Weingarten calculus と 対称群の調和解析

松本 詩
(MATSUMOTO, Sho)

鹿児島大学 学術研究院 理工学域（理学系）

日本数学会 2015 年度秋季総合分科会 函数解析学分科会
京都産業大学
平成 27 年 9 月 14 日
ランダム行列

- N × N のランダム行列 X = (x_{ij})_{1 \leq i, j \leq N} が与えられたとき, 行列成分の混合モーメント

\[\mathbb{E} \left[\prod_{i,j=1}^{N} x_{ij}^{m_{ij}} \right] \]

を考える. ここで m_{ij} は非負整数, \(\mathbb{E} \) は期待値.

- すなわち, 行列の集合 \(\Omega \subset \text{Mat}_N(\mathbb{C}) \) の確率空間 (\(\Omega, \text{Borel}, P^X \)) が与えられたときに, 積分

\[\int_{\Omega} \prod_{i,j=1}^{N} x_{ij}(\omega)^{m_{ij}} P^X(d\omega) \]

を計算したい. （ここでは \(x_{ij} : \text{Mat}_N(\mathbb{C}) \rightarrow \mathbb{C} \) は座標関数）.
例：2次回転群

\[
\text{SO}(2) = \left\{ g = \begin{pmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \mid \theta \in \mathbb{R} \right\}.
\]

SO(2) は単位円 S^1 とリー群として同型。
非負整数 a, b, c, d に対し,

\[
\int_{\text{SO}(2)} g_{11}^a g_{12}^b g_{21}^c g_{22}^d \, dg
\]

\[
= (-1)^b \int_0^{2\pi} (\cos \theta)^{a+d} (\sin \theta)^{b+c} \frac{d\theta}{2\pi}
\]

\[
= \begin{cases}
(-1)^b \frac{(a+d-1)!! (b+c-1)!!}{(a+b+c+d)!!} & (a + d と b + c がともに偶数のとき), \\
0 & (それ以外).
\end{cases}
\]
例題: 3次ユニタリ群

- $U(3) = \{ U = (u_{ij})_{i,j=1}^3 : 3$次ユニタリ行列 $\}$
- dU: $U(3)$ のハール測度

例題 (Weingarten calculus の一例) .
次の積分を計算せよ。

$$\int_{U(3)} u_{11} u_{22} u_{33} \overline{u_{12} u_{23} u_{31}} \, dU$$

$U = \begin{pmatrix}
 u_{11} & u_{12} & u_{13} \\
 u_{21} & u_{22} & u_{23} \\
 u_{31} & u_{32} & u_{33}
\end{pmatrix}$
序章

2 ユニタリ群の Weingarten calculus

3 直交群、斜交群の Weingarten calculus

4 Jucys-Murphy 元と Weingarten 関数

5 コンパクト対称空間の Weingarten calculus

6 Remarks, applications, and future research
ユニタリ群

\[U(N) = \{ U = (u_{ij})_{i,j=1}^{N} \in \text{GL}(N, \mathbb{C}) \mid UU^* = I_N \} \]

一般に、コンパクトリー群 \(G \) には「両側不変性」を満たすハール確率測度 \(dg \) が一意的に存在する。

\[
\int_{G} f(g_1 gg_2) dg = \int_{G} f(g) dg, \quad \int_{G} dg = 1
\]

ここで、\(f \) は \(G \) 上の任意の連続関数、\(g_1, g_2 \) は \(G \) の（固定された）任意の元。

\(dU \) を \(U(N) \) のハール測度とする。

\[(2.1) \quad \mathbb{E}[\underbrace{u_{i_1'j_1'} u_{i_2'j_2'} \cdots u_{i_m'j_m'}}_{m \text{ 個の積}} \underbrace{u_{i_1j_1} u_{i_2j_2} \cdots u_{i_nj_n}}_{n \text{ 個の積}}] = \int_{U(N)} [\cdots \cdots] dU \]

を計算しよう。（\(i_p, j_p, i'_p, j'_p \) たちは \(\{1, 2, \ldots, N\} \) の元。）
自明に零になる場合

命題.

