The marginally stable Bethe lattice spin glass revisited

Giorgio Parisi
Dipartimento di Fisica, Università di Roma La Sapienza,
INFN, Sezione di Roma I, CNR-NANOTEC UOS Roma
P.le A. Moro 2, I-00185 Roma, Italy

Abstract

Bethe lattice spins glasses are supposed to be marginally stable, i.e. their equilibrium probability distribution changes discontinuously when we add an external perturbation. So far the problem of a spin glass on a Bethe lattice has been studied only using an approximation where marginal stability is not present, which is wrong in the spin glass phase. Because of some technical difficulties, attempts at deriving a marginally stable solution have been confined to some perturbative regimes, high connectivity lattices or temperature close to the critical temperature. Using the cavity method, we propose a general non-perturbative approach to the Bethe lattice spin glass problem using approximations that should be hopefully consistent with marginal stability.

1 Introduction

The existence of multiple equilibrium states is the distinctive hallmark of glassiness \[1, 2\]. While at finite temperature these equilibrium states may be metastable (or maybe not, depending on the system), the issue of metastability becomes irrelevant in the zero temperature limit. A crucial question is how these states differ one from the other and how they are distributed in the phase space (the phase space becomes an infinite dimensional space in the thermodynamic limit). Moreover, in this situation a small perturbation produces a large rearrangement of the relative free energy of the equilibrium states: after a perturbation, the lowest equilibrium state may be quite different from the previous one. The linear response theorem has to be modified in order to take care of the existence of many equilibrium states.

There are two main possible scenarios that have quite different properties.

- Different equilibrium states are scattered in phase space in a nearly randomly fashion: they stay at a minimum distance one from the other. In this situation, if you live inside one equilibrium state, you do not feel the existence of other equilibrium states: the barriers are very high \[1\]. We will call this scenario the \textit{stable glass}.

- The distribution of equilibrium states in phase space is very far from a random one. Each state is surrounded by a large number of other equilibrium states that are arbitrarily near: the equilibrium states form a fractal set. The barriers for going from one state to another may be very small.

 If you live in one equilibrium state, you feel that you can move in many directions (typically in the direction of nearby states) without increasing too much the free energy: in other words, there are nearly flat directions in the potential exactly like at a second order transition critical point \[1\]. The spectrum of small oscillations within an equilibrium state has an excess of low-frequency modes that in some case may dominate the one coming from other more conventional sources (e.g. phonons or magnons). The precise form of this anomalous low-frequency spectrum and the localization properties of the eigenvalues crucially depend on the details of the theory. These glassy systems are self-organized critical systems. We call this scenario the \textit{marginally stable glass}.

\[1\] I would like to dedicate this paper to the memory of my good friend Leo Kadanoff. I presented for the first time my spin glass theory at a Les Houches winter workshop in 1980 in an after dinner seminar. Leo was among the public, quite near to me in the front row, and I was comforted by his facial expressions of interest and approbation during the seminar; Leo congratulated with me after the seminar. His reactions were an important confirmation that I was on the right track: I was very grateful to him.
There are differences among the two scenarios that are quite important:

- Let us consider the correlation functions of local quantities that are not conserved. In the stable phase, they decay exponentially in both space and time. In the marginal stable phase, the correlations decay as a power both in space and in time.
- Nonlinear susceptibilities are finite in the stable glass phase and they are often infinite in the marginal stable phase.
- In both cases, the application of a finite external perturbation may force the system to jump from one equilibrium state to another quite different state. This behavior is usually called chaotic because the set of equilibrium states has a chaotic dependence on the parameters of the Hamiltonian.

The two scenarios are different if we consider what happens in the time domain when we apply the perturbation at a given time. It can be argued that the time to reach equilibrium is exponentially large for the stable glasses because the decay must happen via a thermally activated process. On the contrary, this equilibration time should not be so large in the marginally stable scenario where the barriers are much smaller.

In the last forty years, a mean field theory of glassy systems has been constructed using the replica approach [1], that I will not describe here. Most of the results of the replica approach have been reproduced using a more intuitive probabilistic approach that, at the time being, can be used as a starting point for a rigorous analysis. Occasionally I will use the replica terminology that I will recall in the following lines.

I order to discuss the possible scenarios it is convenient to introduce a distance \(d\) and an overlap \(q\) among equilibrium states. Usually, they are defined in such a way that
\[q = 1 - d, \]
the distance \(d\) being in the range \(d_m \leq d \leq d_M\): two states are at distance \(d_m\) only if they coincide.

- In the high-temperature phase, where there is only one equilibrium state, the replica symmetry is exact. In this case, \(d_m = d_M\) and the role of the distance is quite trivial.
- When multiple equilibrium states do exist, replica symmetry is spontaneously broken (RSB).
 - The overlaps among states can take only two values (i.e. one step RSB): we stay in stable glass phase.
 - The overlaps among states can take only \(r + 1\) values (\(r\) steps RSB): we should also stay in stable glass phase. As far I know this situation is very rare.
 - The overlaps among states can take all possible values in the interval \([q_m : q_M]\) (continuous RSB): we stay in the marginal glass phase.

In the previous discussion, we have argued that the continuous RSB scenario implies marginal stability. However, there are subtle differences between RSB and marginal stability.

- In the continuous RSB scenario different states give a similar contribution to the partition function, apart from multiplicative factors of order one, i.e. there are states whose extensive free energies differ of quantities that are of order one.
- The marginal stability scenario is slightly more general. There is no requirement that the extensive free energies differences should be of order one: they could diverge with the volume, however, the difference in the intensive free energies should always become zero in the thermodynamic limit.

The concept of marginally stable glasses is quite old\(^2\). More than thirty years ago [1] it was argued that in the infinite range model for spin glasses (i.e., the Sherrington-Kirkpatrick model [3], SK in short) all the aforementioned properties of marginally stable glasses are present [4]. This model can be exactly solved using the appropriate mean field theory [5, 6, 7, 8, 9].

For finite dimensional spin glasses, the situation is less clear, also because we have a limited command of the perturbation theory around mean-field theory. When the magnetic field is zero, numerical experiments in dimensions 3 or higher are in very good and detailed agreement with theoretical predictions of mean field theory. For example in finite dimensions marginal stability predicts the existence of long-range correlations [18] that are clearly observed [19].

Ten years ago it was suggested that also some two and three-dimensional structural glasses, in particular, hard sphere systems at infinite pressure (i.e., in the jamming limit), are marginally stable, in the restricted sense that they are unstable under an infinitesimal perturbation [20]. Quite

\(2\) The expression *marginal stability* was also used to characterize some off-equilibrium metastable states [10] with a slightly different meaning.
recently [22, 23] a mean field model of hard spheres has been constructed and solved in the infinite dimensional limit \((d \to \infty)\), where \(d\) is the dimension of the space where the spheres move. The model has many features similar to the SK model: all the stigmata of marginal stability are present here, suggesting that a similar situation also holds for some finite-dimensional glasses.

These advances have renewed the interest on the analytic study of marginally stable systems. Unfortunately manageable (I do not dare say simple) formulae exist only in the case where the effective number of neighbors of a given degree of freedom goes to infinity. In this case, the number of forces acting on a given degree of freedom becomes infinite: the central limit theorem can be applied and some crucial quantities become Gaussian. When each degree of freedom interacts only with a finite number of other degrees of freedom, the distributions are not Gaussian: also in the mean field case, we lack explicit manageable formulae.

In this paper, we concentrate our attention on spin glasses on Bethe lattice both for finite coordination and in the infinite coordination limit, the SK model, where simple mean-field theory is correct (more or less by definition). These two cases are among the most studied mean field models. However, our understanding of Bethe spin glasses is far from being satisfactory. A simple way to compute the free energy consists in using the formulae written in [46] for the one step RSB, that can be easily generalized to \(r\) steps RSB: finally we send \(r\) to infinity. As we shall see later, this computation is quite complex for finite \(r\); moreover we have no proof that it gives the correct result in the limit \(r \to \infty\), i.e. in the continuous RSB.

Generally speaking, we expect we can reasonably approximate the free energy of a Bethe lattice spin glass with the one step computation (i.e. \(r = 1\)). However, this is not always true. For example in the low-temperature limit in the SK model, the specific heat is proportional to \(T^2\) (i.e. the correct behavior) and it is proportional to \(T\) if we have a finite number of RSB steps.

However, the most dramatic differences among the approximate treatment of RSB (e.g. finite number of steps) and the exact solution (quite likely with continuous RSB) come from those quantities that have very different properties in the marginally stable phase, as the spectrum of small oscillations, nonlinear susceptibilities and so on.

In order to properly study these quantities we need to have under good control the formulae for the free energy for continuous RSB: indeed many of the properties that characterized marginal stability are related in a direct way to the continuous breaking of replica symmetry. Using the replica jargon these properties are the effect of the breaking the invariance of the replica Hamiltonian under infinitesimal permutations, a phenomenon that appears only in the case of continuous RSB.

The aim of this paper is to review the present understanding of marginally stable systems in mean field theory and to propose a possible path forward. The review part of the paper is relatively long, but it is needed: many progresses have been done in the recent years [24, 25, 5, 28, 30, 31, 32], but many of the most recent beautiful results are not widely known by physicists.

The marginally stable scenario has proved to be correct for spin glass, but similar proofs are available for many other models: exact results can be obtained for the Potts model [11], for the vector spin models [12], for the \(K\)-sat model with large number of clauses [13], for the multi-species Sherrington-Kirkpatrick model [14, 15] and for the temperature chaos [16, 17].

The plan of the paper is the following: in the second section we define Bethe lattice spin glasses, in the next section we show how to write the mean field (cavity) equations in presence of multiple states, finally, in the last section, we present our proposal that is constructed by generalizing the known solution of the SK model.

2 Ising spin glasses on a Bethe lattice

In the thirties, Bethe invented the Bethe (cavity) approximation for the ferromagnetic Ising spin models. He assumed that when one removes a spin in a point \(i\), forming a cavity in \(i\), the nearby spins become uncorrelated, apart from a possible global magnetization. Of course this approximation in not exact in finite dimensional spin glasses: it is exact only in one dimension and in the infinite dimensional limit: in this case, it reduces to the standard mean-field approximation.

The approximation is not exact (in dimensions greater than 1) because, when the cavity is formed, the spins at the border of the cavity (who do not have a direct interaction, at least in a

\[\text{I apologize for using here the replica jargon; this could be avoided in many cases because the replica language statements have been translated into the probabilistic language in most of the cases. Unfortunately, the stability analysis based on infinitesimal perturbations is not yet been translated into a probabilistic language and I cannot avoid using the replica language.} \]
square or in a simple cubic lattice) are correlated due to the existence of closed paths on the lattice.

A graph \(G \) is called a Bethe lattice if in the case of an Ising model with nearest neighbor interaction the Bethe approximation becomes exact in the thermodynamic limit, i.e., when the number \(N \) of points goes to infinity (see for example [33]). Usually, a sufficient requisite for the exactness of the Bethe approximation is that in this limit the graph becomes locally a tree: the number of finite length loops should be negligible. More precisely: the probability that a node belongs to a loop of length equal or less that \(d \) should go to zero when \(N \to \infty \) at fixed \(d \).

