Closure of Patent Foramen Ovale versus Medical Therapy after Cryptogenic Stroke: Meta-Analysis of Five Randomized Controlled Trials with 3440 Patients

Michel Pompeu Barros Oliveira Sá1,2,3,4, MD, MSc, PhD; Luiz de Albuquerque Pereira de Oliveira Neto1,2,4, MD; Gabriella Caroline Sales do Nascimento1,2,4, MD; Erik Evortna da Silva Vieira1,2,4, MD; Gabriel Lopes Martins1,2,4, MD; Karine Coelho Rodrigues1,2,4, MD; Giulia Gioffi Nascimento1,2, MD; Alexandre Motta de Menezes1,2, MD; Ricardo Felipe de Albuquerque Lins1,2, MD; Frederico Pires Vasconcelos Silva1,2, MD; Ricardo Carvalho Lima1,2,3,4, MD, MSc, PhD, ChM

Abstract

Objective: We aimed to determine whether patent foramen ovale closure reduces the risk of stroke, also assessing some safety outcomes.

Introduction: The clinical benefit of closing a patent foramen ovale after a cryptogenic stroke has been an open question for several decades, so that it is necessary to review the current state of published medical data in this regard.

Methods: MEDLINE, EMBASE, CENTRAL/CCTR, SciELO, LILACS, Google Scholar and reference lists of relevant articles were searched for randomized controlled trials that reported any of the following outcomes: stroke, death, major bleeding or atrial fibrillation. Five studies fulfilled our eligibility criteria and included 3440 patients (1829 for patent foramen ovale closure and 1611 for medical therapy).

Results: The risk ratio (RR) for stroke in the “device closure” group compared with the “medical therapy” showed a statistically significant difference between the groups, favouring the “device closure” group (RR 0.400; 95% CI 0.183-0.873, P=0.021). There was no statistically significant difference between the groups regarding the safety outcomes death and major bleeding, but we observed an increase in the risk of atrial fibrillation in the “device closure group (RR 4.000; 95% CI 2.262-7.092, P<0.001). We also observed that the larger the proportion of effective closure, the lower the risk of stroke.

Conclusion: This meta-analysis found that stroke rates are lower with percutaneously implanted device closure than with medical therapy alone, being these rates modulated by the rates of effective closure.

Keywords: Foramen Ovale, Patent. Vascular Closure Devices. Meta-Analysis.

Abbreviations, acronyms & symbols

AHA	American Heart Association
ASA	American Stroke Association
CI	Confidence interval
LILACS	Literatura Latino-Americana em Ciências da Saúde
MeSH	Medical Subject Headings
PFO	Patent foramen ovale
PICOS	Population, Intervention, Comparison, Outcome and Study design

PRISMA = Preferred Reporting Items for Systematic Reviews and Meta-Analyses

RCTs = Randomized controlled trials

RR = Risk ratio

SciELO = Scientific Electronic Library Online

SE = Standard error

DOI: 10.21470/1678-9741-2018-0020

This study was carried out at the Division of Cardiovascular Surgery, Pronto-Socorro Cardiológico de Pernambuco (PROCAPE), Recife, PE, Brazil.

No financial support.
No conflict of interest

Correspondence Address:
Michel Pompeu Barros Oliveira Sá
Pronto-Socorro Cardiológico de Pernambuco (PROCAPE)
Rua dos Palmares S/N – Santo Amaro – Recife, PE, Brazil – Zip code: 74970-240
E-mail: michel_pompeu@yahoo.com.br

Article received on January 19th, 2018
Article accepted on January 20th, 2018.
INTRODUCTION

Rationale

The clinical benefit of closing a patent foramen ovale (PFO) after a cryptogenic stroke has been an open question for several decades. Current American Heart Association (AHA)/American Stroke Association (ASA) guidelines do not support the use of PFO closure among patients with PFO and cryptogenic stroke\(^1\). Nevertheless, new randomized controlled trials (RCTs) were published recently, so that controversy still exists over the preferred management strategy for patients with cryptogenic stroke and PFO. Therefore, it is necessary to review the current state of published medical data in this regard.

