Shifting Faculty Approaches to Pedagogy through Structured Teaching Postdoc Experiences

Stefanie H. Chen and Carlos C. Goller*
Biotechnology Program, North Carolina State University, Raleigh, NC 27695

Many studies confirm the benefit of active learning in STEM teaching. However, many faculty have been slow to adopt such practices, perhaps due to limited time to learn and implement new approaches. One way to address this deficit is to offer structured teaching postdoctoral experiences to trained scientists who want to enter academia. We outline the benefits of providing pedagogical training at the postdoctoral level and present a framework for structuring an impactful teaching postdoc program.

INTRODUCTION

Teaching is a continuously evolving practice that can shape students’ lives. In the United States, there are consistently calls for increasing the number of STEM professionals (1), and high-quality teaching can increase student retention in STEM fields (2–5). Studies have shown that, in STEM disciplines, active learning produces learning gains significantly above traditional lecturing, including closing the achievement gap between prepared and socioeconomically disadvantaged students (6–7). Implementing course-based undergraduate research experiences (CUREs) also increases content knowledge and student retention (reviewed in 8). Numerous workshops and online resources have answered these national calls for reformed STEM teaching (1, 9–10). However, faculty have been slow to embrace these reforms (11–13), possibly due to resistance to change or lack of time and/or incentive to overhaul courses.

Although STEM faculty at most higher education institutions are expected to teach, most do not receive formal training on how to teach prior to starting their positions. As a result, newly hired faculty members often take four to five years to meet institutional expectations for teaching (14). Several studies have shown that having a teaching mentor can decrease this time (reviewed in 15). An alternative to this on-the-job faculty training is the applicant having received formal pedagogical training from a teaching mentor during a teaching postdoctoral fellowship. This extended training period allows dedicated time for scientists to become familiar with and gain authentic experience implementing best practices in higher education.

The Biotechnology Program at NC State (16–17) has maintained a teaching postdoc training program for fifteen years. Postdocs typically enter our program after they have completed a research postdoc. This allows trainees to bring in more research expertise and increases competitiveness on the STEM faculty job market. Our three-year training program outlines specific expectations for each year (Fig. 1). Each teaching postdoc is primarily responsible for teaching between one and three combined lecture/laboratory courses per semester, including a novel CURE-based course completely designed by the postdoc and related to an area of their research (Table 1). Our postdocs also collect data about their course and publish in a field-specific educational research journal (see examples in 18–23). Below, we outline our recommendations for this training process; these

*Corresponding author. Mailing address: 6104 Jordan Hall, Campus Box 7512, 2800 Faucette Drive, Biotechnology Program, North Carolina State University, Raleigh, NC 27695.
Phone: 919-513-4135. E-mail: ccgoller@ncsu.edu.
Received: 15 March 2019, Accepted: 22 June 2019, Published: 30 August 2019.

©2019 Author(s). Published by the American Society for Microbiology. This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial-NoDerivatives 4.0 International license (https://creativecommons.org/licenses/by-nc-nd/4.0/ and https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode), which grants the public the nonexclusive right to copy, distribute, and display the published work.

FIGURE 1. Outline of activities performed during a three-year teaching postdoctoral training period in the BIT program at North Carolina State University. CURE = course-based undergraduate research experience; SoTL = scholarship of teaching and learning.
recommendations are based on our direct experiences training 13 postdocs.

Training description

To obtain holistic training as an educator, teaching postdocs should be mentored through specific pedagogical activities, including receiving instruction on evidence-based teaching methods, independently teaching courses, and performing education research. We outline these steps here:

1. **Mentoring:** Each teaching postdoc should be assigned an experienced faculty mentor who is dedicated to improving teaching methodologies. The mentor should train postdocs about pedagogical best practices and support trainees as they implement such practices. Mentors also provide feedback about classroom teaching and assist trainees with publishing educational studies. Receiving constructive feedback from an experienced mentor is a critical component of becoming a better educator (12, 15).

2. **Defined length:** Teaching postdocs should not be hired simply as a cheap alternative to teaching faculty. A position length of two to four years should be made explicit at the time of hire, and the mentor should ensure that there is a clear plan for the postdoc to move on to a permanent position. For an example of a three-year plan, as implemented in our program, see Figure 1.

3. **Instructor-of-record:** There is no better way to learn how to teach than by doing. Each teaching postdoc should independently teach undergraduate courses in the appropriate program or department. We recommend at least one course per semester, and a reiteration of at least one course to give postdocs the opportunity to revise their teaching style, classroom management skills, and lesson plans. This is consistent with findings from other postdoc mentoring programs (12) and also allows the opportunity for participation in educational research (below).

