Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Background: Treated cancer patients (pts) are at high risk to develop severe COVID-19 evolution and guidelines proposed some preventive medical oncologic treatments (Tt) adjustments. Pts had to face with this unprecedented situation, as caregivers forced to suddenly adjust their practices. We assessed the pandemic-induced therapeutic modifications of pts cancer tt and the psychological impact on pts and caregivers.

Methods: This prospective French study was initiated among pts with solid/hematologic malignancy receiving a medical tt during the lockdown in outpatient departments of 2 cancer centers. Tt modifications were collected from medical records. Perceived and post-traumatic stress (PSS, IES-R), sleep (SSS), quality of life (Qol, Fact-G) and cognitive complaint (Fact-Cog) were reported at baseline (during the lockdown) and will be collected at 3 and 6 months. PSS and professional burnout/self-efficacy (MBI, GSES) were also reported by caregivers.

Results: Baseline clinical data are available for 621 pts and questionnaires for 575 pts (93%) and 73 caregivers. Pts and caregivers median ages were 64 [24-89] and 40 [22-63], 69% and 83% women. Caregivers were mainly nurses (48%) and oncologists (30%). 98% of pts had solid tumors, 59% with metastatic disease and 47% de novo treated. Main tts included chemotherapy (72%), immunotherapy (31%) and targeted therapy (13%). 37% starting during the lockdown. 27% of pts had tt modifications including 30% adapted monitoring (mainly phone-consultation), 15% tt interruptions, 32% postponed tt, 19% administration rhythm modifications, more frequently among lung cancer, tt initiated before lockdown, immunotherapy and targeted therapy. Severe perceived stress, post-traumatic stress and insomnia were observed in 6%, 21% and 24% of pts. More pts with tt modifications presented severe post-traumatic stress (27% vs 19%, p=0.05). Tt modifications did not impact on Qol/cognition. Perceived stress score was higher among caregivers than pts (p=0.035) but 2/3 reported professional accomplishment and self efficacy.

Conclusions: Lockdown due to COVID-19 induced tt modification in 1/4 of pts with a majored post-traumatic stress. Despite a high level of stress, caregivers coped with the situation.

Clinical trial identification: NCT04366154, registered on 2020, April, 16th.

Legal entity responsible for the study: Comprehensive Cancer Centre François Baclesse, Caen France.

Funding: French Fondation ARC (Cancer Research Association).

Disclosure: All authors have declared no conflicts of interest.
Systemic cancer treatment-related outcomes in patients with SARS-CoV-2 infection: A CCC19 registry analysis

T.M. Wise-Draper 1, A. Desai 2, A. Elkrief 3, B.I. Rini 4, D.B. Flora 5, D.W. Bowles 6, D. Shah 7, D. Rivera 8, D.B. Johnson 4, G. Lopes 9, P. Grivas 10, M.A. Thompson 11, L.B. Lander 12, A. Desai 2, A. Elkrief 3, B.I. Rini 4, D.B. Flora 5, D.W. Bowles 6, C. Wilcox 13, J. Warner 14

1Division of Hematology/Oncology, University of Cincinnati Cancer Center, Cincinnati, OH, USA; 2Medicine, University of Connecticut, Farmington, CT, USA; 3Oncology, Segal Cancer Centre, Jewish General Hospital, McGill University, Montreal, QC, Canada; 4Division of Hematology/Oncology, Vanderbilt University Medical Center, Nashville, TN, USA; 5Division of Medical Oncology, University of Colorado, Aurora, CO, USA; 6Population Health Sciences, Mayo Cancer Center at UT Health San Antonio MD Anderson, San Antonio, TX, USA; 7Division of Cancer Control and Population Sciences, National Cancer Institute (P30 CA068485), Bethesda, MD, USA; 8Division of Medical Oncology, University of Miami/Sylvester Comprehensive Cancer Center, Miami, FL, USA; 9Hematology Oncology, University of Washington Seattle Cancer Care Alliance, Seattle, WA, USA; 10Aurora Cancer Care, Advocate Aurora Health, Milwaukee, WI, USA; 11Multidisciplinary Oncology Center, Centre Hospitalier de l'Université de Montréal, McGill University Health Centre, Montreal, QC, Canada; 12Advanced Cancer Research Group, Seattle, WA, USA; 13Population and Quantitative Health Sciences, Case Comprehensive Cancer Center/Western Reserve University, Cleveland, OH, USA; 14Medicine, Vanderbilt University, Nashville, TN, USA; 15Medical Oncology Dept, Harvard Medical School, Dana Farber Cancer Institute, Boston, MA, USA

Background: SARS-CoV-2 is associated with diverse clinical presentations ranging from asymptomatic infection to lethal complications. Small studies have suggested inferior outcomes in patients (pts) on active cancer treatment. This finding was not independently validated in our prior report on 928 pts, which included treatments administered within 4 weeks of COVID-19 diagnosis. Here, we examine outcomes related to systemic cancer treatment within one year of lab-confirmed SARS-CoV-2 infection in an expanded cohort.

Methods: The COVID-19 and Cancer Consortium (CCC19) registry (NCT04354701) was queried for pts ever receiving systemic treatment. Treatment type, cancer type, stage, and COVID-19 outcomes were examined. Pts were stratified by time from last treatment administration: > 2 weeks, 2-4 weeks, 1-3 months, > 3-12 months. Standardized incidence ratios (SIR) of mortality by treatment type and timing were calculated.

Results: As of 31 July 2020, we analyzed 3920 pts; 42% received systemic anti-cancer treatment within 12 month (Table). 159 distinct medications were administered. The highest rate of COVID-19-associated complications were observed in pts treated within 1-3 months prior to COVID-19; all-cause mortality in this group was 30%. 30-day mortality by most recent treatment type was 20% for chemotherapy, 18% for immunotherapy, 17% for chemoradiotherapy, 29% for chemoinmunotherapy, 20% for targeted therapy, and 11% for endocrine therapy. SIR of mortality was highest for chemotheraphy, followed by targeted chemotherapy > 2 weeks, and lowest for endocrine treatmants. A high SIR was also found for targeted agents within 3-12 months. Pts untreated in the year prior to COVID-19 diagnosis had a mortality of 14%.

Conclusions: 30-day mortality was highest amongst cancer pts treated 1-3 months prior to COVID-19 diagnosis and those treated with chemoinmunotherapy. Except for endocrine therapy, mortality for subgroups was numerically higher than in pts untreated within a year prior to COVID-19 diagnosis.