Differentiation of Trichuris species eggs from non-human primates by geometric morphometric analysis

Angela Maria García-Sánchez a, Marta Reguera-Gómez b, Maria Adela Valero b, Cristina Cutillas a, b, *

a Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Professor García González 2, 41012, Seville, Spain
b Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain

ARTICLE INFO

Keywords:
Geometric morphometric analysis
Trichuris eggs
Non-human primates
Diagnosis

Abstract

Human trichuriasis is a neglected tropical disease which affects millions of people worldwide, mostly living in low socio-economic conditions. Numerous studies have been conducted over the past 10 years to compare the different techniques for T. trichiura eggs detection. Our study provides the first geometric morphometric analysis for the specific detection of eggs of Trichuris sp. isolated from stools of macaque (M. sylvanus), colobus (C. g. kikuyensis), grivets (C. aethiops) and the Brazza’s monkey (C. neglectus) from zoos in Spain. Principal Component Analysis (PCA) arises as an efficient method to determine Trichuris spp. eggs. The selected measurements to be included in the PCA were proposed for the first time in the present work, as far as we know, as we could not find previous studies reporting standardized parameters.

1. Introduction

Soil-Transmitted-Helminth (STH) diseases are caused by Ascaris lumbricoides, Trichuris trichiura and hookworms. T. trichiura, also known as “whipworm” due to its characteristic body shape, is responsible of human trichuriasis, a neglected tropical disease which affects between 604 and 795 million of people worldwide, mostly living in low socio-economic conditions (Fenwick, 2012; Tahseen, 2018). It constitutes the major cause of childhood diarrhea and stunting of growth (Stephenson et al., 2000).

Trichuriasis, alongside the other soil-transmitted helminthiasis, is a public health issue, given massive scale of the problem. Within the broad tropical and subtropical belt, infection and re-infection are apparently unhindered despite large-scale public health programs (Motarjemi et al., 2014). However, trichuriasis is amenable to control in some cases through mass administration of anthelmintic drugs, often administered annually or twice a year (Webster et al., 2014). Large-scale deworming is necessary to reduce the worldwide morbidity of these infections, but without improved water supplies and sanitation, this approach cannot be relied on for sustainable reductions in parasite frequency or intensity of infection.

Coprodigies to detect T. trichiura eggs is the most widely used approach for the detection of whipworm infection. Several examination techniques are available to detect the presence of Trichuris spp. eggs in faecal samples including direct faecal smear, formalin-ether concentration (FECM) (Ridley and Hawgood, 1956; Allen and Ridley, 1970), sedimentation after fixation with sodium acetate-acetic acid-formalin (SAF) (Gonçalves et al., 2014), Kato-Katz (Katz et al., 1972; Peters et al., 1980), McMaster (WHO, 2008), FLOTAC® (Cringoli, 2006), Mini FLOTAC® and FekPac® (Bosco et al., 2014; Godber et al., 2015).

All these techniques are, unfortunately, not able to differentiate eggs of different Trichuris spp. Then, when eggs in human or non-human primate stool are detected, they are identified as T. trichiura. When eggs are present in samples from dogs or swine, they are identified as Trichuris vulpis or Trichuris suis, respectively. Furthermore, there is evidence of human parasitism with species of Trichuris from dogs (T. vulpis) based on the presence of large eggs in human faecal samples (Correa et al., 1980). Nevertheless, Yoshikawa et al. (1989) observed that eggs obtained from the uteri of T. trichiura were of two sizes, so conclusions based on egg size alone should be treated with caution (Betson et al., 2015).

This scenario is further complicated by the latest discoveries concerning the Trichuris spp. involved in humans and primates. Thus, several authors (Ravasi et al., 2012; Liu et al., 2013; Cutillas et al., 2014; Callejon et al., 2017; Cavallero et al., 2019) reported the existence of various species circulating in the human population and a complex of...
species present in human and non-human primates (NHP). Thus, Bölikbas et al. (2014) concluded that the presence of *T. trichiura* in monkeys in zoos possess a high risk to zookeepers and also to visitors’ welfare due to its zoonotic character, suggesting that an effective parasite control program should be established and stool control should be done regularly for primates.

