On the mixing strength in the two lowest 0^- states in ^{208}Pb

A. Heusler
Max-Planck-Institut für Kernphysik, D-69029 Heidelberg, Germany

G. Graw, R. Hertenberger, F. Riess, and H.-F. Wirth
Department für Physik, Ludwig-Maximilian-Universität München, D-85748 Garching, Germany

R. Krücken
Physik Department E12, Technische Universität München, D-85748 Garching, Germany

P. von Brentano
Institut für Kernphysik, Universität zu Köln, D-50937 Köln, Germany

With a resolution of 3 keV, the two lowest 0^- states in ^{208}Pb are identified by measurements of the reaction $^{207}\text{Pb}(d, p)$ with the München Q3D magnetic spectrograph in a region where the average level spacing is 6 keV. Precise relative spectroscopic factors are determined. Matrix elements of the residual interaction among one-particle one-hole configurations in a two-level scheme are derived for the two lowest 0^- states in ^{208}Pb. The off-diagonal mixing strength is determined as 105 ± 10 (experimental) ± 40 (systematic) keV. Measurements of the reaction $^{208}\text{Pb}(p, p')$ via isobaric analog resonances in ^{209}Bi support the structure information obtained.

PACS numbers: 21.10.Jx,27.80.-w.

I. INTRODUCTION

The nucleus ^{208}Pb offers the singular chance to study a two-level scheme in the space of shell model configurations. Below $E_x = 6.1$ MeV, only two 0^- states among about 120 one-particle one-hole configurations are expected from shell model calculations [1,2]. They are identified [3] but their structure is not known in detail. With the average residual interaction known from experiment [4,5] they are predicted to consist essentially of the two lowest configurations $s_{1/2}p_{1/2}$ and $d_{5/2}f_{5/2}$, since the next particle-hole configuration is ten times more distant than an average matrix element of the residual interaction among one-particle one-hole configurations (m.e.).

We took spectra of the reaction $^{207}\text{Pb}(d, p)$ at a resolution of 3 keV [6] up to $E_x = 8$ MeV and identified the two 0^- states in the region $E_x = 5.2 - 5.7$ MeV where the mean level distance is 6 keV.

Most of the low-lying states in ^{208}Pb are considered as excited states created by the coupling of exactly one particle and one hole to the ground state. We postulate that each particle-hole state is completely described as a mixture of a few particle-hole configurations. The ground state of ^{207}Pb is assumed to be a pure $p_{1/2}$ neutron hole state in relation to the ground state of ^{208}Pb. In the $^{207}\text{Pb}(d, p)$ reaction, the particle-hole states in ^{208}Pb with spin 0^- are populated by $L = 0$ transfer only, whereas the 1^- states are populated by both $L = 0$ and $L = 2$ transfer.

For two spin 0^- and nine 1^- states below $E_x = 6.5$ MeV, relative spectroscopic factors are measured. Using the method of Ref. [4] and assuming the two lowest configurations to be almost completely contained in the two lowest 0^- states, matrix elements of the residual interaction between the 0^- configurations $s_{1/2}p_{1/2}$ and $d_{5/2}f_{5/2}$ are deduced.

Results of the inelastic proton scattering on ^{208}Pb via isobaric analog resonances (IAR) in ^{209}Bi populating the two 0^- states and some 1^- states [6,7] are discussed.

