Early detection of SARS-CoV-2 P.1 variant in Southern Brazil and reinfection of the same patient by P.2

Mariana Soares da Silva¹, Meriane Demoliner¹, Alana Witt Hansen¹, Juliana Schons Gularte¹, Flávio Silveira¹, Fáagner Henrique Heldt¹, Micheli Filippi¹, Vyectoria Malayhka de Abreu Góes Pereira¹, Francini Pereira da Silva¹, Larissa Mallmann¹, Pietra Fink¹, Luana Letícia da Silva², Matheus Nunes Weber¹, Paula Rodrigues de Almeida¹, Juliane Deise Fleck¹, Fernando Rosado Spilki¹

ABSTRACT

Multiple variants of the Severe Acute Respiratory Syndrome coronavirus 2 virus (SARS-CoV-2) have been constantly reported across the world. The B.1.1.28 lineage has been evolving in Brazil since February 2020 and originated the P.1 variant of concern (VOC), recently named as the Gamma variant by the newly WHO nomenclature proposal, and P.2 as a variant of interest (VOI). Here we describe an early case of P.1 primary infection in Southern Brazil in late November 2020, soon after the emergence of the variant in Manaus, Northern Brazil. The same male patient was reinfected by another B.1.1.28 variant, namely P.2, in March, 2021. The genomic analysis confirmed genetically significant differences between the two viruses recovered in both infections, the P.1 lineage in the first episode and P.2 in the reinfection. Due the very early detection of P.1, we have also investigated the circulation of P.1 in the same region by differential RT-qPCR, showing that this was an isolated case of P.1 at the time of detection, and this variant has disseminated and became prominent from late January to the end of March, 2021. SARS-CoV-2 recent reports of reinfection have raised critical questions on whether and how well a first infection protects against reinfection.

KEYWORDS: Covid-19. Reinfection. SARS-CoV-2. P.1 lineage. Brazil.

INTRODUCTION

The emergence of the novel SARS-CoV-2 lineages is currently a worldwide concern. The continuous rise of variants is probably related to an increased rate of virus transmission and evasion from the host’s immune system. Lately, research groups have reported the emergence of multiple variants of concern (VOC) or of interest (VOI), such as P.1¹, P.2², N.9³ and B.1.351⁴ in specific Brazilian regions. P.1 (VOC), recently named as Gamma variant by the newly WHO nomenclature proposal⁵ as well as P.2 (VOI) variants have evolved from the lineage B.1.1.28⁶, and harbor E484K (P.1 and P.2) and N501Y (P.1) mutations, which are associated with increased transmissibility or immune evasion⁶. The persistence of protective immunity provided by the coronavirus disease 2019 (COVID-19) or vaccination is not yet well established and some cases of reinfection have been reported⁷,⁸.

The B.1.1.28 SARS-CoV-2 lineage has been circulating in Brazil since February 2020; P.2 (alias for B.1.1.28.2) was first detected in Rio de Janeiro⁹ harboring the mutation S:E484K, and P.1 (alias of B.1.1.28.1) was first detected in Japanese travelers returning from the Amazonas State and due to the presence of several
important mutations in the receptor binding domain - RBD of the viral spike (K417T, E484K, and N501Y) is of particular concern in Brazil. The P.1 variant is widely spread in the country, being associated with local outbreaks of great magnitude due to an enhanced transmissibility. The P.1 lineage more likely appeared in Manaus, Northern Brazil in mid-November, even though, recent studies have shown an earlier possible origin for a P.1 ancestral in mid-August 2020 and for the common P.1 variant in mid-October. The first described cases attributed to P.1 in Southern Brazil so far are from the last week of January 2021.

