An Asymptotic Form of the Generating Function
\[\prod_{k=1}^{\infty} \left(1 + \frac{x^k}{k}\right) \]

Andreas B. G. Blobel
andreas.blobel@kabelmail.de
April 17, 2019

Abstract

It is shown that the sequence of rational numbers \(r(k) \) generated by the ordinary generating function \(\prod_{k=1}^{\infty} \left(1 + \frac{x^k}{k}\right) \) converges to a limit \(C > 0 \). \(C \) can be expressed as

\[C = \exp \left(- \sum_{k=2}^{\infty} \frac{(-1)^k}{k} \zeta(k) \right) \]

where \(\zeta() \) denotes the Riemann zeta function.

The ordinary generating function (OGF)

\[R(x) := \prod_{k=1}^{\infty} \left(1 + \frac{x^k}{k}\right) = \sum_{k=0}^{\infty} r(k) x^k \quad (1a) \]

is closely related to the well known OGF

\[Q(x) := \prod_{k=1}^{\infty} \left(1 + x^k\right) = \sum_{k=0}^{\infty} q(k) x^k \quad (1b) \]

\(Q(x) \) generates the sequence of counters for the number of integer partitions with distinct parts \([\text{Wil}]. \ q(k) \) is equal to the number of partitions of \(k \) into distinct parts for each \(k \geq 0 \) \([\text{Int}]. \)

A partition with distinct parts of integer \(k \) can be regarded as a finite set \(S \) of (distinct) positive integers \(i \geq 1 \) whose sum equals \(k \). Let \(\mathcal{P}(k) \) denote the set of all such partitions of \(k \) and let \(S \in \mathcal{P}(k) \). We then have

\[\sum_{i \in S} i = k \quad (2) \]
With each partition \(S \in \mathcal{P}(k) \) we can associate the inverse of the product of its (distinct) elements
\[
ip(S) := \frac{1}{\prod_{i \in S} i} \quad (3)
\]
With this in mind \(r(k) \) can be written as
\[
r(k) = \sum_{S \in \mathcal{P}(k)} \nip(S) = \sum_{S \in \mathcal{P}(k)} \frac{1}{\prod_{i \in S} i} \tag{4a} \quad : \quad r = 0
\]
\[
r(k) = \sum_{S \in \mathcal{P}(k)} \frac{1}{\prod_{i \in S} i} \tag{4b} \quad : \quad r \geq 1
\]
In other words, \(r(k) \) is equal to the sum over all partitions \(S \in \mathcal{P}(k) \) of the reciprocal of the product of the elements of \(S \).

How does the sequence \(r(k) \) given in (4a) and (4b) behave? Does it converge to some limit \(C > 0 \)? Taking the logarithm of (1a), applying the Mercator series expansion \([\text{Wol}]\), and summing up columns first gives
\[
\ln R(x) = \sum_{k \geq 1} \ln \left(1 + \frac{x^k}{k} \right) = x - \frac{1}{2} x^2 + \frac{1}{3} x^3 - \cdots
\]
\[
+ \frac{x^2}{2} - \frac{1}{2} \left[\frac{x^2}{2} \right]^2 + \frac{1}{3} \left[\frac{x^2}{2} \right]^3 - \cdots
\]
\[
+ \frac{x^3}{3} - \frac{1}{2} \left[\frac{x^3}{3} \right]^2 + \frac{1}{3} \left[\frac{x^3}{3} \right]^3 - \cdots
\]
\[
\vdots
\]
\[
= \text{Li}_1(x) - \frac{1}{2} \text{Li}_2(x^2) + \frac{1}{3} \text{Li}_3(x^3) - \cdots \tag{5}
\]
Here \(\text{Li}_s(x) \) denotes the so-called polylogarithm \([\text{Wikc}]\), a Dirichlet type series \([\text{Wika}]\).

We are looking for an asymptotic relation of the form
\[
R(x) \xrightarrow{x \to 1^-} \frac{C}{1 - x} \tag{6}
\]
for some constant \(C > 0 \). This is equivalent to the existence of the limit
\[
C = \lim_{x \to 1^-} (1 - x)R(x) \tag{7}
\]
Taking the logarithm of (7) gives
\[
\ln C = \lim_{x \to 1^-} \left(\ln (1 - x) + \ln R(x) \right) \tag{8}
\]
If we insert (5), observe the identity
\[
\text{Li}_1(x) = -\ln(1 - x)
\] (9)
and finally set \(x = 1 \), we arrive at the condition
\[
\ln C = -\frac{1}{2} \text{Li}_2(1) + \frac{1}{3} \text{Li}_3(1) - \frac{1}{4} \text{Li}_4(1) + \cdots
\]
\[
= -\frac{1}{2} \zeta(2) + \frac{1}{3} \zeta(3) - \frac{1}{4} \zeta(4) + \cdots
\] (10)
where \(\zeta(s) \) denotes the Riemann Zeta function. We therefore have
\[
C = \exp \left(-\sum_{k=2}^{\infty} \frac{(-1)^k}{k} \zeta(k) \right)
\] (11)
We observe that \(\zeta(k) \) converges rapidly towards 1:

