A for-loop is all you need. For solving the inverse problem in the case of personalized tumor growth modeling

Ivan Ezhov
Marcel Rosier
Technical University of Munich, Department of Informatics

Lucas Zimmer
University of Zurich, Department of Quantitative Biomedicine

Florian Kofler
Technical University of Munich, Neuroradiology Department of Klinikum Rechts der Isar

Suprosanna Shit
Technical University of Munich, Department of Informatics

Johannes C. Paetzold
Imperial College London, Department of Computing

Kevin Scibilia
Felix Steinbauer
Technical University of Munich, Department of Informatics

Leon Maechler
École Normale Supérieure, Department of Computer Science

Katharina Franitza
Technical University of Munich, Department of Mechanical Engineering

Tamaz Amiranashvili
University of Zurich, Department of Quantitative Biomedicine

Martin J. Menten
Technical University of Munich, Department of Informatics

Marie Metz
Technical University of Munich, Neuroradiology Department of Klinikum Rechts der Isar

Sailesh Conjeti
Siemens Healthineers

Benedikt Wiestler
Technical University of Munich, Neuroradiology Department of Klinikum Rechts der Isar

Bjoern Menze
University of Zurich, Department of Quantitative Biomedicine

Abstract

Solving the inverse problem is the key step in evaluating the capacity of a physical model to describe real phenomena. In medical image computing, it aligns with the classical theme of image-based model personalization. Traditionally, a solution to the problem is obtained by performing either sampling or variational inference based methods. Both approaches aim to identify a set

© 2022 I. Ezhov et al.
A for-loop is all you need
of free physical model parameters that results in a simulation best matching an empirical observation. When applied to brain tumor modeling, one of the instances of image-based model personalization in medical image computing, the overarching drawback of the methods is the time complexity of finding such a set. In a clinical setting with limited time between imaging and diagnosis or even intervention, this time complexity may prove critical. As the history of quantitative science is the history of compression (Schmidhuber and Fridman, 2018), we align in this paper with the historical tendency and propose a method compressing complex traditional strategies for solving an inverse problem into a simple database query task. We evaluated different ways of performing the database query task assessing the trade-off between accuracy and execution time. On the exemplary task of brain tumor growth modeling, we prove that the proposed method achieves one order speed-up compared to existing approaches for solving the inverse problem. The resulting compute time offers critical means for relying on more complex and, hence, realistic models, for integrating image preprocessing and inverse modeling even deeper, or for implementing the current model into a clinical workflow. The code is available at https://github.com/IvanEz/for-loop-tumor.

Keywords: glioma, model personalization, tumor modeling, MRI, inverse problem, for-loop

1. Introduction

Magnetic resonance imaging (MRI) is the gold standard technique to diagnose brain tumors, such as glioblastoma (GBM). While being able to reliably highlight areas of sufficiently high tumor cell concentration in GBMs, it can lack the capacity to visualize areas of lower tumor cell density at the tumor border and most importantly areas of diffuse tumor infiltration, a key biological property of GBM. Current radiotherapy plans try to account for the unknown infiltration by targeting a uniformly extended volume around the tumor outlines visible in MRI. While decreasing the probability of tumor recurrence, such treatment planning has an obvious drawback of unnecessarily damaging healthy tissue, which in turn has a negative impact on the patient’s life quality. Personalizing the target of radiotherapy by complementing the MRI scans with individual tumor simulation, that models a complete spatial distribution of tumor cell concentration, could preserve healthy tissue and reduce the risk for secondary malignancies and side effects (Le et al., 2017, 2015; Lipkova et al., 2019; Hormuth et al., 2021).

Conventional approaches for simulation-based personalization attempt to model the tumor growth for each individual patient using differential equation solvers. The personalization is achieved by solving the inverse problem - identifying the tumor model’s parameters best matching the tumor signal from MRI. However, utilizing the numerical solvers for solving an inverse problem still results in extreme runtimes which obstruct transfer into clinical practice. To address this issue, highly efficient model- and data-driven approaches were developed over the recent years (Subramanian et al., 2020b; Scheufele et al., 2019; Hormuth et al., 2018, 2021; Lipkova et al., 2019; Petersen et al., 2019, 2021). The time for solving an inverse problem using numerical model-based solvers hit one hour of compute (Subramanian et al., 2020b; Scheufele et al., 2019; Hormuth et al., 2021). For data-driven approaches the computing time can be reduced to minutes (Petersen et al., 2019, 2021; Ezhov et al., 2019, 2021a), but they all rely on some type of a neural network to predict tumor progression. Neural networks are known to be non-robust
when extrapolated to out-of-training distributions - the key obstacle in integrating such algorithms into safety-critical applications.

