Pairing and nonaxial-shape correlations in $N = 150$ isotones

Kenichi Yoshida

Department of Physics, Kyoto University, Kyoto, 606-8502, Japan
(Dated: May 10, 2021)

Purpose: I attempt to uncover the microscopic mechanism for the appearance of such a low-energy 2^- state in 248Cf. Furthermore, I investigate the possible occurrence of the low-energy $K^\pi = 2^+$ state, the γ vibration, to elucidate the mechanism that prefers the simultaneous breaking of the reflection and axial symmetry to the breaking of the axial symmetry alone in this mass region.

Method: I employ a nuclear energy-density functional (EDF) method: the Skyrme–Kohn–Sham–Bogoliubov and the quasiparticle random-phase approximation are used to describe the ground state and the transition to excited states.

Results: The Skyrme-type SkM* and SLy4 functionals reproduce the fall in energy, but not the absolute value, of the $K^\pi = 2^-$ state at $Z = 98$, where the proton two-quasiparticle (2qp) excitation $[633]7/2 \otimes [521]3/2$ plays a decisive role for the peculiar isotonic dependence. I find interweaving roles by the pairing correlation of protons and the deformed shell closure at $Z = 98$. The SkM* model predicts the $K^\pi = 2^-$ state appears lower in energy in 246Cf than in 248Cf as the Fermi level of neutrons is located in between the $[622]5/2$ and $[734]9/2$ orbitals. Except for 250Fm in the SkM* calculation, the $K^\pi = 2^+$ state is predicted to appear higher in energy than the $K^\pi = 2^-$ state because the quasi-proton $[521]1/2$ orbital is located above the $[533]7/2$ orbital.

Conclusions: A systematic study of low-lying collective states in heavy actinide nuclei provides a rigorous testing ground for microscopic nuclear models. The present study shows a need for improvements in the EDFs to describe pairing correlations and shell structures in heavy nuclei, that are indispensable in predicting the heaviest nuclei.

I. INTRODUCTION

Recent developments in experimental technology and theoretical modeling have significantly advanced the study of exotic nuclei. The existence of superheavy nuclei in the limit of a great number of protons has long been a subject of interest in nuclear physics [1,3]. The shell effect is a key to define their stability. The pairing correlations further play an influential role in determining the stability and shape of the ground state, and accordingly, the height of the fission barrier [4]. However, it is not simple to investigate the shell structure and the pairing in such nuclei in the extreme regime. Strongly deformed actinide nuclei have thus been investigated as they can reveal the nuclear-structure information in the island of enhanced stability of spherical superheavy nuclei [5].

Details of the spectroscopic information in the actinide nuclei have provided an excellent testing ground for the reliability and predicting power of modern nuclear-structure theories [6,7]. Several deformed shell closures are expected to emerge at $Z = 98$ and 100 and at $N = 150$ and 152 in the actinide nuclei [8]. Correspondingly, beautiful rotational bands have been measured [6,7], that are indicative of an axially-deformed rotor. The rotational properties and the high-K isomers have been studied in detail in terms of the pairing [9,13].

In the course of the studies, anomalies have been revealed that are caused by residual interactions beyond the mean-field picture. A collective phenomenon shows up as a low-lying $K^\pi = 2^-$ state in the $N = 150$ isotones, and the energy falls peculiarly in 248Cf [14,15]. The nonaxial reflection-asymmetric β_{32} (dynamic) fluctuation and (static) deformation have been suggested by the projected shell-model calculation [16] and the relativistic energy-density-functional (EDF) calculation [17]. The quasiparticle-random-phase approximation (QRPA) calculations have also been performed to investigate the vibrational character [18,19]. While the calculation using the Nilsson potential describes the anomalous behavior in 248Cf, the selfconsistent QRPA calculation employing the Gogny-D1M EDF shows a smooth isotonic dependence.

The observation of a strong β_{32} correlation that breaks the axial symmetry suggests that the non-axial quadrupole deformation, γ deformation, may also occur. Nuclear triaxiality brings about exotic collective modes: the appearance of the low-energy $K^\pi = 2^+$ band, the γ band, is a good indicator for the γ deformation [20,21]. The γ vibrational mode of excitation is regarded as a precursory soft mode of the permanent γ deformation. Experimentally, the $K^\pi = 2^+$ state has not been observed to be as low in energy as the $K^\pi = 2^-$ state in 244Pu and 246Cm [22,23]. Therefore, it is interesting to investigate a microscopic mechanism that prefers the simultaneous breaking of the reflection and axial symmetry to the breaking of the axial symmetry alone.

Pairing correlations are essential for describing low-energy vibrational modes of excitation [24] and are a key to understanding the collective nature. Therefore, in this
article, I am going to investigate the role of the pairing correlations in both the static and dynamic aspects, as done in the studies in exotic nuclei in the neutron-rich region [25–27]. To this end, I employ a nuclear EDF method in which the pairing and deformation are simultaneously considered. Since the nuclear EDF method is a theoretical model being capable of handling nuclides with arbitrary mass numbers in a single framework [28, 29], the present investigation in the actinides can give an insight into the veiled nuclear structure of superheavy nuclei.

This paper is organized in the following way: the theoretical framework for describing the low-lying vibrations is given in Sec. II and details of the numerical calculation are also given; Sec. III is devoted to the numerical results and discussion based on the model calculation; after the discussion on the ground-state properties: the static aspects of pairing and deformation in Sec. IIIA, the discussion on the K2 = 2$^−$ and K$^+$ = 2$^+$ states is given in Sec. IIIB1 and Sec. IIIB2 respectively; then, a summary is given in Sec. IV.

