This paper reports the improved model of a tempering machine for heating the formulation mixture of marshmallow, characterized by heat supply to the working tank through the replacement of a steam jacket with heating by a film resistive electric heater of radiative type (FREhRT). The surface of the heat exchange of the device was increased by heating the stirrer with FREhRT secondary energy (30...85 °C) was used by converting it by Peltier elements for the autonomous operation of superchargers for cooling the engine compartment. The proposed solution will lead to an increase in the efficiency of the device, which is explained by a decrease in its specific metal consumption through the use of FREhRT.

A reduction in the duration of heating (75 °C) a marshmallow formulation mixture was experimentally established: in the examined model, 530 s, compared with the analog, 645 s. That confirmed the reduction in heating time to the set temperature by 21.7 % compared to the MT-250 basic design. The calculations have established a decrease, by 13 %, in the energy consumption of the device from 474 kg/m to 273 kg/m in the specific metal consumption of the device from 474 kg/m to 273 kg/m in the improved one.

The study results confirm the increase in the resource efficiency of the improved tempering machine, which is achieved by eliminating the steam jacket; increasing the heat exchange surface by heating the stirrer. The heat transfer by FREhRT simplifies the operational performance of the temperature stabilization system in a working tank. The reported results could prove useful when designing thermal devices with electric heat supply under the conditions of using secondary energy, which is relevant for ensuring resource efficiency.

Keywords: tempering machine, confectionery, specific energy consumption, secondary energy.

References
1. Ruiz Rodríguez, L. G., Zamora Gasga, V. M., Pescuma, M., Van Nieuwenhove, C., Mozzi, E., Sánchez Burgos, J. A. (2021). Fruits and fruit by-products as sources of bioactive compounds. Benefits and trends of lactic acid fermentation in the development of novel fruit-based functional beverages. Food Research International, 140, 109854. doi: https://doi.org/10.1016/j.foodres.2020.109854
2. Terpou, A., Papadaki, A., Bosnea, L., Kanelaki, M., Kopsahe, N. (2019). Novel frozen yogurt production fortified with sea buckthorn berries and probiotics. LWT, 105, 242–249. doi: https://doi.org/10.1016/j.lwt.2019.02.024
3. Misra, N. N., Koubaa, M., Roohinejad, S., Juliano, P., Alpas, H., Inácio, R. S. et. al. (2017). Landmarks in the historical development of twenty first century food processing technologies. Food Research International, 97, 318–339. doi: https://doi.org/10.1016/j.foodres.2017.05.001
4. Han, B., Hoang, B. X. (2020). Opinions on the current pandemic of COVID-19: Use functional food to boost our immune functions. Journal of Infection and Public Health, 13 (12), 1811–1817. doi: https://doi.org/10.1016/j.jiph.2020.08.014
5. Khokhlov, R. (2005). Test-drayv: pischevarochnye kotly. Restorannye vedomosti, 6, 70–73.
6. Chernenkova, A., Leonova, S., Nikiforova, T., Zagranichnaya, A., Chernenkov, E., Kalugina, O. et. al. (2019). The Usage of Biologically Active Raw Materials in Confectionery Products Technology. OnLine Journal of Biological Sciences, 19 (1), 77–91. doi: https://doi.org/10.3844/ojbsci.2019.77.91
7. Pirouzian, H. R., Konar, N., Palabiyik, I., Oba, S., Toker, O. S. (2020). Pre-crystallization process in chocolate: Mechanism, importance and novel aspects. Food Chemistry, 321, 126718. doi: 10.1016/j.foodchem.2020.126718
8. Popov, A. M., Tikhonov, V. V., Tikhonov, N. V., Borodulin, D. M. (2014). Reception of Two and Three-phase Combined Dispersive Systems with the Use of Centrifugal Mixer. Procedia Chemistry, 10, 400–409. doi: https://doi.org/10.1016/j.proche.2014.10.067
9. D’Addio, L., Carotenuto, C., Di Natale, F., Negro, R. (2012). A new arrangement of blades in scraped surface heat exchangers for food pastes. Journal of Food Engineering, 108 (1), 143–149. doi: https://doi.org/10.1016/j.jfoodeng.2011.07.014
10. Delaplace, G., Coppenolle, P., Cheio, J., Deute, F. (2012). Influence of whip speed ratios on the inclusion of air into a bakery foam produced with a planetary mixer device. Journal of Food Engineering, 108 (4), 532–540. doi: https://doi.org/10.1016/j.jfoodeng.2011.08.026
11. Mykhailov, V., Zahorulko, A., Zagorulko, A., Lishenko, B., Dudnyk, S. (2021). Method for producing fruit paste using innovative equipment. Acta Innovations, 39, 15–21. doi: https://doi.org/10.32933/actainnovations.39.2
12. Fellows, P. J. (2009). Mixing and forming. Food Processing Technology, 157–187. doi: https://doi.org/10.1533/9781845696344.2.157
13. Eisner, M. D. (2021). Direct and indirect heating of milk – A technological perspective beyond temperature–time profiles. International Dairy Journal, 122, 105145. doi: https://doi.org/10.1016/j.idairyj.2021.105145

14. Zahorulko, A., Zagarulko, A., Yancheva, M., Ponomarenko, N., Tesliuk, H., Silchenko, E. et al. (2020). Increasing the efficiency of heat and mass exchange in an improved rotary film evaporator for concentration of fruit-and-berry puree. Eastern-European Journal of Enterprise Technologies, 6 (8 (108)), 32–38. doi: https://doi.org/10.15587/1729-4061.2020.218695

15. Zahorulko, A., Zagarulko, A., Fedak, N., Sabadash, S., Kazakov, D., Kolodchenko, V. (2019). Improving a vacuum-evaporator with enlarged heat exchange surface for making fruit and vegetable semi-finished products. Eastern-European Journal of Enterprise Technologies, 6 (11 (102)), 6–13. doi: https://doi.org/10.15587/1729-4061.2019.178764

16. Zahorulko, A. M., Zahorulko, O. Ye. (2021). Pat. No. 149981 UA. P’tkropodobnii rezystyvnyi elektronahvirach vyprominiualnnoho typu. No. n202102839; declared: 28.05.2021; published: 22.12.2021. Bul. No. 51. Available at: https://base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=279803

17. Liniya z vyrobnystva tsukerok shokoladnykh, pomadnykh. Available at: https://jak.bono.odessa.ua/articles/liniya-z-vyrobnictva-cukerok-shokoladnih-pomadnih.php

18. Kasabova, K., Zagarulko, A., Zahorulko, A., Shmatchenko, N., Simakova, O., Goriaiovna, I. et al. (2021). Improving pastille manufacturing technology using the developed multicomponent fruit and berry paste. Eastern-European Journal of Enterprise Technologies, 3 (11 (111)), 49–56. doi: https://doi.org/10.15587/1729-4061.2021.231730

19. Liao, M., He, Z., Jiang, C., Fan, X., Li, Y., Qi, F. (2018). A three-dimensional model for thermolectric generator and the influence of Peltier effect on the performance and heat transfer. Applied Thermal Engineering, 133, 493–500. doi: https://doi.org/10.1016/j.applthermaleng.2018.01.080

20. Zahorulko, A., Zagarulko, A., Yancheva, M., Serik, M., Sabadash, S., Savchenko-Pererv, M. (2019). Development of the plant for low-temperature treatment of meat products using ir-radiation. Eastern-European Journal of Enterprise Technologies, 1 (1 (97)), 17–22. doi: https://doi.org/10.15587/1729-4061.2019.154950

21. Temperiruyuschaya mashina 250 (tempermashina MT250). Available at: https://stprom.com.ua/p1016784631-tempermashina-MT250

22. Cherevk, A., Mayak, O., Kostenko, S., Sardarov, A. (2019). Experimental and simulation modeling of the heat exchange process while boiling vegetable juice. Prohresyvni tekhnika ta tekhnologiya kharchovykh vyrobnytstv restoranno-hospodarstva. Available at: https://cyberleninka.ru/article/n/tekhnologii-khimicheskikh-vyrobnytstv-restoranno-gostynnogo-sferi

23. Tesliuk, H., Silchenko, E. et al. (2020). Increasing the efficiency of heat and mass exchange in an improved rotary film evaporator for concentration of fruit-and-berry puree. Eastern-European Journal of Enterprise Technologies, 6 (8 (108)), 32–38. doi: https://doi.org/10.15587/1729-4061.2020.218695

24. Kasabova, K., Zagarulko, A., Zahorulko, A., Shmatchenko, N., Simakova, O., Goriaiovna, I. et al. (2021). Improving pastille manufacturing technology using the developed multicomponent fruit and berry paste. Eastern-European Journal of Enterprise Technologies, 3 (11 (111)), 49–56. doi: https://doi.org/10.15587/1729-4061.2021.231730

25. Liao, M., He, Z., Jiang, C., Fan, X., Li, Y., Qi, F. (2018). A three-dimensional model for thermolectric generator and the influence of Peltier effect on the performance and heat transfer. Applied Thermal Engineering, 133, 493–500. doi: https://doi.org/10.1016/j.applthermaleng.2018.01.080

26. Zahorulko, A., Zagarulko, A., Yancheva, M., Serik, M., Sabadash, S., Savchenko-Pererv, M. (2019). Development of the plant for low-temperature treatment of meat products using ir-radiation. Eastern-European Journal of Enterprise Technologies, 1 (1 (97)), 17–22. doi: https://doi.org/10.15587/1729-4061.2019.154950

27. Temperiruyuschaya mashina 250 (tempermashina MT250). Available at: https://stprom.com.ua/p1016784631-tempermashina-MT250

28. Cherevk, A., Mayak, O., Kostenko, S., Sardarov, A. (2019). Experimental and simulation modeling of the heat exchange process while boiling vegetable juice. Prohresyvni tekhnika ta tekhnologiya kharchovykh vyrobnytstv restoranno-hospodarstva. Available at: https://cyberleninka.ru/article/n/tekhnologii-khimicheskikh-vyrobnytstv-restoranno-gostynnogo-sferi

29. Tesliuk, H., Silchenko, E. et al. (2020). Increasing the efficiency of heat and mass exchange in an improved rotary film evaporator for concentration of fruit-and-berry puree. Eastern-European Journal of Enterprise Technologies, 6 (8 (108)), 32–38. doi: https://doi.org/10.15587/1729-4061.2020.218695

This paper considers the process of squeezing oil from melon seeds in a screw oil press, using the method of planning a full-factor experiment. To study the interaction of various factors affecting the process of squeezing oil from melon seeds, mathematical methods of experiment planning were applied. Melon seeds were used as the object of the study. The results of studying the physical and mechanical indicators of melon seeds are reported; the rational modes of pressing melon seeds have been determined; the aerodynamic indicators of melon seeds have been defined in order to design a cold-pressed oil for melon seeds.

