Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Emerging respiratory tract infections 5

Emerging novel and antimicrobial-resistant respiratory tract infections: new drug development and therapeutic options

Alimuddin Zumla, Ziad A Memish, Markus Maeurer, Matthew Bates, Peter Mwaba, Jaffar A Al-Tawfiq, David W Denning, Frederick G Hayden, David S Hui

The emergence and spread of antimicrobial-resistant bacterial, viral, and fungal pathogens for which diminishing treatment options are available is of major global concern. New viral respiratory tract infections with epidemic potential, such as severe acute respiratory syndrome, swine-origin influenza A H1N1, and Middle East respiratory syndrome coronavirus infection, require development of new antiviral agents. The substantial rise in the global numbers of patients with respiratory tract infections caused by pan-antibiotic-resistant Gram-positive and Gram-negative bacteria, multidrug-resistant Mycobacterium tuberculosis, and multidazole-resistant fungi has focused attention on investments into development of new drugs and treatment regimens. Successful treatment outcomes for patients with respiratory tract infections across all health-care settings will necessitate rapid, precise diagnosis and more effective and pathogen-specific therapies. This Series paper describes the development and use of new antimicrobial agents and immune-based and host-directed therapies for a range of conventional and emerging viral, bacterial, and fungal causes of respiratory tract infections.

Introduction

The emergence of difficult-to-treat known and novel bacterial, viral, and fungal respiratory tract pathogens with epidemic potential is of major global concern. Treatment options are limited by increasing antimicrobial and antiviral resistance. However, new viral infections causing severe respiratory tract disease with pandemic potential have focused global attention. A substantial rise in the number of patients with multidrug-resistant pulmonary tuberculosis has been noted. Increasing use of immunosuppressive agents, broad-spectrum antibiotics, and antiviral agents, coupled with resistance to azoles, has led to an increase in the number of invasive pulmonary fungal infections with resultant high morbidity and mortality. Successful treatment outcomes for patients with respiratory tract infections across all health-care settings require appropriate, effective, and pathogen-specific drug or alternative treatments. We describe a range of conventional and emerging viral, bacterial, and fungal causes of respiratory tract infections for which new antimicrobial drugs and immune-based and host-directed therapies are being developed and studied.

Viral respiratory tract infections

The outbreak of severe acute respiratory syndrome coronavirus (SARS-CoV), re-emergence of avian influenza A H5N1, global circulation of oseltamivir-resistant seasonal influenza A H1N1, and subsequent emergence of the pandemic influenza A H1N1 strain pdm09 virus (which continues to circulate), have shown the potential limitations of current antiviral treatments for severe respiratory viral infections. Epidemic waves of avian influenza A H7N9, sporadic cases of avian influenza A H10N8, the ongoing outbreak of Middle East respiratory syndrome coronavirus (MERS-CoV) infection, and the burden of common respiratory viruses—such as seasonal influenza, respiratory syncytial virus, rhinoviruses, and adenoviruses—show that the development of more effective therapies to reduce morbidity and mortality is urgently needed. Research is focused on the repurposing of available antiviral drugs for generic or specific use and for
Influenza Antivirals Approved or in Advanced Clinical Development

Spectrum	Main mechanism of action	Antiviral resistance in clinical influenza isolates	Route of delivery	Pharmacokinetic features	Main adverse effects	
Amantadine	Influenza A	Inhibition of M2 ion channel function, preventing virion uncoating	Widespread*	Oral	High oral bioavailability; long plasma elimination half-life (8-12 h); renal excretion of unchanged drug; dose adjustment required in renal dysfunction	CNS effects (including confusion, seizure, and psychosis), gastrointestinal effects, hypotension
Rimantadine	Influenza A	Inhibition of M2 ion channel function, preventing virion uncoating	Widespread*	Oral	High oral bioavailability; prolonged plasma elimination half-life (2±4 h); hepatic metabolism and renal excretion; dose adjustment required in severe hepatic and renal dysfunction	Gastrointestinal effects, CNS effects (lower risk than amantadine)
Oseltamivir	Influenza A and B	Inhibition of enzymatic action of viral neuraminidase	Rare (-0.002% of community isolates)	Oral	Rapid absorption of ethyl ester prodrug (phosphate) with conversion by gastrointestinal tract, hepatic, and blood esterases to the active carboxylate; peak concentrations at 3-4 h; renal excretion of both; carboxylate plasma elimination half-life of 8-10 h; dose adjustment required in renal dysfunction and young children	Gastrointestinal effects, insomnia, CNS effects (rare); anaphylaxis, severe skin reactions (rare)
Zanamivir	Influenza A and B	Inhibition of enzymatic action of viral neuraminidase	Rare (<0.001% of community isolates)	Inhaled, nebulised, intravenous	Commercial inhaler delivers roughly 15% to lower respiratory tract; sputum concentrations detectable to 24 h; systemic bioavailability less than 20%; intravenous zanamivir excreted renally with plasma elimination half-life of roughly 2 h; dose adjustment required in renal insufficiency	Cough, bronchospasm, allergic reactions; lactose-containing commercial formulation should not be used in patients undergoing mechanical ventilation
Peramivir	Influenza A and B	Inhibition of enzymatic action of viral neuraminidase	Uncommon	Intravenous	Median peak and trough plasma concentrations of around 51 500 μg/mL and 46 μg/mL after 600 mg dose; predominantly renal excretion; dose adjustment required in renal insufficiency	Gastrointestinal and possible CNS effects; decreased polymorphonuclear counts
Laninamivir	Influenza A and B	Inhibition of enzymatic action of viral neuraminidase	Rare	Inhaled	Octanate prodrug converted to laninamivir in airway, prolonged detection in epithelial lining fluid; systemic bioavailability roughly 15%; plasma elimination half-life of around 3 days	Gastrointestinal effects, dizziness
Favipiravir(T-705)	Influenza A, B, and C and many other RNA viruses	Undergoes intracellular ribosylation and phosphorylation to active triphosphate form and selectively inhibits RNA-dependent RNA polymerase of influenza virus; also induces lethal mutagenesis	Not reported	Oral	Good oral bioavailability; parent metabolised to inactive moiety by host aldehyde oxidase and also inhibitor of aldehyde oxidase (favipiravir’s metabolic enzyme), loading dose necessary; more than 65% excreted by kidneys as metabolite by 48 h	Dose-related hyperuricaemia; restricted use in pregnancy
DAS181	Influenza A and B and parainfluenza viruses	Sialidase that destroys receptors for viral haemagglutinin; novel fusion construct that includes the catalytic domain from Actinomyces viscosus sialidase linked with an epithelium-anchoring domain of human amphiregulin; this sialidase removes both α-2,6-linked and α-2,3-linked sialic acids from cellular receptors	Not reported	Inhaled	In ex vivo human airway epithelium and human bronchial tissue, the inhibitory effect of DAS181 treatment lasts for 2 days or more; tracheobronchial delivery and degree of systemic absorption depend on particle size	Increased alkaline phosphatase because of reduced clearance; no associated increases in transaminases
Nitazoxidine	Influenza A and B and other RNA viruses	Inhibition of haemagglutinin maturation; immunomodulation and perhaps other antiviral actions	Not reported	Oral	Plasma esterases metabolise it into active desacetyl derivative tizoxanide, which undergoes glucuronidation and urinary elimination with an elimination half-life of roughly 7 h; tizoxanide is highly bound (>99%) to plasma proteins; need for dose adjustments uncertain	Gastrointestinal effects, respiratory distress

