Diversity of Growth Patterns Probed in Live Cyanobacterial Cells Using a Fluorescent Analog of a Peptidoglycan Precursor

Ju-Yuan Zhang1, Gui-Ming Lin1, Wei-Yue Xing1,2 and Cheng-Cai Zhang1*

1 Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China, 2 University of Chinese Academy of Sciences, Beijing, China

Cyanobacteria were the first oxygenic photosynthetic organisms during evolution and were ancestors of plastids. Cyanobacterial cells exhibit an extraordinary diversity in their size and shape, and bacterial cell morphology largely depends on the synthesis and the dynamics of the peptidoglycan (PG) layer. Here, we used a fluorescence analog of the PG synthesis precursor D-Ala, 7-Hydroxycoumarin-amino-D-alanine (HADA), to probe the PG synthesis pattern in live cells of cyanobacteria with different morphology. They displayed diverse synthesis patterns, with some strains showing an intensive HADA incorporation at the septal region, whereas others gave an HADA signal distributed around the cells. Growth zones covering several cells at the tips of the filament were present in some filamentous strains such as in Arthrospira. In Anabaena PCC 7120, which is capable of differentiating heterocysts for N2 fixation, PG synthesis followed the cell division cycle. In addition, an HADA incorporation was strongly activated from 12 to 15 h following the initiation of heterocyst development, indicating a thickening of the PG layer in heterocysts. The PG synthesis pattern is diverse in cyanobacteria and responds to developmental regulation. The use of fluorescent analogs may serve as a useful tool for understanding the mechanisms of cell growth and morphogenesis operating in these organisms.

Keywords: cyanobacteria, peptidoglycan, growth pattern, cell wall, heterocyst, HADA

INTRODUCTION

Cyanobacteria are the only prokaryotes capable of oxygenic photosynthesis. Their occurrence on the Earth dates back to at least 2.45–2.32 Ga, but they may have first appeared even earlier, as evidenced by the fossils records (Bekker et al., 2004; Jeltsch, 2013). Cyanobacteria were responsible for the rise of oxygen levels, and certain ancient freshwater cyanobacteria were thought to be the ancestors of plastids through endosymbiosis with a heterotrophic host (Ponce-Toledo et al., 2017). During the long history of evolution, present-day cyanobacteria display a high degree of diversity in terms of morphology, living in the form of unicellular or filamentous strains, or in colonies. Depending on the strains, cyanobacterial cells also show a high diversity in their shape (round, spiral or rod), with sizes ranging from approximately 0.5 μm in the case of marine...
Prochlorococcus used one
D-amino acid, can be
incorporated into pentapeptide chains during PG synthesis with
less influence on cell growth. Therefore, FDAAs can be used to
insertion of new PG along the sidewall, and the divisome, which
is located at the cell division plane. FtsZ treadingmill directs the
dynamic synthesis of PG during cell constriction, whereas MreB
coordinates the activity of the elongasome (Bisson-Filho et al.,
2017; Yang et al., 2017). Both MreB and FtsZ are cytoskeletal
elements (Busiek and Margolin, 2015) and are conserved in
cyanobacteria (Zhang et al., 1995; Sakr et al., 2006; Hu et al.,
2007).

