Production quality improvement of Yamalube Bottle with Six Sigma, FMEA, and Data Mining in PT. B

Rina Fitriana¹, Johnson Saragih¹, Dea Prameswari Larasati¹

¹ Quality Engineering Laboratory, Department of Industrial Engineering, Faculty of Industrial Technology, Universitas Trisakti
² rinaf@trisakti.ac.id, ³ johnson_saragih@yahoo.com, ⁴ deaprameswari19@gmail.com

Abstract. PT. B is one of the manufacturing company engaged in the field of plastic packaging. One of the products produced by companies that bottle Yamalube to customer PT. Yamaha. Based on daily reports of production companies, found that the percentage of disability have an average of 14% per month in which the company standard is 5% per month. It is necessary for Six Sigma to improve the quality of the bottles with the steps Define-Measure-Analyse-Improve-Control (DMAIC). In the define phase diagram created SIPOC and Quality Plan Yamalube bottle production process. In the measure phase created Sigma level. At this stage the known value of 0.16 DPU, DPMO of 250,000 and the results showed that the conversion DPMO sigma level Yamalube bottle production process is equal to 2.17. In the analyze phase using a decision tree is known that bottles attributes that influence the decision of rejection is the position of the label, the number of labels, colours and perforated. By using FMEA method is known that improvements will be prioritized on the label of disability are not two sides to the root cause of the wear rubber. Repairs carried out by making the inspection SOP rubber, checksheet and proposals in the form of anti-static vacuum tool.

Keywords: Six Sigma, DMAIC, Decision Tree, FMEA,

1. Introduction

PT. B is one of the manufacturing company in the field of plastic packaging which was founded in 1997 and has one branch in Cikarang. Due to the variety of the products produced, the company received orders from various companies in the form of products and wide range of colours. The number of plastic bottles were booked also relatively high so that the production process runs for 24 hours. In one line of blow moulding machines, namely B-42 engine that produces Yamalube bottle, found the number of defects with an average percentage of 14%, which target the defect percentage set by the company amounted to 5%. It is therefore necessary improvements using Six Sigma methods to minimize the level of defects in the product bottle Yamalube by identifying defects.

Six Sigma is an organizational approach to eliminate distortions and reduce waste in the process by using statistical science approach.[1]

Past research is needed to become a reference in the study to be performed. As previous studies related to this study are shown in Table 1.
Table 1. Related Research and Outstanding Research

NO	TOPICS	WRITER'S NAME
1	Integration of Six Simadan cause effect matrix dan improvement using DOE for process improvement rolling mill Six Sigma Approach to Reduce Defect in Process of Plastic Bottle Blow Molding Machine ASB in 2000 ml	K Ganguli [2]
2	Six Sigma Approach to Reduce Defect in Process of Plastic Bottle Blow Molding Machine ASB in 2000 ml	P Adhi, N Widha, F Cheers [3]
3	Application of Six Sigma, manufacture optimum setting with DOE and manufacturing standardization QC PASS with Decision Tree FMEA application in production processes to identify risks kegagaan gloves ATM	R Fitriana, D Sugiarto, J Saragih, A Bagio [4]
4	Integration of FMEA and FTA in determining the root cause of disability products cause insulator DMAIC integration with FMEA to determine the PVC pipe production process improvement Integration of Six Sigma, FMEA to make improvements in product quality Making the quality control system for the production of bread using Six Sigma methods Ishikawa application to determine the cause of disability of bottled drinking water and improved use of FMEA Applying DMAIC Six Sigma to improve the maintenance process Model design of quality products by using data mining in R Bakery Company Integration of Six Sigma, FMEA and Data Mining to improving the quality of the production process of plastic bottles	N Budi, A Martanto [5] D Fitria, D Ardianto, Y Yuniati [6] D Caesaron, S John [7] D Rukmayadi, S Sugiarti [8] Safrizal, Muhajir [9] Ni Wayan, Sri Mulyani, I Wayan [10] RFitriona, J Saragih, S Sarasaty [11] L Girmanova, M Solc, J Kliment, A Divokova, V Miklos [12] M Zasadzien [13] R Fitriana, J Saragih and N Luthfiana [14] The position of current research

2. Methods

Research had been conducted by collecting data daily reports in November 2018 and interviews with plant managers to determine the flow of the production process and defects that occur in the product.

