The Nuclear Proteome of White and Gray Matter from Schizophrenia Postmortem Brains

Verônica M. Saia-Cereda a • Aline G. Santana a • Andrea Schmitt b, c • Peter Falkai b • Daniel Martins-de-Souza a, d

a Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil; b Department of Psychiatry and Psychotherapy, Ludwig Maximilian University (LMU), Munich, Germany; c Laboratory of Neurosciences (LIM-27), Institute of Psychiatry, University of São Paulo, São Paulo, and d UNICAMP’s Neurobiology Center, Campinas, Brazil

Keywords
Schizophrenia · Proteomics · Nucleus · Nuclei · Nuclear proteome

Abstract
Schizophrenia (SCZ) is a serious neuropsychiatric disorder that manifests through several symptoms from early adulthood. Numerous studies over the last decades have led to significant advances in increasing our understanding of the factors involved in SCZ. For example, mass spectrometry-based proteomic analysis has provided important insights by uncovering protein dysfunctions inherent to SCZ. Here, we present a comprehensive analysis of the nuclear proteome of postmortem brain tissues from corpus callosum (CC) and anterior temporal lobe (ATL). We show an overview of the role of deregulated nuclear proteins in these two main regions of the brain: the first, mostly composed of glial cells and axons of neurons, and the second, represented mainly by neuronal cell bodies. These samples were collected from SCZ patients in an attempt to characterize the role of the nucleus in the disease process. With the ATL nucleus enrichment, we found 224 proteins present at different levels, and 76 of these were nuclear proteins. In the CC analysis, we identified 119 present at different levels, and 24 of these were nuclear proteins. The differentially expressed nuclear proteins of ATL are mainly associated with the spliceosome, whereas those of the CC region are associated with calcium/calmodulin signaling.

Introduction
Schizophrenia (SCZ) is a serious, debilitating, and incurable mental disorder that affects approximately 1% of the world’s population [1]. The disease normally manifests between the end of adolescence and the beginning of adulthood [2] and is characterized by a range of cognitive, behavioral, and emotional dysfunctions. SCZ is the main cause of psychiatric incapacitation [3] and, although it is usually treated as a single disease, it is likely to be a spectrum of related disorders with distinct etiology, clinical presentation, response to treatment, and development [4]. Despite its high prevalence and severity, little is known about the biochemical mechanisms involved in its development or progression, and so there are few established molecular diagnoses or specific treatments. Thus, there is currently a great interest in obtaining new knowledge about the disease and, in this arena, proteomic anal-

© 2017 S. Karger AG, Basel

E-Mail karger@karger.com
www.karger.com/mnp
yses have already yielded promising results and opened up new avenues of research [5].

Proteomics is used to analyze the protein profile of a specific cell type, tissue or organism, or changes in specific proteins, using mass spectrometry as its main tool. Due to its capacity for profiling large numbers of proteins simultaneously, proteomics is currently one of the main techniques used to understand biochemical pathways and, consequently, multifactorial disorders such as SCZ [6]. In the last 2 decades, proteomics has contributed to a growing understanding of SCZ, and a number of such studies investigating this disorder have been published revealing alterations in several biochemical pathways of the central nervous system [5]. However, it is important to note that in proteomic analyses of whole tissues, it is often not possible to detect proteins that are present at low concentrations. This may occur due to the complexity of the sample and/or due to the presence of other proteins that are present at very high concentrations, which may obscure those of lower abundance. This could lead to an inability to detect proteins which have important roles in the disease process [7]. To circumvent this problem, the study of subproteomes appears as a satisfactory alternative.

Subproteomes are obtained by fractionating the proteins of a given sample into distinct groups, taking into account some specific criteria. Although there are several ways of fractionating the protein content of a sample, one alternative is the analysis of specific organelles. This type of fractionation is attractive for cellular proteome analyses, since the protein content of the organelles is less complex and represents a specific and directed set, which provides the opportunity of investigating entire protein networks to an extent that cannot be achieved using whole cell approaches [8].

In this study, we have used a protocol for separation of organelles in order to obtain samples enriched in cell nuclei. The nucleus is the largest organelle of most cells and occupies approximately 10% of its volume, although this varies according to the cell type [9]. The nucleus is the compartment where the genetic material of eukaryotic organisms is stored, and nuclear proteins constitute 10–20% of the total cellular proteins and exert important functions related to gene expression, transcriptional control, splicing, and generation of the final gene products [10]. Therefore, the importance of investigating the nuclear proteome for the understanding of any physiological or pathological process is clear, and few such studies have been carried out thus far in the field of psychiatric disorders such as SCZ.

As an added level of enrichment, we have analyzed nuclei obtained from the anterior temporal lobe (ATL) and corpus callosum (CC) regions of postmortem brains from patients and controls. Dysfunctions in the ATL have been implicated previously in SCZ, and it consists mostly of gray matter [11]. The CC is the largest white matter region of the brain, and there are morphological, electrophysiological, and neurophysiological studies showing significant involvement of this region in patients with SCZ [12–14]. Because the brain works through communication with and across the different regions, we jointly analyzed the ATL and CC nuclear proteins to provide further information on the potential role of dysfunctions of this organelle in SCZ.

Materials and Methods

Human Samples

CC and ATL samples were collected post-mortem from 12 patients who had suffered from chronic SCZ and from 8 healthy controls (Table 1). The patient samples were from the Nordbaden Psychiatric Center, Wiesloch, Germany, and the controls were from the Institute of Neuropathology, Heidelberg University, Heidelberg, Germany. Postmortem evaluations and procedures were approved by the Ethics Committee of the Heidelberg University Medical School, and both patients and controls gave written consent prior to death that their brains could be used for research purposes.

