Fractional L-intersecting families

Niranjan Balachandran1, Rogers Mathew2, and Tapas Kumar Mishra3

1 Department of Mathematics,
Indian Institute of Technology, Bombay 400076, India.
niranj@iitb.ac.in

2 Department of Computer Science and Engineering,
Indian Institute of Technology, Kharagpur 721302, India.
rogers@cse.iitkgp.ernet.in

3 Department of Computer Science and Engineering,
National Institute of Technology, Rourkela 769008, India.
mishrat@nitrkl.ac.in

Abstract

Let $L = \{\alpha_1, \ldots, \alpha_r\}$, where for every $i \in [s]$, $\alpha_i \in [0,1)$ is an irreducible fraction. Let $F = \{A_1, \ldots, A_m\}$ be a family of subsets of $[n]$. We say F is a fractional L-intersecting family if for every distinct $i, j \in [m]$, there exists an $\alpha_i \in L$ such that $|A_i \cap A_j| \in \{\alpha_i |A_i|, \alpha_j |A_j|\}$. In this paper, we introduce and study the notion of fractional L-intersecting families.

1 Introduction

Let $[n]$ denote $\{1,\ldots,n\}$ and let $L = \{l_1,\ldots,l_s\}$ be a set of s non-negative integers. A family $F = \{A_1, \ldots, A_m\}$ of subsets of $[n]$ is L-intersecting if for every $A_i, A_j \in F$, $A_i \neq A_j$, $|A_i \cap A_j| \in L$. In 1975, it was shown by Ray-Chaudhuri and Wilson in [13] that if F is t-uniform, then $|F| \leq \binom{n}{s}$. Setting $L = \{0, \ldots, s-1\}$, the family $F = \binom{[n]}{s}$ is a tight example to the above bound, where $\binom{[n]}{s}$ denotes the set of all s-sized subsets of $[n]$. In the non-uniform case, it was shown by Frankl and Wilson in the year 1981 (see [7]) that if we don’t put any restrictions on the cardinalities of the sets in F, then $|F| \leq \binom{n}{s} + \binom{n}{s-1} + \cdots + \binom{n}{0}$. This bound is tight as demonstrated by the set of all subsets of $[n]$ of size at most s with $L = \{0, \ldots, s-1\}$. The proof of this bound was found using the method of higher incidence matrices. Later, in 1991, Alon, Babai, and Suzuki in [2] gave an elegant linear algebraic proof to this bound. They showed that if the cardinalities of the sets in F belong to the set of integers $K = \{k_1, \ldots, k_r\}$ with every $k_i > s-r$, then $|F|$ is at most $\binom{n}{s} + \binom{n}{s-1} + \cdots + \binom{n}{s-r+1}$. The collection of all the subsets of $[n]$ of size at least $s-r+1$ and at most s with $K = \{s-r+1, \ldots, s\}$ and $L = \{0, \ldots, s-1\}$ forms a tight example to this bound. In 2002, this result was extended by Grodlusz and Sudakov [8] to k-wise L-intersecting families. In 2003, Snevily showed in [14] that if L is a collection of s positive integers then $|F| \leq \binom{n}{s-1} + \binom{n}{s-2} + \cdots + \binom{n}{0}$. See [11] for a survey on L-intersecting families and their variants.

In this paper, we introduce a new variant of L-intersecting families called the fractional L-intersecting families. Let $L = \{\alpha_1, \ldots, \alpha_r\}$, where for every $i \in [s]$, $\alpha_i \in [0,1)$ is an irreducible fraction. Let $F = \{A_1, \ldots, A_m\}$ be a family of subsets of $[n]$. We say F is a fractional L-intersecting family if for every distinct $i, j \in [m]$, there exists an $\alpha_i \in L$ such that $|A_i \cap A_j| \in \{\alpha_i |A_i|, \alpha_j |A_j|\}$. When F is t-uniform, it is an L'-intersecting family where $L' = \{\alpha_i |A_i|, \ldots, \alpha_i |A_i|\}$
and therefore (using the result in [13]), \(|F| \leq \binom{n}{s}\). A tight example to this bound is given by the family \(F = \binom{[n]}{s}\) where \(L = \{\frac{0}{1}, \ldots, \frac{1}{1}\}\). So what is interesting is finding a good upper bound for \(|F|\) in the non-uniform case. Unlike in the case of the classical \(L\)-intersecting families, it is clear from the above definition that if \(A\) and \(B\) are two sets in a fractional \(L\)-intersecting family, then the cardinality of their intersection is a function of \(|A|\) or \(|B|\) (or both).

In Section 2.1, we prove the following theorem which gives an upper bound for the cardinality of a fractional \(L\)-intersecting family in the general case. We follow the convention that \(\binom{s}{i}\) is 0, when \(b > a\).

Theorem 1. Let \(n\) be a positive integer. Let \(L = \{\frac{a_1}{b_1}, \ldots, \frac{a_s}{b_s}\}\), where for every \(i \in [s]\), \(\frac{a_i}{b_i} \in [0, 1)\) is an irreducible fraction. Let \(F\) be a fractional \(L\)-intersecting family of subsets of \([n]\). Then, \(|F| \leq 2\binom{n}{s}g^2(t, n)\ln(g(t, n)) + (\sum_{i=1}^{s-1} \binom{n}{i}) g(t, n)\), where \(g(t, n) = \frac{2(2t + \ln n)}{\ln(2t + \ln n)}\) and \(t = \max_s \max_{i \in [s]}(b_i : i \in [s])\). Further,

(a) if \(s \leq n + 1 - 2g(t, n)\ln(g(t, n))\), then \(|F| \leq 2\binom{n}{s}g^2(t, n)\ln(g(t, n))\), and

(b) if \(t > n - c_1\), where \(c_1\) is a positive integer constant, then \(|F| \leq 2c_1\binom{n}{s}g(t, n)\ln(g(t, n)) + c_1 \sum_{i=1}^{s-1} \binom{n}{i}\).

