LOCAL CURVATURE ESTIMATES OF LONG-TIME SOLUTIONS TO THE KÄHLER-RICCI FLOW

FREDERICK TSZ-HO FONG AND YASHAN ZHANG

Abstract. We study the local curvature estimates of long-time solutions to the normalized Kähler-Ricci flow on compact Kähler manifolds with semi-ample canonical line bundles. Using these estimates, we prove that on such a manifold, the set of singular fibers of the semi-ample fibration on which the Riemann curvature blows up at time-infinity is independent of the choice of the initial Kähler metric. Moreover, when the regular fiber of the semi-ample fibration is not a finite quotient of a torus, we determine the exact curvature blow-up rate of the Kähler-Ricci flow near the regular fiber.

1. Introduction

Let X be an n-dimensional compact Kähler manifold. We study the solution $\omega = \omega(t)$, $t \in [0, \infty)$, to the (normalized) Kähler-Ricci flow

$$\frac{\partial}{\partial t} \omega = -\text{Ric}(\omega) - \omega$$

starting from any Kähler metric ω_0 on X.

The maximal existence time theorem of the Kähler-Ricci flow by Cao, Tsuji, Tian-Z.Zhang [1, 23, 29] showed that the existence of long time solutions of (1.1) is equivalent to nefness of the canonical line bundle K_X. The Abundance Conjecture predicts that if the canonical line bundle of an algebraic manifold is nef (numerically effective), then it is semi-ample. Hence, it is natural to study the Kähler-Ricci flow on n-dimensional compact Kähler manifolds with semi-ample canonical line bundles. Let X be such a manifold, the convergence and singular behaviors of the Kähler-Ricci flow were extensively studied by various authors including Tian-Z.Zhang [23], Song-Tian [17, 18, 19], Z.Zhang [35], Gill [4], the first-named author and Z.Zhang [3], Tosatti-Weinkove-Yang [26], Tosatti-Y.G.Zhang [28], Hein-Tosatti [11], Guo-Song-Weinkove [7], Tian-Z.L.Zhang [21, 22], Guo [6], the second-named author [32, 33, 34] and Jian [12].

When the Kodaira dimension $\kappa := \text{kod}(X)$ of X is in the range $0 < \kappa < n$, we let

$$f : X \to X_{\text{can}} \subset \mathbb{CP}^N$$

be the semi-ample fibration with connected fibers induced by pluricanonical system of K_X. Here X_{can} is a κ-dimensional irreducible normal projective variety which is called the canonical model of X. Let $V \subset X_{\text{can}}$ be the singular set of X_{can} consisting of critical values of f. We call $X_y = f^{-1}(y)$ a regular fiber if $y \in X_{\text{can}} \setminus V$, and a singular fiber if $y \in V$. Moreover, there exists a rational Kähler metric χ on \mathbb{CP}^N with $f^*\chi \in 2\pi c_1(K_X)$. By fundamental works of Song-Tian [17, 18], the Kähler-Ricci flow $\omega(t)$ starting from any initial Kähler metric converges in the sense of currents to a generalized Kähler-Einstein metric on X_{can}. Smooth convergence results were obtained by [4] in the case X is a direct product of a complex torus and a Kähler manifold with negative first Chern class (also

Fong is partially supported by Hong Kong Research Grant Council Early Career Scheme #26301316 and General Research Fund #16300018.

Zhang is partially supported by China Postdoctoral Science Foundation grant 2018M641053.
see [20, Section 6] for the product elliptic surface case), and by [9] for the case of regular torus fibrations (proved using parabolic analogue of [5]). The rationality assumption in [9] was later removed in [11]. For general Calabi-Yau fibrations, C_{loc}^0-convergence of the metric on the regular part of X was also obtained in [26]. It was also proved in [28] that the Riemann curvature must blow up near any regular fiber which is not a complex torus nor its finite quotient.

In this article, motivated by known results about curvature estimates of long-time Kähler-Ricci flow solutions, we study the local curvature estimate of the flow (1.1). We first localize Hamilton’s definition [8] of infinite-time singularity types of the Kähler-Ricci flow:

Definition 1.1 (Local infinite-time singularity type). Given a subset $K \subset X$, a long time solution $\omega(t)$ to the Kähler-Ricci flow (1.1) is of singularity type III on K if there exists an open neighborhood U of K such that

$$\limsup_{t \to \infty} \left(\sup_U |Rm(\omega(t))|_{\omega(t)} \right) < \infty;$$

otherwise we say the solution is of singularity type IIb on K.

For example, if we choose $K = X$ in Definition [1.1] then we get the original definition by Hamilton [8] and we simply say the solution $\omega(t)$ is of type III or type IIb. We can also discuss the singularity type of the Kähler-Ricci flow at a fixed point x by choosing $K = \{x\}$ in Definition [1.1].

We are interested in classifying the singularity type of the Kähler-Ricci flow on the fibers X_y of f in (1.2). Thanks to the aforesaid works [3, 4, 11, 26, 28], the regular fiber case was completely understood: the Kähler-Ricci flow is of type III on a regular fiber X_y if and only if X_y is biholomorphic to a finite quotient of a torus. Moreover, in the case that the regular fiber is not a finite quotient of a torus, any open neighborhood of a singular fiber must contain a regular fiber, and so in this case the Kähler-Ricci flow on a singular fiber X_y is of type IIb. Therefore, the only open case is the following

$$(\star) \ 0 < \text{kod}(X) = n \ (n \geq 3) \ and \ the \ regular \ fiber \ X_y \ is \ a \ finite \ quotient \ of \ a \ torus \ and \ V \neq \emptyset.$$

In case (\star), when X_y is a singular fiber, certain criterions for the Kähler-Ricci flow developing type IIb singularities on X_y have been discovered, see [28, Proposition 1.4] and [34, Theorems 2.1]. In general, the classification of the singularity type of the Kähler-Ricci flow on singular fibers is largely open. Along this line, it was conjectured in [28, Section 1] (also see [25, Conjecture 6.7]) and confirmed in [32, Theorem 1.4] that the (global) singularity type of the Kähler-Ricci flow on X does not depend on the choice of the initial Kähler metric. This indicates that the (global) singularity type of the Kähler-Ricci flow on X should only depend on the complex structure of X.

Now suppose X in case (\star) admits a type IIb solution to the Kähler-Ricci flow on X, then [32, Theorem 1.4] implies every solution to the Kähler-Ricci flow on X is of type IIb, that is, the curvature of every solution to (1.1) must blow up on some singular fibers. It is then natural to ask:

Question 1.2. Assume the flow is of type IIb on X.

1. For X in case (\star) whether the set of singular fibers on which the Riemann curvature of the Kähler-Ricci flow (1.1) blows up is independent of the choice of the initial
Kähler metric? This in its setting may be regarded as a local and strengthened version of a conjecture by Tosatti [25, Conjecture 6.7].

(2) Furthermore, if the flow is of type IIb on a singular or regular fiber X_y, what can we say about the blow-up rate of the curvature? E.g.,

(2.1) does the blow-up rate depend on the choice of the initial Kähler metric?

(2.2) can we have some effective estimates on the blow-up rates?

In this paper, we shall study the above questions. We will first prove the following estimates assuming only the curvature upper bound:

Theorem 1.3. Let $f : X \to X_{\text{can}}$ be the map in (1.2), consider a fiber X_y where $y \in X_{\text{can}}$. Suppose $\tilde{\omega}(t)$ and $\omega(t)$ are two solutions of (1.1) such that there exist an open neighborhood U of X_y in X, and two increasing differentiable functions $\tau(t), \sigma(t) : [0, \infty) \to [1, \infty)$ such that

$$\sup_U |Rm(\tilde{\omega}(t))|_{\tilde{\omega}(t)} \leq \tau(t) \quad \text{for any } t \in [0, \infty),$$

and, we have on $U \times [0, \infty)$,

$$\sigma(t)^{-1} \tilde{\omega}(t) \leq \omega(t) \leq \sigma(t) \tilde{\omega}(t).$$

Then, there exist an open neighborhood U' of X_y in X with $U' \subset \subset U$ and a constant $A \geq 1$ such that for any $t \in [0, \infty)$,

$$\sup_{U'} |Rm(\omega(t))|_{\omega(t)} \leq A\sigma(t)^4 \tau(t).$$

We point out that in Theorem 1.3 the fiber could be a singular one.

Combining Theorem 1.3, early results in [3] and Proposition 6.1 in Section 6, we have the following estimates assuming only the curvature upper bound:

Theorem 1.4. Let $f : X \to X_{\text{can}}$ be the map in (1.2), and $\omega(t)$ and $\tilde{\omega}(t)$ be two Kähler-Ricci flows (1.1). Consider a fiber X_y, and suppose there exist an open set U containing X_y and an increasing differentiable function $\tau(t) : [0, \infty) \to [1, \infty)$ such that

$$\sup_U |Rm(\tilde{\omega}(t))|_{\tilde{\omega}(t)} \leq \tau(t).$$

(i) If X_y is a regular fiber, then there exist an open set U' with $X_y \subset U' \subset \subset U$ and a constant $C \geq 1$ such that

$$\sup_{U'} |Rm(\omega(t))|_{\omega(t)} \leq C\tau(t).$$

(ii) If X_y is a singular fiber, then there exist an open set U' with $X_y \subset U' \subset \subset U$ and a constant $C \geq 1$ such that

$$\sup_{U'} |Rm(\omega(t))|_{\omega(t)} \leq e^{C\tau(t)}.$$

Both conclusions in Theorem 1.3 can be seen as partial results for Question 1.2 (2), while part (i) solves Question 1.2 (2.1) in the regular fiber case. Moreover, as a corollary of Theorem 1.4 we shall answer Question 1.2 (1) in full generality:

Theorem 1.5. Let $f : X \to X_{\text{can}}$ be the map in (1.2). The (local) singularity type (i.e. Type III or IIb) of the Kähler-Ricci flow (1.1) on any fixed fiber X_y does not depend on the choice of the initial Kähler metric.

