Implementing surgical mentorship in a resource-constrained context: a mixed methods assessment of the experiences of mentees, mentors, and leaders, and lessons learned

Shehnaz Alidina1†, Meaghan M. Sydlowski1†, Olivia Ahearn1, Bizuayehu G. Andualem2, David Barash3, Sehrish Bari1, Erin Barringer4, Abebe Bekele5, Andualem D. Beyene5, Daniel G. Burssa6, Miliard Derbew5, Laura Drown1, Dereje Guliati5, Teruwork K. Gultie7, Tuna C. Hayirli1, John G. Meara1,8,9, Steven J. Staffa10, Samson E. Workineh7, Noor Zanial1, Zebenay B. Zeleke2, Abraham E. Mengistu7† and Tigistu A. Ashengo11†

Abstract

Background: A well-qualified workforce is critical to effective functioning of health systems and populations; however, skill gaps present a challenge in low-resource settings. While an emerging body of evidence suggests that mentorship can improve quality, access, and systems in African health settings by building the capacity of health providers, less is known about its implementation in surgery. We studied a novel surgical mentorship intervention as part of a safe surgery intervention (Safe Surgery 2020) in five rural Ethiopian facilities to understand factors affecting implementation of surgical mentorship in resource-constrained settings.

Methods: We designed a convergent mixed-methods study to understand the experiences of mentees, mentors, hospital leaders, and external stakeholders with the mentorship intervention. Quantitative data was collected through a survey (n = 25) and qualitative data through in-depth interviews (n = 26) in 2018 to gather information on (1) intervention characteristics including areas of mentorship, mentee-mentor relationships, and mentor characteristics, (2) organizational context including facilitators and barriers to implementation, (3) perceived impact, and (4) respondent characteristics. We analyzed the quantitative and qualitative data using frequency analysis and the constant comparison method, respectively; we integrated findings to identify themes.

Results: All mentees (100%) experienced the intervention as positive. Participants perceived impact as: safer and more frequent surgical procedures, collegial bonds between mentees and mentors, empowerment among mentees, and a culture of continuous learning. Over 70% of all mentees reported their confidence and job satisfaction...
increased. Supportive intervention characteristics included a systems focus, psychologically safe mentee-mentor relationships, and mentor characteristics including generosity with time and knowledge, understanding of local context, and interpersonal skills. Supportive organizational context included a receptive implementation climate. Intervention challenges included insufficient clinical training, inadequate mentor support, and inadequate dose. Organizational context challenges included resource constraints and a lack of common understanding of the intervention.

Conclusion: We offer lessons for intervention designers, policy makers, and practitioners about optimizing surgical mentorship interventions in resource-constrained settings. We attribute the intervention's success to its holistic approach, a receptive climate, and effective mentee-mentor relationships. These qualities, along with policy support and adapting the intervention through user feedback are important for successful implementation.

Keywords: Mentorship, Surgery, Ethiopia, Implementation, Safe Surgery 2020, Workforce

Background

Designing and implementing surgical mentorship is a novel component of efforts to strengthen surgical systems in low- and middle-income countries (LMICs). Lack of training is partially responsible for the scarcity of surgical, obstetric, and anesthesia providers in LMICs [1, 2]. In 2015, the Lancet Commission on Global Surgery placed surgical workforce development on top of the health, welfare, and economic development agenda [3]. Building the capacity of surgical systems through mentorship is a promising strategy to improve access and quality of care [4, 5]. However, implementation of surgical mentorship in African healthcare settings has not been thoroughly analyzed [6]. In this paper, we examine factors affecting implementation of the Safe Surgery 2020 (SS2020) mentorship intervention in Ethiopia to draw insights about optimizing surgical mentorship in resource-constrained settings.

Ethiopia is a country of approximately 109 million people and ranks 173 out of 189 countries on the Human Development Index [7]. Its low surgical provider density (0.6 specialist surgical providers per 100,000) contributes to one of the lowest surgical rates in the world – 148 surgeries per 100,000— with most specialists based in large cities [8]. Much of the burden of emergency and essential surgery is placed on lower-level hospitals. In 2010, the Ethiopian Federal Ministry of Health (FMOH) introduced Integrated Emergency Surgical Officers (IESO) to handle emergency obstetric, gynecological, and surgical cases at primary hospitals and health centers [9].

Responding to unmet surgical needs, the FMOH pioneered Saving Lives through Safe Surgery (SaLTS) in 2015 [9], making Ethiopia one of the first LMICs to nationally prioritize access to safe, essential, and emergency surgical care. A baseline assessment of surgical capacity in Ethiopia revealed that, besides having a large unmet burden of surgically treatable disease, many health facilities faced difficulties providing essential services due to various limitations, including shortage of surgical, anesthesia, and obstetric clinicians [10]. A key pillar of the SaLTS initiative, therefore, involved developing and implementing a national leadership and surgical mentorship program [11].

Mentorship is a common professional development process across industries and professions [12]. The National Academies of Sciences, Engineering, and Medicine define mentorship as a relationship “in which individuals work together over time to support the personal and professional growth, development, and success of the relational partners through the provision of career and psychosocial support” [13]. Mentorship can range from dyadic to team-based, formal to informal, peer to hierarchical, co-located to virtual, among other dimensions [14, 15]. In Africa, mentorship interventions have embedded mentors in health facilities, deployed visits by mobile mentors, involved teams of mobile multidisciplinary mentors, coupled facilities, and appointed focal mentors within facilities [6]. Mentoring can supplement—and is distinct from—coaching, advising, teaching, tutoring, advocacy, sponsorship, and role modeling, in that mentorship involves building complex, emotionally deep, and longitudinal alliances [15, 16]. In healthcare, mentorship is known to influence personal and professional development, as well as research productivity [17]. Desirable surgical mentor characteristics include “acting as a professional role model, being supportive of and involved in the trainee’s progress, serving as a trusted evaluator of the mentee, and being a leader in their field” [18]. Mentees prefer mentors with an interest in them as a mentee and those who have gone through mentoring training [19]. While coaching is a validated method to enable surgeons to acquire both technical and non-technical skills in high-income countries [20], surgical mentorship in LMICs has received less attention, with studies calling attention to the need to address inadequate mentorship [21].

Studying surgical mentorship in the LMIC context matters because of differences from high-income settings in training culture, availability of mentors, institutional resources and support, and differences in geographic,
environmental, and social contexts that may constitute unique illnesses [22, 23]. Mentorship in LMICs is inequitably hindered by challenges including brain drain, lack of innovation hubs and platforms, and funding at the systems level [24]. These differences are important for adoption and institutionalization of mentorship among the surgical workforce. For example, a study of mentorship interventions in five sub-Saharan African countries found that contextually adapting mentorship and coaching interventions was necessary to improve management quality and skill transfer [25]. Similar studies include a variety of approaches to mentoring – including mobile, virtual, and within-facility mentorship – to target improvements in laboratory management, maternal and child health services, infectious disease management, cataract surgery, and managerial performance [6]. More research is needed on the role of surgical mentorship in improving access to safe and high-quality care in LMICs.

