Influence of B-site Gd$^{+3}$ substitution on various properties of Co-ferrite nanoparticles

Manoj Salgaonkar1 · R. S. Gad2

Received: 28 June 2021 / Accepted: 16 October 2021 / Published online: 24 October 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021

Abstract
The effect of rare earth (Gd$^{+3}$) substitution on various properties of nanocrystalline cobalt ferrite material with composition CoFe$_{2-x}$Gd$_x$O ($x = 0, 0.02, 0.04, 0.06, 0.08, 0.1$) prepared using combustion method was investigated. The alterations produced in the structural parameters of the spinel lattice of cobalt ferrite were investigated using X-ray diffraction (XRD). The structural parameter such as lattice constant, mass density, strain, and crystallite size showed irregular variation triggered due to rare earth inclusion. The chemical composition analysis was done using energy-dispersive X-ray spectroscopy (EDS). Morphological investigations were done using a scanning electron microscope (SEM). The dependence of A.C. susceptibility and other crucial magnetic properties on rare earth content in the ferrite matrix was also investigated. The temperature dependence of electrical properties such as DC resistivity, dielectric constant, and dielectric loss was also investigated to study the alterations caused due to incorporation of rare earth ions. The rare-earth-doped cobalt ferrite nanoparticles prepared and analyzed in this research work were seen to possess magnetic characteristics which are essential for various biomedical applications.

Keywords Ferrite nanoparticles · Lattice constant · Saturation magnetization · DC resistivity · Dielectric constant

1 Introduction

The remarkable advancement in the research based on magnetic nanoparticles such as Co ferrite, Ni ferrite, Mn Zn ferrite, and numerous combinations of transition and inner transition metal oxides in the last two decades is mainly due to their promising application in ferrofluid technology, biomedical sensors, advanced magnetic storage technology, electromagnetic interference suppression technology, targeted drug delivery systems and hyperthermia [1–3]. In recent times cobalt ferrite (CoFe$_2$O$_4$) in its nano-dimensional form has been subjected to extensive investigations mainly because of properties structural, electrical, and magnetic properties that are highly tuneable and has been done using various factors such as different dopant ions, radiation exposure, pressure, and heat treatment, etc. [4–8]. Out of three classes of ferrites namely normal, inverse and mixed spinel, Cobalt ferrite belongs to inverse spinel class of ferrite family. The Co$^{+2}$ ions occupy octahedral site while the Fe$^{+3}$ ions are equally distributed over the tetrahedral site and the octahedral site [9, 10].

The effects of substitution of rare earth elements such as La$^{+3}$, Ce$^{+3}$, Nd$^{+3}$, Gd$^{+3}$, Sm$^{+3}$, Er$^{+3}$, Ho$^{+3}$, Dy$^{+3}$, etc. on various combinations of ferrites have been extensively studied. According to the reports, even a minute substitution affects structural, electrical, and magnetic properties significantly. These property alterations have been attributed to larger ionic radii, magnetic ordering in rare-earth metal ions. Specifically, doping of Gd$^3+$ in spinel systems is known to produce remarkable alterations in electrical and predominantly magnetic properties of the material [11–18]. However, it is difficult to substitute a larger quantity of rare earth dopant ions due to the large size and tendency to occupy the octahedral site replacing the smaller Fe$^{+3}$ ions which may lead to the formation of a secondary phase [19–26]. Numerous methods are being employed by researchers all over the globe to synthesize ferrite nanoparticles. Methods such as the co-precipitation method, hydrothermal synthesis, sol–gel method are very frequently used methods. Researchers have also employed methods like
Molten Salt method for obtaining monophasic compounds [24–28]. The selection of a suitable method for material synthesis is done based upon various parameters such as yield percentage, purity of phase, energy consumption, the time required for the synthesis, and repeatability [28–30]. Compared to these material preparation methods, the combustion method appears to be the most ensuring method because of its utmost simplicity, high productivity, cost-effectiveness, and approximate control over the factors such as size, morphology, composition, and agglomeration degree by varying the experimental conditions such as temperature, time, reactants, and stirring rate [27–31].

In this study, we intend to report the effect of increasing rare-earth (Gd$^{3+}$) substitution on structural, morphological, elemental, and electrical properties of and inverse spinel cobalt ferrites with composition CoFe$_{2-x}$Gd$_x$O$_4$ (x restricted to 5\% to reduce the chances of secondary phase formation) nanoparticles prepared using combustion method.

