EFFECTS OF PH AND ECW ON GROWTH AND SPORULATION OF INDIGENOUS TRICODERMA SPP.

Hamdia Z. Ali, Hadi M. Aboud, Naeem S. Dheyab, Nibal K. Musa, Fatimah H. Gasam
Pest Plant Control Center, Agriculture Research Directorate, Ministry of Science and Technology, Baghdad, Iraq.

ABSTRACT

The influence of three levels of pH and degrees of ECw on the radial growth and sporulation of 34 local isolates of Trichoderma spp. were evaluated under laboratory conditions. The pH used were 4, 6 and 8 while, the ECw were 12.92, 14.30 and 17.8 Siemens per meter (ds/m) respectively. The data obtained showed that pH 6 was the optimum degree of growth parameters while pH 8 showed significant reduction (p< 0.05) in the growth parameters compared to pH 4. The results also revealed that ECw 17.8 ds/m significantly reduced (p< 0.05) the growth parameters compared to ECw 12.92 and 14.30 ds/m. Thus, the results obtained elucidated the importance of reduction in biocontrol activity of fungus in saline-alkali soil.

Keywords: Saline-alkali soil, pH alkaline, Electrical conductivity (ECw), Trichoderma isolates.

INTRODUCTION

The genus Trichoderma is a soil borne saprophytic fungus that is widely distributed in all soil types (Meraj-ul et al., 2012; Kalaivani et al., 2014; Wu et al., 2014). Trichoderma isolates have different potential of antagonistic ability against plant soil borne pathogens and nematodes (Jabara, 2002). The chances of biological control success is still limited to their consistant performance, and one of the most important reasons for this problem is the environmental stress factors such as salinity and pH of the soil. The environmental stress factors of the soil have detrimental effects on Trichoderma isolate’s growth, antagonistic activity and survival rate (Hafedh, 2001; Mohamed and Haggag 2010; Panahian et al., 2012).

The cultivation of sensitive economic crops in saline soils has been a failure of crop cultivation. The numbers of economic crops resistant to salinity are still limited, and there were differences in their resistance to these conditions. Several studies have stated that the fungal genus Trichoderma are sensitive and not tolerant to high levels of pH (Mehrotra et al., 1997; Hafedh, 2001) however, Harman (2000) and Mohamed and Haggag (2010) used protoplast fusion technique between two T. harzianum isolates and T. koningii and T. reese which had high specification tolerances under stress conditions, and obtained a new strain which was considered as highly antagonistic and more tolerant to stress conditions than their parental strains. Trichoderma isolates that are good saline-tolerant are more economical for crops cultures than the less tolerant to soil saline, for this reason the incessant search for a new isolates that have good ability to tolerate the soil saline is imperative. so, the objective of this study was to obtain the best antagonist of Trichoderma isolates that are more tolerant to soil saline and alkaline pH, the common characters of Iraqi soils.

MATERIAL AND METHODS

Trichoderma Isolates: This study was conducted with 34 isolates of Trichoderma, 30 isolates were obtained from the department of biopesticide directorate of agricultural research, three isolates were obtained from the plant protection department college of agriculture University of Baghdad and one isolate was obtained from the public authority of Agricultural research-department of Agriculture.

Effect of pH on Growth Rate: In this assay we selected three levels of pH 4, 6 and 8, and study their biological effect on daily growth rate of (DGR) 34 different Trichoderma isolates. A 5 mm diameter discs from
Trichoderma mycelium of all the isolates were individually applied in the middle of a 9 cm petri dish on potato dextrose agar (PDA). These plates were then incubated at (28±2 °C) and observed for fungal growth and sporulation over a period of five days, and the pH adjusted by using hydrochloric acid solution (HCL). The daily rate of growth was calculated according to the following equation:

\[\text{DGR} = \frac{[D_2-D_1]}{2(T_2-T_1)} \] (Hafedh, 2001).

