ON OPERATOR-VALUED FREE CONVOLUTION POWERS.

D. SHLYAKHTENKO

Abstract. We give an explicit realization of the \(\eta \)-convolution power of an \(A \)-valued distribution, as defined earlier by Anshelevich, Belinschi, Fevrier and Nica. If \(\eta : A \to A \) is completely positive and \(\eta \geq \text{id} \), we give a short proof of positivity of the \(\eta \)-convolution power of a positive distribution. Conversely, if \(\eta \not\geq \text{id} \), and \(s \) is large enough, we construct an \(s \)-tuple whose \(A \)-valued distribution is positive, but has non-positive \(\eta \)-convolution power.

1. Introduction.

In this note, we investigate the question of positivity of \(\eta \)-free convolution powers of an \(A \)-valued distribution. Such \(\eta \)-convolution powers were introduced by Anshelevich, Belinschi, Fevrier and Nica in \cite{1}, following a question due to Bercovici. For \(A = \mathbb{C} \) these correspond to the free convolution powers considered by Nica and Speicher \cite{2}. The main theorem of \cite{1} is a generalization (with a rather complicated proof) of a result from \cite{2}: if \(\mu \) is a positive \(A \)-valued distribution and \(\eta : A \to A \) is a completely positive map so that \(\eta - \text{id} \) is completely positive, then the convolution power \(\mu \boxast \eta \) is also positive.

In the case that \(A = \mathbb{C} \), a simple proof of this theorem exists: for \(t > 1 \), the convolution powers \(\mu^{\boxast t} \) are realized (after some rescaling) in an explicit way by starting with some random variable \(X \) with distribution \(\mu \) and compressing \(X \) to a suitable projection which is free from \(X \) (see the appendix to \cite{2} by Voiculescu).

We construct an explicit realization of the distribution of \(\mu^{\boxast \eta} \) as the distribution of \(v^*Xv \), where \(X \) has distribution \(\mu \), and \(v \) is a certain specially constructed element free from \(X \) with amalgamation over \(A \) \((v \) is a multiple of isometry if \(\eta(1) \) is a multiple of \(1 \)). Positivity of the distribution of \(v^*Xv \) is then immediate. The condition \(\eta \geq \text{id} \) appears naturally in the construction of \(v \). Our construction can be viewed as a version of the proof of an explicit realization of \(\mu^{\boxast t} \) using free compression and the Fock space model given in \cite{6}.

Research supported by NSF grant DMS-0900776.
In addition, we prove a converse to the theorem of Anshelevich et al: if \(\eta - \text{id} \) is not completely positive, for \(s \) large enough, there is an \(s \)-tuple which has a positive joint \(A \)-valued distribution, but so that the \(\eta \)-convolution power of this distribution is not positive.

Acknowledgements. The author is grateful to M. Anshelevich and S. Curran for several discussions on this topic.

1.1. \(A \)-valued distributions and realizability in a \(C^* \)-probability space. We refer the reader to the book [3] for some background on operator-valued free probability theory. Let \(A \) be a unital \(C^* \)-algebra. Recall that an \(A \)-probability space \([8, 7]\) is a unital \(* \)-algebra \(B \supset A \) together with a conditional expectation (i.e, an \(A \)-linear map) \(E_B^A : B \to A \). For \(X \in B \) and a non-commutative monomial \(W = a_0Xa_1X \cdots Xa_m \), the value \(E_B^A(W) \) is called the non-commutative (\(A \)-valued) moment of \(X \); the map \(\mu : W \mapsto E_B^A(W) \) is called the (\(A \)-valued) distribution of \(X \). We say that an \(A \)-valued distribution \(\mu \) is positive if it is possible to find some \(C^* \)-algebra \(B \), a positive \(A \)-linear map \(E_B^A : B \to A \) and \(X \in D \) so that the \(A \)-valued distributions of \(X \) is exactly \(\mu \). We say that such an \(X \) realizes \(\mu \).

Positivity is an important property of an \(A \)-valued distribution; for \(A = \mathbb{C} \) positivity of a distribution corresponds to positivity of a probability measure.

