Identification of an apiosyltransferase in the plant pathogen *Xanthomonas pisi*

James Amor Smith¹,², Maor Bar-Peled¹,²,³*

¹ Complex Carbohydrate Research Center (CCRC), University of Georgia, Athens, GA, United States of America, ² Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States of America, ³ Department of Plant Biology, University of Georgia, Athens, GA, United States of America

* peled@ccrc.uga.edu

Abstract

The rare branched-chain sugar apiose, once thought to only be present in the plant kingdom, was found in two bacterial species: *Geminicoccus roseus* and *Xanthomonas pisi*. Glycans with apiose residues were detected in aqueous methanol-soluble fractions as well as in the insoluble pellet fraction of *X. pisi*. Genes encoding bacterial uridine diphosphate apiose (UDP-apiose) synthases (bUASs) were characterized in these bacterial species, but the enzyme(s) involved in the incorporation of the apiose into glycans remained unknown. In the *X. pisi* genome two genes flanking the XpUAS were annotated as hypothetical glycosyltransferase (GT) proteins. The first GT (here on named XpApiT) belongs to GT family 90 and has a Leloir type B fold and a putative lipopolysaccharide-modifying (LPS) domain. The second GT (here on XpXylT) belongs to GT family 2 and has a type A fold. The XpXylT and XpApiT genes were cloned and heterologously expressed in *E. coli*. Analysis of nucleotide sugar extracts from *E. coli* expressing XpXylT or XpApiT with UAS showed that recombinant XpApiT utilized UDP-apiose and XpXylT utilized UDP-xylose as substrate. Indirect activity assay (UDP-Glo) revealed that XpApiT is an apiosyltransferase (ApiT) able to specifically use UDP-apiose. Further support for the apiosyltransferase activity was demonstrated by in microbe co-expression of UAS and XpApiT in *E. coli* showing the utilization of UDP-apiose to generate an apioside detectable in the pellet fraction. This work provides evidence that *X. pisi* developed the ability to synthesize an apioside of indeterminate function; however, the evolution of the bacterial ApiT remains to be determined. From genetic and evolutionary perspectives, the apiose operon may provide a unique opportunity to examine how genomic changes reflect ecological adaptation during the divergence of a bacterial group.

Introduction

Bacteria produce a large array of glycan structures that are associated with the cell surface. Gram-negative bacteria produce peptidoglycan, lipopolysaccharide (LPS), capsular polysaccharides (CPS), and some N- or O-linked glycoproteins [1, 2], which have been implicated in cellular recognition of the environment and may be important for vital pathways including...
adherence, motility, and pathogenesis [3]. Synthesis of these glycans requires sugar donors, acceptor substrates, and glycosyltransferases (GTs). GTs are known to have specific substrate specificity and are classified based on conserved three-dimensional fold [4–6] into 105 different families in the Carbohydrate-Active EnZymes (CAZy) database (http://www.cazy.org) [7, 8]. Some GTs necessary to synthesize peptidoglycan have been identified and some crystal structures solved [9–11], and the steps and required machinery for synthesis of LPS have been extensively characterized in E. coli [12–15]. However, a large number of bacterial glycan structures and GTs that synthesize them remain a mystery. High variability and limited structural data restricts predictability of function, making identification and characterization of GTs responsible for synthesis of bacterial glycan structures challenging.

Xanthomonas is an agriculturally and industrially relevant bacterium, as it is pathogenic towards a large range of crops. *Xanthomonas* species secrete an exopolysaccharide (EPS) called xanthan gum, that is used in the food industry as a thickening agent and is implicated in pathogenicity [16, 17]. In addition, the LPS of *Xanthomonas campestris* pv. *campestris* has been shown to influence its virulence [18, 19].

We previously discovered the presence of apiose (3-C-[hydroxymethyl]-D-erythrofuranose, Api) in the soil-dwelling plant pathogen *Xanthomonas pisi* [20] and subsequently isolated and characterized the nucleotide sugar donor UDP-apiose and the enzyme that forms it, UDP-apiose/UDP-xylose synthase (XpUAS), in this bacteria. Evidence of apiose in *X. pisi* cell pellet fractions suggested *X. pisi* was able to use UDP-apiose to make a cell-surface apioside. In an effort to explain this, we searched for potential genes encoding apiosyltransferase (ApiT) activity.

Here we report the first identification of a gene encoding an apiosyltransferase (ApiT) that is specific to UDP-apiose and a second GT in the same operon that uses UDP-xylose as substrate (XylT). No apiosyltransferase has previously been purified to homogeneity nor have the genes encoding this glycosyltransferase been identified. This is the first report to identify apiosyltransferase activity in bacteria.

Results

Identification and phylogenetic analysis of putative glycosyltransferases in apiose operon of *X. pisi*

