REVIEW ARTICLE

Lymphoid stromal cells—more than just a highway to humoral immunity

Isabella Cinti and Alice E. Denton *

Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College London W12 0NN, UK

*Correspondence address. Alice E. Denton, Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College, London W12 0NN, UK. Tel: +44 (0)20 3313 8213. E-mail: a.denton@imperial.ac.uk

ABSTRACT

The generation of high-affinity long-lived antibody responses is dependent on the differentiation of plasma cells and memory B cells, which are themselves the product of the germinal centre (GC) response. The GC forms in secondary lymphoid organs in response to antigenic stimulation and is dependent on the coordinated interactions between many types of leucocytes. These leucocytes are brought together on an interconnected network of specialized lymphoid stromal cells, which provide physical and chemical guidance to immune cells that are essential for the GC response. In this review we will highlight recent advancements in lymphoid stromal cell immunobiology and their role in regulating the GC, and discuss the contribution of lymphoid stromal cells to age-associated immunosenescence.

Key words: germinal centre; follicular dendritic cells; fibroblastic reticular cells; lymphoid stromal cells; vaccination; lymph node; humoral immunity; ageing.

INTRODUCTION

The germinal centre (GC) response drives extensive proliferation, somatic hypermutation and selection of B cells, resulting in their differentiation into plasma cells and memory B cells that secrete high-affinity class-switched antibodies and provide protection against (re)infection. The formation and maintenance of the GC depend on sequential interactions between B cells, follicular helper T (Tfh) cells, follicular regulatory T (Tfr) cells, dendritic cells (DCs) and macrophages, which are brought together upon a network of lymphoid stromal cells. Lymphoid stromal cells contribute to immune cell homeostasis in a number of ways, providing physical and chemical substrates for immune cell migration, promoting cell survival and turnover and influencing the differentiation of T and B cells during immune responses. Lymphoid stromal cells are essential for lymphoid tissue homeostasis, and the loss or functional impairment of lymphoid stromal cells abrogates the GC response and the generation of protective humoral immunity. Herein, we describe the types of lymphoid stromal cells, their functions, how they contribute to the formation and maintenance of the GC, and how their function is compromised in ageing.

GUIDE TO THE LYMPH NODE

Lymph nodes are an important site for the generation of adaptive immune responses that clear pathogens and prevent...
subsequent infection. Lymph nodes are strategically located at vascular branch points, through which lymph is channelled as it returns to the blood stream. Thus, lymph nodes are ideally situated to filter the draining lymph for potential pathogens [1]. Afferent lymphatics carry lymph from peripheral tissues across the lymph node capsule, where it empties into the subcapsular sinus. Lymph then flows into the outer cortex, which contains B cell follicles, and the paracortex, where T cells and DCs are located (Fig. 1A). Lymph eventually enters the medullary sinus before collecting in efferent lymphatics and returning to the venous system [2–4].

The entry and exit of immune cells to the lymph node are controlled by the endothelial cells. Blood endothelial cells support lymphocyte entry to the lymph node from the blood. This largely occurs via high endothelial venules (HEVs), a specialized post-capillary venous swelling that promotes lymphocyte extravasation [5] and are largely located in the T cell paracortex (Fig. 1A). Lymphatic endothelial cells surround and penetrate the lymph node, promoting recruitment of immune cells from the lymph into the lymph node and also form the lymphatic sinuses, which facilitate lymphocyte egress [6]. While blood and lymphatic endothelial cells are essential regulators of immune cell ingress and egress, respectively, this review will focus on the role of lymphoid stromal cells in driving GC responses.

THE A–Z OF LYMPHOID STROMAL CELLS

Lymphoid stromal cells act as a tissue scaffold and create a framework for immune cell migration [7–9]. This is due to their production, and maintenance, of a reticular network formed by a core of fibrillar collagen ensheathed in a layer of basement membrane proteins [9–11]. Basement membrane composition varies across the lymph node [12], and the nature of the basement membrane can influence T cell migration, localization and differentiation [13, 14] as well as B cell survival [15]. These reticular fibres also form a conduit network that traverses the lymph node [2, 16], allowing low-molecular-weight molecules (<70 kDa) to flow through the lymph node from the subcapsular sinus [17, 18], facilitating diffusion of small molecules across the tissue. The reticular fibres are themselves ensheathed in a layer of lymphoid stromal cells [16, 19], which enable them to actively maintain the conduit network [20].

Lymphoid stromal cells are more than a physical scaffold that supports the lymph node structure, as the spatial arrangement of immune cells across the lymph node (Fig. 1A) is dictated by lymphoid stromal cells (Fig. 1B). Disruption of the spatial organization of immune cells within the lymph node impairs the generation of adaptive immunity [21–25], demonstrating the importance of leucocyte distribution and returning to the venous system [2–4].

The entry and exit of immune cells to the lymph node are controlled by the endothelial cells. Blood endothelial cells support lymphocyte entry to the lymph node from the blood. This largely occurs via high endothelial venules (HEVs), a specialized post-capillary venous swelling that promotes lymphocyte extravasation [5] and are largely located in the T cell paracortex (Fig. 1A). Lymphatic endothelial cells surround and penetrate the lymph node, promoting recruitment of immune cells from the lymph into the lymph node and also form the lymphatic sinuses, which facilitate lymphocyte egress [6]. While blood and lymphatic endothelial cells are essential regulators of immune cell ingress and egress, respectively, this review will focus on the role of lymphoid stromal cells in driving GC responses.

Lymphoid stromal cells comprise a number of distinct, but related [29, 30], subsets that can be characterized based on their location, cell surface phenotype and function within the lymph node (Table 1). The major subset of lymphoid stromal cells are fibroblastic reticular cells (FRCs), a heterogeneous population of cells that are found in the LN paracortex and medulla (Fig. 1B). FRCs are a major source of the homeostatic chemokines, C-C chemokine ligand (CCL)19 and CCL21, which promote leucocyte migration and localization, as well as interleukin (IL)-7, an important survival signal for naïve T and B cells [7, 31–34]. FRCs also contribute to the maintenance of peripheral T cell tolerance through the expression of major histocompatibility (MHC) molecules [35–37] and the suppression of T cell proliferation via a variety of secreted molecules [38–43]. FRCs also support other lymphoid stromal cells within the lymph node, maintaining the
A number of recent studies have broadened our understanding of the types of FRCs and their relationships to one another through single-cell RNA sequencing [46, 47]. FRCs can be divided, based on their location and/or function, into T cell zone reticular cells (TRCs) [47], T:B reticular cells (TBRCs) [46], C-X-C chemokine ligand (CXCL)13^+ and CXCL13^− interfollicular reticular cells (IFRCs) [46, 47], deep cortex reticular cells (DRCs) [48], medullary reticular cells (medRCs) [49] and B zone reticular cells (BRCs) [46] (Fig. 1B; Table 1). TRCs are found in the T cell-rich paracortical regions, while TBRCs and IFRCs span the T:B border and regions between B cell follicles, respectively [47] (Fig. 1B). TRCs can be further divided into Ccl19^lo and Ccl19^hi subsets, based on the relative levels of Ccl19 detected by single-cell RNA sequencing [47], and Ccl19^lo TRCs seem to be synonymous with TBRCs [46]. TRCs dictate T cell and DC residence in the T zone through the expression of CXCL19/21 [32, 50], while TBRCs and IFRCs additionally express B cell activating factor (BAFF) and IL-7, which promote B and T cell homeostasis [26, 32]. DRCs line the deep peripheral cortex between the T zone and the medulla, express CXCL12 and CCL21, and are thought to promote B cell localization to the T zone-medulla border [48]. MedRCs are thought to be important in regulating plasma cell survival and egress from the lymph node through cellular contact and production of BAFF and IL-6 [49].

