Enhancer RNA (eRNA) is a type of noncoding RNA transcribed from the enhancer. Although critical roles of eRNA in gene transcription control have been increasingly realized, the systemic landscape and potential function of eRNAs in cancer remains largely unexplored. Here, we report the integration of multi-omics and pharmacogenomics data across large-scale patient samples and cancer cell lines. We observe a cancer-/lineage-specificity of eRNAs, which may be largely driven by tissue-specific TFs. eRNAs are involved in multiple cancer signaling pathways through putatively regulating their target genes, including clinically actionable genes and immune checkpoints. They may also affect drug response by within-pathway or cross-pathway means. We characterize the oncogenic potential and therapeutic liability of one eRNA, NET1e, supporting the clinical feasibility of eRNA-targeted therapy. We identify a panel of clinically relevant eRNAs and developed a user-friendly data portal. Our study reveals the transcriptional landscape and clinical utility of eRNAs in cancer.
Enhancer is a distal regulatory DNA that enhances the transcription of a target gene by interacting with target gene promoter. Traditionally considered to be DNA elements that nucleate transcription factor (TF) binding, enhancers were recently found to also transcribe noncoding RNAs, which are referred to as enhancer RNAs (eRNAs). Tens of thousands of eRNAs have been identified in human cells, many of which were shown to play important roles in transcriptional circuitry to mediate the activation of target genes.

In human cancers, activation of oncogenes or oncogenic signaling pathways often converges to enhancer activation and production of eRNAs. For example, the activation of ESR1 can globally increase eRNA transcription in breast cancer. Oncogene-induced eRNAs can under certain circumstances directly promote tumorigenesis. For example, KLK3e, an androgen-induced eRNA regulating gene KLK3, can scaffold the androgen receptor (AR)-associated protein complex to control AR-dependent gene expression in prostate cancer. Tumor suppressors can also induce eRNAs to contribute to tumor repression processes. For example, TP53-induced eRNAs were found to be involved in p53-dependent cell cycle arrest in multiple cancer cell lines. Together these evidences reveal significant roles of eRNAs in tumorigenesis and suggest their clinical utility in eRNA-targeted therapy.

The Encyclopedia of DNA Elements (ENCODE) project, Functional Annotation of the Mammalian Genome (FANTOM) project, and Roadmap Epigenomics project have annotated a large number of regulatory elements, including enhancers, while The Cancer Genome Atlas (TCGA) collected multi-omic data and clinical information in ~10,000 tumor samples. In addition to patient samples, Cancer Cell Line Encyclopedia (CCLE) collected omics data in ~1000 cancer cell lines. Furthermore, Cancer Therapeutics Response Portal (CTRP), and Genomics of Drug Sensitivity in Cancer (GDSC) provided pharmacogenomics data from ~500 anticancer compounds across >1000 cancer cell lines. These data resources provide unique opportunities to characterize the expression landscape, functions, and drug response of eRNAs across different cancer types.

Results
Dynamic expression landscape of eRNAs in human cancers. We obtained enhancer annotations from ENCODE, FANTOM, and Roadmap Epigenomics, and selected enhancers annotated in at least two datasets. Given the fact that eRNA transcription region could be wider than the enhancer ChIP-seq peaks, we defined the ±3 kb regions around the middle point of these annotated enhancers as potential eRNA-transcribing regions.

To avoid counting the transcriptional signal from known coding genes, we excluded eRNA regions that overlap with known coding genes and IncRNAs (with 1 kb extension from both transcription start site and transcription end site) (Supplementary Fig. 1A and Methods). To characterize the expression landscape of eRNAs across human cancers, we mapped TCGA RNA-seq reads to eRNA regions and defined those eRNAs with average expression value (reads per million, RPM) ≥1 as detectable eRNA for each cancer type (Supplementary Fig. 1A and Methods). This analysis identified a total of 9108 detectable eRNAs in human cancers (Fig. 1A and Supplementary Fig. 1B). The number of detectable eRNAs ranged from 457 in liver hepatocellular carcinoma (LIHC) to 2267 in stomach adenocarcinoma (STAD) (Supplementary Fig. 1B, Supplementary Data 1). We classified these detectable eRNAs into three groups: 652 ubiquitous eRNAs expressed in ≥10 cancer types, 3124 intermediate specific eRNAs that are expressed in 2–9 cancer types, and 5332 cancer-type-specific eRNAs that are expressed in only one cancer type (Fig. 1A). The ubiquitous eRNAs account for 20.0% of detectable eRNAs in STAD, but for 64.8% of eRNAs in uterine corpus endometrial carcinoma (UCEC). Interestingly, the ubiquitous eRNAs have higher expression levels than the intermediate specific eRNAs (Wilcoxon test p-value <2.2×10^-16) and the cancer-type-specific eRNAs (Wilcoxon test p-value <2.2×10^-16, Supplementary Fig. 1C). This phenomenon is reminiscent of features of protein-coding genes, among which the housekeeping genes are generally expressed at high levels as compared with tissue-specific genes. Numbers of cancer-type-specific eRNAs showed a broad range, from 4 in colon adenocarcinoma (COAD) to 987 in STAD (Fig. 1a). We still observed cancer-type-specific pattern even with a much more stringent cutoff (RPM ≥ 5, Supplementary Fig. 1D), suggesting that the cancer-type-specific patterns of eRNA expression is not due to expression levels.

