PDF hosted at the Radboud Repository of the Radboud University Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link.
https://hdl.handle.net/2066/221111

Please be advised that this information was generated on 2020-11-05 and may be subject to change.
Is Fornax 4 the nuclear star cluster of the Fornax dwarf spheroidal galaxy?

S. Martocchia,1,2⋆ E. Dalessandro,3 M. Salaris,2 S. Larsen4 and M. Rejkuba1

1European Southern Observatory, Karl-Schwarzschild-Straße 2, D-85748 Garching bei München, Germany
2Astrophysics Research Institute, Liverpool John Moores University, 146 Brownlow Hill, Liverpool L3 5RF, UK
3INAF-Osservatorio di Astrofisica & Scienza dello Spazio, via Gobetti 93/3, I-40129 Bologna, Italy
4Department of Astrophysics/IMAPP, silvia.martocchia@eso.org Radboud University, P.O. Box 9010, NL-6500 GL Nijmegen, the Netherlands

Accepted 2020 May 21. Received 2020 April 29; in original form 2020 March 5

ABSTRACT
Fornax 4 is the most distinctive globular cluster in the Fornax dwarf spheroidal. Located close to the centre of the galaxy, more metal-rich and potentially younger than its four companions (namely, Fornax clusters number 1, 2, 3, and 5), it has been suggested to have experienced a different formation than the other clusters in the galaxy. Here, we use Hubble Space Telescope/WFC3 photometry to characterize the stellar population content of this system and shed new light on its nature. By means of a detailed comparison of synthetic horizontal branch and red giant branch with the observed colour–magnitude diagrams, we find that this system likely hosts stellar sub-populations characterized by a significant iron spread up to Δ[Fe/H] ∼ 0.4 dex and possibly by also some degree of He abundance variations ΔY ∼ 0.03. We argue that this purely observational evidence, combined with the other peculiarities characterizing this system, supports the possibility that Fornax 4 is the nuclear star cluster of the Fornax dwarf spheroidal galaxy. A spectroscopic follow-up for a large number of resolved member stars is needed to confirm this interesting result and to study in detail the formation and early evolution of this system and more in general the process of galaxy nucleation.

Key words: technique: photometric – stars: abundances – galaxies: individual: Fornax dwarf spheroidal – galaxies: star clusters: individual: Fornax 4.

1 INTRODUCTION

Fornax and Sagittarius are the only known dwarf spheroidals (dSphs) in the Local Group that host a globular cluster (GC) system. Interestingly, despite having a relatively small stellar mass of a few times 10^7 M⊙ (McConnachie 2012), the Fornax dSph hosts at least five GCs, with a sixth candidate recently confirmed as a likely cluster (Wang et al. 2019).

The Fornax GC system is interesting in many aspects: its GC specific frequency, i.e. the number of clusters normalized to the total visual magnitude of the galaxy, is among the largest observed (Georgiev et al. 2010). Even more intriguing is the observed difference in the peak metallicity of its GCs compared to the underlying stellar metallicity (Larsen, Strader & Brodie 2012a), the former being more metal-poor ([Fe/H] ∼ −2 dex) than the field stars ([Fe/H] ∼ −1 dex). These properties of the Fornax GC system provide important constraints for GC formation efficiency as well as mass-loss and self-enrichment (Larsen et al. 2012a; Lamers et al. 2017).

Similar to what is observed in ancient GCs in the Milky Way (MW), the Fornax clusters show light-element chemical abundance variations among their stars, which are referred to as multiple stellar populations (MPs, e.g. Gratton, Carretta & Bragaglia 2012 and more references next). MPs in GCs show specific patterns in their light elements, such as the Na–O, C–N, and (sometimes) Mg–Al anticorrelations (e.g. Cannon et al. 1998; Marino et al. 2008; Carretta et al. 2009a; Carretta et al. 2010), to the Magellanic Clouds (MCs, e.g. Mucciarelli et al. 2009; Dalessandro et al. 2016; Niederhofer et al. 2017a; Gilligan et al. 2019), Sagittarius dwarf galaxy (e.g. Carretta et al. 2010), and M31 (e.g. Schiavon et al. 2013). Additionally, chemical anomalies have been studied in many clusters of different masses and ages, showing that both parameters may play a role. Indeed, recent works found that MPs are not only restricted to the ancient (>10 Gyr) GCs but have also been found in young massive star clusters down to ∼2 Gyr (in the MCs, Martocchia et al. 2017, 2018, 2019; Niederhofer et al. 2017b; Hollyhead et al. 2018, 2019), with the older clusters having larger N abundance spreads compared to the younger ones (at constant cluster mass, Martocchia et al. 2019). Similarly, for the ancient GCs, a correlation between abundance spreads and the mass

⋆ E-mail: silvia.martocchia@eso.org
of the cluster are observed (e.g. Schiavon et al. 2013; Milone et al. 2017), with the most massive clusters showing larger abundance variations.

To constrain the presence of MPs in Fornax clusters, Larsen et al. (2014) analysed the width of the red giant branch (RGB) of Fornax 1, 2, 3, and 5 using Hubble Space Telescope (HST) filters sensitive to N variations finding that all four clusters host MPs in the form of N spreads. Spectroscopically, Letarte et al. (2006) studied abundances of individual stars in Fornax 1, 2, and 3 and report a Na–O anticorrelation as well as a marked similarity with Galactic GCs. Additionally, D’Antona et al. (2013) examined the morphology of the horizontal branch (HB) of the same GCs concluding that such systems must host a large fraction of He-rich stars.

To date, no investigation of MPs in the cluster Fornax 4 has been performed. This cluster was likely excluded from previous studies due to the high contamination from field stars as in fact, this system is located very close to the galaxy centre. The first and only hint that Fornax 4 might host chemical variations was given by Larsen, Brodie & Strader (2012b). They calculated the [Mg/Fe] from the integrated light spectra of Fornax 3, 4, and 5, finding it to be significantly lower than the [Ca/Fe] and [Ti/Fe] ratios, contrary to what is generally observed in field stars in the Galaxy and in dSphs. They interpreted this as a potential signature of MPs.

