The median of an exponential family and the normal law

Gérard Letac, Lutz Mattner, Mauro Piccioni

February 21, 2018

Abstract

Let P be a probability on the real line generating a natural exponential family $(P_t)_{t \in \mathbb{R}}$. We show that the property that t is a median of P_t for all t characterizes P as the standard Gaussian law $N(0, 1)$.

Keywords: Characterization of the normal laws, real exponential families, median of a distribution, Choquet-Deny equation.

MSC2010 classification: 62E10, 60E05, 45E10.

1 Introduction

Let P be a probability on the real line and assume that

$$L(t) = \int_{-\infty}^{+\infty} e^{tx} P(dx) < \infty \quad \text{for} \quad t \in \mathbb{R}. \quad (1)$$

Such a probability generates the natural exponential family

$$\mathcal{F}_P = \{ P_t(dx) = \frac{e^{tx}}{L(t)} P(dx), \; t \in \mathbb{R} \}.$$

Then it might happen that the natural parameter t of \mathcal{F}_P is always a median of P_t, in the sense of

$$P_t((-\infty, t)) \leq \frac{1}{2} \leq P_t((-\infty, t]) \quad \text{for} \quad t \in \mathbb{R}. \quad (2)$$

In the sequel we denote by \mathcal{P} the set of probabilities P such that (1) and (2) are fulfilled. A noteworthy example of an element of \mathcal{P} is the standard normal
distribution \(N(0, 1) \), for which \(L(t) = e^{t^2/2} \) and \(P_t = N(t, 1) \). It will turn out that it is the only one. The following preliminary lemmas simplify the study of \(P \).

Lemma 1. If \(P \in \mathcal{P} \), then \(P \) is absolutely continuous with respect to Lebesgue measure. As a consequence, we have equality throughout in (2).

Lemma 2. If \(P \in \mathcal{P} \), then its distribution function is strictly increasing.

If \(P \in \mathcal{P} \), then Lemma 1 allows us to write

\[
P(dx) = g(x)\varphi(x)dx,
\]

(3)

where \(g \) is some measurable non-negative function and \(\varphi(x) = e^{-x^2/2}/\sqrt{2\pi} \) denotes the standard normal density, and we will show that then \(g(x) = 1 \) a.e. to get:

Theorem 1. \(\mathcal{P} = \{ N(0, 1) \} \).

The proofs of the above results are contained in Section 2, followed by a conjecture and a further theorem.

2 Proofs

Proof of Lemma 1. The next paragraph shows that the distribution function of \(P \) is locally Lipschitz, and this implies the claimed absolute continuity, even with a locally bounded density, compare for example Royden and Fitzpatrick (2010, pp. 120–124).

For \(t \in \mathbb{R} \), multiplying in assumption (2) by \(L(t) \) yields

\[
h(t) := \int_{(-\infty, t]} e^{tx}P(dx) \geq \frac{1}{2} L(t) \geq \int_{(-\infty, t]} e^{tx}P(dx) = h(t^-).
\]

(4)

Hence, if \(A > 0 \) is given, then for \(s, t \) with \(-A \leq s < t \leq A \), we get

\[
P((s, t)) = \int_{(s,t)} e^{-tx}e^{tx}P(dx) \leq e^{A^2} \int_{(s,t)} e^{tx}P(dx)
\]

\[
= e^{A^2} \left(h(t^-) - h(s) + \int_{(-\infty, s]} (e^{sx} - e^{tx})P(dx) \right)
\]

\[
\leq e^{A^2} \left(\frac{1}{2}(L(t) - L(s)) + (t - s) \int_{\mathbb{R}} |x|e^{A|x|}P(dx) \right)
\]

\[
\leq c_A \cdot (t - s)
\]

for some finite constant \(c_A \). We have been using (4) and \(|e^u - e^v| \leq |u - v|e^w \) for \(|u|, |v| \leq w \) at the penultimate step. Using assumption (1), we rely at the ultimate step on local Lipschitzness of \(L \), due to its analyticity, and on finiteness of \(\int_{\mathbb{R}} |x|e^{A|x|}P(dx) \).