SS2020 is a global collaborative initiative that aims to strengthen surgical systems in LMICs through capacity building. The SS2020 mentorship intervention in Ethiopia was designed with government and local stakeholders to aid the development of technical and non-technical skills among surgical, anesthesia, and obstetric providers. We studied the SS2020 mentorship intervention to understand factors affecting implementation. By analyzing the experiences of mentees, mentors, hospital leaders, and key stakeholders with the SS2020 mentorship intervention, our study aims to generate learnings about how to optimize surgical mentorship in LMICs.

Our conceptual framework draws upon prior research on factors associated with effective implementation of innovations [26–30] and mentorship interventions in LMICs [31–37], and our own experience with the mentorship intervention. We focused on two dimensions of implementation—intervention characteristics and organizational context—because they are important in the surgical setting and amenable to modification. To analyze the data, we identified three sub-questions: 1) What characteristics of the intervention provided support and what factors posed challenges? 2) What are the supportive and challenging factors related to the organizational context? and 3) What is the perceived impact of the mentorship program?

Mentorship intervention

In 2017, SS2020 introduced a multicomponent intervention to improve access to safe, high-quality surgical care in five rural hospitals in Tigray. SS2020 included three components – (1) leadership training; (2) safety protocols, data quality training, and an infrastructure grant; and (3) mentorship [7]. The aims of mentorship were to build the capacity of surgical teams, problem-solve with limited resources, and strengthen the surgical ecosystem.

SS2020 collaborated with the Surgical Society of Ethiopia, FMOH, and Regional Health Bureau (RHB) to design the intervention and conduct on-site visits, and aligned with the Ethiopian Hospitals Alliance for Quality’s hospital clusters for sustainability [8]. Initially, one mentor coordinator and one mentor per hospital were recruited from Ayder Regional Hospital based on reputation, clinical experience, and interpersonal skills. Mentors from the Surgical Society of Ethiopia and the Ethiopian Society of Anesthesiologists provided backstopping and supportive supervision. The mentor training curriculum included a week-long leadership session with mentees and two days of mentorship training. Following leadership training, mentees developed a quality improvement plan targeting surgical volume and safety in their facilities. Based on early experience, the mentorship team evolved to a multidisciplinary model [38].

The typical mentor visit was one day per month where mentors: (1) discussed priorities with hospital management; (2) reviewed progress on surgical improvement plans with mentees, discussed challenges, and answered questions; (3) provided side-by-side mentorship on clinical procedures, safety and teamwork practices, and data monitoring, and problem-solving through resource mobilization and patient consultations; (4) identified gaps and discussed next steps; (5) debriefed with hospital management; (6) and reported to the RHB.

Early visits focused on establishing relationships and trust between mentors and mentees, then developing technical and non-technical skills in mentees and advocating to hospital management and RHB for resources. Monitoring implementation included a standardized checklist to track activities and outcomes such as surgical volume, Surgical Safety Checklist (SSC) use, complications, and postsurgical infections.

Methods

Study design

We used a convergent mixed-methods study design [39–41] to understand the factors affecting implementation of a surgical mentorship intervention. Quantitative data were collected through surveys to understand experiences with the mentorship intervention. Qualitative data were collected using in-depth interviews to expand our understanding and gather contextual and implementation information. We received ethical approval from the Ethiopian Public Health Institute and the Institutional Review Board at Harvard Medical School reviewed the project and gave it an exemption determination. We followed reporting guidelines for qualitative research [42].
Setting
Our setting was Tigray, Ethiopia, selected by the FMOH for SS2020 intervention. The RHB and Jhpiego selected five rural hospitals based on their commitment to quality improvement and proximity to Ayder Regional Hospital. Surgery was provided by non-specialist providers including IESOs, nurse anesthetists, and nurses.

Participants
We used an information-rich [43], purposeful sample [44] of participants with direct mentorship intervention experience. Our sample included (1) surgical team mentees, including IESOs, anesthetists, and nurses; (2) a multidisciplinary mentorship team including a general surgeon, an obstetrician/gynecologist (as required), an orthopedic surgeon (as required), an anesthetist, a senior OR nurse, and the mentor coordinator; (3) hospital leaders including hospital administrators or medical directors; and (4) key stakeholders involved in the intervention design who could provide history and context.

The eligible sample included: 3 surgical providers and 1.2 anesthetists per hospital (on average); 1 administrator and 1 medical director per hospital; 5 mentors and 1 mentor coordinator; and 3 key stakeholders. There were no dedicated OR nurses as they rotated from the hospital wards. Our sample size was guided by information power [45]. We aimed to interview 2–3 surgical team members, 1 hospital leader, 3 mentors and a mentor coordinator, and 3 stakeholders.

Data collection and analysis

Data collection
We administered a paper-based survey to mentees and hospital leaders onsite 32 months after initiation of the intervention to ensure sufficient exposure to the intervention. The survey was based on mentorship literature in African settings and innovation implementation in healthcare, developed by the research team (SA, MS, AE, SW) in consultation with stakeholders, and piloted in five facilities in Ethiopia. The 57 items focused on: (1) intervention characteristics including areas of mentorship, mentee-mentor relationships, and mentor characteristics (2), organizational context including facilitators and barriers to implementation (3), perceived impact, and (4) respondent characteristics (Additional File 1). Hospital leaders and surgical team leaders identified the participants. We did not collect identifiers or offer incentives for completion.

We conducted in-depth, semi-structured, one-on-one interviews 32 months onsite after initiation of the intervention. Interview protocols for mentees, mentors, leaders, and stakeholders explored (1) intervention characteristics including which areas of mentorship were most valued and mentee-mentor relationships, (2) facilitators and barriers to implementation, and (3) perceived impact (Additional File 2). We invited all survey participants to interview, however 6 could not participate due to time constraints. In addition, we interviewed mentors and key stakeholders. Interviews were approximately 45–60 min and conducted in a private space in English by a senior researcher (SA) and an Ethiopian research team member (SW) who provided Tigrinya translation. SA has a doctoral degree in health policy and management with experience in implementation and qualitative research. Stakeholder interviews were conducted by telephone by a research assistant (MS, OA or LD) who hold master’s degrees in public health with experience in qualitative research.

