Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide

Wei Bao1,2,3,*, Nicholas J. Borys1,2,*, Changhyun Ko3, Joonki Suh3, Wen Fan3, Andrew Thron1,2, Yingjie Zhang2,4, Alexander Buyanin2,5, Jie Zhang1, Stefano Cabrini1,2, Paul D. Ashby1,2, Alexander Weber-Bargioni1,2, Sefaattin Tongay3,6, Shaul Aloni1,2, D. Frank Ogletree1,2, Junqiao Wu2,3, Miquel B. Salmeron2,3 & P. James Schuck1,2

Two-dimensional monolayer transition metal dichalcogenide semiconductors are ideal building blocks for atomically thin, flexible optoelectronic and catalytic devices. Although challenging for two-dimensional systems, sub-diffraction optical microscopy provides a nanoscale material understanding that is vital for optimizing their optoelectronic properties. Here we use the ‘Campanile’ nano-optical probe to spectroscopically image exciton recombination within monolayer MoS2 with sub-wavelength resolution (60 nm), at the length scale relevant to many critical optoelectronic processes. Synthetic monolayer MoS2 is found to be composed of two distinct optoelectronic regions: an interior, locally ordered but mesoscopically heterogeneous two-dimensional quantum well and an unexpected ~300-nm wide, energetically disordered edge region. Further, grain boundaries are imaged with sufficient resolution to quantify local exciton-quenching phenomena, and complimentary nano-Auger microscopy reveals that the optically defective grain boundary and edge regions are sulfur deficient. The nanoscale structure–property relationships established here are critical for the interpretation of edge- and boundary-related phenomena and the development of next-generation two-dimensional optoelectronic devices.
The emergence of two-dimensional (2D) monolayer transition metal dichalcogenides (ML-TMDC) as direct bandgap semiconductors has rapidly accelerated the advancement of room temperature, 2D optoelectronic devices. However, the performance of the active ML-TMDC materials often falls far below theoretical expectations, particularly for critical factors such as carrier mobility and quantum yield. Overcoming such macroscopic limitations in lower-dimensional systems requires a nanoscale understanding of the materials. Central to 2D optoelectronic applications, light-matter interactions in ML-TMDCs are dominated by a manifold of tightly bound exciton states with remarkably strong absorption to 2D optoelectronic applications, light-matter interactions requires a nanoscale understanding of the materials. Central such macroscopic limitations in lower-dimensional systems confocal optical microscopy of the same flake (Fig. 1c). Spatial variations in the intensity (Fig. 2a) and emission energy (Fig. 2b) are observed across the flake in addition to a decrease in PL intensity near the edges. These trends are observed in all of the ML-MoS₂ flakes that were investigated in this study (Fig. 2c). Two distinct clusters are observed. By systematically segregating the data points into either an internal interior region or a peripheral edge region (see Supplementary Fig. 7 for details), we find that the brighter cluster of correlated data points (orange data points) belongs to the interior of the ML-MoS₂, while the significantly more scattered, dimmer cluster of points (blue data points) belongs to an ~300-nm peripheral edge region. In the interior, the intensity and energy of the PL are correlated, with the higher-energy emission tending to be brighter. Such behaviour is consistent with increased emission intensity from regions with reduced trion populations. In contrast, the emission energy of the PL from the edge region is more disordered, spanning nearly the entire range of emission energies at the lower emission intensities. Additionally, the spectral median alone cannot unambiguously unravel the underlying optoelectronic behaviour of the edge and interior regions. Thus, to further probe the behaviours observed in the correlation plot of Fig. 2c, the emission spectra are grouped by their total emission intensity into one of five equally spaced ranges spanning 1–6 kCts (ranges I, II, III, IV and V in Fig. 2c). For each intensity range, the emission spectra are summed, and the average spectrum is calculated as shown in Fig. 2d. For the interior and edge regions, respectively (see Supplementary Fig. 8 for alternative intensity ranges). In this manner, the spectral characteristics of bright areas to those of dim areas can be compared with significantly improved signal-to-noise ratios over the single-pixel data. In the interior, we confirm that the primary spectral difference between bright and dim regions is the relative intensity of the low-energy emission from the trion state (Fig. 1d). Dim areas exhibit enhanced relative trion emission, indicating that the local
Figure 1 | Nano-optical imaging of PL in ML-MoS₂. (a) Illustration of near-field excitation and collection of the PL from ML-MoS₂ using the Campanile near-field probe where the optical laser excitation (2.33 eV) and collection of sample emission are confined to the apex of the tip²⁸ to produce high-resolution optical maps. At each pixel a full PL spectrum is acquired. (b) Map of the PL emission intensity of a triangular ML-MoS₂ flake using the Campanile probe. The white dashed line indicates the flake boundary as determined from the shear-force topography. Scale bar, 1 μm. (c) An image of the same flake acquired with scanning confocal microscopy using a ×100, 0.7-NA objective. Scale bar, 1 μm. (d) Near-field nano-PL spectrum averaged over the spatial extent of the ML-MoS₂ flake. The emission contains two peaks arising from the radiative recombination from exciton (A) and trion (A⁻) states¹⁵. The dashed vertical line shows the position of the spectral median (SM) that splits the spectrum into equal amounts of high and low energy counts and is used to quantify spectral variations in the lower signal-to-noise spectra of individual spatial positions acquired during fast scans. All data were acquired under ambient conditions. NA, numerical aperture.

