Ectopic Expression of GIP in Pancreatic β-Cells Maintains Enhanced Insulin Secretion in Mice With Complete Absence of Proglucagon-Derived Peptides

Ayako Fukami,1 Yusuke Seino,1,2 Nobuaki Ozaki,1,3 Michiyo Yamamoto,4 Chisato Sugiyama,4 Eriko Sakamoto-Miura,1 Tatsuhito Himeno,1 Yoshiko Takagishi,4 Shin Tsumekawa,1 Safina Ali,5 Daniel J. Drucker,5 Yoshiharu Murata,4 Yutaka Seino,6 Yutaka Oiso,1 and Yoshitaka Hayashi4

Glucagon and glucagon-like peptide-1 (GLP-1) are produced in pancreatic α-cells and enteroendocrine L-cells, respectively, in a tissue-specific manner from the same precursor, proglucagon, that is encoded by glucagon gene (Gcg) and play critical roles in glucose homeostasis. Here, we studied glucose homeostasis and β-cell function of Gcg-deficient mice that are homozygous for a Gcg-GFP knock-in allele (GcgGFP/GFP). The GcgGFP/GFP mice displayed improved glucose tolerance and enhanced insulin secretion, as assessed by both oral glucose tolerance test (OGTT) and intraperitoneal glucose tolerance test (IPGTT). Responses of glucose-dependent insulino tropic polypeptide (GIP) to both oral and intraperitoneal glucose loads were unexpectedly enhanced in GcgGFP/GFP mice, and immunohistochemistry localized GIP to pancreatic β-cells of GcgGFP/GFP mice. Furthermore, secretion of GIP in response to glucose was detected in isolated islets of GcgGFP/GFP mice. Blockade of GIP action in vitro and in vivo by cAMP antagonism and genetic deletion of the GIP receptor, respectively, almost completely abrogated enhanced insulin secretion in GcgGFP/GFP mice. These results indicate that ectopic GIP expression in β-cells maintains insulin secretion in the absence of proglucagon-derived peptides (PGDPs), revealing a novel compensatory mechanism for sustaining incretin hormone action in islets.

Diabetes 62:510–518, 2013

The glucagon gene encodes proglucagon, a precursor of multiple peptides including glucagon, GLP-1, oxyntomodulin, and GLP-2 (1,2). Glucagon is produced in pancreatic α-cells, whereas GLPs are found in intestinal L-cells (1,2). Glucagon has been recognized as a major counteracting hormone to insulin in regulating glucose homeostasis (3,4). The main action of glucagon is to stimulate hepatic glucose production by promoting gluconeogenesis and glycogenolysis while inhibiting glycogen synthesis and glycolysis in response to hypoglycemia (4,5). Dysregulation of glucagon secretion contributes to the pathophysiology of diabetes mellitus through increased hepatic glucose production (6,7). Furthermore, experimental suppression of hyperglucagonemia corrects postprandial hyperglycemia in individuals with type 2 diabetes (7). Therefore, inhibition of glucagon action represents one potential approach to the treatment of type 2 diabetes (4,8).

The importance of glucagon in regulating glucose homeostasis has been demonstrated by using genetically modified mouse models and by pharmacological interventions that suppress glucagon signaling (9–15). In such models, suppression of glucagon signaling increases circulating levels not only of glucagon but also of GLP-1. The increased GLP-1 levels, in turn, contribute to improved function of pancreatic β-cells. Mice with targeted deletion of the glucagon receptor gene (Gcgr−/−) exhibit increased plasma GLP-1 levels, enhanced insulin secretion in vivo, and resistance to streptozotocin-induced destruction of pancreatic β-cells (14,16). It also has been demonstrated that treatment with Gcgr antisense oligonucleotides improves glucose tolerance and increases circulating levels of active GLP-1 in rodent diabetic models (13). In addition, treatment with Gcgr antisense oligonucleotides increases both GLP-1 and the insulin content of islets in db/db mice (13).

