PROOF OF A STRONGER VERSION OF THE AJ CONJECTURE
FOR TORUS KNOTS

ANH T. TRAN

ABSTRACT. For a knot $K$ in $S^3$, the $sl_2$-colored Jones function $J_K(n)$ is a sequence of Laurent polynomials in the variable $t$, which is known to satisfy non-trivial linear recurrence relations. The operator corresponding to the minimal linear recurrence relation is called the recurrence polynomial of $K$. The AJ conjecture [Ga] states that when reducing $t = -1$, the recurrence polynomial is essentially equal to the $A$-polynomial of $K$. In this paper we consider a stronger version of the AJ conjecture, proposed by Sikora [Si], and confirm it for all torus knots.

0. Introduction

0.1. The AJ conjecture. For a knot $K$ in $S^3$, let $J_K(n) \in \mathbb{Z}[t^{\pm 1}]$ be the colored Jones polynomial of $K$ colored by the $n$-dimensional simple $sl_2$-representation [Jo, RT], normalized so that for the unknot $U$,

$$J_U(n) = [n] := \frac{t^{2n} - t^{-2n}}{t^2 - t^{-2}}.$$  

The color $n$ can be assumed to take negative integer values by setting $J_K(-n) = -J_K(n)$. In particular, $J_K(0) = 0$. It is known that $J_K(1) = 1$, and $J_K(2)$ is the ordinary Jones polynomial.

Define two operators $L, M$ acting on the set of discrete functions $f : \mathbb{Z} \to \mathbb{C}[t^{\pm 1}]$ by

$$(Lf)(n) = f(n + 1), \quad (Mf)(n) = t^{2n}f(n).$$  

It is easy to see that $LM = t^2 ML$. Besides, the inverse operators $L^{-1}, M^{-1}$ are well-defined. We can consider $L, M$ as elements of the quantum torus

$$\mathcal{T} = \mathbb{C}[t^{\pm 1}]\langle L^{\pm 1}, M^{\pm 1} \rangle/(LM - t^2 ML),$$

which is not commutative, but almost commutative.

Let

$$\mathcal{A}_K = \{ P \in \mathcal{T} \mid PJ_K = 0 \},$$

which is a left-ideal of $\mathcal{T}$, called the recurrence ideal of $K$. It was proved in [GL] that for every knot $K$, the recurrence ideal $\mathcal{A}_K$ is non-zero. An element in $\mathcal{A}_K$ is called a recurrence relation for the colored Jones polynomial of $K$.

The ring $\mathcal{T}$ is not a principal left-ideal domain, i.e. not every left-ideal of $\mathcal{T}$ is generated by one element. In [Ga], by adding the inverses of polynomials in $t, M$ to $\mathcal{T}$ we get a principal left-ideal domain $\widetilde{\mathcal{T}}$. The ring $\widetilde{\mathcal{T}}$ can be formally defined as follows. Let $\mathcal{R}(M)$

---

2010 Mathematics Classification: Primary 57N10. Secondary 57M25.

Key words and phrases: colored Jones polynomial, $A$-polynomial, AJ conjecture.
be the fractional field of the polynomial ring \( R[M] \). Let \( \tilde{T} \) be the set of all Laurent polynomials in the variable \( L \) with coefficients in \( R(M) \):

\[
\tilde{T} = \{ \sum_{j \in \mathbb{Z}} f_j(M) L^j \mid f_j(M) \in R(M), \ f_j = 0 \text{ almost everywhere} \},
\]

and define the product in \( \tilde{T} \) by \( f(M)L^k \cdot g(M)L^l = f(M)g(t^{2k}M)L^{k+l} \).

The left-ideal extension \( \tilde{A}_K := \tilde{T}A_K \) of \( A_K \) in \( \tilde{T} \) is then generated by a polynomial

\[
\alpha_K(t; M, L) = \sum_{j=0}^{d} \alpha_{K,j}(t, M) L^j,
\]

where \( d \) is assumed to be minimal and all the coefficients \( \alpha_{K,j}(t, M) \in \mathbb{Z}[t^{\pm 1}, M] \) are assumed to be co-prime. That \( \alpha_K \) can be chosen to have integer coefficients follows from the fact that \( J_K(n) \in \mathbb{Z}[t^{\pm 1}] \). The polynomial \( \alpha_K \) is defined up to a polynomial in \( \mathbb{Z}[t^{\pm 1}, M] \). Moreover, we can choose \( \alpha_K \in A_K \), i.e. it is a recurrence relation for the colored Jones polynomial. We call \( \alpha_K \) the recurrence polynomial of \( K \).

Let \( \varepsilon \) be the map reducing \( t = -1 \). S. Garoufalidis [Ga] formulated the following conjecture (see also [FGL] Ge).

**Conjecture 1. (AJ conjecture)** For every knot \( K \) \( \varepsilon(\alpha_K) \) is equal to the \( A \)-polynomial, up to a polynomial depending on \( M \) only.

The \( A \)-polynomial of a knot was introduced by Cooper et al. [CCGLS]; it describes the \( SL_2(\mathbb{C}) \)-character variety of the knot complement as viewed from the boundary torus. Here in the definition of the \( A \)-polynomial, we also allow the factor \( L - 1 \) coming from the abelian component of the character variety of the knot group. Hence the \( A \)-polynomial in this paper is equal to \( L - 1 \) times the \( A \)-polynomial defined in [CCGLS].

The AJ Conjecture was verified for the trefoil and figure 8 knots by Garoufalidis [Ga], and was partially checked for all torus knots by Hikami [Hi]. It was established for some classes of two-bridge knots and pretzel knots, including all twist knots and \((-2, 3, 6n \pm 1)\)-pretzel knots, by Le and the author [Le LT]. Here we provide a full proof of the AJ conjecture for all torus knots. Moreover, we show that a stronger version of the conjecture, due to Sikora, holds true for all torus knots.