*Resistance in seasonal influenza A H3N2 and 2009 pandemic influenza A H1N1, avian influenza A H7N9, A H9N2, and A H9N2; and some influenza A H5N1 viruses. †Neuraminidase inhibitors prevent destruction of sialic-acid-bearing receptors recognised by influenza A and B virus haemagglutinins. This action blocks virus from being released from infected cells and spreading through respiratory secretions to initiate new cycles of replication. Neuraminidase inhibitors might also inhibit virus binding to cells. ✡Except seasonal influenza A H1N1 during 2007–09. §Approved in China, Japan, and South Korea. ¶Approved in Japan. ||Approved in Japan for treatment of novel or re-emerging influenza virus infections (restricted to cases in which other anti-influenza drugs are ineffective or not sufficiently effective).

Table 1: Influenza antivirals approved or in advanced clinical development
Influenza viruses

Drugs

Two classes of antiviral drugs are approved for the prevention and treatment of influenza in most countries: M2 inhibitors (amantadine and rimantadine) and neuraminidase inhibitors (oseltamivir, peramivir, zanamivir, and laninamivir; table 1).12,44 In general, antiviral treatment is indicated as early as possible for any patient with confirmed or suspected influenza who has severe, complicated, or progressive illness or is admitted to hospital, and in outpatients at higher risk of influenza complications.13,13 Time to treatment after onset of symptoms, illness severity, and extent of viral replication are key variables with respect to response. Starting of treatment should not be delayed for diagnostic testing. M2 inhibitors—also known as adamantanes—are ineffective against influenza B viruses and recently circulating influenza A H3N2 and 2009 pandemic influenza A H1N1 viruses, which are resistant because of an S31N mutation in the M2 ion channel.12 However, a proportion of avian influenza A H5N1 strains will be susceptible,38 and the combined use of an adamantane and a neuraminidase inhibitor improves antiviral activity for susceptible isolates.13

Two neuraminidase inhibitors are approved for use in most countries: oseltamivir and zanamivir. Laninamivir is approved for use in Japan only, and peramivir in China, Japan, and South Korea. Several observational studies have shown that when adults admitted to hospital with severe influenza are given oseltamivir, mortality falls and clinical outcomes improve, especially when treatment is initiated within 2 days of the onset of symptoms (but positive effects are noted when it is begun as late as 4–5 days after onset).12,13,14,15 Osel tamivir reduces mortality in influenza A H5N1 infection when given before the onset of respiratory failure,3 and might be beneficial when started as late as 6–8 days after symptom onset.37 Patients admitted to hospital with severe influenza A H7N9 infection, reduction of viral load after treatment with oseltamivir correlated with improved outcome, whereas the emergence of virus resistant to neuraminidase inhibitors that harbours an Arg292Lys substitution is associated with poor outcomes and poor response to oseltamivir and peramivir.39

The standard duration of oseltamivir treatment is 5 days; longer treatment is recommended for critically ill patients with respiratory failure, who often have prolonged viral replication in the lower respiratory tract despite treatment.40 Whether increased doses provide greater antiviral effects in such patients is under investigation. A randomised controlled trial41 of patients in hospital (76% of whom were children) showed no virological or clinical advantages when a double dose of oseltamivir was given rather than a standard dose. No additional benefit was noted with high-dose oseltamivir in adults admitted with influenza A, although a faster virological response was noted in those with influenza B.42 However, in a randomised controlled trial43 of 18 critically ill patients with 2009 pandemic influenza A H1N1, a triple-dose oseltamivir regimen was associated with significantly higher proportions of viral clearance at 5 days than was standard therapy (78% vs 11%; p=0·015).44 Studies of intravenous neuraminidase inhibitors that are underway should provide further data on the value of high-dose therapy.

Zanamivir and laninamivir have generally similar profiles of susceptibility. For example, the His175 Tyr mutation confers high-level resistance to oseltamivir carboxylate and reduced susceptibility to peramivir in N1-containing viruses but does not substantially diminish susceptibility to zanamivir and laninamivir.45 Inhaled laninamivir has not been studied in detail in severely ill patients or those admitted to hospital, in whom effective delivery to sites of viral replication and tolerability could be an issue. By contrast, intravenous zanamivir has been used widely on a compassionate basis since the 2009 H1N1 pandemic, particularly for late treatment of critically ill adults with 2009 pandemic influenza A H1N1 virus infection and those with suspected or proven oseltamivir resistance.46 One trial47 has shown no drug-related trends in safety measures, and a subset of 93 patients positive at baseline for influenza showed a median decrease in nasopharyngeal viral RNA load of 1·42 log10 copies per mL after 2 days of treatment. A phase 3 trial in patients who have been admitted to hospital is underway (NCT01014988). A phase 2 randomised controlled trial of inhaled laninamivir in uncomplicated influenza failed to show superiority in illness alleviation (primary endpoint) compared with placebo. The trial, involving 639 patients, tested 40 mg and 80 mg doses of the inhaled drug. The median time to alleviate flu symptoms was 102·3 h for the 40 mg dose and 103·2 h for the 80 mg dose, compared with 104·1 h for the placebo (NCT01793883).

