Numerical Investigation of Direct Absorption Solar Collector using Nanofluids: A Review

R. A. Rasih1,2, N.A.C. Sidik3*, and S. Samion2

1Faculty of Mechanical Engineering, Universiti Teknologi MARA Cawangan Johor Kampus Pasir Gudang, 81750 Masai, Johor, Malaysia
2School of Mechanical Engineering, Universiti Teknologi Malaysia, UTM Skudai, Johor, 81310, Malaysia
3Malaysia – Japan International Institute of Technology (MJIIT), University Teknologi Malaysia Kuala Lumpur, Jalan Sultan Yahya Petra (Jalan Semarak), 54100 Kuala Lumpur, Malaysia

*Corresponding author: azwadi@fkm.utm.my

Abstract. Research on direct absorption solar collector (DASC) has been quite intensive in the past decade. Solar thermal collector plays a vital role to determine the performance of DASC by utilized the heat transfer fluid to harvest the energy while the use of nanofluid (nanoparticle dispersion in a base fluid) enhanced the thermal conductivity. A lot of researchers have studied the influence of several parameters such as collector geometry and nanoparticle materials on the solar thermal collector efficiency for the past decade. This paper presents a recent progress on numerical modelling of nanofluid direct absorption solar collector (NDASC) for different type of geometry including flat type, parabolic trough and cylindrical tube. In this review, a more comprehensive numerical methods and solar collector geometry on NDASC are summarized. Finally, some recommendations are presented for future research guidance.

1. Introduction

The risk of energy shortage during (1970s) led to the tremendous research to seek new sources of energy [1]. One of the best ways to avoid this energy threat by utilized the solar energy, as it is free and sustainable. By 2050, 20% of low-temperature industrial heat process (<120 °C) is expected to run by solar energy which contribute to supply more than 3200 GW installed capacity per year [2]. On the next 50 years, it is anticipated that the advancement of solar technologies to provide about 70% of world energy consumption by 2100 [3]. Thus, a huge effort is required to increase the utilization of solar energy as it is significant to ease global warming, decrease environmental degradation and reduce greenhouse effect [4]. In addition, deteriorating of conventional fossil fuel indicates solar energy as the most prominent option to support current energy consumption.

Numerous studies have been conducted and invented new technologies to harvest the solar energy to enhance the performance of the system but the exploration to seek for the most efficient system is still demanding. Two most practical approaches to collect solar energy are solar thermal technologies which convert sunlight into heat energy using heat transfer fluid and absorber plate [5][6] while solar photovoltaic (PV) converts solar radiation directly into electricity through silicon based technology. Despite has longer lifespan and applied more recent solar technologies than thermal collector, photovoltaic (PV) collector has higher initial investment cost, more complex and requires a huge
installation space than its counterpart [7]. A more advance technology in solar energy using the combination of both collector called as photovoltaic-thermal collector (PVT) were carried out by other researchers [8][9][10]. This latest technology consists of PV module and absorber plate to convert simultaneously solar energy into electricity and heat. However, solar thermal collector still captures the interest of researchers and meet industrial purposes especially in water heating system due to its simplicity and practicality.

Kalogirou [11] in year 2004 reviewed several types of solar thermal collector which described thermal analysis, performance and practical applications but latest technology of PVT has been excluded. Meanwhile, Tian and Zhao [12] on 2013 covered the solar thermal collector, photovoltaic panel and latest PVT technology in their review. Solar thermal collector can be categorized into two: concentrating [13] and non-concentrating collector [14]. Concentrating solar collector focuses directly the sunlight into a single point through a certain focal length rather than its counterpart that only absorb the solar radiation using same intercepting area as its absorbing area without any optical element. Non-concentrating solar collector commonly used for domestic water heating and low temperature heating application while concentrating solar collector mainly used by high temperature solar collector.

Indirect absorption solar collector (IASC) is one of the popular methods to absorb the solar radiation through the absorber before heat transfer fluid (HTF) continues the heat conversion process. It was assumed that greater thermal efficiency could be achieved by increase the outlet temperature of solar thermal collector. To verify this assumption, vigorous studies on improvement of solar thermal collector efficiency have been conducted by several researchers [15][16][17]. Despite better thermal efficiency as compared to photovoltaic solar collector, high thermal resistance for energy conversion from the sunlight into working fluid becomes the main challenge of IASC. On the contrary, Minardi and Chuang [18] pioneered the concept of direct absorption solar collector (DASC). The key idea of this solar energy conversion concept is to reduce the thermal resistance between the heat transfer fluid and solar radiation by absorbs the sunlight volumetrically. The elimination of intermediate absorber improves the heat conversion process and increase thermal efficiency for solar thermal collector.