4. **Pedagogical training:** Many PhD-level scientists are unaware of the education literature available in their field. Teaching postdocs should be introduced to the Scholarship of Teaching and Learning (SoTL) and Discipline-Based Education Research (DBER) through seminars, journal clubs, webinars, and conferences. Many colleges and universities have a teaching support office that can be a useful resource for these activities. Teaching postdocs should also be encouraged to conduct their own SoTL studies on their courses, including receiving Institutional Review Board (IRB) approval, designing and implementing effective assessments, analyzing the data, and presenting at local and national meetings. SoTL studies are strengthened through additional data collection, which ties into being able to teach the same course multiple times. Having the support of a mentor experienced in SoTL, which often employs social science data analysis techniques unfamiliar to STEM researchers, is also important for properly preparing publications.

5. **Legacy project:** In addition to traditional research and teaching activities, postdocs also take the opportunity to provide a larger, lasting contribution to the department or program. These often include course redesigns, outreach activities, grant proposals, and new collaborations. In our program, postdocs have updated the experiments and research questions in our multi-section molecular biology course and established a collaboration with the North Carolina School for the Deaf (Morganton, NC). The legacy project benefits both the program or department and the postdocs, who then have an additional experience to set them apart and potentially bring to their next institution.

Together, these activities address the skills expected of a teaching position, including the ability to teach both traditional courses and unique advanced courses, having an authentic teaching experience, learning about pedagogical techniques and implementing them, and involving undergraduates in research (24).

TABLE 1. Examples of laboratory courses developed by NCSU BIT teaching postdocs.

Course Title	Description
Virus Biotechnology	Students detect frog virus 3 in field samples of North Carolina ectotherms
High-Throughput Discovery	Students design and perform high-throughput experiments to determine inhibitory concentrations of novel antibiotics and growth conditions for wild yeast by programming automated liquid handlers.
Epigenetics	Students map epigenetic markers related to iron metabolism in *Medicago truncatula*
Protein Interactions	Students observe and quantify interactions between SSB, DNA, and partner proteins
Protein Engineering	Students design their own engineered cytokines and use forward genetic screens to identify advantageous mutations

NCSU = North Carolina State University; SSB = Single-strand DNA-binding protein.
Outcomes

Although 75% of biomedical graduate students indicate that they want to pursue a career in academia, 84% of graduates will need to choose another career due to the scarcity of tenure-track faculty positions (25–26). While graduate students may anticipate being hired immediately upon graduation, the majority of academic faculty hires have post-graduation experience, usually as a postdoc. For example, in the extensive California State University system in 2018, 54.9% of faculty hires were between zero and four years post-graduation, and 21.9% were five to nine years out (27) (national data not available). Providing a dedicated period of pedagogical training in the form of a teaching postdoc adds significant value to faculty candidates, who are then prepared to immediately implement high-impact teaching practices, including CUREs. These trainees could also serve as leaders in their departments for connecting existing faculty to the literature and community of SoTL research.

A recent analysis of STEM teaching in North American universities specifically advocated for providing “effective pedagogical training for the current and future professoriate, similar to the level provided for research” (11) (emphasis added). Teaching postdoctoral programs such as ours are able to directly address this recommendation. By introducing a dedicated step of teaching training to scientists who have spent many years at the bench, we can ensure that faculty are prepared to perform all of the duties of a full-time faculty member without experiencing a steep learning curve in the classroom that could disadvantage an entire cohort of students.

The number of such training programs is expanding, with some offering part-time training to research postdocs (FIRST IV [12], HHMI https://www.summerinstitutes.org/) and others employing teaching postdocs full-time (NCSU BIT [16], ROSE Network [28], and Cornell Investigative Biology http://investigativebiology.cornell.edu/) (see Table 2). The National Institutes of Health (NIH) also offers Institutional Research and Academic Career Development Awards (IRACDA) (https://www.nigms.nih.gov/Training/CareerDev/Pages/TWDInstRes.aspx) grants, which fund combined research/teaching postdoc positions (FIRST [29], SPIRE [30]). While we do not have data on other programs, teaching postdocs completing our three-year training program typically receive multiple offers from a variety of institutions of higher education. Most of our postdocs were also on the academic job market prior to joining our program and did not obtain faculty positions at that time, indicating increased competitiveness after completing the teaching postdoc position. Expanding this trend is an effective way to address the need for a prepared STEM workforce, including increasing student retention, narrowing the achievement gap, and improving scientific thinking skills.