1.1 Material preparation

The nanoparticles of Gd$^{3+}$ doped cobalt ferrite powders with chemical formula CoFe$_{2-x}$Gd$_x$O$_4$ (x = 0.0, 0.02, 0.04, 0.05, 0.06, 0.08, and 0.1) were prepared using combustion method [29]. The metal salts such as Cobaltous (II) nitrates (Co(NO$_3$)$_2$6H$_2$O), Ferric (III) nitrate nonahydrate (Fe(NO$_3$)$_3$9H$_2$O), and Gadolinium acetate were dissolved in double distilled water along with nitrilotriacetic acid (N(CH$_2$CO$_2$H)$_3$) as complexing agents and urea (CO(NH$_2$)$_2$) as fuel. The clear solution obtained from the mixture of the above reagents heated at an elevated temperature of 90 °C was heated further till the ignition temperature is reached. The dry residue obtained as a result of the combustion process was finely crushed and ground for two hours to obtained ferrite nano-powders [20, 24, 26, 27]. The calculated amounts of salts utilized in synthesis of CoFe$_{2-x}$Gd$_x$O$_4$ are tabulated in Table 1.

1.2 Material characterization

The nanocrystalline samples with composition CoFe$_{2-x}$Gd$_x$O$_4$ (x = 0.0, 0.02, 0.04, 0.06, 0.08, 0.1) prepared using combustion synthesis were analyzed using several experimental investigations. The X-ray diffraction (XRD) patterns were obtained on the Rigaku X-Ray diffractometer (Cu Kα, λ = 1.5418 Å) in 2θ scanning range of 20° to 80° with a step size of 0.02°. Rietveld refinement on the XRD patterns was carried out using Full Prof software. The Fourier transforms infrared spectra of Gd$^{3+}$ doped cobalt ferrite nanoparticles were recorded on Shimadzu FTIR 8900 setup using KBr pellets (diameter 1.5 mm, radius 5 mm) containing 2 mg of the sample. The samples were exposed to gold sputtering for 15 s before taking SEM images in order to obtain a good quality SEM image. The Scanning Electron Microscope (SEM) Carl Zeiss EVO18 was used to obtain SEM images of ferrite nanoparticles. The Hitachi transmission electron microscope was employed to obtain images of ferrite material.

The variation of normalized AC susceptibility with the temperature of rare earth doped cobalt ferrite samples was studied using the high temperature AC susceptibility set up supplied by ADEC Embedded Technology & Solutions Pvt Ltd. Magnetic hysteresis data was recorded on Quantum Design Versa Lab’s 3 T vibrating sample magnetometer (VSM) The samples were pressed into pellets of diameter 5 mm and thickness 2.5 mm with an approximate weight of 0.75 g and were used to investigate electrical properties. The dielectric constant ‘ε’ variation with frequency of applied field (10 Hz to 3 MHz) for different concentrations of Gd$^{3+}$ was investigated with Wayne Kerr precision component analyzer 6440B. The variation of DC resistivity ‘ρ’ with temperature over a range of 30 °C to 500 °C for rare-earth-doped ferrite nano-powders was studied using a two-probe setup.

Material Composition CoFe$_{2-x}$Gd$_x$O$_4$ (gm)	Co(NO$_3$)$_2$6H$_2$O (gm)	Fe(NO$_3$)$_3$9H$_2$O (gm)	GdN$_3$O$_9$H$_2$O (gm)	NTA (gm)	Urea (gm)
x = 0.0	6.2032	17.2223	0.0000	23.4255	32.7957
x = 0.02	6.1500	16.9039	0.1451	23.1990	32.4786
x = 0.04	6.0978	16.5909	0.2877	22.9764	32.1670
x = 0.05	6.0720	16.4365	0.3581	22.8665	32.0131
x = 0.06	6.0464	16.2833	0.4279	22.7575	31.8606
x = 0.08	5.9959	15.9807	0.5658	22.5423	31.5593
x = 0.1	5.9462	15.6832	0.7013	22.3307	31.2630
Fig. 1 Rietveld refinement of X-ray diffraction pattern CoFe$_{2-x}$Gd$_x$O$_4$ nanoparticles
2 Results and discussion

2.1 X-ray diffraction

The Rietveld refinement of XRD patterns of nanocrystalline CoFe$_{2-x}$Gd$_x$O$_4$ powders recorded at room temperature indicated the existence of inverse spinel phase belonging to the Fd3m space group (Fig. 1). The absence of any extra peak in the diffraction pattern indicated that the rare-earth ions were perfectly dissolved into the inverse spinel structure without any traces of hematite formation [20, 24, 29–32]. The substitution of Gd$^{3+}$ (ionic radii 1.02 Å) at the octahedral site replacing a Fe$^{3+}$ without any secondary phase formation can be considered as a prominent feature of the combustion method. The refinement parameters obtained from the refinement of XRD patterns of CoFe$_{2-x}$Gd$_x$O$_4$ nanoparticles are presented in Table 2.

