Evaluation of the use of partition coefficients and molecular surface properties as predictors of drug absorption: a provisional biopharmaceutical classification of the list of national essential medicines of Pakistan

*Shawahna R. Rahman NU.

Department of Pharmacy, Faculty of Pharmacy and Alternative Medicine, The Islamia University of Bahawalpur, Pakistan.

Received 15 Dec 2010; 22 March 2011; Accepted 25 March 2011

ABSTRACT

Background and the purpose of the study: Partition coefficients (log D and log P) and molecular surface area (PSA) are potential predictors of the intestinal permeability of drugs. The aim of this investigation was to evaluate and compare these intestinal permeability indicators.

Methods: Aqueous solubility data were obtained from literature or calculated using ACD/Labs and ALOGPS. Permeability data were predicted based on log P, log D at pH 6.0 (log D₆₀), and PSA.

Results: Metoprolol’s log P, log D₆₀ and a PSA of <65 Å correctly predicted 55.9%, 50.8% and 54.2% of permeability classes, respectively. Labetalol’s log P, log D₆₀ and PSA correctly predicted 54.2%, 64.4% and 61% of permeability classes, respectively. Log D₆₀ correlated well (81%) with Caco-2 permeability (Pₐₚ). Of the list of national essential medicines, 135 orally administered drugs were classified into biopharmaceutical classification system (BCS). Of these, 57 (42.2%), 28 (20.7%), 44 (32.6%), and 6 (4.4%) were class I, II, III and IV respectively.

Conclusion: Log D₆₀ showed better prediction capability than log P. Metoprolol as permeability internal standard was more conservative than labetalol.

Keywords: Biopharmaceutical classification system, Permeability, log P, log D, PSA.

INTRODUCTION

Systemic bioavailability of an orally administered drug is largely dependent on its physicochemical properties and dosage formulation factors (1). Sophisticated modeling of the kinetics and dynamics of drug processes in the gastrointestinal tract subsequently led to the advent of the biopharmaceutical classification system (BCS) (2). According to the biowaiver, any possible variation in the bioavailability of a rapidly dissolving and highly soluble drug is attributed to physiological conditions rather than formulation and hence there is no logic in conducting a bioequivalence testing for such formulation (2). BCS offers a framework for development of pharmaceutical formulations. It has been estimated that the pharmaceutical industry can save $35 million annually through the applications of BCS (3). Assignment of the solubility and permeability classes of a drug is a laborious task. Lately, computational models to predict aqueous solubility and permeability through biological membranes have received considerable attention. The use of physicochemical properties in predicting in vivo behavior of drugs has many advantages including cost reduction; better control over protocol, reproducibility and avoidance of risk presented to human volunteers usually encountered in the bioequivalence studies (4). Molecular surface properties and partition coefficients have been used actively in construction of quantitative structure activity relationship (QSAR) models to predict intestinal permeability (2, 5-6).

This study reports for the first time an evaluation and comparison of pH-dependent and pH-independent n-octanol/water partition coefficients (log D and log P) and polar surface area (PSA) in prediction of intestinal permeability of drugs. The log D at physiologically relevant pH of 6.0 (log D₆₀) was used to provisionally classify the orally administered drugs on the list of national essential medicines (NEML) of Pakistan into BCS.

MATERIAL AND METHODS

The present revision of the NEML contains 335 medicines of different pharmacological classes (7). The highest dose of drug products available in oral dosage forms, i.e. oral tablets and capsules, were used.

Solubility

The dose number (Do) was calculated using equation 1:
RESULTS AND DISCUSSION

Previously the orally administered drugs on the World Health Organization (WHO) essential medicine list (EML) were provisionally classified into BCS (13-14). The NEML contained 135 orally administered drugs. It has been emphasized that the maximal administered dose to solubility ratio has a central role in the BCS (15). The NEML contained 89 drugs in common with the WHO’s EML while in term of doses, only 46 were similar.

Solubility correlation and class assignment

Lindenberg and colleagues classified 61 drugs with certainty on the basis of reliable practical solubility data. A total of 59 drugs were in common with Lindenberg’s list (13). ACD/Labs calculated solubility and predicted correctly that 51 (86.4%) of the solubility classes; whereas, data obtained from Drugbank and ALOGPS could correctly predict 76.3% and 78% of the drugs classified, respectively (Supplementary table 1). Solubility class assignment was compared to the WHO solubility classification (16). Of the 80 drugs in common, 66 drugs (82.5%) were classified in the same solubility classes, whereas, of the 14 drugs for which the solubility classes were different, 6 drugs were classified based on incomplete/ inconclusive data and 3 drugs had higher or lower doses on the NEML as compared to the WHO’s EML (Supplementary table 2).

Of the 135 drugs on the NEML, 15 (11.1%) drugs were classified according to their experimental solubility data obtained from Yalkowsky & He, of which 7 (46.7%) were classified as high soluble drug while the rest of 8 (53.3%) were classified as low soluble drugs. Additionally, 33 drugs (24.4%) were classified based on the solubility data obtained from Drugbank. Of these, 29 (87.9%) were classified as high solubility drugs while the rest of 4 (12.1%) were classified as low soluble drugs. The rest of 87 drugs (64.4%) were classified according to the ACD/Labs predicted soluble, of which, 66 (75.9%) were classified as high soluble drugs and 21 (24.1%) drug were assigned to low solubility class drugs (Table 1).

Permeability correlation and class assignment

Kasim and colleagues used metoprolol as internal standard indicating high permeability (14). Palm and colleagues showed that PSA of <60 Å ensured complete intestinal absorption (6); however, Kelder and colleagues showed drug intestinal permeation predominated by passive diffusion and paracellular route for drugs with PSA of less than 120 Å (17). When log \(D_{app} \) of -1.48, log \(P \) of 1.35, and a relaxed PSA of ≤65 Å were used to indicate high permeability of the 59 drugs in common with the Lindenberg’s list, cutoffs correctly predicted the permeability class of 30, 33 and 32 drugs (50.8%, 54.2% and 55.9%), respectively (Supplementary table 3). The fraction absorbed (Fa) of metoprolol (≥95%) is considerably even more conservative than permeability criteria (≥90%) of the Food and Drug Administration (FDA) (18). The use of labetalol as high permeable internal standard (Fa ≥90%) was evaluated using log \(D_{app} \) of -0.42, Log \(P \) of 2.31, and PSA of ≤95.6 Å. These cutoffs correctly predicted the permeability class of 38, 32, and 36 drugs (64.4%, 54.2% and 61%), respectively.

When WHO’s classification (16) where compared with the current classification in table 1; of the 80 drugs in common, 62 drugs (77.5%) were classified in the same permeability classes, whereas, of the 18 drugs for which the permeability classes were different, 11 could be correctly classified by their PSA values (Supplementary table 2).

