Simple single field inflation models and the running of spectral index

GAO Qing¹, GONG YunGui¹*, LI TianJun²,³* & YE Tian³

¹MOE Key Laboratory of Fundamental Quantities Measurement, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China;
²State Key Laboratory of Theoretical Physics and Kavli Institute for Theoretical Physics China, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China;
³School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054, China

Received April 30, 2014; accepted May 19, 2014; published online June 18, 2014

The BICEP2 experiment confirms the existence of primordial gravitational wave with the tensor-to-scalar ratio $r = 0$ ruled out at 7σ level. The consistency of this large value of r with the Planck data requires a large negative running n_s' of the scalar spectral index. Herein we propose two types of the single field inflation models with simple potentials to study the possibility of the consistency of the models with the BICEP2 and Planck observations. One type of model suggested herein is realized in the supergravity model building. These models fail to provide the needed n_s' even though both can fit the tensor-to-scalar ratio and spectral index.

The BICEP2 experiment confirms the existence of primordial gravitational wave with the tensor-to-scalar ratio $r = 0$ ruled out at 7σ level. The consistency of this large value of r with the Planck data requires a large negative running n_s' of the scalar spectral index. Herein we propose two types of the single field inflation models with simple potentials to study the possibility of the consistency of the models with the BICEP2 and Planck observations. One type of model suggested herein is realized in the supergravity model building. These models fail to provide the needed n_s' even though both can fit the tensor-to-scalar ratio and spectral index.

PACS number(s): 98.80.Cq, 98.80.Es

Citation: Gao Q, Gong Y G, Li T J, et al. Simple single field inflation models and the running of spectral index. Sci China-Phys Mech Astron, 2014, 57: 1442–1448, doi: 10.1007/s11433-014-5519-9

1 Introduction

The observed temperature fluctuations in the cosmic microwave background radiation (CMB) strongly suggested that our Universe might experience an accelerated expansion, more precisely, inflation [1–4], at a seminal stage of evolution. In addition to the solution to the problems in the standard big bang cosmology such as the flatness, horizon, and monopole problems, the inflation models predict the cosmological perturbations in the matter density from the inflaton vacuum fluctuations, which describes the primordial power spectrum consistently. Besides the scalar perturbation, the tensor perturbation is generated as well, which gives the B-mode polarisation as a signature of the primordial gravitational wave.

Recently, the BICEP2 experiment has discovered the primordial gravitational wave with the B-mode power spectrum around $\ell \sim 80$ [5]. If it is confirmed, it will seemingly forward the study in fundamental physics. BICEP2 experiment [5] has measured the tensor-to-scalar ratio to be $r = 0.20^{+0.07}_{-0.05}$ at the 68% confidence level for the lensed-ΛCDM model, with $r = 0$ disfavoured at 7.0σ level. Subtracting the various dust models and re-deriving the r constraint still results in high significance of detection, it results in $r = 0.16^{+0.06}_{-0.05}$. From the first-year observations, the Planck temperature power spectrum [6] in combination with the nine years of Wilkinson Microwave Anisotropy Probes (WMAP) polarization low-multipole likelihood [7] and the high-multipole spectra from the Atacama Cosmology Telescope (ACT) [8] and the South Pole Telescope (SPT) [9]
(Planck+WP+highL) constrained the tensor-to-scalar ratio to be $r < 0.11$ at the 95% confidence level [10,11]. Therefore, the BICEP2 result is in disagreement with the Planck result. To reduce the inconsistency between Planck and BICEP2 experiments, we need to include the running of the spectral index $n_s' = d n_s / d \ln k$. With the running of the spectral index, the 68% constraints from the Planck+WP+highL data are $n_s = 0.9570 \pm 0.0075$ and $n_s' = -0.022 \pm 0.010$ with $r < 0.26$ at the 95% confidence level. Thus, the running of the spectral index needs to be smaller than 0.008 at the 3σ level for any viable inflation model.