BRCs have recently been defined by their expression of CXCL13 [46], and can be divided into five subsets based on their location and function within the follicle or GC: follicular DCs (FDCs) [51], CXCL12-expressing reticular cells (CRCs) [52], CXCL13^+ IFRCs (described above [46, 47]) and marginal reticular cells (MRCs) [53] (Fig. 1B; Table 1). FDCs are the major—and most well-described—BRC subset, owing to their location within the central follicle, high expression of CXCL13, and key roles in supporting GC function [54, 55]. CRCs were originally defined by their expression of CXCL12 [52], and their function outside of a migratory nexus is yet to be fully understood. FDCs and CRCs form a continuous network across the central follicle (and GC), although they differ in their topology. FDCs are characterized by branched, interconnecting extensions, while CRCs have more variable morphology, with both open and closed structures that create networks of low cellular density [56]. Beneath the subcapsular sinus, two populations of BRCs that express Receptor activator of nuclear factor kappa-B ligand (RANKL, encoded by Tnfsf11) can be defined based on expression of mucosal addressin cell adhesion molecule (MAdCAM)-1 and their location. Those residing between B cell follicles have been called IFRCs (MAdCAM-1^− RANKL^−); these CXCL13^+ IFRCs are largely found adjacent the subcapsular sinus [46], while CXCL13^− IFRCs, described above, penetrate deeper into the interfollicular region, where they are phenotypically similar to TBRCs [46, 47]. MAdCAM-1^− RANKL^+ MRCs span the B cell follicle beneath the subcapsular sinus [46, 53, 57], where they maintain innate lymphoid cells and macrophages [58, 59], and promote B cell survival through CXCL12 and IL-7 production [53, 57]. The population of reticular cells situated at the junction of the T cell zone and the follicle (Fig. 1B) have been variably been defined as TBRCs [46], Ccl19^lo TRCs [47] or BAFF-producing FRCs [26]. Perhaps unexpectedly given their location and proposed function, TBRCs are transcriptionally similar to both TRCs and BRCs.

Figure 1: Roadmap of lymphoid stromal cells and their distribution across the lymph node. (A) The lymph node is divided into a number of substructures that house specific types of lymphocytes. (B) The compartmentalization of immune cells within the lymph node is controlled by different lymphoid stromal cells, defined by location and/or gene expression profile. The medulla is supported by medRCs. In the paracortex, TRCs are the major population and are found within the T cell zone. The region between the paracortex and the medulla is supported by DRCs. The border between the T cell zone and B follicle is populated by TBRCs, while the space between B cell follicles is populated by IFRCs, which can be CXCL13^+ or CXCL13^−. CXCL13^− IFRCs are likely synonymous with TBRCs. The B follicle is supported by FDCs and CRCs, and these same cells populate the GC light and dark zones, respectively. The region between the B follicle and the subcapsular sinus is supported by MRCs, which are distinct to the CXCL13^+ IFRCs that line the subcapsular sinus between follicles. Finally, perivascular cells (PvCs) wrap around capillaries, and are important for supporting HEVs.
Location	Key markers	Secreted factors	Functions
FRC TRC	Pdpn, PDGFR_a, PDGFR_b, Vimentin, desmin, ER-TR7, BP3 (CD157)	CCL19, CCL21, IL-7, VEGF	Structural support, conduit formation, T cell and DC migration and localization, control of lymph node expansion
DRC	Pdpn, PDGFR_a, PDGFR_b, desmin, ER-TR7	CXCL12, CCL21	B-cell localization
medRC	Pdpn, PDGFR_a, PDGFR_b, desmin, ER-TR7	BAFF, IL-6, APRIL CXCL12	Plasma cell migration and survival, lymphocyte egress
TBRC	Pdpn, PDGFR_a, desmin, ER-TR7	CCL19, CCL21, CXCL13, BAFF, CXCL12	T:B colocalization, T and B cell survival
BRC FDC	Pdpn, desmin, CR1/2 (CD21/35), FCγRII (CD32), FcRRII (CD23)	CXCL13, BAFF	Antigen capture and display, (GC) B cell migration and survival, Tfh cell and Tfr cell localization, light zone support
CRC	Pdpn, PDGFR_a, desmin	CXCL12	GC B cell migration, dark zone support
MRC	Pdpn, PDGFR_a, PDGFR_b, desmin, MAdCAM-1, RANKL, ER-TR7	CXCL13, IL-7	FDC precursor, structural support, B cell, macrophage and innate lymphoid cell survival and localization
IFRC	Pdpn, PDGFR_a, PDGFR_b, desmin, RANKL, ER-TR7	BAFF, IL-7, CXCL13	Innate lymphoid cell, T cell and B cell localization and survival
PvC	PDGFR_b, αsMA, ITGA7	CCL19, CCL21	HEV support, TRC and BRC progenitor
glycosaminoglycans [62], although this is not an absolute requirement. CXCL13, for example, can be cleaved by cathepsin B to produce a soluble form of CXCL13 that is essential for the localization of B cells to the follicle [63].

The localization of T and B cells to their respective zones is important for them to encounter antigens and thus initiate an immune response. CD4+ T cells recognize antigen presented in the context of class II MHC by DCs [64], and these cells are brought together in the T cell zone by their mutual expression of CCR7 [65–67]. DCs bearing antigen enter the lymph node via afferent lymph, moving across the subcapsular sinus floor and into the T cell zone, migrating along FRC fibres in response to the CCL19/21 gradient. DC migration and localization within the lymph node, and by extension their ability to find and activate T cells, is enhanced by their expression of the C-type lectin receptor CLEC-2, which binds to podoplanin, a membrane glycoprotein expressed by FRCs [31]. CLEC-2-podoplanin interactions also play a key role in the expansion of the lymph node during an immune response. Physical expansion of the lymph node increases the pool of T and B cells inside the lymph node, increasing probability that a T or B cell that can recognize the antigen will be able to do so, as well as increasing the diversity of T and B cells responding to the immune challenge. Initially, activated DCs expressing high levels of CLEC-2 enter the lymph node and migrate to the T cell zone; the interaction between CLEC-2 and podoplanin inhibits RhoA and increases Rac1 activity in FRCs [68]. Because podoplanin-RhoA controls FRC contractility, CLEC-2 binding causes FRCs to relax their cytoskeleton and stretch, thus creating physical space for lymphocytes [68, 69]. This ‘trapping’ of lymphocytes—alongside signals from activated DCs and/or inflammation—triggers the proliferation of FRCs, which expand to support the increased cellularity [70–73]. FRCs also undergo transcriptional and phenotypic changes during immunization that support the development of immune responses [33, 72]. FRCs upregulate cell surface markers, such as podoplanin, alpha smooth-muscle actin and MadCAM-1 [70, 72, 73], and increase their deposition of extracellular matrix to maintain conduit integrity, which is disrupted after immunization [20]. While the factors that regulate FRC expansion after immune challenge are still being unravelled, both CLEC-2 [20, 68, 69] and lymphoxygenin-beta receptor (LTβR) [29, 74] are known to be important regulators of the FRC response to immune challenge.

