Targeting neuropilin-1 interactions is a promising anti-tumor strategy

Shao-Dan Liu, Li-Ping Zhong, Jian He, Yong-Xiang Zhao

Abstract
Neuropilins (NRP1 and NRP2) are multifunctional receptor proteins that are involved in nerve, blood vessel, and tumor development. NRP1 was first found to be expressed in neurons, but subsequent studies have demonstrated the surface expression in cells from the endothelium and lymph nodes. NRP1 has been demonstrated to be involved in the occurrence and development of a variety of cancers. NRP1 interacts with various cytokines, such as vascular endothelial growth factor family and its receptor and transforming growth factor β1 and its receptor, to affect tumor angiogenesis, tumor proliferation, and migration. In addition, NRP1 regulatory T cells (Tregs) play an inhibitory role in tumor immunity. High numbers of NRP1 Tregs were associated with cancer prognosis. Targeting NRP1 has shown promise, and antagonists against NRP1 have had therapeutic efficacy in preliminary clinical studies. NRP1 treatment modalities using nanomaterials, targeted drugs, oncolytic viruses, and radio-chemotherapy have gradually been developed. Hence, we reviewed the use of NRP1 in the context of tumorigenesis, progression, and treatment.

Keywords: Neuropilin-1; Anti-tumor; Immunotherapy; Tumor targeting

Introduction
Neuropilins (NRP) is unique to vertebrates and is a highly conserved multifunctional type I single-pass transmembrane protein about 130,000 to 140,000 Da in size. It is involved in various physiological and pathological processes in the body. NRP includes two subtypes, that is, NRP1 and NRP2. They regulate cell function by acting as co-receptors for multiple ligands. NRP1 has been demonstrated to be involved in angiogenesis, cell migration, immune cell regulation, axon growth, and so on. NRP1 is essential for the development of neurons and the cardiovasculature, while NRP2 plays a key role in neuronal patterns and lymphangiogenesis.

Increasing evidence has demonstrated that high NRP1 expression is closely associated with tumor occurrence, progression, invasion, metastasis, and prognosis. NRP1 can not only form complexes directly with vascular endothelial growth factor A (VEGFA) and vascular endothelial growth factor receptor 2 (VEGFR2) to enhance angiogenesis, but also promote RhoA activation after binding with VEGFA to directly affect the growth and metastasis of tumor cells and promote tumor development. In addition, NRP1 can also accelerate tumor progression by stabilizing the function of regulatory T cells (Tregs) and preventing tumor-associated macrophages (TAM) from entering the normoxic tumor area. NRP1 has become a key therapeutic target for tumor therapy. Antagonists that target NRP1 have shown promise in several studies.

Structure, Expression, and Function of NRP1 Protein

The structure of NRP1 protein
NRP1 was discovered in 1987 and was originally named A5. It was discovered as an antigen of a monoclonal antibody that was bound to neuronal cell surface proteins in the Xenopus nervous system. The NRP1 gene is 112 kb in length and is located on the human chromosome 10q12. It contains 17 exons and 16 introns. NRP1 has an intracellular, transmembrane, and extracellular domain. Its intracellular domain is relatively small, lacks an inherent kinase domain, and does not participate in signal transduction. Its extracellular domain consists of five subdomains, that is, a1, a2, b1, b2, and c, with each subdomain associated with different molecular and/or cellular interactions.

The expression of NRP1 protein
NRP1 was originally found to be expressed in neurons, but later, was observed to be also expressed on the surface of
several types of cells. High expression levels of NRP1 have been observed in osteoblasts, nerve cells, immune cells, adipocytes, glomerular stromal cells, endothelial cells, and hepatic stellate cells, and so on.[22-25] [Figure 2]. Almost all tumor cells express NRP1 or NRP2 or both. These include certain leukemias, malignant melanomas, malignant gliomas, osteosarcomas (OSs), lung cancer, gastric cancer, and so on. Expression of both NRP1 and NRP2 has been associated with poor prognosis.[26,27]

The function of NRP1 protein

NRP1 was initially identified as a co-receptor for class 3 semaphorins (Sema3A). It forms a dimer with plexin A3 and is involved in axon guidance and nervous system development.[28] Later studies have found that NRP1 could form cis-acting complexes with the vascular endothelial growth factor (VEGF) family and its receptor (VEGFR) on the same cell to promote tumor angiogenesis.[29,30] Recent studies have shown that NRP1 could interact with glycosylation-dependent galectin-1 to activate transforming growth factor β1 (TGF-β1) and its receptors to accelerate liver fibrosis. In addition, NRP1 could promote cell migration induced by hepatocyte growth factor (HGF) or platelet-derived growth factor (PDGF) by phosphorylating p130Cas. Furthermore, NRP1 activates fibroblast growth factors (FGFs) and their receptors by interacting with heparin-binding proteins. NRP1 interacts with a variety of activated tyrosine kinase receptors and integrins to enhance tumor growth, survival, and invasion. NRP1 has been shown to play a regulatory role in the immune system. Overexpression of NRP1 on the surface of dendritic cells (DC) and Tregs has been demonstrated to play a role in promoting tumor development.[31-33]

