scattering of an electron with a muon neutrino,

$$e^- + \nu_\mu \rightarrow \mu^- + \nu_e,$$

is well described at low energy by the Fermi theory of weak interactions. See [12, Chapter 2].

Another fundamental example is the β decay, i.e., the weak decay of the neutron. In the Fermi model, the β decay is the weak decay of a neutron into a proton, an electron and an electron antineutrino,

$$n \rightarrow p + e^- + \bar{\nu}_e.$$

Note that protons and neutrons are baryons, i.e., composite particles. Baryons are composed of three quarks: A neutron is composed of an up quark (u) and two down quarks (d); a proton is composed of two up quarks (u) and one down quark (d). Protons and neutrons may be approximately regarded as bound states of three quarks. In the quark model, the β decay is the weak decay of a down quark (d) into a up quark (u), an electron and an electron antineutrino,

$$d \rightarrow u + e^- + \bar{\nu}_e.$$

In this model also, four fermions of spin 1/2 interact.

Recently, the decays of mesons B into mesons D have also been experimentally studied. Mesons are bosons composed of a quark and an antiquark. A meson B is composed of a bottom antiquark (\bar{b}) and a quark. A meson D is composed of a charm quark (c) and an antiquark. The following decays have been observed (see [9,18,19]):

$$B^- \rightarrow D^0 + l^- + \bar{\nu}_l, \quad \bar{B}^0 \rightarrow D^+ + l^- + \bar{\nu}_l,$$

(1.10)

and

$$B^+ \rightarrow \bar{D}^0 + l^+ + \nu_l.$$

(1.11)

Here $B^+ = (ub)$, $B^- = (\bar{u}b)$, $\bar{B}^0 = (\bar{d}b)$, $D^0 = (c\bar{u})$, $D^+ = (c\bar{d})$, $\bar{D}^0 = (u\bar{c})$, l^- (respectively l^+) is a lepton of negative electric charge (respectively positive electric...
Hamiltonian models of interacting fermion fields

charge), and \(\nu_l \) and \(\bar{\nu}_l \) are lepton neutrino and antineutrino. Decays (1.10) correspond to the transition of a quark \(b \) into a quark \(c \),

\[
b \rightarrow c + l^- + \bar{\nu}_l.
\] (1.12)

Decay (1.11) is the transition of an antiquark \(\bar{b} \) to an antiquark \(\bar{c} \),

\[
\bar{b} \rightarrow \bar{c} + l^+ + \nu_l.
\] (1.13)

Decay (1.13) is the charge conjugation of decay (1.12). Both involve four fermions of spin 1/2.

For an example of computation about the six-fermion process \(b \rightarrow dqql^{-} + \bar{\nu}_l \), see, e.g., [15]. More generally, all physical processes we have in mind involve an even number of fermions. Nevertheless, for the sake of mathematical generality, we will consider in this paper an arbitrary number \(n \) of fermions, with \(n \) either even or odd. Some modifications of the proof in the odd case will be required.

In all the previous examples involving four Dirac particles, the formal Hamiltonian obtained from the corresponding Lagrangian is of the form (1.6), with one or two massless fields (assuming that neutrinos are treated as massless, in accordance with the classical form of the Standard Model). After introduction of a (smooth) high-energy cutoff of parameter \(\Lambda \) and a spatial cutoff, the kernels obtained from physics can be supposed to be of the form (see [1,6,8])

\[
G(\xi_1, \ldots, \xi_4) = f_1(k_1) \cdots f_4(k_4) \delta_{\text{reg}}(k_1, \ldots, k_4),
\]

where we disregarded the dependence on the spin variables for simplicity, \(\delta_{\text{reg}}(k_1, \ldots, k_4) \) is a regularization of the Dirac distributions appearing due to momentum conservation, and the \(f_i \) are \(C^\infty \) in \(\mathbb{R}^3 \setminus \{0\} \), satisfying the estimates

\[
|\partial_{k_i,j}^{\alpha} f_i(k_i)| \leq C|k_i|^{\nu_i - \alpha} \mathbb{1}_{\leq \Lambda}(|k_i|), \quad i = 1, \ldots, 4, \quad j = 1, \ldots, 3, \quad \alpha \in \mathbb{N}.
\] (1.14)

Physically, we have that \(\nu_i = 0 \) for any \(i \).

For \(n = 4 \), Theorem 1.1 shows that if all interaction form factors \(G \) satisfy

\[
G \in \mathcal{D} \left(\prod_{i \in [1, n]_0} (h_j^i)^{\frac{1}{2} + \varepsilon} \right) \left(\prod_{j \in [1, 3]} (h_j^{j})^{\frac{3}{2} + \varepsilon} \right),
\] (1.15)

for some \(\varepsilon \geq 0 \), then \(H \) is self-adjoint. Due to the presence of smooth ultraviolet cutoffs, and assuming that \(\delta_{\text{reg}}(k_1, \ldots, k_n) \) is also smooth, condition (1.15) is implied by the requirement that, for massive particles, each function \(f_i \) belongs to the Sobolev space \(H^{1+\varepsilon}(\mathbb{R}^3) \) for some \(\varepsilon \geq 0 \) (except possibly the one labeled by \(i_0 \) that must only belong to \(L^2(\mathbb{R}^3) \)), while for massless particles, each function \(f_i \) belongs to \(H^{4/3+\varepsilon}(\mathbb{R}^3) \) (again, except possibly the one labeled by \(i_0 \)). Hence, we need \(\nu_i \geq -1/2 \).
in (1.14) for massive particles (i.e., \(i \in [1, n]_{t_0}^\infty \)), and \(v_i > -1/6 \) for massless particles (i.e., \(i \in [1, n]_{t_0}^0 \)), and \(v_{i_0} > -3/2 \). In particular, the physical case \(v_i = 0 \) is covered by our assumptions.

As for conditions (1.8) and (1.9) in Theorem 1.2, they concern only the massless fields. One can check that they are satisfied provided that \(v_i \geq 1/2 \) in (1.14), for any \(i \in [1, n]_{t_0}^0 \). Hence, to prove the existence of a ground state, if massless fields are involved, we need to impose an infrared regularization compared to the physical case. This is due to the method employed [13] whose advantage is to allow us to establish the existence of a ground state without any restriction on the strength of the interaction. If one introduces a coupling parameter \(g \) into the model and uses perturbative methods [5,20], it is likely that one can rely on our refined \(N_\tau \) estimates to prove the existence of a ground state for \(H = H_f + g H_I \) for small enough values of \(g \), without imposing any infrared regularization.

2 Self-adjointness

In this section we prove that the total Hamiltonian \(H \) identifies to a self-adjoint operator, i.e., we prove Theorem 1.1. The strategy consists in establishing relative bounds of \(H_I \) with respect to \(H_f \). We begin with relative bounds in the sense of forms; next, we turn to operator bounds.

In the following two subsections, we concentrate on a particular term of the interaction Hamiltonian \(H_I \) [see (1.4)] that, for simplicity, we write as

\[
H_I(G) = \int G(\xi_1, \ldots, \xi_n) b_1^*(\xi_1) \cdots b_p^*(\xi_p) b_{p+1}(\xi_{p+1}) \cdots b_n(\xi_n) d\xi_1 \ldots d\xi_n,
\]

(2.1)

for some \(0 \leq p \leq n \).

2.1 Form bounds

As will be recalled more precisely in the proof of the next lemma, the usual \(N_\tau \) estimates of Glimm and Jaffe [11] show that \(H_I(G) \) is relatively form-bounded with respect to \(H_{f}^{n/2} \). Our first aim is to find suitable conditions on the kernel \(G \) such that \(H_I \) is relatively form-bounded with respect to lower powers of \(H_f \).

We recall that, for any function \(f \in L^2(\mathbb{R}^3 \times (-1/2, 1/2)) \),

\[
\| b^2(f) \| = \| f \|_2,
\]

(2.2)

with the usual notations.
\[b^\alpha(f) = \int f(\xi) b^\alpha(\xi) d\xi = \sum_{\lambda \in \{-\frac{1}{2}, \frac{1}{2}\}} \int_{\mathbb{R}^3} f(k, \lambda) b^\alpha_\lambda(k) dk, \]

\[b(f) = \int \tilde{f}(\xi) b(\xi) d\xi = \sum_{\lambda \in \{-\frac{1}{2}, \frac{1}{2}\}} \int_{\mathbb{R}^3} \tilde{f}(k, \lambda) b_\lambda(k) dk. \]

Here \(b^\alpha(f) \) and \(b^\alpha_\lambda(f) \) denote the usual fermionic creation and annihilation operators in \(\mathcal{F} \). For \(g \in L^2(\mathbb{R}^3) \) and \(\lambda \in \{-1/2, 1/2\} \), the notation \(b^\alpha_\lambda(g) \) stands for

\[b^\alpha_\lambda(g) = \int_{\mathbb{R}^3} g(k) b^\alpha_\lambda(k) dk, \quad b_\lambda(g) = \int_{\mathbb{R}^3} \tilde{g}(k) b_\lambda(k) dk, \]

and hence \(\| b^\alpha_\lambda(g) \| = \| g \|_2 \).

We begin with a lemma which is close to Proposition 1.2.3 (b) in [11]. We give a short proof for the convenience of the reader.

Lemma 2.1 For all \(i_0 \in [1, n] \), \(G \in \mathcal{D}(\prod_{i \in [1, n]} \omega_i(k_i)^{-\frac{1}{2}}) \) and

\[\varphi \in \mathcal{D}(\sum_{i \in [1, n]} H_{f,i}^{(n-1)/2}), \]

we have that

\[\left| \langle \varphi, H_1(G)\varphi \rangle \right| \leq \left\| \prod_{i \in [1, n]} \omega_i(k_i)^{-\frac{1}{2}} G \right\|_2 \left(\sum_{i \in [1, n]} H_{f,i} + 1 \right)^{\frac{n-1}{2}} \| \varphi \|^2. \quad (2.3) \]

Proof Assume that \(i_0 \in [1, p] \). We write

\[\left| \langle \varphi, H_1(G)\varphi \rangle \right| = \left| \int \left(\prod_{i \in [1, p]} b_i(\xi_i) \varphi \cdot \left(\int G(\xi_1, \ldots, \xi_n) b^\alpha_{i_0}(\xi_{i_0}) d\xi_{i_0} \right) \right) \prod_{i \in [p+1, n]} b_i(\xi_i) \varphi \right| \prod_{i \in [1, n]} d\xi_i. \]

Using the Cauchy–Schwarz inequality and the fact that, for a.e. \(\xi_i, i \in [1, n] \),

\[\left\| \int G(\xi_1, \ldots, \xi_n) b^\alpha_{i_0}(\xi_{i_0}) d\xi_{i_0} \right\| = \| G(\xi_1, \ldots, \xi_{i_0-1}, \cdot, \xi_{i_0+1}, \ldots, \xi_n) \|_2, \]
[see (2.2)], we obtain that
\[
\left| \langle \varphi, H_I(G) \varphi \rangle \right| = \int \prod_{i \in [1, p]_{i_0}} b_i(\xi_i) \varphi \| G(\xi_1, \ldots, \xi_{i_0-1}, \xi_{i_0+1}, \ldots, \xi_n) \|_2 \prod_{i \in [p+1, n]} b_i(\xi_i) \varphi \prod_{i \in [1, n]_{i_0}} \xi_i. \tag{2.4}
\]

