Leptin sexual dimorphism, insulin resistance, and body composition in normal weight prepubescent

Dimorfismo sexual de la leptina, resistencia a la insulina y composición corporal en prepúberes normopeso

Jenny Vitery R.a,d, Guillermo Ortegab,d, Blanca C. Salazar C.c,d

aDepartment of Human Rehabilitation, Faculty of Health, Universidad del Valle; Faculty of Health of Universidad Santiago de Cali. Cali, Colombia

bDepartment of Basic Sciences, Research Group on Basic and Clinical Health Sciences, School of Medicine, Pontificia Universidad Javeriana. Cali, Colombia

cDepartment of Physiological Sciences. Faculty of Health, Universidad del Valle. Cali, Colombia

dNutrition Group, Universidad del Valle. Cali, Colombia

Received: September 5, 2019; Approved: September 10, 2020

Abstract

The prepubertal stage is a critical period of body fat development, in which leptin and insulin resistance has been associated, however, there are few studies in normal-weight prepubertal children. \textbf{Objective:} To assess the relationship between leptin and body composition and insulin resistance in a group of normal-weight prepubertal children. \textbf{Patients and Method:} Analytical cross-sectional study with 128 healthy prepubescents of normal weight, aged between 6 and 10 years. Height, weight, body mass index (BMI), body fat percentage (BFP), waist circumference (WC), and hip circumference (HC) were measured. Plasma leptin (ng/mL) and insulin (mU/L) were evaluated by immunassay and glycemia (mmol/L) by enzymatic method. HOMA-IR was calculated. A comparison study and correlation analysis by sex were performed. \textbf{Results:} Females presented higher values than males of leptin (6.8 ± 5 vs 3.3 ± 3.7; \(p = 0.000\)), insulin (7.1 ± 4.5 vs 5.2 ± 2.5; \(p = 0.016\)), BFP (22.4 ± 4.3 vs 18.6 ± 3.9; \(p = 0.000\)), and HC (67 ± 5.7 vs 65.0 ± 4.5; \(p = 0.019\)), and a lower waist/hip ratio (0.84 ± 0.04 vs 0.88 ± 0.04; \(p = 0.000\)). Leptin correlations with anthropometric variables were significant in...
Introduction

During the prepubertal stage, around age 6, adiposity rebound (AR) occurs. The onset of this rebound can be defined as the age at which the Body Mass Index (BMI) increases after reaching its lowest value. This increase in BMI is mainly attributed to the gain of adipose tissue\(^1,2\) that occurs between 6 and 10 years old, where the concentration of sexual hormones is incipient\(^3\) so its effect is not determinant at this stage. AR before 5.5 years of age or a higher BMI in the prepubertal stage have been associated with obesity in adulthood\(^2,4,5\).

Fat gain in prepubertal children occurs predominantly by adipogenesis\(^3,6\). One of the factors associated with this process is leptin, a peptide hormone produced mainly by subcutaneous adipocytes, described as a marker of adipogenesis\(^7\). Since one of its functions is to decrease satiety in the hypothalamus and increase peripheral energy expenditure, its dysfunction has been associated with obesity\(^7\) and insulin resistance in adults\(^3\). In addition, the increased size of the adipocyte has been related to the increase in its concentration which correlates with the total body fat mass\(^3,8\).

Leptin has been studied mainly in overweight and obese prepubertal patients\(^9,10\), characteristics where there is a predominance of adipocyte hypertrophy. In normal-weight prepubertal patients, where adipogenesis is a determining factor\(^2\), the sex-specific dimorphism of leptin concentration and its relationship with insulin resistance and body composition has been little explored\(^11,12\).

The objective of this study was to evaluate by sex the relationship between circulating leptin concentration with body composition and insulin resistance in a group of normal-weight prepubertal children.

Patients and Method

Analytical cross-sectional study conducted on prepubertal school children in Cali, Colombia, between October 2017 and March 2018. To calculate the sample size, we assumed power of 80% and a leptin effect size by age of 0.115, estimating \(n = 80\) subjects. This guaranteed the functional relationship between the variables of the study, however, 128 prepubertal patients were finally recruited, improving the power to 95%. Normal weight was considered a BMI between -1SD and +1SD\(^13\).