Examination of *X. pisi* (ATCC 35936) genomic DNA (accession MDEI01000004.1) revealed two hypothetical proteins (accessions PPU69163.1 and PPU69164.1; gene loci XpiCFBP4643_06445 and XpiCFBP4643_06450) directly downstream of UDP-apiose/UDP-xylose synthase (XpUAS) (Fig 1A). The XpiCFBP4643_06445 gene has 4 nucleotides overlapping with the gene encoding XpUAS, and a gap of 11 nucleotides containing a putative ribosomal binding sequence (RBS) between XpiCFBP4643_06445 and XpiCFBP4643_06450, suggesting the genes are organized in an operon. BLAST [21] analyses (BLASTp and tBLASTn) of XpiCFBP4643_06445 gene product (PPU69163) revealed few proteins that align. The closest homolog is a hypothetical protein from *Pleurocapsa sp*. CCALA161 (accession WP_106240036.1) that shares low sequence identity with an e-value of 2e-21. Additionally, sequence analysis using profile hidden Markov Models (HMMER; www.ebi.ac.uk/Tools/hmm) [22] did not reveal close homologs with more than e-27. Interestingly, we noticed that XpiCFBP4643_06445 had very low homology e-19 over 55% coverage to a protein belonging to pfam05686 classified as glycosyltransferases belonging to GT90. Based on the CAZy GT database, proteins in GT90 had a putative type B fold. The third gene in the operon, XpiCFBP4643_06450, was annotated to encode a protein (PPU69164) with a domain shared by GT family 2 (pfam13704) and had a putative type A fold.
The BLAST and HMMER programs [21, 22] were further used to identify bacterial proteins in the NCBI non-redundant database that share sequence similarity to PPU69163 and PPU69164. The hits with highest sequence identity to PPU69164 were from *Synechococcus sp.*, *Desulfonatronum thiosulfatophilum*, and *Methylobacterium sp*. Those with highest sequence identity to PPU69163 were all below 35%, but include proteins from *Mycena chlorophos*,
Pleurocapsa sp., and Sphingomonadaceae. Based on the results we obtained in this report from here on PPU69163 is named XpApiT and PPU69164, XpXylT.

Unrooted phylogenetic trees were generated for representative members of GT family 2, including XpXylT and members of GT family 90, including XpApiT (Fig 1B). XpXylT clusters into a clade with the predicted procollagen galactosyltransferase 1 precursor from Norway rat Rattus norvegicus and predicted proteins from other eukaryotic members including a sea anemone and a marine diatom. XpApiT is in its own unique clade indicating its distinction from the closest annotated tree members; a predicted viral protein from Gryllus bimaculatus iridovirus and human and zebrafish KDEL1 (Fig 1B).

The analyses compared alignments of amino acid sequences of representatives from respective GT families (S1 and S2 Figs). Since most of these representatives are uncharacterized, and because there is low sequence identity between the X. pisi GT representatives and their respective GT family members, these GTs were further investigated to define their activities. Because a genetically tractable strain of X. pisi has not yet been established and previous work has optimized an inducible expression system for XpUAS [20], XpApiT and XpXylT were heterologously expressed in E. coli and functionally characterized against a screen of potential UDP-sugar donors.

Initial determination of XpXylT and XpApiT glycosyltransferase activities

To investigate if these GTs use nucleotide sugars as substrates, in particularly UDP-apiose (UDP-Api) and UDP-xylose (UDP-Xyl), the coding sequences of PPU69163 and PPU69164 were cloned into modified pET28b E. coli expression vector [27]. Since UDP-apiose has a relatively short lifespan and naturally degrades within 4 h to apiofuranosyl-1,2-cyclic-phosphate [28, 29] we set up a ‘reporting system’ to determine the consumption of UDP-apiose in vivo. For these experiments (we named herein in microbe) pET plasmids containing XpXylT or XpApiT alone, and a pET plasmid containing both XpXylT and XpApiT together were co-transformed with a pCDF plasmid containing both a UDP-glucose dehydrogenase (UGDH) [30] and a UDP-apiose synthase (UAS) to provide the potential UDP-apiose and UDP-xylose substrates for the GTs [20]. Cell extracts from the isopropyl β-D-thiogalactoside (IPTG)-induced E. coli cells were processed and examined for presence and relative amounts of UDP-Api and UDP-Xyl. Peaks corresponding to UDP-Api and UDP-Xyl were compared (Fig 2).

In cells co-expressing UAS with XpXylT, there is a noticeable decrease in the relative amount of UDP-Xyl extracted and no change in the amount of UDP-Api (Fig 2), while there is no such decrease in control samples. This suggests that XpXylT consumes UDP-xylose as a substrate, perhaps transferring it to a substrate yet to be defined. Surprisingly, cells co-expressing UAS with XpApiT show a marked decrease in UDP-Api and no change in UDP-Xyl when compared to controls (Fig 2). The decrease in UDP-Api in cells expressing XpApiT indicates XpApiT is likely specifically utilizing UDP-Api in microbe. This suggests that XpApiT consumes UDP-apiose as a substrate, perhaps transferring it to a substrate yet to be defined. There is also possibility that in the absence of ‘true acceptor’ (as in the in vivo assays carried out in E. coli and not in the native environment of X. pisi) that the glycosyltransferase may act to hydrolyze UDP-sugar substrate [31–34]. Extracts from cells expressing both XpXylT and XpApiT along with UAS have less UDP-Xyl and UDP-Api relative to the internal Park’s nucleotide (UDP-MurNac-pentapeptide) than controls (Fig 2). To further explore the specific activity of these two GTs, His-tag recombinant proteins were expressed and purified and in vitro assays were developed.
Fig 2. In microbe activity of XpXylT and XpApiT. Analysis of in microbe nucleotide sugars by HILIC-LC-ESI-MS/MS. (A) top panel elution of standard (Std): UDP-GlcA and UDP-Xyl. Nucleotide sugars were extracted from E. coli cells induced to express genes encoding BtGlyT046, XpXylT, XpApiT, or XpApiT with XpXylT; or only XpApiT with
Purification of XpXylT and XpApiT and in vitro assay

To obtain additional evidence for the specific activities of XpXylT and XpApiT, the recombinant His$_6$-tagged proteins were solubilized from E. coli cells and purified using nickel-affinity column. The recombinant XpXylT (with theoretical mass 32.9 kDa) and XpApiT (41.4 kDa) migrated on SDS-PAGE with predicted masses (Fig 3A).

