Duality between star and plus connected components in percolation

Ghurumuruhan Ganesan *

NISER, Bhubaneshwar, India

Abstract

Tile \mathbb{R}^2 into disjoint unit squares $\{S_k\}_{k \geq 0}$ with the origin being the centre of S_0 and say that S_i and S_j are star adjacent if they share a corner and plus adjacent if they share an edge. Every square is either vacant or occupied. Star and plus connected components containing the origin have been previously studied using unicoherence and interface graphs. In this paper, we use the structure of the outermost boundaries derived in Ganesan (2015) to alternately obtain duality between star and plus connected components in the following sense: There is a plus connected cycle of vacant squares attached to surrounding the finite star connected component containing the origin. There is a star connected cycle of vacant squares attached to and surrounding the finite plus connected component containing the origin.

Key words: Star and plus connected components, duality.

AMS 2000 Subject Classification: Primary: 60J10, 60K35; Secondary: 60C05, 62E10, 90B15, 91D30.
1 Introduction

Tile \mathbb{R}^2 into disjoint unit squares $\{S_k\}_{k \geq 0}$ with origin being the centre of S_0. We say S_1 and S_2 are adjacent or star-adjacent if they share a corner between them. We say that squares S_1 and S_2 are plus-adjacent, if they share an edge between them. Here we follow the notation of Penrose (2003). Every square is assigned one of the two states: occupied or vacant.

Let $C(0)$ denote the star-connected occupied component containing the origin and throughout we assume that $C(0)$ is finite. Thus if S_0 is vacant then $C(0) = \emptyset$. Else $S_0 \in C(0)$ and if $S_1, S_2 \in C(0)$ there exists a sequence of distinct occupied squares $(Y_1, Y_2, ..., Y_t)$ all belonging to $C(0)$, such that Y_i is adjacent to Y_{i+1} for all i and $Y_1 = S_1$ and $Y_t = S_2$. Let G_C be the graph with vertex set being the set of all corners of the squares $\{S_k\}_k$ in $C(0)$ and edge set consisting of the edges of the squares $\{S_k\}_k$ in $C(0)$.

Two vertices u and v are said to be adjacent in G_C if they share an edge between them. We say that an edge e in G_C is adjacent to square S_k if it is one of the edges of S_k. We say that e is a boundary edge if it is adjacent to a vacant square and is also adjacent to an occupied square. A path P in G_C is a sequence of distinct vertices $(u_0, u_1, ..., u_t)$ such that u_i and u_{i+1} are adjacent for every i. A cycle C in G_C is a sequence of distinct vertices $(v_0, v_1, ..., v_m, v_0)$ starting and ending at the same point such that v_i is adjacent to v_{i+1} for all $0 \leq i \leq m - 1$ and v_m is adjacent to v_0. A circuit C' in G_C is a sequence of vertices $(w_0, w_1, ..., w_r, w_0)$ starting and ending at the same point such that w_i is adjacent to w_{i+1} for all $0 \leq i \leq r - 1$, w_r is adjacent to w_0 and no edge is repeated in C'. Thus vertices may be repeated in circuits and for more related definitions, we refer to Chapter 1, Bollobas (2001).

Any cycle C divides the plane \mathbb{R}^2 into two disjoint connected regions. As in Bollobas and Riordan (2006), we denote the bounded region to be the interior of C and the unbounded region to be the exterior of C. We have the following definition.

Definition 1. We say that edge e in G_C is an outermost boundary edge of the component $C(0)$ if the following holds true for every cycle C in G_C : either e is an edge in C or e belongs to the exterior of C.

We define the outermost boundary ∂_0 of $C(0)$ to be the set of all outermost boundary edges of G_C.

Thus outermost boundary edges cannot be contained in the interior of any cycle in G_C. In Theorem 1 of Ganesan (2015), we obtained that the
outermost boundary for the finite star connected component containing the origin is a connected union of cycles with mutually disjoint interiors. Similarly, in Theorem 2 of Ganesan (2015), we obtained that the outermost boundary for the finite plus connected component is a single cycle. Using these results, we obtain duality between star and plus connected components.

