Singular eigenfunctions for the three-dimensional radiative transport equation

Manabu Machida

1Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA

compiled: May 10, 2014

Case’s method obtains solutions to the radiative transport equation as superpositions of elementary solutions when the specific intensity depends on one spatial variable. In this paper, we find elementary solutions when the specific intensity depends on three spatial variables in three-dimensional space. By using the reference frame whose z-axis lies in the direction of the wave vector, the angular part of each elementary solution becomes the singular eigenfunction for the one-dimensional radiative transport equation. Thus Case’s method is generalized.

OCIS codes: (000.3860) Mathematical methods in physics; (030.5620) Radiative transfer; (170.3660) Optical properties of media

http://dx.doi.org/10.1364/XX.99.099999

1. Introduction

We consider light propagating in random media such as fog, cloud, and biological tissue. Then the specific intensity of light obeys the radiative transport equation. Although different numerical methods have been developed [1][2], analytical approach is preferable particularly for the sake of medical imaging and optical tomography [3][4][5].

Case’s method is a method of obtaining solutions to the equation as superpositions of elementary solutions [6]. Although the method gives insight into the theoretical structure of the specific intensity, it works only when the specific intensity carries one spatial variable and is independent of two spatial variables in three-dimensional space. While the extension of Case’s method to anisotropic scattering was soon done [17][21], there has been no real success in extending the method to three dimensions despite considerable efforts [7][13][14]. In particular, Kaper proposed elementary solutions of the form of a plane wave and developed a singular-eigenfunction theory by reducing the problem to a one-dimensional equation by changing angular variables to a new complex variable [8]. However, this singular-eigenfunction is complicated (for example, the dispersion constants). This point is the key difference from Kaper’s singular eigenfunctions. Indeed, the idea of rotated reference frames was first used by Markel [14]; the angular part of elementary solutions was expanded by rotated spherical harmonics.

The remainder of the paper is organized as follows. In §2 we introduce the radiative transport equation. In §3 we develop singular eigenfunctions and obtain elementary solutions. In §4 we consider eigenvalues. We see the relation to the method of rotated reference frames in §5. In §6 we obtain the three-dimensional Green’s function in an infinite medium. Then the energy density is calculated as a numerical example in §7. Finally, we give summary in §8. Polar and azimuthal angles in rotated reference frames are presented in Appendix A. The expansion coefficients in the method of rotated reference frames are calculated in Appendix B.

2. Radiative transport equation

Let $I(\mathbf{r}, \hat{s})$ be the specific intensity at position $\mathbf{r} \in \mathbb{R}^3$ in direction $\hat{s} \in S^2$. We consider the time-independent radiative transport equation, which is given by

\[
\hat{s} \cdot \nabla I(\mathbf{r}, \hat{s}) + (\mu_a + \mu_s)I(\mathbf{r}, \hat{s}) = \mu_s \int_{S^2} f(\hat{s} \cdot \hat{s}') I(\mathbf{r}, \hat{s}') d\hat{s}' + S(\mathbf{r}, \hat{s}), \tag{1}
\]
where μ_a and μ_b are the absorption and scattering coefficients, respectively, and $S(\mathbf{r}, \hat{s})$ is the source term. We suppose μ_a and μ_b are positive constants, and the scattering phase function $f(\hat{s} \cdot \hat{s}')$ can be modeled by a polynomial of spherical harmonics of order N:

$$f(\hat{s} \cdot \hat{s}') = \sum_{l=0}^{N} \sum_{m=-l}^{l} f_l Y_{lm}(\hat{s}) Y_{lm}^*(\hat{s}').$$

We choose f_l so that f is normalized as

$$\int_{S^2} f(\hat{s} \cdot \hat{s}') \, d\hat{s}' = 1. \quad (3)$$

We have $N = 0$, $f_0 = 1$ in the case of isotropic scattering, and have $N = 1$, $f_1 = 1$, $f_1 = \int_{S^2} f(\hat{s} \cdot \hat{s}') f(\hat{s} \cdot \hat{s}^\prime) \, d\hat{s}'$ in the case of linear scattering. For the Heneyy-Greenstein model, we have $N = \infty$, $f_l = f_l^1$. By dividing both sides of (1) by $\mu_t = \mu_a + \mu_b$, we obtain

$$\hat{s} \cdot \nabla I(\hat{r}/\mu_t, \hat{s}) + I(\hat{r}/\mu_t, \hat{s}) = c \int_{S^2} f(\hat{s} \cdot \hat{s}') I(\hat{r}/\mu_t, \hat{s}') \, d\hat{s}' + \frac{1}{\mu_t} S(\hat{r}/\mu_t, \hat{s}), \quad (4)$$

where $c = \mu_a/\mu_t$ is a constant, $0 < c < 1$, and $\hat{r} = \mu_r \mathbf{r}$. By writing

$$\hat{s} \cdot \nabla I(\hat{r}, \hat{s}) + I(\hat{r}, \hat{s}) = c \int_{S^2} f(\hat{s} \cdot \hat{s}') I(\hat{r}, \hat{s}') \, d\hat{s}' + \frac{1}{\mu_t} S(\hat{r}/\mu_t, \hat{s}), \quad (5)$$

we obtain

$$\hat{s} \cdot \nabla I(\hat{r}, \hat{s}) + I(\hat{r}, \hat{s}) = c \int_{S^2} f(\hat{s} \cdot \hat{s}') I(\hat{r}, \hat{s}') \, d\hat{s}' \quad (6)$$

Hereafter we will take the unit of length to be $1/\mu_t$ and drop the tilde "~".

