Roles of Organohalide-Respiring *Dehalococcoidia* in Carbon Cycling

Yi Yang, a Robert Sanford, b Jun Yan, a Gao Chen, c,d Natalie L. Cápiro, e Xiuying Li, a Frank E. Löffler c,d,f,g,h,i

a Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China
b Department of Geology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
c Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee, USA
d Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee, USA
e Department of Civil Engineering, Environmental Engineering Program, Auburn University, Auburn, Alabama, USA
f Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
g Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Tennessee, USA
h Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
i Joint Institute for Biological Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA

ABSTRACT The class *Dehalococcoidia* within the *Chloroflexi* phylum comprises the obligate organohalide-respiring genera *Dehalococcoides*, *Dehalogenimonas*, and "*Candidatus* Dehalobium." Knowledge of the unique ecophysiology and biochemistry of *Dehalococcoidia* has been largely derived from studies with enrichment cultures and isolates from sites impacted with chlorinated pollutants; however, culture-independent surveys found *Dehalococcoidia* sequences in marine, freshwater, and terrestrial biomes considered to be pristine (i.e., not impacted with organohalogens of anthropogenic origin). The broad environmental distribution of *Dehalococcoidia*, as well as other organohalide-respiring bacteria, supports the concept of active halogen cycling and the natural formation of organohalogens in various ecosystems. Dechlorination reduces recalcitrance and renders organics susceptible to metabolic oxidation by diverse microbial taxa. During reductive dechlorination, hydrogenotrophic organohalide-respiring bacteria, in particular *Dehalococcoidia*, can consume hydrogen to low consumption threshold concentrations (<0.3 nM) and enable syntrophic oxidation processes. These functional attributes and the broad distribution imply that *Dehalococcoidia* play relevant roles in carbon cycling in anoxic ecosystems.

KEYWORDS *Dehalococcoidia*, carbon cycling, hydrogen thresholds, organohalide respiration, syntrophy, thermodynamics

The phylum *Chloroflexi* is a deeply branching, highly heterogeneous bacterial lineage that currently comprises eight classes (*Dehalococcoidia*, *Anaerolineae*, *Caldilineae*, *Ktedonobacteria*, *Thermomicrobia*, *Ardenticatenia*, *Thermoflexia*, and *Chloroflexia*) with a diversity of phenotypes and lifestyles (1–3). This heterogeneity is also apparent in phylogenetic and comparative genome analyses, and the suggestion was made that the phylum *Chloroflexi sensu stricto* should only consist of the classes *Chloroflexia* and *Thermomicrobia*, while other members should be reclassified (4). In an effort to standardize bacterial taxonomy based on genome phylogeny, the reclassification of the *Chloroflexi* phylum ("Chloroflexota") into eight classes (i.e., *Anaerolineae*, *Chloroflexia*, *Dehalococcoidia*, *Ktedonobacteria*, UBA2235, UBA4733, UBA5177, and UBA6077) was proposed (5).

Based on the SILVA database (release 138) (6) and the Ribosomal Database Project (RDP; release 11, update 5) (7), 8.5 and 3.1% of *Chloroflexi* 16S rRNA gene sequences, respectively, affiliate with the *Dehalococcoidia* class (Table 1). Currently, the *Dehalococ-
coidia include two formally published genera, *Dehalococcoides* and *Dehalogenimonas*, and the candidate genus “*Dehalobiium,”* all of which comprise obligate organohalide-respiring species (Fig. 1). All *Dehalococcoidia* in cultivation, including the *Dehalococcoides* and *Dehalogenimonas* isolates, can only derive energy from cleaving carbon-chlorine bonds (8, 9) although some may also use organobromine compounds as electron acceptors (10). While *Dehalococcoides* are strictly hydrogenotrophic (i.e., require hydrogen [H₂] as an electron donor), at least some *Dehalogenimonas* species also utilize formate as an electron donor (9). Efforts in characterizing *Dehalococcoides* and *Dehalogenimonas* were largely driven by the interest in exploiting the dechlorination capabilities of these specialized bacteria for remediation of sites impacted with anthropogenic, chloroorganic pollutants such as chlorinated solvents (e.g., chlorinated ethenes). Examples of the utility of *Dehalococcoides* and *Dehalogenimonas* for environmental cleanup can be found in the recent comprehensive research update on organohalide-respiring bacteria and their applications (11).

TABLE 1 Numbers of 16S rRNA gene sequences representing *Chloroflexi*, including class *Dehalococcoidia* and unclassified *Chloroflexi*, and total bacteria in the Silva and RDP databases

16S rRNA gene sequence database	No. (%) of *Chloroflexi* sequences	No. of total bacterial sequences
	Dehalococcoidia	Non-*Dehalococcoidia*
RDP v1.15 isolates	1,411 (3.1)	30,328 (67.2)
RDP v1.15 uncultured	1,363 (3.0)	30,115 (67.1)
Silva SSU v138	16,297 (8.5)	176,547 (91.5)
Silva Ref SSU v138	2,654 (9.3)	25,837 (90.7)
Silva Ref NR SSU v138	1,601 (17.7)	7,444 (82.3)
	Dehalococcoidia	*Dehalococcoidia*
	13,419 (29.7)	13,401 (29.9)
	18 (6.5)	30 (0.0)
	5 (0.0)	4 (0.0)
	3,196,041	2,680,054
	8,394,436	8,394,436
	1,916,743	1,916,743
	381,662	381,662

* Included are sequences representing the existing taxonomy of the *Chloroflexi* phylum (i.e., *Dehalococcoidia* and non-*Dehalococcoidia* *Chloroflexi* sequences) and sequences that cannot be classified into the lower-rank taxonomy of the *Chloroflexi* phylum (i.e., unclassified *Chloroflexi*). Within the classified *Chloroflexi*, sequences belong to the *Dehalococcoidia* or any of the other seven non-*Dehalococcoidia* classes (i.e., *Anaerolineae*, *Caldilineae*, *Ktedonobacteria*, *Thermomicrobia*, *Ardenticia*, *Thermoflexia*, and *Chloroflexia*).

