Identification of Orphan Genes in Unbalanced Datasets Based on Ensemble Learning

Qijuan Gao1†, Xiu Jin1†, Enhua Xia2, Xiangwei Wu3, Lichuan Gu4, Hanwei Yan5, Yingchun Xia4 and Shaowen Li1*†

1 Anhui Province Key Laboratory of Smart Agricultural Technology and Equipment, Anhui Agriculture University, Hefei, China, 2 State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China, 3 School of Resources and Environment, Anhui Agricultural University, Hefei, China, 4 School of Information and Computer Science, Anhui Agricultural University, Hefei, China, 5 Key Laboratory of Crop Biology of Anhui Province, Anhui Agricultural University, Hefei, China

Orphan genes are associated with regulatory patterns, but experimental methods for identifying orphan genes are both time-consuming and expensive. Designing an accurate and robust classification model to detect orphan and non-orphan genes in unbalanced distribution datasets poses a particularly huge challenge. Synthetic minority over-sampling algorithms (SMOTE) are selected in a preliminary step to deal with unbalanced gene datasets. To identify orphan genes in balanced and unbalanced Arabidopsis thaliana gene datasets, SMOTE algorithms were then combined with traditional and advanced ensemble classified algorithms respectively, using Support Vector Machine, Random Forest (RF), AdaBoost (adaptive boosting), GBDT (gradient boosting decision tree), and XGBoost (extreme gradient boosting). After comparing the performance of these ensemble models, SMOTE algorithms with XGBoost achieved an F1 score of 0.94 with the balanced A. thaliana gene datasets, but a lower score with the unbalanced datasets. The proposed ensemble method combines different balanced data algorithms including Borderline SMOTE (BSMOTE), Adaptive Synthetic Sampling (ADSYN), SMOTE-Tomek, and SMOTE-ENN with the XGBoost model separately. The performances of the SMOTE-ENN-XGBoost model, which combined over-sampling and under-sampling algorithms with XGBoost, achieved higher predictive accuracy than the other balanced algorithms with XGBoost models. Thus, SMOTE-ENN-XGBoost provides a theoretical basis for developing evaluation criteria for identifying orphan genes in unbalanced and biological datasets.

Keywords: unbalanced dataset, ensemble learning, orphan genes, XGBoost model, two-class

INTRODUCTION

The process of identifying orphan genes is an emerging field. Orphan genes play critical roles in the evolution of species and the adaptability of the environment (Davies and Davies, 2010; Donoghue et al., 2011; Huang, 2013; Cooper, 2014; Gao et al., 2014). In most plant species, orphan genes make up about 10–20% of the number of genes (Khalturin et al., 2009; Tautz and Domazet-Loso, 2011), and each species has a specific proportion of orphan genes (Khalturin et al., 2009;
Arendsee et al., 2014). Many attempts have been made to
identify orphan genes in multiple species or taxa and
to analyze their functions. The whole genome and transcriptome
sequences of many species have been published, including those
of Arabidopsis thaliana (Arabidopsis Genome Initiative, 2002),
Oryza sativa (Goff et al., 2002), Populus (Tuskan et al., 2006),
and the discovery of orphan genes among these sequences has
helped to clarify the special biological characteristics and
environmental adaptability of angiosperm. For example, the
A. thaliana orphan genes qua-quine starch (QQS) alter the carbon
and nitrogen content of the plant, increasing the protein content
and decreasing the starch content (Li et al., 2009; Arendsee
et al., 2014); the wheat, TaFROG (Triticum aestivum fusarium
resistance orphan gene) contributes to disease resistance genes
for crop-breeding programs (Perochon et al., 2015); and the rice
orphan gene GN2 (GRAINS NO. 2) can affect plant height and
rice yield (Chen et al., 2017).

Currently, orphan genes are detected mainly by comparison
of genome and transcriptome sequences of related species using
BLAST (Blast-Basic Local Alignment Search Tool; Altschul et al.,
1990; Tollriera et al., 2009). However, this approach requires
large server resources and time, and common problems with
complexity and timeliness occur (Ye et al., 2012).

Computational technology and machine learning (ML)
algorithms are widely used in the detection of orphan genes
in big datasets. The method of ML can be used to make two
types of field classification from an enormous genome dataset
(Libbrecht and Noble, 2015; Syahrani, 2019). Orphan genes
are widely distributed in plant species and generally exhibit
significant differences in gene length, the number of exons, GC
content, and expression level compared to protein-coding genes
(Donoghue et al., 2011; Neme and Tautz, 2013; Yang et al., 2013;
Arendsee et al., 2014; Xu et al., 2015; Ma et al., 2020). In systems
biology, traditional classification methods, such as Support
Vector Machines (SVMs; Zhu et al., 2009) or Random Forest
(RF; Pang et al., 2006; Dimitrakopoulos et al., 2016) have been
applied in the classification scheme. More recently, ensemble
classification algorithms have achieved remarkable results in
the fields of biology and medicine (Chen and Guestrin, 2016).