DAS181 has host-directed receptor-destroying action, which is inhibitory for parainfluenza and influenza viruses, including those resistant to amino adamantanes and neuraminidase inhibitors.48 When delivered topically, it is effective in animal models of lethal influenza caused by the H5N1 and H7N9 viruses, including the neuraminidase-inhibitor-resistant Arg292Lys-containing variant.49 In a phase 2 randomised controlled trial,50 inhaled DAS181 reduced pharyngeal viral replication in uncomplicated influenza but did not reduce nasal viral loads or improve clinical outcomes. Case reports51 suggest that inhaled or nebulised DAS181 might be effective in immunocompromised hosts with severe parainfluenza lung disease.

Favipiravir (T-705; 6-fluoro-3-hydroxy-2-pyrazine-carboxamide) is active against influenza A, B, and C viruses, including strains resistant to approved antivirals, and a broad range of other RNA viruses when given at...
somewhat higher concentrations. Combinations of favipiravir and neuraminidase inhibitors have additive and synergistic effects in preclinical models, but clinical trials have been restricted to uncomplicated influenza so far. These clinical trials (combination amantadine, ribavirin, and oseltamivir vs oseltamivir monotherapy [NCT01227969], nitazoxanide vs oseltamivir vs combination oseltamivir vs placebo [NCT01610245], favipiravir vs placebo randomised controlled trial in outpatients [NCT02008344, NCT0206349]), which have not been published, suggest that favipiravir has antiviral effects similar to those of oseltamivir. A randomised controlled trial showed that favipiravir shortened the time to alleviation of influenza symptoms by about 15 hours compared with placebo, and further studies are underway.

Nitazoxanide is an oral antiparasitic drug with immunomodulatory effects, including upregulation of interferon and various interferon-inducible genes and a specific influenza-inhibitory effect related to blockade of haemagglutinin maturation. Nitazoxanide inhibits influenza replication in vitro and in a phase 2 randomised controlled trial had significant antiviral effects (1·0 log$_{10}$ reduction in nasal viral loads) and resulted in a significantly faster time to alleviation of illness (roughly 20 h difference in medians from placebo) in uncomplicated influenza. A placebo-controlled randomised trial of nitazoxanide versus oseltamivir—and the combination thereof—in uncomplicated influenza and a hospital-based study of its use in severe respiratory illness are in progress (NCT01610245).

Immune-based treatments for influenza

Non-randomly assigned studies and case reports suggest that convalescent plasma with neutralising antibodies is a useful add-on therapy for patients with SARS and severe influenza pneumonia, including that caused by influenza A H5N1. A recently published systematic review of available SARS and influenza treatment studies employing convalescent plasma or serum found a significant overall mortality benefit. A prospective observational study showed lower crude mortality and faster nasopharyngeal viral clearance in plasma-treated patients who were admitted with severe 2009 pandemic influenza A H1N1 infection, whereas in a randomised controlled trial a reduction in mortality was reported in severe illness when hyperimmune globulin was given within 5 days of the onset of symptoms (table 2). Heterosubtypic haemagglutinin stem-neutralising antibodies, which are highly effective in animals, are entering clinical evaluation in human beings.

Combinations of antivirals

The combination of antivirals with different mechanisms of actions (eg, a neuraminidase inhibitor with a polymerase inhibitor such as favipiravir, a broad-spectrum anti-haemagglutinin-neutralising antibody, or nitazoxanide) for the management of severe forms of influenza or infections in immunocompromised hosts is the subject of ongoing study. The use of various antiviral drug combinations to improve antiviral potency, reduce the

Table 2: Representative clinical effectiveness studies of combination influenza therapeutics, by study

Study type	Target population	Combination (number treated)	Comparator (number treated)	Outcomes/comments	
Ison et ala	Double-blind RCT	Adults in hospital with influenza-associated lower respiratory tract illness	Oral oseltamivir and inhaled zanamivir (20)	Oral oseltamivir and inhaled saline (21)	Post-hoc analysis showed faster cough resolution but no significant differences in the proportion of patients shedding virus by treatment day 3 (57% zanamivir plus oseltamivir, 67% placebo plus oseltamivir), or in the durations of hospitalisation and supplemental oxygen use. Underpowered because of low enrolment.
Duval et ala	Double-blind RCT	Adult outpatients with uncomplicated seasonal influenza	Oral oseltamivir and inhaled zanamivir (157)	Oral oseltamivir (141) or inhaled zanamivir (149)	Slower virological and clinical responses in those given combined therapy compared with those given oseltamivir alone.
Kim et ala	Retrospective, observational	Critically ill patients with 2009 pandemic influenza A H1N1	Oral amantadine, ribavirin, and oseltamivir (24)	Oral oseltamivir (103)	Non-significant trends towards lower 14 day (17% vs 35%, p=0.08) and 90 day (46% vs 59%, p=0.23) mortality in combination recipients than in those receiving oseltamivir alone. No virology data.
Hung et ala	Prospective, observational	Critically ill patients with 2009 pandemic influenza A H1N1	Convalescent plasma and oral oseltamivir (20)	Oral oseltamivir (73)	Crude mortality in the plasma group significantly lower than that in the control group (20.0% vs 44.8%, p=0.03). Faster nasopharyngeal viral clearance.
Hung et ala	Double-blind RCT	Critically ill patients with 2009 pandemic influenza A H1N1	Oral oseltamivir (103)	Oral oseltamivir (20)	Non-significant trends towards lower 14 day (17% vs 35%, p=0.08) and 90 day (46% vs 59%, p=0.23) mortality in combination recipients than in those given oseltamivir alone.
Wang et ala	Open-label RCT	Critically ill patients with 2009 pandemic influenza A H1N1	Sirolimus, oseltamivir, and corticosteroids (19)	Oseltamivir and corticosteroids (19)	More rapid improvement in partial pressure of oxygen, fraction of inspired oxygen, and sequential organ failure assessment scores; shorter ventilator use (median 7 days vs 15 days, p=0.03); and faster viral clearance in the sirolimus than in the control group.