The expression similarity between any two tumor samples further showed a strong cancer-type-specific pattern, in that samples from the same cancer type clustered together (Fig. 1b). Furthermore, cancer types with similar histological features clustered at higher levels of hierarchy, such as pan-kidney cancers (kidney renal clear cell carcinoma [KIRC], kidney renal papillary cell carcinoma [KIRP] and kidney chromophobe [KICH]), pan-squamous cell carcinomas (bladder urothelial carcinoma [BLCA], head and neck squamous cell carcinoma [HNSCC], cervical squamous cell carcinoma and endocervical adenocarcinoma [CESC] and lung squamous cell carcinoma [LUSC]), the sarcomas (sarcoma [SARC] and uterine carcinosarcoma [UCS]), and the neuronal cancers (glioblastoma multiforme [GBM], brain lower grade glioma [LGG], pheochromocytoma and paraganglioma [PCPG], skin cutaneous melanoma [SKCM], and uveal melanoma [UVM]). This cancer-type-specific pattern is further confirmed by t-Distributed Stochastic Neighbor Embedding (t-SNE) analysis (Supplementary Fig. 1E), suggesting that eRNAs may be powerful biomarkers with clinical utility in specific cancer types.

Analysis of transcription factor and eRNA relationship. TFs have been shown to mediate the biogenesis of eRNAs, however, the global regulation of eRNAs is still unclear. Here, we collected human transcription factors (TFs) from JASPAR, DBD, AnimalTFDB, and TF2DNA, and calculated Spearman’s correlation between individual TF expression and individual eRNA expression in each cancer type. We defined TFs that show significant correlation (Rs ≥ 0.3; false discovery rate [FDR] <0.05) with an individual eRNA in a specific cancer type as its putative regulators, and further defined those putative regulators significantly correlated to ≥25% of individual eRNAs in a specific cancer type as putative master regulators. Taking breast invasive carcinoma (BRCA) as an example, we identified 84 putative master regulators, including three well-known regulators, FOXA1 (highly correlated with 28.6% of all eRNAs in BRCA), ESR1 (29.2%), and GATA3 (25.3%, Fig. 2a and Supplementary Data 2). Applying this computational predictions, we have identified 845 putative master regulators across cancer types (Supplementary Fig. 2A and Supplementary Data 2). The majority of these putative master regulators (693/845, 82.0%) exhibits strong expression correlation with a large number of eRNAs in only one or a few cancer types (i.e., <5), suggesting that the TF-eRNA correlation is tissue-specific and may imply direct regulatory functions of these TFs in that cancer type (Supplementary Fig. 2B). For example, OLG2 is a TF highly expressed in brain and highly correlate with the expression of 33.5% of eRNAs in LGG, suggesting its potential importance in enhancer/eRNA control therein (Supplementary Fig. 2C). Our global analysis of TF-eRNA correlation indicates that cancer- and/or lineage-specific patterns of eRNAs can be largely mediated by lineage-specific TFs.
Fig. 1 Expression landscape of eRNAs in human cancers.

a Expression profile of eRNA in human cancers. Red, green and blue bars, respectively, denote ubiquitous, intermediately specific and cancer-type-specific eRNAs. Pie charts reflect the percentage of each category of eRNAs in each cancer type. Abbreviation of each cancer type is listed in Supplementary Data 1. Scale bar denotes the expression level of eRNAs (log2). Organ icons made by Freepik (https://www.freepik.com/).

b Expression similarity among tumor samples. Color bar denotes each cancer type. Scale bar denotes the similarity of eRNA expression among TCGA samples.
We further identified 54 general putative master regulators that play significant roles in ≥10 cancer types (Fig. 2b). We performed GO analyses and observed that these TFs are enriched in the functional categories related to transcriptional process (Supplementary Fig. 2D-2E). These general master regulators can be classified into 17 families based on Pfam annotation (https://pfam.xfam.org/), and they are significantly enriched in four families, including MDB, ARID, GTF2I, and MYB (FDR < 0.05, Supplementary Fig. 2F). More importantly, we manually examined the functions of these TFs and found 35.2% (19/54) of them are associated with genomic instability (Fig. 2b). For example, NR2C2, which can mediate genomic rearrangements by a telomere-related pathway, is highly correlated with eRNAs in 20 cancer types, ranging from 26.3% in PRAD to 53.7% in KIRP. NFAT5, which can induce genomic instability by regulating inflammation, is highly correlated with eRNAs in 17 cancer types, ranging from 27.0% in READ to 63.4% in KIRP. These general master regulators are enriched in functions related to genomic instability, which provides a potential explanation to a previously observed positive correlation between somatic copy number alteration and enhancer activation in many cancer types.

Putative effects of eRNAs on signaling pathways. It remains a challenge to establish the direct interaction between eRNA and its target genes. We built a global eRNA-gene regulatory network across cancer types based on the physical distance (≤1 MB) and co-expression between individual eRNAs and their putative target genes (Spearman’s correlation $Rs \geq 0.3$, FDR < 0.05, Supplementary

