Constraining Sterile Neutrino Cosmology with Terrestrial Oscillation Experiments

Jeffrey M. Berryman

Center for Neutrino Physics, Department of Physics, Virginia Tech, Blacksburg, VA 24061, USA

We explore the complementarity between terrestrial neutrino oscillation experiments and astrophysical/cosmological measurements in probing the existence of sterile neutrinos. We find that upcoming accelerator neutrino experiments will not improve on constraints by the time they are operational, but that reactor experiments can already probe parameter space beyond the reach of Planck. We emphasize the tension between cosmological experiments and reactor antineutrino experiments and enumerate several possibilities for resolving this tension.

I. INTRODUCTION

As the precision of neutrino experiments continues to improve, the importance of interdisciplinary studies grows — it becomes increasingly possible and imperative to determine the extent to which the three-neutrino oscillation framework can simultaneously describe a broad set of experimental results. In many ways, neutrino oscillations are already an interdisciplinary endeavor: neutrinos of different origins (solar, reactor, accelerator, atmospheric, cosmogenic, etc.) over orders of magnitude of energy have been studied in a common framework. As a result, synergies and tensions [1] have arisen between different sectors and between experiments within the same sector. Understanding the origins of these tensions is a central issue.

One proposed solution to some (but not all) of these tensions is that additional species of neutrinos with eV-scale masses exist. The evidence driving this derives from anomalous measurements of electron-neutrino disappearance [2–5] and electron-neutrino appearance [6, 7] (see, for instance, Refs. [8–14] for more details). It is important to note that this is not a silver-bullet solution to these anomalies; even among the subset of anomalous experimental results, a consistent description in terms of additional neutrinos is lacking, as has been explored in, for example, Ref. [12].

In addition to the overall consistency of dedicated oscillation experiments, astrophysics and cosmology present stiff challenges to the proposed existence of additional neutrinos. The literature concerning the role of sterile neutrinos* in cosmology is vast; see Refs. [15–24] and references therein. Introducing these additional, light degrees of freedom to resolve oscillation anomalies necessarily invokes constraints from an ostensibly disconnected field of study. The objectives are to (a) understand how different sets of constraints complement each other, and (b) determine the essential characteristics of a solution to all sets of constraints.

II. OSCILLATIONS WITH STERILE NEUTRINOS

Oscillations with three neutrinos can be extended to include a fourth neutrino by generalizing the 3×3 Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix to a 4×4, unitary matrix, U, whose matrix elements we denote $U_{\alpha i}$ with $\alpha = e, \mu, \tau, s$ and $i = 1, 2, 3, 4$. We need not concern ourselves with the parametrization of the entire matrix (see, for instance, Ref. [31] for more details); the relevant elements of this matrix, for this study, are

\begin{equation}
|U_{e4}|^2 = s_{14}^2, \quad (II.1)
\end{equation}

\begin{equation}
|U_{\mu 4}|^2 = s_{24}^2 c_{14}^2, \quad (II.2)
\end{equation}

where we define $s_{ij} \equiv \sin \phi_{ij}$ and $c_{ij} \equiv \cos \phi_{ij}$, where ϕ_{ij} are the mixing angles that parametrize U.

The probability that a neutrino of initial flavor α ($= e, \mu, \tau, s$) propagating in vacuum will be detected with

* There is no reason to suspect, a priori, that additional neutrinos do not possess separate interactions among themselves or with other particle species. We will assume that additional neutrinos have no interactions, but use the term “sterile” to refer to any species that does not have weak interactions.

† It is, by hypothesis, not possible to directly detect sterile neu-
flavor \(\beta \) \((= e, \mu, \tau, s)\) is

\[
P_{\alpha\beta} = |\delta_{\alpha\beta} - U_{\alpha} U_{\alpha}^* (1 - e^{-i\Delta_{21}}) - U_{\alpha} U_{\alpha}^* (1 - e^{-i\Delta_{31}})|^2, \tag{II.3}
\]

with \(\Delta_{ij} \equiv 2.54 \left(\frac{\Delta m^2_{ij}/eV^2}{L/km}\right)(GeV/E_{\nu})\), where \(\Delta m^2_{ij} \equiv m_i^2 - m_j^2\) is the difference in neutrino masses squared, \(L\) is the distance traveled and \(E_{\nu}\) is the energy. In the limit \(\Delta_{31}, \Delta_{21} \ll 1\), Eq. (II.3) simplifies to

\[
P_{\alpha\beta} \approx |\delta_{\alpha\beta} - U_{\alpha} U_{\alpha}^* (1 - e^{-i\Delta_{41}})|^2 = \left\{ 1 - \sin^2 2\theta_{\alpha\alpha} \sin^2 \frac{\Delta \mu}{2} \quad (\alpha = \beta) \right. \\
\left. \sin^2 2\theta_{\alpha\beta} \sin^2 \frac{\Delta \mu}{2} \quad (\alpha \neq \beta) \right\},
\]

where have employed the effective mixing angles

\[
\sin^2 2\theta_{\alpha\alpha} \equiv 4|U_{\alpha}|^2(1 - |U_{\alpha}|^2), \tag{II.4}
\]

\[
\sin^2 2\theta_{\alpha\beta} \equiv 4|U_{\alpha}|^2|U_{\beta}|^2. \tag{II.5}
\]

The quantities \(\sin^2 2\theta_{ee}\) and \(\sin^2 2\theta_{\mu\mu}\), as well as the mass-squared splitting \(\Delta m^2_{41}\), are the primary subjects of this work.

We are interested in scenarios in which only one of the active-sterile mixing angles is nonzero; in particular, we are concerned with either nonzero \(\phi_{14} (= \theta_{ee})\) or \(\phi_{24} (= \theta_{\mu\mu})\).\(^2\) The reason for this is that the formalism we introduce in Sec. IV relies on the two-flavor-oscillations approximation in the early Universe. This approximation is violated if two active-sterile mixing angles are simultaneously nonzero; our framework allows for us to translate bounds on \(\sin^2 2\theta_{ee}\) and \(\sin^2 2\theta_{\mu\mu}\) into cosmology parameter space, but not bounds on \(\sin^2 2\theta_{\mu\mu}\). In other words, we study neutrino disappearance anomalies, but not neutrino appearance anomalies.

When neutrinos propagate through matter, their propagation is altered by a background matter potential \([32]\). The propagation Hamiltonian receives an additional contribution that is diagonal in the flavor basis, \((\delta H)_{\alpha\beta} = \sqrt{2}G_F \times \text{diag}(n_e, 0, 0, \frac{1}{2}n_n)\), where \(n_e\) and \(n_n\) are, respectively, the electron and neutron number densities along the path of propagation. In the mass basis, this potential becomes \((\delta H)_{ij} = U_{\alpha}^*(\delta H)_{\alpha\beta} U_{\beta\gamma}\); it is no longer diagonal, rendering the mass-basis propagation Hamiltonian similarly nondiagonal. For antineutrinos, we must replace \((\delta H)_{\alpha\beta} \rightarrow - (\delta H)_{\alpha\beta}\), and \(U \leftrightarrow U^*\).

Two key assumptions in writing down this matter potential are (i) that interactions of neutrinos with the background matter are forward, coherent and elastic, and (ii) that neutrinos do not interact with the potential produced by other neutrinos. There are physical systems in which these assumptions do not hold – for instance, neutrinos propagating out of supernovae \([33]\) – and the resulting phenomenon is referred to as collective oscillations \([34]\). In Sec. IV, we discuss another such system: neutrinos in the early Universe.

III. TERRESTRIAL CONSTRAINTS ON A FOURTH NEUTRINO

We discuss the neutrino experiments that we use to constrain sterile neutrino cosmology. There is a great deal of activity in the literature regarding searches for a fourth neutrino (see, for instance, Ref. \([8, 12, 35, 36]\), and references therein), but we have chosen a subset that we believe provides the most value in terms of illuminating the connection between terrestrial neutrino oscillation experiments and early-Universe cosmology.

Accelerator Neutrino Experiments

Neutrinos for the MINOS experiment \([37, 38]\) are produced at the Fermilab Main Injector by protons incident on a graphite target; they are directed towards a near detector and a far detector that are 1.4 km and 735 km away, respectively. We show in red the 90% C.L. constraint derived in Ref. \([39]\).

We also show the sensitivities of two proposed, long-baseline accelerator neutrino experiments, estimated using Monte Carlo simulations. The Deep Underground Neutrino Experiment (DUNE) \([40, 41]\) is a proposed 34-kton liquid argon detector located 1300 km from the Fermilab main injector. The Hyper-Kamiokande (Hyper-K) experiment \([42–44]\) consists of two water Cerenkov detectors with a combined fiducial mass of 0.56 Mton located 295 km from the Japan Proton Accelerator Research Complex (J-PARC). We discuss our simulations of these experiments in Appendix A. The resulting 95% C.L. sensitivities for DUNE (long-dashed green) and Hyper-K (short-dashed purple) in the \(\sin^2 2\theta_{\mu\mu} - \Delta m^2_{41}\) plane are shown in Figure 1.

