A novel intuitionistic fuzzy similarity measure based on double sequence by using modulus function with application in pattern recognition

Mohd Shoaib Khan1*, Q. M. Danish Lohani1 and M. Mursaleen2

Abstract: In the field of pattern recognition, clustering is used to group the data into different clusters based on the similarity among them. There are a number of clustering techniques developed in the past using different distance/similarity measure. Due to the high versatility in data, researchers have used various distance measure like Hamming distance, Euclidean distance etc. to solve the clustering problems. In this paper, we proposed a novel similarity measure based on the double sequence space and modulus function. Also, to handle the uncertainty of data, Atanassov intuitionistic fuzzy set were used. Experimental simulation is performed on the real-world problems viz. car data and medical diagnosis problems and shows that the results are outperformed.

Subjects: Advanced Mathematics; Applied Mathematics; Mathematics Education; Fuzzy Systems

Keywords: Atanassov intuitionistic fuzzy set; clustering; double sequence; modulus function; similarity measure

AMS subject classifications: 40H05; 46A45

ABOUT THE AUTHORS
Mohd Shoaib Khan received master’s degree in Mathematics from Department of Mathematics, Aligarh Muslim University, India, in 2014 also qualified CSIR-JRF (AIR-66). He is currently a senior research fellow in Department of Mathematics at South Asian University, India. His research interests are intuitionistic fuzzy metric spaces, intuitionistic fuzzy operators, and summability theory.

Q.M. Danish Lohani received PhD degree from Department of Mathematics, Aligarh Muslim University, India, in 2009. He has been working as an assistant professor in the Department of Mathematics, South Asian University, India since 2012. His research interest is in the field of fuzzy and intuitionistic fuzzy metric spaces, type-2 fuzzy sets theory, summability and approximation.

M. Mursaleen is professor and chairman, Department of Mathematics, Aligarh Muslim University, Aligarh. He has published about 300 research papers in high reputed journals and 08 books. He is member of Editorial Boards of several scientific international journals. He has successfully supervised 18 PhD and 10 MPhil Students. He has visited about 28 countries including US and UK on several academic programs.

PUBLIC INTEREST STATEMENT
A double sequence is a more general configuration of an ordinary single sequence. A lot of work has been done in this field. In this paper, we defined a new similarity measure of double sequence for the case where the given information is incomplete as well as imprecise. Further, we provide a proper application of the proposed similarity measure in the field of pattern recognition.
1. Introduction

Zadeh lays down the basic principles of a strong logic system called fuzzy logic (Zadeh, 1965). The fuzzy logic considers that each element x_i of the universe of discourse X could not be precisely defined, even though information about them is complete. Thus, it is in this sense that only membership value was assigned to each element x_i of the universe of discourse X and in this case non-membership value will be one minus membership value. Atanassov (1986, 1999) offers another layer of explanation of fuzzy sets known as Atanassov intuitionistic fuzzy sets (AIFS). He defined AIFS to deal with those cases where information regarding the elements is both incomplete as well as imprecise. Thus, hesitancy is revealed over assigned membership and on the non-membership value of each element of X. Hence, in AIFS non-membership value need not to be equal to the complement of membership value. It is noteworthy to mention that information about the elements of X is inversely proportional to the hesitancy value present in AIFS. As information about the elements of X increases, then hesitancy value in AIFS decreases. Now it can be said that if information regarding elements of X is complete, then hesitancy value turns zero and AIFS converts to a fuzzy set. AIFS and fuzzy sets have various applications in many fields such as Clustering (Khan & Lohani, 2016; Xu, Chen, & Wu, 2008), Control System (Lee, 1990), Artificial Intelligence (Vas, 1999), Bacteria Recognition (Khatibi & Gholam Ali, 2009) etc.

The similarity between AIFS A_1 and A_2 is measured by the help of similarity measure, which is usually derived from distance measure. The transformation of similarity measure into distance measure is given in Hung and Yang (2004). Majority of the literature (Dengfeng & Chuntian, 2002; Gupta & Kanwar, 2016; Khan, Alamri, Mursaleen, & Lohani, 2017; Li, Olson, & Qin, 2007; Liang & Shi, 2003; Mitchell, 2003; Xu & Chen, 2008) available on similarity measures consider AIFS as a point, thus, these measures calculate similarity between points. The similarity measure induced by Hausdorff distance measure (Hung & Yang, 2004) computes the distance between two sets. Hence, it was effectively used over linguistic variables. The Sugeno integral-based similarity measure was proposed by Hwang, Yang, Hung, and Lee (2012) with application in pattern recognitions. The distance measure introduced in Mursaleen and Lohani (2009, 2009) can be utilized to deduce some similarity measures. Similarity measure has many applications in different area such as Pattern Recognition (Xu et al., 2008), Decision Theory (Chen & Ng, 2004), and Machine Learning (Cristianini & Shawe-Taylor, 2000).