Although the pentapeptides linking the sugar chains in PG
may vary in composition depending on the bacteria, they usually
contain D-Ala at the fourth and fifth positions. A fluorescent
derivative of vancomycin (Van-FL), which tightly binds to the
D-Ala-D-Ala dipeptide, has been used to trace PG biosynthesis
sites and cell growth in a spectrum of bacteria (Tiyanont et al.,
2006; Divakaruni et al., 2007; Lehner et al., 2013; Mariscal
et al., 2016). Recently, several fluorescent D-amino acids (FDAAs)
have been developed to probe the growth mode in bacterial
cells by revealing the active part in a cell where PG synthesis
occurs (Kuru et al., 2015). Van-FL is an analog of an antibiotic,
whereas FDAAs, as analogs of native D-amino acids, can be
incorporated into pentapeptide chains during PG synthesis with
less influence on cell growth. Therefore, FDAAs can be used to
trace PG synthesis in live cells. In Gram-negative prokaryotes,
including cyanobacteria, the PG layer is within the periplasmic
space, between the inner and outer membranes. In general,
Gram-negative prokaryotes have a thinner PG layer compared
to Gram-positive prokaryotes; however, cyanobacteria have a
PG layer that is more reminiscent of those typically found
in Gram-positive bacteria, such that it is thicker and has a
higher degree of cross-linking (Hoiczyk and Hansel, 2000). Since
little is known about the growth mode in cyanobacteria, we
used one D-Ala analog, 7-hydroxycoumarin-3-carboxylic acid–
D-alanine (HADA), to probe the growth mode in cyanobacteria
with different morphologies. HADA emits blue fluorescence,
with little interference from the bright red fluorescence from the
photosynthetic pigments. Our results reveal a great diversity
in the mode of cell growth among cyanobacteria. We observed
certain growth patterns that appeared to be unique. For
example, the PG synthesis zone covered several cells at the tip
of the filaments in some filamentous cyanobacteria. We also
characterized the activity of PG synthesis in the heterocyst-
forming cyanobacterium Anabaena PCC 7120 (also known as
Nostoc PCC 7120), as an example of PG-layer remodeling during
cell differentiation (Nicolaisen et al., 2009). Heterocysts, which
are specialized in N₂ fixation, are induced upon combined
nitrogen starvation (Zhang et al., 2006; Herrero et al., 2016).
Several genes encoding enzymes involved in PG metabolism have
already been shown to be required for heterocyst development
or functioning (Lázaro et al., 2001; Zhu et al., 2001; Lehner
et al., 2011; Berendt et al., 2012; Videau et al., 2016; Bornikoel
et al., 2017; Zheng et al., 2017). Our results showed an
increased PG synthesis activity during heterocyst maturation,
after the deposition of the polysaccharide layer, which led to
a thick layer of PG surrounding the mature heterocyst. These
results increase our understanding of the molecular
mechanisms underlying PG synthesis and cellular morphogenesis
in cyanobacteria.

MATERIALS AND METHODS

Reagents
Synthesis of HADA was carried out according to a previously
described protocol (Kuru et al., 2015). HADA stock solution
was prepared in DMSO at a concentration of 100 mM and
stored at −20°C before use. Aztreonam was purchased from
Sigma-Aldrich (Cat: P841785).

Cyanobacterial Strains and Growth
Conditions
Anabaena PCC 7120 and Synechocystis PCC 6803 were
maintained in our lab; Synechococcus elongatus PCC 7942,
Arthrospira sp. FACHB 792, Spirulina subsalsa, Microcystis PCC
7806, and Oscillatoria animalis were obtained from Freshwater
Algae Culture Collection at the Institute of Hydrobiology
(FACHB); and Leptolyngbya sp. CB006, isolated from Tigris River
in Baghdad City, was kindly provided by Ibrahim J. Abed in
Baghdad University.

Arthrospira and Spirulina were cultivated in the Arthrospira
medium described previously (Aiba and Ogawa, 1977).
Anabaena, Oscillatoria, Leptolyngbya, Synechocystis, and
Synechococcus elongatus were grown in BG11 medium (Stanier
et al., 1971). Microcystis was grown in BG110 medium (BG11
without combined nitrogen) supplemented with 2 mM NaNO₃
and 10 mM NaHCO₃. All strains were grown axenically at 30°C
in an incubator with the orbital shaking speed of 180 rpm and
the light density of 30 μmol m⁻² s⁻¹.

To measure the growth of cyanobacterial strains, the fresh
culture of each strain was inoculated into three 250-ml flasks
with each flask containing 30 mL of medium, to an initial
optical density of 0.05 at 750 nm (OD$_{750}$), and grown under conditions described above. The OD$_{750}$ of each culture was measured every 12 h until the OD was 1.0. The growth curves were plotted using the 2-based logarithm of the OD$_{750}$ vs. time (X-axis) and sampling time (Y-axis). The growth rate (μ) of each strain was calculated from the slope of the linear region (corresponding to the exponential growth) in the semilogarithmic curve. The generation time, or doubling time (d), was calculated using the equation: $d = 1/\mu$. The generation times of the strains were as follows: *Synechocystis*, *Microcystis* and *S. elongatus*, approximately 17 h; *Oscillatoria*, 28 h; *Spirulina*, 11 h; *Arthrospira*, 25 h; *Leptolyngbya*, 13 h; *Anabaena*, 20 h.

Construction of Plasmids and Strain

The sequences of all the primers used in this study are listed in Supplementary Table S1. All the sequences of the plasmids used in this study have been deposited into GenBank.