ACKNOWLEDGMENTS

The authors would like to thank all past and present members of the Biotechnology Program who have contributed to the development and success of our teaching postdoctoral training model. The authors declare that there are no conflicts of interest.

REFERENCES

1. President’s Council of Advisors on Science and Technology (PCAST). 2012. Engage to excel: producing one million additional college graduates with degrees in science, technology, engineering, and mathematics. Executive Office of the President;Washington, DC.
2. Xu Y. 2016. Attention to retention: exploring and addressing the needs of college students in STEM majors. J Educ Training Stud 4(2):67–76.
3. Graham MJ, Frederick J, Byars-Winston A, Hunter AB, Handelsman J. 2013. Science education. Increasing persistence of college students in STEM. Science 341(6153):1455–1456.

TABLE 2.
Selected examples of teaching postdoc programs in the United States.

Program	Length	Pay	Requirements
Cornell Investigative Biology	1 year renewable	Commensurate with NIH suggested minimum salary	Teach/oversee a large enrollment CURE-based biology lab course, perform SoTL research
FIRST IV (12) @Michigan State University	2 years	Travel only (employed as a research postdoc)	Summer workshops on teaching methods, develop and teach an introductory biology course
HHMI Teaching Biology @UW-Madison	1 year	None (employed as a research postdoc)	One-semester course on educational literature, team-teach introductory biology survey course
NCSU BIT (16)	3 years	Commensurate with NIH suggested minimum salary	Develop/implement novel course, mentor research students, publish SoTL work (see Fig. 1)
SPIRE @University of North Carolina	3 years	Commensurate with NIH suggested minimum salary	Mentored research experience at minority serving institution, teaching seminars/workshops, mock job talks

CURE = course-based undergraduate experience; SoTL = scholarship of teaching and learning; FIRST = Faculty Institutes for Reforming Science Teaching; HHMI = Howard Hughes Medical Institute; NCSU = North Carolina State University.
1. Xu YJ, Webber KL. 2018. College student retention on a racially diverse campus: a theoretically guided reality check. J Coll Stud Retention Res Theory Pract 20(1):2–28.

2. Braxton JM, Milem JF, Sullivan AS. 2000. The influence of active learning on the college student departure process: toward a revision of Tinto's theory. J Higher Educ 71(5):569–590.

3. Freeman S, Eddy SL, McDonough M, Smith MK, Okoroafor N, Jordt H, Wenderoth MP. 2014. Active learning increases student performance in science, engineering, and mathematics. Proc Natl Acad Sci USA 111(23):8410–8415.

4. Haak DC, HilleRisLambers J, Pitre E, Freeman S. 2011. Increased structure and active learning reduce the achievement gap in introductory biology. Science 332(6034):1213–1216.

5. Corwin LA, Graham MJ, Dolan EL. 2015. Modeling course-based undergraduate research experiences: an agenda for future research and evaluation. CBE Life Sci Educ 14(1):es1.

6. Freeman S, Eddy SL, McDonough M, Smith MK, Okoroafor N, Jordt H, Wenderoth MP. 2014. Active learning increases student performance in science, engineering, and mathematics. Proc Natl Acad Sci USA 111(23):8410–8415.

7. Lentz TB, Ott LE, Robertson SD, Windsor SC, Kelley JB, Wollenberg MS, Dunn RR, Goller CC. 2013. Inquiry into chemotherapy-induced p53 activation in cancer cells as a model for teaching signal transduction. Biochem Mol Biol Educ 41(4):419–432.

8. Ott LE, Carson S. 2014. Immunological tools: engaging students in the use and analysis of flow cytometry and enzyme-linked immunosorbent assay (ELISA). Biochem Mol Biol Educ 42(5):382–397.

9. Stains M, Harshman J, Barker MK, Chasteen SV, Cole R, DeChenne-Peters SE, Eagan MK Jr, Esson JM, Knight JK, Laski FA, Lee CJ, Lewis-Fitzgerald M, Lo SM, McDonnell LM, McKay TA, Michelotti N, Musgrove A, Palmer MS, Plank KM, Rodela TM, Sanders ER, Schimpf NG, Schulte PM, Smith MK, Stetzer M, Van Valkenburgh B, Vinson E, Weir LK, Wendel PJ, Wheeler LB, Young AM. 2018. Anatomy of STEM teaching in North American universities. Science 359(6383):1468–1470.

