GALAXY BULGES AS TESTS OF CDM VERSUS MOND IN STRONG GRAVITY
HONGSHENG ZHAO,1,2 BING-XIAO XU,3,4 AND CLARE DOBBS5
Received 2008 February 29; accepted 2008 June 19

ABSTRACT
The tight correlation between galaxy bulges and their central black hole masses likely emerges in a phase of rapid collapse and starburst at high redshift, due to the balance of gravity on gas with the feedback force from starbursts and the wind from the black hole; the average gravity per unit mass of gas is \(\sim 2 \times 10^{-10} \text{ m s}^{-2} \) during the starburst phase. This level of gravity could come from the real \(z^{-1} \) cusps of cold dark matter (CDM) halos, but the predicted gravity would have a large scatter due to dependence on cosmological parameters and formation histories. Better agreement is found with the gravity from the scalar field in some covariant versions of MOND, which can create the mirage of a Newtonian effective dark halo of density \(\Pi r^{-1} \) near the center, where the characteristic surface density \(\Pi = 130 \alpha^{-1} M_\odot \text{ pc}^{-2} \) and \(\alpha \) is a fundamental constant of order unity fixed by the Lagrangian of the covariant theory if neglecting environmental effects. We show with a toy analytical model and a hydrodynamical simulation that a constant background gravity due to MOND/TeVeS scalar field implies a critical pressure synchronizing starbursts and the formation of galaxy bulges and ellipticals. A universal threshold for the formation of the brightest regions of galaxies in a MONDian universe suggests that the central black holes, bulges, and ellipticals would respect tight correlations like the \(M_{\text{bul}} - M_{\text{BH}} - \sigma \) relations. In general, MOND tends to produce tight correlations in galaxy properties, because its effective halo has less freedom and scatter than CDM halos.

Subject headings: black hole physics — galaxies: formation — galaxies: starburst — galaxies: structure

1. CORRELATED FORMATION OF BLACK HOLE AND BULGES IN COLD DARK MATTER AND MODIFIED NEWTONIAN DYNAMICS

While appearing in a wide range of shapes, sizes, and luminosities, galaxies have very regular properties. For example, the terminal rotation speed \(V_c \) of a spiral galaxy is tightly correlated with its total baryonic mass \(M \), following a simple power law \(V_c^2/M \sim 0.02 \times (\text{km s}^{-1})^4 M_\odot^{-1} \), a formula proposed by Tully & Fisher (1977) for high-surface brightness galaxies, and generalized by Milgrom (1984) and tested by McGaugh (2005) for gas-rich low-surface brightness galaxies. There is no evidence for any significant scatter, and it seems to apply independent of galaxy formation history (Gentile et al. 2007). This power law also applies, with significant scatter, to elliptical galaxies and bulges if replacing \(V_c \) with \(\sim 1-2 \) times the typical stellar dispersion \(\sigma \) (Faber & Jackson 1976). Nevertheless, a much tighter relation exists for the central black holes (BHs) of these nearly spherical systems.

The formation of central BHs in galaxies is likely to be a rapid process, since most quasars have already formed at redshift \(z > 2 \). There is a tight correlation between the BH mass and the mass of the spheroidal (bulge) component, or even better, its velocity dispersion (Ferrarese & Merritt 2000; Gebhardt et al. 2000; Tremaine et al. 2002). The correlations \(M_{\text{bul}} \propto M_{\text{BH}} \propto \sigma^4 \) are so tight that it is hard to explain unless bulges form as fast as BHs, and their growth is controlled simultaneously by some mechanism. At the present epoch, the BH accretion rate is both small and completely decoupled from the bulge growth. The likely window to couple the two is at high redshift during phases of rapid growth and violent feedback. Many previous discussions emphasize that the feedback from the central supermassive BH, which interacts with the surrounding environment in a self-regulated way, is the key to forming the correlations (Silk & Rees 1998; King & Pounds 2003; Wyithe & Loeb 2003; Murray et al. 2005; Begelman & Nath 2005; Cen 2007). On the other hand, the starburst activities peak at similar redshifts to the quasars as a whole. In a coevolution scenario of starbursts and a central BH, the central BH accretes with a high accretion rate during the main star formation (SF) phase (Alexander et al. 2005). To make the starbursts, it was proposed that bulges can form by a rapid collapse due to radial instability of isothermal gas. This proposal has the nice feature of forming bulges before disks (Xu et al. 2007). Inspired by these works in a Newtonian framework, we model the criteria of bulge formation, assuming a more general mixture of gas and a nonisotropic stellar component imbedded in a constant external gravity provided by either cold dark matter (CDM) halos or effective halos of a modified Newtonian dynamics (MOND) scalar field.

Observations show that most of the local and distant starburst galaxies are rich in gas and dust (Heckman et al. 1990; Meurer 1995; Sanders & Mirabel 1996; Adelberger & Steidel 2000). Photons from newly formed stars and the BH’s accretion disk with a luminosity \(L_{\text{SF}} \) and \(L_{\text{BH}} \) would diffuse out of the gas sphere. While keeping the gas nearly isothermal, the photons exert a pressure due to dust opacity. The momentum deposit rate of photons from an Eddington accreting BH, \((2/c)L_{\text{BH}} = (M_{\text{BH}}/M_\odot) \times 4.3 \times 10^{-8} \text{ m s}^{-2} \), might drive a feedback force on the gas (King & Pounds 2003) to balance the inward momentum deposit of the SF, \((2/c)L_{\text{SF}} = (3.7 \times 10^{12} L_\odot)/10^{31} \text{ N} \); the latter could also drive an outward force to balance, say, half of the gravitational force on the gas. So we have roughly

\[
(10^{-10} \text{ m s}^{-2})(430M_{\text{BH}}) \sim \frac{2}{c}L_{\text{BH}} \sim \frac{2}{c}L_{\text{SF}} \sim 0.5gM_\odot, \quad (1)
\]
where \(\tilde{g} \) is the mass-averaged gravity on the gas sphere. Rewriting \(\tilde{g} = 10^{-10} \text{ m s}^{-2} \) \(g_{\text{10}} \), we find a short SF timescale (0.0010(2) \(M_{\odot}/\text{L}_{\odot} \sim 0.2 g_{\text{10}} \text{ Gyr} \), if adopting the usual SF efficiency of about 0.001 (Leitherer et al. 1999; Bruzual & Charlot 2003). In a starburst, we expect radial collapse and violent feedback, so the short timescale of SF should be comparable to the free-fall timescale. Assuming that all the gas eventually turned into stars, we recover a Magorrian et al. (1998) relation \(M_{\text{BH}}/M_{\odot} \sim 0.002 g_{\text{10}}^{-1} \). The key point here is that observed properties of BHs, SF, and bulges can all be realized if \(g_{\text{10}} \sim 2 \) with little scatter universally.

Presently, there are two paradigms where galaxy structure and formation are studied. Introducing only two speculative dark components of the universe, the paradigm of CDM plus the cosmological constant \(\Lambda \sim (10^{-9} \text{ m s}^{-2})^2 \), it is possible to simulate the large-scale universe realistically with general relativity. Many properties of model galaxies can be predicted, although not all are in agreement with observations, especially for low–surface brightness galaxies. The MOND paradigm is able to match properties of high– and low–surface brightness galaxies with amazing accuracy by simply introducing a fundamental scale \(a_0 \sim 1.2 \times 10^{-10} \text{ m s}^{-2} \) in the spacetime metric gradient. However, it is generally underdeveloped in terms of simulating the processes of structure and galaxy formation. Nevertheless, it was realized that disks in MOND become unstable once above a certain central surface brightness \(b_0/(2\pi G) \sim 130 M_{\odot} \text{ pc}^{-2} \), so bright regions of galaxies tend to exist in spheroidal form and are in strong gravity \(g \sim a_0 \) (Sanders & McGaugh 2002); throughout the paper we use \(a_0 \) as the dividing scale for strong versus weak gravity.