GLP-1 and GIP, which is produced in intestinal K-cells, both have been recognized as incretins (1,17). Both GLP-1 and GIP stimulate insulin secretion and are secreted by intestinal endocrine cells in response to ingestion of nutrients, including carbohydrates, lipids, and proteins. In addition to insulino tropic effects, both GLP-1 and GIP promote β-cell proliferation and inhibit apoptosis (1,18). However, these peptides exert differential effects on glucagon secretion. GLP-1 inhibits the postprandial glucagon response, whereas GIP enhances it in a glucose-dependent manner (1,19,20).

To determine the consequences of loss of glucagon action in the absence of concomitant upregulation of GLP-1 production, we recently established a mouse model in which the entire proglucagon gene is disrupted by insertion of GFP. Both GFP and PGDPs are expressed in pancreatic α-cells and intestinal L-cells in heterozygous GcgGFP/+ mice. The homozygous (GcgGFP/GFP) mice lack all PGDPs and display hyperplasia of GFP-positive “α”-cells in pancreatic islets but not of “L”-cells in the intestine (2,21). In the current study, we characterized glucose tolerance and β-cell function in GcgGFP/GFP mice to elucidate the consequences of PGDP deficiency on islet function and glucose homeostasis.
RESEARCH DESIGN AND METHODS

Animal studies. The establishment of the glucagon–GFP knock-in mouse has been described previously in detail (21). Gcgff/+ and Gipr−/− mice (22), which had been backcrossed to C57Bl/6J background for at least eight generations, were provided by the RIKEN BRC through the National Bio-Resource Project of the MRXRT (Japan). Double heterozygote Gcgf/+ and Gipr−/− mice were intercrossed to obtain Gcgff/Gipr+− and Gcgff/Gipr−/− single knockout littermates and Gcgff/Gipr−/− double knockout (DKO) mice. All mice were housed in a temperature-controlled room under a standard 12-h light/dark cycle. All procedures were performed according to a protocol approved by the Nagoya University Institutional Animal Care and Use Committee.

Glucose tolerance test and measurement of insulin and GIP. After 16 h of food deprivation in 12- to 26-week-old male mice, 2-kg body weight t-glucose was administered in OGTT or IPGTT. Blood was collected at the indicated times to measure glucose, insulin, and GIP levels. Blood glucose levels were measured with Antsens II (Hiriba, Kyoto, Japan). Plasma levels of insulin and GIP were determined using a mouse insulin enzyme-linked immunosorbent assay kit (Moringa, Tokyo, Japan) and a rat/mouse GIP (TOTAL) enzyme-linked immunosorbent assay kit (Millipore, Billerica, MA), respectively.

Islet isolation and measurement of insulin and GIP secretion and GIP assay. Islet isolation and measurement of insulin and GIP secretion and GIP assay was performed as described. For determination of insulin and GIP content, islets were lysed in acid ethanol, and cell extracts were collected. GIP content was normalized to insulin content.

Immunohistochemistry, morphometric analysis, and electron microscopy. The pancreata of Gcgff/−, Gcgff/−, Gipf−/−, Gipf−/− Gcgff/+, Gcgff/+, Gipf/−, and Gipf/− mice were resected from 9-week-old mice. All mice were housed in a temperature-controlled room under a standard 12-h light/dark cycle. All procedures were performed according to a protocol approved by the Nagoya University Institutional Animal Care and Use Committee.

