Anti-tuberculosis activity research of 5-(thiophen-2-ylmethyl)-4H-1,2,4-triazole-3-thiol

A. A. Safonov1,A–D, V. V. Zazharskyi2,A–C,E,F

1Zaporizhzhia State Medical University, Ukraine, 2Dnipro State Agrarian and Economic University, Ukraine

A – research concept and design; B – collection and/or assembly of data; C – data analysis and interpretation; D – writing the article; E – critical revision of the article; F – final approval of the article

Introduction. 1,2,4-Triazole derivatives have already proven themselves to be compounds with low toxicity and high antimicrobial, antifungal, antiviral, hepatoprotective activity.

The aim of work is to research the anti-tuberculosis activity of 5-(thiophen-2-ylmethyl)-4H-1,2,4-triazoles-3-thiol on the bacteria strain M. bovis.

Materials and methods. At the beginning of the experiment, the effect of the drug concentration and the pH of the medium on the growth rate of the culture at 37 °C was detected. M. bovis 100 passage was selected for this purpose, which was cultured at 37 °C with 5-(thiophen-2-ylmethyl)-4H-1,2,4-triazole-3-thiol at the indicated concentrations in a thermostat for 3 months on medium with pH 6.5 (ten test tubes with each medicine concentration) and pH 7.1 (ten test tubes with each medicine concentration). M. bovis 100 passage was used as a control without the addition of 5-(thiophen-2-ylmethyl)-4H-1,2,4-triazole-3-thiol to the medium.

Results. The results of the experiment show that the effect of the drug at different concentrations on the medium with a pH 6.5 same with pH 7.1.

Growth of pathogenic strain M. bovis 100 passages throughout the observation period (90 days) have been absence for all of the test (0.1 %, 0.5 % and 1.0 %) concentrations of 5-(thiophen-2-ylmethyl)-4H-1,2,4-triazoles-3-thiol.

Conclusion. It can be concluded that 0.1 %, 0.5 % and 1.0 % concentration of 5-(thiophen-2-ylmethyl)-4H-1,2,4-triazole-3-thiol influence on the culture properties pathogenic strain M. bovis, which cultured on the medium with pH 6.5 and pH 7.1 at 37 °C, while holding back growth, having a tuberculostatic effect.
Исследование противотуберкулезной активности 5-(тиофен-2-илметил)-4H-1,2,4-триazole-3-тиола

А. А. Сaffenов, В. В. Зажарский

Одной из основных проблем в современной оперативной и терапевтической медицине и фармации являются заболевания, вызванные микробными инфекциями. Производные 1,2,4-триазола зарекомендовали себя как соединения с низкой токсичностью и высоким противомикробным, противогрибковым, противовирусным, гепатопротекторным действием.

Цель работы — исследование противотуберкулезной активности 5-(тиофен-2-илметил)-4H-1,2,4-триazole-3-тиола на бактерии штамма M. bovis.

Материалы и методы. В начале опыта исследовали влияние концентрации препарата и рН среды на интенсивность роста культуры при температуре 37 °C. Для этого отбирали M. bovis 100 пассажа, который культивировали при температуре 37 °C с 5-(тиофен-2-илметил)-4H-1,2,4-триazole-3-тиолом в указанных концентрациях в терmostatе в течение 3 месяцев в среде с рН 6.5 (10 пробирок с каждой концентрацией препарата) и рН 7.1 (10 пробирок с каждой концентрацией препарата). В качестве контроля использовали M. bovis 100 пассажа без добавления к среде 5-(тиофен-2-илметил)-4H-1,2,4-триazole-3-тиола.

Результаты. Таким образом, 0,1 %, 0,5 % и 1,0 % концентрации 5-(тиофен-2-илметил)-4H-1,2,4-триazole-3-тиола активно влияют на культуральные свойства патогенного штамма M. bovis, культивируемого на среде с рН 6,5 и рН 7,1 при температуре 37 °C, сдерживая рост и развитие, обладая туберкулостатическими действиями.

Ключевые слова: 1,2,4-триазол, противотуберкулезная активность, гетероциклические соединения.

