Abstract

While humans use natural language to express spatial relations between and across entities in the world with great facility, natural language systems have a facility that depends on that human facility. This position paper presents FrameNet’s approach to representing spatial relations in language, and advocates its adoption for representing the meaning of spatial language. This work shows the importance of axis-orientation systems for capturing the complexity of spatial relations, which FrameNet encodes with semantic types.

1 Introduction

While humans use natural language to express spatial relations across entities in the world with great facility, natural language systems have a facility that depends on that human facility. (See (Mikolov et al., 2013) for a different perspective.) Natural Language Processing (NLP) applications such as robotic systems responding to commands about objects in a scene require accurate information on the spatial relations among those objects. In addition to determining what information to provide is the challenge of determining how to represent such information. This work presents the Frame Semantics view on representing spatial language, specifically as given in FrameNet (FN).

The rest of this position paper is organized as follows; Section 2 presents basic information about FN, including its current status; Section 3 provides a brief overview of related work; Section 4 covers the different kinds of spatial information that FN has recorded, including semantic types for characterizing spatial relation language, two of which constitute innovations over prior work; Section 5 shows how employing FN’s spatial information can benefit NLP; and Section 6 briefly discusses FrameNet’s plans for future work on the language of spatial relations. Importantly, expanding FN’s coverage for representing spatial relations is possible given existing FN infrastructure, i.e. frames, frame elements, and frame-to-frame relations, as well as semantic types.

2 Background to FrameNet

This section provides a very brief overview of FN, with information about its foundational principles and its relatively recent attention to basic linguistic phenomena that pose challenges to NLP, including the language of spatial relations, as well as details about its current status.

2.1 Frame Semantics and FrameNet

Frame Semantics (Fillmore, 1985) is the theoretical basis of FrameNet (Ruppenhofer et al., 2016), a knowledge base building effort, whose product, the FN database, is useful in NLP applications. Central to the theory is the semantic frame (Fillmore, 1975), a schematic representation of a scene, whose frame elements (FEs), or semantic roles, identify participants and other conceptual entities, and whose underlying conceptual structure humans access for both encoding and decoding purposes. FrameNet adopted the lexical unit (LU) as the focus of analysis, defining an LU as a pairing of a lemma and a frame (Cruse, 1986).

FrameNet also distinguishes core and non-core frame elements. Thus, core FEs uniquely define a frame: BUYER, SELLER, MONEY, and GOODS uniquely define frames that constitute the Commercial_transaction family of frames. In contrast, non-core FEs are relevant to events or situations in general; all events and situations occur at a time and in a place. The non-core

2Frame Element names appear in SMALL CAPS.
3Frame names appear in typewriter font.

1http://framenet.icsi.berkeley.edu

Proceedings of the First International Workshop on Spatial Language Understanding (SpLU-2018), pages 41–45
New Orleans, Louisiana, June 6, 2018. ©2018 Association for Computational Linguistics
FE Place is of particular importance for spatial relations (and is discussed further below).

FrameNet defines Spatial_contact as a scene in which a Figure is located in contact with a Ground. With some words, the Figure is also asserted as fully or partially supported by the Ground (e.g. on), while in others a support relation is denied (e.g., to, as in She put her hand to the wall), or unspecified (e.g. against). Some LUs assert a direction in which to find the Figure from the Ground (e.g., atop).

Consider the two example sentences below that instantiate the Spatial_contact frame, where each realizes the Figure and the Ground FEs.

1. Then [Maria Figure] fell and lay on [the floor Ground].

2. There were [a hat and feathers Figure] atop [the lid Ground].

Contrast on and atop: on allows any direction of contact (on the {ceiling, wall, ground}), while atop specifies a particular direction of contact, i.e., above the Ground. FN encodes such differences in a set of semantic types that specify axis systems and directions, based on these axis systems.