Duality

To study duality between star and plus connected components, we first define $S-$cycles. Let $\{J_i\}_{1 \leq i \leq m}$ be a set of squares in $\bigcup \{S_k\}_k$. We say that the sequence $L = (J_1, ..., J_m)$ is a plus connected $S-$path if for each $1 \leq i \leq m-1$, we have J_i is plus adjacent to J_{i+1}. We say that L^+ is a plus connected $S-$cycle if in addition J_m is also plus adjacent to J_1. Let Λ_0 denote the set of all vacant squares that share a corner with some occupied square in the star connected component $C(0)$. We have the following result.

Theorem 1. Suppose $C(0)$ is finite. There exists a unique plus connected $S-$cycle $G_{out} = (Y_1, ..., Y_t)$ with the following properties:

(i) For every i, $1 \leq i \leq t$, the square $Y_i \in \bigcup_k \{S_k\}$ is in Λ_0.

(ii) The outermost boundary of G_{out} is a single cycle ∂G.

(iii) If $S_k \in C(0) \cup \Lambda_0$, then either S_k is in G_{out} or S_k is contained in the interior of ∂G.

Thus the corresponding sequence of squares $(Y_1, ..., Y_t)$ form a plus connected cycle of vacant squares containing all squares of $C(0)$ in the interior.

To study plus connected components, we define star connected $S-$cycles analogously as in plus connected case. As before, let $\{H_i\}_{1 \leq i \leq n}$ be a set of squares in $\bigcup \{S_k\}_k$. We say that the sequence $L' = (H_1, ..., H_n)$ is a star connected $S-$path is for each $1 \leq i \leq n-1$, we have H_i is star adjacent to H_{i+1}. We say that L^+ is a star connected $S-$cycle if in addition H_n is also star adjacent to H_1. Let Λ_0^+ denote the set of all vacant squares that share a corner with some occupied square in the plus connected component $C^+(0)$. We have the following result.

Theorem 2. Suppose $C^+(0)$ is finite. There exists a unique star connected $S-$cycle $H_{out} = (U_1, ..., U_q)$ with the following properties:

(i) For every i, $1 \leq i \leq q$, the square $U_i \in \bigcup_k \{S_k\}$ is in Λ_0^+.

(ii) The outermost boundary of H_{out} is a single cycle ∂H.

(iii) If $S_k \in C^+(0) \cup \Lambda_0^+$, then either S_k is in H_{out} or S_k is contained in the interior of ∂H.
Thus the corresponding sequence of squares \((U_1, ..., U_q)\) form a star connected cycle of vacant squares containing all squares of \(C(0)\) in the interior. We remark that the proof techniques of the above two results can also be used to study star and plus connected left right and top down crossings in rectangles. For more material we refer to Penrose (2003) and Bollobas and Riordan (2006).

The paper is organized as follows: We prove Theorems 1 and 2 in Sections 2 and 3, respectively.

2 Proof of Theorem 1

Proof of Theorem 1: To see that such a cycle \(G_{\text{out}}\) exists, we let \(\partial_0\) denote the outermost boundary for \(C(0)\). From Theorem 1 of Ganesan (2015), we know that \(\partial_0 = \bigcup_{1 \leq i \leq n} C_i\) is a connected union of cycles \(\{C_i\}_i\) with mutually disjoint interiors and with the property that \(C_i\) and \(C_j\) intersect at at most one point for distinct \(i\) and \(j\). Place a unit square on each vertex of \(\partial_0\) and call the union of squares as \(C_V(\partial_0)\).

By construction, the union \(C_V(\partial_0)\) is a plus connected component. Therefore using Theorem 2 of Ganesan (2015), we have that the outermost boundary \(\partial_V(\partial_0)\) of \(C_V(\partial_0)\) is a single cycle containing all squares of \(C_V(\partial_0)\) in its interior. In particular, \(\partial_0\) is contained in its interior. Here, the outermost boundary \(\partial_V(\partial_0)\) is obtained as follows. Each square in \(C_V(\partial_0)\) is labelled 1 and each square sharing a vertex with a square in \(C_V(\partial_0)\) and not belonging to \(C_V(\partial_0)\) is labelled 0. We then apply Theorem 2 of Ganesan (2015) with label 1 squares as being occupied and label 0 squares as being vacant.

