Non-coding RNAs as epigenetic regulator of glioma stem-like cell differentiation

Keisuke Katsushima and Yutaka Kondo*

Division of Epigenomics, Aichi Cancer Center Research Institute, Nagoya, Japan

Glioblastomas show heterogeneous histological features. These distinct phenotypic states are thought to be associated with the presence of glioma stem cells (GSCs), which are highly tumorigenic and self-renewing sub-population of tumor cells that have different functional characteristics. Differentiation of GSCs may be regulated by multi-tiered epigenetic mechanisms that orchestrate the expression of thousands of genes. One such regulatory mechanism involves functional non-coding RNAs (ncRNAs), such as microRNAs (miRNAs); a large number of ncRNAs have been identified and shown to regulate the expression of genes associated with cell differentiation programs. Given the roles of miRNAs in cell differentiation, it is possible they are involved in the regulation of gene expression networks in GSCs that are important for the maintenance of the pluripotent state and for directing differentiation. Here, we review recent findings on ncRNAs associated with GSC differentiation and discuss how these ncRNAs contribute to the establishment of tissue heterogeneity during glioblastoma tumor formation.

Keywords: epigenetics, glioma, cancer stem cells, long non-coding RNA, micro RNA
or oncogenic functions in many types of cancer (Esteller, 2011; Wapinski and Chang, 2011; Hu et al., 2012; Zhang et al., 2013).

In this review, we provide a summary of the current understanding of miRNAs and IncRNAs in gliomas with a focus on their roles in GSCs.

miRNAs IN GSC DIFFERENTIATION

miRNAs are short sequences of 17–25 nucleotides that are not transcribed but have a regulatory function. An RNase III enzyme converts pri-miRNA into pre-miRNA hairpin transcripts that are processed into mature miRNAs and incorporated into a ribonucleoprotein complex called the RNA-induced silencing complex (RISC). The RISC and associated mature miRNA then binds to mRNA and causes a physical block to translation (Ambros and Lee, 2004; Bartel, 2004). Many miRNAs form imperfectly complementary stem-loop structures on the sense strand of the target mRNA. Thus, each miRNA can target multiple mRNA species through recognition of complementary sequences. Upregulation of mature miRNAs may occur as a consequence of transcriptional activation or amplification of the corresponding pre-miRNA locus, whereas downregulation of miRNAs may result from epigenetic silencing or deletion of the corresponding region (Schickel et al., 2008). Although dysregulation of the miRNA-mRNA network has been reported in glioblastoma, little attention has so far been paid to its role in GSCs (Godlewski et al., 2010a). In this section, we describe the information available on the significance of miRNAs in GSCs (Table 1).

miR-17-92 CLUSTER

The miR-17-92 cluster is thought to be involved in the regulation of GSC differentiation, apoptosis, and proliferation (Ernst et al., 2010). The level of transcripts from miR-17-92 clusters are significantly higher in primary astrocytic tumors than in normal brain tissues and increase significantly with tumor grade progression. A High-level amplification of the miR-17-92 locus has also been found in glioblastoma specimens. Inhibition of miR-17-92 induces apoptosis and decreases cell proliferation in GSCs. mir-17-92 inhibition is also associated with induction of cyclin-dependent kinase inhibitor 1A (CDKN1A), E2F transcription factor 1 (E2F1), PTEN, and connective tissue growth factor (CTGF). Of these, the CTGF gene was shown to be a direct target of miR-17-92 in GSCs.

When GSCs are exposed to the differentiation-promoting conditions, downregulation of the oncogenic miR-17-92 cluster is directly related to the concomitant upregulation of CTGF (Ernst et al., 2010).

miR-124 AND miR-137

The initial analysis of miR-124 showed that it promotes neuronal differentiation by targeting the polyipyrimidine tract-binding protein 1 (PTBP1) that encodes a global repressor of alternative pre-mRNA splicing; miR reduces the level of PTBP1, which results in an increase in the production of nervous system-specific alternative RNA splicing and promotes the differentiation of progenitor cells to mature neurons (Makeyev et al., 2007). Subsequent analysis showed that both miR-124 and miR-137 are downregulated in high-grade gliomas and up-regulated during adult neural stem cell differentiation (Silber et al., 2008). Transfection of miR-124 or miR-137 inhibits proliferation of GSCs, via suppression of cyclin-dependent protein kinase 6 (CDK6), and induces morphological changes in human GSCs and expression of neuronal differentiation markers. Overexpression of miR-124 has consistently been found to inhibit the CD133+ cell subpopulation of the neurosphere and to downregulate stem cell markers, such as BMI1, Nanog, and Nestin. These effects could be rescued by re-expression of SNAI2, another direct target of miR-124 (Xia et al., 2012).

miR-451

Analysis of the miRNA profiles of GSC (CD133+ cells) and non-GSC (CD133− cells) populations showed that several miRNAs, including miR-451, miR-486, and miR-425, are upregulated in CD133− cells. Transfection of cells with miR-451 has been shown to induce disruption of glioblastoma neurospheres (Gal et al., 2008). Interestingly, this study also showed that SMAD

Table 1 | List of miRNAs dysregulated in GSCs.

