DENOMINATORS OF BOUNDARY SLOPES FOR (1,1)-KNOTS

JASON CALLAHAN

Abstract. We show that for every odd integer \(n > 1 \) the \((2, -3, n)\)-pretzel knot is a hyperbolic \((1,1)\)-knot whose exterior in \(S^3 \) contains an essential surface with boundary slope \(2(n - 1)^2/n \) and Euler characteristic \(-n \).

1. Introduction

Embedded essential (i.e., incompressible and \(\partial \)-incompressible) surfaces have long been crucial to the study of 3-manifolds. The most general strategy for constructing essential surfaces in a 3-manifold \(M \) is established in [4], which shows how to associate essential surfaces to ideal points of irreducible curves in the character variety equal to the complex algebraic set of characters of \(\text{SL}_2 \mathbb{C} \)-representations of \(\pi_1(M) \). This technique is especially effective in identifying the boundary slopes of \(M \), i.e., the elements of \(\pi_1(\partial M) \) represented by boundary components of essential surfaces. These in turn are helpful in understanding the Dehn fillings on \(M \), which is important because every closed 3-manifold can be obtained by Dehn filling on the exterior of a knot or link in \(S^3 \). Results in this vein include [3] for fillings that yield manifolds with cyclic fundamental group and [1] for fillings that yield manifolds with finite fundamental group. Investigations of boundary slopes for knot exteriors in \(S^3 \) include [11] for two-bridge knots, [9] for two-bridge links, and [10] for Montesinos knots \(K(p_1/q_1, \ldots, p_n/q_n) \) obtained by connecting \(n \geq 3 \) rational tangles of non-integral slopes \(p_1/q_1, \ldots, p_n/q_n \) with each pair \((p_i, q_i) \) relatively prime (these conditions will be assumed henceforth) in a simple cyclic pattern that yields a knot if just one \(q_i \) is even or if all \(q_i \) are odd and the number of odd \(p_i \) is odd; these are classified by the following (Classification Theorem 1.2 of [17]).

Theorem 1.1. Montesinos knots \(K(p_1/q_1, \ldots, p_n/q_n) \) with \(n \geq 3 \) are classified by the sum \(\sum p_i/q_i \) and the vector \((p_1/q_1, \ldots, p_n/q_n) \mod 1 \) up to cyclic permutation and reversal of order.

Two-bridge knots are the Montesinos knots with \(n < 3 \), and \((q_1, \ldots, q_n)\)-pretzel knots are the Montesinos knots \(K(1/q_1, \ldots, 1/q_n) \); we also recall the following modifications of Theorem III of [13] and Corollary 5 of [15] respectively.

Theorem 1.2. A \((q_1, \ldots, q_n)\)-pretzel knot with \(n \geq 3 \) is a torus knot if and only if \(n = 3 \) and \((q_1, q_2, q_3) \) is a cyclic permutation of either \((-2\epsilon, 3\epsilon, 3\epsilon)\) or \((-2\epsilon, 3\epsilon, 5\epsilon)\) where \(\epsilon = \pm 1 \).

Proposition 1.3. A Montesinos knot is hyperbolic if it is not a torus knot.

Following [14], the tunnel number \(t(K) \) of a knot \(K \) in \(S^3 \) is the minimum number of mutually disjoint arcs \(\{\tau_i\} \) properly embedded in \(S^3 \setminus K \) such that the exterior of \(K \cup (\cup \tau_i) \) is a handlebody, and \(K \) has a \((g,b)\)-decomposition if there is a genus \(g \) Heegaard splitting \(\{W_1, W_2\} \) of \(S^3 \) such that \(K \) intersects each \(W_i \)
in a b-string trivial arc system; then $t(K) \leq g + b - 1$, so K has tunnel number one if it admits a (1,1)-decomposition, i.e., is a (1,1)-knot, a type of knot that has attracted much attention recently (e.g., [7] and [8] investigate closed and meridional essential surfaces in (1,1)-knot exteriors). A related result for Montesinos knots is the following taken from Theorem 2.2 and a closing remark of [14].

Theorem 1.4. If $K = K(p_1/q_1,p_2/q_2,p_3/q_3)$ is a Montesinos knot with $q_1 = 2$ and $q_2 \equiv q_3 \equiv 1 \mod 2$ up to cyclic permutation of the indices, then K has tunnel number one and admits a (1,1)-decomposition.

