TORIC IDEALS WHICH ARE DETERMINANTAL

REZA ABDOLMALEKI AND RASHID ZAARE-NAHANDI

Abstract. Given any equigenerated monomial ideal I with the property that the defining ideal J of the fiber cone $F(I)$ of I is generated by quadratic binomials, we introduce a matrix such that the set of its binomial 2-minors is a generating set of J. In this way, we characterize the fiber cone of sortable and Freiman ideals.

Introduction

Let K be a field and $S = K[x_1, \ldots, x_n]$ the polynomial ring in variables x_1, \ldots, x_n over K. For a graded ideal $I \subset S$ the fiber cone $F(I)$ of I is the standard graded K-algebra $\bigoplus_{k \geq 0} J^k/m I^k$, where m denotes the unique maximal graded ideal of S. Indeed, $F(I) = R/I(R) \cap I\mathcal{R}(I)$, where $\mathcal{R}(I) = \bigoplus_{k \geq 0} J^k/m I^k \subset S[t]$ is the Rees ring of I.

Let I be a monomial ideal with $G(I) = \{u_1, \ldots, u_q\}$ and $T = K[t_{u_1}, \ldots, t_{u_q}]$ be the polynomial ring in variables t_{u_1}, \ldots, t_{u_q} over K. The K-algebra homomorphism $T \to F(I), t_{u_i} \mapsto u_i + \mathfrak{m} I$ induces the isomorphism $F(I) \cong T/J$. The ideal J is called the defining ideal of $F(I)$. Finding the minimal generators of J and the algebraic properties of $F(I)$ is a difficult problem even in concrete cases. For example, for the symmetric ideals

$$I_1 = (x_1^{11}, x_1^9x_2, x_1^7x_2^4, x_1^5x_2^6, x_1^4x_2^7, x_1^2x_2^9, x_2^{11}),$$

$$I_2 = (x_1^{11}, x_1^{10}x_2, x_1^7x_2^4, x_1^5x_2^6, x_1^4x_2^7, x_1^2x_2^9, x_1x_2^{10}, x_2^{11})$$

generated in degree 11 in $K[x_1, x_2]$, one can check by CoCoA [2] that the defining ideal of $F(I_1)$ is an ideal generated by quadratic binomials and $F(I_1)$ is a Cohen-Macaulay algebra, while the minimal generating set of the defining ideal of $F(I_2)$ includes binomials in degrees 2 and 4, and $F(I_2)$ is not Cohen-Macaulay. Note that, $G(I_1)$ and $G(I_2)$ just differ in 2 monomials. We recall that a monomial ideal $I \subset S = K[x_1, x_2]$ with $G(I) = u_1, \ldots, u_q$ and $u_i = x_1^{a_i}x_2^{b_i}$ satisfying the properties $a_1 > a_2 > \ldots > a_q = 0$ and $0 = b_1 < b_2 < \ldots < b_q$ is called a symmetric ideal, if $b_i = a_{q-i+1}$ for $i = 1, \ldots, q$. The fiber cones of symmetric ideals with 4 generators are well studied in [8] and [10]. Moreover, [8] includes a characterization of the fiber cones of concave and convex monomial ideals and their algebraic properties.

In this paper, for an equigenerated monomial ideal I with the property that the defining ideal J of $F(I)$ is generated by quadratic binomials, we interpret J as the set of binomial 2-minors of a special matrix. By an equigenerated monomial ideal we
mean an ideal generated by monomials in a single degree. In this paper we consider
that a binomial has exactly two non-zero monomials.

In Section 1 we associate to a sortable ideal \(I \) a matrix \(T_I \), such that the defining ideal \(J \) of \(F(I) \) is generated by the set of binomial 2-minors of \(T_I \) (Theorem 1.3). Moreover, we show that equigenerated \(c \)-bounded strongly stable monomial ideals, in particular Veronese type ideals, are sortable and hence, their fiber cones are Cohen-Macaulay normal domains and reduced Koszul algebras.

In Section 2 for any equigenerated monomial ideal \(I \in K[x_1, \ldots, x_n] \) with \(n \geq 3 \), we show that if the defining ideal \(J \) of the fiber cone \(F(I) \) is generated by quadratic binomials, then \(J \) is generated by the set of binomial 2-minors of \(T_I \) (Theorem 2.3). For the case \(I \subset K[x_1, x_2] \), we associate to \(I \) a matrix \(T_I \) in a different way, and show that the defining ideal of \(F(I) \) is generated by the set of binomial 2-minors of \(T_I \) (Theorem 2.2). In particular, we determine the fiber cone of Freiman ideals. A Freiman ideal \(I \) is an equigenerated monomial ideal such that \(\mu(I^2) = \ell(I)\mu(I) - \binom{\ell(I)}{2} \), where \(\mu(I) \) is the minimal number of generators of \(I \), and \(\ell(I) \) denotes the analytic spread of \(I \) which is by definition the Krull dimension of \(F(I) \). Freiman ideals are studied in [6] and [9].

1. The Fiber Cone of Sortable Ideals

Let \(S = K[x_1, \ldots, x_n] \) be the polynomial ring in the variables \(x_1, \ldots, x_n \) over a field \(K \). We denote by \(m \) the unique maximal graded ideal of \(S \). Let \(I \) be a monomial ideal of \(S \) and \(G(I) = \{ u_1, \ldots, u_q \} \) be the minimal set of monomial generators of \(I \). The fibre cone \(F(I) \) of \(I \) is defined as the standard graded \(K \)-algebra \(\bigoplus_{k \geq 0} I^k/mI^k \). Let \(T = K[t_{u_1}, \ldots, t_{u_q}] \), where \(t_{u_1}, \ldots, t_{u_q} \) are independent variables. Then \(F(I) \cong T/J \), where \(J \) is the kernel of the \(K \)-algebra homomorphism \(T \to F(I) \) with \(t_{u_i} \mapsto u_i+mI \). In this section we determine the fiber cone of sortable ideals and introduce several classes of ideals which are sortable.