Fig. 2 Putative regulation of eRNA biogenesis in cancer. a Putative regulators of eRNAs in BRCA. Each dot represents one transcription factor (TF). Red dots denote putative master regulators significantly correlated to ≥25% of individual eRNAs. Three well-known TFs (ESR1, GATA3, and FOXA1) are highlighted. X-axis is chromosome; y-axis is percentage of eRNAs correlated to each TF. b General putative master regulators in human cancers. X-axis is symbol of putative master regulator and y-axis is cancer type. General putative master regulators involved in genomic instability are marked by red. Number in cells denotes the percentage of eRNAs regulated by each master regulator. Scale bar denotes percentage of eRNA correlated with TFs (x axis) across cancer types (y axis).
Putatively regulation of eRNAs on CAGs and ICs. Based on the finding that eRNAs were tightly associated with cancer signaling pathways and drug-associated pathways, we further asked if eRNAs were directly linked to cancer therapy. We collected 135 clinically actionable genes (CAGs), and observed that 107 of them (79.3%) were correlated to eRNAs in at least one cancer type (distance ≤ 1MB, Spearman’s correlation Rs ≥ 0.3 and FDR < 0.05, Supplementary Data 4). Among these, 36 clinically actionable genes are correlated with eRNAs in at least five cancer types (Fig. 4a), suggesting that these genes are potentially regulated by eRNAs in multiple cancers. Increased numbers of samples enhance the ability to detect and analyze molecular data. In particular, the pan-cancer analysis will help to identify master events that play a critical functional role in different tumor contexts36–38. Furthermore, 91.7% of these correlations (33/36) could be supported by Hi-C interactions in at least one tissue, which further support the potential regulatory roles of eRNAs on clinically actionable genes (Fig. 4b and Supplementary Fig. 4A). For example, MDM2- and MDM2-associated eRNA (MDM2e, ENSR000000057277) are positively correlated in 12 cancer types, and Hi-C data supports their chromatin interactions in 20 tissues (Fig. 4c and Supplementary Fig. 4A). MYC- and MYC-associated eRNA (MYCe, ENSR00000333355) are positively correlated in six cancer types, and Hi-C data supports their interaction in all 20 tissues (Fig. 4d and Supplementary Fig. 4A).

We further investigated the relationship between individual eRNAs and immune checkpoints (ICs, Supplementary Data 5), and observed six checkpoints were correlated with eRNAs in at least five cancer types (Fig. 4e). All these putative eRNA-checkpoints interactions again were supported by Hi-C data in at least one tissue (Fig. 4f and Supplementary Fig. 4B). For example, CD200- and CD200-associated eRNA (CD200e, ENSR00000156542) are positively correlated in 12 cancer types, and Hi-C data supports the interactions in all 20 tissues (Fig. 4g and Supplementary Fig. 4B). Taken together, our analysis showed putative interactions between eRNAs and clinically actionable genes and/or immune checkpoints, suggesting the potentially clinical utility of eRNAs in cancer therapy.

Characterizing the functional roles of eRNA in cancer. To further characterize the functional roles of eRNAs in cancer, we examined the differentially expressed eRNAs (|fold change| >1.5 and FDR <0.05) across 16 cancer types with ≥5 tumor-normal paired samples (Supplementary Data 6). Overall, there were more upregulated eRNAs in tumor samples, ranging from 22.0% in thyroid carcinoma (THCA) to 68.9% in cholangiocarcinoma (CHOL), with a median of 42.2%. The downregulated eRNAs ranged from 1.9% in STAD to 27.9% in KICH, with a median of 9.9% (Fig. 5a). Taking BRCA as an example, we identified 208 upregulated eRNAs and 166 downregulated eRNAs (Fig. 5b). Among these, one eRNA located ~90 kb downstream of the oncogene NET139, which we referred to as NET1-associated eRNA (NET1e, ENSR0000023843), showed the largest expression alteration between tumor and normal samples (fold change = 5.8, FDR = 3.7 × 10−13, Fig. 5b and Supplementary Fig. 5A). NET1e exhibited much higher expression levels in BRCA, including all subtypes (Supplementary Fig. 5b). High level of NET1e was associated with worse survival (log-rank test p-value = 0.0004, Fig. 5c). Of interest, NET1 gene itself is not associated with the breast cancer patient’s survival (Supplementary Fig. 5c), suggesting that NET1e may be a predictor irrelevant to NET1 in breast cancer patients. NET1e was highly correlated with NET1 across all BRCA subtypes (Fisher’s transformation, R̂ s = 0.45, p = 1.58 × 10−4), including the basal subtype (Spearman’s correlation, Rs = 0.53, p = 1.95 × 10−11, Supplementary Fig. 5D). We further examined
NET1e signaling in MCF7, a breast cancer cell line (Fig. 5d). This region harbors classical enhancer features, such as the enrichment of histone H3K4me1 modification; it also exhibits strong enrichment of active enhancer markers such as histone H3K27ac modification and binding of transcription co-factor p300 (Fig. 5d). There are multiple p300 binding peaks densely distributed in the NET1e region, indicating it might be a potential super-enhancer in MCF7.

NET1e transcription was also detected by GRO-seq data in MCF7 cells (Fig. 5d). Furthermore, we observed a chromatin interaction between NET1e and NET1 by RNA Pol II ChIA-PET21, suggesting a direct interaction for regulation.

To further characterize NET1e, we applied CRISPR activation (CRISPR/dCas9-SAM)40 to epigenetically induce NET1e expression in MCF7 cells (Fig. 5e). We successfully achieved >30-fold NET1e upregulation by two different sgRNAs, which interestingly led to strong upregulation of NET1 mRNA (Fig. 5e). Consistent with the role of NET1 as a breast cancer oncogene39, CRISPR-SAM induction of NET1e increased cell proliferation significantly (Fig. 5e). To delineate a role of the eRNA per se, we designed three locked nucleic acid GapmeR (LNAs) to knockdown NET1e. With efficient reduction of NET1e expression, we found that cell proliferation was significantly reduced in both MCF7 cells (Fig. 5f) and MCF7 cells with CRISPR-SAM treatment (Fig. 5g). These data, together with their chromatin looping (Fig. 5d), suggested that NET1e contributes to breast cancer progression via upregulation of the important breast cancer oncogene NET1. In addition, knockdown of NET1e did not significantly impact cell proliferation in non-breast cancer cell lines, including MCF10A.