Reactions of recombinant XpApiT with UDP-Api have over ten-fold more luminescence than other UDP-sugar substrates, indicating its specificity for UDP-Api (Fig 3B). Reactions of recombinant XpXylT with UDP-sugar substrates demonstrate a 3-fold increase in luminescence with UDP-Xyl. The UDP-Glo Kit (Promega) was used to test the indirect activities of each GT (see methods). In order to develop an ApiT assay, UDP-Api substrate had to be generated quickly in vitro, HPLC purified, and flash frozen (see methods). To determine the specific NDP-sugar donor substrate of each GT, a UDP-sugar substrate screen was initially developed, to which purified enzyme was added. Because the acceptor substrate(s) were unknown, reactions were allowed to hydrolyze UDP-sugar substrate using water as the acceptor [34] and reaction product analyzed by luminometer according to manufacturer’s instructions.

UDP-apiose synthesis and purification

Generation of pure UDP-Api substrate is not trivial due to the fact that it spontaneously degrades into an apiofuranosyl-1,2-cyclic-phosphate in solution [28, 29]. Generation of UDP-Api required in vitro synthesis using an active recombinant UDP-apiose/UDP-xylose synthase, UAS [29]. The UAS reaction products were quickly separated over HILIC HPLC, and the UDP-Api peak was collected, flash-frozen in liquid N$_2$ and saved at -80 °C. This methodology allowed us to control and reduce the native degradation of UDP-Api. To validate purity and relative stability of UDP-Api, a small amount of freshly prepared UDP-Api was diagnosed by LC-MS (Fig 4A). The data shown (Fig 4B) provide evidence that UDP-Api is intact and lacking UDP-Xyl product contamination. Pure UDP-Api was necessary to screen XpXylT and XpApiT for activity using the UDP-Glo assay. Without UDP-Api, no activity would be assigned to XpApiT.

In microbe production of apiosides

To further investigate if the XpXylT and XpApiT were actively synthesizing glycans in microbe, engineered E. coli cultures were fractionated and analyzed for the presence and abundance of xylose and apiose. Bacteria grown in liquid media were pelleted and subjected to aqueous-methanol:chloroform extractions to lyse cells and separate hydrophilic small molecules and hydrophobic lipid moieties from the cell surface (termed pellet) fraction. Pellets were successively washed with water and dried. Samples were chemically hydrolyzed and monosaccharides converted to their alditol-sugar derivatives for gas chromatography tandem mass spectrometry (GC-MS) analysis.

The pellet fractions of only the UGDH+UAS+XpApiT and UGDH+UAS+XpApiT_XpXylT strains had a peak that migrated like apiose (Fig 5). The electron impact MS fragmentation pattern of this peak’s structure was similar to authentic apiose; for example, the major diagnostic peak at m/z 188 [20]. Apiose was not detected in the UGDH+UAS+XpXylT, UGDH+UAS, or
A

![Image of gel electrophoresis result showing bands at 50 and 37 kDa for Std, XpXyIT, XpApiT, and Empty vector lanes.]

B

UGlo Activity

![Bar graph showing UGlo activity with XpXyIT in blue and XpApiT in red. The graph depicts luminescence (RLU) for various sugars (UDP-Ara, UDP-Xyl, UDP-Glc, UDP-Api, UDP-Gal, UDP-GalA, UDP-GlcA, UDP-Rha).]
Fig 3. Activity of purified XpXylT and XpApiT proteins. (A) Nickel-purified proteins from *E. coli* induced to express XpXylT, XpApiT, and empty vector control with expected sizes of XpXylT and XpApiT: 32.9 and 41.4 kDa, respectively. (B) Bar graph of relative luminescence from UDP-Glo assays. Assays of 50 mM potassium phosphate pH 7.5, 0.1 mM UDP-sugar, 0.5 μg enzyme in 10 μl total volume reacted at room temperature for 1–1.5 hr. Equal volume of UDP-Glo detection reagent added to stop reaction for 1 hr. Relative luminescence is fold signal over background; measured by subtracting blank (enzyme without UDP-sugar) and dividing by background (UDP-sugar with boiled enzyme). Data is the average of three independent samples and displayed with calculated standard error (SE) bars.

https://doi.org/10.1371/journal.pone.0206187.g003

XpApiT_XpXylT control strains, and no xylose was detected in any of the pellet fractions. In addition to apiose, these extracts also consist of glucose, galactose, and arabinose sugar residues (Table 1).

Materials and methods

Bacterial strains

Xanthomonas pisi ATCC 35936 (*X. pisi*) was obtained from the American Type Culture Collection in Manassas, VA, USA. This specific *X. pisi* strain was isolated from *Pisum sativum* in Japan (by Goto and Okabe, 1958[35]) [36] and its genome recently sequenced (GenBank DNA accession MDEI01000004.1). Unless otherwise stated, *X. pisi* cultures were grown on nutrient agar (BD Difco; Franklin Lakes, NJ, USA) at 25 °C. Liquid cultures were grown in 250 mL of nutrient broth, shaking at 250 rpm. *E. coli* cells used were BL21(DE3)-derived cells (Novagen, Madison, WI, USA).

Identification and cloning of XpXylT and XpApiT

The genomic DNA surrounding bUAS of *X. pisi* (10,000 bp upstream and 10,000 downstream) was examined for in-frame amino acid-coding sequences and analyzed by BLASTX program [11]. Resultant *X. pisi* predicted proteins WP_046963858.1 (locus tag XpiCFBP4643_06445, protein i.d. PPU69163; here on named XpApiT) and WP_0052764980.1 (locus tag XpiCFBP4643_06450, protein i.d. PPU69164; here on named XpXylT) were analyzed by BLASTP against the NCBI non-redundant database to obtain conserved domains from the Conserved Domain Database (CDD). XpApiT had conserved CAP10 (smart00672) and GT family 90 (pfam05686) domains, and XpXylT was shown to contain conserved GT family 2 (pfam13704), β-4-glucosyltransferase (cd02511), and WcaA (COG0463) domains.

