Study on Workability and Strength Parameters on Geo polymer Concrete by Using GGBFS and Fly ash

N. Umar Farook¹, Y. Shantharam²
¹Student, Master of Engineering, Department of Civil Engineering, Mahendra Engineering College, Namakkal. umarfarookslm@gmail.com
²Assistant Professor Civil Engineering, Mahendra Engineering College, Namakkal.shantharamy@mahendra.info

Abstract

To diminish ozone harming substance discharges, attempts expected to make eco benevolent progression materials. Portland strong (PC) creation is under basic examination since high extent of carbon dioxide gas is passed on to the air. The development of arrangement of these two outcomes (co2 and silica smolder) is expanding an aftereffect of the expanding interest on foundation progress, and thus there is a fundamental need for authentic idea and to confine their effect on the reasonableness of our living environment. De-carbonation of limestone in the Kiln during social event of concrete is in danger for the chance of one ton of carbon dioxide to the air for each colossal stack of Portland concrete. This undertaking presents the movement of Fly debris based green folios. Fly rubbish is an outcome of warm force plant. One of the steady uses for fly garbage is in catch due to it compound and real properties, it is amazingly responsive pozzolan. Folios containing fly junk can have incredibly high type and can be really solid. In green folios, a result material wealthy in silicon and aluminum, for example, fly rubbish is erroneously incited by a high corrosive neutralizer answer for structure a ties the totals. The test outcome presented in this task show the impact of different cutoff points on the properties of green folios concrete. The hooks acquired after the response between sodium hydroxide, sodium silicate has high type.

Keywords: Portland cement, Fly junk

1. INTRODUCTION

1.1 NEED FOR GEOPOLYMER CONCRETE
The strong is the most prime material in the advancement business, the solid expects a basic part in the making of strong , it attaches the coarse and fine complete with water to from the structure. The huge disadvantage in the strong is concrete in light of the fact that the solid business is the subject for the spread of green house gas impacts. The composing says the one tone of cement makes the one tone of carbon dioxide gas to the natural. To the decrease the green house gas surge to the regular, the substitute responses for concrete is to be paid early for the improvements business.

The eco welcoming geo polymer concrete must be paid early.
In this endeavor the geo polymer preparation, focus on quality limits and usefulness thoughts. Portland solid creation is under fundamental study since high proportion of carbon dioxide gas is conveyed to the atmosphere. Therefore tries to utilize the silica smoke to generally override the Portland concrete in concrete are gathering power. Most of the flyash conveyed as by thing material in electric warmer in as of now dumped in landfills, as such building up a there to the atmosphere at any rate geo polymer concrete is another material that needn’t waste time with the presence of Portland concrete as cover, considering the way that the fly garbage and aluminum, can be established by dissolvable liquids to make the geo polymer material to act itself as folio.

1. The high proportion of carbon dioxide conveyed to the air during the production of Portland concrete
2. The huge extension openness of silica rage, a result creation silicon, mental or ferrosilicon composites from around the globe

The movement of making of these two thing is growing a direct result of the uplifting interest on establishment improvement, and therefore there is basic prerequisite for suitable thought and two cutoff their impact on the viability of
our living atmosphere. The carbonation of limestone in the heater during amassing of cement is liable for the opportunity of one ton carbon dioxide to the air for each immense heap of Portland concrete, as can be seen from the going with reaction condition.

1.2 OBJECTIVE OF THE PROJECT

To develop a mix degree cycle to deliver fly flotsam and jetsam based geo polymer concrete
To recognize and examine the effect of striking limits that impacts the properties of fly garbage based geo polymer concrete.
To mull over the flashing planning properties of new and hardened sodium silicate based geo polymer concrete.
To look at the arrangement of geo polymer strong mix.

1.3 SCOPE OF THE PROJECT

The degree of this endeavor is to utilize the fly garbage as an improvement material which is a consequence of sodium silicate and sodium hydroxide.