$m \neq n$ のとき，$E[u_{i_1j_1} u_{i_2j_2} \cdots u_{inj_n} u'_{i'_1j'_1} u'_{i'_2j'_2} \cdots u'_{i'_mj'_m}] = 0.$

イメージ

$$\int_0^{2\pi} e^{in\theta} e^{-im\theta} \frac{d\theta}{2\pi} = \delta_{n,m}$$

例:

$E[u_{11} u_{12}^2 u_{23} u_{11}^2 u_{12}] = 0.$

$E[u_{11}^2 u_{12}^2 u_{31}] = 0.$
この計算手法を Weingarten calculus, 上の公式を Weingarten formula と呼ぶ。（Don Weingarten (1978) の先行研究に由来する。）
ユニタリ Weingarten 関数

\[(2.2) \quad Wg^U(\sigma; N) = \frac{1}{n!} \sum_{\lambda \vdash n} \frac{f^\lambda}{C_\lambda(N)} \chi^\lambda(\sigma) \quad (\sigma \in S_n).\]

- \(\lambda \vdash n\): 和は \(n\) の分割 \(\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_l)\) 全体を走る。

\[\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_l > 0, \quad \text{各} \lambda_i \text{は正の整数}.\]

自然にヤング図形と同一視する。
- \(\chi^\lambda\): \(\lambda\) に対応する \(S_n\) の既約指標。
- \(f^\lambda\): \(\lambda\) に対応する \(S_n\) の既約表現の次元. 型 \(\lambda\) の標準ヤング板の個数。

\[C_\lambda(N) = \prod_{(i,j) \in \lambda} (N + j - i)\]

と定める. 積は \(\lambda\) のヤング図形の箱の座標 \((i,j)\) 全体を走る.
例: ユニタリ Weingarten 関数

ユニタリ Weingarten 関数

(2.2) \[Wg^U(\sigma; N) = \frac{1}{n!} \sum_{\lambda \vdash n} \frac{f^\lambda \chi^\lambda(\sigma)}{C_\lambda(N)} \quad (\sigma \in S_n). \]

例. \(n = 3, \sigma = (1 \ 2 \ 3). \)

\[Wg^U((1 \ 2 \ 3); N) = \frac{1}{3!} \left(\frac{1 \cdot 1}{N(N + 1)(N + 2)} + \frac{2 \cdot (-1)}{N(N + 1)(N - 1)} + \frac{1 \cdot 1}{N(N - 1)(N - 2)} \right) \]

\[= \frac{2}{N(N^2 - 1)(N^2 - 4)}. \]
例題. Weingarten calculation を使って求めてみよう！

\[
\int_{U(3)} u_{11} u_{22} u_{33} \overline{u_{12} u_{23} u_{31}} \ dU = ?
\]

\[
\mathbb{E}[u_{i_1 j_1} u_{i_2 j_2} \cdots u_{i_n j_n} \overline{u_{i'_1 j'_1} u_{i'_2 j'_2} \cdots u_{i'_n j'_n}}] = \sum_{\sigma \in S_n} \sum_{\tau \in S_n} \delta_{\sigma}(i, i') \delta_{\tau}(j, j') Wg^U(\sigma^{-1} \tau; N).
\]

データ: \(N = 3, n = 3, i = i' = (1, 2, 3), j = (1, 2, 3), j' = (2, 3, 1)\).
\(\sigma = \text{id}_3, \tau = (1 2 3) \in S_3\) のときのみ生き残り,

\[
\int_{U(3)} u_{11} u_{22} u_{33} \overline{u_{12} u_{23} u_{31}} \ dU = Wg^U((1 2 3); 3) = \frac{1}{60}.
\]
様々なランダム行列に関する Weingarten calculus.
ユニタリ群以外のコンパクトリー群, さらにコンパクト対称空間に付随するランダム行列の Weingarten calculus.

Weingarten 関数の性質.
ユニタリ群の Weingarten 関数

\[S_n \ni \sigma \mapsto Wg^U(\sigma; N) \in \mathbb{Q} \]

は, 対称群上の類関数であり, 既約指標による展開が与えられた. さらにこの関数は Jucys–Murphy 元と密接な関係があり, 組合せ論の言葉で記述することもできる. 他の種類の Weingarten 関数も類似した性質を持つ.
序章

2 ユニタリ群の Weingarten calculus

3 直交群, 斜交群の Weingarten calculus

4 Jucys-Murphy 元と Weingarten 関数

5 コンパクト対称空間の Weingarten calculus

6 Remarks, applications, and future research
準備: perfect matching

\(M_{2n} \): \(\{1, 2, \ldots, 2n\} \) の perfect matchings 全体。

たとえば \(M_4 \) は

\[
\{\{1, 2\}, \{3, 4\}\}, \quad \{\{1, 3\}, \{2, 4\}\}, \quad \{\{1, 4\}, \{2, 3\}\}
\]