The samples with concentrations $x = 0.04, 0.05,$ and 0.1 showed a drastic increase in lattice parameters and unit cell volume indicating successful substitution of Gd$^{3+}$ at the octahedral site. While the other concentrations ($x = 0.06$ and 0.08) showed a marginal increase in structural parameters indicating occupancy of Gd$^{3+}$ ions at the interstitial sites. The X-ray peak intensities were seen to decrease with increasing Gd concentration. This reduction could be attributed to the amorphous nature introduced by the larger rare earth ions as these ions are responsible for the increment in the strain as depicted in Fig. 2. The mixture was pressed into pallets with a thickness of 1 mm and 10 mm in diameter. The FTIR spectra for all the samples showed two major absorption bands in the range 400–650 cm$^{-1}$ which are the characteristic features of ferrite material. The absorption band with the lower wavenumbers (400–425 cm$^{-1}$) is associated with the vibrations of the metal–oxygen bond at the octahedral site or B-site, in this case Co–O, Gd–O and Fe–O. The impact of rare earth substitution is predominantly felt on this band as it shows a marginal blue shift in frequency absorption with increasing rare earth concentration. The band observed in the range 525–650 cm$^{-1}$ represent the vibration of tetrahedral metal oxygen bond. In present study, this band represents the vibration of Fe–O bond as cobalt ferrite is an inverse spinel structure [34–42].

2.3 Scanning electron microscopy

The morphological study of Gd$^{3+}$ doped cobalt ferrite powders was done using the scanning electron microscope (SEM) instrument. The scanning electron micrographs of CoFe$_{1.98}$Gd$_{0.02}$O$_4$ and CoFe$_{1.96}$Gd$_{0.04}$O$_4$ are shown in Fig. 4. The SEM micrographs showed a highly agglomerated structure indicating strong magnetic behavior which is a characteristic of transition elements Fe and Co, and also of inner transition element Gadolinium present in the ferrite samples under investigation [43–46].

2.3.1 Energy-dispersive spectra (EDS)

The EDS spectra recorded for CoFe$_2$O$_4$ and CoFe$_{0.6}$Gd$_{0.04}$O$_4$ are shown in Fig. 5a,b and the elemental analysis data of three samples are presented in Table 3. All the doped samples showed the presence of Co, Fe, Gd, and O. The Au peaks were observed in the spectra due to gold sputtering which was done to improve SEM image quality. The weight percentage of Gd in the material was seen to increase with increasing rare earth substitution levels in the cobalt ferrite matrix [43, 44]. The Au peaks occurring in the EDS spectra.

2.4 Magnetic properties using vibrating sample magnetometer

The hysteresis loops obtained for Gd$^{3+}$ doped cobalt ferrite samples are shown in Fig. 6. The variation of saturation magnetization (Ms), retentivity (Mr), coercive field (Hc), and anisotropy constant ‘K’ with Gd$^{3+}$ concentration are shown in Fig. 7 (a,b,c). Although the magnetic parameters

Table 2 Rietveld refinement parameters obtained for CoFe$_{2-x}$Gd$_x$O$_4$ nanoparticles

Sample	CoFe$_{2-x}$Gd$_x$O$_4$	χ^2	R$_{Bragg}$ factor	R$_F$-factor
x = 0.0	1.39	14.1	12.3	
x = 0.02	1.3	15.3	13.41	
x = 0.04	1.33	14.8	12.82	
x = 0.05	1.29	14.5	11.0	
x = 0.06	1.34	14.9	12.87	
x = 0.08	1.36	11.5	8.5	
x = 0.1	1.37	12.8	10.2	
Influence of B-site Gd$^{3+}$ substitution on various properties of Co-ferrite nanoparticles