Nuclear Enrichment

Nuclear proteins were obtained from the ATL and CC brain tissues according to the protocol of Cox and Emili [15]. In this protocol, each sample (20 mg tissue) was homogenized in 10 volumes of buffer containing 250 mM sucrose (Sigma-Aldrich, St. Louis, MO, USA), 50 mM Tris-HCl, 5 mM MgCl₂ (Sigma-Aldrich), 1 mM dithiothreitol (Sigma-Aldrich), 250 μg spermine, and 250 μg spermidine buffer (pH = 7.4), containing 1 tablet of protease cocktail inhibitor (Roche Diagnostics, Indianapolis, IN, USA) per 25 mL buffer. The homogenate was centrifuged at 100 g for 15 min at 4°C. The supernatant was discarded. Next, 5 volumes of the same buffer was added to the sediment. The homogenate was centrifuged at 800 g for 15 min at 4°C, and the supernatant was separated for further separation of the mitochondria and stored at −80°C as CytoI. The previous step was repeated and the supernatant was named as CytoII. The pellet was homogenized in 4 mL of the same buffer mentioned above but with a concentration of 2 M sucrose. The mixture was filtered with gauze, and the filtrate was placed on 4 mL of the last buffer. The tube was centrifuged at 80,000 g for 35 min at 4°C. The pellet contained the pure nuclei. The nuclear protein pellet was dissolved in 50 mM ammonium bicarbonate (pH 8.0) prior to protein digestion.

Mass Spectrometry

Protein extracts from nuclear enrichment of ATL and CC were digested by trypsin at a ratio of 1:80 (trypsin: total protein). The resulting peptides were lyophilized and frozen at −80°C before
Table 1. Clinical data of patients and controls

Case	Age, years	Gender	PMI, h	pH values	Duration of disease, years	Duration of medication, years	atypical	CPE last dose	CPE last 10 years	Cause of death	DSM-IV Age at onset	Last medication	Cigarettes	Alcohol	Hosp ECT		
SCZ	64	F	11	6.7	48	45	3	1,536	7.7	pulmonary insufficiency	295.6	16	clozapine 500 mg, haloperidol 40 mg, ciatyl 40 mg	0	no	21	yes
SCZ	73	M	20	6.6	43	40	1	507.4	1.7	heart infarction	295.6	30	perphenazine 32 mg, promethazine 150 mg	30/ day	no	33	no
SCZ	43	M	18	6.9	22	20	2	464	2.6	heart infarction	295.6	20	zuclopethixol 40 mg, valproate 1,200 mg, tiapride 300 mg	0	no	13	no
SCZ	77	F	32	6.5	49	48	2	2,555	8.3	lung embolism	295.6	28	clozapine 400 mg, benperidol 25 mg, chlorprothixen 150 mg	0	48 yes		
SCZ	76	F	17	6.8	49	47	1	300	4.9	cardio-pulmonary insufficiency	295.6	27	perazine 300 mg	0	no	30	yes
SCZ	63	F	31	6.8	40	30	3	75	1.8	heart infarction	295.6	24	olanzapine 15 mg, prothipendyl 160 mg, perazine 100 mg	30/ day	no	30	yes
SCZ	92	F	37	6.9	51	48	1	100	3.4	cardio-pulmonary insufficiency	295.6	41					
SCZ	71	M	28	6.4	40	35	1	782.4	10	heart infarction	295.6	30	haloperidol 32 mg, pipamperone 40 mg	40/ day	no	12	no
SCZ	51	M	7	6.1	25	25	1	147	0.6	heart infarction	295.6	19	flupenthixol 15 mg	30/ day	no	20	no
SCZ	51	M	12	6.7	28	25	2	450	1.8	heart infarction	295.6	23	clozapine 500 mg	30/ day	no	17	no
SCZ	81	M	4	6.7	62	50	1	92.8	1.4	heart insufficiency	295.6	19	haloperidol 40 mg, prothipendyl 80 mg	20	no	48	no
SCZ	64	F	23	6.6	41	40	2	54.5	4.6	heart infarction	295.6	24	zotepine 150 mg, olanzapine 10 mg	20/ day	no	5	yes
Control	41	M	7	6.5						heart infarction	295.6	0		0	no		
Control	91	F	16	6.7						cardio-pulmonary insufficiency	295.6	0		0	no		
Control	69	F	96	6.4						lung embolism	295.6	0		0	no		
Control	57	M	24	6.9						heart infarction	295.6	0		0	no		
Control	53	M	18	7						heart infarction	295.6	0		0	no		
Control	63	M	13	6.5						heart infarction	295.6	0		0	no		
Control	66	M	16	6.8						heart infarction	295.6	0		0	no		
Control	79	M	24	6.4						heart infarction	295.6	0		0	no		