Figure 2 | Optoelectronic discrimination between edge and interior regions of ML-MoS₂. (a, b) Nano-PL images of emission intensity and SM (defined in Fig. 1d), respectively, of a single flake of ML-MoS₂. The dotted line marks the boundary between the interior of the flake and a ~300-nm wide periphery edge. Scale bars, 1 μm. (c) Emission intensity of each pixel plotted against its spectral median value for the interior (orange data points) and the edge regions (blue data points). Each data point in c corresponds to an emission spectrum recorded at a different position. The emission spectra from the interior and edges can be further grouped by their total emission intensity into one of five ranges (I, II, III, IV and V). (d) Averaged emission spectra of the interior data points for the intensity ranges II, III, IV and V (range I does not contain any interior data points) plotted on a normalized, semi-log scale for comparison. (e) Likewise, average emission spectra for the data points from the edge region for the intensity ranges I, II and III (ranges IV and V do not contain any data points from the edge region).
PL intensity inversely correlates with the population of trions. This behaviour likely arises from localized regions of increased carrier density that enhance the formation of trions and increase non-radiative Auger recombination, which reduces the local PL quantum yield15.

Surprisingly, the PL of the edge region does not exhibit systematic variations in the relative intensity of the trion. Instead, PL emission from dimmer areas in the edge region (range I, Fig. 2e) is broadened to higher energies, indicating that the edge region is substantially more disordered than the interior. Further, emission from lower-energy states is apparently favoured in the edge region. Such a spectral signature implies the edge forms a 2D mosaic of localized, inhomogeneously broadened emitters where excitations are funneled to low-energy sites similar to other mesoscopically disordered semiconductor systems such as organic conjugated polymers29 and quantum-dot solids30 (see Supplementary Note 4 for further discussion). It is clear that the edge region in synthetic MoS\textsubscript{2} is more complicated than just its atomic termination and a metallic edge state20,21,31. Because such disorder is foreseeably deleterious for carrier transport, it may also shed light on carrier mobility in MoS\textsubscript{2} where both hopping and band transport mechanisms have been reported11. Presumably, hopping mechanisms dominate in the disordered edge area as opposed to high mobility band transport in the interior. Future studies that combine nano-PL with scanning tunnelling microscopy (STM) or time-resolved spectroscopy will prove crucial in more precisely characterizing this critical edge region in ML-MoS\textsubscript{2}.

To confirm the excitonic nature of the optoelectronic variations of the interior region seen in Fig. 2, the spatial interplay between excitons and trions is explicitly resolved in a smaller region (0.5 × 4 μm; Fig. 3a) of the same MoS\textsubscript{2} flake in Fig. 3. Single-point spectra were recorded with improved signal to noise using a longer integration time, enabling reliable fitting of the exciton and trion peaks (Fig. 3b). The emission intensity of each position is plotted against the corresponding ratio of the exciton and trion intensities in Fig. 3c and confirms that increased trion formation correlates with reduced PL quantum yield in the interior of the flake. Further, Fig. 3d shows the distribution of the exciton–trion splitting, indicating an average value of ~36 meV for this sample. The energetic splitting of the two states is directly related to the sum of the trion-binding energy and the Fermi energy in the system15. Although the splitting appears to be relatively uniform spatially, subtle variations could still possibly be uncovered with even higher resolution measurements in the future. Further, the spread of the values (~3 meV) is similar to that observed by changing the Fermi energy via electrostatic gating15, envisaging studies that combine gating functionality with nano-PL characterization.

