STROKE AND NEUROCOGNITIVE IMPAIRMENT COMPREHENDIUM

Cerebrovascular Complications of COVID-19 and COVID-19 Vaccination

Manuela De Michele, Joshua Kahan, Irene Berto, Oscar G. Schiavo, Marta Iacobucci, Danilo Toni, Alexander E. Merkler

ABSTRACT: The risk of stroke and cerebrovascular disease complicating infection with SARS-CoV-2 has been extensively reported since the onset of the pandemic. The striking efforts of many scientists in cooperation with regulators and governments worldwide have rapidly brought the development of a large landscape of vaccines against SARS-CoV-2. The novel DNA and mRNA vaccines have offered great flexibility in terms of antigen production and led to an unprecedented rapidity in effective and safe vaccine production. However, as mass vaccination has progressed, rare but catastrophic cases of thrombosis have occurred in association with thrombocytopenia and antibodies against PF4 (platelet factor 4). This catastrophic syndrome has been named vaccine-induced immune thrombotic thrombocytopenia. Rarely, ischemic stroke can be the symptom onset of vaccine-induced immune thrombotic thrombocytopenia or can complicate the course of the disease. In this review, we provide an overview of stroke and cerebrovascular disease as a complication of the SARS-CoV-2 infection and outline the main clinical and radiological characteristics of cerebrovascular complications of vaccinations, with a focus on vaccine-induced immune thrombotic thrombocytopenia. Based on the available data from the literature and from our experience, we propose a therapeutic protocol to manage this challenging condition. Finally, we highlight the overlapping pathophysiologic mechanisms of SARS-CoV-2 infection and vaccination leading to thrombosis.

Key Words: COVID-19 ◼ pandemics ◼ SARS-CoV-2 ◼ stroke ◼ vaccines

According to the World Health Organization, almost 5 million people have died from COVID-19, with >245 million confirmed cases. A number of vascular and thromboembolic complications of COVID-19 were noted early in the pandemic, and this was soon followed by observations suggesting a heightened risk of stroke and other cerebrovascular complications. Comparative meta-analytic studies have since been undertaken to confirm that infection with SARS-CoV-2 increases the risk of ischemic stroke relative to noninfected contemporary or historical controls, as well as relative historical controls infected with influenza. In addition to ischemic stroke, hemorrhagic stroke, cerebral venous sinus thrombosis (CVST), and posterior reversible encephalopathy syndrome have all been reported as possible complications.

Vaccines against SARS-CoV-2 are a milestone in the fight against COVID-19. Response to this global crisis, with devastating health, social, and economic impact, was extraordinary, and thanks to cooperation between companies and governments, within a year, several vaccines against SARS-CoV-2 have shown impressive efficacy in randomized clinical trials that have translated into real-world observations. Unfortunately, extremely rare cases of thrombocytopenia and thromboembolic complications have been reported following administration of the ChAdOx1 nCoV-19 vaccine (Oxford-AstraZeneca) and the Ad26.COV2-S vaccine (Janssen), which has contributed to vaccine hesitancy among the public. The situation, however, is highly nuanced, as the risk of thromboembolic complications from infection with SARS-CoV-2 alone is significant. This is of special relevance to stroke and cerebrovascular complications given the significant morbidity associated with intracranial thromboses and hemorrhage.

In what follows, we review the evidence surrounding stroke and cerebrovascular complications of both SARS-CoV-2 infection and SARS-CoV-2 vaccination. In so doing, we review thromboinflammation and the proposed pathophysiology of stroke as a complication...
Nonstandard Abbreviations and Acronyms

Abbreviation	Definition
ACE2	angiotensin-converting enzyme 2
CVST	cerebral venous sinus thrombosis
HIT	heparin-induced thrombocytopenia
MCA	middle cerebral artery
PF4	platelet factor 4
SP	spike protein
TTS	thrombosis with thrombocytopenia syndrome
VITT	vaccine-induced immune thrombotic thrombocytopenia
VWF	von Willebrand factor

of COVID-19, and vaccine-induced immune thrombotic thrombocytopenia (VITT), its typical clinical presentation, and the cases that have presented with stroke and cerebrovascular complications. We conclude by identifying the main pathophysiologic abnormalities common to the two conditions and compare the risk of stroke related to infection and vaccination.

STROKE AS A COMPLICATION OF SARS-COV-2 INFECTION

Early reports of neurological complications of SARS-CoV-2 infection emerged in the pre-peer review literature in March 2020. By April 2020, the first retrospective observational reports from Wuhan were published finding neurological symptoms in as many as 36.4% of the admitted patients, specifically citing both ischemic and hemorrhagic stroke as complications of SARS-CoV-2. In this section, we discuss the risk of ischemic stroke and other cerebrovascular disorders, as well as putative pathophysiology for stroke in patients with COVID-19.

Ischemic Stroke

Oxley at al reported a series of relatively young patients (<50 years old) presenting with large vessel occlusion ischemic strokes during the first peak in New York City, all of whom tested positive for SARS-CoV-2. As time would tell, the risk of such presentations was not as great as was initially feared. In fact, initial retrospective incidence rates varied considerably; Li et al reported ischemic strokes in as many as 4.6% of their Wuhan inpatient cohort (n=219), whereas Yaghi et al found that only 0.9% of their patients admitted in New York had stroke diagnosed during their admission (n=3556). Cohorts in Italy, France, Germany, Philadelphia, and other New York hospital systems fell within this range. To date, the largest multinational studies fell within this range. To date, the largest multinational studies and meta-analytic estimates of risk among hospitalized patients are shown to be between 0.5% and 1.3%. However, there are important caveats to these estimates, most notably that the majority of strokes did not present with typical clinically evident focal neurological deficits. Rather, the events were detected on neuroimaging during hospital admission, leading many to dispute the true incidence given that not all patients undergo neuroimaging. From our personal experience in New York, this was especially true during the peak periods of COVID-19, social distancing, and airborne isolation rules. Risk has been shown to vary with clinical severity of COVID-19. Consistent with this hypothesis, studies that include mild disease (managed in the outpatient setting) have yielded lower estimates of risk. In terms of relative risk, patients requiring hospitalization for COVID-19 have a 3- to 4-fold greater risk of stroke compared with noninfected hospitalized historical or contemporary control cohorts. Compared with patients with influenza requiring hospitalization, COVID-19 patients have a 7- to 8-fold greater risk of stroke, although the CIs of these estimates are wide and overlap significantly with the risk estimates when compared with historical controls. Patients with COVID-19 at the highest risk of ischemic stroke appear to be those with a history of ischemic stroke, possibly a history of diabetes and other traditional stroke risk factors, and higher serum d-dimer levels.