Because the different inflationary models predict different magnitudes for the tensor perturbations, such large tensor-to-scalar ratio r from the BICEP2 measurement will give a strong constraint on the inflation models. Also, the inflaton potential is around the Grand Unified Theory (GUT) scale 2×10^{16} GeV, and Hubble scale is about 1.0×10^{16} GeV. From the naive analysis of Lyth bound [12], a large field inflation will be experienced, and then the validity of effective field theory will be challenged since the high-dimensional operators are suppressed by the reduced Planck scale. The inflation models, which can have $n_s \approx 0.96$ and $r \approx 0.16/0.20$, have been studied extensively [13–35]. Specifically, the simple chaotic and natural inflation models are preferred.

Conversely, supersymmetry is the most promising extension for the particle physics Standard Model (SM). Specifically, it can stabilize the scalar masses, and has a non-renormalized superpotential. Also, gravity is critical in the early Universe, so it seems to us that supergravity theory is a natural framework for inflation model building [36,37]. However, supersymmetry breaking scalar masses in a generic supergravity theory are of the same order as the gravitino mass, inducing the reputed η problem [38,39], where all the scalar masses are of the order of the Hubble parameter because of the large vacuum energy density during inflation [40]. There are two elegant solutions: no-scale supergravity [41–47], and shift-symmetry in the Kähler potential [48–57].

Thus, three issues need to be addressed regarding the criteria of the inflation model building:

Firstly (C-1), the spectral index is around 0.96, and the tensor-to-scalar ratio is around 0.16/0.20.

Secondly (C-2), to reconcile the Planck and BICEP2 results, we need to have $n_s' \sim -0.22$. For simplicity, we do not consider the alternative approach here [21,22].

Lastly (C-3), we need to violate the Lyth bound and try to realize the sub-Planckian inflation. For simplicity, we will not consider the alternative mechanisms such as two-field inflation models [26,58], and the models which employ symmetries to control the quantum corrections like the axion monodromy [59].

It seemingly appears that (C-1) can be satisfied by a considerable amount of inflaton potentials, thus, this is not a difficulty to overcome. In this paper, we will propose two types of the simple single field inflation models, and show that their spectral indices and tensor-to-scalar ratios are highly consistent with both the Planck and BICEP2 experiments. We construct one type of inflation models from the supergravity theory with shift symmetry in the Kähler potential. However, in these simple inflation models, we will show that (C-2) and (C-3) cannot be satisfied.

2 Slow-roll inflation

The slow-roll parameters are defined as:

$$\epsilon = \frac{M^2_{pl} V''}{V},$$

$$\eta = \frac{M^2_{pl} V''}{V},$$

$$\xi^2 = \frac{\xi^2}{V},$$

where $M^2_{pl} = (8\pi G)^{-1}$, $V_\phi = dV(\phi)/d\phi$, $V_{\phi\phi} = d^2V(\phi)/d\phi^2$ and $V_{\phi\phi\phi} = d^3V(\phi)/d\phi^3$. For the single field inflation, the scalar power spectrum is

$$P_R = A_s \left(\frac{k}{k_0}\right)^{n_s - 1 + n_s' \ln(k/k_0)/2},$$

where the subscript “$*$” means the value at the horizon crossing, the scalar amplitude is thus

$$A_s \approx \frac{1}{24\pi^2 M^4_{pl} \epsilon},$$

the scalar spectral index and the running are given [39,60] by

$$n_s \approx 1 + 2\eta - 6\epsilon + 2\left[\frac{1}{3}\eta^2 + (8C - 1)\epsilon\eta - \frac{5}{3} + 12C \right] \epsilon^2 - \left(C - \frac{1}{3}\right) \xi^2,$$

$$n_s' = 16\eta - 24\epsilon^2 - 2\xi^2,$$

where $C = -2 + \ln 2 + \gamma \approx -0.73$ with γ the Euler-Mascheroni constant. The tensor power spectrum is

$$P_T = A_T \left(\frac{k}{k_T}\right)^{n_t},$$

the tensor spectral index and the tensor to scalar ratio [39,60] are

$$n_t = -2\epsilon \left[1 + 4\left(4C + \frac{11}{3}\right) \epsilon - 2\left(\frac{2}{3} + C\right) \eta / \epsilon \right] \approx -2\epsilon,$$

$$r = \frac{A_T}{A_s} = 16\epsilon \left[1 + 2\left(C - \frac{1}{3}\right) (2\epsilon - \eta) \right] \approx 16\epsilon.$$