Now, we observe that
\[
\int \prod_{i \in [1, p]_{i_0}} \omega_i(k_i) \prod_{i \in [1, p]_{i_0}} b_i(\xi_i) \varphi^2 \prod_{i \in [p+1, n]} d\xi_i = \left\langle \varphi, \left(\sum_{i \in [1, p]_{i_0}} H_{f, i} \varphi \right)^{p-1} \varphi \right\rangle,
\]
and likewise,
\[
\int \prod_{i \in [p+1, n]} \omega_i(k_i) \prod_{i \in [p+1, n]} b_i(\xi_i) \varphi^2 \prod_{i \in [p+1, n]} d\xi_i \leq \left\langle \varphi, \left(\sum_{i \in [p+1, n]} H_{f, i} \right)^{n-p} \varphi \right\rangle.
\]

Combining this with (2.4) and the Cauchy–Schwarz inequality, we deduce that
\[
\left| \langle \varphi, H_I(G) \varphi \rangle \right| \leq \left\| \prod_{i \in [1, n]_{i_0}} \omega_i(k_i)^{-\frac{1}{2}} G \right\|_2 \left\langle \varphi, \left(\sum_{i \in [1, p]_{i_0}} H_{f, i} \right)^{p-1} \varphi \right\rangle^{\frac{1}{2}} \left\langle \varphi, \left(\sum_{i \in [p+1, n]} H_{f, i} \right)^{n-p} \varphi \right\rangle^{\frac{1}{2}}. \tag{2.5}
\]

Estimate (2.3) follows directly from (2.5). The argument is similar in the case where $i_0 \in [p+1, n]$. \qed

Remark 2.2 The previous proof shows that the following more precise estimate holds:
\[
\left| \langle \varphi, H_I(G) \psi \rangle \right| \leq \left\| \prod_{i \in [1, n]_{i_0}} \omega_i(k_i)^{-\frac{1}{2}} G \right\|_2 \left\| \prod_{i \in [1, p]_{i_0}} H_{f, i}^{\frac{1}{2}} \varphi \right\| \left\| \prod_{i \in [p+1, n]} H_{f, i}^{\frac{1}{2}} \psi \right\|.
\]

This refined estimate will be useful in the next section.

Next, we prove another lemma which, in our setting, is a slight improvement of Proposition 1.2.3 (c) in [11] (see also [3]). The idea is that, if G is sufficiently regular (i.e., belongs to a suitable Schwartz space), then $H_I(G)$ extends to a bounded quadratic form. Our improvement compared to [11] consists in showing that regularity in all
variables but one is sufficient to obtain boundedness of \(H_I(G) \). This will be important in applications.

Recall that the one-dimensional harmonic oscillator \(h^j_i \) has been defined in (1.7). A basis of normalized eigenvectors of \(h^j_i \) is denoted by \((e_i)_{i \in \mathbb{N}}\), so that \(h^j_i e_i = (2l + 1)e_i \).

Lemma 2.3 For all \(s > 1/2 \), there exists \(C_s > 0 \) such that, for all \(i_0 \in [1, n] \), \(G \in D(\prod_{i \in [1,n]_{i_0}} (h^j_i)^s) \) and \(\varphi \in \mathcal{H} \),

\[
\left| \langle \varphi, H_I(G)\varphi \rangle \right| \leq C_s \left\| \prod_{i \in [1,n]_{i_0}} (h^j_i)^s \right\|_2 \|\varphi\|^2. \tag{2.6}
\]

Proof Assume that \(i_0 \in [1, p] \). We have that

\[
\left| \langle \varphi, H_I(G)\varphi \rangle \right| = \left| \int \left(\prod_{i \in [1,p]} b_i(\xi_i)\varphi, G(\xi_1, \ldots, \xi_n) \prod_{i \in [p+1,n]} b_i(\xi_i)\varphi \prod_{i \in [1,p]} d\xi_i \right) \right| = \left| \sum_{\lambda_i \in \{-\frac{1}{2}, \frac{1}{2}\}} \int \varphi, \sum_{l_j^j \in \mathbb{N}} \left| \prod_{i \in [1,n]_{i_0}} \prod_{j \in [1,3]} b_{l_j}^{\lambda_i} \left(\bigotimes_{j=1}^3 e_{l_j}^i \right) \prod_{i \in [p+1,n]} b_{l_j}^{\lambda_i} \left(\bigotimes_{j=1}^3 e_{l_j}^i \right) \varphi \right| d\xi_{i_0} \right|
\]

where the subscript in the first sum above means that for each \(i \in [1,n]_{i_0} \), we sum over \(\lambda_i \in \{-1/2, 1/2\} \), and likewise, in the second sum, for each couple \((i, j) \in [1, n]_{i_0} \times [1,3] \), we sum over \(l_j \in \mathbb{N} \). The scalar product \(\langle \cdot, \cdot \rangle_2 \) appearing in the right side of the last equality stands for the scalar product in \(L^2(\mathbb{R}^{3(n-1)}) \).

Using that \(h^j_i e_{l_j}^i \odot \cdots \odot e_{l_3}^i = (2l_j + 1)e_{l_j}^i \odot \cdots \odot e_{l_3}^i \) for all \(i, j \), we obtain that

\[
\left| \langle \varphi, H_I(G)\varphi \rangle \right| = \left| \sum_{\lambda_i \in \{-\frac{1}{2}, \frac{1}{2}\}} \int \varphi, \sum_{l_j^j \in \mathbb{N}} \left| \prod_{i \in [1,n]_{i_0}} \prod_{j \in [1,3]} b_{l_j}^{\lambda_i} \left(\bigotimes_{j=1}^3 e_{l_j}^i \right) \right| \left(\frac{1}{(2l_j + 1)^s} \right) \right|
\]

where the subscript in the first sum above means that for each \(i \in [1,n]_{i_0} \), we sum over \(\lambda_i \in \{-1/2, 1/2\} \), and likewise, in the second sum, for each couple \((i, j) \in [1, n]_{i_0} \times [1,3] \), we sum over \(l_j \in \mathbb{N} \). The scalar product \(\langle \cdot, \cdot \rangle_2 \) appearing in the right side of the last equality stands for the scalar product in \(L^2(\mathbb{R}^{3(n-1)}) \).
and hence

\[
\left| \langle \varphi, H_1(G) \varphi \rangle \right| \leq \sum_{\lambda_i \in \{-\frac{1}{2}, \frac{1}{2}\}} \sum_{l_i^j \in \mathbb{N}: \ i \in [1, n]_{i_0}, j \in [1, 3]} \prod_{i \in [1, n]_{i_0}} \frac{1}{(2l_i^j + 1)^s}
\]

Next, by (2.2), we see that the operator in parentheses in the last equation is bounded and satisfies

\[
\left\| \int \langle e_i, \prod_{i \in [1, n]_{i_0}} (h_i^{l_i^j})^s G((\cdot, \lambda_1), \cdots, (\cdot, \lambda_n)) \rangle \right\|_{L^2([\mathbb{R}^{3(n-1)}])} b^s(\xi_{i_0}) d\xi_{i_0}
\]

\[
= \left(\int \left\| \int \langle e_i, \prod_{i \in [1, n]_{i_0}} (h_i^{l_i^j})^s G((\cdot, \lambda_1), \cdots, (\cdot, \lambda_n)) \rangle \right\|^2 d\xi_{i_0} \right)^{\frac{1}{2}}.
\]

Combining this with the fact that \(\| h_{l_i^j} \| = \| \otimes_{j=1}^3 e_i \|_2 = 1 \), we deduce that

\[
\left| \langle \varphi, H_1(G) \varphi \rangle \right| \leq \| \varphi \|^2 \sum_{\lambda_i \in \{-\frac{1}{2}, \frac{1}{2}\}} \sum_{l_i^j \in \mathbb{N}: \ i \in [1, n]_{i_0}, j \in [1, 3]} \prod_{i \in [1, n]_{i_0}} \frac{1}{(2l_i^j + 1)^s}
\]

\[
\left(\int \left| \langle e_i, \prod_{i \in [1, n]_{i_0}} (h_i^{l_i^j})^s G((\cdot, \lambda_1), \cdots, (\cdot, \lambda_n)) \rangle \right|^2 d\xi_{i_0} \right)^{\frac{1}{2}}.
\]

Applying again the Cauchy–Schwarz inequality, using that \(\sum_{l_i^j \in \mathbb{N}} (2l_i^j + 1)^{-2s} < \infty \) since \(s > 1/2 \), and that the sum over the \(\lambda_i \)'s is finite, we obtain
\[|\langle \varphi, H_I(G)\varphi \rangle| \]
\[\leq C_s \| \varphi \|^2 \left(\sum_{\lambda_i \in [\frac{1}{2}, \frac{3}{2}]} \sum_{i \in [1,n]}^{l_i} \int \| e_{l_i}^i \otimes \cdots \otimes e_{i_1}^1 \|_2 \right) \]
\[\prod_{j \in [1,3]} (h_j^i)^s G \left((\cdot, \lambda_1), \cdots, (\cdot, \lambda_n) \right) \]
\[= C_s \| \varphi \|^2 \prod_{i \in [1,n]} (h_i^i)^s G \|_2, \]

for some positive constant \(C_s \). This concludes the proof. \(\square \)

Now we interpolate the estimates given by Lemmas 2.1 and 2.3. This gives the following proposition.

Proposition 2.4 Let \(s > 1/2 \) and \(0 \leq \theta \leq 1 \). There exists a positive constant \(C_{s,\theta} \) such that, for all \(i_0 \in [1, n] \),

\[G \in D \left(\prod_{\lambda_i \in [\frac{1}{2}, \frac{3}{2}]} \prod_{i \in [1,n]}^{l_i} \right) \]
\[(h_i^i)^{s} \prod_{j \in [1,3]} (h_j^i)^{\frac{1}{12} + \theta \left(\frac{s}{12} \right)}), \]

and \(\varphi \in D \left(\sum_{i \in [1,n]} H_{f,i} \right)^{\frac{n-1}{2} (1-\theta)} \), we have that

\[|\langle \varphi, H_I(G)\varphi \rangle| \leq C_{s,\theta} \left(\prod_{\lambda_i \in [\frac{1}{2}, \frac{3}{2}]} \prod_{i \in [1,n]}^{l_i} (h_i^i)^{\theta s} \left(\prod_{j \in [1,3]} (h_j^i)^{\frac{1}{12} + \theta \left(\frac{s}{12} \right)} \right) \right) G \|_2 \]
\[\left(\sum_{i \in [1,n]} H_{f,i} + 1 \right)^{\frac{n-1}{2} (1-\theta)} \varphi \|^2. \quad (2.7) \]