の 3 つの元からなる。一般に, \(|M_{2n}| = (2n - 1)!!\)。

\(M_{2n} \) の元 \(\sigma \) は,

\[
\{\{\sigma(1), \sigma(2)\}, \{\sigma(3), \sigma(4)\}, \ldots, \{\sigma(2n - 1), \sigma(2n)\}\}
\]

\(\sigma(2j - 1) < \sigma(2j) \) \((j = 1, \ldots, n) \), \quad 1 = \sigma(1) < \sigma(3) < \cdots < \sigma(2n - 1) \)

と, 一意的に表すことができる。このとき \(\sigma \) は自然に \(S_{2n} \) の元と見なし: \(M_{2n} \subset S_{2n} \).
\(H_n \): 超八面体群. 以下で生成される \(S_{2n} \) の部分群.

\[(2i - 1 \ 2i) \ (i = 1, 2, \ldots, n), \quad (2i - 1 \ 2j - 1)(2i \ 2j) \ (1 \leq i < j \leq n)\]

- wreath product \((\mathbb{Z}/2\mathbb{Z}) \wr S_n \) と同型.
- \(|H_n| = 2^n n!\).
- 集合 \(M_{2n} \) は剰余類 \(S_{2n}/H_n \) の完全代表系:

\[S_{2n} = \bigsqcup_{\sigma \in M_{2n}} \sigma H_n.\]

- 両側剰余類 \(H_n \sigma H_n \) は \(n \) の分割でパラメトライズされる. 分割 \(\mu \vdash n \) に対応する両側剰余類に \(\tau \in S_{2n} \) が属するとき, \(\tau \) のコセットタイプは \(\mu \) であるという.（置換のサイクルタイプの類似.）
実直交群 \(O(N) = \{ R \in \text{GL}(N, \mathbb{R}) \mid RR^T = I_N \} \).

定理 3.1. [Collins–Śniady (06)], [Collins-M (09)]

\(R = (r_{ij})_{1 \leq i,j \leq N} \) を \(O(N) \) のハール測度に従うランダム行列とする．このとき任意の添え字の列 \(i = (i_1, \ldots, i_{2n}), j = (j_1, \ldots, j_{2n}) \) に対し，

\[
\mathbb{E}[r_{i_1j_1}r_{i_2j_2} \cdots r_{i_{2n}j_{2n}}] = \sum_{\sigma \in M_{2n}} \sum_{\tau \in M_{2n}} \Delta_\sigma(i) \Delta_\tau(j) Wg^O(\sigma^{-1}\tau; N)
\]

となる．ここで

\[
\Delta_\sigma(i) = \begin{cases}
1 & (すべての \{a,b\} \in \sigma に対し \ i_a = i_b のとき) \\
0 & (それ以外のとき)
\end{cases}
\]

である [誤植訂正]．また奇数次のモーメント \(\mathbb{E}[r_{i_1j_1}r_{i_2j_2} \cdots r_{i_{2n+1}j_{2n+1}}] \) はいつでも 0 である．
直交 Weingarten 関数

(3.1) \[Wg^O(\sigma; N) = \frac{2^n n!}{(2n)!} \sum_{\lambda \vdash n} \frac{f^{2\lambda}}{D_\lambda(N)} \omega^\lambda(\sigma) \quad (\sigma \in S_{2n}). \]

- \(f^{2\lambda}\) は, \(2\lambda = (2\lambda_1, 2\lambda_2, \ldots)\) に対応する \(S_{2n}\) の既約表現の次元。
- \[
D_\lambda(N) = \prod_{(i, j) \in \lambda} (N + 2j - i - 1)
\]
と定める。
- \(\omega^\lambda\) は, \(\lambda\) に対応する \((S_{2n}, H_n)\) の帯球関数
 \[
\omega^\lambda(\sigma) = \frac{1}{2^n n!} \sum_{\zeta \in H_n} \chi^{2\lambda}(\sigma \zeta) \quad (\sigma \in S_{2n}, \lambda \vdash n).
\]
- \(Wg^O(\cdot; N)\) は \(H_n\)-両側不変性をもつ。
 \[
Wg^O(\zeta \sigma \zeta'; N) = Wg^O(\sigma; N) \quad (\sigma \in S_{2n}, \zeta, \zeta' \in H_n)
\]
斜交群（シンプレクティック群）

\[\text{Sp}(N) = \{ S \in \text{U}(2N) \mid SS^D = I_{2N} \} \]