1Throughout this article, “increasing” means the time-derivative is nonnegative.
Consequently, if let $W_\Omega(\omega(t))$ be the set of point $y \in X_{can}$ such that $\omega(t)$ is of type IIb on X_y, then $W_\Omega(\omega(t))$ and hence $f^{-1}(W_\Omega(\omega(t)))$ are invariant for different Kähler-Ricci flow solutions $\omega(t)$ on X. We may simply denote $W := W_\Omega(\omega(t))$.

Remark 1.6. In [3], it was proved that $W_\Omega \subset V$ in the case (\ast). If in particular X is a minimal elliptic Kähler surface, by [28, Theorem 1.6] the set W_Ω exactly consists of the critical values of f over which the singular fibers are not of Kodaira type mI_0. In contrast in [28] where the regular fibers are not complex tori nor its finite quotients, one has $(X_{can} \setminus V) \subset W_\Omega$, moreover, as we mentioned before, in this case any open neighborhood of a singular fiber must contain a regular fiber, and so we have $W_\Omega = X_{can}$.

Remark 1.7. Note that [32, Theorem 1.4] addressed the special case $W_\Omega(\omega(t)) = \emptyset$ for some solution $\omega(t)$. Therefore, our Theorem 1.5 is a substantial improvement of [32, Theorem 1.4].

Remark 1.8. Theorem 1.5 indicates a general phenomenon that the singularity type of the Kähler-Ricci flow on a singular fiber should depend only on the properties of the singular fiber itself, and hence provides an analytic viewpoint to classify these singular fibers. Naturally, our long term goal will be to find precise relations between singularity types of Kähler-Ricci flows and the analytic/algebraic properties of the singular fibers.

To state our next result, consider the regular fiber of $f : X \to X_{can}$ is not biholomorphic to a finite quotient of a torus, then it was proved in [28] that the Riemann curvature must blow up near such a fiber. In this case our Theorem 1.4(i) somehow says the curvature blow-up rate near such a fiber should not depend on the choice of the initial metric. The following theorem further determines the exact blow-up order of the Riemann curvature, solving Question 1.2 (2) in the regular fiber case.

Theorem 1.9. Assume $f : X \to X_{can}$ as in (1.2) and the regular fiber is not biholomorphic to a finite quotient of a torus. Then for an arbitrary $U \subset X \setminus f^{-1}(V)$ and an arbitrary solution $\omega(t)$ to the Kähler-Ricci flow (1.1), there is a constant $A \geq 1$ such that for any $t \geq 0$,

$$A^{-1}e^t \leq \sup_U |Rm(\omega(t))|_{\omega(t)} \leq Ae^t. \quad (1.6)$$

We should mention that in (1.6) the lower bound is essentially contained in [28], and so our contribution is the upper bound, see Section 7 for more details.

An immediate consequence of Theorem 1.9.

Corollary 1.10. Assume $f : X \to X_{can}$ as in (1.2) and the regular fiber is not biholomorphic to a finite quotient of a torus. Then for an arbitrary $U \subset X \setminus f^{-1}(V)$ and an arbitrary long-time solution $\overline{\omega} = \overline{\omega}(t)$ to the unnormalized Kähler-Ricci flow $\partial_t \overline{\omega} = -\text{Ric}(\overline{\omega})$, there is a constant $A \geq 1$ such that for any $t \geq 0$,

$$A^{-1} \leq \sup_U |Rm(\overline{\omega}(t))|_{\overline{\omega}(t)} \leq A. \quad (1.7)$$

Our proofs are achieved by maximum principle arguments and do not involve any convergence results of the Kähler-Ricci flow. An important ingredient is the existence of good cut-off functions that are defined locally around each singular/regular fiber.

The structure of this paper is as follows: in Section 2 we construct some good cut-off functions that will be used to localize our curvature estimates near each fiber. In Sections 3 and 4 we use the cut-off functions constructed to derive local Shi’s and Calabi’s estimates, then in Section 5 we give the proof of Theorem 1.3 by estimating the Riemann
curvature locally near a fiber. In Section 6 we derive an important result about local uniform equivalence between two Kähler-Ricci flow solutions when the Riemann curvature of one of them is given to be uniformly bounded locally around a fiber. Proofs of above-mentioned theorems are given at the end of this section. Finally in Section 7 we prove Theorems 1.9 we also give a curvature blow-up rate estimate in terms of the existence of a Kähler metric with semi-negative holomorphic sectional curvature.

2. Cut-off functions near fibers

Recall results of Song-Tian [17, 18, 19] that, for any solution \(\omega(t) \) there exists a constant \(C_0 \geq 1 \) such that on \(X \times [0, \infty) \),

\[
tr_{\omega(t)}(f^*\chi) \leq C_0.
\]

and

\[
C_0^{-1}e^{-(n-k)t}\omega_0^n \leq \omega(t)^n \leq C_0e^{-(n-k)t}\omega_0^n.
\]

For each fiber \(X_y \) (singular or regular), we are going to construct some nice smooth cutoff functions on \(X \) with compact support containing \(X_y \) such that they satisfy some desirable bounds according to the estimates (2.1) and (2.2).

Lemma 2.1. For any fiber \(X_y \) and an open neighborhood \(U \) of \(X_y \) in \(X \), there exists an open neighborhood \(U' \) of \(X_y \) in \(X \) with \(U' \subset \subset U \) and a smooth function \(\phi : X \to [0, 1] \) such that \(\phi \) is compactly supported on \(U \), \(\phi \equiv 1 \) on \(U' \), and for each Kähler-Ricci flow \(\omega(t) \) there exists \(C \geq 1 \) depending on the initial metric \(\omega_0 \) and \(U \) with

\[
\sup_{X \times [0, \infty)} (|\partial \phi|^2_{\omega(t)} + |\Delta_{\omega(t)} \phi|) \leq C.
\]

Proof. As an irreducible normal projective variety, \(X_{can} \) is a closed subset of \(\mathbb{CP}^N \) with the induced topology. Then by compactness of \(X \) and \(X_y \) there is a proper open subset \(\hat{U} \) in \(X_{can} \) with \(y \in \hat{U} \) and \(f^{-1}(\hat{U}) \subset \subset U \). Since \(X_{can} \) is a subvariety of \(\mathbb{CP}^N \), for the given \(y \in \hat{U} \subset X_{can} \) we can fix a **sufficiently small** local chart \((\Omega, w^1, ..., w^N) \) in \(\mathbb{CP}^N \) centered at \(y \) and finitely many polynomials \(p_1, ..., p_L \) defined on \(\Omega \) such that \(X_{can} \cap \Omega \subset \subset \hat{U} \) and \(X_{can} \cap \Omega = \{ w \in \Omega | p_l(w) = 0, l = 1, ..., L \} \). In particular, \(f^{-1}(\Omega) = f^{-1}(X_{can} \cap \Omega) \subset \subset U \). We may assume \(\Omega = \{ (w^1, ..., w^N) \in \mathbb{CP}^N | |w^1|^2 + ..., |w^N|^2 < 1 \} \). Set \(\Omega' := \{ (w^1, ..., w^N) \in \mathbb{CP}^N | |w^1|^2 + ..., |w^N|^2 < \frac{1}{m_1} \} \) for a sufficiently large number \(m_1 > 1 \) such that \(X_{can} \cap \Omega' = \{ w \in \Omega' | p_l(w) = 0, l = 1, ..., L \} \subset \subset X_{can} \cap \Omega \), and hence \(f^{-1}(\Omega') \subset \subset f^{-1}(\Omega) \). Fix a smooth cutoff function \(\psi \) on \(\mathbb{CP}^N \) which compactly supports on \(\Omega \) and identically equals to 1 on \(\Omega' \). There exists a constant \(A_0 \geq 1 \) such that on \(\mathbb{CP}^N \),

\[
\sqrt{-1}\partial \psi \wedge \bar{\partial} \psi \leq A_0 \chi.
\]

and

\[
-A_0 \chi \leq \sqrt{-1}\partial \bar{\partial} \psi \leq A_0 \chi.
\]

Then we define a smooth function \(\phi := f^*\psi \) on \(X \), which compactly supports on \(f^{-1}(\Omega) \) and identically equals to 1 on \(f^{-1}(\Omega') \). Using the above two inequalities and (2.1) gives

\[
|\partial \phi|^2_{\omega(t)} = tr_{\omega(t)}(\sqrt{-1}\partial \psi \wedge \bar{\partial} \psi) = tr_{\omega(t)}(f^*(\sqrt{-1}\partial \psi \wedge \bar{\partial} \psi)) \leq A_0 tr_{\omega(t)}(f^*\chi) \leq A_0 C_0,
\]
\[\Delta_{\omega(t)} \phi = tr_{\omega(t)}(\sqrt{-1} \partial \bar{\partial} \phi) = tr_{\omega(t)}(f^*(\sqrt{-1} \partial \bar{\partial} \psi)) \leq A_0 tr_{\omega(t)}(f^* \chi) \leq A_0 C_0, \]

and similarly,

\[\Delta_{\omega(t)} \phi \geq -A_0 C_0. \]

In conclusion, on \(X \times [0, \infty) \),

\[|\partial \phi|_{\omega(t)}^2, |\Delta_{\omega(t)} \phi| \leq A_0 C_0 \] (2.3)

as desired. \(\square \)

Remark 2.2. We remark that when \(y \) is a smooth point in \(X_{\text{can}} \), we can easily choose a cutoff function by using local chart in \(X_{\text{can}} \) around \(y \). However, when \(y \) is a singular point in \(X_{\text{can}} \), \(X_{\text{can}} \) is no longer a smooth manifold near \(y \) and hence it may be unclear how to find a function on \(X_{\text{can}} \) which is “smooth” near \(y \). A key point in our above lemma is that, using the ambient manifold \(\mathbb{CP}^N \), we can still construct good cutoff function near a singular fiber, which is crucial for the later discussions, as the curvature behaviors near singular fibers will be our main interest.

