ON A GENERALIZED CLASS OF BOUNDARY VALUE PROBLEMS WITH DELAYED ARGUMENT

ERDOĞAN ŞEN

ABSTRACT. In this work, spectrum and asymptotics of eigenfunctions of a generalized class of boundary value problems with a delay are obtained.

2010 Mathematics Subject Classification. 34L20, 35R10

Keywords and phrases. Delay differential equations; transmission conditions; asymptotics of eigenvalues and eigenfunctions.

1. Formulation of the problem

In this study we shall investigate discontinuous eigenvalue problems which consist of Sturm-Liouville equation

\[(1) \quad (-p(x)u'(x))' + q(x)u(x - \Delta(x)) = \lambda^2 u(x) = 0\]

on \(\Omega = \bigcup \Omega_\pm\) with boundary conditions

\[(2) \quad \delta_{10} u(a) - \delta_{11} u'(a) - \lambda^2 \left(\tilde{\delta}_{10} u(a) - \tilde{\delta}_{11} u'(a) \right) = 0,\]
\[(3) \quad \delta_{20} u(b) - \delta_{21} u'(b) + \lambda^2 \left(\tilde{\delta}_{20} u(b) - \tilde{\delta}_{21} u'(b) \right) = 0\]

and transmission conditions

\[(4) \quad \gamma_{10}^+ u(c+) + \gamma_{10}^- u(c-) = 0,\]
\[\gamma_{20}^+ u(c+) + \gamma_{21}^+ u'(c+) + \gamma_{20}^- u(c-) + \gamma_{21}^- u'(c-) = 0,\]
\[(5) \quad -\lambda^2 \left(\tilde{\gamma}_{20}^+ u(c+) + \tilde{\gamma}_{21}^+ u'(c+) + \tilde{\gamma}_{20}^- u(c-) + \tilde{\gamma}_{21}^- u'(c-) \right) = 0,\]

where \(p(x) = p_1^+\) for \(x \in \Omega^- = [a, c)\) and \(p(x) = p_2^+\) for \(x \in \Omega^+ = (c, b]\); the real-valued function \(q(x)\) is continuous in \(\Omega\) and has a finite limit \(q(c\pm) = \lim_{x \to c\pm} q(x)\), the real valued function \(\Delta(x) \geq 0\) continuous in \(\Omega\) and has a finite limit \(\Delta(c\pm) = \lim_{x \to c\pm} \Delta(x), x - \Delta(x) \geq a, \text{if } x \in \Omega^-; x - \Delta(x) \geq c, \text{if } x \in \Omega^+; \lambda\) is a real spectral parameter; \(p_i, \delta_{ij}, \tilde{\delta}_{ij}, \gamma_{ij}^\pm, \tilde{\gamma}_{ij}^\pm\) \((i = 1, 2; j = 0, 1)\) are arbitrary real numbers such that \(\gamma_{10}^\pm \left(\tilde{\gamma}_{21}^\pm - \lambda^2 \gamma_{21}^\pm \right) \neq 0\).

Sturm-Liouville problems with transmission conditions (also known as interface conditions, discontinuity conditions, impulse effects) arise in many applications of mathematical physics. Amongst the applications are thermal conduction in a thin laminated plate made up of layers of different materials and diffraction problems [11].

Sturm-Liouville problems with delayed argument is an active area of research and arise in many realistic models of problems in science, engineering, and medicine, where there is a time lag or after-effect (see [3]) and find applications in combustion.
in a liquid propellant rocket engine [5,10] and in systems of the type of an electromagnetic circuit-breaker [8,20]. The articles [1,4,6,9,15,17-19,22] are devoted to investigation of the spectral properties of eigenvalues and eigenfunctions of the Sturm-Liouville problems with delayed argument.

The main goal of this paper is to study the spectrum and asymptotics of eigenfunctions of the problem (1)-(5). Spectral properties of differential equations with delayed argument which contain such a generalized boundary and transmission conditions have not been studied yet. So, the results obtained in this work are extension and generalization of previous works in the literature. For example, if we take \(\Delta(x) \equiv 0 \) and/or \(\tilde{\delta}_{ij} = 0 \) (\(i = 1, 2; \ j = 0, 1 \)) and/or \(\tilde{\gamma}_{2j} = 0 \) (\(j = 0, 1 \)) and/or \(p(x) \equiv 1 \) then the asymptotic formulas for eigenvalues and eigenfunctions correspond to those for the classical Sturm-Liouville problem [2,7,12,13,21]. Moreover, results and methods of these kind of problems can be useful for investigating the inverse problems for partial differential equations.