RNA was extracted as described [37] from a 2-day-old culture of *X. pisi* grown in liquid media and the XpXylT, XpApiT, and XpApiT_XpXylT cDNA’s were amplified, using forward and reverse primers (IDT; Coralville, IA, USA; S1 Table). The PCR product was cloned into the *E. coli* expression vector pET28b modified to contain an N-terminal His6 tag followed by a TEV cleavage site [27].

Following cloning of the individual *X. pisi* GT genes, the plasmids were sequence verified (Eurofins, LUX) and termed, pET28b-TEV-XpXylT.2, pET28b-TEV-XpApiT.1 and pET28b-TEV-XpApiT_XpXylT.7. The amino acid sequences for XpXylT and XpApiT were deposited in GenBank (accessions MH673349 and MH673348, respectively).

Analysis of nucleotide sugars produced in microbe

Nucleotide sugars from *E. coli* harboring the expression plasmids were harvested as described [29, 38]. *E. coli* cells co-transformed with pCDFDuet-SpUAS_BtbDH and either empty pET28b vector control (UGDH+UAS), pET28b-TEV-XpXylT.2 (UGDH+UAS+XpXylT), pET28b-TEV-XpApiT.1 (UGDH+UAS+XpApiT), pET28b-TEV-XpApiT_XpXylT.7 (UGDH+UAS+XpApiT_XpXylT) or negative control pET28b-TEV-BtbGlyT046 (UGDH+UAS+-BtbGlyT046), and cells co-transformed with empty pCDFDuet vector control and either pET28b-TEV-XpXylT.2, pET28b-TEV-XpApiT.1, and pET28b-TEV-XpApiT_XpXylT.7 alone.
were grown in LB medium [1.0% (w/v) Bacto tryptone, 0.5% (w/v) Bacto yeast extract, and 1.0% (w/v) NaCl] supplemented with 35 μg/ml chloramphenicol, 50 μg/ml kanamycin, and 25 μg/ml spectinomycin at 37 °C and 250 rpm, induced with Isopropyl β-D-thiogalactoside (IPTG, 0.5 mM) at an OD600 of 0.6 and grown at 30 °C for 4 h. In microbe nucleotide sugars were extracted and analyzed by hydrophilic interaction liquid chromatography electrospray ionization tandem mass spectrometry (HILIC-LC-ESI-MS/MS) as described [29]. Briefly, in microbe extracts were mixed with 2/3 volume aq. 95% acetonitrile (ACN) containing 25 mM ammonium acetate and an aliquot (10–20 μl) chromatographed over an Accucore amide-HILIC column (150 x 4.6 mm; Thermo Fisher Scientific; Waltham, MA, USA), eluted at 0.4 ml min⁻¹ with a linear gradient of aq. 75% (v/v) acetonitrile containing 40 mM ammonium acetate, pH 4.4, to 50% (v/v) acetonitrile containing 40 mM ammonium acetate, pH 4.4, over 35 min [39] using a Shimadzu (Kyoto, JPN) LC-30AD HPLC. Mass spectra (mass range 100–2,000 m/z) were collected every 1.3 sec for 30 minutes. Second stage MS/MS data was collected by collision-induced dissociation (CID) with collision energy of 35% and a nebulizing nitrogen gas flow of 1.5 ml min⁻¹.

His₆-tagged protein expression and purification

E. coli cells transformed with pET28b-TEV-XpXYT.2, pET28b-TEV-XpApiT.1, or the empty vector control were grown, induced, and protein was extracted and purified over Ni-column as described [27]. The final soluble protein fraction (Fraction S20) was collected and kept on ice prior to immediate purification. The different His₆-tagged proteins, including control empty plasmid were separated SDS-PAGE [12% (w/w) polyacrylamide] and stained. Protein concentrations were determined with the Bradford reagent [40] using bovine serum albumin (BSA) as standard.

Generation of UDP-apiose

Reactions (50 μl) of 1 mM UDP-GlcA with 10 μg of purified SpUAS and 0.5 mM NAD⁺ were carried out, separated on an Accucore amide-HILIC column (150 x 4.6 mm; Thermo), as described above [29]. Nucleotides sugars were detected by their A261nm (for UDP-sugars) and A259nm (for NAD⁺) using an Agilent (Santa Clara, CA, USA) 1100 Series HPLC equipped with a G1313A auto-sampler, a G1315B diode array detector, and ChemStation software. UDP-apiose eluted at ~11.2 min, was collected, and aliquots were flash-frozen in liquid N₂ and saved at -80 °C. To validate purity and relative stability of UDP-Api, a small amount of freshly prepared UDP-Api was diagnosed by on LC-MS (see above).

Recombinant XpXYT and XpApiT enzyme assays

Unless otherwise indicated, the 10 μl UDP-Glo (Promega; Madison, WI, USA; http://www.promega.com) reactions were performed in 50 mM potassium phosphate pH 7.5, containing 0.1 mM UDP-sugar 1 μg of purified protein. The assay mixtures were incubated at room temperature for up to 1.5 h. The reactions were terminated by addition of an equal volume of UDP-Glo Detection Reagent in white polystyrene 384-well assay plates (Corning; Corning, NY, USA) and incubated for 1 h at room temp. Luminescence was measured using a POLAR-star OPTIMA multifunctional microplate reader (BMG Labtech; Ortenberg, DEU). Relative
luminescence was calculated by subtracting blank, containing enzyme without UDP-sugar substrate, and dividing by background, UDP-sugar with boiled enzyme.

