Root microbiota drive direct integration of phosphate stress and immunity

Gabriel Castrillo1,2*, Paulo José Pereira Lima Teixeira1,2*, Sur Herrera Paredes1,2,3*, Theresa F. Law1,2, Laura de Lorenzo4†, Meghan E. Feltcher1,2, Omri M. Finkel1,2, Natalie W. Breakfield1,2*, Piotr Mieczkowski5,6,7, Corbin D. Jones1,3,5,6,7,8, Javier Paz–Ares9 & Jeffrey L. Dangl1,2,3,7,8,9

Plants live in biogeochemically diverse soils with diverse microbiota. Plant organs associate intimately with a subset of these microbes, and the structure of the microbial community can be altered by soil nutrient content. Plant–associated microbes can compete with the plant and with each other for nutrients, but may also carry traits that increase the productivity of the plant. It is unknown how the plant immune system coordinates microbial recognition with nutritional cues during microbiome assembly. Here we establish that a genetic network controlling the phosphate stress response influences the structure of the root microbiome community, even under non–stress phosphate conditions. We define a molecular mechanism regulating coordination between nutrition and defence in the presence of a synthetic bacterial community. We further demonstrate that the master transcriptional regulators of phosphate stress response in Arabidopsis thaliana also directly repress defence, consistent with plant prioritization of nutritional stress over defence. Our work will further efforts to define and deploy useful microbes to enhance plant performance.

The root microbiome in plants with altered PSR

We linked PSR to the root microbiome by contrasting the root bacterial community of wild-type Arabidopsis Col-0 with three types of PSR mutants (Fig. 1a, b, Supplementary Text 1, Extended Data Fig. 1, Supplementary Table 1). PSR, historically defined in axenic seedlings and measured by Pi concentration in the plant shoot, is variable across these mutants. In replete Pi and axenic conditions, phr1 plants accumulate less free Pi than wild type13; pht1;1, pht1;1;pht1;4 and phf1 plants accumulate very low Pi levels and express constitutive PSR14,15; and pho2, nla and spx1;spx2 express diverse magnitudes of Pi hyper-accumulation16–18. We grew plants in a previously characterized wild soil19 that is not overtly phosphate deficient (Extended Data Fig. 2). Generally, the Pi concentration of PSR mutants grown in this wild soil recapitulated those defined in axenic conditions, except that phf1 and nla displayed the opposite phenotype to that observed in axenic agar, and phr1 accumulated the same Pi concentration as Col-0 (Fig. 1b). These results suggest that complex chemical conditions, soil microbes, or a combination of these can alter Pi metabolism in these mutants.

Bacterial root endophytic community profiles were consistent with previous studies2,19. Constrained ordination revealed significant differences between bacterial communities across the Pi accumulation gradient represented by these PSR mutants (5.3% constrained variance, canonical analysis of principal coordinates) (Fig. 1c). Additionally, canonical analysis of principal coordinates confirmed that phr1 and spx1;spx2 plants carried different communities, as evidenced by their separation on the first three ordination axes, and that phf1 was the most affected of the Pi-transport mutants (Fig. 1c). Specific bacterial taxa had differential abundances inside the roots of mutant plants compared to wild-type. Notably, we found that the enrichment and depletion profiles were better explained by PSR mutant signalling type, rather than the

1 Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA. 2 Howard Hughes Medical Institute, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA. 3 Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA. 4 Department of Plant Molecular Genetics, Centro Nacional de Biotecnologia, CNB-CSIC, Darwin 3, 28049 Madrid, Spain. 5 Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, USA. 6 Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA. 7 Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA. 8 Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA. 9Present addresses: NewLeaf Symbiotics, St. Louis, Missouri 63132, USA (N.W.B.); Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546, USA (L.d.L.).

*These authors contributed equally to this work.
capacity of the mutant for Pi accumulation: all of the Pi-transport-related mutants had a similar effect on the root microbiome, and the antagonistic PSR regulators phr1 and spx1:spx2 each exhibited unique patterns (Fig. 1a, d, Extended Data Fig. 1f, g). Importantly, we observed this pattern at a low taxonomic level (97% identity operational taxonomic unit (OTU) (Fig. 1d), but not at a higher taxonomic level (family, Extended Data Fig. 1g). This suggests that closely related groups of bacteria have differential colonization patterns on the same host genotypes. Our results indicate that PSR components influence root microbiome composition in plants grown in a phosphate-replete wild soil, leading to alteration of the abundance of specific microbes across diverse levels of Pi accumulation representing diverse magnitudes of PSR.

PSR in a microcosm reconstitution

Our observations in a wild soil suggested complex interplay between PSR and the presence of a microbial community. Thus, we deployed a defined but complex bacterial SynCom of 35 taxonomically diverse, genome-sequenced bacteria isolated from the roots of Brassicaceae (27 of which are from *Arabidopsis*) and two wild soils. This SynCom approximates the phylum level distribution observed in wild-type root endophytic compartments (Extended Data Fig. 3, Supplementary Tables 1, 2). We inoculated seedlings of Col-0, *phf1* and the double mutant *phr1;phl1* (a redundant paralogue of *phr1* (ref. 13)) grown on agar plates with low or high Pi concentrations (Supplementary Text 2). Twelve days later, we noted that the SynCom had a negative effect on shoot Pi accumulation of Col-0 plants grown on low Pi, but not on plants grown on replete phosphate (Fig. 2a). As expected, both PSR mutants accumulated less Pi than Col-0; the SynCom did not rescue this defect. Thus, in this microcosm, plant–associated microbes drive a context-dependent competition with the plant for Pi.

We sought to establish whether PSR was activated by the SynCom. We generated a literature-based core set of 193 PSR transcriptional markers and explored their expression in transcriptomic experiments (Extended Data Fig. 4a, b, Supplementary Table 3). In axenic low Pi conditions, only the constitutive Pi-stressed mutant *phf1* exhibited induction of these PSR markers. By contrast, Col-0 plants expressed a marginal induction of PSR markers compared to those plants grown at high Pi (Fig. 2b). This is explained by the purposeful absence of sucrose, a key component for the PSR induction *in vitro* (Supplementary Text 2, Extended Data Fig. 5) that cannot be used in combination with bacterial SynCom colonization protocols. Notably, the SynCom greatly enhanced the canonical transcriptional response to Pi starvation in Col-0 (Fig. 2b); this was dependent on PHR1 and PHL1 (Fig. 2b, Extended Data Fig. 4b). Various controls validated these conclusions (Supplementary Text 2, Extended Data Figs 4–6). Importantly, shoots of plants pre-colonized with SynCom on 0 or 50 μM Pi, but...
A bacterial SynCom differentially colonizes PSR mutants. a, Pi concentration in shoots of plants grown on different Pi regimens with or without the SynCom. Biological replicate numbers are: Col-0 (n = 16 (625 μM Pi), 24 (625 μM Pi + SynCom)), 12 (50 μM Pi), 24 (50 μM Pi + SynCom), phf1 (n = 16, 18, 12, 24) and phr1;phl1 (n = 16, 18, 12, 24) from three independent experiments. Statistical significance was determined via ANOVA while controlling for experiment, and the letters indicate the results of a post hoc Tukey test. Groups of samples that share at least one letter are statistically indistinguishable. b, Expression levels of 193 core PSR genes. The z-scores of RPKM expression values are shown. Boxes at bottom indicate presence/absence of SynCom and Pi at the concentration indicated. This labelling is maintained throughout. Data are the average of 4 biological replicates. c, Functional activation of PSR by the SynCom. Plants were grown on different Pi levels with or without the SynCom and subsequently transferred to full Pi (1 mM). The Pi concentration in shoots was measured at the time of transfer and at 1, 2, 3 days thereafter. Relative Pi increase represents the normalized difference in Pi content at day n with respect to the Pi content on the day of transfer to 1 mM Pi. Absolute Pi concentration values are available in Supplementary Table 4. For all Pi concentrations and SynCom treatments, n = 6 at day 0, and n = 9 at all other time points, distributed across two independent experiments. d, PCoA of SynCom experiments showing that Agar and Root samples are different from starting inoculum. Biological replicate numbers are: Inoculum (n = 4), Agar (n = 12) and Root (n = 35) across two independent experiments. e, Heat map showing per cent abundances of SynCom isolates (columns) in all samples (rows). Strain name colours correspond to phylum (bottom left). Within each block, samples are sorted by experiment. For each combination of genotype and Pi level, there are n = 6 biological replicates evenly distributed across two independent experiments, except for Inoculum for which there are n = 4 technical replicates evenly distributed across two independent experiments. f, g, Constrained ordination showing the effect of plant genotype (f) and media Pi concentration effect on the root communities (g). The proportion of total variance explained (constrained) by each variable is indicated on top of each plot; for g, remaining unconstrained ordination was subjected to multi-dimensional scaling (MDS); the first MDS axis (MDS1) is shown. For f and g, biological replicate numbers are: Col-0 (n = 12), phf1 (n = 11), phr1;phl1 (n = 12), 50 μM Pi (n = 24) and 625 μM Pi (n = 23) distributed across two independent experiments.