Consider the following examples for a fractional \(L\)-intersecting family.

Example 1. Let \(L = \{\frac{0}{1}, \frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots, \frac{1}{n}, \ldots, \frac{n-1}{n}\}\), where we omit fractions, like \(\frac{2}{1}\), which are not irreducible. The collection of all the non-empty subsets of \([n]\) is a fractional \(L\)-intersecting family of cardinality \(2^n - 1\). Here, \(|L| = s = \Theta(n^2)\). Since \(t \geq s\), we can apply Statement (b) of Theorem 1 to get an upper bound of \(c_1(2^n - 1)\) which is asymptotically tight. In general, when \(L = \{\frac{0}{1}, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{3}{4}, \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}, \ldots, \frac{1}{n-c}, \ldots, \frac{n-1}{n-c}\}\), where \(c \geq 0\) is a constant, the set of all the non-empty subsets of \([n]\) of cardinality at most \(n - c\) is an example which demonstrates that the bound given in Statement (b) of Theorem 1 is asymptotically tight.

Example 2. Let us now consider another example where \(s = |L|\) is a constant. Let \(L = \{\frac{0}{s}, \frac{1}{s}, \ldots, \frac{s-1}{s}\}\). The collection of all the \(s\)-sized subsets of \([n]\) is a fractional \(L\)-intersecting family of cardinality \(\binom{n}{s}\). In this case, the bound given by Theorem 1 is asymptotically tight up to a factor of \(\ln^2 n / \ln m\). We believe that if \(F\) is a fractional \(L\)-intersecting family of maximum cardinality, where \(s = |L|\) is a constant, then \(|F| \in \Theta(n^s)\).

Coming back to the classical \(L\)-intersecting families, it is known that when \(F\) is an \(L\)-intersecting family where \(|L| = s = 1\), the Fisher’s Inequality (see Theorem 7.5 in [9]) yields \(|F| \leq n\). Study of such intersecting families was initiated by Ronald Fisher in 1940 (see [3]).

This fundamental result of design theory is among the first results in the field of \(L\)-intersecting families. Analogously, consider the scenario when \(L = \{\frac{a}{b}\}\) is a singleton set. Can we get a tighter (compared to Theorem 1) bound in this case? We show in Theorem 2 that if \(b\) is a constant prime we do have a tighter bound.

Theorem 2. Let \(n\) be a positive integer. Let \(G\) be a fractional \(L\)-intersecting families of subsets of \([n]\), where \(L = \{\frac{a}{b}\}, \frac{a}{b} \in [0, 1)\) and \(b\) is a prime. Then, \(|G| \leq (b-1)(n+1)\left[\frac{\ln n}{\ln b}\right] + 1\).

Assuming \(L = \{\frac{1}{b}\}\), Examples 3 and 4 in Section 3 give fractional \(L\)-intersecting families on \([n]\) of cardinality \(\frac{2n}{2b} - 2\) thereby implying that the bound obtained in Theorem 2 is asymptotically tight up to a factor of \(\ln n\) when \(b\) is a constant prime. We believe that the cardinality of such families is at most \(cn\), where \(c > 0\) is a constant.

The rest of the paper is organized in the following way: In Section 2.1, we give the proof of Theorem 1 after introducing some necessary lemmas in the beginning. In Theorem 6 in Section 2.2, we give an upper bound of \(n\) for fractional \(L\)-intersecting families on \([n]\) whose
member sets are ‘large enough’. In Section 3 we consider the case when \(L \) is a singleton set and give the proof of Theorem 2. Later in this section, in Theorem 5, we consider the case when the cardinalities of the sets in the fractional \(L \)-intersecting family are restricted. Finally, we conclude with some remarks, some open questions, and a conjecture.

2 The general case

2.1 Proof of Theorem 1

Before we move to the proof of Theorem 1, we introduce a few lemmas that will be used in the proof.

2.1.1 Few auxiliary lemmas

The following lemma is popularly known as the ‘Independence Criterion’ or ‘Triangular Criterion’.

Lemma 3 (Lemma 13.11 in \[8\], Proposition 2.5 in \[3\]). For \(i = 1, \ldots, m \) let \(f_i : \Omega \to F \) be functions and \(v_i \in \Omega \) elements such that

(a) \(f_i(v_i) \neq 0 \) for all \(1 \leq i \leq m \);

(b) \(f_i(v_j) = 0 \) for all \(1 \leq j < i \leq m \).

Then \(f_1, \ldots, f_m \) are linearly independent members of the space \(F^\Omega \).

Lemma 4. Let \(p \) be a prime; \(\Omega = \{0,1\}^n \). Let \(f \in F^\Omega_p \) and let \(i \in \mathbb{F}_p \). For any \(A \subseteq [n] \), let \(V_A \in \{0,1\}^n \) denote its 0-1 incidence vector and let \(x_A = \Pi_{j \in A} x_j \). Assume \(f(V_A) \neq 0 \), for every \(|A| \not\equiv i \pmod{p} \). Then, the set of functions \(\{ x_A f : |A| \not\equiv i \pmod{p} \mbox{ and } |A| < p \} \) is linearly independent in the vector space \(F_p^{(0,1)^n} \) over \(F_p \).

