New unconditionally stable scheme for solving two-dimensional acoustic wave problems

Di Zhang* and Xiaoping Miao†

College of Defense Engineering, PLA University of Science and Technology, NO. 1 Haifu Lane, Guanghua Road, Qinhuai District, Nanjing, 210007, China
(Rceived 9 February 2016, Accepted for publication 22 May 2016)

Keywords: Acoustic wave equation, Unconditionally stable, Finite difference scheme, Laguerre

PACS number: 43.60.Gk [doi:10.1250/ast.37.315]

1. Introduction

In this paper, we consider the following two-dimensional acoustic wave equation:

\[
\begin{align*}
\frac{\partial^2 u}{\partial t^2} &= v^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) + f(x,y,t), \quad (x,y) \in \Omega \times [0,T] \\
u(x,y,0) &= 0, \quad \frac{\partial u(x,y,0)}{\partial t} = 0,
\end{align*}
\]

where \(u\) is the wave displacement, \(v\) is the sound velocity, and \(f\) is an external source. A Mur’s first-order absorbing boundary condition (ABC) is considered.

\[
\left[\frac{\partial u}{\partial x} - \frac{1}{c} \frac{\partial u}{\partial t} \right]_{y=\partial \Omega} = \left[\frac{\partial u}{\partial y} - \frac{1}{c} \frac{\partial u}{\partial t} \right]_{y=\partial \Omega} = 0.
\]

The conventional finite difference scheme (FDS) works efficiently for solving the acoustic wave problems [1–3]. However, the FDS is an explicit time-marching algorithm, which means its time step should be limited by the Courant-Friedrichs-Levy (CFL) condition. Since time step size strongly depends on the smallest cell in a computational area, the FDS costs much time to solve acoustic wave problems with fine structures. Hence, to overcome the conflict in the calculative stability of the FDS, some unconditionally stable schemes [4–6] containing the alternating direction implicit (ADI) difference scheme have been proposed. Huang et al. [7] and Fu et al. [8] proposed a new orthogonal decomposition scheme using the associated Hermite polynomials to eliminate the CFL stability condition (AH-FDS). However, the AH-FDS has the drawback of a need for large internal storage and heavy computation.

In this work, we proposed a new unconditionally stable scheme for the acoustic wave equation using the weighted Laguerre polynomials and finite difference scheme (WLP-FDS). First, the time derivatives in the wave equation are expanded by the Laguerre polynomials and weighting functions. Since these orthogonal polynomials converge to zero with time, the sound field expanded by the weighted Laguerre polynomials converges to zero simultaneously. Then, by applying Galerkin’s method and using the orthogonal property of weighted Laguerre basis functions, we can eliminate the time variables and thus obtain an unconditionally stable scheme from the computations. Finally, we can solve the implicit equation recursively and reconstruct numerical results using the expansion coefficients.

2. Formulations and WLP-FDS

Consider the Laguerre polynomials defined by

\[
L_n(t) = \frac{e^t}{n!} \frac{d^n}{dt^n}(t^n e^{-t}), \quad n \geq 0; \quad t \geq 0.
\]

These polynomials are orthogonal with respect to the weighting function \(e^{-t}\):

\[
\int_0^\infty L_n(t)L_p(t)e^{-t}dt = \begin{cases} 1, & n = p \\ 0, & n \neq p \end{cases}
\]

Then, a set of orthogonal functions \(\{\phi_0, \phi_1, \phi_2, \cdots\}\) can be obtained by

\[
\phi_n(s \cdot t) = e^{-s/2} L_n(s \cdot t),
\]

where \(s > 0\) is a time scale factor. Note that the functions are convergent to zero absolutely as \(t \to \infty\). Then, the arbitrary functions spanned by the above functions are convergent to zero absolutely as \(t \to \infty\). The above basis functions are orthogonal with respect to the scaled time \(\tilde{t}\) as

\[
\int_0^\infty \phi_n(\tilde{t}) \phi_p(\tilde{t}) d\tilde{t} = \begin{cases} 1, & n = p \\ 0, & n \neq p \end{cases}
\]

where \(\tilde{t} = st\) is a scaled time variable. We introduce an appropriate scale factor to use the basis functions properly. The partial differential with respect to \(x\) and \(y\) can be obtained by using the above basis functions.

