This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

This article can be cited before page numbers have been issued, to do this please use: H. Zhao, Q. Zhang, X. Gao, J. Li, H. Liu and W. Luo, Mater. Adv., 2021, DOI: 10.1039/D0MA00614A.
Coupling Effects of Thermodynamics in Multiple Ion Co-Precipitation for Precursor towards Layered Oxide Cathode

He Zhaoa, Qi Zhangb, Xuan-Wen Gaoa*, Jian-Zhong Lia, Hua-Kun Liub, Wen-Bin Luoa,b,*

The co-precipitation process is the most frequently employed method to realize the simultaneous stoichiometric crystallization of multiple ions. The precipitation of different elements under a driving force can directly and primarily determine the degree of homogeneity of the co-precipitation product. Unlike individual element crystallization, the multiple ion coexistence co-precipitation process is complicated and a coupling effect is involved, since thermodynamic behaviour of certain elements is much superior to others. This coupling effect can dramatically influence the whole thermodynamic behaviour in the liquid solution. Therefore, in order to achieve a high-quality product or precursor with various elements in a homogeneous distribution, the co-precipitation process can be efficiently controlled and balanced by the coupling effect resulting from the addition of certain elements. In an environment where Co2+, Ni2+, and Mn2+ ions coexist, owing to the thermodynamic coupling effect, the superior high supersaturation of Al3+ and the more negative change in the Gibbs free energy (\(\Delta G\)) can efficiently balance the whole crystallization reaction by realizing a consistent precipitation driving force among the various ions, accelerating the Ni2+ and Mn2+ ion precipitation and inhibiting the Co2+ ion precipitation. Meanwhile, based on the initial formation of Al(OH)\textsubscript{3} seed crystals in the solution, multiple ions in the solution can be absorbed and thus grow on the surface of Al(OH)\textsubscript{3} to completely precipitate. The obtained Li-rich cathode material has demonstrated excellent electrochemical performance based on the high quality precursor (0.54MnCO\textsubscript{3}·0.13NiCO\textsubscript{3}·0.125CoCO\textsubscript{3}·0.005Al(OH)\textsubscript{3}) with a homogeneous distribution of elements.

Introduction

The co-precipitation process is the most conventional and an excellent option when stoichiometric chemistry is required, which has several advantages, including good homogeneity, high purity, high yields of product, high economic efficiency, and a controllable particle size distribution.1-3 By changing different parameters such as the pH value, the reaction temperature and time, and the concentration of the initial solution and material, the required final product can be accurately optimized and achieved.4-7 Its industrial feasibility and mature technique mean that this scalable process is commonly employed in the synthesis of functional materials in various fields.8-11 Particularly in the field of commercial energy storage materials, owing to these inherent advantages, the co-precipitation process is widely utilized to manufacture precursors for final active materials, such as different types of, as well stoichiometric, LiNi\textsubscript{0.5}Co\textsubscript{0.5}Mn\textsubscript{1-x}O\textsubscript{2}, LiNi\textsubscript{0.5}Mn\textsubscript{1-x}O\textsubscript{4}, and LiNi\textsubscript{0.5}Co\textsubscript{0.5}Al\textsubscript{1-x}O\textsubscript{2}.12-22 The basic theory of the co-precipitation process is based on aqueous solution thermodynamics, which is closely related to the stability of the substance in aqueous solution. This stability determines the crystallization reaction in the liquid phase and is closely related to the potential, pH value, solution composition and concentration, temperature, and pressure of each substance in the solution.23-25 Meanwhile, the particle size, morphology, and stoichiometry of the precipitated crystalline product can be further affected by a
combination of factors, including the precipitation crystallization reaction between the ions in the liquid phase and the deposited crystalline material, the adsorption reaction, and the thermodynamic coupling between the multiple reactions. As the crystal grains gradually grow and new crystal nuclei continuously appears, the coexistence phenomenon causes competition between the crystallization reaction and the adsorption reaction. Therefore, how to control the crystallization reaction and adsorption reaction at the same time becomes a key point of the aqueous solution reaction. Crystals form along with the change in the ion concentration in the aqueous solution to form a supersaturated solution. This process can be considered as a Gibbs free energy (ΔG) reduction process. Thermodynamic coupling will be accompanied by and occurs in an environment where multiple ions coexist. The composition of the Gibbs free energy changes (ΔG) can be influenced, for example, accelerated, once one or more of the components of the Gibbs free energy change (ΔG) is very superior to the others. Therefore, in this work, the Gibbs free energy change (ΔG) and coupling coefficient are explored, based on the thermodynamic coupling, ion synergy, and supersaturation. In order to achieve high quality precursors with various elements in a homogenous distribution for Li-rich cathode materials, aluminum (Al) ion doping was employed to control the co-precipitation process and balance the precipitate driving force to realize multiple ion crystallization reactions simultaneously.