Coordination between PSR and immune system output

We noted that phr1;phl1 and phf1 differentially activated transcriptional PSR in the presence of our SynCom (Fig. 2b). Therefore, we investigated the transcriptomes of plants growing with the SynCom to understand how these microbes activate PHR1-dependent PSR. We identified differentially expressed genes (DEGs) that responded to either low Pi, presence of the SynCom, or the combination of both (hereafter PSR-SynCom DEGs) (Supplementary Text 4, Extended Data Fig. 8a, b, Supplementary Table 6). Hierarchical clustering (Fig. 3a, Supplementary Table 7) revealed gene sets (c1, c2, c7 and c10) that were more strongly activated in Col-0 than in phr1 or phr1;phl1. These clusters contained most of the core PSR markers regulated by PHR1 (Fig. 3b). They were also enriched in PHR1 direct targets identified in an independent ChIP–seq experiment (Fig. 3c, Supplementary Table 8), PHR1 promoter binding motifs (Extended Data Fig. 4c), and genes involved in biological processes related to PSR (Fig. 3d, Supplementary Table 9). PHR1 unexpectedly contributed to transcriptional regulation of plant immunity. Five of the twelve clusters (Fig. 3a, c3, c6, c7, c8 and c11) were enriched in genes related to plant immune system

not on 625 μM Pi, expressed 20- to 40-fold increases in normalized Pi concentration when transferred to full Pi (1 mM) conditions; non-pre-colonized plants did not exhibit this response (Fig. 2c, Supplementary Table 4). This demonstrates functional PSR activation by the SynCom. We thus propose that the transcriptional response to low Pi induced by our SynCom reflects an integral microbial element of normal PSR in complex biotic environments.

We evaluated agar- and root-associated microbiomes of plants grown with the SynCom (Supplementary Text 3, Fig. 2d, e, Extended Data Fig. 7e, f, Supplementary Table 5). In line with results from plants grown in wild soil, we found that PSR mutants failed to assemble a wild-type SynCom microbiome (Fig. 2f). Some strains were differentially abundant across PSR mutants phf1 and phr1;phl1 (Fig. 2e, f, Extended Data Fig. 7c), Pi concentration (Fig. 2g, Extended Data Fig. 7d), or sample fraction (Extended Data Fig. 7b, e, f). These results established a microcosm reconstitution system to study plant PSR under chronic competition with plant-associated microbes and allowed us to confirm that the tested PSR mutants influence composition of the root microbiome.
enrichment or depletion ($P \leq 0.05$; hypergeometric test). d, Summary of the Gene Ontology enrichment analysis for each of the twelve clusters. The enrichment significance is shown as $-\log_2[FDR]$. White means no observed enrichment; red, expected enrichment; blue, observed enrichment that is under-represented in the DEG set (false discovery rate $P < 0.010$).

To explore PHR1 function in the regulation of plant immunity further, we generated transcriptomic time-course data for treatment-matched Col-0 seedlings following application of methyl jasmonate (MeJA) and/or salicylic acid (SA) pathway markers (Fig. 3d, c, c7, c8, and c12; Supplementary Table 9) and three of these four were enriched for PHR1 direct targets (Fig. 3c). SA and JA are plant hormone regulators of immunity and at least SA modulates Arabidopsis root microbiome composition.

To understand PHR1-mediated interaction of the PSR and plant immune system outputs, a, Hierarchical clustering of 3,257 genes that were differentially expressed in the RNA-seq experiment. Columns on the right indicate genes that are core PSR markers (‘core’ lane) or had a PHR1 binding peak (‘PHR1 ChIP’ lane). b, Proportion of PSR marker genes per cluster. c, Proportion of PHR1 direct targets genes per cluster. The red line in a and c denotes the proportion of genes in the whole Arabidopsis genome that contain the analysed feature. Asterisk denotes significant enrichment or depletion ($P \leq 0.05$; hypergeometric test). d, Summary of the Gene Ontology enrichment analysis for each of the twelve clusters. The enrichment significance is shown as $-\log_2[FDR]$. White means no observed enrichment; red, expected enrichment; blue, observed enrichment that is under-represented in the DEG set (false discovery rate $P < 0.010$).

To explore PHR1 function in the regulation of plant immunity further, we generated transcriptomic time-course data for treatment-matched Col-0 seedlings following application of methyl jasmonate (MeJA) or the SA analogue benzothiadiazole (BTH; Supplementary Table 10). We found a considerable over-representation of SA- and JA-activated genes among the PSR-SynCom DEGs (468 versus 251 expected for SA, and 165 versus 80 expected for JA; $P < 0.0001$, hypergeometric test) (Extended Data Fig. 8c–h, Supplementary Table 7). Thus, PHR1 directly regulates an unexpected proportion of the plant immune system during PSR triggered by our SynCom.

PHR1 integrates plant immune system output and PSR
We tested whether PHR1 also controls the expression of plant defence genes under conditions typically used to study PSR (axenic growth, sucrose present). We performed RNA sequencing (RNA-seq) in response to low Pi in these conditions and identified 1,482 DEGs in Col-0 and 1,161 DEGs in phr1;phl1 (Fig. 4a, b, Extended Data Fig. 9, Supplementary Table 11). A significant number of the BTH/SA-activated genes were also upregulated in phr1;phl1, but not in Col-0 in response to low Pi (Fig. 4a, b, Supplementary Table 12). A large number of these overlapped with the defence genes induced in phr1;phl1 by our SymCom (Fig. 4c, red ellipse, 113 out of 337 = 33%; clusters c3 and c8 from Fig. 3a). At least 14 out of 113 are direct PHR1 targets (Supplementary Table 12).

To underscore the role of PHR1 in the regulation of response to microbes, we analysed the transcriptional profile of Col-0 and phr1;phl1 plants exposed to the flagellin peptide flg22. We subjected the plants to chronic exposure to flg22 to mimic the condition of

Figure 3 PHR1 mediates interaction of the PSR and plant immune system outputs. a, Hierarchical clustering of 3,257 genes that were differentially expressed in the RNA-seq experiment. Columns on the right indicate genes that are core PSR markers (‘core’ lane) or had a PHR1 binding peak (‘PHR1 ChIP’ lane). b, Proportion of PSR marker genes per cluster. c, Proportion of PHR1 direct targets genes per cluster. The red line in b and c denotes the proportion of genes in the whole Arabidopsis genome that contain the analysed feature. Asterisk denotes significant enrichment or depletion ($P \leq 0.05$; hypergeometric test). d, Summary of the Gene Ontology enrichment analysis for each of the twelve clusters. The enrichment significance is shown as $-\log_2[FDR]$. White means no observed enrichment; red, expected enrichment; blue, observed enrichment that is under-represented in the DEG set (false discovery rate $P < 0.010$).
plants in contact with a microbiome. We found that *phr1;phl1* plants displayed higher expression of *flg22*-responsive genes than Col-0, independent of phosphate status (Supplementary Text 5, Fig. 4d, Extended Data Fig. 9a, b, Supplementary Tables 11, 13). This indicates that PHR1 negatively regulates the immune response triggered by *flg22*.

On the basis of our transcriptome data, we hypothesized that *phr1;phl1* would alter the response to pathogen infection. The *phr1* and *phr1;phl1* mutants exhibited enhanced disease resistance against both the oomycete pathogen *Hyaloperonospora arabidopsidis* isolate Noco2, and the bacterial pathogen *Pseudomonas syringae* DC3000. The *coli1-16* (9 day zero), 13 (day three) and *sid2-1* (16, 20) mutants were controls for resistance and susceptibility, respectively. Col-0 (16, 20), *phr1* (17, 20), *phr1;phl1* (16, 20) and control plants were inoculated under phosphate replete conditions in non-axenic potting soil (Extended Data Fig. 2). The data are derived from three independent experiments. Statistical comparisons among genotypes were one-way ANOVA tests followed by a post hoc Tukey analysis; genotypes with the same letter above the graph are statistically indistinguishable at 95% confidence.

Conclusions

Plant responses to phosphate stress are inextricably linked to life in microbe-rich soil. We demonstrate that genes controlling PSR contribute to assembly of a normal root microbiome. Our SynCom enhanced the activity of PHR1, the master regulator of the PSR, in plants grown under limited phosphate. This led to our discovery that PHR1 is a direct integrator of PSR and the plant immune system genes. Despite being required for the activation of JA-responsive genes during PSR24, we found that PHR1 is unlikely to be a general regulator of this response (Extended Data Fig. 9c–e, Supplementary Table 12). Rather, PHR1 may fine-tune JA responses in specific biological contexts.

