Periodic orbits and Birkhoff sections of Stable Hamiltonian structures

Robert Cardona

ICMAT and Universitat Politècnica de Catalunya

joint work with A. Rechtman (Université de Strasbourg)
General setting

Throughout the talk:

\(M = \) orientable closed three-manifold
\(X = \) non-vanishing smooth vector field preserving some volume form \(\mu \)
General setting

Throughout the talk:

$M =$ orientable closed three-manifold
$X =$ non-vanishing smooth vector field preserving some volume form μ

- Does X have periodic orbits?
- How many / How often?
- Does X have a *Birkhoff section*?
General setting

Throughout the talk:

\(M = \) orientable closed three-manifold
\(X = \) non-vanishing smooth vector field preserving some volume form \(\mu \)

- Does \(X \) have periodic orbits?
- How many / How often?
- Does \(X \) have a Birkhoff section?

In \(S^3 \) it is not known if \(X \) always admits a periodic orbit. It does not if \(X \) is only \(C^1 \) as shown by Kuperberg '96.
Motivation

- (W, ω) a four-dimensional symplectic manifold. Given $H \in C^\infty(M)$, let X_H be the Hamiltonian vector field. If $M = H^{-1}(c)$ where c is regular then $X = X_H|_M$ is non-vashing and volume-preserving in M.

Remark: A vector field X is Eulerisable if there exists a metric for which X is a stationary solution to the Euler equations. Reeb fields defined by contact forms and by stable Hamiltonian structures are Eulerisable (Sullivan, Etnyre-Ghrist, Rechtman, Cieliebak-Volkov).
Motivation

- \((W, \omega)\) a four-dimensional symplectic manifold. Given \(H \in C^\infty(M)\), let \(X_H\) be the Hamiltonian vector field. If \(M = H^{-1}(c)\) where \(c\) is regular then \(X = X_H|_M\) is non-vashing and volume-preserving in \(M\).

- Let \((M, g)\) be a closed Riemannian three-manifold. A stationary solution to the Euler equations without stagnation points is a volume-preserving vector field.
Motivation

- \((W, \omega)\) a four-dimensional symplectic manifold. Given \(H \in C^\infty(M)\), let \(X_H\) be the Hamiltonian vector field. If \(M = H^{-1}(c)\) where \(c\) is regular then \(X = X_H|_M\) is non-vashing and volume-preserving in \(M\).

- Let \((M, g)\) be a closed Riemannian three-manifold. A stationary solution to the Euler equations without stagnation points is a volume-preserving vector field.

Remark

A vector field \(X\) is Eulerisable if there exists a metric for which \(X\) is a stationary solution to the Euler equations. Reeb fields defined by contact forms and by stable Hamiltonian structures are Eulerisable (Sullivan, Etnyre-Ghrist, Rechtman, Cieliebak-Volkov).
A global section (or cross section) of X is an embedded closed surface Σ transverse to X and that intersects all its orbits.
Global sections

Definition

A global section (or cross section) of X is an embedded closed surface Σ transverse to X and that intersects all its orbits.

The existence of such a surface allows us to study the dynamics of X via an area-preserving diffeomorphism $f: \Sigma \to \Sigma$ (the first-return map). The vector field is orbit equivalent to the suspension of f.

A bit too restrictive: these can only exist on surface bundles over the circle.
Global sections

Definition

A global section (or cross section) of X is an embedded closed surface Σ transverse to X and that intersects all its orbits.

The existence of such a surface allows us to study the dynamics of X via an area-preserving diffeomorphism $f : \Sigma \to \Sigma$ (the first-return map). The vector field is orbit equivalent to the suspension of f.

A bit too restrictive: these can only exist on surface bundles over the circle.

If M is a compact with boundary, a global section is an embedded surface with boundary Σ satisfying $\partial \Sigma \subset \partial M$.
Birkhoff sections

Definition

A Birkhoff section of X is an immersed compact surface with boundary Σ satisfying:

1. its interior is embedded and transverse to X,
2. its boundary is mapped to periodic orbits of X,
3. there exists some $T > 0$ such that for each $p \in M$, the flow segment $\varphi_{[0,T]}(p)$ intersects Σ.

Some classes of flows with Birkhoff sections: geodesic flows on positively curved spheres and negatively curved surfaces (Birkhoff '17), transitive Anosov flows (Fried '83), transitive pseudo-Anosov flows (Brunella '95, see also Tsang 2022).

Techniques of Birkhoff for more general geodesic flows (Contreras – Knieper – Mazzucchelli – Schulz 2022).
Definition

A Birkhoff section of \(X \) is an immersed compact surface with boundary \(\Sigma \) satisfying:

1. its interior is embedded and transverse to \(X \),
2. its boundary is mapped to periodic orbits of \(X \),
3. there exists some \(T > 0 \) such that for each \(p \in M \), the flow segment \(\varphi_{[0,T]}(p) \) intersects \(\Sigma \).

