QUANTIZATION COEFFICIENTS FOR UNIFORM DISTRIBUTIONS ON THE BOUNDARIES OF REGULAR POLYGONS

1JOEL HANSEN, 2ITZAMAR MARQUEZ, 3MRINAL K. ROYCHOWDHURY, AND 4EDUARDO TORRES

Abstract. In this paper, we give a general formula to determine the quantization coefficients for uniform distributions defined on the boundaries of different regular m-sided polygons inscribed in a circle. The result shows that the quantization coefficient for the uniform distribution on the boundary of a regular m-sided polygon inscribed in a circle is an increasing function of m, and approaches to the quantization coefficient for the uniform distribution on the circle as m tends to infinity.

1. Introduction

Let \mathbb{R}^d denote the d-dimensional Euclidean space, $\| \cdot \|$ denote the Euclidean norm on \mathbb{R}^d for any $d \geq 1$, and $n \in \mathbb{N}$. For a finite set $\alpha \subset \mathbb{R}^d$, the cost or distortion error for P with respect to the set α, denoted by $V(P; \alpha)$, is defined by

$$V(P; \alpha) := \int \min_{a \in \alpha} \| x - a \|^2 dP(x).$$

Then, the nth quantization error for P, denoted by $V_n := V_n(P)$, is defined by

$$V_n := V_n(P) = \inf \left\{ V(P; \alpha) : \alpha \subset \mathbb{R}^d, 1 \leq \text{card}(\alpha) \leq n \right\}.$$

A set α for which the infimum is achieved and contains no more than n points is called an optimal set of n-means. It is well-known that for a continuous probability measure an optimal set of n-means always contains exactly n elements. If P is the probability distribution, then an optimal set of n-means is denoted by $\alpha_n := \alpha_n(P)$. Optimal sets of n-means for different probability distributions were determined by several authors, for example, see [CR1, CR2, DR1, DR2, GL2, L, R1, R2, R3, R4, R5, R6, RR1, RS]. It has broad applications in engineering and technology (see [GG, GL1, Z]). For any $s \in (0, +\infty)$, the number

$$\lim_{n \to \infty} n^2 V_n(P),$$

if it exists, is called the s-dimensional quantization coefficient for P. Bucklew and Wise (see [BW]) showed that for a Borel probability measure P with non-vanishing absolutely continuous part the quantization coefficient exists as a finite positive number. For some more details interested readers can also see [GL1, P]. Let $E(X)$ represent the expected value of a random variable X associated with a probability distribution P. Let α be an optimal set of n-means for P, and $a \in \alpha$. Then, it is well-known that $a = E(X : X \in M(a|\alpha))$, where $M(a|\alpha)$ is the Voronoi region of $a \in \alpha$, i.e., $M(a|\alpha)$ is the set of all elements x in \mathbb{R}^d which are closest to a among all the elements in α (see [GG, GL1]).

From the work of Rosenblatt and Roychowdhury (see [RR2]), it is known that the quantization coefficient for the uniform distribution on a unit circle is $\pi^2/3$; on the other hand, from the work of Pena et al. (see [PRRSS]), it is known that the quantization coefficient for the uniform distribution on the boundary of a regular hexagon inscribed in a unit circle is 3. Notice that a regular m-sided polygon inscribed in a circle tends to the circle as m tends to infinity. Pena et

2010 Mathematics Subject Classification. 60Exx, 94A34.

Key words and phrases. Uniform distribution, optimal sets, quantization error, quantization coefficient, regular polygon.
al. conjectured that the quantization coefficient for the uniform distribution on the boundary of a regular m-sided polygon inscribed in a circle is an increasing function of m (see [PRRSS]), and approaches to the quantization coefficient for the uniform distribution on the circle as m tends to infinity. In this paper, we prove that the conjecture is true.