Proof. Arrange every subset of \([n]\) of cardinality less than \(p \) in a linear order, say \(\prec \), such that \(A \prec B \) implies \(|A| \leq |B| \). For any two distinct sets \(A \) and \(B \), we know that \(x_A(V_B)f(V_B) = 0 \) when \(|B| \leq |A| \), where \(x_A(V_B) \) denote the evaluation of the function \(x_A \) at \(V_B \). Suppose

\[
\sum_{A : |A| \not\equiv i \pmod{p}, |A| < p} \lambda_A x_A f = 0
\]

has a non-trivial solution. Then, identify the first set, say \(A_0 \), in the linear order \(\prec \) for which \(\lambda_{A_0} \) is non-zero. Evaluate the functions on either side of the above equation at \(V_{A_0} \) to get \(\lambda_{A_0} = 0 \) which is a contradiction to our assumption.

The following lemma is from \[3\] (see Lemma 5.38).

Lemma 5 (Lemma 5.38 in \[3\]). Let \(p \) be a prime; \(\Omega = \{0,1\}^n \). Let \(f \in F_p^\Omega \) be defined as \(f(x) = \sum_{i=1}^n x_i - k \). For any \(A \subseteq [n] \), let \(V_A \in \{0,1\}^n \) denote its 0-1 incidence vector and let \(x_A = \Pi_{j \in A} x_j \). Assume \(0 \leq s,k \leq p - 1 \) and \(s + k \leq n \). Then, the set of functions \(\{ x_A f : |A| \leq s - 1 \} \) is linearly independent in the vector space \(F_p^\Omega \) over \(F_p \).

2.1.2 The proof

Proof. Let \(p \) be a prime and let \(p > t \). We partition \(\mathcal{F} \) into \(p \) parts, namely \(\mathcal{F}_0, \ldots, \mathcal{F}_{p-1} \), where \(\mathcal{F}_i = \{ A \in \mathcal{F} : |A| \equiv i \pmod{p} \} \).
Estimating $|\mathcal{F}_i|$, when $i > 0$.

Let $\mathcal{F}_i = \{A_1, \ldots, A_m\}$ and let V_1, \ldots, V_m denote their corresponding 0-1 incidence vectors. Define m functions f_1 to f_m, where each $f_j \in \mathbb{F}_p^{(0,1)^n}$, in the following way.

$$f_j(x) = \left\{ \begin{array}{cl} 1, & \text{if } x = V_j \\ 0, & \text{otherwise} \end{array} \right.$$

Note that since $|A_j| \equiv i \pmod{p}$, $(V_j, V_j') \equiv i \pmod{p}$. Since $p > t$, for every $l \in [s]$, $i \not\equiv b_l i \pmod{p}$ unless $i \equiv 0 \pmod{p}$. So,

$$f_j(x) \left\{ \begin{array}{cl} \neq 0, & \text{if } x = V_j \\ 0, & \text{otherwise} \end{array} \right. \quad (1)$$

So, f_j’s are linearly independent in the vector space $\mathbb{F}_p^{(0,1)^n}$ over \mathbb{F}_p (by Lemma 3). Since $x = (x_1, x_2, \ldots, x_n) \in \{0,1\}^n$, $x_i^r = x_i$ for any positive integer r. Each f_j is thus an appropriate linear combination of distinct monomials of degree at most s. Therefore, $|\mathcal{F}_i| = m \leq \sum_{j=0}^{s} \binom{n}{j}$.

We can improve this bound by using the “swallowing trick” in a way similar to the way it is used in the proof of Theorem 1.1 in [2]. Let $f \in \mathbb{F}_p^{(0,1)^n}$ be defined as $f(x) = \sum_{j \in [n]} x_j - i$. From Lemma 4, we know that the set of functions $\{x_A f : |A| \neq i \pmod{p} \text{ and } |A| < s\}$ is linearly independent in the vector space $\mathbb{F}_p^{(0,1)^n}$ over \mathbb{F}_p.

Claim 5.1. $\{f_j : 1 \leq j \leq m\} \cup \{x_A f : |A| \neq i \pmod{p} \text{ and } |A| < s\}$ is a collection of functions that is linearly independent in the vector space $\mathbb{F}_p^{(0,1)^n}$ over \mathbb{F}_p.

In order to prove the claim, assume $\sum_{j=1}^{m} \lambda_j f_j + \sum_{A: |A| \leq s-1, |A| \neq i \pmod{p}} \mu_A x_A f = 0$ for some $\lambda_j, \mu_A \in \mathbb{F}_p$. Evaluating at V_j, all terms in the second sum vanish (since $f(V_j) = 0$) and by Equation 1 only the term with subscript j remains of the first sum. We infer that $\lambda_j = 0$, for every j. It then follows from Lemma 4 that every μ_A is zero thus proving the claim.