The specific intensity I in (6) is given as a superposition of elementary solutions, which are solutions to the following homogeneous equation:

$$\hat{s} \cdot \nabla I(\hat{r}, \hat{s}) + I(\hat{r}, \hat{s}) = c \int_{S^2} f(\hat{s} \cdot \hat{s}') I(\hat{r}, \hat{s}') \, d\hat{s}'. \quad (7)$$

Let $\mu = \cos \theta$ be the cosine of the polar angle of \hat{s} and ϕ be the azimuthal angle of \hat{s}. Following [17], we express $f(\hat{s} \cdot \hat{s}')$ in (2) as

$$f(\hat{s} \cdot \hat{s}') = \sum_{l=0}^{N} \sum_{m=-l}^{l} f_l Y_{lm}(\hat{s}) Y_{lm}^*(\hat{s}'). \quad (8)$$

Here the polynomials $p^m_l(\mu)$ are related to associated Legendre polynomials $P^m_l(\mu)$ as [17]

$$P^m_l(\mu) = (-1)^m (1 - \mu^2)^{\frac{|m|}{2}} p^m_l(\mu). \quad (9)$$

They satisfy the following recurrence relations and orthogonality relations.

$$(l + m + 1) p^m_{l+1}(\mu) = (2l + 1) \mu p^m_l(\mu) - (l + m) p^m_{l-1}(\mu), \quad (10)$$

$$\int_{-1}^{1} P^m_l(\mu) p^m_k(\mu) \, d\mu = \frac{2(l + m)!}{(2l + 1)(l - m)!} \delta_{mk}, \quad (11)$$

where we introduced

$$\delta_{mk} = (1 - \mu^2)^{|m|} \, d\mu. \quad (12)$$

Furthermore we have

$$p^m_l(\mu) = \begin{cases} \frac{(2m)!}{2^{m}m!} & \text{for } m \geq 0, \\ \frac{(-1)^m}{2^{m}m!(|m|!)} & \text{for } m < 0. \end{cases} \quad (13)$$

3. Elementary solutions

We seek solutions of the form of plane-wave decomposition $\hat{s} = \hat{\mathbf{k}}$. [18] [19]. We introduce $\nu \in \mathbb{R}$ and $\mathbf{q} \in \mathbb{R}^2$, and define vector $\mathbf{k} \in \mathbb{C}^3$ as

$$\mathbf{k} = \frac{1}{\nu} \mathbf{q}, \quad \hat{\mathbf{k}} = \left(-i \nu \mathbf{q}, Q(\nu \mathbf{q}) \right), \quad Q(\nu \mathbf{q}) = \sqrt{1 + (\nu \mathbf{q})^2}, \quad (14)$$

where $q = |\mathbf{q}|$. We emphasize that \mathbf{k} and $\hat{\mathbf{k}}$ are functions of ν and \mathbf{q}. We assume the specific intensity of the form

$$I^m_\nu(\mathbf{r}, \hat{\mathbf{s}}; \mathbf{q}) = \Phi^m_\nu(\hat{\mathbf{s}}; \hat{\mathbf{k}}) e^{i \mathbf{k} \cdot \mathbf{r}}, \quad (15)$$

where

$$\Phi^m_\nu(\hat{\mathbf{s}}; \hat{\mathbf{k}}) = \phi^m(\nu, \mu(\hat{\mathbf{k}})) \left(1 - \mu(\hat{\mathbf{k}})^2 \right)^{|m|/2} e^{i \nu \phi(\hat{\mathbf{k}})}. \quad (16)$$

Here $\mu(\hat{\mathbf{k}})$ and $\phi(\hat{\mathbf{k}})$ are the cosine of the polar angle of \hat{s} and the azimuthal angle of \hat{s}, respectively, in the rotated reference frame whose z-axis coincides with the direction of \mathbf{k} (see Appendix A). Note that in the laboratory frame ($\hat{\mathbf{k}} = \hat{\mathbf{z}}$), (15) reduces to the form used in [17]. We will determine elementary solutions $I^m_\nu(\mathbf{r}, \hat{\mathbf{s}}; \mathbf{q})$ in (15) so that they satisfy (7). We normalize ϕ^m as

$$\frac{1}{2\pi} \int_{S^2} \phi^m(\nu, \mu(\hat{\mathbf{k}})) \left(1 - \mu(\hat{\mathbf{k}})^2 \right)^{|m|} \, d\hat{s} = \int_{-1}^{1} \phi^m(\nu, \mu) \, d\mu = 1. \quad (17)$$

We will calculate singular eigenfunctions ϕ^m below.

By plugging (15) into the radiative transport equation (7), we obtain

$$\left(1 - \frac{\mu(\hat{\mathbf{k}})}{\nu} \right) \phi^m(\nu, \mu(\hat{\mathbf{k}})) \left(1 - \mu(\hat{\mathbf{k}})^2 \right)^{|m|/2} e^{i \nu \phi(\hat{\mathbf{k}})}$$

$$= c \int_{S^2} f(\hat{s} \cdot \hat{s}')(\hat{k}) \phi^m(\nu, \mu(\hat{k}^\prime)) \left(1 - \mu(\hat{k}^\prime)^2 \right)^{|m|/2} e^{i \nu \phi(\hat{k}^\prime)} \, d\hat{s}'.$$
where we used \(\hat{s} \cdot \hat{k} = \mu(\hat{k}) \) and expressed \(f(\hat{s} \cdot \hat{s}') \) in the rotated reference frame. The right-hand side is calculated as