The vector pCint2 (GenBank accession number: MH050934; Supplementary Figure S1) is a derivative of pRL271 (Cai and Wolk, 1990) with the erythromycin-resistant gene cassette deleted from the original plasmid. To construct pCint2, the vector pRL271 was amplified with the primers of PCINT2a and PCINT2b and the 5450 bp PCR fragment was circularized using the Vazyme ClonExpress II One Step Cloning Kit. The plasmid pCint2 was transformed into *E. coli* strain DH5α to generate pCint2. To make pSYFP2 (GenBank accession number: MH050935; Supplementary Figure S2), the plasmid PSYFP2 was amplified from the chromosome of *Anabaena*, approximately 17 h; *Oscillatoria*, 28 h; *Spirulina*, 11 h; *Arthrospira*, 25 h; *Leptolyngbya*, 13 h; *Anabaena*, 20 h.

RESULTS

Cell Growth of Unicellular Strains Depends on Major Septal and Minor Peripheral PG Synthesis (Synechocystis and S. elongatus) or Medial Elongation (Microcystis)

We tested the effect of different HADA concentrations on the growth of strains used in this study and found that a concentration of 200 μM had little effect, whereas a concentration up to 400 or 800 μM slightly impeded cell growth, making cells yellowish (Supplementary Figure S5). Thus, we used 200 μM for long-term labeling and 800 μM for pulse labeling for half an hour or one hour, following the rules that pulse-labeling times correspond to 2–5% of a generation time, and long-term
labeling times correspond to 1–2 generation times (Kuru et al., 2015). The doubling time of the strains used in this study varied between 11 and 28 h under our culture conditions.

We first tested the synthesis of the PG layer in two model unicellular strains, representing each a distinct cellular morphology of cyanobacteria. *Synechocystis* is round-shaped, whereas *S. elongatus* is rod-shaped. Both strains have a binary division mode, with a generation time of approximately 17 h under our culture condition. We first performed pulse labeling for 30 min with 800 µM HADA (Figure 1A). In both strains, intensive incorporation of HADA occurred at the mid site, starting from young cells before any sign of cell constriction, until the very end of the cell cycle when cell constriction was almost finished. Occasionally, HADA labeling at one cell pole could be observed, due to the separation of two daughter cells during the course of HADA pulse labeling. Thus, both strains, with different cell shapes, showed substantial incorporation of HADA at the septal region. We also performed continuous HADA labeling for up to 24 h with 200 µM HADA (Figure 1B). For both strains, in addition to intensive septal labeling, weaker peripheral HADA fluorescence could also be seen, indicating that these strains had a low peripheral PG synthesis activity. For *Synechocystis*, a new division plane positioned perpendicularly to the older one could often be found in one or both daughter cells before they separated. This finding is consistent with the division pattern of this strain (Marbouty et al., 2009).

We also studied the PG synthesis pattern in *Microcystis* PCC 7806 which is a round-shaped strain known for its production of the toxin microcystin (Dittmann and Wiegand, 2006). *Microcystis* and *Synechocystis* showed no obvious difference in HADA incorporation when pulse-labeled for 30 min with 800 µM HADA (data not shown). Like *Synechocystis*, *Microcystis* also showed a septal and peripheral HADA incorporation with continuous HADA labeling for 12 h at a concentration of 200 µM (Figure 1B). Interestingly, a labeling pattern of double stripe at the mid cell position could be found in many cells (indicated by arrows in Figure 1B). Such a growth pattern has been reported in some bacteria, called pre-septal or medial elongation, corresponding to PG synthesis bordering the division plane before full assembly of the divisome (Randich and Brun, 2015). Thus, unicellular cyanobacterial strains adopted different strategies for PG synthesis during cell growth.

The Filamentous Cyanobacteria *Arthrospira* and *Oscillatoria* Depend on Both Septal and Peripheral PG Synthesis for Cell Growth

We used two filamentous cyanobacteria, which do not fix nitrogen, as examples to examine the cell growth pattern by HADA labeling. The cells of both strains have a disc shape growing much shorter than wide (Figure 2). For *Arthrospira*, we first performed a short-time pulse labeling of 30 min with 800 µM of HADA. At the tip of many filaments, a high labeling zone, covering several cells could be observed (Figure 2A), and
quantification of the HADA signal revealed stronger PG synthesis at the end of these filaments (Figure 2B). In general, both septal and peripheral PG synthesis could be seen, indicating that the cell growth requires both lateral and septal PG synthesis during cell growth, although much stronger HADA labeling occurred at the newly formed division site just separating two daughter cells (Figure 2C). Oscillatoria displayed a similar PG synthesis pattern as Arthrospira (Figure 2D), with both a lateral and septal HADA incorporation.