MicroRNAs	Direct targets	Roles in GSC	Reference
mir-17-92 cluster	CTGF	Differentiation (−), proliferation (+), apoptosis (−)	Ernst et al. (2010)
mir-451	CAB39	Differentiation (−), proliferation (+), apoptosis (−)	Godlewski et al. (2010b)
mir-1275	CLDN1	Differentiation (−), proliferation (+)	Katsushima et al. (2012)
mir-138	CASP3, BLCAP, MXD1	Differentiation (−), proliferation (+), apoptosis (−)	Chan et al. (2012)
mir-137	CDK6	Differentiation (−), proliferation (−)	Silber et al. (2008)
mir-34a	MET, NOTCH1, NOTCH2, CDK6	Differentiation (−), proliferation (−), apoptosis (−)	Li et al. (2009b), Guessous et al. (2010)
mir-302-367 cluster	CXCR4	Differentiation (−), proliferation (−), invasion (−)	Fareh et al. (2012)
mir-124	SNAI2	Differentiation (−), proliferation (−), invasion (−)	Xia et al. (2012)
mir-204	SOX4, EPHB2	Differentiation (−), proliferation (−), invasion (−)	Ying et al. (2013)
mir-128	BMI1, SUZ12	Differentiation (−), proliferation (−), radiosensitivity (−)	Godlewski et al. (2008), Peruzzi et al. (2013)

(+): increased, (−): decreased.
miR-34a

miR-34a is tumor-suppressive and is downregulated in human glioma tissues; miR-34a directly inhibits the expression of c-Met, Notch-1, and Notch-2 in GSCs (Li et al., 2009b). Notch is a critical regulator of cell-fate during development and also of normal stem cell maintenance (Fan et al., 2006; Shih and Holland, 2006; Fan et al., 2010). Activation of the Notch pathway enhances the stemness, proliferation, and radioreistance of GSCs (Wang et al., 2010). Ectopic expression of miR-34a in glioma cells inhibits cell proliferation, survival, and migration. In addition, miR-34a induces GSC differentiation as evidenced by the decreased expression of stem cell markers and increased expression of differentiation markers (Guessous et al., 2010).

miR-128

Two studies have described a link between miR-128 and the polycomb repressor complex (PRC). Two major complexes, PRC1 and PRC2, are recognized as key epigenetic regulators during development (Lund and van Lohuizen, 2004) and are required for maintaining self-renewal and multi-potential capability (Richly et al., 2011). The first study demonstrated that miR-128 has a tumor-suppressive function and that this is downregulated in glioblastoma tissue. miR-128 expression significantly reduces glioma cell proliferation both in vitro and in vivo via downregulation of the oncogene Bmi-1 that is a component of PRC1. In addition, miR-128 inhibits GSC self-renewal (Godlewski et al., 2008). The second study showed that miR-128 directly targets SUZ12, a key component of PRC2. Ectopic expression of miR-128 in GSCs significantly increases their radiosensitivity (Peruzzi et al., 2010). The PRC has been shown to promote normal and cancer stem cell self-renewal and is also implicated in GSC regulation (Abdouh et al., 2009; Suva et al., 2009; Natsume et al., 2013). The findings of these various studies therefore indicate that miR-128 mediates an important epigenetic regulatory pathway in GSCs.

OTHER miRNAs

Several other miRNAs have been implicated in glioma malignancy. Ectopic expression of the miR-302-367 cluster in GSCs inhibits the CXCR4 pathway resulting in the suppression of stemness signatures, self-renewal, and cell infiltration. Inhibition of the CXCR4 pathway leads to the disruption of the SHH-GLI-NANOG network, which is important for cell self-renewal and tumorigenic properties (Fareh et al., 2012). In both GSCs and non-GSCs, miR-1275 is controlled by a polycomb-mediated silencing mechanism and regulates expression of the oligodendroglial-lineage gene claudin 11 (CLDN11). These data illustrate that miR-1275 is regulated by an epigenetic pathway and that it contributes to the phenotypic diversity of glioblastoma tissues. The increased insight into the roles of these miRs may provide a better understanding of basis for the heterogeneity of glioblastomas in the context of human neurodevelopment (Katsushima et al., 2012). Recently, miR-204 was shown to suppress self-renewal, a stem cell characteristic, and the migration of GSCs by targeting the stemness-governing transcriptional factor SOX4 and the migration-promoting receptor EphB2 (Ying et al., 2013).

