Achieving a Strongly Temperature-Dependent Casimir Effect

The Harvard community has made this article openly available. **Please share** how this access benefits you. Your story matters

Citation	Rodriguez, Alejandro W., David Woolf, Alexander P. McCauley, Federico Capasso, John D. Joannopoulos, and Steven G. Johnson. 2010. “Achieving a Strongly Temperature-Dependent Casimir Effect.” Physical Review Letters 105 (6). https://doi.org/10.1103/physrevlett.105.060401.
Citable link	http://nrs.harvard.edu/urn-3:HUL.InstRepos:41372675
Terms of Use	This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:41372675 terms-of-use#OAP

Achieving a Strongly Temperature-Dependent Casimir Effect

Alejandro W. Rodriguez, David Woolf, Alexander P. McCauley, Federico Capasso, John D. Joannopoulos, and Steven G. Johnson

1Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
2Department of Applied Physics, Harvard University, Cambridge, MA 02139
3Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139

We propose a method of achieving large temperature T sensitivity in the Casimir force that involves measuring the stable separation between dielectric objects immersed in a fluid. We study the Casimir force between slabs and spheres using realistic material models, and find large >2nm/K variations in their stable separations (hundreds of nanometers) near room temperature. In addition, we analyze the effects of Brownian motion on suspended objects, and show that the average separation is also sensitive to changes in T. Finally, this approach also leads to rich qualitative phenomena, such as irreversible transitions, from suspension to stiction, as T is varied.

PACS numbers:

Casimir forces between macroscopic objects arise from thermodynamic electromagnetic fluctuations, which persist even in the limit of zero temperature due to quantum-mechanical effects (the Bose–Einstein distribution of the photon fluctuations) [1]. In most vacuum-separated geometries, such as parallel metal plates, the force is attractive and decaying as a function of plate–plate separation [1], becoming readily observable at micron and submicron separations. For a nonzero temperature T, the force is predicted to change as a consequence of the changing photon thermal distribution, but this change is typically negligible near room temperature and submicron separations [2, 3] and is only a few percent for ~ 100 K changes in T at 1–2 μm separations where Casimir forces are barely observable [2, 4]. Therefore, despite theoretical interest in these T effects [2, 5], it has proven difficult for experiments to unambiguously observe T corrections to the Casimir force [4]. Other attempts to measure T Casimir corrections have focused on nonequilibrium situations that differ conceptually from forces due purely to equilibrium fluctuations [6]. A clear experimental verification of a T Casimir correction would be important in order to further validate the foundation of Lifshitz theory for Casimir effects [2, 8].

In this letter, we propose a method for obtaining strongly temperature-dependent Casimir effects by exploiting geometries involving fluid-separated dielectric objects (with separations in the hundreds of nanometers). In fluid-separated geometries, the Casimir force can be repulsive [1, 7], and can even lead to stable suspensions of objects due to force-sign transitions from material dispersion [8, 9] or gravity [10, 11]. We show that, by a proper choice of materials/geometries, this stable separation d can depend dramatically on T (2 nm/K is easily obtainable), and there can even be transitions where d jumps discontinuously at some T. Essentially, a stable separation arises from a delicate cancellation of attractive and repulsive contributions to the force from fluctuations at different frequencies, and this cancellation is easily altered or upset by the T corrections. This appears to be the first prediction of a strong T-dependent Casimir phenomenon at submicron separations where Casimir effects are most easily observed. We present the phenomenon in simple parallel-plate geometries, but we believe that the basic idea should extend to many other geometries and materials combinations that have yet to be explored. Finally, we also point out that the same systems that are strongly T-dependent can also be very sensitive to the precise details of the material dispersion at low frequencies, a property that we plan to exploit in the future.

The Casimir force between two bodies is a combination of fluctuations at all frequencies ω, and at $T = 0$ can be expressed as an integral $F(0) = \int_0^\infty f(\xi) d\xi$ over imaginary frequencies $\omega = i \xi$ [1]. The contributions $f(\xi)$ from each imaginary frequency are a complicated function of the geometry and materials, but they can be computed in a variety of ways, such as mean stress tensors and the fluctuation–dissipation theorem [7] (valid in fluids for subtle reasons [11, 12]) or via the Casimir energy [12]. At a finite T, this integral is replaced by a sum over “Matsubara frequencies” $2\pi nkT/h = n\xi_T$ for integers n:

$$F(T) = \frac{2\pi kT}{h} \left[\frac{f(0^+)}{2} + \sum_{n=1}^{\infty} f\left(\frac{2\pi kT}{h} n\right) \right].$$ (1)

