The glycoprotein TRP36 of *Ehrlichia* sp. UFMG-EV and related cattle pathogen *Ehrlichia* sp. UFMT-BV evolved from a highly variable clade of *E. canis* under adaptive diversifying selection

Alejandro Cabezas-Cruz1,2*, James J Valdés3 and José de la Fuente2,4*

Abstract

Background: A new species of *Ehrlichia*, phylogenetically distant from *E. ruminantium*, was found in 2010 infecting cattle in Canada. In 2012 and 2013, we reported the *in vitro* propagation, molecular and ultrastructural characterization of *Ehrlichia* sp. UFMG-EV (*E. mineirensis*), a new species of *Ehrlichia* isolated from the haemolymph of Brazilian *Rhipicephalus* (*Boophilus*) *microplus* ticks. A new organism, named *Ehrlichia* sp. UFMT-BV, closely related to *Ehrlichia* sp. UFMG-EV, was recently described in Brazil and after experimental infection it was shown to be pathogenic for cattle. This new emerging clade of cattle *Ehrlichia* pathogens is closely related to *E. canis*. The major immunogenic Tandem Repeat Protein (TRP36; also known as gp36) is extensively used to characterize the genetic diversity of *E. canis*. Homologs of TRP36 were found in both *Ehrlichia* sp. UFMG-EV and *Ehrlichia* sp. UFMT-BV.

Findings: Herein, we characterized the evolution of this new *Ehrlichia* clade using TRP36 sequences. Our working hypothesis is that *Ehrlichia* sp. UFMG-EV and related microorganisms evolved from a highly variable *E. canis* clade. In support of our hypothesis we found that *Ehrlichia* sp. UFMG-EV and *Ehrlichia* sp. UFMT-BV TRP36 evolved from a highly divergent and variable clade within *E. canis* and this clade evolved under episodic diversifying selection with a high proportion of sites under positive selection.

Conclusion: Our results suggest that *Ehrlichia* sp. UFMG-EV and *Ehrlichia* sp. UFMT-BV evolved from a variable clade within *E. canis*.

Keywords: *Ehrlichia* sp. UFMG-EV, *Ehrlichia* sp. UFMT-BV, *E. mineirensis*, Host-shift, Diversifying episodic selection

Findings

Ehrlichia sp. UFMG-EV and *Ehrlichia* sp. UFMT-BV belong to a new clade of cattle-related *Ehrlichia*

Anaplasmataceae is a family of α-proteobacteria that includes the genera *Anaplasma*, *Ehrlichia*, *Neorickettsia* and *Wolbachia*. From these genera, *Ehrlichia* and *Anaplasma* are important pathogens affecting animals and humans. *Ehrlichia* are obligate intracellular gram-negative, tick-borne bacteria that grow within membrane-bound vacuoles in human and animal leukocytes causing ehrlichiosis. With a worldwide distribution ehrlichioses are considered emerging diseases that can cause serious illness in a variety of hosts, including humans, livestock and pets. Three new species of cattle-related *Ehrlichia* spp have been recently reported: (i) a new species that naturally infect cattle from British Columbia, Canada [1], (ii) *Ehrlichia* sp. UFMG-EV (referred as *E. mineirensis* in [2,3]) that was isolated from *R. microplus* hemolymph [2-4], and (iii) *Ehrlichia* sp. UFMT-BV that was found to be pathogenic for cattle in Brazil [5]. These three organisms are closely related to *E. canis* [1,2,5]. *Ehrlichia* sp. UFMG-EV and *Ehrlichia* sp. UFMT-BV, however, present new sequence of tandem repeats different to the one reported for *E. canis* TRP36 [2,5,6].
The results of this work expand on our previous findings regarding the evolution and differentiation of TRP36 in *Ehrlichia* sp. UFMG-EV [2]. Herein, we showed that the gene *trp36* presents episodic bursts of selection, unequally distributed across sites and that diversifying selection occurs only in few branches of the *trp36* phylogenetic tree. Our results showed that *Ehrlichia* sp. UFMG-EV and the new *Ehrlichia* sp. UFMT-BV affecting cattle evolved from a highly divergent and variable clade within *E. canis*.

