Taylor-Hood Like Finite Elements for Nearly Incompressible Strain Gradient Elasticity Problems

Yulei Liao1,2 · Pingbing Ming1,2 · Yun Xu3

Received: 7 October 2022 / Revised: 20 January 2023 / Accepted: 25 January 2023 / Published online: 15 February 2023 © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
We propose a family of mixed finite elements that are robust for the nearly incompressible strain gradient model, which is a fourth-order singular perturbed elliptic system. The element is similar to [C. Taylor and P. Hood, \textit{Comput. & Fluids}, \textbf{1}(1973), 73–100] in the Stokes flow. Using a uniform discrete B-B inequality for the mixed finite element pairs, we show the optimal rate of convergence that is robust in the incompressible limit. By a new regularity result that is uniform in both the materials parameter and the incompressibility, we prove the method converges with 1/2 order to the solution with strong boundary layer effects. Moreover, we estimate the convergence rate of the numerical solution to the unperturbed second-order elliptic system. Numerical results for both smooth solutions and the solutions with sharp layers confirm the theoretical prediction.

Keywords Mixed finite elements · Nearly incompressible strain gradient elasticity · Uniform error estimate

Mathematics Subject Classification Primary 65N15 · 65N30 · Secondary 74K20

Pingbing Ming
mpb@lsec.cc.ac.cn

Yulei Liao
liaoyulei@lsec.cc.ac.cn

Yun Xu
xu_yun@iapcm.ac.cn

1 LSEC, Institute of Computational Mathematics and Scientific/Engineering Computing, AMSS, Chinese Academy of Sciences, No. 55 East Road Zhong-Guan-Cun, Beijing 100190, China
2 School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
3 Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
1 Introduction

The strain gradient models have drawn great attention recently because they capture the size effect of nano-materials for plasticity [31] as well as for mechanical meta-materials [38] by incorporating the higher-order strain gradient and the intrinsic material length scale into the constitutive relations. Studies from the perspective of modeling, mechanics and mathematics may date back to 1960s [36, 39, 48], while large-scale simulations are relatively recent [51–53, 67]. Different methods such as H^2 conforming finite element methods [30, 66], H^1 conforming mixed finite element methods [5, 52], nonconforming finite element methods [43–45], discontinuous Galerkin methods [26], isogeometric analysis [29, 49], and meshless methods [7] have been used to simulate the strain gradient elastic models with different complexity, just to mention a few. One of the numerical difficulties is that the number of the materials parameters is too large [48], another is that the materials parameters may cause boundary layer or numerical instability when they tend to certain critical values [26].

The strain gradient elasticity model proposed by Altan and Aifantis [4] seems the simplest one among them because it contains only one material parameter besides the Lamé constants, while it still models the size effect adequately [3]. This model is described by the following boundary value problem:

\[
\begin{cases}
(\iota^2 \Delta - I) (\mu \Delta \mathbf{u} + (\lambda + \mu) \nabla \text{div} \mathbf{u}) = f & \text{in } \Omega, \\
\mathbf{u} = \partial_n \mathbf{u} = 0 & \text{on } \partial \Omega,
\end{cases}
\]

where $\Omega \subset \mathbb{R}^2$ is a smooth domain, $\mathbf{u} : \Omega \rightarrow \mathbb{R}^2$ is the displacement, $\partial_n \mathbf{u}$ is the normal derivative of \mathbf{u}, λ and μ are the Lamé constants, and ι is the microscopic parameter such that $0 < \iota \leq 1$, which stands for the intrinsic length scale. Besides modeling the strain gradient elasticity, the system (1) may also be regarded as a vector analog of the fourth-order singular perturbed problem, which usually models a clamped plate problem [17, 37, 50, 54–56], or arises from a fourth-order perturbation of the fully nonlinear Monge-Ampère equation [16, 27]. System of the form (1) may also come from the linearized model in MEMS [42].

In the present work, we are interested in (1) for the nearly incompressible materials. Such materials are commonly used in industry and a typical example is natural rubber. To the best of our knowledge, the studies on the approximation of incompressible and nearly incompressible strain gradient elasticity have not been sufficiently addressed in the literature, although vast efforts have been devoted to finite element approximation of the incompressible and nearly incompressible elasticity problems; See e.g., [8, 9, 15, 19, 35, 58, 62]. In [31, §III. C], the authors studied the incompressible limit of the strain gradient model. Mixed finite elements for the incompressible Fleck-Hutchinson strain gradient model have been designed and tested in [57]. A finite element method has been tested for the nearly incompressible strain gradient model in [64]. A mixed finite element, which approximated the displacement with Bogner-Fox-Schmidt element [13] and approximated the pressure with the 9-node quadrilateral element, was constructed for the coupled stress model in [28], and bore certain similarities with problem (1). Recently, Hu and Tian [61] have proposed several robust elements for the two-dimensional strain gradient model in the framework of reduced integration. Unfortunately, none of the above work proved the robustness of the proposed elements rigorously in the incompressible limit.

Following the classical approach for dealing with the nearly incompressible elasticity problem [35], we introduce an auxiliary variable “pressure” p and recast (1) into a displacement-pressure mixed variational problem, i.e., the so-called (\mathbf{u}, p)—formulation. We approximate the displacement by augmenting the finite element space in [34] with cer-
tain new bubble functions. The original motivation for the bubble functions is to design the stable finite element pair for the Stokes problem [6, 11]. The augmented bubble functions help out in dealing with the extra constraints such as the divergence stability in Stokes problem and the high order consistency error [34, 50, 63]. Such idea has been exploited by one of the authors to design robust finite elements for the strain gradient elasticity model [43]. Besides, we employ the standard continuous Lagrangian finite element of one order lower than that for the displacement to approximate the pressure. Such a finite element pair is similar to the Taylor-Hood element in the Stokes flows [60] which is \(P_r - P_{r-1} \) scheme and continuous pressure approximation. For both smooth solutions and solutions with strong boundary layer effects, these mixed finite element pairs are robust in the incompressible limit, here the robustness is understood in the sense that the rate of convergence is uniform in both \(\iota \) and \(\lambda \). The bubble function spaces in approximating the displacement are defined by certain orthogonal constraints, and the explicit representations of these spaces are desired for the sake of implementation. We achieve this with the aid of the Jacobi polynomial. In addition to perspicuous results in view of analytics, such representation lends itself to the construction of the analytical shape functions for the approximating space of the displacement. Though we focus on the two-dimensional problem, the element may be readily extended to the three-dimensional problem. cf., Remark 1.

By standard mixed finite element theory [12], a discrete B-B inequality that is uniform in \(\iota \) is needed for the well-posedness of the mixed \((u, p) \) discretization problem. This B-B inequality reduces to the remarkable B-B inequality for the Stokes problem when \(\iota \) tends to zero. A natural way to prove the discrete B-B inequality is to construct a uniformly stable Fortin operator [32, 46, 47], which does not seem easy due to the complication of the constraints. To this end, we construct a quasi-Fortin operator that takes different forms for small \(\iota \) as well as large \(\iota \). This quasi-Fortin operator is bounded in a weighted energy norm in the corresponding regimes of \(\iota \). Besides the discrete B-B inequality, another ingredient in proving the robustness is a new regularity result for the solution of (1) that is uniform in both \(\lambda \) and \(\iota \), which is crucial to prove the convergence rate for the layered solution. The proof combines the method dealing with the nearly incompressible linear elasticity [62] and the regularity estimate for the fourth-order singular perturbed problem [44, 50].

The outline of the paper is as follows. In Sect. 2, we introduce Altan and Aifantis’ strain gradient model and its mixed variational formulation. We demonstrate the numerical difficulty caused by large \(\lambda \), and prove the uniform regularity estimate for problem (1). In Sect. 3, we construct a family of nonconforming finite elements, and derive the explicit formulations for the bubble spaces. In Sect. 4, we use the nonconforming elements proposed in Sect. 3 together with the continuous Lagrangian finite elements to discretize the mixed variational problem and prove the optimal rate of convergence. In the last section, we report the numerical results, which are consistent with the theoretical prediction.

Throughout this paper, the constant \(C \) may differ from line to line, while it is independent of the mesh size \(h \), the materials parameter \(\iota \) and the Lamé constant \(\lambda \).

2 The Mixed Variational Formulation and Regularity Estimates

First we fix some notations. The space \(L^2(\Omega) \) of the square-integrable functions defined on a smooth domain \(\Omega \) is equipped with the inner product \((\cdot, \cdot) \) and the norm \(\| \cdot \|_{L^2(\Omega)} \), while \(L^2_0(\Omega) \) is the subspace of \(L^2(\Omega) \) with mean value zero. Let \(H^m(\Omega) \) be the standard Sobolev space [1] with the norm \(\| \cdot \|_{H^m(\Omega)} \), while \(H^m_0(\Omega) \) is the closure in \(H^m(\Omega) \) of
\(C_0^\infty(\Omega) \). We may drop \(\Omega \) in \(\| \cdot \|_{H^m(\Omega)} \) when no confusion may occur. For any vector-valued function \(\mathbf{v} \), its gradient is a matrix-valued function with components \((\nabla \mathbf{v})_{ij} = \partial_j v_i \), and the symmetric part of \(\nabla \mathbf{v} \) is defined by \(\mathbf{\epsilon}(\mathbf{v}) = (\nabla \mathbf{v} + [\nabla \mathbf{v}]^T)/2 \). The divergence operator is defined as \(\text{div} \mathbf{v} = \partial_1 v_1 + \partial_2 v_2 \). The Sobolev spaces \([H^m(\Omega)]^2 \), \([H^m_0(\Omega)]^2 \) and \((L^2(\Omega))^2 \) of a vector-valued function may be defined similarly as their scalar counterpart. This rule equally applies to the inner products and the norms. The double inner product between tensors \(A = (A_{ij})_{i,j=1}^2 \), \(\mathbf{B} = (B_{ij})_{i,j=1}^2 \) equals \(A : \mathbf{B} = \sum_{i,j=1}^2 A_{ij} B_{ij} \).

We recast (1) into a variational problem: Find \(\mathbf{u} \in V : = [H^2_0(\Omega)]^2 \) such that

\[
a(\mathbf{u}, \mathbf{v}) = (\mathbf{f}, \mathbf{v}) \quad \text{for all} \quad \mathbf{v} \in V,
\]

where \(a(\mathbf{u}, \mathbf{v}) : = (C \mathbf{\epsilon}(\mathbf{u}), \mathbf{\epsilon}(\mathbf{v})) + \iota^2 (\mathbf{D} \mathbf{\nabla} \mathbf{\epsilon}(\mathbf{u}), \mathbf{\nabla} \mathbf{\epsilon}(\mathbf{v})) \), and the fourth-order tensor \(C \) and the sixth-order tensor \(\mathbf{D} \) are defined as

\[
C_{ijkl} = \lambda \delta_{ij} \delta_{kl} + 2\mu \delta_{ik} \delta_{jl} \quad \text{and} \quad D_{ijklmn} = \lambda \delta_{il} \delta_{jk} \delta_{mn} + 2\mu \delta_{il} \delta_{jm} \delta_{kn},
\]

respectively. Here \(\delta_{ij} \) is the Kronecker delta function. The strain gradient \(\nabla \mathbf{\epsilon}(\mathbf{v}) \) is a third-order tensor that is defined by \((\nabla \mathbf{\epsilon}(\mathbf{v}))_{ijk} = \partial_i (\mathbf{\epsilon}(\mathbf{v}))_{jk} \).

We are interested in the regime when \(\lambda \to \infty \), which means that the material is nearly incompressible. Proceeding along the same line that leads to [44, Theorem 5], the tensor product of the element (NTW) proposed in [50] may be used to approximate (1), and the error estimate reads as

\[
\| \mathbf{u} - \mathbf{u}_h \| \leq C \lambda (h^2 + \iota h) \| \mathbf{u} \|_{H^3},
\]

where \(\| \mathbf{v} \|^2 : = a(\mathbf{v}, \mathbf{v}) \), and \(C \) is independent of the mesh size \(h \), and \(\iota \) and \(\lambda \). Therefore, the error bound degenerates when \(\lambda \) is large, and the NTW element does not seem a good candidate for the nearly incompressible material. The following numerical example confirms this observation.

Example 1 Let \(\Omega = (0,1)^2 \), and \(\mathbf{u} = (u_1, u_2) \) with

\[
\begin{align*}
u_1 &= -\sin(\pi x) \sin(2\pi y) \sin(\pi y), \quad u_2 = \sin(2\pi x) \sin(\pi x) \sin^3(\pi y).
\end{align*}
\]

It is clear that \(\text{div} \mathbf{u} = 0 \), hence the material is completely incompressible. The details of the numerical experiment such as the mesh generation, are the same as those in Sect. 5. The relative error \(\| \mathbf{u} - \mathbf{u}_h \|/\| \mathbf{u} \| \) in Table 1 shows that the rate of convergence deteriorates when \(\lambda \) is large.