ここで \(S^D \) は

\[S^D = JS^T J^T, \quad J = J_N = \begin{pmatrix} O_N & I_N \\ -I_N & O_N \end{pmatrix} \]

と定める。

斜交群の Weingarten 関数 \(S_{2n} \ni \sigma \mapsto \text{Wg}^{\text{Sp}}(\sigma; N) \) は、\(H_n \)-両側 twisted という性質をもつ:

\[\text{Wg}^{\text{Sp}}(\zeta \sigma \zeta'; N) = \text{sgn}(\zeta)\text{sgn}(\zeta')\text{Wg}^{\text{Sp}}(\sigma; N) \quad (\sigma \in S_{2n}, \zeta, \zeta' \in H_n). \]
ここまでのまとめ

- 3つの群 $U(N), O(N), Sp(N)$ の Weingarten calculus を述べた。
- 3つとも公式が少しずつ違う。
 和が S_n （置換）や M_{2n} (perfect matchings) を走る。
- Weingarten 関数が本質的に異なる。
 - ユニタリ: 対称群 S_n の表現論の言葉で記述される。共役不変性をもつ。
 - 直交: 対称群 S_{2n} と超八面体群 H_n の調和解析の言葉で記述される。
 - 斜交: ほぼ直交群と同じだが、符号の取り扱いに注意する必要がある。
 - H_n-両側 twisted である。
1. 序章

2. ユニタリ群の Weingarten calculus

3. 直交群，斜交群の Weingarten calculus

4. Jucys-Murphy 元と Weingarten 関数

5. コンパクト対称空間の Weingarten calculus

6. Remarks, applications, and future research
大きなユニタリ行列

大きなランダム行列の振舞いに興味がある。Weingarten calculus で $N \to \infty$ とすることを考える。以下, $N \geq n$ とする. $\sigma \in S_n$.

\[
Wg^U(\sigma; N) = \frac{1}{n!} \sum_{\lambda \vdash n} \frac{f^\lambda}{C_\lambda(N)} \chi^\lambda(\sigma)
\]

\[
= \int_{U(N)} u_{11} u_{22} \cdots u_{nn} \overline{u_{1\sigma(1)}} \overline{u_{2\sigma(2)}} \cdots \overline{u_{n\sigma(n)}} \, dU
\]

ただちに

\[
Wg^U(\sigma; N) = \begin{cases}
N^{-n} + O(N^{-n-1}) & (\sigma = \text{id}_n) \\
O(N^{-n-1}) & (\sigma \neq \text{id}_n)
\end{cases}
\]

($\sigma \in S_n$: fixed, $N \to \infty$) が分かる. O はランダウのラージ・オー.
Asymptotics of \(W_g\)

以下の式で係数 \(a_k(\sigma)\) を定める。

\[(4.1)\quad W_g^U(\sigma; N) = \sum_{k=0}^{\infty} (-1)^k a_k(\sigma) N^{-n-k},\]

\[\begin{align*}
W_g^U(id_n; N) &= \int_{U(N)} |u_{11} u_{22} \cdots u_{nn}|^2 dU = \frac{1}{n!} \sum_{\lambda \vdash n} \prod_{(i,j) \in \lambda} (N + j - i) \\
&= 1 \quad N^{-n} - 0 \quad N^{-n-1} + \frac{n(n-1)}{2} \quad N^{-n-2} - 0 \quad N^{-n-3} \\
&+ \mathcal{O}(N^{-n-4}).
\end{align*}\]
定義 (対称群の Jucys–Murphy 元).
群環 $\mathbb{C}[S_n]$ の元 J_1, \ldots, J_n を,

\[
J_1 = 0, \\
J_2 = (1 \ 2), \\
J_3 = (1 \ 3) + (2 \ 3), \\
\vdots \\
J_n = (1 \ n) + (2 \ n) + \cdots + (n-1 \ n)
\]

で定める. ここで $(s \ t)$ は s と t の互換を表す.

