The Difference of The Enhancement of Students’ Mathematical Disposition as an Impact of ARCS-based Learning Model and Conventional Approach

E Syahputra, E Surya and P D Putra
Universitas Negeri Medan, Jl. Willem Iskandar Medan Estate

E-mail: edisyahputra01.es@gmail.com

Abstract This study aims to identify the enhancement of Students’ Mathematical Disposition as an impact of ARCS-Based Learning Model approach. The learning model based on Attention, Relevance, Confidence and Satisfaction (ARCS) theory. This study is a quasi experimental study. The study sample consisted of 76 students from 2 classes mathematics in the seventh semester in Universitas Negeri Medan. Instrument used in this study is mathematical disposition scale. Data were analyzed using Mann Withney, ttest, correlation analysis, one way and two way ANOVA followed by posthoc test. The result showed that the enhancement of students disposition of high initial ability group is significantly higher than middle and low initial ability group. This shows that ARCS-Based Learning Model provides the highest enhancement of students’ mathematical disposition in the high initial ability group compared to the middle and low ones. Overall, based on students initial ability, ARCS-Based Learning Model approach is significantly able to enhance students’ mathematical disposition.

Keywords: ARCS-based learning model, students’ mathematical disposition.

1. Introduction
At the end of every exam, there is always a problem of students’ lack of confidence in their own abilities. When facing the exam, students are very anxious, especially in mathematics. Students have no confidence. They trust answers that they get instantly from texts or other unusual ways more than themselves. This indication can be seen by number of leaks and dishonesty of students in each exam. Some students are not sure they can successfully learn mathematics. Mathematics disposition is an attitude and tendency that shows interest in mathematics, confidence to solve mathematics problems, dare to communicate ideas, and have perseverance to do mathematics tasks. [1] stated that mathematical disposition is an attraction towards mathematics, self-confidence, pleased by mathematics, and diligently working on mathematics tasks. Mathematical disposition is very important since it can develop self-confidence and improve students’ achievement motives. This is in accordance with opinions by [2-6] that essentially said that from affective aspect, having mathematical power and disposition and high mathematical reading abilities give students opportunity to develop self-confidence, increase achievement motives, appreciate the beauty and regularity of mathematics and respect different rational reasons.

Furthermore, [7-9] stated, developing mathematical power, disposition and reading abilities become increasingly important when connected with demands of science and technology progress and more competitive atmosphere of graduates at every school level. In NCTM (1989), there are 10
curriculum standards and evaluations for school mathematics. One standard that must be fulfilled is mathematical disposition. To assess students’ mathematical disposition can be done through a questionnaire that traces information about students’ attitudes regarding following matters:

a) Show self-confidence in learning mathematics (Confidence)
b) Show perseverance in solving mathematical problems (Perseverance)
c) Show flexibility in exploring mathematical ideas (Flexibility)
d) Show high curiosity in learning mathematics (Curiosity, Interest)
e) Able to apply mathematics in daily life (Application)
f) Do reflection to monitor mathematics learning (Reflection)
g) Show cooperative attitude and respect for others in learning mathematics (Appreciation)

[10] essentially stated that more than 50% students see mathematics an uninteresting memorization lessons. Moreover, [11] said most students don’t like mathematics and 40% of them feel frustrated. Meanwhile, [12] stated that students show high motivation learning mathematics if they use computer so they can enjoy learning situation with excitement. This condition shows well-designed learning methods can enhance students’ mathematical disposition. Based on those opinions above, learning method seems to hold significant role to improve students’ mathematical disposition. Therefore, perhaps, ARCS based learning model approach could be applied to enhance students’ mathematical disposition.

