Land-Use Change and Future Water Demand in California’s Central Coast

Tamara Sue Wilson¹, Nathan D Van Schmidt², and Ruth Langridge³

¹United States Geological Survey
²University of California Santa Cruz
³UC Santa Cruz

November 28, 2022

Abstract

Understanding future land-use related water demand is important for planners and resource managers in identifying potential shortages and crafting mitigation strategies. This is especially the case for regions dependent on limited local groundwater supplies. For the groundwater dependent Central Coast of California, we developed two scenarios of future land use and water demand based on sampling from a historic land change record: a business-as-usual scenario (BAU; 1992–2016) and a recent-modern scenario (RM; 2002–2016). We modeled the scenarios in the stochastic, empirically based, spatially explicit LUCAS state-and-transition simulation model at a high resolution (270-m) for the years 2001-2100 across 10 Monte Carlo simulations, applying current land zoning restrictions. Under the BAU scenario, regional water demand increased by an estimated ~ 222.7 Mm by 2100, driven by the continuation of perennial cropland expansion as well as higher than modern urbanization rates. Despite these restrictions, water demand dramatically increased in the RM scenario by 310.6 Mm by century’s end, driven by the projected continuation of dramatic orchard and vineyard expansion trends. Overall, increased perennial cropland leads to a near doubling to tripling perennial water demand by 2100. Our scenario projections can provide water managers and policy makers with information on diverging land use and water use futures based on observed land change and water use trends, helping better inform land and resource management decisions.
Land-Use Change and Future Water Demand in California’s Central Coast

Tamara S. Wilson¹, Nathan D. Van Schmidt², and Ruth Langridge²

¹U.S. Geological Survey, Western Geographic Science Center, PO Box 158 Moffett Field, CA 94035, USA.
²University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA

Corresponding author: Tamara Wilson (tswilson@usgs.gov)

Key Points:

- Land-use related water demand increased an estimated average 222.7 and 310.6 million cubic meters across scenarios by 2100
- Continued perennial cropland expansion leads to a near doubling and tripling of perennial water demand projections across scenarios
- Recent policies limiting new development slow future urbanization, yet generate higher water demand overall, given perennial expansion
Abstract

Understanding future land-use related water demand is important for planners and resource managers in identifying potential shortages and crafting mitigation strategies. This is especially the case for regions dependent on limited local groundwater supplies. For the groundwater dependent Central Coast of California, we developed two scenarios of future land use and water demand based on sampling from a historic land change record: a business-as-usual scenario (BAU; 1992–2016) and a recent-modern scenario (RM; 2002–2016). We modeled the scenarios in the stochastic, empirically based, spatially explicit LUCAS state-and-transition simulation model at a high resolution (270-m) for the years 2001-2100 across 10 Monte Carlo simulations, applying current land zoning restrictions. Under the BAU scenario, regional water demand increased by an estimated ~ 222.7 Mm3 by 2100, driven by the continuation of perennial cropland expansion as well as higher than modern urbanization rates. Since 2000, mandates have been in place restricting new development unless adequate water resources could be identified. Despite these restrictions, water demand dramatically increased in the RM scenario by 310.6 Mm3 by century’s end, driven by the projected continuation of dramatic orchard and vineyard expansion trends. Overall, increased perennial cropland leads to a near doubling to tripling perennial water demand by 2100. Our scenario projections can provide water managers and policy makers with information on diverging land use and water use futures based on observed land change and water use trends, helping better inform land and resource management decisions.

Keywords: land use, land cover, land change modeling, water demand, water use, California, Central Coast, state-and-transition simulation modeling, LUCAS model

1. Introduction

Water availability and human land use are inextricably tied (Stonestrom et al., 2009). In water limited regions, available freshwater supplies can often dictate land use intensity. However water withdrawals and diversions to support land uses, especially for irrigated agriculture, directly impact freshwater supplies (Foley, 2005). Adding to the complexity are the associated feedbacks between land use, climate, and water supplies. Human land use has been attributed to widespread increases in average global temperatures, contributing to global warming (Diffenbaugh et al., 2015; Ellis et al., 2010; Williams et al., 2015), losses in species diversity, (Fischer & Lindenmayer, 2007; Hansen & Rotella, 2002; Januchowski-Hartley et al., 2016; Klausmeyer & Shaw, 2009), changes in water quality (Charbonneau & Kondolf, 1993; Los Huertos et al., 2001; Scanlon et al., 2005), and groundwater depletion (Konikow & Kendy, 2005). Understanding potential future land-use related water demand in a region serves as a first step in assessing prospective outcomes and associated mitigation strategies to address potential vulnerabilities.

California exemplifies these issues with water arguably the state’s most contentious resource. The state boasts one of the most productive agricultural regions in the world, worth ~$50 billion (California Department of Food and Agriculture, 2018), which consumes between 60–80% of all water supplies, while residential and industrial consumption is roughly 17% (Brandt et al., 2015; Cooley, 2014; Maupin et al., 2014). Surface water is over allocated, estimated at 400 billion cubic meters, 5 times the average annual runoff (Grantham & Viers, 2014). The state’s
Mediterranean climate is highly variable, characterized by long-term droughts and atmospheric river flooding events (Dettinger et al., 2011), contributing to inter-annual water supply uncertainty. Moreover, water demand is highest in the dry, summer months. A statewide extreme drought from 2012–2016 led to water shortages, increased reliance on groundwater pumping, and subsequent well drying (Perrone & Jasechko, 2017), and also contributed to saltwater intrusion in some groundwater basins (Barlow & Reichard, 2010; Hanson, 2003; White & Kaplan, 2017).

Efforts to plan for water resource sustainability are more challenging now than ever, as these drought and flood events increase in frequency and intensity due to a changing climate (Berg & Hall, 2015; Diffenbaugh et al., 2015; Swain, 2015). While the state has long experienced periodic droughts, many climate projections show increased drought occurrence in coming decades (AghaKouchak et al., 2015; Ault et al., 2014; Diffenbaugh et al., 2015; Famiglietti, 2014; Konikow & Kendy, 2005; Trenberth et al., 2014). Reduced surface water during drought often leads to increased groundwater pumping in the state (Famiglietti et al., 2011; McEvoy et al., 2017; Ojha et al., 2018). Recent work also projects a 25-100% increase in extreme wet/dry events by century’s end, despite only modest changes in mean precipitation (Swain et al., 2018).

Such extreme events, combined with increased evaporative water demand due to climate warming, as well as future population growth and agricultural expansion, will likely contribute to even greater water demand, posing additional challenges to an already unsustainable situation.

This may lead to a pivotal juncture where water demand exceeds available supply.

Oversight of California’s groundwater has historically been limited. While surface water withdrawals require permits, groundwater pumping has gone largely unregulated and is managed locally (Leahy, 2016). Several legislative attempts have been made to incentivize groundwater management and to better integrate land use in water supply planning. In 1992, AB 3030 passed, and was modified in 2002 by SB 1938, providing procedures and incentives for local agencies to voluntarily develop groundwater management plans (Costa, 1992; Machado, 2002). In 1995, Senate Bill (SB) 901 required that local governments conduct water supply assessments during the environmental reviews for large projects (above 500 housing units) (Costa & Setencich, 1995). In 2001, Senate Bills 610 and 221 required local land use authorities to demonstrate long-term water supply availability before approving new, large development projects (Costa, 2001; Kuehl et al., 2001). Despite these restrictions, none of these laws regulated groundwater pumping. By 2014, rapidly falling groundwater tables combined with ongoing extreme drought led the state to pass the Sustainable Groundwater Management Act (SGMA; AB 1739, SB 1168, and SB 1319) (Dickinson, 2014; Pavley, 2014a, 2014b). Passage of SGMA marked the first time local agencies were required to regulate and sustainably manage groundwater resources of critically over-drafted groundwater basins. The implementation of SGMA is ongoing, with local agencies actively designing their groundwater sustainability plans. However, many of these agencies lack the ability to quantify sustainable groundwater yield driven by future land use related water demand.

California’s Central Coast is an ideal system for examining the linkages between land use change and land use driven water demand over time and exploring the long-term impacts of water laws and policies on this process, as well as impacts on groundwater supplies, and resource and community sustainability. The region has major agricultural and residential areas that are entirely reliant on local groundwater. There is limited imported surface water, primarily in San Benito and Santa Barbara counties and groundwater overdraft (extraction exceeding recharge) occurs in
an estimated 40% of basins in the region (Martin, 2014). Many of the coastal aquifers have seawater intrusion, exacerbated by the recent droughts, rendering local groundwater unsuitable for drinking or irrigation (Barlow & Reichard, 2010; Hanson, 2003; White & Kaplan, 2017). Many of its valley floors overly groundwater basins and support extensive agriculture, while the vast majority is largely undeveloped natural land, creating the potential for substantial new development. It is home to some of the wealthiest and poorest communities in the state, including several disadvantaged communities (annual median household incomes <80% of statewide MHI; California State Legislature, 2002). The city of Salinas is currently the largest city at 156,259 people (U.S. Census Bureau, 2018). By 2060, the Central Coast is projected to add nearly 300,000 more people to its population (State of California, Department of Finance, 2018), likely increasing water demand. Water supplies may not be able to keep pace, which could exacerbate water insecurity in already vulnerable communities and potentially spark social conflict.

