DUSTY DISKS AROUND WHITE DWARFS. I. ORIGIN OF DEBRIS DISKS

RUOBING DONG1,2, YAN WANG1,3, D. N. C. LIN1,4, AND X.-W. LIU1,5

1 Kavli Institute of Astronomy and Astrophysics, Peking University, Beijing, China
2 Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA; rdong@astro.princeton.edu
3 Department of Astronomy and Astrophysics, Penn State University, State College, PA 16802, USA; yuw123@psu.edu
4 Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064, USA; lin@ucolick.org
5 Department of Astronomy, Peking University, Beijing, China; liuxw@bac.pku.edu.cn

Received 2009 June 17; accepted 2010 March 30; published 2010 May 6

ABSTRACT

A significant fraction of the mature FGK stars have cool dusty disks at least an order of magnitude brighter than the solar system’s outer zodiacal light. Since such dusts must be continually replenished, they are generally assumed to be the collisional fragments of residual planetesimals analogous to the Kuiper-Belt objects. At least 10% of solar-type stars also bear gas giant planets. The fraction of stars with large gas giants or detectable debris disks (or both) appears to increase with the stellar mass. Here, we examine the dynamical evolution of systems of long-period gas giant planets and residual planetesimals as their host stars evolve off the main sequence, lose mass, and form planetary nebula around remnant white dwarf cores. The orbits of distant gas giant planets and super-km-size planetesimals expand adiabatically. During the most intense asymptotic giant branch mass-loss phase, sub-meter-size particles migrate toward their host stars due to the strong hydrodynamical drag by the intense stellar wind. Along their migration paths, gas giant planets capture and sweep up sub-km-size planetesimals onto their mean-motion resonances. These planetesimals also acquire modest eccentricities which are determined by the mass of the perturbing planets, and the rate and speed of stellar mass loss. The swept-up planetesimals undergo disruptive collisions which lead to the production of grains with an extended size range. The radiation drag on these particles is ineffective against the planets’ resonant barrier and they form 30–50 AU size rings which can effectively reprocess the stellar light in the form of FIR continuum. We identify the recently discovered dust ring around the white dwarf WD 2226-210 at the center of the Helix nebula as a prototype of such disks and suggest such rings may be common.

Key words: methods: numerical – planetary nebulae: general – planetary systems – stars: AGB and post-AGB – stars: evolution – stars: individual (WD2226-210)

Online-only material: color figures

1. INTRODUCTION

The discovery of over 300 planets shows that at least 10% of nearby solar-type stars have Jupiter-mass planets around them (Cumming et al. 2008). According to widely adopted sequential accretion hypothesis, these planets formed through condensation of heavy elements, emergence of planetesimals which coagulated into protoplanetary embryos and cores prior to efficient gas accretion. Through a series of population-synthesis simulations based on this scenario (Iida & Lin 2004a, 2004b, 2005, 2008a, 2008b), we were able to reproduce the observed mass–period (\(M_p-P\)) distribution of the known gas giant planets (Schlaufman et al. 2008) around a modest fraction (\(\eta_f\)) of FGK main-sequence dwarf stars.

The mass accretion rate \(\dot{M}\) from protostellar disks onto stars more massive than the Sun is observed to increase with square of the stellar mass, i.e., \(M_*^2\) (Natta et al. 2006; Garcia et al. 2006; cf. Clarke & Pringle 2006). If the initial mass of these disks also increases with \(M_*\), the greater availability of heavy elements would provide more rapid growth and larger of protoplanetary embryos around intermediate-mass stars (Iida & Lin 2004b, 2005; Kennedy et al. 2007). Furthermore, the extended local surface density and pressure maxima at the ionization radius (where the mid-plane temperature \(T_c \approx 1000\) K), snow line (Kretke et al. 2009), and outer edge of the dead zone provide more efficient barrier against hydrodynamic drag for the sub-km grains and type-I migration for the critical-mass (\(\sim 10\ M_\oplus\)) cores. The enhance retention efficiency of these building blocks enhances emergence probability of gas giants (Laughlin et al. 2004; Ida & Lin 2004b).

On the observational side, high-precision radial-velocity surveys of intermediate-mass main-sequence stars have been handicapped by their hot and active atmosphere as well as their fast spin (Griffin et al. 2000). However, these problems are significantly reduced when these stars evolve off their main sequence. Several planets have been found around G subgiants and giants (Sato et al. 2005) which have more expanded envelopes and relatively cool atmospheres. Preliminary surveys indicate that the fraction of these relatively massive G giant stars with gas giant planets (\(\eta_f \sim 1/3\)) may be more than double that around the solar-type G dwarf main-sequence stars (Sato et al. 2007; Johnson et al. 2007; Dollinger et al. 2007; Hatzes 2008; Johnson 2008).

Another area where observations provide valuable clues on the planet formation process is the search for residual building-block planetesimals around their host stars. Since 1995, a population of Kuiper-Belt objects (KBOs) has been found in the solar system and beyond the orbit of Neptune (Jewitt & Luu 1995; Brown et al. 2005). These objects are thought to be the parent bodies of a diffuse dusty ring which emits cold zodiacal light with far-infrared (FIR) radiation.

A series of recent systematic 70 \(\mu\)m (FIR) observational surveys with the Spitzer Space Telescope indicate that (1) none of the nearby M stars show detectable excess (Gautier et al. 2007), (2) 15% of 274 FGK stars show excess (Bryden et al. 2006; Beichman et al. 2006; Trilling et al. 2008), and
them around an A5V star HR 8799 (Marois et al. 2008). The presence of gas giant planets and debris disks is highlighted by the recent discovery (with adaptive optics) of three gas giants and a debris disk outside them around an ASV star HR 8799 (Marois et al. 2008). The mass and periods of these three planets are (10, 10, 7) \(M_\odot \) and (24, 38, 68) AU. Around this \(M_\star = 1.5 M_\odot \) star, the ice line is located at \(\sim 10 \) AU. In Section 2, we provide a more detailed discussion on the association of debris disks and planet formation in the solar system and around nearby stars.

With the evidence for the existence of many detectable debris disks and gas giant planets around nearby, mature, intermediate-mass stars, we now consider their dynamical evolution during the post-main-sequence evolution of their host stars. The goal of our study here is to identify whether the inconspicuous planet-building blocks may reveal their presence. The analysis to be presented below is particularly relevant for the asymptotic giant branch (AGB) mass-loss phase where the mass-loss rates range up to \(\sim 10^{-4} M_\odot \) yr\(^{-1}\) and where most of the stars may reach this mass-loss rate near the end of the AGB phase (Willson 2000). The typical outflow speed is \(\sim 10 \) km s\(^{-1}\) and \(M_\star \) may vary on the time scale of \(10^3-10^4 \) yr (Weidemann 1987; Blocker 1995). After losing mass on the AGB, these stars rapidly evolve across the H-R diagram to form planetary nebula around emerging white dwarfs. During the post-AGB phase, although high-speed mass loss continues to occur, the mass flux is much reduced (cf. Kwok 1982).

In this paper, we mostly consider stars with main-sequence masses in the range of \(2 M_\odot < M_\star < 4 M_\odot \) (A–F stars). We choose these stars not only because many, perhaps most of them, have gas giants and debris disks (similar to those around the less massive Sun and HR 8799), but they are also thought to be the progenitors of some well-known planetary nebulae such as the Helix nebula where the mass of the remnant white dwarf WD 2226-210 is \(\sim 0.58 M_\odot \) (Su et al. 2007). This rapid and large-magnitude change in the gravitational potential can lead to great orbital expansions for their planets. This evolutionary tendency may lead to the possibility of resolvable Hubble Space Telescope (HST) imaging of long-period planets which are otherwise undetectable.

Evidence for the existence of residual planetesimals comes from the recent discovery of a dusty ring around a young white dwarf WD 2226-210 at the center of the Helix nebula (Su et al. 2007). This ring extends between about 35 and 150 AU from a central white dwarf WD 2226-210 (well interior to the complex, helix structure) and has a total mass of about 0.13 \(M_\oplus \). We propose that this ring is the byproduct of planets and planetesimals’ orbital evolution during the epoch when the central star rapidly lost most of its mass. Based on the extrapolation of the system around HR 8799, our basic conjectures are:

1. gas giant planets and debris disks are common around A main-sequence stars;
2. at the epoch of their main-sequence turnoff, these relatively massive stars have debris disks with more than 10 \(M_\oplus \) in total mass and most of it is contained in km-size residual planetesimals;
3. gas giant planets’ orbits expanded adiabatically by nearly an order of magnitude while there host stars evolve through AGB mass-loss phase with rapid stellar mass loss;
4. the KBO-equivalent planetesimals are captured onto the main motion resonance of gas giants; and
5. through collisions, these parent bodies generate dust which reprocess the radiation of their central star.

These basic assumptions are based on their solar system and HR 8799 analogs. A detailed and systematic analysis of these processes is useful for understanding the long-term evolution of this class of planetary systems. In Section 3, we first construct a working model for a solar-system-like configuration. The orbital evolution of the planets and planetesimals is computed and analyzed in Section 4. Here, we take into account the central star’s mass loss, the hydrodynamic drag by the expanding envelope, and the planet’s dynamical perturbation on the residual planetesimals. In Section 5, we show that collisions between the resonant planetesimals lead to their disruptions and fragmentation. We derive the condition for the retention of dust grains into rings outside the orbits of some gas giant planets. We model the structure of the disk around WD 2226-210 in Section 6. Finally, we summarize our results and discuss their implication, especially in the context of possible detectable gas giant planets around young white dwarfs in Section 7.