Let \(\vartheta^-(x, \lambda) \) be a solution of Eq. (1) on \(\Omega^- = \Omega^- \cup \{c\} \), satisfying the initial conditions
\[
\vartheta^-(a, \lambda) = \delta_{11} - \lambda^2 \delta_{11}, \quad \frac{\partial \vartheta^-(a, \lambda)}{\partial x} = \delta_{10} - \lambda^2 \delta_{10}.
\]
The conditions (6) define a unique solution of Eq. (1) on \(\Omega^- \) [16].

After defining the above solution we shall define the solution \(\vartheta^+(x, \lambda) \) of Eq. (1) on \(\Omega^+ = \Omega^+ \cup \{c\} \) by means of the solution \(\vartheta^-(x, \lambda) \) using the initial conditions
\[
\vartheta^+(c+, \lambda) = -\frac{\gamma_{10}}{\gamma_{10}^+} \vartheta^-(c-, \lambda),
\]
\[
\frac{\partial \vartheta^+(c+, \lambda)}{\partial x} = \frac{1}{\gamma_{10}^+ (\gamma_{21}^+ - \lambda^2 \gamma_{21}^+)}
\]
\[
\times \left[\frac{\gamma_{10}^+ (\lambda^2 \gamma_{21}^+ - \gamma_{21}^+)}{\partial x} \right] + \left(\frac{\gamma_{10}^+ (\lambda^2 \gamma_{20}^+ - \gamma_{20}^+)}{\partial x} \right) \vartheta^-(c-, \lambda)
\]
The conditions (7)-(8) are defined as a unique solution of Eq. (1) on \(\Omega^+ \).

Consequently, the function \(\vartheta(x, \lambda) \) is defined on \(\Omega \) by the equality
\[
\vartheta(x, \lambda) = \begin{cases}
\vartheta^-(x, \lambda), & x \in \Omega^-, \\
\vartheta^+(x, \lambda), & x \in \Omega^+
\end{cases}
\]
is a solution of the Eq. (1) on \(\Omega \); which satisfies one of the boundary conditions and both transmission conditions.

2. Spectrum and Asymptotics of Eigenfunctions

We begin by writing the problem (1)-(5) in terms of the following equivalent integral equations.
Lemma 1. Let \(\vartheta(x, \lambda) \) be a solution of Eq. (1) and \(\lambda > 0 \). Then the following integral equations hold:

\[
\vartheta^-(x, \lambda) = \left(\delta_{11} - \lambda^2 \tilde{\delta}_{11} \right) \cos \frac{\lambda(x-a)}{p_1} + \frac{p_1 \delta_{10} - \lambda^2 \tilde{\delta}_{10}}{\lambda} \sin \frac{\lambda(x-a)}{p_1} \\
+ \frac{1}{p_1 \lambda} \int_a^x q(\tau) \sin \frac{\lambda(x-\tau)}{p_1} \vartheta^- (\tau - \Delta (\tau), \lambda) \, d\tau,
\]

(9)

\[
\vartheta^+(x, \lambda) = -\frac{\gamma_{10} \vartheta^-(c-, \lambda)}{\gamma_{10}^+} \cos \frac{\lambda(x-c)}{p_2} + \frac{p_2 \lambda \gamma_{10}^+ (\gamma_{21} - \lambda^2 \tilde{\gamma}_{21})}{\gamma_{10}^+ (\gamma_{21} - \lambda^2 \tilde{\gamma}_{21})} \\
\times \left[\gamma_{10}^+ (\lambda^2 \tilde{\gamma}_{21} - \gamma_{21}) \frac{\partial \vartheta^-(c-, \lambda)}{\partial x} + (\gamma_{10}^+ (\lambda^2 \tilde{\gamma}_{20} - \gamma_{20}) - \gamma_{10}^+ (\lambda^2 \tilde{\gamma}_{21} - \gamma_{21})) \right] \vartheta^- (c-, \lambda)
\]