Additionally, the number of orphan genes is much less than
the numbers of non-orphan gene datasets, therefore unbalanced
datasets pose significant problems for developers of classifiers.
The original method of over-sampling and under-sampling
(Drummond and Holte, 2003; Chen and Guestrin, 2016) can help
address the problems of an unbalanced dataset (Weiss, 2004;
Zhou and Liu, 2006). In over-sampling methods, the synthetic
minority over-sampling technique (SMOTE) (Demi dova and
Klyueva, 2017) can add new minority class examples, but
the deleted information of majority samples may contain
representative information of the majority class. Then, the
improved SMOTE which combines with edited nearest neighbors
(SMOTE-ENN) algorithm (Zhang et al., 2019), is used in the
K-nearest neighbor (KNN) method to classify the sampled
dataset, by the theory of over-sampling and under-sampling.

The bagging and boosting methods are two important
approaches to ensemble learning (Breiman, 1996) that can
improve the accuracy of a model significantly. The boosting
family algorithm adaptively fits a series of weak models and
combines them. Because the number of minority samples in an
unbalanced dataset is small, they are easily misclassified, so the
results of the previous classifier determine the parameters of the
later model and let the next classifier focus on training the last
misclassified sample. Therefore, the Boosting family algorithm
pays more attention to samples that are difficult to classify, which
can effectively improve the prediction accuracy.

In the study described in this manuscript, over-sampling
and under-sampling algorithms were introduced to clean up
unbalanced data (Chawla et al., 2002). Representative serial
classified algorithms of the Boosting family are AdaBoost
(adaptive boosting), GBDT (gradient boosting decision tree),
XGBoost (extreme gradient boosting), and the representative
parallel classified algorithm are SVM and RF. The performance
of these five classification models with over-sampling SMOTE
is better than those with single classifiers. The relevant features
of the whole gene sequencing of A. thaliana were designed as a
model for the identification and prediction of orphan genes. The
result could show that balancing algorithms play a more effective
guiding role in identifying the orphan genes in a species.

MATERIALS AND METHODS

Data Processing Method for Unbalanced Data

Data preprocessing is the first step for data mining and affects the
result. Preprocessing includes data discretization, missing values,
attribute coding, and data standard regularization. In practice,
each industry has unique data characteristics, so different
methods are used to analyze the data and perform preprocessing.

The processing of unbalanced data describes classes with
obviously uneven distribution. The traditional method used
random over-sampling to increase the number of small-class
samples to achieve a consistent number. Because this method
achieves balance by a simple random over-sampling strategy
of copying data, the added repeated data will increase the
complexity of data training and induce over-fitting.

To deal with the problem of unbalanced data classification,
some algorithms have been used effectively to improve the
performance of classification. Common methods for processing
datasets included mainly: over-sampling and under-sampling,
or a combination of under-sampling and over-sampling.

Over-Sampling SMOTE and Borderline
SMOTE

To solve the problem of over-fitting associated with unbalanced
data when the learning information is not generalized, Chawla
et al. (2002) proposed the SMOTE algorithm for preprocessing
over-sampling data of synthetic minority categories. SMOTE was
designed based on a random over-sampling method in the feature
space. By analyzing data with few categories, many new data
are generated by linear interpolation and added to the original
data set. SMOTE first selects each sample from the minority
samples successively as the root sample for the synthesis of the
new sample. Then according to the up-sampling rate \(n \), SMOTE randomly selects one of \(K \) (\(K \) is generally odd, such as \(K = 5 \)) neighboring samples of the same category, which is used as an auxiliary sample to synthesize a new sample and repeated \(n \) times. Finally, linear interpolation is performed between the sample and each auxiliary sample to generate \(n \) synthesized samples. The basic flow of the algorithm is:

(i) Find \(K \) samples of the nearest neighbor for each sample \(x_i \), whose label is “1”;
(ii) A sample \(x_i \) belonging with few categories is selected randomly from \(K \);
(iii) Linearly interpolate randomly between \(x_i \) and \(x_j \) to construct a new minority sample.

The SMOTE algorithm effectively solves the problem of over-fitting caused by the blind replication of random over-sampling techniques. However, the selection of the nearest neighbor sample in step 1 exits is purposeless. Users need to determine the number of \(K \) values of the neighbor samples themselves, so it is difficult to determine the optimal value. Additionally, the newly synthesized samples may fall into the sample area labeled “0,” which confuses the boundaries between them and interferes with the correct classification of the data.

