Urbanization dynamics of Tehran city (1975–2015) using artificial neural networks

Alireza Taravat, Masih Rajaei & Iraj Emadodin

To cite this article: Alireza Taravat, Masih Rajaei & Iraj Emadodin (2017) Urbanization dynamics of Tehran city (1975–2015) using artificial neural networks, Journal of Maps, 13:1, 24-30, DOI: 10.1080/17445647.2017.1305300

To link to this article: http://dx.doi.org/10.1080/17445647.2017.1305300
Urbanization dynamics of Tehran city (1975–2015) using artificial neural networks

Alireza Taravat*, Masih Rajaeiβ and Iraj Emadodinγ

*GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany; βThe Geoinformatics Experts Group, Najafabad, Iran; γInstitute for Ecosystem Research, Christian Albrechts University, Kiel, Germany

ABSTRACT

Land-use dynamic is a major challenge for town and country planners especially in developing countries such as Iran. Iran has been under rapid urban expansion and population growth for past three decades which led to lack of resources, environmental deterioration and haphazard landscape development. In this paper, an attempt has been made to map the urbanization dynamics of Tehran in 40 years based on remote sensing imagery and by means of artificial neural networks. The presented scheme could be taken into consideration when planning initiatives aimed at surveying, monitoring, managing and sustainable development of the territory. Moreover, it can serve the experts in the fields of geography, urban studies and planning as a background for number of geographical analyses.

ARTICLE HISTORY

Received 29 April 2016
Revised 25 January 2017
Accepted 7 February 2017

KEYWORDS

Urbanization; Tehran; Iran; neural networks; remote sensing

1. Introduction

In the last century, tendency to urbanization and rapid population growth has increased significantly as a worldwide phenomenon (Mohammady & Delavar, 2016). Out of the global population, more than 3.5 billion live in urban areas which occupy above 2% (Grimm, Morgan Grove, Pickett, & Redman, 2000; Mohammady, Delavar, & Pijanowski, 2013a) of the earth’s land area (OECD, 2012). Urban area is increasing faster than the urban population itself (Mohammady & Delavar, 2016; Tewolde & Cabral, 2011). Cities are becoming more attractive because of socioeconomic and political aspects. Cities are the main providers of employment, housing, education and health care (Angel, Parent, Civco, & Blei 2011) and the engine of the global economy, generating between 80% and 95% of the global gross domestic product (Cadena, 2011; Seto, Fragkias, Güneralp, Reilly, & Añel, 2011).

Land-use dynamics result from the complex interaction of many factors including policy, management, economics, culture, human behaviour and the environment (Dale, O’Neill, Pedlowski, & Soutworth, 1993; Grimm et al., 2000; Houghton, 1994; Medley, Okey, Barrett, Lucas, & Renwick, 1995; Pijanowski, Brown, Shellito, & Manik, 2002; Turner, 1990; Vesterby & Heimlich, 1991; Wilder, 1985). It is critical to understand how land-use changes occur, since these anthropogenic processes can have broad impacts on the environment, altering hydrological cycles (Steiner & Osterman, 1988), biogeochemical dynamics (Flintrop et al., 1996; Pijanowski et al., 2002), reduced open spaces and unplanned or poorly planned land development (Mohammady, 2014; Park, Jeon, Kim, & Choi, 2011). The challenges of urbanization are becoming more complex since recent rapid population growth and urban expansion that has concentrated in low and middle income countries (Angel et al., 2011; Giralt & Andrew, 2011). Thus, more attention should be given to the study of urbanization dynamics in these regions (UN-Habitat, 2012).

Urbanization in Iran during the last few decades has led to the expansion of housing and industry into previously open, low-populated areas that were originally natural areas and agricultural lands (Ahmadlou, Delavar, & Tayyebi 2016; Tayyebi, Pijanowski, & Tayyebi, 2011). Despite being one of the most urbanized regions in the developing countries (United Nations, 2014), there is a lack of up-to-date spatial information on the urban extent of cities and patterns of urbanization in Iran (Cohen, 2006). Developing accurate maps and spatial information of urban areas will help us better understand how population growth is influencing the trends and patterns of urbanization (Ahmadlou et al., 2016; Tayyebi, Delavar, Saedi, Amini, & Alinia, 2008).

