A new pancreaticojejunostomy technique: A battle against postoperative pancreatic fistula

Stylianos Katsaragakis, Andreas Larentzakis, Sotirios-Georgios Panousopoulos, Konstantinos G Toutouzas, Dimitrios Theodorou, Spyridon Stergiopoulos, Georgios Androulakis

Stylianos Katsaragakis, Andreas Larentzakis, Sotirios-Georgios Panousopoulos, Konstantinos G Toutouzas, Dimitrios Theodorou, Spyridon Stergiopoulos, Georgios Androulakis, 1st Department of Propaedeutic Surgery, Athens Medical School, Hippocratio Athens General Hospital, University of Athens, 11527 Attiki, Greece

Author contributions: Katsaragakis S conceived the idea, revised the manuscript and performed the majority of the procedures; Larentzakis A, Panousopoulos SG and Toutouzas KG assisted in the majority of the performed procedures and made a substantial contribution to the design, data acquisition and interpretation, as well as to the manuscript drafting and writing; Theodorou D, Stergiopoulos S and Androulakis G contributed to the data analysis and revision of the manuscript; all the authors gave their final approval of the version to be published.

Correspondence to: Andreas Larentzakis, MD, PhD, 1st Department of Propaedeutic Surgery, Athens Medical School, Hippocratio Athens General Hospital, University of Athens, No 11, 3rd September 1843 str., Egaleo, 11527 Athens, Greece. alarentz@med.uoa.gr

Telephone: +30-210-5909561 Fax: +30-210-5909561
Received: January 23, 2013 Revised: April 23, 2013
Accepted: May 8, 2013
Published online: July 21, 2013

Abstract

AIM: To present a new technique of end-to-side, duct-to-mucosa pancreaticojejunostomy with seromuscular jejunal flap formation, and insertion of a silicone stent.

METHODS: We present an end-to-end, duct-to-mucosa pancreaticojejunostomy with seromuscular jejunal flap formation, and the insertion of a silicone stent. This technique was performed in thirty-two consecutive patients who underwent a pancreaticoduodenectomy procedure by the same surgical team, from January 2005 to March 2011. The surgical procedure performed in all cases was classic pancreaticoduodenectomy, without preservation of the pylorus. The diagnosis of pancreatic leakage was defined as a drain output of any measurable volume of fluid on or after postoperative day 3 with an amylase concentration greater than three times the serum amylase activity.

RESULTS: There were 32 patients who underwent end-to-side, duct-to-mucosa pancreaticojejunostomy with seromuscular jejunal flap formation. Thirteen of them were women and 19 were men. These data correspond to 40.6% and 59.4%, respectively. The mean age was 64.2 years, ranging from 55 to 82 years. The mean operative time was 310.2 ± 40.0 min, and was defined as the time period from the intubation up to the extubation of the patient. Also, the mean time needed to perform the pancreaticojejunostomy was 22.7 min, ranging from 18 to 25 min. Postoperatively, one patient developed a low output pancreatic fistula, three patients developed surgical site infection, and one patient developed pneumonia. The rate of overall morbidity was 15.6%. There was no 30-d postoperative mortality.

CONCLUSION: This modification appears to be a significantly safe approach to the pancreaticojejunostomy without adversely affecting operative time.

© 2013 Baishideng. All rights reserved.

Key words: Whipple; Pancreaticojejunostomy; Technique; Seromuscular jejunal flap; Pancreatic fistula

