PET Imaging of Neuroinflammation in Alzheimer’s Disease

Rong Zhou†, Bin Ji‡, Yanyan Kong§, Limei Qin¶, Wuwei Ren‖, Yihui Guan†* and Ruiqing Ni§*,¶*

1 Department of Nephrology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China, 2 Department of Radiopharmacy and Molecular Imaging, School of Pharmacy, Fudan University, Shanghai, China, 3 Positron Emission Tomography (PET) Center, Huashan Hospital, Fudan University, Shanghai, China, 4 Inner Mongolia Baicaotang Qin Chinese Mongolia Hospital, Hohhot, China, 5 School of Information Science and Technology, ShanghaiTech University, Shanghai, China, 6 Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland, 7 Institute for Biomedical Engineering, University of Zurich & Eidgenössische Technische Hochschule Zürich (ETH Zurich), Zurich, Switzerland

Neuroinflammation play an important role in Alzheimer’s disease pathogenesis. Advances in molecular imaging using positron emission tomography have provided insights into the time course of neuroinflammation and its relation with Alzheimer’s disease central pathologies in patients and in animal disease models. Recent single-cell sequencing and transcriptomics indicate dynamic disease-associated microglia and astrocyte profiles in Alzheimer’s disease. Mitochondrial 18-kDa translocator protein is the most widely investigated target for neuroinflammation imaging. New generation of translocator protein tracers with improved performance have been developed and evaluated along with tau and amyloid imaging for assessing the disease progression in Alzheimer’s disease continuum. Given that translocator protein is not exclusively expressed in glia, alternative targets are under rapid development, such as monoamine oxidase B, matrix metalloproteinases, colony-stimulating factor 1 receptor, imidazoline-2 binding sites, cyclooxygenase, cannabinoid-2 receptor, purinergic P2X7 receptor, P2Y12 receptor, the fractalkine receptor, triggering receptor expressed on myeloid cells 2, and receptor for advanced glycation end products. Promising targets should demonstrate a higher specificity for cellular locations with exclusive expression in microglia or astrocyte and activation status (pro- or anti-inflammatory) with highly specific ligand to enable in vivo brain imaging. In this review, we summarised recent advances in the development of neuroinflammation imaging tracers and provided an outlook for promising targets in the future.

Keywords: Alzheimer’s disease, neuroinflammation, tau, microglia, astrocyte, amyloid (A) 42, positron emission tomography (PET), TSPO (18 kDa translocator protein)

INTRODUCTION

Neurodegenerative diseases, including Alzheimer’s disease (AD), frontotemporal dementia, Parkinson’s disease (PD), and Lewy body dementia, represent a tremendous unmet clinical need. The major neuropathological features of AD are the deposition of amyloid-beta (Aβ) plaques, neurofibrillary tangles formed by misfolded hyperphosphorylated tau, neuronal loss, and
neuroinflammation characterised by glial activation (1, 2). Neuroinflammation plays an important role in AD; however, its dynamics and impacts (protective or detrimental) have still not been fully elucidated (3, 4). Microglia, as the resident macrophage cells in the brain, have emerged as central players in the AD pathogenesis (1, 2, 5). Microglial activation was previously classified into proinflammatory (M1) or anti-inflammatory (M2) types (2). Recent single-cell sequencing and transcriptomics studies reported gene coexpression network diversity of microglia in AD and disease-associated-microglia (DAM) of transcriptionally distinct and neurodegeneration-specific profiles (6–12). Aβ-laden microglia has a unique gene-expression signature including triggering receptor expressed on myeloid cells 2 (TREM2), apolipoprotein E (ApoE), and other AD-associated genes (13, 14). Microglia phagocytosis driven by Tyro3, Axl, and Mer (TAM) receptor has been shown to promote the development of dense-cored plaque and the engulfing of Aβ plaques (15). Astrocytes are categorised into A1 and A2 subtypes based on their phenotype and genetic expression profiles (16–19). A1 astrocyte secretes and produces a large number of inflammatory factors and neurotoxins, whereas A2 astrocyte produces neurotrophic substances and supports neuronal growth. Reactive astrocytes precipitate both Aβ and tau (20–22) and are closely linked with microgliosis (16). Cerebrospinal fluid (CSF) and plasma biomarkers for neurodegeneration and inflammatory markers [e.g., tumor necrosis factor alpha (TNFα), interleukin-6 (IL-6), IL-10] have been elevated in patients with AD and mild cognitive impairment (MCI) compared to healthy controls (6, 7, 13, 14), associated with an increasing age (23, 24) and cerebral amyloid pathology (25). Recent advances in molecular imaging have provided insights into the time course of AD pathology, including Aβ, tau, synaptic deficits, and neuroinflammation, in patients and in animal disease models (1, 26–35). In vivo imaging of neuroinflammation, however, is challenging, and the spatial–temporal pattern in the development of AD has still not been fully elucidated (23). One reason is that the astrocytes and microglia are highly dynamic and heterogeneous in their subtypes, locations, and activation status (1).

NEUROINFLAMMATION POSITRON EMISSION TOMOGRAPHY IMAGING

Mitochondrial 18 kDa translocator protein (TSPO) is the most widely investigated neuroinflammation target for PET imaging (36). Other alternative targets are under rapid development (Table 1), such as monoamine oxidase-B (MAO-B), matrix metalloproteinases (144–147, 185, 186), colony-stimulating factor 1 receptor (CSF1R), imidazoline-2 binding sites (I-8S), cyclooxygenases, the phospholipase A2/arachidonic acid pathway, sphingosine-1-phosphate receptor-1, reactive oxygen species, cannabinoid-2 receptor, purinergic P2X7 receptor and P2Y12 receptor, the fractalkine receptor (CX3CR1) (187), TREM2 (140), and receptor for advanced glycation end products (36, 188) (Table 1).

TSPO Imaging

TSPO is expressed mainly in the outer mitochondrial membrane of steroid-synthesizing cells in the central nervous system (microglia, astrocytes, endothelial cell, etc.) (Figures 1A, B) and in the peripheral (191). TSPO is involved in many physiological processes including transporting cholesterol into mitochondria, steroid hormone synthesis, and bioenergetics (191, 192). Upregulation of TSPO was found in patients with AD and in animal models of AD (92, 193).

The First Generation TSPO Tracers

The first-generation tracers exemplified with [11C]PK-11195 have been widely used in preclinical and clinical studies. However, [11C]PK-11195 suffers from several major limitations such as low permeability of the blood–brain barrier and high non-specific plasma binding, leading to a low signal-to-noise ratio in the final reconstructed PET images (194). Careful analysis of plasma metabolites is required to determine the accurate arterial input function for quantitative PET measurement (195). Increased [11C]PK11195 is reported to be associated with Aβ accumulation in patients with MCI and AD compared to healthy controls, correlating with the deficits in functional network connectivity, grey matters atrophy, and cognitive decline (37–39, 196). Using [11C]PK11195, recent studies have showed a biphasic trajectory of inflammation with an early microglial activation with increasing Aβ load and a later decline when Aβ load reaching plateau (AD) levels (40). Ismail et al. demonstrated a parallel increase in microglial activation and tau accumulation assessed by [11C]PK11195 and [18F]flortaucipir, respectively, in [11C]PIB Aβ-positive MCI patients (41). Su et al. further showed that grey matter atrophy mediated the effects of tau accumulation and neuroinflammation detected by PET tracers [18F]flortaucipir and [11C]PK11195, respectively on cognitive impairments in AD (42).