2. Method

2.1 Research Design
This study is a quasi-experiment research using pretest-posttest control group design. The research design is:

\[
\begin{align*}
O_1 & \quad X_1 & \quad O_2 \\
O_1 & \quad X_2 & \quad O_2
\end{align*}
\]

\(X_1\) is learning process using ARCS based learning model
\(X_2\) is conventional approach
\(O_1\) is initial mathematical disposition
\(O_2\) is end mathematical disposition

Linier model of this research is:

\[Y_{ijk} = \tau + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \epsilon_{ijk}; \quad i = 1, 2, 3; \quad j = 1, 2; \quad k = 1, 2, ..., 76.\]

\(Y_{ijk}\) = k student’s mathematics disposition score, in i-th IMA, with j-th learning model.
\(\tau\) = mathematics disposition average score (without treatment)
\(\alpha_i\) = additive effect of i-th IMA
\(\beta_j\) = additive effect of j-th learning model
\((\alpha\beta)_{ij}\) = interaction effect of i-th IMA and j-th learning model
\(\epsilon_{ijk}\) = effect of experimental deviation from the score of k-th student, in i-th IMA, with j-th learning model.

Statistic hypotheses that will be tested are:

\(H_0: \alpha_1 = \alpha_2 = \alpha_3 = 0\) \quad opponent
\(H_1:\) one of \(\alpha_i \neq 0; \quad i = 1, 2, 3\)
\(H_0: \beta_1 = \beta_2 = 0\) \quad opponent
\(H_1:\) one of \(\beta_i \neq 0; \quad i = 1, 2, 3\)
\(H_0: (\alpha\beta)_{ij} = 0\) \quad opponent

\(H_1:\) at least one pair of: \((\alpha\beta)_{ij} \neq 0; \quad i = 1, 2, 3; \quad j = 1, 2\)

2.2 Population and Sample
Population of this research is 6 classes mathematics students in the seventh semester in Universitas Negeri Medan, while sample of this research is two classes in the seventh semester.

3. Result and Discussions

Analysis data in this research was comparing N-gain of students’ mathematical disposition from experiment class and N-gain of students’ mathematical disposition from control class using analysis of variants. Post Hoc Test was done to identify which pair of IMA affected student’s mathematical disposition the most. Data processing was done using SPSS program 17.0 version. Table 1 shows that average score of students’ mathematical disposition before ARCS based learning model and conventional learning (CL) applied is relatively similar, but after the learning is done, there are various enhancement of student’s mathematical disposition. Those variations can be seen from average score of N-gain (5th column).

Table 1. Initial score, final score and enhancement of students’ mathematical disposition (SMD) of two learning approaches

Class	Learning approach	Initial Mathematics Ability (IMA)	Average of students’ Mathematical disposition (SMD)	Significance		
		Initial	Final	N-Gain		
B	ARCS	High	96,19	109,17	0,21	significant
		Medium	94,95	106,87	0,18	significant
		Low	93,83	104,80	0,17	significant
C	Conventional learning	High	95,89	101,67	0,09	significant
		Medium	93,69	99,78	0,09	significant
		Low	90,57	100,43	0,11	significant

ARCS is learning model approach based on Attention, Relevance, Confidence and Satisfaction

IMA is initial mathematics ability

Based on the results of the research stated above shows that the application of ARCS learning model can improve students’ mathematical disposition. The ARCS learning model is a learning model that provides opportunities for students to discuss and exchange ideas with their coworkers to find solutions to problems that are given with guidance received from the lecturer. ARCS learning model is a method where students determine for themselves what information they can receive from a problem. Table 2 shows differences and interaction between learning approaches and initial mathematics ability towards enhancement of students’ mathematical disposition.

Table 2. Differences and interaction between learning approaches and initial mathematics ability (IMA) towards enhancement students’ mathematical disposition

Sources of variation	Number of squares	df	Average of squares	F	Sig	Decision
Learning approaches	0,377	1	0,377	17,37	0,00	H0 rejected
IMA	0,015	2	0,0075	0,345	0,160	H0 accepted
Interaction	0,017	2	0,0085	0,391	0,127	H0 accepted
Error	1,50	69	0,027			
Total	6,28	75				

In table 2, it can be seen that there are significant differences of enhancement of students’ mathematical disposition based on the learning approaches. It means that ARCS approach provides a more significant enhancement of students’ mathematical disposition than the other approach. But, the
enhancement is not significantly different considered from initial mathematics ability (IMA) and interaction between them. In other words, learning approaches offer an effect towards the enhancement of students’ mathematical disposition, meanwhile initial mathematics ability (IMA) and interaction between learning approaches and initial mathematics ability (IMA) don’t offer a significant enhancement. Figure 1 shows the difference average score of enhancement of students’ mathematical disposition taught by ARCS approach and Conventional Learning (CL).