To further verify the suitability of the permeability class assignment based on log \(D_{app} \), the Caco-2 monolayer permeability (\(P_{app} \)) values for a total of 22 drugs which were in common with a previous work...
Shawahna et al / DARU 2011 19 (2) 83-99

were obtained; these values were basically compiled from the literature. The P_{app} value for labetalol was obtained from literature (15). Log $D_{6.0}$ correctly predicted the permeability class for 18 (81.8%) of the 22 drugs (Supplementary table 4). Furosemide, hydrochlorothiazide, saquinavir, and sulphasalazine were false positives. Similarly, the PSA of ≤95.6 Å (PSA of labetalol) correctly predicted the permeability class for 18 (81.8%) of the 22 drugs (Supplementary table 4). Acetylsalicylic acid, atenolol and zidovudine were false positives, whereas, digoxin was a false negative. The PSA of ≤65 Å correctly predicted only 15 (68.2%) out of the 22 drugs compared. In the study of Kasim and colleagues, the log P of metoprolol correctly predicted 18 of 28 (64%) drugs (5).

The permeability classes were assigned using log $D_{6.0}$ in comparison to labetalol which was used as internal standard. In this classification, 128 (94.8%) of the 135 drugs on the NEML were classified, of these, 83 (64.8%) were assigned in high permeability, while the rest of 45 (35.2%) were assigned in low permeability classes. The rest of the 7 (5.2%) were classified according to their PSA values. Of these 2 (28.6%) were classified as high permeability drugs, while the rest of 5 (71.4%) were classified as low permeability drugs. The final BCS classification of the 135 orally administered drugs on the NEML is given in table 1 and class distribution is shown in figure 1.

Literature often reported solubility data at room temperature. In contrast, the current solubility classification methodology yielded an acceptable accuracy of 86.4% and 78.3% for ACD/Labs and Drugbank solubility values respectively. Moreover, the current classification of solubility criteria were conservative since the solubility usually increases as a function of temperature, therefore, the solubility values at 37°C would be higher than the values used. In vivo human permeability investigations are expensive in terms of financial resources and technical allocations; and moreover are time consuming. Several reports described a certain correlation between physicochemical properties of drug molecules with intestinal absorption (6, 19-22). Linnankoski and colleagues suggested that passive diffusion predominates the routes of intestinal administration for the majority of the drugs (20). Although influx and efflux transporters have an important role in the absorption of some drugs, interestingly, for the majority of drugs the active transport is actually negligible (20). Most of the drugs available in the market are ionizable molecules; therefore, passive diffusion of these ionizable drugs is partly governed by their pKa values. Consequently, log D at physiologically relevant pH should better reflect the overall distribution (ionized and unionized) of a drug (22, 23).

Recently, labetalol was suggested as a better internal standard in the permeability comparisons (24). The effective intestinal permeability (P_{app}) is typically the parameter reflecting both the rate and extent of intestinal absorption. In the current classification, labetalol was used as internal standard. In accordance with results of this study, Winiwater and colleagues found a correlation between P_{app}, log D at pH of 5.5, PSA and hydrogen bond donors, the use of log $D_{6.0}$ gave better predictions than log P (22). Similarly, Linnankoski and colleagues established a correlation between the intestinal absorption rate constant (K_a) with log $D_{6.0}$ and PSA (20).

Figure 1. Biopharmaceutical classification system with drugs on the list of national essential medicines of Pakistan.

Solubility	Permeability
High	Low permeability
n=128	(94.8%)
Low	High permeability
n=45	(35.2%)

Class I:
- High solubility + Low permeability
- $n=44 (32.6\%)$

Class II:
- Low solubility + High permeability
- $n=28 (20.7\%)$

Class III:
- High solubility + High permeability
- $n=57 (42.2\%)$

Class IV:
- Low solubility + Low permeability
- $n=6 (4.4\%)$
Table 1. BCS classification of the orally administered drugs on the list of national essential medicines (NEML) of Pakistan with their therapeutic classes, maximum doses, experimental water solubility, predicted aqueous solubility (ACD/Labs), pH dependent solubility (pKa), log $D_{4.0}$, calculated PSA, and interaction with transporters in the intestine.

Drug	Therapeutic class	Maximum dose (mg)	D_{0^*}	D_{0^+}	D_{0^+}	pKa	Log $D_{4.0}$	PSA	Transporters interaction	BCS classification
Acetylsalicylic acid	NSAID	300	NA	0.0012	3.48	-1.24	63.6	Pgp	High	Low
Acyclovir	Antiviral	200	NA	2.1	9.18	1.89	-1.76	109.83 OATP1, OATP3, OCT1	Low	
Albendazole	Anthelmintic	200	NA	13.3	10.46	5.62	2.87	92.31 BCRP	Low	High
Allopurinol	anti-gout	300	NA	0.03	9.2	2.4	-3.81	74.69 NA	NA	High
Amitriptyline	Antipsychotic	50	NA	0.16	8.58	1.58	1.07	156.79 NA	NA	High
Amiodarone	Antiarrhythmic	200	1.1	NA	9.37	6.29	42.7	MDR1 Low	High	
Amitriptyline	Antipsychotic	50	NA	0.14	9.24	2.08	3.24	NA High	Low	
Amiodarone	Antiarrhythmic	200	1.1	NA	9.37	6.29	42.7	MDR1 Low	High	
Amoxicillin	Antibacterial	500	NA	6.66	2.61	6.93	-1.93	158.26 PEPT1	Low Low IV	
Ampicillin	Antibacterial	500	0.2	2.61	6.79	-1.21	138 PEPT1, OCTN2	Low Low IV		
Anastrozole	Anticancer	1	NA	0.008	4.78	0.77	78.3	NA High	High	
Atenolol	Antihypertensive	100	NA	0.0004	13.88	9.17	-2.73	84.58 MDR1	High Low III	
Atropine sulphate	Antispasmodic	1	NA	6.76E-06	9.88	-1.52	49.77 NA	MDR1 Low	High	
Azathioprine	Anticancer	50	1.5	0.25	-0.54	143	NA	Low Low IV		
Bromocriptine	Antiparkinsonism	2.5	NA	0.11	9.61	6.45	4.52	118 MDR1	High	
Busulphan	Anticancer	0.5	NA	1.2E-06	9.88	-1.52	104 NA	MDR1 Low	High	
Bupropirl	Antihypertensive	50	NA	0.0002	3.82	-2.02	96.41 MDR1, PEPT1	High Low III		
Carbamazepine	Antiepileptic	200	NA	10	13.94	2.67	46.33 MDR1	Low High II		
Carbidopa	Antiparkinsonism	25	NA	0.1	3.4	7.91	-2.71	116 NA	High	
Cefixime	Antibacterial	100	NA	0.03	2.1	2.86	-3.72	238 NA	High	
Cefuroxime	Antibacterial	250	NA	3.52	2.59	-4.47	199 PEPT1	Low Low IV		
Cephalexin	Antibacterial	500	0.04	3.12	6.8	-2.22	138 PEPT1, PEPT2, OCTN2	High Low III		
Cephradine	Antibacterial	500	0.25	3.12	6.99	-1.53	138 OAT1, OCTN2, PEPT1	High Low III		
Chlorambucil	Anticancer	2	0.01	4.86	3.66	1.52	40.5 MRP1	High High		
Chloramphenicol	Antibacterial	250	NA	4.3	11.03	1.02	115.38 NA	High Low II		
Chloroquine	Antimalarial	150	NA	0.02	10.48	1.2	28.16 MDR1	High High		