\[
\text{RHS} = 2\pi c \Theta(N - |m|) (1 - \mu(\hat{k}))^{2|m|/2} e^{i m \varphi(\hat{k})} \\
\times \sum_{l' = |m|}^{N} f_{l'} \frac{2l' + 1}{4\pi} (l' + m)! (l' - m)! \\
\times p_{l'}^m(\mu(\hat{k})) \int_{-1}^{1} p_{l'}^m(\mu') \phi^{m}(\nu, \mu') \, d(\mu'),
\]

where the step function \(\Theta(\cdot) \) is defined as \(\Theta(x) = 1 \) for \(x \geq 0 \) and \(0 = x < 0 \). Hence,

\[
(\nu - \mu(\hat{k})) \phi^{m}(\nu, \mu(\hat{k})) = 2\pi c v \Theta(N - |m|) \\
\times \sum_{l' = |m|}^{N} f_{l'} \frac{2l' + 1}{4\pi} (l' + m)! (l' - m)! p_{l'}^m(\mu(\hat{k})) h_{l'}^{m}(\nu),
\]

where we defined

\[
h_{l'}^{m}(\nu) = \int_{-1}^{1} \phi^{m}(\nu, \mu) p_{l'}^{m}(\mu) \, d(\mu).
\]

The polynomials \(h_{l'}^{m} \) were introduced by Mika [21] for \(m = 0 \) and then generalized by McCormick and Kuščer [17] for general \(m \). Since the right-hand side of (20) is zero for \(|m| > N \) and then \(\phi^{m} = 0 \), hereafter we suppose

\[
0 \leq |m| \leq N.
\]

Let us define

\[
\sigma_l = 1 - c f_l \Theta(N - l).
\]

From (20), we obtain

\[
\sigma_l \varphi h_{l'}^{m}(\nu) = \int_{-1}^{1} \mu \phi^{m}(\nu, \mu) p_{l'}^{m}(\mu) \, d(\mu).
\]

Equation (24) implies the three-term recurrence relation for \(h_{l'}^{m}(\nu) \) [26],

\[
\nu(2l + 1) \sigma_l h_{l'}^{m}(\nu) - (l - m + 1) h_{l'-1}^{m}(\nu) - (l + m) h_{l'+1}^{m}(\nu) = 0,
\]

with

\[
h_{|m|}^{m}(\nu) = p_{|m|}^{m},
\]

and

\[
h_{|m|+1}^{m}(\nu) = (2|m| + 1) \nu \sigma_{|m|} h_{|m|}^{m}(\nu).
\]

We also have

\[
h_{l}^{-|m|}(\nu) = (-1)^{|m|} (l - |m|)! (l + |m|)! h_{l}^{m}(\nu).
\]

The functions \(h_{l}^{m}(\nu) \) are computed using (25).

Let us define

\[
g_{m}(\nu, \mu(\hat{k})) = \sum_{l' = |m|}^{N} (2l' + 1) f_{l'} \frac{(l' - m)!}{(l' + m)!} p_{l'}^{m}(\mu(\hat{k})) h_{l'}^{m}(\nu).
\]

We note that \(g_{-m}(\nu, \mu(\hat{k})) = g_{m}(\nu, \mu(\hat{k})) \). The function \(\phi_{m}^{m} \) is obtained as

\[
\phi_{m}^{m}(\nu, \mu(\hat{k})) = \frac{c \nu}{2} \mathcal{P} g_{m}^{m}(\nu, \mu(\hat{k})) + \lambda^{m}(\nu)(1 - \nu^{2})^{-|m|} \delta(\nu - \mu(\hat{k})),
\]

where \(\lambda^{m}(\nu) \) is given below.

4. Discrete eigenvalues and continuous spectrum

By multiplying \((1 - \mu(\hat{k})^{2})^{|m|} \) and integrating over \(\hat{s} \), becomes

\[
1 = \frac{c \nu}{2} \mathcal{P} \int_{-1}^{1} g_{m}^{m}(\nu, \mu) \, d(\mu) + \int_{-1}^{1} \lambda^{m}(\nu) \delta(\nu - \mu) \, d\mu.
\]

For \(\nu \in (-1,1) \) we obtain

\[
\lambda^{m}(\nu) = 1 - \frac{c \nu}{2} \mathcal{P} \int_{-1}^{1} g_{m}^{m}(\nu, \mu) \, d(\mu).
\]

Note that \(\lambda^{-m}(\nu) = \lambda^{m}(\nu) \) and hence \(\phi^{-m}(\nu, \mu(\hat{k})) = \phi^{m}(\nu, \mu(\hat{k})) \).

Let us define

\[
\Lambda^{m}(z) = 1 - \frac{cz}{2} \mathcal{P} \int_{-1}^{1} g_{m}^{m}(z, \mu) \, d(\mu),
\]

where \(z \in \mathbb{C} \). Eigenvalues \(\nu \notin [-1,1] \) are solutions to

\[
\Lambda^{m}(\nu) = 0.
\]

We write these discrete eigenvalues as \(\pm \nu_{j}^{m} \) \((\nu_{0}^{m} > \nu_{1}^{m} > \cdots > \nu_{M-1}^{m} > 1) \). Note that \(\nu_{j}^{m} = \nu_{j}^{m} \). The number of discrete eigenvalues \(M \) depends on \(|m| \) and we have [17, 21] \(M \leq N - |m| + 1 \). For \(\nu \in (-1,1) \), we have the continuous spectrum.