Morphological studies of *Trichuris* isolated from primates and humans have concluded that the species infecting these hosts is the same, despite slight morphological variations that are distinguishable when scanning electron microscopy is used (Ooi et al., 1993).

García-Sánchez et al. (2019) found strong support for geometric morphometrics as a useful tool to differentiate male *Trichuris* populations parasitizing *Colobus guereza kikuyensis*, *Papio ursinus*, *Macaca sylvanus*, *Pan troglodytes* and *Sus scrofa domestica*. Nevertheless, this kind of analysis has never been applied to *Trichuris* eggs. In the present work, a morphometric study of the eggs of species of *Trichuris Roederer*, 1761 (Nematoda: Trichuridae) parasitizing Non-Human Primates (NHP) (*Macaca sylvanus*, *C. g. kikuyensis*, *Chlorocebus aethiops* and *Cercopithecus neglectus*) has been carried out using, for the first time, geometric morphometric tools.

2. Material and methods

2.1. Sample collection

Trichuris spp. eggs were obtained from four faecal samples from 4 individual primates species kept in captivity. The samples were retrieved from macaque (*Macaca sylvanus*) from Castellar Zoo (Cádiz, Spain), colobus (*Colobus guereza kikuyensis*) from Fuengirola Zoo (Málaga, Spain), grivet (*Chlorocebus aethiops*) from Selwo Aventura Park (Málaga, Spain) and Brazza’s monkey (*Cercopithecus neglectus*) from the Córdoba Zoo (Córdoba, Spain). Previously, molecular analysis was carried out to identify the *Trichuris* species parasitizing macaque, colobus, Brazza’s monkey and grivet (unpublished).

Coproanalyses were performed in two steps, starting with a direct examination of aliquots diluted in saline solution 0.9% and posteriorly a Telemann concentration technique (saline solution-ether-centrifugation) to sediment *Trichuris* spp. eggs. This technique, initially developed by Telemann (1908), is useful for concentrating helminths eggs, which helps to release them from the debris in which they are buried. The sediments obtained were stored in Eppendorf tubes with distilled water and examined afterwards under a stereoscopic microscope.

Initially, each identified egg was isolated with a micropipette, thoroughly washed with distilled water and immediately placed between microscope slides and coverslips with a water-based mounting medium to improve their image and preservation. In order to photograph the eggs without deforming them, they were dried for 24–48 h.

The measurements were made with a microscope (Leitz Dialux 20 EB) at 100x magnification and using image analysis software (ImagePro Plus, version 5.1 for Windows, Media cybernetics, Silver Spring, USA) for images captured by a digital camera (Nikon Coolpix 5400).

2.2. Morphological studies and metric data processing

88 eggs of *Trichuris* sp. were collected from the stool samples (Fig. 1):

![Fig. 1. Trichuris sp. eggs collected from the samples. A. Macaque (*Macaca sylvanus*) B. Colobus (*Colobus guereza kikuyensis*). C. Grivet (*Chlorocebus aethiops*). D. Brazza’s monkey (*Cercopithecus neglectus*). The bar represents 20 μm.](image-url)
31 from macaque, 26 from colobus, 24 from grivet and 7 from Brazza’s monkey.

With the image analysis software, lineal biometric characters, areas and ratios of the eggs were obtained. The principal measurements were:

- Area (μ^2): egg area (A).
- Lineal biometric characters (μ): egg perimeter (P) and egg roundness (R).
- Size ratio (SR): size length over size width.

Egg roundness ($R = P^2/4\pi A$) was used to measure the egg shape. Circular objects always have a roundness of 1.00, while objects that are irregular have larger values, indicating how circular an object is (Anonymous, 2001).