Unlike T cells, B cells recognize antigen in its native form, and this can be either soluble or membrane bound. Small soluble antigens are carried into the follicle via lymph, accessing the follicle directly through gaps in the subcapsular sinus floor [75] or via conduits [76]. Larger, particulate antigens are shuttled into the follicle on the surface of subcapsular sinus macrophages [77–79], which can be passed to FDCs, sometimes via non-cognate B cells [80]. FDCs do not recognize free antigen, rather they acquire antigen in the form of immune complexes, which they bind via complement (C1R or C1R) and Fc (FcRνRIIB) receptors. Immune complexes are not processed by FDCs, instead they are recycled to the cell surface and displayed intact [81]. FDCs display opsonized antigen on CR1/2 and/or FcRνRIIB, and the expression of these receptors by FDCs is central to their ability to support the GC [82, 83].

Following activation with cognate antigen, T and B cells must interact at the interface of the T and B cell zones in order to enter the GC [84–86]. To achieve this, T and B cells alter their chemokine receptor profile, acquiring expression of CXCR5 [87] and CCR7 [88, 89], respectively. CXCR5 “CCR7+” cells are drawn towards both the T and B cell zones, in response to CCL19/21 and CXCL13 gradients, placing them at the T:B border. This positioning is reinforced by expression of the Epstein-Barr virus-induced gene 2 (EBI2), a receptor for oxysterol ligands, such as 7α,25-dihydroxycholesterol (7α,25-OHC), that is upregulated by T and B cells after activation [90–94]. The enzyme that converts cholesterol into 7α,25-OHC is expressed by lymph node stromal cells outside the B cell follicle [91, 95], with the highest expression observed in TBRcs and MRCs [47]. The 7α,25-OHC gradient forms due to active degradation of 7α,25-OHC by TRCs [96], creating a region of high 7α,25-OHC concentration at the T:B border. Thus, the creation of chemokine gradients by lymphoid stromal cells, combined with modulation of chemokine receptors ligands by immune cells, promotes retention of activated T and B cells at the T:B border (Fig. 2A), facilitating productive T:B interactions that are essential for GC formation.

GUIDANCE THROUGH THE GC ROUNDABOUT

Following a positive interaction, T and B cells downregulate expression of CCR7 and EBI2 and retain expression of CXCR5 [97], promoting their movement towards CXCL13-producing BRCs within the B cell follicle. Once in the follicle, T and B cells upregulate expression of Sphininosine-1 phosphate (SIP) receptor-2 (SIPR2), which promotes their retention within the follicle through repulsion from SIP [98, 99]. SIP is produced by lymphatic endothelial cells within the lymphatic sinus and diffuses through the lymph node [100]. Its degradation by follicular B cells [98, 99] results in a low concentration of SIP in the follicle, and this promotes retention of Tfh and GC B cells. This is reinforced by a second chemorepulsive receptor, P2RY8. The ligand for this receptor, S-geranylgeranyl-1-glutathione (GGG), is detectable at high concentration in the liver and bile, and at the nanomolar level in lymphoid tissue [101]. FDCs express gamma-glutamyltransferase-5, an enzyme that metabolizes GGG into an inactive form, thus creating a paucity of GGG within the GC and promoting the confinement of Tfh and GC B cells within the GC [101].

The continual interactions between Tfh and B cells promote the proliferation of B cells and expansion of the B cell follicle, leading to development of the GC. The GC is divided into two main compartments, termed as the light zone and the dark zone, which are typically situated adjacent to the subcapsular sinus and the T cell zone, respectively (Fig. 2). While the lymphoid stromal cells that support the GC are present in the primary follicle, albeit at low number, the formation of the GC is accompanied by structural remodelling of BRCs [46] that allows the development of the GC, including the light and dark zones. This is chiefly driven by expansion of FDCs and CRCs, which support the light and dark zones, respectively, and is accompanied by topological changes to these lymphoid stromal cell networks [46]. The kinetics of FDC and CRC expansion have not been well explored, although there is evidence that FDCs do not themselves proliferate; rather MRCs proliferate and then differentiate into FDCs as they penetrate deeper into the follicle [102]. While BRCs do not significantly alter their defining transcriptional profiles when they form a GC—their functions are largely pre-defined in primary B cell follicles [46]—FDCs are known to respond to immune challenge. FDCs upregulate expression of cytokines and adhesion molecules, with Toll-like receptor (TLR)-4 [103, 104] and LTβR [105] directly implicated in their activation. The response of BRCs to immunization is reflected in small transcriptional changes that largely reinforce existing functional roles: FDCs upregulate genes associated with chemotaxis, B cell survival and antigen capture and presentation, while CRCs
increase expression of genes associated with chemoattraction, cell adhesion and extracellular matrix remodelling \[46, 103\].

The positioning of immune cells within the GC, and their ability to move between GC compartments, is central to GC function. GC B cells enter the GC as centroblasts to the dark zone, where they somatically hypermutate their BCRs and proliferate \[106\]. They then move to the GC light zone, where they are termed as centrocytes, and acquire antigen, which they process and present to Tfh cells. A productive interaction promotes centrocyte survival, and a timed cycle prompts their return to the dark zone \[52, 107\], where GC B cells restart the process.

Repeated iterations of somatic hypermutation and selection together lead to affinity maturation, and GC B cells with high affinity class-switched BCRs leave the GC as memory B cells or plasma cells \[106\]. The migration of immune cells is controlled by two migration gradients, comprised of CXCL13 and CXCL12, which are generated by the stromal cells that populate the light and dark zones, respectively (Fig. 2B and C). While all BRCs express CXCL13, FDCs have the highest levels of Cxcl13 transcripts \[46, 47\], suggesting FDCs are a key source for this chemokine in the GC, while CXCL12 is produced by CRCs in the GC dark zone \[52\]. Centrocytes downregulate Cxcr4, promoting their migration towards the FDCs in the light zone, while centroblasts are Cxcr4hi, which drives their migration towards the dark zone \[52, 108\] (Fig 2C). Abrogation of dark zone access through conditional deletion of Cxcr4 in GC B cells diminishes the rate of somatic hypermutation and reduces GC B cell ‘fitness’ \[52\], demonstrating that movement between the light and dark zones is important for optimal GC responses.