In this paper we will consider one of the most studied cases: the graph \(G \) is a random representative of the Erdős-Rényi ensemble \(G(N, M) \). This ensemble contains all possible graphs with \(N \) nodes and \(M \) edges: this is the so-called the Viana Bray model [34]. The \(N \to \infty \) limit is taken keeping \(M = Nz/2 \): the average number of nearest neighbors of a given node is \(z \).

Let me briefly recall some of the main features of the typical graph of this ensemble for large \(N \).

- When \(z > 1 \), a non-zero fraction of the nodes belongs to the unique giant percolating component and the thermodynamics of statistical models (like the Ising model) is non-trivial, i.e. a phase transition may be present.
- Typical loops have a length of \(O(\log(N)) \): the probability that a node belongs to a loop of length \(d \) is equal to \(z^d/(2N) + O(N^{-2}) \) for large \(N \).
- If we call \(z_i \) the number of nearest nodes of the node \(i \), the variable \(z_i \) has a Poisson distribution with average \(z \). For this reason, this ensemble is also called a Poisson Bethe Lattice.

We are interested in the following spin glass Hamiltonian:

\[
H_J(\{\sigma\}) = \sum_{i,k} J_{i,k} \sigma_i \sigma_k , \tag{1}
\]

where the sum runs over all edges of the graph, the \(\sigma \)'s are Ising variables defined on the nodes of the graph, and the \(J \)'s are randomly symmetrically distributed quenched variables defined on the edges of the graph: the most common cases are a Gaussian distribution with zero average or a bimodal distribution (\(J = \pm c \) with equal probability). In the following, we consider systems where the probability distribution of the \(J \) goes fast to zero at infinity, (for example it has a uniformly bounded kurtosis).

We are interested in computing the free energy density

\[
F \equiv \lim_{N \to \infty} -\frac{\log(Z_N^J(\beta))}{\beta N} , \tag{2}
\]

where \(Z_N^J(\beta) \) is the \(J \)-dependent partition function on an \(N \) spins system. It can be shown that this limit does not depend on \(J \) with probability one: the problem is well posed. We have not indicated in an explicit way the dependence of the free energy on \(\beta \), \(z \) and of the probability distribution of the \(J \).

In the limit \(z \to \infty \), keeping \(z\langle J^2 \rangle = 1 \), the free energy becomes independent of the probability distribution of the \(J \) and we obtain the same free energy of the SK model [54, 55, 13]. The Hamiltonian of the SK model has the same form of equation (1), however, in the SK model the sum runs over all pairs of indices (we are on the complete graph) and the couplings \(J \) have a variance equal to \(1/N \).

3 The cavity approach and asymptotic Gibbs measures

In this section, I will summarize our present understanding of the cavity approach, both in the case where there is a unique equilibrium state and in the more difficult case where multiple (infinite) equilibrium states are present and they are described by asymptotic Gibbs measures.

3.1 The naive cavity equations

Let us assume that there is only one equilibrium state. In this case, we can write the naive cavity equations: they are well-known [33, 28] so that I would only quote the main results bypassing the physical heuristic motivations.

[4] Similar studies can be done on random regular lattices, i.e. on the fixed connectivity lattice studied in many papers, e.g. [35, 36, 37].
In the naive cavity approach, a crucial quantity is the probability distribution of the cavity magnetization \(m_i \); \(m_i \) is equal to \(\langle \sigma_i \rangle \) after removing from the Hamiltonian one among the spins that are nearest neighbors of the spin \(\sigma_i \). In the same spirit we can consider the effective cavity field \(h_i \), defined by \(m_i = \tanh(\beta h_i) \).

The equations for the cavity field distribution \(P(h) \) are the following
\[
P(h) = \delta \left(h - U_K(\vec{J}, \vec{h}) \right), \quad U_K(\vec{J}, \vec{h}) \equiv \sum_{i=1,\mathbf{K}} u(J(i), h(i)),
\]
\[
u(J, h) = \frac{1}{\beta} \frac{\tanh(\beta J) \tanh(\beta h)}{\sinh(\beta J) \sinh(\beta h)}
\]
where \(K \) is a Poisson random number with average \(z \), the \(J(i) \) are random couplings, the effective fields \(h(i) \) are randomly distributed variable, with the probability \(P(h) \). \(\vec{J} \) and \(\vec{h} \) denote respectively the \(K \)-component vector of the variables \(J \) and of the variables \(h \). Finally the over-line denotes the average over all the random quantities in the r.h.s. of the previous equation.

Equivalently we could say that the random variable \(h' \), defined as
\[
h' \equiv U_K(\vec{J}, \vec{h})
\]
have the same probability distribution of the \(h \)’s at the r.h.s., i.e. \(P(h) \).

A crucial observation is the following. The cavity equations can be obtained by a variational principle:
\[
F_{\text{naive}} = \max_{\nu} F_{\text{naive}}[\nu], \quad F_{\text{naive}}[\nu] = -\beta^{-1} \left[\log(\Delta_{\text{node}}(\vec{J}, \vec{h})) - \frac{z}{2} \log(\Delta_{\text{edge}}(J, h(1), h(2))) \right].
\]
All the \(h \)’s are extracted according to the probability \(P(h) \) and \(K \) is (as before) a Poisson random number with average \(z \).

The function \(\log(\Delta_{\text{node}}(\vec{J}, \vec{h})) \) is equal to \(-\beta \) times the average increase in free energy when adding to the Bethe lattice a spin that is connected to \(K \) neighbours characterized by the field \(h \), with interactions \(J_i \). It is given by
\[
\Delta_{\text{node}}(\vec{J}, \vec{h}) = \sum_{\sigma, \sigma(1), \ldots, \sigma(K)} P_1(\sigma(1)|h(1)) \cdots P_K(\sigma(K)|h(K)) \exp \left(-\beta \sigma \sum_{i=1,\mathbf{K}} J(i)\sigma(i) \right),
\]
where
\[
P_i(\sigma(i)|h(i)) = 1 + \tanh(\beta h(i))\sigma(i).
\]
A detailed computation gives
\[
\Delta_{\text{node}}(\vec{J}, \vec{h}) = 2(\cosh(\beta U_K(\vec{J}, \vec{h}))) \prod_{i=1,\mathbf{K}} \frac{\cosh(\beta J(i))}{\cosh(\beta u(J(i), h(i)))}.
\]
The function \(\log(\Delta_{\text{edge}}(J, h(1), h(2))) \) is equal to \(-\beta \) times the average increase in free energy when adding to the Bethe lattice an edge with interaction \(J \) between two nodes characterized by the fields \(h(1) \) and \(h(2) \). It is given by
\[
\Delta_{\text{edge}}(J, h(1), h(2)) = \sum_{\sigma(1), \sigma(2)} P_1(\sigma(1)|h(1)) P_2(\sigma(2)|h(2)) \exp \left(-\beta J \sigma(1)\sigma(2) \right).
\]
A detailed computation gives
\[
\Delta_{\text{edge}}(J, h(1), h(2)) = \cosh(\beta J)(1 + \tanh(\beta J)\tanh(\beta h(1))\tanh(\beta h(2)))
\]
I will not present in details the heuristic arguments \[33\] that lead to the free energy \[10\]. Here I would like to stress that the function \(P(h) \) that maximizes the naive free energy \(F_{\text{naive}}[\nu] \) satisfies the naive cavity equation \[10\]. In this way the cavity equation acquires a variational meaning: they can formally be written as \(\delta F[\nu]/\delta \nu = 0 \).

In the high-temperature region, there is only one equilibrium state and the true free energy is given by \(F_{\text{naive}} \). In the low-temperature region (for \(z > 1 \)) multiple states exist: in this region \(F > F_{\text{naive}} \), a rigorous upper bound established by Franz and Leone \[28\].

\[1\] Use the notation \(h(i) \) and not \(h_i \) in order to stress that here \(i \) is not a node of the original graph. Cavity equations can also be written on a given graph, usually under the name of belief propagation equations. I will not discuss here this approach.
3.2 Dealing with multiple equilibria

Let now assume heuristically that for a given large system we have many equilibria states\(^6\) that are labeled by an index \(\alpha\) running from 1 to \(\infty\). Each state enters in the Gibbs decomposition with a weight \(w_\alpha\), where \(\sum_{\alpha=1,\infty} w_\alpha = 1\). The effective field in each site depends on the state \(\alpha\). If we write heuristically the variation of the free energy when we add a new node, we have to compute the variation of the partition function in each of the states \(\alpha\), i.e. \(\Delta_{K,\alpha}^{\text{node}}\); this quantity has the same expression as before\(^7\):

\[
\Delta_{K,\alpha}^{\text{node}} = \Delta_{K}\left(\vec{J}, \vec{h}_\alpha\right).
\]

(11)

Here \(\vec{h}_\alpha(i)\) is the vector \(h_\alpha(i)\) for \(i = 1, K\). The total variation of the partition function will be given by

\[
\sum_\alpha w_\alpha \Delta_{K,\alpha}^{\text{node}} = \sum_\alpha w_\alpha \Delta_{K}\left(\vec{J}, \vec{h}_\alpha\right).
\]

(12)

A similar expression holds for the variation of the partition function when we add a new edge.

This expression depends on the set of all the \(w_\alpha\) and of all the \(\vec{h}_\alpha\) for all possible values of \(\alpha\) and \(K\). Let us define the descriptor \(D\) which gives all the relevant information on the structure of the states. The crucial information is the values of the variables \(w_\alpha\) and the fields \(\vec{h}_\alpha\); therefore we define \(D\) as

\[
D \equiv \{\{w_\alpha\}, P(H)\}.
\]

(13)

Here we have defined

\[
H(i) \equiv \{h(i)\}_\alpha,
\]

(14)

i.e. the set of the \(h(i)_\alpha\) at fixed \(i\) for all \(\alpha\): this is an infinite vector as far as \(\alpha\) runs up to infinity.

We know \(^{32}\) that the \(H(i)\) are i.i.d. variables. Therefore \(P(H)\) contains the information needed to generate all fields \(\vec{h}_\alpha\): for each \(i (i=1,K)\) the field \(H(i)\) is extracted randomly with the probability distribution \(P(H)\).

In the random case, the descriptor \(D\) is not unique: it will be different in different large systems; in other words, also in the thermodynamic limit the \(w\)'s change from large system to large system. The characterisation of the structure of equilibrium states is given by the probability distribution \(P[D]\), that plays a crucial role in the theory.

At the end of various heuristic arguments one defines a free energy \(F[P[D]]\) that is a functional of \(P[D]\):

\[
F[P[D]] \equiv -\beta^{-1} \left[\log \left(\sum_\alpha w_\alpha \Delta_{K,\alpha}^{\text{node}}(\vec{J}, \vec{h}_\alpha) \right) - \frac{z}{2} \log \left(\sum_\alpha w_\alpha \Delta_{\text{edge}}(J, h_{\alpha(1)}, h_{\alpha(2)}) \right) \right].
\]

(15)

The previous formula is quite complex: also neglecting the weights \(w\)'s, \(P[D]\) a probability distribution over an infinite vector (\(\alpha\) runs up to infinity). This formula is the natural extension of the Bethe expression for the free energy to the case where multiple states are present. It may be derived in many ways. The simplest argument is based on cavity \(^{33}\).