2.1 The Mixed Variational Formulation

We introduce an auxiliary variable \(p = \lambda \text{div} \mathbf{u} \), and \(p \in P : = L^2_0(\Omega) \cap H^1_0(\Omega) \). We write Problem (2) into a mixed variational problem as

\[
\begin{cases}
\begin{align*}
a_i(\mathbf{u}, \mathbf{v}) + b_i(\mathbf{v}, p) &= (\mathbf{f}, \mathbf{v}) \quad \text{for all} \quad \mathbf{v} \in V, \\
b_i(\mathbf{u}, q) - \lambda^{-1} c_i(p, q) &= 0 \quad \text{for all} \quad q \in P,
\end{align*}
\end{cases}
\]

where

\[
\begin{align*}
a_i(\mathbf{v}, \mathbf{w}) : &= 2\mu \left(\mathbf{\epsilon}(\mathbf{v}), \mathbf{\epsilon}(\mathbf{w}) \right) + \iota^2 \left(\nabla \mathbf{\epsilon}(\mathbf{v}), \nabla \mathbf{\epsilon}(\mathbf{w}) \right), \quad \mathbf{v}, \mathbf{w} \in V, \\
b_i(\mathbf{v}, q) : &= (\text{div} \mathbf{v}, q) + \iota^2 (\nabla \text{div} \mathbf{v}, \nabla q), \quad \mathbf{v} \in V, q \in P, \\
c_i(s, q) : &= (s, q) + \iota^2 (\nabla s, \nabla q), \quad s, q \in P.
\end{align*}
\]
Table 1 Relative errors and rate of convergence for NTW

\(h \)	1/8	1/16	1/32	1/64	
\(v = 0.3000, \lambda = 0.5769, \mu = 0.3846 \)					
1e+00	2.681e-01	1.373e-01	6.698e-02	3.334e-02	
rate	0.97	1.04	1.01		
1e-06	4.550e-02	1.244e-02	3.001e-03	7.467e-04	
rate	1.87	2.05	2.01		
\(v = 0.499999, \lambda = 1.6667e5, \mu = 0.3333 \)					
1e+00	9.995e-01	9.979e-01	9.916e-01	9.682e-01	
rate	0.00	0.01	0.03		
1e-06	9.752e-01	7.233e-01	2.502e-01	6.561e-02	
rate	0.43	1.53	1.93		

It is convenient to define the weighted norm for all \(q \in P \) as

\[
\| q \|_i := \| q \|_{L^2} + \iota \| \nabla q \|_{L^2}.
\]

\(\| q \|_i \) is a norm over \(P \) for any \(q \in P \) and any finite \(\iota \). By Poincaré’s inequality, \(\| \nabla v \|_i \) is a norm over \(V \) for any \(v \in V \). To study the well-posedness of Problem (3), we start with the following B-B inequality that is uniform for any \(\iota \).

Lemma 1 For any \(q \in P \), there exists \(v \in V \) such that

\[
\text{div } v = q \quad \text{and} \quad \| \nabla v \|_i \leq C \| q \|_i,
\]

where \(C \) only depends on \(\Omega \) but is independent of \(\iota \).

Proof By [33, Theorem III 3.3] and [23, Proposition 4.1], for any \(q \in P \), there exists \(v \in V \) such that \(\text{div } v = q \) and

\[
\| v \|_{H^1} \leq C \| q \|_{L^2} \quad \text{and} \quad \| v \|_{H^2} \leq C \| q \|_{H^1},
\]

where the constant \(C \) only depends on \(\Omega \).

Because the mean of \(q \) is zero for any \(q \in P \), by Poincaré’s inequality, there exists \(C \) such that

\[
\| q \|_{H^1} \leq C \| \nabla q \|_{L^2}.
\]

Combining the above two inequalities, we obtain

\[
\| \nabla v \|_i = \| \nabla v \|_{L^2} + \iota \| \nabla^2 v \|_{L^2} \leq C \| q \|_i.
\]

This gives (4). \(\square \)

Lemma 2 There exists a unique \(u \in V \) and \(p \in P \) satisfying (3), and there exists \(C \) independent of \(\iota \) and \(\lambda \) such that

\[
\| \nabla u \|_i + \| p \|_i \leq C \| f \|_{H^{-1}}.
\]

Proof By the first Korn’s inequality [40, 41],

\[
\| \epsilon(v) \|_{L^2}^2 \geq \frac{1}{2} \| \nabla v \|_{L^2}^2 \quad \text{for all } v \in [H_0^1(\Omega)]^2,
\]

(7)
and the H^2 Korn’s inequality [44, Theorem 1],
\[
\| \nabla \epsilon(v) \|_{L^2} \geq \left(1 - \frac{1}{\sqrt{2}} \right) \| \nabla^2 v \|_{L^2}^2 \quad \text{for all } v \in [H^2(\Omega)]^2,
\]
we obtain
\[
a_i(v, v) \geq 2\mu \left(\frac{1}{2} \| \nabla v \|_{L^2}^2 + \left(1 - \frac{1}{\sqrt{2}} \right) \| \nabla^2 v \|_{L^2}^2 \right) \geq \frac{\mu}{2} \| \nabla v \|_{L^2}^2.
\]
Using (4), for any $p \in P$, there exists $v_0 \in V$ such that $\text{div } v_0 = p$ and $\| \nabla v_0 \| \leq C \| p \|$. This implies
\[
\sup_{v \in V} \frac{b_i(v, p)}{\| \nabla v \|} \geq \frac{b_i(v_0, p)}{\| \nabla v_0 \|} = \frac{\| p \|^2}{\| \nabla v_0 \|} \geq C \| p \|.
\]
By [14, Theorem 2], we immediately obtain the well-posedness of (3) and the estimate (6) by noting
\[
| (f, v) | \leq \| f \|_{H^{-1}} \| v \|_{H^1} \leq C \| f \|_{H^{-1}} \| \nabla v \|_{L^2} \leq C \| f \|_{H^{-1}} \| \nabla v \|.
\]

By the standard regularity theory for the elliptic system, we find $u \in [H^4(\Omega)]^2$ and $p \in H^3(\Omega)$ provided that $f \in [L^2(\Omega)]^2$, while we are interested in whether the shift estimate $\| \nabla^2 u \| \leq C \| \nabla p \|$ is true with a λ—independent constant $C(\lambda)$, this is the objective of the next part.

2.2 Regularity Estimates

We aim to study the regularity of the solution of (1). Letting $\iota \to 0$, we find $u_0 \in [H^1_0(\Omega)]^2$ satisfying
\[
-\mathcal{L}u_0 = f \quad \text{in } \Omega, \quad u_0 = 0 \quad \text{on } \partial \Omega,
\]
in the sense of distribution, where $\mathcal{L}u_0 := \mu \Delta u_0 + (\lambda + \mu) \nabla \text{div } u_0$. The H^1—error for $u - u_0$ will be given in Theorem 1, which is crucial for the regularity estimate of problem (1). We reshape (9) into a variational problem: Find $u_0 \in [H^1_0(\Omega)]^2$ such that
\[
(\mathcal{C} \epsilon(u_0), \epsilon(v)) = (f, v) \quad \text{for all } v \in [H^1_0(\Omega)]^2.
\]
By [10], we have the following shift estimate for u_0: There exists C independent of λ such that
\[
\| u_0 \|_{H^2} + \lambda \| \text{div } u_0 \|_{H^1} \leq C \| f \|_{L^2}.
\]

Next we study an auxiliary boundary value problem:
\[
\begin{cases}
\Delta \mathcal{L} w = F, & \text{in } \Omega, \\
w = \partial_n w = 0, & \text{on } \partial \Omega.
\end{cases}
\]
The a-priori estimate for the solution of the above boundary value problem reads as

Lemma 3 There exists a unique $w \in V$ satisfying (12), and there exists C independent of λ such that
\[
\| w \|_{H^2} + \lambda \| \text{div } w \|_{H^1} \leq C \| F \|_{H^{-2}}.
\]
Proof We recast (12) into a variational problem: Find \(w \in V \) such that
\[
A(w, v) = (F, v)
\]
for all \(v \in V \),
where \(A(v, z) := 2\mu(\nabla \epsilon(v), \nabla \epsilon(z)) + \lambda(\nabla \div v, \nabla \div z) \) for any \(v, z \in V \).

For any \(v \in V \), by the \(H^2 \)-Korn’s inequality (8) and Poincaré’s inequality, there exists \(C \) such that
\[
A(v, v) \geq 2\mu \| \nabla \epsilon(v) \|_{L^2}^2 \geq \frac{\mu}{2} \| \nabla^2 v \|_{L^2}^2 \geq C \| v \|_{H^2}^2.
\]
The existence and uniqueness of \(w \in V \) follow from the Lax-Milgram theorem, and
\[
\| \nabla^2 w \|_{L^2} \leq \| w \|_{H^2} \leq C \| F \|_{H^{-2}}.
\]
(14)

Noting that \(\div w \in P \), using (5), we obtain that, there exists \(v_0 \in V \) such that \(\div v_0 = \div w \), and
\[
\| \nabla^2 v_0 \|_{L^2} \leq C \| \div w \|_{H^1} \leq C \| \div w \|_{L^2}.
\]
A combination of the above two inequalities gives
\[
\lambda \| \nabla \div w \|_{L^2}^2 = \lambda(\nabla \div w, \nabla \div v_0) = A(w, v_0) - 2\mu(\nabla \epsilon(w), \nabla \epsilon(v_0))
\leq \| F \|_{H^{-2}} \| v_0 \|_{H^2} + 2\mu \| \nabla^2 w \|_{L^2} \| \nabla^2 v_0 \|_{L^2}
\leq C (\| F \|_{H^{-2}} + 2\mu \| \nabla^2 w \|_{L^2}) \| \nabla^2 v_0 \|_{L^2}
\leq C \| F \|_{H^{-2}} \| \div w \|_{L^2}.
\]
This implies \(\lambda \| \nabla \div w \|_{L^2} \leq C \| F \|_{H^{-2}} \), which together with (14) and Poincaré’s inequality gives (13).

Now we turn to prove the regularity estimate of problem (12). We consider an auxiliary elliptic system: For any \(\tilde{F} \in \{L^2(\Omega)\}^2 \) and \(\tilde{G} \in H^1(\Omega) \), find \(z \in V \) and \(q \in P \) such that the following boundary value problem is valid in the sense of distribution:
\[
\begin{aligned}
\mu \Delta^2 z + \nabla \Delta q &= \tilde{F} \quad \text{in } \Omega, \\
\Delta \div z &= \tilde{G} \quad \text{in } \Omega, \\
z &= \partial_n z = 0 \quad \text{on } \partial \Omega, \\
q &= 0 \quad \text{on } \partial \Omega.
\end{aligned}
\]
(15)

Lemma 4 Let \(z \in \{H^4(\Omega)\}^2 \) and \(q \in H^3(\Omega) \) be the solution of (15). Assume that \(m \) is a nonnegative integer, then there exists \(C \) depending only on \(\Omega \) and \(\mu \) such that
\[
\| z \|_{H^{m+4}} + \| q \|_{H^{m+3}} \leq C (\| \tilde{F} \|_{H^m} + \| \tilde{G} \|_{H^{m+1}} + \| z \|_{L^2} + \| q \|_{L^2}).
\]
(16)

Proof We write (15)1 and (15)2 as
\[
\begin{pmatrix}
\mu \Delta^2 & 0 & \partial_x \Delta \\
0 & \mu \Delta^2 & \partial_y \Delta \\
\partial_x \Delta & \partial_y \Delta & 0
\end{pmatrix}
\begin{pmatrix}
z_1 \\
z_2 \\
q
\end{pmatrix} =
\begin{pmatrix}
\tilde{F}_1 \\
\tilde{F}_2 \\
\tilde{G}
\end{pmatrix}.
\]
The symbol of the above system is
\[
\mathcal{L}(\xi) =
\begin{pmatrix}
\mu |\xi|^4 & 0 & \xi_1 |\xi|^2 \\
0 & \mu |\xi|^4 & \xi_2 |\xi|^2 \\
\xi_1 |\xi|^2 & \xi_2 |\xi|^2 & 0
\end{pmatrix}.
\]
A direct calculation gives

$$|\text{det } \mathcal{L}(\xi)| = \mu |\xi|^2 > 0 \quad \text{if} \quad \xi \neq 0.$$

This means that the boundary value problem (15) is elliptic in the sense of Agmon-Douglis-Nirenberg [2]. Moreover, the boundary condition is pure Dirichlet, and it is straightforward to verify that the boundary condition satisfies the complementing condition [2]. The regularity estimate (16) follows from [2]. \(\square\)

A direct consequence of the above lemma is the following regularity estimate for problem (12).

Lemma 5 Let \(\mathbf{w} \in V\) be the solution of (12), there exists \(C\) independent of \(\lambda\) such that

$$\| \mathbf{w} \|_{H^3} + \lambda \| \text{div } \mathbf{w} \|_{H^2} \leq C \| F \|_{H^{-1}}.$$

Proof Using the standard elliptic regularity estimate, there exists a unique solution \(\mathbf{w} \in [H^4(\Omega)]^2\) when \(F \in [L^2(\Omega)]^2\). We introduce \(\mathbf{z} = \mathbf{w}\) and \(\mathbf{q} = (\lambda + \mu) \text{ div } \mathbf{w}\), hence \(\mathbf{z} \in [H^4(\Omega)]^2\) and \(\mathbf{q} \in H^3(\Omega)\) satisfy (15) with \(\tilde{F} = F\) and \(\tilde{G} = \Delta \text{ div } \mathbf{w}\).

By (16) with \(m = 0\), we obtain

$$\| \mathbf{w} \|_{H^4} + (\lambda + \mu) \| \text{div } \mathbf{w} \|_{H^3} \leq C \left(\| F \|_{L^2} + \| \text{div } \mathbf{w} \|_{H^3} + \| \mathbf{w} \|_{H^1} + \lambda \| \text{div } \mathbf{w} \|_{L^2} \right).$$

Using the a-priori estimate (13), we obtain

$$\| \mathbf{w} \|_{H^4} + (\lambda + \mu) \| \text{div } \mathbf{w} \|_{H^3} \leq C_0 \left(\| F \|_{L^2} + \| \text{div } \mathbf{w} \|_{H^3} \right).$$

Now for \(\lambda + \mu > 2C_0\), it follows from

$$\| \mathbf{w} \|_{H^4} + (\lambda + \mu) \| \text{div } \mathbf{w} \|_{H^3} \leq C_0 \| F \|_{L^2} + \frac{\lambda + \mu}{2} \| \text{div } \mathbf{w} \|_{H^3}$$

that

$$\| \mathbf{w} \|_{H^4} + \lambda \| \text{div } \mathbf{w} \|_{H^3} \leq 2C_0 \| F \|_{L^2}.$$

Interpolating the above inequality with (13), we obtain (17).