5. Method of rotated reference frames

Let us expand singular eigenfunctions with spherical harmonics. By introducing \(c_{l}^{m}(\nu) \), we write

\[
\Phi_{l}^{m}(\hat{s}; \hat{k}) = \sum_{l = |m|}^{\infty} c_{l}^{m}(\nu) Y_{l|m|}(\hat{s}; \hat{k}).
\]

The calculation of the specific intensity by this expansion is called the method of rotated reference frames [14, 15, 22, 26]. From (18), we obtain

\[
c_{l}^{m}(\nu) - \frac{1}{\nu} \sum_{l' = |m|}^{\infty} \left(\int_{S^{2}} \mu Y_{l|m|}(\hat{s}) Y_{l'|m|}(\hat{s}) \, d\hat{s} \right) c_{l'}^{m}(\nu)
\]

\[
= c f_{l} \Theta(N - l) c_{l}^{m}(\nu).
\]
Hence we arrive at an eigenproblem:

\[B_m^m |\psi^m (\nu)\rangle = \nu |\psi^m (\nu)\rangle, \]

where

\[
B_{il}^m = \frac{1}{\sqrt{\sigma_l \sigma_0}} \int_{S^2} \mu Y_{l'm}(\hat{s}) Y_{lm}(\hat{s}) \, d\hat{s} \\
= \sqrt{\frac{l^2 - m^2}{(4l^2 - 1)\sigma_l \sigma_{l-1}}} \delta_{l', l-1} \\
+ \sqrt{\frac{(l+1)^2 - m^2}{(4(l+1)^2 - 1)\sigma_{l+1} \sigma_l}} \delta_{l', l+1},
\]

\[
\langle l |\psi^m (\nu)\rangle = \frac{1}{\sqrt{Z^m(\nu)}} \sqrt{\sigma_l} c_i^m (\nu),
\]

where the normalization factor \(Z^m(\nu)\) will be determined below so that \(\langle \psi^m (\nu) |\psi^m (\nu)\rangle = 1\) is satisfied.

Note that \(\Phi^m_\nu\) and \(|\psi^m (\nu)\rangle\) are related as

\[
\Phi^m_\nu (\hat{s}; \hat{k}) = \sqrt{\frac{Z^m(\nu)}{\sqrt{\sigma_l}}} Y_{lm}(\hat{s}; \hat{k}).
\]

In Appendix 13 expansion coefficients \(c_i^m (\nu)\) in (35) are calculated using (39) and (41).

6. The Green’s function

Let us consider the Green’s function of the radiative transport equation in an infinite medium. The Green’s function obeys

\[
s \cdot \nabla G(r, \hat{s}; r_0, \hat{s}_0) + G(r, \hat{s}; r_0, \hat{s}_0) = \frac{c}{\nu} \int_{S^2} f(\hat{s} \cdot \hat{s}') G(r, \hat{s}'; r_0, \hat{s}_0) \, d\hat{s}',
\]

\[
G(\rho, z_0 + 0, \hat{s}; r_0, \hat{s}_0) - G(\rho, z_0 - 0, \hat{s}; r_0, \hat{s}_0) = \frac{1}{s \cdot \hat{s}} \delta(\rho - \rho_0) \delta(\hat{s} - \hat{s}_0),
\]

with the boundary condition \(\lim_{|r| \to \infty} G(r, \hat{s}; r_0, \hat{s}_0) = 0\) and \(r = (\rho, z) (\rho \in \mathbb{R}^2, z \in \mathbb{R})\), where \(\rho = (x, y)\). Let us expand the Green’s function using elementary solutions or normal modes (15).

\[
G(\rho, z, \hat{s}; \rho_0, z_0, \hat{s}_0) = \sum_{m=-N}^{N} \sum_{j=0}^{M-1} a_{j+m}^m(q) I_{j+m}^m(r, \hat{s}; \hat{s}_0) + \int_{0}^{\infty} A_{\nu}^m(q) I_{\nu}^m(r, \hat{s}; \hat{s}_0) \, dq
\]

\[
\frac{1}{(2\pi)^2}, \quad z > z_0,
\]

\[
G(\rho, z, \hat{s}; \rho_0, z_0, \hat{s}_0) = - \sum_{m=-N}^{N} \sum_{j=0}^{M-1} a_{j-m}^m(q) I_{j-m}^m(r, \hat{s}; \hat{s}_0) + \int_{-\infty}^{0} A_{\nu}^m(q) I_{\nu}^m(r, \hat{s}; \hat{s}_0) \, dq
\]

\[
\frac{1}{(2\pi)^2}, \quad z < z_0.
\]

From the jump condition, coefficients \(a_{j+m}^m\) and \(A_{\nu}^m(q)\) are determined as

\[
a_{j\pm}^m(q) = e^{-iq \rho_0 e^{iQ(\nu)z_0} / \nu} \left[\Phi_{j\pm}^m(\hat{s}_0; \hat{k}) \right]^*, \quad A_{\nu}^m(q) = e^{-iq \rho_0 e^{iQ(\nu)z_0} / \nu} \left[\Phi_{\nu}^m(\hat{s}_0; \hat{k}) \right]^*.
\]
where upper signs are chosen for \(z > z_0 \) and lower signs are chosen for \(z < z_0 \).

