Original Research Article

Bacterial Cellulose Production from Mature Black Spear Grass Hydrolysate by Gluconacetobacter xylinus: Effect of pH, Fermentation Time and Nitrogen Supplementation

C.G. Dirisu¹,²* and W. Braide²

¹Department of Biology, Federal College of Education (Technical) Omoku, Nigeria
²Department of Microbiology, Federal University of Technology Owerri, Nigeria

*Corresponding author

Abstract

Mature black spear grass (Heteropogon contortus) hydrolysate (SGH) was used for the first time as lignocellulosic substrate for production of bacterial nanocellulose (BC) by Gluconacetobacter xylinum at 30°C and pH 5.5. The maximum total reducing sugar (TRS) from SGH was 2.48g/L using 6% H₂SO₄ at 121°C for 4h with higher amount of xylose than glucose and arabinose. BC yield was comparable to those from reported lignocellulosic hydrolysates. At the end of 15 days, mean BC yield (g/L) was 3.84±2.23. pH produced a significant effect on BC yield (p<0.05). There was a steady increase from an initial pH4 which later declined with further increase in pH. The maximum BC yield (g/L) (4.88±1.25) occurred at pH 6. The optimal pH was 5-6. Significant effect of fermentation time (FT) and BC on one hand and pH on BC on the other hand was determined statistically using regression model. Supplementation of SGH with nitrogen sources- yeast extract (YE), peptone or both did not increase BC yield above the value observed for SGH. There was however significant difference in BC yield from basal medium supplemented with the nitrogen sources, F (3, 4) =772, p<0.05.

Keywords
Bacterial nanocellulose, Spear grass hydrolysate, pH, Gluconacetobacter xylinus

Introduction

Bacterial cellulose or Biocellulose (BC) or bacterial nanocellulose (BNC) is natural, pure cellulose quite different in morphology from plant cellulose.

The cellulotic pellicle formed at the surface of culture medium during the growth of the producing bacteria in a static medium is fibrillar in nature of nano dimension and hence the name, bacterial nanocellulose fibril (BNCF) to further differentiate it from the nanocrystal form produced in agitated cultures. BC, whether nanofibre or nanocrystal is a much desired biotech material with wide applications in the paper and textile industry and highly demanded in biomedical outfits for treatment of high degree burns, artificial artery for drug delivery, scaffold for tissue engineering as well as food additives and other industrial applications (Klemm et al., 2001; Chalwa et al., 2009; Dahman et al., 2010; Lee et al., 2013; Shah et al., 2013; Keshk, 2014; Zhijun et al., 2014; Tsuoko et al., 2015; Sulaeva et al., 2015; Cacicedo et al.,
The standard medium for Biocellulose production, popularly known as Hestrin-Schramm(HS) medium in honour of the first developers in 1954 contains (w/v), 5% glucose, 1.6% bacto-peptone, 0.2% citric acid, 0.2% Na2HPO4, 0.3% KH2PO4, and 0.03% MgSO4 (Hestrin and Schramm, 1954). It is incubated aerobically under static condition. Unfortunately, the high cost of the HS medium components vis-à-vis under-production had necessitated the search, research and adoption of earth’s abundant renewable agro resources such as lignocellulosic materials, with or without supplementation for optimal production of BC.

Acidic, Alkaline and/or enzymatic hydrolysates of many plants or plant residues have been used as feedstock for the production of industrial chemicals including bioethanol and biogas as well as some organic acid and even enzymes (Hernández et al., 2012; Krogelli et al., 2013; Wang et al., 2013; Scholl et al., 2015). Hydrolysates of grasses such as elephant grass, and cereal grasses such as corn, rice, wheat and barley as well as specific sugar broths have been employed as medium for BC production, with and without supplementation of the standard HS medium, with varying results as shown in Table 1. In other times, the residues obtained after the processing of agro-industrial lignocellulosic materials have also been used. There has however been no mention of spear grass or its residue hydrolysate being used as substrate in BC production except for producing fermentable sugar for fuel ethanol (Anwar et al., 2014).