Ventilation modes have been substantiated; the soaking coefficient for melon seeds was derived. The coefficient of resistance for a melon seed is 1.54.

The highest critical velocity values for melon seeds were 6.4, for kernels 4.67, and for husks 3.94, respectively, with seed moisture content of 24.08 %.

The dependence of the oil yield on huskness has been determined. It is established that in the process of pressing there is a decrease in the oil content of the oil seed meal as it moves from the receiving chamber to the exit from the press, at the same time there is a compaction of the compressed product. Based on the study’s results, a plant for squeezing oil from melon seeds was designed. As a result of solving the problem with the vector optimization criterion, optimal intervals of input parameters were obtained: the initial humidity of the raw material is 9.15…10.27 %, the speed of rotation of the oil press screw is 0.843…0.895 s⁻¹, the clearance for the yield of cake is 0.750…0.800, the oil seed meal temperature at pressing = 87…89 °C, the huskness of the starting product is 7.13…7.23 %.

Keywords: vegetable oil, melon seeds, statistical analysis, oil press design, optimization criteria.

References
1. Derevenko, V. V., Korobchenko, A. S., Alenkina, I. N. (2010). Aerodynamic properties of seeds of the styrian oil pumpkin. Izvestiya vysshikh uchebnih zavedenii. Pechevykh teknologiy, 2-3. Available at: http://cyberleninka.ru/article/n/aerodinamicheskie-svoistva-vozdyushkih-tekhnologii
2. Wagner, F. S. (2000). The health value of Styrian pumpkin seed oil – science and fiction. The Cucurbit Genetics Cooperative (CGC), 23, 122–123. Available at: https://cucurbits.info/2000/07/the-health-value-of-styrian-pumpkin-seed-oil-science-and-fiction/
3. Hillebrand, A., Murkovic, M., Winkler, J., Pfannhauser, W. (1996). Ein hoher gehalt an vitamin E und ungesattigten fettsauren als neues zuchtziel des kurbiszuchters. Ernahrung, 20, 525–527.
4. Yanti, N. A. M., Lai, O. M., Osman, A., Long, K., Ghazali, H. M. (2008). Physicochemical properties of cucumis melo var.
Inodorus (honeydew melon) seed and seed oil. Journal of Food Lipids, 15 (1), 42–55. doi: https://doi.org/10.1111/j.1745-4522.2007.00101.x

5. Wang, F., Li, H., Zhao, H., Zhang, Y., Qiu, P., Li, J., Wang, S. (2018). Antidiabetic Activity and Chemical Composition of SanbaiMelon Seed Oil. Evidence-Based Complementary and Alternative Medicine, 2018, 1–14. doi: https://doi.org/10.1155/2018/5434156

6. Medvedkov, Y., Nazymbekova, A., Tlevlessova, D., Shaprov, M., Kairbayeva, A. (2021). Development of the juice extraction equipment: physico-mathematical model of the processes. Eastern-European Journal of Enterprise Technologies, 1 (11 (108)), 14–24. doi: https://doi.org/10.15587/1729-4061.2021.224986

7. Giwa, S. O., Akanbi, T. O. (2020). Mechanization of melon processing and novel extraction technologies: A short review. Scientific African, 9, e00478. doi: https://doi.org/10.1016/j.sciaf.2020.e00478

8. Obi, O. F. (2016). Evaluation and Modeling of the Aerodynamic Characteristics of Watermelon Seed of Different Varieties. International Journal of Food Properties, 19 (10), 2165–2174. doi: https://doi.org/10.1080/10942912.2015.1113181

9. Giwa, S. O., Akanbi, T. O. (2020). Mechanization of melon processing and novel extraction technologies: A short review. Scientific African, 9, e00478. doi: https://doi.org/10.1016/j.sciaf.2020.e00478

10. Omwuka, O. S., Nwankwojike, B. N. (2015). Design and development of integrated melon processing machine. Innovative Systems Design and Engineering, 6 (12), 41–52. Available at: https://moam.info/design-and-development-of-integrated-melon-processing-machine_59867611723ed68887af64.html

11. Vasilenko, V. N., Frolova, L. N., Dragan, I. V. (2014). Razrabotka teoreticheskikh i tekhnikomeshchekich osnov kompleksnuyu pererabotki maslchnogo syrya. Voronezh: VGUIT, 148.

12. Vasilenko, V. N., Kopylov, M. V., Frolova, L. N., Dragan, I. V. (2013). Matematicheskaia model’ dvizheniya syrya v shek-kom kanale maslopressa. Vestnik Voronezhskogo gosudarstvennogo universiteta inzhenernykh tehnologii, 3, 18–22.

13. Abu Shishaa, R., Kohlief, R., El Meseery, A. A. (2007). A study of some physical and mechanical properties of seed Melon seed. Misr J. Ag. Eng., 24 (3), 575–592. Available at: http://www.miae.eg.net/pdf/2007/july/8.pdf

14. Ogunwa, K. I., Ofodile, S., Achugasim, O. (2015). Feasibility Study of Melon Seed Oil as a Source of Biodiesel. Journal of Power and Energy Engineering, 03 (08), 24–27. doi: https://doi.org/10.4236/jpee.2015.38003

15. Mbah, G. O., Amulu, N. F., Eng, M., Onyiah, M. I. (2013). Effects of Process Parameters on the Yield of Oil from Melon Seed (Colocynthis citrullus). The Pacific Journal of Science and Technology, 15 (2), 43–49. Available at: https://www.researchgate.net/publication/335924690_Effects_of_Pro cess_Parameters_on_the_Yield_of_Oil_from_Melon_Seed_Colocynthis_citrullus

16. Shellard, J. E., Macmillan, R. H. (1978). Aerodynamic properties of threshed wheat materials. Journal of Agricultural Engineering Research, 23 (3), 273–281. doi: https://doi.org/10.1016/0021-8634(78)90101-4

17. Gorial, B. Y., O’Callaghan, J. R. (1990). Aerodynamic properties of grain/straw materials. Journal of Agricultural Engineering Research, 46, 275–290. doi: https://doi.org/10.1016/s0021-8634(05)80132-5

18. Garrett, R. E., Brooker, D. B. (1965). Aerodynamic Drag of Farm Grains. Transactions of the ASAE, 8 (1), 0049–0052. doi: https://doi.org/10.13031/2013.40422

19. Tatar’yants, M. S., Zavinskiy, S. I., Troshin, A. G. (2015). Development of load calculation techniques on screw and screw press energy consumption. ScienceRise, 6 (2 (11)), 80–84. doi: https://doi.org/10.15587/2313-8416.2015.44378

20. Tekhnika i tekhnologiya khrenaniya rastitel’nogo syrya i produktov maslozhirovykh predpriyatiy (2014). Voronezh: VGUIT, 82.

21. Ostrikov, A. N., Vasilenko, V. N., Frolova, L. N., Kopylov, M. V. (2013). Novoe v tekhnologii kupazhirovaniya rastitel’nykh masel. Voronezh: VGUIT, 225.

