Medical education in post-pandemic times: Online or offline mode of learning?

Aayushi Rastogi¹, Akanksha Bansal², Pranav Keshan², Ankur Jindal³, Arun Prakash⁴, Vinay Kumar²

Departments of ¹Epidemiology, ²Project ECHO and PRAKASH, ³Hepatology and ⁴Administration, Institute of Liver and Biliary Sciences, Delhi, India

ABSTRACT

Background and Objective: With the advent of the COVID-19 pandemic, face-to-face training was suspended considering social-distancing norms. The training needs of the healthcare workers (HCWs) were being met by the online mode. Initially, the use of the online mode was limited but was eventually popularized with increased use. This would have led to a change in the perception toward the online mode. However, the use of online learning has financial and temporal obstacles. With this objective, a study was conducted among the HCWs to assess the perception, satisfaction, and preference associated with the modes of learning.

Methods: A cross-sectional study was conducted from February to April 2021 among the HCWs. An online link to the survey was circulated among the HCWs who attended online or/and offline training. The questionnaire had 38 questions assessing the sociodemographic details, perception, satisfaction level, and preferences of the participants. Univariable and multivariable logistic regression were performed using SPSS v-22.

Results: A total of 1,113 responses were received with the mean age of 33.17 ± 8.13 years and approximately 63% of the participants were females. Approximately 54% perceived the online mode of learning as a better mode of learning. Also, 67% preferred and 80.5% recommended the online mode whereas mean satisfaction was found to be more for the offline mode as compared to the online mode. Interpretation and Conclusions: The study concludes that the online mode of learning is the most preferred and recommended mode among the HCWs, whereas there is more dissatisfaction with respect to the online mode. The study also emphasizes that the instructors need to improve the practical knowledge of the learners by integrating technical modalities.

Keywords: Distance, education, health personnel, learning, medical, perception, personal satisfaction

Introduction

A shortage of 7.2 million healthcare workers (HCWs) was estimated worldwide in 2013, and it is expected to escalate to 12.9 million by 2035.¹ Further, limited faculty and institutional resources contribute to the suboptimal quality of the available health services in developing countries.² Moreover, deficient knowledge and skills of medical staff are further worsened by the widening gap between advances and innovations in the field and its dissemination to medical professionals such as physicians at the primary health center.³ To overcome this knowledge and skill breach, training programs in the form of continuing professional development and continuing medical education are being organized by different healthcare fraternities.⁴

Evidence suggests that training programmes are effective in improving the knowledge, skills, and practices of the healthcare professionals as well as patient-related outcomes.⁵ With the advent of the COVID-19 pandemic, physical trainings were suspended. At the same time, there was a strong apprehension to prepare the HCWs about COVID-19 to continue their services in

Address for correspondence: Mr. Pranav Keshan, Program Associate, Project ECHO, Institute of Liver and Biliary Sciences, D1, Vasant Kunj, Delhi - 110 070, India. E-mail: pranav.keshan13@gmail.com

Received: 25-11-2021 Revised: 15-02-2022 Accepted: 26-03-2022 Published: 14-10-2022

Access this article online

Quick Response Code: Website: www.jfmpc.com
DOI: 10.4103/jfmpc.jfmpc_2305_21

How to cite this article: Rastogi A, Bansal A, Keshan P, Jindal A, Prakash A, Kumar V. Medical education in post-pandemic times: Online or offline mode of learning? J Family Med Prim Care 2022;11:5375-86.

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

For reprints contact: WKHLRPMedknow_reprints@wolterskluwer.com
healthcare setting. These trainings were conducted through online mode. Eventually, with the increasing use of online platforms, online mode was popularised among the HCWs.[9] Learners consider it as the only plausible mode for their continued learning with flexibility of time, pace, and place whereas trainers consider it as a low-cost medium which can train the masses in one go.[10,11] Thus, this could have led to a change in the perception and acceptance toward e-learning during the COVID-19 pandemic. Despite an increasing demand of e-learning, the use of e-learning remains restricted in the areas with limited Internet connectivity as two-thirds of the population of developing countries have reported to be offline.[12] Therefore, in such circumstances, offline learning approach seems to be the plausible solution to overcome the geographical, financial, and temporal obstacles faced by learners.[13]

Therefore, the perceptions, satisfaction, and preferences of HCWs related to the modes of learning are important to plan the necessary trainings accordingly. However, at present, there is inconclusive evidence about the current perception and satisfaction associated with the available modes. Thus, the present study aims at assessing the perception, satisfaction, and preference of the HCWs toward the modes of learning. The study is also documenting the future use of e-learning in the post-pandemic times.

Methodology

Study design
A cross-sectional study was conducted from February to April 2021 among the HCWs working in healthcare facilities across India.

Study population
The Institute of Liver and Biliary Sciences (ILBS) has a database of approximately 6,000 HCWs across the country as it has been involved in various offline and online capacity building activities of the HCWs. Any HCW who has attended any training was eligible to participate in the study.

Sample size and sampling strategy
The sample size was calculated using Open Epi.[14] At the time of the conceptualisation of the study, there was limited evidence that has studied the preference for the modes of learning, thus, the proportion of online and offline learning was considered to be 50% as it yielded the most conservative sample size. Considering the proportion to be 50% with alpha 5% and absolute precision as 5%, the sample size calculated was 384. Considering the 20% loss of data due to non-response or incomplete data, the total sample size required was 461. Since, the questionnaire was collected through an online platform, it was assumed that only HCWs who were having good digital literacy would attempt an online survey. To overcome this selection bias, 20% of the data was collected through the offline mode. Considering this, 461 online responses and 92 offline responses were required in the present study. A response rate of 10% was expected, and hence, the survey link was shared with 6,000 HCWs.

