Design of drainage system on industrial area Kampung Cina, Dobo City, Aru Islands Regency, based on Eco drainage using with HEC-RAS 4.0

B Rizaldi 1, G Idfi1, E Suwarno1, Mujiyono1
1 Department of Civil Engineering, State University of Malang, Indonesia

gilang.idfi.ft@um.ac.id

Abstract. This study aim to plan a drainage system in the Industrial area of Kampung Cina Dobo City that can overcome the problems of inundation occurred. The inundation is caused by the drainage channel that has not been properly arranged and is still in the form of a natural drainage channel, most of which still use the road drainage network whose condition is not functioning properly due to sediment and garbage which results in many drainage channels being cut off. Data processing is carried out with two analyzes including hydrological analysis and hydraulic analysis. The hydraulics analysis includes channel section planning and drainage system modeling with HEC-RAS 4.0 software. In conventional drainage discharge flowing in the channel before the end of drain amounted to 1,136 m³/sec. Once added a retention pond with a capacity of 10.358 m³ with 5 scenario dimensions spillway. The results of modeling obtained by the reduction of the maximum flood flow is 1,07 m³/sec with dimensions of aperture is 8 m x 0,8 m and lower the water level in the upstream channel by 31 cm and 44 cm in the downstream channel.

1. Introduction

The existing condition of the drainage system in Dobo City drainage channel is still not well defined, it is still a natural drainage channel. Most use a network of drainage path is not functioning properly because it was covered by sediment, trash, and the number of drainage channels cut off, especially in the area of Industrial Estate Kampung China Dobo City, therefore some areas or settlements in the Industrial Area Kampung China frequent inundation in case of heavy rains, and coupled with relatively gentle topography, so that the flow rate is relatively slow water runoff, as well as the conditions of inundation will increase when high tide the sea can result in rainfall runoff water can not be directly discharged into the sea.

Based on information compiled from the information media in the city of Maluku, describing "Dobo has ocean and land surface are almost equivalent. That means Dobo land is flat, so if there is a big wave when the tide will surely be creeping up on land once flooded residential areas. The high sea levels as well as one of the problems which results in inundation because the drainage channel is no longer able to accommodate the volume of water from the overflowing tide and rainwater [8]. For resolve problems that occurred in the city, especially in the Industrial Area Kampung China Dobo City, should be a good drainage system planning and an environmental insightful.

Unavailability of a drainage system that is able to overcome the problems puddle in the industrial area of Kampung China City Dobo make planning and rebuilding a new drainage channel is needed. Especially with the existing drainage conditions during which it was unable to avoid the influence of
tides increasingly urgent for the construction of a drainage system that is able to overcome the problem of backflow or back water caused by tidal sea water. The drainage system in the wake granted based on a sustainable drainage system or Eco Drainage to meet existing demands on zero delta Q policy and utilization of the water before it is released into the ocean in order to more beneficial for society [1].

2. Methodology
The method used in this project is analysis covering the primary data and secondary data. The primary data used in this planning includes the measurement of the topography of the area and survey the population about inundation occurred. While secondary data used in this planning includes daily rainfall data, land use data, the data watershed area, sea level height data pairs, the data geometric regions.

In the data processing is done by two analysis includes analysis of hydrology and hydraulics analysis [5]. Hydrological analysis was conducted on the analysis of the probability distribution, the probability distribution of the test, the calculation of rainfall plan, analysis of the concentration time, rainfall intensity analysis, and the latter is the calculation of design flood to divide the area into several sub-watershed planning (sub-catchment) [4]. In the analysis of a cross-channel hydraulics include planning and drainage network modeling with HEC-RAS software 4.0 to know the profile of water level does occur backflow (back water) or not, and to know the dimensions of the planned able to accommodate the flood flow or not [3].

Furthermore, the planning of eco drainage system by adding a retention pond to the planned drainage channel [2]. Planning is done to determine the extent and volume of the planned retention pond. Following that is to do modeling for disposing of water through the channel into an overflow bin with the building, will be obtained in the form of technical data storage capacity and reduction of the discharge channel [6]. Based on modeling results of the planning phase was completed followed by making inferences and suggestions.

