Application of prechop technique in phacoemulsification for cataract patients with highly liquefied vitreous: a retrospective study

Jing Zhao1, Zhouyue Li1, Yu Liu2, Xiaotong Han1 and Shengsong Huang1*

Abstract

Background: Phacoemulsification using phaco-chop technique has many challenging features in cataract patients with highly liquefied vitreous. This study aimed to compare the intraoperative parameters and safety between pre-chop technique and traditional phaco-chop in phacoemulsification for these patients.

Methods: A total of 54 eyes of 54 patients with high myopia-related or post-vitrectomy cataract that underwent phacoemulsification combined with intraocular lens implantation were included in this retrospective study. Of them, 25 eyes that received manual prechop were included in the prechop group, and 29 eyes with best match of age, axial length and nuclear opalescence (NO) that received standardized phaco-chop were included as the control group. The intraoperative complications and surgery parameters were compared between groups.

Results: No surgical complications were observed in the prechop group, while 2 eyes with posterior capsular rupture and 1 eye with a broken ciliary zonule (10.3%) were found in the control group. There was no significant difference in phaco time, average energy, and cumulative dissipated energy (CDE) between groups (all \(P > 0.05 \)), but for hard nuclear cataracts with NO grading \(\geq 5 \), prechop group required less phaco time \((P = 0.008) \) and CDE \((P = 0.029) \). There were significant correlations between phaco time vs. NO \((r = 0.762 \text{ vs. } 0.581, \text{ both } P < 0.005) \) and CDE vs. NO \((r = 0.717 \text{ vs. } 0.668, \text{ both } P < 0.001) \) in the prechop group and control group, respectively.

Conclusions: The prechop technique which seemed to have less intraoperative complications, reduced phaco time and CDE compared to standardized phaco-chop might be a good alternative for cataract patients with highly liquefied or vitrectomized vitreous, especially those with hard nuclear cataracts.

Keywords: High myopia-related cataract, Post-vitrectomy cataract, Prechop technique, Phacoemulsification

Introduction

Nuclear sclerotic cataract is most common type of cataract that forms or accelerates in eyes with high myopia or after vitrectomy surgery \([1–4]\). The vitreous body is highly liquefied in these patients. Phacoemulsification using phaco-chop technique has many challenging features caused by the intraocular structural changes in these kinds of patients, such as increasing nuclear density, weakened zonules, fragile and more mobility of the posterior capsule due to the absence of vitreous support. These may increase the difficulty and risk of the surgery \([1, 5–9]\).

Challenges of phacoemulsification in eyes with highly liquefied or vitrectomized vitreous include...
posterior bowing of lens-iris diaphragm induced by infusion pressure and consequent deepening of anterior chamber, which in turn cause the capsular bag and lens to move back. It increases the difficulty of operation since the operator can only operate by rotating the phaco probe more vertically and chop hook deep into the eye in this situation. Furthermore, as the phaco probe penetrates the eye, the infusion fluid flushes the iris from back to front, which then cause intraoperative pupillary miosis. These can further increase the difficulty of the procedure and the risk of posterior capsule rupture, especially during the process of chop. To solve this problem, Li et al. [5] reported a method of balancing the pressure of the anterior and posterior chamber by using a syringe with a flushing needle to inject balanced salt solution into the posterior chamber via the gap between the iris and the anterior capsule of the lens. However, this method also has substantial risk for several reasons below. In this procedure, pressure of anterior chamber and vitreous cavity can only be balanced for a short time because fluid injected into the vitreous cavity will also flow out through the gap of suspensory ligament, especially in cases of hard nucleus. Consequently, in order to achieve a stable balanced pressure, multiple injections of water are needed, which increase the number of times the surgical instruments must move in and out and cause a discontinuous procedure. Yu et al. [10] reported a modified technique, with phacoemulsification in the anterior chamber, to deal with post-vitrectomy cataracts. Nevertheless, this procedure requires a relatively big capsulorhexis margin which may affect the stability of intraocular lens (IOL) in the capsular bag. Therefore, we attempted to determine if there were a safe and effective method to perform phacoemulsification in the anterior chamber, especially with white cataracts.