Recently, many researchers emphasized on the prospective of nanofluids (dispersion of nanoparticle in a base fluid) to obtain better thermal efficiency of solar thermal collector [19][20]. A more recent nanofluid called as binary nanofluid attracted several researchers [21][22] due to its synergistic effect to enhance thermal characteristics of heat transfer fluid. Several parameters including particle volume concentration, pH value and additives affected the nanofluid behaviour as an absorber fluid [23]. Despite better thermal behaviour to produce more uniform temperature distribution, the main concern of nanofluid is its stability at various temperatures, hence more investigations in this field are still demanding. Tyagi et al. [24] in 2009 started the concept of nanofluid in direct absorption solar collector followed by Otnicar [25] on the following year. Since then, many theoretical and experimental works on nanofluid direct absorption solar collector (NDASC) have been explored aggressively to obtain the best performance of solar thermal collector.

In the present paper, an inclusive review on the progress of numerical modelling of nanofluid direct absorption solar collector (NDASC) for different type of geometry is prepared with more precise. To the best of authors’ knowledge, there is no detailed literature on this subject. Several methods of solution to the numerical modelling also been discussed to assist future research on this area.

2. Nanofluid Direct Absorption Solar Collector (NDASC)
In 1975, the concept of direct absorption solar collector was started by Minardi and Chuang [18], followed by Huang et al. [26] who studied the solar thermal collector efficiency on a parabolic trough collector using black dye liquid water. Many studies then focus on the potential of DASC as compared to the indirect absorption. Few years later, Arai et al. [27] revealed that better heat transfer characteristics could be attained using fine particle suspension. There are vigorous studies on direct absorption solar collector (DASC) to be used in a wide variety of applications [28][29][30]. However, several problems experienced by conventional DASC such as clogging of pumps, pressure drops [31] and sedimentation. In addition, lower solar collector efficiency could be observed using typical fluids as an absorber mainly due to its weak absorption properties over the solar spectrum [32].
Meanwhile, the technology of nanofluid growth rapidly since it was introduced by Choi et al. [33] due to its better thermal characteristics as compared to the typical base fluid. Past literature revealed that nanofluid can exhibit low pumping power [33], higher thermal conductivity [34], adjustable fluid properties by concentration [34], better heat transfer characteristics [35], and higher specific heat capacity [36]. A more advance type of nanofluid called as binary nanofluid or hybrid nanofluid attracted several researchers due to its better thermal conductivity than using single nanoparticle [37][38][39].

In 2009, Tyagi et al. [24] started a numerical study to harvest the solar energy using nanofluids. By utilizing aluminium nanoparticles (<100 nm in size), an augmentation of thermal efficiency was observed as compared to flat plate collector under similar condition. This remarkable result attracted Otanicar et al. [25] on the following year who studied the same concept with different kind of nanofluid (graphite, carbon nanotube and silver with water as the base fluid). However, the improvement of thermal efficiency only can be attained by controlled several parameters such as volume concentration, size of nanoparticles, shapes and materials. Later, several studies focused on the effect of volume fraction and some researchers found that high temperature could be achieved even at lower volume concentration [40][41]. Besides volume fraction, thermal losses becomes a major concern for nanofluid direct absorption solar collector (NDASC) as it was believed to reduce the thermal efficiency even the fluid temperature increases [42][43]. Another problems difficulties of NDASC are stability of nanofluid at various temperatures, higher investment cost, erosion and sedimentation caused by nanoparticles. Despite this, little progress has been made to study NDASC using hybrid or binary nanofluid, a combination of more than one nanoparticles dispersed in a base fluid. Several researches [22][44] proved that the synergistic effect of binary nanofluids promising a better thermal characteristics on the solar collector than single nanoparticle dispersed in a base fluid. Therefore, research on direct absorption solar collector using hybrid nanofluid is suggested to enhance the understanding on this field.

3. Numerical model of Nanofluid Direct Absorption Solar Collector (NDASC)

Groundwork on theoretical model has been implemented by Tyagi et al. [24] who studied 2-dimensional analysis using finite difference method (FDM) to solve radiative transport equation (1) and energy balance equation (2):

\[\frac{\partial l}{\partial y} = -K_{\text{ext, nanofluid}} l_x \] \hspace{1cm} (1)

\[k \frac{\partial^2 T}{\partial y^2} - \frac{\partial q_r}{\partial y} = \rho c_p U \frac{\partial T}{\partial x} \] \hspace{1cm} (2)

where \(K_{\text{ext, nanofluid}} \) is the spectral extinction coefficient of nanofluid, \(l_x \) is the radiation intensity, \(k \) is the thermal conductivity, \(T \) is the temperature, \(\partial q_r / \partial y \) is the radiative heat flux, \(\rho \) is the density of the liquid and \(c_p \) is the specific heat. Otanicar [25] validated the previous model using different kind of nanofluids and then conduct an experimental setup to support their model. After that, research on NDASC has been conducted based on several popular numerical techniques such as finite difference method (FDM), finite element method (FEM), and finite volume method (FVM).