If \(\lambda + \mu \leq 2C_0\), then (17) follows from the standard regularity estimates [2] for problem (12). \(\square\)

We turn to prove the regularity of problem (1) when \(f \in [L^2(\Omega)]^2\). Let \(\mathbf{u}\) and \(\mathbf{u}_0\) be the solutions of (1) and (9), respectively. For any \(\mathbf{v} \in [H^1_0(\Omega) \cap H^2(\Omega)]^2\), integration by parts gives

$$(\Delta \mathbf{e}(\mathbf{u}), \mathbf{e}(\mathbf{v})) = -(\mathcal{L}\mathbf{u}, \mathbf{v}),$$

and

$$i^2 (\nabla \mathbf{e}(\mathbf{u}), \nabla \mathbf{e}(\mathbf{v})) = i^2 (\Delta \mathbf{L} \mathbf{u}, \mathbf{v}) + i^2 \int_{\partial \Omega} (\partial_n \sigma \cdot \sigma n) \cdot \partial_n \mathbf{v} \sigma(x),$$

where \(\sigma = 2\mu \epsilon u + \lambda \text{ div } \mathbf{u} I\) and \((\partial_n \sigma)_{ij} \equiv \partial_n \sigma_{ij}\). The boundary term in (19) is derived by the fact \(\partial_j v_i = n_j \partial_n v_i + t_j \partial_t v_i = n_j \partial_n v_i\) and

$$2\mu \int_{\partial \Omega} \partial_n \mathbf{e}(\mathbf{u}) \cdot \mathbf{e}(\mathbf{v}) \mathrm{d} \sigma(x) + \lambda \int_{\partial \Omega} \partial_n \text{ div } \mathbf{u} \text{ div } \mathbf{v} \mathrm{d} \sigma(x)$$

$$= \int_{\partial \Omega} \partial_n \sigma \cdot \nabla \mathbf{v} \sigma(x) = \int_{\partial \Omega} \partial_n \sigma_{ij} \partial_j v_i \mathbf{v} \sigma(x)$$

$$= \int_{\partial \Omega} \partial_n \sigma_{ij} n_j \partial_n v_i \sigma(x) = \int_{\partial \Omega} (\partial_n \sigma n) \cdot \partial_n \mathbf{v} \sigma(x).$$

\(\mathfrak{S}\) Springer
A combination of (18) and (19) leads to
\[(\mathbb{C}\epsilon(u), \epsilon(v)) + l^2 (\nabla \epsilon(u), \nabla \epsilon(v)) = l^2 \int_{\Omega} (\partial_n \sigma n) \cdot \partial_n v d\sigma(x) + (f, v),\]

which together with (10) yields
\[(\mathbb{C}\epsilon(u - u_0), \epsilon(v)) + l^2 (\nabla \epsilon(u), \nabla \epsilon(v)) = l^2 \int_{\Omega} (\partial_n \sigma n) \cdot \partial_n v d\sigma(x). \tag{21}\]

This identity is the starting point of the proof.

We shall frequently use the following multiplicative trace inequality. There exists \(C\) that depends only on \(\Omega\) such that
\[
\| \psi \|_{L^2(\partial\Omega)} \leq C \| \psi \|_{L^2(\Omega)}^{1/2} \| \psi \|_{H^1(\Omega)}^{1/2}, \quad \psi \in H^1(\Omega). \tag{22}\]

Using Lemma 5, we condense the regularity of problem (1) to estimating \(u - u_0\) and \(p - p_0\) in various norms, with \(p = \lambda \text{div} u\) and \(p_0 = \lambda \text{div} u_0\).

Lemma 6 There exists \(C\) independent of \(l\) and \(\lambda\) such that
\[
\| u \|_{H^3} + \| p \|_{H^2} \leq Ct^{-2}(\| \epsilon(u - u_0) \|_{L^2} + \| p - p_0 \|_{L^2}). \tag{23}\]

Proof We rewrite (1) as
\[
\begin{align*}
\Delta L u &= l^{-2} L(u - u_0) \quad \text{in } \Omega, \\
u &= \partial_n u = 0 \quad \text{on } \partial\Omega.
\end{align*}
\]

Applying the regularity estimate (17) to the elliptic system (12), and using (18), we obtain
\[
\| u \|_{H^3} + \| p \|_{H^2} \leq Ct^{-2} \| L(u - u_0) \|_{H^{-1}} \leq Ct^{-2}(\| \epsilon(u - u_0) \|_{L^2} + \| p - p_0 \|_{L^2}).
\]

The next lemma is crucial to prove Theorem 1, which transforms the estimate of \(\| p - p_0 \|_{l}\), in terms of \(\| \nabla(u - u_0) \|\), besides a term concerning \(f\).

Lemma 7 There exists \(C\) independent of \(l\) and \(\lambda\) such that
\[
\| p - p_0 \|_{l} \leq C(\| \nabla(u - u_0) \|_{l} + l^{1/2} \| f \|_{L^2}). \tag{24}\]

Proof By [24, Theorem 3.1] and Poincaré’s inequality, there exists \(v_0 \in [H^2(\Omega) \cap H^1_0(\Omega)]^2\) such that \(\text{div} v_0 = \text{div}(u - u_0)\), and
\[
\| v_0 \|_{H^1} \leq C \| \nabla(u - u_0) \|_{L^2}, \quad \| v_0 \|_{H^2} \leq C \| \nabla \text{div}(u - u_0) \|_{L^2}. \tag{25}\]

Substituting \(v = v_0\) into (21), multiplying the resulting identity by \(\lambda\), we obtain
\[
\| p - p_0 \|_{l}^2 = l^{-2} \langle \nabla p_0, \nabla(p - p_0) \rangle - 2\lambda \mu \langle \epsilon(u - u_0), \epsilon(v_0) \rangle - 2\lambda \mu l^2 \langle \nabla \epsilon(u), \nabla \epsilon(v_0) \rangle + \lambda l^2 \int_{\partial\Omega} (\partial_n \sigma n) \cdot \partial_n v_0 d\sigma(x). \tag{26}\]

By the regularity estimate (11), the first term may be bounded as
\[
l^2 |\langle \nabla p_0, \nabla(p - p_0) \rangle| \leq \frac{l^2}{8} \| \nabla(p - p_0) \|_{L^2}^2 + 2l^2 \| \nabla p_0 \|_{L^2}^2 \leq \frac{1}{8} \| p - p_0 \|_{l}^2 + Cl^2 \| f \|_{L^2}^2.
\]
Using the triangle inequality and (11) again, we obtain
\[\| \nabla \mathbf{e} (\mathbf{u}) \|_{L^2} \leq \| \nabla \mathbf{e} (\mathbf{u} - \mathbf{u}_0) \|_{L^2} + \| \nabla \mathbf{e} (\mathbf{u}_0) \|_{L^2} \leq \| \nabla (\mathbf{u} - \mathbf{u}_0) \|_1 + C \| \mathbf{f} \|_{L^2}. \] (27)

Using (25) and the above inequality, we bound the second and the third terms as
\[\lambda \mu \| (\mathbf{e} (\mathbf{u} - \mathbf{u}_0), \mathbf{e} (\mathbf{v}_0)) \| + \epsilon^2 (\| \nabla \mathbf{e} (\mathbf{u}), \| \nabla \mathbf{e} (\mathbf{v}_0) \|) \leq C \| p - p_0 \|_1, \]
\[\times (\| \mathbf{e} (\mathbf{u} - \mathbf{u}_0) \|_{L^2} + \| \nabla \mathbf{e} (\mathbf{u}) \|_{L^2}) \]
\[\leq \frac{1}{8} \| p - p_0 \|_1^2 + C \left(\| \nabla (\mathbf{u} - \mathbf{u}_0) \|_1^2 + \epsilon^2 \| \mathbf{f} \|_{L^2}^2 \right). \]

Using (20) and the definition of \(\mathbf{v}_0 \), we rewrite the boundary term as
\[\lambda \int_{\partial \Omega} (\partial_n \sigma n) : \partial_n \mathbf{v}_0 d\sigma (x) = 2 \lambda \mu \int_{\partial \Omega} \partial_n \mathbf{e} (\mathbf{u}) : \mathbf{e} (\mathbf{v}_0) d\sigma (x) \]
\[+ \lambda^2 \int_{\partial \Omega} \partial_n \mathbf{div} \mathbf{u} \mathbf{div} \mathbf{v}_0 d\sigma (x) \]
\[= 2 \lambda \mu \int_{\partial \Omega} \partial_n \mathbf{e} (\mathbf{u}) : \mathbf{e} (\mathbf{v}_0) d\sigma (x) + \int_{\partial \Omega} \partial_n p (p - p_0) d\sigma (x) \]
\[= 2 \lambda \mu \int_{\partial \Omega} \partial_n \mathbf{e} (\mathbf{u}) : \mathbf{e} (\mathbf{v}_0) d\sigma (x) - \int_{\partial \Omega} \partial_n p p_0 d\sigma (x). \]

Recalling the trace inequality (22), we estimate the first boundary term as
\[2 \lambda \mu \epsilon^2 \int_{\partial \Omega} \partial_n \mathbf{e} (\mathbf{u}) : \mathbf{e} (\mathbf{v}_0) d\sigma (x) \leq 2 \lambda \mu \epsilon^2 \| \partial_n \mathbf{e} (\mathbf{u}) \|_{L^2 (\partial \Omega)} \| \mathbf{e} (\mathbf{v}_0) \|_{L^2 (\partial \Omega)} \]
\[\leq C \lambda \epsilon^2 \| \nabla \mathbf{e} (\mathbf{u}) \|_{H^1}^{1/2} \| \nabla \mathbf{e} (\mathbf{u}) \|_{H^1}^{1/2} \| \mathbf{e} (\mathbf{v}_0) \|_{L^2} \| \mathbf{e} (\mathbf{v}_0) \|_{H^1}. \]

Using (25), there exists \(C \) independent of \(\lambda \) and \(\epsilon \) such that
\[\lambda^2 \| \mathbf{e} (\mathbf{v}_0) \|_{L^2} \| \mathbf{e} (\mathbf{v}_0) \|_{H^1} \leq C \| p - p_0 \|_{L^2} \| \nabla (p - p_0) \|_{L^2} \leq C \epsilon^{-1} \| p - p_0 \|_1^2. \]

Using (27) to estimate \(\| \nabla \mathbf{e} (\mathbf{u}) \|_{L^2} \) and using (23) to bound \(\| \nabla \mathbf{e} (\mathbf{u}) \|_{H^1} \), we obtain
\[\epsilon^3 \| \nabla \mathbf{e} (\mathbf{u}) \|_{L^2} \| \nabla \mathbf{e} (\mathbf{u}) \|_{H^1} \leq C \left(\| \nabla (\mathbf{u} - \mathbf{u}_0) \|_1 + \epsilon \| \mathbf{f} \|_{L^2} \right) \]
\[\times \left(\| \mathbf{e} (\mathbf{u} - \mathbf{u}_0) \|_{L^2} + \| p - p_0 \|_{L^2} \right) \]
\[\leq C \left(\| \nabla (\mathbf{u} - \mathbf{u}_0) \|_1^2 + \epsilon^2 \| \mathbf{f} \|_{L^2}^2 + \left(\| \nabla (\mathbf{u} - \mathbf{u}_0) \|_1 + \epsilon \| \mathbf{f} \|_{L^2} \right) \| p - p_0 \|_1 \right). \]

A combination of the above three inequalities gives
\[2 \lambda \mu \epsilon^2 \int_{\partial \Omega} \partial_n \mathbf{e} (\mathbf{u}) : \mathbf{e} (\mathbf{v}_0) d\sigma (x) \leq C \left(\left(\| \nabla (\mathbf{u} - \mathbf{u}_0) \|_1 + \epsilon \| \mathbf{f} \|_{L^2} \right) \| p - p_0 \|_1 \right) \]
\[+ \left(\| \nabla (\mathbf{u} - \mathbf{u}_0) \|_1 + \epsilon \| \mathbf{f} \|_{L^2} \right)^{1/2} \| p - p_0 \|_{L^2}^{3/2} \]
\[\leq \frac{1}{8} \| p - p_0 \|_1^2 + C \left(\| \nabla (\mathbf{u} - \mathbf{u}_0) \|_1^2 + \epsilon^2 \| \mathbf{f} \|_{L^2}^2 \right). \]

Using the trace inequality (22) and the regularity estimate (11) again, we bound
\[\left| \int_{\partial \Omega} \partial_n p p_0 d\sigma (x) \right| \leq C \| \nabla p \|_{L^2}^{1/2} \| \nabla p \|_{H^1}^{1/2} \| p_0 \|_{H^1} \leq C \| \nabla p \|_{L^2}^{1/2} \| \nabla p \|_{H^1}^{1/2} \| \mathbf{f} \|_{L^2} \]
\[\leq \frac{1}{8} \| p - p_0 \|_1^2 + C \left(\| \nabla (\mathbf{u} - \mathbf{u}_0) \|_1^2 + \epsilon^2 \| \mathbf{f} \|_{L^2}^2 \right). \]

Using the triangle inequality and (11) again, we obtain
\[\epsilon \| \nabla p \|_{L^2} \leq \| p - p_0 \|_1 + \epsilon \| \mathbf{v}_0 \|_{L^2} \leq \| p - p_0 \|_1 + C \| \mathbf{f} \|_{L^2}, \]
which together with (23) implies

\[\iota^3 \| \nabla p \|_{L^2} \| \nabla p \|_{H^1} \leq C \left(\| p - p_0 \|_i^2 + \iota \| \nabla (u - u_0) \|_i \| f \|_{L^2} \right) + \left(\| \nabla (u - u_0) \|_i + \iota \| f \|_{L^2} \| p - p_0 \|_i \right). \]

Combining the above three inequalities, we bound the second boundary term as

\[
\iota^2 \left| \int_{\partial\Omega} \partial_n p p_0 d\sigma(x) \right| \leq C \left(\iota^{1/2} \| p - p_0 \|_{H^1} \| f \|_{L^2} + \iota \| \nabla (u - u_0) \|_i^{1/2} \| f \|_{L^2}^{3/2} \right) + \left(\| \nabla (u - u_0) \|_i + \iota^{1/2} \| f \|_{L^2}^{3/2} \right) \| p - p_0 \|_i^{1/2} \right)
\]

\[
\leq \frac{1}{8} \| p - p_0 \|_i^2 + \frac{1}{2} \| p - p_0 \|_i^2 + C \left(\| \nabla (u - u_0) \|_i^2 + \iota \| f \|_{L^2}^2 \right).
\]

Substituting the above inequalities into (26), we obtain

\[
\| p - p_0 \|_i^2 \leq \frac{1}{2} \| p - p_0 \|_{H^1}^2 + \frac{1}{2} \| p - p_0 \|_{H^1}^2 + C \left(\| \nabla (u - u_0) \|_i^2 + \iota \| f \|_{L^2}^2 \right).
\]

This immediately gives (24). \qed

We are ready to prove the regularity of problem (1).