\(\square \)

Proof of Lemma 2. Assume to the contrary that there exist \(a, b \in \mathbb{R} \) with \(a < b \) and \(P((a,b)) = 0 \). Then, for \(t \in (a,b) \), Lemma 1 and (2) yield
\[
\int_{-\infty}^{a} e^{tx} P(dx) = \int_{-\infty}^{t} e^{tx} P(dx) = \int_{t}^{+\infty} e^{tx} P(dx) = \int_{b}^{+\infty} e^{tx} P(dx).
\]

Thus the two measures \(1_{(-\infty,a]}(x)P(dx) \) and \(1_{[b,+)P(dx)} \) have finite and identical Laplace transforms on some non-empty interval. Hence the two measures coincide, and hence \(P \) must be the zero measure, which is absurd. \(\square \)

Proof of Theorem 1. With the representation (3) for \(P \in \mathcal{P} \), assumption (2) is rewritten as
\[
\int_{-\infty}^{t} e^{tx} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} g(x) \, dx = 1 \int_{-\infty}^{+\infty} e^{tx} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} g(x) \, dx. \tag{5}
\]

We multiply both sides by \(e^{-t^2/2} \):
\[
\int_{-\infty}^{t} e^{-\frac{(t-x)^2}{2}} \frac{1}{\sqrt{2\pi}} g(x) \, dx = \frac{1}{2} \int_{-\infty}^{+\infty} e^{-\frac{(t-x)^2}{2}} \frac{1}{\sqrt{2\pi}} g(x) \, dx. \tag{6}
\]

In other terms the unknown function \(g \) satisfies
\[
\int_{-\infty}^{+\infty} \text{sign} (t-x) \varphi(t-x) g(x) \, dx = 0 \tag{7}
\]
for all \(t \in \mathbb{R} \). A formal derivation of (7) in \(t \), using the product rule under the integral, and with one derivative being twice a delta function, leads to the equation
\[
g(t) = \int_{-\infty}^{+\infty} q(t-x) g(x) \, dx \tag{8}
\]
a.e. in \(t \), where \(q(y) := \frac{1}{2} |y| e^{-\frac{y^2}{2}} \) is a probability density, but instead of justifying this formal differentiation, it seems easier to start by computing the derivative of
\[
h(t) := \int_{-\infty}^{t} e^{tx} P(dx).
\]

By Lemma 2 the distribution function \(F \) of \(P \) has a continuous inverse \(F^{-1} \). Using the quantile transform we have
\[
h(t) = \int_{0}^{1} 1_{(F^{-1}(u) \leq t)}(u) e^{tF^{-1}(u)} \, du = \int_{0}^{F(t)} e^{tF^{-1}(u)} \, du = H(F(t), t)
\]
with \(H(s,t) := \int_{0}^{s} e^{tF^{-1}(u)} \, du \) for \(s \in (0,1) \) and \(t \in \mathbb{R} \). Now \(H \) has continuous partial derivatives \(H_1(s,t) = e^{tF^{-1}(s)} \) and \(H_2(s,t) = \int_{0}^{s} F^{-1}(u)e^{tF^{-1}(u)} \, du \), due to the
continuity of F^{-1}, and hence H is differentiable. Let f be a Lebesgue density of P. Then, at every t where $F'(t) = f(t)$, and hence at Lebesgue-a.e. t, the chain rule yields

$$h'(t) = H_1(F(t), t)f(t) + H_2(F(t), t) = e^{t^2}f(t) + \int_0^{F(t)} F^{-1}(u)e^{tF^{-1}(u)} \, du$$

$$= e^{t^2}f(t) + \int_{-\infty}^{t} xe^{tx}f(x) \, dx.$$

Thus differentiating the identity (5) and observing that $f(x) = g(x)\varphi(x)$ we obtain the following a.e.-identity

$$\frac{1}{\sqrt{2\pi}}e^{t^2/2}g(t) + \int_{-\infty}^{t} xe^{tx-x^2/2} \frac{1}{\sqrt{2\pi}}g(x) \, dx = \frac{1}{2} \int_{-\infty}^{\infty} xe^{tx-x^2/2} \frac{1}{\sqrt{2\pi}}g(x) \, dx,$$

and multiplying the latter by $\sqrt{2\pi}e^{-t^2/2}$ gives

$$g(t) = \frac{1}{2} \left(\int_{t}^{\infty} xe^{-(t-x)^2/2}g(x) \, dx - \int_{-\infty}^{t} xe^{-(t-x)^2/2}g(x) \, dx \right).$$