- J_1, \ldots, J_n は可換で, $\mathbb{C}[S_n]$ の極大可換部分代数を生成する.
- 近年の対称群の表現論では, 中心的な役割を果たす.
基本対称多項式 vs 完全対称多項式

\[e_k(x_1, x_2, \ldots, x_n) = \sum_{1 \leq t_1 < t_2 < \cdots < t_k \leq n} x_{t_1} x_{t_2} \cdots x_{t_k}. \]

\[h_k(x_1, x_2, \ldots, x_n) = \sum_{1 \leq t_1 \leq t_2 \leq \cdots \leq t_k \leq n} x_{t_1} x_{t_2} \cdots x_{t_k}. \]

定理 [Jucys (1974)]

\[e_k(J_1, J_2, \ldots, J_n) = \sum_{\sigma \in S_n} \sigma \quad (\sigma のサイクルの個数)=n-k \]

命題 4.1 [Novak (10)]

\[h_k(J_1, J_2, \ldots, J_n) = \sum_{\sigma \in S_n} a_k(\sigma)\sigma \]

が成り立つ。ここで \(a_k(\sigma) \) は (4.1) で与えられている値。
単調分解

σ ∈ S_n に対し，d(σ) = n – (σ のサイクルの個数) とおく．

系 4.2

\[Wg^U(σ; N) = \sum_{k=0}^{∞} (-1)^k a_k(σ) \left(\frac{1}{N} \right)^{n+k} \]

における係数 a_k(σ) は，置換 σ の長さ k の単調分解の個数である．すなわち，k 個の互換の列 (s_1 t_1)，…，(s_k t_k) で次の条件を満たすものの個数が a_k(σ) である．

\[s_i < t_i; \quad 2 \leq t_1 \leq \cdots \leq t_k \leq n; \quad σ = (s_1 t_1) \cdots (s_k t_k). \]

さらに，

(1) a_k(σ) は非負整数である．

(2) k ≥ d(σ) でなければ，a_k(σ) = 0 である．

(3) k ≡ d(σ) (mod 2) でなければ，a_k(σ) = 0 である．
例 4.1

\[\sigma = \text{id}_n \] を考えよう。\(d(\text{id}_n) = 0 \)。自明に \(a_0(\text{id}_n) = 1 \)。\(a_2(\text{id}_n) \) は,

\[s_1 < t_1, \quad s_2 < t_2, \quad 2 \leq t_1 \leq t_2 \leq n, \quad \text{id}_n = (s_1, t_1)(s_2, t_2) \]

を満たす \(s_1, s_2, t_1, t_2 \) の選び方の個数である。このとき, \(s_1 = s_2 \) かつ \(t_1 = t_2 \) でなければならない。よって, \(a_2(\text{id}_n) = \binom{n}{2} \).

\[Wg^U(\text{id}_n; N) \]
\[= \int_{U(N)} |u_{11} u_{22} \cdots u_{nn}|^2 dU = \frac{1}{n!} \sum_{\lambda \vdash n} \frac{(f^\lambda)^2}{\prod_{(i, j) \in \lambda} (N + j - i)} \]
\[= a_0(\text{id}_n) N^{-n} + a_1(\text{id}_n) N^{-n-1} + \frac{n(n-1)}{2} a_2(\text{id}_n) N^{-n-2} + a_3(\text{id}_n) N^{-n-3} \]
\[+ \frac{n(n-1)(3n^2+17n-34)}{24} a_4(\text{id}_n) N^{-n-4} + a_5(\text{id}_n) N^{-n-5} + \mathcal{O}(N^{-n-6}). \]
\((-1)^{n-l} Wg^U(\sigma; N) \)
\[= a_{d(\sigma)}(\sigma) N^{-n-d(\sigma)} + a_{d(\sigma)+2}(\sigma) N^{-n-d(\sigma)-2} + O(N^{-n-d(\sigma)-4}).\]

定理 4.3. [Collins (03), Murray (04), M–Novak (13)]

\(\mu = (\mu_1, \ldots, \mu_l)\) を \(\sigma \in S_n\) のサイクルタイプとすると,

\[a_{d(\sigma)}(\sigma) = a_{n-l}(\sigma) = \prod_{j=1}^{l} \text{Cat}(\mu_j - 1).\]

ここで, \(\text{Cat}(r) = \frac{(2r)!}{(r+1)!r!}\) はカタラン数。

[M–Novak (13)] では実際に単調分解の数え上げをおこなうことでこれを示した。
多項式性

定理 4.4 [M–Novak (13)]

\(\sigma \in S_n \) に対し，\(a_k(\sigma) \) は \(n \) についての多項式である．
もう少し正確に言おう．\(\rho \) を分割とする．文字 \(T \) を変数とするある多項式 \(A_k(\rho, T) \) が存在して，次が成り立つ：\(n \in \mathbb{N} \) に対し，

\[
a_k(\sigma[n]) = A_f(\rho, n).
\]