Provisional biopharmaceutical classification of drugs on the list of national essential medicines (NEML) of Pakistan.
Table 1 (Cont)

Drug	Therapeutic class	Maximum dose (mg)	Solubility	Permeability	BCS classification	
Chlorpheniramine	Antiallergic	4 NA	0.0003	9.33	0.49 16.13 NA	High High I
Chlorpromazine	Antipsychotic	100 NA	0.44	9.43	2.28 31.78 MDR1, OCT1	High High I
Cimetidine	Antiallergic	400 NA	0.14	6.73	-1.14 114.19 MDR1, OCT1, OAT3, OCT1, OCT3, OCTN2	High Low III
Ciprofloxacin	Antibacterial	250 NA	0.77	2.74	8.76 -1.07 72.88 MDR1	High Low III
Clofazimine	Antileprosy	100 NA	412.4	6.24	5.72 39.99 MDR1	Low High II
Clomipramine	Antipsychotic	25 NA	0.09	9.49	2.58 6.48 MDR1	High High I
Clotrimazole	Antileprosy	100 NA	412.4	6.24	5.72 39.99 MDR1	Low High II
Cloxacillin	Antibacterial	250 NA	0.07	NA	-0.81 138.04 PEPT1	High Low III
Colchicine	Anti-gout	0.5 NA	0.03	NA	0.92 83.09 MDR1, OCT3	High High I
Cyclizine	Antihistamine	50 NA	0.2	7.46	1.83 6.5 NA	High High I
Cyclophosphamide	Anticancer	50 NA	0.002	4.09	0.23 51.38 MDR1	High High I
Cyclosporin	Immunosuppressent	100 10	NA NA 279	BCRP, MDR1, MRP1, OATP1B1	Low Low IV	
Dapsone	Antileprosy	50 NA	0.57	1.24	0.94 94.36 NA	High High I
Dexamethasone	Antiallergic	0.5 NA	0.04	12.14	1.87 94.83 MDR1, OATP1A2	High High I
Diazepam	Sedative	10 NA	2	3.4	2.96 32.67 MDR1	Low High II
Didanosine (ddi)	Antiretroviral	400 NA	0.81	8.67 1.98	-1.33 83.81 NA	High Low III
Digerix	Cardiostimulant	0.25 NA	0.002	13.5	0.85 203.06 MDR1, OATP1B3, OATP1C1, OATP4C1, OATP4C3, OATP4C4, OATP4C7	High High I
Diloxanide	Anti-Amoebic	500 NA	1.08	NA	1.62 40.54 NA	Low High II
Diltiazem	Calcium channel blocker	100 0.006	8.91	2.64	8.44 MDR1	High High I
Doxycycline	Antibacterial	100 NA	0.54	4.5	9.32 -3.06 181.62 OAT1, OAT3, OAT4	High Low III
Efavirenz	Antiretroviral	50 NA	376.6	7.92	4.84 38.33 NA	Low High II
Enalapril	Antihypertensive	10 0.002	3.75 5.53	0.02	9.59 MDR1, OATP1A2, PEPT1	High High I
Ergometrine	Oxytocic	0.25 NA	0.00018	NA	-0.54 68.36 MDR1	High Low III
Ergotamine	Antimigraine	1 NA	0.4	9.62	7.2 1.99 118.21 MDR1	High High I
Erythromycin	Antibacterial	500 NA	0.08	13.08	8.14 0.72 193.91 MDR1, MRP1, OAT2, OATP1A2	High High I
Ethambutol	Anti-tuberculosis	400 NA	0.0016	9.6	-3.23 64.52 NA	High Low III
Ethosuximide	Antiepileptic	250 NA	0.042	9.7	0.38 46.17 NA	High High I
Etoposide	Anticancer	100 2	9.95	1.96	161 BCRT, MDR1-3-6-7,	Low High II
Table 1 (Cont)

Drug	Therapeutic class	Maximum dose (mg)	Do	Do	Do	pKa	Log D_{xy}	PSA	Transporters interaction	Solubility class	Permeability class	BCS Class
Fluoxetine	Antipsychotic	20	NA	0.02	10.05	NA	21.3	MDR1	High	High	I	
Flutamide	Anticancer	250	NA	0.42	13.12	NA	74.9	NA	High	High	I	
Furosemide	Diuretic	40	NA	0.02	3.04	0.26	131.01	MRP2, OAT1, OAT3, OAT4, OCTN2	High	High	I	
Gentamycin	Antimicrobial	300	NA	0.12	4.75	2.14	46.5	NA	High	High	I	
Gilbenclamide	Antidiabetic	5	NA	1	NA	2.75	121.98	BSEP, MDR1, MRP1, OATP2B1	High	High	I	
Griseofulvin	Antifungal	500	NA	2985.07	NA	3.53	71.06	NA	Low	High	II	
Haloperidol	Antipsychotic	5	NA	0.006	13.9	8.25	0.82	40.54	MDR1	High	High	I
Hydralazine	Antihypertensive	25	NA	0.08	NA	0.56	63.83	NA	High	High	I	
Hydrochlorothiazide	Diuretic	50	NA	0.48	8.95	-0.07	135.12	NA	High	High	I	
Ibuprofen	NSAID	600	NA	1.17	4.41	2.12	37.3	MDR1, MRP1, MRP3, OAT1-4	Low	High	II	
Imipramine	Antipsychotic	25	5.5	9.49	1.85	6.5	MDR1, OCT2, OCT3	Low	High	II		
Indinavir	Antiretroviral	400	NA	53.3	5.73	2.76	118.03	MDR1, MRP1, MRP2, OATP1A2, OATP1B1	Low	High	II	
Indomethacin	NSAID	25	6.25	4.17	0.3	68.5	MDR1, MRP1-8, OAT1-4	Low	High	II		
Isoniazid	Anti-tuberculosis	300	NA	0.01	11.27	3.79	-0.89	68.01	NA	High	Low	III
Isosorbide dinitrate	Antianginal	10	NA	4.82E-05	NA	-1.75	58.92	NA	High	Low	III	
Labetalol	Antihypertensive	200	NA	0.04	7.91	9.2	-0.42	95.6	NA	High	High	I
Lamivudine (3tc)	Antiretroviral	150	NA	0.17	13.83	4.41	-0.71	113.45	BCRP, MRP1	High	Low	III
Levamisole	Anthelmintic	40	NA	0.0067	8.81	-0.15	40.9	NA	High	High	I	
Levodopa	Antiparkinsonian	250	NA	0.09	2.24	9.3	-0.27	103.78	NA	High	High	I
Lisinopril	Antihypertensive	20	NA	0.02	2.18	10.51	-1.32	133	MDR1, PEPT1	High	Low	III
Losartan	Antihypertensive	25	NA	0.49	4.24	3.1	0.89	92.5	MDR1, OAT1	High	High	I
Methadone	Anthelmintic	100	NA	20	10.29	5.02	2.77	84.08	MDR1	Low	High	II
Mercaptopurine	Anticancer	50	0.03	8.46	2.4	0.37	85.2	MPV4, MPV5	High	High	I	
Metformin	Antidiabetic	500	NA	0.02	13.1	4.31	88.99	OCT1, OCT2	High	Low	III	
Methionine	Antifolate	250	NA	0.04	2.23	9.26	-2.13	86.8	OCTN2	High	Low	III
Methotrexate	Anticancer	10	NA	6.20E-05	3.54	5.09	NA	211	BCRP, MDR1, MRP1-7, OAT1-4, OATP1B1, OATP1B3, OATP1C1	Low	High	III
Methyldopa	Antihypertensive	500	NA	0.3	2.28	9.3	-2.37	103.78	PEPT1	High	Low	III
Metoclopramide	Antiemetic	10	NA	0.0002	13.28	9.62	-7.8	67.59	NA	High	Low	III
Table 1 (Cont)