In order to identify the normal-weight children, we measured and weighed 1,076 apparently healthy schoolchildren aged between 6 and 10 years from six basic primary education schools, from a middle socioeconomic stratum. Although 345 were selected, 128 subjects (62 boys and 66 girls) in Tanner stage I (prepubertal), diagnosed by medical evaluation were normal weight\(^14,15\). Subjects with weight control treatment, endocrine and/or neurological disease, with inflammatory processes diagnosed by ultra-sensitive C-reactive protein (Us-PCR) in plasma (> 0.43 mg/L)\(^4\), or who voluntarily withdrew from the study were excluded. The parents and the selected children accepted and signed the informed consent and assent, respectively.

This study was approved by the Human Ethics Committee of the Universidad del Valle - Colombia (act No. 005-017), according to the Declaration of Helsinki and the regulations of the participating educational institutions.

Sociodemographic characterization and anthropometric measurements

Sociodemographic information was obtained through a survey. The anthropometric measurement was carried out on the 128 subjects according to ISAK (International Society for the Advancement of Kinanthropometry) guidelines\(^16\).

The anthropometric measurements were obtained with the subjects in light clothing, without shoes, and after bladder emptying. For the weight (kg), a mechanical scale was used (SECA model 761 with a dial, ±100g), and a wall-mounted stadiometer (SECA 240 ±1 mm), was used for measuring height (cm). With these measurements, the BMI (kg/m\(^2\)) was calculated.

To measure waist and hip circumference (cm), we used a flexible and inextensible steel tape measure (Harpenden ± 0.1cm). The waist circumference (WC) was measured at the end of the exhalation, placing the tape measure at the midpoint between the lower edge of the tenth rib and the iliac crest. The hip circumference (HC) was measured while standing with feet...
Sexual Dimorphism and Body Composition - J. Vitery R. et al

A tape measure around the largest part of the hip (the widest part of the buttocks) and the pubic symphysis was used to measure the body fat percentage (BFP) by placing the tape measure around the largest part of the hip (the widest part of the buttocks) and the pubic symphysis.

The body fat percentage (BFP) was obtained by measuring the triceps and subscapular skinfolds with a skinfold caliper (Harpenden ±0.2mm, with constant pressure of 10g/mm²) The BFP was estimated with the Slaughter equation. The technical error associated with the measurement was 2.5%, lower than that accepted by this equation.

Biochemical determinations

Plasma concentrations of leptin, insulin, glucose, and FBS-PCR of 110 subjects were measured in blood samples obtained by venipuncture, after a 12-hour fast. The plasma obtained by centrifugation was stored at -20°C. For the measurement of insulin by immunnoassay (Architect Insulin Reagent Kit, Abbott Laboratories), 24µL of plasma with a kit’s sensitivity of <1.0 µU/mL was used. In the determination of leptin (Leptin ELISA LDN-kit), 20µL of duplicate plasma sample was used, with a detection limit of 0.5ng/mL. Blood glucose was determined by the glucose oxidase technique (Glucose, Abbott, Clinical Chemistry, USA) using 2µL of the sample, and FBS-PCR determination was made by turbidimetry (Multigen CRP Vario®; Abbott, Wiesbaden, Germany) with 2µL of the blood sample with a detection limit of 0.1mg/L. The degree of insulin resistance (IR) was determined by the HOMA-IR index, calculated as HOMA-IR= [insulin (µU/mL) x glucose (mmol/L)] / 22.5.

