A Study on Mars Probe Failures

Malaya Kumar Biswal M* and Ramesh Naidu Annavarapu†

Department of Physics,
School of Physical Chemical and Applied Sciences,
Pondicherry University, Kalapet, Puducherry, India – 605 014

The long term dreams to approach Mars requires numerous spacecraft attempts for exploration as well as to understand the perception of the red planet. Before launching a mission, the space probe undergoes critical ground testing and effective preparation. Though probes were carefully tested and validated, many experienced temporary or permanent setbacks prior to their final state of mission accomplishment, resulting in the failure of the mission. In order to figure out the problems concerning probe malfunction or failure, we conducted a study on failed Mars probes that are launched between 1960 to 2020. The probes were characterized to determine various modes of failure and their impact on the missions. The results of our study from past probes showed effective integration and testing, sterling fabrication and validation of space probes, adequate software design, feasible recovery options, and novel guidance to probe computers and communication systems.

I. Nomenclature

Abbreviation	Description
EDL	Entry, Descent, and Landing
EDM	Entry, Descent, Module
FCP	Failure in Computer Programming
FCS	Failure of Communication System
FDEIS	Failure of Descent Engine Ignition System
FIS	Failure of Ignition System
FOCS	Failure of Onboard Computer System
FOS	Failure of Orientation System
FSF	Failure of Spacecraft Function
FSP	Failure of Software Program
FTCS	Failure of Thermal Control System
JAXA	Japanese Aerospace Exploration Agency
LBMI	Lost Before Mission Initiation
LEO	Low Earth Orbit
LVM	Launch Vehicle Malfunction
MV	Mars Venus
USA	United States of America
USSR	Union Soviet Socialist Republic

II. Introduction

Global Space Communities have launched 72 Mars probes (includes probes and sub-probes) in 47 attempts. Unfortunately, 33 probes encountered setbacks. Because the red planet is too far to reach together with a challenging environment. Despite challenges, we have reached out Mars with 33 successful probes and 5 en-route probes [7-9]. Similarly, 33 probes encountered failure before accomplishing their mission intent, and out of 33 failed probes, 9 probes were never deployed before its mission commences. Hence, to figure out the possible causes behind their

* Graduate Researcher, Department of Physics, Pondicherry University, India; malaykumar1997@gmail.com, mkumar97.res@pondiuni.edu.in, Student Member of Indian Science Congress Association, Student Member AIAA.
† Associate Professor, Department of Physics, Pondicherry University, India; rameshnaidu.phy@pondiuni.edu.in. Non-Member AIAA.
failures, we made a study on 33 identified malfunctioned probes that are launched within the time frame of 1960 and 2020. The reports were gathered from [1-6] and are verified with official reports released by the mishap investigation board commissioned by respective space agencies. The reports were carefully analyzed to distinguish the various mode of probe failures and their malfunctioned components. We have also studied the stages of recurrent failures of Mars probes and their components. Further, our analysis compares different sorts of failure systems and probe parameters to determine their impact on the mission. Our study is completely current and is different from other reports especially made on Mars probes. Moreover, technical and descriptive report on Mars probe failures can be found at Mars Failure Report [1].

III. Classifications and Research Methodology

A. Classifications

For our study, we have classified various modes failures into the following categories: Launch Vehicle Malfunction (LVM) which includes issues related to launchers, booster stage fire accidents, and explosions; Failure of the Ignition System (FIS) which is the combination of failure of ignition system and stage separation payload fairing; Failure of Communication System (FCS) deals with the issue concerns with antenna and coronal discharge; Failure of the Orientation System (FOS) that includes the orientation of the probes and solar panels; Failure of Thermal Control System (FTCS) includes issues concerning the imbalance in internal temperature and thermal maintenance of the probe; Failure of the Onboard Computer System (FOCS) is associated with the failure of on-computer channels and concurrent reboots; Failure of Software Program (FSP) deals with software development and flaws; Failure in Computer Programming (FCP) includes the wrong programming and wrong command sent to probes without proofreading and validation by humans; Failure of Descent Engine Ignition (FDEIS) is the obstacle in firing the breaking engine for Mars atmospheric entry and EDL descent; Failure of Spacecraft Function (FSF) deals with the unexpected malfunction of the whole probe and finally Lost Before Mission Initiation (LBMI) is associated with the probes that were never deployed from the main bus or lost with the launch vehicles and the probes that stranded in interplanetary space.

B. Research Methodology

- Our study gathers failure reports of Mars probes from [1-6] and appropriate online resources of space agencies.
- We found that the failure was caused as a result undesirable events such as of a launch failure, probes that are stranding in low-earth orbit or destroyed during re-entry, sailing on the trajectory phase to Mars, probes that missed the planet due to unsuccessful Mars orbital insertion, and probes that crashed into the surface as a consequence to complete malfunction.
- We identified the first source of failure that triggers subsequent issues within the probes and were clearly depicted as stages of component failures in table 1.
- Then, based on the acquired report, we defragmented the spacecraft or probe into discrete segments shown in Chart 1 and Chart 2 and categorized under the classification discussed in “Classifications”.
- Distinct components of each Mars probes were counted and enlisted as shown in [10]. In addition to this, Mars probe’s properties like power, dry mass, launch mass, time duration after which the probe encounters its first source of failure encounter, mission duration and mission degradation were comprehensively collected. Finally, their proportion is estimated.
- Our study provides a brief outline to understand the possible causes responsible for the failure of Mars probes that were launched between 1960 and 1973. Since many space agencies never revealed the failure report and the technical report on probe specification as part of their secret agenda. But acceptable causes for the failure of Mars probes were briefly reported in [1].
- Here in our study, we have excluded the en-route probes that are launched during the 2020 Mars window because these probes were supposed to orbit or land on Mars in late February 2021. And it is hard to interpret their mission status whether it may encounter success or failure.
Chart 1 Anatomy of a Defragmented Mars Probe