\[
\begin{align*}
\frac{\partial^2 u}{\partial x^2} &= \sum_{n=0}^\infty \frac{\partial}{\partial x} u_n(x,y) \phi_n(\tilde{t}), \\
\frac{\partial^2 u}{\partial y^2} &= \sum_{n=0}^\infty \frac{\partial}{\partial y} u_n(x,y) \phi_n(\tilde{t}).
\end{align*}
\]

From [9], we obtain the first derivative of \(u(x,y,t)\) versus time \(t\) as

* e-mail: zhangdirm@163.com
† e-mail: mxp57nj@163.com
\[
\frac{\partial u(x, y, t)}{\partial t} = s \sum_{n=0}^{\infty} \left[0.5u_n(x, y) + \sum_{k=0, n>0}^{n-1} u_k(x, y) \right] \phi_n(t). \tag{9}
\]

From Eq. (9), we can conclude that the second derivative of \(u(x, y, t)\) with respect to time \(t\) is
\[
\frac{\partial^2 u}{\partial t^2} = s \sum_{n=0}^{\infty} \left[0.25u_n(x, y) + \sum_{k=0, n>0}^{n-1} (n-k)u_k(x, y) \right] \phi_n(t) \tag{10}
\]

Inserting Eqs. (8) and (10) into the acoustic wave equation, we can obtain
\[
s^2 \sum_{n=0}^{\infty} \left[0.25u_n(x, y) + \sum_{k=0, n>0}^{n-1} (n-k)u_k(x, y) \right] \phi_n(t)
= v^2 \sum_{n=0}^{\infty} \frac{\partial}{\partial x^2} u_n(x, y) \phi_n(t) + v^2 \sum_{n=0}^{\infty} \frac{\partial}{\partial y^2} u_n(x, y) \phi_n(t) + f_p(x, y) \tag{11}
\]

where
\[
f_p(x, y) = \int_0^{T_f} f(x, y, t) \phi(t) dt. \tag{13}
\]

In Eq. (13), \(T_f\) is a finite time interval. Rewriting Eq. (12) using the finite difference scheme in space, we obtain
\[
\left. u_p(x, y) \right|_{i,j} = \frac{4}{s^2} f_p(x, y)_{i,j} - 4 \sum_{k=0, p>0}^{n-1} (p-k)u_k(x, y)_{i,j}
+ \frac{4v^2}{s^2 \cdot \Delta x^2} [u_p(x, y)_{i,j+1} + u_p(x, y)_{i,j+1}]
+ \frac{4v^2}{s^2 \cdot \Delta y^2} [u_p(x, y)_{i,j+1} + u_p(x, y)_{i,j+1}] \tag{14}
\]

where \(\Delta x_i\) and \(\Delta y_j\) denote the spatial size in the \(x\)- and \(y\)-directions, respectively. From Eq. (14), we can see that each order of a field variable is related to the adjacent four field variables. Rewriting Eq. (14), we have
\[
- \frac{4v^2}{s^2 \cdot \Delta x^2} u_p(x, y)_{i,j+1} + \frac{8v^2}{s^2 \cdot \Delta x^2} u_p(x, y)_{i,j} + \left(\frac{4v^2}{s^2 \cdot \Delta y^2} + \frac{8v^2}{s^2 \cdot \Delta y^2} \right) u_p(x, y)_{i,j}
- \frac{4v^2}{s^2 \cdot \Delta y^2} u_p(x, y)_{i,j+1} + \frac{4v^2}{s^2 \cdot \Delta y^2} u_p(x, y)_{i,j+1} \tag{15}
\]

Rewriting Eq. (15) in a matrix form, we can obtain
\[
[A][u^n] = \{f^n\} - \{p \cdot b^{n-1}\}. \tag{16}
\]

In Eq. (16), \([A]\) is a five-diagonal matrix and its shape is shown in Fig. 1. In \([A]\), the values in central line are the coefficients of \(u_p(x, y)_{i,j}\) in Eq. (15). \(\{f^n\}\) is the term of the external source due to Eq. (13). \(\{b^{n-1}\}\) is the accumulation term from order zero to order \(p - 1\).