RCT=randomised controlled trial.
Antivirals combined with host-directed therapies

Host-directed therapies aim to reduce the damaging consequences of the host immune response to the pathogen. Combinations of antivirals with host-directed therapies such as the immunomodulator sirolimus, an mTOR inhibitor that blocks host pathways needed for viral replication (table 2), might also enhance antiviral activity. Other host-directed therapies inhibiting cellular targets needed for efficient viral replication (eg, the Raf–MEK–ERK mitogenic kinase cascade and the IKK–NF-κB module) might provide future options for clinical testing.

The role of adjunctive immunomodulatory therapies in severe influenza and other respiratory viral infections remains uncertain. Several observational studies show that systemic corticosteroids given for 2009 pandemic influenza A H1N1-associated viral pneumonia increased the risk of mortality and morbidity (eg, secondary infections), especially when there was a delay in initiation, or absence of, effective antiviral therapy. Their use might delay viral clearance and increase the risk of the emergence of resistance and fungal infections.

Other potential adjunctive therapies for influenza include intravenous immunoglobulin, N-acetylcysteine, statins, macrolides, peroxisome proliferator-activated receptor agonists, celecoxib, mesalazine, plasmapheresis, and haemoperfusion. Chloroquine was effective against influenza A H5N1 infection in one animal model but was ineffective in other animal models and one human randomised controlled trial.

MERS-CoV infection

Interferons

MERS-CoV infection can cause severe respiratory disease, and has higher mortality in those with medical comorbidities. Although empirical treatment with a range of antivirals has been tried for severe respiratory tract infections caused by MERS-CoV and SARS-CoV, no regimens have been rigorously assessed in clinical trials (panel). MERS-CoV elicits attenuated innate immune responses with delayed proinflammatory cytokine induction in cell culture and in vivo. It is also readily inhibited by type 1 interferons (interferon alfa and especially interferon beta), suggesting a potential therapeutic use for interferons. Early pegylated interferon alfa therapy was effective in a SARS primate model, and treatment with interferon-alfa-consensus-1 plus systemic corticosteroids was associated with improved oxygen saturation and more rapid resolution of radiographic lung opacities than were systemic corticosteroids alone in an uncontrolled study of patients with SARS patients. Further studies of interferons in MERS-CoV seem warranted.

Antiviral drugs

Ribavirin was used extensively in patients with SARS without any beneficial effects and was complicated by haemolytic anaemia and metabolic disturbances in many cases. A combination of interferon alfa 2b and ribavirin reduced lung injury and moderately decreased viral replication (<1·0 log₁₀ reduction in lung titres) when given to rhesus macaques within 8 h of inoculation with MERS-CoV. The treatment combination was given to several severely ill patients with MERS, but the infections proved fatal, probably because of late administration in the advanced stage of the disease.

Ribavirin has in-vitro inhibitory effects against MERS-CoV. The inhibitory concentrations of ribavirin are very high for MERS-CoV and exceed those that can be achieved with usual dosing regimens, except possibly peak concentrations after high intravenous doses.
The use of protease inhibitors with lopinavir and ritonavir as initial therapy in SARS was associated with significantly less death (2·3% vs 15·6%, p=0·05) and intubation (9% vs 11·0%, p<0·05) than was use of ribavirin alone in a matched historical cohort (n=44 for lopinavir and ritonavir as initial treatment vs n=634 for the matched historical cohort). However, one study reported that nelfinavir and lopinavir have high 50% effective inhibitory concentrations (EC50) against MERS-CoV in vitro, whereas another found inhibition with lopinavir at clinically achievable concentrations.

Immunomodulatory and immune-based therapies

Several drugs have shown inhibitory effects against MERS-CoV in cell cultures, including interferons, ciclosporin, and mycophenolic acid. Mycophenolic acid was inhibitory at clinically achievable concentrations, and the combination of mycophenolic acid and interferon β1b lowered the EC50 of each drug by one-to-three times.

Dipeptidyl peptidase 4 (DPP4), also known as CD26, is a functional receptor for MERS-CoV, and an anti-CD26 polyclonal antibody showed in-vitro inhibitory effects on MERS-CoV. By contrast, inhibitors of the enzymatic action of DPP4 (eg, gliptins) did not inhibit viral replication.

Timely administration of neutralising antibodies could have a high likelihood of therapeutic success. Treatment with convalescent plasma (from patients who have recovered from SARS-CoV infection) containing high levels of neutralising antibody within 2 weeks of illness onset resulted in a higher proportion of discharges at day 22 than did treatment more than 14 days after onset (58% vs 16%, p<0·001). Some patients who survived MERS-CoV infection had high concentrations of neutralising antibody and convalescent plasma, if available, might provide a good treatment option for other severe cases.

Systemic corticosteroids have been used empirically frequently in SARS and MERS-CoV infections to dampen immunopathological host responses. However, survival benefit is unclear and a randomised controlled trial done in Hong Kong showed that systemic corticosteroids could delay viral clearance in SARS. A retrospective analysis showed worse outcomes when systemic corticosteroids were given in SARS. Consequently, their use should be avoided unless a carefully controlled prospective study is done to test their effectiveness when combined with an antiviral. Several observational studies have shown that systemic corticosteroids given for 2009 pandemic influenza A H1N1-associated viral pneumonia or acute respiratory distress syndrome increased the risk of mortality and morbidity (eg, secondary bacterial or fungal infections), especially if there is delay or lack of effective antiviral therapy.

Use of systemic corticosteroids has probably contributed to delayed viral clearance and emergence of antiviral resistance in patients with severe influenza A H7N9 infection requiring extracorporeal membrane oxygenation. Influenza increases the risk of invasive aspergillosis, especially among immunocompromised patients, and this is often a silent infection in the early stages, so direct surveillance with aspergillus antigen and PCR testing on respiratory secretions is advisable. Patients treated for fungal infections will have to undergo antifungal therapeutic drug monitoring.