- We assume that the average value of the quantity \(\Delta F_N\), defined as the difference of the total free energy of \(N+1\) and \(N\) spins, coincides with the free energy density in the limit where \(N\) goes to infinity.
- When we add a spin, we add an extra node. In this way the total number of links increases by \(z\) while the total of links should increase only by \(z/2\) (in the average); in order to get the correct result we have to subtract the contribution of the extra \(z/2\) links. Finally \(\Delta F_N\) has two contributions: the first coming from adding a site and the second from erasing \(z/2\) links (this is the origin of the negative \(-z/2\) factor).

There are other heuristic arguments \(^{33,38,39}\) that can be used to derive the previous equation, but they are not relevant here: we will see later that the properties of the functional \(F[P[D]]\) are deeply related to the value of the exact free energy \(^{32}\).

\(^6\)We are speaking of many equilibrium states for a finite system, while many equilibrium states should be present only in the infinite volume limit \(^{21}\). However the considerations we present have only a heuristic value.

\(^7\) As before \(K\) is a random Poisson variable with average \(z\).
3.3 On descriptors or asymptotic Gibbs measures

Descriptors are related asymptotic Gibbs measures [27]. The reasons is the following: in the original papers on RSB it is was proposed that the Gibbs states of a finite large system can be decomposed into many pure equilibria states: we could write

$$\langle \cdot \rangle_G = \sum_{\alpha} w_\alpha \langle \cdot \rangle_\alpha,$$

(16)

where $\langle \cdot \rangle_G$ denotes the average in the Gibbs state and the states labeled by α are pure clustering states [21, 51]. We can define the standard overlap among these states

$$q_{\alpha, \gamma} = \frac{1}{N} \sum_{i=1}^N \langle \sigma_i \rangle_\alpha \langle \sigma_i \rangle_\gamma.$$

(17)

We can also define generalized overlaps among these states

$$q^A_{\alpha, \gamma} = \frac{1}{N} \sum_{i=1}^N \langle A_i \rangle_\alpha \langle A_i \rangle_\gamma,$$

(18)

where A_i are local quantities, i.e. functions of only the spins that stays at a finite distance from the site i.

To each instance of the problem (e.g. a choice of the J’s) we can associate to the Gibbs states a global descriptor, i.e. the weights of the states and their mutual generalized overlaps. In this language, a descriptor is given by

$$D \equiv \{(w_\alpha)\{q^A_{\alpha, \gamma}\}).$$

(19)

The properties of the Gibbs state and its decomposition into pure states depends on the instance. For each N we can define a probability $P_N(D)$ and $P(D) = \lim_{N \to \infty} P_N(D)$.

This is the standard heuristic treatment. We can improve it in the following way. Instead of considering the overlaps of local quantities we can introduce local fields h^α_i, that are the α-dependent fields acting on the site i. Once we know their distribution (given by a function $P(\mathcal{H})$) we can easily compute the overlaps. For example in the case of the standard overlap we get

$$q_{\alpha, \gamma} = \frac{1}{N} \sum_{i=1}^N \tanh(\beta h^\alpha(i)) \tanh(\beta h^\gamma(i)),$$

(20)

Nowadays, there is a simple and rigorous approach that avoids the introduction of the decomposition of the finite volume Gibbs state into pure states and it is based on the following construction. For each instance of the system we define the set Σ_N equal to $\{\sigma_a(i)\}_{i=1}^N$, where $i = 1, N$ and the index a labels statistically independent configurations of system extracted from the J dependent Gibbs measure; the index a runs from 1 to infinity. In physical language, we consider an infinite number of replicas of the same system. For a given instance the probability of Σ_N depends on the couplings and on the topology of the lattice (that we denote collectively by J): we call it

$$P_J(\Sigma_N).$$

(21)

This distribution factorizes in the product of an infinite number of Gibbs distributions, each for a given replica a. We are finally interested in the quantity

$$P_N(\Sigma_N) = \overline{P_J(\Sigma_N)},$$

(22)

where the average is done over all the possible instances of the problem.

This probability distribution is called the Gibbs measure on the replica space. It does not factorize into the product of independent distributions: the different replicas are correlated as the effect of the average over the random Hamiltonian.

We can now consider that limit $N \to \infty$ of $P_N(\Sigma_N)$. This limit exists (al least by subsequences); we call it the asymptotic Gibbs measure (i.e. $P_\infty(\Sigma_\infty)$). We can now bypass all the discussions on the state decomposition of the finite system and consider directly the properties of the asymptotic Gibbs measure. Using the Aldous-Hoover representation it can be shown [27] that we can introduce the descriptors D as in eq. (19) and the probability distribution $P[D]$.

Which are the properties of the Asymptotic Gibbs measures? Let me present the most important one (proved or conjectured).
3.3.1 Stochastic stability

Stochastic stability (i.e. the Ghirlanda Guerra identities \[40, 41\] and their later generalizations \[42, 43\]) is a crucial property that has very far-reaching consequences, among them ultrametricity \[31\]. It is not worthwhile to define exactly stochastic stability: heuristically it states that the properties of the system are stable with respect to random stochastic perturbations. It is not rigorously known if our original problem, i.e. spins glass on a Bethe lattice, is stochastically stable; however, we can transform it into a stochastically stable system by adding an arbitrarily small perturbation in the Hamiltonian. In the following, for sake of simplicity, we assume that our system is stochastically stable and we do not mention this arbitrarily small perturbation in the Hamiltonian.

Stochastic stability induces an infinite set of identities on the probability distribution of the overlaps. For example, we can define the probability of the overlap of two different replicas \(a, b\) with \(a \neq b\):

\[P_{a,b}(q_{a,b}) = P(q). \]

This probability distribution does not depend on \(a\) and \(b\): therefore we can suppress the reference to these indices.

In a similar vein, we can consider four different replicas \(a, b, c\) and \(d\) and the conjoint probability distribution of the overlaps \(q_{a,b}\) and \(q_{c,d}\) that we call \(P_{a,b,c,d}(q_{a,b}, q_{c,d})\). Stochastic stability implies

\[P_{a,b,c,d}(q_{a,b}, q_{c,d}) = \frac{1}{3} P(q_{a,b}) \delta(q_{a,b} - q_{c,d}) + \frac{2}{3} P(q_{a,b}) P(q_{c,d}). \]

(24)

The most spectacular consequence of stochastic stability is ultrametricity: after many partial results it has been has finally proved by Panchenko that stochastic stability implies that the set of states is ultrametric \[31\]. Using the same notation as before, ultrametricity states that

\[P_{a,b,c}(q_{a,b}, q_{b,c}, q_{c,a}) = 0 \quad \text{if} \quad q_{b,c} < \min(q_{a,b}, q_{a,c}). \]

(25)

Using the distance \(d_{a,b} = 1 - q_{a,b}\), the previous formula implies that this distance is ultrametric:

\[d_{b,c} \leq \max(d_{a,b}, d_{a,c}). \]

(26)

Ultrametricity and stochastic stability have remarkable consequences: for example, all the conjoint probability distributions of the overlaps of an arbitrary number of replicas can be computed from the knowledge of the function \(P(q)\). Moreover, we can associate to the set of states a taxonomic tree \((T)\). Each leaf is labeled by \(\alpha\) and it carries a weight \(w_\alpha\). This tree must have an infinite number of branches and leaves (excluding the replica symmetric case, where the tree has only one leaf).

The tree \(T\) changes from instance to instance of the system; for a given model there is a probability distribution on the space of trees. In the next section, we shall discuss in details the properties of this probability distribution.

3.3.2 The nature of the order parameters: the issue of reproducibility

Usually, when multiple equilibria are present, the different equilibrium states are characterized by an order parameter, e.g. the magnetization. Inside a given equilibrium state intensive quantities do not fluctuate. What happens in the spin glassy phase? There is one conjectured property, reproducibility, that answers to this question \[48\].

Reproducibility is a generalization of overlap equivalence \[44\]: it states that all the mutual information about many equilibrium configurations is encoded in their mutual overlaps. In other words, according to this principle, any possible local definition overlap or multioverlaps (see below for the definition of multioverlaps) should not give information additional to that coming from the usual overlap. In other words, any intensive function of the three (or more) configurations does not fluctuate at fixed value of the overlaps: its value is reproducible when we change the equilibrium configurations.

A partial positive proof of reproducibility come from the Panchenko’s synchronization theorem \[15\] based on stochastic stability. Roughly speaking this theorem states that the generalized overlap of two states \(\alpha\) and \(\gamma\) \((q_{A,\alpha,\gamma}^A)\) is a function of the standard overlap \((q_{\alpha,\gamma})\):

\[q_{A,\alpha,\gamma}^A = L^A(q_{\alpha,\gamma}), \]

(27)
where $L^A(q)$ is a function that depends on A and on all the parameters of the problems.

However, this very nice theorem does not prove reproducibility. Things become more complex when we introduce multioverlaps. Let me present the simplest example of multioverlaps.

We have three states α, β and γ. We can define the standard overlaps (i.e. $q_{\alpha, \gamma}$) and the multioverlap $q_{\alpha, \beta, \gamma}^{(3)}$ as

$$q_{\alpha, \gamma} = \lim_{N \to \infty} N^{-1} \sum_{i=1}^{N} m_\alpha(i) m_\gamma(i) \quad q_{\alpha, \beta, \gamma}^{(3)} = \lim_{N \to \infty} N^{-1} \sum_{i=1}^{N} m_\alpha(i) m_\beta(i) m_\gamma(i),$$

the quantities $m_\gamma(i) \equiv \langle \sigma(i) \rangle_\gamma$ being the magnetizations at the site i. Equivalently we could write

$$q_{\alpha, \gamma} = \langle \tanh(\beta h_\alpha) \tanh(\beta h_\gamma) \rangle_H \quad q_{\alpha, \beta, \gamma}^{(3)} = \langle \tanh(\beta h_\alpha) \tanh(\beta h_\beta) \tanh(\beta h_\gamma) \rangle_H,$$

where $\langle \rangle_H$ denotes the average done with respect to the distribution $\mathcal{P}(H)$.

For reproducible asymptotic Gibbs measures the values of the multioverlaps do not fluctuate at fixed values of the overlaps. If reproducibility holds multioverlaps are functions of the standard two indices overlaps $q_{\alpha, \gamma}$, $q_{\beta, \gamma}$, $q_{\alpha, \beta}$, i.e., there is a function $Q^{(3)}$, such that

$$q_{\alpha, \beta, \gamma}^{(3)} = Q^{(3)}(q_{\alpha, \gamma}, q_{\beta, \gamma}, q_{\alpha, \beta}),$$

and the values of the standard overlaps determine the multioverlaps.

Using the language of [35] reproducibility states that all the multioverlaps are reproducible functions of the overlaps, hence the name reproducible. The fluctuation of the multioverlaps in the ensemble at fixed overlaps must go to zero in the infinite volume limit.