To assess the trajectory of land use driven water demand for California’s Central Coast and explore whether the 1992-2001 water laws and policies were correlated with the pattern of demand for the region, we ran two scenarios based on historical, empirical datasets of land use changes sampled. The first was a business-as-usual (BAU) scenario fit to land use change rates from the entire historic period, 1992–2016, while the second, recent-modern (RM) scenario only sampled from 2002–2016 rates (i.e., after the second set of laws were put in place in 2001). We simulated projected land use change and associated water demand for the years 2001–2100 at 270-m across 10 Monte Carlo simulations across these two scenarios. Our model was based on the Land Use and Carbon Scenario Simulator (LUCAS) (Sleeter et al., 2015, 2017, 2019; Wilson et al., 2014, 2015, 2016, 2017), a stochastic, spatially-explicit state-and-transition simulation model. Spatial patterning of land use change was parameterized using local zoning datasets, identifying where land change would and would not occur giving current zoning ordinances and local mandates. Our goal was to understand the region’s unique potential water demand, assisting local water resource and land managers in understanding the impacts of past policies to better identify and mitigate for possible future vulnerabilities as they continue to develop and revise new groundwater sustainability plans for SGMA. While SGMA is too new to definitively determine its impact on future water demand, viewing an unregulated future with and without existing policy provides an important baseline for more targeted mitigation planning.

2. Materials and Methods

The LUCAS state-and-transition simulation model (STSM(Sleeter et al., 2017, 2019; Wilson et al., 2016, 2017) was developed and modified for our study region. The STSM divides the landscape up into spatially discrete simulation cells, each with assigned state classes and transition types. Each state class has pre-defined transition type pathways allowing or preventing cells to move between different state classes over time. What follows is a description of the model parameterization steps for the Central Coast region of California. For more comprehensive information on STSMs, see Daniel et al. (Daniel et al., 2016)

We held three stakeholder meetings with individuals from regional municipal governments, water agencies, and community groups while developing our models. Meetings were held at the start of model development, the midpoint, and when presenting a draft version of the final model.
results. Stakeholders provided information on local spatial planning datasets that were assimilated into the models (see section 2.5) as well as interpretation of results in the context of local concerns about water sustainability and land use.

2.1 State Variables and Scale

The current study area encompasses 28,534 km2 of the 5-county region in California’s Central Coast (Figure 1a), covering Santa Cruz, San Benito, Monterey, San Luis Obispo, and Santa Barbara Counties. The region was divided into 270-m x 270-m simulation cells (391,421 total cells). Each cell was also assigned an initial LULC state class (Figure 1b) and three additional spatial identifiers including its 1) county, 2) groundwater sub-basin (Figure 1c; n = 61) (California Department of Water Resources, 2018) and 3) water service agency(s) (Figure 1d; n = 107), described below. Scenario simulations were initiated in 2001 and run through the year 2100. The model tracks changes in state class, age, time-since-transition, and state attributes (i.e., water demand). For each scenario simulation we ran 10 Monte Carlo iterations to capture model variability and uncertainty in our projections.

We utilized the National Land Cover Dataset 2001 (NLCD01; Homer et al., 2007) as our initial state class conditions, modified for our study region as follows: 1) all four developed classes were collapsed into a single developed class and urban core areas defined per Soulard and Acevedo 2017; 2) the three forest classes were combined into a single forest class; 3) the woody and emergent wetlands classes were combined into a single wetlands class; 4) the agriculture and hay pasture classes were combined into a single annual agriculture class; 5) we used data from Sleeter et al. 2019 for the 2001 perennial agriculture class, described in more detail below; and 6) the “Developed-Roads” class from Landfire’s Existing Vegetation Cover 2001 was used to designate a transportation class (LANDFIRE Program, 2019) (Figure 1b). All datasets were resampled from 30-m to 270-m and re-projected into NAD 1983 California Teale Albers map projection.

The NLCD01 does not contain a perennial orchard and vineyard class. We used a 2001 perennial cropland cover map (Sleeter et al., 2019) which generated orchard and vineyard cover using a gradient boosting machine algorithm framework. Any NLCD01 pixel classified as agriculture which overlapped the 2001 perennial cover estimate was classified as perennial cropland.
Figure 1 – California’s Central Coast Study Area including a) counties, b) land use and land cover in 2001, c) groundwater sub-basins, and d) aggregated water district and groundwater sustainability agency jurisdictions. Complete lists of regions included in c) and d) located in the Supplementary Materials Tables 1 and 2, respectively.

The water agencies map (Figure 1d) was created by combining the Groundwater Sustainability Agency (GSA) Service Area dataset (California Department of Water Resources, 2019b) and the Water Districts dataset (California Department of Water Resources, 2019c). Because polygon boundaries did not line up precisely between the two shapefiles, polygons were manually edited to remove small slivers or gaps. Multiple agencies can also have overlapping jurisdictions (e.g., local city water systems and basin-wide GSAs), so each polygon in the final dataset was assigned 0–2 GSAs and 0–2 water districts each. If GSAs were formed from pre-existing water districts with the same boundaries, we included them only as GSAs. Four county-wide water districts were not included as counties are already represented in the LUCAS model. Lastly, water districts servicing <20 km² were removed, unless they were the only agency servicing that area. If so, they were included and labeled “other small water district.” This resulted in 107 unique jurisdictional combinations covering 29 GSAs and 40 water districts as well as “other small water district.”

2.2 Model Formulation

The LUCAS model was formulated to simulate changes in state class variables for pathways associated with urbanization, agricultural expansion and contraction, and agricultural change (i.e. intensification associated with conversions of annual to perennial cropland).
Data from the Farmland Mapping and Monitoring Program (FMMP) (California Department of Conservation, 2017) dataset was used to supply LULC transition targets for agricultural expansion, agricultural contraction, and urbanization. The FMMP gathers bi-annual land change data using aerial photography and human interpretation. We updated the existing historical land change record (1992-2012) from Wilson et al. (2016) with newly available data, extending the record to span 24 years (1992-2016), from which future scenarios could be sampled.

Changes between annual and perennial crop types (i.e., agricultural change) are typically harder to quantify. Previous work used cropland statistics to set a single agricultural change transition target, applied across a broader study area (Wilson et al., 2016). To improve upon this method and to better capture regional variability in these trends, we used available spatial datasets, including our 2001 initial conditions map and the 2018 perennial cropland map described in Section 2.5.3. Any pixel which began as annual cropland in 2001 but converted to perennial cropland by 2018 was captured. This generated a 17-year, county-level annual to perennial conversion value (2001-2018), converted into annual transition targets of 0.12 km² (Santa Cruz), 0.60 km² (San Benito), 2.59 km² (Monterey), 1.37 km² (San Luis Obispo) and 1.09 km² (Santa Barbara). The same approach was used for calculating yearly perennial cropland expansion into rangelands, resulting in 0.28 km² (Santa Cruz), 1.63 km² (San Benito), 3.99 km² (Monterey), 10.58 km² (San Luis Obispo) and 5.59 km² (Santa Barbara).

To calculate the rangeland to annual cropland transition targets, we subtracted the rangeland to perennial transition target from the overall agricultural expansion targets from FMMP. Where more rangeland to perennial occurred than was reported as agricultural expansion, it was assumed that 0 km² of rangeland was converted into annual cropland. We recognize this approach introduces some data loss, however lacking wall-to-wall spatial and “from class – to class” conversion information at higher temporal resolution, it is the most defensible approach to capture the large scale, notable shifts of natural lands into perennial production, a trend uncommon for annual cropland in this region.

2.4 Perennial Transition Probabilities

Conversions out of the perennial cropland class are also challenging to quantify. Perennial crops are expensive to plant, cannot be fallowed, and take several years post-planting to reach maturation (Johnson & Cody, 2015). The average lifespan of vineyards and orchards in California is 25 years (Kroodsma & Field, 2006), after which productivity often declines. In order to capture this lifespan, we extracted age values for our 2001 perennial cropland from an age class map available from Sleeter et al. (2019). Since the LUCAS model can track pixel age and time since transition, we set the following model rules: 1) a perennial pixel must reach a minimum age of 20 years before it eligible for removal or conversion, in any model year or iteration, 2) the annual transition probability for orchard removal was sampled from a cumulative probability of 0.95 for ages 20 and 45, and 3) after removal pixel age is reset to 1 and the cell is free to be converted into new development, agricultural contraction, or annual cropland (with annual probability set at 0.05). If the cell does not convert in this age reset year, the model assumes it is replanted as perennial. Any perennial crop over 20 years in age has a 0.05 probability of transitioning back to annual cropland.
2.5 Adjacency & Spatial Multipliers

For each potential LULC transition, adjacency multipliers were applied where the relative probability of any transition increased linearly with the number of existing, neighboring “from class” cells within a 405-m x 405-m moving window. A cell would be eligible to transition if it contained at least one neighbor of the destination class (or transitioning “to class”) within a 405-m radius of the cell to be transitioned. The more neighbors of the “to class” increases the likelihood of transition which was linearly scaled between 0-1 based on the number of “to class” neighbors present. This parameter was updated every 5 timesteps for every possible LULC transition pathway.

We developed region-specific LULC transition spatial multipliers for the each LULC transitions:
1) urbanization 2) agricultural expansion and 3) agricultural change. Spatial multipliers are raster-based, probabilistic surfaces that either increase or diminish the likelihood of the specified LULC transition type. A probability of 1 ensures a transition will occur in that specified raster space if a transition target or multiplier is supplied, whereas a probability of 0 will prohibit the given transition from occurring in a cell. What follows is a discussion of the datasets used in the development of the LULC transition spatial multipliers.