Outcomes in strokes occurring in patients with COVID-19 also appear worse, in terms of initial stroke severity (compared with historical controls), functional outcome at discharge (compared with contemporary and historical controls), discharge destination (compared with historical controls), and inpatient mortality (compared with both contemporary and historical controls). With regard to etiologic classification, patients with COVID-19-associated ischemic strokes have been shown to present with more embolic-appearing findings on neuroimaging. Specifically, multiple case series have been published, highlighting an increased rate of strokes with large vessel occlusions. The majority of these strokes were classified as cryptogenic or embolic stroke of undetermined source. The risk of specifically cryptogenic strokes has been found to be disproportionately increased in patients with COVID compared with control cohorts. Many of these patients were also found to have other systemic evidence of thromboembolic disease and visceral infarction—a phenomenon that is known to be associated with cardiomyopathic and cryptogenic strokes.

Putative Mechanisms of Ischemic Stroke in Patients With SARS-CoV-2

The mechanism leading to cerebrovascular complications in the setting of SARS-CoV-2 is likely multifactorial. First, patients with COVID-19, especially those with severe disease, frequently have comorbid factors that
increase their baseline risk of thromboembolism. These include dehydration, immobilization, chronic cardiovascular risk factors, or prior atherosclerotic diseases (i.e., coronary artery disease, cerebrovascular disease, and chronic kidney disease), as well as inherited thrombophilia. Patients with severe COVID-19 requiring intensive care unit (ICU) admission have been shown to have significantly higher rates of arterial or venous thromboembolic events, presumably due to a combination of factors discussed herein. Interestingly, studies comparing the rates of ischemic stroke between critically ill COVID-19 patients and other acute respiratory distress syndrome patients have not detected a significant difference, suggesting acute respiratory distress syndrome or critical illness itself likely confers some risk for stroke.

However, more causal mechanisms have also been proposed given that SARS-CoV-2 both increases the risk of cardiac pathology and impacts all 3 factors comprising Virchow triad (endothelial injury, stasis, and hypercoagulable state), ultimately promoting thrombosis. Regarding cardiac complications, SARS-CoV-2 has been shown to increase the risk of developing atrial fibrillation, which is a well-established risk factor for ischemic stroke. In addition, myocardial infarction, myocarditis, and Takotsubo cardiomyopathy have been reported in hospitalized patients with COVID-19, all of which predispose to the formation of left ventricular thrombi and subsequent cardiac embolism. Additionally, bacterial superinfection is common in patients with severe COVID-19, which increases the risk of bacteremia and infective endocarditis; both of which increase the risk of ischemic stroke.

In addition, vascular injury is a recognized hallmark of COVID-19. The precise pathophysiology of this remains unclear, but both ACE2 (angiotensin-converting enzyme 2)-dependent and independent processes have been implicated, with some suggesting direct platelet activation via the SP (spike protein) itself. Within the pulmonary circulation, postmortem analysis has found severe endothelial injury, disrupted cell membranes, with diffuse vascular thrombosis and occlusion of alveolar capillaries. Within the cerebral microvasculature specifically, combined imaging and histopathologic assessments have revealed thinning of the basal lamina of the endothelial cells, capillary congestion with fibrinogen leakage, and perivascular inflammation associated with macrophage infiltrates and CD3+ and CD8+ T cells. This mild-to-moderate, nonspecific inflammation without clear evidence of vasculitis is a consistent finding in autopsy studies. In contrast to the pulmonary pathology, however, cerebral histopathology has only rarely revealed frank vascular occlusion or florid cerebrovascular inflammation as seen in the pulmonary microcirculation. Despite these, these studies have frequently noted mild-to-moderate hypoxic-ischemic injury and microhemorrhages, as well as a stroke phenotype involving multiple small infarcts, including in the corpus callosum, presumed to be a manifestation of microvascular occlusion secondary to thromboinflammation. There are reports of SARS-CoV-2–like particles being found in the brain and endothelium using ultrastructural analysis of tissue from SARS-CoV-2–infected patients with neurological symptoms; however, diagnosis is challenging due to similar appearing normal cellular structures.

Consequent to this vascular endothelial inflammation, whether systemically or in the cerebral microcirculation, patients with COVID-19 can demonstrate a coagulopathy with an increased risk of in situ thrombosis. Specifically, endothelial release of proinflammatory cytokines (the so-called cytokine storm) has been shown to be associated with a hypercoagulable state as evidenced by deranged levels of VWF (von Willebrand factor), D-dimer, fibrinogen, and factor VIII. Specifically, small case series of patients with severe COVID-19 have shown exaggerated interleukin-mediated release of VWF, and suppression of the function of ADAMTS13 (a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13), promoting thrombosis via a thrombotic microangiopathy-like process. This increases the risk of both arterial and venous thrombosis with or without paradoxical embolism to the cerebral circulation.

Other Cerebrovascular Complications

Hemorrhagic Stroke
Studies evaluating the risk of hemorrhagic stroke, which includes intracerebral, subdural, and subarachnoid hemorrhage, have been more limited. The largest studies to date suggest the prevalence among hospitalized patients is rare (as low as 0.2%) and was more likely to occur in older patients and those receiving therapeutic anticoagulation. Those hospitalized with ICH and COVID-19 had worse outcomes than those with COVID-19 alone. Studies with more granular hospital course data have suggested that hemorrhages tend to occur during the hospitalization, and the mechanism of these hemorrhages tends to be related to coagulopathy or supratherapeutic anticoagulation, as opposed to primary causes of intracerebral hemorrhages.

Cerebral Venous Sinus Thrombosis
In a self-controlled case series including 29.1 million people in the United Kingdom comparing rates of thrombotic complications of COVID-19 and vaccinations for COVID-19, testing positive for SARS-CoV-2 was associated with an increased risk of CVST. While the point estimate of this risk was high, the CIs were broad, suggesting significant uncertainty of the precise risk. In a meta-analysis of 67,845 patients, the pooled rate of CVST was 0.03%. Case series and reviews have highlighted relatively few (<50) CVST cases reported in the literature to date and suggest it is a relatively rare complication of COVID-19 that is not associated to severe disease.
as with ischemic stroke. Almost 90% of the reported cases have occurred in women and are mostly found in the transverse sinus. Clinical presentations, however, are subtle, and authors recommend that high suspicion is maintained when encountering patients with COVID-19, headache, and focal neurological deficits.

Posterior Reversible Encephalopathy Syndrome
Posterior reversible encephalopathy syndrome is another relatively rare neurovascular complication that has been linked to hospitalized patients with COVID-19. Almost all the data on this phenomenon are at the level of case series with relatively few cases reported in the literature in total (<50). Case have mostly presented with prolonged or otherwise unexplained encephalopathy and poor level of consciousness, with some complicated by seizures or a focal neurological deficit. Most have been in the setting of critically ill patients who have traditional risk factors for posterior reversible encephalopathy syndrome (acute kidney injury and uncontrolled hypertension), and it remains unclear whether the rate of posterior reversible encephalopathy syndrome in patients with COVID-19 is any greater than in patients with other critical illness or multiorgan failure.

