Особливості імунного статусу у хворих з метастатичними та гліальними пухлинами головного мозку на підготовчому етапі променевого лікування

Грязов А. А., Лісяний М. І., Грязов А. Б.

Оригінальні дослідження

Ключові слова:
імунний статус, метастатичні пухлини, гліальні пухлини, променеве лікування.

Для цитування:
Грязов А. А., Лісяний М. І., Грязов А. Б. Особливості імунного статусу у хворих з метастатичними та гліальними пухлинами головного мозку на підготовчому етапі променевого лікування. Український радіологічний та онкологічний журнал. 2020. Т. XXVIII. № 4. С. 353–363. DOI: https://doi.org/10.46879/ukroj.4.2020.353-363

Для кореспонденції:
Грязов Андрій Андрійович
Державна установа «Інститут нейрохірургії ім. А. П. Ромоданова Національної академії медичних наук України», Київ, Україна;
вул. Майбороди, буд. 32, м. Київ, Україна, 04050;
e-mail: precisemaningame@gmail.com

© Грязов А. А., Лісяний М. І., Грязов А. Б., 2020.

РЕЗЮМЕ

Актуальність. Дослідження останніх десятиліть показали, що імунні клітини є важливими учасниками онкопроцесу та запалення, пов’язаного з раком. Зусилля були зосереджені на розумінні того, як імунні клітини впливають на результат розвитку пухлини на різних стадіях захворювання: рання неопластична трансформація, клінічно виявлені пухлини, метастатичне поширення та на етапах хірургічного та променевого лікування.

Мета роботи – оцінити стан імунної системи у хворих із пухлинами головного мозку перед початком променевої терапії та радіохірургії та порівняти особливості імунітету при метастатичних і гліальних пухлинах головного мозку.

Матеріали та методи. У дослідженні представлені результати імунограм 61 пацієнта. З них 18 пацієнтів із первинними гліальними пухлинами та 23 пацієнти з вторинними метастатичними пухлинами в головний мозок. Як контрольна група представлені результати 20 умовно здорових пацієнтів, які не мали онкозахворювань. Вік пацієнтів склав 24–75 років. У сі пацієнти мають гістологічне підтвердження діагнозу пухлини. Оперативне втручання проводилось за 1,0–3,0 роки до обстеження.

Оцінка стану імунної системи у хворих на пухлини мозку проводилась з урахуванням клітинної, гуморальної та фагоцитарної ланки імунітету. Для оцінки клітинного імунітету визначено відносну та абсолютну кількість основних субпопуляцій лімфоцитів, та таких як CD3+- загальні Т-лімфоцити, CD4+- Т-лімфоцити-хелпери, CD8+- цитотоксичні лімфоцити, CD16+- натуральні кілерні лімфоцити, CD19+-В-лімфоцити. Визначення гуморальних показників включало оцінку кількісних показників IgG, IgM та IgA. Кількісна оцінка фагоцитарної ланки імунітету включала фагоцитарну активність нейтрофілів (а саме: НСТ-тест, індукуюча (зимозан) та спонтана активність мієлопероксидази нейтрофілів).
Keywords: immune status, metastatic tumors, glial tumors, radiation therapy.

For citation: Gryazov A. A., Lisyan M. I., Gryazov A. B. Features of immune status in patients with metastatic and glial brain tumors at the preparatory stage of radiotherapy. Ukrainian journal of radiology and oncology. 2020;28(4): 353–363. DOI: https://doi.org/10.46879/ukroj.4.2020.353-363

For correspondence: Gryazov Andrii Andriiovych State Organization «Romodanov Neurosurgery Institute of the National Academy of Medical Sciences of Ukraine»; 32, Mayborody Str., Kyiv, Ukraine, 04050; e-mail: precisemaningame@gmail.com

© Gryazov A. A., Lisyan M. I., Gryazov A. B., 2020

ABSTRACT

Background. Studies carried out in recent decades have shown that immune cells are essential participants in the cancer process as well as cancer-related inflammation. Focus has been increased on understanding the way how immune cells affect a tumor at different stages of the disease: early neoplastic transformation, clinically detected tumors, metastatic spread, and at surgery and radiotherapy stages.

Purpose – assessing the status of the immune system in patients with brain tumors before radiation therapy and radiosurgery and comparing the features of immunity in metastatic and glial brain tumors.

Materials and methods. The study presents the immunogram findings of 61 patients. Out of those: 18 patients with primary glial tumors and 23 patients with secondary metastatic tumors to the brain. The outcomes of 20 conditionally healthy non-cancer patients are presented as a control group. The age of patients is 24–75. All patients were histologically diagnosed with the tumor. Surgery was performed 1.0–3.0 years before the examination. Assessment of the immune system in patients with brain tumors was performed taking into account the cellular, humoral and phagocytic components. When assessing cellular immunity, the relative and absolute count of major lymphocyte subpopulations, such as CD3+ – general T-lymphocytes, CD4+ – T-lymphocytes-helpers, CD8+ – cytotoxic lymphocytes, CD16+ – natural killer lymphocytes, CD19+B-lymphocytes, were calculated. Determining the humoral parameters included an assessment of quantitative values of IgG, IgM and IgA. Quantitative assessment of the phagocytic component of innate immunity included phagocytic activity of neutrophils (i. e. NBT test (Nitroblue Tetrazolium test), inducing containing the function of NBT cell activity.

