Multi-objective casting production scheduling problem by a neighborhood structure enhanced discrete NSGA-II: an application from real-world workshop

Weihua Tan 1 · Xiaofang Yuan 1 · Yuhui Yang 1 · Lianghong Wu 2

Abstract

Casting production scheduling problem has attracted increasing research attention in recent years to facilitate the profits, efficiency, and environment issues of casting industry. Casting is often characterized by the properties of intensive energy consumption and complex process routes, which motivate the in-depth investigation on construction of practical multi-objective scheduling models and development of effective algorithms. In this paper, for the first time, the multi-objective casting production scheduling problem (MOCPSP) is constructed to simultaneously minimize objectives of defective rate, makespan, and total energy consumption. Moreover, a neighborhood structure enhanced discrete NSGA-II (N-NSGA-II) is designed to better cope with the proposed MOCPSP. In the N-NSGA-II, the advantage of selection mechanism of NSGA-II is fully utilized for selecting non-dominate solution, three neighborhood structures are elaborately designed to strengthen the ability of the local search, and a novel solution generating approach is proposed to increase the diversity of solutions for global search. Finally, a real-world case is illustrated to evaluate the performance of the N-NSGA-II. Computational results show that the proposed N-NSGA-II obtains a wider range of non-dominated solutions with better quality compared to other well-known multi-objective algorithms.

Keywords Multi-objective casting production scheduling problem · Defective rate · Variable processing speed · Non-dominated sorting genetic algorithm · Neighborhood structure

1 Introduction

Casting is one of machine manufacture industry foundation crafts, which is closely tied with the development of equipment manufacturing industries like automobile, machine tool, aviation, aerospace, and national defense. In the modern casting industry, multi-variety and small batch production mode is becoming popular and necessary (Chen et al. 2020) in order to meet the growing demand for customization products. Meanwhile, due to the energy-intensive (Jiang et al. 2018) nature of casting industry, efficient and green casting manufacturing earns an increasing concern for the last decades (Peng and Xu 2014). As we known, efficient scheduling can serves as a powerful tool to improve the production cost, manufacturing cycle and environment issue (Qin et al. 2019). Therefore, the casting production scheduling problem (CPSP) under the shop floor environment for practical application attracts increasing attention from both the industry and the research community.

Two main specific attributes of casting process need to be considered when dealing with CPSP. Firstly, casting processing is a typical energy-intensive and high-pollution manufacturing (Tang et al. 2019). Some operations such as melting and thermal treatments will involve great amount of time, energy consumption and pollute emission. Therefore, multiobjectives need to be simultaneously addressed in CPSP. Secondly, the casting process is extremely complex (Qin et al. 2019). On the one hand, the casting products generally have long process routes and the routes are various for different casting products in the mixed production lines. On the other hand, a large number of multi-functional machines are involved in the casting workshops. These char-
acteristics lead to enormous feasible scheduling schemes of CPSP, necessitating the development of powerful optimization algorithms.

The CPSP can be viewed as the extension of flexible job-shop scheduling problem (FJSP) Qin et al. (2019). In pioneer works, objectives of makespan and total energy consumption are widely considered in FJSP Turkyilmaz et al. (2020). Mokhtari and Hasani (2017) develop joint scheduling of the production and the maintenance operation in the flexible job shop environment with the objectives to minimize the makespan, total energy consumption and maximize the total availability of system. Wu et al. (2019) consider deterioration effect into FJSP, in which the actual processing time of the operation is variable under the influence of the deterioration effect, and the FJSP-DEEC model is proposed to optimize the makespan and the total energy consumption. Moreover, Dai et al. (2019) address an energy-efficient flexible job shop scheduling problem with transportation constraint and formulate a multi-objective optimization model to minimize the objectives of makespan and the total energy consumption. As demonstrated above, the performance of the shop floor has been significantly promoted by optimizing makespan and the total energy consumption. Besides, defective rate is another vital issue for casting production. In the practical workshop, the performance of machine tool deteriorates gradually with the production process (Xu and Cao 2019), resulting in the increase in defective rate. Due to the attributes of casting process such as long operation-chain, low defective rate of each operation in the route is stringent required. Moreover, because of the energy-intensive property of casting, wide-employed maintenance strategies (Tambe et al. 2013; Rezaeimalek et al. 2018) which require frequent shutting down of machines are costly and insufficient for controlling the defective rate of casting products. Unfortunately, to the best of our knowledge, no existing research has addressed the objective of defective rate in CPSP. To this end, a multi-objective casting production scheduling problem (MOCPSP) is constructed considering the objectives of defective rate, makespan, and total energy consumption simultaneously in this paper.

The proposed MOCPSP is an NP-hard problem. With the nature of extreme complexity, exact approach is unable to find optimal solutions in a reasonable time when the problem size is large (Fattahi et al. 2007). Various multi-objective heuristic techniques have been proposed in the last decades. Recent researches (Chaudhry and Khan 2016; Gen and Lin 2014) employ different hybrid algorithms to solve multi-objective FJSP by combining some of those heuristic techniques and achieved remarkable results. Shen et al. (2017) develop a modified multi-objective evolutionary algorithm to solve the MOFJSP. Zhang et al. (2009) propose a hybrid optimization algorithm for MOFJSP combining a particle swarm optimization algorithm and a Tabu search algorithm. Li et al. (2010, 2011) develop two hybrid algorithms by integrating Tabu search algorithm with variable neighborhood search strategy. Mosleh and Mahnam (2011) report a hybrid particle swarm optimization with a special designed local search strategy. Yuan and Xu (2015) propose new memetic algorithms by incorporating a novel local search algorithm into the NSGA-II. Shao et al. (2013) develop a hybrid discrete particle swarm optimization combined with simulated annealing algorithm to solve the MOFJSP with objectives of minimizing makespan, maximal machine workload and total workload of machines. To better cope with the proposed MOCPSP, an efficient hybrid heuristic algorithm with enhanced performance is designed in this paper.

The main contributions of this paper can be outlined as follows:

(i) To narrow the gap between theoretical research and real-world casting production scheduling application, a novel MOCPSP model is developed considering defective rate, makespan and total energy consumption simultaneously, which is the first study in this area.

(ii) Facing the extreme complexity of the proposed MOCPSP, a neighborhood structure enhanced discrete NSGA-II (N-NSGA-II) is developed. In the N-NSGA-II, three neighborhood structures are elaborated designed to strengthen the ability of the local search and a novel solution generating approach is proposed to increase the diversity of solution for global search.

The remainder of this paper is organized as follows. Section 2 describes the MOCPSP in detail and gives the formulation of the MOCPSP. Section 3 illustrates the proposed N-NSGA-II algorithm for solving the MOCPSP. Section 4 presents the computational results and analysis of a real-world casting case by the N-NSGA-II and other well-known algorithms. The conclusion and future work are presented in Sect. 5.

2 Description and formulation of the MOCPSP

In this section, the overall description of the proposed MOCPSP is given firstly. After that, the models of the three objectives are formulated, respectively. The formulation of the MOCPSP model is presented at last.