3.1. Finite Difference Method (FDM)

As finite difference method (FDM) is easy to implement, many researchers with different type of geometry condition also applied this method to solve the radiative transport equation (RTE) and energy balance equation [45][46][47][48][49][50][51]. Besides, a numerical code can be developed for structured spatial discretization for simple geometry such as flat receiver. However, most commercial software of CFD does not available on this method.

3.2. Finite Element Method (FEM)

Another techniques that widely used by most of the researchers to solve NDASC problem is finite element method (FEM) which discretizes the domain into finite elements and calculates the properties in every node [52][53][54][55][56]. This method is more numerically stable to solve a set of algebraic
equations. Besides, many commercial software packages use this method as it is efficient for different type of geometries.

3.3. Finite Volume Method (FVM)

Finite volume method including in ANSYS software has been used by many researchers [57][58][59][60] as it is best for regular geometries. As governing equations are solved using discrete control volume, this method is less stable compared to the FEM. Likewise FEM, lot of established and theoretically proven subroutines are in place for FVM which can be directly implemented in numerical code.

In 2018, Won and Lee [61] applied open source code using OpenFOAM to solve 2-dimensional heat transfer model. As it was new and easy to customize, OpenFOAM has pretty large number of solvers, utilities and applications including solar thermal collector. Table 1 shows the summary of numerical technique of past literature. These research were validated and show good agreement when compared with other literature data. Based on Table 1, it was shown that there are very limited studies on the turbulent flow as it was important for industrial purposes with high-speed velocity inside the pipe.
Table 1: Summary of numerical investigation of nanofluid in direct absorption solar collector.