We demonstrate that PSR and immune system outputs are directly integrated by PHR1 (and, probably, PHL1). We provide a mechanistic explanation for previous disparate observations that PSR and defence regulation are coordinated and implications that PHR1 is the key regulator9,11,12,24. We provide new insight into the intersection of plant nutritional stress response, immune system function, and microbiome assembly and maintenance; systems that must act simultaneously and coordinately in natural and agricultural settings. Our findings will drive investigations aimed at utilizing microbes to enhance efficiency of phosphate use.

Online Content

Methods, along with any additional Extended Data display items and Source Data, are available in the online version of the paper; references unique to these sections appear only in the online paper.

Received 21 September 2016; accepted 25 January 2017.
Published online 15 March 2017.
1. Bulgarelli, D., Schlaeppi, K., Spaepen, S., Ver Loren van Themaat, E. & Schulze-Lefert, P. Structure and functions of the bacterial microbiota of plants. *Annu. Rev. Plant Biol.* **64**, 807–838 (2013).

2. Lebeis, S. L. et al. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. *Science* **349**, 860–864 (2015).

3. Hacquard, S. et al. Microbiota and host nutrition across plant and animal kingdoms. *Cell Host Microbe* **17**, 603–616 (2015).

4. Zhu, Q., Riley, W. J., Tang, J. & Koven, C. D. Multiple soil nutrient competition between plants, microbes, and mineral surfaces: model development, parameterization, and example applications in several tropical forests. *Biogeosciences* **13**, 341–363 (2016).

5. Richardson, A. E. & Simpson, R. J. Soil microorganisms mediating phosphorus availability update on microbial phosphorus. *Plant Physiol.* **156**, 989–996 (2011).

6. Raghothama, K. G. Phosphate acquisition. *Annu. Rev. Plant Physiol. Plant Mol. Biol.* **50**, 665–693 (1999).

7. Lambers, H., Martinoia, E. & Renton, M. Plant adaptations to severely phosphorus-impermeated soils. *Curr. Opin. Plant Biol.* **25**, 23–31 (2015).

8. Hiruma, K. et al. Root endophyte *Corynebacterium* toefieldiae confers plant fitness benefits that are phosphate status dependent. *Cell* **165**, 464–474 (2016).

9. Harrison, M. J. Cellular programs for arbuscular mycorrhizal symbiosis. *Curr. Opin. Plant Biol.* **15**, 691–698 (2012).

10. Hacquard, S. et al. Survival trade-offs in plant roots during colonization by closely related beneficial and pathogenic fungi. *Nat. Commun.* **7**, 11362 (2016).

11. Lu, V. T. et al. Transgenic plants that express the phytoplasm effector SAP11 suppress root phosphate starvation and defense responses. *Plant Physiol.* **164**, 1456–1469 (2014).

12. Zhao, H. et al. Small RNA profiling reveals phosphorus deficiency as a contributing factor in symptom expression for citrus huanglongbing disease. *Mol. Plant* **6**, 301–310 (2013).

13. Bustos, R. et al. A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in *Arabidopsis*. *PLoS Genet.* **6**, e1001102 (2010).

14. Shin, H., Shin, H. S., Dewbre, G. R. & Harrison, M. J. Phosphate transport in *Arabidopsis*: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments. *Plant J.* **39**, 629–642 (2004).

15. González, E., Solano, R., Rubio, V., Leyva, A. & Paz-Ares, J. PHOSPHATE TRANSPORTER FACILITATOR1 is a plant-specific SEC12-related protein that enables the endoplasmic reticulum exit of a high-affinity phosphate transporter in *Arabidopsis*. *Plant Cell* **17**, 3500–3512 (2005).

16. Huang, T. K. et al. Identification of downstream components of ubiquitin-conjugating enzyme PHOSPHATE2 by quantitative membrane proteomics in *Arabidopsis* roots. *Plant Cell* **25**, 4044–4060 (2013).

17. Lin, W. Y., Huang, T. K. & Chou, T. J. Nitrogen limitation adaptation, a target of microRNA227, mediates degradation of plasma membrane-localized phosphate transporters to maintain phosphate homeostasis in *Arabidopsis*. *Plant Cell* **25**, 4061–4074 (2013).

18. Puga, M. I. et al. SPX1 is a phosphate-dependent inhibitor of Phosphate Starvation Response 1 in *Arabidopsis*. *Proc. Natl Acad. Sci. USA* **111**, 14947–14952 (2014).

19. Lundberg, D. S. et al. Defining the core *Arabidopsis thaliana* root microbiome. *Nature* **488**, 86–90 (2012).

20. Karthikeyan, A. S. et al. Phosphate starvation responses are mediated by sugar signaling in *Arabidopsis*. *Planta* **225**, 907–918 (2007).

21. Schweizer, F. et al. *Arabidopsis* basic helix-loop-helix transcription factors MYC2, MYC3, and MYC4 regulate glucosinolate biosynthesis, insect performance, and feeding behavior. *Plant Cell* **25**, 3117–3132 (2013).

22. Plant, B. D. et al. Identification of primary and secondary metabolites with phosphorus status-dependent abundance in *Arabidopsis*, and of the transcription factor PHR1 as a major regulator of metabolic changes during phosphorus limitation. *Plant Cell Environ.* **38**, 172–187 (2015).

23. Rathgeber, G. et al. ExPress: an Illumina based high-throughput expression-profiling method to reveal transcriptional dynamics. *BMC Genomics* **15**, 341 (2014).

24. Khan, G. A., Vogiatzaki, E., Glauser, G. & Poirier, Y. Phosphate deficiency induces the jasmonate pathway and enhances resistance to insect herbivory. *Plant Physiol.* **171**, 632–644 (2016).

Supplementary Information is available in the online version of the paper.

Acknowledgements Support by NSF INSPIRE grant IOS-1343020 and DOE-USDA Feedstock Award DE-SC001043 to J.L.D. S.H.P. was supported by NIH Training Grant T32 GM07553-06 and is a Howard Hughes Medical Institute International Student Research Fellow. P.J.P.L.T. was supported by The Pew Latin American Fellows Program in the Biomedical Sciences. J.L.D. is an Investigator of the Howard Hughes Medical Institute, supported by the HHMI and the Gordon and Betty Moore Foundation (GBMF3030). M.E.F. and O.M.F. are supported by NIH NRSA Fellowships F32-GM112345-02 and F32-GM117758-01, respectively. N.W.B. was supported by NIH NRSA Fellowship F32-GM1013156. J.P.-A. is funded by the Spanish Ministry of Economy and Competitiveness (MINECO BIO2014-60453-R and EU2008-0374G). We thank S. Barth and E. Getzen for technical assistance, the Dangl laboratory microbiome group for useful discussions and S. Grant, D. Lundberg, F. El Kasmi, P. Schulze-Lefert and his colleagues for critical comments on the manuscript. Supplement contains additional data. Raw sequence data are available at the EBI Sequence Read Archive accession PRJEB15671 for microbiome 16S profiling, and at the Gene Expression Omnibus accessions GSE87339 for transcriptomic experiments. J.L.D. is a co-founder of, and shareholder in, and S.H.P. collaborates with, AgBiome LLC, a corporation whose goal is to use plant-associated microbes to improve plant productivity.

Author Contributions G.C., P.J.P.L.T., S.H.P. and J.L.D. designed the project, G.C., S.H.P., T.F.L. and M.E.F. set up the experiments, collected samples and organized construction of 16S sequencing libraries. G.C. and T.F.L. performed control experiments related with PSR induced by the SynCom. G.C., N.W.B., M.E.F. and T.F.L. set up the experiments, collected samples and isolated RNA. P.J.P.L.T. organized, performed construction of RNA-seq libraries and analysed RNA-seq data. S.H.P. analysed 16S sequencing data. S.H.P. and P.J.P.L.T. oversaw data construction of 16S sequencing libraries. G.C. and T.F.L. performed control experiments related with PSR induced by the SynCom. G.C., N.W.B., M.E.F. and T.F.L. performed sequencing process and statistical methods. G.C., P.J.P.L.T., S.H.P. and J.L.D. wrote the manuscript with input from O.M.F., C.D.J. and J.P.-A.

Author Information Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests. Readers are welcome to comment on the online version of the paper. Correspondence and requests for materials should be addressed to J.L.D. (dangl@email.unc.edu).

Reviewer Information Nature thanks P. Finnegan and the other anonymous reviewer(s) for their contribution to the peer review of this work.
METHODS

Data reporting. For the wild soil and synthetic community profiling studies, we utilized our previously published results (refs 2, 19) that showed that 7 and 5 samples for wild soil and synthetic community experiments were sufficient (see ‘Statistical analysis’).