Chart 2 Anatomy of Defragmented Launch Vehicle

Launch Vehicle Considered for Defragmentation

American Institute of Aeronautics and Astronautics
IV. Overall Failure Analysis

A. Success vs. Failure Proportion

This section presents an outline of overall missions and their failure proportion. Fig. 1 shows the proportions of failure in terms of mission attempts and Mars Probe counts. The failure proportion of the number of probes is equal to the number of probes achieved success, but the failure rate is fairly higher than the success rate in terms of mission attempts. Thus, this drives the attention to consider and conduct failure analysis on Mars probes. In addition to this, we have excluded the en-route probes like Mars Perseverance Rover, Emirates Mars Mission, and Tianwen-1. Because it is uncertain to predict their mission status as the probes are likely to approach Mars in February 2021.

B. Nations Failure Proportion

We have also estimated failure proportion by nation shown in Fig 3. An overall estimate shows that the Soviet Union (USSR) is found to have more probe loss (71%) than the United States (17%), and the European Union (6%). China and Japan have the same proportion of probe loss (3%). Besides the United Arab Emirates have attempted Emirates Mars Mission, China’s Tianwen-1, and United States (USA) Mars 2020, these probes are in trajectory cruise to Mars.

C. Failure Proportion by Probe Types

An analysis over probe of distinct type showed that Orbiters have the highest proportion of failure rate (37%) as compared to the Landers which is (31%), Flybys (17%), and Sample Return Vehicles (3%). Penetrators (Impactors) and Rovers have equal failure proportion that is (6%). The most failure rate of Orbiters reflects that most tragedy occurs at Mars orbit than the surface. Overall failure estimate is shown in Fig 2.
D. Failure Proportion by Launchers

Proportional analysis over launchers showed that (43%) probes lost with Russian’s Proton Rocket that stands to be the first major than Molniya (29%). Then 21% of probes lost with Russian’s Zenit launcher and 7% with United States Atlas launch vehicle. Most of the launch vehicle issues were enhanced nowadays, but the recent launcher attempt in 2011 to launch the Fobos-Grunt mission persisted this kind of issue. Hence, it is recommended to have proper technical attention for testing and effective integration to avoid launcher failures in future. Overall failure proportion is shown in Fig 4.

E. Failure Proportion by Classification

We have classified overall failure types into eleven categories that enclosed 33 Mars probes launched in 26 attempts. Fig 5 shows the classification of various failure modes. We observe that 26% of Mars probes seem to have lost before mission commencement (i.e. the probe that either lost with orbiter’s main bus or destroyed). Similarly, 14% of probes were found to have encountered with issues concerning ignition engine or system (i.e. either in stage separation or payload firing or engine plighted for mid-course corrections). Following, 11% affects the launch vehicles and fire accidents of strap-on boosters. In addition to this, from a technical perspective, we observe that most of the failure affects communication systems and spacecraft software whose failure proportion is found to be 9%. As well 6% of all failures contribute to the failure of thermal and orientation control system. Finally, the failure of the descent engine (allocated for supporting the Mars EDL event) and unanticipated complete malfunction of probe contribute 3% which is least of all failures. Hence, we have to concentrate mainly on the technical section of the Mars probe (i.e. development of robust software, adequate programming and proofreading procedures, effective design of orientation control system, and perfect thermal insulation of Mars probes).

![Proportion of Classified Mars Probe Failures](image)

F. Failure Proportion of Malfunctioned Probe Components

In this section, we have performed a proportional analysis in terms of Mars probe’s components from spacecraft fragments shown in Fig 6 and Fig 7, where Fig 6 shows the total number of components in terms of counts from overall analysis and their corresponding proportion in Fig 7. We observe that most affected components are the communication system and the ignition engine that contributes (14%) of all components and it remains a probable cause for the failure of most Mars probes (shown in Fig 5). The second most malfunctioned component is the Solar Panel (6%) due to their concerns in deploying and orientation. Consequently, the same (6%) affects onboard computer whose failure was attributed to the defective transistor (5%). Similar to the transistor, the probe’s battery contributes (5%) of all components. Further, (3%) of components influences attitude control system, electrical system, orientation control system, software flaw and programming, and turbopump. Finally, the failure proportion (1%) of all components is attributed to descent engine, drain plug, electronic chips, fuel tank rupture, heat shield, horizon sensor, fuel leakage, oxidizer pump, oxidizer shut-off valve, parachute, pressurization regulator, pressurization system, pyro valve, retrorocket, rotor, the whole probe, stabilization system, and tug cord.
V. Classified Failure Analysis

A. LVM failure analysis

We see that the second most failure occurs due to the malfunction of launch vehicles (11%) shown in Fig 5. The probes fall under this category are Mars 1M No.1 whose launch vehicle malfunction was triggered by a faulty gyroscope and its resonant vibration; Mars 2MV-4. No.1 whose launcher persisted lubricant leakage from turbo-pump resulting in the explosion of boosters; Mars 2M.No.522 has issues with leakage of NO₂ due to lack of drain plug; and Mariner 8 whose launcher circuitry depleted due to defective transistor. Finally, our analysis shows that the failure was condemned to inadequate launcher integration, thrusters testing and validation. Mostly the failure was directed to the malfunction of components such as turbo-pump, gyroscope, launcher circuitry, and drain plug.
B. FIS failure analysis

We observe that a large number of failures occur in the FIS category. The ignition engine encounters firing issues and their failure was attributed to improper fuel pressurization, fuel leakage, and impairment of propeller’s rotors. Notable probes include Mars 1M. No.2, 2MV-3. No. 1, Mariner 3, 2M.No.521, and Mars 96 orbiter. This signifies inadequate vehicle design from manufacturers and it contributes 14% of all failures. Hence, it is substantial to focus on this issue for a better insight to upcoming missions.

