ASYMPTOTIC BEHAVIOR OF STOCHASTIC COMPLEX GINZBURG-LANDAU EQUATIONS WITH DETERMINISTIC NON-AUTONOMOUS FORCING ON THIN DOMAINS

DINGSHI LI
School of Mathematics, Southwest Jiaotong University
Chengdu, Sichuan 610031, China

XIAOHU WANG*
Department of Mathematics, Sichuan University
Chengdu, Sichuan 610064, China

(Communicated by Björn Schmalfuß)

Abstract. In this paper, we investigate the asymptotic behavior for non-autonomous stochastic complex Ginzburg-Landau equations with multiplicative noise on thin domains. For this aim, we first show that the existence and uniqueness of random attractors for the considered equations and the limit equations. Then, we establish the upper semicontinuity of these attractors when the thin domains collapse onto an interval.

1. Introduction. Let I be a bounded interval in \mathbb{R} and $0 < \varepsilon \leq 1$. Denote by

$$O_\varepsilon = \{ x = (x_1, x_2) | x_1 \in I, 0 < x_2 < \varepsilon g(x_1) \},$$

where $g \in C^2(I, (0, +\infty))$. Throughout this paper, we also write $O = I \times (0, 1)$.

In this paper, we study the limit of asymptotical behavior of non-autonomous stochastic complex Ginzburg-Landau equation with multiplicative noise on O_ε : for any given $\tau \in \mathbb{R}$,

$$
\begin{aligned}
\frac{d\hat{u}_\varepsilon}{dt} &= \left[(\lambda + i\alpha) \Delta \hat{u}_\varepsilon - (k + i\beta) |\hat{u}_\varepsilon|^2 \hat{u}_\varepsilon + \gamma \hat{u}_\varepsilon + G(t, x) \right] dt \\
&\quad + \rho \hat{u}_\varepsilon \circ dW(t), \quad x \in O_\varepsilon, \ t > \tau, \\
\frac{\partial \hat{u}_\varepsilon}{\partial \nu_\varepsilon} &= 0, \quad x \in \partial O_\varepsilon,
\end{aligned}
$$

with initial condition

$$\hat{u}_\varepsilon(\tau, x) = \hat{u}_\varepsilon^\tau(x), \quad x \in O_\varepsilon,$$

where i is the unit of imaginary numbers such that $i^2 = -1$, \hat{u}_ε is the unknown complex value function, ν_ε is the unit outward normal vector to ∂O_ε, λ, α, k, β, γ, ρ are real constants satisfying $k, \lambda, \rho, \gamma > 0$ and $k > |\beta|$, G is a function defined later, and W is two-sided real-valued Wiener processes on a probability

2010 Mathematics Subject Classification. Primary: 35B40; Secondary: 35B41, 37L30.

Key words and phrases. Thin domain, stochastic complex Ginzburg-Landau equation, random attractor, upper semicontinuity.

This work was supported by NSFC (11271270, 11601446 and 11331007) and Excellent Youth Scholars of Sichuan University (2016SCU04A15).

* Corresponding author: Xiaohu Wang, wangxiaohu@scu.edu.cn.
The symbol \circ means that the stochastic equation is understood in the sense of Stratonovich integration.

The domain O_ε is the so-called thin domain when ε is small. As $\varepsilon \to 0$, the thin domain O_ε collapses to the interval I. We will study the limiting behavior of the equation (1) and (2). As in the case of deterministic Ginzburg-Landau equation [26], the limit equation that should correspond to (1) at $\varepsilon = 0$ is determined by

$$
\begin{align*}
\frac{du^0}{dt} &= \left[(\lambda + i\alpha) \frac{1}{2} (g u^0_{y_1} y_1) - (k + i\beta) |u^0|^2 u^0 + \gamma u^0 + G(t, y_1, 0) \right] dt \\
+ \rho u^0 \circ dW(t), & y_1 \in I, \ t > \tau,
\end{align*}
$$

with initial condition

$$
u_0 = u^0_\tau (y_1), \ y_1 \in I,
$$

where ν_0 is the unit outward normal vector to ∂I. Note that $u^0_{y_1}$ means $\frac{\partial u^0}{\partial y_1}$ in (3) and similar notation will be used throughout this paper.

Thin domains problems have been considered by many authors from different points of view, including modeling, control and homogenization of equations. Such problems have been investigated by many different approaches like asymptotic expansions and singular perturbations. The systematic study of the asymptotic behavior of deterministic dissipative systems on thin domains was initiated by Hale and Raugel [15, 16]. Later on, their results were extended to various problems, see for instance, [1, 3, 9, 7, 8, 17, 23, 24, 25, 26, 27].

Partial differential equations are often subject to white noise perturbations either from its surrounding environment or from intrinsic uncertainties. As an extension of the global attractor for deterministic equations the concept of pullback attractor for autonomous stochastic systems was defined in [11, 14, 29]. To handle the deterministic non-autonomous force and random force in a unified framework, Wang in [30] defined the concept of pullback random attractor for non-autonomous random dynamical system. There is a enormous number of publications on pullback random attractors, which, for instance, can be found in [4, 5, 10, 11, 12, 13, 14, 18, 19, 30, 31, 32, 35] for autonomous stochastic systems and in [31, 33, 34] for non-autonomous stochastic systems.

Recently, with the development of the theory of random dynamical systems, the limiting behavior of dynamics for stochastic partial differential equations on thin domains has been considered. Caraballo, Chueshov and Kloeden consider a semilinear parabolic stochastic partial differential equations with additive space-time noise on thin two layer domains. Limiting properties of the global random attractor are established as the thickness parameter of the domain tends to zero [6]. Under the frameworks of non-autonomous random dynamical systems, the limiting behavior of stochastic reaction-diffusion equations with deterministic non-autonomous terms defined on thin domains are studied in [21] and [22] for multiplicative noise and additive noise, respectively. Motivated by our previous works [21, 22], in this paper, we will study the limiting behavior of stochastic complex Ginzburg-Landau equations with deterministic non-autonomous forcing on thin domains.

The plan of this paper is as follows. In the next section, we establish the existence of a continuous cocycle in $L^2(O)$ for the stochastic equation converted from (1) and (2) and the existence of a continuous cocycle in $L^2(I)$ for the stochastic equation (3) and (4). Section 3 contains all necessary uniform estimates of the solutions. We then prove the existence and uniqueness of random attractors for the stochastic
equations in section 4, and analyze convergence properties of the solutions as well as the attractors in section 5.

2. Existence of continuous cocycle.

In the rest of this paper, we will study the existence and upper semicontinuity of tempered pullback attractors for stochastic complex Ginzburg-Landau equations defined on the thin domain \mathcal{O}_ε with deterministic non-autonomous terms as well as multiplicative noise. Here we show that there is a continuous cocycle generated by such equations defined on \mathcal{O}_ε.

We now transfer problem (1) into boundary value problems on the fixed domain \mathcal{O}. To that end, we introduce a transformation $T_\varepsilon : \mathcal{O}_\varepsilon \to \mathcal{O}$ by $T_\varepsilon(x_1, x_2) = \left(x_1, \frac{x_2}{\varepsilon g(y_1)}\right)$ for $x = (x_1, x_2) \in \mathcal{O}_\varepsilon$. Let $y = (y_1, y_2) = T_\varepsilon(x_1, x_2)$. Then we have

$$x_1 = y_1, \quad x_2 = \varepsilon g(y_1)y_2.$$

After some calculations, we find that the Jacobian matrix of T_ε is given by

$$J = \frac{\partial (y_1, y_2)}{\partial (x_1, x_2)} = \begin{pmatrix} -\frac{1}{\varepsilon g(y_1)} & 0 \\ \frac{\varepsilon g(y_1)}{\gamma} & -\frac{1}{\varepsilon g(y_1)} \end{pmatrix}.$$

The determinant of J is $|J| = \frac{1}{\varepsilon g(y_1)}$. Let J^* be the transport of J. Then we have

$$J J^* = \begin{pmatrix} \frac{1}{\varepsilon g(y_1)} & -\frac{\varepsilon g(y_1)}{\gamma} \\ -\frac{\varepsilon g(y_1)}{\gamma} & \frac{1}{\varepsilon g(y_1)} \end{pmatrix}.$$

It follows from [20] (see also [15]) that the gradient operator and the Laplace operator in the original variable $x \in \mathcal{O}_\varepsilon$ and in the new variable $y \in \mathcal{O}$ are related by

$$\nabla_x \hat{u}(x) = J^* \nabla_y u(y) \quad \text{and} \quad \Delta_x \hat{u}(x) = |J| \text{div}_y \left(|J|^{-1} J J^* \nabla_y u(y)\right) = \frac{1}{\varepsilon g(y_1)} \text{div}_y (P_\varepsilon u(y)),$$

where we denote by $\hat{u}(x) = u(y)$, ∇_x and Δ_x are the gradient operator and the Laplace operator in $x \in \mathcal{O}_\varepsilon$ respectively, div_y and ∇_y are the divergence operator and the gradient operator in $y \in \mathcal{O}$ respectively, and P_ε is the operator given by

$$P_\varepsilon u(y) = \begin{pmatrix} \frac{1}{\varepsilon g(y_1)} & -\frac{\varepsilon g(y_1)}{\gamma} \\ -\frac{\varepsilon g(y_1)}{\gamma} & \frac{1}{\varepsilon g(y_1)} \end{pmatrix} \begin{pmatrix} g u_{y_1} - g y_1 y_2 u_{y_2} \\ -y_2 g_{y_1} u_{y_1} + \frac{1}{\varepsilon g(y_1)} \left(1 + (\varepsilon g_{y_1})^2\right) u_{y_2} \end{pmatrix}.$$

For $y = (y_1, y_2) \in \mathcal{O}$, we denote $G_\varepsilon(t, y) = G(t, y_1, \varepsilon g(y_1)y_2)$ and $G_0(t, y_1) = G(t, y_1, 0)$. Then problem (1) is equivalent to the following system for $t > \tau$,

$$\begin{cases} du^\varepsilon = \left(\lambda + i\alpha\right)\frac{1}{\varepsilon g(y_1)} \text{div}_y (P_\varepsilon u^\varepsilon) - (k + i\beta)|u^\varepsilon|^2 u^\varepsilon + \gamma u^\varepsilon + G_\varepsilon(t, y) \right) dt \\
+ \rho u^\varepsilon \circ dW(t), \quad y \in \mathcal{O}, \\
P_\varepsilon u^\varepsilon \cdot \nu = 0, \quad y \in \partial \mathcal{O}, \end{cases}$$

with initial condition

$$u^\varepsilon(\tau, y) = u^\varepsilon(\tau, y) = \hat{u}^\varepsilon(T_\varepsilon^{-1}(y)), \quad y \in \mathcal{O},$$

where ν is the unit outward normal vector to $\partial \mathcal{O}$.