Black spear grass (Heteropogon contortus) is a tropical perennial grass that can only be used as fodder when young and not when matured because of the lesser nutritive value of the latter and rough edges (Mohd Kassim et al., 2015) (Fig. 1). In this study, SG which was previously produced by heat pretreatment followed by acid hydrolysis (Dirisu et al., 2018) was used for the first time as culture medium for BC production by the bacterium, Gluconacetobacter xylinus, taking into accounts the kinetics for optimum yield. SG was chosen because it is readily available in most fields and farms and requires no cost for its harvest. Also, it is rich in glycosides, flavinols, minerals and vitamins. The nutritional datasheet of SG is given by Heurze et al., (2017)

Materials and Methods

Collection and preparation of spear grass hydrolysate

Spear grass acid hydrolysate used for Biocellulose production was prepared by Dirisu et al., (2018) and contained 22.86% hemicellulose, 15.98% lignin and 39.96% cellulose. Reducing sugars detected by thin layer chromatography included arabinose (2.27±0.07) g/L, glucose (15.2 ±4.7) g/L and xylose (21.2 + 9.02) g/L.

Inoculation of SGH medium

Gluconacetobacter xylinum (GX) previously isolated from rotten banana juice (Dirisu et al., 2017) was used as the bacterial inoculums for BC production. The pH of SGH medium containing 2.48g/L TRS was adjusted to pH 5 and 8 using 2N hydrochloric acid (HCl) and sodium hydroxide (NaOH) for acidic and alkaline pH respectively. Flasks were sterilized by autoclaving at 121°C for 15 minutes g allowed to cool to 35°C and inoculated in duplicates with 0.1μL of bacterial suspension of GX. Flasks were incubated aerobically at 30°C for 15 days to observe for formation of cellulosic pellicle on the surface.
pH of the BC medium was measured at the end of the fermentation. BC yield was compared with the reported yield from other agro-allied hydrolysates.

Effect of supplementation of SGH with nitrogen source on biocellulose production

SGH prepared as described above (Figure 3b) was supplemented with sterile 5.0% Yeast extract (YE), 5.0% Peptone and a combination of YE and Peptone, source of organic nitrogen and adjusted to pH 5.5. Supplemented SGH media were inoculated with 0.1ml bacterial suspension and incubated at 30°C in a static condition to observe for cellulosic pellicle, for 9 days.

Determination of biocellulose yield

Biocellulose was extracted for the BC medium by alkaline method as previously described by Wu et al., (2014) and Dirisu et al., (2017). Extracted pellicles were dried and weighed. Mass of dry BC pellicle was expressed in g/L.

Statistical analysis

Data obtained were subjected to two-way analysis of variance (ANOVA), Pearson Correlation analysis was carried out to determine how the amount of total reducing sugar in SGH varied with the concentration of the sulphuric acid used and time of hydrolytic reaction.

Regression model was adopted to determine the relationship between BC yield and pH on one hand and fermentation time on another. Also, effect of supplementation of SGH with yeast extract on BC production was also determined by ANOVA statistics. All analyses were conducted by MS Excel data analysis tool Pak and SPSS, version 18. Conversion of units was done using online converter software.

Results and Discussion

Biocellulose yield in Spear Grass Hydrolysate (SGH) medium at different Fermentation Time

Biocellulose yield (g/L) \((x+\bar{y})\) at the end of 15 days was 3.84+2.23 (Figure 2). BC yield increased with time of incubation and ranged from 2.8+0.14 to 5.95+0.07. Between group ANOVA on mean BC yield with time was not significant, \(F (1, 10) =0.037, p0.85>0.05\), (Table 1). The BC yield obtained in this study is lower than 6.4 g/L in elephant grass hydrolysate at the end of 14 days fermentation in a static condition (Yang et al., 2013), and 5.0g/L in casein hydrolysate (Ramana et al., 2000), very close to 4.0g/L in corn cob hydrolysate (Huang et al., 2015) and higher than olive mill hydrolysate (0.85-2.5g/L) and Bagasse hydrolysate (1.09 g/L) (Table 3).

The effect of fermentation time (FT) of BC production as obtained from Table 1 is given by the regression equation (1):

\[
BC = 0.278FT + 2.105 \\
\]

The linear relationship between FT and biocellulose yield (BC’) in spear grass hydrolysate was significant, \(F(1,3)=73.46, p 0.003<0.05\) (Table 2). The 95% confidence interval for the slope, 0.175 to 0.382 also indicates that fermentation time is significantly positively related to BC’. A correlation of \(r = 0.98\) suggests a strong negative correlation and t statistics for regression was not significant, \(t ((4) =6.51, p0.007>0.05)\).

pH and pH changes accompanying BC production in spear grass hydrolysate medium with time

