ON THE FAMILIES OF HYPERPLANE SECTIONS OF SOME SMOOTH PROJECTIVE VARIETIES

YONG HU

Abstract. In this note, we give two applications of [5, Theorem 3.1]. We first study the free family \mathcal{K} of hyperplane sections of the smooth hypersurface $X \subset \mathbb{P}^{n+1}$ of degree $d \geq 3$. We prove that X is determined by the free family \mathcal{K} if $\dim(X) \geq 4$. As an application, we deduce that for $n \geq 4$, the hyperplane section of X varies maximally in the moduli space of the smooth hypersurface of degree $d \geq 3$ in \mathbb{P}^n. We then study the free family of hyperplane sections of the smooth projective surface X with Kodaira dimension $\kappa(X) \geq 0$. We prove that X is determined by this free family.

1. Introduction

We work over complex number field \mathbb{C}. Unless otherwise stated, we work in the complex-analytic setting.

Let X be a complex manifold and $Y \subset X$ be a compact complex submanifold. For a non-negative integer l, we use $(Y/X)_l$ to denote the l-th infinitesimal neighborhood of Y in X. Denote by Douady(X) the Douady space of X. We refer the reader to [5, Section 1 and Section 2] for the background and definitions. In [5, Question 1.5], a family version of the question on holomorphic embeddings posed by Nirenberg and Spencer is formulated. One of Hwang’s results related to this question is the following theorem (see [5, Theorem 3.1]).

Theorem 1.1. Let $\mathcal{K} \subset$ Douady(X) be a free family in a complex manifold X, a member $A \subset X$ of which satisfies $H^0(A, T_A) = 0$. Then for any free family $\tilde{\mathcal{K}} \subset$ Douady(\tilde{X}) in a complex manifold \tilde{X}, if \mathcal{K} and $\tilde{\mathcal{K}}$ are iso-equivalent up to order 1, then they are germ-equivalent.

Notice that there are a lot of smooth projective varieties A with $H^0(A, T_A) = 0$. For example, it is well known that we have $H^0(A, T_A) = 0$ if A is a smooth projective variety of general type. Thus Theorem 1.1 can be applied to a wide class of submanifolds. Some applications of Theorem 1.1 have been given in [5] (see for instance [5, Theorem 1.8]).

The main aim of this note is to give more applications of Theorem 1.1. The first result of this note is the following theorem.

Theorem 1.2. Let $X \subset \mathbb{P}^{n+1}$ and $\tilde{X} \subset \mathbb{P}^{n+1}$ be two smooth hypersurfaces of degree $d \geq 3$. Suppose that the free families \mathcal{K} and $\tilde{\mathcal{K}}$ of hyperplane sections of $X \subset \mathbb{P}^{n+1}$ and $\tilde{X} \subset \mathbb{P}^{n+1}$ are iso-equivalent up to order 0. Assume that $n \geq 4$. Then X and \tilde{X} are isomorphic by a projective transformation of \mathbb{P}^{n+1}.

Date: March 16, 2020.
Let $n \geq 2$ be a positive integer. Suppose that $X \subset \mathbb{P}^{n+1}$ is a smooth hypersurface of degree $d \geq 3$. Denote by $M_{d,n-1}$ the moduli space of smooth hypersurfaces of degree d in \mathbb{P}^n. Let $U_0 \subset |\mathcal{O}_{\mathbb{P}^{n+1}}(1)|$ be the Zariski open subset which parametrizes the smooth hyperplane section of X. We have the natural morphism:

$$\mu : U_0 \rightarrow M_{d,n-1}$$

$$H \mapsto [X \cap H]$$

One may ask the following interesting question:

Question 1.3. Is it possible to determine $\dim \mu(U_0)$? When is μ a generically finite morphism onto its image?

In [1], Beauville proved that we have $\dim \mu(U_0) \geq 1$. In [2], Cheng proved that μ is generically finite onto its image if $d > n > 1$ and $(n, d) \neq (2, 3), (3, 4)$.

As an application of Theorem 1.2, we have the following positive result on Question 1.3.