The classical MOND gravitational theory (Bekenstein & Milgrom 1984) is now furbished with several covariant versions. These have different constructions using a vector field plus (optional) scalar fields (Bekenstein 2004; Sanders 2005; Halle et al. 2008; Zhao & Li 2008); the scalar field(s) can always be absorbed (e.g., into the modulus of the vector field), but can be useful to make the expressions of the theories simpler. In these theories there is a constant scale \(a_0 \sim 1.2 \times 10^{-10} \text{ m s}^{-2} \); in regions or epochs of more gradual variation of the spacetime metric, the dominating source to Einstein’s tensor switches from normal matter/radiation fields to the new vector or scalar fields. With the same scale, the most recent covariant model (Zhao 2007) can explain how the expansion of the universe switches from decelerating to accelerating and explains the amplitude of the cosmological constant \(\Lambda \sim (8a_0)^2 \), rather than invoking it arbitrarily as in LCDM. In principle, cosmological structure formation all the way to galaxies is well defined in some of these covariant theories (Halle et al. 2008). In the original proposal for TeVeS (Bekenstein 2004), there is a discontinuity in the Lagrangian for the scalar field, which makes the evolution from cosmological linear perturbations to quasi-static galaxies problematic. This is overcome in the proposed Lagrangian of Zhao & Famaey (2006). It is theoretically possible to seed and simulate galaxy formation from the linear perturbation simulations of the cosmic microwave background (Skordis et al. 2006). Already, work has started on galaxy formation modeling in MOND (Sanders & Land 2008), and there are many constraints on the theory from gravitational lensing tests (Feix et al. 2008a, 2008b; Shan et al. 2008; Natarajan & Zhao 2008; Tian et al. 2008).

Here we speculate on the properties of galaxies formed in the TeVeS framework and contrast them with the LCDM framework. While generally speaking the two paradigms are mutually exclusive, here we illustrate some similarities, in the context of the formation of high–surface brightness bright regions of galaxies tend to exist in spheroidal form and are in strong gravity, there are, however, important differences.

2. Scatter of the Halo Gravity in CDM

Let us consider the CDM galaxy formation framework. In CDM models baryons fall into the potential well of CDM, cool, and condense into stars. The background dark matter (DM) distribution is often described by the Navarro-Frenk-White (NFW) density distribution for DM (Navarro et al. 1997, 2004), which decreases smoothly from an \(r^{-1} \) density cusp inside to an \(r^{-3} \) tail outside a scale radius \(r_s \), defined to be where the logarithmic density slope is \(-2 \). The density satisfies \(r_{\text{NFW}} \sim \rho_s r_s \), insensitive to radius inside the cusp region \(r < r_s \), where \(\rho_s \) is a density scale. The Newtonian gravity of the halo, determined by the halo mass enclosed inside radius \(r \), is given by

\[
g_{\text{NFW}}(r) = \frac{GM_{\text{NFW}}(r)}{r^2} = (2\pi G)(\rho_s)\int \frac{r}{r_s} \left(\frac{r}{r_s} \right) ,
\]

where the function

\[
F(y) \equiv \int \left[\ln(1+y) - \frac{y}{1+y} \right] \sim (1+y)^{-1.475}.
\]

The approximation is valid to 10% for \(0 < y < 20 \) and gives \(F(0) = 1 \). For a halo of virial mass \(M_{\text{vir}} \), the halo scale parameters satisfy

\[
r_s = (17 \text{ kpc} h^{-1}) M_{\text{vir,12}}^{0.46},
\]

\[
r_s \rho_s = 130 M_{\odot} \text{ pc}^{-2} Z,
\]

\[
Z = 2M_{\text{vir,12}}^{0.17} \left(\frac{r_s}{17 \text{ kpc} h^{-1}} \right)^{0.34},
\]

where \(h \equiv H_0/100 \) is the dimensionless Hubble constant and the halo virial mass \(M_{\text{vir}} \) is related to the baryonic mass \(M_b \) of a galaxy by \(M_{\text{vir}} \approx 8M_b \). The parameters are insensitive to the resolution of the simulation and whether the cusp is truly finite or infinite at the origin. The numerical values above and the data points shown in Figure 1 are taken from Navarro et al. (1996) and Table 3 of the simulations of Navarro et al. (2004). They agree with the scalings for the concentration versus mass, \(c \equiv r_{\text{vir}}/r_s \sim 13.4M_{\text{vir,12}}^{-0.13}(1+z)^{-1} \), as given in Bullock et al. (2001), where \(c \) is a ratio between the virial radius \(r_{\text{vir}} \) and the scale radius \(r_s \).

It is interesting that in the cusp, \(F \sim 1 \), and the NFW halo’s self-gravity \(g_{\text{NFW}}(r) \) is insensitive to radius and halo parameters, i.e.,

\[
g_{\text{NFW}}(r) \sim (1.2 \pm 0.6) \times 10^{-10} \text{ m s}^{-2};
\]

hence, \(g_{\text{NFW}}(r) \) of NFW cusps is nearly a universal constant for galaxies of the same baryonic total mass. A factor of 2 scatter in \(g_{\text{NFW}}(r) \) is estimated from Table 3 and Figure 1a of Navarro et al. (2004); the galaxy clusters of \(10^{14} M_{\odot} \) have nearly the same \(r^{-1} \) extrapolated inner density as \(10^{12} M_{\odot} \) galaxy halos (although the cluster simulations do not yet have enough resolution to be confidently extrapolated to small radii of a few kpc).

More precisely, \(r_s \rho_s \sim \text{const} \) insensitive to halo mass and simulation resolution, i.e., it applies to the \(r^{-1.5} \) Moore profile as well as the cored profile of Navarro et al. (2004) as long as \(r_s \) has the model-insensitive definition of the radius where the
logarithmic density slope is -2. The cluster density is a factor of 2 higher, and the dwarfs are a factor of 4 lower due to the logarithmic density slope.

The above is roughly in agreement with Xu et al. (2007), who noted that in the central region containing the galaxy bulge, NFW halos have a density scaling relation $r \propto r_p \propto 130 M_\odot h^{-2} \Sigma$, and $\Sigma(M_{200},z,c) \sim M_{200}^{0.07} \sim 1$. While the details differ, in both cases Σ is a shallow function of the halo virial mass M_{200}, the redshift z, and the concentration c.