Results. When comparing the immune parameters of the number of T- and B-subpopulations of lymphocytes in patients with primary malignant brain tumors and secondary metastatic tumors, no statistically significant difference has been detected between these params. Glioblastomas show higher levels of CD4+- and CD8+-lymphocytes in comparison with other tumor groups as well as higher levels of IgG and IgA than in other tumors, while IgM concentration is almost at the same level in three groups of patients. There is a tendency for reducing IgG and IgM level in the blood of patients with metastatic tumors. Both groups of cancer patients under study show inhibition of myeloperoxidase activity of neutrophils in the setting of maintaining the function of NBT cell activity.
Зв’язок роботи з науковими програмами, планами і темами

Робота виконана в рамках планової науково-дослідної роботи Державної установи «Інститут нейрохірургії ім. А. П. Ромоданова Національної академії медичних наук України «Розробка методу комплексного лікування метастатичних пухлин головного мозку з використанням передопераційного опромінення».

ВСТУП

Рак залишається однією з основних причин смерті в усьому світі, і очікується, що, з урахуванням старіння населення його шорічні втрати в 8,2 мільйона тільки збільшаться [1]. Первинні та метастатичні пухлини є складними екосистемами, що складаються з неопластичних клітин, позаклітинного матрикса, що включають резидентні мезенхімальні клітини, ендотеліальні клітини та інфільтровані запальні імунні клітини. Перекресний діалог між раковими клітинами та додатковими клітинами сприяє розвитку пухлини і формує її. Під час формування пухлини структура тканин переходить в узькоспеціалізоване мікроорганізування, що характеризується пошкодженням ПКМ і хронічним запаленням [2].

Досліджені останніх десятиліть показали, що імунні клітини є важливими учасниками онкологічного процесу та запalenня, пов’язаного з раком. Зусилля були зосереджені на розумінні того, як імунні клітини впливають на результат розвитку пухлини на різних стадіях захворювання: рання неопластична трансформація, клінічно виявлена пухлина, метастатичне поширення та на етапах хірургічного та променевого лікування. Вплив на імунну систему різних методів лікування пухлинного процесу, у тому числі, проведення терапії (ПТ), що є основним способом лікування раку, не досліджений. Так, крім прямого впливу вимірювання на ракові клітини, ПТ може викликати модифікації в локальному мікросередовищі та імунні системи, як здатні чинити вплив на розвиток пухлини [3]. Більшість пухлинних клітин не експресують антигени II класу головного комплексу гістосумісності (МНС) і, як наслідок, вони не можуть безпосередньо активувати специфічний пухлинний імунітет, опосередкований CD4+-Т-клітинами, який необхідний для розвитку протитуманних імунних відповідей. Пухлинні клітини через рецептори молекули імунної реактивності (MICA) можуть активувати CD8+-Т-клітини, які у свою чергу активують CD4+-Т-клітини імунної системи [1].

Connection with scientific programs, plans and topics

Included into the research project plan State Organization «Romodanov Neurosurgery Institute of the National Academy of Medical Sciences of Ukraine» that is «Development of a method of comprehensive treatment of metastatic brain tumors with preirradiation».

INTRODUCTION

Cancer is still considered as one of the principal causes of death worldwide, and, in view of aging population, its annual loss of 8.2 million is only expected to increase [1]. Primary and metastatic tumors are complex ecosystems consisting of neoplastic cells, extracellular matrix (ECM) and «additional» non-tumor cells, which include resident mesenchymal cells, endothelial cells and infiltrated inflammatory immune cells. The cross dialogue between cancer cells and additional cells furthers tumor development and forms it. During tumor formation, the tissue structure changes to a highly specialized microenvironment, characterized by damaged ECM and chronic inflammation [2].

Studies carried out in recent decades have shown that immune cells are essential participants in the cancer process as well as cancer-related inflammation. Focus has been increased on understanding the way how immune cells affect a tumor at different stages of the disease: early neoplastic transformation, clinically detected tumors, metastatic spread, and at surgery and radiotherapy stages. The impact of various options of treating the tumor process, including radiation therapy (RT), on the immune system has not been fully studied yet. Thus, in addition to the direct effect of radiation on cancer cells, RT can result in modifications in the local microenvironment and the immune system, which can affect tumor development [3].

Most tumor cells do not express class II major histocompatibility complex (MHC) antigens and, as a consequence, they cannot directly activate specific tumor immunity mediated by CD4+-T-cells that is essential for antitumor immune response development. Tumor cells have quite complex mechanisms due to which they can avoid immune surveillance. These cells can produce immunosuppressive cytokines and involve inhibitory and regulatory cell types, reduce the expression of MHC class I molecules, cause anergy or deletion of T-cells and cause dendritic cell (DC) dysfunction [3–6]. The interaction of all these factors can...
клітини мають досить складні механізми, за допомогою яких можуть уникнути імунного нагляду. Ці клітини можуть продукувати імуносупресивні цитокіни і залучати гальмівні та регуляторні типи клітин, знизювати експресію молекул MHC класу I, викликати анергію або дедукцію T-клітин і дисфункцію дендритних клітин (ДК) [3–6]. Взаємодія всіх цих факторів може сприяти не лише «невидимості» ракових клітин для імунної системи, а й стимулювати пухлинний ріст [4], тому важливо визначити стан імунної системи на всіх етапах комбінованого лікування.