Interviews were conducted individually except for 1 interview conducted with 2 interviewees due to their schedule constraints. Participants provided verbal consent before interviews. No interviewees refused or dropped out of interviews. We documented our observations and insights in field notes. Interviews were audio-taped and transcribed. Transcripts were quality checked and uploaded to NVivo V.11 (QSR International, Melbourne, Australia) for coding.

Data analysis

Descriptive statistics were used to summarize the percentage of responses on the Likert scale for each survey question. The denominator for each response was the number of responses to the question. Given the sample size (n=25), statistical testing was not conducted. All analyses were performed using Stata (version 16.0, StataCorp LLC. College Station, TX).

We analyzed qualitative data inductively to understand factors (supportive and challenging) affecting implementation related to (1) intervention characteristics and (2) organizational context. We also examined perceived impact. First, two researchers (MS and OA) reviewed three transcripts to develop a preliminary codebook inductively based on our conceptual framework [46, 47]. The coding team had discussions to arrive at a unified codebook and used it to code nine new transcripts. Codes were validated against new text and refined until no new codes emerged (i.e. code saturation) [48]. Interrater reliability between two coders found substantial agreement (kappa=0.76) [49], and all 26 transcripts were analyzed using the final codebook. Three researchers (SA, MS, and NZ) reviewed coded data, inductively extracted emerging themes based on categorization and connectively between codes, and finalized themes including minor themes [50–52], through iterative discussions.

The qualitative and quantitative data were integrated to identify patterns and themes. Coauthors reviewed
themes and identified lessons emerging about factors affecting implementation of a surgical mentorship intervention in low-resource settings.

Results

Hospital and respondent characteristics are presented in Table 1. The typical hospital was a rural hospital performing on average 33.8 surgeries per month. Survey respondents (n = 25) included mentees (n = 20, 80%) and hospital leaders (n = 3; 12%). Interviewees (n = 26) included mentees (n = 16/26, 61%), mentors (n = 4/26, 15%), hospital leaders (n = 3/26, 12%), and external stakeholders (n = 3/26, 12%).

Below, we present our quantitative and qualitative results, including 3 themes and 16 constituent sub-themes. Table 2 provides quotations illustrating our themes, edited for conciseness.

Factors supporting implementation

Intervention characteristics

Systems focus of the mentorship intervention Interview participants noted mentorship took a holistic approach by improving technical and non-technical skills and strengthening the surgical ecosystem. For example, to improve surgical quality, mentors trained mentees on safety, teamwork, and communication practices on the SSC and coached them in the OR (operating room). To reduce inappropriate referrals out, mentors introduced a register to track surgeries and referrals and devised an action plan with strategies including mentoring on a greater range of surgeries, mobilizing resources, and communicating with mentees regarding inappropriate referrals.

Mentors worked to strengthen the surgical ecosystem by providing technical expertise and advocated for equipment, staffing, water, and electricity needs to the RHB. In surveys, there was less discrepancy between what mentees desired and received on staff mobilization: 48% (n = 12/25) said it was greatly important and 40% (n = 10/25) said it was received to a great extent. There was more discrepancy regarding resource mobilization: 36% (n = 9/25) said it was greatly important and 20% (n = 5/25) said it was received to a great extent (Fig. 1).

Multidisciplinary mentorship team A topic discussed less frequently but with high concern from participants was the importance of a multidisciplinary mentorship team. Interviewees stated mentorship began with one mentor per hospital, so surgical providers also mentored anesthetists and nurses.
the model shifted to a multidisciplinary team. Mentors expressed a high level of satisfaction with this approach. **Psychological safety** Mentees consistently reported relationships were collaborative and non-hierarchical; mentors approached them as friends. Mentors gave...
nonjudgmental feedback and had a no blame, no shame attitude. For example, mentees explained they now track the number of surgical site infections, but before mentorship it was considered shameful. Leaders noted friendly, nonjudgmental, and safe relationships created receptiveness to feedback and an environment of learning.

Mentor characteristics Mentor characteristics were important to mentees. In survey results, over 80% of mentees identified 'courtesy and respect', ‘belief in capabilities of mentees’, ‘knowledgeable in the field’, ‘trust’, ‘constructive feedback’, ‘interpersonal skills’, and ‘role model in providing surgical services’ as “greatly important” qualities in an effective mentor (Additional File 3). Four sub-themes emerged in interviews.

Generosity with time, knowledge, and money Mentees and leaders repeatedly noted mentors’ generosity with time, knowledge, and money. Mentors were highly respected senior specialists with heavy workloads but used their knowledge to teach and encourage mentees to improve access to safe, high-quality surgical care. Mentors were also generous with their financial resources, sometimes purchasing equipment with their own money.

Accessibility Mentees and leaders described they valued accessibility of mentors outside their regular visits. Mentors followed up on resolving problems, advised patient consultations and referrals, and guided difficult cases. Mentees appreciated that mentors responded to their calls regardless of the time. One mentee recalled how their mentor guided them step-by-step over the phone during an operation on a complicated case.

Understanding of local context A less common but notable theme was understanding of local context. Mentors and key stakeholders discussed the importance of understanding the region’s culture, hospital infrastructure, and outcomes. One mentor mentioned the need to understand the internal context of facilities and why providers practiced in certain ways.

Interpersonal skills Mentees and leaders emphasized mentors’ interpersonal skills. They described them as kind, good listeners, and having integrity. Mentees explained they trusted their mentors because they were open, honest, and spoke candidly.

Organizational context

Receptive implementation climate Mentees, mentors, and leaders commonly expressed how mentees desired to improve access to surgical services and patient outcomes. They were eager for mentors to perform procedures with them, provide feedback, discuss cases, and problem-solve. Hospital leaders valued mentors’ role in promoting learning, mobilizing resources, and advising. One mentee
explained that from their perspective, 90% of the mentees were motivated, but 10% were not because mentorship created additional work without incentives.

Challenges to implementation

Intervention characteristics

Insufficient clinical training In surveys, the largest reporting discrepancy was in clinical mentorship: 92% (n = 23/25) identified it as “greatly important” but only 39% said their clinical skills improved “to a great extent” (Fig. 2). Mentees discussed the duration of mentorship visits, emergencies, and fluxes in surgical volume hindered time for side-by-side surgical mentorship. Some mentors and key stakeholders recommended clinical training before mentorship because mentees’ pre-service clinical knowledge and fundamental skills were insufficient.

Inadequate support for mentors and insufficient dose A common area for improvement suggested by key stakeholders was the need for greater mentor support. Mentoring was perceived as a service provided by senior physicians or as an extracurricular activity. However, mentoring requires training, adequate compensation, recognition, and backup support at their home hospitals. The lack of support resulted in some attrition of mentors, affecting continuity. Mentees desired more time; mentors explained that logistics such as transportation arrangements made it difficult for them to stay longer.