Similar pattern of PG synthesis could also be observed with a Leptolyngbya species (with rod-shaped cells along the filaments) and a Spirulina species (twisted cells along the filaments); although the peripheral HADA signal in these species appeared weaker than in Oscillatoria and Arthrospira (Figure 3). HADA pattern in Spirulina was twisted along the filament, mirroring the shape of the filaments. The Leptolyngbya species grew with a doubling time of approximately 13 h but required a much longer incubation time to visualize HADA incorporation (3 days). At 24 h after transferring cells into HADA-free medium, HADA fluorescence at the septal sites mostly still remained, whereas those at the peripheral disappeared, indicating that PG turnover was faster at the cell periphery than at the cell division site in this strain.

Cell Growth and Division in the N$_2$-Fixing Filamentous Strain Anabaena

Anabaena PCC 7120 is a model strain for the studies of heterocyst development. We thus used this organism to trace the pattern of PG synthesis during both vegetative growth and heterocyst development. We first incubated filaments of *Anabaena* with various concentrations of HADA for different times and found that labeling time contributed to labeling efficiency much more than HADA concentration. For instance, 3 h of pulse labeling only gave a dim HADA signal at a few cell junctions irrespective of the used concentration of HADA, whereas 9 h of incubation with 200 µM HADA could gave bright labeling (data not shown). Therefore, we used a period of 9–24 h, for efficient labeling in *Anabaena* in subsequent experiments with 200 µM of HADA. Under vegetative growth, an intensive HADA signal could be detected in young cells at the division site, or old cells already finished cell constriction; at the same time, a weak but
FIGURE 3 | HADA incorporation into *Leptolyngbya* sp. CB006 and *Spirulina subsalsa*. *Leptolyngbya* requires a longer incubation time with HADA. Photos of HADA fluorescence (blue), photosynthetic pigment fluorescence (red), and their merges are shown.

detectable HADA signal at the cell periphery could also be seen (Figure 4A).

FtsZ, as the cell division initiating protein, assembles into Z-ring at the mid cell during the early stage of cell division. To explore the relationship between cell division and PG synthesis, we first probed the PG synthesis with HADA labeling in a strain in which FtsZ is fused to YFP (Figure 5). Three types of labeling could be observed. First, there were cells containing a Z-ring at the mid-cell position, but no detectable incorporation of HADA (red arrows, Figure 5A) or sign of cell constriction were observed. Second, both FtsZ-YFP and HADA fluorescence could be observed at the mid-cell position, with the two fluorescence signals superimposed (white arrows). Some of these cells did not show evidence of cell constriction, whereas others already evinced signs of cell constriction, indicating that cell division progressed to the constriction stage. Finally, some cells in which cell division was completed, with a narrow cell constriction between two cells, gave only a HADA signal but no FtsZ-YFP fluorescence (asterisks). At the end of the cell division, the Z-ring disassembled at the division site, but HADA incorporated at the constriction site remained for a long time, indicating a slow turnover of PG at the septa. Consistent with these observations, even after 72 h of HADA removal, HADA fluorescence could still be observed at many cell-cell junctions (data not shown). The antibiotic aztreonam targets the cell division protein FtsI/PBP3 which is involved in PG synthesis at the bacterial division site. In the presence of aztreonam, cell division could be impaired, leading to elongated forms of cells. Under such conditions, FtsZ-YFP could still be observed as a ring structure, but a HADA incorporation at the peripheral sidewall became obvious (Figure 5B).

FIGURE 4 | PG synthesis during vegetative growth and heterocyst development in *Anabaena* PCC 7120. Filaments of *Anabaena* were grown in BG11 using nitrate as a combined nitrogen source, then incubated with 200 µM of HADA in BG11 (A), or in BG11 (B) to induce heterocyst development. Arrows in A indicate elongated cells that just started to incorporate HADA at the division site, and in B heterocysts. Bright-field (gray) and HADA fluorescence (blue) images are shown.