Results and discussion

Thermodynamic coupling effects among Mn$^{2+}$, Ni$^{2+}$, and Co$^{2+}$

In the precipitation process under constant temperature and pressure conditions, the crystallization process of Mn$^{2+}$, Ni$^{2+}$, and Co$^{2+}$ can be regarded as a Gibbs free energy (ΔG) reduction process. As shown in Figure 1, when Mn$^{2+}$, Ni$^{2+}$, and Co$^{2+}$ are separately precipitated using Na$_2$CO$_3$, the following reactions occur, respectively:

\[
\text{Mn}^{2+} + \text{CO}_3^{2-} = \text{MnCO}_3 \quad (1)
\]
\[
\text{Co}^{2+} + \text{CO}_3^{2-} = \text{CoCO}_3 \quad (2)
\]
\[
\text{Ni}^{2+} + \text{CO}_3^{2-} = \text{NiCO}_3 \quad (3)
\]

The corresponding thermodynamic behavior can be described using the Gibbs free energy (ΔG) and reaction time (T). Taking MnCO$_3$ as a separate precipitation process, for example, in the early stage of the precipitation reaction, the thermodynamic behavior can be calculated based on following Equations from (4) to (7):

\[
\Delta G_1 = \Delta G_1^0 - RT \ln (a_{\text{Mn}^{2+}} \cdot a_{\text{CO}_3^{2-}}) \quad (4)
\]
\[
\Delta G_1 = RTK_{\text{MnCO}_3} - RT \ln (a_{\text{Mn}^{2+}} \cdot a_{\text{CO}_3^{2-}}) \quad (5)
\]
\[
\Delta G_1 = RT \ln \frac{K_{\text{MnCO}_3}}{a_{\text{Mn}^{2+}} \cdot a_{\text{CO}_3^{2-}}^2} = RT \ln \frac{1}{S_1} \quad (6)
\]

The supersaturation of manganese carbonate can be expressed as:

\[
S_1 = \frac{a_{\text{Mn}^{2+}} \cdot a_{\text{CO}_3^{2-}}}{K_{\text{MnCO}_3}} \quad (7)
\]

Similarly, for the corresponding process for CoCO$_3$ and NiCO$_3$, the supersaturation and the ΔG can be expressed as:

\[
S_2 = \frac{a_{\text{Co}^{2+}} \cdot a_{\text{CO}_3^{2-}}}{K_{\text{CoCO}_3}} \quad (8)
\]
\[
\Delta G_2 = RT \ln \frac{K_{\text{CoCO}_3}}{a_{\text{Co}^{2+}} \cdot a_{\text{CO}_3^{2-}}^2} = RT \ln \frac{1}{S_2} \quad (9)
\]
\[
\Delta G_2 = RT \ln \frac{K_{\text{NiCO}_3}}{a_{\text{Ni}^{2+}} \cdot a_{\text{CO}_3^{2-}}^2} = RT \ln \frac{1}{S_3} \quad (11)
\]

The separate precipitation parameters can be calculated and confirmed according to equations from (4) to (11) based on the data summarized in Tables S1, S2, and S3 in the Supporting Information. The corresponding values are listed as follows:

\[
S_1 = 8633.3, \quad S_2 = 130142.9, \quad S_3 = 3.74
\]

\[
\Delta G_1 = -22466.5 \text{ J mol}^{-1}, \quad \Delta G_2 = -29191.5 \text{ J mol}^{-1}, \quad \Delta G_3 = -3269.8 \text{ J mol}^{-1}
\]

A similar method was employed when three elements were co-precipitated simultaneously. When Mn$^{2+}$, Ni$^{2+}$, and Co$^{2+}$ are simultaneously precipitated using Na$_2$CO$_3$, the following reactions occur, respectively:

\[
\text{CO}_3^{2-} + x\text{Mn}^{2+} + y\text{Ni}^{2+} + (1-x-y)\text{Co}^{2+} = x\text{MnCO}_3 + y\text{NiCO}_3 + (1-x-y)\text{CoCO}_3
\]

The thermodynamic behavior can be calculated based on following equations from (12) to (17):

\[
S_4 = \frac{a_{\text{Mn}^{2+}} \cdot a_{\text{CO}_3^{2-}}}{K_{\text{MnCO}_3}} \quad (12)
\]
\[
\Delta G_4 = RT \ln \frac{K_{\text{MnCO}_3}}{a_{\text{Mn}^{2+}} \cdot a_{\text{CO}_3^{2-}}^2} = RT \ln \frac{1}{S_4} \quad (13)
\]
In Equation (12), the ratio of Mn to Ni to Co is 3.97 : 0.93 : 1, x = 0.673, y = 0.158:

$$\Delta G = x\Delta G_4 + y\Delta G_5 + (1-x-y)\Delta G_6 = -23434 \text{ J mol}^{-1}$$

(18)

The $\Delta G < 0$ indicates that the crystallization reaction can be made spontaneous. Meanwhile, based on the summarized data and trend in Figure 2, the conclusion can be reached that the CoCO$_3$ precipitation reaction driving force is much stronger than that of MnCO$_3$, followed by NiCO$_3$.

