Roughness corrections to the Casimir force
van Zwol, P. J.; Palasantzas, G.; De Hosson, J. Th. M.

Published in:
Applied Physics Letters

DOI:
10.1063/1.2795795

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2007

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
van Zwol, P. J., Palasantzas, G., & De Hosson, J. T. M. (2007). Roughness corrections to the Casimir force: The importance of local surface slope. Applied Physics Letters, 91(14), Article 144108. https://doi.org/10.1063/1.2795795

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Download date: 22-10-2023
Roughness corrections to the Casimir force: The importance of local surface slope

P. J. van Zwol, G. Palasantzas, and J. Th. M. De Hosson
Department of Applied Physics, Netherlands Institute for Metals Research, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands

(Received 3 September 2007; accepted 19 September 2007; published online 4 October 2007)

This paper concentrates on a study where finite conductivity corrections are included in the theoretical description of the effects of roughness on the Casimir force. The roughness data were taken from gold films evaporated onto silicon and polystyrene spheres. We conclude that for a detailed comparison with experimental data, i.e., at the level of at least 5% at short separations below 200 nm, the lateral dimensions of roughness for real films should be included in the theoretical considerations. Moreover, if the rms roughness is considerable, high local surface slopes are shown to have a significant effect on the Casimir force.

When the proximity between material objects ranges between nanometers up to a few micrometers, a regime is entered in which forces become operative that are quantum mechanical in nature, namely, van der Waals and Casimir forces. Because of its relatively short range, the Casimir force is now starting to take on technological importance in the design and operation of micro-nanoelectromechanical systems (MEMS/NEMS), e.g., micro-nanoswitches, nanoscale tweezers, or actuators. High accuracy measurements by Lamoreaux with the use of torsion pendulum initiated detailed investigations of the Casimir force. It was also measured accurately by other groups in the sphere-plate setup with the atomic force microscope (AFM) and micro-oscillator devices. Other geometries (crossed cylinders, and parallel plates) were also investigated.

For most of the measurements, the proximity force approximation (PFA) was used perturbatively up to fourth order to calculate the roughness effect on the Casimir force. However, the Casimir force is not additive, and both PFA and additive methods use only the rms roughness to predict its influence. While this is the most important factor, any lateral information of rough films has been ignored. Numerical approaches today are rather limited to simple systems making them unsuitable for predicting roughness effects of real systems. Recently, a model was developed to incorporate roughness effects into scattering theory. Due to the complexity of the calculations, only the second order corrections were presented, showing, however, significant deviations from the PFA.

Evaporated metallic films, which are used to coat substrates for the force measurements, show in many cases the so-called self-affine random roughness. The importance of self-affine scaling and its relation to the Casimir force has been emphasized in Ref. 17. However, finite conductivity corrections were ignored, and only analytic solutions in some limited cases were given. Here, we performed a study where finite conductivity corrections were taken into account using experimental optical data. The range was extended by fitting a Drude model into the infrared regime. The roughness data were taken from gold (Au) films evaporated onto Si and polystyrene spheres. The discussion will focus on the effect of self-affine roughness within scattering theory in comparison to PFA results, with emphasis on the local surface slope.

Within the Lifshitz theory, the Casimir energy between real parallel flat mirrors with area A, separated a distance L, with reflection coefficient r(\Phi), where \Phi the imaginary frequency of the electromagnetic wave, is given by

\[E_{\text{pp}, \text{flat}} = -\hbar A \sum_f \int \frac{d^2k}{4\pi^2} \int_0^\infty \frac{d\Phi}{2\pi} \ln\left[1 - r^2(k, \Phi) e^{-2\pi d_L}\right]. \]

The integral in Eq. (1) is over all field modes of the wave vector \(k \) and \(\Phi \). The index \(p \) denotes the transverse electric and magnetic (TE and TM) modes. \(A \) is the average flat surface area. Roughness corrections to the Casimir energy within the scattering formalism are formulated in terms of a roughness response function \(G(k) \) and the roughness power spectrum \(\alpha(k) \), \(\delta E_{\text{pp}} = \int [d^2k/4\pi^2] G(k) \sigma(k) \), where \(G(k) \) is derived in Refs. 13 and 15 yielding for the total energy \(E_{\text{pp}, \text{rough}} = E_{\text{pp}, \text{flat}} + \delta E_{\text{pp}} \). The theory is valid under the following assumptions. First, the lateral dimensions of the roughness must be much smaller than the system size, i.e., plate or sphere, which is usually the case. Second, the rms roughness \(w \) must be small compared to the separation distance \(L \) \((w < L)\). For force measurements by AFM, a sphere-plate geometry is often used to avoid plate alignment problems. In this case, the Casimir force is given by

\[F_c = (2\pi R A) E_{\text{pp}}. \]