Figure 1 *Ehrlichia* sp. UFMG-EV and *Ehrlichia* sp. UFMT-BV strain belong to a variable clade within *E. canis*. The *trp36* (*E. canis*), *gp47* (*E. chaffeensis*) and mucin like protein (*E. ruminantium*) nucleotides sequences were aligned and gap regions removed. Phylogenetic analyses were conducted using ML and NJ. The figure shows that *Ehrlichia* sp. UFMG-EV and *Ehrlichia* sp. UFMT-BV fall in a divergent clade of *E. canis* *trp36* having low homology (less than 80%; red and pink boxes) compared to the isolate *E. canis* USA Jake 2. The amino acid sequence of the different TRP36 tandem repeats variants are shown (Coloured circles). The positions of the sequons are shown (red sticks on the boxes). The position of TRP36 ancestor clades I, II and III at internal branches (white circles) and position of sequons on ancestors (red sticks on white boxes) are also shown. The topologies obtained with the two methods were similar. The numbers above the internal branches represent bootstrap values. Only bootstrap values higher that 70 are shown.
Ehrlichia sp. UFMG-EV trp36 gene evolved from a highly divergent clade within E. canis

To study the evolution of trp36 gene we used a combination of phylogenetic and evolutionary analysis (see Additional file 1 for detailed description of materials and methods). The gene trp36 has been widely used to study the genetic diversity of E. canis strains [7-10]. We performed maximum likelihood and neighbor joining phylogenetic analyses with trp36 nucleotide sequences available in GenBank (Additional file 1) to study the evolution of Ehrlichia sp. UFMG-EV and Ehrlichia sp. UFMT-BV trp36 in relation to E. canis trp36. The phylogenetic analysis showed that Ehrlichia sp. UFMG-EV and Ehrlichia sp. UFMT-BV trp36 are separated but clustered together with E. canis strains from South Africa, Taiwan and Brazil (Figure 1). Using the E. canis strain USA Jake-2 as a reference, the TRP36 amino acid sequences from the Taiwanese and South African E. canis strains, together with Ehrlichia sp. UFMG-EV and Ehrlichia sp. UFMT-BV, presented the lowest percent (<86%) of homology (Figure 1, red and pink boxes). The results demonstrated that E. canis strain USA Jake-2 belongs to a conservative TRP36 clade within E. canis (Figure 1). Members of this clade have a high percent (>90%) of amino acid homology in TRP36 (Figure 1, black boxes).

Figure 2 Branches under episodic diversifying selection in the trp36 tree. The tree of trp36 orthologs is shown. Branch-site REL model (Additional file 1) was used to determine branches under episodic diversifying selection (highlighted in red). Branches were considered under episodic diversifying selection when corrected p-value < 0.05 (see Additional file 1 for methods). For the rest of the tree (branches in black) there is no evidence of episodic diversifying selection (Additional file 2).
The new TRP36 tandem repeat variants evolved from the typical E. canis tandem repeat

The tandem repeat composition of the divergent clade was highly variable, encoding the typical E. canis TRP36 tandem repeat (TEDSVSAPA), but also other variants – AQVSAADSQA (Ehrlichia sp. UFMT-BV), EASVVPEA (New Brazilian variant of E. canis) and VPAASGDAQ (Ehrlichia sp. UFMG-EV) (Figure 1, asterisks on red sticks). The conservative TRP36 clade, however, only presented the tandem repeat variant TEDSVSAPA amongst all members. Ancestral sequence reconstruction (see Additional file 1 for detailed description of ancestral sequence reconstruction methods) showed that all the new TRP36 variants evolved from the typical TRP36 tandem repeat, TEDSVSAPA (Figure 1, white circles and roman numerals).

There is currently no experimental evidence that TRP36 has N-linked glycans. The evolution of highly divergent variants of TRP36, however, was associated with an increase in the number of sequons of N-glycosylation in TRP36 (Figure 1, red sticks on colored boxes). In agreement with this finding, the evolution of TRP36 ancestors from clades I to III was associated with the gain of one sequon of N-glycosylation for each evolutionary step (from I to II and from II to III – Figure 1, red sticks on white boxes). One of three sequons present in the ancestor of TRP36 clade III was lost in Ehrlichia sp. UFMG-EV and in the South African strains, but it is present in Ehrlichia sp. UFMT-BV and the Taiwanese strains. The second sequon in TRP36 ancestor clade I and the strains from USA, Spain, Israel, Central Africa and Brazil possess a proline (P) residue in the second position making it improbable that the asparagine (N) will be glycosylated (Figure 1, asterisks on red sticks). The relevancy of whether these sequons are glycosylated or not is that changes in glycosylation patterns may contribute to evade host immune system [11] and antigenic drift [12].