22. Kairbayeva, A., Vasilenko, V. Dzhinguilbayev, S., Baibolova, L., Frolova, L. (2018). Development of the mathematical model for the process of oil raw materials pressing. International Journal of Engineering & Technology, 7 (2.13), 145. doi: https://doi.org/10.14419/ijet.v7i2.13.11629

DOI: 10.15587/1729-4061.2022.255336
IDENTIFYING PATTERNS IN THE FATTY-ACID COMPOSITION OF SAFFLOWER DEPENDING ON AGROCLIMATIC CONDITIONS (p. 23–28)

Mukhtar Tultabayev
Kazakh University of Technology and Business,
Nur-Sultan, Republic of Kazakhstan
ORCID: https://orcid.org/0000-0002-8552-5425

Urishbay Chomanov
Kazakh University of Technology and Business,
Nur-Sultan, Republic of Kazakhstan
ORCID: https://orcid.org/0000-0002-5594-8216

Tamara Tultabayeva
S. Seifullin Kazakh Agro Technical University,
Nur-Sultan, Republic of Kazakhstan
ORCID: https://orcid.org/0000-0003-2483-7406

Aruzhan Shoman
S. Seifullin Kazakh Agro Technical University,
Nur-Sultan, Republic of Kazakhstan
ORCID: https://orcid.org/0000-0002-7844-8601

Kuchkar Dodaev
S. Seifullin Kazakh Agro Technical University,
Nur-Sultan, Republic of Kazakhstan
ORCID: https://orcid.org/0000-0002-0070-7941

Utkir Azimov
S. Seifullin Kazakh Agro Technical University,
Nur-Sultan, Republic of Kazakhstan
ORCID: https://orcid.org/0000-0002-7115-0327

Umyt Zhumanova
S. Seifullin Kazakh Agro Technical University,
Nur-Sultan, Republic of Kazakhstan
ORCID: https://orcid.org/0000-0001-9992-9749

The object of the study reported in this paper is to establish a dependence of the fatty acid composition of the fast-growing annual plant safflower on the agroclimatic cultivating conditions. The growth rate of safflower and the characteristics of the extracted oil are highly dependent on external temperature and moisture. At low temperatures, for example, the growth of safflower is significantly inhibited. With an increase in temperature and the length of daylight, the central stem begins to branch while growing faster.
Flowering is mainly affected by the length of daylight. The period from the end of flowering to maturity is typically 28–30 days. However, the total ripening period of the crop depends on the variety, location, sowing time, and agro-climatic cultivating conditions. The need for water increases significantly during the flowering period of safflower, which ultimately affects the indicators of the fatty acid composition and yield. At the same time, safflower is sensitive to moisture in terms of disease. In case of excess water, it is subject to root rot. In addition, frequent rains and high humidity after ripening can provoke the germination of seeds on the head. Hence, it follows that in order to obtain a high yield with the specified characteristics of the fatty acid composition of safflower oil, it is necessary to take into consideration the quantitative indicators of moisture and its seasonality, as well as the temperature regime during the growing season.

The study was conducted using arid or semi-arid, sharply continental Central Asia with its hot summers and cold winters as an example. The dependence of the physicochemical parameters of plant-derived oils on agroclimatic indicators has been established. The reported results and conclusions will allow farmers to predict the yield of oilseeds with specified characteristics depending on the changing climatic parameters.

Keywords: safflower, processing technologies, fatty acid composition of oils, physicochemical properties, climate change, nutritional value.

References
1. Guterres, A. (2020). Red Code for Humanity. Report of the Interdepartmental Group of Experts on Climate Change. UN Secretary-General.
2. Nurbekov, A., Kassam, A., Sydyk, D., Ziyadullaev, Z., Dzhumshudov, I., Mumindzhavan, Kh., et al. (2016). Praktika pochvozaschitnogo i resursoberegayushcheho zemedel'ja v Azerbaydzhane, Kazakhstane i Uzbekistane. FAO, 94. Available at: https://www.fao.org/3/i5694r/i5694r.pdf
3. Steberl, K., Hartung, J., Munz, S., Graeff-Hanning, S. (2020). Effect of Row Spacing, Sowing Density, and Harvest Time on Floret Yield and Yield Components of Two Safflower Cultivars Grown in Southwestern Germany. Agronomy, 10 (5), 664. doi: https://doi.org/10.3390/agronomy10050664
4. Kumari, S., Choudhary, R. C., Kumara Swamy, R. V., Saharan, V., Joshi, A., Munot, J. (2017). Assessment of genetic diversity in safflower (Carthamus tinctorius L.) genotypes through morphological and SSR marker. Journal of Pharmacognosy and Phytochemistry, 6 (5), 2723–2731. Available at: https://www.phytojournal.com/archives/2017/vol6issue5/PartAM/6-5-239-897.pdf
5. Ambreen, H., Kumar, S., Kumar, A., Agarwal, M., Jaganmuth, A., Goel, S. (2018). Association Mapping for Important Agronomic Traits in Safflower (Carthamus tinctorius L.) Core Collection Using Microsatellite Markers. Frontiers in Plant Science, 9. doi: https://doi.org/10.3389/fpls.2018.00402
6. Nadeem, M. A., Nawaz, M. A., Shahid, M. Q., Doğan, Y., Comertp, G., Yıldız, M. et. al. (2017). DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotechnology & Biotechnological Equipment, 32 (2), 261–285. doi: https://doi.org/10.1080/13102818.2017.1400401
7. Gecegel, U., Demirci, M., Esendel, E. (2007). Seed yield, oil content and fatty acids composition of safflower (Carthamus tinctorius L.) varieties sown in spring and winter. International Journal of Molecular Sciences, 1, 11–15.
8. GrowNotes Safflower Northern, Grains Research and Development Corporation, Australia (2017). GRDC.
9. Houmanat, K., Mazouz, H., Fechtali, M., Nabloussi, A. (2017). Evaluation and pooling of safflower (Carthamus tinctorius L) accessions from different world origins using agro-morphological traits. International Journal of Advanced Research, 5 (7), 926–934. doi: https://doi.org/10.21474/ijar01/4798
10. Nasiev, B. N., Bushnev, A. S., Zhylkybay, A. M. (2021). The results of studying of biologized technology of safflower cultivation in the Western Kazakhstan. Oil Crops, 2 (186), 75–80. doi: https://doi.org/10.25230/2412-608x-2021-2-186-75-80
11. Melikhov, V. V. (2019). Novye mehanizmy adaptatsii sel'skhozozayastvennykh rasteniya k izmeneniyu klimaticheskikh uslovii. Orosaemoe zemedel'ie, 4.
12. Prakhova, T. Ya., Kshnikatkina, A. N., Schanin, A. A. (2020). Yield properties and adaptability of safflower (Carthamus Tinctorius) varieties in the conditions of forest-steppe of the middle Volga Region. Niva Povolzh'ja, 2 (55). doi: https://doi.org/10.36106/nvop.2020.2.55.008
13. Arutyunyan, N. S., Arisheva, E. A., Yanova, L. M., Kamysh, M. A. (1983). Laboratornyy praktikum po tekhnologii pererabotki zhirov. Moscow: Legkaya i pischevaya promyshlennost', 152.
14. Annual Bulletin of monitoring the state and climate change in Kazakhstan (2020). RSE «KAZHYDROMET». Available at: https://www.kazhydromet.kz/uploads/files/403/file/619e-16aeb6ec1ezhegodnyy-bulleten-monitoringa-sostoyaniyai-i-izmeneniyu-klimata-kazhastana-zu-2020.pdf

DOI: 10.15587/1729-4061.2022.255676

REVEALING THE INFLUENCE OF PLANT-BASED ADDITIVES ON QUALITATIVE INDICATORS OF A SEMI-FINISHED PRODUCT MADE FROM CAMEL MEAT (p. 29–35)

Zhanar Medebayev
Almaty Technological University, Almaty, Republic of Kazakhstan
ORCID: https://orcid.org/0000-0002-7483-8506

Aigul Tayeva
Almaty Technological University, Almaty, Republic of Kazakhstan
ORCID: https://orcid.org/0000-0002-4766-9364

Gulnara Shambulova
Almaty Technological University, Almaty, Republic of Kazakhstan
ORCID: https://orcid.org/0000-0001-6257-1317

Laila Syzdykova
Almaty Technological University, Almaty, Republic of Kazakhstan
ORCID: https://orcid.org/0000-0002-8953-6332

Astashkov Mikhail
Almaty Technological University, Almaty, Republic of Kazakhstan
ORCID: https://orcid.org/0000-0002-4089-8746

This paper considers the influence exerted on the qualitative indicators of boiled camel sausage by plant-based additives. The study’s results were used to improve the technology and determine the levels of application of plant-derived additives.
extracts with antioxidant properties in the production of boiled sausages. The effect of plant extracts with antioxidant properties on oxidative processes in boiled sausages has been investigated. Camel meat contains phosphorus, magnesium, and potassium. This meat has a large content of vitamins A, B1, B2, C, and E. In terms of protein content (15.1 %), camel is inferior to beef; in terms of fat (11.5 %), it is inferior to other types of meat. However, camel meat is rich in vitamins and trace elements. In addition, the composition of camel meat contains phosphorus, 216–234 mg, which is higher than that of beef.

The disadvantage of boiled camel sausages is a short shelf life. Therefore, it was decided to add plant-based supplements with antioxidant properties. In addition, to ensure minimal lipolytic changes and changes in lipid oxidation in meat, the rational concentration of added antioxidants was determined. Using the response surface methodology, a three-level factor plan was constructed for two variables—the concentration of ginger root powder and sea buckthorn powder. The minimum acid number was manifested at the concentration of ginger root powder and sea buckthorn; the minimum TBARS was detected at 0.030 % of the powder of ginger root powder and 0.090 % of the powder of sea buckthorn. The concentration of ginger root powder with optimal resistance to oxidation and lipolysis is proposed. The shelf life was also determined in comparison with the control.

Keywords: camel meat, lipolysis, oxidative stability, ginger root powder, antioxidants, sea buckthorn powder.

References. Technology and Equipment of Food Production, 73.

