Evidence for a β-decaying 1/2$^-$ isomer in 71Ni

I. Stefanescu1,2,3,4, D. Pauwels1, N. Bree1, T.E. Cocolios1, J. Diriksen1, S. Franchoo5, M. Huyse1, O. Ivanov1, Y. Kudryavtsev1, N. Patronis1, J. Van De Walle1, P. Van Duppen1, W.B. Walters2

1Instituut voor Kern- en Stralingsfysica, K.U. Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium
2Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
3Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
4Horia-Hulubei National Institute for Physics and Nuclear Engineering, PO-Box MG-6, Bucharest, Romania and
5IPN Orsay, F-91406 Orsay Cedex France

(Dated: March 11, 2009)

PACS numbers: 25.70.De,21.10.Ky,21.60.Cs,27.50.+e

I. INTRODUCTION

Isomeric states in nuclei around closed shells can occur due to the large spin difference between the valence orbitals (single-particle isomers) or when the maximum amount of angular momentum created in a single-particle configuration is reached (seniority isomers). Depending on the transition probabilities involved, an isomeric state can decay by e.g., γ transitions to lower-lying states or β radiation to the ground or excited states of the daughter nucleus. The investigation of nuclear isomers gives important information regarding the evolution of the shell structure in a specific mass-region.

The identification of isomeric states in the neutron-rich nuclei with $Z\sim28$ and $N\sim40-50$ constitutes a field of great current interest. These states store key information about the structural changes induced by increasing the neutron number and especially by the filling of the unique parity $\nu g_9/2$ orbital. An experiment employing the fragmentation of a 86Kr$^{34+}$ beam with an energy of 60.3 MeV/nucleon led to the identification of thirteen new $\mu\nu$-isomers in the neutron-rich nuclei from Sc ($Z=21$) to As ($Z=33$) [1]. Spins and parities assignments were based on the observed γ-decay pattern and comparisons with the systematics. Most of the identified isomers were found to originate from the stretched $\nu g_9/2$ configurations and decay to the lower-lying states via $E2$ or $M2$ γ-transitions [1].

In recent years, β-decaying isomers in the neutron-rich nuclei around 69Ni have been extensively studied as well [2, 3, 4, 5, 6]. Such isomers, arising from the large spin difference between the opposite parity orbitals $\nu p_{1/2}$ and $\nu g_9/2$, are expected to be found at low excitation energies in the odd-odd and odd-N nuclei with $N\sim40$. Among these, the odd-N Ni isotopes are of special interest since their low-energy levels are expected to arise mainly from neutron single-particle excitations whose investigation offers important information concerning the core properties of 68Ni.

Low-lying states in the neutron-rich 67,69,71,73Ni were identified in the β decay of their ν Co orobars obtained in proton-induced fission combined with resonant laser ionization [2, 7] and in fragmentation reactions [1, 3, 8]. 1/2$^-$ and 9/2$^+$ spins and parities were proposed for the ground-states of 67Ni and 69,71,73Ni, respectively, based on the observed β-decay pattern and shell-model calculations [2, 3, 7].

In 69Ni, the 1/2$^-$ state originating from $2p-1h$ excitations $\nu(p_{1/2}g_{9/2})$ across the N=40 subshell was found to be a long-lived isomer ($T_{1/2}=3.5(5)$ s) decaying via a fast Gamow-Teller β transition ($\log ft = 4.3(2)$) to the first excited 3/2$^-$ state at 1298 keV in 69Cu [2, 3, 11, 12]. The observed weak branch to the 3/2$^-$ ground-state of 69Cu was explained by invoking some mixing of the wave function, dominated by the $\pi p_{1/2}^+\nu g_{9/2}^+$ component, with the $\pi p_{1/2}^+\nu p_{1/2}^+g_{9/2}^+$ configuration proposed for the excited 3/2$^-$ level at 1298 keV [2, 3]. No feeding of the isomer to the single-particle 1/2$^-$ state at 1096 keV in 69Cu was observed, suggesting a rather pure $\pi p_{1/2}^+\nu g_{9/2}^+$ structure for this level.