NRP1 Functions in a Variety of Immune Cells

NRP1 is widely expressed in lymphoid and myeloid cells. In vitro and in vivo studies have demonstrated its important role in the immune response, cell proliferation, chemotaxis, and cytokine production in DC.[34-36] The occurrence and development of tumors have been linked to immune cell function.

The role of NRP1 in Tregs

T cells, an important type of immune cell in the body, are involved in all aspects of tumor progression. A subset of T-cells, Tregs, are involved in inhibiting anti-tumor immunity. Tregs that infiltrate tumors inhibit the anti-tumor effects of CD4+ and CD8+ T cells through multiple pathways. This results in immune escape and tumor progression, that is, anti-cancer immunity of the microenvironment (TME).[37-40] In recent years, NRP1 has been demonstrated to play a role in the stability and function of Tregs. NRP1 interacts with the ligand Semaphorin-4a (Sema4a) expressed on Tregs to enhance the function and survival of Tregs in tumors. This in turn restricts the anti-tumor immune response.[41-44] In mouse models, knockout of the NRP1 gene acting on Tregs could reduce tumor growth. This highlights the importance of NRP1 in suppressing anti-tumor immunity.

NRP1 has also been shown to act on DC. Sema4A secreted by DCs bind to NRP1 on Tregs and recruit PTEN to inhibit AKT phosphorylation. This in turn promotes the nuclear
translocation of Foxo3a, which is important for the survival and stability of Tregs[45] [Figure 3]. Jung \textit{et al}[20] demonstrated enhanced anti-tumor activity by inhibiting the function of Tregs in a mouse tumor model using NRP1 antagonists. In addition, Overacre-Delgoffe \textit{et al}[46] demonstrated that a high percentage of NRP1+ Tregs in patients with melanoma and squamous cell carcinoma of the head and neck were associated with poor prognosis.

Wang \textit{et al}[47] found that NRP1 signaling-mediated accumulation of Tregs in tumors may play a key role in aggravating ischemic brain damage in tumor-bearing mice. When anti-NRP1 was combined with anti-PD-1 immunotherapy, it could enhance CD8+ T cell proliferation, cytotoxicity, and tumor control.[48] Hence, targeting NRP1 in combination with immunotherapy may be a promising approach.

\textbf{The role of NRP1 in TAM}

In addition to Tregs, TAM also play a role in promoting tumor progression. TAMs are macrophages in the tumor stroma. They participate in the process of tumorigenesis, growth, infiltration, and spread, and has been associated with tumor angiogenesis and lymphangiogenesis.[49-54] Deletions in the NRP1 gene in macrophages facilitate the entry of TAMs into the area of normoxic tumors. This reduces the pro-angiogenic and immunosuppressive functions of TAMs and inhibits the growth and metastasis of tumors.[44,53,56] Conversely, when TAM are recruited to avascular areas, tumor progression could be maintained.[55] These results were supported by the study conducted by Miyachi \textit{et al}[57] Hence, modulation of NRP1 in peripheral macrophages or microglia could make them more anti-tumorigenic, reduce neovascularization, and modulate glioma adaptive immune response.

\textbf{Correlation Between NRP1 Expression and Tumor-initiating Cells (TIC)}

Recent studies have demonstrated the relationship between NRP1 expression and TIC. TIC have the capacity for self-renewal and are responsible for the initiation and maintenance of a tumor.[19,58-61] TICs have been extensively investigated for their function.[62]

Recent studies have demonstrated that endothelial progenitor cells could be identified by their expression levels of NRP1. NRP1 is essential for the proliferation and cell migration of adult mesenchymal stem cells.[63-66] In addition, NRP1 maintains a tumor-initiating phenotype in gliomas and skin cancer cells.[67] Jimenez-Hernandez \textit{et al} and others have also demonstrated that cells expressing NRP1 exhibit similar characteristics as TIC with high clonal ability. This suggests that NRP1+ lung cancer cells have tumor-initiating properties.[19] These findings provide new insights for cancer treatment and potential biomarkers for the study of TIC.