On the other hand, remote sensing technology for monitoring changes is widely used in different applications such as land-use/cover change (Demir, Bovolo, & Bruzzone, 2013; Salmon et al., 2013; Tayyebi et al., 2008), disaster monitoring (Brisco, Schmitt, Murnaghan, Kaya, & Roth, 2013; Volpi, Petropoulos, & Kanevski, 2013), forest and vegetation changes (Kaliraj, Meenakshi, & Malar, 2012; Markogianni, Dimitriou, &
urban sprawl and modelling (Ahmadiou et al., 2016; Bagan & Yamagata, 2012; Emadodin, Taravat, & Rajaei, 2016; Mohammady & Delavar, 2016; Pijanowski, Tayyebi, Delavar, & Yazdanpanah, 2010; Pijanowski et al., 2014; Raja, Anand, Kumar, Maithani, & Kumar, 2013; Tayyebi, Pijanowski, & Tayyebi, 2011; Tayyebi et al., 2008) and hydrology (Dronova, Gong, & Wang, 2011; Taravat et al., 2016; Zhu, Cao, & Dai, 2011). Moreover, remote sensing technology provides a variety of ways to develop digital land-use information which is the basis for land-use planning (Tayyebi et al., 2008).

The use of machine learning models has increased substantially in remote sensing filed because of the advances in computing performance and the increased availability of powerful and flexible machine learning software (Skapura, 1996; Tayyebi et al., 2008). A combination of neural networks with remote sensing image data has been recently proposed for mapping the urbanization dynamics (Pijanowski et al., 2010; Tayyebi, Pijanowski, & Tayyebi, 2011).

However, to our knowledge, a detailed urbanization dynamics and development map of Tehran city over 40 years has not been presented so far in the literature which can serve the experts in the fields of geography, urban studies and planning as a background for number of geographical analyses.

Starting from these motivations, the purpose of the present paper is to automatically map and produce spatial information and describe urbanization dynamics and development between 1975 and 2015 in Tehran city which has changed significantly during the twentieth century (Main Map). Not only visualization, but also content of municipal plan have undergone number of changes in the last two centuries.

2. Study area

As a historical overview, Tehran was first built in 4000 BC (Municipality, 2016; Seger, 2013). Between 1850s and 1920s, it was a walled city with six gates (Figure 1) (Municipality, 2016; Seger, 2013). Figure 2 shows old settlements from 1868 to 1937 and a rapid urbanization from 1950s to 1970 that is created by historical maps and Arial photos. The surface area (located at a latitude and longitude of 35° 69′ 62″ N and 51° 42′ 30″ E) of Tehran city is a combination of mountain and plain and the altitude is between 945 and 2244 m above the sea level (Figure 3).

The climate of Tehran in the mountain is cold and semi-humid but in the southern and eastern areas are warm and dry (Peel, Finlayson, & McMahon, 2007). Like other cities in Iran, Tehran was experiencing rapid urbanization during six last decades that has an indication of the problem of over centralization. Tehran has been expanded because of political and economic centralization therefore the shape and external form of Tehran have changed greatly over the past decades. According to the spatial temporal patterns of urban growth in Tehran, Seifolddini and Mansourian (2014) divided urbanization process in Tehran into three major periods: rapid (1921–1976), very rapid (1976–1986) and slow growth rate (since 1986) (Seifolddini & Mansourian, 2014).

Between the 1950s and 2014, Tehran’s population increased from about 1 million to more than 8.2 million (10.5% of the country) which made the city the world’s seventeenth largest with the largest annual growth in Asia (Arsanjani, Kainz, & Mousivand, 2011; Geoinformation, 2016).

3. Methods

3.1. Pre-possessing phase

The methodology of this study is summarized and represented in Figure 4. Landsat images of Tehran acquired in every 5 years from 1975 to 2015 have been used for this study. Image subsets containing Tehran city were extracted to make classification process less time consuming and image interpretation more expedient and focused. The dataset was then projected in Geo (lat/long) projection and WGS84 datum. The line-tracing and edge-detection algorithms have been used to remove stripes in Landsat Enhanced Thematic Mapper Plus data caused by scan line corrector.

The whole dataset has been atmospherically and geometrically corrected which is caused by the effects of atmospheric particles through absorption and scattering of the radiation from the earth surface. The atmospheric correction has been shown to significantly improve the accuracy of image classification.

