Table S1 Two significantly survival-related methylation sites in training dataset.

Probe ID	Chromosomal location	Gene symbol	CGI coordinate	Feature type	P value^a	Coef.^b	P value^b
cg003901	chr12:1322659 53–132265954	GALNT9	chr12:1322659 2–132266198	Island	5.69E-13	-6.733	2.16E-08
cg195988	chr13:1006739 38–100673939	TMTC4	chr13:10067407 5–100675469	N_Shore	1.36E-09	-7.902	5.22E-08

^a in univariate Cox regression analysis;
^b in multivariate Cox regression analysis;

Table S2 Results for Cox regression models of the two-CpG site signature and clinical factors as covariates.

Variables	Univariate Cox model				Multivariate Cox model			
	HR	95% CI	P-value	HR	95% CI	P-value		
Two-CpG signature	2.38	2.02-2.80	<0.0001	2.354	1.97-2.81	<0.0001		
Age	1.059	1.04-1.07	<0.0001	1.053	1.04-1.07	<0.0001		
Two-CpG signature	2.38	2.02-2.80	<0.0001	2.479	2.01-2.93	<0.0001		
Gender	0.925	0.65-1.32	0.665	0.657	0.45-0.95	0.024		
Two-CpG signature	2.38	2.02-2.80	<0.0001	2.153	1.82-2.55	<0.0001		
WHO grade	3.277	2.22-4.83	<0.0001	2.209	1.47-3.31	<0.0001		
Two-CpG signature	2.38	2.02-2.80	<0.0001	2.373	2.01-2.79	<0.0001		
Histologic subtype	0.761	0.60-0.97	0.026	0.915	0.73-1.15	0.448		
Two-CpG signature	2.38	2.02-2.80	<0.0001	2.372	1.59-3.53	<0.0001		
IDH status	5.521	2.06-14.79	0.0006	4.108	1.49-11.33	0.006		

Table S3 The ROC results of two-DNA methylation signature and other known biomarkers in the TCGA validation cohort.

Signature	AUC	95% CI of AUC	P value^a	Type	P value^b	Ref
Two-DNA methylation	0.908	0.84–0.97	2.72E-09	Methylation	This study	
21-mRNA	0.923	0.86–0.99	7.63E-10	Protein coding	0.624	¹
Seven-mRNA	0.716	0.59–0.85	1.66E-03	Protein coding	0.005	²
Gene/AI	Sensitivity	Specificity	P-value	Coding Type	p-value	
----------	-------------	-------------	----------	-------------	-----------	
Six-mRNA	0.776	0.65–0.90	6.30E-05	Protein	0.037	
Four-MRNA	0.833	0.71–0.95	1.00E-06	Protein	0.137	
Three mRNA	0.826	0.70–0.94	2.00E-06	Protein	0.122	
MGMT	0.507	0.37–0.64	0.924	Protein	< 0.001	
PD-1	0.726	0.60–0.85	1.03E-03	Protein	0.005	
PTEN	0.695	0.62–0.77	3.00E-05	Protein	< 0.001	
NFKB	0.653	0.52–0.79	0.026	Protein	< 0.001	
SHOX2	0.789	0.67–0.91	2.70E-05	Protein	0.043	
SERPINA5	0.841	0.75–0.93	7.20E-07	Protein	0.125	
TIMP1	0.835	0.72–0.95	1.05E-06	Protein	0.140	
NAMPT	0.838	0.74–0.94	8.95E-07	Protein	0.121	
GRN	0.671	0.54–0.80	0.013	Protein	0.001	
SERPINE1	0.779	0.67–0.89	5.00E-05	Protein	0.025	
six-CpG signature	0.947	0.88–1	7.01E-11	Methylation	0.802	
MGMT	0.822	0.72–0.92	3.00E-06	Methylation	0.078	
NDRG2	0.854	0.75–0.96	2.39E-07	Methylation	0.194	
PTEN	0.805	0.67–0.93	9.00E-06	Methylation	0.079	
PD-1	0.814	0.69–0.94	5.00E-05	Methylation	0.090	
cg12434587	0.63	0.47–0.78	0.058	Methylation	0.001	
cg12981137	0.695	0.56–0.83	0.004	Methylation	0.003	
cg27151711	0.799	0.66–0.93	1.30E-05	Methylation	0.077	
cg16523424	0.834	0.72–0.95	1.00E-06	Methylation	0.137	
cg04791822	0.780	0.64–0.92	4.40E-05	Methylation	0.053	
cg15509705	0.819	0.70–0.94	3.00E-06	Methylation	0.097	
Gender	0.504	0.37–0.64	9.58E-01	Clinical	< 0.001	
Age	0.835	0.73–0.94	1.00E-06	Clinical	0.005	
Grade	0.607	0.48–0.74	0.118	Clinical	< 0.001	
IDH1	0.809	0.56–1.00	5.40E-02	Clinical	0.225	
Subtype	0.554	0.41–0.70	4.68E-01	Clinical	< 0.001	
Radiation therapy	0.581	0.44–0.72	2.76E-01	Clinical	< 0.001	
Family history of cancer	0.521	0.35–0.70	8.11E-01	Clinical	< 0.001	

* a. in ROC analysis;
* b. in the statistical comparison (Z-test) between AUC value of corresponding signature and the two-DNA methylation signature.
Table S4: The ROC results of two-DNA methylation signature and other known biomarkers in the GSE104293 validation cohort.