Proof To interpolate the estimates given by Lemmas 2.1 and 2.3, we rewrite (2.3) in a weaker version that will be more convenient. For massive particles, \(i \in [1, n]^\geq \), we have that \(\| \omega_i (k_i)^{-\frac{1}{2}} u \|_2 \lesssim \| u \|_2 \), while in the case of massless particles, \(i \in [1, n]^0 \), we write

\[\| \omega_i (k_i)^{-\frac{1}{2}} u \|_2 = \| (k_{i,1}^2 + k_{i,2}^2 + k_{i,3}^2)^{-\frac{1}{2}} u \|_2 \]
\[\lesssim \| k_{i,1}^{-\frac{1}{6}} \| k_{i,2}^{-\frac{1}{6}} \| k_{i,3}^{-\frac{1}{6}} u \|_2 \]
\[\lesssim \| (\partial_{k_{i,1}})^{-\frac{1}{2}} \| \partial_{k_{i,2}}^{-\frac{1}{2}} \| \partial_{k_{i,3}}^{-\frac{1}{2}} u \|_2 \]
\[\lesssim \| \prod_{j \in [1,3]} (h_j^i)^{\frac{1}{12}} u \|_2, \quad i \in [1, n]^0. \]
In the first inequality, we used that \(abc \lesssim a^3 + b^3 + c^3 \) for any positive numbers \(a, b, c \), and in the second inequality we used Hardy’s inequality in \(\mathbb{R} \). Hence, (2.3) implies that
\[
\left\| \{ \varphi, H_f(G)\varphi \} \right\| \lesssim \left\| \prod_{i \in [1,n]}^0 (h_i^j)^{1/2} G \right\|_2 \left(\sum_{i \in [1,n]} H_{f,i} + 1 \right)^{\frac{n-1}{2}} \varphi^2.
\]

Now we proceed to interpolation. Let \(\tilde{G} \in L^2 \). For \(\tilde{\varphi} \in \mathcal{H} \), consider the map
\[
f : z \mapsto \left(\sum_{i \in [1,n]} H_{f,i} + 1 \right)^{-\frac{n-1}{2}(1-z)} \tilde{\varphi},
\]
\[
H_f\left(\left(\prod_{i \in [1,n]} (h_i^j)^{-zs} \right) \left(\prod_{i \in [1,n]} (h_i^j)^{-\frac{1}{12}z(s-\frac{1}{12})} \right) \tilde{G} \right)
\]
\[
\left(\sum_{i \in [1,n]} H_{f,i} + 1 \right)^{-\frac{n-1}{2}(1-z)} \tilde{\varphi}.\]

Since the operators \(h_i^j \) and \(\sum H_{f,i} + 1 \) are positive and invertible, one verifies that \(f \) is analytic in \(\{ z \in \mathbb{C}, 0 < \text{Re}(z) < 1 \} \), and bounded and continuous in \(\{ z \in \mathbb{C}, 0 \leq \text{Re}(z) \leq 1 \} \). Moreover, Eqs. (2.3) and (2.6) show that
\[
\sup_{\text{Re}(z)=0} |f(z)| \lesssim \| \tilde{G} \|_2 \| \tilde{\varphi} \|^2, \quad \sup_{\text{Re}(z)=1} |f(z)| \lesssim \| \tilde{G} \|_2 \| \tilde{\varphi} \|^2.
\]

Applying Hadamard’s three-lines lemma, we deduce that
\[
\sup_{0 \leq \text{Re}(z) \leq 1} |f(z)| \lesssim \| \tilde{G} \|_2 \| \tilde{\varphi} \|^2.
\]

Taking \(\text{Im}(z) = 0 \), we obtain that
\[
\left| \left(\sum_{i \in [1,n]} H_{f,i} + 1 \right)^{-\frac{n-1}{2}(1-\theta)} \tilde{\varphi},
\right|
\]
\[
H_f\left(\left(\prod_{i \in [1,n]} (h_i^j)^{1-\theta s} \right) \left(\prod_{i \in [1,n]} (h_i^j)^{-\frac{1}{12}z(1-\theta)} \right) \tilde{G} \right)
\]
\[
\left(\sum_{i \in [1,n]} H_{f,i} + 1 \right)^{-\frac{n-1}{2}(1-\theta)} \tilde{\varphi}
\]
\[
\lesssim \| \tilde{G} \|_2 \| \tilde{\varphi} \|^2,
\]

for any \(0 \leq \theta \leq 1 \), \(\tilde{G} \in L^2 \) and \(\tilde{\varphi} \in \mathcal{H} \). Applying this to

\(\text{ Springer} \)
\[\tilde{G} = \prod_{i \in [1, n]} \left(h_{j_i}^{j_s} \right)^{\theta_s} \prod_{j \in [1, 3]} \left(h_{j_i}^{j_s} \right)^{\frac{1}{12} + \theta \left(s \frac{1}{12} \right)} G \] and
\[\tilde{\varphi} = \left(\sum_{i \in [1, n]} H_{f, i} + 1 \right)^{\frac{n-1}{2} (1 - \theta)} \varphi, \]

this implies the statement of the lemma. \(\square \)

2.2 Operator bounds

In this section we improve the results of Sect. 2.1 by establishing relative bounds of \(H_f(G) \) with respect to \(H_f \). The first step is to prove the following lemma, using Remark 2.2.

Lemma 2.5 For all \(i_0 \in [1, n] \), \(G \in \mathcal{D}(\prod_{i \in [1, n]} \omega_i (k_i)^{-\frac{1}{2}}) \) and

\[\varphi \in \mathcal{D}(\left(\sum_{i \in [1, n]} H_{f, i} \right)^{(n-1)/2}), \]

we have that

\[\| H_f(G) \varphi \| \leq \left\| \prod_{i \in [1, n]} \left(1 + \omega_i (k_i)^{-\frac{1}{2}} \right) G \right\| \left(\sum_{i \in [1, n]} H_{f, i} + 1 \right)^{\frac{n-1}{2}} \left\| \varphi \right\|. \] (2.9)

Proof Suppose that \(i_0 \in [1, p] \). It follows from Remark 2.2 that, for all \(G \in \mathcal{D}(\prod_{i \in [1, n]} \omega_i (k_i)^{-\frac{1}{2}}) \),

\[\left\| \left(\prod_{i \in [1, p]} H_{f, i}^{\frac{1}{2}} \right)^{-1} H_f(G) \left(\prod_{i \in [p+1, n]} H_{f, i}^{\frac{1}{2}} \right)^{-1} \right\| \leq \left\| \prod_{i \in [1, p]} \omega_i (k_i)^{-\frac{1}{2}} G \right\|_2. \] (2.10)

In the previous equation and in the remainder of this proof, even if the operators \(H_{f, i} \) are not invertible, the notation \(H_{f, i}^{-1} \) should be understood as the operator acting on the orthogonal complement of the Fock vacuum and whose restriction to any \(n \)-particle subspace of the Fock space is given by the corresponding multiplication operator (hence, for instance, the restriction of \(H_{f, i}^{-1} \) to the 1-particle space is the operator of multiplication by \(\omega_i (k_i)^{-1} \)).

Let \(G \in \mathcal{D}(\prod_{i \in [1, n]} \omega_i (k_i)^{-\frac{1}{2}}) \). We claim that

\[H_f(G) \left(\prod_{i \in [1, n]} (H_{f, i} + 1)^{\frac{1}{2}} \right)^{-1} \in \mathcal{L}(\mathcal{H}). \] (2.11)
To prove (2.11), we proceed similarly as in the proof of Lemma 2.1 and use in addition
the pull-through formula. For all \(\phi, \psi \in \mathcal{H} \), we write

\[
\langle \phi, H_I(G) \left(\prod_{i \in [1,n]} (H_{f,i} + 1)^{\frac{1}{2}} \right)^{-1} \psi \rangle = \left| \int \left(\prod_{i \in [1,p]} b_i(\xi_i) \phi \right) \left(\prod_{i \in [p+1,n]} (H_{f,i} + \omega_i(k_i)) \right)^{\frac{1}{2}} \psi \right| \prod_{i \in [1,n]} d\xi_i \]

where we have set

\[
u := \left(\prod_{i \in [1,n]} (H_{f,i} + 1)^{\frac{1}{2}} \right)^{-1} \psi, \quad v := \left(\prod_{i \in [p+1,n]} (H_{f,i} + \omega_i(k_i)) \right)^{\frac{1}{2}} \psi \]

(2.12)

to shorten notations.

Using the pull-through formula \(b(\xi_i) f(H_{f,i}) = f(H_{f,i} + \omega_i(k_i)) b(\xi_i) \) for any measurable function \(f \) (which easily follows from the anti-commutation relation together with the spectral theorem), we obtain that

\[
\langle \phi, H_I(G) \left(\prod_{i \in [1,n]} (H_{f,i} + 1)^{\frac{1}{2}} \right)^{-1} \psi \rangle = \left| \int \left(\prod_{i \in [1,p]} b_i(\xi_i) \nu \right) \left(\prod_{i \in [p+1,n]} (H_{f,i} + \omega_i(k_i)) \right)^{\frac{1}{2}} \psi \right| \prod_{i \in [1,n]} d\xi_i \]

Next, we observe that

\[
\| (\omega_i(k_i) + 1)^{-\frac{1}{2}} (H_{f,i} + \omega_i(k_i))^{\frac{1}{2}} (H_{f,i} + 1)^{-\frac{1}{2}} \| \leq 1. \]

(2.13)
Hamiltonian models of interacting fermion fields

Applying (2.13), the Cauchy–Schwarz inequality and the fact that, for a.e. \(\xi_i, i \in \llbracket 1, n \rrbracket \),

\[
\left\| \int G(\xi_1, \ldots, \xi_n) b_{i_0}^*(\xi_{i_0})d\xi_{i_0} \right\| = \| G(\xi_1, \ldots, \xi_{i_0-1}, \cdot, \xi_{i_0+1}, \ldots, \xi_n) \|_2,
\]

we deduce that

\[
\left| \langle \varphi, H_I(G) \left(\prod_{i \in \llbracket 1, n \rrbracket_{i_0}} (H_{f,i} + 1)^{1/2} \right)^{-1} \psi \rangle \right| = \int \left\| \prod_{i \in \llbracket 1, p \rrbracket_{i_0}} b_i(\xi_i) \prod_{i \in \llbracket 1, p \rrbracket_{i_0}} (\omega_i(k_i) + 1)^{1/2} \| G(\xi_1, \ldots, \xi_{i_0-1}, \cdot, \xi_{i_0+1}, \ldots, \xi_n) \|_2
\times \left\| \prod_{i \in \llbracket 1, n \rrbracket_{i_0}} \prod_{i \in \llbracket 1, p \rrbracket_{i_0}} (H_{f,i} + 1)^{1/2} v \right\| \right\| \prod_{i \in \llbracket 1, n \rrbracket_{i_0}} d\xi_i.
\]

In the same way as in the proof of Lemma 2.1, this yields

\[
\left| \langle \varphi, H_I(G) \left(\prod_{i \in \llbracket 1, n \rrbracket_{i_0}} (H_{f,i} + 1)^{1/2} \right)^{-1} \psi \rangle \right| \leq \left\| \left(\prod_{i \in \llbracket 1, p \rrbracket_{i_0}} (1 + \omega_i(k_i))^{-1/2} \right) \left(\prod_{i \in \llbracket p+1, n \rrbracket} \omega_i(k_i)^{-1/2} \right) G \|_2 \right\| \left\| \prod_{i \in \llbracket 1, p \rrbracket_{i_0}} H_{f,i}^{-1} u \right\| \times \left\| \left(\prod_{i \in \llbracket p+1, n \rrbracket} \prod_{i \in \llbracket 1, p \rrbracket_{i_0}} (H_{f,i} + 1)^{1/2} v \right\|.
\]