Актуальные вопросы фармацевтической и медицинской науки и практики. – 2019. – Т. 12, № 3(31). – С. 256–259
Table 1. Characterization of the cultural properties of *M. bovis* 100 passage, which cultured on medium with a pH 7.1 at 37 °C

Day of experience	Control	The concentration of 5-(thiophen-2-ylmethyl)-4H-1,2,4-triazole-3-thiol
7th day of experience	A rough raid	0.1 %: There is no growth, 0.5 %: There is no growth, 1.0 %: There is no growth
14th day of experience	Rough raid and single white colonies along the sowing line	0.1 %: There is no growth, 0.5 %: There is no growth, 1.0 %: There is no growth
30th day of experience	Solid growth, Smooth, small colonies of whitish color	Unchanged, Unchanged, Unchanged
60th day of experience	Solid growth, Smooth, small colonies of whitish color	0.1 %: There is no growth, 0.5 %: There is no growth, 1.0 %: There is no growth
90th day of experience	Solid growth	Unchanged, Unchanged, Unchanged

Table 2. Characterization of the cultural properties of 100 passages of *M. bovis*, which cultured on medium with a pH of 7.1 at 37 °C

Day of experience	Control	The concentration of the drug isoniazid
7th day of experience	Mucoid plaque	0.1 %: Mucoids plaque is yellow, 0.5 %: Mucoids plaque, 1.0 %: There is no growth
14th day of experience	Unchanged	Unchanged, Single smooth colonies, There is no growth
30th day of experience	Numerous colonies are white	Single colonies are whitish, Small colonies are white, There is no growth
60th day of experience	Solid growth, Smooth, small colonies of whitish color	The number of single small colonies increased slightly, Small colonies are white, There is no growth
90th day of experience	Solid growth	Solid growth, The number of single small colonies increased slightly, There is no growth

Table 3. Characterization of the cultural properties of *M. bovis* 100 passage, cultured on medium with pH 6.5 at 37 °C

Day of experience	Control	The concentration of 5-(thiophen-2-ylmethyl)-4H-1,2,4-triazole-3-thiol
7th day of experience	Single colonies along the sowing line	0.1 %: There is no growth, 0.5 %: There is no growth, 1.0 %: There is no growth
14th day of experience	Solid growth. Colonies are small, white, smooth	There is no growth, There is no growth, There is no growth
30th day of experience	Solid growth. Colonies are small, white, smooth	There is no growth, There is no growth, There is no growth
60th day of experience	Solid growth. Colonies are small, white, smooth	There is no growth, There is no growth, There is no growth
90th day of experience	Solid growth. Colonies are small, white, smooth	There is no growth, There is no growth, There is no growth

Table 4. Characterization of the cultural properties of 100 passages of *M. bovis* cultured on medium with pH of 6.5 with isoniazid at 37 °C

Day of experience	Control	The concentration of the medicine isoniazid
7th day of experience	Mucoid plaque	0.1 %: Single colonies are whitish, 0.5 %: A rough raid, 1.0 %: There is no growth
14th day of experience	Single colonies whitish color	Unchanged, Single smooth colonies, There is no growth
30th day of experience	Numerous colonies are white	Single colonies are whitish, Small colonies are white, Single small colonies along the sowing line
60th day of experience	Solid growth. Colonies are small, white, smooth	Growth of whitish, single smooth colonies, Growth of whitish, single smooth colonies, Unchanged
90th day of experience	Solid growth. Colonies are small, white, smooth	The number of single small colonies increased, The number of single small colonies increased, The number of single small colonies increased
Table 3 summarizes the data on the cultural properties of *M. bovis* 100 passage, which was cultured in a medium with pH 6.5, which contained 5-(thiophen-2-ylmethyl)-4H-1,2,4-triazole-3-thiol in three concentrations.