Reactor Antineutrino Experiments

The Detector of AntiNeutrino based on Solid Scintillator (DANSS) project \([45–47]\) consists of an array of gadolinium-coated plastic scintillators in an experimental hall beneath a reactor at the Kalinin Nuclear Power Plant. The detector is placed in a lifting system that allows the distance between the reactor and the detector to vary between 9.7 m and 12.2 m. The cyan curve in Figure 2 shows the sensitivity (95% C.L.) of DANSS to the presence of a sterile neutrino as presented in Ref. \([47]\). The Daya Bay experiment \([48]\) is a collection of eight antineutrino gadolinium-doped liquid scintillator

\(^2\) The first relation is always true, while the second is only true if \(\phi_{14}\) vanishes.
FIG. 1: Constraints in the $\sin^2 2\theta_{\mu\tau} - \Delta m^2_{41}$ plane from accelerator neutrino experiments. The red, shaded region is excluded at 90% C.L. by MINOS/MINOS+. Also shown are the expected 95% C.L. sensitivities of DUNE (long-dashed green) and Hyper-K (short-dashed purple).

antineutrino detectors observing the antineutrinos produced by six reactor cores located in southern China. The sensitivity of Daya Bay to a sterile neutrino was investigated in Ref. [49], and the resulting exclusion limit (95% C.L.) in the $\sin^2 2\theta_{ee} - \Delta m^2_{41}$ plane is reproduced in red in Figure 2. An updated data set has recently been released [50, 51], but a sterile-neutrino analysis has not yet been performed.

The NEOS experiment [52] consists of a single gadolinium-doped liquid scintillator detector located 24 m from a reactor core in southwestern South Korea. A sterile neutrino search was performed in Ref. [52], and the resulting limit (90% C.L.) is shown in purple in Fig. 2.

The Jiangmen Underground Neutrino Observatory (JUNO) experiment [53] is a proposed 20-kton liquid scintillator detector whose primary physics goal is to determine the neutrino mass hierarchy. The sensitivity of JUNO to the presence of sterile neutrinos was also studied in Ref. [53]; the result (95% C.L.) is shown in long-dashed blue in Fig. 2 assuming a normal hierarchy of both active and sterile neutrino masses, i.e., assuming the neutrino masses are ordered $m_1 < m_3$ and $m_1 < m_4$.

The next few years will see a number of new short-baseline results from STEREO [54], SoLid [55] and PROSPECT [56], the first and last of which have already started collecting data. However, to avoid clutter in Fig. 2 and in our results in Sec. V, we do not consider these in our analysis. While they will ultimately be competitive in the $\Delta m^2_{41} \sim O(1-10) \text{ eV}^2$ region, they have not yet produced world-leading limits. Constraints on sterile neutrinos mixing with $\nu_e/\bar{\nu}_e$ from radioactive source [57–59], solar [60–71] and carbon-scattering [72, 73] experiments can be nontrivial, but we do not consider these.

A global fit of the 3+1 neutrino oscillation framework to short-baseline oscillation data was recently performed in Ref. [12]. The authors find that the best-fit point to global ν_e disappearance data – including reactor, gallium, solar and β-decay experiments – with unfixed reactor fluxes $\{\Delta m^2_{41}, \sin^2 2\theta_{ee}\} = \{1.3 \text{ eV}^2, 4.04 \times 10^{-2}\}$. This point is indicated by the black star in Fig. 2.

Low-Threshold Experiments

The possibility of observing active-sterile oscillations through coherent elastic neutrino-nucleus scattering (CEνNS) has been previously discussed in Refs. [26–30]; these provide a complementary probe of the $\sin^2 2\theta_{ee}$–
\(\Delta m^2_{41}\) space to reactor antineutrino experiments. In fact, the experiments that we will consider are also based at nuclear reactors, but we separate these from those of the previous subsection because the underlying signal process – CE\(\nu\)NS – is distinct from inverse beta decay (IBD).

Ref. [29] reports a constraint in the \(\sin^2 2\theta_{ee} - \Delta m^2_{41}\) plane from a combined analysis of \(\bar{\nu}_e\) scattering data from the Krasnoyarsk [74], Rovno [75], MUNU [76] and TEXONO [77] experiments.\(^5\) We reproduce the resulting exclusion in purple in Fig. 3. This constraint is quite weak relative to the other experiments in the figure, but it is the only such analysis that can currently exclude any portion of this parameter space.

We focus on a subset the many (existing and proposed) CE\(\nu\)NS experiments [78–85], starting with the RED100 [86] and MINER [87] proposals. The sensitivities of these experiments to sterile neutrinos were studied in Ref. [29]. Several benchmark scenarios were considered for each of these experiments; we consider the most aggressive scenarios to assess how these experiments fare under the most optimistic assumptions. We take baselines of 15 m for RED100 and 1 m for MINER and assume a 100% efficiency for each. The 90% C.L. sensitivities for RED100 and MINER are reproduced in dot-dashed red and double-dot-dashed green, respectively, in Figure 3.

The sensitivity of the COHERENT experiment [25] to sterile neutrinos has been studied in Refs. [30, 85]. However, COHERENT is more sensitive to a sterile neutrino mixing with \(\nu_{\mu}/\bar{\nu}_{\mu}\) than it is to mixing with \(\nu_e/\bar{\nu}_e\). Consequently, we do not include COHERENT in our analysis. We remark, however, that near-term expansions to the neutrino program at the Spallation Neutron Source could yield meaningful new constraints in this parameter space [88].

Lastly, we consider the CONUS experiment [89], for which an official exclusion result does not yet exist. We estimate the sensitivity of the CONUS experiment to oscillations involving a sterile neutrino following the procedures employed in Refs. [90, 91]; we present this analysis fully in Appendix B, but provide some relevant details here. We consider two benchmark configurations for CONUS. The first is the nominal CONUS configuration, consisting of 4 kg of natural germanium and a recoil threshold of 1.2 keV taking data over one year; we call this configuration “CONUS.” The second is a more aggressive configuration, consisting of 100 kg of 88% enriched germanium with a threshold of 0.1 keV, taking data for five years; we call this configuration “CONUS100.” We also assume that systematic uncertainties will improve from \(\mathcal{O}(1\%)\) down to \(\mathcal{O}(0.1\%)\). Other relevant details are summarized in App. B.

The resulting sensitivities for the CONUS and CONUS100 scenarios are shown in long-dashed blue and short-dashed light blue, respectively, in Fig. 3. The sensitivity of the default CONUS configuration is relatively weak — it is comparable to existing bounds from \(\bar{\nu}_e\) scattering. The CONUS collaboration has completed their data taking and is expected to be releasing their results in the near future, at which point it will be possible to assess the quality of the simulation performed here. However, it seems unlikely that the CONUS experiment will be able to probe the best-fit region to current short-baseline oscillation data [12], represented by a black star in Fig. 3.

The projection for CONUS100, however, is much more optimistic. Our analysis suggests that this experiment will be able to conclusively probe the parameter space preferred by short-baseline anomalies and would be competitive with other next-generation CE\(\nu\)NS proposals. We remind the reader that this configuration is intended to be more optimistic than could likely be achieved, in order to demonstrate the extent to which these kinds of experiments could ultimately probe the cosmology of a sterile neutrino.

\(^5\) This is, of course, not a CE\(\nu\)NS process, which is why we’ve opted to call this class of bounds “low threshold.”
IV. COSMOLOGY WITH STERILE NEUTRINOS

We outline the formalism for studying neutrino oscillations in the early Universe in order to keep this manuscript reasonably self-contained. For a more detailed account, see, for example, Refs. [92–99].

In the early Universe, neutrino interactions with the matter background and with other neutrinos render the description of neutrino oscillations in the Sec. II insufficient. Instead, one must solve for the evolution of the density matrix $\rho_\vec{p}$ (or \vec{p}) that describes an ensemble of neutrino (antineutrino) states with momentum \vec{p}. The equation of motion for $\rho_\vec{p}$ is given by [94–96]

$$i \frac{d \rho_\vec{p}}{dt} = \left[\Omega_\vec{p}, \rho_\vec{p} \right] + \left[\Omega^\text{int}_\vec{p}, \rho_\vec{p} \right] + \mathbf{C} \left(\rho_\vec{p}, \vec{p} \right); \quad (IV.1)$$

a similar equation exists for \vec{p}. The $\Omega_\vec{p}$ term describes vacuum oscillations, while $\Omega^\text{int}_\vec{p}$ describes the matter potential, including contributions from other neutrinos. The collision term $\mathbf{C} \left(\rho_\vec{p}, \vec{p} \right)$ describes incoherent, inelastic interactions of neutrinos with their environment and with each other; it contains integrals involving $\rho_\vec{p}$ and \vec{p}, and is the source of much of the technical difficulty in solving the evolution of the (anti)neutrino fluid.