Fig. 3 Putatively regulatory network and drug response of eRNAs on signaling pathways. a eRNA and putative target gene in 10 cancer signaling pathways. Red nodes in outer circle denote eRNAs that regulate genes in cancer signaling pathways across cancer types. Blue nodes in middle circle denote putative target gene across cancer signaling pathways. Blue bars in inner circle denote percentage of eRNA putative target genes across each pathway. Magenta links denote correlation between eRNAs and their putative target genes. b Association between eRNAs (top) and drugs (bottom) across different cancer signaling pathways. Orange and blue links, respectively, denote within- and cross-pathway relationships.
and Hela, in which NET1e shows low expression level (Supplementary Fig. 5E and 5F), suggesting a specific effect of NET1e in breast cancer growth. It supports a minimal off-target effects/toxicity of NET1e LNA and the potential to target cancer-specific eRNAs for effective treatment. More importantly, expression of NET1e is negatively correlated (sensitive, Spearman’s correlation, FDR < 0.05) with 14 and 15 compounds response (AUC) in CTRP and GDSC, respectively, which is significantly correlation. FDR < 0.05) with 56 and 31 compounds between cancer immune checkpoints and their eRNA.

Identification of clinically relevant eRNAs. Clinical relevance is used to define cancer-related clinical features, including association with survival, differential expression among subtypes, stages, grade, and different groups of smoking history. To further investigate the clinical utility of eRNAs, we identified 5715 clinically relevant eRNAs (i.e., associated with clinical relevance) that account for 62.7% (5715/9108) of the total detectable eRNAs in cancers (Fig. 6a and Supplementary Data 8). For example, TAOK1-associated eRNA (TAOK1e, ENSR00000092917), which putatively targets the Hippo signaling pathway gene TAOK1, is associated with overall survival in KIRC (Fig. 6b, log-rank test, FDR = 7.97 × 10⁻⁵);
Fig. 5 Functional characterization of NET1e in cancer.

- **a** Expression alterations of eRNAs in human cancers. Red, blue, and gray, respectively, denote percentage of upregulated, downregulated, and no significant expression of eRNAs in each cancer type.
- **b** Differentially expressed eRNAs in BRCA. Scale bar denotes the fold change between tumor and normal samples.
- **c** Survival curves for NET1e in BRCA (top quarter in red vs. bottom quarter in blue).
- **d** Epigenetic features and expression of NET1e and NET1 region in MCF7.
- **e** Overexpression of NET1e in MCF7 and its functional consequences.
- **f** Knockdown NET1e by LNA (left) and cell growth assay (right) in MCF7.
- **g** Knockdown NET1e by LNA after activation (left) and cell growth assay (right) in MCF7.
- **h** NET1e-associated drugs in GDSC and CTRP database.
- **i** Response curve of compound BEZ235 in NET1e overexpressed cells and control.
- **j** Response curve of compound Obatoclax in NET1e overexpressed cells and control. Error bars in (e), (f), (g), (i), and (j) indicate mean ± SD.
EN1-associated eRNA (EN1e, ENSR00000122295), which putatively targets the BRCA-basal marker gene EN1b5, is highly expressed in the BRCA-basal subtype (Fig. 6c, Analysis of variance [ANOVA], FDR < 2.2 \times 10^{-16}); CELF2-associated eRNA (CELF2e, ENSR00000024385), which putatively targets the tumor suppressor gene CELF2b4, is highly expressed in stage III STAD (Fig. 6d, ANOVA, FDR = 4.7 \times 10^{-7}); APH1A-associated eRNA (APH1Ac, ENSR0000013533), which putatively targets the oncogene APH1Ab7, is highly expressed in grade-3 LIHC (Fig. 6e, ANOVA, FDR = 6.4 \times 10^{-5}); and SCRIB-associated eRNA (SCRIBb, ENSR00000232146), which putatively targets the oncogene SCRIBb4, is differentially expressed among patients with LUAD according to different categories of smoking history (Fig. 6f, ANOVA, FDR < 4.3 \times 10^{-3}). These results suggest that appreciable levels of eRNAs are clinically valuable.

A comprehensive data resource to explore eRNAs in cancer. We developed a user-friendly data portal, eRNA in cancer (eRic) (https://hanlab.uth.edu/eRic), to facilitate broad access to these data by the biomedical community. eRic includes four modules: expression, clinical relevance, target genes and drug response regulation of gene transcriptional circuitry in human cancers. We

Discussion

eRNA are increasingly realized to play important roles in the regulation of gene transcriptional circuitry in human cancers. We

Fig. 6 Clinically relevant eRNAs and the eRNA data portal in cancer (eRic). a Number of clinically relevant eRNAs across different cancer types. For survival analyses, we use Cox model to analyze the relationship between eRNA expression and survival time, and considered FDR < 0.05 as significant. For other clinical relevance, we used Student’s t test to test the difference between two groups and analysis of variance (ANOVA) to test the difference among multiple groups, and considered FDR < 0.05 as significant. Scale bar denotes number of clinically relevant eRNAs. b–f Examples of clinically relevant eRNAs for patient survival time (b), cancer subtype (c), tumor stage (d), tumor grade (e), and patient smoking history (f). The boxes in (b–f) show the median ± 1 quartile, with whiskers extending from the hinge to the smallest or largest value within 1.5 interquartile range from the box boundaries. g The four modules in eRic: expression landscape, clinical relevance, putative target genes, and drug response.
developed a computational pipeline to reveal the global expression landscape of eRNAs across multiple cancer types. By integrating multi-omics data from TCGA, CCLE, ENCODE, FANTOM, Roadmap Epigenomics, and 4D Nuclease projects, as well as pharmacogenomics datasets from GDS and CTRP, we have revealed novel insights on the expression landscape and clinical utility of eRNAs in cancer (Supplementary Fig. 7 and Supplementary Table 1). We demonstrated a strong cancer-type-specific expression pattern of many eRNAs, suggesting that eRNAs may be powerful diagnostic and/or prognostic markers in cancer therapy. The cancer-type-specific pattern is aligned well with the previous studies characterizing the regulatory elements (e.g., enhancers) based on ATAC-seq39, as well as activated enhancers30. The sequencing depth may still cause some batch effects. For those cancer types with 75/76 bp pair-end reads, including OV, STAD, and GBM, only STAD showed the relative more eRNAs. In contrast, COAD, READ, and UCEC with 76 bp single-end reads have fewer relative eRNAs. The majority (25 out of 31) of cancer types with 48/50 bp pair-end reads showed vast difference in detectable eRNAs ranging from 2457 in LIHC to 3790 in TGCT (Supplementary Data 1). The number of eRNAs is not correlated with the sequencing depth in these cancer types (Rs = 0.02, p = 0.93). These results suggested that the tissue-specific factor of eRNAs is robust. We identified a series of transcription factors as the potential regulators for eRNA biogenesis, which greatly expanded our knowledge about eRNA biogenesis. Interestingly, we observed that the general putative master regulators of eRNAs, including NR2C2 and NFAT5, displayed an intriguing enrichment of functions in modulating genomic instability, suggesting a potential mechanistic link between eRNA expression/biogenesis and genome instability.

