A rare case of anhidrotic ectodermal dysplasia in a six-year-old boy

Bismah Gul, U. Narayan Reddy, Swathi Chacham, S. Ali khurram, Naila Mazher, Taha Mustafa, E. Apoorva

ABSTRACT

Introduction: Ectodermal dysplasia is a rare, non-progressive, genetic disorder resulting from abnormal development of two or more tissues at a time which are derived from the embryonic ectoderm. It classically manifests with skin, eccrine gland, nail and hair changes, with an incidence of 1 in 1,000,000 births. More than 170 different syndromes have been identified. X-linked recessive anhidrotic dysplasia (XLHED) being the most common type, which is expressed in males.

Case Report: A six-year-old boy, was brought to the pediatric outpatient department with the complaints of fever on and off since month months. The parents gave history of recurrent episode of hyperpyrexia, with heat intolerance, absent sweating and delayed dentition in the past. On examination the child had peculiar facies, characterized by malar hypoplasia, flattening of nasal bridge, everted lips, wrinkled periorbital skin, pegged shaped tooth, low set ears, scanty, hypopigmented hair on the head; with absent eyebrows and eye lashes. Even after thorough evaluation and investigation, no focus of infection was found, ectodermal dysplasia was then considered and a skin biopsy done, which showed absence of skin appendageal structures.

Conclusion: We report a rare case of anhidrotic ectodermal dysplasia in a 6-year-old boy, thus emphasizing the need for considering EDA as a differential diagnosis for neonates and infants with history of fever of unknown origin specially when associated with delayed dentition and hypotrichosis. An early diagnosis would have prevented unnecessary antibiotic misuse.
A rare case of anhidrotic ectodermal dysplasia in a six-year-old boy

Bismah Gul, U. Narayan Reddy, Swathi Chacham, S. Ali khurram, Naila Mazher, Taha Mustafa, E. Apoorva

ABSTRACT

Introduction: Ectodermal dysplasia is a rare, non-progressive, genetic disorder resulting from abnormal development of two or more tissues at a time which are derived from the embryonic ectoderm. It classically manifests with skin, eccrine gland, nail and hair changes, with an incidence of 1 in 1, 00,000 births. More than 170 different syndromes have been identified. X-linked recessive anhidrotic dysplasia (XLHED) being the most common type, which is expressed in males. Case Report: A six-year-old boy, was brought to the pediatric outpatient department with the complaints of fever on and off since month months. The parents gave history of recurrent episode of hyperpyrexia, with heat intolerance, absent sweating and delayed dentition in the past. On examination the child had peculiar facies, characterized by malar hypoplasia, flattening of nasal bridge, everted lips, wrinkled periorbital skin, pegged shaped tooth, low set ears, scanty, hypopigmented hair on the head; with absent eyebrows and eye lashes. Even after thorough evaluation and investigation, no focus of infection was found, ectodermal dysplasia was then considered and a skin biopsy done, which showed absence of skin appendageal structures. Conclusion: We report a rare case of anhidrotic ectodermal dysplasia in a 6-year-old boy, thus emphasizing the need for considering EDA as a differential diagnosis for neonates and infants with history of fever of unknown origin specially when associated with delayed dentition and hypotrichosis. An early diagnosis would have prevented unnecessary antibiotic misuse.

Keywords: Children, Guillain-Barré syndrome, Herpes zoster, Immunocompetent

How to cite this article

Gul B, Reddy UN, Chacham S, Khurram SL, Mazher N, Mustafa T, Apoorva E. A rare case of anhidrotic ectodermal dysplasia in a six-year-old boy. Int J Case Rep Images 2016;7(2):127–131.

doi:10.5348/ijcri-201621-CR-10608
INTRODUCTION

Anhidrotic ectodermal dysplasia is a heterogeneous group of disorders characterized by constellation of findings involving defects of skin, hair, appendageal structures, eccrine and sebaceous glands. There are two major types of this condition depending on the number and functionality of the sweat glands: (1) X-linked recessive anhidrotic or hypohidrotic, (Christ-Siemens Touraine syndrome) in which sweat glands are either absent or reduced in number, and (2) hidrotic (HED), where sweat glands are normal and the condition is inherited as autosomal dominant (Clouston syndrome) [3, 4]. Genetic studies regarding the etiology of EDA revealed that mutations in the ectodysplasin-A and ectodysplasin-A receptor genes are responsible for X-linked and autosomal hypohidrotic ectodermal dysplasia [5]. Various classifications have been proposed based on clinical features, mode of inheritance, gene mutations and pathophysiology, but pure EDA manifests with defects in ectodermal structures alone.