Until the 7th day of the experiment, the growth of all test cultures in the medium with pH 6.5 at 37 °C was not observed. The results of the experiment show that the effect of the substance at different concentrations on the medium with pH 6.5 and pH 7.1 are the same. It was marked lack of growth of pathogenic strain *M. bovis* 100 passages throughout the observation period (90 days) for all test (0.1 %, 0.5 % and 1.0 %) concentrations of 5-(thiophen-2-ylmethyl)-4H-1,2,4-triazole-3-thiol. Thus, it can be concluded that 0.1 %, 0.5 % and 1.0 % concentration of 5-(thiophen-2-ylmethyl)-4H-1,2,4-triazole-3-thiol actively influence the culture properties pathogenic strain *M. bovis* cultured on medium with pH 6.5 at 37°C, which holding back growth and having a tuberculostatic effect.

The low concentration (0.1 % and 0.5 %) of the medicine isoniazid on the medium with pH 6.5 and 7.1 at 37°C was not inhibited the growth of pathogenic *M. bovis* 100th passage unlike 5-(thiophen-2-ylmethyl)-4H-1,2,4-triazole-3-thiol. Thus, tables 1-4 had shown that 5-(thiophen-2-ylmethyl)-4H-1,2,4-triazole-3-thiol had higher anti-tuberculosis activity than the medicine isoniazid.

Conclusions

Thus, it can be concluded that 0.1 %, 0.5 % and 1.0 % concentration of 5-(thiophen-2-ylmethyl)-4H-1,2,4-triazole-3-thiol actively influence the culture properties pathogenic strain *M. bovis* cultured on medium with pH 6.5 at 37 °C, which holding back growth and having a tuberculostatic effect.

Information about authors:

Safonov A. A., PhD, Associate Professor, Department of Natural Sciences for Foreign Students and Toxicological Chemistry, Zaporizhzhia State Medical University, Ukraine.

Zazharskyi V. V., PhD, Associate Professor, Department of Epizootology and Infectious Diseases of Animals, Dnipro State Agrarian and Economic University, Ukraine.

Funding

The research was carried out within the SRV of Zaporizhzhia State Medical University “Synthesis, physical-chemical and biological properties of 3,4-disubstituted 3(5)-thio-1,2,4-triazole with antioxidant, antihypoxic, antimicrobial, cardiac and hepatoprotective activity” state registration number is 0118U007143 (2018–2023).

Conflicts of interest: authors have no conflict of interest to declare.

References

[1] El-Wahab, H., Abdel-Rahman H. M., Gamal-Eldin, S. A., & El-Genidy, M. A. (2011). Synthesis, biological evaluation and molecular modeling study of substituted 1,2,4-triazole-3-acetic acid derivatives. *Der Pharma Chemica*, 3(6), 540-552.

[2] Kaplaushenko, A. H., Sameluk, Yu. H., & Kucherlaviy, Yu. M. et al. (2016). Praktynye znachennia ta zastosuvannia pokhidnykh 1,2,4-triazoliv [Practical value and application of derivatives of 1,2,4-triazole]. Zaporizhzhia [in Ukrainian].

[3] Hulina, Yu., & Kaplaushenko, A. O. (2018). Synthesis, physical and chemical properties of 5-(1H-tetrazole-1-ylmethyl)-(4H-1,2,4-triazole-3-yli)acetic acids and its salts. *Zaporozhye medical journal*, 20(1), 105-109. doi: 10.14739/2310-1210.2018.1.12216

[4] Rud, A., Kaplaushenko, A., & Yurchenko, I. (2018). Synthesis, physical and chemical properties of 2-(5-(4H-thiazol-5ylmethyl)-4H-1,2,4-triazole-3-yli)acetic acids and its salts. *Zaporozhye medical journal*, 20(1), 105-109. doi: 10.14739/2310-1210.2018.1.12216

[5] Wu, J., Yin, L., Liu, Y., Zhang, H., Xie, Y., & Wang, R., et al. (2019). Synthesis, biological evaluation and QSAR studies of 1,2,4-triazole-5-substituted carboxylic acid biosoesters as uric acid transporter 1 (URAT1) inhibitors for the treatment of hyperuricemia associated with gout. *Bioorganic & Medicinal Chemistry Letters*, 29(3), 383-388. doi: 10.1016/j.bmcl.2018.12.036