Integrative analysis showed that more than 80% genes in the canonical cancer signaling pathways are highly correlated with specific eRNAs in at least one cancer type, suggesting potentially important regulatory roles of eRNA in cancer. Due to the lack of Hi-C data in large number of tumor tissues, we can only confirm the eRNA-gene connections support by Hi-C interaction in at least one normal tissue. It will be more appropriate to use the Hi-C data in matched samples to confirm the regulatory roles of eRNAs. We also observed associations between eRNAs and anticancer drugs, either within the target pathway or through a cross-pathway. Furthermore, many clinically actionable genes and immune checkpoints were putatively regulated by eRNAs, emphasizing the clinical utility of eRNA in anticancer treatment. Nevertheless, our integrative analysis demonstrated the putative regulatory roles of eRNAs, and further experiments are necessary to confirm their regulatory roles.

We demonstrated the functional importance of an individual eRNA, NET1e, which is highly expressed in breast cancer. CRISPR activation of NET1e accelerated cell growth in MCF7, suggesting its oncogenic effect in cancer cell lines, while NET1e LNA specifically decreased cell proliferation in MCF7, and has shown limited or no off-target effects and toxicity. More importantly, in situ overexpression of NET1e will lead to drug resistance to BEZ235 and Obatoclax in MCF7 cells. To our knowledge, this is the first evidence showing that eRNA could affect drug response in cancer. Taken together, our results suggest the promising clinical importance of NET1e.

RNA-target drugs are now becoming a major new branch of pharmaceuticals. For example, US FDA has approved the first siRNA drug in 2018 (i.e., to use Patisiran infusion for the treatment of peripheral nerve disease like polyneuropathy), and there are extensive ongoing efforts to target disease-relevant RNAs in the pharmaceutical industry. We identified an appreciable number of clinically relevant eRNAs and further demonstrated their clinical utility in diagnostic and/or eRNA-targeted therapy. To facilitate utilization of the expression landscape and clinical relevance of eRNAs by the broad biomedical community, we have built a data portal, eRIC, offering a comprehensive resource for further investigation of eRNA expression landscape, clinical relevance, target genes, functions in tumorigenesis or response to anticancer drugs. This is the first data portal in eRNA field and will be a valuable resource for future investigation of cancer therapy that targets eRNAs. In particular, the related data will help the researchers to identify key eRNAs in cancer patients, and to select the appropriate cancer cell lines for their functional investigations.

Methods

Data collection. We downloaded RNA-seq BAM files, clinical features and the eRNA expression matrix from TCGA data portal (https://portal.gdc.cancer.gov/). GRO-seq data and ChiP-seq for MCF7 were collected from our previous paper4. ChIA-PET data were obtained from WASHU Epigenome Browser (https://epigenomewidget.wustl.edu/). RNA-seq data of cancer cell lines were downloaded from the Cancer Cell Line Encyclopedia (https://portals.broadinstitute.org/ccle/about). Drug sensitivity datasets were downloaded from GDSC14 and CTRP51. The Hi-C interactions across 20 human tissues were downloaded from http://promoter.bx.psu.edu/public/HiCPlus/matrix/52. Clinically actionable genes were collected from previous literatures59,63. Cancer immune checkpoints were collected from a previous literature64. RNA-seq data for A549 treated by belinostat (GSE96649) was downloaded from Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/), and processed by Hisat2 software55 and SAMtools toolkit56.

Quantification of eRNA expression. Annotation of enhancers was collected from Ensembl (https://useast.ensembl.org/)57, FANTOM (http://fantom.gsc.riken.jp/index.html)/58, and Roadmap Epigenomics (http://www.roaddmapepigenomics.org/)59. The annotation from ENCODE and Roadmap considered H3K4me1 and H3K27ac marks60, and annotation from FANTOM considered CAGE marks. We combined all three datasets and used those enhancers annotated in at least two datasets. Annotation of protein-coding genes was collected from GENCODE61 and UCSC Genome Browser62 (hg38). We used the ± 3 kb of the middle loci of enhancer to define eRNA region52. We also filtered out those eRNA regions that overlapped with known coding regions, including those eRNA regions that were in both transcription start site and transcription end site. In particular, the ± 500 bp (uaRNA) region was also excluded from our analysis. We also excluded all blacklist regions, including RNA repeats.

