Transitive A_6-invariant k-arcs in $PG(2, q)$

Massimo Giulietti Gábor Korchmáros Stefano Marcugini Fernanda Pambianco

Abstract

For $q = p^r$ with a prime $p \geq 7$ such that $q \equiv 1$ or $19 \pmod{30}$, the desarguesian projective plane $PG(2, q)$ of order q has a unique conjugacy class of projectivity groups isomorphic to the alternating group A_6 of degree 6. For a projectivity group $\Gamma \cong A_6$ of $PG(2, q)$, we investigate the geometric properties of the (unique) Γ-orbit O of size 90 such that the 1-point stabilizer of Γ in O is a cyclic group of order 4. Here O lies either in $PG(2, q)$ or in $PG(2, q^2)$ according as 3 is a square or a non-square element in $GF(q)$. We show that if $q \geq 349$ and $q \neq 421$, then O is a 90-arc, which turns out to be complete for $q = 349, 409, 529, 601, 661$. Interestingly, O is the smallest known complete arc in $PG(2, 601)$ and in $PG(2, 661)$. Computations are carried out by MAGMA.

Keywords: finite desarguesian planes, k-arcs, $PSL(2, 9)$.

1 Introduction

Let $GF(q)$ be a finite field of order $q = p^r$, a power of an odd prime p. In the projective plane $PG(2, q)$ coordinatized by $GF(q)$, a k-arc K is a set of k points no three of which are collinear. If an arc of $PG(2, q)$ is not contained in a larger arc in $PG(2, q)$ then it is called complete. From the theory of linear codes, every k-arc of $PG(2, q)$ corresponds to a $[k, 3, k-2]$ maximum distance separable (MDS) code of length k, dimension 3 and minimum distance $k-2$. This gives a motivation for the the study of k-arcs in $PG(2, q)$; those with many projectivities were investigated in several papers, see [4, 6, 8, 12, 13, 14, 15, 17, 18]

The maximum size of a (complete) arc in $PG(2, q)$ is $q+1$, and the points of an irreducible conic in $PG(2, q)$ form an arc of size $q+1$. Actually, such $(q+1)$-arcs arising from irreducible conics are the unique $(q+1)$-arcs in $PG(2, q)$. This is the famous Segre’s theorem [20]; see also [10] Theorem 8.7. Therefore, the projectivity group which preserves a $(q+1)$-arc K in $PG(2, q)$ is isomorphic to the projective linear group $PGL(2, q)$ and acts on K as $PGL(2, q)$ in its natural 3-transitive permutation representation. In particular, every $(q+1)$-arc K is transitive. Here, the term of a transitive arc of $PG(2, q)$ is adopted to denote a k-arc K such that the projectivity group preserving K acts transitively on the points of K.
Let Γ be a finite group which can act faithfully as a projectivity group in $PG(2, q)$. Actually, this may happen in different characteristics p. For instance, $PG(2, q)$ with $p \neq 5$ has a projectivity group isomorphic to the alternating group A_6 if and only if $q \equiv 1$ or 19 (mod 30), and in this case such a projectivity group is uniquely determined up to conjugacy in $PGL(3, q)$, see [2]. So the question arises whether or not a Γ-invariant arc of a fixed size k exists in $PG(2, q)$ for infinitely many values of p. From previous work, the answer is affirmative for $\Gamma \cong A_6$ and $k = 72$, see [14], and $\Gamma \cong PSL(2, 7)$ and $k = 42$ see [16]. However the answer is negative for the Hesse-group of order 216 for any $k \geq 9$, see [21].

In this paper we investigate the case of $\Gamma \cong A_6$ and $k = 90$, giving a positive answer to the above question:

Theorem 1.1. For a power q of a prime $p \geq 7$ such that $q \equiv 1$ or 19 (mod 30), let $\Gamma \cong A_6$ be a projectivity group of $PG(2, q)$. Let O be the (unique) Γ-orbit of length 90 in $PG(2, q)$ such that the 1-point stabilizer of Γ in O is a cyclic group of order 4. Then O is a 90-arc in $PG(2, q)$ except for a few cases where