Signature	AUC	95% CI of AUC	P value\(^a\)	Type	P value\(^b\)	Ref
Two-DNA methylation	0.736	0.62–0.85	1.81E-04	Methylation		This study
\textit{six-CpG signature}	0.686	0.56–0.81	0.064	Methylation	0.284	13
MGMT	0.634	0.50–0.76	0.042	Methylation	0.111	6
NDRG2	0.719	0.60–0.83	0.001	Methylation	0.145	14
PTEN	0.53	0.38–0.67	0.649	Methylation	0.137	15
PDCD1	0.589	0.45–0.72	0.176	Methylation	0.270	7
cg12434587	0.629	0.50–0.75	0.049	Methylation	0.031	16
cg12981137	0.641	0.51–0.77	0.031	Methylation	0.280	16
cg27151711	0.63	0.48–0.78	0.048	Methylation	0.130	11
cg16523424	0.68	0.54–0.81	0.006	Methylation	0.419	11
cg04791822	0.563	0.42–0.70	0.339	Methylation	0.015	11
cg15509705	0.681	0.54–0.82	0.006	Methylation	0.054	11
Gender	0.542	0.42–0.66	0.485	Clinical factor	0.011	
Age	0.529	0.40–0.65	0.629	Clinical factor	0.009	
Radiation therapy	0.558	0.44–0.68	0.34	Clinical factor	0.018	
MGMT status	0.551	0.43–0.67	0.401	Clinical factor	0.017	

\(^a\) in ROC analysis;
\(^b\) in the statistical comparison (Z-test) between AUC value of corresponding signature and the two-DNA methylation signature.
Figure S1. Workflow for the construction and validation of the DNA methylation prognostic signature.
Figure S2. Kaplan–Meier and ROC analyses of LGG patients in different sex groups. (A) Kaplan–Meier estimates of the patients’ OS for low- and high-risk patient, and the OS differences between two groups were determined by Log-rank test; (B) ROC curves show the sensitivity and specificity of the signature in predicting the OS of patients.
Figure S3. Kaplan–Meier and ROC analyses of LGG patients with different WHO grades. (A) Kaplan–Meier analysis with Log-rank test was performed to estimate the differences in OS between the low- and high-risk patients. (B) ROC curves of the signature were used to demonstrate the sensitivity and specificity in predicting the OS of patients.
Figure S4. Kaplan–Meier and ROC analyses of LGG patients with different histologic. (A) Kaplan–Meier estimates of the patients’ OS for low- and high-risk patient in different stage cohorts, and the OS differences between two groups were determined by Log-rank test; (B) ROC curves show the sensitivity and specificity of the signature in predicting the OS of patients.
Figure S5. Kaplan–Meier and ROC analyses of LGG patients with IDH1 mutation and wild-type. (A) Kaplan–Meier analysis with Log-rank was performed to estimate the differences in OS between the low- and high-risk patients. (B) ROC curves of the signature were used to demonstrate the sensitivity and specificity in predicting the OS of patients.
Figure S6. Kaplan–Meier and ROC analyses of LGG patients received adjuvant radiation therapy or not, respectively. (A) Kaplan–Meier analysis with Log-rank test was performed to estimate the differences in OS between the low- and high-risk patients. (B) ROC curves of the signature were used to demonstrate the sensitivity and specificity in predicting the OS of patients.
Figure S7. Kaplan–Meier and ROC analyses of LGG patients have family history of cancer. (A) Kaplan–Meier analysis with Log-rank was performed to estimate the differences in OS between the low- and high-risk patients. (B) ROC curves of the signature were used to demonstrate the sensitivity and specificity in predicting the OS of patients.
Figure S8. Correlation between two-DNA methylation risk score and ICB immunotherapy-related signature.

Figure S9. (A) KEGG and (B) Reactome pathway enrichment analysis result for genes that interacted with two genes in tour signature. The numbers of genes were represented by the length of the bars or the size of the dots, and the color of the bars/dots corresponds to the p-value according to legend.
Figure S10. (A-B) Correlation between the expression of the genes and their methylation levels was evaluated for each gene through the Pearson’s correlation test. Reported P values are two sided. (C-D) The expression of genes in pan-cancer.
Figure S11. Correlation between the expression of biomarkers from the two-DNA methylation prognostic biomarker and immune cell infiltration level in LGG.