Study tool
The questionnaire was content validated by experts at the institute. Following which face validity was performed among 40 HCWs of the institute. The suggestions and feedback from the face and content validity were incorporated in the final questionnaire.

The final questionnaire consisted of 38 questions across four sections. The four sections were (i) sociodemographic details, (ii) perception, (iii) satisfaction level, and (iv) preferences related to modes of learning. The sociodemographic profile of the participants included questions such as age, gender, education, occupation, and experience. The perception and satisfaction section consisted of 10 questions each. A Likert scale of one to five was used to assess satisfaction for both modes of training.

Study procedures
Data collection was carried out primarily through the online mode with a small proportion (20%) collected through the offline mode. An online link to the questionnaire was circulated with the HCWs. To maintain representativeness of the data collected through the survey, link to online questionnaire was shared thrice with the participants.

For offline mode of data collection, a list of multi- and super-specialty healthcare facilities from where more than 50 participants had attended the training in the past years was extracted. From the list, five institutions were randomly selected using the lottery method. Printed questionnaires were sent to randomly selected multi- and super-specialty hospitals of Delhi to collect responses from the HCWs who had attended the training organized by ILBS. It was ensured that the participants who were participating through the offline mode had not filled the questionnaire in the online mode.

Data management and statistical analysis
Data were extracted in MS-Excel from SurveyMonkey. For the analysis purpose, age was divided into two groups: (i) <30 years and (ii) ≥30 years.[15] The years of experience was divided as (i) less than 5 years and (ii) 5 years and more.[16] Satisfaction was considered if the score was ≥35 considering the satisfaction to a mode of learning to be 67% in the previous study.[17] The training attended was recoded as yes if the participants had attended the training within 6 months to 2 years whereas it was recoded as no if the participants had never attended such a course. This was done for both the offline and online modes of training.

Data were analyzed using Statistical Package for the Social Sciences (SPSS Statistics for Windows, Version 22 Armonk, Chicago, IL: IBM Corp). Continuous data were presented as mean and standard deviation (SD) or median with inter-quartile range (IQR) as applicable. Categorical variables were presented as...
frequency with their percentages. The Chi-square and univariable logistic regression were performed to assess the association of the sociodemographic characteristics with perception, satisfaction, and preferences of the learner and the degree of association was presented as the odds ratio with their 95% confidence interval (CI) and P value. All the variables that were significant in the univariable analysis (<0.10) were included in multivariable analysis. Statistical significance was considered as P value <0.05.

Ethical Consideration: The ethical approval was sought from the Institutional Ethics Committee of ILBS, Delhi, with number IEC/2021/85/NA05. The first page of the questionnaire consisted of consent form which clearly stated that they were free to withdraw at any time, without giving a reason, and all information provided by them would be kept anonymous and confidential.

Results

Baseline characteristics

A total of 1,113 HCWs voluntarily participated in the present study. The mean age of the participants was 33.17 ± 8.13 years and approximately 63% were females. Approximately 40.3% were graduates followed by 33.9% being diploma holders with 8.0 (IQR: 3.0–13.0) years as the median years of experience [Table 1].

Approximately 46% of the participants did not attend any online training ever and only 13.7% attended online training once in a year, before the pandemic. However, during the COVID-19 period, 18.2% attended one online training per month and around 20% attended two online training sessions in a month. Mobile phone was the most common device used by the participants for attending online training sessions [Table 1].

Perception of the participants

Approximately 54% of the participants perceived online mode as a better mode of learning in the post-pandemic scenario. Around 62% of the participants considered online mode better in terms of learning theoretical concepts whereas 73% considered offline mode better to learn practical and clinical concepts. The participants found the offline mode to offer more personalized attention (60.7%) than the online mode whereas the participants considered the online mode better when it came to convenience and flexibility of the timings (85.3%) [Table 2].

The adjusted analysis of perception with the demographic characteristics stated type of HCWs, experience, training attended online and preferences toward the mode of training were found to be independently associated with the perception of the participants [Supplementary Table 1].

Satisfaction of the participants

The mean score of satisfaction was found to be 37.91 ± 9.93 for online and 40.06 ± 9.67 offline [Table 3]. A total of 70.2%...
Table 1: Contd...

Sociodemographic characteristics	n (%)
Mobile	947 (85.1)
Tablet	38 (3.4)
Desktop	14 (1.3)
Laptop	114 (10.2)
Mode recommended to friend and colleagues	
Online	896 (80.5)
Offline	217 (19.5)

SD: Standard Deviation, IQR: Inter-quartile Range

Table 2: Perception of the participants toward different modes of learning

S. No.	Perception of the participants	Online n (%)	Offline n (%)
P. 1	Understanding of theoretical concepts	695 (62.4)	418 (37.6)
P. 2	Understanding of practical or clinical concepts	305 (27.4)	808 (72.6)
P. 3	Interaction between teacher/instructor and the learners	416 (37.4)	697 (62.6)
P. 4	Retention on knowledge and skills gained	504 (45.3)	609 (54.7)
P. 5	Flexibility of time and convenience	950 (85.3)	163 (14.7)
P. 6	Assignments and class activities	568 (51.0)	545 (49.0)
P. 7	More personalized attention from the teacher/instructor	437 (39.3)	675 (60.7)
P. 8	Social interaction and communication with co-learners	470 (42.2)	643 (57.8)
P. 9	Feedback and motivation for improvement	672 (60.4)	441 (39.6)
P. 10	Overall, which mode you perceive as better with respect to learning in normal scenario?	599 (53.8)	514 (46.2)

Preference of the participants

Approximately 67% of the participants preferred the online mode as a better mode of learning in the post-pandemic scenario as compared to the offline mode. The most common reasons enlisted were access to needed information (73.8%), saves travel time (68.9%), and learning at own pace (50.3%). The most common reasons for preferring offline mode were availability of interactive simulations, discussion with other students (46.9%), adequate communication with the instructor and resolution of queries (42.4%), and classical written material and writing down of lecture notes (41.3%) [Table 4].