1. Zhang, W., Xiao, S., Samaraweera, H., Lee, J. J., Ahn, D. U. (2010). Improving functional value of meat products. Meat Science, 86 (1), 15–31. doi: https://doi.org/10.1016/j.meatsci.2010.04.018
2. Shahidi, F., Zhong, Y. (2010). Lipid oxidation and improving the oxidative stability. Chemical Society Reviews, 39 (11), 4067. doi: https://doi.org/10.1039/b922183m
3. Karre, L., Lopez, K., Getty, K. J. K. (2013). Natural antioxidants in meat and poultry products. Meat Science, 94 (2), 220–227. doi: https://doi.org/10.1016/j.meatsci.2013.01.007
4. Juntachote, T., Berghofer, E., Siebenhandler, S., Bauer, F. (2006). The antioxidative properties of Holy basil and Galangal in cooked ground pork. Meat Science, 72 (3), 446–456. doi: https://doi.org/10.1016/j.meatsci.2005.08.009
5. Wong, J. W., Hashimoto, K., Shibamoto, T. (1993). Antioxidant Activities of Rosemary and Sage Extracts and Vitamin E in a Model Meat System. Journal of Agricultural and Food Chemistry, 41 (10), 2707–2712. doi: https://doi.org/10.1021/jf00035a029
6. Kotel’nikova, Yu. A., Kornevskaya, P. A. (2021). Uvelichenie srokov khrenaniya kolbaskykh izdelii. Sostoyanie, problemy i perspektivy razvitiya sovremennoy nauki: Sbornik nauchnykh trudov vnutrenn’ego prakticheskoy konferentsii. Bryansk: Bryanskiy gosudarstvennyiy agrarniy universitet, 214–217.
7. De Carvalho, F. A. L., Munekata, P. E. S., Pateiro, M., Camagnol, P. C. B., Dom nquez, R., Trindade, M. A., Lorenzo, J. M. (2020). Effect of replacing backfat with vegetable oils during the shelf-life of cooked lamb sausages. LWT, 122, 109052. doi: https://doi.org/10.1016/j.lwt.2020.109052
8. Esmaeili, H., Cheraghi, N., Khanjari, A., Rezaiegolestanii, M., Basti, A. A., Kamkar, A., Aghae, E. M. (2020). Incorporation of nanoencapsulated garlic essential oil into edible films: A novel approach for extending shelf life of vacuum-packed sausages. Meat Science, 166, 108135. doi: https://doi.org/10.1016/j.meatsci.2020.108135
9. Loetscher, Y., Kreuzer, M., Messikommer, R. E. (2013). Oxidative stability of the meat of broilers supplemented with rosemary leaves, roosehip fruits, chokeberry pomace, and entire nettle, and effects on performance and meat quality. Poultry Science, 92 (11), 2938–2948. doi: https://doi.org/10.3382/ps.2013-03258
10. Zaky, E. A., Tahoon, N. A., ElAnany, A. M. M., Zaher, A. A.-A. (2020). Effect of flaxseeds addition on the nutritional value of sausage made of camel meat. 129–150, 13 (1). doi: https://doi.org/10.21608/sjse.2020.181753
11. Fomichev, Y., Nikanova, L., Lashin, A. (2016). The effectiveness of using dihydroquercetin (taxifolin) in animal husbandry, poultry and apiculture for prevention of metabolic disorders, higher antioxidative capacity, better resistance and realisation of a productive potential of organism. Agriculture & Food, 4, 140–159. Available at: https://www.sci-entific-publications.net/get/1000020/14652212171016716.pdf
12. Artem’eva, O. A., Pereselkova, D. A., Fomichev, Y. P. (2015). Dihydroquercetin, the bioactive substance, to be used against pathogenic microorganisms as an alternative to antibiotics. Se’iskokhozyaistvennaya Biologiya, 30 (4), 513–519. doi: https://doi.org/10.15389/agrobiology.2013.5.513eng
13. Shikov, V., Kammerer, D. R., Mihalev, K., Mollov, P., Carle, R. (2012). Antioxidant capacity and colour stability of texture-improved canned strawberries as affected by the addition of rose (Rosa damascena Mill.) petal extracts. Food Research International, 46 (2), 552–556. doi: https://doi.org/10.1016/j.foodres.2011.04.004
14. Bulambeva, A. A., Vlahova-Va, D. B., Dragoev, S. G., Balev, D. K., Uzakov, Y. M. (2014). Development of New Functional Cooked Sausages by Addition of Goji Berry and Pumpkin Powder. American Journal of Food Technology, 9 (4), 180–189. doi: https://doi.org/10.3923/ajft.2014.180.189
15. Alimardanova, M., Tleveslsova, D., Bakiyev, V., Akanpov, Z. (2021). Revealing the features of the formation of the properties of processed cheese with wild onions. Eastern-European Journal of Enterprise Technologies, 4 (11 (112)), 73–81. doi: https://doi.org/10.15587/1729-4061.2021.239120
16. Mollov, P., Mihalev, K., Shikov, V., Yoncheva, N., Karagyo zov, V. (2007). Colour stability improvement of strawberry beverage by fortification with polyphenolic copigments naturally occurring in rose petals. Innovative Food Science & Emerging Technologies, 8 (3), 318–321. doi: https://doi.org/10.1016/j.ifset.2007.03.004
17. Balev, D., Vlahova-Vangelova, D., Mihalev, K., Shikov, V., Dragoev, S., Nikolov, V. (2015). Application of natural dietary antioxidants in broiler feeds. Journal of Mountain Agriculture, 18, 224–232. Available at: https://www.researchgate.net/publication/307782292_Application_of_natural_dietary_antioxidants_in_broiler_feeds
18. Belozertsseva, O., Baibolova, L., Pronina, Y., Cepeda, A., Tleveslsova, D. (2021). The study and scientific substantiation of critical control points in the life cycle of immunostimulating products such as pastila and marma lade. Eastern-European Journal of Enterprise Technologies, 5 (11 (113)), 20–28. doi: https://doi.org/10.15587/1729-4061.2021.241526
19. Kulazhanov, T., Baibolova, L., Shaprov, M., Tleveslsova, D., Admaeva, A., Kairbayeva, A. et. al. (2021). Means of mechanization and technologies for melons processing. Kharkiv:
1. Hawkins, C., Pattison, D., Davies, M. (2003). Hypochlorite-induced oxidation of amino acids, peptides and proteins.

Amino Acids, 25, 259–274. doi: https://doi.org/10.1007/s00726-003-0016-x

2. Jenkins, D. J., Kendall, C. W., Augustin, L. S., Franceschi, S., Hamidi, M., Marchie, A. et. al. (2002). Glycemic index: overview of implications in health and disease. The American Journal of Clinical Nutrition, 76 (1), 266S–273S. doi: https://doi.org/10.1093/ajcn/76.1.266S

3. Laguna, L., Vallons, K. J. R., Jurgens, A., Sanz, T. (2012). Understanding the Effect of Sugar and Sugar Replacement in Short Dough Biscuits. Food and Bioprocess Technology, 6 (11), 3143–3154. doi: https://doi.org/10.1007/s11947-012-0968-5

4. Hussain, A., Kaul, R., Bhat, A. (2018). Development of healthy multigrain biscuits from buckwheat-barley composite flours. Asian Journal of Dairy and Food Research, 37 (02). doi: https://doi.org/10.18805/ajdrdr-1328

5. Sharma, S., Rana, S., Katare, C., Pendharkar, T., Prasad, G. B. K. S. (2013). Evaluation of Fiber Enriched Biscuits as a Healthy Snack. International Journal of Scientific and Research Publications, 3 (1). Available at: http://www.ijsr.org/research-paper-1301/ijsrp-p1377.pdf

6. Srivastava, S. (2012). Preparation and Quality Evaluation of Flour and Biscuit from Sweet Potato. Journal of Food Processing & Technology, 03 (12). doi: https://doi.org/10.4172/2157-7110.1000192

7. Lazarioudi, A., Kotsiou, K., Biliaderis, C. G. (2022). Nutritional and technological aspects of barley β-glucan enriched biscuits containing isomaltose as sucrose replacer. Food Hydrocolloids, 2, 100600. doi: https://doi.org/10.1016/j.foodhydrocol.2022.100600

8. Kärklinga, D., Gedrovića, E., Reca, N., Kronberga, M. (2012). Production of Biscuits With Higher Nutritional Value: Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences, 66 (3). 113–116. doi: https://doi.org/10.2478/v10046-012-0005-0

9. Jia, M., Yu, Q., Chen, J., He, Z., Chen, Y., Xie, J. et. al. (2020). Physical quality and in vitro starch digestibility of biscuits as affected by addition of soluble dietary fiber from defatted rice bran. Food Hydrocolloids, 99, 105349. doi: https://doi.org/10.1016/j.foodhydrocol.2019.105349

10. Hidalgo, A., Ferraretto, A., De Noni, I., Bottani, M., Cattaneo, S., Galli, S., Brandolini, A. (2018). Bioactive compounds and antioxidant properties of pseudocereals-enriched water biscuits and their in vitro digestates. Food Chemistry, 240, 799–807. doi: https://doi.org/10.1016/j.foodchem.2017.08.014

11. Villedjejane, C., Denis, S., Marsset-Baglieri, A., Alric, M., Aymard, P., Michon, C. (2016). In vitro digestion of short-dough biscuits enriched in proteins and/or fibres using a multi-compartmental and dynamic system (2): Protein and starch hydrolyses. Food Chemistry, 190, 164–172. doi: https://doi.org/10.1016/j.foodchem.2015.05.050

12. Lu, L., He, C., Liu, B., Wen, Q., Xia, S. (2022). Incorporation of chickpea flour into biscuits improves the physicochemical properties and in vitro starch digestibility. LWT, 159, 113222. doi: https://doi.org/10.1016/j.lwt.2022.113222

13. Buško, S., Katona, J., Popović, L., Vlažlag, Ž., Petrović, L., Vučinić-Vasić, M. (2015). Investigation on solubility, interfacial and emulsifying properties of pumpkin (Cucurbita pepo) seed protein isolate. LWT – Food Science and Technology, 64 (2), 609–615. doi: https://doi.org/10.1016/j.lwt.2015.06.054

