Lifting Normal Elements in Nonseparable Calkin Algebras

Ye Zhang, Don Hadwin, and Yanni Chen

Abstract. We use the remarkable distance estimate of Ilya Kachkovskiy and Yuri Safarov\cite{6} to show that if H is a nonseparable Hilbert space and K is any closed ideal in $B(H)$ that is not the ideal of compact operators, then any normal element of $B(H)/K$ can be lifted to a normal element of $B(H)$.

Suppose H is a Hilbert space with $\dim H = d \geq \aleph_0$. We let $B(H)$ denote the set of all (bounded linear) operators on H. For each cardinal m with $\aleph_0 \leq m \leq d$, we let $\mathcal{F}_m(H) = \{T \in B(H) : \text{rank}T = \dim T(H) < m\}$, and let $\mathcal{K}_m(H)$ be the norm closure of $\mathcal{F}_m(H)$. The set $\{\mathcal{K}_m(H) : \aleph_0 \leq m \leq d\}$ is the collection of all nonzero proper norm-closed ideals of $B(H)$. The quotient C*-algebra $\mathcal{C}_m(H) = B(H)/\mathcal{K}_m(H)$ is called the m-Calkin algebra, and the quotient map $\pi_m : B(H) \to \mathcal{C}_m(H)$ is called the m-Calkin map.

The properties of these Calkin algebras depend significantly on the properties of the cardinal m. We say that m is countably cofinal if m is the supremum of a countable collection of smaller cardinals. It was shown in \cite{4}, Thm. 4.11 that if m is not countably cofinal (which holds exactly when $\mathcal{K}_m(H) = \mathcal{F}_m(H)$), then, for any separable unital C*-subalgebra A of $\mathcal{C}_m(H)$, there is a unital $*$-homomorphism $\rho : A \to B(H)$ such that $\pi_m \circ \rho$ is the identity on A. Hence, in this case, for any element t of $\mathcal{C}_m(H)$ there is a $T \in B(H)$ so that $\pi_m : C^*(T) \to C^*(t)$ is a $*$-isomorphism sending T to t. Hence t lifts to an element T in $B(H)$ that shares all the properties preserved under $*$-isomorphisms, i.e., being normal, subnormal, hyponormal, isometric, or unitary.

When the cardinal m is countably cofinal, the situation is not so clear cut. When $m = \aleph_0$, the classical result of L. G. Brown, R. G. Douglas, and P. A. Fillmore $\cite{3}$ shows that the Fredholm index is the only obstruction to lifting norm elements. When $m > \aleph_0$, it is still possible to lift invertibles and unitaries, but the case of normality has remained open since 1981. In this paper we prove that when $m > \aleph_0$ is countably cofinal, then, for any normal element $t \in \mathcal{C}_m(H)$ there is a normal operator $T \in B(H)$ such that $\pi_m(T) = t$.

2010 Mathematics Subject Classification. Primary 46L05, 46L10. Secondary 47C15, 47L20.

Keywords and phrases. Calkin algebra, nonseparable Hilbert space, distance to the normal operators, countably cofinal cardinal.

Supported in part by a grant from the Simons Foundation.
A key ingredient in our work is the wonderful new theorem (the Kachkovskiy-Safarov inequality) of [6], which estimates the distance \(d(a, N_f (A)) \) of an element of \(a \) in a C*-algebra \(A \) with real rank zero to the set \(N_f (A) \) of normal operators in \(A \) with finite spectrum:

\[
(\#) \quad d(a, N_f (A)) \leq C \left(\|a^*a - aa^*\|^{1/2} + d_1(a) \right),
\]

for some universal constant \(C \), and where

\[
d_1(a) = \sup_{\lambda \in \mathbb{C}} \text{dist} (a - \lambda, GL(A)),
\]

where \(GL(A) \) is the connected component of 1 in the group \(GL(A) \) of invertible elements of \(A \).