LncRNAs IN CANCER

Genome-wide studies showed that there are a large number of ncRNAs, including a group termed IncRNAs (Birney et al., 2007). LncRNAs are generally greater than 200 nucleotides and up to 100 kb in length (Mercer et al., 2009). It is known that IncRNAs are mainly transcribed by RNA polymerase II, are polyadenylated and spliced (Wu et al., 2008; Mercer et al., 2009; Ponting et al., 2009). Approximately 15,000 IncRNAs are estimated to occur in human cells and these are frequently expressed in tissue-specific patterns (Derrien et al., 2012). IncRNAs appear to play important roles in a wide range of biological cellular processes including maintenance of stemness, development, and cell survival (Koziol and Rinn, 2010; Zhang et al., 2013). Currently studies detected a set of IncRNAs in each disease using RNA immunoprecipitation with RNA binding proteins coupled with computational approaches.

Long non-coding RNAs are believed to regulate gene expression through four different pathways (Koziol and Rinn, 2010; Hu et al., 2012). First, IncRNAs can bind to chromatin modifying proteins (which have a scaffold function) and recruit these proteins to target loci. These IncRNA complexes can target genes that are closely situated in the genome (cis-regulation) or genes that are genomically distant (trans-regulation) (Nagano et al., 2009; Prensner et al., 2011; Wang et al., 2011). Second, IncRNAs can act as an RNA decoy, that is, they can interact directly with a DNA binding domain to prevent transcription factors interacting with their DNA targets (Kino et al., 2010; Ng et al., 2012). Third, IncRNAs can act as an mRNA sponge, that is, they prevent specific miRNAs from binding to their target mRNAs by competitive binding (Poliseno et al., 2010; Cesana et al., 2011; Karreth et al., 2011). Fourth, IncRNAs can bind to specific combinations of regulatory proteins, such as RNA splicing proteins within ribonucleoprotein complexes (Tripathi et al., 2010; Ng et al., 2012; Schor et al., 2012).

There is increasing evidence to show that a set of IncRNAs is associated with cancer pathogenesis and that these IncRNAs function as regulators in cancer development (Prensner and Chin-nayani, 2011). IncRNAs that are dysregulated in cancers are listed in Table 2. Below, we provide a brief description of some IncRNAs that are associated with glioma tumorigenesis.
Table 2 | List of IncRNAs dysregulated in cancers.

Name	Cancer type	Biological function	Molecular function	References
Oncogenic				
HOTAIR	Breast, hepatocellular, colorectal, pancreatic, GIST	Promotes invasion and metastasis, modulates cancer epigenome	Scaffold (PRC2, LSD1), guide (trans-regulation)	Gupta et al. (2010), Kogo et al. (2011), Yang et al. (2011), Niinuma et al. (2012), Kim et al. (2013)
ANRIL	Prostate, leukemia, melanoma	Suppresses senescence via INK4A	Scaffold (PRC1, PRC2), guide (cis-regulation)	Pasmant et al. (2007), Yu et al. (2008), Popov and Gil (2010), Pasmant et al. (2011)
MALAT1	Lung, prostate, breast, colon, hepatocellular	Regulates alternative splicing of pre-mRNA	Splicing (nuclear paraspeckle)	Ji et al. (2003), Muller-Tidow et al. (2004), Lin et al. (2007), Tano et al. (2010), Tripathi et al. (2010)
PCAT-1	Prostate	Promotes cell proliferation, inhibits BRCA2	Scaffold (PRC2), guide (trans-regulation)	Prensner et al. (2011)
CTBP1-AS	Prostate	Promotes cell proliferation	Scaffold (PSF), guide (trans-regulation)	Takayama et al. (2013)
PCGEM1	Prostate	Inhibits apoptosis, promotes cell proliferation	Unknown	Srikanth et al. (2000), Petrovics et al. (2004)
TUC338	Hepatocellular	Promotes cell proliferation	Unknown	Braconi et al. (2011)
uc. 73a	Leukemia, colorectal	Promotes cell proliferation, inhibits apoptosis	Unknown	Calin et al. (2007)
SPRY4-IT1	Melanoma	Promotes cell proliferation and invasion, inhibits apoptosis	Unknown	Khaitan et al. (2011)
ncRAN	Neuroblastoma, bladder	Promotes cell proliferation and invasion	Unknown	Yu et al. (2009), Zhu et al. (2011)
PRNCR1	Prostate	Promotes cell proliferation	Unknown	Chung et al. (2011)
H19	Breast, hepatocellular	Promotes cell proliferation, both oncogenic and tumor suppressive functions reported	Unknown	Gabory et al. (2006), Matouk et al. (2007)
Tumor suppressive				
GAS5	Breast	Induces growth arrest and apoptosis	Decoy (glucocorticoid receptor)	Mourtada-Maarabouni et al. (2008), Kino et al. (2010)
MEG3	Meningioma, hepatocellular, leukemia, pituitary, gliomas	Mediates p53 signaling, inhibits cell proliferation	Unknown	Zhou et al. (2007, 2012), Wang et al. (2012)
PTENP1	Prostate, colon	Inhibits cell proliferation	Sponge (PTEN)	Poliseno et al. (2010)
LincRNA-p21	Mouse models of lung, sarcoma, lymphoma	Induces apoptosis by repressing p53 targets	Scaffold (hnRNP-k), guide (trans-regulation)	Huarte et al. (2010)
MEG3