Objective

We aimed to determine whether PFO closure reduces the risk of stroke, also assessing some safety outcomes. This analysis was planned in accordance with current guidelines for performing comprehensive systematic reviews and meta-analysis with meta-regression, including the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)\(^2\) guidelines for RCTs. We prespecified our analytical plan and registered the study protocol with PROSPERO, the international prospective register of systematic reviews (CRD42018084583).

METHODS

Eligibility Criteria

With the PICOS (Population, Intervention, Comparison, Outcome and Study design) strategy, studies were considered if: 1) the population comprised patients with recent stroke or transient ischemic attack who had a PFO; 2) there was an intervention group of device closure; 3) there was a control group receiving medical therapy; 4) outcomes studied included any of the following: stroke, death, major bleeding, atrial fibrillation; 5) studies were RCTs.

Information Sources

The following databases were used (until December 2017): MEDLINE; EMBASE; CENTRAL/CCTR (Cochrane Controlled Trials Register); ClinicalTrials.gov; Scientific Electronic Library Online (SciELO); LILACS (Literatura Latino-Americana em Ciências da Saúde); Google Scholar; and reference lists of relevant articles.

Search

We conducted the search with Medical Subject Headings (MeSH) terms (‘Foramen Ovale, Patent’ OR ‘Patent Ovar Foramen’ OR ‘Oval Foramen, Patent’ OR ‘Patent Foramen Ovale’) AND (‘Stroke’ OR ‘Cerebrovascular Accident’ OR ‘Cerebrovascular Accidents’ OR ‘CVA’ OR ‘CVAs’ OR ‘Cerebrovascular Apoplexy’ OR ‘Apoplexy, Cerebrovascular’ OR ‘Vascular Accident, Brain’ OR ‘Brain Vascular Accident’ OR ‘Brain Vascular Accidents, Brain’ OR ‘Cerebrovascular’ OR ‘Cerebrovascular Strokes’ OR ‘Stroke, Cerebrovascular’ OR ‘Strokes, Cerebrovascular’ OR ‘Apoplexy’ OR ‘Cerebral Stroke’ OR ‘Cerebral Strokes’ OR ‘Stroke, Cerebral’ OR ‘Strokes, Cerebral’ OR ‘Stroke, Acute’ OR ‘Acute Stroke’ OR ‘Acute Strokes’ OR ‘Strokes, Acute’ OR ‘Cerebrovascular Accident, Acute’ OR ‘Acute Cerebrovascular Accident’ OR ‘Acute Cerebrovascular Accidents’ OR ‘Cerebrovascular Accidents, Acute’).

Study Selection

The following steps were taken: 1) identification of titles of records through databases searching; 2) removal of duplicates; 3) screening and selection of abstracts; 4) assessment for eligibility through full-text articles; and 5) final inclusion in study. One reviewer followed steps 1 to 3. Two independent reviewers followed step 4 and selected studies. Inclusion or exclusion of studies was decided unanimously. When there was disagreement, a third reviewer made the final decision.

Data Items

The crude endpoints were stroke, death (any cause), major bleeding and atrial fibrillation.

Data Collection Process

Two independent reviewers extracted the data. When there was disagreement about data, a third reviewer checked the data and made the final decision. From each study, we extracted patient characteristics, study design, and outcomes.

Risk of Bias in Individual Studies

Included studies were assessed for the following characteristics: sequence generation (randomization); allocation concealment (selection bias); blinding of participants and personnel (performance bias); blinding of outcome assessors (detection bias); incomplete outcome data addressed (attrition bias) and selective outcome reporting (reporting bias). Considering these characteristics, the papers were classified into A (low risk of bias), B (moderate risk of bias) or C (high risk of bias). Two independent reviewers assessed risk of bias. Agreement between the two reviewers was assessed with kappa statistics for full-text screening and rating of relevance and risk of bias. When there was disagreement about risk of bias, a third reviewer checked the data and made the final decision.