2.1 Problem description

In the MOCPSP, the objectives of defective rate, makespan, and total energy consumption are addressed as the indicators of production quality, efficiency, and environmental issues. In most practical workshop, the processing speed of machine is changeable (Atan and Ak turk 2008). For example, the processing speed of computer numerically controlled

 Springer
manufacturing machine for an operation is adjusted by controlling cutting speed or the feed rate (Akturk and Ilhan 2011). Pioneer researches (Kayan and Akturk 2005; Lue et al. 2019) have proved that considering variable processing speed into production scheduling is practical for resource-saving and time-efficient attempt. To address real-world casting scenarios, the impact of variable processing speed for each operation is non-negligible. Research on scheduling problem with variable processing speed can be classified into two categories (Luo et al. 2019): (1) continuous processing speed varying within a limited range and (2) discrete processing speed selecting from a predefined speed set. The discrete processing speed is suitable when considering practical applications (Luo et al. 2019) and is adapted in this paper.

Thus, the MOCPSp consists of three sub-problems: routing problem, sequencing problem and speed determination problem. Former two are origin from classical FJSP (Xia and Wu 2005). Routing problem is to assign each operation to a machine out of a set of alternative machines. Sequencing problem is to sequence operation the assigned operations on all machines under the constraint. Speed determination problem is to select a processing speed of the assigned machine for each operation.

Therefore, the MOCPSp can be defined as follows:

There is a set of n jobs J = {J1, J2, …, Jn} and a set of m machines M = {M1, M2, …, Mm}, and Mk (k ∈ {1, 2, …, m}) has pk alternative speed ratios α = {αk1, αk2, …, αkpk} (the speed ratios increase gradually with the growth of index). Ji (i ∈ {1, 2, …, n}) contains the number of si operations, and each operation of Ji follows the precedence relation. Operation Oij needs to be processed on one machine out of an alternative machine set Sij (Sij ⊆ {1, 2, …, M}) containing at least one machine. And at least one operation can be processed on more than one machine.

Notations of the proposed MOCPSp are listed in Table 1.

To simplify and clarify the proposed problem, some assumptions are predefined.

- All machines and raw materials are available at time 0;
- No setup operation for machine happens during production;
- Each operation is processed without interruption;
- The switch between processing mode and idle mode requires no time;
- Conversion time is negligible.

2.2 Models of the three objectives

The models of defective rate, makespan and total energy consumption are described as follows.

2.2.1 The model of defective rate

In general, the defective rate varies with the machine deterioration and production rate (Ouaret et al. 2018). When the machine shifts to the ‘out-of-control’ state (Khouja and Mehrez 1994), some percentages of the items produced are defective and a faster production rate deteriorates the quality of the process (Hajiej et al. 2018; Marchi et al. 2019). Since casting production scheduling has minor production cycle, the degree of machine deterioration can be viewed as unchanged and the concept of production rate can be described as the processing speed of operation under the shop floor environment. In this regard, the defective rate is merely the function of processing speed in the addressed situation.

Defective rate of an operation is the possibility of this operation processed with defect. In the addressed casting

Table 1 Notations of the proposed MOCPSp

Notation	Description
n	the number of job
si	the number of the operations for job i
m	the number of machine
i, i′	the index for job, i, i′ = 1, 2, …, n
j, j′	the index for operation, j, j′ = 1, 2, …, si
k	the index for machine, k = 1, 2, …, m
Oij	the ith operation of job j
αij	the cijth speed ratio of Mk, z ∈ {1, 2, …, pk}
trefij	the reference processing time of Oij processed on Mk corresponding to αij
rij,jk	the processing time of Oij processed on Mk
P Ej	the processing energy consumption for Oij
cij	the completion time of Oij
Xij,k	if the operation Oij is processed on Mk, Xij,k =1; otherwise, Xij,k =0
Yij,j′,j″	if the operation Oij is the predecessor of Oij,j′, Yij,j′,j″ =1; if the operation Oij is the successor of Oij,j′, Yij,j′,j″ =-1
Zij,k	the speed ratio for Oij on Mk, Zij,k ∈ {1, 2, …, pk}
dRj	the mean defective rate of n jobs
Cmax	the completion time of all jobs
TEC	the total energy consumption
shop floor scenario, a product is not defective only when all operations of it processed without defects. Therefore, the DR can be calculated by Eq. (1).

\[DR_i = 1 - \prod_{j=1}^{n_j} \left(1 - \sum_{k=1}^{m} X_{ij,k} \frac{d r_{ij,k}}{\alpha_{Z_{ij,k}}} \right) \] (1)

Defective rate increases with the acceleration of processing speed. The idea in Liu et al. (2017) is adapted, and the defective rate is assumed to be a linear function of processing speed. If \(O_{ij} \) is processed on \(M_k \), then

\[\frac{d r_{ij,k}}{\alpha_{Z_{ij,k}}} = \frac{d r_k}{\alpha_i^k} \] (2)

With Eqs. (1) and (2), the mean defective rate \(DR \) of \(n \) jobs is formulated as Eq. (3).

\[\frac{\sum_{i=1}^{n} \left[1 - \prod_{j=1}^{n_j} \left(1 - \sum_{k=1}^{m} X_{ij,k} \frac{d r_k}{\alpha_i} \right) \right]}{n} \] (3)

2.2.2 The model of makespan

The objective of makespan (\(C_{\text{max}} \)) is modeled as the matter of routine (Lei et al. 2019), and the formulation is shown as Eq. (4).

\[C_{\text{max}} = \max \{ C_{ij} \} \] (4)

The processing time of \(O_{ij} \) processed on \(M_k \) is calculated by Eq. (5).

\[t_{ij,k} = \frac{t_{ij,k} \text{ refer}}{Z_{ij,k}} \] (5)

2.2.3 The total energy consumption model

For an operation, it is commonly assumed that higher processing speed will reduce the processing time while consuming more energy (Che et al. 2015). Machines are generally in two main modes once turning on: processing mode and idle mode. When the machine is processing, it is in active mode and the output power is referred as the processing power. When the machine is in idle time between two processing operations, low output power is needed to hold the machine which is referred as idle power. In this paper, processing power is increased with the acceleration of processing speed. The value of processing power is predefined corresponding to the discrete processing speed. If \(O_{ij} \) is processed on \(M_k \), the processing energy consumption is calculated by Eq. (6).

\[\text{EP}_{ij} = P_k \frac{t_{ij,k} \text{ refer}}{Z_{ij,k}} \] (6)

Idle power is much lower than processing power and is regarded to be constant for a machine. To simplify the problem, it is assumed that all the machines keep turning on before all jobs are finished.