Показано, що ПТ може сприяти тому, щоб пухлини ставали «видимими» системі імунітету [7–12]. Після лікування ПТ спостерігається збільшення пулу пептидів для презентації антитілу, яка відображається молекулами MHC-I [4]. За допомогою цього механізму адаптивні імунні відповіді можуть сприяти елімінації клітин та метастазів пухлин, що не експресують MHC-II. CD4+-T-клітини можуть допомогти знищити пухлинні клітини за допомогою декількох механізмів. Незважаючи на центральну роль CD4+-T-клітин у процесі, їм можна надати необхідні можливості для презентації антигену, пухлинні антигени, такі як ТАА, можуть бути представлені дендритними клітинами за допомогою CD8+-T-клітин та молекул в MHC-I в класі; цей процес може відбуватися без допомоги попередніх CD4+-T-клітин. Представлені вище дані вказують на важливі значення визначення стану CD4 та CD8 клітини ланки імунітету на різних етапах лікування пухлин, особливо перед початком ПТ. У той же час багато питань, пов’язаних зі стаціонарною імунною системою, кількістю CD3+, CD4+, CD8+ та інших імунних клітин в крові при пухлинах різного походження та локалізації, у тому числі і при пухлинах головного мозку, потребують подальшого вивчення, що необхідно для проведення успішного лікування [8, 13, 14].

Мета роботи – оцінити стан імунної системи у хворих із пухлинами головного мозку перед початком терапії та радіохірургії та порівняти особливості імунітету при метастатичних і гіпіально зложенних пухлинах головного мозку.

МАТЕРІАЛІ ТА МЕТОДИ ДОСЛІДЖЕННЯ
У дослідженні представлені результати імунного статусу 61 пацієнта з пухлинами головного мозку, із них 18 – з первинними гіпіальніми пухлинами (гіпобластоми – 9, анапластичні астроцитоми – 2, анапластичні олігодендроцитоми – 2, дифузні астроцитоми – 3) і 23 пацієнти з іншими метастатичними пухлинами в головний мозок із локалізацією первинного вогнища в молочній залозі – 9 пацієнтів, легенях – 5, шкірі (меланома) – 3, кишечнику – 3, матці – 1, плеврі (мезотеліома) – 1, анонімний метастаз – 1. Як контрольна група представлені результати 20 умовно здорових пацієнтів, які не мали онкозахворювань. Всіх пацієнтів склав 24–75 років. Оперативне втручання проводилося за 1,0–3,0 роки до обстеження. Усі пацієнти мали гістологічне підтвердження діагнозу пухліни, установленого відповідно до сучасних гістологічних класифікацій пухлин. Інформована письмова згода на проведення

not only further the «invisibility» of cancer cells by the immune system, but also stimulate tumor growth [4]. Therefore, it is important to assess the immune system status at all stages of combination treatment.

It has been made clear that RT can help tumors become «visible» to the immune system [7–12]. After RT, there is a tendency for increasing the pool of peptides antigen presentation, which is reflected by MHC-I molecules [4]. Via this mechanism, adaptive immune responses can facilitate the elimination of cells and tumor metastases that do not express MHC-II. CD4+-T-cells can help to kill tumor cells through several mechanisms. In spite of the central role of CD4+-T-cells in antitumor adaptive immunity, the tumor antigens such as TAA can be presented to dendritic cells by CD8+-T-cells and molecules in MHC-I class; this process can be handled without involvement of the previous CD4+-T-cells. The data listed above indicate the importance of assessing the state of CD-4 and CD-8 cellular component of the immune system at different stages of tumor treatment, especially before RT. At the same time, there are lots of issues regarding the status of the immune system, the count of CD3+, CD4+, CD8+ and other immune cells in the blood in tumors of different origin and location, including brain tumors, which should be researched further in order to provide successful treatment [8, 13, 14].

Purpose – assessing the status of the immune system in patients with brain tumors before radiation therapy and radiosurgery and comparing the features of immunity in metastatic and gliain brain tumors.

MATERIALS AND METHODS OF RESEARCH
The study presents the immunogram findings of 61 patients with brain tumor, out of these: 18 patients with primary glial tumors (glioblastomas – 9, anaplastic astrocytomas – 2, anaplastic oligoastrocytomas – 2, anaplastic oligodendroglia – 2, diffuse astrocytomas – 3) and 23 patients with secondary metastatic tumors to the brain with the primary focus being localized in the breast – 9 patients, in the lungs – 5 patients, in the skin (melanoma) – 3 patients, in the intestine – 2 patients, in the uterus – 1 patient, in the pleura (mesothelioma) – 1 patient, anonymous metastasis – 1 patient. The outcomes of 20 conditionally healthy non-cancer patients are presented as a control group. The age of patients is 24–75. Surgery was performed 1.0–3.0 years before examination. All patients were histologically diagnosed with the tumor in accordance with the current histological classifications of tumors. Informed written consent for diagnostic tests was provided to the patients; stored in clinical records.
Диагностичних досліджень пацієнтам дана і зберігається в історії хвороби.

Оцінка стану імунної системи у хворих на пухлини мозку проводилась з урахуванням клітинної, гуморальної та фагоцитарної ланки імунітету.

Для оцінки клітинного імунітету визначено відносну та абсолютну кількість основних субпопуляцій лімфоцитів, таких як CD3+-загальні T-лімфоцити, CD4+-T-лімфоцити – хелпери, CD8+-цитотоксичні лімфоцити, CD16+-натуральні кілери лімфоцити, CD19+-B-лімфоцити. Визначення концентрації цих субпопуляцій проводилось за допомогою відповідних моноклінних антитіл фірми Becton Dickinson USA, за рекомендованими інструкціями та протоколами досліджень, адаптованих до визначення цих клітин у периферічній крові.

Визначення відсутності сироваткових імуноглобулінів класу IgM, IgA проводилось за допомогою стандартних наборів моноспецифічних сироваток фірми «Мікроген» МЗ РФ в агарних пластинках згідно з рекомендаціями та інструкціями виробника. Фагоцитарну активність лейкоцитів та нейтрофілів визначали за допомогою НСТ-тесту за спектрофотометричним методом у порівнянні з іншими моноклінними антитілами фірми «Мікроген» МЗ РФ за рекомендаціями та інструкціями виробника.