STROKE AS A COMPLICATION OF COVID-19 VACCINATION
To date, the European Medicines Agency has approved 5 vaccines: (1) Comirnaty (BNT 162b2 mRNA vaccine) by Pfizer BionTech; (2) Ad26.COV2.S adeno-virus vaccine by Johnson & Johnson/Janssen; (3) Spikevax (mRNA-1273 vaccine) by Moderna; (4) Vaxzevria (ChAdOx1 nCoV-19 vaccine) by Oxford-AstraZeneca, and more recently, (5) Nuvaxovid (NVX-CoV2373) by Novavax. The Food and Drug Administration similarly approved these excluding Nuvaxovid (NVX-CoV2373) by Novovax. The European Medicines Agency’s Safety Committee (Pharmacovigilance Risk Assessment Committee) concluded that a causal relationship between Vaxzevria vaccination and rare cases of venous thrombosis in unusual sites (ie, CVST and splanchnic vein thrombosis) and less frequently arterial thrombosis was plausible. As of July 31, 2021, 1503 cases of suspected TTS with Vaxzevria out of about 592 million administered doses were globally reported. With a much lower incidence, TTS has also been described after Janssen vaccination. In the United States, by July 8, 2021, 38 TTS confirmed cases occurring within 15 days after vaccination were reported to the Vaccine Adverse Event Reporting System, four of which resulted in death. The overall calculated rate was 3.0 TTS cases per million administered doses, with a higher reporting rate of 8.8 TTS cases per million administered doses among women aged 30 to 49 years. Nevertheless, a population-level risk-benefit analysis has shown a large population benefit of Janssen vaccination as compared with rare occurrence of TTS. In Europe, as of June 27, 2021, 21 cases over about 7 million administered doses were spontaneously reported to EudraVigilance, four of which were fatal. Though further case ascertainment is required to confirm TTS in these reported cases, the relationship between the administration of DNA vaccines and TTS has now been established. In fact, according to the Bradford-Hill criteria, which are the accepted criteria for assessing causality of an association, the link between the ChAdOx1 nCoV-19 vaccine and TTS has recently been demonstrated. However, the precise estimate of this association is not known, since the incidence rates vary from 0.5 to 25 per 100,000 vaccinated individuals, depending on the different countries. Nevertheless, benefits of adenoviral vector vaccines, clearly demonstrated in randomized controlled trials, still outweigh the risks of these rare thrombotic events, especially in subjects >30 years. Interestingly, Hippisley-Cox et al found an increased risk of ischemic stroke after 15 to 21 days from BNT162b2 mRNA vaccination (Pfizer BionTech), and after a positive SARS-CoV-2 test, but not after ChAdOx1 nCoV-19 vaccination (Oxford-AstraZeneca). The same authors found an increased risk of thrombocytopenia after ChAdOx1 nCov-19 vaccination, and of CVST after ChAdOx1 nCov-19 vaccination (at 8–14 days), after BNT162b2 mRNA vaccination (at 15–21 days), and after a positive SARS-CoV-2 test. More data on these adverse events from BNT162b2 mRNA vaccination are needed.

COVID-19 Vaccines and Target Proteins
All the approved vaccines are based on the full-length homotrimERIC SARS-CoV-2 SP. SP plays a key role in viral infection and pathogenesis, since it mediates the entrance of the virus into the host cells via the binding with ACE2, SP, which is located on the viral envelope, comprises 3 S1/S2 heterodimers: S1 harbors the N-terminal domain and the receptor-binding domain. Interestingly, the SP ectodomain consists of a head where receptor-binding domains are located and a stalk with 3 flexible hinges connecting SP to the viral membrane. This high degree of conformational freedom of SP on the viral surface may interfere with antibody access to the stalk, add strength to the virus, and facilitate the binding of the SP with the host receptor.
In December 2020, Wajnberg et al. found that most of the infected individuals with mild-to-moderate COVID-19 had developed a robust IgG antibody response against the viral SP. These authors also showed that titers were long-lasting (several months) and that anti-SP binding titers significantly correlated with neutralization of SARS-CoV-2. All these data confirmed the SP as the main target of vaccine development.

The three vaccines approved by the United States and 4 of the 5 approved by the European Union (EU) are DNA or mRNA vaccines encoding the SARS-CoV-2 SP. In DNA vaccines (Janssen and Oxford-AstraZeneca), the genetic materials need to pass through the nucleus to create mRNA with subsequent transcription of the protein in the cytoplasm. In mRNA vaccines (Pfizer and Moderna), the nuclear step is missing, making the process even simpler. Pfizer and Moderna vaccines consist of a lipid-enclosed nucleoside-modified mRNA encoding a different mutated SP, whereas the AstraZeneca and Janssen vaccines utilize a chimpanzee nonreplicating adenovirus and a type 26 nonreplicating recombinant adenovirus vector, respectively. Moreover, the AstraZeneca vaccine has the complete coding sequence of SP plus a sequence of a tissue-type plasminogen activator, and the Janssen vaccine has mutations for stabilizing the SP. Nuvaxovid is based on the SP produced by recombinant DNA technology using a baculovirus expression system in an insect cell line and is adjuvanted with Matrix-M. Effectiveness and safety of this vaccine have been demonstrated in clinical trials, but real-world evidence is still lacking.

Efficacy data of DNA- and mRNA-based vaccines against SARS-CoV-2 from clinical trials seem to be consistent with data on vaccine effectiveness from the real world. However, more data are urgently needed, considering both the rapidly emerging appearance of SARS-CoV-2 novel variants and the temporal waning of immunity after vaccination.

Vaccine-Induced Immune Thrombotic Thrombocytopenia

By the end of March 2021, several scientific papers from different countries reported cases of devastating thrombosis in unusual sites, especially CVST, 5 to 30 days after the administration of the first dose of the ChAdOx1 nCoV-19 vaccine. These patients, who were otherwise young and healthy, also presented with thrombocytopenia, elevated D-dimer, sometimes low fibrinogen, and high levels of antibodies against PF4 (platelet factor 4)-heparin. Similar syndromes have also been reported after Janssen vaccination and after Moderna’s mRNA-1273 vaccine.

The syndrome was named VITT since it resembles the heparin-induced immune thrombocytopenia (HIT), although in the absence of exposure to heparin.

Pathogenetic Hypothesis

PF4 is a cationic chemokine consisting of 4 monomers, released from the α-granules of activated platelets as an immune defense mechanism. It is capable of opsonizing negatively charged surfaces of bacteria, ultimately facilitating binding of anti-PF4 antibodies. In HIT, heparin, acting as a polyanion, causes a conformational change of PF4 tetramers and consequently the anti-PF4/heparin antibody induction. Things other than heparin, such as chondroitin sulphate, DNA and RNA, bacterial wall components, and high concentration of PF4 per se, can induce the exposure of HIT antigens leading to spontaneous or autoimmune HIT. Sera from patients with autoimmune HIT typically contain high-avidity IgG antibodies, which strongly activate platelets from healthy donors via FcγRIIa, one of the receptors for the Fc domain of IgG antibodies. As a consequence, platelet-derived procoagulant microvesicles are released, resulting in severe thrombocytopenia, leading to an increased frequency of disseminated intravascular coagulation, and atypical thrombotic events.