To find \(\Phi^m \), we note that the Green’s function obtained with the method of rotated reference frames \[13\] is expressed as

\[
G(r, \hat{s}; r_0, \hat{s}_0) = \frac{1}{(2\pi)^2} \int_{\mathbb{R}^2} e^{i\nu (r - r_0)} \sum_{\nu > 0} N \sum_{m = -N}^{N-1} \Phi^m_{\delta \nu}(\hat{s}; \hat{k}) \Phi^m_{\delta \nu}(\hat{s}_0; \hat{k}) e^{-Q(\nu \nu \nu) |z - z_0|/\nu m} \nu Q(\nu \nu \nu)\nu Z^m(\nu) d\nu.
\]

where we used the relation \[40\]. By comparing \[46\] and \[47\], we obtain

\[
\Phi^{m \nu}(\hat{s}; \hat{k}) = \Phi^{m \nu}(\hat{s}; \hat{k}) |\pm \nu Q(\nu \nu \nu)Z^m(\nu)|^{-1}.
\]

Hence the Green’s function is written as

\[
G(\rho, z, \hat{s}; \rho_0, z_0, \hat{s}_0) = \pm \frac{1}{(2\pi)^2} \int_{\mathbb{R}^2} e^{i\nu (\rho - \rho_0)} \sum_{m = -N}^{N-1} \left\{ \sum_{j=0}^{M-1} \Phi^m_{\delta \nu}(\hat{s}; \hat{k}) \Phi^m_{\delta \nu}(\hat{s}_0; \hat{k}) e^{-Q(\nu \nu \nu) |z - z_0|/\nu m} \right\} d\nu.
\]

To determine \(Z^m(\nu) \), we consider the one-dimensional case. By integrating the Green’s function over \(\rho_0 \), we obtain

\[
G(z, \hat{s}; z_0, \hat{s}_0) = \pm \sum_{m = -N}^{N-1} \left\{ \sum_{j=0}^{M-1} \Phi^m_{\delta \nu}(\hat{s}; \hat{k}) \Phi^m_{\delta \nu}(\hat{s}_0; \hat{k}) e^{-|z - z_0|/\nu m} \right\} d\nu.
\]

On the other hand, the one-dimensional Green’s function is given by \[17, 21\]

\[
G(z, \hat{s}; z_0, \hat{s}_0) = \frac{1}{2\pi} \sum_{m = -N}^{N-1} \left\{ \sum_{j=0}^{M-1} \frac{1}{N_j} \phi^m(\pm \nu_j, \mu) \phi^m(\pm \nu_j, \mu) \left(1 - \nu_j^2 \right)^{|m|} e^{i\mu (\nu_j^2 - \nu_j^2)} e^{-|z - z_0|/\nu_j^2} \right\}
\]

where

\[
\Lambda^m = N^m(\nu^m) = \frac{e}{2} (\nu_j^m)^2 g(\nu_j^m, \nu_j^m) d\Lambda^m(z) \bigg|_{z = \nu_j^m},
\]

and for \(\nu \in (-1, 1) \),

\[
N^m(\nu) = \nu \Lambda^m(\nu) \Lambda^m(\nu) \left(1 - \nu^2 \right)^{-|m|}.
\]

Here \(\Lambda^m(\nu) = \lim_{\nu \to 0^+} \Lambda^m(\nu + i\epsilon) \). By comparing \[50\] and \[51\], we obtain

\[
\nu^m Z^m(\nu^m) = 2\pi N^m, \quad \nu Z^m(\nu) = 2\pi N^m(\nu),
\]

where \(\nu \) belongs to the continuous spectrum. Finally we obtain

\[
\tilde{\Phi}^m_{\nu}(\hat{s}; \hat{k}) = \Phi^m_{\nu}(\hat{s}; \hat{k}) |2\pi Q(\nu \nu \nu)N^m(\nu)|^{-1},
\]

where \(\nu = \pm \nu^m \) or \(\nu \in (-1, 1) \). The Green’s function is obtained as

\[
G(\rho, z, \hat{s}; \rho_0, z_0, \hat{s}_0) = \pm \frac{1}{(2\pi)^3} \int_{\mathbb{R}^2} e^{i\nu (\rho - \rho_0)} \sum_{m = -N}^{N-1} \left\{ \sum_{j=0}^{M-1} \frac{1}{Q(\nu \nu \nu)N^m(\nu)} \Phi^m_{\delta \nu}(\hat{s}; \hat{k}) \Phi^m_{\delta \nu}(\hat{s}_0; \hat{k}) e^{-Q(\nu \nu \nu) |z - z_0|/\nu m} \right\} d\nu.
\]
As the simplest case, let us consider the isotropic scattering $N = 0$. We then have

$$
\Phi_0^0(\hat{s}; \hat{k}) = \frac{c\nu}{2} \frac{1}{\nu - \mu(\hat{k})} + \lambda^0(\nu) \delta(\nu - \mu(\hat{k})) = \phi^0(\nu, \mu(\hat{k})),
$$

where

$$
\lambda^0(\nu) = 1 - \frac{c\nu}{2} \int_{-1}^{1} \frac{1}{\nu - \mu} d\mu = 1 - c\nu \tanh^{-1} \nu. \quad (57)
$$

In this case $M = 1$ and the discrete eigenvalues $\pm \nu_0 = \pm \nu_0$ are solutions to

$$
\lambda^0(z) = 1 - \frac{cz}{2} \int_{-1}^{1} \frac{1}{z - \mu} d\mu = 1 - cz \tanh^{-1} \frac{1}{z} = 0.
$$

The Green’s function is obtained as

$$
G(\rho, z; \rho_0, z_0) = \frac{1}{(2\pi)^{3}} \int_{\mathbb{R}^2} d\rho_0 d\rho \phi^0(\rho_0, \mu(\hat{k})) e^{-Q(\nu_0)|z - z_0|/\nu_0}
\int_{0}^{1} Q(\nu_0) N(\nu) \phi^0_{\nu} \left(\pm \nu, \mu(\hat{k}) \right) e^{-Q(\nu_0)|z - z_0|/\nu} d\nu.
$$

(59)

If we integrate (59) with respect to ρ_0, G in (59) becomes the one-dimensional Green’s function written in the book by Case and Zweifel [1].