2.2 Current Status of FrameNet

At the time of this writing, the FN database holds over 1,220 frames, 13,640 LUs, and nearly 202,230 annotated sentences. Of importance here, FrameNet has defined 29 spatial language frames, covering 409 LUs that describe spatial relations, and approximately 4,200 annotated sentences, along with six semantic types for distinguishing spatial relation LUs.

3 Related Work

Linguists, computational linguists, and NLP researchers in particular, have studied spatial relations in language, and for the sake of developing annotation schema and NLP systems that take such information into consideration.

For example, (Dorr and Voss, 1993), addressed spatial relations for defining the relation between an interlingua and a system for representing knowledge in machine translation. Pursuing machine translation (Voss et al., 1998) investigated how the semantics of a spatial expression is allocated lexically.

(Jackendoff, 1996) considered how language users talk about what they see, addressing how the mind might encode spatial information and linguistic information, as well how it might communicate between the two. That work also laid out some of the "boundary conditions for a satisfactory answer to these questions" (1996:3), and defined an approach to spatial representation. In a somewhat similar vein (as a contribution to cognitive semantic theory of conceptual structure), albeit from a different perspective, (Talmy, 2003) presented an approach to spatial representation that encompasses spoken and signed language.

More practically-oriented recent work (Kipper et al., 2004) expanded a verb lexicon (Kipper et al., 2000) using prepositions, i.e., linguistic material that encodes spatial information, extrapolating information about classes of verbs and their syntactic frames from (Levin, 1993). The annotation of spatial relations in language (Pustejovsky et al., 2011) constituted the focus of a workshop on interoperable semantic annotation, and included work on spatial role labeling with an eye toward extracting spatial information from corpora (Kordjamshidi et al., 2011) that also led to multimodal spatial role labeling (Kordjamshidi et al., 2017).

4 Spatial Information in FrameNet

This section describes the kind of information that FN provides about spatial relations, i.e., frames that characterize spatial relations, non-core FEs that indicate location of an event or an entity, frame-to-frame relations that link the relevant frames, and semantic types that give specific semantic information beyond a frame description or a LU definition.

4.1 Non-Core Frame Elements

An advantage of FrameNet as a resource for spatial language is that FN also models non-spatial language. This feature is especially important since spatial and non-spatial language are not completely separable. Most frames in FrameNet include one or more spatial FEs, the most common of which are Place, present in all frames that inherit from Event, as in # 3, and Location_of_protagonist, available in all frames with a causal entity (e.g. Cause) as in # 4, or a perceiver (e.g. Experiencer).

3. The hiker Died [in Antarctica Place].

4. She Tested the bomb [from a safe distance Location_of_protagonist].
4.2 Frames and Frame Relations

Frames represent situations and states of affairs at a level of generalization that recognizes the commonalities within and across sets of semantically related lexical items. FN records several frame-to-frame relations to indicate how frames relate to each other in its hierarchy of frames; Inheritance and Using are the relevant ones for spatial relations language. Frames that inherit Locative_relation capture the lexical material for spatial relations in English.\(^4\)

Inheritance exists between a parent frame and a child frame under specific circumstances: for each FE, frame relation, and semantic characteristic in the parent, the same or a more specific corresponding entity in the child exists, as in the relationship between Locative_relation and Interior_profile_relation. Using is a relationship between a child frame and parent frame in which only some of the FEs in the parent have a corresponding entity in the child; if such exist, they are more specific. Using holds between Interior_profile_relation and Bounded_region.

![Inheritance and Using Relations](image)

Figure 1: Inheritance and Using Relations

Figure 1 depicts some frames related to the Locative_relation frame via Inheritance, some of which also employ the Using relationship. Note that a frame may inherit one frame and use another: Goal inherits Locative_relation and uses Source_path.goal.\(^5\)

The static spatial relations frames inherit from Locative_relation, which defines the basic situation where the FIGURE entity has a location that is determined by means of a relation to the GROUND, another entity. These static spatial relations all share this basic structure; moreover, each specific frame also holds a Using relation to an image schema\(^6\) that defines the relation between the FIGURE and the GROUND.

