Complete Genome and Transcriptomes of *Streptococcus parasanguinis* FW213: Phylogenic Relations and Potential Virulence Mechanisms

Jianing Geng1, Cheng-Hsun Chiu2,3, Petrus Tang3,4, Yaping Chen1,5, Hui-Ru Shieh3,6, Songnian Hu1, Yi-Ywan M. Chen3,6*

1 Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China, 2 Division of Pediatric Infectious Diseases, Molecular Infectious Disease Research Center, Chang Gung Children's Hospital, Tao-Yuan, Taiwan, 3 Graduate Institute of Basic Medical Sciences, Chang Gung University, Tao-Yuan, Taiwan, 4 Bioinformatics Center, Chang Gung University, Tao-Yuan, Taiwan, 5 Graduate University of the Chinese Academy of Sciences, Beijing, People's Republic of China, 6 Department of Microbiology and Immunology, Chang Gung University, Tao-Yuan, Taiwan

Abstract

Streptococcus parasanguinis, a primary colonizer of the tooth surface, is also an opportunistic pathogen for subacute endocarditis. The complete genome of strain FW213 was determined using the traditional shotgun sequencing approach and further refined by the transcriptomes of cells in early exponential and early stationary growth phases in this study. The transcriptomes also discovered 10 transcripts encoding known hypothetical proteins, one pseudogene, five transcripts matched to the Rfam and additional 87 putative small RNAs within the intergenic regions defined by the GLIMMER analysis. The genome contains five acquired genomic islands (GIs) encoding proteins which potentially contribute to the overall pathogenic capacity and fitness of this microbe. The differential expression of the GIs and various open reading frames outside the GIs at the two growth phases suggested that FW213 possess a range of mechanisms to avoid host immune clearance, to colonize host tissues, to survive within oral biofilms and to overcome various environmental insults. Furthermore, the comparative genome analysis of five *S. parasanguinis* strains indicates that albeit *S. parasanguinis* strains are highly conserved, variations in the genome content exist. These variations may reflect differences in pathogenic potential between the strains.

Introduction

Streptococcus parasanguinis is a member of the viridans streptococci that constitute the major population of the oral microbial ecosystem in human. In its primary niche, the oral cavity, *S. parasanguinis* is one of the early colonizers of the tooth surface. The successful adherence of *S. parasanguinis* can serve as a substratum for the adherence of additional oral bacteria and subsequently develop into a mature biofilm called dental plaque [1,2]. During oral trauma or surgery, oral streptococci may gain access to the bloodstream and cause transient bacteremia. Furthermore, *S. parasanguinis* and other viridans streptococci are the common causes of native and prosthetic heart valve endocarditis [3,4]. Thus, the ability to evade host immune clearance is critical for the pathogenesis of *S. parasanguinis*.

Studies on the pathogenic factors of *S. parasanguinis*, in spite of its significance in the oral ecosystem and systemic infection, have been limited to two genetic loci, the *fap1* gene cluster [5–8] and the *fimCBA-tpx* operon [9,10] in the past. The *fap1* gene cluster encodes all proteins that participate in the biogenesis of the long fimbriae which are essential for the adherence of *S. parasanguinis* FW213 to the hydroxyapatite discs and optimal biofilm formation [11–13]. FimA, a 36-kDa lipoprotein of the FimCBA Mn2+/Zn2+ ATP-binding cassette (ABC) transporter, is involved in the metal transport [14] and the development of infective endocarditis [15,16]. Although the cellular location of the FimA determined by anti-FimA serum is at the tips of the long fimbriae of FW213 [9], the precise role of FimA in the adherence to host cells is yet to be defined.

The genomes of several viridans streptococci have been completed [17–21] since the completion of the *Streptococcus mutans* genome in 2002 [22]. The complete genome sequences not only allow for detailed analysis of the phylogenetic relationship between species but also provide insights into the biology and pathogenic capacity of the streptococci. However, the validation of the genome annotation generally requires extensive analysis. The recent advances in high-throughput RNA sequencing (RNA-seq) have provided a powerful tool for genomic studies at the overall transcription level [23]. RNA-seq has been successfully used to analyze the transcriptomes in several bacteria [24–28], and the unexpected complexity of the gene structure and functional plasticity of RNA elements have been reported [24]. Additionally, RNA-seq analysis is effective in defining the operon structure, refining gene annotation, and discovering new genes and
noncoding RNAs [24,25,27]. The newly developed Applied Biosystems SOLiD platform allows the cost-effective direct sequencing of the whole transcriptome, and the sequencing coverage of each transcript permits a quantitative comparison of the relative expression levels of interested genes [24]. Here we report the complete genome sequence, which has been refined based on the transcriptomes, of the human isolate S. parasanguinis strain FW213. Furthermore, we compare the transcriptomes of cells grown in early exponential and early stationary growth stages at single-nucleotide (n) resolution by using the SOLiD RNA-seq method. The pH and nutrient availability differ drastically between these two growth phases, thus the results of this study also provide an overview on the physiological activity of these two stages. We propose these differences play an essential role in the survival of S. parasanguinis in its natural and alternative niches.

Results and Discussion

The general features of the S. parasanguinis FW213 genome and its basic transcriptomic structure

The basic features of the FW213 genome are listed in Fig. 1 and Table 1. This organism also possesses a cryptic plasmid, pFW213. A detailed analysis of pFW213 has been reported previously [29], and will not be discussed in this manuscript. This genome contains 84 hypothetical genes without any matches in the non-redundant protein database; 38 of them are less than 300 bp and are expressed in both the early exponential- and early stationary-phase cultures. As none of these open reading frames (ORFs) matches to the Rfam database [30], these ORFs may encode mini-proteins for various biological processes and regulation in bacteria [31]. 16 transcripts with an average sequence coverage score and a length greater than 100 bp dispersed in the GLIMMER analysis-defined intergenic regions were detected from RNA-seq analysis (Table 1). 10 of these transcripts encode proteins matched to known hypothetical proteins, one is a pseudogene, and the other 5 matched to Rfam database. Additionally, 87 possible small RNA were extracted from intergenic regions by using the integrative computational tool sRNApred2 [32] and further confirmed by the transcriptome analysis. Thus the transcriptome not only refines the annotation but also suggests that S. parasanguinis utilizes small RNAs to modulate gene expression.