The Second Generation TSPO Tracers

A few second generation tracers including [11C]DAA1106, [18F]FEDAA1106, [125I]CLINDE [11C]PBR06, [11C]PBR28, [18F]PBR111, [18F]DPA-713, [18F]DPA-714, [18F]FDP-A, [13C]AC-5216, [18F]FEMPA, and [18F]FEPPA have been developed to overcome the limitations of [11C]PK11195 (45, 46, 52, 61–63, 66, 69–71, 83, 84, 197) (Table 1). However, the binding affinities of second generation TSPO tracers in human brain differ based on the rs6971 polymorphisms, which introduces higher variability between subjects (45, 46, 52, 61–63, 66, 69–71, 197). In addition, the [11C]PBR28 binding appears to be affected by chromosome 1 variant rs2997325 on microglial activation (198). Several longitudinal studies using [18F]DPA-714, [11C]DAA1106, and [11C]PBR28 have reported decreased glucose metabolism and increased neuroinflammation in amyloidosis, four-repeat tauopathy animal models (47–50, 55) (Table 1). Ishikawa et al. has indicated an association between tau assessed by [11C]PBB3, neuronal damage measured by structural MRI, and neuroinflammation detected by using [11C]AC-5216 in rTg4510 mice (56–58). Chaney et al. showed an increased [18F]DPA-714 binding and myo-inositol levels using 1H magnetic resonance spectroscopy in APP/PS1 mice (48). Zou et al. showed that microglial activation assessed by [11C]PBR28 is independently associated with amyloid load and memory...
Target	Tracer	Human	Animal model
TSPO	(R)-[^11C]PK11195	MCI, AD, HC (37–43)	3xTg, APP/PS1 mice, rTg4510 mouse (26, 44)
	[18F]DPA-714	AD, MS, ALS, HC (45, 46)	APP/PS1 mice, TgF344 rats (47–51)
	[11C]DPA-713	AD, HC (52)	Murine stroke models (53), aged Monkeys (54)
	[11C]DPA		APP/PS1 mice (55)
	[18F]MEM		PS19, rTg4510 mouse (56–58)
	[18F]FEDAA1106	AD, HC	APP23, APP/PS1, PS19 mice, TgF344 rats (59, 60)
	[11C]FEMPA	AD, HC (61, 62)	APP/PS1 mice (63)
	[18F]FEPPA	AD, HC (66, 67)	TgAPP21 rats (68)
	[11C]PBR06	AD, HC (69–71)	APP23 mice (67, 72, 73)
	[18F]PBR111		APP/PS1 mice (69)
	[11C]PBR28	AD, SD, MCI, FTD, DLB, ALS, HC (40, 69, 74–82)	5xFAD, PS19 mice (47, 50, 57, 64, 65)
	[18F]PBR111		APP/PS1 mice (47, 50, 53, 90, 92–102)
	[125I]CLINDE	AD, HC (86)	LPS injected, 3xTg mice, TgF344 rats (85–87)
	[18F]MPE	AD, HC (88–91)	APP/PS1, PS2APP, APP/PS1, APP-SL70, APPswe, APP NL-G-F, APP L/S, Trem2 p.T66M knock-in, PS19 mice, TgF344 rats (47, 50, 53, 90, 92–102)
	(S)-[^11C]GE-387	AD, HC (103)	LPS injected rats, non-human primates (103, 104)
	[11C]ER176		APP/PS1 mice (105, 106)
	[11C]CB184.1[^18F]CB190		Stroke rat model (108)
	[11C][N-MP]B		LPS injected mice, EAE rats, non-human primates (109)
	[11C]LW223	AD, HC (110)	LPS-injected mice, EAE rats, non-human primates (110, 111)
	[11C][N-MP]B		CPS treated, non-human primates (122)
P2X7R	[11C][C]QSK1482160	AD, HC (112)	LPS injected mice, EAE rats, non-human primates (112, 114)
	[11C][C]QJU-64413739	AD, HC (112)	LPS injected mice (112, 114)
	[11C][C]QJU-54373717	ALS (113)	rAAV1hsag-hP2X7R, α-synuclein, 6-OHDA injected rats, non-human primates (115, 116)
	[11C][C]SMW139	MS (117)	EAE, rAAV1hsag-hP2X7R rats (118, 119)
	[11C][C]QJU-47965667	MS (120)	LPS injected rats (121)
	[11C][C]QJU-178	HC (75, 105, 106)	Mice, 6-OHDA injected rats (107)
	[11C][C]QJU-18283	Stroke (122)	Murine stroke model (122)
	[11C][C]QJU-178		rTg4510, PS19, APP23, and APP NL-G-F mice, ex vivo (123)
CSF1R	[11C][C]QPc	AD, HC (124)	LPS injected, EAE, APPsi, APP NL-G-F, APP NL-G-F-knock-in mice (64, 124)
	[11C][C]GW2580	AD, HC (125, 126)	APP/PS1 mice (125–127)
COX-1	[11C][C]KTP-Me	AD, HC (125, 126)	LPS injected, APP NL-G-F, APP NL-G-F knock-in mice, non-human primates (64)
	[11C][C]PFS2	AD, HC (125, 126)	LPS injected, APP NL-G-F, APP NL-G-F knock-in mice, non-human primates (64)
	[11C][C]PFS2		LPS injected, APP NL-G-F, APP NL-G-F knock-in mice, non-human primates (64)
	[11C][C]CMC	AD, HC (125, 126)	LPS injected, APP NL-G-F, APP NL-G-F knock-in mice, non-human primates (64)
	[11C][C]CMC		LPS injected, APP NL-G-F, APP NL-G-F knock-in mice, non-human primates (64)
INOS	[11C][C]FAT	AD, HC (125, 126)	LPS injected, APP NL-G-F, APP NL-G-F knock-in mice, non-human primates (64)
ROS	[11C][C]FAT	AD, HC (125, 126)	LPS injected, APP NL-G-F, APP NL-G-F knock-in mice, non-human primates (64)
	[11C][C]FAT		LPS injected, APP NL-G-F, APP NL-G-F knock-in mice, non-human primates (64)
	[11C][C]FAT		LPS injected, APP NL-G-F, APP NL-G-F knock-in mice, non-human primates (64)
	[11C][C]FAT		LPS injected, APP NL-G-F, APP NL-G-F knock-in mice, non-human primates (64)
TREN-2	[11C][C]FAT	AD, HC (125, 126)	LPS injected, APP NL-G-F, APP NL-G-F knock-in mice, non-human primates (64)
	[11C][C]FAT		LPS injected, APP NL-G-F, APP NL-G-F knock-in mice, non-human primates (64)
	[11C][C]FAT		LPS injected, APP NL-G-F, APP NL-G-F knock-in mice, non-human primates (64)
TREM-1	[11C][C]FAT	AD, HC (125, 126)	LPS injected, APP NL-G-F, APP NL-G-F knock-in mice, non-human primates (64)
	[11C][C]FAT		LPS injected, APP NL-G-F, APP NL-G-F knock-in mice, non-human primates (64)
	[11C][C]FAT		LPS injected, APP NL-G-F, APP NL-G-F knock-in mice, non-human primates (64)
MAMP	[11C][C]JBR-351, [11C]B-420	AD, HC (149)	J20APP/PS1, APP/PS1 mice (150)
CB1R	[11C][C]CA-836339, [11C]2fl	AD, HC (150)	LPS injected, Huntington, stroke mice (151, 152)
	[11C][C]JBR-126, [11C]RoSMA-18-d6	AD, HC (151, 152)	LPS injected, Huntington, stroke mice (151, 152)
MAO-B	[11C][C]JE40	AD, HC (154)	LPS injected mice (153)
	[11C][C]JROX	AD, HC (156–162)	APP, APP23 mice (163, 164)
	[11C][C]JROX		Non-human primates (165)
astrocyte	[11C][C]JCOE	AD, HC (166, 167)	APP, APP23 mice (163, 164)
astrocyte	[11C][C]SL25.1188	AD, HC (168, 169)	LPS injected, non-human primates (167)
astrocyte	[11C][C]SL25.1188	AD, HC (171, 172)	Zucker rats, Non-human primates (179–181)

(Continued)
impairment, but not with tau burden assessed by $^{[18F]}$florbetaben and $^{[18F]}$MK-6240, respectively, in patients with AD (74). Whereas Dani et al. showed that $^{[11C]}$PBR28-measured microglial activation correlates with both tau and Aβ deposition assessed by $^{[18F]}$flortaucipir and $^{[18F]}$flutemetamol in patients with AD (69) (Figures 2D, E). Studies by Femminell et al. demonstrated an increased regional $^{[11C]}$PBR28 binding in patient with MCI, which associated with higher grey matter and hippocampal volume (199). This suggests a potential protective effect of microglia activation in the early stages (199). Hamelin et al. showed a diverging pattern of progression in AD based on $^{[18F]}$DPA-714 baseline binding, with a higher baseline associates with less subsequent microglial activation and better cognitive performance in 2-years follow-up (45).