C. FCS failure analysis

Impairment of communication system contributes 9% of all failures. In our analysis, we have found that the probes upon landing on the Mars surface counteract communication issue against rough terrain leading to coronal discharge. Noticeable probes were Mars 3 and Mars 6 lander. In addition to this, one of the probe (Mars Observer) whose communication system was affected by the lack of power that ultimately affected by the disoriented solar panel. Therefore, this issue can be minimized with the effective design of terrain proof antennas and communication systems.

D. FOS failure analysis

Failure of the orientation system contributes 6% of all failures. Past incidences include: improper fuel leakage from Mars 2MV-4 No.2 probe accelerated the spinning movement of the probe resulting in the failure of probe orientation. Similarly, the damage of onboard computer channel of Phobos 2 orbiter adversely affected the orientation control leading to the complete loss of control over orientation. So, Improper orientation of probe may advert-off antenna from directed communication from the Earth and may disorient solar arrays from the Sun affecting the probe’s power production. Hence, these issues can be addressed with proper probe configuration with a robust computer.

E. FTCS failure analysis

The thermal stability and internal temperature of the probe are significant for fuel management and to determine the reliability of the spacecraft component. Probes under this category are found to have encountered this issue during interplanetary injection and interplanetary transit to Mars. The failure encounter was due to unsuited and complex space environmental condition [11]. FTCS contribute 6% of all failures, noticeable probes are Zond 2 and Nozomi.
F. FOCS failure analysis

The Onboard computer of the probe plays a significant role in controlling the probe’s subsystem and components. In our study, FOCS constitutes 6% of all failures and it was due to either malfunction of onboard computer channel or depletion of circuitry system as a result of a defective transistor. Noticeable probes were Mars 4 orbiter and Fobos-Grunt.

G. FSP and FCP Failure Analysis

FSP and FCP contribute 9% of all issues. The problem with FSP and FCP ensues as a result of flawed computer software and wrong programming. Our study has found six probes that have a backlog with this kind of issue. Observable probes were Mars Climate Orbiter, Mars Polar Lander, Schiaparelli EDM, Kosmos 419 Orbiter, Phobos 1 Orbiter, and Beagle 2 Lander.

H. FDEIS and FSF failure analysis

FDEIS and FSF constitutes (3%) of all failures. FDEIS occurs due to malfunction of descent engine allocated for firing during Mars atmospheric entry. Similarly, FSF occurs due to unexpected malfunction of the complete probe. Notable probes are Mars 7 lander (its descent engine failed to fire during hypersonic entry) and Mars 2 lander that malfunctioned before reaching Mars. Further, the distribution of probe mass, launch mass, mission duration, and mission degradation is shown in Fig 8 and Fig 9.

![Average Probe Mass and Launch Mass Distributions of Classified Failures](image)

Fig 9 Distribution of Probe and Launch Mass of Classified Failures

VI. Power Distribution and Time Duration of First Failure Encounter

A. Power Distribution of Mars Probes

Power distribution is estimated for overall failure categories. We have found that (11%) of Mars probes have power generation or power limit of (0-100 watts), 14% of probes have (100-500 watts), 3% have (500-1000 watts), and the same (3%) have (1000-2000 watts). Overall power distribution is shown in Fig 10. Further, we observed that the power distribution of (69%) of Mars probes is unspecified because many space firms never revealed their mission strategy as part of their secret agenda. Our study found most of the unknown parameters of space probes were found among Russian probes [12].
B. Time of Failure Encounter

In this section, we have estimated the time duration after which the probe encounters its first source of failure after launch. So we have divided the time frame into two segments. One frame is between the period from the 1960s to 1990s and another time frame is from 1990s to 2020s.

Time Frame - 1960s to 1990s

The probes that are launched between 1960 and 1990 is found to have the first source of failure encounter after (0-1 months) at the proportion of (56%), then (6%) probes have failure issues after (1-2 months), (17%) probes have after (4-5 months), and the same (17%) probes have failure effect after (5-6 months), finally (6%) of all probes have after an operational period of (6-8 months). Comparably the probes that have the first source of failure within (0-1 months) are due to repeated launch failures.

