An evaluation of energy conservation measures for deteriorated single-family houses

Sang Min An¹, Joo Han Kim¹, Sung Wan Kim¹, Kyung Hoi Lee¹,* *kyunghoi@yonsei.ac.kr

Abstract. The study analyzes the heating energy performance and water use reduction of the deteriorated single-family house with energy conservation measures (ECMs) such as double-glazing window, internal insulation, high-efficiency boiler, LED lightings, and water-saving closet. The building energy consumption and savings of each energy conservation measure are analyzed using the DesignBuilder program. The payback period and life cycle cost are analyzed to verify the indices of the cost effectiveness. As a result, the refurbishment of the internal insulation system is identified to be the most effective measure to save energy and cost. The simultaneous consideration of thermal insulation and high-efficient boiler helps the low-income bracket among the single-family houses of the old downtown area to increase their residential improvement.

1. Introduction
The large-scaled redevelopment of new town projects appears to cause the gentrification and disorganization of the local community. To avoid these side effects, the central government has implemented the Urban Regeneration New Deal Projects (URNDP) in South Korea. The URNDP focuses on refurbishing the deteriorated and declining residential environment. In this study, the priority analysis of energy conservation measures is identified to help the stakeholders understand the relevant types of building techniques to proceed the project with a limited budget.

2. Objectives
For the purpose, a single-family house is empirically selected as a reference model with different types of energy conservation measures. Based on the energy use calculated by the dynamic building energy program, the energy saving ratio, life cycle cost, and payback period are analyzed to determine the relative importance of the energy conservation measures.

3. Methods
3.1. Analysis of the input data
This study uses the reference model of Jung-Hwa Kim (2015) to simulate the building energy [1]. The reference model is based on the on-site survey data of 2,571 households living in detached houses among 3,061 households that received the subsidies of the construction costs for low-income households in 2013. The annual energy consumption of the reference model was calculated by using the simulation program, and different types of energy conservation measures have been applied to the reference model. The input data of energy simulation are shown in Table 1. The thermal insulation characteristics of the building envelope and the infiltration rate for the air tightness are as cited in the previous study [1].

Table 1. Input data of the reference model

[Table 1 content]

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Published under licence by IOP Publishing Ltd
Classification	Data	Note (Source)
Floor Area	44.5	Jung-Hwa Kim (2015) [1]
Ceiling Height	2.3	Jung-Hwa Kim (2015) [1]
Orientation	South	
Thermal Transmittance		
Roof	1.05	Jung-Hwa Kim (2015) [1]
Wall	1.05	Jung-Hwa Kim (2015) [1]
Floor	1.05	Jung-Hwa Kim (2015) [1]
Window	4.46	Jung-Hwa Kim (2015) [1]
Door	2.29	Jung-Hwa Kim (2015) [1]
Location/Weather File	Incheon	IWEC
Heating Setpoint (degrees Celsius)	20	KEA (2018) [11]
Infiltration for Air Tightness (ACH)	1	Jung-Hwa Kim (2015) [1]
Heating System (Oil-Fired)	Efficiency: 35%	Jung-Hwa Kim (2015) [1]
Lighting Density (W/m²)	15	Won-Seok Kim (2015) [8]

Table 2. Initial investment and information of the energy conservation measures (100 KRW in Cutting)

ECMs	Items	Properties	Unit Price [KRW/EA]	Quantity	Total [KRW]
1	High Insulated Steel Door	U-vale: 1.23 W/m²·K	324,000	1 EA	324,000
		(Energy Saving Design Standards of Buildings, 2017)			
2	Double-Glazed Window	5CL+12Air+ SLE w/PVC Framed U-vale: 1.58 W/m²·K	165,000	9 m²	1,485,000
		(Energy Saving Design Standards of Buildings, 2017)			
3	Internal Insulation System	EPS TYPE 2-2 100mm	16,000	78 m²	1,248,000
		(Energy Saving Design Standards of Buildings, 2017)			
4	LED Lighting	Density : 10 W/m² [Power Consumption: 18W]	26,500	8 EA	212,000
		(The construction of energy-saving, environmentally			
		friendly housing standards, 2017)			
5	Condensing Gas-fired Boiler	Efficiency : 92.4% [Capacity: 18,000 Kcal/hour]	570,000	1 EA	570,000
		(Energy Saving Design Standards of Buildings, 2017)			
6	Stainless Oil-fired Boiler	Efficiency : 90% [Capacity: 17,000 Kcal/hour]	540,000	1 EA	540,000
		(Energy Saving Design Standards of Buildings, 2017)			
7	Condensing Oil-fired Boiler	Efficiency : 98% [Capacity: 16,400 Kcal/hour]	942,000	1 EA	940,000
		(Energy Saving Design Standards of Buildings, 2017)			
8	Water-Saving Closet	6 litter / flush	370,000	1 EA	370,000
		(Water Supply and Waterworks Installation Act, 2017)			