Remembering the definition of \(u \) and \(v \) in (2.12), we conclude that

\[
\left| \langle \varphi, H_I(G) \left(\prod_{i \in \llbracket 1, n \rrbracket_{i_0}} (H_{f,i} + 1)^{1/2} \right)^{-1} \psi \rangle \right| \leq \left\| \left(\prod_{i \in \llbracket 1, p \rrbracket_{i_0}} (1 + \omega_i(k_i))^{-1/2} \right) \left(\prod_{i \in \llbracket p+1, n \rrbracket} \omega_i(k_i)^{-1/2} \right) G \|_2 \| \varphi \| \| \psi \|.
\]

This implies the statement of the lemma in the case where \(i_0 \in \llbracket 1, p \rrbracket \). The case where \(i_0 \in \llbracket p+1, n \rrbracket \) can be treated in the same way. \(\square \)

Now, as in the previous section, we use an interpolation argument to obtain the following relative bound.
Proposition 2.6 Let \(s > 1/2 \) and \(0 \leq \theta \leq 1 \). There exists a positive constant \(C_{s,\theta} \) such that, for all \(i_0 \in [1,n] \),

\[
G \in \mathcal{D}\left(\prod_{i \in [1,n]_{i_0}^0} (h_i^j)^{\theta s} \prod_{j \in [1,3]} (h_j^i)^{\frac{1}{12} + \theta (s - \frac{1}{12})} \right),
\]

and \(\varphi \in \mathcal{D}(\sum_{i \in [1,n]_{i_0}} H_{f,i}) \frac{s-1}{2} (1 - \theta) \), we have that

\[
\left\| H_1(G)\varphi \right\| \leq C_{s,\theta} \left(\prod_{j \in [1,3]} (h_j^i)^{\theta s} \prod_{i \in [1,n]_{i_0}^0} (h_i^j)^{\frac{1}{12} + \theta (s - \frac{1}{12})} \right) G_2 \left\| \sum_{i \in [1,n]_{i_0}} \left(HF_{f,i} + 1 \right)^{\frac{s-1}{2} (1 - \theta)} \varphi \right\|. \tag{2.14}
\]

Proof It follows from Lemma 2.3 that, for all \(s > 1/2 \), there exists \(C_s > 0 \) such that, for all \(i_0 \in [1,n] \), \(G \in \mathcal{D}(\prod_{i \in [1,n]_{i_0}^0} (h_i^j)^{s}) \) and \(\varphi, \psi \in \mathcal{H} \),

\[
\left| \langle \varphi, H_1(G)\psi \rangle \right| \leq C_s \left\| \prod_{j \in [1,3]} (h_j^i)^s G_2 \left\| \varphi \right\| \| \psi \right\|. \tag{2.15}
\]

Considering the map

\[
f : z \mapsto \left(\varphi \right| H_1\left(\prod_{j \in [1,3]} (h_j^i)^{-zs} \prod_{i \in [1,n]_{i_0}^0} (h_i^j)^{-\frac{1}{12} - zs - \frac{1}{12}} \hat{G} \right)
\]

\[
\left(\sum_{i \in [1,n]_{i_0}} \left(HF_{f,i} + 1 \right)^{-\frac{s-1}{2} (1 - z)} \psi \right),
\]

on \(\{ z \in \mathbb{C}, 0 \leq \text{Re}(z) \leq 1 \} \), it suffices to proceed in the same way as in Lemma 2.4, using Hadamard’s three-lines lemma together with (2.9) and (2.15). ☐

Remark 2.7 The constants \(C_{s,\theta} \) in Propositions 2.4 and 2.6 depend on the positive masses \(m_i, i \in [1,n] \). More precisely, inspecting the proof, one can write

\[
C_{s,\theta} = \tilde{C}_{s,\theta} \left(\prod_{i \in [1,n]} m_i^{\theta/2} \right),
\]

where \(\tilde{C}_{s,\theta} \) is independent of \(m_i \). In the next section, to establish the existence of a ground state for the Hamiltonian \(H \), it will be important to have relative bounds that
hold uniformly in the masses m_i, for i in some subset $I \subset [1,n]^\geq$. To obtain such bounds, it suffices to modify the proof of Proposition 2.4 by replacing the estimate $\|\omega_i(k_i)^{-1/2}u\|_2 \leq m_i^{-1/2}\|u\|_2$, for $i \in I$, by $\|\omega_i(k_i)^{-1/2}u\|_2 \leq \|k_i|^{-1/2}u\|_2$. This leads to the following more precise relative bounds

$$ \|H_I(G)\varphi\| \leq \tilde{C}_{s,\theta} \min_{l \in [1,n]} \left\| \left(\prod_{i \in [1,n]_0} m_i^{-\theta} (h_i)^{\theta s} \right) \left(\prod_{j \in [1,3]} (h_j)^{1/2 + \theta \left(s - \frac{1}{2} \right)} \right) G \right\|_2 $$

$$ \times \left\| \left(\sum_{i \in [1,n]_0} H_{f,i} + 1 \right)^{n-1} \varphi \right\|, \hspace{1cm} (2.16) $$

where $\tilde{C}_{s,\theta}$ is independent of the masses m_i’s.

2.3 Self-adjointness of H

Using Proposition 2.6, we are now able to prove Theorem 1.1.

Proof of Theorem 1.1 Let $\varepsilon > 0$ and consider a term $H_{I,i_1,...,i_n}^{(p)}(G_{i_1,...,i_n}^{(p)})$ occurring in the sum defining H_I, see (1.4). Possibly changing variables, we can assume without loss of generality that $H_{I,i_1,...,i_n}^{(p)}(G_{i_1,...,i_n}^{(p)})$ is given by an expression of the form (2.1); hence, to shorten notations, we write $H_{I,i_1,...,i_n}^{(p)}(G_{i_1,...,i_n}^{(p)}) = H_I(G)$, with

$$ G \in \mathcal{D} \left(\left(\prod_{i \in [1,n]_0} (h_i)^\frac{1}{2} - \frac{1}{2} + \varepsilon \right) \left(\prod_{j \in [1,3]} (h_j)^\frac{1}{2} - \frac{s - \varepsilon}{2} + \varepsilon \right) \right). $$

Applying Proposition 2.6 with $\theta = 1 - \frac{2(1-\varepsilon)}{n-1}$ and $s = 1/2 + \kappa$, with κ small enough, we obtain that

$$ \|H_I(G)\varphi\| \lesssim \left\| \left(\prod_{i \in [1,n]_0} (h_i)^\frac{1}{2} - \frac{1}{2} + \varepsilon \right) \left(\prod_{j \in [1,3]} (h_j)^\frac{1}{2} - \frac{s - \varepsilon}{2} + \varepsilon \right) G \right\|_2 \left\| (H_f + 1)^{1-\varepsilon} \varphi \right\|, $$

$$ \hspace{1cm} (2.17) $$

for all $\varphi \in \mathcal{D}(H_f^{1-\varepsilon})$. Next, we observe that

$$ \left\| (H_f + 1)^{1-\varepsilon} \varphi \right\| = \left(\varphi, (H_f + 1)^{2-2\varepsilon} \varphi \right)^{\frac{1}{2}} $$

$$ \leq \left(\mu^2 \left(\varphi, (H_f + 1)^2 \varphi \right) + C_\mu \|\varphi\|^2 \right)^{\frac{1}{2}} $$

$$ \leq \mu \left\| H_f \varphi \right\| + C_\mu \|\varphi\|, $$

$$ \hspace{1cm} (2.18) $$

for any $\mu > 0$, the first inequality being a consequence of Young’s inequality.
Combining (2.17) and (2.18), since \(\mu > 0 \) can be fixed arbitrarily small, we deduce that \(H_{1}(G) \) is relatively \(H_{f} \)-bounded with relative bound 0. Since the other terms in the sum occurring in (1.4) can be treated in the same way, we deduce from the Kato–Rellich theorem that, indeed, \(H \) extends to a self-adjoint operator satisfying \(\mathcal{D}(H) = \mathcal{D}(H_{f}) \). Semi-boundedness of \(H \) and the fact that any core for \(H_{f} \) is a core for \(H \) are other consequences of the Kato–Rellich theorem.

3 Existence of a ground state

In this section, we prove the existence of a ground state for the Hamiltonian \(H \) defined by Theorem 1.1, i.e., we prove Theorem 1.2. In Sect. 3.1, we begin by studying the simplest case where all fermion fields are supposed to be massive. Next, in Sect. 3.2, we consider the case where exactly one field is massless, and, in Sect. 3.3, we consider the general case, using an induction in \(l \in [1, n] \), where \(l \) represents the number of massless fields involved.

3.1 Models with only massive fields

In this section, we suppose that the masses of all the particles are positive. We set

\[
m := \min_{i \in [1, n]} m_i > 0.
\]

We prove the existence of a ground state for \(H \) by adapting a method due to [10] (see also [23]). The proofs follow closely Section 4.2 of [8], the main difference being that we have to use the relative bounds of Proposition 2.6 instead of the usual \(N_{\tau} \) estimates.

We begin by introducing the operators \(U \) and \(\tilde{\Gamma}_{R} \) adapted from [10] (see also [3,16]) to our context. Recall that the antisymmetric Fock space \(\tilde{F} \) over \(L^{2}(\mathbb{R}^{3} \times \{-1/2, 1/2\}) \) has been defined in (1.3). We denote by \(\tilde{\mathcal{F}} \) the antisymmetric Fock space over \(L^{2}(\mathbb{R}^{3} \times \{-1/2, 1/2\}) \oplus L^{2}(\mathbb{R}^{3} \times \{-1/2, 1/2\}) \). Let

\[
U : \tilde{\mathcal{F}} \to \mathcal{F} \otimes \mathcal{F}
\]

be defined by

\[
U \Omega_{\tilde{\mathcal{F}}} = \Omega_{\mathcal{F}} \otimes \Omega_{\mathcal{F}}, \quad U b^{*}(f \oplus g) = (b^{*}(f) \otimes 1) + (-1)^{N} \otimes b^{*}(g))U,
\]

for any \(f, g \in L^{2}(\mathbb{R}^{3} \times \{-1/2, 1/2\}) \), where \(\Omega_{\tilde{\mathcal{F}}} \), respectively \(\Omega_{\mathcal{F}} \), denotes the vacuum in \(\tilde{\mathcal{F}} \), respectively in \(\mathcal{F} \), and \(N = d\Gamma(1) \) is the number operator in \(\mathcal{F} \). The operator \(U \) extends by linearity to a unitary map from \(\tilde{\mathcal{F}} \) to \(\mathcal{F} \otimes \mathcal{F} \). Let \(j_{0} \in C_{c}([0, \infty); [0, 1]) \) be such that \(j_{0} \equiv 1 \) on \([0, 1/2]\) and \(j_{0} \equiv 0 \) on \([1, \infty)\), and let \(j_{\infty} = \sqrt{1 - j_{0}^{2}} \). For \(R > 0 \), let \(j_{R} := j_{0}(y^{2}/R^{2}) \) on \(L^{2}(\mathbb{R}^{3} \times \{-1/2, 1/2\}) \), where \(j_{R} \) stands for \(j_{0} \) or \(j_{\infty} \) and \(y = i\nabla_{k} \). Let
Hamiltonian models of interacting fermion fields

2425

\[j^R : L^2 \left(\mathbb{R}^3 \times \left\{ -\frac{1}{2}, \frac{1}{2} \right\} \right) \to L^2 \left(\mathbb{R}^3 \times \left\{ -\frac{1}{2}, \frac{1}{2} \right\} \right) \oplus L^2 \left(\mathbb{R}^3 \times \left\{ -\frac{1}{2}, \frac{1}{2} \right\} \right), \]

\[j^R(f) := (j_0^R(f), j_{\infty}^R(f)). \]

We then define

\[\tilde{\Gamma}(j^R) : \mathcal{F} \to \mathcal{F} \otimes \mathcal{F}, \quad \tilde{\Gamma}(j^R) := U \Gamma(j^R), \]

where, as usual, for an operator \(a \) on \(L^2(\mathbb{R}^3 \times \{-1/2, 1/2\}) \), the operator \(\Gamma(a) \) on \(\mathcal{F} \) is defined by its restriction to \(\otimes^l a L^2(\mathbb{R}^3 \times \{-1/2, 1/2\}) \) as \(\Gamma(a) = a \otimes \cdots \otimes a \), and \(\Gamma(a) \Omega_{\mathcal{F}} = 1 \).