II. THEORETICAL MODEL

A. KSB and QRPA calculations

Since the details of the framework can be found in Refs. [30, 31], here I briefly recapitulate the basic equations relevant to the present study. In the framework of the nuclear EDF method I employ, the ground state is described by solving the Kohn–Sham–Bogoliubov (KSB) equation [32]:

$$\sum_{\sigma'} \left[\hat{h}^q_{\sigma\sigma'}(r) - \lambda^q \delta_{\sigma\sigma'} \right] \hat{\bar{h}}^q_{\sigma\sigma}(r) \right] \begin{bmatrix} \bar{v}_{1,\alpha}(r\sigma') \\ \bar{v}_{2,\alpha}(r\sigma') \end{bmatrix} = E_{\alpha} \begin{bmatrix} \bar{v}_{1,\alpha}(r\sigma) \\ \bar{v}_{2,\alpha}(r\sigma) \end{bmatrix},$$

(1)

where the single-particle and pair Hamiltonians $\hat{h}^q_{\sigma\sigma'}(r)$ and $\hat{\bar{h}}^q_{\sigma\sigma}(r)$ are given by the functional derivative of the EDF with respect to the particle density and the pair density, respectively. An explicit expression of the Hamiltonians is found in the Appendix of Ref. [33]. The superscript q denotes ν (neutron, $t_\nu = 1/2$) or π (proton, $t_\pi = 1$). The average particle number is fixed at the desired value by adjusting the chemical potential λ^q. Assuming the system is axially symmetric, the KSB equation (1) is block diagonalized according to the quantum number Ω, the z-component of the angular momentum.

The excited states $|i\rangle$ are described as one-phonon excitations built on the ground state $|0\rangle$ as

$$|i\rangle = \hat{\Gamma}_i|0\rangle,$$

(2)

$$\hat{\Gamma}_i = \sum_{\alpha\beta} \left\{ f^{i\alpha}_{\alpha\beta} \hat{a}^\dagger_{\alpha} \hat{a}_{\beta} - g^{i\alpha}_{\alpha\beta} \hat{a}^\dagger_{\beta} \hat{a}_{\alpha} \right\},$$

(3)

where \hat{a}^\dagger and \hat{a} are the quasiparticle (qp) creation and annihilation operators that are defined in terms of the solutions of the KSB equation (1) with the Bogoliubov transformation. The phonon states, the amplitudes f^i, g^i and the vibrational frequency ω_i, are obtained in the quasiparticle-random-phase approximation (QRPA): the linearized time-dependent density-functional theory for superfluid systems [29]. The EDF gives the residual interactions entering into the QRPA equation. In the present calculation scheme, the QRPA equation is block diagonalized according to the quantum number $K = \Omega_\alpha + \Omega_\beta$.

B. Numerical procedures

I solve the KSB equation in the coordinate space using cylindrical coordinates $r = (\rho, \phi, z)$. Since I assume further the reflection symmetry, only the region of $z \geq 0$ is considered. I use a two-dimensional lattice mesh with $\rho_i = (i - 1/2)\hbar$, $z_j = (j - 1)\hbar$ ($i, j = 1, 2, \ldots$) with a mesh size of $h = 0.6$ fm and 25 points for each direction. The qp states are truncated according to the qp energy cutoff at 60 MeV, and the qp states up to the magnetic quantum number $\Omega = 23/2$ with positive and negative parities are included. I introduce the truncation for the two-quasiparticle (2qp) configurations in the QRPA calculations, in terms of the 2qp-energy as 60 MeV.

For the normal (particle–hole) part of the EDF, I employ mainly the SkM* functional [34], and use the SLy4 functional [35] to complement the discussion. For the pairing energy, I adopt the so-called mixed-type interaction:

$$V^q_{\text{pair}}(\rho, \rho') = V^q_{0} \left[1 - \frac{\rho(\rho')}{2\rho_0} \right] \delta(\rho - \rho')$$

(4)

with $\rho_0 = 0.16$ fm$^{-3}$, and $\rho(\rho')$ being the isoscalar (matter) particle density. The same pair interaction is employed for the dynamical pairing in the QRPA calculation. The parameter V^q_{0} is fitted to the three-point formula for the odd-even staggering centered at the odd-mass system and averaged over the two neighboring nuclei [30–37]. In the present work, I fix the pairing parameters to reproduce reasonably the data of 244Cm which are 0.63 MeV and 0.57 MeV for neutrons and protons, respectively. The resultant pairing gaps are 0.65 MeV and 0.57 MeV for neutrons and protons, respectively.

III. RESULTS AND DISCUSSION

A. Ground-state properties

Table I summarizes the calculated deformation parameters:

$$\beta_2^\nu = \frac{4\pi}{5N_q\langle r^2 \rangle_q} \int d\mathbf{r} Y_{20}(\hat{\mathbf{r}}) \rho_q(\mathbf{r}),$$

(5)
where the rms radius is given as $\sqrt{\langle r^2 \rangle_q} = \sqrt{\int r^2 \rho_q(r) dr / N_q}$, with N_q being either the neutron number or proton number. They are compared with the experimental data [38], which is evaluated from the $B(E2)$ value based on the leading-order intensity relations of $E2$ matrix elements for an axially symmetric rotor [20]. The calculated results obtained by employing the SLy4 functional are also included. The strengths of the pair interaction were fitted similarly for SkM*; the strength $V_0^\pi = -310$ MeV fm3 and $V_0^\sigma = -320$ MeV fm3 produces the pair gap as 0.67 MeV and 0.53 MeV for neutrons and protons, respectively. Both the SkM* and SLy4 functionals reproduce well the strong deformation of 244Pu and 246Cm. The calculations predict a stronger deformation for higher Z isotones: 250Fm and 252No.