Similarly to autoimmune HIT, sera from VITT patients contain high levels of PF4-heparin antibodies that activates platelets in the presence of, but also in the absence of, heparin. This activation is greatly enhanced in the presence of PF4. Notably, a cross-reaction between the anti-SARS-CoV-2 SP antibodies and PF4 or PF4/heparin complexes has been ruled out, and no correlation has been found between the anti-PF4 and the anti-SARS-CoV-2 neutralizing antibody levels after ChAdOx1 nCoV-19 vaccination. These data exclude the possibility that the anti-PF4 antibodies are a side product of the vaccine immune response.

Recently published data suggest that vaccine components, including the adenovirus hexon protein and also the adenovirus per se, can generate neoantigen complexes with PF4, thus inducing anti-PF4 antibody production. Anti-PF4 antibodies stimulate platelet aggregation. Cross talk of platelets and anti-PF4 antibodies activates neutrophils, leading to the formation of neutrophil extracellular traps and ultimately to the activation of monocytes and endothelial cells, further amplifying the activation of the coagulation cascade. The ChAdOx1 nCoV-19 vaccine also contains EDTA, which increases the capillary leakage at the inoculation site, allowing the virus to spread via the bloodstream. Data based on an intriguing hypothesis about a possible transcription of spliceosome-mediated soluble SP fragments with thrombogenic properties in DNA vector vaccines have not yet been peer reviewed. However, preprinted data from our group seem to support this hypothesis. In fact, a soluble SP has been found in sera from 3 VITT patients and on a platelet-rich thrombus retrieved from middle cerebral artery (MCA) of a VITT patient, suggesting that SP could be one of the platelet activation triggers in VITT. Undoubtedly, additional experiments are
required to fully understand the pathogenesis of this rare, devastating syndrome.

Clinical Characteristics, Diagnosis, and Therapy

As of April 2021, descriptions of clinical features of patients affected by VITT in case series and case reports from different countries allowed us to delineate precise diagnostic criteria and inform the therapeutic approach. Guidelines from different medical societies have been developed, although some of the published cases do not strictly meet classification criteria. VITT is an evolving condition, and a low-probability diagnosis of VITT at presentation can rapidly evolve to a fully blown VITT in the subsequent days. Close monitoring of patients is then mandatory to rule out this diagnosis. Recently, a pre-VITT syndrome characterized by severe headache without associated CVST or other thrombosis has been described, highlighting the need for clinicians to be aware of different presenting onsets of VITT, and intravenous immunoglobulin (IVIG) therapy promptly.

Diagnosis of VITT is clinical and radiological. Typical blood test results are needed to confirm the clinical suspicion. Patients with VITT typically present with a classical clinical triad of thrombosis (mainly CVST, pulmonary and splanchnic), thrombocytopenia (<150,000/µL), and elevated D-dimers (>4000 fibrinogen-equivalent units [FEU] or 4–8× the upper limit of normal range). As addressed by Greinacher et al, the different combination of these elements leads to 2 different scenarios: VITT likely and VITT unlikely (Table 1). Diagnosis of VITT is confirmed by demonstration of anti-PF4 antibodies by ELISA plate–based PF4/heparin (polyanion) antibody test (but a negative test still does not definitively rule out the diagnosis) and functional platelet activation assay.

Prompt recognition and treatment of this syndrome may reduce mortality. Education of the public and clinicians has reduced mortality of VITT from 50% in the first case series in April 2021 to 22% in June 2021 in the United Kingdom. The pillars of VITT therapy are non-heparin anticoagulants (direct oral anticoagulants, danaparoid, argatroban or fondaparinux, continued for at least 3 months) and high-dose IVIG (0.5–1 g/kg of actual body weight for 1 or 2 consecutive days). Steroids may be useful (especially if platelets are <50,000), and plasma exchange can be considered in selected cases. Rituximab can be prescribed in patients who are refractory to repeated doses of IVIG and plasma exchange, although evidence is limited.

Ischemic Stroke as VITT Atypical Presentation

Ischemic stroke can be a rare and challenging symptom onset of VITT or can complicate its course. The real incidence of this serious and life-threatening condition is unknown.

We performed a systematic review using MEDLINE, PUBMED, and Google Scholar databases to collect all the published articles related to the development of ischemic stroke after vaccination against SARS-CoV-2. The search process was done on October 27, 2021 by the authors using the following terms in various combinations: “ChAdOx1 ncov19 vaccine,” “stroke,” “vaccine induced immune thrombotic thrombocytopenia,” “infarct,” “VITT,” “AstraZeneca,” “SARS-CoV-2 vaccination,” “COVID-19,” and “PF4.” Overall, 161 published articles were identified, but only 13 were relevant to this review. One article was removed due to insufficient workup to rule out other causes of stroke and for not testing anti-PF4 polyanion antibodies. Consequently, the search and sorting processes were finalized with 12 articles with data on 16 patients (Figure 1).

In Table 2, we have summarized the demographic information and clinical features of the 16 patients affected by ischemic stroke with VITT confirmed diagnosis, identified from case reports or case series published in peer-reviewed journals. All the patients had received the first dose of the ChAdOx1 ncov19 vaccine. Three cases were reported from Italy, 6 from the United Kingdom, 2 from Germany, 1 from Slovenia, 1 from France, 1 from Denmark, and 2 from Canada. The mean age of the reported patients was 46.6 (SD, ±15.2; range, 21–73) years. Twelve of 16 patients were women (75%). Median time between vaccination and onset of stroke was 10 days. All