3. Analysis and Discussion
Flood discharge plan is an important part and the basis for determining the capacity and dimensions of buildings water [9]. In determining the amount of design flood are done by using rational method whereby flow used at peak flow flood with rain return period of 25 years.

No.	Channel	Q (m³/s)	No.	Channel	Q (m³/s)	No.	Channel	Q (m³/s)
1	S1.Ka	0.080	25	Box S9	0.085	49	S19.Ka	0.087
2	S1.Ki	0.075	26	S10.Ka	0.055	50	S19.Ki	0.047
3	Box S1	0.080	27	S10.Ki	0.059	51	Box S19	0.0628
4	S2.Ka	0.066	28	Box S10	0.0151	52	S20.Ka	0.0395
5	S2.Ki	0.057	29	S11.Ka	0.057	53	S20.Ki	0.093
6	Box S2	0.066	30	Box S11	0.0155	54	Box S16	0.0624
7	S3.Ka	0.061	31	S11.Ki.1	0.016	55	S21.Ka	0.0882
8	S3.Ki	0.055	32	S11.Ki.2	0.043	56	S21.Ki	0.0191
9	S4.Ka	0.066	33	S12.Ka	0.006	57	Box S15	1.059
10	S3.Ki	0.068	34	S12.Ki	0.0010	58	S22.Ka	1.136
11	S5.Ka	0.052	35	S13.Ka	0.0541	59	S22.Ki	0.0267
12	S5.Ki	0.044	36	S13.Ki	0.0167	60	S23.Ka.1	0.0657
13	S6.Ka	0.098	37	S14.Ka	0.0509	61	S24.Ka	0.0078
14	S6.Ki	0.095	38	S14.Ki.1	0.025	62	Box S24	0.0736
15	S7.Ka1	0.046	39	S14.Ki.2	0.034	63	S24.Ki	0.0043
16	Box S4	0.0212	40	S15.Ka	0.0176	64	S23.Ka.2	1.131
Hydraulics analysis performed to plan the dimensions of the channel capable of design flood. Hydraulics analysis includes the calculation of channel capacity, flow rate, and the amount of flow that is able to be streamed by the channel.

Table 2. Calculation of hydraulics analysis

Channel name	Width (m)	Height (m)	Q (m³/s)	Channel name	Width (m)	Height (m)	Q (m³/s)
Box S1	0.4	0.3	0.117	S13.Ka	0.8	0.7	0.0740
S2.Ka	0.4	0.3	0.117	S13.Ki	0.5	0.4	0.0225
S2.Ki	0.3	0.3	0.072	S14.Ka	0.8	0.8	0.0740
Box S2	0.4	0.3	0.117	S14.Ki.1	0.4	0.3	0.0117
S3.Ka	0.4	0.3	0.117	S14.Ki.2	0.4	0.3	0.0117
S3.Ki	0.4	0.3	0.117	S15.Ka	0.6	0.5	0.0382
S4. Ka	0.5	0.4	0.225	S15.Ki	0.5	0.4	0.0225
S4. Ki	0.5	0.4	0.225	S16.Ka	0.6	0.5	0.0382
S5.Ka	0.4	0.3	0.117	S16.Ki	0.6	0.5	0.0382
S5.Ki	0.4	0.3	0.117	S17.Ka	0.4	0.3	0.0117
S6.Ka	0.4	0.3	0.117	S17.Ki	0.4	0.3	0.0117
S6.Ki	0.4	0.3	0.117	S18.Ka	0.4	0.3	0.0117
S7.Ka.1	0.4	0.3	0.117	S18.Ki	0.4	0.3	0.0117
Box S4	0.6	0.5	0.0305	Box S18	0.6	0.5	0.0382
S7.Ka.2	0.6	0.5	0.0458	S19.Ka	0.4	0.3	0.0117
S7.Ki	0.4	0.3	0.117	S19.Ki	0.4	0.3	0.0117
Box S7	0.8	0.7	0.0740	Box S19	0.8	0.7	0.0740
S8.Ka	0.4	0.3	0.117	S20.Ka	0.8	0.7	0.0458
S8.Ki	0.4	0.3	0.117	S20.Ki	0.4	0.3	0.0117
Box S8	0.4	0.3	0.117	Box S16	0.8	0.7	0.0863
S9. Ka	0.4	0.3	0.117	S21.Ka	1	0.9	0.0987
S9. Ki	0.4	0.3	0.117	S21.Ki	0.6	0.5	0.0382
Box S9	0.4	0.3	0.117	Box S15	1	0.9	1.431
S10. Ka	0.4	0.3	0.117	S22.Ka	1	0.9	1.431
S10. Ki	0.4	0.3	0.117	S22.Ki	0.6	0.5	0.0382
Box S10	0.5	0.4	0.0225	S23.Ka.1	0.8	0.7	0.0740
S11.Ka	0.5	0.4	0.0225	S24.Ka	0.5	0.4	0.0225
Box S11	0.5	0.4	0.0225	Box S24	1	0.9	0.0987
S11.Ki.1	0.4	0.3	0.117	S24.Ki	0.6	0.5	0.0382
S11.Ki.2	0.4	0.3	0.117	S23.Ka.2	1	0.98	1.431
S12.Ka	0.4	0.3	0.117	S23.Ki	0.6	0.5	0.0382
S12.Ki	0.4	0.3	0.117	S25.Ka	0.8	0.7	0.0863
The dimensions used for calculating the hydraulic discharge are able to accommodate the planned flood discharge, it is then added with a free board of 10 cm on each channel. Material used in the channel using precast concrete (U-ditch).