Clustering is a classification technique that is the task of organization of the data into groups. The aim of the clustering is that the objects in the same clusters must be similar to one another but dissimilar to objects in another cluster (Everitt, Landau, & Leese, 2001). It is a procedure to handle unsupervised learning problems which appear in pattern recognition. The distance measure has an important role in recognizing patterns, so most of the AIFS-based clustering techniques were developed using them. We have not come across to any distance/similarity measure which offers a guaranteed good result for every clustering problems. Thus, in place of a single distance/similarity measure, several types of distance/similarity measure were explored over different problems. In the field of fuzzy clustering, the major contribution came from the pioneering work of Bellman, Kalaba, and Zadeh (1964), Bazdek (2013) and many more (Xu, 2009; Xu, Tang, & Liu, 2011, Xu & Wu, 2010; Xu, Xu, Liu, & Zhao 2013).

The motivation of the paper is to introduce a new distance measure BV_{n} for the clustering of AIFS, while using the theory of double sequence space and modulus function. Since, in clustering/classification problem, the output results remain unchanged whether it is derived from double sequence or single sequence version of popular Hamming/Euclidean distance measures. Therefore, double sequence-based distance measure could not motivate researchers for its application over a real-world problem. For this reason, practical application of double sequences could not be given. We noticed that the divided difference operator Δ_{11} $(\Delta_{11} x_{m,n} = x_{m,n} - x_{m-1,n} - x_{m,n-1} + x_{m-1,n-1})$ introduced for double sequence) changes the input values in the distance measure of the double sequence. So its output values differ from the values obtained by the corresponding single sequence-based distance measure (which involves simple difference operator Δ $(\Delta x_n = x_n - x_{n-1})$). The equivalence between two independent components of AIFS with the two variables of the double sequence helps us in defining
AIFS-based BV_p^d similarity measure. We used BV_p^d similarity measure to solve car data-set problem (Xu et al., 2008) and then we compared the result with the result of Xu et al. (2008).

The paper altogether contains five sections. In Section 2, we recall some basic definitions essential for the understanding of the research work. In Section 3, we proposed BV_p^d similarity measure and proved its interesting mathematical property. In Section 4, we have used BV_p^d similarity measure in IFSC algorithm for clustering of car data-set. The obtained result is compared with the result of Xu et al. (2008). In Section 5, we added one more data-set known as medical diagnosis data for further justification of the proposed similarity measure. Finally, the conclusion is stated in Section 6.

2. Preliminaries

2.1. Double sequence (Mursaleen, 2003)
A function $f_k : \mathbb{N} \times \mathbb{N} \rightarrow \Omega$ is called the Double sequence in Ω and is denoted by $f_k = \{x_{m,n}\}$. Under point wise addition and ordinary scalar multiplication Ω forms a vector space.

2.2. p-bounded variation of double sequence (Mursaleen & Mohiuddine, 2014)
A double sequence $\{x_{m,n}\}$ that satisfy the following property:

$$\sum_{m=1}^{s} \sum_{n=1}^{t} |\Delta_{11} x_{mn}|^p < \infty$$

is termed as p-bounded variation of double sequence, where $\Delta_{11} x_{mn} = x_{m,n} - x_{m-1,n} - x_{m,n-1} + x_{m-1,n-1}$.

2.3. Modulus function (Nakano, 2014)
A continuously non-decreasing function $\phi : \mathbb{R}^+ \rightarrow \mathbb{R}^+$ is said to be modulus function if it satisfy the following conditions:

1. $\phi(0) = 0$, $\phi(x) > 0$ for $x > 0$
2. $\phi(x) \rightarrow \infty$ as $x \rightarrow \infty$
3. $\phi(x + y) \leq \phi(x) + \phi(y)$

2.4. Atanassov intuitionistic fuzzy set (AIFS) (Atanassov, 1986, 1999)
AIFS A in X is defined as,

$$A = \{(x, \mu_A(x), \nu_A(x)); x \in X\}$$

where $\mu_A : X \rightarrow [0, 1]$ and $\nu_A : X \rightarrow [0, 1]$ are the membership and non-membership functions assigns over x in X with respect to A such that,

$$0 \leq \mu_A(x) + \nu_A(x) \leq 1.$$

In AIFS $\pi_A(x) = 1 - (\mu_A(x) + \nu_A(x))$, here $\pi_A(x)$ is the hesitancy function associated with x.