Corollary 1.4. Let $X \subset \mathbb{P}^{n+1}$ be a smooth hypersurface of degree $d \geq 3$. Denote by $M_{d,n-1}$ the moduli space of smooth hypersurfaces of degree d in \mathbb{P}^n. Let $U_0 \subset |\mathcal{O}_{\mathbb{P}^{n+1}}(1)|$ be the Zariski open subset which parametrizes the smooth hyperplane section of X. Let $\mu : U_0 \rightarrow M_{d,n-1}$ be the natural morphism which sends the hyperplane H to the corresponding hyperplane section $[H \cap X]$. Suppose that $n \geq 4$. Then μ is a generically finite morphism onto its image.

Combining Corollary 1.4 with [2, Theorem 0.2], one has the following theorem.

Theorem 1.5. Let $X \subset \mathbb{P}^{n+1}$ be a smooth hypersurface of degree $d \geq 3$. Keep the notation as in Corollary 1.4. Suppose that $n \geq 2$ and $(n, d) \neq (2, 3), (3, 3), (3, 4)$. Then $\mu : U_0 \rightarrow M_{d,n-1}$ is a generically finite morphism onto its image.

Our next result is the following theorem.

Theorem 1.6. Let $X \subset \mathbb{P}^N$ and $\tilde{X} \subset \mathbb{P}^N$ be two smooth surfaces with Kodaira dimensions $\kappa(X) \geq 0$ and $\kappa(\tilde{X}) \geq 0$. Suppose that the free families \mathcal{K} and $\tilde{\mathcal{K}}$ of hyperplane sections of $X \subset \mathbb{P}^N$ and $\tilde{X} \subset \mathbb{P}^N$ are iso-equivalent up to order 0. Let $A \subset X$ be a general hyperplane section. Denote by $F_A : A \rightarrow \tilde{A}$ the isomorphism induced by the iso-equivalence, where $A \subset X$ is a general hyperplane section. Suppose furthermore that $F_A^*\mathcal{O}_{\tilde{A}}(1) \cong \mathcal{O}_A(1)$, where $\mathcal{O}_A(1) = \mathcal{O}_{\mathbb{P}^N}(1)|_A$ and $\mathcal{O}_{\tilde{A}}(1) = \mathcal{O}_{\mathbb{P}^N}(1)|_{\tilde{A}}$. Then X and \tilde{X} are isomorphic by a projective transformation of \mathbb{P}^N.

Remark 1.7. The author would like to thank Professor Jun-Muk Hwang for informing him that Theorem 1.6 was asked by Professor Ciro Ciliberto.

Remark 1.8. Notice that when $K_X \cong \mathcal{O}_X$ and $K_{\tilde{X}} \cong \mathcal{O}_{\tilde{X}}$, we have $\mathcal{O}_A(1) \cong K_A$ and $\mathcal{O}_{\tilde{A}}(1) \cong K_{\tilde{A}}$. Thus the assumption $F_A^*\mathcal{O}_A(1) \cong \mathcal{O}_{\tilde{A}}$ in Theorem 1.6 holds. In particular, this implies that Theorem 1.6 can be applied to study the family of hyperplane sections of $K3$ surfaces and Abelian surfaces.
The family of hyperplane sections of $K3$ surfaces was studied in [5, Theorem 1.8].

Acknowledgement. The author would like to thank Professor Jun-Muk Hwang for suggesting this topic, substantial discussions and warm encouragement. The author is supported by a KIAS Individual Grant (MP 062501) at Korea Institute for Advanced Study.

2. **Proof of Theorem 1.2 and Corollary 1.4**

In this section, we will prove Theorem 1.2 and Corollary 1.4. We refer the reader to [7, Section 6.2] for details of Jacobian rings of smooth hypersurfaces in projective spaces.

2.1. **Proof of Theorem 1.2.** First, we prove the following lemma.

Lemma 2.1. Let $A \subset X$ be a smooth hyperplane section of the smooth hypersurface $X \subset \mathbb{P}^{n+1}$ of degree $d \geq 3$. Suppose that $n \geq 4$. Then the Kodaira-Spencer map $H^0(A, N_{A/X}) \rightarrow H^1(A, T_A)$ of hyperplane sections determines the extension class of

$$(*) \quad 0 \rightarrow T_A \rightarrow T_X|_A \rightarrow N_{A/X} \rightarrow 0$$

up to non-zero scalar multiplications.