Maternally expressed gene 3 (MEG3) is a maternally expressed imprinted gene that can also act as an IncRNA. MEG3 is generally expressed in normal tissues, and its downregulation by aberrant DNA methylation has been found in many types of human cancer (Zhou et al., 2012; Shi et al., 2013). For example, MEG3 expression in glioma tissues is decreased compared to adjacent normal tissues (Wang et al., 2012). The tumor-suppressive role of MEG3 is supported by the fact that it can associate with p53 and that this association is required for p53 activation (Lu et al., 2013). Ectopic expression of MEG3 inhibits cell proliferation and induced cell apoptosis in glioma cell lines (Wang et al., 2012).

CRNDE

Colorectal neoplasia differentially expressed (CRNDE) transcripts are categorized as IncRNAs and have the potential to interact with chromatin-modifying proteins to regulate gene expression through epigenetic changes (Ellis et al., 2012). CRNDE is expressed in the fetal brain and in induced pluripotent stem cells; levels of expression increases during neuronal differentiation but no transcripts can be detected in the adult brain (Lin et al., 2011). Intriguingly, CRNDE is highly expressed in gliomas. The recent study of Ellis et al. demonstrated a direct interaction between CRNDE transcripts and components of PRC2 and the CoREST chromatin-modifying complex. CRNDE provides specific functional scaffolds for regulatory complexes, such as PRC2 and CoREST, and may contribute the maintenance of pluripotent state as well as neuronal differentiation (Ellis et al., 2012).

CONCLUDING REMARKS

Following the discovery of cancer stem cells, it became important to elucidate the mechanisms and the environmental cues that control the differentiation of these cells into the diverse array of cell types that form during tumorigenesis. Epigenetic dysregulation has recently been shown to change the balance between differentiation and self-renewal of cortical progenitor cells and, thereby, to alter the rate and developmental timing of neurogenesis (Pereira et al., 2010). Given that cancer is a disease of faulty cellular differentiation, it is likely that aberrant epigenetic mechanisms involving ncRNAs are involved in glioma tumorigenesis. IncRNAs are increasingly important because of their potential for use in clinical diagnosis and treatment. To date, however, the functions of only a few IncRNAs have been elucidated with respect to tumor biology and there are still many aspects that remain to be resolved. Further investigations are required to clarify the functional roles of IncRNAs in order to elucidate the gene regulatory mechanisms in glioma-genesis. Understanding of the interplays between IncRNAs and genomes, which are reversible alterations, may offer a novel opportunity for the development of molecularly targeted therapies. Nevertheless, a better understanding of the glioblastoma core signaling pathways regulated by ncRNAs and other epigenetic mechanisms will undoubtedly provide novel therapeutic targets and strategies with applications in diagnosis and therapy in glioblastoma.

ACKNOWLEDGMENTS

This work was supported by grant from PRESTO, Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science.

REFERENCES

Abdouh, M., Facchino, S., Chatoo, W., Balasingham, V., Ferreira, J., and Bernier, G. (2009). BMI1 sustains human glioblastoma multiforme stem cell renewal. J. Neurosci. 29, 8884–8896. doi: 10.1523/JNEUROSCI.0968-09.2009

Ambros, V., and Lee, R. C. (2004). Identification of microRNAs and other tiny noncoding RNAs by cDNA cloning. Methods Mol. Biol. 263, 131–158. doi: 10.1385/1-59259-775-1:131

Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297. doi: 10.1016/S0092-8674(04)00045-5

Binney, E., Stamatoyanopoulos, J. A., Dutta, A., Guigo, R., Gingeras, T. R., Margulies, E. H., et al. (2007). Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447, 799–816. doi: 10.1038/nature05874