(a) Lattice Constant vs Gd$^{3+}$ Concentration

(b) Strain vs Gd$^{3+}$ Concentration

(c) X-ray density (g/cc) vs Gd$^{3+}$ Concentration

(d) Crystalline Size (nm) vs Gd$^{3+}$ Concentration

(e) Cell Volume vs Gd$^{3+}$ Concentration

(f) (311) peak intensity vs Gd$^{3+}$ Concentration
Mg, Mr, and HC showed a random variation with increasing Gd3+ concentrations, the Ms and Mr were seen to vary inversely to lattice constant and while a direct analogy was observed between HC and (311) peak height depicting the relation between crystalline nature of the ferrite material. The magnetic environment in cobalt ferrite is administrated by Co2+, Fe3+ ions. With the spinel geometry, cobaltous ions occupy the tetrahedral site and ferric ions occupy the octahedral site. Generally, the magnetic moment of the materials is expressed in terms of Eq. 1 [44].

\[M = M_B - M_A \]

where \(M \) is the magnetic moment of the spinel ferrite system, \(M_B \) is the magnetic moment of the octahedral site and \(M_A \) is the net magnetic moment of the tetrahedral site. However, with the substitution of a larger rare earth ion Gd3+ at the octahedral site, the system experiences an overall lattice expansion and cationic redistribution which changes the overall magnetic moment of the system. This may reduce the strength of super-exchange interaction between the Co2+ and Fe3+ ions at two cationic sublattice and incomplete ordering of Co2+ and Fe3+ at the tetrahedral sites and the octahedral sites in the spinel structure.

The variations in the magnetic moment can be also caused by changes in canting Yafet-Kittel angle (\(\theta_{Y-K} \)) due to rare-earth substitution. The magnetic moment of the rare-earth-doped system in this situation is expressed in terms of Eq. 2 [45–49].

\[M = M_B \cos \theta_{Y-K} - M_A \]

2.5 Magnetic susceptibility

The AC susceptibility plots obtained for as prepared CoFe\textsubscript{2-x}Gd\textsubscript{x}O\textsubscript{4} are shown in Fig. 8. This measurement proves vital information about the Curie temperature and the type of magnetic domains present in the material. Depending upon the grain size, the domains present in the ferrite are categorized into three categories namely Single domain (SD), multi-domain (MD), and superparamagnetic domain (SP). The MD grains are characterized by the presence of multiple walls within the grain. If the grain size is comparable to that of the wall thickness then these grains are termed as single domains. Superparamagnetic behavior is predominantly seen in particles with dimensions < 10 nm. Here, the magnitude of thermal energy is comparable to that of magnetic anisotropy energy.

It can be seen from Fig. 8 that there is a gradual increase in normalized AC susceptibility followed by a steep rise creating a peak at high temperature before a sharp fall in the vicinity of the Curie temperature. This indicates that the as prepared samples contain a large section of single domain and a good number of multi-domain grains as well. The values of curie temperature for all the samples were in the range of 525–575 °C. The variation in the Curie temperature can be attributed to spin reordering triggered by rare earth doping resulting in enhanced magnetic character of nanomaterials [22, 50, 51]

2.6 DC resistivity

The plots of temperature-dependent variation of DC resistivity (\(\rho \)) over a range of 300–773 K for rare-earth-doped cobalt ferrite samples are presented in Fig. 9. The rare-earth-doped ferrite powders showed an increase in resistivity with increasing temperature initially till a resistivity maximum of the order 107 Ω-cm in the temperature range of 473–523 K. These high resistivity values are the attributes of the removal of moisture present in the interstitial sites that facilitates the conduction mechanism. The high resistivity of the order 107 Ω-cm can be attributed to the smaller grain size and the large number of grain boundaries available in the nanomaterials. These grain boundaries are characterized by their insulating
nature and play a very important role in increasing the material resistivity [52–55]. The rare-earth ions (Gd$^{3+}$) being a larger ion occupies the spacious octahedral site replacing Fe$^{3+}$ ions which are generally known as a source of charge carriers. Hence this reduction in Fe$^{3+}$ ions also cause the depletion of charge carriers [56–58]. The larger ionic radii of Gd$^{3+}$ ions also alter the electron hopping mechanism adversely by causing lattice expansion. This increases the separation between Co$^{2+}$ and Fe$^{3+}$ ions reducing the electronic exchange [59, 60].

2.7 Dielectric constant variation with frequency

The plot of frequency dependence of dielectric constant is shown in Fig. 10a and the values of dielectric constant as at 20 Hz for different Gd$^{3+}$ concentrations are shown in Fig. 10b.