Now we want to write equation (5) as an abstract evolutionary equation. We first introduce the inner product $(\cdot, \cdot)_{H_\varepsilon(\mathcal{O})}$ on complex space $L^2(\mathcal{O})$ defined by

$$(u, v)_{H_\varepsilon(\mathcal{O})} = \int_{\mathcal{O}} g u \overline{v} dy, \quad \text{for all } u, v \in L^2(\mathcal{O})$$

STOCHASTIC GINZBURG-LANDAU EQUATIONS 451
and denote by $H_g(\mathcal{O})$ the space equipped with this inner product, where v and \overline{v} are conjugate. Since g is a continuous function on \mathcal{I}, which implies that there exist positive constants γ_1 and γ_2 such that
\begin{equation}
\gamma_1 \leq g(x_1) \leq \gamma_2, \quad \forall x_1 \in \mathcal{I},
\end{equation}
one can easily show that $H_g(\mathcal{O})$ is a Hilbert space with equivalent norm of $L^2(\mathcal{O})$.

We will write $\gamma(x)$ for $\gamma(x;\mathcal{I})$, which denotes by
\begin{equation}
\gamma(x) = \langle \gamma(x;\mathcal{I}), \gamma(x) \rangle_{H_g(\mathcal{O})} = g(y_1) y_2 = \frac{1}{g} y_2.
\end{equation}

Using $\gamma(x)$, problem (5)-(6) can be written as
\begin{equation}
\begin{aligned}
&\Phi_2 \frac{d u_2}{dt} = -\left(\lambda + i\alpha \right) A_\varepsilon u_2 - \left(k + i\beta \right) |u_\varepsilon|^2 u_\varepsilon + \gamma u_\varepsilon \varepsilon + G_\varepsilon(t,y) + \rho u_\varepsilon \circ \frac{dW(t)}{dt}, \quad y \in \mathcal{O}, \ t > \tau, \\
&u_\varepsilon(\tau) = u^{\varepsilon}.
\end{aligned}
\end{equation}

To reformulate system (3)-(4), we introduce an inner product $(\cdot,\cdot)_{H_g(\mathcal{I})}$ on $L^2(\mathcal{I})$ as defined by
\begin{equation}
(u,v)_{H_g(\mathcal{I})} = \int_{\mathcal{I}} g u \overline{v} dy, \quad \text{for all } u, v \in L^2(\mathcal{I}),
\end{equation}
and denote by $H_g(\mathcal{I})$ the space equipped with this inner product. Let $a_0(\cdot,\cdot): H^1(\mathcal{I}) \times H^1(\mathcal{I}) \to \mathbb{C}$ be a bilinear form given by
\begin{equation}
a_0(u,v) = \int_{\mathcal{I}} g \nabla u \cdot \nabla \overline{v} dy_1.
\end{equation}
Denote by A_0 the unbounded operator on $H_g(\mathcal{I})$ as defined by
\begin{equation}
A_0 u = -\frac{1}{g} (gu_{y_1})_{y_1}, \quad u \in D(A_0),
\end{equation}
where $D(A_0) = \left\{ u \in H^2(\mathcal{I}), \frac{\partial u}{\partial n_0} = 0 \text{ on } \partial \mathcal{I} \right\}$. Thus we have
\begin{equation}
a_0(u,v) = (A_0 u,v)_{H_g(\mathcal{I})}, \quad \forall u \in D(A_0), \forall v \in H^1(\mathcal{I}).
\end{equation}
Using A_0, system (3)-(4) can be written as
\[
\begin{aligned}
 \frac{du^0}{dt} &= - (\lambda + i\alpha) A_0 u^0 - (k + i\beta) \left| u^0 \right|^2 u^0 + \gamma u^0 \\
 &+ G_0(t, y_1) + \rho u^0 \circ \frac{dW(t)}{dt}, \quad y_1 \in I, \quad t > \tau,
\end{aligned}
\]
(13)

We now specify the probability space. Denote by
\[
\Omega = \{ \omega \in C(\mathbb{R}, \mathbb{R}) : \omega(0) = 0 \}.
\]

Let \mathcal{F} is the Borel σ-algebra induced by the compact-open topology of Ω, and P the corresponding Wiener measure on (Ω, \mathcal{F}). There is a classical group $\{\theta_t\}_{t \in \mathbb{R}}$ acting on (Ω, \mathcal{F}, P), which is defined by
\[
\theta_t \omega(\cdot) = \omega(\cdot + t) - \omega(t), \quad \omega \in \Omega, \quad t \in \mathbb{R}.
\]

Then $(\Omega, \mathcal{F}, P, \{\theta_t\}_{t \in \mathbb{R}})$ is a metric dynamical system (see [2]). On the other hand, let us consider the one-dimensional stochastic differential equation
\[
dz + zd\tau = dW(t).
\]
(15)

This equation has a random fixed point in the sense of random dynamical systems generating a stationary solution known as the stationary Ornstein-Uhlenbeck process
\[
z(\theta_t \omega) = - \int_{-\infty}^{0} e^{s} (\theta_t \omega)(s) ds, \quad t \in \mathbb{R}.
\]

From [2] we know that there exists a θ_t-invariant set $\tilde{\Omega} \subseteq \Omega$ of full measure such that $z(\theta_t \omega)$ is continuous in t for every $\omega \in \tilde{\Omega}$, and the random variable $|z(\theta_t \omega)|$ is tempered. Let \mathcal{F}_1 and P_1 be the restrictions of \mathcal{F} and P on $\tilde{\Omega}$, respectively. For convenience, from now on, we will abuse the notation slightly and write the space $(\tilde{\Omega}, \mathcal{F}_1, P_1)$ as (Ω, \mathcal{F}, P).

We will define a continuous cocycle for problem (5)-(6) over $(\Omega, \mathcal{F}, P, \{\theta_t\}_{t \in \mathbb{R}})$. To this end, we need to convert the stochastic equation into a deterministic non-autonomous one via the variable $z(\theta_t \omega)$. Let $v^\varepsilon(t, \tau, \omega, v_x^\varepsilon) = e^{-\rho z(\theta_t \omega)} v^\varepsilon(t, \tau, \omega, u_x^\varepsilon)$ where v^ε is a solution of problem (12). Then v^ε satisfies
\[
\begin{aligned}
 \frac{dv^\varepsilon}{dt} &= - (\lambda + i\alpha) A_x v^\varepsilon - (k + i\beta) e^{2\rho z(\theta_t \omega)} \left| v^\varepsilon \right|^2 v^\varepsilon \\
 &+ (\gamma + \rho z(\theta_t \omega)) v^\varepsilon + e^{-\rho z(\theta_t \omega)} G_x(t, \tau, y) \quad y \in \mathcal{O}, \quad t > \tau,
\end{aligned}
\]
(16)

Since (16) is a deterministic equation which is parametrized by $\omega \in \Omega$, by a Galerkin method, one can show that if $k > |\beta|$, then for every $\omega \in \Omega$, $t \in \mathbb{R}$ and $v_x^\varepsilon \in L^2(\mathcal{O})$, system (16) has a unique solution $v^\varepsilon(\cdot, \tau, \omega, v_x^\varepsilon) \in C([\tau, \infty), L^2(\mathcal{O})) \cap L^2([\tau, \tau+T], H^1(\mathcal{O}))$ for every $T > 0$. Moreover, one may show that $v^\varepsilon(t, \tau, \omega, v_x^\varepsilon)$ is $(\mathcal{F}, B(L^2(\mathcal{O})))$-measurable in $\omega \in \Omega$ and continuous in v_x^ε with respect to the norm of $L^2(\mathcal{O})$. We now define a mapping $\Phi_\varepsilon : \mathbb{R}^+ \times \mathbb{R} \times \Omega \times L^2(\mathcal{O}) \to L^2(\mathcal{O})$ for problem (12). Given $t \in \mathbb{R}^+$, $\tau \in \mathbb{R}$, $\omega \in \Omega$ and $v_x^\varepsilon \in L^2(\mathcal{O})$, let
\[
\Phi_\varepsilon(t, \tau, \omega, v_x^\varepsilon) = u^\varepsilon(t + \tau, \theta_{-\tau} \omega, u_x^\varepsilon) = e^{\rho z(\theta_t \omega)} v^\varepsilon(t + \tau, \theta_{-\tau} \omega, v_x^\varepsilon),
\]
(17)

where $v_x^\varepsilon = e^{-\rho z(\omega)} u_x^\varepsilon$. As stated in [30], the mapping Φ_ε is a continuous cocycle on $L^2(\mathcal{O})$ over $(\Omega, \mathcal{F}, P, \{\theta_t\}_{t \in \mathbb{R}})$.

Let $R_\varepsilon : L^2(\mathcal{O}_\varepsilon) \to L^2(\mathcal{O})$ be an affine mapping of the form
\[
(R_\varepsilon \hat{u})(y) = \hat{u}(T_\varepsilon^{-1} y), \quad \forall \hat{u} \in L^2(\mathcal{O}_\varepsilon).
\]
Given \(t \in \mathbb{R}^+, \tau \in \mathbb{R}, \omega \in \Omega \) and \(\hat{u}_t^\tau \in L^2(O) \), we can define a continuous cocycle \(\Phi_\varepsilon \) for problem (1) by the formula
\[
\Phi_\varepsilon(t, \tau, \omega, \hat{u}_t^\tau) = R_\varepsilon^{-1} \Phi_\varepsilon(t, \tau, \omega, R_\varepsilon \hat{u}_t^\tau),
\]
where \(\Phi_\varepsilon \) is the continuous cocycle for problem (12) on \(L^2(O) \) over \((\Omega, F, P, \{ \theta_t \}_{t \in \mathbb{R}})\).