This endeavor is connected to superseding the solid in concrete with fly trash and to decrease the greenhouse gas release, impacts are required to make eco pleasant improvement material.

2. LITERATURE REVIEW

BV Rangan
(conceal school december 2010 page no 68-106) considered the flysash based geopolymer solidify and find usefulness and quality limits.

A Maria rajesh M. Adams Joe and Roy MamenPrakash R. Voraurmil v. dave (proceed in planning 2013) investigated the geo polymer concreate by getting the unmistakable reestablishing temperature and alleviating time.

U.R.Kawade ,P.ASalunkhe ,S.D Kurahande (res 23,2017,page no 122-152) considered the fly trash reliant on concrete for various rates .

Supriyakulkarni (2018, page no 73-90), examined  the geo polymer concrete and applications to the advancements ventures. Zongiji Li (2001) Portrayed a suitable a plausible composite called, geo polymer, which was a sort of indistinct alumina silicate thing . Geo polymer was consolidated by poly development reaction of geo polymer makes sure about and solvent base poly silicate .It is shown that diverged from Portland concrete , were energy successful and atmosphere genial and thus a sensible cementations material.

The assessment showed that these materials would be wise to properties investigated than the Portland concrete, for instance, high early quality, stunning volume strength, better solidness, incredible impenetrability to fire, and straightforward amassing measure.

T.W .Cheng and j.pchiu (2002)
Depict the usage of granulated effect warmer slag as unique filler in formation of geo polymer .lys has found that geo polymer settings time interfaces well with temperature, potassium hydroxide obsession, metakoline and sodium silicate development.
The physical and mechanical properties of the geo polymer also associated well with the centralization of essential course of action and the proportion of metakaolinite that is added.

The most vital compressive quality achieved was 79M father For impenetrability to fire tests, as 10mm thick geo polymer board was introduced to 1100 c fire, with the intentional banter side temperature showing up at under 350 after 35 min. They saw that various things could be made for advancement reason having phenomenal potential for planning applications.

3. MATERIALS AND METHODS

3.1 FLY ASH & GGBFS
Fly trash is a fine faint powder involving by and large of round, smooth particles that are conveyed as a result in a coal ended power stations.
Fly garbage has pozzolonic properties, suggesting that it reacts with lime to shape cementations blends it is typically known as a helpful cementations material.

3.2 COARSE AGGREGATE
Squashed stone coarse total of molecule shape normal and cubic the coarse total is the most grounded and the most un-permeable parts of cement.
Squashed stone total with a greatest ostensible size of under 20mm and explicit gravity of were utilized idea.

3.3 FINE AGGREGATES
Fine absolute used for the assessment should be fittingly inspected to give the base void extent and will be freed from noxious materials like earth, buildup substance and chloride contamination. Stream sand is normally preferred over crushed sand since in the past atom shape is totally water worn by consistent misfortune which helps in decline of water substance of mix and moreover lesser security from siphoning
Locally available sand experiencing 4.75 mm sifter with fineness modulus of 3.652 and unequivocal gravity 2.34 which falls under checking on zone were used for the entire in appearances.

3.4 CATALYTIC LIQUID SYSTEM
Catalytic system had a density of about 1.4g/cc. Demonstrative sodium hydroxide (NaOH with 98% perfection) and sodium silicate plans were used as the solvent activators. To dodge the effect of dark debasements in the mixing water, the sodium hydroxide chips were separated in refined water. regardless of the way that it has been represented by a couple of researchers that the activator course of action was set up in any occasion one day going before its usage, in our flow examination, the synergist system including sodium hydroxide, sodium silicate and refined water were joined around 24 hours preceding anticipating the models and put something aside for cooling under normal room temperature.