(i) $q = 61$ and O is a set of type $(0, 1, 2, 4, 6)$;
(ii) $q = 109$ and O is a set of type $(0, 1, 2, 3)$;
(iii) $q = 181$ and O is a set of type $(0, 1, 2, 3)$;
(iv) $q = 229$ and O is a set of type $(0, 1, 2, 4)$;
(v) $q = 241$ and O is a set of type $(0, 1, 2, 4)$;
(vi) $q = 421$ and O is a set of type $(0, 1, 2, 3)$;
(vii) $q = 7^2$ and O is a set of type $(0, 1, 2, 4)$;
(viii) $q = 11^2$ and O is a set of type $(0, 1, 2, 5)$;
(ix) $q = 13^2$ and O is a set of type $(0, 1, 2, 4)$;
(x) $q = 17^2$ and O is a set of type $(0, 1, 2, 3)$;
(xi) $q = 19^2$ and O is a set of type $(0, 1, 2, 5)$;

An exhaustive computer aided search shows that such a 90-arc may be complete for some particular values of q, namely $q = 349, 409, 529, 601, 661$. It is worth mentioning that this gives the smallest known complete arc in $PG(2, 601)$ and in $PG(2, 661)$, see [1, 7].

Notation and terminology are standard, see [10]. Furthermore, q always denotes a power of an odd prime $p \geq 7$ such that $q \equiv 1$ or 19 (mod 30). Then 3 divides $q - 1$ and 5 is a square element in the multiplicative group of $GF(q)$. The latter two requirement are indeed necessary and sufficient for $PGL(3, q)$ to have a subgroup $\Gamma \cong A_6$.

2 Preliminary Results

We give an explicit representation of Γ as a subgroup of $PGL(3, q)$ using the well known isomorphism $A_6 \cong PSL(2, 9)$. Following [14], we choose a primitive
element η in $GF(9)$ satisfying $\eta^2 = \eta + 1$, and introduce the following matrices over $GF(9)$,

$$U_1 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad U_2 = \begin{pmatrix} 1 & \eta^2 \\ 0 & 1 \end{pmatrix}, \quad V = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \quad W = \begin{pmatrix} \eta & 0 \\ 0 & \eta^{-1} \end{pmatrix}. $$

It is easy to show that the above matrices generate $SL(2,9)$. Furthermore, V^4 is the identity matrix I.

The factor group $SL(2,9)/\langle -I \rangle$ is $PSL(2,9)$.

Let $\Phi : SL(2,9) \to PSL(2,9)$ be the associated natural homomorphism, and set $M = \Phi(M)$ with $M \in SL(2,9)$.

There is a unique conjugacy class of elements of order 4 in $PSL(2,9)$, and the projectivity W with matrix representation W is such an element of order 4 (then $\langle W \rangle$ has order 4 ...si potrebbe aggiungere).

Now, fix a primitive third root t of unity in $GF(q)$ and an element z such that $z^2 = 5$. Let $\Delta = t - t^2$. Define the following matrices over $GF(q)$:

$$U = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \quad \Omega = \begin{pmatrix} 1 & 0 & 0 \\ 0 & t & 0 \\ 0 & 0 & t^2 \end{pmatrix}, \quad V = \begin{pmatrix} -2 & 1 + \Delta z & 1 + \Delta z \\ 1 - \Delta z & 4 & -2 \\ 1 - \Delta z & -2 & 4 \end{pmatrix}, \quad W = \begin{pmatrix} 1 & 1 & 1 \\ 1 & t & t^2 \\ 1 & t^2 & t \end{pmatrix}. $$

Let $\bar{U}, \bar{\Omega}, \bar{V}$ and \bar{W} be the associated projectivities of $PGL(3,q)$. From [14, Theorem 2.6], the projectivity group generated by $\bar{U}, \bar{\Omega}, \bar{V}$ and \bar{W} is isomorphic to $PSL(2,9)$. More precisely, the map φ with

$$\varphi := \begin{cases} U_1 \to \bar{U} \\ U_2 \to \bar{\Omega} \\ V \to \bar{V} \\ W \to \bar{W} \end{cases} $$

extends to an isomorphism from $PSL(2,9)$ into $PGL(3,q)$. Therefore, the group generated by $\bar{U}, \bar{\Omega}, \bar{V}$ and \bar{W} is taken for Γ; that is,

$$\Gamma = \langle \bar{U}, \bar{\Omega}, \bar{V}, \bar{W} \rangle. $$

3
A representative system of the 90 cosets of \(\langle W \rangle \) in \(PSL(2,9) \) is listed below.

\[
\{ 1, V W V U, W V W U, V W U, U W U V W U, V W V O W U, W V O W V U, W O W V U, O W V U, V W O V W U, W O V W U, O V W U, V O W U, O W U, V W U, O W U, V O U, O W U, V \}
\]

Replacing \(U, V, W, \Omega \) with \(\bar{U}, \bar{V}, \bar{W}, \bar{\Omega} \) gives a representative system of \(\langle \bar{W} \rangle \) in \(\Gamma \).