Some classes of flows with Birkhoff sections: geodesic flows on positively curved spheres and negatively curved surfaces (Birkhoff ’17), transitive Anosov flows (Fried ’83), transitive pseudo-Anosov flows (Brunella ’95, see also Tsang 2022).
Definition

A Birkhoff section of X is an immersed compact surface with boundary Σ satisfying:

1. its interior is embedded and transverse to X,
2. its boundary is mapped to periodic orbits of X,
3. there exists some $T > 0$ such that for each $p \in M$, the flow segment $\varphi_{[0,T]}(p)$ intersects Σ.

Some classes of flows with Birkhoff sections: geodesic flows on positively curved spheres and negatively curved surfaces (Birkhoff ’17), transitive Anosov flows (Fried ’83), transitive pseudo-Anosov flows (Brunella ’95, see also Tsang 2022).

Techniques of Birkhoff for more general geodesic flows (Contreras–Knieper–Mazzucchelli–Schulz 2022).
Conjecture (Weinstein 1979)

Every Reeb field admits a periodic orbit.
Conjecture (Weinstein 1979)

Every Reeb field admits a periodic orbit.

- Known in dimension three (Hofer ’93, Taubes ’07)
- Two or infinitely many for strictly convex hypersurfaces in \mathbb{R}^4 (Hofer-Wysocki-Zehnder ’98)
- Two or infinitely many for nondegenerate Reeb flows defined by torsion contact forms (Cristofaro-Gardiner–Hutchings–Pomerleano ’19)
- Two or infinitely many for nondegenerate Reeb flows (Colin-Dehornoy-Rechtman ’20)
- Complete understanding of Reeb flows with two periodic orbits (Cristofaro-Gardiner–Hryniewicz-Hutchings-Liu ’21, Hutchings-Taubes ’09)
Conjecture (Weinstein 1979)

Every Reeb field admits a periodic orbit.

- Known in dimension three (Hofer ’93, Taubes ’07)
- There are always two (Cristofaro-Gardiner Hutchings ’16)
Conjecture (Weinstein 1979)

Every Reeb field admits a periodic orbit.

- Known in dimension three (Hofer ’93, Taubes ’07)
- There are always two (Cristofaro-Gardiner Hutchings ’16)
- Two or infinitely many for strictly convex hypersurfaces in \mathbb{R}^4 (Hofer-Wysocki-Zehnder ’98)
Conjecture (Weinstein 1979)

Every Reeb field admits a periodic orbit.

- Known in dimension three (Hofer ’93, Taubes ’07)
- There are always two (Cristofaro-Gardiner Hutchings ’16)
- Two or infinitely many for strictly convex hypersurfaces in \mathbb{R}^4 (Hofer-Wysocki-Zehnder ’98)
- Two or infinitely many for nondegenerate Reeb flows defined by torsion contact forms (Cristofaro-Gardiner–Hutchings–Pomerleano ’19)
Conjecture (Weinstein 1979)

Every Reeb field admits a periodic orbit.

- Known in dimension three (Hofer ’93, Taubes ’07)
- There are always two (Cristofaro-Gardiner Hutchings ’16)
- Two or infinitely many for strictly convex hypersurfaces in \mathbb{R}^4 (Hofer-Wysocki-Zehnder ’98)
- Two or infinitely many for nondegenerate Reeb flows defined by torsion contact forms (Cristofaro-Gardiner–Hutchings–Pomerleano ’19)
- Two or infinitely many for nondegenerate Reeb flows (Colin-Dehormoy-Rechtman ’20)
Conjecture (Weinstein 1979)

Every Reeb field admits a periodic orbit.

- Known in dimension three (Hofer ’93, Taubes ’07)
- There are always two (Cristofaro-Gardiner Hutchings ’16)
- Two or infinitely many for strictly convex hypersurfaces in \mathbb{R}^4 (Hofer-Wysocki-Zehnder ’98)
- Two or infinitely many for nondegenerate Reeb flows defined by torsion contact forms (Cristofaro-Gardiner–Hutchings–Pomerleano ’19)
- Two or infinitely many for nondegenerate Reeb flows (Colin-Dehornoy-Rechtman ’20)
- Complete understanding of Reeb flows with two periodic orbits (Cristofaro-Gardiner–Hryniewicz-Hutchings-Liu ’21, Hutchings-Taubes ’09)
Conjecture (Colin-Dehornoy-Rechtman)

Every Reeb field admits a Birkhoff section.
Conjecture (Colin-Dehornoy-Rechtman)

Every Reeb field admits a Birkhoff section.

- Some geodesic flows, Anosov Reeb flows (Birkhoff + Fried)
Conjecture (Colin-Dehornoy-Rechtman)

Every Reeb field admits a Birkhoff section.

- Some geodesic flows, Anosov Reeb flows (Birkhoff + Fried)
- Disk-like Birkhoff sections for dynamically convex Reeb flows in S^3 (Hofer-Wysocki-Zehnder ’98)

Open and dense set of contact forms admits a Birkhoff section on any three-manifold (Colin-Dehornoy-Hryniewicz-Rechtman ’22)
Conjecture (Colin-Dehornoy-Rechtman)

Every Reeb field admits a Birkhoff section.

