LITERATURE REVIEW ON STRUCTURED LIPIDS AS A HEALTHY ALTERNATE FOR THE CLASSICAL COOKING OILS.

Montaser. A. Mohamed, Shahat saber and Salma FoadGomaa.
Innovation – R&D center- Savola Foods Company, Cairo, Egypt.

Abstract
Structured triacylglycerols. Lipids differ from conventional triacylglycerols, because the medium-chain fatty acids (MCT) esterified to the glycerol skeleton of Long chain triglycerides (LCT) to yield a new oil called medium-long chain tri glycerides (MCLT). MCLT oils are absorbed in the intestines via portal blood as free fatty acids; absorption pathways are also conventional with long-chain triacylglycerols. Medium- and long-chain triacylglycerol (MLCT) is a modified lipid containing medium-chain (C6-C12) and long-chain fatty acids (C14-24) in the same triacylglycerol (TAG) molecule. It can be produced either through enzymatic (with 1,3 specific or nonspecific enzyme) or chemical methods. The specialty of this structured lipid is that it is metabolized differently compared to conventional fats and oils, which can lead to a reduction of fat accumulation in the body. Therefore, it can be used for obesity management. It also contains nutritional properties that can be used to treat metabolic problems. (1) This review will discuss on the previous research and applied work done on the synthesis and application of MLCT, its production methods especially via enzymatic inter-estrafication processes and its applications in food industries. The MLCT oil which is addressed in this thesis is coming under the edible oils & fats categories called structured lipids.

Introduction:
Structured lipids
Structured lipid is a lipid that has been modified from its native form either biologically with enzymes such as lipase or chemically with sodium methoxide as catalyst. These modifications will result in changes in fatty acid composition, fatty acid position in a TAG molecule, physicochemical properties such as melting properties, solid fat content (SFC), oxidative stability, iodine value, viscosity, and saponification number to enhance its functionality. Sometimes, structured lipid with nutritional value can also be obtained through these modifications. Modification of lipid can also be done to produce either zero or low calories lipid to cater for the growing consumers’ interest for healthier food and to control the worldwide obesity problem.

In other context (7) Memorial University of Newfoundland The term “structured lipid” (SL), very broadly defined, refers to acylglycerols whose fatty acid composition or distribution has been altered by enzymatic or nonenzymatic catalysis, or any of a number of biological or physical methods (8). The products of acidolysis and

Corresponding Author: Montaser. A. Mohamed.
Address: Innovation – R&D center- Savola Foods Company, Cairo, Egypt.
transesterification are thus structured lipids. More specifically, this term is often applied to acylglycerols in which some of the long-chain fatty acids at the sn-1 and sn-3 positions have been replaced by medium-chain length ones, generally caprylic acid (8:0) or capric acid (10:0). In these positions, medium-chain fatty acids are readily released from fats and oils in the gut by the action of (1,3-positionally specific) pancreatic lipase and absorbed. Medium-chain fatty acids are directly metabolized for energy rather than deposited as depot fat. Thus, structured lipids containing them provide readily available energy and have a reduced tendency to foster obesity. They are desirable dietary components for those requiring high-density energy sources, such as athletes and individuals recuperating from burns. The presence of some degree of long-chain fatty acid content in SLs is desirable to provide a source of essential fatty acids, especially linoleic acid (18:2). Substantial work has been conducted to investigate and optimize SL production from vegetable oils. Animal fats have also been shown to be substrates for SL production. Thus, the introduction of caprylic acid into the sn-1 and sn-3 positions of an unsaturate-rich fraction of tallow (9),(10) and of unfractionated chicken fat have been described(11)

A structured, lipid-containing dairy fat is covered by aU.S. patent (12).

The invention relates to a trans-esterification product of a mixture of fatty acids and triglycerides, including milk fat, in the form of cream or butter as the main component. The product has nutritional applications and may also be used as an enteral or parenteral supplement. Other than MCT oils as an example of structured lipids, the common scientific terminology of Structured lipids means to any TAG in which specific fatty acids have been placed at specific positions on the glycerol backbone of the TAG.(6). This is done in order to confer specific functional, nutritional or medical properties.

FAO/WHO definition of structured lipids:
Structured lipids (SL) or structured triacylglycerols (ST) may be broadly defined as triacylglycerols that have been altered or restructured using natural oils and fats. The earliest example of ST is the development of medium chain triglycerides (MCT). Using coconut and palm kernel oil, caprylic acid C8:0 and capric C10:0 are liberated. MCT are produced by esterification of these fatty acids with glycerol. The most widely available MCT have a C8:0:C10:0 ratio of 10:30. MCT also have the trade name Captrin®. One of the earliest uses of SL was in enteral and parenteral nutrition, followed by its application in a range of clinical settings including prevention of thrombosis, improved nitrogen balance, and enhanced immune (19) as per FAO foods and nutrition.

How structured lipids (SL) are manufactured?
Structured lipids can be produced by interesterifying a mixture of conventional fats and oils of interest using chemical or enzymatic methods. Chemical methods provide random distribution of different fatty acids on the glycerol backbone, whereas enzymatic reactions could be position specific, affording controlled production of triacylglycerols with desired configuration (6).

Interesterification involves rearrangement or randomization of acyl residues in triacylglycerols with the fats and oils taking on new properties. ‘Tailored fats’ (fats with specific nutritional or textural properties) are easily obtained during this phase. The raw materials and processing conditions can be controlled or manipulated to produce a fat that has specific desired characteristics. The most widely used class of interesterification in the food industry is trans-esterification, where the ester bonds linking the fatty acids to the glycerol molecule are broken to release the fatty acids. The liberated fatty acids are then randomly shuffled in a fatty acid pool and re-esterified in new positions, either in the same or in a different glycerol molecule.(8)

Applications of structured lipids:
(Geoff Talbot-Oxford brookes university – School of life science) (6)
• Functional uses
• Margarine fats
• Plastic fats for margarine bases
• Hardstocks to structure margarine
• Cocoa butter equivalents
• StOSt TAG
• Nutritional uses
• Enteral and parenteral nutrition
• Combinations of medium chain and long chain fatty acids
Infant nutrition
• TAG with C16:0 in the sn-2 position to mimic breast milk
• Weight loss – or weight management

Medium chain fatty acids (MCFA):
Medium-chain fatty acids (MCFA) with C6-C12 carbon chain length is more rapidly metabolized than LCFA. Due to its small size and greater solubility compared to long-chain fatty acid (LCFA), MCFA is transported directly to the liver via portal vein to undergo beta oxidation process producing ketones, thus providing a rapid source of energy. MCFA also causes an increase in the diet-induced thermogenesis and satiety.

In contrast, LFCA needs to be cycled back into the intestinal lymphatic ducts and transported as chylomicron to the thoracic ducts into the systematic circulation and deposited in the body as fat. As such, medium-chain triglyceride (MCT) has been used for years to treat patients with malabsorption of fat problems and provide instant energy to the athletes. However, as MCT contain solely of MCFA, it lacks essential fatty acid. Besides, MCT is also not suitable to be used for cooking purposes such as frying oil due to foam formation.

Hence, LCFA is incorporated in the MCT molecule to overcome these weaknesses. This has led to the development of a new type of structured lipid, called medium-and long-chain triacylglycerol (MLCT).

In MLCT, each individual triacylglycerol (TAG) molecule contains both the MCFA and LCFA. This can either be produced via lipase-catalyzed reaction of acidolysis, esterification, or interesterification. Lipase, which is nonspecific, will give randomly structured MLCT consisting of 6 configurations, which are MLM, MML, LML, LLM, LLL, and MMM (Figure 1). However, when 1,3 specific enzyme is used, it will give the desired structured MLCT.