Figure 2. Schematic illustration of the simultaneous co-precipitation process for Mn$^{2+}$, Ni$^{2+}$, and Co$^{2+}$, and the corresponding thermodynamic parameters.

It is concluded that CoCO$_3$ is most likely to precipitate during the co-precipitation reaction when multiple ions coexist, followed by MnCO$_3$, and finally NiCO$_3$. Meanwhile, compared with separate precipitation of the metal ions (Figure 3), $\Delta G_4 < \Delta G_1$, $\Delta G_5 < \Delta G_2$, $\Delta G_6 < \Delta G_3$, it is concluded that the thermodynamic coupling effect exists when three elements co-precipitate simultaneously. This coupling effect can accelerate the crystallization reaction to a certain extent.

![Thermodynamic Coupling effects caused by Al$^{3+}$ addition](image)

Figure 3. (a) ΔG comparison between various elements precipitating separately and co-precipitating simultaneously; (b) Schematic diagram of the simultaneous co-precipitation process for Mn$^{2+}$, Ni$^{2+}$, and Co$^{2+}$.

Thermodynamic Coupling effects caused by Al$^{3+}$ addition

In a co-precipitation reaction system with constant temperature and pressure, the precursor product is xMnCO$_3$ \cdot yNiCO$_3$ \cdot zCoCO$_3$ $(1-x-y-z)Al_2(CO_3)_3$, which is crystalized by Na$_2$CO$_3$, MnSO$_4$, NiSO$_4$, CoSO$_4$, and Al$_2$(SO$_4$)$_3$. A case study of 1 M xMnCO$_3$ \cdot yNiCO$_3$ \cdot zCoCO$_3$ $(1-x-y-z)$ Al$_2$(CO$_3$)$_3$ was produced and the reaction is as follows:

$$x\text{Mn}^{2+} + y\text{Ni}^{2+} + z\text{Co}^{2+} + (1-x-y-z)\text{Al}^{3+} + 3\text{CO}_3^{2-} = x\text{MnCO}_3 + y\text{NiCO}_3 + z\text{CoCO}_3 + (1-x-y-z)/2\text{Al}_2(\text{CO}_3)_3$$

(19)

Equation (19) can be divided into following individual precipitation reactions:

$$x\text{Mn}^{2+} + x\text{CO}_3^{2-} = x\text{MnCO}_3$$

(20)

$$y\text{Ni}^{2+} + y\text{CO}_3^{2-} = y\text{NiCO}_3$$

(21)

$$z\text{Co}^{2+} + z\text{CO}_3^{2-} = z\text{CoCO}_3$$

(22)
(1 - x - y - z)Al^{3+} + \frac{2(x+y+z)}{2}CO_3^{2-} = \frac{(1-x-y-z)}{2}Al_2(CO_3)_3

(23)

\text{Al}_2(CO_3)_3 \text{ cannot exist in water, however, and tends to produce Al(OH)_3 as in Eq. (24). The solubility product constant is } 3 \times 10^{-34}.

(1-x-y-z)Al^{3+} + 3OH^- = Al(OH)_3

(24)

As shown in Figure 4, individual carbonate or hydroxides can be theoretically achieved. The corresponding thermodynamic behaviour can be described using the Gibbs free energy (\(\Delta G\)) and reaction time (T). The \(\Delta G\) values of the precipitation reaction process for example, in the early stage of the precipitation reaction, the thermodynamic behavior can be calculated based on following Equations from (25) to (28):

\[
\Delta G_1 = AG_{10} - RT\ln\left(a_{Mn^{2+}} \cdot a_{CO_3^{2-}}\right)
\]

(25)

\[
\Delta G_2 = RTK_{MnCO_3} - RT\ln\left(a_{Mn^{2+}} \cdot a_{CO_3^{2-}}\right)
\]

(26)

\[
\Delta G_3 = RT\ln\frac{K_{MnCO_3}}{a_{Mn^{2+}} \cdot a_{CO_3^{2-}}} = RT\ln\frac{1}{S_1}
\]

(27)

\text{The supersaturation of manganese carbonate can be expressed as:}

\[
S_1 = \frac{a_{Mn^{2+}} \cdot a_{CO_3^{2-}}}{K_{MnCO_3}}
\]

(28)

\text{Similarly, for the corresponding processes for CoCO_3, NiCO_3, and Al(OH)_3, the supersaturation and the Gibbs free energy can be expressed as:}

\[
S_2 = \frac{a_{Co^{2+}} \cdot a_{CO_3^{2-}}}{K_{CoCO_3}}
\]

(29)

\[
\Delta G_4 = RT\ln\frac{K_{CoCO_3}}{a_{Co^{2+}} \cdot a_{CO_3^{2-}}} = RT\ln\frac{1}{S_2}
\]

