Tilman Plehn
Max Planck Institute for Physics, Munich

- Split and TeV scale supersymmetry
- Signals at the LHC
- Signals at the ILC
- What stays [W. Kilian, P. Richardson, TP, E. Schmidt: EPC C39]
Starting from data...

- ...which seem to indicate a light Higgs

- problem of light Higgs: scalar masses perturbatively unstable
 quadratic divergences $\delta m_h^2 \propto g^2 \Lambda^2$
 all-orders Higgs mass driven to cutoff $m_h \to \Lambda$

⇒ solution: counter term for exact cancellation ⇒ artificial, ugly, fine tuned

⇒ or new physics at TeV scale: supersymmetry
 extra dimensions
 little Higgs (pseudo–Goldstone Higgs)
 Higgsless/composite Higgs
 YourFavoriteNewPhysics...

⇒ all beautiful concepts and symmetries

⇒ in general problematic to realize at TeV scale [data seriously in the way]

Idea of supersymmetry: cancellation of divergences through statistics factor (-1)

[scalars vs. SM fermions; fermions vs. SM gauge bosons; fermions vs. SM scalars]
TeV Scale Supersymmetry: 2

Bright side
- light fundamental Higgs by construction [data]
- 3 running gauge couplings meet — GUT gauge group [data]
- R parity — stable proton yields dark matter [data]
- 2 Higgs doublets — radiative symmetry breaking [beauty]
- local supersymmetry – including gravity? [beauty]
- rich LHC phenomenology [effective theory of everything short–lived]

Dark side
- unknown Susy breaking
 → masses, couplings, phases
- flavor physics and Susy breaking
 → CKM and lepton flavor?
- 2 Higgs doublet model
 → μ and Susy breaking? [Giudice, Masiero]

\Rightarrow as many exclusive analyses as possible [never believe us theorists when we say we know...]

spin	d.o.f.	spin	d.o.f.
g	$\frac{1}{2}$	g	2
\tilde{g}	1/2	\tilde{g}	2
h^0, H^0, A^0	0	\tilde{A}^0	3
χ^0_1	$\frac{1}{2}$	χ^0_1	$4 \cdot 2$
W^\pm	1	W^\pm	$2 \cdot 3$
H^\pm	0	H^\pm	2
$\tilde{\chi}^\pm_1$	$\frac{1}{2}$	$\tilde{\chi}^\pm_1$	$2 \cdot 4$
f_L, f_R	$1/2$	f_L, f_R	1+1
\tilde{f}_L, \tilde{f}_R	0	\tilde{f}_L, \tilde{f}_R	1+1
Gauginos and higgsinos in the SUSY spectrum

- gauginos–higgsinos mixing: \(m_{\tilde{\chi}^0_2} \sim m_{\tilde{\chi}^+_1} \) or \(m_{\tilde{\chi}^0_1} \sim m_{\tilde{\chi}^+_1} \) in MSSM

\[
\begin{pmatrix}
m_{\tilde{B}} & 0 & -m_{Z}\sin\beta c_{\beta} & m_{Z}\sin\beta s_{\beta} \\
0 & m_{\tilde{W}} & m_{Z}\cos\beta c_{\beta} & -m_{Z}\cos\beta s_{\beta} \\
-m_{Z}\sin\beta c_{\beta} & m_{Z}\cos\beta c_{\beta} & 0 & -\mu \\
m_{Z}\sin\beta s_{\beta} & -m_{Z}\cos\beta s_{\beta} & -\mu & 0
\end{pmatrix}
\begin{pmatrix}
m_{\tilde{W}} \\
\sqrt{2}m_{Z}\cos\beta s_{\beta}
\end{pmatrix}
\]

- heavy gluinos through unification: \(m_{\tilde{B},\tilde{W},\tilde{g}}/m_{1/2} \sim 0.4, 0.8, 2.6 \)
 [mass and coupling unification independent]

- lightest Susy partner \(\tilde{\chi}^0_1, \tilde{\nu} \)
 \(\Rightarrow \) after dark matter data \(\tilde{\chi}^0_1 \sim \tilde{B}, \tilde{W} \)
 [Ellis, Falk, Olive...]