In this paper, we propose an image retrieval-based approach that performs a query of patient-specific scans to a database of synthetic tumors, returning the closest resemblance of the patient’s tumor. As a baseline, this image retrieval process is implemented via a primitive iterative pair-wise comparison. Further, we investigate how a retrieval in low dimensional embeddings of the simulations - that we obtain by using downsampling as well as autoencoders, variational autoencoders, unsupervised hashing, and radiomics feature representation - can improve runtimes. As a result, our work shows that our query approach can yield accurate and, depending on the chosen optimization, also deterministic results in the order of seconds (correspondingly, minutes for the inverse problem).

2. Method

2.1. Tumor growth model.

Our forward model is based on the most used within the medical imaging community mathematical formalism - the reaction-diffusion partial differential equation. The equation describes the evolution of tumor cell density through proliferation and diffusion of the cells:

\[
\frac{\partial u}{\partial t} = \nabla (D \nabla u) + \rho u(1 - u), \quad \text{in } \Omega \quad (1)
\]

\[
\n \cdot \nabla u = 0, \quad \text{in } \Gamma_\Omega. \quad (2)
\]

Here, the first term on the right-hand site of the equation denotes the diffusion process, where \(D\) is the diffusion tensor. The second term models the logistic proliferation of cells, and \(\rho\) denotes the rate of cell proliferation. We impose the Neumann boundary condition on the boundary of the simulation domain \(\Gamma_\Omega\), while \(\Omega\) denotes the simulation domain itself, i.e. volume of the brain, and \(n\) is the unit vector orthogonal to \(\Gamma_\Omega\). As an initial condition for the cell density \(u\) we use a seed point at a spatial location \(r^*\): \(u(r, 0) = u_0\) if \(r = r^*\), \(u(r, 0) = 0\) if \(r \neq r^*\). The solver outputs a simulated tumor density \(u\) of size \(128^3\).

We assume that visible outlines in an MRI image correspond to isolines in \(u\), and to link the tumor simulations with an imaging signal, we threshold the simulations at \(u_{T1Gd}, u_{FLAIR}\). This allows us to reproduce the binary segmentation obtained from an MRI scan (T1Gd, FLAIR) delineation (Le et al., 2015; Ezhov et al., 2019).
2.2. Inverse model.

The proposed inverse model pipeline consists of the following steps, Fig. 1:

1. A patient MRI scan is registered to the atlas brain anatomy (Rohlfing et al., 2010), yielding a transformation matrix M.

2. M is used to morph the corresponding segmentation Y into the atlas space resulting in Y_a.

3. A query is made to a database of synthetic tumors which were simulated beforehand in the brain atlas. This query finds the closest match to Y_a, and returns the corresponding tumor simulation in the atlas space.

4. As a last step, utilizing the inverse of M, the atlas simulation is morphed back to the patient’s brain anatomy to obtain the patient-specific simulation.

2.3. Query to a database of synthetic tumors.

The input MRI scans consist of two segmentations while the synthetic tumors are a spatial distribution containing continuous values in the range from 0 to 1. Therefore, we have to extract the desired segmentations from the raw synthetic tumor data. For this purpose, we threshold the synthetic tumors at $u_{FLAIR} = 0.2$ to receive the FLAIR and at $u_{T1Gd} = 0.6$ for the T1Gd segmentations (Le et al., 2017; Martens et al., 2021).

After preprocessing the dataset to make it comparable, we need to select a fitting metric. The Dice coefficient is a common measure for medical imaging segmentations, we therefore utilized it as the main metric.

Even though we believe that a for-loop is all you need, in order to please reviewers spoiled with deep learning sugar, we evaluated different learnable strategies to perform a query to a database of simulated tumors.

For some of these query strategies, in order to evaluate similarities between the compressed vectors, we use the $L_2 = \|\cdot\|_2$ metric, as Dice is barely meaningful e.g. for comparing latent representations. Furthermore, since we have to compare two segmentations for each tumor, it is possible that the separate queries result in different best matches. Hence, the two query results have to be combined to determine a joint best match. For simplicity, we decided to simply add the two individual similarity values and choose the highest combined value for Dice ($D_{ice_{T1Gd}} + D_{ice_{FLAIR}}$) or the lowest for L_2 ($L_{2T1Gd} + L_{2FLAIR}$) as the best match.