To simplify the problem, we consider mixing between only two neutrinos, which we call active, a, and sterile, s,

$$\begin{pmatrix} \nu_a \\ \nu_s \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \end{pmatrix}, \quad (IV.2)$$

where θ is the active-sterile mixing angle and ν_1 and ν_2 are neutrino mass eigenstates with masses m_1 and $m_2 > m_1$, respectively. It is for this reason that we only consider one of the ϕ_{ij} ($i = 1, 2$) to be nonzero, and we identify $\theta = \phi_{14}$ above, depending on which active species is being considered. Suppressing the subscript \vec{p}, the two-by-two matrix ρ can be decomposed as

$$\rho = \frac{1}{2} f_0 \left(P_0 + \vec{\sigma} \cdot \vec{P} \right), \quad (IV.3)$$

where $\vec{\sigma}$ is the vector of the Pauli matrices and f_0 is the Fermi-Dirac distribution with vanishing chemical potential. The evolution of P_0 and the Bloch vector \vec{P} are governed by

$$\frac{dP_0}{dt} = R^{(a)}; \quad (IV.4)$$

$$\frac{d\vec{P}}{dt} = \left(\vec{B} + \vec{V}^{(a)} \right) \times \vec{P} - D^{(a)} \left(P_x \hat{x} + P_y \hat{y} \right) + R^{(a)} \hat{z}, \quad (IV.5)$$

where $\vec{B} \equiv \left(\frac{\Delta m^2}{2} \right) (\sin 2\theta, 0, \cos 2\theta)$ and $\Delta m^2 \equiv m_2^2 - m_1^2$. A similar decomposition exists for \vec{p}, into P_0 and \vec{P}.

The potential $\vec{V}^{(a)}$ depends on whether ν_a is electron-type or muon-/tau-type, as ν_e has charged-current interactions with a background of electrons that ν_μ and ν_τ do not. The matter potential is [97, 99]

$$\vec{V}^{(a)} \equiv \left(V_1^{(a)} + V_L^{(a)} \right) \hat{z}, \quad (IV.6)$$

$$V_1^{(a)} = -\frac{7\pi^2 G_F}{45\sqrt{2} M_Z^2} p T^4 \left(n_{\nu_e} + n_{\bar{\nu}_e} \right) g_a, \quad (IV.7)$$

$$V_L^{(a)} = \frac{2\sqrt{2} \xi(3)}{\pi^2} G_F T^3 L^{(a)}, \quad (IV.8)$$

where n_f is the number density of species f. The constant g_a is either $g_{\mu,\tau} = 1$ or $g_e = 1 + 4 \sec^2 \theta_W / (n_{\nu_e} + n_{\bar{\nu}_e})$, and the lepton asymmetries $L^{(a)}$ are given by

$$L^{(e)} = \left(\frac{1}{2} + 2 \sin^2 \theta_W \right) L_e + \left(\frac{1}{2} - 2 \sin^2 \theta_W \right) L_p$$

$$- \frac{1}{2} L_n + 2 L_{\nu_e} + L_{\nu_\mu} + L_{\nu_\tau}, \quad (IV.9)$$

$$L^{(\mu,\tau)} = L^{(e)} - L_e - L_{\nu_e} + L_{\nu_\mu} + L_{\nu_\tau}, \quad (IV.10)$$

with $L_f \equiv (n_f - n_f^0) n_{\bar{\nu}_f}^0 / n_{\nu_f}^0$, where $n_{\nu_f}^0$ is the equilibrium number density of f. The damping function $D^{(a)}$ characterizes the loss of quantum coherence from interactions with the background, and, assuming thermal equilibrium, is approximately given by

$$D^{(a)} \approx \frac{1}{2} \Gamma^{(a)}, \quad \text{where } \Gamma^{(a)} = C^{(a)} G_F T^4 p; \quad (IV.11)$$

$C^{(e)} \approx 1.27$ is used for ν_e and $C^{(\mu,\tau)} \approx 0.92$ is used with $\nu_{\mu,\tau}$ [93]. Lastly, the repopulation function $R^{(a)}$ is given approximately by

$$R^{(a)} \approx \Gamma^{(a)} \left[\frac{f_{\text{eq}}(p, \mu_{\nu_a})}{f_0} - \frac{1}{2} \left(P_0 + P_z \right) \right], \quad (IV.12)$$

where $f_{\text{eq}}(p, \mu_{\nu_a})$ is the equilibrium Fermi-Dirac distribution with chemical potential μ_{ν_a}.

It is convenient for numerical evaluation to define the quantities

$$P_i^\pm = P_i \mp \mathcal{T}_i, \quad (IV.13)$$

$$P_a^\pm = P_a^0 \pm P_a^\perp, \quad (IV.14)$$

$$P_s^\pm = P_s \mp P_s^\perp, \quad (IV.15)$$

for $i = 0, x, y, z$. Their evolution is given by

$$\frac{dP_a^\pm}{dt} = B_x P_a^\perp + \Gamma_a \left(2 f_{\text{eq}} / f_0 - P_a^\pm \right), \quad (IV.16)$$

$$\frac{dP_s^\pm}{dt} = - B_z P_s^\perp, \quad (IV.17)$$

$$\frac{dP_x^\pm}{dt} = - \left(B_z + V_1^{(a)} \right) P_y^\perp - V_L^{(a)} P_y^\perp - D^{(a)} P_x^\perp, \quad (IV.18)$$

$$\frac{dP_y^\pm}{dt} = (B_z + V_1^{(a)}) P_x^\perp - V_L^{(a)} P_x^\perp - D^{(a)} P_y^\perp, \quad (IV.19)$$

$$\frac{dP_z^\pm}{dt} = - \left(B_x + V_1^{(a)} \right) P_y^\perp - V_L^{(a)} P_y^\perp - D^{(a)} P_z^\perp, \quad (IV.20)$$
The standard ΛCDM cosmology can be augmented with a sterile neutrino through the introduction of two parameters: \(\Delta N_{\text{eff}} \equiv N_{\text{eff}} - 3.046 \) and \(m_{\text{sterile}} \equiv (94.1 \text{ eV}) \Omega_{\text{sterile}} h^2 \). In Fig. 4, we show the CMB TT power spectrum for the ΛCDM cosmology, as well as for two benchmark points of the six parameters of the base ΛCDM cosmology. Table I summarizes best-fit parameter values from cosmological data, calculated and presented in Ref. [101]. The first is a combined analysis of the Planck 2015 CMB temperature and polarization (TT, TE and EE) spectra [101], for both high and low \(\ell \), and baryon acoustic oscillation (BAO) data [104–106]. Following Ref. [103], we call this “CMB+BAO,” shown in dotted gray in Fig. 6. This limit is similar to, but stronger than, a similar limit derived in Ref. [21]. The second adds to this the value of the Hubble constant measured in Ref. [107] as a prior, as well as Planck cluster [108] and lensing data [109] and weak lensing data. The second is a combined analysis of the Planck 2015 CMB temperature and polarization spectra [101], for both high and low \(\ell \), and baryon acoustic oscillation (BAO) data [104–106]. Following Ref. [103], we call this “CMB+BAO+Other.” This is shown in black in Fig. 6.

The shift in the astrophysical/cosmological limit with the inclusion of the “Other” data sets stems, in part, from tension in measurements of the Hubble constant; Planck measures a smaller value [101] than local measurements indicate [107]. The origin of this discrepancy is as of yet unclear, but its effect is to allow for a modestly larger value of \(\Delta N_{\text{eff}} \) at the expense of a more stringent limit on \(m_{\text{sterile}} \). This is to be expected from, for instance, Figs. 29–31 in Ref. [101] – larger values of the Hubble constant result in a preference for larger \(\Delta N_{\text{eff}} \).

While the most recent Planck data release [111] assuredly implies a more stringent constraint in this space, we do not consider it here. In the absence of the Planck 2018 likelihood function, it is not possible to quantitatively determine how updated measurements of the local Hubble constant [112, 113] will shift the limit in the \(\Delta N_{\text{eff}} - m_{\text{sterile}} \) plane. We note, however, that the dis-
crepancy between local and cosmological determinations of the Hubble constant persists in these recent measurements (see Ref. [114]); the resolution of this puzzle has important implications for constraints on additional neutrinos [115, 116].

We assume throughout that the lightest neutrino mass vanishes; for a normal neutrino mass ordering, this means $m_1 = 0$. Furthermore, we have $m_2 = \sqrt{\Delta m_{21}^2} \approx 0$, $m_3 = \sqrt{\Delta m_{31}^2}$ and $m_4 = \sqrt{\Delta m_{41}^2}$. The Planck analysis assumes that any excess in neutrino mass is attributable to a single additional state – in our case, a sterile neutrino. If $m_1 > 0$ or if neutrino masses were arranged in an inverted hierarchy, then the constraints in Fig. 6 strengthen.

The primary objective of this work is to translate limits that oscillation experiments place in the $\sin^2 2\theta_{\alpha\alpha} - \Delta m_{\alpha\alpha}^2$ plane ($\alpha = e, \mu$) into limits in the $\Delta N_{\text{eff}} - m_{\text{sterile}}^\text{eff}$ plane. We do so using the code LASAGNA [99] to solve for the evolution of the neutrino fluid in the early Universe. We use as inputs the points in the $\sin^2 2\theta_{\alpha\alpha} - \Delta m_{\alpha\alpha}^2$ plane that comprise the experimental exclusions and sensitivities. For each point, LASAGNA calculates the evolution of the Bloch vector from $T = 40$ MeV to $T = 1$ MeV – roughly the temperature of the Universe when neutrinos decouple from the Standard Model bath – using the equations of motion in Eqs. (IV.16)–(IV.19). We determine ΔN_{eff} via Eq. (IV.20) and use this to calculate $m_{\text{sterile}}^\text{eff}$ using Eq. (IV.21). We assume throughout that the initial lepton asymmetry of the Universe is zero.