Therefore, the total energy consumption (TEC) is formulated as Eq. (7).

\[\text{TEC} = \sum_{k=1}^{m} \sum_{i=1}^{n} \sum_{j=1}^{n_j} P_k \frac{t_{ij,k} \text{ refer}}{Z_{ij,k}} \] (7)

2.3 The model of MOCPS

In the MOCPS, the defective rate, the makespan and the total energy consumption are optimized simultaneously, shown as Eqs. (8)~(11).

\[f = \min (\overline{DR}, C_{\text{max}}, \text{TEC}) \] (8)

s.t.

\[\sum_{k=1}^{m} X_{ij,k} = 1, \forall i, j, k \leq S_{ij} \] (9)

\[C_{ij} - C_{i(j-1)} \geq \frac{t_{ij,k} \text{ refer}}{Z_{ij,k}} X_{ij,k}, j = 1, 2, ..., s_i \] (10)

\[\times \left(C_{i'j'} - C_{ij} - \frac{t_{ij,k} \text{ refer}}{Z_{ij,k}} \right) \geq X_{ij,k} X_{i'j',k} \left(Y_{ij,i'j'} + 1 \right) \]

\[+ \left(C_{ij} - C_{i'j'} - \frac{t_{ij,k} \text{ refer}}{Z_{ij,k}} \right) X_{ij,k} X_{i'j',k} \left(1 - Y_{ij,i'j'} \right) \]

\[\geq 0, \forall i, j, i', j', k \] (11)

Equation (9) ensures that one operation should only be processed once by one of the available machines. Equation (10) guarantees the predefined precedence relation of operations. Equation (11) represents that a machine can only process one operation at a time.
3 The proposed N-NSGA-II for the MOCPSP

NSGA-II (Deb et al. 2002) is one of the most popular multi-objective optimizers. The main features of NSGA-II are summed as follows:

(1) computational complexity is reduced by a faster non-dominated sorting algorithm.

(2) solution diversity is improved by utilizing crowding distant to evaluate the density of non-dominated solutions.

In the light of those advantages, NSGA-II has been successfully applied to tackle the continuous optimization problems (Vilcot and Billaut 2008; Asefi et al. 2014; Soto et al. 2020). However, the MOCPSP is a discrete combinatorial optimization problem with extreme complexity, whose solution space is discontinuous and enormous. Utterly random local search mechanism of NSGA-II is time-costly and has poor convergence. Therefore, in this paper the improvements of the proposed N-NSGA-II are mainly presented in the two aspects: enhanced local search by neighborhood structures and novel solution generating approach. The detail of proposed N-NSGA-II for MOCPSP is successively described in the following subsections.

3.1 Coding and decoding methods

In N-NSGA-II, three vectors are included corresponding to three decision variables: operation sequencing vector, machine assignment vector and speed ratio seed vector. They are represented by X_{OS}, X_{MA} and X_{SRS}, the dimensions of which equal to the number of all operation to be processed.

The X_{OS} is a permutation of the number of all operations. Note that the operations belong to the same job should order in ascending to avoid infeasible solution (Cheng et al. 1996). The gene in X_{MA} is the machine number. The machine for the operation should be selected from the alternative set. The gene in X_{SRS} is a random number range from 0 to 1. The speed ratio seed of O_{ij} is noted as $ν_{ij}$. The speed ratio for O_{ij} on M_k is calculated by Eq.(12).

$$Z_{ij,k} = ν_{ij} \otimes p_k, \quad ν_{ij} \in (0, 1]$$ (12)

where \otimes represents the ceil operator.

The “active” decoding is applied in this paper, the procedure of which is described concretely in Cheng et al. (1996).

3.2 Initialization

For X_{OS}, the sequence of all genes is randomly initialized. For X_{MA}, Zhang et al. (2011) developed an effective initialization method to assign operation to the suitable machine among which the two initial strategies named global selection (GS) and local selection (LS) are applied in this paper to initialize X_{MA}. The proportion of GS is referred as r_{GS}, and the proportion of LS is equal to $1 - r_{GS}$. For X_{SRS}, the solution set is equally divided into three portions. The first

3 Table 2 The speed ratio, power and reference defective rate information of the 4*4 instance

Machine	Discrete speed ratio/processing power (kW)	Idle power (kW)	Reference defective rate
M_1	1/2.16 1.2/3.43 1.3/4.11 1.4/4.56	0.18	0.013
M_2	1/1.68 1.4/3.09 1.6/3.73	0.19	0.002
M_3	1/2.54 1.3/4.21 1.45/5.03 1.6/6.61	0.22	0.018
M_4	1/1.97 1.3/2.65 1.6/3.52	0.23	0.030

3 Table 3 The reference processing time information of the 4*4 instance

Job	operation	Reference processing time
		M1 M2 M3 M4
Job1	O_{11}	5 4 9 –
	O_{12}	11 20 – 14
	O_{13}	8 8 – –
Job2	O_{21}	14 22 16 –
	O_{22}	– 17 17 19
	O_{23}	20 – 15 –
	O_{24}	10 – – 10
Job3	O_{31}	8 12 – 10
	O_{32}	– – 6 6
	O_{33}	19 16 – 16
Job4	O_{41}	– 18 – 16
	O_{42}	30 30 25 –

To better demonstrate the coding and decoding methods, a case with 4 jobs and 4 machines (4*4) is taken, for instance. The speed ratio, power and reference defective rate information are shown in Table 2, and the reference processing time information is shown in Table 3. The three-vector coding is illustrated in Fig. 1.

Take O_{22} as an example. The allocating sequence of O_{22} is 7^{th}. The machine for O_{22} is M_2, which has 4 discrete speed ratios. So $Z_{22,2}$ is calculated by Eq.(12) and value is 2, which means the 2^{nd} speed ratio of M_2 is selected for O_{22}. And the defective rate, the processing time and processing power for O_{22} are obtained by Eq.(2), Eq.(5) and Eq.(6), respectively.

The Gantt chart of the illustrated coding is shown in Fig. 2.
portion is initialized with 1 for all genes, the second portion is initialized with 0 for all genes, and the rest is randomly initialized for all genes.

3.3 Enhanced local search by neighborhood structures

Neighborhood structure embedded with the knowledge of MOCPSP serves as a powerful tool for local search. Let $N_S_k(k \in \{1, 2, ..., k_{max}\})$ to be one of the set of the k_{max} predefined neighborhood structures. $N_S_k(s)$ is the set of neighbor solutions of s in the N_S_k.

In this paper, three neighborhood structures are designed corresponding to the three decision variables, denoted as NS_1, NS_2 and NS_3. And the three decision variables can be divided into two categories: operation movements (decision variables X and Y) and speed ratio seed (decision variable Z) mutation.

\[
\begin{align*}
\left[0, S^L(O_{i(j+1)})\right] \cap \left[C^E(U), S^L(V)\right] > t_{ref_{ij, Ma}}^{s_i} & \quad, \quad j = 1 \\
\left[C^E(O_{i(i-1)}), C_{max}\right] \cap \left[C^E(U), S^L(V)\right] > t_{ref_{ij, Ma}}^{s_i} & \quad, \quad j = s_i \\
\left[C^E(O_{i(i-1)}), S^L(O_{i(i+1)})\right] \cap \left[C^E(U), S^L(V)\right] > t_{ref_{ij, Ma}}^{s_i} & \quad, \quad j \neq s_i \\
\end{align*}
\]

Operation movements are based on the concept of critical path, critical operation and critical operation block Zhang et al. (2019). Operation movements include two situations: cross-machine movement and same-machine movement, corresponding to NS_1 and NS_2. Illustrations of NS_1 and NS_2 are shown in Fig. 3 and Fig. 4, respectively. O_{ij} is a critical operation from a critical operation block containing at least two operations. $O_{i(j-1)}$ and $O_{i(j+1)}$ are the predecessor and successor operations of the same job adjacent to O_{ij}, respectively. S^L represents the latest start time, and C^E represents the earliest completion time of an operation. Movement of O_{ij} is limited by $O_{i(j-1)}$ and $O_{i(j+1)}$, whose range is $[C^E(O_{i(j+1)}), S^L(O_{i(j+1)})]$.

