The Thai version of the Juvenile Arthritis Multidimensional Assessment Report (JAMAR)

Soamarat Vilaiyuk¹ · Sirisucha Soponkanaporn¹ · Butsabong Lerkvaleekul¹ · Tapanee Pipatkullachart¹ · Dara Mairiang¹ · Alessandro Consolaro²,3 · Francesca Bovis² · Nicolino Ruperto². For the Paediatric Rheumatology International Trials Organisation (PRINTO)

Received: 22 December 2017 / Accepted: 11 January 2018 © The Author(s) 2018. This article is an open access publication

Abstract
The Juvenile Arthritis Multidimensional Assessment Report (JAMAR) is a new parent/patient-reported outcome measure that enables a thorough assessment of the disease status in children with juvenile idiopathic arthritis (JIA). We report the results of the cross-cultural adaptation and validation of the parent and patient versions of the JAMAR in the Thai language. The reading comprehension of the questionnaire was tested in ten JIA parents and patients. Each participating centre was asked to collect demographic, clinical data and the JAMAR in 100 consecutive JIA patients or all consecutive patients seen in a 6-month period and to administer the JAMAR to 100 healthy children and their parents. The statistical validation phase explored descriptive statistics and the psychometric issues of the JAMAR: the three Likert assumptions, floor/ceiling effects, internal consistency, Cronbach’s alpha, interscale correlations, test–retest reliability, and construct validity (convergent and discriminant validity). A total of 104 JIA patients (45.2% systemic JIA, 10.6% oligoarticular, 9.6% RF negative polyarthritis, 34.6% other categories) and 102 healthy children, were enrolled in one paediatric rheumatology centre. Notably, none of the enrolled JIA patients is affected with psoriatic arthritis or undifferentiated arthritis. The JAMAR components discriminated well healthy subjects from JIA patients. All JAMAR components revealed satisfactory psychometric performances. In conclusion, the Thai version of the JAMAR is a valid tool for the assessment of children with JIA and is suitable for use both in routine clinical practice and clinical research.

Keywords Juvenile idiopathic arthritis · Disease status · Functional ability · Health-related quality of life · JAMAR

The local members of the Paediatric Rheumatology International Trials Organisation (PRINTO) participating in the project are listed in the dedicated tables no. 2 and 3 of “https://doi.org/10.1007/s00296-018-3944-1 / Cross-cultural adaptation and psychometric evaluation of the Juvenile Arthritis Multidimensional Assessment Report (JAMAR) in 54 languages across 52 countries: review of the general methodology”.

Soamarat Vilaiyuk
soamarat21@hotmail.com

Nicolino Ruperto
nolaruperto@gaslini.org
https://www.printo.it

Sirisucha Soponkanaporn
sirisuchars@yahoo.com

Butsabong Lerkvaleekul
lekkky_med@hotmail.com

Tapanee Pipatkullachart
beaufideak@gmail.com

Dara Mairiang
dowdara@gmail.com

Alessandro Consolaro
alessandroconsolaro@gaslini.org

Francesca Bovis
francescabovis@gaslini.org

¹ Rheumatology Division, Pediatric Department, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 270 Rama VI road, Bangkok 10400, Thailand
² Clinica Pediatrica e Reumatologia, Paediatric Rheumatology International Trials Organisation (PRINTO), Istituto Giannina Gaslini, Via Gaslini 5, 16147 Genoa, Italy
³ Dipartimento di Pediatría, Università di Genova, Genoa, Italy
Introduction

The aim of the present study was to cross-culturally adapt and validate the Thai parent, child/adult version of the Juvenile Arthritis Multidimensional Assessment Report (JAMAR) [1] in patients with juvenile idiopathic arthritis (JIA). The JAMAR assesses the most relevant parent/patient-reported outcomes in JIA, including overall well-being, functional status, health-related quality of life (HRQoL), pain, morning stiffness, disease activity/status/course, articular and extra-articular involvement, drug-related side effects/compliance and satisfaction with illness outcome.

This project was part of a larger multinational study conducted by the Paediatric Rheumatology International Trials Organisation (PRINTO) [2] aimed to evaluate the epidemiology, outcome and treatment of childhood arthritis (EPOCA) in different geographic areas [3].