Braconi, C., Valeri, N., Rogure, T., Gasparini, P., Huang, N., Nuovo, G. J., et al. (2011). Expression and functional role of a transcribed non-coding RNA with an ultraconserved element in hepatocellular carcinoma. Proc. Natl. Acad. Sci. U.S.A. 108, 786–791. doi: 10.1073/pnas.1011981108

Calin, G. A., Liu, C. G., Ferracin, M., Hyslop, T., Spizzo, R., Sevignani, C., et al. (2007). Ultraconserved regions encoding ncRNAs are altered in human leukemias and carcinomas. Cancer Cell 12, 215–229. doi: 10.1016/j.ccr.2007.07.027

Cesana, M., Caciarelli, D., Legnini, I., Santini, T., Shandler, O., Chinappi, M., et al. (2011). A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 147, 358–369. doi: 10.1016/j.cell.2011.09.028

Chan, X. H., Nama, S., Gopal, F., Rizk, P., Ramasamy, S., Sundaram, G., et al. (2012). Targeting glioma stem cells by functional inhibition of a prosurvival oncomiR-138 in malignant gliomas. Cell Rep. 2, 591–602. doi: 10.1016/j.celrep.2012.07.012

Chung, S., Nakagawa, H., Uemura, M., Piao, L., Ashikawa, K., Hosono, N., et al. (2011). Association of a novel long non-coding RNA in 8q24 with prostate cancer susceptibility. Cancer Sci. 102, 245–252. doi: 10.1111/j.1349-7006.2010.01757.x

Clément, V., Sanchez, P., De Triboulet, N., Radovanic, I., and Ruiz I Altaba, A. (2007). HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr. Biol. 17, 165–172. doi: 10.1016/j.cub.2006.11.033

Derrien, T., Johnson, R., Bussotti, G., Tanzer, A., Djebali, S., Tilgner, H., et al. (2012). The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 22, 1775–1789. doi: 10.1101/gr.132159.111

Ellis, B. C., Molloy, P. L., and Graham, L. D. (2012). CRNDEa long non-coding RNA involved in cancer, neurobiology, and development. Front. Genet. 3:270. doi: 10.3389/fgene.2012.00270

Ernst, A., Campos, B., Meier, J., Devens, F., Liesenberg, E., Wolter, M., et al. (2010). De-repression of CTGF via the miR-17-92 cluster upon differentiation of human glioblastoma spheroid cultures. Oncogene 29, 3411–3422. doi: 10.1038/ onc.2010.83

Esteller, M. (2011). Non-coding RNAs in human disease. Nat. Rev. Genet. 12, 861–874. doi: 10.1038/nrg3074

Fan, X., Khaki, L., Zhu, T. S., Soules, M. E., Talsma, C. E., Gul, N., et al. (2010). NOTCH pathway blockade depletes CD133-positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts. Stem Cells 28, 5–16. doi: 10.1002/stem.254

Fan, X., Matsui, W., Khaki, L., Stearns, D., Chun, J., Li, Y. M., et al. (2006). NOTCH pathway blockade depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer Res. 66, 7445–7452. doi: 10.1158/0008-5472.CAN-06-0858

Fareh, M., Turchi, L., Virolle, V., Debruyne, D., Almairac, F., De-La-Forest Divonne, S., et al. (2012). The miR 302-367 cluster drastically affects self-renewal and infiltration properties of glioma-initiating cells through CXCR4 repression and consequent disruption of the SHH-GLI-NANOG network. Cell Death Differ. 19, 232–244. doi: 10.1038/cdd.2011.89

Fomchenko, E. I., and Holland, E. C. (2007). Platelet-derived growth factor-mediated gliomagenesis and brain tumor recruitment. Neurosurg. Clin. N. Am. 18, 39–58; viii. doi: 10.1016/j.nec.2006.10.006
Gabory, A., Ripoche, M. A., Yoshimizu, T., and Dandolo, L. (2006). The H19 gene: regulation and function of a non-coding RNA. *Cytogenet. Genome Res.* 113, 188–193. doi: 10.1159/000090831

Gal, H., Pandi, G., Kanner, A. A., Ram, Z., Lithwick-Yanai, G., Amariglio, N., et al. (2008). MIR-451 and Imatinib mesylate inhibit tumor growth of Glioblastoma stem cells. *Biochem. Biophys. Res. Commun.* 357, 86–90. doi: 10.1016/j.bbrc.2008.08.107

Galli, R., Binda, E., Orfanelli, U., Cipelletti, B., Grittì, A., De Vitis, S., et al. (2004). Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. *Cancer Res.* 64, 7011–7021. doi: 10.1158/0008-5472.CAN-04-1364