Summary Measures

The principal summary measures were risk ratio (RR) with 95% CI and P values (considered statistically significant when \(P<0.05\)) for stroke, death, major bleeding and atrial fibrillation. The meta-analysis was completed with the software Comprehensive Meta-Analysis (version 2, Biostat, Inc., Englewood, NJ, USA).

Synthesis of Results

Forest plots were generated for graphical presentations of clinical outcomes, and we performed the I\(^2\) test and \(\chi^2\) test for the assessment of heterogeneity across the studies\(^3\). Inter-study heterogeneity was explored using the \(\chi^2\) statistic, but the I\(^2\)-value was calculated to quantify the degree of heterogeneity across the studies that could not be attributable to chance alone. When I\(^2\) was more than 50%, significant statistical heterogeneity was considered to be present. Each study was summarized by the difference in means or RR, depending on the outcome analyzed.
The RR and differences in means were combined across studies using a weighted DerSimonian-Laird random effects model⁴.

Risk of Bias Across Studies

To assess publication bias, a funnel plot was generated for each outcome, statistically assessed by Begg and Mazumdar’s test⁵ and Egger’s test⁶.

Sensitivity Analysis

Sensitivity analyses included the investigation of the influence of a single study on the overall effect – by sequentially removing one study – in order to test the robustness of the main results, so that we could verify whether any study had an excessive influence on the overall results. Moreover, we also analyzed the pool data regarding the outcome “stroke” according to the presence (or absence) of atrial septal aneurysm (hypermobile septum, defined as a septum primum excursion greater than 10 mm).

Meta-Regression Analysis

Meta-regression analyses were performed to determine whether the effects of the PFO closure were modulated by prespecified factors. Meta-regression graphs describe the effect of aspirin on the outcome (plotted on the y-axis) as a function of a given factor (plotted as a mean or proportion of that factor on the x-axis). Meta-regression coefficients show the estimated increase in log RR per unit increase in the covariate. Since log RR > 0 corresponds to RR > 1 and log RR < 0 corresponds to RR < 1, a negative coefficient would indicate that as a given factor increases, the RR decreases, and vice versa.

The predetermined modulating factors to be examined were: age (mean – years), male gender (%), hypertension (%), smoking (%), large shunt before the interventions, atrial septal aneurysm and effective closure (freedom from large shunt after the interventions).

RESULTS

Study Selection

A total of 3,740 citations were identified, of which 9 studies were potentially relevant and retrieved as full-text. Five publications fulfilled our eligibility criteria. Interobserver reliability of study relevance was excellent (Kappa = 0.81). Agreement for decisions related to study validity was very good (Kappa = 0.83). The search strategy can be seen in Figure 1.

Screening

1850 records after duplicates removed

Eligibility

1342 record screened by title

5 studies included in qualitative synthesis

5 studies included in quantitative synthesis

4 full-text articles excluded 1 because participants did not have cryptogenic stroke 1 trial had insufficient data to determine whether it met the criteria 1 was terminated due to unsatisfactory enrolment 1 still enrolling patients

Included

1333 records excluded after abstracts analysis

9 full-text articles assessed for eligibility

Identification

3740 citations identified through MEDLINE, EMBASE, CENTRAL/CCTR, ClinicalTrials.gov, SciELO, LILACS, Google Scholar

Total population: 3440 patients

Device Closure: 1829 patients

Medical Therapy: 1611 patients

Fig. 1 – Flow diagram of studies included in data search. CENTRAL/CCTR=Cochrane Central Register of Controlled Trials; LILACS=Latin American and Caribbean Health Sciences Literature; SciELO=Scientific Electronic Library Online

Synthesis of Results

The RR for stroke in the “device closure” group compared with the “medical therapy” group in each study is reported in Figure 2. There was evidence of moderate heterogeneity of treatment effect among the studies for stroke. The overall RR (95% CI) of stroke showed a statistically significant difference between the groups, favouring the “device closure” group (random effect model: RR 0.400; 95% CI 0.183-0.873, P=0.021).