[Tilman Plehn: Split Supersymmetry at Colliders – p.4]
Split supersymmetry [Dimopoulos, Arkani-Hamed; Giudice, Romanino]

– forget about fine tuning [Higgs will never be as bad as cosmological constant]
– remember all the good things Susy did for you [dark matter, unification from data]
– notice that scalars are evil [lepton and quark flavor, Higgs mass and LEP2]
– remember simple facts about unification [SU(5) multiplets decouple; Dawson, Georgi 1979]
⇒ make all scalars heavy [hope: $\tilde{m} \rightarrow m_{\text{GUT}}$?]
⇒ protect all gaugino and higgsino masses [$m_{\tilde{\chi}_1^\pm}, m_{\tilde{g}} \lesssim \text{TeV}$]

Fine tuning no excuse for multi–billion dollar experiments [trigger by popular vote of theorists?]

– gluinos and gauginos at the LHC
– gauginos and higgsinos at the ILC
⇒ is it supersymmetry?
⇒ is it split?
HEAVY SCALARS AND THE HIGGS MASS

Giudice, Romanino; Arvantaki, Davis, Graham, Wacker

- known leading corrections increased: \(m_h \sim m_Z + G_F y_t^4 \log \left(\frac{m_t^2}{m_t^2} \right) \)

⇒ large \(m_h \) for heavy stops [out of LEP2 reach]

⇒ not a precision observable anymore [large logarithms]

⇒ light Higgs is a SM Higgs boson with \(m_h \gtrsim 140 \text{ GeV} \)
Physics of Split Supersymmetry: 2

Heavy scalars and the Higgs mass [Giudice, Romanino; Arvantaki, Davis, Graham, Wacker]

- known leading corrections increased: \(m_h \sim m_Z + G_F y_t^4 \log(m_t^2/m^2_t) \)

\(\Rightarrow \) large \(m_h \) for heavy stops [out of LEP2 reach]

\(\Rightarrow \) not a precision observable anymore [large logarithms]

\(\Rightarrow \) light Higgs is a SM Higgs boson with \(m_h \gtrsim 140 \text{ GeV} \)

Heavy scalars and the gluino life time [Arkani-Hamed, Dimopoulos; Giudice, Romanino]

- decay through squark \(\tau_g \sim \tilde{m}^4/m^5_g \)

- loop-induced decays? [Toharia, Wells]

- lifetime constrained by age of universe

- \(\tilde{m} \lesssim 10^{12}\text{GeV} \ll m_{\text{GUT}} \) [PeV? Wells]

\(\Rightarrow \) gluino hadronizes, decays much later

\(\Rightarrow \) long-lived gluino collider signature No.1

Tilman Plehn: Split Supersymmetry at Colliders – p.7
Renormalization group running

– argued unification, so make Split Susy a GUT
– gauge couplings unify
– gaugino masses as well
Renormalization group running

– argued unification, so make Split Susy a GUT
– gauge couplings unify
– gaugino masses assumed to unify as well

Anomalous ino Yukawa coupling

– gauginos–higgsinos mixing in MSSM:

\[
\begin{pmatrix}
 m_B & 0 & -m_Z s_w c_\beta & m_Z s_w s_\beta \\
 0 & m_W & m_Z c_w c_\beta & -m_Z c_w s_\beta \\
 -m_Z s_w c_\beta & m_Z c_w c_\beta & 0 & -\mu \\
 m_Z s_w s_\beta & -m_Z c_w s_\beta & -\mu & 0 \\
\end{pmatrix}
\]

– Yukawas/gaugino–higgsino mixing fixed by Susy
– supersymmetric beta functions broken at \(Q = \tilde{m} \)
– anomalous Yukawas collider signal No.2: \(\tilde{g}/\tilde{g}_{\text{MSSM}} = 1 + \kappa \)
LHC production of gauginos and higgsinos

- cross sections not small \[\mathcal{M}_j(m_{\text{GUT}}) = 120\text{GeV}; \sigma \text{ in fb from Prospino2}\]