![FIG 1 Phylogenetic tree of representative isolated and not-yet-cultured bacteria affiliated with the *Chloroflexi* phylum based on complete 16S rRNA gene sequences. Sequences were retrieved from the RDP database and imported into the Geneious software (Biomatters, Auckland, New Zealand) for alignment with MAFFT. The tree was constructed with Tree Builder using the default settings in Geneious. The scale bar indicates 0.01 nucleotide substitution per site.](msystems.asm.org/2020/05/v5i3-e00757-19/fig1.png)
DISTRIBUTION OF DEHALOCOCCOIDIA IN NATURE

Enrichment and isolation of Dehalococcoidia are challenging tasks. Information about the distribution of Dehalococcoidia in the environment relies on PCR-based surveys using specific primer sets and 16S rRNA gene amplicon, shotgun metagenome, and single-cell genome sequencing (see Table S1 in the supplemental material). An investigation of 116 uncontaminated terrestrial soil samples using a targeted PCR approach demonstrated that Dehalococcoides-like bacteria were present in the majority (>88%) of samples analyzed (12). A similar approach was used to study lake sediment samples from distinct locations (n = 20) across a geographic sulfur gradient, where 16S rRNA gene sequences of putative organohalide-respiring Dehalococcoidia were found in 67 out of 68 samples examined (13). Shotgun metagenome and 16S rRNA gene amplicon sequencing identified a diversity of Dehalococcoidia in samples collected from various environments, including marine subsurface sediments (14–21). For example, bacterial 16S rRNA gene sequences affiliated with the Chloroflexi phylum dominated in shallow sediment 9.5 to 364 meters below the seafloor (mbsf) and became rare in deeper sediment (1,372 mbsf) (17). Closer scrutiny of the shallow marine sediment sequences retrieved from the DNA Data Bank of Japan (DDBJ accession number DRA001030) using the SILVAngs pipeline (6) revealed that more than 95% of all Chloroflexi sequences classify within the Dehalococcoidia class. Members of the Dehalococcoidia formed a dominant group in sediment samples from the eastern Juan de Fuca Ridge flank, a well-studied hydrothermal environment (22). Another metagenomic study reported abundant Dehalococcoidia sequences (up to 14.2% of all reads) in a methane (CH₄) hydrate-bearing sediment sample from the Ulleung Basin in the East Sea of Korea (23). Dehalogenimonas sequences were present in 60 m depth in a peripherally stratified Arctic lake with saline (2.9 to 3.2%), anoxic bottom waters (24). Phylogenetically diverse Dehalococcoidia sequences were found at different depths in anoxic waters of the remote meromictic Lake Pavin, with 11 out of 65 nearly complete 16S rRNA gene sequences showing 80 to 98% nucleotide identity with Dehalococcoides or Dehalogenimonas (25). Dehalogenimonas 16S rRNA gene sequences were also detected in the photic layer (0 to 25 m) and the near-bottom zone (1,465 to 1,515 m) of Lake Baikal, the world’s deepest and most voluminous lake (20). No deep-sea sediment Dehalococcoidia have yet been cultured and isolated; however, single cell sequencing generated several incomplete Dehalococcoidia genomes (26–30). Reductive dehalogenase (RDase) genes, which encode the key enzymes for organohalide respiration, have been detected in various marine subsurface sediments (e.g., Juan de Fuca Ridge Flank, Nankai Trough Forearc Basin) (31, 32) but have not (yet) been found on published single-cell Dehalococcoidia genomes, suggesting that deep-sea sediment Dehalococcoidia may have the potential to utilize energy metabolisms other than organohalide respiration (26–30).

ROLES OF DEHALOCOCCOIDIA IN CONTAMINATED AND PRISTINE ENVIRONMENTS

The need for cost-effective remediation of sites impacted with chlorinated contaminants was a driver leading to the discovery of Dehalococcoidia capable of utilizing chlorinated organic compounds as respiratory electron acceptors (33, 34). The organohalide respiration process revolutionized bioremediation at sites impacted with chlorinated pollutants (35, 36), and detailed characterization work transformed our understanding of the physiology, biochemistry, and evolution of organohalide-respiring Dehalococcoidia (11). What is generally not acknowledged is that most organochlorines are not only xenobiotics (i.e., anthropogenic chemicals) but also have natural origins. Natural organohalogens commonly occur in many undisturbed (i.e., pristine) environments. More than 5,000 naturally occurring organohalogens have been reported to date, the majority of which are organochlorines (11, 37–39) that Dehalococcoidia potentially can utilize as electron acceptors (40). Chlorinated organics are produced in biotic and abiotic processes in various aquatic and terrestrial environments. The diversity of naturally occurring organochlorines may explain the astounding diversity of
genes with predicted RDase function in *Dehalococcoidia* genomes. As of March 2020, the NCBI Identical Protein Groups database lists 842 distinct *Dehalococcoides* and 219 distinct *Dehalogenimonas* putative RDase proteins, but the substrate specificity (i.e., the range of chlorinated electron acceptors used) has only been assigned to a small subset. Of note, *Dehalococcoidia* possess RDase genes and also dehalogenate truly anthropogenic chemicals with no evidence of natural formation, such as polychlorinated biphenyls (PCBs) \(^{(41)}\). A possible explanation is that RDases with broad substrate range dechlorinate anthropogenic PCBs. Intriguing is the possibility of evolutionary processes that allow RDase genes of *Dehalococcoidia* to adapt to chlorinated xenobiotics in fairly short time periods (i.e., the production of PCBs commenced in the 1930s). In support of this hypothesis, the dynamic rearrangement and mobilization of RDase genes in *Dehalococcoides* and *Dehalogenimonas* genomes have been observed \(^{(42–45)}\).

In pristine environments, *Dehalococcoidia* may perform reductive dehalogenation by utilizing natural organochlorines as electron acceptors. The removal of chlorine atoms transforms recalcitrant organochlorines into compounds that can then be metabolized and mineralized by other microorganisms. Although nature produces a plethora of organochlorines, these compounds do not accumulate and evade detection, presumably because microorganisms, such as *Dehalococcoidia*, reduce recalcitrance by breaking carbon–chlorine bonds. The absence of widespread elevated concentrations of natural organochlorines supports the notion that nature evolved a balanced system of organochlorine production and consumption. Because the mass of organochlorines in pristine environments is generally low, the natural formation of organochlorines often goes unnoticed; however, the flux of carbon through halogenation-dehalogenation cycles can be substantial. Extensive carbon turnover through halogenation-dehalogenation cycles has been demonstrated in a few natural \(^{(46–48)}\) and engineered ecosystems \(^{(49)}\), but accurate and comprehensive flux measurements that could help estimate the total amounts of chlorinated electron acceptors turned over in various environmental systems are largely lacking. Of note, the cultivated *Dehalococcoidia* can only grow via organohalide respiration without any other demonstrated growth-supporting energy metabolism. Therefore, the distribution of *Dehalococcoidia* in various environmental systems supports the hypothesis that natural halogen cycling (i.e., the natural formation and consumption of halogenated electron acceptors) occurs broadly. The following examples illustrate relevant ecological roles organohalide-respiring *Dehalococcoidia* can fulfill in pristine environments.

