Text A. Sample Size Selection

A type II/type I error ratio of 4 is typically recommended for experimental design, hence using $\alpha = 0.05$, a statistical power $(1 - \beta)$ of greater than or equal to 80% is appropriate. We used the widely accepted Chambers score to determine the effect-and the sample size. Glasson et al. 2004 [1] report a baseline score ($mean_1 = 1.25$, $std_1 = 0.25$) in Sham operated mice (Wk 4 & Wk 8) and a score for DMM ($mean_2 = 3.75, std_2 = 0.5$ at week 4), which we take as a minimal effect, see table below. Using these means and standard deviations, the effect size would be 6.06, which under a Wilcoxon-Mann Whitney one sided test requires a sample size of $N = 2$ for a power $(1 - \beta)$ of 95%. These calculations are done a priori and form a guide for understanding the quality of our results a posteriori. For robustness, we choose $(N = 3)$.

Glasson et al. 2004 (Chambers Score)
Week

4
8

Table A: $G \times Power$ output for the sample size calculation using the Glasson et al. 2004.

Text B. Zoning

The superficial zone was chosen as the area of interest as it was observed that the naive mice had near identical chondrocyte populations through time. Immunofluorescence stainings with specific antibodies directed against collagen type II were used to identify the region of articular cartilage. The clear and consistent sparsity of collagen type II staining in the upper cartilage layer was used to outline the superficial zone of the tibial plateau and femoral condyle. The superficial zone was considered the region of interest, and was used in the following for the automated analysis of chondrocyte and apoptosis populations.

Text C. Thresholding and Contouring

First, the image was thresholded on RGB such that any noise and light scattering due to the extracellular-matrix (ECM) in the image was removed. The DAPI and TUNEL signals were processed within their respective channels only. The thresholding of the respective channel was kept fixed for all images. Then any pixel which had an intensity above the threshold was amplified to the maximum intensity. Following this procedure, the
image should only contain regions where there is a possibility of a signal and regions of no signal. Then a contour was drawn around each connected set of pixels. Each contour was classified as a signal. The number of pixels within the contour was considered the area of the signal. The signal was then classified to be accepted, rejected or recounted (Fig 1).

Text D. Classification

The area of a true positive signal in the superficial zone in all images was assumed to follow the same contour area distribution. This distribution was empirically calculated by manually measuring the areas of 200 cells that are considered to be a true positive signal from randomly selected images. These sampled areas were then fitted to a gamma distribution. The accepted signal area begins within the 95 percentile confidence interval of the fitted gamma distribution. The extracted signals were then automatically assessed if they should be accepted, rejected or recounted (Fig 1). Within the processing of tissue sections it occurs that sometimes cell nuclei leave their natural position in the lacunae and are found in a region of collagen type II stained extracellular matrix. Since these nuclei cannot be clearly assigned to a specific lacunae or region, these signals were rejected and excluded from the analysis. These signals can be identified as they show an overlap of the DAPI or TUNEL staining and the collagen type II staining. In the case that separate nuclei are close to each other, the signal appears as the union of more than one nuclei. In such cases, if the signal area is greater than the 95th percentile, this signal is considered for recounting, by cutting them using the WaterShed method. All mentioned rules were applied to the images, so no human adjustments were needed to the data set generated by the automated process. To test the sensitivity and specificity of the data extraction method, ten slices were randomly selected from the pool of all images (excluding the images used for constructing the empirical distributions of the signal area) to compare the automated classification and human classification. The automated method had a sensitivity of 91% and a specificity of 95%.