In the individual MLCT TAG molecule, the LCFA is usually contributed by the common vegetable oil (such as canola, soybean, cottonseed, sunflower, peanut, olive, corn, safflower seed, rice bran, and sesame seed oil) while MCFA is contributed by medium-chain triglyceride (MCT) (such as coconut or palm kernel) or fatty acids such as caprylic acid, respectively. The presence of LCFA helps to increase the smoke point of the MCT, making it feasible for frying purposes.

Medium-chain fatty acids (MCFA), mainly C8 and C10, obtained by hydrolysis of coconut oil, is re-esterified with glycerol to form a mixture of randomized medium-chain triglyceride (MCT) through a method developed by Babayan (13). MCTs are absorbed and oxidized rapidly with an energy rated at 34.7 kJ/g. A number of medical and infant food formulations have MCTs as the principal source of fat supplemented with polyunsaturates.

In a field study by Intengan et al. (15), a structured (interesterified) 75 coconut oil–25 corn oil preparation gave better weight gain and nutritional recovery, vis-a-vis a polyunsaturated vegetable oil, when given to malnourished children as supplemental fat source in their diet.

Another area of current research is development of structured lipids where GLA is combined with a fatty acid of omega-3 family, preferably EPA or DHA, into triacylglycerol molecule. Structured lipids can be produced by interesterifying a mixture of conventional fats and oils of interest using chemical or enzymatic methods. Chemical methods provide random distribution of different fatty acid on the glycerol backbone, whereas enzymatic reactions could be position specific, affording controlled production of triacylglycerols with desired configuration.

Interesterification using the chemical method usually involves a reaction between two oils using metal alkoxide (sodium methoxide) as a catalyst. The unreacted fatty acids are removed by vacuum distillation. The alternative and more researched process involves acidolysis using lipases. In this process, either pure fatty acid is reacted with a triacylglycerol molecule or relatively rich fraction of fatty acid of interest is taken/prepared before acidolysis reaction. The structured lipids have unique chemical, physical, or physiologic properties that are not observed by simply blending mixtures of the starting fats and oils.

Structured lipids containing both omega 3 long-chain PUFAs, possibly from seal blubber oil, or their omega 3 concentrates, and medium-chain fatty acids (MCFA), which are saturated fatty acids with 6–12 carbon atoms, have been produced. Enzyme-catalyzed synthesis of structured lipid has been proposed, with commercial lipase.
preparations. The final products, with reduced calorie, exhibit the combined health benefits of long-chain PUFAs and MCFAs, which are believed to possess many unique nutritional and metabolic characteristics (18).

Reduced-calorie structured lipids are functioning as fat substitutes. For several years, structured lipids with less than 9 kcal/g have been on the market. These engineered lipid molecules contain fatty acids that are less digestible to create a reduced-calorie content. These low-calorie TAGs are characterized by the presence of short-chain fatty acids (SCFAs) or medium-chain fatty acids (MCFAs) and long-chain fatty acids (LCFAs) in a single TAG structure. The caloric content of constituent SCFAs is lower compared with that of their LCFA counterparts.

The products have all the functional properties of full-calorie fats, including their ability to act as carriers for fatsoluble ingredients. Reduced-calorie structured lipids are intended for use in baking chips, coatings, dips, bakery and dairy products, or as cocoa butter substitutes.

Medium-Chain Triacylglycerols (MCTs)

Medium-chain triacylglycerols (MCTs) contain predominantly 8-carbon (caprylic) and 10-carbon (capric) saturated fatty acids esterified to the glycerol backbone of TAGs. The primary sources for MCTs are fractions of coconut and palm kernel oils. Hence, MCTs are manufactured from these oils via hydrolysis followed by fractionation of the resulting fatty acids to concentrate caprylic and capric acids, and re-esterification with glycerol to form new TAGs (73, 74). Caprylic and capric acids comprise more than 96% of the fatty acids in MCT preparations. MCTs are readily hydrolyzed by digestive enzymes to produce MCFAs. The fatty acid end products are rapidly absorbed into the bloodstream (75). MCFAs do not require carnitine to cross the double mitochondrial membrane of the hepatocyte, thus they quickly enter the mitochondria and undergo rapid β-oxidation. Hence, MCFAs are used as immediate sources of energy by the liver, yielding fewer calories per gram than LCFAs. The gross energy content of MCTs is 8.3 kcal/g vs 9 kcal/g for fat or LCTs. However, the net caloric energy value of MCT preparation is 6.8 kcal/g (76). MCTs are relatively stable at high temperatures and are less susceptible to oxidation (77). MCTs are much more soluble in water than LCTs. MCTs are a translucent and odorless liquid at room temperature. Although completely saturated, it is not solid in consistency like other saturated fats, because of the shorter chain lengths of the fatty acids within the oil. MCTs were originally developed for therapeutic purposes to provide a source of energy for individuals with compromised gastrointestinal systems; thus, they are beneficial for AIDS and cancer patients, premature infants, burn victims, and individuals with shortened bowel syndrome. MCTs have been used extensively in the manufacture of parenteral and enteral nutrition formulations. MCTs are beneficial for such applications because they are more readily hydrolyzed and metabolized much more rapidly than LCTs. MCTs have specific nutritional applications such as infant formulas, energy bars and drinks, geriatric preparations, and sports nutrition products. In addition, they are used as carriers for colors, flavors, and vitamins and provide gloss and prevent sticking on confectionery products. It is reported that feeding diets, wherein a fat source of LCTs was replaced with MCTs, to laboratory animals and humans resulted in decreased body weight gain and reduced fat deposition (78, 79). Such results have led to the suggestion that replacing conventional sources of dietary fat, which composed primarily of LCTs, with MCTs may yield food with lower caloric content. In the sports world, MCTs have been positioned as an easily absorbed and oxidized fuel source and have been marketed to bodybuilders and athletes as a fat source that is less likely to deposit as body fat.

Safety of MCTs in direct food application:

The safety of medium-chain triacylglycerol (MCTs) in dietary oil has been debated, and associated effects on cholesterol metabolism remain unclear. Although some studies have shown that MCTs are essentially nontoxic, noncarcinogenic, and nonmutagenic for human consumption with a safety level up to 1 g/kg (58), other studies have indicated that MCT oil-containing diets can increase blood cholesterol levels (59). MCTs, on a percent energy basis, have half the potency of palmitic acid (C16:0) in raising plasmacholesterol (59). Palmitic acid (C16:0) can lead to increases in blood cholesterol levels; however, when ingested in a diet that contains a recommended intake of C18:2, n-6, the effect on both total and LDL cholesterol levels is minimized (60). This has been shown with fat blends, such that hypercholesterolemia was not observed in animals fed either butter or tallow fat sources that were blended with soybean oil in a low-cholesterol-containing diet (61, 62). In gerbils and monkeys, the relative ratio between C14:0 to C18:2 n-6 fatty acids as well as dietary cholesterol are important factors in modulating increases in serum cholesterol levels (63, 64).
Intake of saturated fat sources has also been associated with insulin resistance, leading to altered glucose metabolism, type II diabetes, and impaired glucose tolerance (65). Comparatively, saturated fat has a more deleterious effect on fat-induced insulin sensitivity than both mono- and polyunsaturated fat sources (65). Higher intakes of saturated fat and trans-fat adversely affect glucose metabolism and insulin resistance, whereas higher intakes of polyunsaturated fat and possibly long-chain n-3 fatty acids are beneficial (66). Within the category of saturated fats, dietary saturated, short-chain, and o6 fatty acids have been found to have the most deleterious effects on insulin action associated with insulin sensitivity, as opposed to medium- and long-chain fatty acids and o3 fatty acids (67). Intramuscular triacylglycerol (MTG) and elevated plasma free fatty acid (FFA) levels also have roles in insulin-mediated glucose uptake, reflecting a pivotal role of the high saturated fatty acid content in the MTG (68). Changing dietary fat quality by substituting saturated for monounsaturated fat can impair insulin sensitivity, as saturated fat has a greater deleterious impact on insulin sensitivity (69). For example, substituting a monounsaturated fatty acid diet (MUFA diet) for a saturated fatty acid diet (SAFA diet) has been shown to be favorable for only those subjects that had a lower-than-average total fat intake. This intervention improved insulin sensitivity, but had no effect on insulin secretion. Notably, the addition of n-3 fatty acids to MUFA and SAFA diets affected neither insulin secretion nor insulin sensitivity (69).