\(\tilde{g}\tilde{g}\)	1710	\(\tilde{\chi}_1^0 \tilde{\chi}_1^0\)	49.4	\(\tilde{\chi}_1^0 \tilde{\chi}_2^0\)	73.7	\(\tilde{\chi}_1^+ \tilde{\chi}_2^-\)	73.7	\(\tilde{\chi}_2^+ \tilde{\chi}_2^-\)	584
\(\tilde{\chi}_1^- \tilde{\chi}_1^-\)	2910	\(\tilde{\chi}_1^- \tilde{\chi}_2^-\)	914	\(\tilde{\chi}_1^- \tilde{\chi}_3^-\)	97.7	\(\tilde{\chi}_1^- \tilde{\chi}_4^-\)	97.7	\(\tilde{\chi}_1^- \tilde{\chi}_4^-\)	97.7
\(\tilde{\chi}_2^- \tilde{\chi}_1^-\)	2.7	\(\tilde{\chi}_2^- \tilde{\chi}_2^-\)	4.5	\(\tilde{\chi}_2^- \tilde{\chi}_3^-\)	97.7	\(\tilde{\chi}_2^- \tilde{\chi}_4^-\)	97.7	\(\tilde{\chi}_2^- \tilde{\chi}_4^-\)	97.7
\(\tilde{\chi}_2^- \tilde{\chi}_1^-\)	4.5	\(\tilde{\chi}_2^- \tilde{\chi}_2^-\)	4.5	\(\tilde{\chi}_2^- \tilde{\chi}_3^-\)	97.7	\(\tilde{\chi}_2^- \tilde{\chi}_4^-\)	97.7	\(\tilde{\chi}_2^- \tilde{\chi}_4^-\)	97.7
\(\tilde{\chi}_2^- \tilde{\chi}_1^-\)	4.5	\(\tilde{\chi}_2^- \tilde{\chi}_2^-\)	4.5	\(\tilde{\chi}_2^- \tilde{\chi}_3^-\)	97.7	\(\tilde{\chi}_2^- \tilde{\chi}_4^-\)	97.7	\(\tilde{\chi}_2^- \tilde{\chi}_4^-\)	97.7

- but best background rejection \(m_\ell\ell\) gone with the wind [higgsino searches?]

What’s new for LHC phenomenology?

- no squarks, sleptons for cascades [Giudice, Romanino; astro-particle: Pierce]
- stable (hadronizing) gluinos \([\tau \sim \tilde{m}^{-4} \sim 6.5s \text{ for } \tilde{m} = 10^9\text{GeV}, \text{LHC time scale 25 ns}]\]
- heavy hadrons \(R_g, R_{q\bar{q}}, R_{qqq}\) [Farrar, Fayet 1978; Baer, Cheung, Gunion 1999; UKQCD 1999]
- gluinonium [Kühn, Ono 1984; Goldman, Haber 1985; Cheung]
Charged R hadrons

- many gluinos pair-produced \([\sigma \gtrsim 1 \text{ pb}] \)
- charged R hadrons in tracker, calorimeter, muon chambers [Cambridge ex-th]
- level-1 trigger without muon chamber? [25...75 ns delay]
- effect of conversion to R baryons because of light pions? [Kraan]

\(\Rightarrow \) fraction of charged R hadrons crucial
\(\Rightarrow \) effective (not calculable) parameter \(P_{Rg} \)

![Graph showing search reach vs gluino mass/GeV for different data sets (10 fb⁻¹, 30 fb⁻¹, 100 fb⁻¹, 300 fb⁻¹).]
Split Susy at the LHC: 2

Charged R hadrons
- many gluinos pair-produced \[\sigma \gtrsim 1 \text{ pb} \]
- charged R hadrons in tracker, calorimeter, muon chambers \[\text{[Cambridge ex-th]} \]
- level-1 trigger without muon chamber? \[\text{[25...75 ns delay]} \]
- effect of conversion to R baryons because of light pions? \[\text{[Kraan]} \]

\[\Rightarrow \text{fraction of charged R hadrons crucial} \]
\[\Rightarrow \text{effective (not calculable) parameter } P_R g \]