![Figure 1. The difference average score of enhancement of students’ mathematical disposition based on interaction between groups of IMA and learning approach (CL).]

The enhancement of students’ mathematical disposition is higher on high level of IMA compare to medium or low ones. It shows that ARCS approach offers the highest improvement on high level IMA students. To find out the pair of most dominant groups of IMA (high, medium, low) towards the enhancement, we used the post hoc test using two ways ANOVA. Summary of the result can be seen in table 4. From table 3, it can be seen that probability score (sig) for the difference of the enhancement of high and medium level IMA students are 0.072, lower than 0.5, so it can be concluded that H_0 is rejected.

Between The Groups Of IMA	Difference of Average	Deviation Standard	Sig	Decision
High – Medium	0.072	0.020	0.001	H_0 rejected
High – Low	0.074	0.031	0.017	H_0 rejected
Medium – Low	0.002	0.026	0.931	H_0 accepted

H_0: there is no significant difference of enhancement of students’ mathematical disposition between groups of IMA

The rejection of H_0 also happens between high – low level of IMA. It means that there is significant difference of enhancement of students’ mathematical disposition between high – medium level of IMA and also between high – low level of IMA. Meanwhile between medium – low level of IMA there is no significant difference.

Based on the results of the research stated above shows that the application of ARCS learning model can improve students’ mathematical disposition. The ARCS learning model is a learning model that provides opportunities for students to discuss and exchange ideas with their coworkers to find solutions to problems that are given with guidance received from the teacher. ARCS learning model is a method where students determine for themselves what information they can receive from a problem. To strengthen the results of the study, researchers compared with relevant previous research conducted by [13-16], "draws the conclusion that the ARCS method can improve the quality of science learning materials mathematical statistics. The application of ARCS learning model can improve students'
mathematical disposition. This is evidenced by [17-22], the achievement of students’ mathematical disposition in natural science subjects.

Based on the description above, it can be concluded that the ARCS learning model is an alternative that can be used in improving students’ mathematical disposition, especially the material mathematical statistics in a class mathematics in the seventh semester. Because the indicators of success in this study have been achieved, the objectives of this study have been reached. Thus based on the results of observations and tests of students mathematical disposition it can be concluded that the application of ARCS models can improve students’ mathematical disposition on the material mathematical statistics [23].

4. Conclusion
Based on the result and discussion described above, it can be concluded that the learning process using ARCS approach can enhance students’ mathematical disposition overall, either based on class category or students’ initial mathematics ability. Besides that, learning with ARCS approach offers a very significant effect towards the enhancement of students’ mathematical disposition.

Acknowledgments
I would like to say a special thank you for Mr. Yosua Sabandar for helping to read and correct this research manuscript. I also say thank you to the head of State University of Medan who gave me a chance to do this research and publish the result in an article form.

