Sensorimotor changes following acute exposure to carbamazepine and phenytoin in male Wistar rats

*Akorede, G.J., *Ambali, S.F., *Abidoye, K.A., *Olatunji, A.O., *Aremu, A., *Basiru, A., *Suleiman, K.Y., *Ahmed, O.A. and **Abdulrahim, H.A.

Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ilorin, Nigeria.

Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ilorin, Nigeria.

Department of Veterinary Microbiology, Faculty of Veterinary Medicine, University of Ilorin, Nigeria.

Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Nigeria.

ARTICLE INFO

Article history:

Accepted: November 01, 2019

Received in revised form: May 02, 2020

Keywords:

Acute exposure
Carbamazepine
Phenytoin
Anxiogenesis
Sensorimotor impairment.

ABSTRACT

Introduction: The use of antiepileptic drugs (AEDs) such as carbamazepine and phenytoin are part of strategies for the management of epilepsy. Acute exposure of epileptic patients to AEDs can cause sensory impairment.

Aim: This study seeks to assess sensorimotor changes in male Wistar rats upon single-large dose exposure to carbamazepine, phenytoin and their mixture.

Methods: 24 male Wistar rats (160-210 g) were randomly separated to four groups with 6 rats each. Groups I, II and III was given distilled water (2 ml/kg), carbamazepine (1950 mg/kg); and phenytoin (820 mg/kg) respectively, while Group IV (CBZ+PHY) was co-exposed to carbamazepine (1950 mg/kg) and phenytoin (820 mg/kg). The treatment was orally administered once by gavage (on Day(D) 1), then followed by weekly monitoring of body weight, clinical signs and neurobehavioural parameters for four weeks (D0, D1, D7, D14, D21 and D28).

Results: The body weight revealed insignificant improvement (p > 0.05) in all groups. A significantly (p < 0.05) lower grooming frequency, increased locomotor activity and a reduction in the frequency of urination and defecation were recorded in the CBZ and PHY groups. Also, the number of missed rungs, inclined plane and grip forepaw time reduced significantly (p < 0.05) in CBZ, PHY and CBZ+PHY groups.

Significance: A single large dose of CBZ, PHY and their combination caused anxiogenic and sensorimotor impairment.

Original article

Introduction

Rational use of antiepileptic drugs (AEDs) forms the basis of epilepsy care plan (Sun et al., 2002). Polytherapeutic use of AEDs in patient with epilepsy may cause sensory impairment (Bernardi and Barros, 2004). AEDs have been reported to have cognitive and neurological effects, and adversely affect biochemical and haematological parameters in patients with epilepsy (Aliyu et al., 2016). Carbamazepine (CBZ) is used to treat epilepsy patient, as well as mood disorder (Almgrem et al., 2008). It acts by reducing persistent neuronal triggering by inhibiting / blocking the voltage-gated sodium channels (Mathew et al., 2011). It also potentiates receptors of the gamma-aminobutyric acid (GABA) (Granger et al., 1995). Acute carbamazepine exposure is accompanied with neuromuscular disturbances, coma, tremor, restlessness, athetoid movements, psychomotor disturbances, dizziness, drowsiness, mydriasis, and nystagmus, respiratory depression, ECG abnormalities, tachycardia, shock, and urinary retention (Mochizuki et al., 2016).

Phenytoin is an anticonvulsant widely used for the management of partial or generalized seizures (Vijay et al., 2009). Phenytoin (PHY) functions via inhibition of sodium ion channels and blockage of persistent sodium currents in the neurones, thereby preventing neuronal excitation (Bryan and Waxman, 2005). It also protects against axonal degeneration of spinal cord axons (Luszcki, 2004). As a Central Nervous System (CNS) depressant, phenytoin affects rearing activity (Aliyu et al., 2016), through inhibition of calcium-induced secretory processes (Thakur et al., 2011). Phenytoin also alters motor incoordination and cause muscle weakness in rats (Aliyu et al., 2017). The combine use of phenytoin and carbamazepine can considerably reduce locomotive activity (Luszcki, 2004). The other signs of carbamazepine and phenytoin toxicity include coma, involuntary eye movement, hypotension, nausea, sluggishness, slurred speech, tremors and vomiting (Dasari et al., 2016). This study seeks to assess sensorimotor changes in male Wistar rats upon single-large dose treatment with carbamazepine, phenytoin and their mixture.