3. Local Shi’s derivative estimates near fibers

As a preparation for the next section, we prove a local Shi’s estimate by modifying \([15, \text{Section 4}]\) on an open neighborhood of a fiber.

Proposition 3.1. Let \(f : X \to X_{\text{can}} \) be the map in (1.2). Fix an arbitrary \(y \in V \). Assume there exist a solution \(\tilde{\omega}(t) \) of (1.1), an open neighborhood \(U \) of \(X_y \) in \(X \), and an increasing differentiable function \(\tau(t) : [0, \infty) \to [1, \infty) \) such that

\[\sup_{U} |Rm(\tilde{\omega}(t))|_{\tilde{\omega}(t)} \leq \tau(t). \] (3.1)

Then, we have an open neighborhood \(U' \) of \(X_y \) in \(X \) with \(U' \subset \subset U \) such that for any solution \(\omega(t) \) there exists a constant \(A \geq 1 \) satisfying

\[|\nabla Rm(\tilde{\omega})|_{\tilde{\omega}} \leq A \cdot \tau^{\frac{3}{2}} \] (3.2)

on \(U' \times [0, \infty) \). Here \(\nabla \) denote the real covariant derivative with respect to \(\tilde{\omega} \).

Proof. Let \(\phi \) be the cutoff function obtained in Lemma 2.1 and \(U' \subset \subset U \) be an open neighborhood of \(X_y \) such that \(\phi \equiv 1 \) on \(U' \). We let \(A_1 \geq 1 \) be a constant such that on \(X \times [0, \infty) \),

\[|\partial \phi|_{\omega(t)}^2, |\Delta_{\omega(t)} \phi| \leq A_1. \]

By Hamilton, there is a constant \(C \geq 1 \) depending only on dimension \(n \) such that on \(X \times [0, \infty) \),

\[(\partial_t - \Delta_{\tilde{\omega}})|Rm(\tilde{\omega})|_{\tilde{\omega}}^2 \leq -|\nabla Rm(\tilde{\omega})|_{\tilde{\omega}}^2 + C |Rm(\tilde{\omega})|_{\tilde{\omega}}^2. \] (3.3)

Then, combining with (3.1) and \(\frac{d}{dt} \tau \geq 0 \), we have on \(U \times [0, \infty) \),

\[(\partial_t - \Delta_{\tilde{\omega}})(\tau^{-2}|Rm(\tilde{\omega})|_{\tilde{\omega}}^2) \leq -\tau^{-2} |\nabla Rm(\tilde{\omega})|_{\tilde{\omega}}^2 + C \tau. \] (3.4)
On the other hand,
\[(\partial_t - \Delta_\omega)(|\nabla Rm(\tilde{\omega})|^2_\omega) \leq -|\nabla^2 Rm(\tilde{\omega})|^2_\omega + C|Rm(\tilde{\omega})|_\omega \cdot |\nabla Rm(\tilde{\omega})|^2_\omega\]
\[\leq -|\nabla^2 Rm(\tilde{\omega})|^2_\omega + C\tau|\nabla Rm(\tilde{\omega})|^2_\omega\] \hspace{1cm} (3.5)

Thus
\[(\partial_t - \Delta_\omega)(\phi^2|\nabla Rm(\tilde{\omega})|^2_\omega)\]
\[= \phi^2(\partial_t - \Delta_\omega)|\nabla Rm(\tilde{\omega})|^2_\omega - \Delta_\omega(\phi^2)|\nabla Rm(\tilde{\omega})|^2_\omega - 2\text{Re}(\partial(\phi^2) \cdot \bar{\partial}|\nabla Rm(\tilde{\omega})|^2_\omega)\]
\[\leq -\phi^2|\nabla^2 Rm(\tilde{\omega})|^2_\omega + C\tau|\nabla Rm(\tilde{\omega})|^2_\omega - 2\text{Re}(\partial(\phi^2) \cdot \bar{\partial}|\nabla Rm(\tilde{\omega})|^2_\omega)\] \hspace{1cm} (3.6)

By Cauchy-Schwarz inequality,
\[-2\text{Re}(\partial(\phi^2) \cdot \bar{\partial}|\nabla Rm(\tilde{\omega})|^2_\omega) \leq \phi^2|\nabla^2 Rm(\tilde{\omega})|^2_\omega + 4|\partial\phi|^2 \cdot |\nabla Rm(\tilde{\omega})|^2_\omega\]
\[\leq \phi^2|\nabla^2 Rm(\tilde{\omega})|^2_\omega + 4A_1 \cdot |\nabla Rm(\tilde{\omega})|^2_\omega,\]
and by putting it into (3.6) gives, for some constant \(C \geq 1\),
\[(\partial_t - \Delta_\omega)(\phi^2|\nabla Rm(\tilde{\omega})|^2_\omega) \leq C\tau|\nabla Rm(\tilde{\omega})|^2_\omega\] \hspace{1cm} (3.7)

and so
\[(\partial_t - \Delta_\omega)(\tau^{-3}\phi^2|\nabla Rm(\tilde{\omega})|^2_\omega) \leq C\tau^{-2}|\nabla Rm(\tilde{\omega})|^2_\omega\] \hspace{1cm} (3.8)

on \(U \times [0, \infty)\). By combining (3.5) and (3.8), we can choose a constant \(D \geq 1\) such that there holds on \(U \times [0, \infty)\) that
\[(\partial_t - \Delta_\omega)(\tau^{-3}\phi^2|\nabla Rm(\tilde{\omega})|^2_\omega + D\tau^{-2}|Rm(\tilde{\omega})|^2_\omega) \leq -\tau^{-2}|\nabla Rm(\tilde{\omega})|^2_\omega + C\tau.\] \hspace{1cm} (3.9)

By the maximum principle arguments we know \(\tau^{-3}\phi^2|\nabla Rm(\tilde{\omega})|^2_\omega + D\tau^{-2}|Rm(\tilde{\omega})|^2_\omega\) is uniformly bounded on \(U \times [0, \infty)\) and by \(\phi \equiv 1\) on \(U'\) we proved that \(\tau^{-3}|\nabla Rm(\tilde{\omega})|^2_\omega\) is uniformly bounded on \(U' \times [0, \infty)\). In other words, there is a constant \(C \geq 1\) such that on \(U' \times [0, \infty),\)
\[|\nabla Rm(\tilde{\omega})|_\omega \leq C \cdot \tau^\frac{3}{2},\]
completing the proof. \(\square\)

4. Local Calabi’s \(C^3\)-estimate near fibers

As in [31, 1, 14, 15, 16], we define a tensor \(\Psi = (\Psi^k_{ij})\) by \(\Psi^k_{ij} := \Gamma^k_{ij} - \tilde{\Gamma}^k_{ij}\), where \(\Gamma^k_{ij}\) (resp. \(\tilde{\Gamma}^k_{ij}\)) is the Christoffel symbols of \(\omega(t)\) (resp. \(\tilde{\omega}(t)\)), and \(S = |\Psi^k_{ij}|_2\). Next we derive an upper estimate of \(S\) in the setting as in Theorem [1, 3]. Note that similar local estimates appear in Sherman-Weinkove’s works [15, 16] in which the Kähler-Ricci flow (and more generally Chern-Ricci flow) solution is assumed to be locally uniformly equivalent to a fixed metric on a ball. In our setting, the two metrics are both evolving and we allow the eigenvalues of \(\tilde{\omega}(t)^{-1}\omega(t)\) to blow-up as \(t \to \infty\). The good cut-off functions constructed in Lemma [2, 1] are essential in our proof to tackle these issues.

Proposition 4.1. Assume the same setting as in Theorem [1, 3]. Let \(U'\) be an open neighborhood of \(X_y\) satisfying (3.2) in Proposition [7]. Then we have an open neighborhood \(U''\) of \(X_y\) in \(X\) with \(U'' \subset \subset U'\) and a constant \(A \geq 1\) such that
\[S \leq A\sigma^4\tau\] \hspace{1cm} (4.1)
on \(U'' \times [0, \infty)\).
Proof. Recall the evolution of $\text{tr}_\omega \dot{\omega}$:

$$(\partial_t - \Delta_\omega) \text{tr}_\omega \dot{\omega} = -\text{tr}_\omega (Ric(\dot{\omega})) + g^{\bar{q}p} \tilde{R}_{\bar{i}j p q} - g^{\bar{q}p} g^{\bar{b}b} \nabla_\omega \dot{\omega}_{\bar{i}j} \nabla_\omega \tilde{g}_{\bar{b}b}.$$

Then by (1.3) and (1.4) we get

$$(\partial_t - \Delta_\omega) \text{tr}_\omega \dot{\omega} \leq 2n \tau \sigma^2 - \sigma^{-1} S, \quad (4.2)$$

and so

$$(\partial_t - \Delta_\omega)(\sigma^{-1} \text{tr}_\omega \dot{\omega}) \leq 2n \tau \sigma - \sigma^{-2} S, \quad (4.3)$$