2.3.1. Baseline for-loop search

The most basic way to implement the query is by naively looping over the dataset and performing a pair-wise comparison between input and database tumors. We implemented this basic brute-force loop to create a ground truth that serves as a reference for later improvements and experiments. Since the individual comparisons are not dependent on each other, we implemented the query by parallelizing the loop to shorten its runtime.

Although parallelization can help to reduce the time complexity of the database query, the speed of this operation is still limited by significant memory usage. This restriction also prohibits the use of efficient query frameworks. For instance, the FAISS library is designed for vector sizes in the range of roughly 20 - 2000 (Johnson et al., 2019). However, a plain flattening of our 3D volume of 128^3 voxels exceeds this suggested limit by a factor of more than 1000. Therefore, we decided to experiment with compression of the data.

As a first step, we try naive downsampling of the volume to lower resolutions. In our case, we tried downsampling to 64^3 and 32^3 voxels. We downsample the original

1. The closest match can be determined in different ways which we are comparing in this study.
volume by applying a spline interpolation of order 0 to the original volume (Virtanen et al., 2020). We then compare downsampled database with a downsampling query volume and choose the one that has the highest Dice in the downsampled volume.

2.3.2. AUTOENCODERS

To obtain even more compact data representation, we experimented with convolutional autoencoders (AE) and variational autoencoders (VAE). We examined if these techniques are capable of creating a problem-specific encoding that might be able to sufficiently preserve similarity relationships between tumors, while drastically reducing the runtime. The core idea for our use case is to train the AE to extract meaningful properties of the tumors and then apply the encoder function to the dataset \(\{Y\} \), yielding an encoded dataset \(\{Y_{\text{enc}}\} \). For each query, we utilize \(\{Y_{\text{enc}}\} \) and encode the input tumor using the same encoder, resulting in a data size drop from \(128^3 \) to the dimension of the latent space (1024). Since the segmentations of T1Gd and FLAIR scans differ in their properties, two separate AEs are needed, leading to two encoded datasets \(\{Y_{\text{T1Gd}}\} \) and \(\{Y_{\text{FLAIR}}\} \).

To further improve the performance of our AEs, we experimented with VAEs. Basic AEs have the potential disadvantage of limited control over the latent space. VAEs enforce a distribution over the latent space by penalizing deviations from a previously selected distribution during training, which can produce more continuous and organized latent spaces while still providing adequate reconstructions (Kingma and Welling, 2013). Usually, this property is used to generate previously unseen output by randomly sampling from the latent space. However, we investigated if this characteristic is also beneficial for similarity preservation.

In the end, we compare the latent representation of the database with a latent representation of the query volume and choose the one that has the lowest L2.

2.3.3. UNSUPERVISED HASHING

An alternative compression strategy is to use a hashing - compression to a bit string representation (Zhang and Zhang, 2016; Guéziec et al., 1997; Cai et al., 2019; Conjeti et al., 2016). We resorted to the most recent deep unsupervised hashing technique (Li and van Gemert, 2021) for our experiments. The methodological idea is a replica of the AE with a difference in how the latent space is formed. In (Li and van Gemert, 2021), the continuous output of the AE’s encoder is quantized via a so-called "Bi-half" hash layer into a binary representation. This representation serves then as an input to the AE’s decoder. All other network elements are identical to the conventional AE setup. Similar to the AE and VAE, we choose the best match that has the lowest L2 when compared to the binary representation of the query sample.

2.3.4. RADIOMICS SHAPE FEATURE REPRESENTATION

The ultimate compression strategy is to use single value characteristics of a 3D shape and morphology. We experimented with shape features from the pyradiomics library (Van Griethuysen et al., 2017), namely voxel volume, elongation, major axis length, etc. Additionally, we computed the tumor’s center of mass to account for its location. For the query, we used the following strategy. We selected 1000 samples from our database which have the closest center of mass to our query sample in the atlas reference space. Out of these 1000 samples, we selected the one that is closest to the query sample under the L2 measure evaluated for the shape features: \(\sum_i \|f_{\theta_i} f_{\theta_d}\|_2 \). Here, the summation is
over the radiomics features, \(f^i_q \) is the feature representation computed for the query sample, and \(f^i_d \) is the feature computed for the database sample.