Changes in pH accompanying Biocellulose production in SGH is shown in Figure 3.
Table 1: One-way Analysis of Variance (ANOVA) on bacterial nanocellulose fibril yield (g/L) with fermentation time in spear grass hydrolysate Medium

Source of Variation	SS	Df	MS	F	P-value	F crit
Between Groups	0.19	1	0.1875	0.037484	0.850359	4.964603
Within Groups	50	10	5.0021667			
Total	50.2	11				

Table 2: Linear regression of fermentation time effect on BC yield (BC’) in Spear grass hydrolysate medium

Coefficients	B	Standard Error	t Stat	P-value	Lower	Upper bund
Intercept	2.105	0.323	6.514	0.007	1.077	3.133
Fermentation Time (FT)	0.278	0.032	8.571	0.003	0.175	0.382

Table 3: Biocellulose yield in spear grass hydrolysate compared with different agro residues and hydrolysates

Medium	Bacterial Producer	BC yield (g/L)	Reference
Caesin hydrolysate	Acetobacter xylinum	5.0	Ramana (2000)
Konjac powder hydrolysate	G. xylinum ATCC23770	2.1	Hong and Qui (2008)
Pineapple peel juice	Ga. Swingsii	2.8	Castro et al., (2011)
HS medium + TS	Ga. Xylinus	10.38	Wu and Liu (2012)
Wheat straw hydrolysate	Ga. Xylinus	6.3	Chen et al., (2013)
	Ga xylinus	9.7	Al-Abdallah and Dahman (2013)
Olive mill residue hydrolysate	G. saccari	0.85	Gomes et al., (2013)
Thin stillage (TS)	Ga. Xylinus	6.26	Wu (2013)
Elephant grass hydrolysate	G. xylinus CG001	6.4	Yang et al., (2013)
Glycerol from grape bagasse	G. xylinum	8.0	Vasquez et al., (2013)
Waste beer yeast hydrolysate	G. hansenii CGMCC3917	7.02	Lin et al., (2014)
Corn cob hydrolysate	Gluconacetobacter xylinus	4.0	Huang et al., (2015)
Pulp mill hydrolysate	G. xylinus	0.15	Kiziltas et al., 2015
Sunflower meal hydrolysate + glycerol	Komagatetibacter sacrofermentarius	13.3	Tsuoko et al., (2015)
Molasses hydrolysate	G. intermedius	12.6	Tyagi and Suresh (2016)
Pineapple fruit juice	Acetobacter pasteurianus	0.38	Adebayo-Tayo et al., (2017)
Bagasse hydrolysate	Ga. Xylinus	1.09	Qi et al., (2017)
Bagasse Acetic acid hydrolysate	A. xylinum	2.13	Cheng et al., (2017)
Spear grass hydrolysate	G. xylinus	4.88	This study

*Compiled from various sources
Fig. 1 Black Spear grass (*Heteropogon contortus*)

Fig. 2 Mean Biocellulose yield by *Gluconacetobacter xylinus* in spear grass hydrolysate Medium

Fig. 3 Biocellulose production and pH changes in Spear grass hydrolysate medium
Fig.4 Effect of pH on biocellulose yield in spear grass hydrolysate medium

![Graph showing the effect of pH on biocellulose yield](image)

Fig.5 Mean biocellulose production in black spear grass hydrolysate and sugar media supplemented with nitrogen sources—Yeast extract and peptone

![Bar charts showing biocellulose production](image)

While BC yield increased with time, pH of SGH medium equally increased from 5.0 + 0.0, day 1 to 7.3+0.14 at day 15. This trend is similar to the report by using elephant grass hydrolysate (Yang et al., 2013). In contrast, Raghunatahn (2013) observed no increase in the final pH of the BC medium when *G. xylinus* was cultured on medium containing D-arabinose, or D-glucose.

Effect of pH on biocellulose production in spear grass hydrolysate medium

Result from Figure 4 indicates that BC production increased with increasing pH (4-67 and time of incubation in SGH medium. Mean BC (g/L) produced at different pH are 3.52+1.17, 4.61+1.28, 4.88+1.25, 4.38+0.63 and 3.05+0.82 at pH 4, 5, 6, 7 and 8.
respectively. Thus neutral to alkaline pH did not favour much BC yield. This can be attributed to the fact that the bacteria thrive well in acidic medium and as such any deviation would affect if not hinder their growth. The linear relationship between pH and BC production in SGH is given by the regression equations (1) as derived from Table 1. Maximum BC yield (4.88+1.25) occurred at pH 6 after which it declined with further increase in pH. The value obtained was higher than the maximum yield (0.15) at pH 8 by G. xylinus in pulp mill hydrolysate (Kiziltas et al., 2015) and 2.1g/L at pH6 in HS medium as reported by Rangaswamy et al., (2015).