Ehrlichia sp. UFMG-EV trp36 evolved under episodic diversifying selection

Our next step was to test whether different branches or codon sites of the trp36 phylogenetic tree evolved under episodic diversifying selection. Results showed that the diversifying selection events among the branches were scarce along the phylogenetic tree (Figure 2). Only 8 (A1, A3, A5, 1, 2, 7, 9 and 10) out of 51 (15.6%) branches were found to be under episodic diversifying selection (Corrected p-value ≤ 0.05 – Figure 2 and Additional file 2). Episodic diversifying selection was detected only in branches belonging to the highly divergent clade of TRP36 described above (Figure 1). The patterns of episodic diversifying selection were complex, with differences in extent and strength of selection along the diversifying branches. The branches can be separated into four groups: (i) 2, 9, A1, A3 and A5 that experienced strong selective force (ω+ > 3333.56) in a small proportion of sites (Proportion < 0.07), (ii) 1 that experienced low selective force (ω+ = 7.86) in a high proportion of sites (Proportion = 0.17), (iii) 7 that experienced low selective force (ω+ = 46.08) in a low proportion of sites (Proportion = 0.05), and (iv) 10 that experienced middle selective force (ω+ = 166.14) in a high proportion of sites (Proportion = 0.15). Among the branches experiencing episodic selection, 11 out of 171 (6.4%) codon sites were under episodic diversifying selection (Table 1, Additional file 3). Most of these sites were concentrated in branches 7 and 1.

Table 1 Codons under episodic diversifying selection in specific branches

Codons	Branches	From	To	Type of substitution
10	7	aac (N)	gtt (V)	dN and dS
21	7	caa (Q)	tca (S)	dN
28	7	tca (S)	gta (V)	dN
	1	gta (V)	aca (T)	dN
39	7	cat (H)	agt (S)	dN
	1	agt (S)	cat (H)	dN
40	7	cct (P)	ggt (G)	dN
51	6	aat (N)	ggt (G)	dN
77	15	gct (A)	gtt (V)	dN
105	2	tat (Y)	gaa (E)	dN
124	5	aat (N)	tct (S)	dN
142	8	tct (S)	ggt (G)	dN
145	1	gct (A)	gtt (V)	dN
	1	gtt (V)	caa (Q)	dN and dS

aInternal and external branches are identified by numbers and letters and numbers as in Figure 2.

bType of substitution: non-synonymous (dN) and synonymous (dS).
Table 2: Codons under positive and negative selection

Codons	Branches	SLAC ω^a	SLAC p-value	FEL ω^b	FEL p-value	REL ω^b	Bayes factor	MEME ω^b	MEME p-value	Selection type^c
6	B5	−4.047	0.333	−3.159	0.081	−1.126	229.790	−	−	Negative
8	7	−4.604	0.293	−4.597	0.071	−1.096	92.479	−	−	Negative
10	7	−0.686	0.787	−2.465	0.583	−0.149	0.595	>100	0.030	Positive
21	7	4.991	0.423	3.013	0.222	0.810	3.221	>100	0.019	Positive
28	7	8.543	0.184	5.818	0.082	1.678	28.536	>100	0.010	Positive
	1	6.912	0.371	3.907	0.444	1.265	8.352	>100	0.013	Positive
40	7	4.047	0.444	2.432	0.350	0.476	1.985	>100	0.011	Positive
49	1	−16.858	0.031	−10.024	0.007	−1.120	178.481	−	−	Negative
51	6	3.473	0.603	1.923	0.586	0.096	1.136	>100	0.028	Positive
52	1	−8.094	0.111	−3.234	0.062	−1.087	77.050	−	−	Negative
71	1	−18.415	0.026	−14.187	0.004	−1.121	187.132	−	−	Negative
77	B1	4.047	0.444	2.150	0.377	0.340	1.681	>100	0.025	Positive
83	5	−4.047	0.333	−3.402	0.073	−1.127	243.194	−	−	Negative
89	2	−9.551	0.153	−7.402	0.042	−1.101	99.411	−	−	Negative
94	2	−6.708	0.201	−4.324	0.059	−1.124	189.451	−	−	Negative
96	2	−4.047	0.333	−4.119	0.063	−1.127	242.661	−	−	Negative
105	2	3.569	0.689	2.357	0.608	0.330	1.536	>100	0.030	Positive
116	2	−7.488	0.180	−3.380	0.074	−1.126	199.960	−	−	Negative
124	5	3.663	0.543	2.278	0.488	0.329	1.569	>100	0.004	Positive
139	10	−17.080	0.037	−7.190	0.074	−1.007	23.196	−	−	Negative
142	1	6.862	0.316	6.098	0.511	1.459	31.512	>100	0.009	Positive
145	10	4.902	0.413	4.701	0.571	1.230	7.496	>100	0.017	Positive
152	10	20.127	0.244	41.463	0.238	1.510	66.006	>100	0.224	Positive
158	1	2.355	0.585	−1.195	0.886	1.162	161.941	1.219	0.612	Positive
162	1	16.368	0.227	8.312	0.354	1.574	87.208	>100	0.343	Positive