1.2. Free cumulants \(\omega^X_k \). Associated to any \(A \)-valued distribution \(\mu \) one has a sequence of \(\mathbb{C} \)-multilinear maps \(\omega^\mu_k : A^{k-1} \to A \) called the free cumulants of \(X \) (here \(\omega^\mu_1 \) is simply an element of \(A \)) \([8, 7]\). Let \(Q \) be the universal algebra generated by elements \(L_1^\dagger, L_0, L_1, \ldots \) and \(A \) subject to the relations:

\[
L_0 = \omega^\mu_1 \in A \subset Q
\]

\[
L_1^\dagger a_1L_1^\dagger a_2L_1^\dagger a_3 \cdots L_1^\dagger a_kL_k = \omega^\mu_{k+1}(a_1, \ldots, a_k) \in A \subset Q.
\]

Finally, let \(E_A^Q : Q \to A \) be determined by requiring that \(E_A^Q|_A = \text{id} \) and that for any non-commutative monomial \(W \) in elements of \(A, L_1, L_2, \text{etc.} \), \(E_A^Q(W) = 0 \) unless \(W \) can be reduced to an element of \(A \) using the relations \((1.1)\). Then the sequence \(\{\omega^\mu_k\}_{k \geq 1} \) is uniquely determined by the requirement that if we set \(Y = L_1^\dagger + \sum_{k \geq 0} L_k \), the \(A \)-valued distribution of \(Y \) is \(\mu \).

1.3. \(\eta \)-free convolution powers. Let \(\mu \) be an \(A \)-valued distribution, and let \(\eta : A \to A \) be a linear map. Define a new distribution \(\mu^{\eta \circ \mu} \) by requiring that its free cumulants are given by \(\omega^{\mu^{\eta \circ \mu}}_k = \eta \circ \omega^\mu_k \). This
distribution is called, by definition, the η-convolution power of μ (see equation (1.4) in [1]).

2. An explicit realization of the η-convolution powers.

2.1. Construction of the operator $v \in (C, E^C_A)$. Let A be a C^*-algebra, let $\psi : A \to A$ be a completely-positive map, and let $\eta = \psi + \text{id}$. Let \mathcal{H} be an A, A Hilbert bimodule and $\xi \in \mathcal{H}$ be such that $
abla \xi = \psi(a)$. Let $\mathcal{K} = \mathcal{H} \oplus A$ with the inner product $\langle h \oplus a, h' \oplus a' \rangle_{\mathcal{K}} = \langle h, h' \rangle_{\mathcal{K}} + a_1 a'$. Then \mathcal{K} is an A, A Hilbert bimodule with the diagonal left and right actions of A. Finally let $F^C_A = A \oplus \mathcal{K} \oplus \mathcal{K} \otimes_A \mathcal{K} \oplus \cdots \oplus \mathcal{K}^n \oplus \cdots$ be the full Fock space associated to \mathcal{K} (see [3, 7]). We view F^C_A as an A, A-bimodule using the diagonal left and right actions of A. We’ll denote the left action of A on F by λ.

Let us denote by v the operator $v : F \to F^C_A$, $\zeta_1 \otimes \cdots \otimes \zeta_n \mapsto (\xi 1) \otimes \zeta_1 \otimes \cdots \otimes \zeta_n$. Then an easy computation shows that $v^* \lambda(a) v = \lambda(\eta(a))$.

Finally, for a bounded adjointable right A-linear operator $T : F \to F$, set $E^C_A(T) = \langle 0 1, T(0 1) \rangle_{\mathcal{F}}$, where we regard $0 1 \in \mathcal{K} \subset F$. Then

$$E^C_A(v \lambda(a) v^*) = \langle 0 1, v \lambda(a) v^*(0 1) \rangle_{\mathcal{F}} = \langle 0 1, v 1 \lambda(a) \rangle_{\mathcal{F}} = \langle 0 1, \xi 1 \rangle_{\mathcal{F}} = a.$$

Letting $C = C^*(\lambda(A), v)$, we note that (C, E^C_A) is an A-probability space. We’ll also identify A with $\lambda(A)$.

Remark 2.1. (i) Note that $v^* v = \lambda(1)v = \eta(1)$. Thus if $\eta(1) = \alpha 1$ with $\alpha \in \mathbb{R}$, then $\alpha^{-1/2} v$ is an isometry. For general η, v is not an isometry. (ii) In the case that $A = \mathbb{C}$ and $\eta(a) = \lambda a$, $\lambda \in [1, +\infty)$, the conditional expectation E^C_A is non-tracial. Indeed, we have that $E^C_A(vv^*) = E^C_A(v 1 v^*) = 1$ but $E^C_A(v^* v) = E^C_A(\alpha) = \lambda$.

2.2. **The main result.** Let \(X \in (B, E_A^B) \) and assume that \(X \) has \(A \)-valued distribution \(\mu \). We will now compute the \(A \)-valued distribution of \(\hat{X} = vXv^* \).