In conducting the necessary stages of DMAIC certain methods for each phase, as for the activities to be performed and tools that will be used in each phase can be seen in Table 2.
Table 2. Details Tools DMAIC

Phase	Description	Outputs	Tools and Techniques
Define	- Defining production process	- Diagram SIPOC	- Interview and discussions
	- Defining quality plan	- Table Quality Plan	
Measure	- Choosing suitable control chart	- Data In Control	- P control chart
	- Calculating DPMO Value	- Nilai DPMO	- DPMO Value calculation
	- Calculating Sigma Value	- Nilai Sigma	- DPMM to Sigma value conversion
Analyze	- Analyzing dominant defect	- Decision Tree	- Data Mining
	- Analyzing cause and effect of defects	- Dominant defect	- Pareto Diagram
	- Creating root cause diagram	- Cause of defect	- Ishikawa Diagram
	- Analyzing decision making process	- Root cause of defect	- Root cause diagram
	- Choosing prioritized improvement	- Highest RPN value	- FMEA
Improve	- Proposing improvement	- SOP	- Brainstorming
		- Checksheet	
	- Anti Static Vacuum	- New DPMO Value	- DPMO Value calculation
Control	- Calculating DPMO value after improvement	- New Sigma Value	- DPMO to Sigma value conversion
	- Calculating Sigma value after improvement		

3. Result and Discussion

In the define phase diagram SIPOC made to define the production process. SIPOC diagram is shown in Table 3.

Table 3. SIPOC Diagram

Supplier	Input	Process	Output	Customer
Sales Dept	Customer order	Order quantity given to PPIC dept	Customer order	PPIC Dept
PPIC Dept	Customer order	Production Planning	Purchase order	Suppliers
Incoming	Raw material &	Transport to production floor	Production floor	Production
material warehouse	masterbatch		quantity	warehouse
Die pin	Mixed liquid material	Shape liquid material	Parison	Mould
Magazine	Label	Dipindahkan ke mould	Label	Mould
Transit Area	Yamalube bottle	Transport to shipping area	Yamalube bottle	Shipping area
Shipping area	Yamalube bottle	Shipping to customer	Yamalube bottle	PT. Yamaha

In addition, SIPOC diagram, Quality Plan is created to define the quality control is done in the company on product Yamalube bottle. Quality Plan are shown in Table 4.

Table 4. Quality Plan

No.	Process Name	Machine / Device / Department	Evaluation Technique	Sample	Frequency	Control Method	Reaction Plan
1	Incoming Material	Magnifier Lamp	visual Test	100 gr	per incoming material	sampling	Reject / Return to supplier
		Color Test Device	Color Test	100 gr	per incoming material	sampling	Reject / Return to supplier
2	Bottle Inspection	censorship	label Check	unit of production	continuous	continuous	reject
		Leak Test Device	Leak Test	unit of production	continuous	continuous	reject
		Inspector	visual Inspection	unit of production	continuous	continuous	reject

Based on data from the company's daily report of November 2018, the type of defects that occurs on the product label is tilted label, the labels are not two sides, leaked bottle and a non-standard colour.
After that Critical to Quality (CTQ) is made to describe the type of disability that occurs. Critical to Quality are shown in Table 5.

No.	Defect	Details	Occurs in the process
1	Tilted label	Position the label on the bottle is not straight	In Mold Labeling
2	Missing label	Labels are not on the front and back	In Mold Labeling
3	Leaked bottle	There is a hole in the bottle	Mixing raw materials
4	Non-standard color	The color of the bottle is too thick or thin	Melting raw materials and masterbatches

Based on the explanation in Table 5, it is known that there are four types of disability that occurs in the bottle Yamalube products. The first disability is slanted label marked with a label that is not a straight position and occur in the process of in mould labelling. Both are not two sides of the label of disability where there is no label on the front or back of the bottle and on the process of in mould labelling. The third was a hole where there is a hole that occurs in the mixing seeds of raw materials and the fourth is not a standard colour where the colour of the bottle is too thin occurring in smelting raw materials and masterbatch (dye).