The RR for death in the “device closure” group compared with the “medical therapy” group in each study is reported in Figure 3A. There was no evidence of heterogeneity of treatment effect among the studies for death. The overall RR (95% CI) of death showed no statistically significant difference between the groups (random effect model: RR 0.760; 95% CI 0.308-1.877, P=0.552).

The RR for major bleeding in the “device closure” group compared with the “medical therapy” group in each study is reported in Figure 3B. There was evidence of mild heterogeneity.
Table 1. Characteristics of the populations.

	CLOSE (N=473)	REDUCE (N=664)	PC (N=414)	RESPECT (N=980)	CLOSURE (N=909)
% of data in metaanalysis	13.7	19.3	12.0	28.4	26.4
Demographic variables					
Age ± SD, years	43.3±10.3	45.1±9.45	44.5±10.2	45.4±9.8	45.5±10.2
Male (%)	58.9	60.1	49.8	54.7	51.8
Medical history variables					
Current smoking (%)	28.9	13.3	23.9	13.3	15.2
Coronary artery disease (%)	NR	NR	1.9	2.9	2.1
Diabetes (%)	2.5	4.2	2.6	7.4	7.8
Hypercholesterolemia (%)	13.9	NR	27.1	39.5	44.1
Hypertension (%)	10.7	25.6	25.8	31.4	31.0
Migraine (%)	30.6	NR	20.5	38.8	33.6
Prior stroke/TIA (%)	3.6	85	37.4	18.6	12.5
Echocardiographic variables					
Atrial septal aneurysm (%)	32.7	NR	23.7	35.6	35.6
Large shunt (%)	92.8	39.3	21.7	76.1	61.1
Treatment variables					
Randomized to device closure (%)	50.3	66.4	49.3	50.9	49.2
Treated with antiplatelets only (%)	49.6	33.6	80.0	88.0	84.7
Device					
Amplatzer PFO Occluder or Cribriform; Starflex; CardioSeal; Intrasept PFO; PFOStar; Helex; Premere; PFO occluder OCCLUDITECH; PFO occluder GORE (GSO)	Either the Helex Septal Occluder device OR the Cardioform Septal Occluder	Amplatzer PFO Occluder (St. Jude Medical)	Amplatzer PFO Occluder (disc occluder)	STARFlex septal closure system (umbrella occluder)	

Table 2. Analysis of risk of bias: internal validity.

Study	Randomization	Selection bias	Performance bias	Detection bias	Attrition bias	Reporting bias
CLOSE 2017	A	A	B	A	A	A
REDUCE 2017	A	A	B	A	A	A
RESPECT 2013	A	A	A	A	A	A
PC 2013	A	A	A	A	A	A
CLOSURE I 2012	A	A	A	A	A	A

A=risk of bias is low; B=risk of bias is moderate; C=risk of bias is high; D=incomplete reporting
Stroke

Study name	Statistics for each study	Weight (Random)	Risk ratio and 95% CI		
	Risk ratio	Lower limit	Upper limit	P-Value	Relative weight (%)
CLOSE 2017	0.034	0.002	0.568	0.019	5.00
REDUCE 2017	0.253	0.096	0.665	0.005	25.35
RESPECT 2013	0.542	0.242	1.215	0.137	28.69
PC 2013	0.206	0.024	1.747	0.147	10.09
CLOSURE I 2012	0.654	0.440	2.068	0.905	29.41
Overall effect	0.400	0.183	0.873	0.021	

Total (95% CI): (1829 (Device Closure); 1611 (Medical Therapy))
Total events: (28 (Device Closure); 60 (Medical Therapy))
Test for heterogeneity: Chisq = 8.79, df = 4 (P = 0.1097); I² = 54.5%
Test for overall random effect: Z = -2.30 (P = 0.021)

Favours Device Closure Favours Medical Therapy

Death (any cause)