ここで \(\sigma[n] \) は，サイクルタイプ \(\rho \cup (1^n−|\rho|) \) をもつ \(S_n \) の元

例．

\[
a_3\left(\text{サイクルタイプが } (2, 1^{n-2}) \text{ の置換} \right) = \frac{1}{2}(n^2 + 3n - 8).
\]
直交群の場合

\[Wg^U(\pi; N) = \sum_{k=0}^{\infty} (-1)^k a_k(\pi) \left(\frac{1}{N} \right)^{n+k} \quad (\pi \in S_n), \]

\[h_k(J_1, J_2, \ldots, J_n) = \sum_{\pi \in S_n} a_k(\pi) \pi \quad (k = 0, 1, 2, \ldots). \]

直交群の場合は、ユニタリ群の場合とパラレルである。しかしもう少し複雑。
\(N \geq 2n - 1 \) とする。

係数 \(b_k(\sigma) \) を次の式で定める。

\[Wg^O(\sigma; N) = \sum_{k=0}^{\infty} (-1)^k b_k(\sigma) \left(\frac{1}{N} \right)^{n+k} \quad (\sigma \in S_{2n}). \]
定理 4.5. [M (11)]
k, n は非負整数、σ ∈ S_{2n}。係数 b_k(σ) について、次が成り立つ。
(1) [Zinn-Justin (10)] 群環 C[S_{2n}] の元として

\[
h_k(J_1, J_3, \ldots, J_{2n-1}) \sum_{\zeta \in H_n} \zeta = \sum_{\sigma \in S_{2n}} b_k(\sigma) \sigma
\]

が成り立つ。(H_n は超八面体群。)
(2) b_k(\sigma) は、次を満たす互換の列 (s_1 t_1), \ldots, (s_k t_k) の個数に等しい
（単調分解の類似）:

\[
s_i < t_i; \quad 3 \leq t_1 \leq \cdots \leq t_k \leq 2n - 1; \quad \text{各 } t_i \text{ は奇数;}
\]

\[
\exists \zeta \in H_n \quad \text{s.t.} \quad (s_1 t_1) \cdots (s_k t_k) \zeta = \sigma.
\]
定理 4.5. [M (11)]

(3) $b_k(\sigma)$ は非負整数であり、$k \geq n - l$ でなければ $b_k(\sigma) = 0$. ただし、l は σ のコセットタイプの長さ.

(4) $\pi \in S_n$ のサイクルタイプと $\sigma \in S_{2n}$ のコセットタイプが一致するとき, $b_k(\sigma) \geq a_k(\pi)$. 一般には, $b_k(\sigma)$ と $a_k(\pi)$ は本質的に違うもの.

(5) [Collins–Śniady (06)] σ のコセットタイプが $\mu = (\mu_1, \ldots, \mu_l)$ のとき,

$$b_{n-l}(\sigma) = \prod_{j=1}^{l} \text{Cat}(\mu_j - 1).$$

(6) $\sigma \in S_{2n}$ に対し $b_k(\sigma)$ は n の多項式である.

予想 [M (11)] / 証明 [Féray (12)]

[誤植訂正] $\sigma \in S_{2n}$ のコセットタイプが hook $\mu = (k + 1, 1^{n-k-1})$ のとき,

$$b_{n-\ell(\mu)+1}(\sigma) = b_{k+1}(\sigma) = 4^k - \binom{2k+1}{k}.$$
この章のまとめ

・ユニタリ群。

\[
\int_{U(N)} u_{i_1j_1} u_{i_2j_2} \cdots u_{i_nj_n} \bar{u}_{i_1'j_1'} \bar{u}_{i_2'j_2'} \cdots \bar{u}_{i_n'j_n'}, \ dU \\
= \sum_{\sigma \in S_n} \sum_{\tau \in S_n} \delta_\sigma(i, i') \delta_\tau(j, j') Wg^U(\sigma^{-1} \tau; N).
\]

\[
Wg^U(\sigma; N) = \sum_{k=0}^{\infty} (-1)^k a_k(\sigma) \left(\frac{1}{N} \right)^{n+k}.
\]

係数 \(a_k(\sigma)\) の研究は、Jucys–Murphy elements を通じて組合せ論に帰着される。（単調分解、content、カタラン数、多項式性…）

・直交群。ユニタリ群の場合とパラレルな議論が展開される。

・斜交群。本質的に直交群の場合に帰着される。
1 序章

2 ユニタリ群の Weingarten calculus

3 直交群, 斜交群の Weingarten calculus

4 Jucys-Murphy 元と Weingarten 関数

5 コンパクト対称空間の Weingarten calculus

6 Remarks, applications, and future research
コンパクト対称空間の Weingarten calculus

G, K: 線型 Lie 群, G/K: コンパクト対称空間。
$\Omega: G \to G$: K を固定点集合とする対合（カルタン対合）.