- Some geodesic flows, Anosov Reeb flows (Birkhoff + Fried)
- Disk-like Birkhoff sections for dynamically convex Reeb flows in S^3 (Hofer-Wysocki-Zehnder ’98)
- Finite energy foliations for nondegenerate Reeb flows on the tight three-sphere (Hofer-Wysocki-Zehnder ’03)
Conjecture (Colin-Dehornoy-Rechtman)

Every Reeb field admits a Birkhoff section.

- Some geodesic flows, Anosov Reeb flows (Birkhoff + Fried)
- Disk-like Birkhoff sections for dynamically convex Reeb flows in S^3 (Hofer-Wysocki-Zehnder ’98)
- Finite energy foliations for nondegenerate Reeb flows on the tight three-sphere (Hofer-Wysocki-Zehnder ’03)
- Adapted broken book decomposition for nondegenerate Reeb flows (Colin-Dehornoiy-Rechtman ’20)
Conjecture (Colin-Dehornoy-Rechtman)

Every Reeb field admits a Birkhoff section.

- Some geodesic flows, Anosov Reeb flows (Birkhoff + Fried)
- Disk-like Birkhoff sections for dynamically convex Reeb flows in S^3 (Hofer-Wysocki-Zehnder ’98)
- Finite energy foliations for nondegenerate Reeb flows on the tight three-sphere (Hofer-Wysocki-Zehnder ’03)
- Adapted broken book decomposition for nondegenerate Reeb flows (Colin-Dehornoy-Rechtman ’20)
- Strongly nondegenerate contact forms admit a Birkhoff section (Contreras-Mazzucchelli ’21)
- Open and dense set of contact forms admits a Birkhoff section on any three-manifold (Colin-Dehornoy-Hryniewicz-Rechtman ’22)
Stable Hamiltonian structures

First defined by Bourgeois-Eliashberg-Hofer-Wysocki-Zehnder (2003), foundations in 3D by Cieliebak-Volkov (2015).

Definition

A stable Hamiltonian structure is a pair \((\lambda, \omega) \in \Omega^1(M) \times \Omega^2(M)\) such that:

- \(\lambda \wedge \omega > 0\),
- \(d\omega = 0\),
- \(\ker \omega \subseteq \ker d\lambda\).

It a Reeb field by \(\lambda(X) = 1\), \(\iota_X \omega = 0\).
Stable Hamiltonian structures

First defined by Bourgeois-Eliashberg-Hofer-Wysocki-Zehnder (2003), foundations in 3D by Cieliebak-Volkov (2015).

Definition

A stable Hamiltonian structure is a pair \((\lambda, \omega) \in \Omega^1(M) \times \Omega^2(M)\) such that:

- \(\lambda \wedge \omega > 0\),
- \(d\omega = 0\),
- \(\ker \omega \subseteq \ker d\lambda\).

It a Reeb field by \(\lambda(X) = 1\), \(\iota_X \omega = 0\).

Given a volume-preserving vector field \(X\), the following are equivalent:

1. \(X\) is the Reeb field of a SHS
2. \(X\) preserves some transverse plane field
3. there is a metric on \(M\) making \(X\) of unit length and the flowlines geodesics
Introduced by Hofer-Zehnder (1994). Identified with the previous definition by Eliashberg-Kim-Polterovich and Cieliebak-Mohnke around 2005.

Definition

A hypersurface M on a symplectic four-manifold (W, ω) is **stable** if there exists a tubular neighborhood $U \cong M \times (-\varepsilon, \varepsilon)$ such that the characteristic foliations of $M \times \{t\}$ are all conjugate via a family of diffeomorphisms depending smoothly on t.

It is a natural boundary condition for compactness results in SFT and appears in other works in symplectic topology. Natural examples arise in regular energy level sets of magnetic flows on surfaces. A steady solution to the Euler equations of Beltrami type is the (reparametrized) Reeb field of a SHS.
Introduced by Hofer-Zehnder (1994). Identified with the previous definition by Eliashberg-Kim-Polterovich and Cieliebak-Mohnke around 2005.

Definition

A hypersurface M on a symplectic four-manifold (W, ω) is **stable** if there exists a tubular neighborhood $U \cong M \times (-\varepsilon, \varepsilon)$ such that the characteristic foliations of $M \times \{t\}$ are all conjugate via a family of diffeomorphisms depending smoothly on t.

It is a natural boundary condition for compactness results in SFT and appears in other works in symplectic topology.
Introduced by Hofer-Zehnder (1994). Identified with the previous definition by Eliashberg-Kim-Polterovich and Cieliebak-Mohnke around 2005.

Definition

A hypersurface M on a symplectic four-manifold (W, ω) is **stable** if there exists a tubular neighborhood $U \cong M \times (-\varepsilon, \varepsilon)$ such that the characteristic foliations of $M \times \{t\}$ are all conjugate via a family of diffeomorphisms depending smoothly on t.