Let \(G_B\) be the graph with vertex set as the centres of the squares \(\{S_k\}_k\) and edges drawn between centres of plus adjacent squares in \(\{S_k\}_k\). The cycle \(\partial_V(\partial_0) = (z_1, ..., z_t)\) in \(G_B\) satisfies the following properties:

(a) For every \(i, 1 \leq i \leq t\), the square \(Y_i = \bigcup_k \{S_k\}\) with centre \(z_i\) is in \(\Lambda_0\).

(b) If \(S_k \in C(0) \cup \Lambda_0\), then either the centre of \(S_k\) is in \(\partial_V(\partial_0)\) or \(S_k\) is contained in the interior of \(\partial_V(\partial_0)\).

Assuming (a)-(b) for the moment, we have that the sequence of squares \(L = (Y_1, ..., Y_t)\) is the desired cycle \(G_{\text{out}}\) in the statement of the theorem. Indeed, by construction it satisfies (i). Also \(L\) is a plus connected component and by Theorem 2 of Ganesan (2015), the outermost boundary \(\partial_L(\Lambda)\) of \(L\) is a single cycle. Thus (ii) is true with \(\partial_G = \partial_L(\Lambda)\) and since \(\partial_V(\partial_0)\) is contained
in the interior of \(\partial L(L) \) and (b) holds, (iii) is also true. Here and henceforth we always obtain the outermost boundary using the same labelling procedure as described in the first paragraph.

In the rest we prove (a)-(b). By definition, if a cycle satisfies (a) and (b), it must be unique. Suppose not and there are two cycles \(A_1 = (x_1, ..., x_t) \) and \(A_2 = (y_1, ..., y_l) \) in \(G_B \) that satisfy (a) and (b). If \(A_1 \neq A_2 \), then there exists a vertex \(x_j \) of \(A_1 \) not in \(A_2 \). Without loss of generality, suppose it belongs to the exterior of \(A_2 \). The corresponding square \(S_j \) with centre \(x_j \) is in \(\Lambda_0 \) but lies in the exterior of \(A_2 \), contradicting the fact that \(A_2 \) satisfies (b).

To see (a) is true, let \(\Lambda_e \subset \Lambda_0 \) be the set of vacant squares that share a vertex with some occupied square in \(C(0) \) and lie in the exterior of \(\partial_0 \). (By exterior of \(\partial_0 \), we mean exterior to every cycle in \(\partial_0 \) and a square is in the interior of \(\partial_0 \) if it is in the interior of some cycle in \(\partial_0 \).) If \(S \) is a square in \(C_V(\partial_0) \), then every corner of \(S \) either is the centre of a vacant square of \(\Lambda_e \) or is the centre of an occupied square in \(C(0) \). This is true because every square that lies in the exterior of \(\partial_0 \) and shares a vertex with \(\partial_0 \) is necessarily vacant. Also, \(\partial_V(\partial_0) \) contains \(\partial_0 \) and therefore all occupied squares of \(C(0) \) in its interior. In particular, no point in the interior of \(\partial_0 \) is in \(\partial_V(\partial_0) \). Thus, every vertex of \(\partial_V(\partial_0) \) is the centre of a vacant square in \(\Lambda_e \).

To see (b) is true, we again use the fact that \(\partial_0 \) is contained in the interior of \(\partial_V(\partial_0) \) and thus every square in \(C(0) \) is contained in the interior of \(\partial_V(\partial_0) \). Also, any vacant square in \(\Lambda_0 \setminus \Lambda_e \) that is contained in the interior of some cycle in \(\partial_0 \) is also contained in the interior of \(\partial_V(\partial_0) \). It only remains to see that no vacant square in \(\Lambda_e \) lies in the exterior of \(\partial_V(\partial_0) \). Suppose that a square in \(\Lambda_e \) lies in the exterior of \(\partial_V(\partial_0) \), then it is star adjacent to some occupied square \(S \) in \(C(0) \). But this means that some point in \(\partial_0 \) either lies in the exterior of \(\partial_V(\partial_0) \) or intersects \(\partial_V(\partial_0) \), a contradiction since \(\partial_V(\partial_0) \) satisfies:

Every point in \(\partial_V(\partial_0) \) is at a distance of at least 0.5 from \(\partial_0 \). \hspace{1cm} (2.1)

This completes the proof of the theorem.