Recall [32, (3.17)]:

$$(\partial_t - \Delta_\omega) S = S - |\nabla \Psi|_\omega^2 - |\overline{\nabla} \Psi|_\omega^2 + 2 \text{Re}(g^{\bar{i}j} g^{\bar{p}q} \tilde{g}_{\bar{i}j \bar{k}l} (\nabla_\omega \tilde{R}_{\bar{i}j p} - \nabla_\omega \tilde{R}_{\bar{i}j p} \bar{k}) \overline{\Psi}^j_{\bar{q}l}) \quad (4.4)$$

and

$$\nabla^b \tilde{R}_{\bar{i}j p} \bar{k} = \Psi * \text{Rm}(\dot{\omega}) + g^{ba} \nabla_a \nabla^b \tilde{R}_{\bar{i}j p} \bar{k}$$

By (1.3) and (3.2),

$$|\nabla_\omega \tilde{R}_{\bar{i}j p} |_\omega \leq \sigma^{\frac{3}{2}} |\nabla_\omega \tilde{R}_{\bar{i}j p} \bar{k} |_\omega \leq C \sigma^{\frac{3}{2}} \tau^\frac{3}{2},$$

$$|\Psi * \text{Rm}(\dot{\omega})|_\omega \leq |\Psi|_\omega |\text{Rm}(\dot{\omega})|_\omega \leq C \sigma^2 \tau |\Psi|_\omega$$

and

$$g^{ba} \nabla_a \nabla^b \tilde{R}_{\bar{i}j p} \bar{k} |_\omega \leq \sigma |\nabla^b \tilde{R}_{\bar{i}j p} \bar{k} |_\omega \leq \sigma^{\frac{5}{2}} |\nabla^b \tilde{R}_{\bar{i}j p} \bar{k} |_\omega \leq C \sigma^{\frac{5}{2}} \tau^\frac{3}{2},$$

implying

$$2 \text{Re}(g^{\bar{i}j} g^{\bar{p}q} \tilde{g}_{\bar{i}j \bar{k}l} (\nabla_\omega \tilde{R}_{\bar{i}j p} - \nabla_\omega \tilde{R}_{\bar{i}j p} \bar{k}) \overline{\Psi}^j_{\bar{q}l}) \leq C \sigma^2 \tau S + C \sigma^{\frac{5}{2}} \tau^\frac{3}{2} \sqrt{S}.$$

Therefore, we have

$$(\partial_t - \Delta_\omega) S = C \sigma^2 \tau S + C \sigma^{\frac{5}{2}} \tau^\frac{3}{2} \sqrt{S} - |\nabla \Psi|_\omega^2 - |\overline{\nabla} \Psi|_\omega^2. \quad (4.5)$$

and so

$$(\partial_t - \Delta_\omega)(\sigma^{-4} \tau^{-1} S) \leq C \sigma^{-2} S + C \sigma^{\frac{5}{2}} \tau^\frac{3}{2} \sqrt{S} - \sigma^{-4} \tau^{-1}(|\nabla \Psi|_\omega^2 + |\overline{\nabla} \Psi|_\omega^2), \quad (4.6)$$

which holds on $U' \times [0, \infty)$.

Now by Lemma 2.1 we choose an open neighborhood U'' of X_ω with $U'' \subset \subset U'$ and fix a cutoff function ϕ on X, which is compactly supported on U', identically equals to 1 on U'', and satisfies, for a constant $C \geq 1$, on $X \times [0, \infty)$,

$$|\partial \phi|_{\omega(t)}^2 + |\Delta_\omega(t) \phi| \leq C. \quad (4.7)$$

Compute:

$$(\partial_t - \Delta_\omega)(\phi^2 \sigma^{-4} \tau^{-1} S)$$

$$= \phi^2 (\partial_t - \Delta_\omega)(\sigma^{-4} \tau^{-1} S) - (\partial_t \Delta_\omega) \phi^2 \sigma^{-4} \tau^{-1} S - 2 \sigma^{-4} \tau^{-1} \text{Re}((\partial(\phi^2)) \cdot \overline{\partial} S)$$

$$\leq C \phi^2 \sigma^{-2} S + C \phi^2 \sigma^{-\frac{3}{2}} \tau^\frac{3}{2} \sqrt{S} - \phi^2 \sigma^{-4} \tau^{-1}(|\nabla \Psi|_\omega^2 + |\overline{\nabla} \Psi|_\omega^2)$$

$$+ C \sigma^{-4} \tau^{-1} S - 2 \sigma^{-4} \tau^{-1} \text{Re}((\partial(\phi^2)) \cdot \overline{\partial} S)$$

$$\leq C \sigma^{-2} S + C \sigma^{-\frac{3}{2}} \tau^\frac{3}{2} \sqrt{S} - \phi^2 \sigma^{-4} \tau^{-1}(|\nabla \Psi|_\omega^2 + |\overline{\nabla} \Psi|_\omega^2)$$

$$- 2 \sigma^{-4} \tau^{-1} \text{Re}((\partial(\phi^2)) \cdot \overline{\partial} S). \quad (4.8)$$

Note that

$$- 2 \sigma^{-4} \tau^{-1} \text{Re}((\partial(\phi^2)) \cdot \overline{\partial} S) \leq \sigma^{-4} \tau^{-1} \phi^2(|\nabla \Psi|_\omega^2 + |\overline{\nabla} \Psi|_\omega^2) + C \sigma^{-4} \tau^{-1} S,$$

putting which into the above inequality gives

$$(\partial_t - \Delta_\omega)(\phi^2 \sigma^{-4} \tau^{-1} S) \leq C \sigma^{-2} S + C \sigma^{-\frac{3}{2}} \tau^\frac{3}{2} \sqrt{S}. \quad (4.9)$$
Therefore, by setting $Q := \phi^2 \sigma^{-4} \tau^{-1} S + C \sigma^{-1} t \omega \tilde{\omega}$ for a sufficiently large constant C, then by (1.3) and (1.4) there holds on $U' \times [0, \infty)$ that

$$
(\partial_t - \Delta_\omega)Q \leq -\sigma^{-2} S + C \sigma^{-3/2} \tau^{1/2} \sqrt{S} + C \sigma \tau.
$$

(4.11)

Assume (\bar{x}, \bar{t}) is a maximal point of Q on $(0, \infty)$. We may assume $\bar{x} \in U'$, $\bar{t} > 0$ and $S \geq B \sigma \tau$ at (\bar{x}, \bar{t}) for a sufficiently large constant B so that $C \sigma^{-3/2} \tau^{1/2} \sqrt{S} \leq \frac{1}{2} \sigma^{-2} S$. Then by the maximum principle we have, at (\bar{x}, \bar{t}),

$$
\sigma^{-2} S \leq C \sigma^{-3/2} \tau^{1/2} \sqrt{S} + C \sigma \tau
$$

$$
\leq \frac{1}{2} \sigma^{-2} S + C \sigma \tau.
$$

(4.12)

By rearrangement, we get

$$
S \leq \tilde{C} \sigma^{3} \tau
$$

for some large constant \tilde{C}, proving that $Q(\bar{x}, \bar{t})$ is uniformly bounded on $U' \times [0, \infty)$, and so $\sigma^{-4} \tau^{-1} S$ is uniformly bounded on $U'' \times [0, \infty)$. The proof is then completed. □

5. Curvature estimates near fibers and proof of Theorem 1.3

In this section, we give the proof of our major results (Theorem 1.3). The proof is modified from [15, Section 3]. Since our case involves two different solutions (both are degenerate at time-infinity) and some possibly unbounded quantities, which is slightly different from the setting in [15, Section 3], we present the details here for convenience of readers.

Proof of Theorem 1.3. Firstly, by combining (1.5) and (4.1), we have on $U'' \times [0, \infty)$,

$$
(\partial_t - \Delta_\omega)S \leq C \sigma^6 \tau^2 - \|Rm(\omega)|^2_{\omega} - \|\nabla \Psi\|^2_{\omega}.
$$

(5.1)

By (1.3) and (1.4) we also have

$$
\|\nabla \Psi\|^2_{\omega} = |R_{\mu
u} \omega^\mu R_{\mu
u} \omega^\nu| \geq \frac{1}{2} |Rm(\omega)|^2_{\omega} - C |Rm(\omega)|^2_{\omega} \geq \frac{1}{2} |Rm(\omega)|^2_{\omega} - C \sigma^4 \tau^2,
$$

(5.2)

putting which into (5.1) concludes

$$
(\partial_t - \Delta_\omega)S \leq C \sigma^6 \tau^2 - \frac{1}{2} |Rm(\omega)|^2_{\omega},
$$

(5.3)

Now (5.1) and (5.3) imply

$$
(\partial_t - \Delta_\omega)(\sigma^{-4} \tau^{-1} S) \leq C \sigma^2 \tau - \sigma^{-4} \tau^{-1} (\|\nabla \Psi\|^2_{\omega} + \|\nabla \Psi\|^2_{\omega})
$$

(5.4)

and

$$
(\partial_t - \Delta_\omega)(\sigma^{-4} \tau^{-1} S) \leq C \sigma^2 \tau - \frac{1}{2} \sigma^{-4} \tau^{-1} |Rm(\omega)|^2_{\omega}
$$

(5.5)

respectively. Also recall

$$
(\partial_t - \Delta_\omega)|Rm(\omega)|^2_{\omega} \leq -\|\nabla Rm(\omega)|^2_{\omega} - \|\nabla Rm(\omega)|^2_{\omega} + C |Rm(\omega)|^2_{\omega}.
$$

(5.6)