Other measurements obtained from each egg were available in the options of the image analysis software: Area/Box, Box X/Y, Center-X, Center-Y, Axis (major), Axis (minor), Diameter (max), Diameter (min), Diameter (mean), Radius (max), Radius (min), Radius Ratio, Perimeter2, Perimeter (convex), Perimeter (ellipse), Perimeter (ratio), Area (polygon), Center-X (mass), Center-Y (mass), Box Width, Box Height and Perimeter3.

In addition, other lineal measurements (Fig. 2) were specifically assayed in this study due to the lack of standardized parameters. These measurements consider the characteristic shape of these eggs, with their two distinct mucoid polar egg opercula (Fig. 2).

To guarantee the reliability of the study, the measurements of the eggs were always taken by the same researcher.

Morphological variation is quantified by geometric morphometrics (Rohlf and Marcus, 1993), a technique offering an estimate of size where different axes of growth are integrated into a single variable (the "centroid size") (Bookstein, 1989). The estimate of size is contained in a single variable reflecting variation in many directions, as many as there are landmarks under study, and shape is defined as their relative positions after correction for size, position and orientation. With these informative data, and the corresponding software freely available to conduct complex analyses, significant biological and epidemiological features can be quantified more accurately (Dujardin, 2008). Current statistical techniques in morphometrics make it possible to test the null hypothesis of conspecific populations being simply the allometric extension of each other, provided a common allometric trend is identifiable (Rohlf and Marcus, 1993). Multivariate analyses were applied to calculate the phenotypic variations among whipworm eggs, using size-free canonical discriminant analysis on the covariance of log-transformed measurements to assess phenotypic variations between the samples. These analyses are applied to exclude the effect of within-group ontogenetic variations by reducing the effect of each character on the first pooled within-group principal component (a multivariate size estimator) (Dos Reis et al., 1990). The principal component analysis (PCA) is used to summarize most of the variations in a multivariate dataset in a few dimensions (Dujardin and Le Pont, 2004). The resulting “allometry-free”, or size free, variables were submitted to a canonical variate analysis (CVA), and Mahalanobis distances were derived (Mahalanobis, 1936). The Mahalanobis distance is a statistical technique that can be used to measure how distant a point is from the center of a multivariate normal distribution. The degree of similarity between egg populations was assessed through pairwise Mahalanobis distances.

Phenotypic analysis of Trichuris eggs was carried out by using several modules of the CLIC package version 97 (Dujardin and Slice, 2007), which is freely available at http://xyom-clic.eu/the-clic-package/ and BAC v.2 software (Dujardin, 2002; Valero et al., 2009; García-Sánchez et al., 2019), and used for multivariate analyses of the morphometric data. Furthermore, Mahalanobis distances were calculated using CLIC software and tested by nonparametric permutation tests with 1000 iterations each.

A total of 45 measurements were evaluated initially. Considering that the results were statistically significant when $P < 0.05$, the following non-redundant measurements (one measurement is not included in another) for Trichuris eggs were used: L1, L2, L3, L4, L5, L6, L7 and L8, where at least one dimension was measured among the most remarkable morphological characters.

To investigate the statistical properties of the samples, a preliminary Shapiro-Wilk test for normality was carried out. If this test was not significant, the Student’s t test was conducted; if the preliminary test rejects the null hypothesis of normality, the nonparametric Mann-Whitney U test was applied instead. All statistical analyses of the present study were performed with R commander (Rcmdr), the graphical user interface for R software, version 2.5-0.

3. Results

Previous molecular analysis determined the presence of T. colubae in colobus and T. trichiura in macaque and grivet (unpublished). No molecular identification was obtained for Trichuris sp. from Brazza’s monkey.

Statistical tests showed several significant measurements for subsequent morphometric analyses. Therefore, twelve measurements for each population were used: area, perimeter, roundness, size ratio, L1, L2, L3, L4, L5, L6, L7 and L8 (Table 1). The size of Trichuris eggs obtained from NHP samples is shown in Table 1. The study of the influence of the host species on egg phenotypic characteristics was carried out by PCA. Trichuris spp. variables all correlated significantly with PC1, contributing 61% to the overall variation in eggs.