\textbf{NRP1 Promotes Tumor Angiogenesis}

Angiogenesis is essential during tumorigenesis and malignancy. Angiogenesis is a complex process that induces new capillary formation from pre-existing vessels. The signaling pathways include the involvement of NRP1 and VEGF and their interactions with receptor VEGFRs.[68-71] Studies have confirmed that knocking out NRP1 in mice can affect the development of nervous and cardiovascular systems.

VEGFA is the predominant VEGF and is one of the main stimuli to induce angiogenesis. Within the VEGFA family, VEGF165 has a major role in neovascularization. The

\begin{center}
\textbf{Figure 3: Schematic depicting the role of neuropilin-1 (NRP1) in dendritic cells (DC) and regulatory T cells (Tregs). NRP1 is mainly associated with the inhibitory function of Tregs. NRP1 is important for the formation of immune synapses between dendritic cells (DC) and T cells. Sema4A secreted by DC binds to NRP1 and recruits phosphatase and tensin homolog deleted on chromosome ten (PTEN) to inhibit protein kinase B (AKT) phosphorylation, thereby promoting the nuclear translocation of Forkhead box O3 (Foxo3a). This is important for the survival and stability of Tregs. NRP1 also plays an important role in the migration of Tregs into the tumor microenvironment in response to tumor cell-derived vascular endothelial growth factor.}
\end{center}
The carboxy terminus of the gene encodes exons 7 and 8 and binds with the b1/b2 domain of NRP1.[72-75] The formation of cis NRP1-VEGFA-VEGFR2 complexes within cells plays a crucial role in enhancing angiogenesis.[76-78] However, trans-NRP1-VEGFA-VEGFR2 complexes across cells play an inhibitory role in angiogenesis.[78] Pan et al[79] using a mouse xenograft tumor model, determined that antibodies that blocked VEGFA binding to NRP1 enhanced the anti-tumor effect of anti-VEGFA antibodies. Interestingly, in acute myeloid leukemia (AML), SEMA3A may partially reverse AML progression by inducing VEGFA overexpression. However, it is generally believed that SEMA3A binding to NRP1 plays a role in neurological development.[80] In addition, the VEGFR2/NRP1 complex plays a role in the early signaling of liver regeneration.[81]

In addition to interacting with VEGF, NRP1 also interacts with other pro-angiogenic cytokines, including FGF and HGF.[23,82-86] NRP1 binds to and promotes PDGF-\(\beta \), as well as, TGF-\(\beta 1 \) signaling pathway, thereby contributing to the activation and recruitment of perivascular cells.[22,87] Genetic studies have provided strong evidence that NRP1 is required for vascular morphogenesis. NRP1 deficiency leads to vascular reconstruction and branching defects. NRP1 expression has been shown to increase tumorigenicity in several tumor models such as murine hepatocellular carcinoma, human colon cancer, and non-small cell lung cancer. This may be by promoting VEGF-mediated angiogenesis.[42,88-91]

\textbf{NRP1 Promotes Tumor Proliferation and Migration}

Tumor infiltration and migration are important processes in tumor development and are the main reasons for poor prognosis. NRP1 promotes tumor cell growth, migration, invasion, and survival by interacting with several growth factors and their cognate signaling receptors.[92-96] Binding of VEGFA to NRP1 promotes RhoA activation and then, activated RhoA contributes to the degradation of p27kip1, which in turn, promotes tumor cell proliferation. This has been demonstrated in skin cancer, prostate cancer, and glioblastoma[60,97-99] [Figure 4]. In addition, PDGF and its receptor (PDGFR) are angiogenic factors closely associated with tumorigenesis and progression, and their overexpression is a common feature in different cancers.[100-102] Binding of NRP1 to PDGF and PDGFR promotes the phosphorylation of PDGF and consequently stimulates tumor growth.[22,103] Abelson tyrosine kinase (ABL), a non-receptor tyrosine kinase, itself promotes cell adhesion and migration, while NRP1 can promote endothelial cell migration through the NRP1-ABL1 pathway. This has been demonstrated in non-small cell lung and breast cancers.[24,104-106] In addition, NRP1 could affect the expression of the Bcl-2 protein family and block the mitogen-activated protein kinase signaling pathway. Inhibition of NRP1 has been shown to significantly inhibit the proliferation of glioma cells.[107] NRP1 is highly expressed in the metastatic MDA-MB-231 and MDA-MB-435 breast cancer cell lines, but not in the non-metastatic MDA-MB-435 breast cancer cell lines.[108] NRP1 not only directly promotes tumor growth and migration but also modulates the tumor microenvironment by interacting with integrins and remodeling the extracellular matrix to influence tumor growth.[104]

\textbf{NRP1 in Cancer Treatment}

Based on the function of NRP1 and its interactions with proteins involved in tumorigenesis, targeting NRP1 could have potent anti-tumor activity for several cancers.
recent years, NRP1 has been extensively studied, and the main therapeutic focus has been summarized in the following areas [Table 1].