Overall, we used national and state level land protection data from PADUS (U.S. Geological Survey, 2016) to prohibit any land change on protected lands and land owned by the Department of Defense. In addition, we incorporated available county-level land use zoning data to improve the regional accuracy of projected land change. This information was used to identify areas where LULC conversions are not currently allowed or where future development is already planned and zoned for. Land use zoning has been shown to be a strong predictor of urban growth and more accurately represents land change (Onsted & Chowdhury, 2014). For land change modeling, inclusion of spatial planning information generates better informed analyses (Dieleman & Wegener, 2004; Hersperger et al., 2018; Poelmans & Van Rompaey, 2010). Such an approach has been used by land change modelers to test alternative zoning scenarios (Geneletti, 2013) and as factors in LULC transition decision rules (Abdolrassoul & Clarke, 2012). We acknowledge that zoning data can and will change over time and land area can be rezoned with new designations. However, many zoning designations are likely to persist into the future, including open space and resource conservation areas. Alternatively, planned development areas are not likely to remain undeveloped for decades. Table 1 shows the additional zoning datasets used in the development of the spatial multipliers and their unique zoning designations. Zoning categories listed as No Conversion in Table 1 were applied as 0 values in all LULC spatial multiplier probability surfaces. We next describe each spatial multiplier in detail.

2.5.1 Urbanization

Additional constraints on the placement of new developed lands were derived from U.S. Census Bureau (U.S. Census Bureau, 2015) data and county-level land use zoning information (Table 1). For conversions into new developed lands, we used the Urban Areas in 2011 dataset (U.S.
Census Bureau, 2015), with areas designated as core urban areas (population \(\geq 50,000 \)) assigned a probability of 1 for urbanization transitions, while secondary urban areas or clusters (population \(2,500 < \geq 50,000 \)) were assigned a probability of 0.5. All remaining areas not classified as 0 were given a 0.25 probability of conversion. See Table 1 for a full list of data used to prohibit urbanization transitions (i.e. “No Conversion) or promote urbanization transitions (i.e. “To Developed”).

Table 1. Spatial datasets and zoning categories used in land use and land cover transition spatial multipliers for designating regions as “No Conversion” and regions of potential development or “To Developed” with data sources listed for the Central Coast study region and for each county.

Region	No Conversion	To Developed	Data Sources
Central Coast	Protected Areas Database – GAP Status 1,2,3	U.S. Census Bureau Urban Areas	(U.S. Census Bureau, 2015; U.S. Geological Survey, 2016)
	Department of Defense lands		
Santa Cruz	Any land use which included once of the following categories:	Multi-Family Residential, Neighborhood Commercial, Professional-Administrative Office, Single-Family Residential, Light Industrial, Heavy Industrial, Public and Community Facilities, and Single-Family Ocean Beach Residential	Santa Cruz Zoning (County of Santa Cruz, 2019)
	(L) Historic Landmark		* (Corelogic, 2018f)
	(D) Designated park		
	(O) Open Space Easement		
	(P) Agricultural Preserve		
	(SP) Salamander Protection Prohibition		
	(W) Watsonville Utility Prohibition		
	(PR) Parks, Recreation		
	Open Space Open Space Beach		
San Benito	Parks	San Benito County General Plans 2016 data for Planned Unit Development (PUD), including:	San Benito County General Plan 2016 and San Benito County Zoning (County of San Benito, 2016a, 2016b)
		Ag Productive/PUD	
		Single Family Residential/PUD	
		Rural Transitional/PUD	
		Rural/PUD	
Monterey	Agriculture conservation	Commercial, General Commercial, Castroville Community Plan, Heavy Commercial, Heavy Industrial, Industrial, Master Plan, Neighborhood Commercial,	(County of Monterey, 2018b)
	(AC) Coastal Agriculture Preserve (CAP)		
	Open Space Recreation		
	(OR) Open Space Recreation		
	Resource Conservation (RC)		
	Historic Resources (HR)		
	Open Space Open Space Forest		
	Open Space Recreation		
Resource Conservation Areas (additional)	Residential - High Density 5 - 20 Units/Acre, Residential - Medium Density 1 - 5 Units/Acre, RESIDENTIAL 2.4U/AC, RESIDENTIAL 2U/AC, RESIDENTIAL 4U/AC, or Visitor Accommodations/Professional Offices.	* (Corelogic, 2018b)	
--------------------------------------	--	------------------	
San Luis Obispo	Open Space Public Facilities Recreation	Urban Lands, excluding Open Space and Recreation zones.	(County of San Luis Obispo, 2017) *(Corelogic, 2018d)*
Santa Barbara	Parks, Recreational Acreage	Apartment, Auditorium, Auto Sales, Bowling Alley, Commercial Building, Commercial Condominium, Dance Hall, Department Store, Drive In Theater, Financial Building, Food Processing, Heavy Industrial, Hospital, Hotel, Industrial Condominium, Light Industrial, Medical Building, Medical Condo, Misc. Building, Misc. Commercial Services, Mobile Home Park, Multi-Family Dwelling, Nursery School, Nursing Home, Office Building, Parking Lot, Race Track, Religious, Restaurant Building, Schools, Service Station, Shopping Center, Storage, Store Building, Stores and Offices, Supermarket, and Warehouse*	Santa Barbara County parcel dataset, Homeland Infrastructure Foundation Level Data *(Corelogic, 2018e)*

* All 5 Counties utilized the same data for To Developed conversions as listed for Santa Barbara County from the Homeland Infrastructure Foundation Level Data (Corelogic, 2018a-f).

2.5.2 Agricultural Expansion

Areas designated as protected in the urbanization multiplier were also considered unavailable for transitions into new agricultural lands. For county-level zoning datasets, this included open space, public recreation facilities, parks, protected lands, preserves, and more. See Table 1 “No Conversion” category for all areas prohibited from conversion into agricultural land uses for more detail. Agricultural expansion transitions into new perennial croplands were supplied the spatial multipliers described in Section 2.5.3.

2.5.3 Conversions to Perennial – Historical and Projected

Historical perennial cropland expansion in the Central Coast has been spatially disparate and has not occurred near existing cropland areas. Most new perennial crops have been planted in previously open rangeland and valley uplands. In order to capture this spatially anomalous historical trend with observed data, we developed a “To Perennial 2018” spatial multiplier for the historical period (through 2018) by combining two spatial datasets. We used the Crop Mapping 2014 dataset from the California Natural Resources Agency for orchard and vineyard classes (California Department of Water Resources, 2019a). We combined this with parcel-level orchard and vineyard data, aggregating avocado groves, citrus groves, orchards, and vineyards into a single perennial class with a probability of 1 for conversion into perennial cropland during
this timeframe (Corelogic, 2018a). All other pixels were set with a probability of 0 to force new perennial crops into known locations.

In 2019 or the first projection year (i.e. year for which we do not know where new perennial crops occurred), we developed a “To Perennial 2019” multiplier, based on the 2018 multiplier to include probabilities of 0 for the “No Conversion” regions identified in Table 1, and 1’s for the known historical locations. In addition, all other pixels classified as annual cropland or rangeland in 2001 were assigned a probability of conversion into perennial cropland. We calculated these probabilities of perennial conversion for each county based on the proportion of historical conversion from each class, based conversion rates defined in Section 2.3.

2.6 Water Demand

In addition to tracking state class variables, the model was parameterized to track water use by county and state class type using data from Wilson et al. (2016). They calculated average county level applied water use for the annual and perennial cropland classes by reclassifying the USDA Cropland Data Layer (CDL) (United States Department of Agriculture, 2011) by cropland categories associated with the California Department of Water Resources (CDWR) Agricultural Land & Water Use 1998–2010 dataset (CDWR, 2014). These were then aggregated into annual and perennial cropland classes and assigned an area-weighted average applied water use value for each combination of county and state class type. For the developed class, they derived applied water use from a national dataset of water use in 2010 by various sectors (Maupin et al., 2014). Applied water use for the developed state class was calculated as a sum of public supply freshwater and industrial self-supplied water and divided by the total developed area in each county based on the NLCD 2011 (Homer et al., 2015). The NLCD 2011 most closely aligned with the 2010 water data to get a use per unit area estimate.

2.7 Land Use and Land Cover Scenarios

Two LULC change scenarios were modeled to examine how projections of future land change based on longer term land change would compare to projections based only on modern land change trajectories. The first scenario, referred to hereafter as the Business-As-Usual (BAU) scenario, randomly samples from the full 1992–2016 FMMP land change record beginning in projected year 2017. The second Recent-Modern (RM) scenario which samples from 2002–2016 FMMP record alone. The RM scenario is intended to both capture more restrictive land use policies implemented in 2001 to restrict development in some regions, while also capturing recent drought-related trends. For any simulation year, LUCAS randomly samples from one of these historic years, sampling all associated LULC transitions, preserving LULC change covariance.