In this study, we report a case of SARS-CoV-2 P.1 infection in a 39-year-old individual from Campo Bom city (latitude 29º40’44” South and at longitude 51º03’10” West), Rio Grande do Sul State the Southernmost State of Brazil, in late November 2020. The same patient acquired a second infection by another variant, the P.2 lineage, in March 2021. Due the very early detection of P.1, we also have investigated the circulation of P.1 in the same geographic region using a differential VOC RT-qPCR. The study was carried out from the time of the first infection (November 2020) to April 2021, since P.1 emerged in Northern Brazil in mid-November and the first cases described in Southern Brazil occurred in late January 2021.

MATERIAL AND METHODS

RT-qPCR for SARS-CoV2 detection

Naso-oropharyngeal swab samples from the same patient (LMM38991 and LMM50731) were received at Laboratório de Microbiologia Molecular of Universidade Feevale, Novo Hamburgo, Rio Grande do Sul State, Brazil, (November 30th, 2020 and March 11th, 2021) for SARS-CoV-2 detection. Total nucleic acid was extracted with the commercial MagMAX™ CORE Nucleic Acid Purification Kit (Applied biosystems™, Thermo Fisher Scientific, Waltham, MA, USA) kit, using the automated equipment KingFisher™ Duo Prime (Thermo Fisher Scientific™). RT-qPCR for SARS-CoV-2 cDNA detection targeting the viral E gene was performed according to the Charité Institute, Berlin, Germany, protocols. RNA was extracted from naso-oropharyngeal swab samples and reverse transcription reaction was performed using the SuperScript IV reverse transcriptase kit (Thermo Fisher Scientific, Waltham, MA, USA). Preparation of the whole viral genome library was performed using the QIAseq SARS-CoV-2 Primer Panel paired for library enrichment and QIAseq FX DNA Library UDI Kit, according to the manufacturer instructions (QIAGEN, Hilden, Germany). Sequencing was implemented in an Illumina MiSeq platform using MiSeq Reagent Kit v3 (600-cycle) from Illumina Inc. (Foster city, CA, USA). All procedures were conducted in a laminar flow to minimize the risk of contamination. The FASTQ reads were imported to Geneious Prime, trimmed (BBDuk 37.25), and mapped against the reference sequence hCoV-19/Wuhan/WIV04/2019 (EPI_ISL_402124) available in the EpiCoV database from GISAID.

A total of 97 Brazilian SARS-CoV-2 complete genomes and the reference sequence (EPI_ISL_402124) (>29 kb) were retrieved from the GISAID database and aligned with the sequences generated herein. Sequence alignment was performed using the Clustal Omega software and the reference sequence from Wuhan was applied as the outgroup. The Maximum Likelihood phylogenetic analysis under the General Time Reversible model, allowing for a proportion of invariable sites and substitution rates were inferred empirically in IQ-TREE v2.1.2 web server especially for maximum-likelihood (ML, applying 200 replicates and 1,000 bootstraps.

RESULTS

Case description and epidemiological findings

A 39-years-old male patient, presenting with comorbidities (chronic cardiovascular disease and diabetes...
mellitus) reported two clinical episodes of COVID-19. The first one was on November 30th, 2020, and the second one on March 11th, 2021. During the first infection period, the patient’s symptomatology was not reported. However, the patient claimed to have had contact with his brother, who had previously tested positive for SARS-CoV-2. He had also visited his SARS-CoV-2 infected father at the hospital in a room shared with other COVID-19 diagnosed patients and, despite the efforts, it was not possible to know if the patient has had previous contact with any traveler from Manaus, since the region is highly known for trade and tourism. In the second infectious episode, the patient experienced dyspnea, fatigue and respiratory distress and an oxygen saturation < 95% as a clinical sign. The second infection evolved with complications, and the patient was admitted to an Intensive Care Unit (ICU) and intubated due to a severe loss of pulmonary capacity. The patient unfortunately died on March 19th, 2021, 12 days after the onset of symptoms.