Effect of nitrogen supplementation on BC production

Grass hydrolysate contains low percentage of nitrogen with high percentage of carbohydrates. Thus, nitrogen source- yeast extract (YE) and peptone was added to SGH medium to provide amino acids and vitamins for bacterial growth. In this study, there was significant difference in the BC yield from basal medium supplemented with nitrogen sources, F (3, 4) =772, p<0.05). BC yield in SGH was 4.88 g/L (Figure 5). Addition of YE, Peptone or both did not increase BC yield above the value observed for SGH. Mean BC produced were 3.42, 3.38 and 3.63g/L respectively. BC yield in YE and peptone supplemented medium in this study was higher than 3.23/3.22g/L and 1.29/1.04g/L in Glucose-Ethanol acetic acid medium respectively (Abdelhady et al., 2015), but lower than 7.0g/L and 9.0g/L reported by adding YE and peptone respectively (Pourramezan et al., 2009). In a related study involving bioethanol production, Scholl et al., (2015) indicated that there was no significant difference in the various nitrogen sources added to elephant grass hydrolysate. Glucose medium supplemented with a combination of YE and peptone gave a higher yield of 0.79g/L BC followed by YE or peptone. There was however no significant difference in BC yield, F (2, 3) =0.204, p0.83>0.05. Rangaswamy et al., (2015) and Ramana et al., (2000) reported maximum BC yield of 2.15g/L and 4.8g/L following 0.5% w/v supplementation of 0.5% v/v peptone respectively, while Son et al., (2003) reported a BC yield with YE (2.87g/L) followed by corn steep liquor (2.59g/L) and polypeptone (2.05g/L). Combined supplementation of fructose medium with YE and peptone gave a BC yield of 4.5g/L by A. xylinum. Other organic nitrogen sources used for BC production media include corn steep liquor (4.63g/L) (Costa et al., 2017), casein hydrolysate (4.07 and 5.0g/L) (Ramana et al., 2000) and beef extract (0.25g/L (Abdelhady et al., 2015). According to Mohammedkazeem et al., (2015), YE and peptone deficiencies slow down the fermentation process because it affects cell growth although it is not required for BC production. It does appear that the type of carbon source employed in BC medium with nitrogen supplementation varies. Embuscaldo et al., (1994) supplemented fructose media with YE and peptone and obtained 7.38g/L BC but Abdelhady et al., (2015) supplemented glucose-ethanol medium with YE and peptone, which enhanced BC yield (4.59g/L). In a recent study, Biyik and Coban (2017) supplemented HS medium containing glucose with YE and obtained 0.04g/L of BC. YE is said to be needed for cell growth (Kim et al., 2006) and hence explains the stimulatory role in BC production The genetics of nitrogen deficiency has been extensively studied elsewhere and appear to be linked to cellulose biosynthesis regulation through c-amp (Ross et al., 1991; Chalwa et al., 2009).

The study has demonstrated the potential of mature black spear grass hydrolysate as a no-
cost medium for producing a highly valued biopolymer, biocellulose (BC) by *Gluconacetobacter xylinus*, formerly *Acetobacter xylinum* in a static incubation. SGH contains hydrolysable sugars which were metabolized and converted directly or indirectly to biocellulose Result shows that fermentation time and pH significantly affected BC production in the SGH. Supplementation with organic nitrogen sources such as yeast extract or peptone played a stimulatory role by enhancing BC production. The optimum conditions were pH 5-6. The use of mature black spear grass in this way has both economic, environmental and health importance.

Acknowledgment

The authors are grateful to the laboratory of Biological and Integrated science Omoku, Nigeria and to G.B. Dirisu for harvesting and preparing the spear grass used for the experiments and to Jubilee Gabriel for word processing of the manuscript.