First described by Akahoshi in 1998 [11], the prechop technique has been used and improved by many other surgeons along with the design and introduction of new instruments [12–16]. This technique was demonstrated to be an excellent method for treating hard nucleus cataract because it significantly reduces intraoperative ultrasound energy and effective phacoemulsification time (EPT), thus reducing the loss of corneal endothelium and injuries to other intraocular structures [17]. In addition, it was also reported to be a preferred choice for cataract with abnormal suspensory ligaments of the lens [15]. In this retrospective study, we reported the clinical application of prechop for high myopia-related or post-vitrectomy cataract patients during phacoemulsification.

Methods
Participants
A total of 54 eyes from 54 patients were included in this retrospective study. The inclusion criteria were summarized as follows: 1) Adult patients with high myopia-related cataracts or post-vitrectomy cataracts, who underwent phacoemulsification combined with IOL implantation by one experienced surgeon (S.H) between April 2017 and January 2020; 2) All eyes received phaco-chop or manual prechop to split the nucleus before phacoemulsification; 3) All surgeries were performed through clear cornea temporal incision. The exclusion criteria included a history of ocular trauma, corneal diseases, or other ophthalmic surgeries. If a patient received bilateral surgery, only data from the left eye was included for analysis. Of them, 25 eyes that received manual prechop to split the nucleus before phacoemulsification were included in the prechop group, and 29 eyes that received phaco-chop [18] during cataract surgery were included in the control group. All patients were fully informed of the possible risks of the surgery after finishing preoperative medical examinations.

This study protocol was approved by the Institutional Review Boards of Zhongshan Ophthalmic Center, Sun Yat-sen University and conformed to the tenets of the Declaration of Helsinki.

Medical examinations
Patients received routine preoperative ocular examinations. Age and gender were obtained from medical records due to the retrospective nature of this study. The ocular biometric data including axial length (AL), anterior chamber depth (ACD), and keratometry (K) were measured preoperatively using IOL Master (Carl Zeiss Meditec, Inc.). Surgical complications and the following parameters were included for analysis: preoperative nuclear opalescence (NO) scores, phaco time, average energy, and cumulative dissipated energy (CDE). The intraoperative parameters of eyes with intraoperative complications were not analyzed since they were not representative of the majority. According to the study by Smith [19], the nuclear hardness was closely related to NO scores. Preoperative NO was graded using the Lens Opacities Classification System III (from 0.1 to 6.9) [20].

Prechop technique
All cataract surgeries were performed under topical anesthesia. A 2.2 mm temporal clear cornea incision was made after topical anesthesia. Ophthalmic viscosurgical device (OVD) Amvisc (Bausch & Lomb) was injected into the anterior chamber to increase tissue stabilization and to protect corneal endothelium as well. After continuous
curvilinear capsulorrhexis and hydrodissection, a Sinskey hook was introduced to the anterior chamber through the main incision and engaged into the anterior pole of the nucleus. Phaco chopper was positioned to the equator of the nucleus through the side incision and pulled toward the center. The two worked together bimanually to split the nucleus into two hemisphere and then rotated the fragments by 90 degrees. The procedure was repeated twice to further divide the two hemispheres into four quadrants, followed by phacoemulsification to remove the lens fragments using Centurion® Vision System (Alcon).

Statistical analysis
Data analysis was performed using SPSS 23.0. The two-sample Student’s t-test and χ² test were used to compare the demographics and characteristics between patients in control group and prechop group. To compare the intraoperative and postoperative parameters, Mann–Whitney U test was applied because non-normality of these variables was detected by Shapiro–Wilk test. Correlations between the NO scores and phaco time as well as the average energy and CDE were assessed using Spearman’s rank correlation coefficients. All the statistical tests were two tailed and P values less than 0.05 were considered to be significant.

Results
Demographics
The baseline characteristics of the study patients before the surgery are shown in Table 1. Both age (P = 0.696) and gender (P = 0.753) were best match between the two groups. No significant difference between groups were detected for AL, ACD, mean value of steep and flat keratometry (Kmean), preoperative visual acuity (VA) and NO scores (all P > 0.05). Twenty eyes in the control group and twenty-three eyes in the prechop group had high myopia with refractive error over -6.0 D or axial length over 26.0 mm. Eleven eyes in the control group and eight eyes in the prechop group had history of vitrectomy for various reasons including rhegmatogenous retinal detachment, vitreous hemorrhage, proliferative diabetic retinopathy, epimacular membrane, and macular hole defects (Table 2). The time duration between vitrectomy and cataract surgery was larger than 3 months for these patients. Four eyes in the control group and six eyes in the prechop group had high myopia and vitrectomy, and three eyes had previously received corneal refractive surgery. No silicone oil-filled eyes were included.