The odds of preferring online training among the participants who perceived online as a better mode of training were 9.63 (6.99–13.29, P < 0.001) times higher than the participants who preferred offline mode of training to be better. Similarly, odds of recommending online mode of learning among the group who perceived offline mode of training were 6.93 (6.99–13.29, P < 0.001) times higher the odds of perceiving offline mode of training to be better [Supplementary Table 4].

Recommendation by the participants

Around 80.5% of the participants (n = 896) recommended online mode to their friends and colleagues. The odds of recommending the online mode were more among older participants (OR: 1.52; 95%CI: 1.12-2.05; P = 0.006) as compared to the younger participants in a univariable analysis. The other factors which were found to be significant in the univariable analysis were education qualification (<0.001), type of HCWs (P = 0.027), marital status of HCWs (P = 0.005), income levels (P = 0.076), perception of the HCWs towards modes of learning (<0.001), satisfaction with online (P < 0.001) and offline mode (P = 0.022) of learning and preference of different modes (P < 0.001).

On adjusted analysis, only education qualification, perception, and preference toward modes of learning were found to be independently associated. Adjusted analysis suggested odds of recommending online mode of learning among the group who perceived online is better was 5.01 (95%CI: 3.15-7.98; P < 0.001) times higher in the group who perceived offline mode of learning to be better. Similarly, odds of recommending online mode of learning among participants who preferred online mode was 3.86 (2.63-5.68; P < 0.001)) times higher than the participants who preferred offline mode of learning after adjusting for other variables [Table 5].

Discussion

The present study found that approximately 54% of the HCWs perceived the online mode as a better mode of learning. The findings of the study are contradicting a few studies conducted within the few months of the commencement of COVID-19.[17,18] This could be explained as there was a sudden switch to online mode to continue the medical education while maintaining social distancing. Initially, the online training was being conducted with
limited resources and less acquaintances with new modes of training among both the trainer as well as the trainee. However, with increasing need, the learners became accustomed with the online mode, and hence, were preferring the online mode of learning as observed in the present study. Similar findings were re-emphasized by a recent study among the medical undergraduate students.\(^{19}\)

In the present study, with respect to perception, online mode is considered as an excellent mode for learning theoretical concepts (62.4%), however, the new mode has not replaced the offline mode in terms of practical or clinical experiences (27.4%), which are extremely important for the medical practices. The finding of the study is supported by a qualitative study assessing the preference of modes of learning in medical education.\(^{20}\)
Table 5: Association of demographic characteristics with recommendation of the participants (n=1113)

Demographic characteristics	Online n=896 (n (%))	Offline n=217 (n (%))	OR (95% CI) P	aOR (95% CI)	P
Age category					
<30 years	315 (76.3)	98 (23.7)	Ref	0.006	Ref 0.393
≥30 years	581 (83.0)	119 (17.0)	1.52 (1.12-2.05)	1.29 (0.72-2.34)	
Gender					
Male	326 (79.5)	84 (20.5)	Ref	0.524	
Female	570 (81.1)	133 (18.9)	1.10 (0.81-1.50)		
Qualification					
Diploma holders	325 (86.2)	52 (13.8)	Ref	<0.001	Ref 0.888
Graduates	353 (78.6)	96 (21.4)	0.59 (0.41-0.85)	0.66 (0.41-1.06)	0.181
Post-graduates and above	218 (76.0)	69 (24.0)	0.42 (0.30-0.58)	0.67 (0.37-1.20)	
Type of healthcare worker					
Student	66 (68.8)	30 (30.2)	Ref	0.027	Ref 0.753
Nursing staff	573 (82.0)	126 (18.0)	2.06 (1.29-3.32)	0.89 (0.45-1.78)	0.271
Physician	179 (82.1)	33 (17.9)	2.09 (1.20-3.63)	1.50 (0.73-3.08)	0.531
Faculty	78 (78.0)	22 (22.0)	1.61 (0.85-3.06)	1.31 (0.56-3.09)	
Marital Status					
Unmarried	278 (75.7)	89 (24.3)	Ref	0.005	Ref 0.302
Married	618 (82.8)	128 (17.2)	1.55 (1.14-2.10)	1.28 (0.80-2.06)	
Type of health facility					
Government	632 (80.3)	155 (19.7)	Ref	0.795	
Private	264 (81.0)	62 (19.0)	1.04 (0.75-1.45)		
Experience					
<5 years	289 (77.0)	86 (23.0)	Ref	0.040	Ref 0.735
≥5 years	607 (82.2)	151 (17.8)	1.38 (1.01-1.87)	0.91 (0.51-1.60)	
Income category in Indian National Rupees					
<25000	103 (87.3)	15 (12.7)	Ref	0.076	Ref 0.229
25000 to 50000	106 (80.3)	26 (19.7)	0.59 (0.30-1.18)	0.62 (0.28-1.35)	0.809
50000 to 100000	335 (83.7)	65 (16.3)	0.75 (0.41-1.37)	0.92 (0.46-1.83)	0.101
≥100000	325 (78.0)	91 (22.0)	0.52 (0.29-0.93)	0.57 (0.29-1.12)	
Perception					
Offline	331 (64.4)	183 (35.6)	Ref	<0.001	Ref <0.001
Online	565 (94.3)	34 (5.7)	9.19 (6.22-13.57)	5.01 (3.15-7.98)	
Satisfaction with Online mode of learning					
No	230 (69.3)	102 (30.7)	Ref	<0.001	Ref <0.001
Yes	666 (85.3)	115 (14.7)	2.57 (1.89-3.49)	1.43 (0.96-2.11)	
Satisfaction with Offline mode of learning					
No	195 (85.9)	32 (14.1)	Ref	0.022	Ref 0.690
Yes	701 (79.1)	185 (20.9)	0.62 (0.41-0.93)	1.11 (0.65-1.90)	
Preference					
Offline	213 (58.2)	153 (41.8)	Ref	<0.001	Ref <0.001
Online	683 (91.4)	64 (8.6)	7.66 (5.51-10.66)	3.86 (2.63-5.68)	