2. ASSOCIATION OF DEBRIS DISKS AND GAS GIANTS

In this section, we briefly recapitulate existing observational information on the inventory of residual planetesimals in the outer solar system and around mature, intermediate-mass main-sequence stars. These data will be used in the subsequent sections for the development of our working model.

2.1. Inventory of Residual KBOs in the Outer Solar System

KBOs are marginally preserved at their remote location because planetary perturbation (by gas and ice giants) is relatively weak (Duncan & Quinn 1993). However, their present-day spatial distribution also poses a challenge to the formation of the largest KBOs which have masses comparable to Pluto. If their building blocks were initially smoothly distributed with respect to their distances from the Sun, in situ formation of such large KBOs would require more than a few \(M_\oplus \) of planetesimals in the region 30–50 AU (Stern 1996; Youdin & Chiang 2004). This required total mass is \(\sim 2 \) orders of magnitude larger than the total reservoir of all known KBOs. Dynamical perturbation by Uranus and Neptune can induce a substantial depletion from a massive initial inventory to the present-day KBO reservoir (Duncan & Quinn 1993). This stringent requirement would be relaxed under the assumption that the most massive KBOs were formed closer to the Sun and then scattered to their present-day location by gas or ice giant planets either during the advanced phase of their formation (Zhou & Lin 2007) or through long-term dynamical evolution of the system (Duncan et al. 1987). It is possible that the size distribution of the KBOs extends well below the present detection limit. Elsewhere in the solar system, the crater density on the unprocessed moons of the outer planets (Hartmann 1999) indicates that they have been bombarded by meteorites with a size distribution \(dN/ds \propto s^{-3.5} \) as observed among the asteroids (Gradie et al. 1989). This distribution is probably the byproducts of a collisional equilibrium (Dohnanyi 1969; Williams & Wetherill 1994; Farinella &
Davis 1996; Tanaka & Ida 1996; Kenyon & Bromley 2002; Weidenschilling 2004). On the small-size limit, particles in Saturn’s rings (Cuzzi et al. 1980) and grains in the interstellar medium (Mathis et al. 1977; Laor & Draine 1993) follow a similar pattern. With such a size distribution, most of the surface area is covered by the small particles while a large fraction of the total mass is contained in the large particles.

As a population, the KBOs have directly observed size distribution $dN/ds \propto s^{-5}$ for $s > 100$ km (Trujillo et al. 2001) whereas, below $s \sim 70$ km, dN/ds is considerably shallower than $s^{-3.5}$, (i.e., there is a deficit of small particles) down to the detection limit of a few 10 km (Bernstein et al. 2004). This break in the slope of the size distribution implies that a large fraction of the KBOs’ total mass is contained in particles with $s \sim 10$–100 km. One possible reason for this complex power-law distribution is the collisional fragmentation of KBOs as piles of loose gravels (Pan & Sari 2005).

At their present distance, it is difficult to directly image planetesimals smaller than a few 10 km. However, micron to submillimeter particles in the asteroid belt and Kuiper Belt scatter and reprocess the solar radiation to produce warm and cold zodiacal light (Backman et al. 2005). Due to the Poynting–Robertson (PR) drag induced on them by the stellar photons, the grains undergo orbital decay on time scale much shorter than the age of the Sun. Thus, these grains must be continually replenished, most likely through the breakup of their parent bodies in the Kuiper Belt (Kenyon & Luu 1999). Energetic collisions can indeed lead to the disintegration of parent bodies and a catastrophic production of very small fragments (Fujiwara et al. 1977; Petit & Farinella 1993; Benz & Asphaug 1999). The KBOs can provide sufficiently frequent collisions to replenish the supply of small grains needed to account for the observed level of the zodiacal light provided (1) a non-negligible fraction of their total mass is contained in KBOs with $s < 100$ km and (2) a modest fraction of these collisions actually lead to catastrophic fragmentation.

Asymmetric reradiation of stellar light by spinning bodies can lead to a torque on their orbits. This effect is commonly known as the Yorovski (YORP) effect (Bottke et al. 2000; de Pater & Lissauer 2001). The characteristic YORP-induced orbital-evolution time scale for planetesimals with a density ρ_p, semimajor axis a_i, and Keplerian speed v_K is

$$\tau_y \sim \frac{\pi c\rho_p s a_i^2 v_K^2}{L_*},$$

(1)

where M_* and L_* are the mass and luminosity of the host star. The magnitude of the efficiency factor f is determined by the fractional amplitude of seasonal and diurnal temperature variations. The orbits of planetesimals with prograde spins expand as they experience a positive force (and f) whereas planetesimals with retrograde spins undergo orbital decay with a negative f. The YORP effect enhances the PR drag for small particles. It can also lead to significant diffusion in the spatial distribution of km-size planetesimals during the main-sequence life span of intermediate-mass stars. At 10 AU from stars with L_* 10 times larger than that of the Sun, meter-size particles may undergo orbital decay within a Myr (see Section 3).

2.2. Debris Disks around Nearby Intermediate-mass Stars

In the quest to determine the properties and understand the origin of planets around other stars, it is often useful to identify their solar-system analogs. Although it is impossible to directly detect residual planetesimals similar to the KBOs, the counterpart to the solar-system zodiacal light has been found with the Spitzer Space Telescope in the form or MIR and FIR excesses around a significant fraction of nearby mature solar-type stars (Rieke et al. 2004; Beichman et al. 2005; Moro-Martin et al. 2007a; Hillenbrand et al. 2008). Such excesses are assumed to be due to the reprocessed stellar radiation by debris dusty disks or rings at ~ 2–20 AU from their host stars (Bryden et al. 2006, 2009; Trilling et al. 2008). The relevant-size grains are either blown away by radiation pressure or spiral toward their host stars due to radiation drag (both PR and YORP effects) on time scale much shorter than the age of the system (Artymowicz & Clampin 1997). They must be continually replenished by the collisions between relic planetesimals, analogous to those in the Kuiper Belt and Oort Cloud (Kenyon & Bromley 2002, 2004; Wyatt et al. 2007; Moro-Martin et al. 2007a, 2007b).

The Spitzer Space Telescope’s detection threshold for these systems is at least an order of magnitude brighter than the outer solar zodiacal light. It is entirely possible that all stars may have debris disks similar to that around the Sun. Some known debris disks have FIR excesses 10^3–10^5 times larger than that associated with the zodiacal light in the solar system (Bryden et al. 2006). On average, the rate of collisional dust production is approximately proportional to the square of the surface density of their parent bodies. Presumably, stars with detected debris disks have richer reservoirs of relic planetesimals than the Sun, albeit occasional major impacts may lead to brief episodic flare ups in the IR excess around individual systems (Kenyon & Bromley 2004; Grigorieva et al. 2007).

In the attempt to differentiate transient events and average properties, it may be fruitful to observationally determine the fraction of stars with detectable debris disks in a given population-analysis sample. In Section 1, we have already cited observational indications that η_d is an increasing function of M_* This correlation of debris disks with the stellar mass can be partially attributed to observational selection effect because (1) A main-sequence stars are generally younger and (2) their disks with similar fractional luminosity, relative to theirs, are brighter, warmer, and easier to detect than those around FGK dwarfs (G. Bryden 2008, private communication). Nevertheless, this correlation is consistent with the expectation inferred from (1) the fraction of stars with planets and (2) the disk accretion rate and mass around 1–3 Myr old stars are increasing functions of the stellar mass.

Further evidences for the collisional origin of debris-disk dust particles can be inferred from the general decline in the intensity of the debris disks with the age of individual host stars (Rieke et al. 2004). As a population, the fraction of A stars with 70 μm excess decreases from 48% around those younger than 30 Myr to 12% for those older than 400 Myr. These signatures are consistent with the expectation that both dynamical and collisional processes lead to the depletion of these parent bodies. Nevertheless, a fraction of relatively massive A stars return detectable debris disks throughout their main-sequence life span.

The fraction planet-bearing FGK main-sequence stars with FIR signature appears to be comparable to those without any known Jupiter-mass planets. After correcting some unfavorable observational selection effects, the intensity of the FIR excess for gas giant planet-bearing stars is ~ 3 times that for stars without any planets, albeit the statistical significance of this correlation is weak (Bryden et al. 2009). In contrast to the strong correlation between the metallicity of FGK dwarfs and
their planet-bearing probability (Fischer & Valenti 2005; Santos et al. 2005), there appears to be no correlation between it and detectable debris disks (Greaves et al. 2007). This dichotomy is probably due to the fact the retention of debris-disk parent bodies depends much less sensitively on the surface density of planet-building blocks in their nascent disks (Wyatt et al. 2007) than the emergence of gas giant planets (Ida & Lin 2005), there appears to be no correlation between it and their planet-bearing probability (Fischer & Valenti 2005; Santos et al. 2007). We have already indicated above that planet formation around the relatively massive stars may be more prolific not only because the protostellar disks around them have greater inventories of planet-building blocks but also that the planetesimals formed more readily and are better retained in these disks.

Since both η_r and η_d increase with M_* and attain modest values (0.2–0.3) for intermediate-mass stars, a significant fraction of them (such as HR 8799; Fomalhaut; Kalas et al. 2008) may contain both. Our objective in this paper is to consider the dynamics of the planets and residual planetesimals during the post-main-sequence evolution of some intermediate-mass host stars.

3. A WORKING MODEL

Dynamical response of planets as a consequence of mass loss during the planetary-nebulae stage has been considered by several authors in the past mostly in the context of metal-rich DZ white dwarfs (Stern et al. 1990; Sackmann et al. 1993; Parriott & Alcock 1998; Siess & Livio 1999a, 1999b; Debes & Sigurdsson 2002; Jura 2006).