Materials and Methods

Drugs used and preparation

Carbamazepine commercial grade (200 mg) marketed as Tegretol® (Novartis Farma, Italy) and phenytoin capsules (100 mg) (Biomedicine, Belgium) were obtained from a reliable pharmacy in Ilorin, Nigeria. They were dissolved to make solution in distilled water.

© 2020 Faculty of Veterinary Medicine, University of Ilorin, Nigeria. All rights reserved.
Animals used
The 24 male Wistar rats (160-210 g) required for this study were acquired from the Department of Veterinary Pharmacology and Toxicology's Animal House, Ilorin University, Nigeria. Following ethical standard practices of the Faculty of Veterinary Medicine, University of Ilorin, Nigeria, all animals were accommodated in plastic cages, fed with a pelleted grower's feed (Chikun Feed®, Nigeria) and supplied with water ad libitum. Until the beginning of this study, the animals were allowed adaptation for two weeks.

Treatment protocols
The animals were selected at random into four groups of 6 rats each and administered the following regimens: Group I (DW) was exposed to distilled water (2 ml / kg); group II (CBZ) received carbamazepine (1950 mg/kg ~ 1/2 of LD₅₀); group III (PHY) received phenytoin (820 mg / kg ~ 1/2 of LD₅₀), group IV (CBZ+PHY) was co-exposed to carbamazepine (1950 mg/kg) and phenytoin (820 mg/kg). The regimen was administered orally by gavage once (on Day 1), followed by weekly monitoring of body weight, clinical signs and behavioural/neuromuscular parameters were carried out and recorded for four consecutive weeks.

Evaluation of neuromuscular pattern
Motor activity
The effect of the regimens on motor activity was evaluated weekly till the end of the experiment using the open-field apparatus (Zhu et al., 2001). Motor activity was assessed by placing animal in the box and allow it to move freely within three minutes to become familiar with the environment. The amount of squares that were crossed with all the paws was reported over the next two minutes. Soapy water and 90% alcohol solution were used to clean the arena between trials to eliminate odours from the preceding animal.

Rearing activity
Rearing activity was also evaluated weekly till the end of the experiment. Rearing activity was examined by placing animal in the box and allow it to move freely for three minutes to become familiar with the environment. The frequency at which an animal stood on its hind limb trying to peep out of the box in the next 2 minutes was recorded.

Frequency of urination and defecation
The frequency of urination and defecation was the number of puddles or urine streaks and faecal boli produced, respectively, during the 5 minutes’ duration in the open-field maze.

Neuromuscular coordination
The neuromuscular coordination was assessed using inclined plane method (Ambali and Aliyu, 2012).

Locomotion efficiency
Locomotion efficiency was determined using ladder-walk test (Ambali and Aliyu, 2012).

Motor strength
The fore-paw grip time was used to assessed the rat motor strength (Abou-Donia et al., 2001). This was achieved by hanging rats down with both forepaws from a wood dowel of 5mm diameter. In seconds, time taken for each rat to hold on to the wood dowel before releasing its grips was documented. This parameter was assessed on days (D) 0, 1, 7, 14 and 28.

Body weight
The rats were weighed once every week till, the end of the experiment with electronic weighing scale (Sensor Disc Exclusive Tech, USA).

Data analysis
The obtained data were evaluated as mean ± standard error of mean (SEM) and then subjected to one-way analysis of variance (ANOVA), using Tukey’s post hoc test. GraphPad Prism Version 5.03 San Diego, California, USA) was used for analysis. Value p < 0.05 was deemed significant.

Results

Clinical signs
All the animal in the groups showed unapparent signs of toxicity, except for the signs of discomfort, staggering gait and drawling (partial paralysis) of the hind limb observed in the group administered CBZ (1950 mg/kg) only, which later disappear after some days.

Effects of treatment on neuromuscular patterns
Motor function
The square crossed by animal in the PHY group increased significantly (p < 0.05) at D7 when compared to the CBZ+PHY group (Table 1).

