Determination of Gamow–Teller unit cross sections of the \((p, n)\) reaction at 200 and 300 MeV

M. Sasano\(^1\), H. Sakai\(^1\), K. Yako\(^1\), T. Saito\(^1\), H. Kuboki\(^1\), Y. Takahasi\(^1\), T. Wakasa\(^2\), S. Asaji\(^2\), Y. Hagihara\(^2\), K. Hatanaka\(^3\), A. Tamii\(^3\), Y. Sakemi\(^3\), Y. Tameshige\(^4\), Y. Shimizu\(^4\), K. Fujita\(^4\), Y. Fujita\(^4\), H. Okamura\(^5\), K. Sekiguchi\(^6\), Y. Maeda\(^7\), T. Kawabata\(^7\), M.B. Greenfield\(^8\)

\(^1\) Department Physics, University of Tokyo
\(^2\) Department Physics, Kyushu University
\(^3\) RCNP, Osaka University
\(^4\) Department of Physics Osaka University
\(^5\) CYRIC, Tohoku University
\(^6\) RIKEN
\(^7\) CNS, University of Tokyo
\(^8\) The Division of Natural Sciences, International Christian University

E-mail: sasano@nucl.phys.s.u-tokyo.ac.jp

Abstract. The Gamow-Teller (GT) unit cross section, \(\hat{\sigma}_{GT}\), is an essential quantity to deduce the GT transition strength, \(B(GT)\), from the \((p, n)\) \(0^+\) cross section. \((p, n)\) measurements at 200 and 300 MeV were performed using the Neutron Time-of-Flight (NTOF) facility at the Research Center for Nuclear Physics (RCNP). The \(\hat{\sigma}_{GT}\) values were determined, for the first time, for several nuclei in the region of \(A > 50\) at \(E_p = 200\) and 300 MeV. A significant difference between the \(B(GT)\) values obtained by \((p, n)\) and \((3\text{He}, t)\) measurements was found.

Charge exchange reaction is a powerful tool for the study of Gamow-Teller (GT) transitions. Especially, in \((p, n)\) or \((n, p)\) measurements at 0 degrees, Taddeucci et al. have established a proportionality relation between the differential cross section and the GT transition strength, \(B(GT)\), as \(\frac{d\sigma}{d\Omega}(0^+) = \hat{\sigma}_{GT} F(q, \omega) B(GT)\) \cite{1}. Here, \(F(q, \omega)\) is a kinematic correction factor obtained by distorted wave impulse approximation (DWIA) calculations and \(\hat{\sigma}_{GT}\) is the proportionality constant, so-called GT unit cross section. Therefore the GT unit cross section is an essential quantity to deduce \(B(GT)\) values. We determined the \(\hat{\sigma}_{GT}\) values at the incident energy \(E_p = 200\) and 300 MeV for several nuclei whose mass numbers, \(A\), are larger than 50.

The \((p, n)\) measurements at 200 and 300 MeV were performed at the NTOF facility \cite{2}. Enriched \(^{58}\)Ni, \(^{118}\)Sn and \(^{120}\)Sn targets were used and their thicknesses were \(99 \pm 3\) mg/cm\(^2\), \(100 \pm 3\) mg/cm\(^2\) and \(170 \pm 5\) mg/cm\(^2\), respectively. The neutron flight path length was about 100 m. The scattered neutrons were detected by a newly developed neutron detection system, NPOL3 \cite{3}, with a high time resolution of about 200 ps. An enriched \(^{7}\)Li target with a thickness of 2.617 mm was used to determine the neutron detection efficiency of NPOL3 based on the known differential cross section of \(^{7}\)Li\((p, n)^{7}\text{Be}(gnd + 0.43\) MeV) reaction \cite{4}.

Figure 1 shows the double differential cross section spectrum for the \(^{58}\text{Ni}(p, n)^{58}\text{Cu}(0^+)\) reaction at 300 MeV. The differential cross section for the ground \(1^+\) state was derived by peak fitting where the peak energies were taken from the precise \((3\text{He}, t)\) spectrum \cite{5}. The result is
shown in Fig. 1 as an inset. The σ_{GT} value was derived by using the $B(GT)$ value obtained by beta decay experiments. The σ_{GT} values of 118Sn and 120Sn were obtained similarly.

The obtained σ_{GT} values are shown as a function of A in Fig. 2. The error bar of each data point is the quadratic sum of the statistical error and the systematic ones specific to the target nuclei which include the uncertainties by the $B(GT)$ value ($\pm 0.6\%$, $\pm 2.9\%$ and $\pm 2.3\%$ for 58Ni, 118Sn and 120Sn, respectively) and the effect of the 120Sn contaminant in the 118Sn target ($\pm 1.2\%$). The error bar shown in the lower-right corner of the each panel indicates the quadratic sum of the other systematic uncertainties mainly due to the target thickness ($\pm 3\%$), the 7Li target thickness ($\pm 3\%$), and the integrated current ($\pm 2\%$). The A-dependences of σ_{GT} were derived by fitting the data. Here, σ_{GT} is assumed to be proportional to $\exp(-x \times A^{1/3})$ neglecting the nuclear structure effect of individual nuclei.

σ_{GT} values estimated by the present A-dependences have important consequences. For example, Yako et al. have derived a GT quenching factor [6] by using the σ_{GT} value of 3.59 ± 0.18 mb/sr deduced from the A-dependence is used. The error denoted here is the quadratic sum of the fitting error and the other systematic errors mentioned above.

Assuming the proportionality relation, the $B(GT)$ values for the GT transition of 58Ni(g_{nd}) \rightarrow 58Cu(1.051 MeV) can be deduced as 0.406 ± 0.036 and 0.414 ± 0.006 from the (p,n) cross sections at 200 and 300 MeV, respectively. On the other hand, the $B(GT)$ value deduced by the (3He, t) measurement at $E_{^3He} = 450$ MeV [5] is reported as 0.265 ± 0.013 which is significantly smaller than those of the (p,n) measurements. This discrepancy may cast a serious question on the proportionality relation.

In summary, the σ_{GT} values were determined for the (p,n) reactions on 58Ni, 118Sn and 120Sn at 200 and 300 MeV. The A-dependences of σ_{GT} were derived. The $B(GT)$ value deduced by the (p,n) measurement on 58Ni disagrees with that deduced by the (3He, t) measurement, which may raise a question on the proportionality relation of these reactions.

References
[1] T.N. Taddeucci et al., Nucl. Phys. A469, 125-172 (1987).
[2] H. Sakai et al., Nucl. Instrum. Methods A 320, 479 (1992).
[3] T. Wakasa et al., Nucl. Instrum. Methods A, to be published.
[4] T.N. Taddeucci et al., Phys. Rev. C41, 2548 (1990).
[5] Y. Fujita et al., Eur. Phys. J. A 13, 411-418 (2002).
[6] K. Yako et al., Phys. Lett. B 615, 193-199 (2005).