A cross-sectional survey of knowledge, attitude, and practices toward dengue fever among health workers in a tertiary health institution in Sokoto state, Nigeria

Oche Mansur Oche¹,², Musa Yahaya¹, Remi Abiola Oladigbolu³, Jessica Timane Ango², Christina Nneka Okafoagu², Zainab Ezenwoko², Adamu Ijapa², Abdulaziz Muhammad Danmadami²

¹Department of Community Health, Usmanu Danfodiyo University Sokoto, ²Department of Community Medicine, Usmanu Danfodiyo University Teaching Hospital Sokoto, Nigeria

ABSTRACT

Introduction: Dengue fever (DF) has become a disease of public health concern. It is a mosquito-borne virus infection caused by one of the four serotypes of the dengue virus, and the disease is prevalent in the tropical and subtropical regions of the world, with a global burden in the Americas. Yearly, about 390 million cases of new infection are estimated to occur. Aims of the Study: This study was aimed at determining the knowledge, attitude and practices regarding dengue fever amongst health workers in a tertiary health institution in Sokoto state, Nigeria. Methods: A descriptive cross-sectional study was carried out at the Usmanu Danfodiyo University Teaching Hospital, Sokoto, among 367 health-care workers who had worked in the hospital for at least 1 year before the study were selected using a systematic sampling method. Data were collected by trained resident doctors using a standardized, pretested questionnaire and analyzed using SPSS version 20 with a significance set at P > 0.05. Results: There was high awareness (95.1%) among the respondents, with seminars and lectures in school as the most familiar information sources. A more significant proportion, 87.8%, 93.2%, and 76.6%, of the respondents had adequate knowledge, positive attitude, and appropriate DF practice, respectively. Nurses and laboratory scientists had higher practice scores compared to other health-care workers (P = 0.016). Conclusion: Capacity building of health-care workers, especially the primary care physicians on surveillance, proper diagnosis, and treatment, is needed to avoid missing cases or misdiagnosis of cases, especially in developing and underdeveloped countries with limited health resources care service delivery.

Keywords: Dengue fever, health workers, knowledge, practices, Sokoto

Introduction

Dengue fever (DF) has become a disease of public health concern—the most important arboviral infection globally.[9] It is a mosquito-borne viral infection caused by one of the four serotypes of the dengue virus.[9] The disease is prevalent in the tropical and subtropical regions of the world.[5,6] It has been estimated that around 50% of the world population lives in areas where the disease transmission is favorable.[5,6] The global burden is seen in the Americas region with annual 1.5 million cases, and around 3 million cases of the disease were reported in 2019 by the Pan America Health Organization.[7,8] Africa is...
another region with notable cases,[1] and currently, the disease is endemic in 128 countries.[5,11] Yearly, about 390 million new infection cases are estimated to occur,[5,12] more than estimated by the WHO.[9]

Aedes aegypti and _Aedes albopictus_ transmit DF—the two mosquitoes responsible for transmitting the disease among humans.[2] DF can develop into a severe form of infection called dengue hemorrhagic fever and can lead to severe complications and even death.[3]

There are two main types of dengue diseases, DF and dengue hemorrhagic fever, and infection due to a particular serotype confers immunity against it; however, an individual can still be infected by other serotypes.[13] Currently, there is no vaccine neither specific treatment for the disease; therefore, controlling the mosquito vectors is critical in the prevention of the disease.[14,15]

In Nigeria, the first case of dengue was isolated in the 1960s, but the disease is not among the list of reportable cases in Nigeria,[14] despite the number of diagnosed fevers of unknown cause. A seroprevalence of 30.8, 17.2, and the recent report of 73 among febrile patients have been reported.[17–19]

Knowledge, attitude, and health-care workers’ practices on the disease are critical for early diagnosis and disease prevention, especially by family physicians who are usually the first contacts for patients.[20,21] The purpose of the current study is to assess the knowledge, attitude, and practices regarding DF among health-care workers (HCWs) in a tertiary health institution in Sokoto, northwestern Nigeria. It is hoped that this will further deepen the study subjects’ knowledge and help identify gaps for further interventional studies.

Methods

Study Area and Design: A cross-sectional descriptive study design was carried out among health workers at the Usmanu Danfodiyo University Teaching Hospital (UDUTH), located within Sokoto city. UDUTH is a tertiary health center and serves as a referral center to many hospitals from Nigeria’s northwestern region.

Study population and Eligibility: The study population comprises health workers (doctors, pharmacists, laboratory scientists, and nurses) who had worked in the hospital for at least 1 year before this study and came in contact with patients from time to time (inclusion criteria).

Sample Size and Sampling Technique: A sample size of 367 was calculated for the study based on an assumption of 35% from a previous study[22] who had adequate knowledge of the disease. The various health workers’ list was obtained from the institution’s staff officer, and study subjects were selected proportional to size using a systematic sampling method.