Fig. 2. Trichuris sp. egg lineal measurements. L1: maximum width of polar opercula, L2: minimum width of polar opercula, L3: base width of polar opercula, L4: length of polar opercula, measured from exterior midpoint to the narrow midpoint, L5: total length of polar opercula, measured from the exterior midpoint to the base midpoint, L6: wall thickness at its midpoint, L7: wall thickness in contact with polar opercula, L8: interior length of the egg.
The resulting factor map (Fig. 3) clearly illustrates global size differences in the colobus population versus the other NHP populations, presenting a bigger size in the former. This factor map patently illustrates three zones, corresponding to: a) an area covering eggs from colobus and grivet, which confirms a similar morphological identity; b) an area covering eggs from Brazza’s monkey, with only a partial overlap with the previous area; and c) an area corresponding to colobus.

The degree of similarity between egg populations was assessed through pairwise Mahalanobis distances. These distances were calculated comparing eggs from the host species with each other (Table 2).

When comparing eggs of Trichuris spp., larger distances were detected in the case of macaque vs Brazza’s monkey, macaque vs colobus, colobus vs Brazza’s monkey and grivet vs Brazza’s monkey than in macaque vs grivet and colobus vs grivet. This could mean that grivet is the least divergent community. These results agree with the analysis observed in Fig. 3.

4. Discussion

Trichuriasis has always been described as tropical or subtropical
disease. However, the increase in international travel as well as the arrival of new immigrants have made some tropical diseases realities in developed countries as well. Quick diagnosis has always been a priority to determine the appropriate treatment and prevent fatalities. In addition, now more than ever, advances in diagnostics can help prevent transmission and provide active surveillance. Unfortunately, there have been few major advances in specific diagnostic methods for parasitic infections (Ricciodi and Ndao, 2015).

The differentiation of *Trichuris* spp. is an arduous task. For decades, this identification was based on host the specificity and/or on the morphological characteristics (typical “whip” shape) of the adults of this genus. However, in many cases, these morphological values overlap, and it is difficult to differentiate these species. In fact, several cryptic species (Callejon et al., 2012), synonyms (Oliveros et al., 2000), or new species (Cutillas et al., 2014; Callejon et al., 2017) have been defined in *Trichuris*. The more discriminating molecular methods have shown that not all species previously described by morphometrics will remain truly defined species (Salaba et al., 2013).

Our study provides the first geometric morphometric analysis of eggs of *Trichuris* sp. isolated from stools of macaque (*M. sylvanus*), colobus (*C. g. kikuyensis*), grivets (*C. aesthiops*) and the Brazza’s monkey (*C. neglectus*) from zoos in Spain. PCA arises as an efficient method to analyze *Trichuris* sp. eggs. The selected measurements to be included in the PCA were proposed for the first time in the present work, as far as we know, and we could not find previous studies reporting standardized parameters. Through PCA, we achieved the differentiation of *T. colobae*, obtaining a well-defined area that allows its identification, presenting only a partial overlap zone with *Trichuris* sp. from macaques and grivets. Furthermore, molecular studies corroborated these results. Thus, Cutillas et al. (2014) proposed the existence of a new species of *Trichuris* parasitizing *C. g. kikuyensis: Trichuris colobae*. Furthermore, *Trichuris* sp. from grivet and macaque was demonstrated to be *T. trichiura* by molecular analysis based on ribosomal and mitochondrial markers (unpublished data).