II. EXPERIMENTAL DATA

A. Experiments with the Q3D magnetic spectrograph

Using the Q3D magnetic spectrograph of the tandem accelerator of the Maier-Leibnitz laboratory at München, experiments of the reactions $^{207}\text{Pb}(d, p)$ and $^{208}\text{Pb}(p, p')$ via isobaric analog resonances in ^{209}Bi (IAR-pp') are performed. They are described in detail in Ref. [6]. The resolution of about 3 keV, the low background (up to 1:5000) and reliable identification of contamination lines from light nuclei (by the kinematic broadening proportional to different slit openings), and a sophisticated fit of the spectra by the computer code GASPAN [8], allow to resolve nearby levels and to detect weakly excited states. Here we refer to data obtained from the $^{207}\text{Pb}(d, p)$ experiment in the region $E_x = 5.2 - 5.7$ MeV. Compared to earlier work with a resolution of 18 keV from the Heidelberg multi-gap magnetic spectrograph [9] and following work [6,10,11,12], the resolution has been improved and the background lowered.
FIG. 1: (online: color) 207Pb(d, p) spectrum taken at $\Theta = 30^\circ$ for $E_x = 5.23 - 5.36$ MeV. The 5280 0^- state (marked •) is resolved from the two neighbors in 4-7 keV distance. It is displayed on a logarithmic scale since the background is $1/2000$ of the maximum peak, but many levels with 1% of the maximum are clearly resolved. The drawn curves show the fit by the computer code GASPAN [8], where the energies are taken from Table I and only the centroid of all energies together and the peak heights are varied. The widths and tails are interpolated from a table generated by inspection of several strong, rather isolated peaks in the whole spectrum covering about 1.2 MeV. A weak contamination line from 23Na is identified near $E_x = 5.31$ MeV.

The mean level spacing is about 6 keV in the regions near the two 0^- states. Peaks are identified by comparison to the known data [3, 11, 12, 13, 14, 15], see Table I. A comparison to the preliminary analysis of the 208Pb(p, p') data on seven IAR in 209Bi with similar resolution [6] allows to verify the identifications.

Figs. 1 and 2 show two extracts of 207Pb(d, p) spectra, each covering 1.2 MeV totally. Whereas the neighbors of the 5599 0^- state are 12-15 keV away, the 5280 0^- state is surrounded by two levels in 4-7 keV distance. At scattering angles of $\Theta = 20^\circ - 30^\circ$, the 5276 and the 5287 state are excited with cross sections of 1-20% of the 5280 state.

Peaks from light contaminations (12C, 14N, 16O, 23Na and more) are identified in the whole spectra by the kinematic shift in a series of spectra taken at scattering angles $\Theta = 20^\circ - 30^\circ$ and the kinematic broadening for different openings of the entrance slit to the Q3D magnetic spectrograph, see Ref. [9]. In the region of $E_x = 5.5 - 5.7$ MeV, contamination lines from 14N with cross sections of a few μb/sr are detected at scattering angles $\Theta = 20^\circ$ and 30°.

B. Extraction of relative spectroscopic factors

By use of the GASPAN code [8] with the option of fixed energy distances, and the excitation energies from Table I, the cross sections are precisely determined. Figs. 1 and 2 shows spectra for the regions around the 5280 0^- and the 5599 0^- levels. Fig. 3 shows the angular distributions for the 5280 0^-, 5292 1^- and 5599 0^- levels. For scattering angles $\Theta = 20^\circ - 30^\circ$, the cross sections differ by a constant factor (0.32 and 0.05 for the two 0^- states in relation to 5292 1^- state) within the errors. For $\Theta = 20^\circ - 30^\circ$, DWBA calculations yield the steep slope observed for $L = 0$ in contrast to a rather flat angular distribution for $L = 2$ [11, 12].

In view of the weak cross sections at $\Theta = 20^\circ$, especially for the 5599 0^- state, we determine relative spectroscopic factors by first calculating a mean angular distribution of the three states,

$$\frac{d\sigma}{d\Omega}(\Theta) = \sum_{E_x} \left\{ \frac{d\sigma}{d\Omega}(E_x, \Theta)/\sum_{\theta} \frac{d\sigma}{d\Omega}(E_x, \Theta) \right\}. \quad (1)$$

The energy dependence of the cross section is neglected because of the small energy range. In a least squares fit we then obtain the mean cross section

$$\left\langle \frac{d\sigma}{d\Omega}(E_x) \right\rangle = \sum_{\theta} \left\{ \frac{d\sigma}{d\Omega}(E_x, \Theta)/\sum_{\theta} \frac{d\sigma}{d\Omega}(\Theta) \right\} \quad (2)$$

as a measure of the relative spectroscopic factors. In Table II we adjust the mean values to the cross section of the 5292 state at the scattering angle $\Theta = 25^\circ$.