RESULTS

The Gcgff/+ Gipf−/− mouse exhibits enhanced insulin secretion. We first evaluated glucose tolerance and insulin secretion in Gcgff/+ Gipf−/− mice. As shown in Fig. 1A and 1C, Gcgff/+ Gipf−/− mice displayed improved oral and intraperitoneal glucose tolerance. Insulin secretion during the OGTT, in which secretion of incretins is stimulated, was significantly enhanced to a much greater extent despite lack of GLP-1 in Gcgff/+ Gipf−/− compared with control mice (Fig. 1B). Significantly increased insulin responses in Gcgff/+ Gipf−/− mice also were observed during the IPGTT, suggesting that compensatory mechanisms have evolved to upregulate β-cell function independent of the requirement for enteral glucose exposure (Fig. 1D). Because these results suggested that Gcgff/+ Gipf−/− mice may have developed of enhanced β-cell function in an autonomous manner, we examined glucose-induced insulin secretion from isolated islets. Insulin secretion from islets of Gcgff/+ Gipf−/− mice at 2.8 mmol/L glucose was significantly higher than in islets from control mice (Fig. 1E). Insulin secretion from Gcgff/+ Gipf−/− islets was significantly greater across a range of glucose levels, from 2.8 to 16.7 mmol/L (Fig. 1E).

β-Cell mass is not increased in Gcgff/+ Gipf−/− mice. To understand the mechanisms by which Gcgff/+ Gipf−/− mice exhibit improved islet function, we analyzed the morphology of pancreatic islets. Although by definition α-cells classically contain glucagon, we refer to GFP-positive cells in Gcgff/+ Gipf−/− mice as α-cells for simplicity throughout this article. As shown in Fig. 2A, increased islet number and hyperplasia of GFP-positive “α”-cells were conspicuous in Gcgff/+ Gipf−/− mice. Morphometric analysis revealed increases in both islet area and islet number in Gcgff/+ Gipf−/− mice (Fig. 2B, C). Whereas the α-cell area in the pancreata of Gcgff/+ Gipf−/− mice was significantly increased (Fig. 2D), the insulin-positive (β-cell) area in the pancreata of Gcgff/+ Gipf−/− mice was similar to that in Gcgff−/− mice (Fig. 2E). Accordingly, the ratio of α-cell area to β-cell area was increased in Gcgff/+ Gipf−/− mice (Fig. 2F). In electron microscopic analysis, the distribution of dense-core vesicles in β-cells, which contain insulin, was unchanged between Gcgff/+ Gipf−/− and control mice (Fig. 2G). Hence, the increased β-cell function observed in Gcgff/+ Gipf−/− mice in vivo is not secondary to increased numbers of β-cells.

Gcgff/+ Gipf−/− mice exhibit enhanced GIP secretion and increased GIP expression in pancreatic islets. Because GIP secretion is increased in Gipf−/−/− mice (24), we analyzed plasma GIP levels during OGTT and IPGTT in Gcgff/+ Gipf−/− mice. As shown in Fig. 3A and 3B, plasma GIP levels at baseline in Gcgff/+ Gipf−/− mice were modestly, yet significantly, higher than those in control mice. In the OGTT, plasma GIP levels at 15 min were increased both in the Gcgff/+ Gipf−/− and in the control mice; however, GIP levels in the Gcgff/+ Gipf−/− mice were significantly higher (Fig. 3A). Although circulating glucose levels do not classically influence intestinal GIP secretion, plasma GIP levels at 15 min were significantly increased in Gcgff/+ Gipf−/− mice but not in control mice during the IPGTT (Fig. 3B). We then investigated whether GIP expression in the Gcgff/+ Gipf−/− intestines is increased; however, levels of GIP mRNA expression in the intestine were comparable between Gcgff/+ Gipf−/− and control mice (Fig. 3C).

Recently, it has been reported that GIP is expressed in and secreted from pancreatic α-cells (25); therefore, we examined GIP expression in isolated islets. The expression levels of both GIP and GIPR mRNA in Gcgff/+ Gipf−/− mice were
markedly higher than those in control mice (Fig. 3D). GIP content in islets of Gcg^{gfp/gfp} mice also was significantly higher than in control islets (Fig. 3E). The GIP secreted from Gcg^{gfp/gfp} islets was detected after incubation in the presence of 16.7 mmol/L glucose for 16 h, whereas GIP was not detected in medium from Gcg^{gfp/+} islets (Fig. 3F).