Let \(d \) be a positive integer and \(S_d \) be the \(\mathbb{K} \)-vector space generated by monomials of degree \(d \) in \(S \). For monomials \(u, v \in S_d \) we write \(uv = x_{i_1}x_{i_2} \ldots x_{i_{2d}} \) with \(1 \leq i_1 \leq i_2 \leq \ldots \leq i_{2d} \leq n \). The pair \((u', v') \) with \(u' = x_{i_1}x_{i_3} \ldots x_{i_{2d - 1}} \) and \(v' = x_{i_2}x_{i_4} \ldots x_{i_{2d}} \) is called the sorting of \((u, v) \). So we get the map

\[
\text{sort} : S_d \times S_d \to S_d \times S_d, (u, v) \mapsto (u', v'),
\]
called sorting operator. A pair \((u, v) \) is called sorted if \(\text{sort}(u, v) = (u, v) \), otherwise it is called unsorted. It is shown in [11] Section 6.2] that the pair \((u, v) \) with \(u = x_{i_1}x_{i_2} \ldots x_{i_d} \) and \(v = x_{j_1}x_{j_2} \ldots x_{j_d} \) is sorted if and only if

\[
(1) \quad i_1 \leq j_1 \leq i_2 \leq j_2 \leq \ldots \leq i_d \leq j_d.
\]

Note that if \((u, v) \) is sorted, then \(u \geq_{\text{lex}} v \), where \(\geq_{\text{lex}} \) denotes the lexicographic order on Mon(\(S \)), the set of monomials of \(S \).

Definition 1.1. (a) A set of monomials \(A \subset S_d \) is called sortable if \(\text{sort}(A \times A) \subset A \times A \).

(b) An equigenerated monomial ideal \(I \) is called a sortable ideal, if \(G(I) \) is a sortable set.
Let $A \subset S_d$ be a sortable set of monomials and I be the ideal generated by A. We denote by $K[A]$ the semigroup ring generated over K by A. Let $T = K[t_u : u \in A]$ be the polynomial ring with the order on variables given by $t_u > t_v$ if $u \geq_{\text{lex}} v$. Also, let $\varphi : T \to K[A]$ be the K-algebra homomorphism defined by $t_u \mapsto u$ for all $u \in A$ and P_A be the kernel of φ. Since the ideal I is equigenerated, $F(I) \cong K[A]$ (see [7, the proof of Corollary 1.2]) and so the toric ideal P_A is the defining ideal J of $F(I)$ in the representation $F(I) = T/J$ of the fiber cone of I.

The following well known theorem plays an important role in the proof of the main theorem of this section (See [4, Theorem 6.16]).

Theorem 1.2. Let $K[A]$ be a K-algebra generated by a sortable set of monomials $A \subset S_d$ and $P_A \subset R$ its toric ideal. Then $$G = \{t_u t_v - t_u' t_v' : u, v \in A, (u, v) \text{ unsorted}, (u', v') = \text{sort}(u, v)\}$$ is the reduced Gröbner basis of P_A with respect to the sorting order.

It follows from [4, Theorem 6.15] that the ideal $\text{in}_{\prec}(G)$ is generated by the monomials $t_u t_v$ where (u, v) is unsorted.

Before stating the main theorem of this section, we recall that an affine semigroup H generated by the set $H = \{h_1, \ldots, h_k\} \subset \mathbb{Z}^n$ is called normal if it satisfies the following condition: if $mg \in H$ for some $g \in \mathbb{Z}H$ and $m > 0$, then $g \in H$, where $\mathbb{Z}H$ is the subgroup of \mathbb{Z}^n generated by H. Also, a domain R is called normal if it is integrally closed, that is $R = \overline{R}$ where \overline{R} is the integral closure of R.

Notation 1.3. Let $I \subset S$ be an ideal generated minimally by a set of monomials of degree d. One can consider $G(I) = \{u_1, \ldots, u_q\}$ as a subset of $G(m^d)$. Let M be the matrix which the entries of its i-th row are the monomials of $G(m^d)$ containing x_i, ordered lexicographically from left to right, for $i = 1, \ldots, n$. This matrix has n rows and $\binom{n+d-2}{d-1}$ columns. We replace the entries of M belonging to $G(m^d) \setminus G(I)$ by 0, remove its zero columns and denote the obtained matrix by M_I. Then we replace any non-zero element u of M_I by indeterminate t_u of $R = K[t_{u_1}, \ldots, t_{u_q}]$. Denote this matrix by T_I and call it the matrix associated to I.

Example 1.4. Let $n = 3$ and $d = 3$. The matrix M is the following:

$$M = \begin{pmatrix} x_1^3 & x_1^2 x_2 & x_1 x_2^2 & x_1 x_3 & x_2 x_3 & x_3^2 \\ x_2^3 & x_2 x_1^2 & x_1 x_2 x_3 & x_1 x_3^2 & x_1 x_2^2 & x_2 x_3 \\ x_3^3 & x_3 x_1 x_2 & x_1 x_2 x_3 & x_1 x_3^2 & x_2 x_3 & x_3 x_2 \\ x_1 x_2 x_3 & x_1 x_2 x_3 \end{pmatrix}.$$