2.1. Effects on CDM Cusp if Bulges and Ellipticals Grow Adiabatically

The CDM density is highly compressible by gravitational interaction with baryons. The stellar distribution in elliptical galaxies is often described by a Sérsic profile in projected light (see Graham & Driver 2005), with an underlying volume density of the approximate form $r^{-1+0.6/n} \exp(-r^{1/n})$ (Prugniel & Simien 1997). As the Sérsic index $n \sim 4$, we have a nearly $1/r$ cusp, which suggests a nearly constant Newtonian gravity in the center. Here, we use the simpler Hernquist profile for the enclosed mass $M_{\text{H}}(r)$; hence, we find the central Newtonian gravity has a spatially constant value,

$$g_N(r) = \frac{GM_b(r)}{r^2} = \frac{GM_b}{(r + r_b)^2} \sim \frac{GM_b}{r_h^2},$$

for $r \rightarrow 0$, where M_b and r_b are the baryon (total) mass and scale length. The scale length and stellar mass (luminosity) of elliptical galaxies are typically correlated with some scatter, e.g., Chen (2008) find that

$$\log \left(\frac{GM_{r_b}^2}{350 \times 10^{-10} m^2 s^{-2}} \right) = -1.52 \log \left(\frac{M_b}{1.5 \times 10^{11} M_\odot} \right) \pm 0.5,$$

where $1.5 \times 10^{11} M_\odot$ is the characteristic turnover mass scale in the Schechter stellar mass function of galaxies, found by fitting SDSS galaxy samples in the range $10^8-10^{12} M_\odot$ (Panter et al. 2004), assuming a Hubble parameter $70 \text{ km s}^{-1} \text{Mpc}^{-1}$. This would imply that near the Hernquist cusp the Newtonian gravity in units of $10^{-10} \text{ m s}^{-2}$ is $g_N = 350[M_b/1.5 \times 10^{11} M_\odot]^{-1.52}$. This illustrate that cores of ellipticals have $\gamma \gg a_0$, i.e., they are in a strong gravity environment (Milgrom & Sanders 2003).

If in elliptical galaxies baryons condense into the center adiabatically, this process would further increase the value of r_p or Σ. In the most extreme case, a galaxy might start with a $f_b : (1 - f_b) = 1:7$ mix of gas and CDM particles all distributed on circular orbits with an NFW distribution of the radius r_h, and the gas part condenses adiabatically and forms the present stellar mass distribution $M_{\text{S}}(r)$. Following the standard recipe (e.g., Klypin et al. 2002), the initial CDM halo mass $(1 - f_b)M_{\text{NFW}}(r)$ is squeezed into a radius r, conserving mass. From conservation of angular momentum J of circular orbits, we have

$$J^2 = r_f G M_{\text{NFW}}(r_f) = r_f (1 - f_b) G M_{\text{NFW}}(r_f) + G M_b(r_f).$$

By Taylor expanding near $r \rightarrow 0$, we find the contraction factor $C \equiv r_f/r$ satisfies

$$C^3 \approx (1 - f_b) C^2 + \frac{G M_{r_b}^2}{\Sigma_{\text{NFW}}(0)} \approx 350 \left(\frac{M_b}{1.5 \times 10^{11} M_\odot} \right)^{-1.52} \gg 1,$$

where we considered only the dominant second term and applied the approximation of Chen & Zhao (2006). By contracting the same halo mass inside a factor of C smaller radii, one keeps the r^{-1} profile of the halo cusp, but increases the halo central density and self-gravity by a factor C^2, i.e., at the center

$$g_{\text{CDM}} = 2\pi G \rho_{\text{CDM}} = C^2 g_{\text{NFW}} = C^2 \Sigma 10^{-10} \text{ m s}^{-2} \gg a_0.$$

The above is likely an overestimate, since more realistic formation of ellipticals will involve mergers of gas-rich spirals galaxies. In any case, there is likely a large upward scatter around the naive analytical prediction $g_{\text{CDM}} \sim 10^{-10} \text{ m s}^{-2}$ due to different scenarios of formation and different halo masses and concentrations, etc.

3. A UNIVERSAL GRAVITY SCALE: EFFECTIVE HALOS IN SIMPLE MOND

In the covariant theories of MOND, the only sources of gravity are the stars and the gas (i.e., the baryons). In the context of its covariant version, the TeVeS theory of Bekenstein (2004), there should be a scalar field ϕ such that the spherical case $g_\phi = -\nabla \phi_\phi$ gives a dark halo–like gravity. Here, we call q_3 scalar field the effective dark matter (EMD), $g_{\text{EMD}} = g_\phi = |g_\phi|$, it is related to the Newtonian gravity $g_N = |g_N|$ and the actual acceleration (or gravity) $g = |g_N + g_\phi|$. The Poisson equation is modified as

$$\nabla \cdot (\mu g_\phi) = \nabla \cdot (\mu g_N) = -4\pi G \rho.$$

As an alternative model-insensitive check, we estimate from Faber et al. (1997), their eqs. [3]–[4] and Fig. 4 that the typical observed Newtonian gravity near the core or the half-mass radius of cored giant ellipticals [with $L_{10} \equiv L(10^{10} L_\odot) > 1$] is $g_{N} \sim 10^{10} L_{10}^{0.6}$ and for cusped dwarf ellipticals (with $L_{10} < 1$) is $g_{N} \sim 10^{10} L_{10}^{0.6}$.
where \(\mu_s \) and \(\mu \) are modification functions, which give identical
descriptions in the case of a spherical mass distribution and reduce
to Newtonian dynamics when \(g_N \gg a_0 \).

Consider the modification functions as proposed in Angus et al.
(2006),

\[
\mu_s = \frac{g_s}{(a_0 - g_s / \alpha)}, \quad a_0 \equiv \frac{a_0}{\alpha},
\]

where \(a_0 \) is the fixed scale of the theory with \(\alpha \) being a theory
constant. The \(\alpha = 1 \) “simple” model is the most popular special
case.

Reexpressing \(g_s \) in terms of a rescaled Newtonian baryonic
gravity \(y \), we find that around a gas plus stellar sphere there will
be an EDM halo gravity \(g_{\text{EDM}} \) or the scalar field \(g_s \),

\[
g_{\text{EDM}} \equiv g_s = a_0 \theta_1(y), \quad y \equiv \frac{G(M_2 + M_*)/r^2}{a_0},
\]

where \(M_2 + M_* \) is the gas plus star mass inside radius \(r \). A
remarkable result of the general class of \(\mu \)-functions is that there
is a maximum to the scalar field gravity

\[
g_s \leq g_{s,\text{max}} = a_0.
\]

This means that when the Newtonian gravity, \(g_N \), is the strongest
(as in the centers of bright galaxies), the scalar field \(g_s = a_0/\alpha \),
i.e., approaching a universal constant plateau. This breaks down only
if \(\alpha = 0 \), corresponding to Bekenstein’s toy function. Also, if
\(\alpha \rightarrow \infty \), the dynamics becomes purely Newtonian with a zero
scalar field. The standard \(\mu(y) = x/(1 + x)^{1/2} \), which fits observations
well, can be approximated by \(\alpha \sim 3 \) in terms of sharpness
of transition from strong to weak gravity. One can set \(\alpha \sim 1 \sim 3 \)
to be consistent with galaxy data.

The density profile of the EDM can be derived from the Poisson
equation as

\[
\rho_{\text{EDM}}(r) = \frac{1}{4\pi G r^2} \frac{d}{dr}(r^2 g_{\text{EDM}}).
\]

Taking \(g_{\text{EDM}} = a_0 \theta_1 \) and the Newtonian gravity of the baryonic
Hernquist profile (eq. [8]), we find

\[
\rho_{\text{EDM}} = \frac{a_0}{2\pi G r_h \theta_1}, \quad \theta_1 \equiv \left(b_0 - \frac{d}{dr} \frac{r}{\ln y r + r_h} \right). \tag{18}
\]

For small radii (\(\sim \)kpc), \(\rho_{\text{EDM}} \) has a roughly \(1/r \) cusp, because
\(\theta_1 \sim \theta_0 \sim 1 \) at centers of bright galaxies, where \(g_N \sim GM/r_h^2 \sim
350[M/(1.5 \times 10^{11} M_\odot)]^{-1.52} a_0 \gg a_0 \). In fact, near the center
\(g_N \gg a_0 \sim a_0 \) even if adopting a scale length 3 times bigger
than implied by the mean scaling in Chen & Zhao (2006) and/or
using a Sersic profile for the stellar distribution.