Level schemes of the neutron-rich odd-A Ni isotopes beyond 69Ni are still poorly known. In all odd-A Ni isotopes with masses from 71 to 77, the shell model predicts a spin and parity 9/2$^+$ for the ground state and a low-lying 1/2$^-$ level dominated by the $\nu p_{1/2}$ neutron-hole configuration [10]. Sawicka et al. [8] reported four γ transitions in each of the 71,73Ni isotopes observed in the β decay of the 71,73Co isotopes. Due to the poor statistics, $\gamma-\gamma$ coincidences could not be constructed. Therefore, the observed transitions were placed in a level scheme based on shell model predictions [8].

Most of the γ rays reported by Sawicka et al. [8] were recently confirmed by the results of a decay-spectroscopy experiment performed at NSCL, MSU [9]. In that experiment, the 71,73Co isotopes were produced in the
fragmentation of a 86Kr beam with an energy of 140 MeV/nucleon onto a thick 9Be target. The secondary fragments were implanted in a double-sided silicon strip detector surrounded by the NSCL Ge detector array SeGA used to detect the γ rays. The good statistics obtained in that measurement allowed for the analysis of γ-γ coincidences which provided the basis for the placement of the observed transitions in the decay schemes of 71,73Co given in Fig. 4 of Ref. [8]. The two strong peaks observed at energies 566 and 774 keV did not show any coincidence relationship with each other nor with any of the other transitions observed in the γ spectrum associated with the β decay of 71Co. Based on a comparison with the systematics and shell-model predictions, both transitions were tentatively placed to feed the 1/2$^-$ level, suggested to be a β-decaying isomer [13].

The present study was prompted by the observation of a new state located at 454 keV populated in a recent Coulomb excitation experiment with postaccelerated radioactive beam of 71Cu produced at ISOLDE, CERN. The results of that measurement are presented in Ref. [13]. The low beam-energy (~ 3 MeV/u) used in that experiment ensured that the population of the excited states proceeds mainly via $E2$ excitations from the 3/2$^-$ ground-state, therefore only levels with spins 1/2$^-$, 3/2$^-$, 5/2$^-$ and 7/2$^-$ were expected to be populated. The top of Figure 1 shows the γ spectrum after Coulomb excitation obtained with the beam of 71Cu. The spectrum is Doppler corrected for the mass of the projectile. The newly observed γ ray of 454 keV and the known $5/2^-$ transition of 534 keV [11, 12, 14] are clearly visible in the spectrum.

In the lighter Cu isotopes, an 1/2$^-$ state dominated by the $\pi 2p_{1/2}$ single-particle orbital was identified at low excitation energies. Its energy is very close to that of the 5/2$^-$ level found to contain a large component from the $\pi 1f_{5/2}$ orbital [15]. The Coulomb excitation experiment mentioned above included also a measurement with radioactive beam of 69Cu [13]. A portion of the Doppler-corrected particle-γ coincidence spectrum obtained in that run is shown at the bottom of Figure 1. The two peaks present in the selected energy range were identified as the transitions depopulating the first and second excited states in 69Cu, namely the 1/2$^-$ and 5/2$^-$ levels at 1096(6) [16] and 1213.5(1) keV [12], respectively. Population of the closely-lying 3/2$^-$ state at 1297.9(1) keV was not observed in the aforementioned Coulomb excitation measurement.

As pointed above, the $E2$ excitation from the 3/2$^-$ ground-state of 71Cu constrains the spin of the newly identified state to values $I^π \leq 7/2^-$. A spin 7/2$^-$ would imply a pure $E2$ character for the 7/2$^-$ \rightarrow 3/2$^-$ depopulating transition. The calculated Weisskopf estimate for the partial decay-lifetime indicates that an $E2$ transition of 454 keV will proceed in \sim2 ns, more than three orders of magnitude slower than an $M1$ transition. The observation of a Doppler broadened 454-keV peak in our Coulomb excitation spectrum suggests a half-life in the picosecond range for the emitting level and therefore an $M1$ character for the depopulating γ ray. This restricts the spin of the 454 keV level to values $I^π \leq 5/2^-$. In Ref. [13], spin and parity (1/2$^-$) were assigned to the newly observed state at 454 keV, based on the systematics of the lighter Cu isotopes and comparison with the Coulomb excitation spectrum with beam of 69Cu. Such a spin assignment is also in agreement with the shell-model and particle-core coupling calculations [12, 17, 18, 19]. It is worth mentioning that in 71Cu, the second 3/2$^-$ state is still unknown. Shell-model and particle-core calculations predict this state around 1900, 1662, and 1100 keV, respectively [12, 17, 19].