Let I be the Veronese type ideal $I = (x_1^3, x_1^2 x_2, x_1 x_2^2, x_1 x_2 x_3, x_1 x_2 x_3, x_2 x_3) \subset K[x_1, x_2, x_3]$. We set $u_1 = x_1^3$, $u_2 = x_1^2 x_2$, $u_3 = x_1 x_2^2$, $u_4 = x_1 x_2 x_3$, $u_5 = x_1 x_2 x_3$ and $u_6 = x_2 x_3$. Let $F(I) = K[t_{u_1}, \ldots, t_{u_6}]/J$. We have

$$T_I = \begin{pmatrix} t_{u_1} & t_{u_2} & t_{u_3} & t_{u_4} & t_{u_5} \\ t_{u_2} & t_{u_3} & t_{u_4} & t_{u_5} & 0 \\ t_{u_3} & t_{u_4} & t_{u_5} & 0 & t_{u_6} \\ t_{u_4} & t_{u_5} & t_{u_6} & 0 & 0 \end{pmatrix}.$$

Theorem 1.5. Let $I \subset S$ be a sortable ideal with $G(I) = \{u_1, \ldots, u_q\}$ and the fiber cone $F(I) = K[t_{u_1}, \ldots, t_{u_q}]/J$. Also, let T_I be the matrix associated to I, introduced in Notation 1.3.
(a) The toric ideal J is generated by the set of binomial 2-minors of T_I. Indeed,

$$J = \{ t_u t_v - t_{u'} t_{v'} : u, v, u', v' \in G(I), \begin{pmatrix} t_u & t_{u'} \\ t_v & t_{v'} \end{pmatrix} \text{ is a submatrix of } T_I \}.$$

(b) $F(I)$ is a reduced Koszul algebra.

(c) $F(I)$ is a Cohen-Macaulay normal domain.

Proof. (a) For $i = 1, \ldots, n$, dividing the entries of the i-th row of the matrix M by x_i, we get a matrix whose entries of all rows are the monomials of $G(\mathfrak{m}^{d-1})$ ordered lexicographically from left to right. This implies that the set of binomial 2-minors of T_I includes in J.

Now, we show that for the monomials $u, v, u', v' \in G(I)$ if the binomial $f = t_u t_v - t_{u'} t_{v'}$ belongs to J, then f is a 2-minor of T_I. By theorem 1.2

$$G = \{ t_u t_v - t_{u'} t_{v'} : u, v \in G(I), (u, v) \text{ unsorted}, (u', v') = \text{sort}(u, v) \}$$

is the reduced Gröbner basis of J with respect to the sorting order. We show that if monomials $u, v \in G(I)$ are unsorted, then u and v are the i-th and the kl-th entries of the matrix M_I respectively, such that $i \neq k$ and $j \neq l$ and that sort$(u, v) = (u', v')$, where u' and v' are the il-th and the kj-th entries of the matrix M_I respectively. This implies that the determinants of 2×2 submatrices of T_I which have no zero entries, form a Gröbner basis of J. Let (u, v) with $u = x_{i_1} x_{i_2} \ldots x_{i_q}$ and $v = x_{j_1} x_{j_2} \ldots x_{j_q}$ be an unsorted pair in $G(I) \times G(I)$. Notice that u and v belong to different columns of M. Indeed, if two different monomials w, w' belong to the same column of M, we have $w = x_{p} w_1$ and $w' = x_{q} w_1$ for $1 \leq p \neq q \leq n$ and a monomial $w_1 \in G(\mathfrak{m}^{d-1})$. So, by 1 the pair (w, w') is sorted. On the other hand, since (u, v) is unsorted, u is divisible by x_i and v is divisible by x_j for some $1 \leq i \neq j \leq n$, because otherwise $u = v = x_r^q$ for a variable x_r, a contradiction. Hence, we can find u and v in different rows of the matrix M (although they may appear in the same row as well). So we assume that $u = u_{ij}$ and $v = v_{kl}$ such that $i \neq k$ and $j \neq l$. Since $G(I)$ is a sortable set, it follows that sort$(u, v) \in G(I) \times G(I)$. Assume that sort$(u, v) = (u', v')$. So $t_u t_v - t_{u'} t_{v'}$ belongs to the reduced Gröbner basis of J by Theorem 1.2. Note that $u_{ij} = x_{i} u_1$ and $v_{kj} = x_{k} u_1$ for a monomial $u_1 \in G(\mathfrak{m}^{d-1})$. Similarly, $u_{id} = x_{i} u_2$ and $v_{kl} = x_{k} u_2$ for a monomial $u_2 \in G(\mathfrak{m}^{d-1})$. Therefore, $u_{ij} v_{kl} = u_{id} v_{kj} = x_i x_k u_1 u_2$ and hence sort$(u_{ij}, v_{kl}) = \text{sort}(u_{id}, v_{kj})$. Suppose that (u_{id}, v_{kj}) is unsorted. It follows from Theorem 1.2 that $t_{u_{id}} t_{v_{kj}} - t_{u'} t_{v'}$ belongs to the reduced Gröbner basis of J which is a contradiction, because $(t_u t_v - t_{u'} t_{v'}) - (t_{u_{id}} t_{v_{kj}} - t_{u'} t_{v'}) = t_u t_v - t_{u_{id}} t_{v_{kj}}$ belongs to the reduced Gröbner basis of J. Therefore, sort$(u_{ij}, v_{kl}) = (u_{id}, v_{kj})$. So, the assertion follows from Theorem 1.2. Notice that this Gröbner basis is not necessary reduced.

(b) It follows from [4, Theorem 6.15]) that $\text{in}_{<}(J)$ is a square-free monomial ideal. This yields that J is a radical ideal (see [5, Theorem 3.3.7]) and hence $F(I)$ is a reduced algebra. Moreover, since J has a quadratic Gröbner basis, $F(I)$ is Koszul by a well known result of Fröberg (see [4, Theorem 6.7]).