14. Ding, S., Peng, B., Li, Y., Yang, J. (2019). Evaluation of specific volume, texture, thermal features, water mobility, and inhibitory effect of staling in wheat bread affected...
by maltitol. Food Chemistry, 283, 123–130. doi: https://doi.org/10.1016/j.foodchem.2019.01.045
15. Rozzi, N. L. (2007). Sweet facts about Maltitol. Food Prod. Des., 17 (10). Available at: https://talcottlab.tamu.edu/wp-content/uploads/sites/108/2019/01/Maltitol.pdf
16. Shah, B. R., Li, B., Wang, L., Liu, S., Li, Y., Wei, X. et al. (2015). Health benefits of konjac glucomannan with special focus on diabetes. Bioactive Carbohydrates and Dietary Fibre, 5 (2), 179–187. doi: https://doi.org/10.1016/j.bcdf.2015.03.007
17. Chen, H., Nie, Q., Hu, J., Huang, X., Zhang, K., Pan, S., Nie, S. (2019). Hypoglycemic and Hypolipidemic Effects of Glucomannan Extracted from Konjac on Type 2 Diabetic Rats. Journal of Agricultural and Food Chemistry, 67 (18), 5278–5288. doi: https://doi.org/10.1021/acs.jafc.9b01192
18. Nishinari, K., Kohyama, K., Kumagai, H., Funami, T., Bourne, M. C. (2013). Parameters of Texture Profile Analysis. Food Science and Technology Research, 19 (3), 519–521. doi: https://doi.org/10.3136/str.19.519
19. Liu Zhe, Y. Y., Li, S., Meng, Q., Yuan, Z. (2021). Response Surface Design Optimization of Biscuit Formula Using Quinoa Distiller’s Grains. Food Research and Development, 42 (17), 129–136.
20. Meng Tingting, L. X., Chao, L., Bailing, Z. (2021). Optimization of potato oatmeal crisp biscuit. Cereals & Oils, 42 (17), 129–136.

DOI: 10.15587/1729-4061.2022.255646
QUALITY FORMING PATTERNS IN THE CUPCAKE ENRICHED WITH PUMPKIN SLICES (p. 43–51)

Vitalii Liubych
Uman National University of Horticulture, Uman, Ukraine
ORCID: https://orcid.org/0000-0003-4100-9063

Volodymyr Novikov
Uman National University of Horticulture, Uman, Ukraine
ORCID: https://orcid.org/0000-0003-3052-8407

Valerii Zheliczena
Uman National University of Horticulture, Uman, Ukraine
ORCID: https://orcid.org/0000-0002-1874-2155

Marina Makarchuk
Uman National University of Horticulture, Uman, Ukraine
ORCID: https://orcid.org/0000-0003-4000-0921

Oleksandr Balabak
National Dendrological Park Sofiyivka of the National Academy of Science of Ukraine, Uman, Ukraine
ORCID: https://orcid.org/0000-0002-7435-9783

Viktor Kirian
Ustymivka Experimental Station of Plant Production, Ustymivka vill., Poltava reg., Ukraine
ORCID: https://orcid.org/0000-0001-8730-8507

Volodymyr Bardakov
Institute of Agricultural Microbiology and Agro-industrial Production of NAAS, Chernivtsi, Ukraine
ORCID: https://orcid.org/0000-0002-6974-488X

Mykola Kyrpa
Institute of Grain Crops of National Academy of Agrarian Sciences of Ukraine, Dnipro, Ukraine
ORCID: https://orcid.org/0000-0002-6893-8180

Valentyn Moskalets
Institute of Horticulture of the National Academy of Agrarian Sciences of Ukraine, Novosilky vill., Kyiv reg., Ukraine
ORCID: https://orcid.org/0000-0002-0831-056X

Tetiana Moskalets
Institute of Horticulture of the National Academy of Agrarian Sciences of Ukraine, Novosilky vill., Kyiv reg., Ukraine
ORCID: https://orcid.org/0000-0003-4373-4648

This paper reports a study into the effect of different quantities and shapes of fresh pumpkin slices on the technological properties of the cupcake. A comparative analysis of the technological properties of the cupcake with the addition of different quantities and shapes of pumpkin slices has been carried out. A change in the technological properties of the cupcake depending on the volume of pumpkin slices has been established. The use of fresh pumpkin slices reliably improves shrinkage during baking, humidity, and acidity of the cupcake. The volume of the cupcake is significantly reduced in this case. Porosity is significantly impaired when adding 30–50 % of slices. The slice shape does not significantly affect the technological parameters of the cupcake.

Social research was conducted; the main priorities for buyers of flour confectionery products were established. It is proved that the greatest importance when choosing food by consumers is given to the physical appearance of the finished product.

Based on the research, it was found that in the technology of cupcake production, it is optimal to add 5–25 % of fresh pumpkin slices of different shapes by weight of the dough. Applying this volume of slices makes it possible to bake a cupcake with a porosity of 9 points, a shrinkage at baking of 6.9–8.5 %, humidity of 6.9–12.8 %, a volume of 176–203 cm³, the acidity of 1.5–1.7 degrees. In addition, it is possible to use 30–35 % of pumpkin slices. The porosity of a cupcake with such a formulation is at the level of 6.5–8.0 points. The cupcake quality meets the requirements set out by DSTU 4505:2005 and ISO 22000:2018. The difference from the conventional technology of utilizing non-traditional raw materials is the use of different quantities and shapes of fresh pumpkin slices. The use of pumpkin slices makes it possible to reduce the volume of dough in the finished product.

The devised recommendations could be used by low-productivity grain processing enterprises when making flour confectionery products.

Keywords: pumpkin slices, technological quality of cupcake, slice shape, volume of slices.

References
1. Mikulec, A., Kowalski, S., Sabat, R., Skoczylas, Ł., Tabaszewska, M., Wywrocka-Gurgal, A. (2019). Hemp flour as a valuable component for enriching physicochemical and antioxidant properties of wheat bread. LWT, 102, 164–172. doi: https://doi.org/10.1016/j.lwt.2018.12.028
2. Wiedemair, V., Gruber, K., Knöpfle, N., Bach, K. E. (2022). Technological Changes in Wheat-Based Breads Enriched with Hemp Seed Press Cakes and Hemp Seed Grit. Molecules, 27 (6), 1840. doi: https://doi.org/10.3390/molecules27061840
3. Oispenko, E. Y., Denisovich, Y. Y., Gavrilova, G. A., Vodolagina, E. Y. (2019). The use of bioactive components of plant
raw materials from the far eastern region for flour confectionery production. AIMS Agriculture and Food, 4 (1), 73–87. doi: https://doi.org/10.3934/agfood.2019.1.73

4. Mironcea, S. (2022). Current Approaches in Using Plant Ingredients to Diversify Range of Bakery and Pasta Products. Applied Sciences, 12 (6), 2794. doi: https://doi.org/10.3390/app12062794

5. Kurakina, A. N., Krasina, I. B., Tarasenko, N. A. et. al. (2015). Funkcional’nye ingredintsy v proizvodstve konditerskikh izdeliy. Fundamental’nye issledovaniya, 6, 468–472.

6. Calea, C., Barros, L., Antonius, A. L., Oliveira, M. B. P. P., Ferreira, I. C. F. R. (2017). A comparative study between natural and synthetic antioxidants: Evaluation of their performance after incorporation into biscuits. Food Chemistry, 216, 342–346. doi: https://doi.org/10.1016/j.foodchem.2016.08.075

7. Mirani, A., Goli, M. (2022). Optimization of cupcake formulation by replacement of wheat flour with different levels of eggplant fiber using response surface methodology. Food Science and Technology, 42. doi: https://doi.org/10.1590/fst.52120

8. Nagavekar, N., Singhal, R. S. (2017). Enhanced extraction of oleoresin from Piper nigrum by supercritical carbon dioxide using ethanol as a co-solvent and its bioactivity profile. Journal of Food Process Engineering, 41 (1), e12670. doi: https://doi.org/10.1111/jfpe.12670

9. Pereira, G. A., Arruda, H. S., de Morais, D. R., Eberlin, M. N., Pastore, G. M. (2018). Carbohydrates, volatile and phenolic compounds composition, and antioxidant activity of calabura (Muntingia calabura L.) fruit. Food Research International, 108, 264–273. doi: https://doi.org/10.1016/j.foodres.2018.03.046

10. Molllica, A., Zengin, G., Locatelli, M., Stefancu, A., Macedonio, G., Bellagamba, G. et. al. (2017). An assessment of the nutraceutical potential of Juglans regia L. leaf powder in diabetic rats. Food and Chemical Toxicology, 107, 554–564. doi: https://doi.org/10.1016/j.fct.2017.03.056

11. Kaur, M., Singh, V., Kaur, R. (2017). Effect of partial replacement of wheat flour with varying levels of flaxseed flour on physicochemical, antioxidant and sensory characteristics of cookies. Bioactive Carbohydrates and Dietary Fibre, 9, 14–20. doi: https://doi.org/10.1016/j.jcfd.2016.12.002

12. Bakin, I. A., Mustafina, A. S., Vechtomova, E. A., Vodolagina, E. Y. (2017). The use of secondary resources of fruit raw material in technology of confectionery and bakery products. Food Process Technology, 45, 5–11.