For the boundary conditions, inserting Eq. (9) into Eq. (2), the time derivative can be eliminated using Eq. (7). At \(x = X\), we can obtain
\[
\frac{\partial}{\partial x} u_p(x, y) = \frac{s}{c} \left[\frac{u_p(x, y)}{2} + \sum_{k=0}^{n-1} u_k(x, y) \right] = 0. \tag{17}
\]

Using the central difference scheme and the averaging technique, we can obtain
\[
\frac{\partial}{\partial x} u_p(x, y)_{i,-1/2} = \frac{u_p(x, y)_{i,-1/2} + u_p(x, y)_{i,-1/2}}{2}
\]

Combining Eqs. (17) and (18), we have
\[
\left(\frac{s}{4c} + \frac{1}{\Delta x} \right) u_p(x, y)_{i,n,j} = \left(\frac{s}{4c} + \frac{1}{\Delta y} \right) u_p(x, y)_{i,-1/2} \tag{19}
\]

Similarly, we can obtain the ABC difference equation at \(x = 0, y = 0,\) and \(y = Y\) as follows:
\[
x = 0: \left(\frac{s}{4c} + \frac{1}{\Delta x} \right) u_p(x, y)_{i,j} = \left(\frac{s}{4c} + \frac{1}{\Delta x} \right) u_p(x, y)_{i,2/2}
\]
\[
y = 0: \left(\frac{s}{4c} + \frac{1}{\Delta y} \right) u_p(x, y)_{i,j} = \left(\frac{s}{4c} + \frac{1}{\Delta y} \right) u_p(x, y)_{i,2} \tag{20}
\]
This value is small enough to calculate Eq. (13). We set the
calculation resources of the three schemes.

Table 1 Computational information of the three methods.

Method	No. of iterations	Memory	CPU time	RMS error	L_2 error	L_∞ error
FDS	6,250,000	0.44 Mb	3,287.5 s	0.001 s	5.7632	5.8195
AH-FDS	60	34.8 Mb	4.992 s	0.001 s	5.8195	5.1154
WLP-FDS	60	4.2 Mb	0.1721 s	0.001 s	5.4590	6.6841

Fig. 2 Computational domain of a 2-D acoustic wave problem.

\[
y = Y: \left(-\frac{s}{4c} + \frac{1}{\Delta y} \right) u_p(y, y)|_{i, N_y} - \left(\frac{s}{4c} + \frac{1}{\Delta y} \right) u_p(y, y)|_{i, N_y-1} = \frac{s}{2c} \sum_{p=0}^{p-1} [u_p(x, y)|_{i, N_y} + u_p(x, y)|_{i, N_y-1}].
\] (22)

Inserting Eqs. (19)–(22) into Eq. (16), a modified matrix could be formed:

\[
[A][u^p] = \{\tilde{f}^p\} - \{(p-k)\tilde{y}^{p-1}\}.
\] (23)

3. Numerical example

In this part, a 2-D case is calculated to compare the numerical results obtained using the FDS, AH-FDS and WLP-FDS. A 2-D parallel plate constituted of two isotropic media separated by a fine structure (\(d = 0.01\) m, \(v = 5.5\) km/s) is considered, as shown in Fig. 2. The sound velocities in three media are 3 km/s, 5.5 km/s and 4 km/s. The source is located at \(x = 30\) m, \(y = 0\) m, \(z = 0\) m, separated by a fine structure (\(d = 0.01\) m).

From Fig. 3, we can observe that the agreement between the proposed WLP-FDS and conventional FDS is quite good. To validate the accuracy of the WLP-FDS quantitatively, the numerical results obtain by the AH-FDS and WLP-FDS are compared with those results of the FDS. The \(L_2\) error, \(L_\infty\) error, and root-mean-square (RMS) error at \(p_2\) are tabulated in Table 1. Table 1 also shows the computing information and calculation resources of the three schemes.