(c) Since $\text{in}_{<}(J)$ is a squarefree monomial ideal, it follows from a result by Sturmfels ([13, Proposition 13.15]) that $F(I)$ is normal. Moreover, by a result of Hochster ([11, Theorem 1]) $F(I)$ is Cohen-Macaulay. \qed
In the rest of this section we show that any equigenerated \(c\)-bounded strongly stable monomial ideal is sortable.

Let \(c = (c_1, \ldots, c_n)\) be an integer vector with \(c_i \geq 0\). The monomial \(u = x_1^{a_1} \cdots x_n^{a_n}\) is called \(c\)-bounded, if \(a \leq c\), that is, \(a_i \leq c_i\) for all \(i\). Let \(I = (u_1, \ldots, u_m)\) be a monomial ideal. We set

\[I^{c} = (u_i: \text{ } u_i \text{ is } c\text{-bounded}).\]

We also set \(m(u) = \max\{i: \text{ } a_i \neq 0\}\). The following definition is obtained from [2].

Definition 1.6. Let \(I \subset S\) be a \(c\)-bounded monomial ideal.

1. \(I\) is called **\(c\)-bounded strongly stable** if for all \(u \in G(I)\) and all \(i < j\) with \(x_j|u\) and \(x_iu/x_j \in I\), it follows that \(x_iu/x_j \in I\).
2. \(I\) is called **\(c\)-bounded stable** if for all \(u \in G(I)\) and all \(i < m(u)\) for which \(x_iu/x_m(u)\) is \(c\)-bounded, it follows that \(x_iu/x_m(u) \in I\).

It is clear that a \(c\)-bounded strongly stable monomial ideal is \(c\)-bounded stable.

The smallest \(c\)-bounded strongly stable ideal containing \(c\)-bounded monomials \(u_1, \ldots, u_m\) is denoted by \(B^c(u_1, \ldots, u_m)\). A monomial ideal \(I\) is called a **\(c\)-bounded strongly stable principal ideal**, if there exists a \(c\)-bounded monomial \(u\) such that \(I = B^c(u)\). The smallest strongly stable ideal containing \(u_1, \ldots, u_m\) (with no restrictions on the exponents) is denoted \(B(u_1, \ldots, u_m)\). The monomials \(u_1, \ldots, u_m\) are called **Borel generators** of \(I = B(u_1, \ldots, u_m)\).

Proposition 1.7. Let \(I = B^c(u_1, \ldots, u_m)\) be an equigenerated \(c\)-bounded strongly stable monomial ideal. Then \(I\) is a sortable ideal.

Proof. First we prove the assertion for the case \(c\)-bounded strongly stable principal ideal \(I = B^c(u_k)\) where \(1 \leq k \leq m\). Assume that \(v, w \in G(B^c(u_k))\) and \(\text{sort}(v, w) = (v', w')\). For this purpose we first show that \(v', w'\) are \(c\)-bounded monomials. So, we must check that for all \(i \in \{1, \ldots, n\}\), the degrees of \(x_i\) in \(v'\) and \(w'\) are not greater than \(c_i\). Let \(\deg_{x_i}(v) = a_i\) and \(\deg_{x_i}(w) = b_i\). Note that \(a_i, b_i \leq c_i\). If \(a_i + b_i\) is even, \(\deg_{x_i}(v') = \deg_{x_i}(w') = (a_i + b_i)/2\) by the definition of the sorting operator. Therefore, \(\deg_{x_i}(v')\), \(\deg_{x_i}(w') \leq c_i\). Now let \(a_i + b_i\) be an odd integer. Then \(\deg_{x_i}(v') = (a_i + b_i + 1)/2\) and \(\deg_{x_i}(w') = (a_i + b_i - 1)/2\). Hence, \(\deg_{x_i}(v'), \deg_{x_i}(w') \leq c_i\). This means that \(v', w'\) are \(c\)-bounded monomials.

Now, since \(vw = v'w'\) and \(v, w \in G(B^c(u_k))\), it follows from [3, Lemma 2.7] that \(v', w' \in B^c(u_k)\), and since \(v, w, v'\) and \(w'\) are in the same degree, we get \(v', w' \in G(B^c(u_k))\).

Finally, since \(I = B^c(u_1, \ldots, u_m) = B^c(u_1) + \cdots + B^c(u_m)\), the assertion follows. \(\square\)

Corollary 1.8. The statements of Theorem [1,3] hold for equigenerated \(c\)-bounded strongly stable monomial ideals.

Remark 1.9. (a) An equigenerated \(c\)-bounded stable ideal is not necessarily sortable. For example, the ideal \(I = (x_1^3, x_2^3x_2, x_1x_2^2, x_1x_2x_3) \subset K[x_1, x_2, x_3]\) is a \(c\)-bounded stable ideal of degree 3, where \(c = (3, 2, 1)\). Note that \(\text{sort}(x_1^3, x_1x_2x_3) = (x_1^2x_2, x_1^2x_3) \notin G(I) \times G(I)\).
(b) Let \(v \) be a monomial in \(S \) and \(I = B(v) \). It follows from \([3]\) Lemma 2.7 that \(G(I) \) is a sortable set. So, since for equigenerated monomials \(u_1, \ldots, u_m \) we have \(B(u_1, \ldots, u_m) = B(u_1) + \cdots + B(u_m) \), the statements of the Theorem 1.5 hold for equigenerated strongly stable monomial ideals.

Now we come with an important class of equigenerated \(c \)-bounded strongly stable monomial ideals, called Veronese type ideals. Let \(n \) be a positive integer, \(d \) be an integer, and \(\mathbf{a} = (a_1, \ldots, a_n) \) be an integer vector with \(a_1 \geq a_2 \geq \cdots \geq a_n \). The monomial ideal \(I_{\mathbf{a},n,d} \subset S = K[x_1, \ldots, x_n] \) with the minimal generating set

\[
G(I_{\mathbf{a},n,d}) = \{ x_1^{b_1} x_2^{b_2} \cdots x_n^{b_n} \mid \sum_{i=1}^{n} b_i = d \text{ and } b_i \leq a_i \text{ for } i = 1, \ldots, n \}
\]

is called a Veronese type ideal. It is obvious that \(I_{\mathbf{a},n,d} \) is \(\mathbf{a} \)-bounded strongly stable.