Data are insufficient to support routine use of any of the immune therapies. Better animal data and careful systematic clinical studies, including serial virological measurements of priority treatments such as convalescent plasma and interferons (and randomised controlled trials if case numbers are sufficient), are needed. Currently, clinical management of patients with severe respiratory tract infections due to MERS-CoV largely relies on meticulous intensive care supportive treatment and prevention of complications.

Host-directed therapy for viral infections

T-cell therapy

Research done in patients with haemopoietic stem-cell transplants shows that adoptive transfer of antigen-specific T cells can restore protective immunity and prevent or reverse disease due to opportunistic viral infections such as cytomegalovirus. In transplant recipients, transfer of donor-derived T cells can result in resolution of infection through expansion of virus-specific T cells, with associated clinical improvement. Transfer of donor T cells is associated with the risk of severe acute graft-versus-host disease, and thus most T-cell therapies have been done in patients who have low lymphocyte counts. Lymphopenia enables only a very low number of T cells to be transferred, which then proliferate in lymphopenic hosts, most likely as a result of the interleukins 7 and 15 if the patient does not receive immunosuppressive treatment during T-cell therapy.

T-cell therapy targeting cytomegalovirus strains resistant to drug treatment is clinically relevant in lung transplant recipients. T-cell expansion requires time to induce clinical regression of viral infection. Several other approaches might be applicable in situations that necessitate fast clinical action—eg, use of synthetic MHC antigens loaded with the relevant peptide from the pathogen of interest (so-called tetramer or multimer MHC–peptide complexes), which engage pathogen-specific lymphocytes expressing the pathogen-specific T-cell receptors. Pathogen-specific T cells can be isolated through use of soluble MHC–peptide complexes, and can immediately be transferred into patients for salvage treatments for viral infections. T-cell expansion can also be achieved with several stimuli targeting several infectious pathogens. Expansion of T cells targeting several antigens of cytomegalovirus, Epstein-Barr virus, and adenovirus provides broad antiviral specificity after stem-cell transplantation. An alternative approach to

www.thelancet.com/infection Vol 14 November 2014 1141
become independent of ex-vivo expansion of T cells is the identification of T-cell receptors that would recognise viral infected cells that could be transferred into recipient effector cells. T cells can also be engineered to produce an antiviral RNA that would block viral infection.

Antisense molecules

Synthetic antisense molecules, such as phosphorodiamidate morpholino oligomers, are structurally similar to RNA but the phosphodiester linkage is replaced with a neutral phosphorodiamidate linkage and the ribose ring with a six-membered morpholino ring. They change gene expression by inhibiting translation, disrupting RNA secondary structure, and interfering with pre-mRNA splicing. The usefulness of phosphorodiamidate morpholino oligomers coupled to arginine-rich cell-penetrating peptides has been repeatedly demonstrated against bacterial pathogens and could be a viable option for any microbial gene of interest.

Specific antibody therapy

Specific biological therapy for infectious pathogens targets not only drug-resistant pathogens but also their immune evasion mechanisms. An antibody directed against CD19 (a B-cell marker) fused to a T-cell signalling molecule can be expressed in T cells and could kill target cells once they encounter their nominal target antigen. Such CD19 chimeric-antigen-receptor cells are used to remove Epstein-Barr-virus-positive lymphoma cells in the case of post-transplantation proliferative diseases. Similar approaches can be used for the effective removal of pathogen-infected cells when very specific antibodies exist and if target molecules are expressed on infected cells only.

Antibiotic-resistant bacterial respiratory tract infections

The frequency and spectrum of resistance to antibiotics in specific bacterial pathogens that cause respiratory tract infections continues to increase worryingly. Multidrug-resistant *Streptococcus pneumoniae*—with resistance to three or more antibiotics—was initially noted in 1977 in South Africa and subsequently in many other countries, with alarming rates of 30–50% of *S pneumoniae* that are multidrug resistant in the USA and Spain. The European Antimicrobial Resistance Surveillance System showed that 22-26% of *S pneumoniae* were intermediate penicillin susceptible, 10-9% were penicillin resistant, and 21-1% were resistant to erythromycin.

Concerns about multidrug-resistant and pan-antibiotic-resistant Gram-negative bacteria are focused on *Klebsiella pneumoniae*, *Enterobacter* spp (production of extended spectrum β-lactamase, *Klebsiella pneumoniae* carbapenemase, NDM1, and AmpC), *Acinetobacter baumannii*, and *Pseudomonas aeruginosa*. In one survey of US health centres, 78% of Gram-negative bacteria were resistant to all antibiotics except colistin (to which 62% of *Acinetobacter* spp, 59% of *Pseudomonas* spp, and 52% of *Enterobacter* spp were resistant). Therapeutic options to treat these infections are limited.

Carbapenems are recommended for organisms that produce extended-spectrum β-lactamases. In a meta-analysis, doripenem was more effective for *P aeruginosa* infections than were comparators in a modified intention-to-treat analyses. Polymyxin B and colistin are concentration-dependent bactericidal agents that bind to bacterial cell membranes and have reliable activity against *Acinetobacter* spp. Novel β-lactamase inhibitors and antibiotic combination therapies might provide stopgap measures for fulfilling clinical need. Antibiotic development pipelines remain thin, and global attention is focused on increasing awareness for investments into the development of new antibacterial agents and other antibacterial innovations, coupled to raising global awareness for more prudent use of available drugs.

Multidrug-resistant pulmonary tuberculosis incidence

In 2012, an estimated 1.3 million people died worldwide from tuberculosis, 170,000 of whom had multidrug-resistant disease. Multidrug-resistant tuberculosis, which is caused by *Mycobacterium tuberculosis* bacilli resistant to at least isoniazid and rifampicin, is now widespread globally, with an estimated half a million cases in 2012. Extensively drug-resistant tuberculosis—resistance to rifampicin, isoniazid, any fluoroquinolone, and at least one of the three injectable second-line drugs, amikacin, kanamycin, and capreomycin—has been reported in 92 countries. WHO recommends use of second-line drugs for 18–24 months or longer for extensively drug-resistant or multidrug-resistant disease. Treatment success rates are low in both individualised and standard regimens and new drugs and regimens are needed.