We are careful to distinguish between experiments that bound $\sin^2 2\theta_{\mu\mu}$ and those that bound $\sin^2 2\theta_{ee}$ because of differences in $\nu_e - \nu_s$ oscillations and $\nu_\mu - \nu_s$ oscillations in the early Universe. The effective lepton asymmetry electron neutrinos experience is different than for muon neutrinos – see Eqs. (IV.9) and (IV.10) – resulting in a different matter potential. We consider bounds on $\sin^2 2\theta_{\mu\mu}$ from accelerator neutrino experiments and bounds on $\sin^2 2\theta_{ee}$ coming from reactor and other low-threshold neutrino experiments; the cosmological parameter space is the same in each case, but we underscore that these constitute distinct hypotheses.

V. RESULTS

Accelerator Neutrino Experiments

In Figure 7, we show the resulting exclusions/sensitivities in the $\Delta N_{\text{eff}} - m_{\text{sterile}}^\text{eff}$ plane for accelerator neutrino experiments. Evidently, MINOS/MINOS+ can probe new regions of the cosmological parameter space – particularly compared to the CMB+BAO+Other analysis – but the excursion into untouched parameter space is not quite as strong as previously reported in Ref. [21]. There, a bound in the $\Delta N_{\text{eff}} - m_{\text{sterile}}^\text{eff}$ plane from MINOS was derived from the analysis of Ref. [117]. This analysis, however, takes some oscillation parameters to be fixed, including the solar parameters (Δm_{21}^2 and θ_{12}), the reactor angle (θ_{13}) and the CP-odd phase δ_{CP}. This bound is overly optimistic; the uncertainties on the fixed parameters are nontrivial, and ignoring them artificially enhances the confidence of the final result. Therefore, we advocate that the red curve in Fig. 1 is a more accurate representation of the capabilities of MINOS/MINOS+ as a probe of neutrino cosmology.

Also shown in Fig. 7 are our projected 95% C.L. sensitivity limits for DUNE and Hyper-K. These long-baseline experiments have comparable sensitivity to the $m_{\text{sterile}}^\text{eff}$ in the region $\Delta m_{21}^2 \leq 10^{-2}$ eV portion of the $\Delta N_{\text{eff}} - m_{\text{sterile}}^\text{eff}$ plane that is unconstrained by the CMB+BAO and CMB+BAO+Other analyses, while Hyper-K has slightly more sensitivity than DUNE in the region $m_{\text{sterile}}^\text{eff} \sim 10^{-1}$ eV. The upshot is that these experiments (will) have a capability to cut into a modest portion of the cosmological parameter space that is not currently probed by Planck and other astrophysical/cosmological experiments. Several comments are in order:

1. These experiments are able to probe new parts of this parameter space primarily because of their sensitivities to oscillations with $\Delta m_{21}^2 \sim 10^{-2} - 10^{-1}$ eV2 and $\sin^2 2\theta_{\mu\mu} \sim \text{few} \times 10^{-2}$. Moreover, the modest sensitivity that DUNE and Hyper-K will have in the $\Delta m_{21}^2 \sim 10^{-4} - 10^{-3}$ eV2 regime translates into a substantial sensitivity to $m_{\text{sterile}}^\text{eff} \lesssim \mathcal{O}(10^{-1})$ eV2.

2. The inclusion of “Other” data with the CMB+BAO data set relaxes the bound on ΔN_{eff}. However, ter-
restrial oscillation experiments (will) provide some coverage in the region in which the cosmological constraints are relaxed.

3. While the improved sensitivity is interesting, DUNE and Hyper-K will not start collecting data until at least the late 2020s. In the interim, next-generation projects like CMB-S4 \cite{118} will continue to whittle away at the available parameter space; CMB-S4 is expected to be completed by the mid 2020s. Even if the latter is delayed, by the time DUNE and Hyper-K have data to analyze, they will not be able to substantively probe new parameter space. On the other hand, should CMB-S4 be able to exclude, say, nonzero N_{eff} at high confidence, then these terrestrial experiments may be able to independently probe whether or not the relic is a sterile neutrino.

Reactor Antineutrino Experiments

Limits in the $\Delta N_{\text{eff}} - m_{\text{st}}^\text{eff}$ plane from reactor antineutrino experiments are shown in Figure 8, from which we deduce several important features. The first is that Daya Bay is (and JUNO will be) able to probe parts of this space not currently constrained by either cosmological data set. However, while DUNE, Hyper-K and JUNO are still years away from taking data, *Daya Bay can already rule out a significant portion of the $\Delta N_{\text{eff}} - m_{\text{st}}^\text{eff}$ plane to which astrophysical/cosmological data are currently insensitive*. This is one of the key conclusions of this work. On the basis of Fig. 37 in Ref. \cite{111}, it is likely that this persists in the most recent data release from Planck, especially given that Daya Bay, too, possesses an updated data set \cite{50, 51}. This is consistent with findings in Ref. \cite{23}, where a different set of astrophysical/cosmological constraints were considered.

The second feature is that the bounds from DANSS and NEOS are scarcely visible in this plot; they’re compressed against the boundary at $\Delta N_{\text{eff}} = 1$, excluded at high significance by both the CMB+BAO and CMB+BAO+Other constraints. These experiments dominate the fit to reactor data that results in the best-fit point shown, again, by the black, five-pointed star in Fig. 8. Taking this at face value implies that astrophysics and cosmology already rule out a sterile neutrino with $\Delta m_{41}^2 \sim \mathcal{O}(1) \text{ eV}^2$.

Low-Threshold Experiments

Figure 9 depicts the limits from the low-threshold experiments we have considered. The sensitivity of MINER is scarcely visible on this plot; the sensitivity of RED100 is visible, but improves on neither the CMB+BAO nor the CMB+BAO+Other exclusions. Recall that we selected these specific incarnations of the RED100 and MINER experiments because they were the most opti-
FIG. 9: Constraints in the $\Delta N_{\text{eff}} - m_{\text{eff}}^{\text{sterile}}$ plane derived from low-threshold experiments: $\bar{\nu}e$ scattering (purple, 90% C.L.), RED100 (dot-dashed red, 90% C.L.), MINER (double-dot-dashed green, 90% C.L.), CONUS (long-dashed blue, 95% C.L.) and CONUS100 (short-dashed light blue, 95% C.L.). The black, five-pointed start represents the best-fit point (BFP) from the global analysis of Ref. [12].

Consistent, we enumerate a few possible resolutions.

1. The reactor antineutrino anomaly is an aberration. Determining the reactor antineutrino flux is a complicated business; there is no shortage of ways in which theoretical calculations and experimental measurements could go awry. See, for instance, Refs. [119–125] for more details. We note that, of the reactor experiments we have considered, DANSS, Daya Bay and NEOS employ a near detector to reduce flux-related systematics; the rest, however, depend on theoretical predictions of the flux.

2. Our understanding of cosmology is incomplete. This seems unlikely, but it is not altogether impossible that something dramatic could have happened in the early Universe that the standard ΛCDM cosmology doesn’t capture.

3. The framework we have employed is insufficient. The two-neutrino approximation is useful to solve for the evolution of the neutrino fluid, but it may be missing some important physics. A more complete calculation would be more intensive, but potentially worth the effort.

4. Neutrinos have extra interactions – affecting either the active or sterile flavors – that may lead to a qualitatively different evolution of the neutrino fluid. This may be due to a new matter potential or because new degrees of freedom are relevant later in evolution of the Universe (see, for instance, Ref. [126–129]).

5. The initial lepton asymmetry of the Universe, L_0, is large, $\sim O(10^{-3} - 10^{-2})$. This may suppress transitions to the sterile flavor, diminishing its contribution to $m_{\text{eff}}^{\text{sterile}}$ and ΔN_{eff}. The LASAGNA module is well suited to study the evolution of the (anti)neutrino fluid in the presence of an initial lepton asymmetry, and this has been studied in Ref. [21]; see also Ref. [130]. We relegate a detailed study to future work.

Whatever its cause, the observation of this tension is the other central conclusion of this work. There can be no satisfactory sterile neutrino solution to the reactor antineutrino anomaly that does not address this tension with astrophysical and cosmological measurements.\footnote{Note that NEOS uses the Daya Bay spectrum to normalize their antineutrino spectrum. The different effective fuel fractions at these experiments introduces a small amount of dependence on the flux model.}
VI. CONCLUSIONS

We have considered the complementarity between terrestrial neutrino oscillation experiments – specifically, accelerator and reactor experiments – and cosmological experiments in probing the cosmological properties of a proposed sterile neutrino. Accelerator neutrino experiments have the potential to improve on current constraints, but given that these are years away from taking data, it is unlikely that they will improve on the constraints that will exist by then. Meanwhile, reactor experiments – Daya Bay, specifically – are already able to probe parameter space beyond the reach of cosmological experiments, a feature that may persist with updated measurements.

We have emphasized the tension between cosmological constraints and the mild preference for a sterile neutrino from reactor antineutrino experiments. This is highlighted by (1) the best-fit point from the global reactor analysis of Ref. [12] already being strongly disfavored by Planck, and (2) the inability of upcoming low-threshold neutrino scattering experiments to probe new parts of the cosmological parameter space. Several possibilities for resolving this tension have been enumerated, but we conclude that no solution to the reactor anomalies can be truly compelling if it does not address this tension with cosmology.