$S := \{ s = g_0 \Omega(g_0)^{-1} \mid g_0 \in G \}$.

推移的な作用

$$g \cdot s = gs\Omega(g)^{-1} \quad (g \in G, s \in S).$$

$G/K \cong S$.
この同型を通じて G/K から S へ確率測度 ds が導出される。

例. $U(N)/O(N)$. $\Omega(g) = (g^T)^{-1}$.

$$S = \{ UU^T \mid U \in U(N) \} = \{ N \times N \text{ 対称ユニタリ行列} \}.$$
単純 Lie 群が, A, B, C, D (, E, F, G) とルート系で分類されているように, コンパクト対称空間も分類されている。

Class C	対称空間	ランダム行列
A I	U(N)/O(N)	circular orthogonal ensemble (COE)
A II	U(2N)/Sp(N)	circular symplectic ensemble (CSE)
A III	U(N)/U(p) \times U(q)	chiral ensemble
BD I	O(N)/O(p) \times O(q)	
C II	Sp(N)/Sp(p) \times Sp(q) \quad (N = p + q)	
D III	O(2N)/U(N)	Bogoliubov-de Gennes (BdG) ensemble
C I	Sp(N)/U(N)	

7 系列のコンパクト対称空間に対し, 7 系列のランダム行列モデルが構成される. それぞれに Weingarten calculus が展開でき, 様々な Weingarten 関数が登場する. [M (12, 13)]
AI 型: Circular Orthogonal Ensemble

定理 (COE の Weingarten calculus). [M (12)]

対称ユニタリ行列 $V = (v_{ij})_{1 \leq i, j \leq N}$ を、コンパクト対称空間 $U(N)/O(N)$ に付随する行列モデル (COE) から取り出されたランダム行列とする。$i = (i_1, i_2, \ldots, i_{2n}), j = (j_1, j_2, \ldots, j_{2m})$ に対し、

$$
\mathbb{E} \left[v_{i_1i_2} v_{i_3i_4} \cdots v_{i_{2n-1}i_{2n}} v_{j_1j_2} v_{j_3j_4} \cdots v_{j_{2m-1}j_{2m}} \right] \\
= \delta_{nm} \sum_{\sigma \in S_{2n}} \delta_{\sigma}(i, j) W^O_{g}(\sigma; N + 1).
$$

- 群のときは \sum が 2 個。対称空間では \sum が 1 個。
- 直交群の Weingarten 関数が現れ、パラメータが N ではなく $N + 1$ に。
- CSE (AI 型) では斜交群の Weingarten 関数 W^g_{Sp} が現れて、パラメータが $N \mapsto N - \frac{1}{2}$。

松本 諏 (鹿大) Weingarten calculus と 対称群の調和解析 平成 27 年 9 月 14 日 36 / 44
A III 型: chiral unitary ensembles

\[U(N)/(U(p) \times U(q)), \ N = p + q. \]

対応するランダム行列は、
\[N \times N \] エルミートかつユニタリ, 固有値 1 (p times), \(-1\) (q times).

A III 型の Weingarten 関数 [M (13)]

\[W_{g}^{A \text{III}}(\sigma; p, q) = \frac{1}{n!} \sum_{\lambda \vdash n} f_{\lambda}^N s_{\lambda(1, \ldots, 1, -1, \ldots, -1)} s_{\lambda}(1, \ldots, 1) \chi^{\lambda}(\sigma) \quad (\sigma \in S_n). \]

- \(s_{\lambda} \) はシューア多項式で,
 \[s_{\lambda}(1, \ldots, 1) = \frac{f_{\lambda}^N}{n!} C_{\lambda}(N) = \frac{f_{\lambda}^N}{n!} \prod_{(i,j) \in \lambda} (N + j - i). \]

- 例. \(W_{g}^{A \text{III}}((1)(2); p, q) = \frac{(p-q+1)(p-q-1)}{(p+q+1)(p+q-1)}. \)
D III 型: Bogoliubov-de Gennes (BdG) ensemble

\[O(2N)/U(N). \]

D III 型の Weingarten 関数 [M (13, 15)]

