Infraorbital nerve transpositioning into orbital floor: a modified technique to minimize nerve injury following zygomaticomaxillary complex fractures

Sharadindu Mahadevappa Kotrashetti, Tejraj Pundalik Kale, Supriya Bhandage, Anuj Kumar
Department of Oral and Maxillofacial Surgery, K.L.E. Viswanath Katti Institute of Dental Sciences, Belgaum, India

Abstract (J Korean Assoc Oral Maxillofac Surg 2015;41:74-77)

Objectives: Transpositioning of the inferior alveolar nerve to prevent injury in lower jaw has been advocated for orthognathic, pre-prosthetic and for implant placement procedures. However, the concept of infra-orbital nerve repositioning in cases of mid-face fractures remains unexplored. The infraorbital nerve may be involved in trauma to the zygomatic complex which often results in sensory disturbance of the area innervated by it. Ten patients with infraorbital nerve entrapment were treated in similar way at our maxillofacial surgery centre.

Materials and Methods: In this article we are reporting three cases of zygomatico-malar complex fracture in which intra-operative repositioning of infra-orbital nerve into the orbital floor was done. This was done to release the nerve from fractured segments and to reduce the postoperative neural complications, to gain better access to fracture site and ease in plate fixation. This procedure also decompresses the nerve which releases it off the soft tissue entrapment caused due to trauma and the organized clot at the fractured site.

Results: There was no evidence of sensory disturbance during their three month follow-up in any of the patient.

Conclusion: Infraorbital nerve transposition is very effective in preventing paresthesia in patients which fracture line involving the infraorbital nerve.

Key words: Infraorbital nerve transposition, Paresthesia, Zygomaticomaxillary complex fractures

[paper submitted 2014.11.17 / revised 1st 2015.1.26, 2nd 2015.3.1 / accepted 2015.3.9]

I. Introduction

Acute loss of sensory function of the infraorbital nerve following orbitozygomatic complex fractures is often seen because of their close proximity as the nerve passes through the infraorbital sulcus in the floor of the orbit to exit through the infraorbital foramen. Traumatic injury to the infraorbital nerve may be due to compression, edema, ischemia, or laceration.

Persistent hypoesthesia following correction of mid-face and zygomatic complex fractures indicates injury to the infraorbital nerve. Although hyperesthesia along the distribution of the infraorbital nerve has been documented, it is comparatively rare in occurrence. The incidence of long-term neurosensory deficits in different studies varies from 10% to 50%.

The incidence of mid-face and zygomatic complex fractures presenting with fracture lines running through the inferior orbital foramen resulting in post-traumatic sensory disturbance has been well studied and documented through the years. The most commonly documented cause for such sensory disturbance is nerve impingement by fractured segments which have been reduced or fixed inadequately. This inaccessibility is compounded by the impeding course of the infraorbital nerve. The other cause is formation of fibrous or calcified tissue around the infraorbital nerve postoperatively, leading to nerve compression.

A review of literature provides strong evidence and varied methods for nerve decompression. However the documented successful outcomes are not reported with individual techniques, which could result in temporary or permanent sensory loss.

To overcome this, we describe a new technique of reposi-
tioning the infraorbital nerve into the orbital floor before re-
duction and stabilization of the fractured zygomatic complex.

II. Materials and Methods

Two male and one female patients with history of road traf-
fi accidents reported to the hospital emergency room. Clin-
cal and radiological examination (Fig. 1) revealed a displaced
zygomaticomaxillary complex fracture on the left side for
one of the patients and on the right for another. (Fig. 2, 3) The
third patient had a LeFort III fracture on the left and LeFort II
on the right side. Open reduction and internal fixation under
general anesthesia was planned for all the patients.

Surgical procedure

An intraoral approach was used to expose the zygomatic
complex. Two percent lignocaine hydrochloride with adrena-
line (1 : 80,000) was infiltrated at the site of incision. The
incision was made in the buccal vestibule in the high muco-
buccal fold area extending from canine to second molar region.