Proof. Let $H \subset \mathbb{P}^{n+1}$ be the hyperplane such that $A = X \cap H$. Denote by x_0, x_1, \ldots, x_n the homogeneous coordinates on $H \cong \mathbb{P}^n$ and by f the defining equation of $A \subset H$. Let $R_f = S/J_f$ be the Jacobian ring of A, where $S = \mathbb{C}[x_0, x_1, \ldots, x_n]$. For an integer i, denote by $R^i_f \subseteq R_f$ the subspace consists of elements in R_f of degree i. Set $N = (d-1)(n+1) - n - 1$.

Denote by K_A the canonical bundle of A. Let $e \in H^1(A, T_A \otimes N_A^\vee/X)$ the extension class of $(*)$. Denote by

$$e^* \in \text{Hom}(H^{n-2}(A, K_A \otimes \Omega_A \otimes N_A^\vee/X), H^{n-1}(A, K_A))$$

the Serre dual of e. The Kodaira-Spencer map is the boundary homomorphism

$$\partial : H^0(A, N_{A/X}) \rightarrow H^1(A, T_A)$$

which is induced by taking cup product with e. Let

$$\partial^* : H^{n-2}(A, K_A \otimes \Omega_A) \rightarrow H^{n-1}(A, K_A \otimes N_A^\vee/X)$$

be the dual of ∂. Let

$$\alpha : H^0(A, N_{A/X}) \otimes H^{n-2}(A, K_A \otimes \Omega_A) \rightarrow H^{n-2}(A, K_A \otimes \Omega_A \otimes N_{A/X})$$

be the natural cup product. Denote by

$$\beta : H^0(A, N_{A/X}) \otimes H^{n-1}(A, K_A \otimes N_A^\vee/X) \rightarrow H^{n-1}(A, K_A)$$

the natural cup product. Then the following diagram is commutative up to sign,

$$\begin{array}{ccc}
H^0(N_{A/X}) \otimes H^{n-2}(K_A \otimes \Omega_A) & \xrightarrow{\text{id} \otimes \partial^*} & H^0(N_{A/X}) \otimes H^{n-1}(K_A \otimes N_A^\vee/X) \\
\alpha \downarrow & & \downarrow \beta \\
H^{n-2}(K_A \otimes \Omega_A \otimes N_{A/X}) & \xrightarrow{e^*} & H^{n-1}(A, K_A)
\end{array}$$
Claim. \(\alpha\) is surjective.

Suppose that the Claim holds. Notice that we have \(H^{n-1}(A, K_A) \cong \mathbb{C}\). Then up to nonzero scalar multiplications, the Kodaira-Spencer homomorphism \(\partial\) determines the extension class \(e\) by

\[
\alpha^{-1}(\text{Ker}(\alpha^*)) = \text{Ker}(\beta \circ (\text{Id} \otimes \partial^*)).
\]

To prove the Claim, we first notice that we have \(N_{A/X} \cong \mathcal{O}_A(1)\), where \(\mathcal{O}_A(1) = \mathcal{O}_H(1)|_A\). By Serre duality theorem, the surjectivity of \(\alpha\) is equivalent to the injectivity of

\[
\alpha^* : H^1(A, T_A \otimes \mathcal{O}_A(-1)) \to \text{Hom}(H^0(A, \mathcal{O}_A(1)), H^1(A, T_A)).
\]

Notice that \(\alpha^*\) is induced by the natural cup product

\[
m : H^1(A, T_A \otimes \mathcal{O}_A(-1)) \otimes H^0(A, \mathcal{O}_A(1)) \to H^1(A, T_A).
\]

Consider the normal exact sequence corresponds to \(A \subset H \cong \mathbb{P}^n\):

\[
(\ast\ast) \ 0 \to T_A \to T_{\mathbb{P}^n}|_A \to N_{A/\mathbb{P}^n} \to 0,
\]

where \(N_{A/\mathbb{P}^n} \cong \mathcal{O}_A(d)\). Let \(\lambda \in H^1(A, T_A \otimes \mathcal{O}_A(-1))\) be the extension class of \((\ast\ast)\). Since \(n \geq 4\), by [7, Lemma 6.15], taking cup product with \(\lambda\) induces an isomorphism:

\[
\rho : R^d_{\partial} \to H^1(A, T_A)
\]

By the same argument as in the proof of [7, Lemma 6.15] and our assumption \(n \geq 4\), taking cup product with \(\lambda\) induces an isomorphism:

\[
\rho_{-1} : R^{d-1}_{\partial} \to H^1(A, T_A \otimes \mathcal{O}_A(-1)).
\]