Data Collection and Analysis: Participants’ knowledge, attitude, and practices regarding DF that were assessed using a standardized pretested semistructured questionnaire consisting the questions on knowledge, attitude, and practice were administered by trained research assistants. Consent was obtained from the participants before the application of the instrument. Sociodemographic characteristics were also collected. The questionnaires were checked for completeness and entered into SPSS version 20 for subsequent analysis. Mean, standard deviations, proportions calculated, and logistic regression analysis were conducted to identify the relationships among the interests’ variables. Correct responses to each question on knowledge and practice attract one mark and zero for incorrect answers, and a cut-off score of >60% was considered for adequate knowledge and appropriate practice. Similarly, concerning attitude, a correct response to strongly agree or agree was given a score of 1, while any response to strongly disagree, disagree, or not sure was awarded 0 scores. The attitude scores were finally graded as a percentage, with ≥60% being positive attitude. The level of significance was set at _P_ < 0.05.

Ethical approval

The approval to conduct the study was granted by the Research Ethics Committee of Usmanu Danfodiyo University, Sokoto, Nigeria.

Table 1: Sociodemographic Characteristics of Respondents

Variables	Frequency (%)
Age in years	
<30	140 (38.8)
30–34	58 (16.0)
35–39	66 (18.3)
40–44	41 (11.4)
45–49	29 (8.0)
≥50	27 (7.5)
Total	361 (100)
Mean±SD	35±8.3
Gender	
Female	142 (40.0)
Male	219 (60.0)
Total	365 (100)
Religion	
Christianity	119 (32.8)
Islam	242 (67.2)
Total	361 (100)
Marital status	
Single	105 (26.9)
Married	248 (60.0)
Separated	3 (0.9)
Divorced	1 (0.3)
Widowed	4 (1.1)
Total	361 (100)
Tribe	
Hausa	170 (47.6)
Fulani	43 (12.0)
Yoruba	48 (13.4)
Igbo	45 (12.6)
‘Others’	55 (14.3)
Total	357 (100)

^{Others-To, Zuru, Kabba, Edo}
Oche, et al.: Knowledge, attitude and practices regarding dengue fever

and Ethics committee of the Usman Danfodiyo University Teaching hospital. Participation was voluntary, and all the information collected from the respondents was treated with uttermost confidentiality. Before the data collection, informed consent was obtained from the respondents.

Results

Over a third, 128 (36.7%) of the respondents were below 30 years of age, and only 27 (7.7%) were 50 years and above; the mean age was 35.1 ± 8.3 years. Majority of the respondents were males 219 (60.0%), practiced Islam 242 (67.2%), and married 248 (70.9%). Almost half 170 (47.6%) of the respondents were Hausa by tribe [Table 1]. Over half, 203 (57.3%) of the respondents were nurses, and only 6 (1.7%) were pharmacists [Figure 1].

More than 90% (347) of the respondents heard of DF, with seminars and lectures in school being the commonest sources of information regarding the disease. However, less than half 167 (48.1%) had experience in reporting suspected DF cases. The majority of the respondents, 309 (84.0%), knew DF is transmitted when mosquito bites and more than half 208 (56.7%) knew Aedes mosquito as the responsible vector for the transmission of the disease. A total of 144 (44.4%) of the subjects knew that ponds and rivers are breeding grounds for the vector. The majority of the respondents (75.4%) knew that DF could be spread from human to human. They also knew that fever 341 (94.7%), nausea and vomiting 331 (93.8%), bleeding 325 (91.3%), headache 329 (94.3%), rash 257 (75.4%), and abdominal pain 275 (79.5%) are symptoms of DF [Table 2].

Almost all the respondents knew that mosquito spray with insecticides 338 (95.8%), mosquito mat/coil/vaporizers 295 (86.0%), windows and door screen 307 (87.4%), cleaning of garbage/trash 318 (91.9%), preventing water stagnation 344 (96.6%), and pouring chemical in standing water 299 (86.9%) can prevent DF infection.

Almost all the respondents were knowledgeable about the vector characteristics. However, 141 (46.1%) of the respondents knew that the vector frequently bites during the morning and daytime 175 (55.2%) [Table 3].

There were some misconceptions concerning the treatment of DF as only a third 116 (34.0%) felt that patients with the

Table 2: Knowledge of HCWs Regarding Dengue Fever	Table 2: Contd...		
Knowledge of causes, spread, and symptoms of dengue fever	Knowledge of causes, spread, and symptoms of dengue fever		
Variables	Frequency	Variables	Frequency
Ever heard of dengue fever		Graded knowledge on causes, spread, and symptoms	
Yes	347 (95.1)	Inadequate knowledge (<60%)	36 (10.0)
No	18 (4.9)	Adequate knowledge (≥60%)	325 (90.0)
Source of information regarding DF		*Multiple responses	
Radio/Television	74 (20.3)		
Seminars	181 (49.6)		
Lectures in school	94 (25.8)		
Others	16 (4.4)		
Experience in reporting suspected dengue fever case			
Yes	167 (48.1)		
No	180 (51.9)		
Transmission of dengue fever			
Bite of mosquito	309 (84.0)		
Needle stick injury	5 (1.3)		
Through sexual intercourse	6 (1.5)		
Through the bite of ticks	7 (2.1)		
Airborne	9 (2.5)		
Drinking dirty water	14 (3.9)		
Houseflies	2 (0.5)		
Don’t know	16 (4.4)		
Type of mosquito involved in transmission			
Aedes	208 (56.7)		
Culex	37 (9.9)		
Anopheles	51 (13.8)		
Don’t know	72 (19.6)		
Breeding ground for the vector*			
Pond/Rivers	144 (44.4)		
Cans	38 (11.7)		
Roof gutters	97 (29.9)		
Water containers	105 (32.4)		
DF can be spread from human to human			
Yes	261 (75.4)		
No	85 (24.6)		
Fever is a symptom of DF			
Yes	341 (94.7)		
No	19 (5.3)		
Nausea and vomiting are symptoms of DF			
Yes	331 (93.8)		
No	22 (6.2)		
Bleeding is a symptom of DF			
Yes	325 (91.3)		
No	31 (8.7)		
Muscular pain is a symptom of DF			
Yes	330 (93.5)		
No	23 (6.5)		
Headache is a symptom of DF			
Yes	329 (94.3)		
No	20 (5.7)		
Rash is associated with DF			
Yes	257 (75.4)		
No	84 (24.6)		
Abdominal pain is a symptom of DF			
Yes	275 (79.5)		
No	71 (20.5)		