References

Abdelhady, H.M, Enas, A. Hassan, Sohir S. Abd El-Salam and Sara M. Abdullah 2015. Bacterial Cellulose Production as Affected by Bacterial Strains and Some Fermentation Conditions. *Nat Sci*; 13(3):30-40]. (ISSN: 1545-0740). http://www.sciencepub.net/nature.5

Al-Abdallah W and Dahman, Y 2013. Production of green biocellulose nanofibers by *Gluconacetobacter xylinus* through utilizing the renewable resources of agriculture residues. *Bioprocess Biosyst Eng*. 36 (11):1735-43. doi: 10.1007/s00449-013-0948-9.

Ansong, M., Pickering, C. 2013. *Ecological Management & Restoration*, 14 (1), 71-74 Wiley-Blackwell, Melbourne, Australia.

Anwar, Z. Gulfraz, M and Irshad, M 2014. Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: A brief review. *J. Radiation Res and Appl. Sci*. 7 (2), 163-173

Binder, J.B and Raines, R.T 2010. Fermentable sugars by chemical hydrolysis of biomass; Proc Natl Acad Sci USA. 107(10), 4516–4521. doi: 10.1073/pnas.0912073107

Cacicedo, M.L, Castro, M.C; Servetas, I; Bosnea L, Boura K, Tsafarakidou P, Dima A, Terpou A, Koutinas A, Castro, G.R. 2016. Progress in bacterial cellulose matrices for biotechnological applications. *Bioresour Technol*. 213:172-80. doi: 10.1016/j.biortech.2016.02.071.

Cardona, E. M., and Rios, L. A. 2012. Availability of Grasses and Forages as Potential Lignocellulosic Materials for Bioethanol Production in Colombia, 23, 87–96. DOI: 10.4067/S0718-07642012000600010

Castro C., Zuluaga R., Putaux J.-L., Caro G., Mondragon I., Ganán P. 2011. Structural characterization of bacterial cellulose produced by *Gluconacetobacter swingsii* sp. from Colombian agroindustrial wastes. *Carbohydr. Polym*. 84:96–102. doi: 10.1016/j.carbpol.2010.10.072

Chawla P.R., Bajaj I.B., Survase S.A., Singhal R.S. 2009. Microbial cellulose: Fermentative production and applications. *Food Technol. Biotechnol*. 47:107–124.

Chen L., Hong F., Yang X.X., Han S.F. 2013. Biotransformation of wheat straw to bacterial cellulose and its mechanism. *Bioresour. Technol.*135:464–468. doi: 10.1016/j.biortech.2012.10.029.