(30)

\[
S_3 = \frac{a_{Ni^{2+}} \cdot a_{CO_3^{2-}}}{K_{NiCO_3}}
\]

(31)

\[
\Delta G_5 = RT\ln\frac{K_{NiCO_3}}{a_{Ni^{2+}} \cdot a_{CO_3^{2-}}} = RT\ln\frac{1}{S_3}
\]

(32)

\[
S_{10} = \frac{a_{Al^{3+}} \cdot a_{OH}^2}{K_{Al(OH)_3}}
\]

(33)

\[
\Delta G_{10} = RT\ln\frac{K_{Al(OH)_3}}{a_{Al^{3+}} \cdot a_{OH}^2} = RT\ln\frac{1}{S_{10}}
\]

(34)

\text{After chemical analysis and calculations, the concentrations of the various elements in the supernatant are summarized in Table S5 after the co-precipitation reaction, with the Al content increased from 0.0 to 0.0025, 0.005, and 0.0075. The corresponding ion supersaturation (S) and \(\Delta G\) values of the reaction process can be denoted as } S_1, S_2, S_3, S_{10}, S_{20}, S_{30}, S_{40}, \text{ and } AG_{10}, AG_{20}, AG_{30}, AG_{40}, \text{ respectively.}

\text{All the data were calculated based on above equations and are summarized in Tables S6 and S7, and the changing trends are described as well in Figure 5. As shown in Figure 5(a, b), the Al}^{3+} \text{ supersaturation increases first and then decreases while } AG \text{ of Al}^{3+} \text{ indicates an opposite trend with Al}^{3+} \text{ content from 0.0025 to 0.0075. Meanwhile, it is obvious that the supersaturation (S) and } \Delta G \text{ of Mn}^{2+} \text{ and Ni}^{2+} \text{ change dramatically with even a little amount of Al}^{3+} \text{ addition. As shown the schematic diagram for the precipitation process in Figure 5c, owing to the thermodynamic coupling effect, the superior high supersaturation of Al}^{3+} \text{ and the more negative } \Delta G \text{ represent the driving force to accelerate the Ni}^{2+} \text{ and Mn}^{2+} \text{ ion precipitation. Meanwhile, based on the formation of the Al(OH)_3 seed crystals and good adsorption capability in the solution, Ni}^{2+} \text{ and Mn}^{2+} \text{ ions in the solution can be adsorbed and thus grow on the surfaces of Al(OH)_3 to completely precipitate. On the other hand, the Co}^{2+} \text{ precipitation behavior is opposite to those of Ni}^{2+} \text{ and Mn}^{2+} \text{ ions. When the Al}^{3+} \text{ addition is 0.005, the thermodynamic behaviors of the various elements reach a relatively consistent degree so as to co-precipitate simultaneously. Therefore, the conclusion can be reached that Al}^{3+} \text{ doping, even a little amount, can dramatically affect the precipitation of Ni}^{2+}, \text{Mn}^{2+}, \text{and Co}^{2+} \text{ ions. By means of the thermodynamic coupling effect resulting from Al}^{3+} \text{ addition, the precipitation consistency of different elements can be balanced and achieved by acceleration or inhibition.}

\text{The compound produced by the crystallization reaction of four kinds of metal ions is } x\text{MnCO}_3\cdot y\text{NiCO}_3\cdot z\text{CoCO}_3\cdot (1-x-y-z)\text{ Al(OH)_3. Reaction for the } \Delta G \text{ can be expressed as:}

\[
\Delta G = x\Delta G_7 + y\Delta G_8 + z\Delta G_9 + (1-x-y-z)\Delta G_{10}
\]

(35)

\text{When the Al content is 0, and the corresponding } x = 0.673, y = 0.158, z = 0.169, \text{ the result is:}

\[
\Delta G_0 = -23434.0 \text{ J mol}^{-1}
\]
When the Al content is 0.0025, and the corresponding $x = 0.6635$, $y = 0.1686$, $z = 0.1635$, it follows that:

$$\Delta G_0 = -18269.6 \text{ J mol}^{-1}$$

When the Al content is 0.005, and the corresponding $x = 0.6638$, $y = 0.1693$, $z = 0.1660$, it follows that:

$$\Delta G_0 = -17658.1 \text{ J mol}^{-1}$$

When the Al content is 0.0075, and the corresponding $x = 0.6670$, $y = 0.1693$, $z = 0.1625$, it follows that:

$$\Delta G_0 = -19380.2 \text{ J mol}^{-1}.$$

With the queue of $\Delta G_0 < \Delta G_c < \Delta G_b < \Delta G_a < 0$, it can be concluded that Al^{3+} accelerates the whole co-precipitation reaction to a certain extent, and the acceleratory effect is relatively large when the aluminum content is 0.005. With increasing Al content, however, the precipitation of Mn^{2+} and Ni^{2+} can be slightly enhanced, and it can enhance the Co^{2+} precipitation as well until aluminium content comes to 0.005. The element distribution can be investigated by field emission scanning electron microscopy assisted by energy dispersive spectroscopy (FESEM-EDS), as shown in Figure S1 and Figure S2.