Regulation of PG Synthesis During Heterocyst Development

As shown above, PG synthesis in vegetative cells was mainly at the division or constriction site. However, as terminally differentiated cells developed from vegetative cells, heterocysts are incapable of cell division. To explore whether PG synthesis is still active in heterocysts, we induced heterocysts by growing vegetative filaments of *Anabaena* in a nitrogen-free medium containing 200 µM HADA, and measured HADA fluorescence in mature heterocysts after 24 h of induction. As shown in Figure 4B, intensive HADA incorporation in heterocysts was observed at...
the central peripheral areas, as well as at the polar regions, with PG labeling protruding to neighboring vegetative cells. Overall, HADA fluorescence intensity was much stronger in mature heterocysts than in vegetative cells. Because PG synthesis appeared to be upregulated in heterocysts, we determined the timing of PG synthesis during heterocyst development (Figure 6). Alcian blue is a dye that can specifically stain the heterocyst polysaccharide layer, even at the early phase of heterocyst development before any morphological signs. This was suggested by the evidence that only a Z-ring, but no Alcian blue staining, was observed in the developing cells, indicative of PG synthesis at the cell wall. At 15 h, all proheterocysts showed increased HADA incorporation, indicating that active PG synthesis occurred in these cells. This observation was consistent with the quantification of the HADA signal in a representative number of differentiating cells at these time points (Figure 6B).

DISCUSSION

In this study, we investigated the PG synthesis patterns by HADA staining in several cyanobacterial strains which cover most of the common morphological types known in cyanobacteria: unicellular, filamentous, spiral, or heterocystous. We also tested several strains that grow in colonial or branching-filamentous forms, but the existence of a gelatinous sheath surrounding the cells prevented a proper staining of PG by HADA incorporation (data not shown). Most of the commonly found cell morphologies in cyanobacteria are represented in this study. Despite the diversity of cell size and morphology, the PG synthesis patterns observed in cyanobacteria share some common features and may display a distinct characteristic depending on the strain examined. First, as a general rule, all the cyanobacterial strains we examined thus far showed intensive HADA incorporation at the septal site. Once incorporated at the division site, HADA remained for a long time after transferring cells into HADA-free medium, which is evidence of a slow turnover. Second, peripheral PG synthesis (or lateral elongation) was also common in cyanobacteria, but varied extensively: some strains such as *Leptolyngbya* required a long incubation with HADA to reveal the lateral PG synthesis, whereas other strains such as *Synechocystis* or *Anabaena* gave an HADA signal distributed around the cell at a similar intensity (see *Arthrospira*, *Leptolyngbya*, and *Oscillatoria*, for example). HADA signal intensity may correlate with the degree of septation after cell division, (i.e., the degree of polar morphological remodeling). Indeed, when the two daughter cells were either completely separated after cell division (unicellular strains such as *Synechocystis* for example), or cell constriction was severe with a much narrower connection at cell–cell junctions, the cell poles generated during cell division required extensive PG hydrolysis and resynthesis in order to be remodeled. In contrast, in those strains whose cell constriction was limited, PG synthesis was restricted mainly to the separation of the two daughter cells. Beyond these general rules of PG synthesis, some cyanobacterial strains displayed distinct features: *Microcystis* had a preseptal-type growth mode, similar as that observed in *Caulobacter crescentus* (Aaron et al., 2007); *Arthrospira* and *Oscillatoria* filaments often displayed a stronger, or even graded HADA signal intensity at the tip of the filaments. Thus, cyanobacteria show great diversity in term of cell growth mode.

Using *Anabaena*, we examined PG synthesis in vegetative cells and its relationship to cell division. The data suggested that HADA incorporation and consequently, PG synthesis, occurred at the division site from the onset until polar morphogenesis, as well as weakly along the long axis of the cell wall (Figure 4A). In some larger vegetative cells, corresponding to those ready to divide, a faint line of HADA fluorescence at the mid-cell position could be seen before cell constriction (white arrows in Figure 4A), suggesting that the PG synthesis at the division site starts relatively early during the cell cycle. Furthermore, synthesis of PG at the division site likely followed the direction of FtsZ. This was suggested by the evidence that only a Z-ring, but no HADA signal, was found at the septum in many cells without constriction formation, whereas a Z-ring superimposed with