When \(A \) is a von Neumann algebra, \(GL_0(A) = GL(A) \), so

\[
d_1(a) = \sup_{\lambda \in \mathbb{C}} \text{dist} (a - \lambda, GL(A))
\]

A nice formula for the \(\sup \text{dist} (b, GL(A)) \) is given by C. L. Olsen in [7] and more general results appear in the works of R. Bouldin [1, 2]. We will not need these characterizations here. If \(H \) is an infinite-dimensional Hilbert space, then \(H \) is isomorphic to \(H \oplus H \oplus \cdots \), so if \(T \in B(H) \), we can identify \(T(\infty) = T \oplus T \oplus \cdots \) with an operator in \(B(H) \). Similarly, if \(A \) is an infinite von Neumann algebra, then there is an orthogonal sequence \(\{P_n\} \) of projections summing to 1 so that each \(P_n \) is Murray-von Neumann equivalent to 1, so if \(T \in A \), we can still view \(T(\infty) \) as an element of \(A \).

Lemma 1. Suppose \(A \) is an infinite von Neumann algebra acting on a separable Hilbert space and \(T \in A \). Then

1. If \(A \) is of type III, then
 \[
 d_1(T) \leq \|T^*T - TT^*\|^{1/2},
 \]
 and
 \[
 d(T, N_f (A)) \leq 2C \|T^*T - TT^*\|^{1/2}.
 \]

2. If \(A \) is of type I\(_\infty\) or type II\(_\infty\), then
 \[
 d_1(T(\infty)) \leq \|T^*T - TT^*\|^{1/2},
 \]
 and
 \[
 d(T(\infty), N_f (A)) \leq 2C \|T^*T - TT^*\|^{1/2}.
 \]

Proof. Note that \(\|T^*T - TT^*\|^{1/2} \) is unchanged if \(T \) is replaced with \(T - \lambda \), \(T(\infty) \) or with \(T^* \). Hence it will suffice to show \(\text{dist} (T, GL(A)) \leq \|T^*T - TT^*\|^{1/2} \) in part (1) and \(\text{dist} (T(\infty), GL(A)) \leq \|T^*T - TT^*\|^{1/2} \) in part (2). The parts involving the distance to \(N_f (A) \) follow immediately from the Kachkovskiy-Safarov inequality [6] (see (\#) above). If both \(T^*T \) and \(TT^* \) are invertible, then \(T \) is invertible and the desired inequalities are trivially true. Since nothing changes when \(T \) is replaced by \(T^* \), there is no harm in assuming that \(T^*T \) is not invertible. Then, for every \(\varepsilon > 0 \), if we let \(P_\varepsilon \) be the spectral projection for \(T^*T \) corresponding to the interval \([0, \varepsilon] \), we have \(P_\varepsilon \neq 0 \),

\[
\|TP_\varepsilon\|^2 = \|P_\varepsilon T^*TP_\varepsilon\| \leq \varepsilon
\]
and

\[\|P_T\|^2 = \|P_T T^* P_T\| \leq \|P_T T^* P_T\| + \|T^* T - TT^*\|. \]

Hence \(\|T - P_T T^* P_T\| \leq \sqrt{\varepsilon} + \sqrt{\varepsilon} + \|T^* T - TT^*\|. \)

We first consider the case when \(\mathcal{A} \) is an infinite factor. If \(\mathcal{A} \) is a type III factor, then the projections onto \(\ker \left(P_T T^* P_T \right) \) and \(\ker \left(P_T T^* P_T \right)^* \) are nonzero and equivalent, which implies that \(P_T T^* P_T \) is a norm limit of invertible elements \(^2\). Thus, for every \(\varepsilon > 0 \)

\[\text{dist} \left(T, GL(\mathcal{A}) \right) \leq \sqrt{\varepsilon} + \sqrt{\varepsilon} + \|T^* T - TT^*\|, \]

which implies

\[\text{dist} \left(T, GL(\mathcal{A}) \right) \leq \|T^* T - TT^*\|^{1/2}. \]

If \(\mathcal{A} \) is a type I\(_{\infty} \) or type II\(_{\infty} \) factor, then the projections onto \(\ker \left(P_T T^* P_T \right) \) \(^{(\infty)}\) and \(\ker \left(\left(P_T T^* P_T \right)^* \right) \) \(^{(\infty)}\) are nonzero and have the form \(Q^{(\infty)} \) and are equivalent, and we get

\[\text{dist} \left(T^{(\infty)}, GL(\mathcal{A}) \right) \leq \|T^* T - TT^*\|^{1/2}. \]

Hence we have proved statements (1) and (2) when \(\mathcal{A} \) is an infinite factor von Neumann algebra on a separable Hilbert space.