It is a natural boundary condition for compactness results in SFT and appears in other works in symplectic topology.

Natural examples arise in regular energy level sets of magnetic flows on surfaces.
Introduced by Hofer-Zehnder (1994). Identified with the previous definition by Eliashberg-Kim-Polterovich and Cieliebak-Mohnke around 2005.

Definition

A hypersurface M on a symplectic four-manifold (W, ω) is **stable** if there exists a tubular neighborhood $U \cong M \times (-\varepsilon, \varepsilon)$ such that the characteristic foliations of $M \times \{t\}$ are all conjugate via a family of diffeomorphisms depending smoothly on t.

It is a natural boundary condition for compactness results in SFT and appears in other works in symplectic topology.

Natural examples arise in regular energy level sets of magnetic flows on surfaces.

A steady solution to the Euler equations of Beltrami type is the (reparametrized) Reeb field of a SHS.
Concrete examples

Contact forms. Given α a contact form, the pair $(\alpha, d\alpha)$ defines a stable Hamiltonian structure.
Concrete examples

Contact forms. Given α a contact form, the pair $(\alpha, d\alpha)$ defines a stable Hamiltonian structure.

Suspension flows. Given an area-preserving diffeomorphism of a surface $f : \Sigma \to \Sigma$, it induces a stable Hamiltonian structure (λ, ω) with $d\lambda = 0$ on the suspended manifold $M = \Sigma \times [0, 1]/\sim$. The flow admits a global cross section.

Reeb flows with a first integral. Let α be a contact form defining a Reeb field X with a first integral $g \in C^\infty(M)$, that we assume positive. Then $(\alpha, gd\alpha)$ defines a SHS whose Reeb field is the Reeb field of α.
Concrete examples

Contact forms. Given α a contact form, the pair $(\alpha, d\alpha)$ defines a stable Hamiltonian structure.

Suspension flows. Given an area-preserving diffeomorphism of a surface $f : \Sigma \to \Sigma$, it induces a stable Hamiltonian structure (λ, ω) with $d\lambda = 0$ on the suspended manifold $M = \Sigma \times [0, 1]/\sim$. The flow admits a global cross section.

Reeb flows with a first integral. Let α be a contact form defining a Reeb field X with a first integral $g \in C^\infty(M)$, that we assume positive. Then $(\alpha, gd\alpha)$ defines a SHS whose Reeb field is the Reeb field of α.
In general \(d\lambda = f\omega \), and \(f \) is a first integral. The one-form \(\lambda \) is of (positive or negative) contact type where \(f \neq 0 \).
In general \(d\lambda = f\omega \), and \(f \) is a first integral. The one-form \(\lambda \) is of (positive or negative) contact type where \(f \neq 0 \).

Let \(N_{c_i} = f^{-1}[c_i - \delta, c_i + \delta] \) for each singular value \(c_i \) of \(f \).
In general $d\lambda = f\omega$, and f is a first integral. The one-form λ is of (positive or negative) contact type where $f \neq 0$. Let $N_{c_i} = f^{-1}[c_i - \delta, c_i + \delta]$ for each singular value c_i of f.

In each integrable region $U_i \cong T^2 \times I$, the flow is fiberwise linear, the “slope” of X is constant (rational or irrational) or non-constant.
The Weinstein conjecture

Theorem (Hutchings-Taubes ’09, Rechtman ’10 (some cases))

Let M be a closed three-manifold that is not a torus bundle over S^1. Then any Reeb field of any SHS on M admits a closed orbit.
The Weinstein conjecture

Theorem (Hutchings-Taubes ’09, Rechtman ’10 (some cases))

Let M be a closed three-manifold that is not a torus bundle over S^1. Then any Reeb field of any SHS on M admits a closed orbit.

Theorem

Let X be an aperiodic Reeb field defined by a SHS (λ, ω) in M. Then one of the following holds:

- M is a three-torus or a positive parabolic bundle and X is orbit equivalent to the suspension of an aperiodic symplectomorphism of the two-torus,
- M is a hyperbolic bundle and X does not admit a global section, but after cutting open along an invariant tori the flow is orbit equivalent to the suspension of a pseudorotation of the closed annulus.
The Weinstein conjecture

Theorem (Hutchings-Taubes ’09, Rechtman ’10 (some cases))

Let M be a closed three-manifold that is not a torus bundle over S^1. Then any Reeb field of any SHS on M admits a closed orbit.

Theorem

Let X be an aperiodic Reeb field defined by a SHS (λ, ω) in M. Then one of the following holds

- M is a three-torus or a positive parabolic bundle and X is orbit equivalent to the suspension of an aperiodic symplectomorphism of the two-torus,
The Weinstein conjecture

Theorem (Hutchings-Taubes ’09, Rechtman ’10 (some cases))

Let M be a closed three-manifold that is not a torus bundle over S^1. Then any Reeb field of any SHS on M admits a closed orbit.