New drugs pipeline

In the past 5 years, a promising pipeline of new drugs for the treatment of multidrug-resistant and extensively drug-resistant tuberculosis has emerged. Progress has been made by repurposing drugs that are already available, including re-engineering existing antibacterial compounds and redesigning scaffolds, leading to discovery of new compounds. Two new drugs, delamanid (OPC-67683) and bedaquiline (TMC207 or delamanid (OPC-67683) and bedaquiline (TMC207 or R207910), have been approved by regulatory authorities. These new drugs are combined with older drugs to treat multidrug-resistant disease.

Host-directed adjunct therapies

Several approaches to rational development of adjunct immune-based therapies for multidrug-resistant tuberculosis have been developed. Non-steroidal anti-inflammatory drugs can reduce *M tuberculosis* load and use.
alleviate lung disease in mice. Efflux pump inhibitors such as verapamil and reserpine reduce macrophage-induced drug tolerance, and thus could be used as adjunct host-directed therapies. Phosphodiesterase inhibitors such as cilostazol and sildenafil improve mycobacterial clearance and decrease time to sterilisation by reducing tissue inflammation.

A range of adjunct immunotherapy approaches implicating cytokines or their inhibitors and other biological immunomodulatory compounds are being assessed as means to limit damage from inflammatory responses against M tuberculosis. Various cytokine regimens, including interferon c or interleukin 2, have been assessed, with variable effect. The anti-inflammatory effects of macrolide antibiotics need to be further studied. Whole genome sequencing might allow for rapid determination of resistance patterns of M tuberculosis strains, enabling tailored treatment regimens. Other immunomodulatory strategies include restoration of effective antipathogen-directed immunoresponses—and consequent decreasing of damaging host responses in lung tissues—in multidrug-resistant tuberculosis with infusions of the patient’s own bone-marrow-derived stromal cells. A phase 1 trial showed that the procedure is safe, and phase 2 trials are planned to assess the effects of mesenchymal stromal cell adjunct therapy on clinical and microbiological outcomes.

Fungal respiratory tract infections

Frequency

Invasive fungal respiratory tract infections are increasingly reported worldwide (table 3). The two most common pulmonary fungal pathogens are Aspergillus fumigatus and Pneumocystis jirovecii. They increasingly represent primary causes of morbidity and mortality in critically ill patients across Europe, Africa, and Asia as a result of more people living with HIV, increased use of immunomodulatory drugs in patients with cancer, transplantations, and use of broad-spectrum antibiotics. Some patients with relapsed or microbiologically unconfirmed multidrug-resistant tuberculosis have alternative diagnoses, including chronic pulmonary aspergillosis, and more comprehensive searches for alternative fungal diagnoses in smear and culture negative cases should be done in patients with multidrug-resistant disease.

Invasive pulmonary aspergillosis

Aspergillosis is the most important fungal cause of invasive pulmonary disease, and A fumigatus is the cause in more than 75% of cases. Voriconazole is the most effective treatment for invasive aspergillosis but resistance has been noted on all continents except South America. Widespread use of the azoles as fungicides in agriculture has led to the environmental development of pan-azole resistance. Resistance can also emerge during treatment, typically to itraconazole, and is possibly linked to a combination of low blood concentrations of the drug and high fungal loads.

Modelling suggests that more than 6.5 million people have severe asthma with fungal sensitisations, as much as 50% of adults with asthma who attend secondary care have fungal sensitisation, and an estimated 4.8 million adults have allergic bronchopulmonary aspergillosis. People with asthma who are sensitised to A fumigatus have a much higher rate of bronchiectasis than do those who are unsensitised. Reclassification of aspergillosis in adults with cystic fibrosis by aspergillus serology (IgE and IgG) and both PCR and antigen on sputum showed three distinct classes of aspergillosis. 18% had allergic bronchopulmonary disease, 15% had aspergillus sensitisation, and 30% had aspergillus bronchiectasis; the remaining patients had no disease. Long-term oral antifungal therapy is beneficial for 60–80% of patients with asthma, but is of unproven benefit in cystic fibrosis. Resistance in A fumigatus has been reported throughout Europe in roughly 4% of samples from patients with cystic fibrosis.

Disseminated Emmonsia spp infections

A new fungus causing disseminated infections in patients with AIDS was identified in 2009. Molecular identification on the basis of ITS1 and ITS2 sequencing showed that all isolates of this new species were tightly clustered and were most similar to Emmonsia pasteuriana and Emmonsia parva, and slightly more distantly related to Histoplasma capsulatum. Clinical features of infection included fever, loss of weight, anaemia, skin lesions akin to those in disseminated histoplasmosis, and a chest radiograph similar to that noted in pulmonary tuberculosis. The fungus was cultured from skin and blood, but not sputum or CSF. Significant clinical responses were noted when patients were given intravenous amphotericin B followed by itraconazole.

Advances in antifungal therapy

A large combination study of voriconazole and anidulafungin for invasive aspergillosis in 177 patients lead to an improved outcome compared with monotherapy. Voriconazole and caspofungin have been used in phase 3 trials in combination with liposomal amphotericin B in aspergillosis. Echinocandins have been assessed in combination with itraconazole in disseminated histoplasmosis and cryptococcosis, with no improvement in outcome compared with the current standard of care. Voriconazole in combination with caspofungin has been shown to be superior to voriconazole alone in invasive aspergillosis. Voriconazole in combination with anidulafungin has shown some activity in disseminated histoplasmosis.