Therefore, to address these two problems, Wang et al. (2015) proposed Borderline SMOTE (an over-sampling method in unbalanced datasets learning), which is an improved over-sampling algorithm based on SMOTE. By finding suitable areas that can better reflect the characteristics of the data to be interpolated, the problem of sample overlap can be solved. The Borderline SMOTE algorithm uses only a few samples on the boundary to synthesize new samples, thereby improving the internal distribution of samples.

Adaptive Synthetic Sampling

Adaptive Synthetic Sampling adaptively generates different numbers of sampling samples according to data distribution (He et al., 2008). The basic flow of the algorithm is below:

(i) Calculate the number of samples to be synthesized, as follows: \(G = (m_l - m_s) \times \beta \), where \(m_l \) is the number of majority samples, and \(m_s \) is the number of minority samples. If \(\beta = 1 \), the number of positive and negative samples is the same after sampling, indicating that the data is balanced at this time.

(ii) Calculate the number of \(K \) nearest neighbor values of each minority sample, \(\Delta \) is the number of majority samples in the \(K \) neighbors, the formula is as follows: \(\Delta_i = \frac{m_l}{K} \), where \(\Delta_i \) is the number of majority samples in \(K \) nearest neighbors, \(i = 1, 2, 3, \ldots, m_s \).

(iii) To normalize \(\Delta_i \), the formula is \(\hat{r}_i = \frac{r_i}{\sum_{i=1}^{m_s} r_i} \).

(iv) According to the sample weights, calculate the number of new samples that need to be generated for every minority sample. The formula is \(g = \hat{r} \times G \).

Select one sample from the \(K \) neighbors around each data with the label “1” to be synthesized, calculate the number to be generated according to \(g \) the formulas:

\[
x_{i,s} = x_i + (x_{i,k} - x_i) \times \lambda,
\]

where \(s_i \) is the synthetic sample, \(x_i \) is the \(i \)th minority samples, and \(x_{i,k} \) is a random number of the minority sample \(\lambda \in [0,1] \) selected from the \(K \) nearest neighbors of \(x_i \).

Combining Algorithms

Apart from using a single under-sampling or over-sampling method, two resampling methods can be combined. For example, SMOTE-ENN (Zhang et al., 2019), ENN is an under-sampling method focusing on eliminating noise samples, which is added to the pipeline after SMOTE to obtain cleaner combined samples. For each combined sample, its nearest-neighbors are computed according to the Euclidean distance. These samples will be removed whose most KNN samples are different from other classes (shown in Figure 1).

SMOTE-Tomek (Batista et al., 2004) also combine SMOTE with Tome-links (Tomek), a data cleaning method to handle the overlapping parts, which are difficult to classify for a few classes and most surrounding samples. A Tome link can be defined as follows: given that sample \(x \) and \(y \) belong to two classes, and be the distance between \(x \) to \(y \) as \(d(x,y) \). If there is not a sample \(z \), such as \(d(x,z) < d(x,y) \) or \(d(y,z) < d(x,y) \), A \((x,y)\) pair is called a Tome link.

Ensemble Learning Methods

The main idea of the ensemble learning algorithm is to construct multiple classifiers with weak performance and use a certain strategy to combine them into a classifier with strong generalization performance. Consequently, the performance of the ensemble is better than that of a single classifier.

This study created two classification models for unbalanced datasets and used Python to build five integrated learning models of SVM, RF, AdaBoost, GBDT, and XGBoost and conducted comparative experiments to find the optimal model. XGBoost performed best in the classification. Five kinds of balanced data learning methods of resampling: SMOTE, BSMOTE, ADASYN, SMOTE-ENN, and SMOTE-Tomek, were then combined with XGBoost to build an ensemble model that produced excellent classification results (Lemaitre et al., 2017; Wu et al., 2018).

XGBoost was modified by adding regular items to the GBDT algorithm that can predict the orphan gene binary classification problem and increase the calculation speed. XGBoost uses the gradient boosting algorithm of the based learner classification and regression tree (CART) to calculate the complexity of the leaf nodes of each tree and uses the gradient descent algorithm to minimize the loss for finding the optimal prediction score, thus avoiding over-fitting the learned model and effectively controlling the complexity of the model (Chen and Guestrin, 2016).