The denominators of boundary slopes are particularly important; e.g., [6] conjectures that there are no essential surfaces in two-bridge link exteriors with boundary in only one component and slope $1/n$ if $n \geq 6$. This in turn implies that all tunnel number one knot exteriors containing a closed essential surface of genus at least two are hyperbolic. Another result concerning the denominators of boundary slopes is the following upper bound taken from Theorem 1.1 of [12].

Theorem 1.5. If K is a Montesinos knot with $n \geq 3$ rational tangles and is not a $(-2,3,t)$-pretzel knot for odd $t \geq 3$, S an essential surface properly embedded in $S^3 \setminus K$ with boundary slope p/q where $q > 0$ and p and q are relatively prime, and $\chi(S)$ and $\#b(S)$ the Euler characteristic and number of boundary components of S, then $q \leq -\chi(S)/\#b(S)$.

In this paper, we use an algorithm of [10] also presented in [2], [12], and [16] to show that the upper bound in Theorem 1.5 is achieved for an infinite class of hyperbolic (1,1)-knots by proving the following.

Theorem 1.6. For any odd integer $n > 1$, the $(2, -3, n)$-pretzel knot, which is the Montesinos knot

$$K_n = K\left(\frac{1}{n}, \frac{2}{3}, -\frac{1}{2}\right),$$

is a hyperbolic (1,1)-knot whose exterior in S^3 contains an essential surface with boundary slope $2(n - 1)^2/n$ and Euler characteristic $-n$.

![Figure 1](image_url)
The $(2, −3, n)$-pretzel knot in Figure 1 is the Montesinos knot $K(1/2, −1/3, 1/n)$ and hence K_n by Theorem 1.1. This is not a torus knot by Theorem 1.2 and thus is hyperbolic by Proposition 1.3. Theorem 1.4 establishes that K_n has tunnel number one and admits a $(1,1)$-decomposition, i.e., is a $(1,1)$-knot. That $S^3 \setminus K_n$ contains an essential surface with boundary slope $2(n − 1)^2/n$ and Euler characteristic $−n$ will be shown in Section 3 after reviewing the algorithm of [10] in Section 2.

2. Preliminaries

Let $K = K(p_1/q_1, \ldots, p_n/q_n)$ be a Montesinos knot with $n \geq 3$. Our computation of boundary slopes for K follows the algorithm of [10] as also presented in [2], [12], and [16]. See those for details, but briefly [10] shows how to associate candidate surfaces to admissible edgopath systems in a graph D in the uv-plane whose vertices (u, v) correspond to projective curve systems $[a, b, c]$ on the 4-punctured sphere carried by the train track in Figure 2(a) via $u = b/(a + b)$ and $v = c/(a + b)$. Specifically, the vertices of D are:

- the ∞-tangle (∞) in Figure 2(b) with uv-coordinates $(-1, 0)$,
- the p/q-circles $⟨p/q⟩$ whose uv-coordinates $(1, p/q)$ correspond to the projective curve system $[0, q, p]$, and
- the p/q-tangles $⟨p/q⟩$ whose uv-coordinates $((q − 1)/q, p/q)$ correspond to the projective curve system $[1, q − 1, p]$.

![Figure 2. Curve systems and tangles.](image)

If $|ps − qr| = 1$, then $[(p/q), (r/s)]$ is a non-horizontal edge in D connecting $⟨r/s⟩$ to $⟨p/q⟩$; the remaining edges in D are:

- the horizontal edges $[⟨p/q⟩, (p/q)∧]$ connecting $⟨p/q⟩∧$ to $⟨p/q⟩$,
- the vertical edges $[⟨m⟩, ⟨m + 1⟩]$ connecting $⟨m + 1⟩$ to $⟨m⟩$, and
- the infinity edges $[⟨\infty⟩, (m)]$ connecting $⟨m⟩$ to $⟨\infty⟩$

for any integer m; Figure 3 shows part of the graph D.

Rational points $(p/q, r/s) ∈ D ∩ \mathbb{Q}^2$ need not be vertices of D and correspond to the projective curve systems $[s(q − p), sp, rq]$. If $[(p/q), (r/s)]$ is a non-horizontal edge in D, then $\frac{k}{m} (p/q) + \frac{km}{m} (r/s)$ is a rational point on this edge with coordinates

\[
\begin{align*}
\frac{k(q − s) + m(s − 1)}{k(q − s) + ms}, & \quad \frac{k(p − r) + mr}{k(q − s) + ms},
\end{align*}
\]

for rational k and integer m. The algorithm of [10] constructs these edges by finding a path from a vertically oriented edge $(1, p/q)$ to an edge $(p/q, r/s)$ via an expression of the form $[k/p, k/q]$ with $k/p + k/q = 1$. The steps in the algorithm of [10] are:

1. Start at $(1, p/q)$ and move vertically down to $(p/q, r/s)$.
2. If the vertical distance from $(p/q, r/s)$ to $(1, p/q)$ is m, then $m = r/s − p/q$.
3. Choose k such that $k/p + k/q = 1$ and $k/q = r/s − p/q$.
4. The rational point on the edge is $\frac{k}{m} (p/q) + \frac{km}{m} (r/s)$.