With the BICEP2 result $r = 0.2$, the energy scale of inflation is $\Lambda \sim 2 \times 10^{16}$ GeV and the slow roll parameter $\epsilon \sim 0.0125$ to the first order approximation. If $\xi^2 \ll \epsilon$, then the second order correction for the scalar spectral index n_s in eq. (6) is negligible, we have

$$n_s' = \frac{r(n_s - 1)}{2} + \frac{3r^2}{32} - 2\xi^2.$$
It is clear that $n_s' \sim 10^{-3}$ with the observational results. Therefore, to get $n_s' \sim -0.02$, we need to consider large ξ^2 and the second order correction to the scalar spectral index n_s in eq. (6). If $\xi^2 \sim 0.01$, then the main contribution to the running of the spectral comes from ξ^2. For slow roll parameters ϵ and η, we have $|\epsilon| \ll 0.01$ and $|\eta| \ll 0.01$. Note that $8(C + \frac{2}{3}) \approx -0.50667$, we can neglect the term $8(C + \frac{2}{3})(2\epsilon - \eta)$ at the next leading order in eqs. (9) and (10). Thus, we will take the leading order approximation $n_s = -2\epsilon$ and $r = 16\epsilon$ for simplicity.

The number of e-folds before the end of inflation is given by

$$N(\phi) = \int_{\phi}^{\phi_f} \frac{1}{M_{pl}^2} \int_{\phi}^{\phi_f} \frac{V(\phi)}{\sqrt{2 M_{pl}}} \frac{d\phi}{\sqrt{-\epsilon^2}},$$

(12)

where the value ϕ_f of the inflaton at the end of inflation is defined by $\epsilon(\phi_f) = 1$. Now let us briefly consider the Lyth bound [12]. From the above equation, we have

$$\Delta \phi \equiv |\phi_f - \phi_e| > \sqrt{2\epsilon_{\min}} N(M_{pl}),$$

(13)

where ϵ_{\min} is the minimal ϵ during inflation. If $\epsilon(\phi)$ is a monotonic function of ϕ, we have $\epsilon_{\min} = \epsilon(\phi_e) \equiv \epsilon$. With the BICEP2 result $r = 0.16/0.20$, we can obtain the large field inflation because of $\Delta \phi > 7M_{pl}$. Thus, to violate the Lyth bound and have the magnitude of ϕ smaller than the reduced Planck scale during inflation, we require that $\epsilon(\phi)$ is not a monotonic function and it has a minimum between ϕ_e and ϕ_f.

3 Single field inflation models with simple potentials

3.1 Inflaton potentials

Herein, we will describe one type of the single field inflation models with simple potentials. The inflation models with potential $a(\phi)e^{-b\phi^m}$ [57] have been studied systematically previously, while such type of potentials may have the unlikelihood problem [61] unless both n and m are even. Conversely, for the S-dual inflation with the potential $V(\phi) = V_0\sech(\phi/M)$ [13], the slow-roll parameters are

$$\epsilon = \frac{M_{pl}^2}{2M^2} \tanh^2(\phi/M),$$

(14)

$$\eta = 4\epsilon - \frac{M_{pl}^2}{M^2},$$

(15)

$$\xi^2 = 24\epsilon^2 - 10 \left(\frac{M_{pl}^2}{M^2} \right)^2 \epsilon.$$

(16)

To satisfy slow-roll condition, $g = M/M_{pl}$ must be large, then $\epsilon < 1$ always and inflation will not end. Thus we need another mechanism to end inflation. For the S-dual inflation, we have another bound

$$r = 16\epsilon = 8g^2 - 2\frac{2}{g^2} \leq 1 - \frac{r}{8}.$$

(18)

$$n_s = \frac{r}{16\epsilon} - \frac{4}{g^2} - \frac{r}{8} \geq 0.$$

(19)