A wide variety of surfaces exhibit the so-called self-affine roughness, which is characterized for isotropic surfaces by the rms roughness amplitude \(w = \langle [h(r)]^2 \rangle^{1/2} \) \((\langle h \rangle = 0)\), the lateral correlation length \(\xi \) (indicating the lateral feature size), and the roughness exponent \(0 < H < 1 \). Small values of \(H \approx 0 \) correspond to jagged surfaces, while large

\^4Author to whom correspondence should be addressed. Electronic mail: g.palasantzas@rug.nl

DOI: 10.1063/1.2795795
values $H \sim 1$ to a smooth hill–valley morphology.16 For self-affine roughness, the spectrum $\sigma(k)$ scales as $\sigma(k) \propto k^{2-2\xi}$ if $k^\xi \gg 1$, and $\sigma(k) \propto \text{const} \times k^\xi$ if $k^\xi \ll 1$.16 This scaling is satisfied by the analytic model18,19 $\sigma(k) = (\mathcal{A} w^{2-\xi^2}/(1 + k^2 \xi^2)^{1+H}$ with $A = 2/[1-(1+k^2 \xi^2)^{-H}]$, where ξ is a lower roughness cutoff (~ 1 nm$^{-1}$). The local surface slope $\rho_{\text{rms}} = (\overline{(\chi h)^2})^{1/2}$ is given in this case by the analytical form $\rho_{\text{rms}} = (w^2 \xi^2)(\mathcal{A}/2)(1 + k^2 \xi^2)^{1-H}/(1-H)(1/2)^{1/2}$. The parameters w, ξ, and H can be determined by direct measurement of the height correlation function $H(r) = \overline{(h(r) - h(0))^2}$ with $\overline{\cdots}$ denoting the ensemble average over multiple surface scans.18

For the spherical roughness, we use the measured parameters after 100 nm Au deposition, which is considered bulk as far as optical properties are concerned,4 $w = 1.8$ nm, $\xi = 22$ nm, and $H = 0.9$ ($\rho_{\text{rms}} = 0.23$). In the following, only the plate roughness was changed. The optical data were obtained from Woollam IR VASE® and VUV-VASE® (infrared and vacuum ultraviolet variable angle spectroscopic ellipsometer) instruments (for wavelengths of 137 nm–1.7 nm and 2–33 nm, respectively). For all calculations on roughness Drude parameters, $\omega_p = 8.2$ eV and $\omega_m = 0.065$ eV are used. This was obtained by fitting the complex dielectric function in the infrared range of our data. For wavelengths below 137 nm, the data were taken from Palik’s handbook.20

Figure 1 shows force calculations for a typical film (800 nm thick Au) with $w = 7$ nm and $\xi = 35$ nm, together with force curves using parameters from hypothetical surfaces with the same w but different correlation length ξ. Notably, the local surface slope for the real surface is $\rho_{\text{rms}} = 0.8$, and therefore it is not sufficiently smaller than 1. The inset shows a comparison with the real measured force data, indicating a strong deviation below 50 nm separation. Therefore, for real films, the limits of the perturbation formalism are a serious issue.

The PFA limit is recovered fast with increasing correlation length ξ, while differences with the scattering theory are below 5% in the range of 50–200 nm. The scattering theory, as pointed out in Ref. 13, gives the largest deviations in comparison with PFA at large separations. However, in this regime, the roughness correction is small ($<1\%$). At small separations, the PFA becomes more accurate,13 but a comparison with the scattering theory is impossible since the rms roughness amplitude becomes of the same magnitude as the separation L (Fig. 1 inset). Therefore, the intermediate separation regime ($\sim 50–200$ nm) is the most interesting range for making a comparison with PFA.

Figure 2 shows the effect of the roughness exponent H—limited to relatively high values to avoid large local surface slopes—and arbitrary values for w and ξ (indeed, $\xi \sim 5–50$ times the roughness w). In this case, deviations from PFA on the force are less than 5%, but both ξ and H have similar effects on the Casimir force. Although for higher local slopes the roughness correction is larger, the latter is not the only cause for this behavior. For this reason, we show in the inset of Fig. 2, the difference of the scattering theory (F_{scatt}) and PFA prediction (F_{PFA}) divided by that of a flat surface expressed in percent for various roughness amplitudes w. Circles: $w = 14$ nm, squares: $w = 7$ nm, and triangles: $w = 3.5$ nm.

In fact, interesting differences with the PFA start to appear for higher local slopes, where, however, higher order corrections for the scattering perturbation theory are necessary.15 The observed deviations from the PFA are in the range of claimed experimental accuracy ($<5\%$).7–11 Therefore, the effect of lateral roughness dimensions must be taken into account for high precision measurements or the rms roughness must be drastically reduced. While it is possible to modify surface roughness (e.g., by annealing, etching, etc.), the inner structure of the film may be altered as well with such techniques. It was shown in Ref. 20 that such effects...
can be well in the ≈10% range, and therefore any effect on the Casimir force due to change of surface morphology can be completely offset or even overwhelmed by a different optical response. In Fig. 4, the normalized Casimir force curves are shown for 100, 200, and 400 nm thick films, with respective plasma frequencies of 8.2, 7.2, 7.5, and 7.2 (±0.2) eV and respective relaxation frequencies of 65, 57, and 55 (±5) meV, obtained by the method mentioned earlier. For comparison, a curve for a perfect single crystal film is also shown (well annealed films should give similar response). This curve is obtained by fitting Paliks data and fixing \(w_p \) to 9 eV (the theoretical value for a single gold crystal).