References
[1] Park H S 2006 Gender difference in mathematical disposition of middle school students in Korea. (Korea: Seowon University)
[2] Sumarmo U 2006 Mathematical reading ability learning on junior high school students (Bandung: FPMIPA-UPI)
[3] Chacon I M 2008 Student’s attitudes to mathematics and technology comparative study between the United Kingdom and Spain (London: City University)
[4] Facione P A 2000 The disposition towards critical thinking: Its character, measurement and relationship to critical thinking skill, Journal of Informal Logic Santa Clara University 20 1 pp:61-84
[5] Mardapi D 2010 Students have no confidence quoted from a news on RCTI (27-4-2010)
[6] Syahputra E 2014 Increasing of students’ achievement in polynomial by using jigsaw method, Journal of Education and Practice 55 pp:175-182
[7] Saraghi S H, Syahputra E and Syafari 2018 Development of learning devices through knisley mathematical learning model to improve mathematical understanding and disposition ability of class VII SMP Swasta Tamora 2 American Journal of Educational Research 6 11 pp 1522-1530
[8] Simbolon K Tand Syahputra E 2019 Analysis of students’ problem solving ability and mathematical disposition on Yapim Taruna Marelans High School Master’s Thesis (Universitas Negeri Medan)
[9] Putri S K, Hasratuddin and Syahputra E 2019 Development of learning devices based on realistic mathematics education to improve students’ spatial ability and motivation. International Electronic Journal of Mathematics Education 14 2 pp 393-400
[10] Schackow 2005 High school student’s attitudes toward mathematics (Academic Exchange Quarterly)
[11] Fiti S, Syahputra E and Syahputra H 2019 Blended learning rotation model of cognitive conflict strategy to improve mathematical resilience in highschool students International Journal of Scientific and Technology Research 9 12 pp 80-87
[12] Jumaisyaroh T, Napitupulu E Eand Hasratuddin 2014 Peningkatan kemampuan berpikir kritis matematik dan kemandirian belajar siswa SMP melalui pembelajaran berbasis masalah Master’s Thesis (Universitas Negeri Medan)
[13] Syahputra E and Utami D R 2019 The design of IQF-oriented ARCS-based learning model., IOP Conf. Series: Journal of Physics: Conf. Series1315012065

[14] Sister D, Syahputra E and Sinaga B 2020 Analysis of students’ difficulties in mathematical creative thinking on problem-based learning model International Journal of Scientific and Technology Research9 03 pp 3842-3845

[15] Napitupulu W R, Syahputra E, and Sinaga, B. 2020 Development of learning devices based on problem-based learning assisted adobeflash CS 11 to improve combinatoric ability students”, International Journal of Scientific and Technology Research, vol.9, no.02, p: 2219-2227.

[16] Syahputra E, Surya E and D R Utami 2020 Mathematical statistics learning model based on the Indonesian National Qualification Framework. IOP Conf. Series: Journal of Physics: Conf. Series1613 012048.

[17] Syahputra E 2013 The increase of students spatial ability through realistic mathematical application Cakrawala Pendidikan3, pp 353-354

[18] Noviani J, Syahputra E and Murad A 2017 The effect of realistic mathematical education (RME) In improving primary school students’ spatial ability in subtopic two dimension shape Journal of Education and Practice8 34 pp 112-126

[19] Tanjung D F, Syahputra E, Irvan 2020 Problem based learning discovery learning and open ended models: an experiment on mathematical problem solving ability. Jurnal Teori dan Aplikasi Matematik4 1 pp 9-16

[20] Desania F, Sinaga B, Lubis A, Syahputra E 2020 Analysis of students’ critical thinking skills through problem-based learning approach using HOTS questions in SMA N 13 Medan. International Journal Of Scientific & Technology Research 903 pp 131-137

[21] Lubis W A, Ariswoyo S, Syahputra E 2020 Kemampuan pemecahan masalah matematika melalui pendekatan pendidikan matematika realistik dan pendekatan penemuan terbimbing berbantuan autograph. EDUMATIKA: Jurnal Riset Pendidikan Matematika 3 1 pp 1-12

[22] Surya E, Purba C, Syahputra E, Haris D, Mukhtar, Sinaga B 2020 Batak Toba culture on mathematics learning process at Medan high school., Journal of Physics: Conference Series 1613 012063

[23] Kartika Y, Wahyuni R, Sinaga B, Rajagukguk J. Improving Math Creative Thinking Ability by using Math Adventure Educational Game as an Interactive Media. Journal of Physics: Conference Series 2019 Jul.1179, No. 1, p. 012078. IOP Publishing.