Table 3: Frequency and mortality of common fungal pulmonary infections

Aspergillosis	Pneumocystis jirovecii pneumonia														
Incidence (per 100 000)	**Prevalence (per 100 000)**	**Global burden**	**Untreated mortality**	**Treated mortality**											
Invasive	Chronic	Allergic bronchopulmonary aspergillosis	Invasive	Chronic	Unknown	5.6	-200 000	-3 000 000	4 800 000	-4 000 000	-100%	-30%*	<1%	30-90%	10-20% or 50%†
8.6	10.4	Unknown	5.6	-200 000	-3 000 000	4 800 000	-4 000 000	-100%	-30%*	<1%	30-90%	10-20% or 50%†			

Severe asthma with fungal sensitisation is not included. Annual incidence and prevalence quoted for aspergillosis refer to European data; those for P jiroveci pneumonia are global data. 12 month mortality. †Mortality is lower in patients with AIDS than in other immunocompromised patients.
did not reach its primary endpoint of reduced mortality, although patients with positive galactomannan seemed to benefit most. Guidelines for management of invasive aspergillus still favour voriconazole over all other treatments and combination therapy is not usually recommended. A tablet formulation of posaconazole, which is more bioavailable than the oral suspension, is available and can be given once a day, and the US Food and Drug Administration has approved an intravenous suspension of the drug. The only new drug to be approved is isavuconazole, a broad-spectrum azole, which has antifungal activity, which is synergistic with that of azoles. Several approaches have been used to obtain these pathogen-specific T cells. Anti-pathogen-specific T cells can be expanded ex vivo under appropriate conditions (usually with the help of recombinant cytokines, synthetic peptides, or cellular components representing the pathogen). Responder T cells are identified by interferon-γ production, removed via an interferon-capture assay, and transferred into the patient. This approach requires time for expansion of T cells (either the patient’s own or those of an MHC-matched donor). This protocol enabled the expansion of Aspergillus spp, Candida spp,
and *Mucor* spp-reactive T cells defined by interferon-γ production. Upon re-encounter with the nominal target antigen, the T cells proliferated and increased the antifungal reactivity of phagocytes. 1,12

Conclusion

New and antimicrobial-resistant species of bacteria, viruses, and fungi continue to emerge because of the remarkable genetic and adaptable plasticity of the microbiota. 1,13 Respiratory tract infections are among the top two causes of death globally. 1,14,15 Microorganisms do not respect international boundaries, and ease of travel and airborne spread make them a threat to global health security. The increasing frequency of antibiotic resistance and limited therapeutic options emphasise the urgent need for more international cooperation to tackle new emerging microbial threats and multidrug-resistant microbes. Development of new therapeutic options needs to be coupled to international regulations on the use and prescription of antimicrobial drugs.

Contributors

DSH and AZ coordinated the writing of this Series paper and wrote the draft outline, and subsequent and final drafts. All authors contributed relevant text and tables on their expert sections or sections and contributed to finalising the paper.

Declaration of interests

FGH has served as non-paid consultant for multiple companies engaged in marketing and/or clinical development of antivirals for respiratory viral infections including several whose therapeutics are discussed in this review (Adamas, Biocryst, GSK, Genentech, Janssen, Roche, Romark, Toyama/Medivector, Visterra). DWD holds founder shares in FZG2, a University of Manchester spin-out company. He acts as a consultant to Trinity Group, T2 Biosystems, GlaxoSmithKline, Sigma Tau. Onum Epidemiology, and has consulted for Merck and Astellas and he has been paid to give talks on behalf of Astellas, Gilead, and Pfizer. All other authors declare no conflicts of interest.

Acknowledgments

AZ acknowledges support from the European Union FP7 Rid-RTI programme grant; European Developing Countries Clinical trials Partnership (EDCTP) TB NEAT, PANACEA, and REMos grants; UBS Optimus Foundation, Switzerland; and National Institute for Health Research Biomedical Research Centre, University College London Hospital, London, UK. DWD receives grant support from the National Institute of Allergy and Infectious Diseases, National Institute of Health Research, the European Union, and the Fungal Infection Trust. MM acknowledges support from the Swedish Heart and Lung Foundation, Vinnova, Vetenskapsrådet (Swedish Research Council), and EDCTP. Adam Zumla, UCL School of Pharmacy, kindly provided technical and administrative support.