It is also worthwhile to mention that isomeric 1/2$^-$ states originating from $2p - 1h$ excitations across $Z=40$ have been observed in the valence partner of 71Ni, 93Tc$_{50}$ [21]. In fact, the 1/2$^-$ isomer was found to be the first excited state in the $N=50$ isotones from Nb ($Z=41$) to Rh ($Z=45$) with a half-life ranging from 60.9 days to 1.96 minutes, respectively [21]. In 93Tc, however, the β-decay from the 1/2$^-$ isomer ($T_{1/2} \approx 43.5$ min) was found to compete with a $M4$ transition to the 9/2$^+$ ground-
state \[21\].

This paper focuses on the possible decay modes of the \(1/2^-\) state in \(71\)Ni. We analyze and discuss the experimental evidence indicating that this state is a \(\beta\)-decaying isomer feeding the newly observed \((1/2^-)\) state at 454 keV in \(71\)Cu \[13\]. The data sets used in the present study were obtained in two different \(\beta\)-decay experiments performed at the LISOL facility, Louvain-la-Neuve. In the first measurement, the \(\beta\)-decay study of \(71\)Ni was used as a means to investigate the low-lying level scheme of \(71\)Cu \[11, 12\]. The second experiment was dedicated to the identification of the energy levels in \(71\)Ni populated in the decay of the \(71\)Co isobar.

II. EXPERIMENTAL DETAILS

The \(71\)Ni and \(71\)Co beams were produced in two separate measurements at the LISOL facility by colliding a 30-MeV proton beam with two thin \(^{238}\)U foils mounted inside a gas cell \[20\]. The cell was filled with 500 mbar of Argon gas. The radioactive Ni and Co atoms were resonantly photoionized, mass separated and implanted in a movable tape surrounded by \(\beta\) and \(\gamma\) detectors arranged in a close geometry. Table I gives a summary of the experimental conditions in both measurements.

In the first experiment, \(71\)Ni was implanted in a Mylar tape surrounded by two HPGe detectors positioned in the horizontal plane and at 90° and 270° with respect to the beam axis. The relative efficiency of the detectors reached 70% and 75%, respectively. The emitted beta particles were recorded in a plastic \(\Delta E\) scintillator located between the two Ge detectors, in forward direction. A detailed description of the experimental setup can be found in \[12\].

In the second experiment, the \(\beta\) decay of \(71\)Co was observed by means of four plastic \(\Delta E\) detectors while the emitted \(\gamma\) rays were recorded with three HPGe detectors of 70%, 75% and 90% relative efficiency located at 90°, 0° and 270°, respectively, with respect to the beam axis. Measurements with and without laser radiation were performed in order to disentangle the \(\gamma\) rays emitted by the nuclei of interest from the non-resonant transitions.

III. EXPERIMENTAL RESULTS

A. \(\beta\) decay of \(71\)Ni

The \(\beta\)-gated \(\gamma\) spectrum obtained in the experiment with \(71\)Ni beam is presented in Fig. 2. In the inset, the region around 500 keV is enlarged, showing the transition of 454 keV. Gamma rays attributed to the decay of \(71\)Ni (see Ref. \[12\] for details) are marked with an asterisk. Open circles label the transitions arising from the \(71\)Cu decay.

In Ref. \[12\], the 454-keV transition was found not to be in coincidence with any of the \(\gamma\) rays attributed to \(71\)Cu, therefore it was not further discussed in that paper. The proposed spin value (1/2−) for the 454 keV level out of the Coulomb excitation study rules out the possibility of a direct \(\beta\) branch from the 9/2+ ground state of \(71\)Ni. Furthermore, the lack of \(\gamma\)-ray coincidences in the \(\beta\) decay study of \(71\)Ni also excludes indirect feeding from the ground state of \(71\)Ni, see further. Therefore,
TABLE I: Half lives of the mother nuclei, specific implantation-decay cycles, measuring times with and without laser radiation, beam intensities and productions rates for 71Ni and 71Co. During experiment I, the lasers were tuned on nickel, while during experiment II they were tuned on cobalt.

