1. INTRODUCTION

Medicinal chemistry is the branch of science that deals mainly with the synthetic organic chemistry and pharmacology of the drugs with special references to structure including design, modifications and analysis of drugs or chemical synthesis of lead compounds to make them suitable for the mankind or animals with least toxicity and optimum response. Heterocyclic chemistry is a very important branch of organic chemistry and most of the organic synthetic or semi synthetic compounds are heterocyclic in structural properties. Its structure can be described with carbon atoms in ring forming carbocyclic compound.

The most common heteroatoms are Nitrogen, oxygen and sulfur. But heterocyclic rings containing other hetero atoms are having in broad variety. Heterocyclic compounds can be classified as aliphatic and aromatic.

The aliphatic heterocyclics are the cyclic similarities of amines, ethers, thio ethers, amides, etc. Heterocyclic compounds are having importance in various medicinal formulations and are present in a large variety of drugs, most vitamins, natural products etc. In addition to this biologically active compounds, including antitumor, antibiotic, anti-inflammatory, antidepressant, antimalarial, anti-HIV, antimicrobial, antibacterial, antifungal, antiviral, antidiabetic, herbicidal, fungicidal, anticonvulsant, and insecticidal agents.

1.1 Pyrimidine

Heterocyclic aromatic organic compound like benzene or pyridine, having two nitrogen atoms at positions 1 and 3 of the six-membered ring; they have isomers in the forms of diazine.
IUPAC Name: 1, 3-Diazine, m-Diazine
Formula: C₄H₄N₂
Molecular Mass: 80.088 g mol⁻¹
Density: 1.016 g cm⁻³
Solubility: Alcohol, Water
Melting Point: 20-22 °C

1.2 Types of Pyrimidine

Three nucleobases found in nucleic acids, cytosine (C), thymine (T), and uracil (U), are pyrimidine derivatives:

C T U

1.3 Hydrazones

An organic compounds having structure of R₁R₂C=NNH₂ and are associated to ketones and aldehydes by substitution of the oxygen by means of NNH₂ functional group. They are designed basically by the feat of hydrazine on ketones or aldehydes⁵.

Hydrazones have antioxidant, antimicrobial, antimalarial, antiviral actions and if they are allowed to fuse with Pyrimidine they produce CNS activity too. Therefore the above data clearly showed that pyrimidine hydrazones are potent biologically active compounds.

1.4 Schiff base

A Schiff base, invented by Hugo Schiff, is a compound with a functional group that consists of a C=N double bond by means of nitrogen atom connected to an aryl or alkyl group and having general formula of R¹R²C=NR³, where R is an organic side chain. In this definition, Schiff base is identical to azomethine⁶.

1.5 Some Compounds Having Pyrimidine Hydrazones

a). 4-methoxybenzaldehyde (5-bromopyrimidin-2-yl) hydrazone monohydrate⁷. Pyrimidine and their derivatives possess biological and pharmacological activities such as antibacterial, antimicrobial, anti-inflammatory, analgesic, anticonvulsant and anti-aggressive properties.

C₁₂H₁₁BrN₄O·H₂O

b). Novel thieno [2, 3-d] pyrimidin-4-yl Hydrazone-based Cyclin D1-CDK4 inhibitors⁸:

2. CHEMICAL APPROACHES

2.1 Pyrimidine

2.1.1 Scheme-1: ZnCl₂-catalyzed three-component coupling reaction allows the synthesis of various 4, 5-disubstituted pyrimidine derivatives in a single step from functionalized enamines, triethylorthoformate, and ammonium acetate. The procedure can be successfully applied to the efficient synthesis of mono- and disubstituted pyrimidine derivatives, using methyl ketone derivatives instead of enamines⁹.
2.1.3 Scheme-2: Synthesis of pyrimidines from ketones using microwave irradiation10

\[
\text{Formamide} \xrightarrow{\text{TsOH, HMDS}} 215^\circ C, \text{MW} - 800 \text{sec}
\]