Table 1. Criteria to Consider When Risk Stratifying Patients With Suspected VITT
VITT: unlikely
5–30 d after adenosine vaccination (ChAdOx1, AstraZeneca/COVISHIELD; Ad26COV2.S, Janssen, Johnson & Johnson)
New onset of platelet count <150,000/µL; D-dimer >4000 FEU (or 8× the upper limit of normal range)
INR/PT, aPTT, and fibrinogen abnormal level as in DIC
Positive antigen-binding assay (ELISA) for PF4/heparin antibodies (polyanion)
the individuals were healthy before vaccination, and half of them had no preexisting comorbidities in their medical history. Three of them experienced hypertension and three had hyperlipidemia. Three subjects had thyropathy (1 case of Hashimoto thyroiditis and 2 cases of hypothyroidism). One patient was in follow-up care after breast cancer, and another one had recently received the diagnosis of prostate cancer (not yet staged). Only 1 patient, a 69-year-old man, had multiple vascular risk factors (hypertension, diabetes, obstructive sleep apnea, obesity, and aortic valve replacement) and previous exposure to heparin (9 months earlier). One patient experienced migraine and the other one was on estroprogestative contraceptives. Most of the patients had occlusion of the MCA or its branches (81%), and 7 of them (43%) also had thrombotic occlusion of the intracranial internal carotid artery. Five of 11 patients with proximal MCA occlusion (45.4%) developed a malignant MCA infarct involving the whole territory of the MCA with space-occupying cerebral edema and rapid neurological deterioration, successfully treated with hemicraniectomy in 4 cases. In 1 case (case 7), surgical intervention was not performed since the malignant infarct was bilateral (Figure 2). Ten of 13 cases in which the data have been reported presented multiple sites of venous thrombosis, particularly of the splanchnic, portal, and hepatic veins and pulmonary embolism, while only 3 of them had CVST. Fifteen patients had low platelet count at admission (mean±SD, 70.3±54±10^9/L; range, 9–133×10^9/L), while 1 patient had 217×10^9/L platelets at admission, with subsequent decrease to a nadir of 152×10^9/L 2 days after stroke onset. Very high level of D-dimer (mean value, 21 580 µg/L; normal range, 0–550) was present in all 14 patients in which the data have been reported. ELISA for PF4 autoantibodies was positive in 14 of the 16 tested patients. In 1 negative patient at baseline, high levels of antibodies were found at day 15 from admission. Unfortunately, it is not possible to draw a precise follow-up of these patients since outcome at 3 months has only been reported for case 8. Three of the 16 patients died. Patient 6, who survived and was described from our group, died 2 months later from an unexpected cardiac arrest while she was hospitalized in a rehabilitation center. Brain computed tomography scan did not show any new vascular events, and platelet counts were in the normal range. Her relatives denied autopsy. Only 1 patient (case 10) with distal MCA occlusion received intravenous thrombolysis with alteplase since platelet count was in the normal range, while 3 patients underwent successful mechanical thrombectomy. Case 6, reported from our group, underwent a second mechanical thrombectomy 2 hours after a first successful endovascular procedure (and 3 hours after the symptom onset), due to worsening of the neurological conditions and evidence on brain magnetic resonance imaging of a reocclusion of the same vessel (M1 segment of right MCA), with salvageable penumbra. Unexpectedly, despite a second complete reperfusion of the MCA territory, the patient developed a malignant infarct because of a third reocclusion of the right MCA and extension of the clot to the ipsilateral internal carotid artery terminus 12 hours apart (Figure 3). We hypothesized that the postthrombectomy injured arterial endothelium, combined with the high prothrombotic state and endothelium dysfunction characteristic of VITT, could have been the cause of the repeated arterial occlusions of the same vessel. Unfortunately, at the time the patient was admitted to our hospital, articles on VITT had not still been published and, due to very low baseline platelet count (44×10^9/L), platelet transfusion was performed before the first thrombectomy, which may have contributed to exacerbate the thrombotic event. At present, guidelines recommend that prophylactic platelet transfusions should be avoided in the context of VITT but should be provided before major surgical interventions (ie, hemicraniectomy) or if life-threatening bleeding is present.

Additional Information

Through the abovementioned systematic review of the literature, we also identified 2 additional studies relevant for the scope of this review, 1 from United Kingdom and 1 from Germany. A prospective multicenter cohort study from the United Kingdom evaluated VITT patients who presented to the hospital between March 22 and June 6, 2021. Among 220 patients with diagnosis of VITT classified as definite (ie, all 5 of the following criteria: [1] onset of symptoms 5–30 days after vaccination against SARS-CoV-2; [2] presence of thrombosis; [3] thrombocytopenia [platelet count <150 000 per mm^3]; [4] D-dimer level >4000 FEU; [5] positive anti-PF4 antibodies on ELISA) or probable (ie, D-dimer level >4000 FEU but absence of one of the abovementioned criteria or D-dimer level unknown or 2000–4000 FEU and the presence of all other criteria), 17 subjects (7.7%) experienced cerebrovascular accidents. Unfortunately, no more details about these 17 patients have been reported by the authors, since data reported in the article are cumulative and related to all 220 VITT patients.

The second study comes from the German Society of Neurology SARS-CoV-2 Vaccination Study Group. Nine cases of ischemic stroke (mean age, 55.6; range, 31.0–82.0) of 62 cerebrovascular events (14.5%) within 31 days from a first dose of COVID-19 vaccination have been reported in the December 28, 2020, to April 14, 2021, time period. Eight of these patients had received the ChAdOx1 ncoV19 vaccination, and only 1 received the BNT162b2 vaccine. Majority of cases were females (66.7%). Among these 9 ischemic patients, 5 with embolic stroke had a VITT score of >2 (which means a highly probable VITT defined as the presence of the following 2 criteria: [1] time from shot administration between 1 and 16 days; [2] thrombocytopenia, <150×10^9/L or relative
Authors	Country	Patients	Age, y	Sex	Comorbidities	Time from vaccination, d	Sites of occlusion
Al-Mayhani et al42	United Kingdom	1	35	F	None	11	R MCA distal M1
		2	37	F	None	12	Bilateral extracranial ICA
Bayas et al41	Germany	4	55	F	None	18	MCA territory
Blauenfeldt et al40	Denmark	5	60	F	HTN; Hashimoto thyroiditis; high cholesterol	9	R MCA
De Michele et al48	Italy	6	57	F	Hypothyroidism, in follow-up care after breast cancer	9	R MCA
		7	55	F	Hypothyroidism	10	R ICA terminus and L MCA
Kenda et al42	Slovenia	8	51	F	Hyperlipidemia	7	Proximal L M1 segment of MCA plus chronic L ICA dissection with pseudoaneurysm
Costentin et al43	France	9	26	F	Oestroprogestative; contraceptive use	7	L MCA; M1
Walter et al44	Germany	10	31	M	None	8	L MCA territory parietal plus solid thrombus in the L ICA
Scully et al33	United Kingdom	11	39	F	NA	10	MCA
		12	21	M	NA	10	MCA
Bourguignon et al45	Canada	13	69	M	NIDM; HTN; OSA; obesity; prostate cancer; aortic valve replacement; heparin exposure, 9 mo earlier	12	R MCA+R ICA
Ceschia et al46	Italy	14	73	F	HTN; high cholesterol	14	PCA
Patriquin et al37	Canada	15	45	F	None	11	R VA+L ICA
Jacob et al38	United Kingdom	16	36	F	Migraine	9	R M1 MCA+large intraluminal thrombus extending superiorly from the origin of the R ICA