Exp. no	Nucleus	$T_{1/2}$ (s)	Cycle (impl./decay)	Laser Laser	Laser	I_{beam} (µA)	Yield (ions/µC)	
I	71Ni	2.56(3)a	6 s/10 s	ON	35 h 09 min	-	6.1	3.0(6)
II	71Co	0.079(5)b	0.6 s/1 s	OFF	16 h 02 min	12 h 57 min	6.7	0.032(8)

aRef. [12].
bRef. [8].

the alternative scenario that this state is fed by a $1/2^-$ β-decaying isomer in 71Ni is investigated.

The time evolution of the γ intensity of the 454-keV transition is shown in Fig. 3. The data were fitted with a single exponential. The poor statistics forced us to take bins of 2 seconds each resulting in three and five data points for the implantation and decay periods, respectively (see Table I). The last two seconds of the decay period were excluded due to the very low number of counts observed in the peak. A value of $T_{1/2}=2.34(25)$ s was extracted from the fit.

![454 keV Time Evolution](image)

FIG. 3: Time evolution of the intensity of the 454 γ-ray fitted with a single exponential function yielding to a half-life of $T_{1/2}=2.3(3)$ s.

Figure 4 compares the $\gamma-\gamma$ spectra gated with the 447-keV transition (top) and the 454-keV line (bottom). The 447-keV transition deexcites the level at 981 keV which is populated both directly in the β-decay of the 9/2$^+$ ground-state of 71Ni and from feeding from higher-lying states in 71Cu [12]. As can be seen from the inset of Fig. 2, the 447-keV line is twice stronger than the peak at 454 keV. The observation of the 472- and 534-keV transitions in the spectrum coincident with the 447 keV γ ray provided the basis for its placement in the level scheme of 71Cu as shown in Fig. 7 of Ref. [12]. In the spectrum gated with the 454-keV γ ray shown in the bottom of Fig. 4 no clear peak can be distinguished from the background, indicating that γ feeding from higher-lying states has a negligible contribution to the population of the 454-keV level. The observed background is due to true coincidences with β particles interacting with the Ge detectors. The non-observation of any coincident γ ray supports the scenario that this state is directly fed by a $1/2^-$ isomer in 71Ni.

From the observed number of counts in the 454-keV peak and taking into account the absolute γ-ray branching from the $(1/2^-)$ β-decaying isomer (see section III B) we extract a production rate of $0.2(1)$ at/µC of the $1/2^-$ isomer in experiment I. With a ground state yield of 3.0(6) at/µC, see Table I this results in an isomeric ratio of 7(4)%. Within the same experimental conditions, a lower limit of 0.74 at/µC was reported for the production of the $(1/2^-)$ isomer in 69Ni, which was found to represent nearly 20% from the total production rate of 69Ni [12].

![447 keV and 454 keV Spectra](image)

FIG. 4: Background-subtracted $\gamma-\gamma$ coincidence spectra gated on the 447 keV transition (top) and 454 keV γ-ray (bottom).
Counts/keV

Laser ON

Counts/keV

Laser OFF

Energy [keV]

FIG. 5: Beta-gated \(\gamma \) spectrum for \(A=71 \) when laser are on (top) Co resonance and lasers are off (bottom). Transitions belonging to the decay of \(^{71}\text{Co} \) (see text), \(^{71}\text{Ni} \) and \(^{71}\text{Cu} \) are marked on the figure. Contaminant \(\gamma \) lines are marked with open circles. The open squares mark \(\gamma \) lines belonging to the decay of \(^{112}\text{Ag} \), which originates from \(^{112}\text{Rh} \) isotopes implanted next to the tape during the optimization of the laser-ion source.