3.2. Classification phase

Artificial neural networks (ANNs) are powerful tools to quantify and model complex behaviour and patterns (Fischer & Abrahart, 2000; Mohammady, Delavar, & Pijanowski, 2013b; Pijanowski et al., 2002). The use of neural networks has increased substantially over the last several years because of the advances in computing performance (Pijanowski et al., 2010; Skapura, 1996) and the increased availability of powerful and flexible ANNs software. Their specific advantage lies not only in the enhancement of speed and efficiency in handling urban data but specifically in providing a tool to develop new theories and techniques (Diappi, Bolchim, & Buscema, 2004). ANNs are used for pattern recognition in many fields such as economics (Fishman, Barr, & Loick, 1991), medicine (Babaian, Miyashita, Von Eschenbach, Evans, & Ramirez, 1991), landscape classification (Brown, Lusch, & Duda, 1998), image analysis (Fukushima, Miyake, & Ito, 1983), pattern classification (Ritter, Logan, & Bryant, 1988), climate forecasting (Drummond, Joshi, &
Sudduth, 1998; Panagoulia, 2006), remote sensing (Atkinson & Tatnall, 1997; Morris et al., 2005; Tayyebi et al., 2008), agricultural land suitability assessment (Wang, 1994), and land-use monitoring (Mohammady, Delavar, & Pijanowski, 2013a; Pijanowski et al., 2002; Tayyebi, Pijanowski, & Pekin, 2011; Zhang & Zhen, 2006).

After a successful pre-processing phase, a supervised model based on Multilayer Perceptron (MLP) neural networks has been used for classification. From the range of network types suitable for classification applications (Ito & Omatu, 1997), multilayer feed forward networks algorithms are the most widely used models in remote sensing (Hinton & Sejnowski, 1986).

An activation function defines the output of a neuron in terms of the linear combination of inputs (Bishop, 1995). It is sometimes desirable to have the activation function range from -1 to $+1$, in which case the activation function assumes an anti-symmetric form with respect to the origin. For the corresponding form of a sigmoid function, we may use the hyperbolic tangent function defined by:

$$ o = \tanh (s), $$

$$ s = \sum_{k=1}^{n} i_k w_k, $$

where $'s'$ is cumulative input, $'w'$ is weight of input, $'i'$ is value of input, $'n'$ is number of inputs, and $'k'$ is number of neuron. The MLP used in this study has four input layers, one hidden layer and two outputs. Single hidden layer networks are found to be sufficient for most classification problems (Kanellopoulos & Wilkinson, 1997; Lippmann, 1989; Paola & Schowengerdt, 1997; Yuan, Van Der Wiele, & Khorram, 2009). Pixel selection for train/test sets has been done randomly and repeated three times. From each image, 85,000 pixels were extracted for train/test net. The number of about 20,000 training cycles was sufficient to get the network learned.

Several attempts have been made to properly select the number of units to be considered in the hidden layers of the MLP. Architecture 4-12-2 has been finally chosen for its good performance in terms of classification accuracy, root-mean-square error, and training time.

For accuracy assessment, from each sub-image, 10,000 pixels have randomly been selected, and then,
Figure 2. Development of the residential area of Tehran from 1868 to 1971 (Seger, 1975).

Figure 3. The elevation map of Tehran.
labelling is made by visual interpretation. The distance for measuring commission error and omission error is set as 1 pixel. The results of the accuracy assessment applied to the different years are displayed in Table 1. In order to improve aesthetic and cartographic quality of the maps, Bezier interpolation algorithm has been used for smoothing sharp angles in polygon outlines.

4. Conclusions

The aim of this study was to represent the spatial and temporal structure of Tehran city from 1975 to 2015 based on Landsat imagery by means of ANNs. The map reflects the development of Tehran and it can therefore serve as basis for a number of geographic or urbanistic studies, planning and contribute to better public awareness. These maps as well as the proposed model and methodology can also be used to assess the different aspects and impacts of rapid growth and expansion of Tehran city in the recent decades for the interdisciplinary and multidisciplinary research and investigation.

Software

Python 3.5 programming software for the pre-processing phase and the Stuttgart neural network simulator (SNNS) developed at the University of Stuttgart, Stuttgart, Germany, were used in implementing the Neural Networks classification algorithm (Zell et al., 1995). QGIS 2.14 software was used for mapping and visualization.

Disclosure statement

No potential conflict of interest was reported by the authors.

References

Ahmadiou, M., Delavar, M., & Tayyebi, A. (2016). Comparing ANN and CART to model multiple land use changes: A case study of Sari and Ghaem-Shahr cities in Iran. Journal of Geomatics Science and Technology, 6(1), 292–303.