Author	Geometry	Nanofluid; Flow properties	Numerical Solution	
Tyagi et al. (2009) [24]	Flat	Al$_2$O$_3$/H$_2$O; Steady, uniform flow	Finite difference using MATLAB; 2-dimensional	
Zhu et al. (2010) [62]	Flat	SiO$_2$; and TiO$_2$ – water; Steady, laminar flow	Simulation, radiative transfer equation solved using Rayleigh approximation; 2-dimensional	
Otanicar et al. (2010)	Flat	Graphite, Carbon nanotube (CNT), Silver / H$_2$O; Steady, uniform flow	Improved numerical model by Tyagi et al. [24]; 2-dimensional	
Otanicar et al. (2011)	Flat	Al$_2$O$_3$/H$_2$O; Steady, uniform flow	Improved numerical model by Tyagi et al [24]; 2-dimensional	
Taylor et al. (2011) [64]	Flat	Aluminium (Al), graphite (C), Copper (Cu), Silver (Ag) / Therminol VP-1; Steady, laminar flow	Numerical code; 2-dimensional	
Lv et al. (2012) [65]	Flat	Graphite, solid metal and core shell / water; Steady flow	Numerical code; 2-dimensional	
Lee et al. (2012) [66]	Flat	SiO$_2$ cores coated with Au shell based in water; Au/water or Gold nanoshell (GNS) blended plasmonic; Steady, laminar flow	Monte Carlo method and Mie scattering theory to solve RTE, Finite element analysis; 2-dimensional	
Ladjevardi et al. (2013)	Flat	Graphite / water; Steady flow	Numerical code; 2-dimensional	
Parvin et al. (2014) [52]	Flat	Cu / water; Steady, laminar flow	Galerkin Finite element method; 2-dimensional	
Nasrin and Alim (2014)	Flat	Cu / water; Steady, laminar flow	Galerkin Finite element method; 2-dimensional	
Luo et al. (2014) [42]	Flat	TiO$_2$, Al$_2$O$_3$, Ag, Cu, SiO$_2$, graphite, carbon nanotubes / oil; Steady flow	Simulation; 2-dimensional	
Karami et al. (2014) [45]	Flat	Single wall carbon nanohorns (SWCNH) / water; Steady, laminar	Forward difference implicit method; 2-dimensional	
Xu et al. (2015) [68]	Parabolic trough	Cuo / Oil; Unsteady flow	Commercial CFD software package; 3-dimensional	
Authors	Geometry	Working Fluids	Flow Type	Methodology
-------------------------	----------	---	-----------------	---
Gorji and Ranjbar (2015)[57]	Flat	Graphite / water; Steady, laminar flow	Finite volume in ANSYS Fluent 15, 2nd order upwind, SIMPLEC algorithm for pressure velocity coupling; 2-dimensional	
Nasrin et al. (2015)[54]	Flat	Cu / water; Steady, laminar flow	Galerkin Finite element method; 2-dimensional	
Moradi et al. (2015)[58]	Cylindrical tube	Single wall carbon nanorhorn-water/EG; Steady, laminar flow	Finite volume method by ANSYS Fluent; 3-dimensional	
Liu et al. (2015)[43]	Flat	Graphene/[HMIM]BF₄ (ionic liquid); Unsteady flow	Numerical integration, explicit by MATLAB; One dimensional, transient model	
Chen et al. (2016)[46]	Flat	Silver, gold, titanium oxide / water; Unsteady flow	Finite difference method; One dimensional, transient model	
Gorji and Ranjbar (2016)[59]	Flat	Graphite, magnetite, silver / water; Steady, laminar flow	2nd order upwind, ANSYS Fluent; 2-dimensional	
Menbari et al. (2016)[47]	Parabolic trough	CuO/Water; Steady, turbulent flow	Finite difference method; 3-dimensional	
Delfani et al. (2016)[48]	Flat	CNT/water-EG; Steady, laminar flow	Implicit finite difference method; 2-dimensional	
Chen et al. (2016)[69]	Parabolic trough	CuO/Oil; Steady flow	UDF (User-Defined Function) of a commercial CFD software; 3-dimensional	
Toppin-Hector and Singh (2016)[49]	Parabolic trough	Graphene and aluminium/Therminol VP-1; Steady flow	Finite difference method; 2-dimensional	
Qin et al. (2017)[70]	Flat	Blended plasmonic nanofluid; Steady, laminar flow	COMSOL Multiphysics; 2-dimensional	
Parvin et al. (2017)[55]	Flat	Cu-water nanofluid, Al₂O₃-water nanofluid, TiO₂-water nanofluid and pure water are used as the working fluid; Steady, laminar flow	Galerkin Finite element method (FEM); 2-dimensional	
Kasseian et al. (2017)[60]	Parabolic trough	MWCNT AND nanosilica / Ethylene Glycol; Steady flow	Simulation using Ansys Fluent; 3-dimensional	
Hatami et al. (2017)[71]	Flat	Al₂O₃/H₂O; Steady flow	Hybrid of finite difference method (FDM) and Differential Transformation Method (DTM) -	
Authors	Geometry	Material(s)	Flow Type	Methodology
-----------------	----------	---	------------------------------------	--
Hatami and Jing (2017) [56]	Flat (wavy collector)	TiO$_2$, Al$_2$O$_3$ and CuO / water; Steady, laminar flow	called Hybrid FDM-DTM - accuracy by 4th order Runge Kutta; 2-dimensional	
Dugaria et al. (2017) [13]	Parabolic trough	Single wall carbon nanohorns / water; Turbulent flow	Finite element method (FEM) based on FlexPDE code; 2-dimensional	
Won and Lee (2018) [61]	Flat	LSP or SiO$_2$ cores coated with Au shell based in water; Au/water; Laminar; Poiseuille flow	Monte Carlo method; Open Foam; 2-dimensional	
Duan et al. (2018) [72]	Flat	LSP or SiO$_2$ cores coated with Au shell based in water; Au/water;	Volume integral method, implicit scheme; 1-dimensional analysis, transient model	
Sharaf et al. (2018) [73]	Flat	Silver(Ag), aluminium (Al), graphite (G), copper (Cu) with base fluid water and Therminol VP-1; Steady, laminar flow	2nd order Crank Nicolson method, MATLAB global optimization toolbox; 2-dimensional analysis	
Siavashi et al. (2018) [74]	Flat	Single wall carbon nanorhorns (SWCNH)/water; laminar flow	multi- relaxation time, lattice Boltzmann method (MRT-LBM) code; 2-dimensional analysis	
Freedman et al. (2018) [50]	Parabolic trough	Ag/Therminol VP-1; turbulent flow	Finite difference method; 2-dimensional (transform to Cartesian coordinate)	
O’Keeffe et al. (2018) [75]	Parabolic trough	Aluminium/Therminol VP-1; laminar flow	Improved Crank-Nicolson Finite difference method; 3-dimensional analysis	
Sharaf et al. (2018) [76]	Flat	Silver (Ag), aluminium (Al), graphite (G), copper (Cu) with base fluid water and Therminol VP-1; Steady, laminar flow	2nd order Crank Nicolson method; 2-dimensional analysis	
Garg et al. [51]	Flat	Graphite/water; steady flow	Finite difference implicit method (FDM) in MATLAB; 2-dimensional	
4. Conclusions

This paper presented numerical works done by previous researchers on nanofluid direct absorption solar collector (NDASC). As NDASC becomes more popular in solar thermal energy division due to its potential to generate better heat conversion process as compared to conventional surface absorber, the research in this field is still on going. Several numerical techniques have been used to study the theoretical model for the past decade. Finite difference method (FDM), finite element method (FEM) and finite volume method (FVM) widely used to solve radiative transport equation and energy balance equation to get the thermal efficiency of the system. In addition, most of the geometry of DASC focuses on flat geometry receiver, as it is simpler and more practical. However, there are still lacks of numerical model to study the turbulent flow at high concentration ratio. Besides, only one model considered wavy collector inside the flat rectangular channel. Therefore, some future researches on this field are suggested as follows:

- Recently, open source code using OpenFOAM gains more popularity because it is free CFD toolbox and many computational fluid dynamics including NDASC problems should be solved using this tool.
- A turbulent regime model should be analyzed properly to study the effect of nanofluids when enter the channel pass through the entrance and elbow of the channel which created fluctuation.
- A numerical analysis on binary nanofluid should be proposed for direct absorption solar collector as there are no literature data yet on this area.