CASE REPORT

A six-year-old boy (Indian), was brought to the pediatric outpatient department during summer season with complaints of fever on and off since three months, his birth history did not reveal any significant events, he was born of a third degree consanguineous marriage, the child had history of recurrent episode of hyperpyrexia, with heat intolerance, absent sweating and delayed dentition in the past, there was no history of similar complaints among the family members. On clinical examination, the child was febrile, temperature 101°F, other vital parameters were normal, but the child had peculiar facies, characterized by recessed Columella, thick everted lips, with absent eye lashes and eyebrows, dry, wrinkled periorbital skin, (Figure 1) with dry scaly skin all over the body. There were scanty, hypo pigmented hair on the head, malar hypoplasia, flattening of nasal bridge, and low set ears (Figure 2). Oral examination of the child revealed hypodontia with presence of only one pegged shaped tooth in the upper jaw (Figure 3). Systemic examination was normal. His physical, mental and sexual developments were as per his age. Otorhinolaryngological and ophthalmological examination were also normal.

Routine investigations for sepsis screen were sent which did not reveal any positive findings. After thorough evaluation and investigation for a focus of infection, EDA was considered and a skin biopsy was done for histopathological examination which showed absence of skin appendageal structures like hair follicles, eccrine glands, and sebaceous glands (Figure 4). The child was given supportive and symptomatic treatment, and was encouraged to consume adequate liquids to maintain hydration. He was advised to wear cool clothing for thermoregulation along with topical emollients.

The child was referred to a pediatric orthodontist and prosthetics for dental implants to improve his speech, appearance and mastication. Genetic counseling regarding the mode of inheritance and nature of this syndrome was offered to his parents.
Ectodermal dysplasia is a rare, non-progressive, genetic disorder resulting from abnormal morphogenesis of two or more tissues at a time which are derived from the embryonic ectoderm. This disorder is characterized by constellation of findings involving defects of skin, hair, appendageal structures, eccrine and sebaceous glands. It has an incidence of 1 in 1,00,000 births [1]. More than 170 different syndromes have been identified [2], of which X linked recessive anhidrotic dysplasia is the most common type with gene mapping to Xq12-q13 mutation, is expressed in males. The number of female carrier, with no or little signs of the disease exceed more than the affected males. It is mostly reported in whites, with rare incidences in people of other races. Hidrotic ectodermal dysplasia has a predilection for people of French-Canadian origin. Genetic studies regarding the etiology of EDA reveals that the mutations in the ectodysplasin-A and ectodysplasin-A receptor genes are responsible for X-linked and autosomal hypohidrotic ectodermal dysplasia [5]. The key transcription factors and intracellular signaling pathways that have been implicated in the etiology of EDA, include the tumor necrosis factor (TNF)-like/TNVR receptor signaling pathway, which involves ectodysplasin (EDA); the EDR receptor (EDAR), the EDAR-associated death domain (EDARADD); the WNT signaling pathway; the NF-kB signal pathway, which involves the NF-kB essential modulator (NEMO); and the transcription factor p63 [6]. In 2009, 64 genes and 3 chromosomal loci were associated with 62 ectodermal dysplasia [7].

Thurman first reported a patient with ectodermal dysplasia in 1848 [8]. The term ectodermal dysplasia was coined by Weech in 1929 [9]. The first classification system of the ectodermal dysplasia was given by Freire-Maia and Pinheiro in 1982 [10], with additional updates in 1994 and 2001.