Study name	Statistics for each study	Weight (Random)	Risk ratio and 95% CI		
	Risk ratio	Lower limit	Upper limit	P-Value	Relative weight (%)
CLOSE 2017	0.987	0.062	15.694	0.993	10.89
REDUCE 2017	2.534	0.122	52.566	0.548	8.90
RESPECT 2013	0.482	0.121	1.916	0.300	42.94
PC 2013	5.146	0.249	106.544	0.283	8.91
CLOSURE I 2012	0.517	0.096	2.807	0.445	26.56
Overall effect	0.760	0.308	1.877	0.552	

Total (95% CI): (1829 (Device Closure); 1611 (Medical Therapy))
Total events: (9 (Device Closure); 10 (Medical Therapy))
Test for heterogeneity: Chisq = 2.286, df = 4 (P = 0.594); I² = 0.0%
Test for overall random effect: Z = -0.59 (P = 0.552)

Favours Device Closure Favours Medical Therapy

Major Bleeding

Study name	Statistics for each study	Weight (Random)	Risk ratio and 95% CI		
	Risk ratio	Lower limit	Upper limit	P-Value	Relative weight (%)
CLOSE 2017	0.395	0.077	2.016	0.294	14.30
REDUCE 2017	0.674	0.237	1.919	0.480	26.04
RESPECT 2013	4.820	0.232	100.159	0.310	4.95
PC 2013	0.686	0.286	1.644	0.336	31.52
CLOSURE I 2012	2.594	0.816	8.179	0.106	23.19
Overall effect	0.945	0.458	1.911	0.876	

Total (95% CI): (1829 (Device Closure); 1611 (Medical Therapy))
Total events: (30 (Device Closure); 27 (Medical Therapy))
Test for heterogeneity: Chisq = 6.03, df = 4 (P = 0.197); I² = 33.7%
Test for overall random effect: Z = -0.15 (P = 0.876)

Favours Device Closure Favours Medical Therapy

Atrial Fibrillation

Study name	Statistics for each study	Weight (Random)	Risk ratio and 95% CI		
	Risk ratio	Lower limit	Upper limit	P-Value	Relative weight (%)
CLOSE 2017	5.431	1.217	24.237	0.027	16.68
REDUCE 2017	14.664	2.011	106.952	0.008	10.37
RESPECT 2013	2.066	0.850	5.022	0.110	34.41
PC 2013	3.088	0.631	15.124	0.184	15.14
CLOSURE I 2012	7.924	2.398	26.205	0.001	23.40
Overall effect	4.329	2.183	8.586	0.001	

Total (95% CI): (1829 (Device Closure); 1611 (Medical Therapy))
Total events: (64 (Device Closure); 15 (Medical Therapy))
Test for heterogeneity: Chisq = 5.28, df = 4 (P = 0.259); I² = 24.3%
Test for overall random effect: Z = 4.19 (P < 0.001)

Favours Device Closure Favours Medical Therapy

Fig. 2 - Forest plots of efficacy outcomes.

Fig. 3 - Forest plots of safety outcomes.
of treatment effect among the studies for major bleeding. The overall RR (95% CI) of major bleeding showed no statistically significant difference between the groups (random effect model: RR 0.945; 95% CI 0.468-0.873, \(P = 1.911 \)).

The RR for atrial fibrillation in the “device closure” group compared with the “medical therapy” group in each study is reported in Figure 3C. There was evidence of mild heterogeneity of treatment effect among the studies for atrial fibrillation. The overall RR (95% CI) of atrial fibrillation showed a statistically significant difference between the groups (random effect model: RR 4.000; 95% CI 2.262-7.092, \(P < 0.001 \)).

Risk of Bias Across Studies

Funnel plot analysis (Figure 4) disclosed no asymmetry around the axis for the outcomes stroke, major bleeding and atrial fibrillation, which means that we have low risk of publication bias related to these outcomes. However, we detected a possibility of publication bias for the outcome death.

Sensitivity Analysis

Sensitivity analyses performed by removing each single study from the meta-analysis to determine the influence of individual data sets to the pooled RR, showed that none of the studies had a particular impact on the results (Figure 5).