Diagnostic laboratory findings

Both diagnostic RT-qPCR assays were positive, presenting a Ct value of 30.07 (LMM38991) and 18.83 (LMM50731). The differential RT-qPCR retrospective study resulted in 226 negative samples and 122 positive samples for the P.1 variant. Except for the reinfected patient (who was not analyzed according to the CT value), the circulation of P.1 in Rio Grande do Sul State was evidenced in our sampling from January 27th, 2021 on (Figure 1A). Furthermore, the peak of P.1 lineage detections coincides with the peak of SARS-CoV-2 new cases (Figure 1B), hospitalizations (Figure 1C) and deaths (Figure 1D) in the neighboring region.

Genome sequencing and bioinformatics analysis

Two high-quality SARS-CoV-2 whole-genome sequences, named LMM38991/2020 and LMM50731/2021

![Figure 1](https://example.com/figure1.png)

Figure 1 - Emergence of SARS-CoV-2 P.1 lineage and general situation of COVID-19: (A) Retrospective analysis based on differential RT-qPCR: The gray bars represent the negative results predominating during the first epidemiological weeks. Afterwards, positive samples (represented by pink bars) replaced the parental lineages; (B) COVID-19 new cases; (C) COVID-19 hospitalizations and (D) COVID-19 deaths.
(EPI_ISL_1630158 and EPI_ISL_1629809) were recovered from the same patient, corresponding to the first infection and the reinfection, respectively. Consensus sequences LMM38991/2020 and LMM50731/2021 presented a mean coverage of 1,405x and 1,263x. The sequences were first classified using the Pangolin COVID-19 Lineage Assigner tool indicating the presence of two discordant SARS-CoV-2 lineages: the P.1 lineage in the primo-infection (LMM38991/2020; Gisaid access EPI_ISL_1630158) and the P.2 lineage (LMM50731/2021; Gisaid access EPI_ISL_1629809) in reinfection.

The phylogenetic analysis confirmed previous results. LMM38991/2020 was clearly clustered with the P.1 lineage, while LMM50731/2021 branched out into P.2 group (Figure 2). LMM38991/2020 and LMM50731/2021 displayed the typical P.1 and P.2 spike protein E484K mutations and INDELs. LMM38991/2020, presented all 11 typical P.1 amino acid non-synonymous changes in the S protein (L18F, T20N, P26S, D138Y, R190S, K417T, E484K, N501Y, D614G, H655Y, T1027I, V1176F) and LMM50731/2021 presented three previously reported amino acid changes in S protein (E484K, D614G, V1176F) of the P.2 lineage.

DISCUSSION AND CONCLUSIONS

This study described a COVID-19 primo-infection caused by a P.1 lineage followed by a reinfection by a P.2 lineage in a three-month interval. A male, 39-years-old patient with history of comorbidities, presented two clinical episodes of COVID-19. Few reinfection cases were described worldwide, especially with detection of different SARS-CoV-2 lineages. In addition, there are apparently more cases reporting asymptomatic/mild disease during reinfection episodes, although some cases showed a more severe illness in the second episode as the one described here. These evidences are reinforced by the apparent low viral quantification determined by RT-qPCR in the primo-infection.

Viral immune evasion or limited and transitory protective immunity might be the cause of this reinfection as observed in the last cases to date, especially emerging lineages reinfections (P.1 and P.2) that might also reflect the ability of S:K484 virus to escape from anti-SARS-CoV-2 neutralizing antibodies. Although P.1 and P.2 variants have been related to antibody evasion in patients previously immunized by non-mutated lineages in the case described herein, the patient may have produced antibodies that included the S:484K site, but apparently these antibodies did not prevent a second infection by the P.2 lineage.
The P.1 lineage has most probably emerged in Brazil in middle November 2020 in Manaus, Northern region9,11. However, recent studies have shown an earlier possible origin for an ancestral P.1 in mid-August 2020 and for the nowadays common P.1 variant in mid-October10. Our findings showed that the P.1 lineage was present in Southern Brazil soon after, in late November. Later, other early detections of the P.1 lineage were described in other Brazilian States, such as Bahia, Salvador city19.