For the origin of dusty disks in planetary nebulae, we consider similar effects, with a greater detailed treatment of both orbital dynamics and gas drag effects. We idealize the dynamics of the system into a series of interaction between three populations of objects: planetesimals with mass m_j, planets with mass M_j, and a central star with mass M_*.

There are two mean factors which influence the orbital change of a planet around the central star during the epoch of its mass loss: the change of the star’s mass, which reduces its gravity and causes the planet’s orbit to expand and the gas drag by the outflow, which induces orbital decay. But the magnitude of this drag on a gas giant planet is negligible so that the equation of motion for the gas giant is reduced to the standard Kepler’s problem.

But the drag effect has a significant effect on the orbit of the planetesimal. In addition, it is also perturbed by the gravity of the planet. In a nonrotating frame centered on the star, the equation of motion of a planetesimal at a position r_i can be expressed as

$$\frac{d^2 r_i}{d t^2} = -\frac{G M_* r_i}{a_i^3} - \sum J_j \frac{G M_j (r_i - r_j)}{|r_i - r_j|^3} - \sum J_j \frac{G M_j r_j}{r_j^3} - \frac{f_i}{m_i},$$

where r_j is the position of the planet and M_* is a function of time. On the right-hand side of the above equation, gravity of the star and planet are expressed in the first two terms. The third term corresponds to the indirect force due to the rotation of the frame (Murray & Dermott 1999) and the forth term represents the gas drag force on the particles.

In the Stoke’s region, the magnitude of the drag force on a planetesimal by the wind of its host star can be expressed as

$$f_i = \pi \rho_{wind} (s^2 + s_{wind}^2) (r_i - v_{wind}) |r_i - v_{wind}|,$$

where v_{wind} is the wind velocity, $s = (3 m_i / 4 \pi \rho_p)^{1/3}$ and $s_{wind} = G M_*/v_p^2$ are the physical and gravitational radius of a planetesimal with a mass m and density ρ_p (cf. Supulver & Lin 2000). In the radial direction, this drag contribution is much smaller than the gravity from all three bodies. However, in the azimuthal direction, the drag slows down the planetesimals’ initial Keplerian orbits (with a velocity $v_K = (G M_*/r_i)^{1/2}$ at a distance of r) to migrate inward on a characteristic time scale

$$\tau_{drag} = \left(\frac{r_i}{r} \right) = \frac{v_K}{2 f_i} \approx \frac{8 \pi \rho_p s^2 v_{wind}^2}{3 M_* v_K}.$$ (4)

In the above expression, we have neglected the gravitational focusing effect (which is small for km-size planetesimals) and assumed a steady spherically symmetric wind such that the background gas is determined by the stellar mass-loss rate

$$M_* = 4 \pi r^2 \rho_{wind} v_{wind}$$ (5)

and the wind speed v_{wind} is generally assumed to be 10 km s$^{-1}$ which is larger than v_K for r greater than a few AU.

We can include other effects to the equations of motion. For example, the shape of some planetary nebulae significantly departs from spherical symmetry (O’Dell et al. 2004). In a follow-up paper, we add a J_2 component to the stellar gravity. It is also possible to include the gravity of additional stellar or planetary companions. In the current investigation, we neglect the PR and YORP effects during the AGB mass-loss phase. Based on Equation (1), we estimate that these effects can lead to significant orbital evolution during the brief AGB mass-loss phase (for $\sim 10^6$ yr) only for sub-meter-size particles. Comparing Equations (1) and (4), we find that the hydrodynamic drag has a stronger impact on the orbital evolution of all particles at all locations if

$$M > M_Y \equiv 8 f L_s v_{wind}^2 / c v_K^2 \sim 10^{-6} M_0 \ yr^{-1}$$ (6)

during the AGB mass-loss phase. However, during the main-sequence life span τ_* of A stars, YORP can induce residual planetesimals with sizes smaller than

$$s_Y = \tau_* f L_s / (\pi \rho_p a_i^2 v_K) \sim (a_i / 10 \ AU)^{3/2} \ km$$ (7)

to migrate over a significant fraction of their a_i. The inward migration of planetesimals may be halted after they are captured by the mean-motion resonances of any embedded gas giants whereas the outward migration is limited to be less than 10^5 AU (see further discussions on the initial planetesimal reservoir below).

In order to fully explore possible range of initial conditions, we solve the equation of motion with a Hermite scheme which is kindly provided by S. J. Aarseth.

4. ORBITAL EVOLUTION OF PLANETS AND PLANETESIMALS DUE TO STELLAR MASS LOSS

We recapitulate here the response of planets and planetesimals due to the changing gravitational potential during the rapid loss phase of their host AGB or post-AGB stars.

4.1. Adiabatic Orbital Evolution of Planets and Large Planetesimals

In our model, there are two main factors which affect the planet’s orbital evolution: the reduction of the central mass and...
the gas resistance. The resistance term increases with s^2 while the gravitational term increases with $m_i \sim s^3$. For relatively large planetesimals, gas resistance is unimportant and its orbital change is determined only by the central mass. Provided the time scale of the host star’s mass loss $\tau_M = \left| \frac{M_\star}{M_*} \right|$ is long compared with their Keplerian orbital time scale $\tau_K = (a_i^3 / G M_\star)^{1/2}$, the planetesimals’ angular momentum $h = vR$ does not change during this episode of mass loss, i.e., it is an adiabatic invariant. The planetesimals also retain their radial action so that a centrifugal balance is maintained in which $v^2 = GM_\star/a_i$. Consequently, $a_i = h^2/GM_\star$ and the orbit expands as the host star loses mass (Duncan & Lissauer 1998).

In contrast, distant planets and planetesimals with $\tau_K > \tau_M$ react to the impulsive change in the gravitational potential such that they would escape if their host stars lose more than half of their mass. During the AGB mass-loss phase, the characteristic time scale for mass loss, $\tau_M, \sim 10^{5–6}$ yr. All planets and planetesimals with period less than τ_K (or semimajor axis within several 100 AU) undergo orbital expansion rather than escape.

The characteristic orbital expansion time scale is

$$\tau_{\text{exp}} = \left| \frac{a_i}{a_i} \right| \equiv \left| \frac{M_\star}{M_*} \right| = \tau_M. \quad (8)$$

From Equations (4) and (8), we find that the magnitude of $\tau_{\text{exp}} \propto \tau_{\text{drag}}$ for particles with sizes

$$s \sim s_c \equiv \frac{3M_*}{8\pi \rho_p a_i^2} \left(\frac{v_K}{v_{\text{wind}}} \right) \simeq 0.1 \left(\frac{M_\star}{M_\odot} \right)^{1.5} \left(\frac{a_i}{10 \text{ AU}} \right)^{2.5} \left(\frac{10 \text{ km s}^{-1}}{v_{\text{wind}}} \right) \text{km.} \quad (9)$$

The above equation is applicable in the $\rho_{\text{wind}} \propto 1/r^2$ (or $v_{\text{wind}} = \text{constant}$) region of the stellar wind, and with the planet orbital radius greater than a few stellar radii. During the AGB mass-loss phase, orbits of planetesimals with $s > s_c$ expand during the stellar mass loss. Orbits of planetesimals with $s \ll s_c$ undergo orbital decay on a time scale

$$\tau_{\text{drag}} \sim (s/s_c) \tau_M. \quad (10)$$

The relation of s_c with orbital radius is shown in Figure 1 which indicates that a km-size planetesimal would be larger than s_c at $r = 15$ AU from a mass-losing star so that its orbit would expand whereas it would be smaller than s_c at $r = 10$ AU so that it would undergo orbital decay during the mass loss. This dependence arises because the gas density in a steady wind decreases with a_i. All planetesimals with sizes larger than s_c at their initial location are expected to expand, albeit with size-dependent speeds.

We are primarily interested in Kuiper-Belt equivalent regions because (1) that is the region where FIR from the debris disks implies the potential presence of a large population of residual planetesimals, (2) it is outside the region where gas giants are expected to form, and (3) it is also outside the quasi-hydrostatic atmosphere of AGBs so that planetesimals may survive the evolution of their host stars prior to the AGB mass-loss phase. For this region, $s_c \sim 1$ km. In Section 2, we have already indicated that a significant fraction of the total mass in the Kuiper Belt may be contained in KBOs in this size range. In the above section, we also indicated that due to the YORP effect during the mean sequence evolution of their central stars, km-size KBOs (with $s < s_Y$) have a tendency congregate near the outer mean-motion resonances of long-period gas giants.

Around any given host star, the mass-loss rate during the AGB mass-loss phase may have large amplitude fluctuations. Since both the orbit expansion in response to the decreasing stellar mass and the gas drag in the stellar wind are proportional to the stellar mass-loss rate, s_c is independent of M (note that s_c is defined by $\tau_{\text{exp}} \simeq \tau_{\text{drag}}$ and both τ_{exp} and τ_{drag} are inversely proportional to M). Nevertheless, the magnitude of s_c decreases with the stellar mass. Also, τ_K is large at relatively large a_i such that the condition for adiabatically may be violated during episodes of rapid mass loss when τ_M is reduced below τ_K. Nevertheless, planets and planetesimals can still be retained at large distances provided the fractional loss of mass is limited during these brief events. Substantial mass reduction of the host stars can also cause dynamical instability of multiple-planet systems (Debes & Sigurdsson 2002). We will further explore this possibility in a subsequent paper.

4.2. Entrainment of Small Planetesimals by the Gas Outflow

We demonstrate the orbital evolution of marginal and small planetesimals with numerical solutions of the equation of motion. In general, the orbits of intermediate ($s \sim 1$ km) size, more distant ($r \sim 10$ AU) planetesimals may enlarge at rates slower than the adiabatic expansion rates for the more massive and distant planetesimals.

