A LOCAL VERSION OF KATONA’S INTERSECTION THEOREM

MARCELO SALES AND BJARNE SCHÜLKE

ABSTRACT. Katona’s intersection theorem states that every intersecting family \(\mathcal{F} \subseteq [n]^{(k)} \) satisfies \(|\partial \mathcal{F}| \geq |\mathcal{F}| \), where \(\partial \mathcal{F} = \{ F \setminus x : x \in F \in \mathcal{F} \} \) is the shadow of \(\mathcal{F} \). Frankl conjectured that for \(n > 2k \) and every intersecting family \(\mathcal{F} \subseteq [n]^{(k)} \), there is some \(i \in [n] \) such that \(|\partial \mathcal{F}(i)| \geq |\mathcal{F}(i)| \), where \(\mathcal{F}(i) = \{ F \setminus i : i \in F \in \mathcal{F} \} \) is the link of \(\mathcal{F} \) at \(i \). Here, we prove this conjecture in a very strong form for \(n \geq k \geq 2 \). In particular, our result implies that for any \(j \in [k] \), there is a \(j \)-set \(\{a_1, \ldots, a_j\} \in [n]^{(j)} \) such that \(|\partial \mathcal{F}(a_1, \ldots, a_j)| \geq |\mathcal{F}(a_1, \ldots, a_j)| \). A similar statement is also obtained for cross-intersecting families.

§1. Introduction

Throughout the paper, let \(n, k, \ell \) be positive integers. Let \([n] = \{1, \ldots, n\} \) and for a set \(X \) let \(X^{(k)} = \{ A \subseteq X : |A| = k \} \) be the set of \(k \)-subsets of \(X \). A family \(\mathcal{F} \subseteq [n]^{(k)} \) is called intersecting if \(F \cap F' \neq \emptyset \) for all \(F, F' \in \mathcal{F} \) and the shadow of \(\mathcal{F} \) is

\[
\partial \mathcal{F} = \{ F \setminus x : x \in F \in \mathcal{F} \}.
\]

Extremal properties of shadows and intersecting families are amongst the most prominent topics in extremal set theory. For instance, two cornerstones of the area are the Erdős–Ko–Rado theorem [7], which determines the maximum size of an intersecting family and the Kruskal–Katona theorem [8, 9], which provides a solution for the minimisation problem of the shadow.

The following celebrated theorem due to Katona [5] combines these two concepts by bounding the size of the shadow of an intersecting family.

Theorem 1.1 ([5]). Suppose \(\mathcal{F} \subseteq [n]^{(k)} \) is intersecting. Then \(|\partial \mathcal{F}| \geq |\mathcal{F}| \).

Theorem 1.1 was proved in a more general setting in [5]. Recently, the result was improved by Frankl and Katona [4] and Liu and Mubayi [6] for intersecting families of larger size. It is also worth to note the cross-intersecting variant of Theorem 1.1 that Frankl proved in [1]. Given integers \(k, \ell \geq 1 \), a pair of families \(\mathcal{F} \subseteq [n]^{(k)}, \mathcal{G} \subseteq [n]^{(\ell)} \) is cross-intersecting if for every \(F \in \mathcal{F} \) and \(G \in \mathcal{G} \) we have \(F \cap G \neq \emptyset \).

Key words and phrases. Extremal set theory, intersecting families, shadow.
Theorem 1.2 ([1]). Let \(1 \leq k, \ell \leq n \) be positive integers and \(\mathcal{F} \subseteq [n]^{(k)} \) and \(\mathcal{G} \subseteq [n]^{(\ell)} \) be cross-intersecting families. Then either \(|\partial \mathcal{F}| \geq |\mathcal{F}| \) or \(|\partial \mathcal{G}| \geq |\mathcal{G}|\).