The GIP secretion from Gcg^{gfp/gfp} islets also was undetectable when islets were incubated in 2.8 mmol/L glucose (data not shown). To elucidate the contribution of islet-derived GIP to augmented insulin secretion in Gcg^{gfp/gfp} mice, we analyzed the effect of blocking GIP signaling in isolated islets. Because GIP signaling is mostly mediated through intracellular cAMP signaling, we used Rp-cAMP, a cAMP antagonist that blocks activation of protein kinase A and Epac (26). Treatment with 500 μmol/L Rp-cAMP significantly attenuated glucose-induced insulin secretion from isolated islets of Gcg^{gfp/gfp} mice, whereas the insulin response to glucose in the control islets was not suppressed by Rp-cAMP (Fig. 3G). These results indicate that cAMP signaling plays a pivotal role in enhanced insulin secretion in Gcg^{gfp/gfp} islets and is consistent with a role for islet-derived GIP in augment islet function.

GIP is expressed in pancreatic β-cells in Gcg^{gfp/gfp} mice. We next assessed the cellular localization of GIP in the islets. The GIP immunoreactivity was distributed in the islet periphery and colocalized with GFP expressed in aβ-cells in the islets of Gcg^{gfp/+} mice (Fig. 3F). The GIP expression in β-cells was observed at embryonic day 18.5 in both control and Gcg^{gfp/gfp} mice (Supplementary Fig. 2). To address the
possible contribution of loss of glucagon and/or GLP-1 signaling in the altered intraislet expression pattern of GIP, we analyzed GIP expression in islets from mice deficient in GCGR (Gcgr^{−/−}) or GLP1R (Glp1r^{−/−}), or both (Gcgr^{−/−}Glp1r^{−/−}) (27). As shown in Fig. 4B, GIP immunoreactivity was localized in α-cells in these animals, suggesting that induction of β-cell GIP expression in islets of Gcgr^{−/−}Glp1r^{−/−} mice does not arise secondary to loss of GCGR or GLP1R signaling. We also performed immunohistochemical localization of two transcription factors, namely Pdx1 and Pax6, which have been shown previously to regulate GIP expression in intestinal K-cells (28). However, no differences in expression patterns of these transcription factors in β-cells of Gcgr^{−/−}Glp1r^{−/−} or Gcgr^{−/−}Glp1r^{−/−} mice (Supplementary Fig. 3) were observed, suggesting that transcription factors other than Pdx1 and Pax6 regulate GIP expression in β-cells.
FIG. 3. *Gcggfp/gfp* mice display enhanced GIP secretion and GIP expression in pancreatic islets, and enhancement of glucose-induced insulin secretion is blocked by Rp-cAMP in *Gcggfp/gfp* mice. Plasma GIP levels at 0 and 15 min after oral (A) or intraperitoneal (B) glucose administration in 12- to 17-week-old control (*Ctl, Gcg+/+, and Gcggfp/+*) and *Gcggfp/gfp* mice (*n* = 6–11 mice per group). C: mRNA expression of GIP in the intestine (*n* = 6–8). The expression level of GIP mRNA was normalized to that of glyceraldehyde-3-phosphate dehydrogenase mRNA. D: mRNA expression of GIP and GIP receptor (GIPR) in isolated islets (*n* = 4). The expression levels normalized to that of insulin 1 are shown. E: GIP content in isolated islets (*n* = 5–7). GIP content was normalized to insulin content. F: GIP secretion from islets (*n* = 5–8). Isolated islets were incubated with 16.7 mmol/L glucose for 16 h. G: Effect of Rp-cAMP on glucose-induced insulin secretion. Isolated islets from control (*n* = 14–22 in each group) and *Gcggfp/gfp* (*n* = 13–22 in each group) mice were incubated with the indicated concentration of glucose and 500 μmol/L Rp-cAMP for 30 min. Insulin secretion is expressed as the ratio of insulin released into the medium relative to insulin content. Values are expressed as means ± SEM. *P < 0.05; **P < 0.01. #P < 0.05; ###P < 0.001 vs. 0 min. u.d., undetectable.
Disruption of the Gipr gene abrogates enhanced insulin secretion in Gcg^{Gfp/Gfp} mice. To clarify the contribution of enhanced GIP action in the phenotype of Gcg^{Gfp/Gfp} mice, we generated and analyzed Gcg^{Gfp/Gfp}Gipr^{2/2} DKO mice. As observed in Gcg^{Gfp/Gfp} mice, immunohistochemical analyses localized GIP to β-cells of Gcg^{Gfp/Gfp}Gipr^{2/2} DKO mice (Fig. 5A), thus ruling out the possibility that the action of GIP itself is required for the altered expression pattern of GIP in islets. The hyperplasia of GFP-positive α-cells in the Gcg^{Gfp/Gfp}Gipr^{2/2} DKO mice was comparable with that in the Gcg^{Gfp/Gfp} mice (data not shown), indicating that GIPR signaling is not required for hyperplasia of α-cells. We then examined glucose tolerance and insulin secretion in the Gcg^{Gfp/Gfp}Gipr^{2/2} DKO mice in comparison with Gcg^{Gfp/Gfp} and control mice. Blood glucose levels in the Gcg^{Gfp/Gfp}Gipr^{2/2} DKO mice at 15 min after oral glucose loading were higher than those in Gcg^{Gfp/Gfp} mice (Fig. 5B), and increased insulin levels in Gcg^{Gfp/Gfp} mice were comparatively diminished in Gcg^{Gfp/Gfp}Gipr^{2/2} mice to a similar degree to levels in control mice (Fig. 5C). During the IPGTT, blood glucose levels were comparable between all three groups (Fig. 5D), whereas plasma insulin levels at 15 min after intraperitoneal glucose administration were lower in Gcg^{Gfp/Gfp}Gipr^{2/2} mice and similar to those in control mice (Fig. 5E). Furthermore, the enhancement of glucose-induced insulin secretion from isolated islets of Gcg^{Gfp/Gfp} mice was markedly attenuated in Gcg^{Gfp/Gfp}Gipr^{2/2} mice (Fig. 5F). These findings indicate that islet-derived GIP potentiates glucose-induced insulin secretion.