atyptyp, duration of atypical treatment/duration of treatment with typical neuroleptics during lifetime; CPE, medication calculated in chlorpromazine equivalents (mg); CPE last 10 years, the sum of medications during the last 10 years in kg; Hosp, hospitalization time in years; ECT, electroconvulsive therapy.
UniProt ID	Gene name	Description	Score	Mass	Peptides	SCZ/CTRL	SD	Biological process	Molecular class	Molecular function
PKP2_HUMAN	PKP2	plakophilin-2	76	97,852	2	0.05	5.154	cell adhesion	unclassified	molecular function
BIN1_HUMAN	BIN1	Myc box-dependent-interacting protein 1	175	64,887	5	0.63	1.859	cell communication and signaling	adapter molecule	receptor signaling complex scaffold activity
CADM1_HUMAN	CADM1	cell adhesion molecule 1	102	48,935	3	0.44	4.93	cell communication and signaling	adhesion molecule	cell adhesion molecule activity
CALM1_HUMAN	CALM1	calmodulin	759	16,827	9	2.10	3.515	cell communication and signaling	calcium binding protein	calcium ion binding
CDC42_HUMAN	CDC42	cell division control protein 42 homolog	74	21,696	2	4.13	5.878	cell communication and signaling	GTPase	GTPase activity
CSRP1_HUMAN	CSRP1	cysteine and glycine-rich protein 1	244	21,409	5	0.49	2.012	cell communication and signaling	adapter molecule	receptor signaling complex scaffold activity
CTNB1_HUMAN	CTNNB1	catenin beta-1	71	86,069	2	0.48	1.285	cell communication and signaling	unclassified molecular function	unknown
DPYSL2_HUMAN	DPYS1	dihydropyrimidinase-related protein 2	1,892	62,711	30	2.40	2.513	cell communication and signaling	cytoskeletal associated protein	cytoskeletal protein binding
PP2BA_HUMAN	PPP3CA	serine/threonine-protein phosphatase 2B catalytic subunit alpha isoform	325	59,335	5	1.92	9.805	cell communication and signaling	serine/threonine phosphatase	protein serine/threonine phosphatase activity
CANB1_HUMAN	PPP3R1	calcineurin subunit B type 1	76	19,402	2	4.30	9.98	cell communication and signaling	regulatory/other subunit	Phosphatase regulator activity
KAP3_HUMAN	PRKAR2B	cAMP-dependent protein kinase type II-beta regulatory subunit	157	46,672	2	0.47	1.132	cell communication and signaling	serine/threonine kinase	protein serine/threonine kinase activity
SEPT7_HUMAN	SEPT7	septin-7	493	50,933	11	2.16	2.939	cell communication and signaling	cell cycle control protein	protein binding
SH3GL2_HUMAN	SH3GL2	endophilin-A1	216	40,108	4	1.76	3.614	cell communication and signaling	unclassified molecular function	unknown
SIRT2_HUMAN	SIRT2	NAD-dependent deacetylase sirtuin-2	220	43,782	5	3.94	8.747	cell communication and signaling	cell cycle control protein	deacetylase activity
SYUB_HUMAN	SNCB	beta-synuclein	447	14,279	6	2.05	3.512	cell communication and signaling	unclassified molecular function	unknown
YWHAE_HUMAN	YWHAE	14-3-3 protein epsilon	595	29,326	12	0.40	4.13	cell communication and signaling	adapter molecule	receptor signaling complex scaffold activity
YWHAG_HUMAN	YWHAG	14-3-3 protein gamma	1,010	28,456	18	0.56	3.229	cell communication and signaling	adapter molecule	receptor signaling complex scaffold activity
YWHAQ_HUMAN	YWHAQ	14-3-3 protein theta	400	28,032	7	0.41	2.421	cell communication and signaling	adapter molecule	receptor signaling complex scaffold activity
SEPT2_HUMAN	SEPT2	septin-2	173	41,689	3	1.86	2.96	cell cycle	GTPase	GTPase activity
CRMP1_HUMAN	CRMP1	dihydropyrimidinase-related protein 1	368	62,487	6	3.50	1.543	cell growth and/ or maintenance	enzyme: hydrolase	protein binding
DYNLL1_HUMAN	DYNLL1	dynactin light chain 1, cytoplasmic	141	10,530	4	1.97	8.851	cell growth and/ or maintenance	motor protein	motor activity
EPB41L3_HUMAN	EPB41L3	band 4.1-like protein 3	473	121,458	13	0.56	7.25	cell growth and/ or maintenance	structural protein	structural molecule activity
FLNA_HUMAN	FLNA	filamin-A	612	283,301	8	0.36	4.413	cell growth and/ or maintenance	anchor protein	cytoskeletal anchoring activity
LMNA_HUMAN	LMNA	lamin-A/C	387	74,380	7	0.11	3.386	cell growth and/ or maintenance	structural protein	structural molecule activity