DEHALOCOCCOIDIA ENABLE SYNTROPHIC PROCESSES INCLUDING THE ANAEROBIC OXIDATION OF METHANE

Reductive dechlorination is an electron-consuming process, and H\(_2\) fulfills the electron donor demand of many organohalide-respiring bacteria, including the *Dehalococcoidia*. Under standard conditions (i.e., solutes at 1 M concentration and gases at 1 atmosphere partial pressure) at pH 7, reductive dechlorination is associated with Gibb’s free energy changes (\(\Delta G^\circ\)) in the range of \(-127\) to \(-193\) kJ/mol of H\(_2\) \(^{(50, 51)}\). These \(\Delta G^\circ\) values indicate more energy is gained in the organohalide respiration process than in sulfate reduction \((-38\) kJ/mol of H\(_2\)), ferric iron reduction \((-44.6\) kJ/mol of H\(_2\)) with amorphous hydrous ferric oxide, CO\(_2\) reduction to CH\(_4\) (i.e., methanogenesis, \(-33.9\) kJ/mol of H\(_2\)), or CO\(_2\) reduction to acetate (i.e., reductive acetogenesis, \(-26.1\) kJ/mol of H\(_2\)) and is in the range of nitrate reduction to nitrite \((-158.1\) kJ/mol of H\(_2\)) (Table 2).

In contrast to these electron-accepting, formally H\(_2\)-consuming processes, the anaerobic oxidation of methane (AOM) is an electron-donating, formally H\(_2\)-forming process with unfavorable energetics under standard conditions (equation 1).

\[
\text{CH}_4 + 3\text{H}_2\text{O} \rightarrow \text{HCO}_3^- + 4\text{H}_2 + \text{H}^+ \Delta G^\circ = +135.4 \text{ kJ/mol CH}_4
\]

The energetics of AOM become favorable (i.e., negative \(\Delta G\) values) when the H\(_2\) (i.e., reducing equivalents) generated during CH\(_4\) oxidation is consumed in an associated electron-accepting, H\(_2\)-consuming process.
Table 2: Gibbs free energy changes under standard conditions (i.e., 298.15 K [25°C], pH 7.0), concentrations of solutes at 1 M and partial pressures of gases at 1 atmosphere) for AOM and different H₂-consuming redox reactions.

No.	Redox reaction	Gibbs free energy change (ΔG°) in kJ/mol of:	Redox potential E° (V)p	Theoretical H₂ consumption threshold concn (nM)q	Experimentally determined H₂ threshold concn (nM)d		
1	CH₄(g) + 3H₂O → HCO₃⁻ + 4H₂(g) + H⁺	33.9	135.4	16.9	-0.18	NA	NA
2	2H₂CO₃⁻ → 4H₂(g) + H⁺ → acetate⁻ + 4H₂O	-26.1	-52.1	-13.0	0.13	863.0	>100
3	HCO₃⁻ → 4H₂(g) + H⁺ → CH₄(g) + 3H₂O	-33.9	-135.4	-16.9	0.18	162.3	12.4–13.6
4	SO₄²⁻ + 4H₂(g) + 2H⁺ → H₂S(aq) + 4H₂O	-38.0	-151.9	-19.0	0.20	15.4	1–15
5	2Fe(OH)₃(s) + 4H⁺ + H₂(g) → 2Fe²⁺(aq) + 6H₂O	-44.6	-22.3	-22.3	0.23	6.06 × 10⁻¹⁰	0.1–0.8
6	NO₃⁻ + H₂(g) → NO₂⁻ + H₂O	-158.1	-158.1	-79.0	0.82	5.39 × 10⁻²²	0.026–0.036
7	PCE(aq) + H₂(g) → TCE(aq) + H⁺ + Cl⁻	-173.3	-173.3	-86.7	0.90	7.19 × 10⁻²⁵	<0.3

aAlso indicated are H₂ consumption threshold concentrations associated with H₂-consuming redox reactions. The ΔG° values for all reactions except reductive dechlorination of tetrachloroethene (PCE) to trichloroethene (TCE) were calculated using Geochemists Workbench (GW814). The ΔG° value for reductive dechlorination was calculated according to values obtained from Dolfing and Janssen (51). NA, not applicable; (g), gas phase; (aq), aqueous phase; (s), solid.

bRedox potentials and Gibbs free energy changes were calculated according to ΔG° = -nFΔE°, where n is the number of moles of electrons transferred in the reaction, and F is the Faraday's constant (96.5 kJ/V). Redox reactions are numbered in the first column of the table as follows: 1, AOM; 2, H₂/CO₂ reductive acetogenesis; 3, methanogenesis; 4, sulfate reduction; 5, ferric iron reduction; 6, nitrate reduction; and 7, organohalide respiration.

cTheoretical H₂ consumption threshold concentrations were calculated based on equation 6 using a ΔG° = -10 kJ/mol H₂ and assumed standard conditions for all other reactants (1 M for solutes and 1 atm for gases).

dShown are experimentally determined H₂ threshold concentrations reported in the literature (51, 52, 55, 58, 59, 66, 81, 82). The measured data are substantially higher than the theoretical values because the available analytical instrumentation cannot measure H₂ reliably below 50 ppb (~0.04 nM).

To calculate H₂ consumption threshold concentrations and Gibbs free energy changes associated with different redox reactions, equations 2 to 6 were used, where R is the ideal gas constant (8.314 J K⁻¹ mol⁻¹), T is the temperature (298 K), ΔG° is the free-energy change at pH 7 under standard conditions, ΔG' is the free-energy change at pH 7 under nonstandard concentration conditions, “a” refers to the activity of the different chemicals in the reaction, and EA refers to the electron acceptor. The letters a, b, c and d are stoichiometric coefficients for reactants EA, H₂, C and D, respectively.