Now we set $\tilde{S} := \sigma^{-4} \tau^{-1} S$, which is a smooth bounded function on $U'' \times [0, \infty)$. Again by Lemma 2.1 we choose an open neighborhood U'' of X with $U'' \subset U''$ and fix a cut-off function ϕ on X, which is compactly supported on U'', identically equals to 1 on U'', and satisfies, for a constant $C \geq 1$, on $X \times [0, \infty)$,

$$
|\partial_t \phi|_{\omega(t)} + |\Delta_\omega \phi| \leq C.
$$
Let B be a sufficiently large constant so that $B - \hat{S} > \frac{B}{2}$. We then modify the direct computations in \[15\] and get:

\[
(\partial_t - \Delta_\omega) \left(\phi^2 \frac{|\text{Rm}(\omega)|^2}{B - \hat{S}} \right)
\]

\[
= - (\Delta \phi^2) \frac{|\text{Rm}(\omega)|^2}{B - \hat{S}} + \phi^2 \frac{\partial_t - \Delta_\omega |\text{Rm}(\omega)|^2}{B - \hat{S}} + \phi^2 \frac{\partial_t - \Delta_\omega \hat{S}}{(B - \hat{S})^2} |\text{Rm}(\omega)|^2
\]

\[
- 2\phi^2 \frac{\partial \hat{S}^2 |\text{Rm}(\omega)|^2}{(B - \hat{S})^3} - 4 \text{Re} \frac{\phi \cdot \partial \phi \cdot \partial \hat{S}}{B - \hat{S}} |\text{Rm}(\omega)|^2
\]

\[
- 4 \text{Re} \frac{\phi \partial \phi \cdot \partial \hat{S}}{(B - \hat{S})^2} |\text{Rm}(\omega)|^2 - 2\text{Re} \frac{\phi^2 \cdot \partial |\text{Rm}(\omega)|^2 \cdot \partial \hat{S}}{(B - \hat{S})^2}.
\] (5.7)

Using (5.4), (5.6) and Cauchy-Schwarz inequality, we have

\[
(B - \hat{S})^2 (\partial_t - \Delta_\omega) \left(\phi^2 \frac{|\text{Rm}(\omega)|^2}{B - \hat{S}} \right)
\]

\[
\leq - (\Delta \phi^2) (B - \hat{S}) |\text{Rm}(\omega)|^2
\]

\[
+ \phi^2 (B - \hat{S}) (\nabla |\text{Rm}(\omega)|^3 - |\nabla |\text{Rm}(\omega)|^2 - |\nabla |\text{Rm}(\omega)|^2)
\]

\[
+ \phi^2 (C \sigma^2 \tau - \sigma^{-4} \tau^{-1} |\nabla \Psi|^2 - \sigma^{-4} \tau^{-1} |\nabla \Psi|^2 |\text{Rm}(\omega)|^2
\]

\[
- \frac{2}{B - \hat{S}} \phi^2 |\partial \hat{S}^2 |\text{Rm}(\omega)|^2 + 16 |\partial \phi|^2 \phi \Omega (B - \hat{S}) |\text{Rm}(\omega)|^2
\]

\[
+ \frac{1}{2} \phi^2 (B - \hat{S}) |\nabla |\text{Rm}(\omega)|^2 + \frac{1}{2} \phi^2 (B - \hat{S}) |\nabla |\text{Rm}(\omega)|^2
\]

\[
+ \frac{1}{B - \hat{S}} \phi^2 |\partial \hat{S}^2 |\text{Rm}(\omega)|^2 + 4 |\partial \phi|^2 \phi \Omega (B - \hat{S}) |\text{Rm}(\omega)|^2
\]

\[
+ \frac{4}{B - \hat{S}} \phi^2 |\partial \hat{S}^2 |\text{Rm}(\omega)|^2
\]

\[
+ \frac{1}{2} \phi^2 (B - \hat{S}) |\nabla |\text{Rm}(\omega)|^2 + \frac{1}{2} \phi^2 (B - \hat{S}) |\nabla |\text{Rm}(\omega)|^2.
\] (5.8)

Label the above terms (1), (2), ..., (16). Observe that

\[
(1) + (5) + (9) + (13) \leq C \sigma^2 \tau |\text{Rm}(\omega)|^2,
\] (5.9)

\[
(3) + (4) + (10) + (11) + (15) + (16) = 0
\] (5.10)

and

\[
(8) + (12) + (14) = \frac{3}{B - \hat{S}} \phi^2 |\partial \hat{S}^2 |\text{Rm}(\omega)|^2
\] (5.11)

Then we have

\[
(B - \hat{S})^2 (\partial_t - \Delta_\omega) \left(\phi^2 \frac{|\text{Rm}(\omega)|^2}{B - \hat{S}} \right)
\]

\[
\leq C \sigma^2 \tau |\text{Rm}(\omega)|^2
\]

\[
+ \frac{3}{B - \hat{S}} \phi^2 |\partial \hat{S}^2 |\text{Rm}(\omega)|^2
\]

\[
+ \phi^2 C (B - \hat{S}) |\text{Rm}(\omega)|^3
\]

\[
- \phi^2 \sigma^{-4} \tau^{-1} |\nabla \Psi|^2 |\text{Rm}(\omega)|^2 - \phi^2 \sigma^{-4} \tau^{-1} |\nabla \Psi|^2 |\text{Rm}(\omega)|^2.
\] (5.12)
Then we arrive at φ generality that note we have discarded a term.

Label the above terms (T_1), (T_2), . . . , (T_5). Using (5.2) we have

\[
(T_3) + \frac{1}{2}(T_5) \leq \phi^2 C(B - \tilde{S}) |Rm(\omega)|^3_{\omega} - \phi^2 \sigma^{-4} \tau^{-1} \left(\frac{1}{4} |Rm(\omega)|^2_{\omega} - C\sigma^4 \tau^2 \right) |Rm(\omega)|^2_{\omega}
\]

\[
\leq \phi^2 |Rm(\omega)|^3_{\omega} \left(BC - \frac{1}{4} \sigma^{-4} \tau^{-1} |Rm(\omega)|_{\omega} \right) + C\tau |Rm(\omega)|^2_{\omega}.
\]

(5.14)

Observing that by Cauchy-Schwarz inequality and (4.1), we have

\[
|\partial S|_{\omega}^2 = \sigma^{-8} \tau^{-2} |\partial S|_{\omega}^2 \leq 4\sigma^{-8} \tau^{-2} S(|\nabla \Psi|_{\omega}^2 + |\nabla \Psi|_{\omega}^2) \leq C\sigma^{-4} \tau^{-1} (|\nabla \Psi|_{\omega}^2 + |\nabla \Psi|_{\omega}^2),
\]

and so for sufficiently large constant B,

\[
(T_2) + \frac{1}{2}(T_4) + \frac{1}{2}(T_3) \leq \left(\frac{3C}{B - \tilde{S}} - \frac{1}{2} \right) \phi^2 \sigma^{-8} \tau^{-2} (|\nabla \Psi|_{\omega}^2 + |\nabla \Psi|_{\omega}^2) |Rm(\omega)|_{\omega}^2 \leq 0.
\]

(5.15)

Then we arrive at

\[
(B - \tilde{S})^2 (\partial_t - \Delta_\omega) \left(\phi^2 |Rm(\omega)|^2_{\omega} \right)
\]

\[
\leq C\sigma^2 \tau |Rm(\omega)|^3_{\omega} + \phi^2 |Rm(\omega)|^3_{\omega} \left(BC - \frac{1}{4} \sigma^{-4} \tau^{-1} |Rm(\omega)|_{\omega} \right).
\]

(5.16)

Note we have discarded a term \(\frac{1}{2}(T_4)\).

This shows

\[
(\partial_t - \Delta_\omega) \left(\phi^2 \sigma^{-8} \tau^{-2} \frac{|Rm(\omega)|^2_{\omega}}{B - \tilde{S}} \right)
\]

\[
\leq C\sigma^{-6} \tau^{-1} |Rm(\omega)|^2_{\omega} + \sigma^{-8} \tau^{-2} (B - \tilde{S})^{-2} \phi^2 |Rm(\omega)|^3_{\omega} \left(BC - \frac{1}{4} \sigma^{-4} \tau^{-1} |Rm(\omega)|_{\omega} \right).
\]

(5.17)

Now consider \(Q := \phi^2 \sigma^{-8} \tau^{-2} \frac{|Rm(\omega)|^2_{\omega}}{B - \tilde{S}} + C\tilde{S}\) for sufficiently large constant C. By combining (5.5) and (5.17) we get, on \(U'' \times [0, \infty)\),

\[
(\partial_t - \Delta_\omega)Q \leq -\sigma^{-4} \tau^{-1} |Rm(\omega)|^2_{\omega} + C\sigma^2 \tau
\]

\[
+ \sigma^{-8} \tau^{-2} (B - \tilde{S})^{-2} \phi^2 |Rm(\omega)|^3_{\omega} \left(BC - \frac{1}{4} \sigma^{-4} \tau^{-1} |Rm(\omega)|_{\omega} \right).
\]

(5.18)

Suppose \((\bar{x}, \bar{t})\) is a maximum point of \(Q\) on \(\overline{U''} \times [0, T]\). We may assume without loss of generality that \(\phi(\bar{x}) > 0\) (and hence \(\bar{x} \in U''\), \(\bar{t} > 0\) and \(|Rm(\omega)|_{\omega}^2 \geq C\sigma^6 \tau^2\) at \((\bar{x}, \bar{t})\). Then by applying the maximum principle on (5.18) we have at \((\bar{x}, \bar{t})\)

\[
BC - \frac{1}{4} \sigma^{-4} \tau^{-1} |Rm(\omega)|_{\omega} \geq 0
\]

and hence \(|Rm(\omega)|_{\omega}(\bar{x}, \bar{t}) \leq C\sigma^4 \tau\) and \(Q(\bar{x}, \bar{t}) \leq C\). In conclusion, \(Q \leq C\) on \(U'' \times [0, \infty)\), and hence \(|Rm(\omega)|_{\omega} \leq C\sigma^4 \tau\) on \(U'' \times [0, \infty)\), completing the proof.