Table 3. Channel dimension

Channel name	Length Channels	Dimensions Channel	Channel name	Length Channels	Dimensions Channel
S1.Ki	117.9	400 X 400	S13.Ki	53.7	500 X 500
S1.Ki	118.3	400 X 400	S14.Ka	95	800 X 800
Box S1	8	400 X 400	S14.Ki.1	38	400 X 400
S2.Ka	65.9	400 X 400	S14.Ki.2	49.5	400 X 400
S2.Ki	66.7	400 X 400	S15.Ka	73.8	600 X 600
Box S2	8	400 X 400	S15.Ki	77.0	500 X 500
S3.Ka	61.2	400 X 400	S16.Ka	36.8	600 X 600
S3.Ki	61.9	400 X 400	S16.Ki	38.3	600 X 600
S4. Ka	36.9	500 X 500	S17.Ka	28.3	400 X 400
S4. Ki	37.8	500 X 500	S17.Ki	25.1	400 X 400
S5.Ka	48.	400 X 400	S18.Ka	84.2	400 X 400
S5.Ki	48.7	400 X 400	S18.Ki	81.2	400 X 400
S6.Ka	54.3	400 X 400	Box S18	5	600 X 600
S6.Ki	48.5	400 X 400	S19.Ka	71.2	400 X 400
S7.Ka.1	40.5	400 X 400	S19.Ki	69.7	400 X 400
Box S4	8	600 X 600	Box S19	5	800 X 800
S7.Ka.2	29.2	600 X 600	S20.Ka	49	800 X 800
S7.Ki	77.7	400 X 400	S20.Ki	48	400 X 400
Box S7	8	800 X 800	Box S16	5	800 X 800
S8.Ka	78.9	400 X 400	S21.Ka	54.9	1000 X 1000
S8.Ki	79.3	400 X 400	S21.Ki	58.8	600 X 600
Box S8	8	400 X 400	Box S15	5	1000 X 1000
S9. Ka	37.2	400 X 400	S22.Ka	74.6	1000 X 1000
S9. Ki	37.2	400 X 400	S22.Ki	81.4	600 X 600
Box S9	8	400 X 400	S23.Ka.1	33.1	800 X 800
S10. Ka	71.1	400 X 400	S24.Ka	63.2	500 X 500
S10. Ki	72.6	400 X 400	Box S24	5	800 X 800
Box S10	8	500 X 500	S24.Ki	66.6	600 X 600
S11.Ka	116	500 X 500	S23.Ka.2	113.8	1000 X 1000
Box S11	6	500 X 500	S23.Ki	70.3	600 X 600
S11.Ki.1	50.5	400 X 400	S25.Ka	37.8	800 X 800
S11.Ki.2	59	400 X 400	Box S22	5	1200 X 1200
S12. Ka	63	400 X 400	S25.Ki	32.8	400 X 400
S12. Ki	59	400 X 400	S26	71.4	1000 X 1000
Eco drainage modeling in this drainage planning use to eliminate or reduce the flood flow through a channel that does not occur in the event of advance puddle tide[7]. Eco drainage type that will be used in drainage planning in Industrial Area Kampung Cina Dobo City is the type of pitcher capacity is an interim (retarding Basin). With the division of two zones, where zone A using Eco drainage retention pond type (retarding Basin) and while zone B can not use the retention pond type because of the limited land can be used for pond reservoirs are relatively small and tekendala with public facilities such as churches, schools, health centers and others.