Using optical HST photometry, Buonanno et al. (1999) found that Fornax 4 has a much redder HB and brighter sub-giant branch than the other GCs in Fornax. They concluded that Fornax 4 is ~3 Gyr younger than the other clusters, which are on average ~12 Gyr old. They derived a metallicity of [Fe/H] = −1.8 dex for Fornax 4, which is significantly lower than what obtained by Strader et al. (2003) based on integrated spectroscopy ([Fe/H] = −1.5 dex) and by Larsen et al. (2012b). They calculated the [Fe/H] = −1.4 dex. On the contrary, the other GCs in the Fornax dSph are more metal-poor, with metallicities ranging from [Fe/H] = −1.8 dex to [Fe/H] = −2.3 dex (Larsen et al. 2012b).

These results have been recently confirmed by de Boer & Fraser (2016) who studied the star formation history of Fornax 4 and found that it is indeed younger and more metal-rich compared to the other clusters in the galaxy.

The position, higher metallicity, and younger age of Fornax 4 led many authors (e.g. Hardy 2002; Strader et al. 2003) to consider it as the nuclear star cluster (NSC) of the Fornax dSph. An NSC is a very dense and massive star cluster that resides in the innermost region of a given galaxy (Böker et al. 2002; Neumayer et al. 2011). If this is the case for Fornax 4, it should be expected to show a significant iron spread, as it is typically observed in such systems (e.g. Walcher et al. 2006; Lyubenova et al. 2013; Kacharov et al. 2018). However, at the moment there is no consensus about the real nature of Fornax 4 and whether or not it is a genuine GC or a NSC is still an open question (see the discussion in Hendricks et al. 2016 for more details).

Using HST/WFC3 archival observations, here we study in detail the stellar population properties of Fornax 4 with the aim of providing new clues on its nature and formation. This paper is structured as follows: in Section 2 we report on the photometric reduction procedures, while we outline the calculation of the structural parameters in Section 3. We estimate the age of Fornax 4 in Section 4. In Section 5, we characterize the stellar population properties in the system. Finally, we discuss and conclude in Section 6.

2 OBSERVATIONS AND DATA REDUCTION

We used HST/WFC3 images obtained trough filters F438W and F814W (GO-13435, P.I. M. Monelli). The data set consists of (i) 12 exposures of 200 s each for the F438W and (ii) 6 exposures of 150 s each for the F814W.

The images have been processed, flat-field corrected, and bias-subtracted using the standard HST pipeline (flc images). Pixel-area effects have been corrected using the Pixel Area Maps images. We also corrected all images for cosmic rays contamination using the L.A. Cosmic algorithm by van Dokkum (2001).

The photometric analysis has been performed following the same steps as in Dalessandro et al. (2014). We used Daophot IV (Stetson 1987) independently on each chip and filter. We selected several hundred bright and isolated stars in order to model the point spread function (PSF). The PSF was left free to vary spatially to the first order. In each image, we then fit all the star-like sources with the obtained PSF as detected using a threshold of 3σ from the local background. The final star lists for each image and chip have been cross-correlated using Daomatch, then the magnitude mean and standard deviation measurements were obtained through Daomaster. We obtained the final catalogue by matching the star lists for each filter using Daomatch and Daomaster.

Instrumental magnitudes have been converted to the VEGAMAG photometric system using the prescriptions and zero-points reported on the dedicated HST web-pages. Instrumental coordinates were reported on the absolute image World Coordinate System using a catalogue centred on the centre of Fornax 4 (see Section 3) downloaded from the Gaia Archive1 and by means of the software CataXcorr.2

2.1 Artificial stars test

We performed artificial star (AS) experiments following the method described in Dalessandro et al. (2011b, see also Bellazzini et al. 2002; Dalessandro et al. 2015, 2016) to derive a reliable estimate of the photometric errors. Briefly, we generated a catalogue of simulated stars with a F814W-band input magnitude (F814W<) extracted from a luminosity function (LF) modelled to reproduce the observed LF in that band and extrapolated beyond the observed limiting magnitude. We then assigned a F438W magnitude to each star extracted from the LF, by means of an interpolation along the mean ridge line obtained from the observed mF814W−mF438W versus mF814W colour–magnitude diagram (CMD). AS were added to real images using the software Daophot IV/Addstar. We minimized ‘artificial crowding’, placing stars into the images following a regular grid composed by 15 × 15 pixel cells (roughly corresponding to 10 FWHM) in which only one AS for each run was allowed to lie. More than 100 000 stars have been simulated in each WFC3 chip. AS experiments had adopted the same reduction strategy and models for PSF that were used for real images on both real and simulated stars. In such a way, the effect of radial variation of crowding on both completeness and photometric errors is accounted for. The AS catalogue was then used to derive photometric errors for HB and RGB stars, which will be used in the following analysis (see Section 5). The analysis of the AS stars was carried out applying the same cuts in photometric quality indicators (sharpness – sharp) that have been applied in the data (see Section 3).

1 See http://www.stsci.edu/hst/wfc3/phot_zp_lbn.
2 http://gea.esac.esa.int/archive/
3 Part of a package of astronomical softwares (CATAPACK) developed by P. Montegriffo at INAF–OAS.
adopted cluster centre is the mean of the different derived values, $M_{\text{NRAS}} = 495$, 0.4 arcsec and (2013).

We assigned a completeness value centred on C with sectors. In each sub-sector, we estimated the total number of stars at Log(r) = 4520. The best-fitting model results in a cluster with a King dimensionless number density profile using stars with sharpness $|\text{sharp}| < 0.1$. As a first step, we derived the centre of gravity of the cluster using the same approach described in Dalessandro et al. (2013b). A first estimate of the cluster centre was performed by eye, then the centre was measured through an iterative procedure that averages the absolute positions of the stars lying within four different concentric radial regions ranging from 10 to 25 arcsec with a step of 5 arcsec. Only stars with with $m_{F438W} < 25$ mag were selected. The adopted cluster centre is the mean of the different derived values, $C_{\text{grav}} = (02:40:07.737, -34:32:10.96)$, with uncertainties $\sigma_{\text{RA}} = 0.4$ arcsec and $\sigma_{\text{Dec.}} = 0.3$ arcsec. The density profile analysis was performed following the procedure fully described in Micocchi et al. (2013).