The Third Generation TSPO Tracers

Several third generations of TSPO tracers $^{[18F]}$GE-180, (R,S)-$^{[18F]}$GE-387, $^{[11C]}$ER176, $^{[11C]}$CB184, $^{[11C]}$CB190, $^{[11C]}$N′-MPB, and $^{[18F]}$LW223 have been developed (75, 103, 105–109). $^{[18F]}$GE-180 (flutirciclamide), (S)-$^{[18F]}$GE-387, and $^{[11C]}$ER176 resolve the problem of ligand-dependent attenuation of affinity ($90, 97, 197$) in *in vitro* binding assays where these tracers are insensitive to TSPO rs6971 polymorphisms (104). The rs6971 polymorphisms, however, affects *in vivo* $^{[18F]}$GE-180 quantification, revealing lower binding in patients of low-affinity binders compared to the mixed- and high-affinity binders (88). Several studies have compared the binding properties and performance of second and third generations of TSPO tracers. James et al. found that the detection of microglial activation by using $^{[18F]}$GE180 was more sensitive than that by using $^{[18F]}$PBR06 (94). However, Chaney et al. indicated that $^{[11C]}$DPA-713 PET reflects microglial activation with higher accuracy and sensitivity compared to $^{[18F]}$GE180 in a mouse model of stroke (53). Head-to-head comparative PET study by Zanotti-Fregonara et al. showed a more favourable brain entrance property of $^{[11C]}$PBR28 compared to $^{[18F]}$GE-180 in human (76). $^{[11C]}$ER176 has demonstrated a higher binding potential and smaller variability compared to $^{[11C]}$PK11195, $^{[11C]}$PBR28, and $^{[11C]}$DPA-713 (75, 105, 106). Clinical trial of PET using $^{[11C]}$ER176 for accessing microglia activation in patients with MCI and AD is still ongoing (NCT03744312). Microglial activation assessed by using $^{[18F]}$GE-180 in different amyloidosis, tauropathy rodent models have been reported (47, 50, 53, 89, 90, 92–102) (Table 1). López-Picón et al. showed that $^{[18F]}$GE-180 signal reached plateaus at an early stage, while the Aβ load detected by $^{[11C]}$PIB was still increasing in APP23 mice (90). A recent study by Sacher et al. showed an asymmetric pattern (hemispheric predominance) of Aβ load ($^{[18F]}$florbetaben) accompanied by microglial activation ($^{[18F]}$GE-180) in AppNL-G-F knock-in mice (96). Increased levels of $^{[18F]}$GE-180 uptake indicative of microglial activation have been reported in patients with AD, semantic dementia, MCI, and four-repeat tauopathy compared to non-demented controls (88–91). Ramakrishnan reported that $^{[18F]}$GE-387 visualised increased uptake in rat of acute inflammation induced by lipopolysaccharides (LPS) injection and demonstrated sufficient brain uptake in non-human primate (104).

The cellular location of the signal is another major concern for TSPO ligands. Two different binding sites on glial and vascular TSPO were reported for several TSPO ligands, e.g., $^{[11C]}$PK11195 (57). Ji et al. reported that polymorphism-insensitive ligand $^{[18F]}$FEBMP (200) yielded a higher contrast to neuroinflammation than $^{[11C]}$PK11195 in PS19 tauopathy mouse model due to its higher glial-TSPO selectivity (Figures 1F, G) (57, 58). Further studies evaluating the TSPO selectivity and insensitivity to TSPO polymorphism of the second and third generations TSPO tracers including $^{[18F]}$GE-180, (S)-$^{[18F]}$GE-387, and $^{[11C]}$ER176 are highly desired.

Emerging Targets

Given that TSPO is not exclusively expressed in glia, it is thus imperative to search for new imaging biomarkers that can detect neuroinflammation with higher sensitivity and specificity. Promising targets should have almost exclusive expression in microglia or astrocyte and highly specific ligands to enable *in vivo* imaging evaluations (32, 170, 201, 202).

Colony-Stimulating Factor 1 Receptor

CSF1R is expressed mainly on microglia and on infiltrating macrophages/monocytes and dendritic cells in the brain (Figures 1A, B). CSF1R is important for microglia growth, proliferation, and survival. Two endogenous ligands, the growth factors colony stimulating factor-1 and interleukin-34 (203), have been reported for CSF1R. Upregulation in CSF1R have been reported in response to injury and AD-related neuropathology (204, 205). Horti et al. developed a new CSF1R tracer $^{[11C]}$CPPC and captured increased microglial levels of CSF1R in animal models of acute inflammation induced by LPS injection, encephalomyelitis model of multiple sclerosis, and APPsi with cerebral Aβ pathology (124). A recent study from Zhou et al. compared new CSF1R tracers $^{[11C]}$GW2580 with $^{[11C]}$CPPC in detecting both acute inflammation induced by LPS injection and chronic inflammation in AppNL-G-F/NL-G-F knock-in mice and showed that $^{[11C]}$GW2580 captured changes in

TABLE 1

Target	Tracer	Human	Animal model
$^{[18F]}$FEBU	(Bj99018)	Mice and rats (182)	
$^{[18F]}$FTMID	Non-human primates (183)		
OATP1C1	3×Tg mice (184)		

ALS, amyotrophic lateral scerosis; COX-1/2, cyclooxygenase 1/2; CSF1R, colony stimulating factor 1 receptor; DED, deuterium-L-deprenyl; FTD, Frontotemporal dementia; GBM, glioblastoma; HC, healthy control; INOS, inducible nitric oxide synthase; 2BZ, 2-imidazoline binding sites; LPS, lipopolysaccharides; MCI, mild cognitive impairment; MMF, matrix metalloproteinases; MS, multiple sclerosis; OATP1C1, organic anion-transporting polypeptide 1C1; ROS, reactive oxygen species; PD, Parkinson’s disease; SD, semantic dementia; TREM-1, 2, triggering receptor expressed on myeloid cells 1, 2; TSPO, translocator protein; 6-OHD, 6-hydroxydopamine.
FIGURE 1 | Cellular location of emerging neuroinflammation imaging targets. (A, B) The RNA expression of TSPO, CSF1R, P2RX7, and P2RY12 in mouse (A) and human (B) brain [based on RNA-Seq data (189, 190)]. FPKM, fragments per kilobase of transcript per million mapped reads. Reproduced from https://www.brainrnaseq.org and (189, 190) with permission. (C) Representative transverse planes of [11C]GW2580 and [11C]CPPC SUV 60-120min images of a monkey brain superimposed on the monkey’s own MR images at baseline and with a homologous blocker treatment. (D, E) Time–radioactivity curves of [11C]GW2580 and [11C]CPPC in various brain regions obtained from corresponding PET images. FCTX, frontal cortex; CS, centrum semi-ovale. Reproduced from (64) with permission from Sage Publication. (F, G) Tau lesion-associated microglial TSPO was more sensitively captured by in vivo positron emission tomography (PET) imaging with [18F]FEBMP than [11C]PK11195. Time course of hippocampus (Hip)-to-striatum (ST) ratios of radioactivity and binding potential (BPnd) calculated by simplified reference tissue model with striatum as reference tissue showing significantly increased [18F]FEBMP but not [11C]PK11195 signal in PS19 compared with non-transgenic mice (G). Reproduced from (57) with permission from Sage Publication.
FIGURE 2 | Biological parametric mapping (BPM) correlation between $[^{11}C]$BU99008 and $[^{18}F]$florbetaben binding in (A) all cognitively impaired (CI) subjects and in (B) Aβ-positive cognitively impaired subjects at a cluster threshold of $p < 0.05$ with an extent threshold of 50 voxels. These BPM are T maps describing the strength of the voxel-wise correlations between binding of the two radioligands represented in a common brain space. (C) Dot plot demonstrating the regional $[^{11}C]$BU99008 total volumes of distribution (V_t) using two-tissue compartmental models in Aβ-positive cognitively impaired subjects (purple filled circle), Aβ-negative CI subjects (purple open circle), and healthy controls (HC, green triangle). “Brain” refers to the composite cortex, combining all the major cortical regions. *$p < 0.05$, uncorrected. Reproduced from (176) with permission from Springer Nature. (D, E) Voxel-level correlations between microglial activation assessed by using $[^{18}C]$PBR28 and tau aggregation assessed by using $[^{18}F]$florbetapir. (E) Voxel-level correlations between microglial activation assessed by using $[^{18}C]$PBR28 and amyloid deposition assessed by using $[^{18}F]$flutemetamol. Reproduced from (69) with permission from Oxford University Press.
CSF1R with higher sensitivity, associated with increased TSPO pattern in the brain (64) (Figures 1C–E).

Cyclooxygenase-1 and Cyclooxygenase-2
Cyclooxygenase (COX) is an enzyme involved in the production of prostaglandin H2, which is the substrate for molecules including prostaglandins, prostacyclin, and thromboxanes (206). The two isoforms COX-1 and COX-2 are considered to be involved in the neuroinflammation in neurodegenerative diseases including AD. Immunohistochemical evidence showed that COX-1 and COX-2 are expressed in microglia and neuron in the central nervous system (207). Several tracers for COX-1 and COX-2 have been developed including [18F]TMI (131, 208), [18F]triaocixib (209), [11C]rofeocixib (210), [11C]KTP-Me (125, 127, 211), [11C]PS13, and [11C]MC1 (128, 129) (Table 1). Ohnishi et al. and Shukuri et al. reported that [11C]KTP-Me harbours an improved brain–barrier entrance and is highly selective for COX-1 (125, 127, 211). PET study with [11C]KTP-Me showed an increased brain uptake in AD patients compared to healthy controls and in APPswes (Tg2576) mice compared to wild-type mice (125–127). [11C]KTP-Me accumulation was detected in the frontoparietal cortex and hippocampus, in activated microglia surrounding Aβ plaques. Shrestha et al. reported PET imaging of COX-2 ([11C]MC1) and COX-1 ([11C]PS13) in monkey brain after LPS-induced neuroinflammation and in human peripheral tissue with inflammation and showed specific detection patterns (128, 129).