\(\square\)
6. Metric equivalences, and Proofs of Theorems 1.4 and 1.5

In this section, we prove an important estimate between the local upper bound near a fiber X_y of the Riemann curvature of a particular Kähler-Ricci flow solution and the local bound near X_y on the eigenvalues of any other Kähler-Ricci flow solution.

Proposition 6.1. Let $f : X \to X_{\text{can}}$ be the map in (1.2). Fix an arbitrary $y \in X_{\text{can}}$. Assume there exist a solution $\tilde{\omega}(t)$, an open neighborhood U of X_y in X, and an increasing differentiable function $\tau(t) : [0, \infty) \to [1, \infty)$ such that

$$\sup_U |Rm(\tilde{\omega}(t))| \leq \tau(t).$$

(6.1)

Then, we have an open neighborhood U' of X_y in X with $U' \subset U$ such that for any solution $\omega(t)$ there exists a constant $A \geq 1$ satisfying

$$e^{-A\tau(t)}\omega(t) \leq \omega(t) \leq e^{A\tau(t)}\tilde{\omega}(t)$$

on $U' \times [0, \infty)$.

Proof. By direct computation (see e.g. [32, Section 3]) we have

$$(\partial_t - \Delta_\omega)tr_\omega\tilde{\omega} = -tr_\omega(Ric(\tilde{\omega})) + g^{j\bar{k}}\bar{g}^{\bar{p}q}\bar{R}_{j\bar{k}p\bar{q}} - g^{j\bar{k}}\bar{g}^{\bar{p}q}\bar{g}_j\bar{g}_p\nabla_j\nabla_p\tilde{g}_{\bar{k}q}.$$

Combining (6.1), we get

$$(\partial_t - \Delta_\omega)tr_\omega\tilde{\omega} \leq n\tau \cdot tr_\omega\tilde{\omega} + (\tau(\partial_t - \Delta_\omega)\tilde{\omega})^2 - g^{j\bar{k}}\bar{g}^{\bar{p}q}\bar{g}_j\bar{g}_p\nabla_j\nabla_p\tilde{g}_{\bar{k}q}.$$

(6.3)

and hence

$$(\partial_t - \Delta_\omega)(\tau^{-1}\log tr_\omega\tilde{\omega}) \leq \tau \cdot tr_\omega\tilde{\omega} + n\tau,$$

which by $\frac{4}{\tau} \tau \geq 0$ implies, at any point with $tr_\omega\tilde{\omega} \geq 1$,

$$\tau^{-1}(\partial_t - \Delta_\omega)(\tau^{-1}\log tr_\omega\tilde{\omega}) \leq tr_\omega\tilde{\omega} + n.$$

(6.5)

As in [32, (3.6)], there is a smooth real function $u = u(t)$ on $X \times [0, \infty)$ and a constant $C \geq 1$ such that

$$\sup_{X \times [0, \infty)} |u| + |\partial_t u| \leq C$$

(6.6)

and

$$(\partial_t - \Delta_\omega)(\tau^{-1}\log tr_\omega\tilde{\omega} + u(t)) \leq -tr_\omega\tilde{\omega} + C$$

(6.7)

at any point in $U \times [0, \infty)$ with $tr_\omega\tilde{\omega} \geq 1$. This function u is a linear combination of Kähler potentials of $\omega(t)$ and $\tilde{\omega}(t)$ which are well-known to be uniformly bounded on $X \times [0, \infty)$ by [17, 18, 19].

By Lemma 2.1, we choose an open neighborhood U' of X_y with $U' \subset U$ and fix a cutoff function ϕ on X, which is compactly supported on U', identically equals to 1 on U', and satisfies, for a constant $C \geq 1$, on $X \times [0, \infty)$,

$$|\partial_\phi|^2_{\omega(t)} + |\Delta_\omega \phi| \leq C.$$

To apply the maximum principle, we consider the function $P(t) := \phi \cdot (\tau^{-1}\log tr_\omega\tilde{\omega} + u(t))$. We have

$$(\partial_t - \Delta_\omega)P(t) = \phi \cdot (\partial_t - \Delta_\omega)(\tau^{-1}\log tr_\omega\tilde{\omega} + u(t)) - (\Delta_\omega \phi) \cdot (\tau^{-1}\log tr_\omega\tilde{\omega} + u(t)) - 2Re(\partial_\phi \cdot \tilde{\partial}(\tau^{-1}\log tr_\omega\tilde{\omega} + u(t))).$$

(6.8)

For any $T > 0$, let (\bar{x}, \bar{t}) be a maximal point of P on $X \times [0, T]$. We may assume $\bar{t} > 0$, and $\phi(\bar{x}) > 0$ (otherwise $tr_\omega(\tilde{\omega}) \leq Ce^{4\tau}$ at the maximum point of P and we are done).
and by similar reason assume that $\text{tr} \omega \tilde{\omega}(\bar{x}, \bar{t}) \geq e^{2+\tau C_2}$ so that $P(\bar{x}, \bar{t}) > 0$. Applying the maximum principle in (6.8) and using (2.3), (6.7), we have at (\bar{x}, \bar{t}),

$$0 \leq (\partial_t - \Delta_\omega)P = \phi \cdot (\partial_t - \Delta_\omega)(\tau^{-1} \log \text{tr} \omega \tilde{\omega} + u) - (\Delta_\omega \phi) \cdot (\tau^{-1} \log \text{tr} \omega \tilde{\omega} + u) - 2\text{Re} \left(\partial \phi \cdot \bar{\partial} (\tau^{-1} \log \text{tr} \omega \tilde{\omega} + u) \right) \leq \phi (-\text{tr} \omega \tilde{\omega} + C) + C \cdot (\tau^{-1} \log \text{tr} \omega \tilde{\omega} + u) - 2\text{Re} \left(\partial \phi \cdot \bar{\partial} (\tau^{-1} \log \text{tr} \omega \tilde{\omega} + u) \right).$$

(6.9)

On the other hand, at (\bar{x}, \bar{t}) we have

$$0 = \bar{\partial}P = (\tau^{-1} \log \text{tr} \omega \tilde{\omega} + u) \cdot \bar{\partial} \phi + \phi \cdot \bar{\partial} (\tau^{-1} \log \text{tr} \omega \tilde{\omega} + u),$$

or equivalently (note that $\phi(\bar{x}) > 0$), we have

$$\bar{\partial} (\tau^{-1} \log \text{tr} \omega \tilde{\omega} + u) = -\frac{(\tau^{-1} \log \text{tr} \omega \tilde{\omega} + u)}{\phi} \cdot \bar{\partial} \phi.$$

This shows

$$-\text{Re} \left(\partial \phi \cdot \bar{\partial} (\tau^{-1} \log \text{tr} \omega \tilde{\omega} + u) \right) = \frac{(\tau^{-1} \log \text{tr} \omega \tilde{\omega} + u)}{\phi} \cdot |\partial \phi|_{\omega(t)}^2 \leq C \frac{(\tau^{-1} \log \text{tr} \omega \tilde{\omega} + u)}{\phi},$$

and by putting it into (6.9) we get

$$\text{tr} \omega \tilde{\omega} \leq \frac{C \cdot (\tau^{-1} \log \text{tr} \omega \tilde{\omega} + u)}{\phi} + C \frac{(\tau^{-1} \log \text{tr} \omega \tilde{\omega} + u)}{\phi^2} + C \leq \frac{C \log \text{tr} \omega \tilde{\omega} + C}{\phi^2} \leq \frac{C \log \text{tr} \omega \tilde{\omega}}{\phi^2},$$

where in the second inequality uses the uniform bound for u in (6.6), $\tau \geq 1$ and $\phi \leq 1$, and in the last inequality we use $\text{tr} \omega \tilde{\omega} \geq e^2$. Using again $\text{tr} \omega \tilde{\omega} \geq e^2$ we know $\log \text{tr} \omega \tilde{\omega} \leq (\text{tr} \omega \tilde{\omega})^{1/2}$, so we arrive at

$$\text{tr} \omega \tilde{\omega} \leq \frac{C(\text{tr} \omega \tilde{\omega})^{1/2}}{\phi^2},$$

which gives, at (\bar{x}, \bar{t}),

$$\text{tr} \omega \tilde{\omega} \leq \frac{C}{\phi^2}.$$

Therefore,

$$P(\bar{x}, \bar{t}) = \phi \cdot (\tau^{-1} \log \text{tr} \omega \tilde{\omega} + u) \leq \phi \cdot \frac{1}{\phi^4} + C.$$

(6.10)
Since the function \(s \log \frac{1}{s} \) is uniformly bounded for \(s \in (0, 1] \), we get a uniform constant \(C \geq 1 \) such that

\[
P(\bar{x}, \bar{t}) \leq C.
\]

Since \(C \) does not depend on the choice of \(T \), there holds on \(X \times [0, \infty) \) that

\[
P \leq C.
\]

Recall \(\phi \equiv 1 \) on \(U' \), then combining the bound of \(R \) in \(\text{(6.6)} \) we obtain a constant \(C \geq 1 \) such that on \(U' \times [0, \infty) \),

\[
tr_{\bar{\omega}} \bar{\omega} \leq e^{C \tau}.
\]

(6.11)

From \(\text{[22]} \) by \(\text{[17, 18]} \) we know the volume forms \(\omega^n \) and \(\bar{\omega}^n \) are uniformly equivalent on \(X \), so by possibly increasing \(C \) if necessary we have on \(U' \times [0, \infty) \),

\[
tr_{\omega} \omega \leq C \cdot e^{(n-1)C \tau}.
\]

(6.12)

Combining \(\text{(6.11)} \) and \(\text{(6.12)} \), we find a constant \(A \geq 1 \) such that on \(U' \times [0, \infty) \),

\[
e^{-A \tau} \bar{\omega} \leq \omega \leq e^{A \tau} \bar{\omega}.
\]

(6.13)

Proof of Theorem 1.4. For case (i), i.e. \(X_y \) is a regular fiber, by Fong-Z. Zhang \(\text{[3]} \) Theorem 1.1 and Section 6 \(\text{(see also [24] for the elliptic analogue)} \) we know any two solutions are uniformly equivalent near \(X_y \). Then we can choose \(\sigma \) in Theorem 1.3 to be a constant, and so (i) follows.