[6] Hassan, A., Mohamed, N., Aly, A., Tawfek, H., Bräse, S., & Nieger, M. (2019). Eschmenosser-Coupling Reaction Furnishes Dicyanovinyl-3H-thione Derivatives. *Chemistry Select*, 4(2), 465-468. doi: 10.1002/slct.201802870

[7] Moreno-Fuquer, R., Arango-Daraviña, C., Becerra, D., Castillo, J., Kennedy, A., & Macias, M. (2019). Catalyst- and solvent-free synthesis of 2-fluoro-N-(3-methylsulfinyl-1H-1,2,4-triazol-5-yl)benzamide through a microwave-assisted Fries rearrangement: Key structural and theoretical studies. *Acta Crystallographica Section C Structural Chemistry*, 75(3), 359-371. doi: 10.1107/s2053239619002572

[8] Hulina, Yu., & Kaplaushenko, A. (2016). Synthez i fizyko-khimichni vlastystvi-(2-(5-(1H-tetrazol-1-ilmetyl)-4-R-4H-1,2,4-triazol-3-il)-atsetatnykh (propanoylo), 2- (4-(5-(1H-tetrazol-1-il)-1-il)-4-enil-4H-1,2,4-triazol-3-il)-benzonykh kysli to ykh soli [Synthesis and physical-chemical properties of 2-(5-(1H-tetrazole-1-ylmethyl)-4H-1,2,4-triazole-3-yl)-acetic (propanoic), 2- (4-(5-(1H-tetrazol-1-il)-1-il)-4-enil-4H-1,2,4-triazol-3-il)-yl-benzoylic acids and its salts]. Current issues in pharmacy and medicine: science and practice, 2(21), 32-37. doi: 10.14739/2409-2932.2016.2.71115 [in Ukrainian].

[9] Tang, Y., Yu, P., Huang, L., & Hu, Z. (2010). The changes of antifungal susceptibilities caused by the phenotypic switching of Candida species in 229 patients with vulvovaginal candidiasis. *Journal Of Clinical Laboratory Analysis*, 33(1), e22644. doi: 10.1002/jcla.22644

[10] Lindberg, E., Hammarström, H., Assolaihy, N., & Kondori, N. (2019). Species distribution and antifulfungal drug susceptibilities of yeasts isolated from the blood samples of patients with candidiasia. *Scientific Reports*, 9(1):3838. doi: 10.1038/s41598-019-42080-8

[11] Gaultier-Veyrat, E., Truffot, A., Bailly, S., Fonrose, X., Thiebaud-Bertrand, A., & Tonini, J., et al. (2019). Inflammation is a potential risk factor of voriconazole overdose in hematological patients. *Fundamental and Clinical Pharmacology*, 33(2), 232-238. doi: 10.1111/fcp.12422

[12] Johnstone, S., Puhalla, S., Wheatley, D., Ring, A., Barry, P., & Holcombe, C. et al. (2019). Randomized phase II study evaluating palbamcib in addition to letrozole as neoadjuvant therapy in estrogen receptor–positive early breast cancer: PALLET trial. *Journal Of Clinical Oncology*, 37(3), 178-189. doi: 10.1200/jco.2018.18.01624

[13] Mitwally, M., & Casper, R. (2001). Use of an aromatase inhibitor for induction of ovulation in patients with an inadequate response to clomiphene citrate. *Fertility And Sterility*, 75(2), 305-309. doi: 10.1016/s0015-0282(00)01705-2

[14] Rud, A.M., Kaplaushenko, A.G., Prugo, Yu.S., & Frolova, Yu.S. (2018). Vstanovleniia pokaznikiv diuretychno di (3-to-4-R-4H-1,2,4-triazol-5-il)(fenil) metanoliv ta yikh pokhidnykh [Establishment of diuretic activity indicators for (3-to-4-R-4H-1,2,4-triazol-5-yl)(phenyl) and their derivatives]. Current issues in pharmacy and medicine: science and practice, 2, 215-219. doi: 10.14739/2409-2932.2018.2.134004 [in Ukrainian].