Cannabinoid Receptor Type 2
Cannabinoid receptor type 2 (CB2R) are mainly expressed by immune cells including monocytes, macrophages, and microglia in the brain (151, 152) and have low expression levels under physiological conditions (2, 4, 31). Several classes of tracers for CB2R have been developed including [11C] methoxy-Sch225336 (212), [11C]NE40 (154), [11C]A-836339, [18F]2f (149, 150), [18F]JHU94620 (153), [18F]RS-126, and [18F]RoSMA-18-d6 (151, 152) (Table 1). Upregulation of brain CB2R expression has been demonstrated in acute inflammation such as LPS-injected model and murine stroke model (151–153) in chronic inflammation senescence-accelerated models (155) and in amyloidosis mouse model associated with Aβ deposits (150). Ahmad et al. reported lower CB2R availability in Aβ-positive AD patients compared to healthy controls assessed by PET using [11C]NE40 and [11C]PIB, respectively. However, no relationship between [11C]NE40 and cerebral Aβ load was observed (154).

Purinergic P2X7 Receptor and P2Y12 Receptor
The expression of purinergic P2X7 receptor is found upregulated specifically in M1 microglia. P2X7 receptor mediates NLRP3 inflammasome activation, cytokine and chemokine release, T lymphocyte survival and differentiation, transcription factor activation, and cell death (213). Microglia monitors and protects neuronal function through purinergic P2Y12 receptor-dependent junctions (214) linked with neuronal mitochondrial activity. Brain injury-induced changes at somatic junctions triggered P2Y12-receptor-dependent microglial neuroprotective effect, regulating neuronal calcium load and functional connectivity (215, 216). Immunohistochemical staining indicated that the levels of P2Y12 receptor were decreased in the brains derived from patients with multiple sclerosis and AD cases (217). Several P2X7 receptor tracers including [11C]GSK1428160 (110, 111), [11C]JNJ-47956567 (A-740003) (120), [18F]N-[64113739 (112, 114), [11C]JNJ-54173717 (113), [11C]SW139 (118), and [18F]PTTP (218). Jansen et al. showed that [11C]SW139 can detect with high affinity and specificity to the P2X7 receptor by using rAAV3flag-hP2X7R rat model overexpressing human P2X7 receptor (119). Moreover, [11C]SW139 showed higher binding on postmortem brain of AD patients compared to controls by using in vitro autoradiography studies, corroborating with immunohistochemical staining results (119). One clinical trial is ongoing using [11C]SW139 for imaging neuroinflammation in Parkinson’s disease ([PRI-PD] 2018-000405-23).

Several P2Y12 receptor probes such as [11C]AZD1283, [11C]P2Y12R-ant, and [11C]5 have been developed and evaluated in vivo in animal models (120, 122, 123). Maeda et al. showed a distinct response of P2Y12 receptor to tau and amyloid deposits using P2Y12 receptor tracer [11C]AZD1283. The levels of P2Y12 receptor decline in tau-laden region with increased total level of microglia in tG4510 and PS19 tau mice and increase in APP23 and APPPSNL-FNL-F mice (123). However PET imaging using [11C]AZD1283 showed no uptake signal in the wild-type mouse brain. Two other tracers [11C]P2Y12R-ant and [11C]5 have shown sufficient brain uptake and promising results in experimental autoimmune encephalomyelitis model of multiple sclerosis (120) and stroke model for detecting anti-inflammatory microglia (122).

Astroglia Imaging
MAO-B
Irreversible MAO-B inhibitors [11C]deuterium-L-deprenyl (DED) have been used in PET imaging studies and demonstrated early astrocytosis in sporadic and autosomal dominant AD patients (61, 156–161, 163) and in amyloidosis mouse models (163, 164). [18F]fluorodeprenyl-D2 showed favorable kinetic properties with relatively fast washout from non-human primate brain and improved sensitivity for MAO-B imaging (165). However, the technical challenges of irreversible inhibitors such as deprenyl hinder the accurate image analysis. Several reversible-binding inhibitors have been developed in recent years such as [13C]Cou (170, 219), [11C]SL25.1188 (168), and [11C]SMBT-1 (166). Harada et al. showed a specific increased regional retention of [11C]SMBT-1 in the cortical and hippocampal regions in patients with AD compared to healthy controls (166).

I$_2$BS
I$_2$BS that locates on both monoamine oxidases A (MAO-A) and B (MAO-B) is another emerging target for astrocytosis imaging (173–175, 220). [11C]FTMD shows the specific-binging to I$_2$BS as shown by PET and autoradiography in the monkey brain (183). Wilson et al. demonstrated reactive astroglia detected by using [11C]BU99008 PET early in Parkinson’s disease in response to α-synuclein accumulation (174). Recent postmortem binding and autoradiography study by Kumar et al. showed increased level of [18F]BU99008 binding in postmortem brain tissue from patients with AD compared to healthy controls (173, 221). Calzolaro et al. recently demonstrated increased cortical astrocytosis assessed by
[11C]BU99008 with high cerebral Aβ load assessed by [18F] flurbetaben in patients with MCI and AD (176) (Figures 2A–C). Livingston et al. demonstrated that increased astrocystosis assessed by [11C]BU99008 in regions of earlier stages with low Aβ loads assessed by [18F] flurbetaben and reduced astrocystosis in regions of advanced stage with greater Aβ load and atrophy (177). In vitro autoradiography and immune-histochemical staining showed the specificity of [3H]BU99008 and the localization of glial fibrillary acidic protein staining of astrocytes in brain tissues from patients with AD.

DISCUSSION

Non-invasive detection of central pathologies is indispensable for understanding the mechanism underlying AD continuum and for facilitating early and differential diagnosis (28, 222–225). TSPO-PET is still the most powerful imaging tool for AD-associated neuroinflammation but is currently facing two challenges. First, a human TSPO polymorphism TSPO rs6971 commonly affects the binding affinities of the second generation tracers to a different extent. Classification with polymorphism enables to correct the variability and bias from different binding affinities, but it raises the threshold for sample size of human subjects. Third-generation tracers have been developed for circumventing this limitation. In vitro testing in post-mortem human brain tissues have demonstrated the insensitivity of [11C]GE-180, [11C]GE-387, and [11C]ER176 to TSPO polymorphism (75, 106, 197). However, recent clinical study with [11C]ER176 (105) and [11C]GE-180 (88) demonstrated a significant decrease in ligand retention in low-affinity binders, suggesting the necessity of further in vivo examination. Second, the heterogenous cellular sources of TSPO PET tracers have been demonstrated in astrocytes, endothelial cells, and vascular smooth muscle cells, in addition to microglia in both patients with AD and animal models (61, 85, 86, 193, 226–229) (Figures 1A, B). Although conventional opinions consider microglia as major cellular source of TSPO in the central nervous system, latest study finds vascular TSPO provides major binding sites for TSPO ligands including most widely used [11C]PK11195 and [11C]PBR28 in normal mouse brains (57). These findings suggest the possibility that changes in TSPO PET signal may be partly due to changes in the levels of vascular TSPO and not purely of glial TSPO. [18F]ROStrace and [11C]AC-5216 showed relatively selectivity for glial-TSPO compared to other ligands such as [11C]PK11195 (200). It remains to be investigated whether the third generation of TSPO tracers shows a portion of vascular TSPO detection similarly. Moreover, further research on next generations of TSPO tracers are needed, with the selection criteria including optimal binding property, insensitivity for TSPO polymorphism, and high glial TSPO selectivity.

The role of neuroinflammation in AD pathogenesis is still not fully elucidated. Early clinical studies with first generation tracer [11C]PK11195 showed conflicting results in the brains from AD patients. Some studies demonstrated significant increases in [11C]PK11195 retention in diseased brain regions in AD (230, 231), which was not observed in some other studies (232, 233). Albrecht et al. recently reported negative associations between regional Aβ and tau PET uptake and CSF inflammatory markers in patients with AD and in non-demented controls and suggested a protective role of neuroinflammation (234). Ewers et al. showed that a higher CSF level of soluble TREM2 is indicative of microglia activation in patients with AD. The CSF level of TREM2 negatively associated with the rate of Aβ accumulation assessed by using [18F] flurbetapir over 2-years follow-up in AD patients (101). Biphasic trajectory with an early increase and a later decline in the level of microglial activation might explain such inconsistency between results from clinical studies (62). The recently reported biphasic trajectory of astrocytosis (177) adds further complexity in the interpretation.