Cheng, Z; Yang and Liu, X. 2017. Production of bacterial cellulose b *Acetobacter xylinum* through utilizing acetic acid
hydrolysate of Bagasse as low-cost carbon source Bioresources 12 (1), 1190-1200
Cook, B. G., Pengelly, B. C., Brown, S. D., Donnelly, J. L., Eagles, D. A., Franco, M. A.; Hanson, J., Mullen, B. F., Partridge, I. J., Peters, M., Schultz-Kraft, R., (2005). Tropical forages. CSIRO, DPI&F(Qld), CIAT and ILRI, Brisbane, Australia
Costa, A. F.S; Fabiola, Almelda, C.G; Vinhas, G.M and Sarubbo, L.A. 2017. Production of bacterila cellulose by Gluconacetobacter hansenii using corn steep liquor as nutrient sources. Front in microbiology 8:2027, 1-12 doi: 10.3389/fmicb.2017.02027
Dahman Y., Jayasuriya K.E., Kalis M. 2010. Potential of bioacellular nanofibers production from agricultural renewable resources: Preliminary study. Appl. Biochem. Biotechnol. 162:1647–1659. doi: 10.1007/s12010-010-8946-8.
Dirisu, C.G; Rosenzweig, J; Lambert, E and Oduah, A. A. 2017. pH Effect and pH Changes during Bioacellular Production by Gluconacetobacter xylinus in Moringa oleifera Tea-Sugar Medium Journal of Advances in Microbiology 7(2): 1-7; DOI: 10.9734/JAMB/2017/38440.
Embusscado, E.M., Marks, J.S and BeMiller, J.N 1994. Bacterial cellulose. I. Factors affecting the production of cellulose by Acetobacter xylinum Food Hydrocolloids. 8 (5), A07-418.
Gomes, F.P; Nuno H.C.S. Silva ‘Trovatti. E; Serafim’ L.S; Duarte, M.F; Silvestre’ A.J.D; lNeto, C.P and Freire, C.S R. 2013. Production of bacterial cellulose by Gluconacetobacter sacchari using dry olive mill residue Biomass and Bioenergy 55: 205-211, https://doi.org/10.1016/j.biombioe.2013.02.004
Gusakov, A.V; Kondratyeva, E.G. and Sinitsyn, A.P. 2011.Comparison of Two Methods for Assaying Reducing Sugars in the Determination of Carbohydrase Activities, Int’l Journal of Analytical Chemistry, 2011, Article ID 283658, 4 pages, 2011. doi:10.1155/2011/283658
Hernández, I. P., Pérez-Pimiento, J. A., Messina, S., and Durán, C. E. S. 2012. Dilute sulfuric acid hydrolysis of tropical region biomass. Journal of Renewable and Sustainable Energy 4, Article ID 021201. DOI: 10.1063/1.3663878
Hestrin, S., Schramm, M. 1954. Synthesis of cellulose by Acetobacter xylinum: II. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem. J. 58 (2): 345–352. PMC 1269899, PMID 13208601.
Heurze, V.; Tran; G; Giger-Verderin, S; Lebas, F. 2017. Spear grass (Heteropogon contortus). A programme by INRA, CIRAD, AFZ and FAO, Available from https://www.feedipedia.org/node/433
Hong, F., and Qiu, K. (2008). An alternative carbon source from konjac powder for enhancing production of bacterial cellulose in static cultures by a model strain Acetobacter aceti subsp. xylinus ATCC 23770. Carbohydr. Polym. 72, 545–549. doi: 10.1016/j.carbohydrpol.2007.09.015
Huang, C., Yang X., Xiong L., Guo H., Luo J., Wang B., Zhang H., Lin X., Chen X.D. 2015. Utilization of corncob acid hydrolysate for bacterial cellulose by Gluconacetobacter xylinus Applied Biochem Biotech 173 (3), 1678-88.DOI:10.1007/s12010-014-1407-z
Hussin, H; Salleh, M.M; Siog, C.C; Naser, M.A; Abd-Aziz, S; Al-Junid, A.F.M. 2016. Optimization of Bioynaillin production from lemon grass leaves hydrolysates through Phanerochaete chrysosporium. I. Jurnal Teknologi, 77(31), 55-61
Idrees; M; Adnan; A; Bokhari; S.A and Quresh, F.A. 2014. Production of fermentable sugars by combined chemo-enzymatic hydrolysis of cellulose material for bioethanol production Braz. J. Chem. Eng. 31 (2) São Paulo http://dx.doi.org/10.1590/0104-6632.20140312s00002415

Jørgensen H; Kristensen, J.B; and Felby, C. 2007. Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuel Bioprod Biorefin. 1:119–134. doi: 10.1002/bbb.4.

Kassim, A; Sari, M; Aripin, A.M; Ishak, N. and Zainulabidu, M.H. 2015. Cogon grass as an alternative fibre for pulp and paper-based industry: A chemical and surface Morphological properties. Applied mechanics and materials, 773-774:1242-1245

Keshk, S.M.A.S. 2014. Vitamin C enhances bacterial cellulose production in Gluconacetobacter xylinus. Carbohydr. Polym. 99 98–100. Doi: 10.1016/j.carbpol.2013.08.060

Kiziltas E.E., Kizilas A., Rhodes K., Emanetoglu N.W., Blumentritt M., Gardner D.J.2015. Electrically conductive nano graphite-filled bacterial cellulose composites. Carbohyd. Polym. 136:1144–1151. doi: 10.1016/j.carbpol.2015.10.004

Klemm D., Schumann D., Udhardt U., Marsch S. 2001. Bacterial synthesized cellulose—Artificial blood vessels for microsurgery. Prog. Polym. Sci. 26:1561–1603. doi: 10.1016/S0079-6700(01)00021-1

Krogell, J., Korotkova, E., Eranem, K., Pranovich, A., Salmi, T., Murzin, D. and Willfor, S. 2013. Intensification of hemicelluloses hot water extraction form spruce wood in a batch extractor-Effects of wood particle size, Bio Res Technol; 143 (17), 212-220. doi: 10.1016/j.biotech.2013.05.110

Kumar, M, Thammannagowda, S, Bulone, V, Chiang, V, Han, K.H, Joshi, C.P, Mansfield S.D, Mellerowicz E, Sundberg B, Teeri T et al., 2009. An update on the nomenclature for the cellulose synthase genes in Populus. Trends in Plant Sci 14: 248–254

Lee, K., Buldum, G., Mantalaris, A., Bismarck, A. 2013. More than meets the eye in bacterial cellulose: Biosynthesis, bioprocessing, and applications in advanced fiber composites. Macromol. Biosci. 14:10–32. doi: 10.1002/mabi.201300298

Lin, D., Lopez-Sanchez, P., Li, R., Li, Z. 2014. Production of bacterial cellulose by Gluconacetobacter hansenii CGMCC 3917 using only waste beer yeast as nutrient source. Bioresour. Technol.151:113–119. doi: 10.1016/j.biortech.10.052.