3.2. Selection of the energy conservation measures
The following energy conservation measures are selected: highly insulated steel door, double-glazed window, LED lighting, and condensing gas-fired boiler. To improve the application of the research findings, renewable energy systems such as photovoltaics and geothermal heat pump systems are excluded due to the high initial cost. The selected ECMs were derived in accordance with Appendix Table 1 of the establishment of standards of the long-term repair plans, article 7 of Apartment Housing Management Act Enforcement Regulations [2] and the precedent study of Sung Wan Kim (2017) [3]. The cost of each energy conservation measure is based on the price quotes from the suppliers and the standard estimating costs for construction work. The detailed information of the energy conservation measures is as shown in Table 2.

3.3. Indices for the cost effectiveness analysis
The annual energy usage is classified by the heating, domestic water heating, lighting, etc. The monthly data of the heat source was used to calculate the energy rate. The main heating source for energy conservation is the lamp oil excluding the condensing gas-fired type. The energy rate of each heat source was calculated as follows.
Electric energy rate (KRW/Year) = (Basic Rate [KRW/Year] + Energy Rate [KRW/Year]) +
(Basic Rate [KRW/Year] + Energy Rate [KRW/Year] × 3.7% (Power industry fund part)) +
(Basic Rate [KRW/Year] + Energy rate [KRW/Year] × 10%(Value added tax))

(1)

Energy consumption reduction [%] = ((Reference Model Energy consumption [kWh/year] – Alternative Energy Consumption [kWh/year]) ÷ Baseline Energy consumption [kWh/year]) × 100

(2)

Payback Period [year] = Initial investment of each Energy Conservation Measures [KRW] ÷ Life Cycle Cost Reduction [KRW]

(3)

Life Cycle Cost [KRW] = Initial investment of each Energy Conservation Measures [KRW] +
\[\frac{1}{1+i}(\frac{1+i}{1+r})^{n-1} \times Energy cost \ (KRW/year)\]

(4)

Table 3. Electric rates (KEPCO Residential Low Power 2016.12.01.)
Basic Rate [KRW/Household]

Below 200 kWh
201 ~ 400 kWh
Exceed 400 kWh

Table 4. Price of lamp oil (Oil Price Information Service, Opinet, Korea National Oil Corporation 2018.07)
Classification

Lamp Oil

Table 5. Price of LPG (Residential, Korea LPG Association)
Classification

LPG

In terms of the cost effectiveness indices, the payback period and life cycle cost were analyzed based on the annual energy consumption and energy cost. Each investment of energy conservation measures refers to the construction cost and operating cost for the building’s life cycle, which define the energy rate. The life cycle cost is calculated based on formula (6). The inflation rate (i) is 3.19% on average, which represents the consumer price index for 10 years from 2001 to 2010 [4]. The interest rate is 6.30% based on the average data for 10 years from 2001 to 2010 by the Bank of Korea. The life cycle of a single-family house is set at 40 years. The unit price of each energy conservation measure is calculated based on the national currency (KRW).

4. Results

4.1. Indoor water use reduction through the water-saving closet

The economic feasibility of the water-saving closet is analyzed. The cost effectiveness of the water-saving closet with 6 litres per flush is analyzed in comparison with the existing water closet. In a single-family house, only one water-saving closet has been replaced. Based on the literature survey, the specification of the existing water closet is shown in Table 6. The water rate is shown in Table 7.

Toilets Bowl Water Usage [year] = Water Usage (liters/flush) × Number of Uses (Daily) × 30day × 12months

(5)
\[
W_{rates \ [year]} = \{Basic \ Rate \ + \ (Annual \ Water \ Usage \ (m^3)) \times (Water \ Utility \ Bill \ (Usage \ Fee) \ (KRW/ m^3)) + Sewage \ Bill \ + Allotted \ Charge \} \times 12 \ months
\]

(6)

Table 6. Information of the water rates (Source: Office of Waterworks, Seoul Metropolitan Government, 2018)

Classification	Water Rate (Korean Won)
Basic Rate	1,080
Water Utility Bill (Usage Fee) (KRW/m³)	550
Sewage Bill (KRW/m³)	850
Allotted Charge (KRW/m³)	170
Total charges = 1) Water Utility Bill + 2) Sewage Bill + 3) Allotted Charge	