For wild soil experiments, we performed spatial randomization based on true random numbers. Periodical re-shuffling in the growth chambers was also performed (see ‘Census study experimental procedures’). For DNA extraction, we randomly assigned samples to plates and well plates using a permutation method. The location of samples determined this way was maintained through the library preparation and sequencing steps (see ‘Census study experimental procedures’). The investigators were not blinded to allocation during experiments and outcome assessment.

Census study experimental procedures. For experiments in wild soil, we collected the top-soil (approximately 20 cm) from a site free of pesticide and fertilizer at Mason Farm (North Carolina, USA; +35°33'30.40", −79°1'5.37")5. Soil was dried, crushed and sifted to remove debris. To improve drainage, soil was mixed 2:1 volume with autoclaved sand. Square pots (2 × 2 inch square) were filled with the soil mixture and used to grow plants. Soil micronutrient analysis is published in ref. 19.

All Arabidopsis thaliana mutants used in this study were in the Columbia (Col-0) background (Supplementary Table 16). All seeds were surface-sterilized with 70% bleach, 0.2% Tween-20 for 8 min, and rinsed 3× with sterile distilled water to eliminate any seed-borne microbes on the seed surface. Seeds were stratified at 4°C in the dark for 2 days.

To determine the role of phosphate starvation response in controlling microbe-Community composition, we analysed five mutants related to the Pi-transport system (pht1;1, pht1;1:pht1;4, pht1, nla and pho2) and two mutants directly involved in the transcriptional regulation of the Pi starvation response (pbr1 and spx1;spx2). All these genes are expressed in roots13-18.

Seeds were germinated in sterile square pots filled with MF soil prepared as described above. We also used pots without plants as ‘bulk soil’ controls. All pots, including controls, were watered from the top with non-sterile distilled water to avoid chlorine and other tap water additives two times a week. Plants were grown in growth chambers with a 16-h dark/8-h light regime at 21°C day/18°C night for 7 weeks. In all experiments, pots with plants of different genotypes were randomly placed in trays according to true random numbers derived from atmospheric noise; we obtained those numbers from http://www.random.org. We positioned trays on the growth chamber without paying attention to the pots they contained, and we periodically reshelved them without paying attention to the pot labels.

Plants and bulk soil controls were harvested and their endophytic compartment microbial communities isolated as described19. DNA extraction was performed using 96-well-format MoBio PowerSoil Kit (MOBOIO Laboratories) following the manufacturer’s instruction. Sample position in the DNA extraction plates was randomized using a physical method, and this randomized distribution was maintained through library preparation and sequencing.

The method of Ames20 was used to determine the phosphate concentration in the shoots of seedlings grown on different Pi regimens and treatments. Main root length elongation was measured using ImageJ software21 and for shoot area and number of lateral roots WinRhizo software22 was used.

Processing of 16S sequencing data. For wild soil experiment 16S sequencing, we processed libraries according to Caporaso et al.23. Three sets of index primers were used to amplify the V4 (515F–806R) region of the 16S rDNA gene of each sample. In each case, the reverse primer had a unique molecular barcode for each reaction24. PCR reactions with ~20 ng template were performed with 5 Prime Hot Master Mix in triplicate using plates 2, 4 and 5 from the 16S rRNA Amplification Protocol25. PCR blockers mPNA and pPNA were used to reduce contamination by plants or microbially present in the lab. The PCR program used was: temperature cycling, 95°C for 3 min; 35 cycles of 95°C for 45 s; 72°C (8% of samples) for 30 s; 50°C for 60 s; 72°C for 4°C, 4°C until use. Following PCR cleanup to remove primer dimers, the PCR product was indexed using the same reaction and 9 cycles of the cycling conditions described in ref. 29. Sequencing was performed at UNC on an Illumina MiSeq instrument using a 600-cycle V3 chemistry kit. The raw data for the SynCom experiments is available in the EBI Sequence Read Archive accession PRJEB15671.

Amplicon sequence data processing. For wild soil census analysis, sequences from each experiment were pre-processed following standard method pipelines from refs 2, 19. Briefly, sequence pairs were merged, quality-filtered and de-multiplexed according to their barcodes. The resulting sequences were then clustered into Operational Taxonomic Unit (OTUs) using UPARSE26 implemented with USEARCH7.1090, at 97% identity. Representative OTU sequences (Supplementary Data set 1) were taxonomically annotated with the RDP classifier31 trained on the Greengenes database (4 February 2011; Supplementary Data set 1). We used a custom script (https://github.com/surh/pbi/blob/master/census/1.filter_contaminants.js) to remove organelar OTUs, and OTUs that had no more than a kingdom-level classification, and an OTU count table was generated (Supplementary Table 1, Supplementary Data set 1).

SynCom sequencing data were processed with MT-Toolbox27. Categorizable reads from MT-Toolbox (that is, reads with correct primer and primer sequences that successfully merged with their pair) were quality filtered with Sickle by not allowing any window with Q-score under 20, and trimmed from the 5' end to a final length of 270bp. The resulting sequences were matched to a reference set of the strains in the SynCom generated from Sanger sequences, the sequence from a contaminant strain (47Yellow) that grew in the plate from strain 47 (Supplementary Table 2) and Arabidopsis organellar sequences. Sequence mapping was done with USEARCH7.1090 with the option ‘-search_global’ at a 98% identity threshold. 90% of sequences matched an expected isolate, and those sequence mapping results were used to produce an isolate abundance table. The remaining unmapped sequences were clustered into OTUs with the same settings used for the census experiment, the vast majority of those OTUs belonged to the same families as isolates in the SynCom, and were probably unmapped due to PCR and/or sequencing errors. We combined the isolate and OTU count tables into a single master table. The resulting table was processed and analysed with the code at (https://github.com/surh/pbi/blob/master/syncom/7.syncomp_16S.r). Matches to Arabidopsis organelles were discarded. PCR blanks were included in the sequencing and the average counts per strain observed on those blanks were subtracted from the rest of the samples following28. Extended Data Figure 7a shows the number of usuable reads across samples, and the remaining number after subtracting sterile controls (blanks).

In vitro plant growth conditions. For physiological analysis or pathology experiments, we used pth1, pht1;ph11, phf1, and coii-16;sid2-1 mutants, which are all in the Col-0 genetic background (Supplementary Table 16). For all physiological and transcriptional analysis in vitro, Arabidopsis seedlings were grown on Johnson medium (KNO₃ (0.6 g l⁻¹), Ca(NO₃)₂·4H₂O (0.9 g l⁻¹), MgSO₄·7H₂O (0.2 g l⁻¹), KCl (1.5 mg l⁻¹), H₃BO₃ (0.8 mg l⁻¹), MnSO₄·H₂O (0.8 mg l⁻¹), ZnSO₄·7H₂O (0.6 mg l⁻¹), CuSO₄·5 H₂O (0.1 mg l⁻¹), H₂MoO₄ (16.1μg l⁻¹), FeSO₄·7H₂O (1.1 mg l⁻¹), Myo-Inositol (0.1 g l⁻¹), MES (0.5 g l⁻¹), pH 5.6-5.7) solidified with 1% bacto-agar (BD, Difco). Media were supplemented with Pi (KH₂PO₄) at 1 mM for 7 days in a vertical position, then transferred to 50 μM Pi media (without sucrose) alone or with the Synthetic Community, and were probably unmapped due to PCR and/or sequencing errors. We combined the isolate and OTU count tables into a single master table. The resulting table was processed and analysed with the code at (https://github.com/surh/pbi/blob/master/syncom/7.syncomp_16S.r). Matches to Arabidopsis organelles were discarded. PCR blanks were included in the sequencing and the average counts per strain observed on those blanks were subtracted from the rest of the samples following28. Extended Data Figure 7a shows the number of usuable reads across samples, and the remaining number after subtracting sterile controls (blanks).

SynCom, and were probably unmapped due to PCR and/or sequencing errors. We combined the isolate and OTU count tables into a single master table. The resulting table was processed and analysed with the code at (https://github.com/surh/pbi/blob/master/syncom/7.syncomp_16S.r). Matches to Arabidopsis organelles were discarded. PCR blanks were included in the sequencing and the average counts per strain observed on those blanks were subtracted from the rest of the samples following28. Extended Data Figure 7a shows the number of usuable reads across samples, and the remaining number after subtracting sterile controls (blanks).

Article
selected 35 diverse bacterial strains. 32 of them were isolated from roots of the first wash with MgCl₂ was 0.06 mM Pi and after the second wash it was reduced (10 cultures used for the quantification). Cultures were then rinsed with a sterile enough differences in their 16S rRNA gene to allow for easy and unambiguous in Mason Farm soil 2,19 (Supplementary Table 2). The strains were chosen from a belonged to families enriched in the endophytic compartments of plants grown as a control (Supplementary Table 2). More than half (19 out of 35) of the strains came from Mason Farm unplanted soil 19, and

Bacterial isolation and culture.