(10)

\[
\times \sin \frac{\lambda(x-c)}{p_2} + \frac{1}{p_2 \lambda} \int_{c^+}^x q(\tau) \sin \frac{\lambda(x-\tau)}{p_2} \vartheta^+ (\tau - \Delta (\tau), \lambda) \, d\tau
\]

Proof. To prove this, it is enough to substitute \(\lambda^2 \vartheta^\pm (\tau, \lambda) + \frac{\partial^2 \vartheta^\pm (\tau, \lambda)}{\partial \tau^2} \) instead of \(q(\tau) \vartheta^\pm (\tau - \Delta (\tau), \lambda) \) in (9) and (10) respectively and integrate by parts twice. \(\Box \)

From Lemma 1, using the well-known successive approximation method, it is easy to obtain the following asymptotic expressions of fundamental solutions.

Lemma 2. The following asymptotic estimates

\[
\vartheta^-(x, \lambda) = -\lambda^2 \tilde{\delta}_{11} \cos \frac{\lambda(x-a)}{p_1} + O(\lambda),
\]

\[
\frac{\partial \vartheta^- (x, \lambda)}{\partial x} = \lambda^3 \tilde{\delta}_{11} \sin \frac{\lambda(x-a)}{p_1} + O(\lambda^2),
\]

\[
\vartheta^+(x, \lambda) = \frac{\lambda^4 p_2 \tilde{\delta}_{11} \tilde{\gamma}_{21}}{p_1 \gamma_{21}} \sin \frac{\lambda(c-a)}{p_1} \sin \frac{\lambda(x-c)}{p_2} + O(\lambda^3),
\]

\[
\frac{\partial \vartheta^+ (x, \lambda)}{\partial x} = \frac{\lambda^5 \tilde{\delta}_{11} \tilde{\gamma}_{21}}{p_1 \gamma_{21}^+} \sin \frac{\lambda(c-a)}{p_1} \cos \frac{\lambda(x-c)}{p_2} + O(\lambda^4)
\]

are valid as \(\lambda \to \infty \).

The function \(\vartheta(x, \lambda) \) defined in introduction is a nontrivial solution of Eq. (1) satisfying conditions (2), (4) and (5). Putting \(\vartheta(x, \lambda) \) into (3), we get the characteristic equation

\[
\Xi(\lambda) = \delta_{20} \vartheta^+(b, \lambda) - \delta_{21} \frac{\partial \vartheta^+(b, \lambda)}{\partial x} + \lambda^2 \left(\delta_{20} \vartheta^+(b, \lambda) - \delta_{21} \frac{\partial \vartheta^+(b, \lambda)}{\partial x} \right) = 0.
\]

Thus the set of eigenvalues of boundary-value problem (1)-(5) coincides with the set of real roots of Eq. (11).

Theorem 1. The problem (1) – (5) has an infinite set of positive eigenvalues.
Putting the expressions (9), (10), (12) and (13) into (11), we get

\[
\frac{\partial \vartheta^- (x, \lambda)}{\partial x} = \frac{\lambda (\delta_{11} - \lambda^2 \delta_{11})}{p_1} \sin \frac{\lambda (x - a)}{p_1} + \left(\frac{\delta_{10} - \lambda^2 \delta_{10}}{p_1} \right) \cos \frac{\lambda (x - a)}{p_1} + \frac{1}{p_1^2} \int_a^x q (\tau) \cos \frac{\lambda (x - \tau)}{p_1} \vartheta^- (\tau - \Delta (\tau), \lambda) \, d\tau.
\]

(12)

Differentiating (10) with respect to \(x \), we get

\[
\frac{\partial \vartheta^+ (x, \lambda)}{\partial x} = \frac{\lambda \gamma_{10}}{p_2} \vartheta^- (c - \lambda, \lambda, \lambda) \sin \frac{\lambda (x - c)}{p_2} + \frac{1}{\gamma_{10} (\gamma_{21} - \lambda^2 \gamma_{21})} \left(\gamma_{10} (\lambda^2 \gamma_{21} - \gamma_{21}) \frac{\partial \vartheta^- (c - \lambda, \lambda)}{\partial x} + \left(\gamma_{10} (\lambda^2 \gamma_{20} - \gamma_{21}) - \gamma_{10} (\lambda^2 \gamma_{20} - \gamma_{20}) \right) \vartheta^- (c - \lambda, \lambda) \right)
\]