Global transcriptomic analyses using RNA-seq confirmed that 1981 and 2007 of 2,020 ORFs were expressed in cultures at OD600 = 0.3 and OD600 = 0.8, respectively (Fig. 2A and Table S1). The expression levels of 30 randomly selected ORFs were confirmed by RT-PCR (Table S2 and Fig. S1). Among these expressed ORFs, 227 and 395 genes were up-regulated with more than 2-fold change in RPKM values (p<0.05) in cells grown at OD600 = 0.3 and at OD600 = 0.8, respectively. As expected, most of the genes that were up-regulated in the active growth phase (OD600 = 0.3) belong to categories J (translation, ribosomal structure and biogenesis), L (replication, recombination and repair) of the Cluster of Orthologous Groups (COG), whereas genes in categories G, E, and F that encode proteins for carbohydrate, amino acid (aa) and nt uptake and metabolism were up-regulated when approaching nutrient starvation (Fig. 2B). Similar results have been interpreted from E. coli transcriptomic analyses [33,34]. Of note, 28 ORFs without a predicted function (category S) are up-regulated in the early exponential growth phase. The functions of these ORFs remain to be determined.

Attempts were made to determine the transcription initiation of an ORF based on the transcriptome. As an example, the transcription initiation site of Spaf_0344 was mapped to an A located at 22-base 5' to the translation start site by primer extension analysis (Fig. 3). This result is in agreement with the transcriptomics analysis. A similar result was also observed with the funCBA operon (data not shown). However, the initiation site for pepO predicted by the transcriptome was closer to the ATG start codon than the previous determination by primer extension analysis [14]. Previous analysis indicates that pepO transcripts from 5 sites, located at 267-, 155-, and 123-base 5' to the translation start site, respectively. It is likely that the short half-life of the 5' long untranslated region leads to the discrepancy between these two results. Similarly, we failed to map the end of the transcripts with confidence, presumably due to a high frequency of degradation. Based on the contiguous sequence coverage obtained from RNA-seq analysis, the operon boundaries were also determined through sharp sequence coverage changes (Fig. 4), and further confirmed by RT-PCR. The overall results suggest that there are a total of 427 polycistronic operons and 271 monocistronic genes in FW213. Moreover, different operon organizations within the same region were detected in cells in different growth phases. For instance, Spaf_0314, Spaf_0379, Spaf_0702, Spaf_1731, and Spaf_1764 were part of a polycistronic message in cells grown at OD600 = 0.8, while at the stage of OD600 = 0.3 these genes were not cotranscribed with the 3' flanking ORF, suggesting the presence of differential expression and/or termination within an operon in response to growth phases. The presence of alternative transcripts has also been reported in Halobacterium salinarum and Mycoplasma pneumoniae [28,35]. Taken together, these findings indicate that transcription regulation in prokaryotes is more complicated than previously thought.

The comparative genomic analysis of S. parasanguinis FW213 with other streptococci

Comparative genomic analysis with S. mutans UA159 (AE014153) [17], Streptococcus pneumoniae CGSP14 (CP001033) [19], Streptococcus sanguinis SK36 (CP000387) [21], Streptococcus thermophilus CNRZ1066 (CP000024) [18], Streptococcus gordonii CH1 (CP000725) [20], Streptococcus pyogenes M1 GAS (AE004092), and Streptococcus suis 052YH33 (CP000407) revealed that S. parasanguinis is most closely related to S. sanguinis, although large-scale rearrangements are observed between these two genomes (Fig. S2). Analysis of the orthologous genes also indicated that S. parasanguinis is more closely related to S. gordonii and S. sanguinis than to the other 5 species, consistent with the result of 16S rRNA-based phylogenetic analysis [36]. Furthermore, the genes of S. parasanguinis that are without an ortholog in S. gordonii or S. sanguinis are clustered in 3 acquired-DNA segments (FWisland_1, FWisland_2, and FWisland_4). Interestingly, the 4 acquired-DNA segments (FWisland_1 to FWisland_4) reside in the same replisome (Fig. 1), which could result in lopsided genome architecture across the replication axis. The uneven distribution of the FW213 genome could lead to chromosomal inversion and translocation for stabilizing genome architecture as seen in S. pyogenes strain M3 [37].

The comparative analysis of the FW213 genome with the complete genome of S. parasanguinis ATCC15912 (CP002843), and the drafts of ATGC903 (AEVE0000000) and SK236 (PRJNA67179) identified a total of 1,498 ORFs that are shared by all 5 strains (Fig. 5). In addition to these 1,498 ORFs, FW213 shares 260, 129, 127 and 88 ORFs with strains ATCC15912, ATTC903, F0405 and SK236, respectively, suggesting that FW213 is more closely related to ATCC15912 than to the other strains. Interestingly, a cluster of genes within the proposed FW213 FWisland_1 (see below) is absent in the other 4 genomes. A close examination of the
Genomes of FW213 and ATCC15912 confirms the rearrangement and variation between these two strains (Fig. 6). Most significantly, both the relative location of fap1 within FWisland_3 and the deduced aa sequence of Fap1 are different between FW213 and ATCC15912, albeit both proteins contain a serine-rich motif and are of compatible sizes, suggesting that variations in the genomes, perhaps also in the pathogenic capacity, exists between S. parasanguinis strains.

Competence for horizontal gene transfer (HGT)

In contrast to S. sanguinis SK36, in which only 2 functional insertion sequence (IS) elements are found, there are 6 copies of IS1114, 4 copies of IS200 family transposases and 19 other transposases in the S. parasanguinis FW213 genome. Although some of them appear to be remnants without an active function, these sequences could provide sites for homologous recombination in acquisition of novel genes from related organisms via HGT, which is especially significant in a close contact population, such as the oral biofilm. This genome contains 10 genes encoding apparent remnants of phage-related proteins, but is without any intact prophages, demonstrating that HGT via phage infection plays a role in the genome evolution. Interestingly, S. parasanguinis is not naturally competent for transformation, but 18 competence-specific genes that are found in naturally competent streptococcal
species are present in the genome (Table S2). A close examination revealed that \textit{comC}, encoding the competence-stimulating peptide (CSP), and \textit{comAB}, encoding proteins for the secretion and processing of ComC, are absent in this genome. Furthermore, most of these competence-related genes are expressed at relatively low levels, which is consistent with the phenotype.

Genomic islands (GIs)

Based on the GC content, 4 possible GIs termed Fwisland\textsubscript{1} to 4 are identified in the FW213 genome (Fig. 1, Table 2). An additional Fwisland\textsubscript{5} is mined through annotation. Sequence and annotation analyses of these islands revealed that these GIs contain known or putative virulence genes and mobility genes (Tables S3, S4, S5, S6, S7). The expression and potential impact of these islands in the physiology and pathogenesis of \textit{S. parasanguinis} are discussed below.