1% sucrose either alone or supplemented with 10⁻⁵ M MeJA and the 22-amino-acid flagellin peptide (flg22), plants were

rinsing with

10 ml of 10 mM MgCl₂ which represents almost ten times the volume we used to

the SynCom. After adding MgCl₂ the pH in the media remained stable. We

1 OD 600 nm unit is equal to 10⁹ c.f.u. ml⁻¹.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

RNA isolation and RNA-seq library construction. Total RNA was extracted from roots of Arabidopsis according to ref. 35. Frozen seedlings were pulverized in liquid nitrogen. Samples were homogenized in 400 μl of Z6-buffer; 8 M guanidinium-HCI, 20 mM MES, 20 mM EDTA (pH 7.0). Following the addition of 400 μl phenol:chloroform:isoamylalcohol; 25:24:1, samples were vortexed and centrifuged (9,000 × g) for phase separation. The aqueous phase was transferred to a new

RNA was precipitated at −20 °C overnight. Following centrifugation, (20,000 × g, 10 min, 4 °C) the pellet was washed with 200 μl sodium-acetate (pH 5.2) and 70% ethanol. The RNA was dried, and dissolved in 30 μl of ultrapure water and kept at −80 °C until use.

Illumina-based mRNA-seq libraries were prepared from 1,000 ng RNA. Briefly, mRNA was purified from total RNA using Sera-mag oligo(dT) magnetic beads (GE Healthcare Life Sciences) and then fragmented in the presence of divalent cations (Mg²⁺) at 94 °C for 6 min. The resulting fragmented mRNA was used for

Double-stranded cDNA was end-repaired using T4 DNA polymerase, T4 polynucleotide kinase and Klenow polymerase. The DNA fragments were then added. The RNA was precipitated at −20 °C overnight. Following centrifugation, (20,000 × g, 10 min, 4 °C) the pellet was washed with 200 μl sodium-acetate (pH 5.2) and 70% ethanol. The RNA was dried, and dissolved in 30 μl of ultrapure water and stored at −80 °C until use.

Illumina-based mRNA-seq libraries were prepared from 1,000 ng RNA. Briefly, mRNA was purified from total RNA using Sera-mag oligo(dT) magnetic beads (GE Healthcare Life Sciences) and then fragmented in the presence of divalent cations (Mg²⁺) at 94 °C for 6 min. The resulting fragmented mRNA was used for

Double-stranded cDNA was end-repaired using T4 DNA polymerase, T4 polynucleotide kinase and Klenow polymerase. The DNA fragments were then added. The RNA was precipitated at −20 °C overnight. Following centrifugation, (20,000 × g, 10 min, 4 °C) the pellet was washed with 200 μl sodium-acetate (pH 5.2) and 70% ethanol. The RNA was dried, and dissolved in 30 μl of ultrapure water and stored at −80 °C until use.

Illumina-based mRNA-seq libraries were prepared from 1,000 ng RNA. Briefly, mRNA was purified from total RNA using Sera-mag oligo(dT) magnetic beads (GE Healthcare Life Sciences) and then fragmented in the presence of divalent cations (Mg²⁺) at 94 °C for 6 min. The resulting fragmented mRNA was used for

Double-stranded cDNA was end-repaired using T4 DNA polymerase, T4 polynucleotide kinase and Klenow polymerase. The DNA fragments were then added. The RNA was precipitated at −20 °C overnight. Following centrifugation, (20,000 × g, 10 min, 4 °C) the pellet was washed with 200 μl sodium-acetate (pH 5.2) and 70% ethanol. The RNA was dried, and dissolved in 30 μl of ultrapure water and stored at −80 °C until use.
used to count reads that mapped to each one of the 27,206 nuclear protein-coding genes. Extended Data Fig. 10 shows a summary of the uniquely mapped read counts per library. Raw sequencing data and read counts are available at the NCBI Gene Expression Omnibus accession number GSE87339. Differential gene expression analyses were performed using the generalized linear model (glm) approach46 implemented in the edgeR package40. This software was specifically developed and optimized to deal with over-dispersed count data, which is produced by RNA-seq. Normalization was performed using the trimmed mean of M-values method (TMM)41, function calcNormFactors in edgeR. The glmFit function was used to fit the counts in a negative binomial generalized linear model with a log link function46. For the SynCom experiment (Fig. 3), the model includes the covariates: phosphate content (high or low), bacteria (present or absent) and batch effect. A term for the interaction between phosphate and bacteria was included as represented below:

Expression = phosphate + bacteria + (phosphate × bacteria) + batch

The model used to analyse the effect of MeJA and flg22 (Fig. 4) included the following covariates: phosphate content (high or low), MeJA (present or absent), flg22 (present or absent) and batch effect:

Expression = phosphate + MeJa + flg22 + batch

In each model, the term 'batch' refers to independent repetitions of the experiment (see the ‘Genome-wide gene expression analyses’ section). Data from the different genotypes were fitted independently with the same model variables. The Benjamini–Hochberg method (false discovery rate FDR47) was applied to correct the P values after performing multiple comparisons. Genes with FDR below or equal to 0.01 and fold-change variation of at least 1.5 were considered differentially expressed.

Transcriptional activation of the phosphate starvation response was studied using a literature-curated set of phosphate starvation marker genes (Extended Data Fig. 4a, Supplementary Table 3). This core set consists of 193 genes that were upregulated by phosphate starvation stress across four different gene expression experiments13,43–45. The RPKM (reads per kilobase of transcript per million mapped reads) expression values of these 193 genes were z-score transformed and used to generate box and whiskers plots to show the distribution of the expression values of this gene set.

Hierarchical clustering analyses were performed with the ‘heatmap.2’ function in R from the gplots package48, using the sets of differentially expressed genes identified in each experiment. Genes were clustered on the basis of the Euclidean distance and with the complete-linkage method. Genes belonging to each cluster were submitted to Gene Ontology (GO) enrichment analyses on the PlantGSEA platform49 to identify over-represented biological processes.

Defining markers of the MeJA and SA responses. Genes whose transcription is induced by MeJA (672 genes), BTH/SA (2,096 genes) or both hormones (261 genes) were used as markers of the activation of these immune response output sectors in Arabidopsis (Supplementary Table 10)48. These gene sets were defined using a literature-curated set of phosphate starvation marker genes (Extended Data Fig. 1g).

Transcriptional activation of the phosphate starvation response was studied using a literature-curated set of phosphate starvation marker genes (Extended Data Fig. 4a, Supplementary Table 3). This core set consists of 193 genes that were upregulated by phosphate starvation stress across four different gene expression experiments13,43–45. The RPKM (reads per kilobase of transcript per million mapped reads) expression values of these 193 genes were z-score transformed and used to generate box and whiskers plots to show the distribution of the expression values of this gene set.

Hierarchical clustering analyses were performed with the ‘heatmap.2’ function in R from the gplots package48, using the sets of differentially expressed genes identified in each experiment. Genes were clustered on the basis of the Euclidean distance and with the complete-linkage method. Genes belonging to each cluster were submitted to Gene Ontology (GO) enrichment analyses on the PlantGSEA platform49 to identify over-represented biological processes.

Defining markers of the MeJa and SA responses. Genes whose transcription is induced by MeJa (672 genes), BTH/SA (2,096 genes) or both hormones (261 genes) were used as markers of the activation of these immune response output sectors in Arabidopsis (Supplementary Table 10)48. These gene sets were defined using two-week old Col-0 seedlings grown on potting soil and sprayed with MeJa (50μM, Sigma), BTH (300 μM; Actigard 50WG) or a mock solution (0.02% Silvet, 0.1% ethanol). Samples were harvested 1 h, 5 h and 8 h after the treatment in two independent experiments. Total RNA was extracted with the RNeasy Plant Mini kit (Qiagen) and then used to prepare Illumina mRNA-seq libraries. The bioinformatics pipeline to generate count tables and the criteria used to define differentially expressed genes between conditions (hormone treatment versus mock treatment) was the same as described above. Raw sequencing data are available at the NCBI Gene Expression Omnibus under the accession number GSE90077.

Statistical analyses. Most statistical analyses were performed in the R statistical environment49 and follow methods previously described2. As described in the following subsections, a number of packages were used, and many were called through AMOR-0.0-14 (ref. 50), which is based on code from ref. 2. All scripts and knit2 output from R scripts are available upon request. Most plots are ggplot2 (ref. 52) objects generated with functions in AMOR20. For all linear modelling analyses (ANOVA, ZINB, GLM), terms for batch and biological replicate were included whenever appropriate. Code for both census and SynCom analysis is available at https://github.com/surh/pbi.

For wild soil and SynCom experiments, the number of samples per genotype and treatment was determined on the basis of our previously published work, which showed that seven and five samples are enough to detect differences in wild soils and SynCom experiments, respectively22,17. For RNA-seq experiments, we used at least four replicates per condition, which is sufficient for parameter estimation with the edgeR software46.