ΔG = ΔG° + RT ln \left(\frac{a_{\text{H}_2}}{a_{\text{H}_4}} \right) (2)

a_{\text{H}_2} = \left(\frac{a_{\text{CH}_4}}{a_{\text{H}_2}} \right)^{\frac{1}{4}} \exp \left(\frac{\Delta G' - \Delta G°}{RT} \right) (3)

ΔG' = ΔG° + RT ln \left(\frac{a_{\text{H}_3}}{a_{\text{H}_4}} \right) (4)

ΔG' = ΔG° + RT ln \left(\frac{a_{\text{H}_3}}{a_{\text{H}_4}} \right) (5)

To allow energy conservation in anaerobic microorganisms, it has been argued that the Gibbs free energy change (i.e., ΔG) of the reaction must be more negative than -10 ± 1 kJ/mol (53, 54). Based on this assumption, any H₂ concentration exceeding 29.7 µM (3,888 Pa) would render AOM unfavorable (i.e., ΔG' > -10 ± 1 kJ/mol) and would not allow microorganisms of C to harvest energy from the process. The breaking point H₂ concentration of 29.7 µM is based on presumed environmentally relevant concentrations of reactants and products (i.e., [CH₄] = 2.14 atm, [HCO₃⁻] = 20.2 mM and a ΔG' of -10 kJ/mol, and was calculated according to equations 2 and 3 (52). These calculations assumed that a values approximate the concentration of HCO₃⁻ and partial pressure of CH₄. Partial pressures were entered directly into the calculations as indicated in Table 2, and the equilibrium aqueous phase concentrations of CH₄ and H₂ were calculated using the respective Henry's constant.

In anoxic environments, the H₂ partial pressure is the primary thermodynamic...
control determining the extents and rates of syntrophic oxidation processes and carbon turnover (52). AOM has been observed in anoxic marine sediments and is mediated by a syntrophic partnership between anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (55, 56). The candidates for syntrophic partners of ANME have been extended to ferric iron-reducing microorganisms (57, 58), and various mechanisms, including interspecies H$_2$ transfer and direct interspecies electron transfer, may enable these syntrophic partnerships (59–61). An interesting observation was the partner population-independent AOM in nitrate-reducing cultures comprising “Candidatus Methanoperedens nitroreducens” and in nitrite-reducing cultures comprising the NC10 bacterium “Candidatus Methylomirabilis oxyfera” (62). Since both organisms are not available in pure culture, possible syntrophic partnerships with nitrate/nitrite-reducing populations cannot be ruled out, and it remains to be seen if single organisms can carry out AOM (63, 64). In interspecies H$_2$ transfer, hydrogenotrophic partner populations (e.g., sulfate-, ferric iron-, and nitrate-reducing microorganisms) consume the H$_2$ produced from the oxidation of CH$_4$ to low H$_2$ partial pressures and create conditions with favorable thermodynamics for AOM to proceed (59, 65) (Table 3). On grounds of thermodynamics, reductive dehalogenation in partnership with AOM yields greater free energy changes compared to sulfide reduction (Table 3) (51, 55, 66). The theoretical H$_2$ consumption threshold concentration for sulfate reduction under relevant in situ concentrations of reactants and products (i.e., ΔG° values) is about 15.4 nM (~2 Pa) (see Fig. 2 for details). By comparison, reductive dechlorination, nitrate reduction, and ferric iron reduction under environmentally relevant concentrations can theoretically maintain much lower H$_2$ consumption threshold concentrations of 7.19 x 10$^{-25}$, 5.39 x 10$^{-22}$, and 6.06 x 10$^{-18}$ nM, respectively, indicating these processes would be far better partners for enabling syntrophic processes (Table 2).

Organohalide-respiring *Dehalococcoida* could serve as a relevant H$_2$ sink and maintain H$_2$ concentrations far below the 29.7 µM value needed to enable AOM (67) (Fig. 2). The syntrophic partnership between organohalide-respiring *Dehalococcoida* and ANME could be a relevant function of *Dehalococcoida* in various anoxic environmental systems with CH$_4$ and a sustained formation of organohalogenes. In support of this hypothesis, a recent study demonstrated the coexistence of *Dehalococcoides* and ANME in a permanently ice-covered Antarctic lake (21), suggesting a possible linkage between organohalogen respiration and AOM in situ. To summarize, organohalide-respiring *Dehalococcoida* would be ideal syntrophic partners for energetically challenging, syntrophic processes, such as AOM (Table 3), and are likely relevant drivers of carbon turnover and nutrient cycling in environments where other electron acceptors are absent and active production of organochlorines occurs.

TABLE 3 Gibbs free energy changes (ΔG°) associated with anaerobic CH$_4$ oxidation coupled to the reduction of different electron acceptors under standard conditions (ΔG°) values) and environmentally relevant concentrations of reactants and products (ΔG° values)a

Redox reaction	ΔG°, kJ/mol of:	ΔG°, kJ/mol of:				
	CH$_4$	EA	Electrons	CH$_4$	EA	Electrons
CH$_4$(g) + SO$_4^{2-}$ + H$^+$ \rightarrow HCO$_3^-$ + H$_2$S(aq) + H$_2$O	-16.5	-16.5	-2.06	-5.0	-5.0	-0.63
CH$_4$(g) + 8Fe(II)(s) + 15H$^+$ \rightarrow HCO$_3^-$ + 8Fe$^{2+}$ + 21H$_2$O	46.2	5.78	5.78	-144.1	-18.0	-18.0
CH$_4$(g) + 4 2-CP(aq) + 3H$_2$O \rightarrow HCO$_3^-$ + 4 phenol(aq) + 5H$^+$ + 4Cl$^-$	-476.3	-119.1	-59.5	-486.2	-121.6	-60.8
CH$_4$(g) + 4 MCB(aq) + 3H$_2$O \rightarrow HCO$_3^-$ + 4 benzene(aq) + 5H$^+$ + 4Cl$^-$	-477.9	-119.5	-59.7	-499.3	-124.8	-62.4
CH$_4$(g) + 4NO$_3^-$ \rightarrow HCO$_3^-$ + 4NO$_2^-$ + H$_2$O + H$^+$	-510.7	-127.7	-63.8	-501.4	-125.4	-62.7
CH$_4$(g) + 4 PCE(aq) + 3H$_2$O \rightarrow HCO$_3^-$ + 4TCE(aq) + 5H$^+$ + 4Cl$^-$	-557.9	-139.5	-69.7	-574.0	-143.5	-71.8
CH$_4$(g) + 4 TCE(aq) + 3H$_2$O \rightarrow HCO$_3^-$ + 4 cDCE(aq) + 5H$^+$ + 4Cl$^-$	-539.9	-135.0	-67.5	-568.8	-142.2	-71.1
CH$_4$(g) + 4 1,2-DCA(aq) + 2H$_2$O \rightarrow HCO$_3^-$ + 4 ethene(aq) + 9H$^+$ + 8Cl$^-$	-853.5	-213.4	-106.7	-839.5	-209.9	-104.9