Since each function in the collection of functions in Claim 5.1 can be obtained as a linear combination of distinct monomials of degree at most s, we can infer that $m + \sum_{j=0}^{s-1} \binom{n}{j} \leq \sum_{j=0}^{s} \binom{n}{j}$. We thus have

$$|\mathcal{F}_i| \leq \left\{ \begin{array}{cl} \binom{n}{s} + \binom{n}{i}, & \text{if } i < s \\ \binom{n}{s}, & \text{otherwise} \end{array} \right. \quad (2)$$

Observe that $i \leq p - 1$. We will shortly see that the prime p we choose is always at most $2g(t, n) \ln(g(t, n))$, where $g(t, n) = \frac{(2t+\ln n)}{\ln(2t+\ln n)}$. So if $s \leq n + 1 - 2g(t, n) \ln(g(t, n))$, the condition $s+i \leq n$ (here i stands for the symbol k in Lemma 3) given in Lemma 3 is satisfied and therefore the more powerful Lemma 5 can be used instead of Lemma 4 while applying the swallowing trick. We can then claim that (proof of this claim is similar to the proof of Claim 5.1 and is therefore omitted) $\{f_j : 1 \leq j \leq m\} \cup \{x_A f : |A| < s\}$, where $f(x) = \sum_{j=0}^{n} x_j - i$ is a collection of functions that is linearly independent in the vector space $\mathbb{F}_p^{(0,1)^n}$ over \mathbb{F}_p which can be obtained as a linear combination of distinct monomials of degree at most s. It then follows that $|\mathcal{F}_i| \leq \binom{n}{s}$.

In the rest of the proof, we shall assume the general bound for $|\mathcal{F}_i|$ given by Inequality 2. (Using the $\binom{n}{s}$ upper bound for $|\mathcal{F}_i|$ in place of Inequality 2 when $s \leq n + 1 - 2g(t, n) \ln(g(t, n))$ in the rest of the proof will yield the tighter bound for $|\mathcal{F}|$ given in Statement (a) in the theorem.)

Observe that we still do not have an estimate of $|A_0|$ since $i \equiv 2^d i \pmod{p}$ when $i \equiv 0 \pmod{p}$. To overcome this problem, consider the collection $P = \{p_q+1, \ldots, p_r\}$ of $r-q$
smallest primes with \(p_{q+1} < \cdots < p_r \) \((p_j \text{ denotes the } j\text{-th prime; } p_1 = 2, p_2 = 3, \text{ and so on})\) such that for every \(A \in \mathcal{F} \), there exists a prime \(p \in P \) with \(p \nmid |A| \). Note that if we repeat the steps done above for each \(p \in P \), we obtain the following upper bound.

\[
|\mathcal{F}| \leq (p_{q+1} + \cdots + p_r - (r - q)) \binom{n}{s} + (r - q) \sum_{j=1}^{s-1} \binom{n}{j}
\]

\[
< (r - q) \left(p_r \binom{n}{s} + \sum_{j=1}^{s-1} \binom{n}{j} \right)
\]

To obtain a small cardinality set \(P \) of the desired requirement, we choose the minimum \(r \) such that \(p_{q+1} p_{q+2} \cdots p_r > n \). If \(t > n - c_1 \), for some positive integer constant \(c_1 \), then \(P = \{p_{q+1}, \ldots, p_{q+c_1}\} \) satisfies the desired requirements of \(P \). We thus have,

\[
|\mathcal{F}| < \begin{cases}
 c_1 \left(p_r \binom{n}{s} + \sum_{j=1}^{s-1} \binom{n}{j} \right), & \text{if } t > n - c_1 \text{ (here } c_1 \text{ is a positive integer constant)} \\
 r \left(p_r \binom{n}{s} + \sum_{j=1}^{s-1} \binom{n}{j} \right), & \text{otherwise}
\end{cases}
\]

(3)

The product of the first \(k \) primes is the **primorial function** \(p_k \# \) and it is known that \(p_k \# = e^{(1+o(1))k \ln k} \).

Given a natural number \(N \), let \(N \# \) denote the product of all the primes less than or equal to \(N \) (some call this the primorial function). It is known that \(N \# = e^{(1+o(1))N} \). Since \(\frac{\frac{p_{r+1} \#}{t \#}} = p_{k+1} p_{k+2} \cdots p_r \), setting \(\frac{e^{(1+o(1))r \ln r}}{e^{(1+o(1))t \ln t}} > n \), we get, \(r \leq \frac{2(2t + \ln t)}{\ln (2t + \ln t)} = g(t, n) \). Using the prime number theorem, the \(r \)th prime \(p_r \) is at most \(2r \ln r \). Thus, we have \(p_r \leq 2g(t, n) \ln(g(t, n)) \).

Substituting for \(r \) and \(p_r \) in Inequality (3) gives the theorem.

\[\square \]

2.2 When the sets in \(\mathcal{F} \) are ‘large enough’

In the following theorem, we show that when the sets in a fractional \(L \)-intersecting \(\mathcal{F} \) are ‘large enough’, then \(|\mathcal{F}| \) is at most \(n \).

Theorem 6. Let \(n \) be a positive integer. Let \(L = \{\frac{a_1}{b_1}, \ldots, \frac{a_s}{b_s}\} \), where for every \(i \in [s] \), \(\frac{a_i}{b_i} \in [0, 1) \) is an irreducible fraction. Let \(\frac{a}{b} = \max\{\frac{a_1}{b_1}, \ldots, \frac{a_s}{b_s}\} \). Let \(\mathcal{F} \) be a fractional \(L \)-intersecting family of subsets of \([n]\) such that for every \(A \in \mathcal{F} \), \(|A| > \alpha n \), where \(\alpha = \max(\frac{1}{2}, \frac{a - b}{2b}) \). Then, \(|\mathcal{F}| \leq n\).

Proof. Let \(\mathcal{F} = \{A_1, A_2, \ldots, A_m\} \). For every \(A_i \in \mathcal{F} \), we define its \((+1, -1)\)-incidence vector as:

\[
X_{A_i}(j) = \begin{cases}
 +1, & \text{if } j \in A_i \\
 -1, & \text{if } j \notin A_i.
\end{cases}
\]

(4)

We prove the theorem by proving the following claim.