I show in Fig. 1 the pair gaps of protons and neutrons:

$$\Delta_q = \left| \int \frac{d\rho_q(r)U^q(r)}{d\rho_i(r)} \right|,$$

where $U^q(r)$ is the pair potential given by $\hat{h}_r^q \rho_q(r) = \delta_{\sigma\sigma'}U^q(r)$ and $\rho_q(r)$ is the anomalous (pair) density. The calculations overestimate the measurements for neutrons. When I slightly decrease the pair strength for neutrons as $V_0^\sigma = -260$ MeV fm3, the calculation shows a reasonable agreement. However, a proton-number dependence is opposite to what is shown in the measurements. This indicates that the neutrons deformed gap of 150 must be more significant than that of 148 in lower Z and that the level density around $N = 150$ is high in higher Z nuclei. Since the deformed shell gap at 150 is formed by the up-sloping orbitals stemming from the $2g_{9/2}$ shell and the down-sloping orbitals emanating from the $2g_{7/2}$ shell, a slight modification of the spin–orbit interaction would impact the shell structure in this region, and further, the prediction of the magic numbers in the superheavy region, as anticipated in Ref. [8].

The resultant pair gaps of protons are compatible with the experimental ones. The SkM* functional with the mixed-type pairing well reproduces the overall isotonic dependence, while the SLy4 shows a drop at $Z = 98$, which the measurements do not reveal. One may conjecture that this is because the deformed shell gap is overdeveloped at $Z = 98$ in the SLy4 model. I then show in

Proton Number	SkM*	SLy4	Exp.
244Pu	0.29	0.28	0.29
246Cm	0.29	0.28	0.29
248Cf	0.30	0.30	0.30
250Fm	0.30	0.30	0.30
252No	0.30	0.30	0.30

Neutron Number	SkM*	SLy4	Exp.
244Pu	0.27	0.27	0.27
246Cm	0.27	0.27	0.27
248Cf	0.27	0.27	0.27
250Fm	0.28	0.28	0.28
252No	0.28	0.28	0.28

Fig. 2 shows the single-particle levels in 248Cf to visualize the shell structure. The single-particle orbitals were obtained by rediagonalizing the single-particle Hamiltonian:

$$\sum_{\sigma'} h_{\sigma\sigma'}^q [\rho_\sigma, \hat{\rho}_s] \varphi_{\sigma'}(r) = \varepsilon_{\gamma, \gamma}^q \varphi_{\gamma}(r)$$

with ρ_σ and $\hat{\rho}_s$ obtained as the solution of the KSB equation $[1]$. The energy gap at $Z = 98$ is indeed larger than that obtained by using the SkM* functional, as discussed in Ref. [39]. Since the pair gap is about 0.5 MeV, the orbitals with $\Omega^\pi = 7/2^+$ and $3/2^-$ are primarily active for the pairing correlation. The occupation probability of the orbital with $\Omega^\pi = 7/2^+$ is indeed only 0.14, and that of the orbital with $\Omega^\pi = 3/2^-$ is as large as 0.85. For reference, they are 0.23 and 0.80 in the SkM* model. A strong deformed-shell closure at $Z = 98$ in the SLy4 model is unfavorable in generating the low-energy $K^\pi = 2^-$ state, as questioned in Ref. [18].

B. Vibrational states

I consider the response to the quadrupole ($\lambda = 2$) and octupole ($\lambda = 3$) operators defined by

$$\hat{F}_{\lambda K} = \sum_{\sigma} \int d\rho Y_{\lambda K} \varphi_{\gamma}(r) \varphi_{\gamma}(r)$$

where $Y_{\lambda K}$ is the Wigner function of the λ-th multipole moment.
where $\hat{\psi}^i(r_{\sigma})$, $\hat{\psi}_v(r_{\sigma})$ represent the nucleon field operators. The reduced transition probabilities can be evaluated with the intrinsic transition strengths as

$$B(E\lambda; I_K^\pi \rightarrow 0^+_{gs}) = \frac{2 \lambda K 0}{2I K + 1} e^2 \langle |\hat{F}_{\lambda K}^\pi | 0 \rangle^2,$$ \hspace{1cm} (9)

$$B(I\lambda; I_K^\pi \rightarrow 0^+_{gs}) = \frac{2 \lambda K 0}{2I K + 1} \langle |\hat{F}_{\lambda K}^\pi + \hat{F}_{\nu K}^\pi | 0 \rangle^2$$ \hspace{1cm} (10)

in the rotational coupling scheme \cite{20}, where I_K represents the nuclear spin of the K^π-band. The intrinsic transition matrix element is given as

$$\langle |\hat{F}_{\lambda K}^q | 0 \rangle = \sum_{\alpha\beta} \langle \lambda | f_{\alpha\beta}^{q,i} + g_{\alpha\beta}^i \rangle \langle \beta | \hat{F}_{\lambda K}^q | 0 \rangle$$ \hspace{1cm} (11)

$$= \sum_{\alpha\beta} M_{\alpha\beta}^{q,i}$$ \hspace{1cm} (12)

with the QRPA amplitudes and the 2qp matrix elements. The QRPA amplitudes are normalized as

$$\sum_{\alpha\beta} \left(|f_{\alpha\beta}^{q,i}|^2 - |g_{\alpha\beta}^i|^2 \right) = 1.$$ \hspace{1cm} (13)

1. $K^\pi = 2^-$ state

I show in Fig. \textbf{3(a)} the intrinsic excitation energies of the $K^\pi = 2^-$ state in the $N = 150$ isotones. Both the SkM* and SLy4 functionals well reproduce the isotonic trend of the energy, particularly a drop at $Z = 98$, but overestimate the measurements as a whole. The QRPA calculation in Ref. \cite{18} based on the Nilsson potential \cite{10} also well describes a sharp fall in energies at $Z = 98$, while the one employing the D1M functional shows only a smooth proton-number dependence. It is noted that in these calculations, the rotational correction and the Coriolis coupling effect \cite{41} are not included. One needs to consider these effects for a quantitative description, but it is beyond the scope of the present study. Rather, I am going to investigate a microscopic mechanism for the unique isotonic dependence of the octupole correlation.