The derivation process is as follows:

(i) Objective function: \(obj(\theta) = \sum_{i=1}^{n} l(y_i, \hat{y}_i) + \sum_{k=1}^{K} \Omega(f_k) \)

(ii) Using the first and second derivatives, the Taylor formula expands:

\[
obj^{(t)} = \sum_{i=1}^{n} l(y_i, \hat{y}_i^{(t-1)}) + g_\hat{f}(x_i) + \Omega(f_t) + constant
\]
(iii) Measuring the complexity of the decision tree as: \(\Omega (\Phi) = \gamma T + \frac{1}{2} \lambda \sum_{j=1}^{T} w_j^2 \), where \(T \) is the number of leaf nodes in the decision tree, and \(w \) is the prediction result corresponding to the leaf node.

(iv) Substituting the above two steps into the objective function (1), it is organized as:

\[
\text{obj}(t) \approx \sum_{i=1}^{n} \left[g_i w_q(x_i) + \frac{1}{2} \left(h_i w_q^2(x_i) \right) \right] + \gamma T + \frac{1}{2} \sum_{j=1}^{T} w_j^2
\]

\[
= \sum_{j=1}^{T} \left[G_j w_j + \frac{1}{2} (H_j + \lambda) w_j^2 \right] + \gamma T
\]

(v) Then, \(I_j = \{ i | q(x_i) = j \} \), represents the sample set belonging to the \(j \)-th leaf node.

\[
G_j = \sum_{i \in I_j} g_i, \quad H_j = \sum_{i \in I_j} h_i,
\]

(vi) To minimize the objective function, let the derivative be 0 and find the optimal prediction score for each leaf node:

\[
w_j^* = -\frac{G_j}{H_j + \lambda}
\]

(vii) Substitute the objective function again to get its minimum value:

\[
\text{obj}(t) = -\frac{1}{2} \sum_{j=1}^{T} \frac{G_j^2}{H_j + \lambda} + \gamma T
\]

(viii) Find the optimization goal of each layer of the build tree through \(\text{obj} \) to find the optimal tree structure, and split the left and right subtrees as:

\[
\text{Gain} (\Phi) = \frac{1}{2} \left[\frac{\left(\sum_{i \in L_L} g_i \right)^2}{\sum_{i \in L_L} h_i + \lambda} + \frac{\left(\sum_{i \in L_R} g_i \right)^2}{\sum_{i \in L_R} h_i + \lambda} - \left(\sum_{i \in I} g_i \right)^2 \right] - \gamma
\]
TABLE 1 | Binary confusion matrix.

Real positive	Real negative	
Predict positive	TP	FP
Predict negative	FN	TN

Confusion Matrix

The confusion matrix (error matrix) is a matrix table (shown in Table 1) that is used to judge whether a sample is 0 or 1 and reflects the accuracy of classification. The results of the classification model are analyzed using four basic indicators: true positive (TP), true negative (TN), false positive (FP), and false negative (FN). The prediction classification model that gives the best results will have a large number of TPs and TNs and a small number of TPs and TNs.

(i) True positive (TP): the actual value of the model is the orphan genes, so the model predicts the number of orphan genes.

(ii) False positive (FP): the actual value of the model is the orphan gene, but the model predicts the number of non-orphan genes.

(iii) False negative (FN): the true value of the model is non-orphan genes, so the model predicts the number of orphan genes.

Recall, Precision, and F1 Value as Performance Indicators

A large number of confusion matrix statistics make it difficult to measure the pros and cons of a model. Therefore, we added using Recall, Precision, and F1-score, as performance indicators to better evaluate the performance of the model:

(i) Recall rate (accuracy rate of positive samples):

\[
\text{Recall} = \frac{TP}{TP + FN}
\]

(ii) Precision (precision rate of positive samples):

\[
\text{Precision} = \frac{TP}{TP + FP}
\]

(iii) F1-score value:

\[
\text{F1} = \frac{2\times\text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}
\]

ROC Curve and AUC Value

The receiver operating characteristic (ROC) curve reflects the probability of identifying correct and wrong results according to different thresholds. The curve passes (0, 0) and (1, 1), and the validity of the model is generally determined by the diagonal of the curve in the upper left section of the graph.

The AUC value is the value of the area under the ROC curve, which is generally between 0.5 and 1. The quantized index value can better compare the performance of the classifiers: a high performance classifier AUC value is close to 1.

![FIGURE 2](image-url)
TABLE 3 | Compute time compared among Adaboost, GBDT, XGBoost models with SMOTE algorithm.