Contd...
disease who had no warning signs should be hospitalized and that antibacterial (36.5%) and antiviral drugs (44.3%) should be given to patients suspected of having DF.

Overall, most 318 (87.8%) of the respondents had adequate DF knowledge [Table 4].

The sociodemographic variables had no significant impact on years of experience and overall (graded) knowledge of HCWs regarding the disease. Less than half (45.0%) of the respondents with adequate knowledge had ≥10 years of experience, and this was statistically significant \((P = 0.011) \) [Table 5].

The association between respondents’ cadres and overall DF knowledge was significant \((P < 0.001) \). Consultants, resident doctors, house officers, pharmacists, and nurses had higher knowledge scores than the laboratory scientists.

The majority of the respondents opined that DF is a serious illness 275 (78.2%) but can be prevented, 233 (66.6%) and there is a need for treatment, and hospitalization 224 (65.9%) and 246 (73.7%) agreed that any community with suspected symptoms should seek for medical advice. Almost all 330 (93.2%) respondents had a positive attitude toward DF. The majority (76.2%) of the subjects strongly believed that DF is a serious health problem and were of the strong belief that they were at risk of contracting the illness; similarly, a greater proportion (65.7%) believed that the government has a responsibility in ensuring that the vector breeding places are adequately controlled.

Overall, 330 (93.2%) of the study subjects had a positive attitude toward the illness. However, no significant relationship was seen between the sociodemographic variables, including years of experience and overall (graded) attitude of HCWs regarding DF. Nurses had higher attitude scores compared with laboratory scientists, and this was statistically significant \((P = 0.025) \) [Tables 6 and 7].

The majority of the respondents, 269 (76.6%), had appropriate practice concerning DF. However, about half 160 (48.6%) of them would admit patients with DF without warning signs,

Table 3: Knowledge of HCWs Prevention and Vector Characteristics

Variables	Frequency
Prevention of dengue fever	
Mosquito spray with insecticides can prevent DF	
Yes	338 (95.8)
No	15 (4.2)
Mosquito mat/coil/liquid vaporizer can prevent DF	
Yes	295 (86.0)
No	48 (14.0)
Windows and door screen can prevent DF	
Yes	304 (87.4)
No	44 (12.6)
Cleaning house can prevent DF	
Yes	329 (93.2)
No	24 (6.8)
Cleaning of garbage/trash can prevent DF	
Yes	318 (91.9)
No	28 (8.1)
Preventing water stagnation can prevent DF	
Yes	344 (96.6)
No	12 (3.4)
Application of mosquito-eating fish can prevent DF	
Yes	218 (64.7)
No	119 (35.3)
Pouring chemicals in standing water can prevent mosquito breeding	
Yes	299 (86.9)
No	45 (13.1)
Covering water containers can prevent breeding of mosquitoes	
Yes	311 (90.4)
No	33 (9.4)
Cutting bushes around the house can prevent breeding of mosquitoes	
Yes	337 (94.9)
No	18 (5.1)
Vector characteristics of dengue	
The vector breeds in water storage jars/containers	
Yes	303 (88.9)
No	38 (11.1)
The vector breeds in coolers, tires, and pots	
Yes	236 (70.7)
No	98 (29.3)
The vector breeds in dirty water	
Yes	324 (93.6)
No	22 (6.4)
The vector breeds in garbage/trash	
Yes	288 (83.5)
No	57 (16.5)
The vector breeds in plants/vegetation	
Yes	266 (79.9)
No	67 (20.1)
The vector frequently bite in the morning	
Yes	141 (46.1)
No	162 (53.5)

Table 3: Contd...

Variables	Frequency
The vector frequently bite in the day time	
Yes	175 (55.2)
No	142 (44.8)
The vector frequently bite in the evening	
Yes	188 (60.3)
No	124 (39.7)
The vector frequently bite at night	
Yes	146 (47.2)
No	163 (52.8)
The vector bites both day and night	
Yes	88 (27.8)
No	228 (72.2)

Contd...
Oche, et al.: Knowledge, attitude and practices regarding dengue fever

Our study investigated the knowledge, attitude, and practice of DF among HCWs in Sokoto. As shown in the data, and similar to another study carried out in Abidjan, Cote de’Ivoire, more than half (54.8%) of the respondents were below 35 years of age, the active period of life with high chances of exposure to the outside environment. As expected, males constituted the majority (60%) of the study subjects, and this agrees with the findings of Tan et al.; however, similar studies conducted in Tanzania and Quebec, Canada, showed female preponderance. Our study’s male dominance may not be unconnected with the low female school enrollment and our study area’s sociocultural milieu.