Gangaraju, V. K., and Lin, H. (2009). MicroRNAs: key regulators of stem cells. *Nat. Rev. Mol. Cell Biol.* 10, 116–125. doi: 10.1038/nrm2621

Godlewski, J., Newton, H., Chiocca, E., and Lawler, S. (2010a). MicroRNAs and cancer metastasis. *Oncogene* 29, 7369–7373. doi: 10.1038/onc.2010.203

Guessous, F., Zhang, Y., Kofman, A., Catania, A., Li, Y., Schiff, D., et al. (2010). Long non-coding RNA HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers. *Cancer Res.* 71, 6320–6326. doi: 10.1158/0008-5472.CAN-11-1021

Kim, K., Jutonou, I., Chadalapaka, G., Johnson, G., Frank, J., Burghardt, R., et al. (2013). HOTAIR is a negative prognostic factor and exhibits pro-oncogenic activity in pancreatic cancer. *Onco gene* 32, 1616–1625. doi: 10.1038/onc.2012.193

Kino, T., Hurt, D. E., Ichijo, T., Nader, N., and Chrousos, G. P. (2010). Non-coding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. *Sci. Signal.* 3, ra8. doi: 10.1126/scisignal.2000568

Kogo, R., Shimamura, T., Minnori, K., Kawahara, K., Inomoto, S., Sudo, T., et al. (2011). Long noncoding RNA HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers. *Cancer Res.* 71, 6320–6326. doi: 10.1158/0008-5472.CAN-11-1021

Kozioł, M., and Rinn, J. L. (2010). RNA traffic control of chromatin complexes. *Curr. Opin. Genet. Dev.* 20, 142–148. doi: 10.1016/j.gde.2010.03.003

Lee, J., Kohlirova, S., Kohlirov, Y., Li, A., Su, Q., Domin, N. M., et al. (2006). Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. *Cancer Cell* 9, 391–403. doi: 10.1016/j.ccc.2006.03.030

Li, L., Dutra, A., Pak, E., Labrie, J. I. III, Gerstein, R. M., Pandolfi, P. P., et al. (2009a). EGF/ERβ expression and PTEN loss synergistically induce chromosomal instability and glial tumors. *Neurooncology* 11, 9–21. doi: 10.1215/15228517-2008-2081

Li, Y., Guessous, F., Zhang, Y., Dipierro, C., Kefas, B., Johnson, E., et al. (2009b). MicroRNA-34a inhibits glioblastoma growth by targeting multiple oncometes. *Cancer Res.* 69, 7369–7373. doi: 10.1158/0008-5472.CAN-09-0529

Lin, M., Pedrosa, E., Shah, A., Hrabovsky, A., Maqbool, S., Zheng, D., et al. (2011). RNA-Seq of human neurons derived from iP cells reveals candidate long non-coding RNAs involved in neurogenesis and neuropsychiatric disorders. *PLoS ONE* 6, e23356. doi: 10.1371/journal.pone.0023356

Lin, R., Maeda, S., Liu, C., Karin, M., and Edgington, T. S. (2007). A large non-coding RNA is a marker for murine hepatocellular carcinomas and a spectrum of human carcinomas. *Onco gene* 28, 851–858. doi: 10.1038/onc.2008.844

Lu, K. H., Li, W., Liu, X. H., Sun, M., Zhang, M. L., Wu, W. Q., et al. (2013). Long non-coding RNA ME3G inhibits NSC11 cells proliferation and induces apoptosis by affecting p53 expression. *BMC Cancer* 13:461. doi: 10.1186/1471-2407-13-461

Lund, A. H., and van Lohuizen, M. (2004). Polycomb complexes and silencing mechanisms. *Curr. Opin. Cell Biol.* 16, 239–246. doi: 10.1016/j.cob.2004.03.010

Makeyev, E. V., Zhang, J., Carrasco, M. A., and Maniatis, T. (2007). The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. *Mol. Cell* 27, 435–448. doi: 10.1016/j.molcel.2007.07.015

Matouk, I. J., Degroot, N., Mezan, S., Ayesh, S., Abu-Lail, R., Hochberg, A., et al. (2007). The H19 non-coding RNA is essential for human tumor growth. *PLoS ONE* 2:e845. doi: 10.1371/journal.pone.0000845

Mazzoleni, S., Politi, L. S., Pala, M., Cominelli, M., Franzin, A., Sergi Sergi, L., et al. (2010). Epidermal growth factor receptor expression identifies functionally and molecularly distinct tumor-initiating cells in human glioblastoma multiforme and is required for gliomagenesis. *Cancer Res.* 70, 7500–7513. doi: 10.1158/0008-5472.CAN-10-2353