In addition, *Trichuris* sp. from Brazza’s monkey appeared distant from that from colobus, with a partial overlapping area with *Trichuris* sp. from macaque and grivet, but again with a safe assumption of the differentiation of this whipworm from the others. A difficulty in the analysis of this group was that the stool sample was poorly loaded with *Trichuris* eggs and, therefore, only few eggs could be obtained. This fact could reflect climatic and ecological influences on the lifecycle of parasites, as well as potential changes in diet (McLennan et al., 2017) since primates were in different Zoos of Spain. Thus, Rothman et al. (2009) reported that a pinworm, was negatively affected by the level of condensed tannins in the diet, suggesting that the level of tannins may impact this parasite of the gorillas. Given that *Trichuris* sp. from Brazza’s monkey clearly separates in this case, it would be interesting in the future to obtain more eggs of this species to carry out a more consistent PCA analysis followed by molecular studies. Furthermore, we could suggest a possible different species of *Trichuris* parasitizing to the Brazza’s monkey.

On the other hand, the factor map did not show global size differences between macaques and grivets’ *Trichuris* sp., with complete overlapping areas that did not allow the differentiation of these eggs. Both *Trichuris* populations have been molecularly identified as *Trichuris trichiura* (unpublished data), which is the reason that explains this superposition. This fact also clarifies why *Trichuris* eggs from grivet is the least divergent community, considering the values of Mahalanobis distances between *Trichuris* egg groups.

This new identification method allows determining specifically, as molecular studies, which species of *Trichuris* is involved in the transmission of *Trichuriasis* to Non-Human Primates. Therefore, it remarks its importance in epidemiological studies, since it will assist in the identification and control of *Trichuris* in endemic settings. The potential transmission of infectious agents from monkeys and apes to humans is why the study of parasite primates is so significant.

5. Conclusions

This is the first approximation to distinguish *Trichuris* spp. studying the eggs with morphometric analysis. This method is presented as a useful tool to be applied on this field, since it allows to safely differentiate *Trichuris* spp. eggs isolated from different hosts stools. The method also confirmed its usability and utility since the same species appear overlapped in the factor map. Geometric morphometric analysis represents a new methodology that could be applied to future studies to deepen into the relationship between *Trichuris* and their host species.

Funding

This work was supported by the Ministry of Economy, Industry and Competitiveness (CGL2017-83057), which included FEDER funds, the Junta de Andalucía (BIO-338) and the V Plan Propio de Investigación of the University of Seville, Spain.

Declaration of competing interest

No competing interests exist.

References

Allen, A.V., Ridley, D.S., 1970. Further observations on the formel-ether concentration technique for faecal parasites. J. Clin. Pathol. 23, 545.

Anonymous, 2001, The Proven Solution for Image Analysis. Image-Pro Plus, Version 5.1 for WindowsTM, Start-Up Guide. Media Cybernetics Inc., Silver Spring, Maryland, USA, pp. 1–16.

Betox, M., See, M.J., Nejsum, P., 2015. Human trichuriasis: whipworm genetics, phylogeny, transmission and future research directions. Curr. Trop. Med. Rep. 2, 209.

Bolíkbač, K., Pekmezci, G.Z., Guler, T., Acci, M., Umur, S., 2014. Zoonotic *Trichuris trichiura* infections in non-human primates at Sannoo zoo, Turkey: first molecular characterization. Kafkas Univ. Vet. Fak. Derg. 20.

Bookstein, F.L., 1989. Size and shape: a comment on semantics. Syst. Zool. 38, 173–180.

Bosco, A., Rinaldi, L., Maurelli, M.P., Musella, V., Coles, G.C., Cringoli, G., 2014. The comparison of FLOTAC, FECOPACK and McMaster techniques for nematode egg counts in cattle. Acta Parasitol. 59, 625–628.

Callejon, R., Halajian, A., de Rojas, M., Marrugal, A., Guevara, D.C., Cutillas, C., 2012. 16S partial gene DNA and internal transcribes spacers ribosomal DNA as differential markers of *Trichuris discolur* populations. Vet. Parasitol. 186, 350–363.

Callejon, R., Halajian, A., Cutillas, C., 2017. Description of a new species, *Trichuris usnina* n. sp. (Nematoda: Trichuridae) from *Papio usnina* keer, 1792 from South Africa. Infect. Genet. Evol. 51, 182–193.