Food applications of MCFA/MCT:

Medical and Infant Food Formulations:

Medium-chain fatty acids (MCFA), mainly C8 and C10, obtained by hydrolysis of coconut oil, is re-esterified with glycerol to form a mixture of randomized mediumchain triglyceride (MCT) through a method developed by Babayan (70). MCTs are absorbed and oxidized rapidly with an energy rated at 34.7 kJ/g. A number of medical and infant food formulations have MCTs as the principal source of fat supplemented with polyunsaturates (71). In a field study by Intengan et al. (72) a structured (interesterified) 75 coconut oil–25 corn oil preparation gave better weight gain and nutritional recovery, vis-a`-vis a polyunsaturated vegetable oil, when given to malnourished children as supplemental fat source in their diet.

Medium –long chain triglycerides (MLCT) Oils:

MLCT oils is an abbreviation for medium long chains fatty acids triglycerides. Medium-chain fatty acids (MCFA) with C6-C12 carbon chainlength is more rapidly metabolized than long chain fatty acids LCFA due to its small size and greater solubility compared to LCFA. MCFA is transported directly to the liver via portal vein to undergo beta oxidation process producing ketones, thus providing a rapid source of energy. MCFA also causes an increase in diet-induced thermogenesis and satiety (2). In contrast, LFCA needs to be recycled back into the intestinal lymphatic ducts and transported as chylomicron to the thoracic ducts into the systematic circulation and deposited in the body as fat. As such, medium-chain triglyceride (MCT) has been used for years to treat patients with malabsorption of fat problems and provide instant energy to the athletes. However, as MCT contain solely of MCFA, it lacks essential fatty acid. Besides, MCT is also not suitable to be used for cooking purposes such as frying oil due to foam formation.

Hence, LCFA is incorporated in the MCT molecule to overcome these weaknesses. This has led to the development of a new type of structured lipid, called medium-and long-chain triacylglycerol (MLCT).

In MLCT, each individual triacylglycerol (TAG) molecule contains both the MCFA and LCFA. This can either be produced via lipase-catalyzed reaction of acidolysis, esterification, or interesterification (3);(21); (20). Lipase, which is nonspecific, will give randomly structured MLCT consisting of 6 configurations, which are MLM, MML, LLM, LML, LLL, and MMM.

However, when 1,3 specific enzyme is used, it will give the desired structured MLCT (4).

In the individual MLCT TAG molecule, the LCFA is usually contributed by the common vegetable oil (such as canola, soybean, cottonseed, sunflower, peanut, olive, corn, safflower seed, rice bran, and sesame seed oil) while MCFA is contributed either by medium chain triglyceride (MCT) (such as coconut or palm kernel) or fatty acids such as caprylic acid, respectively. The presence of LCFA help to increase the smoke point of the MCT, making it feasible for frying purposes. Numerous studies reported that this MLCT can restrain the accumulation of body fat, reduce cholesterol, and blood triglyceride upon consumption (22);(36);(37);(38).
MLCT oil also has myriads of applications in the food industry as home cooking oil, salad dressing, vegetable-oil spreads, dietary supplement, and frozen dinner. (1)

Synthesis of MLCT oil as a structured food:
MLCT is synthesized through an enzymatic reaction or chemical inter-esterification. Various lipase-catalyzed enzymatic approaches have been studied to determine the best method of getting high MLCT yield. MLCT can be produced via enzymatic process in 3 routes:
(1) Interesteerification
(2) Acidolysis
(3) Esterification

Small scale and large scale production of it have also been studied to find out the optimum conditions for producing best yield of MLCT, thus providing useful information for MLCT production to the industries.

Interesteerification
Interesteerification is the reaction between esters or TAG molecules. Not much research has been reported on MLCT production via interesteerification reaction. For MLCT production, interesteerification often involved the coconut oil or palm kernel oil or saturated TAG such as tricaprylin that will provide the MCFA. LCFA part in MLCT is contributed by the vegetable oil such as soybean oil, rapeseed oil (Fomuso and Akoh 1998; Lopez-Hernandez and others 2005; Adhikari and others 2011b)(24&25).

The progress of the interesteerification reaction is measured by the changes in the TAG composition before and after the reaction.

For interesteerification, substrate ratio is an important parameter that will affect the desirable yield. For example: substrate molar ratio of trilinolein to tricaproin from 1 : 1 to 1 : 4, the mole ratio of 1 : 2 gave the highest yield of 50.7% dicaproyllinolein (ECN 33) and 23.6% monocaproyldilinolein (ECN 45) (Fomuso and Akoh 1998)(24).

Acidolysis:
Acidolysis involved the exchange reaction between acyl moiety of acylglycerol and a free carboxylic acid. For MLCT production via acidolysis reaction, the acylglycerol mostly came from native oils such as soybean oil, canola oil, lard, fish oil, sesame oil, borage oil, menhaden oil, and chicken fat (Lee and others 1999(4) Xu and others 2000, Kawashima and others 2001, 2002; Kim and Akoh 2006; Zhao and others 2007; Li and others 2008; Shuang and others 2009)(27-33). These native oils were used in acidolysis as they contained essential fatty acids like, linoleic acid (LA), alphanlinoleic acid (ALNA), eicosapentanoic acid (EPA), docosahexanoic acid (DHA), and y-linolenic acid (GLA) that impart good health to our body. However, tripalmitin, tristearin, and triolein also can be used as the acylglycerol for this reaction (Sellappan and Akoh 2000; Yankah and Akoh 2000)(34;39).

As for the free carboxylic acid, the most commonly used is the caprylyc acid (CA). Little has been done on capric or lauric acid (Sellappan and Akoh 2000;34Nunes and others 2011)(35). Summary of research done on MLCT production via acidolysis is summarized by Yee-Ying Lee, Teck-Kim Tang, and Oi-Ming Lai (1), in their excellent review summary of MLCT in food applications.

Literature shows that parameters such as substrate ratio, residencetime, temperature, enzyme load, water content have to be taken into consideration when producing MLCT (Kim and Akoh 2006)(30), Zhao and others 2007(31), Li and others 2008(32), Shuang and others 2009(33), Nunes and others 2011(35). These parameters are not only important to be considered when running in flasks for small scale experimental purposes, but also for large scale production in either packed bed reactor or stirred tank reactor (Xu and others 2000(27), Kawashima and others 2002(29).