In this paper we establish a local version of Theorem 1.1. For a family \(\mathcal{F} \subseteq [n]^{(k)} \) and sets \(A, B \subseteq [n] \), we define

\[
\mathcal{F}(A, B) = \{ F \setminus A : F \in \mathcal{F} \text{ such that } A \subseteq F \text{ and } B \cap F = \emptyset \}
\]

as the link of \(\mathcal{F} \) at \(A \) induced on \([n] \setminus B\). Notice that for \(B = \emptyset \), the family \(\mathcal{F}(A) := \mathcal{F}(A, \emptyset) \) is just the usual link of \(\mathcal{F} \) at \(A \). If on the other hand \(A = \emptyset \), the family \(\mathcal{F}(B) := \mathcal{F}(\emptyset, B) \) is just the induced hypergraph on the set \([n] \setminus B\). Observe that \(\partial(\mathcal{F}(A)) = (\partial \mathcal{F})(A) \) and \(\partial(\mathcal{F}(A, B)) \subseteq (\partial \mathcal{F})(A, B) \). We write \(\partial \mathcal{F}(A, B) := \partial(\mathcal{F}(A, B)) \).

Frankl [3] conjectured the following local version of Theorem 1.1: Let \(n > 2k \) and let \(\mathcal{F} \subseteq [n]^{(k)} \) be an intersecting family. Then there exists a vertex \(i \in [n] \) such that the link of \(i \) satisfies \(|\partial \mathcal{F}(i)| \geq |\mathcal{F}(i)|\). We prove this conjecture for \(n > \binom{k+1}{2} \).

Theorem 1.3. Let \(n > \binom{k+1}{2} \) and let \(\mathcal{F} \subseteq [n]^{(k)} \) be intersecting. Then there exists an \(i \in [n] \) such that \(|\partial \mathcal{F}(i)| \geq |\mathcal{F}(i)|\).

Frankl [3] further conjectured that a local version of Theorem 1.2 should hold. We prove it for \(n > k\ell \).

Theorem 1.4. Suppose that for \(n > k\ell \), the families \(\mathcal{F} \subseteq [n]^{(k)} \) and \(\mathcal{G} \subseteq [n]^{(\ell)} \) are cross-intersecting. Then there is some \(i \in [n] \) such that

\[
|\partial \mathcal{F}(i)| \geq |\mathcal{F}(i)| \text{ or } |\partial \mathcal{G}(i)| \geq |\mathcal{G}(i)|.
\]

Theorems 1.3 and 1.4 will be deduced from a more general result. To formulate it compactly, let us further introduce the following definition.

Definition 1.5. We say that \(\mathcal{F} \subseteq [n]^{(k)} \) is pseudo-intersecting if \(|\partial \mathcal{F}(X)| \geq |\mathcal{F}(X)|\) for all \(X \subseteq [n] \).

Note that for \(A \subseteq [n] \) and \(\mathcal{F} \subseteq [n]^{(k)} \), the link \(\mathcal{F}(A) \) being pseudo-intersecting means that \(|\partial \mathcal{F}(A, X \setminus A)| \geq |\mathcal{F}(A, X \setminus A)|\) for every \(X \subseteq [n] \). The term pseudo-intersecting comes from the following observation: If \(\mathcal{F} \subseteq [n]^{(k)} \) is intersecting, then for every \(X \subseteq [n] \) we have \(|\partial \mathcal{F}(X)| \geq |\mathcal{F}(X)|\). This is a consequence of Theorem 1.1 and the fact that \(\mathcal{F}(X) \subseteq \mathcal{F} \) is intersecting. Note that if \(\mathcal{F}(A) \) is pseudo-intersecting for \(A \in [n]^{(j)} \) with \(j < k \), then \(|\partial \mathcal{F}(A)| \geq |\mathcal{F}(A)|\). That is, the pseudo-intersecting property of \(\mathcal{F}(i) \) implies the local version of Katona’s intersecting theorem.