\[
7 \text{Here, } \mu = 1 - \frac{1}{2}(g + a_0)2a_0 + ((g - a_0)2a_0)^2 + y/2a_0 \text{. The combined gravity of EDM and baryonic matter is the actual acceleration}
\frac{d^2r}{dt^2} = g(r) = a_0 \theta_1(y + \alpha^2 y) \text{, where } \theta_1(y) \equiv 2[1 + (1 + 4y)^{1/2}]^{-1} \text{. Note }
\theta_1(y) \sim 1 \text{ if } y \gg 1.
\]

\[
8 \text{Based on theoretical arguments and matching observed rotation curves,}
Zhao & Famaey (2006) advocated the “simple” function with \(\alpha = 1 \), \(\mu_s =
g_s/(a_0 - g_s) \), and \(\mu = g/(a_0 + g) \). This \(\mu \)-function is also supported by the Milky
Way kinematics data and by the SDSS extragalactic satellite velocity distribution
(Angus et al. 2008), and is consistent with the recent rotation curve fittings by
Famaey et al. (2007a, 2007b), Zhao & Famaey (2006), Sanders & Noordermeer
(2007), and McGaugh (2008).
\]

\[
9 \text{The scalar field becomes half-saturated as soon as the overall gravity exceeds}
\frac{a_0}{\alpha}, \text{where } g_s = \frac{a_0}{0.5a_0} \text{. In the Milky Way, this translates to a galacto-
centric radius of about } (220 \text{ km s}^{-1})^2 \alpha/(a_0) \sim 13 \alpha \text{ kpc, which is the edge of the}
galaxy disk.}
\]

\[
10 \text{Zhao (2007) noted that this pressure } P, \text{ ultimately relates to the cosmic}
\text{constant or the vacuum energy density, which has the same order of magni-
itude as } P_c.
\]

implies a saturated scalar field in the center, \(g_s \) reaches its maximum
\(a_0 \). This is confirmed numerically at least for the \(\alpha = 1 \) case
(cf. Fig. 2). In fact, near the centers of ellipticals the model predicts

\[
r_{\text{EDM}} = \frac{\Pi}{\alpha}, \quad \Pi \equiv \frac{a_0}{2\pi G} \sim 130 M_\odot \text{ pc}^{-2}.
\]

This is rather similar to the case of NFW halos, but \(r_{\text{EDM}} \) has virtually no scatter for the MONDian scalar field in bright centers
of ellipticals. Figure 2 shows the scalar field is very rigid, \(g_s \)

\[
g_s = (0.5 - 1)a_0/\alpha \text{, nearly incompressible on scales of } 1 \text{–} 10 \text{ kpc},
\text{i.e., it cannot be increased significantly by compressing the baryonic}
\text{material and increasing the Newtonian gravity. We can also define a maximum central pressure of the scalar field for later use.}
\]

\[
P_\alpha \equiv \frac{a_0^2}{(4\pi G)}, \quad a_\alpha = a_0/\alpha.
\]

It is remarkable that the centers of ellipticals are all immersed in
strong gravity, hence a universal constant scalar field, perhaps
extending all the way to the central BHs of these system.

One ponders the consequences of such a remarkable uniformity
and universality for central kpc regions of all bright galaxies.

One wonders, in particular, whether the uniformity would lead
to very tight correlations, such as the \(M_{\text{BH-}}\sigma \) relation.

4. MODELING SPHEROID FORMATION IN A CONSTANT
BACKGROUND GRAVITY \(a_\alpha \)

As a demonstration of the consequence of a universal scale, we
apply it to galaxy formation and scaling relations. Unless
stated otherwise we make the approximation

\[
g_{\text{NFW}} \sim g_{\text{EDM}} = g_s = a_\alpha \theta_s \sim a_\alpha = \text{const.}
\]

This approximation means that baryons experience a rigid uniform
extra field \(a_\alpha \) on top of the Newtonian self-gravity of the stars and gas,

\[
g(r) = a_\alpha + \frac{GM_2 + M_*}{2\pi G r^2}.
\]

1. If the origin of the extra field is actually from NFW-cusped
CDM, then it should be understood that \(a_\alpha \) would have a significant
scatter between galaxies with a trend for bigger \(a_\alpha \) for
bigger galaxies.

2. If the origin is the scalar field in a covariant version of
MOND, then \(a_\alpha \) should be viewed as a universal fundamental
constant intrinsic to a theory. It is equal to \(a_0/\alpha \) with zero scatter,
although the value of \(\alpha \sim 1 \sim 3 \) is not precisely determined at
present.

Spatial nonuniformity of the background field is studied in
Appendix A; the effect can be treated crudely as a small spatial
variation of \(\alpha \).

4.1. Maximum Stable Gas Mass

First, we construct analytical spherical models of gas and star
equilibrium in MOND and study the condition for the gas
sphere to remain stable. It is found that as we increase the core density up to a critical value, the total gas mass increases. Once the gas core density exceeds the critical value, the total gas mass starts to decrease.

Assume a quasi-static equilibrium of a gas sphere \(\rho_g(r) \) of sound speed \(c_s(r) \) and a stellar sphere \(\rho_s(r) \) of radial velocity dispersion \(\sigma_s \) and an anisotropy parameter \(\beta \equiv 1 - \sigma^2_{\phi}/\sigma^2_z \). To model the tangential velocity dispersion and nonisothermal profile we introduce a velocity dispersion measure \(\sigma_1 \),

\[
\sigma_1 \equiv \xi \cdot \sigma_s, \quad \xi^2 = \frac{d \log \rho \sigma^2_g}{d \log \rho} - \frac{d \log r}{d \log \rho} \cdot \beta. \tag{23}
\]

Define \(\xi \) to be the ratio of thermal pressure \(\rho_g \sigma^2_g \) to the opacity-induced pressure \((\rho_g \sigma^2_g)/\xi \) on the dusty gas sphere (not the stellar...
sphere, countering the gravity. The velocity dispersion \(\sigma_g(r) \) is related to the sound speed by \(c_g^2 = \sigma_g^2 d \log \rho_g / (d \log \rho_g) \). In equilibrium, the gas-star mixture satisfies the equations

\[
g(r) = \frac{c_g^2}{r} - \frac{d \log [\rho_g(r)]}{d \log r} (1 + \xi^{-1})
\]

\[
\sigma_g^2 = \frac{d \log [\rho_g(r)]}{d \log r},
\]

\[
4 \pi r^2 \frac{d M_g(r)}{\rho_g(r) dr} = \frac{d M_g(r)}{\rho_g(r) dr}
\]

The conversion of gas into stars also needs to be modeled to be realistic where stars trace the gas radial distribution, so we have

\[
\frac{\rho_g(r)}{\rho_b(r)} = \frac{M_g(r)}{M_b(r)} = f_s(t) \left(\frac{1}{1 - f_s(t)} \right),
\]

where the position-independent factor \(f_s(t) \) is the fraction of gas formed into stars at time \(t \). Such a solution is possible if the feedback ratio \(\xi^{-1} \) is regulated by SF and related to the temperature of the gas by

\[
(1 + \xi^{-1}) c_g^2 = \xi_s^2 \sigma_g^2 = \sigma_s^2 \text{ const.}
\]

Note that the feedback parameter \(\xi \) and the gas sound speed \(c_g \) are not required to be rigorously independent of radius, although a certain combination of these two is. We do not require the stellar component to be exactly isothermal or isotropic either.