A lowering in energy implies that the collectivity develops from $Z = 96$ to $Z = 98$. However, the isoscalar intrinsic transition strengths to the $K^\pi = 2^-$ state do not show such a trend: 6.83, 6.18, 6.11, 4.74, and 4.45 (in 10^5 MeV fm6) in 244Pu, 246Cm, 248Cf, 250Fm, and 252No. The isotonic dependence of the properties of the $K^\pi = 2^-$ state is actually governed by the details around the Fermi surface: the interplay between the underlying shell structures and the pairing correlations. To see the role of the pairing, shown in Fig. \textbf{3(a)} are the results obtained by varying the pair interaction. I reduced the pairing strength $V_0^\nu = 260$ MeV fm3 while keeping the strength for protons, and I increased the pairing strength $V_0^\pi = 320$ MeV fm3 while keeping the strength for neutrons. Then, I find that the $K^\pi = 2^-$ state in 248Cf is sensitive to the pairing of protons. When the strength of the pair interaction for protons is increased, the excitation energy in 248Cf becomes higher: 0.84 MeV to 1.00 MeV, while the excitation energy in the other iso-

FIG. 2. Single-particle energies of protons and neutrons near the Fermi levels in 248Cf. The results obtained by using the SkM* and SLy4 functionals are compared. The solid and dashed lines indicate the positive- and negative-parity states, respectively. Each orbital is labeled by Ω^π.
tones does not change much. As seen in Fig. 1b), 2Δ for protons rises by about 0.2 MeV in increasing the pairing strength for protons: the increase in the pairing gap of protons directly affects the increase in the excitation energy. On the other hand, the change in the pairing strength for neutrons does not alter the energy in 248Cf. This indicates that the $K^\pi = 2^-$ state is sensitive to the excitation of protons. The calculation in Ref. [15] found a high amplitude for the proton configuration of $[633]^2 \otimes [521]^3/2$, and the quasiparticle phonon model predicted that the main component of the wave function is this proton configuration with a weight of 62% [12]. Containing a large component of this proton configuration is supported by the population of the $K^\pi = 2^-$ and 5^- states in the 249Bk(α,t)250Cf reaction [3].

Let me investigate the isotonic evolution of the microscopic structure. Figure 4 shows the matrix elements $M_{\alpha\beta}$ defined in Eq. (12) of the 2qp excitations near the Fermi levels for the $K^\pi = 2^-$ state as functions of the unperturbed 2qp energy $E_\alpha + E_\beta$.

![Matrix elements $M_{\alpha\beta}$](image) | FIG. 4. Matrix elements $M_{\alpha\beta}$ (12) of the 2qp excitations near the Fermi levels for the $K^\pi = 2^-$ state as functions of the unperturbed 2qp energy $E_\alpha + E_\beta$. | 244Pu | 250Fm | 246Cm | 248Cf | 252No |
---|---|---|---|---|---|
Matrix element (fm3) | 0 | 20 | 40 | 60 | 80 |
Two-qp energy (MeV) | 0 | 1 | 2 | 3 | 4 |

MeV, then has an appreciable contribution with an amplitude of 0.43, together with the $\nu[622]5/2 \otimes \nu[734]9/2$ excitation with an amplitude of 0.31. Note that both the $\pi[521]^3/2$ and $\pi[633]^7/2$ orbitals are particle-like. In 248Cf, the Fermi level of protons is located just in between the $\pi[521]^3/2$ and $\pi[633]^7/2$ orbitals. Then, the 2qp excitation of $\pi[521]^3/2 \otimes \pi[633]^7/2$ appears low in energy at 1.3 MeV, and the $K^\pi = 2^-$ state is predominantly generated by this configuration with an amplitude of 0.72. The amplitude of the $\nu[622]5/2 \otimes \nu[734]9/2$ excitation declines to 0.14. Adding two more protons, the 2qp excitation of $\pi[521]^3/2 \otimes \pi[633]^7/2$ is a hole–type excitation, and the unperturbed 2qp states are located higher in energy. Therefore, the matrix element and contribution of this 2qp excitation decrease. The $K^\pi = 2^-$ state in 250Fm is mainly constructed by the $\pi[521]^3/2 \otimes \pi[633]^7/2$ and $\nu[622]5/2 \otimes \nu[734]9/2$ excitations with a weight of 0.42 and 0.41, respectively. Then, the $\nu[622]5/2 \otimes \nu[734]9/2$ excitation dominantly generates the $K^\pi = 2^-$ state with a weight of 0.73 in 252No.