FIGURE 5 | Relationship between cell division and PG synthesis in *Anabaena* PCC 7120. (A) An *Anabaena* strain in which the cell division gene *ftsZ* was replaced by a *ftsZ*-yfp translational fusion was treated with HADA, and imaged under a fluorescence microscope. The top panel shows red photosynthetic pigment and the HADA signal in blue; the middle panel shows the Z-ring in yellow; and the bottom panel shows a superimposition of the same filaments with both HADA and FtsZ-YFP signals. Asterisks indicate cell–cell junctions labeled by HADA; white arrows indicate septa having both HADA signal and FtsZ-YFP signal, and red arrows indicate septa having FtsZ-YFP signal only. (B) The same recombinant strain as in A was treated with aztreonam (Az), an antibiotic targeting to FtsI, a PG synthase involved in cell division. Cells elongated as a consequence of cell division inhibition as previously reported (Sakr et al., 2008). The same filaments were pictured in red (photosynthetic pigments), blue (HADA), yellow (FtsZ-YFP) and superimposition of the HADA and YFP signals.

FIGURE 6

(A) *Anabaena* (FtsZ-YFP) (200 μM HADA, 24 h) and (B) *Anabaena* (FtsZ-YFP) (100 μM Az for 36 h, then 100 μM Az and 200 μM HADA for 24 h).
HADA signal appeared in all cells that had begun constricting (Figure 5A). The superimposition of the Z-ring and HADA incorporation activity at cell septum implies cell division and HADA incorporation are highly coordinated. When cell division was inhibited by aztreonam treatment, cells became large and elongated. In most of these cells, HADA incorporation was no longer restricted to the Z-ring site. Rather, it occurred on the entire cell surface (Figure 5B). Thus, PG synthesis and cell division can be uncoupled at the septum when cell division is blocked.

Heterocysts are differentiated from vegetative cells upon combined nitrogen deprivation. Compared to vegetative cells, heterocysts are larger and feature a thick cell envelope with two additional layers: an inner glycolipid layer and an outer polysaccharide layer (Wolk, 1996). We found that PG synthesis in differentiating cells (proheterocysts) became active after the formation of the polysaccharide layer, at a relatively late stage of heterocyst development (Figure 6). HADA labeling occurred around the whole proheterocyst cells, in contrast to vegetative cells, where labeling was mainly noted at the division site. The HADA signal in proheterocysts covered a large central area, which corresponds to a typical lateral growth mode found in E. coli or B. subtilis. This is also similar to the elongation mode of vegetative cells when septal PG synthesis is inhibited by aztreonam. The cell division protein FtsZ is known to be downregulated during heterocyst development at both transcriptional and post-transcriptional levels (Kuhn et al., 2000; Wang and Xu, 2005). Thus, the PG synthesis pattern in proheterocysts is likely to be independent of FtsZ but dependent on MreB, which has been reported to be upregulated in proheterocysts (Hu et al., 2007). The regulation of PG synthesis is consistent with the finding that several PG synthesis enzymes are required for heterocyst development or functioning (Lázaro et al., 2001; Zhu et al., 2001; Lehner et al., 2011; Berendt et al., 2012; Videau et al., 2016; Bornikoel et al., 2017; Zheng et al., 2017).

Based on our findings and previous reports, we propose that a thick PG layer is another characteristic of mature heterocysts, in addition to their glycolipid and polysaccharide layers. Additionally, some of the enzymes involved in PG metabolism may affect the functioning of heterocysts by modulating PG synthesis during heterocyst maturation, in addition to their roles in cell–cell communication.

The fluorescent derivative of vancomycin, Van-FL, was previously used to stain PG in the heterocyst-forming cyanobacteria Anabaena PCC 7120 and Nostoc punctiforme (Lehner et al., 2013; Rudolf et al., 2015; Mariscal et al., 2016). The staining of vegetative cells with Van-FL showed similar patterns to that of HADA, with intensive septal labeling.