Training model	Time (s)
Adaboost	11.7
GBDT	10.3
XGBoost	0.3

TABLE 4 | F1 scores of GBDT, Adaboost, XGBoost models with the SMOTE algorithm on test datasets.

n_estimators	Learning_rate	GBDT	AdaBoost	XGBoost
200	0.2	90	87.6	93
200	0.1	89	88	92
200	0.01	87	87.4	91
150	0.2	90	87.9	93
150	0.1	89	87.4	91
150	0.01	87	87.4	88
100	0.2	89	87.5	92
100	0.1	88	87.5	90
100	0.01	87	87.5	88

RESULTS

Collating Feature Data of Orphan and Non-orphan Genes
The whole genome data of the angiosperm A. thaliana were obtained from The Arabidopsis Information Resource (TAIR8) dataset ftp://ftp.arabidopsis.org/home/tair/ Genes/TAIR8_genome_release, which contained a total of 32825 gene sequences. The known orphan genes of A. thaliana downloaded from the public website https://www.biomedcentral.com/content/ supplementary/1471-2148-10- %2041-S2.TXT (Lin et al., 2010). The protein sequences and coding sequences were downloaded from TAIR. GC percent, protein length, molecular mass, protein isoelectric point (pI), average exon number were selected. The six features of the protein and coding sequences were recorded as V1–V6 (Perochon et al., 2015; Shah, 2018; Ji et al., 2019). The class of orphan genes is recorded as a Class problem, where the label of orphan genes is recorded as 1 and the non-orphan genes are recorded as 0, combined with V1–V6 features (Ji et al., 2019; Li et al., 2019).

Analyzing Orphan and Non-orphan Gene Dataset
There were 32825 samples in the gene datasets, but only about 4.08% of them were orphan genes, so the distribution of orphan and non-orphan samples was uneven. We evaluated whether the models can identify the orphan genes. For traditional ML classification algorithms, the premise is that the amount of data between categories is balanced, or that the cost of misclassification for each category is the same. Therefore, the direct application of many algorithms leads to more predictions being made for the category with a larger number.

To solve the problem, of unbalanced data sets, we first used over-sampling to copy small sample data, which increased the number of categories with fewer samples. This method balanced the numbers of orphan and non-orphan samples to improve the learning ability of the classifier. The random sampling method was used to divide the samples into training and testing sets with a ratio of 8:2 which is the same ratio as the original dataset (Table 2).

The training set was used to design the model, and the test set was used to test the performance of the model. The Precision, Recall, F1, and AUC evaluation indicators were used to compare the model classifiers to determine the effectiveness of the models and select the best model.

We used SMOTE to balance the numbers of orphan and non-orphan genes in the original A. thaliana gene dataset shown in Figure 2.

Training Model Using Ensemble Learning Methods
Among the ensemble learning methods, some members of the Boosting family, such as Adaboost, GBDT, XGBoost, can be used to train classifying models, which can save the compute time remarkably (Table 3).

Two parameters, train_node and learning_rate were considered to reduce the complexity in modeling. However, selecting the best parameters for the ensemble learning algorithms is important to avoid an over-fitting problem. For this study, we set the learning_rate as 0.01, 0.1, and 0.2 and train_node as 100, 150, 200 to compute the F1 score. AdaBoost, GBDT, XGBoost with the two parameters are used to classify the samples in the training and testing datasets (Table 2). The results are shown in Table 4.

Overall, the XGBoost with SMOTE performed better than Adaboost and GBDT models with SMOTE.

Performance of Different Models With Balanced and Unbalanced Datasets
Five models, SVM, RF, GBDT, AdaBoost, and XGBoost were used as baseline classifiers to distinguish orphan and non-orphan genes in the unbalanced and balanced A. thaliana gene datasets. The results are shown in Table 5.

Overall, the five models produced better results with the balanced datasets. However, the accuracy of the models with the balanced datasets was lower than with the unbalanced dataset, which indicates the classification of orphan genes was towards the majority samples of non-orphan genes. These results clearly show that designing models using unbalanced datasets will lead to significant inaccuracies, which cannot identify orphan genes VS non-orphan genes precisely. This indicates the importance of using a balancing algorithm to balance datasets in the first step of the classification process.
TABLE 5 | Performance of models in distinguishing orphan vs. non-orphan genes in A. thaliana gene balanced and unbalanced datasets with 8:2 training-testing ratios.

Best Model	Unbalanced datasets (%)	Balanced datasets (SMOTE) (%)								
	Accuracy	Precision	Recall	F1	AUC	Accuracy	Precision	Recall	F1	AUC
SVM	97	78	47	58	74	83	83	83	83	88
RF	96	47	58	52	93	84	77	98	86	95
GBDT	96	60	59	60	94	87	87	87	87	94
Adaboost	97	56	73	45	93	87	86	89	89	95
XGBoost	97	81	50	62	94	92	91	95	93	97

On the balanced A. thaliana gene dataset, the performance indices of five classifier models on the testing datasets are shown in Figure 3. Overall, the ensemble models were better than the single classifiers, as determined by the performance indicators, among them, the AUC and precision values of XGBoost, GBDT, AdaBoost with SMOTE were higher than SVM, RF with SMOTE algorithm. Particularly, XGBoost with SMOTE produced the highest results among all classifier models (t-test, $P < 0.05$). In particular, the F1 value indicates that the XGBoost model can distinguish orphan genes and non-orphan genes precisely.