Lymphoid stromal cells also provide localization and differentiation cues to GC-resident T cells. Tfh cells localize near FDCs in the light zone of the GC due to their expression of Cxcr5, Ebi2 and S1pr2 \[94, 97, 99, 109, 110\], and are driven by CCR6-expressing BRCs that promote Tfh cell localization within the light zone \[111\]. Early in the GC response, IL-21-expressing Tfh cells that have higher levels of Cxcr4 are located closer to the dark zone, where they promote the development of high affinity B cell clones \[111\]. Later in the response, IL-4-expressing Tfh cells, which have lower Cxcr4 expression, are located further from the dark zone where they promote plasma cell differentiation \[111\] (Fig. 2B) in line with these findings, conditional deletion of Cxcr4 in lymphoid stromal cells disrupts light and dark zone separation, essentially dismantling the dark zone, resulting in the distribution of centrocytes, centroblasts and Tfh cells across the GC \[46\]. The ultimate outcome is a reduced humoral response, characterized by impaired somatic hypermutation, class switch recombination, and Tfh cell-mediated selection. Lymphoid stromal cells also influence Tfh cell differentiation. BRCs, in particular, FDCs and MRCs, express Ccr7 ligands that promote Tfh cell differentiation (Fig. 2A), while the expression of adhesion molecules by cultured FRC-like cells also promotes Tfh cell differentiation in vitro \[112, 113\]. In addition to their role in supporting Tfh cells, CXCL13-expressing BRCs may also contribute to the positioning of Tfr cells via their expression of Cxcr5 \[114, 115\]. CXCR5 is not, however, the sole dictator of Tfr cell localization \[116\], and the exact lymphoid stromal cell responsible for Tfr cell positioning is yet to be defined.

Lymphoid stromal cells also secrete cytokines that promote B cell survival and differentiation in the GC. BAFF production by BRCs promotes B cell survival in the primary follicle \[26\], and GC FDCs have increased expression of BAFF, which promotes the survival of GC B cells \[117\] (Fig 2A). FDC activation during GC formation results in the upregulation of a number of cytokines that help drive the GC, including IL-6, which promotes somatic hypermutation and antibody production \[118\] and the differentiation of plasma cells \[119\]; and IL-15, which promotes B cell proliferation in the GC \[120\] (Fig 2A). Immunization also induces CCR6 to upregulate expression of Il6 \[46\] (Fig 2A), which may also contribute to plasma cell differentiation, although this is yet to be directly tested.

FDCs drive GC evolution through their role as a long-lived depot for antigen (Fig 2C). GC B cells acquire antigen from FDCs in order to process and present this to Tfh cells; B cells with
higher affinity B cell receptors will acquire more antigen and receive more Th cell help, thus antigen display on FDCs is central to affinity maturation. FDCs can retain antigen for long periods of time, and this can be influenced by the size and structure of the antigen. For example, large nanoparticles (>50nm) are retained on FDC dendrites for up to five weeks in a Cr2- and C3-dependent manner, while smaller nanoparticles (5–15 nm) are cleared by FDCs within 48 h [121]. Enhanced antigen retention directly correlates with an increase in GC size and an enhanced antibody response [121], suggesting that larger particles—such as immune complexes—may promote the GC response via prolonged association with FDCs. The acquisition of antigen by B cells is also enhanced by adhesion molecules, which are upregulated on activated FDCs. LFA-1: ICAM interactions between B cells and FDCs, for example, promote GC B cell survival, synapse formation and antigen acquisition [122–126]. Similarly, the upregulation of VCAM, MadCAM-1 and CD44 by FDCs also promotes GC B cell binding to FDCs [127] (Fig. 2C). FDCs can also support signalling in B cells through expression of coreceptors. Examples include C3b fragments, such as iC3b, C3d and C3dg, which bind to CD21 expressed by B cells and lower the threshold for B cell activation [128–130], and C4d binding protein, which potentiates B cell signalling via CD40 ligation [131, 132].

In the process of acquiring antigen from FDCs, a physical force is exerted upon both the B cell and the FDC [133–136] and this contributes to affinity discrimination by GC B cells [137]—an important step in the affinity maturation process. GC B cells pull more strongly on the antigen than naïve B cells [136]; combined with the punctate contacts GC B cells make with FDCs [138], this necessitates stronger resistance by FDCs to this mechanical force [139]. This is reflected in the FDC transcriptome, where there is an evidence of expression of genes associated with cellular stiffness [46]. Given that B cells receive stronger signalling when antigen is displayed on a stiffer surface [140], the unique biophysical properties of FDCs may be essential to their ability to promote affinity maturation in the GC.

AGEING—RUINED ROADS?

It is well known that ageing negatively impacts on the GC response, in both infection and vaccination settings. The GC response is smaller, as measured by the number of individual GCs and their size [141], and the quality and diversity of the GC declines with advancing age [142, 143]. Mechanistically, the age-associated diminution of the GC response has been linked to immune cell-intrinsic and -extrinsic effects. While the B cell response is smaller in aged lymph nodes, this is not to an intrinsic effect of age on the B cells themselves. Aged B cells, when adoptively transferred into younger adult hosts, are able to contribute to the GC response equivalently to B cells derived from younger adult mice [144]. Ageing does, however, severely impact on the capacity of T cells to support GC responses, where the magnitude of Th cell response is reduced [145, 146], and their ability to support GC formation [147] and B cell selection [144] is impaired by age. T cell age is not the sole driver of poor GC responses in ageing, and studies have shown that CD4+ T cells from younger adult mice are unable to support GC responses when transferred into CD4+ T cell-depleted aged mice [148], suggesting the aged lymph node is incapable of supporting T cell responses.

The ageing process significantly alters the structure of the lymph node. The lymph node becomes smaller and loses cellularity with advancing age [141], with depletion of naïve T cells the most striking cellular change, as the medulla, cortex and paracortex all reduce in volume with advancing age [141, 149]. Aged lymph nodes also exhibit signs of fibrosis, lipomatosis and hyalinization [141, 149–151], and these degenerative changes have been implicated in impaired filtration of lymph, potentially increasing susceptibility to infection [152]. Ageing is associated with extensive modification of lymph node structure, highly suggestive that ageing impacts on the ability of stromal cells to support lymph node homeostasis. The contribution of the microenvironment to age-associated immune dysfunction has been directly demonstrated using heterochronic parabiosis, a system in which immune cells are shared across the parabionts, while the lymphoid stromal cells retain the age of the host [153]. In this setting, immune cells are less able to seed the aged lymph node, regardless of immune cell age, and this is not rejuvenated by exposure to circulating factors or immune cells from younger adult mice [154]. Lymphoid stromal cells are not decreased in number in aged lymph nodes [149], although a small reduction in FRCs has been documented in aged spleens [155], suggesting age impairs FRC function. Indeed, aged FRCs have reduced expression of CCL19/21, which limits T cell recruitment to the lymph node and impairs their survival [148, 156, 157]. CXCL13 expression by FDCs is also reduced in aged lymph nodes [158, 159], limiting B cell immigration and localization within aged lymphoid tissue. Disruption of the stromal-derived chemokine gradients in aged lymphoid tissues leads to loss of T:B segregation [160, 161] and impaired immune responses.