We used the AS catalogue to calculate the photometric completeness as a function of the distance from the cluster centre and magnitude. We assigned a completeness value C to every star in the real catalogue. We split the WFC3 FoV in 19 concentric annuli centred on C_{grav}, each one divided into two, three, or four sub-sectors. In each sub-sector, we estimated the total number of stars with $m_{F438W} < 24$ normalized to their completeness, i.e. $\Sigma (1/C)$. The projected stellar density in each annulus is then the mean of the values measured in each sub-sector and the uncertainty has been estimated from the variance among the sub-sectors. The derived density profile is shown in Fig. 1 as the open circles. The dashed line indicates the background, which was determined from the variance among the sub-sectors. The density profile was estimated from the variance among the sub-sectors and the uncertainty was calculated using three different areas for the background region: one at the bottom of chip 2, one at the centre of chip 2, and a final one on the bottom of chip 1. No significant differences were detected in the decontamination, by carefully comparing the decontaminated CMDs and reference fields among the three cases. We also performed additional tests to quantify the difference among the three regions. We selected RGB stars for each decontaminated catalogue, using the same selection criteria described in Niederhofer et al. (2017b). We defined a background reference region with the same area as the cluster region in order to statistically subtract field stars from the cluster CMD in the $m_{F438W} - m_{F814W}$ versus m_{F438W} space. For every star in the background region, the closest star in colour–magnitude space in the cluster region is removed. Since the contamination in the field of Fornax 4 is large, we performed the field stars subtraction using three different areas for the background region: one at the bottom of chip 2, one at the centre of chip 2, and a final one on the top. These regions are shown in Fig. 2 with different colours. No significant differences were detected in the decontamination, by carefully comparing the decontaminated CMDs and reference fields among the three cases. We also performed additional tests to quantify the difference among the three regions.

3 STRUCTURAL PARAMETERS

To derive the structural parameters of Fornax 4, we built the cluster number density profile using stars with sharpness $|\text{sharp}| < 0.1$. As a first step, we derived the centre of gravity of the cluster using the same approach described in Dalessandro et al. (2013b). A first estimate of the cluster centre was performed by eye, then the centre was measured through an iterative procedure that averages the absolute positions of the stars lying within four different concentric radial regions ranging from 10 to 25 arcsec with a step of 5 arcsec. Only stars with with $m_{F438W} < 25$ mag were selected. The adopted cluster centre is the mean of the different derived values, $C_{\text{grav}} = (02:40:07.737, -34:32:10.96)$, with uncertainties $\sigma_{\text{RA}} = 0.4$ arcsec and $\sigma_{\text{Dec.}} = 0.3$ arcsec. The density profile analysis was performed following the procedure fully described in Micocchi et al. (2013).