Acknowledgments

The authors are grateful to the Universiti Teknologi Malaysia (UTM) and Malaysia-Japan International Institute of Technology (MJIIT) for financial supports given under Takasago Research Grant.

References

[1] E. A. Abdelaziz, R. Saidur, and S. Mekhilef, “A review on energy saving strategies in industrial sector,” Renew. Sustain. Energy Rev., vol. 15, no. 1, pp. 150–168, 2011.
[2] International Energy Agency (IEA) and M. Beerepoot (lead author), “Technology Roadmap: Solar Heating and Cooling,” Int. Energy Agency, p. 50, 2012.
[3] World Energy Council, “World Energy Resources: 2013 survey,” World Energy Conc., p. 11, 2013.
[4] O. Ellabban, H. Abu-Rub, and F. Blaabjerg, “Renewable energy resources: Current status, future prospects and their enabling technology,” Renew. Sustain. Energy Rev., vol. 39, pp. 748–764, 2014.
[5] S. K. Sansaniwal and M.Kumar, “Analysis of ginger drying inside a natural convection indirect solar dryer: An experimental study,” J. Mech. Eng. Sci., vol. 9, no. December, pp. 1671–1685, 2015.
[6] Z. A. A. Majid, A. A. Razak, M. H. Ruslan, and K. Sopian, “Characteristics of solar thermal absorber materials for cross absorber design in solar air collector,” Int. J. Automot. Mech. Eng., vol. 11, no. 1, pp. 2582–2590, 2015.
[7] Z. A. A. Majid, M. H. Ruslan, K. Sopian, M. Y. Othman, and M. S. M. Azmi, “Study on performance of 80 watt floating photovoltaic panel,” J. Mech. Eng. Sci., vol. 7, no. December 2014, pp. 1150–1156, 2014.
[8] E. Hedayati-Mehdiabadi, F. Sarhaddi, and F. Sobhnamayan, “Energy analysis of a stepped cascade solar still connected to photovoltaic thermal collector,” Int. J. Automot. Mech. Eng., vol. 14, no. 4, pp. 4805–4825, 2017.
[9] J. Yazdapananahi, F. Sarhaddi, and M. Mahdavi Adeli, “Experimental investigation of exergy efficiency of a solar photovoltaic thermal (PVT) water collector based on exergy losses,” Sol. Energy, vol. 118, pp. 197–208, 2015.
[10] A. Fudholi, K. Sopian, M. H. Yazdi, M. H. Ruslan, A. Ibrahim, and H. A. Kazem, “Performance analysis of photovoltaic thermal (PVT) water collectors,” Energy Convers.
[11] S. A. Kalogirou, "Solar thermal collectors and applications," vol. 30, no. 3, 2004.
[12] Y. Tian and C. Y. Zhao, "A review of solar collectors and thermal energy storage in solar thermal applications," Appl. Energy, vol. 104, pp. 538–553, 2013.
[13] Dugaria, M. Bortolato, and D. Del Col, "Modelling of a direct absorption solar receiver using carbon based nanofluids under concentrated solar radiation," Renew. Energy, 2017.
[14] K. M. Pandey and R. Chaurasiya, "A review on analysis and development of solar flat plate collector," Renew. Sustain. Energy Rev., vol. 67, pp. 641–650, 2017.
[15] E. Farajzadeh, S. Movahed, and R. Hosseini, “Experimental and numerical investigations on the effect of Al2O3/TiO2/H2O nanofluids on thermal efficiency of the flat plate solar collector,” Renew. Energy, vol. 118, pp. 293–298, 2012.
[16] I. M. Mahbubul, M. M. A. Khan, H. M. Ali, F. A. Al-Sulaiman, and R. Saidur, "Carbon nanotube nanofluid in enhancing the efficiency of evacuated tube solar collector,” Renew. Energy, vol. 121, pp. 36–44, 2018.
[17] J. E. Minardi and H. N. Chuang, “Performance of a ‘black’ liquid flat-plate solar collector,” Sol. Energy, vol. 17, no. 3, pp. 179–183, 1975.
[18] V. Bhalla and H. Tyagi, “Solar energy harvesting by cobalt oxide nanoparticles, a nanofluid absorption based system,” Sustain. Energy Technol. Assessments, vol. 24, pp. 45–54, 2017.
[19] J. Subramani, P. K. Nagarajan, O. Mahian, and R. Sathyamurthy, “Efficiency and heat transfer improvements in a parabolic trough solar collector using TiO2nanofluids under turbulent flow regime,” Renew. Energy, vol. 119, pp. 19–31, 2018.
[20] N. A. Che Sidik, M. Mahmud Jamil, W. M. A. Aziz Japar, and I. Muhammad Adamu, “A review on preparation methods, stability and applications of hybrid nanofluids,” Renew. Sustain. Energy Rev., vol. 80, no. May, pp. 1112–1122, 2017.
[21] A. Ghadimi, R. Saidur, and H. S. C. Metselaar, “A review of nanofluid stability properties and characterization in stationary conditions,” Int. J. Heat Mass Transf., vol. 54, no. 17–18, pp. 4051–4068, 2011.
[22] H. Tyagi, P. Phelan, and R. Prasher, “Predicted Efficiency of a Low-Temperature Nanofluid-Based Direct Absorption Solar Collector,” J. Sol. Energy Eng., vol. 131, no. 4, p. 041004, 2009.
[23] T. P. Otanicar, P. E. Phelan, R. S. Prasher, G. Rosengarten, and R. A. Taylor, “Nanofluid-based direct absorption solar collector,” J. Renew. Sustain. Energy, vol. 2, no. 3, 2010.
[24] B. J. Huang, T. Y. Wung, and S. Nieh, “Thermal Analysis of Black Liquid Cylindrical,” vol. 22, pp. 221–224, 1979.
[25] L. Arai, Y. Itaya, and M. Hasatani, “Development of a ‘volume heat-trap’ type solar collector using a fine-particle semitransparent liquid suspension (FPSS) as a heat vehicle and heat storage medium Unsteady, one-dimensional heat transfer in a horizontal FPSS layer heated by thermal radiato,” Sol. Energy, vol. 32, no. 1, pp. 49–56, 1984.
[26] W. D. Drotning, “Solar Absorption Properties Of A High Temperature Direct-Absorbing Heat Transfer Fluid,” SAND-76-9104C; ERA-02-054114, pp. 304–311, 1977.
[27] I. Takeshita and S. Hozumi, “Direct Solar-Heated R22-Dmf Absorption Refrigerator,” Electr. Power Res. Inst. EPRI EA, pp. 744–748, 1979.
[31] A. K. Hussein, “Applications of nanotechnology in renewable energies - A comprehensive overview and understanding,” Renew. Sustain. Energy Rev., vol. 42, pp. 460–476, 2015.