Organizational context

Challenging implementation context The greatest barrier to implementation discussed was the challenging implementation context including workforce, infrastructure, and organizational culture. One mentee explained that while the goal was to increase surgical volume, all surgeries would be cancelled if their only anesthetist was ill. Mentors described challenges with high turnover; nurses rotated through ORs and were transferred constantly. The lack of supplies and equipment made it difficult for mentees to implement best practices. Finally, mentors and external stakeholders explained that some facilities had weak safety cultures; they did not discuss cases as a team, review data, or use evidence-based safety practices consistently.

Lack of a clear understanding of the mentorship intervention A few interviewees explained a lack of understanding about the mentorship intervention. Some mentees thought the role of mentors was to mobilize resources; others feared consequences of mistakes because they did not understand the purpose of mentorship, and a few mentees expected incentives for additional work. Mentors experienced compassion fatigue as expectations for resources were high and unrealistic.

Perceived impact

All mentees (100%, n = 24/24) experienced the intervention as positive, 79% (n = 19/24) were satisfied and 87%
Safer and more frequent provision of surgical care
Mentees consistently discussed how mentorship helped implement evidence-based safety practices. Before the intervention, these practices were not used or performed consistently causing poor surgical care and outcomes. Participants believed standardization of these practices, better teamwork and communication, and improvements in the surgical ecosystem helped mentees improve surgical volume, outcomes, safety culture, and communication with patients. Mentees attributed this to mentorship because mentors continuously emphasized, demonstrated, and encouraged best practices.

Establishment of collegial bonds between mentees and mentors
A few mentees and mentors noted collegial relationships lasted beyond onsite interactions. Mentors continued to consult difficult cases after mentorship and encouraged mentees to seek advice when needed. Mentors said this helped reduce referrals out and provided opportunity to continue building confidence in mentees.

Empowered mentees
Mentees commonly conveyed a greater sense of empowerment. They explained that, previously, challenges in providing surgical care at facilities were not their responsibility, but now felt ownership of problems and wanted to solve them. Mentors discussed mentees had greater confidence and agency. This sense of empowerment went beyond individuals to teams taking ownership for the care of patients. Mentees perceived leadership was more invested in improving surgical services and outcomes of surgical care.

Inculcation of a culture of continuous learning
Participants highlighted that mentorship inculcated a culture of continuous learning. Mentors demonstrated the data collection systems, explained their importance, trained mentees in their use, and ensured they were followed. Mentees reported this helped identify mistakes and strategize on areas of improvement. Mentors reported mentoring allowed them to learn; one discussed the importance of mentees and mentors learning from each other by putting the patient at the center. Another explained mentorship allowed them to better understand the context of rural facilities. This impact was significant and inspired others at the national level.

Discussion
Statement of principal findings
Our results suggest mentorship is a promising strategy for building capacity of surgical providers in resource-constrained settings. Participants perceived safer care, increased surgical volume, amicable bonds between mentees and mentors, empowered mentees, and a culture of continuous learning as impacts of the intervention. Over two-thirds of mentees reported an increase in confidence and job satisfaction. The intervention’s holistic approach, effective mentee-mentor relationships, and receptive climate contributed to its success.

Interpretation of results within the context of the wider literature
In LMICs, research on the role of mentorship in surgery is at a nascent stage [53, 54] and surgical mentorship program implementation has not been sufficiently analyzed to guide policy and practice; this is important to successfully design and implement mentorship programs [6]. We found results from implementing SS2020 mentorship in Ethiopia similar to Tanzania [5], with strong support from mentees and similar perceived impacts, including safer care, strengthened surgical ecosystems, increased confidence, and stronger learning cultures in both countries. Common supportive features included a holistic approach, multidisciplinary mentorship team, psychologically safe relationships, mentors that were friendly, accessible, and understanding of the local context, and a receptive implementation climate. Common challenges included resource constraints, inadequate mentor support, insufficient dose, and resistance to change.

Implications for policy, practice and research
We offer lessons to intervention designers, policy makers, and practitioners about optimizing surgical mentorship in LMICs (Table 3).

Intervention characteristics
The intervention’s holistic approach was critical. The context was challenging, with limited workforce, resource constraints, and a weak safety culture. A single vertical intervention would not have succeeded; instead, the entire surgical system required intervention through building technical and non-technical skills, strengthening infrastructure, and changing the culture [55–57].
Mentors valued psychological safety with mentors where they could ask questions, speak up, or admit mistakes. Studies have linked psychological safety with improved learning and performance [58–61]; future interventions should focus on fostering this quality in mentor training for optimal effectiveness.

Mentees prioritized clinical knowledge and skills the most, similar to findings in Tanzania, but the discrepancy between what was desired versus received differed. In Ethiopia, 92% of mentees wanted clinical skills but only 44% said it was received compared to Tanzania (96% and 76%, respectively). Fewer Ethiopian mentees (39%) reported their clinical skills improved to a great extent compared to Tanzanian mentees (74%). The combined effect of training and mentorship may be more effective [62] and future surgical mentorship programs should

Table 3 Lessons learned for future implementation of surgical mentorship programs in LMICs

Key Implementation Features	Lessons
Key intervention characteristics	To improve access to safe, high-quality surgery in low resource settings, mentorship should take a **holistic approach** by building technical and non-technical skills in surgical providers and strengthening the surgical ecosystem.
A multidisciplinary team approach	provides a comprehensive approach to mentorship (e.g. an anesthetist mentoring an anesthetist), and also facilitates teamwork and collective learning among mentees.
An environment of psychological safety	where mentees can ask questions, raise concerns or admit mistakes without fear of consequences is important for learning. Mentees value relationships with mentors that are friendly, non-hierarchical, non-judgmental and safe.
Clinical training	prior to mentorship ensures standardization of evidence-based practices and provides a base of knowledge for successful implementation. **Side-by-side surgical coaching** at the mentee’s facility is a practical and efficient way of learning for mentees within their own context.
Innovations to increase dose	such embedded mentorship, coupled facilities, and focal mentors within facilities should be explored. Blended models which combine in-person and virtual options such as tele-mentoring, WhatsApp and SMS can reinforce learning, strengthen relationships, and provide real-time support
The goals, scope, and performance targets	of the mentorship intervention should be defined in conjunction with mentees, mentors, facility leaders, and regional authorities to facilitate buy-in and a common understanding.
Mentorship must be a managed process	for success.
The design and implementation of the intervention should be guided by regular feedback	from mentees and mentors. Feedback can be used to inform training and skills strengthening for mentors, to refine implementation, or to adapt the intervention, and can be obtained through mechanisms such as debriefing at the end of the mentorship visit, joint learning sessions, or surveys.
Data is necessary in understanding achievements and challenges. A monitoring and evaluation plan	with key performance indicators related to inputs, provider behaviors, and patient outcomes should be identified, targets should be set, and reports should be shared.
A model of surgical mentorship	can be developed at a small number of sites and then scaled up.