A similar change of unknown variable \(\phi^0(t, \tau, \omega, u^0) = e^{-\rho_2(\theta_\omega)} u^0(t, \tau, \omega, u^0) \) can transform system (13) into the following equation on \(\mathcal{I} \)
\[
\begin{align*}
\frac{dv^0}{dt} = & \quad (\lambda + i\alpha) A_0 v^0 - (k + i\beta) e^{2\rho_2(\theta_\omega)} |v^0|^2 v^0 \\
& \quad + (\gamma + \rho z(\theta_\omega)) v^0 + e^{-\rho_2(\theta_\omega)} G_0(t, y), \quad y \in \mathcal{I}, \ t > \tau,
\end{align*}
\]
where \(\Phi_\varepsilon \) is called tempered (or subexponentially growing) if for every \(j > 0 \),
\[
\parallel \Phi_\varepsilon(t, \tau, \omega, \hat{u}_t^\tau) \parallel \leq e^{j|\tau|} \parallel \hat{u}_t^\tau \parallel,
\]
This definition is a straightforward extension of the concept of tempered random subsets for autonomous random dynamical systems. In the sequel, we denote by \(\mathcal{D}_j \) the collection of all families of tempered nonempty subsets of \(X_j \), for \(j = \varepsilon, 0 \) or 1, i.e.,
\[
\mathcal{D}_j = \{ B_j = \{ B_j(\tau, \omega) : \tau \in \mathbb{R}, \omega \in \Omega \} : B_j \text{ is tempered in } X_j \}.
\]

Our main purpose of the paper is to prove that the continuous cocycles \(\Phi_\varepsilon \) and \(\Phi_0 \) possess a unique \(\mathcal{D}_2 \)-pullback attractor \(A_\varepsilon \) in \(L^2(O) \) and \(\mathcal{D}_0 \)-pullback attractor \(A_0 \) in the space \(L^2(I) \), respectively. Furthermore \(A_\varepsilon \) is upper-semicontinuous at \(\varepsilon = 0 \), that is, for every \(\tau \in \mathbb{R} \) and \(\omega \in \Omega \),
\[
\lim_{\varepsilon \to 0} \sup_{u^0 \in A_\varepsilon} \inf_{u^0 \in A_0} \varepsilon^{-1} \int_{O_\varepsilon} |u^\varepsilon - u^0|^2 dx = 0.
\]

To prove (19), we only need to show that the cocycle \(\Phi_\varepsilon \) has a unique \(\mathcal{D}_1 \)-pullback attractor \(A_\varepsilon \) in \(L^2(O) \) and it is upper-semicontinuous at \(\varepsilon = 0 \) in the sense that for every \(\tau \in \mathbb{R} \) and \(\omega \in \Omega \),
\[
\lim_{\varepsilon \to 0} \text{dist}_{L^2(O)}(A_\varepsilon(\tau, \omega), A_0(\tau, \omega)) = 0,
\]
which will be established in the last section of the paper.

The following condition will be needed when deriving uniform estimates of solutions:
\[
\int_{-\infty}^{\tau} e^{\gamma s} \parallel G(s, \cdot) \parallel^2_{L^\infty(O)} ds < \infty, \quad \forall \tau \in \mathbb{R}.
\]

When constructing tempered pullback attractors, we will assume for any \(\sigma > 0 \)
\[
\lim_{r \to -\infty} e^{\sigma r} \int_{-\infty}^{0} e^{\gamma s} \parallel G(s, r, \cdot) \parallel^2_{L^\infty(O)} ds = 0.
\]

Both conditions (20) and (21) are needed when proving the existence of tempered pullback attractors for the cocycle \(\Phi_\varepsilon \).

In the sequel, we will use the following Agmon inequality (see [28] for instance):
\[
\parallel u \parallel_{L^\infty(O)} \leq c \parallel u \parallel_{L^2(O)}^\frac{1}{2} \parallel u \parallel_{H^2(O)}^\frac{1}{2}, \quad \forall u \in H^2(O), \quad O \subset \mathbb{R}^2,
\]
and
\[\|u\|_{H^2(O)} \leq c \left(\|u\|_{L^2(O)} + \|\Delta u\|_{L^2(O)} \right), \quad \forall u \in H^2(O), \quad O \subset \mathbb{R}^2. \]

3. Uniform estimates of solutions.

In this section, we derive uniform estimates of solutions of problem (16) which are needed for proving the existence of D_1-pullback absorbing sets and the D_1-pullback asymptotic compactness of the continuous cocycle Φ_ε. The estimates of solutions of problem (16) in $H_g(O)$ are provided below.

Lemma 3.1. Assume that (20) holds. Then there exists $\varepsilon_0 > 0$ such that for every $0 < \varepsilon < \varepsilon_0$, $\tau \in \mathbb{R}$, $\omega \in \Omega$, and $D_1 = \{D_1(\tau, \omega) : \tau \in \mathbb{R}, \omega \in \Omega\} \in D_1$, there exists $T = T(\tau, \omega, D_1) > 0$, independent of ε, such that for all $t \geq T$, the solution v^ε of (16) with ω replaced by $\theta_\tau\omega$ satisfies
\[
\|v^\varepsilon(\tau, \tau-t, \theta_\tau\omega, v_{\tau-t}^\varepsilon)\|^2_{H^1_\varepsilon(O)} + \int_{-t}^0 e^{\frac{t}{2} \gamma s + 2p \int_0^s \tilde{z}(\theta_\omega) d\tau} \times a_\varepsilon(v^\varepsilon(s + \tau - t, \theta_\tau\omega, v_{\tau-t}^\varepsilon), v^\varepsilon(s + \tau - t, \theta_\tau\omega, v_{\tau-t}^\varepsilon)) ds
\leq M + M \int_{-\infty}^0 e^{\frac{t}{2} \gamma s + 2p \int_0^s \tilde{z}(\theta_\omega) d\tau} e^{-2p\varepsilon(\theta_\omega)} \left(1 + \|G(s + \tau, \cdot)\|^2_{L^\infty(\tilde{\Omega})}\right) ds, \quad (22)
\]
where $v_{\tau-t}^\varepsilon \in D_1(\tau - t, \theta_\tau\omega)$ and M is a positive constant depending on k and γ, but independent of τ, ω, ε and D_1.

Proof. Taking the inner product of (16) with v^ε in $H_g(O)$ and taking real parts, we find that
\[
\frac{1}{2} \frac{d}{dt} \|v^\varepsilon\|^2_{H^1_\varepsilon(O)} = -\lambda a_\varepsilon(v^\varepsilon, v^\varepsilon) - k e^{-2p\varepsilon(\theta_\omega)} \int_O g |u^\varepsilon|^4 \, dy
\]
\[+ (\gamma + \rho \varepsilon(\theta_\omega)) \|v^\varepsilon\|^2_{H^1_\varepsilon(O)} + e^{-\rho \varepsilon(\theta_\omega)} \text{Re}(G_\varepsilon(t, y), v^\varepsilon)_{H^1_\varepsilon(O)}. \quad (23)\]

By (10), we have
\[
k \frac{1}{2} e^{-2p\varepsilon(\theta_\omega)} \int_O g |u^\varepsilon|^4 \, dy \geq 2k e^{-2p\varepsilon(\theta_\omega)} \int_O g |u^\varepsilon|^2 \, dy - 2 \frac{1}{k} \gamma^2 e^{-2p\varepsilon(\theta_\omega)} \int_O g dy
\]
\[\geq 2 \gamma \|v^\varepsilon\|^2_{H^1_\varepsilon(O)} dy - 2 \frac{1}{k} \gamma^2 \|v^\varepsilon\|^2_{H^1_\varepsilon(O)} dy. \quad (24)\]

On the other hand, the last term on the right-hand side of (23) is bounded by
\[
e^{-\rho \varepsilon(\theta_\omega)} \text{Re}(G_\varepsilon(t, y), v^\varepsilon)_{H^1_\varepsilon(O)} \leq e^{-\rho \varepsilon(\theta_\omega)} \|G_\varepsilon(t, \cdot)\|^2_{H^1_\varepsilon(O)} \|v^\varepsilon\|^2_{H^1_\varepsilon(O)}
\[
\leq \frac{1}{4} \gamma \|v^\varepsilon\|^2_{H^1_\varepsilon(O)} + ce^{-2p\varepsilon(\theta_\omega)} \|G(t, \cdot)\|^2_{L^\infty(\tilde{\Omega})}. \quad (25)\]

Then it follows from (23)-(25) that
\[
\frac{d}{dt} \|v^\varepsilon\|^2_{H^1_\varepsilon(O)} + 2\lambda a_\varepsilon(v^\varepsilon, v^\varepsilon) + k \int_O g |u^\varepsilon|^4 \, dy
\leq -\left(\frac{3}{2} \gamma - 2\rho \varepsilon(\theta_\omega)\right) \|v^\varepsilon\|^2_{H^1_\varepsilon(O)} + ce^{-2p\varepsilon(\theta_\omega)}(1 + \|G(t, \cdot)\|^2_{L^\infty(\tilde{\Omega})}). \quad (26)\]
By Gronwall inequality and replacing ω by $\theta-\omega$, we get that for every $\omega \in \Omega$,

$$
\|v^\varepsilon(\tau, \tau - t, \theta-\omega, v^\varepsilon_{\tau-t})\|^2_{H^s(\omega)} + 2\lambda \int_{-t}^0 e^{2\gamma s + 2\rho \int_t^0 z(\theta, \omega) d\tau} \times a_v(v^\varepsilon(s + \tau, \tau - t, \theta-\omega, v^\varepsilon_{\tau-t}), v^\varepsilon(s + \tau, \tau - t, \theta-\omega, v^\varepsilon_{\tau-t})\) d\tau \\
\leq e^{-\frac{3}{2}\gamma t + 2\rho \int_t^0 z(\theta, \omega) d\tau} \|v^\varepsilon_{\tau-t}\|^2_{H^s(\omega)} + c \int_{-t}^0 e^{2\gamma s + 2\rho \int_t^0 z(\theta, \omega) d\tau} e^{-2\tau z(\theta, \omega)} (1 + \|G(s + \tau, \cdot)\|^2_{L^\infty(\Omega)}) d\tau.
$$