B. \(\beta \) decay of \(^{71}\text{Co} \)

Figure 5 shows part of the \(\beta \)-gated \(\gamma \)-spectra observed in the measurement with the lasers tuned to ionize Co (top) and without laser radiation (bottom). Transitions belonging to the \(A=71 \) decay chain are labeled on the figure. The contaminant lines, represented with open circles, were found to be emitted by the \(^{142}\text{La} \) or \(^{102}\text{Nb} \) fission products. \(^{142}\text{La} \) as well as \(^{102}\text{Nb} \) in the form of a molecule with \(^{40}\text{Ar} \) could reach the detection setup in a \(2^+ \) charge state and therefore with the same \(A/q \) ratio as the ions of interest. Another source of contamination found to give a non-resonant signal in the \(\beta \)-gated \(\gamma \) spectra shown in Fig. 5 was \(^{112}\text{Ag} \), produced in the decay of \(^{112}\text{Rh} \) which was implanted next to the tape during the optimization of the laser-ion source.

With the lasers tuned on the Co resonance, the transitions of 282, 566 and 774 keV, assigned to the decay of \(^{71}\text{Co} \) in Refs. [8, 9], are clearly visible in Fig. 5 (top).

The lasers-off spectrum (Fig. 5 bottom) shows the presence of the 534-keV line from the non-resonant production of \(^{71}\text{Ni} \). The upper limits of the \(\gamma \) intensities of the other lines from the decay of \(^{71}\text{Ni} \) are consistent with Ref. [12]. However, in the Co on resonance spectrum (Fig. 5 top), an excess of 35(11) counts in the 454-keV line was observed when using the intensity ratio \(I_\gamma(534)/I_\gamma(454) \) from Ref. [12] (see Fig. 2). This confirms that the 454-keV line is populated in the decay of the newly identified \((1/2^-) \) isomer of \(^{71}\text{Ni} \), which in turn is fed by the \(\beta \)-decay of \(^{71}\text{Co} \). A comparison of the intensity of the 534-keV line in the top and bottom spectra of Fig. 5 indicates that in the Co on resonance spectrum the observed intensity mainly stems from non-resonant production of \(^{71}\text{Ni} \). Thus, our data do not allow to confirm the \(\sim10\% \) indirect feeding of the \(^{71}\text{Ni} \) ground state in the \(^{71}\text{Co} \) decay [9]. However, using the \(^{71}\text{Co} \) decay scheme of Ref. [9], we can deduce the absolute 454-keV \(\gamma \)-ray intensity.

From the intensities of the 566-, 774-, and 454-keV lines observed in the spectrum displayed in Fig. 5, we determined an absolute \(\gamma \)-ray branching of 40(15)\% to the 454-keV transition. In Fig. 5 the absolute \(\gamma \)-ray branching is taken as the direct \(\beta \) branching to the 454-keV level and the remaining intensity of 60(15)\% is attributed to the direct feeding of the ground state of \(^{71}\text{Cu} \). Because weaker \(\gamma \) transitions to both the 454-keV level and ground state might have been missed, the \(\beta \) branching values should be considered as upper limits. The value extracted for the feeding to the excited state corresponds to a \(\log f/t \) of 5.4(2), assuming that the \((1/2^-) \) isomer in \(^{71}\text{Ni} \) is indeed located at 499 keV [9].
IV. DISCUSSION

Let us now discuss the implications of the present findings on the evolution of the nuclear structure in this mass-region. Figure 6 shows the comparison between the β-decay chains 69Co \rightarrow 69Ni \rightarrow 69Cu $[2]$ and 71Co \rightarrow 71Ni \rightarrow 71Cu $[2, 12]$. Both $^{69, 71}$Co isotopes are assumed to have a $7/2^-$ ground-state dominated by the $\pi f_{5/2}$ proton-hole configuration for which the major decay path is the Gamow-Teller decay of a $f_{5/2}$ core neutron to fill the $f_{7/2}$ proton orbital. In 69Ni, the strong β-decay branches from 69Co observed to the levels at 915 and 1518 keV suggested dominant $\nu f_{5/2}^{-1} \otimes 0^+(^{70}$Ni) and $\nu f_{5/2}^{-1} \otimes 2^+(^{70}$Ni) configurations, respectively, although the latter is considerably mixed up with a $\nu p_{1/2}^{-1}$ $\otimes 2^+(^{70}$Ni) component $[2]$. As discussed in Ref. $[2]$, the expected strong Gamow-Teller β-decay branch from the $7/2^-$ ground-state of 71Co restricts the spins and parities of the excited states populated in the 71Ni daughter nucleus to $9/2^-$, $7/2^-$ and $5/2^-$. Based on shell-model predictions and the observed systematics, spin and parity $5/2^-$ were assigned to the levels at 1065 and 1273 keV in 71Ni, see Ref. $[2]$ and Fig. 6.