aThe ΔG° values for all reactions except reductive dechlorination of tetrachloroethene (PCE) to trichloroethene (TCE) were calculated using Geochemists WorkBench (GWBI4). The ΔG° for reductive dechlorination was calculated according to Dolfing and Janssen (51). The ΔG° values were calculated according to equation 5 (see the text) with CH$_4$ substituting for H$_2$ and using the concentration values listed below. Abbreviations: PCE, tetrachloroethene; TCE, trichloroethene; cDCE, cis-1,2-dichloroethene; 1,2-DCA, 1,2-dichloroethene; MCB, monochlorobenzene; 2-CP, 2-chlorophenol; EA, electron acceptor; (g), gas phase; (aq), aqueous phase; (s), solid. The following concentrations were used for calculating ΔG° values: HCO$_3^-$, 2.020 x 10$^{-3}$ M; H$_2$S, 8.000 x 10$^{-5}$ M; Fe$^{2+}$, 1.000 x 10$^{-5}$ M; NO$_3^-$, 8.50 x 10$^{-10}$ M; NO$_2^-$, 1.160 x 10$^{-5}$ M; PCE, 3.190 x 10$^{-6}$ M; TCE, 2.790 x 10$^{-7}$ M; Cl$^-$, 1.690 x 10$^{-2}$ M; acetate, 1.000 x 10$^{-4}$ M; cDCE, 4.570 x 10$^{-7}$ M; DCA, 4.730 x 10$^{-7}$ M; ethene, 1.340 x 10$^{-3}$ M; 2-CP, 5.072 x 10$^{-7}$ M; phenol, 2.178 x 10$^{-6}$ M; MCB, 5.313 x 10$^{-7}$ M; benzene, 7.105 x 10$^{-7}$ M.
DEHALOCOCCOIDIA BIOMASS FUELS MICROBIOMES IN HIGHLY OLIGOTROPHIC ENVIRONMENTS

Organohalide-respiring Dehalococcoidia use H₂ at very low concentrations and are active in anoxic environments where organochlorines form naturally. Dehalococcoidia generate approximately four times more biomass per mole of H₂ oxidized than methanogens (50). When hydrolysis and fermentation reactions sustain elevated H₂ concentrations, hydrogenotrophic methanogenesis and organohalide respiration can cooccur, as long as chlorinated electron acceptors are available. In highly oligotrophic environments (e.g., the energy-deprived deep subsurface), the formation of H₂ is thermodynamically controlled, and hydrogenotrophic organohalide-respiring Dehalococcoidia can outcompete other H₂-consuming microorganisms (e.g., methanogens and sulfate reducers) for electron donor. In environments where energy sources limit microbial metabolism and growth (e.g., the deep subsurface), Dehalococcoidia necromass could be a relevant source of nutrients and energy, suggesting that Dehalococcoidia play relevant functions in carbon and energy cycling and support microbiomes in energy-depleted, oligotrophic ecosystems. This process likely extends to environments without measurable pools of chlorinated organics because balanced chlorination and dechlorination reactions maintain low steady-state organochlorine concentrations but provide sufficient flux to sustain Dehalococcoidia populations.

DEHALOCOCCOIDIA MEDIATE RECALCITRANCE OF ORGANIC COMPOUNDS AND AN ENVIRONMENTAL SYSTEM’S CHLORINE STORAGE CAPACITY

Natural chlorination is a widespread phenomenon in many environmental systems (40) and enhances the recalcitrance of organic compounds. Chlorination also influences the environmental phase partitioning and transport of organic compounds and increases the chlorine retention time, which impacts ecosystem processes, as docu-
mented in forest soils and marine sediments (46, 47, 68). The cleavage of carbon-chlorine bonds by abiotic and biotic processes releases inorganic chloride and transforms recalcitrant carbon into bioavailable and biodegradable organic carbon that various microbial taxa can metabolize (47). Thus, organohalide-respiring *Dehalococcoidia* play key roles by removing recalcitrance and rendering the remaining nonhalogenated organics (or with a lower degree of chlorination) more susceptible to microbial metabolism. Inorganic chloride is water-soluble and prone to leaching, especially in well-drained soils experiencing elevated rainfall. Chloride is an essential plant micro-nutrient and extensive chloride loss can affect plant productivity. Thus, the fine-tuned interplay between chlorination and dechlorination reactions impacts soil microbiomes, as well as macroflora, with potentially far-reaching consequences for plant productivity and carbon and nutrient cycling. Such cross-kingdom interactions involving halogen cycling are poorly understood and organohalide-respiring bacteria may play a crucial role in balancing this system.

DEHALOCOCCOIDIA ATTENUATE SIGNALING MOLECULES AND CHEMICAL DETERRENTS

Antibiotics selectively kill or inhibit competing (micro)organisms or have signaling function, and this weapon versus signal debate has received considerable attention (69–73). Antibiotics at low, subinhibitory concentrations may serve signaling purposes and can impact bacterial virulence, biofilm formation, quorum sensing, gene expression, and gene transfer (73). Many natural (e.g., vancomycin) and anthropogenic (e.g., triclosan) antibiotics are chlorinated organic compounds (74). An increasing number of halogenated natural products have been identified and characterized as chemical repellents, feeding deterrents and signaling molecules, including chlorinated steroid glycosides from the German cockroach (*Blattella germanica*), brominated organic compounds (e.g., bromoindoles, bromophenols, and bromopyrroles) from various marine sponges (e.g., *Aplysina aerophoba*, *Agelas wiedenmayeri*, and *Agelas conifera*), and brominated diterpenes from the marine red alga *Laurencia saitoi* (37, 39, 75–77). *Dehalococcoidia* may interact with organohalogen-producing organisms and play a role in recycling halogenated antibiotics and signaling molecules. For instance, the bacterial community associated with *Aplysina aerophoba*, a marine sponge that produces organobromine compounds, has been demonstrated to dehalogenate halogenated phenolic compounds, and a 16S rRNA gene sequence closely related to *Dehalococcoidia* was recovered from the sponge-associated microbiota (76, 77). Thus, *Dehalococcoidia* may play crucial ecological roles in disarming chemical defense systems and have functions as signal-attenuating agents by dehalogenating halogenated signaling molecules and antibiotics.