Table 1. Effect of single large dose of carbamazepine and phenytoin on long-term locomotion changes in male Wistar rats.

Day	DW	CBZ	PHY	CBZ+PHY
0	3.00 ± 1.73	12.25 ± 4.0	11.25 ± 1.11	13.25 ± 2.59
1	9.00 ± 3.49	1.25 ± 1.25	11.25 ± 3.54	2.00 ± 1.41
7	8.25 ± 3.09	3.50 ± 2.02	13.00 ± 3.81	1.00 ± 0.71
14	12.75 ± 7.36	8.25 ± 4.80	17.50 ± 2.10	8.25 ± 2.84
21	6.00 ± 3.67	1.50 ± 1.50	9.50 ± 4.87	12.75 ± 4.48
28	14.5 ± 2.78	6.50 ± 2.50	4.25 ± 4.25	9.50 ± 4.66

Note:
All results are presented in Mean ± SEM (standard error of mean)a – p < 0.05, higher Vs CBZ+PHY group, DW – Distilled water, CBZ – Carbamazepine, PHY – Phenytoin
Rearing frequency
At D0, when compared to DW and PHY groups, the CBZ+PHY increased significantly (p < 0.05) in rearing activity. The CBZ group showed relative decrease in frequency of rearing at D0, when compared with Day 1 (13%). The rearing activity recorded in CBZ+PHY group increased (p < 0.05) significantly on Day 0 than in D1, D7 and D14 (Table 2).

Table 2. Effect of single large dose of carbamazepine and phenytoin on long-term changes in frequency of rearing in male Wistar rats

Day	DW	CBZ	PHY	CBZ+PHY
0	1.75±0.48	3.50±0.96	2.00±0.00	5.25±0.48a
1	2.25±0.75	0.25±0.25	1.25±0.95	0.75±0.75
7	3.00±1.47	2.75±1.11	3.75±1.80	1.25±0.95
14	4.25±2.14	2.00±0.68	1.25±0.95	0.75±0.48
21	1.50±0.87	0.50±0.29	2.75±1.55	1.75±0.75
28	3.00±0.82	1.75±0.75	0.00±0.00	2.50±1.50

Note:
All results are presented in Mean ± SEM (standard error of mean).

a – p < 0.05, higher Vs CBZ+PHY group.
DW – Distilled water, CBZ – Carbamazepine, PHY – Phenytoin

Grooming frequency
At D0, there was a substantial (p < 0.05) reduction in grooming frequency of the PHY group, unlike that of the CBZ+PHY group. In the CBZ+PHY group the grooming frequency at D1 reduced (p < 0.05) significantly, unlike in the DW and PHY groups. While grooming frequency increased (p < 0.05) apparently in the PHY group, unlike in the CBZ group (Table 3).

Table 3. Effect of single large dose of carbamazepine and phenytoin on long-term changes in frequency of grooming in male Wistar rats

Day	DW	CBZ	PHY	CBZ+PHY
0	5.25±2.21	6.75±1.32	1.75±1.44a	10.5±0.87
1	2.75±0.63	0.50±0.50b	4.50±0.96	0.00±0.00e
7	3.00±1.08	2.00±0.71	2.25±2.25	0.25±0.25
14	3.75±1.65	2.00±0.82	1.00±0.41	1.75±0.85
21	1.50±0.96	2.25±0.65	1.00±0.71	0.75±0.48
28	3.00±1.08	2.50±1.66	2.75±1.80	1.75±1.81

Note:
All results are presented in Mean ± SEM (standard error of mean).

a – p < 0.05, lower Vs CBZ+PHY group; b – p < 0.05, lower Vs PHY group; c – p < 0.05, lower Vs DW, CBZ and PHY groups.
DW – Distilled water, CBZ – Carbamazepine, PHY – Phenytoin.

Frequency of urination
The rate at which the animal in the CBZ group urinate reduced significantly (p < 0.05) as compared to PHY group. However, urination frequency in DW group decreased substantially (p < 0.05) at D21 unlike D28 (Table 4).