This analysis presented here is not, strictly speaking, entirely consistent. Some of the terrestrial experiments we have considered have been analyzed under the four-neutrino hypothesis (with only one active-sterile mixing angle allowed to be nonzero), whereas these bounds on sterile neutrino oscillation parameters have been translated into cosmological bounds using two-flavor oscillations. This could well be a fatal inconsistency – it is logically possible that the reduction to two-flavor oscillations has oversimplified the system, so that crucial physics is being missed. In particular, this framework offers no opportunities to study the LSND [6] and MiniBooNE [7] anomalies, since electron-neutrino appearance requires that two active-sterile mixing angles be nonzero. A more complete analysis is required, especially given the tension present in the sterile-neutrino interpretation of neutrino appearance and disappearance data [12].

The results of this work are meaningful heuristics, but that the hypotheses to which they apply – that a sterile neutrino exists, but that only one possible active-sterile mixing angle is nonzero – may be too simple to be physical. Moreover, the separation between electron-type and muon-type oscillations in our treatment of the neutrino fluid in the early Universe is awkward. A more comfortable arrangement would be to use bounds on the complete four-neutrino hypothesis from a variety of experiments simultaneously to derive bounds on sterile-neutrino cosmology. However, the primary limitation of this scheme is that solving for the evolution of three active and one sterile neutrino species (and their corresponding antineutrinos) in the early Universe is a technically daunting task.

Parameter	Value
$\sin^2\theta_{12}$	0.306
$\sin^2\theta_{13}$	0.02166
$\sin^2\theta_{23}$	0.441
δ_{CP}	$-\pi/2$
$\Delta m^2_{21} [eV^{-2}]$	7.50×10^{-5}
$\Delta m^2_{31} [eV^{-2}]$	$+2.524 \times 10^{-3}$

TABLE II: Oscillation parameters used to generate pseudo-data for our sterile-neutrino sensitivity analyses for DUNE and Hyper-K. Values taken from Ref. [139], with the exception of δ_{CP}, which we have taken to be maximally CP violating.

This work is meant to illustrate the importance of interdisciplinary studies in neutrino physics. It is not entirely obvious, a priori, that an experiment like Daya Bay can improve constraints in some part of the $\Delta N_{\text{eff}} - m_{\text{eff}}$ plane, yet we have found this to be the case. In order to keep this work focused, we have considered only accelerator and reactor (anti)neutrino experiments and their interplay with astrophysics and cosmology. Even with the restriction that at most one active-sterile mixing angle is nonzero, similar analyses could be performed using (anti)neutrino disappearance results from solar [60–71] or atmospheric [131–133] experiments, as well as accelerator experiments that we have not considered [134–138]. These bounds, however, are at best comparable to, and are generally weaker than, the limits we have presented.

Acknowledgements

JMB thanks André de Gouvêa, Patrick Huber and Kevin Kelly for useful discussions and acknowledges the support of the Colegio de Física Fundamental e Interdisciplinaria de las Américas (COFI) Fellowship Program. JMB further thanks Kevin Kelly for providing the software for the simulations of DUNE and Hyper-K presented here. This work is supported by DOE Grant No. de-sc0018327.

Appendix A: Simulations of DUNE and Hyper-Kamiokande

We outline our Monte Carlo simulations of DUNE and Hyper-Kamiokande from Sec. III, employing similar procedures to those in Ref. [31] and Ref. [140], respectively. For DUNE, we assume 3 years of operation each in neutrino and antineutrino modes using the fluxes, efficiencies and detector resolutions reported in Ref. [40]. We assume Hyper-K will run for 2.5 years in neutrino mode and 7.5 years in antineutrino mode, and use the fluxes, efficiencies and detector resolutions reported in Ref. [42]. While
Hyper-K is sensitive to atmospheric neutrino oscillations [140], we ignore these in our analysis.

Pseudodata are generated assuming the three-neutrino framework using the experimental specifics mentioned above and the neutrino cross sections in Ref. [141]. The three-neutrino-oscillations parameters used to generate these pseudodata have been set to their best-fit values in Ref. [139], shown in Table II. The exception is δCP, which we have taken to be $-\pi/2$; the final sensitivities do not depend strongly on the assumed value. The pseudodata are then analyzed under the four-neutrino hypothesis using the Markov Chain Monte Carlo package EMCEE [142]. We marginalize over the octant of θ_{23} but assume that the hierarchy will be known by the time DUNE and Hyper-K start collecting data and that the hierarchy is normal; these results do not change significantly for the inverted hierarchy. Gaussian priors are imposed on $\Delta m^2_{23} = (7.50 \pm 0.18) \times 10^{-5}$ eV2 and $|U_{e2}|^2 = 0.299 \pm 0.012$. This analysis differs slightly from those of Refs. [31, 140] in that ϕ_{24} is assumed to be the only nonzero active-sterile mixing angle.

The resulting 95% C.L. sensitivities in the $\sin^2 2\theta_{\mu\mu} - \Delta m^2_{21}$ plane are shown in Figure 1 alongside the constraint from MINOS/MINOS+; all other oscillation parameters have been profiled. The sensitivities of DUNE and Hyper-K for $\phi_{14} = 0$ are not markedly different from those determined in Refs. [31, 140]. The statistical power of these experiments is dominated by ν_μ/π_μ disappearance, which is sensitive to $\sin^2 2\theta_{\mu\mu}$, whereas the appearance of ν_e/π_e provides sensitivity to $\sin^2 2\theta_{ee}$ (see Eqs. (II.4) and (II.5)). When ϕ_{14} vanishes, $\sin^2 2\theta_{ee}$ similarly vanishes; there are no sterile-neutrino contributions to ν_e/π_e appearance. However, this does not impact experimental sensitivity to $\sin^2 2\theta_{\mu\mu}$.

Appendix B: Simulations of CONUS

We provide a brief review of the CEνNS cross section, as well as some detail on our simulations of CONUS and CONUS100 outlined in Sec. III. The cross section for coherent scattering of neutrinos and nuclei is given by [143]

$$ \frac{d\sigma}{dT} = \frac{G_F^2 M}{\pi} Q_{eff}^2 F_{\text{Helm}}(q^2) \left(1 - \frac{MT}{2E_\nu^2} \right), \quad (B.1) $$

where G_F is the Fermi constant, M is the mass of the target nucleus, T is the kinetic energy of the recoiling nucleus and $q^2 \approx 2MT$ is the momentum transferred to the nucleus. In the Standard Model, the effective charge Q_{eff} is given by

$$ Q_{eff} = g^e_V Z + g^n_V N, \quad (B.2) $$

where $g^e_V = -\frac{1}{2}$ and $g^n_V = \frac{1}{2} - 2\sin^2 \theta_W$ are the weak vector charges of the proton and neutron, respectively, with Weinberg angle θ_W. At low energies in the MS scheme, $\sin^2 \theta_W \approx 0.23$ [144–146], meaning that the weak vector charge of the proton is nearly zero.

The Helm form factor $F_{\text{Helm}}(q^2)$ [147] encodes the distribution of protons and neutrons with the nucleus. This form factor goes to unity when $q^2 \to 0$, and is less than one for finite momentum transfer. For the energies involved in scattering at CONUS, we find that including this form factor gives a $\sim 5\%$ contribution to the cross section. However, searching for sterile neutrinos using CEνNS requires accounting for these percent-level contributions to the cross section.

We make two simplifying assumptions. The first is that only oscillations related to Δ_{41} (defined below Eq. (II.3)) are relevant; given the baseline and neutrino energies available at CONUS, it is reasonable to ignore Δ_{31} and Δ_{21}. The second assumption is that U_{e4} is nonzero while $U_{\mu 4}$ and $U_{\tau 4}$ vanish. This implies that oscillations depend only $\sin^2 2\theta_{ee}$ (see Eq. (II.4)) and that the only nonzero oscillation probabilities are P_{ee} and $P_{\mu\mu} = 1 - P_{ee}$. Therefore, effects of a sterile neutrino can be included in Eq. (B.1) by modifying the effective charge Q_{eff} according to

$$ Q_{eff}^2 \to P_{ee} Q_{eff}^2; \quad (B.3) $$

only the active component of the neutrino flux at the target will interact via weak neutral currents.

The CONUS experiment is located 17 m from the reactor core at the 3.9 GWth Brokdorf power plant. The detector collects the scintillation light from germanium recoils to observe CEνNS interactions in the target. The number of events in energy bin i is given by

$$ N_i = \Delta t \sum_f n_f \int_{T_i}^{T_i + \Delta T} dT \int_0^{\infty} dE_\nu \Phi(E_\nu) \frac{d\sigma}{dT} \Theta(2E_\nu^2 - MT), \quad (B.4) $$

where Δt is the operating time of the experiment, f rep-
Isotope	CONUS Fraction	CONUS100 Fraction
76Ge	20.5%	2.7%
72Ge	27.4%	2.6%
73Ge	7.8%	1.0%
74Ge	36.5%	4.7%
76Ge	7.8%	88.0%

TABLE III: The isotopic abundances considered in our simulations of CONUS and CONUS100. Those for CONUS are the natural abundances, while for CONUS100, we assume the target to be 88% enriched with 76Ge while the four other isotopes provide the remaining 12% in proportion to their relative natural abundances.

resents the five stable** isotopes of germanium, n_f is the number of each isotope in the detector, T_i is the lowest energy associated to the bin, ΔT is the width of the bin, $\Phi(E_\nu)$ is the flux of antineutrinos coming from the reactor, $\frac{d\Omega}{dE}$ is the differential CEνNS cross section involving isotope f and the term $\Theta(2E_\nu^2 - MT)$ enforces the kinematics of the scattering process.

