Hiperatividade Simpática Cardíaca Após Quimioterapia: Sinal Precoce de Cardiotoxicidade?

Cardiac Sympathetic Hyperactivity after Chemotherapy: Early Sign of Cardiotoxicity?

Sarita Lígia Pessoa de Melo Machado Guimarães1,2, Simone Cristina Soares Brandão1, Luciana Raposo Andrade3, Rafael José Coelho Maia1,2, Brivaldo Markman Filho1

Pós-Graduação em Ciências da Saúde da Universidade Federal de Pernambuco (PCCS-UFPE)1, Hospital Agamenon Magalhães (HAM)2, Hospital Santa Joana3, Recife, PE – Brasil

Resumo

Fundamento: A quimioterapia com antracíclicos e trastuzumabe pode causar cardiotoxicidade. A alteração da função adrenérgica cardíaca, avaliada pela metaiodobenzilguanidina marcada com iodo-123 (123I-mIBG), parece preceder a queda da fração de ejeção do ventrículo esquerdo.

Objetivo: Avaliar e comparar a presença de alterações cardiovasculares entre pacientes com câncer de mama submetidas à quimioterapia com antracíclicos e trastuzumabe e apenas a antracíclico.

Métodos: Foram analisadas variáveis clínicas, laboratoriais, eletro e ecocardiográficas, além de atividade simpática cardíaca. Nas imagens cintilográficas, foram calculadas a relação da captação do 123I-mIBG entre o coração e o mediastino, e a taxa de clareamento. As variáveis foram comparadas entre os pacientes que receberam antracíclicos e trastuzumabe (Gruppo 1) e apenas antracíclicos (Grupo 2).

Resultados: Vinte pacientes, com idade média 57 ± 14 anos, participaram deste estudo. A fração de ejeção do ventrículo esquerdo média pelo ecocardiograma foi 67,8 ± 4,0%. A taxa de clareamento média foi 28,39 ± 9,23%, e a relação da captação do 123I-mIBG entre o coração e o mediastino foi 2,07 ± 0,28. Dentre as pacientes, 82% mostraram taxa de clareamento aumentada e 25%, uma relação da captação do 123I-mIBG entre o coração e o mediastino diminuída. Em relação aos grupos, a média da taxa de clareamento no Grupo 1 foi de 32,68 ± 9,30% e, no Grupo 2, de 24,56 ± 7,72% (p = 0,06). A relação da captação do 123I-mIBG entre o coração e o mediastino foi normal em todas as pacientes do Grupo 2, entretanto, no Grupo 1, 50% mostraram relação da captação do 123I-mIBG entre o coração e o mediastino ≤ 1,8 (p = 0,02).

Conclusão: Em mulheres com câncer de mama submetidas à quimioterapia, a avaliação da atividade simpática cardíaca com 123I-mIBG pode ser um marcador precoce de cardiotoxicidade. A associação de quimioterápicos proporcionou maior risco de hiperatividade adrenérgica cardíaca. (Arq Bras Cardiol. 2015; 105(3):228-234)

Palavras-chave: Quimioterapia; Efeitos Colaterais e Reações Adversas Relacionadas a Medicamentos; Sistema Nervoso Simpático; Neoplasias da Mama.

Abstract

Background: Chemotherapy with anthracyclines and trastuzumabe can cause cardiotoxicity. Alteration of cardiac adrenergic function assessed by metaiodobenzilguanidina labeled with iodine-123 (123I-mIBG) seems to precede the drop in left ventricular ejection fraction.

Objective: To evaluate and to compare the presence of cardiovascular abnormalities among patients with breast cancer undergoing chemotherapy with anthracyclines and trastuzumabe, and only with anthracycline.

Methods: Patients with breast cancer were analyzed clinical, laboratory, eletro and ecocardiographic and cardiac sympathetic activity. In cintigraphic images, the ratio of 123I-mIBG uptake between the heart and mediastium, and the washout rate were calculated. The variables were compared between patients who received anthracyclines and trastuzumabe (Group 1) and only anthracyclines (Group 2).