Proposition 2.2. Assume that \(\psi : A \to A \) is a completely-positive map, and let \(\eta = \psi + \text{id} \) and let \(v \in (C, E_C^A) \) be as in \(\text{[2.1]} \). Let \(B \) be a \(C^* \)-algebra and \(E_A^B : B \to A \) be a positive \(A \)-linear map. Let \(X = X^* \in B \) having distribution \(\mu \). Consider \((M, E_A^M) = (B, E_A^B) \ast_A (C, E_C^A)\), let \(\hat{X} = vXv \), and let \(\hat{\mu} \) be the distribution of \(\hat{X} \). Then the free cumulants \(\omega_k^\mu \) satisfy:

\[
\omega_k^\mu = \eta \circ \omega_k^\mu.
\]

In particular, the \(A \)-valued distribution of \(\hat{X} \) is positive.

Proof. Consider \((N, E_A^N) = (B, E_A^B) \ast_A (Q, E_Q^A)\), and let \(Y = L^1 + \sum_{k \geq 0} L_k \in Q \) be as in \(\text{[1.2]} \). Let \(\hat{Y} = vYv \).

The \(A \)-valued distribution of \(X' \) is the same as the \(A \)-valued distribution of \(Y' \).

Since \(Q \) is free from \(B \) with amalgamation over \(A \), we may thus assume \([3]\) that \(L^1 \) and \(L_k \) satisfy the relations

\[
L^1b_1L^1b_2L^1b_3 \cdots L^1b_kL_k = \omega_{k+1}^\mu(E_A^C(b_1), \ldots, E_A^C(b_k)), \quad b_j \in C
\]

and moreover for any monomial \(W \) in elements of \(C \) and \(L^1, L_1, L_2, \ldots, E_A^N(W) = 0 \),

Let \(\hat{L}^1 = vL^1v \) and \(\hat{L}_k = vL_kv \). Then we have:

\[
\hat{L}^1a_1\hat{L}^1a_2 \cdots \hat{L}^1a_k\hat{L}_k = v^*L^1va_1v^*L^1va_2 \cdots v^*L^1va_kv^*L_kv = v^*\omega_{k+1}^\mu(E_A^C(va_1v^*), \ldots, E_A^C(va_kv^*))v = v^*\omega_{k+1}^\mu(a_1, \ldots, a_k)v = \eta(\omega_{k+1}^\mu(a_1, \ldots, a_k)).
\]

Moreover, if \(W \) is a non-commutative monomial in elements of \(A \) and \(\hat{L}^1, \hat{L}_1, \hat{L}_2, \ldots \), then \(E_A^N(W) = 0 \) unless \(W \) can be reduced to an element of \(A \) using this relation. It then follows that if \(\hat{\mu} \) is the distribution of \(\hat{Y} \) (and is the same as the distribution of \(\hat{X} \)), then its free cumulants are given by

\[
\omega_k^\hat{\mu} = \eta \circ \omega_k^\mu.
\]

This completes the proof. \(\square \)

Theorem 2.3. Let \((B, E_A^B)\) be an \(A \)-probability space and let \(X \in B \) be a random variable whose \(A \)-valued distribution \(\mu \) is positive. Let \(\eta : A \to A \) be completely-positive map so that \(\eta - \text{id} \) is completely positive. Let \(\hat{X} = vXv^* \) be as in Proposition \(2.2 \).
Then the distribution of \(\hat{X} \) is the same as that of the \(\eta \)-convolution power \(\boxplus_1 X \boxplus_1 \); in other words, \(v^* X v \) is an explicit realization of \(\mu^{\boxplus \eta} \).

In particular, the \(A \)-valued distribution of \(\mu^{\boxplus \eta} \) is also positive.

Proof. Let \(\psi = \eta - \text{id} \), so that \(\eta = \psi + \text{id} \). Let \(\hat{X} \) be as in Proposition 2.2. By (2.1) and (1) equation (1.4), the free cumulants of the distribution of \(\hat{X} \) and of \(\mu^{\boxplus \eta} \) are equal. Thus these \(A \)-valued distributions are also equal. But \(\hat{X} \) is explicitly realized in a \(C^* \)-probability space and so its distribution is positive. \(\square \)

3. A CONVERSE.

It is natural to ask whether the condition that \(\eta - \text{id} \) be completely-positive is necessary for \(\eta \)-convolution powers to always remain positive (no matter what the initial distribution is). We show that this is indeed the case if one considers joint distributions of all \(s \)-tuples.