Medina, P. P., and Slack, F. J. (2008). microRNAs and cancer: an overview. *Cell Cycle* 7, 2485–2492. doi: 10.4161/cc.7.16.6453

Mercer, T. R., Dinger, M. E., and Mattick, J. S. (2009). Long non-coding RNAs: insights into functions. *Nat. Rev. Genet.* 10, 155–159. doi: 10.1038/nr10521

Mourtada-Maarabouni, M., Pickard, M., Hedge, V., Farzaneh, F., and Williams, G. (2010). The melanoma-upregulated long noncoding RNA SPRY4-T1 mediates apoptosis and invasion. *Cancer Res.* 71, 3852–3862. doi: 10.1158/0008-5472.CAN-10-4460

Nagar, M., Bhardwaj, D., Canti, C., Medina, L., Nogues, P., and Herreros, J. (2012). Beta-Catenin signalling in glioblastoma multiforme and glioma-initiating cells. *Chemother. Res. Pract.* 2012, 192362. doi: 10.1155/2012/192362

Natsukawa, S., Ono, M., Katsushima, K., Ohka, E., Hatanoaka, A., Shinjo, K., et al. (2013). Chromatin Regulator PR2C is a Key Regulator of Epigenetic Plasticity in Glioblastoma. *Cancer Res.* 73, 4559–4570. doi: 10.1158/0008-5472.CAN-13-0109
Ng, S. Y., Johnson, R., and Stanton, L. W. (2012). Human long non-coding RNAs promote pluripotency and neuronal differentiation by association with chromatin modifiers and transcription factors. *EMBO J.* 31, 522–533. doi: 10.1038/emboj.2011.459

Nimura, T., Suzuki, H., Nojima, M., Nosho, K., Yamamoto, H., Takamatsu, H., et al. (2012). Upregulation of miR-196a and HOTAIR drive malignant character in gastrointestinal stromal tumors. *Cancer Res.* 72, 1126–1136. doi: 10.1158/0008-5472.CAN-11-1803

Pandey, R. R., Mondal, T., Mohammad, F., Enroth, S., Redrup, L., Komorowski, J., et al. (2008). Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. *Mol. Cell* 32, 232–246. doi: 10.1016/j.molcel.2008.08.022

Pasmat, E., Laurendeau, I., Heron, D., Vidaud, M., Vidaud, D., and Bieche, I. (2007). Characterization of a germ-line deletion, including the entire INK4/ARF locus, in a melanoma-neural system tumor family: identification of ANRIL, an antisense noncoding RNA whose expression co-localizes with ARF. *Cancer Res.* 67, 3963–3969. doi: 10.1158/0008-5472.CAN-06-2004

Pasmat, E., Sabbagh, A., Vidaud, M., and Bieche, I. (2011). ANRIL, a long, non-coding RNA, is an unexpected major hotspot in GWAS. *FASEB J.* 25, 444–448. doi: 10.1096/fj.10-172452

Penuelas, S., Anido, J., Prieto-Sanchez, R. M., Folch, G., Barba, I., Cuartas, J. et al. (2011). ANRIL, a long, non-coding RNA, promotes prostate cancer. *EMBO J.* 32, 1665–1680. doi: 10.1038/emboj.2013.99

Takebe, N., Harris, P. J., Warren, R. Q., and Iyy, S. P. (2011). Targeting cancer stem cells by inhibiting Wnt, Notch and Hedgehog pathways. *Nat. Rev. Clin. Oncol.* 8, 97–106. doi: 10.1038/nrclinonc.2010.196

Takasaki, T., Hide, T., Takanaga, H., Nakamura, H., Kuratsu, J., and Kondo, T. (2011). Essential role of the Hedgehog signaling pathway in human glioma-initiating cells. *Cancer Sci.* 102, 1306–1312. doi: 10.1111/j.1349-7006.2011.01945.x

Tano, K., Mizuno, R., Okada, T., Rakwal, R., Shibato, J., Masuo, Y., et al. (2010). MALAT-1 enhances cell motility of lung adenocarcinoma cells by influencing the expression of motility-related genes. *FEBS Lett.* 584, 4575–4580. doi: 10.1016/j.febslet.2010.10.008

Tian, D., Sun, S., and Lee, J. T. (2010). The long noncoding RNA, Lpx, is a molecular switch for X chromosome inactivation. *Cell* 143, 390–403. doi: 10.1016/j.cell.2010.09.049

Tripathi, V., Ellis, I. D., Shen, Z., Song, D. Y., Pan, Q., Watt, A. T., et al. (2010). The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. *Mol. Cell* 39, 925–938. doi: 10.1016/j.molcel.2010.08.011