Fig. 1. Para-nasal sinus view.
Sharadindu Mahadevappa Kotrashetti et al: Infraorbital nerve transpositioning into or-
Bital floor: a modified technique to minimize nerve injury following zygomaticomaxillary
complex fractures. J Korean Assoc Oral Maxillofac Surg 2015

Fig. 2. Fracture line running through infraorbital canal.
Sharadindu Mahadevappa Kotrashetti et al: Infraorbital nerve transpositioning into or-
Bital floor: a modified technique to minimize nerve injury following zygomaticomaxillary
complex fractures. J Korean Assoc Oral Maxillofac Surg 2015

Fig. 3. Dissection of the nerve to free it from fracture line.
Sharadindu Mahadevappa Kotrashetti et al: Infraorbital nerve transpositioning into or-
Bital floor: a modified technique to minimize nerve injury following zygomaticomaxillary
complex fractures. J Korean Assoc Oral Maxillofac Surg 2015

Fig. 4. Line diagram showing fracture line running through the in-
traorbital foramen.
Sharadindu Mahadevappa Kotrashetti et al: Infraorbital nerve transpositioning into or-
Bital floor: a modified technique to minimize nerve injury following zygomaticomaxillary
complex fractures. J Korean Assoc Oral Maxillofac Surg 2015
operatively and postoperatively, and on both the affected and contralateral sides as a control.

The test was done separately on the lip and paranasal area using a caliper.

III. Results

There was no evidence of sensory disturbance during their three month follow-up in any of the patient.

IV. Discussion

Chronic sensory disturbance in the form of hypo- or hyper-
Infraorbital nerve transpositioning into orbital floor

V. Conclusion

Infraorbital nerve transposition is very effective in preventing paresthesia in patients which fracture line involving the infraorbital nerve.

Conflict of Interest

No potential conflict of interest relevant to this article was reported.

References

1. Jungell P, Lindqvist C. Paraesthesia of the infraorbital nerve following fracture of the zygomatic complex. Int J Oral Maxillofac Surg 1987;16:363-7.
2. Kersey JP, Beigi B. Infraorbital nerve decompression for infraorbital neuralgia following orbital fracture. British Oculoplastic Surg Soc 1999;10:24-7.
3. Fogaca WC, Feireira MC, Dellon AL. Infraorbital nerve injury associated with zygoma fractures: documentation with neurosensory testing. Plast Reconstr Surg 2004;113:834-8.
4. Peltomaa I, Rihkanen H. Infraorbital nerve recovery after minimally dislocated facial fractures. Eur Arch Otorhinolaryngol 2000;257:449-52.
5. Vriens JP, Moos KF. Morbidity of the infraorbital nerve following orbitozygomatic complex fractures. J Craniomaxillofac Surg 1995;23:363-8.
6. Bailey K, Ng JD, Hwang PH, Saulny SM, Holck DE, Rubin PA. Infraorbital nerve surgical decompression for chronic infraorbital nerve hyperesthesia. Ophthal Plast Reconstr Surg 2007;23:49-51.
7. Li T, Zheng HF, Chen XH, Shen XC, Hao JC. A comparison of early and late reconstruction and repositioning of orbital blow-out fracture. Zhonghua Zhonghe Ke Za Zhi 2003;19:436-8.
8. Mathur NN, Taylor SF, Patel B, Moran JA. Orbital fractures [Internet]. New York (NY): Medscape [cited 2014 Jul 14]. Available from: http://emedicine.medscape.com/article/867985-overview.
9. Jungell P, Lindqvist C. Paraesthesia of the infraorbital nerve following fracture of the zygomatic complex. Int J Oral Maxillofac Surg 1987;16:363-7.
10. Taicher S, Ardekian L, Samet N, Shoshany Y, Kaffe I. Recovery of the infraorbital nerve after zygomatic complex fractures: a preliminary study of different treatment methods. Int J Oral Maxillofac Surg 1993;22:339-41.
11. Schultz-Mosgau S, Erbe M, Rudolph D, Ott R, Neukam FW. Prospective study on post-traumatic and postoperative sensory disturbances of the inferior alveolar nerve and infraorbital nerve in mandibular and midfacial fractures. J Craniomaxillofac Surg 1999;27:86-93.
12. Kim CH, Lee JH. Orbital floor restoration with traction of the infraorbital nerve using a vessel loop in posterior orbital floor fractures. J Craniomaxillofac Surg 2014;42:2069-75.