Results: Twenty patients, with mean age 57 ± 14 years, were studied. The mean left ventricular ejection fraction by echocardiography was 67.8 ± 4.0%. Mean washout rate was 28.39 ± 9.23% and the ratio of 123I-mIBG uptake between the heart and mediastium was 2.07 ± 0.28. Of the patients, 82% showed an increased in washout rate, and the ratio of 123I-mIBG uptake between the heart and mediastium decreased in 25%. Concerning the groups, the mean washout rate of Group 1 was 32.68 ± 9.30% and of Group 2 was 24.56 ± 7.72% (p = 0.06). The ratio of 123I-mIBG uptake between the heart and mediastium was normal in all patients of Group 2, however, the Group 1, showed 50% the ratio of 123I-mIBG uptake between the heart and mediastium ≤ 1.8 (p = 0.02).

Conclusion: In women with breast cancer undergoing chemotherapy, assessment of cardiac sympathetic activity with 123I-mIBG appears to be an early marker of cardiotoxicity. The combination of chemotherapy showed higher risk of cardiac adrenergic hyperactivity. (Arq Bras Cardiol. 2015; 105(3):228-234)

Keywords: Drug Therapy; Drug-Related Side Effects and Adverse Reactions; Sympathetic Nervous System; Breast Neoplasms.

DOI: 10.5935/abc.20150075
Introdução

Em mulheres, o câncer de mama é a neoplasia mais comum, e sua incidência vem aumentando. Com o envelhecimento da população, devem ser agregados fatores de risco adicionais, como as doenças cardiovasculares1,2.

A quimioterapia, que melhora a sobrevida, é fundamental para o tratamento de diversos tipos de câncer, porém traz potenciais riscos de toxicidade1. Por vários anos, os antracíclicos têm sido utilizados no tratamento do câncer de mama em seus diversos estágios2. Sua utilização tem se demonstrado bastante vantajosa3,4.

Aproximadamente 20 a 30% dos pacientes com câncer de mama têm tumores com amplificação do gene HER2/neu, cuja expressão proporciona menor resposta ao quimioterápico, devido à acelerada taxa de crescimento de suas células malignas4,5. Entretanto, o câncer de mama HER2 positivo responde favoravelmente ao trastuzumabe, um anticorpo monoclonal que tem como alvo esse receptor6.

Tanto os antracíclicos como o trastuzumabe estão associados com injeção miocárdica1,4. A cardiotoxicidade é uma complicação clinicamente silenciosa, que pode ocorrer em até 27% das pacientes submetidas à quimioterapia4.

A avaliação cardiológica rotineira em usuários de quimioterápicos é pelo rastreio de sintomas e pela realização de eletrocardiograma e ecocardiograma seriados. Uma vez detectado decréscimo na função ventricular, medidas terapêuticas podem ser necessárias, inclusive a suspensão do quimioterápico1.

A inervação autonômica desempenha um papel fundamental na regulação da frequência cardíaca, na função miocárdica e no fluxo sanguíneo miocárdico. Sua deficiência fundamental na regulação da frequência cardíaca, na função miocárdica e no fluxo sanguíneo miocárdico. Sua deficiência geralmente significa doença e pode preceder alterações na contratilidade miocárdica e também refletir a gravidade de doença10. A avaliação da função autonômica cardíaca pode ser realizada de forma não invasiva por meio de imagem cintilográfica com radiotraçadores específicos.

Identificar novas formas de avaliação precoce de risco cardiovascular em pacientes em tratamento com drogas de potencial cardiotoxicidade é um desafio. O intuito é evitá-lo que os quimioterápicos sejam suspensos e que drogas cardiopropterotoras, como betabloqueadores e inibidores da angiotensina, sejam iniciadas precocemenente, evitando, assim, mais dano e maior progressão de lesão ao miócito. O objetivo deste estudo foi avaliar e comparar a presença de alterações cardiovasculares entre pacientes com câncer de mama, submetidas à quimioterapia com antracíclicos e trastuzumabe, e apenas antracíclicos. Pacientes sabidamente cardiopatas ou com sintomas de insuficiência cardíaca foram excluídas do estudo. Nenhuma paciente poderia ter doença de Parkinson ou qualquer outra doença neurológica conhecida, considerando que essas patologias podem causar alterações na atividade simpática cardíaca com 123I-mIBG11.