We report herein the results of the cross-cultural adaptation and validation of the parent and patient versions of the JAMAR in the Thai language.

Materials and methods

The methodology employed has been described in detail in the introductory paper of the supplement [4]. In brief, it was a cross-sectional study of JIA children, classified according to the ILAR criteria [5, 6] and enrolled from June 2015 to November 2015. Children were recruited after Ethics Committee approval and consent from at least one parent.

The JAMAR

The JAMAR [1] includes the following 15 sections.

1. Assessment of physical function (PF) using 15-items in which the ability of the child to perform each task is scored as follows: 0 = without difficulty, 1 = with some difficulty, 2 = with much difficulty, 3 = unable to do and not applicable if it was not possible to answer the question or the patient was unable to perform the task due to their young age or to reasons other than JIA. The total PF score ranges from 0 to 45 and has three components: PF-lower limbs (PF-LL); PF-hand and wrist (PF-HW) and PF-upper segment (PF-US) each scoring from 0 to 15 [7]. Higher scores indicating higher degree of disability [8–10].
2. Rating of the intensity of the patient’s pain on a 21-numbered circle Visual Analogue Scale (VAS) [11].
3. Assessment of the presence of joint pain or swelling (present/absent for each joint).
4. Assessment of morning stiffness (present/absent).
5. Assessment of extra-articular symptoms (fever and rash) (present/absent).
6. Rating of the level of disease activity on a 21-circle VAS.
7. Rating of disease status at the time of the visit (categorical scale).
8. Rating of disease course from previous visit (categorical scale).
9. Checklist of the medications the patient is taking (list of choices).
10. Checklist of side effects of medications.
11. Report of difficulties with medication administration (list of items).
12. Report of school/university/work problems caused by the disease (list of items).
13. Assessment of HRQoL, through the physical health (PhH), and psychosocial health (PsH) subscales (five items each) and a total score. The four-point Likert response, referring to the prior month, are ‘never’ (score = 0), ‘sometimes’ (score = 1), ‘most of the time’ (score = 2) and ‘all the time’ (score = 3). A ‘not assessable’ column was included in the parent version of the questionnaire to designate questions that cannot be answered because of developmental immaturity. The total HRQoL score ranges from 0 to 30, with higher scores indicating worse HRQoL. A separate score for PhH and PsH (range 0–15) can be calculated [12–14].
14. Rating of the patient’s overall well-being on a 21-numbered circle VAS.
15. A question about satisfaction with the outcome of the illness (yes/no) [15].

The JAMAR is available in three versions, one for parent proxy-report (child’s age 2–18), one for child self-report, with the suggested age range of 7–18 years, and one for adults.

Cross-cultural adaptation and validation

The process of cross-cultural adaptation was conducted according to international guidelines with 2–3 forward and backward translations. In those countries for which the translation of JAMAR had been already cross-cultural adapted in a similar language (i.e. Spanish in South American countries), only the probe technique was performed. Reading comprehension and understanding of the translated...
questionnaires were tested in a probe sample of ten JIA par-
ents and ten patients.

Each participating centre was asked to collect demo-
graphic, clinical data and the JAMAR in 100 consecutive
JIA patients or all consecutive patients seen in a 6-month
period and to administer the JAMAR to 100 healthy children
and their parents.

The statistical validation phase explored the descriptive
statistics and the psychometric issues [16]. In particular, we
evaluated the following validity components: the first Lik-
ert assumption (mean and standard deviation [SD] equiva-
lence); the second Likert assumption or equal items-scale
correlations (Pearson $r$ all items within a scale should con-
tribute equally to the total score); third Likert assumption
(item internal consistency or linearity for which each item
of a scale should be linearly related to the total score that is
90% of the items should have Pearson $r \geq 0.4$); floor/ceiling
effects (frequency of items at lower and higher extremes of
the scales, respectively); internal consistency, measured by
the Cronbach’s alpha, interscale correlation (the correlation
between two scales should be lower than their reliability
coefficients, as measured by Cronbach’s alpha); test–retest
reliability or intra-class correlation coefficient (reproduc-
bility of the JAMAR repeated after 1 or 2 weeks); and construct
validity in its two components: the convergent or external
validity which examines the correlation of the JAMAR sub-
scales with the six JIA core set variables, with the addition
of the parent assessment of disease activity and pain by the
Spearman’s correlation coefficients ($r$) [17] and the discri-
minant validity, which assesses whether the JAMAR dis-
criminates between the different JIA categories and healthy
children [18].