The next result shows that one can always find a pseudo-intersecting link in an intersecting family. In particular, it implies Theorem 1.3 for \(n > \binom{k+1}{2} \).
Theorem 1.6. Let $\mathcal{F} \subseteq [n]^{(k)}$ be intersecting. Then there are sets $M_1 \subseteq \cdots \subseteq M_k \subseteq [n]$ with $|M_i| \geq n - \sum_{i \leq j \leq k} j$ such that for all $A \subseteq M_i^{(i)}$, the family $\mathcal{F}(A)$ is pseudo-intersecting.

Note that the link of every subset of M_1 is pseudo-intersecting. In particular, for any intersecting family $\mathcal{F} \subseteq [n]^{(k)}$, the inequality $|\partial \mathcal{F}(i)| \geq |\mathcal{F}(i)|$ holds for all but at most $\binom{k+1}{2}$ vertices i.

Our general result for cross-intersecting families reads as follows. For $n > k\ell$ it implies Theorem 1.4.

Theorem 1.7. Let $\mathcal{F} \subseteq [n]^{(k)}$ and $\mathcal{G} \subseteq [n]^{(\ell)}$ be cross-intersecting. Then there are sets $M_1 \subseteq \cdots \subseteq M_k \subseteq [n]$ with $|M_i| \geq n - (k+1-i)\ell$ such that one of the following holds.

- The family $\mathcal{F}(A)$ is pseudo-intersecting for all $i \in [k]$ and $A \subseteq M_i^{(i)}$,
- or $\mathcal{G}(B)$ is pseudo-intersecting for all $B \subseteq M_2$.

A family $\mathcal{F} \subseteq \mathcal{P}([n])$ is called t-union if $|F \cup F'| \leq t$ for every $F, F' \in \mathcal{F}$. A family \mathcal{F} is an antichain if $F \nsubseteq F'$ for every $F, F' \in \mathcal{F}$. Kiselev, Kupavskii and Patkós made the following conjecture on the minimum degree of $(2\ell+1)$-union antichains.1

Conjecture 1.8 ([3]). Suppose that $1 \leq 2\ell + 1 < n$, and that $\mathcal{F} \subseteq \mathcal{P}([n])$ is a $(2\ell+1)$-union antichain. Then $\delta(\mathcal{F}) \leq \binom{n-1}{\ell-1}$.

In [3], Frankl solved Conjecture 1.8 for $n \geq \ell^3 + \ell^2 + \frac{3}{2}\ell$. He also noted that one could obtain better bounds by proving a local version of Theorem 1.1 (see Proposition 3.4(i), [3]). In particular, by using his reduction, Theorem 1.3 implies Conjecture 1.8 for $n > \binom{\ell+2}{2}$.

§2. Tools

In this section we introduce the main technical lemma in the proof. Roughly speaking, in our proof we will inductively construct sets $M_i \subseteq M_{i+1}$ such that $\mathcal{F}(A)$ is pseudo-intersecting for all $A \subseteq M_i^{(i)}$. The following lemma will help with the induction step. We directly formulate it in the setup in which it will be used.

Lemma 2.1. Let $\mathcal{F} \subseteq [n]^{(k)}$ and let $A, M \subseteq [n]$. If $\mathcal{F}(A, \overline{M \setminus A})$ is pseudo-intersecting and $\mathcal{F}(A \cup x)$ is pseudo-intersecting for all $x \in M \setminus A$, then $\mathcal{F}(A)$ is pseudo-intersecting.

Proof. Let $X \subseteq [n]$ be given. We need to show that $|\partial \mathcal{F}(A, \overline{X \setminus A})| \geq |\mathcal{F}(A, \overline{X \setminus A})|$. Note that $|\partial \mathcal{F}(A, (\overline{X \cup M} \setminus A))| \geq |\mathcal{F}(A, (\overline{X \cup M} \setminus A))|$ holds by assumption. Hence, it is enough to show that if

$$|\partial \mathcal{F}(A, \overline{X' \setminus A})| \geq |\mathcal{F}(A, \overline{X' \setminus A})|$$

\[2.1 \]