Notice that we have the natural isomorphism \(\theta : R^1_{\partial} \to H^0(A, \mathcal{O}_A(1))\). Denote by \(m_{1,d-1} : R^1_{\partial} \otimes R^{d-1}_{\partial} \to R^d_{\partial}\) the natural multiplication induced by multiplication of polynomial ring. In particular, we have the following commutative diagram.

\[
\begin{array}{c}
R_{\partial}^1 \otimes R_{\partial}^{d-1} \\
\downarrow \theta \otimes \rho_{-1} \\
H^0(\mathcal{O}_A(1)) \otimes H^1(T_A \otimes \mathcal{O}_A(-1)) \\
\downarrow m \\
H^1(A, T_A)
\end{array}
\]

Since \(\theta\), \(\rho_{-1}\) and \(\rho\) are isomorphisms, we conclude that the injectivity of \(\alpha^*\) is equivalent to the injectivity of

\[
\mu : R^{d-1}_{\partial} \to \text{Hom}(R^1_{\partial}, R^d_{\partial}),
\]

where \(\mu\) is induced by \(m_{1,d-1}\). Notice that we have

\[
N = (d - 2)(n + 1)
\geq d + n - 2
\geq d + 2,
\]

where the first inequality follows by \(d \geq 3\) and the last inequality follows by \(n \geq 4\). By [7, Corollary 6.20 (ii)] and \(N \geq d + 2\), \(\mu\) is injective. Thus \(\alpha^*\) is injective. We conclude that \(\alpha\) is surjective. The Claim is proved. \(\Box\)
Proposition 2.2. The free families \mathcal{K} and $\tilde{\mathcal{K}}$ in Theorem 1.2 are iso-
equivalent up to order 1.

Proof. After shrinking \mathcal{K} and $\tilde{\mathcal{K}}$, we may assume that there is a biholomor-
phic map $f : \mathcal{K} \to \tilde{\mathcal{K}}$ such that for each $[A] \in \mathcal{K}$, $[\tilde{A}] = f([A]) \in \tilde{\mathcal{K}}$, we have $A \cong \tilde{A}$.

Since A and \tilde{A} are hypersurfaces of \mathbb{P}^n of degree $d \geq 3$ and $\text{dim}(A) = \text{dim}(\tilde{A}) \geq 3$, the biholomorphic map $A \cong \tilde{A}$ is induced by a projective transformation of \mathbb{P}^n. Thus the biholomorphic map induces the isomorphisms

$$T_A \cong T_{\tilde{A}}, \quad O_A(1) \cong O_{\tilde{A}}(1).$$

It is well known (see the remark after Proposition 1.7 in [3]) that the first infinitesimal neighborhood of a submanifold $A \subset X$ is determined by the extension class of

$$0 \to T_A \to T_X|_A \to N_{A/X} \to 0.$$

Notice that we have the natural isomorphisms:

$$N_{A/X} \cong O_A(1), \quad N_{\tilde{A}/\tilde{X}} \cong O_{\tilde{A}}(1).$$

By Lemma 2.1 and our assumption, we deduce that $T_X|_A$ and $T_{\tilde{X}}|_{\tilde{A}}$ are isomorphic (up to a nonzero scalar multiplication) as extensions of $O_A(1) \cong O_{\tilde{A}}(1)$ by $T_A \cong T_{\tilde{A}}$. Thus we have $(A/X)_1 \cong (\tilde{A}/\tilde{X})_1$.

Proof of Theorem 1.2. By our assumption, we always have

$$H^0(A, T_A) = H^0(\tilde{A}, T_{\tilde{A}}) = 0.$$

By Proposition 2.2 and [5, Theorem 3.1], we deduce that \mathcal{K} and $\tilde{\mathcal{K}}$ are germ-equivalent. Then there exist Euclidean open neighborhoods of some hyperplane sections $A \subset U \subset X$ and $\tilde{A} \subset \tilde{U} \subset \tilde{X}$, a biholomorphic map $\Phi : U \to \tilde{U}$ such that $\Phi(A) = \tilde{A}$. By [4, Corollary V.2.3], Φ can be extended to a birational map $\Psi : X \dasharrow \tilde{X}$. Since $A \subset X$ and $\tilde{A} \subset \tilde{X}$ are hyperplane sections of smooth projective varieties, Ψ is an isomorphism by Zariski main theorem. Since $X \subset \mathbb{P}^{n+1}$ and $\tilde{X} \subset \mathbb{P}^{n+1}$ are smooth hypersurfaces of degree $d \geq 3$ and $\text{dim}(X) = \text{dim}(\tilde{X}) \geq 4$, the isomorphism Ψ is induced by a projective transform of \mathbb{P}^{n+1}.