10. Stains M, Harshman J, Barker MK, Chasteen SV, Cole R, DeChenne-Peters SE, Eagan MK Jr, Esson JM, Knight JK, Laski FA, Lee CJ, Lewis-Fitzgerald M, Lo SM, McDonnell LM, McKay TA, Michelotti N, Musgrove A, Palmer MS, Plank KM, Rodela TM, Sanders ER, Schimpf NG, Schulte PM, Smith MK, Stetzer M, Van Valkenburgh B, Vinson E, Weir LK, Wendel PJ, Wheeler LB, Young AM. 2018. Anatomy of STEM teaching in North American universities. Science 359(6383):1468–1470.

11. Ebert-May D, Derting TL, Henkel TP, Middlemis Maher J, Momsen JL, Arnold B, Passmore HA. 2015. Breaking the cycle: future faculty begin teaching with learner-centered strategies after professional development. CBE Life Sci Educ 14(2):ar22.

12. Eber北京大学, Henkel TP, Middlemis Maher J, Momsen JL, Arnold B, Passmore HA. 2015. Breaking the cycle: future faculty begin teaching with learner-centered strategies after professional development. CBE Life Sci Educ 14(2):ar22.

13. Eagan K, Stolzenberg EB, Lozano JB, Aragon MC, Ramirez Suchard M, Hurtado S. 2014. Undergraduate teaching faculty: the 2013–2014 HERI faculty survey. Higher Education Research Institute, University of California, Los Angeles, CA.

14. Boice R. 1992. The new faculty member: Jossey Bass, San Francisco, CA.

15. Bullard LG, Felder RM. 2010. Mentoring: a personal perspective. Coll Teach 58(2):66–69.

16. Schenkman L. NCSU biotechnology program. http://biotech.ncsu.edu/ (accessed February 11, 2019).

17. Carson S, Chisnell J, Kelly R. 2009. Integrating modern biology into the ChE biomolecular engineering concentration at NC State University through a campus-wide core laboratory education program. Chem Eng Educ 4:257–264.

18. Goller CC. 2014. A modern twist on the Beaumont and St. Martin case: encouraging analysis and discussion in the bioethics classroom with reflective writing and concept mapping. J Microbiol Biol Educ 15(2):229–231.

19. Lentz TB, Ott LE, Robertson SD, Windsor SC, Kelley JB, Wollenberg MS, Dunn RR, Goller CC. 2017. Unique down to our microbes—assessment of an inquiry-based metagenomics activity. J Microbiol Biol Educ 18(2). doi: 10.1128/jmbe vl18i2.1284

20. Ott LE, Carson S. 2014. Immunological tools: engaging students in the use and analysis of flow cytometry and enzyme-linked immunosorbent assay (ELISA). Biochem Mol Biol Educ 42(5):382–397.

21. Srougi MC, Carson S. 2013. Inquiry into chemotherapy-induced p53 activation in cancer cells as a model for teaching signal transduction. Biochem Mol Biol Educ 41(4):419–432.

22. Srougi MC, Miller HB, Witherow DS, Carson S. 2013. Assessment of a novel group-centered testing schema in an upper-level undergraduate molecular biotechnology course. Biochem Mol Biol Educ 41(4):232–241.

23. Witherow DS, Carson S. 2011. A laboratory-intensive course on the experimental study of protein-protein interactions. Biochem Mol Biol Educ 39(4):300–308.

24. Provost J. 2014. Becoming competitive for a teaching (and research) position: part I. The Substrate. ASBMB Student Chapters News August 20.

25. Nature. 2017. Many junior scientists need to take a hard look at their job prospects. Nature 550(7677):429.

26. Ghaffarzadegan N, Hawley J, Larson R, Xue Y. 2015. A note on PhD population growth in biomedical sciences. Syst Res Behav Sci 23(3):402–405.

27. Academic Human Resources. 2018. Report on the 2018 faculty recruitment and retention survey. The California State University, Long Beach, CA.

28. Morris J, Sutton T, Raut S, Olimpo J. 2018. RCN-UBE: the research on STEM education network: improving research inclusivity through a grassroots culture of scientific teaching. National Science Foundation, University of Alabama at Birmingham, Birmingham, AL.

29. Brommer CL, Eisen A. 2006. FIRST: a model for increasing quality minority participation in the sciences from the undergraduate to the professoriate level. J Women Minorities Sci Engineer 12(1):35–46.

30. Rybarczyk BJ, Lerea L, Whittington D, Dykstra L. 2016. Analysis of postdoctoral training outcomes that broaden participation in science careers. CBE Life Sci Educ 15(3):ar33.