3. Results

3.1 Projected Land Use and Land Cover Change

General LULC change trajectories were similar between scenarios but the overall magnitude of change was markedly different (Figure 2). In both scenarios rangelands and annual cropland
declined, being outcompeted by development and perennial cropland expansion through 2100. The declines were dramatic with BAU annual cropland declines averaging 80.0% (1,029 km2) across Monte Carlo simulations, while the RM lost 81.4% (1,046 km2). The BAU projected greater increases in developed land, yet lower losses of rangeland overall. In comparison, the RM scenario projected lower rates of development and greater increases in perennial cropland. Perennial expansion in the region continued its robust historic trend, with planting of these specialty crops nearly doubling in the BAU and nearly tripling in the RM scenario. On average, the BAU was projected to gain 710 km2 of new perennial cropland by 2100 with the RM scenario gaining 1,084 km2 (Figure 2). Overall cropland totals—the sum of both annual and perennial cropland—increased slightly (37.4 km2) in the RM scenario but declined an average 19.3% in the BAU (Figure 2). Developed lands increased in both scenarios across simulations but were approximately 11.7% higher in the BAU (843.3 km2) than in the RM (666.6 km2) (Figure 2).

Figure 2. Projected land use and land cover change from 2001-2100 under a business-as-usual (BAU; red) and recent modern (RM; blue) scenarios for the California Central Coast, including Annual Cropland, Cropland (sums Annual Cropland and Perennial Cropland), Developed, Rangeland, and Perennial Cropland. Dark center trendline is the mean for each scenario and shaded area represents the minimum and maximum value ranges across 10 Monte Carlo simulations.

At the county scale, the greatest declines in annual cropland were projected in Monterey and Santa Barbara counties (Figure 3). The greatest increases in both developed and perennial
cropland occurred in Monterey and San Luis Obispo counties, predominantly at the expense of rangeland (Figure 3) which declined between 181-186 km² (BAU-RM) and 365-479 km² (BAU-RM) respectively. In Monterey County, developed land increased between 21.6% (RM) and 28.0% (BAU) by 2100. In both scenarios, development in San Luis Obispo increased an average 28.5%. County-level trends varied greatly between scenarios losses in rangelands. When accounting for overall percent loss from 2001-2100, Santa Cruz County was projected to lose between an average 25.9% (RM) and 27.4% (BAU) of its rangelands. Conversely, San Benito County had projected increased natural lands in rangeland, following recent FMMP trends in agricultural contraction. Figure 4 shows the mapped LULC projections under the RM scenario to demonstrate spatial placement of change.

Figure 3. Projected change in land use and land cover from 2001-2100 under a business-as-usual (BAU) and recent modern (RM) scenario for each county in the California’s Central Coast region, expressed as average net change in annual cropland (orange), perennial cropland (brown), development (blue), and rangeland (yellow) across the modeled period and 10 Monte Carlo simulations.
Figure 4. Projected land-use and land-cover (LULC) change from 2001-2100 in 50-year increments for California's Central Coast region under the Business-As-Usual (BAU) and Recent Modern (RM) scenario. Each map represents one out of 10 possible Monte Carlo simulations modeled for each time step.

3.2 Projected Future Water Demand

From 2001 to 2100, overall land-use related water demand was projected to increase between 222.7 and 310.6 million cubic meters (Mm3) in the BAU and RM scenarios, respectively (Figure 5). In 2001, the Central Coast water demand estimate was approximately 1.3 billion cubic meters (Bm3) with a projected to rise between 1.5 - 1.6 Bm3 on average across Monte Carlo simulations.
and scenarios by 2100 (Figure 5). This represents a 16.4% to 22.8% increase in water demand by the end of this century. Continuing trends in perennial cropland expansion led to a projected 222.7 Mm3 increase in water demand in the BAU (Figure 6). This increase is small in comparison to the near tripling of perennial water demand in the RM scenario over 2001 use levels, rising by an estimated 359.2 Mm3, concentrated primarily in Monterey, San Luis Obispo, and Santa Barbara counties (Figure 6). Water demand from developed land uses was projected to increase 290.4 Mm3 (53.8%) in the BAU and 230.8 Mm3 (42.7%) in the RM scenario. The only demand declines projected were for annual cropland cover, with dramatic projected decreases from between 339.3 Mm3 (77.9%) in the BAU and 344.8 Mm3 (79.2%) in the RM in all counties (Figure 6). Opposite demand increase trends are seen between the BAU and RM scenarios, as the BAU shows increased demand higher for development than for perennial crops, whereas the RM shows higher perennial demand and lower demand by developed land uses.

Figure 5. Projected land-use related water demand in billions of cubic meters (Bm3) from 2001-2100 in California’s Central Coast under a business-as-usual (BAU; red) and recent modern (RM; blue) scenarios. Darker center lines represent the mean and shaded area represents the maximum and minimum values across 10 Monte Carlo simulations.
Figure 6. Net change in water demand in millions of cubic meters (Mm³) from 2001-2100 by land use and land cover class and county for the business-as-usual (BAU) and recent modern (RM) scenarios.

3.2.1 Potential changes in groundwater basin overdraft

Projections of future land-use related water demand showed some groundwater sub-basins experiencing much greater increases than others. Figure 7 shows the percent change in total water demand per sub-basin, calculated as \((\text{Demand} - \text{Demand}_{2001}) / (\text{Demand}_{2001} + 10)\). Table 2 summarizes these results for each groundwater sustainability agency (GSA) and Table 3 summarizes them for other Non-GSA water districts.

Across both scenarios, increased water demand by 2100 was greatest in San Luis Obispo County (Figure 7). This is largely due to perennial agriculture replacing rangeland in many areas, creating unprecedented (percent increases >1000%) new perennial cropland water demand in Carrizo Plain basin and other small basins in the area, and roughly doubling total water demand in the Paso Robles area. In general, increasing urban water demand was uniformly spread across the study area, with median increases of ~50% per sub-basin (range 0–215%). In the major sub-basins around Monterey Bay, many of which are already critically overdrafted (Figure 7b), total water demand increased only slightly. An exception was the critically overdrafted “180/400-foot” sub-basin of the Salinas Valley, which underlies part of the disadvantaged city of Salinas and experienced a decrease in water demand of -11% in both scenarios. This restrained growth or even reduction in total water demand was due to urban expansion into previous annual agriculture resulting in a net loss of water. The greatest decreases in total water demand was in San Benito county. This was particularly notable in the RM scenario, where dramatically...
declining annual agriculture coupled with modest increases in urban water demand, led to an overall decreasing water demand in most sub-basins (median decrease of -8% in both scenarios). Increasing water demand was projected in basins where encroachment of water-dependent human land uses occurred in previously open rangeland (Figure 1b, Figure 7).

Figure 7. Projected change in water demand for groundwater sub-basins from the a) business-as-usual (BAU) by 2050, b) BAU by 2100, c) recent modern (RM) by 2050, and d) RM by 2100. Hatched lines shown in b) represent existing state-regulated groundwater basins already experiencing overdraft.
Table 2. Projected percent (%) change in water demand for SGMA groundwater sustainability agencies of the Central Coast by 2050 and 2100 under two scenarios, a Business-as-Usual (BAU; fit to 1992-2016 land use change rates) and Recent-Modern (RM; fit to 2002-2016).

Groundwater Sustainability Agency	BAU 2050	BAU 2100	RM 2050	RM 2100
Arroyo Seco GSA	-7.10	-8.40	-9.74	-11.54
Atascadero Basin GSA	30.39	58.03	18.42	42.30
City of Arroyo Grande GSA	47.55	68.24	47.84	70.63
City of San Luis Obispo GSA	0.00	0.00	0.00	0.00
Cuyama Basin GSA	9.24	12.94	8.02	11.06
Goleta Fringe GSA	-2.28	-3.47	-2.11	-2.96
Montecito Groundwater Basin GSA	17.71	17.64	16.80	16.85
Paso Basin - County of San Luis Obispo GSA	6.77	10.57	6.90	10.07
Salinas Valley Basin GSA	23.43	19.88	26.72	24.11
San Antonio Basin GSA	15.49	17.01	15.66	18.82
San Benito County Water District GSA	8.61	11.06	7.63	11.06
San Luis Obispo Valley Basin - County of San Luis Obispo GSA	11.15	11.90	10.85	11.90
Santa Maria Basin Fringe Areas - County of San Luis Obispo GSA	9.24	9.81	9.14	10.03
Santa Maria Basin Fringe in Santa Barbara County GSA	1.51	1.51	1.51	1.51
Santa Ynez River Valley Basin Central Management Area GSA	-4.15	0.38	-5.53	-2.87
Santa Ynez River Valley Basin Eastern Management Area GSA	9.52	11.37	8.64	11.37
Santa Ynez River Valley Basin Western Management Area GSA	53.43	76.80	53.13	77.10
Shandon-San Juan GSA	15.89	20.76	15.57	20.23
City of Paso Robles	12.50	14.09	12.23	14.37
County of San Luis Obispo	6.00	7.33	4.78	6.66
County of Santa Cruz	3.34	3.34	3.34	3.34
Heritage Ranch Community Services District	15.34	15.20	14.74	14.75
Marina Coast Water District	69.04	82.00	77.80	81.97
Monterey Peninsula Water Management District	44.75	40.83	84.96	102.01
Pajaro Valley Water Management Agency	9.79	10.38	9.49	10.38
San Miguel Community Services District	19.59	25.80	16.24	24.16
Santa Clara Valley Water District	178.78	383.94	157.66	374.79
Santa Cruz Mid-County Groundwater Agency	2.28	2.54	2.28	2.54
Santa Margarita Groundwater Agency	26.33	35.41	24.47	34.50
Table 3. Projected percent (%) change in water demand in water districts of the Central Coast (excluding GSAs and county agencies) by 2050 and 2100 under two scenarios, a Business-as-Usual (BAU; fit to 1992-2016 land use change rates) and Recent-Modern (RM; fit to 2002-2016).