*P-value of model: <0.001; OR: Odds ratio, aOR: Adjusted odds ratio, CI: confidence intervals, Ref: Reference

Flexibility of time and convenience associated (85.3%) are one of the most important reasons for perceiving online mode over traditional mode of learning where a learner spends long hours in traveling to reach the designated venue of training (55.7%).

Across the world, students’ perspectives and preferences on the modes of learning have been disparate between pros and cons affiliated to the country. The positive perspective is promoted by previous e-learning experiences. Medical students in Nepal did not find online classes as effective as the traditional classes, and hence, approximately 78% preferred traditional teaching. Similar complements for the conventional face-to-face mode of learning were provided by a study on medical and dental students of Jordan. Correspondingly, classroom learning was preferred because it facilitates better teacher–student interactions, stimulates understanding, encourages interactivity and independence from technology as discussed by an Indian study.

However, unlike these studies, the present study had a preference (67.1%) and recommendation (80.5%) for the online mode of learning in post-pandemic times, which was also supported by an Israeli study. These disparities in the views across the world can be explained by the quality of content, quality and quantity of interaction, digital literacy of the trainer and trainee as well as Internet connectivity. In our study, the ease to access the upgraded content at their convenience, reduction in travel time, learning at their own pace, and easier methods of evaluation were the main reasons for preference of online mode of learning.

Despite medical graduates having their preferences and perceptions for online mode of training, they seemed to be less
satisfied with the online mode (37.91 ± 9.93) when compared to the offline mode of training (40.06 ± 9.67). Similar results were observed from a study undertaken in Jordan.[30] Though most of the participants were satisfied with online (70.2%) as well as offline mode (79.6%), there was inclined satisfaction toward the offline mode of learning. This is similar to what was reported by a previous study conducted on medical students in Seoul.[31]

The present study reveals that satisfaction was more for offline mode over online mode mainly attributable to the quantity and quality of the explanation provided, demonstration of a topic, personalized attention provided by the instructor, fulfillment of learning needs, quality and quantity of interaction with the instructor as well as ease of evaluation patterns and assignment activities. Previous studies have also shown that the quality of explanation provided and fulfillment on the learning needs have an impact on student’s learning, eventually resulting in a positive impact on the satisfaction of mode of learning.[32,33] According to a study from India, interaction and focus of the instructor as well as practical learning were the major reasons for dissatisfaction with the online mode of learning as compared to other face-to-face modes of learning in medical education.[34]

The COVID-19 pandemic has changed the dimensions and style of living lives. The online mode has become the primary means of acquiring updates and continuing medical education while maintaining social distancing. However, these benefits may not be generalizable to all forms of online teaching such as recorded lectures.[35] Provision to classical written material or taking notes, limited interaction, and discussion with other students are important challenges of online learning. Also, learners find it difficult to communicate with the instructor for query resolution. They also feel that the time for discussion and query resolution is limited in the online mode of learning. A few studies have confirmed the findings that social presence and social interaction toward e-learning are important aspects of learning which are difficult to achieve in the online mode of learning.[18,20,31] A few participants have highlighted privacy issues related to online platforms, also reported by previous studies.[17,32] Difficulty in connecting to online platforms because of unstable Internet connections and infrastructure requirements have been one of technical challenges associated with the online mode, which has been reported by Indian studies and also reconfirmed by the present study.[17,33,34]

Like other online surveys, the present study too has the inherent drawback of self-reported surveys. The inherent design of the study like sampling technique could have resulted in selection bias as the study is only restricted to people with Internet access and understanding of English language. However, an attempt was made to collect 20% of the data in offline mode to minimize the selection bias.

To the best of our knowledge, the present study is one of the pioneer studies exploring the perceptions, preferences, satisfaction, and recommendations for both modes of learning among healthcare workers in post-pandemic times. The study highlights the online mode of learning as the most preferred and recommended mode among HCWs. Utilizing the online mode of learning in hub and spoke knowledge sharing model, with experts at the hub and primary care physicians as the spokes, new and permanent capacities at remote locations can be created.[19] Thus, online mode can also be used to build capacities and improve skills by developing specialist expertise among primary healthcare physicians, eventually resulting in improved access to specialty care in remote locations.[15] Thus, for online mode to be successful, instructors and organizers need to improve the practical knowledge of the learners by the integration of technical modalities such as virtual simulation technologies and computer-based models of real-life processes to increase the satisfaction of the learner.

Conclusion

The online mode of learning has become the new normal. It is important that the medical institution should consider the perception and preferences of their learners toward different modes and should comprehensively work toward improving the satisfaction of their learners toward online mode. The online mode needs to be upgraded through the integration of technical modalities to enrich the learners with practical and clinical knowledge. Overcoming such challenges, online learning can serve as a cost-effective mode for disseminating information among medical students, primary care physicians, and HCWs.