The response of lymphoid stromal cells to immune challenge is also impaired by ageing. FRCs respond poorly to infection, with a diminished and delayed proliferative response [152]. In the context of the GC, ageing diminishes the capacity of FDCs to support B cell responses, and this is independent of T and B cell age [163]. The aged FDC network expands poorly in response to immunization, produces less CXCL13 [158, 159], and has lower expression of Fc receptors and costimulatory molecules, such as FDC-M2 (complement component C4) [164, 165]. This leads to a reduced capacity for FDCs to capture and retain antigen [158, 166], and this is compounded by the fact that antigen is also unable to access the FDC network efficiently in aged mouse lymph nodes [167]. These studies demonstrate that age diminishes the capacity of lymphoid stromal cells to support lymphoid tissue homeostasis, as well as their ability to respond to immunization and support GC formation, potentially contributing to the decline in immune function that is associated with advancing age. Outside of these observations, little is known about how ageing affects lymphoid stromal cells, or their response to immunization. Because restructuring of the lymphoid stromal cell network is important for the development of the GC response [46], understanding how these processes are altered in ageing will help unravel the many factors that contribute to diminished vaccine responses in older persons. Ultimately, this will lead to more efficacious vaccines for those at risk of morbidity and mortality from vaccine-preventable infections.

CONCLUDING REMARKS

The GC response is a central tenet of protective immunity, and its initiation and maintenance are dependent upon the expansion and restructuring of the lymphoid stromal cell network. Lymphoid stromal cells secrete homeostatic chemokines that dictate immune cell localization and provide essential survival cues for immune cells. Lymphoid stromal cells are far from
passive participants in the immune response; however, as they dynamically respond to immune challenge, expanding and topologically remodelling to support formation of the GC niche. The essential contribution of lymphoid stromal cells to the GC is clear, and the development of genetic tools that specifically target lymphoid stromal cells and allow their manipulation [74, 168] have led to major advances in our understanding of the complexity of these cell types. Future research that aims to unravel the cellular and molecular mechanisms that underpin stromal cell functions will lead to a better understanding of these cells. The potential to the stromal highway to promote, or limit, immune responses is an exciting therapeutic avenue.

CONFLICT OF INTEREST STATEMENT
The authors declare no conflict.

DATA AVAILABILITY STATEMENT
No new data were generated or analysed in this review.

REFERENCES
1. Tilney NL. Patterns of lymphatic drainage in the adult laboratory rat. J Anat 1971;109(Pt 3):369–83.
2. Gretz JE, Anderson AO, Shaw S. Cords, channels, corridors and conduits: critical architectural elements facilitating cell interactions in the lymph node cortex. Immunol Rev 1997;156:11–24.
3. Gretz JE, Kaldjian EP, Anderson AO et al. Sophisticated strategies for information encounter in the lymph node: the reticular network as a conduit of soluble information and a highway for cell traffic. J Immunol 1996;157(2):495–9.
4. Sainte-Marie G, Peng FS, Belisle C. Overall architecture and function of lymph flow in the rat lymph node. Am J Anat 1982;164(4):275–309.
5. Ager A. High endothelial venules and other blood vessels: critical regulators of lymphoid organ development and function. Front Immunol 2017;8:45.
6. Girard JP, Mousson C, Forster R. HEVs, lymphatics and homeostatic immune cell trafficking in lymph nodes. Nat Rev Immunol 2012;12(11):762–73.
7. Bajenoff M, Egen JC, Koo LY et al. Stromal cell networks regulate lymphocyte entry, migration, and territoriality in lymph nodes. Immunity 2006;25(6):989–1001.
8. Bajenoff M, Germain RN. B-cell follicle development remodels the conduit system and allows soluble antigen delivery to follicular dendritic cells. Blood 2009;114(24):4989–97.
9. Katakai T, Haria T, Sugai M et al. Lymph node fibroblastic reticular cells construct the stromal reticulum via contact with lymphocytes. J Exp Med 2004;200(6):783–95.
10. Anderson AO, Anderson ND. Studies on the structure and permeability of the microvasculature in normal rat lymph nodes. Am J Pathol 1975;80(3):387–418.
11. Yoshida T, Takaya K. The enveloping of intercellular collagenous fibrils by reticular cell processes in postnatal development of rat lymph nodes. Arch Histol Cytol 1992;55(4):351–9.
12. Lokmic Z, Lammermann T, Sixt M et al. The extracellular matrix of the spleen as a potential organizer of immune cell compartments. Semin Immunol 2008;20(1):4–13.
13. Li L, Shirley MW, Zhang T et al. The lymph node stromal laminin alpha5 shapes alloimmunity. J Clin Invest 2020;130(5):2602–19.
14. Warren KJ, Iwami D, Harris DG et al. Laminins affect T cell trafficking and allograft fate. J Clin Invest 2014;124(5):2204–18.
15. Song J, Lokmic Z, Lammermann T et al. Extracellular matrix of secondary lymphoid organs impacts on B-cell fate and survival. Proc Natl Acad Sci USA 2013;110(31):E2915–24.
16. Sixt M, Kanazawa N, Selg M et al. The conduit system transports soluble antigens from the afferent lymph to resident dendritic cells in the T cell area of the lymph node. Immunity 2005;22(1):19–29.
17. Gretz JE, Norbury CC, Anderson AO et al. Lymph-borne chemokines and other low molecular weight molecules reach high endothelial venules via specialized conduits while a functional barrier limits access to the lymphocyte microenvironments in lymph node cortex. J Exp Med 2000;192(10):1425–40.
18. Nolte MA, Belien JA, Schadee-Eestermans I et al. A conduit system distributes chemokines and small blood-borne molecules through the splenic white pulp. J Exp Med 2003;198(3):505–12.
19. Sobocinski GP, Toy K, Bobrowski WF et al. Ultrastructural localization of extracellular matrix proteins of the lymph node cortex: evidence supporting the reticular network as a pathway for lymphocyte migration. BMC Immunol 2010;11:42.
20. Martinez VG, Pankova V, Krasny L et al. Fibroblastic reticular cells control conduit matrix deposition during lymph node expansion. Cell Rep 2019;28(9):2810–22 e5.
21. Benedict CA, De Trecz C, Schneider K et al. Specific remodeling of splenic architecture by cytomegalovirus. PLoS Pathog 2006;2(3):e16.
22. Cadman ET, Abdallah AY, Voisine C et al. Alterations of splenic architecture in malaria are induced independently of Toll-like receptors 2, 4, and 9 or MyD88 and may affect antibody affinity. Infect Immun 2008;76(9):3924–31.
23. Mueller SN, Hosiawa-Meagher KA, Konieczny BT et al. Regulation of homeostatic chemokine expression and cell trafficking during immune responses. Science 2007;317(5838):670–4.
24. Mueller SN, Matloubian M, Clements DM et al. Viral targeting of fibroblastic reticular cells contributes to immunosuppression and persistence during chronic infection. Proc Natl Acad Sci USA 2007;104(39):15430–5.
25. St John AL, Abraham SN. Salmonella disrupts lymph node architecture by TLR4-mediated suppression of homeostatic chemokines. Nat Med 2009;15(11):1259–65.
26. Cremasco V, Woodruff MC, Onder L et al. B cell homeostasis and follicle confines are governed by fibroblastic reticular cells. Nat Immunol 2014;15(10):973–81.
27. Denton AE, Roberts EW, Linterman MA et al. Fibroblastic reticular cells of the lymph node are required for retention of resting but not activated CD8þ T cells. Proc Natl Acad Sci USA 2014;111(33):12139–44.
28. Mignonnet C, Mondor I, Jorquera A et al. Identification of a new stromal cell type involved in the regulation of inflamed B cell follicles. PLoS Biol 2013;11(10):e1001672.
29. Cheng HW, Onder L, Novkovic M et al. Embryonic FAP(+) lymphoid tissue organizer cells generate the reticular network of adult lymph nodes. J Exp Med 2019;216(10):2242–52.
30. Acton SE, Astarita JL, Malhotra D et al. Podoplanin-rich stromal networks induce dendritic cell motility via activation of
the C-type lectin receptor CLEC-2. *Immunity* 2012;37(2): 276–89.