Theorem

Let X be an aperiodic Reeb field defined by a SHS (λ, ω) in M. Then one of the following holds

- M is a three-torus or a positive parabolic bundle and X is orbit equivalent to the suspension of an aperiodic symplectomorphism of the two-torus,
- M is a hyperbolic bundle and X does not admit a global section, but after cutting open along an invariant tori the flow is orbit equivalent to the suspension of a pseudorotation of the closed annulus.

Robert Cardona (ICMAT and UPC)
Dynamics of SHS
joint work with Ana Rechtman
$N_{cont} = \bigsqcup_{c_i \neq 0} N_{c_i}$ is called the “contact region”.

Theorem (Cieliebak-Volkov ’15)
The flow in N_0 admits a global section (a surface with boundary).

Hence we call N_0 the “suspension region”.

Robert Cardona (ICMAT and UPC)
Dynamics of SHS
joint work with Ana Rechtman
\(N_{\text{cont}} = \bigcup_{c_i \neq 0} N_{c_i} \) is called the “contact region”.

Theorem (Cieliebak-Volkov ’15)

The flow in \(N_0 \) admits a global section (a surface with boundary).

Hence we call \(N_0 \) the “suspension region”.

Robert Cardona (ICMAT and UPC)
Dynamics of SHS
joint work with Ana Rechtman
13 / 30
Recall that the vector field X is:

- **non-degenerate** if for each periodic orbit, no root of the unity is an eigenvalue of the linearized Poincaré map,

- **strongly non-degenerate** if for every pair of closed hyperbolic orbits γ_1, γ_2 we have $W_s(\gamma_1) \prec W_u(\gamma_2)$.

Definition

A SHS (λ, ω) is called contact non-degenerate if the Reeb field is non-degenerate in N_{cont}.

Analogously, one can define as well a contact strongly non-degenerate SHS.

Theorem (Cieliebak-Volkov '15)

Contact non-degenerate SHS are C^1-dense in the set of stable Hamiltonian structures of M.

Robert Cardona (ICMAT and UPC)
Dynamics of SHS
joint work with Ana Rechtman
Recall that the vector field X is:

- **non-degenerate** if for each periodic orbit, no root of the unity is an eigenvalue of the linearized Poincaré map,

- **strongly non-degenerate** if for every pair of closed hyperbolic orbits γ_1, γ_2 we have $W^s(\gamma_1) \pitchfork W^u(\gamma_2)$.
Recall that the vector field X is:

- **non-degenerate** if for each periodic orbit, no root of the unity is an eigenvalue of the linearized Poincaré map,
- **strongly non-degenerate** if for every pair of closed hyperbolic orbits γ_1, γ_2 we have $W^s(\gamma_1) \pitchfork W^u(\gamma_2)$.

Definition

A SHS (λ, ω) is called **contact non-degenerate** if the Reeb field is non-degenerate in N_{cont}.

Analogously, one can define as well a contact strongly non-degenerate SHS.
Recall that the vector field X is:

- **non-degenerate** if for each periodic orbit, no root of the unity is an eigenvalue of the linearized Poincaré map,
- **strongly non-degenerate** if for every pair of closed hyperbolic orbits γ_1, γ_2 we have $W^s(\gamma_1) \pitchfork W^u(\gamma_2)$.

Definition

A SHS (λ, ω) is called **contact non-degenerate** if the Reeb field is non-degenerate in N_{cont}.

Analogously, one can define as well a contact strongly non-degenerate SHS.

Theorem (Cieliebak-Volkov '15)

*Contact non-degenerate SHS are C^1-dense in the set of stable Hamiltonian structures of M.***
Theorem

Let (λ, ω) be a contact non-degenerate SHS with at least one periodic orbit. It has infinitely many periodic orbits unless:

- the flow orbit equivalent to the suspension of a symplectomorphism of a surface Σ_g with finitely many periodic points.

- M is the 3-sphere or a lens space, there are exactly two closed orbits and they are core circles of a genus one Heegaard splitting of M.

Hence except on some surface-bundles, there are two or infinitely many periodic orbits.

Remark

It follows from the proof that the degenerate case would follow from a proof for (contact) Reeb fields.
Theorem

Let \((\lambda, \omega)\) be a contact non-degenerate SHS with at least one periodic orbit. It has infinitely many periodic orbits unless:

- the flow orbit equivalent to the suspension of a symplectomorphism of a surface \(\Sigma_g\) with finitely many periodic points.

- \(M\) is the 3-sphere or a lens space, there are exactly two closed orbits and they are core circles of a genus one Heegaard splitting of \(M\).
Theorem

Let (λ, ω) be a contact non-degenerate SHS with at least one periodic orbit. It has infinitely many periodic orbits unless:

- the flow orbit equivalent to the suspension of a symplectomorphism of a surface Σ_g with finitely many periodic points.
- M is the 3-sphere or a lens space, there are exactly two closed orbits and they are core circles of a genus one Heegaard splitting of M.