The “extended” Hilbert space is

\[\mathcal{H}^{\text{ext}} := \mathcal{H} \otimes \mathcal{H}, \]

where, recall, \(\mathcal{H} = \otimes \mathbb{C} F \). The operator \(\tilde{\Gamma}_R : \mathcal{H} \to \mathcal{H}^{\text{ext}} \) is defined by

\[\tilde{\Gamma}_R := \otimes \mathbb{C} \tilde{\Gamma}(j^R), \]

and the extended Hamiltonian, acting on \(\mathcal{H}^{\text{ext}} \), is

\[H^{\text{ext}} := H \otimes 1 + 1 \otimes H_f. \]

Under the conditions of Theorem 1.1, one verifies, by adapting the proof of that theorem in a straightforward way, that \(H_I \otimes 1 \) is relatively \(H^{\text{ext}} \)-bounded with relative bound 0.

Recall that, for \(p \in [0, n] \), the set \(\mathcal{J}_p \) has been defined in (1.5).

Lemma 3.1 Let \(i_0 \in [1, n] \) and \(\varepsilon > 0 \). Suppose that, for all \(p \in [0, n] \) and all set of integers \(\{i_1, \ldots, i_n\} \in \mathcal{J}_p \),

\[G_{i_1, \ldots, i_n}^{(p)} \in \mathcal{D} \left(\prod_{i \in [1, n]} (h_{i}^2)^{1-\frac{1}{n-1}+\varepsilon} \right). \]

Then, for any \(\chi \in C_0^\infty(\mathbb{R}) \) we have that

\[\chi(H^{\text{ext}}) \tilde{\Gamma}_R - \tilde{\Gamma}_R \chi(H) \to 0, \quad R \to \infty. \quad (3.1) \]

Proof The proof can be adapted from that of [8, Lemma 4.3]. The main difference is that we have to use the relative bound of Proposition 2.6 instead of the usual \(N_{\tau} \) estimates. Namely, considering, as in the proof of Theorem 1.1, a particular term of \(H_I \) of the form \(H_{i_1, \ldots, i_n}^{(p)}(G_{i_1, \ldots, i_n}^{(p)}) = H_I(G) \), with \(H_I(G) \) given by (2.1), one can compute
\[
(H_I(G) \otimes \mathbb{1}) \tilde{\Gamma}_R - \tilde{\Gamma}_R H_I(G)
\]
\[
= \int \left(1 - \prod_{i=1}^{n} j_0 \left(\frac{x_i^2}{R^2} \right) \right) G(\xi_1, \ldots, \xi_n) b_{p,0}^n(\xi_1) \ldots b_{p,0}^n(\xi_p) \\
b_{p+1}^0(\xi_{p+1}) \ldots b_n^0(\xi_n) d\xi_1 \ldots d\xi_n
\]
\[
+ \sum_{\{\alpha_i\} \in \{0, \infty\}^n} \sum_{\exists j, \alpha_j \neq 0} \left(\prod_{i=1}^{n} j_{\alpha_i} \left(\frac{x_i^2}{R^2} \right) \right) G(\xi_1, \ldots, \xi_n) b_{p,\alpha}^n(\xi_1) \ldots b_{p,\alpha}^n(\xi_p) \\
b_{p+1}^{\alpha+1}(\xi_{p+1}) \ldots b_n^{\alpha}(\xi_n) d\xi_1 \ldots d\xi_n.
\]

Here we have set \(x_i = i \nabla_k \), \(b_{\alpha,0}^n := b_{\alpha}^n \otimes \mathbb{1} \) and \(b_{\alpha}^n,_{\infty} = (-1)^{N_i} \otimes b^\alpha \), where \(b^\alpha \) stands for \(b \) or \(b^* \) and \(N_i = \int b^*(\xi_i) b(\xi_i) d\xi_i \) is the number operator in the \(i \)th Fock space. The subscript \(\{\alpha_i\} \in \{0, \infty\}^n \), \(\exists j, \alpha_j \neq 0 \) means that, for each term of the sum, at least one of the creations of annihilation operator \(b_{p,\alpha_i} \) is equal to \(b_{\infty,\alpha_i} \).

Proceeding as in the proof of Proposition 2.6, one then verifies that

\[
\left\| \left((H_I(G) \otimes \mathbb{1}) \tilde{\Gamma}_R - \tilde{\Gamma}_R H_I(G) \right) \varphi \right\|
\leq C_{s,\theta} \left\{ \left\| \left(\prod_{i=1}^{n} (h_j^i)^{\delta s} \right) \left(1 - \prod_{i=1}^{n} j_0 \left(\frac{x_i^2}{R^2} \right) \right) G \right\|_2 \\
+ \sum_{\{\alpha_i\} \in \{0, \infty\}^n} \sum_{\exists j, \alpha_j \neq 0} \left\| \left(\prod_{i=1}^{n} (h_j^i)^{\delta s} \right) \left(\prod_{i=1}^{n} j_{\alpha_i} \left(\frac{x_i^2}{R^2} \right) \right) G \right\|_2 \right\} \\
\times \left\| \left(\sum_{i=1}^{n} \left(H_{f,i} \otimes \mathbb{1} + \mathbb{1} \otimes H_{f,i} \right) + 1 \right)^{(n-1)(1-\theta)} \varphi \right\|, \quad (3.2)
\]

for any \(s > 1/2 \) and \(0 \leq \theta \leq 1 \). Fixing \(\theta \) and \(s \) as in the proof of Theorem 1.1, and using that \(H_{f,i} \otimes \mathbb{1} + \mathbb{1} \otimes H_{f,i} \) is relatively \(H^{ext} \)-bounded, one deduces from the previous estimate that

\[
\left\| \left((H_I(G) \otimes \mathbb{1}) \tilde{\Gamma}_R - \tilde{\Gamma}_R H_I(G) \right) (H^{ext} + i)^{-1} \right\|
\leq C_{s,\theta} \left\{ \left\| \left(\prod_{i=1}^{n} (h_j^i)^{\frac{1}{2} - \frac{1}{n+1} + \varepsilon} \right) \left(1 - \prod_{i=1}^{n} j_0 \left(\frac{x_i^2}{R^2} \right) \right) G \right\|_2 \\
+ \sum_{\{\alpha_i\} \in \{0, \infty\}^n} \sum_{\exists j, \alpha_j \neq 0} \left\| \left(\prod_{i=1}^{n} (h_j^i)^{\frac{1}{2} - \frac{1}{n+1} + \varepsilon} \right) \left(\prod_{i=1}^{n} j_{\alpha_i} \left(\frac{x_i^2}{R^2} \right) \right) G \right\|_2 \right\}. \quad (3.3)
\]
Using pseudo-differential calculus together with the fact that G belongs to the domain of $\prod_{i \in \llbracket 1, n \rrbracket} (h_i^{1/2} - \frac{1}{\pi - 1} + \varepsilon)$, it is not difficult to see that the right-hand side of the previous equation goes to 0, as $R \to \infty$. Since the other terms occurring in the definition of H_I can be treated in the same way, the rest of the proof is a straightforward adaptation of [8, Lemma 4.3].

Given Lemma 3.1, one deduces the location of the essential spectrum of H as stated in the following proposition. Again, the proof is a straightforward adaptation of a corresponding result in [8] (see [8, Theorem 3.5]). Details are left to the reader.

Proposition 3.2 Let $i_0 \in \llbracket 1, n \rrbracket$ and $\varepsilon > 0$. Suppose that, for all $p \in \llbracket 0, n \rrbracket$ and all set of integers $\{i_1, \ldots, i_n\} \in \mathcal{I}_p$,

$$G_{i_1, \ldots, i_n}^{(p)} \in \mathcal{D}\left(\prod_{i \in \llbracket 1, n \rrbracket} (h_i^{1/2} - \frac{1}{\pi - 1} + \varepsilon) \right).$$

The essential spectrum of H is given by

$$\sigma_{\text{ess}}(H) = [E + m, \infty),$$

where $E = \inf \sigma(H)$ and $m = \min_{i \in \llbracket 1, n \rrbracket} (m_i) > 0$. In particular, E is a (discrete) eigenvalue of H.

We mention that, as in Proposition 3.2, the location of the essential spectrum for quantum models involving massive fermionic fields has also been established in [3,23]. The proof of [3, Theorem 4.3] is similar to ours, while in [23, Theorem 1.1], it is proven that $[E + m, \infty) \subset \sigma_{\text{ess}}(H)$ by different arguments. It is likely that the abstract result of [23] can be applied to our context.

3.2 Models with one massless field

In this section, we suppose that one field is massless, while all the other ones are massive. To fix ideas, we suppose that $m_1 = 0$ and $m = \min_{i \in \llbracket 2, n \rrbracket} (m_i) > 0$. It will be convenient to write the total Hamiltonian H in (1.6) as $H = H_{m_1=0}$; in other words,

$$H_{m_1=0} = H_f, m_1=0 + H_I = d\Gamma(|k_1|) + \sum_{i=2}^{n} d\Gamma(\sqrt{k_i^2 + m_i^2}) + H_I, \quad m_i > 0, \quad 2 \leq i \leq n,$$

where H_I is given by (1.4). Obviously, the situation is identical if $m_i = 0$ for some $i \in \llbracket 1, n \rrbracket$, while all the other m_i’s are positive.

In order to prove that the Hamiltonian $H_{m_1=0}$ has a ground state, we follow the strategy of [13]. First, we approximate $H_{m_1=0}$ by a family of operators H_{m_1}, where

$$H_{m_1} = H_f, m_1 + H_I = \sum_{i=1}^{n} d\Gamma \left(\sqrt{k_i^2 + m_i^2} \right) + H_I, \quad m_i > 0, \quad 1 \leq i \leq n,$$

Springer
then we let $m_1 \to 0$. Proposition 3.2 shows that H_{m_1} has a ground state Φ_{m_1}. The strategy then consists in showing that Φ_{m_1} converges strongly, as $m_1 \to 0$, to a (non-vanishing) ground state of $H_{m_1=0}$.

We set $E_{m_1} := \inf \sigma (H_{m_1})$ and $E_{m_1=0} := \inf \sigma (H_{m_1=0})$.