We compute the gas equilibrium for a range of core pressures \(p(0) \) (see Fig. 3) after rewriting the equations in terms of the dimensionless mass \(m \), radius \(u(m) \), and rescaled density \(p(m) \) (see Appendix A). We find that the gas density generally falls off monotonically with radius or mass. All models have finite mass out to infinite radius. The density drops steeply with radius due to the deep linear potential well of the background gravity; hence, the mass converges quickly. Curiously, there is also a maximum \(m_{\text{max}} \approx 4.3 \) in the total rescaled mass as \(p(0) \) increases. This happens at a critical core density or pressure

\[
p(0) = \frac{\rho_0 \sigma_g^2}{\Gamma_s} \approx 30
\]

above which the gas density \(\rho_0 \) of a parcel of gas \(dM_g \) no longer increases monotonically with an increase of the central pressure, and in fact, the total mass will decrease with increasing \(p(0) \) after it reaches the maximum value.

These limits on the gas central pressure and total mass are examples of the instability first discussed by Elmegreen (1999). A gas sphere above a certain critical mass

\[
M_{\text{max}} \approx 4.3 \left(\frac{\sigma_0^4}{a_0 G} \right),
\]

or above a critical central gas density or pressure, does not have stable solutions; adding a tiny amount of gas would lead to collapse. It is interesting to speculate that bulge formation originates from such a gas instability.

For a sphere of gas plus stars at the critical mass, we integrate the density numerically and find the central surface mass density

\[
S(0) \sim 2a_0 / G \sim 1500 \alpha^{-1} \, M_\odot \, \text{pc}^{-2},
\]

 insensitive to the initial gas velocity dispersion \(\sigma_g \) and the feedback ratio \(\xi^{-1} \). We also fit our numerical solution of the gas mass profile by a Sérsic-like distribution. The gas mass profile is related to the dimensionless volume density profile \(j(u) \) via

\[
\frac{M_g(r)}{[1 - f_s(t)] M_{\text{max}}} = \int_0^u j(u) (4 \pi u^2 du), \quad u \equiv \frac{r}{\sigma_s^4 a_0^{1/4}}.
\]

Prugniel & Simien (1997, eq. [B6]) suggested an approximated (valid to 5% accuracy typically) form \(r^{1+0.6/\alpha} \exp (-r^{1/\alpha}) \) for the deprojected volume density of a Sérsic profile. We fit \(j(u) \) numerically to such a Sérsic profile of volume density and find a \(n = 1.2 \) profile works well, i.e.,

\[
j(u) \approx 0.14 u^{-1/2} \exp \left(-1.6 u^{1/2}\right).
\]

The normalization is such that \(\int_0^\infty 4 \pi j(u) u^2 du = 1 \).

4.2. Properties of the Stellar Component Formed

In the simplest scenario gas might turn adiabatically into stars while maintaining the density profile at the critical density and mass. Eventually, \(f_s = 1 \) when the gas is exhausted by SF, we have a stellar system with a nearly Sérsic profile of high central surface brightness. The density slope is shallower/steeper than isothermal inside/outside the radius \(r \sim 3.3 \sigma_g^2 a_0^{-1} \).

Our model also resembles real spheroids, since they satisfy the Faber-Jackson-like relation \(M_s^\infty \sim \sigma_s^4 \) between the total mass and stellar velocity dispersion (Faber & Jackson 1976),

\[
M_s^\infty = \frac{4.3 \sigma_s^4}{a_0 G} = 4.3 \xi_s^4 \alpha 10^{12} \, M_\odot \left(\frac{\sigma_s}{200 \, \text{km} \, \text{s}^{-1}} \right)^4.
\]

Considering small deviations from an isothermal and isotropic \(\beta \sim 0 \) stellar distribution, \(\sigma_s = \sigma_1 / \xi_s \) is effectively a mean projected stellar dispersion. Note that our result differs in detail from the MOND virial theorem \(M_s = 81/(4G a_0) \sigma_s^4 \) (Sanders & McGaugh 2002) which applies to an isotropic isothermal stellar.
system in deep MOND (see Appendix A). Our bulges and ellipticals are clearly in a mild- or high-acceleration regime.

4.3. Correlations of BH, Stellar Spheroid, and Starburst

Similar to §1, we assume that the momentum deposit rate of photons, \((2/c)(L_{\text{SF}} + L_{\text{BH}}) \), drives a force acting on the gas. Assume the BH grows exponentially by Eddington accretion from a seed before reaching the balance \(L_{\text{BH}} = L_{\text{SF}} \). After this point, the BH mass stops growing and we set \(L_{\text{BH}} = 0 \), and the gas mass and the \(L_{\text{SF}} \) will then exhaust exponentially as the starburst continues. Assuming at the turning point that the BH and SF each provide half of the total feedback force, which is a fraction \((1 + \xi)^{-1} \sim 1\) of the radially pointing gravity \(g(r) \), we obtain

\[
\frac{2}{c} L_{\text{BH}} = \frac{2}{c} L_{\text{SF}} = \frac{\bar{g} M_g}{2(1 + \xi)}
\]

where \(M_g = (1 - f_s) M_{\text{max}} \) is the total gas mass and the mass-averaged gravity

\[
\bar{g} \equiv M_g^{-1} \int g dM_g \sim 2a_0
\]

is computed by an integration of mass for the density model with the critical mass. This result is robust for a range of the polytropic indices of the gas (see Appendix A).

Observations reveal that some gas-rich local spirals have \(f_s \sim 0.5 \pm 0.2 \). The stellar fraction is \(f_s \sim 1 \) for local bulges and elliptical galaxies. This is much higher than in their \(z \sim 3 \) progenitor starburst galaxies, \(f_s \sim 0.02 \) (Alexander et al. 2005; Genzel et al. 2006; Kennicutt 1998; Solomon & Vanden Bout 2005). We shall adopt \(M_g = (1 - f_s) M_{\text{max}} = (0.5 - 1) M_{\text{max}}, \bar{g} \sim 2a_0 \sim (1 - 2) \times 10^{-10} \text{ m s}^{-2} \), and \((1 + \xi)^{-1} \sim 1\) as long as the feedback \(1/\xi \) is not too small (Murray et al. 2005). We obtain in the end

\[
M_{\text{BH}} = \frac{L_{\text{SF}}}{2 \times 10^8 M_\odot} = \frac{L_{\text{SF}}}{6 \times 10^{12} L_\odot} = \frac{M_{\text{max}}}{\alpha \times 10^{11} M_\odot} = \left(\frac{\xi' \sigma_\star}{200 \text{ km s}^{-1}} \right)^4 \tag{36}
\]

where \(\xi' = (1 - f_s)/(1 + \xi) \sim 0.5 - 1 \), consistent with the observed Magorrian relation \(M_{\text{BH}} \sim 0.005 M_{\text{bol}} \), and \(\xi' = (4.3 \xi')^{1/4} \xi' \sim 1 \). The scatter in \(\xi' \) is about factor of a few each way, consistent with the narrow scatter seen in the observed relation of \(M_{\text{BH}} \sim (1 - 4) \times 10^8 M_\odot / \sigma_\star^2 / (200 \text{ km s}^{-1})^4 \) (Ferrarese & Merritt 2000; Gebhardt et al. 2000; Tremaine et al. 2002).

4.4. Hydro Simulations of Gas Collapse in a Fixed Background Potential

To confirm the analytical results on the gas instability, we investigate the threshold of gas collapse numerically. We consider the gravitational collapse of gas within a rigid DM halo using a hydrodynamic simulation. The gas which forms the bulge is embedded in a uniform external field from the DM potential. The simulation represents a simple treatment of the CDM halo gravity or the MOND scalar field.