Hence except on some surface-bundles, there are two or infinitely many periodic orbits.
Theorem

Let \((\lambda, \omega)\) be a contact non-degenerate SHS with at least one periodic orbit. It has infinitely many periodic orbits unless:

- the flow orbit equivalent to the suspension of a symplectomorphism of a surface \(\Sigma_g\) with finitely many periodic points.
- \(M\) is the 3-sphere or a lens space, there are exactly two closed orbits and they are core circles of a genus one Heegaard splitting of \(M\).

Hence except on some surface-bundles, there are two or infinitely many periodic orbits.

Remark

It follows from the proof that the degenerate case would follow from a proof for (contact) Reeb fields.
Theorem

Let \((\lambda, \omega)\) be a SHS such that in each integrable region the slope is non-constant.
Theorem

Let \((\lambda, \omega)\) be a SHS such that in each integrable region the slope is non-constant.

- if \((\lambda, \omega)\) is contact non-degenerate then it is carried by a broken book decomposition.

Corollary

On any closed three-manifold, there exists a \(C^1\)-dense, \(C^2\)-open set of SHS whose Reeb field admits a Birkhoff section. Concretely, given any SHS, it is exact stable homotopic to a \(C^1\)-close SHS with a Birkhoff section. Cieliebak-Volkov (2014) showed that any SHS is stable homotopic to one supported by an open book decomposition.
Theorem

Let \((\lambda, \omega)\) be a SHS such that in each integrable region the slope is non-constant.

- if \((\lambda, \omega)\) is contact non-degenerate then it is carried by a broken book decomposition.
- if \((\lambda, \omega)\) is contact strongly non-degenerate, then it admits a Birkhoff section.

Corollary

On any closed three-manifold, there exists a \(C^1\)-dense, \(C^2\)-open set of SHS whose Reeb field admits a Birkhoff section. Concretely, given any SHS, it is exact stable homotopic to a \(C^1\)-close SHS with a Birkhoff section. Cieliebak-Volkov (2014) showed that any SHS is stable homotopic to one supported by an open book decomposition.
Theorem

Let \((\lambda, \omega)\) be a SHS such that in each integrable region the slope is non-constant.

- if \((\lambda, \omega)\) is contact non-degenerate then it is carried by a broken book decomposition.
- if \((\lambda, \omega)\) is contact strongly non-degenerate, then it admits a Birkhoff section.

Corollary

On any closed three-manifold, there exists a \(C^1\)-dense, \(C^2\)-open set of SHS whose Reeb field admits a Birkhoff section.

Concretely, given any SHS, it is exact stable homotopic to a \(C^1\)-close SHS with a Birkhoff section. Cieliebak-Volkov (2014) showed that any SHS is stable homotopic to one supported by an open book decomposition.
Idea of the proof: finitely many periodic orbits

Assume that a contact non-degenerate X defined by (λ, ω) has finitely many periodic orbits. Recall that $f = \frac{d\lambda}{\omega}$.

1. If $f = c > 0$, we have a non-degenerate Reeb field so the theorem follows from Colin-Dehornoy-Rechtman.

2. If $f = 0$, the flow is a suspension of a symplectomorphism of a closed surface with finitely many periodic points (see Le Calvez 2022).

3. Case of interest: f is non-constant.
Idea of the proof: finitely many periodic orbits

Assume that a contact non-degenerate X defined by (λ, ω) has finitely many periodic orbits. Recall that $f = \frac{d\lambda}{\omega}$.

1. If $f = c > 0$, we have a non-degenerate Reeb field so the theorem follows from Colin-Dehornoy-Rechtman.
Idea of the proof: finitely many periodic orbits

Assume that a contact non-degenerate X defined by (λ, ω) has finitely many periodic orbits. Recall that $f = \frac{d\lambda}{\omega}$.

1. If $f = c > 0$, we have a non-degenerate Reeb field so the theorem follows from Colin-Dehornoy-Rechtman.

2. If $f = 0$, the flow is a suspension of a symplectomorphism of a closed surface with finitely many periodic points (see Le Calvez 2022).
Idea of the proof: finitely many periodic orbits

Assume that a contact non-degenerate X defined by (λ, ω) has finitely many periodic orbits. Recall that $f = \frac{d\lambda}{\omega}$.

1. If $f = c > 0$, we have a non-degenerate Reeb field so the theorem follows from Colin-Dehornoy-Rechtman.
2. If $f = 0$, the flow is a suspension of a symplectomorphism of a closed surface with finitely many periodic points (see Le Calvez 2022).
3. Case of interest: f is non-constant.
Trivial observation: the invariant tori given by regular level sets of f are all irrational.
Trivial observation: the invariant tori given by regular level sets of f are all irrational.

Proposition

Let X be a non-degenerate Reeb vector field in a three-manifold with boundary. Assume that near the boundary it is foliated by irrational invariant tori, and that it has finitely many periodic orbits. Then

- $M \cong D^2 \times S^1$ and X is the suspension of an irrational pseudorotation of the disk,
- $M \cong T^2 \times I$ and X is the suspension of an irrational rotation of the annulus.