Theorem 1 There exists \(C \) independent of \(\iota \) and \(\lambda \) such that

\[
\| u - u_0 \|_{H^1} + \| p - p_0 \|_{H^1} \leq C \iota^{1/2} \| f \|_{L^2},
\]

(28)

and

\[
\| u \|_{H^{2+k}} + \| p \|_{H^{1+k}} \leq C \iota^{-1/2-k} \| f \|_{L^2}, \quad k = 0, 1.
\]

(29)

The estimate (28) improves the known results [44, Lemma 1] in two aspects. It clarifies the fact that the estimate is \(\lambda \)-independent and it gives the convergence rate for the pressure. The rate \(\iota^{1/2} \) is optimal even for the scalar counterpart; cf., [50, Lemma 5.1].

Proof Substituting \(v = u - u_0 \) into (21), we get

\[
a(u - u_0, u - u_0) = -\iota^2 (D \nabla \epsilon(u_0), \nabla \epsilon(u - u_0)) - \iota^2 \int_{\partial\Omega} (\partial_n \sigma n) \cdot \partial_n u_0 d\sigma(x).
\]

Using the regularity estimate (11), we bound the first term as

\[
\iota^2 |(D \nabla \epsilon(u_0), \nabla \epsilon(u - u_0))| \leq \frac{\iota^2}{4} \left| (D \nabla \epsilon(u - u_0), \nabla \epsilon(u - u_0)) \right| + \iota^2 \| \nabla \epsilon(u_0), \nabla \epsilon(u_0) \|
\]

\[
\leq \frac{1}{4} a(u - u_0, u - u_0) + C \iota^2 \| f \|_{L^2}^2.
\]

To bound the second term, we let \(v = u_0 \) in (20) and obtain

\[
\int_{\partial\Omega} (\partial_n \sigma n) \cdot \partial_n u_0 d\sigma(x) = 2\mu \int_{\partial\Omega} \partial_n \epsilon(u) : \epsilon(u_0) d\sigma(x) + \int_{\partial\Omega} \partial_n \div u \ p_0 d\sigma(x).
\]

Invoking the trace inequality, using the fact \(\| \nabla \div u \|_{L^2} \leq \| \nabla \epsilon(u) \|_{L^2} \) and (11), we obtain

\[
\left| \int_{\partial\Omega} (\partial_n \sigma n) \cdot \partial_n u_0 d\sigma(x) \right| \leq C \left(\| \nabla \epsilon(u) \|_{L^2}^{1/2} \| \nabla \epsilon(u) \|_{H^1}^{1/2} \| \epsilon(u_0) \|_{H^1} \right)
\]

\[
+ \| \nabla \div u \|_{L^2}^{1/2} \| \nabla \div u \|_{H^1}^{1/2} \| p_0 \|_{H^1}.
\]
\[\leq C \| \nabla \epsilon(u) \|_{L^2}^{1/2} \| u \|_{H^3}^{1/2} (\| u_0 \|_{H^2} + \| p_0 \|_{H^1}) \]

Substituting (24) into (23), we obtain,

\[\| u \|_{H^3} + \| p \|_{H^2} \leq C t^{-2}(\| \nabla (u - u_0) \|_t + t^{1/2} \| f \|_{L^2}). \]

Invoking (27) again, we get

\[t^{1/2} \| \nabla \epsilon(u) \|_{L^2} \| u \|_{H^3} \leq C t^{1/2}(\| \nabla (u - u_0) \|_t + t^{1/2} \| f \|_{L^2}). \]

A combination of the above three inequalities gives

\[t^{2} \left| \int_{\partial \Omega} (\partial_n \sigma \cdot \partial_x u_0) d\sigma(x) \right| \leq \frac{1}{4} \| \nabla (u - u_0) \|_t^2 + C \| f \|_{L^2}^2. \]

Combining the above inequalities, we obtain

\[\| \nabla (u - u_0) \|_t \leq C t^{1/2} \| f \|_{L^2}, \]

which together with (24) leads to

\[\| p - p_0 \|_t \leq C t^{1/2} \| f \|_{L^2}. \]

The above two estimates immediately give (28) and

\[\| \nabla^2 (u - u_0) \|_{L^2} + \| \nabla (p - p_0) \|_{L^2} \leq C t^{-1/2} \| f \|_{L^2}, \]

which together with (11) gives (29) with \(k = 0 \).

Substituting (28) into (23), we obtain the higher regularity estimate (29) with \(k = 1. \]

A direct consequence of the above theorem is

Corollary 1 There exists \(C \) independent of \(t \) and \(\lambda \) such that

\[\| u \|_{H^{3/2}} + \| p \|_{H^{1/2}} \leq C \| f \|_{L^2}, \]

and

\[\| u \|_{H^{5/2}} + \| p \|_{H^{3/2}} \leq C t^{-1} \| f \|_{L^2}. \]

Proof Using triangle inequality, (11) and (29), we obtain

\[\| u - u_0 \|_{H^2} + \| p - p_0 \|_{H^1} \leq \| u \|_{H^2} + \| p \|_{H^1} + \| u_0 \|_{H^2} + \| p_0 \|_{H^1} \leq C t^{-1/2} \| f \|_{L^2}. \]

Interpolating the above inequality and (28), we obtain

\[\| u - u_0 \|_{H^{3/2}} + \| p - p_0 \|_{H^{1/2}} \leq C \| f \|_{L^2}. \]

Using (11), we get

\[\| u_0 \|_{H^{3/2}} + \| p_0 \|_{H^{1/2}} \leq C \| u_0 \|_{H^2} + \| p_0 \|_{H^1} \leq C \| f \|_{L^2}. \]

A combination of the above two inequalities and the triangle inequality leads to (30).

Interpolating (29) with \(k = 0 \) and (29) with \(k = 1 \), we obtain (31). \(\square \)
3 A Family of Nonconforming Finite Elements

We introduce a family of finite elements to approximate the mixed variational problem (3). Let \(\mathcal{T}_h \) be a triangulation of \(\Omega \) with maximum mesh size \(h \). We assume all elements in \(\mathcal{T}_h \) are shape-regular in the sense of Ciarlet and Raviart [20]. We also assume that \(\mathcal{T}_h \) satisfies the inverse assumption: there exists \(\sigma_0 \) such that \(h/h_K \leq \sigma_0 \) for all \(K \in \mathcal{T}_h \). The space of piecewise vector fields is defined by

\[
\{ v \in [L^2(\Omega)]^2 : v|_K \in [H^m(T)]^2 \text{ for all } K \in \mathcal{T}_h \}
\]

which is equipped with the broken norm

\[
\| v \|_{H^m(\Omega, \mathcal{T}_h)} := \| v \|_{L^2} + \sum_{k=1}^{m} \| \nabla_h^k v \|_{L^2},
\]

where \(\| \nabla_h^k v \|_{L^2} = \sum_{K \in \mathcal{T}_h} \| \nabla^k v \|_{L^2(K)} \). For an interior edge \(e \) shared by the triangles \(K^+ \) and \(K^- \), we define the jump of \(v \) across \(e \) as

\[
[v] : = v^+ n^+ + v^- n^- \quad \text{with } v^\pm = v|_{K^\pm},
\]

where \(n^\pm \) is the unit normal vector of \(e \) towards the outside of \(K^\pm \). For \(e \cap \partial \Omega \neq \emptyset \), we set \([v] = vn \).

3.1 A Family of Finite Elements

Our construction is motivated by the element proposed in [34]. Define the element with a triple \((K, P_K, \Sigma_K) \) by specifying \(K \) as a triangle, and

\[
P_K := \mathbb{P}_r(K) + b_K \sum_{i=1}^{3} b_i Q_i^{r-2}(K) + b_K^2 R^{r-2}(K),
\]

where \(b_K = \prod_{i=1}^{3} \lambda_i \) and \(b_i = b_K/\lambda_i \) with \(\{\lambda_i\}_{i=1}^{3} \) the barycentric coordinates of \(K \). Define

\[
Q_i^{r-2}(K) := \left\{ v \in \mathbb{P}_{r-2}(K) \mid \int_K b_K b_i v q \, dx = 0 \text{ for all } q \in \mathbb{P}_{r-3}(K) \right\},
\]

and

\[
R^{r-2}(K) := \left\{ v \in \mathbb{P}_{r-2}(K) \mid \int_K b_K^2 v q \, dx = 0 \text{ for all } q \in \mathbb{P}_{r-3}(K) \right\}.
\]

The degrees of freedom (DoFs) for \(P_K \) are given by

\[
v \mapsto \begin{cases}
v(a) & \text{for all vertices } a, \\
\int_e v q \, ds(x) & \text{for all edges } e \text{ and } q \in \mathbb{P}_{r-2}(e), \\
\int_e b_n v q \, ds(x) & \text{for all edges } e \text{ and } q \in \mathbb{P}_{r-2}(e), \\
\int_K v q \, dx & \text{for all } q \in \mathbb{P}_{r-2}(K).
\end{cases}
\]

We plot the DoFs for \(r = 2, 3 \) in Fig. 1.

Lemma 8 The set \((K, P_K, \Sigma_K) \) is unisolvent.
Diagram for DoFs. Left: DoFs for $r = 2$ are point evaluations of the function values at the vertex, the mean of the function along each edge, the mean of the normal derivative along each edge, and the mean of the function over the element; Right: DoFs for $r = 3$ are point evaluations of the function values at the vertex, the means of the function against P_1 along each edge, the means of the normal derivative against P_1 along each edge, and the means of the function against P_1 over the element.

Proof Firstly we show that if the DoFs (35) can determine an element in P_K, then the element is unique. Suppose $v \in P_K$ vanishes at the DoFs listed in (35), it suffices to show $v \equiv 0$. Assume that

$$v = p_r + b_K \sum_{i=1}^{3} b_i q_i + b^2_K q_r,$$

where $p_r \in P_r(K)$, and $q_i \in Q_i^{r-2}(K)$, and $q_r \in R^{r-2}(K)$. DoFs associated with $P_r(K)$ are

$$v \mapsto \begin{cases} v(a) & \text{for all vertices } a, \\ \int_e vq \, d\sigma(x) & \text{for all edges } e \text{ and } q \in P_{r-2}(e), \\ \int_K vq \, dx & \text{for all } q \in P_{r-3}(K). \end{cases}$$

The bubble space vanishes on this subset of DoFs by (33) and (34). The number of the DoFs is $3 + 3(r - 1) + (r - 1)(r - 2)/2 = (r + 1)(r + 2)/2$, which equals to the cardinality of $P_r(K)$. Hence $p_r \equiv 0$.

A direct calculation gives

$$\int_{e_i} \delta a vq \, d\sigma(x) = -|\nabla \lambda_i| \int_{e_i} b_i^2 q_i q \, d\sigma(x) = 0 \quad \text{for all } q \in P_{r-2}(e_i).$$

Taking $q = q_i$ in the above identity, we obtain $q_i \equiv 0$ on e_i. Therefore, we write $q_i = \lambda_i p_{r-3}$ for certain $p_{r-3} \in P_{r-3}(K)$. Using (33), we get

$$\int_K b_K b_i q_i q \, dx = \int_K b^2_K p_{r-3} q \, dx = 0 \quad \text{for all } q \in P_{r-3}(K).$$

Taking $q = p_{r-3}$ in the above identity, we obtain $p_{r-3} \equiv 0$. Therefore $v = b^2_K q_r$ for certain $q_r \in R^{r-2}(K)$. The last set of DoFs equals zero, i.e.,

$$\int_K b^2_K q_r q \, dx = 0 \quad \text{for all } q \in P_{r-2}(K).$$
Taking \(q = q_r \) in the above identity, we obtain \(q_r \equiv 0 \). So does \(v \).

It remains to show the dimension of \(P_K \) equals the number of DoFs (35). Proceeding along the same line as above, the element \(v \equiv 0 \) has a unique representation. Therefore (32) is a direct sum, and

\[
\dim P_K = \dim P_r(K) + 4(\dim P_{r-2}(K) - \dim P_{r-3}(K)) = \frac{1}{2}(r^2 + 11r - 6),
\]

which equals to the number of DoFs (35) exactly. \(\Box \)

We define a local interpolation operator \(\pi_K : H^2(K) \mapsto P_K \) as:

\[
\begin{align*}
\pi_K v(a) &= v(a) & \text{for all vertices } a, \\
\int_e \pi_K v q \, d\sigma(x) &= \int_e v q \, d\sigma(x) & \text{for all edges } e \text{ and } q \in P_{r-2}(e), \\
\int_f \partial_n \pi_K v q \, d\sigma(x) &= \int_f \partial_n v q \, d\sigma(x) & \text{for all faces } f \text{ and } q \in P_{r-2}(f), \\
\int_K \pi_K v q \, dx &= \int_K v q \, dx & \text{for all } q \in P_{r-2}(K).
\end{align*}
\]

Lemma 9 There exists \(C \) independent of \(h_K \) such that for \(v \in H^k(K) \) with \(2 \leq k \leq r + 1 \), there holds

\[
\| \nabla^j (v - \pi_K v) \|_{L^2(K)} \leq C h_K^{k-j} \| \nabla^k v \|_{L^2(K)},
\]

where \(0 \leq j \leq k \).

Proof For any \(v \in P_r(K) \subset P_K \), the definition (36) shows that \(v - \pi_K v \in P_K \) and all DoFs of \(v - P_K v \) vanish, then \(v = \pi_K v \). The estimate (37) immediately follows from the \(P_r(K) \)–invariance of the local interpolation operator \(\pi_K \) [21]. \(\Box \)

Remark 1 The element has a natural extension to three-dimensions by specifying \(K \) as a tetrahedron, and

\[
P_K := P_r(K) + b_K \sum_{i=1}^4 b_i Q_i^{r-2}(K) + b_K^4 R^{r-2}(K),
\]

where \(b_K = \prod_{i=1}^4 \lambda_i \) is the element bubble function with \(\lambda_i \) the barycentric coordinates associated with the vertices \(a_i \) for \(i = 1, \ldots, 4 \). \(b_i = b_K / \lambda_i \) is the face bubble function associated with the face \(f_i \).