(27)

We now estimate the first term on the right-hand side of (27). By the properties of $z(\theta, \omega)$ we find that there exists $T_1 = T_1(\gamma, \omega) > 0$ such that for all $t \geq T_1$,

$$
|z(\theta, \omega)| \leq \frac{1}{8\rho} \gamma t \quad \text{and} \quad \int_{-t}^0 z(\theta, \omega) d\tau \leq \frac{1}{8\rho} \gamma t.
$$

(28)

By (28), $v^\varepsilon_{\tau-t} \in D_1(\tau - t, \theta-\omega)$ and D_1 is tempered, we find that there exists $T_2 = T(\tau, \omega, D_1) > T_1$ such that for all $t \geq T_2$,

$$
e^{-\frac{3}{2}\gamma t + 2\rho \int_t^0 z(\theta, \omega) d\tau} \|v^\varepsilon_{\tau-t}\|^2_{H^s(\omega)} \leq e^{-\frac{3}{2}\gamma t} \|v^\varepsilon_{\tau-t}\|^2_{H^s(\omega)} \leq e^{-\frac{3}{2}\gamma t} \|D_1(\tau - t, \theta-\omega)\|^2_{H^s(\omega)} \leq 1.
$$

(29)

By (28) and (20) we get, for all $t \geq T_1$

$$
\int_{-t}^{-T_1} e^{2\gamma s + 2\rho \int_t^0 z(\theta, \omega) d\tau} e^{-2\tau z(\theta, \omega)} (1 + \|G(s + \tau, \cdot)\|^2_{L^\infty(\Omega)}) d\tau \\
\leq \int_{-\infty}^{-T_1} e^{\gamma s} (1 + \|G(s + \tau, \cdot)\|^2_{L^\infty(\Omega)}) d\tau < \infty,
$$

which implies that

$$
\int_{-t}^0 e^{2\gamma s + 2\rho \int_t^0 z(\theta, \omega) d\tau} e^{-2\tau z(\theta, \omega)} (1 + \|G(s + \tau, \cdot)\|^2_{L^\infty(\Omega)}) d\tau < \infty.
$$

(30)

By (27), (29) and (30) we get, for all $t \geq T_2$,

$$
\|v^\varepsilon(\tau, \tau - t, \theta-\omega, v^\varepsilon_{\tau-t})\|^2_{H^s(\omega)} + 2\lambda \int_{-t}^0 e^{2\gamma s + 2\rho \int_t^0 z(\theta, \omega) d\tau} \times a_v(v^\varepsilon(s + \tau, \tau - t, \theta-\omega, v^\varepsilon_{\tau-t}), v^\varepsilon(s + \tau, \tau - t, \theta-\omega, v^\varepsilon_{\tau-t})\) d\tau \\
\leq 1 + c \int_{-\infty}^{-T_1} e^{2\gamma s + 2\rho \int_t^0 z(\theta, \omega) d\tau} e^{-2\tau z(\theta, \omega)} (1 + \|G(s + \tau, \cdot)\|^2_{L^\infty(\Omega)}) d\tau < \infty.
$$

(31)

From (31), the desired estimates follow immediately.

The following lemma is to derive the uniform estimates of solutions in $H^s_2(\omega)$.

Lemma 3.2. Assume that (20) holds. Then there exists $\varepsilon_1 > 0$ such that for every $0 < \varepsilon < \varepsilon_1$, $\tau \in \mathbb{R}$, $\omega \in \Omega$, and $D_1 = \{D_1(\tau, \omega) : \tau \in \mathbb{R}, \omega \in \Omega \} \in D_1$, there exists
\[T = T(\tau, \omega, D_1) \geq 1, \text{ independent of } \varepsilon, \text{ such that for all } t \geq T, \text{ the solution } v^\varepsilon \text{ of (16)} \]

with \(\omega \) replaced by \(\theta - \tau, \omega \) satisfies

\[
\|v^\varepsilon(t, \tau - t, \theta - \tau, \omega, v_{\varepsilon-})\|_{H^1_0(\Omega)}^2
\leq M + M \int_{-\infty}^0 e^{\frac{2}{\varepsilon}t + 2p\int_0^t z(\theta, \omega)dt} e^{-2\rho\varepsilon(\theta, \omega)}(1 + ||G(s + \tau, \cdot)||_{L^\infty(\Omega)}^2)ds,
\]

where \(v_{\varepsilon-} \in D_1(t - t, \theta - \omega) \) and \(M \) is a positive constant depending on \(k, \gamma \) and \(\lambda \), but independent of \(\tau, \omega, \varepsilon \) and \(D_1 \).

Proof. Taking the inner product of (16) with \(A_{\varepsilon} v^\varepsilon \) in \(H_\alpha(\Omega) \) and taking the real part, we find that

\[
\frac{1}{2} \frac{d}{dt} a_{\varepsilon}(v^\varepsilon, v^\varepsilon) = -\lambda \|A_{\varepsilon} v^\varepsilon\|_{H_\alpha(\Omega)}^2 - \frac{2}{\varepsilon} \frac{\partial}{\partial y_j} \left| \frac{\partial v}{\partial y_j} \right| v^\varepsilon + i \beta \frac{\partial}{\partial y_j} \Re \left(\partial \Re \right) v^\varepsilon \|A_{\varepsilon} v^\varepsilon\|_{H_\alpha(\Omega)}^2.
\]

We first estimate the nonlinear term in (33). By (8) we get

\[
(\|v\|^2, A_{\varepsilon} v^\varepsilon)_{H_\alpha(\Omega)} = (J^* \nabla \|v\|^2 v, J^* \nabla \|v\|^2 v)_{H_\alpha(\Omega)}
\]

\[
= \int_\Omega g(\|v\|^2 v)_{y_1} \nabla_{y_1} - \frac{g_{y_1}}{g} y_{2}(\|v\|^2 v, v_{y_2} - \frac{g_{y_1}}{g} y_{2}(\|v\|^2 v_{y_2} y_{y_1}
\]

\[
+ \frac{1}{\varepsilon g^2} (\|v\|^2 v_{y_2} y_{y_2} + \frac{1}{\varepsilon g^2} (\|v\|^2 v_{y_2} y_{y_2}
\]

By simple computations we have

\[
\text{Re}(k + i \beta)(\|v\|^2 v)_{y_1} \nabla_{y_1} = -k \|v\|^2 \frac{\partial v}{\partial y_j} \left| v \right|^2 - k \frac{\partial |v|^2}{\partial y_j}^2 + \beta \text{Im}(v) \left(\frac{\partial |v|^2}{\partial y_j}^2 \right)
\]

\[
\leq -(k - |\beta|) \|v\|^2 \left| \frac{\partial v}{\partial y_j} \right|^2 - k \frac{\partial |v|^2}{\partial y_j}^2, \forall j = 1, 2,
\]

and

\[
\text{Re}(k + i \beta) \left((\|v\|^2 v)_{y_1} \nabla_{y_1} + (\|v\|^2 v)_{y_2} \nabla_{y_2} \right)
\]

\[
\leq k \frac{\partial |v|^2}{\partial y_1} \frac{\partial |v|^2}{\partial y_2} + |\beta| \frac{\partial |v|^2}{\partial y_1} \left| v \right|^2 \frac{\partial \Re}{\partial y_2} + 2k \frac{\partial |v|^2}{\partial y_1} \left| \frac{\partial v}{\partial y_1} \left| v \right|^2 \frac{\partial \Re}{\partial y_2} \right.
\]

Note that \(k > |\beta| \). By Young's inequality, there exists \(\varepsilon_1 > 0 \) such that for every \(0 < \varepsilon < \varepsilon_1 \),

\[
-\text{Re}(k + i \beta) e^{2\rho \varepsilon(\theta, \omega)} \left((\|v\|^2 v, A_{\varepsilon} v^\varepsilon)_{H_\alpha(\Omega)} \right) \leq 0.
\]

On the other hand, the last two terms on the right-hand side of (33) is bounded by

\[
(\gamma + \rho \varepsilon(\theta, \omega)) \text{Re}(v^\varepsilon, A_{\varepsilon} v^\varepsilon)_{H_\alpha(\Omega)} + e^{-\rho \varepsilon(\theta, \omega)} \text{Re}(G_{\varepsilon}(t, y), A_{\varepsilon} v^\varepsilon)_{H_\alpha(\Omega)}
\]

\[
\leq (\gamma + \rho \varepsilon(\theta, \omega)) a_{\varepsilon}(v^\varepsilon, v^\varepsilon) + \frac{\lambda}{2} \frac{2}{\varepsilon} \|A_{\varepsilon} v^\varepsilon\|_{H_\alpha(\Omega)}^2 + c e^{-2\rho \varepsilon(\theta, \omega)} ||G(t, \cdot)||_{L^\infty(\Omega)}^2.
\]