According to our retrospective analysis, based on differential qRT-PCR, it is important to note that despite the case reported herein, the P.1 lineage did not spread in a first moment, as observed in other Brazilian cities and also in other countries. In Argentina, the first P.1 case was reported on February 8th, 2021, but the variant consistently spread between March and April, 202120. Expressive number of positive P.1 cases were found only at the end of January in Southern Brazil, that replaced the parental lineages thereafter.

In summary, this study reported and characterized an early primary COVID-19 caused by the P.1 lineage followed by a reinfection episode, in Southern, Brazil some months later. The P.1 lineage is spreading rapidly across Brazil21 and after its establishment, has been related to an exponential increment of transmissibility and hospitalization rates11 as observed in our data. It is important to understand the new lineages origin, but since the patient made several personal contacts, including some with close family members that were also infected with SARS-CoV-2, there was a higher risk of infection. Despite our efforts, due the high number of infected contacts that our patient had prior to and during the first infection, it was impossible to establish the source of infection. Nevertheless, reinfection studies are essential to understand whether these are isolated or widely distributed cases17. These cases have attracted considerable attention since they indicate that SARS-CoV-2 infections do not uniformly confer protective immunity for infected individuals.

ACKNOWLEDGMENTS

This work is an initiative of Rede Corona-ômica BR MCTI/FINEP affiliated to RedeVírus/MCTI (FINEP = 01.20.0029.000462/20, CNPq = 404096/2020-4). See Supplementary Acknowledgments.

CONFLICT OF INTERESTS

The authors have no conflict of interests to declare.

REFERENCES

1. Fujino T, Nomoto H, Kutsuna S, Ujiie M, Suzuki T, Sato R, et al. Novel SARS-CoV-2 variant in travelers from Brazil to Japan. Emerg Infect Dis. 2021;27:1243-5.

2. Voloch CM, Francisco Jr R, Almeida LG, Cardoso CC, Brustolini OJ, Gerber AL, et al. Genomic characterization of a novel SARS-CoV-2 lineage from Rio de Janeiro, Brazil. J Virol. 2021;95:e00119-21.

3. Resende PC, Gräf T, Paixão AC, Appolinario L, Lopes RS, Mendoça AC, et al. A potential SARS-CoV-2 variant of interest (VOI) harboring mutation E484K in the Spike protein was identified within lineage B.1.1.33 circulating in Brazil. Viruses. 2021;13:724.

4. Slavov SN, Patané JS, Bezerra RS, Giovanetti M, Fonseca V, Martins AJ, et al. Genomic monitoring unveil the early detection of the SARS-CoV-2 B.1.351 lineage (20H/S01Y.V2) in Brazil. medRxiv. 2021 In Press.

5. Konings F, Perkins MD, Kuhn JH, Pallen MJ, Alm EJ, Archer BN, et al. SARS-CoV-2 variants of interest and concern naming scheme conducive for global discourse. Nat Microbiol. 2021:1-3.

6. Cele S, Gazy I, Jackson L, Hwa SH, Tegally H, Lustig G, et al. Escape of SARS-CoV-2 501Y.V2 from neutralization by convalescent plasma. Nature. 2021;593:142-6.

7. Naveca F, Costa C, Nascimento V, Souza V, Corado A, Nascimento F, et al. SARS-CoV-2 reinfection by the new Variant of Concern (VOC) P.1 in Amazonas, Brazil - SARS-CoV-2 coronavirus. Virological.org. 2021 In Press.

8. Romano CM, Felix AC, Paula AV, Jesus JG, Andrade PS, Cândido D, et al. Sars-cov-2 reinfection caused by the p.1 lineage in Araraquara city, Sao Paulo State, Brazil. Rev Inst Med Trop Sao Paulo. 2021;63:e36.