Claim 6.1. \(X_{A_1}, \ldots, X_{A_m} \) are linearly independent in the vector space \(\mathbb{R}^n \) over \(\mathbb{R} \).

Assume for contradiction that \(X_{A_1}, \ldots, X_{A_m} \) are linearly dependent in the vector space \(\mathbb{R}^n \) over \(\mathbb{R} \). Then, we have some reals \(\lambda_{A_1}, \ldots, \lambda_{A_m} \) where not all of them are zeroes such that

\[
\lambda_{A_1} X_{A_1} + \cdots + \lambda_{A_m} X_{A_m} = 0.
\]

(5)

It is given that, for every \(A_i \in \mathcal{F} \), \(|A_i| > \frac{a}{b} \).

Let \(u = (1, 1, \ldots, 1) \in \mathbb{R}^n \) be the all ones vector. Then, \(\langle X_{A_i}, u \rangle > 0 \), for every \(A_i \in \mathcal{F} \). Therefore, if all non-zero \(\lambda_{A_i} \)'s in Equation (5) are of the same sign, say positive, then the inner product of \(u \) with the L.H.S of Equation (5) would be
non-zero which is a contradiction. Hence, we can assume that not all λ_A, s are of the same sign.

We rewrite Equation (5) by moving all negative λ_A, s to the R.H.S. Without loss of generality, assume $\lambda_A, \ldots, \lambda_k$ are non-negative and the rest are negative. Thus, we have

$$v = \lambda_A X_A + \cdots + \lambda_k X_k = - (\lambda_{k+1} X_{k+1} + \cdots + \lambda_m X_m),$$

where v is a non-zero vector.

For any two distinct sets $A, B \in F$, \(\exists \frac{a_i}{b_i} \in L \) such that

$$\langle X_A, X_B \rangle = \begin{cases} n - 2|A| + \frac{4\alpha - 2b_i}{b_i}|B|, & \text{if } |A \cap B| = \frac{a_i}{b_i}|B|, \\ n - 2B| + \frac{4\alpha - 2b_i}{b_i}|A|, & \text{otherwise (that is, if } |A \cap B| = \frac{a_i}{b_i}|A|.\)$$

(6)

Since \(\frac{a}{b} = \max(\frac{a_1}{b_1}, \ldots, \frac{a_k}{b_k}) \), we have \(\langle X_A, X_B \rangle \leq n - 2|A| + \frac{4\alpha - 2b_i}{b_i}|B| \) or \(\langle X_A, X_B \rangle \leq n - 2|B| + \frac{4\alpha - 2b_i}{b_i}|A| \). Applying the fact that the cardinality of every set S in F satisfies $\alpha n < |S| \leq n$, where $\alpha = \max(\frac{1}{b}, \frac{4\alpha - 2b_i}{b_i})$, we get \(\langle X_A, X_B \rangle < 0 \). This implies that \(\langle v, v \rangle = \langle \lambda_A X_A + \cdots + \lambda_k X_k, -(\lambda_{k+1} X_{k+1} + \cdots + \lambda_m X_m) \rangle < 0 \) which is a contradiction. This proves the claim and thereby the theorem.

\[\square \]

3 \hspace{1cm} \text{L is a singleton set}

As explained in Section 1, the Fisher’s Inequality is a special case of the classical L-intersecting families, where $|L| = 1$. In this section, we study fractional L-intersecting families with $|L| = 1$; a fractional variant of the Fisher’s inequality.

3.1 \hspace{1cm} \text{Proof of Theorem 2}

Statement of Theorem 2: Let n be a positive integer. Let G be a fractional L-intersecting families of subsets of $[n]$, where $L = \{\frac{a}{b}\}, \frac{a}{b} \in [0, 1),$ and b is a prime. Then, $|G| \leq (b - 1)(n + 1)\left[\frac{\ln n}{\ln b}\right] + 1$.

Proof. It is easy to see that if $a = 0$, then $|G| \leq n$ with the set of all singleton subsets of $[n]$ forming a tight example to this bound.

So assume $a \neq 0$. Let $F = G \setminus H$, where $H = \{A \in G : b \not| |A|\}$. From the definition of a fractional $\frac{a}{b}$-intersecting family it is clear that $|H| \leq 1$. The rest of the proof is to show that $|F| \leq (b - 1)(n + 1)\left[\frac{\ln n}{\ln b}\right]$.

We do this by partitioning F into $(b - 1)\lceil \frac{n}{\ln b} \rceil$ parts and then showing that each part is of size at most $n + 1$. We define F_i as

$$F_i = \{A \in F||A| \equiv j \text{ (mod } i)\}.$$

Since b divides $|A|$, for every $A \in F$, under this definition F can be partitioned into families F_{bi}^{k-1}, where $2 \leq k \leq \lceil \log_b n \rceil$ and $1 \leq i \leq b - 1$. We show that, for every $i \in [b - 1]$ and for every $2 \leq k \leq \lceil \log_b n \rceil$, $|F_{bi}^{k-1}| \leq n + 1$.