NS_1: cross-machine movement for operation is illustrated in Fig. 3. In MOCPSP, the number of machine should be more than one. Assume U and V are two consecutive operations on machine Ma (U is processed before V) and O_{ij} is not processed on Ma. If Ma is one of the alternative machines of O_{ij} and Eq. (13) is satisfied, O_{ij} is moved to Ma. If no such movement exists, O_{ij} is moved out to another random machine in the set of alternative machines.

\[
\begin{align*}
\left[0, S^L(O_{i(j+1)})\right] \cap \left[C^E(U), S^L(V)\right] > t_{ref_{ij, Ma}}^{s_i} & \quad, \quad j = 1 \\
\left[C^E(O_{i(i-1)}), C_{max}\right] \cap \left[C^E(U), S^L(V)\right] > t_{ref_{ij, Ma}}^{s_i} & \quad, \quad j = s_i \\
\left[C^E(O_{i(i-1)}), S^L(O_{i(i+1)})\right] \cap \left[C^E(U), S^L(V)\right] > t_{ref_{ij, Ma}}^{s_i} & \quad, \quad j \neq s_i \\
\end{align*}
\]

NS_2: same-machine movement for operation is illustrated in Fig. 4. The purpose of NS_2 is to move critical operation O_{ij} out the critical operation block on the same machine to
shorten the length of critical operation block. There are three situations:

1) if O_{ij} is the internal operation of the critical operation block, O_{ij} would be moved before the first operation or after the last operation of the critical operation block within the range of $[C^E(O_{i(j-1)}), SL(O_{i(j+1)})]$, as shown in Fig. 4a.

2) if O_{ij} is the start operation of the critical operation block, O_{ij} would be moved backwards within the range of $[C^E(O_{i(j-1)}), SL(O_{i(j+1)})]$, as shown in Fig. 4b.

3) if O_{ij} is the end operation of the critical operation block, O_{ij} would be moved forwards within the range of $[C^E(O_{i(j-1)}), SL(O_{i(j+1)})]$, as shown in Fig. 4c.

Speed ratio seed (decision variable Z) is adjusted by mutation operator. The detail is given as follows.

NS3: two parameters are defined: mutation probability (pm) and step size (σ). pm determines the number of operation to mutate in operation string. Assume that one of the solutions is to mutate. Select another solution S_2 from the solution set as reference solution and the speed ratio seed of O_{ij} in $\beta + 1$ iteration is updated by Eq. (14).

$$v_{ij}^{\beta+1} = (v_{ij}^{\beta,ref} - v_{ij}^{\beta}) \times \sigma \times \epsilon + v_{ij}^{\beta} \tag{14}$$

where $v_{ij}^{\beta,ref}$ is the speed ratio seed of O_{ij} of the reference solution, ϵ is a random number range from 0 to 1.

3.4 Elitism strategy

To reserve more optimal solutions, the elitism strategy is adapted in the N-NSGA-II. The reservation takes place after local search. In the first iteration, the first Pareto front solutions are viewed as elites and reserved. In the following iterations, the first Pareto front solutions found in the current iteration are combined with the former elites, and solutions in the new first Pareto front are viewed as elites and reserved.

3.5 Novel solution generating approach

To improve the diversity of solution, a novel solution generating approach is designed in N-NSGA-II. The illustration of the proposed solution generating approach is shown in Fig. 5.

Step1-Inherit the genes from solution set. For a new solution, the gene of each operation is inherited from the gene of the same operation of a solution randomly selected from solution set. As shown in Fig. 5, $O_{11}, O_{12}, O_{21}, O_{22}$ of the new solution are inherited from S_2, S_3, S_3, S_2, respectively. Repeat the procedure until generating $N_{pop_{SG}}$ new solutions.

Step2-Repair the X_{OS} vector. When there is the repeated number in X_{OS} vector, as shown in Fig. 5, the repair is needed to avoid infeasible solution. Repair follows the rules: (1) The operations with the same X_{OS} gene are random sorted; (2) the operation with larger X_{OS} gene comes after the smaller one. The procedure is described as follows:

(1) Sort X_{OS} of all operations with by ascending.

(2) For the operations with the same X_{OS} gene, switch their positions randomly.

(3) Number all operations successively with their positions, the first position is numbered 1.

(4) Update the X_{OS} with the corresponding operation number.

Step3 Combination and selection. Combine the $N_{pop_{SG}}$ new solutions with the initial solution set to form a new solution set and utilize the selection mechanism of NSGA-II to select N_{pop} optimal solutions for the next iteration.

3.6 Stopping criterion

The algorithm terminates after a certain number of iterations. This number is predefine and referred as MaxIt.
3.7 The procedure of N-NSGA-II

The flowchart of the proposed N-NSGA-II is illustrated in Fig. 6. The overall procedure is described as follows.

Input parameters: MaxIt, \(r_{GS} \), \(N_{pop} \), \(N_{popL} \), \(N_{popSG} \), \(p_m \), \(\sigma \), \(\tau \)

Step1. Initialization: Generate \(N_{pop} \) initial solutions by initialization approach in 3.2.

Step2. Stopping criterion: Determine whether the stopping criterion is met. If not, go to step3. If so, output the Elitism.

Step3. Local search by neighborhood structures: Select the \(N_{popL}(N_{popL} < N_{pop}) \) optimal solutions by the selection mechanism of NSGA-II. Perform the local search with the designed neighborhood structures for the optimal solutions. For solution \(S_i \), the local search procedures are:

- **NS1**: cross-machine movement for operation
- **NS2**: same-machine movement for operation
- **NS3**: mutation of processing speed seed

Update Elitism and select optimal solutions
Step 3-1. Generate a random number \(r \) ranging from 0 to 1. If \(r \) is greater than the search constant \(\tau \), flag=1, otherwise flag=0. The \(FRONT_i \) is used to temporally reserve first Pareto front solutions found for \(S_i \).

Step 3-2. Find all neighbor solutions of \(S_i \) in \(NS_1 \) and output the solution set \(NS_1(S_i) \) to Step 3-3, as shown in Fig. 7a.

Step 3-3. If flag equals 1, the procedure of local search by \(NS_2 \) and \(NS_3 \) successively is illustrated in Fig. 7b: (1) find all neighbor solutions of each solution from \(NS_1(S_i) \) in \(NS_2 \), which make up Collection1, (2) find all neighbor solutions of each solution from Collection1 in \(NS_3 \), which make up the Collection2, and reserve the first Pareto front solutions of Collection1. (2) find all neighbor solutions of each solution from Collection1 to \(FRONT_i \), For the circumstance that flag equals 0, switch the sequence of \(NS_2 \) and \(NS_3 \) and follow the same procedure as the circumstance that flag equals to 1.

Step 3-4. If \(S_i \) is not a member of \(FRONT_i \), select one solution from \(FRONT_i \) and name it as \(S_i \), return to Step 3-2. Otherwise, output \(FRONT_i \).

Step 4. Elitism strategy: Combine all \(FRONT_i \)'s as well as the initial solution of this iteration with Elitism and perform the selection of NSGA-II Deb et al. (2002). Update the Elitism with the first Pareto front solutions of the combination and output the \(N_{pop} \) optimal solutions to step 5.