To see (2.1) is true, let \(v_1 \) and \(v_2 \) be centres of two plus adjacent vacant squares \(W_1 \) and \(W_2 \) in \(\Lambda_e \). Both \(v_1 \) and \(v_2 \) are at least a distance of 0.5 from any point in \(\partial_0 \). If the edge \(e \) common to \(W_1 \) and \(W_2 \) belongs to some cycle \(C \) in \(\partial_0 \), then either \(W_1 \) or \(W_2 \) is contained in the interior of \(C \), a contradiction. Thus every point in the edge joining \(v_1 \) and \(v_2 \) is at a distance of at least 0.5 from \(\partial_0 \). Since \(\partial_V(\partial_0) \) consists only of edges joining centres of vacant squares in \(\Lambda_e \), this proves (2.1).
3 Proof of Theorem 2

Proof of Theorem 2: Let G_C^+ denote the graph with vertex set as corners of squares of $C^+(0)$ and edge set as edges of such squares. Let $\partial_0^+ = (e_1, ..., e_t)$ be the outermost boundary cycle in G_C^+ for the component $C^+(0)$ obtained from Theorem 2 of Ganesan (2015) and let v_i be the end vertex common to e_i and e_{i+1} for $1 \leq i \leq t$ and v_t be the end vertex common to e_t and e_1.

We first obtain the outermost boundary ∂_H in (ii) of the statement of the theorem, containing all vacant squares of Λ^+_0 in its interior and then use ∂_H to obtain the corresponding star connected $S-$cycle H_{out}. Let Λ^+_1 be the set of all vacant squares in Λ^+_0 that lie in the exterior of ∂_0^+ and let $\Lambda^+_2 = \{W_i\}_{1 \leq i \leq t}$ be the squares in Λ^+_1 such that W_i shares edge e_i with ∂_0^+. Let D_i denote the cycle formed by joining all squares in Λ^+_1 that share an edge with W_i. We use the following properties below.

Every square in Λ^+_1 is contained in some D_i, $1 \leq i \leq n$. (3.2)

The cycle D_i contains the edge e_i. (3.3)

To see (3.2) is true, we note that every square in Λ^+_1 shares an edge with some square in Λ^+_2. Suppose that $S \in \Lambda^+_1$ shares only a vertex v_j with ∂_0^+. The square W_j is attached to edge e_j and necessarily shares an edge with S.

To see (3.3) is true, we note that e_i is adjacent to an occupied square and W_i and therefore cannot be in the interior of D_i, which only consists of vacant squares.

To obtain ∂_H, we proceed iteratively and let $C_0 = \partial_0^+ = (e_1, ..., e_t)$. Before the iteration begins, all the vacant squares in D_1 are contained in the exterior of ∂_0^+. Also the cycles D_1 and C_0 share the edge e_1 and thus at least two points in common. We merge D_1 and C_0 using Theorem 3 of Ganesan (2015) to obtain a new cycle C_1 that contains e_1 in its interior. This is true because both the squares (one occupied and one vacant) that share e_1 are now in the interior of C_1. At the first step of the iteration, we check if $e_2 \in C_1$. If so, then since e_2 is a boundary edge, it is attached an occupied square in the interior of C_1 and the vacant square W_2 in the exterior. We merge C_1 and D_2 and obtain a new cycle C_2. The edge e_2 now belongs to the interior of C_2.

If $e_2 \notin C_1$, it belongs to the interior of C_1. We then check if all squares of D_2 are in the interior of C_1 and if so, we set $C_1 = C_2$ and finish this iteration step. Else, let Y_1, Y_2 and Y_3 be the squares that are plus adjacent to W_2 and share edges g_1, g_2 and g_3, respectively with W_2 and let X_2 be the
occupied square of $C^+(0)$ that shares e_2 with W_2. If Y_1 lies in the exterior of C_1, then necessarily $g_1 \in C_1$ and thus has two vertices in common with C_1. If further $Y_1 \in \Lambda_1^+$, we merge Y_1 with C_1 using Theorem 3 of Ganesan (2015) to obtain a new cycle C'_1. Using C'_1, we do the same for Y_2 to get a new cycle C''_1 and we do the above for Y_3 to obtain a final cycle C_2. This completes the the iteration step and in the next iteration step, we then repeat the above procedure with e_3 and C_2.