9. Naveca F, Nascimento V, Souza V, Corado A, Nascimento F, Silva G, et al. COVID-19 epidemic in the Brazilian state of Amazonas was driven by long-term persistence of endemic SARS-CoV-2 lineages and the recent emergence of the new Variant of Concern P.1. Nat Portf. 2021 In Press.

10. Lamarca AP, Almeida LG, Francisco Jr RS, Lima LF, Scortecchi KC, Perez VP, et al. Genomic surveillance of SARS-CoV-2 tracks early interstate transmission of P.1 lineage and diversification within P.2 clade in Brazil. medRxiv. 2021 In Press.

11. Faria N, Mellan TA, Whittaker C, Claro IM, Candido DS, Mishra S, et al. Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil. Science. 2021;372:815-21.

12. Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DK, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. 2020;25:2000045.

13. Shu Y, McCauley J. GISAID : global initiative on sharing all influenza data – from vision to reality. Euro Surveill. 2017;22:30494.
14. Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268-74.
15. Rambaut A, Holmes EC, O’Toole A, Hill V, McCrone JT, Ruis C, et al. A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology. Nat Microbiol. 2020;5:1403-7.
16. Harrington D, Kele B, Pereira S, Couto-Parada X, Riddell A, Forbes S, et al. Confirmed reinfection with severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) variant VOC-202012/01. Clin Infect Dis. 2021 In Press.
17. Babiker A, Marvil CE, Waggoner JJ, Collins MH, Plantadosi A, The importance and challenges of identifying SARS-CoV-2 reinfections. J Clin Microbiol. 2020;59:e02769-20.
18. Tillett RL, Sevinsky JR, Hartley PD, Kerwin H, Crawford N, Gorzalski A, et al. Genomic evidence for reinfection with SARS-CoV-2: a case study. Lancet Infect Dis. 2020;21:52-8.
19. Siqueira IC, Camelier AA, Maciel EA, Nonaka CK, Neves MC, Macêdo YS, et al. Early detection of P.1 variant of SARS-CoV-2 in a cluster of cases in Salvador, Brazil. Int J Infect Dis. 2021;108:252-5.
20. Taylor L. Covid-19: how the Brazil variant took hold of South America? BMJ. 2021;373:n1227.
21. Martins AF, Zavascki AP, Wink PL, Volpato FC, Monteiro FL, Rosset C, et al. Detection of SARS-CoV-2 lineage P.1 in patients from a region with exponentially increasing hospitalisation rate, February 2021, Rio Grande do Sul, Southern Brazil. Euro Surveill. 2021;26:2100276.

SUPPLEMENTARY ACKNOWLEDGMENTS

We gratefully acknowledge the following Authors from the Originating laboratories responsible for obtaining the specimens, as well as the Submitting laboratories where the genome data were generated and shared via GISAID, on which this research is based.