0.2. **Main results.** For a finitely generated group \( G \), let \( \chi(G) \) denote the \( SL_2(\mathbb{C}) \)-character variety of \( G \), see e.g. [CS LM]. For a manifold \( Y \) we use \( \chi(Y) \) also to denote \( \chi(\pi_1(Y)) \). Suppose \( G = \mathbb{Z}^2 \), the free abelian group with 2 generators. Every pair of generators \( \mu, \lambda \) will define an isomorphism between \( \chi(G) \) and \((\mathbb{C}^*)^2/\tau \), where \((\mathbb{C}^*)^2 \) is the set of non-zero complex pairs \((M, L)\) and \( \tau \) is the involution \( \tau(M, L) := (M^{-1}, L^{-1}) \), as follows: Every representation is conjugate to an upper diagonal one, with \( M \) and \( L \) being the upper left entries of \( \mu \) and \( \lambda \) respectively. The isomorphism does not change if one replaces \( (\mu, \lambda) \) by \( (\mu^{-1}, \lambda^{-1}) \).

For an algebraic set \( V \) (over \( \mathbb{C} \)), let \( \mathbb{C}[V] \) denote the ring of regular functions on \( V \). For example, \( \mathbb{C}[[\mathbb{C}^*]^2/\tau] = t^\sigma \), the \( \sigma \)-invariant subspace of \( t := \mathbb{C}[\mathbb{Z}^{\pm 1}, L^{\pm 1}] \), where \( \sigma(M^kL^l) := M^{-k}L^{-l} \).

Let \( K \) be a knot in \( S^3 \) and \( X = S^3 \setminus K \) its complement. The boundary of \( X \) is a torus whose fundamental group is free abelian of rank 2. An orientation of \( K \) will define a unique pair of an oriented meridian \( \mu \) and an oriented longitude \( \lambda \) such that the linking
number between the longitude and the knot is 0. The pair provides an identification of $\chi(\partial X)$ and $(\mathbb{C}^*)^2/\tau$ which actually does not depend on the orientation of $K$.

The inclusion $\partial X \hookrightarrow X$ induces an algebra homomorphism

$$\theta: \mathbb{C}[\chi(\partial X)] \equiv t^\sigma \longrightarrow \mathbb{C}[\chi(X)].$$

We will call the kernel $p$ of $\theta$ the $A$-ideal of $K$; it is an ideal of $t^\sigma$. The $A$-ideal was first introduced in [FGL]; it determines the $A$-polynomial of $K$. In fact $p = (A_K \cdot t)^\sigma$, the $\sigma$-invariant part of the ideal $A_K \cdot t$ of $t$ generated by the $A$-polynomial $A_K$.

The involution $\sigma$ acts on the quantum torus $\mathcal{T}$ also by $\sigma(M^k L^l) = M^{-k} L^{-l}$. Let $A^\sigma$ be the $\sigma$-invariant part of the recurrence ideal $A$; it is an ideal of $\mathcal{T}^\sigma$. Sikora [Si] proposed the following conjecture.

**Conjecture 2.** Suppose $K$ is a knot. Then $\sqrt{\varepsilon(A^\sigma)} = p$.

Here $\sqrt{\varepsilon(A^\sigma)}$ denotes the radical of the ideal $\varepsilon(A^\sigma)$ in the ring $t^\sigma = \varepsilon(\mathcal{T}^\sigma)$.

It is easy to see that Conjecture 2 implies the AJ conjecture. Conjecture 2 was verified for the unknot and the trefoil knot by Sikora [Si]. In the present paper we confirm it for all torus knots.

**Theorem 1.** Conjecture 2 holds true for all torus knots.

0.3. **Acknowledgements.** The author would like to thank T.T.Q. Le for his guidance, and S. Garoufalidis for helpful discussions.

0.4. **Plan of the paper.** We provide a full proof of the AJ conjecture for all torus knots in Section 1 and prove Theorem 1 in Section 2.

1. **Proof of the AJ conjecture for torus knots**

We will always assume that knots have framings 0.

We consider the two cases: $a, b > 2$ and $a = 2$ separately. Lemmas 1.1 and 1.5 below were first proved in [Hi] using formulas for the colored Jones polynomial and Alexander polynomial of torus knots given in [Mo]. We present here direct proofs.

1.1. **The case $a, b > 2$.**

**Lemma 1.1.** For the $(a, b)$-torus knot, we have

$$J(n + 2) = t^{-ab(n+1)} J(n) + t^{-2ab(n+1)} \frac{t^2 \lambda_{a+b}(n+1) - t^{-2} \lambda_{a-b}(n+1)}{t^2 - t^{-2}},$$

where $\lambda_k := t^{2k} + t^{-2k}$.

**Proof.** For the $(a, b)$-torus knot, by [Mo], we have

$$J(n) = t^{-ab(n^2-1)} \sum_{j= \frac{a-1}{2}}^{ \frac{a+1}{2}} t^{4bj(a+j+1)[2aj + 1]}.$$

(1.1)
Hence
\[ J(n + 2) = t^{-ab((n+2)^2-1)} \sum_{j=-\frac{n+1}{2}}^{\frac{n+1}{2}} t^{4bj(aj+1)}[2aj + 1] \]
\[ = t^{-ab((n+2)^2-1)} \sum_{j=-\frac{n-1}{2}}^{\frac{n-1}{2}} t^{4bj(aj+1)}[2aj + 1] + t^{-ab((n+2)^2-1)} \]
\[ \times \left( t^{b(n+1)(a(n+1)+2)}[a(n+1) + 1] - t^{b(n+1)(a(n+1)-2)}[a(n+1) - 1] \right) \]
\[ = t^{-4ab(n+1)}J(n) + t^{-2ab(n+1)} \frac{t^2 \lambda(a+b)(n+1) - t^{-2} \lambda(a-b)(n+1)}{t^2 - t^{-2}}, \]
since \([k] = (t^{2k} - t^{-2k})/(t^2 - t^{-2})\).