By (33)-(38) we get for \(0 < \varepsilon < \varepsilon_1 \)

\[
\frac{d}{dt} a_{\varepsilon}(v^\varepsilon, v^\varepsilon) + \lambda \frac{\partial |v|^2}{\partial y_1} \left| v \right|^2 + (\gamma - 2\rho \varepsilon(\theta, \omega)) a_{\varepsilon}(v^\varepsilon, v^\varepsilon)
\]

\[
\leq \frac{7}{2} \gamma a_{\varepsilon}(v^\varepsilon, v^\varepsilon) + c e^{-2\rho \varepsilon(\theta, \omega)} ||G(t, \cdot)||_{L^\infty(\Omega)}^2.
\]
For $t \in \mathbb{R}^+$, $\tau \in \mathbb{R}$ and $\omega \in \Omega$, multiplying (39) by $e^{\int_0^\tau (\frac{2}{7} \gamma - 2 \rho(z(\theta, \omega))) \, ds}$ and integrating over (τ, τ), we infer that

$$\begin{align*}
a_\varepsilon \left(v^\varepsilon \left(\tau, \tau - t, \omega, v^\varepsilon_{\tau-t} \right), v^\varepsilon \left(\tau, \tau - t, \omega, v^\varepsilon_{\tau-t} \right) \right) &\leq e^{\int_0^\tau (\frac{2}{7} \gamma - 2 \rho(z(\theta, \omega))) \, ds} a_\varepsilon \left(v^\varepsilon \left(r, \tau - t, \omega, v^\varepsilon_{\tau-t} \right), v^\varepsilon \left(r, \tau - t, \omega, v^\varepsilon_{\tau-t} \right) \right) \\
&\quad + \frac{7}{2} \gamma \int_\tau^\tau e^{\int_s^\tau (\frac{2}{7} \gamma - 2 \rho(z(\theta, \omega))) \, ds} a_\varepsilon \left(v^\varepsilon \left(s, \tau - t, \omega, v^\varepsilon_{\tau-t} \right), v^\varepsilon \left(s, \tau - t, \omega, v^\varepsilon_{\tau-t} \right) \right) \, ds \\
&\quad + c \int_\tau^\tau e^{\int_s^\tau (\frac{2}{7} \gamma - 2 \rho(z(\theta, \omega))) \, ds} e^{-2 \rho(z(\theta, \omega))} ||G(s, \cdot)||^2_{L^\infty(\hat{\Omega})} \, ds. \quad (40)
\end{align*}$$

Integrating (40) with respect to r on $(\tau - 1, \tau)$, we obtain

$$\begin{align*}
a_\varepsilon \left(v^\varepsilon \left(\tau, \tau - t, \omega, v^\varepsilon_{\tau-t} \right), v^\varepsilon \left(\tau, \tau - t, \omega, v^\varepsilon_{\tau-t} \right) \right) &\leq (1 + \frac{7}{2} \gamma) \int_{\tau-1}^{\tau} e^{\int_s^{\tau} (\frac{2}{7} \gamma - 2 \rho(z(\theta, \omega))) \, ds} \\
&\quad \times a_\varepsilon \left(v^\varepsilon \left(r + \tau - t, \omega, v^\varepsilon_{\tau-t} \right), v^\varepsilon \left(r + \tau - t, \omega, v^\varepsilon_{\tau-t} \right) \right) \, dr \\
&\quad + c \int_{\tau-1}^{\tau} e^{\int_s^{\tau} (\frac{2}{7} \gamma - 2 \rho(z(\theta, \omega))) \, ds} e^{-2 \rho(z(\theta, \omega))} ||G(r + \tau, \cdot)||^2_{L^\infty(\hat{\Omega})} \, dr. \quad (41)
\end{align*}$$

Let T be the constant in Lemma 3.1, and $T_0 = \max\{1, T\}$. Then for all $t \geq T_0$, we get from (41) and Lemma 3.1 that for $0 < \varepsilon < \varepsilon_1$

$$\begin{align*}
a_\varepsilon \left(v^\varepsilon \left(\tau, \tau - t, \omega, v^\varepsilon_{\tau-t} \right), v^\varepsilon \left(\tau, \tau - t, \omega, v^\varepsilon_{\tau-t} \right) \right) &\leq c + c \int_{\tau-\infty}^{\tau} e^{\int_s^{\tau} (\frac{2}{7} \gamma + 2 \rho(z(\theta, \omega)) \, ds} e^{-2 \rho(z(\theta, \omega))} (1 + ||G(s + \tau, \cdot)||^2_{L^\infty(\hat{\Omega})}) \, ds. \quad (42)
\end{align*}$$

This together with Lemma 3.1 completes the proof.

The following estimates are needed when we derive the convergence of pullback attractors.

Lemma 3.3. Suppose (20) holds. Then there exists $\varepsilon_1 > 0$ such that for all $0 < \varepsilon < \varepsilon_1$, $\tau \in \mathbb{R}$, $\omega \in \Omega$, $T > 0$ and $v^\varepsilon \in H^1(\Omega)$, the solution v^ε of (16) satisfies, for all $t \in [\tau, \tau + T]$,

$$\begin{align*}
\int_\tau^t \|v^\varepsilon(s, \tau, \omega, v^\varepsilon_{\tau-t})\|^2_{L^2(\Omega)} + \|v^\varepsilon(s, \tau, \omega, v^\varepsilon_{\tau-t})\|^2_{H^2(\Omega)} \, ds \\
&\leq M ||v^\varepsilon||^2_{H^1(\Omega)} + M \int_\tau^{\tau + T} (1 + ||G(s, \cdot)||^2_{L^\infty(\hat{\Omega})}) \, ds, \quad (43)
\end{align*}$$

where M is a positive constant depending on τ, ω, λ, k, γ and T, but independent of ε.

Proof. It follows form (26) that

$$\frac{d}{dt} ||v^\varepsilon||^2_{H^1(\Omega)} + 2 \lambda a_\varepsilon(v^\varepsilon, v^\varepsilon) + \frac{\gamma}{2} ||v^\varepsilon||^2_{H^1(\Omega)} \leq c_1 ||v^\varepsilon||^2_{H^1(\Omega)} + c_2 (1 + ||G(t, \cdot)||^2_{L^\infty(\hat{\Omega})}),$$

where c_1 and c_2 are positive constants not depending on ε.

Lemma 3.4. Suppose (20) holds. Then there exists \(\varepsilon < \varepsilon_1 \) and \(M \) and \(D \) where

\[
\int_{\tau}^{t} e^{\varepsilon_1(s-t)} a_\varepsilon (v^\varepsilon (s, \tau, \omega, v^\varepsilon_\tau), v^\varepsilon (s, \tau, \omega, v^\varepsilon_\tau)) ds + \frac{\gamma}{2} \int_{\tau}^{t} e^{\varepsilon_1(s-t)} \|v^\varepsilon (s, \tau, \omega, v^\varepsilon_\tau)\|_{H_{\sigma}(\partial)}^2 ds
\leq e^{\varepsilon_1(t-\tau)} \|v^\varepsilon_\tau\|_{H_{\sigma}(\partial)}^2 + c_2 \int_{\tau}^{t} e^{\varepsilon_1(s-t)} (1 + \|G(s, \cdot)\|_{L^\infty(\partial)}) ds.
\]

Integrating (39) on \((\tau, t)\), we get that for every \(\omega \in \Omega \) and \(t \in [\tau, \tau + T] \),

\[
a_\varepsilon (v^\varepsilon (t), v^\varepsilon (t)) + \lambda \int_{\tau}^{t} \|A_\varepsilon v^\varepsilon (s)\|_{H_{\sigma}(\partial)}^2 ds
\leq a_\varepsilon (v^\varepsilon (\tau), v^\varepsilon (\tau)) + c_3 \int_{\tau}^{t} a_\varepsilon (v^\varepsilon (s), v^\varepsilon (s)) ds + c_4 \int_{\tau}^{t} \|G(s, \cdot)\|_{L^\infty(\partial)}^2 ds,
\]

where \(c_3 \) and \(c_4 \) are positive constants not depending on \(\varepsilon \). Notice the definition of \(D(A_\varepsilon) \), we can complete the proof by (44) and (45).

Similarly, one can prove

Lemma 3.4. Suppose (20) holds. Then there exists \(\varepsilon_1 > 0 \) such that for all \(0 < \varepsilon < \varepsilon_1, \tau \in \mathbb{R}, \omega \in \Omega, T > 0 \) and \(v^0_\tau \in H^1(\mathbb{I}) \), the solution \(v^0 \) of (18) satisfies, for all \(t \in [\tau, \tau + T] \),

\[
\int_{\tau}^{t} \|v^0(s, \tau, \omega, v^0_\tau)\|_{L^2(\mathbb{I})}^2 + \|v^0(s, \tau, \omega, v^0_\tau)\|_{H^1(\mathbb{I})}^2 ds
\leq M\|v^0_\tau\|_{H^1(\mathbb{I})}^2 + M \int_{\tau}^{\tau + T} (1 + \|G(s, \cdot)\|_{L^\infty(\partial)}^2) ds,
\]

where \(M \) is a positive constant depending on \(\tau, \omega, k, \gamma \) and \(T \), but independent of \(\varepsilon \).

4. Existence of pullback attractors.

In this section, we establish the existence of \(D_1 \)-pullback attractor for the cocycle \(\Phi_\varepsilon \) associated with the stochastic problem (12) and \(D_0 \)-pullback attractor for the cocycle \(\Phi_0 \) associated with the stochastic problem (13), respectively. We first show that problem (12) has a tempered pullback absorbing set as stated below.