A recent study has showed that microglia is involved in the formation of senile plaque by promoting the diffuse form converting to dense cored form (15). In vitro immunohistochemical analysis found that TSPO-positive microglia were surrounded dense cored plaque, not diffuse plaques (235). These results may explain the complex spatial association between TSPO-PET and amyloid-PET signals. [13C]PBR28 signal correlated with both tau aggregation and Aβ deposition (55), suggesting distinct dynamic profiles of microglial activation. Collectively, current clinical studies have not provided a consensus on association between TSPO-associated neuroinflammation and AD-pathological changes. Given the different binding sites in glial and vascular TSPO for different tracers, the divergent results using different TSPO-PET tracers are not unexpected. A multitracer imaging paradigm for detecting the regional patterns of Aβ, tau, and microglia activation and astrocytosis is expected to provide better temporal and spatial mapping of disease processes and assessment of immunomodulatory therapeutic interventions in clinical study.

Several promising targets and tracers for neuroinflammation imaging have been reported but not yet been evaluated in AD patients or animal models, such as the ligands for inducible nitric oxide synthase ([15F]FBAT), reactive oxygen species ([18F] ROStrace and [18F]fox-ROStrace, [18F]dihydromethidine, [11C] Ascobic. [62Cu]ATSM, [11C]dehydroascorbic acid (132–137), TREM-1 ([14Cu]TREM1-mAb), matrix metalloproteinases ([18F] BR-351, [18F]BR-420) (144–146), astrocyte metabolism ([11C] acetate (171, 172), I-[18F]FEBu) (182), and organic anion-transporting polypeptide 1C1 ([18F]2B-SRF101) (184). More preclinical and clinical evidence are required to indicate the utilities of these emerging ligands in in vivo imaging. An almost exclusive expression of CSF1R and P2X7 receptor and P2Y12 receptor in microglia have demonstrated their potentials as next-generation imaging targets for microglia activation. Further evaluation of these tracers in amyloidosis and tauopathy models and patients with MCI and AD will potentially facilitate better phenotyping of microglia activation. The association of these emerging targets with AD pathologies, disease progression, and the improvement in the ligand binding properties and analysis methods for PET data require further investigations (236). With the advances in new techniques, e.g., single-cell analysis of neuroinflammatory responses and plasma biomarkers, the link between neuroinflammation PET with other indicators will likely be studied in a more systematic manner.
AUTHOR CONTRIBUTIONS

RZ, BJ, and RN wrote the first draft and prepared the figures. All authors contributed to the article and approved the submitted version.

REFERENCES

1. Leng F, Edison P. Neuroinflammation and Microglial Activation in Alzheimer Disease: Where do We Go From Here? *Nat Rev Neurol* (2021) 17(3):157–72. doi: 10.1038/s41582-020-00435-y

2. Ransohoff RM. How Neuroinflammation Contributes to Neurodegeneration. *Science* (2016) 353(6301):777. doi: 10.1126/science.aag2590

3. Allen NJ, Lyons DA. Glia as Architects of Central Nervous System Formation and Function. *Science* (2018) 362(6411):181–5. doi: 10.1126/science.aat0473

4. Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, et al. Neuroinflammation in Alzheimer’s Disease. *Lancet Neurol* (2015) 14(4):388–405. doi: 10.1016/s1474-4422(15)70016-5

5. Hickman S, Izyz S, Sen P, Morsett L, El Khoury J. Microglia in Neurodegeneration. *Nat Neurosci* (2018) 21(10):1359–69. doi: 10.1038/s41593-018-0242-x

6. Grubman A, Choo XY, Chew G, Ouyang JF, Sun G, Croft NP, et al. Transcriptional Signature in Microglia Associated With Aβ Plaque Phagocytosis. *Nat Commun* (2021) 12(1):3015. doi: 10.1038/s41467-021-23111-1

7. Salter MW, Stevens B. Microglia Emerge as Central Players in Brain Disease. *Nat Med* (2017) 23(9):1018–27. doi: 10.1038/nm.4397

8. Mathys H, Adaikkan C, Gao F, Young JZ, Manet E, Hemberg M, et al. Plasma Biomarkers of Astrocytic and Neuronal Dysfunction in Early- and Late-Onset Alzheimer’s Disease. *Alzheimer's Dement* (2020) 16(4):681–95. doi: 10.1016/j.jalz.2019.09.004

9. Chatterjee P, Pedrini S, Stoops E, Goozee K, Villemagne VL, Ash PR, et al. Plasma GliaL Fibilary Acidic Protein is Elevated in Cognitively Normal Older Adults at Risk of Alzheimer’s Disease. *Trans Psychiatry* (2021) 11:1-27. doi: 10.1038/s41398-020-01137-1

10. Verberk IMW, Thijssen E, Koelwijn J, Mauruo K, Vanbrabant J, de Wilde A, et al. Combination of Plasma Amyloid Beta(1-42/1-40) and Glial Fibilary Acidic Protein Strongly Associates With Cerebral Amyloid Pathology. *Alzheimers Res Ther* (2020) 12(1):118. doi: 10.1186/s13195-020-00783-4

11. Ishikawa A, Tokunaga M, Maeda J, Minamihisamatsu T, Shimojo M, Takauwa H, et al. In Vivo Visualization of Tau Accumulation, Microglial Activation, and Brain Atrophy in a Mouse Model of Tauopathy Rtg4510. *J Alzheimers Dis* (2018) 61(3):1037–52. doi: 10.3233/jad-170509

12. Ni R, Ji B, Ono M, Sahara N, Zhang MR, Aoki I, et al. Comparative in-Vitro and in-Vivo Quantifications of Pathological Tau Deposits and Their Association With Neurodegeneration in Tauopathy Mouse Models. *J Nucl Med* (2018) 59(6):960–6. doi: 10.2967/jnumed.117.210632

13. Villemagne VL, Dore V, Burnham SC, Masters CL, Rowe CC. Imaging Tau and Amyloid-Beta Proteinopathies in Alzheimer Disease and Other Conditions. *Nat Rev Neurol* (2018) 14(4):225–36. doi: 10.1038/nrneurrol.2018.9

14. Tagai K, Ono M, Kubota M, Kitamura S, Takahata K, Seki C, et al. High-Contrast In Vivo Imaging of Tau Pathologies in Alzheimer’s and Non-Alzheimer’s Disease Tauopathies. *Neuron* (2021) 109(1):42–58.e8. doi: 10.1016/j.neuron.2020.09.042

15. Dubois B, Villain N, Frisoni GD, Rabinovici GD, Sabbagh M, Cappa S, et al. Clinical Diagnosis of Alzheimer’s Disease: Recommendations of the International Working Group. *Lancet Neurol* (2021) 20(6):484–96. doi: 10.1016/s1474-4422(21)00066-1

16. Ranzany D, Klokhs J, Ni R. Multi-Scale Optoacoustic Molecular Imaging of Brain Diseases. *Eur J Nucl Med Mol Imaging* (2021). doi: 10.1007/s00259-021-05207-4

AUTHOR CONTRIBUTIONS

RZ, BJ, and RN wrote the first draft and prepared the figures. All authors contributed to the article and approved the submitted version.

FUNDING

RN acknowledged the funding by Helmut Horten Stiftung, Vontobel Stiftung, UZH Entrepreneur Fellowship (reference no. MEDEF-20-021).
Zhou et al. Neuroinflammation Imaging in AD

Beta-Amyloid Densities in Alzheimer’s Disease Amyloidosis Models.

Chaney AM, Lopez-Picon FR, Al Majidi R, Eskola O, Krzyzmenick A, Keller T, et al. Brain Energy Metabolism and Neuroinflammation in Ageing APP/PS1-21 Mice Using Longitudinal (18F)-FDG and (18F)-DPA-714 PET Imaging. J Cereb Blood Flow Metab (2017) 37(8):2870–82. doi: 10.1177/0271737016677990

Yokokura M, Terada T, Bunai T, Nakazumi K, Takebayashi K, Iwata Y, et al. Depiction of Microglial Activation in Aging and Dementia: Positron Emission Tomography With [(11)C]DPAT713 Versus [(11)C]PK11195. J Cereb Blood Flow Metab (2017) 37(3):877–89. doi: 10.1177/0271737016647688

Chaney A, Cropper HC, Johnson EM, Lechtenberg KJ, Peterson TC, Stevens MY, et al. (11)C-JP1195 Versus (18)F-GE-180: A Preclinical Comparison of Translocator Protein 18 kDa PET Tracers to Visualize Acute and Chronic Neuroinflammation in a Mouse Model of Ischemic Stroke. J Nucl Med (2019) 60(1):122–8. doi: 10.2967/jnumed.118.209155

Takano H, Nishiyama S, Ohba H, Kanazawa M, Kakiuchi T, Harada N. Comparing Amyloid-β Deposition, Neuroinflammation, Glucose Metabolism, and Mitochondrial Complex I Activity in Brain: A PET Study in Aged Monkeys. Eur J Nucl Med Mol Imaging (2014) 41(11):2137–36. doi: 10.1007/s00259-014-2821-8