Drug	Therapeutic class	Maximum dose (mg)	Solubility	pKa	Permeability	BCS classification				
			Da¹ Do¹	Da¹	Log Dm,6.0	PTA V1	Transporters interaction	Solubility class	Permeability class	BCS Class
Metronidazole	Anti-Amoebic	400	NA 0.2	2.58	-1.01	78.94	NA	High	Low	III
Morphine	Analgesic	30 NA 0.0065	9.72 8.14	-1.77	52.95	MDR1	High	Low	III	
Nalidixic acid	Antibacterial	500 NA 0.73	1.2 5.95	0.33	70.5	NA	High	High	I	
Nelfinavir	Antiretroviral	250 NA 291.54	9.58 7.53	5.44	127.2	BCRP, MDR1, OATP1A2, OATP1B1	Low	High	II	
Neostigmine	Antidote	15 NA 0.00019	NA 0.2	NA	-3.03	29.54	MDR1	High	Low	III
Nevirapine	Antiretroviral	200 NA 1.37	10.93 4.74	1.84	58.12	NA	Low	High	II	
Nicosamide	Antihelmintic	500 NA 1801.8	NA 0.2	5.4	95.15	NA	Low	High	II	
Nitrofurantoin	Antibacterial	100 NA 0.28	7.69 1.2	-0.41	120.73	NA	High	High	I	
Nitroglycerin	Antianginal	6.4 0.02	NA 0.2	2.22	165	NA	High	High	I	
Nystatin	Antifungal	200 NA 26.6	NA 0.2	NA	3.19	61.6	MDR1	Low	High	II
Omeprazole	Antulcer	20 NA 0.004	9.08 4.61	2.15	96.3	BCRP, MDR1, MRP5	High	High	I	
Paracetamol	Analgesic	500 NA 0.19	9.86 0.34	NA	49.33	NA	High	High	I	
Penicillamine	Antidote	250 NA 0.096	2.13 11.54	-1.57	102.12	NA	High	Low	III	
Phenobarbital	Antiepileptic	50 NA 0.18	7.88 1.66	1.66	75.27	NA	High	High	I	
Phenytoin	Antiepileptic	100 NA 0.017	9.86 6.43	-1.43	58.4	MDR1, OATP1A2, OAT1-3, OCT1-2	High	Low	III	
Phentolamine	Antidepressant	100 NA 4	8.33 2.52	58.2	MDR1, MRP2	Low	High	High	II	
Prazosin	Antihypertensive	2 NA 0.016	6.47 -1.25	107	BCRP, MDR1, OCT1-3	High	Low	III		
Pregabalin	Anticonvulsant	5 NA 0.15	12.47 1.49	94.83	MDR1	High	High	High	I	
Primaquine	Antimalarial	7.5 NA 0.00015	10.38 -0.41	60.17	NA	High	High	High	I	
Procainamide	Antiarrhythmic	250 NA 0.017	9.86 -1.43	58.4	MDR1, OATP1A2, OCT1-3, OCT1-2	High	Low	III		
Procarbazine	Anticancer	50 NA 0.0006	7.46 0.11	53.2	NA	High	High	High	I	
Prochlorperazine	Antipsychotic	5 1.34	7.82 2.42	35	NA	Low	High	High	II	
Procyclidine	Antiparkinsonism	5 NA 2.03	10.48 0.84	23.5	NA	Low	High	High	II	
Promethazine	Antifungal	25 NA 0.04	8.98 2.04	31.78	MDR1	High	High	High	I	
Propranolol	Antihypertensive	160 NA 0.01	13.84 9.14	0.28	41.49	MDR1, NTCP, OCT2	High	High	I	
Propylthiouracil	Anticancer	100 NA 0.2	7.63 0.54	1.36	73.22	NA	High	High	I	
Pyrantel	Antihelmintic	250 NA 0.012	10.97 -0.49	43.84	NA	High	High	High	III	
Pyrazinamide	Anti-tuberculosis	500 NA 0.09	13.91 -0.37	68.87	NA	High	High	High	I	
Pyridostigmine	Muscle relaxant	60 NA 0.0005	NA -4.31	29.54	NA	High	Low	High	III	
Table 1 (Cont)