Outcome and complications
At postoperative day one, 86.2% (25/29) eyes in the control group and 92% (23/25) eyes in the prechop

Table 1	Patient characteristics before the surgery			
Parameter	Control group	Prechop group	P value	
Eyes (n)	29	25	-	
Sex, n (%)	0.753			
Male	14 (48)	11 (44)		
Female	15 (52)	14 (56)		
Age (y)				
Mean ± SD	58.03 ± 10.03	57.40 ± 13.10	0.671	
Median	59	54		
Range	38, 76	34, 89		
AL (mm)				
Mean ± SD	27.49 ± 3.22	28.08 ± 2.55	0.671	
Median	28.15	28.49		
Range	21.58, 31.87	23.15, 34.12		
ACD (mm)				
Mean ± SD	3.39 ± 0.43	3.28 ± 0.76	0.677	
Median	3.45	3.3		
Range	2.62, 4.09	3.02, 4.21		
Kmean (D)				
Mean ± SD	43.64 ± 2.04	43.09 ± 2.72	0.958	
Median	43.76	44.04		
Range	37.88, 47.98	36.18, 45.99		
UDVA (logMAR)				
Mean ± SD	1.38 ± 0.46	1.45 ± 0.45	0.571	
Median	1.30	1.52		
Range	0.40, 2.30	0.60, 2.00		
NO grading				
Mean ± SD	4.8 ± 1.2	4.6 ± 1.3	0.455	
Median	4.6	4.7		
Range	2.2, 6.5	2.5, 6.7		

Table 2	Primary indications for the 19 patients with a history of vitrectomy
Indication for vitrectomy	No. of eyes
Control group	
rhegmatogenous retinal detachment	5
vitreous hemorrhage	2
epimacular membrane	3
proliferative diabetic retinopathy	1
Prechop group	
rhegmatogenous retinal detachment	5
macular hole	2
epimacular membrane	1

SD standard deviation, AL axial length, ACD anterior chamber depth, Kmean mean value of flat and steep keratometry, UDVA uncorrected distance visual acuity, NO grading nuclear opalescence grading with LOCS III, logMAR logarithm of minimum angle of resolution.
group showed improved uncorrected distance visual acuity (UDVA). We observed significant increase in UDVA after the surgery in both groups (Both $P<0.001$). Intraoperative complications occurred in three eyes in the control group while no complication was observed in the prechop group. Of them, 2 eyes had a history of vitrectomy due to rhegmatogenous retinal detachment, and 1 eye had a history of vitrectomy because of epimacular membrane before cataract surgery. Of the 2 eyes which had posterior capsular rupture because of posterior capsule touch during cataract surgery, one underwent successful phacoemulsification, and the other had the nuclei dropped into the vitreous chamber. For the latter, pars plana vitrectomy was conducted to remove the nuclear fragments. One eye had a broken ciliary zonule compromising over 50% of the circumference during cataract surgery. Two of the three complicated eyes had adequate capsular support for a sulcus-based IOL implantation. Implantation failed in one eye because of inadequate capsular support. No corneal endothelial decompensation, endophthalmitis, or other serious ocular complications were observed.

Analyses of intraoperative parameters

As mentioned above, three eyes that had intraoperative complications in the control group were not included for analyses of intraoperative parameters. Two of the three eyes had NO grading less than 5, and the other had NO grading ≥ 5. The phaco time and energy use of the other 51 patients in both groups are shown in Table 3. IOL power, UDVA, phaco time, average energy, and CDE showed no significant difference between the control and prechop group. However, for hard nuclear cataracts with NO grading ≥ 5, prechop group had less phaco time ($P=0.008$) and CDE ($P=0.029$) as compared with the control group (shown in Table 4). The average energy use in both groups was not significantly different. For patients with NO grading less than 5, the intraoperative parameters did not show a significant difference between the two groups (all $P>0.05$).

Relationships between phaco time, energy, and NO are shown in Fig. 1. In the control group, phaco time ($r=0.762$, $P<0.001$) and CDE ($r=0.717$, $P<0.001$) were strongly correlated with the NO. The correlation remained but was relatively weaker in the prechop group ($r=0.581$, $P=0.002$ for phaco time; $r=0.668$, $P<0.001$ for CDE). The correlations between average energy and NO scores were similar and insignificant in both groups ($r=0.364$, $P=0.068$ in the control group; $r=0.393$, $P=0.052$ for the prechop group).