In both $^{69, 71}$Ni nuclei, the $5/2^-$ states receiving the main β-feeding are assumed to decay via $E2$ transitions towards the $(1/2^-)$ isomer. In 71Ni, however, shell-model predicts that the first excited level is $7/2^+$ [10]. The presence of such state below the $(1/2^-)$ level reduces the spin difference between the $5/2^-$ levels populated in β-decay and the $9/2^+$ ground-state and increases the probability for γ-decay $5/2^- \rightarrow 7/2^+ \rightarrow 9/2^+_g.s.$, by-passing the $(1/2^-)$ isomer. Based on the analysis of γ-γ coincidences, the observed 813-252 keV cascade was assigned to this spin-sequence in Ref. $[3]$.

The β-decay of the $(1/2^-)$ isomer in 69Ni was found to populate essentially the state at 1298 keV in 69Cu, see Fig. 6. From the comparison of the γ-intensity feeding into the 321-k.eV level in 69Ni with the intensity of the 1298-keV transition in 69Cu, a β-branching of 74(9)% was determined in Ref. $[2]$ for the level at 1298 keV. This branching corresponds to a log ft value of 4.3(2), see Ref. $[2]$ and Fig. 6. Spin and parity $3/2^-$ were assigned to the 1298-keV state, viewed as the $p_{1/2}$ proton coupled to the $2p - 2h$, 0^+ state at 1770 keV in the 68Ni core $[2]$. Such configuration implies very low collectivity for the $3/2^-$ state, in agreement with its non-observation in the Coulomb excitation spectrum shown in Fig. 4. In contrast to the $3/2^-$ single-particle level at 1298 keV in 69Cu, the state at 454 keV in 71Cu was found to exhibit large collectivity ($B(E2; 1/2^- \rightarrow 3/2^+_g.s.) = 20.4(22)$ W.u. as determined in Ref. $[13]$). By relating the number of counts in the peaks at 1096 and 1213 keV observed in the bottom spectrum of Fig. 4 with the corresponding $B(E2)$ values reported in Ref. $[13]$, an upper limit of 1.4 W.u. can be extracted for the $B(E2)$ value for the 1298-keV transition. Thus, the decay of $(1/2^-)$ isomer in $^{69, 71}$Ni populates states with very different character in the daughter nuclei.

In 71Ni, however, our evidence shows that the β-decaying isomer feeds mainly the proposed $(1/2^-)$ state at 454 keV in 71Cu. As discussed in Ref. $[13]$, the large $B(E2)$ value measured for the 454 keV transition excludes a single-particle character of $\pi p_{1/2}$ type for the 454 keV level. The increased collectivity indicates significant deformation setting in with increasing the number of g_9^-/g_9^+ neutrons, as also suggested by the results of recent Coulomb excitation experiments with radioactive beams of 70Ni $[24]$. The onset of collectivity was associated with the quenching of both $Z=28$ and $N=40$ gaps through the combined effect of the attraction and repulsion between the fp protons and $g_9/2g_9$ neutrons $[23, 24, 25]$. Thus, the observed β-decay branch from the $(1/2^-)$ isomer proceeds via a fast Gamow-Teller transition but in the case of 71Ni the spin of the final state in the daughter nucleus is changed by the deformation. Interesting to note is that a similar deformed $\pi 1p-2h$ [321] has been observed in 67Co, stemming from a $\pi (1p-2h)$ proton excitation across $Z=28$ $[4]$.

V. CONCLUSIONS

In this paper, the results of the investigation of the decay of the proposed $(1/2^-)$ β-decaying isomer in 71Ni are presented and discussed. The key observable for this study is the newly observed level at 454 keV in 71Cu reported recently in Ref. $[15]$ and for which the comparison with the systematics and model calculations predict a spin and parity of $1/2^-$. The experimental evidence discussed here combines the results of the Coulomb excitation measurement with radioactive beams $[13]$ with the results of two decay experiments aiming to the investigation of the β-decay of 71Co and 71Ni. The analysis of the β-decay of 71Ni indicates that the 454-keV state observed in 71Cu is fed by the $(1/2^-)$ β-decaying isomer in 71Ni for which a half-life of $T_{1/2} = 2.34(25)$ s was determined in the present work.