Core tip: Pancreaticojejunostomy represents one of the most challenging technical aspects of the Whipple procedure, mainly due to its failure, and to the resulting morbidity and mortality rates. Several technical variations have been proposed, in an effort to minimize postoperative pancreatic fistula rates. The technique we describe is an end-to-side, duct-to-mucosa two-layer pancreaticojejunostomy intended to promote enhanced healing process, through the creation of a seromuscular...
The first pancreaticoduodenectomy was performed by a German surgeon, Kausch, in 1909\(^6\). It has been considered the surgical procedure of choice for ampullary cancer, after Whipple et al\(^8\) had described three cases in 1935. Nowadays, it has become the standard procedure in the management of pancreatic head and periampullary carcinoma\(^9\). In recent years, the mortality rate of pancreatic-duodenectomy has been decreased to below 5\(^%\)\(^7\). However, the postoperative morbidity rate remains high, ranging from 30% to 50\(^%\)\(^7\). Pancreatic fistula\(^11,12\) is the most common complication and its reported incidence varies from 2% to 40\(^%\)\(^6,11,13\). Several different anastomotic surgical techniques have been used, in order to minimize pancreatic fistula occurrence after pancreaticoduodenectomy, although it is still debated which of them has any clear advantage\(^8,10,14,15\). We present a modification for duct to mucosa end-to-side pancreaticojejunostomy, with a seromuscular jejunal flap, in order to increase the safety of the anastomosis.

MATERIALS AND METHODS

During the period January 2005 to March 2011, 32 consecutive patients underwent pancreaticoduodenectomy by the same surgical team. There were 13 women and 19 men, with a mean age of 64.2 years (range 55-82 years). The underlying diseases of these patients are shown in Table 1. The surgical procedure performed in all cases was classic pancreaticoduodenectomy, without preservation of the pylorus. The diagnosis of pancreatic leakage was defined as a drain output of any measurable volume of fluid on or after postoperative day 3 with an amylase concentration greater than three times the serum amylase activity\(^11\).

Technique

A scalpel is used to sharply transect the pancreas at the level of the portal vein. Hemostasis of the bleeding points of the pancreatic stump is achieved either with 4-0 non-absorbable suture and/or with electrocautery. After the pancreaticoduodenectomy specimen has been removed, the pancreatic remnant is dissected free of the underlying structures for a distance of approximately 2 cm. The transected jejunum is brought through the bed of the resected duodenum (i.e., posterior to the mesenteric vessels).

The jejunal seromuscular layer is incised starting about 2 cm distal to the jejunal stump, along the antimesenteric border. The length of this incision is just smaller than the cephalo-caudal diameter of the pancreatic stump. Using a scalp the seromuscular layer of the jejunum is dissected free from the underlying submucosa, towards both sides of the aforementioned incision, in order to create two seromuscular flaps (i.e., one dorsal and one ventral flap), and to expose the underlying submucosa, which must remain intact (Figure 1). The extent of the dissection is determined by the antero-posterior diameter of the pancreatic stump, in order to fit the surface of the pancreatic cut edge on the surface area of the exposed mucosa.

Following this, a segment of nelaton catheter is inserted into the main pancreatic duct, and is fixed with a 4-0 absorbable monofilament suture (polydioxanone, PDS II, Ethicon, Inc.). The tube girth is selected to exactly fit the diameter of the main pancreatic duct. On the intraductal part of the stent, several holes are created on different positions, at a distance of 1 cm from each other, in order to ensure uninhibited outflow of the pancreatic fluid. The extraductal part of the stent left is about 5 cm in length.

The next step is to create the first of all four suturing

INTRODUCTION

The first pancreaticoduodenectomy was performed by a German surgeon, Kausch, in 1909\(^6\). It has been considered the surgical procedure of choice for ampullary cancer, after Whipple et al\(^8\) had described three cases in 1935. Nowadays, it has become the standard procedure in the management of pancreatic head and periampullary carcinoma\(^9\). In recent years, the mortality rate of pancreatic-duodenectomy has been decreased to below 5\(^%\)\(^7\). However, the postoperative morbidity rate remains high, ranging from 30% to 50\(^%\)\(^7\). Pancreatic fistula\(^11,12\) is the most common complication and its reported incidence varies from 2% to 40\(^%\)\(^6,11,13\). Several different anastomotic surgical techniques have been used, in order to minimize pancreatic fistula occurrence after pancreaticoduodenectomy, although it is still debated which of them has any clear advantage\(^8,10,14,15\).