It seems that the collectivity of the $K^\pi = 2^-$ state in 248Cf is weaker than in the other isotones: single 2qp excitation dominates the state. The sum of the backward-going amplitudes $\sum |g|^2$ and the octupole polarizability χ can be measures of the correlation, in addition to the energy shift and the enhancement in the transition strength due to the QRPA correlations. The calculated $\sum |g|^2$ is 0.22, 0.20, 0.24, 0.14, and 0.12 and the stiffness parameter $C_{\beta_{22}} = \chi_{22}^{-1}$ (in MeV) is 418, 402, 306, 502, and 548 in 244Pu, 246Cm, 248Cf, 250Fm, and 252No, respectively. Based on these measures, the octupole correlation is strong in 248Cf as well as in 244Pu and 246Cm.

In Fig. 3a), I plot the calculated results obtained by neglecting the dynamical pairing, as depicted by open diamonds. The dynamical pairing lowers the $K^\pi = 2^-$ state by 0.04–0.06 MeV. One sees a larger effect in 246Cm. The energy shift due to the dynamical pairing is 0.06 MeV out of 0.65 MeV due to the QRPA correlations in total. It is noted that the pairing correlation energy in the total binding energy is about 0.7%. As discussed above, the collective state in 246Cm is constructed mainly by the $\nu[622]5/2 \otimes \nu[734]9/2$ and $\pi[521]^3/2 \otimes \pi[633]^7/2$ excitations. Since these are a neutron hole–hole and a proton particle–particle excitations, the residual pair interaction for both neutrons and protons is active and instrumental in forming the collective state.

Surprisingly, the SLy4 model reproduces the drop in energies at $Z = 98$. As mentioned above, and as questioned in Ref. [15], Fig. 2 shows that the SLy4 model overestimates the deformed gap at $Z = 98$, requiring a high energy particle–hole excitation from $\pi[521]^3/2$ to $\pi[633]^7/2$. Here, the pairing correlations are key to understanding the characteristic isotonic dependence. The microscopic structure of the $K^\pi = 2^-$ state in the SLy4 model is essentially the same as in the SkM* model: the $\nu[622]5/2 \otimes \nu[734]9/2$ and $\pi[521]^3/2 \otimes \pi[633]^7/2$ excitations play a central role. The unperturbed energy of the $\pi[521]^3/2 \otimes \pi[633]^7/2$ excitation is 1.93 MeV and 1.41
MeV in 246Cm and 248Cf; a 0.5 MeV drop is comparable to the calculation in the SkM* model, as shown in Fig. 4. The reduction of the pairing of protons, associated with a strong shell closure, accounts for the drop in energy.

As one sees in Fig. 2, the SkM* and SLy4 functionals give different shell structures of neutrons around $N = 150$: the single-particle orbitals with $\Omega^\pi = 7/2^+$ and $9/2^-$ are inverted. Therefore, the $\nu[622]5/2 \otimes \nu[734]9/2$ excitation is a hole–hole type excitation in the SkM* model, and this becomes a particle–hole type in $N = 148$. One can thus expect that the collectivity of the $K^\pi = 2^-$ state is strongest in 246Cf. Indeed, the SkM* model gives a strongly collective $K^\pi = 2^-$ state at 0.65 MeV, with the isoscalar strength of 7.55×10^5 fm6, which is predominantly generated by the $\nu[622]5/2 \otimes \nu[734]9/2$ excitation with a weight of 0.31 and the $\pi[521]3/2 \otimes \pi[633]7/2$ excitation with a weight of 0.56. The sum of backward-going amplitudes is 0.35, and the stiffness parameter is 218 MeV. If the $K^\pi = 2^-$ state is observed in a future experiment at lower energy than in 248Cf, our understanding of the shell structure around $N = 150$ will be greatly deepened. The ground state in 248Cf is $\nu[734]9/2$ and the excited bands of the $\nu[622]5/2$ and $\nu[624]7/2$ appear at 145 keV and 380 keV, respectively [44]—it suggests the ordering of the single-particle levels as given in the SkM* model though the deformed gap of $N = 150$ must be larger than that of 148.

2. $K^\pi = 2^+$ state

I show in Fig. 3(a)–(b) the intrinsic excitation energies of the $K^\pi = 2^+$ state in the $N = 150$ isotones. The excitation energy calculated is higher than that of a typical γ vibration: experimentally, the 2^+_1 states were observed at low excitation energies (∼800 keV) for the well-deformed dysprosium ($Z = 66$) and erbium ($Z = 68$) isotopes around $N = 98$ [45] and in the neutron-rich region [46] [47]. It is noted that the present nuclear EDF method well describes the γ vibration in the neutron-rich Dy isotopes [48].

One can see a similar isotonic dependence of the excitation energy to the $K^\pi = 2^+$ state: a drop at around $Z = 98$. As for the $K^\pi = 2^-$ state, this is governed by the underlying shell structure. Let me then investigate the isotonic evolution of the microscopic structure. Figure 5 shows the matrix elements $M_{\alpha\beta}$ defined in Eq. (12) of the 2qp excitations near the Fermi levels for the $K^\pi = 2^+$ state. One sees that 2qp excitations near the Fermi levels have a coherent contribution to generate the $K^\pi = 2^+$ state with the same sign as for the $K^\pi = 2^-$ state. Table II summarizes the amplitudes $|f|^2 - |g|^2$ for the configurations possessing a dominant contribution to the $K^\pi = 2^+$ state. Both the neutron 2qp excitations A: $[620]1/2 \otimes [622]5/2$ and B: $[622]3/2 \otimes [624]7/2$ satisfy the selection rule of the γ vibration [20]:

$$\Delta N = 0 \text{ or } 2, \Delta n_3 = 0, \Delta M = \Delta \Omega = \pm 2. \quad (14)$$

However, the matrix element for B is small as this configuration is a particle–particle excitation.