Furthermore, the map p is made to determine whether the data is within the control or not. In making the map control researcher using Minitab software. The control chart can be seen in Figure 2.

![Control chart P](image)

Figure 1. Control chart P

From a control chart that has been created, it can be seen that these data are under control. After making sure the data is within the control of the process capability that is calculated by calculating the DPU (defects per unit). Based on values obtained DPU calculation process capability by 0:16. After calculating process capability, then the value will be calculated DPMO. DPMO calculation results show that the possibility of defects in the amount of 1,000,000 units of production is 250,000 units. Having obtained the DPMO values Sigma value will be calculated and the calculation results obtained from Sigma value is 2.17.

The next step is the Analyze phase where it will be made a decision tree disability Yamalube bottle using Weka software 3.8. The results of the decision tree shown no figure 2.
Based on the decision tree, we can conclude that the position of the label discount most impact, followed by a number of labels, the colour of the bottle and a hole in the bottle. To facilitate the understanding of the decision tree is made if then rules. Then there are five If the Rules of the result of making a decision tree. Table if then rules can be seen in Table 6.

Furthermore, the calculation of Risk Priority Number (RPN) with FMEA method by multiplying the value of Severity (S), Occurrence (O) and Detectability (D). The calculations show that disability is not a two-sided label has the highest RPN value is 336. Table FMEA calculation can be seen in Table 7.

Table 6. If Then Rules

No	Fungsi
1	If position "MIRING"
If Position "TEPAT"	
LABEL "SATU"	
Then category "REJECT"	
2	
If POSISI "TEPAT"	
LABEL "DUAA"	
WARN "OK"	
BOLONG "TIDAK"	
Then KATEGORI "REJECT"	
3	
If POSISI "TEPAT"	
LABEL "DUA"	
WARN "OK"	
BOLONG "YA"	
Then KATEGORI "PASSED"	
4	
If POSISI "TEPAT"	
LABEL "DUAA"	
WARN "OK"	
BOLONG "YA"	
Then KATEGORI "REJECT"	
5	
If POSISI "TEPAT"
LABEL "DUA"
WARN "TIDAK"
Then KATEGORI "REJECT" |

Function Process	Potential Failure Mode	Potential Effect of Failure	Severity	Potential Cause of Failure of process	Occurrence	Current Control	Detection	Recommended Action	RP N
Resin melting	Non-standard color	Rejected bottle	5	Extruder temperature is not standardized	6	Temperature check	6	Extruder standardized temperature	180
Bottle shaping and in mould labelling	Missing label	Rejected bottle	8	Vacuum rubber is worn out					
Storage temperature is too high									
Label is not stored correctly	6	Vacuum check	7	Vacuum check SOP	336				
	Tilted label	Rejected bottle	8	Magazine check	5	Magazine check standard	3	Magazine check standard	120
feels rough, it can be categorized as the rubber is worn out. One final indicator rubber stiffness. When
the rubber is worn out the rubber will become stiff and inflexible.

Therefore made recommendations for improvement is to establish Standard Operating procedure (SOP) inspection rubber vacuum mouth. The SOP is shown in Figure 3.

![Figure 3. SOP Inspection rubber vacuum](image)

Check sheet need to be made to ensure that when the rubber is in check, the gum condition and the action taken. Check sheet shown in Figure 4.

Repair using SOP and check sheet are improvements that can be made in the near term, while the proposed improvements in the long term is to replace the vacuum mouth with anti-static vacuum shown in Figure 5.