1They formulated their conjecture as an upper bound on the diversity of an intersecting antichain, which is equivalent.
holds for some $X \subseteq X' \subseteq X \cup M$, then $|\partial F(A, (X' \setminus x) \setminus A)| \geq |F(A, (X' \setminus x) \setminus A)|$ for some $x \in X' \setminus (X \cup A)$. So let X' with $X \subseteq X' \subseteq X \cup M$ satisfy (2.1) and let $x \in X' \setminus (X \cup A)$ be arbitrary. Given a family \mathcal{H} and a vertex x, let $\mathcal{H}^{\setminus x} = \{H \cup \{x\} : H \in \mathcal{H}\}$. Observe that

$$F(A, (X' \setminus x) \setminus A) = F(A, X' \setminus A) \cup (F(A \cup x, X' \setminus (A \cup x)))^{\setminus x} \quad (2.2)$$

and

$$|\partial F(A, (X' \setminus x) \setminus A)| \geq |F(A, (X' \setminus x) \setminus A)| \quad (2.3)$$

Since we have (2.1) and since

$$|\partial F(A \cup x, X' \setminus (A \cup x))| \geq |F(A \cup x, X' \setminus (A \cup x))|$$

holds because $F(A \cup x)$ is pseudo-intersecting, (2.2) and (2.3) imply that

$$|\partial F(A, (X' \setminus x) \setminus A)| \geq |F(A, (X' \setminus x) \setminus A)|.$$

This is all we had to show. \hfill \Box

\section*{§3. Proof of Theorems 1.6 and 1.7}

\textbf{Proof of Theorem 1.6.} The proof proceeds inductively by constructing sets $M_i \subseteq M_{i+1}$ such that for all $A \in M_{i}^{(i)}$, the family $F(A)$ is pseudo-intersecting and $|M_i| \geq n - \sum_{i \leq j < k} j$.

We begin the backward induction with $i = k$. If $\mathcal{F} \neq \emptyset$, we would be done, so let $F \in \mathcal{F}$ and set $M_k = [n] \setminus F$ (in particular, $|M_k| \geq n - k$). Since \mathcal{F} is intersecting, we have $\mathcal{F} \cap M_k^{(k)} = \emptyset$. Thus, for $A \in M_k^{(k)}$ and $X \subseteq [n]$ we have $F(A, X \setminus A) = \emptyset$. Hence, $|\partial F(A, X \setminus A)| \geq |F(A, X \setminus A)|$ for all $X \subseteq [n]$, meaning that $F(A)$ is pseudo-intersecting for $A \in M_k^{(k)}$.

Now assume that for some i with $2 \leq i \leq k$, a set $M_i \subseteq [n]$ with $|M_i| \geq n - \sum_{i \leq j < k} j$ has been defined such that $F(A^+)$ is pseudo-intersecting for all $A^+ \in M_{i}^{(i)}$. Next, we will argue that we only need to delete at most one $(i - 1)$-set from M_i to obtain a set M_{i-1} as desired.

If for all $A \in M_{i}^{(i-1)}$ the family $F(A, M_i \setminus A)$ is pseudo-intersecting, then we set $M_{i-1} = M_i$. Since the induction hypothesis tells us that for every $A \in M_{i}^{(i-1)}$, and $x \in M_i \setminus A$, the family $F(A \cup x)$ is pseudo-intersecting, Lemma 2.1 implies that $F(A)$ is pseudo-intersecting. So let us assume that $F(B, M_i \setminus B)$ is not pseudo-intersecting for some $B \in M_{i}^{(i-1)}$. Then there is some $M \subseteq [n]$ with $M_i \subseteq M$ such that $|\partial F(B, M \setminus B)| < |F(B, M \setminus B)|$ and we set $M_{i-1} = M_i \setminus B$.

\textbf{Claim 3.1.} For every $A \in M_{i-1}^{(i-1)}$, the family $F(A, M_{i} \setminus A)$ is pseudo-intersecting.
Theorem

We set \(M \) yields that \(M \) is pseudo-intersecting.