Beyond BSM signal
- mass measurement through time of flight \[P_R g \]
- charge flipper \[\text{[Kraan; Hewett, Rizzo,...]} \]
- energy deposition: no heavy lepton
Neutral R hadrons
- jets plus missing energy \([\sim 10\% \text{ energy loss}]\)
- trigger dependent on cross section in calorimeter
- improved in combination with charged R hadron \([\text{missing energy trigger}]\)
- mass measurement from gluinoonium
- R hadron flavor physics?
⇒ charged R hadrons preferable
Neutral R hadrons

- jets plus missing energy \([\sim 10\% \text{ energy loss}]\)
- trigger dependent on cross section in calorimeter
- improved in combination with charged R hadron \([\text{missing energy trigger}]\)
- mass measurement from gluinoonium
- R hadron flavor physics?

⇒ charged R hadrons preferable
Signals at the ILC

- gluinos not produced because of decoupled squarks
- neutralino–chargino sector analysis as usual
 \[\text{robust with changed decay channels} \]
- measurement of anomalous Yukawas
 \[\tilde{g}_u, \tilde{g}_d, \tilde{g}'_u, \tilde{g}'_d \text{ different by } \sim 10\% \]

\[\Rightarrow (1) \text{ direct measurements of } \chi \chi H \]
Signals at the ILC

- gluinos not produced because of decoupled squarks
- neutralino–chargino sector analysis as usual [robust with changed decay channels]
- measurement of anomalous Yukawas [\(\tilde{g}_u, \tilde{g}_d, \tilde{g}_u', \tilde{g}_d'\)]

\[\Rightarrow\] (1) direct measurements of \(\chi\chi H\) [Whizard, Smadgraph; unpromising!]
(2) indirect determination of mass matrices

Extracting parameters from neutralino/chargino sector

- \(10^4\) smeared measurements of six masses (and cross sections)
- \(10^4\) fits of \(M_1, M_2, \mu\) and one or more \(\kappa_i\)
- LHC data alone not promising [masses only, 5% error]
Neutralinos/charginos at the ILC
- mass measurements to 0.5%
- error propagation through 10^4 smeared pseudo-measurements

\Rightarrow one κ at the time to $\lesssim 5\%$
Neutralinos/charginos at the ILC

- mass measurements to 0.5%, cross sections statistical error
- error propagation through 10^4 smeared pseudo-measurements

\Rightarrow one κ at the time to $\lesssim 5\%$

\Rightarrow four κ simultaneously to $\lesssim 10\%$
Neutralinos/charginos at the ILC

- mass measurements to 0.5%, cross sections statistical error
- error propagation through 10^4 smeared pseudo-measurements

⇒ one κ at the time to $\lesssim 5$
⇒ four κ simultaneously to $\lesssim 10$

So can we tell it is Split Susy?

- mass measurement errors conservative
- only mass and cross section measurements yet [Sfitter-Fittino next step]

	$\text{Fit tan}\beta$	m_i	σ_{ij}	$\Delta\kappa_u$	$\Delta\kappa_d$	$\Delta\kappa'_u$	$\Delta\kappa'_d$
ILC				0.9×10^{-2}	3×10^{-2}	1.3×10^{-2}	4×10^{-2}
ILC				1.2×10^{-2}	5×10^{-2}	2×10^{-2}	5×10^{-2}
ILC				1.1×10^{-2}	5×10^{-2}	3×10^{-2}	8×10^{-2}
ILC				1.2×10^{-2}	11×10^{-2}	4×10^{-2}	8×10^{-2}
LHC				2.2×10^{-1}	6×10^{-1}	2.7×10^{-1}	8×10^{-1}

⇒ anomalous Yukawas promising at ILC
Showcase for state-of-the-art LHC phenomenology: Split Supersymmetry
 – interesting phenomenology
 – LHC: R hadrons observable with mass measurement
 – ILC: anomalous weak-ino Yukawas accessible

What stays
 – exotic heavy hadrons visible at LHC [trigger issues]
 – why did we always assume MSSM-type ino Yukawas? [missed Susy test]