Time Frame - 1990s to 2020s

Here the time duration increases and most of the probe encounters its first source of failure encounter after (7-8 months) with a proportion of (33%) and (13%) probes encounter after (7 months to 4 years). It clearly pictures that the failure rate of the Mars probe decreases over years and this effect was technically presented as shape parameter function of Weibull reliability function of spacecraft beyond Earth-Mars Extremity [13]. Hence technical attention is required while fabricating and validating planetary probes. JAXA’s Nozomi probe is found to be the most durable and long lasted probe among all failed probes that operated for years before it encounters its malfunction.
S.No	FC*	Spacecraft	Stage-1	Stage-2	Stage-3	Stage-4	Stage-5	Stage-6	Stage-7
1	LVM	1M No.1	Gyroscope	Attitude Control System	Horizon Sensor				
2	LVM	2MV-4 No.1	Turbo Pump	Ignition Engine	Booster Explosion				
3	LVM	2M No.522	Drain Plug	Fuel Leakage NO	Ignition Engine				
4		Mariner 8	Transistor	Electrical System	Ignition Engine				
5	FS	1M No.2	Oxidizer Shut-off Valve	Ignition Engine					
6	FS	2MV-3 No.1	Oxidizer Pressurization	Turbo Pump	Electrical System	Ignition Engine			
7		Mariner 3	Heat Shield	Solar Panel Deployment	Battery	Communication System			
8		2M No.521	Rotor	Oxidizer Pump	Ignition Engine	Booster Explosion			
9		Mars 96 Orbiter	Ignition Engine						
10		Mars 3 Lander	Antenna Discharge	Communication System					
11		Mars 6 Lander	Transistor	Onboard Computer	Communication System				
12		Mars Observer	Pressurization Regulator	Pyro Valve	Fuel Tank Rupture	Orientation System	Solar Panels	Battery	Communication System
13		2MV-4 No.2	Turbo Pump	Ignition Engine	Booster Explosion				
14		Phobos 2 Orbiter	Onboard Computer	Orientation System	Solar Panels	Battery	Communication System		
15		Zond 2	Tug Cord	Solar Panel Deployment	Thermal Control System	Timer			Communication System
16		Nozomi	Electrical System	Thermal Control System	Ignition Engine	Communication System			
17		Mars 4 Orbiter	Transistor	Onboard Computer	Ignition Engine				
18		Fobos-Grunt	Electronic Chips	Onboard Computer	Ignition Engine				
19		MCO	Software	Attitude Control System	Communication System				
20		MPL	Antenna	Communication System	Software	Retrorocket			
21		Schiaparelli EDM	Gyroscope	Guidance Control System	Software IMU Unit	Communication System			
22		Kosmos 419 Orbiter	Programming Error	Ignition Timer	Ignition Engine				
23		Phobos 1 Orbiter	Programming Error	Attitude Control System	Stabilization System	Orientation System	Solar Panels	Battery	Communication System
24		Beagle 2 Lander	Programming	Communication System					
25		Mars 7 Lander	Transistor	Onboard Computer	Descent Engine Ignition				
26		Mars 2 Lander	Spacecraft Malfunction	Parachute					
27		Mars 2 Prop-M	Never Deployed						
28		Mars 3 Prop-M	Never Deployed						
29		Phobos 1 Lander	Never Deployed						
30		Phobos 2 Lander	Never Deployed						
31		Mars 96 Lander	Never Deployed						
32		Mars 96 Penetrator	Never Deployed						
33		Deep Space 2	Never Deployed						
34		Phobos-Grunt Lander	Spacecraft Destroyed						
35		Yinghuo-1	Spacecraft Destroyed						

*PC – Failure Classification

American Institute of Aeronautics and Astronauts
VII. Recommendations

A. Launch Vehicle Integration, Testing and Validation

Even though launch vehicle failure is not predominant nowadays. Recent event (Fobos-Grunt launch attempt) ensues the distrust of launch vehicle successfulness [14]. So, it is recommended that each and every component of the launch vehicle should undergo proper testing and validation prior to launcher integration. Further, like the Crew escape system, it is good to have a probe emergency escape system in advance to avoid ineffectiveness of mission effort and launch cost during failures [15].

B. Probe Fabrication, Installation, and Validation

Recovery options for the Mars probes seem to be the most difficult task once they left for transit towards Mars. So, critical analysis, repeated testing and validation of the probe component is necessary. In addition to this, recheck and validation of probe performance and deployment systems are hardly recommended before throwing the probe into interplanetary space. Then, focusing on the section of thermal insulation and fuel management, it is significant to consider sufficient thickness of radiation suit of the spacecraft to avoid unusual changes in probe internal temperature. Because the probe, during their interplanetary transit to Mars for about 6-9 months is subjected to hazardous space radiations and solar eruptions that are capable of rupturing the probe’s components. Hence, the spacecraft with good fabrication technology is highly recommended for a durable and reliable mission [16].

C. Software Design and Programming

Modern space probes are found to have encountered software and programming issues [17-20] and it may occur at any stage of the mission due to negative space environmental impacts [21]. So, we recommend to develop and fabricate robust software. The problem concerning the programming, it can be averted with automated proofreading of computer commands prior to transmitting it to the operational probes than manual proofreading. Further, the computer program for the backup and recovery-related issues can be simulated in our ground-based laboratories and can be made available to the probes beforehand. So that the probe can execute effective recovery procedures on time without anticipate for the further command or instructions from the ground. Advanced availability is significant due to delayed communication time lag between the probe (at Mars) and the ground controllers (on Earth).

D. Onboard Computer and Communication Guidance

The onboard computer and communication system are the principal component of the spacecraft subsystem. Even though probe computer and circuitry are protectively placed with a preferable radiation shield, computer malfunction may occur at any stage due to its long term performance over the years. So, we recommend that the probe should be installed with dual-computer and it should be capable of switching to the space computer in case of computer malfunction. Alike computer, the communication system is the sensing component of the probe to operate from a remote distance and hence we recommend to install either dual-mode communication system (i.e. dual antenna) or anti-environmental proof antennas that should resist against the hostile planetary environmental condition.