Define

\[
Q_i^{r-2}(K) := \left\{ v \in P_{r-2}(K) \mid \int_K b_K b_i v q \, dx = 0 \text{ for all } q \in P_{r-3}(K) \right\},
\]

and

\[
R^{r-2}(K) := \left\{ v \in P_{r-2}(K) \mid \int_K b_K^2 v q \, dx = 0 \text{ for all } q \in P_{r-4}(K) \right\}.
\]

The DoFs for \(P_K \) are given by

\[
v \mapsto \left\{ \begin{array}{ll}
v(a) & \text{for all vertices } a, \\
\int_e v q \, d\sigma(x) & \text{for all edges } e \text{ and } q \in P_{r-2}(e), \\
\int_f v q \, d\sigma(x) & \text{for all faces } f \text{ and } q \in P_{r-3}(f), \\
\int_f \partial_n v q \, d\sigma(x) & \text{for all faces } f \text{ and } q \in P_{r-2}(f), \\
\int_K v q \, dx & \text{for all } q \in P_{r-2}(K).
\end{array} \right.
\]

Similar to Lemma 8, the set \((K, P_K, \Sigma_K) \) is also unisolvent.
3.2 Explicit Representation for the Bubble Space

We clarify the structures of (33) and (34) associated with the set of DoFs (35)3 and the subset of (35)4 respectively, and derive the explicit formulations of the corresponding shape functions, which seems missing in the literature, while such explicit representations are useful for implementation. We firstly recall the following facts about the Jacobi polynomials [59]. For any \(\alpha, \beta > -1 \) and nonnegative integers \(n, m \), there holds

\[
\int_{-1}^{1} (1-t)^\alpha (1+t)^\beta P_n^{(\alpha,\beta)}(t) P_m^{(\alpha,\beta)}(t) dt = h_n^{(\alpha,\beta)} \delta_{nm},
\]

where

\[
h_n^{(\alpha,\beta)} = \int_{-1}^{1} (1-t)^\alpha (1+t)^\beta [P_n^{(\alpha,\beta)}(t)]^2 dt.
\]

By [59, Eq. (4.3.3)], we may write

\[
h_n^{(\alpha,\beta)} = \frac{2^{\alpha+\beta+1} \Gamma(n + \alpha + 1) \Gamma(n + \beta + 1)}{2n + \alpha + \beta + 1 \Gamma(n + \alpha + \beta + 1) \Gamma(n + 1)},
\]

where \(\Gamma \) is the Gamma function.

One of the explicit form for \(P_n^{(\alpha,\beta)} \) is

\[
(1-t)^\alpha (1+t)^\beta P_n^{(\alpha,\beta)}(t) = \frac{(-1)^n}{2^n n!} \frac{d^n}{dt^n} ((1-t)^{n+\alpha} (1+t)^{n+\beta}).
\]

In particular,

\[
P_0^{(\alpha,\beta)}(t) = 1, \quad P_1^{(\alpha,\beta)}(t) = \frac{1}{2} (\alpha + \beta + 2) t + \frac{1}{2} (\alpha - \beta).
\]

Next we list certain facts about the Jacobi polynomials on the triangle [25, Section 2.4]. For a triangle \(K \) with vertices \(a_1, a_2, a_3 \), any point \(x \in K \) is uniquely expressed as

\[
x = \lambda_1 a_1 + \lambda_2 a_2 + \lambda_3 a_3, \quad \lambda_i \geq 0 \text{ and } \lambda_1 + \lambda_2 + \lambda_3 = 1.
\]

Then \((\lambda_1, \lambda_2, \lambda_3) \) is the barycentric coordinates of the point \(x \) with respect to \(K \). For non-negative integers \(k, n \) such that \(k \leq n \), we define

\[
P_k^{(\alpha,\beta,\gamma)}(\lambda_1, \lambda_2, \lambda_3) = (\lambda_2 + \lambda_3)^k P_n^{(2k+\beta+\gamma+1,\alpha)}(\lambda_1 - \lambda_2 - \lambda_3) P_k^{(\gamma,\beta)}((\lambda_2 - \lambda_3)/((\lambda_2 + \lambda_3))).
\]

It is straightforward to verify \(P_k^{(\alpha,\beta,\gamma)} \in \mathbb{P}_n(K) \). In particular,

\[
P_0^{(\alpha,\beta,\gamma)}(\lambda_1, \lambda_2, \lambda_3) = 1, \quad P_1^{(\alpha,\beta,\gamma)}(\lambda_1, \lambda_2, \lambda_3) = (\beta + \gamma + 2) \lambda_1 - (\alpha + 1)(\lambda_2 + \lambda_3),
\]

and

\[
P_1^{(\alpha,\beta,\gamma)}(\lambda_1, \lambda_2, \lambda_3) = (\gamma + 1) \lambda_2 - (\beta + 1) \lambda_3.
\]
For all $\alpha, \beta, \gamma > -1$, and nonnegative integers j, k, m, n such that $j \leq m$ and $k \leq n$, there holds
\[
\int_{K} \lambda_{1}^{\alpha} \lambda_{2}^{\beta} \lambda_{3}^{\gamma} P_{k,n}^{(\alpha,\beta,\gamma)}(\lambda_{1}, \lambda_{2}, \lambda_{3}) P_{j,m}^{(\alpha,\beta,\gamma)}(\lambda_{1}, \lambda_{2}, \lambda_{3}) \, dx \\
= 2 \int_{\tilde{K}} \lambda_{1}^{\alpha} \lambda_{2}^{\beta} (1 - \lambda_{1} - \lambda_{2})^{\gamma} P_{k,n}^{(\alpha,\beta,\gamma)}(\lambda_{1}, \lambda_{2}, 1 - \lambda_{1} - \lambda_{2}) \\
\times P_{j,m}^{(\alpha,\beta,\gamma)}(\lambda_{1}, \lambda_{2}, 1 - \lambda_{1} - \lambda_{2}) d\lambda_{1} d\lambda_{2} \\
= 2 h_{k,n}^{(\alpha,\beta,\gamma)}(\lambda, \lambda_{1}, \lambda_{2}) \delta_{j,k} \delta_{mn},
\]
where $\tilde{K} := \{ (\lambda_{1}, \lambda_{2}) \mid \lambda_{1} \geq 0, \lambda_{2} \geq 0, \lambda_{1} + \lambda_{2} \leq 1 \}$ is the standard reference triangle and
\[
h_{k,n}^{(\alpha,\beta,\gamma)} = \frac{2(2k + \alpha + 2\beta + 2\gamma + 3)}{(2n - k + \alpha + \beta + \gamma + 2)(k + \beta + \gamma + 1)} \\
\times \frac{\Gamma(n - k + \alpha + 1) \Gamma(n + k + \beta + \gamma + 2) \Gamma(k + \beta + 1) \Gamma(k + \gamma + 1)}{\Gamma(n + k + \alpha + \beta + \gamma + 2) \Gamma(k + 1) \Gamma(k + \beta + \gamma + 1)}.
\]
Using the notation $(x)_{n} = \Gamma(x + n)/\Gamma(n)$, we may find that the expression (42) is equivalent to the one in [25, Eq. (2.4.3)]. The identity (41) illustrates that
\[
\{ P_{k,n}^{(\alpha,\beta,\gamma)}(\lambda_{1}, \lambda_{2}, \lambda_{3}) \mid 0 \leq k \leq n \leq r \}
\]
are mutually orthogonal bases of $\mathbb{P}_{r}(K)$ with respect to the weight $\lambda_{1}^{\alpha} \lambda_{2}^{\beta} \lambda_{3}^{\gamma}$.

Next we study the structure of the bubble spaces. For the barycentric coordinate function λ_i such that $\lambda_i \equiv 0$ on e_i, let λ_i^+ and λ_i^- be the two other barycentric coordinates associated with the edges e_i^+ and e_i^-, respectively. (e_i, e_i^+, e_i^-) are chosen in a counterclockwise manner. The space $Q_{r-2}^{i}(K)$ can be clarified by the Jacobi polynomials with respect to the weight $b_{K} b_{i}$, while $R_{r-2}^{i}(K)$ can be clarified by the Jacobi polynomials with respect to the weight b_{K}^{2}, which are formulated in the following lemmas.

Lemma 10 The space $Q_{r-2}^{i}(K)$ takes the form
\[
Q_{r-2}^{i}(K) = \text{span} \left\{ P_{k,r-2}^{(1,2,2)}(\lambda_{i}, \lambda_{i}^{+}, \lambda_{i}^{-}) \mid 0 \leq k \leq r - 2 \right\}.
\]

Proof For any $v \in Q_{r-2}^{i}(K) \subseteq \mathbb{P}_{r-2}(K)$, v may be expanded into
\[
v = \sum_{0 \leq k \leq n \leq r - 2} a_{kn} \left(\begin{array}{c}
1,2,2
\end{array} \right)_{k,r-2}(\lambda_{i}, \lambda_{i}^{+}, \lambda_{i}^{-})
\]
with unknown parameters a_{kn}. Using the above representation, we may write the constraint in the definition (33) as
\[
\sum_{0 \leq k \leq n \leq r - 2} a_{kn} \int_{K} b_{K} b_{i} P_{k,n}^{(1,2,2)}(\lambda_{i}, \lambda_{i}^{+}, \lambda_{i}^{-}) q \, dx = 0 \quad \text{for all } q \in \mathbb{P}_{r-3}(K).
\]
Substituting $q = P_{j,m}^{(1,2,2)}(\lambda_{i}, \lambda_{i}^{+}, \lambda_{i}^{-})$ for $0 \leq j \leq m \leq r - 3$ into the above equation, and using the orthogonal relation (41), we obtain $a_{jm} = 0$ for $0 \leq j \leq m \leq r - 3$. This concludes the lemma. \(\Box\)
Motivated by the above lemma, we change the definition of DoFs for the bubble space

$$b_K \sum_{i=1}^{3} b_i Q_i^{r-2}(K)$$

from

$$\int_{e_i} \partial_n v q \, d\sigma(x)$$

for any

$$q \in \mathbb{P}_{r-2}(e_i)$$
to

$$\int_{e_i} \frac{\partial v}{\partial n} P_k^{(2,2)}(\lambda_i^+ - \lambda_i^-) \, d\sigma(x), \quad k = 0, \ldots, r - 2.$$

Lemma 11 The shape functions for the bubble space

$$b_K \sum_{i=1}^{3} b_i Q_i^{r-2}(K)$$

associated with the above definition of DoFs are

$$a_{k,r-2} b_K b_i P_{k,r-2}^{(1,2,2)}(\lambda_i, \lambda_i^+, \lambda_i^-)$$

with

$$a_{k,r-2} = \frac{(-1)^{r-k-1}}{|\nabla \lambda_i|} \frac{(k + 3)(k + 4)(2k + 5)}{(r - k - 1)(k + 1)(k + 2)} \quad k = 0, \ldots, r - 2. \quad (43)$$

Proof A direct calculation gives

$$\frac{\partial}{\partial n} \left(b_K b_i P_{k,r-2}^{(1,2,2)}(\lambda_i, \lambda_i^+, \lambda_i^-) \right) \bigg|_{e_i} = -|\nabla \lambda_i| b_i^2 P_{r-2-k}^{(2k+5,1)}(-1) P_k^{(2,2)}(\lambda_i^+ - \lambda_i^-),$$

For

$$j = 1, \ldots, r - 2.$$ Using the relation (38), and noting that

$$b_i = \lambda_i^+ \lambda_i^- = \lambda_i^+(1 - \lambda_i^+)$$
on

$$e_i,$$ we obtain

$$\int_{e_i} \left. \frac{\partial}{\partial n} \left(b_K b_i P_{k,r-2}^{(1,2,2)}(\lambda_i, \lambda_i^+, \lambda_i^-) \right) \right|_{e_i} P_j^{(2,2)}(\lambda_i^+ - \lambda_i^-) \, d\sigma(x)$$

$$= -|\nabla \lambda_i| P_{r-2-k}^{(2k+5,1)}(-1) \int_0^1 (\lambda_i^+(1 - \lambda_i^-))^2 P_k^{(2,2)}(2\lambda_i^- - 1) P_j^{(2,2)}(2\lambda_i^+ - 1) \, d\lambda_i^+$$

$$= -|\nabla \lambda_i| \frac{P_{r-2-k}^{(2k+5,1)}(-1)}{32} \int_{-1}^1 (1 - t)^2(1 + t)^2 P_k^{(2,2)}(t) P_j^{(2,2)}(t) \, dt$$

$$= -|\nabla \lambda_i| \frac{P_{r-2-k}^{(2k+5,1)}(-1)}{32} h_k^{(2,2)} \delta_{jk}.$$ This gives

$$a_{k,r-2} = -\frac{32}{|\nabla \lambda_i| P_{r-2-k}^{(2k+5,1)}(-1) h_k^{(2,2)}}. $$

By [59, Eq. (4.1.1),(4.1.3)], we obtain

$$P_{r-2-k}^{(2k+5,1)}(-1) = (-1)^{r-k} (r - k - 1).$$ Using (39), we obtain

$$h_k^{(2,2)} = \frac{32(k + 1)(k + 2)}{(k + 3)(k + 4)(2k + 5)}.$$

A combination of the above three identities leads to (43). \qed

Next we list the shape functions for the elements of low-order.