(13)

\[
\times \cos \frac{\lambda (x - c)}{p_2} + \frac{1}{p_2^2} \int_a^c q (\tau) \cos \frac{\lambda (x - \tau)}{p_2} \vartheta^+ (\tau - \Delta (\tau), \lambda) \, d\tau.
\]

Putting the expressions (9), (10), (12) and (13) into (11), we get

\[
\Xi (\lambda) \equiv \delta_{20} \left[\frac{\gamma_{10}}{\gamma_{10}^2} \left(\frac{\delta_{11} - \lambda^2 \delta_{11}}{p_1} \right) \cos \frac{\lambda (c - a)}{p_1} + \frac{p_1 (\delta_{10} - \lambda^2 \delta_{10})}{p_1} \sin \frac{\lambda (c - a)}{p_1} \right.
\]

\[
+ \frac{1}{p_1 \lambda} \int_a^c q (\tau) \sin \frac{\lambda (c - \tau)}{p_1} \vartheta^- (\tau - \Delta (\tau), \lambda) \, d\tau \right] \cos \frac{\lambda (b - c)}{p_2} + \frac{p_2}{\gamma_{10} (\gamma_{21} - \lambda^2 \gamma_{21})} \left(\frac{\lambda (c - a)}{p_1} + \left(\frac{\delta_{10} - \lambda^2 \delta_{10}}{p_1} \right) \cos \frac{\lambda (c - a)}{p_1} \right)
\]

\[
\times \left(\gamma_{10} (\lambda^2 \gamma_{21} - \gamma_{21}) \left(\frac{\lambda (\delta_{11} - \lambda^2 \delta_{11})}{p_1} \right) \sin \frac{\lambda (c - a)}{p_1} + \left(\frac{\delta_{10} - \lambda^2 \delta_{10}}{p_1} \right) \cos \frac{\lambda (c - a)}{p_1} \right)
\]

\[
+ \frac{1}{p_2^2} \int_a^c q (\tau) \cos \frac{\lambda (c - \tau)}{p_1} \vartheta^- (\tau - \Delta (\tau), \lambda) \, d\tau + \left(\gamma_{10}^+ (\lambda^2 \gamma_{20} - \gamma_{21}) - \gamma_{10}^- (\lambda^2 \gamma_{20} - \gamma_{20}) \right)
\]

\[
\times \left(-\frac{\gamma_{10}^-}{\gamma_{10}^+} \left(\frac{\delta_{11} - \lambda^2 \delta_{11}}{p_1} \right) \cos \frac{\lambda (c - a)}{p_1} + \left(\frac{\delta_{10} - \lambda^2 \delta_{10}}{p_1} \right) \sin \frac{\lambda (c - a)}{p_1} \right)
\]

\[
+ \frac{1}{p_1 \lambda} \int_a^c q (\tau) \sin \frac{\lambda (c - \tau)}{p_1} \vartheta^- (\tau - \Delta (\tau), \lambda) \, d\tau \right) \right] \sin \frac{\lambda (b - c)}{p_2} + \frac{p_2}{\gamma_{10} (\gamma_{21} - \lambda^2 \gamma_{21})} \left(\frac{\lambda (c - a)}{p_1} + \left(\frac{\delta_{10} - \lambda^2 \delta_{10}}{p_1} \right) \cos \frac{\lambda (c - a)}{p_1} \right)
\]

\[
- \delta_{21} \left[\frac{\lambda \gamma_{10}^-}{p_2 \gamma_{10}^+} \left(\frac{\lambda (c - a)}{p_1} + \left(\frac{\delta_{10} - \lambda^2 \delta_{10}}{p_1} \right) \sin \frac{\lambda (c - a)}{p_1} \right) \right]
\]

\[
- \delta_{21} \left[\frac{\lambda \gamma_{10}^-}{p_2 \gamma_{10}^+} \left(\frac{\lambda (c - a)}{p_1} + \left(\frac{\delta_{10} - \lambda^2 \delta_{10}}{p_1} \right) \sin \frac{\lambda (c - a)}{p_1} \right) \right]
\]