We present a modification for duct to mucosa end-to-side pancreaticojejunostomy, with a seromuscular jejunal flap, in order to increase the safety of the anastomosis.

MATERIALS AND METHODS

During the period January 2005 to March 2011, 32 consecutive patients underwent pancreaticoduodenectomy by the same surgical team. There were 13 women and 19 men, with a mean age of 64.2 years (range 55-82 years). The underlying diseases of these patients are shown in Table 1. The surgical procedure performed in all cases was classic pancreaticoduodenectomy, without preservation of the pylorus. The diagnosis of pancreatic leakage was defined as a drain output of any measurable volume of fluid on or after postoperative day 3 with an amylase concentration greater than three times the serum amylase activity\(^11\).

Technique

A scalpel is used to sharply transect the pancreas at the level of the portal vein. Hemostasis of the bleeding points of the pancreatic stump is achieved either with 4-0 non-absorbable suture and/or with electrocautery. After the pancreaticoduodenectomy specimen has been removed, the pancreatic remnant is dissected free of the underlying structures for a distance of approximately 2 cm. The transected jejunum is brought through the bed of the resected duodenum (i.e., posterior to the mesenteric vessels).

The jejunal seromuscular layer is incised starting about 2 cm distal to the jejunal stump, along the antimesenteric border. The length of this incision is just smaller than the cephalo-caudal diameter of the pancreatic stump. Using a scalp the seromuscular layer of the jejunum is dissected free from the underlying submucosa, towards both sides of the aforementioned incision, in order to create two seromuscular flaps (i.e., one dorsal and one ventral flap), and to expose the underlying submucosa, which must remain intact (Figure 1). The extent of the dissection is determined by the antero-posterior diameter of the pancreatic stump, in order to fit the surface of the pancreatic cut edge on the surface area of the exposed mucosa.

Following this, a segment of nelaton catheter is inserted into the main pancreatic duct, and is fixed with a 4-0 absorbable monofilament suture (polydioxanone, PDS II, Ethicon, Inc.). The tube girth is selected to exactly fit the diameter of the main pancreatic duct. On the intraductal part of the stent, several holes are created on different positions, at a distance of 1 cm from each other, in order to ensure uninhibited outflow of the pancreatic fluid. The extraductal part of the stent left is about 5 cm in length.

The next step is to create the first of all four suturing

Table 1 Underlying diseases of the patients who underwent end-to-side duct to mucosa pancreaticojejunostomy with seromuscular jejunal flap formation after pancreaticoduodenectomy

Disease	Patients (n)
Pancreatic head carcinoma	15
Ampullary carcinoma	12
Distal common bile duct carcinoma	5
Total	32

Figure 1 Preparation of the jejunal stump. A: Incision on the jejunum; B: Seromuscular flap formation; C: The seromuscular layers are dissected free from the submucosa. J: Jejunum; S: Submucosa; Arrow: Posterior seromuscular flap; Dotted arrow: Anterior seromuscular flap.
layers. The dorsal part of the jejunal seromuscular layer and the dorsal part of the capsular parenchyma of the pancreatic stump are sutured with 3-0 silk interrupted stitches of 0.5-1 cm distance from each other. This is the dorsal external suturing layer (Figure 2A).

Then, the dorsal cut edge border of the pancreatic stump is sutured to the edge of the dorsal jejunal seromuscular flap with 4-0 polydioxanone sutures (PDS) interrupted stitches 0.5 to 1 cm apart. This is the dorsal internal layer.

A small hole in the jejunal mucosa is made, in accordance with the diameter of the main pancreatic duct. The free end of the stent tube is advanced through this hole into the jejunal lumen (Figure 2B). The mucosa at the site of the hole and the edge of the main pancreatic duct are sutured with two interrupted stitches of 4-0 PDS II.

The third layer is created by the approximation of the ventral cut edge border of the pancreatic stump and the edge of the ventral jejunal seromuscular flap with 4-0 PDS II interrupted stitches, 0.5-1 cm apart (Figure 2C). This is the ventral internal layer.