Text E. Test Change Point Analysis

The aim is to split the time course into two phases: a transient phase and a stationary phase. The transient phase captures the studied effect changing, whereas, the stationary phase captures the studied effect stabilising. We distinguish these phases by detecting changes in the mean and variance through time. Specifically, in a transient phase we expect the means between adjacent time points to vary dramatically, whereas in the stationary phase, we expect the means among adjacent time points to be very similar. There may be more than two phases which the studied effect undergoes, however, in this work we consider modelling only two phases (we seek at most one change point). Finding a change point in a time series is referred to as a binary segmentation- or At Most One Change (AMOC) analysis in the Change Point Analysis literature [2]. We now formulate the problem statistically as done in [3]:

There are \(N \) time points which are ordered chronologically, and in each time point there are \(I \) replicates. Let \(\mu_n, \sigma_n^2 \) be the mean and the variance of the studied effect at time \(n \). Then the following hypotheses are considered:
\[H_0 : \mu_1 = \mu_2 = \ldots = \mu_N = \mu \quad \text{and} \quad \sigma_1^2 = \sigma_2^2 = \ldots = \sigma_N^2 = \sigma, \]

versus the alternative hypothesis,

\[H_1 : \mu_1 = \ldots = \mu_k \neq \nu_{k+1} = \ldots = \mu_N \quad \text{and} \quad \sigma_1^2 = \ldots = \sigma_k^2 \neq \sigma_{k+1}^2 = \ldots = \sigma_N^2, \]

where \(\mu \) and \(\sigma^2 \) are unknown common parameters if there is no change, and \(k \) is the possible change point location. We use the Schwarz Information Criterion (SIC) for fitting all samples to one Gaussian (\(H_0 \)), and SIC(\(k \)) the Schwarz Information Criterion of splitting the samples at time \(k \) and fitting two Gaussians respectively (\(H_1 \) for \(k \)). Hence, we have a series of alternative hypotheses; then to reject \(H_0 \) implies that there is no \(k \), no splitting, which describes the samples better than a single Gaussian. More formally, the hypothesis test is given as follows:

\[
\hat{k} := \arg\min_{k \in \{2, \ldots, N-2\}} \text{SIC}(k),
\]

we fail to reject \(H_0 \) if

\[
\text{SIC}(N) \leq \text{SIC}(\hat{k}) + c_\alpha,
\]

and reject \(H_0 \) if

\[
\text{SIC}(N) > \text{SIC}(\hat{k}) + c_\alpha.
\]

The term \(c_\alpha \) is the critical value from the distribution of \(\text{SIC}(N) \), which was empirically calculated and given in [3, Table 1]. In our case \(c_\alpha = 10.317 \) for \(\alpha = 0.05 \) and the total number of samples is equal to 18. If \(H_0 \) is rejected, then the position \(\hat{k} \) is a good estimate for the change point in the interval. We now present the details for calculating the test statistics described above. For \(k \in \{2, \ldots, N-1\} \) we define:

\[
\hat{\mu}_0 = \sum_{n=1}^{N} \sum_{i=1}^{I} \frac{x_{ni}}{NI}, \quad \hat{\mu}_{1,k} = \sum_{n=1}^{k} \sum_{i=1}^{I} \frac{x_{ni}}{kI}, \quad \hat{\mu}_{2,k+1} = \sum_{n=k+1}^{N} \sum_{i=1}^{I} \frac{x_{ni}}{(N-k)I},
\]

and

\[
\hat{\sigma}^2_0 = \sum_{n=1}^{N} \sum_{i=1}^{I} \frac{(x_{ni} - \hat{\mu})^2}{NI}, \quad \hat{\sigma}^2_{1,k} = \sum_{n=1}^{k} \sum_{i=1}^{I} \frac{(x_{ni} - \hat{\mu}_{1,k})^2}{kI}, \quad \hat{\sigma}^2_{2,k+1} = \sum_{n=k+1}^{N} \sum_{i=1}^{I} \frac{(x_{ni} - \hat{\mu}_{2,k+1})^2}{(N-k)I},
\]

where \(x_{ni} \) denotes sample point of the \(i \)th replicate at time point \(n \). The terms \(\hat{\mu}_0 \) and \(\hat{\sigma}^2_0 \) are the empirical mean and variance of all the samples; \(\hat{\mu}_{1,k} \) and \(\hat{\sigma}^2_{1,k} \) are the empirical mean and variance of the samples up to and including time \(k \); lastly, \(\hat{\mu}_{2,k+1} \) and \(\hat{\sigma}^2_{2,k+1} \) are the empirical mean and variance of the samples from time points greater than \(k \). Then the test statistics are calculated as follows: for \(H_0 \), the SIC for two unknowns is given by:

\[
\text{SIC}(N) = -2 \log (L_0 (\hat{\mu}_0, \hat{\sigma}_0)) + 2 \log (NI),
\]

\[
= NI \log (2\pi) + NI \log \left(\sum_{n=1}^{N} \sum_{i=1}^{I} (x_{ni} - \hat{\mu}_0)^2 \right) + NI + (2 - NI) \log (NI),
\]
where L_0 is the likelihood, that all samples are from a Gaussian distribution with mean $\hat{\mu}_0$ and variance $\hat{\sigma}^2_0$. Similarly, the SIC for the alternative hypotheses has four unknowns for each k and is given by:

$$SIC(k) = -2 \log \left(L_1 \left(\hat{\mu}_{1,k}, \hat{\mu}_{2,k+1}, \hat{\sigma}^2_{1,k}, \hat{\sigma}^2_{2,k+1} \right) \right) + 4 \log(N),$$

$$= NI \log(2\pi) + (k I) \log(\hat{\sigma}^2_{1,k}) + (N - k) I \log(\hat{\sigma}^2_{1,k+1}) + N I + 4 \log(N I),$$

where $L_1 \left(\hat{\mu}_{1,k}, \hat{\mu}_{2,k+1}, \hat{\sigma}^2_{1,k}, \hat{\sigma}^2_{2,k+1} \right)$ is the likelihood, that samples up to and at time $t = k$ are from a Gaussian distribution with mean $\hat{\mu}_{1,k}$ and variance $\hat{\sigma}^2_{1,k}$, and samples from time greater than k are observed from a Gaussian distribution with mean $\hat{\mu}_{2,k+1}$ and variance $\hat{\sigma}^2_{2,k+1}$.

Table B: Change point analysis of the studied effects in the respective treatments. (*) The factor Lesion Width did not satisfy the required assumptions due to the nature of the variable, since a lesion is formed or not and lesions only formed after a fixed time, trend analysis on Sham and DMM were omitted and we treat all the sample points as being from a single distribution.

Studied Effects	Treatment	\hat{k}	$SIC(\hat{k}) + c_\alpha$	$SIC(N)$	$SIC(N) > SIC(\hat{K}) + c_\alpha$
Average Apoptotic Population	Sham	4	41.933	52.110	Reject H_0
	DMM	4	79.031	83.071	Reject H_0
	MCLMM	4	103.602	114.466	Reject H_0
Average Chondrocyte Population	Sham	2	178.779	164.540	Fail To Reject H_0
	DMM	2	164.136	166.980	Reject H_0
	MCLMM	4	170.084	177.617	Reject H_0
Average Lesion Width(*)	Sham	N/A	N/A	N/A	No Analysis
	DMM	N/A	N/A	N/A	No Analysis
	MCLMM	4	266.069	282.281	Reject H_0
Average Cartilage Thickness	Sham	2	164.715	155.726	Fail To Reject H_0
	DMM	6	170.605	158.737	Fail To Reject H_0
	MCLMM	6	174.977	192.824	Reject H_0
Average Cartilage Area	Sham	8	413.080	399.569	Fail To Reject H_0
	DMM	8	415.596	406.457	Fail To Reject H_0
	MCLMM	6	435.788	436.178	Reject H_0

References

[1] Glasson SS, Askew R, Sheppard B, Carito BA, Blanchet T, Ma HL, et al. Characterization of and osteoarthritis susceptibility in ADAMTS-4-knockout mice. Arthritis and rheumatism. 2004;50(8):2547–58. doi:10.1002/art.20558.

[2] Aminikhanghahi S, Cook DJ. A survey of methods for time series change point detection. Knowledge and Information Systems. 2017;51(2):339–367. doi:10.1007/s10115-016-0987-z.

[3] Chen J, Gupta AK. Change point analysis of a Gaussian model. Statistical Papers. 1999;40(3):323–333. doi:10.1007/BF02929878.