The sporulation ability of each isolate was calculated by adding 10 ml of distilled water to each plate, and spores collected by using glass rod, and prepared an appropriate dilution of three concentrations of spores for each isolate; and this was calculated using Haemacytometer as described by Hamdia and Kalaivani (2013).

Effect of ECw on Daily Growth Rate: To evaluate the effect of electrical conductivity ECw on the growth and sporulation of 34 Trichoderma isolates the medium used include the following components; (5 % of Dextrose, 0.5 % of K2HPO4, 0.1 % of NaNO3, 0.2 % of Yeast extract, 0.1 % of MgSO4.7H2O and 1.5 % of Agar). Also, the three concentrations of NaCl used were; 1g of NaCl (ECw. 12.92 ds/m) and 2g of NaCl (ECw. 14.30 s/m) and 5g of NaCl (ECw. 17.8 ds/m): The ECw of the salt medium (NaCl) was evaluated using a pH-meter (Handbook, 1954). The medium was sterilized at a temperature of 121 °C and pressure of 1.5 kg / cm2 for 15 minutes, after that the medium was poured in petri dishes, and a 5 mm disc of mycelium from each Trichoderma isolates were placed in the middle of a 9 cm petri dish, each treatment triplicated. And later incubated at a temperature of (28 ± 2 °C) in this test, daily growth rate and sporulation ability were calculated for each Trichoderma isolate as mentioned above. The data obtained from the observations were statistically analysis by using a completely randomized block design.

RESULTS

Effect of pH on the growth and sporulation of 34 Trichoderma Isolates: The results revealed that the tested isolates of Trichoderma spp. exhibited significant differences (p<0.05) in their response to tested pH levels (4, 6 and 8) Table 1. The laboratory experiment showed that Trichoderma isolates T.2, T.13, T.27 exhibited optimum growth rate at pH4, and isolates T.1, T.6, T.8, T.15 gave optimum growth rate at pH6, while isolates T.2, T.15, T.18, T.33 exhibited optimum growth rate at pH8 (Table 1). The results also showed that isolate T.30 gave the same response growth rate 1 cm at all pH tested.

Table 1. As for the sporulation the data shows in Table 2 that isolates T.3, T.5, T.13, T.20, T.23, T.26, T.27, T.33 exhibited optimum sporulation rate at pH4, and isolates T.1, T.4, T.8, T.14, T.21, T.22, T.31 revealed optimum sporulation rate at pH6, while isolates T.3, T.9, T.11, T.14, T.19, T.28 exhibited optimum sporulation rate at pH8.

Table 1. The Influence of pH on Daily Growth of 34 Trichoderma Isolates under Laboratory Conditions.

Isolates of Trichoderma spp.	* Daily Growth Rate	**Mean No. of Daily Growth (cm)	
	PH4	PH6	PH8
T.1	1.5	1.75	0.75
T.2	1.75	1.5	1.5
T.3	1.37	0.75	1
T.4	1.5	1.5	0.5
T.5	0.6	1.37	0.75
T.6	1.12	1.75	1
T.7	0.87	1.37	1.0
T.8	0.75	1.87	1.0
T.9	1.25	1.25	1.0
T.10	0.68	1.25	1.0
T.11	0.62	1.25	1.25
T.12	0.75	1.70	0.5
T.13	1.62	1.68	1.0
T.14	1.0	0.81	0.62
T.15	1.37	1.87	1.75
T.16	1.0	1.75	1.12
T.17	0.87	1.37	1.0
T.18	0.62	1.5	1.75
T.19	1.12	1.12	1.5
T.20	0.75	1.37	0.75
T.21	0.5	1.37	0.62
T.22	0.87	1.62	0.62
T.23	0.75	1.62	1.0
T.24	0.87	0.87	1.0
T.25	0.37	1.0	1.0
T.26	1.25	1.12	1.0
T.27	1.87	1.25	1.25
T.28	1.25	1.0	1.0
T.29	0.37	1.62	1.0
T.30	1.0	1.0	1.0
T.31	1.0	0.75	0.75
T.32	0.87	1.5	1.25
T.33	0.37	1.37	1.5
T.34	0.37	1.12	1.25

LSD (P < 0.05) of Growth and Sporulation 0.09
LSD (P < 0.05) of Isolates 0.32
LSD (P < 0.05) of Interaction NS

*Three replicates of each isolate

* *Mean No. of Daily Growth Rate (DGR) was calculated as following (Hafedh, 2001).
Table 2. The Influence of pH on Sporulation of 34 *Trichoderma* Isolates under Laboratory Conditions.