Similar to another study elsewhere, it was observed from our study that more than half (57.3%) of our respondents were nurses who also constituted the majority of the health workforce in the teaching hospital, but in contrast with other studies where doctors were the majority.

Our study’s findings showed that less than half (42%) of the study subjects had more than 10 years of working experience as health professionals. 115 (35.1%) would give antibacterial drugs, while another 143 (43.6%) of the respondents will give antiviral drugs to patients suspected to have DF. Less than half (45%) of the HCWs agreed to have received any training on hemorrhagic fevers, including DF, in the last year [Tables 8 and 9].

Most 48 (70.6%) of the respondents with inappropriate practice had <10 years of experience and this was statistically significant ($\chi^2=5.82$, $P=0.018$). Nurses and laboratory scientists had higher practice scores compared with other health professionals, and this was statistically significant ($P=0.016$) [Table 10].

Discussion

DF is a global infection of public health importance, endemic in about 128 countries with an estimated prevalence of 3.9 billion. HCWs, especially family physicians being the gatekeepers on health issues and first contacts with patients, are the core workforce expected to change this trend. Their overall operational capacity in dealing with DF is therefore of paramount importance. Our study investigated the knowledge, attitude, and practice of DF among HCWs in Sokoto. As shown in the data, and similar to another study carried out in Abidjan, Cote de’Ivoire, more than half (54.8%) of the respondents were below 35 years of age, the active period of life with high chances of exposure to the outside environment. As expected, males constituted the majority (60%) of the study subjects, and this agrees with the findings of Tan et al.; however, similar studies conducted in Tanzania and Quebec, Canada, showed female preponderance. Our study’s male dominance may not be unconnected with the low female school enrollment and our study area’s sociocultural milieu. Similar to another study elsewhere, it was observed from our study that more than half (57.3%) of our respondents were nurses who also constituted the majority of the health workforce in the teaching hospital, but in contrast with other studies where doctors were the majority.

Our study’s findings showed that less than half (42%) of the study subjects had more than 10 years of working experience as health professionals. 115 (35.1%) would give antibacterial drugs, while another 143 (43.6%) of the respondents will give antiviral drugs to patients suspected to have DF. Less than half (45%) of the HCWs agreed to have received any training on hemorrhagic fevers, including DF, in the last year [Tables 8 and 9].

Most 48 (70.6%) of the respondents with inappropriate practice had <10 years of experience and this was statistically significant ($\chi^2=5.82$, $P=0.018$). Nurses and laboratory scientists had higher practice scores compared with other health professionals, and this was statistically significant ($P=0.016$) [Table 10].

Table 4: Knowledge of HCWs on the Treatment of Dengue Fever

Variables	Frequency
Patients with dengue fever without warning signs should be hospitalized	34.0 %
Yes	116
No	225
Patients with dengue without warning signs but with other existing diseases should be hospitalized	89.7 %
Yes	306
No	35
Patients with dengue fever with warning signs should be hospitalized	95.3 %
Yes	328
No	16
Intravenous fluids hydration should be given to patients suspected to have dengue fever	90.9 %
Yes	310
No	31
Paracetamol should be given to patients suspected to have dengue fever	75.1 %
Yes	254
No	84
Antibacterial drugs should be given to patients suspected to have dengue fever	36.5 %
Yes	123
No	214
Antiviral drugs should be given to patients suspected to have dengue fever	44.3 %
Yes	148
No	186
Overall graded knowledge of HCWs	12.2 %
Inadequate knowledge (<60%)	44
Adequate knowledge (≥60%)	318

Table 5: Correlates of Overall Graded Knowledge of HCWs Regarding Dengue Fever

Variables	Overall graded knowledge	
Age (years)	Inadequate (<60%)	Adequate (≥60%)
<34	23 (54.8)	147 (48.7)
≥34	19 (45.2)	155 (51.3)
Gender	$\chi^2=0.55$	$P=0.51$
Female	19 (44.2)	123 (38.8)
Male	24 (55.8)	194 (61.2)
Religion	$\chi^2=0.46$	$P=0.51$
None	0 (0.0)	2 (0.6)
Christian	13 (30.2)	99 (31.6)
Islam	28 (65.1)	205 (65.5)
Others	2 (4.7)	7 (2.2)
Marital status	$\chi^2=1.26$	$P=0.74$
Unmarried	11 (26.8)	89 (29.3)
Married	30 (73.2)	215 (70.7)
Years of experience	$\chi^2=6.78$	$P=0.011$
<10	28 (77.8)	154 (55.0)
≥10	8 (22.2)	126 (45.0)

* $P<0.05$
workers. Ekra et al. found a lower figure of 31% amongst their subjects.\[24\] In contrast to our findings, higher figures (51% and 65%) were observed in other studies elsewhere.\[26,28\]