This algorithm is used to find the essential surface with boundary slope $2(n − 1)^2/n$ and Euler characteristic $−n$. The essential surface is constructed by starting at $⟨\infty⟩$ and following the algorithm to find a path to $⟨p/q⟩$ for each p/q in the set $[1/n, 2/n, 3/n, \ldots, n/n]$, and then connecting these paths to form an essential surface with boundary slope $2(n − 1)^2/n$ and Euler characteristic $−n$.
An edgepath in \mathcal{D} is a piecewise linear path $[0, 1] \to \mathcal{D}$ that begins and ends at rational points (not necessarily vertices) of \mathcal{D}. An admissible edgpath system $\gamma = (\gamma_1, \ldots, \gamma_n)$ is an n-tuple of edgpaths in \mathcal{D} such that:

(E1) Each starting point $\gamma_i(0)$ lies on the horizontal edge $[\langle p_i/q_i \rangle, \langle p_i/q_i \rangle^\circ]$, and γ_i is constant if $\gamma_i(0) \neq \langle p_i/q_i \rangle$.

(E2) Each γ_i is minimal, i.e., it never stops and retraces itself, and it never travels along two sides of a triangle in \mathcal{D} in succession.

(E3) The ending points $\gamma_1(1), \ldots, \gamma_n(1)$ all lie on a vertical line (i.e., have the same u-coordinates), and their v-coordinates sum to zero.

(E4) Each γ_i proceeds monotonically from right to left where traversing vertical edges is permitted, i.e., if $0 \leq t_1 < t_2 \leq 1$, then the u-coordinate of $\gamma_i(t_1)$ is at least as great as the u-coordinate of $\gamma_i(t_2)$.

The aforementioned curve systems on the 4-punctured sphere describe how the boundaries of 3-balls that decompose S^3 and each contain a tangle of K intersect properly embedded surfaces in $S^3 \setminus K$, and [10] shows how to associate a finite number of candidate surfaces to each admissible edgpath system; their importance is the following (Proposition 1.1 in [10]).

Proposition 2.1. Every incompressible, ∂-incompressible surface in $S^3 \setminus K$ with non-empty boundary of finite slope is isotopic to one of the candidate surfaces.

Given an admissible edgpath system $\gamma = (\gamma_1, \ldots, \gamma_n)$ in \mathcal{D}, the final r-value of each edgpath γ_i is the denominator of the v-coordinate at the point where the rightward extension of the final edge of γ_i intersects the vertical line $u = 1$. The sign of the final r-value is negative if this final edge travels downward from right to left. The cycle of final r-values of γ is the n-tuple of final r-values of the edgpaths $\gamma_1, \ldots, \gamma_n$; its importance is the following (Corollary 2.4 of [10]).

![Figure 3. Part of the graph \mathcal{D}.](image_url)
Proposition 2.2. A candidate surface is incompressible unless the cycle of final \(r \)-values of its associated admissible edgepath system has one of the following forms: \((0, r_2, \ldots, r_n), (1, \ldots, 1, r_n) \), or \((1, \ldots, 1, 2, r_n) \).

To compute the boundary slope of a candidate surface, \([10]\) establishes the following algorithm. The twist number of a candidate surface \(S \) associated to an admissible edgepath system \(\gamma \) is \(\tau(S) = 2(e_- - e_+) \), where \(e_+ \) (\(e_- \)) is the number of edges of \(\gamma \) that travel upward (downward) from right to left (infinity edges are not counted). Fractional values of \(e_\pm \) correspond to edges of \(\gamma \) that only traverse a fraction of an edge in \(D \), i.e., the segment from \(\langle r/s \rangle \) to \(\frac{p}{q} \langle r/s \rangle + \frac{m}{m} \langle r/s \rangle \) counts as the fraction \(k/m \) of an edge. The boundary slope of \(S \) is \(\tau(S) - \tau(\Sigma) \), where \(\Sigma \) is a Seifert surface for \(K \) that is a candidate surface found in the following manner described on pages 460-461 of \([10]\).