Physically, this arises as a consequence of the coth($\hbar\omega/2kT$) Bose–Einstein distribution of fluctuations at real frequencies—when one performs a contour integration in the upper-half complex-ω plane, the residues of the coth poles at $\hbar\omega/2kT = n\pi$ lead to the summation [4]. Mathematically, Eq. (1) corresponds exactly (including the $1/2$ factor for the zero-frequency contribution) to a trapezoidal-rule approximation to the $F(0)$ integral, which allows one to use the well-known convergence properties of the trapezoidal rule [13] to understand the magnitude of the T correction. In particular, the difference between the trapezoidal rule and the exact integral scales as $O(T^2)$ for smooth $f(\xi)$ with nonzero
derivative $f'(0)$ \cite{2} (typical for Casimir forces between metals \cite{3}). More specifically, $f(\xi)$ is exponentially decaying with a decay-length $2\pi c/a$ for some characteristic lengthscale a (e.g. the separation or size of the participating objects), while the discrete sum of Eq. 1 corresponds to a lengthscale given by the Matsubara wavelength $\Lambda_T = 2\pi c/\xi_T = \hbar c/kT$, in which case one would expect the T correction to scale as $O(\Lambda_T^2/a^2)$. Unfortunately, at $T = 300$ K, $\Lambda_T \approx 7.6 \mu m$, which is why the T corrections are typically so small unless $a > 1 \mu m$ \cite{2}. We cannot change the smoothness of $f(\omega)$ since it arises from the analyticity of the classical electromagnetic Green’s function in the upper-half complex-ω plane \cite{11}, so the only way to obtain a larger T correction is to introduce a longer lengthscale Λ into the problem that dominates over other lengthscales such as the separation a. One way of achieving this is to make the $f(\xi)$ integrand oscillatory with an oscillation period $\Delta \xi \sim 2\pi c/\Lambda$ that is much shorter than the decay length $\sim 2\pi c/a$. Intuitively, discretizing an oscillatory integral induces much larger discretization effects than for a non-oscillatory integral, and this intuition can be formalized by a Fourier analysis of the convergence rate of the trapezoidal rule \cite{13}. The question then becomes: how does one obtain an oscillatory Casimir integral?

One way to obtain oscillatory frequency contributions to the Casimir force is to employ a system where there are combinations of attractive and repulsive contributions. In particular, it is well known that the sign of $f(\xi)$ between dielectric objects embedded in a fluid depends on the ordering of their dielectric functions at ξ \cite{7, 14}:

$$\text{sgn}(f(\xi)) = \begin{cases} -1, & \varepsilon_1(i\xi) < \varepsilon_{\text{fluid}}(i\xi) < \varepsilon_2(i\xi) \\ 1, & \text{otherwise}, \end{cases}$$ \hspace{1cm} \text{(2)}$$

where $+/-$ denotes an attractive/repulsive force. Since the Casimir force depends on the dielectric response of the participating objects over a wide range of ξ, from $\xi = 0$ all the way to $\xi \sim 2\pi c/a$ (where a is a characteristic lengthscale), the sign and magnitude of the total force at any given separation can be changed by a proper choice of material dispersion, leading to the possibility of obtaining Casimir equilibria between objects at multiple separations. This idea was recently exploited to demonstrate the possibility of obtaining stable nontouching configurations of dielectric objects amenable to experiments \cite{9}. In this paper, for the purpose of achieving a strong T-dependence at short (submicron) separations, we search for materials or geometries with dielectric crossings occurring at sufficiently small $\xi = 2\pi c/\Lambda \sim \xi_T$, close to the room-temperature Matsubara-frequency scale ξ_T.

To begin with, we compute the Casimir force between semi-infinite slabs, computed via a generalization of the Lifshitz formula \cite{19} that can handle multi-layer dielectric objects, with relative permittivities ε plotted in Fig. 1 as a function of imaginary frequency $i\xi$ (bottom axis) or “Matsubara” temperature $T = \hbar \xi/2\pi k_B$. Doped silicon corresponds (bottom to top) to doping density $\rho_d = \{1, 3, 5, 10, 10^3\} \times 10^{12}$, modeled via an empirical Drude model \cite{15}, as is gold \cite{16}. Water, polystyrene, ethanol, teflon, and lithium niobate are all modeled via standard Lorentz-oscillator models \cite{17}.