^aValues represent the selection pressure estimated using SLAC analysis.

^bValues represent the selection pressure estimated using FEL analysis.

^cSelection type indicates whether the codon is under positive or negative selection.
While codon 77 was selected in branches 15 and B1 (E. canis), codon 116 was selected in branch 2 (E. canis, *Ehrlichia* sp. UFMG-BV and *Ehrlichia* sp. UFMG-EV). This data therefore suggests that putative N-glycosylation associated with this sequon might be important in the host shift (see below) observed in *Ehrlichia* sp. UFMG-BV and *Ehrlichia* sp. UFMG-EV.

Model of emergence of *Ehrlichia* sp. UFMG-EV and *Ehrlichia* sp. UFMG-BV within *E. canis*

The emergence of new pathogens is frequently associated to mutations that confer the ability to infect novel hosts, known as “host shift” [13]. *Ehrlichia* sp. UFMG-EV and *Ehrlichia* sp. UFMG-BV are closely related to *E. canis*, however they were associated to new invertebrate and vertebrate hosts, respectively. First, while the common tick vector for *E. canis* is *R. sanguineus* [14], *Ehrlichia* sp. UFMG-EV was isolated from *R. microplus* hemolymph [2]. Secondly, while *E. canis* is mainly pathogenic for dog [10], *Ehrlichia* sp. UFMG-BV was found to be pathogenic for cattle [5]. How pathogens can colonize new hosts is a challenging question in evolutionary biology [13]. Recently, Aguiar and colleagues [9] suggested that *E. canis* may have a wider range of hosts in Brazil than currently recognized. The host shift in this context may have occurred in a scenario where dogs infected with a variable *E. canis* strain, as previously found in Brazil [9], were the source of infection for *R. microplus* or *R. sanguineus* ticks that later infested cattle. Both tick species are able to infect dogs [15,16] and cattle [17]. The scenario involving *R. microplus* is unlikely as this is a one-host tick species. However, *R. microplus* moves among hosts during their parasitic lifetime [18], thereby increasing the chances of horizontal pathogen transmission among different hosts. Changes in evolutionary pressures on *E. canis*, related to new host association, may have resulted in a completely new species.

Our evidence supports the idea of differential evolutionary pressures on the glycoprotein TRP36 along different strains of *E. canis*, resulting in highly divergent variants of TRP36. In the habitual host of *E. canis*, TRP36 must possess amino acid positions beneficial or neutral that may be deleterious in new hosts – the opposite may also be true. Within variable strains of a given pathogen, novel genetic variants may eventually deliver beneficial mutations that promote successful emergence, thereby providing a source for adaptive genetic variation in new hosts [13]. In agreement with this, we found a large proportion of sites that evolved under purifying (negative) selection, positive and diversifying selection. It is worth noting that the selective events were more frequent and strong in the deepest branches of *trp36* phylogenetic tree. This supports the hypothesis that most mutations that originated in the new TRP36 amino acid variants of *Ehrlichia* sp. UFMG-EV and *Ehrlichia* sp. UFMG-BV occurred before the emergence of the clade formed by these two organisms. The fact that the most recent common ancestor (Figure 1, ancestor clade III) between *Ehrlichia* sp. UFMG-EV, *Ehrlichia* sp. UFMG-BV and *E. canis* had a typical TRP36 tandem repeat structure, supports the aforementioned hypothesis. The divergence found in TRP36 tandem repeats was consistent with a 1.7% sequence divergence between *16SrRNA* of *Ehrlichia* sp. UFMG-EV and *E. canis* [2]. Taking into account the high identity of *16SrRNA* among *E. canis* strains (maximum 0.6%) [7], and thus the conservative nature of this gene, *Ehrlichia* sp. UFMG-EV may have diverged a long time ago from *E. canis*.