In order to estimate $|F_{bi}^{k-1}|$, for each $A \in F_{bi}^{k-1}$, create a vector X_A as follows:

$$X_A(j) = \begin{cases} \frac{1}{\sqrt{b^{k-2}}}, & \text{if } j \in A; \\ 0, & \text{otherwise}. \end{cases}$$

Note that, for $A, B \in F_{bi}^{k-1}$

$$\langle X_A, X_B \rangle \equiv \begin{cases} b \text{ (mod } b^2), & \text{if } A = B, \\ ai \text{ (mod } b), & \text{if } A \neq B, \end{cases}$$

(7)
Let $|F_{b^k-1}^{b^k}| = m$. Let $M_{k,i}$ denote the $m \times n$ matrix formed by taking $X_{A,i}$ as rows for each $A \in F_{b^k-1}^{b^k}$. Then, $|F_{b^k-1}^{b^k}| \leq n + 1$ can be proved by considering $B = M_{k,i} \times M_{k,i}^T$ and showing that $B - aiJ$, (where J is the $m \times m$ all 1 matrix,) has full rank; determinant of $B - aiJ$ is non-zero since the only term not divisible by the prime b in the expansion of its determinant comes from the product of all the diagonals (note that $a < b$, $i < b$, and since b is a prime, we have $b \nmid a$).

We shall call F a bisection closed family if F is a fractional L-intersecting family where $L = \{\frac{1}{2}\}$. We have two different constructions of families that are bisection closed and are of cardinality $\frac{3n}{2} - 2$ on $[n]$.

Example 3. Let n be an even positive integer. Let B denote the collection of 2-sized sets that contain only 1 as a common element in any two sets, i.e. $\{1, 2\}, \{1, 3\}, \ldots, \{1, n\}$; and let C denote collection of 4-sized sets that contain only 1 as a common element, i.e. $\{1, 2, 3, 4\}, \{1, 2, 5, 6\}, \ldots, \{1, 2, n - 1, n\}$. It is not hard to see that $B \cup C$ is indeed bisection closed.

Example 4. The second example of a bisection closed family of cardinality $\frac{3n}{2} - 2$ comes from Recursive Hadamard matrices. A Recursive Hadamard matrix $H(k)$ of size $2^k \times 2^k$ can be obtained from $H(k - 1)$ of size $2^{k-1} \times 2^{k-1}$ as follows

$$H(k) = \begin{bmatrix} H(k - 1) & H(k - 1) \\ H(k - 1) & -H(k - 1) \end{bmatrix},$$

where $H(0) = 1$. Now consider the matrix:

$$M(k) = \begin{bmatrix} H(k - 1) & H(k - 1) \\ H(k - 1) & -H(k - 1) \\ H(k - 1) & J(k - 1) \end{bmatrix},$$

where $J(k - 1)$ denotes the $2^{k-1} \times 2^{k-1}$ all 1s’ matrix.

Let $M'(k)$ be the matrix obtained from $M(k)$ by removing the first and the $(2^k + 1)$th rows and replacing the -1’s by 1’s and 1’s by 0’s. $M'(k)$ is clearly bisection closed and has cardinality $\frac{3n}{2} - 2$, where $n = 2^k$.

3.2 Restricting the cardinalities of the sets in F

When $L = \{\frac{1}{2}\}$, where b is a prime, Theorem 2 yields an upper bound of $O(\frac{b \log n \log n}{b^{\log n}})$ for $|F|$. However, we believe that when $|L| = 1$, the cardinality of any fractional L-intersecting family on $[n]$ would be at most cn, where $c > 0$ is a constant. To this end, we show in Theorem 8 that when the sizes of the sets in F are restricted, we can achieve this.

The following lemma is crucial to the proof of Theorem 8.

Lemma 7. \[[4] \] Let A be an $m \times m$ real symmetric matrix with $a_{i,i} = 1$ and $|a_{i,j}| \leq \epsilon$ for all $i \neq j$. Let $tr(A)$ denote the trace of A, i.e., the sum of the diagonal entries of A. Let $rk(A)$ denote the rank of A. Then,

$$rk(A) \geq \frac{(tr(A))^2}{tr(A^2)} \geq \frac{m}{1 + (m - 1)\epsilon^2}.$$

Proof. Let $\lambda_1, \ldots, \lambda_m$ denote the eigenvalues of A. Since only $rk(A)$ eigenvalues of A are non-zero, $(tr(A))^2 = (\sum_{i=1}^{m} \lambda_i)^2 = (\sum_{i=1}^{rk(A)} \lambda_i)^2 \leq rk(A) \sum_{i=1}^{rk(A)} \lambda_i^2 = rk(A) tr(A^2)$, where the inequality follows from the Cauchy-Schwartz Inequality. Thus, $rk(A) \geq \frac{(tr(A))^2}{tr(A^2)}$. Substituting $tr(A) = m$ and $tr(A^2) = m + m(m - 1)\epsilon^2$ in the above inequality proves the theorem. \[\square \]
Theorem 8. Let n be a positive integer and let $\delta > 1$. Let \mathcal{F} be a fractional L-intersecting family of subsets of $[n]$, where $L = \left\{ \frac{a}{b} \right\}$, $\frac{a}{b} \in [0,1)$ is an irreducible fraction and for every $A \in \mathcal{F}$, $|A|$ in an integer in the range $\left[\frac{b}{4(\delta-a)} n - \frac{b}{4\delta} \sqrt{n}, \frac{b}{4(\delta-a)} n + \frac{b}{4\delta} \sqrt{n} \right]$. Then, $|\mathcal{F}| < \frac{\delta^2}{\delta^2-1} n$.