Accession ID	Originating Laboratory	Submitting Laboratory	Authors
EPI_ISL_717816, EPI_ISL_717817, EPI_ISL_717818, EPI_ISL_717828, EPI_ISL_717829, EPI_ISL_717830, EPI_ISL_717831, EPI_ISL_717885, EPI_ISL_717886, EPI_ISL_717887, EPI_ISL_717888, EPI_ISL_717954, EPI_ISL_717955, EPI_ISL_717957, EPI_ISL_717960	Laboratorio de Virologia Molecular / UFRJ	Bioinformatics Laboratory / LNCC	Carolina M Voloch, Ronaldo da Silva F Jr, Luiz G P de Almeida, Cynthia C Cardoso, Otavio Bustoloni, Alexandra L-Gerber, Ana Paula de C Giummaraes, Diana Mariani, Andrea Cory Cavalcanti, Claudia dos Santos Rodrigues, Terezinha M P P Castiêteira, Amilcar Tanuri, Ana Tereza R de Vasconcelos
EPI_ISL_755640	Instituto Adolfo Lutz - Central		
EPI_ISL_755641	Instituto Adolfo Lutz - Regional de Sao Paulo		
EPI_ISL_755642, EPI_ISL_755643	Instituto Adolfo Lutz - Central		
EPI_ISL_755644, EPI_ISL_755645	Lab LOC - Itapeverica da Serra		
EPI_ISL_755646, EPI_ISL_755647	Instituto Adolfo Lutz - Regional de Sao Paulo		
EPI_ISL_755648	Instituto Adolfo Lutz - Regional de Taubate		
EPI_ISL_755649	Instituto Adolfo Lutz - Regional de Sao Paulo	Instituto Adolfo Lutz, Interdisciplinary Procedures Center, Strategic Laboratory	Claudia Tavares Sacchi, Claudia Regina Gonçalves, Erica Valesa Ramos Gomes, Karoline Rodrigues Campos
EPI_ISL_755650	Instituto Adolfo Lutz - Regional de Taubate		
EPI_ISL_755651	Instituto Adolfo Lutz - Central		
EPI_ISL_755652	Lab LOC - Itapeverica da Serra		
EPI_ISL_755653, EPI_ISL_755654	Instituto Adolfo Lutz - Central		
EPI_ISL_755655	Instituto Adolfo Lutz - Regional de Campinas		
EPI_ISL_756294	Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil	Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil	Carolina Kymie Vasques Nonaka, Marta Miranda Franco, Tiago Giraf, Ana Verena Almeida Mendes, Renato Santana de Aguia, Marta Giovannetti, Bruno Solano de Freitas Souza
EPI_ISL_763074, EPI_ISL_763075	Diagnosticos da America - DASA	Instituto Adolfo Lutz, Interdisciplinary Procedures Center, Strategic Laboratory	Claudia Tavares Sacchi, Claudia Regina Gonçalves, Erica Valesa Ramos Gomes, Karoline Rodrigues Campos
Accession ID	Originating Laboratory	Submitting Laboratory	Authors
-------------	------------------------	-----------------------	---------
EPI_ISL_770582, EPI_ISL_770585, EPI_ISL_770588, EPI_ISL_770629, EPI_ISL_770630	Laboratório de Microbiologia Molecular - Universidade FEEVALE	Bioinformatics Laboratory / LNCC	Felipe Benites, Fernando Rosado Spilki, Alana Witt Hansen, Juliane Deise Fleck, Juliana Schons, Meriane Demoliner, Ana Karolina Eisen Antunes, Fagner Henrique Heldt, Larissa Mallmann, Bruna Hermann, Ana Luiza Ziuikoiski, Vitoria Goes, Karoline Schallenger, Matheus Nunes Weber, Paula Rodrigues de Almeida, Alessandra Pavan Lamarca da Silva, Ronaldo da Silva F Jr, Luiz G P de Almeida, Alexandra L Gerber, Ana Paula de C Guimarães, Ana Tereza R de Vasconcelos
EPI_ISL_776766	Instituto Adolfo Lutz - Regional de Santo Andre	Instituto Adolfo Lutz, Interdisciplinary Procedures Center, Strategic Laboratory	Claudio Tavares Sacchi, Claudia Regina Gonçalves, Erica Valesca Ramos Gomes, Karoline Rodrigues Campos
EPI_ISL_776767	Instituto Adolfo Lutz - Regional de Marília	Instituto Adolfo Lutz, Interdisciplinary Procedures Center, Strategic Laboratory	Claudio Tavares Sacchi, Claudia Regina Gonçalves, Erica Valesca Ramos Gomes, Karoline Rodrigues Campos