Excited-state quenching at grain boundaries. Whereas single-crystalline flakes of ML-MoS\textsubscript{2} can be anatomized into an interior and edge, disruptions to the crystalline structure can also occur during the CVD growth process. Isolated polycrystalline MoS\textsubscript{2} flakes can form intricate star-like structures while aggregates of

Figure 3 | Imaging spatial variations of the relative population and energetics of the A− trion. (a) A smaller region (dashed rectangular box) of the ML-MoS\textsubscript{2} flake from Fig. 2 is imaged with a longer pixel integration time (10 s) and reduced pixel density (100 nm per pixel) to increase the signal to noise of the near-field spectra. Scale bar, 1 μm. (b) Representative spectrum from a single pixel showing the improved signal-to-noise ratio of the 10 s pixel integration time of the slow scan compared with the 0.2 s pixel integration time of the fast scan (inset; covering the same spectral range as the main panel). The reduced noise of the slow scan enables fitting of the spectrum as a sum (black line) of peaks for the exciton state (A; red curve) and the trion state (A−; blue curve). The peak profiles are largely Lorentzian, but the best fits were achieved with a Voigt profile that convolves a pure Lorentzian with an underlying Gaussian distribution to account for inhomogeneous broadening effects. (c) PL emission intensity plotted against the exciton–trion ratio for each point in the interior (orange data points) and in the edge (blue data points) regions. (d) Statistical distribution and spatial distribution (inset) of the energetic separation between exciton and trion states.
flakes that merge during growth form complex polycrystalline patchworks. The resulting GBs can significantly alter the local optoelectronic properties of the flake interior. For example, some types of GBs are known to quench excitons, locally reducing the PL quantum yield, but the limited resolution of conventional optical microscopy fails to precisely resolve the quenching phenomena. In the confocal micro-PL (Fig. 4a) and Campanile nano-PL (Fig. 4b) maps of three MoS$_2$ flakes (labelled 1, 2 and 3) that merged during growth are compared. Although the confocal optical microscopy image (Fig. 4a) exhibits a mostly uniform PL intensity distribution within each flake, indicating a ‘high-quality’ sample, substantial nanoscale fluctuations are observed in the nano-PL image. Furthermore, a reduction in the PL intensity that corresponds to an exciton-quenching region marks the boundaries between flakes 1 and 2 as well as flakes 2 and 3. This effect is better resolved by the Campanile probe, more precisely quantifying the reduction in PL intensity.

In addition to these interflake GBs, three narrow regions where the PL is quenched by ~20% extending radially from the centre of flake 1 (also in flake 3 and others shown in the Supplementary Fig. 5) are also better resolved in the nano-PL map. Interestingly, these GBs do not seem to alter the energetics of the PL, as can be observed in the nano-PL map of the emission energy in Fig. 4c, which is mostly devoid of systematic variations in the vicinity of the intra- and interflake GBs.

The structural width of a GB is on the order of the atomic-scale lattice spacing, but acting as a non-radiative recombination centre, its optoelectronic width (that is, the size of the quenching region) will be enlarged due to exciton diffusion (~24 nm (ref. 19)), which itself can be locally enhanced by band bending or carrier-depletion zones. In the vicinity of GBs, a complex reduction of the electronic bandgap over nanoscale distances is observed with STM, which may also influence the exciton-quenching effect. Further, earlier STM work on MoS$_2$ has shown that an atomic metallic edge state is formed at the external boundary of the flakes, near edges that are S-deficient, consistent with previous results that show a ‘Mo-rich’ edge. Such S-deficient regions in MoS$_2$ suggest probable n-doping near these boundaries, and also are suspected to have a higher density of mid-gap trap states, which may contribute to the local reduction in PL quantum yield.