The Dielectric constant ‘ε’ was seen to decrease with the increasing frequency of the applied electric field and was seen to remain constant beyond a critical value of frequency.
The increasing Gd$^{3+}$ occupancy at the B site replacing a smaller ion Fe$^{3+}$ was also seen to affect the variation of the dielectric constant [61–64]. The Dielectric behavior of cobalt ferrite nanomaterials material is administered by the electronic exchange between metal ions and primarily dominated by the Fe$^{3+}$/Co$^{2+}$ ions. The doping of rare-earth ions

![Energy-dispersive spectrum of CoFe$_2$O$_4$ (a) and CoFe$_{1.96}$Gd$_{0.04}$O$_4$ (b)](image-url)
Table 3 EDS data of CoFe$_{2-x}$GdxO$_4$ nanoparticles

Sample	Weight %	Atomic %
CoFe$_2$O$_4$		
Co	21.04	15.28
Fe	41.29	31.64
O	18.09	48.39
CoFe$_{1.98}$Gd$_{0.02}$O$_4$		
Co	25.31	20.77
Fe	46.04	39.87
Gd	3.23	0.99
O	11.47	34.68
CoFe$_{1.96}$Gd$_{0.04}$O$_4$		
Co	29.09	23.25
Fe	54.79	46.20
Gd	6.40	1.92
O	9.73	28.64

Gd$^{3+}$ ions alter the structural parameters such as cell volume, density, lattice constant, etc., and also decreases Fe$^{3+}$ ion concentrations at the octahedral site. As a result, the electron hopping between Fe$^{3+}$ and Co$^{2+}$ ions get affected adversely [65–68]. The dielectric constant profile showed a steep reduction in magnitude to a lower value with an increase in frequency in the lower frequency region attains a constant low value that remains constant over higher frequency values of the applied field. This variation in dielectric properties can be explained using the space charge polarization phenomenon. An ideal dielectric material is comprised of highly conducting grains. These grains are bounded by nonconducting grain boundaries. When the electric field is applied, a potential drop occurs at the grain boundaries as a result of the accumulation of space charge in this region. The influence of the grain boundaries is observed distinctly over the lower frequency range. Beyond a certain value of applied field frequency, the electronic transfer between the metal ions starts lagging behind the rate of variation in the frequency of an applied electric field. This results in uniform lower magnitudes of dielectric constants [66–68].

2.8 Dielectric loss variation with frequency

The variation of dielectric loss versus frequency for varying Gd$^{3+}$ concentrations is presented in Fig. 11a. While the loss values for different Gd$^{3+}$ concentrations in cobalt ferrite samples at 20 Hz are presented in Fig. 11b.

It can be seen that for nanoparticle samples dielectric loss decreases with increasing frequency of applied electric field and attains a low constant value beyond a critical frequency. At lower frequencies, the dielectric curve is seen to exhibit broad peaks in the neighborhood of 100 Hz. The profile depicted in Fig. 1b shows an approximately inverse
Fig. 7 Magnetic parameters of CoFe$_{2-x}$Gd$_x$O$_4$ nanoparticles
The variation in the dielectric loss with increasing Gd^{3+} concentrations at low frequencies could be due to hindrance in the electronic exchange between Co^{2+}/Fe^{3+} and Fe^{2+}/Fe^{3+} [67–73]. At higher frequencies, the dielectric loss decreases drastically which may allow these materials to find their applications in high-frequency devices [74–80].

Fig. 8 The normalized AC susceptibility of CoFe_{2−x}GdxO_{4}

behavior of dielectric loss to that of dielectric constant at 10 Hz. The variation in the dielectric loss with increasing Gd^{3+} concentrations at low frequencies could be due to hindrance in the electronic exchange between Co^{2+}/Fe^{3+} and Fe^{2+}/Fe^{3+} [67–73]. At higher frequencies, the dielectric loss decreases drastically which may allow these materials to find their applications in high-frequency devices [74–80].

3 Conclusion

The ultrafine powders of Gd^{3+}doped cobalt ferrite with composition CoFe_{2−x}GdxO_{4} (x = 0.0, 0.02, 0.04, 0.05, 0.06, 0.08, 0.1) with cubic spinel structure and crystallite size ranging between 21 and 41 nm were prepared successfully using combustion route. The structural parameters such as lattice constant ‘a’, X-density ‘DX’, and unit cell volume were altered drastically due to Gd^{3+} substitution at the octahedral site. The particle agglomerates seen in the SEM images indicated a strong magnetic behavior. The EDS spectra showed the presence of Co, Fe, and Gd in desired quantities without any impurities. The A.C. susceptibility measurements indicated the presence of both single domain and multi-domain particles in all the samples. The changes observed in magnetic properties were attributed to cationic redistribution, lattice expansion, and alterations in magnetic ordering due to Gd^{3+} substitution.