Acknowledgments

The authors sincerely acknowledge Gilead, for their financial grant provided to Project ECHO. However, there is no conflict of interest or financial ties to disclose. Authors also express their gratitude to Dr. S.K. Sarin, Director Institute of Liver and Biliary Sciences for providing his mentorship. Authors would also like to extend their thanks to all the faculties for their continuous support to the Project ECHO.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

References

1. GHWA_AUniversalTruthReport.pdf. Available from: https://www.who.int/workforcealliance/knowledge/resources/GHWA_AUniversalTruthReport.pdf. [Last accessed on 2020 Dec 24].
2. Berendes S, Heywood P, Oliver S, Garner P. Quality of private and public ambulatory health care in low and middle income countries: Systematic review of comparative studies. PLoS Med 2011;8:e1000433.
3. Pakenham-Walsh N, Bukachi F. Information needs of health care workers in developing countries: A literature review with a focus on Africa. Hum Resour Health 2009;7:30.
4. Davis N, Davis D, Bloch R. Continuing medical education: AMEE Education Guide No 35. Med Teach 2008;30:652-66.
5. Lawton S, Wimpenny P. Continuing professional development: A review. Nurs Stand R Coll Nurs G B 1987;3(17):41–4.

6. Marinopoulos SS, Dormian T, Ratanawongsra N, Wilson LM, Ashar BH, Magaziner JL, et al. Effectiveness of continuing medical education. Evid Rep Technol Assess 2007;1–69.

7. O’Neill KM, Addrizzo-Harris DJ, American College of Chest Physicians Health and Science Policy Committee. Continuing medical education effect on physician knowledge application and psychomotor skills: Effectiveness of continuing medical education: American College of Chest Physicians Evidence-Based Educational Guidelines. Chest 2009;135(3 Suppl):375S–41S.

8. Thepwongsa I, Kirby CN, Schattner P, Piterman L. Online continuing medical education (CME) for GPs: Does it work? A systematic review. Aust Fam Physician 2014;43:717–21.

9. Dhatwan S. Online learning: A panacea in the time of COVID-19 crisis. J Educ Technol Syst 2020;49:5–22.

10. Abbasi S, Ayob T, Malik A, Memon SI. Perceptions of students regarding E-learning during Covid-19 at a private medical college. Pak J Med Sci 2020;36:S57–61.

11. Mukhtar K, Javed K, Arooj M, Sethi A. Advantages, limitations and recommendations for online learning during COVID-19 pandemic era. Pak J Med Sci 2020;36:S27–31.

12. Greenhalgh T. Computer assisted learning in undergraduate medical education. BMJ 2001;322:40–4.

13. OpenEpi Menu. Available from: https://www.openepi.com/Menu/OE_Menu.htm. [Last accessed on 2020 Dec 24].

14. Keshan P, Syed S, Rastogi A, Bansal A. A brief insight on knowledge about Viral Hepatitis in Pregnancy among clinicians. Indian J Community Health 2021;33:212–6.

15. Rastogi A, Syed S, Sharma T, Ahwal S, Ponnappan T K, Kumar A, et al. Enhancing the health coverage in India by empowering the corona warriors through educational intervention. Int J Community Med Public Health 2021;8. doi: 10.18203/2394-6040.ijcmph 20212327.

16. Ansar F, Ali W, Khattak A, Naveed H, Zeb S. Undergraduate students’ perception and satisfaction regarding online learning system amidst COVID-19 Pandemic in Pakistan. J Ayub Med Coll Abbottabad 2020;32:644–50.

17. Syed S, Rastogi A, Bansal A, Kumar A, Jindal A, Prakash A, et al. Future of e-Learning in medical education—perception, readiness, and challenges in a developing country. Front Educ 2021;6. doi: 10.3389/feduc.2021.598309.

18. Sindiani AM, Obeidat N, Alshdaifat E, Elsalem L, Alwani MM, Al-Nafeesah A, et al. Distance education during the COVID-19 outbreak: A cross-sectional study among medical students in North of Jordan. Ann Med Surg 2020;59:186–94.

19. Vishwanathan K, Patel GM, Patel DJ. Impact and perception about distant online medical education (tele-education) on the educational environment during the COVID-19 pandemic: Experiences of medical undergraduate students from India. J Fam Med Prim Care 2021;10:2216–24.

20. Khalil R, Mansour AE, Fadda WA, Almnsid K, Aladameh M, Al-Nafeesah A, et al. The sudden transition to synchronized online learning during the COVID-19 pandemic in Saudi Arabia: A qualitative study exploring medical students’ perspectives. BMC Med Educ 2020;20:285.

21. Nepal S, Atreya A, Menezes RG, Joshi RR. Students’ perspective on online medical education amidst the COVID-19 pandemic in Nepal. J Nepal Health Res Counc 2020;18:551–5.

22. Al-Azzam N, Elsalem L, Gombedza F. A cross-sectional study to determine factors affecting dental and medical students’ preference for virtual learning during the COVID-19 outbreak. Heliyon 2020;6. doi: 10.1016/j.heliyon. 2020.e05704.

23. Saurabh MK, Patel T, Bhambhore P, Patel P, Kumar S. Students’ perception on online teaching and learning during COVID-19 pandemic in medical education. Medica 2021;16:439–44.

24. Sandhaus Y, Kshirsagar T, Ashkenazi S. Electronic distance learning of pre-clinical studies during the COVID-19 pandemic: A preliminary study of medical student responses and potential future impact. Isr Med Assoc J 2020;22:489–93.

25. Al-Balas M, Al-Balas HI, Jaber HM, Obeidat K, Al-Balas H, Aborajooh EA, et al. Distance learning in clinical medical education amid COVID-19 pandemic in Jordan: Current situation, challenges, and perspectives. BMC Med Educ 2020;20:341.