3 The fixed points of \(\bar{W} \)

The characteristic polynomial of \(W \) is \((\lambda^2 - 3)(\lambda - (1 + 2t))\) which has three pairwise distinct roots, as \(p \neq 3 \). Let \(s \) be an element in \(GF(q) \) or in a quadratic extension \(GF(q^2) \) such that \(s^2 = 3 \). Then

\[v_1 = (1, \frac{1}{2}(s - 1), \frac{1}{2}(s - 1)), \quad v_2 = (1, -\frac{1}{2}(s + 1), -\frac{1}{2}(s + 1)), \quad v_3 = (0, 1, -1) \]

are three independent eigenvectors of \(W \). For \(i = 1, 2, 3 \), let \(P_i \) be the point represented by \(v_i \). Then \(P_i \) are the fixed points of \(\bar{W} \) in \(PG(2, q) \) (or in \(PG(2, q^2) \) when \(s \in GF(q^2) \setminus GF(q) \)). The subgroup \(S_2 \) of \(\Gamma \) generated by \(V \) and \(W \) is a dihedral group of order 8. Since \(\bar{V} \) fixes \(P_3 \), this shows that \(S_2 \) is contained in the stabilizer of \(P_3 \) in the action of \(\Gamma \). But this is not consistent with the hypothesis on the 1-point stabilizer in Theorem 1. Further, \(\bar{V} \) interchanges the points \(P_1 \) and \(P_2 \). Therefore, the \(\Gamma \)-orbit of \(P_1 \) contains \(P_2 \). From the classification of subgroups of \(A_6 \), every proper subgroup of \(\Gamma \) containing \(W \) also contains \(V \). From this, the stabilizer of \(P_1 \) under the action of \(\Gamma \) is the group of order 4 generated by \(W \). So, from now on we may limit ourselves to consider the \(\Gamma \)-orbit \(\mathcal{O} \) of \(P_1 \). We stress that \(\mathcal{O} \) is in \(PG(2, q) \) (or in \(PG(2, q^2) \) when \(s \not\in GF(q) \)). The 90 points in \(\mathcal{O} \) can be computed as the images of the \(P_1 = (1, \frac{1}{2}(s - 1), \frac{1}{2}(s - 1)) \) by the projectivities in the list in (3) after replacing \(U, V, W, \Omega \) with \(\bar{U}, \bar{V}, \bar{W}, \bar{\Omega} \). These points are listed below.