Table 4. Effect of single large dose of carbamazepine and phenytoin on long-term changes in frequency of urination in male Wistar rats

Day	DW	CBZ	PHY	CBZ+PHY
0	0.25±0.25	0.00±0.00	0.50±0.29	0.25±0.25
1	0.25±0.25	0.75±0.25	1.00±0.41	0.50±0.29
7	0.50±0.29	0.00±0.00a	1.25±0.25	0.50±0.29
14	0.50±0.29	0.75±0.25	1.00±0.00	0.75±0.48
21	0.00±0.00	0.00±0.00	0.25±0.25	0.50±0.29
28	1.00±0.00	0.25±0.25	0.25±0.25	0.75±0.25

Note:
All results are presented in Mean ± SEM (standard error of mean).
a – p < 0.05, lower Vs PHY group, DW – Distilled water, CBZ – Carbamazepine, PHY – Phenytoin.

Frequency of defecation
Table 5 revealed a substantially higher (p < 0.05) level of defecation in PHY group at D1 compared to other groups.

Table 5. Effect of single large dose of carbamazepine and phenytoin on long-term changes in frequency of defaecation in male Wistar rats

Day	DW	CBZ	PHY	CBZ+PHY
0	1.50±0.29	1.25±0.75	2.25±0.25	0.50±0.29
1	1.25±0.75	0.00±0.00a	3.25±0.25	0.25±0.25
7	3.50±0.29	1.00±1.00	3.50±0.65	2.50±1.66
14	3.50±0.87	1.25±0.48	3.00±0.41	1.25±0.63
21	1.50±0.65	0.75±0.48	2.50±0.29	1.75±0.63
28	2.75±0.25	1.50±0.65	2.50±0.50	0.75±0.48

Note:
All results are presented in Mean ± SEM (standard error of mean).
a – p < 0.05, lower Vs DW and PHY groups.
DW – Distilled water, CBZ – Carbamazepine, PHY – Phenytoin.

Neuromuscular coordination
A substantially (p < 0.05) reduced inclined plane performance was observed in the CBZ group at D1 unlike other groups. At D7, inclined plane performance increased significantly (p < 0.05) in the DW group when compared to CBZ and CBZ+PHY groups. At D28, inclined plane performance reduced significantly (p < 0.05) in the CBZ+PHY group unlike those of DW and PHY groups. The inclined plane performance in the PHY group reduced significantly (p < 0.05) at D1 as compared to D14 and D28 (Table 6).
Table 6. Effect of single large dose of carbamazepine and phenytoin on long-term changes in neuromuscular coordination (Inclined plane performance) in male Wistar rats

Day	DW	CBZ	PHY	CBZ+PHY
0	57.5 ± 1.44	58.75 ± 1.25	57.5 ± 1.44	56.25 ± 1.25
1	56.25 ± 2.39	37.5 ± 1.44\(^a\)	51.25 ± 2.39	50.00 ± 0.00
7	60.00 ± 2.04\(^b\)	51.25 ± 1.25	56.25 ± 2.39	50.00 ± 2.04
14	62.50 ± 1.44	57.5 ± 1.44	61.25 ± 1.25	58.75 ± 1.25
21	62.50 ± 1.44	60.00 ± 2.89	58.75 ± 1.25	56.25 ± 1.25
28	58.75 ± 1.25	56.25 ± 3.15	61.25 ± 1.25	48.75 ± 1.25\(^c\)

Note:
All results are presented in Mean ± SEM (standard error of mean).
\(^a\) – p < 0.05, lower Vs DW, CBZ and CBZ+PHY groups;
\(^b\) – p < 0.05, higher Vs CBZ and CBZ+PHY groups;
\(^c\) – p < 0.05, lower Vs DW and PHY groups.