As pacientes do Grupo 2 foram estudadas ao término do tratamento com antracíclicos e as do Grupo 1, ao término do tratamento com antracíclicos e durante tratamento com trastuzumabe, já tendo recebido, no mínimo, duas infusões.

O estudo foi aprovado pelo Comitê de Ética em Pesquisa (protocolo número CAAE-0001.0.236.000-11). Todas as pacientes concordaram em participar do estudo e assinaram o Termo de Consentimento Livre e Esclarecido.

Local do estudo

Estudo de base hospitalar, realizado no período de novembro de 2010 a maio de 2012, onde foram selecionadas as pacientes encaminhadas da oncologia ao ambulatório de cardiologia, para avaliação de risco cardiovascular. Aquelas que preenchessem os critérios de inclusão foram convidadas a participar deste estudo.

Variáveis do estudo

Todas as pacientes foram submetidas a: anamnese, exame físico, eletrocardiograma, ecodopplercardiograma e cintilografia cardíaca com 123I-mIBG. Os dados clínicos e laboratoriais, como idade, peso, altura, índice de massa corporal, medida de pressão arterial, medicações em uso, diabetes, fumo, colesterol total, lipoproteína de alta densidade-colesterol (HDL-c) e escore de risco de Framingham, foram obtidos e registrados em formulário específico.

O escore de risco de Framingham foi calculado considerando dados da anamnese (idade em anos, sexo feminino, reconhecidamente diabético e fumante), do exame físico (pressão arterial sistólica e diastólica em mmHg) e laboratoriais (valores dos dosagens de colesterol total, HDL-c e glicemia)12.

O eletrocardiograma foi considerado normal ou alterado, seguindo as Diretrizes da Sociedade Brasileira de Cardiologia sobre Análise e Emissão de Laudos Eletrocardiográficos13.

O ecodopplercardiograma foi realizado em aparelho da marca Philips HD7, número de série C151100623, manufaturado em setembro de 2010 (Diagnostic Ultrasound System, Bothell, Washington, Estados Unidos). A fração de ejeção do ventrículo esquerdo (FEVE) foi calculada pelo método de Teichholz. Os exames foram realizados conforme orientação do Departamento de Imagem Cardiovascular da Sociedade Brasileira de Cardiologia14.

Para a cintilografia cardíaca com 123I-mIBG, foram obtidas imagens planas de tórax, cerca de 15 minutos (imagens precoces) e 4 horas (imagens tardias) após a injeção endovenosa, de 185 MBq (5 mCi) de 123I-mIBG (Figura 1). As imagens foram adquiridas em gama-câmara tomográfica com dois detectores, modelo Infinia Hawkeye-4 (General Electri Medical Systems, Milwaukee, Wisconsin, Estados Unidos), com colimador para baixa energia e alta resolução.

Métodos

População do estudo

Estudo tipo série de casos tendo sido incluídos, de forma consecutiva, 20 pacientes com câncer de mama (amostra por conveniência), do sexo feminino e com idade ≥ 18 anos. As pacientes foram posteriormente divididas em dois grupos: Grupo 1, de pacientes que usaram antracíclicos associados ao trastuzumabe; e Grupo 2, para pacientes que usaram apenas antracíclicos. Pacientes sabidamente cardiopatas ou com sintomas de insuficiência cardíaca foram excluídas do estudo. Nenhuma paciente poderia ter doença de Parkinson ou qualquer outra doença neurológica conhecida, considerando que essas patologias podem causar alterações na atividade simpática cardíaca com 123I-mIBG11.
Figura 1 – Cintilografia cardíaca com 123I-mIBG de uma paciente do estudo na incidência anterior de tórax cerca de 15 minutos (precoce) e 4 horas (tardia) após a injeção do 123I-mIBG. Fileira superior: imagens em preto e branco; fileira inferior: imagens coloridas. VE: Ventrículo esquerdo.