Quantitative data were reported as medians with 1st and
3rd quartiles and categorical data as absolute frequencies
and percentages.

The complete Thai parent and patient versions of the
JAMAR are available upon request to PRINTO.

Results

Cross-cultural adaptation

The Thai JAMAR was fully cross-culturally adapted with
two forward and two backward translations. The concord-
ance rate between the original standard English version
of the JAMAR and the two back-translations was 68.3%
(84/123 lines) for the parent version and 70.8% (85/120
lines) for the child version.

Of the 123 lines in the patient version of the JAMAR, 119 (97%)
lines were understood by at least 80% of the
ten parents tested (median = 100%; range 60–100%). Of
the 120 lines in the patient version of the JAMAR, 116
(97%) lines were understood by at least 80% of the children
(median = 100%; range 40–100%). Lines 47, 60, 111, and
114 of the parent version of the JAMAR and lines 45, 58,
108, and 111 of the child version of the JAMAR were modi-

Demographic and clinical characteristics
of the subjects

A total of 104 JIA patients and 102 healthy children (total of
206 subjects), were enrolled at the paediatric rheumatology
clinic in Ramathibodi Hospital.

In the 104 JIA subjects, the JIA categories were 45.2% with
systemic JIA, 10.6% with oligoarthritis, 9.6% with RF
negative polyarthritis, 10.6% with RF positive polyarthritis
and 24.0% with enthesitis related arthritis. Notably, none of
the enrolled JIA patients is affected with psoriatic arthritis
or undifferentiated arthritis (Table 1).

A total of 188/206 (91.3%) subjects had the parent ver-
sion of the JAMAR completed by a parent (87 from parents
of JIA patients and 101 from parents of healthy children).
The JAMAR was completed by 168/188 (89.4%) mothers
and 20/188 (10.6%) fathers. The child version of the JAMAR
was completed by 141/206 (68.4%) children age 5.1 or older.
Also patients younger than 7 year old, capable to assess their
personal condition and able to read and write, were asked to
fill in the patient version of the questionnaire.

Discriminant validity

The JAMAR results are presented in Table 1, including
the scores [median (1st–3rd quartile)] obtained for the PF,
the PhH, the PsH subscales and total score of the HRQoL
scales. The JAMAR components discriminated well between
healthy subjects and JIA patients.

In summary, the JAMAR revealed that JIA patients had
a greater level of disability and pain, as well as a lower
HRQoL than their healthy peers.

Psychometric issues

The main psychometric properties of both parent and child
versions of the JAMAR are reported in Table 2. The follow-
ing “Results” section refers mainly to the parent’s version
findings, unless otherwise specified.

Descriptive statistics (first Likert assumption)

There were no missing results for all JAMAR items, since
data were collected through a web-based system that did
not allow to skip answers and input of null values. The response
pattern for both PF and HRQoL was positively
skewed toward normal functional ability and normal
Table 1  Descriptive statistics (medians, 1st 3rd quartiles or absolute frequencies and %) for the 104 JIA patients