Table 7. Economic analysis of the water closets

Classification	Baseline 1	Baseline 2	Water-saving toilet
Water Usage (litter/Flush)	13	19	
Daily Usage (Frequency)	20	20	
Usage (m³)	Daily	0.260	0.380
	Monthly	7.3	11.4
	Yearly	93.6	136.8
Water Bill (KRW/year)	Basic	12,960	12,960
	Water Utility	51,480	75,240
	Sewage	79,560	116,280
	Allotted Charge	15,912	23,256
Total Water Bill (KRW/year)	159,912	227,736	80,784
Proposed Water Usage Saving Ratio (%)	Compared to Baseline 1	54	
Proposed Yearly Reduced Cost (KRW)	Compared to Baseline 1	79,128	
Payback Period (year)	Compared to Baseline 1	4.7	

According to the calculation results, the cost of the annual water rate is 159,912 KRW if the water consumption of the existing water closet in baseline 1 is 13 litres per flush. With the water-saving closet, the annual water rate is 80,784 KRW. The water rate saving is 79,128 KRW compared to baseline 1. In terms of economics, the expected payback period values of the water-saving closet are 2.5 years and 4.7 compared to baseline 1 and baseline 2, respectively. In an enforcement regulation of the Housing Act, the entire replacement time of a water closet is every 20 years. Thus, replacing the existing water closet with the water-saving closet has a distinct effect on the water consumption saving and water charge.

4.2. Heating energy performance of the energy conservation measures

The energy performance of the reference model is shown in Table 8. The analysis results are shown in Table 9. The negative saving ratio indicates that the energy consumption increases compared to the reference model. The energy conservation measure with the highest energy-saving ratio is the internal insulation system. For the high-insulated steel door, the energy saving ratio is 0.16% compared to the baseline. In terms of the area of the door in comparison with the wall, the door-to-wall ratio except the roof and floor is only 1.87%. However, this study did not consider the effect of the improved air tightness of the high-insulated steel door due to the shortage of information of the deteriorated single-family houses before and after the airtightness. This process was developed to further analyze the improvement of the high-insulated steel door for the outdoor air load and heat load by transmittance. The condensing gas-fired boiler has good energy-efficient performance by reusing the latent heat of vapor, which
corresponds to the temperature range of 40-50 degree Celsius. It has shown 14% of energy saving compared to the reference model.

Table 8. Energy performance results of the reference model

Classification	Monthly Energy Performance Results	Usage (kWh)	Energy Rate (KRW)	
	Electricity	Fuel	Electricity	Fuel
JAN.	204	3,674	23,880	364,374
FEB.	184	2,994	16,000	296,918
MAR.	202	2,406	23,450	238,657
APR.	191	1,333	16,740	132,213
MAY	193	591	16,950	58,626
JUN.	185	46	16,100	4,562
JUL.	189	16	16,520	1,566
AUG.	190	32	16,640	3,132
SEP.	184	107	16,000	10,572
OCT.	195	783	1,160	77,629
NOV.	194	1,912	17,060	189,678
DEC.	204	1,197	23,880	171,123
Sum	2,314	5,009	220,380	1,695,051
Normalize by floor area		52.6	388.43	8,524

4.3. Priority analysis of the energy conservation measures through the cost efficiency indicators

Based on the initial construction cost and annual energy saving save, the priority analysis results are shown in Table 9. The energy conservation measure with the highest energy usage saving is the internal insulation reinforcement. The condensing oil-fired boiler shows the shortest period of payback. In case of ECMs 5, the high-efficiency condensing gas fired boiler using LPG exceeds the payback period. When the condensing gas-fired boiler is applied, the region where the LNG supply pipe is installed is adequate. Because LNG is much cheaper than LPG in South Korea, to analyze the correlation of the cost among energy conservation measures, the index for the required additional cost for 1% energy consumption saving was investigated. As shown in Table 9, the condensing oil-fired boiler most effectively achieves the highest energy saving with the lowest cost.