40 Mol Neuropsychiatry 2017;3:37–52 DOI: 10.1159/000477299 Saia-Cereda et al.
UniProt ID	Gene name	Description	Score	Mass	Peptides	Pep-tides	SCZ/CTRL	SD	Biological process	Molecular class	Molecular function
LMNB2_	LMNB2	lamin-B2	173	67,762	3	0.18	5.639		cell growth and/or maintenance	structural protein	structural molecule activity
MAP1A_	MAP1A	microtubule-associated protein 1A	187	306,923	4	0.35	7.653	cell growth and/or maintenance	cytoskeletal protein	cytoskeleton binding	
MARE2_	MARE2	microtubule-associated protein RP/EB family member 2	338	37,236	6	2.41	4.902	cell growth and/or maintenance	cytoskeletal protein	cytoskeleton binding	
MYH9_	MYH9	myosin-9	330	227,646	4	0.23	1.904	cell growth and/or maintenance	structural protein	structural molecule activity	
VIME_	VIM	vimentin	2,238	53,676	37	0.35	5.159	cell growth and/or maintenance	cytoskeletal protein	structural constituent of cytoskeleton	
LGE1_	LGALS1	galectin-1	79	15,048	2	0.65	2.212	immune response	ligand	receptor binding	
LDHA_	LDHA	l-lactate dehydrogenase A chain	385	36,950	8	2.48	2.252	metabolism; energy pathways	enzyme: dehydrogenase	catalytic activity	
COX41_	COX41	cytochrome c oxidase subunit 4 isoform 1, mitochondrial	126	19,621	3	0.43	1.693	metabolism; energy pathways	enzyme: oxidoreductase	oxidoreductase activity	
COX5B_	COX5B	cytochrome c oxidase subunit 5B, mitochondrial	170	13,915	4	7.19	4.156	metabolism; energy pathways	enzyme: oxidoreductase	oxidoreductase activity	
GSTP1_	GSTP1	glutathione S-transferase P	147	23,569	2	1.64	1.268	metabolism; energy pathways	enzyme: glutathione transferase	glutathione transferase activity	
NDUS8_	NDUS8	NADH dehydrogenase (ubiquinone) iron-sulfur protein 8, mitochondrial	96	24,203	2	1.52	1.993	metabolism; energy pathways	enzyme: oxidoreductase	oxidoreductase activity	
PDE2A_	PDE2A	cGMP-dependent 3',5'-cyclic phosphodiesterase	89	107,360	2	9.65	2.299	metabolism; energy pathways	enzyme: phosphodiesterase	phosphoric diester hydrolase activity	
ODPA_	ODPA	pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial	219	43,952	7	0.35	5.372	metabolism; energy pathways	enzyme: dehydrogenase	catalytic activity	
PGK1_	PGK1	phosphoglycerate kinase 1	510	44,985	11	1.86	6.605	metabolism; energy pathways	enzyme: phosphotransferase	catalytic activity	
PRDX1_	PRDX1	peroxiredoxin-1	198	22,324	4	3.30	1.57	metabolism; energy pathways	enzyme: peroxidase	peroxidase activity	
CALR_	CANX	calnexin	182	67,982	5	1.85	3.216	protein folding	chaperone	chaperone activity	
CH60_	HSPD1	60-kDa heat shock protein, mitochondrial	1,089	61,187	21	1.90	2.418	protein folding; apoptosis; regulation of immune response; signal transduction	heat shock protein	heat shock protein activity	
CALR_	CALR	calreticulin	197	48,283	2	0.31	1.984	protein metabolism	chaperone	chaperone activity	
TCPD_	CCT4	T-complex protein 1 subunit delta	105	58,401	3	1.56	2.874	protein metabolism	chaperone	chaperone activity	
DNJC5_	DNAJC5	DnaJ homolog subfamily C member 5	93	22,933	2	3.89	5.26	protein metabolism	chaperone	chaperone activity	
HSP71_	HSPA1A	heat shock 70-kDa protein 1	390	70,294	8	1.84	2.307	protein metabolism	chaperone	chaperone activity	
HSP72_	HSPA2	heat shock-related 70-kDa protein 2	485	70,263	13	1.91	2.814	protein metabolism	heat shock protein	heat shock protein activity	
HSP76_	HSPA6	heat shock 70-kDa protein 6	328	71,440	7	1.77	2.398	protein metabolism	heat shock protein	heat shock protein activity	
HSP7C_	HSPA8	heat shock cognate 71-kDa protein	1,156	71,082	22	1.84	2.293	protein metabolism	heat shock protein	heat shock protein activity	
UniProt ID	Gene name	Description	Score	Mass	Peptides	SCZ/CTRL	Biological process	Molecular class	Molecular function		
------------	--------------------------------	------------------------------------	-------	-------	----------	-----------	---------------------	------------------------	----------------------------------		
CH10_	HUMAN HSPE1	10-kDa heat shock protein	130	10,925	3	2.31	1.134	protein metabolism	heat shock protein		
PSA4_	HUMAN PSMA4	proteasome subunit alpha type-4	71	29,750	3	0.44	1.528	protein metabolism	ubiquitin proteasome system protein		
SYUA_	HUMAN SNCA	alpha-synuclein	879	14,451	12	1.88	3.76	protein metabolism	chaperone		
EF1A1_	HUMAN EEF1A1	elongation factor 1-alpha 1	312	50,451	9	0.58	2.182	regulation of cell cycle	transcription regulatory protein		
H2AV_	HUMAN H2AFV	histone H2A.V	143	13,501	2	0.17	1.264	regulation of gene expression, epigenetic	DNA-binding protein		
BASP_	HUMAN BASP1	brain acid soluble protein 1	1,796	22,680	24	0.51	1.805	regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolism	DNA-binding protein		
CAND1_	HUMAN CAND1	cullin-associated NEDD8-dissociated protein 1	118	137,999	2	1.81	4.005	regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolism	transcription regulatory protein		
H33_	HUMAN H3F3A	histone H3.3	217	15,376	5	0.50	3.531	regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolism	DNA-binding protein		
H12_	HUMAN HIST1H1C	histone H1.2	237	21,352	3	0.57	4.622	regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolism	DNA-binding protein		
H2A1B_	HUMAN HIST1H2AB	histone H2A type 1-B/E	249	14,127	6	0.38	2.971	regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolism	DNA-binding protein		
H2A1D_	HUMAN HIST1H2AD	histone H2A type 1-D	226	14,099	6	0.33	1.799	regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolism	DNA-binding protein		
H2B1B_	HUMAN HIST1H2BB	histone H2B type 1-B	190	13,942	3	0.41	5.283	regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolism	DNA-binding protein		
H2B1C_	HUMAN HIST1H2BC	histone H2B type 1-C/E/F/G/I	165	13,811	3	0.43	1.266	regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolism	DNA-binding protein		
H4_	HUMAN HIST1H4A	histone H4	637	11,360	11	0.46	3.406	regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolism	DNA-binding protein		
ROA2_	HUMAN HNRNPA2B1	heterogeneous nuclear ribonucleoproteins A2/ B1	452	37,464	7	0.16	3.769	regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolism	ribonucleoprotein		
HNRPC_	HUMAN HNRNPC	heterogeneous nuclear ribonucleoproteins C1/ C2	223	33,707	2	0.24	1.52	regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolism	RNA-binding protein		
HNRH1_	HUMAN HNRNPH1	heterogeneous nuclear ribonucleoprotein H	269	49,484	4	0.18	2.678	regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolism	ribonucleoprotein		
mass spectrometry analysis. Immediately prior to analysis, lyophilized peptides were dissolved in an aqueous solution of 0.1% formic acid and injected into a 2D nano high-performance liquid chromatography system (Eksigent, Dublin, CA, USA) coupled online to a LTQ XL-Orbitrap mass spectrometer (Thermo Scientific, Bremen, Germany). The specifics of data acquisition are described in detail in Maccarrone et al. [16].

Proteome Quantification

The program used in the identification and quantification of proteins was MASCOT Distiller (Matrix Sciences, London, UK). For the identification and quantification, this program follows a series of statistical criteria. The main test used to indicate quantitative changes between the proteins was Student’s t in log space. This analysis assigns to each protein a p value of significance with regard to differences in protein levels. In addition, samples values were applied to a data normalization process. This process is based on the hypothesis that it is reasonable to expect that only a minority of the proteins in the sample will be found to be differentially expressed, considering that the overall normalization is applied in order to make the mean or median ratios in the entire dataset equal to 1. Following this logic, the data distribution is log-normal, and

Table 2 (continued)

UniProt ID	Gene name	Description	Score	Mass (Da)	Peptides	SCZ/CTRL	SD	Biological process	Molecular class	Molecular function
HNRH2_HUMAN	HNRNPH2	heterogeneous nuclear ribonucleoprotein H2	293	49,517	3	0.17	2.343	regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolism	ribonucleoprotein	RNA binding
HNRPK_HUMAN	HNRNPK	heterogeneous nuclear ribonucleoprotein K	225	51,230	4	0.31	3.12	regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolism	ribonucleoprotein	
HDRPU_HUMAN	HDRNPU	heterogeneous nuclear ribonucleoprotein U	114	91,198	3	0.41	1.93	regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolism	ribonucleoprotein	RNA binding
MATR3_HUMAN	MATR3	matrin-3	125	95,078	2	0.37	1.661	regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolism	RNA-binding protein	RNA binding
NONO_HUMAN	NONO	non-POU domain-containing octamer-binding protein	116	54,311	2	0.20	1.072	regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolism	RNA-binding protein	RNA binding
PURA_HUMAN	PURA	transcriptional activator protein Pur-alpha	157	35,003	2	0.41	2.617	regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolism	transcription factor	transcription factor activity
SFRS3_HUMAN	SFRS3	splicing factor, arginine/serine-rich 3	81	19,546	2	0.35	1.529	regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolism	RNA-binding protein	RNA binding
SSBP1_HUMAN	SSBP1	single-stranded DNA-binding protein, mitochondrial	92	17,249	2	7.35	3.86	regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolism	DNA-binding protein	DNA binding
SEPTS_HUMAN	SEPTS	septin-5	327	43,206	11	0.52	5.659	signal transduction	GTPase	GTP binding
ANXA2_HUMAN	ANXA2	annexin A2	319	38,808	5	0.46	6.797	signal transduction; cell communication	calcium-binding protein	calcium ion binding
EAA1_HUMAN	SLC1A3	excitatory amino acid transporter 1	307	59,705	6	0.22	6.411	transport	transport/cargo protein	transporter activity