Isolates of *Trichoderma* spp.	Mean No. of Sporulation × 10^8 spore/cm²		
	PH4	PH6	PH8
T.1	30.08	2050	33.3
T.2	29.08	51.83	28
T.3	82.50	80.42	82.5
T.4	26.33	310.8	28.75
T.5	58.33	60.00	28.42
T.6	30.08	33.30	28.75
T.7	32.26	31.25	27.42
T.8	27.66	125.42	27.75
T.9	27.33	4250	47.83
T.10	29.16	29.17	28.17
T.11	30.73	41.00	37.66
T.12	27.50	52.50	26.33
T.13	42.58	27.42	27.16
T.14	31.15	115.9	34.83
T.15	32.40	40.83	28.3
T.16	30.83	29.16	29.66
T.17	27.25	157.3	26.08
T.18	26.16	44.16	26.06
T.19	26.60	26.66	33.16
T.20	66.60	29.66	27.42
T.21	39.75	114.23	27.42
T.22	57.50	134.75	27.42
T.23	55.83	83.75	27.75
T.24	50.87	52.50	28.42
T.25	30.42	38.33	31.15
T.26	34.06	70.83	28.00
T.27	54.33	51.66	26.03
T.28	59.17	39.16	40.42
T.29	36.66	51.66	26.08
T.30	26.66	31.25	25.00
T.31	31.75	125.41	28.00
T.32	41.00	50.83	26.08
T.33	27.50	54.16	26.60
T.34	51.00	66.60	27.08

LSD (P < 0.05) of Sporulation 1.73
LSD (P < 0.05) of Isolates 4.1
LSD (P < 0.05) of Interaction 7.15

* Mean No. of three replicates of each isolate.

The effect of the degree of electrical conductivity (ECw) on the growth and sporulation of the 34 *Trichoderma* isolates: The results of the study showed significant differences (p<0.05) of the three degrees of ECw, 12.92, 14.30 and 17.8 ds/m on the growth and sporulation of the 34 *Trichoderma* isolates Table 3 and 4. Isolates T.7, T.15, T.18, T.21, and T.28 exhibited optimum growth rate at 12.92, and isolates T.9, T.13, T.18, T.19, T.28 gave optimum growth rate at 14.39, while isolates T.9, T.13, T.18, T.19, T.21, T.28 exhibited optimum growth rate at 17.69 Table 3.

Table 3. The Influence of ECw on Daily Growth of 34 *Trichoderma* Isolates under Laboratory Conditions.