13. Kiharason, J. W., Isutsa, D. K., Ngoda, P. N. (2017). Effect of drying method on nutrient integrity of selected components of pumpkin (Cucurbita moschata Duch.) fruit flour. ARPN Journal of Agricultural and Biological Science, 12 (3), 110–116. Available at: http://www.arpnjournals.org/jabst/research_papers/tp_2017/jabs_0317_852.pdf

14. Ghaboos, S. H. H., Ardabili, S. M. S., Kashaninejad, M., Asadi, G., Aalami, M. (2016). Combined infrared-vacuum drying method on nutrient integrity of selected components of pumpkin (Cucurbita moschata) flour. Journal of Food Research, 37 (1), 1–11. Available at: https://revistas.ufrj.br/alimentos/article/view/61637/43670

15. Ceclu, L., Mocanu, D. G., Nistor, O. V. (2020). Pumpkin – health benefits. Journal of Agroalimentary Processes and Technologies, 26 (3), 241–246. Available at: https://www.journal-of-agroalimentary.ro/admin/article/38310L35_Liliana_Ceclu_2020_26(3)_241-246.pdf

16. Akhtar, S., Ahmed, A., Randhawa, M. A., Atukorala, S., Arlappa, N., Ismail, T., Ali, Z. (2014). Prevalence of Vitamin A Deficiency in South Asia: Causes, Outcomes, and Possible Remedies. Journal of Health, Population and Nutrition, 31 (4). doi: https://doi.org/10.3329/jhpn.v31i4.19975

17. Mehrotra, G., Agarwal, S. (2021). Production of pumpkin powder and its utilization in bakery products development: a review. International Journal of Research in Engineering and Technology, 4 (5), 478–481. doi: https://doi.org/10.15623/ijret.2015.0405089

18. Liubych, V., Novikov, V., Zhelieznova, V., Prykhodko, V., Petrenko, V., Khomenko, S. et. al. (2020). Improving the process of hydrothermal treatment and dehulling of different triticale grain fractions in the production of groats. Eastern-European Journal of Enterprise Technologies, 3 (11 (105)), 55–65. doi: https://doi.org/10.15587/1729-4061.2020.203737

19. Osokina, N., Liubych, V., Volodymyr, N., Leschenko, L., Petrenko, V., Khomenko, S. et. al. (2020). Effect of electromagnetic irradiation of emmer wheat grain on the yield of flattened wholegrain cereal. Eastern-European Journal of Enterprise Technologies, 6 (11 (108)), 17–26. doi: https://doi.org/10.15587/1729-4061.2020.217018

20. Dudko, S., Fedorov, V. (2020). Advantages and problems in studying of massive flour goods baking: literature review. Part 2: heat and mass transfer in oven’s baking chamber. Scientific Works of National University of Food Technologies, 26 (1), 175–187. doi: https://doi.org/10.24263/2225-2924-2020-6-1-21

21. Oyejinka, S. A., Oyejinka, A. T., Opaleke, D. O., Karim, O. R., Kolawole, F. L., Ogunlakin, G. O., Olayiwola, O. H. (2014). Cake production from wheat (Triticum aestivum) and cowpea (Vigna unguiculata) flours using date fruit as a sweetener. Annals. Food Science and Technology, 15 (1), 20–28. Available at: https://www.academia.edu/10925094/CAKE_PRODUCTION_FROM_WHEAT_TRITICUM_AESTIVUM_AND_COWPEA_VIGNA_UNGUCULATA_FLOURS_USING_DATE_FRUIT_AS_A_SWEETENER

22. Tkachenko, A., Pakhomova, I. (2016). Consumer properties improvement of sugar cookies with fillings with non-traditional raw materials with high biological value. Eastern-European Journal of Enterprise Technologies, 3 (11 (81)), 54–61. doi: https://doi.org/10.15587/1729-4061.2016.70950

23. Morais, J. S., Sassi, K. K. B., Souza, B. L., Moreira, R. T., Macedel, J. F. (2017). Desenvolvimento e aceitação de bolo de abóbora com chocolate à base de farinha de arroz. Revista Brasileira de Agrotecnologia, 7 (2), 68–72.

24. Campos, E. T., Cardoso, B. T., Ramos, S. R. R., Santos, D. de O., Carvalho, M. G. (2021). Processing and evaluation of pumpkin cake (Cucurbita moschata). B.CEPPA, 37 (1), 1–11. Available at: https://revistas.ufrj.br/alimentos/article/view/61637/43670

25. Mbitjwe, J., Ndung’u, Z., Kinyuru, J. (2021). Enrichment of Fermented Sorghum Flour with Pumpkin Pulp and Seed for Production of A Vitamin A and Iron Enhanced Supplementary Food. Journal of Food Research, 10 (6), 36. doi: https://doi.org/10.5539/jfr.v10n6p36

26. Sathiya Mala, K., Aathira, P., Anjali, E. K., Srinivasulu, K., Sulochanamma, G. (2015). Effect of pumpkin powder incorporation on the physico-chemical, sensory and nutritional characteristics of wheat flour muffins. International Food Research Journal, 25 (3), 1081–1087. Available at: http://www.ifrj.upm.edu.my/25%20(03)%202018/(27).pdf
As an additive to bread, it is proposed to use a powder made from derivatives of Sorbus aucuparia mountain ash processing. The powder production technology involves freezing fruits, preliminary dehydration by osmotic dehydration, drying in an infrared dryer and grinding. The technology of bread with an extended shelf life and increased biological value has been developed, and some of its physical and chemical properties have been studied. To determine the feasibility of using powders from Sorbus aucuparia processing derivatives, their amino acid spectrum was analyzed by the chromatographic method. 17 amino acids in the amount of 7.43 g/100 g were identified, 7 of which are essential (valine, leucine, isoleucine, lysine, methionine, threonine, phenylalanine) in the amount of 1.84 g/100 g. The highest concentration of the total number of amino acids is glutamic acid (1.57 g/100 g), which gives the powders the properties of natural preservatives, increases the storage capacity of bread. The experiment showed that adding 20 % powder from Sorbus aucuparia processing derivatives to wheat flour bread allows at least doubling its shelf life. However, such an amount of additive affects the porosity of the bread and its organoleptic properties. Therefore, a sample was made with the addition of 10 % powder, and no defects in taste, smell and shape of bread with the addition of mountain ash powder were found. When using the developed technology, the time for making bread is reduced by 30 minutes compared to the classic straight dough method and by 120–150 minutes compared to the sponge dough method. The shelf life of bread according to the proposed technology is 15 days.

Keywords: enriched bread, dehydration, Sorbus aucuparia processing derivatives, infrared drying, glutamic acid.

References

1. Tsanasidou, C., Kosma, I., Badeka, A., Kontominas, M. (2021). Quality Parameters of Wheat Bread with the Addition of Untreated Cheese Whey. Molecules, 26 (24). 7518. doi: https://doi.org/10.3390/molecules26247518

2. Saranraj, P., Geetha, M. (2012). Microbial Spoilage of Bakery Products and Its Control by Preservatives. International Journal of Pharmaceutical & Biological Archives, 3 (1), 38–48. Available at: https://www.academia.edu/1633496/Microbial_Spoilage_of_Bakery_Products_and_Its_Control_by_Preservatives

3. Curtain, F., Grafenauer, S. (2019). Health Star Rating in Grain Foods-Does It Adequately Differentiate Refined and Whole Grain Foods? Nutrients, 11 (2), 415. doi: https://doi.org/10.3390/nu11071575

4. Protonotariou, S., Stergiou, P., Christaki, M., Mandala, I. G. (2020). Physical properties and sensory evaluation of...
bread containing micronized whole wheat flour. Food Chemistry, 318, 126497. doi: https://doi.org/10.1016/j.foodchem.2020.126497

5. Miš, A., Nawrocka, A., Dziki, D. (2017). Behaviour of Dietary Fibre Supplements During Bread Dough Development Evaluated Using Novel Farinograph Curve Analysis. Food and Bioprocess Technology, 10 (6), 1031–1041. doi: https://doi.org/10.1007/s11947-017-1881-8

6. Kasiyanchuk, V. D., Kovach, M. M., Kasiyanchuk, M. V. (2013). The perspective of using of wild fruits, berries and mushrooms in the Precaucasian region for the medical and prophylactic purpose. Naukovi visnyk NLU Ukraine, 23 (7), 151–156.

7. Silagadze, M. A., Gachechiladze, S. T., Pruidze, E. G., Khetsuriani, G. S., Khvadagiani, K. B., Pkhakadze, G. N. (2017). Development of new-generation dietary bread technologies by using soya processing products. Annals of Agrarian Science, 15 (2), 177–180. doi: https://doi.org/10.1016/j.jaasci.2017.05.018

8. Sizaya, O., Savchenko, O., Zhurok, I., Dorozhynska, M. (2017). Powder from the schrot of berries of kalina in the technology of production of wheat bread. Technical sciences and technologies, 4 (10), 176–188. doi: https://doi.org/10.25104/2411-5363-2017-4(10)-176-188

9. Akhmedov, M. E., Mustafaeva, K. K. (2019). Razrabotka reseptur khleba s biologicheski aktivnoy dobavkoy iz plodov oblepikhi. Nauchnye trudy Kubanskogo gosudarstvennogo tekhnicheskogo universiteta, 65, 414–418.

10. Jakobek, L., Drenjaneruga, M., Jukić, V., Šeruga, M. (2012). Phenolic acids, flavonols, anthocyanins and antiradical activity of «Nero», «Viking», «Galicianka» and wild chokeberries. Scientia Horticulturae, 147, 56–63. doi: https://doi.org/10.1016/j.scienta.2012.09.006

11. Humeniuk, O. L., Ksenituk, M. P., Zinenko, Yu. S., Derchak, T. L. (2016). Dotshistiv yakorostnosti plodov borohyny dla poperedzhennia plasniavinnia khlib. Kharkovska promyslovist, 19, 66–72.