32. Link A, Vogt TK, Favre S et al. Fibroblastic reticular cells in lymph nodes regulate the homeostasis of naive T cells. Nat Immunol 2007;8(11):1255–65.

33. Malhotra D, Fletcher AL, Astarita J et al. Transcriptional profiling of stroma from inflamed and resting lymph nodes defines immunological hallmarks. Nat Immunol 2012;13(5): 499–510.

34. Schumann K, Lammermann T, Bruckner M et al. Immobilized chemokine fields and soluble chemokine gradients cooperatively shape migration patterns of dendritic cells. *Immunity* 2010;32(5):703–13.

35. Baptista AP, Roozendaal R, Reijmers RM et al. Lymph node stromal cells constrain immunity via MHC class II self-antigen presentation. *Elife* 2014;3:e04433.

36. Dubrot J, Duraes FV, Potin L et al. Lymph node stromal cells acquire peptide-MHCII complexes from dendritic cells and induce antigen-specific CD(+) T cell tolerance. *J Exp Med* 2014;211(6):1153–66.

37. Fletcher AL, Lukacs-Kornek V, Reynoso ED et al. Lymph node fibroblastic reticular cells directly present peripheral tissue antigen under steady-state and inflammatory conditions. *J Exp Med* 2010;207(4):689–97.

38. Khan O, Headley M, Gerard A et al. Follicular dendritic cells help establish follicle identity and promote B cell retention in germinal centers. *J Exp Med* 2011;208(12):2497–510.

39. Knoblich K, Cruz Migoni S, Siew SM et al. The human lymph node microenvironment unilaterally regulates T-cell activation and differentiation. *PloS Biol* 2018;16(9):e2005046.

40. Lukacs-Kornek V, Malhotra D, Fletcher AL et al. Regulated release of nitric oxide by nonhematopoietic stroma controls expansion of the activated T cell pool in lymph nodes. *Nat Immunol* 2011;12(11):1096–104.

41. Schaeuble K, Cannelle H, Fu J et al. Attenuation of chronic antiviral T-cell responses through constitutive COX2-dependent prostanoid synthesis by lymph node fibroblasts. *PloS Biol* 2019;17(7):e3000072.

42. Siegert S, Huang HY, Yang CY et al. Fibroblastic reticular cells from lymph nodes attenuate T cell expansion by producing nitric oxide. *PloS One* 2011;6(11):e26138.

43. Yu M, Guo G, Zhang X et al. Fibroblastic reticular cells of the lymphoid tissues modulate T cell activation threshold during homeostasis via hyperactive cyclooxygenase-2/prostaglandin E2 axis. *Sci Rep* 2017;7(1):3350.

44. Herzog BH, Fu J, Wilson SJ et al. Podoplanin maintains high endothelial venule integrity by interacting with platelet CLEC-2. *Nature* 2013;502(7469):105–9.

45. Yamazaki T, Mukouyama YS. Tissue specific origin, development, and pathological perspectives of pericytes. *Front Cardiovasc Med* 2018;5:78.

46. Pikor NB, Morbe U, Lutge M et al. Remodeling of light and dark zone follicular dendritic cells governs germinal center responses. *Nat Immunol* 2020;21(6):649–59.

47. Rodda LB, Lu E, Bennett ML et al. Single-cell RNA sequencing of lymph node stromal cells reveals niche-associated heterogeneity. *Immunity* 2018;48(5):1014–28 e6.

48. Takeuchi A, Ozawa M, Kanda Y et al. A distinct subset of fibroblastic stromal cells constitutes the cortex-medulla boundary subcompartment of the lymph node. *Front Immunol* 2018;9:2196.

49. Huang HY, Rivas-Caicedo A, Renevey F et al. Identification of a new subset of lymph node stromal cells involved in regulating plasma cell homeostasis. *Proc Natl Acad Sci USA* 2018; 115(29):E6826–35.

50. Luther SA, Bidgol A, Hargreaves DC et al. Differing activities of homeostatic chemokines CCL19, CCL21, and CXCL12 in lymphocyte and dendritic cell recruitment and lymphoid neogenesis. *J Immunol* 2002;169(1):424–33.

51. Mitchell J, Abbot A. Ultrastructure of the antigen-retaining reticulum of lymph node follicles as shown by high-resolution autoradiography. *Nature* 1965;208(5009):500–2.

52. Bannard O, Horton RM, Allen CD et al. Germinall center centroblasts transition to a centrocyte phenotype according to a timed program and depend on the dark zone for effective selection. *Immunology* 2013;39(5):912–24.

53. Katakai T, Suto H, Sugai M et al. Organizer-like reticular stromal cell layer common to adult secondary lymphoid organs. *J Immunol* 2008;181(9):6189–200.

54. Ansel KM, Ngo VN, Hyman PL et al. A chemokine-driven positive feedback loop organizes lymphoid follicles. *Nature* 2000;406(6793):309–14.

55. Wang X, Cho B, Suzuki K et al. Follicular dendritic cells help establish follicle identity and promote B cell retention in germinal centers. *J Exp Med* 2011;208(12):2497–510.

56. Rodda LB, Bannard O, Ludewig B et al. Phenotypic and morphological properties of germinal center dark zone Cxcl12-expressing reticular cells. *J Immunol* 2015;195(10):4781–91.

57. Katakai T. Marginal reticular cells: a stromal subset directly descended from the lymphoid tissue organizer. *Front Immunol* 2012;3:200.

58. Camara A, Cordeiro OG, Allouf F et al. Lymph node mesenchymal and endothelial stromal cells cooperate via the RANK-RANKL cytokine axis to shape the sinusoidal macrophage niche. *Immunity* 2019;50(6):1467–81 e6.

59. Hoorweg K, Narang P, Li Z et al. A stromal cell niche for human and mouse type 3 innate lymphoid cells. *J Immunol* 2015;195(9):4257–63.

60. Gunn MD, Ngo VN, Ansel KM et al. A B-cell-homing chemokine made in lymphoid follicles activates Burkitt’s lymphoma receptor-1. *Nature* 1998;391(6669):799–803.

61. Forster R, Davalos-Misslitz AC, Rot A. CCR7 and its ligands: balancing immunity and tolerance. *Nat Rev Immunol* 2008;8(5):362–71.

62. Johnson Z, Proudfoot AE, Handel TM. Interaction of chemokines and glycosaminoglycans: a new twist in the regulation of chemokine function with opportunities for therapeutic intervention. *Cytokine Growth Factor Rev* 2005;16(6):625–36.