Parameter	Control group	Prechop group	P value
NO < 5			
Eyes (n)	16	14	
NO grading	4.0 ± 0.7	3.6 ± 0.7	0.101
Phaco time (s)	32.5 ± 19.8	34.1 ± 11.5	0.448
Average energy (%)	18.6 ± 6.1	17.0 ± 4.2	0.790
CDE	6.5 ± 5.2	5.8 ± 2.6	0.637
NO ≥ 5			
Eyes (n)	10	11	
NO grading	6.2 ± 0.3	5.8 ± 0.6	0.223
Phaco time (s)	74.2 ± 196	47.3 ± 23.2	0.008*
Average energy (%)	21.4 ± 5.1	21.8 ± 6.0	0.973
CDE	16.0 ± 6.3	10.1 ± 4.7	0.029*

Mean ± standard deviation

NO nuclear opalescence, CDE cumulative dissipated energy

Discussion

Cataract surgery in patients with highly liquefied or vitrectomized vitreous is challenging due to its unique anatomical structures. To solve this problem, previous researchers, such as Li et al. [5] and Yu et al. [10] have reported modified methods which had certain effectiveness in improving the safety of surgery and reducing complications, but there are still some limitations for their methods. In the current study, we reported with encouraging results that prechop technique had an advantage in treating patients with highly liquefied vitreous compared to conventional phaco chop during cataract surgery.

As demonstrated in previous studies, both vitrectomy and high myopia increase the risk of nuclear sclerotic cataracts [21, 22]. The severity of nuclear sclerosis is greater in vitrectomized eyes than typical cataract eyes [6]. Phacoemulsification for these patients showed increased risks of complications due to alterations in anatomy and showed higher dependence on the surgeon’s experience.

Table 3 Comparison of intraoperative and postoperative parameters

Parameter	Control group	Prechop group	P value
Phaco time (s)	48.5 ± 28.3	39.9 ± 18.5	0.376
Average energy (%)	19.7 ± 5.8	19.1 ± 5.5	0.770
CDE	10.1 ± 7.2	7.7 ± 4.2	0.366
IOL power (D)	12.5 ± 6.5	12.0 ± 5.5	0.842
UDVA (logMAR)	0.87 ± 0.54	0.63 ± 0.47	0.087

Data are expressed as mean ± standard deviation

CDE cumulative dissipated energy, IOL intraocular lens, UDVA uncorrected distance visual acuity, logMAR logarithm of minimum angle of resolution
These patients share some common anatomical features including loss of support from the vitreous body, weakened zonules, intraoperative miosis, and increased mobility of the lens-iris diaphragm during cataract surgery. In conventional phacoemulsification, notable fluctuation of ACD and movement of the posterior capsule were observed. These changes increased the difficulty of operation and risks for broken zonules and posterior capsule rupture [1, 23].

Previous studies reported the safety of conventional phacoemulsification in post-vitrectomy cataract patients [24, 25]. However, the phaco time and energy use were not thoroughly investigated. Manual prechop was recommended in recent years as an effective procedure to reduce energy use, especially for hard nucleus cataracts [17]. In this study, we found that the prechop technique is safe and effective for high myopia-related and post-vitrectomy cataract patients. For cataracts with a hard nucleus, the prechop technique is preferred because of the reduced phaco time and CDE.

Intraoperative complications occurred in three eyes in the conventional phacoemulsification group, while no complication was observed in the prechop group. A trend should be noticed that the prechop procedure showed better safety in the current study. After manual prechop to split the nucleus, the fragments of nucleus are brought to the pupil and iris plane, while the lens-iris diaphragm moves further backward. In this way, the removal of nucleus fragments by phacoemulsification is done near the pupil plane with no extra forces against the capsule and zonules. It is unnecessary for the phaco tip to bury deeply into the nucleus. Shallow penetration provides proper protection to the posterior capsule and avoids unexpected rupture. Furthermore, when the pupil iris plane diaphragm moves backward, the handpiece needs to turn vertically to perform the phaco-chop and phacoemulsification deep in the capsule. This procedure places persistent pressure on the corneal flap, which might result in decreased maneuverability and problems with the water tightness of the incision. By proper manual prechop, the phaco procedure is done at the pupil-iris plane, thus reducing the difficulty of operation and incidence of complications.