![Matsubara temperature T (K)](image)

FIG. 1: Relative permittivity $\varepsilon(i\xi)$ of various materials as a function of imaginary frequency ξ (in units of $c/\mu m$) or “Matsubara” temperature $T = \hbar \xi/2\pi k_B$. Doped silicon corresponds (bottom to top) to doping density $\rho_d = \{1, 3, 5, 10, 10^3\} \times 10^{12}$, modeled via an empirical Drude model \cite{15}, as is gold \cite{16}. Water, polystyrene, ethanol, teflon, and lithium niobate are all modeled via standard Lorentz-oscillator models \cite{17}.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|}
\hline
Material & ε_1 & ε_2 & κ & λ \\
\hline
Water & 78.3 & 80.3 & 4.4 & 44 \\
Polymer & 2.2 & 2.3 & 1.2 & 12 \\
Gold & 13.4 & 13.9 & 2.2 & 22 \\
\hline
\end{tabular}
\caption{Properties of selected materials.}
\end{table}
(T < Tc) to stiction (T > Tc). Figure 2 also shows a small sample of the many other material possibilities. The shaded regions in Fig. 2 correspond to T above the boiling point (320 K) or below the freezing point (159 K) of ethanol at 1 atm.

The inclusion of gravity/buoyancy introduces another force into the system and leads to the possibility of additional phenomena, such as additional stable equilibria due to gravity/Casimir competition. For example, Fig. 3 shows the equilibrium separations dc of a polystyrene (PS) slab of thickness h in ethanol above a semi-infinite doped-silicon slab (ρd = 1.1 × 1019 g/cm3, including gravity) at 1 atm. As in Fig. 2, dc varies dramatically with T: dh/dc ≈ 1.2 nm/K near T = 300 K. Gravity becomes increasingly important as h grows: compared to h = 0 (leftmost line), it creates an additional stable equilibrium (solid lines) at large dc (hundreds of nm) where the downward gravity dominates. With gravity, there are three stable/unstable bifurcations instead of two, leading to three critical temperatures where qualitative transitions occur: Tg refers to the temperature of the topmost bifurcation, created by gravity, and the other two temperatures are labeled T1 (≈ 100 K) and T2 (≈ 180 K). If T < Tg (h < 40 nm), there exists an irreversible transition from suspension to stiction as T is decreased below Tg. If T1 < Tg < T2, there are two irreversible transitions from suspension to stiction (smaller dc) to stiction as T is lowered from T > Tg to T < T1 starting in the large-dc equilibrium. Finally, when Tg → T2 (h ≈ 300 nm) the two stable equilibria merge and only the T1 bifurcation remains. Perhaps most interestingly, when this merge occurs the slope dh/dc can be made arbitrarily large but finite, corresponding to an arbitrarily large (but reversible) temperature dependence. For example, ∆dc ≈ 130 nm for a small change ∆T ≈ 5 K around T2, for h = 300 nm.

In a real experiment, the situation is further complicated by Brownian motion, which will cause the separation to fluctuate around stable equilibria and will also lead to random transitions between equilibria. In the example of Fig. 3, the attractive interaction at small separations means that there is a nonzero probability that the slabs will fluctuate past the unstable-equilibrium energy barrier ∆U into stiction, but the rate of such a transition decreases proportional to exp(−ΔU/kBT) — here, assuming a 50 × 50 μm2 PS slab, ∆U/kBT ≈ 104, so the stiction rate is negligible. The energy landscape Ud(d)/kBT is plotted for several cases in the inset to Fig. 3; the general prediction of experimental observations involves a viscosity-damped Langevin process that is beyond the scope of this paper to model, but by choosing T one can make the potential barrier between the two stable equilibria arbitrarily small and therefore should be able to reach an experimental regime in which “hopping” is observable.

Alternatively, we consider a simpler example system with only a single stable equilibrium and a single degree
of freedom: a hollow PS sphere (experimentally available at similar scales [21]), filled with ethanol, of inner/outer radius $r/R = 3.2/5 \mu m$ suspended in ethanol above a doped-silicon ($\rho_d = 1.1 \times 10^{15}$) substrate, shown on the inset of Fig. 4 (To compute the Casimir energy in this system, we employ a simple PFA approximation that is sufficiently accurate for our purpose. Here, for $d \approx 500 \text{ nm}$, the exact energy is $\approx 85\%$ of the PFA energy.) For this example, in Fig. 4 we plot the mean surface–surface separation $\langle d \rangle \sim \int dz \exp[U_T(z)/k_B T]$ (determined only by the energy landscape and the Boltzmann distribution [20]), corresponding to an experiment averaging d over a long time, along with a confidence interval (shaded region) indicating the range of d where the particle is found with 95% probability. The sphere experiences an attractive interaction at small separations, but again we find that the unstable-equilibrium energy barrier is sufficiently large ($\Delta U/k_B T \approx 50$) to prevent stiction for $T \approx 300 \text{ K}$. As T varies, two factors affect $\langle d \rangle$: the T-dependence of the Casimir energy $U_T(z)$, and the explicit $k_B T$ in the Boltzmann factor. To distinguish these two effects, we also plot (thin black line) $\langle d \rangle_{140} \sim \int dz \exp[U_{140}(z)/k_B T]$ where the $T = 140 \text{ K}$ (bifurcation point) Casimir energy is used at all temperatures. Comparing $\langle d \rangle$ with $\langle d \rangle_{140}$, it is evident that most of the positive-slope T dependence of $\langle d \rangle$ ($\approx 0.8 \text{ nm/K around } 300 \text{ K}$) is due to U_T, and therefore $\langle d \rangle$ offers a direct measure of the Casimir-energy T dependence.