Score, MASCOT Identification Score (cutoff for this dataset: 55); mass, the molecular mass of the protein (Da); peptides, number of identified peptides by mass spectrometry; SCZ/CTRL, fold change ratio between schizophrenia and control samples; SD, standard deviation among quantified peptides.
the statistical test used to confirm this premise is the Shapiro-Wilk test. If the results do not pass this test, it indicates that the values are meaningless and something has systematically gone wrong with the analysis. In these cases, the values are rejected in the normality test.

Analysis in silico

Shotgun proteomics analysis can produce high amounts of data, especially in studies of complex biological mixtures, such as postmortem brain samples. As a consequence, protein-protein interaction analysis and identification of the pathways involved are fundamental to understanding cellular phenotypes in the most complete manner possible. Due to this, we used bioinformatics tools available online in these analyses. These were: the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING, http://STRING-db.org/), Kyoto Encyclopedia Genes and Genomes (KEGG, http://www.genome.ad.jp/kegg/), and Reactome (http://reactome.org/).

Results

In the results of the ATL nucleus enrichment, we identified a total of 4,293 unique peptides, which corresponded to 629 proteins. Of these, 224 were present at significantly different levels between the SCZ and control samples, and 76 were nuclear proteins (nuclear enrichment of 33%; Table 2). In the CC analysis, we identified 3,820 unique peptides, corresponding to 552 proteins with 119 present at different levels, and 24 of these were nuclear proteins (nuclear enrichment of 21%; Table 3). These differentially expressed proteins were analyzed using the online human protein reference database (http://www.hprd.org/) in order to find the biological processes and function/molecular classes with which they are related (Table 2, 3).

The differentially expressed proteins related to both the nuclei of the ATL region cells and the CC participated in biological processes related mainly to processes such as regulation of nucleobase, nucleoside, nucleotide, and nucleic acid metabolism (27% ATL, 40% CC) and cell communication and signaling (23% ATL, 36% CC) (Fig. 1). These processes are related to the main functions of the nucleus, such as gene expression, transcriptional control, splicing, and release of gene products [10].

Discussion

Proteomic Similarities between Regions

The ATL is enriched in gray matter, while the cerebral region of the CC corresponds to the largest portion of...
UniProt ID	Gene name	Protein name	Score	Mass	Peptides	SCZ/CTRL	SD	Biological process	Molecular class	Molecular function
ARF1_HUMAN	ARF1	ADP-ribosylation factor 1	298	20,741	7	4.26	5.333	cell communication and signaling	GTPase	GTPase activity
BASP_HUMAN	BASP1	brain acid soluble protein 1	766	22,680	14	5.96	3.633	reg. nucleic acid metabolism	transcription regulatory protein	transcription regulator activity
CALM_HUMAN	CALM1	calmodulin	349	16,827	7	2.63	1.817	cell communication and signaling	calcium-binding protein	calcium ion binding
KCNQ2A_HUMAN	CAMK2A	calcium/calmodulin-dependent protein kinase type II subunit alpha	469	54,566	10	3.08	8.707	cell communication and signaling	serine/threonine kinase	protein serine/threonine kinase activity
KCNQ2B_HUMAN	CAMK2B	calcium/calmodulin-dependent protein kinase type II subunit beta	180	73,593	4	5.90	5.656	cell communication and signaling	serine/threonine kinase	protein serine/threonine kinase activity
KCNQ2G_HUMAN	CAMK2G	calcium/calmodulin-dependent protein kinase type II subunit gamma	195	63,311	4	7.19	4.726	cell communication and signaling	serine/threonine kinase	protein serine/threonine kinase activity
CDC42_HUMAN	CDC42	cell division control protein 42 homolog	85	21,696	2	2.09	3.534	cell communication and signaling	GTPase	GTPase activity
CFI_HUMAN	CFL1	cofilin-1	192	18,719	6	5.54	4.899	cell growth and maintenance	cytoskeletal associated protein	cytoskeletal protein binding
CSR7P1_HUMAN	CSR7P1	cysteine and glycine-rich protein 1	458	21,409	7	4.07	5.108	cell communication and signaling	adapter molecule	receptor signaling complex scaffold activity
DPY12_HUMAN	DPY12	dihydroxyiminodihydropyrimidinase-related protein 2	1,679	62,711	25	7.07	5.899	cell communication and signaling	cytoskeletal associated protein	cytoskeletal protein binding
H2AV_HUMAN	H2AV	histone H2A.V	422	13,501	5	0.42	2.387	reg. nucleic acid metabolism	DNA-binding protein	DNA binding
H14_HUMAN	H14	histone H4.1	513	21,852	11	0.12	3.04	reg. nucleic acid metabolism	DNA-binding protein	DNA binding
H31_HUMAN	H31	histone H3.1	353	15,509	7	0.17	8.548	reg. nucleic acid metabolism	DNA-binding protein	DNA binding
H4_HUMAN	H4	histone H4	979	11,360	13	0.19	3.693	reg. nucleic acid metabolism	DNA-binding protein	DNA binding
HMGB1_HUMAN	HMGB1	high-mobility group protein B1	315	25,049	3	0.01	5.9	reg. nucleic acid metabolism	DNA-binding protein	DNA binding
ROA2_HUMAN	ROA2	heterogeneous nuclear ribonucleoproteins A2/B1	325	37,464	6	0.43	5.195	reg. nucleic acid metabolism	Ribonucleo-protein	Transcription factor binding
HNRNP_HUMAN	HNRNP	heterogeneous nuclear ribonucleoprotein R	106	71,184	2	0.03	1.653	reg. nucleic acid metabolism	RNA-binding protein	RNA binding
HNRNPU_HUMAN	HNRNPU	heterogeneous nuclear ribonucleoprotein U	373	91,198	8	0.19	5.492	reg. nucleic acid metabolism	ribonucleo-protein	RNA binding
HP1B3_HUMAN	HP1B3	heterochromatin protein 1-binding protein 3	78	61,454	2	3.40	5.984	reg. nucleic acid metabolism	DNA-binding protein	DNA binding
HSPA1A_HUMAN	HSPA1A	heat shock 70-kDa protein 1A/1B	310	70,294	5	1.58	1.484	protein metabolism	chaperone	chaperone activity
LMNA_HUMAN	LMNA	prelamin-A/C	1,140	74,380	24	0.41	7.189	cell growth and maintenance	structural protein	structural molecule activity
LMB2_HUMAN	LMB2	lamin-B2	207	67,762	2	0.05	2.067	cell growth and maintenance	structural protein	structural molecule activity
NPM1_HUMAN	NPM1	nucleophosmin	172	32,726	2	6.64	1.167	protein metabolism	chaperone	chaperone activity
PTMA_HUMAN	PTMA	prothymosin alpha	177	12,196	3	10.62	2.334	cell growth and maintenance	unclassified function	molecular function unknown
S100B_HUMAN	S100B	protein S100-B	290	10,820	3	0.30	1.203	cell communication and signaling	calcium-binding protein	calcium ion binding