[32] T. P. Otanicar, P. E. Phelan, and J. S. Golden, “Optical properties of liquids for direct absorption solar thermal energy systems,” Sol. Energy, vol. 83, no. 7, pp. 969–977, 2009.

[33] S. U. S. Choi, “Enhancing thermal conductivity of fluids with nanoparticles.” Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition; San Francisco, CA, USA; 12, p. Volume 231, Pages 99-105, 1995.

[34] A. K. Hussein, “Applications of nanotechnology to improve the performance of solar collectors – Recent advances and overview,” Renew. Sustain. Energy Rev., vol. 15, no. 3, pp. 1646–1668, 2011.

[35] A. K. Hussein, “Applications of nanotechnology to improve the performance of solar collectors – Recent advances and overview,” Renew. Sustain. Energy Rev., vol. 62, pp. 767–792, 2016.

[36] M. Chieruzzi, G. F. Cerritelli, A. Millozzi, and J. M. Kenny, “Effect of nanoparticles on heat capacity of nanofluids based on molten salts as PCM for thermal energy storage,” Nanoscale Res. Lett., vol. 8, no. 1, pp. 1–9, 2013.

[37] M. Chopkar, S. Kumar, D. R. Bhandari, P. K. Das, and I. Manna, “Development and characterization of Al2Cu and Ag2Al nanoparticle dispersed water and ethylene glycol based nanofluid,” Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., vol. 139, no. 2–3, pp. 141–148, 2007.

[38] B. Munkhbayar, M. R. Tanshen, J. Jeoun, H. Chung, and H. Jeong, “Surfactant-free dispersion of silver nanoparticles into MWCNT-aqueous nanofluids prepared by one-step technique and their thermal characteristics,” Ceram. Int., vol. 39, no. 6, pp. 6415–6425, 2013.

[39] L. F. Chen, M. Cheng, D. J. Yang, and L. Yang, “Enhanced Thermal Conductivity of Nanofluid by Synergistic Effect of Multi-Walled Carbon Nanotubes and Fe<sub>2</sub>O<sub>3</sub> Nanoparticles,” Appl. Mech. Mater., vol. 548–549, pp. 118–123, 2014.