\begin{align*}
(2, -s - 1, -s - 1); & \quad ((-12 * s - 12) * z + t + (-6 * s - 6) * z - 6 * s - 18, (6 * z + 6 * s) * t - 6 * z + 6 * s, (6 * z - 6 * s) * t + 12 * z); \\
((6 * s + 18) * z + 18 * s + 54) * t + (12 * s + 36) * z - 36 * s + 36, ((6 * s + 18) * z + 18 * s - 18) * t + (-6 * s - 18) * z + 18 * s + 54, (6 * s - 18) * z + 18 * s + 18) * t + (-24 * s - 36) * z - 36); \\
((2 * s + 6) * z + t + (s + 3) * z + 9 * s + 3, (2 * s + 6) * z + t + (s + 3) * z - 9 * s - 15, (2 * s + 6) * z + t + (s + 3) * z + 3 * s + 3); \\
((s + 3) * z + 9 * s + 3) * t + (2 * s + 6) * z + 6 * s - 6, ((-5 * s - 3) * z + 3 * s + 9) * t + (4 * s - 6) * z + 6, ((-2 * s - 6) * z - 12) * t + (-s - 3) * z - 3 * s - 9); \\
((2 * s + 6) * z - 6) * t + 2 * s * z + 6 * s + 12, (-2 * s - 6) * z * t + (s - 3) * z + 3 * s - 3); \\
\end{align*}
((−36 * s − 36) * z * t + (−18 * s − 18) * z + 90 * s + 162, (−36 * s − 36) * z * t + (−18 * s − 18) * z + 90 * s + 162, (36 * s + 36) * z * t + (18 * s − 18) * z + 18 * s − 18);
((−18 * s − 54) * z * t + (18 * s − 90) * t + (−18 * s − 54) * z + 90 * s − 18, (18 * s + 54) * z + (18 * s − 90) * t + 36 * s + 36, ((−54 * s − 54) * z − 18 * s − 90) * t + 36 * z − 36 * z − 72);
(−12 * s + 6 * s + 6 * s, ((−12 * s − 12) * z + t + (−6 * s + 6) * z − 6 * s − 18, −12 * s + t + 6 * z + 6 * s);
((36 * s + 36) * z * t + (18 * s + 18) * z + 18 * s − 54, (36 * s + 36) * t − 36 * z − 72 * s − 108, (36 * z − 36) * t + 72 * z − 108 * s + 108);
((6 * s + 6) * t + (6 * s − 6) * s + t + 12 * z, (−12 * s − 12) * z + t + (−6 * s − 6) * s + z − 6 * s − 18);
((−36 * s − 108) * t + (−36 * s − 108) * t, −72 * s) ;
(((−s − 3) * z + 3 * s − 3) * t + (−2 * s − 6) * z + 12, (−(s + 3) * z + (3 * s + 3)) * t + (−5 * s + 3) * z + 3 * s + 9, (−(s + 3) * z + (3 * s + 9)) * t + (s + 3) * z + 9 * s + 3);
((−4 * z − 6 * s − 6) * t + 2 * s + 2) * z * t + (s + 1) * z + s − 3, (−4 * z + (6 * s + 6)) * t + 2 * z + 4 * s + 6);
((−36 * s − 108) * z + (324 * s + 108)) * t + (−72 * s − 216) * z, ((−36 * s − 108) * z + (324 * s + 540)) * t + (36 * s + 108) * z + 324 * s + 540, (72 * s − 216) * z * t + (36 * s − 108) * z + 108 * s + 108);
((6 * s − 18) * z * t + (3 * s − 9) * z + 9 * s + 9, (−(3 * s − 9) * z + (27 * s + 45)) * t + (3 * s + 9) * z + 27 * s + 45, ((−3 * s − 9) * z + (27 * s + 9)) * t + (−6 * s + 18) * z);
((−72 * s + 72) * z * t + ((−36 * s + 36) * z + 36 * s + 108, (−(36 * s − 36) * z − 36 * s − 324) * t + (36 * s + 36) * z + 36 * s + 216, (−36 * s − 36) * z + 180 * s − 324) * t + (−72 * s − 72) * z);
((18 * s + 18) * z + 180 * s − 180, (18 * s + 18) * z + 36 * s + 54, (18 * s + 18) * z + 36 * s + 54) * t + ((−18 * s − 18) * z − 54 * s − 54) * t + (−18 * s − 18) * z − 54 * s − 54);
((−12 * s − 36) * z * t + ((−6 * s − 18) * z − 54 * s − 18, (16 * s − 18) * z − 18 * s − 18) * t + (12 * s + 36) * z, (6 * s + 18) * z + 54 * s + 90) * t + (−6 * s − 18) * z − 54 * s − 90);
((−36 * s + 108) * z + (108 * s + 108)) * t + (−180 * s − 108) * z + 108 * s + 324, (72 * s + 216) * z + 216 * s + 216) * t + (36 * s + 108) * z + 108 * s − 324, (72 * s + 216) * z + 3 + 324);
(((s + 3) * z + 3 * s − 9) * t + (2 * s + 6) * z − 12, ((s + 3) * z + (3 * s + 9)) * t + (2 * s + 6) * z − 6 * s + 6, (−5 * s + 3) * z + 3 * s − 9) * t + (−s + 3) * z − 3 * s − 3);
(((108 * s + 108) * z + 180 * s + 108) * t + 72 * s + 216, (144 * s + 432) * t + (108 * s + 108) * z + 180 * s − 108, (216 * s + (144 * s + 216)) * t + (−108 * s − 108) * z − 36 * s + 108);
((−4 * s + z + (6 * s + 18)) * t + 2 * s + z + 6 * s + 12, (−4 * s + z + 6 * s + 18) * t − 2 * s + z − 6, (2 * s + 6) * z + t + (s + 3) * z − 3 * s + 3);
((−6 * s + 6) * z * t + (−3 * s + 3) * z + 3 * s + 9, (−3 * s − 3) * z − 15 * s − 27) * t + (−6 * s − 6) * z, (−3 * s − 3) * z − 3 * s − 27) * t + (3 * s + 3) * z − 3 * s − 27);
((−36 * s − 108) * s + t, (36 * s + 108) * s + 108 * s + 108, 72 * s);
(((6 * s + 6) * t + (6 * s + 18) * t + (12 * s + 24) * z + 12 * s, ((−6 * s − 6) * z + 18 * s − 18) * t + (−12 * s − 12) * z + 12 * s + 36, ((−6 * s + 6) * z + (6 * s − 18)) * t + (6 * s + 6) * z − 18 * s − 18) * t + (18 * s + 15) * z + 9 * s + 9) * t + ((−3 * s + 3) * z + 3 * s + 9, (−3 * s − 3) * z + 9 * s + 9) * t + (−6 * s + 6) * z + 12 * s + 18, (72 * s + s − 72 * s − 288) * t + 72 * s + z + 144 * s − 360, (72 * s + 72 * s + t + (36 * s + 108) * z + 36 * s − 36 − 72 * s + 288) * t + 72 * s + z + 288;
(((3 * s + 15) * z + 9 * s + 9) * t + (6 * s + 12) * z + 6 * s, ((−3 * s − 3) * z − 9 * s − 9) * t + (3 * s + 3) * z + 3 * s + 9, (−3 * s + 3) * z + 9 * s + 9) * t + (3 * s + 3) * z + 3 * s + 9, (−3 * s − 3) * z − 9 * s − 9) * t + (−6 * s + 6) * z − 6 * s − 18, (−3 * s + 3) * z + (9 * s + 9) * t + (−6 * s + 6) * z + 12 * s);