The arrangement of the paper is as follows: First, we prove a theorem Theorem 2.1 which gives a technique how to calculate the optimal sets of n-means and the nth quantization errors for all positive integers n for a uniform distribution defined on any line segment. Next, let P be the uniform distribution defined on the boundary of a regular m-sided polygon inscribed in a unit circle. In Proposition 2.3 for $k \geq 2$, we determine the optimal set of mk-means and the mkth quantization error for the probability distribution P. Then, with the help of the proposition, in Theorem 2.4, we have shown that the quantization coefficient for a uniform distribution on the boundary (see [RR2]). Thus, the result in this paper, shows that the conjecture given by Pena et al. in [PRRSS] is true.

2. Main result

In this section, first we give some basic definitions.

Let i and j be the unit vectors in the positive directions of the x_1- and x_2-axes, respectively. By the position vector a of a point A, it is meant that $\overrightarrow{OA} = a$. We will identify the position vector of a point (a_1, a_2) by $(a_1, a_2) := a_1i + a_2j$, and apologize for any abuse in notation. For any two position vectors $a := (a_1, a_2)$ and $b := (b_1, b_2)$, we write $\rho(a, b) := ||(a_1, b_1) - (a_2, b_2)||^2 = (a_1 - a_2)^2 + (b_1 - b_2)^2$, which gives the squared Euclidean distance between the two points (a_1, a_2) and (b_1, b_2). Let P and Q belong to an optimal set of n-means for some positive integer n, and let D be a point on the boundary of the Voronoi regions of the points P and Q. Since the boundary of the Voronoi regions of any two points is the perpendicular bisector of the line segment joining the points, we have $|\overrightarrow{DP}| = |\overrightarrow{DQ}|$, i.e., $(\overrightarrow{DP})^2 = (\overrightarrow{DQ})^2$ implying $(p - d)^2 = (q - d)^2$, i.e., $\rho(d, p) - \rho(d, q) = 0$, where p, q, d are, respectively, the position vectors of the points P, Q, D.

We call such an equation a canonical equation.

Let us now give the following theorem.

Theorem 2.1. Let AB be a line segment joining the two points A and B given by the position vectors $a := (a_1, b_1)$ and $b := (a_2, b_2)$, respectively. Let μ be a uniform distribution on AB. Let $M(t)$ be the parametric representation of AB for $0 \leq t \leq 1$ such that $M(0) = a$, and $M(1) = b$. Let D_1 and D_2 be two points on the segment AB at distances r_1 and r_2 from A and B, respectively (see Figure 4). Then, the optimal set of n-means for μ on the segment D_1D_2, is given by

$$\alpha_n(\mu, D_1D_2) := \left\{M\left(\frac{r_1}{\ell} + \frac{2j - 1}{2n}(1 - \frac{r_2}{\ell} - \frac{r_1}{\ell})\right) : 1 \leq j \leq n\right\},$$

with the nth quantization error for μ on the segment D_1D_2,

$$V_n(\mu, D_1D_2) := n\int_{\frac{r_1}{\ell}}^{\frac{r_2}{\ell} + \frac{1}{2}(1 - \frac{r_2}{\ell} - \frac{r_1}{\ell})} \rho(M(t), M(\frac{r_1}{\ell} + \frac{1}{2}(1 - \frac{r_2}{\ell} - \frac{r_1}{\ell})))d\mu,$$

where ℓ is the length of the line segment AB.