Alpha and beta diversity were calculated on count tables that were rarefied to 1,000 reads. Samples with less than this number of usable reads (that is, high quality non-organellar reads) were discarded. Alpha diversity (Shannon index, richness) metrics were calculated using the ‘diversity’ function in vegan53, and differences between groups were tested with ANOVA (Extended Data Fig. 1a). Site diversity (Extended Data Fig. 1b) was calculated with the ‘sietid’ function in AMOR50.

Unconstrained ordination was performed with vegan (Bray–Curtis), and principal coordinate analysis (PCoA) was performed with AMOR50 (Extended Data Fig. 1d). Canonical analysis of principal coordinates (CAP) is a form of constrained ordination54 and was performed using the ‘capscale’ function of the vegan package55 in R. CAP was performed on the full counts of the endophytic compartment samples only, using the ‘Cao’ distance. Constraining was done separately on plant genotype while conditioning on sequencing depth and biological replicate. This approach allowed us to focus on the portion of variation that is associated with plant genotype, conditionally, independent of other factors.

For the SynCom experiments, richness was directly calculated in R. Principal coordinate analysis was performed with the ‘PCoA’ function of AMOR50 using the ‘Cao’ distance which was calculated with vegan55 on an abundance table rarefied to 1,500 reads per sample. CAP was performed using the ‘capscale’ function of the vegan package55 in R. CAP was performed on the full counts of the root samples only, using the ‘Cao’ distance. Constraining was done separately on fraction, PI level and plant genotype, while conditioning on sequencing depth and the other covariates.

Differentially abundant bacterial taxa across fraction and genotype in the wild soil experiments were identified using the same approach as in ref. 2. Briefly, we used a zero-inflated negative binomial (ZINB) framework that allowed us to test for the effect of specific variables, while both controlling for the other covariates and accounting for the excess of zero entries in the abundance tables. These zero-entries probably represented under-sampling and not true absences. The same analysis was performed at the family and OTU-level on the measurable OTUs (taxa that have an abundance of at least 25 counts in at least five samples)56. Results in are Extended Data Fig. 1e–h, Supplementary Table 1. Extended Data Fig. 1h shows the distribution of significant genotypic effects on bacterial abundances at both taxonomic levels; in both cases the behaviour is similar, indicating small and even effects of all genotypes.

For the comparison of enrichment profiles between genotypes, we followed the same Monte–Carlo approach described in ref. 2. Briefly we looked at the enrichment/depletion profile of bacterial taxa for each mutant compared to wild-type Col-0, and asked, for each pair of mutants, if they were more similar than expected by chance and assed significance by random permutation. Results are in Fig. 1d, Extended Data Fig. 1g.

To define differentially abundant strains in SynCom experiments, we found that a negative binomial generalized linear model (GLM) approach gave more stable results than the ZINB approach. We used the edgeR package40 to fit a quasi-negative-binomial-GLM model with the glmQLFit function, and significance was tested with the glmQLFest function57. Results of all relevant pairwise comparisons are in Extended Data Fig. 7 and Supplementary Table 5.

For the definition of robust colonizers in synthetic community experiments, we calculated the average relative abundance of E. coli on all root samples and counted, for each strain, how many times it was more abundant than E. coli’s average on the same set of root samples. Then we used a one-sided binomial test to ask if the probability of a given strain to be more abundant than the average E.coli was significantly higher than a coin toss (50%). Strains that passed the test were labelled as robust-colonizers, the rest of the strains were labelled as sporadic or non-colonizers. The results are indicated in Fig. 2e and Supplementary Table 2.

Data and software accessibility. All data generated from this project is publicly available. Raw sequences from soil census and SynCom colonization are available at the EBI Sequence Read Archive under accession PRJEB15671. Count tables, metadata, taxonomic annotations and OTU representative sequences from the Mason Farm census and SynCom experiments are available as Supplementary Data 1 and Supplementary Data 2 respectively. Custom scripts used for statistical analysis and plotting are available at (https://github.com/surh/pbi). Raw sequences from transcriptomic experiments are available at the NCBI Gene Expression Omnibus under the accession number GSE87339. The corresponding metadata information is provided in Supplementary Table 15. All code is available upon request.

25. Ames, B. N. Assay of endogenous phosphate, total phosphate and phosphatases. Methods Enzymol. 8, 115–118 (1966).
26. Barboriak, D. P., Padua, A. O., York, G. E. & Macfay, J. R. Creation of Dficom-aware applications using ImageJ. J. Digit. Imaging 18, 91–99 (2005).
27. Arsenault, J. L., Pouleur, S., Messier, C. & Guay, R. WinRHIZO, a root-measuring system with a unique overlap correction method. HorticScience 30, 906 (1995).
28. Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621–1624 (2012).
29. Lundberg, D. S., Yourstone, S., Mieczkowski, P., Jones, C. D. & Dangl, J. L. Practical innovations for high-throughput amplicon sequencing. Nat. Methods 10, 999–1002 (2013).
30. Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).
31. Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).
32. Yourstone, S. M., Lundberg, D. S., Dangl, J. L. & Jones, C. D. MT-Toolbox: improved amplicon sequencing using molecule tags. BMC Bioinformatics 15, 284 (2014).
33. Nguyen, N. H., Smith, D., Peay, K. & Kennedy, P. Parsing ecological signal from noise in next generation amplicon sequencing. New Phytol. 205, 1389–1393 (2015).
34. Hubert, D. A., He, Y., McNulty, B. C., Tornero, P. & Dangl, J. L. Specific Arabidopsis HSP90.2 alleles recapitulate RAR1 cochaperone function in plant NB-LRR disease resistance protein regulation. Proc. Natl Acad. Sci. USA 106, 9556–9563 (2009).
35. Logemann, J., Schell, J. & Willmitzer, L. Improved method for the isolation of RNA from plant tissues. Anal. Biochem. 163, 16–20 (1987).
36. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. Journal. 17, 10–12 (2011).
37. Trapnell, C., Pachter, L. & Salzberg, S. L. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105–1111 (2009).
38. McCarthy, D. J., Chen, Y. & Smyth, G. K. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 40, 4288-4297 (2012).
39. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).
40. Castrillo, G. et al. WRKY6 transcription factor restricts arsenate uptake and transposon activation in Arabidopsis. Plant Cell 25, 156–168 (2013).
41. Gregory, R. et al. gplots: Various R programming tools for plotting data. R package version 3.0.1 (2016).
42. Yi, X., Du, Z. & Su, Z. PlantGSEA: a gene set enrichment analysis toolkit for plant community. Nucleic Acids Res. 41, W98–W103 (2013).
43. R Core Team. R: A language and environment for statistical computing. http://www.R-project.org/ (2014).
44. Sur Herrera Paredes. AMOR 0.0-14. Zenodo. http://dx.doi.org/10.5281/zenodo.49093 (2016).
45. Wickham, H. ggplot2: Elegant graphics for data analysis. (Springer-Verlag, 2009).
46. vegan: Community ecology package. R package version 2.3-5 (2016).
47. Anderson, M. J. & Willis, T. J. Canonical analysis of principal coordinates: A useful method of constrained ordination for ecology. Ecology 84, 511–525 (2003).
48. Lun, A. T. L., Chen, Y. & Smyth, G. K. It's DE-licious: a recipe for differential expression analyses of RNA-seq data using quasi-likelihood methods in edgeR. Methods Mol. Biol. 1418, 391–416 (2016).
Extended Data Figure 1 | See next page for caption.
Extended Data Figure 1 | The Arabidopsis PSR alters highly specific bacterial taxa abundances. **a**, Alpha diversity of bacterial root microbiome in wild-type Col-0, PSR mutants and bulk soil samples. We used ANOVA methods and no statistical differences were detected between plant genotypes after controlling for experiment. **b**, Additive beta-diversity curves showing how many OTUs are found in bulk soil samples or root endophytic samples of the same genotype as more samples (pots) are added. The curves show the mean and the 95% confidence interval calculated from 20 permutations. **c**, Phylum-level distributions of plant root endophytic communities from different plant genotypes and bulk soil samples. **d**, Principal coordinates analysis based on Bray–Curtis dissimilarity of root and bulk soil bacterial communities showing a large effect of experiment on variation, as expected according to previous studies. For **a–d**, the number of biological replicates per genotype and soil are: Col-0 (n = 17), *pt1;1* (n = 18), *pt1;1;pt1;4* (n = 17), *phf1* (n = 13), *nla* (n = 16), *pho2* (n = 16), *phr1* (n = 18), *spx1;spx2* (n = 14) and soil (n = 17). **e**, Bacterial taxa that are differentially abundant (DA) between PSR mutants and Col-0. Each row represents a bacterial family (left) or OTU (right) that shows a significant abundance difference between Col-0 and at least one mutant. The heat map grey scale shows the mean abundance of the given taxa in the corresponding genotype, and significant enrichments and depletions with respect to Col-0 are indicated with a red or blue rectangle, respectively. Taxa are organized by phylum shown on the right bar coloured according to **f**. **f**, Doughnut plot showing family-level (top) and OTU-level (bottom) differences in endophytic root microbiome compositions between mutants (columns) and Col-0 plants. The number inside each doughnut indicates how many bacterial families are enriched or depleted in each mutant with respect to Col-0, and the colours in the doughnut show the phylum level distribution of those differential abundances. **g**, Tables of P values from Monte-Carlo pairwise comparisons between mutants. A significant P value (cyan) indicates that two genotypes are more similar than expected by chance. Results of family-level comparison are shown. This plot should be compared with the corresponding OTU-level plot in Fig. 1d. **h**, Distributions of plant genotypic effects on taxonomic abundances at the family (up) or OTU (down) level. For each genotype, the value of the linear model coefficients for individual OTUs or families is plotted grouped by their sign. Positive values indicate that a given taxon has increased abundance in a mutant with respect to Col-0, whereas a negative value represents the inverse pattern. Only coefficients from significant comparisons are shown. The number of taxa (that is, points) on each box and whisker plot is indicated in the corresponding doughnut plot in **f**.
Plants grown in Mason Farm wild soil or Pi-replete potting soil do not induce PSR and accumulate the same amount of Pi.

