FACTORIZATION OF PLATONIC POLYTOPES
INTO CANONICAL SPHERES

Richard H. Hammack
Department of Mathematics and Applied Mathematics
Virginia Commonwealth University
Richmond, VA 23284-2014 USA
rhammack@vcu.edu

Paul C. Kainen
Department of Mathematics and Statistics
Georgetown University
Washington, D.C. 20057 USA
kainen@georgetown.edu

Abstract

Factorization into spheres is achieved for skeleta of the simplex, cube, and cross-polytope, both explicitly and using Keevash’s proof of existence of designs.

Key Phrases: Decomposition of skeleta, Steiner triples, Hanani quadruples

Decomposing a polytope’s 2-skeleton (i.e., partitioning its 2-cells) into closed manifolds was studied in [1], [3], [5], [7], [9], while in [6] we found factorizations of hypercube 2-skeleta into boundaries of (pairwise isomorphic) 3-cubes. Here we obtain such sphere factorizations for k-skeleta of all (non-exceptional) Platonic polytopes both explicitly for low values of k and, as a consequence of Keevash’s result [11], also existentially with k ≥ 1 arbitrary. Note we only use the case of multiplicity λ = 1 of [11].

Let ∆n denote the n-dimensional simplex, whose 1-skeleton is the graph K_{n+1}. Let O_n denote the n-dimensional cross-polytope, whose 1-skeleton is the graph K_{2n} − F, where F is a 1-factor. Let Q_n denote the n-dimensional hypercube, whose 1-skeleton is the graph Q_n, the n-fold graph Cartesian product of K_2. These are the three families of Platonic polytopes.

For any n-dimensional polytope A and nonnegative integer k, let A^k denote the k-skeleton of A; see, e.g., [2]. If L and K are polytopal ℓ-complexes,
let $L|K$ mean that L factors K: that is, K and L are of equal dimension ℓ and K is the union of subcomplexes L_1, \ldots, L_r, each isomorphic to L, such that every ℓ-face of K is contained in exactly one of the L_i. An ℓ-complex is even if each $(\ell-1)$-face is in a positive even number of ℓ-faces.

For $X \in \{\Delta, \Omega, \mathcal{Q}\}$ we study the factorization of $K = X_\ell^n$ by $L = X_{\ell+1}^\ell$ for $\ell \leq n-1$. We call L the canonical ℓ-sphere as it is the boundary of a type X polytope of dimension $\ell+1$. For $\ell \geq 1$, such factorizations always exist for Ω as the proof of the first theorem below shows explicitly.

Observe, however, that these canonical spheres might not be composed of the minimum number of ℓ-faces. Indeed, by Theorem 1 below, the 1-skeleton of Ω_3 is factored into three 4-cycles, rather than four 3-cycles.

Clearly, X_ℓ^n even is a necessary condition for a factorization into spheres. The ℓ-skeleton of an n-simplex (or an n-cube) is an even complex if and only if $n-\ell+1$ (the number of ℓ-faces containing an $(\ell-1)$-face) is positive and even; for the cross-polytope Ω_n, the ℓ-skeleton is even for all $1 \leq \ell < n$. Evenness is automatic for Ω_ℓ^n as each $(\ell-1)$-face is a simplex and is part of two ℓ-faces (also simplexes) one for each vertex in a copy of K_2.

The following extends [5] for $\ell = 2$; cf. Speer [13], which partitions Ω_2^n into face-disjoint surfaces that contain the 1-skeleton Ω_1^n; such surfaces are called 1-Hamiltonian. Observe that our result does not depend on [11].

Theorem 1. If $1 \leq \ell < n$, then $\Omega_\ell^{\ell+1} | \Omega_\ell^n$.

Proof. For each $k \geq 1$, $\partial \Omega_k$ is the iterated topological join of k copies of the 2-point complex K_2, which is an $(k-1)$-sphere. The ℓ-skeleton of Ω_n is the ℓ-cell-disjoint union of the $n \choose \ell+1$ copies of $\Omega_\ell^{\ell+1}$ formed by the iterated join of each $(\ell+1)$-element subset of the set $n K_2$.