It has been reported by previous studies that prechop could reduce energy use and corneal damage in phacoemulsification for patients with age-related cataracts [26]. In this retrospective study, we analyzed the
intraoperative parameters of patients with high myopia-related and post-vitrectomy cataracts. For cataracts with NO scores < 5, these two methods did not differ significantly in phaco time or energy use. But for hard nuclear cataracts with NO grading ≥ 5, less phaco time and CDE resulted from the prechop technique. The correlation between phaco time and NO or CDE scores was also weaker in the prechop group, though the difference was not statistically different. This result may be due to a small sample size. The average energy was generally controlled by the surgeon to reduce heat damage to the corneal endothelium. The correlation between average energy and NO score was weak in both groups. The results of this study indicate that, for soft nuclear cataracts both phaco-chop and manual prechop work well for phacoemulsification. For hard nuclear cataracts, the prechop technique is preferred for its reduced phaco time and CDE as well as better surgical safety.

There are some limitations in the current study. First, the sample size was relatively small, especially for hard nuclear cataracts. Further prospective studies with larger sample size are still needed. Moreover, there might be a concern over the distance to corneal endothelium when removing cataracts at the pupil-iris plane. In patients with high myopia and previous vitrectomy, the movement of lens-iris diaphragm increases with deepening of the anterior chamber. This helped keeping the phaco probe further away from the corneal endothelium. A similar technique was reported by Yu et al., who recommended phacoemulsification in the anterior chamber for post-vitrectomy cataract [10]. Another point should be noticed was that the patients included may have had poor retinas before surgery because all of them had histories of high myopia or vitrectomy surgery. Therefore, the log MAR postoperative visual acuity were poor in both groups, but these have little influence on the comparison of the intraoperative parameters and safety between prechop technique and traditional phaco-chop in phacoemulsification in the current study.

In conclusion, the results of our study are encouraging that the prechop technique exhibited a trend to have less intraoperative complications, reduced phaco time and CDE compared to standardized phaco-chop during cataract phacoemulsification surgery. It might be a good alternative for cataract surgery for patients with highly liquefied vitreous, such as in high myopia-related and post-vitrectomy cataract, especially those with hard nucleus.

Abbreviations
NO: Nuclear opalescence; CDE: Cumulative dissipated energy; IOL: Intraocular lens; EPT: Effective phacoemulsification time; AL: Axial length; ACD: Anterior chamber depth; K: And keratometry; VA: Visual acuity; UDVA: Uncorrected distance visual acuity.

Acknowledgements
There is no acknowledgement to note.

Authors’ contributions
J.Z. was involved in acquisition, analysis and interpretation of data and drafting the manuscript. Z.L., Y.L. and X.H. made contribution to analysis and interpretation of data and revising the manuscript. S.H. contributed to conception, design this study, drafting and reviewing the manuscript. All the surgeries were performed by S.H. All authors read and approved the final manuscript.

Funding
There is no financial and material support from any sponsor or funder for this study.

Availability of data and materials
The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
This retrospective study followed the tenets of the Declaration of Helsinki, and was approved by the ethical committee of Zhongshan Ophthalmic Center. Informed consent was obtained from each patient before surgery.

Consent for publication
Not applicable.

Competing interests
There were no financial or non-financial competing interests regarding to this study.

Author details
1 State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, 54 South Xianlie Road, Guangzhou 510060, China. 2 Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.

Received: 7 June 2021 Accepted: 7 April 2022
Published online: 14 April 2022

References
1. Fenberg MJ, Hainsworth KJ, Rieger FG 3rd, Hainsworth DP. Vitrectomy as a Risk Factor for Complicated Cataract Surgery. Mo Med. 2016;113(1):44–7.
2. Kantham GI, Mitchell P, Rochtchina E, Cumming RG, Wang JJ. Myopia and the long-term incidence of cataract and cataract surgery: the Blue Mountains Eye Study. Clin Exp Ophthalmol. 2014;42(4):347–53.
3. Praveen MR, Vasavada AR, Jami UD, Trivedi RH, Choudhary PK. Prevalence of cataract type in relation to axial length in subjects with high myopia and emmetropia in an Indian population. Am J Ophthalmol. 2008;145(1):176–81.
4. Keyal K, Liao X, Liu G, Yang S, Wang F. Post-vitrectomy cataract acceleration in phakic eyes: a review. Discov Med. 2017;24(134):305–11.
5. Li X, Li Q, Bano S, Li S. Phacoemulsification in vitrectomized eyes: Maintaining the stability of the anterior chamber via a new technique. Eur J Ophthalmol. 2021;31(3):1492–6.
6. Grusha YO, Masket S, Miller KM. Phacoemulsification and lens implantation after pars plana vitrectomy. Ophthalmol. 1998;105(2):287–94.
7. Smiddy WE, Stark WJ, Michels RG, Maumenee AE, Terry AC, Glaser BM. Cataract extraction after vitrectomy. Ophthalmol. 1987;94(5):483–7.
8. Zech JC, Tannière P, Denis P, Trepsat C. Posterior chamber intraocular lens dislocation with the bag. J Cataract Refract Surg. 1999;25(8):1168–9.
9. Shigeeda T, Nagahara M, Kato S, et al. Spontaneous posterior dislocation of intraocular lenses fixated in the capsular bag. J Cataract Refract Surg. 2002;28(9):1689–93.