Can reproducibility be proved? A theorem by Panchenko [32] states that a stochastically stable asymptotic Gibbs measure that satisfies the cavity equations (to be defined in the appendix) must be reproducible if the overlap q may take only $r + 1$ possible values (i.e. r steps RSB).

This theorem does not forbid the existence of stochastically stable non-reproducible distributions (satisfying the cavity equations) in the case of continuous replica symmetry breaking. These distributions, provided that they exist, cannot be obtained as the limit $r \to \infty$ of stochastic stable distributions (satisfying the cavity equations). Personally, I would extremely surprised by the existence of such non-reproducible distribution. However, their non-existence for the moment is an unproven conjecture. In the rest of this paper, I will consider only reproducible distributions.

4 Computing the free energy

This paper is based on the following wonderful theorem [28]:

$$F \geq F_R \equiv \max_{\mathcal{P}_R[D]} \mathcal{F}[\mathcal{P}_R[D]],$$

where the probability distribution $\mathcal{P}_R[D]$ is a stochastically stable distribution concentrated on the set of reproducible descriptors that are defined above. Indeed if we are interested in the evaluation of the free energy it has been proved [31] that we can limit ourselves to the study of stochastically stable probability distributions.

This theorem is valid for the Poisson Bethe lattices. A similar theorem exists for models defined on Random Regular Graphs, with a slightly different expression for the free energy [29].

We shall discuss in details the properties of $\mathcal{P}_R[D]$ and how to compute F_R in the rest of the paper. However, before going on, I would like to mention a very nice theorem [32]: it shows that

$$F = F_C \equiv \max_{\mathcal{P}_C[D]} \mathcal{F}[\mathcal{P}_C[D]],$$

where the probability distribution $\mathcal{P}_C[D]$ satisfy the cavity equations [27]. I have already mentioned that it is conjectured that these distributions (if they are also stochastically stable) reduce to the closure of the set of stochastically stable reproducible distribution. Unfortunately such theorem (in spite of the partial results in [32]) is not yet proved. For the time being the relation

$$F_R = F_C$$

remains as an unproven conjecture, in spite of the general expectation that the equality $F = F_R$ is correct and that the computation of F_R solves the problem.

We can now address the problem of producing explicit formulae for $\mathcal{P}_R[D]$ and of using them to compute the free energy F_R.

9
4.1 The distribution of the weights

Our first task is to discuss the distribution of the weights of the states in a stochastically stable ensemble. In this case, ultrametricity holds and the states are organized in a taxonomic tree. This point is widely discussed in the literature in the case of the SK model; there are no changes when we go to Bethe lattice model, so we will only summarize the main results.

One can assign to each branching point of the tree of the states a variable x that may ranges from zero to $x_M < 1$; the root is at $x = 0$ and the leaves (the states) are at $x = x_M$.

Roughly speaking the trees may be of two kinds [1, 45]:

- The trees may have points only at a discrete number (r) of levels. In this case, the probability distribution of the weights is automatically fixed by the position of the r levels (x_a, $a = 1, r$); sometimes r is called the number of steps. We shall see later explicit formulae for this probability distribution.
- The trees may have branching points at any level in the interval $[x_m, x_M]$: these trees are usually called continuous trees. In this case the probability distribution of the trees is essentially unique; it can be constructed in a rigorous way or using the Ruelle cascade approach [24] (from the root of the tree toward the leaves) or using the Bolthausen-Sznitman coalescent approach [25] (from the leaves toward the root of the tree). The probability distribution over continuous trees may also be constructed in a weak sense as the limit of r going to infinity of the probability over discrete trees when $r \rightarrow \infty$.

In the rest of the paper, we will speak of the tree of the states referring to this construction. In both cases, we know the probability distribution of the trees, including the associated weights of the leaves (i.e. w_α). The explicit formulæ will be written below.

We only notice that in the case of a discrete number (r) of levels instead of labeling the states by an integer α we label them a multi-index

$$\alpha \equiv \{\alpha_1, \ldots, \alpha_r\},$$

(34)

where the new indices α’s range from 1 to ∞. This last set has the same cardinality of the integers (Cantor’s construction): the introduction of the multi-index is just a convenient relabelling. Using the language of [1, 45], in the case $r = 3$ we could say that states are like plant names in the taxonomic classification, that are labeled by the family (α_1), the genera (α_2) inside the family and the species (α_3). More precisely all the states that have the same pair (α_1, α_2) belong to the same cluster (that we can label by α_1, α_2) and all the states that have the same α_1 belong to the same supercluster.

If we define the weight of a node as the sum of the weights of its descendants, there are recursive rules that give the weight of the sums as a function of the weights of the fathers, that can be applied recursively starting from the root that has weight 1. Having tamed the distribution of the weights, our next task is to control the conjoint distribution of the weights and the field.

4.2 Some examples of Reproducible Descriptors

The construction of reproducible descriptors [32] we are going to present seems to be rather complex, however, it is the simplest one that satisfies all the needed theoretical constraints. In the following, we will explicitly construct reproducible descriptors when the tree of states has only r levels.
We can consider of stochastic stable probability distributions $\mathcal{P}[\mathcal{D}]$ that factorize into a simple product 33, 32:

$$\mathcal{P}[\mathcal{D}] = Q[\{w\}]\mathcal{P}[\mathcal{H}].$$

(35)

The crucial problem is the choice of $\mathcal{P}[\mathcal{H}]$. We shall see below how to construct the reproducible descriptors for finite r.

Here the probability $\mathcal{P}[\mathcal{H}]$ can be written in the following constructive way. Let us call Θ a given continuous space and let us consider a probability measure $d\mu(\theta)$ on Θ. We introduce a function g of the variables $\{\theta_0, \theta_1, \ldots, \theta_r\}$. We finally put

$$h_{\alpha_1 \cdots \alpha_r}(i) = g(\theta_{0}(i), \theta_{\alpha_1}(i), \theta_{\alpha_2}(i), \ldots, \theta_{\alpha_1, \alpha_2 \cdots \alpha_r}(i)).$$

(36)

Here the θ's are i.i.d. random variables extracted with the probability measure $d\mu(\theta)$. The fields \mathcal{H}_i (that are i.i.d. random infinitely dimensional variables) are generated by taking in the previous formula the θ's as i.i.d. random variables. The measure $d\mu(\theta)$ and the function g may be a convenient compact way to describe the probability distribution $\mathcal{P}[\mathcal{H}]$.

Formula (35) may look impenetrable, so I will discuss it in some simple cases in the next subsections. However before discussing the details let me present some general considerations.

- Why this probability distribution is reproducible? Let us consider a very explicit example with $r = 3$. We consider the tree states

$$\alpha = \{\alpha_1, \alpha_2, \alpha_3\}, \quad \beta = \{\beta_1, \beta_2, \beta_3\}, \quad \gamma = \{\gamma_1, \gamma_2, \gamma_3\},$$

(37)

where all the indices with different names are different.

A simple computation shows that the value of the standard overlaps between the states does not depend on the values of the indices, as soon as they are all different. A detailed computation 32 shows that also the values of the multioverlaps do not depend on the values of the indices, hence reproducibility. Equivalently one could take equation (36) as the definition of reproducibility for finite 27, 32.

- The introduction of the space Θ produces a very redundant formulation: this redundancy will be useful when will address the crucial question of the smoothness of the function g.

In the original formulation 32, the variables Θ belong to the interval $[0,1]$ and have a flat distribution. This formulation is perfectly adequate if we do not raise the issue of smoothness of the function g.

Indeed we know that the Peano curve maps the interval $[0,1]$ into the two-dimensional square in such a way that every point of the square belongs to that curve; however, the Peano curve is a continuous non-differentiable curve: it is Holder $1/2$. We cannot construct a differentiable Peano curve. We can generalize the Peano construction: for example, any random object in a nice enough space (e.g. a complete separable metric space) can always be generated by a function from $[0,1]$ to that space. Basically, any randomness can always be encoded by a uniform random variable on $[0,1]$. This follows from the Borel isomorphism theorem.

However for practical purposes (e.g. numerical approximations) dealing with non-differentiable function is a mess and it is much simpler to work with sufficiently smooth functions. Representing a D dimensional smooth manifold in M dimensions with a function from the interval $0 - 1$ to that space is not the most popular and useful choice.

In general, the smoothness properties of the function g depend on the choice of the dimension D for the space Θ. It would be very interesting to have more information on the relations among D and the smoothness properties of the function g. This would give the information of how the set of the probability distributions can be approximated by a finite-dimensional manifold: these results may also be useful for constructing approximations.

- I would like to add an extra remark. In this model, the numbers of neighbors of a given spin is a fluctuating Poisson random variable. The probability distribution of the fields depend on the number of neighbors, therefore the total probability will receive the contributions from different probability distributions. This is an extra complication that may be removed in two ways:

 - We explicitly introduce different probabilities for spins with a different number of neighbors.

*I am grateful to Dmitry Panchenko for clarifying this point to me.
– We change the model and we consider a Bethe lattice with fixed number of neighbors, i.d. the random regular graph.

The second approach is certainly simpler to implement numerically.

4.2.1 The case $r = 0$: replica symmetry holds

We have only one state (no α’s) and therefore only θ_0. Here we have

$$h(i) = g(\theta_0(i)), \quad P(h) = \int d\mu(\theta_0) \delta(h - g(\theta_0)), \quad (38)$$

where i labels the different sites. In this case the $h(i)$ are i.i.d. variables with a probability distribution $P(h)$, i.e. the result of the naive cavity approach.

It is clear that the definitions of the space Θ and of the measure μ are arbitrary: we could have taken the variable θ as a flat distributed continuous variable in the interval $[0,1]$. Here the introduction of the space Θ is useless. The one dimensional function $g(\theta)$ can be constructed in a simple way: we define the cumulative function

$$C(h) = \int_{-\infty}^{h} dh' P(h'). \quad (39)$$

If the function $P(h)$ is smooth (e.g. it contains no delta functions) the function $C(h)$ takes all the possible values in the interval $[0,1]$. The natural choice of the function $g(\theta)$, θ being in the interval $[0,1]$, is given by the condition

$$g(C(h)) = h. \quad (40)$$

With this choice $g(\theta)$ in a monotonous function. The monotonicity condition determines the function g in an unique way: there are many different non-monotonous g functions that give the same $P(h)$.

4.2.2 The case $r = 1$: 1 step RSB

Here $\alpha \equiv \alpha_1$ and the function $g(\theta_0, \theta_1)$ depends on two variables.

$$h_\alpha(i) = g(\theta_0(i), \theta_\alpha(i)). \quad (41)$$

At fixed i for a given choice of $\theta_0(i)$, the variables $h(i)_\alpha$ ($\alpha = 1 \ldots \infty$) are i.i.d. variables with the probability distribution

$$P_i(h) = P(h|\theta_0(i)) \equiv \int d\mu(\theta) \delta(h - g(\theta_0(i), \theta)). \quad (42)$$

In each point i we have a different probability distribution (i.e. $P_i(h)$) that is parametrized by the random variable $\theta_0(i)$.

The values of the fields for the same value of α at different points i and i' for $i \neq i'$ (i.e. $h_\alpha(i)$ and $h_\alpha(i')$) are uncorrelated because the variables $\theta_0(i)$ and $\theta_\alpha(i)$ are respectively uncorrelated with $\theta_0(i')$ and $\theta_\alpha(i')$.