We used the AS catalogue to calculate the photometric completeness as a function of the distance from the cluster centre and magnitude. We assigned a completeness value C to every star in the real catalogue. We split the WFC3 FoV in 19 concentric annuli centred on C_{grav}, each one divided into two, three, or four sub-sectors. In each sub-sector, we estimated the total number of stars with $m_{F438W} < 24$ normalized to their completeness, i.e. $\Sigma (1/C)$. The projected stellar density in each annulus is then the mean of the values measured in each sub-sector and the uncertainty has been estimated from the variance among the sub-sectors. The derived density profile is shown in Fig. 1 as the open circles. The dashed line indicates the background, which was determined from the variance among the sub-sectors. The density profile was estimated from the variance among the sub-sectors and the uncertainty was calculated using three different areas for the background region: one at the bottom of chip 2, one at the centre of chip 2, and a final one on the bottom. These regions are shown in Fig. 2 with different colours. No significant differences were detected in the decontamination, by carefully comparing the decontaminated CMDs and reference fields among the three cases. We also performed additional tests to quantify the difference among the three regions. We selected RGB stars for each decontaminated catalogue, using the same selection criteria described in Niederhofer et al. (2017b). We defined a background reference region with the same area as the cluster region in order to statistically subtract field stars from the cluster CMD in the $m_{F438W} - m_{F814W}$ versus m_{F438W} space. For every star in the background region, the closest star in colour–magnitude space in the cluster region is removed. Since the contamination in the field of Fornax 4 is large, we performed the field stars subtraction using three different areas for the background region: one at the bottom of chip 2, one at the centre of chip 2, and a final one on the top. These regions are shown in Fig. 2 with different colours. No significant differences were detected in the decontamination, by carefully comparing the decontaminated CMDs and reference fields among the three cases. We also performed additional tests to quantify the difference among the three regions. We selected RGB stars for each decontaminated catalogue, using the same selection criteria described in Niederhofer et al. (2017b). We defined a background reference region with the same area as the cluster region in order to statistically subtract field stars from the cluster CMD in the $m_{F438W} - m_{F814W}$ versus m_{F438W} space. For every star in the background region, the closest star in colour–magnitude space in the cluster region is removed. Since the contamination in the field of Fornax 4 is large, we performed the field stars subtraction using three different areas for the background region: one at the bottom of chip 2, one at the centre of chip 2, and a final one on the top. These regions are shown in Fig. 2 with different colours. No significant differences were detected in the decontamination, by carefully comparing the decontaminated CMDs and reference fields among the three cases. We also performed additional tests to quantify the difference among the three regions. We selected RGB stars for each decontaminated catalogue, using the same selection criteria described in Niederhofer et al. (2017b). We defined a background reference region with the same area as the cluster region in order to statistically subtract field stars from the cluster CMD in the $m_{F438W} - m_{F814W}$ versus m_{F438W} space. For every star in the background region, the closest star in colour–magnitude space in the cluster region is removed. Since the contamination in the field of Fornax 4 is large, we performed the field stars subtraction using three different areas for the background region: one at the bottom of chip 2, one at the centre of chip 2, and a final one on the top. These regions are shown in Fig. 2 with different colours. No significant differences were detected in the decontamination, by carefully comparing the decontaminated CMDs and reference fields among the three cases. We also performed additional tests to quantify the difference among the three regions. We selected RGB stars for each decontaminated catalogue, using the same selection criteria described in Niederhofer et al. (2017b). We defined a background reference region with the same area as the cluster region in order to statistically subtract field stars from the cluster CMD in the $m_{F438W} - m_{F814W}$ versus m_{F438W} space. For every star in the background region, the closest star in colour–magnitude space in the cluster region is removed. Since the contamination in the field of Fornax 4 is large, we performed the field stars subtraction using three different areas for the background region: one at the bottom of chip 2, one at the centre of chip 2, and a final one on the top. These regions are shown in Fig. 2 with different colours. No significant differences were detected in the decontamination, by carefully comparing the decontaminated CMDs and reference fields among the three cases. We also performed additional tests to quantify the difference among the three regions. We selected RGB stars for each decontaminated catalogue, using the same selection criteria described in Niederhofer et al. (2017b). We defined a background reference region with the same area as the cluster region in order to statistically subtract field stars from the cluster CMD in the $m_{F438W} - m_{F814W}$ versus m_{F438W} space. For every star in the background region, the closest star in colour–magnitude space in the cluster region is removed. Since the contamination in the field of Fornax 4 is large, we performed the field stars subtraction using three different areas for the background region: one at the bottom of chip 2, one at the centre of chip 2, and a final one on the top. These regions are shown in Fig. 2 with different colours. No significant differences were detected in the decontamination, by carefully comparing the decontaminated CMDs and reference fields among the three cases. We also performed additional tests to quantify the difference among the three regions. We selected RGB stars for each decontaminated catalogue, using the same selection criteria described in Niederhofer et al. (2017b).
RGB is estimated from the standard deviation of the Δ (colour) (see Section 3.1). The three different widths are the same, consistent up to the fourth digit. Thus, our results are not affected by the choice of the decontamination region. Additionally, we calculated the fraction of removed stars in each region and we found that this oscillates between 11 and 16 per cent (with a Poisson error of \sim8 per cent), demonstrating that there is no significant difference among them. Hence, for the following analysis we decided to use the catalogue where the cluster and background regions are defined as shown in Fig. 2, with region 1 adopted for the background, because it is furthest away from the cluster and therefore least likely to contain any distant cluster members. Fig. 3 shows the $m_{F438W} - m_{F814W}$ versus m_{F438W} CMD of Fornax 4 (within 30 arcsec from the cluster centre), before (central panel) and after (right-hand panel) the field star subtraction. The left-hand panel shows instead the CMD of the adopted reference field (i.e. region 1). While statistical decontamination may be prone to non-negligible uncertainties (e.g. Dalessandro et al. 2019), it is possible to note how both the main sequence and red clump ($m_{F438W} - m_{F814W} \sim 1.5 \text{ mag}$ and $m_{F438W} \sim 22 \text{ mag}$) of the young population of stars in the Fornax dSph disappear after the correction. Finally, we report an additional test in Section 5.1, to strengthen the argument that the results reported in this paper are not affected by the field star decontamination.

3.1 Differential extinction

We corrected our photometric catalogue for differential reddening (DR) using the same method reported in Dalessandro et al. (2018) and Saracino et al. (2018). We used our field stars subtracted catalogue for the estimation of the DR (see Section 3). We selected RGB stars in the magnitude range $22.5 \lesssim m_{F438W} \lesssim 24.5$, and we defined a fiducial line in the $m_{F438W} - m_{F814W}$ versus m_{F438W} CMD for these stars. We then calculated the geometric distance (ΔX)

\[
\delta E(B - V) = \frac{\Delta X}{\sqrt{2R_{F438W}^2 + R_{F814W}^2 - 2R_{F438W}R_{F814W}}}.
\]

(1)

where $R_{F438W} = 4.18$ and $R_{F814W} = 1.86$ are the adopted extinction coefficients from Milone et al. (2015). Fig. 4 shows the DR map for Fornax 4 in the cluster region (see Section 3), while Fig. 5 shows the $m_{F438W} - m_{F814W}$ versus m_{F438W} CMDs of Fornax 4 before...
We used BaSTI isochrones (A Bag of Stellar Tracks and Isochrones; Pietrinferni et al. 2004) as described in Girardi et al. (2008), using the spectral energy distributions employed in BaSTI (Pietrinferni et al. 2004). The best-matching solar-scaled isochrone has [Fe/H] = −1.5 dex, and an age $t = 11$ Gyr, whilst with α-enhanced ([\alpha/Fe] = +0.4 dex, the only α enhancement available) isochrones we get [Fe/H] = −1.6 dex and $t = 10$ Gyr (Fig. 6). We are assuming that there is no chemical variation (in He and/or Fe) when estimating the age of the cluster. In Section 5.2, we will discuss the presence of an initial He abundance and/or [Fe/H] spreads, using synthetic HB modelling and colour spread of the RGB. The derived distance modulus can change by a few 0.01 mag compared to $(m - M)_0 = 20.94$ mag, when these abundance spreads are included, but this does not affect substantially (less than 1 Gyr) the age estimates.

4We note that the isochrone fit does not align perfectly for stars below the main-sequence turn-off, however, this is not affecting the results presented in this paper.

The [Fe/H] values determined from Fig. 6 are in disagreement with Buonanno et al. (1999), who find [Fe/H] < −2. However, our results agree well with the integrated light spectroscopy analyses by Strader et al. (2003) and Larsen et al. (2012b). Also, our solar-scaled age and metallicity are consistent with the work of Hendricks et al. (2016). They used WFPC2 optical photometry and Dartmouth isochrones, finding a best fit of $t = 10$ Gyr and [Fe/H] = −1.5 dex, assuming no α-enhancement.