Searching for evidence of a particular impact of the presence of an atrial septal aneurysm on the results, we detected no difference between the groups (Figure 6). Unfortunately, the REDUCE trial was left out of this last analysis because the presence of an atrial septal aneurysm was determined at the time of the PFO closure procedure and, therefore, it was not recorded before trial entry or among the patients in the antiplatelet-only group.

Meta-Regression Analysis

Meta-regression coefficients were statistically significant for, age, hypertension, atrial septal aneurysm and effective closure regarding the outcome “stroke”. For the variables age, hypertension and atrial septal aneurysm, we observed that the older the patients, the larger the proportion of patients with hypertension and the larger the proportion of patients with atrial septal aneurysm, the higher the risk of stroke (Figures 7A, 7B, 7C). Conversely, the larger the proportion of effective closure, the lower the risk of stroke (Figure 7D).

DISCUSSION

Summary of Evidence

To our knowledge, this is the largest meta-analysis of studies performed to date that provides incremental value by demonstrating that patients seem to benefit from device closures in comparison to medical therapy in the reduction of the rate of stroke. On the other hand, there was an increase in the rates of atrial fibrillation. We did not identify the group of patients with an atrial septal aneurysm as a particular group that benefits from the device closure in the sensitivity analysis, although we identified this variable as a risk marker for stroke in the meta-regression. We also observed that the benefit of the device closure in the reduction of the rates of stroke hinges on the rate of effective closure.

Fig. 4 – Publication bias analysis of clinical outcomes by funnel plot graphic.
A

Stroke

Study name	Statistics with study removed	Risk ratio (95% CI) with study removed		
	Lower limit	Upper limit	P-Value	
CLOSE 2017	0.493	0.254	0.957	0.037
REDUCE 2017	0.459	0.181	1.164	0.101
RESPECT 2013	0.308	0.095	0.997	0.049
PC 2013	0.423	0.178	1.006	0.052
CLOSURE I 2012	0.297	0.133	0.684	0.003
Overall effect	0.400	0.183	0.873	0.021

B

Death

Study name	Statistics with study removed	Risk ratio (95% CI) with study removed		
	Lower limit	Upper limit	P-Value	
CLOSE 2017	0.736	0.283	1.918	0.531
REDUCE 2017	0.676	0.262	1.743	0.417
RESPECT 2013	1.070	0.323	3.544	0.911
PC 2013	0.630	0.244	1.626	0.340
CLOSURE I 2012	0.886	0.304	2.585	0.825
Overall effect	0.780	0.308	1.977	0.552

C

Major Bleeding

Study name	Statistics with study removed	Risk ratio (95% CI) with study removed		
	Lower limit	Upper limit	P-Value	
CLOSE 2017	1.101	0.504	2.406	0.808
REDUCE 2017	1.089	0.416	2.849	0.862
RESPECT 2013	0.869	0.425	1.776	0.700
PC 2013	1.107	0.411	2.980	0.840
CLOSURE I 2012	0.683	0.372	1.254	0.219
Overall effect	0.945	0.468	1.911	0.876

D

Atrial Fibrillation

Study name	Statistics with study removed	Risk ratio (95% CI) with study removed		
	Lower limit	Upper limit	P-Value	
CLOSE 2017	4.346	1.831	10.312	0.001
REDUCE 2017	3.673	1.902	7.093	<0.001
RESPECT 2013	6.390	3.030	13.478	<0.001
PC 2013	4.874	2.068	11.492	<0.001
CLOSURE I 2012	3.540	1.662	7.537	0.001
Overall effect	4.329	2.183	8.568	<0.001

Fig. 5 – Sensitivity analysis – one study removed.
patients likely to benefit from closure from those unlikely to benefit. Nevertheless, von Klemperer et al. [15], in a survey of current practice in the United Kingdom, identified that around 80% of the 120 respondents (including cardiologists, stroke physicians and neurologists) agreed that an aneurysmal septum was more likely to implicat the PFO in stroke. Only the CLOSE[7] and RESPECT[8] trials showed isolatedly this difference (as we can see in the Figure 6A), but the pooled analysis did not confirm this finding. On the other hand, we might well recognize that there is a correlation between the presence of an atrial septal aneurysm and the risk of stroke (as we can see in the meta-regression – Figure 7C), which led us to the conclusion that this factor is rather a risk marker than a risk factor. Nevertheless, there is no evidence that we should see it as a primary discriminator between those who should have a PFO closed by means of a device.