2.1.3 Scheme 3: Synthesis, analgesic and ulcerogenic activity of novel pyrimidine derivative of coumarin moiety: A novel series of 3-(2-amino-6-pyrimidin-4-yl)-6-bromo-2H-chromen-2-one (2a-2j) was synthesized from 3-acetyl-6-bromo-2H-chromen-2-one11

\[
\begin{align*}
\text{Ethanol} & \quad \text{Guandine} \\
\text{HCl} & \quad 8-10 \text{hrs}
\end{align*}
\]

\(X=\text{2-Cl, 3-Cl, 4-Cl, 2-Br, 3-Br, 4-Br, 2-OCH\textsubscript{3}, 3-OCH\textsubscript{3}, 2,4-Dichloro, 2,6-Dichloro}\)

2.2 Hydrazone

2.2.1 Scheme 4: Tosyl- and Boc-hydrazone were found to be effective nucleophiles in the Mitsunobu reaction. Tosyl hydrazones reacted cleanly with primary and secondary alcohols when co-administered to a cooled DBAD/PPh\textsubscript{3} or DEAD/PPh\textsubscript{3} complex12

\[
\text{Ph} \quad \overset{\text{NTs}}{\longrightarrow} \quad \text{HO-R} \quad 1.2 \text{eq.} \\
\text{THF, 0}^\circ \text{C, 1 - 18 h} \quad 1.8 \text{eq. DEAD} \\
2 \text{eq. PPh\textsubscript{3}} \quad \text{R': alkyl, allyl, benzyl}
\]

2.2.2 Scheme-5: Central to an alternative source of substrates for Fischer indolizations was a palladium-catalyzed coupling to prepare N-aryl benzophenone hydrazones. Hydrolysis of the hydrazones in the presence of ketones produced enolizable hydrazones that underwent Fischer indolization13

\[
\text{Ar-Br} \quad + \quad \text{NHNNH\textsubscript{2}} \quad 1 - 1.1 \text{eq.} \\
\text{Ph} \quad \overset{\text{Ph}}{\longrightarrow} \quad 1 - 1.5 \text{ mol} \% \text{Pd(OAc)\textsubscript{2}} \\
1 - 2.3 \text{ mol} \% \text{BINAP} \quad 1.4 \text{ eq. NaOTf} \quad \text{toluene, 80 or 100}^\circ \text{C, 2.5 - 22 h}
\]

3. BIOLOGICAL ACTIVITY APPROACHES

3.1 Pyrimidine

3.1.1 Biologically Active Pyridopyrimidines:

The compounds below have efficient analgesics, CNS depressant activity, and in spite of that it also exhibit antibacterial & antifungal activity13

\[
\begin{align*}
\text{II, } R = \text{Ph (a), 1.3-2H-benzodioxol-5-yl (b), 3-indolyl (c), 2-chloroquinolin-3-yl (d); III, } R = \text{Ph (a, b), 1.3-2H-benzodioxol-5-yl (e, d), 3-indolyl (e, f), 2-chloroquinolin-3-yl (g, h); } X = O (a, c, e, g), S (b, d, f, h).}
\end{align*}
\]
3.1.2 Anti-cancer activity

A series of novel 2, 4, 5-substituted pyrimidine derivatives were synthesized and evaluated for inhibition against the human hepatocellular carcinoma BEL-7402 cancer cell line\(^\text{14}\)

\[
\text{N}
\]

3.2 Hydrazone

There has been considerable interest in the development of novel compounds with anticonvulsant, antidepressant, analgesic, anti-inflammatory, antiplatelet, antimalarial, antimicrobial, antitubercular, antioxidant, and anticholangiographic activities\(^\text{15}\)

\[
\begin{align*}
\text{Nifuroxazide} & : \text{Antibiotic, Antidiarrheal} \\
\text{Isoniazid} & : \text{Anti-tubercular}
\end{align*}
\]