We found that the ROC curve of SMOTE-XGBoost completely wrapped the ROC curves of the other methods, and the Precision-Recall (PR) curve confirmed that XGBoost produced the best performance among the five balancing algorithm methods (Figure 4).

The PR curve (Figure 4) indicated that when the classification threshold was near 1, all the samples were classified as non-orphan genes, and the Precision and Recall values were 0 at this time. When the classification threshold was 0.9, there were no FPs, so the Precision was 1, which means all the genes were classified as orphans. Because the number of TPs was small, the Recall was small and the Precision value declined continually. When the threshold declined to 0, all the samples were classified as non-orphan genes, meaning that the Precision will not be 0, because there were no FNs, and the Recall value was 1. This indicates that the prediction result is reasonable.
FIGURE 5 | Model confusion matrices for XGBoost combined with five over-sampling models: (A) ADASYN-XGB; (B) SMOTE-Tomek-XGB; (C) BSMOTE-XGB; (D) SMOTE-XGB; (E) SMOTE-ENN-XGB.
TABLE 6 | Performance indices of the ensemble of composite XGBoost classifiers.

Evaluation value	ADASYN-XGB (%)	BSMOTE-XGB (%)	SMOTE-XGB (%)	SMOTE-ENN-XGB (%)	SMOTE-Tomek-XGB (%)
Accuracy	85	92	88	95	89
Precision	83	89	87	94	88
Recall	89	97	89	95	90
F1	86	93	88	95	89
AUC	92	97	95	98	96

Performance of XGBoost With Different Balanced Algorithm Methods

We also tested five different models, XGBoost combined with a balanced algorithm including SMOTE, BSMOTE, ADASYN, SMOTE-Tomek, SMOTE-ENN, to further explore the result of the unbalanced datasets. The results of the confusion matrices of five models are shown in Figure 5. The performance of the SMOTE-ENN-XGBoost model is better and the predicted value is higher, which indicates fewer incorrect classifiers.

The performance indices of the five balanced algorithms with ensemble XGBoost classifiers models are shown in Table 6. The ensemble SMOTE-ENN-XGB model had the highest among the other ensemble models to predict orphan genes (ORFans).

Therefore, the SMOTE-ENN-XGBoost model is used to classify and analyze the orphan genes in unbalanced datasets and applied to the actual predictions.

DISCUSSION

Our research indicates that in the classification of orphan vs Non-orphan genes the ML method is preferred because the traditional biological method is time-consuming and labor-intensive. Since the orphan genes of plant species have similar characteristics, we selected 6 features of the *A. thaliana* dataset to build training and testing models (Donoghue et al., 2011).

The datasets of orphan genes and non-orphan genes are often unbalanced, which tends to produce a bias towards majority samples. To overcome this problem, we combined over-sampling and under-sampling algorithms, making the trained model with balanced datasets, which improves the generalization ability of the model, and eventually, the precision, recall, F1, and AUC for the test set are significantly increased. To further compare the result of the evaluation, the balanced algorithm combines classifying learning algorithms, RF, SVM, Adaboost, GBDT, XGBoost, which have similar improved results. Furthermore, the boosting methods containing Adaboost, GBDT, XGBoost have a better performance than those that use RF and SVM. Thus, ensemble boosting learning models are an important method in advancing the identification of orphan genes and non-orphan genes in unbalanced datasets. At the same time, the same training node and learning rate parameters were automatically used for parallel computing among the boosting methods, which revealed that the XGBoost model was more practical than other models for classifying orphan genes. In particular, since it saves time and labor, classifying orphan versus non-orphan genes experimentally in this way could benefit this field and future studies.

To increase the precision of these ensemble models, we compared five different balanced algorithms including SMOTE, BSMOTE, ADASYN, SMOTE-Tomek, SMOTE-ENN combing with XGBoost models. SMOTE-ENN with XGBoost has a better evaluation result, especially the value of Recall. In this paper, we propose the SMOTE-ENN-XGBoost model for efficiently identifying unbalanced datasets of orphan genes. We built the SMOTE-ENN-XGBoost model to classify genes by predicting 0 or 1 values. The results showed that the ensemble classifiers method classified the orphan and non-orphan genes more precisely than the single classifiers, and among the five ensemble models with XGBoost, the SMOTE-ENN-XGBoost model performed best.

This study provides a new method for the identification of unbalanced datasets of orphan genes, which can be applied in the classification of unbalanced biological datasets. Meanwhile, the method can support the evolution of species.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found in the article/Supplementary Material.