FIG. 2: (online: color) 207Pb(d, p) spectrum taken at $\Theta = 25^\circ$ for $E_x = 5.54 - 5.65$ MeV. The 5599 0^- state (marked •) is well isolated. For other details see Fig. 1.
C. Determination of mixing amplitudes

The lowest negative parity states in 208Pb are assumed to be well described by the shell model as particle-hole states in relation to the ground state of 208Pb. Especially, the two lowest 0^- states $|E_x, I^>\rangle$ are excited by the admixtures of higher configurations $|s_{1/2p_{1/2}}^>\rangle$ and $|d_{5/2f_{5/2}}^>\rangle$ with admixtures of higher configurations $|C_q^>\rangle$,

$$|5280, 0^-> = t_{11} |s_{1/2p_{1/2}}^>\rangle + t_{12} |d_{5/2f_{5/2}}^>\rangle + \sum_q t_{1q} |C_q^>\rangle,$$

$$|5599, 0^-> = t_{21} |s_{1/2p_{1/2}}^>\rangle + t_{22} |d_{5/2f_{5/2}}^>\rangle + \sum_q t_{2q} |C_q^>\rangle.$$ \hspace{1cm} (3)

The 207Pb(d, p) reaction populates the $s_{1/2p_{1/2}}$ component only.

In contrast to spin 0^-, for spin 1^- the shell model predicts eight states below $E_x = 6.5$ MeV. Two configurations, $s_{1/2p_{1/2}}$ and $d_{3/2p_{1/2}}$, of the identified 1^- states (Table III) are excited by the 208Pb(d, p) reaction. Hence the $n 1^-$ states are described by

$$|n, 1^-> = t_{11n1} |s_{1/2p_{1/2}}^>\rangle + t_{12n1} |d_{3/2p_{1/2}}^>\rangle + \sum_q t_{1qn} |C_q^>\rangle.$$ \hspace{1cm} (4)

We want to determine the matrix elements of the residual interaction between the two lowest 0^- configurations in 208Pb. In the truncated two-level configuration space of one-particle one-hole configurations, the matrix t is only approximately unitary,

$$tt^\dagger = \begin{pmatrix} 1 - d_{11} & d_{12} \\ d_{21} & 1 - d_{22} \end{pmatrix} \approx \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$ \hspace{1cm} (5)

We postulate the deviation from unitarity to be small,

$$d = \begin{pmatrix} d_{11} & d_{12} \\ d_{21} & d_{22} \end{pmatrix} \approx 0.$$ \hspace{1cm} (6)

Each element of the deviation matrix contains only products of the amplitudes $t_{1q}t_{2q}$ of higher configurations assumed to be weak [Eq. (3)] and the amplitudes t_{q1}, t_{q2} of the configurations $s_{1/2p_{1/2}}$, $d_{3/2f_{5/2}}$ in higher excited states assumed to be weak, too.

According to the shell model without residual interaction, the two configurations $s_{1/2p_{1/2}}$ and $d_{3/2f_{5/2}}$ have the lowest excitation energies for the 1^- states, too. For the 1^- states a similar deviation matrix can be defined with elements $d_{1n1}, d_{1n2}, n = 1, 9$ referring to these two configurations.

An essential assumption is the proportionality of the sum of the strengths of the configuration $s_{1/2p_{1/2}}$ in all states for the spins $I^> = 0^+, 1^-$ to the spin factor (2I+1),

$$\sum_n t_{1n1}^2 = 3(t_{11}^2 + t_{21}^2 + d_{11}).$$ \hspace{1cm} (7)

We then use the observation that the configurations $s_{1/2p_{1/2}}$ and $d_{3/2f_{5/2}}$ produce angular distributions which are easily distinguished, to derive upper and lower limits of the complete $s_{1/2p_{1/2}}$ strength $\sum_n t_{1n1}^2$ in the 1^- states and thus derive an upper limit for the deviation matrix $|d|$ by use of Eq. (4).