The final layer of sutures, the ventral external layer, is created by suturing the ventral part of the jejunal seromuscular layer and the ventral part of the capsular parenchyma of pancreatic stump, with 3-0 silk interrupted stitches (Figure 2D). Figure 3 shows a drawing of the jejunal and pancreatic sites of anastomosis.

Statistical analysis

There were only descriptive measures used, since there was no control group in this study and its main purpose was to describe a surgical technique.

RESULTS

There were 32 consecutive patients that underwent pan-
Pancreaticoduodenectomy with the above described pancreaticojejunostomy technique. There were 13 women and 19 men, with a mean age of 64.2 years (range 55-82 years). The underlying diseases of these patients are shown in Table 1. The mean operative time was 310.2 ± 40.0 min, and the mean time needed to perform the pancreaticojejunostomy was 22.7 min (range 18-25 min). One patient developed low output pancreatic fistula. Three patients developed surgical site infection and one patient developed pneumonia, postoperatively. The overall morbidity rate was 15.6%. There was no postoperative mortality.

DISCUSSION

Pancreaticojejunostomy represents one of the most challenging technical aspects of the Whipple procedure, because of its failure rates, as well as the resulting morbidity and mortality. Several technical variations have been proposed, in an effort to minimize postoperative pancreatic fistula rates[1,2,9,10,14-20]. The most important risk factors identified are technique, soft pancreatic texture and main pancreatic duct diameter of 3 mm or less[13,21-26].

The technique we describe is an end-to-side, duct-to-mucosa two-layer pancreaticojejunostomy. Each step of the procedure already described adheres to a rationale focused on the elimination of pancreatic leakage. First, the exposure of intact jejunal mucosa was thought to promote vascularization and enhance the healing process between the mucosa and the cut surface of the pancreatic stump[27]. Such an approach has been employed in the past with favorable results, but still carried a significant fistula occurrence.

With this in mind, we incorporated the dissection of the seromuscular flaps and their fixation to the border of the pancreatic stump aiming to offer a more reliable sealing of the anastomosis. In the same context, we proposed the internal layer of sutures, which was not previously employed, in order to keep the two traumatic surfaces firmly in contact to further favor the healing process between them. Finally, stenting the main pancreatic duct ensures duct patency, while eliminating undesired distention. In one of our cases, the stent was present in situ even on the six-year follow-up.

In conclusion, this technique appears to be safe and reliable. Because this is a preliminary report of a small series, it is of essential importance that it is evaluated via a prospective study in a larger series, before firm conclusions can be drawn.

Furthermore, while of sound reasoning, the assumption that healing is significantly augmented by exposing the intestinal submucosa is yet to be experimentally proved.