Ectodermal dysplasia was later reclassified into the following four functional groups based on the underlying pathophysiologic defect: (1) cell-to-cell communication and signaling, (2) adhesion, (3) development, and (4) other [11]. Similarly, in 2001, Priolo and Laganà reclassified the ectodermal dysplasias into 2 main functional groups: (1) defects in developmental regulation/epithelial-mesenchymal interaction and (2) defects in cytoskeleton maintenance and cell stability [6]. Several ectodermal dysplasia syndromes may manifest in association with mid-facial defects, mainly cleft lip, cleft palate, or both. The three most commonly recognized forms include (1) ectodermal dysplasia, ectrodactyly, and clefting (EEC) syndrome [12]; (2) Hay-Wells syndrome or ankyloblepharon, ectodermal dysplasia, and cleft lip/palate (AEC) syndrome; and (3) Rapp-Hodgkin syndrome, all of which are caused by mutations in the TP63 gene.

Clinical diagnosis is usually made in infancy or childhood when they present with skin, dental, hair, and nail changes, if undiagnosed early, the child may present with complications like seizures (due to hyperthermia), xerophthalmia, conjunctivitis or Xerostomia (due to decreased tear and salivary gland secretions) and dental

DISCUSSION

![Figure 3](image1.png)

Figure 3: Hypodontia with single, pegged shaped tooth in the upper jaw (black arrow).

![Figure 4](image2.png)

Figure 4: Skin histopathology showing hyperkeratosis of the epidermis with loss of rete ridges, adnexal structures in the dermis.
CONCLUSION

We report a rare case of anhidrotic ectodermal dysplasia in a six-year-old boy with recurrent episodes of hyperthermia since birth, thus emphasizing the need for thorough evaluation of fever of unknown origin in the new born period and considering ectodysplasin (EDA) as a differential diagnosis especially in children presenting with defects in ectodermal structures.

Acknowledgements

We are thankful to Dr. Nayeem Shah, Professor department of dermatology and Dr. Zakia Abid Sultana, Professor and head of the department of pathology for helping with the investigations.

Author Contributions

Bismah Gul – Substantial contributions to conception and design, Acquisition of data, Analysis and interpretation of data, Drafting the article, Revising it critically for important intellectual content, Final approval of the version to be published

U. Narayan Reddy – Analysis and interpretation of data, Revising it critically for important intellectual content, Final approval of the version to be published

Swathi Chacham – Analysis and interpretation of data, Revising it critically for important intellectual content, Final approval of the version to be published

S. Ali khurram – Analysis and interpretation of data, Revising it critically for important intellectual content, Final approval of the version to be published

Naila Mazher – Analysis and interpretation of data, Revising it critically for important intellectual content, Final approval of the version to be published

Taha Mustafa – Analysis and interpretation of data, Revising it critically for important intellectual content, Final approval of the version to be published

E. Apoorva – Analysis and interpretation of data, Revising it critically for important intellectual content, Final approval of the version to be published

Guarantor

The corresponding author is the guarantor of submission.

Conflict of Interest

Authors declare no conflict of interest.

Copyright

© 2016 Bismah Gul et al. This article is distributed under the terms of Creative Commons Attribution License which permits unrestricted use, distribution and reproduction in any medium provided the original author(s) and original publisher are properly credited. Please see the copyright policy on the journal website for more information.

REFERENCES

1. Nunn JH, Carter NE, Gillgrass TJ, et al. The interdisciplinary management of hypodontia: background and role of paediatric dentistry. Br Dent J 2003 Mar 8;194(5):245–51.