The proton 2qp excitation D: $[521]1/2 \otimes [521]3/2$ governs the isotonic dependence of the $K^\pi = 2^+$ state, that satisfies the selection rule as well. The $\pi[521]3/2$ orbital is located above the Fermi level of protons in 244Pu and 246Cm, and the $\pi[521]1/2$ orbital is located below the Fermi level in 252No, as seen in Fig. 2. Thus, the transition matrix element of the 2qp excitation D is small in these isotones. The proton 2qp excitation C: $[521]1/2 \otimes [512]5/2$ is a particle–hole excitation in $Z = 94–100$, and this has an appreciable contribution in the isotones under the present study. However, the particle–hole energy is relatively high, and the matrix element is not significant because the excitation is in disagreement with the selection rule. In this respect, 248Cf and 250Fm are the most favorable systems where the γ vibration occurs in the low energy. The excitation energy of the $K^\pi = 2^+$ state is higher than the $K^\pi = 2^-$ state. This is because the quasi-proton $[521]1/2$ orbital is higher in energy than the $[633]7/2$ orbital. However, the SkM* model predicts that the $K^\pi = 2^+$ state appears lower than the $K^\pi = 2^-$ state in 250Fm; this may be in contradiction with the measurements of the low-lying
states in 251Md [10], where the ground state is suggested to be $\pi[514]/7/2$ and the excited band of the $\pi[521]/1/2$ configuration appears at 55 keV as the lowest state.

Finally, I investigate the roles of the pairing correlations. Plotted in Fig. 3(b) are the results obtained by decreasing the pairing strength for neutrons (open triangles-down) and by increasing the pairing strength for protons (open triangles-up). One sees that the decrease of the pairing for neutrons lowers the excitation energies, and the effect is larger in the Pu, Cm, and No isotones. The increase of the pairing for protons raises the excitation energies in the Cf and Fm isotones. As the increase (decrease) of the pairing strength enhances (reduces) the pairing gap, the QRPA frequencies rise (decline). The pairing effect depends on the structure of the states. To see one aspect of the structure, let me introduce the quantity: $|M_\nu/M_\pi| = |\langle i|F^\pi|0\rangle/\langle i|F^\nu|0\rangle|$. For the $K^\pi = 2^+$ states calculated in the SkM* model, this is 0.93, 0.89, 0.85, 0.86, and 0.98 in 244Pu, 246Cm, 248Cf, 250Fm, and 252No, respectively. Here, the $|M_\nu/M_\pi|$ value is divided by N/Z. The excitation of protons is stronger in the Cf and Fm, which is in accordance with the microscopic structure discussed above. The pairing of neutrons (protons) is thus relatively sensitive in the Pu, Cm, No (Cf, Fm) isotones. The dynamical pairing enhances the collectivity: the energy shift due to the residual pair interaction is 0.06 MeV–0.12 MeV. This is equal to, but more substantial than, the case in the $K^\pi = 2^-$ state, indicating that the coherence among particle–hole and particle–particle (hole–hole) excitations takes place more strongly than in the $K^\pi = 2^-$ state.

IV. SUMMARY

I have investigated the microscopic mechanism for the appearance of a low-energy $K^\pi = 2^-$ state in the $N = 150$ isotones in the actinides, in particular, a sharp drop in energy in 248Cf. Furthermore, I have studied the possible occurrence of the low-energy $K^\pi = 2^+$ state to elucidate the mechanism that prefers the simultaneous breaking of the reflection and axial symmetry to the breaking of the axial symmetry alone in this mass region. To this end, I employed the nuclear energy-density functional (EDF) method: the Skyrme–Kohn–Sham–Bogoliubov and the quasiparticle random-phase approximation were used to describe the ground state and the transition to excited states.

The Skyrme-type SkM* and SLy4 functionals reproduce the fall in the energy of the $K^\pi = 2^-$ state at $Z = 98$, where the proton two-quasiparticle (2qp) excitation $^{633}/7/2 \otimes ^{521}/3/2$ plays a decisive role for the peculiar isotonic dependence. I have found interweaving roles by the pairing correlations of protons and the deformed shell closure at $Z = 98$ formed by the $^{633}/7/2$ and $^{521}/3/2$ orbitals: the SLy4 model produces a strong shell closure, and accordingly, the pairing of protons is greatly suppressed, resulting in a drop in energy. The SkM* model predicts that the $K^\pi = 2^-$ state appears lower in energy in 246Cf than in 248Cf as the Fermi level of neutrons is located in between the $^{622}/5/2$ and $^{734}/9/2$ orbitals.

The $K^\pi = 2^+$ state is predicted to appear higher in energy than the $K^\pi = 2^-$ state as the quasi-proton orbital $^{521}/1/2$ is located above the $^{633}/7/2$ orbital, except for 250Fm in the SkM* model with being unlikely based on the spectroscopic study of 251Md. Compared with the available experimental data, the EDFs presently used are not perfect at quantitatively describing pair correlations and shell structures. The present study shows a need for improvements in the EDFs based on further comparative studies for describing pair correlations and shell structures in heavy nuclei, that are indispensable in predicting the shell effect and stability of superheavy nuclei.

ACKNOWLEDGMENTS

This work was supported by the JSPS KAKENHI (Grants No. JP19K03824 and No. JP19K03872). The numerical calculations were performed on Yukawa-21 at the Yukawa Institute for Theoretical Physics, Kyoto University.