In this case, we can avoid the introduction of the function g and of the θ's: we could describe the situation by defining the probability $P[P]$, i.e. the probability that at a given point the probability of the h_α is P. This description is done in terms of the probability function over probability functions P. Such a functional probability distribution is a somewhat esoteric object, so it may be more convenient to introduce a function of two variable at its place, losing the uniqueness of the description.

Let us now come to the issue of the smoothness of the function g. Let us assume for simplicity that there is natural (differentiable) parametrization of $P_i(h)$ in terms of a vector \vec{v} that is flatly distributed on the D-dimensional cube, i.e. $P(h|\vec{v})$. In this case for each \vec{v} we can introduce the function

$$g(\vec{v}, C(h|\vec{v})) = h \quad \text{where} \quad C(h|\vec{v}) = \int_{-\infty}^{h} dh' P(h'|\vec{v}). \quad (43)$$

7In [33] the authors introduced a population of populations in order to formulate the problem in such a way that numerical computations are possible.
This natural description corresponds to take the first θ in the D-dimensional cube and the second θ in the interval [0, 1].

When we study the free energy at zero temperature, we know that the relevant probability distributions can be parametrized in terms of the surveys \([46, 47]\). Surveys form a two-dimensional manifold. In this case, a two-dimensional space for the first variable would be adequate.

It is worthwhile to note that in the SK limit (i.e. \(z \to \infty\)) the choice \(D = 1\) is perfectly adequate: the distribution probability \(P(h)\) can be written as a smooth function of a parameter \(h_0\): \(P(h|h_0)\). The form of the distributions \(P(h_0)\) and \(P(h|h_0)\) are simple and well known [48]. Later we will find a detailed discussion of this point.

4.2.3 The case \(r \geq 2\): many steps RSB

In the \(r = 2\) case for each site \(i\) and each cluster \(\alpha_1\) (i.e. for a given \(i\) and \(\alpha_1\)), the fields \(h(i)_{\alpha_1, \alpha_2}\) (\(\alpha_2 = 1 \ldots \infty\)) are i.i.d. variables; their probability distribution is given by

\[
P_{i,\alpha_1}(h) = \int d\mu(\theta) \delta(h - g(\theta_0(i), \theta_{\alpha_1}(i), \theta)).
\]

(44)

States that belong to different clusters (i.e. they have different values of \(\alpha_1\)) have different probability distributions. Each site is characterized by the cluster dependent probability distribution that the states of each cluster have a given probability distribution for the fields at that point. Finally one arrives at a probability distribution of probability distributions over probability distributions. The function \(g\) is a simple way to describe and parametrize this mess, maybe putting some dirt below the carpet.

In this case we can ask a new question. Let us suppose that we can write a function \(g\) that is sufficiently smooth when the three \(\theta\) belong to a D dimensional space. However everything would be simpler if we could write

\[
g(\theta_0, \theta_1, \theta_2) = \hat{g}(\rho(\theta_0, \theta_1), \theta_2),
\]

where \(\rho\) is a \(L\) dimensional vector (with \(L < 2D\)) and both the function \(\rho\) and \(g\) are sufficiently smooth. In other words we ask if the information contained in the \(2D\)-dimensional vector \(\theta_0, \theta_1\) can be conveyed in a smooth way to a variable \(\rho(\theta_0, \theta_1)\) defined on a lower dimensional space. In the best of the possible worlds, \(L = D\) would be a good approximation.

In the following we will assume that \(L = D\) make sense. In the general case of many steps we would like to know if we can write

\[
g_k(\theta_0, \theta_1, \theta_2, \ldots, \theta_k) = \hat{g}_k(\rho_1(\theta_0, \theta_1), \theta_2, \ldots, \theta_k),
\]

where all the variables \(\theta\) and \(\rho\) are \(D\) dimensional vectors and the values of the smooth functions \(\rho\) are also \(D\)-dimensional vectors\(^{10}\).

If equations \([46]\) are satisfied, the function \(g\) is a Markov function because similar conditions are true for the conjoint probability of events in a Markov chain (or process).

If we could restrict our analysis to \(D\) dimensional Markov functions (this approximation should give the free energy with a reasonable accuracy that improves with increasing \(D\)), the whole computation could be greatly simplified. It is important to note that in the SK limit, as we will see below, the previous formulae are valid with \(D = L = 1\), as also discussed in [48].

4.3 More details on the weights of the states

The probability \(Q[[w]]\) depends on \(r\) parameters \(x_\alpha\) such that

\[
0 < x_1 < x_2 < \ldots < x_{r-1} < x_r.
\]

(47)

For completeness I will present a description of the generation of the probability \(Q[[w]]\) in a constructive way (mostly taken from [52]).

I recall that in the multi-index construction we set \(\alpha = \alpha_1, \ldots, \alpha_r\). The states are the leaves of the tree of state; on this tree, the branching points of the first level are labeled by \(\alpha_1\), those of

\(^{10}\)In the first line of equation \([46]\) \(\rho_1(\theta_0, \theta_1)\) is a function, in the second line of the same equation \(\rho\) is a variable.
the second level by α_1, α_2 and so on. Here we are interested in the probability generation of the weights of the states $\{w_\alpha\}$. To this end, we shall construct the weights, starting from the root and branching out step by step down to the individual states, i.e., the leaves of the tree.

In this section we explain how such a construction can be implemented, starting with the simplest case $r = 1$, and then generalizing to generic r. We are not going to discuss how to construct the probability distribution directly in the continuous limit [23, 25, 49].

4.3.1 $r = 1$

The states depend only on a single index α. The weights can be constructed in the following way. We consider a Poisson point process with an intensity $\exp[\beta x_1(f - f_0)]$. More precisely we extract the points f_α on the line: the probability of finding a point in the interval $[f : f + df]$ is parametrized by x_1 and it is given by

$$dp_{x_1}(f) \equiv \exp[\beta x_1(f - f_0)] df.$$ \hspace{1cm} (48)

We now write

$$w_\alpha = \frac{\exp(-f_\alpha)}{\sum_\gamma \exp(-f_\gamma)}.$$ \hspace{1cm} (49)

The weights generated in this way have the correct stochastically stable probability distribution $Q[\{w\}]$. A few comments are in order:

- For $x_1 < 1$, the construction is consistent, i.e., $\sum_\gamma \exp(-f_\gamma) < \infty$ and $\sum_\alpha w_\alpha = 1$.
- The parameters f_0 is irrelevant.
- If we consider a Poisson point process where the f_α are restricted in the interval $[-\infty, \Lambda]$ the probability distribution of the w_α converges to the right one in the limit $\Lambda \to +\infty$.
- This probability distribution is the unique stochastically stable probability distribution on trees with only one branch point. Indeed if we define $f'_\alpha = f_\alpha + \eta_\alpha$ were the quantities η_α are i.i.d. random variables, the conditions that the variable w'_α have the same distribution of the original variables w_α implies [53, 50] that the distribution of the w's is given by eqs. (48, 49).

4.3.2 $r > 1$

In the case $r = 2$ we can simply generalize the previous equations. We label the states by a pair of indices α_1 (cluster) and α_2 (state within each cluster) and we define

$$w_{\alpha_1} = \sum_{\alpha_2} w_{\alpha_1, \alpha_2}.$$ \hspace{1cm} (50)

or equivalently

$$w_{\alpha_1, \alpha_2} = w_{\alpha_1} t_{\alpha_1, \alpha_2} ; \quad \sum_{\alpha_2} t_{\alpha_1, \alpha_2} = 1.$$ \hspace{1cm} (51)

Finally, we write

$$t_{\alpha_1, \alpha_2} = \frac{\exp(-f_{\alpha_1, \alpha_2})}{\sum_{\alpha_2} \exp(-f_{\alpha_1, \alpha_2})}.$$ \hspace{1cm} (52)

Now the t_{α_1, α_2} are not independent, since they are constrained to belong to the same cluster α_1.

The probability distribution of the f_{α_1, α_2} can be found in the literature, see eq. (14) in [53]:

$$dP\{f\} \propto \left(\prod_{\alpha_2} dp_{x_2}(f_{\alpha_1, \alpha_2})\right) \left(\sum_{\alpha_2} \exp(-f_{\alpha_1, \alpha_2})\right)^{x_1},$$ \hspace{1cm} (53)

where dp_{x_2} is a Poisson point process.

A simple computation shows that the formulae make sense only for $x_2 > x_1$. Moreover in the limit where $x_2 \to x_1$ there is one t_{α_1, α_2} that becomes equal to 1 while all others are going to zero.

It is important to note that the probability distribution of a single w_{α_1, α_2} is the same as those of the $r = 1$ case: it is given by the $r = 1$ formula for $x_1 = x_2$. The crucial difference with the $r = 1$ case is that the conjoint probability distribution of two or more w's is different.

The cases $r > 2$ can be approached in a similar way constructing the weights in a recursive way.
5 The continuous limit, i.e. \(r \to \infty \)

Up to now everything is clear. We have seen that according to common lore the upper bound for the free energy \((F_R) \) is reached only in the limit where \(r \to \infty \), the so-called continuous limit. Unfortunately, it is not easy to control what happens when \(r \to \infty \). Moreover many important properties, e.g. marginal stability, are valid only in this limit: for this reason it is important to control this limit. At this end, I will try to formulate the theory directly in the continuum limit and only at a later stage to introduce the approximations that may be necessary to perform an explicit computation.

We have already remarked that it is possible to introduce a measure directly on the tree where the levels are labeled by a continuous variable \(x \). The construction can be done using the observation that if we neglect states that have a weight \(w_\alpha \), the number of branches becomes finite: the operation of cutting away the branches with weight less than \(\epsilon \) is sometimes called pruning. We can write an explicit measure on these \(\epsilon \)-pruned trees \([24, 52]\), we can compute many of the needed properties and we can also generate these trees numerically in a constructive way \([24]\). In the limit \(\epsilon \to 0 \) the measure on \(\epsilon \)-pruned trees converges to a measure on infinite branched trees in a precise mathematical sense. We can also adapt the algorithm of \([49]\) to construct numerically a random representative of the tree of states.

The real problems come from the space \(\Theta^r \): it is not simple to keep under control a generic function on this space when \(r \to \infty \). Here we would like to point out a possible approach to deal with this problem. Unfortunately, we are not going to show in this paper that this approach works, however, we feel that also an incomplete attempt may be useful.

5.1 The solution of the SK model

Before going on it is convenient to recall what happens in the SK model. In the limit where \(z \) is large, neglecting terms that go to zero when \(z \) goes to \(\infty \) (keeping \(z \langle J^2 \rangle = 1 \)), the Bethe lattice tends to the SK model \([54]\), in the sense that the free energy of the Bethe lattice tends to the free energy of the SK model \([55, 13]\). In this limit, we can neglect high orders in powers of \(J \) in the cavity equations for the Bethe lattice. For example the naive cavity equation for the SK model can be obtained linearizing the cavity equations for the Bethe lattice:

\[
h'_{\alpha} = \frac{1}{z^{1/2}} \sum_{i=1,z} J(i)m_{\alpha}(i), \quad m_{\alpha}(i) = \tanh(\beta h_{\alpha}(i)).
\]

The central limit theorem tell us that the variables \(h'_{\alpha} \) are Gaussian variables with variance \(q \equiv \langle m_{\alpha}^2 \rangle \).