10. Yu T, Han XG, Li YM, Zhang YG. Phacoemulsification in the anterior chamber: An alternative surgical technique in post-vitrectomy cataract. Pak J Med Sci. 2018;34(6):1512–6.

11. Akahoshi T. Phaco prechop: manual nucleofracture prior to phacoemulsification. Oper Tech Cataract Refract Surg. 1998;1:69–91.

12. Chen X, Liu B, Xiao Y, et al. Cystotome-assisted prechop technique. J Cataract Refract Surg. 2015;41(1):9–13.

13. Berger A, Contin IN, Nicoletti G, Baltar Pazos PF, Baltar Pazos HS, Gomes JÁ. Middle prechop: Fracturing the middle portion of the nucleus. J Cataract Refract Surg. 2012;38(4):564–7.

14. Kongnip P, Wiriyaluppa C. A comparison of patient pain during cataract surgery with topical anesthesia in Prechop Manual Phacofragmentation versus phacoemulsification. J Med Assoc Thai. 2006;89(7):959–66.

15. Zhao Y, Li J, Yang K, Zhu S. A Prechop Technique Using a Reverse Chopper. J Invest Surg. 2019;32(3):199–207

16. Tang JC, Cui HP, Chu H, Xu J, Liu BS. A new application of capsulorhexis forceps in phacoemulsification: capsulorhexis forceps-assisted prechop technique. Int J Ophthalmol. 2018;11(2):337–9.

17. Li X, He Y, Su T, et al. Comparison of clinical outcomes between cystotome-assisted prechop phacoemulsification surgery and conventional phacoemulsification surgery for hard nucleus cataracts: A CONSORT-compliant article. Med (Baltimore). 2018;97(46):e13124.

18. Abdelmotaal H, Abdel-Radi M, Rateb MF, Eldaly ZH, Abdelazem K. Comparison of the phaco chop and drill-and-crack techniques for phacoemulsification of hard cataracts: A fellow eye study. Acta Ophthalmol. 2021;99(3):e378–86.

19. Smith JM, El-Brawany M, Nassiri D, Tabandeh H, Thompson GM. The relationship between nuclear colour and opalescence on the LOC-Sll scale and physical characteristics of cataract nuclei. Eye (Lond). 2002;16(5):543–51.

20. Chylack LT, Wolfe JK, Singer DM, et al. The Lens opacities classification system iii. the longitudinal study of cataract study group. Arch Ophthalmol. 1993;111(6):831–6.

21. Ikuno Y. OVERVIEW OF THE COMPLICATIONS OF HIGH MYOPIA. Retina. 2017;37(12):2347–51.

22. Shousha MA, Yoo SH. Cataract surgery after pars plana vitrectomy. Curr Opin Ophthalmol. 2010;21(1):45–9.

23. Akinci A, Batman C, Zilelioglu O. Cataract surgery in previously vitrectomized eyes. Int J Clin Pract. 2008;62(5):770–5.

24. Sachdev N, Brar GS, Sukhija J, Gupta V, Ram J. Phacoemulsification in vitrectomized eyes: results using a “phaco chop” technique. Acta Ophthalmol. 2009;87(4):382–5.

25. Misra A, Burton RL. Incidence of intraoperative complications during phacoemulsification in vitrectomized and nonvitrectomized eyes: prospective study. J Cataract Refract Surg. 2005;31(5):1011–4.

26. Wu LQ, Chen X, An XL, Zhou YW, Bi S. A Comparison of the Cystotome-Assisted Prechop and Phaco-Chop Phacoemulsification Nucleotomy Techniques. Med Sci Monit. 2019;25:10205–11.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.