Proposition 3.3 Let $i_0 \in [1, n]$ and $\varepsilon > 0$. Suppose that, for all $p \in [0, n]$ and all set of integers $\{i_1, \ldots, i_n\} \in \mathcal{F}_p$,

$$G^{(p)}_{i_1, \ldots, i_n} \in \mathcal{D}\left(\prod_{i \in \llbracket 2, n \rrbracket \backslash i_0} (h_i^j)_{1}^{\frac{1}{2} - \frac{1}{n-1} + \varepsilon} \prod_{j \in \llbracket 1, 3 \rrbracket} (h_j^j)_{1}^{\frac{1}{2} - \frac{5}{6} \frac{1}{n-1} + \varepsilon}\right).$$

Then $E_{m_1} \to E_{m_1=0}$ as $m_1 \downarrow 0$. Moreover,

$$E_{m_1=0} = \lim_{m_1 \downarrow 0} \langle \Phi_{m_1}, H_{m_1=0} \Phi_{m_1} \rangle. \tag{3.4}$$

Proof For $m_1 > m_1' > 0$, we have that $H_{m_1} \geq H_{m_1'} \geq H$. This implies that the map $m_1 \mapsto E_{m_1}$ is non-decreasing and bounded below by $E_{m_1=0}$. Hence, there exists E^* such that

$$\lim_{m_1 \downarrow 0} E_{m_1} =: E^* \geq E_{m_1=0}.$$

We prove that $E^* \leq E_{m_1=0}$. Let $\delta > 0$, and let $\varphi \in \mathcal{D}(H_{m_1=0})$ be a normalized vector such that $\langle \varphi, H_{m_1=0} \varphi \rangle \leq E_{m_1=0} + \delta$. Note that

$$H_{m_1} \leq \Gamma(|k_1| + m_1) + \sum_{i \in \llbracket 2, n \rrbracket} \Gamma\left(\sqrt{k_i^2 + m_i^2}\right) + H_1 \leq H_{m_1=0} + m_1 N_1,$$

where $N_1 = \int b_i^*(\xi) b_1(\xi) d\xi_1$ is the number operator in the first Fock space.

Let $\bar{\varphi}_\ell = 1_{[0, \ell]}(N_1) \varphi$. Clearly, since N_1 commutes with $\Gamma((k_i^2 + m_i^2)^{1/2})$, $i \in [1, n]$, we have that

$$\lim_{\ell \to \infty} \left\langle \bar{\varphi}_\ell, H_{f, m_1=0} \bar{\varphi}_\ell \right\rangle = \left\langle \varphi, H_{f, m_1=0} \varphi \right\rangle.$$

Moreover, applying Proposition 2.4, we see that there exist $a > 0$ and $b > 0$ such that

$$\left|\left\langle \bar{\varphi}_\ell - \varphi, H_1 (\bar{\varphi}_\ell - \varphi) \right\rangle\right| \leq a \left\| \bar{\varphi}_\ell - \varphi, H_{f, m_1=0} (\bar{\varphi}_\ell - \varphi) \right\| + b \| \bar{\varphi}_\ell - \varphi \|^2,$$

which tends to zero as $\ell \to \infty$. This shows that, fixing ℓ large enough, we have

$$\left\langle \bar{\varphi}_\ell - \varphi, H_{m_1=0} (\bar{\varphi}_\ell - \varphi) \right\rangle \leq \delta,$$
and therefore

\[E^* \leq \langle \tilde{\phi}_\ell, H_{m_1} \tilde{\phi}_\ell \rangle \]
\[\leq \langle \tilde{\phi}_\ell, H_{m_1=0} \tilde{\phi}_\ell \rangle + m_1 \langle \tilde{\phi}_\ell, N_1 \tilde{\phi}_\ell \rangle \]
\[\leq \langle \varphi, H_{m_1=0} \varphi \rangle + \delta + m_1 \langle \tilde{\phi}_\ell, N_1 \tilde{\phi}_\ell \rangle \]
\[\leq E + 2\delta + m_1 \langle \tilde{\phi}_\ell, N_1 \tilde{\phi}_\ell \rangle. \]

Letting \(m_1 \to 0 \), we obtain that

\[E^* \leq E + 2\delta. \]

Hence, \(E^* \leq E \) since \(\delta > 0 \) is arbitrary.

To prove (3.4), it suffices to observe that

\[E_{m_1=0} \leq \langle \Phi_{m_1}, H_{m_1=0} \Phi_{m_1} \rangle \leq \langle \Phi_{m_1}, H_{m_1} \Phi_{m_1} \rangle = E_{m_1}. \]

Letting \(m_1 \to 0 \) concludes the proof. \(\Box \)

The next step is to prove that \(\Phi_{m_1} \) converges strongly, as \(m_1 \to 0 \), along some subsequence, to a non-vanishing vector of the Hilbert space which will turn out to be a ground state of \(H_{m_1=0} \). An important ingredient is to control the expectation of the number operator \(N_1 \) in the approximate ground state \(\Phi_{m_1} \), uniformly in \(m_1 > 0 \). This is the purpose of the following proposition.

Proposition 3.4 Let \(i_0 \in [1, n] \) and \(\epsilon > 0 \). Suppose that, for all \(p \in [0, n] \) and all set of integers \(\{i_1, \ldots, i_n\} \in \mathcal{I}_p \),

\[G_{i_1,\ldots,i_n}^{(p)} \in \mathcal{D}\left(\prod_{i \in [2,n]} (h_j^i)^{\frac{1}{2}-\frac{1}{n-\epsilon}+\epsilon} \right) \]

For a.e. \(\xi_1 = (k_1, \lambda_1) \in \mathbb{R}^3 \times \{-1/2, 1/2\}, k_1 \neq 0 \), we have that

\[\| b_1(\xi_1) \Phi_{m_1} \| \leq C_0 |k_1|^{-1} \sum_{i=0}^n \sum_{i_2,\ldots,i_n} \left(\prod_{i \in [2,n]} (h_j^i)^{\frac{1}{2}-\frac{1}{n-\epsilon}+\epsilon} \right) G_{1,i_2,\ldots,i_n}^{(p)}(\xi_1, \cdot, \ldots, \cdot). \]

(3.5)

where \(C_0 \) is a positive constant independent of \(m_1 \) and the sum runs over all integers \(i_2, \ldots, i_n \) such that \(\{i_2, \ldots, i_n\} = \{2, \ldots, n\} \), \(i_2 < \cdots < i_p \) and \(i_{p+1} < \cdots < i_n \).

Proof We have to distinguish the case where the number of different fields, \(n \), is even from that where it is odd.

Suppose first that \(n \) is even. Since \(\Phi_{m_1} \) is a ground state of \(H_{m_1} \), we have that

\[b_1(\xi_1)(H_{m_1} - E_{m_1}) \Phi_{m_1} = 0, \]
and the pull-through formula then yields

\[(H_{m_1} - E_{m_1} + (k_1^2 + m_1^2)^{1/2})b_1(\xi_1)\Phi_{m_1} + [b_1(\xi_1), H_I]\Phi_{m_1} = 0. \quad (3.6)\]

Recalling expression (1.4) of H_I, a direct computation shows that

\[[b_1(\xi_1), H_I] = \sum_{p=0}^{n} \sum_{i_2, \ldots, i_n} \int G^{(p)}_{1,i_2,\ldots,i_n}(\xi_1, \ldots, \xi_n)b^*_{i_2}(\xi_{i_2}) \ldots b^*_{i_p}(\xi_{i_p})b_{i_p+1}(\xi_{i_{p+1}}) \ldots b_{i_n}(\xi_{i_n})d\xi_2 \ldots d\xi_n, \quad (3.7) \]

where the second sum runs over all integers i_2, \ldots, i_n such that $\{i_2, \ldots, i_n\} = \{2, \ldots, n\}$, $i_2 < \cdots < i_p$ and $i_{p+1} < \cdots < i_n$. Applying Proposition 2.6, we obtain that

\[\| [b_1(\xi_1), H_I]\Phi_{m_1} \| \leq C_{s,\theta,n} \sum_{p=0}^{n} \sum_{i_2, \ldots, i_n} \left\| (\prod_{j \in [1,3]} (h_j^i)^{\theta_j}) G_{1,i_2,\ldots,i_n}(\xi_1, \ldots, \cdot) \right\|_2 \]

\[\left(\sum_{i \in [2,n]} H_{f,i} + 1 \right) \frac{n-2}{2} (1-\theta)^{1-s} \|\Phi_{m_1}\|, \]

for any $s > 1/2$ and $0 \leq \theta \leq 1$, where $C_{s,\theta,n}$ is a positive constant independent of $m_1 > 0$. Fixing s and θ as in the proof of Theorem 1.1, it is then not difficult to deduce from the previous estimate that

\[\| [b_1(\xi_1), H_I]\Phi_{m_1} \| \leq C \sum_{p=0}^{n} \sum_{i_2, \ldots, i_n} \left\| (\prod_{j \in [1,3]} (h_j^i)^{\frac{1}{2} - \frac{1}{p-1} + \epsilon}) G_{1,i_2,\ldots,i_n}(\xi_1, \ldots, \cdot) \right\|_2 \]

\[\left(\sum_{i \in [2,n]} H_{f,i} + 1 \right) \Phi_{m_1}, \]

where $C > 0$ does not depend on m_1. Together with (3.6), since

\[\| (H_{m_1} - E_{m_1} + (k_1^2 + m_1^2)^{1/2})^{-1} \| \leq |k_1|^{-1}, \]
we obtain that
\[
\left\| b_1(\xi_1) \Phi_{m_1} \right\| \leq C |k_1|^{-1} \sum_{p=0}^{n} \sum_{i_2, \ldots, i_n} \left\| \left(\prod_{i \in \llbracket 2, n \rrbracket}^{\left(h_i^{\frac{1}{2} - \frac{1}{n-1} + \epsilon} \right) G_{1, i_2, \ldots, i_n}^{(p)}(\xi_1, \cdot, \cdot, \cdot) \right) \right\|_2.
\]
Moreover, applying (2.16) in Remark 2.7, with \(I = \{1\} \), shows that
\[
\left\| H_I \Phi_{m_1} \right\| \leq C' \left\| (H_{f,m_1} + 1) \Phi_{m_1} \right\|.
\]
for some positive constant \(C' \) independent of \(m_1 \). Combined with the previous equation and the fact that \(\left\| H_{m_1} \Phi_{m_1} \right\| = |E_{m_1}| \) is uniformly bounded in \(m_1 \geq 0 \) in a compact set (since \(m_1 \rightarrow E_{m_1} \) is non-decreasing), this yields that
\[
\left\| b_1(\xi_1) \Phi_{m_1} \right\| \leq C'' |k_1|^{-1} \sum_{p=0}^{n} \sum_{i_2, \ldots, i_n} \left\| \left(\prod_{i \in \llbracket 2, n \rrbracket}^{\left(h_i^{\frac{1}{2} - \frac{1}{n-1} + \epsilon} \right) G_{1, i_2, \ldots, i_n}^{(p)}(\xi_1, \cdot, \cdot, \cdot) \right) \right\|_2,
\]
with \(C'' > 0 \) independent of \(m_1 \). This proves (3.5) in the case where \(n \) is even.