Blocking the NRP1 pathway interaction to block tumor angiogenesis

NRP1 primarily promotes tumor angiogenesis by forming NRP1/VEGF/VEGFR2 complexes with the VEGF family and its receptors.

The anti-VEGFA antibody, bevacizumab, has been clinically used to treat patients. To date, the most characteristic inhibitor of NRP1 is EG00229. It interacts with the extracellular b1b2 domain of NRP1 and has been identified as a specific inhibitor of NRP1 interaction with VEGFA. It has significant tumor-suppressive effects in gliomas and squamous cell carcinomas. Rizzolio S et al were also successful in generating an NRP1-specific nanoantibody HS45 that showed high levels of affinity to human NRP1.

Inhibiting NRP1 in Tregs to increase anti-tumor immune response

NRP1 is barely detectable in human peripheral Tregs, however, it is expressed in tumor Tregs. NRP1+ Tregs have been shown to significantly suppress anti-tumor immune response. The reduction of NRP1+ Tregs in cancer has been strongly associated with chemotherapy success. Jung et al synthesized an NRP1 antagonist, Fc(AAG)-TPP11, that selectively inhibits the function and survival of NRP1+ Tregs to enhance anti-tumor activity in TME. They validated their findings in a mouse model with no apparent toxicity.

Improving tumor efficacy by inhibiting NRP1 expression

There are several types of NRP1 inhibitors, and microRNAs, as one of them, can regulate gene expression at the post-transcriptional level by forming RNA-induced silencing complexes. This leads to translational repression or degradation of target genes. It has been shown that microRNAs targeting NRP1 could be used for the treatment of cancers. NRP1 was a target of miR-130a and miR-130b and was the first to report that NRP1 was associated with multidrug resistance in ovarian epithelial carcinoma. In gastric cancer cells, miR-9-5p and miR-628 bind to NRP1 and inhibit NRP1 expression to inhibit the proliferation and invasion of gastric cancer cells, while at the same time, increasing the sensitivity of gastric cancer cells to chemotherapeutic agents. In OS, NRP1 was identified as a direct target of miR-1247 and has been shown to inhibit the viability and metastasis of OS cells. In acute lymphoblastic leukemia, AML, Pancreatic cancer, and so on, NRP1 alternative splicing variants have been shown to significantly suppress anti-tumor immune response. The reduction of NRP1+ Tregs in cancer has been strongly associated with chemotherapy success. Jung et al synthesized an NRP1 antagonist, Fc(AAG)-TPP11, that selectively inhibits the function and survival of NRP1+ Tregs to enhance anti-tumor activity in TME. They validated their findings in a mouse model with no apparent toxicity.
mediated by NRP1. Recently, Hendricks et al. have shown that the migration of MDA-MB-231 breast cancer cells treated with recombinant proteins sIIINRP1 and sIVNRP1 can inhibit tumor growth in vivo. It was found that these two proteins contain a1a2 and b1b2 domains, but no c domain or the c-terminal NRP1 sequence. It has been found that these two recombinant proteins can inhibit the tyrosine phosphorylation of VEGFR-2 induced by VEGF165. In the rat model of prostate cancer, overexpression of s12NRP1 results in a reduction of tumor growth. SEMA3A is a direct binding co-receptor for NRP1, which is involved in angiogenesis, cancer migration, and tumor immunity. Some of the NRP1 signaling pathways have been mentioned earlier in this report. Targeting these pathways may be efficacious in treating a variety of cancers. However, additional studies need to be performed to decipher the molecular mechanism of NRP1 as it relates to cancer progression and metastasis. For effective cancer therapy, inhibitors of NRP1 function have been shown to be combined with other treatment modalities, including immunotherapy, radiotherapy, and chemotherapy to achieve a complete response in patients with cancers.

Conclusions and Future Directions

NRP1 plays a key role in the occurrence and development of tumors. It is involved in angiogenesis, cancer migration, and tumor immunity. Some of the NRP1 signaling pathways have been mentioned earlier in this report. Targeting these pathways may be efficacious in treating a variety of cancers. However, additional studies need to be performed to decipher the molecular mechanism of NRP1 as it relates to cancer progression and metastasis. For effective cancer therapy, inhibitors of NRP1 function have been shown to be combined with other treatment modalities, including immunotherapy, radiotherapy, and chemotherapy to achieve a complete response in patients with cancers.

Acknowledgements

The authors thank our laboratory members and collaborators for useful discussions.