Example 2 The bubble space

$$b_K \sum_{i=1}^{3} b_i Q_i^{r-2}(K)$$

for the lowest-order

$$r = 2$$
is

$$b_K \text{span} \{ b_i \mid i = 1, 2, 3 \}.$$ The shape functions associated with

$$\int_{e_i} \partial_n v \, d\sigma(x)$$
is

$$-\frac{30}{|\nabla \lambda_i|} b_K b_i.$$
The bubble space $b_K \sum_{i=1}^{3} b_i Q_i^{r-2}(K)$ for the case $r = 3$ is

$$b_K \text{span} \left\{ b_i(3\lambda_i - \lambda_i^+ - \lambda_i^-), b_i(\lambda_i^+ - \lambda_i^-) \mid i = 1, 2, 3 \right\}.$$

The shape functions associated with $\int_{e_j} \partial_n v \, d\sigma(x)$ is

$$\frac{30}{|\nabla \lambda_i|} b_K b_i (3\lambda_i - \lambda_i^+ - \lambda_i^-).$$

The shape functions associated with $3\int_{e_j} \partial_n v (\lambda_i^+ - \lambda_i^-) \, d\sigma(x)$ is

$$-\frac{70}{|\nabla \lambda_i|} b_K b_i (\lambda_i^+ - \lambda_i^-).$$

Lemma 12 The space $R^{r-2}(K)$ takes the forms

$$R^{r-2}(K) = \text{span} \left\{ P_{k,r-2}^{(2,2,2)}(\lambda_1, \lambda_2, \lambda_3) \mid 0 \leq k \leq r-2 \right\}.$$

Proof For any $v \in R^{r-2}(K) \subset \mathbb{P}_{r-2}(K)$, we expand v into

$$v = \sum_{0 \leq k \leq n \leq r-2} a_{kn} P_{k,n}^{(2,2,2)}(\lambda_1, \lambda_2, \lambda_3)$$

with a_{kn} to be determined later on. Using the above representation, we may write the constraint in the definition of the space (34) as: For all $q \in \mathbb{P}_{r-3}(K)$,

$$\sum_{0 \leq k \leq n \leq r-2} a_{kn} \int_K b_K^2 P_{k,n}^{(2,2,2)}(\lambda_1, \lambda_2, \lambda_3) q \, dx = 0.$$

We substitute $q = P_{j,m}^{(2,2,2)}(\lambda_1, \lambda_2, \lambda_3)$ for $0 \leq j \leq m \leq r-3$ into the above equation. Using the orthogonal relation (41), we may obtain $a_{jm} = 0$ for $0 \leq j \leq m \leq r-3$. This completes the proof.

Motivated by the above lemma, we change the definition of DoFs for $b_K^2 R^{r-2}(K)$ from $\int_K v q \, dx$ for any $q \in \mathbb{P}_{r-2}(K) \setminus \mathbb{P}_{r-3}(K)$ to

$$\int_K v P_{k,r-2}^{(2,2,2)}(\lambda_1, \lambda_2, \lambda_3) \, dx, \quad k = 0, \ldots, r-2.$$

Lemma 13 The shape functions for the bubble space $b_K^2 R^{r-2}(K)$ associated with the above definition of DoFs are

$$a_{k,r-2} b_K^2 P_{k,r-2}^{(2,2,2)}(\lambda_1, \lambda_2, \lambda_3)$$

with

$$a_{k,r-2} = \frac{(2r+4)(2k+5)(r+k+4)(r+k+5)(k+3)(k+4)}{2(r-k)(r-1-k)(k+1)(k+2)} \quad k = 0, \ldots, r-2.$$

Proof For $j = 1, \ldots, r-2$, we obtain

$$\int_K b_K^2 P_{k,r-2}^{(2,2,2)}(\lambda_1, \lambda_2, \lambda_3) P_{j,r-2}^{(2,2,2)}(\lambda_1, \lambda_2, \lambda_3) \, dx = 2h_{k,r-2}^{(2,2,2)} \delta_{jk},$$

which gives

$$a_{k,r-2} = \frac{1}{2h_{k,r-2}^{(2,2,2)}}.$$
Using (42), we obtain
\[h_{k,r-2}^{(2,2)} = \frac{(r - k)(r - 1 - k)(k + 1)(k + 2)}{(2r + 4)(2k + 5)(r + k + 4)(r + k + 5)(k + 3)(k + 4)}. \]

These give the simplified expression of \(a_{k,r-2} \).

According to the definition of bubble space, we may have

Example 3 The bubble space \(b_K^2 R^{r-2}(K) \) for the lowest-order case \(r = 2 \) is \(\text{span}\{b_K^2\} \).
The shape functions associated with \(\mathcal{b}_K \) are used in the numerical examples. The local finite element space

\[P_K = \mathbb{P}_2(K) + b_K \sum_{i=1}^{3} \text{span}\{b_i\} + \text{span}\{b_K^2\}, \]

and DoFs

\[\Sigma_K = \left\{ v(a_i), \int_{e_i} v \, d\sigma(x), \int_{e_i} \partial_n v \, d\sigma(x), \int_K v \, dx \mid i = 1, 2, 3 \right\}. \]

The shape functions associated with \(\{v(a_i)\}_{i=1,2,3} \) are

\[\phi_i = \lambda_i (3\lambda_i - 2) + 30b_K \left(2b_i + \sum_{j \neq i} \frac{\nabla \lambda_i \cdot \nabla \lambda_j}{|\nabla \lambda_j|^2} b_j(4\lambda_j - 1) + 6b_K \right). \]

The shape functions associated with \(\{\int_{e_i} v \, d\sigma(x)\}_{i=1,2,3} \) are

\[\psi_i = 6b_i + 90b_K \left(b_i - \sum_{j \neq i} b_j - 10b_K \right). \]

The shape functions associated with \(\{\int_{e_i} \partial_n v \, d\sigma(x)\}_{i=1,2,3} \) are

\[\psi_i = \frac{30}{|\nabla \lambda_i|} b_K b_i (4\lambda_i - 1). \]

The shape functions associated with \(\int_K v \, dx \) is \(\phi_0 = 2520b_K^2 \).

4 The Mixed Finite Elements Approximation

In this part, we construct stable finite element pairs to approximate (3). We ignore the influence of the curved boundary for error estimates for brevity. Define

\[X_h: = \left\{ v \in H_0^1(\Omega) \mid v|_K \in P_K \text{ for all } K \in T_h, \int_{e} \|\partial_n v\| q \, d\sigma(x) = 0 \text{ for all } e \in E_h, q \in \mathbb{P}_{r-2}(e) \right\}. \]
and $V_h = [X_h]^2$. Let $P_h \subset P$ be the continuous Lagrangian finite element of order $r - 1$. We shall prove a uniform discrete B-B inequality for the pair (V_h, P_h).

The following rescaled trace inequality will be used later on: There exists C independent of h_K such that

$$\|v\|_{L^2(\partial K)} \leq C \left(h_K^{-1/2} \|v\|_{L^2(K)} + \|v\|_{L^2(K)}^{1/2} \|\nabla v\|_{L^2(K)}^{1/2} \right). \quad (44)$$

This inequality may be found in [18].

4.1 The Mixed Finite Element Approximation

We define the mixed finite element approximation problem as follows. Find $u_h \in V_h$ and $p_h \in P_h$ such that

$$\begin{aligned}
& a_{i,h}(u_h, v) + b_{i,h}(v, p_h) = (f, v) \quad \text{for all } v \in V_h, \\
& b_{i,h}(u_h, q) - \lambda^{-1} c_i(p_h, q) = 0 \quad \text{for all } q \in P_h,
\end{aligned} \quad (45)$$

where

$$\begin{aligned}
& a_{i,h}(v, w) := 2\mu \left((\epsilon(v), \epsilon(w)) + \iota^2 (\nabla_h \epsilon(v), \nabla_h \epsilon(w)) \right) \quad \text{for all } v, w \in V_h, \\
& b_{i,h}(v, q) := (\text{div } v, q) + \iota^2 (\nabla_h \text{div } v, \nabla q) \quad \text{for all } v \in V_h, q \in P_h.
\end{aligned}$$

Note that $V_h \not\subset V$, and this is a nonconforming method, we introduce the broken norm $\|\nabla v\|_{i,h} := \|\nabla v\|_{L^2} + \iota \|\nabla^2 v\|_{L^2}$ for all $v \in V_h$

Due to the continuity of v, $\|\nabla v\|_{i,h}$ is a norm over V_h.

The following broken Korn’s inequality was proved in [44, Theorem 2]:

$$\|\nabla_h \epsilon(v)\|_{L^2} \geq \left(1 - 1/\sqrt{2} \right) \|\nabla^2_h v\|_{L^2},$$

which together with the first Korn’s inequality (7) gives

$$a_{i,h}(v, v) \geq \frac{\mu}{2} \|\nabla v\|_{i,h}^2 \quad \text{for all } v \in V_h. \quad (46)$$

It remains to prove the discrete B-B inequality for the pair (V_h, P_h). To this end, we construct a Fortin operator that is uniformly stable in the weighted norm $\|\nabla \cdot\|_{i,h}$ [46]. The key point is to construct different Fortin operators for i/h in different regimes.

Firstly we define an interpolation operator $\Pi_h : V \rightarrow V_h$ by $\Pi_h|_K := \Pi_K = [\pi_K]^2$, which satisfies

Lemma 14 For all $v \in V$, there holds

$$b_{i,h}(\Pi_h v, p) = b_i(v, p) \quad \text{for all } p \in P_h. \quad (47)$$

Proof Using the fact that $\Pi_h v \in V_h \subset [H^1_0(\Omega)]^2$, an integration by parts gives

$$\int_{\Omega} \text{div}(v - \Pi_h v) p \, dx = - \sum_{K \in T_h} \int_K (v - \Pi_K v) \cdot \nabla p \, dx = 0, \quad (48)$$

where we have used the identity (36)$_4$ in the last step.
Next, integration by parts yields
\[\int_{\Omega} \nabla \text{div}(v - \Pi_h v) \cdot \nabla p \, dx = \sum_{K \in T_h} \int_{\partial K} \text{div}(v - \Pi_K v) \partial_n p \, d\sigma(x)\]
\[- \sum_{K \in T_h} \int_K \text{div}(v - \Pi_K v) \Delta p \, dx = 0.\]

The first term vanishes because \(\partial_j = t_j \partial_t + n_j \partial_n\) for components \(j = 1, 2\), and using (36)_2, we obtain that for each edge \(e \in \partial K\),
\[\int_e t_j \frac{\partial}{\partial t} (v_j - \pi_K v_j) \partial_n p \, d\sigma(x) = - \int_e t_j (v_j - \pi_K v_j) \frac{\partial^2 p}{\partial t \partial n} \, d\sigma(x) = 0.\]

Using (36)_3, we obtain
\[\int_e n_j \frac{\partial}{\partial n} (v_j - \pi_K v_j) \partial_n p \, d\sigma(x) = 0.\]

While the second term vanishes because
\[\int_K \text{div}(v - \Pi_K v) \Delta p \, dx = \int_{\partial K} (v - \Pi_K v) \cdot n \Delta p \, d\sigma(x) - \int_K (v - \Pi_K v) \cdot \nabla \Delta p \, dx = 0,\]
where we have used (36)_2 and (36)_4.

The operator \(\Pi_h\) is not \(H^1\) - bounded by (37), and we construct an \(H^1\) - bounded regularized interpolation operator as follows.

Lemma 15 There exists an operator \(I_h : V \mapsto V_h\) satisfying
\[\int_{\Omega} \text{div}(v - I_h v) p \, dx = 0 \quad \text{for all } p \in P_h,\] (49)

and if \(v \in V \cap [H^s(\Omega)]^2\) with \(1 \leq s \leq r + 1\), then
\[\| \nabla_j^j (v - I_h v) \|_{L^2} \leq C h^{s-j} \| \nabla^s v \|_{L^2} \quad 0 \leq j \leq s.\] (50)

The construction of \(I_h\) is based on a regularized interpolation operator in [34] and the standard construction of the Fortin operator [32]. The operator \(I_h\) is also well-defined for functions in \([H^2(\Omega) \cap H^1_0(\Omega)]^2\).

Proof Define \(I_h : V \mapsto V_h\) with \(I_h : [\Pi_1]^2\) and
\[\Pi_1 : = \Pi_0(I - \Pi_2) + \Pi_2,\]
where the regularized interpolation operator \(\Pi_2 : [H^2_0(\Omega)] \mapsto X_h\) is constructed in [34, Lemma 2], which satisfies
\[\| \nabla_j^j (v - \Pi_2 v) \|_{L^2} \leq C h^{s-j} \| \nabla^s v \|_{L^2}, \quad 1 \leq s \leq r + 1, 0 \leq j \leq s.\] (51)

The operator \(\Pi_0 : [H^1_0(\Omega)] \mapsto X_h\) is defined for any element \(K \in T_h\) as
\[
\begin{align*}
\Pi_0 v(a) &= 0 \quad \text{for all vertices } a, \\
\int_e \Pi_0 v q \, d\sigma(x) &= 0 \quad \forall q \in P_{r-2}(e) \quad \text{for all edges } e, \\
\int_e \partial_n \Pi_0 v q \, d\sigma(x) &= 0 \quad \forall q \in P_{r-2}(e) \quad \text{for all edges } e, \\
\int_K \Pi_0 v q \, dx &= \int_K v q \, dx \quad \text{for all } q \in P_{r-2}(K).
\end{align*}
\]
On each element \(K \), we have \((\Pi_0 v)|_K \in H^1_0(K)\) for any \(v \in H^1_0(\Omega)\), and hence \(\Pi_0 v \in X_h\). A standard scaling argument gives
\[
\| \Pi_0 v \|_{L^2} \leq C \| v \|_{L^2} \quad \text{for all } v \in H^1_0(\Omega).
\]

For any \(v \in V \), using the fact that \(I_h v \in V_h \) and \(p \in P_h \), an integration by parts gives
\[
\int_{\Omega} \text{div}(v - I_h v) p \, dx = - \sum_{K \in T_h} \int_K (v - I_h v) \cdot \nabla p \, dx
\]
\[
= - \sum_{K \in T_h} \int_K (I - \Pi_0)(I - \Pi_2) v \cdot \nabla p \, dx = 0,
\]
where we have used the last property of \(\Pi_0 \). This gives (49).