\textbf{i. FWisland\textsubscript{1}: the salivaricin B and nisin secretion GI.}

Fwisland\textsubscript{1} contains mosaic mobile elements resembling the conjugative transposon Tn5253 [38], which is a composite of Tn5251 and Tn5252, with former inserted in the latter (Table S4). Although some of the main components such as \textit{ermAM} and \textit{tetM} of Tn5253 are absent in FW213, some lantibiotic related genes are included. The first transposon (Spaf\textsubscript{1090} to Spaf\textsubscript{1100} and Spaf\textsubscript{1119} to Spaf\textsubscript{1138}) harbors the partial lantibiotic nisin biosynthesis operon [39], indicating that this region has undergone deletion during evolution and \textit{S. parasanguinis} may not produce nisin. The second transposon (Spaf\textsubscript{1101} to Spaf\textsubscript{1118}), harbors two operons of the \textit{sboB} locus for the lantibiotic salivaricin B (SboB) production [40]. The first operon (\textit{sboKR}) encodes a putative two component system, and the second operon comprises genes encoding the SboB pre-peptide (encoded by \textit{sboA}) and the immunity proteins (encoded by \textit{sboFEG}). Genes encoding the Tn5252 relaxase and a putative conjugative transposase are also located within this region. On the other hand, genes encoding proteins for transportation (\textit{sboT}) and modification (\textit{sboM}) of SboB are absent in \textit{S. parasanguinis}. It remains possible that \textit{S. parasanguinis} FW213 modifies and exports SboB by an unknown system other than SboM and SboT. Interestingly, the \textit{sboFEG}, together encoding the subtilin immunity exporter, and the TraG/TraD family protein are also found in this island, which may provide an alternative secretion mechanism for SboB in \textit{S. parasanguinis}. As shown in Fig. 7A, all \textit{sbo} genes were expressed in both growth conditions although the overall coverage of FWisland\textsubscript{1} was generally low, especially in early exponential growth. It has been predicted that the production of bacteria inhibitory substances may provide advantages within a complex ecosystem, such as dental plaque. Thus an up-regulation of this island in the early exponential growth phase may reflect the physiological needs of \textit{S. parasanguinis} in the oral cavity.

\textbf{ii. FWisland\textsubscript{2}: the putative bacterocin production GI.}

This island includes genes encoding proteins for a putative lactococcin production (Table S5). All genes within the island are...
expressed at both stages of growth (Fig. 7B). Interestingly, the expression of genes encoding the lactococcin 972 type bacteriocin (Spaf_1859) and an ATP-binding cassette (ABC) transporter (Spaf_1860 and Spaf_1861) are up-regulated 3- and 6-fold, respectively, in cells at OD$_{600}$ = 0.8. A similar expression pattern has been observed in the lclAB operon of Lactococcus lactis PILA972, which encodes the lactococcin 972 and immunity protein [41]. It is tempting to suggest that FW213 also produces a lactococcin-related bacteriocin, and the production is modulated by the growth phase.

iii. FWisland_3: the fimbriae encoding and maturation GI. Genes encoding the structure subunit of the long fimbriae, fap1, and all enzymes required for the maturation and presentation of the fimbriae are clustered within a 23.9-kp region, designated FWisland_3 (Table S6). Extensive analysis on this island has been previously reported [7,8]. Homologues of fap1 and organization of the flanking ORFs are also observed in other oral streptococci such as S. gordonii CH1 [20] and S. sanguinis SK36 [21], indicating that the biogenesis and glycosylation of the Fap1-like proteins are highly conserved throughout evolution. All genes of this island were expressed at both growth stages (Fig. 7C), and were up-

![Figure 3. Determination of the transcription initiation site of Spaf_0344.](image)

The primer extension analysis of Spaf_0344 is shown on the left side of the figure. The nucleotide sequence of the 5′ flanking region and the read counts at each nucleotide are shown on the right side of the figure. The primer extension analysis was performed with the total cellular RNA of S. parasanguinis FW213 and a primer located 116-base 3′ to the ATG and containing the antisense sequence of Spaf_0344. The extended product was analyzed alongside a DNA-sequencing reaction by using the same primer. The location of the ATG start site of orf344 and the transcription initiation site (TSS) are indicated.

doi:10.1371/journal.pone.0034769.g003

![Figure 4. Identification of operons based on the expression profiles.](image)

The sequence coverage from 753,521 to 767,556 bp of the S. parasanguinis FW213 chromosome is shown. The operon is defined based on continuous expression and sequence coverage change, and the limits of the operon (Spaf_0735-Spaf_0738) are indicated by vertical arrows. The tag number of each gene is listed below the arrows. The ORFs are color-coded as described in Fig. 1 legend. The coverage is calculated as described in Fig. 2 legend.

doi:10.1371/journal.pone.0034769.g004
regulated at OD$_{600} = 0.8$, confirming the impact of the long fimbriae in the biofilm lifestyle [13]. It is also noticed that the expression of \textit{fap1}, encoding the subunit of the long fimbriae, is at relative high levels at both stages, with a 2.8-fold increase at early stationary stage. The up-regulation of FWisland$_3$ expression and conceivably higher fimbriae presentation shall enhance the biofilm formation of \textit{S. parasanguinis} in the late exponential growth phase, when the biofilm lifestyle may provide better advantages for survival.

\textbf{iv. FWisland$_4$:} the extracellular polysaccharides (EPS) and capsule polysaccharide (CPS) production GI. EPS production plays an essential role in the adherence and initiation of bacterial endocarditis [42,43]. The EPS production is also associated with endocardial vegetation mediated by many viridans streptococci [44]. FWisland$_4$ (Table S7) encodes proteins that share strong homology with the protein products of \textit{S. pneumoniae} Type 19F \textit{cpsA-K} genes [45], while only \textit{cpsA}, \textit{cpsB}, \textit{cpsC}, \textit{cpsD}, \textit{cpsE} and \textit{cpsG} are present in \textit{S. sanguinis} and \textit{S. gordonii}. This GI also encodes glycosyltransferases (Spaf$_{2008}$ and Spaf$_{2009}$) and a putative phosphotransferase (Spaf$_{2004}$). Homologs of the \textit{cps19fL}, \textit{cps19fO}, \textit{cps19fN}, and \textit{cps19fM} which are involved in the biosynthesis of dTDP-L-rhamnose in \textit{S. pneumoniae} capsule production are found elsewhere in the FW213 genome (Spaf$_{1350}$ to 1352 and Spaf$_{0821}$). Together, it is suggested that the products of FWisland$_4$ participate in the biogenesis and export of EPS and that the repeat unit of polysaccharide structure is similar to that of \textit{S. pneumoniae} type 19F capsular polysaccharide.
All genes in this island are expressed at moderate levels at both growth conditions (Fig. 7D), and all EPS production-related genes were up-regulated on average 4-fold in early stationary versus early exponential phase of growth. The polysaccharide capsule constitutes the outermost layer of the cell, and its role in adherence, biofilm formation, and resistant to host phagocytic activity is well documented [46]. The expression of this island may provide basic protection against host immune clearance, and an up-regulation in the late exponential growth phase may further promote the biofilm formation of S. parasanguinis.

