INCORPORATING LUMINANCE, DEPTH AND COLOR INFORMATION BY A FUSION-BASED NETWORK FOR SEMANTIC SEGMENTATION

Shang-Wei Hung, Shao-Yuan Lo, Hsueh-Ming Hang

National Chiao Tung University, UC San Diego
Outline

- Introduction
- Method
- Experiments
- Conclusion
- References
Introduction
Introduction

Road Scene
Semantic Segmentation
Method
Method

- RGB Encoder and Decoder
- D&Y Encoder
- Fusion Mechanism
RGB Encoder and Decoder

- Use ERFNet [Romera et al.] as our backbone network.
- Reach good balance between accuracy and complexity.
- Use three downsampler block as encoder.
- Use deconvolution filter as decoder.
D&Y Encoder

- Adapt from FuseNet [Hazirbas et al.].
- Adopt dense connectivity from DenseNet [Gao et al.].
- Add shallow dense block to extract boundary information.
- Stack luminance images into depth maps to suppress noises.
Fusion Mechanism

- Direct stacking cannot effectively exploit the depth information.
- Conduct fusion operation on different scale.
- Use element-wise summation for each fusion.
- 1×1 convolution layer is used for matching the number of channels.
Experiments
Experiments

- Implementation Details
 - Optimizer: Adam
 - Learning rate initialization: 0.0005
 - Learning rate policy: Poly
 - Weight decay: 0.0001
 - Use class weighting: \(\omega_{\text{class}} = \frac{1}{\ln(c+p_{\text{class}})} \)
Experiements

- Datasets: Cityscapes
Ablation Study

- Simply stacking RGB and D channels cannot benefit from the additional depth information.
- Our fusion mechanism is a more effective design for depth information extraction.

Method	RGB Inputs	Depth Maps	Y Info.	Shallow Block	Dense Connects	mIoU (%)	Params
ERFNet-Depth	●	●				47.48	1.97M
ERFNet-RGB	●	●				65.59	1.97M
ERFNet-Stack	●	●				65.06	1.97M
LDFNet	●	●	●	●	●	68.48	2.31M
Ablation Study

- Adopting dense connectivity can obtain a higher mIoU score with fewer parameters.

Method	RGB Inputs	Depth Maps	Y Info.	Shallow Block	Dense Connects	mIoU (%)	Params
LDF-non-Dense	●	●	●			66.53	2.95M
LDFNet	●	●	●	●	●	68.48	2.31M
Ablation Study

- Depth information has a strong correlation to the object edge, contour, and boundary information, so placing Shallow Block at the early stage is beneficial to extract these desired low-level features.

Method	RGB Inputs	Depth Maps	Y Info.	Shallow Block	Dense Connects	mIoU (%)	Params
LDF-w/o-Shallow	●	●	●			66.54	2.20M
LDF-58-w/o-Shallow	●	●	●			65.93	2.42M
LDFNet	●	●	●	●	●	68.48	2.31M
Incorporating luminance information achieves a great improvement.

Method	RGB Inputs	Depth Maps	Y Info.	Shallow Block	Dense Connects	mIoU (%)	Params
LDF-w/o-Y	●	●	●	●	●	65.72	2.31M
LDFNet	●	●	●	●	●	68.48	2.31M
Ablation Study

- The increased parameters indeed provide some improvements, but our fusion mechanism of incorporation multi-modal information contributes significantly more.

Method	RGB Inputs	Depth Maps	Y Info.	Shallow Block	Dense Connects	mIoU (%)	Params
ERFNet-RGB	●	●	●			65.59	1.97M
LDF-RGB-RGB	●	●	●	●	●	67.79	2.31M
LDFNet	●	●	●	●	●	68.48	2.31M
Comparison

Table 2: Evaluation results on the Cityscapes test set, comparing LDFNet with the other RGB-D methods.

Method	mIoU (%)	Speed (fps)
MultiBoost	59.3	4.0
Pixel-level Encoding [16]	64.3	n/a
Scale invariant CNN+CRF [10]	66.3	n/a
RGB-D FCN	67.4	n/a
LDFNet (ours)	71.3	18.4

Table 3: Comparison of model efficiency with RGB methods. Sub: the amount of subsampling used by the method at test time.

Method	Parameters	Sub	Speed (fps)
DeepLabv2 [2]	44.0M	no	n/a
PSPNet [20]	65.7M	no	n/a
Dilation10 [19]	140.8M	no	0.25
FCN-8s [12]	134.5M	no	2.0
SegNet [1]	29.5M	4	16.7
LDFNet (ours)	2.31M	2	18.4
Results

RGB Image	Depth Map	Ground Truth	LDFNet
![RGB Image](image1)	![Depth Map](image2)	![Ground Truth](image3)	![LDFNet](image4)
![RGB Image](image5)	![Depth Map](image6)	![Ground Truth](image7)	![LDFNet](image8)
![RGB Image](image9)	![Depth Map](image10)	![Ground Truth](image11)	![LDFNet](image12)
![RGB Image](image13)	![Depth Map](image14)	![Ground Truth](image15)	![LDFNet](image16)
Results

RGB Image	Depth Map	Ground Truth	LDFNet
![RGB Image 1](image1.jpg)	![Depth Map 1](image2.jpg)	![Ground Truth 1](image3.jpg)	![LDFNet 1](image4.jpg)
![RGB Image 2](image5.jpg)	![Depth Map 2](image6.jpg)	![Ground Truth 2](image7.jpg)	![LDFNet 2](image8.jpg)
![RGB Image 3](image9.jpg)	![Depth Map 3](image10.jpg)	![Ground Truth 3](image11.jpg)	![LDFNet 3](image12.jpg)

Note: Images are placeholders and should be replaced with actual images.
Conclusion
We propose a novel solution named LDFNet, which incorporates Luminance, Depth and Color information by a fusion-based network. It includes a sub-network to process depth maps and employs luminance images to assist the depth information in processes. LDFNet outperforms the other state-of-art systems on the Cityscapes dataset, and its inference speed is faster than most of the existing networks. The experimental results show the effectiveness of the proposed multi-modal fusion network and its potential for practical applications.
The End

Thank you for your attention