FrameNet models the lexical unit in as a member of the Interior_profile_relation frame (which inherits Locative_relation). Its frame elements include FIGURE, the located entity and GROUND, the basis of the location. Interior_profile_relation uses the Bounded_region image schema, which defines a boundary, an inside, and an outside. Part of Using specifies that the FIGURE identifies the inside region, and the GROUND identifies the boundary. FN distinguishes among other LUs by defining them in different related frames in this family (of frames) and via semantic types that cross-cut frame distinctions.

4.3 Semantic Types

Linguists, anthropologists, and computer scientists have studied the cognitive, cultural, linguistic, and computational aspects of space and spatial relations for decades (Herskovitz, 1987; Bowernan and Pederson, 1992; Regier, 1996; Levinson, 2003). FrameNet has defined a cognitively-inspired set of semantic types for spatial LUs to indicate (1) with respect to which axis-system(s) (Talmy, 2000) a given LU is defined, and (2) which direction(s) from these axes the active zone of a given LU selects.

Semantic Type	Example	
Basic Axis System	Absolute	
	Viewpoint-based	to the east of Pam
	Motion-based	to the left of Sue
	Ground-based	ahead of Paul to Chuck’s left
FN Added	Near absolute	atop the tree
	Flexible	in front of her

Table 1: Semantic Types for Spatial Relations

As Table 1 shows, the basic axis systems include four types: absolute (to the east of X); viewpoint-based (to the left of X); motion-based (ahead of X); and ground-based (to X’s left). FrameNet has defined a semantic type for each of these four possibilities. Besides semantic types

\(^4\)https://tinyurl.com/y7jpt9hd. FN team members are well-aware that the work has only begun.

\(^5\)The careful reader will note the “incorrect” direction of the arrows in Figure 1, which follows conventions that FrameNet uses.

\(^6\)Image schemas (Lakoff and Johnson, 1980) are cognitive models, such as of containment, oppositional forces, and verticality, which language users apply to understand and reason about the world. FN characterized image schemas as frames.
named with the terminology of the basic axis
systems, FN has defined two other new seman-
tic types: Near_absolute (atop) and Flexible (in
front). These two semantic types innovate on pre-
vious work (Talmy, 2000), and derive from FN’s
fairly recent work on spatial relations.

Using semantic types for each direction in each
axis system would seem like a simple enough
modeling choice. However, LUs exhibit patterns
whereby a default axis system is overridden un-
der specific conditions. Thus, for example, some
LUs inflexibly select an absolute direction (e.g.,
est); some normally select an absolute direc-
tion, but allow a ground-based one (atop); and
some default to a ground-based direction, but al-
low viewpoint-based or motion-based direction (in
front). FrameNet’s semantic types specify the pat-
tern of axis ambiguity a LU exhibits.

5 Operationalization

FrameNet’s models of spatial language consist of
frames, frame relations, and semantic types, all
static and abstract. However, using FrameNet’s
models for visual scene understanding requires
grounded and flexible implementations. As such,
the machinery needed to match a spatial descrip-
tion like the cow IN FRONT of the train to an im-
age requires the following: (1) object recognition
of the GROUND (train); (2) image parsing for each
axis system centered on the train (since in front is
a flexible lexical unit); and (3) recognition of the
FIGURE (cow) in the forward-pointing vector for
each axis system.

FrameNet contributes in three critical ways to
this matching process, by providing the following:

1. training data showing the manifestation of the
FIGURE and GROUND roles in language;
2. an inventory of frames for spatial situa-
tions that any system must recognize (e.g.
Containment, Contact);
3. an inventory of semantic types for axis sys-
tems and their vectors.

Crucially, FrameNet’s semantic types distinguish
the flexible LU in front from a Motion_based LU
(ahead), where only the motion-based forward
zone of the train is scanned.

6 Future Work

This position paper has described FrameNet’s
work on static spatial relations. It has shown that
FN provides critical information for certain NLP
applications that require input for the processing
of spatial relations language.