63. Cosgrove J, Novkovic M, Albrecht S et al. B cell zone reticular cell microenvironments shape CXCL13 gradient formation. *Nat Commun* 2020;11(1):3677.

64. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. *Nature* 1998;392(6673):245–52.

65. Forster R, Schuel B, Breitfeld D et al. CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. *Cell* 1999;99(1):23–33.

66. Nakano H, Mori S, Yonekawa H et al. A novel mutant gene involved in T-lymphocyte-specific homing into peripheral lymphoid organs on mouse chromosome 4. *Blood* 1998;91(8): 2886–95.

67. Yanagihara S, Komura E, Nagafune J et al. Identification of a new member of dendritic cell chemokine receptor that is up-regulated upon maturation. *J Immunol* 1998;161(6):3096–102.

68. Acton SE, Farrugia AJ, Astarita JL et al. Dendritic cells control fibroblastic reticular network tension and lymph node expansion. *Nature* 2014;514(7523):498–502.

69. Astarita JL, Cremasco V, Fu J et al. The CLEC-2-podoplanin axis controls the contractility of fibroblastic reticular cells
and lymph node microarchitecture. Nat Immunol 2015;16(1): 75–84.

70. Alexandre YO, Devi S, Park SL et al. Systemic inflammation suppresses lymphoid tissue remodeling and B cell immunity during concomitant local infection. Cell Rep 2020;33(13): 108567.

71. Chyou S, Benahmed F, Chen J et al. Coordinated regulation of lymph node vascular-stromal growth first by CD11c+ cells and then by T and B cells. J Immunol 2011;187(11):5558–67.

72. Gregory JL, Walter A, Alexandre YO et al. Infection programs sustained lymphoid stromal cell responses and shapes lymph node remodeling upon secondary challenge. Cell Rep 2017;18(2):406–18.

73. Yang CY, Vogt TK, Favre S et al. Trapping of naive lymphocytes in lymph node germinal center lymph node takes place at the perimeter of follicle nodes. Nat Immunol 2011;12(6):563–71.

74. Pape KA, Catron DM, Itano AA et al. Oxysterol P2RY8 shapes humoral immune responses. Immunity 2009;31(2):259–69.

75. Phan TG, Grigorova I, Okada T et al. EBI2 augments Th cell fate by promoting interaction with IL-2-quenching dendritic cells. Nature 2016;533(7601):110–4.

76. Ansel KM, McHeyzer-Williams LJ, Ngo VN et al. In vivo-activated CD4 T cells upregulate CXC chemokine receptor 5 and reprogram their response to lymphoid chemokines. J Exp Med 1999;190(8):1123–34.

77. Okada T, Miller MJ, Parker I et al. Antigen-engaged B cells undergo chemotaxis toward the T zone and form motile conjugates with helper T cells. PLoS Biol 2005;3(6):e150.

78. Reif K, Eklund EH, Ohi L et al. Balanced responsiveness to chemooattractants from adjacent zones determines B-cell position. Nature 2002;416(6867):94–9.

79. Gatto D, Paus D, Basten A et al. Guidance of B cells by the orphan G protein-coupled receptor EBI2 shapes humoral immune responses. Immunity 2009;31(2):259–69.

80. Hannedouche S, Zhang J, Yi T et al. Oxysterols direct immune cell migration via EBI2. Nature 2011;475(7357):524–7.

81. Kelly LM, Pereira JP, Yi T et al. EBI2 guides serial movements of activated B cells and ligand activity is detectable in lymphoid and nonlymphoid tissues. J Immunol 2011;187(6): 3026–32.

82. Pereira JP, Kelly LM, Xu Y et al. EBI2 mediates B cell segregation between the outer and centre follicle. Nature 2009; 460(7259):1122–6.

83. Li J, Lu E, Yi T et al. EBI2 augments Th cell fate by promoting interaction with IL-2-quenching dendritic cells. Nature 2016;533(7601):110–4.

84. Liu C, Yang XV, Wu J et al. Oxysterols direct B-cell migration through EBI2. Nature 2011;475(7357):519–23.

85. Yi T, Wang X, Kelly LM et al. Oxysterol gradient generation by lymphoid stromal cells guides activated B cell movement during humoral responses. Immunity 2012;37(3):535–48.

86. Vinuesa CG, Linterman MA, Yu D et al. Follicular Helper T Cells. Annu Rev Immunol 2016;34:335–68.

87. Green JA, Suzuki K, Cho B et al. The sphingosine 1-phosphate receptor S1P(2) maintains the homeostasis of germinal center B cells and promotes niche confinement. Nat Immunol 2011;12(7):672–80.

88. Moriyama S, Takahashi N, Green JA et al. Sphingosine-1-phosphate receptor 2 is critical for follicular helper T cell retention in germinal centers. J Exp Med 2014;211(7):1297–305.

89. Pham TH, Baluk P, Xu Y et al. Lymphatic endothelial cell sphingosine kinase activity is required for lymphocyte egress and lymphatic patterning. J Exp Med 2010;207(1):17–27.

90. Lu E, Wolfreys FD, Muppidi JR et al. S-Geranylgeranyl-L-glutathione is a ligand for human B cell-confinement receptor P2RY8. Nature 2019;567(7747):244–248.

91. Heesters BA, Chatterjee P, Kim YA et al. Endocytosis and recycling of immune complexes by follicular dendritic cells enhances B cell antigen binding and activation. Immunity 2013;38(6):1164–75.

92. Carroll MC. The role of complement and complement receptors in induction and regulation of immunity. Annu Rev Immunol 1998;16:545–68.

93. Qin D, Wu J, Vora KA et al. Fc gamma receptor IIb on follicular dendritic cells regulates the B cell recall response. J Immunol 2000;164(2):6268–75.

94. Coffey F, Alabeyev B, Manser T. Initial clonal expansion of germinal center B cells takes place at the perimeter of follicles. Immunity 2009;30(4):599–609.

95. Qi H, Cannons JL, Klauschen F et al. SAP-controlled T-B cell interactions underlie germinal centre formation. Nature 2008;455(7214):764–9.

96. Schwickert TA, Victora GD, Fooksman DR et al. A dynamic T cell-limited checkpoint regulates affinity-dependent B cell entry into the germinal center. J Exp Med 2011;208(6):1243–52.

97. Ansel KM, McHeyzer-Williams LJ, Ngo VN et al. In vivo-activated CD4 T cells upregulate CXC chemokine receptor 5 and
108. Allen CD, Ansel KM, Low C et al. Germinal center dark and light zone organization is mediated by CXCR4 and CXCR5. Nat Immunol 2004;5(9):943–52.

109. Breitfeld D, Ohl L, Kremmer E et al. Follicular B helper T cells express CXCR chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J Exp Med 2000;192(11):1545–52.

110. Schaefer P, Willimmann K, Lang AB et al. CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function. J Exp Med 2000;192(11):1553–62.

111. Weinstein JS, Herman EI, Lainez B et al. Specific fibroblastinc niches in secondary lymphoid organs orchestrate distinct Notch-regulated immune responses. J Exp Med 2014;211(11):2265–79.