Proof. Since ℓ is the length of the line segment AB, the probability density function (pdf) f of the uniform distribution μ on AB is given by $f(x_1, x_2) = \frac{1}{\ell}$ for all $(x_1, x_2) \in AB$, and zero, otherwise. Let s represent the distance of any point on AB from the point A. Then, we have $d\mu = d\mu(s) = \mu(ds) = f(x_1, x_2)ds = \frac{1}{\ell}ds$. Notice that $ds = \sqrt{(\frac{dx_1}{dt})^2 + (\frac{dx_2}{dt})^2}dt = \ell dt$ yielding
Given, the parametric representation of the line segment AB is $M(t)$ for $0 \leq t \leq 1$ with $M(0) = a$ and $M(1) = b$. Hence, the parameters for the points D_1 and D_2, which are at distances r_1 and r_2 from A and B are, respectively, given by $t = \frac{r_1}{\ell}$ and $t = 1 - \frac{r_2}{\ell}$, i.e., if d_1 and d_2 are the position vectors of the points D_1 and D_2 (see Figure 1), then we have

$$d_1 = M(\frac{r_1}{\ell}), \quad d_2 = M(1 - \frac{r_2}{\ell}).$$

In fact, we can identify the line segment D_1D_2 by its parameters in the closed interval $[\frac{r_1}{\ell}, 1 - \frac{r_2}{\ell}]$. By [RR2], we know that the optimal set of n-means with respect to an uniform distribution in the closed interval $[\frac{r_1}{\ell}, 1 - \frac{r_2}{\ell}]$ is given by the set

$$\left\{ \frac{r_1}{\ell} + \frac{j - 1}{n}(1 - \frac{r_2}{\ell} - \frac{r_1}{\ell}) : 1 \leq j \leq n \right\}.$$

Hence, the optimal set of n-means for μ on the segment D_1D_2, is given by

$$\alpha_n(\mu, D_1D_2) := \left\{ M\left(\frac{r_1}{\ell} + \frac{2j - 1}{2n}(1 - \frac{r_2}{\ell} - \frac{r_1}{\ell})\right) : 1 \leq j \leq n \right\}.$$

If $V_n(\mu, D_1D_2)$ is the corresponding quantization error, we have

$$V_n(\mu, D_1D_2) = n\left(\text{Quantization error due to the point } M\left(\frac{r_1}{\ell} + \frac{1}{2n}(1 - \frac{r_2}{\ell} - \frac{r_1}{\ell})\right)\right).$$

Again, notice that any point on the line segment D_1D_2 is given by $M(t)$ for $\frac{r_1}{\ell} \leq t \leq 1 - \frac{r_2}{\ell}$, and the parameters for the points at which the boundary of the Voronoi region of $M\left(\frac{r_1}{\ell} + \frac{1}{2n}(1 - \frac{r_2}{\ell} - \frac{r_1}{\ell})\right)$ cuts the segment D_1D_2 are given by $t = \frac{r_1}{\ell}$, and $t = \frac{r_1}{\ell} + \frac{1}{n}(1 - \frac{r_2}{\ell} - \frac{r_1}{\ell})$. Hence, we have

$$V_n(\mu, D_1D_2) = n \int_{\frac{r_1}{\ell}}^{\frac{r_1}{\ell} + \frac{1}{n}(1 - \frac{r_2}{\ell} - \frac{r_1}{\ell})} \rho\left(M(t), M\left(\frac{r_1}{\ell} + \frac{1}{2n}(1 - \frac{r_2}{\ell} - \frac{r_1}{\ell})\right)\right) d\mu.$$

Thus, the proof of the theorem is complete.

Let the equation of the unit circle be $x_1^2 + x_2^2 = 1$. Let $A_1A_2A_3 \cdots A_m$ be a regular m-sided polygon for some $m \geq 3$ inscribed in the circle. Without any loss of generality due to rotational symmetry, we can always assume that the vertex A_1 lies on the x_1-axis, i.e., the vertex A_1 is the point where the circle intersects the positive direction of the x_1-axis. Again, notice that each side of the regular m-sided polygon subtends a central angle of radian $\frac{2\pi}{m}$. Thus, the position vectors \tilde{a}_j of the vertices A_j are given by $\tilde{a}_j = (\cos \frac{2\pi}{m}(j - 1), \sin \frac{2\pi}{m}(j - 1))$ for $1 \leq j \leq m$. Let ℓ be the length of each side of the polygon, then we have