|                          | Systemic Oligoarthritis | RF− poly-arthritis | RF + poly-arthritis | Enthesitis related arthritis | All JIA patients | Healthy |
|--------------------------|--------------------------|--------------------|---------------------|-----------------------------|------------------|---------|
|                          | N=47                     | N=11               | N=10                | N=25                        | N=104            | N=102   |
| Female                   | 25 (53.2%)               | 9 (81.8%)          | 7 (70%)             | 11 (100%)                   | 2 (8%)           | 54 (51.9%)         | 50 (49%) |
| Age at visit             | 9.9 (8–14.3)             | 12.7 (7.3–14.5)    | 10.2 (9.3–13.8)     | 8.9 (7.2–14.9)              | 15.8 (11.6–18.3) | 10.9 (8.4–15.3)*  | 6.2 (3.8–10.1)* |
| Age at onset             | 4.5 (3.2–7.5)            | 6.8 (2.7–10.3)     | 4.8 (3.2–6.2)       | 5.7 (4.3–7.8)               | 8.6 (7.9–11)     | 6 (3.6–9.3)*       |
| Disease duration         | 5.5 (1.9–7.6)            | 3.7 (2.7–5.8)      | 4.4 (2.7–6.6)       | 2.9 (0.9–6.2)               | 5.9 (3.4–7.6)    | 5 (2.5–7.2)       |
| ESR                     | 19 (9–39)                | 22 (14–35)         | 26.5 (11–32)        | 31 (19–41)                  | 17 (10–25)       | 19.5 (10.5–35)     |
| MD VAS (0–10 cm)         | 1 (0.5–3)                | 0.5 (0–1)          | 1 (0–2)              | 2.5 (2–3)                   | 1 (0.5–3)        | 1 (0.5–3)         |
| No. swollen joints       | 0 (0–1)                  | 0 (0–0)            | 0 (0–0)              | 1 (0–2)                     | 0 (0–1)          | 0 (0–1)           |
| No. joints with pain     | 0 (0–0)                  | 0 (0–0)            | 0 (0–0)              | 0 (0–0)                     | 0 (0–0)          | 0 (0–0)           |
| No. joints with LOM      | 0 (0–2)                  | 0 (0–1)            | 0 (0–1)              | 2 (1–4)                     | 0 (0–1)          | 0 (0–2)*          |
| No. active joints        | 0 (0–1)                  | 0 (0–0)            | 0 (0–0)              | 1 (0–2)                     | 0 (0–1)          | 0 (0–1)           |
| Active systemic features | 2 (4.3%)                 | 0 (0%)             | 0 (0%)               | 0 (0%)                      | 0 (0%)           | 2 (1.9%)          |
| ANA status               | 0 (0%)                   | 1 (9.1%)           | 0 (0%)               | 0 (0%)                      | 0 (0%)           | 1 (1%)           |
| Uveitis                  | 0 (0%)                   | 1 (9.1%)           | 0 (0%)               | 0 (0%)                      | 2 (8%)           | 3 (2.9%)          |
| PF total score           | 0 (0–1)                  | 0 (0–1)            | 0 (0–4)              | 0 (0–1)                     | 0 (0–2)          | 0 (0–2)          |
| Pain VAS                 | 0 (0–0.5)                | 0 (0–0.5)          | 0 (0–0.5)            | 0 (0–1)                     | 0 (0–0.5)        | 0 (0–0.5)         |
| Disease activity VAS     | 0 (0–0.5)                | 0 (0–0.5)          | 0 (0–0.5)            | 0 (0–1)                     | 0 (0–0.5)        | 0 (0–0.5)         |
| Well-being VAS           | 0 (0–1)                  | 0 (0–0.5)          | 0.5 (0–2)            | 1 (0–1)                     | 0 (0–3)          | 0 (0–1)           |
| HRQoL PhH                | 0 (0–1)                  | 0 (0–1)            | 0 (0–1)              | 0 (0–1)                     | 0.5 (0–3)        | 0 (0–1)          |
| HRQoL PsH                | 0 (0–1)                  | 0 (0–1)            | 0 (0–1)              | 0 (0–0)                     | 0 (0–1)          | 0 (0–0)*          |
| HRQoL total score        | 0 (0–3)                  | 0 (0–2)            | 0 (0–1)              | 0 (0–1)                     | 1 (0–3)          | 0 (0–3)           |
| Pain/swell. in > 1 joint | 10/42 (23.8%)            | 1/9 (11.1%)        | 4/9 (44.4%)          | 4/9 (33.3%)                 | 5/18 (27.8%)     | 23/87 (26.4%)      |
| Morning stiffness > 15 min | 4/42 (9.5%)              | 0 (0%)             | 0 (0%)               | 1/9 (11.1%)                 | 1/18 (5.6%)      | 6/87 (6.9%)       |
| Subjective remission     | 6/42 (14.3%)             | 1/9 (11.1%)        | 2/9 (22.2%)          | 1/9 (11.1%)                 | 4/18 (22.2%)     | 14/87 (16.1%)     |
| In treatment             | 36/42 (85.7%)            | 69/69 (100%)       | 69/69 (100%)         | 89/69 (88.9%)               | 18/18 (100%)     | 74/87 (85.1%)     |
| Reporting side effects   | 12/36 (33.3%)            | 1/6 (16.7%)        | 0 (0%)               | 0 (0%)                      | 0 (0%)          | 14/74 (18.9%)*    |
| Taking medication regularly | 34/36 (94.4%)          | 66/66 (100%)       | 56/66 (83.3%)        | 78/78 (97.5%)               | 14/18 (77.8%)    | 66/74 (89.2%)     |
| With problems attending school | 3/34 (8.8%)          | 1/9 (11.1%)        | 1/8 (12.5%)          | 0 (0%)                      | 0 (0%)          | 5/76 (6.6%)       |
| Satisfied with disease outcome | 35/42 (83.3%)      | 9/9 (100%)         | 7/9 (77.8%)          | 7/9 (77.8%)                 | 1/18 (57.8%)     | 72/87 (82.8%)     |