\[ \square \]

**Lemma 1.2.** The colored Jones polynomial of the \((a, b)\)-torus knot is annihilated by the operator \(\alpha_{a, b} = c_3L^3 + c_2L^2 + c_1L + c_0\) where
\[
c_3 = t^2 \left( t^{2(a-b)} M^{a+b} + t^{-2(a-b)} M^{-(a+b)} \right) - t^{-2} \left( t^{2(a-b)} M^{a-b} + t^{-2(a-b)} M^{-(a-b)} \right),
\]
\[
c_2 = -t^{-2ab} \left( t^2(t^{4(a+b)} M^{a+b} + t^{-4(a+b)} M^{-(a+b)}) + t^{-2} (t^{4(a-b)} M^{a-b} + t^{-4(a-b)} M^{-(a-b)}) \right),
\]
\[
c_1 = -t^{-8ab} M^{-2ab} c_3,
\]
\[
c_0 = -t^{-4ab} M^{-2ab} c_2.
\]

**Proof.** It is easy to check that \(c_3 t^{-4ab(n+2)} + c_1 = c_2 t^{-4ab(n+1)} + c_0 = 0\) and
\[
\begin{align*}
&c_3 \left( t^2 \lambda(a+b)(n+2) - t^{-2} \lambda(a-b)(n+2) \right) + c_2 t^{2ab} \left( t^2 \lambda(a+b)(n+1) - t^{-2} \lambda(a-b)(n+1) \right) = 0.
\end{align*}
\]
Hence, by Lemma 1.1, \(\alpha_{a, b} J(n)\) is equal to
\[
\begin{align*}
&c_3 J(n + 3) + c_2 J(n + 2) + c_1 J(n + 1) + c_0 J(n) \\
&= c_3 \left( t^{-4ab(n+2)} J(n + 1) + t^{-2ab(n+2)} \frac{t^2 \lambda(a+b)(n+2) - t^{-2} \lambda(a-b)(n+2)}{t^2 - t^{-2}} \right) \\
&+ c_2 \left( t^{-4ab(n+1)} J(n) + t^{-2ab(n+1)} \frac{t^2 \lambda(a+b)(n+1) - t^{-2} \lambda(a-b)(n+1)}{t^2 - t^{-2}} \right) \\
&+ c_1 J(n + 1) + c_0 J(n) \\
&= (c_3 t^{-4ab(n+2)} + c_1) J(n + 1) + (c_2 t^{-4ab(n+1)} + c_0) J(n) \\
&+ t^{-2ab(n+1)} \left( c_3 \frac{t^2 \lambda(a+b)(n+2) - t^{-2} \lambda(a-b)(n+2)}{t^2 - t^{-2}} + c_2 t^{2ab} \frac{t^2 \lambda(a+b)(n+1) - t^{-2} \lambda(a-b)(n+1)}{t^2 - t^{-2}} \right) \\
&= 0.
\end{align*}
\]
This proves Lemma 1.2 \(\square\)

Let \(A_{a, b}\) and \(\tilde{A}_{a, b}\) denote the recurrence ideal of the \((a, b)\)-torus knot and its extension in \(\tilde{T}\) respectively.

**Proposition 1.3.** For the \((a, b)\)-torus knot, with \(a, b > 2\), we have \(\tilde{A}_{a, b} = \langle \alpha_{a, b} \rangle\).
Proof. By Lemma 1.2, it suffices to show that if an operator \( P = P_2L^2 + P_1L + P_0 \), where \( P_j \)'s are polynomials in \( \mathbb{C}[t^{\pm 1}, M] \), annihilates the colored Jones polynomial then \( P = 0 \). Indeed, suppose \( PJ(n) = 0 \). Then, by Lemma 1.1

\[
0 = P_2J(n+2) + P_1J(n+1) + P_0J(n)
\]

\[
= P_2\left(t^{-4ab(n+1)}J(n) + t^{-2ab(n+1)}\frac{t^2\lambda(a+b)(n+1) - t^{-2}\lambda(a-b)(n+1)}{t^2-t^{-2}}\right)
+ P_1J(n+1) + P_0J(n)
\]

\[
= (t^{-4ab(n+1)}P_2 + P_0)J(n) + P_1J(n+1) + P_2t^{-2ab(n+1)}\frac{t^2\lambda(a+b)(n+1) - t^{-2}\lambda(a-b)(n+1)}{t^2-t^{-2}}.
\]

Let \( P'_2 = t^{-4ab(n+1)}P_2 + P_0 \) and \( P'_0 = P_2t^{-2ab(n+1)}\frac{t^2\lambda(a+b)(n+1) - t^{-2}\lambda(a-b)(n+1)}{t^2-t^{-2}} \). Then

\[
(1.2) \quad P'_2J(n) + P_1J(n+1) + P'_0 = 0.
\]

Note that \( P'_2 \) and \( P'_0 \) are polynomials in \( \mathbb{C}[t^{\pm 1}, M] \).