$$\ell = ||\tilde{a}_m - \tilde{a}_{m-1}|| = ||\tilde{a}_{m-1} - \tilde{a}_{m-2}|| = \cdots = ||\tilde{a}_2 - \tilde{a}_1|| = 2\sin \frac{\pi}{m}.$$
Let \(L \) be the boundary of the polygon. Then, we can write
\[
L = \bigcup_{j=1}^{m} L_j,
\]
where \(L_j \) is the side \(A_jA_{j+1} \), and \(A_{m+1} \) is identified as the vertex \(A_1 \). Then, for \(1 \leq j \leq m \), we can write
\[
L_j := A_jA_{j+1} = \{ M_j : 0 \leq t \leq 1 \}, \quad \text{where } M_j = \tilde{a}_{j+1}t + (1-t)\tilde{a}_j.
\]
Notice that \(M_j \) is a function of \(t \), and any point on the side \(A_jA_{j+1} \) can be represented by \(M_j := M_j(t) \) for \(0 \leq t \leq 1 \). Thus, we see that \(M_j(0) = \tilde{a}_j \), and \(M_j(1) = \tilde{a}_{j+1} \) for \(1 \leq j \leq m \). Let \(P \) be the uniform distribution defined on the boundary \(L \) of the polygon. Then, the probability density function (pdf) \(f \) of the uniform distribution \(P \) is given by \(f(x_1, x_2) = \frac{1}{m} \) for all \((x_1, x_2) \in L \), and zero, otherwise. Let \(s \) represent the distance of any point on \(L \) from the vertex \(A_1 \) tracing along the boundary \(L \) in the counterclockwise direction. Then, we have \(dP = dP(s) = P(ds) = f(x_1, x_2)ds = \frac{1}{m}ds \). For \(1 \leq j \leq m \), on each \(L_j \), we have
\[
ds = \sqrt{\left(\frac{dx_1}{dt}\right)^2 + \left(\frac{dx_2}{dt}\right)^2}dt = \ell|dt| \text{ yielding } dP(s) = \frac{\ell}{m}|dt| = \frac{1}{m}|dt|.
\]

Remark 2.2. Since \(P \) is uniform, and a regular \(m \)-sided polygon has symmetry of order \(m \), it is not difficult to show that an optimal set \(\alpha_m \) will contain \(m \) points, each from the interior of the \(m \) angles of the regular \(m \)-sided polygon; and for any positive integer \(k \geq 2 \), \(\alpha_{mk} \) will contain \(m \) points, each from the interior of the \(m \) angles, and \((k-1) \) points from each side of the regular \(m \)-sided polygon. Moreover, the following is true: Let \(A \) be one of the vertices of the regular \(m \)-sided polygon, and for \(k \geq 2 \), let \(a \) be an element of an optimal set of \(mk \)-means that lies in the interior of \(\angle A \). Further, let \(AA_1 \) and \(AA_2 \) be the two adjacent sides of the vertex \(A \). Then, the boundary of the Voronoi region of \(a \) will cut \(AA_1 \) and \(AA_2 \) at two points \(D_1 \) and \(D_2 \) such that \(|AD_1| = |AD_2| = r \) for some real \(r \) such that \(0 < r \leq \frac{\ell}{2} \), where \(\ell \) is the length of the sides of the polygon.