2. Akhyani M, Kiavash K. Ectodermal dysplasia with alopecia, onychodysplasia, hypohidrosis, keratoderma, abnormal teeth and deafness. Indian J Dermatol Venereol Leprol 2007 Nov-Dec;73(6):409–11.
3. Vieira KA, Teixeira MS, Guirado CG, Gavião MB. Prosthodontic treatment of hypohidrotic ectodermal dysplasia with complete anodontia: case report. Quintessence Int 2007 Jan;38(1):75–80.
4. Yavuz I, Ülkü SZ, Ünlü G, et al. Ectodermal dysplasia: clinical diagnosis. Int Dent Med Disorders 2008;1:1–10.
5. Tarjan I, Gabris K, Rozsa N. Early prosthetic treatment of patients with ectodermal dysplasia: a clinical report. J Prosthet Dent 2005 May;93(5):419–24.
6. Priolo M. Ectodermal dysplasias: an overview and update of clinical and molecular-functional mechanisms. Am J Med Genet A 2009 Sep;149A(9):2003–13.
7. Visinoni AF, Lisboa-Costa T, Pagnan NA, Chautard-Freire-Maia EA. Ectodermal dysplasias: clinical and molecular review. Am J Med Genet A 2009 Sep;149A(9):1980–2002.
8. Thurnam J. Two cases in which the skin, hair and teeth were very imperfectly developed. Med Chir Trans 1848;31:71–82.
9. Weech AA. Hereditary ectodermal dysplasia (congenital ectodermal defect). Am J Dis Child 1929;37:766–90.
10. Pinheiro M, Freire-Maia N. The ectodermal dysplasias. Arch Dermatol 1982 Apr;118(4):215–6.
11. Lamartine J. Towards a new classification of ectodermal dysplasias. Clin Exp Dermatol 2003 Jul;28(4):351–5.
12. Okamura E, Suda N, Baba Y, et al. Dental and maxillofacial characteristics of six Japanese individuals with ectrodactyly-ectodermal dysplasia-clefting syndrome. Cleft Palate Craniofac J 2013 Mar;50(2):192–200.
13. Klineberg I, Cameron A, Hobbirk J, et al. Rehabilitation of children with ectodermal dysplasia. Part 2: an international consensus meeting. Int J Oral Maxillofac Implants 2013 Jul-Aug;28(4):1101–9.
14. Klineberg I, Cameron A, Whittle T, et al. Rehabilitation of children with ectodermal dysplasia. Part 1: an international Delphi study. Int J Oral Maxillofac Implants 2013 Jul-Aug;28(4):1090–100.
Edorium Journals: An introduction

Edorium Journals Team

About Edorium Journals
Edorium Journals is a publisher of high-quality, open access, international scholarly journals covering subjects in basic sciences and clinical specialties and subspecialties.

Invitation for article submission
We sincerely invite you to submit your valuable research for publication to Edorium Journals.

But why should you publish with Edorium Journals?
In less than 10 words - we give you what no one does.

Vision of being the best
We have the vision of making our journals the best and the most authoritative journals in their respective specialties. We are working towards this goal every day of every week of every month of every year.

Exceptional services
We care for you, your work and your time. Our efficient, personalized and courteous services are a testimony to this.

Editorial Review
All manuscripts submitted to Edorium Journals undergo pre-processing review, first editorial review, peer review, second editorial review and finally third editorial review.

Peer Review
All manuscripts submitted to Edorium Journals undergo anonymous, double-blind, external peer review.

Early View version
Early View version of your manuscript will be published in the journal within 72 hours of final acceptance.

Manuscript status
From submission to publication of your article you will get regular updates (minimum six times) about status of your manuscripts directly in your email.

Our Commitment

Six weeks
You will get first decision on your manuscript within six weeks (42 days) of submission. If we fail to honor this by even one day, we will publish your manuscript free of charge.

Four weeks
After we receive page proofs, your manuscript will be published in the journal within four weeks (31 days). If we fail to honor this by even one day, we will publish your manuscript free of charge and refund you the full article publication charges you paid for your manuscript.

Most Favored Author program
Join this program and publish any number of articles free of charge for one to five years.

Favored Author program
One email is all it takes to become our favored author. You will not only get fee waivers but also get information and insights about scholarly publishing.

Institutional Membership program
Join our Institutional Memberships program and help scholars from your institute make their research accessible to all and save thousands of dollars in fees make their research accessible to all.

Our presence
We have some of the best designed publication formats. Our websites are very user friendly and enable you to do your work very easily with no hassle.

Something more...
We request you to have a look at our website to know more about us and our services.

We welcome you to interact with us, share with us, join us and of course publish with us.