**Lemma 1.4.** The lowest degree in \( t \) of \( J(n) \) is

\[
l_n = -abn^2 + ab + \frac{1}{2}(1 - (-1)^{n-1})(a - 2)(b - 2).
\]

**Proof.** From (1.1), it follows easily that \( l_n = -abn^2 + ab \) if \( n \) is odd, and \( l_n = (-abn^2 + ab) + (ab - 2b - 2a + 4) \) if \( n \) is even. \( \square \)

Suppose \( P'_2, P_1 \neq 0 \). Let \( r_n \) and \( s_n \) be the lowest degrees (in \( t \)) of \( P'_2 \) and \( P_1 \) respectively. Note that, when \( n \) is large enough, \( r_n \) and \( s_n \) are polynomials in \( n \) of degrees at most 1. Equation (1.2) then implies that \( r_n + l_n = s_n + l_{n+1} \), i.e.

\[
r_n - s_n = l_{n+1} - l_n = -ab(2n + 1) - (-1)^n(a - 2)(b - 2).
\]

This cannot happen since the LHS is a polynomial in \( n \), when \( n \) is large enough, while the RHS is not (since \( (a - 2)(b - 2) > 0 \)). Hence \( P'_2 = P_1 = P'_0 = 0 \), which means \( P = 0 \). \( \square \)

It is easy to see that \( \varepsilon(a_{a,b}) = M^{-2ab}(M^a - M^{-a})(M^b - M^{-b})A_{a,b} \), where \( A_{a,b} = (L - 1)(L^2M^{2ab} - 1) \) is the \( A \)-polynomial of the \((a, b)\)-torus knot when \( a, b > 2 \). This means the AJ conjecture holds true for the \((a, b)\)-torus knot when \( a, b > 2 \).

### 1.2. The case \( a = 2 \)

**Lemma 1.5.** For the \((2, b)\)-torus knot, we have

\[
J(n+1) = -t^{-(4n+2)b}J(n) + t^{-2nb}[2n + 1].
\]

**Proof.** For the \((2, b)\)-torus knot, by (1.1), we have

\[
J(n) = t^{-2b(n^2-1)} \sum_{j=-\frac{n-1}{2}}^{\frac{n-1}{2}} t^{4bj}(2j+1)[4j + 1].
\]
Hence
\[ J(n + 1) = t^{-2b(n+1)^2-1} \sum_{k=-\frac{n}{2}}^{\frac{n}{2}} t^{4bk(2k+1)}[4k + 1] \]

Set \( k = -(j + \frac{1}{2}) \). Then
\[
J(n + 1) = t^{-2b(n+1)^2-1} \sum_{j=\frac{n+1}{2}}^{\frac{n-1}{2}} t^{4bj(2j+1)}[-(4j + 1)]
\]
\[
= t^{-2b(n+1)^2-1}\left( \sum_{j=\frac{n-1}{2}}^{\frac{n+1}{2}} t^{4bj(2j+1)}[4j + 1] + t^{2bn(n+1)}[2n + 1] \right)
\]
\[
= -t^{-(4n+2)b}J(n) + t^{-2nb}[2n + 1].
\]

This proves Lemma 1.5. \( \square \)

**Lemma 1.6.** The colored Jones polynomial of the \((2, b)\)-torus knot is annihilated by the operator \( \alpha_{2,b} = d_2L^2 + d_1L + d_0 \) where
\[
d_2 = t^2M^2 - t^{-2}M^{-2},
\]
\[
d_1 = t^{-2b}(t^2M^2 - t^{-2}M^{-2}) = t^6M^2 - t^{-6}M^{-2},
\]
\[
d_0 = t^{-2b}(t^6M^2 - t^{-6}M^{-2}).
\]

**Proof.** From Lemma 1.5 we have
\[
J(n + 1) = -t^{-(4n+2)b}J(n) + t^{-2nb}[2n + 1],
\]
\[
J(n + 2) = t^{-8(n+1)b}J(n) - t^{-6(n+1)b}[2n + 1] + t^{-2(n+1)b}[2n + 3].
\]

It is easy to check that
\[
t^{-8(n+1)b}d_2 - t^{-(4n+2)b}d_1 + d_0 = 0,
\]
\[
d_2 \left( -t^{-6(n+1)b}[2n + 1] + t^{-2(n+1)b}[2n + 3] \right) + d_1 t^{-2nb}[2n + 1] = 0.
\]

Hence
\[
\alpha_{2,b}J(n) = d_2J(n + 2) + d_1J(n + 1) + d_0J(n)
\]
\[
= d_2 \left( t^{-8(n+1)b}J(n) - t^{-6(n+1)b}[2n + 1] + t^{-2(n+1)b}[2n + 3] \right)
\]
\[
+ d_1 \left( -t^{-(4n+2)b}J(n) + t^{-2nb}[2n + 1] \right) + d_0J(n)
\]
\[
= \left( t^{-8(n+1)b}d_2 - t^{-(4n+2)b}d_1 + d_0 \right)J(n)
\]
\[
+ d_2 \left( -t^{-6(n+1)b}[2n + 1] + t^{-2(n+1)b}[2n + 3] \right) + d_1 t^{-2nb}[2n + 1]
\]
\[
= 0.
\]

This proves Lemma 1.6. \( \square \)

**Proposition 1.7.** For the \((2, b)\)-torus knot, we have \( \widetilde{A}_{2,b} = \langle \alpha_{2,b} \rangle \).
Proof. By Lemma 1.6, it suffices to show that if an operator $P = P_1L + P_0$, where $P_j$'s are polynomials in $\mathbb{C}[t^{\pm 1}, M]$, annihilates the colored Jones polynomial then $P = 0$.