Besides, choosing the right type of enzyme is important when running acidolysis reaction as different types of enzymewill affect the yield of MLCT. For acidolysis reaction to produce MLCT, 1,3 specific immobilized enzyme Rhizomucormehei(RM IM) (Novozyme, Bagsvard, Denmark) lipase is commonly used compared to 1,3 specific enzyme TLIM throught sometimes nonspecific enzymes such as Rhizopus oryzae and Rhizopus.
When RM IM enzymes is utilized for acidolysis reaction, it normally gives around 40 to 50 mol% of CA incorporation at reaction times of around 20 to 24 h (Akoh and Moussata 2001; Kim and Akoh 2006; Li and others 2008; Shuang and others 2009). As for Thermomyces lanuginosus (TLIM) (Novozyme, Bagsvard, Denmark) enzyme at the same duration time, 20 h, and only 27.01 mol% of CA can be incorporated into soybean oil. However, when organic solvents such as hexane and isoctane is added in the reaction, TLIM will give a 50.14% of CA incorporation (Zhao and others 2007). The enzyme load that was normally used is in between 5% and 10% (w/w). At least 24 h of residence time were required for a maximum CA incorporation. Besides, 1-step acidolysis reaction discussed previously, there is a 2-step enzymatic process for MLCT production. For this method, the 1st step involved the production of TriPUFA from EPA, DHA, and AA via esterification with glycerol at 3:1 mol/mol using Candida antarctica (Novozyme, Bagsvard, Denmark) enzyme for 24 h. The TriPUFA of the following (1) 89% of y-linolenic acid (GLA), (2) 89% of arachidonic acid (AA), (3) 88% of eicosapentaenoic acid (EPA), and (4) 83% of docosahexaenoic acid (DHA) then undergone acidolysis with caprylic acid via Rhizopus delemar lipase (Ta-lipase Tanabe Seiyala Co. Ltd., Osaka, Japan) for 48 h producing acylglycerol containing CA. This 24-h acidolysis step was carried out consecutively for 3 cycles to increase the incorporation of CA. The repeated acidolysis reaction managed to increase the amount of CA incorporated in each of the TriPUFA with TriE 66%, TriA 63.8%, TriG 52.6%, and TriD 31.1%. ML M type structured lipid also increased with the 3 repeating acidolysis steps (diCA 86.5%, diCE 85.7%, diCD 62.6%, and diCE32.3%).

This process gives the highest yield of MLCT among all the other acidolysis methods carried out by other researchers. In this study, the enzyme can be reused up to 10 cycles in esterification step and 20 cycles in acidolysis step, respectively, reducing the cost of operation (Kawashima and others 2001). However, the concern about this method is that it is time consuming compared to the normal 1-step acidolysis method in which the first esterification step needed 24 h and the 3 consecutive acidolysis steps each required 48 h to be carried out. Substrate mole ratio of fatty acid/glycerol also significantly affects the CA incorporation. Increase in the amount of fatty acid will lead to an increase in the CA incorporation (Li and others 2008). However, too much of the fatty acids will make the medium too acidic, thus inactivating the enzyme. Furthermore, the use of higher amounts of fatty acids will also incur higher cost of production. Thus, it is important to get the optimum substrate mole ratio for acidolysis reaction to obtain a high yield of MLCT. Temperature is a crucial parameter as it will affect the activity of enzyme, solubility and viscosity of the substrate. Temperature for acidolysis reaction normally falls in the range of 40 to 65 °C. However, recently, novel cold active lipase from Pichia lanuginferdii NRRL Y-7223, (culture collection of National Centre for Agricultural Utilization Research, Peoria IL, USA) was found to have comparable activity with RMIM at 20 °C. This Pichialyferdii NRRL Y-7223 cold lipase gives 47.5% of CA incorporation on the borage oil at 20 °C, which is comparable to the RMIM with 45.7% incorporation at 40 °C (Kim and others 2010). Lower temperature for acidolysis reaction is preferable especially for structured lipid that contained PUFA such as fish oil, borage oil, GLA from evening primrose oil, which is susceptible to oxidation. Hence, it is necessary to maintain the temperature as low as possible during storage or reaction. Besides, lower temperature uses less energy consumption. However, this is not suitable to be applied to TAG production that has higher melting points such as palm kernel olein as this TAG will crystallize during the reaction.

The drawback of this acidolysis reaction is that a high ratio of fatty acids especially short chain and MCFA, which are easily soluble will create acidic condition in the reaction. This will inactivate the enzyme and restrict its reaction, leading to a low yield of MLCT. Esterification Esterification is another alternative in the synthesis of MLCT. However, not much research has been done on the esterification reaction of MLCT production due to the high cost of fatty acids and glycerol. In esterification process, the desired fatty acid (such as oleic acid, stearic acid, caprylic acid, and so on) is made to react with glycerol in the presence of the enzyme lipase. To drive the reaction forward towards synthesis, vacuum pump or nitrogen gas purging is used to remove the water formed during the esterification reaction. Esterification process is a much more preferable method to produce a higher concentration of MLCT as it gives a high purity of MLCT and few
unnecessary TAG, FFA, and MAG as compared to acidolysis. However, the drawback from this method is that it does not contain any residual natural antioxidants. Thus, natural antioxidants such as rosemary extract, sage extract, or chemical antioxidant such as tert–butyl hydroquinone (TBHQ), butylatedhydroxyanisole (BHA) has to be added to increase the oxidativestability of this oil (Koh and others 2009)(43).

Koh and others (2010)(20) and Arifin and others (2011a, 2012)(44-46) managed to produce MLCT oil via esterification reaction. Both studies use the same RMIM enzyme and same MCFA (capric acid) but different LCFA, with the former using oleic acid and the latter using stearic acid as their substrate. Both studies optimized the conditions for MLCT production using response surface methodology. Koh and others (2010)(20) managed to get 58 wt% of MLCT oil under optimized conditions of 13.6 to 14 h reaction time, 7.9% to 8% for enzyme load, and 3 : 1 for fatty acid/glycerol molar ratio. This is comparable to that reported by (Arifin and others 2011a, 2012)(44-46) who obtained 59.76 wt% of MLCT oil with 10% enzyme load, 70 °C reaction temperature, 14 h reaction time, and 3.5 : 1 substrate mole ratio. Purity of MLCT increases after undergoing refining process. Refining will remove the unnecessary matters like free fatty acids, and unsaponified matter (Kawashima and others 2001; Koh and others 2010; (20)Arifin and others 2011a)(44). For example, after refined, bleached, and deodorization (RBD) processes, the MLCT content increased from to 59.76% to 76% (Koh and others 2010)(20).

Hereafter, the schematic illustration of Lipase reaction with triacylglycerols in different reaction mechanisms.

![Schematic illustration of lipase reactions](image)

Figure 2.3. Schematic illustration of lipase reactions (Balcao et al., 1996).

Structured oils based on MLCT application in Food Industries

Fats and oils give palatability to a food product and cannot be totally eliminated in our food. As some foods are high in fat, consumption of it can be detrimental to health. As such, MLCT is seen to have potential to prevent body weight gain and body fat accumulation when used to replace the conventional fats/oils for food production especially those that required high amount of fat. There are several studies that tested on the application of MLCT in food products.

Cooking oil

The first commercialized MLCT was produced by Nisshin Oilio Group Ltd. (Japan) and are sold widely as cooking oil in Japan and United States with the name Resetta. It is stable for 30 min in 200 °C. Koh and others (2009)(43) found that MLCT when blended with soybean or palm olein, can be used for cooking purposes especially frying. This
is because, the presence of long chain fatty acid from soybean oil and palm olein such as oleic acid (C18), linoleic acid (C18:1), and linolenic acid (C18:3) increases the blended MLCT oil’s smoke point. For example, the smoke point of MLCT blended with palm olein (225 ± 1.41 °C) and soybean oil (229 ± 1.41 °C) at ratio 1 : 1 were much higher compared to the control, which is the unblended MLCT oil (210 ± 0 °C). Apart from increasing the smoke point, blending with soybean or palm olein also helped to reduce the production cost of MLCT. Koh and others (2011) (5) also demonstrated that the MLCT added with antioxidants has a higher thermal resistant oxidative strength (above 180 °C) than RBD palm olein, lighter in color and lower free fatty acid content, thus having the characteristic required for deep frying oil. Sensory test showed that there is no difference in term of taste and rancidity assessment in potato chip fried with MLCT oil and those with palm olein. Jennings and others (2010) (47) reported that rice bran oil structured lipid (RBOSL) consisting primarily of CA at the sn-1,3 position and oleic and linoleic acid at the sn-2 position can be used in frying sweet potato chip (SPC) at 165 to 185 °C for 20 to 60 s. The color variable, smoke point, foaming ability, and γ -oryzanol concentration showed no significant difference between RBOSL and RBO after frying. However, RBOSL tend to have a lower viscosity and oil uptake compared to RBO after frying.