Each connected component of the ”contact region” is as above.
For the N_0 region:

Theorem

Let $\varphi : \Sigma \to \Sigma$ be a symplectomorphism of a surface with boundary. Assume that it has no periodic points in the boundary. Then it has periodic points of arbitrarily large period unless:

- $M \cong D^2 \times S^1$ and X is the suspension of an irrational pseudorotation of the disk,
- $M \cong T^2 \times I$ and X is the suspension of an irrational rotation of the annulus.

The proof involves the Nielsen-Thurston decomposition, working in the universal cover of the surface and Franks theorem. We have decomposed our manifold as a union of $T^2 \times I$ and $D^2 \times S^1$. There is at least one $D^2 \times S^1$ component, from which we get that there are exactly two and that M is a lens space.
For the N_0 region:

Theorem

Let $\varphi : \Sigma \to \Sigma$ be a symplectomorphism of a surface with boundary. Assume that it has no periodic points in the boundary. Then it has periodic points of arbitrarily large period unless:

- $M \cong D^2 \times S^1$ and X is the suspension of an irrational pseudorotation of the disk,
- $M \cong T^2 \times I$ and X is the suspension of an irrational rotation of the annulus.

The proof involves the Nielsen-Thurston decomposition, working in the universal cover of the surface and Franks theorem.
For the N_0 region:

Theorem

Let $\varphi : \Sigma \rightarrow \Sigma$ be a symplectomorphism of a surface with boundary. Assume that it has no periodic points in the boundary. Then it has periodic points of arbitrarily large period unless:

- $M \cong D^2 \times S^1$ and X is the suspension of an irrational pseudorotation of the disk,
- $M \cong T^2 \times I$ and X is the suspension of an irrational rotation of the annulus.

The proof involves the Nielsen-Thurston decomposition, working in the universal cover of the surface and Franks theorem.

We have decomposed our manifold as a union of $T^2 \times I$ and $D^2 \times S^1$. There is at least one $D^2 \times S^1$ component, from which we get that there are exactly two and that M is a lens space.
Let \((\lambda, \omega)\) a contact strongly non-degenerate SHS. Then it admits a Birkhoff section.
Theorem

Let (λ, ω) a contact strongly non-degenerate SHS. Then it admits a Birkhoff section.

1. If $f = \frac{d\lambda}{\omega} = c \neq 0$, then this follows from Contreras-Mazzucchelli.
Let (λ, ω) a contact strongly non-degenerate SHS. Then it admits a Birkhoff section.

1. If $f = \frac{d\lambda}{\omega} = c \neq 0$, then this follows from Contreras-Mazzucchelli.
2. If $f = 0$, it has a global section (Tischler).
Birkhoff sections

Theorem

Let \((\lambda, \omega)\) a contact strongly non-degenerate SHS. Then it admits a Birkhoff section.

1. If \(f = \frac{d\lambda}{\omega} = c \neq 0\), then this follows from Contreras-Mazzucchelli.
2. If \(f = 0\), it has a global section (Tischler).
3. General case: \(f\) is non-constant.

\[T^2 \times I \]

\[M \]

\[N_{c_2} \]

\[N_0 \]

\[N_{c_3} \]

\[N_{c_4} \]

\[N_{c_1} \]
First, contact strong non-degeneracy + non-constant slope in each integrable domain is a C^1-dense property.
First, contact strong non-degeneracy + non-constant slope in each integrable domain is a C^1-dense property.

It follows from Contreras-Mazzuchelli that in the contact region, a broken book provided by Colin-Dehornoy-Rechtman can be surgered into a Birkhoff section: there is $S \to N_{cont}$.
First, contact strong non-degeneracy + non-constant slope in each integrable domain is a C^1-dense property.

It follows from Contreras-Mazzuchelli that in the contact region, a broken book provided by Colin-Dehornoy-Rechtman can be surgered into a Birkhoff section: there is $S \to N_{cont}$

By Cieliebak-Volkov, there is a global section in N_0, hence there is $\Sigma_0 \hookrightarrow N_0$.
First, contact strong non-degeneracy + non-constant slope in each integrable domain is a C^1-dense property.

It follows from Contreras-Mazzuchelli that in the contact region, a broken book provided by Colin-Dehornoy-Rechtman can be surgered into a Birkhoff section: there is $S \to N_{cont}$

By Cieliebak-Volkov, there is a global section in N_0, hence there is $\Sigma_0 \hookrightarrow N_0$.

We end up with several $T^2 \times I$ regions, with non-constant slope, with sections to the flow near the boundary.