As with the results of thermodynamic calculations, Al^{3+} ion addition can dramatically influence the distribution of the various elements in the precursors. By Al^{3+} addition content optimization, the degree of homogeneity of the element distribution changes as well. When the Al^{3+} ion addition increases from 0 to 0.005, the distribution of the different elements shows a positive trend, while it becomes negative when the Al^{3+} ion addition content reaches as high as 0.0075.

$$\Delta G = \begin{cases}
-18269.6 \text{ J mol}^{-1} & \text{when } x = 0.6635, y = 0.1686, z = 0.1635 \\
-17658.1 \text{ J mol}^{-1} & \text{when } x = 0.6638, y = 0.1693, z = 0.1660 \\
-19380.2 \text{ J mol}^{-1} & \text{when } x = 0.6670, y = 0.1693, z = 0.1625
\end{cases}$$

The Li-rich cathode materials were synthesized by the conventional high temperature annealing process from the prepared precursors and stoichiometric Li_2CO_3. As shown by the X-ray diffraction (XRD) patterns in Figure 6, all the final $\text{Li}[\text{Li}_{10.20}\text{Mn}_{0.80}\text{Ni}_{0.13}\text{Co}_{0.13}\text{Al}_{0.13}]\text{O}_2 \ (x = 0, 0.0025, 0.005, 0.0075)$ samples show similar patterns. The phase of the products is assigned to the α-NaFeO_2 layered structure with the rhombohedral $R3m$ space group and a Li_2MnO_3-like layered structure with $C2/M$ space group. No diffraction peaks from impurity phases are observed. The Rietveld refinements were based on the XRD patterns. The observed patterns are in good agreement with the calculated pattern, and the parameters R_p, R_wp, and χ^2, where R_p and R_wp are the profile and weighted profile R-factors, and χ^2 is the goodness-of-fit parameter, are respectively 2.82 %, 1.75 %, and 2.35 %, which indicate the satisfactory quality of the Rietveld refinement. The lattice parameters of the sample were calculated and are summarized in Table S8. The morphologies of the samples were examined, and the corresponding FESEM images are shown in Figure 6 and Figure S3 as well. The secondary particles, aggregated from a large amount of primary crystals, have sizes in the range of 5 – 10 μm. In the case of the pure sample $\text{Li}[\text{Li}_{10.20}\text{Mn}_{0.55}\text{Ni}_{0.13}\text{Co}_{0.13}]\text{O}_2$, the primary crystals show a regular octahedral structure with sharp edges and corners. The surface of the primary crystal is smooth and intact as well. There is an obvious change, however, once Al^{3+} ion addition has occurred. The sharpness of the octahedral structure becomes weaker with rounded edges and corners. Meanwhile, there are large amount of pores on the surfaces of the primary crystals. For cathode materials for the lithium ion battery, this structure has inherent advantages for electrolyte penetration, which can accelerate the reaction kinetics as well.

Figure 5. (a, b) Trends in the supersaturation (S) and Gibbs free energy (ΔG) change trend based on the addition of Al^{3+} ion; (c) schematic illustration of the co-precipitation process with or without Al^{3+}.

$$\Delta G_a = -18269.6 \text{ J mol}^{-1}$$

$$\Delta G_b = -17658.1 \text{ J mol}^{-1}$$

$$\Delta G_c = -19380.2 \text{ J mol}^{-1}.$$
Figure 6. XRD patterns with refinements (left), with the black symbols the experimental data, the red line the fitted curve, the green vertical lines the standard lines, and the blue line the difference spectrum, (right) with corresponding enlargements in the insets, of Li[Li$_{0.2}$Mn$_{0.54}$Ni$_{0.13}$Co$_{0.13-x}$Al$_x$]O$_2$ with different amounts of Al element: 0 (a) to 0.0025 (b), 0.005 (c), and 0.0075 (d).

To analyse the surface structure at the atomic scale, high angle annular dark field – scanning transmission electron microscopy (HAADF-STEM) images were employed, as shown in Figure 7 and Figure S4. According to the selected area electron diffraction (SAED) patterns in Figure 7(a, b) and Figure S3, it is obvious that the Li[Li$_{0.2}$Mn$_{0.54}$Ni$_{0.13}$Co$_{0.13-x}$Al$_x$]O$_2$ samples show two-phase combination diffraction patterns, which is consistent with the XRD results as well. Meanwhile, the distribution of elements in the primary crystals was characterized by high-angle annular dark-field STEM-EDS (HAADF-STEM-EDS) as shown in Figure 7(e - i) and Figure S5. All the elements show a similar homogeneous distribution over the entire area.