The Role of the Effective Closure

The lack of efficacy observed in the CLOSURE I [11] trial has been put down to ineffective PFO closure in the device arm, with 14% demonstrating significant residual right-to-left shunting, whereas, in the other trials, we observed the following rates: 7%
Our meta-regression showed that the more successful the closure, the lower the risk of stroke in the device group (see Figure 7D). Therefore, we must bear in mind that "procedural success", which was defined in the studies as successful implantation with no complications, does not mean 'success of PFO closure', which was defined in the studies as minimal or no shunt after the procedure.

The Problem of Atrial Fibrillation After the Procedure

The rate of new-onset atrial fibrillation was significantly higher in the PFO closure group than in antiplatelet group in our meta-analysis, with most cases detected within 1 month after the procedure — a finding that suggests that the procedure itself induces atrial fibrillation. Indeed, in the closure group, most of the observed cases of atrial fibrillation were periprocedural. The risk of stroke from atrial fibrillation induced by PFO closure has not been determined in the CLOSE[7] trial. In the REDUCE[8] trial, atrial fibrillation was more commonly reported in the PFO closure group, but it was usually transient and the clinical relevance of atrial fibrillation related to closure and overall risk of stroke requires further investigation. In the CLOSURE I[11] trial, a quarter of the strokes in the closure group were ascribed to atrial fibrillation, and in two of these cases, the patients had device-associated thrombus on transthoracic echocardiography.

Future Data to Come Out

At this moment, Song et al.[16] are carrying out the DEFENSE-PFO trial (Device Closure Versus Medical Therapy for Cryptogenic Stroke Patients with High-Risk Patent Foramen Ovale – ClinicalTrials.gov Identifier: NCT01550588), which will shed some additional light on this issue by assessing whether percutaneous device closure of PFO is superior to conventional antithrombotic treatment in preventing stroke recurrence in the cryptogenic stroke patients with high-risk of PFO, which was defined as high-risk of recurrence (PFO size ≥ 2 mm or atrial septal aneurysm or hypermobility by transthoracic echocardiography. This study started in 2012 and will be finished in 2020.

Risk of Bias and Limitations of the Present Study

There are inherent limitations with meta-analyses, including the use of cumulative data from summary estimates. Patient data were gathered from published data, not from individual patient follow-up. Access to individual patient data would have enabled us to conduct further subgroup analysis and propensity analysis to account for differences between the treatment groups. This meta-analysis included only data from randomized studies, which do not reflect the “real world” but, on the other hand, are less limited by publication bias, treatment bias, confounders, and a certain tendency to overestimate treatment effects observed in the observational studies, since patient selection alters outcome and thus make non-randomized studies less robust.

Moreover, besides statistical heterogeneity in some analyses, there is also the issue of the clinical heterogeneity that might have played some role in the pooled results. For instance, in the CLOSE[7] trial, 11 different devices were applied for PFO closure. In the antiplatelet-only group and the PFO closure group, 410 (86.7%) patients received aspirin, 51 (10.8%) received clopidogrel, 6 (1.3%) received aspirin with extended-release dipyridamole, and 6 (1.3%) received aspirin with clopidogrel. As we can see, not all of patients were 100% equally treated.
CONCLUSION

This meta-analysis found that stroke rates are lower with percutaneously implanted device closure than with medical therapy alone, being these rates modulated by the rates of effective closure.

PERSPECTIVES

What is known?

The results of the firstly published three RCTs (CLOSURE [11], PC [18] and RESPECT [19]) revealed that PFO closure had a statistically significant effect on the composite of stroke, transient ischemic attack, and death in adjusted but not unadjusted analyses, as published in a previous pooled analysis of individual participant data.

What is New?