If a planetesimal is comparable to or smaller than a critical size, orbital decay would be introduced due to gas drag. The gas drag would reduce the planetesimal’s momentum notably, and the angular momentum would not remain constant. From Equations (2) and (3), we find that drag by the outwardly flowing gas exceeds the stellar gravity on particles smaller than

$$s_{\text{blowout}} \sim \frac{r \rho_{\text{wind}} v_{\text{wind}}^2}{\rho_p v_K^2} \sim \frac{M_* P_K}{\rho_p r^2} v_{\text{wind}}, \quad (11)$$

where P_K is the orbital period. These very small particles ($s < s_{\text{blowout}} \sim 1$ cm) are entrained by the stellar wind.

In order to quantitatively illustrate the divergent evolutionary paths of these particles, we consider a series of four planetesi-
cross each other’s orbit on a time scale
\[\tau_\Delta \simeq \frac{(a_s - r_p)}{a_s} \tau_{\text{drag}}(s) = \frac{(a_i - r_p)}{a_i} \frac{s}{s_c} \tau_{M_a}. \]
(12)

Provided their initial location \(a_i < r_{\text{final}} \), particles with sizes between
\[s_{\text{catchup}} \sim \frac{s_c a_i}{(a_i - r_p)} \]
(13)
and \(s_{\text{blowout}} \) generally undergo orbit crossing with the planet because the expansion of their orbits is slower than that of the planet.

Planetary nebulae along a planet’s expansion path encounter its mean-motion resonances prior to their orbit crossing. Provided the duration \(\tau_\Delta \) across the width of these resonances (\(\Delta \)) is long compared with the libration period near their centers (\(\tau_{\text{lib}} \)) planetesimals would be captured onto the planets’ mean-motion resonances (Murray & Dermott 1999). For example, a planet’s 2:1 resonance has a finite effective width \(\Delta/r_P \simeq 2\exp(1/2(M_P/M_\star)_{\text{i2}} \), where \(P_K = 2\pi c/\Delta \) is the orbital period of the planet, and a libration period at its center \(\tau_{\text{lib}} \approx (M_P/M_\star)^{1/2} P_K/2\exp(1/2) \). For this 2:1 resonance, the critical condition for capturing a planetesimal (with a size \(s \)) is
\[M_p > \frac{s_c}{s} \frac{P_K}{4\tau_{M_a}} M_\star. \]
(14)

Planetesimals with \(s_{\text{catchup}} < s < s_{\text{escap}} \) are captured onto the planet’s 2:1 resonance where
\[s_{\text{escap}} \sim \frac{s_c a_i}{4 \tau_{M_a} \exp(1/2)} \frac{M_\star}{1.6 r_p M_p}. \]
(15)

In the above expression, the term \(a_i/1.6 r_p \) is introduced to take into account the stellar mass loss which is the cause of planet’s orbital expansion. Equation (14) indicates that prior to reaching \(\sim 50–80 \) AU, a Jupiter-mass planet would be able to capture exterior km-size planetesimals \((s \simeq s_c(\sim 1 \text{ km})) \) onto its 2:1 resonance. A Neptune-mass ice giant would also be able to capture these marginal-size planetesimals while its semimajor axis is \(<10 \) AU.

Planetesimals with initial semimajor axis \(a_i < 1.6 r_P \) are already interior to the planet’s outer 2:1 resonance and they cannot be captured onto it. Also, relatively small \((s < s_c) \) planetesimals are unlikely to be captured onto the planet’s 2:1 mean-motion resonances because their orbital decay is too rapid. However, this special location is the most distant lowest-order mean-motion resonance from the planet. There are many other lowest-order (such as 3:2 and 4:3) mean-motion resonances which are closer to the planet’s orbit. At these location, planet’s resonant capture probability is enhanced.

In the proximity of the planet, these lowest-order mean-motion resonances overlap with each other and planetesimals with negligible eccentricities and \(\Delta \simeq (12)^{1/2} R_P \) can enter into the planet’s Roche radius \((R_R = (M_P/3M_\star)^{1/3} r_P) \) within a synodic period \(\tau_{\text{syn}} \simeq (3r_P/2\Delta) P_K \) (Lissauer 1987). Using a similar argument as above, the capture criterion becomes \(\tau_\Delta > \tau_{\text{syn}} \), i.e., the planetesimals must not be able to diffuse through this “feeding zone” before they had an inferior conjunction. Thus, a fraction of planetesimals with
\[s < s_{\text{bypass}} = \frac{s_c}{18} \left(\frac{3 M_\star}{2 M_p} \right)^{2/3} \frac{P_K M_\star}{M_\star}. \]
(16)
would be able to bypass the planet’s expanding orbit. For Jupiter-mass planets at \(\sim 30 \) AU around typical intermediate-mass AGB stars, \(s_{\text{bypass}} \sim (1–10) s_c \).

Although YORP effects can modify the radial distribution of km-size planetesimals during the host stars’ main-sequence phase (see Section 3), we neglect it in the determination of \(s_{\text{catchup}}, s_{\text{rescap}}, \) and \(s_{\text{bypass}} \). This approximation is adequate for the AGB mass-loss phase provided the host stars’ \(M > M_f \) (see Equation (6)). During the mass-loss process, a planet’s orbit expands by a factor of \(M_f/M_i \). Planetesimals with sizes in the range

\[
s_{\text{bypass}} < s < s_{\text{catchup}}
\]

are shepherded by the planet along its path. This size range is approximately an order of magnitude larger and smaller than \(s_c \). A population of slightly larger (\(s_{\text{rescap}} < s < s_{\text{catchup}} \)) and more distant (with initial \(a_i > 1.6 r_{p,i} \)) planetesimals is captured onto the planet’s 2:1 mean-motion resonances. Smaller or closer planetesimals may also be captured onto its other (such as 3:2 and 4:3) mean-motion resonances.

4.4. Numerical Calculation of Resonant Capture Process

In order to illustrate the resonant capture process, we carried out a series of numerical calculations. In Figure 3, we plot the orbital evolution of a 0.1 km size planetesimal. It has a density \(\rho_p = 3 \text{ g cm}^{-3} \) and it starts out with a circular orbit at 35 AU around an \(M_i = 4 M_\odot \) star which linearly reduces its mass to \(M_f = 1 M_\odot \) on a time scale of 100,000 yr through a wind with a speed \(v_{\text{wind}} = 10 \text{ km s}^{-1} \). The planet with a mass \(M_p = 1 M_f \) was placed in a circular orbit at 20 AU initially. (A color version of this figure is available in the online journal.)

Figure 3. This plot compares the orbital evolution of a \(s = 0.1 \) km planetesimal when there is a giant planet in the system (red) or not (green dotted), while the black dashed curve shows the orbital evolution of the planet. The density of the planetesimal is \(\rho_p = 3 \text{ g cm}^{-3} \) and it starts out with a circular orbit at 35 AU around a \(M_i = 4 M_\odot \) star which linearly reduces its mass to \(M_f = 1 M_\odot \) on a time scale of 100,000 yr through a wind with a speed \(v_{\text{wind}} = 10 \text{ km s}^{-1} \). The planet with a mass \(M_p = 1 M_f \) was placed in a circular orbit at 20 AU initially. (A color version of this figure is available in the online journal.)

Figure 4. The evolution of period ratio (\(P_{\text{planetesimal}}/P_{\text{planet}} \)) verse time for the system in Figure 3.

Figure 5. The orbital evolution of a group of different-size planetesimals verse time. The size of the planetesimals in the five curves are (from left to right) 3 km, 1 km, 300 m, 100 m, and 30 m. The system is one in Figure 3. (A color version of this figure is available in the online journal.)

action pushes the planetesimal to move outward. Meanwhile, the ratio of the planetesimal’s semimajor axis to the planet’s becomes fixed on some value (in this case, the ratio is \(1.5^{\pm} \)). Figure 4 shows the evolution of their period ratio. Starting from about 2.3:1 the ratio of the two periods decreases until the resonance point 3:2, and then it remains fixed on this value. During this process, although the period ratio passes 2:1 at about 10,000 yr, the planetesimal was not captured by the planet’s 2:1 mean-motion resonance.

As we have mentioned above that there are many factors which determine planetesimal’s resonant capture probability. First, for planetesimals with certain size, the initially positions of the planet and the planetesimals are important. Once the planet’s original orbit is set, only a range of initial position is appropriate for the planetesimals which would be captured. In Figure 5, we show the relation between initial positions and the final positions (semimajor axis) during the orbital evolution of several planetesimals with a range of sizes. In this model, we adopt the same planetary system as in Figure 3: with a linear mass-loss prescription for the host star (a constant loss rate from \(M_i = 4 M_\odot \) to \(M_f = 1 M_\odot \) within 100,000 yr and \(v_{\text{wind}} = 10 \text{ km s}^{-1} \)). A 1 \(M_f \) planet is placed on an initial circular orbit with a radius 20 AU, and its orbit evolves to \(r_f = 80 \text{AU} \), according to the ratio of the star’s mass loss. All planetesimals have density \(\rho_p = 3 \text{ g cm}^{-3} \). This figure shows that planetesimals with size in the range of 3 km–30 m could be captured onto the planet’s mean-motion resonance, including 2:1, 3:2, and 4:3 resonant
point (period ratio). It shows that despite a wide range of initial positions, for planetesimals of the same size, only the ones with initial a_i in a “critical range” could be captured onto the planet’s mean-motion resonances. For example, among all the $s = 300$ m planetesimals starting from 25 AU to 37 AU, only the ones with a_i between 27 AU and 31 AU could be captured onto 3:2 mean-motion resonance.