Let \(\mathcal{O} = \{P_1, Q_1, \ldots, Q_{3916}\} \). The points \(P_1, Q_1 \) and \(Q_2 \) are collinear if and only if the determinant \(D_{i,j} \) of the coordinates of these points vanishes. There are 3916 triples \(\{P_1, Q_i, Q_j\} \) with \(1 \leq i < j \leq 89 \). Observe that \(D_{i,j} \) can be viewed as a polynomial in \(t, s \) and \(z \), say \(D_{i,j}(t, s, z) \), with coefficients in \(\mathbb{Z} \). Therefore a necessary and sufficient condition for the points \(Q_i, Q_j \in \mathcal{O} \) to produce together with \(P_1 \) a collinear triple is that \((t, s, z) \) be a solution of the
system of equations
\[
\begin{align*}
 t^2 + t + 1 &= 0; \\
 s^2 &= 3; \\
 z^2 &= 5; \\
 D_{i,j}(t, s, z) &= 0.
\end{align*}
\]

We look at the above system over \(\mathbb{Z} \) with unknowns \(t, s, z \) and use Sylvester's resultant to discuss solvability. Eliminating \(t \) from the first and the forth equations produces an equation in \(s, z \) over \(\mathbb{Z} \); then eliminating \(s \) from this and the second equation provides an equation in \(z \) over \(\mathbb{Z} \); finally eliminating \(z \) from this and the third equation gives an integer, the resultant of the system. A sufficient condition for a triple of points not to be collinear is that this resultant does not vanish in \(\mathbb{Z}_p \).

A computer aided search shows that such a resultant is a non zero integer for any \(\delta \) of the above 3916 cases. Now, let \(\delta \) vanish in \(\mathbb{Z} \) condition for a triple of points not to be collinear is that this resultant does not and the third equation gives an integer, the resultant of the system. A sufficient condition for a triple of points not to be collinear is that this resultant does not vanish in \(\mathbb{Z}_p \).

An exhaustive computer-aided computation shows that \(\delta \) has size 14, namely \(\delta = \{2, 3, 5, 7, 11, 13, 17, 19, 61, 109, 181, 229, 241, 421\} \). Therefore, the following result holds.