Discussion

The results that are presented here bridge STM investigations of the electronic structure of MoS$_2$ near GBs and edges to macroscopic optical imaging and spectroscopy measurements. In the vicinity of GBs, a complex reduction of the electronic bandgap over nanoscale distances is observed with STM, which may also influence the exciton-quenching effect. Further, earlier STM work on MoS$_2$ has shown that an atomic metallic edge state is formed at the external boundary of the flakes near edges that are S-deficient, consistent with previous results that show a ‘Mo-rich’ edge. Such S-deficient regions in MoS$_2$ suggest probable n-doping near these boundaries, and also are suspected to have a higher density of mid-gap trap states, which may contribute to the local reduction in PL quantum yield.
directly connecting these effects necessitates multimodal characterization using nano-PL techniques and STM on the same sample, which although challenging, is possible in principle and would be a very powerful study.

Altogether, our results provide a new insight into the rich optoelectronic properties of CVD-grown ML-MoS2 by resolving exciton relaxation processes with sub-diffraction resolution. Significant nanoscale heterogeneity is observed, and distinct optoelectronic systems corresponding to a pristine interior, disordered edges as well as intra- and interfacial GBs in synthetic ML-MoS2 are revealed. Disorder induced by the growth process can produce a mesoscopic edge region that is more complex than just a reconstruction of the crystalline interior. This region must be considered when interpreting edge-related phenomena and perhaps avoided when making edge-specific electrical contacts to ML-MoS2 in optoelectronic devices. Furthermore, the disordered edge region and GBs are expected to reduce device performance, especially carrier mobility and recombination efficiency. GBs are found to quench excitons over ~150 nm, providing an initial quantitative basis to estimate their effects in 2D optoelectronic devices. Such detailed information on the subtle variations in optoelectronic properties and their relationship to corresponding nanometer scale structure within synthetic ML-TMDs enhances the understanding of these materials, sets the stage for future multimodal nanoscale optoelectronic studies and will hopefully guide the future development of high-quality 2D materials and next-generation devices.

Methods

Sample growth. ML-MoS2 was grown on 100-nm SiO2/Si substrates via standard CVD growth procedures with MoO3 and precursors at 700 ◦C under continuous flow of N2. See Supplementary Note 1 for a detailed description of the growth process and Supplementary Fig. 1 for optical and Raman characterization.

Near-field and confocal PL imaging. Scanning near-field PL imaging was performed on a customized NT-MDT scanning near-field optical microscope in a shear-force configuration as fully described in Supplementary Note 2. The Campanile tips were scanned over the sample at a distance of ~5 nm. The excitation source was a linearly polarized 532-nm continuous wave laser. The PL emission was collected by the same Campanile structure and analysed with a spectrometer with a cooled charge-coupled device camera. The near-field imaging of the PL was performed on the same NT-MDT microscope in an upright confocal configuration with a ×100, 0.7-numerical aperture objective using the same 532-nm excitation source at 4.3 µW as measured at the back of the objective. The emission was collected and analysed by the same experimental setup as in the near-field measurements.

Campanile tip fabrication. The Campanile tip structures were fabricated at the end of an etched single-mode optical fibre as described in full detail in Supplementary Note 3. Scanning electron micrographs of the fabricated Campanile geometry are provided in Supplementary Fig. 3.

Nano-Auger microscopy. Nano-Auger electron spectroscopy was performed on an Oxford/Omnicon Nano-Auger system under ultra-high vacuum of 10−10 mbar. The size of the electron beam spot was ~10 nm. The typical uncertainty in the nano-Auger composition measurement is ~3%.