Proof. For any $A \in \mathcal{F}$, let $Y_A \in \mathbb{R}^n$ be a vector defined as:

$$Y_A(j) = \begin{cases} \frac{1}{\sqrt{n}}, & \text{if } j \in A \\ -\frac{1}{\sqrt{n}}, & \text{if } j \not\in A. \end{cases}$$

Clearly, $\langle Y_A, Y_A \rangle = 1$. For any two distinct sets $A, B \in \mathcal{F}$, we have

$$\langle Y_A, Y_B \rangle = \begin{cases} \frac{n-2|A|+\frac{2b}{n}|B|}{n-2|B|+\frac{2b}{n}|A|}, & \text{if } |A \cap B| = \frac{\theta}{\delta}|B|, \\ \frac{n-2|A|+\frac{2b}{n}|B|}{n-2|B|+\frac{2b}{n}|A|}, & \text{otherwise (that is, if } |A \cap B| = \frac{\theta}{\delta}|A|). \end{cases}$$

(8)

Suppose $\mathcal{F} = \{A_1, \ldots, A_m\}$. Let B be the $m \times n$ matrix with Y_{A_1}, \ldots, Y_{A_m} as its rows. Then, from Equation (8) it follows that BB^T is an $m \times m$ real symmetric matrix with the diagonal entries being 1 and the absolute value of any other entry being at most $\frac{1}{\sqrt{n}}$. Applying Lemma 7 we have $n \geq rk(BB^T) \geq \frac{m}{1+\frac{m}{2n}} \geq \frac{m}{1+\frac{m}{2n}}$. Thus, $n + \frac{m}{\delta^2} > m$ or $m < \frac{\delta^2}{\delta^2-1} n$. \qed

4 Discussion

In Theorem 1 we gave a general upper bound for $|\mathcal{F}|$, where \mathcal{F} is a fractional L-intersecting family. In Section 3 we also gave an example to show that this bound is asymptotically tight up to a factor of $\frac{\log n}{m^2/n^2}$ when $s (= |L|)$ is a constant. However, when s is a constant, we believe that $|\mathcal{F}| \in \Theta(n^s)$.

Consider the following special case for a fractional L-intersecting family \mathcal{F}, where $L = \{\frac{1}{2}\}$. We call such a family a bisection-closed family (see definition in Section 3).

Conjecture 9. If \mathcal{F} is a bisection-closed family, then $|\mathcal{F}| \leq cn$, where $c > 0$ is a constant.

We have not been able to find an example of a bisection-closed family of size $2n$ or more.

The problem of determining a linear sized upper bound for the size of any bisection-closed family leads us to pose the following question:

Open problem 10. Suppose $0 < a_1 \leq \cdots \leq a_n$ are n distinct reals. Let $\mathcal{M}_n(a_1, \ldots, a_n)$ denote the set of all symmetric matrices M satisfying $m_{ij} \in \{a_i, a_j\}$ for $i \neq j$ and $m_{ii} = 0$ for all i. Then, does there exist an absolute constant $c > 0$ such that $rk(M) \geq cn$, for all $M \in \mathcal{M}_n(a_1, \ldots, a_n)$?

To see how this question ties in with our problem, suppose that a family $\mathcal{F} \subset \mathcal{P}([n])$ is a bisection-closed family, i.e., for $A, B \in \mathcal{F}$ and $A \neq B$ then $|A \cap B| \in \{|A|/2, |B|/2\}$. For simplicity, let us write $\mathcal{F} = \{A_1, \ldots, A_n\}$ and denote $|A_i| = a_i$ where the a_i are arranged in ascending order. We say A bisects B if $|A \cap B| = |B|/2$. For each $A \in \mathcal{F}$, let $u_A \in \mathbb{R}^n$ where $u_A(i) = 1$ if $i \in A$ and -1 if $i \not\in A$. Then note that

$$\langle u_A, u_B \rangle = n - 2|A| \quad \text{if } A \text{ bisects } B,$$

$$= n - 2|B| \quad \text{if } B \text{ bisects } A,$$

$$\| u_A \|^2 = n.$$
If $X = \frac{1}{2}(nJ - M)$, where J is the all ones matrix of order m, then $rk(X) \leq n + 1$. But note that $X \in M(a_1, \ldots, a_m)$. So, if the answer to the aforementioned open problem is ‘yes’, then $rk(X) \geq cm$. This gives $cm \leq r(X) \leq n + 1$ which in turn gives $m \leq c^{-1}(n + 1)$.

The problem of determining the maximum size of a fractional L-intersecting family is far from robust in the following sense. Suppose $L = \{1/2\}$ and we consider the problem of determining the size of an ‘ε-approximately fractional L-intersecting family,’ i.e., for any $A \neq B$ we have that at least one of $|A \Delta B|$, $|A \cap B|$ $\in (1/2 - \varepsilon, 1/2 + \varepsilon)$ for some $\varepsilon > 0$, then such families can in fact be exponentially large in size. Let each set A_i be chosen uniformly and independently at random from $P([n])$. Then since each $|A_i|$ and $|A_i \cap A_j|$ are independent binomial $B(n, 1/2)$ and $B(n, 1/4)$ respectively, by standard Chernoff bounds (see [12], chapter 5), it follows (by straightforward computations) that one can get such a family of cardinality at least $e^{2\varepsilon^2 n/75}$. In fact this same construction gives super-polynomial sized families even if $\varepsilon = n^{-1/2+\delta}$ for any fixed $\delta > 0$.

Another interesting facet of the fractional intersection notion is the following extension of l-avoiding families [6, 10]. A set B bisects another set A if $|A \cap B| = \frac{|A|}{2}$. A family F of even subsets of $[n]$ is called fractional ($\frac{1}{2}$)-avoiding (or bisection-free) if for every $A, B \in F$, neither B bisects A nor B bisects B (if we allow odd subsets in the definition of a fractional ($\frac{1}{2}$)-avoiding family, then the set of all the odd-sized subsets on $[n]$ is an example of one such family). Let $\vartheta(n)$ denote the maximum cardinality of a fractional ($\frac{1}{2}$)-avoiding family on $[n]$.