[40] V. Khullar, H. Tyagi, N. Hordy, T. P. Otanicar, Y. Hewakuruppu, P. Modi, and R. A. Taylor, “Harvesting solar thermal energy through nanofluid-based volumetric absorption systems,” Int. J. Heat Mass Transf., vol. 77, pp. 377–384, 2014.

[41] D. Han, Z. Meng, D. Wu, C. Zhang, and H. Zhu, “Thermal properties of carbon black aqueous nanofluids for solar absorption,” Nanoscale Res. Lett., vol. 6, no. 1, pp. 1–7, 2012.

[42] Z. Luo, C. Wang, W. Wei, G. Xiao, and M. Ni, “Performance improvement of a nanofluid solar collector based on direct absorption collection (DAC) concepts,” Int. J. Heat Mass Transf., vol. 75, pp. 262–271, 2014.

[43] J. Liu, Z. Ye, L. Zhang, X. Fang, and Z. Zhang, “A combined numerical and experimental study on graphene/ionic liquid based direct absorption solar collector,” Sol. Energy Mater. Sol. Cells, vol. 136, pp. 177–186, 2015.

[44] V. Midhun Mohan and A. M. Sajeeb, “Improving the Efficiency of DASC by Adding CeO2/CuO Hybrid Nanoparticles in Water,” Int. J. Nanosci., vol. 17, no. 01n02, p. 1760011, May 2017.

[45] M. Karami, M. Raisee, and S. Delfani, “Numerical investigation of nanofluid-based solar collectors,” IOP Conf. Ser. Mater. Sci. Eng., vol. 64, no. 1, 2014.

[46] M. Chen, Y. He, J. Zhu, and D. Wen, “Investigating the collector efficiency of silver nanofluids based direct absorption solar collectors,” Appl. Energy, vol. 181, pp. 65–74, 2016.

[47] A. Membari, A. A. Alemrajabi, and A. Rezaei, “Heat transfer analysis and the effect of CuO/Water nanofluid on direct absorption concentrating solar collector,” Appl. Therm. Eng., vol. 104, pp. 176–183, 2016.

[48] S. Delfani, M. Karami, and M. A. Akhavan-Behabadi, “Performance characteristics of a residential-type direct absorption solar collector using MWCNT nanofluid,” Renew. Energy, vol. 87, pp. 754–764, 2016.

[49] A. Toppin-Hector and H. Singh, “Development of a nano-heat transfer fluid carrying direct absorbing receiver for concentrating solar collectors,” Int. J. Low-Carbon Technol., vol. 11,
no. 2, pp. 199–204, 2016.

[50] J. P. Freedman and H. Wang, “Analysis of Nanofluid-Based Parabolic Trough Collectors for Solar Thermal Applications,” vol. 140, no. October, pp. 1–8, 2018.

[51] K. Garg, V. Khullar, S. K. Das, and H. Tyagi, “Parametric study of the energy efficiency of the HDH desalination unit integrated with nanofluid-based solar collector,” J. Therm. Anal. Calorim., vol. 6, 2018.

[52] S. Parvin, R. Nasrin, and M. A. Alim, “Heat transfer and entropy generation through nanofluid filled direct absorption solar collector,” Int. J. Heat Mass Transf., vol. 71, pp. 386–395, 2014.

[53] R. Nasrin and M. A. Alim, “Prandtl number effect on heatline and entropy generation through direct absorption solar collector,” IET Conf. Publ., vol. 2014, no. CP649, 2014.

[54] R. Nasrin, S. Parvin, and M. A. Alim, “Heat Transfer and Collector Efficiency through a Direct Absorption Solar Collector with Radiative Heat Flux Effect,” Numer. Heat Transf. Part A Appl., vol. 68, no. 8, pp. 887–907, 2015.

[55] S. Parvin, S. Ahmed, and R. Chowdhury, “Effect of solar irradiation on forced convective heat transfer through a nanofluid based direct absorption solar collector,” AIP Conf. Proc., vol. 020067, 2017.

[56] M. Hatami and D. Jing, “Evaluation of wavy direct absorption solar collector (DASC) performance using different nanofluids,” J. Mol. Liq., vol. 229, pp. 203–211, 2017.

[57] T. B. Gorji and A. A. Ranjbar, “Geometry optimization of a nanofluid-based direct absorption solar collector using response surface methodology,” Sol. Energy, vol. 122, pp. 314–325, 2015.

[58] A. Moradi, E. Sani, M. Simonetti, F. Francini, E. Chiavazzo, and P. Asinari, “Carbon-Nanohorn Based Nanofluids for a Direct Absorption Solar Collector for Civil Application,” J. Nanosci. Nanotechnol., vol. 15, no. 5, pp. 3488–3495, 2015.