Since the reaction 207Pb(d, p) excites only the $s_{1/2p_{1/2}}$ component of the 0^- states [Eq. (3)], the ratio of the measured mean cross sections (Table III)

$$t_{21}^2/t_{11}^2 = \left(\frac{d\sigma}{d\Omega}(5599)\right)/\left(\frac{d\sigma}{d\Omega}(5280)\right)$$ \hspace{1cm} (8)

is used to derive the amplitudes $t_{11}, t_{12}, t_{21}, t_{22}$ as

$$|t_{11}| = |t_{22}| = 0.928 \pm 0.012,$$

$$|t_{12}| = |t_{21}| = 0.37 \pm 0.04.$$ \hspace{1cm} (9)
Here the deviation matrix d [Eq. (3)] is assumed to vanish.

FIG. 4: The two lowest 0^- configurations in 208Pb are separated from the next higher configurations by a large gap Δ allowing to discuss the simple case of a two-level configuration mixing in the $[52800^- > | 55990^- >$ states. The residual interaction is decomposed into the m.e. v_{11} and v_{22} describing the shift of the two levels, and the m.e. $v_{12} = v_{21}$ describing the level repulsion.

D. Completeness of the strength in the truncated configuration space

Higher 0^- states are not known, but they should have energies above $E_x \approx 6.8$ MeV, see Fig. 1. In contrast, nine 1^- states are known as predicted by the shell model.

The cross sections $\left(\frac{d\sigma}{dE_{\gamma}}(E_x) \right)$ (Table II) for the two 0^- states and all 1^- states up to $E_x = 6.5$ MeV are consistent with the data of Refs. [11, 12] within the errors. The ratios agree also with the population strengths of Ref. [3] but they are more precise.

The reaction 207Pb(d, p) excites the two configurations $s_{1/2}p_{1/2}$ and $d_{5/2}p_{1/2}$ in all 1^- states, but only the configuration $s_{1/2}p_{1/2}$ in the 0^- states. The two lowest 0^- states contain almost the complete $s_{1/2}p_{1/2}$ 0^- strength by comparison to DWBA calculations [11, 12]. Because higher configurations admix little due to the gap Δ between the second and third 0^- configurations, $d_{5/2}f_{5/2}$ and $g_{9/2}h_{9/2}$, being larger than ten times the mean m.e., the deviation matrix d almost vanishes. By comparing the detected strength of the 0^- and 1^- $s_{1/2}p_{1/2}$ configurations, we deduce an upper limit for $|d|$

The $5292 1^-$ state contains less than 90% of the $s_{1/2}p_{1/2}$ strength, since the ratio of its cross section to the sum of the two 0^- states is less than the ratio 3:1 expected from the spin factor $(2I + 1)$ [Eq. (7)]. Other 1^- states contain the remaining $s_{1/2}p_{1/2}$ strength, but the $5292 1^-$ state contains also some of the $d_{3/2}p_{1/2}$ strength (besides other configurations not detected by 207Pb(d, p)) but by IAR-pp'). The missing $s_{1/2}p_{1/2}$ strength is contained in the other eight 1^- states.

(a) All 1^- states except for the $5292 1^-$ state listed in Table II have rather flat angular distributions for $\Theta = 20^\circ - 30^\circ$. For the states considered, the dependence of the cross section on the energy E_x for states with the same configuration mixture is negligible [11, 12]. (b) For the $5294 2^-$ and $5947 1^-$ states, the angular distribution for $\Theta = 20^\circ - 30^\circ$ is flat (similarly as for states with $d_{5/2}p_{1/2}$ strength) in contrast to the steep rise for the $s_{1/2}p_{1/2}$ configuration [11, 12]. The $5294 2^-$ and $5947 1^-$ states contain most of the $d_{3/2}p_{1/2}$ strength [11, 12] and the spin assignments are firm [3]. (c) In the 5947 state, the comparison of the shape of the angular distribution to the $5294 2^-$ state allows to deduce an upper limit for the $s_{1/2}p_{1/2}$ strength of about 8% or a ratio $r_{2,0} = t_{2,0}^2/t_{1,1}^2 > 12$ [Eq. (11)]. (d) The deviation of the slope of the cross section for the $5292 1^-$ state in comparison to the two 0^- states implies up to 10% $d_{5/2}p_{1/2}$ admixture (Fig. 3). (e) For the other 1^- states besides the 5292 and 5947 states, from the comparison of the shape of the angular distribution to the $5292 1^-$ and $5294 2^-$ states the ratio $r_{2,0}$ is derived, see Table II.