Water District	BAU 2050	BAU 2100	RM 2050	RM 2100
Alco Water Service	-7.10	-8.40	-9.74	-11.54
Aromas Water District	30.39	58.03	18.42	42.30
Atascadero Mutual Water Company	47.55	68.24	47.84	70.63
CA Parks and Recreation Department - Hollister	0.00	0.00	0.00	0.00
Hills SVRA				
California American Water Company - Monterey District	9.24	12.94	8.02	11.06
California Water Service Company - Salinas Hills	-2.28	-3.47	-2.11	-2.96
California Water Service Company - Salinas Hills	17.71	17.64	16.80	16.85
Cambria Community Services District	6.77	10.57	6.90	10.07
Carpinteria Valley Water District	23.43	19.88	26.72	24.11
Central Coast Water Authority	15.49	17.01	15.66	18.82
Central Water District	8.61	11.06	7.63	11.06
City of Arroyo Grande	11.15	11.90	10.85	11.90
City of Goleta	9.24	9.81	9.14	10.03
City of Grover Beach	1.51	1.51	1.51	1.51
City of Lompoc	-4.15	0.38	-5.33	-2.87
City of Morro Bay	9.52	11.37	8.64	11.37
City of Paso Robles	53.43	76.80	53.13	77.10
City of Pismo Beach	15.89	20.76	15.57	20.23
City of San Luis Obispo	12.50	14.09	12.23	14.37
City of Santa Barbara	6.00	7.33	4.78	6.66
City of Santa Cruz	3.34	3.34	3.34	3.34
City of Watsonville	15.34	15.20	14.74	14.75
Golden State Water Company - Edna	69.04	82.00	77.80	81.97
Golden State Water Company - Lake Marie	44.75	40.83	84.96	102.01
Golden State Water Company - Los Osos	9.79	10.38	9.49	10.38
Golden State Water Company - Orcutt	19.59	25.80	16.24	24.16
Heritage Ranch Community Service District	178.78	383.94	157.66	374.79
Los Osos Community Services District	2.28	2.54	2.28	2.54
Montecito Water District	26.33	35.41	24.47	34.50
Monterey County Recycling Project	-7.06	-16.89	-6.74	-16.49
Oceano Community Service District	5.20	5.81	5.40	5.60
Other Small Additional District	21.05	30.90	18.79	29.33
Pajaro Community Service District	-8.23	-13.46	-9.60	-17.05
San Lorenzo Valley Water District	4.46	5.46	4.05	5.46
4. Discussion and Conclusions

Overall, our scenario results suggest that water supply challenges, overdraft, and overdraft-driven seawater intrusion in the Central coast region are likely to continue absent changes in groundwater and/or land-use management.

4.1 Projected water demand trends

Projections show increasing land-use related water demand by 2100 of between 222.7 and 310.6 Mm3 in the BAU and RM scenarios, respectively. Increased demand was driven by continued agricultural intensification (i.e., increasing perennial cropland) and urbanization, even as annual cropland water use declined. Additional increased demand was driven by continued urbanization, generating additional per capita use needs. For the BAU scenario development-related increases in water demand outpaced increased demand from perennial cropland, while the opposite was the case in the RM. This difference illuminated trends noted in the historical FMMP dataset, showing marked declines in urbanization beginning around 2003. The RM scenario only sampled from FMMP-based LULC change years 2002-2016, thus capturing land use changes likely associated with legislative mandates which imposed water use restrictions for new development. We sought to capture this declining urbanization trend as well as the unprecedented 2011–2016 drought in our RM scenario projections. Despite slower rates of development and a historic drought, the RM scenario showed a 22.8% increased water demand overall, much higher than the 16.3% increase projected in the BAU. It is important to note that despite an historically unprecedented drought, perennial cropland expansion was projected to nearly double (BAU) and triple (RM), which may be cause for concern in a predominantly groundwater dependent region with already strained water supplies.

These same trends in agriculture intensification have been occurring statewide for decades. Between 1960 and 2009, while the amount of harvested acreage in California declined by more than a half million acres, the proportion of fruit and nut crops (i.e., not field crops, vegetable, or melons) more than doubled from 14% to 33% of all acres harvested (Johnson & Cody, 2015). Between 2004 and 2013 alone, statewide harvested acres for almonds, pistachios, grapes, cherries, berries, and olives nearly doubled as well (Johnson & Cody, 2015). Cropland reports for the Central Coast show annual field and row crops dominating the landscape, however, grape acreage between 2002 and 2017 expanded by nearly 25,000 acres (~100 km2) (United States Department of Agriculture, 2019).

Neither the perennial or urban expansion trends are likely to persist indefinitely, particularly given new water limitations under SGMA. Shifts in future development patterns due to other
local economic factors, changing dietary preferences, and a warming climate are likely to further deviate future rates from simply continuing historic trajectories. Specialty perennial crops could slow their expansion, as high value annual crops retain their value and market demand. Despite these limitations, these scenarios projections do provide an understanding of the challenges facing the region if current trends persist, providing a baseline from which additional mitigation scenarios can be developed, to explore alternative potential futures.

4.2 Land use and water use sustainability implications

Many orchard and vineyard crops have higher water demand than their annual row crop relatives, and most perennial crops require year-round watering. Our estimates show perennial cropland water demand is generally higher than annual cropland water demand in all but Monterey County where it is slightly lower, possibly due to cooler temperatures in the region and lower evapotranspiration loss. Monterey County also relies almost solely (95%) on groundwater (County of Monterey, 2019) and much of the agriculture occurs in the Salinas River Valley, a region prone to saltwater intrusion and significant water limitations. Given limited water supplies, regional growers have had to increasingly rely on advanced technology for watering vineyards, such as pressure chambers to detect water needs through leaf moisture, soil moisture probes, and groundwater moisture meters (Joseph, 2015) as well as water recycling (Shea, 2019). Implementation of the Sustainable Groundwater Management Act could also exacerbate the situation, creating even greater limitations on groundwater pumping for perennial growers.

Given the 20–30 year lifespan of most of specialty perennial crops, their resilience to a changing climate and shifting water availability is also limited (Lobell & Field, 2011). Central Coast specialty crops show high sensitivity to changing temperature under future climate projections (Kerr et al., 2018). Specifically, wine grapes, strawberries, and lettuce—dominant crops in the Central Coast—had higher relative magnitude of negative impacts from increased temperatures of the top 14 value-ranked specialty crops in the state (Kerr et al., 2018). Yield declines have also been predicted with warmer winters and hotter summers (Lobell & Field, 2011). However, agricultural intensification also has many benefits. It often leads to 1) a higher investment and return per acre, 2) the creation of more jobs and demand for related support industry and housing, 3) the creation of more land use conflicts at the agriculture/urban interface, 4) technological innovation, and 5) improvements in irrigation efficiency (County of San Luis Obispo, 2010). These competing factors could influence a market-driven demand for improved water use efficiency.

New developed lands often generate additional water demand, potentially creating increased competition over ever-limited water resources. Well-drying and self-reported water supply shortages were already reported during the 2011-2016 drought and through 2019, and were highest in San Luis Obispo, with 201 reports submitted since 2014 (State of California, 2019). By all accounts this represents only a small fraction of the total number households which likely experienced shortages, as vast under-reporting is suspected given limited outreach (State of California, 2019). By contrast, where urban growth was projected to spread into existing cropland, such transitions were demand-neutral and sometimes even led to reduced overall water demand as seen in areas around the Monterey Bay and San Benito County. Unfortunately, such growth patterns conflict with the conservation of prime agricultural lands, a major goal of regional and state land management (California Department of Food and Agriculture, 2015) and
also reported by stakeholders. Future development patterns over time may include urban
redevelopment and infill with higher density which would better preserve existing farmland.
New upland regions in non-prime farmland could also be targeted for additional housing.

The region’s vulnerable populations in disadvantaged communities will be least resilient in a
water limited future. The combined pressures of climate variability, water quality, and aging
infrastructure which will likely lead to price increases up to four times current rates in coming
decades (Baird, 2010). If extreme climate event trends continue with changing climate,
additional costs to improve wastewater infrastructure for storm water treatment will be incurred
and passed on to consumers. These price increases often disproportionately affect the least
resilient communities (Feinstein et al., 2017; Mack & Wrase, 2017), as higher prices consume a
larger proportion of monthly income.

4.3 Assessment of historic policy impacts

Between 1990-2006, over two-thirds of cities and counties in coastal California’s metropolitan
areas adopted policies explicitly aimed at limiting urban development by restricting housing
growth (Legislative Analyst Office, 2015). Additionally, laws adopted between 1992-2001
required the demonstration of a sustainable water supply for new suburban and urban housing
developments. Our projections showed a clear drop in rates of development following the
passage of these laws, suggesting that they were effective.

Our scenarios illustrated that while likely limiting development, these policies were nevertheless
unable to achieve long-term groundwater sustainability in the Central Coast. FMMP data was not
available prior to 1992, and thus the impact of these laws on different LULC rates could not be
directly assessed, but they did not prevent LULC from increasing water demand overall in
overdrafted basins. Thus, the 1992-2001 water laws restricting urban development, while
effective at slowing rates of urban growth, were unable to promote water sustainability because
they did not impact the agricultural expansion, particularly of perennial crops. More concerning,
stakeholders in meetings expressed a serious concern about local housing shortages, particu-
larly around the critically overdrafted Monterey Bay. These laws may have contributed to this
shortage by both throttling the development of new housing units and consequently increasing
housing costs.