References

1. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).
2. Splendiani, A. et al. Emerging photocuminescence in monolayer MoS2. Nano Lett. 10, 1271–1275 (2010).
3. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nano Lett. 16, 147–150 (2011).
4. Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nano Lett. 7, 699–712 (2012).
5. Yin, Z. Y. et al. Single-Layer MoS2 phototransistors. ACS Nano 6, 74–80 (2012).
6. Ross, J. S. et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2, p-n junctions. Nat. Nanotechnol. 9, 268–272 (2014).
7. Sievekings, W. et al. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 514, 470–474 (2014).
8. Baugher, B. W. H., Churchill, H. O. H., Yang, Y. F. & Jarillo-Herrero, P. Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide. Nat. Nanotechnol. 9, 262–267 (2014).
9. Koppens, F. H. L. et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 9, 780–793 (2014).
10. Fiori, G. et al. Electronics based on two-dimensional materials. Nat. Nanotechnol. 9, 768–779 (2014).
11. Zhu, W. et al. Electronic transport and device prospects of monolayer molybdenum disulphide grown by chemical vapour deposition. Nat. Commun. 5, 3087 (2014).
12. Ye, Z. L. et al. Probing excitonic dark states in single-layer tungsten disulphide. Nature 513, 214–218 (2014).
13. Qiu, D. Y., da Jornada, F. H. & Louie, S. G. Optical spectrum of MoS2: many-body effects and diversity of exciton states. Phys. Rev. Lett. 111, 216805 (2013).
14. Chernikov, A. et al. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2. Phys. Rev. Lett. 113, 076802 (2014).
15. Mak, K. F. et al. Tightly bound trions in monolayer MoS2. Nat. Mater. 12, 207–211 (2013).
16. Tongay, S. et al. Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating. Nano Lett. 13, 2831–2836 (2013).
17. Fan, J., Qian, X. F., Huang, C. W. & Li, J. Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nat. Photonics 6, 865–871 (2012).
18. Liu, Z. et al. Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition. Nat. Commun. 5, 5246 (2014).
19. Van Der Zande, A. M. et al. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 12, 554–561 (2013).
20. Helveleg, S. et al. Atomic-scale structure of single-layer MoS2 nanoclusters. Phys. Rev. Lett. 84, 951–954 (2000).
21. Zhang, C., Johnson, A., Hsu, C. L., Li, I. & Shih, C. K. Direct imaging of band profile in single layer MoS2 on graphene: quasiparticle energy gap, metallic edge states, and edge band bending. Nano Lett. 14, 2443–2447 (2014).
22. Zhou, W. et al. Intrinsically structural defects in monolayer molybdenum disulphide. Nano Lett. 13, 2615–2622 (2013).
23. Najmaei, S. et al. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 12, 754–759 (2013).
24. Chen, J. et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 487, 77–81 (2012).
25. Fei, Z. et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82–85 (2012).
26. Fei, Z. et al. Electronic and plasmonic phenomena at graphene grain boundaries. Nat. Nanotechnol. 8, 821–825 (2013).
27. De Angelis, F. et al. Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons. Nat. Nanotechnol. 5, 67–72 (2010).
28. Rao, W. et al. Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging. Science 338, 1317–1321 (2012).
29. Laquai, F., Park, Y. S., Kim, J. J. & Basche, T. Excitation energy transfer in organic materials: from fundamentals to optoelectronic devices. Macromol. Rapid Commun. 30, 1203–1231 (2009).
30. Kagan, C. R., Murray, C. B., Nirmal, M. & Bawendi, M. G. Electronic energy transfer in CdSe quantum dot solids. Phys. Rev. Lett. 76, 1517–1520 (1996).
31. Yin, X. B. et al. Edge nonlinear optics on a MoS2 atomic monolayer. Science 344, 488–490 (2014).
32. Huang, Y. L. et al. Bandgap tunability at single-layer molybdenum disulphide grain boundaries. Nat. Commun. 6, 6298 (2015).
33. Xie, J. et al. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 135, 17881–17888 (2013).
34. Cui, X. et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat. Nanotechnol. 10, 534–540 (2015).

Acknowledgements

We thank Ed Wong for technical support, as well as our colleagues at the Molecular Foundry for stimulating discussion and assistance. P.I.S. thanks Prof. L. Cao for insightful discussion and direction. Work at the Molecular Foundry was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Material growth, preparation and nano-Auger characterization were supported by a NSF CAREER Award under Grant DMR-1059398.

Author contributions

W.B., N.I.B. and P.I.S. conceived the idea and initiated the project; S.T., W.F., J.S., C.K. and J.W. prepared the samples; W.B. fabricated the Campanile probes; W.B. and N.I.B.
conducted the near-field optical experiments; N.J.B. analysed the near-field optical data; C.K. and D.F.O. performed nano-Auger mapping; A.T., S.A., Y.Z., A.B., P.D.A. and J.Z. performed and assisted sample characterization; N.J.B., W.B., and P.J.S. prepared the manuscript; P.J.S. and M.B.S. supervised the project; all authors contributed to discussions and manuscript revision.

Additional information

Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

How to cite this article: Bao, W. et al. Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide. *Nat. Commun.* 6:7993 doi: 10.1038/ncomms8993 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/