Оцінка стану імунної системи у хворих на пухлини головного мозку первинного та метастатичного походження виявило зміни в різних ланках імунної системи. Так, при порівнянні абсолютної кількості окремих субпопуляцій лімфоцитів виявлено дисбаланс у складі CD3+-, CD4+-, CD8+-Т-лімфоцитів та CD19+-B-лімфоцитів, а саме – у порівнянні з групою первинних мозкових пухлин визначено зменшення рівня CD19+-CD3+B-лімфоцитів у периферічній крові.

Статистичну обробку отриманих результатів проводили за програмою Statistica-8 з визначенням середнього периферічного (M) квадратичного відхилення та показника Стьюдента. Критерієм відмінностей показників було обрано рівень значимості p < 0,05.

Результати та їх обговорення

Дослідження імунного статусу у хворих на пухлини головного мозку первинного та метастатичного походження виявило зміни в різних ланках імунної системи. Тому, при порівнянні абсолютної кількості окремих субпопуляцій лімфоцитів виявлено дисбаланс у складі CD3+-, CD4+-, CD8+-T-лімфоцитів та CD19+-B-лімфоцитів, а саме – у порівнянні з групою первинних мозкових пухлин визначено зменшення рівня CD19+-CD3+B-лімфоцитів у периферічній крові. При порівнянні імунних показників у хворих із первинними зловживаннями пухлинами – гліобластомами та астроцитомами з відповідними метастатичними пухлинами було встановлено незначні відмінності у кількості T- і B-субпопуляцій лімфоцитів, а саме – виявлено, що при гліобластомах був найвищий рівень CD4+- та CD8+- лімфоцитів в порівнянні з іншими групами пухлин, хоча статистичної вірогідної відмінності між цими показниками не виявлено (дані наведені у табл. 1, p < 0,05).

Вміст різних субпопуляцій лімфоцитів у крові хворих із метастатичними пухлинами та астроцитомами III ступеня аналазі був практично однаковий, що свідчить як про імунологічну подібність онкологічного процесу в організмі, незалежно від локації пухлин, наприклад,

Assessing the immune system status in patients with brain tumors was performed taking into account the cellular, humoral and phagocytic component of innate immunity.

When assessing cellular immunity, the relative and absolute count of major lymphocyte subpopulations, such as CD3+- general T-lymphocytes, CD4+-T-lymphocytes-helpers, CD8+- cytotoxic lymphocytes, CD16+- natural killer lymphocytes, CD19+-B-lymphocytes, were calculated. The concentration of these subpopulations was evaluated by means of the applicable mononclonal antibodies produced by Becton Dickinson USA, according to the guidelines and study protocols adapted to assessing these cells in peripheral blood (Pinegin).

The level of serum immunoglobulins of IgM, IgA class was counted using standard sets of monospecific sera produced by «Microgen» of the Ministry of Health of the Russian Federation in agar plates, according to the guidelines and instructions of the manufacturer. Phagocytic activity of leukocytes and neutrophils was assessed by means of NBT test via colorimetric method of Horndienko S. N. in the modification of Lisianyi M. I. Myeloperoxidase activity of neutrophils was performed by colorimetric method on the activity of intracellular peroxide in comparison with horseradish peroxidase according to the method, that was adaptive to enzyme immunoassay analyzer-reader (Freemel).

Statistical processing of the obtained outcomes was carried out in accordance with Statistica–8 SW along with counting the mean peripheral (M) square deviation and Student’s test. The significance level p < 0.05 was chosen as a criterion for differences in indicators.

Results and discussion

Studying the immune status in patients with brain tumors of primary and metastatic origin has made it possible to detect the changes in various components of the immune system. Thus, when comparing the absolute number of individual subpopulations of lymphocytes, the imbalance in composition of CD3+-, CD4+-, CD8+-T-lymphocytes and CD19+-B-lymphocytes, in comparison with a group of non-cancer patients, in particular, was revealed. An increase in the indicated level of T-lymphocyte subpopulations along with decreased level of CD19-. CD3+B-lymphocytes in peripheral blood were detected. When comparing the immune parameters in patients with primary malignant brain tumors, that is glioblastomas and anaplastic astrocytomas, with secondary metastatic tumors, there were minor differences in the number of T- and B-subpopulations of lymphocytes, namely, it was found that glioblastomas showed the highest CD4+- and CD-8+- levels of lymphocytes compared to other tumor groups, although no statistically significant difference between these indicators was found (ref. Table. 1, p < 0.05).

The content of various subpopulations of lymphocytes in the blood of patients with metastatic tumors and anaplastic astrocytomas of anaplasia degree III was almost the same, suggesting immunological similarity of the oncological process in the body, regardless
Оригінальні дослідження

Оригінальні дослідження

нітету, а саме – рівнів різних типів імуноглобулінів лімфоцитів у периферичній крові.

у головному мозку чи в молочній залозі. Дещо окремо виділяються показники вмісту CD16+ – на-
туральних кілерних клітин. Так, при метастатичних пухлинах та при аналастичних астроцитомах ви-
яло зниження рівня CD16+-клітин у крові, тоді як при гілобластомах мало місце підвищення кіль-
кості CD16+-лімфоцитів в 1,4–1,5 разу в порівнянні з аналастичними астроцитомами.