\(k \)	\(\zeta(k) - 1 \)	
2	\(\frac{\pi^2}{6} - 1 \)	0.644934
3	-	0.202057
4	\(\frac{\pi^4}{90} - 1 \)	0.082323
5	-	0.036928
6	\(\frac{\pi^6}{945} - 1 \)	0.017343
7	-	0.008349
8	\(\frac{\pi^8}{9450} - 1 \)	0.004077
9	-	0.002008
10	\(\frac{\pi^{10}}{93555} - 1 \)	0.000995
11	-	0.000494

\(\zeta(k) \xrightarrow{k \to \infty} 1 \)

This motivates the decomposition of (10)
\[
\ln C = -\frac{1}{2} \zeta(2) + \frac{1}{3} \zeta(3) - \frac{1}{4} \zeta(4) + \cdots
\]
\[
= -\frac{1}{2} \left[\zeta(2) - 1 \right] + \frac{1}{3} \left[\zeta(3) - 1 \right] - \frac{1}{4} \left[\zeta(4) - 1 \right] + \cdots
\]
\[
- \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots
\]
\[
= -\Delta + \ln 2 - 1
\] (12)
where Δ is defined as

$$\Delta := + \frac{1}{2} \left[\zeta(2) - 1 \right] - \frac{1}{3} \left[\zeta(3) - 1 \right] + \frac{1}{4} \left[\zeta(4) - 1 \right] - \cdots$$ \hspace{1cm} (13)

We therefore have from (12)

$$C = \frac{2}{e^{1+\Delta}}$$ \hspace{1cm} (14)

From (13) we derive the sequence of corrections Δ_m as follows

$$\Delta_m = \begin{cases}
0 & : m = 1 \\
\sum_{k=2}^{m} \frac{(-1)^k}{k} (\zeta(k) - 1) & : m \geq 2
\end{cases}$$ \hspace{1cm} (15)

This creates the sequence

$$C_m = \frac{2}{\exp(1 + \Delta_m)} : m \geq 1$$ \hspace{1cm} (16)

of approximations of C whose first elements are listed in Table 1

m	Δ_m	$\frac{2}{\exp(1+\Delta_m)}$
1	0.0	0.7357589
2	0.3224670	0.5329542
3	0.2551147	0.5700863
4	0.2756955	0.5584734
5	0.2683100	0.5626133
6	0.2712005	0.5609894
7	0.2700078	0.5616589
8	0.2705174	0.5613727
9	0.2702943	0.5614980
10	0.2703937	0.5614421
11	0.2703488	0.5614674
12	0.2703693	0.5614559
13	0.2703599	0.5614612

Table 1: Approximation of C
Useful recurrence relations for computation

For $n > 0$ we define the finite products

\[
R_n(x) := \prod_{k=1}^{n} \left(1 + \frac{x^k}{k}\right) = \sum_{k=0}^{\infty} r_n(k) \ x^k
\]

(17a)

\[
Q_n(x) := \prod_{k=1}^{n} (1 + x^k) = \sum_{k=0}^{\infty} q_n(k) \ x^k
\]

(17b)

The integer numbers $q_n(k)$ in (17b) count the number of partitions of k with distinct parts where no part exceeds n. The coefficients $q_n(k)$ clearly have 3 basic properties:

\[
q_n(k) = q(k) \quad \text{if} \quad k \leq n
\]

(18a)

\[
q_n(k) = 0 \quad \text{if} \quad k > \frac{n(n+1)}{2}
\]

(18b)

\[
\sum_{k \geq 0} q_n(k) = 2^n
\]

(18c)

where (18c) follows from evaluation of $Q_n(1)$. The $q_n(k)$ obey the recurrence relations

\[
q_0(k) = \begin{cases} 1 & : k = 0 \\ 0 & : k \geq 1 \end{cases}
\]

(19a)

\[
q_n(k) = q_{n-1}(k) \quad : 0 \leq k < n
\]

(19b)

\[
q_n(k) = q_{n-1}(k-n) + q_{n-2}(k-n+1) + q_{n-3}(k-n+2) + \cdots + q_1(k-2) + q_0(k-1) \quad : k \geq n > 0
\]