Step 5. Novel solution generating approach: Perform novel solution generating approach in 3.5, output \(N_{pop} \) solutions and return to step 2.

4 Computational experiments and discussions

In this section, a real-world casting production scheduling case is investigated. Four performance metrics for measuring the Pareto front obtained by algorithms are employed. Then, the effectiveness of the neighborhood structures and the novel solution generating approach are proved. At last, the proposed N-NSGA-II is compared with two well-known multi-objective optimization algorithms to evaluate the performance of N-NSGA-II on the MOCPSP. All algorithms are coded in Matlab R2018b and run on a computer with Intel Core i7(3.0GHz), 8 GB RAM under Windows 10 operation environment.

4.1 Case description

To consider MOCSPS in the real-world casting workshop, a case with 20 jobs and 15 machines is presented. In this case, 15 common operations are addressed and the machines for each operation are listed in Table 4. The process route of each job and the corresponding reference processing time information are shown in Table 5. The speed ratio, power and reference defective rate information of machines are listed in Table 6.

4.2 Performance metrics

To give quantitative evaluations on the performance of multi-objective optimization algorithms, four metrics are employed including generational distance (GD), contribution rate (CR), inverse generational distance (IGD) and set coverage (c-metric). The definitions of the four metrics are listed as follows.

1) Convergence metrics: GD Zitzler et al. (2000)

\[
GD = \sqrt{\sum_{i=1}^{\lceil |\Omega| \rceil} D_i^2(\Omega, \Omega^*)} / |\Omega| \tag{15}
\]

where \(\Omega^* \) is the true first Pareto front (TFPF) and \(\Omega \) is the first Pareto front found by an algorithm. \(D_i(\Omega, \Omega^*) \) is the shortest Euclidean distance between the solution \(i \) in \(\Omega \) and the solutions in \(\Omega^* \).

2) Quality metric: CR Piroozfard et al. (2018)

\[
CR = \frac{|\{x | x \in \Omega \land x \in \Omega^*\}|}{|\Omega^*|} \times 100\% \tag{16}
\]

3) Comprehensive metric: IGD Zitzler and Thiele (1999)

\[
IGD = \frac{\sum_{i=1}^{\lceil \Omega^* \rceil} D_i(\Omega^*, \Omega)}{|\Omega^*|} \tag{17}
\]

where \(D_i(\Omega^*, \Omega) \) is the shortest Euclidean distance between the solution \(i \) in \(\Omega^* \) and the solutions in \(\Omega \).

4) Set coverage metric: c-metric Zitzler and Thiele (1999)

\[
C(P, Q) = \frac{|\{q | q \in Q : \exists p \in P, p > q\}|}{Q} \tag{18}
\]

where \(P \) and \(Q \) are the first Pareto fronts obtained by two algorithms, and \(p > q \) represents the \(q \) is dominated by \(p \).

The smaller value of GD and IGD while the bigger value of CR represents good performance. And the bigger value of \(C(P, Q) \) than \(C(Q, P) \) represents the \(P \) is preferable. Since the TFPF of the case is unknown, the first Pareto front of the solutions found by all employed algorithms is viewed as the TFPF in this paper.

4.3 Effectiveness of the neighborhood structures and the novel solution generating approach

To verify the effectiveness of the proposed neighborhood structures (NS) and the novel solution generating approach
4.3.1 Discussion on the effectiveness of the neighborhood structures

To discuss the effectiveness of the neighborhood structures, A and B can be used as a group of comparison while C and D can be used as the other. It can be seen from Tables 8 and 9 that A is superior to B, while C is superior to D on all the metrics. As shown in Table 8, both A and C have better value than their comparisons on the metrics of GD, CR and IGD. Moreover, as shown in Table 9, \(c(A, B) > c(B, A) \) and \(c(C, D) > c(D, C) \). The notable differences indicate that the enhanced local search by proposed neighborhood structures is effective for improving the performance of N-NSGA-II.

4.3.2 Discussion on the effectiveness of the novel solution generating approach

To discuss the effectiveness of the novel solution generating approach, A and C can be used as a group of comparison while B and D can be used as the other. It can be seen from Tables 8 and 9 that A is superior to D, while B is superior to D on all the metrics. A similar analysis as 4.3.1 can be made, and it is shown that the novel solution generating approach has positive impact on the performance of N-NSGA-II.

4.4 Comparisons of N-NSGA-II with other algorithms

To further demonstrate the overall performance of the N-NSGA-II, the SPEA-II Zitzler and Thiele (1999) and NSGA-III Deb and Jain (2014) are employed to compare with the N-NSGA-II. The parameter settings of SPEA-II and NSGA-III are listed in Table 10, while the parameter setting of N-NSGA-II is the same as listed in Table 7. The computational process is the same as that in 4.3.

The Pareto fronts obtained by N-NSGA-II, SPEA-II and NSGA-III under different perspectives are shown in Fig. 8. It is clear that the N-NSGA-II approaches closer to the TFPF than the other two algorithms, which proves the superiority of the N-NSGA-II. Figure 8a shows a 3D view with three objectives represented by defective rate, makespan and total energy consumption, respectively. It can be observed from Fig. 8b that the defective rate is conflicted to the makespan. Moreover, defective rate of the solutions obtained by N-NSGA-II

![Table 4 Operations and alternative machines of the real-world casting case](image)

Operation	O1	O2	O3	O4	O5
Modeling	O6	O7	O8	O9	O10
[M1, M2]	[M3, M4, M5]	[M6]	[M7, M8, M9]		
Semi-extractive turning	O11	O12	O13	O14	O15
[M8, M9]	[M10, M11]	[M12, M13]	[M14]		
Extractive milling	M11	M12	M13		
Weld repairing	[M8, M9, M14]	[M12, M13]	[M14]		

(novel SGA), the N-NSGA-II is compared with its variants. The parameter settings of the algorithms are listed in Table 7. All the algorithms run 20 times independently, and the elapsed time is approximately 500s (CPU time) per time with the parameter setting. The computational results on metrics of GD, CR and IGD are shown in Table 8 and on \(c \)-metric are shown in Table 9. A, B, C and D denote the N-NSGA-II, NSGA-II+Novel SGA, NSGA-II+NS and NSGA-II, respectively, in Tables 8 and 9.
Table 5 Process route and the corresponding reference processing time information