Figure S12. (A) Kaplan–Meier analysis with Log-rank was performed to estimate the differences in OS between the G-CIMP + and G-CIMP- patients. Patients with G-CIMP+ had a favorable prognosis. (B) The violin plot of two-CpG site signature risk scores in G-CIMP + and G-CIMP- patients. Mann-Whitney U test was used to estimate the differences.
Figure S13. Kaplan–Meier and ROC analyses of individual DNA methylation in the training cohort. (A) Kaplan–Meier analysis with Log-rank was performed to estimate the differences in OS between the low- and high-risk patients. (B) ROC curves of the individual methylation signature were used to demonstrate the sensitivity and specificity in predicting the OS of patients.
Figure S14. Kaplan–Meier and ROC analyses of individual DNA methylation in the TCGA validation cohort. (A) Kaplan–Meier analysis with Log-rank test was performed to estimate the differences in OS between the low- and high-risk patients. (B) ROC curves of the individual methylation signature were used to demonstrate the sensitivity and specificity in predicting the OS of patients.
Additional references

1. Song LR, Weng JC, Huo XL, et al. Identification and validation of a 21-mRNA prognostic signature in diffuse lower-grade gliomas. J Neurooncol. Jan 2020;146(1):207-217.

2. Zeng F, Wang K, Liu X, Zhao Z. Comprehensive profiling identifies a novel signature with robust predictive value and reveals the potential drug resistance mechanism in glioma. Cell Commun Signal. Jan 6 2020;18(1):2.

3. Zhang M, Wang X, Chen X, Zhang Q, Hong J. Novel Immune-Related Gene Signature for Risk Stratification and Prognosis of Survival in Lower-Grade Glioma. Front Genet. 2020;11:363.

4. Deng X, Lin D, Chen B, et al. Development and Validation of an IDH1-Associated Immune Prognostic Signature for Diffuse Lower-Grade Glioma. Front Oncol. 2019;9:1310.

5. Zeng WJ, Yang YL, Liu ZZ, et al. Integrative Analysis of DNA Methylation and Gene Expression Identify a Three-Gene Signature for Predicting Prognosis in Lower-Grade Gliomas. Cell Physiol Biochem. 2018;47(1):428-439.

6. Binabaj MM, Bahrami A, ShahidSales S, et al. The prognostic value of MGMT promoter methylation in glioblastoma: A meta-analysis of clinical trials. Journal of cellular physiology. Jan 2018;233(1):378-386.

7. Rover LK, Gevensleben H, Dietrich J, et al. PD-1 (PDCD1) Promoter Methylation Is a Prognostic Factor in Patients With Diffuse Lower-Grade Gliomas Harboring Isocitrate Dehydrogenase (IDH) Mutations. EBioMedicine. Feb 2018;28:97-104.

8. Ma J, Benitez JA, Li J, et al. Inhibition of Nuclear PTEN Tyrosine Phosphorylation Enhances Glioma Radiation Sensitivity through Attenuated DNA Repair. Cancer cell. Mar 18 2019;35(3):504-518 e507.

9. Ius T, Ciani Y, Ruaro ME, et al. An NF-kappaB signature predicts low-grade glioma prognosis: a precision medicine approach based on patient-derived stem cells. Neuro Oncol. May 18 2018;20(6):776-787.

10. Zhang YA, Zhou Y, Luo X, et al. SHOX2 is a Potent Independent Biomarker to Predict Survival of WHO Grade II-III Diffuse Gliomas. EBioMedicine. Nov 2016;13:80-89.

11. Zeng WJ, Yang YL, Wen ZP, Chen P, Chen XP, Gong ZC. Identification of gene expression and DNA methylation of SERPINA5 and TIMP1 as novel prognostic markers in lower-grade gliomas. PeerJ. 2020;8:e9262.

12. Vachher M, Arora K, Burman A, Kumar B. NAMPT, GRN, and SERPINE1 signature as predictor of disease progression and survival in gliomas. J Cell Biochem. Apr 2020;121(4):3010-3023.

13. Yin AA, Lu N, Etcheverry A, et al. A novel prognostic six-CpG signature in glioblastomas. CNS Neurosci Ther. Mar 2018;24(3):167-177.

14. Skiriute D, Steponaitis G, Vaitkiene P, et al. Glioma Malignancy-Dependent NDRG2 Gene Methylation and Downregulation Correlates with Poor Patient Outcome. Journal of Cancer. 2014;5(6):446-456.

15. Wiencke JK, Zheng S, Jelluma N, et al. Methylation of the PTEN promoter defines low-grade gliomas and secondary glioblastoma. Neuro Oncol. Jul 2007;9(3):271-279.

16. Bady P, Sciuscio D, Diserens AC, et al. MGMT methylation analysis of glioblastoma on the Infinium methylation BeadChip identifies two distinct CpG regions associated with gene silencing and outcome, yielding a prediction model for comparisons across datasets, tumor grades, and CIMP-status. Acta Neuropathol. Oct 2012;124(4):547-560.