KNOWLEDGE GAPS

Innovative strategies for cultivating not-yet-cultured *Dehalococcoidia*. Diverse uncultured *Dehalococcoidia* have been identified in various sequencing studies (i.e., shotgun metagenomic sequencing, amplicon sequencing, single-cell sequencing) (see Table S1 in the supplemental material). Single-cell sequencing has expanded the *Dehalococcoidia* pan-genome, but the approach is plagued by cell selection biases and incomplete genome information (28). Cultivation from single cells has not been successful, preventing detailed physiological and biochemical studies of *Dehalococcoidia* captured by single-cell sorting approaches (26, 27, 78). The hope is that the increasing information obtained from metagenome and single-cell genome sequencing will guide innovative cultivation and enrichment strategies to obtain cultures for detailed physiological and biochemical studies.

Quantifying the roles of *Dehalococcoidia* in syntrophy and carbon cycling. Hydrogenotrophic organohalide-respiring *Dehalococcoidia* consume H₂ to low consumption threshold concentrations and are ideal partners in syntrophic processes, such as AOM, that are thermodynamically controlled by the prevailing H₂ partial pressure. The concentrations (i.e., pools) of organochlorines in pristine environments are typically
low; however, very little is known about the in situ rates of halogenation and dehalogenation reactions. Thus, the fluxes between nonhalogenated and halogenated pools of organic material may be large and the impact of hydrogenotrophic organohalide-respiring bacteria for carbon cycling may be far greater than is currently acknowledged. Therefore, concerted efforts are needed to measure fluxes of organohalogenes in pristine environments, so that the role of organohalide-respiring bacteria for syntrophic processes can be more clearly understood and delineated. To advance the understanding of the dynamics of Dehalococcoidia populations in different microbiomes, time-resolved absolute quantitative information should be obtained. Should further research corroborate that Dehalococcoidia are crucial partner populations for syntrophic processes such as AOM, or key specialist degraders of halogenated signaling molecules, the resilience of Dehalococcoidia to changing environmental conditions (e.g., pH, warming temperatures, decreased or increased soil moisture content, and land-use change) must be explored, so that ecosystem-level responses can be predicted.

Biotechnological applications. If the anticipated progress in cultivation can be realized and a broader suite of cultures and isolates from diverse environments becomes available, the roles of Dehalococcoidia in carbon and nutrient cycling in natural, pristine and organohalogen degradation in contaminated environments can be elucidated. Such efforts will likely lead to the discovery of dechlorinators with novel RDase genes, which can advance monitoring regimes and treatment of sites impacted with anthropogenic chlorinated contaminants. Organohalide-respiring Dehalococcoidia harbor a sizeable genetic diversity of RDase genes, but comparably few substrates have been identified, suggesting that Dehalococcoidia can utilize a much broader range of organohalogenes as electron acceptors than is currently appreciated. Largely lacking is kinetic information about RDases (i.e., the affinity to chlorinated electron acceptors K_m values) and the turnover rates, which would be necessary to gauge the contributions of Dehalococcoidia for transforming halogenated micropollutants (e.g., pesticides, pharmaceuticals like chloroquine and hydroxychloroquine). Bioaugmentation with Dehalococcoides-containing consortia has promoted in situ contaminant removal at a large number of sites (11); however, bioremediation is still an empirical practice and comprehensive knowledge of the diversity and ecophysiology of organohalide-respiring Dehalococcoidia can advance the approach to a science with predictable outcomes.

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.

TABLE S1, XLSX file, 0.03 MB.

ACKNOWLEDGMENTS
This study was supported by the LiaoNing Revitalization Talents Program XLYC1807139, the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (CAS), grant ZDBS-LY-DQC038, the National Natural Science Foundation of China (grant 41673126), and the U.S. Department of Defense Strategic Environmental Research and Development Program.

We declare there are no competing financial interests.

REFERENCES
1. Hanada S. 2014. The phylum Chloroflexi, the family Chloroflexaceae, and the related phototrophic families Oscillochloridaceae and Roseiflexaceae, pp 515–532. In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (ed), The prokaryotes. Springer, Berlin, Germany. https://doi.org/10.1007/978-3-642-38954-2_165.
2. Dodsworth JA, Gevorokian J, Despujos F, Cole JK, Murugapiran SK, Ming H, Li W, Zhang G, Dohnalkova A, Hedlund BP. 2014. Thermofilix hugenholzii gen. nov., sp. nov., a thermophilic, microaerophilic, filamentous bacterium representing a novel class in the Chloroflexi, Thermofilix classis nov., and description of Thermofilix fam. nov. and Thermo-
proposal for division of the class Chloroflexi class. nov. [corrected] into the order Chloroflexales ord. nov., consisting of the emended family Oscillochloridaceae and the family Chloroflexaceae fam. nov., and the suborder Roseiflexinea subord. nov., containing the family Roseiflexeae fam. nov. Antonie Van Leeuwenhoek 103:99–119. https://doi.org/10.1007/s10482-012-9790-3.

5. Parks DH, Chovuochina M, Waite DW, Rinke C, Skarshewski A, Chaumel PA, Hugenholtz P. 2018. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 36:996–1004. https://doi.org/10.1038/nbt.4229.

6. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596. https://doi.org/10.1093/nar/gks1219.

7. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596. https://doi.org/10.1093/nar/gks1219.

8. Löffler FE, Yan J, Ritalahti KM, Adrian L, Edwards EA, Konstantinidis KT, Muller JA, Fullerton H, Zinder SH, Spormann AM. 2013. Dehalococcoides mccartyi gen. nov., sp. nov., obligately organohalide-respiring anaerobic bacteria relevant to halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoidia classis nov., order Dehalococcoidales ord. nov. and family Dehalococcaceae fam. nov., within the phylum Chloroflexi. Int J Syst Evol Microbiol 63:625–635. https://doi.org/10.1099/ijsem.0.001819.

9. Key TA, Bowman KS, Lee I, Chun J, Albuquerque L, da Costa MS, Rainey PB, Ley RE, Wieland B, Brown DG. 2013. Improved data processing and web-based tools. Nucleic Acids Res 41:D633–D642. https://doi.org/10.1093/nar/gkt1244.