Lemma

us that families (similarly as in the proof of Claim 2.1.2) for \(B \), \(A \) and \(F \) are cross-intersecting. Theorem 1.2 implies that \(|\partial H| \geq |H| \) has to hold for some \(H \in \{\mathcal{F}(A, M' \setminus A), \mathcal{F}(B, M \setminus B)\} \). By the choice of \(B \) and \(M \), this yields the statement of the claim. \(\Box \)

Together with the induction hypothesis, this claim allows us to apply Lemma 2.1 which yields that \(\mathcal{F}(A) \) is pseudo-intersecting for all \(A \in M_{i-1}^{(i-1)} \). Further note that in either case \(|M_{i-1}| \geq |M_i| - i + 1 \geq n - \sum_{i-1 \leq j \leq k} j \). Therefore, in either case \(M_{i-1} \) is as desired. \(\Box \)

Proof of Theorem 1.7. Again, we aim to inductively construct sets \(M_i \subseteq M_{i+1} \) such that for all \(A \in M_i^{(i)} \), the family \(\mathcal{F}(A) \) is pseudo-intersecting and \(|M_i| \geq n - (k - i + 1)\ell \). If at any point, we should not be able to proceed, i.e., we fail to construct the set \(M_{i-1} \), then \(\mathcal{G}(A) \) will be pseudo-intersecting for all \(A \subseteq M_i \).

We begin the backwards induction with \(i = k \). If \(\mathcal{G} = \emptyset \), we are done, so let \(G \in \mathcal{G} \) and set \(M_k = [n] \setminus G \). Since \(\mathcal{F} \) and \(\mathcal{G} \) are cross-intersecting, this means that \(\mathcal{F} \cap M_k^{(k)} = \emptyset \) and therefore, \(\mathcal{F}(A) \) is pseudo-intersecting for all \(A \in M_k^{(k)} \). Further, we have \(|M_k| \geq n - \ell \).

Now assume that for some \(i \) with \(2 \leq i \leq k \) we have constructed sets \(M_j \) for all \(i \leq j \leq k \) as desired. First assume that \(\mathcal{G}(B, M_i \setminus B) \) is not pseudo-intersecting for some \(B \in M_i^{(\leq \ell)} \), i.e., there is some \(X \subseteq [n] \) with \(M_i \subseteq X \) such that \(|\partial \mathcal{G}(B, X \setminus B)| < |\mathcal{G}(B, X \setminus B)| \). Then we set \(M_{i-1} = M_i \setminus B \) and readily notice that \(|M_{i-1}| \geq n - (k - i + 2)\ell \). Further, observe that (similarly as in the proof of Claim 3.1) for all \(A \in M_{i-1}^{(i-1)} \) and \(M_i \subseteq M' \subseteq [n] \), the families \(\mathcal{F}(A, M' \setminus A) \) and \(\mathcal{G}(B, X \setminus B) \) are cross-intersecting since \(A \cap B = \emptyset \), \(A \cup B \subseteq M_i \subseteq M' \), \(X \), and since \(\mathcal{F} \) and \(\mathcal{G} \) are cross-intersecting. Thus, by the choice of \(B \) and \(X \), Theorem 1.2 yields that \(\mathcal{F}(A, M_i \setminus A) \) is pseudo-intersecting. Since the induction gives us that \(\mathcal{F}(A^+) \) is pseudo-intersecting for all \(A^+ \in M_i^{(i)} \), we are now in a position to apply Lemma 2.1 to conclude that \(\mathcal{F}(A) \) is pseudo-intersecting for all \(A \in M_{i-1}^{(i-1)} \).

Next assume that \(\mathcal{G}(B, M_i \setminus B) \) is pseudo-intersecting for all \(B \in M_i^{(\leq \ell)} \). In this case we set \(M_1 = M_2 = \cdots = M_i \).