2.5. Distance measure (Wang & Xin, 2005)
Distance measure $d : \text{AIFS} \times \text{AIFS} \rightarrow [0, 1]$ between AIFSs is a mapping, such that for any $A_1, A_2, A_3 \in \text{AIFS}$ satisfy the following conditions:

1. $0 \leq d(A_1, A_2) \leq 1$.
2. $d(A_1, A_2) = 0 \Rightarrow A_1 = A_2$.
3. $d(A_1, A_2) = d(A_2, A_1)$.
4. for $A_1 \subseteq A_2 \subseteq A_3$ we have $d(A_1, A_3) \geq d(A_1, A_2)$ and $d(A_1, A_3) \geq d(A_2, A_3)$.

2.6. Association coefficient (Xu et al., 2008)

Association coefficient is a mapping $\alpha : \text{AIFS} \times \text{AIFS} \to [0, 1]$ that satisfy the following conditions:

$0 \leq \alpha(A_1, A_2) \leq 1$, $\alpha(A_1, A_2) = 1 \iff A_1 = A_2$, and $\alpha(A_1, A_2) = \alpha(A_2, A_1)$.

2.7. Association matrix (Xu et al., 2008)

An association matrix is defined as $W = (a_{ij})_{m \times m}$, where $a_{ij} = \alpha(A_i, A_j)$ are association coefficients between $A_i, A_j (i, j = 1, 2, \ldots, m)$.

2.8. Composition of matrix (Xu et al., 2008)

Let $W = (a_{ij})_{m \times m}$ be an association matrix. Then, composition matrix of W is defined as $W^2 = \text{WoW} = (a_{pq})_{m \times m}$ where $a_{pq} = \max_k \left\{ \min \left\{ a_{pk}, a_{kq} \right\} \right\}$.

2.9. Equivalent association matrix (Xu et al., 2008)

An association matrix $W = (a_{ij})_{m \times m}$ is called equivalent association matrix if $W^2 \subset W$, i.e., $a_{pq} \geq \max_k \left\{ \min \left\{ a_{pk}, a_{kq} \right\} \right\}$.

2.10. λ-cutting matrix (Xu et al., 2008)

λ-cutting matrix of the equivalent association matrix $W = (a_{ij})_{m \times m}$ is defined as $W_{\lambda} = (\lambda a_{ij})_{m \times m}$ where

$$\lambda a_{ij} = \begin{cases} 0 & a_{ij} < \lambda \\ 1 & a_{ij} \geq \lambda \end{cases}, \quad i, j = 1, 2, \ldots, m.$$

3. Similarity measure of double sequence BV_p^δ

Let $X = \{A_1, A_2, \ldots, A_m\}$ be a given universe of discourse, where each A_k is a collection of c AIFS (features). Since, $A_k = \{x^{1}_k, x^{2}_k, \ldots, x^{c}_k\}$ and each feature x^{j}_k is AIFS. The first step of defining BV_p^δ similarity measure requires an arrangement of elements of A_k and this arrangement remains fixed for all k. In our case, we do not disturb the existing arrangement of elements in A_k. AIFS consider membership value and non-membership value as the two independent variables. Since, double sequence $\{x_{m,n}\}$ also contain two independent variables m and n, which varies over \mathbb{N} (set of natural number). So for each m, when n varies over \mathbb{N}, it produces an ordinary single sequence and this is replaced by membership values of x^{j}_k, where $1 \leq j \leq c$ and for $j > c$. The range set of sequence of membership values is represented by $\text{MAIFS} = \{\mu^{1}_k, \mu^{2}_k, \ldots, \mu^{c}_k, 0\}$. In similar fashion, $\text{NAIFS} = \{v^{1}_k, v^{2}_k, \ldots, v^{c}_k, 0\}$ is the range set of sequence of non-membership values of AIFS. As AIFS consist of three components μ and v, in which μ depends on the independent components μ and v, so the range set corresponding to x is taken to be $c + 1$ dimensional zero vector. Now on varying m over \mathbb{N}, the $m = 1$ implies $f_k(m, n) = \text{MAIFS}$, $m = 2$ implies $f_k(m, n) = \text{NAIFS}$ and for $m > 2$ $f_k(m, n) = 0$. In other words $f_k : \Delta \times \mathbb{N} \to M$, such that

$$f_k(m, n) = \begin{cases} \text{MAIFS} & \text{if } m = 1 \\ \text{NAIFS} & \text{if } m = 2 \\ 0_v & \text{if } m = 3 \\ \end{cases}$$