Table 1. Biochemical and anthropometric variables by sex of prepubertal children

	Boys (n = 54)		Girls (n = 56)	
	Mean ± SD	CI 95%	Mean ± SD	CI 95%
Age (years)	7.8 ± 1.3	7.4 - 8.1	7.9 ± 1.2	7.6 - 8.3
Height (cm)	126 ± 7	124 - 128	126 ± 8	124 - 128
Weight (kg)	25.8 ± 3.6	24.8 - 26.7	26.2 ± 5.2	24.8 - 27.6
BMI (kg/m²)	16.1 ± 1.2	15.7 - 16.4	16.4 ± 1.8	15.9 - 16.8
BFP (%)**	18.4 ± 3.5	17.5 - 19.3	22.4 ± 4.1	21.3 - 23.5
WC (cm)	57.1 ± 3.4	56.2 - 58.1	56.2 ± 4.4	55.1 - 57.4
HC (cm)	65.0 ± 4.5	63.8 - 66.2	67 ± 5.8	65.8 - 68.9
W/H-R	0.88 ± 0.04	0.87 - 0.89	0.84 ± 0.04	0.83 - 0.85
FBG (mmol/L)	4.9 ± 0.3	4.8 - 5.0	4.8 ± 0.4	4.7 - 4.9
F (µU/L)	5.2 ± 2.5	4.6 - 6.0	7.1 ± 4.5	5.9 - 8.3
HOMA-IR Index	1.2 ± 0.6	0.9 - 1.3	1.5 ± 1.0	1.2 - 1.8
Leptin (ng/mL)**	3.3 ± 3.7	2.3 - 4.3	6.9 ± 5.0	5.5 - 8.2

Values are presented as mean ±SD and Confidence Interval (CI) of BMI: Body mass index, BFP: Body Fat Percentage, WC: Waist Circumference, HC: Hip Circumference, WH-R: Waist/Hip ratio, FBG: Fasting blood glucose, F: Fasting Insulin. A *p < 0.05 and **p < 0.01 value was considered significant differences between girls and boys, calculated with test de la U de Mann Whitney.
association of leptin with insulin and the HOMA-IR index was significant and moderate in both sexes (table 2).

Correlations of anthropometric variables by age according to sex were also analyzed, which were significant with height and weight, but in girls, the degree of association of BMI with HC (r = 0.86 p = 0.000) and WC (r = 0.82 p = 0.000) was higher. The correlation of BMI with age was significant only in girls (table 3). There was no significant correlation between age and BMI in boys as opposed to girls.

Discussion

In this study, the relationship of circulating leptin concentration with body composition and insulin resistance in normal-weight prepubertal children was evaluated according to sex.

We found that between 6 and 10 years old, despite having no difference in BMI, girls presented higher values of BFP, HC, leptin, and insulin concentration and a lower Waist/Hip ratio than boys.

The difference in adiposity by sex found has been reported in other studies with similar populations, such as that of Benjumea et al., who found that after the age of 6, adiposity increases significantly in both sexes, but more so in girls (p = 0.000). Garnett et al. also reported a higher fat composition in girls in prepubertal age 7-8 years. Sexual dimorphism of fat mass in our study may explain the significant correlation between age and BMI only in girls, a finding described from earlier ages.

The association of leptin with insulin and the HOMA-IR index was significant and moderate in both sexes (table 2).

Correlations of anthropometric variables by age according to sex were also analyzed, which were significant with height and weight, but in girls, the degree of association of BMI with HC (r = 0.86 p = 0.000) and WC (r = 0.82 p = 0.000) was higher. The correlation of BMI with age was significant only in girls (table 3). There was no significant correlation between age and BMI in boys as opposed to girls.

Table 2. Correlations of concentrations of leptin, by sex, with anthropometric and biochemical variables

	Total (n = 110)	Boys (n = 54)	Girls (n = 56)
Age (years)	0.37**	0.31*	0.44**
Height (cm)	0.35**	0.41**	0.42**
Weight (kg)	0.54**	0.52**	0.69**
BMI (kg/m²)	0.56**	0.35**	0.72**
PZ_BMI	0.44**	0.29*	0.56**
BFP (%)	0.79**	0.61**	0.79**
WC (cm)	0.47**	0.45**	0.69**
HC (cm)	0.69**	0.56**	0.78**
WHI	-0.35**	-0.20	-0.23
FBG (mmol/L)	0.05	0.13	0.10
Fi (mU/L)	0.65**	0.62**	0.65**
HOMA-IR	0.62**	0.61**	0.62**

Bivariate correlations coefficients were calculated with the Spearman test (ρ); BMI: Body mass index, PZ_BMI: score Z-BMI, BFP: Body Fat Percentage, WC: Waist Circumference, HC: Hip Circumference, W/H-R: Waist/Hip-ratio, FBG: Fasting blood glucose; Fi: Fasting Insulin. A *p < 0.05 **p < 0.01 values were considered significant.