Conflicts of interest

None.

References

1. Bielenberg DR, Pettaway CA, Takashima S, Klagsbrun M. Neuropilins are multifunctional coreceptors involved in tumor initiation, growth, metastasis and immunity. Oncotarget 2012;3:921–939. doi: 10.18632/oncotarget.626.
2. Prad'homme GJ, Glinka Y. Neuropilins are multifunctional coreceptors involved in tumour initiation, growth, metastasis and immunity. Oncotarget 2012;3:921–939. doi: 10.18632/oncotarget.626.
3. Raimondi C, Ruhrberg C. Neuropilins are multifunctional coreceptors involved in tumour initiation, growth, metastasis and immunity. Oncotarget 2012;3:921–939. doi: 10.18632/oncotarget.626.
4. Li X, Fan S, Pan X, Xiaokaiti Y, Duan J, Shi Y, et al. Nordihydroguaiaretic acid impairs prostate cancer cell migration and tumour metastasis by suppressing neuropilin 1. Oncotarget 2016;7:86223–86238. doi: 10.18632/oncotarget.13368.
Role of NRP-1 in VEGF-VEGFR2-independent angiogenesis. Cell 2018;158:601–614. doi: 10.1016/j.cell.2018.05.049.

10. Martens P, Lutgen A, Klopstock T, Zhang G, Steiner C, Schramm C, et al. Expression of NRP-1 and NRP-2 in endometrial cancer. Histopathology 2009;54:489–498. doi: 10.1111/j.1365-2559.2008.03383.x.

11. Schramm P, Lauterberg C, Kronbichler A, Pirklbauer et al. Neuropilin-1, a novel biomarker, along with the suppressive function of intratumoral regulatory T cells. Cancer Immunol Immunother 2020;69:3001–3010. doi: 10.1007/s00262-019-02494-8.

12. Sulpice E, Plouet J, Berge M, Allanic D, Tobelem G, Merkulova-Ariyanto B, et al. Necrotic neuron death is mediated by neuropilin-1 via interaction with VEGF. J Neurosci 2018;38:15681–15699. doi: 10.1523/JNEUROSCI.1158-18.2018.

13. Wang J, Huang Y, Zhang J, Xing B, Xuan W, Wang H, et al. Neuropilin-1 ligand, Sema3A, acts as a tumor suppressor in the neuroblastoma cell line neuro-2a. J Cell Biol 2019;218:2530–2541. doi: 10.1083/jcb.201902101.

14. Li WP, Zhao H, Zhang X, Liang X, Liu Y, Zhang W, et al. Study on the white matter neuronal integrity in amnestic mild cognitive impairment based on automated fiber-tract quantification (in Chinese). Natl Med J China 2020;100:128–134. doi: 10.1007/s11653-019-24015-x.

15. Hang C, Yan HS, Gong C, Gao H, Mao QH, Zhu JX. MicroRNA-9 inhibits gastric cancer cell proliferation and migration by targeting neuropilin-1. Exp Ther Med 2019;18:2524–2530. doi: 10.3892/ettm.2019.5218.

16. Zhou R, Curry JM, Roy LD, Grover P, Haider J, Moore LJ, et al. A rationally designed NRP1-independent superagonist targets neuropilin-1 in tumor-stroma interaction and animal tumor xenografts. Sci Transl Med 2018;10:eaah4807. doi: 10.1126/scitranslmed.aah4807.

17. Ackerman SN, Stetler-Stevenson W, Hynes RO, Derynck R, Fearon ER, et al. Neuropilin-1 (NRP1) is a high-affinity receptor for the ligand Sema3A. Cell 1996;87:415–426. doi: 10.1016/0092-8674(96)90051-3.

18. Al-Shareef H, Hiraoka SI, Tanaka N, Shogen Y, Lee AD, et al. Neuroplilin-1: a checkpoint target with unique implications for cancer immunology and immunotherapy. J Immunother Cancer 2019;7:1–15. doi: 10.1186/s40425-019-0243-0.

19. Jimenez-Hernandez LE, Vazquez-Santillan K, Castro-Oropeza R, Helgeson S, Geller S, et al. Neuropilin-1 activation in endothelial cells induces potent proangiogenic activity. Blood 2012;119:76–84. doi: 10.1182/blood-2011-03-349369.

20. Babin Y, Mcdaid AJ, Chalik A, Chlouveraki S, Xanthakis V, et al. The role of neuropilin-1 in tumor angiogenesis in vivo. J Exp Med 2010;207:2055–2066. doi: 10.1084/jem.20091192.