Angel, S., Parent, J., Civco, D., & Blei, A. (2011). Making room for a planet of cities. Cambridge, MA: Lincoln Institute of Land Policy.

Arsanjani, J. J., Kainz, W., & Mousivand, A. J. (2011). Tracking dynamic land-use change using spatially explicit Markov chain based on cellular automata: The case of Tehran. International Journal of Image and Data Fusion, 2(4), 329–345.

Atkinson, P. M., & Tatnall, A. (1997). Introduction neural networks in remote sensing. International Journal of Remote Sensing, 18(4), 699–709.

Babaian, R. J., Miyashita, H., Von Eschenbach, A. C., Evans, R. B., & Ramirez, E. I. (1991). Early detection program for prostate cancer: Results and identification of high-risk patient population. Urology, 37(3), 193–197.

Bagan, H., & Yamagata, Y. (2012). Landsat analysis of urban growth: How Tokyo became the world’s largest megacity during the last 40 years. Remote Sensing of Environment, 127, 210–222.

Bishop, C. M. (1995). Neural networks for pattern recognition. Oxford: Oxford University Press.

Brisco, B., Schmitt, A., Murnaghan, K., Kaya, S., & Roth, A. (2013). SAR polarimetric change detection for flooded vegetation. International Journal of Digital Earth, 6(2), 103–114.

Brown, D. G., Lusch, D. P., & Duda, K. A. (1998). Supervised classification of types of glaciated landscapes using digital elevation data. Geomorphology, 21(3), 233–250.

Cadena, A. (2011). Building globally competitive cities: The key to Latin American growth. Boston, MA: McKinsey Global Institute.

Cohen, B. (2006). Urbanization in developing countries: Current trends, future projections, and key challenges for sustainability. Technology in Society, 28(1), 63–80.

Dale, V. H., O’neill, R. V., Pedlosky, M., & Soutworth, F. (1993). Causes and effects of land-use change in central Rondônia, Brazil. Photogrammetric Engineering and Remote Sensing, 59(6), 997–1005.

Demir, B., Bovolo, F., & Bruzzone, L. (2013). Updating land-cover maps by classification of image time series: A novel change-detection-driven transfer learning approach. IEEE Transactions on Geoscience and Remote Sensing, 51(1), 300–312.

Diappi, L., Bolchim, P., & Buscema, M. (2004). Improved understanding of urban sprawl using neural networks.
Dronova, I., Gong, P., & Wang, L. (2011). Object-based analysis and change detection of major wetland cover types and their classification uncertainty during the low water period at Poyang Lake, China. Remote sensing of Environment, 115(12), 3220–3236.

Drummond, S., Joshi, A., & Sudduth, K. A. (1998). Application of neural networks: precision farming. Neural Networks Proceedings, 1998. IEEE World Congress on Computational Intelligence. The 1998 IEEE International Joint Conference on, IEEE.

Emadodin, I., Taravat, A., & Rajaei, M. (2016). Effects of urban sprawl on local climate: A case study, North Central Iran. Urban Climate, 17, 230–247.

Fischer, M. M., & Abrahart, R. J. (2000). Neurocomputing-toools for geographers. New York, NY: GeoComputation, Taylor & Francis.

Fishman, M. B., Barr, D. S., & Loick, W. J. (1991). Using neural nets in market analysis. Technical Analysis of Stocks and Commodities, 9(4), 135–138.

Flintrop, C., Hohlmann, B., Jasper, T., Korte, C., Podlaha, O. G., Scheele, S., & Veizer, J. (1996). Anatomy of pollution; rivers of North Rhine-Westphalia, Germany. American Journal of Science, 296(1), 58–98.

Fukushima, K., Miyake, S., & Ito, T. (1983). Neocognitron: A neural network model for a mechanism of visual pattern recognition. IEEE Transactions on Systems, Man, and Cybernetics, SMC-13(5), 826–834.

GeoInformation. O. (2016). Remote sensing and geoinformation. Retrieved from https://www.geoinformation.com.

Giralt, E., & Andrew, D. (Eds.). (2011). World development report 2011. Washington, DC: The World Bank Group.

Grimm, N. B., Morgan Grove, J., Pickett, S. T. A., & Redman, C. L. (2000). Integrated approaches to long-term studies of urban ecological systems. BioScience, 50(7), 571–584.

Hinton, G. E., & Sejnowski, T. J. (1986). Learning and relearning in Boltzmann machines. Parallel Distributed Processing: Explorations in the Microstructure of Cognition, 1, 282–317.