Going forward and with sufficient resources,
FrameNet plans to analyze other types of spatial
relations language, including the following:

- Dynamic spatial relations language, e.g. to,
from, as in:

 She went TO the lake FROM the house.

- Pseudo-dynamic spatial relations, e.g. across,
as in:

 She lives ACROSS the bridge.

- Constructions (Kay and Fillmore, 1999; Fill-
more, 2013) that license static spatial rela-
tions to be construed as GOALS, as in:

 I went UNDER the bridge.

Preliminary studies of the other types of spatial
language indicate that FN’s existing system of
frames, frame elements, frame-to-frame relations,
and semantic types will serve as a solid foundation
for future work.

References

Melissa Bowerman and Eric Pederson. 1992. Topolog-
ical relations picture series. In Stephen C. Levinson,
editor, Space Stimuli Kit 1.2. Max Planck Institute
for Psycholinguistics, Nijmegen.

D.A. Cruse. 1986. Lexical Semantics. Cambridge Uni-
versity Press, Cambridge, UK.

Bonnie J. Dorr and Clare R. Voss. 1993. Machine
translation of spatial expressions: Defining the rela-
tion between an interlingua and a knowledge rep-
resentation system. In Proceedings of the 11th Na-
tional Conference on Artificial Intelligence. Wash-
ington, DC, USA, July 11-15, 1993., pages 374–379.
Charles J. Fillmore. 1975. An alternative to check-list theories of meaning. *Proceedings of the First Annual Meeting of the Berkeley Linguistics Society, 1:123–131.*

Charles J Fillmore. 1985. Frames and the semantics of understanding. *Quaderni di semantica, 6(2):222–254.*

Charles J. Fillmore. 2013. Berkeley construction grammar. In Thomas Hoffmann and Graeme Trousdale, editors, *Oxford Handbook of Construction Grammar.* Oxford University Press, Oxford.

Annette Herskovitz. 1987. *Language and Spatial Cognition: An interdisciplinary study of the prepositions in English.* Studies in Natural Language Processing. Cambridge University Press, Cambridge.

Ray Jackendoff. 1996. The architecture of the linguistic-spatial interface. In P. Bloom, M. Peterson, L. Nadel, and M. Garrett, editors, *Language and Space,* pages 1–30. MIT Press, Cambridge.

Paul Kay and Charles J. Fillmore. 1999. Grammatical constructions and linguistic generalizations: The what’s x doing y? construction. *Language, 75(1):1–33.*

Karin Kipper, Hoa Trang Dang, and Martha Palmer. 2000. Class-based construction of a verb lexicon. In *Proceedings of the Seventeenth National Conference on Artificial Intelligence and Twelfth Conference on Innovative Applications of Artificial Intelligence,* pages 691–696. AAAI Press.

Karin Kipper, Benjamin Snyder, and Martha Palmer. 2004. Using prepositions to extend a verb lexicon. *Proceedings of the HLT/NAACL Workshop on Computational Lexical Semantics,* pages 23–29.

Kordjamshidi, Parisa, Martijn Van Otterlo, and Marie-Francine Moens. 2011. Spatial role labeling: Towards extraction of spatial relations from natural language. *ACM Trans. Speech Lang. Process., 8(3):4:1–4:36.*

Parisa Kordjamshidi, Taher Rahgooy, Marie-Francine Moens, James Pustejovsky, Umar Manzoor, and Kirk Roberts. 2017. Clef 2017: Multimodal spatial role labeling (msprl) task overview. In Jones G. et al., editor, *Lecture Notes in Computer Science, vol. 10456,* pages 367–377. Springer, Cham.

George Lakoff and Mark Johnson. 1980. *Metaphors we Live by.* University of Chicago Press, Chicago.

Beth Levin. 1993. *English Verb Classes and Alternations: A Preliminary Investigation.* University of Chicago Press, Chicago.

Stephen C. Levinson. 2003. *Space in Language and Cognition: Explorations in Cognitive Diversity.* Language Culture and Cognition. Cambridge University Press.