Theorem 3.1. Assume that \(\eta : A \to A \) is a completely positive map. Then \(\eta - \text{id} \) is completely-positive iff for every \(s \geq 1 \) and every positive \(A \)-valued distribution \(\mu \) of an \(s \)-tuple, \(\mu^{\boxplus \eta} \) is also positive.

Proof. There is a natural equivalence between \(A \)-valued distributions \(\mu^{(X_{ij})} \) of \(m^2 \)-tuples of variables \((X_{ij})_{i,j=1}^m \) and of the \(M_{m \times m}(A) \)-valued distribution \(\mu^X \) of the matrix \(X = (X_{ij}) \). In fact, one easily obtains that the \(\eta \)-convolution power of \(\mu^{(X_{ij})} \) (defined by the requirement that the joint cumulants are composed with \(\eta \)) correspond exactly to the \(\text{id}_m \otimes \eta \)-convolution powers of \(\mu^X \). Thus positivity of \(\mu^{\boxplus \eta} \) for every \(A \)-valued distribution of an \(s \)-tuple is equivalent to positivity of \(\nu^{\boxplus \eta} \text{id}_m \otimes \eta \) for every \(M_{m \times m}(A) \)-valued distribution of a single variable \(\nu \). This completes the proof of one direction of the theorem.

Assume now that there exists integer \(m \) and \(a \in M_{m \times m}(A) \), \(a > 0 \) so that \(\eta_m(a) - a \) is not positive (here \(\eta_m = \text{id} \otimes \eta \)). Let \(\phi \) be a state on \(M_{m \times m}(A) \) so that \(\phi(\eta_m(a) - a) < 0 \). Passing from \(A \) to the enveloping von Neumann algebra \(A^{**} \), and from \(a \) to a spectral projection of \(a \), we may assume that \(a \in M_{m \times m}(A^{**}) \) is projection and \(\phi \) still satisfies \(\phi(\eta_m(a) - a) < -2\kappa < 0 \) for some fixed \(\kappa > 0 \). By replacing \(\phi \) with a convex linear combination with a state that is strictly positive on \(a \) we may assume that \(\phi(a) > 0 \) and still \(\phi(\eta_m(a)) < \phi(a) - \kappa \).

Let \(\pi : M_{m \times m}(A^{**}) \to B(H) \) be the GNS construction for \(\phi \) and denote by \(\xi \) the associated cyclic vector in \(H \). Let \(P \in B(H) \) be the rank one projection onto \(\xi \). Denote by \(\hat{A} \) the \(C^* \)-algebra generated by \(M_{m \times m}(A^{**}) \) and \(P \) inside \(B(H) \).

Choose \(\delta > 0 \) so that \(\delta < \kappa \).
Note that $Tr(aPa) = \phi(a)$. Since aPa is finite-rank, we can find N orthonormal vectors $\xi_j \in H$, $j = 1, \ldots, N$ so that $\xi_1 = \xi$ and $|Tr(aPa) - \sum \langle aPa\xi_j, \xi_j \rangle| < \delta$. Thus

$$\left| \sum \langle aPa\xi_j, \xi_j \rangle - \phi(a) \right| < \delta.$$

Let $\vartheta(x) = \frac{1}{N} \sum \langle x\xi_j, \xi_j \rangle$ be a state on \hat{A}. Then $\vartheta(P) = \frac{1}{N}$ and so

$$\left| \frac{\vartheta(aPa)}{\vartheta(P)} - \phi(a) \right| < \delta. \tag{3.1}$$

Let $X \in (B, \psi)$ be a self-adjoint random variable in a \mathbb{C}-valued C^*-probability space B, and consider $(C, \theta) = (\hat{A}, \vartheta) * (B, \psi)$.

Denote by $E = E_C^{\hat{A}}$ the conditional expectation from C onto \hat{A}. If ω_n denotes the n-th scalar-valued cumulant of X, then the \hat{A}-valued cumulants of $a^{1/2}Xa^{1/2}$ are given by

$$\omega'_n(h_1, \ldots, h_n) = \omega_n a\vartheta(ah_1a) \cdots \vartheta(ah_na)a$$

(see [4]) and thus (recalling that $a^2 = a$) the \hat{A}-valued cumulants of the η-amplification Y of the distribution of aXa are given by

$$w''_{n+1}(h_1, \ldots, h_n) = \eta_m(a) \omega_{n+1} \prod \vartheta(ah_ja).$$

This means that the \hat{A}-valued cumulants of PYP are given by

$$w''_{n+1}(h_1, \ldots, h_n) = P\eta_m(a)P \cdot \omega_{n+1} \prod \vartheta(ah_ja)$$