Data related to the JAMAR refers to the 87 JIA patients and to the 101 healthy subjects for whom the questionnaire has been completed by the parents

JAMAR Juvenile Arthritis Multidimensional Assessment Report, ESR erythrocyte sedimentation rate, MD medical doctor, VAS Visual Analogue Scale (score 0–10; 0 = no activity, 10 = maximum activity), LOM limitation of motion, ANA anti-nuclear antibodies, PF physical function (total score ranges from 0 to 45), HRQoL health-related quality of life (total score ranges from 0 to 30), PhH physical health (total score ranges from 0 to 15), PsH psychosocial health (total score ranges from 0 to 15)

*p values refer to the comparison of the different JIA categories or to JIA versus healthy

*p < 0.05, *p < 0.0001
HRQoL. A reduced number of response choices were used for the different HRQoL items except for items 2, 3 and 4, whereas a reduced number of response choices was used for all the PF items except for items 3 and 5. The mean and SD of the items within a scale were roughly equivalent for the PF and for the HRQoL items (data not shown). The median number of items marked as not applicable was 0% (0–1%) for the PF and 0% (0–1%) for the HRQoL.

### Floor and ceiling effect

The median floor effect was 94.3% (88.5–96.6%) for the PF items, 80.5% (77.0–90.8%) for the HRQoL PhH items, and 87.4% (86.2–94.3%) for the HRQoL PsH items. The median ceiling effect was 0% (0–1.1%) for the PF items, 1.1% (0–2.3%) for the HRQoL PhH items, and 0.0% (0–0.0%) for the HRQoL PsH items. The median floor effect was 69.0% for the pain VAS, 66.7% for the disease activity VAS and
56.3% for the well-being VAS. The median ceiling effect was 0% for the pain VAS, 0% for the disease activity VAS and 0% for the well-being VAS.

**Equal items-scale correlations (second Likert assumption)**

Pearson items-scale correlations corrected for overlap were roughly equivalent for items within a scale for 67% of the PF items, with the exception of PF items 6, 10, 11, 14 and 15, and for 90% of the HRQoL items, with the exception of HRQoL item 1.

**Items internal consistency (third Likert assumption)**

Pearson items-scale correlations were ≥ 0.4 for 73% of items of the PF (except for PF items 10, 11, 14 and 15) and 70% of items of the HRQoL (except for HRQoL items 1, 7 and 9).

**Cronbach’s alpha internal consistency**

Cronbach’s alpha was 0.84 for PF-LL, 0.76 for PF-HW, 0.60 for PF-US. Cronbach’s alpha was 0.77 for HRQoL-PhH and 0.65 for HRQoL-PsH.

**Interscale correlation**

The Pearson correlation of each item of the PF and the HRQoL with all items included in the remaining scales of the questionnaires was lower than the Cronbach’s alpha except for the PF items 12 and 13, and for the HRQoL item 4.

**Test–retest reliability**

Reliability was assessed in eight JIA patients, by re-administering both versions (parent and child) of the JAMAR after a median of 8 days (8–8 days). The intraclass correlation coefficients (ICC) for the PF total score showed an almost perfect reproducibility (ICC = 0.96). The ICC for the HRQoL PhH showed an almost perfect reproducibility (ICC = 0.95) while the ICC for the HRQoL PsH showed a poor reproducibility (ICC = 0.0).