O fotopico de energia foi centrado em 159 KeV, com uma janela de 20% e matriz de 128 x 128. Aquisição estática de 10 minutos foi realizada na projeção anterior de tórax, nas fases precoce e tardia, após a injeção do radioisótopo. Uma região de interesse (ROI) foi desenhada manualmente sobre o coração (C) e sobre uma área de nove pixels no mediastino superior (M), sendo obtida a média de contagens de cada uma dessas regiões. A relação coração/mediastino (RC/M) e a taxa de clareamento (washout) em percentual (TW) foram calculadas usando as imagens precoces e tardias. A TW foi considerada como a percentagem de diminuição da atividade cardíaca entre as imagens precoce e tardia dentro da área do ventrículo esquerdo. Os valores de RC/M ≤ 1,8 e de TW > 19% foram considerados anormais, ou seja, indicativos de hiperatividade adrenérgica. Em duas pacientes do Grupo 1 e uma do Grupo 2, não foi possível calcular a TW por problemas técnicos no dia da obtenção das imagens.

Todas as pacientes receberam xarope de iodeto de potássio (500 mg), por via oral, cerca de 1 hora antes da administração do 123I-mIBG, para o bloqueio da glândula tireoide.

Análise estatística

As variáveis quantitativas contínuas foram expressas pela média e desvio padrão. Para comparação das variáveis contínuas entre os dois grupos independentes, usou-se o teste U de Mann-Whitney. As variáveis categóricas foram expressas pelas frequências e percentuais. Para comparação entre os grupos, das variáveis expressas em percentual, usou-se o teste canônico. Correlação de Spearman foi usada no Grupo 1 para avaliar a correlação entre o número de ciclos de trastuzumabe e as variáveis da cintilografia com mIBG. Foi considerado um nível de significância estatística de 5% (p < 0,05). O software usado foi o Statistical Package for Social Science (SPSS), versão 13.0 (SPSS Inc., Chicago, Illinois, Estados Unidos).

Resultados

Características clínicas, eletro e ecocardiográficas

A média de idade das 20 pacientes foi de 57,3 ± 13,8 anos. O índice de massa corporal foi de 27,9 ± 4,0, que indica
sobrepeso da população. O escore de risco de Framingham médio foi de 5,7%, o que caracteriza um subgrupo de baixo risco de eventos coronarianos em 10 anos. Em relação aos grupos, não foram observadas diferenças significativas entre as variáveis clínicas.

Apenas duas pacientes apresentaram alterações eletrocardiográficas na repolarização ventricular. Ao ecocardiograma, a média de fração de ejeção foi 67,8 ± 4,0%. Todas as pacientes tinham FEVE > 55%, ou seja, apresentavam função ventricular normal (Tabela 1). Os diâmetros cavitários do átrio esquerdo e ventrículo esquerdo estavam dentro dos parâmetros da normalidade. Não foram observadas diferenças significativas entre as variáveis ecocardiográficas entre os grupos.

Avaliação da atividade simpática cardíaca

Em relação à avaliação da atividade simpática cardíaca, a média da TW, no Grupo 1, foi de 32,68 ± 9,30% e, no Grupo 2, de 24,56 ± 7,72%, com p = 0,06 (Figura 1). A RC/M precoce média foi de 1,94 ± 0,28, no Grupo 1, e de 2,20 ± 0,23, no Grupo 2 (p = 0,03).

Cerca de 82% das pacientes estudadas mostraram uma TW aumentada (valor normal < 19%) e 25% apresentaram uma RC/M precoce diminuída, isto é, ≤ 1,8. Entretanto, no Grupo 1, a TW foi normal em apenas uma paciente e, em cinco, esse índice esteve > 30%, Tabela 2. Já no Grupo 2, 44% das pacientes mostraram TW normal ou levemente alterada e, em apenas duas, a TW foi > 30% (Tabela 3). A RC/M foi normal em todas as pacientes do Grupo 2, entretanto, no Grupo 1, 50% mostraram RC/M reduzida (p = 0,02).

Correlação entre o número de ciclos de trastuzumabe e a atividade simpática cardíaca

Levando em consideração a variável número de ciclos de trastuzumabe administrados nas pacientes do Grupo 1, realizamos uma análise entre as medidas da cintilografia nas pacientes que realizaram menos de oito ciclos (Rho) e as que fizeram mais de oito ciclos (R2). Parece haver correlação positiva entre a TW e o número de ciclos (rho = 0,47; p = 0,06) e negativa entre a RC/M precoce e o número de ciclos de trastuzumabe (rho = -0,40; p = 0,08).