Proposition 3.1. The \(\Gamma \)-orbit \(\mathcal{O} \) of the point \(P_1 \) has length 90 and the stabilizer of \(P_1 \) in \(\Gamma \) is a cyclic group of order 4. Furthermore, \(\mathcal{O} \) is a 90-arc on \(\text{PG}(2, q) \) with \(q = p^h \) and \(p \geq 7 \) apart from finitely many values of \(p \) which are
\[
7, 11, 13, 17, 19, 61, 109, 181, 229, 241, 421.
\]

Now, we discuss the exceptional cases.

3.1 \(p = 7, 11, 13, 17 \)

In this case \(p^2 \equiv 1 \) or 19 (mod 30). Therefore, \(\mathcal{O} \) lies in \(\text{PG}(2, p^2) \setminus \text{PG}(2, p) \). By a MAGMA computation, some \(\delta_{i,j} \) is divisible by \(p \). Hence \(\mathcal{O} \) is not an arc. Some more effort allows to compute the intersection numbers of \(\mathcal{O} \) with lines. The results are reported below.

- For \(q = 7^2 \) a square root of 5 is \(w^{20} \), where \(w \) is a primitive element of \(GF(7^2) \) such that \(w^2 + 6w + 3 = 0 \). In this case \(\mathcal{O} \) is a complete \((90, 4) \)-arc with 336 external lines, 810 tangents, 765 bi-secants, 540 four-secants.

- For \(q = 11^2 \) a primitive cubic root of unity is \(w^{40} \), where \(w \) is a primitive element of \(GF(11^2) \). In this case \(\mathcal{O} \) is a non-complete \((90, 5) \)-arc with 7248 external lines, 4320 tangents, 3105 bi-secants, 90 five-secants.

- For \(q = 13^2 \) a square root of 5 is \(w^{63} \), where \(w \) is a primitive element of \(GF(13^2) \) such that \(w^2 + 12w + 2 = 0 \). In this case \(\mathcal{O} \) is a non-complete \((90, 4) \)-arc with 16896 external lines, 8730 tangents, 2925 bi-secants, 180 four-secants.

- For \(q = 17^2 \) a primitive cubic root of unity is \(w^{88} \) and a square root of 5 is \(w^{45} \), where \(w \) is a primitive element of \(GF(17^2) \) such that \(w^2 + 16w + 3 = 0 \). In this case \(\mathcal{O} \) is a non-complete \((90, 3) \)-arc with 61356 external lines, 19170 tangents, 2925 bi-secants, 360 three-secants.
3.2 \(p = 19 \)

\(\Gamma \) is a projectivity group of \(PG(2, 19) \). However, \(s \in GF(19^2) \setminus GF(19) \), whence \(O \) lies in \(PG(2, 19^2) \setminus PG(2, 19) \). Furthermore, \(O \) is a non-complete \((90, 5)\)—arc with 101676 external lines, 25650 tangents, 3285 bi-secants, 72 five-secants. Here, \(s = w^{130} \) where \(w^2 + 18w + 2 = 0 \).

3.3 \(p = 61, 109, 181, 229, 241, 421 \)

In this case, \(\Gamma \) is a projective group of \(PG(2, p) \) and \(s \in GF(p) \). Therefore \(O \) lies in \(PG(2, p) \). Again, some \(\delta_{i,j} \) is divisible by \(p \), and \(O \) is not an arc. By a MAGMA computation, the intersection numbers of \(O \) lines can be computed, and the results are reported below.

- For \(p = 61 \) \(O \) is a non-complete \((90, 6)\)—arc with 1068 external lines, 450 tangents, 2025 bi-secants, 180 four-secants, 60 six-secants.
- For \(p = 109 \) \(O \) is a non-complete \((90, 3)\)—arc with 5736 external lines, 2970 tangents, 2925 bi-secants, 360 three-secants.
- For \(p = 181 \) \(O \) is a non-complete \((90, 3)\)—arc with 20208 external lines, 9450 tangents, 2925 bi-secants, 360 three-secants.
- For \(p = 229 \) \(O \) is a non-complete \((90, 4)\)—arc with 35436 external lines, 14130 tangents, 2925 bi-secants, 180 four-secants.
- For \(p = 241 \) \(O \) is a non-complete \((90, 4)\)—arc with 40008 external lines, 15210 tangents, 2925 bi-secants, 180 four-secants.
- For \(p = 421 \) \(O \) is a non-complete \((90, 3)\)—arc with 143328 external lines, 31050 tangents, 2925 bi-secants, 360 three-secants.