Аналігічні зміни в показниках імунної системи виявляються не лише у визначеній абсолютній кіль-
кості певних субпопуляцій лімфоцитів, а й при від-
носному (відсотковому) рівні лімфоцитів, який теж підтверджує наявність зміни залежно від характеру пухлинного процесу, а саме – первинних чи мета-
статичних пухлин (дани наведені у табл. 2, p < 0.05). Водночас при порівнянні відсоткового та абсолют-
ного вмісту певних субпопуляцій лімфоцитів можна виділити, що визначення абсолютного вмісту імун-
них клітин у крові більш наочно ілюструє стан імун-
ної системи, ніж відсотковий її рівень, але для пов-
ноти уявлення про особливості порушень в імунній системі необхідно відомість визначення як абсолют-
ного, так і відсоткового рівні певних субпопуляцій лімфоцитів у периферичній крові.

При визначенні показників туморального іму-
нітету, а саме – рівнів різних типів імуноглобулінів у периферичній крові, установлена залежність від хар-
кратеру пухлинного процесу. При гілобластомах вия-
вається більш високий рівень IgG та IgA, ніж при ін-
ших пухлинах, тоді як концентрація IgM практично знаходиться на одному рівні в усіх трьох групах хво-
ріх. Спостерігається тенденція до зниження рівня of tumor location, such as brain or breast. Indicators of CD16+- content of natural killer cells are somewhat different. Thus, in metastatic tumors as well as in anaplastic astrocytomas, the level of CD16+-cells in the blood was decreased, while in glioblastomas the number of CD16+-lymphocytes was a 1.4–1.5-fold increased compared to anaplastic astrocytomas. The same changes in the immune system params are found not only in assessing the absolute number of certain subpopulations of lymphocytes, but also in the relative (percentage) level of lymphocytes also confirming the changes depending on the nature of the tumor process, i.e. primary or metastatic tumors (ref Table. 2, p < 0.05). At the same time, when comparing the percentage and absolute content of certain subpopulations of lymphocytes, it should be noted that evaluating the absolute content of immune cells in the blood more clearly illustrates the immune system status in comparison with its percentage level, however, to get the whole picture of the peculiarities of disorders occurring in the immune system, both absolute and percentage level of specific subpopulations of lymphocytes in the peripheral blood should be counted.

When assessing the humoral immunity indicators, that is the levels of different types of immunoglobulins in the peripheral blood, the dependence on the nature

Таблиця 1. Клітинний імунітет. Абсолютні показники (p < 0,05)

Table 1. Cellular immunity. Absolute measures (p < 0.05)

Пухлини головного мозку	Brain tumors	CD3+	CD4+	CD8+	CD19+	CD16+
Метастази (n = 23)		1,13±0,62	0,63±0,36	0,49±0,30	0,22±0,14	0,23±0,10
Гілобластоми (n = 9)		1,28±0,51	0,73±0,30	0,54±0,24	0,21±0,11	0,30±0,11
Аналіпластичні астроцитоми (n = 9)		1,15±0,54	0,68±0,31	0,48±0,26	0,20±0,12	0,21±0,09
Група порівняння (n = 20)		1,34±0,51	0,78±0,38	0,58±0,22	0,20±0,08	0,25±0,08

Пухлини головного мозку	Brain tumors	CD3+	CD4+	CD8+	CD19+	CD16+
Метастази (n = 23)		70,22±7,47	39,94±8,40	30,52±6,97	14,86±5,92	15,36±3,60
Гілобластоми (n = 9)		69,60±14,06	39,62±9,44	29,68±8,08	12,06±5,29	17,60±5,49
Аналіпластичні астроцитоми (n = 9)		71,26±12,95	42,58±9,43	29,46±7,86	13,34±5,57	13,68±4,27
Група порівняння (n = 20)		73,25±5,43	41,28±10,47	31,7±8,13	11,09±3,29	14,82±5,42

При визначенні показників туморального іму-
нітету, а саме – рівнів різних типів імуноглобулінів у периферичній крові, установлена залежність від ха-
кратеру пухлинного процесу. При гілобластомах вия-
вається більш високий рівень IgG та IgA, ніж при ін-
ших пухлинах, тоді як концентрація IgM практично знаходиться на одному рівні в усіх трьох групах хво-
ріх. Спостерігається тенденція до зниження рівня of the tumor process was detected. Glioblastomas show higher IgG and IgA levels than other tumors, while IgM concentration is almost at the same level in all (3) groups of patients. There is a tendency for reducing IgG and IgM levels in the blood of patients with metastatic tumors (ref Table. 3, p < 0.05). In contrast to the cellular immunity indicators, characterized by increased level of specific subpopulations of T-lymphocytes compared to
IgG и IgM в крови больных с метастатическими новообразованиями (даны в табл. 3, р < 0,05). На фоне увеличения плотности иммунокомплексов, реагирующих с T-лимфоцитами, у пострадавших с данными заболевания контролем, резко снижены иммуноглобулины, что свидетельствует о патологическом резонансном влиянии пухов в головном мозге на иммунную систему.

Таблица 3. Гуморальный иммунитет (р < 0,05)

Пухов в головном мозге	Ig A	Ig M	Ig G
Метастазы (n = 23)	1,60 ± 0	0,92 ± 0,070	9,48 ± 0,070
Глиобластомы (n = 9)	1,81 ± 0,32	1,05 ± 0,36	11,47 ± 2,84
Апластические астроцитомы (n = 9)	1,48 ± 0,59	1,03 ± 0,33	10,77 ± 1,94

Группа сравнения (n = 20) - - -

При изучении активности неспецифической фагоцитарной системы у больных с метастатическими заболеваниями, наблюдалось гальмование реакции миелипероксидазы в лейкоцитах, которое было наиболее значимым при метастатических пухов. При этом НСТ активность лейкоцитов, которая указывает на фагоцитарную активность нейтрофилов, была на фоне показаний группы сравнения при метастатических пухов и лёгко снижена у группы больных с глиобластомами (даны в табл. 4, р < 0,05).