DISCUSSION

In the current study, we characterized β-cell function in mice with absence of all PGDPs, including glucagon and...
FIG. 5. Lack of GIP receptor signaling abrogates enhanced insulin secretion in Gcggfp/gfp mice. A: Representative immunostaining for GIP (red) and insulin (green), and GFP fluorescence (green) of islets from Gcggfp/gfpGipr2/2 mice. Scale bar, 100 μm. B: Blood glucose levels during the OGTT in 15- to 24-week-old control (Ctl), Gcggfp/gfp, and Gcggfp/gfpGipr2/2 mice (n = 5–7 mice per group). C: Plasma insulin levels at 0 and 15 min after oral glucose loading. D: Blood glucose levels during the IPGTT in 13- to 22-week-old mice (n = 6–8 mice per group). E: Plasma insulin levels 0 and 15 min after intraperitoneal glucose administration. F: Glucose-induced insulin secretion from isolated islets. Pancreatic islets were isolated from 5- to 7-month-old control (Ctl), Gcggfp/gfp, and Gcggfp/gfpGipr2/2 mice, and then incubated with the indicated concentration of glucose for 30 min. Insulin secretion is expressed as the ratio of insulin released into the medium relative to insulin content. Values are expressed as means ± SEM. *P < 0.05; **P < 0.01; ***P < 0.001 vs. Ctl. †P < 0.05; †††P < 0.001 vs. Gcggfp/gfp, Ctl, Gcggfp/gfpGipr+/+, Gcggfp/gfp, Gcggfp/gfpGipr+/+, and Gcggfp/gfpGipr2/2. (A high-quality digital representation of this figure is available in the online issue.)
GLP-1. Several studies using genetic and pharmacological suppression of glucagon signaling in animal models have demonstrated improvement not only of hepatic glucose metabolism but also of β-cell function (9–15). Deletion of the GCGR appears to increase GLP-1 production in islets, resulting in improved β-cell function (13,14,16). Although the Gcggr−/− mice lack glucagon, it was assumed that β-cell function in the Gcggr−/− mice would be impaired because of concomitant lack of GLP-1. Unexpectedly, however, we observed improved glucose tolerance and enhanced β-cell function in Gcggr−/− mice. These findings strongly suggest the emergence of novel compensatory mechanisms that maintain β-cell function in Gcggr−/− mice. Because GIP secretion was enhanced in Gcggr−/− mice (Fig. 4), the possible involvement of GIP was further explored in this study.