Discussão

Este foi o primeiro estudo brasileiro em que foi utilizada a cintilografia cardíaca com 123I-mIBG, com o intuito de identificar lesão cardíaca precoce, após tratamento

Tabela 1 – Estatística descritiva das medidas do ecodoppler cardiograma dos 20 pacientes

Variável	Média	DP	Mínimo	Máximo
AE (cm)	3,180	0,3365	2,60	3,80
DDVE (cm)	4,670	0,3342	4,00	5,60
DSVE (cm)	2,945	0,3137	2,60	3,90
E/A	1,049	0,3960	0,50	1,68
FEVE	67,850	4,0167	57,00	75,00

DP: Desvio padrão; AE: Átrio esquerdo; DDVE: Diâmetro diastólico do ventrículo esquerdo; DSVE: Diâmetro sistólico do ventrículo esquerdo; E/A: Relação entre as velocidades das ondas E e A máximas por Doppler espectral transmitral; FEVE: Fração de ejeção do ventrículo esquerdo.

Tabela 2 – Características clínicas e os resultados dos exames dos pacientes do grupo 1 tratados com antraciclinas e trastuzumabe

Paciente	Idade (anos)	Ciclos	Risco Framingham (%)	HAS	DM	ECG	DD	IECA/Bbloq	TW (%)	RC/M
1	68	2	4	-	-	-	-	Sim	28	2,3
2	58	8	8	-	-	-	-	-	-	-
3	44	6	6	-	-	-	-	-	-	-
4	67	14	2	-	-	-	-	-	-	-
5	51	17	1	-	-	-	-	Sim	39,9	2,3
6	80	7	8	Sim	Sim	Sim	Sim	Sim	46,5	1,7
7	76	18	17	Sim	-	-	-	Sim	38,8	1,6
8	34	10	1	-	-	-	-	-	29,6	2,3
9	42	3	4	-	-	-	-	-	-	-
10	32	12	1	-	-	-	-	-	-	-

* Problemas técnicos impediram o cálculo da TW em duas pacientes. HAS: Hipertensão arterial sistêmica; DM: Diabetes melito; ECG: Electrocardiograma; DD: Disfunção diastólica verificada pelo ecodoppler cardiograma; IECA: Inibidores da enzima conversora da angiotensina; Bbloq: Betabloqueador; TW: Taxa de clareamento do mIBG; RC/M: Relação coração/mediastino do mIBG.
quimioterápico, já que a disfunção autonômica pode preceder a disfunção ventricular e, consequentemente, a queda da fração de ejeção\(^{17}\).

A redução do débito cardíaco na insuficiência cardíaca (IC) ativa uma série de adaptações na tentativa de manter a homeostasia cardiovascular. Uma das más importantes é a ativação do sistema nervoso simpático (adrenérgico), que ocorre no início da IC\(^{16}\). Os resultados deste estudo sugeriram uma associação entre o uso de antracíclico e o aumento da atividade simpática cardíaca; a adição do trastuzumabe proporcionou uma hiperatividade adrenérgica ainda maior. Vale ressaltar, como já apresentado, que todas essas pacientes não apresentavam sinais clínicos e/ou ecocardiográficos clássicos de IC e apenas duas tinham alterações eletrocardiográficas. Assim, a alteração na atividade simpática cardíaca avaliada pela cintilografia com \(^{123}\)I-mIBG pareceu preceder sinais clínicos de IC e a queda na FEVE. Ela pode ser o gatilho inicial para o desenvolvimento de IC sintomática, caso essa disfunção neuromonal progreda ou piore.

Quando analisamos nossos resultados, notamos que, em ambos os grupos, a maioria dos pacientes apresentou uma taxa de clareamento acelerada de \(^{123}\)I-mIBG, isto é, > 19%. A média da TW foi estatisticamente maior no Grupo 1 em relação ao Grupo 2. Quando analisamos a RC/M precoce, no Grupo 1, cinco pacientes (50%) apresentaram esse índice ≤ 1,8 enquanto que, no Grupo 2, nenhuma paciente apresentou esse índice diminuído. Além do mais, a média da relação C/M foi estatisticamente inferior no Grupo 1.