a. Plants overexpressing the PSR reporter construct IPS1:GUS grown in Mason Farm wild soil (MF) or in Pi-replete potting soil (GH) (250 p.p.m. of 20-20-20 Peters Professional Fertilizer).

b. Expression analysis of the reporter constructs IPS1:GUS (n = 12) shows lack of induction of PSR for both soils analysed. In this construct, the promoter region of IPS1, highly induced by low Pi, drives the expression of GUS. Plants were grown in the conditions described in **a.** The number of GUS positive plants relative to the total number of plants analysed in each condition is shown in parentheses.

c. Pi concentration in shoots (n = 6) of plants grown in both soils analysed shows no differences. Plants were grown in a growth chamber in a 15-h light/9-h dark regime (21°C day/18°C night). Images shown here are representative of the 12 plants analysed in each case. Error bars, standard deviation.
Extended Data Figure 3 | Phylogenetic composition of the 35-member SynCom. Left, comparison of taxonomic composition of soil (S), rhizosphere (R) and endophyte (EC) communities from ref. 19, with the taxonomic composition of the isolate collection obtained from the same samples and the SynCom selected from within it and used in this work. Right, maximum likelihood phylogenetic tree of the 35-member SynCom based on a concatenated alignment of 31 single-copy core proteins.
Extended Data Figure 4 | Induction of the PSR triggered by the SynCom is mediated by PHR1 activity. a, Venn diagram with the overlap among genes found upregulated during phosphate starvation in four different gene expression experiments. The intersection (193 genes) was used as a robust core set of PSR for the analysis of our transcriptional data. b, Expression profile of the 193 core PSR genes indicating that the SynCom triggers phosphate starvation under low Pi conditions in a manner that depends on PHR1 activity. The RPKM expression values of these genes were z-score transformed and used to generate box and whiskers plots that show the distribution of the expression values of this gene set. Col-0, the single mutant phr1 and the double mutant phr1;phl1 were germinated at 1 mM Pi with sucrose and then transferred to low Pi (50 μM) and high Pi (625 μM Pi) alone or with the SynCom. The figure shows the average measurement of ten biological replicates for Col-0 and phr1 and six for phr1;phl1. c, Percentage of genes per cluster (from Fig. 3) containing the PHR1 binding site (P1BS, GNATATNC) within 1,000 bp of their promoters. The red line indicates the percentage of Arabidopsis genes in the whole genome that contain the analysed feature. Asterisk denotes significant enrichment or depletion (P ≤ 0.05; hypergeometric test).
Extended Data Figure 5 | The SynCom induces PSR independently of sucrose in Arabidopsis. a, Expression analysis of a core of 193 PSR marker genes in an RNA-seq experiment using Col-0 plants. The RPKM expression values of these genes were z-score transformed and used to generate box and whiskers plots that show the distribution of the expression values of this gene set. Plants were grown in Johnson medium containing replete (1 mM Pi; (+Pi)) or stress (5 μM Pi; (−Pi)) Pi concentrations with (+Suc) or without (−Suc) 1% sucrose. b, Expression analysis of the reporter constructs IPS1:GUS (n = 20). In this construct, the promoter region of IPS1, highly induced by low Pi, drives the expression of GUS. Plants were grown in Johnson medium + Pi or − Pi at different percentages of sucrose. These results show that sucrose is required for the induction of the PSR in typical sterile conditions. Images shown are representative of the 20 plants analysed in each case. c, Top, plants grown in sterile conditions at different Pi concentrations (left (no bacteria)) or with a SynCom (right (+SynCom)). Bottom, histochemical analysis of GUS activity in overexpressing IPS1:GUS plants (n = 20) from top panel. Images shown are representative of the 20 plants analysed in each case. d, Pi concentration in plant shoots from c, in all cases n = 5. Analysis of variance indicated a significant effect of the Pi level in the media (F = 44.12, d.f. = 1, P value = 9.72 × 10−8), the presence of SynCom (F = 32.61, d.f. = 1, P value = 1.69 × 10−6) and a significant interaction between these two terms (F = 4.748, d.f. = 1, P value = 0.036) on Pi accumulation. e, F-value statistic from the ANOVA, d.f. is the degrees of freedom from the same test. e, Top, plants grown in axenic conditions (no bacteria), with a concentration gradient of heat-killed SynCom (2 h 95°C, (+heat-killed SynCom)) or with SynCom alive. Bottom, histochemical analysis of GUS activity in overexpressing IPS1:GUS plants (n = 15) from top panel. All plants were grown at 50 μM Pi. Images shown are representative of the 15 plants analysed in each case. f, Quantification of Pi concentration in plant shoots from e, (in all cases n = 5). The SynCom effect on Pi concentration requires live bacteria. Plants were germinated on Johnson medium containing 0.5% sucrose, with 1 mM Pi for 7 days in a vertical position, then transferred to 0, 10, 30, 50, 625 μM Pi media (without sucrose) alone or with the SynCom at 10^5 c.f.u. ml^{-1} (only for the conditions 0, 50 and 625 μM Pi), for another 12 days. For the heat-killed SynCom experiments, plants were grown as above. Heat-killed SynComs were obtained by heating different concentrations of bacteria 10^5 c.f.u. ml^{-1}, 10^6 c.f.u. ml^{-1} and 10^7 c.f.u. ml^{-1} at 95°C for 2 h in an oven. The whole content of the heat-killed SynCom solutions were add to the media. In all cases, addition of the SynCom did not change significantly the final Pi concentration or the pH in the media. Letters indicates grouping based on ANOVA and Tukey post hoc test at 95% confidence, conditions with the same letter are statistically indistinguishable.
Extended Data Figure 6 | Bacteria induce the PSR using the canonical pathway in Arabidopsis. a, Pi concentration in the shoot of Col-0 plants germinated in three different conditions, 5 \(\mu \)M Pi (−Pi) (n = 14), 1 mM Pi (+Pi) (n = 15) and 1 mM KH\(_2\)PO\(_3\) (Phi) (n = 15) for 7 days. Phi is a non-metabolizable analogue of Pi; its accumulation delays the response to phosphate stress. b, Expression profile analysis of a core of PSR-marker genes in Col-0, phf1 and phr1;phl1. The RPKM expression values of these genes were z-score transformed and used to generate box and whiskers plots that show the distribution of the expression values of this gene set. Plants were germinated in three different conditions, 5 \(\mu \)M Pi (−Pi), 1 mM Pi (+Pi) and 1 mM KH\(_2\)PO\(_3\) (Phi) and then transferred to low Pi (50 \(\mu \)M Pi) and high Pi (625 \(\mu \)M Pi) alone or with the SynCom for another 12 days. The figure shows the average measurement of four biological replicates. c, Phenotype of plants grown in axenic conditions at 625 \(\mu \)M Pi (top) or at 50 \(\mu \)M Pi (bottom) (left (no bacteria)) or with a SynCom (right (+SynCom)). Images showed here are representative of the total number of plants analysed in each case as noted below. d, Quantification of the main root elongation. e, Number of lateral roots per plant (e) and number of lateral roots per cm of main root (f) in plants from c. For d–f, the number of biological replicates are: 625 \(\mu \)M no bacteria (n = 48), 625 \(\mu \)M + SynCom (n = 46), 50 \(\mu \)M no bacteria (n = 73), and 50 \(\mu \)M SynCom (n = 56), distributed across two independent experiments indicated with different shades of colour. Measurements were analysed with ANOVA, controlling for biological replicate. Asterisks denote a significant effect (P value < 1 \(\times \) 10\(^{-16}\)) of treatment with SynCom for the three phenotypes in d–f. In all cases, neither the interaction between Pi and bacteria, nor Pi concentrations alone had a significant effect and were dropped from the ANOVA model. In all cases, residual quantiles from the ANOVA model were compared with residuals from a normal distribution to confirm that the assumptions made by ANOVA hold (see code on GitHub for details, see Methods).
Extended Data Figure 7 | Plant genotype and Pi concentration alter SynCom strain abundances. a, Number of bacterial reads in samples of different types (left) and number of reads after blank normalization (right, see Methods). The number of biological replicates are: inoculum ($n = 8$), agar + SynCom ($n = 41$), agar no bacteria ($n = 2$), root + SynCom ($n = 36$), root no bacteria ($n = 6$) and blank ($n = 3$), across two independent experiments. b, Richness (number of isolates detected) in SynCom samples. No differences were observed between plant genotypes. The number of biological replicates per group is $n = 12$ except for inoculum ($n = 4$) and $phr1$ ($n = 11$). c, Exemplary SynCom strains that show quantitative abundance differences between genotypes. Genotypes with the same letter are statistically indistinguishable. d, Exemplary SynCom strains that show quantitative abundance differences depending on Pi concentration in the media. Asterisks note statistically significant differences between the two Pi concentrations. e, CAP analysis of agar versus root difference in SynCom communities. These differences explained 9.1% of the variance. The number of biological replicates per fraction is: agar ($n = 12$) and root ($n = 35$), distributed across two independent experiments. f, Exemplary SynCom strain that shows a statistically significant differential abundance between root and agar samples. Statistically significant differences are defined as FDR < 0.05. For c, d and f, the number of biological replicates for every combination of genotype and Pi level is always $n = 6$, evenly distributed across two independent experiments.
Extended Data Figure 8 See next page for caption.
Extended Data Figure 8 | PHR1 controls the balance between the SA and JA regulons during the PSR induced by a 35-member SynCom.