Retarding basin planned depth of 5.00 meters which can accommodate the flood flow at 10358.3 m³ is equipped with inlet channels and outlet channels. In this plan that will be reviewed is the amount of inflow into retarding basin that is affected by the scenario dimension of building openings spillway channel (S22.Ka). Retarding basin also comes with disposal channels (outlet) with dimensions of 1.4 meter x 1.2 meter and planned with 2 doors with dimensions of 0.8 meters x 0.5 meters.

Scenario dimension opening side spillway and comparing the dimensions of the opening scenario building side spillway with inflow value into retarding basin and water level on the downstream channel S22.Ka. Modeling performed with 5 scenario opening dimension building side spillway.

- **Scenario 1 with an opening spillway b = 2 m, h = 0.8 m**
 In modeling the scenario 1 can reduce the water level in the upstream channel of = 0.14 m and 0.29 m in the downstream channel. As well as data obtained with flow passing through the channel is Q US = 1.14 m³ / sec and a flow that comes out or overflow into the retarding basin is Q Leaving = 0.60 m³ / sec, the obtained values of flood flow remaining in the channel at Q DS = 0.54 m³ / sec. It can be concluded based on the value of the output obtained from scenario 1, which can overwhelm the flood flow into the retarding basin of 0.60 m³ / sec, so that the remaining flow on channel is 0.52 m³ / sec.

- **Scenario 2 with openings spillway b = 4 m, h = 0.6 m**
 In the second scenario modeling can reduce the water level in the upstream channel of = 0.14 m and 0.25 m in the downstream channel. As well as data obtained with flow passing through the channel is Q US = 1.14 m³ / sec and a flow that comes out or overflow into the retarding basin is Q Leaving = 0.54 m³ / sec, the obtained values of flood flow remaining in the channel at Q DS = 0.60 m³ / sec. It can be concluded based on the value of the output obtained from the second scenario that can bestow flow flow into retarding basin are 0.54 m³ / sec, so that the remaining flow on channel is 0.60 m³ / sec.

- **Scenario 3 with openings spillway b = 6 m, h = 0.8 m**
 In the third scenario modeling can lower the water level in the upstream channel is = 0.26 m and 0.41 m in the downstream channel. As well as data obtained with flow passing through the channel is Q US = 1.14 m³ / sec and a flow that comes out or overflow into the retarding basin is Q Leaving = 0.99 m³ / sec, the obtained values of flood flow remaining in the channel is Q DS = 0.15 m³ / sec. It can be concluded based on the value of the output obtained from third scenario can bestow flood flow into the retarding basin is 0.99 m³ / sec, thus remaining flow on the channel is 0.15 m³ / sec.