Glycosyl residue composition analysis

E. coli cultures (250 ml; 5 to 18-hr post culturing) were centrifuged (10,000 g, 5 min, 4 °C) and cell pellets suspended in 10 volumes of cold MeOH:chloroform:H₂O (4:4:2, v/v/v). The suspensions were transferred to 15 ml falcon tubes and vortexed for 10 min (30 sec every 2 min, 4 °C). The suspensions were centrifuged (10,000 g, 5 min, 4 °C) and separated into a top methanolic-water phase (termed methanolic), medial interphase (termed pellet) and bottom organic chloroform phase. A portion (20 μl) of the top methanolic fraction was analyzed on HILIC-LC-ESI-MS/MS (see above). The bottom chloroform fraction was transferred to a separate tube. The remaining interphase was re-suspended in 2 ml DDW and samples centrifuged (10,000 g 5 min, 4 °C). Supernatant was again washed by re-suspension in 2 ml DDW and centrifugation and supernatant vacuum aspirated. The pellet was again re-suspended in 1 ml DDW and transferred to a 13 mm borosilicate tube.

In microbe pellets, methanolic and organic solvent extracts or standards (~1 mg) were supplemented with myo-Inositol (10 μl of 5 mM solution) as an internal standard, evaporated to dryness at room temperature using a stream of air (REACTIVAP III, Thermo) and then hydrolyzed for 1 h at 120 °C with 1 ml of 1 M TFA. TFA was removed by evaporation and the released monosaccharides were then converted into their corresponding alditol-acetate derivatives according to York et al [41], and the final residue dissolved in acetone (100 μl). A fraction (1 μl) of each of the alditol-acetate derivative samples was analyzed by gas-liquid chromatography as described [29].

Discussion

Here we describe the first evidence of an apiosyltransferase able to specifically use UDP-apiose as substrate. We show that the *X. pisi* genome consists of an operon with genes encoding apiosyltransferases that can utilize UDP-apiose as substrate to generate the apiose-containing glycosyltransferase products shown in Fig 5. The glycosylation products were analyzed by GC-MS to confirm their identity.

Table 1. Glycosyl-residue compositions of microbe pellets.
UGDH+UAS

Monosaccharide (mol %)
Rib
Ara
Xyl
Api
Man
Gal
Glc
GlcN
GlcNAc

The glycosyl residue composition (mol%) was determined by GC-MS analysis of alditol-acetate derivatives generated from the pellet fraction of transformed *E. coli*. Data is the average ± standard error of three independent samples. N.D. indicates not detected.

https://doi.org/10.1371/journal.pone.0206187.t001
UDP-apiose synthase (XpUAS), an apiosyltransferase (XpApiT), followed by another enzyme that uses UDP-xylose (XpXylT). The apiosyltransferase belongs to CAZy GT family 90 that consists of fungal xylosyltransferases [42–44] and animal protein O-glucosyl- and xylosyltransferases that have been biochemically characterized.

The C-terminal portion (~200 aa) of the apiosyltransferase, XpApiT, consists of a CAP10 domain (smart00672) [45] and is a GT family 90 (pfam05686) [43] as classified by the Conserved Domain Database (CDD) [46]. The CAP10 from the fungal, Cryptococcus neoformans is involved in capsular-polysaccharide formation and virulence [45]. Since discovery of this domain, capsular-associated proteins of C. neoformans have been classified into GT family 90 and characterized as β-1,2-xylosyltransferases that modify the capsular polysaccharide as well as some glycosphingolipids [42–44]. Proteins homologous to CAP10 have been identified in plants and animals and are described in the CDD as “putative lipopolysaccharide-modifying enzymes” [46]. In Drosophila melanogaster, Rumi (AAN13920.1) was identified and characterized as a soluble, ER-localized, CAP10-domain-containing protein involved in protein O-glycosylation and O-xylosylation critical to Notch signaling [47, 48]. Additional homologs have been characterized in human and mouse [49–51]. Because XpApiT is classified into GT family 90, we hypothesized that it may be involved in glycosylation of extracellular polysaccharide(s).

Interestingly, there are plant proteins classified into GT family 90 that are uncharacterized, including at least 8 Arabidopsis DUF821 proteins. Because plants synthesize secondary metabolite apiosides such as apiin from parsley and wall apiosides such as rhamnogalacturonan II (RG-II) and apiogalacturonan (ApiGalA) from Lemna, plants must contain enzymes with ApiT activity. In fact, prior work has demonstrated that UDP-Api is the activated nucleotide sugar used by parsley cell extracts and Lemna for the incorporation of apiose into apiin and apiogalacturonan, respectively [52, 53]. No apiosyltransferase had previously been purified to homogeneity nor had the genes encoding this glycosyltransferase been identified. It is possible that future characterization of the plant GT family 90 (DUF821) enzymes will reveal their function in apiosylation.

XpXylT is classified as GT family 2 in CAZy, which contains over 120,000 bacterial proteins and may be the largest GT family in the database. GT family 2 also contains cellulose synthase (CESA) from plants [54]. The N-terminal portion (~100 aa) of XpXylT is classified as containing β-4-glucosyltransferase (cd02511) [7, 8, 55–59] and WcaA (COG0463) [60] conserved domains by the Conserved Domain Database (CDD) [46]. WcaA is a GT involved in synthesis of the exopolysaccharide (EPS) colonic acid (CA) produced by E. coli [60]. Domain cd02511 contains GTs important for synthesis of the lipooligosaccharide (LOS) cores of the bacteria Neisseria meningitidis [56] and Campylobacter jejuni [55], and domain pfam13704 are described as putative prokaryotic glucosyltransferases [46]. Based on these classifications, we hypothesize that XpXylT may be involved in EPS or LOS synthesis.