E. Recovery Preferences

Recovery procedures can be only applied to the probe stranded in low-earth orbit. In the case of temporary probe failure, an effective recovery method should be made available in advance and executed. Besides, it is surprising to see that the degradation period of the probe is fairly greater than its mission life [22]. This circumstance explains that the probe subsists even after their defunct. So, it is desirable to find a possible recovery option for the probe stranded in LEO. Identically for the probe beyond low-earth orbit or the probe that approached Mars, it can be redirected to any safest location (either to the moons of Mars or into the Mars) for any feasible recovery option in future.
VIII. Conclusions

Mars is the only accessible planet for life in our solar system after our Earth. Space Industries are striving towards the red planet to explore and answer the question to the origin and evolution of life. Since 1960, scientists and explorers have been spuriously exploring Mars with more than 70 spacecrafts (Overall Mission Summary is shown in Fig 13) and many have future insight for the human-crewed mission. But many spacecrafts have suffered technical issues and setbacks before reaching Mars or accomplishing its mission. Hence, the current state of Mars endeavors demands a failure analysis for progressing towards a sustainable mission. In the view of this ultimatum, we conducted a study and analysis on failed Mars probes. That resulted in the careful analysis and study performed on 33 different Mars probes. In our study, the failure modes of various probes were classified and characterized to show the first source of failure that triggers recurrent failures. Then the series of failures were distinguished as the stages of component failures. In addition to this, some useful parameters of probes were comprehensively shown in graphical representations and tables. Further, subject to the modes of failure, pertinent recommendations were discussed along with possible recovery preferences. Finally, we expect that our past report [1] and the current study may provide some useful framework to the Mars explorers to strive towards a progressive and effective mission.

Fig 13 Summary of Missions to Mars from 1960s to 2020s

Fig 14 Mars Spaceflight Sequence Chart [1]

Acknowledgements

I (Malaya Kumar Biswal) would like to thank my supervisor, Prof. A. Ramesh Naidu (author), for the patient guidance, encouragement and advice he has provided throughout my time as his student. I have been extremely lucky to have a supervisor who cared so much about my work, and who responded to my queries so promptly. Further I would like to extend my sincere thankfulness to all of my lovable friends for their financial support for the conference participation.

Dedication

I (Malaya Kumar Biswal) would like to dedicate this work to my beloved mother late. Mrs. Malathi Biswal for her motivational speech and emotional support throughout my life.

Conflict of Interest

The authors have no conflict of interest to report.
Supplementary Resources

Mars Missions Failure Report Assortment: Review and Conspectus. Published by American Institute of Aeronautics and Astronautics in the Conference Proceedings of 2020 AIAA Propulsion and Energy Forum. Accessible at https://doi.org/10.2514/6.2020-3541

References

[1] Biswal M, Malaya Kumar, Annavarapu, Ramesh Naidu (2020). Mars Missions Failure Report Assortment: Review and Conspectus. In AIAA Propulsion and Energy 2020 Forum. https://doi.org/10.2514/6.2020-3541.
[2] Cunningham, G. E. (1996). The Tragedy of Mars Observer. IFAC Proceedings Volumes, 29(1), 7498-7503.
[3] Huntress, W. T., & Marov, M. Y. (2011). Soviet Robots in the Solar System: Mission Technologies and Discoveries. Springer Science & Business Media.
[4] Perminov, V. G. (1999). The difficult road to Mars: a brief history of Mars exploration in the Soviet Union (p. 66). National Aeronautics and Space Administration Headquarters.
[5] Siddiqi, A. A., & Launius, R. (2002). Deep space chronicle: A chronology of deep space and planetary probes 1958-2000.
[6] Biswal M, Malaya Kumar, Annavarapu, Ramesh Naidu (2020), “Master Catalogue of Lunar and Mars Exploration Missions and their Probe Parameters”, Mendeley Data, v2, http://dx.doi.org/10.17632/mdkzgz23dj.2.
[7] NASA. Mars Perseverance Rover. Mars 2020. https://mars.nasa.gov/mars2020/.
[8] Wan, W. X., Wang, C., Li, C. L., & Wei, Y. (2020). China’s first mission to Mars. Nature Astronomy, 4(7), 721-721.
[9] Sharaf, O., Amiri, S., AlMheiri, S., Wali, M., AlShamsi, Z., AlRais, A., ..., & AlShamsi Me, A. M. (2017). Emirates Mars Mission (EMM) overview. EGU General Assembly, 19, 2017.
[10] Biswal M, Malaya Kumar, Annavarapu, Ramesh Naidu (2020), “Numerical Data for A Study on Mars Probe Failures”. Mendeley Data, V1, doi: 10.17632/mm9c77mv64.1.
[11] Biswal M, Malaya Kumar, Annavarapu, Ramesh Naidu. (2021). Human Mars Exploration and Expedition Challenges. In AIAA Science and Technology 2021 Forum. (Submitted)
[12] Clark, P. S. (1986). Soviet launch failures reviewed. Space Policy, 2(4), 357-360.
[13] Biswal M, Malaya Kumar. (2020). Statistical Reliability Analysis of Interplanetary Spacecraft Operating at Different Interplanetary Extremity. Presented at 2020 Region VII Student Paper Competition & AIAA Sydney Section Student Conference.
[14] Sanderson, K. Russian Mars moon probe crashes down. Nature News.
[15] Baodong, G. U. (2011). Airworthiness Certification of Light Ejection Escape Equipment. Procedia Engineering, 17, 354-357.
[16] Harland, D. M., & Lorenz, R. (2007). Space systems failures: disasters and rescues of satellites, rocket and space probes. Springer Science & Business Media.
[17] Young, T., Arnold, J., Brackey, T., Carr, M., Dwoyer, D., Fogleman, R., ..., & Maguire, J. (2000). Mars program independent assessment team report.
[18] Albee, A., Battel, S., Brace, R., Burdick, G., Casani, J., Lavell, J., ..., & Dipprey, D. (2000). Report on the loss of the Mars Polar Lander and Deep Space 2 missions.
[19] Euler, E. (2001). The failures of the Mars Climate Orbiter and Mars Polar Lander- A perspective from the people involved. In Guidance and control 2001 (pp. 635-655).
[20] Perkins, D. (2007). NASA Internal Review Board Report on Mars Global Surveyor (MGS) Spacecraft Loss of Contact.
[21] Morozov, A., & Janschek, K. (2016). Flight control software failure mitigation: Design optimization for software-implemented fault detectors. IFAC-PapersOnLine, 49(17), 248-253.
[22] Biswal M, Malaya Kumar, Annavarapu, Ramesh Naidu (2020). Assessment of Efficiency, Impact Factor, Impact of Probe Mass, Probe Life Expectancy, and Reliability of Mars Missions. arXiv preprint arXiv:2009.08534, 2020. In 3rd IAA/AAS SciTech Forum 2020 Cyber Edition. IAA-AAS-SciTech-32.