Corollary 1.10. The statements of Theorem 1.5 hold for Veronese type ideals.

Example 1.11. In the Example 1.4, the ideal \(I \) is Veronese type \(I_{\mathbf{a},3,3} \) with \(\mathbf{a} = (3, 2, 1) \). Therefore,

\[
J = (t_{u_1} t_{u_5} - t_{u_2}^2, t_{u_1} t_{u_5} - t_{u_2} t_{u_3}, t_{u_2} t_{u_3} - t_{u_3} t_{u_4}, t_{u_2} t_{u_4} - t_{u_4} t_{u_5}, t_{u_3} t_{u_5} - t_{u_2}^2),
\]

which is confirmed by CoCoA.

2. Toric ideals generated by quadratic binomials

Let \(I \subset K[x_1, \ldots, x_n] \) be an equigenerated ideal, such that the toric defining ideal \(J \) of \(F(I) \) is generated by quadratic binomials. We associate to \(I \) a matrix, and show that \(J \) is generated by the set of binomial \(2 \)-minors of this matrix. Indeed, \(J \) is generated by the set of the determinants of \(2 \times 2 \) submatrices of this matrix which have no zero entries. The construction of the associated matrix when \(n = 2 \) is different from the cases \(n \geq 3 \). For this purpose we introduce the following notation.

Notation 2.1. Let \(I \subset K[x_1, x_2] \) be an ideal generated in degree \(d \) with the minimal set of monomial generators \(G(I) = \{ u_1, \ldots, u_q \} \) which can be considered as a subset of \(G(\mathbb{m}^d) \). We assume that \(I \) contains \(x_1^d \), because otherwise there exist a positive integer \(d' \) and an ideal \(J \) such that \(I = x_2^{d'} J \) and \(G(J) \) contains \(x_1^{d - d'} \), for which we have \(F(I) = F(J) \). Also, we assume that

\[
u_1 = x_1^d >_{\text{lex}} u_2 = x_1^{d-a} x_2^a >_{\text{lex}} u_3 \ldots >_{\text{lex}} u_{q-1} >_{\text{lex}} u_q = x_1^{d-a-b} x_2^{a+b},\]

where \(1 \leq a, b \leq d - 1 \) and \(2 \leq a + b \leq d \).

We arrange the columns of the matrix \(\mathcal{M} \) in the following way

\[
\mathcal{M} = \begin{pmatrix}
x_1^d & u_1 & x_1^{d-1} x_2 & x_1^{d-2} x_2^2 & \ldots & x_1^{d-b} x_2^b \\
x_1^{d-1} x_2 & x_1^{d-2} x_2 & x_1^{d-3} x_2^3 & \ldots & x_1^{d-b-1} x_2^{b+1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
x_1^{d-a} x_2^a = u_2 & x_1^{d-a-1} x_2^{a+1} & x_1^{d-a-2} x_2^{a+2} & \ldots & x_1^{d-a-b} x_2^{a+b} = u_q
\end{pmatrix}.
\]

We replace the entries of \(\mathcal{M} \) belonging to \(G(\mathbb{m}^d) \setminus G(I) \) by 0 and denote the obtained matrix by \(\mathcal{M}_I \). We also replace any nonzero element \(u \) of \(\mathcal{M}_I \) by the indeterminate \(t_u \) of \(R = K[t_{u_1}, \ldots, t_{u_q}] \) and denote this matrix by \(\mathcal{T}_I \).
Theorem 2.2. Let \(I \subset K[x_1, x_2] \) be a monomial ideal generated in degree \(d \) with the unique minimal set of monomial generators \(G(I) = \{u_1, \ldots, u_q \} \) and let \(F(I) = K[t_{u_1}, \ldots, t_{u_q}]/J \). If the toric ideal \(J \) is generated by quadratic binomials, then \(J \) is the ideal generated by the set of binomial 2-minors of \(T_I \).

Proof. Let \(m_j \) be the least common multiple of all entries of the \(j \)-th column of \(M \) for \(j = 1, \ldots, b + 1 \). Dividing the \(j \)-th column of \(M \) by \(m_j \) for all \(j \), we get a matrix whose entries of all columns are the monomials of \(G(m^d) \) ordered lexicographically up to down. So, every 2-minor of this matrix is zero. This implies that, every binomial 2-minor of \(T_I \) belongs to \(J \).

Conversely, we show that any quadratic binomial of \(G(J) \) stands as the determinant of a \(2 \times 2 \) submatrix of \(T_I \) which has no zero entries. Let \(f = t_u t_v - t_w t_{v'} \in J \), where \(u, v, u', v' \in G(J) \). It is clear from the arrangement of the columns of \(M \) that \(u \) and \(v \) appear on the main diagonal of a \(2 \times 2 \) submatrix of \(M \) (note that \(uv \neq x_1^{2d-1}x_2 \) and also \(u'v' \neq x_1x_2^{2d-1} \)). We need to show that \(u' \) and \(v' \) appear on the secondary diagonal of the same submatrix. Let \(u = x_1^{d-q}x_2^p, v = x_1^{d-r}x_2^r, u' = x_1^{d-q}x_2^q, v' = x_1^{d-s}x_2^s \). Since \(f \in J \), it follows that \(uv = u'v' \) and hence \(p + q = r + s \). So, without loss of generality, we may assume that \(s > p \) and \(q > r \). In addition, we let \(u \) and \(v \) be the \(ij \)-th and the \(kl \)-th entries of \(M \) respectively. We show that \(u' \) and \(v' \) are the \(il \)-th and the \(kj \)-th entries of \(M \) respectively. Since \(p + q = r + s \), therefore \(s - p = q - r \). So, it follows from the arrangement of the columns of \(M \) that \(u' \) and \(v' \) appear as the \(il \)-th and the \(kj \)-th entries of \(M \) respectively, and the proof is complete. \(\square \)

In the next theorem we let \(I \) be an equigenerated monomial ideal in the polynomial ring \(S = K[x_1, \ldots, x_n] \) with \(n \geq 3 \), and \(T_I \) be its associated matrix introduced in Notation 1.3.