7. Energy density

Let us calculate the energy density U. For simplicity, we assume linear scattering, $N = 1$. We measure U along the z-axis. The energy density U is given by

$$
U(z) = \frac{1}{v} \int_{\mathbb{R}^2} d\hat{s} I(\rho = 0, z, \hat{s})
$$

where v is the speed of light in the medium and I is the specific intensity obeying (11).

Fig. 1. (Color online) The energy density $U(z)$ for (a) the point source and (b) the source of length ℓ on the x-axis.

First we place an isotropic source at the origin, $S = S_0 \delta(r)$ with constant S_0 in (11) (see Fig. 1(a)). We have

$$
I(0, z, \hat{s}) = \mu_0^2 S_0 \int_{\mathbb{R}^2} G(0, z, \hat{s}; \rho_0, z_0, \hat{s}_0) \times \delta(\rho_0) \delta(z_0) d\rho_0 d\rho_0 d\rho_0,
$$

(61)

where

$$
G(0, z, \hat{s}; \rho_0, z_0, \hat{s}_0) = \frac{1}{(1 + i \mathbf{k} \cdot \hat{s}) (1 + i \mathbf{k} \cdot \hat{s}_0)} \left[1 - \frac{c}{|k|} \tan^{-1} (|k|) \right]^{-1} d\mathbf{k},
$$

(64)

We consider the following three cases: (i) $\mu_0 = 0.03 \text{cm}^{-1}$, $\mu_s = 100 \text{cm}^{-1}$, $f_1 = 0$ $(c = 0.9997)$, (ii) $\mu_0 = 0.03 \text{cm}^{-1}$, $\mu_s = 100 \text{cm}^{-1}$, $f_1 = 0.3$ $(c = 0.9997)$, and (iii) $\mu_0 = 0.03 \text{cm}^{-1}$, $\mu_s = 100 \text{cm}^{-1}$, $f_1 = 0.3$ $(c = 0.997)$. In the case (i) with $f_1 = 0$, the density can also be obtained with the Fourier transform. The Green’s function is obtained as

$$
G(r, \hat{s}; r_0, \hat{s}_0) = G_0(r, \hat{s}; r_0, \hat{s}_0) + \frac{c}{4\pi(2\pi)^3} \int_{\mathbb{R}^2} e^{i\mathbf{k} \cdot (r - r_0)}
\times \frac{1}{(1 + i \mathbf{k} \cdot \hat{s})(1 + i \mathbf{k} \cdot \hat{s}_0)} \left[1 - \frac{c}{|k|} \tan^{-1} (|k|) \right]^{-1} d\mathbf{k},
$$

(64)

where

$$
G_0(r, \hat{s}; r_0, \hat{s}_0) = \frac{e^{-|r - r_0|}}{|r - r_0|^2} \delta \left(\hat{s} - \frac{r - r_0}{|r - r_0|} \right) \delta(\hat{s} - \hat{s}_0).
$$

(65)

Using (64) and (65), we obtain

$$
U(z) = \frac{e^{-|z|}}{v \nu} + \frac{2c}{\pi \nu} \int_{0}^{\infty} \sin(kz) \frac{(\tan^{-1} k)^2}{z - k - c \tan^{-1} k} dk.
$$

(66)
In Fig. 2, we plot $U(z) \nu / \mu^2 S_a$ as a function of z. In addition to (62), densities by [60] and by Monte Carlo simulation are shown. We see perfect agreement.

Next we consider the source of length ℓ on the x-axis (see Fig. 1(b)), i.e., we put $S = S_b \Theta(\ell - x) \Theta(x) \delta(y) \delta(z)$ with constant S_b in (11). We have

$$I(0, z, \hat{s}) = \mu_s S_b \int_{[0, \infty] \times [0, \infty]} G(0, z, \hat{s}; x_0, y_0, z_0, \hat{s}_0) \times \Theta(\mu_s \ell - x_0) \Theta(x_0) \delta(y_0) \delta(z_0) dx_0 dy_0 dz_0 d\hat{s}_0,$$

where z, x_0, y_0, z_0 are measured in the unit of $1/\mu_s$. We compute I using (57) and obtain

$$\frac{U(z)}{\mu_s S_b} = \int_{[0, \infty] \times [0, \infty]} G(0, z, \hat{s}; \rho_0, 0, \hat{s}_0) \times \Theta(\mu_s \ell - x_0) \Theta(x_0) \delta(y_0) \delta(z_0) dx_0 dy_0 dz_0 d\hat{s}_0 d\rho_0 = \frac{1}{\nu} \int_0^\infty J_0(t) e^{-Q(\nu q) z/\nu} Q(\nu q) N_0 d\nu,$$

where ν is the positive root of (63) and $J_0(u)$ is the zeroth order Bessel function of the first kind. In addition, with the Fourier transform, we obtain

$$\frac{U(z)}{\mu_s S_b} = \frac{1}{\nu} \int_0^{\mu_s \ell} \int_{0}^{\infty} e^{-Q(\nu q) z/\nu} Q(\nu q) N_0 d\nu d\nu q,$$

where ν is the positive root of (63) and $J_0(u)$ is the zeroth order Bessel function of the first kind. In addition, with the Fourier transform, we obtain

$$\frac{U(z)}{\mu_s S_b} = \frac{1}{\nu} \int_0^{\mu_s \ell} \int_{0}^{\infty} e^{-Q(\nu q) z/\nu} Q(\nu q) N_0 d\nu d\nu q,$$