Let $A, B \subseteq [n]$ such that $|A| > \frac{2n}{3}$ and $|B| > \frac{2n}{3}$. It is not very hard to see that $|A \cap B| > n/3$ whereas $|A \cap (([n] \setminus B)| < n/3$. So, neither A can bisect B nor B can bisect A. Therefore, if we construct a family $F = \{A \subseteq [n]|A > \frac{2n}{3}, |A| \text{ is even.}\}$, F is fractional ($\frac{1}{2}$)-avoiding. Moreover, $|F| = \sum_{2i+1}^{\frac{n}{2}} \binom{n}{i} > 1.88^n$, for sufficiently large n (using Stirling’s formula). Let us now try to find an upper bound to the cardinality of a fractional ($\frac{1}{2}$)-avoiding family. An application of a result of Frankl and Rödl [6, Corollary 1.6] gives the following theorem for the cardinalities of l-avoiding families as a corollary (see [10, Theorem 1.1]).

Theorem 11. [6, 10] Let $\alpha, \varepsilon \in (0, 1)$ with $\varepsilon \leq \frac{\alpha}{2}$. Let $k = \lfloor \alpha n \rfloor$ and $l \in [\max(0, 2k - n) + \varepsilon n, k - \varepsilon n]$. Then any l-avoiding family $A \subseteq \binom{[n]}{k}$ satisfies $|A| \leq (1 - \delta)\alpha^n$ where $\delta = \delta(\alpha, \varepsilon) > 0$.

For any fractional ($\frac{1}{2}$)-avoiding family F, any $F' \subseteq F$ consisting of sets of cardinality l is $\frac{1}{2}$-avoiding. So, given any fractional ($\frac{1}{2}$)-avoiding family F, split F into families $F_{\leq \frac{i}{2} - 1}$, $F_{\frac{i}{2}}$, $F_{\frac{i}{2} + 1}$, $F_{\geq \frac{i}{2} + 1}$. From Theorem 11 we know that each F_i has a cardinality at most $(1 - \delta_i)\alpha^n$ for $\frac{i}{2} \leq l \leq 2\frac{n}{2}$. Let $\delta = \min(\delta_2, \ldots, \delta_{2\frac{n}{2}})$. Then $\sum_{i=2}^{2\frac{n}{2}} |F_i| \leq ((1 - \delta)2)^n$. Further, $|F_{\frac{i}{2} - 1}| \leq \sum_{i=0}^{\frac{i}{2}-1} \binom{n}{i}$ and $|F_{\frac{i}{2} + 1}| \leq \sum_{i=0}^{\frac{i}{2}+1} \binom{n}{i} < 2^{nH(\frac{1}{2})} < 1.89^n$, where $H(\nu) = -\nu \log_2 \nu - (1 - \nu) \log_2 (1 - \nu)$ is the binary entropy function. Thus, for sufficiently large values of n, $1.88^n \leq \vartheta(n) \leq ((1 - \varepsilon)2)^n$, for some $0 < \varepsilon \leq 0.06$.

References

[1] Noga Alon. Perturbed identity matrices have high rank: Proof and applications. *Combinatorics, Probability and Computing*, 18(1-2):3–15, 2009.

[2] Noga Alon, László Babai, and Hiroshi Suzuki. Multilinear polynomials and frankl-ray-chaudhuri-wilson type intersection theorems. *Journal of Combinatorial Theory, Series A*, 58(2):165–180, 1991.

1A family F is called l-avoiding if for each $A, B \in F$, $|A \cap B| \neq l$ for some $l \in [n]$.
[3] László Babai and Péter Frankl. *Linear Algebra Methods in Combinatorics: With Applications to Geometry and Computer Science*. Department of Computer Science, univ. of Chicag, 1992.

[4] Bruno Codenotti, Pavel Pudlák, and Giovanni Resta. Some structural properties of low-rank matrices related to computational complexity. *Theoretical Computer Science*, 235(1):89 – 107, 2000.

[5] Ronald Aylmer Fisher. An examination of the different possible solutions of a problem in incomplete blocks. *Annals of Human Genetics*, 10(1):52–75, 1940.

[6] Peter Frankl and Vojtěch Rödl. Forbidden intersections. *Trans. Amer. Math. Soc.*, 300(1):259–286, 1987.

[7] Peter Frankl and Richard M. Wilson. Intersection theorems with geometric consequences. *Combinatorica*, 1(4):357–368, 1981.

[8] Vince Grolmusz and Benny Sudakov. On k-wise set-intersections and k-wise hamming-distances. *Journal of Combinatorial Theory, Series A*, 99(1):180–190, 2002.

[9] Stasys Jukna. *Extremal combinatorics: with applications in computer science*. Springer Science & Business Media, 2011.

[10] Peter Keevash and Eoin Long. Frankl-rödl-type theorems for codes and permutations. *Transactions of the American Mathematical Society*, 369(2):1147–1162, 2017.

[11] Jiuqiang Liu and Wenbo Yang. Set systems with restricted k-wise l-intersections modulo a prime number. *European Journal of Combinatorics*, 36:707–719, 2014.

[12] Michael Molloy and Bruce Reed. *Graph colouring and the probabilistic method*, volume 23. Springer Science & Business Media, 2013.

[13] Dijen K. Ray-Chaudhuri and Richard M. Wilson. On t-designs. *Osaka Journal of Mathematics*, 12(3):737–744, 1975.

[14] Hunter S. Snevily. A sharp bound for the number of sets that pairwise intersect at k positive values. *Combinatorica*, 23(3):527–533, 2003.