Table 7. Effect of single large dose to carbamazepine and phenytoin administration on efficiency of locomotion (ladder walk performance) in male Wistar rats

Day	DW	CBZ	PHY	CBZ+PHY
0	8.50 ± 0.29\(^a\)	10.50 ± 0.50	11.25 ± 0.63	10.25 ± 0.25
1	16.50 ± 0.87	5.00 ± 3.79\(^a\)	14.25 ± 0.48	13.00 ± 1.58
7	12.75 ± 1.11	11.75 ± 3.92	17.25 ± 0.85	15.75 ± 5.54
14	14.50 ± 1.50	8.50 ± 2.87	12.50 ± 0.87	11.50 ± 0.65
21	13.00 ± 1.29	16.00 ± 0.41	13.00 ± 0.82	13.00 ± 0.91
28	18.25 ± 0.48	17.00 ± 0.82	18.00 ± 0.71	14.00 ± 1.08\(^b\)

Note:
All results are presented in Mean ± SEM (standard error of mean).
\(^a\) – p < 0.05, lower Vs CBZ and PHY groups;
\(^b\) – p < 0.05, lower Vs DW and PHY groups.

Table 8. Effect of single large dose of carbamazepine and phenytoin on long-term changes in motor strength in male Wistar rats

Day	DW	CBZ	PHY	CBZ+PHY
0	66.00 ± 5.58	90.00 ± 23.91	55.50 ± 18.87	66.75 ± 15.52
1	36.00 ± 6.29\(^a\)	7.00 ± 1.58	12.50 ± 0.87	8.75 ± 1.11
7	21.00 ± 3.76	16.50 ± 3.38	14.50 ± 7.21	13.50 ± 5.33
14	39.75 ± 15.57	44.75 ± 20.64	15.25 ± 2.50	33.00 ± 8.35
21	13.50 ± 1.66	25.00 ± 9.50	22.00 ± 5.35	19.75 ± 3.35
28	16.25 ± 3.20	8.25 ± 3.04	4.75 ± 3.68	13 ± 3.70

Note:
All results are presented in Mean ± SEM (standard error of mean).
\(^a\) – p < 0.05, lower Vs CBZ, PHY and CBZ+PHY groups.

Table 9. Effect of single large dose of carbamazepine and phenytoin on long-term body weight changes in adult male Wistar rats

Week (W)	DW	CBZ	PHY	CBZ+PHY
1	203.50 ± 3.12	189.30 ± 2.18	193.50 ± 9.51	199.80 ± 7.92
2	211.30 ± 5.19	177.00 ± 4.32\(^*\)	210.50 ± 11.88	212.50 ± 26.91
3	218.80 ± 8.59	192.30 ± 1.75	223.50 ± 12.91	210.00 ± 6.57
4	214.50 ± 5.84	196.30 ± 4.37	216.30 ± 12.46	220.30 ± 7.51

Note:
All results are presented in Mean ± SEM (standard error of mean).
\(^*\) - p < 0.05, lower Vs W3 and W4, DW – Distilled water, CBZ – Carbamazepine, PHY – Phenytoin.
Locomotion efficiency

Significantly (p < 0.05), the number of rung missed noticed in the DW group at D0 was lower than observed for the CBZ and PHY groups. At D1, a substantial (p < 0.05) lower rungs missed was recorded in CBZ group, unlike those of DW and PHY groups. While at D28 the number of missed rungs reduced significantly (p < 0.05) in CBZ+PHY unlike those of DW and PHY groups (Table 7).

Forelimb grip time

The forelimb grip time increased significantly (p < 0.05) in the DW group when compared to CBZ, PHY and CBZ+PHY groups at D1. Unlike D1, D7, D21 and D28, a markedly (p<0.05) higher forelimb grip time was recorded in all groups at D0 (Table 8).

Weight gain

At week 2, the weight gains markedly (p < 0.05) reduced in CBZ group unlike the weeks 3 and 4 (Table 9).

Discussion

The partial paralysis of the hind limb observed in the CBZ group at D1 indicates the consequence of acute (overdose) CBZ administration.

The reduction in grooming frequency as observed in this present study, indicates apparent increase in anxiety. Consequently, increased grooming behaviour usually result to deficit in locomotion. Grooming behaviour however, may be seen in stress, conflict and uncomfortable situations (Sarkisova et al., 2003; Kalueff and Tuohimaa, 2005).