Keller T, Lopez-Picon FR, Krzyzmenick A, Forbsback S, Takkinen J, Rajander J, et al. Comparison of High and Low Molar Activity TSPO Tracer [(18)F]-DPA in a Mouse Model of Alzheimer’s Disease. J Cereb Blood Flow Metab (2020) 40(5):1012–20. doi: 10.1177/0271737020985317

Fairley LH, Sahana N, Aoki I, Ji J, Suhara T, Higuchi M, et al. Neuroprotective Effect of Mitochondrial Translocator Protein Ligand in a Mouse Model of Tauopathy. J Neuroinflamm (2021) 18(1):76. doi: 10.1186/s12974-021-02122-1

Ji B, Ono M, Yamasaki T, Fujinaga M, Zhang MR, Seki C, et al. Detection of Alzheimer’s Disease-Related Neuroinflammation by a PET Ligand Selective for Glial Versus Vascular Translocator Protein. J Cereb Blood Flow Metab (2021) 41(8):2076–89. doi: 10.1177/0271737021992457

Barron AM, Ji B, Fujinaga M, Zhang MR, Suhara T, Sahana N, et al. In Vivo Positron Emission Tomography Imaging of Mitochondrial Abnormalities in a Mouse Model of Tauopathy. Neurobiol Aging (2020) 94:140–8. doi: 10.1016/j.neurobiolaging.2020.05.003

Ji B, Maeda J, Sawada M, Ono M, Okauchi T, Inaji M, et al. Imaging of Peripheral Benzodiazepine Receptor Expression as Biomarkers of Detrimental Versus Beneficial Glial Responses in Mouse Models of Alzheimer’s and Other CNS Pathologies. J Neurosci (2008) 28(47):12255–67. doi: 10.1523/jneurosci.2312-08.2008

Maeda J, Zhang MR, Okauchi T, Takano H, Higuchi M, et al. Quantitative Analysis of Peripheral Benzodiazepine Receptor Expression Associated With Progranulin and Tauopathy. J Neuroinflamm (2011) 31(12):4720–30. doi: 10.1523/jneurosci.3076-10.2011

Ni R, Röjdner J, Voyerento L, Dynks T, Tiele A, Marutle A, et al. In Vitro Characterization of the Regional Binding Distribution of Amyloid PET Tracer Florbetaben and the Glia Tracers Deprenyl and PK1195 in Autopsy Alzheimer’s Brain Tissue. J Alzheimer’s Dis (2021) 80(4):1723–37. doi: 10.3233/JAD-201344

Varrone A, Olkonen V, Forsberg A, Joutsjou K, Takano A, et al. Positron Emission Tomography Imaging of the 18-kDa Translocator Protein (18F) Positron Emission Tomographic Imaging of Glial Responses to Amyloid-Beta and Tau Pathologies in Mouse Models of Alzheimer’s Disease and Related Disorders. J Neurosci (2011) 31(12):4720–30. doi: 10.1523/jneurosci.3076-10.2011

Miyoshi M, Ito H, Arakawa R, Takahashi H, Takano H, Higuchi M, et al. Quantitative Analysis of Peripheral Benzodiazepine Receptor in the Human Brain Using PET With 11C-AC-5216. J Nucl Med (2009) 50(7):1095. doi: 10.2967/jnumed.109.062554

Zhou X, Ji B, Seki C, Nagai Y, Minamimoto T, Fujinaga M, et al. PET Imaging of Colony-Stimulating Factor 1 Receptor: A Head-to-Head Comparison of a Novel Radioligand, (11)C-GW2580, and (11)C-PPCPC, in Mouse Models of Acute and Chronic Neuroinflammation and a Rhesus Monkey. J Cereb Blood Flow Metab (2021) 41(9):2410–22. doi: 10.1177/0271737021100414

Takuya S, Hirohara A, Takado Y, Urushihata T, Shinojo M, Ishikawa A, et al. Tracking Tau Fibrillogenesis and Consequent Primary Phagocytosis of
Neurons Mediated by Microglia in a Living Tauopathy Model. bioRxiv (2020) 2020.11.04.368977. doi: 10.1101/2020.11.04.368977

Zhou et al. Neuroinflammation Imaging in AD

66. Stroud, A, Pollock BG, Verheoef NP, Voinioskos AN, Chow T, Rusjan PM, et al. In Vivo Imaging of Grey and White Matter Neuroinflammation in Alzheimer’s Disease: A Positron Emission Tomography Study With a Novel Radioligand, [18F]-FEPPA. Mol Psychiatry (2015) 20(12):1579–87. doi: 10.1038/mp.2015.1

67. Knezevic D, Verhoeoff NPL, Hafsi S, Strafella AP, Graff-Guerrero A, Rajti J, et al. Imaging Microglial Activation and Amyloid Burden in Amnestic Mild Cognitive Impairment. J Cereb Blood Flow Metab (2018) 38(11):1885–95. doi: 10.1038/jcbfm.2018.113

68. Al-Khishman NU, Qi Q, Roseborough AD, Levit A, Allman BL, Anazodo AM, et al. Longitudinal TSPO PET Imaging of Grey and White Matter Neuroinflammation and Amyloid Positivity and Memory Impairment. Brain (2018) 141(9):2740–54. doi: 10.1093/brain/awy188

69. Giridharan VV, Collodel A, Generoso JS, Scaini G, Wassather R, Selvaraj S, et al. Head-To-Head Comparison of (11)C-PBR28 and (11)C-ER176 for Measurement With [(11)C]PBR28 in Elderly Individuals Without Dementia. Neurology (2021) 96(12):e1608–19. doi: 10.1212/wnl.000000000001612

70. James ML, Belichenko NP, Nguyen TV, Andrews LE, Ding Z, Liu H, et al. PET Imaging of Translocator Protein (18 kDa) in a Mouse Model of Alzheimer’s Disease Using N-(2,5-Dimethoxybenzyl)-2-18F-Fluoro-N-(2-Phenoxyphenyl)Acetamide. J Nucl Med (2015) 56(2):311–6. doi: 10.2967/jnumed.114.1414648

71. Toppala S, Ekbald L, Tusku J, Helin S, Johansson JJ, Laine H, et al. Association of Early β-Amyloid Accumulation and Neuroinflammation Measured With [(11)C]PBR28 in Elderly Individuals Without Dementia. J Neurosci (2021) 96(12):e1608–19. doi: 10.1212/wnl.000000000001612

72. Tournier BB, Tsartsalis S, Ceyzeriat K, Fraser BH, Grégoire MC, Kóvari E, et al. Astrocytic TSPO Uptregulation Appears Before Microglial TSPO in Alzheimer’s Disease. J Alzheimers Dis (2020) 77(3):1043–56. doi: 10.3233/jad-200136

73. Eckenweber F, Medina-Luque J, Blume T, Sacher C, Biechele G, Eckenweber F, et al. In Vivo Assessment of Neuroinflammation in 4-Repeat Tauopathies. Mov Disord (2021) 36(4):883–94. doi: 10.1002/mds.29395

74. Lopez-Picon FR, Snellman A, Eskola O, Helin S, Solin O, Haaparanta-Solin M, et al. Neuroinflammation Appears Early on PET Imaging and Then Plateaus in a Mouse Model of Alzheimer Disease. J Nucl Med (2018) 59(3):509. doi: 10.2967/jnumed.117.197608

75. Nolting N, Tournier BB, Rizzolo J, Yu M, Pal O, Beers D, et al. TSPO PET Detects Acute Neuroinflammation But Not Diffuse Chronic Activated MHCIi Microglia in the Rat. EJNMMI Res (2020) 10(1):113. doi: 10.1186/s13550-020-00699-x

76. Zanotti-Fregonara P, Pascual B, Rigaud D, Foissy C, Cailly T, Fabis F, et al. TSPO and Amyloid Deposits in Sub-Regions of the Hippocampus in the 3xTgd Mouse Model of Alzheimer’s Disease. Neurobiol Dis (2019) 121:95–105. doi: 10.1016/j.nbd.2018.09.022

77. Szollósi D, Hegedüüs N, Veres DS, Futó I, Horváth I, Kovács N, et al. Imaging Microglial Activation and Amyloid Burden in Alzheimer’s Disease Mediated by Microglia in a Living Tauopathy Model. J Nucl Med (2018) 59(8):1423–31. doi: 10.2967/jnumed.117.197608
112. Koole M, Schmidt ME, Hijzen A, Ravenstijn P, Vandermeulen C, Van Han J, Liu H, Liu C, Jin H, Perlmutter JS, Egan TM, et al. Pharmacologic Tiwari AK, Zhang Y, Yamasaki T, Kumari N, Fujinaga M, Mori W, et al. Frontiers in Immunology | www.frontiersin.org September 2021 | Volume 12 | Article 73913