112. Misjak J, Jean R, Rodriguez S et al. Human lymphoid stromal cells contribute to polarization of follicular T cells into IL-4 secreting cells. Front Immunol 2020;11:559866.

113. Chung Y, Tanaka S, Chu F et al. Follicular regulatory T cells expressing Foxp3 and Bcl-6 suppress germinal center reactions. Nat Med 2011;17(8):983–8.

114. Batista FD, Iber D, Neuberger MS. B cells acquire antigen from target cells after synapse formation. Nature 2001;411(6836):489–94.

115. Vanderleyden J, Fra-Bido SC, Innocentin S et al. Follicular regulatory T cells can access the germinal center independently of CXCR5. Cell Rep 2020;30(3):611–9 e4.

116. Hase H, Kanno Y, Kojima M et al. BAFF/BlyS can potentiate B-cell selection with the B-cell coreceptor complex. Blood 2004;103(6):2257–65.

117. Nemazee D, Teh L, George LA et al. Plasma cell output from germinal centers is regulated by signals from Tfh and stromal cells. J Exp Med 2018;215(4):1227–43.

118. Park CS, Yoon SO, Armitage RJ et al. Follicular dendritic cells produce IL-15 that enhances germinal center B cell proliferation in membrane-bound form. J Immunol 2004;173(11):6676–83.

119. Zhang Y, Vance J, Poon W et al. Nanoparticle size influences antigen retention and presentation in lymph node follicles for humoral immunity. Nano Lett 2019;19(10):7226–35.

120. Carrasco YR, Batista FD. B-cell activation by membrane-bound antigens is facilitated by the interaction of VLA-4 with VCAM-1. EMBO J 2006;25(4):889–99.

121. Koopman G, Keehnen RM, Lindhout E et al. Adhesion of the LFA-1 (CD11a/CD18)-ICAM-1 (CD54) and the VLA-4 (CD49d)-VCAM-1 (CD106) pathways prevents apoptosis of germinal center B cells. J Immunol 1994;152(8):3760–7.

122. Koopman G, Parmentier HK, Schuurman HJ et al. Adhesion of human B cells to follicular dendritic cells involves both the lymphocyte function-associated antigen 1/intercellular adhesion molecule 1 and very late antigen 4/vascular cell adhesion molecule 1 pathways. J Exp Med 1991;173(6):1297–304.

123. Kisnorbo JS, Cinti and Denton | 11

124. Koopman G, Parmentier HK, Schuurman HJ et al. Adhesion of human B cells to follicular dendritic cells involves both the lymphocyte function-associated antigen 1/intercellular adhesion molecule 1 and very late antigen 4/vascular cell adhesion molecule 1 pathways. J Exp Med 1991;173(6):1297–304.

125. Kosco MH, Pfugfelder E, Gray D. Follicular dendritic cell-dependent adhesion and proliferation of B cells in vitro. J Immunol 1992;148(8):2331–9.

126. Wang X, Rodda LB, Bannard O et al. Integrin-mediated interactions between B cells and follicular dendritic cells influence germinal center B cell fitness. J Immunol 2014;192(10):4601–9.
146. Stebegg M, Bignon A, Hill DL et al. Rejuvenating conventional dendritic cells and T follicular helper cell formation after vaccination. Elife 2020;9:e52473.

147. Eaton SM, Burns EM, Kusser K et al. Age-related defects in CD4 T cell cognate helper function lead to reductions in humoral responses. J Exp Med 2004;200(12):1613–22.

148. Lefebvre JS, Maue AC, Eaton SM et al. The aged microenvironment contributes to the age-related functional defects of CD4 T cells in mice. Aging Cell 2012;11(5):732–40.

149. Ahmadi O, McCall JL, Stringer MD. Does senescence affect lymph node number and morphology? A systematic review. ANZ J Surg 2013;83(9):612–8.

150. Denz FA. Age changes in lymph nodes. J Pathol Bacteriol 1947;59(4):575–91.

151. Thompson HL, Smithey MJ, Surh CD et al. Functional and homeostatic impact of age-related changes in lymph node stroma. Front Immunol 2017;8:706.

152. Pan WR, Suami H, Taylor GI. Senile changes in human lymph nodes. Lymphat Res Biol 2008;6(2):77–83.

153. Conboy IM, Conboy MJ, Wagers AJ et al. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 2005;433(7027):760–4.

154. Davies JS, Thompson HL, Pulko V et al. Role of cell-intrinsic and environmental age-related changes in altered maintenance of murine T cells in lymphoid organs. J Gerontol A Biol Sci Med Sci 2018;73(8):1018–26.

155. Masters AR, Jellison ER, Puddington L et al. Attrition of T cell zone fibroblastic reticular cell number and function in aged spleens. Immunohorizons 2018;2(5):155–63.

156. Becklund BR, Purton JF, Ramsey C et al. The aged lymphoid tissue environment fails to support naive T cell homeostasis. Sci Rep 2016;6:30842.

157. Richner JM, Gnyrek GB, Govero J et al. Age-dependent cell trafficking defects in draining lymph nodes impair adaptive immunity and control of west nile virus infection. PLoS Pathog 2015;11(7):e1005027.

158. Turner VM, Mabbott NA. Structural and functional changes to lymph nodes in ageing mice. Immunity 2017;151(2):239–47.

159. Wols HA, Johnson KM, Ippolito JA et al. Migration of immature and mature B cells in the aged microenvironment. Immunology 2010;129(2):278–90.

160. Aw D, Hilliard L, Nishikawa Y et al. Disorganization of the splenic microanatomy in ageing mice. Immunology 2016;148(1):92–101.

161. Lazuardi L, Jenewein B, Wolf AM et al. Age-related loss of native T cells and dysregulation of T-cell/B-cell interactions in human lymph nodes. Immunology 2005;114(1):37–43.

162. Masters AR, Hall A, Bartley JM et al. Assessment of lymph node stromal cells as an underlying factor in age-related immune impairment. J Gerontol A Biol Sci Med Sci 2019;74(11):1734–43.

163. Aydar Y, Balogh P, Tew JG et al. Follicular dendritic cells in aging, a “bottle-neck” in the humoral immune response. Ageing Res Rev 2004;3(1):15–29.

164. Aydar Y, Balogh P, Tew JG et al. Age-related depression of FDC accessory functions and CD21 ligand-mediated repair of co-stimulation. Eur J Immunol 2002;32(10):2817–26.

165. Aydar Y, Balogh P, Tew JG et al. Altered regulation of Fc gamma RII on aged follicular dendritic cells correlates with immunoreceptor tyrosine-based inhibition motif signaling in B cells and reduced germinal center formation. J Immunol 2003;171(11):5975–87.

166. Szakal AK, Taylor JK, Smith JP et al. Kinetics of germinal center development in lymph nodes of young and aging immune mice. Anat Rec 1990;227(4):475–85.

167. Holmes KL, Schnizlein CT, Perkins EH et al. The effect of age on antigen retention in lymphoid follicles and in collagenous tissue of mice. Mech Ageing Dev 1984;25(1–2):243–55.

168. Onder L, Morbe U, Píkot N et al. Lymphatic endothelial cells control initiation of lymph node organogenesis. Immunity 2017;47(1):80–92 e4.