The electrochemical performance was investigated on various samples Li$_{1.2}$Mn$_{0.54}$Co$_{0.13-x}$Ni$_{0.13}$Al$_x$O$_2$ (x = 0, 0.0025, 0.005, and 0.0075). As shown in Figure 8(a, b) in the cyclic voltammograms (CVs) in the voltage range of 2.0 - 4.8 V at various scanning rates, all the samples present the standard lithium-rich cathode pattern. Compared with pure Li$_{1.2}$Mn$_{0.54}$Co$_{0.13}$Ni$_{0.13}$Al$_{0.075}$O$_2$ and Li$_{1.2}$Mn$_{0.54}$Co$_{0.125}$Ni$_{0.13}$Al$_{0.0025}$O$_2$ and Li$_{1.2}$Mn$_{0.54}$Co$_{0.13}$Ni$_{0.13}$Al$_{0.005}$O$_2$ show a positive lithiation peak corresponding to a high discharge potential. Figure 8c shows the initial charge and discharge curves of Li$_{1.2}$Mn$_{0.54}$Co$_{0.125}$Ni$_{0.13}$Al$_{0.005}$O$_2$ at different rates over the voltage range of 2.0 - 4.8 V. They have typical flat voltage plateaus at around 4.5 V, which may be attributed to the two-phase reaction of Li$_{1.2}$Mn$_{0.54}$Co$_{0.125}$Ni$_{0.13}$Al$_{0.005}$O$_2$. The Li$_{1.2}$Mn$_{0.54}$Co$_{0.125}$Ni$_{0.13}$Al$_{0.005}$O$_2$ sample exhibited discharge capacities of 246.7, 236.6, 210.4, 181.6, and 148.1 mAh·g$^{-1}$ at 0.1 C, 0.2 C, 0.5 C, 1.0 C, and 2.0 C, respectively. The results demonstrate that Al$^{3+}$ doping has a significant effect on the discharge capacities of Li$_{1.2}$Mn$_{0.54}$Co$_{0.13}$Ni$_{0.13}$Al$_{0.005}$O$_2$ at different current rates. This is because the Al element induces changed properties in the Li$_{1.2}$Mn$_{0.54}$Co$_{0.13}$Ni$_{0.13}$Al$_{0.005}$O$_2$ samples with homogeneous elements distributions without impurity phases, which cause more reactions and a shorter distance for fast Li-ion diffusion in the redox reaction process. Figure 8e and Figure S6 shows the cycling performance of pristine Li$_{1.2}$Mn$_{0.54}$Co$_{0.13}$Ni$_{0.13}$Al$_{0.005}$O$_2$ (x = 0, 0.0025, 0.005, and 0.0075). Compared with the pure samples, the Al doped materials presented a clearly steady cycling property. The electrochemical
impedance spectra for pristine Li$_{1.2}$Mn$_{0.54}$Co$_{0.13}$Ni$_{0.13}$O$_2$ and Li$_{1.2}$Mn$_{0.54}$Co$_{0.13-x}$Ni$_{0.13}$Al$_x$O$_2$ ($x = 0, 0.0025, 0.005$ and 0.0075) are shown in Figure 8f. The impedance spectra with different Al doping consist of capacitive loops at high frequency and a straight line at low frequency. Impedance values calculated from the equivalent circuits are shown in Table S9. It shows that the Al doping samples indicate an obvious improved mobility of Li$^+$ diffusion appropriate. In generally, Al doping has a positive influence on electronic conductivity and the change of the lattice structure in the layered lithium cathode material. As shown in the change of the charge transfer resistance value, the electronic conductivity activation energy of the material is lower. The improvement of electronic conductivity contributes to the better electrochemical performance of the lithium-rich cathode material.
Conclusion

Based on the thermodynamic calculations, the conclusion can be drawn that a coupling effect occurs when multiple ions co-exist in the liquid solution and under a simultaneous crystallization reaction. Although there are different driving forces towards precipitation of the various elements, owing to the super-high supersaturation and the more negative ΔG resulting from a small amount of Al$^{3+}$ addition, the coupling effects can efficiently control and balance the co-precipitation process, accelerating the Ni$^{2+}$ and Mn$^{2+}$ ion precipitation and inhibiting the Co$^{2+}$ ion precipitation. Meanwhile, based on the formation of Al(OH)$_3$ seed crystals in the solution, multiple ions in the solution can adsorb and grow on the surfaces of Al(OH)$_3$ to completely precipitate. When Al$^{3+}$ addition is 0.005, the obtained (0.54MnCO$_3$·0.13NiCO$_3$·0.125CoCO$_3$·0.005Al(OH)$_3$) precursor has a good homogenous elements distribution, which paves the way for the further high electrochemical performance of Li-rich cathode material.