For the simplex, we use the theory of Steiner-type configurations (v, k, ℓ), which consist of a v-element set X endowed with a family of k-element subsets of X (called blocks) such that each ℓ-subset of X is in exactly one block. The case $k = \ell+1$ will be what we apply to factor $\Delta_{v-1}^{\ell-1}$ by $\Delta_{\ell-1}^{\ell-1}$.

The translation from design to combinatorial factorization works for special cases, such as the Steiner triple systems as we noted in [6]. But by Keevash [11] (see also Gowers [4] and Kalai [10]), this sort of factorization must occur almost always for the ℓ-skeleta of simplexes and, hence, of cubes, as we shall explain. Write $a | b$ to mean b is an integer multiple of a.

Define the **divisibility set** (e.g., [8]) to be the set of all feasible values

\[
\mathcal{D}(k, \ell) := \left\{ v : \binom{k-h}{\ell-h}, \binom{v-h}{\ell-h} \mid 0 \leq h \leq \ell-1 < k \leq v \right\},
\]

(1)
Four rotations of this configuration by angles of $k\frac{\pi}{2}$ for $k = 0, 1, 2, 3$.

Four rotations of this configuration by angles of $k\frac{\pi}{4}$ for $k = 0, 1, 2, 3$.

Two rotations of this configuration by angles of 0 and $\frac{\pi}{4}$.

Figure 1: Factoring Δ^2_7 into 14 2-face-disjoint tetrahedral boundaries Δ^2_3

By [11], for $1 \leq \ell \leq k$, \exists finite set $X(k, \ell) \subset D(k, \ell)$ such that
\[\exists (v, k, \ell)\text{-configuration} \iff v \in D(k, \ell) \setminus X(k, \ell). \quad (2) \]

We interpret the combinatorics geometrically as applying to faces of the simplex. Since the $(j+1)$-sets from the $n+1$ vertices of Δ_n correspond to the j-faces of Δ_n, we obtain a factorization into canonical spheres.

Theorem 2. For $1 \leq \ell$ and, assuming Keevash’s result [11],
\[\Delta^\ell_{\ell+1} \mid \Delta^\ell_n \iff n + 1 \in D(\ell+2, \ell+1) \setminus X(\ell+2, \ell+1). \quad (3) \]

Any $(v, 3, 2)$-configuration is a Steiner triple system (as observed in [11]), and corresponds to a factorization of the 1-skeleton of Δ_{v-1} (i.e., K_v) into edge-disjoint 3-cycles, the canonical (and minimum) spheres in 1-dimension.

For the case $(v, 4, 3)$, corresponding to the $(v-1)$-simplex, Hanani constructed a family of 4-sets (quadruples) that cover each 3-set exactly once, and he proved in [8] that they exist for $v \geq 4$ if and only if $v \equiv 2$ or 4 (mod 6), so again independent of [11], we can characterize when the 2-skeleton of an n-simplex is factored by the boundary of a tetrahedron:
\[\Delta^2_4 \mid \Delta^2_n \iff n \equiv 1 \text{ or } 3 \text{ (mod 6)}, n \geq 3. \quad (4) \]

See Fig. 1 for an illustration of the first non-trivial case of [11].
In order to factor cube-skeleta, we use an “exponentiation” method that goes back to Danzer [3], [12]. If \(\sigma = (i_1, \ldots, i_{k+1}) \) is any \(k \)-simplex in the \(n \)-simplex with vertex set \([n+1] := \{1, \ldots, n+1\}\), let
\[
2^\sigma := A_1 \times \cdots \times A_{n+1},
\]
where \(A_i = [0, 1] \) if \(i \in \sigma \), \(A_i = \{0, 1\} \) if \(i \notin \sigma \), and \(\times \) is topological product. Thus, \(2^\sigma \) is a family of \(2^{n-k} \) pairwise-vertex-disjoint \((k+1)\)-dimensional cubes in the \((n+1)\)-cube. Let \(2^K \) be the union of the \(2^\sigma \) over all simplexes \(\sigma \in K \) for \(K \) a simplicial complex. Then we have (see Kühnel & Schulz [12])
\[
(a) \ 2^{\Delta_{n-1}^\ell} = Q_n^\ell; \quad (b) \ 2^{\partial K} = \partial (2^K); \quad \text{and}
\]
\[
2^K \text{ is a manifold } \iff \text{K is a combinatorial sphere.}
\]