| Process route of each job and the reference processing time on the alternative machines |
|-----------------------------------|---|---|---|---|---|---|---|---|---|---|---|---|
| Job1 | O1 | O2 | O3 | O4 | O5 | O9 | O13 | O6 |
| [46,35] | 6 | 16 | 33 | [29,34,11] | [34,16,25,13,26] | [26,16,27,13] | [30,15] |
| Job2 | O1 | O2 | O3 | O4 | O5 | O9 | O13 | O6 |
| [55,27] | 8 | 26,18 | 41 | [27,13,27,13] | [33,37,15] | [37,15] | [39,15] |
| Job3 | O1 | O2 | O3 | O4 | O5 | O9 | O13 | O12 | O10 |
| [58,34] | 5 | 23,15 | 36 | [34,16,29,12] | [26,18,23,12,28] | 13 | [24,18] |
| Job4 | O1 | O2 | O3 | O4 | O5 | O9 | O13 | O10 | O11 |
| [46,26] | 4 | 18,12 | 30 | [30,16,27,18,35] | [32,34,14] | [27,15] | 15 |
| Job5 | O1 | O2 | O3 | O4 | O5 | O9 | O13 | O6 |
| [37,27] | 8 | 19,16 | 30 | [27,27,17] | [43,11,26,11] | [30,18,29,17,30] | [34,18] |
| Job6 | O1 | O2 | O3 | O4 | O5 | O9 | O13 | O10 | O15 |
| [39,28] | 7 | 27,13 | 45 | [26,16,25,14,34] | [30,30,11] | [38,11] | [41,15] |
| Job7 | O1 | O2 | O3 | O4 | O5 | O9 | O13 | O5 |
| [55,41] | 4 | 18,11 | 31 | [38,17,35,16,35] | [38,17,32,15] | [22,15] | [28,35,15] |
| Job8 | O1 | O2 | O3 | O4 | O5 | O9 | O13 | O6 |
| [45,17] | 7 | 18,11 | 37 | [27,39,12] | [32,19,28,18,34] | [37,19] | [42,11,32,14] |
| O10 | O7 | O12 | O14 | O11 | O8 | O15 |
| [29,14] | 14 | [28,15] | 17 | 19 | 10 |
Job	O1	O2	O3	O4	O5	O13	O9	O6
9					[63,43]			
					4			
					[23,19]			
					32			
					[33,40,14]			
					[36,20,26,13]			
					[43,16,37,15,33]			
					[27,19]			
10					[33,11]			
					[31,16]			
					[42,13]			
					13			
					16			
					20			
					13			
11					[43,29]			
					4			
					[22,16]			
					32			
					[42,13,30,14]			
					[28,42,13]			
					[43,18]			
					[26,18,29,15,26]			
12					[35,16]			
					13			
					[21,16]			
					[27,13]			
					14			
					12			
					18			
13					[44,45]			
					4			
					[30,16]			
					44			
					[36,17,29,12]			
					[26,38,12]			
					11			
					[44,20]			
14					[27,19]			
					[30,11]			
					16			
					[40,12,22,18,30]			
					[24,16]			
					15			
					16			
15					[63,26]			
					7			
					[26,20]			
					43			
					[39,11,36,14,35]			
					[30,37,15]			
					[44,16]			
					15			
16					[41,13,31,11]			
					[36,15]			
					[37,18]			
					16			
					17			
					[30,15]			
					7			
17					[56,45]			
					7			
					[19,16]			
					37			
					11			
					[36,11,27,13,32]			
					[28,44,13]			
					[27,12,32,13]			
18					[41,14]			
					[30,11]			
					[35,13]			
					[31,18]			
					12			
					11			
					9			
19					[49,12]			
					6			
					[17,12]			
					44			
					[29,15,29,18,30]			
					[26,18,33,11]			
					[31,31,13]			
					[33,15]			
20					[12,16]			
					[28,13]			
					11			
					[44,13]			
					13			
					15			
					16			
Job	O1	O2	O3	O4	O9	O5	O13	O14
------	------	------	------	------	------	------	------	------
15	[65,45]	6	[20,20]	39	[45,16,21,17,28]	[31,35,20]	[30,19,35,12]	[29,13]
O10	[21,16]	18	[34,17]	[36,11]	14	19		18
16	[54,29]	8	[22,19]	29	[39,15,27,13,31]	13	[34,13]	[27,30,19]
O13	[37,14,32,12]	[40,18]	[35,17]	[31,11]	19	17	19	
17	[44,45]	8	[18,11]	31	[26,17,33,15]	[29,33,18]	[30,18]	[45,20,34,15,34]
O14	[34,12]	[35,13]	20	[25,12]	14	14	19	
18	[43,35]	6	[16,18]	35	[33,37,11]	[32,19,28,13,29]	[36,12,29,14]	[29,19]
O19	[32,11]	[31,13]	[43,19]	12	11	11	12	
19	[40,32]	5	[27,20]	40	[33,15,33,11]	[33,31,19]	[29,19]	[35,11,32,14,27]
O10	[31,17]	[31,14]	[32,13]	13	19	13	9	
20	[56,39]	8	[23,13]	35	[36,13,33,11,32]	[27,13]	18	14
O5	[31,29,18]	[31,15]	[38,11]	18	[28,13,26,13]	[33,13]		11
O6	[56,39]	8	[23,13]	35	[36,13,33,11,32]	[27,13]	18	14
O8	[31,29,18]	[31,15]	[38,11]	18	[28,13,26,13]	[33,13]		11
Table 6 The speed ratio, power and reference defective rate information of machines

Discrete speed ratio/processing power (kW)	Idle power (kW)	Reference defective rate
M1 1.00/2.34 1.17/2.98 1.33/3.75 1.50/4.49	0.23	0.020
M2 1.00/2.21 1.23/2.81 1.47/3.98 1.70/4.85	0.21	0.009
M3 1.00/2.14 1.20/2.59 1.40/3.46 1.60/3.97	0.22	0.007
M4 1.00/2.48 1.30/3.35 1.64/5.1	0.19	0.019
M5 1.00/1.66 1.10/2.11 1.20/2.48 1.30/2.71 1.40/3.11 1.50/3.74	0.21	0.010
M6 1.00/2.03 1.20/2.73 1.40/3.57	0.22	0.018
M7 1.00/2.51 1.13/3.29 1.27/4.19 1.40/4.79	0.24	0.002
M8 1.00/1.88 1.08/2.07 1.16/2.66 1.24/3.37 1.32/3.80 1.40/4.39	0.19	0.005
M9 1.00/1.90 1.17/2.50 1.33/3.01 1.50/3.97	0.19	0.001
M10 1.00/1.76 1.10/2.17 1.20/2.77 1.30/3.03 1.40/3.67	0.20	0.005
M11 1.00/1.89 1.13/2.21 1.27/2.49 1.40/2.76	0.20	0.017
M12 1.00/2.17 1.08/2.76 1.16/3.55 1.24/3.97 1.32/4.91 1.40/5.38	0.19	0.018
M13 1.00/2.39 1.13/2.95 1.27/3.36 1.40/3.83	0.20	0.016
M14 1.00/1.72 1.25/3.36 1.50/3.05	0.22	0.014
M15 1.00/2.02 1.20/2.74 1.40/3.74	0.21	0.014

Table 7 Parameter settings of the N-NSGA-II and its variants

Parameters	A: N-NSGA-II	B: NSGA-II+Novel SGA	C: NSGA-II+NS	D: NSGA-II
Population size(Npop)	80	80	80	80
Maximum iterations(MaxIt)	50	500	50	500
Proportion of GS in initialization(rGS)	0.4	0.4	0.4	0.4
Crossover+mutation operators Yuan and Xu (2015)	None	None	✓	✓
Crossover probability	–	–	0.7	–
Mutation probability	–	–	0.4	–
Neighborhood structures	✓	None	✓	None
Population size of NS(NpopL)	20	–	20	–
Mutation probability(p_m)	0.1	–	0.1	–
Step size(σ)	0.5	–	0.5	–
search constant(τ)	0.6	–	0.6	–
Novel SGA	✓	✓	None	None
Population size of new solution by (NpopSG)	40	40	–	–

is much lower than that by other algorithms under the condition of the same makespan, and the minimum makespan is obtained by the proposed N-NSGA-II. Figure 8c gives a 2D view subjected to defective rate and total energy consumption. The minimum TEC is obtained by the N-NSGA-II. Figure 8d presents the results only containing the makespan and TEC. It is clear that the solutions generated by N-NSGA-II are much better than those by other algorithms.