(Continued)
Table 2. Continued

Malignant MCA infarct	Venous thrombosis and other relevant abnormalities	Platelet count (nv 150–400×10⁹/L)	D-dimer within 24 h (nv 0–550 μg/L)	PF4 IgG	Treatment	Outcome (time)
Yes	Right portal vein thrombosis	64	11 220	Yes	Hemicraniectomy; IVIG; PE; intermediate dose fondaparinux	Died (extensive hemorrhagic transformation of the left MCA infarct 14 d after stroke onset)
No (bilateral acute infarcts in a borderzone distribution)	Pulmonary embolism and thromboses of the L transverse and sigmoid sinuses, L jugular, R hepatic, and both iliac veins	9	34 000	Yes	IVIG; 2 IV pulses of methylprednisolone; PE; fondaparinux	Alive (NA)
No (left frontal and insular infarct)	None	48	24 000	Yes	Platelet transfusion; IVIG; fondaparinux	Alive (NA)
No (left parietal lobe)	Bilateral superior ophthalmic vein thrombosis	30	NA	No	IV dexamethasone; heparin switched to; phenprocoumon	Alive (26 d)
Yes	Bilateral adrenal hemorrhages and a subcapsular renal hematoma	118	41 800	Yes	Platelet concentrates hemicranietomy; dalteparin	Died (4 d after stroke onset)
Yes	Extensive pulmonary artery and portal vein thrombosis	44	43 18	No (yes at a second control)	Platelet transfusion; mechanical thrombectomy; hemicraniectomy; IV betamethasone; IVIG; PE; fondaparinux	Alive (20 d)
Yes bilateral	Extensive portal vein thrombosis with occlusion of the L intrahepatic branches and L lower lobe subsegmental pulmonary arteries thrombosis	133	54 441	Yes	IVIG; dexamethasone 40 mg UID	Died (48 h after stroke onset)
No	NA	57	31 543	Yes	Mechanical thrombectomy; IVIG; fondaparinux 2.5 mg	Alive (3 mo); NIHSS score, 1; mRS score, 1
No	Pulmonary embolism and portal vein thrombosis	57	NA	Yes	Mechanical thrombectomy	Alive (24 h)
No	NA	217	11 000	Yes	IV thrombolysis; aspirin, 100 mg/d SC danaparoid, followed by phenprocoumon	Alive (28 d)
No	None	57	>5000	Yes	NA	Alive (NA)
No	None	113	22 903	Yes	NA	Alive (NA)
No	CVST, hepatic vein, distal lower limb vein, pulmonary embolism	35	NA	Yes	Fondaparinux, IVIG, rivaroxaban; PE	Alive (24 d)
No	CVST, pulmonary embolism, DVT, L renal vein, R superficial femoral and popliteal artery	20	32 559	Yes	IVIG dexamethasone; fondaparinux; thromboendarterectomy with Fogarty catheter on the R tibial artery and fasciectomy of the calf	Alive (1 mo)
No	L renal infarct, bilateral adrenal hemorrhage, subsegmental pulmonary emboli	53	35 200	Yes	IVIG; PE; rituximab; argatroban	Alive (14 d)
Yes	NA	66	5000	Yes	IVIG; IV methylprednisolone; argatroban followed by fondaparinux 2.5 mg; decompressive craniectomy (on day 9); platelet transfusion	Alive (21 d)

IgG: anti-PF4-polyanion antibodies (ELISA assay). CVST indicates cerebral venous sinus thrombosis; DVT, deep vein thrombosis; F, female; HTN, hypertension; ICA, internal carotid artery; IV, intravenous; IVIG, intravenous immunoglobulin; L, left; M, male; M1, proximal segment of the middle cerebral artery; MCA, middle cerebral artery; NA, not available; NIDM, non–insulin-dependent diabetes mellitus; NIHSS, National Institutes of Health Stroke Scale; nv, normal value; OSA, obstructive sleep apnea; PCA, posterior cerebral artery; PE, plasma exchange; PF4, platelet factor 4; R, right; SC, subcutaneous; and VA, vertebral artery.
thrombocytopenia, drop of thrombocytes of at least 50%; [3] positive ELISA to detect PF4-polyanion antibodies; [4] positive modified platelet activation assay) without signs of CVST. In four of them, thrombotic occlusion of the MCA or internal carotid artery and recurrent thrombotic material in duplex ultrasound were described.

Therapeutic Implications

Therapeutic approach of acute ischemic stroke due to large vessel occlusion in VITT is challenging. Based on the available literature and our personal experience,

- Keep in mind that ischemic stroke can be the first presentation symptom at onset of VITT.
- If a patient has received the first dose of DNA vector vaccination against SARS-CoV-2 within the previous 5 to 30 days, wait for platelet count results before starting thrombolysis.
- If large vessel occlusion is evident at cerebral computed tomography angiography without signs of malignant MCA infarct, mechanical thrombectomy is indicated according to guidelines from professional medical societies.
- If low platelet count is evident, avoid platelet transfusion and consider steroid administration (prednisone 1–2 mg/kg per day or dexamethasone 40 mg/day for 4 days) possibly before the endovascular procedure, monitoring blood pressure and blood glucose.
- Monitor the patient closely after mechanical thrombectomy since the risk of reocclusion and neurological deterioration is high.
- Schedule a control brain computed tomography scan or magnetic resonance imaging in the next 12 hours to decide the timing for starting anticoagulation.
- Start early full-dose anticoagulation with oral or parenteral direct thrombin inhibitors, or oral factor Xa inhibitors, or fondaparinux, only if brain infarct is small. If brain infarct is large, start with a reduced dose of anticoagulant (ie, fondaparinux, 2.5 mg daily) and increase the dosage after 2 weeks from stroke onset (ie, fondaparinux, 7.5 mg daily), due to the high risk of hemorrhagic transformation of the ischemic lesion.
- Thrombocytopenia seems not to be a contraindication to therapeutic dose anticoagulation in VITT, since subjects with the lowest platelet count are at the highest risk of thrombosis. However, some of the available current guidelines suggest low-dose anticoagulants if platelet counts are <30 to 50×10⁹/L.
- Consider IVIG treatment (1 g/kg for 2 consecutive days) immediately after reperfusion therapies if VITT diagnosis is probable (thrombosis, thrombocytopenia, high D-dimer after vaccination), without awaiting confirmation from PF4 antibodies ELISA immunoassay. Repeated IVIG may be required.
- Perform anti-PF4 ELISA immunoassay and functional assay of platelet activation as soon as possible to confirm diagnosis (blood sample for functional
assay should be obtained before IVIG administration since IVIG inhibits functional immunoassay.87
- Consider plasma exchange (daily for up to ≥5 days) if extensive thrombosis and platelet count is <30×10⁹/L.
- Consider rituximab for patients who are refractory to repeat doses of IVIG and plasma exchange, although evidence of its efficacy in VITT is scarce.
- Expert consultation from hematologist is necessary.

Figure 2. Radiological findings from patient 7.
Case reported by De Michele et al.109 A, Computed tomography (CT) demonstrated extensive ischemic changes in the bilateral middle cerebral artery (MCA) distribution with general hypodensity and loss of gray-white matter differentiation. CT angiography showed the occlusion of the right internal carotid artery terminus (white arrow in B) and the proximal M1 segment occlusion of the left MCA (white arrow in C); time-to-maximum (D) and mean transit time (E) in CT perfusion showed hypoperfusion without treatable penumbra; pulmonary artery thrombosis (white arrow in F) with pulmonary consolidation in the right lobe (G).