Table 3. Correlations of Age and BMI by sex

	Girls (n = 56)	Boys (n = 54)
Age (years)	0.79**	0.73**
Height (cm)	0.87**	0.85**
BMI (kg/m²)	0.40**	0.14
BFP (%)	0.43**	0.24
WC (cm)	0.51**	0.45**
HC (cm)	0.72**	0.65**
FBG (mmol/L)	0.39**	0.28*
Leptin (ng/ml)	0.41**	0.25
HOMA-IR	0.28	0.20

Bivariate correlations coefficients were calculated with the Pearson test. BMI: Body mass index, BFP: Body Fat Percentage; WC: Waist Circumference, HC: Hip Circumference, Fi: Fasting Insulin, and FBG: Fasting blood glucose. A *p < 0.05 **p < 0.001 values were considered significant.
Considering these results according to sex, the differences found could not be explained by the degree of IR, measured with the HOMA-IR index, nor by insulin in blood, factors that in adult obesity have been associated with leptin resistance and hyperleptinemia. In normal-weight animal models, it has been described that elevated leptin levels in the presence of high BFP in females could be explained by reduced transport through the blood-brain barrier. This could be related to a higher concentration of circulating leptin in prepubertal girls that stimulates adipogenesis, without changes in the central effects of leptin, such as decreased intake and increased energy expenditure, all of which would contribute to the higher BFP found in girls.

Since the prepubertal stage, levels of sex steroids such as 17ß-estradiol and estrone are higher in girls. In vitro, estrogen in women has been reported to induce increased leptin secretion in adipocytes. Increased estrogen concentration and high sensitivity to these hormones may favor increased leptin levels in girls. It is not ruled out that other mechanisms such as sex differences in the clearance, transport, peripheral sensitivity, and autocrine self-regulation of leptin may be related to sexual dimorphism, processes that are worth further investigation.

The strengths of this study were the diagnosis of Tanner stage by medical examination, the homogeneous distribution by sex and age of the sample, and also that only subjects evaluated without systemic inflammation were included. These conditions favor the reliability of our results. A weakness of the study was that no factors regulating adipogenesis and leptin secretion were measured, which could help explain the results associated with their sexual dimorphism.

Conclusions

In prepubertal normal-weight children aged between 6 and 10 years, there are differences by sex in adiposity and leptin levels, which do not seem to be associated with differences in BMI or IR. The high degree of association of circulating leptin with adiposity in girls may be related to a higher rate of adipogenesis induced by this hormone. The higher adiposity in girls could make them more susceptible to obesity in the pubertal stage or adulthood, therefore, it is important to emphasize in this group the incorporation of healthy lifestyles from an early age.

Ethical Responsibilities

Human Beings and animals protection: Disclosure the authors state that the procedures were followed according to the Declaration of Helsinki and the World Medical Association regarding human experimentation developed for the medical community.

Data confidentiality: The authors state that they have followed the protocols of their Center and Local regulations on the publication of patient data.

Rights to privacy and informed consent: The authors have obtained the informed consent of the patients and/or subjects referred to in the article. This document is in the possession of the correspondence author.

Conflicts of Interest

Authors declare no conflict of interest regarding the present study.

Financial Disclosure

Authors state that no economic support has been associated with the present study.
References

1. Rolland-Cachera MF, Deheeger M, Maillot M, Bellisle F. Early adiposity rebound: Causes and consequences for obesity in children and adults. Int J Obes. 28 de diciembre de 2006;30(54):S11-7.

2. Dietz WH. Critical periods in childhood for the development of obesity. Am J Clin Nutr. 1994;59(5):953-9.

3. Lee M-J. Hormonal Regulation of Adipogenesis. Compr Physiol. 12 de septiembre de 2017;7(4):1151-95.

4. Acvedo M, Arnaiz P, Barja S, et al. Proteína C reactiva y su relación con adiposidad, factores de riesgo cardiovascular y aterosclerosis subclínica en niños sanos. Elsevier. 2007;60(10):1051-8.