The DC resistivity profile for all the samples showed high room temperature resistivity of the order 10^{7}Ω-cm. The dielectric constant values were also seen to be administered by the concentrations of Gd^{3+} at the octahedral site. The dielectric constant variation was explained using the space charge polarization phenomenon. The variation in the dielectric loss with increasing Gd^{3+} concentrations at low frequencies was attributed to hindrance in the electronic exchange between Fe^{2+}/Fe^{3+} and Co^{2+}/Fe^{3+}. At higher frequencies, all the samples were seen to exhibit low losses making them a potential candidate for high energy applications.
Fig. 9 DC Resistivity variations with temperature for CoFe$_{2-x}$Gd$_x$O$_4$ nanoparticles
Declarations

Conflict of interest We, the authors of this manuscript entitled “Influence of B-site Gd+3 substitution on various properties of Co-ferrite nanoparticles” declare that this article is original and has been written by the stated authors who are all aware of its content and approve its submission. The article has not been published previously or is not under consideration for publication elsewhere. We also declare that there exists no conflict of interest.

References

1. S. Thakur, S.C. Katyal, M. Singh, Structural and magnetic properties of nano nickel-zinc ferrite synthesized by reverse micelle technique. J. Magn. Magn. Mater. **321**, 1–7 (2009)
2. M. Sertkol, Y. Köseoğlu, A. Baykal, H. Kavas, M.S., Toprak, Synthesis and magnetic characterization of Zn$_{0.7}$Ni$_{0.3}$Fe$_2$O$_4$ nanoparticles via microwave-assisted combustion route. J. Magn. Magn. Mater. **322**, 866–871 (2010)
38. Y.G. Zhang. Magnetic Materials, Chengdu, Pekin, 1998 (Chapter 1).
39. S.R. Naik, A.V. Salker, Change in the magnetostuctural properties of rare-earth-doped cobalt ferrites relative to the magnetic anisotropy. Journal of Material Chemistry 22, 2740 (2012)
40. L. Zhao, H. Yang, X. Zhao, L. Yu, Y. Cui, S. Feng, Magnetic properties of CoFe2O4 ferrite doped with rare-earth ion. Material Letters 60, 1–6 (2006)
41. B.V. Ch Srinivas, A. Tirupanyam, V. Satish, D.L. Sas-Seshu-bai, try, O.F. Calun, Effect of Ni2+ substitution on structural and mag- netic properties of Ni-Zn ferrite nanoparticles. J. Magn. Magn. Mater. 382, 15–19 (2015)
42. B.V Ch Srinivas, S.S. Tirupanyam, S.M. Meena, C.S. Yusuf, K.S. Babu, D.M. Ramakrishna, D.L.S. Potukuchi, Structural and magnetic characterization of co-precipitated Ni0.5Zn0.5Fe2O4 nanoparticles. J. Magn. Magn. Mater. 407, 135–141 (2016)
43. F.-X. Cheng, J.-T. Jia, Xu, Zhi-Gang, B. Zhou, C.-S. Liao et al., Synthesis of ferrite grade γ-Fe2O3. J. Magn. Magn. Mater. 206–212 (2016)
44. K.S. Rane, V.M.S. Verenkar, Synthesis of ferrite grade γ-Fe2O3. Bull. Mater. Sci. 24, 39–45 (2001)
45. R.A. Porob, S.Z. Khan, S.C. Mojumdar, V.M.S. Verenkar, Synthesis, TG, DSC, and infrared study of NiMn2(C4H4O4)3·6N2H4·a precursor for NiMn2O4 nanoparticles. J. Therm. Anal. Calorim. 86, 605–608 (2006)
46. A. Bishnoi, S. Kumar, Nirav Joshi Wide-Angle X-ray Diffraction (WXRD): Technique for Characterization of Nanomaterials and Polymer Nanocomposites. Microscopy Methods Nanomater. Characterization I, 313–337 (2017)
47. A. Baykal, F. Genç, A.Z. Elmal, S. Geokçe, M. Sertkol, H. Seoz- eri, MnCr2Fe2-xO4 Nanoparticles: Magnetic and Microwave Absorption Properties. J. Inorg. Organomet. Polym Mater. 26, 134–141 (2016)
48. H. Shenker, Magnetic anisotropy of cobalt ferrite (Co1.0Fe2.0O3.62) and nickel cobalt ferrite (Ni0.72Fe0.28O0.60Fe2.04). Phys. Rev. 107(5), 1246–1249 (1957)
49. M.B. Morales, M.H. Phan, S. Pal, N.A. Frey, H. Srikanth, Particle blocking and carrier fluid freezing effects on the magnetic properties of Fe3O4–based ferrofluids. J. Appl. Phys. 105(7), 07B511 (2009)
50. N.D. Chaudhari, R.C. Kamble, D.N. Bhosale, S.S. Suryavanshi, S.R. Sawant, Thermal hysteresis and domain states in Ni-Zn ferrites synthesized by oxalate precursor method. J. Magn. Magn. Mater. 322, 1999–2005 (2010)
51. O.A. Li, C.-R. Lin, H.-Y. Chen, H.-S. Hsu, K.-Y. Shih, I.S. Edelman, K.-W. Wu, Y.-T. Tseng, S.G. Ovchinnikov, J.-S. Lee, Size dependent magnetic and magneto-optical properties of Ni0.2Zn0.8Fe2O4 nanoparticles. J. Magn. Magn. Mater. 408, 206–212 (2016)