Proposition 2.3. Let \(\alpha_n \) be an optimal set of \(n \)-means such that \(n = mk \), where \(k \in \mathbb{N} \), and \(k \geq 2 \). Let \(a_j \) be the points that \(\alpha_n \) contains from the interior of the angles \(A_j \) of the regular \(m \)-sided polygon, \(1 \leq j \leq m \). Then,
\[
\alpha_n = \{ a_j : 1 \leq j \leq m \} \cup \bigcup_{j=1}^{m} \alpha_{j,k-1},
\]
where
\[
a_1 = (1 - \frac{1}{2}r \sin(\frac{\pi}{m}), 0),
\]
\[
a_j = \left(\frac{1}{4} \cos \frac{2\pi(j-1)}{m}(r \cos(\frac{2\pi}{m}) - 1) \csc(\frac{\pi}{m}) + 4, \sin \frac{2\pi(j-1)}{m}(\frac{1}{4}r(\cos(\frac{2\pi}{m}) - 1) \csc(\frac{\pi}{m}) + 1) \right)
\]
for \(2 \leq j \leq m \), and \(\alpha_{j,k-1} := \{ M_j(\frac{\pi}{2} + \frac{2\pi i - 1}{2(k-1)}(1 - \frac{2\pi}{m})) : 1 \leq i \leq k - 1 \} \) for \(1 \leq j \leq m \), and
\[
r = \frac{4 \sin(\frac{\pi}{m})}{2(k-1)\sqrt{3 \cos^2(\frac{\pi}{m}) + 1} + 4}.
\]
Moreover, the quantization error for \(n \)-means is given by
\[
V_n = \frac{2 \sin^2(\frac{\pi}{m})(3 \cos(\frac{2\pi}{m}) + 5)}{3 \left(k\sqrt{6 \cos(\frac{2\pi}{m}) + 10} - \sqrt{6 \cos(\frac{2\pi}{m}) + 10 + 4} \right)^2}.
\]

Proof. Let \(\alpha_n \) be an optimal set of \(n \)-means, where \(n = mk \) for some positive integer \(k \geq 2 \). Since \(a_j \) are the points that \(\alpha_n \) contains from the interior of the angles \(A_j \), by Remark 2.2 due to uniform distribution and symmetry, we can say that there exists a real number \(r \), where \(0 < r \leq \frac{\ell}{2} \), such that the boundary of the Voronoi region of each \(a_j \) will cut the the two adjacent
sides at distances r from the vertex A_j. Notice that the two adjacent sides of the vertex A_1 are $A_m A_1$ and $A_1 A_2$ in the polygon. Again, by the hypothesis A_1 is the point that α_n contains from $\angle A_1$. If the boundary of the Voronoi region of A_1 cuts $A_m A_1$ and $A_1 A_2$ at D_1 and D_2, respectively, we have

$$a_1 = E(X : X \in D_1 A_1 \cup A_1 D_2) = \frac{\int_{D_1 A_1} (x_1, x_2) dP + \int_{A_1 D_2} (x_1, x_2) dP}{\int_{D_1 A_1} 1 dP + \int_{A_1 D_2} 1 dP},$$

which implies

$$a_1 = \frac{\int_0^1 M_n(t) dt + \int_0^\frac{\pi}{\ell} M_1(t) dt}{\int_0^1 1 dt + \int_0^1 \frac{\pi}{\ell} 1 dt} = (1 - \frac{1}{2} r \sin (\frac{\pi}{m}), 0).$$

Similarly, for $2 \leq j \leq m$, we obtain

$$a_j = \frac{\int_0^1 M_{j-1}(t) dt + \int_0^\frac{\pi}{\ell} M_j(t) dt}{\int_0^1 1 dt + \int_0^1 \frac{\pi}{\ell} 1 dt}$$

yielding

$$a_j = (\frac{1}{4} \cos \frac{2\pi(j - 1)}{m} (r (\cos \frac{2\pi}{m}) - 1) \csc (\frac{\pi}{m}) + 4), \sin \frac{2\pi(j - 1)}{m} (\frac{1}{4} r (\cos \frac{2\pi}{m}) - 1) \csc (\frac{\pi}{m}) + 1).$$