Energy bars
Jennings and others (2010)(47) also used 13.27% of the RBOSL to make energy bar (EB), which was baked at 176 °C for 30 to 40 min. Sensory evaluation showed a significant difference in energy bar prepared with RBOSL and RBO. RBO EB has a softer texture compared to RBOSL EB. In addition, the willingness to purchase (WTP) of EB made from RBOSL was 60% indicating that 60% of the consumers accepted the RBOSL EB. This indicates that the product prepared with SL has a bright future to be commercialized (Jennings and others 2010). (47)

Butter fat
MLCT made via Rhizomucormeii lipase trans-esterification of 57.7% of capric acid and canola oil when blended with butterfat improved the cold spreadability of the pure butter. Triangletest showed that 23 out of the 30 panelists were able to detect the difference between the pure butter and blended butter due to the cold spreadability between samples. In terms of flavor, there is not much difference between both pure butter and butter blended with structured blended butter fat. Structured blended butter fat also has a higher antherogenic index than pure butter (0.07), which can counterbalance the attribute of hypercholesterolemic of pure butter. As such, MLCT showed potential to be used as substitute for canola oil in making cold spreadable butter (Kim and Akoh 2006). (30).

Margarine and shortening
Both margarine and shortening are visco-elastic semi solid food products. Margarine is water in fat emulsion, which consists of 80% fat and 20% water. In contrast, shortening is any fat that is solid at room temperature and used to shorten baked products such as making crumbly pastry. Palm stearin is hardstock that is usually blended with soft oils such as soybean oil, canola oil, sunflower oil, and cotton seed oil through enzymatic interesterification process to produce trans-free plastic fats as well as to improve the SFC of the product. The presence of palm stearin help to enhance the plasticity and maintain the shape and structure of the product to withstand temperature fluctuation (Nor Aini and Miskandar 2007). (48) MLCT can be used to prepare shortening and margarine. Arifin and others (2011b) (45) showed that MLCT produced from lipase esterification of stearic acid, capric acid, and glycerol at 3 : 1 for fatty acid/glycerol molar ratio is suitable to be a functional hard stock in shortening and margarine that can be used for obesity management purposes as it has a high SFC at 25 °C. Besides, MLCT produced from interesterification between a hard stock (fully hydrogenated soybean oil) and soft oil (rice bran oil, coconut oil) give the newly formed oil plasticity property suitable to be made into margarine and shortening (Adhikari and others 2011a). (26) Similarly, (Zhang and others 2010) (38) studied the production of margarine using Lipozyme IM lipase-catalyzed interesterification of palm stearin and coconut oil (75/25, w/w) in 1 kg batch stirred tank reactor. For baking purposes, shortening should have a SFC of 15% at 25 °C ambient temperature (25 C). Arifin and others (2011a) (44) carried out a study on the binary (MLCT: palm stearin) and ternary (MLCT: palm stearin: palmolein) blends of MLCT to be used as shortening for baking. Blending with other oils will help to reduce the production cost of MLCT. From the study, increasing the MLCT from 40% to 90% causes a reduction in the SFC of the MLCT-enriched formulation. All these shortening have melting points of 55 °C. Binary blends of MLCT and palm stearin in the ratio 70 : 30, 80 : 20, 90 : 10 and ternary blends of MLCT, palm stearin, and palm olein with ratio 40 : 40 : 20, 50 : 40 : 10, 50 : 30 : 20 fulfill the 15% to 25% SFC requirement for shortening at 25 °C. Therefore, they are suitable to be used as shortening for baking purposes. Quantitative descriptive analysis (QAD) showed that Madeira cakes made from
these MLCT have better taste and aroma than the commercial shortening. The acceptability test in terms of taste, texture, and overall acceptability showed a higher degree of liking for Madeiracakes made of 50 : 30 : 20 ratio of MLCT, palm stearin, and palmolein. MLCT-enriched shortening also has a higher SFC compared to local commercial shortenings made from soybean, sunflower, and hydrogenated palm oil.

Beverages

Canola oil is commonly used in preparing beverages. Canola oil-based structured lipid is of importance so that the manufacturer does not need to change the formulation when replacing canola oil with canola oil-structured lipid. Triangle test showed that 23 out of 38 participants managed to distinguish the difference between the chocolate beverages made of canola oil-based structured lipid and chocolate beverages made of canola oil. Structured lipid beverage is sweeter (2 times sweetness intensity) and has less bubble formation than the canola oil beverages. However, not much difference was observed in terms of other attributes such as texture, aroma, aftertaste, and color (Osborn and others 2003). The presence of CA acts as flavor carrier that helps in transporting the flavor component. This increases the sweet taste in the SL containing chocolate beverages. This beverage is useful for those who require a rapid source of energy. It can also provide essential fatty acids.

Coating lipid

In the food industry, coating a layer of polysaccharides, protein, or lipid on to a food product is important to prolong the storage life span and maintain the quality of the products as it prevents the diffusion of moisture, air, and aroma to enter or escape from the food. Lipid with its hydrophobic property and giving a glossy appearance is most preferred compared to protein and polysaccharides as coating material. Acidolysis of the tristearin with lauric acid and oleic acid in substrate ratio of 1 : 4 : 1 using RMIM lipase was better in inhibiting moisture than cocoa butter when applied on cracker. This may be due to the compactness and rigidity of the structured lipids. This structured lipid has a sharp melting point of 31.4 °C. Addition of lauric acid and oleic acid will help to regulate the melting profile of tristearin to be in the range of 30 to 37 °C, which is suitable for coating applications (Sellappan and Akoh 2000).

Nutrient admixtures

MLCT oil can be used in nutrient admixtures. It helps to increase the storage stability of the nutrient admixtures. When 20% soybean oil was replaced with 20% MLCT oil in nutrient admixtures, kinetic stability test showed that the mean droplet size (300 to 400 nm), surface tension value remained unchanged for MLCT oil throughout the 10 days of storage period at both 2 to 7 °C and 37 °C. However, soybean oil nutrient admixtures stability starts to deteriorate starting Day 4 (Balogh and others 2005).

Parenteral nutrition

Structured lipid 20% is a parenteral type structured fat emulsion that was produced from Pharmacia/Upjohn, Uppsala, Sweden. Its made up of soybean oil and purified coconut oil in ratio 36 : 64, w/w, that was interesterified. Study revealed that this structured lipid has similar properties as the control, which was LCT (Intralipid 20%) of soybean oil triglyceride. For example, no difference was observed in the plasma lipid (triglyceride, total and free cholesterol, phospholipid, free fatty acid) between those subject consuming LCT and structured lipid as well as on its clinical safety. Besides, structured lipid 20% showed possible reduction in liver dysfunctions as the liver problem in 2 patient revolved after switching to the structured lipid 20%. The presence of soybean oil in the structured lipid will provide essential fatty acids, not seen in the commonly used MCT parenteral (Rubin and others 2000).