Outro resultado interessante foi o da correlação entre o número de ciclos de trastuzumabe e os índices de avaliação da atividade simpática cardíaca. Uma tendência à correlação positiva entre o valor da TW e negativa entre a RC/M e o número de ciclos recebidos foram observadas. Isso sugere que quanto mais ciclos recebidos, parece haver uma maior alteração na inervação e na atividade simpática cardíaca.

Carrió e cols.\(^{17}\) identificaram captação anormal de \(^{123}\)I-mIBG em pacientes que usaram antracíclicos e, também, a RC/M foi mais baixa à medida que a dose cumulativa dessa medicação progrediu. Jacobson e cols.\(^{18}\) identificaram que pacientes portadores de IC com relação C/M < 1,6 apresentavam risco cardiovascular aumentado.

A disfunção sistólica, após exposição aos agentes cardiotóxicos, é usualmente irreversível, progressiva e letal\(^{19}\). O desenvolvimento de IC ocorre em até 27% das mulheres que usam a associação antraciclina com trastuzumabe e, por isso, é preconizado um cuidadoso controle clínico para essas pacientes\(^{5}\). Novas modalidades ecocardiográficas, como o uso do Doppler tecidual, strain regional e strain rate, podem aumentar a sensibilidade desse método em detectar disfunção ventricular subclínica, como também novos marcadores bioquímicos, como troponinas e peptídeo natriurético cerebral (BNP)\(^{19}\).

Estudo brasileiro recente\(^{20}\), que incluiu 51 pacientes em tratamento com trastuzumabe para câncer de mama HER2-positivo avançado, mostrou que, ao terceiro mês de tratamento, os dados clínicos e bioquímicos (dosagens de troponina e Nt-proBNP) não foram estatisticamente diferentes no início e após 3 meses com trastuzumabe. Entretanto, observou-se diferença estatisticamente significativa entre a relação E/e’ do início e ao terceiro mês de seguimento, que foi estritamente relacionada a uma redução na velocidade e’ miocárdica, conforme avaliado por Doppler tecidual ao ecocardiograma.

Neste estudo, não fez parte dos nossos objetivos realizar uma análise mais refinada da função diastólica pelo Doppler tecidual. A análise da função diastólica foi obtida no nossa casuística pelo ecocardiograma, por meio da relação das velocidades A e E máximas por Doppler espectral transmitral, e a avaliação foi feita apenas ao término do tratamento quimioterápico com antracíclico e durante o tratamento com trastuzumabe. Assim, não houve diferenças entre os grupos em relação à frequência de disfunção diastólica. Três pacientes do Grupo 1 e quatro do Grupo 2 apresentaram alteração no relaxamento miocárdico, mas não houve relação com o grau de hiperatividade adrenérgica cardíaca pelo \(^{123}\)I-mIBG.

Tabela 3 – Características clínicas e resultados dos exames dos pacientes do grupo 2 tratados apenas com antraciclinas

Paciente	Idade (anos)	Risco Framingham (%)	HAS	DM	ECG	DD	IECA/Bbloq	TW (%)	RC/M
1	44	< 1						25,9	2,0
2	63	1						21,2	2,0
3	50	1						27,5	2,2
4	60	1	Sim					34,1	2,3
5	77	22	Sim	Sim				*	2,1
6	65	11	Sim	Sim				19,3	2,2
7	61	11	Sim	Outro				29,8	2,2
8	53	3						14,7	2,4
9	69	13	Sim					34,6	1,9
10	52	7	Sim	Sim				14,0	2,7
Estudos com maior número de pacientes utilizando esses métodos mais sensíveis, juntamente de dados da cintilografia cardíaca com 123I-mIBG, são úteis para melhor esclarecer os resultados encontrados neste estudo, assim como o acompanhamento em longo prazo desses pacientes com atividade simpática cardíaca exacerbada.