Evolution of this unique apiose operon is not straightforward. The apiose operon appears to be exclusive to X. pisi based on current genomic data. No homologs to XpUAS, XpApiT, or XpXylT have been found in other Xanthomonas species. X. pisi may have independently evolved a way to synthesize and use UDP-apiose from precursor genes. Alternatively, the genes may be a result of horizontal gene transfer. Indeed, there is evidence that Xanthomonas pathovars are able to rapidly diversify by genomic rearrangement and diversification from common ancestral genes [61]. We propose that acquiring the Api operon was due to environmental interactions and ecological adaptation beneficial for X. pisi, but the source of the genes in the Api operon remain at current unclear. We hypothesize that the apiose cassette (XpUAS, XpApiT, and XpXylT) encoding genes ended up in this Api operon by horizontal gene transfer. Interestingly, the presence of two IS3 transposases flanking the apiose operon supports a
hypothetical transfer event. One transposase is 1568 bp 5′ of the operon and the other is 1792 bp 3′ to the operon.

It will be interesting to figure out in the future (when more genomes are sequenced) the DNA source that was used to insert the operon into the X. pisi genome: was it from closely associated microbes, plant host, or through a viral vector? Other Xanthomonas species are reported to contain evidence of cross-kingdom gene transfer [62]. Due to the wide range of hosts Xanthomonas spp. infect, it is reasonable to speculate the purpose of surface apiosides and/or xylosides specific to X. pisi is to aid in pathogenicity or elude host defenses. Perhaps exhibition of apiose and/or xylose acts to repel other soil-dwelling organisms as X. pisi struggles to vie for survival in its local microbiome. Continued study of this apiose operon may provide insight into how bacteria use genomic change to adapt to their specific environment.

The identification and characterization of XpApiT as a genuine apiosyltransferase reveals a new activity exclusive to X. pisi. Perhaps X. pisi uses a surface apiose as a cloak from host defense or to combat rival microbes. Characterization of XpXylT generated by this operon demonstrates that it uses a UDP-Xyl substrate generated by the same enzyme (XpUAS) that generates UDP-Api substrate for XpApiT. It is possible that the XpXylT similarly functions to modify surface glycans that impart ecological advantage to X. pisi. Development of a tractable strain of X. pisi would enable future knock-out studies to provide biological relevance of apiose and xylose in this microbe.

Supporting information

S1 Fig. GT family 90 multiple sequence alignment. Full amino acid alignment of XpApiT (MH673348) and representative members of GT family 90 from the following organisms: Arabidopsis thaliana (Q9SMT6; O80836; Q9SH28; Q56Y51; NP_172202; Q9MD55; NP_191688; Q9WS79; O80835), Oryza sativa Japonica (XP_015636439; Q9DEH1; Q6Z1Y8; XP_015633451), Vitis vinifera (CAN66409; CAN70601; CAN65871), Homo sapiens (Q6UW63), Mus musculus (NP_076134), Danio rerio (Q7ZVE6), Nematostella vectensis (XP_001639335), Drosophila melanogaster (Q6UW63), Invertebrate iridescent virus 6 (NP_149642), Cryptococcus neoformans var. neoformans JEC21 (XP_567800). Sequences were aligned with PRALINE [63] using the BLOSUM62 scoring matrix.

S2 Fig. GT family 2 multiple sequence alignment. Full amino acid alignment of XpXylT (MH673349) and representative members of GT family 2 from the following organisms: Janaschasia sp CCS1 (ABD53137; AB56186; AB56187; AB56375; AB56179), Dinoroseobacter shibae (WP 012180235; WP 012179538), Ruegeria pomeroyi (AAV93367; AAV93368; AAV94731; AAV94670; AAV95896; AAV95846; AAV94320), Ruegeria sp TM1040 (ABF62751; ABF64507), Paracoccus denitrificans (WP 011748578), Rhizobium etli CFN 42 (ABC92155), Geodermatophilus obscurus (WP 012946629), Nostoc sp PCC 7120 (BAB73679), Pseudovibrio sp FO-BEG1 (WP 014283852), Octobacterium anthropi (WP 012090710), Beijerinckia indica (WP 012385681), Sinorhizobium fredii (WP 012708451), Synechococcus sp WH 8102 (CAE07032), Methylobacterium radiotolerans (WP 012317373), Porphyromonas asaccharolytica (WP 004330966), Gluconobacter oxydans (AAW60025), Strepococcus suis (CYU 93668), Acidiphilium cryptum (ABQ29611), Selenomonas ruminantium (WP 006193730), Thalassiosira pseudonana (XP 002288249), Nematostella vectensis (XP 001635452), Rattus norvegicus (NP 001099537), Gloeobacter violaceus (BAC90139), Granulibacter bethesdensis (ABI61222), Rhodothermus marinus (WP 012843638), Paenibacillus sp JDR-2 (WP 015843614), Methylobrum extorquens (WP 003600880). Sequences were aligned with PRALINE [63] using the
BLOSUM62 scoring matrix.

SI Table. **Primers used in plasmid generation.** Obtained from IDT.

Acknowledgments

The authors thank Malcolm O’Neill of the Complex Carbohydrate Research Center for his expertise in GC-MS separation of derivitized carbohydrates and Dr. Breeana Urbanowicz for her help with optimizing UDP-Glo assays.

Author Contributions

Conceptualization: James Amor Smith.

Data curation: James Amor Smith.

Formal analysis: James Amor Smith.

Investigation: Maor Bar-Peled.

Methodology: Maor Bar-Peled.

Project administration: Maor Bar-Peled.

Supervision: James Amor Smith, Maor Bar-Peled.

Validation: James Amor Smith.

Writing – original draft: James Amor Smith.

Writing – review & editing: James Amor Smith, Maor Bar-Peled.