The number of e-folds before the end of inflation is given as:

$$N(\phi) = \int_{\phi}^{\phi_f} \frac{g^2 \phi}{\tanh(\phi/M)} d\phi = g^2 \ln \left[\frac{\sinh(\phi/M)}{\sinh(\phi_f/M)} \right].$$

(20)

If we take $\phi_c = M$, $g = M/M_{pl} = 5.7735$ and $\phi/M = 2.659$, we get $n_s = 0.969$, $r = 0.235$, $n_s' = 3.4 \times 10^{-5}$ and $N = 60$, which is marginally consistent with the observational constraint at the 95% confidence level.

Let us suggest one type of the inflation models with the hybrid monomial and S-dual potentials $V(\phi) = V_0\phi^n\sech(\phi/M)$, here n is an even integer. The slow-roll parameters are

$$\epsilon = \frac{1}{2g^2} \left[\frac{n}{\phi/M} - \tanh(\phi/M) \right]^2,$$

(21)

$$\eta = \frac{1}{g^2} \left[\frac{n(n - 1)}{(\phi/M)^2} - 2n \frac{\tanh(\phi/M)}{\phi/M} + 2\tanh^2(\phi/M) - 1 \right],$$

(22)

$$\xi^2 = \frac{1}{g^2} \left[6\tanh^2(\phi/M) + 12n \frac{\phi/M}{\phi/M} \tanh^3(\phi/M) + \left(\frac{9n^2 - 3n}{(\phi/M)^2} - 5 \right) \tanh^2(\phi/M) + \frac{8n}{\phi/M} \frac{4n^2 - 6n^2 + 2n}{(\phi/M)^3} \tanh(\phi/M) + \frac{n^2(n - 1)(n - 2)}{(\phi/M)^4} - \frac{3n^2}{(\phi/M)^2} \right].$$

(23)

So the spectral index also satisfies the bound

$$\eta = 2\epsilon + g^2 \left[\tanh^2(\phi/M) - \frac{n}{(\phi/M)^2} - 1 \right] \ll 2\epsilon,$$

(24)

$$n_s = 1 + 2\eta - \frac{3r}{8} \leq 1 - \frac{r}{8}.$$

(25)

For $n = 2$, $g = 100$ and $N = 60$, we obtain $\phi_c/M = 0.0141$, $\phi/M = 0.156$, $n_s = 0.967$, $r = 0.128$ and $n_s' = -5.338 \times 10^{-4}$. If we choose $n = 4$, $g = 30$ and $N = 60$, we obtain $\phi_c/M = 0.0941$, $\phi/M = 0.715$, $n_s = 0.954$, $r = 0.221$ and $n_s' = -7.960 \times 10^{-4}$. For $n = 6$, $g = 10$ and $N = 60$, we get $\phi_c/M = 0.4129$, $\phi/M = 2.350$, $n_s = 0.953$, $r = 0.198$ and $n_s' = -8.667 \times 10^{-4}$. The results for $n = 2$, $n = 4$ and $n = 6$ are shown in Figures 1 and 2. We also show the observational constraints. From Figures 1 and 2, it can be seen that these models are marginally consistent with the observational results at the 95% confidence level. For $n = 2$, if there is an increase of the value of g or the value of the energy scale M, then both r and $|n_s'|$ increase when n_s is retained, then the results are almost unchanged when $g \geq 100$. For $n = 4$ and $n = 6$, if there is an increase in g and n_s is fixed, then r increases and n_s' moves closer to zero. At the 95% confidence level, we find that $g \geq 20$ for $n = 2$, $8 \leq g \leq 30$ for $n = 4$ and $6 \leq g \leq 10$ for $n = 6$.

Therefore, the Kähler potential K is a function of $\Phi + \Phi^*$ and independent on the imaginary part of Φ.