Score, MASCOT Identification Score (cutoff for this dataset: 55); mass, the molecular mass of the protein (Da); peptides, number of identified peptides by mass spectrometry; SCZ/CTRL, fold change ratio between schizophrenia and control samples; SD, standard deviation among quantified peptides.
white matter in the brain. This results from the preponderance of neurons in the ATL [17], whereas glial cells and neuronal axons are more predominant in the CC [18]. It is important to compare proteomic profiles of these two regions of the brain mainly because this gives a more integrated view of brain function and not only what happens only with the neurons, as is typical of most other brain proteomic studies. In the comparison of these two regions, 64 of these were specific to the ATL, 13 to the CC, and 12 were common to both regions, i.e. 13.5% of the proteins are shared for the regions, as it can be seen in the Venn diagram (Fig. 2). According to analysis carried out using the Reactome software, these latter proteins were related to cellular stress response, with a chain of reactions related to heat-shock proteins (HSPs) (p value 3.18×10^{-11}) (Fig. 3). This type of reaction is triggered by cellular stressors such as exposure to high temperatures, hypoxia, and free radicals, and these factors can cause damage to cellular proteins and induce this type of response [19–22].

Since maintaining homeostasis is important for the proper functioning of cellular metabolism, this type of stress response must be effective and coordinated [23]. For this to occur, the main molecule responsible for tran-
scription-mediated stress response, the heat shock transcription factor HSF1, must be present at optimal functional levels [24, 25]. Under normal physiological conditions, this molecule is present in its inactive form, mediated by a series of protein-protein interactions. However, in the presence of stressors, this molecule becomes activated by a series of reactions, including its phosphorylation and interaction with DNA, promoting the cellular responses to stress (Fig. 3) [26–31].

The protein that mediates most of these reactions, the heat shock 70-kDa protein 1A/1B (HSPA1A), was found to be increased in the nuclear compartments of both the ATL and CC. This protein belongs to the family of heat shock protein 70 (HSP70), which has been implicated previously in SCZ [32]. A recent study showed that a polymorphism in the HSPA1A protein gene is associated with increased risk of developing paranoid SCZ [33], and another study found increased mRNA expression of this gene in postmortem samples from the prefrontal cortex of patients with SCZ [34].

The analysis of differentially expressed proteins in the ATL nuclei showed additional changes in 4 more heat shock proteins, with 3 of these belonging to the HSP70 family: heat shock-related 70-kDa protein 2 (HSPA2), heat shock 70-kDa protein 6 (HSPA6), heat shock cognate 71-kDa protein (HSPA8), and 10-kDa heat shock protein (HSPE1). All these proteins were found at higher levels in the patients compared to controls, indicating a large response to cellular stress in the former. There is a debate about the effects displayed in the analysis of postmortem brains in studies of psychiatric disorders. One of the main disputed points is whether or not such effects...
are a cause or consequence of the disease, or a consequence of prolonged treatment of these patients with different antipsychotic medications throughout their lives and through different stages of disease development. However, such data have appeared recurrently in proteomic data of postmortem brain of patients with SCZ and cannot be ignored. Nevertheless, corroborative studies of some format involving first-onset antipsychotic-naïve patients may help to resolve some of these issues.

Another family of proteins that were found differentially expressed in both the ATL (histone H3.3, histone H1.2, histone H2A type 1-B/E, histone H2A type 1-D, histone H2B type 1-B, histone H2B type 1-C/E/F/G/I, histone H4) and CC (histone H2A.V; histone H1.4; histone H3.1; histone H4), is the family of histone proteins. These proteins are linked to DNA, and they change the transcription mechanism of these molecules, thus modifying gene expression. Histones are also associated with neuronal functions such as synaptic plasticity, a function that is known to be altered in patients with SCZ [35, 36]. Mass spectrometry studies have shown that posttranslational modifications in the nucleosome, which are characterized by the junction of DNA and a complex of histone proteins, regulate histone-DNA interaction, and are part of epigenetic mechanisms of genetic regulation [37]. Many recent studies associate histone dysregulation, and consequently dysregulation of epigenetic processes, with SCZ [38–40], and there has been much discussion on possible therapeutic targets based on targeted epigenetics in the treatment of this disease (reviewed in [41]). However, as more thorough epigenetic studies in postmortem brain tissue are still arduous and limited, little is known about this association.

Nuclear Proteins Altered in the ATL

In silico analysis of the proteins found at different levels in cell nuclei of the gray matter region showed that these proteins are mainly associated with spliceosome
complex (p value 5.9E-6) (online suppl. Table 1; see www.
karger.com/doi/10.1159/000477299 for all online suppl.
material). The spliceosome is a complex of 5 multi-mega-
dalton ribonucleoproteins (snRNPs), which are abun-
dant RNA-binding proteins that carry out processing of
pre-mRNA transcripts. This complex removes introns of
these molecules and rearranges exons, so that these con-
form and can give rise to the correctly configured mRNA
transcripts [42]. Due to the exon rearrangement, a single
pre-mRNA can give rise to different functioning mRNAs,
and any perturbations of this process may lead to disease
development or contribute to the severity of preexisting
diseases [43].