Regarding the α elements, Larsen et al. (2012b) report a small α-enhancement ([\alpha/Fe] ∼ +0.13 dex) using integrated light spectroscopy, while Hendricks et al. (2016) report [\alpha/Fe] = −0.19 dex, although this result is based on a single member star, the only resolved star that has been studied so far in Fornax 4 spectroscopically. Given the current lack of consensus regarding the level of α-enhancement present in Fornax 4 stars, we consider both isochrones in Fig. 6 as best fits.

Table 1 displays the information on Fornax 4 derived in this paper.

5 STELLAR POPULATION CHARACTERIZATION

In this section, we perform a detailed analysis of the RGB and HB population width and morphology to constrain the possible presence of sub-populations with different metallicity and/or He abundance.

5.1 The RGB width analysis

We focused our analysis on observed RGB stars in the $m_{F438W} - m_{F814W}$ versus m_{F438W} CMD, in the magnitude range 22.6 $<$ m_{F438W} < 24.3, i.e. the lower RGB, which is the more populated. We estimated an average error in this magnitude range from our AS tests (see Section 2.1) and we obtained $e(m_{F438W}) \simeq 0.018$ mag and $e(m_{F814W}) \simeq 0.012$ mag. We find that the observed RGB width in the selected magnitude range is ~ 0.042 mag, hence it is significantly larger than what expected from photometric errors, i.e. $e(m_{F438W} - m_{F814W}) \simeq 0.022$ mag.

Since both He and Fe abundance variations affect stellar temperatures during the RGB phase, they are both expected to produce a broadening of the RGB.

First, we quantitatively estimated the value of Δ[Fe/H] needed to reproduce the width of the cluster RGB. We generated 500 isochrones with a uniform distribution in metallicity, by interpolating between the α-enhanced BaSTI isochrone from [Fe/H] = −1.6 dex up to [Fe/H] = −1.0 dex (Fig. 6 and Table 1). We kept $\Delta Y = 0$. We populated each isochrone of the distribution in such a way that the LF in F438W magnitudes of the observed RGB is reproduced. We then added Gaussian noise to each isochrone according to the photometric uncertainties listed above, in order to simulate the RGB with a range of metallicities. We let the spread Δ[Fe/H] varying. We compared the observed versus the simulated width of the RGB for spreads Δ[Fe/H] = +0.2, +0.3, +0.4, and +0.5 dex. We verticalized the observed and simulated RGBs by defining two different fiducial lines in the $m_{F438W} - m_{F814W}$ magnitudes.

Errors were derived computing the rms of the distributions of simulated stars in the $(m_{\text{sim}}, m_{\text{sim}} - m_{\text{real}})$ diagrams for the available bands in different magnitude bins (the RGB in this case) and after applying the same selections that were originally applied to the data. We calculated the distribution of the errors as a function of the distance from the cluster centre.

To be conservative, the values we adopted for the errors are the maximum in each band, measured close to the cluster centre.
versus m_{F438W} space. This is done to account for the different slope of the RGB between the observations and the theoretical isochrones. We then calculated the distance in m_{F438W}–m_{F814W} colours of each star from the respective fiducial line, $\Delta(m_{F438W}−m_{F814W})$.

The results are shown in the top panels of Fig. 7, where we plot the histogram of the distribution of the verticalized m_{F438W}–m_{F814W} colours versus m_{F438W} magnitudes for observed (red) and simulated (blue filled) RGB stars. The histograms are normalized to the maximum of the distributions. The left-hand panel shows the comparison between the data and the simulations when no photometric errors are included. For each spread, we performed a Kolmogorov–Smirnov (KS) test to compare the data and simulated distributions. We obtained the highest p-value (~65 per cent) when a spread $\Delta[Fe/H]$ = +0.4 dex is employed.

We repeated the same analysis on the RGB assuming now that there is no variation in Fe and investigating the possible presence of a He spread. Therefore, we used isochrones at fixed metallicity ($[Fe/H] = −1.6$ dex) with different He content. We generated 500 isochrones with a uniform distribution in He, ranging from $Y = 0.246$ to $Y = 0.4$. We repeated exactly the same steps described above and we show the results in the bottom panels of Fig. 7. To reproduce the observed width of the RGB, at least a $\Delta Y = 0.154$ is needed. While probably an even larger He variation would allow a better match with the observed RGB width, this is the maximum spread we can obtain with the available set of models.

It is important to stress that, when comparing observations to simulations that include errors estimated from the AS, such errors may be underestimated, thus the values we report for $\Delta[Fe/H]$ and ΔY are upper limits. The main reason is that all AS experiments are simplified to some extent and they are not able to account for all the instrumental sources of noise. The typical difference between errors from AS and true observational uncertainties has been estimated in previous studies and is of the order of 30−40 per cent (see fig. 4 of Dalessandro et al. 2011b and related text and fig. 21 of Milone et al. 2012). We repeated the same analysis above using errors that are 30 per cent larger. According to the KS test, we still found that the simulated distributions that best reproduce the observations are the ones having $\Delta[Fe/H] = +0.4$ dex ($\Delta Y = 0$), and $\Delta Y = 0.154$ ($\Delta[Fe/H] = 0$).

We can therefore safely conclude that either Fornax 4 hosts stars with significantly different metallicity, with a total iron abundance spread of $\Delta[Fe/H] = +0.4$ dex, or stellar sub-populations with large He variations for a total $\Delta Y = 0.154$. A combination of sub-populations with smaller variations of Fe and He can also match the observed RGB colour distribution. For instance, we reproduced the width of the RGB by making a simulation that includes a spread in He $\Delta Y = 0.03$ (which will be constrained in the next Section 5.2) and a slightly lower iron spread $\Delta[Fe/H] = +0.3$ dex.