- **Scenario 4 with openings spillway b = 8 m, h = 0.8 m**
 In the fourth scenario modeling can reduce the water level in the upstream channel is = 0.31 m and 0.44 m in the downstream channel. As well as data obtained with flow passing through the channel is Q US = 1.14 m³ / sec and a flow that comes out or overflow into the retarding basin
is $Q_{	ext{Leaving}} = 1.07 \text{ m}^3 / \text{sec}$, the obtained values of flood flow remaining in the channel is $Q_{DS} = 0.06 \text{ m}^3 / \text{sec}$. It can be concluded based on the output value obtained from the four scenarios can bestow flood flow into the retarding basin is $1.07 \text{ m}^3 / \text{sec}$, so that the remaining flow on the channel is $0.06 \text{ m}^3 / \text{sec}$.

Figure 1. Graphic of comparison with inflow and reducing discharge

Here is the water level in the channel S22.Ka with scenario variations in the show at 5.17 picture is the scenario 1, 2, 3, 4 and 5:

- Blue = without a retarding basin
- Black = Scenario 1
- Red = Scenario 2
- Yellow = Scenario 3
- Pink = Scenario 4
- Red = Scenario 5

Figure 2. Water surface elevation condition

- **Scenario 5 with spillway openings $b = 10 \text{ m}, h = 0.6 \text{ m}**

 In the fifth scenario modeling can reduce the water level in the upstream channel is 0.17 m and 0.32 m in the downstream channel. As well as data obtained with flow passing through the channel is $Q_{US} = 1.14 \text{ m}^3 / \text{sec}$ and a flow that comes out or overflow into the retarding basin...
of Q leaving = 0.73 m^3 / sec, the obtained values of flood flow remaining in the channel is $Q_{DS} = 0.41 m^3 / sec$. It can be concluded based on the value of output obtained from 5 scenarios that can bestow flood flow into the retarding basin is 0.73 m^3 / sec, so that the remaining flow on the channel is 0.41 m^3 / sec.

4. Results and conclusion

Based on the results of data analysis planning and modeling results in software HEC-RAS 4.0 can be concluded that:

- Based on the calculation results obtained design flood obtained flow on the downstream drainage channel of outlet 1 is 1,926 m^3 / sec and Outlet 2 amounted to 1,592 m^3 / sec.
- Channel section dimension planned has the smallest dimensions 0.4 mx 0.4 m and the dimensions of the largest cross-section of the channel is 1.4 mx 1.4 m. has met and is able to accommodate design flood with 25 years return period rainfall.
- In conventional drainage without retarding basin obtained of water level in the upstream channel S22.Ka as high as 0.97 m from the bottom of the channel, in the upstream and downstream as high as 0.51 m from the base of the channel.
- Planned retarding basin with depth 5 meters can accommodate the flood flow at 10358.3 m^3
- In this planning area A can only use this type of Eco Drainage retarding basin because area B does not have enough land for the retarding basin and the location also bordering public facilities.
- After the addition of eco drainage retarding basin and be equipped with spillway building with different dimensions, retarding basin can reduce flood flow through the channel which was originally 1.13 m^3 / sec can reduce flood flow to 1.07 m^3 / sec in the scenario 4 with dimensions of side spillway $b = 8 m$ and $h = 0.8 m$.

References

[1] G. Idfi 2017 2017 Perbandingan Model Aliran Banjir Unsteady Flow dan Steady Flow pada Sungai Ngotok Ring Kanal. Jurnal Bangunan, 22(2), 31-40.
[2] Istiarto 2014 HEC-RAS Steady or Unsteady Flow Analysis (istiarto.staff.ugm.ac.id)
[3] Anggrahini 1997 Hidrolika Saluran Terbuka (CV. Citra Media, Surabaya)
[4] V. T. Chow 1992 Open Channel Flow., (Erlangga, Jakarta)
[5] Sri Harto Br 1993 Analysis of Hydrology. (PT Gramedia Utama, Jakarta)
[6] Lensley, Ray K, Franzini, Joseph B. 1991 Teknik Sumber Daya Air Jilid II, (CV. Citra Media, Surabaya)
[7] C.D. Soemarto 1987 Hydrology Engineering. (Erlangga, Jakarta.)
[8] E. Suhartanto 2008 The Manual Book of HEC-HMS and Application at Water Resource Management, (CV Citra, Malang)
[9] B. Triatmojo 2008 Hidrologi Terapan (Beta Offset, Yogyakarta)