Our results can be used to inform the development of groundwater sustainability plans by local
groundwater sustainability agencies (Table 2) in critically overdrafted basins, as required under
SGMA (AB 1739, SB 1168, and SB 1319, passed in 2014; Leahy, 2016). In 2012 the California
legislature also passed AB 685—the Human Right to Water Bill—becoming the first state to
declare access to safe, clean, affordable, and accessible water adequate for human consumption
as a basic human right (Fong et al., 2012). However, this doesn’t account for potential impacts
from changing supplies, increasing demand, or a changing climate. Our results indicate the
previous approach of regulating urban and suburban development is unlikely to address water
demand challenge posed by the expansion of perennial agriculture. If perennial water demand
projections continue to rise, multi-pronged conservation and technology implementation
strategies will be needed to avoid continued groundwater depletion and to meet the sustainability
goals outlined in SGMA (Dickinson, 2014; Pavley, 2014a, 2014b).
4.4 Future directions

Additional scenario development, which includes continued feedback from local and regional stakeholders, including individual land holders and farmers, will be needed to test alternative regional mitigation strategies and their associated outcome on water demand change. Projections of future land change and water demand would also greatly benefit from more advanced, fully coupled modeling approaches, involving climate-driven hydrological models and the LUCAS land change model. Such an integrated system would facilitate more informed, process-based interactions and feedbacks between models during a model run, between timesteps and iterations. This would enable the direct utilization of established climate projections with hydrologic modeling to examine human-environment system feedbacks and stressors. The LUCAS framework is already based on the open source ST-Sim model platform (Daniel et al., 2016), which includes a module to facilitate information passing between integrated systems using a Python or R code interface (R Core Team, 2017). Such an approach could include more accurate, process-based analysis of cropland water demand, a more detailed cropland classification scheme, and could serve to identify couplings between human land-use related water demand and forcings on the regional hydrologic system.

Acknowledgements

This research was supported by the California Strategic Growth Council Climate Change Research Program and the U.S. Geological Survey's Climate and Land Use Research and Development Program. We are grateful for the detailed and thoughtful internal peer review provided by Dr. Paul Selmants as well as our anonymous peer reviewers.

All modeling for this study was done using the ST-SIM software application which can be downloaded free of charge from APEX Resource Management Solutions (http://apextrms.com). All model parameters will be made available as (1) a Microsoft Excel file and (2) a database containing all model inputs and outputs (http://geography.wr.usgs.gov/LUCC/) and in the ScienceBase USGS catalog (https://www.sciencebase.gov/catalog/).

This work supports research objectives outlined by the California Strategic Growth Council. It also directly aligns with the U.S. Department of Interior’s (DOI) Strategic Plan to conserve our land and water by utilizing water science to support decisions and activities and to help better manage water storage and delivery to resolve conflicts and expand capacity (U.S. Department of the Interior, 2018). Additionally, this work supports the DOI goal to ensure emergency preparedness by providing science to safeguard communities from natural hazards including water shortages and drought. This work also supports directives from the 1) U.S. National Intelligence Community which identifies water stress as a potential driver of regional insecurity and social unrest and 2) U.S. Department of Homeland Security which places managing regional water loss, natural disasters impacting available water quantity, and the lack of recognition of the water sector as a “lifeline sector” as the Most Significant Risk to water infrastructure.
References

Abdolrassoul, S. M., & Clarke, K., C. (2012). Guiding SLEUTH Land-Use/Land-Cover Change Modeling Using Multicriteria Evaluation: Towards Dynamic Sustainable Land-Use Planning. *Environment and Planning B: Urban Analytics and City Science, 39*(5), 925–944.

AghaKouchak, A., Cheng, L., Mazdiyasni, O., & Farahmand, A. (2015). Global warming and changes in risk of concurrent climate extremes: Insights from the 2014 California drought. *Geophysical Research Letters, 8847–8852.* https://doi.org/10.1002/2014GL062308

Ault, T. R., Cole, J. E., Overpeck, J. T., Pederson, G. T., & Meko, D. M. (2014). Assessing the Risk of Persistent Drought Using Climate Model Simulations and Paleoclimate Data. *Journal of Climate, 27*(20), 7529–7549. https://doi.org/10.1175/JCLI-D-12-00282.1

Barlow, P. M., & Reichard, E. G. (2010). Saltwater intrusion in coastal regions of North America. *Hydrogeology Journal, 18*(1), 247–260. https://doi.org/10.1007/s10040-009-0514-3

Berg, N., & Hall, A. (2015). Increased Interannual Precipitation Extremes over California under Climate Change. *Journal of Climate, 28*(16), 6324–6334. https://doi.org/10.1175/JCLI-D-14-00624.1

Brandt, J., Sneed, M., Rogers, L. L., Metzger, L. F., Rewis, D., & House, S. (2015). *Water Use in California, 2014* (USGS Data Website). U.S. Geological Survey, California Water Science Center. Retrieved from http://ca.water.usgs.gov/water_use/index.html

California Department of Conservation. (2017). Farmland Mapping and Monitoring Program: County Data. Retrieved from http://www.conservation.ca.gov/dlrp/fmmp/Pages/county_info.aspx

California Department of Food and Agriculture. (2015). *Benefits of Farmland Conservation in California* (p. 30). State of California.

California Department of Food and Agriculture. (2018). *California Agricultural Statistics Review - 2017-2018* (p. 121). Sacramento, CA: California Department of Food and Agriculture. Retrieved from https://www.cdfa.ca.gov/statistics/PDFs/2017-18AgReport.pdf

California Department of Water Resources. (2014). *Agricultural Land & Water Use 1998-2010.* Retrieved from http://www.water.ca.gov/landwateruse/anaglwu.cfm

California Department of Water Resources. (2018). CA Bulletin 118 Groundwater Basins. Geospatial Data, Sacramento, CA. Retrieved from http://atlas-dwr.opendata.arcgis.com/datasets/b5325164abf94d5cbeb48bb542fa616e_0

California Department of Water Resources. (2019a). Crop Mapping 2014. vector digital data, California Natural Resources Agency. Retrieved from https://data.cnra.ca.gov/dataset/crop-mapping-2014

California Department of Water Resources. (2019b). Groundwater Sustainability Agency (GSA) Map Viewer. State of California. Retrieved from https://sgma.water.ca.gov/webgis/index.jsp?appid=gasmaster&rz=true

California Department of Water Resources. (2019c, November). Water Districts. Retrieved from https://data.ca.gov/dataset/water-districts
California State Legislature. Water Division 26.5. Water Security, Clean Drinking Water, Coastal and Beach Protection Act of 2002 [79500 - 79591], 79500–79591 Water Code § 79505.5 (2002). Retrieved from http://leginfo.legislature.ca.gov/faces/codes_displaySection.xhtml?sectionNum=79505.5 &lawCode=WAT

Charbonneau, R., & Kondolf, G. M. (1993). Land use change in California, USA: nonpoint source water quality impacts. Environmental Management, 17(4), 453–460.

Cooley, H. (2014). Agricultural Water Conservation and Efficiency Potential in California (Issue Brief No. IB:14-05-F) (p. 7). Natural Resources Defense Council, Pacific Institute. Retrieved from http://www.nrdc.org/water/files/ca-water-supply-solutions-ag-efficiency-IB.pdf

Corelogic. (2018a). CA Area Parcel Residential and Non-Residential. vector digital data, Homeland Infrastructure Foundation-Level Data (HIFLD). Retrieved from https://hifld-geoplatform.opendata.arcgis.com/

Corelogic. (2018b). Monterey, CA Area Parcel Residential and Non-Residential. Homeland Infrastructure Foundation-Level Data (HIFLD). Retrieved from https://hifld-geoplatform.opendata.arcgis.com/

Corelogic. (2018c). San Benito, CA Area Parcel Residential and Non-Residential. File Geodatabase Feature Class, Homeland Infrastructure Foundation-Level Data (HIFLD). Retrieved from https://hifld-geoplatform.opendata.arcgis.com/

Corelogic. (2018d). San Luis Obispo, CA Area Parcel Residential and Non-Residential. File Geodatabase Feature Class, Homeland Infrastructure Foundation-Level Data (HIFLD). Retrieved from https://hifld-geoplatform.opendata.arcgis.com/

Corelogic. (2018e). Santa Barbara, CA Area Parcel Residential and Non-Residential. File Geodatabase Feature Class, Homeland Infrastructure Foundation-Level Data (HIFLD). Retrieved from https://hifld-geoplatform.opendata.arcgis.com/

Corelogic. (2018f). Santa Cruz, CA Area Parcel Residential and Non-Residential. File Geodatabase Feature Class, Homeland Infrastructure Foundation-Level Data (HIFLD). Retrieved from https://hifld-geoplatform.opendata.arcgis.com/

Costa. The Groundwater Management Act, Pub. L. No. AB 3030, § Part 2.75, Water Code 10750 (1992). Retrieved from http://leginfo.legislature.ca.gov/faces/codes_displaySection.xhtml?sectionNum=10750.&lawCode=WAT

Costa, & Setencich, B. SB 901, Pub. L. No. 901, § 65302 (1995). Retrieved from http://www.leginfo.ca.gov/pub/95-96/bill/sen/sb_0901-0950/sb_901_bill_951016_chaptered.html