a, Total number of differentially expressed genes (FDR < 0.01 and minimum of 1.5× fold-change) in Col-0, phr1 and phr1;phl1 with respect to low Pi (50 μM Pi); bacteria presence and the interaction between low Pi and bacteria. In this experiment, plants were grown for 7 days in Johnson medium containing 1 mM Pi, and then transferred for 12 days to low (50 μM Pi) and high Pi (625 μM Pi) conditions alone or with the SynCom. No sucrose was added to the medium. b, Venn diagram showing the overlap between the PSR marker genes (core Pi) and the genes that were upregulated in Col-0 by each of the three variables analysed. The combination of bacteria and low Pi induced the majority (85%) of the marker genes. c, PHR1 negatively regulates the expression of a set of SA-responsive genes during co-cultivation with the SynCom. Venn diagram showing the overlap among PSR-SynCom DEGs, genes upregulated by BTH treatment of Arabidopsis seedlings, and the direct targets of PHR1 identified by ChIP–seq. The red ellipse indicates the 468 BTH/SA-responsive genes that were differentially expressed. A total of 99 of these genes (21%) are likely direct targets of PHR1. The yellow ellipse indicates 272 SA-responsive genes that were bound by PHR1 in a ChIP–seq experiment (see Fig. 3e). Approximately one-third of them (99 out of 272) were differentially expressed in the SynCom experiment. d, Hierarchical clustering analysis showed that nearly half of the BTH/SA-induced genes that were differentially expressed in our experiment are more expressed in phr1 or phr1;phl1 mutants compared to Col-0 (dashed box). The columns on the right indicate those genes that belong to the core PSR marker genes (‘core’ lane) or that contain a PHR1 ChIP–seq peak (‘ChIP–seq’ lane). A subset of the SA marker genes is less expressed in the mutant lines (thin dashed box). This set of genes is also enriched in the core PSR markers and in PHR1 direct targets (P < 0.001; hypergeometric test), indicating that PHR1 can function as a positive activator of a subset of SA-responsive genes. Importantly, these genes are not typical components of the plant immune system but rather encode proteins that play a role in the physiological response to low phosphate availability (for example, phosphatases and transporters). e, Examples of typical SA-responsive genes are shown on the right along with their expression profiles in response to MeJA or BTH/SA treatment compared to Col-0. f, PHR1 activity is required for the activation of JA-responsive genes during co-cultivation with the SynCom. Venn diagram showing the overlap among DEG from this work (PSR-SynCom), genes upregulated by MeJA treatment of Arabidopsis seedlings and the genes bound by PHR1 in a ChIP–seq analysis. Red ellipse indicates 165 JA-responsive genes that were differentially expressed. Thirty-one of these (19%) were defined as direct targets of PHR1. The yellow ellipse indicates 96 JA-responsive genes that were bound by PHR1 in a ChIP–seq experiment. Approximately one-third of them (31 out of 96) were differentially expressed in the SynCom experiment. g, Hierarchical clustering analysis showed that almost 75% of the JA-induced genes that were differentially expressed in our experiment are less expressed in the phr1 mutants (dashed box). The columns on the right indicate those genes that belong to the core PSR marker genes (‘core’ lane) or that contain a PHR1 ChIP–seq peak (‘ChIP–seq’ lane). h, Examples of well-characterized JA-responsive genes are shown on the right along with their expression profiles in response to BTH and MeJA treatments obtained in an independent experiment. i, Heat map showing the expression profile of the 18 genes that were differentially expressed in our experiment and participate in the biosynthesis of glucosinolates. In general, these genes showed lower expression in the phr1 mutants indicating that PHR1 activity is required for the activation of a sub-set of JA-responsive genes that mediate glucosinolate biosynthesis. The transcriptional response to BTH/SA and MeJA treatments is shown on the right and was determined in an independent experiment in which Arabidopsis seedlings were sprayed with either hormone. MeJA induces the expression of these glucosinolate biosynthetic genes, whereas BTH represses many of them. The gene IDs and the enzymatic activity of the encoded proteins are shown on the right. Results presented in this figure are based on ten biological replicates for Col-0 and phr1 and six for phr1;phl1. The colour key (blue to red) related to d, e, g, h, i represents gene expression as z-scores and the colour key (green to purple) related to e, h, i represents gene expression as log2 fold changes.
Extended Data Figure 9 PHR1 activity effects on flg22- and MeJA-induced transcriptional responses. a, Total number of differentially expressed genes (FDR ≤ 0.01 and minimum of 1.5× fold-change) in Col-0 and phr1;phl1 with respect to low Pi (50 μM Pi), flg22 treatment (1 μM) and MeJA (10 μM). In this experiment, plants were grown for 7 days in Johnson medium containing 1 mM Pi, and then transferred for 12 days to low (50 μM Pi) and high Pi (625 μM Pi) conditions alone, or in combination with each treatment. Sucrose was added to the medium at a final concentration of 1%. b, Venn diagram showing the overlap among genes that were upregulated by chronic exposure to flg22 in Col-0 and in phr1;phl1 and a literature-based set of genes that were upregulated by acute exposure (between 8 to 180 min) to flg22 (ref. 23). The red ellipse indicates the 251 chronic flg22-responsive genes defined here. c, Venn diagram showing the overlap among genes that were upregulated by chronic exposure to MeJA in Col-0 and in phr1;phl1 in this work and a set of genes that were upregulated by MeJA treatment of Arabidopsis seedlings (between 1 h and 8 h). The red ellipse indicates the intersection of JA-responsive genes identified in both experiments. d, Col-0 and phr1;phl1 exhibit similar transcriptional activation of 426 common JA-marker genes (c) independent of phosphate concentration. As a control we used coi1-16, a mutant impaired in the perception of JA. The gene expression results are based on six biological replicates per condition. e, Growth inhibition of primary roots by MeJA. Root length of wild-type Col-0 (n = 125 (+Pi, −MeJA), 120 (+Pi, +MeJA), 126 (−Pi, −MeJA), 125 (−Pi, +MeJA)), phr1;phl1 (n = 85, 103, 90, 80) and the JA perception mutant coi1-16 (n = 125, 120, 124, 119) was measured after 4 days of growth in the presence or not of MeJA with or without 1 mM Pi. Letters indicate grouping based on multiple comparisons from a Tukey post hoc test at 95% confidence. In agreement with the RNA-seq results, no difference in root length inhibition was observed between Col-0 and phr1;phl1.
Extended Data Figure 10 | Number of mapped reads for each RNA-seq library used in this study. The figure shows the maximum, minimum, average and median number of reads mapping per gene for all RNA-seq libraries generated. The total number of reads mapping to genes is also shown for each library. With the exception of the minimum number of mapped reads, which is zero for all libraries, all values are shown in a log scale.