Proof.
\[+ \frac{1}{p_1 \lambda} \int_a^c q(\tau) \sin \frac{\lambda(c-\tau)}{p_1} \vartheta^- (\tau - \Delta(\tau), \lambda) \, d\tau \left(\sin \frac{\lambda(b-c)}{p_2} \right) + \frac{1}{\gamma_{10}^+ (\gamma_{21}^- - \gamma_{21}^+)} \]

\[\times \left(\gamma_{10}^+ (\lambda^2 \gamma_{21}^- - \gamma_{21}^-) \right) \left(\frac{\lambda(\delta_{11} - \lambda^2 \delta_{11})}{p_1} \sin \frac{\lambda(c-a)}{p_1} + \left(\delta_{10} - \lambda^2 \delta_{10} \right) \cos \frac{\lambda(c-a)}{p_1} \right) \]

\[+ \frac{1}{p_1 \lambda} \int_a^c q(\tau) \cos \frac{\lambda(c-\tau)}{p_1} \vartheta^- (\tau - \Delta(\tau), \lambda) \, d\tau \left(\cos \frac{\lambda(b-c)}{p_2} \right) + \frac{1}{\gamma_{10}^+ (\gamma_{21}^- - \gamma_{21}^+)} \]

\[\times \left(\gamma_{10}^+ (\lambda^2 \gamma_{21}^- - \gamma_{21}^-) \right) \left(\frac{\lambda(\delta_{11} - \lambda^2 \delta_{11})}{p_1} \sin \frac{\lambda(c-a)}{p_1} + \left(\delta_{10} - \lambda^2 \delta_{10} \right) \cos \frac{\lambda(c-a)}{p_1} \right) \]
From Lemma 2, the following equalities

\[\lambda (14) \Xi(\lambda) = \frac{\lambda^7}{\gamma_{21} p_1} \sin \frac{\lambda (c-a)}{p_1} \cos \frac{\lambda (b-c)}{p_2} + O(\lambda^6) = 0. \]

Let \(\lambda \) be sufficiently large. Obviously, for large \(\lambda \) Eq. (14) has, evidently, an infinite set of roots. The proof is complete. \(\square \)

By Theorem 2 we conclude that the problem (1)-(5) has infinitely many nontrivial solutions.

Solving the Eq. (14), we have

\[\Gamma = \left\{ \lambda_n : \lambda_n = \frac{p_2 \pi (n + \frac{1}{2})}{b - c} + O\left(\frac{1}{n}\right) \text{ or } \lambda_n = \frac{p_1 \pi n}{c - a} + O\left(\frac{1}{n}\right), \ n = 1, 2, \ldots \right\} \]

for the spectrum of (1)-(5).

Now we are ready to present asymptotic expressions of eigenfunctions. Using Lemma 2 and replacing \(\lambda \) by \(\lambda_n \in \Gamma \) we obtain the next theorem. We see that there correspond two eigenfunctions for each \(n \).
Theorem 2. The following asymptotic formulas hold for eigenfunctions of boundary-value-transmission problem (1)-(5) for each \(x \in \Omega \) and \(\lambda \in \Gamma \) \((n = 1, 2, \ldots)\):

\[
\vartheta_{(1)}(x, \lambda) = -\frac{n^2 \pi^2 p_0^2 \delta_{11}}{(c-a)^2} \cos \frac{n \pi (x-a)}{c-a} + O(n),
\]

\[
\vartheta_{(2)}(x, \lambda) = -\frac{(n+\frac{1}{2})^2 \pi^2 p_0^2 \delta_{11}}{(b-c)^2} \cos \frac{(n+\frac{1}{2}) \pi p_2 (x-a)}{p_1 (b-c)} + O(n),
\]

\[
\vartheta^+_{(1)}(x, \lambda) = \frac{n^3 \pi^4 p_0^3 p_2 \delta_{11} \gamma_{21}^+}{\gamma_{21}^+ (c-a)^3} \sin \frac{n \pi p_1 (x-c)}{p_2 (c-a)} + O\left(n^2\right),
\]

\[
\vartheta^+_{(2)}(x, \lambda) = \frac{(n+\frac{1}{2})^4 \pi^4 p_0^3 p_2 \delta_{11} \gamma_{21}^+}{p_1 \gamma_{21}^+ (b-c)^3} \left\{ \sin \frac{(n+\frac{1}{2}) \pi p_2 (c-a)}{p_1 (b-c)} \right. \\
- \frac{\cos \left((n+\frac{1}{2}) \pi (x-c) \right)}{b-c} - \frac{x-c}{np_2} \sin \left(\frac{(n+\frac{1}{2}) \pi (x-c)}{b-c} \right) \\
\left. - \frac{(n+\frac{1}{2}) \pi p_2 (c-a)}{p_1 (b-c)} \cos \left(\frac{(n+\frac{1}{2}) \pi (x-c)}{b-c} \right) \right\} + O\left(n^2\right).
\]

REFERENCES

[1] Akgun FA, Bayramov A, Bayramoglu M. Discontinuous boundary value problems with delayed argument and eigenparameter-dependent boundary conditions. Mediterr J Math 2013; 10: 277-288.