Experimentally, measuring hundreds of nm changes in separation over tens or hundreds of Kelvins appears very feasible, perhaps even easier than traditional measurements of Casimir forces. (In a fluid, static-charge effects can be neutralized by dissolving electrolytes in the fluid [14], which also have the added benefit of significantly reducing/increasing the freezing/boiling point of the fluid [18].) Such temperature-dependent suspensions may even have practical applications in microfluidics. We believe that the examples shown in this letter only scratch the surface of the possible temperature/disruption effects that can be obtained in Casimir-suspension systems. Not only are there many other possible materials and geometries to explore in the fluid context (along with more detailed calculation of the Brownian dynamics), and by no means are the effects shown here the maximum possible, but similar principles should apply in other systems exhibiting competing attractive/repulsive Casimir-force contributions.

This work was supported by the Army Research Office through the ISN under Contract No. W911NF-07-D-0004, by US DOE Grant No. DE-FG02-97ER25308, and by the Defense Advanced Research Projects Agency (DARPA) under contract N66001-09-1-2070-DOD.

[1] E. M. Lifshitz and L. P. Pitaevskii, *Statistical Physics: Part 2* (Pergamon, Oxford, 1980).
[2] K. A. Milton, *Journal of Physics A: Mathematical and General* **37**, R209 (2004).
[3] J. S. Hoye, I. Brevik, J. B. Aarsæth, and K. A. Milton, *J. Phys. A: Math. Gen.* **39**, 6031 (2006).
[4] S. K. Lamoreaux, *Phys. Rev. Lett.* **78**, 5 (1997).
[5] V. S. Bentsen, R. Herikstad, S. Skruiudalen, I. Brevik, and J. S. Hoye, *J. Phys. A: Math. Gen.* **38**, 6031 (2005). V. A. Yam-pol’skii, S. Savel’ev, Z. A. Mayesels, S. S. Apostolov, and F. Nori, *Phys. Rev. Lett.* **101**, 096803 (2008). A. Weber and H. Gies, arXiv:1003.0430 (2010).
[6] J. M. Obrecht, R. J. Wild, M. Antezza, L. P. Pitaevskii, S. Stringari, and E. A. Cornell, *Phys. Rev. Lett.* **98**, 063201 (2007).
[7] I. E. Dzyaloshinskii, E. M. Lifshitz, and L. P. Pitaevskii, *Adv. Phys.* **10**, 165 (1961).
[8] A. W. Rodriguez, J. Munday, D. Davlit, F. Capasso, J. D. Joannopoulos, and S. G. Johnson, *Phys. Rev. Lett.* **101**, 190404 (2008).
[9] A. W. Rodriguez, A. P. McCauley, D. Woolf, F. Capasso, J. D. Joannopoulos, and S. G. Johnson, arXiv:0912.2243 (2010).
[10] A. P. McCauley, A. W. Rodriguez, J. D. Joannopoulos, and S. G. Johnson, *Phys. Rev. A* **81**, 012119 (2010).
[11] L. P. Pitaevskii, *Phys. Rev. A* **73**, 047801 (2006).
[12] K. Milton, J. Wagner, P. Parashar, and I. Brevi, arXiv:1001.4163 (2010).
[13] J. P. Boyd, *Chebychev and Fourier Spectral Methods* (Dover, New York, 2001), 2nd ed.
[14] J. N. Munday and F. Capasso, Phys. Rev. A **78**, 032109 (2008).
[15] L. Duraffourg and P. Andreucci, Phys. Lett. A **359**, 406 (2006).
[16] L. Bergstrom, Adv. Colloid and Interface Science **70**, 125 (1997).
[17] J. Mahanty and B. W. Ninham, *Dispersion forces* (Academic London, 1976).
[18] D. G. Friend and M. L. Hiber, Int. J. Thermophys. **15** (1994).
[19] M. S. Tomaš, Phys. Rev. A **66**, 052103 (2002).
[20] H. Risken, *The Fokker-Planck Equation: Methods of Solution and Applications* (Springer-Verlag, Heidelberg, New York, 1996).
[21] D. L. Wilcox, M. Berg, T. Bernat, D. Kellerman, and J. K. Cochran, *Hollow and Solid Spheres and Microspheres: Science and Technology Associated with Their Fabrication and Application*, vol. 372 (Society Symposium Proceedings, 1995).