Health benefits of MCT & MLCT in dietary food application

Medium-chain fatty acids (MCFAs) comprise saturated fatty acids with 6–10 carbons. Besides synthetic medium-chain triglyceride (MCT) oils there are natural sources, like coconut oil and dairy fat. Compared with long-chain fatty acids (LCFAs), the chemical and physical properties of MCFAs show substantial metabolic differences. MCFAs do not require binding to proteins such as fatty-acid binding protein, fatty acid transport protein, and/or fatty acid translocase (FAT, homolog to human platelet CD36). MCFAs are a preferred source of energy (b-oxidation). MCFAs are also incorporated into adipose tissue triglycerides, and may influence adipose tissue and other systemic functions more substantially than previously assumed. MCTs reduce fat mass, through down-regulation of adipogenic genes as well as peroxisome proliferator activated receptor-γ. Recent studies confirmed the potential of MCFAs to reduce body weight and particularly body fat. This effect was not transient. MCFAs reduce lipoprotein secretion and attenuate postprandial triglyceride response. It was, however, frequently observed that MCTs increase fasting cholesterol and triglyceride levels. But, given in moderate amounts, in diets with moderate fat supply,
MCFAs may actually reduce fasting lipid levels more than oils rich in mono- or polyunsaturated fatty acids. The same is true for glucose levels. MCTs improved several features contributing to enhanced insulinsensitivity. Under certain in vitro conditions, MCTs exert proinflammatory effects, but in vivo MCTs may reduce intestinal injury and protect from hepatotoxicity. Berit Marten, et al. (80)

Antiobesity Effect of MLCT

The benefits of MLCT oil is that it can act as functional oil that can prevent fat accumulation in our body. Various clinicaland preclinical studies have been carried out so far regarding theantiobesity effects of MLCT and this will be discussed here. Most animal and human trials on MLCT were based on theeffect of Nisshin Ollio Group’s MLCT oil, a randomly structuredMLCT made by interesterification of MCT and sooybean oil tosuppress body fat and body weight (Matsuo and others 2001; (52)Kasai and others 2003; (22)Matsuo and Takeuchi 2004; (36),Shinohara and others 2005; Shinohara and others 2006). (53-54) Regarding the body composition, MLCT when tested onhuman, was shown to be able to reduce the body weight and body fataccumulation (Matsuo and others 2001; (52)Kasai and others 2003)(22). For example: consumption of 200 g of MLCT (10% w/w ofMCFAs) containing liquid diet twice daily for 12 wk in 13 healthy human male subjects aged 18 to 20 y caused a lower mean weight gain and body fat percentage (0.91 kg and 2.16%) compared to those consuming soybean (1.83 kg and 4.30%) (Matsuo and others 2001) (52). A thorough study demonstrated that reduction of body fat either subcutaneous or visceral can be seen particularly in the waist circumference (4.6% loss), hip circumference (2% loss), as well as body weight (6.1% loss) when MLCT is consumed. This study is performed under strict calories diet on 82 healthy humansubjects of 21 to 59 y for 12 wk when 14 g MLCT (12%, w/w, of MCFA) is consumed at breakfast (Kasai and others 2003) (22). Overweight and obese Chinese human subjects when consumed 25 to 30 g/d of MLCT (13% w/w of MCFAs) for 28 d under strict diet regime showed significant decrease in their body fat. Overweight people with body mass index (BMI) of 24 to 28 has more significant decrease compared to obese people with BMI more than 28 (Zhang and others 2010) (38). In another study, MLCT up to consumption of 8 wk at 25 to 30 g (13%, w/w, MCFAs) daily in Chinese hypertriglycerideemic (1.7 to 4.5 mmol/L) subjects with ages less than 60, showed the ability to lower the body weight and body fat accumulation. However, MLCT was shown to have no effect on subjects that are more than 60 y old (Xue and others 2009). (55) As for rats, the outcome on the effect of MLCT in reducing body fat and weight vary among studies. When 48 male Wistar rats (Japan SLC Inc., Shizuoka) fed ad libitum with MLCT in the amount of 150 and 200 g/kg diet (20% of MCFA) for 8 wk, they were found to have a lower body weight and total intraabdominal adipose tissue. However, MLCT in the amount of 50 or 100 g/kg diet was not able to decrease the body weight gain or body fat (Matsuo and Takeuchi 2004). (36). Also, MLCT in 70 g/kg diet (12% MCFAs) showed no effect on reducing both the body weight and total intraabdominal tissue in Sprague–Dawley rats (Japan SLC Inc., Shizuoka) for a duration of either 2 or 4 wk (Shinohara and others 2005). (53) The previous studies reported weretesting using Nisshin Ollio Group’s MLCT oil. Besides, the Nisshin Ollio Group’s MLCT that has been incorporated with fish oil was also shown to have lower body weight gain in ICR mice (Harlan Sprague Dawley, Indianapolis, IN) compared to control group fed with soybean oil with the former having gain of 5.8% and latter of 11.4%, respectively (Lee and others 1999). (4) Besides the previously mentioned studies, there were also studies related to the enzymes that are involved in the metabolism of fatty acids and these were conducted on animal models consuming MLCT. It is shown that 30 min after administration of MLCT and LCT, Wistar rats (Japan SLC Inc., Shizuokak) fed with MLCT have a higher activity of the hepatic fattyacid oxidation enzyme than those fed with LCT, demonstrating that MLCT is oxidized more rapidly than LCT in the liver (Shinohara and others 2002). Examples of such enzymes includeshort chain acyl coA dehydrogenase, medium chain acyl coA dehydrogenase (ACAD), citrate synthase, cytochrome oxidase, carnitine palmitoyltransferase (CPT). Meanwhile, the activity of lipogenic enzyme is not affected by MLCT (Lee and others 1999; Shinohara and others 2002, 2005, 2006; (57). (53-54) Matsuo and Takeuchi 2004). (36) It was found that no caprylic acid is detected in the liver of the group of mice fed with MLCT for 21 d, further supporting that the incorporation of MCFAs will provide a quick source of energy as they are rapidly metabolized (Lee and others 1999) (4). Also, diet induced thermogenesis (DIT) of MLCT in 21 adults humanshowed that 6 h after taking a diet consisting of MLCT, energy expenditure increased by 14 kcal (Ogawa and others 2007). (57) Safety evaluation also showed that acute dosage of MLCT at 5000 mg/kg and subchronic study for 6 wk at 3500 mg/kg showed no signs of toxicity of MLCT in Wistar rats (Japan SLC Co. Ltd., Hammamatsu). MLCT is also non-mutagenic when tested (Matulka and others 2006). (37) Numerous studies have been done on the effect of MLCT on the blood composition of either rats or humans. (Table 1) To sum it up, most of the studies clearly showed that MLCToil consumption can help to reduce body fat accumulation and body weight gain. Nonetheless, MLCT was found to be more effective as an anti-obesity functional oil on humans as compared to animals. This may be due to the short duration of the preclinical studies that were unable to show the effect of MLCT. MLCT effect on blood parameters on human and animal’s studies were also not consistent. Some were found
to improve the blood lipid and blood cholesterol levels while others did not. As such, the effect of MLCT on blood lipid and cholesterol level still remained unclear.

Conclusions:
From the health benefits point of view, MLCT not only can provide us with nutritional properties from the essential fatty acids incorporated, but most importantly it can also help to reduce bodyweight and body fat accumulation in the body. However, at least 12% of MCFA must be present in the product to see the beneficial effects. As such, including MLCT into our diet is one way to curb the increasing rise of worldwide obesity. As for the enzymatic production, among the 3 enzymatic processes discussed (esterification, esterification, and acidolysis), esterification gave the highest yield of MLCT though it may be costly when produced in large scale due to the substrates used. More studies need to be carried out to find more MLCT application in the food and industries. MLCT as functional lipids is gaining its momentum in recent fats and oils industries. It may be the next generation “potion” to be included to our diet.