Conclusion*

Altogether, these results suggest that this new group of organisms evolved from *E. canis* sensu stricto and has become ecologically independent from the parental species. In agreement with the new hosts association of this group of microorganisms, it was found that *Ehrlichia* sp. UFMG-EV was able to propagate in bovine aorta BA886 cell line, while *E. canis* did not [4]. This *in vitro* observation supports the above conclusions regarding the new host specificity of this novel group of cattle related agents. At the ultrastructural level, *Ehrlichia* sp. UFMG-EV shares ultrastructural features with other members of...
the genus *Ehrlichia* (*E. muris, E. canis and E. chaffeensis*). We found cells, however, with unusual structures (invasion of the cellular membrane) for which we yet do not have an explanation [3]. Further studies should clarify the role of major immunogenic surface exposed proteins in the evolution of bacterial host shift. The full genome of *E. mineirensis* (*Ehrlichia* sp. UFMG-EV) might be an important contribution to these studies.

Additional files

Additional file 1: Detailed description of materials and methods.
Additional file 2: Likelihood ratio test statistics for branches under episodic diversifying selection. Branch-site REL model (Additional file 1) was used to determine branches under episodic diversifying selection (highlighted in red). Branches were considered under episodic diversifying selection when corrected *p*-value < 0.05 (see Additional file 1 for methods).
Additional file 3: Likelihood ratio test statistics for sites under episodic diversifying selection. MIEVE (Additional file 1) was used to determine sites (codons) under episodic diversifying selection (highlighted in red). Sites were considered under episodic diversifying selection when *p*-value < 0.05 (see Additional file 1 for methods).
Additional file 4: Sequons of N-glycosylation in the N-terminus of TRP36 variants. Putative sequons of N-glycosylation of the N-terminus of the N-terminus of TRP36 variant included in this study are shown.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
ACC developed the overall concept, drafted the manuscript, performed and evolutionary analysis. JF drafted the manuscript and made critical contributions. JJV interpreted the phylogenetic and evolutionary analysis. JF drafted the manuscript and made critical contribution. KKH and JKH provided technical support and approved the final version of the manuscript.

Acknowledgments
This research was partially supported by the EU FP7 ANTIGONE project number 278976. JF was sponsored by project CZ.1.07/2.3.00/30.0032, co-financed by Czech Republic, the European Social Fund and the state budget of the Czech Republic. ACC was supported by a grant from the Ministère de l'Éducation Nationale, Portefeuille de la Recherche and approved the final version of the manuscript.

Author details
1. Center for Infection and Immunity of Lille (CILI), INSERM U1019 – CNRS UMR 8204, Université Lille Nord de France, Institut Pasteur de Lille, Lille, France.
2. ICBio, Instituto de Investigación de Recursos Cinegéticos IREC-CSIC-UCLM-XCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain.
3. Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic.
4. Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA.

Received: 24 September 2014 Accepted: 30 November 2014
Published online: 10 December 2014

References
1. Gajadhar AA, Lobanov V, Scandrett WB, Campbell J, Al-Adhami B: A novel *Ehrlichia* genotype detected in naturally infected cattle in North America. Vet Parasitol 2010, 173:324–329.
2. Cruz A, Zweygarth E, Ribeiro M, da Silva J, de la Fuente J, Grubhoffer L, Valdés J, Passos LMF: New species of *Ehrlichia* isolated from *Rhipicephalus (Boophilus) microplus* shows an orthology of the *E. canis* major immunogenic glycoprotein gp36 with a new sequence of tandem repeats. Parasit Vectors 2012, 5:291.