The proteins related to this pathway that were found
at altered levels in this study were heterogeneous nuclear
ribonucleoproteins C1/C2 (HNRNPC), heterogeneous
nuclear ribonucleoprotein K (HNRNPK), heterogeneous
nuclear ribonucleoprotein U (HNRNPU), splicing factor,
arginine/serine-rich 3 (SRSF3), and HSPA1A, HSPA2,
HSPA6 and HSPA8, as described above. These proteins
are the main constituents of the snRNP complex, which
is the main component of the splicing operation (Fig. 4;
KEGG).

Eight of the proteins belonging to the hnRNP family
were found deregulated in a study of oligodendrocyte
cells treated with clozapine, an antipsychotic used in the
treatment of SCZ [44]. Moreover, studies of silencing and
super-expression of proteins showed a crucial role of
hnRNP proteins in the myelination of neurons by oligo-
dendrocytes, independently of the indirect regulation of
quaking proteins as previously proposed [45, 46]. This
dysfunction in myelination was related to dysregulation
of the synaptic connection [47–49]. One of these proteins
was HNRNPC, which was found at decreased levels in
SCZ patients compared to controls in this study. It is
known that the regulation process of myelination under-
goes a precise control dependent on the alternative splic-
ing [45], and if the hnRNP protein complex is dereg-
ulated, this may cause aberrant alternative splicing, as
reported in neurodegenerative and neuropsychiatric dis-
eases such as frontotemporal dementia with Parkinson-
ism, amyotrophic lateral sclerosis and SCZ [50–52].

The deregulation of hnRNP proteins, in addition to
being related to oligodendrocyte cells, is also related to
the dysfunction of the neurotransmitter system. In a
study performed using polymerase chain reaction analy-
sis of SCZ prefrontal cortex tissue, alterations in splicing
of mRNA molecules related to the GABAergic system
were found [51]. Another study has shown that proteins
related to dopamine receptors are also regulated by alter-
native splicing and that perturbed splicing of these pro-
teins can cause dysfunctions in the dopaminergic system
[53]. These systems are known to be altered in patients
with SCZ [54]. Thus far, there are only a few recent stud-
ies that correlate perturbations in splicing and SCZ. How-
ever, the converging evidence suggests that this could
play a major role in the disease process and therefore war-
rants further study, particularly accounting for effects on
both neuronal and oligodendrocyte cells.

It should be considered that some of the alterations
may be related to heterogeneity of the postmortem tissues
including potential differences in cell types and cell den-
sity. Therefore, it may not be possible to identify which
specific cell types the changes are associated with. How-
ever, it is likely that to the changes are associated with
glial cells when analyzing white matter and with neurons
when analyzing gray matter, considering the natural
abundance of such cells in these tissues. It should also be
considered that data generated using postmortem tissue
has other disadvantages such as potential differences in
postmortem intervals or agonal states. Therefore, func-
tional analyses, such as super-expression and knockout
studies, should be done to test hypotheses resulting from
such investigations using postmortem tissues. For example,
microdissection of specific cell types could be used to
assess significant cell-specific differences between pa-

tients and controls.

Nuclear Proteins of White Matter (CC)

After enriching the pathways of the 24 proteins found
differentially expressed in the nucleus of the CC region,
only 4 proteins were present in all of the enriched path-
ways (online suppl. Table 2) and were present in the same
interaction network (Fig. 5). These 4 proteins were
calmodulin (CALM1), calcium/calmodulin-dependent
protein kinase type II subunit alpha (CAMK2A), calci-
um/calmodulin-dependent protein kinase type II subunit
beta (CAMK2B), and calcium/calmodulin-dependent
protein kinase type II subunit gamma (CAMK2G), which
are all calcium dependent for their activation and re-
sponse, as well as being constituents of the serine/threo-
ine protein kinase family, which has been widely associ-
ated with metabolic events such as muscle contraction,
cellular metabolism/proliferation, gene expression, and
neurotransmitter release (reviewed in [55]).

The correlation between deregulation of calcium and
SCZ began in the 1970s [56], and several studies confirm-
ing and discussing various aspects of this correlation have
been performed. Among the many hypotheses that cor-
relate calcium signaling to SCZ, there is the deregulation
of the dopaminergic system, which is one of the hypotheses of SCZ development of the disease [57]. Calcium participates in the uptake of dopamine by synaptic vesicles and, in this process, calcium is associated with CaMKII proteins [26]. In this study, we found increased levels of the alpha, beta, and gamma CAMK2 proteins, suggesting that there may be a high uptake of dopamine by synaptic vesicles and, consequently, a greater release of the neurotransmitter in the synaptic cleft [54]. The major focus in most studies in SCZ has been on the proteins of neuronal cells, as can be seen in the results presented above. However, one study quantified the calmodulin proteins in nuclei of neuronal and glial cells and showed that the abundance of these molecules is greater in the latter cell type [58]. Even so, little research has been done investigating the role of the deregulation of calmodulin proteins in glial cells.

A few recent studies have associated calcium/calmodulin-dependent protein with glial cells in functions such as actin cytoskeleton remodeling, glutamate and glycine transport, and regulation of neurotrophic factors [59–62]. This involves the activation of the PI3K protein which, according to Pérez-Garcia et al. [62], is regulated by calmodulin proteins associated with calcium. The process of activation of the PI3K protein involves its auto-phosphorylation, which was found to be reduced in a recent study of postmortem CC from patients with SCZ performed by our group [63]. Given that neurotrophic factors are decreased in patients [64], we can associate the increased amount of CAMK found in this study to a form of cellular compensation which aims to normalize the activation of the neurotrophic factors. Another possible association is that the high concentration of CaMK proteins may desensitize the P13K activation process, causing the observed disruption in this pathway.

Also present in the network identified above are the nucleic acid metabolism-related proteins, which are proteins of the HSP family, and proteins linked to the genetic transcription, which belong to the family of hnRNPs. These results are related to those found in the ATL region, showing a possible relationship between the deregulation of the white and gray matter, with changes in cell stress and regulation of genetic expression.