- 左 \(H_n \)-twisted, 右 \(H_n \)-不変の性質を持つ！

\[Wg^{DIII}(\zeta \sigma \zeta'; N) = \text{sgn}(\zeta) Wg^{DIII}(\sigma; N) \quad (\sigma \in S_{2n}, \zeta, \zeta' \in H_n). \]

- [Ivanov (97)] や [Okounkov–Olshanski (96)] による Bispherical function の理論を用いる。

- \(\sigma \in S_{4m} \) のコセットタイプが, 2\(\nu \) (\(\nu \) は \(m \) の分割) という形をしているときだけ生き残り, そのときの値は

\[Wg^{DIII}(\sigma; N) = \pm \frac{1}{2^{2 m - \ell(\nu)}} Wg^{U}(\nu; N - \frac{1}{2}) \]

となる [誤植訂正]. ここで, \(Wg^{U}(\nu; N - \frac{1}{2}) \) はユニタリ Weingarten 関数のサイクルタイプ \(\nu \) となる置換での値である.
この章のまとめ

7 番列の古典的なコンパクト対称空間に付随するランダム行列の Weingarten calculus を確立した。対応する Weingarten 関数は以下の性質をもつ。

A I 直交 Wg に一致。しかしパラメータは \(N + 1 \)。両側 \(H_n \)-不変。
A II 斜交 Wg に一致。しかしパラメータは \(N - \frac{1}{2} \)。両側 \(H_n \)-twsited。
A III 2 つのパラメータ \(p, q \) を持つ。共役不変。

BD I 2 つのパラメータ \(p, q \) を持つ。両側 \(H_n \)-不変。
C II 2 つのパラメータ \(p, q \) を持つ。両側 \(H_n \)-twsited。
D III 特殊値はユニタリ Wg に一致。しかしパラメータは \(N - \frac{1}{2} \)。
左 \(H_n \)-twisted, 右 \(H_n \)-不変。
C I 特殊値はユニタリ Wg に一致。しかしパラメータは \(N + \frac{1}{2} \)。
左 \(H_n \)-不変, 右 \(H_n \)-twisted。

U 共役不変。
O 両側 \(H_n \)-不変。
Sp 両側 \(H_n \)-twsited。
1 序章

2 ユニタリ群の Weingarten calculus

3 直交群, 斜交群の Weingarten calculus

4 Jucys-Murphy 元と Weingarten 関数

5 コンパクト対称空間の Weingarten calculus

6 Remarks, applications, and future research
その他のWeingarten calculus

- SU(N) = \{U \in U(N) \mid \text{det}(U) = 1\} の Weingarten calculus (未完成)。

 \[k \text{ が } N \text{ の倍数でなければ } \int_{SU(N)} u_{i_1j_1} \cdots u_{i_kj_k} dU = 0. \]

- 例外型コンパクト群 G₂ の Weingarten calculus (未完成). G₂ は八元数体の自己同型群で, SO(7) の部分群。

 \[\int_{G_2} g_{12}^2 g_{17}^2 dg = \frac{1}{63}. \]

- ウィッシャート行列の逆行列の Weingarten calculus ([Graczyk–Letac–Massam (03, 05), M (12), Collins–M–Saad (14)])
・ ユニタリ群上のブラウン運動とは、

\[(SDE) \quad dU_N(t) = U_N(t)dK_N(t) - \frac{1}{2}U_N(t)dt, \quad U_N(0) = I_N\]

の強い解 $U_N(t)$ のことである．ここで $K_N(t)$ は，リー環 $u(N) \cong \mathbb{R}^{N^2}$ 上のブラウン運動．$U_N(t)$ は，カシミール元（の $\frac{1}{2}$ 倍）を無限小生成作用素とするマルコフ過程である．[Dahlqvist (arXiv 2012)] は，$U_N(t)$ の行列成分に関する Weingarten calculus を与えた．
Weingarten calculus (since 2003) is a fundamental tool in random matrix theory. In particular, Weyl's integral formula applies in situations where, as $N \to \infty$, one can observe the motion of a strong force. This tool is used in many fields:

- Harish-Chandra-Itzykson-Zuber integral asymptotics [Goulden-Guay-Paquet-Novak (14)]
- Random analytic function [Krishnapur (09)]
- Design and code [Scott (08)]
- Quantum information [Montanaro (13)]
- Gauge field theory [Diaz (14)]
1. 序章

2. ユニタリ群の Weingarten calculus

3. 直交群, 斜交群の Weingarten calculus

4. Jucys-Murphy 元と Weingarten 関数

5. コンパクト対称空間の Weingarten calculus

6. Remarks, applications, and future research