We use the reactor flux calculation in Ref. [148], normalized to a total antineutrino flux of $2.5 \times 10^{13} \text{s}^{-1} \text{cm}^{-2}$ [89, 90], and include sterile neutrinos following the prescription in Eq. (B.3). The formal upper limit in the integral over E_ν is infinity; but we cut off the reactor flux above 8 MeV; the flux dies off rapidly above this energy, a feature that has been verified experimentally [149] and is present in other theoretical calculations of the flux [119, 120]. The upper limit in antineutrino energy implies a maximum recoil energy; the masses of the isotopes of germanium imply that this is ~ 1.75 keV [90]. We take this to be the upper edge of the recoil spectrum for both CONUS and CONUS100.

We form the following χ^2 in order to probe the sensitivity of these experiments to a sterile neutrino, following Ref. [90]:

$$\chi^2 = \sum_i \frac{(N_i^0 - (1 + \alpha)N_i(\sin^2 2\theta_{ee} \Delta m_{41}^2))}{N_i + N_{\text{bkg}} + \sigma_f^2 (N_i + N_{\text{bkg}})^2} + \frac{\alpha^2}{\sigma_\alpha^2},$$

(B.5)

where N_i^0 is the number of events in bin i with no active-sterile mixing, $N_i(\sin^2 2\theta_{ee} \Delta m_{41}^2)$ is the same for non-trivial active-sterile mixing, N_{bkg} is the number of background events in each bin, α is a nuisance parameter for the normalization of the flux, σ_f is the flux uncertainty and σ_f is the uncorrelated shape uncertainty for each bin.

For our benchmark analysis of CONUS, we take $\Delta t = 1$ year, and n_f to be consistent with 4.0 kg of natural germanium; the isotopic abundances are shown in Table III. Because the ionization detection threshold is 0.3 keV and the quenching factor is ~ 0.25, the minimum recoil energy is 1.2 keV [90], and the recoil spectrum is binned in 0.05-keV increments. The normalization and shape uncertainties are taken to be 2% and 1%, respectively.

For CONUS100, we assume a more optimistic experimental configuration. In addition to a five-year run time, the target mass is taken to be 100.0 kg of germanium 88% enriched with 76Ge (see Table III). Furthermore, we assume a recoil threshold of 0.1 keV can be attained and that improvements in reactor antineutrino flux predictions can drive down the normalization and shape uncertainties to 0.5% and 1%, respectively. For both configurations, we take the background rate to be 1 count/(day·keV·kg) [90], even in the low-recoil regime and for the larger target.

The resulting sensitivity curves are shown in Fig. 3. In addition to obvious factors like the larger target mass and improved systematic uncertainties, we highlight two additional sources of improved sensitivity at CONUS100:

1. The enriched target is primarily 76Ge. Because the total CEνNS cross section grows with (square of the) number of neutrons in the target nucleus (see Eqs. (B.1) and (B.2)), an enriched germanium target yields better statistics relative to a natural germanium target of the same size.

2. The recoil spectrum scales as $\sim \frac{1}{T}$ for low recoils, where T is the kinetic energy of the recoiling nucleus. Lowering the threshold from 1.2 keV to 0.1 keV dramatically increases the number of events at low recoil, where the effects of sterile neutrinos are proportionally more important.

[1] I. Esteban, M. C. Gonzalez-Garcia, A. Hernández-Cabezudo, M. Maltoni, and T. Schwetz, “Global analysis of three-flavour neutrino oscillations: synergies and tensions in the determination of θ_{23}, δ_{CP}, and the mass ordering,” JHEP 01, 106 (2019), 1811.05487.

[2] M. A. Ácero, C. Giunti, and M. Laveder, “Limits on $\nu_\mu(\nu_e)$ and anti-$\nu_\mu(\nu_e)$ disappearance from Gallium and reactor experiments,” Phys. Rev. D78, 073009 (2008), 0711.4222.

[3] C. Giunti and M. Laveder, “Statistical Significance of the Gallium Anomaly,” Phys. Rev. C83, 065504 (2011), 1006.3244.

[4] G. Mention, M. Fechner, T. Lasserre, T. A. Mueller, D. Lhuillier, M. Cribier, and A. Letourneau, “The Reactor Antineutrino Anomaly,” Phys. Rev. D83, 073006 (2011), 1101.2755.

[5] A. C. Hayes, J. L. Friar, G. T. Garvey, G. Jungman, and G. Jonkmans, “Systematic Uncertainties in the Analysis of the Reactor Neutrino Anomaly,” Phys. Rev. Lett. 112, 202501 (2014), 1309.4146.

[6] A. Aguilar-Arevalo et al. (LSND), “Evidence for neutrino oscillations from the observation of anti-
neutrino(electron) appearance in a anti-neutrino(muon) beam," Phys. Rev. D64, 112007 (2001), hep-ex/0104049.

[7] A. A. Aguilar-Arevalo et al. (MiniBooNE), “Improved Search for $\bar{\nu}_e \rightarrow \bar{\nu}_\mu$ Oscillations in the MiniBooNE Experiment,” Phys. Rev. Lett. 110, 161801 (2013), 1303.2588.

[8] S. Gariazzo, C. Giunti, M. Laveder, and Y. F. Li, “Updated Global 3+1 Analysis of Short-BaseLine Neutrino Oscillations,” JHEP 06, 135 (2017), 1703.00860.

[9] C. Giunti, X. P. Ji, M. Laveder, Y. F. Li, and B. R. Littlejohn, “Reactor Fuel Fraction Information on the Antineutrino Anomaly,” JHEP 10, 143 (2017), 1708.01133.

[10] M. Dentler, A. Hernández-Cabezudo, J. Kopp, M. Maltoni, and T. Schwetz, “Sterile neutrinos or flux uncertainties? – Status of the reactor anti-neutrino anomaly,” JHEP 11, 099 (2017), 1709.04294.

[11] S. Gariazzo, C. Giunti, M. Laveder, and Y. F. Li, “Model-independent $\bar{\nu}_e$ short-baseline oscillations from reactor spectral ratios,” Phys. Lett. B782, 13 (2018), 1801.06467.

[12] M. Dentler, A. Hernández-Cabezudo, J. Kopp, P. A. N. Machado, M. Maltoni, I. Martinez-Soler, and T. Schwetz, “Updated Global Analysis of Neutrino Oscillations in the Presence of eV-Scale Sterile Neutrinos,” JHEP 08, 010 (2018), 1803.10661.

[13] C. Giunti, Y. F. Li, B. R. Littlejohn, and P. T. Surukuchi, “Diagnosing the Reactor Antineutrino Anomaly with Global Antineutrino Flux Data,” Phys. Rev. D99, 073005 (2019), 1901.01807.

[14] C. Giunti and T. Lasserre, “eV-scale Sterile Neutrinos,” (2019), 1901.08330.

[15] A. Melchiorri, O. Mena, S. Palomares-Ruiz, S. Pascoli, A. Slosar, and M. Sorel, “Sterile Neutrinos in Light of Recent Cosmological and Oscillation Data: A Multi-Flavor Scheme Approach,” JCAP 0901, 036 (2009), 0810.5133.

[16] M. Archidiacono, N. Fornengo, C. Giunti, and A. Melchiorri, “Testing 3+1 and 3+2 neutrino mass models with cosmology and short baseline experiments,” Phys. Rev. D86, 065028 (2012), 1207.6515.

[17] M. Archidiacono, N. Fornengo, C. Giunti, S. Hannestad, and A. Melchiorri, “Sterile neutrinos: Cosmology versus short-baseline experiments,” Phys. Rev. D87, 125034 (2013), 1302.6720.

[18] A. Mirizzi, G. Mangano, N. Saviano, E. Borriello, C. Giunti, G. Miele, and O. Pisanì, “The strongest bounds on active-sterile neutrino mixing after Planck data,” Phys. Lett. B726, 8 (2013), 1303.5368.

[19] S. Gariazzo, C. Giunti, and M. Laveder, “Light Sterile Neutrinos in Cosmology and Short-Baseline Oscillation Experiments,” JHEP 11, 211 (2013), 1309.3192.

[20] M. Archidiacono, N. Fornengo, S. Gariazzo, C. Giunti, S. Hannestad, and M. Laveder, “Light sterile neutrinos after BICEP-2,” JCAP 1406, 031 (2014), 1404.1794.

[21] S. Bridle, J. Elvin-Poole, J. Evans, S. Fernandez, P. Gutzowski, and S. Soldner-Rembold, “A Combined View of Sterile-Neutralino Constraints from CMB and Neutrino Oscillation Measurements,” Phys. Lett. B764, 322 (2017), 1607.00032.

[22] A. Ghalsasi, D. McKeen, and A. E. Nelson, “Probing nonstandard neutrino cosmology with terrestrial neutrino experiments,” Phys. Rev. D95, 115039 (2017), 1609.06326.

[23] A. M. Knee, D. Contreras, and D. Scott, “Cosmological constraints on sterile neutrino oscillations from Planck,” (2018), 1812.02102.

[24] S. K. Kang, “Roles of sterile neutrinos in particle physics and cosmology,” (2019), 1904.07108.

[25] D. Akimov et al. (COHERENT), “Observation of Coherent Elastic Neutrino-Nucleus Scattering,” Science (2017), 1708.01294.