Таблица 4. Фагоцитарная активность (р < 0,05)

Пухов в головном мозге	НСТ-тест спонтанный	Иммуноглобулин (Зимозан)	Активность миелипероксидазы
Метастазы (n = 23)	258,72 ± 33,16	50,33 ± 13,60	14,23 ± 3,30
Глиобластомы (n = 9)	238,45 ± 51,93	53,97 ± 15,56	14,83 ± 4,64
Апластические астроцитомы (n = 9)	249,8 ± 49,43	57,55 ± 15,51	17,50 ± 4,59
Группа сравнения (n = 20)	248,5 ± 25,63	47,79 ± 11,88	14,12 ± 2,63

Отлож, у исследуемой группы больных с метастатическими новообразованиями наблюдалось гальмование миелипероксидазной активности нейтрофилов на фоне снижения функции НСТ активности клеток, что свидетельствует о формировании защитного иммунитета, который включает в себя неспецифический иммунитет, а также нейтрофилы, которые включаются в ликвидацию пухов.

Представляют собой опасность злокачественные новообразования, влияющие на функциональность иммунной системы. У больных с метастатическими новообразованиями был зарегистрирован гальмование активности нейтрофилов на фоне снижения функции НСТ активности клеток, что свидетельствует о формировании защитного иммунитета, который включает в себя неспецифический иммунитет, а также нейтрофилы, которые включаются в ликвидацию пухов.

Having analyzed the obtained data on the immune status of patients with brain tumors at the stage of preparing for radiotherapy treatment, which will be directed to the tumor nidus, we can summarize them as follows. Thus, patients retain the function of T-cell immunity before treatment. However, a minor decrease in B-lymphocytes level should be noted. There are also changes in the phagocytic activity of neutrophils: on the one hand, inhibition of myeloperoxidase activity in the setting of preserving their NBT activity, which is responsible for phagocytic activity. Therefore, at the stage of preparation for radiation therapy, no significant changes in the immune system.
підвищенням рівня практично всіх субпопуляцій
активізація імунної системи, що підтверджується
ним із протипоказань. Більше того, виявлена певна
можливість проведення такого лікування і були од
ригаються суттєві зміни в імунній системі, які б уне
на етапі підготовки до променевої терапії не спосте
ність.
НСТ активності, яка відповідає за фагоцитарну актив
-роксидазну активності клітин на фоні збереження їх
тарні активності нейтрофілів – гальмування мієлопе
-нітету. Але слід відмітити незначне зниження рівня
лікування зберігає функцію Т-клітинної ланки іму
zinами мозку реєструються певні зміни в клітинні,
-між первинними злоякісними та метастатичними пух
-них пухлинах.
Другою особливістю отриманих результатів є те, те
не виявлено суттєво статистично значимої різ
ниці між первинними злочисними пухлинами го
нового мозку та метастатичними пухлинами мозку,
dе первинне вогнище частіше було в молочній за
лозі. Імунні показники хворих на периферійній і
турожних клітин в організмі відомі [15, 16] і пов’язані
в першу чергу з пухлинними чинниками, а потім з ха
рактером попереднього лікування, яке уже проводи
лось цим хворим, особливо при метастатичних пухл
нах.
У хворих із метастатичних пухлин мозку рестуруються певні зміни в клітинній, гуморальній та фагоцитарній ланках імунної системи, які свідчать про різноважену дію пухлин на імунну систему, і ці зміни залежать від гістоструктури гліальних пухлин.

ВИСНОВКИ
1. Найбільш значимі зміни в рівні показників клі
тинного імунітету спостерігаються при гліальних пухлинах IV ступеня анаплазії, гліобластом мали дещо збільшений рівень субпопуляцій Т-лимфоцитів, що досить складно пояснити, оскільки відомо, що при цих пухлинах буває найбільш значний дисбаланс у складі імунних клітин і гальмування специ
фічного протипухлинного імунітету [17].
2. При визначенні активності неспеціфічної фагоцитарної ланки імунної системи було of the patients with brain tumors, that would make such treatment impossible and be considered as one of con
traindications, are observed. Moreover, there is a certain activation of the immune system, which is confirmed by
increased levels of almost all subpopulations of T-lymphocytes in the peripheral blood. Changes in the humoral
and phagocytic component in these patients are insignificant and also they are not the factor limiting this stage
of treatment. The reasons, mechanisms of development and maintenance of such imbalance in the composition
and activity of immune cells in the body are known [15, 16] and they are associated with tumor factors in the first
instance, and then with the nature of previous treatment already provided for these patients, especially in case of
metastatic tumors.

Another feature of the obtained outcomes is that no
statically significant difference was revealed between
primary malignant brain tumors and metastatic brain tu
mors, where the primary focus was more frequently lo
cated in the breast. Immune indicators of patients with
metastatic tumors were similar to those in patients with
anaplastic astrocytomas, which belong to anaplasia de
gree III. The most malignant glial tumors, that is glioblas
tomas (stage IV of anaplasia), had somewhat in
creased level of T-lymphocyte subpopulations, which is
difficult to explain, since these tumors are known to have
the most significant imbalance in immune cell composi
tion and inhibition of specific antitumor immunity [17].

Probably, further study of this issue and clarifying the
features of treatment will make it possible to answer the
following: why in glioblastomas, tumors of degree IV of
anaplasia, immune levels are higher than in less mali
gnant anaplastic astrocytomas and metastases.

In patients with metastatic and primary brain tumors,
certain changes in the cellular, humoral and phagocytic
parts of the immune system are recorded suggesting the
differently directed effects of the tumor process on the
immune system and these changes are specific depending on
the histostructure of glial tumors.