Second, a planetesimal’s size is also a determining factor for resonant capture probability. Equation (15) indicates that the effective size range for resonant capture ($s_{\text{rescap}} < s < s_{\text{catchup}}$) depends on the planetesimal’s initial location a_i, so the “critical range” of initial positions in the first point depends on the size of planetesimals. This dependence is confirmed by our numerical calculations. In Figure 5, the “critical range” for $s = 1$ km object to be captured onto 3:2 resonance is from 26 AU to 28 AU, while for $s = 100$ m object is from 26 AU to 38 AU. The smaller planetesimals comparatively feel “stronger” gas drag than larger ones at the same orbit, so they must have larger initial a_i’s so that the gas drag is insufficient to drag them in and they have the possibility to being captured by the planet. Generally speaking, this “critical range” is larger and further for small particles, as the picture demonstrates. These results are in good agreement with the above analytic estimates.

The magnitude of the gas drag is proportional to ρ_{wind} which is determined by the velocity of the gas wind and the mass-loss rate of the central star. However, Equation (9) indicates that s_c is essentially independent of M_\ast and v_{wind}. Nevertheless s_{rescap} does depend on τ_M and the star to planet’s mass ratio as well as planetesimals’ internal density (through s_c). In order to explore these dependences, we consider variation in the model parameters from the standard model we have been working with above, i.e., with $M \sim 10^{-4} M_\odot$ yr$^{-1}$ and $v_{\text{wind}} = 10$ km s$^{-1}$. These quantities may vary not only from star to star but also temporally around any host star. In addition, the initial and final mass of the stars determines the extent of planet’s orbital expansion and sweep up of the residual planetesimals. The internal density of the planetesimals (ρ_p) may also have a range of possible values, from ~ 3 gm cm$^{-3}$ for asteroids to an order of magnitude smaller for comets.

Apart from the model parameters we have discussed above, we have adopted several different prescriptions for the evolution of the mass-loss rate including constant, exponentially increasing, or ramp ups followed by declines. We find that once we have specified the initial and final stellar mass and the duration of the mass loss, our results are insensitive to variations in the mass-loss rates. We also consider a range of planetary masses ($1–10 M_j$) and eccentricities (0 and 0.1). Our results are also insensitive to the magnitude of these parameters.

In the present context, a planet’s final semimajor axis is generally less than 100 AU and its asymptotic period is <1000 yr. Thus, their orbital expansion is always adiabatic such that their orbits expand by a factor of M_\ast/M_f. By specifying the planet’s initial orbital radius, we can assess the inventory of planetesimals to be captured by the planet.

At which ratio of the orbital circle of the planetesimal and the planet would the particles be fixed is also determined by many factors. The rate of the orbital circle of the planetesimal and the planet would keep rising while no resonance happens. When it is close to a resonance point, whether or not it could stop raising and stay is primarily determined by whether or not the resonance is strong enough, which is decided by factors such as the gas’ density, the positions of the planetesimal and the planet, etc. In our discussion, there are three major resonance points: rate of the orbital circle equals 3:2, 4:3, and 3:2, while 3:2 is the most important one. It is shown in Figure 5. Take the curve of $s = 300$ m planetesimals, for example: the objects starting from $a_i = 27–31$ AU are captured onto 3:2 resonance, with a_f around 105 AU; starting from $a_i = 25–26$ AU are captured onto 4:3 resonance, which have a_f around 97 AU; and starting from $a_i = 35–36$ AU are captured onto 2:1 resonance, which have a_f around 128 AU.

5. COLLISIONAL EVOLUTION OF PLANETESIMALS AND PRODUCTION OF GRAINS

In the previous section, we suggest that km-size icy particles are the preferred population of residual planetesimals for planets’ resonance capture during the AGB mass-loss phase of their host stars. In the next section, we first estimate the condition under which a population of such planetesimals may emerge at 10–100 AU prior to the AGB phase.

We then show that as a consequence of their orbital expansion and planets’ sweeping process, these planetesimals’ eccentricities increase to modest values and their collision frequency is strongly enhanced. We show that planetesimals orbit crossing with each other leads to frequent high-velocity disruptive impacts and the production of small grains. These grains can then reprocess the stellar radiation and produce the observed FIR rings around the white dwarf at the center of the Helix nebula.

5.1. Inventory of Planetesimals

In Section 2, we indicated that around typical progenitor of planetary nebula (A main-sequence star), there may be a rich population of planetesimals. We now estimate their characteristic size prior to the mass loss from their host star.

There are two possible formation epochs for residual planetesimals (first few Myr and throughout the main-sequence lifetime of their host stars τ_\ast). First-generation planetesimals are formed in gas-rich protoplanetary disks. In such a gaseous environment, the velocity dispersion of the small planetesimals (σ) is excited by their mutual interaction and damped by their interaction with the disk gas (Kokubo & Ida 2002). Due to hydrodynamic drag by the turbulent disk gas, these particles also undergo orbital decay (Supulver & Lin 2000). During this formative stage for their host star, largest planetesimals can grow to sizes well beyond a few km, especially in special locations such as the snow line and in the proximity of proto gas giants. They can also be scattered to large distances by the emerging planets (Zhou & Lin 2007). Nevertheless, we have already showed in the last section that during the planetary-nebula stage, planetesimals with $s > s_{\text{catchup}}$ retain their semimajor axis ratio with respect to any embedded planet. They are unlikely to be captured onto any planet’s expanding mean-motion resonances.

Planetesimals can also grow in situ during the main-sequence life span of their host stars ($\tau_\ast \sim 10^8–10^9$ yr), long after the depletion of the disk gas. In this case, their σ is determined by their own collisional properties. Collisions can lead to both mergers and fragmentation. The conditions for collisional fragmentation for basalt and ices have been extensively studied experimentally and simulated numerically (Stewart & Leinhardt 2009). In collisions between two comparable km-size aggregates, the critical impact speed v_{frag} for significant fragmentation is around a few meter per second (which is comparable to their surface escape speed v_e for these planetesimals). Shattering collisions not
only inhibit the coagulation of planetesimals but also introduce considerable energy dissipation. In Keplerian disks (such as Saturn’s rings), particles’ velocity dispersion (σ) is determined by its excitation due to elastic scattering and damping due to inelastic collisions (Goldreich & Tremaine 1978; Bridges et al. 1984). In gas-free disks with $\sigma < v_{\text{frag}}$, planetesimals undergo cohesive collisions with growing σ (Palmer et al. 1993; Aarseth et al. 1993). When their v_{frag} exceeds v_{frag}, collisions quench both mass and σ growth. In the absence of a dominant population of large planetesimals or embedded planets, planetesimals establish a collisional equilibrium in which their σ is approximately isotropic with $\sigma \sim v_{\text{frag}}$. An isotropic velocity dispersion implies that planetesimals can only collide with others in an annulus with a half-width $a_i\sigma/v_K$ and the magnitude of σ determines not only the collisional frequency but also the thickness of the planetesimal disk.

For km-size planetesimals, $v_{\text{frag}} \sim v_K$ such that the collisional cross section of these planetesimals is mostly determined by their physical size. If most collisions are cohesive, the growth time scale (τ_{growth}) would be comparable to the collisional time scale (τ_{coll})

$$\tau_{\text{growth}} \sim \tau_{\text{col}} \simeq (a_i/v_K)^2(M_i/M_\text{tot})(P_K/2\pi),$$

where M_i and M_tot are the individual and characteristic total (at a_i) masses of planetesimals. The present estimates for M_tot in the Kuiper Belt ranges from a fraction to a few M_\oplus and that of debris disks around A stars may be near the upper end of this range (see Section 2). From Equation (18), we find the characteristic size of planetesimals to be

$$s_{\text{char}} \simeq \left(\frac{30 \text{ AU}}{a_i}\right)^{1/2}\left(\frac{1 \text{ g cm}^{-3}}{\rho_p}\right)\left(\frac{\tau_{\text{growth}}}{\tau_{\text{col}}}\right)\left(\frac{\tau_s}{0.1 \text{ Gyr}}\right)^{1/2}\left(\frac{M_\text{tot}}{M_\oplus}\right)\text{ km.}$$

(19)

The above equation suggests that the spontaneous production of an isolated population of km-size planetesimals within the main-sequence lifetime span of an A star requires M_tot to be a few M_\oplus. This estimate is consistent with that simulated for the Kuiper Belt region (Kenyon & Bromley 2004).

In the derivation of s_{char}, we assume that $\tau_{\text{growth}} \sim \tau_{\text{col}}$, i.e., all collisions are cohesive. Since $\sigma \sim v_{\text{frag}}$ some collisions are disruptive and s_{char} represents an upper limit in the planetesimals’ size distribution. In Section 2, we briefly show that the particle size distribution may follow a power law in which

$$dN/ds = (N_o/s_{\text{max}})(s/s_{\text{max}})^{-3.5},$$

(20)

where s_{max} is the size of the largest particles and N_o is a normalization factor. With this size distribution, most of the masses are attained by the largest planetesimals. As long as $s_{\text{char}} > 1 \text{ km}$, there is always a supply of residual planetesimals which may be captured by the resonance of expanding planets.

Equation (19) implies a large potential dispersion in s_{char} around stars with different τ_s and a_i. Perhaps the largest uncertainty is the total mass of residual heavy element M_tot. Around stars with relatively massive debris disks, $s_{\text{char}} > 1 \text{ km}$ and the total mass of km-size planetesimals is

$$M_{\text{km}} \sim (1 \text{ km}/s_{\text{char}})^{1/2}M_\text{tot} \propto M_\text{tot}^{1/2}.$$

(21)

But, in less massive disks, the supply of km-size planetesimals may be limited. Based on this consideration and the uncertain fraction of A stars with planets, we do not expect the detection of trapped planetesimals around the remnant white dwarf at the center of every planetary nebula.