52. V. Grimal, D. Autissier, L. Longuet, H. Pascard, M. Gervais, Iron, nickel and zinc stoichiometric influences on the dynamic magneto-elastic properties of spinel ferrites. J. Eur. Ceram. Soc. 26, 3687–3693 (2006)
53. P.P. Naik, R.B. Tangsali, B. Sonaye, S. Sugur, Radiation stimulated permanent alterations in structural and electrical properties of core-shell Mn-Zn ferrite nanoparticles. J. Nano Res. 24, 194–202 (2013)
54. P.P. Naik, R.B. Tangsali, B. Sonaye, S. Sugur, Sustained aug- mentation in electrical properties of Mn1-xZn1-xFe2O4 nanoparticles provoked by high energy gamma radiation. J. Nanotechnol. Adv. Mater. 3(1), 1–7 (2015)
55. V. Manisha, D. Rane, A.K. Nigam, Bahadur, C.M. Srivastava, Mössbauer and FT-IR studies on non-stoichiometric barium hexaferrites. J. Magnetism Magnetic Mater. 192, 288–296 (1999)
56. P.P. Naik, R. B., Tangsali, Enduring Effect of Rare Earth (Nd+3) Doping and γ- Radiation on Electrical properties of Nanoparticle Manganese Zinc Ferrite. J. Alloy. Compd. 723, 266–275 (2017)
57. M. Asif Iqbal, M.U. Islam, Irshad Ali, Muhammad Azhar Khan, Imran Sadq, Ihsan Ali, High-frequency dielectric properties of Eu+3-substituted Li–Mg ferrites synthesized by sol-gel auto- combustion method. J. Alloys Comp. 586, 404–410 (2014)
58. B. Chandra Babu, V. Naresh, B. Jayaprakash, S. Buddhudu, Structural, thermal and dielectric properties of lithium zinc silicate ceramic powders by sol-gel method. Ferro Electrics let. 38, 114–127 (2011)
59. N. Rezlescu, E. Rezlescu, Dielectric properties of copper containing ferrites. Physics Status Solidi A. 23, 575–582 (1974)
60. I.H. Gul, A. Maqsood, M. Naeem, M. Naem Ashiq, Optical, magnetic and electrical investigation of cobalt ferrite nanopar- ticles synthesized by co-precipitation route. J. alloys comp. 507, 201–206 (2010)
61. Muhammad Tahir Farid, Ishitaq Ahmad Salma Aman, Char- acterization of nickel-based spinel ferrites with small substitution of praseodymium. J. Chemical Soc. Pakistan 35, 793–799 (2013)
62. V.D. Mote, Y. Purushottam, B.N. Doile, Williamson-Hall analysis of chitosan nanosize in nanometer-sized ZnO particles, J. Theor. Appl. Phys. 6, 2251–7235 (2012)
63. C. Venkataraju, Effect of nickel on the structural properties of Mn Zn ferrite nanoparticles. Appl. Phys. Res. 1(1), 41–45 (2009)
64. L. Zhao, H. Yang, X. Zhao, L. Yu, Y. Cui, S. Feng, Magnetic properties of CoFe2O4 ferrite doped with rare earth ion. Mater. Lett. 60, 1–6 (2006)
65. Ag+ ion substituted CuFe2O4 nanoparticles: analysis of structural and magnetic behavior, SM Rathod, AR Chavan, SS Jadhav, KM Batoo, M Hadi, EH Raslan Chemical Physics Let- ters 765, 138308, Chemical Physics Letters (IF 2.328), Pub Date: 2020–12–31, DOI: https://doi.org/10.1016/j.cplett.2020.138308
66. Emad M.M., Ewais, Mahmoud M. Hessien, Abdel-Hady A. El-Geassy, In-situ synthesis of magnetic Mn-Zn ferrite ceramic object by solid state reaction. J. Aust. Ceram. Soc. 44(1), 57–62 (2008)
67. K. Rama Krishna, K. Vijaya Kumar, Dachepalli Ravinder, Structural and electrical conductivity studies in nickel-zinc ferrite. Adv. Mater. Phys. Chem. 2, 185–191 (2012)
68. M. F. Sarac, Magnetic, Structural, and Optical Properties of Gadolinium-Substituted Co0.4Ni0.6Fe2O4 Spinel Ferrite Nanostructures, Journal of Superconductivity and Novel Magnetism, doi: https://doi.org/10.1007/s10948-019-05359-3
69. C. Murugesan, G. Chandrasekaran, Impact of Gd4+ substitution on the structural, magnetic and electrical properties of cobalt ferrite nanoparticles. RSC Adv. 5, 73714–73725 (2015)
70. J.G. Kang, B.K. Min, Y. Sohn, Synthesis and characterization of Gd(OH)3 and Gd2O3 nanorods. Ceram. Int. 41, 1243–1248 (2015)
71. M.T. Farid, I. Ahmad, S. Aman, M. Kanwal, G. Murtaza, I. Ali, I. Ahmad, M. Iashqaq, Structural, electrical and dielectric behavior of Ni0.5Co1-xNdyFe2-yO4 nano ferrites synthesized by Sol-Gel Method. Dig. J. Nanomater. Biotechnol. 10(1), 265–275 (2015)
72. G. Kumar, J. Shah, R.K. Kotnala, P. Dhiman, R. Rani, V.P. Singh, G. Garg, S.E. Shirsath, K.M. Batoo, M. Singh, Self-ignited synthesis of Mg–Gd–Mn nano ferrites and impact of cation distribution on the dielectric properties. Ceram. Int. 40(9), 14509–14516 (2014)
73. K. W. Wagner, Dissipation of energy under AC. American Physics 40, 317 (1973)