v. FWisland_5: the adc operon. FWisland_5 contains ORFs homologous to known transcriptional regulators, a phosphoglycerate mutase and the adc operon consisting of a adcR, adcC, adcB, and adcA (Table S8). Gene adcR encodes a putative transcriptional repressor for Zn^{2+}/Mn^{2+}-responsive expression, and adcCB4 together encode a putative Zn^{2+}/Mn^{2+}-specific ABC transporter. Furthermore, the histidine-rich metal-binding domain was found in AdcR and AdcA of S. parasanguinis FW213. Thus, the adcRBC4 operon may play an important role in Zn^{2+} and/or Mn^{2+} uptake in S. parasanguinis FW213. It is also noticed that the expression of the adc operon was up-regulated 3-fold in cells grown at OD_{600} = 0.8 (Fig. 7E), similar to the regulation by AdcR in S. gordonii [47]. It was proposed that, in addition to maintaining the intracellular metal homeostasis, AdcR may act as a signal to modulate biofilm formation [48]. As S. gordonii and S. parasanguinis occupy the same habitat in the oral cavity and both cause subacute endocarditis, it is likely that the Adc system plays a similar role in S. parasanguinis.

Genes encoding proteins that modulate oxidative stress responses, the pathogenicity for endocarditis, host cell lysis, cell wall integrity and osmotic stress responses are induced in the early exponential growth phase

To reach the heart valve successfully and establish infection, S. parasanguinis has to evade innate host defenses. An examination of the FW213 genome reveals genes encoding superoxide dismutase (Spaf_0708), thioredoxin (Spaf_0302, Spaf_0423, Spaf_1008 and Spaf_1295), thioredoxin reductase (Spaf_0208 and Spaf_0772), and glutathione peroxidase (Spaf_1379). With the exception of Spaf_0208 and Spaf_0423, all genes were up-regulated in cells at OD_{600} = 0.3 (Table 3). Furthermore, two putative Spx proteins (Spaf_2030 and Spaf_2069), an activator for RNA polymerase under thiold-specific oxidative stress condition [49], were also up-regulated at this stage of growth. Thus, it is possible that the expression of the above genes and the regulation by Spx play a role in early exponential phase of growth.

A greater than 3-fold increase in the expression of fimCB4 was detected in cells grown at OD_{600} = 0.3 compared to cells of OD_{600} = 0.8 (Table 3). The binding of FW213 to fibrin monolayers via FimA is essential for the development of endocarditis by S. parasanguinis [15], and the up-regulation of the fim operon at this stage could enhance the colonization of S. parasanguinis to the damaged heart valves. It is interesting to note, the expression pattern of the fim operon is opposite that of the adc operon. Since both the Fim and the Adc systems recognize low and high concentrations of extracellular manganese, respectively, the coordinated regulation of these two systems would ensure an adequate acquisition of essential metal ions for all cell activities.

The annotation also led to the discovery of 3 putative hemolysins (Table 3), two of which (Spaf_1208 and Spaf_1675) are up-regulated in early exponential growth. As the expression of these two proteins is the highest among the three, Spaf_1208 and Spaf_1675 may be associated with the development of bacteremia. Spaf_0018, Spaf_1442, and Spaf_2091, encoding enzymes catalyze cell-wall digestion, are up-regulated in the early exponential growth phase (Table 3). Spaf_0018 contains a C-terminal DivIC domain required for septum formation and a N-terminal CHAP domain that corresponds to amidase function. Studies on the homologues in S. pneumoniae [50] and S. mutans [51] indicate that this protein participates in cell-wall biosynthesis and cell division. As this ORF is essential for survival in most bacterial species, functional studies were limited. On the other hand, Spaf_1442 is a putative glycosyl hydrolase for cell wall structure, and studies on the homologues reveal that this ORF mediates both cell-wall metabolism and essential cell activity such as biofilm formation. As demonstrated in Staphylococcus epidermidis [52], Lactococcus lactis [53] and S. mutans [54], the peptidoglycan hydrolase activity is essential for optimal biofilm formation. Thus, the up-regulation of Spaf_1442 in the early exponential growth phase may enhance the initial attachment of S. parasanguinis to the tooth surface as well as host tissue. Spaf_2091 is a homolog of IsaA of Staph. aureus [55], a suggested soluble lytic transglycosylase. IsaA modulates the overall virulence of Staph. aureus by altering the peptidoglycan structure [56]. Spaf_2091 is highly expressed at the early exponential growth phase (Table 3), and thus it is possible that this protein plays a similar role in the early stage of endocarditis infection.

Interestingly, genes encoding the putative conductance mechanosensitive (MS) channels (Spaf_0774 and Spaf_1806) express at relative high levels in the early exponential growth phase, and a 3-fold reduction was detected when cells reached stationary phase. This expression pattern is opposite to the MsCS and MsCL pattern found in E. coli [57], where an up-regulation in the stationary phase is detected. As MS channels are required for the survival of osmotic stress, it is peculiar that S. parasanguinis expresses these genes at high levels in the early growth phase. Additionally, a relatively high level of expression was seen in genes encoding the trehalose-specific EIIAB (Spaf_1559) and the trehalose-6-phos-
phate hydrolase (Spaf_1558) in the early growth phase. Trehalose is a compatible solute that accumulates intracellularly upon osmotic stress [58] and the expression of trehalose PTS in \textit{S. mutans} only occurs in the presence of the substrate [59]. Taken together, systems that are commonly known to participate in osmotic stress may have a very different role in the physiology of \textit{S. parasanguinis}.

ORFs participate in the acid tolerance response (ATR), alcohol metabolism, extracellular matrix (ECM) binding, and peptide digestion are up-regulated in the early stationary growth phase.