5.2. Eccentricity Excitation

After km-size planetesimals are captured onto the planet’s mean-motion resonances, their orbital expansion would be locked provided the orbital migration time scale is longer than the resonant libration time scale, i.e., $\tau_M > \tau_{\text{lib}}$ or equivalently,

$$M_p > (M_\oplus/4\exp 1)(P_K/\tau_M)^2 \sim 10^{-5}M_\oplus.$$

(22)

Similar processes are found in the tidal evolution of Galilean satellites (Goldreich 1965; Lin & Papaloizou 1979; Yoder & Peale 1981) and migration of resonant planets (Lee & Peale 2002; Kley et al. 2004).

During their forced co-moving orbital expansion, the conservation of an adiabatic invariance induces the growth of resonant planetesimals’ eccentricity (e_\ast) (Murray & Dermott 1999) on a time scale

$$\tau_{e,\ast} = e_\ast/\dot{e}_\ast = 2e_\ast^2\tau_{\exp} = 2e_\ast^2\tau_M.$$

(23)

The above expression is for planetesimals in the planet’s 2:1 mean-motion resonance. A similar expression can be derived for planet’s other mean-motion resonances.

Although the stellar outflow is in the radial direction, its drag on the planetesimals can also lead to the damping of their eccentricities on a time scale

$$\tau_{e,d} \simeq (s/s_{\text{char}})\tau_M.$$

(24)

The above expression is derived from a linear perturbation analysis of Equation (3) in the limit of small e_\ast. Comparing $\tau_{e,\ast}$ and $\tau_{e,d}$, it is apparent that planetesimals’ e_\ast grows initially until an asymptotic equilibrium is established in which

$$e_\ast \sim (s/s_{\text{char}})^{1/2}.$$

(25)

After they are captured by the planet at a location $r_p = r_{\text{cap}}$, the planetesimals’ eccentricity growth may also be quenched by the termination of the stellar mass loss with an asymptotic

$$e_{\ast \text{a}} \simeq (\ln(r_{\text{final}}/r_{\text{cap}}))^{1/2}.$$

(26)

In general, the eccentricity of co-moving resonant planetesimals is excited to the minimum of e_\ast and $e_{\ast \text{a}}$ which may both be a significant fraction of unity. (Both of these estimates on the asymptotic eccentricities break down as their values approach unity.) Since the semimajor axes of the resonant planets are in lock steps with that of the planet, the orbits of widely separated planetesimals overlap. The onset of orbit crossing creates opportunities for collisions between these planetesimals.

The eccentricities of distant planetesimals with period $P_K \sim \tau_M$ (at $a_i \geq 500 \text{ AU}$) may also increase as a consequence of their marginally non-adiabatic adjustment to the host star’s declining gravitational potential. However, these planetesimals’ peri-center distances would not decrease significantly so that they are unlikely to venture into the regions of interest. At these large distances, planetesimals are sparsely populated, their collision frequency is also expected to be low.

In order to verify these analytic estimates, we show in Figure 6 the evolution of the planetesimal’s eccentricity in the system in Figure 3. In this case, it remains negligible until 10,000 yr. when it encounters the planet’s 2:1 mean-motion resonant
point. Although not being captured, its eccentricity still slightly increases. When the planetesimal is captured onto the planet’s 3:2 mean-motion resonance at 30,000 yr, its eccentricity is evidently excited. At the end of our simulation, it reaches its asymptotic value ~ 0.24. This result is in good agreement with the above discussions.

5.3. Collisional Frequency and Outcome

The results in Figure 6 can be generalized. In Figure 7, we show the asymptotic eccentricity distribution of a population of planetesimals (the system in Figure 3) versus their final orbital semimajor axis. It is very clear, as we pointed out before, that there are three major resonance points of this system which can capture planetesimals onto co-moving orbits with giant planet and excite their eccentricities: 3:2 resonance point (the most important one, final semimajor axis of planetesimals $a_f \sim 105$ AU); the 2:1 resonance point ($a_f \sim 97$ AU); and 4:3 resonance point ($a_f \sim 128$ AU). These three resonance points correspond to the three vertical bands on the plot. Once excited, the eccentricity of the planetesimals will increase to about 0.1–0.3. For planetesimals which are captured onto 3:2 resonant orbit, since their asymptotic semimajor axis is around 100 AU their orbits cross each other in the region between ~ 80 and 120 AU. Thus, the planetesimals’ eccentricity excitation enlarges the radial extent of their impact zone from $\sim a_f/v_{\text{frag}}/v_K \sim 10^{-3}a_i$ to $\sim 2e_i a_i \sim 0.4a_i$. This expansion greatly increases the pool of potential impactors.

As planetesimals along the expanding paths of the planet are captured onto its mean-motion resonances and co-moved by it to large distances, the surface number density Σ_p of planetesimals can increase by a factor f_2 (a few), depending on the initial distribution of Σ_p prior to the star’s mass loss. (In this estimate, we took into account the growth of planetesimals’ eccentricity associated with their resonantly forced orbital expansion.)

In contrast, the planetesimals’ dispersion velocity in the direction normal to the disk plane does not change significantly (from its initial value $\sigma \sim v_{\text{frag}}$) because the forcing by the mean-motion resonances is applied in the radial direction. (The velocity dispersion is no longer isotropic, i.e., the radial component of the velocity dispersion ellipsoid, $\sigma_r \sim e_i v_K$, becomes much larger than that in the direction normal to the orbital plane, $\sigma_z \sim v_{\text{frag}}$.) Consequently, the spacial density of resonant planetesimals (n'_p) actually increases from their initial values ($M_{\text{tot}}/(M_22\pi a_i^2 H)$) where $H \sim \sigma_z a_i/v_K$ is the disk thickness) by a factor similar to f_2 and the collisional frequency is enhanced by both the density and velocity enhancement. The characteristic collisional time scale τ_{col} for the km-size planetesimals (which are trapped in the planet’s mean-motion resonances) is reduced from its original magnitude to

$$\tau_{\text{col}}' \sim 1/(n'_p \sigma_z^2) \sim \tau_{\text{col}}(v_{\text{frag}}/e_i v_K f_2) \times (1 \text{ km}/s)^{1/2} \sim (10^{-3} - 10^{-4})(1 \text{ km}/s)^{1/2} \tau_s. \quad (27)$$

In the above expression, we assume that within the main-sequence life span (τ_s) of the host star, i.e., prior to the AGB mass-loss phase, perfectly cohesive collisions led to the formation of planetesimals with the power-law size distribution in Equation (20) up to a size s.

During and after the AGB mass-loss phase, the radial-velocity dispersion associated with the asymptotic mean eccentricity (~ 0.2) is $\sim 0.5 \text{ km s}^{-1}$ at ~ 100 AU. Since this value of σ is much larger than v_{frag}, we anticipate all collisions during this stage will lead to powderization of the planetesimals. Since only km-size planetesimals are resonantly captured and co-move with the orbital expansion of the planet, the production rate of fragment would be

$$\dot{M}_{\text{frag}} \sim (1 \text{ km}/s)^{1/2} M_{\text{tot}}/\tau_{\text{col}}' \sim (e_i v_K f_2/v_{\text{frag}}) \times (M_{\text{tot}}/\tau_s) \sim 10^{3-4}(M_{\text{tot}}/\tau_s). \quad (28)$$

With this erosion rate, the total mass of fragments produced during the AGB mass-loss phase would be

$$M'_{\text{tot}} \sim \dot{M}_{\text{frag}} \tau_M \sim M_{\text{tot}}(10^{3-4})\tau_M/\tau_s. \quad (29)$$

During the mass-loss epoch, the magnitude of τ'_M can be reduced to $\sim 10^{3-6}$ yr which would be comparable to τ_M. In these systems, a significant fraction of M_{tot} could be fragmented through these disruptive processes. Since the emergence of km-size planetesimals requires M_{tot} to be a few M_\oplus, we anticipate that in planetary nebula where they coexist with some gas giants, the total mass of their fragmentary debris (M'_{tot}) may indeed exceed that of the Earth.

Fragments’ mass spectrum, immediately after the disruptive impacts, depends on the highly uncertain material strength of planetesimals. If these planetesimals are loosely bound aggregates high-speed ($\sim \text{km s}^{-1}$) impacts may disperse them.

Figure 6. The eccentricity evolution of the 100 m-size planetesimal in the system of Figure 3.

Figure 7. The final eccentricity verse final semi-major axis for several planetesimals with different sizes in the system of Figure 5.
(A color version of this figure is available in the online journal.)
down to the sizes of their basic building blocks. For simplicity, we assume a power-law size distribution as expressed in Equation (20). In this case, a major portion of \(M'_t \) is contained in the largest fragments (with \(s = s_{\text{max}} \) and mass \(m_{\text{max}} = 4\pi \rho s_{\text{max}}^3/3 \) so that the normalization factor can be derived from Equation (20) to be \(N_\theta = M'_t/2m_{\text{max}} \). In the absence of reliable experimental data, we infer below the magnitude of \(s_{\text{max}} \) using the flux of reprocessed radiation from the ring around WD 2226-210.

5.4. Reprocessed Radiation by the Residual Fragments

Another implication of the power-law size distribution is the fraction of stellar photons which may be absorbed and scattered by the fragments. In the calculation on the intensity of reprocessed radiation at any instance of time, we need to take into consideration the potential depletion of all particles. We have already indicated above that, during the gas loss phase, fragments with sizes \(s < s_{\text{blowout}} \) are continually entrained and removed by the outflowing gas from the location of their production on a time scale \(\tau_f \sim a_i/v_{\text{wind}} \). Similarly, inward orbital decay of fragments in the size range \(s_{\text{bypass}} < s < s_{\text{blowout}} \) proceeding on a time scale \(\tau_M = (s/s_i)\tau_M \) (Equation (10)) are not inhibited by the planet’s tidal barrier during their orbital decay.