26. Kim JW, Myung SJ, Yoon HB, Moon SH, Ryu H, Yim JJ. How medical education survives and evolves during COVID-19: Our experience and future direction. PLoS One 2020;15:e0243958.

27. Ahammadewa R, Hall J. An empirical model of international student satisfaction. Asia Pac J Mark Logist 2009;21:555–69.

28. Kauffmann H. A review of predictive factors of student success in and satisfaction with online learning. Res Learn Technol 2015;23. doi: 10.3402/rlt.v23.26507.

29. Dutta S, Ambwani S, Lal H, Ram K, Mishra G, Kumar T, et al. The satisfaction level of undergraduate medical and nursing students regarding distant preclinical and clinical teaching amidst COVID-19 across India. Adv Med Educ Pract 2021;12:113–22.

30. Keis O, Grab C, Schneider A, Öchsner W. Online or face-to-face instruction? A qualitative study on the electrocardiogram course at the University of Ulm to examine why students choose a particular format. BMC Med Educ 2017;17:194.

31. Qureshi IA, Ilyas K, Yasmin R, Whitty M. Challenges of implementing e-Learning in a Pakistani university. Knowl Manag E-Learn Int J 2012;4:310–24.

32. Kapasia N, Paul P, Roy A, Saha J, Zaveri A, Mallick R, et al. Impact of lockdown on learning status of undergraduate and postgraduate students during COVID-19 pandemic in West Bengal, India. Child Youth Serv Rev 2020;116:105194.

33. Shrivastava SR, Shrivastava PS. Need of E-learning in medical education and strategies for its implementation in medical colleges in India. Indian J Health Sci Biomed Res 2019;12:264–5.

34. Desai D, Sen S, Desai S, Desai R, Dash S. Assessment of online teaching as an adjunct to medical education in the backdrop of COVID-19 lockdown in a developing country – An online survey. Indian J Ophthalmol 2020;68:2399–403.

35. Syed S, Rastogi A, Keshan P, Kumar V, Kumar A, Kumar A, et al. Evaluation of the knowledge enhancement and impact of tele mentoring on liver care, using ECHO platform on nursing professionals in India. Asian J Med Health 2021;56–64. doi: 10.9734/ajmah/2021/v19i530329.
For assessing the association between perception, satisfaction and preference of the learner with demographic factors, all demographic factors were included in multivariable analysis, considering that all the variables were important and may have an influence on perception, satisfaction and preference of the learner.

Perception

Association of demographic characteristics with perception of the participants: Association of perception with demographic characteristics demonstrated education qualification (p<0.001), type of (Healthcare workers) HCWs (p<0.001), marital status (p=0.035), income category (p=0.01), preference (p<0.001), experience of training attended in online mode (p=0.004) were found to be associated with perception in univariable analysis. However, after adjusting for other variables type of HCWs, experience, training attended online and preferences towards mode of training were found to be independently associated with perception of the participants (Supplementary Table 1).

Demographic characteristics	Online n=599 n (%)	Offline n=514 n (%)	OR (95% CI)	P	aOR (95% CI)	P
Age category						
<30 years	208 (50.4)	205 (49.6)	Ref	0.076	Ref	0.449
≥30 years	391 (55.0)	309 (44.1)	1.25 (0.98-1.59)	1.18 (0.77-1.82)		
Gender						
Male	216 (52.7)	194 (47.3)	Ref	0.562	Ref	0.428
Female	383 (54.5)	320 (45.5)	1.07 (0.84-1.37)	0.88 (0.63-1.22)		
Qualification						
Diploma holders	230 (61.0)	147 (39.0)	Ref	0.034	Ref	0.148
Graduates	241 (53.7)	208 (46.3)	0.74 (0.56-0.97)	<0.001	0.76 (0.53-1.10)	0.174
Post-graduates and above	128 (44.6)	159 (55.4)	0.51 (0.38-0.70)	0.72 (0.45-1.16)		
Type of Healthcare workers						
Student	34 (35.4)	62 (64.6)	Ref	<0.001	Ref	0.085
Nursing staff	403 (57.6)	296 (42.4)	2.48 (1.59-3.87)	0.004	1.75 (0.93-3.29)	0.023
Physician	116 (53.2)	103 (46.8)	2.07 (1.26-3.40)	0.133	2.15 (1.11-4.15)	0.600
Faculty	46 (46.0)	54 (54.0)	1.55 (0.87-2.76)	1.22 (0.58-2.57)		
Marital Status						
Unmarried	181 (49.3)	186 (50.7)	Ref	0.035	Ref	0.564
Married	418 (56.0)	328 (44.0)	1.31 (1.02-1.68)	1.12 (0.76-1.66)		
Type of health facility						
Government	411 (52.2)	376 (47.8)	Ref	0.097	Ref	0.172
Private	188 (57.7)	138 (42.3)	1.25 (0.96-1.62)	1.28 (0.90-1.83)		
Experience						
<5 years	191 (50.9)	184 (49.1)	Ref	0.169	Ref	0.026
≥5 years	408 (55.3)	330 (44.7)	1.19 (0.93-1.53)	0.97 (0.95-1.00)		
Income category in Indian National Rupees						
<25000	77 (65.2)	41 (34.8)	Ref	0.448	Ref	0.505
25000 to 50000	80 (60.6)	52 (39.4)	0.82 (0.49-1.37)	0.035	0.82 (0.45-1.49)	0.101
50000 to 100000	217 (54.2)	183 (45.8)	0.63 (0.41-0.97)	0.006	0.65 (0.39-1.09)	0.039
≥100000	210 (50.7)	204 (49.3)	0.55 (0.36-0.84)	0.59 (0.35-0.97)		
Experience of attending online training						
No	124 (46.3)	144 (53.7)	Ref	0.004	Ref	0.013
Yes	475 (56.2)	370 (43.8)	1.49 (1.13-1.96)	1.54 (1.10-2.19)		
Experience of attending offline training						
No	170 (54.8)	140 (45.2)	Ref	0.671	Ref	0.881
Yes	429 (53.4)	374 (46.6)	0.94 (0.73-1.23)	1.03 (0.74-1.43)		
Preference of mode of learning						
Offline	527 (70.5)	220 (29.5)	Ref	<0.001	Ref	<0.001
Online	72 (19.7)	294 (80.3)	9.78 (7.23-3.22)	9.66 (7.00-3.31)		