Let us consider two states \(\alpha \) and \(\gamma \) that have the last common ancestor at \(x \): we will use the notation \(x = \alpha \cap \gamma \). The crucial quantity is the covariance of the Gaussian variables \(h'_{\alpha} \):

\[
\langle h'_{\alpha} h'_{\gamma} \rangle = q(\alpha \cap \gamma) = \langle m_{\alpha} m_{\gamma} \rangle_w ,
\]

where the states \(\alpha \) and \(\gamma \) are weighted with the weights \(w \).

If we know the function \(g(x) \), we have everything we need to go on. We can generate the tree of state \((T) \), and for each tree \(T \) we can generate the Gaussian variables \(h'_{\alpha} \) whose covariance is given by the previous equations. We use now eq. \((55)\) and we can do the needed computations. In order to satisfy the cavity equation, we can compute

\[
g'(x) = \langle m_{\alpha} m_{\gamma} \rangle^w |_{\alpha \cap \gamma = x}, \quad m_{\alpha} = \tanh(\beta h'_{\alpha}) ,
\]

where the various states are weighted with the new weights \(w' \). The whole procedure has been implemented numerically \([52]\) up to the end.

It is crucial to note that the distribution of the \(h'_{\alpha} \) is Gaussian. However, in the cavity equation, we are interested in the distribution of the fields after the introduction of the new weights. One finds the distribution probability of the \(h'_{\alpha} \), weighted with the new weight \(w' \), is non-Gaussian.

The properties of the distribution probability of the \(h'_{\alpha} \) after reweighting is crucial. These properties have been carefully studied. After some computations it can be shown that we can find analytically this distribution probability using the following rules \([58, 59, 48, 56]\):

\[11\text{From the numerical viewpoint}[52] it may also be convenient to do the computation at finite, but large \(r \), provided that the computational weight does not increase too fast with \(r \).}
We write the following (Langevin) stochastic differential equation in the interval \([0, 1]\)

\[
\frac{dx}{dq} \frac{dh_q(x)}{dx} = \eta(x) + \beta x m(x, h_q),
\]

(57)

where \(x(q)\) is the inverse of the function \(q(x)\) and \(\eta(x)\) is a white noise\(^{12}\).

\[
\eta(x)\eta(y) = \delta(x - y).
\]

(58)

We call \(h(x|0, h_0)_\eta\) the solution of the previous equation for \(x > x_0\) with the boundary condition

\[
h(x_0|0, h_0)_\eta = h_0 .
\]

(59)

We notice that \(h(x|0, h_0)_\eta\) depends on the values of \(\eta(x')\) only in the interval \(x_0 < x' < x\) (a sort of Markov property).

- The function \(q(x)\) satisfies the self-consistency equation

\[
q(x) = (m(x, h(x|0,0)_\eta))^2 = \int dh P(x, h|0,0) m^2(x, h),
\]

(60)

where \(P(x, h|x', h')\) (for \(x > x'\)) is the probability distribution of \(h(x|x', h')\).

- The function \(m(x, h)\) satisfies the self-consistency equation

\[
m(x', h') = \tanh(\beta h(1|x', h')_\eta) = \int dh P(h, 1|x', h') \tanh(\beta h(1|x', h')).
\]

(61)

where the over-line denotes the average over the white noise \(\eta\). It is evident that \(m(1, h) = \tanh(\beta h)\). Indeed \(h(x|x_0, h_0)_\eta\) is a continuous function of \(x\); consequently \(\lim_{x \to x'} P(x, h|x', h') = \delta(h - h')\).

- There is a simple iterative procedure for solving the previous equations: for each \(q(x)\) we compute the \(m(x, h)\) and we use equation \(60\) in an iterative way. This procedure is convergent.

It is possible to transform the previous stochastic differential equations into parabolic (or anti-parabolic) differential equations. These equations are the same as those found in the analytic solution of the SK model. We can also write a simple expression for the free energy of the SK model:

\[
F = \max_q F[q] = \ln(\cosh(\beta h(1|0,0)_\eta)) - \beta^2 \int_0^1 \frac{dq}{dx} q(x).
\]

(62)

The self consistent equation for the \(q(x)\) (i.e. eq. \(60\)) can also be seen as the consequence of a variational principle with respect to the function \(q(x)\) that enters in the differential equation. It can be proved\(^{13}\) that the functional \(-F[x(q)]\) is concave\(^{14}\), so that the maximum is well defined and unique.

We now have all the tools to write down the probability distribution of the \(h_\alpha\). The construction is rather simple: for each tree, we define the functions \(\eta(x)_\alpha\) that satisfy the constraint

\[
\eta(x)_\alpha = \eta(x)_\gamma \quad \text{for} \quad x < \alpha \cup \gamma.
\]

(63)

The functions \(\eta(x)_\alpha\) and \(\eta(x)_\gamma\) are independent white noises for \(x > \alpha \cup \gamma\). In other words, it is natural to define the function \(\eta\) on the branches of the tree.

We have \(h(x)_\alpha = \eta(x)_\gamma\) on the common part of the branches \(\alpha\) and \(\gamma\), while the two functions are independent and uncorrelated on the remaining part of the two branches.

We finally arrive at the simple formula:

\[
h_\alpha = h(1|0,0)_{\eta_\alpha}.
\]

(64)

We can show that the \(h\)’s computed in this way have the correct probability distribution\(^{15}\).

Summarizing the probability distribution of the \(w\)’s is concentrated on trees; for each tree, the distribution of the \(h_\alpha\)’s can be obtained starting from a white noise defined on the tree and integrating a stochastic differential equation.

\(^{12}\)If the reader does not like white noises, he can reformulate everything in terms of Brownian motions \(B(x) = \int_0^x \eta(x)\): we could also use Ito stochastic calculus.

\(^{13}\)The function \(x(q)\) is the inverse of the function \(x(q)\). The functional \(F[x(q)]\) is concave: the concavity of this functional (proved in \(60\)) is surprising and counter-intuitive, at least to me.
5.2 The minimal construction for the Bethe lattice

Let us consider the Bethe lattice case. We make the choice $x_a = a/r$ and we send r to infinity. The quantities U_K are the sum of a finite number (K) of variables: only in the limit where z goes to infinity we can use the central limit theorem. For finite z we have to use the full distribution of the h_α. We have already remarked that his distribution can be described by a function $g(\theta, \theta_1, \ldots, \theta_r)$.

In the general case, it is very hard to control this limit. In the following, I will make some assumptions that aim to simplify the variational computations in the limit the $r \to \infty$ limit.

The simplest choice is the following: in the same way as in the SK model we assume that the variables θ_α are real numbers (Θ is the real line) and the measure $d\mu(\theta_\alpha)$ is such that the variables θ_α are Gaussian distributed with variance $1/r$.

If we call $x = a/r$ and we set $\theta(x) = \theta_{\text{Int}(ax)}$, the function $\theta(x)$ becomes a white noise in the limit $r \to \infty$:

$$\theta(x)\theta(y) = \delta(x - y).$$ \hspace{1cm} (65)

Exactly as in the SK model the root of the tree is at $x = 0$ and the leaves are at $x = 1$ (or at $x = x_M$). We can consider a finite ϵ-pruned tree that has a finite number of branches and on each branch the white noise $\theta(x)$ is constructed in the same way as the white noise $\eta(x)$ in the SK model.

We can now assume that $h_\alpha = g[\theta_\alpha]$ for an appropriate functional $g[\theta]$, defined on the functions $\theta(x)$ in the interval [0, 1] (more precisely on white noises). In this way the free energy becomes a functional of g, i.e. $\mathcal{F} [g]$ and we must find its maximum.

Naively speaking the problem seems to be well defined. However, we have to make some assumptions about the functional g. When we have a variational approach we may look for the solution of the variational problem restricted on a subspace. This is a time-honored approximation: it may work quite well if the true maximum is not far from the maximum of the subspace.

A natural idea is mimic what happens in the SK model. A very simple attempt is the following:

- We consider a function $z_\alpha(x)$ that is a solution of the stochastic differential equation

 $$\frac{dz_\alpha(x)}{dx} = A(x, z_\alpha(x))\theta(x) + B(x, z_\alpha(x)).$$ \hspace{1cm} (66)

- We set

 $$h_\alpha = C(z_\alpha(1)).$$ \hspace{1cm} (67)

In this way we obtain a Markov functional that depends only on two functions of two variables (i.e. A and B) and one function of one variable (i.e. C). This is a relative small space which can be studied in details using numerical investigation. Maybe this approximation gives more accurate predictions for the free energy than those that are presently available ($r = 1$ or 2). However the main goals of this approximation is be to produce the correct behavior in particular situations (e.g. the zero temperature limit) and to implement marginal stability.

In the simplest version of this approach we use the same probability distribution for h_α as in the SK model, that depends only the function $g(x)$. However one should use the full Bethe form of the free energy \textcolor{red}{[15]}, not the linearized version that is valid in SK limit, that depends only on the variance of the h_α. In this way, one obtains a relatively simple functional $\mathcal{F}(z)[g]$, that in the limit $z \to \infty$ reduces the well-studied functional for the SK model.

Let us discuss the numerical steps needed to implement this proposal. We assume that the distribution of the h_α in the Bethe lattice is the same as the one h_α in the SK model for a given choice of the covariances $\alpha(x)$. We can now proceed as follows.

- We fix a high value of r, in such a way that we are near to the limit $r = \infty$. We extract an ϵ-pruned tree, e.g. using the algorithm of \textcolor{red}{[52]}: the tree will have L leaves, L being a random quantity that diverges when $\epsilon \to 0$. Next, we generate K times \textcolor{red}{[17]} h_α ($\alpha = 1, L$) using the same formula as in the SK model for the same tree. This could be done or using the aforementioned differential equations that are exact in the SK model or using the stochastic differential equation.

- We finally compute a contribution to the free energy using eq. \textcolor{red}{[15]}: the final result is obtained by averaging the single contributions over the pruned random tree, the variable K, the LK fields and the random coupling.

\textcolor{red}{[14]} The function Int(y) denotes the integer part of the real number y.

\textcolor{red}{[15]} The variable K is as usual a random Poisson number with average z.

17
• Once that we have the final result for the free energy, we should find its maximum. The fastest way would be to differentiate the free energy with respect to \(q(x) \) and to find the value of \(q(x) \) where the derivatives are zero.

The implementation of this algorithm may be boring, but it is feasible.

The moderate complexity of this approach should make both numerical and analytic computations feasible. The cavity equations are likely not satisfied because the true maximum does not belong to this Markov subspace. It would be very interesting to quantify the violations of the cavity equations and understand if they are small. The most important check would be to verify if marginal stability is not spoiled by these approximations.

I would like to stress that this simple variational approach will produce values for the fields that cannot be correct: their distribution is continuous, while in the zero temperature limit we must have that \(h \) takes integer values in the model with \(J = \pm 1 \). However, after one (manageable) iteration of the cavity equations, the fields should take integer values.