[26] A. J. Anderson, J. M. Conrad, E. Figueroa-Feliciano, C. Ignarra, G. Karagiorgi, K. Scholberg, M. H. Shaevitz, and J. Spitz, “Measuring Active-to-Sterile Neutrino Oscillations with Neutral Current Coherent Neutrino-Nucleus Scattering,” Phys. Rev. D86, 013004 (2012), 1201.3805.

[27] B. Dutta, Y. Gao, R. Mahapatra, N. Mirabolfathi, L. E. Strigari, and J. W. Walker, “Sensitivity to oscillation with a sterile fourth generation neutrino from ultra-low threshold neutrino-nucleus coherent scattering,” Phys. Rev. D94, 093002 (2016), 1511.02834.

[28] S. Kerman, V. Sharma, M. Deniz, H. T. Wong, J.-W. Chen, H. B. Li, S. T. Lin, C.-P. Liu, and Q. Yue (TEXONO), “Coherency in Neutrino-Nucleus Elastic Scattering,” Phys. Rev. D93, 113006 (2016), 1603.08786.

[29] B. C. Cañas, E. A. Garcés, O. G. Miranda, and A. Parada, “The reactor antineutrino anomaly and low energy threshold neutrino experiments,” Phys. Lett. B776, 451 (2018), 1708.09518.

[30] D. K. Papoulias and T. S. Kosmas, “COHERENT constraints to conventional and exotic neutrino physics,” Phys. Rev. D97, 033003 (2018), 1711.09773.

[31] J. M. Berryman, A. de Gouvêa, K. J. Kelly, and A. Kobach, “Sterile neutrino at the Deep Underground Neutrino Experiment,” Phys. Rev. D92, 073012 (2015), 1507.03986.

[32] L. Wolfenstein, “Neutrino Oscillations in Matter,” Phys. Rev. D17, 2369 (1978).

[33] A. Mirizzi, I. Tamborra, H.-T. Janka, N. Saviano, K. Scholberg, R. Bollig, L. Hudepohl, and S. Chakraborty, “Supernova Neutrinos: Production, Oscillations and Detection,” Riv. Nuovo Cim. 39, 1 (2016), 1508.00785.

[34] H. Duan, G. M. Fuller, and Y.-Z. Qian, “Collective Neutrino Oscillations,” Ann. Rev. Nucl. Part. Sci. 60, 569 (2010), 1001.2799.

[35] K. N. Abazajian et al., “Light Sterile Neutrinos: A White Paper,” (2012), 1204.5379.

[36] J. Kopp, P. A. N. Machado, M. Maltoni, and T. Schwetz, “Sterile Neutrino Oscillations: The Global Picture,” JHEP 05, 050 (2013), 1303.3011.

[37] P. Adamson et al. (MINOS), “Measurement of Neutrino and Antineutrino Oscillations Using Beam and Atmospheric Data in MINOS,” Phys. Rev. Lett. 110, 251801 (2013), 1304.6335.

[38] P. Adamson et al. (MINOS), “Combined analysis of ν_μ disappearance and $\nu_\tau \rightarrow \nu_\mu$ appearance in MINOS using accelerator and atmospheric neutrinos,” Phys. Rev. Lett. 112, 191801 (2014), 1403.0867.

[39] P. Adamson et al. (MINOS+), “Search for sterile neutrinos in MINOS and MINOS+ using a two-detector fit,” Phys. Rev. Lett. 122, 091803 (2019), 1710.06488.

[40] C. Adams et al. (LBNE), “The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe,” (2013), 1307.7335.
R. Acciarri et al. (DUNE), “Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE),” (2015), 1512.06148.

K. Abe et al. (Hyper-Kamiokande Proto-Collaboration), “Physics potential of a long-baseline neutrino oscillation experiment using a J-PARC neutrino beam and Hyper-Kamiokande,” PTEP 2015, 053C02 (2015), 1502.05199.

K. Abe et al. (Hyper-Kamiokande), “Physics potentials with the second Hyper-Kamiokande detector in Korea,” PTEP 2018, 063C01 (2018), 1611.06118.

K. Abe et al. (Hyper-Kamiokande), “Hyper-Kamiokande Design Report,” (2018), 1805.04163.

M. Danilov (DANSs), “Sensitivity of DANSs detector to short range neutrino oscillations,” (2014), 1412.0817.

I. Alekseev et al., “DANSs: Detector of the reactor AntiNeutrino based on Solid Scintillator,” JINST 11, P11011 (2016), 1606.02896.

I. Alekseev et al. (DANSs), “Search for sterile neutrinos at the DANSs experiment,” Phys. Lett. B787, 56 (2018), 1804.04046.

F. P. An et al. (Daya Bay), “Measurement of electron antineutrino oscillation based on 1230 days of operation of the Daya Bay experiment,” Phys. Rev. D95, 072006 (2017), 1610.04802.

F. P. An et al. (Daya Bay), “Improved Search for a Light Sterile Neutrino with the Full Configuration of the Daya Bay Experiment,” Phys. Rev. Lett. 117, 151802 (2016), 1607.01174.

D. Adey et al. (Daya Bay), “Measurement of the Electron Antineutrino Oscillation with 1958 Days of Operation at Daya Bay,” Phys. Rev. Lett. 121, 241805 (2018), 1809.02261.

D. Adey et al. (Daya Bay), “Measurement of Individual Antineutrino Spectra from ^{235}U and ^{239}Pu at Daya Bay,” (2019), 1904.07812.

Y. Ko et al. (NEOS), “Sterile Neutrino Search at the NEOS Experiment,” Phys. Rev. Lett. 118, 121802 (2017), 1610.05134.

F. An et al. (JUNO), “Neutrino Physics with JUNO,” J. Phys. G43, 030401 (2016), 1507.05613.

H. Almazán et al. (STEREO), “Sterile Neutrino Constraints from the STEREO Experiment with 66 Days of Reactor-On Data,” Phys. Rev. Lett. 121, 161801 (2018), 1806.02096.

Y. Abreu et al. (SoLid), “Performance of a full scale prototype detector at the BR2 reactor for the SoLid experiment,” JINST 13, P05005 (2018), 1802.02884.

J. Ashenfelter et al. (PROSPECT), “First search for short-baseline neutrino oscillations at HFIR with PROSPECT,” Phys. Rev. Lett. 121, 251802 (2018), 1806.02784.

W. Hampel et al. (GALLEX), “Final results of the Cr-51 neutrino source experiments in GALLEX,” Phys. Lett. B420, 114 (1998).

J. N. Abdurashitov et al. (SAGE), “Measurement of the response of the Russian-American gallium experiment to neutrinos from a Cr-51 source,” Phys. Rev. C59, 2246 (1999), hep-ph/9803418.

J. N. Abdurashitov et al., “Measurement of the response of a Ga solar neutrino experiment to neutrinos from an Ar-37 source,” Phys. Rev. C73, 045805 (2006), nucl-ex/0512041.

B. T. Cleveland, T. Daily, R. Davis, Jr., J. R. Distel, K. Lande, C. K. Lee, P. S. Wildenhain, and J. Ullman, “Measurement of the solar electron neutrino flux with the Homestake chlorine detector,” Astrophys. J. 496, 505 (1998).

B. Aharanin et al. (SNO), “Electron energy spectra, fluxes, and day-night asymmetries of B-8 solar neutrinos from measurements with NaCl dissolved in the heavy-water detector at the Sudbury Neutrino Observatory,” Phys. Rev. C72, 055502 (2005), nucl-ex/0502021.

J. Hosaka et al. (Super-Kamiokande), “Solar neutrino measurements in super-Kamiokande-I,” Phys. Rev. D73, 112001 (2006), hep-ex/0508053.

B. Aharanin et al. (SNO), “Determination of the v_e and total β solar neutrino fluxes with the Sudbury neutrino observatory phase I data set,” Phys. Rev. C75, 045502 (2007), nucl-ex/0610020.

J. P. Cravens et al. (Super-Kamiokande), “Solar neutrino measurements in Super-Kamiokande-II,” Phys. Rev. D78, 032002 (2008), 0803.4312.

B. Aharanin et al. (SNO), “An Independent Measurement of the Total Active B-8 Solar Neutrino Flux Using An Array of He-3 Proportional Counters at the Sudbury Neutrino Observatory,” Phys. Rev. Lett. 101, 111301 (2008), 0806.0989.

G. Bellini et al. (Borexino), “Measurement of the solar SB neutrino rate with a liquid scintillator target and 3 MeV energy threshold in the Borexino detector,” Phys. Rev. D82, 033006 (2010), 0809.2868.

J. N. Abdurashitov et al. (SAGE), “Measurement of the solar neutrino capture rate with gallium metal. III: Results for the 2002-2007 data-taking period,” Phys. Rev. C80, 015807 (2009), 0901.2290.

F. Kaether, W. Hampel, G. Heusser, J. Kiko, and T. Kirsten, “Reanalysis of the GALLEX solar neutrino flux and source experiments,” Phys. Lett. B685, 47 (2010), 1001.2731.

K. Abe et al. (Super-Kamiokande), “Solar neutrino results in Super-Kamiokande-III,” Phys. Rev. D83, 052010 (2011), 1010.0118.

G. Bellini et al., “Precision measurement of the ^7Be solar neutrino interaction rate in Borexino,” Phys. Rev. Lett. 107, 141302 (2011), 1104.1816.