[2] Aydemir K, Mukhtarov OS. Class of Sturm-Liouville problems with eigenparameter dependent transmission conditions. Numer Funct Anal Optim 2017; 38(10): 1260-1275.

[3] Baker CTH. Retarded differential equations. J Comput Appl Math 2000; 125: 309-335.

[4] Bayramov A, Çaliskan S, Uslu S. Computation of eigenvalues and eigenfunctions of a discontinuous boundary value problem with delayed argument. Appl Math. Comput. 2007; 191: 592-600.

[5] Crocco L, Chang S. Theory of Combustion Instability in Liquid Propellant Rocket Motors. London, UK: Butterworths, 1956.

[6] Çetinkaya FA., Mamedov KR. On eigenvalues of a boundary value problem with a delayed argument. J Inequal Spec Funct 2017; 8(4): 21-30.

[7] Fulton CT. Two-point boundary value problems with eigenvalue parameter contained in the boundary conditions. Proc Roy Soc Edinburgh A 1977; 77: 293-308.

[8] Harkevic AA. Auto-Oscillations. Moscow, USSR: Gostehizdat, 1954 (Russian).

[9] Kamenskii GA. On the asymptotic behaviour of solutions of linear differential equations of the second order with delayed argument. Uch Zap Mosk Gos Univ 1954; 165: 195-204 (Russian).

[10] Kolesovas J, Svitra D. Mathematical modelling of the combustion process in the chamber of a liquid propellant rocket engine. Lith Math J 1975; 15(4): 620-642.

[11] Likov AV., Mikhailov YA. The Theory of Heat and Mass Transfer, Moscow, USSR: Qosenergaizdat, 1963 (Russian).

[12] Mukhtarov OS, Kadakal M, Muhtarov FS. On discontinuous Sturm-Liouville problems with transmission conditions. J Math Kyoto Univ 2004; 44(4): 779-789.

[13] Mukhtarov OS, Oýgar H. and Aydemir K. Resolvent operator and spectrum of new type boundary value problems. Filomatat 2015; 29(7): 1671-1680

[14] Mukhtarov OS, Tunç E. Eigenvalue problems for Sturm–Liouville equations with transmission conditions. Israel J Math 2004; 144: 367-380.

[15] Norkin SB. On boundary problem of Sturm-Liouville type for second-order differential equation with delayed argument. Izv Vysš Učebn Zaved Matematika 1958; 6(7): 203-214. (Russian)

[16] Norkin SB. Differential Equations of the Second Order with Retarded Argument. Providence, RI, USA: AMS, 1972.
[17] Şen E, Bayramov A. Calculation of eigenvalues and eigenfunctions of a discontinuous boundary value problem with delayed argument which contains a spectral parameter in the boundary condition. Math Comput Model 2011; 54(11-12): 3090-3097.
[18] Şen E. Spectral analysis of discontinuous boundary-value problems with delayed argument. J Math Phys Anal Geo 2018; 14(1): 78-99.
[19] Şen E. Sturm-Liouville problems with delayed argument and a finite number of transmission conditions. Electron J Differential Equations 2017; 2017(310): 1-8.
[20] Teodorcik KF. Self-Oscillatory Systems. Moscow, USSR: Gostehizdat, 1952 (Russian).
[21] Titchmarsh EC. Eigenfunctions expansion associated with second order differential equation. London, UK: Oxford University Press, 1962.
[22] Yang C-F. Trace and inverse problem of a discontinuous Sturm-Liouville operator with retarded argument, J. Math. Anal. Appl., 395 (2012) 30-41.

DEPARTMENT OF MATHEMATICS, FACULTY OF ARTS AND SCIENCE, TECIRDAG NAMIK KEMAL UNIVERSITY, TECIRDAG, TURKEY
E-mail address: erdogan.math@gmail.com