The majority of our study subjects (95.1%) were aware of DF before now; varying levels of awareness ranging from 34.5% to 77% had been recorded in previous studies.\[30‑32\]

In contrast to our findings, higher scores were reported from Pakistan and India.\[34,35\]

The commonest source of information on DF by our respondents was through hospital seminars and training during outbreaks, especially on other hemorrhagic fevers. This is in agreement with the findings of Ekra et al. in Abidjan, Cote d'Ivoire.\[24\]

Table 6: The attitude of HCWs toward Dengue Fever

Variables	Frequency (%)
Dengue is a serious illness	
Strongly agree	275 (78.2)
Agree	66 (18.8)
Disagree	4 (1.1)
Strongly disagree	2 (0.6)
Not sure	5 (1.4)
You are at risk of getting dengue fever	
Strongly agree	147 (42.6)
Agree	116 (33.6)
Disagree	35 (10.1)
Strongly disagree	22 (6.4)
Not sure	25 (7.2)
Dengue fever can be prevented	
Strongly agree	233 (66.6)
Agree	100 (28.6)
Disagree	5 (1.4)
Strongly disagree	8 (2.3)
Not sure	4 (1.1)
There is a need for treatment and hospitalized for dengue fever	
Strongly agree	224 (65.9)
Agree	104 (30.6)
Disagree	3 (0.9)
Strongly disagree	7 (2.1)
Not sure	2 (0.6)
Government has a responsibility for the control of mosquito breeds	
Strongly agree	228 (65.7)
Agree	94 (27.1)
Disagree	15 (4.3)
Strongly disagree	5 (1.4)
Not sure	5 (1.4)
Do you feel that dengue is a major problem for your patient population	
Strongly agree	138 (39.7)
Agree	110 (31.6)
Disagree	69 (19.8)
Strongly disagree	12 (3.4)
Not sure	19 (5.5)
Your patient feel that dengue infection is a major problem for their health	
Strongly agree	127 (36.4)
Agree	121 (34.7)
Disagree	56 (16.0)
Strongly disagree	13 (3.7)
Not sure	32 (9.2)
In your experience, do you think that a member of the community who exhibits symptoms of DF should seek medical attention	
Strongly agree	246 (73.7)
Agree	66 (19.8)
Disagree	14 (4.2)
Strongly disagree	6 (1.8)
Not sure	2 (0.6)

Table 7: Correlates of Overall Graded Attitude of HCWs Regarding Dengue Fever

Variables	Overall graded attitude	Test statistics	
	Poor (<60%)	Good (≥60%)	P
Age (years)			
<34	9 (40.9)	158 (50.2)	χ^2=0.70
≥34	13 (59.1)	157 (49.8)	P=0.51
Gender			
Female	9 (37.5)	131 (39.9)	χ^2=0.05
Male	15 (62.5)	197 (60.1)	P=1.00
Religion			
None	0 (0.0)	2 (0.6)	χ^2=1.44
Christianity	7 (30.4)	103 (31.7)	P=0.698
Islam	16 (69.6)	212 (65.2)	
Others	0 (0.0)	8 (2.5)	
Marital status			
Unmarried	7 (29.2)	91 (29.1)	χ^2=0.00
Married	17 (70.8)	222 (70.9)	P=1.00
Years of experience			
<10	12 (54.5)	166 (57.8)	χ^2=0.09
≥10	10 (45.5)	121 (42.2)	P=0.83

$p<0.05$
Table 8: The practice of HCWs Regarding Dengue Fever

Variables	Frequency
Use mosquito spray to prevent mosquito bite	313 (91.5) 29 (8.5)
Yes	No
Clean garbage/trash to prevent mosquito bite	322 (94.7) 18 (5.3)
Yes	No
Prevent water stagnation at home	339 (98.3) 6 (1.6)
Yes	No
Use window and/or door screens to prevent access to mosquitoes	316 (93.2) 23 (6.8)
Yes	No
Admit patients with DF without warning signs	160 (48.6) 169 (51.4)
Yes	No
Admit patients with DF without warning signs but with co-morbidities	236 (72.6) 89 (27.4)
Yes	No
Admit patients with DF with warning signs	277 (83.4) 55 (16.6)
Yes	No
Give IV fluid hydration to patients suspected to have DF	257 (78.1) 72 (21.9)
Yes	No
Give Paracetamol to patients suspected to have DF	230 (70.6) 96 (29.4)
Yes	No
Give antibacterial drugs to patients suspected to have DF	115 (35.1) 213 (64.9)
Yes	No
Give antiviral to patients suspected to have DF	143 (43.6) 185 (56.4)
Yes	No
Graded Practice of HCWs regarding DF	269 (76.6) 82 (23.4)
Appropriate practice (≥60%)	Inappropriate practice (<60%)

Overall, the majority (87.8%) of our respondents had adequate knowledge of the cause, transmission, treatment, and prevention of DF. This contrasts with other studies that found only 10.3% with high knowledge[44] and other studies with low knowledge levels from India, Pakistan, Thailand, and Jamaica.[32,33,40‑44]