From Table 1, we can conclude that the CPU time for the WLP-FDS is much shorter than that for conventional FDS, and can be reduced to about 3.45% that of the AH-FDS. However, the accuracy of the WLP-FDS is almost the same as that of the AH-FDS. On the other hand, the total memory storage for the WLP-FDS is about 12.1% compared with that of the AH-FDS. This is because \([A]\) in Eq. (16) is a single

\[f(t) = 100 \exp[-(2t-3)^2] \cdot \sin[2\pi(2t-1)]\] (24)

In the three schemes, the time support for simulation is set as 1 s. In the conventional FDS, the time step size is set as \(1.6 \times 10^{-3}\) s to satisfy the CFL condition, whereas in the unconditionally stable AH-FDS and WLP-FDS, \(\Delta t = 0.001\) s. This value is small enough to calculate Eq. (13). We set the number of iterations of the AH-FDS and WLP-FDS as 60. Figure 3 shows the numerical results of sound field at \(p_1\) and \(p_2\), respectively.

From Fig. 3, we can observe that the agreement between the proposed WLP-FDS and conventional FDS is quite good. To validate the accuracy of the WLP-FDS quantitatively, the numerical results obtain by the AH-FDS and WLP-FDS are compared with those results of the FDS. The \(L_2\) error, \(L_\infty\) error, and root-mean-square (RMS) error at \(p_2\) are tabulated in Table 1. Table 1 also shows the computing information and calculation resources of the three schemes.

From Table 1, we can conclude that the CPU time for the WLP-FDS is much shorter than that for conventional FDS, and can be reduced to about 3.45% that of the AH-FDS. However, the accuracy of the WLP-FDS is almost the same as that of the AH-FDS. On the other hand, the total memory storage for the WLP-FDS is about 12.1% compared with that of the AH-FDS. This is because \([A]\) in Eq. (16) is a single
five-diagonal matrix; However, matrix A in the AH-FDS is a five-diagonal banded nested matrix. At each iteration, the AH-FDS requires more time and computer memory to obtain the final numerical results.

4. Conclusion

In this work, a new unconditionally stable scheme has been presented for solving the 2-D acoustic wave propagation problems. Compared with the conventional FDS, this presented WLP-FDS has high efficiency in solving an acoustic wave problem with fine structures while maintaining a very high accuracy. Moreover, this unconditionally stable scheme has advantages in its shorter calculation time and less required computer memory compared with AH-FDS.

References

[1] Y. Liu and M. K. Sen, “A new time-space domain high order finite-difference method for the acoustic wave equation,” J. Comput. Phys., 228, 8779–8806 (2009).
[2] W. Y. Liao, “On the dispersion, stability and accuracy of a compact higher-order finite difference scheme for 3D acoustic wave equation,” J. Comput. Appl. Math., 270, 571–583 (2014).
[3] S. Das, W. Liao and A. Gupta, “An efficient fourth-order low dispersive finite difference scheme for a 2-D acoustic wave equation,” J. Comput. Appl. Math., 258, 151–167 (2014).
[4] R. K. Mohanty and M. K. Jain, “An unconditionally stable alternating direction implicit scheme for the two space dimensional linear hyperbolic equation,” Numer. Methods Partial Differ. Equ., 17, 684–688 (2001).
[5] R. K. Mohanty, “An unconditionally stable difference scheme for the one-space-dimensional linear hyperbolic equation,” Appl. Math. Lett., 17, 101–105 (2004).
[6] Y. S. Chung, T. K. Sarkar, B. H. Jung and M. Salazar-Palma, “An unconditionally stable scheme for the finite-difference time domain method,” IEEE Trans. Microw. Theory Tech., 51, 697–704 (2003).
[7] Z. Y. Huang, L. H. Shi, B. Chen and Y. H. Zhou, “A new unconditionally stable scheme for FDTD method using associated Hermite orthogonal functions,” IEEE Trans. Antennas Propag., 62, 4804–4809 (2014).
[8] Z. K. Fu, L. H. Shi, Z. Y. Huang and S. C. Fu, “An unconditionally stable method for solving the acoustic wave equation,” Math. Probl. Eng., 2015, 1–7 (2015).
[9] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Academic Press, New York, 1980).