The increase in locomotor activity recorded at D7 of the study in the PHE group may be due to the development of tolerance (Löschner and Schmidt, 2006). Phenytoin affects the direct activation of the motor system by stimulation of the sensorimotor cortex in matured rats (Kšerk et al., 1998). The reduced locomotion seen in the CBZ+PHY group, is in accordance with previous work (Luszcki, 2004). This shows that polytherapy with CBZ and PHE affect locomotor activity apparently due to the fact that CBZ as an enzyme inducer, lower PHE bioavailability, hence, reducing the effects of the drugs (Lai et al., 1992).

Rearing reflect is an adaptive strategy for the animals to explore their environment and also response to environmental novelty and emotional states (Ambali, 2009). The reduction in rearing activity observed in CBZ group agree with previous studies (Thakur et al., 2011; Aliyu et al., 2016).

The present study demonstrated reduced frequency of urination and defecation (decrease in number of faecal boli) in the CBZ group. This further affirmed the anxiolytic effect of acute CBZ exposure since urination and defecation frequency can be used to measure anxiety.

The deficit in efficiency of locomotion (ladder walk) recorded in CBZ Group shows that the rats’ legs were often stationary above the rungs for a long time, hence induced locomotor deficit. However, antiepileptic agents such as CBZ may evoke deficit in locomotion activity via sustainable decrease in AChE activity at the cholinergic receptor, and later result to paralysis (Ambali and Ayo, 2012), as observed in this study.

The poor performance recorded in acute CBZ and PHY exposure on the inclined plane confirmed the toxic effect of AEDs on sensorimotor and neuromuscular coordination. This may be as a result of oxidative challenge or lipid peroxidation to the mechanism of impairment of sensorimotor performance and neuromuscular coordination.

The reduced grip time observed in this research, implies deficient motor strength activity. It can be ascribed to reduction in the reserved oxygen presented in the muscle (Ambali and Ayo, 2012), thereby alter the energy output needed to perform the task. This may also be attributed to acute lipoperoxidative damage to the muscle from the combined effect of the agents.

Conclusion

This present study concluded that large single dose exposure to carbamazepine, phenytoin and their combination affect locomotor activity and anxiogenesis, sensorimotor reflex measuring motor and neuromuscular coordination and motor strength. Therefore, patient under carbamazepine and phenytoin therapy should be monitored and guided with the appropriate dosage to be use.

Conflict of interest

No authors declare conflicting interest.

Acknowledgements

The authors appreciate the support of colleagues in the Department of Veterinary Pharmacology and Toxicology, University of Ilorin, Nigeria.

References

Abou-Donia, M.B., Goldstein, L.B., Jones, K.H., Abdel-Rahman, A.A., Damodaran, T., Dechkovskaya, A.M., Bullman, S.L., Amir, B.E. and Khan, W.A. (2001). Locomotion and sensorimotor performance deficit in rats following exposure to pyridostigmine bromide, DEET and permethrin alone and in combination. Toxicological Sciences, 60: 305-314.

Aliyu, H., Ayo, J.O., Ambali, S.F., Suleiman, M.M., Kobo, P.I., Tauheed, A.M. and Sinkalu, V.O. (2017). Alteration of neuro-behavioural activities by carbamazepine, phenytoin and their combination in Wistar rats: A mini review. The Journal of Neurobehavioral Sciences, 4: 25-30.

Aliyu, H., Ayo, J.O., Ambali, S.F., Zezi, A.U., Kobo, P.I. and Uchendu, C. (2016). Evaluation of neuro-behavioural and cognitive changes induced by carbamazepine and/or phenytoin in Wistar rats. Global Journal of Medical Research, 16(1): 21-26.

Almgrem, M., Nyengaard, J.R., Persson, B. and Lavebralt, C. (2008). Carbamazepine protects against neuronal hyperplasia and abnormal gene expression in the megencephaly mouse. Neurobiology Diseases, 32: 364-376.

Ambali, S.F. (2009). Ameliorative effect of vitamins C/or E on neurotoxic, haematological and biochemical changes induced by chronic chlorpyrifos in Wistar rats. Doctor of Philosophy Dissertation. Ahmadu Bello University, Zaria. 355pp.
Ambali, S.F. and Aliyu, M.B. (2012). Short-term sensorimotor and cognitive changes induce by acute chlorpyrifos exposure: Ameliorative effect of vitamin E. *Pharmacologiae*, 3(2): 31-38.