Again, by Remark 2.2, α_n contains $(k - 1)$ points from each side of the regular m-sided polygon. For $1 \leq j \leq m$, let $\alpha_{j,k-1}$ be the optimal set of $(k - 1)$-means that α_n contains from the side $A_j A_{j+1}$. Recall that the parametric representation of the side $A_j A_{j+1}$ is $M_j(t)$, and the $(k - 1)$ means from each side occur due to an uniform distribution on the segment bounded by the two points represented by the parameters $t = \frac{\pi}{\ell}$ and $t = 1 - \frac{\pi}{\ell}$. Hence, by Theorem 2.1, we have

$$\alpha_{j,k-1} := \left\{ M_j(\frac{r}{\ell} + 2i - 1) (1 - \frac{2r}{\ell}) : 1 \leq i \leq k-1 \right\}.$$

To calculate the quantization error, we proceed as follows: By symmetry, the quantization error contributed by all the points a_j for $1 \leq j \leq m$ is given by

$$m \int_{D_1 A_1 \cup A_1 D_2} \rho((x_1, x_2), a_1) dP = 2m \int_{A_1 D_2} \rho((x_1, x_2), a_1) dP = 2 \int_0^\frac{\pi}{\ell} \rho(M_1(t), a_1) dt,$$

implying

$$m \int_{D_1 A_1 \cup A_1 D_2} \rho((x_1, x_2), a_1) dP = \frac{1}{24} r^3 (3 \cos \frac{2\pi}{m} + 5) \csc (\frac{\pi}{m}).$$

Again, by Theorem 2.1, the quantization error contributed by all the sets $\alpha_{j,k-1}$ for $1 \leq j \leq m$ is given by

$$m V_n(\mu, \alpha_{j,k-1}) := (k - 1) \int_0^\frac{\pi}{\ell} \rho\left(M(t), M(\frac{r}{\ell} + \frac{1}{2(k-1)} (1 - \frac{2r}{\ell}))\right) dt.$$

implying

$$m V_n(\mu, \alpha_{j,k-1}) = \frac{1}{3(k-1)^2} \csc (\frac{\pi}{m}) (\sin (\frac{\pi}{m}) - r)^3.$$

Hence, by (2) and (3), the quantization error for n-means is given by

$$V_n = \frac{1}{24} \csc (\frac{\pi}{m}) \left(r^3 \cos \frac{2\pi}{m} + 5 \right) + \frac{8}{(k-1)^2} (\sin (\frac{\pi}{m}) - r)^3.$$
Notice that for a given k, the quantization error V_n is a function of r. Solving $\frac{\partial V_n}{\partial r} = 0$, we have $r = \frac{4\sin(\frac{\pi}{m})}{2(k-1)\sqrt{3\cos^2(\frac{\pi}{m})} + 1 + 4}$. Putting $r = \frac{4\sin(\frac{\pi}{m})}{2(k-1)\sqrt{3\cos^2(\frac{\pi}{m})} + 1 + 4}$, we have
\[
V_n = \frac{2\sin^2(\frac{\pi}{m})(3\cos(\frac{2\pi}{m}) + 5)}{3\left(k\sqrt{6\cos(\frac{2\pi}{m})} + 10 - \sqrt{6\cos(\frac{2\pi}{m}) + 10 + 4}\right)}.
\]
Thus, the proof of the theorem is complete. \qed

Let us now prove the following theorem.

Theorem 2.4. Let P be the uniform distribution on the boundary of a regular m-sided polygon inscribed in a unit circle. Then, the quantization coefficient for P exists as a finite positive number which equals $\frac{1}{3}m^2\sin^2(\frac{\pi}{m})$, i.e., $\lim_{n \to \infty} n^2V_n = \frac{1}{3}m^2\sin^2(\frac{\pi}{m})$.