Conclusion

The results found in this study provide an overview of the participation of nuclear proteins in the pathophysiology of the disease. When it comes to the gray matter, the results point to the dysregulation of the spliceosome, an area which has not been investigated previously. In the case of the white matter, the role of calcium/calmodulin protein deregulation in glial cells has only been partly explored in previous studies, and may be related to altered production of neurotrophic factors. These results represent the first in-depth study comparing effects on gray and white matter in SCZ and lay the groundwork for further studies in this area to help increase our understanding of this complex disease. This could lead to identification of novel biomarkers and drug targets which, in turn, may result in development of newer and better treatment options for people suffering from this disease for improved therapeutic outcomes.

Acknowledgements

V.M.S.C. and D.M.S. are supported by FAPESP (São Paulo Research Foundation), grants 2016/07332-7, 2013/08711-3, and 2014/10068-4. D.M.S. is also supported by The Brazilian National Council for Scientific and Technological Development (CNPq), grant 460289/2014-4.

Disclosure Statement

The authors declare no conflict of interest.

References

1 Kahn RS, Sommer IE, Murray RM, et al: Schizophrenia. Nat Rev Dis Primers 2015;1:15067.
2 Owen MJ, Sawa A, Mortensen PB: Schizophrenia Lancet 2016;388:86–97.
3 Schulz SC, Murray A: Assessing cognitive impairment in patients with schizophrenia. J Clin Psychiatry 2016;77:3–7.
4 Sadock BJ, Sadock VA: Compêndio de Psiquiatria: Ciência do Comportamento e Psiquiatria Clínica, Artmed. Artmed, Porto Alegre, 2007.
5 Nascimento JM, Martins-de-Souza D: The proteome of schizophrenia. NPJ Schizophrenia 2015;1:14003.
6 Martins-de-Souza D, Guest PC, Rahmoune H, Bahn S: Proteomic approaches to unravel the complexity of schizophrenia. Expert Rev Proteomics 2012;9:97–108.
7 Bradshaw RA, Burlingame AL: From proteins to proteomics. JUBMB Life 2005;57:267–272.
8 Taylor SW, Fahy E, Ghosh SS: Global organelar proteomics. Trends Biotechnol 2003;21:82–88.
Alberts B, Johnson A, Lewis J, et al: Molecular Biology of the Cell. New York, Garland Science, 2002, vol 4, pp 191–234.

Narula K, Datta A, Chakraborty N, Chakraborty S: Comparative analyses of nuclear proteome: extending its function. Front Plant Sci 2013;4:100.

Harrison PJ: Using our brains: the findings, flaws, and future of postmortem studies of psychiatric disorders. Biol Psychiatry 2011; 69:102–103.

Guo H, Christoff J, Campos V, Li Y: Normal corpus callosum in Emx1 mutant mice with C57BL/6 background. Biochemical and biophysical research communications. Biocem Biophys Res Commun 2000;276:649–653.

Rotarska-Jagiela A, Schönmeyer R, Oertel V, et al: The corpus callosum in schizophrenia: volume and connectivity changes affect specific regions. Neuroimage 2008;39:1522–1530.

Innocenti GM, Ansertet F, Parnas J: Schizophrenia, neurodevelopment and corpus callosum. Mol Psychiatry 2003;8:261–274.

Cox B, Emili A: Tissue subcellular fractionation and protein extraction for use in mass-spectrometry-based proteomics. Nat Protoc 2006;1:1872–1878.

Maccarrone G, Rewerts C, Lebar M, et al: Proteome profiling of peripheral mononuclear cells from human blood. Proteomics 2013;13:893–897.

Purves D, Augustine GJ, David F, et al: Neuroscience. Sunderland, Sinauer Associates, 2008, vol 4, pp 15–16.

Fitsiori A, Nguyen D, Karentzos A, et al: The corpus callosum: white matter or terra incognita. Br J Radiol 2011;84:5–18.

Liu X, Liu PCC, Santoro N, Thiele DJ: Conservation of a stress response: human heat shock transcription factors functionally substitute for yeast HSF. EMBO J 1997;16:6666–6677.

Voellmy R, et al: Chaperone regulation of the heat shock protein response. Adv Exp Med Biol 2007;594:89–99.

Almendral P, Morimoto RI, Rossoughi F, et al: RNA-mediated response to heat shock in mammalian cells. Nature 2006;440:4–8.

Ancak J, Sistonen L: Regulation of HSF1 function in the heat stress response: implications in aging and disease. Annu Rev Biochem 2011;80:1089–1115.

Kültz D: Molecular and evolutionarily basic aspects of the cellular stress response. Annu Rev Physiol 2007;69:225–257.

Sarge KD, Murphy SP, Morimoto RI: Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress. Mol Cell Biol 1993;13:1392–1407.

Baler R, Dahl G, Voedlin R: Activation of human heat shock genes is accompanied by oligomerization, modification, and rapid translocation of heat shock transcription factor HSF1. Mol Cell Biol 1993;13:2486–2496.
57 Lidow MS: Calcium signaling dysfunction in schizophrenia: a unifying approach. Brain Res Rev 2003;43:70–84.
58 Vendrell M, Aliguk R, Bachs O, Serratosa J: Presence of calmodulin and calmodulin-binding proteins in the nuclei of brain cells. J Neurochem 1991;57:622–628.
59 Szabo M, Dulka K, Gulya K: Calmodulin inhibition regulates morphological and functional changes related to the actin cytoskeleton in pure microglial cells. Brain Res Bull 2015;120:41–50.
60 Underhill SM, Wheeler XDS, Amara SG: Differential regulation of two isoforms of the glial glutamate transporter EAAT2 by DLG1 and CaMKII. J Neurosci 2015;35:5260–5270.
61 Gadea A, Lo E, Herna A, Mari A: Role of Ca$^{2+}$ and calmodulin-dependent enzymes in the regulation of glycine transport in Muller glia. J Neurochem 2002;80:634–645.
62 Perez-Garcia JM, Valentin C, et al: Glial cell line-derived neurotrophic factor increases intracellular calcium concentration. Role of calcium/calmodulin in the activation of the phosphatidylinositol 3-kinase pathway. J Biol Chem 2004;279:6132–6142.
63 Saia-Cereda VM, Cassoli JS, Schmitt A, et al: Differential proteome and phosphoproteome may impact cell signaling in the corpus callosum of schizophrenia patients. Schizophr Res 2016;177:70–77.
64 Toyooka K, Asama K, Watanabe Y, Muratake T: Decreased levels of brain-derived neurotrophic factor in serum of chronic schizophrenic patients. Psychiatry Res 2002;110:249–257.