Lemma 4.1. Suppose (20) and (21) holds. Then there exists \(\varepsilon_1 > 0 \) such that for all \(0 < \varepsilon < \varepsilon_1 \), the continuous cocycle \(\Phi_\varepsilon \) associated with problem (12) has a closed measurable \(D_1 \)-pullback absorbing set \(K \in D_1 \) which is given by, for each \(\tau \in \mathbb{R} \) and \(\omega \in \Omega \)

\[
K(\tau, \omega) = \left\{ u \in L^2(\mathcal{O}) : \|u\|_{L^2(\mathcal{O})}^2 \leq L(\tau, \omega) \right\},
\]

where

\[
L(\tau, \omega) = Me^{\rho z(\omega)} + Me^{\rho z(\omega)} \int_{-\infty}^{0} e^{2\gamma s + 2\rho} \int_{\theta}^{0} z(\theta, \omega) dl e^{-2\rho \theta} \|G(s + \tau, \cdot)\|_{L^\infty(\partial)}^2 ds
\]

and \(M \) is a positive constant depending on \(k, \gamma \) and \(\lambda \), but independent of \(\tau, \omega, \varepsilon \) and \(D_1 \).
Therefore, for every $\varepsilon \in \mathbb{R}$, assume that (20) and (21) hold. Then, the continuous cocycle

$$
\Phi(t, \omega) : \tau \in \mathbb{R}, \omega \in \Omega \in \mathcal{D}_1,
$$

where $\mathcal{D}_1 = \{ D_1(\tau, \omega) : \tau \in \mathbb{R}, \omega \in \Omega \}$, define a new family \hat{D}_1 for D_1 as

$$
\hat{D}_1 = \{ \hat{D}_1(\tau, \omega) : \tau \in \mathbb{R}, \omega \in \Omega \},
$$

where $\hat{D}_1(\tau, \omega) = \{ v \in L^2(\Omega) : \| v \|_{L^2(\Omega)} \leq e^{-\rho_2(\omega)}\| D_1(\tau, \omega) \|_{L^2(\Omega)} \}$. For any $D_1 \in \mathcal{D}_1$, one can check that \hat{D}_1 also belongs to \mathcal{D}_1, i.e., \hat{D}_1 is tempered. For any $u_{\tau,\omega}^\varepsilon \in D_1(\tau - t, \theta_{-t}\omega)$, we find that $v_{\tau,\omega}^\varepsilon = e^{-\rho_2(\theta_{-t}\omega)}u_{\tau,\omega}^\varepsilon$ satisfies

$$
\| v_{\tau,\omega}^\varepsilon \|_{L^2(\Omega)} = e^{-\rho_2(\theta_{-t}\omega)}\| u_{\tau,\omega}^\varepsilon \|_{L^2(\Omega)} \leq e^{-\rho_2(\theta_{-t}\omega)}\| D_1(\tau - t, \theta_{-t}\omega) \|_{L^2(\Omega)}.
$$

By (47) we see that $v_{\tau,\omega}^\varepsilon \in \hat{D}_1(\tau - t, \theta_{-t}\omega)$. Since $\hat{D}_1 \subset \mathcal{D}_1$, by Lemmas 3.2, there exists $T = T(\tau, \omega, D_1) \geq 1$ such that for all $t \geq T$,

$$
\| v_{\tau,\omega}^\varepsilon \|_{L^2(\Omega)} \leq M + M \int_{-\infty}^{0} e^{\frac{1}{2} \gamma s + 2\rho \int_{-t}^{0} z(\theta_{-s}\omega)ds} e^{-\rho_2(\theta_{-t}\omega)} \| G(s + \tau, \omega) \|_{L^2(\Omega)} ds.
$$

Notice that $v_{\tau,\omega}^\varepsilon = e^{-\rho_2(\theta_{-t}\omega)}u_{\tau,\omega}^\varepsilon = e^{-\rho_2(\omega)}u_{\tau,\omega}^\varepsilon$. This implies

$$
v_{\tau,\omega}^\varepsilon = v_{\tau,\omega}^\varepsilon (\tau - t, \theta_{-t}\omega, v_{\tau,\omega}^\varepsilon),
$$

which along with (48) implies that for $u_{\tau,\omega}^\varepsilon \in D_1(\tau - t, \theta_{-t}\omega)$

$$
\| v_{\tau,\omega}^\varepsilon \|_{L^2(\Omega)} \leq L(\tau, \omega).
$$

Therefore, for every $\tau \in \mathbb{R}, \omega \in \Omega$, and $D_1 \in \mathcal{D}_1$ there exists $T(\tau, \omega, D_1) \geq 1$, independent of ε, such that for all $t \geq T$,

$$
\Phi_\varepsilon(t, \tau, \omega, D_1(\tau - t, \theta_{-t}\omega)) \in K(\tau, \omega).
$$

By the similar argument as in [31] we can obtain easily from (46) that $K = \{ K(\tau, \omega) : \tau \in \mathbb{R}, \omega \in \Omega \}$ is tempered. On the other hand, it is evident that, for each $\tau \in \mathbb{R}$, $L(\tau, \cdot) : \Omega \to \mathbb{R}$ is $(\mathcal{F}, \mathcal{B}(\mathbb{R}))$-measurable. Consequently, K is a closed measurable \mathcal{D}_1-pullback absorbing set for Φ_ε in \mathcal{D}_1.

Theorem 4.2. Suppose (20) and (21) hold. Then there exists $\varepsilon_1 > 0$ such that for all $0 < \varepsilon < \varepsilon_1$, the cocycle Φ_ε has a unique \mathcal{D}_1-pullback attractor $A_\varepsilon = \{ A_\varepsilon(\tau, \omega) : \tau \in \mathbb{R}, \omega \in \Omega \} \in \mathcal{D}_1$ in $L^2(\Omega)$.

Proof. First, we know from Lemma 4.1 that Φ_ε has a closed measurable \mathcal{D}_1-pullback absorbing set K. Thanks to (49) and the compact embedding $H^1(\Omega) \hookrightarrow L^2(\Omega)$, Φ_ε is \mathcal{D}_1-pullback asymptotically compact in $L^2(\Omega)$. Hence, the existence of a unique \mathcal{D}_1-pullback attractor for the cocycle Φ_ε follows from [30] immediately.

Analogous results also hold for the solutions of (13). In particular, we have:

Theorem 4.3. Assume that (20) and (21) hold. Then, the continuous cocycle Φ_0 has a unique \mathcal{D}_0-pullback attractor $A_0 = \{ A_0(\tau, \omega) : \tau \in \mathbb{R}, \omega \in \Omega \} \in \mathcal{D}_0$ in $L^2(I)$.

5. **Upper-semicontinuity of random attractors.**

Given $u \in L^2(\Omega)$, let Mu be the average function of u in y_2 as defined by

$$
Mu = \int_{0}^{1} u(y_1, y_2) dy_2.
$$

Arguing as in [15], we can obtain following result on the average function.
Lemma 5.1. If \(u \in H^1(\mathcal{O}) \), then \(\mathcal{M}u \in H^1(\mathcal{I}) \) and
\[
\|u - \mathcal{M}u\|_{H^1(\mathcal{O})} \leq c\varepsilon \|u\|_{L^2(\mathcal{O})},
\]
where \(c \) is a constant, independent of \(\varepsilon \).

In the sequel, we further assume that
\[
\|G_\varepsilon(t, \cdot) - G_0(t, \cdot)\|_{L^2(\mathcal{O})} \leq \kappa_1(t)\varepsilon, \quad \text{for all } t \in \mathbb{R},
\]
where \(\kappa_1(t) \in L^2_{loc}(\mathbb{R}) \).

Since \(L^2(\mathcal{I}) \) can be embedded naturally into \(L^2(\mathcal{O}) \) as the subspace of functions independent of \(y_2 \), we can consider the cocycle \(\Phi_0 \) as a mapping from \(L^2(\mathcal{I}) \) into \(L^2(\mathcal{O}) \). In this sense, we can compare \(\Phi_0 \) and \(\Phi_\varepsilon \).

Theorem 5.2. Suppose (20), (21) and (50) hold. Given \(\tau \in \mathbb{R} \), \(\omega \in \Omega \) and a positive number \(\eta(\tau, \omega) \), if \(u_\varepsilon \in H^1(\mathcal{O}) \) such that \(\|u_\varepsilon\|_{H^1(\mathcal{O})} \leq \eta(\tau, \omega) \), then we have, for any \(t \geq \tau \),
\[
\lim_{\varepsilon \to 0} \|\Phi_\varepsilon(t, \tau, \omega, u_\varepsilon) - \Phi_0(t, \tau, \omega, \mathcal{M}u_\varepsilon)\|_{L^2(\mathcal{O})} = 0.
\]

Proof. Taking the inner product of (18) with \(gl \), where \(l \in H^1(\mathcal{I}) \), we find that
\[
\int_{\mathcal{I}} g \frac{dv_0}{dt} ldy_1 + (\lambda + i\alpha) \int_{\mathcal{I}} g v_0^0 l y_1 dy_1 = -(k + i\beta) e^{2\rho z(\theta, \omega)} \int_{\mathcal{I}} g |v_0|^2 v_0^0 dy_1
\]
\[
+ (\gamma + \rho z(\theta, \omega)) \int_{\mathcal{I}} g v_0^0 l y_1 dy_1 + e^{-\rho z(\theta, \omega)} (G_0(t, y_1, \zeta)) H^1(\mathcal{O}).
\]

As \(\int_0^1 \zeta(y_1, y_2) dy_2 \) belongs to \(H^1(\mathcal{I}) \) if \(\zeta \) is in \(H^1(\mathcal{O}) \), the above equality becomes, for any \(\zeta \in H^1(\mathcal{O}) \),
\[
(dv_0^0/dt, \zeta)_{H^1(\mathcal{O})} + (\lambda + i\alpha) (v_0^0, \zeta)_{H^1(\mathcal{O})} = -(k + i\beta) e^{2\rho z(\theta, \omega)} (|v_0|^2 v_0^0, \zeta)_{H^1(\mathcal{O})}
\]
\[
+ (\gamma + \rho z(\theta, \omega)) (v_0^0, \zeta)_{H^1(\mathcal{O})} + e^{-\rho z(\theta, \omega)} (G_0(t, y_1, \zeta))_{H^1(\mathcal{O})}.
\]

Since \(v_0^0 \) is independent of \(y_2 \), the above equality gives, for any \(\zeta \in H^1(\mathcal{O}) \) and \(0 < \varepsilon \leq 1 \),
\[
(dv_\varepsilon^0/dt, \zeta)_{H^1(\mathcal{O})} + (\lambda + i\alpha) a_\varepsilon (v_\varepsilon^0, \zeta)
\]
\[
= -(k + i\beta) e^{2\rho z(\theta, \omega)} (|v_\varepsilon|^2 v_\varepsilon - |v_0|^2 v_0^0, \zeta)_{H^1(\mathcal{O})} + (\gamma + \rho z(\theta, \omega)) (v_\varepsilon^0, \zeta)_{H^1(\mathcal{O})}
\]
\[
+ e^{-\rho z(\theta, \omega)} (G_\varepsilon(t, y) - G_0(t, y_1), \zeta)_{H^1(\mathcal{O})} + (\lambda + i\alpha) \left(\frac{g_\varepsilon}{g} v_\varepsilon^0, y_2 \zeta_{y_2} \right)_{H^1(\mathcal{O})}.
\]