Findings from our study showed that the knowledge of DF treatment was good, with 67.7% of the participants scoring 75% and above; however, Kajeguka et al.[25] in 2017, reported over treatment of malaria in the absence of diagnosis. Another study by Nguyen and his coresearchers revealed missed opportunities by primary health physicians to improve dengue prevention through communication.[49]

In terms of correlates of overall graded knowledge and attitudes of the HCWs, there was no statistically significant association between sociodemographic variables, including years of experience. However, in terms of practice, HCWs

Table 9: Correlates of Overall Graded Practice of HCWs Regarding Dengue Fever

Variables	Overall Graded Practice	Test statistics
Age (years)		
<34	41 (51.9) 125 (49.0)	$\chi^2=0.20$
≥ 34	38 (48.1) 130 (51.0)	$P=0.70$
Gender		
Female	36 (43.9) 104 (39.0)	$\chi^2=0.64$
Male	46 (56.1) 163 (61.0)	$P=0.44$
Religion		
None	0 (0.0) 2 (0.8)	$\chi^2=2.76$
Christianity	29 (36.7) 80 (30.2)	$P=0.43$
Islam	49 (62.0) 176 (66.4)	
Others	1 (1.3) 7 (2.6)	
Marital status		
Unmarried	23 (30.3) 74 (28.7)	$\chi^2=0.07$
Married	53 (69.7) 184 (71.3)	$P=0.78$
Years of experience		
<10	48 (70.6) 129 (54.2)	$\chi^2=5.82$
≥ 10	20 (29.4) 109 (45.8)	$P=0.018^*$

Furthermore, it was observed from our study that the majority of our subjects expressed a positive attitude toward DF. Studies elsewhere observed similar positive attitudes, although not as high as observed in this study.[33,40,44] The proportion of respondents that showed a positive attitude toward DF is not surprising, although it has been shown that good knowledge about DF could translate to positive attitudes.[46]

On the overall graded practice of preventing DF, most study subjects (76.6%) had appropriate practices. This is in agreement with findings from other studies elsewhere.[45,47] On the other hand, some other studies observed varying practice levels from 49.6% to 57.3%,[36,38,40] The difference between our study and these other studies may not be unrelated to the fact that ours was among health workers while these others were from community-based studies. The health workers are usually the first contacts of patients in all health facilities; therefore, the perception of being at risk of infection, frequent training, and continuous provision of information, education, and communication invariably strengthen good practices. Although education plays an essential role in enhancing good practices, it has been observed that education alone cannot be correlated with knowledge.[48] It is therefore not surprising that nurses in our study had better practice than other health workers. Ekra et al. observed similar findings from their study.[25]
with more than 10 years’ experience were two times more likely to have fair practice compared with others. The overall knowledge score of DF between respondents’ cadres was found significant \(P < 0.001 \) among consultants, resident doctors, house officers, pharmacist, and nurses and had a higher knowledge score than the laboratory scientist probably due to the few numbers of cases seen or wrong laboratory investigation and diagnosis. Nurses had a significant higher attitude score compared with laboratory scientists \(P = 0.025 \); however, nurses and laboratory scientists had significant higher practice scores compared with other health professionals \(P = 0.016 \), and this could be due to safety precautions adopted, especially by these cadres of HCWs to limit exposure and contact with suspected patients and samples.

Summary

Findings from our study indicated that the respondents had high awareness about DF with seminars and lectures in school as the commonest sources of information. A greater proportion of the respondents had adequate knowledge, a positive attitude, and appropriate DF practice, respectively. The need to increase sensitization of HCWs on attitude and practice of DF prevention is timely and essential considering the population at risk globally and the impact of population growth, urbanization, and climate change. Surveillance, proper diagnosis, and treatment are needed to avoid missing cases or misdiagnosed cases, especially in developing and underdeveloped countries with limited resources in terms of health-care service delivery. Communicating the regular geographical distribution and global burden to alert HCWs is equally essential. The need to develop programs and activities aimed at capacity development of HCWs, especially the primary health-care physicians, to avoid missing or misdiagnosed cases of DF is critical.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