AUTHOR CONTRIBUTIONS

QG and XJ: development of methodology. HY and YX: sample collection. QG, XJ, EX, and XW: analysis and interpretation of data. QG, XJ, LG, and SL: writing, review, and revision of the manuscript. All authors contributed to the article and approved the submitted version.

FUNDING

This work was supported by the State Key Laboratory of Tea Plant Biology and Utilization (Grant Number...
SKLTOF20190101), the National Science and Technology Support Program (Grant Number 2015BAD04B0302), and the International S&Y Cooperation Project of the China Ministry of Agriculture (Grant Numbers 2015-Z44 and 2016-X34).

REFERENCES

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990). Basic local alignment search tool. J. Mol. Biol. 215, 403–410. doi: 10.1016/S0022-2836(05)80360-2

Arabidopsis Genome Initiative (2002). Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–813. doi: 10.1038/35048692

ARENDSEE, Z. W., LI, L., AND WURTELE, E. S. (2014). Coming of age: orphan genes in plants. Trends Plant Sci. 19, 498–708. doi: 10.1016/j.tplants.2014.07.009

Batista, G. E., Prati, R. C., and Monard, M. C. (2004). A study of the behavior of several methods for balancing machine learning training data. SIGKDD Expl. 6, 20–29. doi: 10.1145/1007730.1007735

Breiman, L. (1996). Bagging predictors. Mach. Learn. 26, 123–140. doi: 10.1007/bf0006565

Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P. (2002). SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357. doi: 10.1613/jair.953

Chen, H., Tang, Y., Liu, J., Tan, L., Jiang, J., Wang, M., et al. (2017). Emergence of a Novel Chimeric Gene Endering Grain Number in Rice. Genetics 205, 993–1002. doi: 10.1534/genetics.116.188201

Chen, T., and Guestrin, C. (2016). “XGBoost: A Scalable Tree Boosting System,” in ICML Workshop Learn. Funct. Integr. Genom. 2016, 5969–5972.

Cooper, E. D. (2014). Horizontal gene transfer: accidental inheritance drives adaptation. Curr. Biol. 24, R562–R566. doi: 10.1016/j.cub.2014.04.042

Davies, J., and Davies, D. (2010). Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 74, 417–433. doi: 10.1128/MMBR.0001610

Demidova, L., and Klyueva, I. (2017). “SVM classification: Optimization with the SMOTE algorithm for the class imbalance problem,” in Paper presented at the mediterranean conference on embedded computing, (New York: IEEE).

Dimitrakopoulos, G. N., Balomenos, P., Vrahatis, A. G., Sgarbas, K. N., and Bezerianos, A. (2016). Identifying disease network perturbations through regression on gene expression and pathway topology analysis. Int. Conferen. IEEE Engin. Med. Biol. Soc. 2016, 5969–5972.

Donoghue, M. T., Keshavaiah, C., Swamidatta, S. H., and Spillane, C. (2011). Dimirakopoulous, G. N., Balomenos, P., Vrahatis, A. G., Sgarbas, K. N., and Bezerianos, A. (2016). Identifying disease network perturbations through regression on gene expression and pathway topology analysis. Int. Conferen. IEEE Engin. Med. Biol. Soc. 2016, 5969–5972.

Donoghue, M. T., Keshavaiah, C., Swamidatta, S. H., and Spillane, C. (2011). Evolutionary origins of Brassicaceae specific genes in Arabidopsis thaliana. BMC Evol. Biol. 11:47. doi: 10.1186/1471-2148-11-47

Drummond, C., and Holte, R. C. (2003). “C4.5, class imbalance, and cost sensitivity: Why under-sampling beats over-sampling,” in Workshop Notes. ICML Workshop Learn. Funct. Integr. Genom. 2016, 5969–5972.

Gao et al. Unbalanced Datasets With Ensemble Learning Method

More than just orphans: are taxonomically-restricted genes important in plants? Trends Genet. 25, 404–413. doi: 10.1016/j.tig.2009.07.006

Lemaître, G., Nogueira, F., and Aridas, C. K. (2017). Imbalanced-learn: A Python Toolbox to Tackle the Curse of Imbalanced Datasets in Machine Learning. J. Mach. Learn. Res. 18, 559–563.