Table 9. Priority analysis of the energy conservation measures

ECMs	Energy & Water Saving Ratio	Initial Expense	Energy Rate by Energy Source (KRW/year)	Total Energy Rate	Energy Rate Savings	Payback Period	Increasing Cost per Energy Saving Ratio	Life Cycle Costing		
	%	KRW	Electricity	Fuel	KRW/year	KRW/year	KRW %	KRW		
Reference Model	-	220,380	1,695,051	159,912	2,075,343	-	-	-	-	47,863,788
1	0.16	324,000	220,380	1,692,127	159,912	2,072,419	0.14	110.8	2,314,286	48,120,356
2	4.34	2,310,000	220,710	1,579,150	159,912	1,959,772	5.57	12.9	266,607	46,683,376
3	8.64	2,624,000	213,020	1,579,150	159,912	1,414,129	19.95	1.0	62,556	39,580,708
4	-0.03	212,000	140,590	1,754,192	159,912	2,054,694	0.99	10.3	212,000	47,599,567
5	5.70	570,000	224,110	1,874,656	159,912	1,435,335	-71.47	-0.2	3,778	82,344,070
6	4.89	540,000	220,380	1,600,881	159,912	1,981,178	4.54	5.7	118,843	46,231,951
7	19.16	942,000	220,380	1,326,388	159,912	1,706,680	17.76	2.6	53,041	40,303,306
8	54.00	370,000	224,110	1,695,051	159,912	1,999,945	3.81	4.7	97,113	46,408,852

5. Conclusion
This study results in the following key findings. First, the energy conservation measure with the highest energy-saving ratio is the internal insulation system. Second, the annual energy saving rates of the internal insulation and high-efficiency condensing oil-fired boiler are 19.95% and 17.76%, respectively. Third, the high-efficiency condensing oil-fired boiler has the shortest payback period among the energy conservation measures. In terms of life cycle cost, the internal insulation system is the most effective in the long term. For future study, the field measurements and on-site testing in single-family houses or test-beds must be performed in accordance with the empirical validation of this study. Additional research methodology is required to consider the option D calibrated simulation of determining energy and water saving volume 1 by the international performance measurement & verification protocol. The analysis of the residential environment improvement in the small-scaled urban redevelopment appears to be important for the Urban Regeneration New Deal Projects and zero energy building plan in South Korea.

Acknowledgement
This study was supported by a grant (18AUDP-B077107-05) from Architecture & Urban Development Research Program funded by Ministry of Land, Infrastructure and Transport (MOLIT) of Korea government and Korea Agency for Infrastructure Technology Advancement (KAIA).

References
[1] Jung-Hwa Kim, 2015, Heating Energy Baseline and Saving Model Development of Detached Houses for Low-income Households, University of Science and Technology, Master’s Thesis, 39–46
[2] Ministry of Land, Infrastructure, and Transport, 2018, Apartment Housing Management Act Enforcement Regulations, The establishment of standards of the long-term repair plans, Appendix table 1
[3] Sung-Wan Kim, Esther-Jinkyung Park and Yu-mi Kim, 2017, Prioritizing Low-cost ‧ Green Technologies for Neighborhood Regeneration, KIEAE Journal, Vol.17, No.6, pp.107-115
[4] Seung-Yeong Song, Soo-Jin Lee, Kab-Soo Hur, and Hyun-Ho Jin, 2012, Cost Efficiency Analysis of Design Elements for a Zero Energy Apartment Building, Journal of AIK, Vol.28, No.08, 2012, pp.207-216
[5] Min-Kyeong Kim, and Seong-Eun Kim, 2010, Technical Factors on Energy Performance Improvement and the Effects for the Existing Detached House, Journal of SI, Vol.11, No.3, pp.29–47
[6] Sung-Jin Lee, Jong-hun Kim, Hak-geun Jeong, Seung-hwan Yoo, Jung-hun Lee, 2017, Heating energy efficiency improvement analysis of low-income houses, Journal of KIAEBS, Vol.11, No.3, pp.212–218
[7] Myoung-Ju Lee, Won-Seok Kim, Woo-Joo Lee and Won-Taek Lee, 2012, A Study about Reduction Rates of Building Energy Demand for a Detached House according to Building Energy Efficient Methods, Journal of AIK, Vol.28, No.5, pp.275–282
[8] Won-Seok Kim and Myoung-Ju Lee, 2015, The Research on Energy Performance Improvement Renovation Case Studies for the Physically Disabled Low-Income Home Owners, Journal of AIK, Vol.31 No.1, pp.57–64
[9] Yong Sik Jeong, 2017, Project plan and practical business, Construction and Economy Daily, 29-30P, edited
[10] Jin-Gwan Park, Hong-Do Jung, Yong-Han Shin, Hyo-Min Jeong and Han-Sik Jeong, 2011, The Research on Economic Analysis by Introducing Water-saving Toilets, Journal of SAREK, pp.275-278
[11] Korea Energy Agency (KEA), Ministry of Land, Infrastructure, and Transport, Handbook for energy saving design standards of buildings, pp.182