The computational results on metrics of GD, CR and IGD are shown in Table 11 and on c-metric are shown in Table 12. A, E and F donate the N-NSGA-II, SPEA-II and NSGA-III, respectively, in Table 12. As shown in Table 11, the N-NSGA-II is significantly better than SPEA-II and NSGA-III on the metrics of GD, CR and IGD. Furthermore, as shown in Table 12, N-NSGA-II overwhelmingly dominates in pairwise comparison with SPEA-II and NSGA-III. Consequently, the superior of the proposed N-NSGA-II is validated.

Table 8 Computational results of N-NSGA-II and its variants on GD, CR and IGD

Parameters	A: N-NSGA-II	B: NSGA-II+Novel SGA	C: NSGA-II+NS	D: NSGA-II
GD	8.65e-3	52.1%	1.09e-1	
CR	1.23e-1	12.3%	1.48e-1	
IGD	2.73e-2	30.8%	1.21e-1	
D	1.86e-1	4.8%	1.90e-1	
Moreover, to obtain the most satisfying solution in the Pareto front, the approach in Dai et al. (2019) is introduced to the paper. Assume that the weight vector \(\mathbf{W} = (0.4, 0.3, 0.3)^T \) regarding to the objectives of defective rate, makespan and total energy consumption, respectively. By normalizing the fitness and multiplying by the \(\mathbf{W} \), the scores of each solu-

Table 9

\(c(A, B) \)	\(c(B, A) \)	\(c(C, D) \)	\(c(D, C) \)	\(c(A, C) \)	\(c(C, A) \)	\(c(B, D) \)	\(c(D, B) \)
7.50e-1	0	8.36e-1	0	4.36e-1	5.00e-2	4.13e-1	1.50e-1

Table 10

Parameter	SPEA-II	NSGA-III
Population size	80	80
Maximum iterations	500	500
Archive size Zitzler and Thiele (1999)	80	-
Number of division Deb and Jain (2014)	-	5
Crossover+mutation operators	Yuan and Xu (2015)	
Crossover rate	0.7	0.7
Mutation rate	0.4	0.4

Table 11

	GD	CR	IGD
N-NSGA-II	0	82.5%	1.11e-1
SPEA-II	2.10e-1	17.5%	2.83e-1
NSGA-III	3.09e-1	0	3.25e-1

Table 12

	\(c(A, E) \)	\(c(E, A) \)	\(c(A, F) \)	\(c(F, A) \)
7.76e-1	0	9.86e-1	0	0
Table 13 Computational results of N-NSGA-II, SPEA-II and NSGA-III on c-metric

No.	Defective rate	Makespan	Total energy consumption (kW)	Score	Obtained by
1	0.147	969.5	1.272e+4	0.7531	N-NSGA-II
2	0.148	957.1	1.267e+4	0.7529	
3	0.150	933.2	1.262e+4	0.7526	
4	0.147	976.2	1.270e+4	0.7519	
5	0.140	1024.6	1.320e+4	0.7517	
6	0.140	1027	1.320e+4	0.7509	
7	0.150	939.7	1.261e+4	0.7503	
8	0.151	928.8	1.261e+4	0.7469	
9	0.151	933.7	1.261e+4	0.7452	
10	0.138	1068	1.329e+4	0.7426	

The top 10 scores among all solutions are listed in Table 13, and the Gantt chart of the solution with the highest score is illustrated in Fig. 9. As shown in Table 13, the top 10 scoring solutions are all obtained by N-NSGA-II, which gives further proof of the superiority of the N-NSGA-II.

5 Conclusions and future work

In this paper, the casting production scheduling problem (CPSP) under the shop floor environment is investigated. A set of comprehensive and practical scheduling scheme for casting production is obtained by establishing a multi-objective CPSP to minimize three objectives of defective rate, makespan and total energy consumption simultaneously. Furthermore, the N-NSGA-II is proposed for solving the multi-objective CPSP. The effectiveness of the pro-
posed neighborhood structures and novel solution generating approach of the N-NSGA-II is validated. Moreover, the overall performance of the N-NSGA-II is evaluated comprehensively via comparison experiments, and the superiority of the N-NSGA-II is verified.

There are also some limitations of this work. On the aspect of problem formulation, the model accuracy can be improved by involving realistic constraints. For example, energy-intensive operations like melting and thermal treatment are often constrained to certain periods to avoid peak hours of energy consumption. Another example is the processing interval constraint which means the time interval between two certain operations is constrained according to the process requirements. Moreover, unexpected events such as immediate job insertion and machine breakdown may occur in the practical casting production workshops. On the aspect of algorithm, since reinforcement learning (RL) has made remarkable achievements in recent years, RL-based approaches will be a promising way to enhance the performance of existing heuristic algorithms. Besides, constructing the systematic rules by incorporating the knowledge of specific problems will greatly reduce the invalid search such that the performance of algorithms can be promoted.

Acknowledgements The authors would like to express their sincere thanks to the referees for their valuable suggestions and comments. The authors would also like to thank Prof. Qian He from Guilin University of Electronic Technology for his help and advice on the revision and proofreading of the manuscript.

Funding This work is supported by the National Key R & D Program of China (Grant No.2018YFB1308200), National Natural Science Foundation of China (No.62073127)

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Ethical approval This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent Informed consent was obtained from all individual participants included in the study.

References

Akturk MS, Ilhan T (2011) Single cnc machine scheduling with controllable processing times to minimize total weighted tardiness. Comput Oper Res 38(4):771–781
Asefi H, Jolai F, Rabiee M, Araghi MET (2014) A hybrid nsga-ii and vns for solving a bi-objective no-wait flexible flowshop scheduling problem. Int J Adv Manuf Technol 75:1017–1033
Atan MO, Akturk MS (2008) Single cnc machine scheduling with controllable processing times and multiple due dates. Int J Prod Res 46(21):6087–6111

Chaudhry IA, Khan AA (2016) A research survey: review of flexible job shop scheduling techniques. Int Trans Oper Res 23(3):551–591

Che, A., Lv, K., Levner, E., Kats, V.: Energy consumption minimization for single machine scheduling with bounded maximum tardiness. In: 2015 IEEE 12th international conference on networking, sensing and control, pp. 146–150 (2015)

Chen X, An Y, Zhang Z, Li Y (2020) An approximate nondominated sorting genetic algorithm to integrate optimization of production scheduling and accurate maintenance based on reliability intervals. J Manuf Syst 54:227–241

Cheng R, Gen M, Tsujimura Y (1996) A tutorial survey of job-shop scheduling problems using genetic algorithms-i: representation. Comput Ind Eng 30(4):983–997

Dai M, Tang D, Giret A, Salido MA (2019) Multi-objective optimization for energy-efficient flexible job shop scheduling problem with transportation constraints. Robot Comput-Integr Manuf 59:143–157

Deb K, Jain H (2014) An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: Solving problems with box constraints. IEEE Trans Evol Comput 18(4):577–601