Glp1r−/− mice exhibit increased GIP secretion and sensitivity, which compensates for the lack of GLP-1 action (24). Mice lacking both the GLP1R and the GCGR show enhanced GIP sensitivity in islets, even though GIP levels are not increased (27). Interestingly, upregulation of GIPR mRNA levels was observed in Gcggr−/− islets, suggesting that enhanced GIP action serves as one of the compensatory mechanisms for lack of GLP-1 signaling. Gcggr−/−Glp1r−/− mice are similar to Gcggr−/− mice in that they lack both glucagon and GLP-1 signaling, but they exhibit preferential preservation of insulin secretion during the OGTT but not the IPGTT (27). In contrast, our findings of enhanced insulin secretion during both OGTT and IPGTT suggested that unlike findings in Gcggr−/−Glp1r−/− mice, enteral glucose–stimulated gut–derived factors were not likely to account for the enhanced β-cell function in Gcggr−/− mice.

Recently, it has been reported that GIP is expressed in pancreatic α-cells (25); however, whether GIP secretion from α-cells is stimulated by glucose remains unclear. It has been demonstrated that GIP secretion from intestinal K-cells is not stimulated by intraperitoneal glucose loading (1,18). The current study demonstrates that serum GIP levels are increased during the IPGTT in Gcggr−/− mice, but not in control mice. Furthermore, we confirmed enhanced GIP secretion from Gcggr−/− islets and GIP expression in β-cells in Gcggr−/−Glp1r−/− islets (Figs. 3F and 4A). These results suggest that glucose stimulates GIP secretion from β-cells of Gcggr−/− islets but not from normal islets, and are consistent with the functional observations. The mechanisms underlying emergence of GIP expression in β-cells remain unclear. Because GIP expression is observed in α-cells but not β-cells of Gcggr−/−, Glp1r−/−, and Gcggr−/−Glp1r−/− mice, as well as in controls, the loss of glucagon or GLP-1 action does not contribute to β-cell GIP expression. In addition, GIP expression was observed in β-cells in Gcggr−/−Glp1r−/−− mice, demonstrating that GIP itself is not required to induce GIP expression in β-cells.

Both blockade of GIP signaling by a cAMP antagonist in vitro (Fig. 3F) and elimination of the GIPR in vivo (Fig. 5) blunted the enhanced insulin response to glucose in Gcggr−/−Glp1r−/− mice. These results indicate that islet-derived GIP augments glucose-induced insulin secretion in an autocrine and/or paracrine manner in Gcggr−/−Glp1r−/− mice. However, enhanced endogenous GIP action does not appear to increase β-cell mass in Gcggr−/−Glp1r−/− islets. This observation may reflect a permissive need for elevated glucose levels to reveal the proliferative actions of GIP and is in accord with reports that GLP-1 promotes proliferation and survival of β-cells more strongly than GIP under hyperglycemic conditions (29).

In the current study, we demonstrate that glucose-induced insulin secretion by Gcggr−/−Glp1r−/− islets is comparable with that of control islets both in vivo and in vitro. These results contrast with observations in another model deficient in actions of both GLP-1 and GIP. Mice deficient in receptors for both GLP-1 and GIP (Glp1r−/−Gipr−/−) showed impaired insulin secretion in response to oral glucose administration compared with controls (30). During the course of the current study, it was reported that blockade of glucagon receptor expression improved oral glucose tolerance in Glp1r−/−Gipr−/− mice (27). It was also shown that islet expression of cholecystokinin A receptor and G-protein-coupled receptor 119 are increased on blockade of glucagon receptor expression and are involved in improved glucose tolerance (27). Such mechanisms also may contribute to the relative improvement in glucose tolerance in Gcggr−/−Glp1r−/−Gipr−/− mice compared with Glp1r−/−Gipr−/− mice.