We downloaded RNA-seq BAM files from TCGA data portal (https://portal.gdc.cancer.gov/). The RNA-seq raw data is public in TCGA consortium as described on the official website (https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/Expression_mRNA_Pipeline/). We downloaded BAM files for our downstream analysis. We mapped RNA-seq data to these eRNA regions and calculated the expression level as RPM49 for each eRNA in each sample. We normalized eRNA expression by reads per million. We averaged all RPMs annotated to the eRNA from all samples in a cancer type, and defined those eRNAs with average expression level (RPM) ≥ 1 as a detectable eRNA. We converted different genomic versions of the human genome by liftover65. We present t-SNE analysis using R package Rtsne66. Our method may only detect a subset of polyadenylated eRNAs at their steady state since TCGA and CCLE only included the poly(A) RNA-seq. Our method may not distinguish functional eRNAs from those may just be the side effect of active enhancer.

Biogenesis of eRNAs. We collected TFs from multiple TF resources, including JASPAR (http://jaspar.genereg.net/)53, DBD (http://www.transcriptionfactor.org/)54, AnimalTFDB (http://bioinfo.life.hust.edu.cn/AnimalTFDB/)55, and TF2DNA occupancy regions from TRED. We identified putative regulators of eRNAs based on the co-expression between individual eRNA and each TF in a given cancer type, and considered Spearman’s correlation Rs ≥ 0.3 and FDR < 0.05 as significant. For each cancer type, TFs that significantly correlated with more than 25% of the detectable eRNAs were defined as master regulators. Master regulators that exist in more than 10 cancer types were defined as general master regulators. The functional enrichment analyses of these general master regulator were performed by DAVID62 and GSEA63.

eRNA putative target genes and drugs. We identified eRNA putative target genes based on close distance (≤ 1MB) and co-expression (Spearman’s correlation Rs ≥ 0.3 and FDR < 0.05) between individual eRNAs and their putative target genes48. We filtered out eRNAs located in the intronic regions of target genes for correlation analysis. We collected 229 genes associated with 10 cancer signaling pathways54, p53, PI3K, Myc, RTK/RAS, cell cycle, Wnt, TGF beta, Notch, and Hippo. Due to the lack of Hi-C data in large number of tumor tissues, we used 20 Hi-C data from normal tissues53 to confirm the putative eRNA-gene connections. Hi-C interaction was evaluated by O/E value, which is calculated as observed value (estimated with normalized mapped reads) divided by expected value (estimated with a genome-wide model of interaction probability over the
genomic distance)64. We also estimated the Hi-C interactions based on random eRNA gene pairs throughout genome as background, and performed permutation test (bootstrap test) with random eRNA gene pairs with the background of random pairs. For those eRNAs identified in TCGA, we examined their expression across ~1000 cancer cell lines in CCLE. GDSC and CTRP collected drug response data across >1000 cancer cell lines. We used matched cell lines to calculate the Spearman’s correlation between eRNA expression in CCLE and drug response value (AUC) of more than 500 anticancer drugs from CTRP and GDSC, and defined FDR < 0.05 as significant35.

Clinically relevant eRNAs. We used the Student’s t test to assess the statistical difference between tumor and paired normal samples and defined significantly aberrant expression as [fold change] > 1.5 and FDR < 0.05. We used Student’s t test for two groups and analysis of variance (ANOVA) for multiple groups to assess the statistical difference of patient smoking history and cancer subtype, stage, and grade (FDR <0.05). Only groups with ≥5 samples were included in these analyses. We used the univariate Cox model or log-rank test to test whether eRNA expression was associated with the overall survival times of cancer patients and considered FDR < 0.05 as significant.

Lentivirus generation. A mixture of 3 μg of pmPA2X, 1 μg of PMD2.G, and 4 μg of target sgRNA vector was transfected into 293T cells using Lipofectamine 2000 (Life Technologies). After 16 h, the media was changed, and the supernatants were collected at 48 and 72 h posttransfection for two independent infections. The collected supernatants were filtered using 0.45 μm syringe filter (Fisher) and used to infect MCF7 cells after being mixed with the permissive (final concentration of 8 μg/ml-1, Sigma). Target cells were incubated in complete media with an equal amount of lentiviral particle-containing media for 24 h for each infection. After the second infection, the cells were selected over at least one week with selection markers to achieve a stable line.

Cell culture and transfection. We originally purchased MCF7 and MCF10A cells from American Type Culture Collection. We maintained the MCF7 and Hela cells in Dulbecco’s modified Eagle’s medium (DMEM) (Corning) media, supplemented with 10% fetal bovine solution (FBS) (GenDEPOT) and maintained the MCF10A cells in DMEM/F-12 (Corning) supplemented with 5% horse serum, 20 ng ml−1 EGF, 0.5 mg ml−1 hydrocortisone, 100 ng ml−1 cholera toxin, 10 μg ml−1 insulin in a 5% CO2 incubator at 37 °C65. Transfection of LNA GapmeRs (Qiagen) into the cells was carried out using Lipofectamine 2000 (Life Technologies) according to the manufacturer’s protocol with a final concentration of 60 nM. For NETi eRNA knockdown, a mixture of NETi LNA 1, 2, and 3 was transfected into the cell. The sequence information for LNA is described in Supplementary Table 2.