ATR is one of the hallmarks for survival in the oral streptococci. A number of mechanisms contributing to the aciduric response have been identified in \textit{S. mutans} [60,61]. Genes encoding a

Figure 7. Schematic representation of the putative GIs and their expression in \textit{S. parasanguinis} FW213. (A), FW213island_1; (B), FW213island_2; (C), FW213island_3; (D), FW213island_4; (E), FW213island_5. The expression levels in cultures at OD 600 = 0.3 and OD 600 = 0.8 are present at single-nt resolution in red and green, respectively. The relative sizes, locations, and orientations of the ORFs are indicated by color-coded horizontal arrows as described in Fig. 1 legend with the exception that genes of the cellular processes and signaling category are in sienna.

doi:10.1371/journal.pone.0034769.g007
functional F-ATPase (H^+-translocating ATPase), the primary factor for maintaining cytoplasmic pH homeostasis in oral streptococci [60], are arranged as an operon in the FW213 genome (Spaf_0740 to Spaf_0747). The expression of this operon is moderately up-regulated in cells grown at OD600 = 0.8. The pH value of S. parasanguinis cultures at OD600 = 0.3 is around 6.8, whereas cultures at OD600 = 0.8 is at 5.5–5.6, thus the up-regulation of the atp operon at OD600 = 0.8 confirms the role of ATPase in pH homeostasis (Table 4). Furthermore, the arc operon encoding the arginine deiminase system (ADS) that provides competitive fitness for survival at sub-lethal acidic pH by concomitant production of NH3 and ATP in Streptococcus rattus and S. gordonii [62,63] is located in the FW213 genome (Spaf_0712 to Spaf_0718). The expression of ADS in S. gordonii is regulated by multiple environmental factors, and the expression is enhanced in the stationary growth phase [64]. Similarly, the expression of the arc operon in FW213 was up regulated in cells grown at OD600 = 0.8, suggesting that the ADS also participates in the ATR of S. parasanguinis.

A total of 7 alcohol dehydrogenase (ADH) homologues are identified in the FW213 genome (Table 4) whereas the other two (Spaf_0456 and Spaf_1747) are not regulated by growth phases. It has been suggested by Kurkivuori and colleagues that the conversion of ethanol to carcinogenic acetaldehyde by bacterial ADH in the oral cavity may promote the development of oral cancer [65]. Thus, the multiple ADHs and relatively abundant expression, especially at early stationary phase, may contribute to not only energy generation but also the development of other oral diseases.

S. parasanguinis FW213 possesses 3 collagen-binding protein (CBP) homologues (Spaf_0420, Spaf_1570 and Spaf_1943), one fibronectin-binding protein homologue (Spaf_1409), and a collagen-binding domain containing surface protein (Spaf_1943).

Table 3. Potential virulence factors for the early exponential growth phase in S. parasanguinis FW213.

Locus	Annotation	RPKM OD = 0.3*	RPKM OD = 0.8*	Fold-increaseb
Spaf_0208	Thioredoxin reductase	511	575	0.9
Spaf_0302	Thioredoxin family protein	188	126	1.5
Spaf_0423	Thioredoxin	105	94	1.1
Spaf_0772	Thioredoxin reductase, putativepleaseseem to be incorrect	480	293	1.6
Spaf_1008	Thioredoxin family protein	330	231	1.4
Spaf_1295	Thioredoxin, putative	1277	551	2.3
Spaf_0708	Mn^2+-dependent superoxide dismutase	17251	11055	1.6
Spaf_1379	Glutathione peroxidase	342	165	2.1
Spaf_2069	SPX domain-containing protein	6467	1520	4.3
Spaf_2030	Transcriptional regulator Spx	300	42	7.2
Spaf_0610	Hemolysin A, putative	48	67	0.7
Spaf_1208	Hemolysin III-like, putative	121	60	2.0
Spaf_1565	Hemolysin	419	294	1.4
Spaf_0347	FimA of FimCBA transporter	408	103	4.0
Spaf_0348	FimB of FimCBA transporter	468	134	3.5
Spaf_0349	FimC of FimCBA transporter	626	185	3.4
Spaf_0018	Putative peptidoglycan hydrolase	4648	2198	2.1
Spaf_1442	Putative 1,4-β-N-acetylmuramidase	2709	823	3.3
Spaf_2091	Transglycosylase	17272	3522	4.9
Spaf_0774	Putative large conductance mechanosensitive channel	10204	3378	3.0
Spaf_1806	Small-conductance mechanosensitive efflux channel	797	240	3.3
Spaf_1558	Putative trehalose-6P hydrolase	848	36	23.4
Spaf_1559	Trehalose-specific IIBC component	449	25	18.1

* the RPKM was calculated as described in the materials and methods.
^b^ the ratio of the expression levels in cells grown at OD600 = 0.3 divided by that from cells grown at OD600 = 0.8.
doi:10.1371/journal.pone.0034769.t003
The expression of all 3 CBP homologues and Spaf_1943 were up-regulated at OD600 = 0.8 by more than 2-fold, whereas an 1.8-fold increase in expression was observed with Spaf_1409 at the same growth stage, indicating that FW213 possess a strong affinity for ECM molecules. The function of Spaf_1943 in bacterial autoaggregation and biofilm formation has been demonstrated recently [66], further supporting the pathogenic role of this ORF in both the oral cavity as well as on heart valves.

Other potential virulence factors

The genome also revealed potential virulence traits including drug and metal resistance (Table 5). A copy of *aph* (Spaf_0881) and of *aadK* (Spaf_0970) encoding the aminoglycoside phosphotransferase and aminoglycoside adenylyltransferase, respectively, are found in the FW213 genome; the expression of these genes may count for the relative high minimal inhibitory concentrations (MICs) for aminoglycosides in *S. parasanguinis* FW213. ORFs potentially encoding resistance for β-lactam (Spaf_0010) and bacitracin (Spaf_0519) are also found in the genome. Furthermore, outside the GIs described above, the FW213 genome contains 3 genes encoding putative cation-driven multidrug efflux systems and 14 genes encoding putative ABC-type multidrug

Table 4. Potential virulence factors that are up-regulated in the early stationary phase in *S. parasanguinis* FW213.