5. Rolland-Cachera MF, Deheeger M, Bellisle F, Sempé M, Guilloud-Bataille M, Patois E. Adiposity rebound in children: a simple indicator for predicting obesity. Am J Clin Nutr. 1984;39(1):129-35.

6. Arner E, Westermark PO, Spalding KL, et al. Mecanismos bioquímicos de la leptina implicados en el desarrollo de la obesidad. Rev Médica la Univ Veracruzana. 2015;15(2):103-13.

7. Clegg DJ, Riedy CA, Smith KAB, Benoit SC, Woods SC. Differential sensitivity to Central Leptin and Insulin in Male and Female Rats. Am Diabetes Assoc. 2003;52(3):682-7.

8. Poveda E, Callas NE, Baracaldo CM, Castillo C, Hernández P. Concentración sérica de leptina en población escolar de cinco departamentos del centro-oriente colombiano y su relación con parámetros antropométricos y perfil lipídico. Biomédica. 2007;27:505-14.

9. Zhang M, Cheng H, Zhao X, et al. Leptin and Leptin-to-Adiponectin Ratio Predict Adiposity Gain in Nonobese Children over a Six-Year Period. Child Obes. 2017;13(3):213-21.

10. Fomon SJ, Nelson SE. Body composition of the male and female reference infants. Annu Rev Nutr. 2002;22(1):1-17.

11. Hawkies CP, Hourihane JO, Kenny LC, Irvine AD, Kiely M, Murray DM. Gender- and gestational age-specific body fat percentage at birth. Pediatrics. 2011;128(3):e645-51.

12. Onis M. WHO Child Growth Standards based on length/height, weight and age. Acta Paediatr (Oslo, Norw 1992) Suppl. 2006;450:76-85.

13. Marquand E, Plotton I, Reynaud R. Pubertad normal. EMC - Pediatria. 2015;50(1):1-6.

14. Gaete X, García R, Riquelme J, Codner E. La pubertad en niños chilenos muestra un adelantamiento en el inicio del crecimiento testicular. Rev Med Chile 2015;143:297-303.

15. Silva VS da, Vieira MFS, International Society for the Advancement of Kinanthropometry (ISAK) Global: international accreditation scheme of the competent anthropometrist. Rev Bras Cineantropometria Desempenho Hum. 2020;22.

16. Ribeiro G dos S, Fragoso EB, Nunes RD, Lopes AL. Erro técnico de medida em antropometria: análise de precisão e exatidão em diferentes pielómetros. Rev Educ Física/J Phys Educ. 2019;88(2):810-7.

17. Slaughter MH, Lohman TG, Boileau RA, et al. Skinfold equations for estimations of body fatness in children and youth. Hum Biol. 1988;60(3):709-23.

18. Summaco F, Verrotti A, Chiavaroli V, et al. Weight gain and insulin resistance in children treated with valproate: The influence of time. J Child Neurol. 2010;25(8):941-7.

19. Jensen AN, López M, Mir C, Martinez M, Pianes M, Erhard M. Relationship between serum leptin levels and sodium excretion in a local population of obese children and adolescents. RAEM. 2011;48(3):127-35.

20. Matthews DR, Hosker JR, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and flu- cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412-9.

21. Benjumea-Rincón MV, Parra-Sánchez JH, Ocampo-Téllez PR. Concordancia en la talla para la edad entre referencias NCHS y OMS en indígenas colombianos. Rev Salud Publica. 2016;18(4):503-15.

22. Pieterboli A, Malavolti M, Fiuano N, Faith MS. The invisible fat. Acta Paediatr Int J Paediatr. 2007;96(Suppl. 454):35-8.

23. Gaete X, García R, Riquelme J, Codner E. La pubertad en niños chilenos muestra un adelantamiento en el inicio del crecimiento testicular. Rev Med Chile 2015;143:297-303.