Wang, J., Wakeman, T. P., Lathia, J. D., Hjelmeland, A. B., Wang, X. F., White, R. R., et al. (2010). Notch promotes radiosensitivity of glioma stem cells. *Stem Cells* 28, 17–28. doi: 10.1002/stem.261

Wang, K. C., Yang, Y. W., Liu, B., Sanyal, A., Corces-Zimmerman, R., Chen, Y. et al. (2011). A long noncoding RNA maintains active chromatin to coordinate homeostatic gene expression. *Nature* 472, 120–124. doi: 10.1038/nature09819

Wang, P., Ren, Z., and Sun, P. (2012). Overexpression of the long non-coding RNA MEG3 is associated with glioma progression. *Cell. Biochem. Biophys.* 113, 1868–1874. doi: 10.1007/jcb.24055

Wajnriski, O., and Chang, H. Y. (2011). Long non-coding RNAs and human disease. *Trends Cell Biol.* 21, 354–361. doi: 10.1016/j.tcb.2011.04.001

Wen, P. Y., and Kesari, S. (2008). Malignant gliomas in adults. *N. Engl. J. Med.* 359, 492–507. doi: 10.1056/NEJMra0708126

Wu, Q., Kim, Y. C., Lu, J., Xuan, Z., Chen, J., Zheng, Y., et al. (2008). Poly-A transcripts expressed in HeLa cells. *PLoS ONE* 3:e2803. doi: 10.1371/journal.pone.0002803

Xia, H., Wang, K. N., Ng, S. S., Jiang, X., Jiang, S., Sze, J., et al. (2012). Loss of brain-enriched miR-124 microRNA enhances stem-like traits and invasiveness of glioma cells. *J. Biol. Chem.* 287, 9962–9971. doi: 10.1074/jbc.M111.332627

Yang, Z., Zhou, L., Lu, W. M., Mai, L. C., Xie, H. Y., Zhang, F., et al. (2011). Overexpression of long non-coding RNA HOTAIR predicts tumor recurrence in hepatocellular carcinoma patients following liver transplantation. *Ann. Surg. Oncol.* 18, 1243–1250. doi: 10.1245/s10434-011-1581-y

Ying, Z., Li, Y., Wu, J., Zhu, X., Yang, Y., Tian, H., et al. (2013). Loss of miR-204 expression enhances glioma migration and stem-like cell phenotype. *Cancer Res.* 73, 990–999. doi: 10.1158/0008-5472.CAN-12-2895

Yu, M., Ohtira, M., Li, Y., Nishizuma, H., Oo, M. L., Zhu, Y., et al. (2009). High expression of ncRNA, a novel non-coding RNA mapped to chromosome 17q25.1, is associated with poor prognosis in neuroblastoma. *Int. J. Oncol.* 34, 931–938. doi: 10.3892/ijo_0000219
Yu, W., Gius, D., Onyango, P., Muldoon-Jacobs, K., Karp, J., Feinberg, A. P., et al. (2008). Epigenetic silencing of tumour suppressor gene p15 by its antisense RNA. Nature 451, 202–206. doi: 10.1038/nature06468

Zhang, H., Chen, Z., Wang, X., Huang, Z., He, Z., and Chen, Y. (2013). Long non-coding RNA: a new player in cancer. J. Hematol. Oncol. 6, 37. doi: 10.1186/1756-8722-6-37

Zhao, J., Sun, B. K., Erwin, J. A., Song, J. I., and Lee, J. T. (2008). Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322, 750–756. doi: 10.1126/science.1163045

Zhou, Y., Zhang, X., and Klibanski, A. (2012). MEG3 noncoding RNA: a tumor suppressor. J. Mol. Endocrinol. 48, R45–R53. doi: 10.1530/JME-12-18

Zhou, Y., Zhong, Y., Wang, Y., Zhang, X., Batista, D. L., Gejman, R., et al. (2007). Activation of p53 by MEG3 non-coding RNA. J. Biol. Chem. 282, 24731–24742. doi: 10.1074/jbc.M702029200

Zhu, Y., Yu, M., Li, Z., Kong, C., Bi, J., Li, J., et al. (2011). ncRAN, a newly identified long noncoding RNA, enhances human bladder tumor growth, invasion, and survival. Urology 77, 510 e511–e515. doi: 10.1016/j.urology.2010.09.022

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 06 December 2013; accepted: 15 January 2014; published online: 03 February 2014.

Citation: Katsushima K and Kondo Y (2014) Non-coding RNAs as epigenetic regulator of glioma stem-like cell differentiation. Front. Genet. 5:14. doi: 10.3389/fgene.2014.00014

This article was submitted to Epigenomics and Epigenetics, a section of the journal Frontiers in Genetics.

Copyright © 2014 Katsushima and Kondo. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.