74. Khalid Mujasam Batoo, Feroz Ahmed Mir, M-S Abd El-sadek, Md Shahabuddin, Niyaz Ahmed Extraordinary high dielectric constant, electrical and magnetic properties of ferrite nanoparticles at room temperature. J. Nanopart. Res. 15, 1–9 (2013)

75. N. J. Joshi, G. S. Grewal, V. Shrinet, T. P. Govindan, A. Pratap, Synthesis and dielectric behavior of nano-scale barium titanate. IEEE dielectrics & Electrical Insulations 19, 83–90 (2012)

76. N. J. Joshi, G. S. Grewal, V. Shrinet, A. Pratap, N. J. Buch, Synthesis and characterization of nano-barium titanate prepared by hydrothermal process. Integr. Ferroelectr. 115, 142–148 (2010)

77. A. Pratap, N. J. Joshi, P. B. Rakshit, G. S. Grewal, V. Shrinet, Dielectric behavior of nano barium titanate filled polymeric composites. International Journal of Modern Physics: Conference Series 22, 1–10 (2013)

78. R. Rani, K. M. Batoo, P. Sharma, G. Anand, G. Kumar, S. Bhardwaj, M. Singh, Structural, morphological and temperature dependent electrical traits of Co0.9Zn0.1InxFe2-xO4 spinel nano-ferrites. Ceramics International (2021). https://doi.org/10.1016/j.ceramint.2021.07.273

79. P. Himakar, N. Murali, D. Parajuli, V. Veeraiah, K. Samatha, T. W. Mammo, Magnetic and DC Electrical Properties of Cu Doped Co-Zn Nanoferrites. J. Electron. Mater. 50(6), 3249–3257 (2021)

80. M. Hadi, K. M. Batoo, A. Chauhan, O. M. Aldossary, R. Verma, Y. Yang, Tuning of Structural, Dielectric, and Electronic Properties of Cu Doped Co–Zn Ferrite Nanoparticles for Multilayer Inductor Chip Applications. Magnetochemistry 7, 53 (2021)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.