2.4. Implementation.

The base architecture for our AE is a convolutional neural network. In the encoder, we scale down the volume layer-by-layer using strided 3D convolutions (stride=2, kernel size=3) followed by a convolution without stride, while increasing the number of channels. After downscaling the volume, we flatten the features and apply a linear layer to obtain a latent representation of size 1024. Afterward, the decoder mirrors this process with strided 3D transposed convolutions. We executed multiple test runs searching for the best architecture that suggested that downsampling to a resolution of \(16^3 \) before flattening the volume and 1024 as the size of the latent representation yield the most reasonable results. We use this resolution throughout all consecutive experiments. For comparability, our VAE network replicates the AE network (except the linear layer before the latent space that is replaced by 2 separate linear layers that output the mean and the logarithm of the variance). AE, VAE, and the hashing method were trained on a dataset of 1500 tumors along with a validation set of size 150.

We used the Advanced Normalization Tools (ANTS) (Avants et al., 2009) for the registration, with basic settings. For the looping-based queries, we performed the compute on AMD EPYC 7452 CPU and parallelized the search over 32 processes. For AE, VAE, and BF-HASH, the training and evaluation were performed on an NVIDIA QUADRO P8000 GPU.

3. Experiments

3.0.1. Data

The basis for our work is a dataset of 50,000 synthetic tumor volumes of \(128^3 \) resolution. In order to generate synthetic tumors, common brain anatomy is required that is able to represent a broad range of realistic human brains. For this purpose, the atlas brain anatomy introduced in (Rohlfing et al., 2010) was utilized. This represents a statistical average for the relevant distributions of cerebrospinal fluid (CSF), white matter (WM), and gray matter (GM), combined into a single atlas space. In this atlas space, a tumor can then be simulated using the reaction-diffusion model by setting values for the initial location \(x, y, z \), the proliferation rate \(\rho \), the diffusion rate in WM \(D_w \) as well as the simulation end time \(T_{end} \), which corresponds to the tumor’s age. The synthetic dataset was generated by randomly sampling patient-specific parameters from the subsequent ranges and feeding the resulting parameter sets \(\theta = \{ x, y, z, D_w, \rho, T_{end} \} \) to the reaction-diffusion model. Analogous to (Ezhov et al., 2021b), we discarded unrealistic in size tumors based on the range of real tumor sizes (BraTS dataset (Menze et al., 2014)).

In all experiments, we evaluate the inverse model pipeline on 62 real MRI scans of patients diagnosed with gliomas for which T1Gd and FLAIR MRI scanning were performed. For these patients, the corresponding tumor annotations were obtained by expert radiologists’ labeling. In addition, for the evaluation on synthetic data, we used 1k tumors simulated in the atlas space but not present in the query database.

3.0.2. Quantitative comparison between query methods

Table 1 compares the presented database query approaches on the real dataset: 1)
Table 1: Comparison between different best match query strategies: looping over the dataset with resolution 128^3 (direct query), looping over downsampled to 64^3 dataset (DS 64), looping over downsampled to 32^3 dataset (DS 32), using embeddings obtained by the VAE and AE, using the radiomics features (RF), and using hashing (BF-HASH). Top N accuracy represents a measure of whether the predicted best match falls in the top N closest predictions. For the query using direct, DS64, and DS32 methods the Dice score is used, while for the remaining methods we use the L_2 measure. We expectedly observe that an improvement in runtime comes at a cost of query accuracy.

	direct query	DS 64	DS 32	VAE	AE	BF-HASH	RF
Top-1	100%	88.7%	66.1%	41.9%	33.8%	32.2%	4.92%
Top-5	100%	100%	96.7%	61.2%	64.5%	67.7%	4.92%
Top-15	100%	100%	100%	80.6%	77.4%	82.2%	9.83%
Runtime	340s	130s	116s	34s	22s	22s	2.8s

Table 2: Comparison between different loop-based query strategies on real (62 cases) and synthetic (1000 cases): looping over the dataset with resolution 128^3 (direct query), looping over downsampled to 64^3 dataset (DS 64), looping over downsampled to 32^3 dataset (DS 32). Top-N accuracy represents a measure of whether the predicted best match falls in the top N closest predictions. The average DICE (sum of DICEs for T1Gd and FLAIR) for best matching samples is 1.07 for real, and 1.69 for synthetic samples.