where, $m \in \Delta = \{1, 2, 3\}$ and $n \in \{1, 2, \ldots, c + 1\}$. The 0_v is a $c + 1$-dimensional zero vector. In simple words, the matrix form of double sequence is used for description of A_k. Hence, corresponding to $A_k = \{x^{1}_k, \ldots, x^{c}_k\}$ its matrix form is given below:

$$f_k = \begin{bmatrix} \mu^{1}_k & \mu^{2}_k & \cdots & \mu^{c}_k & 0 \\ v^{1}_k & v^{2}_k & \cdots & v^{c}_k & 0 \\ 0 & 0 & \cdots & 0 & 0 \end{bmatrix}$$

for the sake of simplicity, let us write
\[f_k = \begin{bmatrix}
 f_{1,1}^{1,1} & f_{1,2}^{1,2} & \cdots & f_{1,c}^{1,c} \\
 f_{2,1}^{2,1} & f_{2,2}^{2,2} & \cdots & f_{2,c}^{2,c} \\
 0 & 0 & \cdots & 0 \\
 0 & 0 & \cdots & 0
\end{bmatrix} \]

where \(f_{m,n}^{i} = \mu_{A_{i}}^{m,n} \) when \(m = 1; n = 1, 2, \ldots, c \) and \(f_{m,n}^{i} = \nu_{A_{i}}^{m,n} \) for \(m = 2; n = 1, 2, \ldots, c \).

We denote the set of all transformed AIFS, \(f_k = \left[f_{1,1}^{i,1}, f_{1,2}^{i,2}, \ldots, f_{1,c}^{i,c} \right] \) such that
\[0 \leq f_{1,1}^{i,1} + f_{1,2}^{i,2} + \cdots + f_{1,c}^{i,c} \leq 1 \]
for \(i = 1, 2, \ldots, \) by \(D_{m}(AIFS) \) and called double intuitionistic fuzzy space.

Theorem 3.1 \(D_{m}(AIFS), 1 - BV_{p}^{f} \) is metric space, with respect to the metric
\[1 - BV_{p}^{f}(f_{x}, f_{t}) = \frac{1}{\sqrt{4(c + 1)}} \left(\sum_{m=1}^{c+1} \sum_{n=1}^{c+1} \phi \left(\left| \Delta_{11} f_{m,n}^{f_{x}} - \Delta_{11} f_{m,n}^{f_{t}} \right| \right) \right)^{\frac{1}{2}} \]

where \(\Delta_{11} f_{m,n}^{f_{x}} = f_{m,n}^{f_{x}} - f_{m-1,n}^{f_{x}} - f_{m,n-1}^{f_{x}} + f_{m-1,n-1}^{f_{x}} \) and \(\Delta_{11} f_{m,n}^{f_{t}} = f_{m,n}^{f_{t}} - f_{m-1,n}^{f_{t}} - f_{m,n-1}^{f_{t}} + f_{m-1,n-1}^{f_{t}} \) with \(f_{0,n} = g_{0,n} = 0, \forall n \in \mathbb{N} \cup \{0\} \).

Proof. It is easy to prove that the proposed distance/similarity measure \(BV_{p}^{f} \) satisfy property (1)–(3) of Definition 2.5. To prove triangular inequality, let \(x, y, z \in D_{m}(AIFS) \) which is such that \(x \leq y \leq z \) (that is for every elements in the matrix \(x \) is less or equal to corresponding element in the matrix \(y \), similarly \(z \)) we can write
\[(1 - BV_{p}^{f})(x, z) = \frac{1}{\sqrt{4(c + 1)}} \left(\sum_{m=1}^{c+1} \sum_{n=1}^{c+1} \phi \left(\left| \Delta_{11} x - \Delta_{11} z \right| \right) \right)^{\frac{1}{2}} \]
\[= \frac{1}{\sqrt{4(c + 1)}} \left(\sum_{m=1}^{c+1} \sum_{n=1}^{c+1} \phi \left(\left| \Delta_{11} x - \Delta_{11} y \right| - \left| \Delta_{11} y - \Delta_{11} z \right| \right) \right)^{\frac{1}{2}} \]
using triangular inequality of mod function and Definition 2.3.

\[\leq \frac{1}{\sqrt{4(c + 1)}} \left(\sum_{m=1}^{c+1} \sum_{n=1}^{c+1} \left(\phi \left(\left| \Delta_{11} x - \Delta_{11} y \right| \right) \right)^{p} + \left(\phi \left(\left| \Delta_{11} y - \Delta_{11} z \right| \right) \right)^{p} \right)^{\frac{1}{2}} \]