*P-value of model: <0.001; R²: 0.19; OR: Odds ratio, aOR: Adjusted odds ratio, CI: confidence intervals, Ref: Reference
Satisfaction

Association of demographic characteristics with satisfaction level of the participants (n=1113): The odds of being satisfied with online mode of learning among older participants (≥30 years) was 1.59 (1.23-2.07; p<0.001) times higher the odds of being satisfied with online mode of learning among younger participants (<30 years). Similarly, in univariable analysis, odds of being satisfied with online mode of learning varied across different types of HCW (p=0.03), level of experience (p=0.005), training attended online (p=0.02). On multivariate analysis, satisfaction with online mode of learning was independently associated with age (p<0.001), gender (<0.005), sector of health facility (p=0.048), level of experience (p=0.028), income category (p<0.05), training attended online (p=0.007) (Supplementary Table 3).

Table 2: Satisfaction of the participants towards modes of learning

S.No	Satisfaction of the participants	Fully satisfied	Somewhat satisfied	Neither satisfied nor dissatisfied	Somewhat dissatisfied	Fully dissatisfied
S.1	Quantity and quality of explanation of the topic	Online: 377 (33.9)	380 (34.1)	228 (20.5)	56 (5.0)	72 (6.5)
	Offine: 498 (44.8)	345 (31.0)	144 (12.9)	58 (5.2)	68 (6.1)	
S.2	Content of the training	Online: 463 (41.6)	345 (31.0)	176 (15.8)	55 (4.9)	74 (6.7)
	Offine: 480 (43.1)	357 (32.1)	148 (13.3)	65 (5.8)	63 (5.7)	
S.3	Demonstration of topic by the trainer	Online: 359 (32.2)	366 (32.9)	231 (20.8)	77 (6.9)	80 (7.2)
	Offine: 541 (48.6)	318 (28.6)	126 (11.3)	59 (5.3)	69 (6.2)	
S.4	Fulfilment of learning needs	Online: 412 (37.0)	377 (33.9)	186 (16.7)	65 (5.8)	73 (6.6)
	Offine: 540 (48.5)	327 (29.4)	133 (12.0)	49 (4.4)	64 (5.7)	
S.5	Personalized attention by the teacher/instructor	Online: 278 (25.0)	316 (28.4)	292 (26.2)	126 (11.3)	101 (9.1)
	Offine: 541 (48.6)	324 (29.1)	136 (12.2)	45 (4.1)	67 (6.0)	
S.6	Resolution of queries and doubts	Online: 369 (33.1)	336 (30.2)	232 (20.9)	88 (7.9)	88 (7.9)
	Offine: 556 (49.9)	307 (27.6)	129 (11.6)	52 (4.7)	69 (6.2)	
S.7	Quality of interaction with the teacher/instructor	Online: 322 (28.9)	344 (30.9)	239 (21.5)	113 (10.2)	95 (8.5)
	Offine: 565 (50.8)	313 (28.1)	122 (11.0)	47 (4.2)	66 (6.0)	
S.8	Quantity of interaction with the teacher/instructor	Online: 326 (29.3)	358 (32.2)	236 (21.2)	98 (8.8)	95 (8.5)
	Offine: 517 (46.5)	334 (30.0)	138 (12.4)	54 (4.8)	70 (6.3)	
S.9	Evaluation patterns and assignment activities	Online: 372 (33.4)	359 (32.3)	218 (19.6)	80 (7.2)	84 (7.5)
	Offine: 490 (44.0)	335 (30.1)	167 (15.0)	45 (4.0)	76 (6.9)	
S.10	Timing and Convenience	Online: 652 (58.6)	231 (20.8)	112 (10.0)	47 (4.2)	71 (6.4)
	Offine: 269 (24.2)	291 (26.1)	310 (27.9)	139 (12.5)	104 (9.3)	
Similarly, odds of being satisfied with offline mode of training was found to be varying across education qualification (p<0.001), income levels (p<0.001), experience of training attended in online mode (p=0.008) and experience of training attended in offline mode (p<0.001). After adjusting for other demographic variables, satisfaction with offline mode of training was found to be significantly associated with qualification of the participants (p<0.001), income levels (p<0.001) and experience of training attended in offline mode (p=0.006) (Supplementary Table 3).