Drug	Therapeutic class	Maximum dose (mg)	Do²	Do³	Do¹	pKa	Log D₆⁺	PSA²	Transporters interaction³	Solubility class	Permeability class	BCS classification
Quinidine	Antiarrhythmic	200	5.7	NA	13.05	9.13	1.35	45.6	BSEP, MDR1, OAT3, OATP1A2, OATP1B1, OCT1,2, OCTN1,2	Low	High	II
Quinine	Antimalarial	200	NA	0.03	13.05	9.13	0.54	45.59	MDR1, OATP1A2, OCT1,2, OCTN1,2	High	High	I
Risperidone	Antipsychotic	3	NA	0.017	7.91	1.01	61.9	NA	NA	High	High	I
Rifampicin	Anti-tuberculosis	600	NA	1.71	NA	-1.75	217	202.26	MDR1, MRP1,2,3,5, OATP1A2, OATP1B1, OATP1B3, OATP2B1	Low	Low	IV
Ritonavir	Antiretroviral	100	NA	1063.8	11.47	3.48	5.28	166.75	BCRP, MDR1, MRP1,2, OATP1A2, OATP1B1	Low	High	II
Salbutamol	Antiallergic	4	NA	0.000016	0.83	9.22	-2.84	72.72	NA	High	Low	III
Saquinavir	Antiretroviral	200	NA	16	NA	2.84	165.75	BCRP, MDR1,2, OATP1A2, OATP1B1	Low	High	II	
Selegiline	Antiparkinsonism	5	NA	0.78	7.53	1.42	3.2	NA	MDR1	High	High	I
Spironolactone	Diuretic	100	NA	44.3	NA	3.12	85.74	MDR1	Low	High	High	II
Stavudine (D4T)	Antiretroviral	40	NA	0.009	9.57	-0.86	78.87	NA	MDR1	High	Low	III
Sulphasalazine	Antibacterial	500	NA	0.29	2.88	1.86	0.35	149.69	NA	High	High	I
Tamoxifen	Anticancer	20	NA	479.04	8.69	6.2	12.5	BCRP, BSEP, MDR1	Low	High	II	
Theophylline	Antiallergic	270	NA	0.25	8.6	1.05	-0.18	69.3	NA	High	High	I
Thiocetazone	Anti-tuberculosis	50	NA	0.2	NA	NA	112	NA	MDR1	High	Low	III
Thioacetazine	Anti-tuberculosis	40	NA	0.004	7.44	3.09	-0.4	111	MRP4	High	High	I
Tindazole	Antifungal	500	NA	0.0004	7.44	3.09	-0.4	106	NA	High	High	I
Trifluperazine	Antipsychotic	5	NA	1.63	7.82	4.04	35	NA	Low	High	High	II
Trimethoprim	Antibacterial	300	NA	0.17	7.34	-0.42	105.51	MDR1	High	High	I	
Valproic acid	Antiepileptic	300	NA	0.005	4.82	-1.65	100.27	OAT3, OCTN2	High	Low	III	
Verapamil	Antihypertensive	240	NA	0.85	9.03	2.91	64	OAT3, OCTN1,2, Pgp	High	High	I	
Warfarin	Anti-coagulant	5	NA	0.01	4.5	1.91	63.6	NA	High	High	High	I
Zalcitabine (DDC)	Antiretroviral	0.75	NA	4.96E-07	4.47	-1.31	88.2	NA	High	Low	III	
Zidovudine (ZDV)	Antiretroviral	100	NA	0.1	NA	-0.53	91.23	PEPT1	High	Low	III	

1- Do (dose number) calculated from solubility data taken from ref. (9); 2- Do (dose number) calculated from solubility data taken from ref. (10); 3- Do (dose number) calculated from predicted solubility data, ACD/Labs; * The maximal dose strength on the list of national essential medicines of Pakistan; † pKa values were taken from ref. 12; ¶ Calculated log D₆⁺ values at pH 6 using ACD/Labs; ¥ PSA calculated from ACD/Labs; ‡ Transporter interaction taken from ref. 25; BCRP: Breast cancer resistance protein; BSEP: Bile salt export pump; MDR: Multidrug transporter; MRP: Multidrug resistance protein; NA: not available; OAT: Organic anion transporter; OATP: Organic anion-transporting polypeptide; OCTN: Organic cation transporter; OST: Organic solute transporter; PEPT: Peptide transporter; Pgp: P-glycoprotein.
Supplementary table 1: Solubility data correlation: ACD/Labs, experimental water solubility DrugBank, ALOGPS and reliable experimental solubility.

Drug	Dose (mg)	D1	D2	D3	Solubility Class 1	Solubility Class 2	Solubility Class 3	Reliable experimental solubility*
Abacavir	300	2.9268293	0.0155844	0.99173554	Low	High	High	High
Acetylsalicylic Acid	500	0.002	0.437826	1.36986301	High	Low	High	Low
Aciclovir	200	2.1052632	0.4938272	0.08810573	Low	High	High	High
Alfopurinol	100	0.0101807	0.7029877	0.06802721	High	High	High	High
Amiloride	5	0.1666667	0.01639344	0.99173554	High	High	High	High
Atenolol	100	0.0004	0.0296296	0.93240093	High	High	High	High
Captopril	25	0.0001	0.0212389	0.93240093	High	High	High	High
Carbamazepine	200	10	45.19774	5.26315789	Low	Low	Low	Low
Chloramphenicol	250	4.3478261	0.4	2.1691974	Low	High	High	High
Chloroquine	150	0.0203035	56.603774	34.2857143	High	Low	Low	Low
Cimetidine	200	0.0722022	0.16	0.98039216	High	High	High	High
Cloxacillin	1000	0.2605049	287.76978	75.1879699	High	Low	Low	Low
Codeine	30	0.0028714	4.4E-05	0.07246377	High	High	High	High
Colchicine	25	0.0011682	0.002	0.00662252	High	High	High	High
Dapsone	100	1.1428571	1.0526316	1.4084507	Low	Low	Low	Low
Diazepam	5	1	0.4	1.63934426	High	Low	High	High
Diclofenac	100	0.0203035	56.603774	34.2857143	High	Low	Low	Low
Diclofenac	100	0.0203035	56.603774	34.2857143	High	Low	Low	Low
Erythromycin	100	0.0011682	0.002	0.00662252	High	High	High	High
Flurofen	100	0.0203035	56.603774	34.2857143	High	Low	Low	Low
Fluoxetine	100	0.0203035	56.603774	34.2857143	High	Low	Low	Low
Griseofulvin	250	1492.5373	115.74074	19.8412698	High	Low	Low	Low
Hydralazine	50	0.1724138	0.0757558	0.93240093	High	High	High	High
Hydrochlorothiazide	25	0.2439024	0.1428571	0.0464286	High	High	High	High
Ibuprofen	100	0.0942507	23.562677	0.3030303	High	Low	Low	Low
Indinavir	100	0.1666667	0.01639344	0.99173554	High	High	High	High
Levodopa	50	0.7407407	200	0.14388489	High	Low	Low	Low
Levonorgestrel	40	0.0230548	26.6666667	1.3559222	High	Low	Low	Low
Levotyroxine	0.1	0.0997506	0.0038095	0.04454343	High	High	High	High
Metformin	500	0.002	0.8888889	0.93240093	High	High	High	High
Methyldopa	250	0.149925	0.44247788	0.93240093	High	High	High	High
Metronidazole	500	0.2816901	84.459459	0.808	High	Low	High	High
Nelfinavir	250	591.54519	523.560209	0.96385542	High	Low	Low	Low
Nifedipine	10	1.3333333	2.25988701	0.96385542	High	Low	Low	Low
Nitrofurantoin	100	0.2857143	5.0327126	0.96385542	High	Low	Low	Low
Paracetamol	50	0.1966568	0.1428571	0.48192771	High	High	High	High
Penicillamine	250	0.0968054	0.009009	0.21505376	High	High	High	High
Penicillin V	250	0.0125723	1	2.02064317	High	Low	Low	Low
Phenobarbital	100	0.625	2.3603604	1.44927536	High	High	Low	Low
Phenytoin	100	4	12.5	5.6287904	Low	Low	Low	Low
Prednisolone	5	0.1538462	0.0896861	0.08368201	High	High	High	High
Primaquine	15	0.0003165	1.06382979	0.93240093	High	High	High	High
Supplementary table 1 (Cont)