Summing up thus derived upper limits of $s_{1/2}p_{1/2}$ admixtures $t_{2,0}^2/t_{1,1}^2$ to all other 1^- states, we derive a lower limit 80% of the $s_{1/2}p_{1/2}$ configuration in the $5292 1^-$ state.

Together with the upper limit of 90% derived before, from Eq. (7) we conclude the sum of the $s_{1/2}p_{1/2}$ strength in the $5280 0^-$ and $5599 0^-$ states to be complete within better than 97%. This yields an upper limit for the deviation matrix [Eq. (6)],

$$ d_{11} \approx d_{22} < 0.03, $$

$$ |d_{12}| \approx |d_{21}| < 0.02. $$

E. Excitation energies

From the known single particle and single hole states in the lead region [10], the lowest one-particle one-hole configurations in 208Pb with spin 0$^-$ are predicted as $\nu s_{1/2}p_{1/2}, \nu d_{5/2}f_{5/2}, \nu g_{9/2}h_{9/2}, \nu d_{5/2}p_{1/2}, \pi d_{3/2}f_{3/2}$ (the lowest proton particle-hole configuration) at $E_x = 5463, 5568, 6844, 6866, 7383$ keV, respectively, see Fig. 4. The gap Δ described by Ref. [4] between the two lowest $s_{1/2}p_{1/2}$ and $d_{5/2}f_{5/2}$ and the next configurations is 1276 keV. Since it is more than ten times higher
than the mean m.e. the mixing of the two lowest 0\(^-\) configurations in \(^{208}\)Pb represents an excellent example of a two-level scheme. The energies of the shell model configurations are derived from the single particle and single hole states in the four neighboring nuclei \([10]\), \(e^0 = \begin{pmatrix} 5463 & 0 \\ 0 & 5568 \end{pmatrix}\) keV. The experimental data yield the excitation energies of the two states, \(E = \begin{pmatrix} 5280 & 0 \\ 0 & 5599 \end{pmatrix}\) keV.

III. RESULTS AND DISCUSSION

A. Determination of matrix elements of the residual interaction

\[
v = tE t^\dagger - \frac{1}{2} (tt^\dagger e^0 + e^0 tt^\dagger) + r,
\]

(11)

The matrix elements of the residual interaction between the two lowest 0\(^-\) configurations are derived in the truncated space of the first two configurations by the method described in Ref. \([4]\),