Locus	Annotation	RPKM OD = 0.3*	RPKM OD = 0.8*	Fold-increaseb
I. Acid tolerance responses				
Spaf_0740	Subunit C of ATP synthase F0 sector	343	315	0.9
Spaf_0741	Subunit A of ATP synthase F0 sector	915	1358	1.5
Spaf_0742	Subunit B of ATP synthase F0 sector	532	575	1.1
Spaf_0743	Subunit α of ATP synthase F1 sector	455	495	1.1
Spaf_0744	Subunit γ of ATP synthase F1 sector	650	865	1.3
Spaf_0745	Subunit β of ATP synthase F1 sector	972	1855	1.9
Spaf_0746	Subunit c of ATP synthase F1 sector	1323	1879	1.4
Spaf_0747	Subunit c of ATP synthase F1 sector	956	1141	1.2
Spaf_0748	Arginine deiminase	1656	8470	5.1
Spaf_0749	Ornithine carbamoyltransferase	1091	9256	8.5
II. Alcohol dehydrogenase (ADH)				
Spaf_0058	ADH, iron-containing	144	1233	8.6
Spaf_0062	Zn-dependent ADH	19	74	3.9
Spaf_0170	ADH, zinc-containing	80	308	3.8
Spaf_0171	ADH, propanol-preferring, putative	41	138	3.3
Spaf_1781	ADH, iron-containing	7	11	1.5
III. Extracellular matrix binding proteins				
Spaf_1409	Fibronectin-binding protein, putative	32	57	1.8
Spaf_0420	Collagen-binding protein, putative	98	249	2.5
Spaf_1570	Collagen-binding protein, putative	94	295	3.1
Spaf_1574	Collagen-binding protein, putative	167	415	2.5
Spaf_1943	Collagen-binding domain containing surface protein	117	238	2.0
IV. Subtilisin family Serine proteases				
Spaf_0194	Subtilisin family serine protease	38	87	2.3
Spaf_1710	Cell-wall anchored serine protease	2	29	15.6
Spaf_1711	Cell-wall anchored serine protease	1	13	10.4

a, same as in Table 3.
b, the ratio of the expression levels in cells grown at OD$_{600}$ = 0.8 divided by that from cells grown at OD$_{600}$ = 0.3.
doi:10.1371/journal.pone.0034769.t004
transports; all of which are expressed at moderate to high levels (data not shown), indicating that this microbe possess a strong defense system.

A caddDX cassette (Spaf_0449 and Spaf_0450) that confers resistance to cadmium and zinc in S. salivarius 57.1 [68] is also present in the FW213 genome, suggesting that FW213 possesses relatively high MICs for these two metals. Furthermore, both ORFs Spaf_0788 and Spaf_1749 share significant homologues with the cation efflux proteins for cobalt-zinc-cadmium resistance, and both are highly activated in the late exponential growth phase (Table 5). Together, it is predicted that FW213 is relatively resistant to heavy metal killing.

The study by Vriesema and colleagues suggests that the expression of mnaA [69], encoding methionine sulfoxide reductase, modulates the virulence potential of S. gordoni CH1 in the development of endocarditis by enhancing the growth and oxidative stress capacity. The mnaA homologues (Spaf_1798) in FW213 expressed well at both growth conditions (Table 5). Whether this ORF also plays a similar role in the disease development requires further analysis. On the other hand, the expression of Spaf_1788, encoding pyruvate oxidase for H2O2 production under aerobic growth [70], was highly activated at the early stationary phase. It has been demonstrated that S. sanguinis and S. gordoni compete effectively against S. mutans by H2O2 production [70]. Thus, this locus is likely to provide a similar advantage for FW213 within oral biofilm.

Conclusions

The genome and expression analysis of S. parasanguinis FW213 provide basic information on the physiology and potential pathogenic capacity of this bacterium. The comparative genomics and phylogenetic analysis indicate that this genome is shaped by chromosomal inversion, recombination and HGT events. All putative virulence genes, both within the GIs and elsewhere on the chromosome equip this microbe to maintain an ecological niche in dental plaque, escape from host defense and establish infection in heart valves. Ultimately, the availability of the complete FW213 genome sequence will facilitate further studies of this pathogen and the development of diagnostics and vaccines.

Materials and Methods

Strain and growth conditions

S. parasanguinis FW213, an isolate of human dental plaque [71], was chosen for this study for reasons listed below. First, FW213 is a frequent isolate of the dental plaque. Second, the infectivity of FW213 in subacute endocarditis has been well established in an animal model [13]. Third, the Fap1 of FW213 is a model system for studying Gram-positive bacterial protein glycosylation and the role of glycosylation in bacterial pathogenesis. Finally, FW213 possesses a cryptic plasmid that is not reported in other S. parasanguinis strains. To prepare total cellular DNA or RNA from S. parasanguinis FW213, bacteria were grown in Todd-Hewitt (Difco) broth at 37°C in a 10% CO2 atmosphere. Total cellular DNA was isolated from the mid-exponential (OD600 = 0.6) phase culture as described previously [72]. Total cellular RNA was isolated from the early exponential (OD600 = 0.3) and early stationary (OD600 = 0.8) growth phases as described previously [73].

Genome sequencing and annotation

Genome sequencing was performed using the whole genome shotgun strategy [74]. Briefly, total cellular DNA was mechanically sheared and end-repaired by using T4 DNA polymerase (NEB). 4 libraries containing sheared DNA fragments of various lengths (1.5 to 2 kb, 2 to 3 kb, 4 to 5 kb, and 6 kb) were constructed in pUC18. The nt sequences of the library inserts were determined by using the ET terminator chemistry on an ABI 3700 sequencer (Applied Biosystems) and a MegaBACE 1000 sequencer (Amersham Bioscience). Sequences were assembled and edited using PHRED, PHRAP and CONSED (http://www.phrap.org/phredphrapconshed.html). Gaps were closed by primer walking, long-distance PCR and optimized multiplex PCR [75]. Sequences of the reads in low quality regions were resequenced to ensure the accuracy. We acquired usable shotgun-sequencing traces with an average length of 529 bp, resulting in an 8.84-fold sequence coverage. The complete genome sequence of S. parasanguinis FW213 has been deposited in the GenBank database with the accession number CP003122.

Table 5. Additional virulence factors.