3.2.1 Anti-Depressant Activity

New aryldihydrazides which were synthesized by reacting 3-phenyl-5-sulfonamidoindole-2-carboxylic acid hydrazide with various aldehydes, evaluated for their antidepressant activity\(^\text{16}\)

3.2.2 Analgesic, anti-inflammatory & antiplatelet activity

Derivative 2-(2-formylfuryl) pyridylhydrazone presented a 79 % inhibition of pleurisy at a dose of 80.1 µmol/kg. The authors also described the results concerning the mechanism of the action of these series of N-heterocyclic derivatives in platelet aggregation that suggests a Ca\(^{2+}\) scavenger mechanism\(^\text{16}\)

\[
\text{N}
\]

4. CONCLUSION

Pyrimidine constitutes an important heterocyclic class in drug discovery & is very well known for their anticancer, antimicrobial, antioxidant & antiviral activities. Hydrazones is a class of organic compounds and have efficient CNS depressant, analgesics activity. In the same context, Schiff bases of pyrimidine hydrazones are a potent and efficient biological activities such as anticancer, antimicrobial, antioxidant, CNS depressant, analgesic & antiviral activities. There are various synthetic pathways in which various studies are made also to form a potent and efficient Schiff bases and product of pyrimidine hydrazones.

REFERENCES

1. www.wikipedia.org/wiki/Medicinal_chemistry, 2011
2. Katritzky.A. R.Handbook of Heterocyclic Chemistry, Pergamon Press, New York, 1985.
3. Stoll. A. Helvi. Chim. Acta. 28: 1283: 1945.
4. http://en.wikipedia.org/wiki/Pyrimidine, 2011.
5. http://en.wikipedia.org/wiki/Hydrazone, 2011
6. http://en.wikipedia.org/wiki/Schiff_base, 2011
7. Fun HK, Loh WS, Nayak SP, Methoxybenzaldehyde (5-bromopyrimidin-2-yl) Hydrazone monohydrate, Act.Crys. Sec. E struc. rep.; 2010, 66 (9): 2467
8. Horiuchi T, Chiba J, Uoto K, Soga T, Novel thieno [2, 3-d] pyrimidin-4-ylhydrazone-based Cyclin D1-CDK4 inhibitors, Bioorg. Med. Chem. Lett.; 2009, 19 (2): 305-308
9. http://www.organic-chemistry.org/synthesis/heterocycles/pyrimidines.shtm
10. Tyagarajan S, Chakravarty PK, Synthesis of pyrimidines from ketones using microwave irradiation, Tet. Lett; 2005, 46 (46): 7889-7891
11. Gupta J K, Sharma PK, Dudhe R, Anshu C, Verma PK, Synthesis, analgesic and ulcerogenic activity of novel pyrimidine derivative of coumarin moiety, Annals of Bucharest Univ. Chem; 2010, 19 (2): 9–21
12. http://www.organic-chemistry.org/synthesis/C1N/hydrazones.shtm
13. Kidwai M, Rastogi S, Saxena S, Base Catalyzed Pyrimidine Synthesis Using Microwave ,Bull Korean Chem Soc; 2003, 24 (11): 1575
14. Fuchun Xie, Hongbing Zhao, Lizhi Zhao, Liguang Lou, Youhong Hu, A series of novel 2,4,5-substituted pyrimidine derivatives, Bioorganic & Medicinal Chemistry Letters; 2009, 19 (1): 275-278
15. Sevim R, Guniz KS; Molecules 2007, Derivative 2-(2-formylfuryl) pyridylhydrazone; 12: 1910-1939
16. Takao Horiuchi, Motoko Nagata, Mayumi Kitagawa, Kouichi Akahane, Kouichi Uoto; Bioorganic & Medicinal Chemistry, 2009, 17 (23): 7850-7860.

© 2011-15, JDDT. All Rights Reserved
ISSN: 2250-1177
CODEN (USA): JDDTAO