110. Evers M, Biechele G, Suárez-Calvet M, Sacher C, Blume T, Morenas-Rodriguez E, et al. Higher CSF Strem2 and Microglia Activation Are Associated With Slower Rates of Beta-Amyloid Accumulation. EMBO Mol Med (2020) 12(9):e12308. doi: 10.10252/emmm.202012308

111. Boutin H, Murray K, Pradillo J, Maroy K, Smigova A, Gerhard A, et al. 18f-GE-180: A Novel TSPO Radiotracr Compared to 11C-R-PK11195 in a Preclinical Model of Stroke. Eur J Nucl Med Mol Imaging (2015) 42(3):503–11. doi: 10.1007/s00259-014-2399-8

113. Ramakrishnan NK, Hird M, Thompson S, Williamson DJ, Qiao L, Owen DR, et al. TSPO Versus P2X7 as a Target for Neuroinflammation Imaging of Microglia Phenotypes in Multiple Sclerosis. J Neuroimmun (2020) 171 (1):300. doi: 10.1168/12974-020-01962-7

114. Liu B, Hinshaw RG, Le KX, Park M-A, Wang S, Belanger AP, et al. Space–Zhou et al. Neuroinflammation Imaging in AD

115. Crabbé M, van der Perren A, Bollaerts I, Kounelis S, Baskelland V, Bormans G, et al. Increased P2X7 Receptor Binding Is Associated With Neuroinflammation in Acute But Not Chronic Rodent Models for Parkinson’s Disease. Front Neurosci (2019) 13:799. doi: 10.3389/fnins.2019.00779

116. Hagens MH, Golla SSV, Janssen B, Vugs Dj, Beaino W, Windhorst AD, et al. The P2X7 Receptor Tracer [11C]SMW139 as an In Vivo Marker of Neuroinflammation in Multiple Sclerosis: A First-in Man Study. Eur J Nucl Med Mol Imaging (2020) 47(2):379–89. doi: 10.1007/s00259-019-04550-x

117. Beaino W, Janssen B, Kooijman E, Vos R, Schuit RC, O’Brien-Brown J, et al. PET Imaging of P2X7R in the Experimental Autoimmune Encephalomyelitis Model of Multiple Sclerosis Using [11C]SMW139. J Neuroinflamm (2020) 17 (1):300. doi: 10.1186/s12974-020-01962-7

118. Janssen B, Vugs Djf, Wilkinson SM, Ory D, Chalon S, Hoogenmans JIM, et al. Identification of the Allosteric P2X7 Receptor Antagonist [11C]SMW139 as a P2X Receptor of Microglial Activation. Sci Rep (2018) 8(1):6580. doi: 10.1038/s41598-018-24814-0

119. Beaino W, Janssen B, Kooij G, van der Pol SMA, van het Hof B, van Horssen J, et al. Purinergic Receptors P2Y12R and P2X7R: Potential Targets for PET Imaging of Microglia Phenotypes in Multiple Sclerosis. J Neuroinflamm (2017) 14(1):259. doi: 10.1186/s12974-017-1034-z

120. Janssen B, Vugs Dj, Funke U, SpAans A, Schuit RC, Kooijman E, et al. Synthesis and Initial Preclinical Evaluation of the P2X7 Receptor Antagonist [11C]-A-74003 as a Novel Tracer of Neuroinflammation. J. Label Comp Radiopharm (2014) 57(8):509–16. doi: 10.1002/jlcr.3206

121. Villa A, Klein B, Janssen B, Pedragosa J, Pepe G, Zinnhardt B, et al. Identification of New Molecular Targets for PET Imaging of the Microglial Anti-Inflammatory Activation State. Theranostics (2018) 8(19):5000–18. doi: 10.7150/thno.25572

122. Maeda J, Minamihisamatsu T, Shimojo M, Zhou X, Ono M, Matsuya S, et al. Distinct Microglial Response Against Alzheimer’s Amyloid and Tau Pathologies Characterized by P2Y2 Receptor. Brain Commun (2021) 3(1): fcab011. doi: 10.1093/braincomms/fcab011

123. Horti AG, Naik R, Foss CA, Minn I, Misheneva V, Du Y, et al. PET Imaging of Microglia by Targeting Macrophage Colony-Stimulating Factor 1 Receptor (CSF1R). Proc Natl Acad Sci USA (2019) 116(5):1686–91. doi: 10.1073/pnas.1812153116

124. Ohnishi A, Senda M, Yamane T, Sasaki M, Mikami T, Nishio T, et al. Human Whole-Body Biodistribution and Dosimetry of a New PET Tracer, [(11C) ketoprofen Methyl Ester, for Imagings of Neuroinflammation. Nucl Med Biol (2020) 47(1):594–9. doi: 10.1016/j.nucmedbio.2020.04.008

125. Ohnishi A, Senda M, Yamane T, Mikami T, Nishio H, Nishio T, et al. Exploratory Human PET Study of the Effectiveness of [(11C)-Ketoprofen Methyl Ester, a Potential Biomarker of Neuroinflammatory Processes in Alzheimer’s Disease. Nucl Med Biol (2016) 43(7):438–44. doi: 10.1016/j.nucmedbio.2016.04.005

126. Shukuri M, Mawatari A, Ohto M, Suzuki M, Doi H, Watanabe Y, et al. Detection of Cyclooxygenase-1 in Activated Microglia During Amyloid Plaque Progression: PET Studies in Alzheimer’s Disease Model Mice. J Nucl Med (2016) 57(2):291–6. doi: 10.2967/jnumed.115.166116

127. Shrestha S, Singh P, Cortes-Salva MY, Jenko KJ, Ikawa M, Kim M, et al. 3-Substituted 1.5-Diaryl-1 H-1,2,4-Triazoles as Prospective PET Radioligands for Imaging Brain COX-1 in Monkey. Part 2: Selection and Evaluation of [(11)C]PS13 for Quantitative Imaging. ACS Chem Neurosci (2018) 9 (11):6260–7. doi: 10.1021/acschemneuro.8b00103

128. Shrestha S, Kim MJ, Eldridge M, Lemhann ML, Frankland M, Liow JS, et al. PET Measurement of Cyclooxygenase-2 Using a Novel Radioligand: Upregulation in Primate Neuroinflammation and First-In-Human Study. J Neuroinflamm (2020) 17(1):40. doi: 10.1186/s12974-020-01804-6

129. Kumar JSD, Prabhakaran J, Motlokov A, Sattiraju A, Kim J, Dubrovin M, et al. Radiosynthesis and Evaluation of [(18)F]MTP, a COX-2 PET Ligand. Pharmacol Rep (2020) 72(5):1433–40. doi: 10.1007/s43440-020-00124-z

130. Kumar JSD, Zanderigo F, Prabhakaran J, Rubin-Falcone H, Parsey RV, Mann J, In Vivo Evaluation of [11C]TMI, a COX-2 Selective PET Tracer, in
134. Egami H, Nakagawa S, Katsura Y, Kanazawa M, Nishiyama S, Sakai T, et al.
137. Ikawa M, Okazawa H, Kudo T, Kuriyama M, Fujibayashi Y, Yoneda M.
147. Barca C, Foray C, Hermann S, Döring C, Schäfers M, Jacobs AH, et al.
138. Fujibayashi Y, Taniuchi H, Yonekura Y, Ohtani H, Konishi J, Yokoyama A.
148. Zinnhardt B, Viel T, Wachsmuth L, Vrachimis A, Wagner S, Breyholz H-J,
Frontiers in Immunology | www.frontiersin.org September 2021 | Volume 12 | Article 73913013
Zhou et al. Neuroin
142. Johnson E, Murty S, Mayer A, Tsai C, Mehta S, Ilovich O, et al. TMIC-30.
148. Zinnhardt B, Viel T, Wachsmuth L, Vrachimis A, Wagner S, Breyholz H-J,
Chem Commun Sensing Reactive Oxygen Species Using Positron Emission Tomography.
Ascorbic and [11C]Dehydroascorbic Acid, an Endogenous Redox Pair for
(18)F-Labeled Dihydromethidine : Positron Emission Tomography
doi: 10.1021/acschemneuro.7b00385
Motor Cortex: A PET Study.
Neurology et al. Increased Oxidative Stress is Related to Disease Severity in the ALS
PET/MR Imaging of Inducible Nitric Oxide Synthase.
wnl.0000000000001588
Characterization of the In
34. doi: 10.1038/s41590-019-0421-2
of the Tumor Redox Status in Head and Neck Cancer by 62Cu-ATSM PET.
J Nucl Med (2018) 9(3):578–86. doi: 10.1002/acscinemuro.7800385
139. Johnson E, Murty S, Mayer A, Tsai C, Mehta S, Ilovich O, et al. TMIC-30.
134. Egami H, Nakagawa S, Katsura Y, Kanazawa M, Nishiyama S, Sakai T, et al.
137. Ikawa M, Okazawa H, Kudo T, Kuriyama M, Fujibayashi Y, Yoneda M.
138. Fujibayashi Y, Taniuchi H, Yonekura Y, Ohtani H, Konishi J, Yokoyama A.
Alzheimer’s Disease. Mol Imaging Biol (2018) 20(4):605–14. doi: 10.1007/s13107-017-1532-z.