Locus	Annotation	RPKM OD = 0.3a	RPKM OD = 0.8a
I. Putative antibiotic resistance genes			
Spaf_0010	β-lactamase class A	62	134
Spaf_0519	Bacitracin resistance protein/undecaprenol kinase	650	335
Spaf_0881	Aminoglycoside phosphotransferase	10	26
Spaf_0970	Aminoglycoside adenylyltransferase	92	63
II. Metal resistance systems			
Spaf_0449b	Cadmium resistance transporter	90	71
Spaf_0788	Co/Zn/Cd resistance cation efflux protein	298	140
Spaf_1749	Co/Zn/Cd efflux system component	91	52
III. Other virulence factors			
Spaf_1788	Pyruvate oxidase	849	4964
Spaf_1798	Peptide methionine sulfoxide reductase	273	436

*a, same as in Table 3.

b, Spaf_449, encoding the structure protein (CadD) is part of a 2-gene operon.
doi:10.1371/journal.pone.0034769.t005
The start point of the FW213 genome base numbering is set at the replication origin (oriC) which is identified by the GC-skew analysis and Ori-Finder software [76]. ORFs were predicted initially with GLIMMER 2.0 [77] at the default settings with a cutoff at 90 nt. Predicted ORFs were validated with translational start codon assignment based on protein homology and ribosomal binding motifs [70]. The deduced aa sequence of each ORF was then BLASTp searched against the nonredundant database of GenBank and the “true proteins” (80% overlapping, E-value<1e^-10) were extracted. The remaining ORFs and intergenic sequences were BLASTX searched against the nonredundant database and “true ORFs” (the same criteria as above) were identified. The problematic cases such as overlapping proteins were resolved according to the principle described previously [79,80]. The function of each protein is predicted by searching against the KEGG pathway database [81], the COG database [82] and the InterPro protein family database [83,84]. Transfer RNAs were predicted with tRNAscan-SE [85], and ribosomal RNAs (rRNAs) were identified based on the similarity to the corresponding genes of other streptococcal genomes. The final annotation was manually inspected by integrating comprehensively the genome annotation and transcriptomic results to further refine the structure of the predicted genes and annotation.

Comparative genomic analysis

Whole genome sequences alignments of the streptococcal strains were constructed by using the MUMmer package [86]. The orthology were identified by Inparanoid and MultiParanoid [87]. The ClastalX software [88] was used to align the concatenated sequences from all orthologs. The Artemis Comparison Tool (ACT) [89] was used to view the overall comparison of S. parasanguinis FW213 and ATCC15912 genomes.

SOLiD RNA-seq library construction, sequencing and mapping

The isolated RNA was treated with DNase I and further purified by using RNeasy Kits (Qiagen) to remove residual chromosome. The rRNA was depleted from the sample based on the standard protocols from RiboMinus™ Transcriptome Isolation Kits (Invitrogen). The library construction and sequencing were performed followed the standard protocols from SOLiDTM Small RNA Expression Kit (ABI). Only reads with a quality value greater than 8 were selected and used in the mapping. The selected reads were mapped to the S. parasanguinis FW213 genome by using the SOLiDTM System Analysis Pipeline Tool (Corona Lite) allowing mismatches up to 5 bases. The first 45 bases of the unmapped reads were then again used in the second-run mapping. This process was repeated one more time with the first 40 bases of the unmapped reads. rRNA reads were filtered prior to the mapping.

Gene expression analysis

The expression level of a given gene was evaluated by read counts normalized with the total mapped reads and gene length with the RPKM method [90]. The differential expressions of genes between two libraries were analyzed based on the IDEG6 modeling methods [91] and further confirmed by reverse transcription (RT)-PCR. The differentially expressed genes were sorted into 18 cellular functional groups according to the COG database [82]. To determine the transcription initiation site of SpaF_0344, 50 μg of total RNA was hybridized with the IRD-800 labeled primer scRA989650 (5’-CATGCGAUCTGGCGATT-CCTTATTACT) at 42°C for 90 min, followed by RT. The extended products were analyzed alongside a DNA sequencing reaction using the same primer on a 9% gel, and signals were detected on a LI-COR DNA sequencer (model 4000L).

Operon identification and confirmation

The genome wide strand-specific sequencing coverage was generated with perl scripts based on the results of unique mapping reads. The operon boundaries are defined based on sharp sequencing coverage transitions (greater than a 2-fold difference) between two neighboring genes that are greater than 100 bp apart and are in the same transcription orientation. The adjacent genes located on the complementary strands were considered as members of two operons. The predicted operon boundaries are confirmed by RT-PCR. Specifically, within an operon, the contiguous transcript between two genes with an intergenic region greater than 100 bp was further confirmed by end-point RT-PCR. That two genes with an intergenic region that are less (and equal to) 100 bp and yet were assigned in two separate operons was also checked by RT-PCR.

Supporting Information

Figure S1 Comparison of RT-PCR and transcriptome results. The best-fit line is shown. The two data sets showed a correlation coefficient (R) of 0.86.
(TIF)

Figure S2 The whole genome alignments of S. parasanguinis FW213 (X-axis) with the genomes of 7 streptococcal species (Y-axis), respectively. Mummer-based genomic display of S. parasanguinis FW213 genome pairing with the genome of (A) S. sanguinis SK36, (B) S. gordoni CH1, (C) S. pneumoniae CGSP14, (D) S. mutans UA159, (E) S. pyogenes M1 GAS, (F) S. suis 05ZYH33, and (G) S. thermophilus CNRZ1066. The forward matches are displayed in red, and the reverse matches are in cobalt blue.
(TIF)

Table S1 The RPKM values of all genes in cultures at OD600 = 0.3 and OD600 = 0.8.
(XLS)

Table S2 Confirmation of expression analysis of RNA-seq by RT-PCR.
(DOC)

Table S3 The competence-related genes and their expression in S. parasanguinis FW213.
(DOC)

Table S4 The features and expression of FWisland_1.
(DOC)

Table S5 The features and expression of FWisland_2.
(DOC)

Table S6 The features and expression of FWisland_3.
(DOC)

Table S7 The features and expression of FWisland_4.
(DOC)

Table S8 The features and expression of FWisland_5.
(DOC)

Acknowledgments

We thank P. Fives-Taylor for review of this manuscript, and S. Liang for excellent technical assistance.
Author Contributions

Conceived and designed the experiments: JG SH YMC. Performed the experiments: JG YC HS YMC. Analyzed the data: JG SH YMC.