This simulation was performed using the Lagrangian fluid code, smoothed particle hydrodynamics. The code is described in Bate et al. (1995) and is based on the version by Benz et al. (1990). The simulation uses \(10^5 \) particles, which are initially distributed within a sphere of radius 15 kpc. The gas is initially at rest, with a temperature of \(10^6 \text{ K} \). The mean molecular weight is 1.2; thus, the sound speed of the gas is 83 km s\(^{-1}\). The DM halo is included by way of a fixed linear external potential. The potential per unit mass is \(-a_0 r\) such that there is a universal acceleration of \(a_0 = 10^{-10} \text{ m s}^{-2} \) toward the center of the galaxy. The gas is subject to both the external potential and self-gravity during the calculations.

With these parameters, the critical mass is \(1.54 \times 10^9 M_\odot \). We first set the total mass of the sphere to \(0.0065 M_{\text{max}} (10^8 M_\odot) \), so the gas should be stable against gravitational collapse. We then evolved the gas for 12 crossing times, during which time the gas settles into equilibrium according to the DM potential. The mass was then doubled (by doubling the mass of each particle) and the calculation resumed. By five crossing times, the gas had again settled into equilibrium. This process was repeated, doubling the mass each time the gas reaches equilibrium, until runaway gravitational collapse occurs. Figure 4 shows snapshots of the radial profile of the gas pressure just below (Figs. 4a and 4b) and just above (Figs. 4c and 4d) the critical mass. A collapse of gas is evident from the density cusp in the final state.

In Figure 5, a one-dimensional projection of the column density (along the \(x \)-axis) is plotted versus radius. During the first run, the distribution of gas changes from a uniform profile to a profile corresponding to the DM halo. Over the subsequent runs, there is little change in the distribution, while the total mass remains less than the critical mass. However, when the mass exceeds the critical mass, the cloud is gravitationally unstable. Gravitational collapse occurs and the density at the center of the cloud continuously increases. The calculation stops, and the final profile is shown as the thickest curve in Figure 5; the slightly sub-critical gas can be approximated by a Sérsic law with \(n = 1 \) (i.e., exponential).

Galaxy formation clearly involves more than just spherical collapse. The rapid spherical collapse phase might produce the bulge and the BH. This phase is likely followed by a gradual phase of episodes of minor mergers; the dense galaxy will likely acquire a diffuse stellar halo of higher angular momentum material. One might expect a shallower outer profile than \(n = 1 \) in the end depending on the amount of stars accreted. Indeed, real galaxies
have a range in Sérsic indices, which is correlated with the stellar mass of the galaxy (Caon et al. 1993; Desroches et al. 2007). Bulges and pseudobulges typically have profiles with $4 \leq n \leq 1$, and the most massive elliptical galaxies have profiles with $n \geq 4$. Some discrepancy with observations is expected, since a constant scalar field is a poor assumption at large radii.

5. SUMMARY

In short, combining the results of analytical models and numerical simulations, we argue that gas collapse and BH feedback inside the EDM halos of MOND can produce galaxies with realistic scaling relations. Better than in Newtonian NFW halos, the Faber-Jackson and BH mass-velocity dispersion scaling relations are recovered with narrow scatter thanks to the fact that there is a redshift-insensitive and luminosity-insensitive universal scale of gravity in the high-z gas-rich starburst galaxies and present-day ellipticals. Many feedback processes (e.g., Silk & Rees 1998; King & Pounds 2003; Cen 2007; Xu et al. 2007) invoked in the CDM context could be important in the MOND context as well and could change predictions of the state-of-the-art MOND N-body simulation (Nipoti et al. 2008) and hydro simulations (Tiret & Combes 2008).

In the context of a simplified picture of TeVeS, a nearly isothermal gas sphere can collapse and trigger a starburst if the gas central pressure is above a universal threshold. This condition is likely synchronized throughout the universe, consistent with the observed epoch of starbursts. We also recover the $M_{BH}-\sigma$ relation, if the gas collapse is regulated or resisted by the feedback from radiation from the central BH.

While the pristine CDM halos give acceleration of typically the order $(1-3)a_0$, there are two important differences with the universal scale in MOND. In CDM, this scale would exhibit a large variation due to scatter in halo concentration (Milgrom 2002). Second, as the galaxy bulge forms, the central part becomes baryon dominated in Newtonian gravity and the CDM is adiabatically compressed to higher densities without a theoretical upper limit unless DM is made of neutrinos or its sterile partners (cf. Angus 2008; Zhao 2008). The collapse threshold could rise as the background gravity a_0 increases. In contrast, in the TeVeS picture the scalar field ϕ, within all bright galaxies stays close to a_0 throughout galaxy formation. This value a_0 is a universal constant in MOND. Hence, we expect a universal threshold and synchronized formation of galaxy spheroids at high redshift, perhaps producing starburst galaxies in TeVeS. The mechanism would work less well in the CDM paradigm.

Speculating beyond our models, elliptical galaxies are often triaxial in their stellar distribution and potential. If collapse happened above the threshold described here, the uneven distribution of angular momentum would lead to a triaxial equilibrium potential. This expectation is consistent with N-body simulations of collapse in CDM halos (Navarro et al. 1996) and in MOND (Nipoti et al. 2007). Indeed, elliptical galaxies with a mild r^{-1} cusp in stellar light are allowed to exist in self-consistent triaxial configuration in CDM (Capuzzo-Dolcetta et al. 2007) and in MOND (Wang et al. 2008).

Corrections are expected for low-surface brightness galaxies, since the scalar field in these systems are far from being saturated. So $\bar{\phi} \approx a_0$, where $\bar{\phi} \leq 0.3$, and we expect the faint dwarf spheroidal mass and their central BH masses to reduce by a factor w and w^2, respectively, compared to a blind application of Faber-Jackson and $M_{BH}-\sigma$ relations. No correction is expected for M32-like compact dwarf ellipticals, which are observed to have bright stellar nuclei and BHs. Our prediction that the BH mass per unit stellar luminosity M_{BH}/L_* is lower in dwarf spheroidals than dwarf ellipticals could be checked by sensitive searches for (central tracers of) massive BHs in dwarf spheroidals, which is challenging observationally.

Environmental effects could lead to corrections to the Faber-Jackson relation. Member galaxies in the center of a rich galaxy cluster have orbital accelerations of $\sim 2a_0$, which makes it easier to saturate their MOND scalar field due to the external field effect; any gas-rich system would be more vulnerable to radial collapse into a high-surface brightness triaxial galaxy in the center of a galaxy cluster than in the surrounding area or in the field (Wu et al. 2007, 2008). The external field effect is similar to making a_0 smaller. Interestingly, equations (30) and (33) can be combined to form

$$\frac{M^2}{L_s^2} \sim \frac{\sigma^4}{L_s L_\star} \frac{3\sigma^4}{G^2} \left(\frac{200 \text{ km s}^{-1}}{\sigma_s}\right)^4 \left(\frac{1500 L_\odot \text{ pc}^{-2}}{L_s}\right) \frac{4.3 \times 10^{11} L_\odot}{L_\star},$$

where $L_\star = S_\star/(M/L)$ is the surface brightness of a stellar distribution of surface density S_\star. This relation is very close to the fundamental plane relation of ellipticals (e.g., Binney & Merrifield 1998),

$$L_\star \propto \left(\frac{\sigma^4}{L_s}\right)^{0.7},$$

if we accept that $M/L_s \sim L_s^{0.2}$. Equivalently, we can write the galaxy size $r_s \propto S_\star^{-1/2}\sigma$, which is very close to the lensing mass fundamental plane $S_\star \propto \sigma^2/r_E$ determined by general relativity-based strong-lensing results, $S_\star^{0.93} \propto \sigma^{1.93}/r_E$ (Bolton et al. 2007); the MONDian corrections to the lensing mass within the Einstein
radius are generally mild (Zhao et al. 2006; Shan et al. 2008). On the other hand, environmental effects would not correct the BH-velocity dispersion relation because

\[M_{\text{BH}} \propto \sigma_v^4, \tag{39} \]

which is independent of the parameter \(\alpha_s \).