5.3 Miscellaneous remarks

The previous equations imply simple expressions for the conjoint probabilities of the fields. Let us consider for example the case of \(s \) states that have the same common ancestor at \(x \). The conjoint probability of the fields \(h_t \) (where \(t \) is convenient label for these states that ranges from 1 to \(s \)) can be factorized as

\[
p(h_1, h_2 \ldots h_s) = \int \! dh P(h, x | 0, 0) P(h_1 | h, x) P(h_2 | h, x) \ldots P(h_s | h, x). \tag{68}
\]

This factorization property is indeed valid in the SK model.\(^{16}\)

I would like to stress that at this stage the quantity \(h(x | x_0, h_0) \eta \) is not an effective field, but a convenient label to parametrize the probability distribution in the previous equation \((68)\). It is not clear to me if \(h(x | x_0, h_0) \eta \) has a deeper simple physical meaning.\(^ {17}\) On the contrary, \(m(h, x) \) is the average magnetization over the states that belong to the cluster that starts from \(x \) and that are labeled by \(h \).

It is quite likely that this factorized representation is not exact. One could to consider more complex representations as

\[
p(h_1, h_2 \ldots h_s) = \int \! d^D z P(\vec{z} | x) P(h_1 | \vec{z}, x) P(h_2 | \vec{z}, x) \ldots P(h_s | \vec{z}, x), \tag{69}
\]

where \(\vec{z} \) is a \(D \) dimensional vector. It is possible that such representations are more accurate and maybe correct in the limit \(D \to \infty \).

In a similar way can generalize the previous considerations introducing a \(D \) dimensional white noise and writing the following stochastic differential equations:

\[
\frac{d \vec{z}_\eta(x)}{dx} = A(x, \vec{z}_\eta(x)) \eta(x) + B(x, \vec{z}_\eta(x)). \tag{70}
\]

As in the previous case we set \(h_\alpha = C(\vec{z}_\eta) \). In other words we have a Markov type property in a \(D \) dimensional space.

In this way, we obtain a new functional that has to maximize: increasing \(D \) we should get better results. We wonder if in the infinite \(D \) limit we obtain the correct result. However, the real point is how manageable small \(D \) approximations (mainly \(D = 1 \)) do capture the crucial physics of the system.

We have already remarked that in the one step case (i.e. \(r = 1 \)) for the model with couplings \(J = \pm 1 \) in the zero temperature limit the probability distribution of the fields \(h \) in a given state can be described by the probabilities that \(h > 0, h = 0, h < 0 \). These three probabilities (i.e surveys \((66), (17)\)) form a two-dimensional manifold. Therefore it is natural to introduce a \(D = 2 \) parametrization in this case. It would be interesting to check what happens in the zero temperature limit if we make the extra assumption that the probability of the surveys is concentrated on a one-dimensional manifold. It particular it would be nice to know how much the bounds on the free energy worsen in this case.

16 In the SK model \(A(x, z) \) does not depends on \(z \) and \(C(z) = z \).

17 If we compute the annealed free energy \(F(x) \equiv \lim_{N \to \infty} -\log \left(\frac{Z_N^x(\beta)}{\langle \beta N \rangle x} \right) \) in presence of a magnetic field, we can derive similar formulae where the quantity \(h(x | x_0, h_0) \eta \) has a more important physical role.
5.4 An analytic approach

We can also attack this problem more analytically. Bethe lattice spin glasses behave as the SK model both in the limit \(z \to \infty \) or near the critical temperature: we know that in this case \(D = 1 \) gives the correct results.

The perturbative corrections in \(1/z \) or \(T_c - T \) can be computed analytically. In this framework, we can investigate how much accurate results the previous Markov ansatz does provide.

We notice in some case that these expansions could also be used to obtain the needed results and also to check that the qualitative properties we are interested in are not different from those of the SK model.

In the Sherrington-Kirkpatrick case, the free energy can be written in terms of the covariance of the \(h \)'s. The connected correlation functions of two more \(h \)'s can be computed using equations like (68), but these correlation functions do not appear in the computation of the free energy. In both cases \(z \to \infty \) and \(T \to T_c \) the contributions higher order moments of the probability distribution function can be introduced perturbatively.

These two expansions are complementary one to the other:

- The expansion in powers of \(T_c - T \) is particularly simple so that very detailed computation can be done. In principle, we can do the whole computation by hand. The first terms of the expansion have been computed, at least up to \((T_c - T)^4 \) [40]. Using algebraic manipulators the number of terms that can be computed strongly increases: it is unclear how difficult would be to compute enough terms in such a way to have a good control of the convergence of the expansion for small \(T \).

Another very interesting computations would be to write down a Taylor expansion of \(g[\theta] \) in power in powers of \(\theta \):

\[
g[\theta] = \int dx_1 g_1(x_1) \theta(x_1) + \int dx_1 \int dx_2 g_2(x_1, x_2) \theta(x_1) \theta(x_2) + \cdots \quad (71)
\]

If we consider the model where the coupling \(J \) have a Gaussian distribution it is possible that this expansion holds near \(T_c \) and that the various \(g_n \) functions could be computed analytically in a Taylor expansion in powers of \((T_c - T)^4 \).

- The expansion in powers of \(1/z \) at fixed temperature is more complex, because the solution of the model at \(z = \infty \) is complex and the function \(q(x) \) is only known numerically [61, 62]. On the other hands, typical three-dimensional lattices have \(z = 6 \) (sc) of \(z = 12 \) (fcc): if we want to control the effect of having a finite number of neighbours in three dimensions (neglecting the effect of spatial correlations) the value of \(1/z \) is quite small and one or two terms of the expansions may be adequate.

Many interesting analyses and computations are possible and the comparison of the results coming from different approaches could be quite fruitful. I hope this analysis will be done in the near future.

Acknowledgements

It is a pleasure to thank Dmitry Panchenko for many discussions and clarifications. I would like also to thank Valerio Astuti, Silvio Franz, Carlo Lucibello, Federico Ricci-Tersenghi, and Pierfrancesco Urbani for a critical reading of the manuscript. This work has been supported by the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation program (grant agreement No 694925).

Appendix: the cavity equations in the case of broken replica symmetry

The cavity equations are often a direct way to find the maximum of the free energy.

At this end it is convenient to introduce the cavity equations for the probability over the descriptors i.e. \(\mathcal{P}[\mathcal{D}] \). These equations can be derived heuristically by considering a \(N \) nodes system to which we add an extra node. A natural requirement is that the properties of the spin the extra node is the same of the others \(N \) spins. Alternatively, we could remove one spin from a \(N + 1 \) system forming a cavity, hence the name “cavity” method.
It has been proved \cite{26} that a stochastically stable probability $\mathcal{P}[\mathcal{D}]$ that maximizes the free energy, should also satisfy some equations that generalize the naive cavity equations \cite{33}. They are defined as follows. For each state α we construct a new set of fields and weights using the fields v_h_α that are uncorrelated in i and correlated in α.

$$
 h'_\alpha = U(\vec{J}, \vec{h}_\alpha) \\
 w'_\alpha = w_\alpha \Delta_{\text{node}}(\vec{J}, \vec{h}_\alpha)
$$

Z being a normalisation factor that enforces $\sum w'_\alpha = 1$. The quantities h'_α and w'_α are the fields and weights corresponding to new spin. These equations can be formally written as

$$
 \mathcal{P}' = \mathcal{C}[\mathcal{P}].
$$

According to the heuristic argument we finally impose that the probability distribution of the $\{w'_\alpha, h'_\alpha\}$ (i.e. \mathcal{P}' is again $\mathcal{P}[\mathcal{D}]$). This constraint is called the cavity equations for $\mathcal{P}[\mathcal{D}]$ \cite{33, 50, 32}: the cavity equations ($\mathcal{P}' = \mathcal{C}[\mathcal{P}]$) are valid in general for stochastically stable distributions, not only in the reproducible case.

The cavity equations can be considered the moral equivalent of

$$
 \delta \mathcal{F}[\mathcal{P}[\mathcal{D}]] / \delta \mathcal{P}[\mathcal{D}] = 0.
$$

These equations are a necessary condition but not a sufficient condition. The cavity equations have many solutions; we need to find out the one that maximizes the free energy $\mathcal{F}[\mathcal{P}[\mathcal{D}]]$.

In the heuristic approach one often requires a further condition of stability. It can formally written as follows. Let us consider a solution ($\mathcal{P}^*[\mathcal{D}]$) of the cavity equation (74). For small $\delta \mathcal{P}[\mathcal{D}]$ we can write a Taylor expansion

$$
 \mathcal{F}[\mathcal{P}^*[\mathcal{D}] + \delta \mathcal{P}[\mathcal{D}]] = \mathcal{F}[\mathcal{P}^*[\mathcal{D}]] + (\delta \mathcal{P}[\mathcal{D}], \mathbf{H} \delta \mathcal{P}[\mathcal{D}]) + O(\delta \mathcal{P}[\mathcal{D}]^3),
$$

where the linear term in $\delta \mathcal{P}[\mathcal{D}]$ is absent as effect of the cavity equation (74).

This equation defines a generalized Hessian (i.e. \mathbf{H}) that plays a crucial role in the heuristic approach.

Let us call H_0 the largest eigenvalues of \mathbf{H} (the so called replicon eigenvalue). It natural to assume that if $\mathcal{P}^*[\mathcal{D}]$ maximize the free energy only if

$$
 H_0 \leq 0,
$$

or equivalently the matrix \mathbf{H} is non-positive. This condition generalizes the De Almeida-Thouless (DAT) stability condition. It is interesting to note that the DAT stability condition is usually equivalent to the condition:

$$
 \lambda \equiv \lim_{l \to \infty} \frac{1}{l} \log \left(\frac{\langle \sigma_0 \sigma_l \rangle_c}{\langle \sigma_0 \rangle_c^2} \right) \leq 0,
$$

where $\langle \sigma_0 \sigma_l \rangle_c$ is the connected correlation function of two spins at distance l on the infinite Bethe Lattice \cite{63}.

It is also conjectured that this stability condition in saturated when the replica symmetry is spontaneously broken in a continuous way:

$$
 H_0 = 0 \quad \text{and} \quad \lambda = 0.
$$

Indeed in all known cases, the saturation of DAT stability condition is the necessary condition for marginal stability.

It is conjectured that for spin glasses on the Bethe lattice when replica symmetry is spontaneously broken at r steps we have

$$
 H_0 > 0.
$$

This conjecture implies that the stability condition forces us to consider continuous RSB. This is the reason we are interested in finding approximations to spin glasses such that equation (78) is satisfied, maybe in some restricted space.
References

[1] M. Mézard, G. Parisi and M.A. Virasoro, *Spin glass theory and beyond*, World Scientific (Singapore 1987).

[2] G. Parisi, *Field Theory, Disorder and Simulations*, World Scientific, (Singapore 1992).

[3] D. Sherrington and S. Kirkpatrick, Solvable model of a spin-glass, Phys. Rev. Lett. 35, 1792 (1975).