[1] A. Sobiczewski and K. Pomorski, Description of structure and properties of superheavy nuclei, Prog. Part. Nucl. Phys. 58, 292 (2007)
[2] Y. T. Oganessian and V. K. Utyonkov, Super-heavy element research, Rep. Prog. Phys. 78, 036301 (2015)
[3] G. G. Adamian, N. V. Antonenko, H. Lenske, L. A. Malov, and S.-G. Zhou, Self-consistent methods for structure and production of heavy and superheavy nuclei, Eur. Phys. J. A 57, 89 (2021)
[4] S. Karatzikos, A. V. Afanasjev, G. A. Lalazissis, and P. Ring, The Fission barriers in Actinides and superheavy nuclei in covariant density functional theory, Phys. Lett. B 689, 72 (2010) arXiv:0909.1233 [nucl-th]
[5] D. Ackermann and C. Theisen, Nuclear structure features of very heavy and superheavy nuclei—tracing quantum mechanics towards the ‘island of stability’, Phys. Scr. 92, 083002 (2017)
[6] R.-D. Herzberg and P. Greenlees, In-beam and decay spectroscopy of transfermium nuclei, Prog. Part. Nucl. Phys. 61, 674 (2008)
[7] C. Theisen, P. Greenlees, T.-L. Khoo, P. Chowdhury, and T. Ishii, In-beam spectroscopy of heavy elements, Nucl. Phys. A 944, 333 (2015) Special Issue on Superheavy Elements.
[8] M. Bender, P. Bonche, T. Duguet, and P. H. Heenen, Skyrme mean field study of rotational bands in
transformium isotopes, Nucl. Phys. A 723, 354 (2003), arXiv:nucl-th/0302058.

[9] T. Duguet, P. Bonche, and P. H. Heenen, Rotational properties of \(^{252,253,254}\)Fm: Influence of pairing correlations, Nucl. Phys. A 679, 427 (2001) arXiv:nucl-th/0005040.

[10] A. V. Afanasjev, T. L. Khoo, S. Frauenendorf, G. A. Lalazissis, and I. Ahmad, Cranked relativistic Hartree-Bogoliubov theory: Probing the gateway to superheavy nuclei, Phys. Rev. C 67, 024309 (2003) arXiv:nucl-th/0301008.

[11] S. K. Tandel, T. L. Khoo, D. Seweryniak, G. Mukherjee, I. Ahmad, B. Back, R. Blänsstrup, M. P. Carpenter, J. Chapman, P. Chowdhury, C. N. Davids, A. A. Hecht, A. Heinz, P. Ikin, R. V. F. Janssens, F. G. Kondev, T. Lauritsen, C. J. Lister, E. F. Moore, D. Peterson, P. Reiter, U. S. Tandel, X. Wang, and S. Zhu, K Isomers in \(^{254}\)No: Probing Single-Particle Energies and Pairing Strengths in the Heaviest Nuclei, Phys. Rev. Lett. 97, 052502 (2006).

[12] P. T. Greenlees, J. Rubert, J. Piot, B. J. P. Gall, L. L. Isaev, I. N. Izosimov, D. E. Katrasev, A. N. Kuznetsov, O. Dorvaux, I. N. Izosimov, D. E. Katrasev, H. Faure, B. Gall, A. V. Isaev, I. N. Izosimov, D. E. Katrasev, A. N. Kuznetsov, A. A. Kuznetsova, O. N. Malyshev, A. G. Popeko, Y. A. Popov, E. A. Sokol, A. I. Svirkhin, and A. V. Yeremin, Influence of octupole vibration on the low-lying structure of \(^{253}\)Fm and other heavy \(N = 151\) isotones, Phys. Rev. C 97, 054332 (2018).

[13] A. Bohr and B. Mottelson, Nuclear Structure: Volume II, Nuclear Deformations (Benjamin, 1969).

[14] T. Ring and P. Schuck, The nuclear many-body problem (Springer-Verlag, New York, 1980).

[15] L. G. Multhauf, K. G. Tirsell, R. J. Morrow, and R. A. Meyer, Levels of \(^{246}\)Cm from the \(\beta^-\)Decay Sequence \(^{246}\)Am(25mn)\(^{246}\)Cm, Phys. Rev. C 3, 1338 (1971).

[16] R. C. Thompson, J. R. Huizenga, and T. W. Elze, Collective states in \(^{250}\)Th, \(^{244}\)Pu, \(^{244}\)Pu, and \(^{248}\)Cm excited by inelastic deuteron scattering, Phys. Rev. C 12, 1227 (1975).

[17] K. Matsuyanagi, N. Hinohara, and K. Sato, BCS-Pairing and Nuclear Vibrations, Fifty Years of Nuclear BCS , 111–124 (2013), arXiv:1205.0078 [nucl-th].

[18] K. Yoshida, M. Yamagami, and K. Matsuyanagi, Dynamic pairing effects on low-frequency modes of excitation in deformed Mg isotopes close to the neutron drip line, Phys. Scr. T 125, 46 (2006), arXiv:nucl-th/0507047.

[19] K. Yoshida, M. Yamagami, and K. Matsuyanagi, Pairing and continuum effects on low-frequency quadrupole vibrations in deformed Mg isotopes close to the neutron drip line, Nucl. Phys. A 779, 99 (2006) arXiv:nucl-th/0605073.

[20] K. Yoshida and M. Yamagami, Low-frequency \(K^\pi = 0^+\) modes in deformed neutron-rich nuclei: Pairing- and \(\beta^\nu\)-vibrational modes of neutron, Phys. Rev. C 77, 044312 (2008), arXiv:0802.2341 [nucl-th].

[21] M. Bender, P.-H. Heenen, and P.-G. Reinhard, Self-consistent mean-field models for nuclear structure, Rev. Mod. Phys. 75, 121 (2003).