12. Novoselov, S. V., Makovskaya, I. S. (2011). Analiz i perspektivy ispol’zovaniya kaliny v proizvodstve plodovoy-nogotnyh siropov funktsional’nogo naznacheniya. Polzunovskiy al’manakh, 4/2, 137–145.

13. Samilyk, M., Helikh, A., Bolgova, N., Potapov, V., Saba-dash, S. (2020). The application of osmotic dehydration in the technology of producing candied root vegetables. Eastern-European Journal of Enterprise Technologies, 3 (11 (105)), 13–20. doi: https://doi.org/10.15587/1729-4061.2020.204664

14. Ahmed, I., Qazi, I. M., Jamal, S. (2016). Developments in osmotic dehydration technique for the preservation of fruits and vegetables. Innovative Food Science & Emerging Technologies, 34, 29–43. doi: https://doi.org/10.1016/j.ifset.2016.01.003

15. Tiwari, R. B. (2005). Application of osmo-air dehydration for processing of tropical tropical fruits in rural areas. Indian food industry, 23 (1), 24–29.

16. Chareonthaikij, P., Uan-On, T., Prinyawiwatkul, W. (2016). Effects of pineapple pomace fibre on physicochemical properties of composite flour and dough, and consumer acceptance of fibre-enriched wheat bread. International Journal of Food Science & Technology, 51 (5), 1120–1129. doi: https://doi.org/10.1111/ijfs.13072

17. Huang, G., Guo, Q., Wang, C., Ding, H. H., Cui, S. W. (2016). Fenugreek fibre in bread: Effects on dough development and bread quality. LWT - Food Science and Technology, 71, 274–280. doi: https://doi.org/10.1016/j.lwt.2016.03.040

18. Nawrocka, A., Krekora, M., Niewiadomski, Z., Szymańska-Chargot, M., Krawęcka, A., Sobota, A., Miś, A. (2020). Effect of moisturizing pre-treatment of dietary fibre preparations on formation of gluten network during model dough mixing – A study with application of FT-IR and FT-Raman spectroscopy. LWT, 121, 108959. doi: https://doi.org/10.1016/j.lwt.2019.108959

DOI: 10.15587/1729-4061.2022.254090

INCREASING THE BIOLOGICAL VALUE OF BREAD THROUGH THE APPLICATION OF PUMPKIN PUREE (p. 58–68)

Eldaniz Bayramov
University of Technology of Azerbaijan, Ganja, Azerbaijan
ORCID: https://orcid.org/0000-0003-0798-253X

Shakir Aliyev
University of Technology of Azerbaijan, Ganja, Azerbaijan
ORCID: https://orcid.org/0000-0002-9192-7826

Afat Gasimova
University of Technology of Azerbaijan, Ganja, Azerbaijan
ORCID: https://orcid.org/0000-0002-9814-4488

Seyda Gurbanova
University of Technology of Azerbaijan, Ganja, Azerbaijan
ORCID: https://orcid.org/0000-0003-1983-5166

Ilhama Kazimova
Azerbaijan State University of Economics (UNEC), Baku, Azerbaijan
ORCID: https://orcid.org/0000-0003-3857-9575

Some vegetables are indispensable for the production of a wide range of bread products, because of their chemical composition. One of the factors hindering their widespread use in the bakery is the insufficient study of their functional properties in the mentioned technological areas. The main goal of the study was a complex analysis of the food value, mineral and vitamin compositions of raw materials and bread with additives, on the example of pumpkin variety «Perekhvatka 69». This is necessary to further substantiate the development of technology for the production of new types of bakery products, expanding the range of products and satisfying various consumer preferences. The nature of changes in nutrients, mineral and vitamin compositions in the technological process has been studied, which makes it possible to determine the proportion of reduction in their content. Based on this, it is possible to adjust the content of nutrients, mineral and vitamin compositions before and after the technological process of processing raw materials and making bread with additives. It has been found that the introduction of pumpkin puree has practically no effect on the amount of washed gluten. However, at a dosage of pumpkin puree from 5 to 25 %, the compression strain of raw gluten increases from 68.5 to 94.7 units. This makes it possible to adjust the content of nutrients, mineral and vitamin compositions in the technological process. Based on this, it is possible to adjust the content of nutrients, mineral and vitamin compositions before and after the technological process of processing raw materials and making bread with additives. It has been found that the introduction of pumpkin puree has practically no effect on the amount of washed gluten. However, at a dosage of pumpkin puree from 5 to 25 %, the compression strain of raw gluten increases from 68.5 to 94.7 units. This makes it possible to regulate the desired final properties of bread and the deformation of gluten in the dough.

Keywords: wheat flour, gluten, pumpkin, pumpkin purée, vitamins, minerals, dough, bread.

References

1. Abasov, I. D. (2013). Azerbaycanin va dunya eləklərinin kand təsərrufta. Bakı. Available at: http://anlaaz/el/Kitab/2013/ Azf-273080.pdf

2. Ponomareva, E. I., Zastrogina, N. M., Shitorkh, L. V. (2014). Prakticheskie rekomendatsii po sovershenstvovaniyu tekh-
nologii i assortimenta funktsional’nykh khlебобулочnych izdeliy. Voronezh: VGUIT, 290.

3. Lukina, S. I., Ponomareva, E. I., Zhirkova, E. A., Alekseev, A. E. (2019). Sukhari sbobnye s primeneniem tykven-nogo pyure. Novoe v tehnologii i tekhnike funktsional’nykh produktov pitaniya na osnove mediko-biologicheskikh vozrreniy. Sborn. statey Mezhdunar. nauch.-tekhn. konf., posvyaschennoy 90-letiyu tehnologicheskogo fakulteta VGUIT. Voronezh: VGUIT.

4. Ebrahimi, N., Noori, S. M. A., Sadeghi, A., Coban, O., Zanganeh, J., Ghodsomfidi, S. M. et. al. (2022). Application of cereal-bran sourdoughs to enhance technological functionality of white wheat bread supplemented with pumpkin (Cucurbita pepo) puree. LWT, 158, 113079. doi: https://doi.org/10.1016/j.lwt.2022.113079

5. Rözylo, R., Gawlik-Dziki, U., Dziki, D., Jakubczyk, A., Karak, M., Rözylo, K. (2014). Wheat Bread with Pumpkin (Cucurbita maxima L.) Pulp as a Functional Food Product. Food Technol. Biotechnol, 52 (4), 430–438. doi: https://doi.org/10.17113/ftb.52.04.14.3587

6. Koryachkina, S. Ya., Ospova, G. A., Khmeleva, E. V. et. al. (2012). Sovremenstvovanie tehnologii khlебobulochnych, konditerskikh i makaronnych izdeliy funktsional’nogo naznacheniya. Ore: FGBOU VPO «Gosuniversitet – UNPK», 262.

7. Tripathi, S., Mishra, H. N. (2008). Effect of addition of some herbal mixtures on antioxidants and sensory quality of extruded snack products. Beverage Food world, 6, 30–33.

8. Tagiyev, M. M., Hasanova, H. T., Suleymanov, M. N. (2017). Meyve-taravozlardan funksional qida mahlullan istehsal texnologiyasının iblemisi. Gonca: AMEA GREM, Xabarlar macnunlari, 2 (68), 131–135.

9. Nawirska, A., Figiel, A., Kucharska, A. Z., Sokol-Lętowska, A., Biesiada, A. (2009). Drying kinetics and quality parameters of pumpkin slices dehydrated using different methods. Journal of Food Engineering, 94 (1), 14–20. doi: https://doi.org/10.1016/j.jfoodeng.2009.02.025

10. Dobrek, L., Thor, P. T. (2010). Future potential indications for pharmacotherapy using renin-angiotensin-aldosterone system inhibitory agents. Adv Clin. Exper. Med., 19, 389–398. Available at: https://ruaij.edu.pl/xmlui/bitstream/handle/item/252385/dobrek_thor_future_potential_indications_for_pharmacotherapy_2010.pdf?sequence=1&isAllowed=y

11. Carocho, M., Ferreira, I. C. F. R. (2013). A review on antioxidants, prooxidants and related controversies: Natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food and Chemical Toxicology, 51, 15–25. doi: https://doi.org/10.1016/j.fct.2012.09.021

12. Zaman, M., Oparil, S., Calhoun, D. (2002). Drugs targeting the renin-angiotensin-aldosterone system. Nat. Rev. Drug Discov, 1, 621–636. doi: https://doi.org/10.1038/ord873

13. Nikiforova, T. E. (2009). Biologicheskaya bezopasnost’ produktov pitaniya. Ivanovo: GOU VPO Ivan.GKHTU, 179.

14. Bourland, C., Kloeris, V., Rice, B. Vodovozt, Y. (2000). Food systems for space and planetary flights. Nutrition in space flight and weightlessness models. Boca Raton: CRC Press, 19–40.

15. Ximani, K., Grealv R. B., Goy al, A., Upadhyay, N., Prakash S. (2014). Effect of incorporation of pumpkin (Cucurbita moschata) powder and guar gum on the rheological properties of wheat flour. Journal of Food Science and Technology, 51 (10), 2600–2607. doi: https://doi.org/10.1007/s13197-012-0777-x

16. Tagiyev, M. M., Hasanova, H. T., Salgova, A. Y. (2017). Balqabaq’ın mehaniki tərkibini və ondan hazırlanmış şarbatinin keyfiyyət göstəricilərinin əkspertizası. Gonca ADAU-nun Elmi əsərləri, 1, 34–37.