CONCLUSIONS
1. The most significant changes in the cellular immu
nity level are observed in glial tumors of anaplasia de
gree IV, glioblastomas, which are characterized by an in
creased number of helper (CD4+) and cytotoxic (CD8+)
cells in comparison with other patients with metastatic
and astrocytic tumors and the control group data.
2. Changes in the humoral immune system compo
nent were characterized by higher levels of IgG and IgA
in glioblastomas and a tendency for decreased levels of
встановлено, що в усіх групах хворих із метастатичними та первинними пухлинами виявляється галмування рівня місопероксидази в лейкоцитах, яке було найбільш значним при метастатичних пухлинах на фоні збереження їх НСТ активності, яка відповідає за фаціоцитарну активність.

3. Зміни в гуморальній ланці імунітету характеризувалися більш високим рівнем IgG та IgA при гліобластомах та тенденцією до зниження рівня IgG та IgM у крові хворих із метастатичними пухлинами.

4. Виявленій імунний дисбаланс у складі та активності імунних клітин не є причиною відміни або непроведення променевих методів лікування, а навпаки, визначення стану імунної системи в процесі променевої терапії дозволяє контролювати процес лікування та запобігати розвитку імунологічних ускладнень, таких як радіаційний імунодефіцит, лейко- та тромоцитопенія та ін.

5. Pinzon-Charry A., Maxwell T., López J. A. Dendritic cell dysfunction in cancer: a mechanism for immunosuppression. Immunol Cell Biol. 2005;83:451–461. DOI: https://doi.org/10.1007/s10811-013-0366-4

6. Dunn G., Old L., Schreiber R. The three Es of cancer immunoeediting. Annu. Rev. Immunol. 2004;22:329–360. DOI: https://doi.org/10.1146/annurev.immunol.22.012703.104803

СПИСОК ВИКОРИСТАНОЇ ЛІТЕРАТУРИ

1. Ferlay J., Soerjomataram I, Dikshit R., Eser S., Mathers C., Rebelo M., Parkin D. M., Forman D., Bray F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer. 2015. Vol. 136. P. E359–E386. DOI:https://doi.org/10.1002/ijc.29210

2. Coussens L. M., Werb Z. Inflammation and cancer. Nature. 2002. Vol. 420. P. 860–867. DOI: https://doi.org/10.1038/351322

3. Formenti S. C., Demaria S. Systemic effects of local radiotherapy. Lancet. Oncol. 2009. Vol. 10. P. 718–726. DOI: https://doi.org/10.1016/S1470-2045(09)70082-8

4. Zeng J., Harris T. J., Lim M. et al. Immune modulation and stereotactic radiation: improving local and abscopal responses. Biomed. Res. Int. 2013. Vol. 2013. 658126 p. DOI: https://doi.org/10.1155/2013/658126

5. Pinzon-Charry A., Maxwell T., López J. A. Dendritic cell dysfunction in cancer: a mechanism for immunosuppression. Immunol Cell Biol. 2005. Vol. 83. P. 451–461. DOI: https://doi.org/10.1111/j.1440-1711.2005.01371.x

6. Dunn G. P., Old L. J., Schreiber R. D. The three Es of cancer immunoeediting. Annu. Rev. Immunol. 2004. Vol. 22. P. 329–360. DOI: https://doi.org/10.1146/annurev.immunol.22.012703.104803

7. Kaminski J. M., Shinohara E., Summers J. B. et al. The controversial abscopal effect. Cancer. Treat. Rev. 2005. Vol. 31. P. 159–172. DOI: https://doi.org/10.1016/j.ctrv.2005.03.004

8. Kaur P., Asea A. Radiation-induced effects and the immune system in cancer. Front. Oncol. 2012. Vol. 2. P. 191. DOI: https://doi.org/10.3389/fonc.2012.00191

9. Ganss R., Ryschich E., Klar E. et al. Combination of T-cell therapy and trigger of inflammation induces remodeling of the vasculature and tumor eradication. Cancer. Res. 2002. Vol. 62. P. 1462–1470.

10. Chakraborty M., Abrams S. I., Coleman C. N. et al. External beam radiation of tumors alters phenotype of IgG and IgM in the blood of patients with metastatic tumors.

REFERENCES

1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer. 2015;136:E359–86. (In English). DOI:https://doi.org/10.1002/ijc.29210

2. Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420:860–7. (In English). DOI: https://doi.org/10.1038/nature01322

3. Formenti SC, Demaria S. Systemic effects of local radiotherapy. Lancet. Oncol. 2009;10:718–26. (In English). DOI: https://doi.org/10.1016/S1470-2045(09)70082-8

4. Zeng J, Harris TJ, Lim M et al. Immune modulation and stereotactic radiation: improving local and abscopal responses. Biomed. Res. Int. 2013;2013:658126. (In English). DOI: https://doi.org/10.1155/2013/658126

5. Pinzon-Charry A, Maxwell T, López JA. Dendritic cell dysfunction in cancer: a mechanism for immunosuppression. Immunol Cell Biol. 2005;83:451–61. (In English). DOI: https://doi.org/10.1111/j.1440-1711.2005.01371.x

6. Dunn GP, Old LJ, Schreiber RD. The three Es of cancer immunoeediting. Annu. Rev. Immunol. 2004;22:329–60. (In English). DOI: https://doi.org/10.1146/annurev.immunol.22.012703.104803

7. Kaminski JM, Shinohara E, Summers JB et al. The controversial abscopal effect. Cancer. Treat. Rev. 2005;31:159–72. (In English). DOI: https://doi.org/10.1016/j.ctrv.2005.03.004

8. Kaur P, Asea A. Radiation-induced effects and the immune system in cancer. Front. Oncol. 2012;2:191. (In English). DOI: https://doi.org/10.3389/fonc.2012.00191

9. Ganss R, Ryschich E, Klar E et al. Combination of T-cell therapy and trigger of inflammation induces remodeling of the vasculature and tumor eradication. Cancer. Res. 2002;62:1462–70. (In English).