Costa, J. Senate Bill 610, Pub. L. No. SB 610, § Chapter 643 (2001). Retrieved from http://www.leginfo.ca.gov/pub/01-02/bill/sen/sb_0610-0650/sb_610_bill_20011009_chaptered.html

County of Monterey. (2018a). General Plan Adopted 2010. vector digital data, Monterey County Resource Management Agency. Retrieved from https://montereycountyopendata-12017-01-13t232948815z-montereyco.opendata.arcgis.com/datasets/land-use-adopted-2010-1

County of Monterey. (2018b). Zoning. vector digital data, County of Monterey Planning Department. Retrieved from https://montereycountyopendata-12017-01-13t232948815z-montereyco.opendata.arcgis.com/datasets/zoning-2
Fong, Perez, & Wolk. Assembly Bill No. 685 - An act to add Section 106.3 to the Water Code, relating to water., Pub. L. No. 685, § Chapter 524, Water Code (2012). Retrieved from https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201120120AB685

Geneletti, D. (2013). Assessing the impact of alternative land-use zoning policies on future ecosystem services. Environmental Impact Assessment Review, 40, 25–35. https://doi.org/10.1016/j.eiar.2012.12.003

Grantham, T. E., & Viers, J. H. (2014). 100 years of California’s water rights system: patterns, trends and uncertainty. Environmental Research Letters, 9(8), 084012. https://doi.org/10.1088/1748-9326/9/8/084012

Hanson, A. J., & Rotella, J. J. (2002). Biophysical Factors, Land Use, and Species Viability in and around Nature Reserves. Conservation Biology, 16(4), 1112–1122. https://doi.org/10.1046/j.1523-1739.2002.00545.x

Hanson, R. T. (2003). Geohydrology of Recharge and Seawater Intrusion in the Pajaro Valley, Santa Cruz and Monterey Counties, California (USGS Fact Sheet No. 044–03) (p. 4). U.S. Geological Survey.

Hersperger, A. M., Oliveira, E., Pagliarin, S., Palka, G., Verburg, P., Bolliger, J., & Grădinaru, S. (2018). Urban land-use change: The role of strategic spatial planning. Global Environmental Change, 51, 32–42. https://doi.org/10.1016/j.gloenvcha.2018.05.001

Homer, C., Dewitz, J., Fry, J., Coan, M., Hossain, N., Larson, C., et al. (2007). Completion of the 2001 National Land Cover Database for the Conterminous United States. Photogrammetric Engineering and Remote Sensing, 73(4), 337–341.

Homer, C. G., Dewitz, J. A., Yang, L., Jin, S., Danielson, P., Xian, G., et al. (2015). Completion of the 2011 National Land Cover Database for the conterminous United States - Representing a decade of land cover change information. Photogrammetric Engineering and Remote Sensing, 81(5), 345–354.

Januchowski-Hartley, S. R., Holtz, L. A., Martinuzzi, S., McIntyre, P. B., Radeloff, V. C., & Prach, B. M. (2016). Future land use threats to range-restricted fish species in the United States. Diversity and Distributions. https://doi.org/10.1111/ddi.12431

Johnson, R., & Cody, B. A. (2015). California Agricultural Production and Irrigated Water Use (No. R44093). Congressional Research Service. Retrieved from https://fas.org/sgp/crs/misc/R44093.pdf

Joseph, A. (2015, April 30). What clever grape growers are doing to counter the drought crunch. [Cover Collections | montereycountyweekly.com] [Online Newspaper]. Retrieved August 22, 2019, from http://www.montereycountyweekly.com/news/cover_collections/what-clever-grape-growers-are-doing-to-counter-the-drought/article_51032b34-ee2c-11e4-b2b9-9ff0de68566c.html

Kerr, A., Dialesandro, J., Steenwerth, K., Lopez-Brody, N., & Elias, E. (2018). Vulnerability of California specialty crops to projected mid-century temperature changes. Climatic Change, 148(3), 419–436. https://doi.org/10.1007/s10584-017-2011-3

Klausmeyer, K. R., & Shaw, M. R. (2009). Climate Change, Habitat Loss, Protected Areas and the Climate Adaptation Potential of Species in Mediterranean Ecosystems Worldwide. PLoS ONE, 4(7), e6392. https://doi.org/10.1371/journal.pone.0006392

Konikow, L. F., & Kendy, E. (2005). Groundwater depletion: A global problem. Hydrogeology Journal, 13(1), 317–320. https://doi.org/10.1007/s10040-004-0411-8

Kroodsma, D. A., & Field, C. B. (2006). Carbon Sequestration in California Agriculture, 1980–2000. Ecological Applications, 16(5), 1975–1985.
Kuehl, S., Machada, M., Perata, D., Chan, W., Goldberg, J., Pavley, F., et al. Senate Bill 221, Pub. L. No. 221, § 11010, Senate Bill (2001). Retrieved from http://www.leginfo.ca.gov/pub/01-02/bill/sen/sb_0201-0250/sb_221_bill_20011009_chaptered.html

LANDFIRE Program. (2019). LANDFIRE Existing Vegetation Cover 2001. Sioux Falls, SD: Wildland Fire Science, Earth Resources Observation and Science Center, U.S. Geological Survey. Retrieved from https://www.landfire.gov/evc.php

Leahy, T. C. (2016). Desperate Times Call for Sensible Measures: The Making of the California Sustainable Groundwater Management Act, 9, 37.

Legislative Analyst Office. (2015). California’s High Housing Costs - Causes and Consequences (p. 44). State of California.

Lobell, D. B., & Field, C. B. (2011). California perennial crops in a changing climate. Climatic Change, 109(Supplement 1), 317–333.

Los Huertos, M., Gentry, L. E., & Shennan, C. (2001). Land Use and Stream Nitrogen Concentrations in Agricultural Watersheds Along the Central Coast of California [Research article].https://doi.org/10.1100/tsw.2001.315

Machado, M. Groundwater management: state funding, Pub. L. No. SB-1938, § 10753.4 and 10795.4, Water Code (2002). Retrieved from http://leginfo.legislature.ca.gov/faces/billNavClient.xhtml?bill_id=200120020SB1938

Mack, E. A., & Wrase, S. (2017). A Burgeoning Crisis? A Nationwide Assessment of the Geography of Water Affordability in the United States. PLOS ONE, 12(1), e0169488. https://doi.org/10.1371/journal.pone.0169488

Martin, J. N. (2014). Central Coast Groundwater: Seawater Intrusion and Other Issues (CA Water Plan Update 2013, Volume 4 Reference Guide) (p. 27). California Water Foundation. Retrieved from https://water.ca.gov/LegacyFiles/waterplan/docs/cwpu2013/Final/vol4/groundwater/11Central_Coast_Groundwater_Seawater_Intrusion.pdf

Maupin, M. A., Kenny, J. F., Hutson, S. S., Lovelace, J. K., Barber, N. L., & Linsey, K. S. (2014). Estimated use of water in the United States in 2010 (U.S. Geological Survey Circular No. 1405) (p. 56). Retrieved from http://dx.doi.org/10.3133/cir1405

McEvoy, A., Famiglietti, J. S., Liu, P. W., & Reager, J. T., II. (2017). From Drought to Recovery: a GRACE-Based Assessment of Groundwater Storage Variations in California. AGU Fall Meeting Abstracts, 11. Retrieved from http://adsabs.harvard.edu/abs/2017AGUFM.H11B1169M

Ojha, C., Shirzai, M., Werth, S., Argus, D. F., & Farr, T. G. (2018). Sustained Groundwater Loss in California’s Central Valley Exacerbated by Intense Drought Periods. Water Resources Research, 54(7), 4449–4460. https://doi.org/10.1029/2017WR022250

Onsted, J. A., & Chowdhury, R. R. (2014). Does zoning matter? A comparative analysis of landscape change in Redland, Florida using cellular automata - ScienceDirect. Landscape and Urban Planning, 121, 1–18.

Pavley. Groundwater, Water Code amendment, Pub. L. No. Senate Bill 1168, § Chapter 346 (2014). Retrieved from http://leginfo.legislature.ca.gov/faces/billNavClient.xhtml?bill_id=201320140SB1168

Pavley. Senate Bill 1319 - Groundwater, Pub. L. No. Senate Bill 1319, § Chapter 348 (2014). Retrieved from http://leginfo.legislature.ca.gov/faces/billNavClient.xhtml?bill_id=201320140SB1319
Perrone, D., & Jasechko, S. (2017). Dry groundwater wells in the western United States. *Environmental Research Letters, 12*(10), 104002. https://doi.org/10.1088/1748-9326/aa8ac0

Poelmans, L., & Van Rompaey, A. (2010). Complexity and performance of urban expansion models. *Computers, Environment and Urban Systems, 34*(1), 17–27. https://doi.org/10.1016/j.compenvurbsys.2009.06.001

R Core Team. (2017). *R: A language and environment for statistical computing*. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/

Scanlon, B. R., Reedy, R. C., Stonestrom, D. A., Prudic, D. E., & Dennehy, K. F. (2005). Impact of land use and land cover change on groundwater recharge and quality in the southwestern US. *Global Change Biology, 11*(10), 1577–1593. https://doi.org/10.1111/j.1365-2486.2005.01026.x

Sleeter, B. M., Liu, J., Daniel, C. J., Frid, L., & Zhu, Z. (2015). An integrated approach to modeling changes in land use, land cover, and disturbance and their impact on ecosystem carbon dynamics: a case study in the Sierra Nevada Mountains of California. *Aims Environmental Science, 2*(3), 577–606.