=since $P\eta(a)P = \phi(\eta(a))P$. From this we see that the scalar-valued cumulants of PYP with respect to θ are given by

$$\tilde{\omega}_{n+1} = \vartheta(P)\phi(\eta_m(a))\vartheta(aPa)^n \cdot \omega_{n+1}.$$

Let us finally set $Z = \vartheta(aPa)^{-1}PYP$. Then its scalar-valued cumulants are given by

$$\tilde{\omega}_{n+1} = \vartheta(P)\phi(\eta_m(a))\frac{\vartheta(aPa)^n}{\vartheta(aPa)^{n+1}}\omega_n = \frac{\vartheta(P)}{\vartheta(aPa)^n} \phi(\eta_m(a))\omega_{n+1}.$$

Thus $\tilde{\omega}_n = \lambda \omega_n$ with

$$\lambda = \frac{\phi(\eta_m(a))}{\vartheta(aPa)/\vartheta(P)} < \frac{\phi(a) - \kappa}{\vartheta(aPa)/\vartheta(P)}.$$
By (3.1) and our choice of $$\delta < \kappa$$, we conclude that

$$\lambda < \frac{\phi(a) - \kappa}{\phi(a) - \delta} < 1.$$

In other words, the $$\mathbb{C}$$-valued distribution of $$Z$$ is the same as that of the $$\lambda$$-convolution power of the $$\mathbb{C}$$-valued distribution of $$X$$ for some $$\lambda < 1$$.

Assume now for contradiction that the laws of all $$\text{id} \otimes \eta$$-convolution powers of $$M_{m \times m}(A)$$ are positive. Choose $$a_k \in M_{m \times m}(A)$$ so that $$a_k \to a$$ weakly and $$\sup \|a_k\| < \infty$$. Then if we set $$Y_k$$ to be the $$\eta$$-convolution power of the distribution of $$a_kXa_k$$ (which is positive by our assumption), and $$Z_k = \vartheta(aPa)^{-1}PY_kP$$, then we see that $$Z_k \to Z$$ in moments. But then positivity of distributions of $$Z_k$$ implies positivity of the distribution of $$Z$$.

To summarize, assuming that the $$\eta$$-convolution power of distribution of every $$M_{m \times m}(A)$$-valued distribution is positive, we concluded that the law of the scalar-valued distribution of $$X$$ admits a positive $$\lambda$$-convolution power for some $$\lambda < 1$$. But this is not always possible: for example, we could start with $$X$$ having as distribution the sum of two equal point masses; it is known that this distribution admits no $$\lambda$$-convolution power if $$\lambda < 1$$. □

References

[1] M. Anshelevich, S. T. Belinschi, M. Fevrier, A. Nica, Convolution powers in the operator-valued framework, Preprint arXiv.org:1107.2894, 2011.

[2] A. Nica, R. Speicher, On the multiplication of free $$N$$-tuples of noncommutative random variables, Amer. J. Math. 118 (1996), no. 4, 799-837.

[3] A. Nica and R. Speicher, Lectures on the combinatorics of free probability, London Mathematical Society Lecture Note Series, vol. 335, Cambridge University Press, Cambridge, 2006.

[4] A. Nica, D. Shlyakhtenko, R. Speicher, Operator-valued distributions: I. Characterizations of freeness, Int. Math. Res. Notices 29 (2002) 1509-1438.

[5] M. Pimsner, A class of $$C^*$$-algebras generalizing both Cuntz–Krieger algebras and crossed products by $$\mathbb{Z}_n$$, in: Free Probability (D.-V. Voiculescu, ed.), Fields Institute Communications, vol. 12, AMS, 1997, pp. 189-212.

[6] D. Shlyakhtenko, $$R$$-transforms of Certain Joint Distributions, in: Free Probability (D.-V. Voiculescu, ed.), Fields Institute Communications, vol. 12, AMS, 1997, pp. 253-256.

[7] R. Speicher, Combinatorial theory of the free product with amalgamation and operator-valued free probability theory, Mem. Amer. Math. Soc. 132 (1998), no. 627, x+88.

[8] D. Voiculescu, Operations on certain non-commutative operator-valued random variables, Astérisque (1995), no. 232, 243–275, Recent advances in operator algebras (Orléans, 1992).
DEPARTMENT OF MATHEMATICS, UCLA, LOS ANGELES, CA 90095, USA

E-mail address: shlyakht@math.ucla.edu