References

1. Messner P. Prokaryotic glycoproteins: unexplored but important. J Bacteriol. 2004; 186(9):2517–9. https://doi.org/10.1128/JB.186.9.2517-2519.2004 PMID: 15090489

2. Logan SM. Flagellar glycosylation—a new component of the motility repertoire? Microbiology. 2006; 152(Pt 5):1249–62. https://doi.org/10.1099/mic.0.28735-0 PMID: 16622043

3. Kay E, Lesk VL, Tamaddoni-Nezhad A, Hitchen PG, Dell A, Steremberg MJ, et al. Systems analysis of bacterial glycemies. Biochem Soc Trans. 2010; 38(5):1290–3. https://doi.org/10.1042/BST0381290 PMID: 20863301

4. Liu J, Mushegian A. Three monophyletic superfamilies account for the majority of the known glycosyltransferases. Protein Sci. 2003; 12(7):1418–31. https://doi.org/10.1110/ps.0302103 PMID: 12824488

5. Glostier TM. Advances in understanding glycosyltransferases from a structural perspective. Curr Opin Struct Biol. 2014; 28:131–41. https://doi.org/10.1016/j.sbi.2014.08.012 PMID: 25240227

6. Jarrell KF, Ding Y, Meyer BH, Albers SV, Kaminski L, Eichler J. N-linked glycosylation in Archaea: a structural, functional, and genetic analysis. Microbiol Mol Biol Rev. 2014; 78(2):304–41. https://doi.org/10.1128/MMBR.00052-13 PMID: 24847024

7. Campbell JA, Davies GJ, Bulone V, Henrissat B. A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. Biochem J. 1997; 326 (Pt 3):929–39.

8. Coutinho PM, Deleury E, Davies GJ, Henrissat B. An evolving hierarchical family classification for glycosyltransferases. J Mol Biol. 2003; 328(2):307–17. PMID: 12691742

9. Ha S, Walker D, Shi Y, Walker S. The 1.9 A crystal structure of Escherichia coli MurG, a membrane-associated glycosyltransferase involved in peptidoglycan biosynthesis. Protein Sci. 2000; 9(6):1045–52. https://doi.org/10.1101/ps.9.6.1045 PMID: 10892798

10. Marrec-Fairley M, Piette A, Gallet X, Brassec R, Har a H, Fraipont C, et al. Differential functionalities of amphiphilic peptide segments of the cell-septation penicillin-binding protein 3 of Escherichia coli. Mol Microbiol. 2002; 43(7):705–14. PMID: 12202621
32. Sindhuwini N, Munoz E, Munoz FJ, Palcic MM, Peters H, Peters T. Binding of an acceptor substrate analog enhances the enzymatic activity of human blood group B galactosyltransferase. Glycobiology. 2010; 20(6):718–23. https://doi.org/10.1093/glycob/cwq019 PMID: 20154292

33. Brockhausen I. Crossroads between Bacterial and Mammalian Glycosyltransferases. Front Immunol. 2014; 5:492. https://doi.org/10.3389/fimmu.2014.00492 PMID: 25368613

34. Sheikh MO, Halmo SM, Patel S, Middleton D, Takeuchi H, Schafer CM, et al. Rapid screening of sugar-nucleotide donor specificities of putative glycosyltransferases. Glycobiology. 2017; 27(3):206–12. https://doi.org/10.1093/glycob/cww147 PMID: 28177478

35. Goto M, Okabe N. Cellulolytic activity of phytopathogenic bacteria. Nature. 1958; 182(4648):1516.

36. Vauterin L, Hoste B, Kersters K, Swings J. Reclassification of Bacillus cereus and other Xanthomonas-like bacilli as Xanthomonas. Int J Syst Bacteriol. 1995; 45:472–89.

37. Li Z, Hwang S, Bar-Peled M. Discovery of a Unique Extracellular Polysaccharide in Members of the Pathogenic Bacillus That Can Co-form with Spores. J Biol Chem. 2016; 291(36):19051–67. https://doi.org/10.1074/jbc.M116.724708 PMID: 27402849

38. Yang T, Bar-Peled Y, Smith JA, Glushka J, Bar-Peled M. In-microbe formation of nucleotide sugars in engineered Escherichia coli. Anal Biochem. 2012; 421(2):691–8. https://doi.org/10.1016/j.ab.2011.12.028 PMID: 22244806

39. Hwang S, Li Z, Bar-Peled Y, Aronov A, Ericsson J, Bar-Peled M. The biosynthesis of UDP-D-Fucose in Bacillus cereus ATCC 14579: Pat and Pyl, an aminotransferase and an ATP-dependent Grasp protein that ligates 2-oxoglutarate to UDP-4-amino-sugars. J Biol Chem. 2014; 289(51):35620–32. https://doi.org/10.1074/jbc.M114.614917 PMID: 25368324

40. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976; 72:248–54. PMID: 942051

41. Castle SA, Owuor EA, Thomspon SH, Garnsey MR, Klutts JS, Doering TL, et al. Beta1,2-xylosyltransferase Cxt1p from Cryptococcus neoformans plays a direct role in the synthesis of capsule polysaccharides. J Biol Chem. 2008; 283(21):14327–34. https://doi.org/10.1074/jbc.M701941200 PMID: 18347023

42. Klutts JS, Doering TL. A beta-1,2-xylosyltransferase from Cryptococcus neoformans defines a new family of glycosyltransferases. J Biol Chem. 2007; 282(24):17890–9. https://doi.org/10.1074/jbc.M1074.J07.M01941200 PMID: 17430900

43. Klutts JS, Doering TL. Cryptococcal xylosyltransferase 1 (Cxt1p) from Cryptococcus neoformans plays a direct role in the synthesis of capsule polysaccharides. J Biol Chem. 2008; 283(21):14327–34. https://doi.org/10.1074/jbc.M708927200 PMID: 18347023