Proof. Let $n \in \mathbb{N}$ be such that $n \geq 2m$. Then, there exists a unique positive integer $\ell(n) \geq 2$ such that $m\ell(n) \leq n < m(\ell(n) + 1)$. Then,
\[
(\ell(n))V_{m(\ell(n)+1)} < n^2V_n < (m(\ell(n) + 1))^2V_{m\ell(n)}.
\]
We have
\[
\lim_{n \to \infty} (m\ell(n))^2V_{m(\ell(n)+1)} = \lim_{\ell(n)\to\infty} (m\ell(n))^2 \frac{2\sin^2(\frac{\pi}{m})(3\cos(\frac{2\pi}{m}) + 5)}{3\left((\ell(n)+1)\sqrt{6\cos(\frac{2\pi}{m})} + 10 - \sqrt{6\cos(\frac{2\pi}{m}) + 10 + 4}\right)}^2 = \frac{1}{3}m^2\sin^2(\frac{\pi}{m}),
\]
and
\[
\lim_{n \to \infty} (m(\ell(n) + 1))^2V_{m\ell(n)} = \lim_{\ell(n)\to\infty} (m(\ell(n) + 1))^2 \frac{2\sin^2(\frac{\pi}{m})(3\cos(\frac{2\pi}{m}) + 5)}{3\left(\ell(n)\sqrt{6\cos(\frac{2\pi}{m})} + 10 - \sqrt{6\cos(\frac{2\pi}{m}) + 10 + 4}\right)}^2 = \frac{1}{3}m^2\sin^2(\frac{\pi}{m}),
\]
and hence, by (II) we have $\lim_{n \to \infty} n^2V_n = \frac{1}{3}m^2\sin^2(\frac{\pi}{m})$, i.e., the quantization coefficient exists as a finite positive number which equals $\frac{1}{3}m^2\sin^2(\frac{\pi}{m})$. Thus, the proof of the theorem is complete. \qed

Remark 2.5. Since $\lim_{m \to \infty} 2\sin(\frac{\pi}{m}) = 0$, by (II), we can conclude that when m tends to ∞, then the length of each side of the regular m-sided polygon becomes zero, i.e., the regular m-sided polygon coincides with the circle. Moreover, for $m \geq 3$, we have
\[
\frac{d}{dm}(\frac{1}{3}m^2\sin^2(\frac{\pi}{m})) = \frac{2}{3}\sin(\frac{\pi}{m})(m\sin(\frac{\pi}{m}) - \pi\cos(\frac{\pi}{m})) > 0
\]
yielding the fact that the quantization coefficient $\frac{1}{3}m^2\sin^2(\frac{\pi}{m})$ for the uniform distribution on the boundary of the regular m-sided polygon is an increasing function of m. Again,
\[
\lim_{m \to \infty} \frac{1}{3}m^2\sin^2(\frac{\pi}{m}) = \frac{\pi^2}{3},
\]
i.e., when m tends to infinity, then the quantization coefficient of the regular m-sided polygon equals $\frac{\pi^2}{3}$. Recall that $\frac{\pi^2}{3}$ is the quantization coefficient for the uniform distribution on the unit circle. Thus, the result in this paper, proves the conjecture given by Pena et al. in the paper [PRRSS].

Remark 2.6. If $m = 6$, we see that $\lim_{n \to \infty} n^2V_n = 3$, which is the quantization coefficient for the uniform distribution on the boundary of a hexagon inscribed in a unit circle. Thus, the result in this paper, also generalizes a result given by Pena et al. in the paper [PRRSS].
Quantization coefficients for uniform distributions on the boundaries of regular polygons

REFERENCES

[BW] J.A. Bucklew and G.L. Wise, *Multidimensional asymptotic quantization theory with rth power distortion measures*, IEEE Transactions on Information Theory, 1982, Vol. 28, Issue 2, 239-247.

[CR1] D. Çömez and M.K. Roychowdhury, *Quantization for uniform distributions on stretched Sierpinski triangles*, Monatshefte für Mathematik, Volume 190, Issue 1, 79-100 (2019).

[CR2] D. Çömez and M.K. Roychowdhury, *Quantization for uniform distributions of Cantor dusts on \(\mathbb{R}^2 \)*, Topology Proceedings, Volume 56 (2020), Pages 195-218.