CRISPR/dCas9-SAM. We followed the experimental procedures in Konermann et al.40. In brief, we generated the MCF7 stable cell line expressing dCas9-VP64-Blast in Dulbecco’s modified Eagle’s medium (DMEM) (Corning) media, supplemented with 10% fetal bovine solution (FBS) (GenDEPOT) and maintained the MCF10A cells in DMEM/F-12 (Corning) supplemented with 5% horse serum, 20 ng ml−1 EGF, 0.5 mg ml−1 hydrocortisone, 100 ng ml−1 cholera toxin, 10 μg ml−1 insulin in a 5% CO2 incubator at 37 °C65. Transfection of LNA GapmeRs (Qiagen) into the cells was carried out using Lipofectamine 2000 (Life Technologies) according to the manufacturer’s protocol with a final concentration of 60 nM. For NETi eRNA knockdown, a mixture of NETi LNA 1, 2, and 3 was transfected into the cell. The sequence information for LNA is described in Supplementary Table 2.

qRT-PCR for eRNA expression. RNA was extracted from cells using Quick RNA miniprep (Zymo Research) and the RNA was reverse-transcribed using SuperScript III (Thermo Fisher). The cDNA was amplified using 2X SybrGreen (Invitrogen) or qScript XLT DNA MasterMix (QuantaBio). We performed qRT-PCR in QuantStudio 3 qPCR systems (Applied Biosystems, Thermo Fisher) using 2X Sybdvanced Universal Sybr Green Supermix (Bio-Rad). We used glyceraldehyde-3-phosphate dehydrogenase for normalization. We used a two-tailed Student’s t test to obtain the p-values. The sequences of qPCR primers are provided in Supplementary Table 2. All RT-qPCRs were performed with at least biological replicates. Each biological replicate has three technical repeats.

Cell growth assay. Cells were trypsinized and plated at 3000 cells per well in a 96-well plate (Corning). Photos of each well were taken every 24 h using Incucyte Live Cell Imager (EIssen Bioscience), and cell confluence was measured by Incucyte Software (Essen Bioscience) for 72 h. To normalize the confluences, the values for each time point were divided by the mean value at 0 h. In order to test the effects of NETi to drug sensitivity in MCF7, we examined the half maximal inhibitory concentration (IC50) for 103K inhibitor (BEZ235), BCL-2 Inhibitor (Obatoclax) in MCF7 Crispr/SAM control and NETi using Incucyte live cell imager.

Data portal. We constructed the data portal based on Rscript and JavaScript. The expression profile, clinical relevance, putative target genes, Hi-C data, and drug responses of eRNAs are available on the data portal (https://hanlab.uth.edu/eric/).

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability

All accession codes, unique identifiers, or web links for publicly available datasets are described in the paper. All data supporting the findings of the current study are listed in Supplementary Data 1–8, Supplementary Fig. 7, and our online data portal (https://hanlab.uth.edu/eric/).

Code availability

All codes are available upon reasonable request.

Received: 28 November 2018; Accepted: 16 September 2019; Published online: 08 October 2019

References

1. Blackwood, E. M. & Kadonaga, J. T. Going the distance: a current view of enhancer action. Science 281, 60–63 (1998).
2. Kim, T.-K. et al. Widespread transcription at neuronal activity-regulated enhancers. Nature 465, 182–187 (2010).
3. Li, W., Notani, D. & Rosenfeld, M. G. Enhancers as non-coding RNA transcription units: recent insights and future perspectives. Nat. Rev. Genet. 17, 207–223 (2016).
4. Li, W. et al. Condensin I and II complexes license full estrogen receptor α-dependent enhancer activation. Mol. Cell 59, 188–202 (2015).
5. Hisieh, C.-L. et al. Enhancer RNAs participate in androgen receptor-driven looping that selectively enhances gene activation. Proc. Natl Acad. Sci. USA 111, 7319–7324 (2014).
6. Melo, C. A. et al. ERNAs are required for p53-dependent enhancer activity and gene transcription. Mol. Cell 49, 524–535 (2013).
7. Lévéillé, N., Melo, C. A. & Agami, R. Enhancer-associated RNAs as therapeutic targets. Expert Opin. Biol. Ther. 15, 723–734 (2015).
8. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 74–77 (2012).
9. Andersson, R. et al. An atlas of active enhancers across human cell types and tissues. Nature 507, 455–461 (2014).
10. Bernstein, B. E. et al. The NIH roadmap epigenomics mapping consortium. Nat. Biotechnol. 28, 1045–1048 (2010).
11. The Cancer Genome Atlas Research Network. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 45, 1113–1120 (2013).
12. Ghandi, M. et al. Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature https://doi.org/10.1038/s41586-019-1186-3 (2019).
13. Hess, M. G. et al. Correlating chemical sensitivity and basal gene expression reveals mechanism of action. Nat. Chem. Biol. 12, 109–116 (2016).
14. Yang, W. et al. Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res. 41, D955–D961 (2016).
15. Hali, N., Murakami, S., Nagari, A., Dunko, C. G. & Lee Kraus, W. Enhancer transcripts mark active estrogen receptor binding sites. Genome Res. 23, 1210–1223 (2013).
16. Dorighi, K. M. et al. Mi3 and Mi4 facilitate enhancer RNA synthesis and transcription from promoters independently of H3K4 monomethylation. Mol. Cell 66, 568–576 (2017).
17. Zha, J., He, F., Hu, S. & Yu, J. On the nature of human housekeeping genes. Trends Genet. 24, 481–484 (2008).
18. Ricketts, C. J. et al. Molecular characterization of renal cell carcinoma. Cell Rep. 313–326 https://doi.org/10.1016/j.celrep.2018.03.075 (2018).
19. Campbell, J. D. et al. Genomic, pathway network, and immunologic features distinguishing squamous carcinomas graphical. Cell Rep. https://doi.org/10.1016/j.celrep.2018.03.063194–212 (2018).
20. Malta, T. M. et al. Machine learning identifies stemness features associated with oncogenic dedifferentiation. Cell 173, 338–354.e15 (2018).
21. Zhou, X. et al. Exploring long-range genome interactions using the WashU Epigenome Browser. Nat. Methods 10, 375–376 (2013).
22. Kummerfeld, S. K. DBD: a transcription factor prediction database. Nucleic Acids Res. 34, D74–D81 (2006).
23. Zhang, H. M. et al. AnimalTFDB: a comprehensive animal transcription factor database. Nucleic Acids Res. 40, D144–D149 (2011).
24. Cosentino, C., Grieco, D. & Costanzo, V. ATM activates the pentose phosphate pathway promoting anti-oxidant defense and DNA repair. EMBO J. 30, 546–555 (2011).
25. Bernardo, G. M. et al. FOXA1 represses the molecular phenotype of basal breast cancer cells. Oncogene 32, 554–563 (2013).
26. Liu, Z. et al. Enhancer activation requires trans-recruitment of a major transcription factor complex. Cell https://doi.org/10.1016/j.cell.2014.08.027 (2014).