Supportive organizational Context

A situation analysis	helps to understand inner context, priorities for strengthening surgical services, leadership support, and readiness for change. It can help to identify priorities and barriers to implementation and tailor the intervention for success.
Leaders who are engaged	in the mentorship intervention can communicate objectives, align incentives, remove barriers, address resistance, and promote collective learning through data use, simulations, or debriefings.
Regional authorities should participate in trainings and experience sharing forums	to understand the challenges faced by surgical teams and facilitate solutions.
Improving access to safe, high-quality surgical care requires adequate resources. Resources to must be available	to ensure the success of the mentorship intervention.
Mentors require resources	for capacity building, compensation, back up to allow time away from regular responsibilities, logistical support, guidelines, and recognition.
Sustainability of the mentorship program requires policy support, alignment with national strategy, integration within the health system, and development of a culture of mentorship.	Mentorship requires the collaboration, engagement, and support from key stakeholders such as government, professional societies, academic medical institutions, and senior surgical professionals. These key stakeholders can provide essential technical and professional support to the mentorship process, promote mentorship as an approach, and mobilize professionals and resources.
consider clinical training before mentorship and clinical mentorship during visits [63, 64]. Innovative and cost-effective options for increasing dose should be explored. Research suggests in-person mentorship is valuable for building relationships, understanding local context, and learning tacit knowledge [55]. Approaches include embedded mentorship, where mentors work within a mentee facility for a defined period [65, 66]; a focal mentor, where an experienced provider within the facility provides mentorship [67]; and coupled facilities, where a higher-performing facility mentors a lower-performing facility [32, 53]. Blended mentorship, which combines in-person and virtual options such tele-mentoring, WhatsApp, and SMS can increase dose, complement learning, strengthen relationships, and provide real-time support [68–73].

Learning and adaptation of the mentorship intervention is important for improving the intervention’s design. Feedback from mentees and mentors can inform adaptation; a monitoring plan with output indicators regarding mentoring visits, provider behaviors, and patient outcomes can provide insight about impact [74]. Through learning and adaptation, a model of surgical mentorship can be successfully scaled up.

Organizational context
A receptive implementation climate was key for the intervention’s success. A situation analysis helped tailor the intervention by understanding context, identifying priorities, gaining leadership support, and preparing for change [75, 76]. However, adequate resources are needed for implementation. While mentors addressed resource constraints, only 20% of mentees perceived those resources were mobilized, suggesting resources were a significant challenge. Providing resources has potential to improve adherence to safety standards [77, 78] and access [79–81].

Institutionalizing mentorship requires policy support, alignment with national reforms, integration within health systems, and, over time, a culture of mentorship. Mentorship requires collaboration, engagement, and support from stakeholders such as government, professional societies, academic medical institutions, and senior surgical professionals; they can provide technical and professional support, promote mentorship, and mobilize resources [38]. Regional authorities should be involved from inception to understand challenges faced by surgical teams.

Future research
To understand the impact of mentorship on surgical access and quality and its sustainability, experimental and longitudinal research design should be considered in the future. Further research is necessary to understand factors such as optimal dose, the importance of readiness for change for success [82], and which contextual factors, resources, and structures are important. Research can inform the optimal design of the intervention, how to adapt it based on the implementation context, uncover best practices, and measure impact [83–86]. This research can support effective policy and practice by elucidating how and where resources should be spent, and can be used as the basis for effectively scaling up for impact.

Strengths and limitations
The key strength of our study is its mixed-methods design and primary data collection from participants, but there were limitations. We could not collect data from SS2020 sites in the Amhara region due to conflict; our findings need to be confirmed with a larger sample in more diverse contexts and follow-up. Our survey should be refined for future research based on the research question and conceptual framework. Respondents may have given more positive responses, however, using an experienced qualitative researcher and collecting data from different respondents at each site may have minimized bias [87]. Our findings may have been confounded by participants’ experiences with other SS2020 interventions.

Conclusion
We conducted a mixed-methods evaluation regarding the experiences of mentees, mentors, hospital leaders, and key stakeholders to generate lessons on optimizing the design and implementation of surgical mentorship interventions in resource-constrained settings. Our findings suggest mentorship may build capacity in surgical providers, increase confidence and job satisfaction, and instill a culture of continuous learning in low-resource settings. A holistic approach, a receptive implementation climate, effective mentee-mentor relationships, adaptation through user-feedback, and policy support to institutionalize and build a culture of mentorship are important to the intervention’s success.

Abbreviations
FMOH: Federal Ministry of Health; IESO: Integrated Emergency Surgical Officers; OR: Operating Room; RHB: Regional Health Bureau; SaLTS: Saving Lives through Safe Surgery; SS2020: Safe Surgery 2020; SSC: Surgical Safety Checklist.

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/s12909-022-03691-2.

Additional file 1. Ethiopia mentorship survey.
Additional file 2. Interview protocols.
Additional file 3. Mentor and mentoring relationships and characteristics.
Additional file 4. Overall experience, satisfaction and recommendations for continuation.
Additional file 5. Percentage of respondents reporting changes as a result of mentorship.
Acknowledgements
We would like to thank the Saving Lives through Surgery (SaLTS) team within the Medical Services General Directorate at the Federal Ministry of Health, the Tigray Regional Health Bureau and the leaders of SS2020 intervention hospitals for their support of the Safe Surgery 2020 mentorship study. We would like to thank the Surgical Society of Ethiopia, Ethiopian Society of Anesthesiologists, and Ayder Regional Hospital for their collaboration and mentors for the project. We would like to especially thank the mentors for their commitment and dedication to strengthening surgical services in rural communities – without them this intervention would not have been possible. Dr. Girma Hayos Arega, Dr. Reuye Esayas Mengesha, Dr. Ybrah Berhe Zelelew, Dr. Dagos Gidey, Dr. Berhe Gebre Silasie, Haftom Berhane, Tadesse Teklit, Sr. Medhin Gebre Tensea. We would like to thank the surgical team members and hospital leaders who gave so generously of their time for interviews. We would like to offer our sincere thanks to Sophie Blument for her editing assistance. We are grateful to Dr. Christina Smiraglia and Professor Aisha Youssafzai for their advice on the qualitative analysis. We would like to acknowledge and thank all organizations and individuals who participated in our consultation on the design of Safe Surgery 2020 as well as those organizations and individuals who have contributed to the larger Safe Surgery 2020 initiative including Assist International, Dalberg, Jhpiego, Life Box, Project ECHO, the Sterile Processing Education Charitable Trust, and the World Federation of Societies of Anaesthesiologists.