3.5 SODIUM SILICATE
Sodium silicate is the fundamental name for a compound sodium met silicate, Na2SiO3, in any case called water glassor liquid glass. It is open in watery course of action and in solid structure and is used in cements, idle fire protection, refractories, material and wood getting ready. And automobiles sodium carbonate and silicon dioxide react when fluid to from sodium silicate and carbon dioxide. The financially available sodium silicate course of action contains picked.

3.6 SODIUM HYDROXIDE
Sodium hydroxide (NaOH), in any case called lye consuming pop, is an acidic metallic base. It is used in various endeavors, by and large as a strong compound base in the collecting of crush and paper, materials, drinking water, chemicals and chemicals and as a divert cleaner Worldwide creation in 1998 was around 45 million tons sodium hydroxide is customary base in chemical research offices.
Unadulterated sodium hydroxide is a white solid; open in pellets, pieces, granules and as a half drenched game plan. It is hydroscopic and immediately absorbs water from the air, so it should be taken care of in an impermeable compartment. It is very soluble in water with Liberian of warmth. It moreover separates in ethanol and methanol; anyway it shows lower dissolvability in these solvents than does potassium hydroxide. Fluid sodium hydroxide is moreover a strong base; anyway the high temperature required cutoff focuses applications. It is insoluble in ether and other non-polar solvents. A sodium hydroxide game plan will leave a yellow stain on fabric and paper.
The sodium hydroxide solids with 97-98% ideals is purchased from business sources, and mixed in with water to make to make an answer with needed molar core interest.

4. DESIGN OF GEOFOLYMER CONCRETE MIX
Course of action by mass may be taken generally as 3 to12Concrete mix arrangement measure is colossal and overall based on performance rules. Some direct standards for the arrangement of warmth reestablished silica rage based geo polymer concrete are proposed.
The work and the effect of sums are seen as identical to because of port land solid concrete. The mass of joined sums may be taken to be between75% and 80% of the mass of geo polymer concrete. time, the glow alleviating temperature , and the glow reestablishing time are picked as limits.
As for fundamental liquid to-silica rage extent by mass, values in the extent of 0.30 and 0.90 are recommended. Taking into account the results procured from different mixes made in the examination office.
4.1 MIX PROPORTIONS:

DESIGN PARAMETERS:

Alkaline / Fly ash ratio = 0.30 to 0.55

Sodium silicate/ sodium hydroxide= 2 (constant)

| Alkaline/ Fly ash ratio | Fly ash Kg | GGBFS Kg | 20 mm Aggregate Kg | 10 mm Aggregate Kg | Fine Aggregate Kg | Sodium hydroxide Kg | Sodium silicate Kg |
|-------------------------|------------|----------|--------------------|--------------------|-------------------|---------------------|--------------------|
| 0.35                    | 90% 1.683  | 10% 0.187| 4.72               | 7.08               | 5.03              | 0.38                | 0.77               |
| 0.35                    | 80% 1.04   | 20% 0.260| 4.68               | 7.03               | 5.0               | 0.43                | 0.86               |
| 0.40                    | 70% 0.994  | 30% 0.426| 4.62               | 7.0                | 4.97              | 0.46                | 0.93               |
| 0.45                    | 60% 0.918  | 40% 0.612| 4.6                | 6.9                | 4.94              | 0.50                | 1.0                |
| 0.50                    | 50% 0.815  | 50% 0.815| 4.58               | 6.8                | 4.91              | 0.54                | 1.1                |
| 0.55                    | 60% 0.985  | 60% 0.896| 4.7                | 6.9                | 5.0               | 0.52                | 1.05               |
| Total                   | 6.435      | 3.196    | 23.2               | 34.8               | 24.8              | 2.31                | 4.64               |