For case (ii), i.e. \(X_y \) is a singular fiber, by Proposition 6.1 we can choose \(\sigma \) in Theorem 1.3 to be of the form \(e^{A \tau} \), and so (ii) follows. \(\square \)

Proof of Theorem 1.5. By choosing \(\tau \) in Theorem 1.4 to be a constant, the theorem follows easily: if \(y \notin W_\Pi(\bar{\omega}(t)) \), then there exists an open neighborhood \(U \) of \(X_y \) and a constant \(C \geq 1 \) such that on \(U \times [0, \infty) \) we have:

\[
\sup_U |Rm(\bar{\omega}(t))| \bar{\omega}(t) \leq C.
\]

Proposition 5.2 shows there exists an open neighborhood \(U' \subset U \) of \(X_y \) and a constant \(A \geq 1 \) such that on a \(U' \times [0, \infty) \) we have:

\[
e^{-AC} \bar{\omega}(t) \leq \omega(t) \leq e^{AC} \bar{\omega}(t).
\]

Finally, we apply Theorem 1.3 with \(\sigma(t) \equiv e^{AC} \) to get that \(y \notin W_\Pi(\omega(t)) \). It completes the proof. \(\square \)

7. **Blow-up rate estimates**

In this final section, we shall first prove the following general lemma, and then apply it to estimate curvature blow-up rate in certain settings.

Lemma 7.1. Let \(B_r, r > 0, \) be the ball in \(\mathbb{C}^n \) defined by \(B_r = \{(z^1, \ldots, z^n) \in \mathbb{C}^n | |z|^2 + \ldots + |z^n|^2 < r^2 \} \), and \(\omega_E \) the standard Euclidean metric on \(\mathbb{C}^n \). Fix a smooth family \(\bar{\omega} = \bar{\omega}(t), t \in [0, \infty), \) of Kähler metrics on \(B_1 \) satisfying

1. for any \(t \geq 0, \) \(\bar{\omega}(t) \) is a flat metric;
2. there is a constant \(C \) such that \(\partial_t \bar{\omega} \leq C \bar{\omega} \) on \(B_1 \times [0, \infty) \);
3. there exist an increasing differentiable function \(\alpha(t) \in [0, \infty) \rightarrow [1, \infty) \) and a constant \(C \geq 1 \) such that \(\bar{\omega}(t) \geq C^{-1} \alpha^{-1} \omega_E \) on \(B_1 \times [0, \infty) \).

Let $\omega = \omega(t)$ be a solution to the Kähler-Ricci flow \((1.1)\) on $B_1 \times [0, \infty)$. Assume there is an increasing differentiable function $\beta(t) : [0, \infty) \to [1, \infty)$ such that
\[
\dot{\omega} \leq \omega \leq \beta \cdot \omega \quad \text{on } B_1 \times [0, \infty),
\]
then we have a constant $C \geq 1$ such that on $B_{1/2} \times [0, \infty)$,
\[
|Rm(\omega)|_\omega \leq C \alpha \cdot \beta.
\]

Proof. The proof is similar to our above discussions. The first step is to obtain a local Calabi’s C^3-estimate, which is very similar to [26, Proposition 2.7]. Since we are in a setting more general than [26, Proposition 2.7], we will provide some details. As before, define a tensor $\Psi = (\Psi^k)$ by $\Psi^k := \Gamma^k_{ij} - \tilde{\Gamma}^k_{ij}$, where Γ^k_{ij} (resp. $\tilde{\Gamma}^k_{ij}$) is the Christoffel symbols of $\omega(t)$ (resp. $\tilde{\omega}(t)$), and $S = |\Psi|^2$. Given conditions (3) we may fix a cutoff function ϕ on B_1, which is compactly supported on B_1, identically equals to 1 on $B_{2/3}$, and satisfies, for a constant $C \geq 1$, on $\overline{B_1} \times [0, \infty)$,
\[
|\partial \phi|^2_{\omega(t)} + |\Delta \omega(t) \phi| \leq C \alpha.
\]

Then by direct computation we have
\[
(\partial_t - \Delta \omega)S = S - |\nabla \Psi|^2 - |\nabla \Psi|^2
= S - |\nabla \Psi|^2 - |Rm(\omega)|^2_{\omega}
\]
and hence
\[
(\partial_t - \Delta \omega)(\phi^2 \beta^{-1} S) \leq C \alpha S.
\]

On the other hand, given conditions (1), (2) and \((7.1)\) we can use direct computation to get
\[
(\partial_t - \Delta \omega)tr \omega \tilde{\omega} = tr \omega (\tilde{\omega} + \partial_t \omega) + g^a_i g^b_j \bar{\Gamma}_{ijp} - g^a_i g^b_j \bar{\Gamma}_{ij} - g^a_i g^b_j \bar{\gamma}_{ij} \nabla \bar{\gamma}_{pq} \nabla \bar{\gamma}_{aq}
\leq C - \beta^{-1} S.
\]

Note that \((7.4)\) implies
\[
(\partial_t - \Delta \omega)(\phi^2 \alpha^{-1} \beta^{-1} S) \leq C \beta^{-1} S.
\]

Therefore, choosing a sufficiently large constant C gives
\[
(\partial_t - \Delta \omega)(\phi^2 \alpha^{-1} \beta^{-1} S + Ctr \omega \tilde{\omega}) \leq -\beta^{-1} S + C.
\]

Now by apply the maximum principle, we conclude that $\phi^2 \alpha^{-1} \beta^{-1} S + Ctr \omega \tilde{\omega}$ is a bounded function on $B_1 \times [0, \infty)$ (here we have used $tr \omega \tilde{\omega}$ is uniformly bounded by the first inequality in \((7.1)\)), and hence
\[
S \leq C \alpha \cdot \beta \quad \text{on } B_{2/3} \times [0, \infty).
\]

Now, we are going to bound $Rm(\omega)$. Combining the above \((7.7)\) and \((7.3)\), we have on $B_{2/3} \times [0, \infty)$,
\[
(\partial_t - \Delta \omega)(\alpha^{-1} \beta^{-1} S) \leq C - \alpha^{-1} \beta^{-1} (|\nabla \Psi|^2 + |\nabla \Psi|^2)
\]
and
\[
(\partial_t - \Delta \omega)(\alpha^{-1} \beta^{-1} S) \leq C - \alpha^{-1} \beta^{-1} |Rm(\omega)|^2_{\omega}.
\]
Next, fix a cutoff function ρ on $B_{2/3}$, which is compactly supported on $B_{2/3}$, identically equals to 1 on $B_{1/2}$, and satisfies, for a constant $C \geq 1$, on $B_{2/3} \times [0, \infty)$,

$$|\partial_\rho |^2_{\omega(t)} + |\Delta_\omega(t)\rho| \leq C\alpha.$$
(7.10)

Then we can use very similar analysis in Section 5 to see that, for two sufficiently large constants B, C there holds on $B_{2/3} \times [0, \infty)$,

$$(\partial_t - \Delta_{\omega}) \left(\rho^2 \frac{|\text{Rm}(\omega)|^2_\omega}{B - \alpha^{-1}\beta^{-1}S} \right) \leq C\alpha|\text{Rm}(\omega)|^2_\omega + \frac{\rho^2}{(B - \alpha^{-1}\beta^{-1}S)^2}|\text{Rm}(\omega)|^3_\omega(BC - \frac{1}{2}\alpha^{-1}\beta^{-1}|\text{Rm}(\omega)|_\omega)$$

and hence

$$(\partial_t - \Delta_{\omega}) \left(\rho^2 \alpha^{-2}\beta^{-2} \frac{|\text{Rm}(\omega)|^2_\omega}{B - \alpha^{-1}\beta^{-1}S} \right) \leq C\alpha^{-1}\beta^{-1}|\text{Rm}(\omega)|^2_\omega + \frac{\rho^2 \alpha^{-2}\beta^{-2}}{(B - \alpha^{-1}\beta^{-1}S)^2}|\text{Rm}(\omega)|^3_\omega(BC - \frac{1}{2}\alpha^{-1}\beta^{-1}|\text{Rm}(\omega)|_\omega).$$

Together with (7.9), we find a sufficiently large constant $C \geq 1$ such that

$$(\partial_t - \Delta_{\omega}) \left(\rho^2 \alpha^{-2}\beta^{-2} \frac{|\text{Rm}(\omega)|^2_\omega}{B - \alpha^{-1}\beta^{-1}S} + C\alpha^{-1}\beta^{-1}S \right) \leq C - \alpha^{-1}\beta^{-1}|\text{Rm}(\omega)|^2_\omega + \frac{\rho^2 \alpha^{-2}\beta^{-2}}{(B - \alpha^{-1}\beta^{-1}S)^2}|\text{Rm}(\omega)|^3_\omega(BC - \frac{1}{2}\alpha^{-1}\beta^{-1}|\text{Rm}(\omega)|_\omega).$$

Now applying the similar maximum principle arguments in Section 5 completes the proof. \hfill \Box

We shall provide two applications of Lemma 7.1. The first one is a proof of Theorem 1.9.