If \(n \) is odd, the proof has to be modified as follows. Using anti-commutation relations, we now find that
\[
[b_1(\xi_1), H_I] = -2H_I b_1(\xi_1) + H_I'(\xi_1),
\]
where
\[
H_I'(\xi_1) := \sum_{p=0}^{n} \sum_{i_2, \ldots, i_n} \int G_{1, i_2, \ldots, i_n}^{(p)}(\xi_1, \ldots, \xi_n) b_{i_2}^*(\xi_2) \ldots b_{i_p}^*(\xi_{i_p}) b_{i_{p+1}}(\xi_{i_{p+1}}) \ldots b_{i_n}(\xi_{i_n}) d\xi_2 \ldots d\xi_n.
\]
Identity (3.6) is thus replaced by
\[
(H_{m_1} - 2H_I - E_{m_1} + (k_1^2 + m_1^2)^{\frac{1}{2}}) b_1(\xi_1) \Phi_{m_1} + H_I'(\xi_1) \Phi_{m_1} = 0.
\]
Now, using that \(n \) is odd, a direct computation gives
\[
(-1)^N H_{m_1} (-1)^N = H_{m_1} - 2H_I,
\]
where \(N = \sum_{i=1}^{n} \int b_i^*(\xi_i) b_i(\xi_i) d\xi_i \) is the total number operator. Therefore, \(H_{m_1} \) and \(H_{m_1} - 2H_I \) are unitarily equivalent and, hence, we have that \(\inf \sigma (H_{m_1} - 2H_I) = E_{m_1} \).
This shows that \((H_{m_1} - 2H_I - E_{m_1} + (k_1^2 + m_1^2)^{1/2})^{1/2}\) is invertible with inverse bounded by \(|k_1|^{-1}\). The rest of the proof is identical to that of the previous case. \(\square\)

We mention that, to treat the case where \(n\) is odd in the preceding proof, another possibility is to use an argument of [2], commuting the operators \((-1)^{N}b_1(\xi_1)\) instead of \(b_1(\xi_1)\) in (3.8).

The following further technical estimate will be used in the proof of the existence of a ground state for \(H_{m_1} = 0\).

Proposition 3.5 Under the conditions of Proposition 3.4, for a.e. \(\xi_1 = (k_1, \lambda_1) \in \mathbb{R}^3 \times \{-1/2, 1/2\}, k_1 \neq 0\), we have that

\[
\left\| \nabla_{k_1} (b_1(\xi_1) \Phi_{m_1}) \right\|_2 \leq C_0 |k_1|^{-2} \sum_{p=0}^n \sum_{i_2, \ldots, i_n} \left\| \left(\prod_{i=\llbracket 2, n \rrbracket_{i_0}} (h_i^j)^{\frac{1}{2} - \frac{1}{n-1} + \varepsilon} G_{1, i_2, \ldots, i_n}^{(p)}(\xi_1, \ldots, \cdot) \right) \right\|_2
\]

\[+ C_0 |k_1|^{-1} \sum_{p=0}^n \sum_{i_2, \ldots, i_n} \left(\prod_{i=\llbracket 2, n \rrbracket_{i_0}} (h_i^j)^{\frac{1}{2} - \frac{1}{n-1} + \varepsilon} \right) \left(\nabla_{k_1} G_{1, i_2, \ldots, i_n}^{(p)}(\xi_1, \ldots, \cdot) \right) \right\|_2^2.
\]

(3.9)

where \(C_0\) is a positive constant independent of \(m_1\).

Proof Consider, for instance, the case where \(n\) is even. We rewrite (3.6) as

\[
b_1(\xi_1) \Phi_{m_1} = -(H_{m_1} - E_{m_1} + (k_1^2 + m_1^2)^{1/2})^{-1} [b_1(\xi_1), H_I] \Phi_{m_1}.
\]

(3.10)

Differentiating w.r.t. \(k_1\) and using (3.7), we obtain that

\[
\nabla_{k_1} (b_1(\xi_1) \Phi_{m_1}) = -\nabla_{k_1} \left(\left(H_{m_1} - E_{m_1} + (k_1^2 + m_1^2)^{1/2} \right)^{-1} \right)
\]

\[
\sum_{p=0}^n \sum_{i_2, \ldots, i_n} \int G_{1, i_2, \ldots, i_n}^{(p)}(\xi_1, \ldots, \xi_n) b_{i_2}^*(\xi_{i_2}) \ldots b_{i_p}^*(\xi_{i_p})
\]

\[
b_{i_{p+1}}(\xi_{i_{p+1}}) \ldots b_{i_n}(\xi_{i_n}) \Phi_{m_1} d\xi_2 \ldots d\xi_n
\]

\[- \left(H_{m_1} - E_{m_1} + (k_1^2 + m_1^2)^{1/2} \right)^{-1}
\]

\[
\sum_{p=0}^n \sum_{i_2, \ldots, i_n} \int (\nabla_{k_1} G_{1, i_2, \ldots, i_n}^{(p)})(\xi_1, \ldots, \xi_n) b_{i_2}^*(\xi_{i_2}) \ldots b_{i_p}^*(\xi_{i_p})
\]

\[
b_{i_{p+1}}(\xi_{i_{p+1}}) \ldots b_{i_n}(\xi_{i_n}) \Phi_{m_1} d\xi_2 \ldots d\xi_n.
\]

Proceeding as in the proof of Proposition 3.4, it is not difficult to deduce from the previous equality that (3.9) holds.

The proof of (3.9) in the case where \(n\) is odd is analogous, using (3.8) instead of (3.6). \(\square\)
Remark 3.6 Proceeding in the same way as in Propositions 3.4 and 3.5, one can estimate the norms of \(b(\xi_1) \Phi_{m_1} \) and \(\nabla_k (b(\xi_1) \Phi_{m_1}) \), \(l \in [2, n] \), as

\[
\| b_l(\xi_1) \Phi_{m_1} \| \leq C_0 \omega_l(k_l)^{-1} \times \sum_{p=0}^{n} \sum_{i_1, \ldots, i_n} \left\| \left(\prod_{i \in [2, n], j \in [1, 3]} \left(h_j^l \right)^{\frac{1}{2} - \frac{\pi}{2\pi} + \epsilon} \right) \left(\prod_{i \in [1, l], j \in [1, 3]} \left(h_j^l \right)^{-\frac{3}{2} - \frac{5}{2\pi} + \epsilon} \right) G_{i_1, i_2, \ldots, i_n}^{(p)} (\xi_1, \ldots) \right\|_2,
\]

and

\[
\| \nabla_k (b_l(\xi_1)) \Phi_{m_1} \| \leq C_0 \omega_l(k_l)^{-2} \times \left\{ \sum_{p=0}^{n} \sum_{i_1, \ldots, i_n} \left\| \left(\prod_{i \in [2, n], j \in [1, 3]} \left(h_j^l \right)^{\frac{1}{2} - \frac{\pi}{2\pi} + \epsilon} \right) \left(\prod_{i \in [1, l], j \in [1, 3]} \left(h_j^l \right)^{-\frac{3}{2} - \frac{5}{2\pi} + \epsilon} \right) G_{i_1, i_2, \ldots, i_n}^{(p)} (\xi_1, \ldots) \right\|_2 \right. \\
+ \left. \omega_l(k_l) \sum_{p=0}^{n} \sum_{i_1, \ldots, i_n} \left\| \left(\prod_{i \in [2, n], j \in [1, 3]} \left(h_j^l \right)^{\frac{1}{2} - \frac{\pi}{2\pi} + \epsilon} \right) \left(\prod_{i \in [1, l], j \in [1, 3]} \left(h_j^l \right)^{-\frac{3}{2} - \frac{5}{2\pi} + \epsilon} \right) (\nabla_k G_{i_1, i_2, \ldots, i_n}^{(p)} (\xi_i, \ldots)) \right\|_2 \right\},
\]

where \(\omega_l(k_l) = (k_l^2 + m_l^2)^{1/2} \) and \(C_0 \) is a positive constant independent of \(m_1 \). These estimates are not optimal, but they are sufficient for our purpose.

We can finally prove the main theorem of this section.

Theorem 3.7 Under the conditions of Proposition 3.4, the operator \(H_{m_1=0} \) has a ground state, i.e., there exists \(\Phi_{m_1=0} \in \mathcal{D}(H_{m_1=0}) \), \(\Phi_{m_1=0} \neq 0 \), such that

\[
H_{m_1=0} \Phi_{m_1=0} = E_{m_1=0} \Phi_{m_1=0}.
\]

Proof Let \((m_1^{(j)})_{j \in \mathbb{N}} \) be a decreasing sequence of positive real numbers such that \(m_1^{(j)} \to 0 \) as \(j \to \infty \). To shorten notations, we denote by \(\Phi_j \in \mathcal{D}(H_{m_1^{(j)}}) \) a normalized ground state of \(H_{m_1^{(j)}} \), which exists according to Proposition 3.2. By Proposition 3.3, we have that

\[
\lim_{j \to \infty} \| (H_{m_1^{(j)}} - E_{m_1^{(j)}})^{\frac{1}{2}} \Phi_j \| = 0.
\]

To prove the theorem, we claim that it suffices to show that \((\Phi_j) \) converges strongly, as \(j \to \infty \). Indeed, if we prove that there exists \(\Phi_{m_1=0} \) such that \(\| \Phi_j - \Phi_{m_1=0} \| \), as \(j \to \infty \), we can deduce from the previous equality that \(\Phi_{m_1=0} \in \mathcal{D}((H_{m_1=0} - E_{m_1=0})^{\frac{1}{2}}) \), \(\| \Phi_{m_1=0} \| = 1 \) and \((H_{m_1=0} - E_{m_1=0})^{\frac{1}{2}} \Phi_{m_1=0} = 0 \). The statement of the theorem then follows.
Now, we prove that \(\Phi_j \) converges strongly as \(j \to \infty \). We decompose

\[
\Phi_j = \sum_{l_1, \ldots, l_n \in \mathbb{N}} \Phi_{(l_1, \ldots, l_n)}(\xi_1 \ldots, \xi_n) \in \bigotimes_a L^2 \left(\mathbb{R}^3 \times \left\{ \left\{ -\frac{1}{2}, 0, \frac{1}{2} \right\} \right\} \right) \times \cdots \times \bigotimes_a L^2 \left(\mathbb{R}^3 \times \left\{ \left\{ -\frac{1}{2}, 0, \frac{1}{2} \right\} \right\} \right).
\]

Recall that \(N \) stands for the total number of operators in \(\mathcal{H} \). By Proposition 3.4 and Remark 3.6, using Hypothesis (1.8), one can see that \(\langle \Phi_j, N \Phi_j \rangle \) is uniformly bounded in \(j \in \mathbb{N} \). From this property, one can deduce that the strong convergence of \(\Phi_{(l_1, \ldots, l_n)} \) for any \(l_1, \ldots, l_n \in \mathbb{N} \) implies the strong convergence of \(\Phi_j \).

Moreover, we claim that \(\) if \(j \) is large enough. An analogous estimate holds if \(\xi_1 \) is replaced by any of the other variable \(\xi_i^{(l)} \). This shows that it suffices to establish the \(L^2 \) convergence of \(\Phi_{(l_1, \ldots, l_n)} \) on any compact subset of \(\mathbb{R}^3 \times (-1/2, 1/2)^{l_1+\cdots+l_n} \).

Here \(B_\Lambda(\cdot \Phi_{(l_1, \ldots, l_n)}) \) should be understood as the map

\[
(\xi_1^{(1)} \ldots, \xi_1^{(l_1)} \ldots, \xi_n^{(1)} \ldots, \xi_n^{(l_n)}) \mapsto \| B_\Lambda(\Phi_{(l_1, \ldots, l_n)}(\xi_1^{(1)} \ldots, \xi_1^{(l_1)} \ldots, \xi_n^{(1)} \ldots, \xi_n^{(l_n)})) \|^2.
\]

Clearly, the right-hand side of (3.11) can be made arbitrarily small, uniformly in \(j \in \mathbb{N} \), for \(\Lambda \) large enough. An analogous estimate holds if \(\xi_1^{(1)} \) is replaced by any of the other variable \(\xi_i^{(l)} \). This shows that it suffices to establish the \(L^2 \) convergence of \(\Phi_{(l_1, \ldots, l_n)} \) on any compact subset of \(\mathbb{R}^3 \times (-1/2, 1/2)^{l_1+\cdots+l_n} \).