21. Liu C, Somasundaram A, Manne S, Gocher AM, Szymczak-Mierczynska J, et al. Neuropilin-1 in uterine leiomyosarcoma. Clinical and pathological analysis. Gynecol Pol 2018;89:7–12. doi: 10.5603/GP.a2018.0002.

22. Hu C, Jiang X. Role of NRP-1 in VEGF-VEGFR2-independent tumour angiogenesis. Target Oncol 2016;11:301–305. doi: 10.1007/s11523-016-0242-0.

23. Hellec C, Daawara M, Carpenter M, Denys A, Allam F. The pro-angiogenic activity of heparan sulfate 3-O-sulfotransferase 3B (HST3B3R) in breast cancer MDA-MB-231 cells is dependent on the expression of neuropilin-1. Molecules 2018;23:2710–2718. doi: 10.3390/molecules23112718.
97. El Baba N, Farran M, Khalil EA, Jaafar L, Fakhoury I, El-Sibai M. Targeting tumor micro-environment for moving beyond vascular endothelial growth factor. Oncologist 2018;16:537–545. doi: 10.18240/ijo.2018.05.04.

98. Li Y, Shizimu A, Asano H, Kadonoono T, Konoh SK, Geretti E, et al. VEGF-ANRP1 stimulates GIPC1 and Syp complex formation to promote RhoA activation and proliferation in skin cancer cells. Biol Open 2015;4:1063–1076. doi: 10.1242/bo.019018.

99. Dachsel JC, Ngok SP, Lewis-Tuffin LJ, Kourtidis A, Geyer R, Johnston L, et al. The Rho guanine nucleotide exchange factor Syp regulates the balance of dia and ROCK activities to promote polarized-cancer-cell migration. Mol Cell Biol 2013;33:4909–4918. doi: 10.1128/MCB.00565-13.

100. Appiah-Kubi K, Wang Y, Qian H, Wu M, Yao X, Wu Y, et al. Platelet-derived growth factor receptor/platelet-derived growth factor (PDGFR/PDGF) system is a prognostic and treatment response biomarker with multifarious therapeutic targets in cancers. Tumour Biol 2016;37:10053–10066. doi: 10.1007/s13277-016-5069-z.

101. Wang Y, Qiu H, Li S, Yu J. Over-expression of platelet-derived growth factor-D promotes tumor growth and invasion in endometrial cancer. Int J Mol Sci 2014;15:4780–4794. doi: 10.3390/ijms15034780.

102. Huaing W, Fridman Y, Bonfils RD, Ustach CV, Conley-LaComb MK, Wiessner C, et al. A novel function for platelet-derived growth factor D: induction of osteoclast differentiation for intraosseous tumor growth. Oncogene 2012;31:4327–4335. doi: 10.1038/onc.2011.373.

103. Ruffini L, Levi T, Graziani G, Caporal S, Atzori MG, D’Atri S, et al. Platelet-derived growth factor-C promotes human melanoma aggressiveness through activation of neuropilin-1. Oncotarget 2017;8:66833–66848. doi: 10.18632/oncotarget.18706.

104. Steinestel K, Brudlerlein S, Lennerz JK, Steinestel J, Kraft K, Propper C, et al. Expression and Y435-phosphorylation of Abelson interactor 1 (Abi1) promotes tumor cell adhesion, extracellular matrix degradation and invasion by colorectal carcinoma cells. Mol Cancer 2013;14:135. doi: 10.1186/1476-4598-13-145.

105. Cleary RA, Wang R, Warag O, Singer HA, Tang DD. Role of c-Abi tyrosine kinase in smooth muscle cell migration. Am J Physiol Lung Cell Mol Physiol 2014;306:C135–C146. doi: 10.1152/ajlpm.00037.2013.

106. Zhao H, Chen MS, Lo YH, Walz SE, Wang J, Ho PC, et al. The Ron receptor tyrosine kinase activates c-Abi to promote cell proliferation through tyrosine phosphorylation of PCNA in breast cancer. Oncogene 2014;33:1429–1437. doi: 10.1038/onc.2013.84.

107. Li X, Tang T, Lu X, Zhou H, Huang Y. RNA interference targeting NRP-1 inhibits human glioma cell proliferation and enhances cell apoptosis. Mol Med Rep 2011;4:1243–1248. doi: 10.3892/mmr.2011.550.

108. Lee K, Kosimaki JE, Pandey NB, Popel AS. Inhibition of lymphangioigenesis and angiogenesis in breast tumor xenografts and lymph nodes by a peptide derived from transmembrane protein 45A. Neoplasia 2013;15:112–124. doi: 10.1593/neo.1231638.