Cluster	Fornax 4
Age	10−11 Gyr
$[Fe/H]$	$−1.5−−1.6$ dex
$(m−M)_0$	20.94 mag
$E(B−V)$	0.04 mag
r_c	3.4 arcsec
r_1	31.5 arcsec

Table 1. Properties of Fornax 4 derived in this work.
Finally, in order to ensure that the broadening of the RGB is not caused by uncertainty in statistical decontamination by some residual field stars (see Section 3), we carried out the following test. We selected RGB stars within the same colour–magnitude limits for both the field and cluster region (left-hand and right-hand panels of Fig. 3, respectively). We used the same isochrone as in the right-hand panel of Fig. 6, i.e. representative of the cluster metallicity, to verticalize the RGB stars in both cluster and field. We then calculated the \(\Delta \) (colours) for both populations. We obtained that the distributions of cluster and field stars in colours, i.e. metallicity, are peaked at the same mean. This test shows that even if there were some residuals left from field stars in the RGB, the broadening that we measure cannot be entirely due to field stars because there is no significant displacement between the RGB of the cluster and the one representative of the field.

5.2 The horizontal branch analysis

To try and constrain better the range of \(Y \) and/or \([\text{Fe/H}]\) spanned by the cluster initial chemical composition, we performed a detailed analysis of the HB, whose morphology is also affected by variations of the initial helium and metal content. To this aim, we used the same approach described in Dalessandro et al. (2011a, 2013a) that is based on the comparison between observations and synthetic HB models.
described in Dalessandro et al. (2013a). In our simulations with Chantereau et al. 2019). For the synthetic HB calculations, we used the BaSTI 2011a, 2013a) and also MCs’ clusters (e.g. Niederhofer et al. 2017a, already applied to several Galactic GCs (e.g. Dalessandro et al. We find 25 of 29 stars in common. Of the remaining four, three stars are not in our WFC3 field of view, while one star from the Greco et al. (2007) catalogue is not identified in the match. Of these variable stars independently from our method (i.e. the VI index). We are not trying to perform a best fit of the HB. This would be impossible given that the instability strip of the observed HB is depopulated because we removed RR Lyrae variables for which we lack average magnitude measurements. The goal of this analysis is to test whether the initial chemical composition scenarios inferred from the RGB are broadly consistent with the observed HB morphology.

As a second step we have examined whether the cluster HB can be reproduced by models with constant Y ($Y = 0.246$) and $\Delta[Fe/H] \sim +0.4$ dex, as derived from the RGB colour distribution. To this aim, we have calculated a synthetic HB with a uniform probability $[Fe/H]$ distribution between $[Fe/H]=-1.62$ dex and $[Fe/H] = -1.22$ dex, and a mass-loss that increases linearly with $[Fe/H]$ as $\Delta M = 0.23 + 0.06 ([Fe/H] = +1.62) M_\odot$, and a σ Gaussian dispersion of 0.005 M_\odot around this mean relationship. This comparison is shown in Fig. 10. A constant mass-loss irrespective of $[Fe/H]$ produces a HB too extended in colour compared to the observations. Notice that in case of $[Fe/H]$ spread the metal-poor component is located at the blue end of the synthetic HB. We have then checked whether models with a range of initial He abundances ΔY (at constant $[Fe/H]$) compatible with the RGB constraint can also match the observed HB of Fornax 4. Fig. 11 compares the observed HB with a synthetic one calculated including a He spread $\Delta Y = 0.03$ (uniform probability distribution), and $\Delta M = 0.160 M_\odot$ and Gaussian distribution with $\sigma = 0.003 M_\odot$. The observed HB is overall well matched with this small value of ΔY, totally incompatible with the large ΔY at fixed $[Fe/H]$ inferred from the RGB. To make this point even clearer, the same}
Figure 9. $m_{F438W} - m_{F814W}$ versus m_{F438W} CMD of HB stars in Fornax 4. The black circles denote observations, while the red circles represent synthetic HB stars. The left-hand panel displays a synthetic HB calculated with $\Delta Y = 0$, $\Delta M = 0.165 M_\odot$ (with Gaussian $\sigma = 0.001 M_\odot$ spread) and $(m - M)_0 = 20.94$ mag. The right-hand panel shows a synthetic HB calculated with $\Delta Y = 0$, ΔM between 0.165 and 0.225 M_\odot (uniform distribution), $(m - M)_0 = 20.94$ mag. Average photometric errors are reported in the lower left corner. See text for more details.

Figure 10. As Fig. 9, but the synthetic model is calculated with a spread in iron $[\text{Fe/H}] = +0.4$ dex (uniform distribution), $\Delta Y = 0$, $\Delta M = 0.23 + 0.06([\text{Fe/H}] + 1.62) M_\odot$, $(m - M)_0 = 20.86$ mag. See text for more details.

Figure 11. As Fig. 9, but the synthetic HB stars are calculated with $\Delta Y = 0.03$ (uniform distribution), $\Delta M = 0.160 M_\odot$ (Gaussian distribution with $\sigma = 0.003 M_\odot$), and $(m - M)_0 = 20.98$ mag. The solid blue and orange-dashed curves represent the ZAHB for $Y = 0.246$ and $Y = 0.4$ at $[\text{Fe/H}] = -1.6$ dex, respectively. See text for more details.

Using archival HST/WFC3 observations, we confirm that Fornax 4 is younger than the other clusters in the galaxy. In fact, we find the age of Fornax 4 is of the order of $t = 11$ Gyr (or $t = 10$ Gyr if α-enhancement is present within the cluster). We also find that Fornax 4 is more metal-rich than what previously found by Buonanno et al. (1999) ([Fe/H] = $-1.5/-1.6$ dex) using optical CMDs, and in agreement with previous integrated light spectroscopic studies (Strader et al. 2003; Larsen et al. 2012).