REFERENCES

1. Cameron JL, Riall TS, Coleman J, Belcher KA. One thousand consecutive pancreaticoduodenectomies. Ann Surg 2006; 244: 10-15 [PMID: 16794385 DOI: 10.1097/01sla.0000217673.04165.ea]
2. Abu Hilal M, Malik HZ, Hamilton-Burke W, Verbeke C, Menon KV. Modified Cattell’s pancreaticojejunostomy, buttressing for soft pancreases and an isolated biliopancreatic loop are safety measurements that improve outcome after pancreaticoduodenectomy: a pilot study. HPB (Oxford) 2009; 11: 154-160 [PMID: 19590641 DOI: 10.1111/j.1477-2574.2009.00028.x]
3. Kausch W. Das Carcinoma der Papilla Duodeni und seine Vadaikale Entfernung. Briege zur Klinischen Chirurgie 1912; 78: 439-486
4. Whipple AO, Parsons WB, Mullins CR. Treatment of carcinoma of the ampulla of vater. Ann Surg 1935; 102: 763-779 [PMID: 17856666 DOI: 10.1097/00000658-193510000-00023]
5. Poon RT, Lo SH, Fong D, Fan ST, Wong J. Prevention of pancreatic anastomotic leak after pancreatecoduodenectomy. Am J Surg 2002; 183: 42-52 [PMID: 11869701 DOI: 10.1016/S0002-9610(01)00829-7]
6. Shapiro TM. Adenocarcinoma of the pancreas: a statistical analysis of biliary bypass vs Whipple resection in good risk patients. Ann Surg 1975; 182: 715-721 [PMID: 1190874]
7. Bassi C, Fakoni M, Molinari E, Mantovani W, Butturini G, Gumbs AA, Salvia R, Pedezzoli P. Duct-to-mucosa versus end-to-side pancreaticojejunostomy reconstruction after pancreatecoduodenectomy: results of a prospective randomized trial. Surgery 2003; 134: 766-771 [PMID: 14639354 DOI: 10.1016/S0034-6606(03)00345-3]
8. Haddad LB, Scatton O, Randone B, Andraus W, Massault PP, Dousset B, Soubrane O. Pancreatectojejunostomy after pancreati- coduodenectomy: the conservative treatment of choice. HPB (Oxford) 2009; 11: 203-209 [PMID: 19590648 DOI: 10.1111/j.1477-2574.2009.00007.x]
9. Takano S, Ito Y, Watanabe Y, Yokoyama T, Kubota N, Iwai S. Pancreaticojejunostomy versus pancreaticogastrostomy in reconstruction following pancreatecoduodenectomy. Br J Surg 2000; 87: 423-427 [PMID: 10759736 DOI: 10.1046/j.1365-2168.2000.01395.x]
10. Birkmeyer JD, Siewers AE, Finlayson EV, Stukel TA, Lucas FL, Batista I, Welch HG, Wennberg DE. Hospital volume and surgical mortality in the United States. N Engl J Med 2002; 346: 1129-1137 [PMID: 11948273 DOI: 10.1056/NEJMsa012337]
11. Bassi C, Dervenis C, Butturini G, Fingerhut A, Yeo C, Izbicki J, Neoptolemos J, Sarr M, Traverso W, Buchler M. Post-
operative pancreatic fistula: an international study group (ESGF) definition. Surgery 2005; 138: 8-13 [PMID: 16003309 DOI: 10.1016/j.surg.2005.05.001]

12 Bassi C, Butturini G, Molinari E, Mascetta G, Salvia R, Falconi M, Gumbs A, Pederzoli P. Pancreatic fistula rate after pancreatic resection. The importance of definitions. Dig Surg 2004; 21: 54-59 [PMID: 14707394 DOI: 10.1007/s00534-007-1301-y]

13 Butturini G, Daskalaki D, Molinari E, Scopelliti F, Casarotto A, Bassi C. Pancreatic fistula: definition and current problems. J Hepatobiliary Pancreat Surg 2008; 15: 247-251 [PMID: 18535760 DOI: 10.1007/s00534-007-1301-y]

14 Rault A, SaCunha A, Klopfenstein D, Larroudé D, Epy FN, Collet D, Masson B. Pancreateicojeunal anastomosis is preferable to pancreaticogastrostomy after pancreaticoduodenectomy for long term outcomes of pancreatic exocrine function. J Am Coll Surg 2005; 201: 239-244 [PMID: 16038822 DOI: 10.1016/j.jamcollsurg.2005.03.026]

15 Cattell RB, Pyrek LJ. An Appraisal of Pancreatoduodenal Resection: A Follow-up Study of 61 Cases. Ann Surg 1949; 129: 840-848 [PMID: 17859362]

16 Cameron JL, Pitt HA, Yeo CJ, Lillemoe KD, Kaufman HS, Coleman J. One hundred and forty-five consecutive pancreaticoduodenectomies with or without extended retroperitoneal lymphadenectomy for periampullary adenocarcinoma: comparison of morbidity and mortality and short-term outcome. Ann Surg 1999; 229: 613-622; discussion 622-624 [PMID: 10235519]