Isolates	*Mean No. of Daily Growth Rate (cm)			
	Control	ds/m NaCl	ds/m NaCl	ds/m NaCl
T.1	0.34	0.57	0.61	0.62
T.2	0.41	0.50	0.68	0.73
T.3	0.32	0.35	0.59	0.67
T.4	0.40	0.44	0.61	0.61
T.5	0.36	0.43	0.60	0.62
T.6	0.32	0.35	0.67	0.69
T.7	0.31	0.36	0.78	1.00
T.8	0.40	0.48	0.68	0.75
T.9	0.58	0.69	0.73	0.95
T.10	0.49	0.51	0.68	0.70
T.11	0.38	0.59	0.69	0.73
T.12	0.48	0.57	0.70	0.80
T.13	0.56	0.65	0.72	0.81
T.14	0.52	0.59	0.73	0.83
T.15	0.54	0.62	0.76	0.80
T.16	0.55	0.62	0.66	0.82
T.17	0.37	0.45	0.57	0.58
T.18	0.61	0.67	0.77	0.78
T.19	0.64	0.68	0.72	0.78
T.20	0.41	0.46	0.71	0.76
T.21	0.65	0.71	0.75	0.83
T.22	0.20	0.66	0.73	0.75
T.23	0.39	0.41	0.48	0.78
T.24	0.42	0.71	0.61	0.82
T.25	0.07	0.65	0.70	0.81
T.26	0.22	0.34	0.73	0.86
T.27	0.36	0.47	0.67	0.72
T.28	0.62	0.71	0.77	0.84
T.29	0.49	0.69	0.68	0.82
T.30	0.41	0.47	0.41	0.74
T.31	0.31	0.36	0.72	0.75
T.32	0.37	0.42	0.65	0.69
T.33	0.40	0.63	0.69	0.67
T.34	0.53	0.63	0.73	0.79

LSD (P < 0.05) of Growth and Sporulation 0.009
LSD (P < 0.05) of Isolates 0.027
LSD (P < 0.05) of Interaction 0.054

* Three replicates of each isolate

** Mean No. of Daily Growth Rate (DGR) was calculated as mentioned in Table (1).
The results also showed that isolates T.30 gave the same response growth rate 1 cm at all pH tested Table 3. As for the sporulation the data shows that isolates T.10, T.17, T.20, T.28 exhibited optimum sporulation rate at 12.92, and isolates T.1, T.4, T.8, T.14, T.21, T.22, T.31 showed optimum sporulation rate at 14.39, while isolates T.3, T.9, T.11, T.14, T.19, T.28 exhibited optimum sporulation rate at 17.69 (Table 4).

Table 4. The Influence of ECw on Daily Growth of 34 Trichoderma Isolates under Laboratory Conditions.

Isolates	Sporulation	LSD (P < 0.05) of Growth and Sporulation	LSD (P < 0.05) of Isolates	LSD (P < 0.05) of Interaction
Control	12.92	14.30	17.80	
T.1	511.33	82.33	30.00	12.50
T.2	122.00	113.00	22.50	21.83
T.3	245.00	51.50	9.50	7.17
T.4	142.33	117.50	29.67	7.00
T.5	450.00	51.33	45.00	14.00
T.6	143.67	27.50	15.00	11.50
T.7	220.50	32.50	25.67	12.50
T.8	160.50	102.00	35.00	13.67
T.9	151.50	62.33	38.67	20.00
T.10	198.33	197.00	40.50	20.00
T.11	622.33	33.67	32.50	27.00
T.12	623.67	30.83	30.00	15.83
T.13	114.00	40.00	32.17	28.50
T.14	222.67	35.00	24.00	23.67
T.15	123.67	75.00	22.67	13.00
T.16	209.00	35.83	28.33	12.33
T.17	571.00	222.33	31.50	27.67
T.18	111.50	98.67	31.00	22.67
T.19	63.33	74.00	27.67	19.67
T.20	640.50	310.83	42.33	28.50
T.21	594.83	38.33	36.33	28.67
T.22	282.33	82.67	24.00	12.00
T.23	322.00	22.50	21.00	18.00
T.24	90.83	65.83	37.67	28.67
T.25	60.50	37.50	25.83	23.33
T.26	144.83	60.00	24.00	20.33
T.27	282.00	42.50	22.33	18.33
T.28	294.50	284.83	31.00	29.00
T.29	345.17	44.67	31.67	12.00
T.30	303.50	42.50	36.50	23.67
T.31	832.33	106.67	34.00	28.00
T.32	615.83	50.50	40.67	15.50
T.33	145.17	92.67	40.67	17.83
T.34	137.33	82.67	33.33	14.00