In conclusion, for a detailed comparison with experimental data, at the level of at least 5% at short separations (<200 nm), the lateral dimensions of roughness and optical properties for real films should be included in the theoretical considerations. Moreover, if the rms roughness is not small, high local surface slopes can have a significant effect (compared to the PFA) on the Casimir force. Our results can be of significance to the application related to MEMS/NEMS if Casimir/van der Waals forces are involved and influenced the motion of microcomponents.

The research was carried out under Project No. MC3.05242 in the framework of the Strategic Research programme of the Netherlands Institute for Metals Research (NIMR). Financial support from the NIMR is gratefully acknowledged and usefull discussions with V.B. Svetovoy.

1 H. B. G. Casimir, Proc. K. Ned. Akad. Wet. 51, 793 (1948). For initial measurements of the Casimir effect see M. J. Sparnaay, Physica (Utrecht) 24, 751 (1958); P. H. G. M. van Blockland and J. T. G. Overbeek, J. Chem. Soc., Faraday Trans. 1 74, 2637 (1978).

2 K. L. Ekinci and M. L. Roukes, Rev. Sci. Instrum. 76, 061101 (2005).

3 A. Cleland, Foundations of Nanomechanics (Springer, New York, 2003).

4 D. Iannuzzi, M. Lisanti, and F. Capasso, Proc. Natl. Acad. Sci. U.S.A. 102, 11989 (2005).

5 F. M. Serry, D. Walliser, and G. J. Maclay, J. Appl. Phys. 84, 2501 (1997); W.-H. Lin and Y.-P. Zhao, Chaos, Solitons Fractals 23, 1777 (2005); G. Palasantzas and J. Th. M. De Hosson, Phys. Rev. B 72, 115426 (2005); Phys. Rev. B 72, 121409 (2005); Surf. Sci. 600, 1450 (2006).

6 R. Onofrio, New J. Phys. 8, 237 (2006).

7 S. K. Lamoreaux, Phys. Rev. Lett. 78, 5 (1997).

8 B. W. Harris, F. Chen, U. Mohideen, Phys. Rev. A 62, 052109 (2000); M. Bordag, U. Mohideen, and V. M. Mostepanenko, Phys. Rep. 353 (2001).

9 H. B. Chan, V. A. Aksyuk, R. N. Kleiman, D. J. Bishop, and F. Capasso, Science 291, 1941 (2001).

10 R. Decca, E. Fischbach, G. L. Klimchitskaya, D. E. Krause, D. López, and V. M. Mostepanenko, Phys. Rev. D 68, 116003 (2003).

11 T. Ederth, Phys. Rev. A 62, 062104 (2000).

12 G. Bressi, G. Carugno, R. Onofrio, and G. Ruoso, Phys. Rev. Lett. 88, 041804 (2002).

13 P. A. Maia Neto, A. Lambrecht, and S. Reynaud, Europhys. Lett. 69, 924 (2005); C. Genet, A. Lambrecht, P. Maia Neto, and S. Reynaud, ibid. 62, 484 (2003).

14 H. Gies and K. Klingmuller, Phys. Rev. D 74, 045002 (2006).

15 P. A. Maia Neto, A. Lambrecht, and S. Reynaud, Phys. Rev. A 72, 012115 (2005).

16 P. Meakin, Phys. Rep. 235, 191 (1994); J. Krim and G. Palasantzas, Int. J. Mod. Phys. B 9, 599 (1995); Y.-P. Zhao, G.-C. Wang, and T.-M. Lu, Experimental Methods in the Physical Science (Academic, New York, 2001), Vol. 37, Chap. 3.

17 G. Palasantzas, J. Appl. Phys. 97, 126104 (2005).

18 G. Palasantzas, Phys. Rev. B 48, 14472 (1993); 49, 5785 (1994); G. Palasantzas and J. Krim, Phys. Rev. Lett. 73, 3564 (1994); G. Palasantzas, Phys. Rev. E 56, 1254 (1997).

19 Y.-P. Zhao, G. Palasantzas, G.-C. Wang, and J. Th. M. De Hosson, Phys. Rev. B 60, 1216 (1999).

20 I. Pirozhenko, A. Lambrecht, and V. B. Svetovoy, New J. Phys. 8, 238 (2006); E. D. Palik, Handbook of optical constants of Solids (Academic, New York, 1985); More extensive analysis of the optical data will be presented in a future publication (in preparation).