Now we prove that \(\Phi_{(l_1, \ldots, l_n)} \) converges strongly on

\[
B_\Lambda^{l_1+\cdots+l_n} \subset \mathbb{R}^3 \times (-1/2, 1/2)^{l_1+\cdots+l_n}.
\]
We note that, since \(\| \Phi_j \| = 1 \) for all \(j \in \mathbb{N} \), \((\Phi_{j}^{(l_1, \ldots, l_n)})_{j \in \mathbb{N}} \) is a bounded sequence in \(L^2 \), hence, by the Banach–Alaoglu theorem, it converges weakly in \(L^2 \), along some subsequence. Consider a weakly convergent subsequence which, to simplify, is denoted by the same symbol \((\Phi_{j}^{(l_1, \ldots, l_n)})_{j \in \mathbb{N}} \). We define the space \(W^{1,r}(B_{\Lambda}^{l_1, \ldots, l_n}) \) as the set of all measurable maps \(f \) from \(B_{\Lambda}^{l_1, \ldots, l_n} \) to \(\mathbb{C} \) such that, for all values of the spin variables \((\lambda_1^{(1)}, \ldots, \lambda_n^{(l_n)}) \), the map

\[
f(\cdot, \lambda_1^{(1)}, \ldots, \lambda_1^{(2)}, \ldots, \lambda_n^{(l_n)})
\]

belongs to the Sobolev space \(W^{1,r}(|{k}| \leq \Lambda)^{l_1, \ldots, l_n} \). We claim that, for all \(j \in \mathbb{N} \), \(\Phi_j^{(l_1, \ldots, l_n)} \) belongs to \(W^{1,r}(B_{\Lambda}^{l_1, \ldots, l_n}) \) provided that \(1 \leq r < 2 \). Indeed, since \(r < 2 \) and \(\Phi_j^{(l_1, \ldots, l_n)} \in L^2(B_{\Lambda}^{l_1, \ldots, l_n}) \), we see that \(\Phi_j^{(l_1, \ldots, l_n)} \in L^r(B_{\Lambda}^{l_1, \ldots, l_n}) \). Moreover, similarly as in [13], we can compute

\[
\int_{B_{\Lambda}^{l_1, \ldots, l_n}} |(\nabla_{k_1}^{(1)} \Phi_j^{(l_1, \ldots, l_n)})(x_1, \ldots, x_n)|^r \, dx_1 \ldots dx_n
\]

\[
= \left(\frac{1}{\sqrt{1 \cdot 1}} \right) \int_{B_{\Lambda}^{l_1, \ldots, l_n}} |(\nabla_{k_1}^{(1)} b_1(x_1) \Phi_j^{(l_1-1, l_2, \ldots, l_n)})(x_1, \ldots, x_n)|^r \, dx_1 \ldots dx_n
\]

\[
\leq \int_{B_{\Lambda}^{l_1, \ldots, l_n}} |(\nabla_{k_1}^{(1)} b_1(x_1) \Phi_j^{(l_1-1, l_2, \ldots, l_n)})(x_1, \ldots, x_n)|^2 \, dx_1 \ldots dx_n
\]

\[
\leq \int_{B_{\Lambda}^{l_1, \ldots, l_n}} \| \nabla_{k_1}^{(1)}(b_1(x_1) \Phi_j) \|_{W^{1,2}} \, dx_1,
\]

the first inequality being a consequence of Hölder’s inequality. Applying Proposition 3.5, we obtain that

\[
\int_{B_{\Lambda}^{l_1, \ldots, l_n}} |(\nabla_{k_1}^{(1)} \Phi_j^{(l_1, \ldots, l_n)})(x_1, \ldots, x_n)|^r \, dx_1 \ldots dx_n
\]

\[
\leq \sum_{p=0}^n \sum_{i_j = 2, n_j = 0} |k_1^{(1)}|^{-2r} \left(\prod_{i \in [2, n], j \in [1, 3]} (h_i)^{-1 - \frac{1}{p-1} + \varepsilon} \right) \left(\nabla_{k_1}^{(1)} G_{1, i_2, \ldots, i_n}(x_1^{(1)}, \ldots, x_n) \right)^r \, dx_1^{(1)},
\]

which is finite by assumption. In the same way, one can verify that the other derivatives \(\nabla_{k_1}^{(1)} \Phi_j^{(l_1, \ldots, l_n)} \) belong to \(L^r \). Hence, \(\Phi_j^{(l_1, \ldots, l_n)} \in W^{1,r}(B_{\Lambda}^{l_1, \ldots, l_n}) \).

Finally, since \((\Phi_j^{(l_1, \ldots, l_n)})_{j \in \mathbb{N}} \) converges weakly in \(L^2(B_{\Lambda}^{l_1, \ldots, l_n}) \), it also converges weakly in \(W^{1,r}(B_{\Lambda}^{l_1, \ldots, l_n}) \), because \(r < 2 \). As in [13], applying the Rellich–Kondrachov theorem, one then obtains that \((\Phi_j^{(l_1, \ldots, l_n)})_{j \in \mathbb{N}} \) converges strongly in \(L^2(B_{\Lambda}^{l_1, \ldots, l_n}) \). This concludes the proof of the theorem.
3.3 Proof of Theorem 1.2

In order to conclude the proof of Theorem 1.2, it suffices to proceed by induction in the following way. The induction hypothesis \((H_l)\) is that, if \(l\) particles are massless and \(n-l\) are massive, then \(H\) has a ground state. It has been shown in Sect. 3.1 that \((H_0)\) holds. Assuming that \((H_l)\) holds true, we proceed to prove that \((H_{l+1})\) holds exactly in the same way as in Sect. 3.2. More precisely, assuming that \(m_1 = m_2 = \cdots = m_{l+1} = 0\) and \(\min_{i \in [l+2,n]} m_i > 0\), the total Hamiltonian

\[
H \equiv H_{m_1=0,...,m_l=0,m_{l+1}=0}
\]

is approximated by the family of operators

\[
H_{m_1=0,...,m_l=0,m_{l+1}}, \quad m_{l+1} > 0,
\]

where the free energy for the \((l+1)\)th massless field, \(d\Gamma(|k_{l+1}|)\), is replaced by \(d\Gamma((k_{l+1}^2 + m_{l+1}^2)^{1/2})\). By the induction hypothesis, \(H_{m_1=0,...,m_l=0,m_{l+1}}\) has a normalized ground state \(\Psi_{m_1=0,...,m_l=0,m_{l+1}}\). One shows that \(\Psi_{m_1=0,...,m_l=0,m_{l+1}}\) converges strongly, as \(m_{l+1} \to 0\), to a ground state of \(H_{m_1=0,...,m_l=0,m_{l+1}=0}\) by adapting the proof given in Sect. 3.2 in a straightforward way. Details are left to the reader.

Acknowledgements

JF and J-CG are grateful to J-M Barbaroux for many discussions and fruitful collaborations. We thank an anonymous referee for useful comments.

References

1. Alvarez, B., Faupin, J.: Scattering theory for mathematical models of the weak interaction. Rev. Math. Phys. (to appear)
2. Ammari, Z.: On odd perturbations of free fermion fields. Lett. Math. Phys. 63, 241–253 (2003)
3. Ammari, Z.: Scattering theory for a class of fermionic Pauli–Fierz models. J. Funct. Anal. 208, 302–359 (2004)
4. Aschbacher, W., Barbaroux, J.-M., Faupin, J., Guillot, J.-C.: Spectral theory for a mathematical model of the weak interaction: the decay of the intermediate vector bosons \(W^{\pm}\), II. Ann. Henri Poincaré 12(8), 1539–1570 (2011)
5. Bach, V., Fröhlich, J., Sigal, I.M.: Quantum electrodynamics of confined nonrelativistic particles. Adv. Math. 137, 299–395 (1998)
6. Barbaroux, J.-M., Faupin, J., Guillot, J.-C.: Local decay for weak interactions with massless particles. J. Spectr. Theor. 9(2), 453–512 (2019)
7. Barbaroux, J.-M., Guillot, J.-C.: Spectral theory for a mathematical model of the weak interactions: the decay of the intermediate vector bosons \(W^{+/−}\). Adv. Math. Phys. 009, Article ID 978903 (2009)
8. Barbaroux, J.-M., Faupin, J., Guillot, J.-C.: Spectral theory near thresholds for weak interactions with massive particles. J. Spectr. Theory 6, 505–555 (2016)
9. Dai, L.R., Oset, E.: Helicity amplitudes in \(B \to D^∗\nu_l\) decay. arXiv:1808.02876
10. Dereziński, J., Gérard, C.: Asymptotic completeness in quantum field theory. Massive Pauli–Fierz Hamiltonians. Rev. Math. Phys. 11, 383–450 (1999)
11. Glimm, J., Jaffe, A.: Quantum Field Theory and Statistical Mechanics. Birkhäuser Boston Inc., Boston (1985). Expositions of articles published 1969–1977
12. Greiner, W., Müller, B.: Gauge Theory of Weak Interactions, 3rd edn. Springer, Berlin (2000)
13. Griesemer, M., Lieb, E.H., Loss, M.: Ground states in non-relativistic quantum electrodynamics. Invent. Math. 145, 557–595 (2001)
14. Guinti, C., Kim, C.W.: Fundamentals of Neutrino Physics and Astrophysics. Oxford University Press, CPI Group (UK) Ltd, Oxford (2016)
15. Huber, T., Qin, Q., Keri V os, K.: Five-particle contributions to the inclusive rare \(B \rightarrow X_{s(d)f^+f^-} \) decays. arXiv:1806.11521
16. Hübner, M., Spohn, H.: Radiative decay: nonperturbative approaches. Rev. Math. Phys. 7, 363–387 (1995)
17. Kane, G.: Modern Elementary Particle Physics. Cambridge University Press, Cambridge (2017)
18. Li, Q., Wang, T., Jiang, Y., Yuan, H., Zhou, T., Wang, G.-L.: Decays of \(B, B_s \) and \(B_c \) to \(D \)-wave heavy–light mesons. arXiv:1607.07167
19. Olive, K.A., et al.: Particle data group. Chin. Phys. C 38(9), 090001 (2014)
20. Pizzo, A.: One-particle (improper) states in Nelson’s massless model. Ann. Henri Poincaré 4, 439–486 (2003)
21. Reed, M., Simon, B.: Methods of Modern Mathematical Physics, vol. I and II. Academic Press, New York (1972)
22. Roman, P.: Theory of Elementary Particles. North Holland, Amsterdam (1961)
23. Takaesu, T.: Essential spectrum of a fermionic quantum field model. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 17, 1450024 (2014)
24. Weinberg, S.: The Quantum Theory of Fields, vol. I. Cambridge University Press, Cambridge (2005)
25. Weinberg, S.: The Quantum Theory of Fields, vol. II. Cambridge University Press, Cambridge (2005)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.