13

American Institute of Aeronautics and Astronautics
Appendices

Numerical Data for A Study on Mars Probe Failures

Classifications of Failures:

1) LVM - Launch Vehicle Malfunction
2) FIS - Failure of Ignition System
3) FCS - Failure of Communication System
4) FOS - Failure of Orientation System
5) FTCS - Failure of Thermal Control System
6) FOCS - Failure of Onboard Computer System
7) FSP - Failure of Software Program
8) FCP - Failure in Computer Programming
9) FDEIS - Failure of Descent Engine Ignition System
10) FSF - Failure of Spacecraft Function
11) LBMI - Lost Before Mission Initiation

S.No	Spacecraft	Spacecraft Mass (kg)	Launch Mass (kg)	Mission Duration (days)	Mission Degradation (days)
01.	1M.No.1	480	650	0.0036	01
02.	2.MV-4.No.1	893	900	0.0034	01
03.	2M.No.522	3800	4850	0.00048	01
04.	Mariner 8	558.8	997.9	0.0032	01
	Average	**1432.95**	**1849.475**	**0.00267**	**01**

LVM – Launch Vehicle Malfunction

S.No	Spacecraft	Spacecraft Mass (kg)	Launch Mass (kg)	Mission Duration (days)	Mission Degradation (days)
01.	1M.No.2	480	650	0.0034	01
02.	2.MV-3.No.1	890	900	0.0030	01
03.	Mariner 3	260	397	0.36	01
04.	2M.No.521	3800	4850	0.0050	01
05.	Mars 96 Orbiter	3780	6700	0.0062	02
	Average	**1842**	**2699.4**	**0.07522**	**1.20**

FIS – Failure of Ignition System

S.No	Spacecraft	Spacecraft Mass (kg)	Launch Mass (kg)	Mission Duration (days)	Mission Degradation (days)
01.	Mars 3 Lander	358	1210	188	188
02.	Mars 6 Lander	635	3260	219	219
03.	Mars Observer	1018	2565	331	330
	Average	**670.33**	**2345**	**246**	**245.66**

FCS – Failure of Communication System

S.No	Spacecraft	Spacecraft Mass (kg)	Launch Mass (kg)	Mission Duration (days)	Mission Degradation (days)
01.	2.MV-4.No.2	893	900	140	230
02.	Phobos 2 Orbiter	2420	6220	258	258
	Average	**1656.5**	**3560**	**199**	**244**

FOS – Failure of Orientation System

S.No	Spacecraft	Spacecraft Mass (kg)	Launch Mass (kg)	Mission Duration (days)	Mission Degradation (days)
01.	2.MV-4.No.2	890	996	18	249
02.	Nozomi	258	356	1983	1985
	Average	**574**	**676**	**1000.5**	**1117**

FTCS - Failure of Thermal Control System

S.No	Spacecraft	Spacecraft Mass (kg)	Launch Mass (kg)	Mission Duration (days)	Mission Degradation (days)
01.	Mars 4 Orbiter	2265	3440	09	204
02.	Fobos-Grunt	1560	2300	0.00155	68
	Average	**1912.5**	**2870**	**4.5**	**136**

FOCS - Failure of Onboard Computer System
FSP – Failure of Software Program

S.No	Spacecraft	Spacecraft Mass (kg)	Launch Mass (kg)	Mission Duration (days)	Mission Degradation (days)
01.	MCO	338	638	286	286
02.	MPL	290	583	334	334
03.	Schiaparelli EDM	280	600	03	219
	Average	302.66	607	207.66	279.66

FCP – Failure in Computer Programming

S.No	Spacecraft	Spacecraft Mass (kg)	Launch Mass (kg)	Mission Duration (days)	Mission Degradation (days)
01.	Kosmos 419	4549	4549	0.0625	02
02.	Phobos-1 Orbiter	2420	6220	52	119
03.	Beagle-2 Lander	09	33.2	183	206
	Average	2326	3600.73	78.354	109

FDEIS - Failure of Descent Engine Ignition System

S.No	Spacecraft	Spacecraft Mass (kg)	Launch Mass (kg)	Mission Duration (days)	Mission Degradation (days)
01.	Mars 7 Lander	635	3260	214	212
	Average	635	3260	214	212