EPI_ISL_776768	Instituto Adolfo Lutz - Regional de Araçatuba	Instituto Adolfo Lutz, Interdisciplinary Procedures Center, Strategic Laboratory	Claudio Tavares Sacchi, Claudia Regina Gonçalves, Erica Valesca Ramos Gomes, Karoline Rodrigues Campos
EPI_ISL_792560	Laboratório de Ecologia de Doenças Transmissíveis na Amazonia, Instituto Leonidas e Maria Deane - Fiocruz Amazonia	Laboratório de Ecologia de Doenças Transmissíveis na Amazonia, Instituto Leonidas e Maria Deane - Fiocruz Amazonia	Valdinete Nascimento, Victor Souza, André Corado, Fernanda Nascimento, George Silva, Ágatha Costa, Karina Pessoa, Debora Duarte, Luciana Gonçalves, Maria Júlia Brandão, Michele Jesus, Felipe Naveca on behalf of the Fiocruz COVID-19 Genomic Surveillance Network
EPI_ISL_792562, EPI_ISL_792599, EPI_ISL_792600, EPI_ISL_792601, EPI_ISL_792602, EPI_ISL_792603, EPI_ISL_792612, EPI_ISL_792613, EPI_ISL_792614, EPI_ISL_792622, EPI_ISL_792623, EPI_ISL_792624, EPI_ISL_792625, EPI_ISL_792626	Laboratório Central de Saúde Pública do Estado da Paraíba (LACEN-PB)	Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute, FIOCRUZ	Paola Resende, Luciana Appolinario, Fernando Motta, Anna Carolina Paixao, Ana Carolina Mendonca, Anderson Brandao Leite, Marilda Siqueira on behalf of the Fiocruz COVID-19 Genomic Surveillance Network
EPI_ISL_792641, EPI_ISL_792642	Laboratório Central de Saúde Pública do Estado de Alagoas (LACEN-AL)	Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute, FIOCRUZ	Paola Resende, Luciana Appolinario, Fernando Motta, Anna Carolina Paixao, Ana Carolina Mendonca, Anderson Brandao Leite, Marilda Siqueira on behalf of the Fiocruz COVID-19 Genomic Surveillance Network
EPI_ISL_792645, EPI_ISL_792646, EPI_ISL_792653, EPI_ISL_792654	Laboratório Central de Saúde Pública do Estado do Paraná (LACEN-PR)	Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute, FIOCRUZ	Paola Resende, Luciana Appolinario, Fernando Motta, Anna Carolina Paixao, Ana Carolina Mendonca, Maria do Carmo Debar, Irina Nastassia Riediger, Marilda Siqueira on behalf of the Fiocruz COVID-19 Genomic Surveillance Network
Accession ID	Originating Laboratory	Submitting Laboratory	Authors
-------------	------------------------	-----------------------	---------
EPI_ISL_801386, EPI_ISL_801387, EPI_ISL_801388, EPI_ISL_801389, EPI_ISL_801390, EPI_ISL_801391, EPI_ISL_801392, EPI_ISL_801384, EPI_ISL_801395, EPI_ISL_801396	Laboratono de Ecologia de Doencas Transmissveis na Amazonia, Instituto Leonidas e Maria Deane - Fiocruz Amazonia	Laboratono de Ecologia de Doencas Transmissveis na Amazonia, Instituto Leonidas e Maria Deane - Fiocruz Amazonia	Valdinete Nascimento, Victor Souza, Andre Corado, Fernanda Nascimento, George Silva, Agatha Costa, Debora Duarte, Luciana Gonçalves, Maria Julia Brandao, Michele Jesus, Felipe Naveca on behalf of the Fiocruz COVID-19 Genomic Surveillance Network
EPI_ISL_801400, EPI_ISL_801401	Laboratorio Central de Saúde Pública do Estado do Amazonas (LACEN-AM)	Laboratorio Central de Saúde Pública do Estado do Amazonas (LACEN-AM)	Valdinete Nascimento, Victor Souza, Andre Corado, Fernanda Nascimento, George Silva, Agatha Costa, Debora Duarte, Karina Pessoa, Matilde Meija, Luciana Gonçalves, Maria Julia Brandao, Michele Jesus, Felipe Naveca