PATHOPHYSIOLOGY OF STROKE IN COVID-19 AND VITT: SIMILARITIES AND DIFFERENCES

COVID-19 and VITT show some common elements that lead to hypercoagulability and vascular occlusion. The abnormal interaction between platelets, innate immune effectors (neutrophils, macrophages, and complement), and coagulation factors are the key features of both pathological conditions. The ultimate consequence yields clot formation—a phenomenon known as thromboinflammation.120

In contrast to patients with COVID-19 and ischemic stroke, VITT patients do not show the typical elevations in interleukins. Rather, as discussed, the combination between soluble SP, adenovirus, and vaccine excipients probably acts as trigger for platelet activation.99 This distinct mechanism yields very different histopathologic findings postmortem. Specifically, postmortem studies on VITT patients found diffuse vascular thrombosis with endothelial activation, dense recruitment of inflammatory cells, and complement pathway activation in multiple organs.121

While thrombocytopenia is a typical finding of VITT, it is less frequently seen in patients with COVID-19 but is associated with increased risk of serious illness and death.122 Mechanisms of thrombocytopenia...
De Michele et al COVID-19, Vaccination, and Stroke

Figure 3. Radiological findings from patient 6.
Case reported by De Michele et al.109 A, Computed tomography (CT) showed hyperdensity in the right middle cerebral artery. The CT angiography revealed proximal M1 segment occlusion of the right middle cerebral artery (MCA; white arrow in B and C); CT perfusion maps showed a large area of mismatch indicating salvageable penumbra (D); digital subtraction angiography confirming a proximal MCA occlusion (F) of the MCA occlusion (white arrow in E); MCA reocclusion on M2 segment 2 h after the procedure, 3-dimensional time-of-flight magnetic resonance imaging (MRI) sequence (white arrow in G), with extensive ischemic penumbra (time to peak map in H and cerebral blood flow in I). Second endovascular recanalization, oblique views showed occlusion of M2 segment (white arrow in J) with reopening of the vessel after the mechanical thrombectomy (K). Fourteen-day MRI follow-up after craniectomy showed the extension of ischemia to superficial and deep right MCA territory (M) with occlusion of right internal carotid artery at postcontrast sequences (yellow circle in L). N, Right portal vein thrombosis (black arrow).

in COVID-19 are different, however, and are speculated to be mostly secondary to cytokine release, viral bone marrow infiltration, and increased platelet consumption.123 More rarely, thrombocytopenia in patients with COVID-19 can result from anti-PF4 antibody production as a complication of prolonged exposure to unfractionated heparin. There are also reports of platelet internalization of SARS-CoV-2 inducing platelet apoptosis, release of granular content, reduced platelet functionality, and high prothrombotic and pro-inflammatory immune response.124

Other common characteristics to both pathologies are the marked endothelial activation with elevated VWF, coagulation abnormalities (which can culminate to disseminated intravascular coagulation), and increased production of neutrophil extracellular traps.123,125 A comparison is summarized in Table 3.

CONCLUSIONS

Stroke and other cerebrovascular complications of SARS-CoV-2 infection are a highly morbid problem, with multifactorial pathophysiology. Given the association between severe SARS-CoV-2 infection and cardiovascular risk factors common to stroke, there is some degree of confounding; however, multiple studies at this point suggest that SARS-CoV-2 infection is an independent risk factor for ischemic stroke.4

Cerebrovascular complications of vaccination, specifically VITT is a rare but devastating syndrome occurring
more frequently in young people after inoculation of DNA adenoviral vector vaccines that should be promptly recognized. The VITT variant causing arterial stroke is an even rarer but catastrophic event, whose management in the acute phase is complex and challenging.

Some European Union countries have restricted the use of adenovirus vector vaccines to older age groups. In Italy, the Government’s Technical and Scientific Committee has limited the use of Oxford-AstraZeneca vaccines to people over 60 years of age, whereas in the United Kingdom, the Joint Committee on Vaccination and Immunization recommended that the Oxford-AstraZeneca vaccine should not be given to people under 40 years of age. Canada and France have restricted the use of this vaccine to people 55 years of age and over, while Germany has set the bar at 60 and Iceland at 70 years of age.

Despite this, to date, studies have demonstrated that the risk of stroke and other prespecified outcomes of interest (thrombocytopenia, venous thromboembolism, arterial thrombosis, CVST, and myocardial infarction) following a SARS-CoV-2 infection were significantly higher than following vaccination with either the Oxford-AstraZeneca or Pfizer vaccines. As such, because benefits of mass vaccination against COVID-19 far outweighed the risks of VITT, no age restrictions were announced either by the European Medicines Agency or the Food and Drug Administration.
Table 3. Comparison Between COVID-19 Critically Ill and VITT Patients

	Critical COVID-19	VITT
Venous vs arterial thrombosis	Venous predominance	Venous predominance
Thrombocytopenia	↓	↓
D-dimer	↑↑↑	↑↑↑
Fibrinogen	⇒⇒	⇒⇒
Interleukin 6	+++	−
Endothelial activation	+++	+++
Anti-PF4 antibodies	±	+++
Platelet activation	+	+++
NETs	++	+++
Pulmonary thrombosis	++	++
Thrombosis in unusual sites	+	+++
Stroke with LVO	++	++
ARDS	++	−

Anti-PF4 indicates antibodies against antiplatelet factor 4; ARDS, adult respiratory distress syndrome; LVO, large vessel occlusion; NET, neutrophil extracellular trap; and VITT, vaccine-induced immune thrombosis thrombocytopenia.

A global immunization campaign is urgently needed, particularly in low-income countries, and all currently available vaccines are approved by emergency authorities. Nevertheless, more studies about the pathogenesis of VITT are mandatory to ameliorate the risk of adenovirus-based vaccines and to identify those most at risk of VITT.

ARTICLE INFORMATION

Affiliations
Stoke Unit, Emergency Department (M.D.M., I.B., O.G.S., D.T.) and Neuropediat-
ology Unit, Department of Human Neurosciences (M.I.), Sapienza University of
Rome, Italy. Clinical and Translational Neuroscience Unit, Department of Neurology,
Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New
York, NY (J.K., A.E.M.).

Acknowledgments
We would like to acknowledge Natalie Pacheco LeMoss and Jed Kaiser for their assistance with formatting and editing of this article.

Disclosures
None.

REFERENCES

1. WHO. Others. COVID-19 weekly epidemiological update. Accessed November 12, 2021. https://apps.who.int/iris/bitstream/handle/10665/341525/CoV-WeeklySitrep25May21-eng.pdf?sequence=1

2. Nopp S, Mok F, Jímá B, Pasinger I, Ay C. Risk of venous thromboembolism in patients with COVID-19: a systematic review and meta-analysis. Res Pract Thromb Haemost 2020;4:1178–1191. doi: 10.1002/rph2.12439

3. Mao L, Jin H, Wang M, Hu Y, Chen S, He Q, Chang J, Hong C, Zhou Y, Wang D, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol 2020;77:683–690. doi: 10.1001/jamaneurol.2020.127

4. Katsanos AH, Paladinosmu L, Zand R, Yaghi S, Kamer H, Navi BB, Turc G, Romoli M, Sharma WK, Mavridis D, et al. The impact of SARS-CoV-2 on stroke epidemiology and care: a meta-analysis. Ann Neurol. 2021;89:380–388. doi: 10.1002/ana.25967

5. Merkler AE, Parikh NS, Mir S, Gupta A, Kamer H, Navi BB, Segal AZ. Posterior reversible encephalopathy syndrome in patients with COVID-19: a multicenter study and review of literature. J Stroke Cerebrovasc Dis. 2021:105733. doi: 10.1016/j.jscr.2021.105733