By (6), (a) and (b), a factorization of the \((\ell-1)\)-skeleton of the \((v-1)\)-simplex by the boundary of \(\Delta_\ell \) maps under the exponential correspondence to a factorization of the \(\ell \)-skeleton of the \(n \)-cube into subcomplexes isomorphic to \(\partial(Q_{\ell+1}^v) \). We used this in [9] to factor the 2-skeleton of a cube by the boundary of a 3-cube exactly when Steiner triples exist. In [7] we used (7) to show that, for \(n \) even, the Hamiltonian factorization of the graph \(K_{n+1} = \Delta_n^1 \) into spanning 1-spheres yields a factorization of the 2-skeleton of \(Q_{n+1}^1 \) into orientable minimum-genus surfaces which are 1-Hamiltonian.

Similarly, Hanani’s factorization (4) of the 2-skeleton of the simplex gives
\[
Q_n^3 | Q_n^4 \iff n \geq 4, \ n \equiv 2 \text{ or } 4 \pmod{6}.
\]

Again, (8) doesn’t depend on [11], while by Theorem [2] the exponential correspondence (5), and using [11], we have

Theorem 3. For \(1 \leq \ell \), if \(n \in D(\ell+1, \ell) \setminus X(\ell+1, \ell) \), then \(Q_{\ell+1}^\ell | Q_n^\ell \).

We conjecture that the condition is also necessary. Note that the result for \(\ell = 1 \) follows from the true though not stated case of Theorem [2] for \(\ell = 0 \) since \(D(2, 1) \) is the set of positive even integers and \(X(2, 1) = \emptyset \).

By the results of [11], factorability into canonical spheres is ubiquitous for skeleta of Platonic polytopes. A geometric explanation for this phenomenon (in special cases) would imply the existence theorem (in those cases).
References

[1] U. Betke, Ch. Schulz, & J. M. Wills, Zur Zerlegbarkeit von Skeletten, Geometriae Dedicata, 5 (4) (1976) 435–451.

[2] H. S. M. Coxeter, Regular Polytopes, Dover Publ., New York, 1973.

[3] L. Danzer, Regular incidence-complexes and dimensionally unbounded sequences of such, I., Ann. of Discr. Math. 20 (1984) 115–127.

[4] W. T. Gowers, Probabilistic combinatorics and the recent work of Peter Keevash, Bull. Amer. Math. Soc. 54 (2017) 107–116.

[5] R.H. Hammack & P. C. Kainen, On 2-skeleta of Platonic polytopes, Bull. Hellenic Math. Soc. 62 (2018) 94–102.

[6] R.H. Hammack & P. C. Kainen, Sphere-decompositions of hypercubes, Art of Discrete Appl. Math. 3 (2020) #P2.09.

[7] R. H. Hammack & P. C. Kainen, A new view of hypercube genus, American Math. Monthly 128(4)(2021) 352–359.

[8] H. Hanani, The existence and construction of balanced incomplete block designs, Ann. Math. Statist. 32 (1961) (2) 361–386.

[9] P. C. Kainen, On 2-skeleta of hypercubes, Art of Discrete Appl. Math. 3 (2020) #P2.06

[10] G. Kalai, Designs exist! [after Peter Keevash], Seminaire Bourbaki 67eme année, 2014–2015, no. 1100, 2015. http://www.bourbaki.ens.fr/TEXTES/1100.pdf

[11] P. Keevash, On the existence conjecture, arXiv 1401.3665v3, Aug. 5, 2019. https://arxiv.org/pdf/1401.3665.pdf

[12] W. Kühnel & Ch. Schulz, Submanifolds of the cube, Applied Geometry and Discrete Mathematics (The Victor Klee Festschrift), DIMAC Series in Discrete Math. and Theor. Computer Sci., 4 (1991) 423–432.

[13] J. Spreer, Partitioning the triangles of the cross polytope into surfaces, Beitr. Algebra Geom. 53 (2012) 473–486.