Houghton, R. A. (1994). The worldwide extent of land-use change. BioScience, 44(5), 305–313.

Ito, Y., & Omatsu, S. (1997). Category classification method using a self-organizing neural network. International Journal of Remote Sensing, 18(4), 829–845.

Kaliraj, S., Meenakshi, S. M., & Malar, V. (2012). Application of remote sensing in detection of forest cover changes using geo-statistical change detection matrices – A case study of Devanampatti Reserve Forest, Tamilnadu, India. Nature, Environment and Pollution Technology, 11(2), 261–269.

Kanellopoulos, I., & Wilkinson, G. (1997). Strategies and best practice for neural network image classification. International Journal of Remote Sensing, 18(4), 711–725.

Lippmann, R. P. (1989). Pattern classification using neural networks. IEEE Communications Magazine, 27(11), 47–50.

Markogianni, V., Dimitriou, E., & Kalivas, D. P. (2013). Land-use and vegetation change detection in Plastira artificial lake catchment (Greece) by using remote-sensing and GIS techniques. International Journal of Remote Sensing, 34(4), 1265–1281.

Medley, K. E., Okey, B. W., Barrett, G. W., Lucas, M. F., & Renwick, W. H. (1995). Landscape change with agricultural intensification in a rural watershed, southwestern Ohio. U.S.A. Landscape Ecology, 10(3), 161–176.

Mohammady, S. (2014). A spatio-temporal urban expansion modeling case study Tehran metropolis, Iran. Acta Geographica Debrecina. Landscape & Environment Series, 8(1), 10–19.

Mohammady, S., & Delavar, M. R. (2016). Urban sprawl assessment and modeling using land sat images and GIS. Modeling Earth Systems and Environment, 2(3), 155–169.

Mohammady, S., Delavar, M. R., & Pijanowski, B. C. (2013a). Urban growth modeling using anfis algorithm: A case study for Sanandaj city, Iran. ISPRS – International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-1/W3, 493–498.

Mohammady, S., Delavar, M. R., & Pijanowski, B. C. (2013b). Urban growth modelling with artificial neural network and logistic regression. Case study: Sanandaj city, iran. Romanian Review of Regional Studies, 9(2), 47–60.

Morris, J. T., Porter, D., Neet, M., Noble, P. A., Schmidt, L., Lapine, L. A., & Jensen, J. R. (2005). Integrating LIDAR elevation data, multi-spectral imagery and neural network modelling for marsh characterization. International Journal of Remote Sensing, 26(23), 5221–5234.

Municipality, T. (2016). Tehran municipality. Retrieved from http://en.tehran.ir/Default.aspx?tabid=96

OECD. (2012). OECD environmental outlook to 2050. Paris, France: Author.

Panagoulia, D. (2006). Artificial neural networks and high and low flows in various climate regimes. Hydrological Sciences Journal, 51(4), 563–587.

Paola, J., & Schowengerdt, R. A. (1997). The effect of neural-network structure on a multispectral land-use/land-cover classification. Photogrammetric Engineering and Remote Sensing, 63(5), 535–544.

Park, S., Jeon, S., Kim, S., & Choi, C. (2011). Prediction and comparison of urban growth by land suitability index mapping using GIS and RS in South Korea. Landscape and Urban Planning, 99(2), 104–114.

Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences Discussions, 4(2), 439–473.

Pijanowski, B., Tayyebi, A., Delavar, M., & Yazdanpanah, M. (2010). Urban expansion simulation using geospatial information system and artificial neural networks. International Journal of Environmental Research, 3(4), 493–502.

Pijanowski, B. C., Brown, D. G., Shellito, B. A., & Manik, G. A. (2002). Using neural networks and GIS to forecast land use changes: A land transformation model. Computers, Environment and Urban Systems, 26(6), 553–575.

Pijanowski, B. C., Tayyebi, A., Doucette, J., Pekin, B. K., Braun, D., & Plourde, J. (2014). A big data urban growth simulation at a national scale: Configuring the GIS and neural network based land transformation model to run in a high performance computing (HPC) environment. Environmental Modelling & Software, 51, 250–268.

Raja, R. A. A., Anand, V., Kumar, A. S., Maiti, S., & Kumar, V. A. (2013). Wavelet based post classification change detection technique for urban growth monitoring. Journal of the Indian Society of Remote Sensing, 41(1), 35–43.