We can obtain the scalar potential as follows:

$$V = e^K \left(|(\Phi + \Phi^*) X f(\Phi) + x \frac{\partial f(\Phi)}{\partial \Phi^*} |^2 - 3|X f(\Phi)|^2 + |(\Phi - 2\delta XX^*) X f(\Phi) + f(\Phi)|^2 \right).$$

(31)

Because there is no imaginary component $\text{Im}[\Phi]$ of Φ in the Kähler potential because of the shift symmetry, the potential along $\text{Im}[\Phi]$ is considerably flat and then $\text{Im}[\Phi]$ is a natural inflaton candidate. From the previous studies [52, 53, 57], the real component $\text{Re}[\Phi]$ of Φ and X can be stabilized at the origin during inflation, i.e., $\text{Re}[\Phi] = 0$ and $X = 0$. Therefore, with $\text{Im}[\Phi] = \phi/\sqrt{2}$, we obtain the inflaton potential:

$$V = |f(\phi/\sqrt{2})|^2.$$

(32)

If we choose $f(\Phi)$ as below:

$$f(\Phi) = \frac{\sqrt{\text{Vol}(\sqrt{2}\Phi/M)^m}}{e^{\phi/\sqrt{2}M} + e^{\phi/\sqrt{2}M}},$$

(33)

with m a positive integer, we realize the potential $V(\phi) = V_{0}\phi^{4 \text{sech}^2(\phi/M)}$ with $n = 2m$. The slow-roll parameters for this type of models are

$$\epsilon = \frac{1}{2g^2} \left[\frac{n}{\phi/M} - 2 \tanh(\phi/M) \right]^2,$$

(34)

$$\eta = \frac{1}{g^2} \left[\frac{n(n - 1)}{\phi/M^2} - 2\text{sech}^2(\phi/M) + 4\tanh^2(\phi/M) \right. - \frac{n}{\phi/M} \tanh(\phi/M),$$

(35)

$$\xi^2 = \frac{1}{g^2} \left[\frac{n}{\phi/M} - 2 \tanh(\phi/M) \right] \times \frac{n(2 - 3n + n^2)}{(\phi/M)^3} - \frac{6n(n - 1)}{(\phi/M)^2} \tanh(\phi/M) + \frac{12n}{\phi^3} \tanh^2(\phi/M)
$$

$$+ 2\text{sech}^2(\Phi/M) \left(8 \tanh(\phi/M) - \frac{3n}{\phi/M} \right)
$$

$$- 8 \tanh^3(\phi/M).$$

(36)

Thus the spectral index also satisfies the bound

$$\eta = 2\epsilon - g^{-2} \left[2\text{sech}^2(\phi/M) + \frac{n}{(\phi/M)^3} \right] \leq 2\epsilon,$$

(37)

$$n_s = 1 + 2\eta - \frac{3r}{8} \leq 1 - \frac{r}{8}.$$

(38)

For $n = 2$, $g = 100$, and $N = 60$, we obtain $\phi_c/M = 0.0141$, $\phi/M = 0.155$, $n_s = 0.967$, $r = 0.127$ and $n_s' = -5.411 \times 10^{-4}$. If we take $n = 4$, $g = 30$ and $N = 60$, then we obtain $\phi_c/M = 0.0939$, $\phi/M = 0.694$, $n_s = 0.956$, $r = 0.185$ and $n_s' = -7.795 \times 10^{-4}$. For $n = 6$, $g = 10$ and $N = 60$, we obtain $\phi_c/M = 0.4025$, $\phi/M = 2.030$, $n_s = 0.958$, $r = 0.084$.
and $n_s' = -6.794 \times 10^{-4}$. The results for $n = 2$, $n = 4$ and $n = 6$ are shown in Figures 3 and 4. We also show the observational constraints. From Figures 3 and 4, it can be seen from the models that they are also marginally consistent with the observational constraints. From Figures 3 and 4, it can be seen that the n_s-r diagrams for the potential $V(\phi) = V_0\phi^n\text{sech}^2(\phi/M)$. Confidence level of 95% confidence contour from the combinations of Planck+WP+highL [10, 11] and Planck+WP+highL+ BICEP2 data [5] are also included.