DISCUSSION

The aim of this study was to evaluate the response of 34 *Trichoderma* isolates. Besides, the results of this study explained the variation of the *Trichoderma* isolates performance. The data Table 1 and 2 showed that pH 6 was the best for the growth and sporulation in most of the isolates studied. While the pH 8 showed high reduction of colony diameter growth rate and sporulation, compared to the pH 4 (Table 1). Table 1 and 2 also showed lack of correlation between the growth rates and the ability of sporulation, for example the isolate T.14 Table 1 showed the lowest rate of growth of diameter 0.81 cm when the pH was 6, while the average sporulation 115.9 × 10⁸ spores / cm³ Table 2 was high at the same pH 6. However, the isolate T.15 showed the highest daily growth rate of 1.87 when the pH was 6, but showed sporulation rate of 40.83 × 10⁸ spores / cm³ at the same pH of 6. On the other hand, some isolates such as T.1 Table 1 achieved the highest growth rate of 1.75 cm, and sporulation rate of 205 × 10⁸ spores / cm³ Table 2 at the same pH 6.

The data obtained from the present study agreed with some previous studies which found that pH of soil to had significant antagonistic effect on biological effectiveness of *T. harzianum*, and also indicated about 32% decreased in antagonistic effect of *T. harzianum* when bean seeds was treated with spores suspension at the pH 3.5. However, the antagonism increased to 65% when the pH was 5.6 (Marshall, 1982). Hafedh (2001) recorded high decline in the antagonistic ability of some *Trichoderma* isolates when used under field conditions.

The results of the study on the effect of the three degrees of ECw, 12.92, 14.30 and 17.8 s/m on the growth and sporulation of the 34 *Trichoderma* isolates Table 3 and 4 showed that degree of ECw 12.92 s/m was the best for the growth and sporulation of most tested isolates, while the degree of ECw 17.8 s/m, exhibited significant reduction in daily growth rates and sporulation Table 3 and 4 of most *Trichoderma* isolates as comparison to the degrees 12.92 and 14.30 s/m (Table 3). The results of this study also indicated the lack of correlation between growth rates and the ability of sporulation as denoted in (Table 3 and 4). The isolate T. 25 in Table 3 showed the lowest growth rate of 0.07 cm at the degree of ECw 17.8 s/m, and showed high rate of sporulation of 23.33 × 10⁸ spores / cm³ Table 4, while T.19 isolate showed the highest rate of daily growth of 0.64 cm Table 3, and the
rate of sporulation was 19.67×10^8 spores/cm3. Table 4 at that degree of ECw of 17.8 s/m.

Moreover, the present study documented on the low performance of Trichoderma spp. under environmental conditions even though this fungus has high capacity to grow in a wide range of soil as well as the biogenic properties of Trichoderma species. Furthermore, there are biotic conditions that play important role in reduction of the antimicrobial activity of this fungus (Danielson and Davey, 1973; Prabavathy et al., 2006). On the other hand, the environmental conditions provide other soils suppressive which accentuates the effectiveness of Trichoderma spp. antagonism. The weak correlation between the daily growth of colony of each isolate and the ability to sporulation may be referred to the Trichoderma isolates behavior when provided the appropriate nutritional conditions leading to reduce sporulation ability of Trichoderma fungus. Additionally, the stress conditions encourage sporulation ability of Trichoderma isolates and reduce the normal growth rate in order to keep the species survive.

There is paucity of studies on Trichoderma isolates and their tolerance to the different concentrations of salt (NaCl). However, there were few studies carried out under field conditions, which indicated that some Trichoderma isolates had less activity in alkaline soils (Kumar, 1995). Besides he found that the accumulation of salts in the rhizosperic area as a result of irrigation with saline water leads to the changes in the pH soil, as well as to produced large amounts of CO$_2$ which negatively affected the growth and sporulation of this fungus. Likewise, dissolving of the CO$_2$ in the water, resulted in the built up of bicarbonates (HCO$_3$-) that played a role in changing the pH in the root zone (Macauley and Griffin, 1969), and all of these combined factors negatively affect the enzymatic activity of Trichoderma fungus which is considered one of the important antagonistic mechanisms of this fungus.