Experimental Section

Synthesis of precursors and Li$_{1.2}$Mn$_{0.54}$Ni$_{0.13}$Co$_{0.13-x}$Al$_x$O$_2$: Various precursors were synthesized by a co-precipitation process. Stoichiometric amounts of NiSO$_4$·6H$_2$O (> 99%), CoSO$_4$·7H$_2$O (> 99%), MnSO$_4$·H$_2$O (> 99%), and Al$_2$(SO$_4$)$_3$ (> 99%) were uniformly mixed and dissolved into deionized water. This mixed metal solution was pumped into a continuously stirred tank reactor. At the same time, Na$_2$CO$_3$ solution as precipitant and an appropriate amount of NH$_4$OH solution as a pH control agent were also separately fed into the reactor in ambient air. The temperature, pH, and stirring speed of the mixed solution were carefully controlled throughout the entire co-precipitation process. Then, the resultant powders were filtered, washed, and dried at 120 °C in air. Finally, the obtained carbonate precursor was thoroughly mixed with the required Li$_2$CO$_3$ and calcined at 850 °C for 10 h in air. An excess of 5 mol. % Li$_2$CO$_3$ was used to compensate for the volatilization of Li during calcination.

Materials Characterization: XRD measurements were performed to investigate the crystal structure using a PLXcel 3D X-ray diffractometer with a non-monochromated Cu Kα X-ray source. Crystallographic structure analysis by the Rietveld method was carried out using the Fullprof Suite program. The morphology of the samples was examined using field emission scanning electron microscopy (FE-SEM; JEOL JSM-7500). Transmission electron microscopy (TEM) investigations were performed using a 200 kV JEOL 2011 instrument. Scanning transmission electron microscopy (STEM), EELS, and EDS were performed using a 200 kV JEOL 2011 instrument.

Electrochemical performance measurement: The electrochemical properties were evaluated by using R2032-type coin cells assembled in an argon-filled glove box. Positive electrodes were prepared by mixing 80 wt. % active materials, 10 wt. % acetylene black, and 10 wt. % polyvinylidene fluoride (PVDF) in N-methyl-2-pyrrolidone and coating the slurry on Al foil. The electrodes were dried at 110 °C in vacuum. The mass loading of the electrodes was in the range of 1.2 to 1.5 mg cm$^{-2}$. The electrolyte was 1 M LiPF$_6$ dissolved in ethylene carbonate (EC)/dimethyl carbonate (DMC) (volume ratio 1:1). Li metal was used for the negative electrodes for the half-cells. Celgard 2320 membrane was used as the separator. Galvanostatic charge/discharge tests were performed on a LAND multichannel battery testing system (CT2001A, Wuhan Jinnuo Electronics Co., Ltd.). CV curves were acquired with an electrochemical workstation (Bio-logic EC Lab VMP3).
Conflicts of interest

There are no conflicts to declare.

Acknowledgements

Zhao, H and Zhang, Q make equal contribution to this work. This work is supported by the Fundamental Research Funds for the Central Universities (N2025018) (N2025009), the National Natural Science Foundation of China (No. 51374053), the Iron and Steel Joint Research Fund of the National Natural Science Foundation and China Baowu Steel Group Corporation Limited (No. U1760118). The authors would like to also thank Dr Tania Silver for critical reading of the manuscript, and also acknowledge the use of the facilities in the UOW Electron Microscopy Center, with particular thanks to Dr. Gilberto Casillas-Garcia. The manuscript was written through the contributions of all authors. All authors have given approval to the final version of the manuscript.