109. Zhang H, Chen C, Wang S, Li X, Fan T. Efficacy of bevacizumab combined with nedaplatin in the treatment of ovarian cancer and its effects on tumor markers and immunity of patients. J BUON 2020;25:80–86.

110. Tamura R, Tanaka T, Morimoto Y, Kuranari Y, Yamamoto Y, Nishimura Y, et al. The tumor sidedness predicts bevacizumab benefit in metastatic colorectal cancer patients. Front Oncol 2019:9:723. doi: 10.3389/fonc.2019.00723.

111. Tosca EM, Rocchetti M, Pensenti E, Magini PA. Tumor-in-host DEB-based approach for modeling cachexia and bevacizumab resistance. Cancer Res 2020;80:780–831. doi: 10.1158/0008-5472.CAN-19-0811.

112. Sosstely A, Mercier F. Tumor size and overall survival in patients with platinum-resistant ovarian cancer treated with chemotheraphy and bevacizumab. Clin Med Insights Oncol 2019;13:117955491852071. doi: 10.1177/1179554919852071.
114. Pal K, Madamsetty VS, Dutta SK, Wang E, Angom RS, Mukhopadhyay D. Synchronous inhibition of mTOR and VEGF/NRP1 axis impedes tumor growth and metastasis in renal cancer. NPJ Precis Oncol 2019;3:31. doi: 10.1038/s41698-019-0105-2.

115. Powell J, Mota F, Steadman D, Soudy C, Miyaucci JT, Crosby S, et al. Small molecular neuropilin-1 antagonists combine antiangiogenic and antitumor activity with immune modulation through reduction of transforming growth factor beta (TGFbeta) production in regulatory T-cells. J Med Chem 2018;61:4135–4154. doi: 10.1021/acs.jmedchem.8b00820.

116. Huang Z, Cheng C, Xiong H, Wang Y, Chen KK, Yang J, et al. NRPI promotes cell migration and invasion and serves as a therapeutic target in nasopharyngeal carcinoma. Int J Clin Exp Med 2018;11:3976–3990. doi: 10.1172/JCM9257.

117. Cari L, Nocentini G, Migliorati G, Riccardi C. Potential effect of et al. (Weinh) 2019;6:1801986. doi: 10.1002/advs.201801986.

118. Cari L, Nocentini G, Migliorati G, Riccardi C. Potential effect of tumor-specific Treg-targeted antibodies in the treatment of human cancers: a bioinformatics analysis. Oncomunology 2018;7:e1387705.

119. Kim H, Ko Y, Park H, Zhang H, Jeong Y, Kim Y, et al. MicroRNA-320a inhibits tumor invasion by targeting neuropilin 1. Oncoscience 2015;2:334–348. doi: 10.18632/oncoscience.137.

120. Wei Y, Guo S, Tang J, Wen J, Wang H, Hu X, et al. MicroRNA-19b-3p suppresses gastric cancer development by negatively regulating neuropilin-1. Cancer Cell Int 2020;20:193. doi: 10.1186/s12935-020-02157-0.

121. Kim H, Ko Y, Park H, Zhang H, Jeong Y, Kim Y, et al. MicroRNA-148a/b-3p regulates angiogenesis by targeting neuropilin-1 in endothelial cells. Exp Mol Med 2019;51:1–11. doi: 10.1038/s12276-019-0344-x.

122. Yogi K, Sridhar E, Goel N, Jalali R, Goel A, Mistry A, et al. MiR-148a, a microRNA upregulated in the WNT subgroup tumors, inhibits invasion and tumorigenic potential of medulloblastoma cells by targeting Neuropilin 1. Oncoscience 2015;2:334–348. doi: 10.18632/oncoscience.137.

123. Zang Y, He X, Liu Y, Ye Y, Zhang H, He P, et al. microRNA-320a inhibits tumor invasion by targeting neuropilin 1 and is associated with liver metastasis in colorectal cancer. Oncol Rep 2012;27:685–694. doi: 10.3892/or.2011.1561.

124. Zhang Y, He X, Liu Y, Ye Y, Zhang H, He P, et al. Corrigendum. MicroRNA-320a inhibits tumor invasion by targeting neuropilin 1 and is associated with liver metastasis in colorectal cancer. Oncol Rep 2015;33:2093. doi: 10.3892/or.2015.3773.

125. Chen C, Hu Y, Li L. NRPI is targeted by miR-103a and miR-10b, and is associated with multidrug resistance in epithelial ovarian cancer based on integrated gene network analysis. Mol Med Rep 2016;13:188–196. doi: 10.3892/mmr.2015.4556.