where ν is the positive root of (63) and $J_0(u)$ is the zeroth order Bessel function of the first kind. In addition, with the Fourier transform, we obtain

$$\frac{U(z)}{\mu_s S_b} = \frac{1}{\nu} \int_0^{\mu_s \ell} \int_{0}^{\infty} e^{-Q(\nu q) z/\nu} Q(\nu q) N_0 d\nu d\nu q,$$

where ν is the positive root of (63) and $J_0(u)$ is the zeroth order Bessel function of the first kind. In addition, with the Fourier transform, we obtain

$$\frac{U(z)}{\mu_s S_b} = \frac{1}{\nu} \int_0^{\mu_s \ell} \int_{0}^{\infty} e^{-Q(\nu q) z/\nu} Q(\nu q) N_0 d\nu d\nu q,$$

where ν is the positive root of (63) and $J_0(u)$ is the zeroth order Bessel function of the first kind. In addition, with the Fourier transform, we obtain

$$\frac{U(z)}{\mu_s S_b} = \frac{1}{\nu} \int_0^{\mu_s \ell} \int_{0}^{\infty} e^{-Q(\nu q) z/\nu} Q(\nu q) N_0 d\nu d\nu q.$$
and
\[\varphi_\mathbf{k} = \begin{cases} \varphi_{\mathbf{q}} + \pi & \text{for } \nu > 0, \\ \varphi_{\mathbf{q}} & \text{for } \nu < 0, \end{cases} \] (A2)
where \(\varphi_{\mathbf{q}} \) is the angle of \(\mathbf{q} \). Therefore, we have
\[\mu(\mathbf{k}) = \mathbf{s} \cdot \mathbf{k} = -i\nu \mathbf{q} \sin \theta \cos(\varphi - \varphi_{\mathbf{q}}) + Q(\nu \mathbf{q}) \cos \theta. \] (A3)

In general, we can rotate functions as follows. Let us introduce rotated spherical harmonics \(Y_{lm}(\mathbf{s}; \mathbf{k}) \) [14]:
\[Y_{lm}(\mathbf{s}; \mathbf{k}) = \mathcal{D}(\mathbf{k})Y_{lm}(\mathbf{s}) = \sum_{m' = -l}^{l} D_{m'm}^{l}(\varphi_\mathbf{k}, \theta_\mathbf{k}, 0)Y_{lm'}(\mathbf{s}), \]
where \(D_{m'm}^{l}(\varphi_\mathbf{k}, \theta_\mathbf{k}, 0) = e^{-i\varphi_\mathbf{k}}d_{m'm}^{l}(\theta_\mathbf{k}) \). Here \(d_{m'm}^{l} \) are the Wigner \(d \)-matrices [23]. That is, \(Y_{lm}(\mathbf{s}; \mathbf{k}) \) are spherical harmonics defined in a rotated reference frame whose \(z \)-axis coincides with the direction of the unit vector \(\mathbf{k} \). We have \(Y_{lm}(\mathbf{s}) = Y_{lm}(\mathbf{s}; \mathbf{2}) \). We write analytically continued Wigner’s \(d \)-matrices as
\[d_{m'm}^{l}(\theta_\mathbf{k}) = d_{m'm}^{l}[i\tau(\nu \mathbf{q})]. \] (A5)
First a few matrices are obtained as
\[d_{00}^{l} = 1, \]
\[d_{01}^{l} = \sqrt{1 + x^2}, \]
\[d_{11}^{l} = \frac{1 + \sqrt{1 + x^2}}{2}. \] (A6)

We note that \(d_{mm'}^{l} = (1)^{m+m'}d_{-m'-m}^{l} = (1)^{m+m'}d_{m'm}^{l} \). All \(d_{m'm}^{l}[i\tau(\nu \mathbf{q})] \) are computed using the recurrence relations [20]. We obtain
\[e^{im\varphi_\mathbf{k}} = \left(1 - \mu(\mathbf{k})^2\right)^{-|m|/2}(1)^m(2m+1)! \left(\sum_{m'=-m}^{m} e^{-i\varphi_\mathbf{k}}d_{m'm}^{l}(\theta_\mathbf{k})Y_{lm'}(\mathbf{s}), \right) \] (A8)
where \(\theta \) satisfies \(\cos \theta = \mu \) with \(\mu \) in [15].