(19c)

Initial values are prescribed in row $n = 0$ (19a). The values in any subsequent row $n \geq 1$ are determined by values in previous rows $m < n$.

| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 3 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 4 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
| 5 | 1 | 1 | 1 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 2 | 2 | 1 | 1 | 1 | 1 | 0 |

Table 2: Upper left section of the $q_n(k)$ field $[0 \leq n \leq 5, \ 0 \leq k \leq 16]$
Analogous properties and relations hold for the rational numbers \(r_n(k) \) in (17a):

\[
\begin{align*}
 r_n(k) &= r(k) & \text{if } k \leq n & \quad (20a) \\
 r_n(k) &= 0 & \text{if } k > \frac{n(n+1)}{2} & \quad (20b) \\
 \sum_{k \geq 0} r_n(k) &= n + 1 & \quad (20c)
\end{align*}
\]

\[
\begin{align*}
 r_0(k) &= \begin{cases}
 1 & : k = 0 \\
 0 & : k \geq 1
 \end{cases} & \quad (21a) \\
 r_n(k) &= r_{n-1}(k) : 0 \leq k < n & \quad (21b) \\
 r_n(k) &= \frac{1}{n} r_{n-1}(k-n) + \frac{1}{n-1} r_{n-2}(k-n+1) + \frac{1}{n-2} r_{n-3}(k-n+2) + \cdots \\
 & \quad + \frac{1}{n} r_1(k-2) + \frac{1}{n} r_0(k-1) : k \geq n > 0 & \quad (21c)
\end{align*}
\]

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
0	11	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	11	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	1	1	\frac{1}{2}	\frac{1}{2}	0	0	0	0	0	0	0	0	0	0	0	0	0
3	1	1	\frac{1}{2}	\frac{5}{6}	\frac{1}{3}	\frac{1}{6}	\frac{1}{6}	0	0	0	0	0	0	0	0	0	0
4	1	1	\frac{1}{2}	\frac{5}{6}	\frac{7}{12}	\frac{1}{2}	\frac{5}{24}	\frac{1}{24}	\frac{1}{24}	\frac{1}{2}	0	0	0	0	0	0	
5	1	1	\frac{1}{2}	\frac{5}{6}	\frac{7}{12}	\frac{37}{60}	\frac{37}{120}	\frac{1}{4}	\frac{19}{120}	\frac{1}{8}	\frac{7}{120}	\frac{1}{24}	\frac{1}{60}	\frac{1}{120}	\frac{1}{120}	0	

Table 3: Upper left section of the \(r_n(k) \) field \([0 \leq n \leq 5 , \ 0 \leq k \leq 16]\)

Figure [1] assembles some instances of \(r(k) \) which have been computed on the R platform for statistical computing \([\text{RPr}]\) using recurrence relations \((21a), (21b), \) and \((21c)\). The plot shows that the \(r(k) \) approach the asymptotic value

\[
C = 0.56146 \ldots
\]

from above as \(k \) increases. The constant \(C \) is determined by \((11)\) and \((14)\) and is marked by a dashed horizontal line.
Figure 1: Some computed instances of $r(k)$
Conclusion

It has been shown that the function

\[f(x) = \frac{C}{1 - x} \]

is an asymptotic form of the generating function \((1a) \) in the sense that the sequence of rational numbers \(r(k) \) generated by \((1a) \) converges towards \(C > 0 \) which is determined by \((11) \) and \((14) \).
References

[Int] Online Encyclopedia of Integer Sequences. A000009. URL: https://oeis.org/A000009.

[RPr] R-Project. The R Project for Statistical Computing. URL: https://www.r-project.org/.

[Wika] Wikipedia. Dirichlet series. URL: https://en.wikipedia.org/wiki/Dirichlet_series.

[Wikb] Wikipedia. Particular values of the Riemann zeta function. URL: https://en.wikipedia.org/wiki/Particular_values_of_the_Riemann_zeta_function.

[Wikc] Wikipedia. Polylogarithm. URL: https://en.wikipedia.org/wiki/Polylogarithm.

[Wikd] Wikipedia. PolylogarithmParticularValues. URL: https://en.wikipedia.org/wiki/Polylogarithm#Particular_values.

[Wike] Wikipedia. Riemann zeta function. URL: https://en.wikipedia.org/wiki/Riemann_zeta_function.

[Wil] Herbert S. Wilf. Lectures on Integer Partitions. URL: https://www.math.upenn.edu/~wilf/PIMS/PIMSlectures.pdf.

[Wol] Wolfram. Mercator series. URL: http://mathworld.wolfram.com/MercatorSeries.html (accessed: 01.09.2016).