References:
1. A review of Health Benefits, Enzymatic Production, and Application of Medium- and Long-Chain Triacylglycerol (MLCT) in Food Industries:
2. Vol. 77, Nr. 8, 2012 Journal of Food Science.
3. Yee-Ying Lee, Teck-Kim Tang, and Oi-Ming Lai.
4. Aoyama T, Nosaka N, Kasai M. 2007. Research on the nutritional characteristics of medium chain fatty acids. J Med Invest 54(3,4):385–8.
5. Lopez-Hernandez A, Garcia HS, Hill CG. 2005. Lipase-catalyzed transesterification of medium chain triacylglycerols and a fully hydrogenated soybean oil. J Food Sci 70(6):c365–72.
6. Lee KT, Akoh CC, Dawe DL. 1999. Effects of structured lipid containing omega-3 and medium chain fatty acids on serum lipids and immunological variables in mice. J Food Biochem 23(2):197–208.
7. Koh S, Arifin N, Tan C, Yusoff M, Long K, Lai O. 2011. Deep frying performance of enzymatically synthesized palm-based medium- and long-chain triacylglycerols (MLCT) oil blends. Food Bioproc Technol 4(1):124–35.
8. Structured lipids for weight loss – Geoff Talbot-Oxford brookes university – School of life science.
9. BAILEY’S INDUSTRIAL OIL AND FAT PRODUCTS—sixth edition
10. Part 1- page 191. Edited by: Fereidoon Shahidi, Memorial University of Newfoundland. Copyright # 2005 John Wiley & Sons, Inc. 503.
11. F. D. Gunstone, ed., Structured and Modified Lipids, Marcel Dekker, New York, 2001. K. T. Lee, T. A. Foglia, and M. J. Oh, J. Food Sci., 67, 1016–1020 (2002).
12. K.-T. Lee and T. A. Foglia, J. Food Sci., 65, 826–831 (2000).
13. K.-T. Lee and T. A. Foglia, J. Amer. Oil Chem. Soc., 77, 1027–1034 (2000).
14. V. K. Babayan, G. L. Blackburn, and B. R. Bistrian (to N.E. Decanes Hospital), U.S. Patent 4,952,606, 1990.
15. V. K. Babayan, JAACS, 45, 23–25 (1968). C. Dayrit et al., Phil. J. Coconut Studies, XVII(2), 15–17(1992).
16. C. Intengan et al., Phil. J. Coconut Studies, XVII(2), 11–14 (1992).
17. S. P. Senayake and F. Shahidi, J. Agric. Food Chem., 50(3), 477–483 (2002).
18. K. T. Mok, A. Maiz, K. Yamazaki, J. Sobrado, V. K. Babayan, L. L. Moldawer, B. R. Bistrian, and G. L. Blackburn, Metabolism, 33(10), 910–915 (1984).
19. S. P. J. N. Senayake and F. Shahidi, Food Res. Int., 35, 745–752 (2002). FAO Foods and nutrition paper 91-Chapter 14.
20. Koh S, Tan C, Lai O, Arifin N, Yusoff M, Long K. 2010. Food Bioproc Technol 3(2):288–99.
21. Shuang D, Jiang-Ke Y, Yun-Jun YAN. 2009. J Food Biochem 33(3):442–52.
22. Papamandjaris and others 1998; Aoyama and others 2007.
23. Fomuso L, Akoh C. 1998. J Am Oil Chem Soc 75(3):405–10.
24. Lopez-Hernandez A, Garcia HS, Hill CG. 2005. J Food Sci 70(6):c365–72.
25. Adhikari P, Shin JA, Lee JH, Kim HR, Kim IH, Hong ST, Lee.
26. KT. 2011b. Food Bioproc Technol 1–14.
27. Xu X, Fomuso L, Akoh C. 2000. J Am Oil Chem Soc 77(2):171–6.
28. Kawashima A, Shimada Y, Yamamoto M, Sugihara A, Nagao T, Komemushi S, Tominaga Y. 2001. Enzymatic synthesis of high-purity structured lipids with caprylic acid at 1,3-positions and polyunsaturated fatty acid at 2-position. J Am Oil Chem Soc.
29. 78(6):611–6.
30. Kawashima A, Shimada Y, Nagao T, Ohara A, Matsuhisa T, Sugihara A, Tominaga Y. 2002. Production of structured tag rich in 1,3-dicaprylmyl-2-linolenoyl glycerol from borage oil. J Am Oil Chem Soc 79(9):871–7.
31. Kim BH, Akoh CC. 2006. Characteristics of structured lipid prepared by lipase-catalyzed acidolysis of roasted sesame oil and caprylic acid in a bench-scale continuous packed bed reactor. J Agric Food Chem 54(14):5132–41.
32. Zhao H, Lu Z, Bie X, Lu F, Liu Z. 2007. Lipase catalyzed acidolysis of lard with caprylic acid inorganic solvent. J Food Engineer 78(1):41–6.
33. Li L, Ping L, Linyuan L, Junshe S. 2008. Production of structured lipids by enzymatic incorporation of caprylic acid into soybean oil. ICBBE 2008. The 2nd Intl. conference on bioinformatics and biomedical engineering, 2008. p. 1033–7.
34. Shuang D, Jiang-Ke Y, Yun-Jun YAN. 2009. Optimization of lipase-catalyzed acidolysis of soybean oil to produce structured lipids. J Food Biochem 33(3):442–52.
35. Selappan S, Akoh C. 2000. Enzymatic acidolysis of tristearin with lauric and oleic acids to produce coating lipids. J Am Oil Chem Soc 77(11):1127–34.
36. Nunes P, Pires-Cabral P, Guil’ en M, Valero F, Luna D, Ferreira-Dias S. 2011. Production of Mlm-type structured lipids catalyzed by immobilized heterologous <I>Rhizopus Orzyae</I> lipase. J Am Oil Chem Soc 88(4):473–80.
37. Matsuo T, Takeuchi H. 2004. Effects of structured medium- and long-chain triacylglycerol indiets with various levels of fat content body fat accumulation in rats. Brit J Nutri 91(02):219–25.
38. Matulka RA, Noguchi O, Nosaka N. 2006. Safety evaluation of a medium- and long-chain triacylglycerol oil produced from medium-chain triacylglycerols and edible vegetable oil. Food Chemical Toxicol 44(9):1530–8.
39. Zhang Y, Liu Y, Wang J, Zhang R, Jing H, Yu X, Zhang Y, Xu Q, Zhang J, Zheng Z, Nosaka N, Araiz C, Kasai M, Aoyama T, Wu J, Xue C. 2010. Medium- and long-chain triacylglycerols reduce body fat and blood triacylglycerolshypertriacylglycerolemia, overweight but not obese, Chinese individuals. Lipids 45(6):501–10.
40. Yankah V, Akoh C. 2000. Lipase-catalyzed acidolysis of tristearin with oleic or caprylic acids to produce structured lipids. J Am Oil Chem Soc 77(5):495–500.
41. Foresti ML, Ferreira ML. 2010. Lipase-catalyzed acidolysis of tripalmitin with caprylic acid inorganic solvent medium: analysis of the effect of experimental conditions through factorial design and analysis of multiple responses. Enzy Microbi Technol 46(6):419–29.
42. Akoh C, Moussata C. 2001. Characterization and oxidative stability of enzymatically produced fish and canola oil-based structured lipids. J Am Oil Chem Soc 78(1):25–30.
43. Kim HR, Hou CT, Lee KT, Kim BH, Kim I-H. 2010. Enzymatic synthesis of structured lipids using a novel cold-active lipase from pichia funerdi Y-7723. Food Chem 122(3):846–9.
44. Yankah V, Akoh C. 2000. Lipase-catalyzed acidolysis of tristearin with oleic or caprylic acids to produce structured lipids. J Sci Food Agric 89(3):455–62.
45. d lipids forweig3Geoff TalbotKoh SP, Arifin N, Lai OM, Yusoff MSA, Long K, Tan CP. 2009. Oxidative stability of palmandsoybean-based medium- and long-chain triacylglycerol (Mlct) Oil blends. J Sci Food Agric 89(3):455–62.
46. Arifin N, Cheong LZ, Koh SP, Long K, Tan CP, Yusoff MSA, Nor Aini I, Lo SK, Lai OM. 2011a. Physicochemical properties and sensory attributes of medium- and long-chain triacylglycerols(Mlct)-enriched bakeryshortening. Food Bioproc Technol 4(4):587–96.
47. Arifin N, Soo-Peng K, Long K, Chin-Ping T, Yusoff M, Oi-Ming L. 2011b. Modeling and optimization of lipozymeRmlm-catalyzed esterification of medium- and long-chain Triacylglycerols(Mlct) using response surface methodology. Food Bioproc Technol 1–10.
48. Arifin N, Soo-Peng K, Long K, Chin-Ping T, Yusoff M, Oi-Ming L. 2012. Modeling and optimization of lipozymeRmlm-catalyzed esterification of medium- and long-chain triacylglycerols(Mlct) using response surface methodology. Food Bioproc Technol 1–10.
49. Jennings BH, Shewfelt RL, Akoh CC. 2010. Food application of a rice bran oil structured lipid in fried sweet potato chips and an energy bar. J Food Qual 33(6):679–92.
50. Nor Aini I, Miskandar MS. 2007. Utilization of palm oil and palm products in shortenings and margarines. Euro J Lipid Sci Technol 109(4):422–32.
51. Osborn H, Shewfelt R, Akoh C. 2003. Sensory evaluation of a nutritional beverage containing canola oil/caprylic acid structured lipid. J Am Oil Chem Soc 80(4):357–60.
52. Balogh J, Bubenik J, Dred’ an J, Csempez F, Kiss D, Zelk’ o R. 2005. The effect of structured triglycerides on the kinetic stability of total nutrient admixtures. J Pharm PharmSci 8(3):552–7. Rubin M, Moser A, Vaserberg N, Greig F, Levy Y, Spivak H, Ziv Y, Lelcu S. 2000. Structured triacylglycerol emulsion, containing both...
medium- and long-chain fatty acids, in long-term home parenteral nutrition: a double-blind randomized crossover study. Nutrition 16(2):95–100.