[DR1] C.P. Dettmann and M.K. Roychowdhury, *Quantization for uniform distributions on equilateral triangles*, Real Analysis Exchange, Vol. 42(1), 2017, pp. 149-166.

[DR2] C.P. Dettmann and M.K. Roychowdhury, *An algorithm to compute CVTs for finitely generated Cantor distributions*, to appear, Southeast Asian Bulletin of Mathematics.

[GG] A. Gersho and R.M. Gray, *Vector quantization and signal compression*, Kluwer Academy publishers: Boston, 1992.

[GL1] S. Graf and H. Luschgy, *Foundations of quantization for probability distributions*, Lecture Notes in Mathematics 1730, Springer, Berlin, 2000.

[GL2] S. Graf and H. Luschgy, *The Quantization of the Cantor Distribution*, Math. Nachr., 183 (1997), 113-133.

[GN] R. Gray and D. Neuhoff, *Quantization*, IEEE Trans. Inform. Theory, 44 (1998), pp. 2325-2383.

[L] L. Roychowdhury, *Optimal quantization for nonuniform Cantor distributions*, Journal of Interdisciplinary Mathematics, Vol 22 (2019), pp. 1325-1348.

[P] K. Pötzelberger, *The quantization dimension of distributions*, Math. Proc. Camb. Phil. Soc., 131, 507-519 (2001).

[PRRSS] G. Pena, H. Rodrigo, M.K. Roychowdhury, J. Sifuentes, and E. Suazo, *Quantization for uniform distributions on hexagonal, semicircular, and elliptical curves*, [arXiv:1902.03887 [math.PR]], to appear, Journal of Optimization Theory and Applications.

[R1] M.K. Roychowdhury, *Quantization and centroidal Voronoi tessellations for probability measures on dyadic Cantor sets*, Journal of Fractal Geometry, 4 (2017), 127-146.

[R2] M.K. Roychowdhury, *Optimal quantizers for some absolutely continuous probability measures*, Real Analysis Exchange, Vol. 43(1), 2017, pp. 105-136.

[R3] M.K. Roychowdhury, *Optimal quantization for the Cantor distribution generated by infinite similitudes*, Israel Journal of Mathematics 231 (2019), 437-466.

[R4] M.K. Roychowdhury, *Least upper bound of the exact formula for optimal quantization of some uniform Cantor distributions*, Discrete and Continuous Dynamical Systems- Series A, Volume 38, Number 9, September 2018, pp. 4555-4570.

[R5] M.K. Roychowdhury, *Center of mass and the optimal quantizers for some continuous and discrete uniform distributions*, Journal of Interdisciplinary Mathematics, Vol. 22 (2019), No. 4, pp. 451-471.

[R6] M.K. Roychowdhury, *The quantization of the standard triadic Cantor distribution*, to appear, Houston Journal of Mathematics.

[RR1] J. Rosenblatt and M.K. Roychowdhury, *Optimal quantization for piecewise uniform distributions*, Uniform Distribution Theory 13 (2018), no. 2, 23-55.

[RR2] J. Rosenblatt and M.K. Roychowdhury, *Uniform distributions on curves and quantization*, [arXiv:1809.08364 [math.PR]].

[RS] M.K. Roychowdhury, and Wasila Salinas, *Quantization for a mixture of uniform distributions associated with probability vectors*, Uniform Distribution Theory 15 (2020), no. 1, 105-142.

[Z] R. Zam, *Lattice Coding for Signals and Networks: A Structured Coding Approach to Quantization, Modulation, and Multiuser Information Theory*, Cambridge University Press, 2014.

School of Mathematical and Statistical Sciences, University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539-2999, USA.

E-mail address: \{^1joel.hansen01, ^2itzamar.marquez01, ^3mrinal.roychowdhury, ^4eduardo.torres05\} @utrgv.edu