![Figure 5. Anti-Static Vacuum](image)
1. The arm will take the label by using a vacuum
2. The label will be attached to the bearing surface of the vacuum. At the same time, the voltage of 12kV 7- given for 35 to 60 milliseconds on a plate in a vacuum and the wind stopped
3. The label will be attached to the pads and arm moves towards mold
4. Sleeve label release in the mold

4. Conclusion
Based on the results of data processing that has been done, the conclusion of this research as follows:
1. After calculation of DPMO known that DPMO value amounted to 250,000 units, and the result of the conversion value to the value of Sigma obtained DPMO sigma level at 2.17
2. The highest RPN value is 336, on the label is missing label caused by a worn rubber vacuum mouth.
3. Based on decision tree who has made it known that most influential attribute bottle to bottle disability is the position followed by the number, colour and perforated.
4. The improvement is given based on the results of data analysis is making SOP, check sheet and anti static vacuum.

5. References
[1] MN Nasution 2015 Integrated Quality Management (Total Quality Management) Third Edition. (Bogor: Ghalia Indonesia)
[2] G Kunal 2012 Improvement Process for Rolling Mill Through The DMAIC Six Sigma Approach International J. for Quality Research. 6(3): 221-231
[3] PA Krisnasurya, Nasir Widha and Farela Cheers 2014 Six Sigma Approach to Reduce Defect in Process of Plastic Bottle Blow Molding Machine ASB in 2000 ml J of Industrial Engineering and Management Systems 3(1), pp. 189-199.
[4] R Fitriana, D Sugiarjo, J Saragih and A Bagio 2014 Aplikasi Six Sigma Dan Data Mining Untuk Meningkatkan Kualitas Pada Industri Manufaktur. Seminar Nasional Teknik Industri BKSTI, pp. 92-98
[5] NB Puspitasari and A Martanto 2014 The use of FMEA in Production Process Failure Risk Identifying ATM Gloves (Weaving Machine Tools) (Case Study PT. Asaputex Jaya Tegal). J. TI Undip 9(2), pp 93-98
[6] DF Barry, D Adianto and YYunisat 2015 Usulan Pengendalian Kualitas Produk Isolator Dengan Metode Failure Mode Effect Analysis (FMEA) dan Fault Tree Analysis (FTA). J. online Institut Teknologi Nasional 3(2), pp 82-91
[7] D Caesaron and S John 2015 Implementation of DMAIC approach for PVC Pipe Production Process Improvement (Case Study PT. Rusli Vinilon). J. Metris, pp. 91-96
[8] D Rukmayadi and S Sugriat 2015 Method Approach Six Sigma (DMAIC) for Product Quality Improvement Boncabe CV Kobe and Lina Food J. of Industrial Engineering & Management Systems 8(1), pp. 1-11
[9] safriyal and Muhajir 2016 Pengendalian Kualitas dengan Metode Six Sigma. J. Manajemen Dan Keuangan 2(5), pp. 615-626
[10] N Wayan, A S Dewi, S Mulyani and I Wayan Arnata 2016 Attributes of Packaging Quality Control Method Using Failure Mode Effect Analysis (FMEA) in Production Process Bottled Water. J Agroindustrial Engineering and Management 4(3), pp. 149-160.
[11] R Fitriana, J Saragih and S Sarasaty 2014 Implementation of Six Sigma and Data Mining to Improve Die Casting Production Process at PT. AB. Proceedings of the 7th International Seminar on Industrial Engineering and Management pp. 64-71.
[12] L Girmanova, MSolc, J Kliment, A Divokova, and Vojtech Miklos 2017 Application of Six Sigma DMAIC Methodology Using in The Process of Product Quality Control in Metallurgical Operation. Acta Technologica Agriculturae 4, Nitra Slovaca Universitas Agriculturae Nitriae pp 104-109.
[13] M Zasadzien 2017 Application of The Six Sigma Method for Improving Maintenance Processes - Case Study Proceedings of the 6th International Conference on Operations Research and Enterprise Systems, pp. 314-320.

[14] R Fitriana, J Saragih and N Luthfiana 2017 Model business intelligence system design of quality products by using data mining in R Bakery Company. IOP Conf. Series: Materials Science and Engineering 277, 012005.