energy label	\(E_x\) keV	\(E_x\) keV	\(E_x\) keV	\(E_x\) keV	\(I\)	Ref.
this work						
region near \(5280 \ 0^-\) and \(5292 \ 1^-\)						
\(5239\)	5239.5 ± 0.8	5239.35 ± 0.36	4\(^-\)	[6]		
\(5241\)	5241	5240.8 ± 1.5	0\(^+\)	[15]		
\(5245\)	5245.4 ± 0.3	5245.28 ± 0.06	5245.2 ± 0.1	5244.6 ± 1.0	3\(^-\)	[3]
\(5254\)	5254.2 ± 0.8	5254.16 ± 0.15				
\(5261\)	5261.2 ± 0.8					
\(5266\)	5266.6 ± 0.9					
\(5276\)	5276.3 ± 0.4	5277.1 ± 1.5	4\(^-\)	[6]		
\(5280\)	5280.5 ± 0.1	5280.32 ± 0.08	5280.5 ± 0.1	5281.3 ± 1.5	0\(^+\)	[3]
\(5287\)	5287.8 ± 1.9					
\(5292\)	5292.2 ± 0.1	5292.00 ± 0.20	5292.1 ± 0.1	5292.6 ± 1.5	1\(^-\)	[3]
\(5307\)	5307.6 ± 1.5					
\(5316\)	5313.0 ± 1.0	5317.00 ± 0.20				
\(5317\)	5316.9 ± 1.5	5317.30 ± 0.06	5317.7 ± 0.6			
\(5326\)	5326.9 ± 0.6					
\(5339\)	5340.0 ± 0.9	5339.46 ± 0.16	5340.1 ± 1.5	8\(^+\)	[3]	
\(5347\)	5347.4 ± 0.2	5347.15 ± 0.25	5348.4 ± 0.6	3\(^-\)	[3]	
region near \(5599 \ 0^-\)						
\(5548\)	5548.5 ± 0.4	5548.08 ± 0.20	5548.2 ± 0.1	5547.5 ± 1.5	2\(^-\)	[3]
\(5557\)	5557.2 ± 1.0					
\(5565\)	5563.9 ± 0.3	5563.58 ± 0.14	5563.6 ± 0.1	5564.7 ± 0.6	3\(^-\), 4\(^-\)	[3]
\(5596\)	5566.00 ± 0.60					
\(5572\)	5572.0 ± 0.8					
\(5577\)	5579.0 ± 0.9					
\(5587\)	5587.4 ± 1.0					
\(5599\)	5599.8 ± 0.5	5599.40 ± 0.08	5601.7 ± 0.1	5599.6 ± 0.4	0\(^-\)	[3]
\(5614\)	5614.4 ± 1.7					
\(5641\)	5640.7 ± 0.6	5641.10 ± 0.50	5641.4 ± 0.5	5649.9 ± 1.5	(1\(^-\), 2\(^+\))	[13, 14]
\(5643\)						
\(5649\)	5648.7 ± 0.5	5649.70 ± 0.28	5649.8 ± 0.9	(5\(^-\))		

\([10]\)\([13, 14]\)
Explicitly we have

\[v_{11} = t_{11}^2 E_{11} + t_{12}^2 E_{22} - (t_{11}^2 + t_{12}^2) e^0_{11} + r_{11}, \]
\[v_{22} = t_{21}^2 E_{11} + t_{22}^2 E_{22} - (t_{21}^2 + t_{22}^2) e^0_{22} + r_{22}, \]
\[v_{12} = t_{11}t_{21} E_{11} + t_{12}t_{22} E_{22} - \frac{1}{2} (t_{11}t_{21} + t_{12}t_{22}) (e^0_{11} + e^0_{22}) + r_{12}, \]
\[v_{21} = t_{21}t_{11} E_{11} + t_{22}t_{12} E_{22} - \frac{1}{2} (t_{21}t_{11} + t_{22}t_{12}) (e^0_{11} + e^0_{22}) + r_{21}. \]

(12)

Using Eqs. [9 10 12] we obtain the m.e.

\[v_{11} = -140 \pm 10 \text{ (exp.)} \pm 40 \text{ (syst.)} \text{keV}; \]
\[v_{22} = -5 \pm 10 \text{ (exp.)} \pm 40 \text{ (syst.)} \text{keV}; \]
\[v_{12} = v_{21} = \pm (105 \pm 10) \text{ (exp.)} \pm 40 \text{ (syst.)} \text{keV}. \]

(13)
The sign of the off-diagonal terms \(v_{12}, v_{21} \) cannot be determined from our data. The diagonal terms \(v_{11}, v_{22} \) describe the level shift, the off-diagonal terms \(v_{12}, v_{21} \) the level repulsion, see Fig. [4].

The m.e. (especially the off-diagonal m.e.) agree with the mean m.e. of about 100 keV obtained from the analysis of the lowest 20 particle-hole configurations in \(^{208}\text{Pb}\), see [4 8]. The values \(v \) are compatible with theoretical calculations [1 2], but more precise.

The systematic error is well estimated for the diagonal m.e. [4] by use of the deviation matrix \(d \) [Eq. (10)]. The systematic error for the off-diagonal m.e. is estimated from the residual matrix element

\[r_{12} = \sum_q (t_{11} E_{11} t_{1q} + t_{1q} E_{qq} t_{11}). \]

(14)

From Eqs. [5 10] we derive contributions from higher states and higher configurations to be small, \(|t_{1q}| < 0.14, |t_{q1}| < 0.14\). Shell model calculations support the assumption of statistically distributed signs for the amplitudes \(t_{1q}, t_{q1} \). So, a systematic error of the off-diagonal m.e. of about 40 keV may be assumed.