The large $B(E2)$ value measured in Ref. $[13]$ for the 454-keV transition depopulating the $(1/2^-)$ state in 71Cu indicated a deformed structure for this level. This indicates that in both $^{69, 71}$Ni isotopes the main β-decay branch of the $(1/2^-)$ isomer goes to the level dominated by the $\pi p_{3/2}/\nu p_{1/2}/\nu d_{5/2}$ configuration in the daughter nuclei. In 71Cu, however, due to deformation, the nuclear properties of the level receiving the main β-feeding are dictated by the $K=1/2$ downsloping orbit of the $\pi p_{3/2}$ orbital.
FIG. 6: Observed β-decay chain 69Co \rightarrow 69Ni \rightarrow 69Cu [12] and 71Co \rightarrow 71Ni \rightarrow 71Cu as proposed in Ref. [9] and present work. Q_β values are given in MeV.

We gratefully thank J. Gentens and P. Van den Bergh for running the LISOL separator. This work was supported by the European Commission within the Sixth Framework Programme through I3-EURONS (Contract RII3-CT-2004-506065), BriX/IUAP P6/23, FWO-Vlaanderen (Belgium), GOA 2004/03 and US Department of Energy.

[1] R. Grzywacz et al., Phys. Rev. Lett., 81, 766 (1998).
[2] W. F. Mueller et al., Phys. Rev. Lett., 83, 3613 (1999).
[3] J. I. Prisciandaro et al., Phys. Rev. C, 60, 054307 (1999).
[4] L. Weissman et al., Phys. Rev. C, 65, 024315 (2002).
[5] J. Van Roosbroeck et al., Phys. Rev. Lett., 92, 112501 (2004).
[6] D. Pauwels et al., Phys. Rev. C, 78, 041307(R) (2008).
[7] L. Weissman et al., Phys. Rev. C, 59, 2004 (1999).
[8] M. Sawicka et al., Eur. Phys. J. A, 22, 455 (2004).
[9] M.M. Rajabali et al., Proceedings of the Fourth International Conference Fission and properties of neutron-rich nuclei, Sanibel Island, USA, p.679 (2007).
[10] A. F. Lisetskiy, B. A. Brown, M. Horoi, and H. Grawe, Phys. Rev. C, 70, 044314, (2004).
[11] S. Franchoo et al., Phys. Rev. Lett., 81, 3100 (1998).
[12] S. Franchoo et al., Phys. Rev. C, 64, 054308 (2001).
[13] I. Stefanescu et al., Phys. Rev. Lett., 100, 112502 (2008).
[14] T. Ishii et al., Phys. Rev. Lett., 81, 4100 (1998). A, 669, 81 (2000).
[15] B. Zeidman and J.A. Nolen, Jr., Phys. Rev. C, 18, 2122 (1978).
[16] F. Ajzenberg-Selove, R.E. Brown, E.R. Flynn, and J.W. Sunier, Phys. Rev. C, 24, 1762 (1981).
[17] N.A. Smirnova, A. De Maesschalck, A. Van Dyck, and K. Heyde, Phys. Rev. C, 69, 044306, (2004).
[18] H. Grawe et al., Proceedings of the Workshop on The Beta Decay, from Weak Interaction to Nuclear Structure, Strasbourg, p. 211 (1999).
[19] A.M. Oros-Peusquens and P.F. Mantica, Nucl. Phys. A, 669, 81 (2000).
[20] Y. Kudryavtsev et al. Nucl. Instrum. Methods Phys. Res. B, 114, 350 (1996).
[21] National Nuclear Data Center, Brookhaven.
[22] M. Bernas et al., Z. Phys. A, 336, 41 (1990).
[23] O. Perru et al., Phys. Rev. Lett., 96, 232501 (2006).
[24] I. Stefanescu et al., Phys. Rev. Lett., 98, 122701 (2007).
[25] T. Otsuka, T. Suzuki, R. Fujimoto, H. Grawe, Y. Akaiishi, Phys. Rev. Lett., 95, 232502 (2005).