Drug	Dose (mg)	D[^1]	D[^2]	D[^3]	Solubility Class 1	Solubility Class 2	Solubility Class 3	Reliable experimental solubility[^a]
Promethazine	25	0.0478469	4.08163265	High	Low	High	High	
Propranolol	40	0.0029602	2.2857143	High	Low	Low	Low	
Propylthiouracil	50	0.1149425	0.1666667	High	High	High	High	
Pyrazinamide	400	0.0759734	0.1066667	High	High	High	High	
Pyridostigmine	60	0.0005417	0.23076923	High	High	High	High	
Riboflavin	5	0.0001868	0.2361275	High	High	High	High	
Ritonavir	100	1063.8298	317.460317	Low	Low	Low	Low	
Salbutamol	4	0.000016	5.3333333	0.0074416	High	Low	High	
Saquinavir	200	16	323.88664	Low	Low	Low	Low	
Stavudine	40	0.0091376	0.016	0.00395062	High	High	High	
Sulfamethoxazole	400	1.509434	2.6229508	3.4858387	Low	Low	Low	
Theophylline	300	0.2836879	0.24	0.05240175	High	High	High	
Thiamine	5	0.0009126	0.0004	15.0718954	High	Low	High	
Trimethoprim	200	0.1152738	0.0661157	1.30081301	High	High	Low	
Valproic Acid	500	0.0091258	0.004	150.718954	High	High	Low	
Zidovudine	300	0.3243243	0.024	0.07361963	High	High	High	

[^1]: Do (dose number) calculated from predicted solubility data, ACD/Labs; 2 Do (dose number) calculated from solubility data obtained from DrugBank database; 3 Do (dose number) calculated from predicted solubility data, ALOGPS; Θ Reliable experimental solubility, were taken from ref. 13.

Supplementary table 2: Solubility and permeability classification comparing the list of national essential medicines (NEML) of Pakistan and classification of the WHO’s essential medicines model list (EML)

Drug	WHO[^b] Dose (mg)	NEML[^b] Dose (mg)	WHO[^b] Solubility class	NEML[^b] Solubility class	Comment	WHO[^c] Permeability class	NEML[^c] Permeability class	Comment	
Acetylsalicylic acid	500	300	High	High	High	Low	Low	classified as low permeability drug based on reliable data[^c]; log D[^5] indicated low permeability, whereas, PSA was lower than that of labetalol	
Aciclovir	200	200	High	Low	Low	Low	Low		
Albendazole	400	200	Low	Low	inconclusive	High			
Allopurinol	100	300	High	High	High	Low	Low	classified as low permeability drug based on reliable data[^c]; log D[^5] indicated low permeability, whereas, PSA was lower than that of labetalol	
Amiloride	5	5	High	High	High	High	High		
Amitriptyline	25	50	High	High	High	High	High		
Drug	WHO § Dose (mg)	WHO § Solubility class	NELM Solubility class	Comment	WHO § Permeability class	NELM Permeability class	Comment		
----------------	-----------------	------------------------	-----------------------	--	--------------------------	-------------------------	---		
Amlodipine	5	High	High	High	High	High	High		
Amoxicillin	500	High	Low	classified as high solubility based on incomplete data*	High	Low	Classified as high permeability based on incomplete data*; both log $D_{6.0}$ and PSA indicated low permeability		
Atenolol	100	High	High	Low	Low	Low	Low		
Carbamazepine	200	Low	Low	Low	High	High	NEML dose is lower than that of WHO		
Cefixime	400	Low	High	inconclusive	low	Low	Classified as low permeability based on reliable data*; PSA can indicate low permeability		
Chloramphenicol	250	High	Low	Low	Low	High			
Chloroquine	150	High	High	High	High	High			
Chlorphenamine	4	High	High	inconclusive	High	High			
Chlorpromazine	100	High	High	inconclusive	High	High			
Ciprofloxacin	250	High	High	inconclusive	Low	Low			
Clomipramine	25	High	High	inconclusive	High	High			
Cloxacinil	1000	High	High	Low	Low	Low			
Dapsone	100	Low	High	NELM dose is lower than that of WHO	High	High			
Diazepam	5	High	Low	NELM dose is higher than that of WHO	High	High			
Didanosine	400	High	High	Low	Low	Low			
Digoxin	0.25	High	High		High	High			
Diloxanide	500	Low	Low	inconclusive	High	High			
Doxycycline	100	High	High	High	Low	Low	Classified as low permeability drug based on reliable data*; both log $D_{6.0}$ and PSA indicated low permeability		
Efavirenz	200	Low	Low	inconclusive	High	High	Both log $D_{6.0}$ and PSA indicated high permeability		
Enalapril	2.5	High	High	Low	High	High			
Supplementary table 2 (Cont)

Drug	WHO¶ Dose (mg)	NEML Dose (mg)	WHO¶ Solubility class	NEML Solubility class	Comment	WHO¶ Permeability class	NEML Permeability class	Comment
Erythromycin	250	500	Low	High	classified as low solubility based on incomplete data*	Low	High	Classified as low permeability based on incomplete data*; PSA can indicate low permeability
Ethambutol	400	400	High	High	Low	Low	Low	Low
Furosemide	40	40	Low	High	inconclusive	High		
Glibenclamide	5	5	Low	High	inconclusive	High		
Griseofulvin	250	500	Low	Low	High	High	High	
Haloperidol	2	5	inconclusive	High	Low	High	Low	
Hydralazine	50	25	High	High	Low	High	Low	
Hydrochlorothiazide	25	50	High	High	Low	High	Low	
Ibuprofen	400	600	Low	Low	High	High	High	
Indinavir sulfate	400	400	Low	Low	inconclusive	High		
Isoniazid	300	300	High	High	inconclusive	Low		
Isosorbide dinitrate	5	10	High	High	inconclusive	Low		
Lamivudine	150	150	High	High	High	Low	High	
Levasimole	150	40	High	High	inconclusive	High		
Levodopa	250	250	High	High	High	High	High	
Carbidopa	25	25	High	High	inconclusive	Low		
Mebendazole	500	100	Low	Low	inconclusive	High		
DL-methionine	250	250	High	High	High	Low	Low	
Metformin	500	500	High	High	Low	Low	Low	
Methylidopa	250	500	High	High	Low	Low	Low	
Drug	WHO § Dose (mg)	NEML Dose (mg)	WHO § Solubility class	NEML Solubility class	Comment	WHO § Permeability class	NEML Permeability class	Comment
--------------	----------------	----------------	------------------------	-----------------------	--------------------------	--------------------------	--------------------------	--------------------------
Metoclopramide	10	10	High	High	Low	Low		
Metronidazole	500	400	High	High	High	Low	Classifed as high permeability drug based on reliable data*; PSA can indicate low permeability	
Morphine	10	30	High	High	inconclusive	Low		
Nelfinavir	250	250	inconclusive	Low	inconclusive	High		
Neostigmine	15	15	High	High	Low	Low		
Nevirapine	200	200	Low	Low	High	High		
Niclosamide	500	500	Low	Low	inconclusive	High		
Nitrofurantoin	100	100	Low	High	High	High		
Nystatin	200	200	inconclusive	Low	inconclusive	High		
Paracetamol	500	500	High	High	High	High		
Penicillamine	250	250	High	High	Low	Low		
Phenobarbital	100	30	High	High	High	High		
Penicillin v	250	500	High	High	High	Low	Classified as high permeability drug based on reliable data*; both log \(D_{6.0} \) and PSA indicated low permeability	
Phenytion	100	100	Low	Low	High	High		
Prednisolone	25	5	High	High	High	High		
Primaquine	15	7.5	High	High	High	High		
Promethazine	25	25	High	High	High	High		
Propranolol	40	160	High	High	High	High		
Propylthiouracil	50	100	High	High	High	High		
Pyrantel	250	250	Low	High	classified as low solubility based on inconclusive data*	inconclusive	Low	
Pyrazinamide	400	500	High	High	inconclusive	High		
Quinine	300	200	High	High	High	High		
Rifampicin	300	600	Low	Low	High	Low	Classified as high permeability based on incomplete data*; both log \(D_{6.0} \) and PSA indicated low permeability	
Ritonavir	100	100	Low	Low	inconclusive	High		
Salbutamol	4	4	High	High	Low	Low		
Saquinavir	200	200	Low	inconclusive	High	High		
Spironolactone	25	100	inconclusive	Low	inconclusive	High		
Partition coefficients and molecular surface properties as predictors of drug absorption