Proof of Theorem 1.9. The first part $A^{-1}e^t \leq \sup_U |\text{Rm}(\omega(t))|_\omega(t)$ is contained in [28]. In fact, we may choose a regular fiber X_y such that $U \cap X_y$ is an open subset in X_y. Then any Ricci-flat Kähler metric on X_y can not be flat on $U \cap X_y$ (otherwise we get a flat metric on X_y, a contradiction). Therefore, the arguments in [28] page 2941, (C, Case 1) can be applied to prove the lower estimate.

Next we show the second part. To this end, by passing to a finite open cover, we may assume U is a local chart centered at $x \in U$ and $U = \{ (z^1, ..., z^n) \in C^n | |z^1|^2 + ... + |z^n|^2 < 1 \}$. Then similar to [28] Proposition 2.7], we write $C^n = C_k \oplus C_{n-k},$ and $\omega_E, \omega_E^{(k)}, \omega_E^{(n-k)}$ the Euclidean metrics on $C^n,$ $C_k,$ C_{n-k} respectively. Set $\omega_{E,t} := \omega_E^{(k)} + e^{-t}\omega_E^{(n-k)}$. By Fong-Z. Zhang [3] Theorem 1.1 and Section 6] we have a constant $C \geq 1$ such that on $U \times [0, \infty)$,

$$C^{-1}\omega_{E,t} \leq \omega(t) \leq C\omega_{E,t},$$
(7.11)

Then we can complete the proof by applying Lemma 7.1 with $\tilde{\omega}(t) = C^{-1}\omega_{E,t}$, $\alpha(t) = e^t$ and $\beta(t) \equiv C^2$. \hfill \Box

We observe one more application of Lemma 7.1 which concerns the Kähler-Ricci flow on a compact Kähler manifold with semi-negative holomorphic sectional curvature. Pioneered by a conjecture of Yau in 1970s, compact Kähler manifolds with (semi-)negative holomorphic sectional curvature have been studied widely. More recently, after a breakthrough by Wu-Yau [30], there are many progresses on this subjects, including
just to mention a few. Here, by applying Lemma 7.1 we observe a curvature estimate of the Kähler-Ricci flow in terms of the existence of a Kähler metric with semi-negative holomorphic sectional curvature.

Proposition 7.2. Let X be a compact Kähler manifold. Assume there exists a Kähler metric on X with semi-negative holomorphic sectional curvature (and hence by $[27] K_X$ is nef). Then for any long-time solution $\omega(t)$ to the Kähler-Ricci flow (1.1) on X, there is a constant $C \geq 1$ such that on $X \times [0, \infty)$,

$$|\text{Rm}(\omega(t))|_{\omega(t)} \leq C \cdot e^{(n+1)t}.$$

We may point out that here we don’t need to assume semi-ampleness of K_X.

Proof. Fix a Kähler metric ω_0 on X with semi-negative holomorphic sectional curvature. It was proved in $[13$, Section 3$]$ that on $X \times [0, \infty)$,

$$\omega(t) \geq C^{-1} e^{-t} \omega_0.$$

Then using the uniform upper bound of volume form (see e.g. $[20$, Corollary 2.3(ii)$]$) one gets

$$\omega(t) \leq C e^{(n-1) t} \omega_0.$$

Now, after passing to a local chart, we can apply Lemma 7.1 with $\tilde{\omega}(t) = C^{-1} e^{-t} \omega_E$, $\alpha(t) = e^t$ and $\beta(t) = C^2 e^{nt}$ to conclude this proposition. □

Acknowledgements

The authors thank professors Huai-Dong Cao, Jian Song, Gang Tian, Valentino Tosatti, Ben Weinkove and Zhenlei Zhang for interest and comments on a previous version of this paper. The second-named author is also grateful to professors Huai-Dong Cao and Gang Tian for constant encouragement and support.

References

[1] Cao, H.-D., Deformation of Kähler metrics to Kähler-Einstein metrics on compact Kähler manifolds, Invent. Math. 81 (2), 359-372 (1985)
[2] Diverio, S. and Trapani, S., Quasi-negative holomorphic sectional curvature and positivity of the canonical bundle, J. Differential Geom. 111 (2019), no. 2, 303-314.
[3] Fong, F.T.-H. and Zhang, Z., The collapsing rate of the Kähler-Ricci flow with regular infinite time singularities, J. Reine Angew. Math. 703 (2015), 95-113
[4] Gill, M., Collapsing of products along the Kähler-Ricci flow, Trans. Amer. Math. Soc. 366 (2014), no. 7, 3907-3924
[5] Gross, M., Tosatti, V. and Zhang, Y.G., Collapsing of abelian fibred Calabi-Yau manifolds, Duke Math. J. 162 (2013), 517-551
[6] Guo, B., On the Kähler Ricci flow on projective manifolds of general type, Int. Math. Res. Not. 2017 (7), 2139-2171
[7] Guo, B., Song, J. and Weinkove, B., Geometric convergence of the Kähler-Ricci flow on complex surfaces of general type, Int. Math. Res. Not. IMRN 2016, no. 18, 5652-5669
[8] Hamilton, R.S., The formation of singularities in the Ricci flow, Surveys in differential geometry, Vol. II (Cambridge, MA, 1993), 7-136, Int. Press, Cambridge, MA, 1995
[9] Hein, H.-J. and Tosatti, V., Remarks on the collapsing of torus fibered Calabi-Yau manifolds, Bull. Lond. Math. Soc. 47 (2015), no. 6, 1021-1027
[12] Jian, W., Convergence of scalar curvature of Kähler-Ricci flow on manifolds of positive Kodaira dimension, arXiv:1805.07884
[13] Nomura, R., Kähler manifolds with negative holomorphic sectional curvature, Kähler-Ricci flow approach, Int. Math. Res. Not., https://doi.org/10.1093/imrn/rnx075
[14] Phong, D.H., Sesum, N. and Sturm, J., Multiplier ideal sheaves and the Kähler-Ricci flow, Comm. Anal. Geom. 15 (2007), no. 3, 613-632.
[15] Sherman, M. and Weinkove, B., Interior derivative estimates for the Kähler-Ricci flow, Pacific J. Math. 257 (2012), no. 2, 491-501.
[16] Sherman, M. and Weinkove, B., Local Calabi and curvature estimates for the Chern-Ricci flow, New York J. Math. 10 (2013), 565-582.
[17] Song, J. and Tian, G., The Kähler-Ricci flow on surfaces of positive Kodaira dimension, Invent. Math., 170, 609-653 (2006)
[18] Song, J. and Tian, G., Canonical measures and the Kähler-Ricci flow, J. Amer. Math. Soc. 25 (2012), no. 2, 303-353.
[19] Song, J. and Tian, G., Bounding scalar curvature for global solutions of the Kähler-Ricci flow, Amer. J. Math. 138 (2016) no. 3, 683-695.
[20] Song, J. and Weinkove, B., Introduction to the Kähler-Ricci flow, Chapter 3 of ‘Introduction to the Kähler-Ricci flow’, eds S. Boucksom, P. Eyssidieux, V. Guedj, Lecture Notes Math. 2086, Springer 2013
[21] Tian, G. and Zhang, Z.L., Convergence of Kähler-Ricci flow on lower-dimensional algebraic manifolds of general type, Int. Math. Res. Not. IMRN 2016, no. 21, 6493-6511.
[22] Tian, G. and Zhang, Z.L., Relative volume comparison of Ricci flow and its applications, arXiv:1802.00506
[23] Tian, G. and Zhang, Z., On the Kähler-Ricci flow on projective manifolds of general type, Chinese Ann. Math. Ser. B 27 (2006), no. 2, 179-192.
[24] Tosatti, V., Adiabatic limits of Ricci-flat Kähler metrics, J. Diff. Geom. 84 (2010), no. 2, 427453.
[25] Tosatti, V., KAWA lecture notes on the Kähler-Ricci flow, Ann. Fac. Sci. Toulouse Math. 27 (2018), no. 2, 285-376.
[26] Tosatti, V., Weinkove, B. and Yang, X., The Kähler-Ricci flow, Ricci-flat metrics and collapsing limits, Amer. J. Math. 140 (2018), no. 3, 653-698.
[27] Tosatti, V. and Yang, X., An extension of a theorem of Wu-Yau, J. Differential Geom. 107 (2017), no. 3, 573-579.
[28] Tosatti, V. and Zhang, Y.G., Infinite-time singularities of the Kähler-Ricci flow, Geom. Topol. 19 (2015), no. 5, 2925-2948.
[29] Tsuji, H., Existence and degeneration of Kähler-Einstein metrics on minimal algebraic varieties of general type, Math. Ann. 281, 123-133 (1988).
[30] Wu, D. and Yau, S.-T., Negative holomorphic curvature and positive canonical bundle, Invent. Math. 204, no. 2 (2016), 595-604.
[31] Yau, S.-T., On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation I, Comm. Pure Appl. Math. 31 (1978) 339-411.
[32] Zhang, Y.S., Infinite-time singularity type of the Kähler-Ricci flow, J. Geom. Anal. (2017), https://doi.org/10.1007/s12220-017-9949-2
[33] Zhang, Y.S., Collapsing limits of the Kähler-Ricci flow and the continuity method, Math. Ann. (2018), https://doi.org/10.1007/s00208-018-1676-x
[34] Zhang, Y.S., Infinite-time singularity type of the Kähler-Ricci flow II, Math. Res. Lett. (2019) (to appear), arXiv:1809.01305
[35] Zhang, Z., Scalar curvature bound for Kähler-Ricci flows over minimal manifolds of general type, Int. Math. Res. Not. IMRN 2009, no. 20, 3901-3912.