Theorem 2.3. Let \(I \subset S = K[x_1, \ldots, x_n] \) with \(n \geq 3 \) be a monomial ideal generated in degree \(d \) with the minimal set of monomial generators \(G(I) = \{u_1, \ldots, u_q \} \), and let \(F(I) = K[t_{u_1}, \ldots, t_{u_q}]/J \). If the toric ideal \(J \) is generated by quadratic binomials, then \(J \) is the ideal generated by the set of binomial 2-minors of \(T_I \).

Proof. As we stated in the proof of Theorem 1.3, if we divide the entries of the \(i \)-th row of the matrix \(M \) by \(x_i \) for \(i = 1, \ldots, n \), we get a matrix whose entries of all rows are the monomials of \(G(m^d) \) ordered lexicographically from left to right. This implies that all 2-minors of \(M \) are zero and therefore, any binomial 2-minors of \(T_I \) is contained in \(J \).

Conversely, for the nonzero monomials \(u, v, u', v' \in G(I) \), let the nonzero binomial \(f = t_u t_v - t_w t_{v'} \) belongs to \(J \). We show that \(f \) is a 2-minor of \(T_I \). Set \(u = x_1^{\alpha_1} \cdots x_n^{\alpha_n}, v = x_1^{\beta_1} \cdots x_n^{\beta_n}, u' = x_1^{\alpha'_1} \cdots x_n^{\alpha'_n} \) and \(v' = x_1^{\beta'_1} \cdots x_n^{\beta'_n} \). It is clear that \(t_u t_v - t_u t_{v'} \in J \) if and only if \(uv = u'v' \). Therefore, \(\alpha_i + \beta_i = \alpha'_i + \beta'_i \) for \(i = 1, \ldots, n \). Since \(f \) is a nonzero binomial, then \(uv \) is not pure power of a variable and so there are indices \(k \neq l \) such that \(x_k | u \) and \(x_l | v \). Thus, \(x_k | u'v' \) and \(x_l | u'v' \). We distinguish the following cases:

i) If \(x_k | u' \) and \(x_l | v' \), then \(u, u' \) appear in the \(k \)-th row of \(M \), and \(v, v' \) appear in \(l \)-th row of \(M \). We need to show that \(v' \) appears in the same column of \(u \), and \(v \)
appears in the same column of \(u' \). Since \(\alpha_i + \beta_i = \alpha'_i + \beta'_i \), we get \(\alpha_i - \beta'_i = \alpha'_i - \beta_i \) for \(i = 1, \ldots, n \). Set

\[
\frac{u}{\text{lcm}(u, u')} = \hat{u} = x_1^{\hat{\alpha}_1} \ldots x_n^{\hat{\alpha}_n},
\]
\[
\frac{u'}{\text{lcm}(u, u')} = \hat{u}' = x_1^{\hat{\alpha}'_1} \ldots x_n^{\hat{\alpha}'_n},
\]
\[
\frac{v}{\text{lcm}(v', v)} = \hat{v} = x_1^{\hat{\beta}_1} \ldots x_n^{\hat{\beta}_n},
\]

and

\[
\frac{v'}{\text{lcm}(v', v)} = \hat{v}' = x_1^{\hat{\beta}'_1} \ldots x_n^{\hat{\beta}'_n}.
\]

For \(i = 1, \ldots, n \), it is clear that \(\hat{\alpha}_i \neq 0 \) if and only if \(\alpha'_i = 0 \), and also \(\hat{\beta}'_i \neq 0 \) if and only if \(\beta_i = 0 \). Let \(\hat{\alpha}_i \neq 0 \). Then \(\hat{\alpha}'_i = 0 \). Now, \(\hat{\beta}'_i \neq 0 \), because otherwise the equality \(\alpha_i - \beta'_i = \alpha'_i - \beta_i \) gives a contradiction, since the left side is positive and the right side is negative. Therefore, \(\beta_i = 0 \) and so \(\alpha_i - \beta'_i = \alpha'_i - \beta_i = 0 \). It follows that \(\hat{u} = \hat{u}' \) and \(\hat{u}' = \hat{v} \). Now, since \(u = \text{lcm}(u, u')\hat{u}, \ u' = \text{lcm}(u, u')\hat{u}' \) and also \(v' = \text{lcm}(v', v)\hat{v}', v = \text{lcm}(v', v)\hat{v} \), it follows that \(\begin{pmatrix} u & u' \\ v & v' \end{pmatrix} \) is a submatrix of \(M \) and hence \(f \) is a 2-minor of \(T_I \).