3. Cabezas-Cruz A, Vancová M, Zweygarth E, Ribeiro MFB, Grubhoffer L, Passos LMF: Ultrastructure of *Ehrlichia mineirensis*, a new member of the *Ehrlichia* genus. Vet Microbiol 2013, 167:455–458.
4. Zweygarth E, Schöl H, Lis K, Cabezas-Cruz A, Thiel C, Silaghi C, Ribeiro MFB, Passos LMF: in vitro culture of a novel genotype of *Ehrlichia* sp. from Brazil. Transbound Emerg Dis 2013, 60:86–92.
5. Aguiar OM, Zilliani TF, Zhang X, Melo AL, Braga IA, Witter R, Freitas LC, Rondelli AL, Luis MA, Sorte EC, Jaume FW, Santarém VA, Horta MC, Pescador CA, Colodel EM, Soares HS, Pacheco RC, Onuma SS, Labruna MB, McBride JW: A novel *Ehrlichia* genotype strain distinguished by the TRP36 gene naturally infects cattle in Brazil and causes clinical manifestations associated with ehrlichiosis.Ticks Tick Borne Dis 2014, 5:537–544.
6. Doyle CK, Nethery KA, Popov VI, McBride JW: Differentially expressed and secreted major immunoreactive protein orthologs of *Ehrlichia canis* and *E. chaffeensis* elicit early antibody responses to epitopes on glycosylated tandem repeats. Infect Immun 2006, 74:711–720.
7. Hsieh YC, Lee CC, Tsang CL, Chung YT: Detection and characterization of four novel genotypes of *Ehrlichia canis* from dogs. Vet Microbiol 2010, 146:70–75.
8. Kamani J, Lee CC, Haruna AM, Chung PJ, Weka PR, Chung YT: First detection and molecular characterization of *Ehrlichia canis* from dogs in Nigeria. Res Vet Sci 2013, 94:27–32.
9. Aguiar OM, Zhang X, Melo ALT, Pacheco TA, Meneses AMC, Zanotto MS, Horta MC, Santarém VA, Camargo LMA, McBride JW, Labruna MB: Genetic diversity of *Ehrlichia canis* in Brazil. Vet Microbiol 2013, 164:315–321.
10. Zweygarth E, Cabezas-Cruz A, Josemans AI, Oosthuizen MC, Matjila PT, Lis K, Broniszezwska M, Schöl H, Ferroliho J, Grubhoffer L, Passos LMF: In vitro culture and structural differences in the major immunoreactive protein gp36 of geographically distant *Ehrlichia canis* isolates. Ticks Tick Borne Dis 2014, 5:423–431.
11. Kobayashi Y, Suzuki Y: Evidence for N-glycan shielding of antigenic sites during evolution of human influenza A virus hemagglutinin. J Virol 2012, 86:3446–3451.
12. Das SR, Puigbò P, Hensley SE, Hurt DE, Bennink JR, Yewdell JW: Glycosylation focuses sequence variation in the influenza A virus H1 hemagglutinin globular domain. PLoS Pathog 2010, 6:e1000121.
13. Denney JF, Friedenberg NA, McSberide RC, Hoit RO, Turner PE: Experimental evidence that source genetic variation drives pathogen emergence. Proc Biol Sci 2010, 277:3113–3121.
14. Bremer WG, Schaeffer JJ, Wagner ER, Ewing SA, Rikihisa Y, Needham GR, Jittapalapong S, Moore DL, Stch RW: Transstadial and intrastadial experimental transmission of *Ehrlichia canis* by male *Rhipicephalus sanguineus*. Vet Parasitol 2005, 131:95–105.
15. Dantas-Torres F: Ticks on domestic animals in Pernambuco, Northeastern Brazil. Rev Bras Parasitol Vet 2009, 18:22–28.
16. Szabó MP, de Souza LG, Olegário MM, Ferreira FA, de Albuquerque Pajuaba Neto A: Ticks (Acar: Ixodidae) on dogs from Uberlândia, Minas Gerais, Brazil. Transbound Emerg Dis 2010, 57:72–74.
17. Mizaei M, Kheiri J: Ixodidae ticks in cattle and sheep in Sistan and Baluchestan Province (Iran). Vet Ital 2014, 50:65–68.
18. Chevillon C, Koffi BB, Barre N, Durand P, Arnathau C, de Meoos T: Direct and indirect inferences on parasite mating and gene transmission patterns. Pangamy in the cattle tick *Rhipicephalus (Boophilus) microplus*. Infect Genet Evol 2007, 7:298–304.