2.2. Proof of Corollary 1.4. Let $\rho : \mathcal{Y}_{U_0} \to U_0$ be the universal family of smooth $(n - 1)$-folds of degree d obtained as hyperplane sections of X. For $t \in U_0$, denote by Y_t the corresponding smooth hyperplane section of $X \subset \mathbb{P}^{n+1}$. For any open subset $V \subset U_0$, write

$$\mathcal{Y}_V = \mathcal{Y}_{U_0} \times_{U_0} V.$$

Set $\rho_V = \rho|_{\mathcal{Y}_V} : \mathcal{Y}_V \to V$.

Suppose that μ is not generically finite onto its image. Then a general fiber F of $\mu : U_0 \to \mu(U_0)$ is of dimension $k \geq 1$. Let x and y be two general points of F. Then there are two very small Euclidean open subsets $x \in U_x \subset U_0$, $y \in U_y \subset U_0$ and an isomorphism $f_{x,y} : U_x \to U_y$ satisfying $\mu|_{U_x} \circ f_{x,y} = \mu|_{U_y}$. Notice that we have $H^0(Y_t, T_{Y_t}) = 0$ for any $t \in U_0$. We can choose two Euclidean open subsets $V_x \subset U_x$ and $V_y \subset U_y$ such that:
(1) $f_{x,y}$ induces an isomorphism between V_x and V_y. By abuse of notation, we still use $f_{x,y}$ to denote this isomorphism.

(2) there is an isomorphism $F_{x,y} : \mathcal{Y}_V_x \to \mathcal{Y}_V_y$ such that the following diagram is commutative:

$$
\begin{array}{ccc}
\mathcal{Y}_V_x & \xrightarrow{F_{x,y}} & \mathcal{Y}_V_y \\
\rho_{V_x} & & \rho_{V_y} \\
V_x & \xrightarrow{f_{x,y}} & V_y
\end{array}
$$

In particular, $F_{x,y}$ gives an iso-equivalence up to order 0 between two free families \mathcal{Y}_V_x and \mathcal{Y}_V_y. By Theorem 1.2, there is an isomorphism $\Phi_{x,y} : X \to X$ such that $\Phi_{x,y}^*(Y_{f_{x,y}(t)}) = Y_t$ for any $t \in V_x$.

For a fixed x, we can choose infinitely many y_i’s such that $U_{y_i} \cap U_{y_j} = \emptyset$ for any $i \neq j$. By the above arguments, we can find infinitely many automorphisms $\Phi_i = \Phi_{x,y_i}$ such that $\Phi_i^*(Y_{f_{x,y_i}(t)}) = Y_t$ for any $t \in V_x$. Here V_x depends on i. By the choise of U_{y_i}, we conclude that $\Phi_i \neq \Phi_j$ if $i \neq j$. So the automorphism group of X is an infinite group, which is a contradiction. The proof is completed.

3. PROOF OF THEOREM 1.6

Similarly as in the proof of Theorem 1.2, the key step is to prove the following lemma.

Lemma 3.1. Let $A \subset X$ be a smooth hyperplane section of the smooth surface $X \subset \mathbb{P}^N$ with $\kappa(X) \geq 0$. Then the Kodaira-Spencer map $H^0(A, N_{A/X}) \to H^1(A, T_A)$ of hyperplane sections determines the extension class of

$$(*) \quad 0 \to T_A \to T_{X|A} \to N_{A/X} \to 0$$

up to non-zero scalar multiplications.