165. Nisig, Brains P, Lehmann L, Ketzschau G, Heinrich T, Thiele A, et al. In Vivo and In Vitro Characterization of a Novel MAO-B Inhibitor Radioligand, 18F-Labeled Deuterated Fluorodopreynyl. J Nucl Med (2016) 57(2):315–20. doi: 10.2967/jnumed.115.161083.

166. Harada R, Hayakawa Y, Ezura M, Lersdursirikul P, Du Y, Ishikawa K, et al. (18)F-SMBT-1: A Selective and Reversible PET Tracer for Monoamine Oxidase-B Imaging. J Nucl Med (2021) 62(2):253–8. doi: 10.2967/jnumed.2020.1244400.

167. Vilemagne VLL, Harada R, Dore V, Furumoto S, Mulligan R, Kudo Y, et al. Evaluation of the Novel 18F-Labeled PET Tracer SMBT-1 for Imaging Astroglia in Healthy Elderly Controls and A+/-T+/-/N+ Alzheimer’s Disease Patients. Alzheimer’s Dementia (2020) 16(44):393858. doi: 10.1002/alz.039958.

168. Moriguechi S, Wilson AA, Miler L, Rusjan PM, Vasdev N, Kish SJ, et al. Monoamine Oxidase B Total Distribution Volume in the Prefrontal Cortex of Major Depressive Disorder: An [11C]SL25.1188 Positron Emission Tomography Study. JAMA Psychiatry (2019) 76(6):634–41. doi: 10.1001/jamapsychiatry.2019.0044.

169. Rusjan PM, Wilson AA, Miler L, Fan I, Mizrahi R, Houle S, et al. Kinetic Modeling of the Monoamine Oxidase B Radioligand [11C]SL25.1188 in Human Brain With High-Resolution Positron Emission Tomography. J Cereb Blood Flow Metab (2014) 34(5):883–90. doi: 10.1038/jcbfm.2014.34.

170. Narayanaswami V, Drake LR, Brooks AF, Meyer JH, Houle S, Kilbourn MR, et al. Classics in Neuroimaging: Development of PET Tracers for Imaging Monoamine Oxidases. ACS Chem Neurosci (2019) 10(4):1867–71. doi: 10.1021/acschemneuro.9b00081.

171. Takata K, Kato H, Shimosegawa E, Okuno T, Koda T, Sugimoto T, et al. 11C-Acetate PET Imaging in Patients With Multiple Sclerosis. PloS One (2014) 9(11):e111598. doi: 10.1371/journal.pone.0111598.

172. Duong MT, Chen YJ, Doot RK, Young AJ, Lee H, Cai J, et al. Astrocyte Activation Imaging With [11C]-Acetate and Amyloid PET in Mild Cognitive Impairment Due to Alzheimer Pathology. Nucl Med Commun (2021). doi: 10.1097/mmcn.000000000001460.

173. Kumar A, Koistinen NA, Malarte ML, Nennnesmo I, Ingelsson M, Ghetti B, et al. Astroglial Tracer BU99008 Detects Multiple Binding Sites in Alzheimer’s Disease Brain. Mol Psychiatry (2021). doi: 10.1038/s41380-021-01101-5.

174. Wilson H, Dervenoulas G, Pagano G, Tyacke RJ, Polychronis S, Myers J, et al. Evaluation of PET-Based Human Biodistribution and Radiation Dosimetry of the Monoamine Oxidase B Total Distribution Volume in the Prefrontal Cortex of Alzheimer’s Disease Patients. J Nucl Med (2016) 57(2):165–71. doi: 10.2967/jnumed.115.141713.

175. Rupprecht R, Papadopoulos V, Rammes G, Baghai TC, Fan J, Akula N, et al. Translocator Protein (18 kDa) (TSPO) as a Therapeutic Target for Noninvasive Detection of Acute Cerebral Hypoxia and Subsequent Matrix-Metalloproteinase Activity in a Mouse Model of Cerebral Ischemia Using Multispectral-Optoacoustic Tomography. Neurophotonics (2018) 5:1:15005–10. doi: 10.1117/1.nph.5.1.15005.

176. Geo M, Wang M, Meyer IA, Peters JS, Zarinnamayeh H, Territo PR, et al. Synthesis and Preliminary Biological Evaluation of [(11)C]methyl-(2-Amino-(Benzyliithio)Thiazolo-[4,5-D]Pyrimidin-7-Yl)-D-Leucinate for the Fractalkine Receptor (CX3CR1). Bioorg Med Chem Lett (2017) 27(12):2727–30. doi: 10.1016/j.bmcl.2017.04.052.

177. Cara B, Brooks AF, Fawaz MV, Drake LR, Desmond TJ, Sherman P, et al. Synthesis and Evaluation of [(18)F]FRAGER: A First Generation Small-Molecule PET Radioligand Targeting the Receptor for Advanced Glycation Endproducts. ACS Chem Neurosci (2016) 7(3):391–8. doi: 10.1021/acschemneuro.5b00319.

178. Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, Kefee S, et al. RNA-Seq Sequencing Transcriptome and Splicing Database of Glia, Neurons, and Vascular Cells of the Cerebral Cortex. J Neurosci (2014) 34(36):11929. doi: 10.1523/JNEUROSCI.1860-14.2014.

179. Zhang Y, Sloan SA, Clarke LE, Caneda CA, Blumenthal PD, et al. Purification and Characterization of Progenitor and Mature Human Astrocytes Reveals Transcriptional and Functional Differences With Mouse. Neuro (2016) 89(3):37–53. doi: 10.1016/j.neuron.2015.11.013.

180. Haufler AB, Papadopoulos V, Rammes G, Baghai TC, Fan J, Akula N, et al. Translocator Protein (18 kDa) (TSPO) as a Therapeutic Target for Neurological and Psychiatric Disorders. Nat Rev Drug Discov (2010) 9(12):971–88. doi: 10.1038/nrd3295.

181. Nottet T, Schallerbeer SM, Clifton NE, Mattei D, Richetto J, Thomas K, et al. Neuronal Activity Increases Translocator Protein (TSPO) Levels. Mol Psychiatry (2020). doi: 10.1038/s41380-020-0745-1.

182. Gao M, Wang M, Meyer IA, Peters JS, Zarinnamayeh H, Territo PR, et al. Synthesis and Preliminary Biological Evaluation of [(11)C]methyl-(2-Amino-(Benzyliithio)Thiazolo-[4,5-D]Pyrimidin-7-Yl)-D-Leucinate for the Fractalkine Receptor (CX3CR1). Bioorg Med Chem Lett (2017) 27(12):2727–30. doi: 10.1016/j.bmcl.2017.04.052.

183. Geo M, Wang M, Meyer IA, Peters JS, Zarinnamayeh H, Territo PR, et al. Synthesis and Preliminary Biological Evaluation of [(11)C]methyl-(2-Amino-(Benzyliithio)Thiazolo-[4,5-D]Pyrimidin-7-Yl)-D-Leucinate for the Fractalkine Receptor (CX3CR1). Bioorg Med Chem Lett (2017) 27(12):2727–30. doi: 10.1016/j.bmcl.2017.04.052.

184. Zhang Y, Sloan SA, Clarke LE, Caneda CA, Blumenthal PD, et al. Purification and Characterization of Progenitor and Mature Human Astrocytes Reveals Transcriptional and Functional Differences With Mouse. Neuro (2016) 89(3):37–53. doi: 10.1016/j.neuron.2015.11.013.

185. Haufler AB, Papadopoulos V, Rammes G, Baghai TC, Fan J, Akula N, et al. Translocator Protein (18 kDa) (TSPO) as a Therapeutic Target for Neurological and Psychiatric Disorders. Nat Rev Drug Discov (2010) 9(12):971–88. doi: 10.1038/nrd3295.
236. Kong Y, Huang L, Li W, Liu X, Zhou Y, Liu C, et al. The Synaptic Vesicle Protein 2a Interacts With Key Pathogenic Factors in Alzheimer’s Disease: Implications for Treatment. Front Cell Dev Biol (2021) 9:1555. doi: 10.3389/fcell.2021.609908

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Zhou, Ji, Kong, Qin, Ren, Guan and Ni. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.