Now using Minkowski inequality
\[\leq \frac{1}{\sqrt{4(c + 1)}} \left(\sum_{m=1}^{c+1} \sum_{n=1}^{c+1} \left(\phi \left(\left| \Delta_{11} x - \Delta_{11} y \right| \right) \right)^{p} \right)^{\frac{1}{2}} + \frac{1}{\sqrt{4(c + 1)}} \left(\sum_{m=1}^{c+1} \sum_{n=1}^{c+1} \left(\phi \left(\left| \Delta_{11} y - \Delta_{11} z \right| \right) \right)^{p} \right)^{\frac{1}{2}} \]
\[\Rightarrow (1 - BV_{p}^{f})(x, z) \leq (1 - BV_{p}^{f})(x, y) + (1 - BV_{p}^{f})(y, z). \]

Thus, \(D_{m}(AIFS), 1 - BV_{p}^{f} \) is metric space

In order to compute similarity between \(f_{x} \) and \(f_{t} \quad (f_{x}, f_{t} \in D_{m}(AIFS)) \), we induced the similarity measure \(BV_{p}^{f} \) of double sequence from the distance measure \(1 - BV_{p}^{f} \) (to know more about interrelation between similarity measure and distance measure see Hung & Yang, 2004). Hence, similarity measure of double sequence is defined as,
\[BV_{p}^{f}(f_{x}, f_{t}) = 1 - \frac{1}{\sqrt{4(c + 1)}} \left(\sum_{m=1}^{c+1} \sum_{n=1}^{c+1} \phi \left(\left| \Delta_{11} f_{m,n}^{f_{x}} - \Delta_{11} f_{m,n}^{f_{t}} \right| \right) \right)^{\frac{1}{2}} < \infty \]
here notations has same meaning as Theorem 3.1.

Theorem 3.2 \(D_{m}(AIFS) \) is a sequence algebra, that is for \(f_{x}, f_{t} \in D_{m}(AIFS) \) we have \((f_{x}f_{t}) \in D_{m}(AIFS)\).
Proof Let \(f_k, f_t \in D_m\{\text{AIFS}\} \) such that
\[
f_k = \begin{bmatrix}
f^{1,1}_k & f^{1,2}_k & \cdots & f^{1,c}_k \\
f^{2,1}_k & f^{2,2}_k & \cdots & f^{2,c}_k \\
0 & 0 & \cdots & 0
\end{bmatrix}
\]
and
\[
f_t = \begin{bmatrix}
f^{1,1}_t & f^{1,2}_t & \cdots & f^{1,c}_t \\
f^{2,1}_t & f^{2,2}_t & \cdots & f^{2,c}_t \\
0 & 0 & \cdots & 0
\end{bmatrix}
\]
then we have
\[
(f_k f_t) = \begin{bmatrix}
f^{1,1} f^{1,1} & f^{1,2} f^{1,1} & \cdots & f^{1,c} f^{1,1} \\
f^{1,1} f^{2,1} & f^{2,1} f^{2,1} & \cdots & f^{2,c} f^{2,1} \\
0 & 0 & \cdots & 0
\end{bmatrix}.
\]
By definition of \(D_m\{\text{AIFS}\} \), it is clear that 0 \(\leq f^{1,n}_k + f^{2,n}_k \leq 1 \) and 0 \(\leq f^{1,n}_t + f^{2,n}_t \leq 1 \) \((n = 1, 2, \ldots, c)\) this implies 0 \(\leq f^{1,n}_k + f^{2,n}_t \leq f^{2,n}_t \leq 1 \). Thus, \((f_k f_t) \in D_m\{\text{AIFS}\}\).

Theorem 3.3 \(D_m\{\text{AIFS}\} \) is balance.

Proof Let \(f_k = \begin{bmatrix}
f^{1,1}_k & f^{1,2}_k & \cdots & f^{1,c}_k \\
f^{2,1}_k & f^{2,2}_k & \cdots & f^{2,c}_k \\
0 & 0 & \cdots & 0
\end{bmatrix} \) be any arbitrary element of \(D_m\{\text{AIFS}\} \) and \(\sigma \) be any real number such that \(|\sigma| < 1 \).