References

1. Yusuf AM, Ibrahim NA. Knowledge, attitude and practice towards dengue fever prevention and associated factors among public health sector health-care professionals in Dire Dawa, Eastern Ethiopia. Risk Manag Healthc Policy 2019;12:91-104.
2. Elson WH, Ortega E, Kreutzberg-Martinez M, Jacquieroz F, Cabrera LN, Oberhelman RA, et al. Cross-sectional study of dengue-related knowledge, attitudes and practices in Villa El Salvador, Lima, Peru. BMJ Open 2020;10:e037408.
3. Lugova H, Wallis S. Cross-sectional survey on the dengue knowledge, attitudes and preventive practices among students and staff of a public university in Malaysia. J Community Health 2017;42:413-20.
4. Selvarajoo S, Liew JW, Tan W, Lim XY, Refai WF, Zaki RA, et al. Knowledge, attitude and practice on dengue prevention and dengue seroprevalence in a dengue hotspot in Malaysia: A cross-sectional study. Sci Rep 2020;10:9534.
5. World Health Organization. Dengue and Severe Dengue. WHO Factsheet. 2012.
6. Messina JP, Brady OJ, Golding N, Kraemer MU, Wint GR, Ray SE, et al. The current and future global distribution and population at risk of dengue. Nat Microbiol 2019;4:1508-15.
7. PAHO. Reported cases of dengue fever in the Americas. PAHO. Available: http://www.paho.org/data/index.php/en/nnu-topics/indicadores-dengue-en/dengue-nacional-en/252-dengue-pais-ano-en.html?showall=&start=1. [Last accessed on 2020 Dec 10].
8. Pan American Health Organization (PAHO). Epidemiological update dengue, 2019. Available from: https://www.paho.org/hq/index.php?option=com_topics and view=rmore and cid=2217 and item=dengue and type=alerts and Itemid=40734 and lang=en.
9. WHO/TDR. Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control. Geneva: World Health Organization (WHO) and the Special Programme for Research and Training in Tropical Diseases; 2009.
10. Brady OJ, Gething PW, Bhatt S, Messina JP, Brownstein JS, Hoen AG, et al. Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Negl Trop Dis 2012;6:e1760.
11. Gubler DJ. Emerging vector-borne flavivirus diseases: Are vaccines the solution? Expert Rev Vaccines 2011;10:563-5.
12. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global distribution and burden of dengue. Nature 2013;496:504-7.
13. Reich NG, Shrestha S, King AA, Rohani P, Lessler J, Kalayanarooj S, et al. Interactions between serotypes of dengue highlight epidemiological impact of cross-immunity. J R Soc Interface 2013;10:20130414. doi: 10.1098/rsif.2013.0414.
14. Halstead SB. Dengue vaccine development: A 75% solution?. Lancet 2012;380:1535-6.
15. WHO/SEARO. Comprehensive Guidelines for Prevention and Control of Dengue and Dengue Haemorrhagic Fever (revised and expanded edition). New Delhi: World Health Organization, Regional Office for South East Asia; 2011.
16. Amarasingshe A, Kuritsk JN, Letson GW, Margolis HS. Dengue virus infection in Africa. Emerg Infect Dis 2011;17:1349-54.
17. Faneye A, Idika N, Motayo BO, Adesammi A, Afocha E. Serological evidence of recent dengue virus infection in Africa. Emerg Infect Dis 2011;17:1349-54.
18. PAHO. Reported cases of dengue fever in the Americas. PAHO. Available: http://www.paho.org/data/index.php/en/nnu-topics/indicadores-dengue-en/dengue-nacional-en/252-dengue-pais-ano-en.html?showall=&start=1. [Last accessed on 2020 Dec 10].
19. PAHO. Dengue-related knowledge, attitudes and practices in Villa El Salvador, Lima, Peru. BMJ Open 2020;10:e037408.
20. PAHO. Reported cases of dengue fever in the Americas. PAHO. Available: http://www.paho.org/data/index.php/en/nnu-topics/indicadores-dengue-en/dengue-nacional-en/252-dengue-pais-ano-en.html?showall=&start=1. [Last accessed on 2020 Dec 10].
21. PAHO. Dengue-related knowledge, attitudes and practices in Villa El Salvador, Lima, Peru. BMJ Open 2020;10:e037408.
among febrile children in a semi arid zone. Am J Infect Dis 2013;9:7-10.

18. Odilipo EK, Amanetru C, Gbadero TA, Oloke JK. Detectable anti-dengue virus IgM antibodies among healthy individuals in Ogbomosho, Oyo state, Nigeria. Am J Infect Dis 2014;10:64-7.

19. Oyero OG, Ayukekbong JA. High dengue NS1 antigenemia in febrile patients in Ibadan, Nigeria. Virus Res 2014;191:59-61.

20. Lee LK, Thein TL, Kurukuralatne C, Gan V, Lye DC, Leo YS. Dengue knowledge, attitudes, and practices among primary care physicians in Singapore. Ann Acad Med Singapore 2011;40:333-8.

21. Tan HF, Yeh CY, Chang HW, Chang CK, Tseng HF. Private doctors' practices, knowledge, and attitude to reporting of communicable diseases: A national survey in Taiwan. BMC Infect Dis 2009;9:11.

22. Alzahrani A. Knowledge and practice of primary health-care physicians regarding the dengue fever in Makkah Al-Mokarramah city, 2013. Int J Med Sci Public Health 2015;4:266-74.

23. PAHO/WHO. Dengue Guidelines for Patient Care in the Region of the Americas. 2nd Edition. Washington, DC. 2016. Available from: http://iris.paho.org/xmlui/handle/123456789/31207.

24. Ekra DK, Cherif D, Damus Paquin Kouassi DP, Konan YL, Coulibaly D, Traore Y, et al. Determinants of practices for dengue diagnosis among healthcare professionals working in public hospitals of Abidjan, Cote d'Ivoire. Journal of Public Health and Epidemiology 2017;9:212-8.

25. Kajeguka DC, Desrochers RE, Mwangi R, Mgabo MR, Alfrangis M, Kavishe RA, et al. Knowledge and practice regarding dengue and chikungunya: A cross-sectional study among Healthcare workers and community in Northern Tanzania. Trop Med Int Health 2017;22:583-93.

26. Dubé E, Defay F, Kiely M. Connaissances, attitudes et pratiques d’infirmiers, d’infirmières, de pédiatres et d’omnipraticiens québécois sur la grippe A (H1N1) et la grippe saisonnière. Institut National de Santé Publique du Québec INSPO. 2011.