EPI_ISL_1533609	Laboratono de Ecologia de Doencas Transmissveis na Amazonia, Instituto Leonidas e Maria Deane - Fiocruz Amazonia	Laboratono de Ecologia de Doencas Transmissveis na Amazonia, Instituto Leonidas e Maria Deane - Fiocruz Amazonia	Claudio Tavares Sacchi, Claudia Regina Gonçalves, Erica Valesa Ramos Gomes, Karoline Rodrigues Campos, Cmo Vincius Dias Lopes, Leonardo Jose Tadeu de Araujo
EPI_ISL_1533727	Hospital Universitario da USP Sao Paulo	Instituto Adolfo Lutz, Interdisciplinary Procedures Center, Strategic Laboratory	Paola Resende, Luciana Appollinario, Fernando Motta, Anna Carolina Paixao, Ana Carolina Mendonca, Alic Sampai Rocha, Renata Serrano Lopes, Mens, do Carma, Debir, Irina Natalia Kildig, Marilda Siqueira on behalf of the Fiocruz COVID-19 Genomic surveillance Network,
EPI_ISL_1534001	Laboratorio Central de Saude Publica do Estado do Parana (LACEN-PR)	Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute, FIOCRUZ	Paola Resende, Luciana Appollinario, Fernando Motta, Anna Carolina Paixao, Ana Carolina Mendonca, Alice Sampai Rocha, Renata Serrano Lopes, Clunor Alves dos Santos, Marilda Siqueira on behalf of the Fiocruz COVID-19 Genomic Surveillance Network
EPI_ISL_1534004	Laboratorio Central de Saude Publica do Estado de Sergipe (LACEN-SE)	Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute, FIOCRUZ	Paola Resende, Luciana Appollinario, Fernando Motta, Anna Carolina Paixao, Ana Carolina Mendonca, Alice Sampai Rocha, Renata Serrano Lopes, Marilda Siqueira on behalf of the Fiocruz COVID-19 Genomic Surveillance Network
EPI_ISL_1534008	Laboratorio Central de Saude Publica do Estado de Santa Catarina (LACEN-SC)	Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute, FIOCRUZ	Paola Resende, Luciana Appollinario, Fernando Motta, Anna Carolina Paixao, Ana Carolina Mendonca, Alice Sampai Rocha, Renata Serrano Lopes, Dacita Bueger Rovaris, Sande Banchini Fernandes, Marilda Siqueira on behalf of the Fiocruz COVID-19 Genomic Surveillance Network
EPI_ISL_1534016	Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute, FIOCRUZ	Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute, FIOCRUZ	Paola Resende, Luciana Appollinario, Fernando Motta, Anna Carolina Paixao, Ana Carolina Mendonca, Alice Sampai Rocha, Renata Serrano Lopes, Marilda Siqueira on behalf of the Fiocruz COVID-19 Genomic Surveillance Network
EPI_ISL_1465275, EPI_ISL_1465277	Laboratono Central de Saude Publica do Estado do Maranhao (LACEN-MA)	Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute, FIOCRUZ	Paola Resende, Luciana Appollinarto, Fernando Motta, Anna Carolina Paixao, Ana Carolina Mendonca, Alic Sampai Rocha, Renata Serrano Lopes, Lidio Gonçalves Lina Neto, Marilda Siqueira on behalf of the Fiocruz COVID-19 Genomic Surveillance Network
EPI_ISL_1468459	Secretaria Municipal de Saude de Valparaiso SP	Instituto Adolfo Lutz, Interdisciplinary Procedures Center, Strategic Laboratory	Claudio Tavares Sacchi, Claudia Regina Gonçalves, Erica Valesa Ramos Gomes, Karoline Rodrigues Campos, Caio Vincius Dias Lopes
EPI_ISL_1468461	Santa Casa de Aracatuba Hospital Sagrado Coracao de Jesus	Epiclin	Fernando Hayashi Sant'Anna, Ana Paula Muterle, Janira Prichula, Juliona Comerlato, Carolina Comerlato, Eliana Miciria Da Ros Wendland