Remark 2.3. A candidate surface associated to an admissible edgepath system \(\gamma = (\gamma_1, \ldots, \gamma_n) \) is a Seifert surface for \(K(p_1/q_1, \ldots, p_n/q_n) \) if one \(q_i \) is even and each \(\gamma_i \) is a minimal edgepath from \(\langle p_i/q_i \rangle \) to \(\langle \infty \rangle \) whose mod 2 reduction uses only one edge of the triangle in \(D \) with vertices \(\langle \infty \rangle \), \(\langle 0 \rangle \), and \(\langle 1 \rangle \) such that the number of odd penultimate vertices of the \(\gamma_i \) is even.

To compute the Euler characteristic of a candidate surface \(S \) associated to an admissible edgepath system \(\gamma = (\gamma_1, \gamma_2, \gamma_3) \) for \(K(p_1/q_1, p_2/q_2, p_3/q_3) \), we observe the following algorithm from Lemma 2.2 and the proof of Theorem 2.1 in \([10]\). Define the length \(|\gamma_i| \) of each \(\gamma_i \) by counting the length of a full edge as 1 and the length of a partial edge from \(\langle r/s \rangle \) to \(\frac{p}{q} \langle r/s \rangle + \frac{m}{m} \langle r/s \rangle \) as \(k/m \). If \(\gamma_i \) is not constant, let \(m_i \) be the least positive integer such that \(m_i |\gamma_i| \in \mathbb{Z} \), \(m = \text{lcm}(m_1, m_2, m_3) \), and \(\chi(\gamma_i) = m(2 - |\gamma_i|) \). Since \(\gamma \) is an admissible edgepath system, the ending points \(\gamma_i(1) \) all have the same \(u \)-coordinate \(b/(a+b) \); the Euler characteristic of \(S \) is

\[
\chi(S) = \sum_{i=1}^{3} \chi(\gamma_i) - 4a - b.
\]

3. Proof of Theorem 1.6

We now prove our result restated here for convenience.

Theorem 1.6. For any odd integer \(n > 1 \), the \((2, -3, n)\)-pretzel knot, which is the Montesinos knot

\[
K_n = K\left(\frac{1}{n}, \frac{2}{3}, -\frac{1}{2}\right),
\]

is a hyperbolic \((1,1)\)-knot whose exterior in \(S^3 \) contains an essential surface with boundary slope \(2(n-1)^2/n \) and Euler characteristic \(-n\).

Proof. Again, the \((2, -3, n)\)-pretzel knot is the Montesinos knot \(K(1/2, -1/3, 1/n) \) and hence \(K_n \) by Theorem 1.1, see Figure 1. This is not a torus knot by Theorem 1.2 and thus is hyperbolic by Proposition 1.3. Theorem 1.4 establishes that \(K_n \) has tunnel number one and admits a \((1,1)\)-decomposition, i.e., is a \((1,1)\)-knot. We now use the algorithm of \([10]\) described in Section 2 and Formula (2) to show that \(S^3 \setminus K_n \) contains an essential surface with boundary slope \(2(n-1)^2/n \) and Euler characteristic \(-n\).
Let γ be the edgepath system in Figure 4 given by

\[
\begin{align*}
\gamma_1 &= \left[\frac{n-1}{n} (0) + \frac{1}{n} \left\langle \frac{1}{n} \right\rangle, \left\langle \frac{1}{n} \right\rangle \right] \\
\gamma_2 &= \left[\frac{1}{n} (0) + \frac{n-1}{n} \left\langle \frac{1}{2} \right\rangle, \left\langle \frac{2}{3} \right\rangle \right] \\
\gamma_3 &= \left[\frac{1}{n} (-1) + \frac{n-1}{n} \left\langle -\frac{1}{2} \right\rangle, \left\langle -\frac{1}{2} \right\rangle \right].
\end{align*}
\]

To obtain an associated candidate surface, we verify that γ satisfies conditions (E1-4):

(E1) $\gamma_1(0) = (1/n)$ lies on the horizontal edge $[(1/n), (1/n)]$, $\gamma_2(0) = (2/3)$ lies on the horizontal edge $[(2/3), (2/3)]$, and $\gamma_3(0) = (-1/2)$ lies on the horizontal edge $[(-1/2), (-1/2)]$; none of the γ_i are constant.