6. De Michele et al. COVID-19, Vaccination, and Stroke.
De Michele et al

COVID-19, Vaccination, and Stroke

the incidence of ischemic stroke and acute myocardial infarction. Circulation 2020;142:2080–2082. doi: 10.1161/CIRCULATIONAHA.120.050809

24. Katsoularis I, Fonseca-Rodriguez O, Farrington P, Lindmark K, Fors Conolly AM. Risk of acute myocardial infarction and ischaemic stroke following COVID-19 in Sweden: a self-controlled case series and matched cohort study. Lancet 2021;398:8599–607. doi: 10.1016/S0140-6736(20)31896-5

25. Benussi A, Pilotto A, Premi E, Libri I, Guinta M, Agosti C, Alberici A, Baldelli E, Benini M, Bonarina S et al. Clinical characteristics and outcomes of inpatients with neurologic disease and COVID-19 in Brescia, Lombardy, Italy. Neurology 2020;96:e910–e920. doi: 10.1212/WNL.0000000000009848

26. Shen J, Hou Y, Zhou Y, Mehta R, Sacco R, Salerno DJ, Tirschwell D. Predicting in-hospital mortality using D-dimer in COVID-19 patients with acute ischemic stroke. Stroke 2021;52:120927. doi: 10.1161/STROKEAHA.121.032198

27. Finn C, Hung P, Patel P, Gupta A, Kamel H. Relationship between visceral infarction and ischemic stroke subtype. Stroke. 2018;49:727–729. doi: 10.1161/STROKEAHA.117.020035

28. De Michele et al. COVID-19, Vaccination, and Stroke. Circulation Research. 2022;130:1187–1203. DOI: 10.1161/CIRCRESAHA.122.319954 April 15, 2022 1201
60. Miller SE, Goldsmith CS. Caution in identifying coronaviruses by electron microscopy. J Am Soc Nephrol. 2020;31:2223–2224. doi: 10.1681/ASN.2020050575

61. Varga Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R, Zinkernagel AS, Mehra MR, Schuepbach RA, Ruishitaka F, Moch H. Endothelial cell infection and endothelitis in COVID-19. Lancet. 2020;395:1417–1418. doi: 10.1016/S0140-6736(20)30973-5

62. Evans PC, Rasmussen JC, Mason JC, Guzik TJ, Osto E, Stamatzi Z, Neil D, Hofer IE, Fragiadaki M, Walterberger J, et al. Endothelial dysfunction in COVID-19: a position paper of the ESC Working Group for Atherosclerosis and Vascular Biology, and the ESC Council of Basic Cardiovascular Science. Cardiovasc. Res. 2020;116:2177–2184. doi: 10.1093/cvr/cva230

63. Klok FA, Kruip MJHA, van der Meer NJM, Arbous MS, Gommers D, Kant KM, Kappes PJ, van Paassen J, Stalpers MA, Huisman MV, et al. Confirmation of the high cumulative incidence of thrombotic complications in critically ill ICU patients with COVID-19: an updated analysis. Thromb Res. 2020;191:148–150. doi: 10.1016/j.thromres.2020.04.041

64. Huisman A, Beun R, Sikma M, Westerink J, Kusadasi N. Involvement of ADAMTS13 and von Willebrand factor in thromboembolic events in patients infected with SARS-CoV-2. J Int Med. 2020;42:e211–e212. doi: 10.1111/jim.13244

65. South K, McCulloch L, McColl BW, Elkind MS, Allan SM, Smith CJ. Preceding infection and risk of stroke: an old concept revived by the COVID-19 pandemic. Int J Stroke. 2020;15:722–732. doi: 10.1111/ijst.14965

66. Kvernland A, Kumar A, Yaghhi S, Raza E, Frontier J, Lewis A, Czeisler B, Kahn DE, Zhou T, Ishida K, et al. Cardiovascular disease, metabolic syndrome and COVID-19: United States, July 2021. MMWR Morb Mortal Wkly Rep. 2021;70:1130–1134. doi: 10.15585/mmwr.mm211002a1

67. Hippisley-Cox J, Patone M, Mei XW, Saatci D, Dixon S, Khunti K, Zaccardi F, von Bülow S, Gecht M, Bagola K, Hörner C, et al. In situ structural analysis of SARS-CoV-2 spike reveals flexibility mediated by three hinges. Science. 2020;370:203–208. doi: 10.1126/science.aab7223

68. Aas P, Våge A, Skjerve E, Stensrud I, Stene M, Amland P, et al. In situ structural analysis of SARS-CoV-2 spike reveals flexibility mediated by three hinges. Science. 2020;370:203–208. doi: 10.1126/science.aab7223

69. Hixon AM, Thaker AA, Pelak VS. Persistent visual dysfunction following COVID-19. JAMA Ophthalmol. 2021;139:840–845. doi: 10.1001/jamaophthalmol.2021.2211

70. COVID-19 vaccines [Internet]. Accessed November 12, 2021. https://vaccination-info.eu/en/covid-19/covid-19-vaccines

71. Office of the Commissioner. Learn more about COVID-19 vaccines from the CDC. https://www.cdc.gov/coronavirus/2019-ncov/vaccines.html

72. Greinacher A. Platelet factor 4 antibodies causing VITT do not cross-react with SARS-CoV-2 spike protein. N Engl J Med. 2021;384:2202–2211. doi: 10.1056/NEJMoa2105385

73. See I, Su JR, Lale A, Wos EJ, Guh AY, Shimabukuro TT, Streiff MB, Rao M, et al. Risk of thrombocytopenia after the messenger RNA-1273 vaccine. N Engl J Med. 2021;384:2124–2130. doi: 10.1056/NEJMa2014882

74. Muller F, Minet V, Bailly N, Deivalet B, Douxfils J, Chatelain C, Elalamy I, Devalet B, Bucci M, et al. Autoimmune heparin-induced thrombocytopenia. Blood Adv. 2017;1:2219–2228. doi: 10.1182/bloodadvances.2016024803

75. Scully M, Singh D, Lown R, Polies A, Solomon T, Levi M, Goldblatt D, Kotoucek P, Thomas W, Lester W. Pathologic antibodies to platelet factor 4 after ChAdOx1 nCoV-19 vaccination. N Engl J Med. 2021;384:2202–2211. doi: 10.1056/NEJMoa2105385

76. Schultz NH, Sørvoll IH, Michelsen AE, Munthe LA, Lund-Johansen F, Ahlen TM, Wiedmann M, Aamodt AH, Skattør TH, Tjønnfjord GE, et al. Thrombosis with thrombocytopenia after Ad26.COV2.S vaccination. N Engl J Med. 2021;385:999–1009. doi: 10.1056/NEJMoA2015869

77. Palladino R, Ceriotti D, De Ambrosi D, De Vito M, Farsoni M, Seminara G, Palladino M, De Michele et al COVID-19, Vaccination, and Stroke
De Michele et al COVID-19, Vaccination, and Stroke