4 Discussion

Herein we have proposed one type of the single field inflation models with the hybrid monomial and S-dual potentials $V(\phi) = V_0\phi^n\text{sech}(\phi/M)$ and found that n_s' given by the model is around 10^{-4} when n_s and r are consistent with the BICEP2 constraints. If we increase the model parameter n or $g = M/M_{pl}$, for the same value of n_s', then the tensor-to-scalar ratio r increases, but the running of the scalar spectral index n_s' moves closer to zero except for $n = 2$. Therefore, the model parameters are constrained by the observational results. At the 95% confidence level, we obtained that $g \gg 20$ for $n = 2$, $8 \leq g \leq 30$ for $n = 4$ and $6 \leq g \leq 10$ for $n = 6$.

Then we used the supergravity model building method to propose another type of models with the potentials $V(\phi) = V_0\phi^n\text{sech}^2(\phi/M)$. The behavior of this model is similar to the inflation model with the potential $V(\phi) = V_0\phi^n\text{sech}(\phi/M)$ and the model is more constrained by the observational data. At the 95% confidence level, we found that $g \gg 30$ for $n = 2$, $15 \leq g \leq 30$ for $n = 4$ and $g \sim 10$ for $n = 6$. The running of the scalar spectral index for both models is at the order of 10^{-4}.

Both models failed to provide the second order slow-roll parameter ϵ^2 as large as the first order slow-roll parameters ϵ and η. Furthermore, to obtain large r, the inflation will experience a Planck excursion because of the Lyth bound. This is the common problem for single field inflation as suggested by Gong [17]. To violate the Lyth bound and result in sub-Planckian inflaton field, the slow roll parameter ϵ needs not be retained by a monotonous function during inflation [35, 62]. Recently Ben-Dayan and Brustein [62] found that $n_s = 0.96$, $r = 0.1$ and $n_s' = -0.07$ for a single field inflation with polynomial potential. It remains unclear if a single field inflation model can be constructed which both contain a large r and n_s'.

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11075194, 11135003, 11175270 and 11275246), the National Basic Research Program of China (Grant No. 2010CB833000 (TL)), the Program for New Century Excellent Talents in University (Grant No. NCET-12-0205) and the Fundamental Research Funds for the Central Universities (Grant No. 2013YQ055).