[22] T. Nakatsukasa, K. Matsuyanagi, M. Matsuo, and K. Yabana, Time-dependent density-functional description of nuclear dynamics, Rev. Mod. Phys. 88, 045004 (2016), arXiv:1606.04717.

[23] K. Yoshida and N. Van Giai, Deformed quasiparticle-random-phase approximation for neutron-rich nuclei using the Skyrme energy density functional, Phys. Rev. C 78, 064316 (2008), arXiv:0809.0169 [nucl-th].

[24] K. Yoshida and T. Nakatsukasa, Shape evolution of giant resonances in Nd and Sm isotopes, Phys. Rev. C 88, 034309 (2013), arXiv:1305.6437 [nucl-th].

[25] J. Dobaczewski, H. Flocard, and J. Treiner, Hartree-Fock-Bogoliubov description of nuclei near the neutron drip line, Nucl. Phys. A 422, 103 (1984).

[26] H. Kasuya and K. Yoshida, Hartree-Fock-Bogoliubov theory for odd-mass nuclei with a time-odd constraint and application to deformed halo nuclei, Prog. Theor. Exp. Phys. 2021, 013D01 (2021), arXiv:2005.03276 [nucl-th].

[27] J. Bartel, P. Quentin, M. Brack, C. Guet, and H.-B. Håkansson, Towards a better parametrisation of Skyrme-like effective forces: A critical study of the SkM force, Nucl. Phys. A 386, 79 (1982).

[28] E. Chabanat, P. Bonche, P. Haensel, J. Meyer, and R. Schaeffer, A Skyrme parametrisation from subnuclear to neutron star densities. 2. Nuclei far from stabilities, Nucl. Phys. A 635, 231 (1998), Erratum: Nucl.Phys.A 643, 441–441 (1998).
[36] W. Satuła, J. Dobaczewski, and W. Nazarewicz. Odd-even staggering of nuclear masses: pairing or shape effect?, Phys. Rev. Lett. 81, 3599 (1998) arXiv:nucl-th/9804060.

[37] J. Dobaczewski and W. Nazarewicz. Mean-field and pairing properties of exotic nuclei: Exploring the nuclear landscape, Prog. Theor. Phys. Suppl. 146, 70 (2002).

[38] B. Pritychenko, M. Birch, B. Singh, and M. Horoi. Tables of E2 Transition Probabilities from the first 2+ States in Even-Even Nuclei, Atom. Data Nucl. Data Tabl. 107, 1 (2016) [Erratum: Atom.Data Nucl.Data Tabl. 114, 371–374 (2017)], arXiv:1312.5975 [nucl-th].

[39] A. Chatillon, C. Theisen, P. T. Greenlees, G. Auger, J. E. Bastin, E. Bouchez, B. Bouriquet, J. M. Casandjian, R. Cee, E. Cénect, R. Dayras, G. de France, R. de Toureil, S. Eeckhaut, A. Górgen, T. Grahn, S. Grévy, K. Hauschild, R. D. Herzberg, P. J. C. Ikin, G. D. Jones, P. Jones, R. Julin, S. Juutinen, H. Kettunen, A. Korichi, W. Korten, Y. Le Coz, M. Leino, A. Lopez-Martens, S. M. Lukyanov, Y. E. Peignozheikovich, J. Perkowski, A. Pritchard, P. Rakhila, M. Rejmund, J. Saren, C. Scholey, S. Eeckhaut, A. Vilela, M. Bender, P. Bonche, and P. H. Heenen. Spectroscopy and single-particle structure of the odd-Z heavy elements 255Lr, 251Md and 247Es, Eur. Phys. J. A 30, 397 (2006).

[40] K. Neergard and P. Vogel. On the microscopic description of nuclear vibrations when phonons occur at relatively low energy: (II). Octupole states of the even deformed nuclei with A ≥ 222, Nucl. Phys. A 149, 217 (1970).

[41] S. W. Yates, I. Ahmad, A. M. Friedman, K. Katori, C. Castaneda, and T. E. Ward. Configuration mixing of two-quasiparticle states in 250Cf, Phys. Rev. Lett. 36, 1125 (1976).

[42] E. Browne and J. Tuli. Nuclear Data Sheets for A = 249, Nucl. Data Sheets 112, 2129 (2011).

[43] K. Abusaleem. Nuclear Data Sheets for A = 249, Nucl. Data Sheets 112, 2129 (2011).

[44] K. Yoshida and H. Watanabe. Enhanced collectivity of γ vibration in neutron-rich Dy isotopes with N = 108–110, Prog. Theor. Exp. Phys. 2016, 123D02 (2016) arXiv:1607.07111 [nucl-th].

[45] G. Zhang, H. Watanabe, G. Dracoulis, F. Kondiev, G. Lane, P. Regan, P.-A. Söderström, P. Walker, K. Yoshida, H. Kanaoka, Z. Korkulu, P. Lee, J. Liu, S. Nishimura, J. Wu, A. Yagi, D. Ahn, T. Alhbari, H. Baba, F. Browne, A. Bruce, M. Carpenter, R. Carroll, K. Chae, C. Chiara, Z. Dombradi, A. Estrade, N. Fukuda, C. Griffin, E. Ideguchi, N. Inabe, T. Isobe, S. Kanaya, I. Kojouharov, F. Kondiev, T. Kubo, S. Kubono, N. Kurz, I. Kuti, S. Lalkovski, G. Lane, C. Lee, E. Lee, G. Lorusso, G. Lotay, C.-B. Moon, I. Nishizuka, C. Nita, A. Oda-