126. Pang W, Zhai M, Wang Y, Li Z. Long noncoding RNA SNHG16 silencing inhibits the aggressiveness of gastric cancer via upregulation of microRNA-628-3p and consequent decrease of tumor size. Cancer Manag Res 2019;11:7263–7277. doi: 10.2147/CMAR.S211856.

127. Wei QF, Yao JS, Yang YT. MicroRNA-1247 inhibits the viability and metastasis of osteosarcoma cells via targeting NRPI and mediating Wnt/beta-catenin pathway. Eur Rev Med Pharmacol Sci 2019;23:7266–7274. doi: 10.26355/eurrev_201909_18831.

128. Zang Y, Yu R, Bai Y, Chen X. MicroRNA-9 suppresses cancer proliferation and cell cycle progression in acute lymphoblastic leukemia with inverse association of neuropilin-1. J Cell Biochem 2018;119:6604–6613. doi: 10.1002/jcb.26799.

129. Xiong K, Shao LH, Zhang HQ, Jin L, Wei W, Dong Z, et al. MicroRNA-9 functions as a tumor suppressor and enhances radiosensitivity in radio-resistant A549 cells by targeting neurophilin-1. Oncol Lett 2018;15:2863–2870. doi: 10.3892/ol.2017.7705.

130. Gadermaer A, Teszar M, Wallwitz J, Berg G, Himmel G. Characterization of a sandwich ELISA for quantification of total human soluble neuropilin-1. J Clin Lab Anal 2019;33:e22944. doi: 10.1002/jcla.22944.

131. Romano E, Chora I, Manetti M, Mazzotta C, Rosa I, Bellando-Randone S, et al. Decreased expression of neuropilin-1 as a novel key factor contributing to peripheral microvasculopathy and defective angiogenesis in systemic sclerosis. Ann Rheum Dis 2016;75:1541–1549. doi: 10.1136/annrheumdis-2015-207443.

132. Gagnon ML, Biehlenberg DR, Geichman Z, Mao HQ, Takashima S, Soker S, et al. Identification of a natural soluble neuropilin-1 that binds vascular endothelial growth factor: in vivo expression and antitumor activity. Proc Nat Acad Sci U S A 2000;97:2573–2578. doi: 10.1073/pnas.040337597.

133. Wang S, Wang Z, Yu G, Zhou Z, Jacobson O, Liu Y, et al. Tumor-specific drug release and reactive oxygen species generation for cancer chemo/chemodynamic combination therapy. Adv Sci (Wien) 2019;6:1801986. doi: 10.1002/advs.201801986.

134. Zhang Y, Feng L, Dong Z, Xin X, Yang Z, Deng D, et al. Protein-drug conjugate programmed by pH- reversible linker for tumor hypoxia relief and enhanced cancer combination therapy. Int J Pharm 2020;582:119321. doi: 10.1016/j.ijpharm.2020.119321.

135. Seyedin SN, Hasubuzaman MM, Pham V, Petonsek MS, Callaghan C, Kafan AL, et al. Combination therapy with radiation and PARP inhibition enhances responsiveness to anti-PD-1 therapy in colorectal tumor models. Int J Radiat Oncol Biol Phys 2020;108:81–92. doi: 10.1016/j.ijrobp.2020.01.030.

136. Kunimasa K, Nakamura H, Nishino K, Nakatsuka SI, Kumagai T. Extrinsic upregulation of PD-L1 induced by pembrolizumab combination therapy in patients with NSCLC with low tumor PD-L1 expression. J Thorac Oncol 2019;14:e231–e233. doi: 10.1016/j.jtho.2019.05.026.

137. Teijero-Valino C, Novoa-Carballal R, Borrajo E, Vidal A, Alonso-Nocelo M, de la Fuente Freire M, et al. Multifunctional drug nanocarrier for efficient anticancer therapy. J Control Release 2019;287:154–164. doi: 10.1016/j.jconrel.2018.12.002.

138. Benachour H, Seve A, Bastogne T, Frichot C, Vandesesse R, Jasmelewski J, et al. Multifunctional Peptide-conjugated hybrid silica nanoparticles for photodynamic therapy and MRI. Tera- nostics 2012;2:889–904. doi: 10.7150/thno.4754.

139. Zhang L, Xing Y, Gao Q, Sun X, Zhang D, Cao G. Combination of NRPI-mediated iRGD with 5-fluorouracil suppresses proliferation, migration and invasion of gastric cancer cells. Biomed Pharmacother 2017;93:1136–1143. doi: 10.1016/j.biopha.2017.06.103.

How to cite this article: Liu SD, Zhong LP, He J, Zhao YX. Targeting neuropilin-1 interactions is a promising anti-tumor strategy. Chin Med J 2021;134:508–517. doi: 10.1097/CME.0000000000001200.