Continuing this way we get final a single cycle D_{fin} and by construction, it satisfies the following properties:

(a1) The cycle D_{fin} contains only edges of vacant squares in Λ_1^+.

(a2) Every edge of the outermost boundary ∂_0^+ lies in the interior of D_{fin}.

(a3) For each $i, 1 \leq i \leq t$, the interior of D_i is contained in the interior of D_{fin}.

From (a2) we know that ∂_0^+ and therefore all squares contained in the interior of ∂_0^+, are also in the interior of D_{fin}. In addition, using (a3) and (3.2), we have

Every square in $C^+(0) \cup \Lambda_0^+$ is contained in the interior of D_{fin}. (3.4)

The cycle D_{fin} is unique in the sense that if any cycle C satisfies (a1) and (3.4), then $C = D_{fin}$. To see this is true, suppose there is a cycle C distinct from D_{fin} that satisfies (a1) and (3.4) and suppose C contains an edge e in the exterior of D_{fin}. The edge e is adjacent to two squares $Z_{e,1}$ and $Z_{e,2}$ both of which lie in the exterior of D_{fin}. Moreover, at least one of $Z_{e,1}$ or $Z_{e,2}$ is a vacant square in Λ_1^+. But D_{fin} satisfies (3.4) and therefore e cannot be an edge of a square in $C^+(0) \cup \Lambda_0^+$, a contradiction.

To see that the cycle D_{fin} is the required ∂_H, we now use D_{fin} to obtain the star connected S–cycle H_{out}. Let the cycle $D_{fin} = (f_1, ..., f_r)$. There exists a unique square $Z_1 \in \Lambda_1^+$ that has edge f_1. Because, if two squares Z_1 and Z_1' in Λ_1^+ are attached to f_1, i.e. share the edge f_1, then necessarily one of them is in the exterior of D_{fin}. This contradicts (3.4).

Similarly there exists a unique vacant square $Z_2 \in \Lambda_1^+$ that has edge f_2. If $Z_2 = Z_1$, we proceed to f_3, else Z_2 is star adjacent to Z_1 and we add Z_2 to the existing sequence and obtain (Z_1, Z_2). Continuing this way, we obtain a final sequence of squares $L_1 = (Z_1, ..., Z_s)$ such that Z_i is star adjacent to Z_{i+1} for $1 \leq i \leq s - 1$ and Z_s is adjacent to Z_1. It only remains to see that this sequence L_1 is the desired H_{out}.

By construction, the sequence L_1 obtained is unique and (i) is also true.
The following Lemma and (3.4) imply that the sequence L_1 also satisfies (ii) and (iii).

Lemma 3. The outermost boundary $\partial_0(L_1)$ of L_1 is D_{fin}.

This completes the proof of Theorem 2. ■

Proof of Lemma 3 Let G_L denote the connected graph containing vertices as corners of squares in Λ_1^+ and edge set being the edges of squares in Λ_1^+. From Theorem 1 of Ganesan (2015), we know that the outermost boundary $\partial_0(L_1)$ is a connected union of cycles in G_L and every square in L_1 is contained in the interior of some cycle in $\partial_0(L_1)$.

By (3.4), all squares of Λ_0^+ are contained in the interior of D_{fin}. So every edge in $\partial_0(L_1)$ either belongs to D_{fin} or is contained in its interior. If there exists an edge e of D_{fin} not in $\partial_0(L_1)$, it necessarily lies in the exterior of all cycles in $\partial_0(L_1)$. Also there exists some $Z_j \in L_1$ that contains e as an edge. Thus Z_j lies in the exterior of $\partial_0(L_1)$, a contradiction. ■

Acknowledgement

I thank Professor Rahul Roy for crucial comments and NISER for my fellowship.

References

[1] B. Bollobas. (2001). *Modern Graph Theory*. Springer.

[2] B. Bollobas and O. Riordan. (2006). *Percolation*. Academic Press.

[3] G. Ganesan. (2015). Outermost boundaries for star-connected components in percolation. Arxiv Link: http://arxiv.org/abs/1508.06443

[4] M. Penrose. (2003). *Random Geometric Graphs*. Oxford.