Due to (52) and (16), the function \(v_\varepsilon^0 - v_0^0 \) satisfies the equation, for any \(\zeta \in H^1(\mathcal{O}) \),
\[
(dv_\varepsilon^0/dt, \zeta)_{H^1(\mathcal{O})} + (\lambda + i\alpha) a_\varepsilon (v_\varepsilon^0 - v_0^0, \zeta)
\]
\[
= -(k + i\beta) e^{2\rho z(\theta, \omega)} (|v_\varepsilon|^2 v_\varepsilon - |v_0|^2 v_0^0, \zeta)_{H^1(\mathcal{O})} + (\gamma + \rho z(\theta, \omega)) (v_\varepsilon^0 - v_0^0, \zeta)_{H^1(\mathcal{O})}
\]
\[
+ e^{-\rho z(\theta, \omega)} (G_\varepsilon(t, y) - G_0(t, y_1), \zeta)_{H^1(\mathcal{O})} + (\lambda + i\alpha) \left(\frac{g_\varepsilon}{g} v_\varepsilon^0, y_2 \zeta_{y_2} \right)_{H^1(\mathcal{O})}.
\]
Setting $\zeta = v^\varepsilon - v^0$ in (53) and then taking the real part, we see that
\[
\frac{1}{2} \frac{d}{dt} \|v^\varepsilon - v^0\|^2_{L^2(\mathcal{O})} + \text{Re} (\lambda + i\alpha) a_x (v^\varepsilon - v^0, v^\varepsilon - v^0)
\]
\[
= -\text{Re} (k + i\beta) e^{2\rho z(\theta_\omega)} (\|v^\varepsilon\|^2 - |v^0|^2)_{L^2(\mathcal{O})} + (\gamma + \rho z(\theta_\omega)) \|v^\varepsilon - v^0\|^2_{L^2(\mathcal{O})}
\]
\[
+ e^{-\rho z(\theta_\omega)} \text{Re} (G_x (t, y) - G_0 (t, y_1), v^\varepsilon - v^0)_{H^s(\mathcal{O})}
\]
\[
+ \text{Re} (\lambda + i\alpha) \left(\frac{g_0}{g} v^0_{y_1}, y_2 (v^\varepsilon_{y_2} - v^0_{y_2}) \right)_{H^s(\mathcal{O})}.
\]

(54)

For the first term on the right side of the equality above, set $f(s) = s^2$ and we have
\[
-\text{Re} (k + i\beta) e^{2\rho z(\theta_\omega)} (\|v^\varepsilon\|^2 - |v^0|^2)_{L^2(\mathcal{O})} - \text{Re} (k + i\beta) e^{2\rho z(\theta_\omega)} \int_{\mathcal{O}} g |v^\varepsilon|^2 (v^\varepsilon - v^0) dy
\]
\[
\leq |k + i\beta| e^{2\rho z(\theta_\omega)} \left(\int_{\mathcal{O}} g |v^\varepsilon|^2 |v^\varepsilon - v^0|^2 dy + \int_{\mathcal{O}} g |f'(\xi)| |v^0| |v^\varepsilon - v^0|^2 dy \right)
\]
\[
\leq c e^{2\rho z(\theta_\omega)} (\|v^0\|_{L^\infty(\mathcal{O})}^{1/2} + \|f'(\xi)\|_{L^\infty(\mathcal{O})} \|v^0\|_{L^\infty(\mathcal{O})}) \int_{\mathcal{O}} g |v^\varepsilon - v^0|^2 dy,
\]
which together Agmon inequality implies that
\[
-\text{Re} (k + i\beta) e^{2\rho z(\theta_\omega)} (\|v^\varepsilon\|^2 - |v^0|^2)_{L^2(\mathcal{O})}
\]
\[
\leq c e^{2\rho z(\theta_\omega)} (\|v^0\|_{L^\infty(\mathcal{O})}^{1/2} + \|f'(\xi)\|_{L^\infty(\mathcal{O})} \|v^0\|_{L^\infty(\mathcal{O})}) \int_{\mathcal{O}} g |v^\varepsilon - v^0|^2 dy
\]
\[
\leq c e^{2\rho z(\theta_\omega)} (\|v^\varepsilon\|_{L^2(\mathcal{O})} + \|\varepsilon\|_{H^2(\mathcal{O})} + \|v^0\|_{L^2(\mathcal{O})} \|v^0\|_{H^2(\mathcal{O})}) \|v^\varepsilon - v^0\|^2_{H^s(\mathcal{O})}
\]
\[
\leq c e^{2\rho z(\theta_\omega)} (\|v^\varepsilon\|_{L^2(\mathcal{O})} + \|\varepsilon\|_{H^2(\mathcal{O})} + \|v^0\|_{L^2(\mathcal{O})} \|v^0\|_{H^2(\mathcal{O})}) \|v^\varepsilon - v^0\|^2_{H^s(\mathcal{O})}.
\]

(55)

By (50), we get
\[
e^{-\rho z(\theta_\omega)} \text{Re} (G_x (t, y) - G_0 (t, y_1), v^\varepsilon - v^0)_{H^s(\mathcal{O})}
\]
\[
\leq e^{-\rho z(\theta_\omega)} \|G_x (t, y) - G_0 (t, y_1)\|_{H^s(\mathcal{O})} \|v^\varepsilon - v^0\|_{H^s(\mathcal{O})}
\]
\[
\leq c k_1(s) e^{-\rho z(\theta_\omega)} \|v^\varepsilon - v^0\|_{H^s(\mathcal{O})}
\]
\[
\leq c \varepsilon e^{-\rho z(\theta_\omega)} k_1^2(t) + c \varepsilon \left(\|v^\varepsilon\|_{H^s(\mathcal{O})} + \|v^0\|_{H^s(\mathcal{O})} \right).
\]

(56)

Finally, by (9), we have
\[
\text{Re} (\lambda + i\alpha) \left(\frac{g_0}{g} v^0_{y_1}, y_2 (v^\varepsilon_{y_2} - v^0_{y_2}) \right)_{H^s(\mathcal{O})}
\]
\[
= \text{Re} (\lambda + i\alpha) \left(\frac{g_0}{g} v^0_{y_1}, y_2 (v^\varepsilon_{y_2} - v^0_{y_2}) \right)_{L^2(\mathcal{O})}
\]
\[
\leq c \varepsilon \|v^0\|_{H^1(\mathcal{I})} \|v^\varepsilon - v^0\|_{H^1(\mathcal{O})} \leq c \varepsilon \left(\|v^\varepsilon\|^2_{H^1(\mathcal{O})} + \|v^0\|^2_{H^1(\mathcal{I})} \right).
\]

(57)
By (55)-(57), we get from (54) that, for \(t \geq \tau \),
\[
\frac{d}{dt} \left\| v^\varepsilon - v^0 \right\|_{H_\varepsilon(\Omega)}^2 \leq \beta(t, \omega) \left\| v^\varepsilon - v^0 \right\|_{H_\varepsilon(\Omega)}^2 + c \varepsilon \left(\left\| v^\varepsilon \right\|_{H^1_\varepsilon(\Omega)}^2 + \left\| v^0 \right\|_{H^1(I)}^2 \right) + c \varepsilon e^{-2p_2(\theta, \omega)} \kappa_1^2(t),
\]
where
\[
\beta(t, \omega) = c\left(\left\| v^\varepsilon \right\|_{L^2(\Omega)}^2 + \left\| v^\varepsilon \right\|_{H^2(\Omega)}^2 + \left\| v^0 \right\|_{L^2(I)}^2 + \left\| v^0 \right\|_{H^2(I)}^2 \right) e^{2p_2(\theta, \omega)} + 2(\gamma + \rho |z(\theta, \omega)|).
\]
Integrating (58) on \((\tau, t)\) we obtain that for all \(t \in [\tau, \tau + T] \) with \(T > 0 \),
\[
\left\| v^\varepsilon(t) - v^0(t) \right\|_{H_\varepsilon(\Omega)}^2 \leq e^{\int_\tau^t \beta(s, \omega) ds} \left\| v^\varepsilon(\tau) - v^0(\tau) \right\|_{H_\varepsilon(\Omega)}^2 + c \varepsilon \int_\tau^t e^{\int_\tau^s \beta(x, \omega) d\xi} \left(\left\| v^\varepsilon(s) \right\|_{H^1_\varepsilon(\Omega)}^2 + \left\| v^0(s) \right\|_{H^1(I)}^2 \right) ds
\]
\[
+ c \varepsilon e^{\int_\tau^t \beta(s, \omega) ds} \left\| v^\varepsilon(s) \right\|_{H^1_\varepsilon(\Omega)}^2 + \left\| v^0(s) \right\|_{H^1(I)}^2 \right) ds
\]
\[
\leq e^{\int_\tau^{\tau + T} \beta(s, \omega) ds} \left\| v^\varepsilon(\tau) - v^0(\tau) \right\|_{H_\varepsilon(\Omega)}^2 + c \varepsilon e^{\int_\tau^{\tau + T} \beta(s, \omega) ds} \int_\tau^{\tau + T} \kappa_1^2(s) ds.
\]
By (59), Lemma 3.3, Lemma 3.4 and \(\left\| u^\varepsilon_\tau \right\|_{H^1_\varepsilon(\Omega)} \leq \eta(\tau, \omega) \) we find that there exists a positive constant \(\chi = \chi(\tau, \omega, \lambda, k, \gamma, T) \), independent of \(\varepsilon \), such that for all \(t \in [\tau, \tau + T] \),
\[
\left\| v^\varepsilon(t) - v^0(t) \right\|_{H_\varepsilon(\Omega)}^2 \leq \chi \left\| v^\varepsilon(\tau) - v^0(\tau) \right\|_{H_\varepsilon(\Omega)}^2 + e^{\int_\tau^{\tau + T} \beta(s, \omega) ds} \left\| v^\varepsilon(s) \right\|_{H^1_\varepsilon(\Omega)}^2 + \left\| v^0(s) \right\|_{H^1(I)}^2 \right) ds
\]
\[
+ \int_\tau^{\tau + T} \left(1 + \kappa_1^2(s) + \left\| G(s, \cdot) \right\|_{L^\infty(\Omega)}^2 \right) ds.
\]
Then we have from Lemma 5.1, for all \(t \in [\tau, \tau + T] \),
\[
\left\| u^\varepsilon(t, \tau, \omega, u^\varepsilon_\tau) - u^0(t, \tau, \omega, \mathcal{M} u^\varepsilon_\tau) \right\|_{H_\varepsilon(\Omega)}^2
\]
\[
eq e^{2p_2(\theta, \omega)} \left\| v^\varepsilon(t, \tau, \omega, e^{-\rho_2(\theta, \omega)} u^\varepsilon_\tau) - v^0(t, \tau, \omega, e^{-\rho_2(\theta, \omega)} \mathcal{M} u^\varepsilon_\tau) \right\|_{H_\varepsilon(\Omega)}^2
\]
\[
\leq \chi e^{2\rho_2(\theta, \omega)} \left\| e^{-\rho_2(\theta, \omega)} u^\varepsilon_\tau - e^{-\rho_2(\theta, \omega)} \mathcal{M} u^\varepsilon_\tau \right\|_{H_\varepsilon(\Omega)}^2 \left\| v^\varepsilon \right\|_{H^1_\varepsilon(\Omega)}^2 + \left\| v^0 \right\|_{H^1(I)}^2 \right) ds
\]
\[
+ e^{\int_\tau^{\tau + T} \beta(s, \omega) ds} \left\| v^\varepsilon \right\|_{H^1_\varepsilon(\Omega)}^2 + \left\| v^0 \right\|_{H^1(I)}^2 \right) ds
\]
\[
\leq \chi e^{2\rho_2(\theta, \omega)} e^{-2p_2(\theta, \omega)} e^{\frac{2}{\varepsilon^2} \left\| u^\varepsilon_\tau \right\|_{H^1_\varepsilon(\Omega)}^2} \left\| v^\varepsilon \right\|_{H^1_\varepsilon(\Omega)}^2 + \left\| v^0 \right\|_{H^1(I)}^2 \right) ds
\]
\[
+ e^{\int_\tau^{\tau + T} \beta(s, \omega) ds} \left\| v^\varepsilon \right\|_{H^1_\varepsilon(\Omega)}^2 + \left\| v^0 \right\|_{H^1(I)}^2 \right) ds
\]
\[
+ \int_\tau^{\tau + T} \left(1 + \kappa_1^2(s) + \left\| G(s, \cdot) \right\|_{L^\infty(\Omega)}^2 \right) ds.
\]
Then the desired result follows from the fact that \(\left\| u^\varepsilon_\tau \right\|_{H^1_\varepsilon(\Omega)} \leq \eta(\tau, \omega) \) and the above inequality. □
Now we are in a position to prove our main result.