Ambali, S.F. and Ayo, J.O. (2012). Vitamin C attenuates chronic chlorpyrifos-induced alterations of neurobehavioural parameters in Wistar rats. *Toxicology International*, 19(2): 144-162.

Bernardi, R.B. and Barros, H.M.T. (2004). Carbamazepine enhances discriminative memory in a rat model of epilepsy. *Epilepsia*, 15: 1443-1447.

Bryan, C.H. and Waxman, S.G. (2005). Neuroprotection by sodium channel blockade with phenytoin in an experimental model of glaucoma. *Investigative Ophthalmology and Visual Science*, 46(11): 4164-4169.

Dasari, J.R., Vurumadla, S. and Prasad, O.M.P. (2016). A case Report on phenytoin induced ataxia. *Asian Journal of Pharmacology and Clinical Resources*, 9(4): 14-15.

Granger, P., Biton, B. and Faure, C. (1995). Modulation of GABA type-A receptors by the antiepileptic drugs carbamazepine and phenytoin. *Molecular Pharmacology*, 47: 1189-1186.

Kalueff, A.V. and Tuohimaa, P. (2005). The grooming analysis algorithm discriminates between different levels of anxiety in rats: potential utility for neurobehavioural stress research. *Journal of Neuroscience and Methods*, 143(2): 169-177.

Kšerk, P., Haugvicová, P. and Mareš, P. (1998). Age-dependent phenytoin effects on cortical stimulation in rats. *Physiology Research*, 47: 143-149.

Lai, M.L., Lin, T.S. and Huang, J.D. (1992). Effect of single- and multiple-dose carbamazepine on the pharmacokinetics of diphenylhydantoin. *European Journal of Clinical Pharmacology*, 43: 201-203.

Lösch, W. and Schmidt, D. (2006). Experimental and clinical evidence for loss of effect (tolerance) during prolonged treatment with antiepileptic drugs. *Epilepsia*, 47(8): 1253-1284.

Luszcki, J.J. (2004). Effect of lamotrigine alone or in combination with conventional antiepileptic drugs on locomotor activity in mice. *Indian Journal of Pharmacology*, 5: 306-311.

Mathew, J., Gangadharam, G., Karuvilla, K.P. and Paulose, C.S. (2011). Behavioural deficit and decreased GABA receptor functional regulation in the hippocampus of epileptic rats: effects of *Bacopa monnieri*. *Neurochemical Research*, 36(1): 7-16.

Mochizuki, K., Hamano, Y., Miyama, H., Arakawa, K., Kobayashi, T. and Imamura, H. (2016). Successful treatment of a case with concurrent ingestion of carbamazepine overdose and grapefruit juice. *Acute Medicine and Surgery*, 3(1): 36-38.

Sarkisova, K.Y., Midzianovskaja, I.S. and Kulikov, M.A. (2003). Depressive-like behavioural alterations and c-fos expression in the dopaminergic brain regions in WAG/Rij rats with genetic absence epilepsy. *Behaviour and Brain Research*, 144(1-2): 211-226.

Sun, M., Van Rijn, C.M., Liu, Y. and Wang, M. (2002). Combination of carbamazepine and valproate in different dose proportions in maximal electroshock seizure model in mice. *Epilepsy Research*, 1(2): 5-11.

Thakur, S., Saraswathy, G.R. and Maheswari, E. (2011). Effect of vitamin C supplementation on phenytoin-induced behavioural abnormalities and regional lipid peroxidation in rats. *International Journal of Pharmacology Technology*, 2: 2248-2269.

Vijay, P., Yeshwanth, R. and Bairy, K.L. (2009). Effect of phenytoin sodium on biochemical parameters of reproductive function in male albino Wistar rats. *Journal of physiology and Biomedical Science*, 3: 14-18.

Zhu, H., Robin, W., Rockhold, R.W., Baker, R.C., Kramer, R.E. and Ho, I.K. (2001). Effects of single or repeated dermal exposure to methyl parathion on behaviour and blood cholinesterase activity in rats. *Journal of Biomedical Sciences*, 8: 467-474.