For the general case, using the central decomposition \(^5\), there is a direct integral decomposition \(\mathcal{A} = \int_{\Omega} \mathcal{A}_\omega d\mu(\omega) \), where each \(\mathcal{A}_\omega \) is a factor von Neumann algebra. If \(\mathcal{A} \) has type III, then each \(\mathcal{A}_\omega \) is a type III factor. If \(T = \int_{\Omega} T_\omega d\mu(\omega) \in \mathcal{A} \) and \(\varepsilon > 0 \), then, using standard measurable cross-section arguments, it is easy to measurable choose, for each \(\omega \in \Omega \), an invertible operator \(S_\omega \in \mathcal{A}_\omega \) such that

\[\|T_\omega - S_\omega\| \leq \|T^{*}_\omega T_\omega - T_\omega T^{*}_\omega\|^{1/2} + \varepsilon. \]

Note that

\[\|S_\omega\| \leq \|T_\omega - S_\omega\| + \|T_\omega\| \leq \|T^{*}_\omega T_\omega - T_\omega T^{*}_\omega\|^{1/2} + \varepsilon + \|T_\omega\| \leq \|T^* T - TT^*\|^{1/2} + \varepsilon + \|T\| \text{ a.e.}(\mu), \]

so \(\int_{\Omega} S_\omega d\mu(\omega) \) is defined. Although each \(S_\omega \) is invertible, the operator \(S = \int_{\Omega} S_\omega d\mu(\omega) \in \mathcal{A} \) might not be invertible. However, each \(S_\omega \) has a polar decomposition \(U_\omega |S_\omega| \) with \(U_\omega \) unitary. Thus \(S = U |S| \) with \(U = \int_{\Omega} U_\omega d\mu(\omega) \) unitary. Hence, \(S \) is the limit of the sequence \(\{U(|S| + 1/n)\} \) of invertible operators. Thus,

\[\text{dist} \left(T, GL(\mathcal{A}) \right) \leq \|T - S\| \leq \|T^* T - TT^*\|^{1/2} + \varepsilon. \]

Since \(\varepsilon > 0 \) was arbitrary, we have the desired result. The case when the \(\mathcal{A}_\omega \)'s are type I\(_{\infty} \) or type II\(_{\infty} \) factors is handled similarly.

\[\square \]

Corollary 1. If \(H \) is a Hilbert space and \(T \in B(H) \) and \(C^* (T) \cap K_\aleph_0 (H) = \{0\} \), then

\[d_1 (T) \leq \|T^* T - TT^*\|^{1/2}. \]

Proof. For every \(0 \neq A \subseteq C^* (T) \) we have \(\text{rank} A \geq \aleph_0 \), so \(\text{rank} A = \text{rank} A^{(\infty)} \). Thus, by \(^4\) Thm. 3.14, There is a sequence \(\{U_n\} \) of unitary operators in \(B(H) \) such that \(\|U_n^* T^{(\infty)} U_n - T\| \to 0 \), which means \(d_1 (T) = d_1 (T^{(\infty)}) \). \[\square \]
We are now ready to prove our main theorem.

Theorem 1. Suppose H is an infinite-dimensional Hilbert space and $\aleph_0 < m \leq \dim H$ is countably cofinal. If $t \in C_m (H)$ is normal, then there is a normal operator $T \in B (H)$ such that $\pi_m (T) = t$.