**Convergent validity**

The Spearman’s correlation of the PF total score with the JIA core set of outcome variables ranged from 0.2 to 0.7 (median = 0.6), whereas for the PsH ranged from 0.04 to 0.4 (median = 0.2). The PhH showed the best correlation with the parent’s assessment of pain \( (r = 0.7, p < 0.001) \) and the PsH with the physician global assessment of well-being \( (r = 0.4, p = 0.0001) \). The median correlations between the pain VAS, the well-being VAS, and the disease activity VAS and the physician-centred and laboratory measures were 0.4 (0.3–0.5), 0.4 (0.2–0.5), 0.4 (0.3–0.4), respectively.

**Discussion**

In this study, the Thai version of the JAMAR was fully cross-culturally adapted from the original standard English version with two forward and two backward translations. According to the results of the validation analysis, the Thai parent and patient versions of the JAMAR possess satisfactory psychometric properties. The disease-specific components of the questionnaire discriminated well between patients with JIA and healthy controls.

Psychometric performances were good for all domains of the JAMAR with some exceptions: four PF items (“open and close a tap or open a previously open jar”, “stretch out arms”, “bend head back” and “bite a sandwich or an apple”) and three HRQoL items (“have difficulty taking care”, “feeling nervous or anxious” and “have difficulty concentrating or paying attention”) showed a lower items internal consistency. Furthermore, the overall internal consistency for PF-US and for HRQoL-PsH subscales were questionable.

In the external validity evaluation, the Spearman’s correlations of the PF and HRQoL scores with JIA core set parameters ranged from weak to strong.

The results obtained for the parent version of the JAMAR are very similar to those obtained for the child version, which suggests that children are equally reliable proxy reporters of their disease and health status as their parents. The JAMAR is aimed to evaluate the side effects of medications and school attendance, which are other dimensions of daily life that were not previously considered by other HRQoL tools. This may provide useful information for intervention and follow-up in health care. In conclusion, the Thai version of the JAMAR was found to have satisfactory psychometric properties and it is, thus, a reliable and valid tool for the multidimensional assessment of children with JIA.

**Acknowledgements**

We thank all families who participated in the project, the team that prepared and reviewed the forward and backward translations, and all members of PRINTO in Thailand. We thank Surintra Vilaiyuk, MD, Chongchit Soponkanaporn, and Mahippathorn Chinnapha, MD for the translation process, Kanyaphak Phumeesri, Jutamas Saentaweesuk, and Sasivimon Unchanbutr for data collection, Paramee Jarupan and Supanee Treepetchkul for data entry. We thank the staff of the PRINTO International Coordinating Centre in Genoa.
Informed consent was obtained from all individual participants included in the study as per the requirement of the local ethical committee.

References

1. Filocamo G, Consolaro A, Schiappapietra B, Dalpra S, Lattanzi B, Magni-Manzoni S et al (2011) A new approach to clinical care of juvenile idiopathic arthritis: the Juvenile Arthritis Multidimensional Assessment Report. J Rheumatol 38(5):938–53

2. Ruperto N, Martini A (2011) Networking in paediatrics: the example of the Paediatric Rheumatology International Trials Organisation (PRINTO). Arch Dis Child 96(6):596–601

3. Consolaro A, Ruperto N, Filocamo G, Lanni S, Braccioli G, Garrone M et al (2012) Seeking insights into the EPIdemiology, treatment and outcome of childhood arthritis through a multinational collaborative effort: Introduction of the EPOCA study. Pediatr Rheumatol Online 10(1):39

4. Bovis F, Consolaro A, Pistorio A, Garrone M, Scalia S, Patrone E et al (2018) Cross-cultural adaptation and psychometric evaluation of the Juvenile Arthritis Multidimensional Assessment Report (JAMAR) in 54 languages across 52 countries: review of the general methodology. Rheumatol Int. https://doi.org/10.1007/s00296-018-3944-1 (in this issue)

5. Petty RE, Southwood TR, Baum J, Bhettay E, Glass DN, Manners P et al (1998) Revision of the proposed classification criteria for juvenile idiopathic arthritis: Durban, 1997. J Rheumatol 25(10):1991–1994