27. National Population Commission (NPC) [Nigeria] and ICF Macro. Nigeria Demographic and Health Survey 2018. Abuja, Nigeria: NPC and ICF Macro. 2018.

28. Ho TS, Huang MC, Wang SM, Hsu HC, Liu CC. Knowledge, attitude, and practices related to dengue in rural and slum areas of Delhi after the dengue epidemic of 1996. J Commun Dis 1998;30:107-12.

29. Gupta P, Kumar P, Aggarwal OP. Knowledge, attitude and practices related to dengue in rural and slum areas of Delhi after the dengue epidemic of 1996. J Commun Dis 1998;30:107-12.

30. Pradeep C, Achuth KS, Manjula S. Awareness and practice towards dengue fever in Kannamangala village, Bangalore, Karnataka, India. Int J Community Med Public Health 2016;3:1847-50.

31. Kumar AV, Rajendran R, Manavalan R, Tewari SC, Arunachalam N, Ayanar K, et al. Studies on community knowledge and behavior following a dengue epidemic in Chennai city, Tamil Nadu, India. Trop Biomed 2018;25:330-6.

32. Dhimal M, Aryal KK, Dhimal ML, Gautam I, Singh SP, Bhusal CL, et al. Knowledge, Attitude and practice regarding dengue fever among the healthy population of highland and lowland communities in Central Nepal. PLoS One 2014;9:e102028.

33. Shuaib F, Todd D, Campbell-Stennett D, Ehiri J, Jolly PE. Knowledge, attitudes and practices regarding dengue infection in Westmoreland, Jamaica West Indian Med J 2010;59:139-46.

34. Badar S, Yasmeen S, Hussain W, Amjad MA. Dengue fever: Knowledge and practices of preventive measures among students of Bahawalpur city, Pakistan. Professional Med J 2014;21:106-10.

35. Jogand SK, Yerpude NP. The community knowledge and practices regarding dengue fever in an urban area of south India. Peoples J Sci Res 2013;6:13-5.

36. Alhoot MA, Baobaib MF, Al-Maleki AR, Abdelqader MA, Paran LR, Kannah B, et al. Knowledge, attitude, and practice towards dengue fever among patients in hospital Taiping. Malaysian J Public Health Med 2017;17:66-75.

37. Al-Dubai S, Ganasegeran K, Mohanad Rahman A, Alshagga MA, Saif-Ali R. Factors affecting dengue fever knowledge, attitudes and practices among selected urban, semi-urban and rural communities in Malaysia. Southeast Asian J Trop Med Public Health 2013;44:37-49.

38. Van Rozita W, Yap B, Veronica S, Mohammad A, Lim K. Knowledge, attitude and practice (KAP) survey on dengue fever in an urban Malay residential area in Kuala Lumpur. Malaysian J Public Health Med 2006;6:62-7.

39. Nguyen NM, Whitehorn JS, Luong Thi Hue T, Nguyen Thanh T, Mai Xuan T, Vo Xuan H, et al. Physicians, primary caregivers and topical repellent: All under-utilised resources in stopping dengue virus transmission in affected households. PLoS Negl Trop Dis 2016;10:e0004667.

40. Van Benthem BH, Khantikul N, Panart K, Kessels PJ, Soomboon P, Oskaam L. Knowledge and use of prevention measures related to dengue in northern Thailand. Trop Med Int Health 2002;7:993–1000.

41. Acharya A, Goswami K, Srinath S, Goswami A. Awareness about dengue syndrome and related preventive practices amongst residents of an urban resettlement colony of south Delhi. J Vector Borne Dis 2005;42:122-7.

42. Uma Deavi A, Gan Chong Y, Ooi Guat S. A knowledge attitude and practice (KAP) study on dengue/dengue haemorrhagic fever and the Aedes mosquitoes. Med J Malaysia 1986;41:108–15.

43. Gupta P, Kumar P, Aggarwal OP. Knowledge, attitude and practices related to dengue in rural and slum areas of Delhi after the dengue epidemic of 1996. J Commun Dis 1998;30:107–12.

44. Mayxay M, Cui W, Themamvong S, Khansakhok K, Vongsavanh V, Inthasoum L, et al. Dengue in peri-urban Pak-Ngum district, Vientiane capital of Laos: A community survey on knowledge, attitudes and practices. BMC Public Health 2013;13:434.

45. Leong TK. Knowledge, attitude and practice on dengue among rural communities in Rembau and Bukit Pelanduk, Negeri Sembilan, Malaysia. Int J Trop Dis Health 2014;6:179-84.

46. Talarico L, Pujol C, Zibetti R, Faría PC, Noseda MD, Duarte ME, et al. Determinants of practices for dengue diagnosis among healthcare professionals working in public hospitals of Abidjan, Cote d’Ivoire. Journal of Public Health and Epidemiology 2017;9:212-8.

47. Abdullah MN, Azib W, Harun MF, Burhanuddin MA. Determinants of practices for dengue diagnosis among healthcare professionals working in public hospitals of Abidjan, Cote d’Ivoire. Journal of Public Health and Epidemiology 2017;9:212-8.