![Figure 6](image-url) Determination of the timing of PG synthesis in heterocysts. Heterocysts differentiation takes approximately 20–24 h after the deprivation of combined nitrogen from the growth medium. Heterocysts were induced in the BG11 medium containing 200 µM HADA. Seven hours after the induction, filaments were stained with Alcian blue which binds to heterocyst-specific polysaccharide layer, to better recognize the developing cells (arrows). (A) The filaments were examined under both bright-field and for HADA fluorescence to determine the incorporation of HADA into developing heterocysts. The same procedure was followed after 10 h, 12 h and 15 h of induction. All HADA fluorescence images were taken using the same exposure time (1 s) and were processed with the same procedures using ImageJ. (B) Quantification of HADA incorporation in developing and mature heterocysts at 8 h, 10 h, 12 h, and 15 h. At each time point, the fluorescence signal along seven representative short filaments, each of which consists of one heterocyst (Het) at the center and a few vegetative cells (Veg) on each side, were quantified with ImageJ. Every curve in the graphs represents the fluorescence intensity along one filament. The signal from developing or mature heterocysts in the graphs is indicated by the center shadow area. The bright-field microscopy image and the HADA fluorescence picture of one filament from the 15 h sample were shown at the top of the panel for illustration purpose.
However, the Van-FL signal did not increase in heterocysts, which differs from our observations using HADA in this study. Two reasons may contribute to this difference. First, Van-FL is an analog of the antibiotic vancomycin. Thus, it is unsuitable to follow the entire process of heterocyst development, which lasts for more than 20 h, with live-cell imaging. Second, HADA incorporation occurs at the late stage of heterocyst development and Van-FL is a relatively large molecule (1921 Da) compared to HADA (292 Da). Thus, it is more difficult for Van-FL to penetrate the already formed thick proheterocyst envelope and outer membrane to reach PG synthesis sites during the staining procedure. In conclusion, HADA is a more suitable labeling tool for the study of heterocyst development.

AUTHOR CONTRIBUTIONS

C-CZ, J-YZ, and G-ML designed the study and analyzed the data. J-YZ, G-ML, and W-YX performed the experiments. C-CZ and J-YZ wrote the manuscript.

REFERENCES

Aaron, M., Charbon, G., Lam, H., Schwarz, H., Vollmer, W., and Jacobs-Wagner, C. (2007). The tubulin homologue FtsZ contributes to cell elongation by guiding cell wall precursor synthesis in Caulobacter crescentus. Mol. Microbiol. 64, 938–952. doi: 10.1111/j.1365-2958.2007.05720.x

Aiba, S., and Ogawa, T. (1977). Assessment of growth yield of a blue-green alga, Spirulina platensis, in axenic and continuous culture. Microbiology 102, 179–182. doi: 10.1099/00221287-102-1-179

Bekker, A., Holland, H. D., Wang, P. L., Rumble, D., Stein, H. J., Hannah, J. L., et al. (2004). Dating the rise of atmospheric oxygen. Nature 427, 117–120. doi: 10.1038/nature02260

Berendt, S., Lehner, J., Zhang, Y. V., Rasse, T. M., Forchhammer, K., and Maldener, I. (2012). Cell wall amide AmiC1 is required for cellular communication and heterocyst development in the cyanobacterium Anabaena sp. strain PCC 7120 but not for filament integrity. J. Bacteriol. 194, 5218–5227. doi: 10.1128/JB.00912-12

Bisson-Filho, A. W., Hsu, Y. P., Squire, G. R., Kuru, E., Wu, F., Jukes, C., et al. (2017). Treadmilling by FtsZ filaments drives peptidoglycan synthesis and bacterial cell division. Science 355, 739–743. doi: 10.1126/science.aak9973

Bornikoel, J., Carrión, A., Fan, Q., Flores, E., Forchhammer, K., Mariscal, V., et al. (2017). Role of two cell wall amidases in septal junction and nanopore formation in the multicellular cyanobacterium Anabaena sp. PCC 7120. Front. Cell. Infect. Microbiol. 7:386. doi: 10.3389/fcimb.2017.00386

Busiek, K. K., and Margolin, W. (2015). Bacterial actin and tubulin homologs in cell growth and division. Curr. Biol. 25, R243–R254. doi: 10.1016/j.cub.2015.01.030

Cai, Y. P., and Wolk, C. P. (1990). Use of a conditionally lethal gene in the cyanobacterium Anabaena sp. strain PCC 7120. J. Bacteriol. 179, 1998–2005.

Herrero, A., Stavans, J., and Flores, E. (2016). The multicellular nature of filamentous heterocyst-forming cyanobacteria. FEMS Microbiol. Rev. 40, 831–854. doi: 10.1093/femsre/fuw029

FUNDING

The work was funded by the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (Grant No. QYZDJ-SSW-SMC016), and the Recruitment Program of Global Experts of China (Grant No. Y2016.003).