[4] C. De Dominicis and I. Kondor, Eigenvalues of the stability matrix for Parisi solution of the long-range spin-glass, Phys. Rev. B 27, 606 (1983).

[5] F. Guerra, Broken replica symmetry bounds in the mean field spin glass model, Comm. Math. Phys. 233, 1 (2003).

[6] M. Talagrand, The generalized Parisi formula, C.R.A.S. 337, 111 (2003); The Parisi formula Ann. Math. 163, 221 (2006).

[7] M. Talagrand, *Spin glasses: a challenge for mathematicians: cavity and mean field models* Springer Science (Berlin 2003).

[8] D. Panchenko, *The Sherrington-Kirkpatrick model*, Springer Science (Berlin 2013); J. Stat. Phys. 149 362 (2012); Introduction to the SK model, arXiv:1412.0170 (2014).

[9] P. Contucci and C. Giardinà, *Perspectives on spin glasses*, Cambridge University Press, (Cambridge 2013).

[10] T.R. Kirkpatrick and D. Thirumalai, *Dynamics of the Structural Glass Transition and the p-Spin Interaction Spin-Glass Model*, Phys. Rev. Lett. 58, 2091 (1987); T. R. Kirkpatrick and D. Thirumalai, p-spin-interaction spin-glass models: Connections with the structural glass problem, Phys. Rev. B36, 5388 (1987); T. R. Kirkpatrick, D. Thirumalai and P.G. Wolynes, Scaling concepts for the dynamics of viscous liquids near an ideal glassy state, Phys. Rev. A40, 1045 (1989).

[11] D. Panchenko, Free energy in the Potts spin glass, arXiv:1512.00370 (2015).

[12] D. Panchenko, Free energy in the mixed p-spin models with vector spins, arXiv:1512.04441 (2015).

[13] D. Panchenko, On the K-sat model with large number of clauses, arXiv:1608.06256 (2016).

[14] A. Barra, P. Contucci, E. Mingione and D. Tantari, Multi-species mean-field spin-glasses. Rigorous results, Ann. H. Poincaré 16, 691 (2015).

[15] D. Panchenko, The free energy in a multi-species Sherrington-Kirkpatrick model, Ann. Prob. 43, 3494 (2015).

[16] D. Panchenko, Chaos in Temperature in Generic 2p-Spin Models, Comm. Math. Phys. 346, 703 (2016).

[17] W.-K. Chen, D. Panchenko, Temperature chaos in some spherical mixed p-spin models, arXiv:1608.02478 (2016).

[18] C. De Dominicis and I. Kondor, On spin glass fluctuations, J. Physique Lett. 45, 205 (1984).

[19] R. Alvarez Banos, A. Cruz, L.A. Fernandez, J. M. Gil-Narvion, A. Gordillo-Guerrero, M. Guidetti, A. Maiorano, F. Mantovani, E. Marinari, V. Martin-Mayor, J. Monforte-Garcia, A. Munoz Sudupe, D. Navarro, G. Parisi, S. Perez-Gaviro, J. J. Ruiz-Lorenzo, S.F. Schifano, B. Socino, A. Tarancon, R. Tripiccione, and D. Yllanes, Static versus dynamic heterogeneities in the D= 3 Edwards-Anderson-Ising spin glass, Phys. Rev. Lett. 105, 177202 (2010); Nature of the spin-glass phase at experimental length scales, J. Stat. Mech. P06026 (2010).

[20] M. Wyart, L. E. Silbert, S. R. Nagel, and T. A. Witten, Effects of compression on the vibrational modes of marginally jammed solids, Phys. Rev. E 72, 051306 (2005); E. DeGiuli, A. Laversanne-Finot, G. A. Düring, E. Lerner, and M. Wyart, Breakdown of continuum elasticity in amorphous solids, Soft Matter 10, 5628 (2014).

[21] E. Marinari, G. Parisi, F. Ricci-Tersenghi, J. Ruiz-Lorenzo and F. Zuliani, Replica symmetry breaking in short-range spin glasses: theoretical foundations and numerical evidences, J. Stat. Phys. 98, 973 (2000).
[22] J. Kurchan, G. Parisi, F. Zamponi, Exact theory of dense amorphous hard spheres in high dimension I. The free energy, J. Stat. Mech. P10012 (2012); J. Kurchan, G. Parisi, P. Urbani, F. Zamponi, Exact theory of dense amorphous hard spheres in high dimension. II. The high density regime and the Gardner transition, J. Phys. Chem. B, 117 12979 (2013); P. Charbonneau, J. Kurchan, G. Parisi, P. Urbani and F. Zamponi, Exact theory of dense amorphous hard spheres in high dimension. III. The full replica symmetry breaking solution, J. Stat. Mech. 10, P10009 (2014), Fractal free energy landscapes in structural glasses, Nature Comm. 5, 3725 (2014), J. Stat. Mech. P10009 (2014).

[23] P. Charbonneau, J. Kurchan, G. Parisi, P. Urbani, F. Zamponi, Glass and Jamming Transitions: From Exact Results to Finite-Dimensional Descriptions arXiv:1605.03008 (2016).

[24] D. Ruelle, A mathematical reformulation of Derrida’s REM and GREM, Comm. Math. Phys. 108, 225 (1987).

[25] E. Bolthausen and A. S. Sznitman, On Ruelle’s probability cascades and an abstract cavity method, Comm. Math. Phys. 97 247 (1998).

[26] D. Panchenko, Spin glass models from the point of view of spin distributions, Ann. Prob. 41 1315 (2013).

[27] D. Panchenko, Hierarchical glass models from the point of view of spin distributions, Prob. Theory Rel. Fields 161, 619 (2015).

[28] S. Franz and M. Leone, Replica bounds for optimization problems and diluted spin systems, J. Stat. Phys. 111, 535 (2003).

[29] S. Franz, M. Leone and F. L. Toninelli, Replica bounds for diluted non-Poissonian spin systems, J. Phys. A 43, 10967 (2003).

[30] M. Aizenman, R. Sims, and S. L. Starr, Extended variational principle for the Sherrington-Kirkpatrick spin-glass model, Phys. Rev. B 68 214403 (2003).

[31] D. Panchenko, The Parisi ultrametricity conjecture, Ann. Math. 177, 383 (2013).

[32] D. Panchenko, Structure of finite-RSB asymptotic Gibbs measures in the diluted spin glass models, J. Stat. Phys. 162, 1 (2016).

[33] M. Mézard and G. Parisi, The Bethe lattice spin glass revisited, Eur. Phys. J. B 20, 217 (2001).

[34] L. Viana and A. J. Bray, Phase diagrams for dilute spin glasses, J. Phys. C 18, 3037 (1985).

[35] Y. T. Fu and P. W. Anderson, Application of Statistical Mechanics to NP-complete Problems in Combinatorial Optimization, J. Phys. A 19, 1065 (1986).

[36] M. Mézard and G. Parisi, Mean-field theory of randomly frustrated systems with finite connectivity, EPL 3, 1067 (1987).

[37] C. De Dominicis and Y. Y. Goldschmidt, Replica symmetry breaking in finite connectivity systems: a large connectivity expansion at finite and zero temperature, J. Phys. A 22, L775 (1989).

[38] G. Parisi, Glasses, replicas and all that in Slow Relaxations and Nonequilibrium Dynamics in Condensed Matter: Les Houches Session LXXVII, J.L. Barrat et al. eds., Springer (Berlin 2005).

[39] F. Morone, F. Caltagirone, E. Harrison and G. Parisi, Replica Theory and Spin Glasses, arXiv:1409.2722 (2014).

[40] F. Guerra, About the overlap distribution in mean field spin glass models, I. J. Mod. Phys. B 10, 1675 (1996).

[41] S. Ghirlanda and F. Guerra, General properties of overlap probability distributions in disordered spin systems. Towards Parisi ultrametricity, J. Phys. A 31, 9149 (1998).

[42] M. Aizenman and P. Contucci, On the stability of the quenched state in mean-field spin-glass models, J. Stat. Phys. 92, 765 (1998).

[43] G. Parisi, On the probability distribution of the overlap in spin glasses, Int. J. Mod. Phys. B 18, 733 (2004).

[44] G. Parisi and F. Ricci-Tersenghi, On the origin of ultrametricity, J. Phys. A 33, 113 (2000).

[45] G. Parisi, On the branching structure of the tree of states in spin glasses, J. Stat. Phys. 72, 857 (1993).
[46] M. Mézard and G. Parisi, The cavity method at zero temperature, J. Stat. Phys. 111, 1 (2003).

[47] M. Mézard, G. Parisi and R. Zecchina, Analytic and algorithmic solution of random satisfiability problems, Science 297, 812 (2002).

[48] M. Mézard, and M. A. Virasoro, The microstructure of ultrametricity, J. Physique 46, 1293 (1985).

[49] C. Goldschmidt and J. Martin, Random recursive trees and the Bolthausen-Sznitman coalescent, E. J. Prob. 10, 718 (2005).

[50] A. Ruzmaikina and M. Aizenman, Characterization of invariant measures at the leading edge for competing particle systems, Ann. Prob. 33, 82 (2005).

[51] G. Parisi, On Spin Glass Theory, Physica Scripta T19A, 27 (1987).

[52] G. Parisi, F. Ricci-Tersenghi, and D. Yllanes, Explicit generation of the branching tree of states in spin glasses, J. Stat. Mech. P05002 (2015).

[53] M. Mézard, G. Parisi and M. A. Virasoro, Random free energies in spin glasses, J. Physique Lett 46, 217 (1985).

[54] F. Guerra and F.L. Tolinelli, The high temperature region of the Viana-Bray diluted spin glass model, J. Stat. Phys. 115, 531 (2004).

[55] S. Sen, Optimization on sparse random hypergraphs and spin glasses, arXiv:1606.02365 (2016).

[56] A. Auffinger and W.-K. Chen, The Parisi formula has a unique minimizer, Comm. Math. Phys. 335, 1429 (2015).

[57] G. Parisi, Spin Glasses in Proceedings of the International School of Physics 'Enrico Fermi' Course XCI: Elementary Particles N. Cabibbo ed., (North-Holland Amsterdam 1984).

[58] H.-J. Sommers and W. Dupont, Distribution of frozen fields in the mean-field theory of spin glasses, J. Phys. C 7, 5785 (1984).

[59] A. Crisanti and T. Rizzo, Analysis of the ∞-replica symmetry breaking solution of the Sherrington-Kirkpatrick model, Phys. Rev. E 65, 046137 (2002).

[60] G. Parisi and T. Rizzo, Large deviations of the free energy in diluted mean-field spin-glass, J. Phys. A 43, 045001 (2010); Chaos in temperature in diluted mean-field spin-glass, J. Phys. A 43, 235003 (2010).

[61] G. Parisi and F. Tria, Spin glasses on Bethe lattices for large coordination number, Eur. Phys. J. B 30, 533 (2002).

[62] G. Boschi, Vetri di spin su reticoli con alto numero di coordinazione a $T = 0$, Rome University La Sapienza thesis, unpublished (2016).

[63] F. Morone, G. Parisi, and F. Ricci-Tersenghi, Large deviations of correlation functions in random magnets, Phys. Rev. B 89, 214202 (2014).