6. Petty RE, Southwood TR, Manners P, Baum J, Glass DN, Goldenberg J et al (2004) International League of Associations for Rheumatology classification of juvenile idiopathic arthritis: second revision, Edmonton, 2001. J Rheumatol 31(2):390–392

7. Filocamo G, Sztabnok F, Cespedes-Cruz A, Magni-Manzoni S, Pistorio A, Viola S et al (2007) Development and validation of a new short and simple measure of physical function for juvenile idiopathic arthritis. Arthritis Rheum 57(6):913–20

8. Lovell DJ, Howe S, Shear E, Hartner S, McGirr G, Schulte M et al (1989) Development of a disability measurement tool for juvenile rheumatoid arthritis. The juvenile arthritis functional assessment scale. Arthritis Rheum 32:1390–1395

9. Howe S, Levinson J, Shear E, Hartner S, McGirr G, Schulte M et al (1991) Development of a disability measurement tool for juvenile rheumatoid arthritis. The juvenile arthritis functional assessment report for children and their parents. Arthritis Rheum 34:873–80

10. Singh G, Athreya BH, Fries JF, Goldsmith DP (1994) Measurement of health status in children with juvenile rheumatoid arthritis. Arthritis Rheum 37:1761–1769

11. Filocamo G, Davi S, Pistorio A, Bertamino M, Ruperto N, Lattanzi B et al (2010) Evaluation of a 21-numbered circle and 10-centimeter horizontal line visual analog scales for physician and parent subjective ratings in juvenile idiopathic arthritis. J Rheumatol 37(7):1534–1541

12. Duffy CM, Arsenaulet L, Duffy KN, Paquin JD, Strawczynski H (1997) The Juvenile Arthritis Quality of Life Questionnaire—development of a new responsive index for juvenile rheumatoid arthritis and juvenile spondyloarthritides. J Rheumatol 24(4):738–46

13. Varni JW, Seid M, Knight TS, Burwinkle T, Brown J, Szer IS (2002) The PedsQL (TM) in pediatric rheumatology—validity, responsiveness of the pediatric quality of life inventory (TM) generic core scales and rheumatology module. Arthritis Rheum 46(3):714–25

14. Landgraf JM, Abetz L, Ware JE (1996) The CHQ user’s manual, 1st edn. The Health Institute, New England Medical Center, Boston, MA

15. Filocamo G, Consolaro A, Schiappapietra B, Ruperto N, Pistorio A, Solarì N et al (2012) Parent and child acceptable symptom state in juvenile idiopathic arthritis. J Rheumatol 39(4):856–63

16. Nunnally JC (1978) Psychometric theory, 2nd edn. McGraw-Hill, New York, NY

17. Giannini EH, Ruperto N, Ravelli A, Lovell DJ, Felson DT, Martini A (1997) Preliminary definition of improvement in juvenile arthritis. Arthritis Rheum 40(7):1202–1209

18. Ware JE Jr, Harris WI, Gandek B, Rogers BW, Reese PR (1997) MAP-R for windows: multitrait/multi-item analysis program—revised user’s guide. Version 1.0 ed. Health Assessment Lab, Boston, MA

Funding This study was funded and coordinated by Istituto Gianna Gaslini, Genoa, Italy.

Compliance with Ethical Standards

Conflict of interest Dr. Vilaiyuk reports funding support from Istituto Gianna Gaslini, Genoa, Italy. For the data collection and translation performed at her site within the EPOCA project. Dr. Ruperto has received grants from BMS, Hoffman-La Roche, Janssen, Novartis, Pfizer, Sobi, during the conduct of the study and personal fees and speaker honorarium from Abbvie, Ablynx, Amgen, AstraZeneca, Baxalta Bio-similars, Biogen Idec, Boehringer, Bristol Myers Squibb, Celgene, Eli-Lilly, EMD Serono, Gilead Sciences, Janssen, Medimmune, Novartis, Pfizer, Rpharm, Roche, Sanofi, Servier and Takeda. Dr. Consolaro, Dr. Bovis, Dr. Lerkvaleekul, Dr. Mairiang, Dr. Pipatkullachart and Dr. Soponkanaporn have nothing to disclose.

Ethical approval All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent Informed consent was obtained from all individual participants included in the study as per the requirement of the local ethical committee.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Rheumatology International (2018) 38 (Suppl 1):S387–S393 S393