CONCLUSION

In this study, effect of pH and ECw on the daily growth rate and sporulation ability of the 34 Trichoderma isolates individually under laboratory conditions found that each isolate of Trichoderma varied in its inhibitory degree base on each pH levels and ECw degrees. Therefore the results showed that some Trichoderma isolates that had good ability to grow on salt media can be used successfully when a suitable formulation is used under field conditions as biocontrol agents.

REFERENCES

Danielson, R. M., C. B. Davey. 1973. Carbon and nitrogen nutrition of Tricoderma. Soil Biology and Biochemistry. 5: 505 – 515.

Hafedh, H. Z. A. 2001. Integrated control of sesame (Sesamum indicum L.) charcoal rot caused by Macrophomina phaseolina (Tassi Goid). Master Thesis, Department of Plant Protection. College of Agriculture. University of Baghdad. Iraq (Unpublished).

Hamdia Z. A., N. Kalaivani. 2013. Evaluating the efficacy of Trichoderma isolates and Bacillus subtilis as biological control agents against Rhizoctonia solani. Research Journal of Applied Sciences (Medwell Journals). 8: 72-81.

Harman, G. E. 2000. Myths and dogmas of biocontrol. Plant Disease. 84: 377-393.

Jabara, I. M. 2002. The impact of solar pasteurization in survival Exterminators resistance biogenic challenge Tricoderma harzianum Paecilomyces lilacinus and steadfastness in the fight against some diseases of the roots in protected agriculture. Master Thesis. College of Agriculture. University of Baghdad. Iraq.

Macauley, B. J., D. M. Griffin.1969. Effect of carbon dioxide and the bicarbonate- ion on the growth of some soil fungi. Transactions of the British Mycological Society. 53: 223 – 228.

Marshall, D. S. 1982. Effect of Tricoderma harzianum seed treatment and Rhizoctonia solani inoculum concentration on damping-off of snapbeef in acidic soils. Plant Disease. 66: 788-789.

Mehrotra, R. S., K. R. Aneja and A. Aggarwal. 1997. Fungal control agents in: Environmentaly safe approaches to crop disease control. (N.A. Rechcigl . eds.) Pages 111 - 137. CRC Press.

Meraj-ul, H., P. B. Nandkar. 2012. Antagonistic effect of rhizospheric Trichoderma isolates against tomato damping-off pathogen, Fusarium oxysporum f.sp. lycopersici. International Journal of Research in BioSciences. 1: 27-3.

Mohamed, H. A. L. A., W. M. Haggag. 2010. Mutagenesis and inter-specific protoplast fusion between Trichoderma koningii and Trichoderma reesei for biocontrol improvement. American Journal of Scientific and Industrial Research. 1: 504-515.

Nadarajah, K., Z. A. Hamdia and S.O. Nurfarahana. 2014. The isolation and characterization of an
endochitinase gene from a Malaysian isolate of Trichoderma sp. *Australian Journal of Crop Science*. 8: 711-721.

Panahian, G.R., K. Rahnama, M. Jafari. 2012. Mass production of *Trichoderma* spp. and application. *International Research Journal of Applied and Basic Sciences*. 3: 292-298.

Prabavathy, V. R., N. Mathivanan, E. Sagadevan, K. Murugesan, D. Lalithakumari. 2006. Self-fusion of protoplasts enhances chitinase production and biocontrol activity in *Trichoderma harzianum*. *Bioresource Technology*. 97: 2330-2334.

United States Salinity Laboratory Staff. 1954. Diagnosis and improvement of saline and alkali soils. *Agricultural handbook*. No. 60, USDA.

Wu, B., V. Oesker, J. Wiese, R. Schmaljohann, J. F. Imhoff. 2014. Two New Antibiotic Pyridones Produced by a Marine Fungus, *Trichoderma* sp. Strain MF106. *Marine Drugs*. 12: 1208-1219.