B. Data from IAR-pp'

A preliminary analysis of the IAR-pp' data [6] is consistent with the spin assignments given in Table [1]. Especially the 5292 \(1^{-} \), 5947 \(1^{-} \) states are selectively excited by the \(s_{1/2}, d_{3/2}, d_{5/2} \) IAR, respectively.

In early IAR-pp' experiments [2] excitation function were measured for several multiplets with a resolution of 26 keV. The energies given by Ref. [2] derive from the calibration of IAR-pp' spectra taken with the Enge split-pole magnetic spectrograph [16]. They are about 0.13% too low [6].

Measurements of the excitation function for the unresolved \(5280 0^{-}, 5929 1^{-} \) doublet ("5.284 MeV") show a strong excitation by the \(s_{1/2} \) IAR. A weak excitation by the \(d_{5/2} \) IAR is explained by the \(d_{5/2} f_{5/2} \) component in the \(5280 0^{-} \) state [Eqs. (6 9)] and \(d_{5/2} f_{5/2}, d_{5/2} p_{3/2} \) components in the \(5922 1^{-} \) state [Eq. 4].

Similarly the resolved 5924 2\(^{-}\), 5947 1\(^{-}\) doublet ("5.914 + 5.936 MeV") is dominantly excited by the \(d_{3/2} \) IAR proving the presence of about equal \(d_{3/2} p_{1/2} \) components in both states in agreement with the results from \(^{207}\text{Pb}(d, p)\). Whereas the 5924 state clearly resonates on the \(s_{1/2} \) IAR (which is explained by weak \(s_{1/2} f_{5/2} \) and \(s_{1/2} p_{3/2} \) components), the decay curve of 5947 state near the \(s_{1/2} \) IAR is smooth.

The \(d_{3/2} \) and \(s_{1/2} \) IAR are not well isolated, \(E_{res} = 16.496, 16.965 \text{ MeV}\) and \(E_{tot} = 45 \pm 5, 45 \pm 8\), respectively. Assuming isolated IAR and using the amplitudes of Eq. [13], a calculation of the cross sections for the 5280 0\(^{-}\) and 5599 0\(^{-}\) states on the \(d_{5/2} \) and \(s_{1/2} \) IAR (using the IAR parameters of Ref. [6]) roughly agrees with the measured data. An essay following Ref. [17] to describe the angular distributions by interfering IAR did not yield conclusive results essentially because of missing data at scattering angles \(\Theta < 40^\circ \).

IV. SUMMARY

Up to \(E_x = 6.1 \text{ MeV}\), the shell model predicts about 120 one-particle one-hole states in \(^{208}\text{Pb}\) but only two states with spin 0\(^{-}\). From a measurement of the reaction \(^{207}\text{Pb}(d, p)\) at a resolution of 3 keV, we identify the two known states with spin 0\(^{-}\) among about 150 states in a region where the mean level spacing is 6 keV. Spectroscopic information for the two 0\(^{-}\) states is used to determine their structure.

Matrix elements of the residual interaction for the unique case of a two-level mixing between the two lowest 0\(^{-}\) configurations in \(^{208}\text{Pb}\) are derived with higher precision than current shell model calculations. Spectroscopic information for the nine lowest 1\(^{-}\) states is used to quantify the systematic uncertainty.

Additional data from inelastic proton scattering via IAR in \(^{209}\text{Bi}\) support the structure information obtained.