ACKNOWLEDGMENTS

The authors thank the handling editor and the reviewers for their critical reading of the manuscript and helpful suggestions.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmicb.2018.00791/full#supplementary-material

Hoicycz, E., and Hansel, A. (2000). Cyanobacterial cell walls: news from an unusual prokaryotic envelope. J. Bacteriol. 182, 1191–1199. doi: 10.1128/JB.182.5.1191-1199.2000

Hu, B., Yang, G., Zhao, W., Zhang, Y., and Zhao, J. (2007). MreB is important for cell shape but not for chromosome segregation of the filamentous cyanobacterium Anabaena sp. PCC 7120. Mol. Microbiol. 63, 1640–1652. doi: 10.1111/j.1365-2958.2007.05618.x

Jeltsch, A. (2013). Oxygen, epigenetic signaling, and the evolution of early life. Trends Biochem. Sci. 38, 172–176. doi: 10.1016/j.tibs.2013.02.001

Kuhn, L., Peng, L., Bedu, S., and Zhang, C. C. (2000). Developmental regulation of the cell division protein FtsZ in Anabaena sp. strain PCC 7120, a cyanobacterium capable of terminal differentiation. J. Bacteriol. 182, 4640–4643. doi: 10.1128/JB.182.18.4640-4643.2000

Kuru, E., Tekkam, S., Hall, E., Brun, Y. V., and Van Nieuwenhze, M. S. (2015). Synthesis of fluorescent D-amino acids and their use for probing peptidoglycan synthesis and bacterial growth in situ. Nat. Protoc. 10, 33–52. doi: 10.1038/nprot.2014.197

Lázaro, S., Fernández-Piñas, F., Fernández-Valiente, E., Blanco-Rivero, A., and Leganés, F. (2001). pbpB, a gene coding for a putative penicillin-binding protein, is required for aerobic nitrogen fixation in the cyanobacterium Anabaena sp. strain PCC7120. J. Bacteriol. 183, 628–636. doi: 10.1128/JB.183.2.628-636.2001

Lehner, J., Berendt, S., Dorsam, B., Pérez, R., Forchhammer, K., and Maldener, I. (2013). Prokaryotic multicellularity: a nanopore array for bacterial cell communication. FASEB J. 27, 2293–2300. doi: 10.1096/fj.12-225854

Lehner, J., Zhang, Y., Berendt, S., Rasse, T. M., Forchhammer, K., and Maldener, I. (2011). The morphogene AmiC2 is pivotal for multicellular development in the cyanobacterium Nostoc punctiforme. Mol. Microbiol. 79, 1655–1669. doi: 10.1111/j.1365-2958.2011.07234.x

Morlouty, M., Saguez, C., Cassier-Chauvat, C., and Chauvat, F. (2009). Characterization of the FtsZ-interacting septal proteins SepF and PncE in the spherical-celled cyanobacterium Synechocystis strain PCC 6803. J. Bacteriol. 191, 6178–6185. doi: 10.1128/JB.00723-09

Mariscal, V., Nürnberg, D. J., Herrero, A., Mullineaux, C. W., and Flores, E. (2016). Overexpression of SepF alters septal morphology and heterocyst pattern regulated by diffusible signals in Anabaena. Mol. Microbiol. 101, 968–981. doi: 10.1111/mmi.13436

Nicolaissen, K., Hahn, A., and Schleiff, E. (2009). The cell wall in heterocyst formation by Anabaena sp. PCC 7120. J. Bacteriol. 49, 5–24. doi: 10.1002/jobh.200800300

Ponce-Toledo, R. I., Deschamps, P., López-García, P., Zivanovic, Y., Benzerara, K., and Moreira, D. (2017). An early-branching freshwater cyanobacterium at the origin of plastids. Curr. Biol. 27, 386–391. doi: 10.1016/j.cub.2016.11.056
Zhang, C. C., Huguenin, S., and Friry, A. (1995). Analysis of genes encoding the cell division protein FtsZ and a glutathione synthetase homologue in the cyanobacterium Anabaena sp. PCC 7120. *Res. Microbiol.* 146, 445–455.

Zhang, C. C., Laurent, S., Sakr, S., Peng, L., and Bédou, S. (2006). Heterocyst differentiation and pattern formation in cyanobacteria: a chorus of signals. *Mol. Microbiol.* 59, 367–375. doi: 10.1111/j.1365-2958.2005.04979.x

Zhu, J., Jäger, K., Black, T., Zarka, K., Koksharova, O., and Wolk, C. P. (2001). HcwA, an autolysin, is required for heterocyst maturation in Anabaena sp. strain PCC 7120. *J. Bacteriol.* 183, 6841–6851. doi: 10.1128/JB.183.23.6841-6851.2001

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2018 Zhang, Lin, Xing and Zhang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.