The results of the present section provide a proof of Theorem 1.1.

References

[1] D. Bartoli, A. A. Davydov, G. Faina, S. Marcugini, F. Pambianco On sizes of complete arcs in \(PG(2, q) \), Discrete Mathematics, to appear.
[2] D.M. Bloom, The Subgroups of PSL\((3,q)\) for odd \(q \), Trans. Amer. Math. Soc., 127 (1967), 150-178.
[3] J.J. Cannon, W. Bosma (Eds.) Handbook of Magma Functions, Edition 2.13 (2006), pp. 4350.
[4] J.M. Chao and H. Kaneta, A complete 24-arc in \(PG(2, 29) \) with the automorphism group \(PSL(2, 7) \), Rend. Mat. Appl. 16 (1996), 537-544.
[5] A. Cossidente and G. Korchmáros, The Hermitian function field arising from a cyclic arc in a Galois plane, Geometry, Combinatorial Designs and Related Structures, London Math. Soc. Lecture Note Ser. 245, Cambridge Univ. Press, Cambridge, 1997, 63–68.
[6] A. Cossidente and G. Korchmáros, The algebraic envelope associated to a complete arc, *Rend. Circ. Mat. Palermo Suppl.* **51** (1998), 9–24.

[7] A. A. Davydov, G. Faina, S. Marcugini and F. Pambianco, Linear nonbinary covering codes and saturating sets in projective spaces, Advances in Mathematics of Communications, **5** (2011), 119-147.

[8] M. Giulietti, Algebraic curves over finite fields and MAGMA, *Ital. J. Pure Appl. Math.* **8** (2000), 19–32.

[9] C. Gordon and R. Killgrove, Representative arcs in field planes of prime order. Proceedings of the Twentieth Southeastern Conference on Combinatorics, Graph Theory, and Computing (1989). **71** (1990), 73–85.

[10] J.W.P. Hirschfeld, *Projective Geometries over Finite Fields*, second ed., Oxford Univ. Press, Oxford, 1998, xiv+555 pp.

[11] J.W.P. Hirschfeld and G. Korchmáros, On the embedding of an arc into a conic in a finite plane, *Finite Fields Appl.* **2** (1996), 274–292.

[12] J.W.P. Hirschfeld and G. Korchmáros, On the number of rational points on an algebraic curve over a finite field, *Bull. Belg. Math. Soc. Simon Stevin* **5** (1998), 313–340.

[13] J.W.P. Hirschfeld and G. Korchmáros, Arcs and curves over a finite field, *Finite Fields Appl.* **5** (1999), 393–408.

[14] H. Kaneta, S. Marcugini and F.Pambianco, On Arcs and Curves with Many Automorphisms. *Mediterr. J. Math.* **2** (2005), 71–102.

[15] G. Korchmáros, Collineation groups transitive on the points of an oval [(q + 2)-arc] of $S_{2,q}$ for q even, *Atti Sem. Mat. Fis. Univ. Modena* **27** (1978), 89–105.

[16] G. Korchmáros and L. Indaco, 42-arcs in $PG(2,q)$ left invariant by $PSL(2,7)$, *Des. Codes Cryptogr.*, 2011. DOI 10.1007/s10623-011-9532-y.

[17] G. Korchmáros and N. Pace, Infinite family of large complete arcs in $PG(2,q^n)$, with q odd and $n > 1$ odd. *Des. Codes Cryptogr.* **55** (2010), 285–296.

[18] G. Korchmáros and A. Sonnino, On arcs sharing the maximum number of points with ovals in cyclic affine planes of odd order. *J. Combin. Des.* **18** (2010), 25–47.

[19] G. Pellegrino, Properties and applications of the axial collineation group on a conic of an odd-order Galois plane. *Rend. Mat. Appl.* **11** (1991), 591–616.

[20] B. Segre, Ovals in a finite projective plane, *Canad. J. Math.* **7** (1955), 414–416.

[21] A. Sonnino, On the action of the Hesse group in $PG(2,q)$, manuscript, private communication (2011).