10. Zhao S, Rogers MJ, Ding C, He J. 2018. Reductive debromination of chlorinated solvents. Front Microbiol 9:1292. https://doi.org/10.3389/fmicb.2018.01292.

11. Adrian L, Löffler FE. 2016. Organohalide-respiring bacteria. Springer, Berlin, Germany.

12. Krzmarzick MJ, Cray RB, Harding JJ, Oyerinde OO, Leri AC, Myneni SC, Novak PJ. 2012. Natural niche for organohalide-respiring Chloroflexi. Appl Environ Microbiol 78:393–401. https://doi.org/10.1128/AEM.06510-11.

13. Krzmarzick MJ, McNamara PJ, Cray BB, Novak PJ. 2013. Abundance and diversity of organohalide-respiring bacteria in lake sediments across a geographical sulfur gradient. FEMS Microbiol Ecol 84:248–258. https://doi.org/10.1002/lno.10320.

14. Teske A. 2013. Marine deep sediment microbial communities, p 123–138. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt EFT (ed), The Prokaryotes. Springer, Berlin, Germany.

15. Stein R, Blackman D, Inagaki F, Larsen H-C. 2014. Earth and life processes achieved by the Integrated Ocean Drilling Program (IODP), vol 7. Elsevier, Amsterdam, Netherlands.

16. Inagaki F, Nunoura T, Nakagawa S, Teske A, Lever M, Lauer A, Suzuki M, Takai K, Delwiche M, Colwell FS, Nealson KH, Horikoshi K, D’Hondt S, Jorgensen BB. 2006. Biogeographical distribution and diversity of microbes in methane-hydrate-bearing deep marine sediments on the Pacific Ocean Margin. Proc Natl Acad Sci U S A 103:2815–2820. https://doi.org/10.1073/pnas.0511033103.

17. Inagaki F, Hinrichs KU, Kubo Y, Bowles MW, Heuer VB, Hong WL, Hoshino H, Tiri A, Imachi H, Ito M, Kaneko M, Lever MA, Lin YS, Methe BA, Morita S, Morono Y, Tanikawa W, Bihan M, Bowden SA, Elvert M, Glombitza C, Gross D, Harrington GJ, Hori T, Li K, Limmel D, Liu CH, Murayama M, Ohkouchi N, Ono S, Park YS, Phillips SC, Prieto-Mollars X, Purkey M, Riedinger N, Sanada Y, Sauvage J, Gusbilava R, Takano Y, Tashima Y, Terada T, Tomaru H, Trembath-Reichert E, Wang DT, Yamada Y. 2015. Exploring deep microbial life in coal-bearing sediments down to ~2.5 km below the ocean floor. Science 349:420–424. https://doi.org/10.1126/science.aaa6882.

18. Parks DH, Rinke C, Chovuochina M, Chaumel PA, Woodcock BJ, Evans PN, Hugenholtz P, Tyson GW. 2017. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat Microbiol 2:1533–1542. https://doi.org/10.1038/s41564-017-0002-7.