[59] T. B. Gorji and A. A. Ranjbar, “A numerical and experimental investigation on the performance of a low-flux direct absorption solar collector (DASC) using graphite, magnetite and silver nanofluids,” Sol. Energy, vol. 135, pp. 493–505, 2016.

[60] A. Kasaeian, R. Daneshzarian, and F. Pourfayaz, “Comparative study of different nanofluids applied in a trough collector with glass-glass absorber tube,” J. Mol. Liq., vol. 234, pp. 315–323, 2017.

[61] K. H. Won and B. J. Lee, “Effect of light scattering on the performance of a direct absorption solar collector,” Energy, vol. 12, no. 1, pp. 169–177, 2018.

[62] Q. Zhu, Y. Li, L. Mu, and Y. Cui, “Theoretical investigation of radiative transport and heat transfer of nanofluids in a direct solar absorption collector,” 14th Int. Heat Transf. Conf., pp. 2–7, 2010.

[63] T. P. Otanicar, P. E. Phelan, R. A. Taylor, and H. Tyagi, “Spatially Varying Extinction Coefficient for Direct Absorption Solar Thermal Collector Optimization,” J. Sol. Energy Eng., vol. 133, no. 2, p. 024501, 2011.

[64] R. A. Taylor, P. E. Phelan, T. P. Otanicar, C. A. Walker, M. Nguyen, S. Trimble, and R. Prasher, “Applicability of nanofluids in high flux solar collectors,” J. Renew. Sustain. Energy, vol. 3, no. 2, 2011.

[65] W. Lv, R. a Taylor, T. P. Otanicar, P. E. Phelan, and R. S. Prasher, “Plasmon-Enhanced Properties of Metallic Nanostructures and Their Application To Direct Solar Absorption Receivers,” Proc. ASME 2012 Summer Heat Transf. Conf. HT2012-58183, pp. 1–9, 2012.

[66] B. J. Lee, K. Park, T. Walsh, and L. Xu, “Radiative Heat Transfer Analysis in Plasmonic Nanofluids for Direct Solar Thermal Absorption,” J. Sol. Energy Eng., vol. 134, no. 2, p. 021009, 2012.

[67] S. M. Ladjevardi, A. Asnaghi, P. S. Izadkhast, and A. H. Kashani, “Applicability of graphite nanofluids in direct solar energy absorption,” Sol. Energy, vol. 94, pp. 327–334, 2013.

[68] G. Xu, W. Chen, S. Deng, X. Zhang, and S. Zhao, “Performance Evaluation of a Nanofluid-
Based Direct Absorption Solar Collector with Parabolic Trough Concentrator,”
Nanomaterials, 2015.

[69] W. Chen, G. Xu, S. Zhao, and X. Zhang, “Numerical simulation on the performance of nanofluid-based direct absorption solar collector with parabolic trough concentrator,” vol. 1, pp. 1–9, 2016.

[70] C. Qin, K. Kang, I. Lee, and B. J. Lee, “Optimization of a direct absorption solar collector with blended plasmonic nanofluids,” *Sol. Energy*, vol. 150, pp. 512–520, 2017.

[71] M. Hatami, S. Mosayebidorcheh, and D. Jing, “Thermal performance evaluation of alumina-water nanofluid in an inclined direct absorption solar collector (IDASC) using numerical method,” *J. Mol. Liq.*, vol. 231, pp. 632–639, 2017.

[72] H. Duan, L. Tang, Y. Zheng, and C. Xu, “Effect of plasmonic nanoshell-based nanofluid on efficiency of direct solar thermal collector,” *Appl. Therm. Eng.*, vol. 133, no. August 2017, pp. 188–193, 2018.

[73] O. Z. Sharaf, D. C. Kyritsis, A. N. Al-Khateeb, and E. Abu-Nada, “Effect of bottom surface optical boundary conditions on nanofluid-based DASC: Parametric study and optimization,” *Sol. Energy*, vol. 164, no. December 2017, pp. 210–223, 2018.

[74] M. Siavashi, K. Ghasemi, R. Yousofvand, and S. Derakhshan, “Computational analysis of SWCNH nanofluid-based direct absorption solar collector with a metal sheet,” *Sol. Energy*, vol. 170, no. April, pp. 252–262, 2018.

[75] G. J. O’Keeffe, S. L. Mitchell, T. G. Myers, and V. Cregan, “Modelling the efficiency of a low-profile nanofluid-based direct absorption parabolic trough solar collector,” *Int. J. Heat Mass Transf.*, vol. 126, pp. 613–624, 2018.

[76] O. Z. Sharaf, D. C. Kyritsis, and E. Abu-Nada, “Impact of nanofluids, radiation spectrum, and hydrodynamics on the performance of direct absorption solar collectors,” *Energy Convers. Manag.*, vol. 156, no. August 2017, pp. 706–722, 2018.