ii) Let \(x_k, x_l \) do not divide \(v' \). It follows that \(x_k, x_l | u' \). So, there exists an index \(t = k, l \) such that \(x_t | v' \). Therefore, \(x_t | u \). If \(x_t | u \), then \(u, u' \) appear in the \(k \)-th row of \(M \) and \(v, v' \) appear in the \(t \)-th row of \(M \), and the conclusion is exactly the same as in the case (i). Now, assume that \(x_t \) does not divide \(v \). So \(x_t | u \). Therefore, \(u, v' \) appear in the \(t \)-th row of \(M \), and \(u', v \) appear in the \(l \)-th row of \(M \). We need to show that \(u' \) appears in the same column of \(u \), and \(v \) appears in the same column of \(v' \). Since \(\alpha_i + \beta_i = \alpha'_i + \beta'_i \), we get \(\alpha_i - \alpha'_i = \beta'_i - \beta_i \) for \(i = 1, \ldots, n \). Set

\[
\frac{u}{\text{lcm}(u, u')} = \hat{u} = x_1^{\hat{\alpha}_1} \ldots x_n^{\hat{\alpha}_n},
\]
\[
\frac{u'}{\text{lcm}(u, u')} = \hat{u}' = x_1^{\hat{\alpha}'_1} \ldots x_n^{\hat{\alpha}'_n},
\]
\[
\frac{v}{\text{lcm}(v', v)} = \hat{v} = x_1^{\hat{\beta}_1} \ldots x_n^{\hat{\beta}_n},
\]

and

\[
\frac{v'}{\text{lcm}(v', v)} = \hat{v}' = x_1^{\hat{\beta}'_1} \ldots x_n^{\hat{\beta}'_n}.
\]

For \(i = 1, \ldots, n \), it is clear that \(\hat{\alpha}_i \neq 0 \) if and only if \(\beta'_i = 0 \), and also \(\hat{\alpha}'_1 \neq 0 \) if and only if \(\beta_i = 0 \). Let \(\hat{\alpha}_i \neq 0 \). Then \(\hat{\alpha}'_1 = 0 \). Now, \(\hat{\beta}_1 \neq 0 \), because otherwise the equality \(\alpha_i - \alpha'_i = \beta'_i - \beta_i \) gives a contradiction, since the left side is positive and the right side is negative. Thus, \(\beta_i = 0 \) and hence \(\alpha_i - \alpha'_i = \beta'_i - \beta_i = 0 \). Therefore, \(\hat{u} = \hat{u}' \) and \(\hat{u}' = \hat{v} \). Now, since \(u = \text{lcm}(u, v')\hat{u}, \ v = \text{lcm}(u, v')\hat{v} \), it follows that \(\begin{pmatrix} u & u' \\ v & v' \end{pmatrix} \) is a submatrix of \(M \) and hence \(f \) is a 2-minor of \(T_I \). \(\square \)

An important consequence of Theorem 2.2 and Theorem 2.3 is a characterization of the fiber cone of Freiman ideals.

We recall that the analytic spread \(\ell(I) \) of an ideal \(I \) is by definition the Krull dimension of \(F(I) \). The following definition is obtained from [9].
Definition 2.4. An equigenerated monomial ideal I is called a Freiman ideal, if $\mu(I^2) = \ell(I)\mu(I) - \binom{\ell(I)}{2}$.

Corollary 2.5. Assume that T_I and T_J are the matrices introduced in Notation 1.3 and Notation 2.1.

(a) Let $I = (u_1, \ldots, u_q) \subset K[x_1, x_2]$ be a Freiman ideal with the fiber cone $F(I) = K[t_{u_1}, \ldots, t_{u_q}]/J$. Then, the toric ideal J is generated by the set of binomial 2-minors of T_I.

(b) Let $I = (u_1, \ldots, u_q) \subset K[x_1, \ldots, x_n]$ with $n \geq 3$ be a Freiman ideal and $F(I) = K[t_{u_1}, \ldots, t_{u_q}]/J$ be its fiber cone. Then, the toric ideal J is generated by the set of binomial 2-minors of T_I.

Proof. (a), (b). Let I be a Freiman ideal. Then, the toric defining ideal J of $F(I)$ is generated by binomials, (e.g., see [4, Lemma 5.2]). On the other hand, J has a 2-linear resolution by [6, Theorem 2.3]. Therefore, J is generated by quadratic binomials. Now, (a) follows from Theorem 2.2 and (b) follows from Theorem 2.3.

Remark 2.6. In [12] there exists an example of a non-Koszul square-free semigroup ring whose toric ideal is generated by quadratic binomials but possesses no quadratic Gröbner basis (12, Example 2.1). Therefore, the set of binomial 2-minors of T_I in Theorem 2.5 may not be a Gröbner basis of the toric ideal J.

Remark 2.7. Theorem 1.3 may fail when $I \subset K[x_1, x_2]$ is not generated by a sortable set of monomials, even the defining ideal of $F(I)$ is generated by quadratic binomials. For example, let $I = (x_1^5, x_1^3x_2, x_1^2x_2^2, x_1x_2^3, x_2^4)$. We set $u_1 = x_1^5, u_2 = x_1^3x_2, u_3 = x_1^2x_2^2$ and $u_4 = x_1x_2^3$. Note that $G(I)$ is not sortable, since sort($u_1, u_2) = (x_1^4x_2, x_1^3x_2) \notin G(I) \times G(I)$. One can check by CoCoA that $F(I) = K[t_{u_1}, \ldots, t_{u_4}]/J$ where $J = (t_{u_1}t_{u_4} - t_{u_2}^2, t_{u_2}t_{u_4} - t_{u_3}^2)$. While,

$$T_I = \begin{pmatrix} t_{u_1} & 0 & t_{u_2} & t_{u_3} & t_{u_4} \\ 0 & t_{u_2} & t_{u_3} & t_{u_4} & 0 \end{pmatrix}.$$

So, the ideal generated by the set of binomial 2-minors of T_I is $(t_{u_2}t_{u_4} - t_{u_3}^2)$. Thus, in this case we use Theorem 2.2 to find J. We have

$$T_J = \begin{pmatrix} t_{u_1} & 0 & t_{u_2} \\ 0 & t_{u_2} & t_{u_3} \\ t_{u_2} & t_{u_3} & t_{u_4} \end{pmatrix}.$$

It is easy to see that J is the ideal generated by the set of binomial 2-minors of T_J.