Liyaskina, E; Revin, V; Paramonova, E; Nazarkina, M; Pestov, N; Revina, N. and Kolesnikova S. 2017. Nanomaterials from bacterial cellulose for antimicrobial wound dressing, J. of Physics: Conference Series, 784 (11), 1742-6596

Malherbe, S and Cloete, T.E. 2002. Lignocellulose biodegradation: Fundamentals and Plications, Rev in Env Sci & Biotech, 1:105-114

Mezule, W.L; Dalecka, B; and Juhna, T. 2015. Fermentable sugar production from lignocellulosic. Chem Eng Trans., 43: 619–624

Mohammadkazemi F., Doosthoseini K., Azin M. 2015. Effect of ethanol and medium on bacterial cellulose (BC) production by Gluconacetobacter xylinus (PTCC 1734); Cellul. Chem. Technol. 49:5–6.

Mohd Kassim, A. S; Aripin, A.M; Ishak, N and Zainulabidin, M.H. 2015. Cogon Grass as an Alternative Fibre for Pulp
and Paper-Based Industry: On Chemical and Surface Morphological Properties, *Applied Mechanics and Materials*, 773-774, 1242-1245

Mohite B.V., Patil S.V. A novel biomaterial: Bacterial cellulose and its new era applications. Biotechnol. Appl. Biochem. 2014; 61: 101–110. doi: 10.1002/bab.1148

Moniri, M; Moghaddam, A.B; Azizi, S; Raim, R.A; Aniff, A.B; Saad, W.Z; Nayaden, m and Mohamad, R. 2017. Production and Status of Bacterial Cellulose in Biomedical Engineering Nanomaterials (Basel).7(9):257. doi:10.3390/nano7090257

Nigam, J. N. 2002. Bioconversion of water-hyacinth (*Eichhornia crassipes*) hemicellulose acid hydrolysate to motor fuel ethanol by xylose-fermenting yeast. *Journal of Biotechnology*, 97: 107-116

Picheth, G.F, Pirich, C.L, Sierakowski, M.R, Woehl, M.A, Sakakibara, C.N, de Souza, C.F, Martin, A.A, da Silva R, de Freitas R.A 2017. Bacterial cellulose in biomedical applications: A review. *Int J Biol Macromol*. 104:97-106. doi: 10.1016/j.ijbiomac.2017.05.171. Epub 2017 Jun 3.

Pourramezan, G.Z; Roayaei, A.M. and Qezelbash, Q.R. (2009). Optimization of Culture Conditions for Bacterial Cellulose Production by *Acetobacter* sp. 4B-2. *Biotechnology*, 8: 150-154. DOI: 10.3923/biotech.2009.150.154

Qi, G-X; Luo, M-T; Huang, C; Guo, H-J; Chen, X-F; Xiong, L; Wang, B et al., 2017. Comparison of bacterial cellulose production by *Glucanacetobacter xylinus* on bagasse acid and enzymatic hydrolysates; *J. of Appl Polym Sci* 134 (28) 45066. DOI: 10.1002/app.45066

Ragunathan, D. 2013. Production of microbial cellulose from the new bacterial strain isolated from temple wash waters. *Int. J. Curr. Microbiol. App. Sci*. 2: 275-290.

Ramana, K. V., Tomar, A. and Singh, L. 2000. Effect of various carbon and nitrogen sources on cellulose synthesis by *Acetobacter xylinum,*” World J of Microbiol and Biotechnol, 16 (3), 245–248

Rangaswamy, B. E., Vanitha, K. P., and Hungund, B. S. 2015. Microbial cellulose production from bacteria isolated from rotten fruit. *Int. J. Polym. Sci.*,2015:280784. doi: 10.1155/2015/280784

Ross, P., Mayer, R., and Benziman, M. 1991. Cellulose biosynthesis and function in bacteria. *Microbiol. Rev.* 55, 35–58.