Now \(\sigma f_k = \begin{bmatrix}
\sigma f^{1,1}_k & \sigma f^{1,2}_k & \cdots & \sigma f^{1,c}_k \\
\sigma f^{2,1}_k & \sigma f^{2,2}_k & \cdots & \sigma f^{2,c}_k \\
0 & 0 & \cdots & 0
\end{bmatrix} \)

since, 0 \(\leq f^{1,n}_k + f^{2,n}_k \leq 1 \) this implies 0 \(\leq \sigma f^{1,n}_k + \sigma f^{2,n}_k \leq 1 \) for all \(n = 1, 2, \ldots, c \). Thus, \(\sigma f_k \in D_m\{\text{AIFS}\} \) and hence \(D_m\{\text{AIFS}\} \) is a balance set.

4. Application of \(BV^p \) in clustering

For clustering of the car data-set (Xu et al., 2008), we implemented \(BV^p \) similarity measure (for the sake of experimental simplicity we take \(p = 1 \)) and modulus function \(p^\phi \) as an identity function). The clustering performance of \(BV^p \) is compared with the clustering results of Xu et al. (2008).

\(BV^p \) similarity measure is used in place of association coefficient for computing similarity in IFSC-Algorithm of association coefficient matrix method (Xu et al., 2008) as follows:

1. Calculate similarity between AIFSs using \(BV^p \) similarity measure and then using these coefficient construct association matrix \(\bar{W} \).
2. If constructed matrix \(\bar{W} \) is an equivalent association matrix, take its \(\lambda \)-cutting matrix. If not, then by composition find out \(\bar{W}^\lambda \) \((n = 1, 2, \ldots)\) and take \(\lambda \)-cutting matrix.
3. Apply single linkage algorithm find out the clusters from the dendrogram.

4.1. Clustering of car data-set

The car data-set is taken from Xu et al. (2008). It has 10 cars \(A_i \) \((i = 1, 2, \ldots, 10)\), whose performances depend upon the six features: Fuel Economy, Aerodynamic Degree, Price, Comfort, Design, Safety (see Table 1).
\[
W = \begin{pmatrix}
1.000 & 0.557 & 0.586 & 0.714 & 0.700 & 0.886 & 0.600 & 0.550 & 0.729 & 0.643 \\
1.000 & 0.914 & 0.629 & 0.679 & 0.614 & 0.893 & 0.836 & 0.657 & 0.700 \\
1.000 & 0.629 & 0.700 & 0.614 & 0.893 & 0.814 & 0.657 & 0.679 \\
1.000 & 0.600 & 0.700 & 0.600 & 0.529 & 0.914 & 0.614 \\
1.000 & 0.729 & 0.693 & 0.736 & 0.671 & 0.836 \\
1.000 & 0.614 & 0.593 & 0.729 & 0.729 \\
1.000 & 0.871 & 0.629 & 0.679 \\
1.000 & 0.557 & 0.714 \\
1.000 & 0.643 \\
1.000
\end{pmatrix}
\]

\[
W^2 = \begin{pmatrix}
1.000 & 0.679 & 0.700 & 0.729 & 0.729 & 0.886 & 0.700 & 0.729 & 0.729 & 0.729 \\
1.000 & 0.914 & 0.679 & 0.736 & 0.729 & 0.893 & 0.871 & 0.729 & 0.736 \\
1.000 & 0.700 & 0.736 & 0.729 & 0.893 & 0.871 & 0.729 & 0.736 \\
1.000 & 0.729 & 0.729 & 0.700 & 0.729 & 0.914 & 0.729 \\
1.000 & 0.729 & 0.729 & 0.736 & 0.729 & 0.836 \\
1.000 & 0.729 & 0.729 & 0.729 & 0.729 & 0.836 \\
1.000 & 0.871 & 0.729 & 0.736 \\
1.000 & 0.729 & 0.736 \\
1.000 & 0.729 \\
1.000
\end{pmatrix}
\]

\[
W^4 = \begin{pmatrix}
1.000 & 0.729 & 0.729 & 0.729 & 0.729 & 0.886 & 0.729 & 0.729 & 0.729 & 0.729 \\
1.000 & 0.914 & 0.729 & 0.736 & 0.729 & 0.893 & 0.871 & 0.729 & 0.736 \\
1.000 & 0.729 & 0.736 & 0.729 & 0.893 & 0.871 & 0.729 & 0.736 \\
1.000 & 0.729 & 0.729 & 0.729 & 0.729 & 0.914 & 0.729 \\
1.000 & 0.729 & 0.729 & 0.736 & 0.729 & 0.836 \\
1.000 & 0.729 & 0.729 & 0.729 & 0.729 & 0.836 \\
1.000 & 0.871 & 0.729 & 0.736 \\
1.000 & 0.729 & 0.736 \\
1.000 & 0.729 \\
1.000
\end{pmatrix}
\]
Using BV$_p^\Phi$ similarity measure, the similarity matrices W, W^2, W^4, W^8 for car data-set are computed. Since $W^8 = W^h$ hence by the Definition 2.10, W^h is an equivalence association matrix. Hierarchical clustering tree for W^h is shown in Figure 1. We deduce all possible ranges of λ while analyzing the equivalent matrix W^h. Each range corresponds to a different clustering arrangement (see Table 2). The results obtained by association coefficient method (Xu et al., 2008) is shown in Table 3. The third row of Table 3 claims that similarity level among the cars A_2, A_3, A_8, A_7, A_{10} is not more than 81.1.
5. Application of BV_p in medical diagnosis