Indeed, suppose $PJ(n) = 0$. Then

$$0 = P_1J(n+1) + P_0J(n)$$

$$= P_1\left(-t^{-(4n+2)b}J(n) + t^{-2nb[2n+1]}\right) + P_0J(n)$$

$$= \left(-t^{-(4n+2)b}P_1 + P_0\right)J(n) + t^{-2nb[2n+1]}P_1.$$

Let $P'_1 = -t^{-(4n+2)b}P_1 + P_0$ and $P'_0 = -t^{-2nb[2n+1]}P_1$. Then $P'_1, P'_0$ are polynomials in $\mathbb{C}[t^{\pm 1}, M]$ and $P'_1J(n) + P'_0 = 0$. This implies that $P'_1 = P'_0 = 0$ since the lowest degree in $t$ of $J(n)$ is $-2bn^2 + 2b$, which is quadratic in $n$, by Lemma 1.4. Hence $P = 0$. □

It is easy to see that $\varepsilon(\alpha_{2,b}) = M^{-2b}(M^2 - M^{-2})A_{2,b}$ where $A_{2,b} = (L - 1)(LM^{2b} + 1)$ is the $A$-polynomial of the $(2, b)$-torus knot. This means the AJ conjecture holds true for the $(2, b)$-torus knot.

2. PROOF OF THEOREM 1

As in the previous section, we consider the two cases: $a, b > 2$ and $a = 2$ separately.

2.1. The case $a, b > 2$. We claim that

**Proposition 2.1.** The colored Jones polynomial of the $(a, b)$-torus knot is annihilated by the operator $PQ$ where

$$P = t^{-10ab}(L^3M^{2ab} + L^{-3}M^{-2ab}) - (t^{2(a-b)} + t^{2(b-a)})t^{-4ab}(L^2M^{2ab} + L^{-2}M^{-2ab})$$

$$+ t^{2ab}(LM^{2ab} + L^{-1}M^{-2ab}) - (t^{2ab} + t^{-2ab})(L + L^{-1}) + (t^{2(a-b)}$$

$$+ t^{2(b-a)})(t^{4ab} + t^{-4ab})$$

$$Q = t^{-6ab}(L^3M^{2ab} + L^{-3}M^{-2ab}) - (t^{2(a+b)} + t^{-2(a+b)})q^{ab}(L^2M^{2ab} + L^{-2}M^{-2ab})$$

$$+ t^{-2ab}(LM^{2ab} + L^{-1}M^{-2ab}) - (t^{2ab} + t^{-2ab})(L + L^{-1}) + 2(t^{2(a+b)} + t^{-2(a+b)}).$$

**Proof.** We first prove the following two lemmas.

**Lemma 2.2.** For the $(a, b)$-torus knot, we have

$$QJ(n) = t^{4ab-2}(\lambda_{a+b} - \lambda_{a-b})\frac{t^{2abn}\lambda_{(a-b)(n+1)} - t^{-2abn}\lambda_{(a-b)(n-1)}}{t^2 - t^{-2}}.$$

**Proof.** Let

$$g(n) = t^{-2abn}\frac{t^2\lambda_{(a+b)n} - t^{-2}\lambda_{(a-b)n}}{t^2 - t^{-2}}.$$

$$QJ(n) = t^{-2abn}\frac{t^2\lambda_{(a+b)n} - t^{-2}\lambda_{(a-b)n}}{t^2 - t^{-2}}.$$
Then, by Lemma 1.1, \( J(n + 2) = t^{-4ab(n+1)}J(n) + g(n + 1) \). Hence \( QJ(n) \) is equal to

\[
\begin{align*}
& t^{-6ab} \left( t^{4ab(n+3)} J(n + 3) + t^{-4ab(n-3)} J(n - 3) \right) \\
& \quad - (t^2(a+b) + t^{-2(a+b)})t^{-4ab} \left( t^{4ab(n+2)} J(n + 2) + t^{-4ab(n-2)} J(n - 2) \right) \\
& \quad + t^{-2ab} \left( t^{4ab(n+1)} J(n + 1) + t^{-4ab(n-1)} J(n - 1) \right) \\
& \quad - (t^{2ab} + t^{-2ab}) \left( J(n + 1) + J(n - 1) \right) + 2(t^2(a+b) + t^{-2(a+b)})J(n) \\
& = t^{-6ab} \left( t^{4ab} \left( J(n + 1) + J(n - 1) \right) + t^{2ab(n+5)} g(n + 2) - t^{-2ab(n-5)} g(n - 2) \right) \\
& \quad - (t^2(a+b) + t^{-2(a+b)})t^{-4ab} \left( 2t^{4ab} J(n) + t^{2ab(n+4)} g(n + 1) - t^{-2ab(n-4)} g(n - 1) \right) \\
& \quad + t^{-2ab} \left( t^{4ab} \left( J(n - 1) + J(n + 1) \right) + (t^{2ab(n+3)} - t^{-2ab(n-3)}) g(n) \right) \\
& \quad - (t^{2ab} + t^{-2ab}) \left( J(n + 1) + J(n - 1) \right) + 2(t^2(a+b) + t^{-2(a+b)})J(n) \\
& = t^{-6ab} \left( t^{2ab(n+5)} g(n + 2) - t^{-2ab(n-5)} g(n - 2) \right) \\
& \quad - (t^2(a+b) + t^{-2(a+b)})t^{-4ab} \left( t^{2ab(n+4)} g(n + 1) - t^{-2ab(n-4)} g(n - 1) \right) \\
& \quad + t^{-2ab} \left( t^{2ab(n+3)} - t^{-2ab(n-3)} \right) g(n).
\end{align*}
\]