Using (51), the \(L^2 \)-stability of \(\Pi_0 \) and the inverse inequality, we obtain
\[
\| \nabla I_h v \|_{L^2} \leq \| \nabla I_h^\dagger (v - \Pi_2 v) \|_{L^2} + \| \nabla I_h^\dagger \Pi_0 (v - \Pi_2 v) \|_{L^2}
\]
\[
C h^{s-j} \| \nabla^s v \|_{L^2} + C h^{s-j} \| v - \Pi_2 v \|_{L^2}
\]
\[
C h^{s-j} \| \nabla^s v \|_{L^2}.
\]
This implies (50) and completes the proof.

We are ready to prove the following discrete B-B inequality.

Theorem 2 There exists \(\beta \) independent of \(t \) and \(h \), such that
\[
\sup_{v \in V_h} \frac{b_{t,h}(v, p)}{\| \nabla v \|_{i,h}} \geq \beta \| p \|_i \quad \text{for all } p \in P_h.
\] \(\Box \)

Proof Using (4), for any \(p \in P_h \subset P \), there exists \(v_0 \in V \) such that
\[
b_t(v_0, p) = \| p \|_i^2 \quad \text{and} \quad \| \nabla v_0 \|_i \leq C \| p \|_i.
\]

First, we consider the case \(t/h \leq \gamma \) with \(\gamma \) to be determined later on. By (50), we obtain
\[
\| \nabla I_h v_0 \|_{i,h} \leq \| \nabla v_0 \|_i + \| \nabla (v_0 - I_h v_0) \|_{i,h} \leq C \| \nabla v_0 \|_i,
\]
and
\[
\| \nabla_h \text{div}(v_0 - I_h v_0) \|_{L^2} \leq C \| \nabla^2 v_0 \|_{L^2} \leq C \| \nabla p \|_{L^2}.
\]
Combining the above inequality and using the inverse inequality for any \(p \in P_h \), we obtain
\[
t^2 |(\nabla_h \text{div}(v_0 - I_h v_0), \nabla p)| \leq C t^2 \| \nabla p \|_{L^2}^2 \leq C_s (t/h)^2 \| p \|_{L^2}^2 \leq \gamma^2 C_s \| p \|_i^2.
\]
Fix \(\gamma \) such that \(\gamma^2 C_s < 1 \), we obtain
\[
b_{t,h}(I_h v_0, p) = b_t(v_0, p) - t^2 (\nabla_h \text{div}(v_0 - I_h v_0), \nabla p) \geq (1 - \gamma^2 C_s) \| p \|_i^2.
\]
This gives
\[
\sup_{v \in V_h} \frac{b_{t,h}(v, p)}{\| \nabla v \|_{i,h}} \geq \frac{b_{t,h}(I_h v_0, p)}{\| \nabla I_h v_0 \|_{i,h}} \geq \frac{1 - \gamma^2 C_s}{C} \| p \|_i.
\] \(\Box \)

Next, if \(t/h > \gamma \), then we use (37) and obtain
\[
\| \nabla (v_0 - \Pi_h v_0) \|_{L^2} \leq C h \| \nabla^2 v_0 \|_{L^2}, \quad \text{and} \quad \| \nabla_h I_h v_0 \|_{L^2} \leq C \| \nabla^2 v_0 \|_{L^2}.
\]
Therefore,
\[\| \nabla (v_0 - \Pi_h v_0) \|_{i,h} \leq C(h + \iota) \| \nabla^2 v_0 \|_{L^2} \leq C(1 + h/\iota) \| \nabla v_0 \|_i \leq C(1 + 1/\gamma) \| \nabla v_0 \|_i. \]

Hence,
\[\| \nabla \Pi_h v_0 \|_{i,h} \leq \| \nabla v_0 \|_i + \| \nabla (v_0 - \Pi_h v_0) \|_{i,h} \leq C(2 + 1/\gamma) \| \nabla v_0 \|_i, \]

which together with (47) gives
\[
\sup_{\nu \in V_h} \frac{b_{i,h}(\nu, p)}{\| \nabla \Pi_h \nu \|_{i,h}} \geq \frac{b_{i,h}(\nu_0, p)}{\| \nabla \Pi_h v_0 \|_{i,h}} \geq \frac{\gamma}{C(1 + 2\gamma)} \| p \|_i. \tag{54}
\]

A combination of (53) and (54) shows that (52) holds true with \(\beta \) independent of \(\iota \) and \(h \).

The well-posedness of the mixed approximation problem (45) follows from the ellipticity of \(a_{i,h} \) and the discrete B-B inequality of \(b_{i,h} \). We are ready to derive the error estimate.

4.2 Error Estimates

To carry out the error estimate, we define the bilinear form \(A \) as
\[
A(v, q; w, z) := a_{i,h}(v, w) + b_{i,h}(w, q) + b_{i,h}(v, z) - \lambda^{-1} c_i(q, z)
\]
for all \(v, w \in V_h \) and \(q, z \in P_h \).

We prove the following inf-sup inequality for \(A \) with the aid of the discrete B-B inequality (52).

Lemma 16 There exists \(\alpha \) depending on \(\mu \) and \(\beta \) such that
\[
\inf_{(v,q) \in V_h \times P_h} \sup_{(w,z) \in V_h \times P_h} \frac{A(v, q; w, z)}{\| (w, z) \|_{i,h} \| (v, q) \|_{i,h}} \geq \alpha, \tag{55}
\]
where \(\| (w, z) \|_{i,h} := \| \nabla w \|_{i,h} + \| z \|_i + \lambda^{-1/2} \| z \|_i \) and \(\beta \) has appeared in (52).

Proof Noting that \(a_{i,h} \) is elliptic over \(V_h \) (46) and the discrete B-B inequality for \(b_{i,h} \) holds (52), we obtain (55) by [14, Theorem 2].

We are ready to prove error estimates.

Theorem 3 There exists \(C \) independent of \(\iota, \lambda \) and \(h \) such that
\[
\| (u - u_h, p - p_h) \|_{i,h} \leq C(h^{r+1} + \iota h^{r-1}) (\| u \|_{H^{r+1}} + \| p \|_{H^r}), \tag{56}
\]
and
\[
\| (u - u_h, p - p_h) \|_{i,h} \leq C h^{1/2} \| f \|_{L^2}. \tag{57}
\]

Proof Let \(v = u_h - u_I \) and \(q = p_h - p_I \) with \(u_I \in V_h \) and \(p_I \in P_h \), for any \(w \in V_h \) and \(z \in P_h \),
\[
A(v, q; w, z) = A(u_h, p_h; w, z) - A(u, p; w, z) + A(u - u_I, p - p_I; w, z)
= (f, w) - A(u, p; w, z) + A(u - u_I, p - p_I; w, z)
= A(u - u_I, p - p_I; w, z) - \iota^2 \sum_{e \in E_h} \int_e (\partial_n \sigma n) \cdot \| \partial_n w \| \, d\sigma(x).
\]
The boundedness of \mathcal{A} yields
\[|\mathcal{A}(u - u_I, p - p_I; w, z)| \leq \max(1, 2\mu)(u - u_I, p - p_I)\|w\|_i,h\|z\|_i,h. \]

Let $u_I = \Pi_h u$ be the interpolation of u and p_I be the $r - 1$ order Lagrangian interpolation of p, respectively. The standard interpolation error estimates in (37) gives
\[\|(u - u_I, p - p_I)\|_{i,h} \leq C(h^{r'} + \lambda h^{r-1})(\|u\|_{H^{r+1}} + \|p\|_{H^r}). \]

Note that
\[\int_e \|\partial_n w\| q d\sigma(x) = 0 \quad \text{for all } q \in P_{r-2}(e). \]

A standard estimate for the consistency error functional with trace inequality (44) gives
\[\iota^2 \left| \sum_{e \in \mathcal{E}_h} \left(\int_e (\partial_n \sigma n) \cdot [\partial_n w] d\sigma(x) \right) \right| \leq C_1 h^{r-1}(\|u\|_{H^{r+1}} + \|p\|_{H^r}) \|\nabla^2 w\|_{L^2} \]
\[\leq C h^{r-1}(\|u\|_{H^{r+1}} + \|p\|_{H^r}) \|\nabla w\|_{i,h}. \]

A combination of the above three inequalities, the discrete inf-sup condition (55) and the triangle inequalities gives (56).

Next, let $u_I = I_h u$ and let p_I be the Clément interpolation [22] of p, respectively. The interpolation error (50) and the error estimates for the Clément interpolation give
\[\|(u - u_I, p - p_I)\|_{i,h} \leq Ch^{1/2}(\|u\|_{H^{3/2}} + \|p\|_{H^{1/2}} + \iota(\|u\|_{H^{5/2}} + \|p\|_{H^{3/2}})) \]
\[\leq Ch^{1/2} \|f\|_{L^2}, \]

where we have used (30) and (31) in the last step.

Using the trace inequality (44), we bound the consistency error functional as
\[\iota^2 \left| \sum_{e \in \mathcal{E}_h} \left(\int_e (\partial_n \sigma n) \cdot [\partial_n w] d\sigma(x) \right) \right| \leq C_1 h^{1/2}(\|u\|_{H^2} + \|p\|_{H^1})^{1/2} \]
\[\times (\|u\|_{H^{3/2}} + \|p\|_{H^{2}})^{1/2} \|\nabla^2 w\|_{L^2} \]
\[\leq Ch^{1/2} \|f\|_{L^2} \|\nabla w\|_{i,h}, \]

where we have used (29) in the last step.

Combining these inequalities, the discrete inf-sup condition (55) and the triangle inequalities gives (57).

\[\text{Corollary 2} \quad \text{There exists } C \text{ independent of } \iota, \lambda \text{ and } h \text{ such that} \]
\[\|(u_0 - u_h, p_0 - p_h)\|_{i,h} \leq C(\iota^{1/2} + h^{1/2}) \|f\|_{L^2}, \quad (58) \]

where u_0 is the solution of (9), and $p_0 = \lambda \text{ div } u_0$.

\[\text{Proof} \quad \text{A combination of Theorem 1, Theorem 3 and the triangle inequality gives (58).} \]
5 Numerical Examples

In this part, we report the numerical performance for the proposed element of the lowest-order, i.e., \(r = 2 \). We test the accuracy and robustness of the element pair for the nearly incompressible materials. All examples are carried out on the nonuniform mesh. We are interested in the case when the Poisson’s ratio \(\nu \) is close to 0.5 and we report the relative errors \(\| \nabla (u - u_h) \|_{\ell,h}/\| \nabla u \|_{\ell} \) and the rates of convergence.

We let \(\Omega = (0, 1)^2 \), and set Young’s modulus \(E = 1 \). The Lamé constants are determined by

\[
\lambda = \frac{E \nu}{(1 + \nu)(1 - 2\nu)}, \quad \mu = \frac{E}{2(1 + \nu)}.
\]

We set \(\nu = 0.3 \) for the ordinary cases, hence \(\lambda = 0.5769 \), and \(\mu = 0.3846 \), and we set \(\nu = 0.4999 \) for the nearly incompressible materials, hence \(\lambda = 1.6664e3 \), and \(\mu = 0.3334 \).

5.1 The First Example

We test the performance of the element pair by solving a completely incompressible problem, which means \(\text{div } u = 0 \). Let \(u = (u_1, u_2) \) with

\[
\begin{align*}
 u_1 &= -\sin^3(\pi x) \sin(2\pi y) \sin(\pi y), \\
 u_2 &= \sin(2\pi x) \sin(\pi x) \sin^3(\pi y).
\end{align*}
\]

Therefore \(\text{div } u = 0 \), and \(f \) is independent of \(\lambda \).

In view of Table 2, the optimal rates of convergence are observed with the completely incompressible media, which is consistent with the error bound (56).

5.2 The Second Example

This example is motivated by [65], which admits a singular solution. The exact solution \(u = (u_1, u_2) \) expressed in the polar coordinates as

\[
\begin{align*}
 u_1 &= u_\rho(\rho, \theta) \cos \theta - u_\theta(\rho, \theta) \sin \theta, \\
 u_2 &= u_\rho(\rho, \theta) \sin \theta + u_\theta(\rho, \theta) \cos \theta,
\end{align*}
\]

\(h \)	1/8	1/16	1/32	1/64
\(\nu = 0.3, \lambda = 0.5769, \mu = 0.3846 \)	2.592e-01	1.333e-01	6.519e-02	3.246e-02
rate	0.96	1.03	1.01	
\(\nu = 0.4999, \lambda = 1.6664e3, \mu = 0.3334 \)	4.252e-02	1.159e-02	2.784e-03	6.918e-04
rate	1.88	2.06	2.01	
where
\[
\begin{align*}
 u_\rho &= \frac{1}{2\mu} \rho^\alpha \left(- (\alpha + 1) \cos((\alpha + 1)\theta) + (C_2 - (\alpha + 1))C_1 \cos((\alpha - 1)\theta) \right), \\
 u_\theta &= \frac{1}{2\mu} \rho^\alpha \left((\alpha + 1) \sin((\alpha + 1)\theta) + (C_2 + \alpha - 1)C_1 \sin((\alpha - 1)\theta) \right),
\end{align*}
\]
and \(\alpha = 1.5, \omega = \frac{3\pi}{4} \).

It may be verified that \(u \in [H^{5/2-\varepsilon}](\Omega)^2 \) for a small number \(\varepsilon > 0 \). A direct calculation gives that \(f \equiv 0 \), while it is nearly incompressible because
\[
\text{div } u = -\frac{3(1 + \sqrt{2})}{\lambda + \mu} \rho^{1/2} \cos(\theta/2).
\]

It follows from Table 3 that the rates of convergence are sub-optimal. It is reasonable because the solution \(u \) is singular, which is similar to the results in [65]. The element pair is robust for the nearly incompressible materials.

5.3 The Third Example

In the last example, we test a problem with strong boundary layer effects. Such effects have been frequently observed in the strain elasticity model [26, 43–45]. It is shown that the numerical solution converges to the solution of (9) when \(\iota \ll h \).