For more justification of the proposed double sequence-based similarity measure, we included one more data-set known as Medical diagnosis data (Boran & Akay, 2014; Own, 2009; Szmidt & Kacprzyk, 2001; Wei, Wang, & Zhang, 2011). Medical diagnosis problem consist for the four patients Al, Bob, Joe, Ted, set theoretic notation $P = \{ \text{Al, Bob, Joe, Ted} \}$. With symptoms, $P = \{ \text{Temperature, Headache, Stomach pain, Stomach problem, Chest pain} \}$. The set of diagnosis is represented as $D = \{ \text{Viral Fever, Malaria, Typhoid, Stomach problem, Heart problem} \}$. The AIFS relation $P \rightarrow S$ and $S \rightarrow D$ is presented in Tables 4 and 5, respectively.

To detect an accurate diagnosis for every patient $p \in P$, on the basis of symptoms S and using BV_p, we have calculated the similarity between a diagnosis and all patients. We repeat the process for all the diagnoses $d \in D$ and present all resulting similarity degree in Table 6. In this table, diagnosis with higher degree of similarity is suggested by the similarity measure BV_p. According to the similarity degrees in Table 6, Al have Viral Fever, Bob stand with Stomach problem, Joe suffers from Typhoid,
and Ted carry Viral Fever. We mention the relation of the patients and their respective diagnosis in comparison and simultaneously compare our result with the other existing similarity measures (see Table 7).

6. Conclusion
The distance measure of the double sequence of bounded variation was used to derive BV_p^d similarity measure to classify the AIFS. In this work, AIFSs (A_j) is converted into a matrix f_k of size $3 \times (c + 1)$ (c is the cardinality of A_j), which represents the simplest form of the double sequence. The first and second rows of the matrix f_k contain the elements of MAIFS and NAIFS. However, all columns of the last row of the matrix f_k is kept to zero. A real-world example of car data-set is used to classify using the BV_p^d similarity measure. In this paper, we derive BV_p^d similarity measure by utilizing the double sequence and represents its real-world application for the first time. However, there is a vast scope to generalize it for the other forms of double sequence. In future, the application of double sequence will bring a new research domain for the researchers to improve the results of machine learning or pattern recognition.

Citation information
Cite this article as: A novel intuitionistic fuzzy similarity measure based on double sequence by using modulus function with application in pattern recognition, Mohd Shoaib Khan, Q. M. Danish Lohani & M. Mursaleen, Cogent Mathematics (2017), 4: 1385374.

References
Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87–96.
Atanassov, K. T. (1999). Intuitionistic fuzzy sets. North-Holland: Physica-Verlag HD.
Bellman, R., Kalaba, R., & Zadeh, L. A. (1964). Abstraction and pattern classification. Fort Belvoir, VA: Defense Technical Information Center.
Bezdek, J. C. (2013). Pattern recognition with fuzzy objective function algorithms. Berlin/Heidelberg: Springer Science and Business Media.
Boran, F. E., & Akoy, D. (2014). A biparametric similarity measure on intuitionistic fuzzy sets with applications to pattern recognition. Information Sciences, 253, 45–57.

Chen, L., & Ng, R. (2004). On the marriage of lp-norms and edit distance. Proceedings of the Thirtieth international conference on Very large data bases -Volume 30. Toronto: VLDB Endowment.

Cristianini, N., & Shawe-Taylor, J. (2000). An introduction to support vector machines and other kernel-based learning methods. Cambridge University Press.

Dengfeng, L., & Chuntian, C. (2002). New similarity measures of intuitionistic fuzzy sets and application to pattern recognitions. Pattern Recognition Letters, 23, 221–225.

Everitt, B. S., Landau, S., & Leese, M. (2001). Cluster analysis. Arnold. London: A member of the Hodder Headline Group.

Gupta, V., & Kanwar, A. (2016). Some new fixed point results on intuitionistic fuzzy metric spaces. Cogent Mathematics, 3(1), 1142839.