Limitações do estudo

Importante ressaltar que as pacientes idosas, hipertensas e/ou diabéticas podem ter disfunção simpática cardíaca como parte da doença de base. Por outro lado, pacientes em uso de drogas com potencial de cardioproteção, como Inibidores da Enzima Conversora da Angiotensina (IECA) e betabloqueadores, podem evoluir com melhora da função simpática cardíaca e da disfunção sistólica7,21. Neste estudo, quatro pacientes do Grupo 2 eram hipertensas e três pacientes estavam em uso de drogas cardioprotetoras. No Grupo 1, duas pacientes eram hipertensas, uma era diabética e duas estavam em uso de medicações cardioprotetoras. Esses fatores devem ter influenciado a avaliação da atividade simpática, porém, como não foram estatisticamente diferentes entre os grupos, a análise comparativa da atividade simpática cardíaca não parece ter sofrido interferência.

Outra limitação deste estudo foi o pequeno tamanho amostral. Apesar do tempo de coleta ter sido relativamente grande, os oncologistas ainda não tinham a prática de encaminhar pacientes para avaliação cardiológica. Essa interação entre estas duas especialidades deve ser encorajada, considerando o potencial cardiotóxico desses medicamentos e o aumento da sobrevida dos pacientes oncológicos, que podem vir a se curar ou a conviver pacificamente com seu câncer, porém, como não era diagnosticado e tratado precocemente. A falta da inclusão de um grupo controle também diminui a certeza destes resultados. Entretanto, este estudo parece corroborar achados de outro estudo já publicado20 e ressaltar a necessidade de se confirmar com estudos maiores o valor da avaliação da atividade simpática cardíaca com 123I-mIBG no acompanhamento de pacientes submetidos à quimioterapia com drogas potencialmente cardiotoxicas.

Conclusão

Em mulheres portadoras de câncer de mama, submetidas à quimioterapia com drogas potencialmente cardiotoxicas, a avaliação da atividade simpática cardíaca com 123I-mIBG pode ser um marcador inicial de lesão cardíaca. O uso de derivados antraciclinas com o tratamentooube proporcionou maior frequência e intensidade de hiperatividade adrenérgica cardíaca. Estudos com maior casuística e comparando a avaliação da atividade simpática cardíaca com mIBG antes e após tratamento precisam ser feitos para maior certeza desses achados.

Contribuição dos autores

Concepção e desenho da pesquisa: Guimarães SLPMM, Brandão SCS, Markman Filho B. Obtenção de dados: Guimarães SLPMM, Brandão SCS, Andrade LR, Maia RJC, Markman Filho B. Análise e interpretação dos dados: Guimarães SLPMM, Brandão SCS, Andrade LR, Maia RJC, Markman Filho B. Análise estatística: Guimarães SLPMM, Brandão SCS, Markman Filho B. Redação do manuscrito: Guimarães SLPMM, Brandão SCS, Maia RJC, Markman Filho B. Revisão crítica do manuscrito quanto ao conteúdo intelectual importante: Brandão SCS, Markman Filho B.

Potencial Conflito de Interesse

Declaro não haver conflito de interesses pertinentes.

Fontes de Financiamento

O presente estudo não teve fontes de financiamento externas.

Vinculação Acadêmica

Este artigo é parte de dissertação de Mestrado de Sarita Lígia Pessoa de Melo Machado Guimarães pelo Centro de Ciências da Saúde da Universidade Federal de Pernambuco.

Referências

1. Kalil Filho R, Hajjar LA, Bacal F, Hoff PM, Diz Mdél P, Galas FR, et al. 1º Diretriz brasileira de cardio-oncologiada Sociedade Brasileira de Cardiologia. Arq Bras Cardiol. 2011;96(2 Supl.1):1-52.

2. American Cancer Society. Patient navigator program helps guide, support, and inform thousands of cancer patients through every step of their journey. [Accessed in 2011 Nov 25]. Available from: http://www.cancer.org/treatment/

3. Lee BL, Liedke PE, Barrios CH, Simon SD, Finkelstein DM, Goss PE, et al. Breast cancer in Brazil: present status and future goals. Lancet Oncol. 2000;102(3):272-4.

4. Klein PM, Dybdal N. Trastuzumab and cardiac dysfunction: update on preclinical studies. Semin Oncol. 2003;30(5 Suppl 16):49-53.