Scholl, A.L; Menegol, D; Pitarelo, A.P; Fontana, P.C; Filho, A.Z; Ramos, L.P; *et al.*, 2015. Ethanol production from sugars obtained during enzymatic hydrolysis of elephant grass (*Pennisetum purpureum*, Schum.) pretreated by steam explosion. *Biores Technol*; 192:228-237

Shah, N., Ul-Islam, M., Khattak, W. A., and Park, J. K. 2013. Overview of bacterial cellulose composites: a multipurpose advanced material. *Carbohydr. Polym.* 98: 1585–1598. doi:10.1016/j.carbpol.2013.08.018

Singh, L. K; Chaudhary, G., Majumder, C. B. and Ghosh, S. 2011. Utilization of hemicellulosic fraction of lignocellulosic material for bioethanol production. *Adv in Appl Sci Res*, 2 (5), 508–521

Soromessa, T. 2011. *Heteropogon contortus* (L.) P.Beaum. ex Roem. & Schult.. Record from Protabase. Brink, M. & Achigan-Dako, E.G. (Editors). PROTA (Plant Resources of Tropical Africa / Ressources végétales de l’Afrique tropicale), Wageningen, Netherlands

Sulaeva I, Henniges U, Rosenau T and Potthast A. 2015. Bacterial cellulose as
a material for wound treatment: Properties and modifications. A review; Biotechnol. Adv. 33 1547-1571
Sun N; Liu, H; Sathitsuksanoh, N; Stavila, V; Sawant, M, Bonito, A et al., 2013. Production and extraction of sugars from switchgrass hydrolyzed in ionic liquids. Biotech for biofuels 6:39. Doi.org/10.1186/1754-6834-6-39
Tsouko E., Kourmentza C., Ladakis D., Kopsahelis N., Mandala I., Papanikolau S., Paloukis F., Alves V., Koutinas A. 2015. Bacterial cellulose production from industrial waste and by-product streams. Int. J. Mol. Sci. 16:14832–14849. doi: 10.3390/ijms 160714832.
Tyagi, N., and Suresh, S. 2016. Production of cellulose from sugarcane molasses using Gluconacetobacter: optimization and characterization. J. Clean. Prod. 112, 71–80. doi: 10.1016/j.jclepro.2015.07.054
Vasquez, A.F.L; Rey, G.A. Rodriguez, F.A.R 2010.Obtaining of reducing sugars from kikuyu grass. Avances Investigacion en Ingenieria 13:98-101
Vazquez A., Foresti M.L., Cerrutti P., Galvagno M. 2013. Bacterial cellulose from simple and low cost production media by Gluconacetobacter xylinus. J. Polym. Environ. 21:545–554. doi: 10.1007/s10924-012-0541-3
Wang, Y., Yuan, B., Ji, Y., and Li, H. 2013. Hydrolysis of hemicellulose to produce fermentable monosaccharides by plasma acid. Carbohy Polym 97(2), 518-522. DOI: 10.1016/j.carbpol.2013.05.017
Wu, J-M. and Liu R.H. 2012. Thin stillage supplementation greatly enhances bacterial cellulose production by Gluconacetobacter xylinus. Carbohydr. Polym. 90:116–121. doi: 10.1016/j.carbpol.2012.05.003.
Wu, J-M. 2013. Cost-effective production of bacterial cellulose in static cultures using distillery wastewater; J of Biosci and Bioeng 115 (3) 284-290 https://doi.org/10.1016/j.jbiosc.2012.09.014
Yang X., Huang C., Guo H., Xiong L., Li Y., Zhang H., Chen X. 2013. Bioconversion of elephant grass (Pennisetum purpureum) acid hydrolysate to bacterial cellulose by Gluconacetobacter xylinus. J. Appl. Microbiol., 115:995–1002. DOI: 10.1111/jam.12255
Zhijun, Shi; Zhang Y; Phillips, G.O and yang, G. (2014). Utilization of bacterial cellulose in food; Food Hydrocolloids 35:539-545 https://doi.org/10.1016/j.foodhyd.2013.07.012

How to cite this article:
Dirisu, C.G. and Braide, W. 2018. Bacterial Cellulose Production from Mature Black Spear Grass Hydrolysate by Gluconacetobacter xylinus: Effect of pH, Fermentation Time and Nitrogen Supplementation. Int.J.Curr.Microbiol.App.Sci. 7(08): 1616-1627.
doi: https://doi.org/10.20546/ijemas.2018.708.185