(E2) No γ_i stops and retraces itself or travels along two sides of a triangle in D in succession.

(E3) Using Formula 1,

\[
\begin{align*}
\gamma_1(1) &= \left[\frac{n-1}{n} (0) + \frac{1}{n} \left\langle \frac{1}{n} \right\rangle \right] = \left(\frac{n-1}{2n-1}, \frac{1}{2n-1} \right) \\
\gamma_2(1) &= \left[\frac{1}{n} (0) + \frac{n-1}{n} \left\langle \frac{1}{2} \right\rangle \right] = \left(\frac{n-1}{2n-1}, \frac{n-1}{2n-1} \right) \\
\gamma_3(1) &= \left[\frac{1}{n} (-1) + \frac{n-1}{n} \left\langle -\frac{1}{2} \right\rangle \right] = \left(\frac{n-1}{2n-1}, \frac{-n}{2n-1} \right),
\end{align*}
\]

which all lie on a vertical line (i.e., have the same u-coordinates), and their v-coordinates sum to zero.

(E4) Each γ_i proceeds monotonically from right to left.
We now find a Seifert surface for K_n reductions that use only the edges $⟨∞⟩$ edgepath system. Let e be the edgepath system in Figure 5 given by $⟨−n⟩$ is a full edge and another $1/n$ by Formula (2).

Since this final edge travels downward from right to left, the final r-value of $γ_1$ is $1−n$, the negative of the denominator of the v-coordinate of this point of intersection.

Similarly, the final edge of $γ_2$ connects $(1/2) = (1/2, 1/2)$ to $γ_2(1)$, so its slope is 1, and its rightward extension intersects the vertical line $u = 1$ at the point $(1, 1)$. Since this final edge travels downward from right to left, the final r-value of $γ_2$ is $−1$, the negative of the denominator of the v-coordinate of this point of intersection.

Lastly, the final edge of $γ_3$ connects $⟨−1/2⟩ = (1/2, −1/2)$ to $γ_3(1)$, so its slope is 1, and its rightward extension intersects the vertical line $u = 1$ at the point $(1, 0)$. Since this final edge travels downward from right to left, the final r-value of $γ_1$ is $−1$, the negative of the denominator of the v-coordinate of this point of intersection regarding 0 as 0/1.

Thus, the cycle of final r-values of $γ$ is $(1−n, −1, −1)$, so S_n is incompressible by Proposition 2.2. To compute its Euler characteristic, we note $|γ_1| = (n−1)/n$, $|γ_2| = (n+1)/n$, and $|γ_3| = 1/n$, so n is the least positive integer such that $n|γ_i| ∈ \mathbb{Z}$ for all i. Thus, $χ(γ_1) = n+1$, $χ(γ_2) = n−1$, and $χ(γ_3) = 2n−1$. The u-coordinate of the ending points $γ_i(1)$ is $(n−1)/(2n−1)$, so $a = n$, $b = n−1$, and $χ(S) = −n$ by Formula 3.

To compute the boundary slope of S_n, we note that $γ_1$ is $(n−1)/n$ of an edge, $γ_2$ is a full edge and another $1/n$ of an edge, and $γ_3$ is $1/n$ of an edge, all of which travel downward from right to left, so $e_+ = 0$, $e_− = (2n+1)/n$, and $τ(S_n) = (4n+2)/n$. We now find a Seifert surface for K_n that is a candidate surface for an admissible edgepath system. Let $δ$ be the edgepath system in Figure 5 given by

\[
δ_1 = \left[⟨∞⟩, ⟨1⟩, \frac{1}{2}, \ldots, \frac{1}{n} \right]
\]

\[
δ_1 = \left[⟨∞⟩, ⟨0⟩, \frac{1}{2}, \frac{2}{3} \right]
\]

\[
δ_2 = \left[⟨∞⟩, ⟨−1⟩, −\frac{1}{2} \right].
\]

We first verify that $δ$ satisfies conditions (E1-4):

(E1) $δ_1(0) = ⟨1/n⟩$ lies on the horizontal edge $⟨(1/n), (1/n)^0⟩$, $δ_2(0) = ⟨2/3⟩$ lies on the horizontal edge $⟨(2/3), (2/3)^0⟩$, and $δ_3(0) = ⟨−1/2⟩$ lies on the horizontal edge $⟨(−1/2), (−1/2)^0⟩$; none of the $δ_i$ are constant.

(E2) No $δ_i$ stops and retraces itself or travels along two sides of a triangle in D in succession.