In the calculation of the intensity of reprocessed stellar irradiation at a particular wavelength range (\(\lambda \)), we also need to include a reduction factor (\(s/\lambda \)) for emissivity of small particles (in the range from \(s_i \equiv \lambda > s \) down to a minimum grain size \(s_{\text{min}} \)). In the limit \(s_{\text{bypass}} \sim s_i > s_{\text{blowout}} > s_i > s_{\text{min}} \), the total area covered by the fragments in the impact zone would be

\[
\sigma_{\text{zone}} = \left(\int_{s_{\text{min}}}^{s_{\text{max}}} + \int_{s_{\text{bypass}}}^{s_{\text{blowout}}} \frac{\tau_M}{s^2} + \int_{s_i}^{s_{\text{bypass}}} \frac{\tau_f}{s^2} \right) \pi s^2 \frac{dN}{ds} ds.
\]

Neglecting the YORP effect and inserting expressions for \(dN/ds \) in Equation (20), we find that

\[
\sigma_{\text{zone}} \sim 2\pi N_0 s_{\text{max}}^2 \left[\left(\frac{s_{\text{max}}}{s_{\text{bypass}}} \right)^{1/2} - 1 \right] + \frac{s_{\text{max}}}{s_i} \left(\frac{s_{\text{bypass}}}{s_{\text{max}}} \right)^{1/2} - \left(\frac{s_{\text{blowout}}}{s_{\text{max}}} \right)^{1/2}\right] + \frac{\tau_f}{\tau_M} \left[2 \left(\frac{s_{\text{max}}}{s_i} \right)^{-1/2} - \left(\frac{s_{\text{max}}}{s_i} \right)^{1/2}\right] - \left(\frac{s_{\text{max}}}{s_i} \right)^{1/2} \left(\frac{s_{\text{min}}}{s_i} \right)^{1/2} \right].
\]

Although AGB stars’ \(L_\ast \) can reach \(\sim 10^{-3} L_\odot \) to exert non-negligible YORP effect on km-size planetesimals at \(\sim 10-100 \) AU, this phase is brief and does not significantly affect their orbits.

In the limit \(s_i \sim s_{\text{bypass}} \), \(\sigma_{\text{zone}} \sim 4\pi N_0 s_{\text{max}}^{5/2} s_{\text{bypass}}^{-1/2} \). Interior to the impact zone and the planet’s orbit, fragments with \(s_{\text{bypass}} > s_{\text{blowout}} > s_i \) contribute to \(\sigma_{\text{interior}} \sim (2\pi N_0 s_{\text{max}}^5/s_i) \left(\frac{s_{\text{bypass}}}{s_{\text{max}}} \right)^{1/2} - \left(\frac{s_{\text{blowout}}}{s_{\text{max}}} \right)^{1/2} \sim 2\pi N_0 s_{\text{max}}^{5/2} s_{\text{bypass}}^{-1/2} < \sigma_{\text{zone}} \) because the normalization factor \(N_0' \) (which is determined by the resonant capture efficiency) is expected to be smaller than \(N_0 \). Exterior to the impact zone, small fragments \(s < s_{\text{blowout}} \) contribute to \(\sigma_{\text{exterior}} \sim (2\pi N_0 s_{\text{max}}^{5/2} r_{\text{b}/}\tau_M) \left(\frac{s_{\text{max}}}{s_i} \right)^{1/2} - \left(\frac{s_{\text{blowout}}}{s_i} \right)^{1/2} \sim \sigma_{\text{zone}} \). After the host star attains its \(M_\ast \) (as is the case of the white dwarf WD 2226-210 at the center of the Helix nebula), the mass flux of gas outflow is significantly reduced. While the eccentric resonant-captured planetesimals continue to collide with each other on a time scale \(\tau_{\text{col}} \) and generate fragments at a rate \(M_{\text{frag}} \). When both \(s_{\text{blowout}} \) and \(s_{\text{bypass}} \) decrease below \(s_i \), Equation (31) is much simplified by a continuous power-law size distribution (as in Equation (20)) to

\[
\sigma_{\text{zone}} \sim 2\pi N_0 s_{\text{max}}^{5/2} \left[\frac{s_{\text{max}}}{s_i} \right]^{1/2} - 1.
\]

In this case, the fragments are confined to the impact zone.

Finally, the particle size distribution may also be truncated at the lower ranges of the radiative blowout process \((s_f) \). In that limit, \(s_i \) would be replaced by \(s_f \) in the above expressions.

6. STRUCTURE OF THE DISK AROUND WD 2226-210

The proximity of WD 2226-210 at the center of the Helix nebula has been imaged in multiple wavelengths. The observed spectral energy distribution (SED) has been analyzed in terms of a disk of dust grains which are assumed to have the same astronomical size distribution as Equation (20) and a size range between 60 and 1000 \(\mu m \) (Su et al. 2007). The lower size limit is set \(s_{\text{min}} = 60 \mu m \) by the condition for radiative blowout (i.e., \(s_f \)), albeit \(s_{\text{max}} \) is arbitrarily set. The total area covered by these dust grains is inferred to be \(\sigma_{\text{rad}} \sim 6 \times 10^{27} \text{ cm}^2 \) distributed over a distance between 35 and 150 AU. For the assumed range of grain sizes, their total mass is inferred to be \(M_{\text{grain}} \sim 0.1 M_\oplus \) (This mass is inferred from the assumed size distribution in Equation (20), neglecting the contribution of hydrodynamic blowout and drag on the small grains in Equation (31)). The magnitude of

\[
M_{\text{grain}} \sim 0.1 (s_{\text{max}}/0.1 \text{ cm})^{1/2} M_\oplus
\]

if the assumed size distribution extends to grains larger than 1000 \(\mu m = 0.1 \) cm. Since the present and past PR drag time scale for these grains (\(\sim 10 \) Myr) is \(<\tau_M \), they must be continually replenished, presumably through the powderization of their parent-body residual planetesimals. Su et al. (2007) estimated the current collision time scale for 100 \(\mu m \) grains to be \(\sim 0.1-1 \) Myr which is \(>\tau_M \).

Although this model provides a reasonable fit to the observed SED, a challenging theoretical issue is whether the grains’ parent bodies may have sufficient collision frequencies to generate so many fragments despite their (parent bodies’) much smaller surface area to volume ratio. If the generation of \(M_{\text{grain}} \) requires a substantially more massive (\(\gg M_\ominus \)) population of parent bodies, its protracted retention during the main-sequence life span of their host stars would need to be addressed rather than assumed.

We now apply the results in the previous sections to provide some quantitative justification for the model proposed by Su et al. (2007). In Section 2, we cite evidences that both gas giant planets and debris disks are commonly found around A stars. In our model, we consider the possibility that the progenitor
star of WD 2226-210 was surrounded by one or more gas giant planets (at distances comparable to those around Uranus and Neptune) and a debris disk similar to the Kuiper Belt in the solar system. In the previous sections, we have already showed that in debris disks which contain a few (or more) M_p, within ~ 100 AU, a population of km-size planetesimals (with a total mass $M_{\text{tot}} > 1 M_\oplus$) can form through inelastic and cohesive collisions (with a velocity dispersion $\sigma \sim v_{\text{drag}} \sim \text{a few}\; m\; s^{-1}$) during the main-sequence life span of type A stars (i.e., within $\tau_\star \sim 100$ Myr). Due to the combined planetary tidal perturbation and the YORP effect, a fraction of these residual planetesimals may accumulate near the planets’ outer mean-motion resonances.

During the AGB mass-loss phase when most of the stellar mass is rapidly lost, semimajor axes of both planets and perturbation and the YORP effect, a fraction of these residual planetesimals (with a total mass $\sim M_\star$) may also accreted gas from the outflowing stellar wind at a rate

$$\dot{M}_e \simeq \left(\frac{M_p}{M_\star} \right)^2 \left(\frac{v_K}{v_{\text{wind}}} \right)^4 M_\star.$$

The above equation is derived from a modified Bondi accretion formula. For a Jupiter-mass planet, the total accreted gas during the AGB mass-loss phase ($\sim M_\star \tau_{\text{PR}}$) would be a small fraction ($\sim M_p/M_\star$) of its own mass. Nevertheless, it could provide an accretion luminosity (up to $\sim 10^{-4} L_\odot$) which may be marginally detectable by ALMA against the ring background.

The hot white dwarf WD 2226-210 at the center of the Helix nebula provides an intense source of UV radiation. The ionization of planetary atmosphere can lead to its photoevaporation and mass loss (Lammer et al. 2003; Baraffe et al. 2004, 2005; Murray-Clay et al. 2009). Lyα absorbing clouds have been observed around a close-in planet, HD 209458b (Vidal-Madjar et al. 2003). Its extension beyond the planet’s Roche lobe has been attributed to be a signature of outflow, albeit the inferred mass-loss rate remains uncertain (Ben-Jaffel 2007). The energy flux of ionizing photons irradiated onto the surface of gas giants located at ~ 30 AU from WD 2226-210 is 2–3 orders of magnitude larger than that on hot Jupiters around solar-type stars. Scaling from the radiative hydrodynamic models for HD 209458b (Murray-Clay et al. 2009), we do not expect long-period gas giants to lose significant fraction of their mass during the AGB mass-loss phase. Nevertheless, photoionizing stellar photons may induce emission of signature spectral lines on the extended planetary envelope which may potentially be detectable with high dispersion spectroscopic observations (Y.-H. Chu 2008, private communication).