The BH-bulge relation may have been frozen at high redshift; some scatter might be caused by gas-rich mergers and minor feeding of the BH through a rotating gas-rich bar later on, which might evolve secularly into a bulge (Tiret & Combes 2007). Disk galaxies could have built up their disks from high-angular-momentum gas well after the bright bulges form by radial collapse. The formation of the disk part will not fuel the central BH significantly. This may explain why the BH mass is tightly related to the bulge and its velocity dispersion rather than to the total baryonic mass and the terminal circular velocity in disk galaxies; the latter two are correlated themselves by the Tully-Fisher relation, which is built in the Lagrangian of covariant MOND because virtually no scatter from this relation is observed in field galaxies (cf. Wu et al. 2007).

We acknowledge the support of the NSFC fund (10473001 and 10525313) and the RFDP grant (20050001026) to Xuebing Wu and B. X. X. and partial support from the NSFC grant to H. S. Z. (10233040) and PPARC. H. S. Z. thanks Da-ming Chen and Xufen Wu especially for technical assistance and Xue-Bing Wu, Benoit Famaey, Gianfranco Gentile, Ralf Klessen, Keith Horne, Simon Driver, and Ian Bonnell for discussions. C. L. D.'s work is conducted as part of the award “The formation of stars and planets: Radiation hydrodynamical and magnetohydrodynamical simulations,” made under the European Heads of Research Councils and European Science Foundation EURYI (European Young Investigator) Awards scheme and supported by funds from the Participating Organisations of EURYI and the EC Sixth Framework Programme.

APPENDIX A

MEAN GRAVITY AND SCALAR FIELD IN MONDIAN POLYTROPIC GAS MODELS WITH/WITHOUT FEEDBACK

A1. CONSTANT BACKGROUND GRAVITY MODEL WITH FEEDBACK

We rewrite the hydrostatic equations using the dimensionless quantities

\[m \equiv \frac{M_g + M_*}{\sigma_v^4 a_g G^{-1}}, \quad u \equiv \frac{r}{\sigma_v^4 a_g G^{-1}}, \quad p \equiv \frac{\rho_g(r) + \rho_*(r)}{P_0 \sigma_v^4 G^{-1}}, \tag{A1} \]

and expressing the rescaled mass \(m \) as the independent coordinate, the problem is recast to solving the pair of dimensionless ordinary differential equations

\[-u^2 \frac{dp(m)}{dm} = \theta_g + m \frac{1}{u(m)^2}, \quad u^2 \frac{du(m)}{dm} = \frac{1}{p(m)}. \tag{A2} \]

For the constant background gravity models, we set \(\theta_g = 1 \). For each value of \(p(0) \), the density profile under the hydrostatic equilibrium can be completely determined with the initial conditions at the center for the radius \(u(0) = 0 \) and the rescaled density \(p(0) \). Results are shown in Figure 3.

A2. POLYTROPIC SELF-GRAVITATING MODELS

The above simplified models apply only if we can treat the scalar field as constant and the velocity dispersion as isothermal. These are not rigorous for real gas. To check the robustness of our results we have also computed numerically more realistic models where we solve for a self-gravitating polytrope \(\sigma_v^2 \rho_g^{1/\gamma} = \text{const} \) in rigorous self-consistent equilibrium in MOND gravity. There are no SF and BHs in these models. Nevertheless, the pressure force on the gas sphere

\[F = \int_0^\infty \left(\rho_g \sigma_v^2 \right) d(4\pi r^2) \equiv \int -\left(4\pi r^2\right) d\left(\rho_g \sigma_v^2 \right) \tag{A3} \]

\[= \int (4\pi r^2) \rho_g g \, dr \tag{A4} \]

\[= \int g(r) dM_g, \tag{A5} \]

where we applied integration by parts,\(^{11}\) and the hydrostatic equilibrium equation

\[\frac{d \left(\rho_g \sigma_v^2 \right)}{dr} = g \rho_g. \tag{A7} \]

\(^{11}\) Alternative expressions are \(F = \tilde{g} M_g = \int V^2_{\perp}(r) dM_g = \int 2 \sigma_v^2(r)^2 / r \, dM_g \), which applies to nonisothermal gas as well.
The radial distribution is modeled in the style of Sanders (2000), but here with the simple scalar field interpolation function

\[g = a_0 \left[\frac{m}{u(m)^2} + \theta_1 \left(\frac{\alpha m}{u(m)^2} \right) \right], \]

(A8)

where \(m \) and \(u(m) \) are the dimensionless mass and radius,

\[m \equiv \frac{GM(r)a_0}{\sigma_1^4}, \quad u(m) \equiv \frac{r a_0}{\sigma_1}, \]

(A9)

where \(\sigma_1 \) is a characteristic dispersion of the polytrope.

For models with \(\alpha = 1 \), the total gravity \(g = (1 + \mu)g_s = a_0 g_s / (a_0 - g_s) \), we computed (see Fig. 6) the scalar field strength for models with a central pressure \(\sim 30P_c \). These models have a finite radial truncation, where the polytrope temperature \(\sigma_0^2 \) falls to zero.

The profiles vary with the polytropic index \(\gamma \), a value typically between 1 and 5/3 for real gas. Nevertheless, the scalar field is roughly constant even in these more realistic models where the velocity dispersion is not isothermal. Numerical integration finds that the mass-averaged gravity

\[\bar{g} = \frac{1}{M_g} \int g(r) dM_g \sim 2a_0, \]

(A10)

where we used the approximation that at half-mass radii, \(g_s \sim 0.66a_0 \), \(g_N = \mu g_s \sim 2g_s \), and \(\mu = \mu_s(1 + \mu_s) \sim 0.66 \). So our simplistic treatment should be a good guide to real galaxies in MOND; extending our self-consistent hydrodynamics code for Figure 4 to incorporate a live MOND scalar field would allow us to check the universality of the threshold here.

A3. CONSISTENCY WITH EARLIER MODELS

As a consistency check with earlier MOND models, we note that our finding of a maximum scalar field acceleration

\[|g - g_N| \leq a_0 = \frac{a_0}{\sigma_1} \]

(A11)

is consistent with the first finding from Brada & Milgrom (1999) of a maximum effective halo acceleration in many MOND \(\mu \)-functions, especially the standard \(\mu \)-function. Figure 2 argues that the scalar field is largely a constant in the bulge regions (1–10 kpc). We noted some similarity of a NFW halo to the MONDian scalar field with the \(\mu \)-function of Angus et al. (2006), especially if \(\alpha = 1 \). The scalar field in the TeVeS picture can be simply replaced by \(g_s \rightarrow \frac{\nabla g_{s0} c^2/2}{G M/r^2} \) in other covariant metric versions of MOND (e.g., Zhao 2007); the counterpart in the modified inertia picture is less clear. Earlier authors have also noted the similarity of the standard \(\mu \)-function with pseudoisothermal halos (Milgrom & Sanders 2005), where the halo acceleration goes up to a maximum as a solid body and then drops. Several works claim that NFW halos produce somewhat higher than \(a_0 \) accelerations (e.g., Fig. 8 of McGaugh 2004), but the comparison of NFW and MOND has not been as systematic as done here. The works of Famaey & Binney (2005) and Sanders & Noordermeer (2007) show that real data tolerates the \(\alpha = 1 \) \(\mu \)-function. Using the standard \(\mu \), Milgrom (1984) and Sanders (2000) also note a maximum mass of an isothermal self-consistent distribution in MOND, about \((15–20)^2/(a_0 G) \sim 4.3a_0\sigma_0^2/(a_0 G) \) if we approximate \(\alpha \sim 3 \). Their assumption is different because their scalar field is not fixed as a constant, but has a peak value about \(a_0/\alpha \sim a_0/3 \). While differing in details, these earlier analyses are qualitatively consistent with our finding of a maximum scalar field of order \(a_0/\alpha \) in MOND.
REFERENCES