Cavallero, S., Nejsum, P., Cutillas, C., Cellajeon, R., Dolzelavólo, J., Modry, D., D’Amelio, S., 2019. Insights into the molecular systematics of *Trichuris* infecting captive primates based on mitochondrial DNA analysis. Vet. Parasitol. 272, 23–30.

Correa, L.L., Yamanaka, M.T., Correa, M.O.A., Silva, M.L.P.G., Silva, R.M., 1980. Ocorrência de ovos grandes de *Trichuris trichiura* em fezes humanas. Rev. Int. Adolfo Lutz. 46, 59–64.

Cringoli, G., 2006. FLOTAC, a novel apparatus for a multivalent faecal egg count technique. Parasitologia 48, 381–384.

Cutillas, C., De Rojas, M., Zutta, A., Oliveros, R., Callejon, R., 2014. *Trichuris colobae* n. sp. (Nematoda: Trichuridae), a new species of *Trichuris* from Colobus guereza kikuyensis. Parasit. Res. 113, 2725–2732.

Dos Reis, S.P., Pessoa, L.M., Straus, R.E., 1990. Application of size-free canonical discriminant analysis to studies of geographic differentiation. Braz. J. Genet. 13, 509–526.

Dujardin, J.P., 2002. BAC software. Institut de Recherches pour le Développement (IRD), France. Available at: http://www.irdf.org/copyleft/gpl.html. Accessed 20 March 2020.
Ooi, H.K., Tenora, F., Itoh, K., Kamiya, M., 1993. Comparative study of Mahalanobis, P.C., 1936. On the generalised distance in statistics. Proc. Natl. Acad. Sci. Godber, O.F., Phythian, C., Bosco, A., Ianniello, D., Coles, G., Rinaldi, L., Cringoli, G., Dujardin, J.P., Le Pont, F., 2004. Geographical variation of metric properties within the McLennan, M.R., Hasegawa, H., Bardi, M., Huffman, M.A., 2017. Gastrointestinal García-S Fenwick, A., 2012. The global burden of neglected tropical diseases. Publ. Health 126, Motarjemi, Y., Moy, G., Todd, E.C.D. (Eds.), 2014. Encyclopedia of Food Safety. Elsevier, Dujardin, J.P., Slice, D., 2007. Contributions of morphometrics to medical entomology. Dujardin, J.P., 2008. Morphometrics applied to medical entomology. Infect. Genet. Evol. 8, 875–890, Fenwick, A., 2012. The global burden of neglected tropical diseases. Publ. Health 126, 233–236, García-Sánchez, A.M., Rivero, J., Callejón, R., Zurita, A., Reguera-Gomez, M., Valero, M. A., Catillás, C., 2019. Differentiation of Trichuris species using a morphometric approach. Int. J. Parasitol. Parasites Wildl. 9, 218–223, Godber, O.F., Phythinian, C., Bosco, A., Ianniello, D., Coles, G., Rinaldi, L., Cringoli, G., 2015. Comparison of the FECTPAR and Mini-FLOTAC faecal egg counting techniques. Vet. Parasitol. 207, 342–345, Gonçalves, A.Q., Abellana, R., Pereira-da-Silva, H.D., Santos, I., Serra, P.T., Julião, G.R., Orlandi, P.P., Ascaso, C., 2014. Comparison of the performance of two spontaneous sedimentation techniques for the diagnosis of human intestinal parasites in the absence of a gold standard. Acta Trop. 131, 63–70, Katz, N., Chave, A., Pellegrino, J., 1972. A simple device for quantitative stool thick smear technique in Schistosoma mansoni. Rev. Inst. Med. Trop. Sao Paulo 14, 397–400, Liu, G.H., Gasner, R.B., Nejsum, P., Wang, Y., Chen, Q., Song, H.Q., Zha, X.Q., 2013. Mitochondrial and nuclear ribosomal DNA evidence supports the existence of a new Trichuris species in the endangered François’ leaf-monkey. PloS One 8, e66249, Mahalanobis, P.C., 1936. On the generalized distance in statistics. Proc. Natl. Acad. Sci. India 