Example 2.8. (a) Let $I = (x_1^{12}, x_1^9x_2^3, x_1^6x_2^6, x_1^3x_2^9) \subset K[x_1, x_2]$. The ideal I is a Freiman ideal, since $\ell(I) = 2$ and $\mu(I^2) = 7 = 2\mu(I) - \binom{2}{2}$. Set $u_1 = x_1^{12}, u_2 = x_1^9x_2^3, u_3 = x_1^6x_2^6$ and $u_4 = x_1^3x_2^9$. Checking by CoCoA we get $F(I) = K[t_{u_1}, \ldots, t_{u_4}]/J$ where

$$J = (t_{u_1}t_{u_3} - t_{u_2}^2, t_{u_1}t_{u_4} - t_{u_2}t_{u_3}, t_{u_2}t_{u_4} - t_{u_3}^2).$$
Note that $G(I)$ is not sortable, since $\text{sort}(u_1, u_2) = (x_1^{11}x_2, x_1^{10}x_2^2) \notin G(I) \times G(I)$. Using Theorem 2.2 to find J we get

$$
T_I = \begin{pmatrix}
 t_{u_1} & 0 & 0 & t_{u_2} & 0 & 0 & t_{u_3} \\
 0 & t_{u_2} & 0 & 0 & t_{u_3} & 0 \\
 0 & t_{u_2} & 0 & 0 & t_{u_3} & 0 \\
 t_{u_2} & 0 & 0 & t_{u_3} & 0 & 0
\end{pmatrix}.
$$

We see that J is the ideal generated by the set of binomial 2-minors of T_I.

(b) Let $I = (x_1^3, x_1^2x_2, x_1x_2^2, x_2^3, x_3^2) \subset K[x_1, x_2, x_3]$. Then I is a Freiman ideal, because $\ell(I) = 3$ and $\mu(I^2) = 12 = 3\mu(I) - \binom{3}{2}$. Set $u_1 = x_1^3$, $u_2 = x_1^2x_3$, $u_3 = x_1x_3^2$, $u_4 = x_2^3$ and $u_5 = x_3^3$. Let $F(I) = K[u_1, \ldots, u_5]/J$. It follows from Theorem 2.3 that J is the ideal generated by the set of binomial 2-minors of T_I, where

$$
T_I = \begin{pmatrix}
 t_{u_1} & 0 & t_{u_2} & 0 & 0 & t_{u_3} \\
 0 & 0 & 0 & t_{u_4} & 0 & 0 \\
 t_{u_2} & 0 & t_{u_3} & 0 & 0 & t_{u_5}
\end{pmatrix}.
$$

So $J = (t_{u_1}t_{u_3} - t_{u_2}^2, t_{u_1}t_{u_5} - t_{u_2}t_{u_3}, t_{u_2}t_{u_5} - t_{u_3}^2)$. The result is confirmed by CoCoA.

Note that $G(I)$ is not sortable, since $\text{sort}(u_1, u_4) = (x_1^2x_2, x_1x_2^2) \notin G(I) \times G(I)$.

References

[1] J. Abbott, A. M. Bigatti, L. Robbiano, CoCoA: a system for doing Computations in Commutative Algebra, Available at http://cocoa.dima.unige.it.

[2] R. Abdolmaleki, J. Herzog, G. Zhu, The saturation number of c-bounded stable monomial ideals and their powers, Accepted to appear in Kyoto J. Math., Available at arXiv:1909.10663.

[3] E. De Negri, Toric ring generated by special stable sets of monomials, Math. Nachr. 203 (1999), 31–45.

[4] V. Ene, J. Herzog, Gröbner Bases in Commutative Algebra, Grad. Stud. Math. 130, Amer. Math. Soc., Providence, RI, 2012.

[5] J. Herzog, T. Hibi, Monomial Ideals, Springer-Verlag, New York, 2011.

[6] J. Herzog, T. Hibi, G. Zhu, The relevance of Freiman’s theorem for combinatorial commutative algebra, Math. Z. 291 no. 3-4, (2019), 999–1014.

[7] J. Herzog, M. M. Saem, N. Zamani, The number of generators of the powers of an ideal, Int. J. Algebra Comput. 29 (2019), 827–847.

[8] J. Herzog, A. A. Qureshi, M. M. Saem, The fiber cone of a monomial ideal in two variables, J. Symbolic Comput. 94 (2019), 52–69.

[9] J. Herzog, G. Zhu, Freiman ideals, Comm. Algebra 47 (2019), 407–423.

[10] J. Herzog, G. Zhu, On the fiber cone of monomial ideals, Arch. Math. 113 (2019), 469–481.

[11] M. Hochster, Rings of Invariants of Tori, Cohen-Macaulay Rings Generated by Monomials, and Polytopes, Ann. of Math. (2), 96 (1972), 318–337.

[12] H. Ohsugi, T. Hibi, Toric ideals generated by quadratic binomials, J. Algebra 218 (1999), 509–527.

[13] B. Sturmfels, Gröbner Bases and Convex Polytopes, Amer. Math. Soc., Providence, RI, 1995.

Reza Abdolmaleki, Department of Mathematics, Institute for Advanced Studies in Basic Sciences (IASBS), 45195-1159, Zanjan, Iran

Email address: abdolmaleki@iasbs.ac.ir
Rashid Zaare-Nahandi, Department of Mathematics, Institute for Advanced Studies in Basic Sciences (IASBS), 45195-1159, Zanjan, Iran

Email address: rashidzn@iasbs.ac.ir