Theorem 5.3. Assume that (20), (21) and (50) hold. Then the pullback attractors A_ε are upper-semicontinuous at $\varepsilon = 0$, that is, for every $\tau \in \mathbb{R}$ and $\omega \in \Omega$,

$$\lim_{\varepsilon \to 0} \text{dist}_{L^2(\mathcal{O})}(A_\varepsilon(\tau, \omega), A_0(\tau, \omega)) = 0.$$

Proof. For the proof, please see Theorem 5.2 in [21]. □

Acknowledgments. We would like to thank the referees for their useful suggestions and comments.

REFERENCES

[1] F. Antoci and M. Prizzi, Reaction-diffusion equations on unbounded thin domains, *Topol. Methods Nonlinear Anal.*, 18 (2001), 283–302.

[2] L. Arnold, *Random Dynamical Systems*, Springer-Verlag, 1998.

[3] J. Arrieta, A. Carvalho, M. Pereira and R. P. Da Silva, Semilinear parabolic problems in thin domains with a highly oscillatory boundary, *Nonlinear Anal.*, 74 (2011), 5111–5132.

[4] P. W. Bates, H. Lisei and K. Lu, Attractors for stochastic lattice dynamical systems, *Stoch. Dyn.*, 6 (2006), 1–21.

[5] P. W. Bates, K. Lu and B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains, *J. Differential Equations*, 246 (2009), 845–869.

[6] T. Caraballo, I. D. Chueshov and P. E. Kloeden, Synchronization of a stochastic reaction-diffusion system on a thin two-layer domain, *SIAM J. Math. Anal.*, 38 (2007), 1489–1507.

[7] I. D. Chueshov and S. Kuksin, Random kick-forced 3D Navier-Stokes equations in a thin domain, *Arch. Ration. Mech. Anal.*, 188 (2008), 117–153.

[8] I. D. Chueshov and S. Kuksin, Stochastic 3D Navier-Stokes equations in a thin domain and its α-approximation, *Physica D*, 237 (2008), 1352–1367.

[9] I. Ciuperca, Reaction-diffusion equations on thin domains with varying order of thinness, *J. Differential Equations*, 126 (1996), 244–291.

[10] H. Crauel, A. Debussche and F. Flandoli, Random attractors, *J. Dynam. Differential Equations*, 9 (1997), 307–341.

[11] H. Crauel and F. Flandoli, Attractors for random dynamical systems, *Probab. Theory Relat. Fields*, 100 (1994), 365–393.

[12] H. Cui, Y. Li and J. Yin, Existence and upper semicontinuity of bi-spatial pullback attractors for smoothing cocycles, *Nonlinear Anal.*, 128 (2015), 303–324.

[13] J. Duan and B. Schmalfuss, The 3D quasigeostrophic fluid dynamics under random forcing on boundary, *Commun. Math. Sci.*, 1 (2003), 133–151.

[14] F. Flandoli and B. Schmalfuss, Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative noise, *Stoch. Stoch. Rep.*, 59 (1996), 21–45.

[15] J. K. Hale and G. Raugel, Reaction-diffusion equations on thin domains, *J. Math. Pures Appl.*, 71 (1992), 33–95.

[16] J. K. Hale and G. Raugel, A reaction-diffusion equation on a thin L-shaped domain, *Proc. Roy. Soc. Edinburgh Sect. A*, 125 (1995), 283–327.

[17] R. Johnson, M. Kamenskii and P. Nistri, Existence of periodic solutions of an autonomous damped wave equation in thin domains. *J. Dynam. Differential Equations*, 10 (1998), 409–424.

[18] P. E. Kloeden and J. Langa, Flattening, squeezing and the existence of random attractors, *Proc. R. Soc. London, Ser. A*, 463 (2007), 163–181.

[19] S. Liu, H. Lu and Z. Feng, Stochastic dynamics of 2D fractional Ginzburg-Landau equation with multiplicative noise. *Discrete Contin. Dyn. Syst. Ser. B*, 21 (2016), 575–590.

[20] W. Liu and B. Wang, Poisson-Nernst-Planck systems for narrow tubular-like membrane channels, *J. Dynam. Differential Equations*, 22 (2010), 413–437.

[21] D. Li, B. Wang and X. Wang, Limiting behavior of non-autonomous stochastic reaction-diffusion equations on thin domains, *J. Differential Equations*, 262 (2017), 1575–1602.

[22] D. Li, K. Lu, B. Wang and X. Wang, Limiting behavior of dynamics for stochastic reaction-diffusion equations with additive noise on thin domains, *Discrete Contin. Dyn. Syst.*, 38 (2018), 187–208.
[23] Y. Morita, Stable solutions to the Ginzburg-Landau equation with magnetic effect in a thin domain, *Japan J. Indust. Appl. Math.*, **21** (2004), 129–147.

[24] M. Prizzi and K. P. Rybakowski, Recent results on thin domain problems, II, *Topol. Methods Nonlinear Anal.*, **19** (2002), 199–219.

[25] M. Prizzi and K. P. Rybakowski, The effect of domain squeezing upon the dynamics of reaction-diffusion equations, *J. Differential Equations*, **237** (2001), 271–320.

[26] G. Raugel, Dynamics of partial differential equations on thin domains, *Dynamical Systems (Montecatini Terme, 1994)*, 208–315, Lecture Notes in Math., 1609, Springer, Berlin, 1995.

[27] G. Raugel and G. Sell, Navier-Stokes equations on thin 3D domains. I. Global attractors and local regularity of solutions, *J. Amer. Math. Soc.*, **6** (1993), 503–568.

[28] A. Rodriguez-Bernal, B. Wang and R. Willie, Asymptotic behaviour of time-dependent Ginzburg-Landau equations of superconductivity, *Math. Meth. Appl. Sci.*, **22** (1999), 1647–1669.

[29] B. Schmalfuss, Backward cocycles and attractors of stochastic differential equations, *International Seminar on Applied Mathematics-Nonlinear Dynamics: Attractor Approximation and Global Behavior*, 1992, 185–192.

[30] B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, *J. Differential Equations*, **253** (2012), 1544–1583.

[31] B. Wang, Random attractors for non-autonomous stochastic wave equations with multiplicative noise, *Discrete Contin. Dyn. Syst.*, **34** (2014), 269–300.

[32] G. Wang, B. Guo and Y. Li, The asymptotic behavior of the stochastic Ginzburg-Landau equation with additive noise, *Appl. Math. Comput.*, **198** (2008), 849–857.

[33] X. Wang, K. Lu and B. Wang, Long term behavior of delay parabolic equations with additive noise and deterministic time dependent forcing, *SIAM J. Appl. Dynam. Syst.*, **14** (2015), 1018–1047.

[34] Z. Wang and S. Zhou, Existence and upper semicontinuity of random attractors for non-autonomous stochastic strongly damped wave equation with multiplicative noise, *Discrete Contin. Dyn. Syst.*, **37** (2017), 2787–2812.

[35] D. Yang, The asymptotic behavior of the stochastic Ginzburg-Landau equation with multiplicative noise, *J. Math. Phys.*, **45** (2004), 4064–4076.

Received November 2017; revised January 2018.

E-mail address: lidingshi2006@163.com
E-mail address: wangxiaohu@scu.edu.cn