5. Feldman AM, Lorell BH, Reis SE. Trastuzumab in the treatment of metastatic breast cancer: anticancer therapy versus cardiotoxicity. Circulation. 2000;102(3):272-4.

6. Takerishi Y, Sukekawa H, Sakurai T, Saito H, Ishikawa M, Shibu T, et al. Noninvasive identification of anthracycline cardiotoxicity: comparison of 123I-MIBG and 123I-BMIPP imaging. Ann Nucl Med. 1994;8(3):177-82.

7. Kalay N, Basar E, Ozdogru I, Er O, Cetinkaya Y, Dogan A, et al. Protective effects of carvedilol against anthracycline-induced cardiomyopathy. J Am Coll Cardiol. 2006;48(11):2258-62.

8. Baselga J. Herceptin alone or in combination with chemotherapy in the treatment of HER2-positive metastatic breast cancer: pivotal trials. Oncology. 2003;63 Suppl 2:34-21.
9. Seidman A, Hudis C, Pierri MK, Shak S, Paton V, Ashby M, et al. Cardiac dysfunction in the trastuzumab clinical trials experience. J Clin Oncol. 2002;20(5):1215-21.

10. D’Alto M, Maurea S, Basso A, Vannella P, Polverino W, Bianchi U, et al. [The heterogeneity of myocardial sympathetic innervation in normal subjects: an assessment by iodine-123 metaiodobenzylguanidine scintigraphy]. Cardiologia. 1998;43(11):1231-6.

11. Orimo S, Ozawa E, Nakade S, Sugimoto T, Mizusawa H. 123I-metaiodobenzylguanidine myocardial scintigraphy in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1999;67(2):189-94.

12. Xavier HT. (editor). Risco cardiovascular na mulher. São Paulo: BBS editora; 2005:(3)48-50.

13. Pastore CA, Pinho C, Germiniani H, Samesima N, Mano R. Sociedade Brasileira de Cardiologia. Diretrizes da Sociedade Brasileira de Cardiologia sobre Análise e Emissão de Laudos Eletrocardiográficos (2009). Arq Bras Cardiol. 2009;93(3 supl.2):1-19.

14. Campos Filho O, Zieliński P, Ortiz J, Maciel BC, Andrade JL, Mathias W Jr, et al. Diretriz para indicações e utilização da ecocardiografia na prática clínica. Arq Bras Cardiol. 2004;82 supl 2:11-34.

15. Ji SY, Travin MI. Radionuclide imaging of cardiac autonomic innervation. J Nucl Cardiol 2010;17:655-66.

16. Floras JS. Sympathetic activation in human heart failure: diverse mechanisms, therapeutic opportunities. Acta Physiol Scand. 2003;177(3):391-8.

17. Carrió I, Cowie MR, Yamazaki J, Udelson J, Camicia PG. Cardiac sympathetic imaging with mIBG in heart failure. JACC Cardiovasc Imaging. 2010;3(1):92-100.

18. Jacobson AF, Senior R, Cerqueira MD, Wong ND, Thomas GS, Lopez VA, et al; ADMIRE-HF Investigators. Myocardial iodine-123 metaiodobenzylguanidine imaging and cardiac events in heart failure. Results of the prospective ADMIRE-HF (AdreView Myocardial Imaging for Risk Evaluation in Heart Failure) study. J Am Coll Cardiol. 2010;55(20):2212-21.

19. Dolci A, Dominici R, Cardinale D, Sandri MT, Pescittini M. Biochemical markers for prediction of chemotherapy-induced cardiotoxicity: systematic review of the literature and recommendations for use. Am J Clin Pathol. 2008;130(5):688-95.

20. Dorez H, Abeasis J, Correia ML, Gândara F, Fonseca C, Azevedo J, et al. Detection of early sub-clinical trastuzumab-induced cardiotoxicity in breast cancer patients. Arq Bras Cardiol. 2013;100(4):328-32.

21. Cardinale D, Colombo A, Sandri MT, Lamantia G, Colombo N, Civelli M, et al. Prevention of high-dose chemotherapy-induced cardiotoxicity in high-risk patients by angiotensin-converting enzyme inhibition. Circulation. 2006;114(23):2474-81.