Proof. Denote by K_A the canonical bundle of A. Let $e \in H^1(A, T_A \otimes N_{A/X}^\vee)$ the extension class of $(*)$. Denote by $e^* \in \text{Hom}(H^0(A, K_A \otimes 2 \otimes N_{A/X}), H^1(A, K_A))$ the Serre dual of e. The Kodaira-Spencer map is the boundary homomorphism

$$\partial : H^0(A, N_{A/X}) \to H^1(A, T_A)$$

which is induced by taking cup product with e. Let

$$\partial^* : H^0(A, K_A \otimes 2) \to H^1(A, K_A \otimes N_{A/X}^\vee)$$

be the dual of ∂. Let

$$\alpha : H^0(A, N_{A/X}) \otimes H^0(A, K_A \otimes 2) \to H^0(A, K_A \otimes 2 \otimes N_{A/X})$$

be the natural multiplication product. Denote by

$$\beta : H^0(A, N_{A/X}) \otimes H^1(A, K_A \otimes N_{A/X}^\vee) \to H^1(A, K_A)$$
the natural cup product. Then the following diagram is commutative up to sign,

$$
\begin{array}{ccc}
H^0(N_{A/X}) \otimes H^0(K_A^{\otimes 2}) & \xrightarrow{\text{Id} \otimes \partial^*} & H^0(N_{A/X}) \otimes H^1(K_A \otimes N_{A/X}') \\
\alpha & & \beta \\
H^0(K_A^{\otimes 2} \otimes N_{A/X}) & \xrightarrow{e^*} & H^1(A, K_A)
\end{array}
$$

Claim. α is surjective.

Suppose that the **Claim** holds. Notice that we have $H^1(A, K_A) \cong \mathbb{C}$. Then up to nonzero scalar multiplications, the Kodaira-Spencer homomorphism ∂ determines the extension class e by

$$
\alpha^{-1}(\text{Ker}(e^*)) = \text{Ker}(\beta \circ (\text{Id} \otimes \partial^*)).
$$

To prove the **Claim**, we first notice that we have $N_{A/X} = O_A(A) \cong O_A(1)$, where $O_A(1) = O_F^N(1)|_A$. By adjunction formula on X, we have

$$
\deg(K_A) = ((K_X + A) \cdot A) > 0,
$$

where the last inequality follows by $\deg(O_A(A)) = \deg(O_A(1)) > 0$ and $\kappa(X) \geq 0$. So A is a smooth curve of genus $g \geq 2$. Since $O_A(1)$ is very ample, we have $h^0(A, O_A(1)) \geq 3$ and $\deg(O_A(1)) \geq 3$. We conclude that $K_A \otimes O_A(1)$ is also very ample. By [6, Proposition 3.1 (1) (b)], the multiplication maps

$$
H^0(A, K_A) \otimes H^0(A, N_{A/X}) \rightarrow H^0(A, K_A \otimes N_{A/X})
$$

and

$$
H^0(A, K_A) \otimes H^0(A, K_A \otimes N_{A/X}) \rightarrow H^0(A, K_A^{\otimes 2} \otimes N_{A/X})
$$

are surjective. Thus the multiplication map α is surjective. We finish the proof of **Claim.**

Proof of Theorem 1.6. By the same argument as in the proof of Theorem 1.2, we can complete the proof of Theorem 1.6. Since the arguments are same, we omit the details.

References

[1] Arnaud, Beauville, *Sur les hypersurfaces dont les sections hyperplanes sont à module constant*. Progr. Math., 86, The Grothendieck Festschrift, Vol. I, 121-133, Birkhäuser Boston, Boston, MA, 1990.

[2] Yiran, Cheng, *Hyperplane sections of hypersurfaces*, Arxiv: 2001.10983.

[3] Phillip A, Griffiths, *The extension problem in complex analysis. II. Embeddings with positive normal bundle*, Amer. J. Math. 88 (1966), 366-446.

[4] Robin, Hartshorne, *Ample subvarieties of algebraic varieties*, Notes written in collaboration with C. Musili, Lecture Notes in Mathematics, Vol. 156, Springer-Verlag, Berlin-New York, 1970.

[5] Jun-Muk, Hwang, *Extending Nirenberg-Spencer’s question on holomorphic embeddings to families of holomorphic embeddings*, Arxiv: 2003.03885.

[6] Wenbo, Niu, *On syzygies of Calabi-Yau varieties and varieties of general type*, Adv. Math. 343 (2019), 756-788.

[7] Claire, Voisin, *Hodge theory and complex algebraic geometry. II*, Translated from the French by Leila Schneps, Cambridge Studies in Advanced Mathematics, 77, Cambridge University Press, Cambridge, 2003.
(Y.H.) School of Mathematics, Korea Institute for Advanced Study, 85 Hoe-giro, Dongdaemun-gu, Seoul 02455, Republic of Korea

E-mail address: yonghu11@kias.re.kr