Adelberger, K. L., & Steidel, C. C. 2000, ApJ, 544, 218
Alexander, D. M., et al. 2005, Nature, 434, 738
Angus, G. W. 2008, Phys. Rev. Lett., submitted (arXiv: 0805.4014)
Angus, G. W., Famaey, B., Tiet, O., Combes, F., & Zhao, H. S., 2008, MNRAS, 383, L1
Angus, G., Famaey, B., & Zhao, H. S. 2006, MNRAS, 371, 138
Bate, M. R., Bonnell, I. A., & Price, N. M. 1995, MNRAS, 277, 362
Begelman, M. C., & Nath, B. B. 2005, MNRAS, 361, 1387
Bekenstein, J. 2004, Phys. Rev. D, 70, 083509
Bekenstein, J., & Milgrom, M. 1984, ApJ, 286, 7
Benz, W., Cameron, A. G. W., & Press, W. H. 1990, ApJ, 348, 647
Binney, J., & Merrifield, M. 1998, Galactic Astronomy (Princeton: Princeton Univ. Press)
Bolton, A. S., et al. 2007, ApJ, 665, L105
Brada, R., & Milgrom, M. 1999, ApJ, 512, L17
Bruzual, A. G., & Charlot, S. 2003, MNRAS, 344, 1000
Bullock, J. S., et al. 2007, ApJ, 665, L105
Caon, N., Capaccioli, M., & D'Onofrio, M. 1993, MNRAS, 265, 1013
Capuzzo-Dolcetta, R., Leccese, L., Merritt, D., & Vicari, A. 2007, ApJ, 666, 165
Cen, R. 2007, ApJ, 654, L37
Chen, D. M. 2008, J. Cosmol. Astropart. Phys., 01, 006
Chen, D. M., & Zhao, 2006, ApJ, 650, L9
Desroches, L.-B., Quataert, E., Ma C.-P., & West, A. A. 2007, MNRAS, 377, 402
Elmegreen, B. G. 1999, ApJ, 517, 103
Faber, S. M., & Jackson, R. E. 1976, ApJ, 204, 668
Faber, S., et al. 1997, AJ, 114, 1771
Famaey, B., & Binney, J. 2005, MNRAS, 363, 603
Famaey, B., Bruneton, J. P., & Zhao, H. S. 2007a, MNRAS, 377, L9
Famaey, B., Gentile, G., Bruneton, J. P., & Zhao, H. 2007b, Phys. Rev. D, 75, 063002
Feix, M., Dong, X., Shan, H., Famaey, B., Limousin, M., Zhao, H., & Taylor, A. 2008a, ApJ, 682, 711
Feix, M., Fedeli, C., & Bartelmann, M. 2008b, A&A, 480, 313
Ferrarese, L., & Merritt, D. 2000, ApJ, 539, L9
Gebhardt, K., et al. 2000, ApJ, 539, L13
Gentile, G., Famaey, B., Combes, F., Kroupa, P., Zhao, H. S., & Tiet, O. 2007, A&A, 472, L25
Genzel, L. J., et al. 2006, Nature, 442, 786
Graham, A., & Driver, S. 2005, Publ. Astron. Soc. Australia, 22, 118
Halle, A., Zhao, H., & Li, B. 2008, ApJS, 177, 1
Heckman, T. M., Armus, L., & Miley, G. K. 1990, ApJS, 74, 833
Kennicutt, R. C. 1998, ApJ, 498, 541
King, A. R., & Pounds, K. A. 2003, MNRAS, 345, 657
Klypin, A., Zhao, H., & Somerville, R. 2002, ApJ, 537, 597
Leitherer, C., et al. 1999, ApJS, 123, 3
Magorrian, J., et al. 1998, AJ, 115, 2285
McGaugh, S. 2004, ApJ, 609, 652
———. 2005, ApJ, 632, 859
———. 2008, ApJ, 683, 137
Meurer, G. R. 1995, AJ, 110, 2665
Milgrom, M. 1984, ApJ, 287, 571
———. 2002, ApJ, 571, L81
Milgrom, M., & Sanders, R. 2003, ApJ, 599, L25
———. 2005, MNRAS, 357, 45
Murray, N., Quataert, E., & Thompson, T. A. 2005, ApJ, 618, 569
Natarajan, P., & Zhao, H. S. 2008, MNRAS, 389, 250
Navarro, J. F., Frenk, C., & White, S. M. 1996, ApJ, 462, 563
———. 1997, ApJ, 490, 493
Navarro, J. F., et al. 2004, MNRAS, 349, 1039
Nipoti, C., Ciotti, L., Binney, J., & Londrillo, P. 2008, MNRAS, 386, 2194
Nipoti, C., Londrillo, P., & Ciotti, L. 2007, ApJ, 660, 256
Panter, B., Heavens, A. F., & Jimenez, R. 2004, MNRAS, 355, 764
Prugniel, Ph., & Simien, F. 1997, A&A, 321, 111
Sanders, D. B., & Mirabel, I. F. 1996, ARA&A, 34, 749
Sanders, R. 2000, MNRAS, 313, 767
———. 2005, MNRAS, 363, 459
———. 2008, MNRAS, 386, 1588
Sanders, R., & Land, D. D. 2008, MNRAS, in press (arXiv: 0803.0468)
Sanders, R., & McGaugh, S. 2002, ARA&A, 40, 263
Sanders, R., & Noordermeer, E. 2007, MNRAS, 379, 702
Shan, H., Feix, M., Famaey, B., & Zhao, H. S. 2008, MNRAS, 387, 1303
Skordis, C., Mota, D., Ferreira, P., & Boehm, C. 2006, Phys. Rev. Lett., 96, 011301
Solomon, P. M., & Vanden Bout, P. A. 2005, ARA&A, 43, 677
Tian, L., Hoekstra, H., & Zhao, H. 2008, BAAS Abstr., 211, 15809
Tiret, O., & Combes, F. 2007, A&A, 476, L1
———. 2008, A&A, 483, 719
Tremaire, S., et al. 2002, ApJ, 574, 740
Tully, R. B., & Fisher, J. R. 1977, A&A, 54, 661
Wang, Y. G., Wu, X. F., & Zhao, H. S. 2008, ApJ, 677, 1033
Wu, X., Famaey, B., Gentile, G., & Zhao, H. S. 2008, MNRAS, 386, 2199
Wu, X., Zhao, H. S., Famaey, B., Gentile, G., Tiret, O., Combes, F., Angus, G. W., & Robin, A. C. 2007, ApJ, 665, L101
Wyithe, J. S. B., & Loeb, A. 2003, ApJ, 595, 614
Xu, B. X., Wu, X. B., & Zhao, H. S. 2007, ApJ, 664, 198
Zhao, H. S. 2007, ApJ, 671, L1
———. 2008, preprint (arXiv: 0805.4046)
Zhao, H. S., Bacon, D., Taylor, A., & Horne, K. 2006, MNRAS, 368, 171
Zhao, H. S., & Famaey, B. 2006, ApJL, 638, L9
Zhao, H. S., & Li, B. 2008, ApJ, submitted (arXiv: 0804.1588)