| Alkaline / Fly ash ratio | Fly ash Kg/m³ | 20mm Coarse Aggregate Kg/m³ | 10 mm Coarse Aggregate Kg/m³ | Fine aggregate Kg/m³ | Sodium hydroxide Kg/m³ | Sodium silicate Kg/m³ |
|-------------------------|----------------|-----------------------------|-------------------------------|----------------------|------------------------|-----------------------|
| 0.30                    | 3.87           | 4.73                        | 7.08                          | 5.03                 | 0.38                   | 0.77                  |
| 0.35                    | 1.30           | 4.68                        | 7.03                          | 5.00                 | 0.43                   | 0.86                  |
| 0.40                    | 1.42           | 4.62                        | 7.0                           | 4.97                 | 0.46                   | 0.93                  |
| 0.45                    | 1.53           | 4.6                         | 7.0                           | 4.94                 | 0.50                   | 1.0                   |
| 0.50                    | 1.63           | 4.58                        | 6.88                          | 4.92                 | 0.54                   | 1.08                  |
| Total                   | 9.75           | 23.2                        | 34.88                         | 24.85                | 2.31                   | 4.64                  |
4.2 PREPARATION OF SOLUTION

Molar concentration

Molar concentration (moreover called molarity, whole obsession or substance obsession) is extent of the union of out and out in a solute in an answer, or of any sub-nuclear or atomic species in a given volume. Molar concentration or molarity is most consistently in units of moles of solute per liter of plan.

The game plan of NaOH answer for CLS is set up in various level of molar obsession. Right when the molar centralization of the NaOH extended the nature of the geo polymer concrete is moreover extended.

Molar game plan center condition

\[ C = \frac{(m/V) \times (1/MW)}{ } \]

Where,

- \( C \) = Molar obsession in mol/L
- \( m \) = mass of solute in grams
- \( V \) = volume of plan in liters (L)
- \( MW \) = nuclear burden in g/mol. Nuclear weight is moreover insinuated as formula weight and, honestly, various analysts need to use the last. The sub-nuclear weight can be procured from the sub-nuclear condition, data tables, or the name on the holder containing the substance of interest.

The mass of NaOH solids in an answer moved depending upon the center the game plan imparted similar to molar. Separate courses of action of NaoH and Na2 SiO3 of required center were prepared consolidating before 24 hours to anticipating.

The gathering of sodium hydroxide course of action was in the range between 2, 4, 8, 16m.

The game plan of sodium hydroxide course of action is outlined by the going with model:

Eg: 8 MOLAR CONCENTRATIONS

The NaOH Solution with an intermingling of molar includes \( 2 \times 40 = 320 \text{gms} \) of NaOH solids separated in per liter of the game plan. Where, 40 is the nuclear heap of NaOH

4.3 MIXING AND CASTING

Checked proportion of fly flotsam and jetsam, fine aggregate and coarse all out were dry mixed for 1 minute. After dry mixing wet mixing was done by adding reactant liquid for 2 minutes Cubes of sizes 150×150×150 mm was extended. Compaction was done by needle vibrator concerning the circumstance Portland solid concrete.

4.4 OVEN CURING

Mitigating is a term in polymer science and cycle planning that implies the solidifying or setting of a polymer material by cross-interfacing of polymer chains, accomplished by electron shafts, warmth or manufactured added substances.

Resulting to anticipating the models, they were kept in a grill. By then the models were remolded at room temperature and kept at 60c for 24 hrs 100c 96hrs of the vital soothing time. Ensuing to reestablishing the models were kept at room temperature until attempting period.

The reestablishing period depends on such a solid used, blend degrees, required quality, size and condition of part, encompassing atmosphere, future presentation condition and method for soothing. Since all appealing properties are
improved with reestablishing, the period should be the length of practical.

4.5 REBOUND HAMMER
Ricochet back hammer test is a non-merit testing procedure which offer an accommodating and fix hint of the compressive nature of the strong. the skip back sledge is also called as Schmidt hammer that contain a spring controlled mass that slides on an unclogger inside an adjusted housing.

The ricochet back sledge. When the unclogger of bob back hammer is pressed against the outside of concrete a spring controlled mass with a reliable energy is made to hit strong surface to bob back.