17. Kazanova, I. Q., Nasibiyev, Ö. Ö. (2015). Balqabaq bostan taravozunun qidaləşdirmə hissəsinin tədqiqi. Gonca Dövlət Universitetinin «Müstəqillik biyologiyasının və kimyannın aktual problemlərinin” elmi-praktiki konfransının materialları. Gonca: GDU, 146–147.

18. Bayramov, E. Ö. (2017). Laboratoriya hər iddiaların təcrübənin məxsus nəzərə alınması və daha geniş və daha dəqiq bir anlayışın təşəbəssuzluğuna yaxınlığını təşkil edən metodik göstərə. Gonca: İsgəroğlu, 40. Available at: https://ru.calameo.com/read/005514285005b26dbb22c
УДОСКОНАЛЕННЯ ТЕМПЕРАЮЧОЇ МАШИНИ ДЛЯ КОНДИТЕРСЬКИХ МАС (с. 6–11)

А. М. Загорулько, О. Є. Загорулько, К. Р. Касабова, Б. В. Ляшенко, О. І. Постаджиєв, М. В. Сашньова

Розглянуто процес віджиму олії з насіння дині в шнековому маслопресі, із застосуванням методу планування повнофакторного експерименту. Для дослідження взаємодії різних факторів, що впливають на процес віджиму олії з насіння дині, було застосовано математичні методи планування експерименту. Як об'єкт дослідження використовували насіння дині. Наведено результати досліджень, які дозволяють розглядати процес відкосування насіння дині. Обґрунтовано режими вентилювання, знайдено коефіцієнт витання для насіння дині. Коефіцієнт опору для насіння дині становить 1,54. Найбільші значення критичної швидкості для насіння дині становили 6,4, ядер 4,67 і для лушпиння 3,94, відповідно, при вологості насіння 24,08 %. Визначено залежність выходу олії від лузжистості. Встановлено, що в процесі віджиму відбувається зменшення олійності м'ятки в міру її просування від приймальної камери до виходу з апарату, однаково відбувається ущільнення продукту, що пресується. За результатами дослідження спрощена установка для віджиму олії з насіння дині. В результаті вирішення задачі з векторним критерієм оптимізації були отримані оптимальні інтервали вхідних параметрів: початкова вологість сировини 9,15...10,27 %, частота обертання шнека маслопресу 0,843...0,895 с⁻¹, величина зазору для виходу макухи 0,750...0,800, температура м'ятки при віджимі 87...89 °С, лузжистість вихідного продукту 7,13...7,23 %.
Дослідження проводилися на прикладі посушливої або напівзасушливої, різко континентальної, зі спекотним літом та холодною зимию. Центральної Азії. Встановлено залежності фізико-хімічних показників рослинних олій від агрокліматичних показників. Отримані результати та висновки дозволяють аграріям прогнозувати отримання продукції олійних культур із заданими характеристиками залежно від параметрів клімату, що змінюються.

Ключові слова: сафлор, технології переробки, жирно-кислотний склад олій, фізико-хімічні властивості, зміна клімату, харчова цінність.

DOI: 10.15587/1729-4061.2022.2535676

ВИЯВЛЕННЯ ВПЛИВУ РОСЛИНИХ ДОБАВОК НА ЯКІСНІ ПОКАЗНИКИ НАПІВФАБРИКАТУ З ВЕРБЛЮЖАТИНИ (с. 29–35)
Zhanar Medeubaeva, Aigul Tayeva, Gulnara Shambulova, Laila Syzdykova, Mikhail Astakhov

Розглядається вплив на якісні показники вареної ковбаси з верблюжатини рослинних добавок. Результати дослідження використані при вдосконаленні технології та визначені рівні внесення рослинних екстрактів з антиоксидантними властивостями при виробництві вареної ковбаси. Дослідження вплив рослинних екстрактів з антиоксидантними властивостями на окисні процеси в вареної ковбасі. У місці відкладається розумову концентрацію доданих антиоксидантів. Використовуючи методологію поверхневих відсіків, встановлений факторний план будувалося для двох змінних – концентрації розчину кореня краншу та порошку обліпихи. Мінімальна кислотна сила виявлялася при 0,018 % розчину кореня краншу та 0,035 % порошку обліпихи. Мінімальне кислотне число отримано при розчині кореня краншу та 0,005 % порошку обліпихи.

Ключові слова: технології переробки, жирно-кислотний склад олій, фізико-хімічні властивості, зміна клімату, харчова цінність.

DOI: 10.15587/1729-4061.2022.254940

СТВОРЕННЯ ПЕЧИВА З ГАРБУЗОВОГО БОРОШНА (с. 36–42)
Dan Gao, Anna Helikh, Zhenhua Duan, Yan Liu, Feifei Shang

Печиво є поширене закускою з великим вибором смаків. З підвищенням сучасної цінності здоров'я вчена печиво з високим вмістом цукру, олії, жиру та низьким вмістом білка не забезпечує пиття покупців. Підходи необхідно більше корисних яловичин. Наступні дослідження з метою оцінки розумову концентрацію доданих антиоксидантів. Використовуючи методологію поверхневих відсіків, встановлений факторний план будувалося для двох змінних – концентрації розчину кореня краншу та порошку обліпихи. Мінімальна кислотна сила виявлялася при 0,018 % розчину кореня краншу та 0,035 % порошку обліпихи.

Ключові слова: технології переробки, жирно-кислотний склад олій, фізико-хімічні властивості, зміна клімату, харчова цінність.

DOI: 10.15587/1729-4061.2022.255646

ОСОБЛИВОСТІ ФОРМУВАННЯ ЯКОСТІ КЕКСУ, ЗБАГАЧЕНОГО СОЛОМОЮ ГАРБУЗА (с. 43–51)
В. В. Любич, В. В. Новіков, В. В. Желєзна, О. А. Балабак, М. Я. Кирина, М. О. Макарчук, О. А. Балабак, В. В. Москалець, Т. З. Москалець

Дослідження вплив різної кількості та форми свіжої соломки гарбуза на технологічні властивості кексу. Проведено порівняльний аналіз технологічних властивостей кексу з добавлянням різної кількості та форми соломки гарбуза. Встановлено зміну технологічних властивостей кексу залежно від кількості соломки гарбуза. Заостосування свіжої соломки гарбуза достовірно збільшує упікання, змінюється, кислотність кексу. Об’єм кексу при цьому достовірно збільшується. Дослідження проводилися на прикладі посушливої або напівзасушливої, різко континентальної, зі спекотним літом та холодною зимию. Центральної Азії. Встановлено залежності фізико-хімічних показників рослинних олій від агрокліматичних показників. Отримані результати та висновки дозволяють аграріям прогнозувати отримання продукції олійних культур із заданими характеристиками залежно від параметрів клімату, що змінюються.

Ключові слова: сафлор, технології переробки, жирно-кислотний склад олій, фізико-хімічні властивості, зміна клімату, харчова цінність.
Вологістю 6,9–12,8 %, об’ємом 176–203 см³, кислотністю 1,5–1,7 град. Крім цього, можливе застосування 30–35 % соломки гарбуза. Розроблені рекомендації можуть бути використані зернопереробними підприємствами низької продуктивності під час виробництва борошниплодових кондитерських виробів.

Застосування соломки гарбуза дозволяє зменшити кількість тіста в готовому виробі.

Застосування соломки гарбуза дозволяє зменшити кількість тіста в готовому виробі.

Ключові слова: соломка гарбуза, технологічна якість кексу, форма соломки, кількість соломки.

DOI: 10.15587/1729-4061.2022.255605

РОЗРОБКА ТЕХНОЛОГІЇ ХЛІБА З ВИЩОЮ БІОЛОГІЧНОЮ ЦІННІСТЮ ТА ЗБІЛЬШЕНІМ ТЕРМІНОМ ЗБЕРІГАННЯ (с. 52–57)
М. М. Самілик, Є. В. Демидова, Н. В. Болгова, О. М. Савенко, Т. О. Чернявська

В якості добавки до хліба запропоновано використання порошку, виготовленого із похідних переробки горобини звичайної Sorbus aucuparia. Технологія отримання порошку передбачає заморожування плодів, попереднє зневоднення методом осмотичної дегідратації, висушування в інфрачервоній сушарці та подрібнення. Розроблено технологію хліба з подовженим терміном зберігання та підвищеною біологічною цінністю, досліджено її дії фізико-хімічні властивості. Для встановлення доцільності використання порошків в хлібопекарській промисловості проводився комплексний аналіз харчової цінності, мінерально-вітамінного складу порошку та хліба з добавками на прикладі гарбуза сорту «Перехватка 69».

Це необхідно для подальшого обґрунтування розробки технології виробництва нових видів хлібобулочних виробів, розширення асортименту продукції та задоволення різних споживчих вподобань. Вивчено характер зміни поживних речовин, мінерально-вітамінного складу протягом технологічного процесу, що дозволяє визначити час зниження їхнього вмісту. Виходячи з цього, можна регулювати вміст поживних речовин, мінерально-вітамінний склад до та після технологічного процесу переробки сировини. Установлено, що введення гарбузового пюре практично не впливає на кількість відмитої клейковини. Однак при вмісті гарбузового пюре від 5 до 25 % деформація стиснення сирої клейковини збільшується з 68,5 до 94,7 одиниць.

Ключові слова: пшеничне борошно, клейковина, гарбуз, гарбузове пюре, вітаміни, мінерали, тісто, хліб.