	Real	Synthetic				
	Top-1	Top-5	Top-15	Top-1	Top-5	Top-15
direct query	100%	100%	100%	100%	100%	100%
DS64	88.7%	100%	100%	93.5%	100%	100%
DS32	66.1%	96.7%	100%	78.9%	99.6%	100%

Figure 2: Qualitative examples of the tumor simulations obtained by our proposed pipeline. The brain images correspond to five different patients.
Figure 3: Distribution of DICE overlap between the database and query (real (a) and synthetic (b)) samples. DICE is computed for T1Gd (upper row), FLAIR (middle row), and combined T1Gd+FLAIR (down row). Such analysis is a fast way to shed light on tumor model plausibility.
simple looping over the dataset with original resolution 128^3 (direct query), 2) looping over downsampled to 64^3 dataset (DS 64), 3) looping over downsampled to 32^3 dataset (DS 32), 4) using embeddings obtained by the VAE and AE, 5) using the radiomics features (RF), and 6) and unsupervised hashing (BF-HASH). The top-N accuracy is computed with respect to the best match samples found by the baseline. As expected, we observe that an improvement in runtime comes at a cost of losing accuracy of similarity preservation.

Tab.2 showcases how the difference between real and synthetic data distributions affects query accuracy. Given an evident gap between real tumor progression and the tumor growth trajectory modeled by the reaction-diffusion model, we expectedly observe a ca. 10 percent drop in the accuracy. Fig. 3 demonstrates the same difference in real and synthetic data distributions for every example used in the study.

In future works probing more complicated tumor descriptions, such analysis can serve as a measure of the plausibility of a tumor growth model. To probe this reasoning further, in Fig. 4, we show the very same analysis for a more complicated tumor model describing, in addition to cell migration and diffusion, the mass interaction of the growing tumor with neighboring brain tissue, i.e. mass effect (Hoea et al., 2007; Ezhov et al., 2021b; Subramanian et al., 2020a). The average DICE score for 62 real tumors is notably lower for this tumor model which suggests that the more complex model does not necessarily lead to a closer match with reality.

4. Discussion

Here we want to discuss the pros and cons of the proposed method. First, the method is deterministic - it relies on the direct computation of the best match among tens of thousands of precomputed simulations under the measure of interest. Thus in contrast to data-driven methods, it is robust against various shifts in data distribution.

The method is generalizable to other tumor models (one would simply need to resimulate new tumor model simulations in the atlas space) and other metrics (arbitrary differentiable and non-differentiable measures can be employed for comparison between real and tumor samples during the query).

Even though we provided a comparison with different query strategies analyzing the trade-off between accuracy and time, by using the direct query strategy one obtains a "global optimum" for the query at an acceptable runtime, so we suggest using it in practice. The overall runtimes for solving the inverse problem, including registration, query, and back transform vary from two (for the inaccurate RF query) to eight minutes.
A for-loop is all you need

(for the optimal direct query). This is an order of magnitude faster than any existing brain tumor inverse problem solving methods (starting from ca. 1 hour for the same resolution by (Subramanian et al., 2020b; Scheufele et al., 2019)). One may question whether such a speed-up comes at the cost of a significant error, which in turn comes from the registration to and finding the best matching in the atlas space. While we would agree with such a statement, it is worth mentioning that the dominant majority of existing literature resorts to such atlas registration in order to approximate the patient-specific anatomy.

5. Conclusion

We present a method for inferring a tumor simulation from information available on medical scans relying on a simple database query strategy. A reader might say that the proposed method is a joke due to its offensively simple nature. While we would again agree with such a statement, we do believe that the method provides a generalizable, fast, and robust solution to the inverse problem. The runtimes for solving the inverse problem are in the order of a few minutes which is faster than any existing inverse modeling method. Even though the used database is composed of simulations from the reaction-diffusion model that might not be sufficient to provide a close match to real tumor growth in general, it is evident that the proposed method is generalizable to more sophisticated models (one just needs to resimulate tumor database in the atlas space with more complicated tumor model). As opposed to data-driven approaches, the method does not fail at extrapolation as it is based on a plain compute of the overlap measure between two binary volumes.

6. Acknowledgment

I. Ezhov and S. Shit are supported by the Translational Brain Imaging Training Network under the EU Marie Sklodowska-Curie program (Grant ID: 765148). B. Menze, B. Wiestler, and F. Kofler are supported through the SFB 824, subproject B12, by DFG through TUM International Graduate School of Science and Engineering, GSC 81, and by the Institute for Advanced Study, funded by the German Excellence Initiative. The authors acknowledge funding from DCoMEX Horizon 2020 (Grant agreement ID: 956201). B. Menze is supported by Helmut Horten Foundation.