53. Matsuo T, Matsu M, Kasai M, Takeuchi H. 2001. Effects of a liquid diet supplement containing structured medium and long chain triacylglycerols on body fat accumulation in healthy young subjects. Asia Pacific J Clin Nutr 10(1):46–50.

54. Shinohara H, Ogawa A, Kasai M, Aoyama T. 2005. Effect of randomly interesterified triacylglycerols containing medium- and long-chain fatty acids on energy expenditure and hepatic fatty acid metabolism in rats. Biosci Biotechnol Biochem 69(10):1811–8.

55. Shinohara H, Wu J, Kasai M, Aoyama T. 2006. Randomly interesterified triacylglycerol containing medium- and long-chain fatty acids stimulates fatty acid metabolism in white adipose tissue of rats. Biosci Biotechnol Biochem 70(12):2919–26.

56. Xue C, Liu Y, Wang J, Zhang R, Zhang Y, Zhang J, Zheng Z, Yu X, Jing H, Nosaka N, Arai C, Kasai M, Aoyama T, Wu J. 2009. Consumption of medium- and long-chain triacylglycerols decreases body fat and blood triglyceride in Chinese hyper-triglyceridemic subjects. Eur J Clin Nutr 63(7):879–86.

57. Shinohara H, Shimada H, Noguchi O, Kubota F, Aoyama T. 2002. Effect of medium-chain fatty acids containing dietary oil on hepatic fatty acid oxidation enzyme activity in rats. J Oleo Sci 51(10):621–6.

58. Ogawa A, Nosaka N, Kasai M, Aoyama T, Okazaki M, Igarashi O, Kondo K. 2007. Dietary medium- and long-chain triacylglycerols accelerate diet-induced thermogenesis in humans. J Oleo Sci 56(6):283–7.

59. K. Traul, A. Driedger, D. Ingle, and D. Nakhasi, Food Chem. Toxicol., 38, 29 (2000). N. B. Cuter, Food Chem. Toxicol., 35, 428 (1997).

60. Y. Tsai, S. Park, J. Kovacic, and J. Snook, Lipids, 34, 895 (1999).

A. Lichtenstein, and U. Schwab, Atherosclerosis, 150, 227 (2000).

61. Y. V. Yuan, D. D. Kitts, and D. V. Godin, J. Nutr., 128, 1620 (1998).

62. Y. V. Yuan and D. D. Kitts, J. Nutr., 133, 679 (2003).

63. P. Khosla and K. C. Hayes, Biochem. Biophys. Acta., 1210, 13 (1993).

A. Pronczuk, P. Khosla, and K. C. Hayes, FASEB J., 8, 1191 (1994).

64. F. Hu, R. van Dam, and S. Liu, Diabetologia, 44, 805 (2001).

65. J. Lovejoy, Current Atheroscler. Rep., 1, 215 (1999).

66. M. Manco, G. Mingrone, A. Greco, E. Capristo, D. Gnuli, A. De Gaetano, and G. Gasbarrini, Metabolism, 49, 220 (2000).

67. B. Vessby, M. Uusitupa, K. Hermansen, G. Riccardi, A. Rivellese, L. Tapsell, C. Nalsen, L. Berglund, A. Louheranta, B. Rasmussen, G. Calvert, A. Maffetone, E. Pederen, I. Gustafsson, and L. Storlien, Diabetologia, 44, 312 (2001).

68. J. Kanagaratnam, A. L. Lai, K. H. Lim, and B. J. Wood, Proc. of Nat. Workshop on Oil Palm By-Product Utilization, 1981, pp. 16–23.

69. C. H. Lim, T. C. Ping, K. W. Chan, and S. Y. Chooi, Proc. of Land Application of Palm Oil and Rubber Factory Effluent, Malaysia Society of Soil Science, 1983, pp. 71–89.

70. K. H. Yeow and Gurmit Singh, MOPGC/TRC Internal Report, 1983.

71. V. K. Babayan, Lipids, 22, 417 (1987). C. Bach, Y. Ingenbleek, and A. Frey, J. Lipid Res., 37, 708 (1996).

72. V. K. Babayan, J. Amer. Oil Chem. Soc., 51, 260 (1974).

73. D. L. Ingle, A. Driedger, K. A. Traul, and D. K. Nakhasi, J. Food Sci., 64, 960 (1999).

74. V. K. Babayan and J. R. Rosenau, Food Technol., 45, 111 (1991).

75. N. Baba, E. F. Brace, and S. A. Hashim, Amer. J. Clin. Nutr., 35, 678 (1982). C. Bach and V. K. Babayan, Amer. J. Clin. Nutr., 36, 950 (1982). International Dairy Journal 16 (2006) 1374–1382 (Review on Medium-chain triglycerides) – Berit Marten, Maria Pfeuffer, Ju¨rgen Schrezenmeir.