In animal models deficient in glucagon activity, hyperplasia of α-cells or GFP-positive cells in Gcggr−/−Glp1r−/− islets has been observed. However, the mechanisms underlying hyperplasia remain largely unelucidated. Although glucagon itself may directly suppress proliferation of α-cells, several findings indicate that indirect signals arising from glucagon target organs also may play important roles in the development of hyperplasia. It has been reported that mice with liver-specific Gα deficiency display pancreatic α-cell hyperplasia (31), indicating that the direct effect of glucagon on α-cells is insufficient to block aberrant α-cell proliferation. Recently, Imai et al. (32) have demonstrated that signals from the liver mediated through the autonomic nervous system regulate β-cell proliferation. In addition, it has been demonstrated that hepatic metabolism, especially amino acid metabolism, is remodeled in animal models deficient in glucagon action (33,34). Such metabolic and/or neural signals from extraislet organs also may be involved in altered proliferation and function of α-cells. These indirect mechanisms also may account for the aberrant expression of GIP observed in β-cells of Gcggr−/−Glp1r−/−Gipr−/− islets.

Glucagon is believed not to cross the placenta (35). Because hyperplasia of α-cells gradually develops after birth in Gcggr−/−Glp1r−/− mice, this is consistent with loss of glucagon signaling indirectly contributing to the development of α-cell hyperplasia, as suggested by Chen et al. (31). GIP expression in β-cells is observed at embryonic day 18.5 in both control and Gcggr−/−Glp1r−/− mice (Supplementary Fig. 2). These findings differ from a previous report that showed that GIP was generally coexpressed with glucagon by immunostaining (36). Although Gcggr−/−Glp1r−/− mice expressed GIP in both insulin-positive β-cells and in insulin-negative cells that may be α-cells, GIP is expressed only in β-cells in Gcggr−/−Glp1r−/− mice. This difference in GIP distribution between Gcggr−/− and Gcggr−/−Glp1r−/− can be detected by embryonic day 18.5, when α-cell hyperplasia has not developed in Gcggr−/−Glp1r−/− mice. Therefore, these findings indicate that α-cell hyperplasia is not a prerequisite for altered GIP expression in islets.

In conclusion, we demonstrate that elimination of PGDPs results in enhancement of β-cell function that can be attributed to induction of GIP expression in β-cells. It is recognized that GIP is one of the most important factors in the regulation of insulin secretion when blood glucose levels increase after ingestion of nutrients (18). Our results show that GIP produced by β-cells is secreted when blood glucose levels increase, even if nutrients are not ingested.
via the gastrointestinal tract. Future investigations should elucidate the conditions required for and mechanisms underlying the ectopic expression of GIP in β-cells.

ACKNOWLEDGMENTS

This study was supported in part by grants-in-aid for Scientific Research from the Japan Society for the Promotion of Science (22500974 to N.O. and 21659232 to Y.H.) and a grant-in-aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology—Japan (23122507 to Y.H.). D.J.D. is supported by a Canada Research Chair in Regulatory Peptides, a BBC-Novo Nordisk Chair in Incretin Biology, and Canadian Institute for Health Research operating grants 89749 and 82700.

No potential conflicts of interest relevant to this article were reported.

A.F., Yus.S. M.Y., C.S., E.S.-M., T.H., Y.T., S.A., Y.H., and N.O. researched data. A.F., Yus.S., S.T., D.J.D., Y.M., Yu.S., Y.O., Y.H. and N.O. contributed to discussion. A.F. wrote the manuscript. Yus.S., S.T., D.J.D., Y.M., Yu.S., and Y.O. reviewed the manuscript. Y.H. and N.O. edited the manuscript. N.O. is the guarantor of this work and had full responsibility for the integrity of data and the accuracy of data analysis.