References

Brian B Avants, Nick Tustison, and Gang Song. Advanced normalization tools (ants). Insight j, 2(365):1–35, 2009.

Yiheng Cai et al. Medical image retrieval based on convolutional neural network and supervised hashing. IEEE access, 7:51877–51885, 2019.

Sailesh Conjeti et al. Metric hashing forests. Medical image analysis, 34:13–29, 2016.

Ivan Ezhov et al. Neural parameters estimation for brain tumor growth modeling. In MICCAI, pages 787–795. 2019.

Ivan Ezhov et al. Geometry-aware neural solver for fast bayesian calibration of brain tumor models. IEEE Transactions on Medical Imaging, 2021a.

Ivan Ezhov et al. Learn-morph-infer: a new way of solving the inverse problem for brain tumor modeling. arXiv preprint arXiv:2111.04090, 2021b.

André P Guéziec, Xavier Pennec, and Nicholas Ayache. Medical image registration using geometric hashing. IEEE Com-
computational Science and Engineering, 4(4): 29–41, 1997.

Cosmina Hogea, Christos Davatzikos, and George Biros. Modeling glioma growth and mass effect in 3d mr images of the brain. In International Conference on Medical Image Computing and Computer-Assisted Intervention, pages 642–650. Springer, 2007.

David Hormuth et al. Image-based personalization of computational models for predicting response of high-grade glioma to chemoradiation. Scientific Reports, 11(1): 1–14, 2021.

David A Hormuth et al. Mechanically coupled reaction-diffusion model to predict glioma growth: methodological details. In Cancer Systems Biology, pages 225–241. Springer, 2018.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with gpus. IEEE Transactions on Big Data, 7 (3):535–547, 2019.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.

Matthieu Le et al. Bayesian personalization of brain tumor growth model. In MICCAI, pages 424–432, 2015.

Matthieu Le et al. Personalized radiotherapy planning based on a computational tumor growth model. IEEE Transactions on Medical Imaging, 36(3):815–825, mar 2017.

Yunqiang Li and Jan van Gemert. Deep unsupervised image hashing by maximizing bit entropy. AAAI, 2021.

Jana Lipkova et al. Personalized radiotherapy design for glioblastoma: Integrating mathematical tumor models, multimodal scans and bayesian inference. IEEE Transactions on Medical Imaging, pages 1–1, 2019.

Corentin Martens et al. Deep learning for reaction-diffusion glioma growth modelling: Towards a fully personalised model? arXiv preprint arXiv:2111.13404, 2021.

Bjoern H Menze et al. The multimodal brain tumor image segmentation benchmark (brats). IEEE transactions on medical imaging, 34(10):1993–2024, 2014.

Jens Petersen et al. Deep probabilistic modeling of glioma growth. In International Conference on Medical Image Computing and Computer-Assisted Intervention, pages 806–814. Springer, 2019.

Jens Petersen et al. Continuous-time deep glioma growth models. In International Conference on Medical Image Computing and Computer-Assisted Intervention, pages 83–92. Springer, 2021.

Torsten Rohlfing et al. The sri24 multi-channel atlas of normal adult human brain structure. Human brain mapping, 31(5): 798–819, 2010.

Klaudius Scheufele et al. Coupling brain-tumor biophysical models and diffeomorphic image registration. Computer methods in applied mechanics and engineering, 347:533–567, 2019.

Juergen Schmidhuber and Lex Fridman. Lex Fridman’s youtube podcast. https://www.youtube.com/watch?v=3FIo6evmweo&t=1538s, December 2018.

Shashank Subramanian et al. Where did the tumor start? an inverse solver with sparse localization for tumor growth models. Inverse Problems, 36(4):045006, 2020a.
Shashank Subramanian et al. Multatlas calibration of biophysical brain tumor growth models with mass effect. *arXiv preprint arXiv:2006.09932*, 2020b.

Joost JM Van Griethuysen et al. Computational radiomics system to decode the radiographic phenotype. *Cancer research, 77*(21):e104–e107, 2017.

Pauli Virtanen et al. Scipy 1.0: fundamental algorithms for scientific computing in python. *Nature methods, 17*(3):261–272, 2020.

X Zhang and S Zhang. Hashing-based large-scale medical image retrieval for computer-aided diagnosis. In *Machine Learning and Medical Imaging*, pages 237–255. Elsevier, 2016.