When \(\iota \to 0 \), the boundary value problem (1) reduces to (9). Let \(u_0 = (u_0^1, u_0^2) \) with
\[
\begin{align*}
 u_0^1 &= -\sin^2(\pi x) \sin(2\pi y), \\
 u_0^2 &= \sin(2\pi x) \sin^2(\pi y)
\end{align*}
\]
be the solution of problem (9). The source term \(f \) is computed from (9). A direct calculation gives that \(\text{div } u_0 = 0 \), and \(f \) is independent of \(\lambda \). The exact solution \(u \) for (1) is unknown, while it has strong boundary layer effects. In this case, we take \(\iota \ll h \), and report the relative error \(\| \nabla (u_0 - u_h) \|_{\iota,h} / \| \nabla u_0 \|_{\iota} \).

It follows from Table 4 that the rate of convergence for the element pair changes to 1/2 because of the boundary layer effects, which is consistent with the theoretical result.

Table 3 Relative errors and convergence rates for the 2nd example

\(\iota/h \)	1/8	1/16	1/32	1/64
\(\nu = 0.3, \lambda = 0.5769, \mu = 0.3846 \)				
1e+00	1.062e-01	7.554e-02	5.355e-02	3.792e-02
rate	0.49	0.50	0.50	
1e-06	2.809e-03	1.001e-03	3.549e-04	1.257e-04
rate	1.49	1.50	1.50	
\(\nu = 0.4999, \lambda = 1.6664e3, \mu = 0.3334 \)				
1e+00	1.149e-01	8.200e-02	5.824e-02	4.135e-02
rate	0.49	0.49	0.49	
1e-06	4.399e-03	1.567e-03	5.558e-04	1.968e-04
rate	1.49	1.50	1.50	
Table 4 Relative errors and convergence rates for the 3rd example

ι/h	$1/8$	$1/16$	$1/32$	$1/64$
$v = 0.3, \lambda = 0.5769, \mu = 0.3846$				
1e-04	1.311e-01	8.966e-02	6.299e-02	4.476e-02
rate	0.55	0.51	0.49	
1e-06	1.311e-01	8.960e-02	6.283e-02	4.432e-02
rate	0.55	0.51	0.50	
$v = 0.4999, \lambda = 1.6664e3, \mu = 0.3334$				
1e-04	1.312e-01	8.968e-02	6.300e-02	4.476e-02
rate	0.55	0.51	0.49	
1e-06	1.312e-01	8.963e-02	6.284e-02	4.432e-02
rate	0.55	0.51	0.50	

element is still robust when the solution has strong boundary layer effects in the nearly incompressible limit.

Funding The work of Liao and Ming were supported by National Natural Science Foundation of China through Grant No. 11971467. The work of Xu was supported by National Natural Science Foundation of China through Grant No. 11772067.

Data availability Enquiries about data availability should be directed to the authors.

Declarations

Conflicts of interest The authors have not disclosed any competing interests.

References

1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, 2nd edn. Academic Press (2003)
2. Agmon, S., Douglis, L., Nirenberg, A.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II. Comm. Pure Appl. Math. 17, 35–92 (1964)
3. Aifantis, E.C.: Strain gradient interpretation of size effects. Int. J. Fract. 95, 299–314 (1999)
4. Altan, S.B., Aifantis, E.C.: On the structure of the mode III crack-tip in gradient elasticity. Scripta. Metal. Mater. 26, 319–324 (1992)
5. Amanatidou, E., Aravas, N.: Mixed finite element formulations of strain-gradient elasticity problems. Comput. Methods Appl. Mech. Engrg. 191, 1723–1751 (2002)
6. Arnold, D.N., Brezzi, F., Fortin, M.: A stable finite element for the stokes equations. Calcolo 21, 337–344 (1984)
7. Askes, H., Aifantis, E.C.: Numerical modeling of size effects with gradient elasticity-Formulation, meshless discretization and examples. Int. J. Fract. 117, 347–358 (2002)
8. Auricchio, F., Beirão da Veiga, L., Lovadina, C., Reali, A., Taylor, R.L., Wriggers, P.: Approximation of incompressible large deformation elastic problems: some unresolved issues. Comput. Mech. 52, 1153–1167 (2013)
9. Babuška, I., Suri, M.: Locking effects in the finite element approximation of elasticity problems. Numer. Math. 62, 439–463 (1992)
10. Bacuta, C., Bramble, J.H.: Regularity estimates for solutions of the equations of linear elasticity in convex plane polygonal domains. Z. Angew. Math. Phys. 54, 874–878 (2003)
11. Bernardi, C., Geneviève, R.: Analysis of some finite elements for the stokes problems. Math. Comp. 44(169), 71–79 (1985)
12. Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications, 2nd edn. Springer-Verlag, Berlin Heidelberg (2013)
13. Bogner, F.A., Fox, R.L., Schmit, L.A.: The generation of interelement compatible stiffness and mass matrices by the use of interpolation formulas. In: Proceedings of the Conferences on the Matrix Methods in Structural Mechanics. Wright Patterson A.F.B. Ohio (1965)
14. Braess, D.: Stability of saddle-point problems with penalty. RAIRO Anal. Numér. 30, 731–742 (1996)
15. Braess, D., Ming, P.B.: A finite element method for nearly incompressible elasticity problems. Math. Comp. 74, 25–52 (2005)
16. Brenner, S.C., Gudi, T., Neilan, M., Sung, L.Y.: C^0 penalty methods for the fully nonlinear Monge-Ampère equation. Math. Comp. 80, 1979–1995 (2011)
17. Brenner, S.C., Neilan, M.: A C^0 interior penalty method for a fourth order elliptic singular perturbation problem. SIAM J. Numer. Anal. 49, 869–892 (2011)
18. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer Science + Business Media LLC (2008)
19. Brenner, S.C., Sung, L.Y.: Linear finite element methods for planar linear elasticity. Math. Comp. 59, 321–338 (1992)
20. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)
21. Ciarlet, P.G., Raviart, P.A.: General Lagrange and Hermite interpolation in \mathbb{R}^n with applications to finite element methods. Arch. Rational Mech. Anal. 46, 177–199 (1972)
22. Clément, P.: Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9, 77–84 (1975)
23. Costabel, M., McIntosh, A.: On Bogovskiĭ and regularized Poincaré integral operators for de Rham complexes on Lipschitz domains. Math. Z. 265(2), 297–320 (2010)
24. Danchin, R., Mucha, P.B.: Divergence. Discret. Contin. Dyn. Syst. Ser. S 6, 1163–1172 (2013)
25. Dunkl, C.F., Xu, Y.: Orthogonal Polynomials of Several Variables, 2nd edn. Cambridge University Press, Encyclopedia of Mathematics and its Applications (2014)
26. Engel, G., Garikipati, K., Hughes, T.J.R., Larsson, M.G., Mazzei, L., Taylor, R.L.: Continuous/discontinuous finite element approximations of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity. Comput. Methods Appl. Mech. Engrg. 191, 3669–3750 (2002)
27. Feng, X.B., Neilan, M.: Convergence of a fourth-order singular perturbation of the n-dimensional radially symmetric Monge-Ampère equation. Appl. Anal. 93, 1626–1646 (2014)
28. Fischler, P.: C^1 Continuous Methods in Computational Gradient Elasticity (2011). Der Technischen Fakultät der Universität Erlangen-Nürnberg
29. Fischler, P., Klassen, M., Mergerheim, J., Steinmann, P., Müller, R.: Isogeometric analysis of 2D gradient elasticity. Comput. Mech. 47, 325–334 (2011)
30. Fischler, P., Mergerheim, J., Steinmann, P.: On the C^1 continuous discretization of non-linear gradient elasticity: a comparison of NEM and FEM based on Bernstein-Bézier patches. Int. J. Numer. Meth. Eng. 82, 1282–1307 (2010)
31. Fleck, N.A., Hutchinson, J.W.: Steady-state crack growth and work of fracture for solids characterized by strain gradient plasticity. J. Mech. Phys. Solids. 45(8), 1253–73 (1997)
32. Fortin, M.: An analysis of the convergence of mixed finite element methods. RAIRO Anal. Numér. 11, 341–354 (1977)
33. Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems. Springer Science+Business Media, LLC (2011)
34. Guzmán, J., Leykekhman, D., Neilan, M.: A family of non-conforming elements and the analysis of Nitsche’s method for a singularly perturbed fourth order problem. Calcolo 49, 95–125 (2012)
35. Herrmann, L.R.: Elasticity equations for incompressible and nearly incompressible materials by a variational theorem. AIAA J. 3, 1896–1900 (1965)
36. Hlaváček, I., Hlaváček, M.: On the existence and uniqueness of solution and some variational principles in linear theories of elasticity with couple-stresses. II: Mindlin’s elasticity with microstructure and the first strain-gradient theory. Appl. Mat. 14, 411–427 (1969)
37. John, F.: The transition from thin plate to membrane in the case of a plate under uniform tension. In: Continuum mechanics and related problems of analysis, Izdat. “Nauka”, Moscow, pp. 193–201 (1972)
38. Khakalo, S., Niiranen, J.: Anisotropic strain gradient thermoelasticity for cellular structures: plate models, homogenization and isogeometric analysis. J. Mech. Phys. Solids 134, 103728 (2020)
39. Koiter, W.T.: Couple-stresses in the theory of elasticity I. Nederl. Akad. Wetensch. Proc. Ser. B 67, 17–29 (1964)
40. Korn, A.: Solution générale du problème d’équilibre dans la théorie de l’élasticité dans le cas où les efforts sont donnés à la surface. Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys. (2) 10, 165–269 (1908)
41. Korn, A.: Über einige ungleichungen, welche in der Theorie der elastischen und elektrischen Schwingungen eine Rolle spielen. Bull. Intern. Cracov. Akad. Umiejetnosci (Classe Sci. Math. Nat.) pp. 706–724 (1909)

42. Laurencot, P., Walker, C.: Some singular equations modeling MEMS. Bull. Amer. Math. Soc. 54, 437–479 (2017)

43. Li, H.L., Ming, P.B., Shi, Z.C.: Two robust nonconforming H^2—elements for linear strain gradient elasticity. Numer. Math. 137, 691–711 (2017)

44. Li, H.L., Ming, P.B., Wang, H.Y.: H^2—Korn’s inequality and the nonconforming elements for the strain gradient elastic model. J. Sci. Comput. 88, 78–100 (2021). https://doi.org/10.1007/s10915-021-01597-7

45. Liao, Y.L., Ming, P.B.: A family of nonconforming rectangular elements for strain gradient elasticity. Adv. Appl. Math. Mech. 11(6), 1263–1286 (2019)

46. Mardal, K.A., Schöberl, J., Winther, R.: A uniformly stable Fortin operator for the Taylor-Hood element. Numer. Math. 123, 537–551 (2013)

47. Mardal, K.A., Tai, X.C., Winther, R.: A robust finite element method for Darcy-Stokes flow. SIAM J. Numer. Anal. 40, 1605–1631 (2002)

48. Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Rational Mech. Anal. 16, 51–78 (1964)

49. Niiranen, J., Khakalo, S., Balobanov, V., Niemi, A.H.: Variational formulation and isogeometric analysis for fourth-order boundary value problems of gradient-elastic bar and plane strain/stress problems. Comput. Methods Appl. Mech. Eng. 308, 182–211 (2016)

50. Nilssen, T.K., Tai, X.C., Winther, R.: A robust nonconforming H^2-element. Math. Comp. 70, 489–505 (2001)

51. Papanicolopulos, S.A., Zervos, A., Vardoulakis, I.: A three-dimensional C¹ finite element for gradient elasticity. Int. J. Numer. Meth. Eng. 135, 1396–1415 (2009)

52. Phupeng, V., Baiz, P.M.: Mixed finite element formulations for strain-gradient elasticity problems using the FEniCS environment. Finite Elem. Anal. Des. 96, 23–40 (2015)

53. Rudraraju, S., Van der Ven, A., Garikipati, K.: Three-dimensional isogeometric solutions to general boundary value problems of Toupin’s gradient elasticity theory at finite strains. Comput. Methods Appl. Mech. Eng. 278, 705–728 (2014)

54. Schuss, Z.: Singular perturbations and the transition from thin plate to membrane. Proc. Amer. Math. Soc. 58, 139–147 (1976)

55. Semper, B.: Conforming finite element approximations for a fourth-order singular perturbation problem. SIAM J. Numer. Anal. 29, 1043–1058 (1992)

56. Semper, B.: Locking in finite-element approximations to long thin extensible beams. IMA J. Numer. Anal. 14, 97–109 (1994)

57. Shu, J.Y., King, W.E., Fleck, N.A.: Finite elements for materials with strain gradient effects. Intern. J. Numer. Meth. Eng. 44, 373–391 (1999)

58. Simo, J., Taylor, R.L., Pister, K.: Variational and projection methods for the volume constraint in finite deformation elasto-plasticity. Comput. Methods Appl. Mech. Eng. 51, 177–208 (1985)

59. Szegö, G.: Orthogonal Polynomials, 4th edn. AMS, Providence, Rhode Island.; AMS Coll. Publ. Vol, XXIII (1975)

60. Taylor, C., Hood, P.: A numerical solution of the Navier-Stokes equations using the finite element technique. Comput. Fluids 1, 73–100 (1973)

61. Tian, S.D.: New nonconforming finite element methods for fourth order elliptic problems . Ph.D. Thesis, Peking University (2021)

62. Vogelius, M.: An analysis of the p-version of the finite element method for nearly incompressible materials uniformly valid, optimal error estimates. Numer. Math. 41, 39–53 (1983)

63. Wang, M., Zu, P.H., Zhang, S.: High accuracy nonconforming finite elements for fourth order problems. Sci. China Math. 55(10), 2183–2192 (2012)

64. Wei, Y.G.: A new finite element method for strain gradient theories and applications to fracture analyses. Eur. J. Mech. A Solids 25, 897–913 (2006)

65. Wihler, T.P.: Locking-free adaptive discontinuous Galerkin FEM for linear elasticity problems. Math. Comp. 75, 1087–1102 (2006)

66. Zervos, A., Papanicolopulos, S.A., Vardoulakis, I.: Two finite element discretizations for gradient elasticity. J. Eng. Mech. Asce. 135, 203–213 (2009)

67. Zybella, L., Mühlich, U., Kuna, M., Zhang, Z.L.: A three-dimensional finite element for gradient elasticity based on mixed-type formulation. Comput. Mater. Sci. 52, 268–273 (2012)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