10. Chakraborty M, Abrams SI, Coleman CN et al. External beam radiation of tumors alters phenotype of
of tumor cells to render them susceptible to vaccine-mediated T-cell killing. Cancer Res. 2004;64:4328–4337. DOI: https://doi.org/10.1158/0008-5472.CAN-04-0073

11. Desai S., Kumar A., Laskar S. et al. Cytokine profile of conditioned medium from human tumor cell lines after acute and fractionated doses of gamma radiation and its effect on survival of bystander tumor cells. Cytokine. 2013. Vol. 61. P. 54–62.

12. Beatty G., Paterson Y. IFN-gamma-dependent inhibition of tumor angiogenesis by tumor-infiltrating CD4+ T cells requires tumor responsiveness to IFN-gamma. J. Immunol. 2001. Vol. 166. P. 2276–2282. DOI: https://doi.org/10.4049/jimmunol.166.4.2276

13. Dewan M. Z., Galloway A. E., Kawashima N. et al. Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin. Cancer Res. 2009. Vol. 15. P. 5379–5388. DOI: https://doi.org/10.1158/1078-0432.CCR-09-0265

14. Demaria S., Ng B., Devitt M. L. et al. Ionizing radiation inhibition of tumor angiogenesis by tumor-infiltrating CD4+ T cells requires tumor responsiveness to IFN-gamma. J. Immunol. 2001;166:2276–82. (In English). DOI: https://doi.org/10.4049/jimmunol.166.4.2276

15. Lysianуi NY., Гнедкова YA, Гнедкова MA. Активность специфических противовирусных иммунных реакций у больных злокачественными глиомами головного мозга. Иммунология и аллергология. 2010. № 2. С. 47–52

16. Бережная Н. М. Чехун В. Ф. Иммунология злокачественного роста. Киев. Наукова думка. 2005. 790 с.
ВІДОМОСТІ ПРО Авторів

Грязов Андрій Андрійович – лікар з променевої терапії Державної установи «Інститут нейрохірургії ім. А. П. Ромоданова Національної академії медичних наук України»; вул. Майбороди, буд. 32, м. Київ, Україна, 04050. Аспірант кафедри ядерної медицини, радіаційно-хірургічної терапії ім. П. Л. Шупика Міністерства охорони здоров’я України; вул. Дорогожицька, буд. 9, м. Київ, Україна, 04112;

e-mail: precisemaningame@gmail.com
моб.: +38 (096) 197-60-54.

Внесок автора: концепція та дизайн дослідження, аналіз та інтерпретація даних, підготовка тексту статті та внесення принципових змін.

Лісійний Микола Іванович – член-кореспондент Національної академії медичних наук України, доктор медичних наук, професор, клінічний імунолог вищої категорії, завідувач лабораторно-експериментального сектору, начальник відділу нейроімунології Державної установи «Інститут нейрохірургії ім. А. П. Ромоданова Національної академії медичних наук України»; вул. Майбороди, буд. 32, Київ, Україна, 04050;

e-mail: nimun.neuro@gmail.com
моб.: +38 (096) 197-60-54.

Внесок автора: концепція та дизайн дослідження, аналіз та інтерпретація даних, внесення принципових змін.

Грязов Андрій Борисович – доктор медичних наук, лікар-радіолог Державної установи «Інститут нейрохірургії ім. А. П. Ромоданова Національної академії медичних наук України»; вул. Майбороди, буд. 32, Київ, Україна, 04050;

e-mail: grandoc61@gmail.com
моб.: +38 (096) 197-60-54.

Внесок автора: концепція та дизайн дослідження, аналіз та інтерпретація даних, внесення принципових змін.

Информация о авторах

Gryazov Andrii Andriiovych – Radiation Oncologist of State Institution «Romodanov Neurosurgery Institute of the National Academy of Medical Sciences of Ukraine»; 32, Mayborody Str., Kyiv, Ukraine, 04050. Postgraduate of Nuclear Medicine, Radiation Oncology and Radiation Safety Department, Shupyk National Medical Academy of Postgraduate Education; 9, Dorozychtska Str., Kyiv Ukraine, 04112; e-mail: precisemaningame@gmail.com tel.: +38 (096) 197-60-54.

Author’s contribution: substantial contribution to the study concept and design or to the data analysis and interpretation, preparing the article and adding fundamental changes.

Lisianyi Mykola Ivanovych – Corresponding Member of the National Academy of Medical Sciences of Ukraine, Doctor of Medical Sciences, Professor, Board Certified Clinical Immunologist, Excellent Worker of Public Health, Head of Laboratory and Experimental Sector, Head of Neuroimmunology Department of State Institution «Romodanov Neurosurgery Institute of the National Academy of Medical Sciences of Ukraine», 32, Mayborody Str., Kyiv, Ukraine, 04050; e-mail: nimun.neuro@gmail.com tel.: +38 (096) 197-60-54.

Author’s contribution: substantial contribution to the study concept and design or to the data analysis and interpretation, preparing the article and adding fundamental changes.

Gryazov Andrii Borysovych – Doctor of Medical Sciences, Radiologist of State Institution «Romodanov Neurosurgery Institute of the National Academy of Medical Sciences of Ukraine»; 32, Mayborody Str., Kyiv, Ukraine, 04050; e-mail: grandoc61@gmail.com tel. +38 (096) 197-60-54

Author’s contribution: substantial contribution to the study concept and design or to the data analysis and interpretation.