Mean-motion resonant capture of km-size planetesimals by one or more embedded planets and their subsequent lock-step orbital migration also lead to their non-axisymmetric surface density distribution (Murray-Clay & Chiang 2005). In principle, such a structure can be resolved with sub-arc second imaging. However, the observed IR radiation is due to reprocessed stellar radiation by the fragments of high-speed collisions. Their recoil velocity may be sufficient to smear out such a structure. However, multi-wavelength resolved images may reveal a particle size dependence in the grains radial distribution. The detection of very small ($s < s_{\text{blowout}}$) grains at large disk radii and intermediate size ($s_{\text{blowout}} < s < s_{\text{bypass}}$) would provide supporting evidence for our scenario.

7. SUMMARY AND DISCUSSION

In this paper, we construct a dynamic model for the post-main-sequence evolution of planetary systems. With this model, we find that as a consequence of mass loss from the central star, km-size planetesimals can be captured by mean-motion resonance and form a disk beyond the planets. During the subsequent orbital expansion, the eccentricity of the resonant planetesimals is excited which enhances their collision frequency. Highly destructive impacts among these planetesimals can continuously provide a ring of dust around the mature star, which can be seen in the FIR and MIR wave bands. This phenomenon can also be extended to other A–F stars, with the inference that a large...
fraction of stars may have planet systems and substantial debris disks during their main-sequence epoch. Stars with higher main-sequence mass, greater mass-loss rate, and lower velocity of star wind tend to have higher ability to capture the planetesimals.

We applied this model to account for the dust ring around WD 2226-210 at the center of the Helix nebula. It can also be used to study other young white dwarfs. For example, we anticipate this process will occur when the Sun evolves to its AGB mass-loss phase, albeit the amount of fragmentary dust would be limited and the intensity of the reprocessed radiation may be weak. Since this process depends sensitively on the initial heavy element content and the presence of sufficiently massive planets, we expect there to be large dispersion in the signatures of dust debris around young white dwarfs. Nevertheless, we expect there to be large dispersion in the signatures of dust debris around young white dwarfs. Nevertheless, we expect to see more dusty rings around planetary nebulae with A star progenitors because the fractions of stars with planets and debris disks are observed to increase with stellar mass.

The present work is developed for the $\rho_{\text{wind}} \propto 1/r^2$ (or $v_{\text{wind}} = \text{constant}$) portion of a stellar wind and thus not applicable to the region very close to the star. In addition, apart from the planetesimals that are captured by the planet, the fate of other planetesimals also needs to be discussed. These may also play an important role in the evolution of the white dwarf.

Some observational tests of these models should be possible with present technology or will be possible soon. As the planetesimals are collected by the giant planet, it is most likely that the gas giant planet survives the AGB period, and the orbit planetesimals also needs to be discussed. These may also play a role in the evolution of the white dwarf.

We thank Sverre Aarseth for providing the Hermit integrator, Y.-H. Chu, and an anonymous referee for useful correspondence and helpful suggestions. This work is supported by NSF(10233020), NCET (04-0468), NASA (NNX07A-L13G, NNX07A188G, NNX08AM84G), JPL (1270927), and NSF(AST-0908807).

REFERENCES

Aarseth, S. J., Lin, D. N. C., & Palmer, P. L. 1993, ApJ, 403, 351
Artyomowicz, P., & Clampin, M. 1997, ApJ, 490, 863
Backman, D. E., Dalggaard, A., & Stencel, R. E. 2005, ApJ, 450, L35
Baraffe, I., Chabrier, G., Barman, T. S., Selbtiis, F., Allard, F., & Hauschildt, P. H. 2005, A&A, 436, L47
Baraffe, I., Selbtiis, F., Chabrier, G., Barman, T. S., Allard, F., & Hauschildt, P. H., & Lammer, H. 2004, A&A, 419, L13
Beichman, C. A., et al. 2005, ApJ, 622, 1160
Beichman, C. A., et al. 2006, ApJ, 652, 1674
Ben-Jaffel, L. 2007, ApJ, 671, L61
Benz, W., & Asphaug, E. 1999, Icarus, 142, 5
Bernstein, G. M., Trilling, D. E., Allen, R. L., Brown, M. E., Holman, M., & Laughlin, G., Steinacker, A., & Adams, R. 2004, ApJ, 608, 489
Lee, M. H., & Peale, S. J. 2002, ApJ, 567, 596
Levison, H. F., & Bromley, B. C. 2007, ApJS, 311, 1
Kenyon, S. C., & Bromley, B. C. 2002, ApJ, 577L, 55
Kenyon, S. C., & Bromley, B. C. 2004, ApJ, 619, 623
Kokubo, E., & Ida, S. 2004, ApJ, 619, 666
Kretke, K. A., Lin, D. N. C., & Turner, N. J. 2009, ApJ, 690, 407
Kwok, S. 1982, ApJ, 258, 280
Lammer, H., Selbtiis, F., Ribas, I., Guinan, E. F., Bauer, S. J., & Weiss, W. W. 2003, ApJ, 598, L121
Laor, A., & Draine, B. 1993, ApJ, 402, 441
Laughlin, G., Steinacker, A., & Adams, R. 2004, ApJ, 608, 489
Lee, M. H., & Peale, S. J. 2002, ApJ, 567, 596
Levison, H. F., & Wetherill, G. W. 1994, Nature, 372, 441
Lin, D. N. C., & Papaloizou, J. 1979, MNRAS, 188, 191
Lissauer, J. J. 1987, Icarus, 69, 249
Marois, C., Macintosh, B., Barman, T., Zuckerman, B., Song, I., Patience, J., Lafrenière, D., & Doyon, R. 2008, Science, 322, 1348
Mathis, J. S., Rumpl, W., & Nordsieck, K. H. 1977, ApJ, 217, 425
Moro-Martin, A., Wyatt, M. C., Malhotra, R., & Trilling, D. E. 2007a, arXiv:astro/0703383
Moro-Martin, A., et al. 2007b, ApJ, 668, 1165
Murray-Clay, R. A., & Chiang, E. I. 2005, ApJ, 619, 623
Murray-Clay, R. A., Chiang, E. I., & Murray, N. 2009, ApJ, 693, 23
Murray, C. D., & Dermott, S. F. 1999, Solar System Dynamics (Princeton, NJ: Princeton Univ. Press)
Natta, A., Todd, J., & Randich, S. 2006, A&A, 452, 245
O’Dell, C. R., McCullough, P. R., & Meixner, M. 2004, AJ, 128, 2339
Palmer, P. L., Lin, D. N. C., & Aarseth, S. J. 1993, ApJ, 403, 336
Pan, M., & Sari, R. 2006, ApJ, 655, 1192
Parriott, J., & Alcock, C. 1998, ApJ, 501, 357
Pasquini, L., Dollinger, M. P., Weiss, A., Girardi, L., Chev fors, C., Hatzes, A. P., & Sari, R. 2005, ApJ, 619, 623
Petit, J.-M., & Farihi, P. 1993, Celest. Mech. Dyn. Astron., 57, 1
Rieke, G. H., et al. 2004, AAS, 205, 1120
Rieke, G. H., et al. 2005, ApJ, 620, 1010
Sackmann, I.-J., Boothroyd, A. I., & Kraemer, K. E. 1993, ApJ, 418, 457
Santos, N. C., Israeli, G., Mayor, M., Bento, J. P., Almeida, P. C., Sousa, S. G., & Ecuillon, A. 2005, A&A, 437, 1127
Sato, B., Kambe, E., Takeda, Y., Izumiura, H., Masuda, S., & Ando, H. 2005, PASJ, 57, 97
Sato, B., et al. 2007, ApJ, 661, 527
Schlaufman, K. C., Lin, D. N. C., & Ida, S. 2008, ApJ, 691, 1322
Siess, L., & Livio, M. 1999a, MNRAS, 308, 1133
Siess, L., & Livio, M. 1999b, MNRAS, 304, 925
Stern, S. A. 1996, AJ, 112, 1203
Stern, S. A., Shull, J. M., & Brandt, J. C. 1990, Nature, 345, 305
Stewart, S. T., & Leinhardt, Z. M. 2009, ApJ, 691, L133
Su, K. Y., & Rieke, G. H. 2005, A&A, 210, 7506
Su, K. Y. L., et al. 2007, ApJ, 657, L41
Supulver, K. D., & Lin, D. N. C. 2000, Icarus, 146, 525
Tanaka, H., & Ida, S. 1996, Icarus, 120, 371
Trilling, D. E., et al. 2008, ApJ, 674, 1086
Trujillo, C. A., Luu, J. X., Bosh, A. S., & Elliot, J. L. 2001, AJ, 122, 2740
Vidal-Madjar, A., Lacavelier des Etangs, A., Desert, J.-M., Ballester, G. E., Ferlet, R., Hebrard, G., & Mayor, M. 2003, Nature, 422, 143
Weidemann, V. 1987, A&A, 188, 74
Weidenschilling, S. J. 2004, NASA STI/Recon Tech. Rep., 5, 23594
Williams, D. R., & Wetherill, G. W. 1994, Icarus, 107, 117
Willson, L. A. 2000, ARA&A, 38, 573
Wyatt, M. C., Dermott, S. F., Telesco, C. M., Fisher, R. S., Gorgan, K., Holmes, E. K., & Pina, R. K. 1999, ApJ, 527, 918
Wyatt, M. C., Smith, R., Greaves, J. S., Beichman, C. A., Bryden, G., & Lisse, C. M. 2007, ApJ, 658, 569
Yoder, C. F., & Peale, S. J. 1981, Icarus, 47, 1
Youdin, A., & Chiang, E. 2004, ApJ, 601, 1109
Zhou, J.-L., & Lin, D. N. C. 2007, ApJ, 666, 423