FSF - Failure of Spacecraft Function

S.No	Spacecraft	Spacecraft Mass (kg)	Launch Mass (kg)	Mission Duration (days)	Mission Degradation (days)
01.	Mars 2 Lander	358	1210	192	192
	Average	358	1210	192	192

LBMI – Lost Before Mission Initiation

S.No	Spacecraft	Spacecraft Mass (kg)	Launch Mass (kg)	Mission Duration (days)	Mission Degradation (days)
01.	Mars 2 Prop-M	4.5	4.5	-	192
02.	Mars 3 Prop-M	4.5	4.5	-	188
03.	Phobos 1 Lander	570	3800	-	119
04.	Phobos 2 Lander	570	3800	-	277
05.	Mars96 Lander	75	75	-	02
06.	Mars96 Penetrator	120	120	-	02
07.	Deep Space 2	2.4	04	-	334
08.	Fobos-Gi Lander	106	296	-	68
09.	Yinghuo-1	115	115	-	68
	Average	174.155	913.22	0	138.88

Rate of Failures by Classifications

S.No	Classifications	No. of Space Probes	Rate of Failure (%)
01.	LVM	04	11.42
02.	FIS	05	14.28
03.	FCS	03	8.57
04.	FOS	02	5.71
05.	FTCS	02	5.71
06.	FOCS	02	5.71
07.	FSP	03	8.57
08.	FCP	03	8.57
09.	FDEIS	01	2.86
10.	FSF	01	2.86
11.	LBMI	09	25.71
	Total	35	99.97
Failure Rate by Country

S.No	Country	NOS	Failure Rate (%)
01.	CHINA	01	2.86
02.	EUROPE	02	5.71
03.	JAPAN	01	2.86
04.	USA	06	17.14
05.	USSR	25	71.43
Total		**35**	**100**

Failure Rate by Launch Vehicle

S.No	Launch Vehicle	NOS	Failure Rate (%)
01.	Atlas	01	7.14
02.	Molniya	04	28.57
03.	Proton	06	42.85
04.	Zenit	03	21.42
Total		**14**	**99.98**

Failure Rate by Spacecraft Type

S.No	Spacecraft Type	NOS	Failure Rate (%)
01.	Flybys	06	17.14
02.	Landers	11	31.43
03.	Orbiters	13	37.14
04.	Penetrators	02	5.71
05.	Rovers	02	5.71
06.	Sample Return	01	2.86
Total		**35**	**99.99**

Mars Mission Summary by Spacecraft Type

S.No	Spacecraft Type	Success	Failure	Total
01.	Flybys	07	06	13
02.	Landers	05	11	16
03.	Orbiters	13	13	26
04.	Penetrators	-	02	02
05.	Rovers	04	02	06
06.	Sample Return	-	01	01
07.	Gravity Assist	02	-	02
Total		**31**	**35**	**66**

Comparison Average Mass, Launch Mass, Duration and Degradation by Failure Classifications

S.No	Classifications	Average Spacecraft Mass (kg)	Average Launch Mass (kg)	Average Mission Duration (days)	Average Mission Degradation (days)
01.	LVM	1432.95	1849.475	0.00267	1
02.	FIS	1842	2699.4	0.07552	1.20
03.	FCS	670.33	2345	246	245.66
04.	FOS	1656.5	3560	199	244
05.	FTCS	574	676	1000.5	1117
06.	FOCS	1912.5	2870	4.5	136
07.	FSP	302.66	607	207.66	279.66
08.	FCP	2326	3600.73	78.354	109
09.	FDEIS	635	3260	214	212
10.	FSF	358	1210	192	192
11.	LBMI	174.155	913.22	0	138.88
Total		**11884.095**	**23590.825**	**2142.09219**	**2676.4**
S.No	Components	Failure Rate %	S.No	Components	Counts
------	-----------------------------	----------------	------	------------------	--------
01.	Antenna	2.33	01.	Antenna	02
02.	Attitude Control System	3.49	02.	Attitude Control System	03
03.	Battery	4.65	03.	Battery	04
04.	Communication System	13.95	04.	Communication System	12
05.	Descent Engine	1.16	05.	Descent Engine	01
06.	Drain Plug	1.16	06.	Drain Plug	01
07.	Electrical System	3.49	07.	Electrical System	03
08.	Electronic Chips	1.16	08.	Electronic Chips	01
09.	Fuel Tank Rupture	1.16	09.	Fuel Tank Rupture	01
10.	Gyroscope	2.33	10.	Gyroscope	02
11.	Heat Shield	1.16	11.	Heat Shield	01
12.	Horizon Sensor	1.16	12.	Horizon Sensor	01
13.	Ignition Engine	13.95	13.	Ignition Engine	12
14.	Fuel (NO₂) Leakage	1.16	14.	Fuel (NO₂) Leakage	01
15.	Onboard Computer	5.81	15.	Onboard Computer	05
16.	Orientation Control System	3.49	16.	Orientation Control System	03
17.	Oxidizer Pump	1.16	17.	Oxidizer Pump	01
18.	Oxidizer Shut-off Valve	1.16	18.	Oxidizer Shut-off Valve	01
19.	Parachute	1.16	19.	Parachute	01
20.	Pressurization Regulator	1.16	20.	Pressurization Regulator	01
21.	Pressurization System	1.16	21.	Pressurization System	01
22.	Programming	3.49	22.	Programming	03
23.	Pyro Valve	1.16	23.	Pyro Valve	01
24.	Retrorocket	1.16	24.	Retrorocket	01
25.	Rotor	1.16	25.	Rotor	01
26.	Software	3.49	26.	Software	03
27.	Solar Panel	5.81	27.	Solar Panel	05
28.	Spacecraft	1.16	28.	Spacecraft	01
29.	Stabilization System	1.16	29.	Stabilization System	01
30.	Thermal Control System	2.33	30.	Thermal Control System	02
31.	Timer	2.33	31.	Timer	02
32.	Transistor	4.65	32.	Transistor	04
33.	Tug Cord	1.16	33.	Tug Cord	01
34.	Turbo Pump	3.49	34.	Turbo Pump	03
	Total	**100**		**Total**	**86**