Supplementary table 2 (Cont)

Drug	WHO * Dose (mg)	NELM Dose (mg)	WHO * Solubility class	NELM Solubility class	Comment	WHO * Permeability class	NELM Permeability class	Comment
Stavudine (d4t)	40	40	High	High	High	Low	PSA can indicate high permeability	
Sulphasalazine	500	500	Low	High	Low	High	Low; PSA can indicate low permeability	
Trimethoprim	200	300	Low	High	High	High	Classified as high permeability based on reliable data; both log \(D_{6.0}\) and PSA indicated low permeability	
Valproic acid	500	300	High	High	High	Low	Classified as high permeability drug based on reliable data; both log \(D_{6.0}\) and PSA indicated low permeability	
Verapamil	80	240	Low	High	High	High	Classified as low solubility based on inconclusive data*	
Warfarin	5	5	High	High	High	High	Classified as high permeability drug based on reliable data*; PSA can indicate high permeability	
Zidovudine (zdv)	300	100	High	High	High	Low	PSA can indicate high permeability	

* Ref. (13); ¶ Ref. (16)

Supplementary table 3: Comparison of Permeability prediction based on log \(P\), log \(D_{6.0}\) and PSA, by using metoprolol or labetalol as internal standard.

Drug	Log \(P\)	Log \(D_{6.0}\)	PSA	Internal standard: Metoprolol	Internal standard: Labetalol	Reliable experimental solubility*					
				\(P\) cutoff \("1.35\")	\(D_{6.0}\) cutoff \("-1.48\")	\(PSA\) cutoff \("65\")	\(P\) cutoff \("2.31\")	\(D_{6.0}\) cutoff \("-0.42\")	\(PSA\) cutoff \("95.6\")		
Abacavir	0.72	0.03	96.95	Low	Low	Low	Low	Low	Low	Low	
Acetylsalicylic Acid	1.19	-1.24	63.6	Low	Low	Low	Low	High	Low	Low	
Aclclovir	-1.76	-1.76	109.83	Low	Low	Low	Low	Low	Low	Low	
Allopurinol	-1.33	-3.81	74.69	Low	Low	Low	Low	Low	Low	Low	
Amiloride	1.08	1.07	156.79	Low	Low	Low	Low	High	Low	High	
Atenolol	0.1	-2.73	84.58	Low	Low	Low	Low	Low	Low	High	
Captopril	0.27	-2.02	96.41	Low	Low	Low	Low	Low	Low	Low	
Carbamazepine	2.67	2.67	46.33	High	High	High	High	High	High	High	
Chloramphenicol	1.02	1.02	115.38	Low	Low	Low	Low	Low	Low	Low	
Chloroquine	4.69	1.2	28.16	High	High	High	High	High	High	High	
Cimetidine	0.26	-1.14	114.19	Low	Low	Low	Low	Low	Low	Low	
Clobazam	2.53	-0.81	138.04	High	Low	High	Low	Low	Low	Low	
Codeine	1.2	-0.99	41.93	Low	Low	Low	Low	Low	Low	High	
Colchicine	0.92	0.92	83.09	Low	Low	Low	Low	Low	Low	Low	
Cyclophosphamide	0.23	0.23	51.38	Low	Low	Low	Low	Low	Low	High	

" Rel. (13); ¶ Ref. (16)
Supplementary table 3 (Cont)

Drug	Log P	Log D_{60}	PSA	Log P cutoff *	Log D_{60} cutoff *	PSA cutoff *	Reliable experimental solubility10		
Dapsone	0.94	0.94	94.56	Low	Low	Low	High	High	High
Diazepam	2.96	2.96	32.67	High	High	High	High	High	High
Digoxin	0.85	0.85	203.06	Low	Low	Low	High	Low	High
Doxycycline	-0.54	-3.06	181.62	Low	Low	Low	Low	Low	High
Ergotamine	3.58	1.99	118.21	High	High	High	Low	High	High
Fluconazole	0.5	0.5	71.79	Low	Low	Low	Low	Low	High
Furosemide	3	0.26	131.01	High	High	Low	High	Low	Low
Griseofulvin	3.53	3.53	71.06	High	High	High	High	High	High
Hydralazine	1	0.56	63.83	Low	Low	Low	Low	Low	High
Hydrochlorothiazide	-0.07	-0.07	135.12	Low	Low	Low	Low	Low	High
Ibuprofen	3.72	2.12	37.3	High	High	High	High	High	High
Indinavir	2.88	2.76	118.03	High	High	High	Low	Low	Low
Levodopa	-0.22	-0.27	103.78	Low	Low	Low	Low	Low	High
Levonorgestrel	3.92	3.92	37.3	High	High	High	High	High	High
Levothyrirxine	5.93	3.38	92.78	High	High	Low	Low	Low	High
Metformin	-2.31	-4.31	88.99	Low	Low	Low	Low	Low	High
Methyldopan	0.12	-2.37	103.78	Low	Low	Low	Low	Low	Low
Metronidazole	-1.01	-1.01	78.94	Low	Low	Low	Low	Low	High
Nelfinavir	6.98	5.44	127.2	High	High	Low	Low	Low	Low
Nifedipine	2.97	2.96	110.45	High	High	Low	Low	Low	High
Nitrofuranotin	-0.4	-0.41	120.73	Low	Low	Low	Low	Low	High
Paracetamol	0.34	0.34	49.33	Low	High	Low	High	Low	Low
Penicillamine	0.93	-1.57	102.12	Low	Low	Low	Low	Low	Low
Penicillin V	1.88	-1.47	121.24	Low	Low	Low	Low	Low	High
Phenoxybarbital	1.67	1.66	75.27	High	High	Low	High	High	High
Phenothiazine	2.52	2.52	58.2	High	High	High	High	High	High
Prednisolone	1.49	1.49	94.83	High	High	Low	Low	Low	High
Primaquine	2.67	-0.41	60.17	High	Low	High	High	High	High
Promethazine	4.78	2.04	31.78	High	High	High	Low	High	Low
Propranolol	3.1	0.28	41.49	Low	High	High	High	High	High
Propylthiouracil	1.37	1.36	73.22	Low	Low	Low	Low	Low	High
Pyrazinamide	-0.37	-0.37	68.87	Low	Low	Low	Low	Low	High
Pyridostigmine	-4.31	-4.31	29.54	Low	High	Low	High	Low	
Riboflavin	-2.02	-3.48	155.05	Low	Low	Low	Low	Low	Low
Ritonavir	5.28	5.28	202.26	High	High	Low	Low	Low	Low
Salbutamol	0.01	-2.84	72.72	Low	Low	Low	Low	Low	High
Saquinavir	4.44	2.84	166.75	High	High	Low	Low	Low	High
Stavudine	-0.86	-0.86	78.87	Low	Low	Low	Low	Low	High
Sulfamethoxazole	0.89	0.49	106.6	Low	Low	Low	Low	Low	High
Theophylline	-0.17	-0.18	69.3	Low	Low	Low	Low	Low	High
Thiamine	-1.61	-1.65	100.27	Low	Low	Low	Low	Low	Low
Trimethoprim	0.79	-0.42	105.51	Low	Low	Low	Low	Low	High
Valproic Acid	-1.61	-1.65	100.27	Low	Low	Low	Low	Low	High
Zidovudine	-0.53	-0.53	91.23	Low	Low	Low	Low	Low	High
CONCLUSION