Adding to the right hand side above the quantity

$$0 = \frac{t}{2} \left(\int_{-\infty}^{t} e^{-(t-x)^2/2}g(x) \, dx - \int_{t}^{\infty} e^{-(t-x)^2/2}g(x) \, dx \right)$$

(recall (6)) yields the desired (8).

Next, with the (positive) Radon measures $\mu(dx) := g(x)dx$ and $\sigma(dx) := q(x)dx$, equation (8) can be rewritten as the so-called Choquet-Deny equation $\mu = \mu * \sigma$. Observe that $t \mapsto \int_{-\infty}^{\infty} e^{tx}\sigma(dx)$ is even and strictly convex, and is therefore equal to 1 only at $t = 0$. We can now use the results in section 6 of Deny (1960), where “$n > 1$” is evidently a misprint for “$n \geq 1$”, to conclude that μ has to be a positive scalar multiple of the Lebesgue measure. Since g is a probability density with respect to a probability measure, we have $g = 1$ a.e., and the theorem is proved.

Finally, it is worthwhile to mention a natural conjecture about exponential families which seems harder to establish:

Conjecture. Suppose that the probability P satisfies (1), and denote $m(t) := \int_{\mathbb{R}} xP_t(dx)$. If for all t real $m(t)$ is a median of P_t, then $P = N(m, \sigma^2)$ for some m and σ.

This conjecture, which is probably more meaningful from a methodological point of view than the result established in the paper, does not translate in a neat harmonic analysis statement as (7) and (8) and as such it seems harder to establish. The next simple result offers some support to the conjecture. A probability Q on \mathbb{R}^n is said to be symmetric if there exists some $m \in \mathbb{R}^n$ such that $X - m \sim m - X$ when $X \sim Q$.

4
Theorem 2. Let P be a probability on \mathbb{R}^n such that

$$L(t) = \int_{\mathbb{R}^n} e^{\langle t,x \rangle} P(dx)$$

is finite for all $t \in \mathbb{R}^n$. Assume that for all $t \in \mathbb{R}^n$ the probability $P_t(dx) = e^{\langle t,x \rangle} P(dx)/L(t)$ is symmetric. Then P is normal.

Proof. Clearly $m(t) = \int_{\mathbb{R}^n} xP_t(dx) = L'(t)/L(t)$ exists and, since P_t is symmetric, $X_t - m(t) \sim m(t) - X_t$ when $X_t \sim P_t$. Therefore its Laplace transform

$$s \mapsto \mathbb{E}(e^{\langle s,X_t-m(t) \rangle}) = e^{-\langle s,m(t) \rangle \frac{L(t+s)}{L(t)}}$$

does not change when we replace s by $-s$. Considering the logarithm and taking the derivative in s we get $2m(t) = m(t+s) + m(t-s)$. Taking again the derivative in s we get $m'(t+s) = m'(t-s)$ for all $t, s \in \mathbb{R}^n$, which means that m' is constant, hence log L is polynomial of degree at most 2, and hence P is normal.

3 References

DENY, J. (1960). Sur l’équation de convolution $\mu = \mu * \sigma$. Séminaire Brelot-Choquet-Deny (Théorie du Potentiel) 4e année, 1959-60, Exposé numéro 5. http://www.numdam.org/article/SBCD_1959-1960__4__A5_0.pdf

ROYDEN, H.L. and FITZPATRICK, P.M (2010). Real Analysis. Fourth edition, Prentice-Hall.