We performed a detailed analysis of both the RGB and HB of Fornax 4 by means of a comparison between observations and synthetic CMDs. We find that the RGB and HB morphology can be simultaneously reproduced either by assuming the presence of sub-populations with a spread in iron $\Delta [\text{Fe/H}] \sim 0.4$ dex or a combination of a slightly milder Fe spread and a variation of He abundance of $\Delta Y \sim 0.3$ (see Sections 5.1 and 5.2). While the exact amount of these variations may depend on model assumptions and the exact modeling of the photometric errors, this analysis clearly shows that a non-negligible iron spread is needed to reproduce the stellar population properties of Fornax 4. This is a key information to assess the nature of this system. In fact, this result, in combination with its metallicity, position and age, provides support to the possibility that Fornax 4 is the NSC of the Fornax dSph.

6 DISCUSSION AND CONCLUSIONS

In this work, we investigated the nature of Fornax 4 by characterizing its stellar population properties. Indeed, because of its position, metallicity and age, this system has been suggested to be the nucleus of the Fornax dSph galaxy (e.g. Hardy 2002; Strader et al. 2003).
The most common scenarios invoke that NSCs form in situ from the galaxy’s central gas reservoir (e.g. Bekki 2007; Antonini, Barausse & Silk 2015; Fahri et al. 2019), or through GCs merging (e.g. Tremaine, Ostriker & Spitzer 1975; Agarwal & Milosavljević 2011; Arca-Sedda & Capuzzo-Dolcetta 2014), or through a combination of these (e.g. Hartmann et al. 2011; Antonini et al. 2015; Guillard, Emsellem & Renaud 2016). While the exact formation of NSCs is still debated (see Neumayer, Seth & Boeker 2020 for a recent review), the general expected outcome is a system located at the centre of the host galaxy that is characterized by the presence of sub-populations differing in terms of their iron abundances (e.g. Bekki & Freeman 2003; Bellazzini et al. 2008).

Additionally, typical NSCs have a more extended star formation histories and some contribution from younger stars (e.g. Walcher et al. 2005; Kacharov et al. 2018). This seems not to be the case for Fornax 4, although it needs to be confirmed with a follow-up study once the metallicity spread is fixed. The star formation history of Fornax was recently derived by Rusakov et al. (2020) showing predominant intermediate age and old population (5–10 Gyr). If Fornax 4 sank in the centre of the galaxy less than ~5 Gyr ago, it would not have had much chance to accrete a substantial amount of gas and thus form additional stars.

Interestingly, it seems that Fornax 4 does not reside exactly in the kinematic centre of the galaxy, contrary to what it is found for M54, for instance, Hendricks et al. (2014) calculated the radial velocity (RV) of the Fornax dSph and this results to be ~9 kms−1 higher than the RV of Fornax 4 (see Hendricks et al. 2016 for a more detailed discussion). None the less, if the infalling of GCs is the second closest case after M54 (Bellazzini et al. 2008).

While the interpretative scenario of Fornax 4 as the nucleus of the dwarf galaxy is extremely fascinating, it is necessary to confirm this result by performing a detailed spectroscopic and kinematic study of resolved member stars within the GC. It is important to note, in fact, that only one likely member star in the cluster has been analysed spectroscopically (Hendricks et al. 2016) so far. This would provide a quantitative and reliable measurement of its stellar population chemical and kinematical patterns thus allowing a critical assessment of its formation and early evolution (see e.g. Alfaro-Cuello et al. 2019; Sills et al. 2019), and more in general on the process on NSC formation and galaxy nucleation, being the second closest case after M54 (Bellazzini et al. 2008).

ACKNOWLEDGEMENTS

We thank the referee for constructive comments that helped strengthen the paper. SM is grateful for the warm hospitality of INAF–OAS (Istituto Nazionale di Astrofisica - Osservatorio di Astrofisica e Scienza dello Spazio) Bologna where part of this work was performed and gratefully acknowledges financial support from the European Research Council (ERC-CoG-646928, Multi-Pop). ED acknowledges financial support by the project Light-on-Dark granted by MIUR (Ministero dell’Istruzione, dell’Università e della Ricerca) through PRIN2017-000000 contract.