19. Tully BJ, Graham M, Heidelberg JF. 2018. The reconstruction of 2,631 draft metagenome-assembled genomes from the global oceans. Sci Data 5:170203. https://doi.org/10.1038/sdata.2017.203.
chlorinated solvent remediation. Environ Sci Technol 37:1422–1431. https://doi.org/10.1021/es025985u
37. Gribskov M. 2010. Naturally occurring organohalogen compounds: a comprehensive update. Springer Science and Business Media, New York, NY. https://doi.org/10.1007/978-3-211-99323-1_3
38. Gribskov M. 2004. Natural organohalogens: a new frontier for medicinal agents? J Chem Educ 81:1441–1449. https://doi.org/10.1021/ed081p1441
39. Gribskov M. 2004. Amazing organohalogens: although best known as synthetic toxicants, thousands of halogen compounds are, in fact, part of our natural environment. Am Sci 92:342–349. https://doi.org/10.1511/2004.48.937
40. Atashgahi S, Häggblom MM, Smidt H. 2018. Organohalide respiration in pristine environments: implications for the natural halogen cycle. Environ Microbil 20:934–948. https://doi.org/10.1002/1462-9202.14016
41. Wang S, Chng WR, Wilim A, Zhao S, Yang KL, Nagaranj N, He J. 2014. Genomic characterization of three unique Dehalococcoides that respire on persistent polychlorinated biphenyls. Proc Natl Acad Sci U S A 111:12103–12108. https://doi.org/10.1073/pnas.1404845111
42. McMurdie PJ, Hug LA, Edwards EA, Holmes S, Spormann AM. 2011. Site-specific mobilization of vinyl chloride respiration islands by a mechanism common in Dehalococcoides. BMC Genomics 12:287. https://doi.org/10.1186/1471-2164-12-287
43. Packard-Crespo E, Swift C, Wagner DD, Chourey K, Hettich RL, Ritalahti KM, Löffler FE. 2014. Identification and environmental distribution of dacA, which encodes the reductive dehalogenase catalyzing the dichloroethene–propene to propane in organohalide-respiring Chloroflexi. Appl Environ Microbiol 80:808–818. https://doi.org/10.1128/AEM.02927-13
44. Molenda O, Tang S, Lomheim L, Gautam VK, Lemak S, Yakunin AF, Krajmalnik-Brown R, Sung Y, Ritalahti KM, Löffler FE. 2014. Identification and environmental distribution of dacA, which encodes the reductive dehalogenase catalyzing the dichloroethene–propene to propane in organohalide-respiring Chloroflexi. Appl Environ Microbiol 80:808–818. https://doi.org/10.1128/AEM.02927-13
45. Leroy S, Tang Y, Rittmann BE, Zhao H-P. 2018. Anaerobic oxidation of methane coupled to denitrification: fundamentals, challenges, and potential. Crit Rev Environ Sci Technol 48:1067–1093. https://doi.org/10.1080/10643389.2018.1503927
46. Costa RB, Okada DY, Delforno TP, Foresti E. 2019. Methane-oxidizing archaea, aerobic methanotrophs and nitrifiers coexist with methane as the sole carbon source. Int Biodeter Biodegr 138:57–62. https://doi.org/10.1016/j.ibiod.2019.01.013
47. Leri AC, Myneni S. 2010. Organochlorine turnover in forest ecosystems: the missing link in the terrestrial chlorine cycle. Global Biogeochem Cy 24:GB2021. https://doi.org/10.1029/2009GB003427
48. Weigold P, El-Hadidi M, Huson DH, Rittmann BE, Zhao H-P. 2018. Anaerobic oxidation of methane coupled to denitrification: fundamentals, challenges, and potential. Crit Rev Environ Sci Technol 48:1067–1093. https://doi.org/10.1080/10643389.2018.1503927
49. Yu H, Kashima H, Regan JM, Elbeshbishy E, Lee HS. 2017. Energetic considerations in organohalide respiration, p 31–48. In Adrian L, Löffler FE (ed) Organohalide-respiring bacteria. Springer, New York, NY. https://doi.org/10.1007/1016/jm.2008.02.006
50. Thauer R, Morris J. 1984. Metabolism of chemoautotrophic anaerobos: old views and new aspects. In Kelly D, Löffler FE (ed), Organohalide-respiring bacteria. Springer, Berlin, Germany. https://doi.org/10.1007/978-3-662-49875-0_3
51. Thauer R, Janssen DB. 1994. Estimates of Gibbs free energies of formation of chlorinated aliphatic compounds. Biodegradation 5:21–28. https://doi.org/10.1023/A:1008300528087
52. Hoeftlacher TM, Alperin MJ, Alperin DD, Martens CS. 1998. Thermodynamic control on hydrogen concentrations in anoxic sediments. Geochim Cosmochim Acta 62:1745–1756. https://doi.org/10.1016/S0016-7037(98)00106-9
53. Alperin MJ, Hoeftlacher TM. 2009. Anaerobic methane oxidation by archaea/sulfate-reducing bacteria aggregates. 1. Thermodynamic and physical constraints. Am J Sci 309:869–957. https://doi.org/10.2475/2009.01.01
54. Thauer R, Morris J. 1984. Metabolism of chemoautotrophic anaerobos: old views and new aspects. In Kelly D, Carr N (ed), The microbe 1984, part II (Symposium at the 100th meeting of the Society for General Microbiology, Warwick, April 1984). Cambridge University Press, Cambridge, United Kingdom.
55. Caldwell SL, Laidler JR, Brewer EA, Eberly JO, Sandbornh SC, Colwell FS. 2008. Anaerobic oxidation of methane: mechanisms, bioenergetics, and the ecology of associated microorganisms. Environ Sci Technol 42:6791–6799. https://doi.org/10.1021/es800120b
56. Thauer RK. 2011. Anaerobic oxidation of methane with sulfate: on the reversibility of the reactions that are catalyzed by enzymes also involved in methanogenesis from CO2. Curr Opin Microbiol 14:292–299. https://doi.org/10.1016/j.mib.2011.03.003
57. Haroon MF, Hu S, Shi Y, Imelfort M, Keller J, Hugenholtz P, Yuan Z, Tyson GW. 2013. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500:567–570. https://doi.org/10.1038/nature12375
58. Ettinger KF, Zhu B, Speth D, Ketjens JT, Jetten MSM, Kartal B. 2016. Archaea catalyze iron-dependent anaerobic oxidation of methane. Proc Natl Acad Sci U S A 113:12792–12796. https://doi.org/10.1073/pnas.1609534111
59. Hoeftlacher TM, Alperin MJ, Albert DB, Martens CS. 1994. Field and laboratory studies of methane oxidation in an anoxic marine sediment: evidence for a methanogen-sulfate reducer consortium. Global Biogeochem Cycles 8:451–463. https://doi.org/10.1021/acs.est.9b01800
60. Scheller S, Yu H, Chadwick GL, McGlynn SE, Orphan VJ. 2016. Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction. Science 351:703–707. https://doi.org/10.1126/science.aad7154
61. Wegener G, Krukenberg V, Riedel D, Tegetmeyer HE, Boetius A. 2015. Interacellular wiring enables electron transfer between methanotrophic archaea and bacteria. Nature 526:587–590. https://doi.org/10.1038/nature17533
62. Lee HS, Tang Y, Rittmann BE, Zhao H-P. 2018. Anaerobic oxidation of methane coupled to denitrification: fundamentals, challenges, and potential. Crit Rev Environ Sci Technol 48:1067–1093. https://doi.org/10.1080/10643389.2018.1503927
63. Costa RB, Okada DY, Delforno TP, Foresti E. 2019. Methane-oxidizing archaea, aerobic methanotrophs and nitrifiers coexist with methane as the sole carbon source. Int Biodeter Biodegr 138:57–62. https://doi.org/10.1016/j.ibiod.2019.01.013
64. Yu H, Kashima H, Regan JM, Hussain A, Elbeshbishy E, Lee HS. 2017. Methane-oxidizing archaea, aerobic methanotrophs and nitrifiers coexist with methane as the sole carbon source. Int Biodeter Biodegr 138:57–62. https://doi.org/10.1016/j.ibiod.2019.01.013
77. Sacristán-Soriano O, Banaigs B, Casamayor EO, Becerro MA. 2011. Exploring the links between natural products and bacterial assemblages in the sponge *Aplysina aerophoba*. Appl Environ Microbiol 77:862–870. https://doi.org/10.1128/AEM.00100-10.

78. Wasmund K, Algara C, Muller J, Krüger M, Lloyd KG, Reinhardt R, Adrian L. 2015. Development and application of primers for the class Dehalococcoidia (phylum Chloroflexi) enables deep insights into diversity and stratification of subgroups in the marine subsurface. Environ Microbiol 17:3540–3556. https://doi.org/10.1111/1462-2920.12510.

79. Riedinger N, Formolo MJ, Lyons TW, Henkel S, Beck A, Kasten S. 2014. An inorganic geochemical argument for coupled anaerobic oxidation of methane and iron reduction in marine sediments. Geobiology 12:172–181. https://doi.org/10.1111/gbi.12077.

80. Sander R. 2015. Compilation of Henry’s law constants (version 4.0) for water as solvent. Atmos Chem Phys 15:4399–4981. https://doi.org/10.5194/acp-15-4399-2015.

81. Löffler FE, Tiedje JM, Sanford RA. 1999. Fraction of electrons consumed in electron acceptor reduction and hydrogen thresholds as indicators of halorespiratory physiology. Appl Environ Microbiol 65:4049–4056. https://doi.org/10.1128/AEM.65.9.4049-4056.1999.

82. Löffler FE, Sanford RA. 2005. Analysis of trace hydrogen metabolism. Methods Enzymol 397:222–237.