The level of bob back, which is an extent of surface hardness, is assessed on a graduated scale this purposeful worth is appointed as skip back number concrete with inferior quality and low solidness will ingest more energy to yield in a lower bob back worth.

4.6 OBJECTIVES OF REBOUND HAMMER
1. To choose the compressive nature of the strong by relating the ricochet archive and the compressive quality.
2. To assess the consistency of the strong.
3. To overview the idea of the strong subject to the standard subtleties.
4. To relate one strong part with other in regards to quality.

| Fly ash | Trail 1     | Trail 2     | Average | Load Kg/mm² |
|---------|-------------|-------------|---------|-------------|
| 0.30    | 21,20,21    | 20,20,21    | 21      | 18          |
| 0.35    | 20,21,22    | 22,22,22    | 22      | 20          |
| 0.40    | 20,21,20    | 20,20,21    | 21      | 21          |
| 0.45    | 26,21,26    | 22,23,24    | 23      | 24          |
| 0.50    | 22,24,23    | 23,23,24    | 23      | 24          |
| 0.55    | 21,20,24    | 22,24,21    | 21      | 21          |
Table 4.4 Slump cone test result

| Alkaline ratio | Strength KN/ mm² |
|----------------|------------------|
| 0.30           | 18               |
| 0.35           | 20               |
| 0.40           | 21               |
| 0.45           | 26               |
| 0.50           | 24               |
| 0.55           | 21               |

Table 4.5 Result of fly ash alkaline ratio

| Alkali Solution | Slump Cone Volume (mm) |
|-----------------|------------------------|
| 0.30            | 20                     |
| 0.35            | 50                     |
| 0.40            | 80                     |
| 0.45            | 90                     |
| 0.50            | 100                    |
| 0.55            | 110                    |

5. CONCLUSION
Considering the assessment drove following end can be drawn.

- Geo polymer concrete is more normal very much arranged and can replace customary solid concrete in various applications, for instance, precast units.
- Conventional procedures for mixing, compaction, frivolity, and, de trim can be grasped for geo polymer concrete also. The primary careful step required is in treatment of synergist liquid structure, which is astounding essential in nature.
- The mechanical properties step by step improve with in sodium silicate/sodium hydroxide extent 2.5 to 3.0 and starting there it decrease.
- Higher center (with respect to molar) 8M to 16M of sodium hydroxide game plan achieves higher compressive nature of geo polymer concrete.
- It is possible to achieve more essential quality when the higher molar combination of sodium hydroxide game plan is used.
- The reestablishing of geo polymer concrete is refined by grill diminishing. The higher reestablishing temperature impacts the higher caliber of geo polymer concrete.