Authors’ contributions
SA conceptualized and designed the study, collected, analyzed, and interpreted the data, and drafted the manuscript. MMS conceptualized and designed the study, collected, analyzed, and interpreted the data, and drafted the manuscript. TAA conceptualized the study and drafted the manuscript. AEM conceptualized and designed the study, and drafted the manuscript. OA collected and analyzed the data and drafted the manuscript. BGA substantially revised the manuscript. AB substantially revised the manuscript. ADB conceptualized the study and substantially revised the manuscript. DO substantially revised the manuscript. DGB conceptualized the study and substantially revised the manuscript. EB conceptualized the study and substantially revised the manuscript. SB analyzed and interpreted the data and substantially revised the manuscript. MD substantially revised the manuscript. LD collected data and drafted the manuscript. DG substantially revised the manuscript. TKG substantially revised the manuscript. TCH drafted the manuscript. JGM conceptualized the study and substantially revised the manuscript. SJS analyzed and interpreted the data and substantially revised the manuscript. SEW designed the study, collected data, and substantially revised the manuscript. NZ analyzed and interpreted data and drafted the manuscript. ZBZ substantially revised the manuscript. All authors read and approved the final manuscript.

Authors’ information
Not applicable.

Funding
This work was supported by the GE Foundation [28045607]. GE Foundation provided funding for the submitted work. Dr. Dalberg Advisors, New York, USA. College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia. Federal Ministry of Health, Addis Ababa, Ethiopia. Safe Surgery 2020 Project, Jhpiego, Addis Ababa, Ethiopia. Department of Plastic and Oral Surgery, Boston Children’s Hospital, Boston, MA, USA. Department of Pediatrics, University of Melbourne, Melbourne, Australia. Department of Anaesthesiology and Surgery, Boston Children’s Hospital, Boston, MA, USA. Safe Surgery 2020, Jhpiego, Baltimore, MD, USA.

Received: 19 December 2021 Accepted: 12 August 2022
Published online: 31 August 2022

References
1. Ozgediz D, Kijjambu S, Galukande M, Dubowitz G, Mabweijano J, Mijumbi C, et al. Africa’s neglected surgical workforce crisis. Lancet. 2008;371:627–8. https://doi.org/10.1016/S0140-6736(08)60279-3.
2. Hoyler M, Finlayson SR, McClain CD, Meara JG, Hagander L. Shortage of doctors, shortage of data: a review of the global surgery, obstetrics, and anesthesia workforce literature. World J Surg. 2014;38:269–80. https://doi.org/10.1007/s00268-013-2324-y.
3. Meara JG, Leather AJ, Hagander L, Alikwe BC, Alonso N, Ameh EA, et al. Global Surgery 2030: evidence and solutions for achieving health, welfare, and economic development. Lancet. 2015;386:659–624. https://doi.org/10.1016/S0140-6736(15)60160-X.
4. Schwendtle P, Morphett J, Hall H. A scoping review of mentorship of health personnel to improve the quality of health care in low and middle-income countries. Global Health;13:77. https://doi.org/10.1186/s12992-017-0301-1.
5. Aldina S, Tibejehatwla L, Aleuja SS, et al. Multimodal mentorship intervention to improve surgical quality in Tanzania’s Lake Zone: a convergent, mixed methods approach. Hum Resour Health. 2021;19:115. https://doi.org/10.1186/s12960-021-00852-6.
6. Feyissa GT, Balabanova D, Woldie G. Effective mentorship programs for improving health worker competence and institutional performance in Africa? A systematic review of quantitative evidence. J Multidiscip Healthc. 2019;12:989–1005. https://doi.org/10.2147/JMH.228951.
7. Conceicao P. Human development report 2020: the next frontier – human development and the Anthropocene. 2020. http://hdr.undp.org/sites/default/files/hdr2020.pdf

which then appears in the interviewee’s transcript. The opening explanation to the survey explained consent and noted that completion of the survey implied consent.

Consent for publication
No individual person’s data is presented in this article.

Competing interests
The Program in Global Surgery and Social Change, Jhpiego, and Dalberg Advisors receive funding from the GE Foundation for the Safe Surgery 2020 project. Sheneeza Aldina, Olivia Ahearne, Tiguist Adamu Ashengro, Erin Barringter, Sehrish Bari, Abebe Beleke, Andualem Beyene, Laura Dowen, Tenerwork Gultie, Tuna Hayirli, Abraham Endeshaw Mengistu, Meaghan Sydlowski, Samson Essaye Workineh, Noor Zainal, and Zebanay Bizew Zeleke had financial support from GE Foundation for the submitted work. Dereje Guliatt and Andualem Beyene were part of the Surgical Society of Ethiopia which received funding from the GE Foundation for the mentorship intervention. David Barash is employed by GE Foundation, which funded this work. Bizayehu Gashaw Andalem, Daniel Gebre Michael Burssa, Millard Denibew, Steven J. Staffa, and John G. Meara have nothing to declare. The authors have had no financial relationships with any organizations that might have an interest in the submitted work in the previous three years and no other relationships or activities that could appear to have influenced the submitted work.

Author details
1 Program in Global Surgery and Social Change, Harvard Medical School, 641 Huntington Avenue, MB, Boston, USA. 2Amhara Regional Health Bureau, Federal Ministry of Health, Addis Ababa, Ethiopia. 3GE Foundation, Boston, MA, USA. 4Implement, Dalberg Advisors, New York, USA. 5College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia. 6Federal Ministry of Health, Addis Ababa, Ethiopia. 7Safe Surgery 2020 Project, Jhpiego, Addis Ababa, Ethiopia. 8Department of Plastic and Oral Surgery, Boston Children’s Hospital, Boston, MA, USA. 9Department of Pediatrics, University of Melbourne, Melbourne, Australia. 10Department of Anaesthesiology and Surgery, Boston Children’s Hospital, Boston, MA, USA. 11Safe Surgery 2020, Jhpiego, Baltimore, MD, USA.

Alidina et al. BMC Medical Education (2022) 22:653
Page 12 of 15

Declarations
Ethics approval and consent to participate
We received ethical approval from the Ethiopian Public Health Institute (Ref. 098/2018). The Institutional Review Board at Harvard Medical School deemed this study “exempt”. As our research posed minimal risk to study participants, a verbal consent process was approved by both IRBs. Before each interview, the participant(s) were provided with information about the study in English or Tigrinya. Consent was obtained in a private room after the potential subject demonstrated an understanding of the study purpose and indicated interest in participating. Consent was verbally given by each participant enrolled

Availabilty of data and materials
The dataset analyzed during the current study is available from the corresponding author on reasonable request.