References

1. Al-Tawfiq JA, Zumla A, Gautret P, et al. Surveillance for emerging respiratory viruses. *Lancet Infect Dis* 2014; published online Sept 2. http://dx.doi.org/10.1016/S1473-3099(14)70640-0.
2. Zumla A, Abubakar I, Raviglione M, et al. Drug-resistant tuberculosis-current dilemmas, unanswered questions, challenges, and priority needs. *J Infect Dis* 2012; 205 (suppl 2): S228–40.
3. Magarinos AP, Suetsens C, Monnet DL, et al. The rise of carbapenem resistance in Europe: just the tip of the iceberg? *Antimicrob Resist Infect Control* 2013; 2: 6.
4. Van der Linden JW, Camps SM, Kampenga GA, et al. Aspergillus due to voriconazole highly resistant Aspergillus fumigatus and recovery of genetically related resistant isolates from domiciles. *Clin Infect Dis* 2013; 57: 513–20.
5. Chan JF, To KK, Tee H, Jin DY, Yuen KY. Interspecies transmission and emergence of novel viruses: lessons from bats and birds. *Trend Microb* 2013; 21: 544–55.
6. Yuen KY, Chan PK, Peiris M, et al. Clinical features and rapid viral diagnosis of human disease associated with avian influenza A H5N1 virus. *Lancet* 1998; 351: 467–71.
7. Zhu H, Webby R, Lam TT, Smith DK, Peiris JS, Gau Y. History of swine influenza viruses in Asia. *Curr Topic Microb Immun* 2013; 370: 57–68.
8. Barr IG; Writing Committee of the World Health Organization Consultation on Northern Hemisphere Influenza Vaccine Composition for 2013–2014. WHO recommendations for the viruses used in the 2013–2014 northern hemisphere influenza vaccine: epidemiology, antigenic and genetic characteristics of influenza A(H1N1)pdm09, A(H3N2) and B influenza viruses collected from October 2012 to January 2013. *Vaccine* 2013; 31: 2671–72.
9. WHO. Avian influenza A(H7N9) virus. http://www.who.int/ influenza/human_animal_interface/influenza_h7n9/en/ (accessed Feb 14, 2014).
10. Chen H, Yuan H, Gao R, et al. Clinical and epidemiological characteristics of a fatal case of avian influenza A H10N8 virus infection: a descriptive study. *Lancet* 2014; 383: 714–21.
11. Legrand AL, Briand S, Shindo N, et al. Addressing the public health burden of respiratory viruses: the battle against respiratory viruses (BRaVe) Initiative. *Future Viral* 2013; 8: 953–68.
12. Ison MG, Gaann JW Jr, Nagy-Agren S, et al. for the NIAID Collaborative Antiviral Study Group. Safety and efficacy of nebulized zanamivir in hospitalized patients with serious influenza. *Antivir Ther* 2003; 8: 183–90.
13. US Centers for Disease Control and Prevention. Antiviral agents for the treatment and chemoprophylaxis of influenza. Recommendations of the Advisory Committee on Immunization Practices (ACIP). *MMWR Morb Mortal Weekly Rep* 2011; 60: 1–24.
14. Govorkova EA, Baranovich T, Seiler P, Armstrong J, Burnham A, Guan Y. Antiviral resistance among highly pathogenic influenza A (H5N1) viruses isolated worldwide in 2002–2012 shows need for continued monitoring. *Antivir Res* 2013; 98: 297–304.
15. Hayden FG. Newer influenza antivirals, biotherapeutics and combinations. *Influenza Other Resp Virus* 2012; 7 (suppl 1): 63–75.
16. Lee N, Chan PK, Lui GC, et al. Complications and outcomes of pandemic 2009 influenza A (H1N1) virus infection in hospitalized adults: how do they differ from those in seasonal influenza? *J Infect Dis* 2011; 203: 1739–47.
17. Muthuri SG, Venkatesan S, Myles PR, et al. Effectiveness of neuraminidase inhibitors in reducing mortality in patients admitted to hospital with influenza A H1N1pdm09 virus infection: a meta-analysis of individual participant data. *Lancet Respir Med* 2014; 2: 395–404.
18. Chan PK, Lee N, Saman M, et al. Determinants of antiviral effectiveness in influenza virus A subtype H5N1. *J Infect Dis* 2012; 206: 1359–66.
19. Adisasmito W, Chan PK, Lee N, et al. Effectiveness of antiviral treatment in human influenza A(H5N1) infections: analysis of a global patient registry. *J Infect Dis* 2010; 202: 1154–60.
20. Hu Y, Lu S, Song Z, et al. Association between adverse clinical outcome in human disease caused by novel influenza A H7N9 virus and sustained viral shedding and emergence of antiviral resistance. *Lancet* 2013; 381: 2273–79.
21. South East Asia Infectious Disease Clinical Research Network. Effect of double dose oseltamivir on clinical and virological outcomes in children and adults admitted to hospital with severe influenza: double blind randomised controlled trial. *BMJ* 2013; 346: f3039.
22. Lee N, Hui DS, Zuo Z, et al. A prospective intervention study on higher-dose oseltamivir treatment in adults hospitalized with influenza A and B infections. *Clin Infect Dis* 2013; 57: 1511–19.
23. Kumar A, the ROSII Study Investigators. Viral clearance with oseltamivir in hospitalized children and adults admitted to hospital with severe influenza A subtype H1N1. 3rd Interscience Conference on Antimicrobial Agents and Chemotherapy; Denver, CO, USA; Sept 10–13, 2013. Abstr V-1476.
151 Jiménez-Ortigosa C, Paderu P, Motyl MR, Perlin DS. Enfumafungin derivative MK-3118 shows increased in vitro potency against clinical echinocandin-resistant Candida species and Aspergillus species isolates. Antimicrob Agents Chemother 2014; 58: 1248–51.

152 Pfaller MA, Messer SA, Georgopapadakou N, Martell LA, Besterman JM, Diekema DJ. Activity of MGCD290, a Hs2 histone deacetylase inhibitor, in combination with azole antifungals against opportunistic fungal pathogens. J Clin Microbiol 2009; 47: 3797–804.

153 Shubitz LF, Trinh HT, Perrill RH, et al. Modeling nikkomycin Z dosing and pharmacology in murine pulmonary coccidioidomycosis preparatory to phase 2 clinical trials. J Infect Dis 2014; 209: 1949–54.

154 Mitsuyama J, Nomura N, Hashimoto K, et al. In vitro and in vivo antifungal activities of T-2307, a novel arylamidine. Antimicrob Agents Chemother 2008; 52: 1138–24.

155 F 2G. Advancing antifungal R&D. www.f2g.com/f2g-ltd-completes-30-million-financing-round-to-fund-pre-clinical-and-clinical-development-of-novel-anti-fungal-compounds/ (accessed May 29, 2014).

156 Zhai B, Wu C, Wang L, Sachs MS, Lin X. The antidepressant sertraline provides a promising therapeutic option for neurotropic cryptococcal infections. Antimicrob Agents Chemother 2012; 56: 3758–66.

157 Bastidas RJ, Reedy JL, Morales-Johansson H, Heitman J, Cardenas ME. Signaling cascades as drug targets in model and pathogenic fungi. Curr Opin Investig Drugs 2008; 9: 856–64.

158 Veri A, Cowen LE. Progress and prospects for targeting Hsp90 to treat fungal infections. Parasiology 2014; 20: 1–11.

159 Raja Mohamed BS, Subramanian M, Shunmugiah KP. Inhibition of Candida albicans virulence factors by novel levofloxacin derivatives. Appl Microbiol Biotechnol 2014; published online April 11. DOI:10.1007/s00253-014-5719-2.

160 Riddell SR, Watanabe KS, Goodrich JM, Li CR, Agha ME, Greenberg PD. Restoration of viral immunity in immunodeficient humans by the adoptive transfer of T cell clones. Science 1992; 257: 238–41.

161 Peggs KS, Verfuerth S, Pizsey A, et al. Adoptive cellular therapy for early cytomegalovirus infection after allogeneic stem-cell transplantation with virus-specific T-cell lines. Lancet 2003; 362: 1375–77.

162 Tramsen L, Schmidt S, Boenig H et al. Clinical-scale generation of multi-specific anti-fungal T cells targeting Candida, Aspergillus and mucormycetes. Cytotherapy 2013; 15: 344–51.

163 Dickson RP, Erb-Downward JR, Huffnagle GB. Towards an ecology of the lung: new conceptual models of pulmonary microbiology and pneumonia pathogenesis. Lancet Respir Med 2014; 2: 238–46.

164 Bates M, Mudenda V, Mwaia P, Zamila A. Deaths due to respiratory tract infections in Africa: a review of autopsy studies. Curr Opin Pulm Med 2013; 19: 229–37.

165 Lozano R, Naghavi M, Foreman K, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012; 380: 2095–128.