Notes and references

1. A. S. Arico, P. Bruce, B. Scrosati, J. M. Tarascon and W. van Schalkwijk, Nat. Mater., 2005, 4, 366-377.
2. C. Liu, F. Li, L. P. Ma and H. M. Cheng, Adv. Mater., 2010, 22, E28-62.
3. Y.-K. Sun, Z. Chen, H.-J. Noh, D.-J. Lee, H.-G. Jung, Y. Ren, S. Wang, C. S. Yoon, S. T. Myung, K. Amine, Nat. Mater., 2012, 11, 942.
4. Y.-K. Sun, Z. Chen, H.-J. Noh, D.-J. Lee, H.-G. Jung, Y. Ren, S. Wang, C. S. Yoon, S. T. Myung, K. Amine, Nat. Mater., 2012, 11, 942.
5. J. Zhang, Z. Yang, R. Gao, L. Gu, Z. Hu, X. Liu, ACS Applied Materials & Interfaces 2017, 9, 29794-29803.
6. A. Boulineau, L. Simonin, J. F. Colin, E. Canévet, L. Daniel, S. Patoux, Chem. Mater. 2012, 24, 3558-3566.
7. J. Zheng, S. Myeong, W. Cho, P. Yan, J. Xiao, C. Wang, J. Cho, J.G. Zhang, Adv. Energy Mater., 2017, 7, 1601284.
8. E. A. Olivetti, G. Ceder, G.G. Gauthard, X. Fu, Joule 2017, 1, 229-243.
9. J. Deng, W.B. Luo, S.L. Chou, H. K. Liu, S.-X. Dou, Adv. Energy Mater., 2018, 8, 1701428.
10. P. Hou, H. Zhang, Z. Zi, L. Zhang, X. Xu, J. Mater. Chem. A 2017, 5, 4254-4279.
11. M. H. Lee, Y.J. Kang, S.T. Myung, Y. K. Sun, Electrochim. Acta, 2004, 50, 939-948.
12. X. Zeng, C. Zhan, J. Lu, K. Amine, Chem, 2018, 4, 690-704.
13. R. Malik, Joule, 2017, 1, 647-648.
14. J. L. Shi, D. D. Xiao, M. Ge, X. Yu, Y. Chu, X. Huang, X.D. Zhang, Y.X. Yin, X.Q. Yang, Y.G. Guo, L. Gu, L L. J. Wan, Adv. Mater. 2018, 30, 1705575.
15. H. H. Ryu, K. J. Park, C. S. Yoon, Y. K. Sun, Chem. Mater., 2018, 30, 1155-1163.
16. H. H. Sun, A. Manthiram, Chem. Mater., 2017, 29, 8486-8493.
17. C. S. Yoon, K. J. Park, U. H. Kim, K. H. Kang, H. H. Ryu, Y. K. Sun, Chem. Mater., 2017, 29,10436-10445.
18. W.Yan, Y. Xie, J. Jiang, D. Sun, X. Ma, Z. Lan, Y. Jin, ACS Sustainable Chemistry & Engineering 2018, 6, 4625-4632.
19. M. D. Radin, J. Alvarado, Y. S. Meng, A. VanderVen, Nano Lett. 2017, 17, 7789-7795.
20. X. H. Zhang, W. L. Pang, F. Wan, J. Z. Guo, H. Y. Lü, J. Y. Li, Y. M. Xing, J. P. Zhang, X. L. Wu, X.-L. ACS Applied Mater. & Interfaces 2016, 8, 20650-20659.
21. W. L. Pang, X. H. Zhang, J. Z. Guo, J. Y. Li, X. Yan, B. H. Hou, H. Y. Guan, X. L. Wu, J. Power Sources, 2017, 356, 80-88.
22. M. Eilers-Rethwisch, M. Winter, F. M. Schappacher, J. Power Sources, 2018, 387, 101-107.
23. K. Henzler, E. O. Fetisov, M. Galib, M.D. Baer, B. A. Legg, C. Borca, J. M. Xio, S. Pin, J. L. Fulton, G. K. Schenter, N. Govind, J. I. Steippman, C. J. Mundy, T. Huthwelker, J. DeYoreo, Sci. Adv., 2018, 4, 6283.
24. C. Schwarze, A. Gupta, T. Hickel, R. Darvishi Kamachali, Physical Review B, 2017, 95, 174101.
25. A. Carino, A. Testino, M. R. Andalibi, F. Pilger, P. Bowen, C. Ludwig, Crystal Growth & Design, 2017, 17, 2006-2015.
26. G. Wang, Y. Liu, C. Gao, L. Guo, M. Chi, K. Ijiri, M. Maeda, Y. Yin, Chem, 2017, 3, 678-690.
27. A. Naillon, P. Joseph, M. Prat, Journal of Crystal Growth, 2017, 463, 201-210.
28. S. Al-Jibbouri, J. Ulrich, Crystal Research and Technology, 2001, 36, 1365-1375.
29. F. Fu, Q. Wang, Y. P. Deng, C. H. Shen, X. P. Peng, L. Huang, S. G. Sun, J. Mater. Chem. A, 2015, 3, 5197-5203.
30. H. Chen, P. Feng, S. Ye, W. Sun, Construction and Building Materials, 2018, 185, 391-401.
31. S. Shu, P. B. Wells, N. Almirall, G. R. Odette, D. D. Morgan, Acta Material, 2018, 157, 298-306.
32. W. H. Kan, B. Deng, Y. Xu, A. K. Shukla, T. Bo, S. Zhang, J. Liu, P. Pianetta, B. T. Wang, Y, Liu and G. Chen. Chem, DOI: 10.1016/j.chempr.2018.05.008.
33. Y. Zuo, B. Li, N. Jiang, W. Chu, H. Zhang, R. Zou, D. Xia, Adv. Mater., 2018, 30, 1707255.
34. J. An, L. Shi, G. Chen, M. Li, H. Liu, S. Yuan, S. Chen, D. Zhang, J. Mater. Chem. A, 2017, 5, 19738-19744.
35. S. Kim, W. Cho, X. Zhang, Y. Oshima, J. W. Choi, Nat. Comm., 2016, 7, 13598.
36. Y. Zhao, J. Liu, S. Wang, R. Ji, Q. Xia, Z. Ding, W. Wei, Y. Liu, P. Wang, D. G. Ivey, Adv. Functional Mater., 2016, 26, 4760-4767.
37. X. Yu, Y. Lyu, L. Gu, H. Wu, S. M. Bak, Y. Zhou, K. Amine, S. N. Ehrlich, H. Li, K. W. Nam, X. Q. Yang, Adv. Energy Mater., 2014, 4, 1300950