Theorem

Let X be a T^2-invariant flow on $T^2 \times I$ with a non-constant slope. Then given two families of curves Γ_0, Γ_1 such that $\Gamma_0 \subset T^2 \times \{0\}$ and $\Gamma_1 \subset T^2 \times \{1\}$ with $X \pitchfork \Gamma_i$, there exists a Birkhoff section S such that $S \cap T^2 \times \{0\} = \Gamma_0$ and $S \cap T^2 \times \{1\} = \Gamma_1$.

Robert Cardona (ICMAT and UPC)
Dynamics of SHS
joint work with Ana Rechtman
21 / 30
A closed orbit can be used to change the homology. Example:
Main tool: Helix boxes

A closed orbit can be used to change the homology. Example:
Boundary segments
Surfaces in cube
Smooth versions

Dynamics of SHS

joint work with Ana Rechtman
Smooth versions
As the slope of the flow keeps moving, we use the rational tori to keep the Birkhoff section “orthogonal” to the flow.
As the slope of the flow keeps moving, we use the rational tori to keep the Birkhoff section “orthogonal” to the flow. For the last step, we are in a small box $T^2 \times [0, \varepsilon]$ where we assume that the slope turns slightly clockwise as t increases.

Choose generators η_1 and η_2 on two rational tori with close slope.

$[\Gamma_\varepsilon] = [\Gamma_0] + k_1[\eta_1] + k_2[\eta_2]$.

Key point: make sure that the intermediate section remains transverse before reaching γ_1.

Robert Cardona (ICMAT and UPC)
Dynamics of SHS
joint work with Ana Rechtman
28 / 30
As the slope of the flow keeps moving, we use the rational tori to keep the Birkhoff section “orthogonal” to the flow. For the last step, we are in a small box $T^2 \times [0, \varepsilon]$ where we assume that the slope turns slightly clockwise as t increases.

Choose generators η_1 and η_2 on two rational tori with close slope.
As the slope of the flow keeps moving, we use the rational tori to keep the Birkhoff section “orthogonal” to the flow. For the last step, we are in a small box $T^2 \times [0, \varepsilon]$ where we assume that the slope turns slightly clockwise as t increases.

Choose generators η_1 and η_2 on two rational tori with close slope.

$$[\Gamma_\varepsilon] = [\Gamma_0] + k_1[\eta_1] + k_2[\eta_2].$$

Key point: make sure that the intermediate section remains transverse before reaching γ_1.
C^2-openness

To see that in a C^2-neighborhood around any such SHS that has a Birkhoff section:
To see that in a C^2-neighborhood around any such SHS that has a Birkhoff section:

- A C^2-close SHS admits a decomposition as in the structure theorem that is C^1-close to the previous one, the flow is C^1-close, and the integral regions still have non-constant slope (Cieliebak-Volkov),
To see that in a C^2-neighborhood around any such SHS that has a Birkhoff section:

- A C^2-close SHS admits a decomposition as in the structure theorem that is C^1-close to the previous one, the flow is C^1-close, and the integral regions still have non-constant slope (Cieliebak-Volkov),
- In the contact region, the Birkhoff section is δ-strong and has non-degenerate binding: by Colin-Dehornoy-Hryniewicz-Rechtman, any C^1-close vector field has a Birkhoff section.
C²-openness

To see that in a C²-neighborhood around any such SHS that has a Birkhoff section:

- A C²-close SHS admits a decomposition as in the structure theorem that is C¹-close to the previous one, the flow is C¹-close, and the integral regions still have non-constant slope (Cieliebak-Volkov),
- In the contact region, the Birkhoff section is δ-strong and has non-degenerate binding: by Colin-Dehornoy-Hryniewicz-Rechtman, any C¹-close vector field has a Birkhoff section.
- In the suspension region, having a global section is C¹-stable.

Conclusion: we can apply again our theorem.

Question: Does every Reeb field defined by a SHS (perhaps non-aperiodic) admit a Birkhoff section?
To see that in a C^2-neighborhood around any such SHS that has a Birkhoff section:

- A C^2-close SHS admits a decomposition as in the structure theorem that is C^1-close to the previous one, the flow is C^1-close, and the integral regions still have non-constant slope (Cieliebak-Volkov),

- In the contact region, the Birkhoff section is δ-strong and has non-degenerate binding: by Colin-Dehornoy-Hryniewicz-Rechtman, any C^1-close vector field has a Birkhoff section.

- In the suspension region, having a global section is C^1-stable.

Conclusion: we can apply again our theorem.
C²-openness

To see that in a C²-neighborhood around any such SHS that has a Birkhoff section:

- A C²-close SHS admits a decomposition as in the structure theorem that is C¹-close to the previous one, the flow is C¹-close, and the integral regions still have non-constant slope (Cieliebak-Volkov),
- In the contact region, the Birkhoff section is δ-strong and has non-degenerate binding: by Colin-Dehornoy-Hryniewicz-Rechtman, any C¹-close vector field has a Birkhoff section.
- In the suspension region, having a global section is C¹-stable.

Conclusion: we can apply again our theorem.

Question

Does every Reeb field defined by a SHS (perhaps non-aperiodic) admit a Birkhoff section?
Thanks for your attention