Using the definition of \( g(n) \), we can rewrite

\[
QJ(n) = t^{2ab} \left( t^{2abn} \frac{t^2 \lambda_{(a+b)(n+2)} - t^{-2} \lambda_{(a-b)(n+2)}}{t^2 - t^{-2}} \right) - t^{-2abn} \frac{t^2 \lambda_{(a+b)(n-2)} - t^{-2} \lambda_{(a-b)(n-2)}}{t^2 - t^{-2}} \\
\quad - (t^2(a+b) + t^{-2(a+b)}) t^{4ab} \times \\
\left( t^{2abn} \frac{t^2 \lambda_{(a+b)(n+1)} - t^{-2} \lambda_{(a-b)(n+1)}}{t^2 - t^{-2}} - t^{-2abn} \frac{t^2 \lambda_{(a+b)(n-1)} - t^{-2} \lambda_{(a-b)(n-1)}}{t^2 - t^{-2}} \right) \\
+ t^{4ab} (t^{2abn} - t^{-2abn}) \frac{t^2 \lambda_{(a-b)n} - t^{-2} \lambda_{(a-b)n}}{t^2 - t^{-2}}.
\]

Now applying the equality \( \lambda_{k+l} + \lambda_{k-l} = \lambda_k \lambda_l \), we then obtain

\[
QJ(n) = t^{4ab-2} (\lambda_{a+b} - \lambda_{a-b}) \frac{t^{2abn} \lambda_{(a-b)(n+1)} - t^{-2abn} \lambda_{(a-b)(n-1)}}{t^2 - t^{-2}}.
\]

This proves Lemma 2.2

Let \( h(n) = t^{2abn} \lambda_{(a-b)(n+1)} - t^{-2abn} \lambda_{(a-b)(n-1)} \).

**Lemma 2.3.** The function \( h(n) \) is annihilated by the operator \( P \), i.e. \( Ph(n) = 0 \).
Proof. Let \( c = a - b \). Then \( Ph(n) \) is equal to
\[
\begin{align*}
t^{-10ab} & \left(t^{4ab(n+3)}h(n+3) + t^{-4ab(n-3)}h(n-3)\right) \\
& - (t^{2(a-b)} + t^{2(b-a)})t^{-4ab} \left(t^{4ab(n+2)}h(n+2) + t^{-4ab(n-2)}h(n-2)\right) \\
& + t^{2ab} \left(t^{4ab(n+1)}h(n+1) + t^{-4ab(n-1)}h(n-1)\right) \\
& - (t^{2ab} + t^{-4ab}) \left(h(n+1) + h(n-1)\right) + (t^{2(a-b)} + t^{2(b-a)}) (t^{4ab} + t^{-4ab}) h(n) \\
= & \left(t^{2ab(3n+4)} \lambda_{c(n+4)} - t^{2ab(n-2)} \lambda_{c(n+2)} - t^{2ab(n+2)} \lambda_{c(n-2)} - t^{-2ab(3n-4)} \lambda_{c(n-4)}\right) \\
& - \lambda_c \left(t^{2ab(3n+4)} \lambda_{c(n+3)} - t^{2ab(n+1)} \lambda_{c(n+1)} + t^{-2ab(n-1)} \lambda_{c(n-1)} - t^{-2ab(3n-4)} \lambda_{c(n-3)}\right) \\
& + \left(t^{2ab(3n+4)} \lambda_{c(n+2)} - t^{2ab(n+2)} \lambda_{c(n)} + t^{-2ab(n-2)} \lambda_{c(n)} - t^{-2ab(3n-4)} \lambda_{c(n-2)}\right) \\
& - (t^{2ab} + t^{-4ab}) \left(t^{2ab(n+1)} \lambda_{c(n+2)} - t^{-2ab(n+1)} \lambda_{c(n)} + t^{2ab(n-1)} \lambda_{c(n)} - t^{-2ab(n-1)} \lambda_{c(n-2)}\right) \\
& + \lambda_c (t^{4ab} + t^{-4ab}) \left(t^{2abn} \lambda_{c(n+1)} - t^{-2abn} \lambda_{c(n-1)}\right).
\end{align*}
\]

Note that \( \lambda_{k+l} = \lambda_k \lambda_l \). Hence \( Ph(n) \) is equal to
\[
\begin{align*}
& \left(- t^{2ab(n-2)} \lambda_{c(n+2)} + t^{-2ab(n+2)} \lambda_{c(n-2)}\right) - \lambda_c \left(- t^{2ab(n+1)} \lambda_{c(n+1)} + t^{-2abn} \lambda_{c(n-1)}\right) \\
& + \left(- t^{2ab(n+2)} \lambda_{c(n)} + t^{-2ab(n-2)} \lambda_{c(n)}\right) \\
& - (t^{2ab} + t^{-4ab}) \left(t^{2ab(n+1)} \lambda_{c(n+2)} - t^{-2ab(n+1)} \lambda_{c(n)} + t^{2ab(n-1)} \lambda_{c(n)} - t^{-2ab(n-1)} \lambda_{c(n-2)}\right) \\
& + \lambda_c (t^{4ab} + t^{-4ab}) \left(t^{2abn} \lambda_{c(n+1)} - t^{-2abn} \lambda_{c(n-1)}\right)
\end{align*}
\]
\[
= - t^{4ab} + t^{-4ab} + 1 \left(t^{2abn} \lambda_{c(n+2)} + (t^{4ab} + t^{-4ab} + 1) t^{-2abn} \lambda_{c(n-2)}\right) \\
- (t^{4ab} + t^{-4ab} + 1) (t^{2abn} - t^{-2abn}) \lambda_{c(n)} \\
+ \lambda_c (t^{4ab} + t^{-4ab} + 1) \left(t^{2abn} \lambda_{c(n+1)} - t^{-2abn} \lambda_{c(n-1)}\right)
\]
\[
= - (t^{4ab} + t^{-4ab} + 1) t^{2abn} (\lambda_{c(n+2)} + \lambda_{c(n)} - \lambda_c \lambda_{c(n+1)}) \\
+ (t^{4ab} + t^{-4ab} + 1) t^{-2abn} (\lambda_{c(n-2)} + \lambda_{c(n)} - \lambda_c \lambda_{c(n-1)})
\]
\[
= 0.
\]
This proves Lemma \ref{lemma:2.3} \hfill \Box