27. Marzez, P., Armenise, C., Roumelioti, F., Basyuk, E. & Gagos, S. Nuclear-receptor-mediated telomere insertion leads to genome instability in ALT cancers. Cell 913–927 https://doi.org/10.1016/j.cell.2015.01.044 (2015).

28. Remo, A. et al. Systems biology analysis reveals NEATs as a novel biomarker and microenvironment regulator of inflammatory breast cancer. J. Transl. Med. 1–13 https://doi.org/10.1186/s12967-015-0492-2 (2015).

29. Colotta, F., Allavena, P., Sica, A., Garlanda, C. & Mantovani, A. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis 30, 1073–1081 (2009).

30. Chen, H., Li, C., Peng, X., Zhou, Z. & Weinstein, J. N. A pan-cancer analysis of enhancer expression in nearly 9000 patient samples. Cell 386–399 https://doi.org/10.1016/j.cell.2018.03.027 (2018).

31. Ren, G. et al. CTFC-mediated enhancer-promoter interaction is a critical regulator of cell-to-cell variation of gene expression. Mol. Cell 67, 1049–1058 (2017).

32. Ron, G., Goberson, Y., Moran, D. & Kaplan, T. Promoter-enhancer interactions identified from Hi-C data using probabilistic models and hierarchical topological domains. Nat. Commun. 8, 2237 (2017).

33. Javierre, B. M. et al. Lineage-specific genome architecture links enhancers and non-coding disease variants to target gene promoters. Cell 167, 1369–1384 (2016).

34. Sanchez-Vega, F. et al. Oncogenic signaling pathways in the cancer genome atlas. Cell 173, 321–337 (2018).

35. Li, J. et al. Characterization of human cancer cell lines by reverse-phase protein arrays. Cancer Cell 31, 225–239 (2017).

36. Zhang, Z. et al. Global analysis of tRNA and translation factor expression reveals a dynamic landscape of translational regulation in human cancers. Commun. Biol. 1, 234 (2018).

37. Ye, V. Y. et al. The genomic landscape and pharmacogenomic interactions of clock genes in cancer chemotherapy. Cell Syst. 6, 314–328 (2018).

38. Xiang, Y. et al. Comprehensive characterization of alternative polyadenylation in human cancer. J. Natl Cancer Inst. 110, 379–389 (2018).

39. Gilcrease, M. Z. et al. Coexpression of CRISPR-Cas9 complex. Nature 517, 583–588 (2015).

40. Zhang, Z. et al. tRice: a user-friendly data portal to explore the expression landscape of tRNAs in human cancers. RNA Biol. 1–6 https://doi.org/10.1080/15476286.2019.1657744 (2019).

41. Ye, Y. et al. Characterization of hypoxia-associated molecular features to aid hypoxia-targeted therapy. Nat. Metab. 1, 431–444 (2019).

42. Gong, J. et al. A pan-cancer analysis of the expression and clinical relevance of small nucleolar RNAs in human cancer. Cell Rep. 21, 1968–1981 (2017).

43. Harvey, K. F., Zhang, X. & Thomas, D. M. The Hippo pathway and human cancer. Nat. Rev. Cancer 13, 246–257 (2013).

44. Beltran, A. S., Graves, L. M. & Blanchoft, P. Novel role of Engrailed 1 as a prosurvival transcription factor in basal-like breast cancer and engineering of interference peptides block its oncogenic function. Oncogene 33, 4767–4777 (2014).

45. Barretina, J. et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603–607 (2012).

46. Ran, Y. et al. γ-Secretase inhibitors in cancer clinical trials are pharmacologically and functionally distinct. EMBO Mol. Med. 9, 950–966 (2017).

47. Elsum, I. A. et al. S3 heterozygosity predisposes to lung cancer and cooperates with KRas hyperactivation to accelerate lung cancer progression in vivo. Oncogene 33, 5523–5533 (2014).

48. Ruan, H. et al. Comprehensive characterization of circular RNAs in ~1000 human cancer cell lines. Genome Med. 11, 55 (2019).

49. Corces, M. R. et al. The chromatin accessibility landscape of primary human cancers. Science 362, eaav1899 (2018).

50. Iorio, F. et al. A landscape of pharmacogenomic interactions in cancer. Cell 166, 740–754 (2016).

51. Zhang, Y. et al. Enhancing Hi-C data resolution with deep convolutional neural network HiCPlus. Nat. Commun. 9, 750 (2018).

52. Van Allen, E. M. et al. Whole-exome sequencing and clinical interpretation of somatic mutations in melanoma. J. Transl. Med. 16, 239 (2018).

53. Auslander, N. et al. Robust prediction of response to immune checkpoint blockade therapy in metastatic melanoma. Nat. Med. https://doi.org/10.1038/s41591-018-0157-9 (2018).

54. Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).

55. Liu, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).