6. REFERENCES
1. ACI Committee 318 (2002), Building Code Requirements for structural concrete, American Concrete Institute, Farmington Hills, MI.
2. ACI Committee 363 (1992), State of the Art Report on High Strength Concrete Institute, Detroit, USA.
3. Aitcin, P.C and P.K. Mehta (1990), “Effects of Coarse Aggregate Characteristics on Mechanical Properties of High Strength Concrete”, ACI Materials Journal 87 (2): 103-107.
4. Chang, E. H., Sarker, P., Lloyd, N and Rangan, B.V. (2007), “Shear behaviour of reinforced fly ash – based geo polymer concrete beams”, Proceedings of the 23rd Biennial Conference of the Concrete Institute of Australia, Australia, PP679-688.
5. Collins, M. P., D. Mitchell, J.G MacGregor (1993), “Structural Design Consideration for High Strength Concrete”, ACI Concrete International 15(15):27-34.
6. Committee BD-002 Standards Australia (2005), Concrete Structures: Draft Australian Standard AS3600-200x, Standards Australia.
7. Davidovits, J (1998) “Soft Mineralogy and Geo polymers”, Proceedings of the 5th Geo polymer 88 International conference, the University de Technologies, Compiègne, France.
8. Davidovits, J (1994) “high-Alkali Cements for 21st Century Concretes in Concrete Technology, Past, Present and Failure”, Pro Cre ding of V. Mohan Malhotra Symposium, Editor: P. Kumar Mehta, ACP SP-144, 383-397.
9. Duxson P, Provis J L, Lukey G C and Van Deventer J S J (2007), "The Role of Inorganic Polymer Technology in the Development of Green concrete", Cement and concrete Research, 37(12), 1590-1597.
10. Gartner E (2004), “Industrially Interesting Approaches to ‘Low-CO2’, Cement and Concrete Research, 34(9), 1489-1498.
11. Gourley, J. T. (2003), “Geopolymers; Opportunities for Environmentally Friendly Construction Materials”, Paper Presented at the Materials 2003 Conference: Adaptive Materials for a Modern Society, Sydney.
12. Sudharsan, N., & Palanisamy, T. (2018). A comprehensive study on potential use of waste materials in brick for sustainable development. Ecology, Environment and Conservation, 24, S339–S343.
13. Rajamane, N.P, Sabitha D., Sanjana Mary James, Gopalakrishnan S., (2005). Studies on development of Geopolymeric low-energy cement from fly ash for structural applications. Proc. Of the International Conference on advances in Concrete Companies and Structures, ICACS 2005, 6-8 January, SERC, Chennai, India, PP 219-226.
14. Rajamane, N. P., Sabitha D. (2005), “Study on geo-polymer mortars using Fly Ash and blast furnace slag powder”, International Congress on Fly Ash, Fly Ash India 2005, 4-7 December 2005, New Delhi.
15. Sudharsan, N. & Saravanaganesh, S. (2019). Feasibility studies on waste glass powder. International Journal of Innovative Technology and Exploring Engineering, 8(8), 1644–1647.
16. Sudharsan, N & Sivalingam, K. (2019). Potential utilization of waste material for sustainable development in construction industry. International Journal of Recent Technology and Engineering, 8(3), 3435–3438.
17. Rajamane, N.P, Sabitha D. and Shijina, P.K., (2005), “Inorganic Polymer mortar from class ‘C’ Fly ash and blast furnace slag Powder without Portland cement”, New Building Materials and Construction World, 10(8). PP 10-19.
18. Rajamane, N.P, Sabitha D. and Sajana Mary James, (2005). “Potential of industrial wastes to produce geopolymeric mortar of practical utility - a study”, Indian Concrete Institute journal, 5(4), PP9-20.
19. Swanepoel J.C. and C. A. Strydom, (2002), “Utilization of fly ash in geopolymeric material”, Applied Geochemistry, 17, PP 1143-1148.
20. Hardjito, D. and Rangan, B.V. (2005), “Development and properties of low-Calcium Fly Ash based Geopolymer Concrete”, Research Report GCI, Faculty of Engineering, Curtin University of Technology, Perth, available at space @curtin or www.geopolymer.org.
21. Rangan B.V (2008) “Low-calcium fly ash based Geopolymer Concrete”, Chapter 26 in construction Engineering Handbook. Editor-in-Chief H.G. Nawy, Second Edition, CRC press, New York.
22. Vidhya, K., & Kandasamy, S. (2014). Study on the flexural strength of coal ash brick masonry wall elements. Journal of Structural Engineering (India), 41(4), 410–419.
23. Vidhya, K., & Kandasamy, S. (2016). Experimental Investigations on the Properties of Coal-Ash Brick Units as Green Building Materials. International Journal of Coal Preparation and Utilization, 36(6), 318–325.
24. N. Sudharsan, T. Palanisamy, S. C. Yaragai, (2018). Environmental sustainability of waste glass as a valuable construction material - A critical review. Ecology, Environment and Conservation, 24 pp. S331–S338.
25. Vidhya, K., & Kandasamy, S. (2013). Study on properties of bricks manufactured using fly ash and pond ash. Pollution Research, 32(2), 405–409.