1 Starobinsky A A. A new type of isotropic cosmological models without singularity. Phys Lett B, 1980, 91: 99–102
2 Guth A H. Inflationary universe: A possible solution to the horizon and flatness problems. Phys Rev D, 1981, 23: 347–356
3 Linde A D. Chaotic inflation. Phys Lett B, 1983, 129: 177–181
4 Albrecht A, Steinhardt P J. Cosmology for grand unified theories with radiatively induced symmetry breaking. Phys Rev Lett, 1982, 48: 1220–1223
5 BICEP2 Collaboration. BICEP2 I: Detection of B-mode polarization at degree angular scales. arXiv:1403.3985 [astro-ph.CO]
6 Planck Collaboration. Planck 2013 results. I. Overview of products at degree angular scales. arXiv:1403.3985 [astro-ph.CO]
7 Hinshaw G, Larson D, Komatsu E, et al. Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Cosmological parameter results. Astrophys J Suppl, 2013, 208: 19
8 Das S, Louis T, Nolta M R, et al. The Atacama Cosmology Telescope: Temperature and gravitational lensing power spectrum measurements from three seasons of data. J Cosmol Astropart Phys, 2014, 1404: 014
9 Keisler R, Reichardt C L, Aird K A, et al. A measurement of the damping tail of the cosmic microwave background power spectrum with the South Pole Telescope. Astrophys J, 2011, 743: 28
10 Planck Collaboration. Planck 2013 results. XVI. Cosmological parameters. arXiv:1303.5076 [astro-ph.CO]
11 Planck Collaboration. Planck 2013 results. XXII. Constraints on inflation. arXiv:1303.5082 [astro-ph.CO]
12 Lyth D H. What would we learn by detecting a gravitational wave signal in the cosmic microwave background anisotropy? Phys Rev Lett, 1997, 78: 1861–1863
13 Anchordoqui L A, Barger V, Goldberg H, et al. S-dual inflation: BICEP2 data without unlikeliness. Phys Lett B, 2014, 734: 134–136
14 Czerny M, Kobayashi T, Takahashi F. Running spectral index from large-field inflation with modulations revisited. arXiv:1403.4589 [astro-ph.CO]
15 Ferrara S, Kehagias A, Riotto A. The imaginary Starobinsky model. arXiv:1403.5531 [hep-th]
16 Zhu T, Wang A. Gravitational quantum effects in the light of BICEP2 results. arXiv:1403.7696 [astro-ph.CO]
17 Gao Q, Gong Y G. The challenge for single field inflation with BICEP2 result. Phys Lett B, 2014, 734: 41–43.
18 Okada N, Senoguz V N, Shafi Q. Simple inflationary models in light of BICEP2. An update. arXiv:1403.6403 [hep-ph]
19 Ellis J, Garcia M A G, Nonuolos D V, et al. Resurrecting quadratic inflation in no-scale supergravity in light of BICEP2. arXiv:1403.7518 [hep-ph]
20 Antusch S, Nolde D. BICEP2 implications for single-field slow-roll inflation revisited. J Cosmol Astropart Phys, 2014, 1045: 035
21 Freivogel B, Kleban M, Martinez M R, et al. Observational consequences of a landscape: Epilogue. arXiv:1404.2274 [astro-ph.CO]
22 Bousso R, Harlow D, Senatore L. Inflation revisited. J Cosmol Astropart Phys, 2014, 1405: 035
23 Kawai S, Okada N. TeV scale seesaw from supersymmetric Higgsino dark matter. Phys Rev D, 2014, 89: 086017
24 Bastero-Gil M, Berera A, Ramos R O, et al. Observational implications of mattergenesis during inflation. arXiv:1404.4976 [astro-ph.CO]
25 Di Barri P, King S F, Luhn C, et al. Radiative inflation and dark energy RIDEs after again BICEP2. arXiv:1404.0009 [hep-ph]
26 Ho C M, Hsu S D H. Does the BICEP2 observation of cosmological tensor modes imply an era of nearly Planckian energy densities? arXiv:1404.0745 [hep-ph]
27 Hotchkiss S, Mazumdar A, Nadathur S. Observable gravitational waves from inflation with small field excursions. J Cosmol Astropart Phys, 2012, 1202: 008
28 Freedman D Z, van Nieuwenhuizen P, Ferrara S. Progress toward a theory of supergravity. Phys Rev D, 1976, 13: 3214–3218; Deser S, Zumino B. Consistent supergravity. Phys Lett B, 1976, 62: 335–337
29 Antusch S, Bastero-Gil M, Datta K, et al. Chaotic inflation in supergravity with Heisenberg symmetry. Phys Lett B, 2009, 679: 428–432; Antusch S, Datta K, Erdmenger J, et al. Towards matter inflation in heterotic string theory. J High Energy Phys, 2011, 1104: 065