Overall Mars Missions Summary (1960 – 2020)

S.No	Spacecraft Type	1960s	1970s	1980s	1990s	2000s	2010s	Total
01.	Flybys	9	2	-	-	-	-	13
02.	Landers	1	6	2	3	2	2	16
03.	Orbiters	2	9	2	5	3	5	26
04.	Penetrators	-	-	-	-	-	-	2
05.	Rovers	-	2	-	1	2	1	6
06.	Sample Return	-	-	-	-	-	-	1
07.	Gravity Assist	-	-	-	-	-	-	2
	Total	**12**	**19**	**4**	**11**	**9**	**11**	**66**
Time Duration: 1960s – 1990s

S.No	First Source Encounter Duration After Launch	Rate (%)
01.	0 - 1 Months	55.56
02.	1 - 2 Months	5.56
03.	4 - 5 Months	16.67
04.	5 - 6 Months	16.67
05.	6 - 8 Months	5.56
Total		**100**

Time Duration: 1990s – 2020s

S.No	First Source Encounter Duration After Launch	Rate (%)
01.	0 - 1 Months	25
02.	5 - 6 Months	25
03.	7 - 8 Months	37.5
04.	1 - 4 Years	12.5
Total		**100**

Power Distribution of Failed Mars Probes

S.No	Power	Rate (%)
01.	0 - 100 W	11.428
02.	100 - 500 W	14.285
03.	500 - 1000 W	2.857
04.	1000 - 1200 W	2.857
05.	Unknown	68.571
Total		**100**

Failed Mars Probe Parameters

Units	S.No	Mars Probe	Decay Date	Probe Mass	Launch Mass	Mission Duration	Mission Degradation	Power
01.	1M No.1 Flyby	10-Oct-1960	480	650	0.0036	01	-	
02.	1M No.2 Flyby	14-Oct-1960	480	650	0.0034	01	-	
03.	2 MV-4 No.1 Flyby	26-Feb-1963	893	900	0.0054	125	-	
04.	2 MV-4 No.2 Flyby	19-Jun-1963	893	900	140	230	-	
05.	2 MV-3 No.1 Lander	19-Jan-1963	890	900	0.0030	227	-	
06.	Mariner 3 Flyby	06-Nov-1964	260	397	0.36	01	300	
07.	Zond 2 Flyby	18-Dec-1964	890	996	18	249	-	
08.	2M No.521 Orbiter	27-Mar-1969	3800	4850	0.0050	01	-	
09.	2M No.522 Orbiter	02-Apr-1969	3800	4850	0.00048	01	-	
10.	Mariner 8 Orbiter	09-May-1971	558.8	997.9	0.0032	01	500	
11.	Kosmos 419 Orbiter	12-May-1971	4549	-	0.0625	02	-	
12.	Mars 2 (M-71) Lander	27-Nov-1971	358	1210	192	192	-	
13.	Prop-M Rover	27-Nov-1971	4.5	-	-	192	-	
14.	Mars 3 (M-71) Lander	02-Dec-1971	358	1210	-	188	-	
15.	Prop-M Rover	02-Dec-1971	4.5	-	-	188	-	
16.	Mars 4 Rover	10-Feb-1974	2265	3440	9	204	-	
17.	Mars 6 Lander	12-Mar-1974	635	3260	219	219	-	
18.	Mars 7 Lander	09-Mar-1974	635	3260	214	212	-	
19.	Phobos 1 Orbiter	03-Nov-1988	2420	6220	-	119	-	
20.	Phobos 1 Lander	03-Nov-1988	570	3800	-	119	-	
21.	Phobos 2 Orbiter	27-Mar-1989	2420	6220	258	258	-	
22.	Phobos 2 Lander	15-Apr-1989	570	3800	-	277	-	
23.	Mars Observer Orbiter	21-Aug-1993	1018	2565	331	330	1147	
24.	Mars 96 Orbiter	18-Nov-1996	3780	6700	0.0062	02	-	
25.	Mars 96 Lander	18-Nov-1996	75	-	-	02	35	
26.	Mars 96 Penetrator	18-Nov-1996	120	-	-	02	15	
27.	Nozomi Orbiter	09-Dec-2003	258	356	1983	1985	-	
28.	MCO Orbiter	23-Sep-1999	338	638	286	286	500	
29.	MPL Lander	03-Dec-1999	290	583	334	334	200	
30.	Deep Space 2 Penetrator	03-Dec-1999	2.4	-	334	334	-	
31.	Beagle 2 Lander	25-Dec-2003	09	33.2	183	206	60	
32.	Fobos-Grunt Orbiter	15-Jan-2012	1560	2300	0.00155	68	1000	
33.	Fobos-Grunt Sample	15-Jan-2012	106	296	-	68	300	
34.	Yingou-1 Orbiter	15-Jan-2012	115	-	-	68	90	
35.	Schiaparelli EDM Lander	19-Oct-2016	280	600	03	219	-	