Appendix B: Expansion coefficients
Here we write \(c_l^{m}(\nu) \). We have
\[c_l^{m}(\nu) = \int_{\beta^2} \frac{\mathbf{s} \cdot \mathbf{r} g_l^{m}(\nu, \mu)}{2(\nu - \mu)} + \lambda^{m}(\nu) (1 - \nu^2)^{-|m|} \delta(\nu - \mu) d\mathbf{r}. \] (B1)
Hence,
\[c_l^{m}(\nu) = 2\pi \sqrt{\frac{2l + 1}{4\pi}} \int_{\nu}^{\infty} \mathcal{F}_{l'\nu} \frac{P_{l'}^{m}(\mu)P_{l}^{m}(\mu)}{\nu - \mu} d\mu, \]
\[\times \frac{(l' - m)!}{(l' + m)!} P_{l'\nu}^{m}(\nu)(-1)^{m}P_{l\nu}^{m}(\nu) \int_{-1}^{1} \delta(\nu - \mu) d\mu. \] (B2)
Note that \(c_l^{m}(-\nu) = (-1)^{l+m}c_l^{m}(\nu) \) because \(P_{l}^{m}(-\nu) = (-1)^{l+m}P_{l}^{m}(\nu) \). Therefore, we obtain for \(\nu \notin [-1, 1] \)
\[c_l^{m}(\nu) = 2\pi \sqrt{\frac{2l + 1}{4\pi}} \int_{\nu}^{\infty} \mathcal{F}_{l} \sum_{l' = |m|}^{N} \frac{P_{l'}^{m}(\mu)P_{l}^{m}(\mu)}{2(2l' + 1)} \]
\[\times \frac{(l' - m)!}{(l' + m)!} P_{l'\nu}^{m}(\nu)(-1)^{m}2Q_{l'\nu}^{m}(\nu)P_{l\nu}^{m}(\nu) d\mu. \] (B3)
where \(Q_{l'\nu}^{m}(\nu) \) and \(P_{l\nu}^{m}(\nu) \) have a branch cut from \(-\infty \) to 1 and for \(\nu \in [-1, 1] \)
\[c_l^{m}(\nu) = 2\pi \sqrt{\frac{2l + 1}{4\pi}} \int_{\nu}^{\infty} \mathcal{F}_{l} \sum_{l' = |m|}^{N} \frac{P_{l'}^{m}(\mu)P_{l}^{m}(\mu)}{2(2l' + 1)} \]
\[\times \frac{(l' - m)!}{(l' + m)!} P_{l'\nu}^{m}(\nu)(-1)^{m}2Q_{l'\nu}^{m}(\nu)P_{l\nu}^{m}(\nu) d\mu. \] (B4)

References
[1] K. M. Case and P. F. Zweifel, Linear Transport Theory (Addison-Wesley, Reading, MA, 1967).
[2] J. J. Duderstadt and W. R. Martin, Transport Theory (John Wiley & Sons, 1979).
[3] G. I. Marchuk and V. I. Lebedev, Numerical Methods in the Theory of Neutron Transport (Harwood Academic Publishers, New York, NY, 1986).
[4] S. R. Arridge, “Optical tomography in medical imaging”, Inverse Problems 15, R41–R93 (1999).
[5] S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems”, Inverse Problems 25, 123010 (2009).
[6] K. M. Case, “Elementary Solutions of the Transport Equation and Their Applications”, Ann. Phys. 9, 1–23 (1960).
[7] M. M. R. Williams, “Diffusion Length and Criticality Problems in Two- and Three-Dimensional, One-Speed Neutron Transport Theory. I. Rectangular Coordinates”, J. Math. Phys. 9, 1873–85 (1968).
[8] H. G. Kaper, “Elementary Solutions of the Reduced Three-Dimensional Transport Equation”, J. Math. Phys. 10, 286–97 (1969).
[9] A. G. Gibbs, “Analytical Solutions of the Neutron Transport Equation in Arbitrary Convex Geometry”, J. Math. Phys. 10, 875–90 (1969).
[10] G. Garrettson and A. Leonard A, “Green’s Functions for Multidimensional Neutron Transport in a Slab”, J. Math. Phys. 11, 725–40 (1970).
[11] K. M. Case and R. D. Hazeltine, “Three-Dimensional Linear Transport Theory”, J. Math. Phys. 11, 1126–35 (1970).
[12] C. J. Cannon, “An Exact Solution to the Multi-Dimensional Line Transfer Equation”, J. Quant. Spectrosc. Radiat. Transfer 13, 1011–21 (1973).
[13] G. C. Pomraning, “(Weakly) Three-Dimensional Causality”, Ann. Nucl. Energy 23, 413–27 (1996).
[14] V. A. Markel, “Modified spherical harmonics method for solving the radiative transport equation”, Waves Random Media 14 L13–9 (2004).
[15] G. Panasyuk, J. C. Schotland, and V. A. Markel, “Radiative transport equation in rotated reference frames”, J. Phys. A: Math. Gen. 39, 115–37 (2006).
[16] L. G. Henyey and J. L. Greenstein, “Diffuse Radiation in the Galaxy”, Astrophys. J. 93, 70–83 (1941).
[17] N. J. McCormick and I. Kuščer, “Bi-Orthogonality Relations for Solving Half-Space Transport Problems”, J. Math. Phys. 7, 2036–45 (1966).
[18] A. D. Kim and J. B. Keller, “Light propagation in biological tissue”, J. Opt. Soc. Am. A 20, 92–8 (2003).
[19] A. D. Kim, “Transport theory for light propagation in biological tissue”, J. Opt. Soc. Am. A 21, 820–7 (2004).
[20] E. Inönü, “Orthogonality of a Set of Polynomials Encountered in Neutron-Transport and Radiative-Transfer Theories”, J. Math. Phys. 11, 568–77 (1970).
[21] J. R. Mika, “Neutron Transport with Anisotropic Scattering”, Nucl. Sci. Eng. 11, 415–27 (1961).
[22] J. C. Schotland and V. A. Markel, ”Fourier-Laplace Structure of the Inverse Scattering Problem for the Radiative Transport Equation”, Inv. Prob. Imag. 1, 181–8 (2007).
[23] R. Michels, F. Foschum, and A. Kienle, “Optical properties of fat emulsions”, Optics Express 16, 5907–25 (2008).
[24] D. A. Varshalovich, A. N. Moskalev, and V. K. Kershonskii, Quantum Theory of Angular Momentum (World Scientific, Singapore, 1988).
[25] H. Hurwitz and P. F. Zweifel, “Slowing Down of Neutrons by Hydrogenous Moderators”, J. Appl. Phys. 26, 923–31 (1955).
[26] M. Machida, G. Y. Panasyuk, J. C. Schotland, and V. A. Markel, ”The Green’s function for the radiative transport equation in the slab geometry”, J. Phys. A: Math. Theor. 43, 065402 (2010).