Hung, W. L., & Yang, M. S. (2004). Similarity measures of intuitionistic fuzzy sets based on Hausdorff distance. Pattern Recognition Letters, 25, 1603–1611.

Hwang, C.-M., Yang, M.-S., Hung, W.-L., & Lee, M.-G. (2012). A similarity measure of intuitionistic fuzzy sets based on the Sugeno integral with its application to pattern recognition. Information Sciences, 189, 93–109.

Khan, M. S., Alamri, B.A., Mursaleen, M. & Lohani, Q. M. D. (2017). Sequence spaces M (q) and N (q) with application in clustering. Journal of Inequalities and Applications, 2017(1), 63

Khan, M. S., & Lohani, Q. M. D. (2016). A similarity measure for atanassov intuitionistic fuzzy sets and its application to clustering. Computational Intelligence (IWCI): International Workshop on. Dhaka: IEEE.

Khatibi, V., & Gholam Ali, M. (2009). Intuitionistic fuzzy set application in bacteria recognition. Computer Conference, 2009. CSICC 2009. 14th International CSI. Tehran: IEEE.

Lee, C.-C. (1990). Fuzzy logic in control systems: fuzzy logic controller. 1. IEEE Transactions on systems, man, and cybernetics., (2012), 419–435.

Liang, Z., & Shi, P. (2003). Similarity measures on intuitionistic fuzzy sets. Pattern Recognition Letters, 24, 278–285.

Li, Y., Olson, D. L., & Qin, Z. (2007). Similarity measures between intuitionistic fuzzy (vague) sets: A comparative analysis. Pattern Recognition Letters, 28, 2687–2693.

Mitchell, H. B. (2003). On the Dengfeng-Chuntian similarity measure and its application to pattern recognition. Pattern Recognition Letters, 24, 3101–3104.

Mohiuddine, S. A., & Lohani, Q. M. D. (2009). On generalized statistical convergence in intuitionistic fuzzy normed space. Chaos, Solitons and Fractals, 42(3), 1731–1737.

Mursaleen, M. (2003). Edely, statistical convergence of double sequences. Journal of Mathematical Analysis and Applications, 288, 223–231.

Mursaleen, M., & Lohani, Q. M. D. (2009). Intuitionistic fuzzy 2-normed space and some related concepts. Chaos, Solitons and Fractals, 42(1), 224–234.

Mursaleen, M., & Mohiuddine, S. A. (2014). Convergence methods for double sequences and applications. New Delhi: Springer.

Nakano, H. Modulars, Concave. Journal of the Mathematical Society of Japan, 529–549.

Own, C.-M. (2009). Switching between type-2 fuzzy sets and intuitionistic fuzzy sets: An application in medical diagnosis. Applied Intelligence, 31, 283–291.

Szmidt, E., & Kacprzyk, J. (2001). Intuitionistic fuzzy sets in some medical applications. International Conference on Computational Intelligence (pp. 263–271). Berlin Heidelberg: Springer.

Vas, P. (1999). Artificial-intelligence-based electrical machines and drives: Application of fuzzy, neural, fuzzy-neural, and genetic-algorithm-based techniques (Vol. 45). Oxford University Press.

Wang, W., & Xin, X. (2005). Distance measure between intuitionistic fuzzy sets. Pattern Recognition Letters, 26(13), 2063–2069.

Wei, C.-P., Wang, P., & Zhang, Y.-Z. (2011). Entropy, similarity measure of interval-valued intuitionistic fuzzy sets and their applications. Information Sciences, 181(19), 4273–4286.

Xu, Z. (2009). Intuitionistic fuzzy hierarchical clustering algorithms. Systems Engineering and Electronics, 2011, 90–97.

Xu, Z. S., & Chen, J. (2008). An overview of distance and similarity measures of intuitionistic fuzzy sets. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 16(04), 529–555.

Xu, Z., Chen, J., & Wu, J. (2008). Clustering algorithm for intuitionistic fuzzy sets. Information Sciences, 178(19), 3775–3790.

Xu, Z., Tang, J., & Liu, S. (2011). An orthogonal algorithm for clustering intuitionistic fuzzy information. Information-an International Interdisciplinary Journal, 14(1), 65–78.

Xu, Z., & Wu, J. (2010). Intuitionistic fuzzy c-means clustering algorithms. Systems Engineering and Electronics, 21(4), 580–590.

Xu, D., Xu, Z., Liu, S., & Zhao, H. (2013). A spectral clustering algorithm based on intuitionistic fuzzy information. Knowledge-Based Systems, 53, 20–26.

Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353.