After the publication of the two new RCTs (CLOSE [7] and REDUCE [8]), the pooled results of our meta-analysis with the five RCTs confirmed that PFO closure reduced the rates of stroke, but also reinforced the problem of atrial fibrillation after the procedure, whose impact remains unknown. This meta-analysis revealed that the more effective closure, the lower the risk of stroke.

What is Next?

The publication of the DEFENSE-PFO [16] trial will add important data to those already available. Longer-term follow-up of completed trials will enhance our understanding of the effectiveness of PFO closure, but studies of various antithrombotic treatment regimens, including those in patients undergoing PFO closure, are necessary to address important knowledge gaps. We still need to know whether all of the devices are beneficial.

REFERENCES

1. Kernan WN, Ovbiagele B, Black HR, Bravata DM, Chimowitz ML, Ezekowitz MD, et al. Guidelines for the prevention of stroke in patients with stroke and transient ischemic attack: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2014;45(7):2160-236.
2. Mohler D, Liberati A, Tetzlaff J, Altman DG, for the PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151(4):264-9.
3. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557-60.
4. DerSimonian R, Kacker R. Random-effects model for meta-analysis of clinical trials: an update. Contemp Clin Trials. 2007;28(2):105-14.
5. Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50(4):1088-101.
6. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315(7109):629-34.
7. Mas JL, Derumeaux G, Guillot B, Massarder E, Hosseini H, Mechtouff L, et al.; CLOT investigators. Patent foramen ovale closure or anticoagulation vs. antiplatelets after stroke. N Engl J Med. 2017;377(11):1011-21.
8. Sandergaard L, Kasner SE, Rhodes JF, Andersen G, Iversen HK, Nielsen-Kudsk JE, et al.; GORE REDUCE Clinical Study Investigators. Patent foramen ovale closure or antiplatelet therapy for cryptographic stroke. N Engl J Med. 2017;377(11):1033-42.
9. Carroll JD, Saver JL, Thaler DE, Smalling RW, Berry S, MacDonald LA, et al.; RESPECT Investigators. Closure of patent foramen ovale versus medical therapy after cryptographic stroke. N Engl J Med. 2013;368(12):1092-100.
10. Meier B, Kalesan B, Mattie HP, Khattab AA, Hildick-Smith D, Dudek D, et al.; PC Trial Investigators. Percutaneous closure of patent foramen ovale in cryptographic embolism. N Engl J Med. 2013;368(12):1083-91.
11. Furlan AJ, Reisman M, Massaro J, Mauri L, Adams H, Albers GW, et al.; CLOSE investigators. Patent foramen ovale closure or anticoagulation vs. antiplatelets after stroke. N Engl J Med. 2012;366(11):991-9.
12. Di Tullio MR, Sacco RL, Sciacca RR, Jin Z, Homma S. Patent foramen ovale and the risk of ischemic stroke in a multiethnic population. J Am Coll Cardiol. 2007;49(7):797-802.
13. Homma S, Sacco RL, Di Tullio MR, Sciacca RR, Mohr JP; PFO in Cryptogenic Stroke Study (PICSS) Investigators. Effect of medical treatment, in stroke patients with patent foramen ovale: Patent Foramen Ovale in Cryptogenic Stroke Study. Circulation. 2002;105(22):2625-31.
14. Kent DM, Dahabreh IU, Ruthazer R, Furlan AJ, Reisman M, Carroll JD, et al. Device closure of patent foramen ovale after stroke: pooled analysis of completed randomized trials. J Am Coll Cardiol. 2016;67(8):907-17.
15. Von Klemperer K, Kempny A, Pavitt CW, Janssen JC, Uebing A, Nicol E. Device closure for patent foramen ovale following cryptographic stroke: a survey of current practice in the UK. Open Heart 2017;4(2):e000636.
16. Song JK, Busan YS, Lee JH, Jeong SS, Shin ES. Device closure versus medical therapy for cryptographic stroke patients with high-risk patent foramen ovale (DEFENSE-PFO). [cited 2017 Dec 15] Available from: https://clinicaltrials.gov/ct2/show/study/NCT01550588.