REFERENCES

Agarwal M., Milosavljević M., 2011, ApJ, 729, 35
Alfaro-Cuello M. et al., 2019, ApJ, 886, 57
Antonini F., Barausse E., Silk J., 2015, ApJ, 812, 72
Arca-Sedda M., Capuzzo-Dolcetta R., 2014, MNRAS, 444, 3738
Bekki K., 2007, Publ. Astron. Soc. Aust., 24, 77
Bekki K., Freeman K. C., 2003, MNRAS, 346, L11
Bellazzini M., Fusi Pecci F., Montegriffo P., Messineo M., Monaco L., Rood R. T., 2002, AJ, 123, 2541
Bellazzini M. et al., 2008, AJ, 136, 1147
Böker T., Laine S., van der Marel R. P., Sarzi M., Rix H.-W., Ho L. C., Shields J. C., 2002, AJ, 123, 1389
Buonanno R., Corsi C. E., Castellini M., Marconi G., Fusi Pecci F., Zinn R., 1999, AJ, 118, 1671
Cannon R. D., Croke B. F. W., Bell R. A., Hesser J. E., Stathakis R. A., 1998, MNRAS, 298, 601
Capuzzo-Dolcetta R., Miocchi P., 2008, MNRAS, 388, L69
Carretta et al. 2009a, A&A, 505, 117
Carretta E. et al., 2010, A&A, 520, A95
Chantereau W., Salaris M., Bastian N., Martoccia S., 2019, MNRAS, 484, 5236
D’Antona F., Caloi V., D’Ercole A., Tailo M., Vesperini E., Ventura P., Di Criscienzo M., 2013, MNRAS, 434, 1138
Dalessandro E., Salaris M., Ferraro F. R., Cassisi S., Lanzoni B., Rood R. T., Fusi Pecci F., Sabbii E., 2011a, MNRAS, 410, 694
Dalessandro E., Lanzoni B., Beccari G., Sollima A., Ferraro F. R., Pasquato A., 2011b, ApJ, 743, 11
Dalessandro E., Salaris M., Ferraro F. R., Miucciarelli A., Cassisi S., 2013a, MNRAS, 430, 459
Dalessandro E. et al., 2013b, ApJ, 778, 135
Dalessandro E. et al., 2014, ApJ, 791, L4
Dalessandro E., Ferraro F. R., Massari D., Lanzoni B., Miocchi P., Beccari G., 2015, ApJ, 810, 40
Dalessandro E., Ferraro F. R., Lanzoni B., 2016, ApJ, 829, 77
Dalessandro E. et al., 2018, A&A, 618, A131
Dalessandro E., Ferraro F. R., Bastian N., Cedelano M., Lanzoni B., Raso S., 2019, A&A, 621, A45
de Boer T. J. L., Fraser M., 2016, A&A, 590, A35
Fahri et al. 2019, A&A, 628, A92
Feldmeier A. et al., 2014, A&A, 570, A2
Georgiev I. Y., Puzia T. H., Goudrojojil P., Hilker M., 2010, MNRAS, 406, 1967
Gilligian C. K. et al., 2019, MNRAS, 486, 5581
Girardi L. et al., 2008, PASP, 120, 583
Gratton R. G., Carretta E., Bragaglia A., 2012, A&AR, 20, 50
Greco C. et al., 2007, ApJ, 670, 332
Guillard N., Emsellem E., Renaud F., 2016, MNRAS, 461, 3620
Hardy E., 2002, in Geisler D. P., Grebel E. K., Minniti D., eds, Proc. IAU Symp. 207, Extragalactic Star Clusters. Kluwer, Dordrecht, p. 62
Hartmann M., Debbattista V. F., Seth A., Cappellari M., Quinn T. R., 2011, MNRAS, 418, 2697
Hendricks B., Koch A., Walker M., Johnson C. I., Peñarrubia J., Gilmore G., 2014, A&A, 572, A82
Hendricks B., Boeche C., Johnson C. I., Frank M. J., Koch A., Mateo M., Bailey J. I., 2016, A&A, 585, A66
Hollyhead K. et al., 2018, MNRAS, 476, 114
Hollyhead K. et al., 2019, MNRAS, 484, 4718
Kacharov N., Neumayer N., Seth A. C., Cappellari M., McDermid R., Walcher C. J., Böker T., 2018, MNRAS, 480, 1973
King I. R., 1966, AJ, 71, 64
Lamers H. J. G. M., Krujissen J. M. D., Bastian N., Rejkuba M., Hilker M., Kissler-Patig M., 2017, A&A, 606, A85
Larsen S. S., Strader J., Brodie J. P., 2012a, A&A, 544, L14
Larsen S. S., Brodie J. P., Strader J., 2012b, A&A, 546, A53
Lyubenova M. et al., 2013, MNRAS, 431, 3364
Mackey A. D., Gilmore G. F., 2003, MNRAS, 340, 175
Marino A. F., Villeruel A., Piotto G., Milone A. P., Momany Y., Bedin L. R., Bedin M. A., 2008, A&A, 490, 625
S. Martocchia et al.

Martocchia S. et al., 2017, MNRAS, 468, 3150
Martocchia S. et al., 2018, MNRAS, 473, 2688
Martocchia S. et al., 2019, MNRAS, 487, 5324
McConnachie A. W., 2012, AJ, 144, 4
Milone A. P. et al., 2012, A&A, 540, A16
Milone A. P. et al., 2015, MNRAS, 450, 3750
Milone A. P. et al., 2017, MNRAS, 464, 3636
Miocchi P. et al., 2013, ApJ, 774, 151
Mucciarelli A., Origlia L., Ferraro F. R., Pancino E., 2009, ApJ, 695, L134
Nardiello D. et al., 2018, MNRAS, 481, 3382
Neumayer N., Walcher C. J., Andersen D., Sánchez S. F., Böker T., Rix H.-W., 2011, MNRAS, 413, 1875
Neumayer N., Seth A., Boeker T., 2020, preprint (arXiv:2001.03626)
Niederhofer F. et al., 2017a, MNRAS, 464, 94
Niederhofer F. et al., 2017b, MNRAS, 465, 4159
Pietrinferni A., Cassisi S., Salaris M., Castelli F., 2004, ApJ, 612, 168
Pietrinferni A., Cassisi S., Salaris M., Castelli F., 2006, ApJ, 642, 797
Piotto G. et al., 2015, AJ, 149, 91
Rusakov V., Monelli M., Gallart C., Fritz T. K., Ruiz-Lara T., Bernard E. J., Cassisi S., 2020, preprint (arXiv:2002.09714)
Saracino S. et al., 2018, ApJ, 860, 95
Schiavon R. P., Caldwell N., Conroy C., Graves G. J., Strader J., MacArthur L. A., Courteau S., Harding P., 2013, ApJ, 776, L7
Sills A., Dalešandro E., Cadelano M., Alfaro-Cuello M., Kruijssen J. M. D., 2019, MNRAS, 490, L67
Stetson P. B., 1987, PASP, 99, 191
Strader J., Brodie J. P., Forbes D. A., Beasley M. A., Huchra J. P., 2003, AJ, 125, 1291
Tremaine S. D., Ostriker J. P., Spitzer L. J., 1975, ApJ, 196, 407
van Dokkum P. G., 2001, PASP, 113, 1420
Walcher C. J. et al., 2005, ApJ, 618, 237
Walcher C. J., Böker T., Charlot S., Ho L. C., Rix H. W., Rossa J., Shields J. C., van der Marel R. P., 2006, ApJ, 649, 692
Wang M. Y. et al., 2019, ApJ, 875, L13
Webbink R. F., 1985, in Goodman J., Hut P., eds, Proc. IAU Symp. 113, Dynamics of Star Clusters. Kluwer, Dordrecht, p. 541

This paper has been typeset from a TEX/LATEX file prepared by the author.