Download PDF

8. Holmer H, Lantz A, Kunjumen T, Finlayson S, Hoyler M, Siyam A, et al. Global distribution of surgeons, anaesthesiologists, and obstetricians. Lancet Glob Health. 2015;2:59-11. https://doi.org/10.1016/S2214-109X(14)70349-3.

9. Federal Ministry of Health of Ethiopia National Safe Surgery Strategic Plan. Saving Lives Through Safe Surgery. 2017. https://static1.squarespace.com/static/5db8ed5b36baa60903e6f8e75s/t/5e57877714eced2c2aaab85a/1582794619800/2_SaLTS+Strategic+e-Plan.pdf

10. Ivenson KR, Garringer K, Ahearn O, Aliaina D, Citron L, Essevue S, et al. Mixed-methods assessment of surgical capacity in two regions in Ethiopia. Br J Surg. 2019;106:919–29. https://doi.org/10.1002/bjs.11032.

11. Bursa D, Teshome A, Ivenson K, Ahearn O, Ashengo T, Barash D, et al. Safe surgery for all: early lessons from implementing a National Government-Directed Surgical Plan in Ethiopia. World J Surg. 2017;41:3038-45. https://doi.org/10.1007/s00268-017-4271-5.

12. Hunt DM, Michael C. Mentorship: a career training and development tool. Acad Manag Rev. 1983;8:475–85. https://doi.org/10.5465/amr.1983.4284603.

13. National Academies of Sciences, Engineering, and Medicine. The science of effective mentorship in STEM. 2020.

14. Kashwagi DT, Venkay P, Cook DA. Mentoring programs for physicians in academic medicine: a systematic review. Acad Med. 2013;88:1029–37. https://doi.org/10.1097/ACM.0b013e3182f95869.

15. Geraci SA, Thigpen SC. A review of mentoring in academic medicine. Am J Med Sci. 2017;353:151–7. https://doi.org/10.1016/j.amjms.2016.12.002.

16. Comeau DL, Berdew MD, Mariam DH. Influential mentors: a guidebook for building mentoring skills and capacity. 2019.

17. Sambunjak D, Straus S, Marusic A. Mentoring in academic medicine: a systematic review. JAMA. 2006;296(9):1103–15. https://doi.org/10.1001/jama.296.9.1103.

18. Entzami P, Franzblau LE, Chung KC. Mentorship in surgical training: a systematic review. Hand (NY). 2012;7:30–6. https://doi.org/10.1007/s15521-013-9379-8.

19. Sinclair P, Fitzgerald JE, Hornby SJ, Shahbou J. Mentorship in surgical training: current status and a needs assessment for future mentoring programs in surgery. World J Surg. 2015;39:300–3. https://doi.org/10.1007/s00268-014-2774-x discussion 314.

20. El-Gabri D, McDow AD, Quamme SP, Hooper-Lane C, Greenberg CC, Long KL. Surgical coaching for advancement of global surgical skills and capacity: a systematic review. J Surg Res. 2020;246:499–505. https://doi.org/10.1016/j.jss.2019.09.039.

21. Conradie A, Duys K, Forget P, Biccard BM. Barriers to clinical research in Africa: a quantitative and qualitative survey of clinical researchers in 27 African countries. Br J Anaesth. 2018;121(4):813–21. https://doi.org/10.1016/j.bja.2018.06.013 Epub 2018 Jul 19 PMID: 30326423.

22. Lescano AG, Cohen CR, Raj T, Rispel L, Garcia PJ, Zunt JR, et al. Strengthening health systems: lessons learned across the five sub-Saharan Africa. BMC Health Serv Res. 2017;17:831. https://doi.org/10.1186/s12913-017-2666-7.

23. Are C, Senthil M, Jayaryaman S, Wenos C, Pramesh CS, D’Ugo D, Charles A. Promotion of surgical research in the Global South. Surgery. 2021;170(5):1587–8. https://doi.org/10.1016/j.bjsa.2018.06.013 Epub 2018 Jul 19 PMID: 30236243.

24. Namisi C, Mayanja-Kizza H, Kamya MR. Mentorship needs at academic and research institutions. Am J Trop Med Hyg. 2019;100:3–8. https://doi.org/10.4269/ajtmh.2019-003 Epub 2018 May 12.

25. Manzi A, Hirschhorn LR, Sherr K, Chirwa C, Baynes C, Awoonor-Williams JK, AHI PHIT Partnership Collaborative. Mentorship and coaching to support strengthening healthcare systems: lessons learned across the five population health implementation and training partnership projects in sub-Saharan Africa. BMC Health Serv Res. 2017;17(Suppl 3):S81. https://doi.org/10.1186/s12913-017-2666-7.

26. Nakanjako D, Byakika-Kibwika P, Kintu K, Aizire J, Nakwagala F, Luzige S, Namisi C, Mayanja-Kizza H, Kamya MR. Mentorship needs at academic institutions in resource-limited settings: a survey at Makerere University College of Health Sciences. BMC Med Educ. 2011;29(11):53. https://doi.org/10.1186/1472-6920-11-53.

27. Manzi A, Hirschhorn LR, Sherr K, Chirwa C, Baynes C, Awoonor-Williams JK, AHI PHIT Partnership Collaborative. Promotion of surgical research in sub-Saharan Africa: a qualitative study of perceptions and expectations of the makerere university student and faculty mentorship programme. BMC Med Educ. 2017;17(1):123. https://doi.org/10.1186/s12913-017-2666-7.

28. Creswell JW, Klassen AC, Planski CL, Smith KC. Best practices for mixed methods research in the health sciences. Vol. 2013. Bethesda (Maryland): National Institutes of Health:2011. p.541-S.

29. Curry LA, Krumbholz HM, O’Cathain A, Clark VL, Chirwa C, Bradley EH. Mixed methods in biomedical and health services research. Circ Cardiovasc Qual Outcomes. 2013;6(1):119-23. https://doi.org/10.1161/CIRCQUALCMEC.112.967885.

30. Curry LA, Nunnely-Smith M. Mixed methods in health services research: a practical primer. Thousand Oaks: Sage publications; 2014.

31. Tong A, Sainsbury P, Craig J. Consolidated criteria for reporting qualitative research (COREQ): a 32-item checklist for interviews and focus groups. Int J Qual Health Care. 2007;19:349–57. https://doi.org/10.1093/ijqhc/mzm042.