The authors are indebted to Dr. Maureen Charron (Albert Einstein College of Medicine, New York, NY) for facilitation of the study with Ggcg−/− tissues. The authors are grateful to Dr. Susumu Seino (Kobe University Graduate School of Medicine, Kobe, Japan) and Nobuya Inagaki (Kyoto University Graduate School of Medicine, Kyoto, Japan) for their helpful discussion and suggestions. The authors also thank Dr. Harumi Takahashi (Kobe University Graduate School of Medicine, Kobe, Japan) for technical assistance with islet experiments, Osamu Takahashi (Keyence, Osaka, Japan) for expert technical assistance with fluorescence microscopy, and Michiko Yamada and Mayumi Katagiri (Nagoya University Graduate School of Medicine, Nagoya, Japan) for technical assistance.

REFERENCES

1. Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology 2007;132:2131–2157
2. Hayashi Y. Metabolic impact of glucagon deficiency. Diabetes Obes Metab 2011;13(Suppl 1):151–157
3. Unger RH. Glucagon physiology and pathophysiology in the light of new advances. Diabetologia 1985;28:574–578
4. Jiang G, Zhang BB. Glucagon and regulation of glucose metabolism. Am J Physiol Endocrinol Metab 2003;284:E671–E678
5. Cherrington AD, Chiasson JL, Liljenquist JE, Lacy WW, Park CR. Control of hepatic glucose output by glucagon and insulin in the intact dog. Biochem Soc Symp 1978;43:31–49
6. Baran AD, Schaeffer L, Shragg P, Koltermann OG. Role of hyperglucagonemia in maintenance of increased rates of hepatic glucose output in type II diabetics. Diabetes 1987;36:274–283
7. Shah P, Vella A, Basu A, Basu R, Schwenk WF, Rizza RA. Lack of suppression of glucagon contributes to postprandial hyperglycemia in subjects with type 2 diabetes mellitus. J Clin Endocrinol Metab 2000;85:4035–4039
8. Dallas-Yang Q, Chen X, Strowski M, et al. Hepatic glucagon receptor binding and glucose-lowering in vivo by peptide and non-peptide glucagon receptor antagonists. Eur J Pharmacol 2004;501:225–234
9. Brand CL, Rolin B, Jørgensen PN, Svendsen I, Kristensen JS, Holst Jl. Immunoneutralization of endogenous glucagon with monoclonal glucagon antibody normalizes hyperglycemia in moderately streptozotocin-diabetic rats. Diabetologia 1994;37:985–993
10. Gelling RW, Du Xq, Dickmann DS, et al. Lower blood glucose, hyperglycagonemia, and pancreatic α cell hyperplasia in glucagon receptor knockout mice. Proc Natl Acad Sci USA 2003;100:1438–1443
11. Liang Y, Osborne MC, Monia BP, et al. Reduction in glucagon receptor expression by an antisense oligonucleotide ameliorates diabetic syndrome in db/db mice. Diabetes 2004;53:410–417
12. Parker JC, Andrews KM, Allen MR, Stock JL, McNeish JD. Glycemic control in mice with targeted disruption of the glucagon receptor gene. Biochem Biophys Res Commun 2002;290:839–843
13. Sørensen H, Winzell MS, Brand CL, et al. Glucagon receptor knockout mice display increased insulin sensitivity and impaired β-cell function. Diabetes 2006;55:3463–3469
14. Winzell MS, Brand CL, Wierup N, et al. Glucagon receptor antagonism improves islet function in mice with insulin resistance induced by a high-fat diet. Diabetologia 2007;50:1453–1462
15. Conarello SL, Jiang G, Mu J, et al. Glucagon receptor knockout mice are resistant to diet-induced obesity and streptozotocin-mediated beta cell loss and hyperglycemia. Diabetologia 2007;50:142–150.