Acknowledgments

This work has been supported by MLL, DFG C4-Gr894/2-3, and DFG Br799/12-1.
TABLE II: Up to $E_x = 6.5$ MeV, for the two states with spin 0$^-$ (marked •) and nine states with spin 1$^-$, the mean cross section $\langle \frac{d\sigma}{d\Omega} (E_x) \rangle$ [see Eq. (2)] adjusted to reproduce the cross section at $\Theta = 25^\circ$ for the 5924 1$^-$ state is shown. Within 1–2 keV, the energy label reflects the energies E_x from Refs. 3, 11, 12, 13, 14 or this work. The reaction 207Pb(d, p) was measured with the same deuteron energy $E_d = 22.000$ MeV as Refs. 11, 12. In the states with spin 1$^-$, the $L = 0$ and $L = 2$ transfer excites the $s_{1/2}p_{1/2}$ and $d_{3/2}p_{1/2}$ configurations, respectively, but in the two 0$^-$ states only the $s_{1/2}p_{1/2}$ component is excited by the $L = 0$ transfer [Eqs. (3), (4)]. From the measured angular distributions, we derive the ratio $r_{2,0}$ of the strength I^2 for the configurations $d_{3/2}p_{1/2}$ ($L = 2$) and $s_{1/2}p_{1/2}$ ($L = 0$). Namely, the angular distribution for $L = 2$ is flat in contrast to the steep slope for $L = 0$. For the same S.F. the relative cross section at $\Theta = 25^\circ$ $\langle \frac{d\sigma}{d\Omega} (E_x) \rangle$ rates as about 1 : 0.5 for $L = 2$ to $L = 0$ 11, 12.

n	Energy label I^π	$S_{(d,p\gamma)}$ \times1000	S_F \times1000	$r_{2,0}$ $\langle \frac{d\sigma}{d\Omega} (E_x) \rangle$ $\mu b/sr$
1	4841 1$^-$	11 ± 4	>0.5	22 ± 5
2	5280 0$^-$	0 377 ± 32	0 650	0 250 ± 10
3	5512 1$^-$	0 1071 ± 325	0 1550	<0.1 785 ± 30
•	5599 0$^-$	0 60 ± 6	>0.8 160 ± 15	
4	5641 1$^{-1}$	4 2	>0.7 22 ± 3	
5	5947 1$^{-2}$	2 1266 ± 488	2 1390	>123 1300 ± 803
6	6263 1$^{-3}$	2 55 ± 23	2 7	>0.6 25 ± 10
7	6314 1$^{-4}$	2 88 ± 38	0 113	>0.7 38 ± 12
8	6360 1$^{-5}$	2 29 ± 13	2 13	>0.7 9 ± 3
9	6486 1$^{-6}$	302	2 38	>0.8 30 ± 5

1 $I^\pi = (1^-, 2^+)$ from Refs. 13, 14. The preliminary analysis of our data excludes spin 2$^+$.
2 Derived from the relative population strength (S_{expt}).
3 By comparison to the 5924 2$^-$ state with $L = 2$ only.
4 The error includes the variation of the angular distribution with Θ.
5 $I^\pi = 1^-$ from Refs. 13, 14.
[10] M. J. Martin. *Nucl. Data Sheets*, 47:797, (1986).
[11] B. D. Valnion, V. Yu. Ponomarev, Y. Eisermann, A. Gollwitzer, R. Hertenberger, A. Metz, P. Schiemenz, and G. Graw. *Phys. Rev.*, C63:024318, (2001).
[12] B. D. Valnion. PhD thesis, Universität München, (1998). Herbert Utz Verlag, München.
[13] E. Radermacher, M. Wilhelm, S. Albers, J. Eberth, N. Nicolay, H.-G. Thomas, H. Tiesler, P. von Brentano, R. Schwengner, S. Skoda, G. Winter, and K. H. Maier. *Nucl. Phys.*, A597:408, (1996).
[14] E. Radermacher, M. Wilhelm, P. von Brentano, R. V. Jolos. *Nucl. Inst.*, 620:151, (1997).
[15] Minfang Yeh, P. E. Garrett, C. A. McGrath, S. W. Yates, and T. Belgya. *Phys. Rev. Lett.*, 76:1208, (1996).
[16] C. F. Moore, J. G. Kulleck, P. von Brentano, F. Rickey. *Phys. Rev.*, 164:1559, (1967).
[17] A. Heusler, M. Endriss, C. F. Moore, E. Grosse, P. von Brentano. *Z. Phys.*, 227:55, (1969).