References

1. Gibbons RJ, Houte JV (1975) Bacterial adherence in oral microbial ecology. Annu Rev Microbiol 29: 19–44.
2. Kolenbrander PE (2000) Oral microbial communities: biofilms, interactions, and genetic systems. Annu Rev Microbiol 54: 413–437.
3. Lanek IL, Varghile A, Connolly MW (1998) Postgraduate surgery cases. Crit Care Clin 14: 221–250.
4. van der Meer JT, van Vianen W, Hu E, van Leeuwen WB, Valkenburg HA, et al. (1992) Distribution, antibiotic susceptibility and tolerance of bacterial isolates in culture-positive cases of endocarditis in The Netherlands. Eur J Clin Microbiol Infect Dis 10: 728–734.
5. Wu H, Fives-Taylor PM (1999) Identification of dipeptide repeats and a cell wall sorting signal in the fimbria-associated adhesin, Fap1, of *Streptococcus parasanguinis*. Mol Microbiol 34: 1070–1081.
6. Wu H, Mintz KP, Ladha M, Fives-Taylor PM (1998) Isolation and characterization of Fap1, a fimbria-associated adhesin of *Streptococcus parasanguinis* FW213. Mol Microbiol 28: 487–500.
7. Wu H, Bi S, Newell P, Chen Q, Fives-Taylor PM (2007) Two gene determinants are differentially involved in the biogenesis of Fap1 precursors in *Streptococcus parasanguinis*. J Bacteriol 189: 1390–1398.
8. Wu H, Zeng M, Fives-Taylor PM (2007) The glycans moieties and the N-terminal pepO promoter backbone of a fimbria-associated adhesin, Fap1, play distinct roles in the biofilm development of *Streptococcus parasanguinis*. Infect Immun 75: 2181–2188.
9. Fenno JC, Shaikh A, Spataporia G, Fives-Taylor PM (1995) The fimA locus of *Streptococcus parasanguinis* encodes an ATP-binding membrane transport system. Mol Microbiol 15: 849–863.
10. Spataporia G, Van Hooven N, Wagner K, Fives-Taylor PM (2002) Evidence that ORF3 at the *Streptococcus parasanguinis* fimA locus encodes a third-specific adhesin. Microbiology 148: 755–762.
11. Fachon-Kalweit S, Elder BL, Fives-Taylor P (1985) Antibodies that bind to fimbriae block adhesion of *Streptococcus parasanguinis* fimA to saliva-coated hydroxyapatite. Infect Immun 40: 617–624.
12. Fives-Taylor PM, Thompson DW (1985) Surface properties of *Streptococcus sanguinis* FW213 mutants nonadherent to saliva-coated hydroxyapatite. Infect Immun 47: 752–759.
13. Freoehler EH, Fives-Taylor P (2001) *Streptococcus parasanguinis* fimbria-associated adhesin Fap1 is required for bacteriophage formation. Infect Immun 69: 2512–2519.
14. Oetjen J, Fives-Taylor P, Freoehler EH (2002) The divergently transcribed *Streptococcus parasanguinis* virulence-associated fimA operon encoding an Muc24+-responsive metal repressor and pepO encoding a zinc metalloproteinase are not coordinately regulated. Infect Immun 70: 5796–5714.
15. Burnett-Carley D, Wells V, Vincent H, Munro CL, Fensco JC, et al. (1995) FimA, a major virulence factor associated with *Streptococcus parasanguinis* endocarditis. Infect Immun 63: 4669–4674.
16. Vincent HB, HR Maru CL, Burnett-Carley, Peterson DL, Macrina FL (1997) Immunization with FimA protects against *Streptococcus parasanguinis* operon encoding an Mn(2+)-responsive metal transporter and Fap1, a fimbriae-associated adhesin of *Streptococcus parasanguinis* fimA. J Bacteriol 173: 1617–1622.
17. Keule T, Reiss DJ, Barc JC, Pante WR, Facciotti MT, et al. (2009) Prevalence of transcription promoters within archaeal operons and coding sequences. Mol Syst Biol 5: 203.
18. Kasavuma Y, Hsu XG, Silva M, Huira H, Ezaki T (1995) Determination of 16S rDNA sequences of *Streptococcus mitis* and *Streptococcus gordoni* and phylogenetic relationships among members of the genus *Streptococcus*. Int J Syst Bacteriol 45: 408–408.
19. Nakagawa I, Kurokawa Y, Yamashita A, Nakata M, Tomiyasu Y, et al. (2003) Genome sequence of an M3 strain of *Streptococcus pneumoniae* reveals a large-scale genomic rearrangement in invasive strains and new insights into phage evolution. Genome Res 13: 1042–1055.
20. Yosoi P, Kille AO, Vijayarukaman MN (1991) Tsn253, the pneumococcal omega (cat tet) BM6001 element, is a composite structure of two conjugative transposons, Tsn251 and Tsn252. J Bacteriol 173: 1617–1622.
21. Kuipers OP, Beetham SF, De Ruyter PG, Luensk EJ, De Vos WM (1995) Autoregulation of nisin biosynthesis in *Lactococcus lactis* by signal transduction. J Bacteriol 270: 2732–2734.
22. Hyink O, Wescombe PA, Upton M, Ragland N, Burton JP, et al. (2007) Salivaricin A2 and the novel labanolic salivaricin B are encoded at adjacent loci on a 190-kilo-base transmissible megaplasmid in the oral probiotic strain *Streptococcus salivarius* K12. Appl Environ Microbiol 73: 1107–1113.
23. Martinez B, Fernandez M, Suarez JE, Rodriguez A (1999) Synthesis of lactococcin 972, a bacteriocin produced by *Lactococcus lactis* IPLA 972, depends on the expression of a plasmid-encoded biotrichic operon. Microbiology 145(Pt 11): 353–361.
24. Ramirez-Ronda CH (1978) Adherence of glucan-positive and glucan-negative streptococcal strains to normal and damaged heart valves. J Clin Invest 62: 805–814.
25. Ramirez-Ronda CH (1980) Effects of molecular weight of dextran on the adherence of *Streptococcus sanguinis* to damaged heart valves. Infect Immun 29: 1–7.
26. Mills J, Pulliam I, Dill L, Marzouk J, Wilson J, et al. (1984) Exopolysaccharide production by viridans streptococci in experimental endocarditis. Infect Immun 43: 359–367.
27. Morona JR, Morona R, Paton JC (1997) Characterization of the locus encoding the *Streptococcus pneumoniae* type 19 capsular polysaccharide biosynthetic pathway. Mol Microbiol 23: 751–763.
28. Roberts BS (1996) The biochemistry and genetics of capsular polysaccharide production in bacteria. Annu Rev Microbiol 50: 1262–1268.
29. Nakano S, Kusano, A, Osakada K, Ribeiro CK, Morona R, et al. (2003) Spe-independent global transcriptional control is induced by thiol-specific oxidative stress in *Bacillus subtilis*. Proc Natl Acad Sci U S A 100: 13605–13608.
30. Geisinger-Kroll C, Jelencics KE, Reipert S, Nagy E (2011) Analysis of the adc operon and manganese homeostasis in *Streptococcus gordonii* biofilm formation. J Bacteriol 193: 2507–2509.