12, 49–55, McLennan, M.R., Hasegawa, H., Bardi, M., Huffman, M.A., 2017. Gastrointestinal parasite infections and self-medication in wild chimpanzees surviving in degraded forest fragments within an agricultural landscape mosaic in Uganda. PloS One 12 (7), e0180431, https://doi.org/10.1371/journal.pone.0180431, Motarjemi, Y., Moy, G., Todd, E.C.D. (Eds.), 2014. Encyclopedia of Food Safety. Elsevier, Amsterdam, p. 2304, Oliveros, R., Cuillas, C., De Rojas, M., Arias, P., 2000. Characterization of four species of Trichuris (Nematoda: enoplida) by their second intracellular transcribed spacer ribosomal DNA sequence. Parasitol. Res. 86, 1008–1013, Oot, H.K., Tenora, F., Itoh, K., Kamiya, M., 1993. Comparative study of Trichuris trichiura from nonhuman primates and form man, and their differences with Trichuris suis. J. Vet. Med. Sci. 55, 363–366, Peters, P.A., El Alamy, M., Warren, K.S., Mahmoud, A.A.F., 1980. Quick Kato smear for field quantification of Schistosoma mansoni eggs. Am. J. Trop. Med. Hyg. 29, 217–219, Ravasi, D.F., O’Riain, M.U., Davids, F., Illing, N., 2012. Phylogenetic evidence that two distinct Trichuris genotypes infect both humans and non-human primates. PloS One 7, e44187, Ricciardi, A., Ndao, M., 2015. Diagnosis of parasitic infections: what’s going on? J. Biomol. Screen 20, 6–21, Ridley, D.S., Hawgood, B.C., 1956. The value of formol-ether concentration of faecal cysts and ova. J. Clin. Pathol. 9, 74, Rohlf, F.J., Marcus, L.F., 1993. A revolution in morphometrics. Trends Ecol. Evol. 8, 129–132, Rothman, J.M., Pell, A.N., Bowman, D.D., Huffman, Michael A., Colin, A., 2009. How does diet quality affect the parasite ecology of mountain gorillas? Primate Parasite Ecology. In: The Dynamics and Study of Host-Parasite Relationships,. Chapman, Published by Cambridge University Press. C Cambridge University Press 2009, Salaba, O., Rykova, K., Vadleej, J., Petrijí, M., Schánková, S., Ibrozová, A., Jankovská, I., Jevavý, L., Langrová, I., 2013. The first determination of Trichuris sp. from roe deer by amplification and sequencing of the ITS1–5.8 S-ITS2 segment of ribosomal DNA. Parasitol. Res. 112, 955–960, Stephenson, L., Latham, M., Ottesen, E., 2000. Malnutrition and parasitic helminth infections. Parasitology 121, S23–S38, Talseen, Q., 2018. Helminth parasites: the cause of distress and diseases. In: Pal Singh, P. (Ed.), Infectious Diseases and Your Health. Springer, Singapore, pp. 135–187, Telemann, W., 1908. Eine Methods zur Erleichterung de Auffindung von Parasiteneiern in de Faeces. Dtsch. Med. Wochenschr. 34, 1510–1511, Valero, M.A., Perez-Crespo, I., Periago, M.V., Khoubbane, M., Mas-Coma, S., 2009. Fluke egg characteristics for the diagnosis of human and animal fascioliasis by Fasciola hepatica and F. gigantica. Acta Trop. 111, 150–159, Webster, J.P., Molyneux, D.H., Hotez, P.J., Fenwick, A., 2014. The contribution of mass drug administration to global health: past, present and future. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, 20130434, WHO, 2008. Monitoring Anthelmintic Efficacy for Soil Transmitted Helminths (STH). World Health Organization, Geneva, Yoshikawa, H., Yamada, Y., Matsumoto, Y., Yoshida, Y., 1989. Variations in egg size of Trichuris trichiura. Parasitol. Res. 75, 649–654.