44. Chang YC, Kwon-Chung KJ. Isolation, characterization, and localization of a capsule-associated gene, CAP10, of Cryptococcus neoformans. J Bacteriol. 1999; 181(18):5636–43. PMID: 10482503

45. Marchler-Bauer A, Bo Y, Han L, He J, Lanczycki CJ, Lu S, et al. CDD/SUPERFAMILY: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res. 2017; 45(D1):D200–D3. https://doi.org/10.1093/nar/gkw1129 PMID: 27899674

46. Rezanka T, Nedbalova L, Kolouchova I, Sigler K, LC-MS/APC identification of glucoside esters and diesters of astaxanthin from the snow alga Chlamydomonas nivalis including their optical stereoisomers. Phytochemistry. 2013; 88:34–42. https://doi.org/10.1016/j.phytochem.2013.01.003 PMID: 23398889

47. Teng Y, Liu Q, Ma J, Liu F, Han Z, Wang Y, et al. Cloning, expression and characterization of a novel Bacterial apiosyltransferase. Phytochemistry. 2013; 88:34–42. https://doi.org/10.1016/j.phytochem.2013.01.003 PMID: 23398889

48. Fernandez-Valdivia RC, Caswell DS, Nita-Lazar A, Rana NA, Garner TP, et al. Rumi functions as both a protein O-glucosyltransferase and a protein O-xylosyltransferase. Proc Natl Acad Sci U S A. 2011; 108(40):16600–5. https://doi.org/10.1073/pnas.1109696108 PMID: 21949356

49. Teng Y, Liu Q, Ma J, Liu F, Han Z, Wang Y, et al. Cloning, expression and characterization of a novel human CAP10-like gene hCLP46 from CD34(+) stem/progenitor cells. Gene. 2006; 371(1):7–15. https://doi.org/10.1016/j.gene.2005.08.027 PMID: 16524674

50. Fernandez-Valdivia R, Takeuchi H, Samarghandi A, Lopez M, Leonard J, Haltiwanger RS, et al. Regulation of mammalian Notch signaling and embryonic development by the protein O-glucosyltransferase Rumi. Development. 2011; 138(10):1925–34. https://doi.org/10.1242/dev.060020 PMID: 21490058

51. Ramkumar N, Harvey BM, Lee JD, Alcorn HL, Silva-Gagliardi NF, McGlade CJ, et al. Protein O-Glucosyltransferase 1 (POGLUT1) Promotes Mouse Gastrulation through Modification of the Apical Polarity Protein CRUB3.2. PLoS Genet. 2015; 11(10):e1005551. https://doi.org/10.1371/journal.pgen.1005551 PMID: 26496195

52. Hart DA, Kindel PK. Isolation and partial characterization of apigalacturanins from the cell wall of Lemna minor. Biochem J. 1970; 116(4):569–79. PMID: 4314131
53. Ortmann R, Sutter A, Grisebach H. Purification and properties of udp-apiosyl transferase from cell suspension cultures of parsley. Biochim Biophys Acta. 1972; 289(2):293–302. PMID: 4650134

54. Somerville C. Cellulose synthesis in higher plants. Annu Rev Cell Dev Biol. 2006; 22:53–78. https://doi.org/10.1146/annurev.cellbio.22.022206.160206 PMID: 16824006

55. Kanipes MI, Tan X, Akelaitis A, Li J, Rockabrand D, Guerry P, et al. Genetic analysis of lipooligosaccharide core biosynthesis in Campylobacter jejuni 81–176. J Bacteriol. 2008; 190(5):1568–74. https://doi.org/10.1128/JB.01696-07 PMID: 18156268

56. Kahler CM, Carlson RW, Rahman MM, Martin LE, Stephens DS. Two glycosyltransferase genes, lgtF and rfaK, constitute the lipooligosaccharide core (inner core extension) biosynthesis operon of Neisseria meningitidis. J Bacteriol. 1996; 178(23):6677–84. PMID: 8955282

57. Kapitonov D, Yu RK. Conserved domains of glycosyltransferases. Glycobiology. 1999; 9(10):961–78. PMID: 10521532

58. Gagneux P, Varki A. Evolutionary considerations in relating oligosaccharide diversity to biological function. Glycobiology. 1999; 9(8):747–55. PMID: 10406840

59. Breton C, Imbert A. Structure/function studies of glycosyltransferases. Curr Opin Struct Biol. 1999; 9(5):563–71. PMID: 10508766

60. Stevenson G, Andrianopoulos K, Hobbs M, Reeves PR. Organization of the Escherichia coli K-12 gene cluster responsible for production of the extracellular polysaccharide colanic acid. J Bacteriol. 1996; 178(16):4885–93. PMID: 8759852

61. Bansal K, Midha S, Kumar S, Patil PB. Ecological and Evolutionary Insights into Xanthomonas citri Pathovar Diversity. Appl Environ Microbiol. 2017; 83(9).

62. Gardiner DM, Upadhaya NM, Stilller J, Ellie JG, Dodds PN, Kazan K, et al. Genomic analysis of Xanthomonas translucens pathogenic on wheat and barley reveals cross-kingdom gene transfer events and diverse protein delivery systems. PLoS One. 2014; 9(1):e84995. https://doi.org/10.1371/journal.pone.0084995 PMID: 24416331

63. Simossis VA, Heringa J. PRALINE: a multiple sequence alignment toolbox that integrates homology-extended and secondary structure information. Nucleic Acids Res. 2005; 33(Web Server issue):W289–94. https://doi.org/10.1093/nar/gki390 PMID: 15980472