32. Patton MQ. Qualitative research and evaluation methods. 3rd ed. Thou- sand Oaks: Sage publications; 2002.

33. Palinkas LA, Horwitz SM, Green CA, Wisdom JP, Duan N, Hoagwood K. Purposeful sampling for qualitative data collection and analysis in mixed method implementation research. Administration and policy in mental health and mental health services research. 2015;42:533–44. https://doi.org/10.1007/s10488-013-0528-y.

34. Malterud K, Siersma VD, Guassara AO. Sample size in qualitative interview studies: guided by information power. Qual Health Res. 2016;26(13):1753-60. https://doi.org/10.1177/1049732316614744 Epub 2016 Jul 10.
46. Curry LA, Nembhard IM, Bradley EH. Qualitative and mixed methods provide unique contributions to outcomes research. Circulation. 2009;119:144–52. https://doi.org/10.1161/CIRCULATIONAHA.107.744375.

47. Corbin J, Strauss A. Basics of qualitative research techniques and procedures for developing grounded theory. Thousand Oaks: Sage publications; 2014.

48. Hennink MM, Kaiser BN, Masconi VC. Code saturation versus meaning saturation: how many interviews are enough? Qual Health Res. 2017;27(4):591–608. https://doi.org/10.1177/104973231665344 Epub 2016 Sep 26 PMID: 27670770.

49. McHugh ML. Interrater reliability: the kappa statistic. Biochem Med (Zagreb). 2012;22:276–82.

50. Creswell JW. Qualitative inquiry and research design: choosing among five approaches. Los Angeles: SAGE; 2013.

51. Mills MB, Huberman AM, Saldana J. Qualitative data analysis: a methods sourcebook. 3rd ed London: SAGE; 2014.

52. Saldana J. The coding manual for qualitative researchers. London: SAGE; 2016.

53. Judson K, Courtright P, Ravilla T, Khanna R, Bassett K. Impact of system changes in the setting of a clinical mentorship on WHO-AFRO Strengthening Laboratory Quality Improvement and Retention of Emergency Obstetric and Neonatal Care: A Mixed-Design Study. JAMA Surg. 2017;152:15–22. https://doi.org/10.1001/jamasurg.2016.5623.

54. Edmondson A. Psychological safety and learning behavior in work teams. Adm Sci Q. 1999;44(2):350–83. https://doi.org/10.2307/2666999.

55. Alidina S, Menon G, Staffa SJ, Alreja S, Barash D, Barringer E, et al. Evaluation of a surgical supervision model in 3 African countries-protocol for a prospective mixed-methods controlled pilot trial. Pilot Feasibility Study. 2019;5:25. https://doi.org/10.1186/s40814-019-0409-6.

56. Saldana S, Menon G, Staffa SJ, Alreja S, Barash D, Barringer E, et al. Outcomes of a multicomponent safe surgery intervention in Tanzania’s Lake Zone: a prospective, longitudinal study. Int J Qual Health Care. 2021;29:33. https://doi.org/10.1093/intqhc/mzab087.

57. Saldana S, Chatterjee P, Zanial N, Alreja SS, Ballira R, Barash D, et al. Improving the quality of low-income and middle-income countries: why do some health facilities perform better than others? BMJ Qual Saf. 2021;bmjpc-2020-011795. https://doi.org/10.1136/bmjqpc-2020-011795. Epub ahead of print.

58. Impact report: improving access to safe surgery for millions of people around the World. Safe Surgery 2020. Available at: https://static1.squarespace.com/static/56b8ed53bb6a60f00fe8e7f5/56f10959bcb189f1c4f3a839/1606486374464/SafeSurgery-Impact_Report_Sirv 2019_26.pdf. Accessed 3 Feb 2021.

59. Edmondson A. Psychological safety and learning behavior in work teams. Adm Sci Q. 1999;44(2):350–83. https://doi.org/10.2307/2666999.

60. Edmondson AC. Speaking up in the operating room: how team leaders promote learning in interdisciplinary action teams. J Manag Stud. 2003;40:1419–52. https://doi.org/10.1111/1467-6486.00386.

61. Edmondson AC. Framing for learning: lessons in successful technology implementation. Calif Manage Rev. 2003;45:34–54. https://doi.org/10.2307/41166164.

62. Newman A, Donohue R, Eva N. Psychological safety: a systematic review of the literature. Hum Resour Manag Rev. 2017;27:521–35. https://doi.org/10.1016/j.hrmr.2017.01.001.

63. Weaver MR, Czotter A, Eleku S, et al. Capacity-building and clinical competence in infectious disease in Uganda: a mixed-design study with pre/post and cluster-randomized trial components. PLoS ONE. 2012;7(12):e51319. https://doi.org/10.1371/journal.pone.0051319.

64. WHO recommendations for clinical mentoring to support scale-up of HIV care, antiretroviral therapy and prevention in resource-constrained settings. World Health Organization. https://www.who.int/hiv/pub/guide lines/clinicalmentoring.pdf?ua=1.

65. Xiong X, Carter R, Lusamba-Dikassa PS, Kuburahwana EC, Kimanuka F, Salumu F, et al. Improving the quality of maternal and newborn health outcomes through a clinical mentorship program in the Democratic Republic of the Congo. study protocol. Reprod Health. 2019;16:147. https://doi.org/10.1186/s12978-019-0796-4.

66. Maruta T, Motetang D, Mathabo L, Rotz PJ, Wanyoike J, Peter T. Impact of mentorship on WHO-AFRO Strengthening Laboratory Quality Improvement Process Towards Accreditation (SLQTA). Afr J Lab Med. 2012;11(6). https://doi.org/10.4102/ajlm.v11i6.1.
83. The Importance of Global Health Research. Unite for Sight. http://www.uniteforsight.org/global-health-university/research-importance. Cited 26 June, 2022.
84. Birbeck GL, Wiysonge CS, Mills EJ, Frenk J, Zhou XN, Jha P. Global health: the importance of evidence-based medicine. BMC Med. 2013;11(1):1–9.
85. Casey D, Clark L, Gould K. Developing a digital learning version of a mentorship training programme. Br J Nurs. 2018;27(2):82–6. https://doi.org/10.12968/bjon.2018.27.2.82 PMID: 29368565.
86. Langat, A. No answer: Kenya’s gender-based violence hotline fails to connect. Devex. 2019. https://www.devex.com/news/no-answer-kenya-s-gender-based-violence-hotline-fails-to-connect-93822. Cited 26 June, 2022.
87. Bergen N, Labonté R. "Everything is perfect, and we have no problems": detecting and limiting social desirability bias in qualitative research. Qual Health Res. 2020;30:783–92. https://doi.org/10.1177/104973231989354.

Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.