A. Gando et al. (KamLAND), “^7Be Solar Neutrino Measurement with KamLAND,” Phys. Rev. C92, 055808 (2015), 1405.6190.

L. B. Auerbach et al. (LSND), “Measurements of charged current reactions of v_e on ^{12}C,” Phys. Rev. C64, 065501 (2001), hep-ex/0105068.

J. M. Conrad and M. H. Shaevitz, “Limits on Electron Neutrino Disappearance from the KARMEN and LSND v_μ - Carbon Cross Section Data,” Phys. Rev. D85, 013017 (2012), 1106.5552.

G. S. Vidyakin, V. N. Vyrodov, I. I. Gurevich, Yu. V. Kozlov, V. P. Martemyanov, S. V. Sukhotin, V. G. Tarasenko, E. V. Turbin, and S. K. Khakimov, “Limitations on the magnetic moment and charge radius of the electron-anti-neutrino,” JETP Lett. 55, 206 (1992), [Pisma Zh. Eksp. Teor. Fiz. 55, 212 (1992)].

Aharonian, A. V., Cherny, L. A. Popenko, V. N. Muratova, G. A. Shishkina, and S. I. Bakhlanov, “Experiment on anti-neutrino scattering by electrons at a reactor of the Rovno nuclear power plant,” JETP Lett. 57, 768 (1993), [Pisma Zh. Eksp. Teor. Fiz. 57, 755 (1993)].

C. Amsler et al. (MUNU), “The MUNU experiment, general description,” Nucl. Instrum. Meth. A396, 115
Cosmological parameters,” (2018), 1807.06209.
[112] A. G. Riess, S. Casertano, W. Yuan, L. Macri, J. Anderson, J. W. MacKenty, J. B. Bowers, K. I. Clubb, A. V. Filippenko, D. O. Jones, et al., “New Parallaxes of Galactic Cepheids from Spatially Scanning the Hubble Space Telescope: Implications for the Hubble Constant,” Astrophys. J. 855, 136 (2018), 1801.01120.
[113] A. G. Riess et al., “Milky Way Cepheid Standards for Measuring Cosmic Distances and Application to Gaia DR2: Implications for the Hubble Constant,” Astrophys. J. 861, 126 (2018), 1804.10655.
[114] J. L. Bernal, L. Verde, and A. G. Riess, “The trouble with H0,” JCAP 1610, 019 (2016), 1607.05617.
[115] R.-Y. Guo, J.-F. Zhang, and X. Zhang, “Can the H0 tension be resolved in extensions to LCDM cosmology?,” JCAP 1902, 054 (2019), 1809.02340.
[116] S. Carneiro, P. C. de Holanda, C. Piggozzo, and F. Sobrêira, “Is the H0 tension suggesting a 4th neutrino’s generation?,” (2018), 1812.06664.
[117] J. Huang, Ph.D. thesis, U. Texas, Austin (main) (2015), URL http://lss.fnal.gov/archive/thesis/2000/fermilab-thesis-2015-06.pdf.
[118] K. N. Abazajian et al. (CMB-S4), ”CMB-S4 Science Book, First Edition” (2016), 1610.02743.
[119] T. A. Mueller et al., “Improved Predictions of Reactor Antineutrino Spectra,” Phys. Rev. C83, 054615 (2011), 1101.2663.
[120] P. Huber, “On the determination of anti-neutrino spectra from nuclear reactors,” Phys. Rev. C84, 024617 (2011), [Erratum: Phys. Rev. C85, 029901 (2012)], 1106.0687.
[121] A. C. Hayes, J. L. Friar, G. T. Garvey, D. Ibeling, G. Jungman, T. Kawano, and R. W. Mills, “Possible origins and implications of the shoulder in reactor neutrino spectra,” Phys. Rev. D92, 033015 (2015), 1506.00583.
[122] P. Huber, “Reactor antineutrino fluxes – Status and challenges,” Nucl. Phys. B908, 268 (2016), 1602.01499.
[123] A. C. Hayes and P. Vogel, “Reactor Neutrino Spectra,” Ann. Rev. Nucl. Part. Sci. 66, 219 (2016), 1605.02047.
[124] C. Giunti, “Precise determination of the 235U reactor antineutrino cross section per fission,” Phys. Lett. B764, 145 (2017), 1608.04096.
[125] P. Huber, “NEOS Data and the Origin of the 5 MeV Bump in the Reactor Antineutrino Spectrum,” Phys. Rev. Lett. 118, 042502 (2017), 1609.03910.
[126] J. F. Cherry, A. Friedland, and I. M. Shoemaker, “Short-baseline neutrino oscillations, Planck, and IceCube,” (2016), 1605.06506.
[127] M. Archidiacono, S. Gariazzo, C. Giunti, S. Hannestad, R. Hansen, M. Laveder, and T. Tram, “Pseudoscalar — sterile neutrino interactions: reconciling the cosmos with neutrino oscillations,” JCAP 1608, 067 (2016), 1606.07673.
[128] F. Forastieri, M. Lattanzi, G. Mangano, A. Mirizzi, P. Natoli, and N. Saviano, “Cosmic microwave background constraints on secret interactions among sterile neutrinos,” JCAP 1707, 038 (2017), 1704.00626.
[129] N. Song, M. C. Gonzalez-Garcia, and J. Salvado, “Cosmological constraints with self-interacting sterile neutrinos,” JCAP 1810, 055 (2018), 1805.08218.
[130] L. Johns, M. Mina, V. Cirigliano, M. W. Paris, and G. M. Fuller, “Neutrino flavor transformation in the lepton-asymmetric universe,” Phys. Rev. D94, 083505 (2016), 1608.01336.
[131] M. G. Aartsen et al. (IceCube), “Determining neutrino oscillation parameters from atmospheric muon neutrino disappearance with three years of IceCube DeepCore data,” Phys. Rev. D91, 072004 (2015), 1410.7227.
[132] R. Wendell (Super-Kamiokande), “Atmospheric Results from Super-Kamiokande,” AIP Conf. Proc. 1666, 100001 (2015), 1412.5234.
[133] M. G. Aartsen et al. (IceCube), “ Searches for Sterile Neutrinos with the IceCube Detector,” Phys. Rev. Lett. 117, 071801 (2016), 1605.01990.
[134] F. Dydk et al., “A Search for Muon-neutrino Oscillations in the $\Delta m^2 > 0.3-90 \text{eV}^2$,” Phys. Lett. B134B, 281 (1984).
[135] I. E. Stockdale et al., “Limits on Muon-Neutrino Oscillations in the Mass Range 30 < Δm^2 < 1000 eV2/c4,” Phys. Rev. Lett. 52, 1384 (1984).
[136] G. Cheng et al. (MiniBooNE, SciBooNE), “Dual baseline search for muon antineutrino disappearance at 0.1eV$^2 < \Delta m^2 < 100eV^2$,” Phys. Rev. D86, 052009 (2012), 1208.0322.
[137] P. Adamson et al. (NOvA), “ Search for active-sterile neutrino mixing using neutral-current interactions in NOvA,” Phys. Rev. D96, 072006 (2017), 1706.04592.
[138] K. Abe et al. (T2K), “ Search for light sterile neutrinos with the T2K far detector Super-Kamiokande at a baseline of 295 km,” (2019), 1902.06529.
[139] I. Esteban, M. C. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler, and T. Schwetz, “Updated fit to three neutrino mixing: exploring the accelerator-reactor complementarity,” JHEP 01, 087 (2017), 1611.01514.
[140] K. J. Kelly, “ Searches for new physics at the Hyper-Kamiokande experiment,” Phys. Rev. D95, 115009 (2017), 1703.00448.
[141] J. A. Formaggio and G. P. Zeller, “From eV to EeV: Neutrino Cross Sections Across Energy Scales,” Rev. Mod. Phys. 84, 1307 (2012), 1305.7513.
[142] D. Foreman-Mackey, D. W. Hogg, D. Lang, and J. Goodman, “emcee: The MCMC Hammer,” Publ. Astron. Soc. Pac. 125, 306 (2013), 1202.3665.
[143] D. Z. Freedman, “Coherent Neutrino Nucleus Scattering as a Probe of the Weak Neutral Current,” Phys. Rev. D9, 1389 (1974).
[144] J. Erler and M. J. Ramsey-Musolf, “The Weak mixing angle at low energies,” Phys. Rev. D72, 073003 (2005), hep-ph/0409169.
[145] J. Erler and R. Ferro-Hernández, “Weak Mixing Angle in the Thomson Limit,” JHEP 03, 196 (2018), 1712.09146.
[146] B. C. Cañas, E. A. Garcés, O. G. Miranda, and A. Parada, “Future perspectives for a weak mixing angle measurement in coherent elastic neutrino nucleus scattering experiments,” Phys. Lett. B784, 159 (2018), 1806.01310.
[147] R. H. Helm, “Inelastic and Elastic Scattering of 187-MeV Electrons from Selected Even-Even Nuclei,” Phys. Rev. 104, 1466 (1956).
[148] V. I. Kopelkin, “Flux and spectrum of reactor antineutrinos,” Phys. Atom. Nucl. 75, 143 (2012), [Yad. Fiz. 75 N2, 165 (2012)].
[149] N. Raper, Ph.D. thesis, Rensselaer Polytechnic Institute (2016).