Li, L., Foster, C. M., Gan, Q., Nettleton, D., James, M. G., Myers, A. M., et al. (2009). Identification of the novel protein QQS as a component of the starch metabolic network in Arabidopsis leaves. Plant J. 58, 485–498. doi: 10.1111/j.1365-313X.2009.03793.x

Li, W., Yin, Y., Quan, X., and Zhang, H. (2019). Gene expression value prediction based on XGBoost algorithm. Front. Genet. 10:1077. doi: 10.3389/fgene.2019.01077

Llibre, M., and Noble, W. (2015). Machine learning applications in genetics and genomics. Nat. Rev. Genet. 16, 321–332. doi: 10.1038/nrg3920

Lin, H. N., Moghe, G., Ouyang, S., Iezzoni, A., Shiu, S. H., Gu, X., et al. (2010). Comparative analyses reveal distinct sets of lineage-specific genes within Arabidopsis thaliana. BMC Evol. Biol. 10:41. doi: 10.1186/1471-2148-10-41

Ma, S., Yuan, Y., Tao, Y., Jia, H., and Ma, Z. (2020). Identification, characterization and expression analysis of lineage-specific genes within Triticaceae. Genomics 112, 1343–1350. doi: 10.1016/j.ygeno.2019.08.003

Neme, R., and Tautz, D. (2013). Phylogenetic patterns of emergence of new genes support a model of frequent de novo evolution. BMC Genomics 14:117. doi: 10.1186/1471-2164-14-117

Pang, H., Lin, A. P., Holford, M., Enerson, B. E., Lu, B., Lawton, M. P., et al. (2006). Pathway analysis using random forests classification and regression. Bioinformatics 22, 2028–2036. doi: 10.1093/bioinformatics/btl344

Perochon, A., Jia, J. G., Kahla, A., Arunachalam, C., Scofield, S. R., Bowden, S., et al. (2015). TaFROG Encodes a Pooidae Orphan Protein That Interacts with SnRK1 and Enhances Resistance to the Mycotoxigenic Fungus Fusarium graminearum. Plant Physiol. 169, 2895–2906. doi: 10.1079/11933-jppl2019.090103

Tautz, D., and Domazet-Loso, T. (2011). The evolutionary origin of orphan genes. Nat. Rev. Genet. 12, 692–702. doi: 10.1038/nrg3053

Tollieria, M., Castelo, R., Bellora, N., and Alba, M. M. (2009). Evolution of primate orphan proteins. Biochem. Syst. Ecol. 37, 777–782. doi: 10.1016/j.bse.2007.07.077

Tuskan, G. A., Difazio, S. P., Jansson, S., Bohlmann, J., Grigoriev, I. V., Hellsten, U., et al. (2006). The genome of Black Cottonwood, Populus trichocarpa (Torr. & Gray). Science 313, 1596–1604.

Wang, K. J., Adrian, A. M., Chen, K. H., and Wang, K. M. (2015). A hybrid classifier combining Borderline-SMOTE with AIRS algorithm for estimating brain metastasis from lung cancer: a case study in Taiwan. Comput. Meth. Progr. Biomed. 119, 63–76. doi: 10.1016/j.cmpb.2015.03.003

Weiss, G. M. (2004). Mining with rarity: a unifying framework. Sigkdd Explor. 6, 7–19. doi: 10.1145/1007730.1007734

Yu, J., Lin, W., and Ji, Y. (2018). An Integrated Ensemble Learning Model for Imbalanced Fault Diagnostics and Prognostics. New Jersey: IEEE. 8394–8402.

Xu, Y., Wu, G., Hao, B., Chen, L., Deng, X., and Xu, Q. (2015). Identification, characterization and expression analysis of lineage-specific genes within sweet orange (Citrus sinensis). BMC Genomics 16:995. doi: 10.1186/s12864-015-2211-z

Yang, L., Zou, M., Fu, B., and He, S. (2013). Genome-wide identification, characterization, and expression analysis of lineage-specific genes within zebrafish. BMC Genomics 14:65. doi: 10.1186/1471-2164-14-65

Ye, J., Coulouris, G., Zaretskaya, I., Cutcutache, I., Rozen, S., and Madden, T. L. (2012). Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13:134. doi: 10.1186/1471-2105-13134
Zhang, X., Ran, J., and Mi, J. (2019). "An Intrusion Detection System Based on Convolutional Neural Network for Imbalanced Network Traffic," in Paper presented at the international conference on computer science and network technology, (New Jersey: IEEE).

Zhou, Z. H., and Liu, X. Y. (2006). Training cost-sensitive neural networks with methods addressing the class imbalance problem. *IEEE Trans. Know. Data Engin.* 18, 63–77. doi: 10.1109/TKde.2006.17

Zhu, Y., Shen, X., and Pan, W. (2009). Network-based support vector machine for classification of microarray samples. *BMC Bioinformatics.* 10:S21. doi: 10.1186/1471-2105-10-S1-S21

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Gao, Jin, Xia, Wu, Gu, Yan, Xia and Li. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.