30 Copeland E J, Liddle A R, Lyth D H, et al. False vacuum inflation with Einstein gravity. Phys Rev D, 1994, 49: 6418–6433; Stewart E D. Inflation, supergravity, and superstrings. Phys Rev D, 1995, 51: 6847–6853; Linde A. Particle Physics and Inflationary Cosmology, Chur, Switzerland and New York: Harwood Academic Publishers, 1990; Antusch S, Bastero-Gil M, Datta K, et al. Solving the η-problem in hybrid inflation with heisenberg symmetry and stabilized modulus. J Cosmol Astropart Phys, 2009, 0901: 040; Yamaguchi M. Supergravity based inflation models: A review. Class Quant Grav, 2011, 28: 103001; Martin J, Ringeval C, Vennin V. Encyclopaedia inflationaris. arXiv:1303.3787 [astro-ph.CO]
31 Lyth D H, Riotto A. Particle physics models of inflation and the cosmological density perturbation. Phys Rept, 1999, 314: 1–146
32 Gonceharov A S, Linde A D, Vysotsky M L. Cosmological problems for spontaneously broken supergravity. Phys Lett B, 1984, 147: 279–283
33 Cremmer E, Ferrara S, Koumans C, et al. Naturally vanishing cosmological constant in N = 1 supergravity. Phys Lett B, 1983, 133: 61–66; Ellis J R, Lahanas A, Nonuolos D V, et al. No-scale superpotential standard model. Phys Lett B, 1984, 134: 429–435; Ellis J R, Koumans C, Nonuolos D V. Phenomenological SU(1, 1) supergravity. Nucl Phys B, 1984, 241: 406–428; Ellis J R, Lahanas A, Nonuolos D V. No-scale supersymmetric GUTs. Nucl Phys B, 1984, 247: 373–395; Lahanas A B. The road to no-scale supergravity. Phys Rept, 1987, 145: 1–139
34 Ellis J R, Enqvist K, Nonuolos D V, et al. S(U(1)) inflation. Phys Lett B, 1985, 152: 175–180 [Erratum-ibid., 1985, 156: 452]
35 Enqvist K, Nonuolos D V. Inflation from a ripple on a vanishing potential. Phys Lett B, 1985, 159: 249–255
36 Ellis J, Nonuolos D V, Olive K A. No-scale supergravity realization of the Starobinsky model of inflation. Phys Rev Lett, 2013, 111: 111301 [Erratum-ibid., 2013, 111(12): 129902]
37 Ellis J, Nonuolos D V, Olive K A. Starobinsky-like inflationary models asavatars of no-scale supergravity. J Cosmol Astropart Phys, 2013, 1310: 009
38 Ellis J, Linde A, Nonuolos D V. No-scale ripple inflation revisited. J Cosmol Astropart Phys, 2014, 1404: 018
39 Ellis J, Nonuolos D V, Olive K A. A no-scale framework for sub-Planckian physics. Phys Rev D, 2014, 89: 043502
40 Kawasaki M, Yamaguchi M, Yamaguda T. Natural chaotic inflation in supergravity. Phys Rev Lett, 2000, 85: 3572–3575
41 Yamaguchi M, Yokoyama J. New inflation in supergravity with a chaotic initial condition. Phys Rev D, 2001, 63: 043506
42 Yamaguchi M. Natural double inflation in supergravity. Phys Rev D, 2001, 64: 063502
43 Kawasaki M, Yamaguchi M. Supersymmetric topological inflation model. Phys Rev D, 2002, 65: 103518
44 Kallosh R, Linde A. New models of chaotic inflation in supergravity. J Cosmol Astropart Phys, 2010, 1011: 011
45 Kallosh R, Linde A, Rube T. General inflaton potentials in supergravity.
Phys Rev D, 2011, 83: 043507
54 Nakayama K, Takahashi F, Yanagida T T. Polynomial chaotic inflation in the Planck era. Phys Lett B, 2013, 725: 111–114
55 Nakayama K, Takahashi F, Yanagida T T. Polynomial chaotic inflation in supergravity. J Cosmol Astropart Phys, 2013, 1308: 038
56 Takahashi F. New inflation in supergravity after Planck and LHC. Phys Lett B, 2013, 727: 21–26
57 Li T, Li Z, Nanopoulos D V. No-scale ripple inflation revisited. J Cosmol Astropart Phys, 2014, 1402: 028
58 Hebecker A, Kraus S C, Westphal A. Evading the Lyth bound in hybrid natural inflation. Phys Rev D, 2013, 88: 123506
59 McAllister L, Silverstein E, Westphal A. Gravity waves and linear inflation from axion monodromy. Phys Rev D, 2010, 82: 046003
60 Stewart E D, Lyth D H. A more accurate analytic calculation of the spectrum of cosmological perturbations produced during inflation. Phys Lett B, 1993, 302: 171–175
61 Ijjas A, Steinhardt P J, Loeb A. Inflationary paradigm in trouble after Planck 2013. Phys Lett B, 2013, 723: 261–266
62 Ben-Dayan I, Brustein R. Cosmic microwave background observables of small field models of inflation J Cosmol Astropart Phys, 2010, 1009: 007