Proposition \ref{prop:2.1} follows directly from Lemmas \ref{lemma:2.2} and \ref{lemma:2.3} \hfill \Box

2.2. The case \( a = 2 \). We claim that

**Proposition 4.4.** The colored Jones polynomial of the \((2, b)\)-torus knot is annihilated by the operator
\[
R = t^{-4b}(L^2 M^{2b} + L^{-2} M^{-2b}) + (t^{2b} + t^{-2b})(L + L^{-1}) \\
- (t^4 + t^{-4}) t^{-2b}(LM^{2b} + L^{-1} M^{-2b}) + (M^{2b} + M^{-2b}) - 2(t^4 + t^{-4}).
\]
Proof. From Lemma [15] we have
\[ J(n + 1) = -t^{-(4n+2)b} J(n) + t^{-2nb}[2n + 1], \]
\[ J(n + 2) = t^{-8(n+1)b} J(n) - t^{-6(n+1)b}[2n + 1] + t^{-2(n+1)b}[2n + 3], \]
\[ J(n - 1) = -t^{(4n-2)b} J(n) + t^{2nb}[2n - 1], \]
\[ J(n - 2) = t^{8(n-1)b} J(n) - t^{6(n-1)b}[2n - 1] + t^{2(n-1)b}[2n - 3]. \]
Hence \( RJ(n) \) is equal to
\[ t^{-4b} \left(t^{4(n+2)b} J(n + 2) + t^{-4(n-2)b} J(n - 2) \right) + (t^{2b} + t^{-2b}) \left(J(n + 1) + J(n - 1) \right) \]
\[ - (t^4 + t^{-4}) t^{-2b} \left(t^{4(n+1)b} J(n + 1) + t^{-4(n-1)b} J(n - 1) \right) \]
\[ + \left((t^{4nb} + t^{-4nb}) - 2(t + t^{-4}) \right) J(n) \]
\[ = t^{-4b} \left(- t^{-2(n-1)b}[2n + 1] + t^{2(n+3)b}[2n + 3] - t^{2(n+1)b}[2n - 1] + t^{-2(n-3)b}[2n - 3] \right) \]
\[ + (t^{2b} + t^{-2b}) \left(t^{-2nb}[2n + 1] + t^{2nb}[2n - 1] \right) \]
\[ - (t^4 + t^{-4}) t^{-2b} \left(t^{4(n+1)b}[2n + 1] + t^{-4(n-1)b}[2n - 1] \right) \]
\[ - (t + t^{-4}) t^{2b} \left(t^{2nb}[2n + 1] + t^{-2nb}[2n - 1] \right) \]
\[ = t^{2b} t^{2nb} \left([2n + 3] + [2n - 1] - (t^4 + t^{-4})[2n + 1] \right) \]
\[ + t^{2b} t^{-2nb} \left([2n - 3] + [2n + 1] - (t^4 + t^{-4})[2n - 1] \right) \]
\[ = 0, \]
since \([k + l] + [k - l] = (t^{2l} + t^{-2l})[k]. \]

2.3. Proof of Theorem 1. We first note that the A-ideal \( p \), the kernel of \( \theta : t^\sigma \rightarrow \mathbb{C}[\chi(X)] \), is radical i.e. \( \sqrt{p} = p \). This is because the character ring \( \mathbb{C}[\chi(X)] \) is reduced, i.e. has nil-radical 0, by definition.

Lemma 2.5. Suppose \( \delta(t, M, L) \in A_K \). Then there are polynomials \( g(t, M) \in \mathbb{C}[t^{\pm 1}, M] \) and \( \gamma(t, M, L) \in \mathcal{T} \) such that
\[ (2.1) \]
\[ \delta(t, M, L) = \frac{1}{g(t, M)} \gamma(t, M, L) \alpha_K(t, M, L). \]
Moreover, \( g(t, M) \) and \( \gamma(t, M, L) \) can be chosen so that \( \varepsilon g \neq 0 \).

Proof. By definition \( \alpha_K \) is a generator of \( \tilde{A}_K \), the extension of \( A_K \) in the principal left-ideal domain \( \tilde{T} \). Since \( \delta \in A_K \), it is divisible by \( \alpha_K \) in \( \tilde{T} \). Hence (2.1) follows.

We can assume that \( t + 1 \) does not divide both \( g(t, M) \) and \( \gamma(t, M, L) \) simultaneously. If \( \varepsilon(g) = 0 \) then \( g \) is divisible by \( t + 1 \), and hence \( \gamma \) is not. But then from the equality \( g\delta = \gamma\alpha_K \), it follows that \( \alpha_K \) is divisible by \( t + 1 \), which is impossible, since all the coefficients of powers of \( L \) in \( \alpha_K \) are supposed to be co-prime.

Showing \( \sqrt{\varepsilon(A^p)} \subset p \). For torus knots, by Section 1, we have \( \varepsilon(\alpha_K) = f(M)A_K \), where \( f(M) \in \mathbb{C}[M^{\pm 1}] \). For every \( \delta \in A_K \), by Lemma 2.5 there exist \( g(t, M) \in \mathbb{C}[t^{\pm 1}, M] \) and
\( \gamma \in \mathcal{T} \) such that \( \delta = \frac{1}{g(t,M)} \gamma \alpha_K \) and \( \varepsilon g \neq 0 \). It implies that

\[
eq (2.2) \quad \varepsilon(\gamma) = \frac{1}{\varepsilon g(M)} \varepsilon(\gamma) \varepsilon(\alpha_K) = \frac{1}{\varepsilon g(M)} \varepsilon(\gamma) f(M)A_K.
\]

The A-polynomial of a torus knot does not contain any non-trivial factor depending on \( M \) only. Since \( \varepsilon(\gamma) \in t = \mathbb{C}[L^{\pm 1}, M^{\pm 1}] \), equation \( (2.2) \) implies that \( h := \frac{1}{\varepsilon g(M)} \varepsilon(\gamma) f(M) \) is an element of \( t \). Hence \( \varepsilon(\gamma) \in A_K \cdot t \), the ideal of \( t \) generated by \( A_K \). It follows that \( \varepsilon(A_K) \subset A_K \cdot t \) and thus \( \varepsilon(A^\sigma) \subset (A_K \cdot t)^\sigma = p \). Hence \( \sqrt{\varepsilon(A^\sigma)} \subset \sqrt{p} = p \).