Sleeter, B. M., Wilson, T. S., Sharygin, E., & Sherba, J. T. (2017). Future Scenarios of Land Change Based on Empirical Data and Demographic Trends. *Earth’s Future, 5*(11), 1068–1083. https://doi.org/10.1002/2017EF000560

Sleeter, B. M., Marvin, D. C., Cameron, D. R., Selmants, P. C., Westerling, L., Kreitler, J., et al. (2019). Effects of 21st century climate, land use, and disturbances on ecosystem carbon balance in California. *Global Change Biology*. https://doi.org/10.1111/gcb.14677

Soulard, C. E., & Acevedo, W. (2013). Multi-temporal harmonization of independent land-use/land-cover datasets for the conterminous United States. Presented at the American Geophysical Union, San Francisco.

State of California. (2019). *Locally Reported Household Water Shortages for Drought Assistance*. Department of Water Resources. Retrieved from https://mydrywatersupply.water.ca.gov/report/publicpage

State of California, Department of Finance. (2018). State of California Department of Finance Projections. Retrieved December 14, 2018, from http://www.dof.ca.gov/Forecasting/Demographics/Projections/

Stonestrom, D. A., Scanlon, B. R., & Zhang, L. (2009). Introduction to special section on Impacts of Land Use Change on Water Resources. *Water Resources Research, 45*(7). https://doi.org/10.1029/2009WR007937

Swain, D. L. (2015). A tale of two California droughts: Lessons amidst record warmth and dryness in a region of complex physical and human geography. *Geophysical Research Letters*. https://doi.org/10.1002/2015GL066628

Swain, D. L., Langenbrunner, B., Neelin, J. D., & Hall, A. (2018). Increasing precipitation volatility in twenty-first-century California. *Nature Climate Change, 8*(5), 427–433. https://doi.org/10.1038/s41558-018-0140-y
Supplemental Materials

Table S1. List of Groundwater Sub-Basins, their numeric ID, and the map legend for Figure 1c.

	Sub-Basin Name
1	HUASNA VALLEY
2	SAN BENITO RIVER VALLEY
3	SAN ANTONIO CREEK VALLEY
4	FOOTHILL
5	SALINAS VALLEY - LANGLEY AREA
6	MONTECITO
7	GILROY-HOLLISTER VALLEY - NORTH SAN BENITO
8	BITTER WATER VALLEY
9	CARMEL VALLEY
10	ARROYO DE LA CRUZ VALLEY
11	MORRO VALLEY
12	NEEDLE ROCK POINT
13	WEST SANTA CRUZ TERRACE
14	SALINAS VALLEY - SEASIDE
15	SAN LUIS OBISPO VALLEY
16	UPPER SANTA ANA VALLEY
17	CAYUCOS VALLEY
18	SALINAS VALLEY - ATASCADERO AREA
19	SANTA MARIA RIVER VALLEY - ARROYO GRANDE
20	BIG SPRING AREA
21	HERNANDEZ VALLEY
22	SANTA YNEZ RIVER VALLEY
23	CORRALITOS - PURISIMA HIGHLANDS
24	LOS OSOS VALLEY - WARDEN CREEK
25	CHORRO VALLEY
26	VALLECITOS CREEK VALLEY
27	CORRALITOS - PAJARO VALLEY
28	SANTA ROSA VALLEY
29	VILLA VALLEY
30	SANTA ANA VALLEY
31	SANTA CRUZ MID-COUNTY
32	CARPINTERIA
33	CHOLAME VALLEY
34	SAN JOAQUIN VALLEY - DELTA-MENDOTA
35	CARRIZO PLAIN
36	RINCONADA VALLEY
37	SANTA MARGARITA
38	PEACH TREE VALLEY
39	RAFAEL VALLEY
40	CUVAMA VALLEY
41	MAJORS CREEK
42	SAN SIMEON VALLEY
43	TORO VALLEY
44	SALINAS VALLEY - MONTEREY
45	POZO VALLEY
46	DRY LAKE VALLEY
47	SALINAS VALLEY - UPPER VALLEY AQUIFER
48	PANOCHE VALLEY
49	SALINAS VALLEY - PASO ROBLES AREA
50	QUIEN SABE VALLEY
51	LOS OSOS VALLEY - LOS OSOS AREA
52	SALINAS VALLEY - EAST SIDE AQUIFER
53	SANTA BARBARA
54	SAN CARPOFORO VALLEY
55	SAN JOAQUIN VALLEY - KERN COUNTY
56	GOLETA
57	SANTA MARIA RIVER VALLEY - SANTA MARIA
58	SALINAS VALLEY - 180/400 FOOT AQUIFER
59	LOCKWOOD VALLEY
60	SALINAS VALLEY - FOREBAY AQUIFER
61	OLD VALLEY
Table S2. List of water districts and groundwater sustainability agencies represented in Figure 1d. The map unit designations are an aggregate value of the associated water service district grouped with any existing groundwater sustainability agency in a single spatial unit, to identify jurisdiction-level projected water demand changes. A total of 107 discrete units were classified.

1	Arroyo Seco GSA - No Additional District
2	Arroyo Seco GSA - Salinas Valley Basin GSA - No Additional District
3	Atascadero Basin GSA - Atascadero Mutual Water Company
4	Atascadero Basin GSA - No Additional District
5	Atascadero Basin GSA - Paso Robles City Of
6	Atascadero Basin GSA - Templeton Community Services District
7	City of Arroyo Grande GSA - Arroyo Grande City Of
8	City of Paso Robles - Paso Robles City Of
9	City of San Luis Obispo GSA - No Additional District
10	City of San Luis Obispo GSA - San Luis Obispo City Of
11	County of San Luis Obispo - No Additional District
12	County of Santa Cruz - No Additional District
13	County of Santa Cruz - Santa Cruz City Of
14	County of Santa Cruz - Soquel Creek Water District
15	Cuyama Basin GSA - No Additional District
16	Goleta Fringe GSA - Central Coast Water Authority
17	Goleta Fringe GSA - Central Coast Water Authority - Goleta City Of
18	Heritage Ranch Community Services District - Heritage Ranch Community Service District
19	Marina Coast Water District - Marina Coast Water District
20	Marina Coast Water District - Salinas Valley Basin GSA - Marina Coast Water District
21	Marina Coast Water District - Salinas Valley Basin GSA - Marina Coast Water District - Monterey Peninsula Water Management District
22	Monterey Groundwater Basin GSA - Central Coast Water Authority - Monterey Water District
23	Monterey Peninsula Water Management District - California American Water Company - Monterey District - Monterey Peninsula Water Management District
24	Monterey Peninsula Water Management District - Monterey Peninsula Water Management District
25	Monterey Peninsula Water Management District - Santa Lucia Preserve Water System
26	PVWMA - Aromas Water District
27	PVWMA - No Additional District
28	PVWMA - Soquel Creek Water District
29	PVWMA - Watsonville, City of
30	Paso Basin - County of San Luis Obispo GSA - No Additional District
31	Paso Basin - Salinas Valley Basin GSA - Alico Water Service
32	Salinas Valley Basin GSA - Aromas Water District
33	Salinas Valley Basin GSA - California American Water Company - Monterey District
34	Salinas Valley Basin GSA - California American Water Company - Monterey District - Monterey Peninsula Water Management District
35	Salinas Valley Basin GSA - California American Water Company - Monterey District - Monterey Peninsula Water Management District
36	Salinas Valley Basin GSA - California Water Service Company - Salinas
37	Salinas Valley Basin GSA - Santa Cruz City Of
38	Salinas Valley Basin GSA - Monterey County Recycling Project
39	Salinas Valley Basin GSA - Monterey Peninsula Water Management District
40	Salinas Valley Basin GSA - No Additional District
41	San Antonio Basin GSA - Central Coast Water Authority
42	San Antonio Basin GSA - No Additional District
43	San Benito County Water District GSA - CA Parks And Recreation Department - Hollister Hills SVRA
44	San Benito County Water District GSA - No Additional District
45	San Luis Obispo Valley Basin - County of San Luis Obispo GSA - Golden State Water Company - Edna
46	San Luis Obispo Valley Basin - County of San Luis Obispo GSA - No Additional District
47	San Luis Obispo Valley Basin - County of San Luis Obispo GSA - San Luis Obispo City Of
48	San Miguel Community Services District - No Additional District
49	Santa Clara Valley Water District - No Additional District
50	Santa Cruz Mid-County Groundwater Agency - Central Water District
51	Santa Cruz Mid-County Groundwater Agency - No Additional District
52	Santa Cruz Mid-County Groundwater Agency - Santa Cruz City Of
53	Santa Cruz Mid-County Groundwater Agency - Soquel Creek Water District
54	Santa Margarita Groundwater Agency - No Additional District
55	Santa Margarita Groundwater Agency - San Lorenzo Valley Water District
56	Santa Margarita Groundwater Agency - Scotts Valley Water District
57	Santa Margarita Groundwater Agency - Soquel Creek Water District
58	Santa Maria Basin Fringe Areas - County of San Luis Obispo GSA - No Additional District
59	Santa Maria Basin Fringe Areas - County of San Luis Obispo GSA - Pismo Beach City of