Ritter, N., Logan, T., & Bryant, N. (1988). Integration of neural network technologies with geographic information systems. Proceedings of the GIS symposium: integrating technology and geoscience applications, Denver, CO, pp. 102–103.

Salmon, B. P., Kleynhans, W., van den Bergh, F., Olivier, J. C., Grobler, T. L., & Wessels, K. J. (2013). Land cover...
change detection using the internal covariance matrix of the extended Kalman filter over multiple spectral bands.

IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(3), 1079–1085.

Seger, M. (1975). Strukturelemente der Stadt Teheran und das Modell der modernen orientalischen Stadt (Structural elements of the City of Teheran and the model of the modern oriental city). Erdkunde, 29(1), 21–38.

Seger, M. (2013). Teheran: eine stadteorphysiche studie. Berlin: Springer-Verlag.

Seifolddini, F., & Mansourian, H. (2014). Spatial-temporal pattern of urban growth in Tehran Megalopol. Journal of Geography and Geology, 6(3), 70–81.

Seto, K. C., Fragkias, M., Güneralp, B., Reilly, M. K., & Añel, J. A. (2011). A meta-analysis of global urban land expansion. PLoS One, 6(8), e23777.

Skapura, D. M. (1996). Building neural networks. New York, NY: ACM Press.

Steiner, F. R., & Osterman, D. A. (1988). Landscape planning: A working method applied to a case study of soil conservation. Landscape Ecology, 1(4), 213–226.

Taravat, A., Rajaei, M., Emadodin, I., Hasheminejad, H., Mousavian, R., & Biniyaz, E. (2016). A spaceborne multi-sensory, multitemporal approach to monitor water level and storage variations of lakes. Water, 8(11), 478–497.

Tayyebi, A., Delavar, M., Saeedi, S., Amini, J., & Alinia, H. (2008). Monitoring land use change by multi-temporal landsat remote sensing imagery. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37, 1037–1042.

Tayyebi, A., Pijanowski, B. C., & Pekin, B. (2011). Two rule-based urban growth boundary models applied to the Tehran metropolitan area, Iran. Applied Geography, 31(3), 908–918.

Tayyebi, A., Pijanowski, B. C., & Tayyebi, A. H. (2011). An urban growth boundary model using neural networks, GIS and radial parameterization: An application to Tehran, Iran. Landscape and Urban Planning, 100(1), 35–44.

Tewolde, M. G., & Cabral, P. (2011). Urban sprawl analysis and modeling in Asmara, Eritrea. Remote Sensing, 3(10), 2148–2165.

Turner, B. L. (1990). The earth as transformed by human action: Global and regional changes in the biosphere over the past 300 years. Cambridge: CUP Archive.

Un-Habitat. (2012). The challenge of slums: Global report on human settlements 2003. Management of Environmental Quality: An International Journal, 15(3), 337–338.

United Nations. (2014). Population division world urbanization prospects: The 2014 revision. New York, NY: Author.

Vesterby, M., & Heimlich, R. E. (1991). Land use and demographic change: Results from fast-growth counties. Land Economics, 67(3), 279–291.

Volpi, M., Petropoulos, G. P., & Kanevski, M. (2013). Flooding extent cartography with Landsat TM imagery and regularized kernel Fisher’s discriminant analysis. Computers & Geosciences, 57, 24–31.

Wang, F. (1994). The use of artificial neural networks in a geographical information system for agricultural land suitability assessment. Environment and Planning A, 26(2), 265–284.

Wilder, M. G. (1985). Site and situation determinants of land use change: An empirical example. Economic Geography, 61(4), 332–344.

Yuan, H., Van Der Wiele, C. F., & Khorram, S. (2009). An automated artificial neural network system for land use/land cover classification from Landsat TM imagery. Remote Sensing, 1(3), 243–265.

Zell, A., Mamier, G., Mache, M., Hubner, R., Herrmann, S., Soyez, T., … B. Kett (1995). Stuttgart neural network simulator-SNNS: User manual, version 4.0. Stuttgart: University of Stuttgart.

Zhang, L., & Zhen, Y. (2006). An artificial neural network model of the landuse pattern in Shanghai metropolitan region, China. Frontiers of Biology in China, 1(4), 463–469.

Zhu, X., Cao, J., & Dai, Y. (2011). A decision tree model for meteorological disasters grade evaluation of flood. 2011 fourth international joint conference on Computational Sciences and Optimization (CSO), Kunming and Lijiang City, China. IEEE, pp. 916–919.