Claim 3.2. The family \(\mathcal{G}(B) \) is pseudo-intersecting for all \(B \subseteq M_i = M_2 \).

Proof. For \(B \subseteq M_i \) with \(|B| > \ell \), the statement follows immediately. We proceed by backwards induction on \(j = |B| \) and begin with \(j = \ell \). The induction start follows because for \(B \) of size \(\ell \), we have \(\mathcal{G}(B, X \setminus B) = \mathcal{G}(B, M_i \setminus B) \) for all \(X \subseteq [n] \) and \(\mathcal{G}(B, M_i \setminus B) \) is pseudo-intersecting.
Given that for some \(j \leq \ell \), the family \(\mathcal{G}(B^+) \) is pseudo-intersecting for all \(B^+ \in M_i^{(j)} \), we can apply Lemma 2.1 (since we are in the case that \(\mathcal{G}(B, M_i \setminus B) \) is pseudo-intersecting for all \(B \in M_i^{(\leq \ell)} \)) to conclude that \(\mathcal{G}(B) \) is pseudo-intersecting for all \(B \in M_i^{(j-1)} \) which finishes the induction step.

Thus, we have shown that if we cannot construct all sets \(M_1, \ldots, M_k \) as desired by induction, then there is a set \(M_2 \subseteq [n] \) with \(|M_2| \geq n - (k - 1)\ell \) such that \(\mathcal{G}(B) \) is pseudo-intersecting for all \(B \subseteq M_2 \). In other words, we proved that indeed one of the statements in the theorem has to hold. \(\square \)

Acknowledgments

The authors thank Alexandre Perozim de Faveri for fruitful discussions and Peter Frankl and Andrey Kupavskii for reading earlier versions of this paper.

References

[1] P. Frankl, *Generalizations of theorems of Katona and Milner*, Acta Math. Acad. Sci. Hungar. **27** (1976), no. 3-4, 359–363, DOI 10.1007/BF01902114. MR414370 [1, 1.2]

[2] P. Frankl, *The shifting technique in extremal set theory*, Surveys in combinatorics 1987 (New Cross, 1987), London Math. Soc. Lecture Note Ser., vol. 123, Cambridge Univ. Press, Cambridge, 1987, pp. 81–110. MR905277 [1]

[3] P. Frankl, *Minimum degree and diversity in intersecting antichains*, Acta Math. Hungar. **163** (2021), no. 2, 652–662, DOI 10.1007/s10474-020-01100-y. MR4227804 [1, 1.8, 1]

[4] P. Frankl and G. O. H. Katona, *On strengthenings of the intersecting shadow theorem*, J. Combin. Theory Ser. A **184** (2021), Paper No. 105510, 21, DOI 10.1016/j.jcta.2021.105510. MR4297030 [1]

[5] G. Katona, *Intersection theorems for systems of finite sets*, Acta Math. Acad. Sci. Hungar. **15** (1964), 329–337, DOI 10.1007/BF01897141. MR168468 [1, 1.1, 1]

[6] X. Liu and D. Mubayi, *Tight bounds for Katona’s shadow intersection theorem*, European J. Combin. **97** (2021), Paper No. 103391, 17, DOI 10.1016/j.ejc.2021.103391. MR4282634 [1]

[7] P. Erdős, C. Ko, and R. Rado, *Intersection theorems for systems of finite sets*, Quart. J. Math. Oxford Ser. (2) **12** (1961), 313–320, DOI 10.1093/qmath/12.1.313. [1]

[8] J. B. Kruskal, *The number of simplices in a complex*, Mathematical optimization techniques, 1963, pp. 251–278. [1]

[9] G. Katona, *A theorem of finite sets*, Theory of graphs (Proc. Colloq., Tihany, 1966), 1968, pp. 187–207. [1]

Department of Mathematics, Emory University, Atlanta, USA
Email address: marcelo.tadeu.sales@emory.edu

Department of Mathematics, California Institute of Technology, Pasadena, USA
Email address: schuelke@caltech.edu