(E3) Each $δ_i(1) = ⟨∞⟩ = (−1, 0)$, so they all lie on a vertical line (i.e., have the same u-coordinates), and their v-coordinates sum to zero.

(E4) Each $δ_i$ proceeds monotonically from right to left.

Hence, $δ$ is an admissible edgepath system with one q_i even and each $δ_i$ a minimal edgepath from (p_i/q_i) to $⟨∞⟩$ with penultimate vertices (1), (0), and $−(1)$ and mod 2 reductions that use only the edges $[⟨∞⟩, ⟨1⟩], [⟨∞⟩, ⟨0⟩], and [⟨∞⟩, ⟨1⟩]$ respectively,
so an associated candidate surface Σ_n is a Seifert surface for K_n by Remark 2.3.

Ignoring the infinity edges, δ_1 consists of $n - 1$ edges traveling upward from right to left, δ_2 consists of two edges traveling downward from right to left, and δ_3 consists of one edge traveling downward from right to left, so $e_+ = n - 1$, $e_- = 3$, and $\tau(\Sigma_n) = 8 - 2n$. Therefore, the boundary slope of S_n is $\tau(F_n) - \tau(\Sigma_n) = 2(n - 1)^2/n$. ■

Acknowledgements. The author thanks Alan Reid for originally suggesting such a result. Nathan Dunfield’s computer program to compute boundary slopes for Montesinos knots (available at www.CompuTop.org and described in [5]) was used in formulating and checking cases of the result. The author also thanks Eric Chesebro for assistance with this program, the algorithm of [10], and the figures.

References

[1] S. Boyer and X. Zhang. A proof of the finite filling conjecture. J. Differential Geom., 59(1):87–176, 2001.
[2] E. Chesebro and S. Tillmann. Not all boundary slopes are strongly detected by the character variety. Comm. Anal. Geom., 15(4):695–723, 2007.
[3] M. Culler, C. Gordon, J. Luecke, and P. Shalen. Dehn surgery on knots. Ann. of Math. (2), 125(2):237–300, 1987.
[4] M. Culler and P. Shalen. Varieties of group representations and splittings of 3-manifolds. Ann. of Math. (2), 117(1):109–146, 1983.
[5] N. Dunfield. A table of boundary slopes of Montesinos knots. Topology, 40(2):309–315, 2001.
[6] M. Eudave-Muñoz. Incompressible surfaces in tunnel number one knot complements. Topology Appl., 98(1-3):167–189, 1999. II Iberoamerican Conference on Topology and its Applications (Morelia, 1997).
[7] M. Eudave-Muñoz. Incompressible surfaces and (1, 1)-knots. J. Knot Theory Ramifications, 15(7):935–948, 2006.
[8] M. Eudave-Muñoz and E. Ramírez-Losada. Meridional surfaces and (1, 1)-knots. Trans. Amer. Math. Soc., 361(2):671–696, 2009.
[9] W. Floyd and A. Hatcher. The space of incompressible surfaces in a 2-bridge link complement. Trans. Amer. Math. Soc., 305(2):575–599, 1988.
[10] A. Hatcher and U. Oertel. Boundary slopes for Montesinos knots. *Topology*, 28(4):453–480, 1989.
[11] A. Hatcher and W. Thurston. Incompressible surfaces in 2-bridge knot complements. *Invent. Math.*, 79(2):225–246, 1985.
[12] K. Ichihara and S. Mizushima. Bounds on numerical boundary slopes for Montesinos knots. *Hiroshima Math. J.*, 37(2):211–252, 2007.
[13] A. Kawauchi. Classification of pretzel knots. *Kobe J. Math.*, 2(1):11–22, 1985.
[14] K. Morimoto, M. Sakuma, and Y. Yokota. Identifying tunnel number one knots. *J. Math. Soc. Japan*, 48(4):667–688, 1996.
[15] U. Oertel. Closed incompressible surfaces in complements of star links. *Pacific J. Math.*, 111(1):209–230, 1984.
[16] Y-Q. Wu. The classification of toroidal Dehn surgeries on Montesinos knots. *Comm. Anal. Geom.*, 19(2):305–345, 2011.
[17] H. Zieschang. Classification of Montesinos knots. In *Topology (Leningrad, 1982)*, volume 1060 of *Lecture Notes in Math.*, pages 378–389. Springer, Berlin, 1984.

Department of Mathematics
St. Edward’s University
3001 South Congress Ave
Austin, TX 78704, USA
jasonc@stedwards.edu