Within the limitations of our investigation, the following conclusions can be drawn. First, log $D_{6.0}$ showed better prediction capability than log P_p.

Second, metoprolol was conservative permeability internal standard as compared to labetalol. Finally, models combining log D and PSA can have the best permeability prediction capabilities.

REFERENCES

1. Qi Y, Chen Y, Liu L, Zhang G. Developing solid oral dosage forms: pharmaceutical theory and practice. USA, Elsevier Inc. 2009; 341-360.
2. Amidon GL, Lennernas H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res, 1995; 12: 413-420.
3. Cook J, Addicks W, Wu YH. Application of the biopharmaceutical classification system in clinical drug development--an industrial view. AAPS J, 2008; 10: 306-310.
4. Polli JE. In vitro studies are sometimes better than conventional human pharmacokinetic in vivo studies in assessing bioequivalence of immediate-release solid oral dosage forms. AAPS J, 2008; 10: 289-299.
5. Kasim NA, Whitehouse M, Ramachandran C, Bermejo M, Lennernas H, Hussain AS, Junginger HE, Stavchansky SA, Midha KK, Shah VP, Amidon GL. Molecular properties of WHO essential drugs and provisional biopharmaceutical classification. Mol Pharm, 2004; 1: 85-96.
6. Palm K, Stenberg P, Luthman K, Artursson P. Polar molecular surface properties predict the intestinal absorption of drugs in humans. Pharm Res, 1997; 14: 568-571.
7. World Health Organization (WHO). National Essential Medicines List of Pakistan, 2007 (4th Revision) at
http://apps.who.int/medicinedocs/fr/m/abstract/Js17119e/ accessed on 14/12/2010.
8. The European Agency for the Evaluation of Medicinal Products (EMA), Committee for Proprietary Medicinal Products (CPMP). Note for Guidance on the Investigation of Bioavailability and Bioequivalence. 2010.
9. Yalkowsky S, He Y. Handbook of aqueous solubility data. Boca Raton, FL. CRC Press. 2003.
10. Drugbank database. http://www.drugbank.ca/ accessed on 14/12/2010.
11. Syracuse Research Corporation. Physical/Chemical Property Database (PHYSPROP). SRC Environmental Science Center. Syracuse, NY. 1994.
12. Block J, Beale J. Wilson & Gisvold’s Textbook of Organic Medicinal and Pharmaceutical Chemistry. MD. Lippincott Williams and Wilkins. 2004. 948-956.
13. Lindenberg M, Kopp S, Dressman JB. Classification of orally administered drugs on the World Health Organization Model list of Essential Medicines according to the biopharmaceutics classification system. Eur J Pharm Biopharm, 2004; 58: 265-278.
14. Kasim NA, Whitehouse M, Ramachandran C, Bermejo M, Lennernas H, Hussain AS, Junginger HE, Stavchansky SA, Midha KK, Shah VP, Amidon GL. Molecular properties of WHO essential drugs and provisional biopharmaceutical classification. Mol Pharm, 2004; 1: 85-96.
15. Rinaki E, Valsami G, Macheras P. Quantitative biopharmaceutics classification system: the central role of dose/solubility ratio. Pharm Res, 2003; 20: 1917-1925.
16. World Health Organization (WHO). Proposal to waive in vivo http://whqlibdoc.who.int/trs/WHO_TRS_937_eng.pdf/.
17. Kelder J, Grootenhuis PD, Bayada DM, Delbressine LP, Ploemen JP. Polar molecular surface as a dominating determinant for oral absorption and brain penetration of drugs. Pharm Res, 1999; 16: 1514-1519.
18. Food and Drug Administration (FDA), CDER. U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER). Guidance for Industry: Waiver of In Vivo Bioavailability and Bioequivalence Studies for Immediate-Release Solid Oral Dosage Forms Based on a Biopharmaceutics Classification System. Food and Drug Administration, Ed. Rockville, MD. 2000.
19. Valope D. Drug Permeability Studies in Regulatory Biowaiver Applications. In: Ehrhardt C, Kim K, ed. Drug absorption studies: in situ, in vitro and in silico models. Springer NY 2008; 665-696.
20. Linnankoski J, Makela JM, Ranta VP, Urtti A, Yliperttula M. Computational prediction of oral drug absorption based on absorption rate constants in humans. J Med Chem, 2006; 49: 3674-3681.
21. Palm K, Luthman K, Ungell AL, Strandlund G, Beigi F, Lundahl P, Artursson P. Evaluation of dynamic polar molecular surface area as predictor of drug absorption: comparison with other computational and experimental predictors. J Med Chem, 1998; 41: 5382-5392.
22. Winiwarter S, Bonham NM, Ax F, Hallberg A, Lennernas H, Karlen A. Correlation of human jejunal permeability (in vivo) of drugs with experimentally and theoretically derived parameters. A multivariate data analysis approach. J Med Chem, 1998; 41: 4939-4949.
23. Box KJ. Comer JE. Using measured pKa, LogP and solubility to investigate supersaturation and predict BCS class. Curr Drug Metab, 2008; 9: 869-878.
24. Benet LZ, Larregieu CA. The FDA should eliminate the ambiguities in the current BCS biowaiver guidance and make public the drugs for which BCS biowavers have been granted. Clin Pharmacol Ther, 2010; 88: 405-407.
25. Transporter Database, TP-Search. http://www.tp-search.jp/ accessed on 14/12/2010.