**Showing \( p \subset \sqrt{\varepsilon(A^\sigma)} \).** For \( a, b > 2 \), by Proposition 2.4 the colored Jones polynomial of the \((a, b)\)-torus knot is annihilated by the operator \( P^4 \). Note that

\[
\varepsilon(P^4) = (L + L^{-1} - 2)^2(LM^{ab} + L^{-2}M^{-2ab} - 2)^2
\]

\[
= L^{-2}(L^{-1}M^{-ab}(L - 1)(L^2M^{2ab} - 1) - 1)^4.
\]

If \( u \in p \) then \( u = vA_{a,b}' \), where \( A_{a,b}' = L^{-1}M^{-ab}(L - 1)(L^2M^{2ab} - 1) = L^{-1}M^{-ab}A_{a,b} \) and \( v \in \mathbb{C}[M^{\pm 1}, L^{\pm 1}] \). It is easy to see that \( \sigma(v) = Lv \) since \( \sigma(u) = u \) and \( \sigma(A_{a,b}) = L^{-1}A_{a,b}' \). This implies that \( \sigma(v^2L) = \sigma(v)^2L^{-1} = v^2L \). We then have

\[
\varepsilon(v^4L) \in \varepsilon(A^\sigma),
\]

hence \( u \in \sqrt{\varepsilon(A^\sigma)} \).

For \( a = 2 \), by Proposition 2.4 the colored Jones polynomial of the \((2, b)\)-torus knot is annihilated by the operator \( R \). Note that \( \sigma(R) = R \) and

\[
\varepsilon(R) = (L + L^{-1} - 2)(LM^{2b} + L^{-1}M^{-2b} + 2)
\]

\[
= (L^{-1}M^{-b}(L - 1)(LM^{2b} + 1))^2.
\]

If \( u \in p \) then \( u = vA_{2,b}' \), where \( A_{2,b}' = L^{-1}M^{-b}(L - 1)(LM^{2b} + 1) = L^{-1}M^{-b}A_{2,b} \) and \( v \in \mathbb{C}[M^{\pm 1}, L^{\pm 1}] \). It is easy to see that \( \sigma(v) = -v \) and hence \( \sigma(v^2) = \sigma(v)\sigma(v) = v^2 \). We then have

\[
\varepsilon(v^2R) \in \varepsilon(A^\sigma),
\]

hence \( u \in \sqrt{\varepsilon(A^\sigma)} \).

In both cases \( p \subset \sqrt{\varepsilon(A^\sigma)} \). Hence \( \sqrt{\varepsilon(A^\sigma)} = p \) for all torus knots.

**References**

[CCGLS] D. Cooper, M. Culler, H. Gillet, D. Long and P. Shalen, *Plane curves associated to character varieties of 3-manifolds*, Inventiones Math. **118** (1994), pp. 47–84.

[CS] M. Culler and P. Shalen, *Varieties of group representations and splittings of 3-manifolds*, Ann. of Math. (2) **117** (1983), no. 1, 109–146.

[FGL] C. Frohman, R. Gelca, and W. Lofaro, *The A-polynomial from the noncommutative viewpoint*, Trans. Amer. Math. Soc. **354** (2002), no. 2, 735–747.

[Ga] S. Garoufalidis, *On the characteristic and deformation varieties of a knot*, Proceedings of the Casson Fest, Geom. Topol. Monogr., vol. 7, Geom. Topol. Publ., Coventry, 2004, 291–309 (electronic).

[Ge] R. Gelca, *On the relation between the A-polynomial and the Jones polynomial*, Proc. Amer. Math. Soc. **130** (2002), no. 4, 1235–1241 (electronic).
S. Garoufalidis and T. Le, The colored Jones function is q-holonomic, Geom. Topol. 9 (2005), 1253–1293 (electronic).

K. Hikami, Difference equation of the colored Jones polynomial for torus knots, Internat. J. Math. 15 (2004), no. 9, 959–965.

V. Jones, Polynomial invariants of knots via von Neumann algebras, Bull. Amer. Math. Soc., 12 (1985), 103–111.

T. Le, The colored Jones polynomial and the A-polynomial of knots, Adv. Math. 207 (2006), no. 2, 782–804.

A. Lubotzky and A. Magid, Varieties of representations of finitely generated groups, Memoirs of the AMS 336 (1985).

T. Le and A. Tran, On the AJ conjecture for knots, preprint 2011.

H. Morton, The coloured Jones function and Alexander polynomial for torus knots, Proc. Cambridge Philos. Soc. 117 (1995), 129–135.

N. Reshetikhin and V. Turaev, Ribbon graphs and their invariants derived from quantum groups, Commun. Math. Phys., 127 (1990), 1–26.

A. Sikora, Quantizations of character varieties and quantum knot invariants, to appear in Alg. and Geom. Topology, arXiv:0807.0943

School of Mathematics, 686 Cherry Street, Georgia Tech, Atlanta, GA 30332, USA
E-mail address: tran@math.gatech.edu