Deb K, Pratap A, Agrawal S, Meyarivan T (2002) A fast and elitist multi-objective genetic algorithm: Nsga-ii. IEEE Trans Evol Comput 6(2):182–197

Fattahi P, Mehrabadi MS, Jolai F (2007) Mathematical modeling and heuristic approaches to flexible job shop scheduling problems. J Intell Manuf 18(3):331–342

Gen M, Lin L (2014) Multiobjective evolutionary algorithm for manufacturing scheduling problems: state-of-the-art survey. J Intell Manuf 25(5):849–866

Hajez Z, Rezg N, Gharbi A (2018) Quality issue in forecasting problem of production and maintenance policy for production unit. Int J Prod Res 56:6147–6163

Jiang S, Zheng Z, Liu M (2018) A preference-inspired multi-objective soft scheduling algorithm for the practical steelmaking-continuous casting production. Comput Ind Eng 115:582–594

Kayran RK, Akturk MS (2005) A new bounding mechanism for the cnc machine scheduling problems with controllable processing times. Eur J Oper Res 167(3):624–643

Khouja M, Mehrez A (1994) Economic production lot size model with variable production rate and imperfect quality. J Oper Res Soc 45:1405–1417

Lei D, Li M, Wang L (2019) A two-phase meta-heuristic for multi-objective flexible job shop scheduling problem with total energy consumption threshold. IEEE Trans Syst Man Cybern 49(3):1097–1109

Li J, Pan Q, Liang Y (2010) An effective hybrid tabu search algorithm for multi-objective flexible job-shop scheduling problems. Comput Ind Eng 59(4):647–662

Li J, Pan Q, Suganthan PN, Chua TJ (2011) A hybrid tabu search algorithm with an efficient neighborhood structure for the flexible job shop scheduling problem. Int J Adv Manuf Technol 52(5):683–697

Liu G, Yang H, Cheng M (2017) A three-stage decomposition approach for energy-aware scheduling with processing-time-dependent product quality. Int J Prod Res 55(11):3073–3091

Lu C, Li X, Gao L, Liao W, Yi J (2017) An effective multi-objective discrete virus optimization algorithm for flexible job-shop scheduling problem with controllable processing times. Comput Ind Eng 104:156–174

Luo S, Zhang L, Fan Y (2019) Energy-efficient scheduling for multi-objective flexible job shops with variable processing speeds by grey wolf optimization. J Clean Prod 234:1365–1384

Mansouri SA, Aktas E, Besikci U (2016) Green scheduling of a two-machine flowshop: trade-off between makespan and energy consumption. Eur J Oper Res 248(3):772–788
Marchi B, Zanoni S, Zavanella L, Jaber MY (2019) Supply chain models with greenhouse gases emissions, energy usage, imperfect process under different coordination decisions. Int J Prod Econ 211:145–153

Mokhtari H, Hasani A (2017) An energy-efficient multi-objective optimization for flexible job-shop scheduling problem. Comput Chem Eng 104:339–352

Mosleh G, Mahnam M (2011) A pareto approach to multi-objective flexible job-shop scheduling problem using particle swarm optimization and local search. Int J Prod Econ 129(1):14–22

Ouaret S, Kenne J, Gharbi A (2018) Production and replacement policies for a deteriorating manufacturing system under random demand and quality. Eur J Oper Res 264(2):623–636

Peng T, Xu X (2014) Energy-efficient machining systems: a critical review. Int J Adv Manuf Technol 72(9):1389–1406

Piroozfard H, Wong KY, Wong WP (2018) Minimizing total carbon footprint and total late work criterion in flexible job shop scheduling by using an improved multi-objective genetic algorithm. Resour Conserv Recycl 128:267–283

Qin H, Fan P, Tang H, Huang P, Fang B, Pan S (2019) An effective hybrid discrete grey wolf optimizer for the casting production scheduling problem with multi-objective and multi-constraint. Comput Ind Eng 128:458–476

Rezaeimalek M, Tavakkolimoghaddam R, Siadat A, Dantan J (2018) A novel model for the integrated planning of part quality inspection and preventive maintenance in a linear-deteriorating serial multi-stage manufacturing system. Int J Adv Manuf Technol 96:3633–3650

Shao X, Liu W, Liu Q, Zhang C (2013) Hybrid discrete particle swarm optimization for multi-objective flexible job-shop scheduling problem. Int J Adv Manuf Technol 67:2885–2901

Shen X, Han Y, Fu J (2017) Robustness measures and robust scheduling for multi-objective stochastic flexible job shop scheduling problems. Soft Comput 21:6531–6554

Soto C, Dorronsoro B, Fraire HH, Cruzreyes L, Gomezsantillan C, Rangel N (2020) Solving the multi-objective flexible job shop scheduling problem with a novel parallel branch and bound algorithm. Swarm Evol Comput 53:100632

Tambe PP, Mohite S, Kulkarni MS (2013) Optimisation of opportunistic maintenance of a multi-component system considering the effect of failures on quality and production schedule: A case study. Int J Adv Manuf Technol 69(5):1743–1756

Tang H, Chen R, Li Y, Peng Z, Guo S, Du Y (2019) Flexible job-shop scheduling with tolerated time interval and limited starting time interval based on hybrid discrete pso-sa: an application from a casting workshop. Appl Soft Comput 78:176–194

Turkyilmaz, A., Şenvar, O., Unal, I., Bulkan, S.: A research survey: heuristic approaches for solving multi objective flexible job shop problems. J Intell Manuf. pp. 1–35 (2020)

Uruk Z, Gultekin H, Akturk MS (2013) Two-machine flowshop scheduling with flexible operations and controllable processing times. Comput Oper Res 40(2):639–653

Vilicot G, Billaut J (2008) A tabu search and a genetic algorithm for solving a bicriteria general job shop scheduling problem. Eur J Oper Res 190(2):398–411

Wu X, Shen X, Li C (2019) The flexible job-shop scheduling problem considering deterioration effect and energy consumption simultaneously. Comput Ind Eng 135:1004–1024

Xia W, Wu Z (2005) An effective hybrid optimization approach for multi-objective flexible job-shop scheduling problems. Comput Ind Eng 48:409–425

Xu W, Cao L (2019) Optimal maintenance control of machine tools for energy efficient manufacturing. Int J Adv Manuf Technol 104(9):3303–3311

Yuan Y, Xu H (2015) Multiobjective flexible job shop scheduling using memetic algorithms. IEEE Trans Autom Sci Eng 12(1):336–353

Zhang G, Gao L, Shi Y (2011) An effective genetic algorithm for the flexible job-shop scheduling problem. Expert Syst Appl 38(4):3563–3573

Zhang G, Shao X, Li P, Gao L (2009) An effective hybrid particle swarm optimization algorithm for multi-objective flexible job-shop scheduling problem. Comput Ind Eng 56(4):1309–1318

Zhang G, Zhang L, Song X, Wang Y, Zhou C (2019) A variable neighborhood search based genetic algorithm for flexible job shop scheduling problem. Clust Comput 22(5):11561–11572

Zitzler E, Deb K, Thiele L (2000) Comparison of multiobjective evolutionary algorithms: empirical results. Evol Comput 8(2):173–195

Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans Evol Comput 3(4):257–271

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.