Proof. We first choose an $S \in B (H)$ such that $\pi_m (S) = t$. We can write H as a direct sum $H = \sum_{j \in J} H_j$ with each $\dim H_j = \aleph_0$ and with H_j a reducing subspace for S. Hence, we can write $S = \sum_{j \in J} S_j$ with respect to this decomposition. Since $S^* S - S S^* = \sum_{j \in J} (S_j^* S_j - S_j S_j^*) \in K_m (H)$, we see that $E = \{ j \in J : S_j^* S_j - S_j S_j^* \neq 0 \}$ has cardinality at most m and S_j is normal when $j \notin E$. If $\text{Card} E < m$, then $T = \sum_{j \in J \notin E} S_j \chi_j (j)$ is normal and $\pi_m (T) = \pi_m (S) = t$. Hence we can assume $J = E$, so $\dim H = \text{Card} E = m$.

It follows from [4] Cor. 3.11, Thm. 4.6 that there is a unitary operator $U \in B (H)$ and irreducible operators A_1, A_2, \ldots and cardinals k_1, k_2, \ldots such that

$$U^* S U - \sum_{1 \leq n < \infty} A_n^{(k_n)} \in K_m (H).$$

Hence we can assume that $S = \sum_{1 \leq n < \infty} A_n^{(k_n)}$. Since each A_n is irreducible, it must act on a separable Hilbert space. If $k_n = m$, then A_n must be normal. Hence we can write $S = N \oplus \sum_{n \in F} A_n^{(k_n)}$, where $k_n < m$ whenever $n \in F$. If F is finite, $\pi_m (N \oplus 0) = \pi_m (S) = t$. Hence, we can assume $F = \{ n_1, n_2, \ldots \}$ with $\aleph_0 \leq k_{n_1} \leq k_{n_2} \leq \cdots < m$ and $m = \sup \{ k_j : j \in \mathbb{N} \}$. It follows now that

$$\lim_{j \to \infty} \left\| A_{n_j} A_{n_j}^* - A_j A_j^* \right\| = 0.$$

However, $A_j^{(k_n)}$ is unitarily equivalent to $(A_j^{(\infty)})^{(k_n)}$ for each j, which implies by Lemma [4]

$$\lim_{j \to \infty} \text{dist} \left(A_j^{(k_n)}, N \right) = 0.$$

Hence there is a sequence $\{ B_j \}$ of normal operators such that

$$\lim_{j \to \infty} \left\| A_j^{(k_n)} - B_j \right\| = 0.$$

Hence $T = N \oplus \sum_{1 \leq j < \infty} B_j$ is normal and $\pi_m (T) = \pi_m (S) = t$. \hfill \square

Remark 1. If we suppose m is not countably cofinal in the preceding proof, we see that $\text{Card} E$ must be less than m and the proof is complete.

References

[1] Bouldin, R., The essential minimum modulus, Indiana Univ. Math. J. 30 (1981), no. 4, 513–517.
[2] Bouldin R., Distance to invertible linear operators without separability, Proc. Amer. Math. Soc. 116 (1992), no. 2, 489–497.
[3] Brown L., Douglas R., and Fillmore P., Unitary equivalence modulo the compact operators and extensions of C*-algebras, Proc. Conf. Operator Theory (Dalhousie Univ., Halifax, N. S. 1973), Lecture Notes in Math. 345, Springer, 1973, 58–128.
[4] Hadwin, D., Nonseparable approximate equivalence, Trans. Amer. Math. Soc. 266 (1981), no. 1, 203–231.
[5] Kadison, R. V. and Ringrose, J. R., Fundamentals of the theory of operator algebras, Vol. II, Advanced theory. Corrected reprint of the 1986 original. Graduate Studies in Mathematics, 16. Amer. Math. Soc., Providence, RI, 1997.

[6] Kachkovskiy, I. and Safarov, Y., On the distance to normal elements in C*-algebras of real rank zero, [arXiv:1403.2021v1 [math.OA]] 9 Mar 2014.

[7] Olsen, C. L., Unitary approximation. J. Funct. Anal. 85 (1989), no. 2, 392–419.

University of New Hampshire
E-mail address: yjg2@unh.edu

University of New Hampshire
E-mail address: don@unh.edu
URL: http://euclid.unh.edu/~don

University of New Hampshire
E-mail address: yet2@unh.edu