17 Yeo CJ, Cameron JL, Sohn TA, Coleman J, Sauter PK, Hruban RH, Pitt HA, Lillemoe KD. Pancreaticoduodenectomy with or without extended retroperitoneal lymphadenectomy for periampullary adenocarcinoma: comparison of morbidity and mortality and short-term outcome. Ann Surg 1999; 229: 54-59; discussion 58-59 [PMID: 10235519]

18 Yeo CJ, Cameron JL, Maher MM, Sauter PK, Zahrhalak ML, Talamini MA, Lillemoe KD, Pitt HA. A prospective randomized trial of pancreaticogastrostomy versus pancreatojejunostomy after pancreaticoduodenectomy. Ann Surg 1995; 222: 580-588; discussion 588-592 [PMID: 7574936]

19 Peng SY, Wang JW, Lau WY, Cai XJ, Mou YP, Liu YB, Li JT. Conventional versus binding pancreaticojejunostomy after pancreaticoduodenectomy: a prospective randomized trial. Ann Surg 2007; 245: 692-698 [PMID: 17457161 DOI: 10.1097/01.sla.0000255588.50964.5d]

20 Dai XW, Ma K, Wang FX, Yang FQ, Wang BS, Zhao HY, Sun W, Liu BL, Qiu F, Pu XM, Wang L, Dai Y. Prevention of pancreatojejunostomal anastomotic leakage after pancreaticoduodenectomy with separate internal drainage of bile and pancreatic fluid. Hepatobiliary Pancreat Dis Int 2003; 2: 131-134 [PMID: 14607665]

21 Yeh TS, Jan YY, Jeng LB, Hwang TL, Wang CS, Chen SC, Chao TC, Chen MF. Pancreateicojejunal anastomotic leak after pancreaticoduodenectomy--multivariate analysis of periorperative risk factors. J Surg Res 1997; 67: 119-125 [PMID: 9073557 DOI: 10.1006/jsre.1996.4974]

22 Yeo CJ, Cameron JL, Sohn TA, Coleman J, Sauter PK, Hruban RH, Pitt HA, Lillemoe KD. Pancreaticoduodenectomy with or without extended retroperitoneal lymphadenectomy for periampullary adenocarcinoma: comparison of morbidity and mortality and short-term outcome. Ann Surg 1999; 229: 613-622; discussion 622-624 [PMID: 10235519]

23 Yeo CJ, Cameron JL, Maher MM, Sauter PK, Zahurak ML, Talamini MA, Lillemoe KD, Pitt HA. A prospective randomized trial of pancreaticogastrostomy versus pancreatojejunostomy after pancreaticoduodenectomy. Ann Surg 1995; 222: 580-588; discussion 588-592 [PMID: 7574936]

24 Yeo CJ, Cameron JL, Lillemoe KD, Sauter PK, Coleman J, Sohn TA, Campbell KA, Choti MA. Does prophylactic octreotide decrease the rates of pancreatic fistula and other complications after pancreaticoduodenectomy? Results of a prospective randomized placebo-controlled trial. Ann Surg 2000; 232: 419-429 [PMID: 10973392]

25 Sampaio JA, Pereira-Lima JC, Rhoden EL, Waechter FL, Smith M, Cardoso F, Pinto KD, Pereira-Lima L. Pancreatic fistula after pancreaticoduodenectomy: a comparison between patients with periampullary tumors and chronic pancreatitis. Hepatogastroenterology 1998; 45: 1855-1858 [PMID: 9840163]

26 van Berge Henegouwen MI, De Wit LT, Van Gulik TM, Obertop H, Gouma DJ. Incidence, risk factors, and treatment of pancreatic leakage after pancreaticoduodenectomy: drainage versus resection of the pancreatic remnant. J Am Coll Surg 1997; 185: 18-24 [PMID: 9208956]

27 Fueki K. Experimental and clinical studies on operative methods of pancreaticojejunoanastomosis in reference to the process of wound healing and postoperative pancreatic function. Nihon Geka Gakkai Zasshi 1985; 86: 725-737 [PMID: 3897827]