Table 3: Association of demographic characteristics with satisfaction level of the participants (n=1113)

Demographic characteristic	OR Online (95% CI)	P	aOR Online (95% CI)*	P*	OR Offline (95% CI)	P	aOR Offline (95% CI)*	P#
Age category								
<30 years	Ref	<0.001	Ref	<0.001	Ref	0.906	Ref	0.808
≥30 years	1.59 (1.23–2.07)	0.001	2.36 (1.56–3.56)	0.001	1.02 (0.75–1.38)	1.05	0.67–1.67	1.67
Gender								
Male	Ref	0.615	Ref	0.005	Ref	0.832	Ref	0.071
Female	1.07 (0.82–1.39)	0.185	1.56 (1.14–2.13)	0.185	1.03 (0.76–1.40)	1.39	0.97–1.98	1.98
Qualification								
Diploma holders	Ref	0.669	Ref	0.850	Ref	0.001	Ref	0.001
Graduates	1.07 (0.79–1.44)	0.006	1.03 (0.73–1.47)	0.488	1.78 (1.28–2.47)	<0.001	1.96 (1.32–2.91)	<0.001
Post-graduates and above	1.07 (0.77–1.50)	0.053	0.85 (0.55–1.33)	0.241	1.61 (1.36–2.61)	2.75	1.61–4.70	1.00
Type of Healthcare workers								
Student	Ref	0.133	Ref	0.840	Ref	0.335	Ref	0.486
Nursing staff	1.40 (0.90–2.18)	0.006	1.06 (0.60–1.88)	0.028	0.76 (0.44–1.32)	0.969	1.28 (0.64–2.55)	0.659
Physician	2.05 (1.22–3.44)	0.118	1.98 (1.08–3.64)	0.435	0.99 (0.53–1.85)	0.896	1.18 (0.57–2.43)	0.998
Faculty	1.61 (0.89–2.94)	0.326	1.32 (0.66–2.62)	0.048	0.89 (0.65–1.22)	0.94	0.64–1.38	0.758
Marital Status								
Unmarried	Ref	0.185	Ref	0.798	Ref	0.215	Ref	0.122
Married	1.20 (0.92–1.57)	0.95	0.95 (0.66–1.38)	0.82	0.59 (1.12)	0.71	0.46–1.09	0.109
Type of health facility								
Government	Ref	0.236	Ref	0.048	Ref	0.461	Ref	0.758
Private	1.19 (0.89–1.58)	0.42	1.42 (1.00–2.00)	0.89	0.65 (1.22)	0.94	0.64–1.38	0.758
Experience								
<5 years	Ref	0.005	Ref	0.028	Ref	0.305	Ref	0.623
≥5 years	1.46 (1.12–1.91)	0.97	0.97 (0.95–1.00)	1.17	0.86–1.59	1.01	0.98–1.03	0.623
Income category in Indian National Rupees								
<25000	Ref	0.049	Ref	0.027	Ref	0.036	Ref	0.068
25000 to 50000	1.70 (1.00–2.88)	0.031	1.85 (1.07–3.21)	0.012	1.81 (1.03–3.16)	0.004	1.71 (0.96–3.05)	0.018
50000 to 100000	1.60 (1.04–2.45)	0.008	1.79 (1.13–2.82)	0.010	1.94 (1.24–3.04)	<0.001	1.79 (1.10–2.89)	<0.001
≥100000	1.78 (1.16–2.74)	0.028	1.83 (1.16–2.89)	2.91	1.83 (4.63)	2.59	1.57–4.27	1.57
Experience of attending online training								
No	Ref	0.021	Ref	0.007	Ref	0.008	Ref	0.130
Yes	1.41 (1.05–1.89)	0.57	1.57 (1.13–2.17)	1.55	1.12–2.14	1.32	0.92–1.89	0.92
Experience of attending offline training								
No	Ref	0.419	Ref	0.938	Ref	<0.001	Ref	0.006
Yes	1.12 (0.85–1.49)	1.01	1.01 (0.74–1.39)	1.85	1.36–2.51	1.61	1.14–2.27	1.14

*P-value of online model: <0.001, #P-value of offline model: <0.001, OR: Odds ratio, aOR: Adjusted odds ratio, CI: confidence intervals, Ref: Reference
Association of demographic characteristics with preference of the participants: The univariable analysis suggested age, gender, education qualification, type of HCWs, marital status, level of experience and perception were associated with preference of mode of learning. However, in adjusted analysis only perception was found to be independently associated with mode of learning. The odds of preferring online training among participants who perceived online as better mode of training was 9.63 (6.99-13.29, p<0.001) times higher the odds of perceiving offline mode of training to be better (Supplementary Table 4).

Table 4: Association of demographic characteristics with preference of the participants (n=1113)

Demographic characteristics	Online n=747 n (%)	Offline n=366 n (%)	OR (95% CI)	P	aOR (95% CI)	P
Age category						
<30 years	256 (62.0)	157 (38.0)	Ref	0.005	Ref	0.226
≥30 years	491 (70.1)	209 (29.9)	1.44 (1.11-1.86)	1.32 (0.84-2.06)		
Gender						
Male	260 (63.4)	150 (36.6)	Ref	0.045	Ref	0.431
Female	487 (69.3)	216 (30.7)	1.30 (1.00-1.68)	1.15 (0.81-1.62)		
Qualification						
Diploma holders	282 (74.8)	95 (25.2)	Ref	0.036	Ref	0.626
Graduates	306 (68.2)	143 (31.8)	0.72 (0.53-0.98)	<0.001	0.90 (0.60-1.35)	0.008
Post-graduates and above	159 (55.4)	128 (44.6)	0.42 (0.30-0.58)	0.51 (0.31-0.84)		
Type of Healthcare workers						
Student	50 (52.0)	46 (48.0)	Ref	<0.001	Ref	0.795
Nursing staff	501 (71.7)	198 (28.3)	2.33 (1.51-3.59)	1.40 (0.58-2.04)	0.619	
Physician	133 (61.0)	85 (39.0)	1.44 (0.89-2.34)	0.123	0.85 (0.44-1.63)	0.412
Faculty	63 (63.0)	37 (37.0)	1.57 (0.88-2.78)	1.37 (0.65-2.90)		
Marital Status						
Unmarried	222 (60.5)	145 (39.5)	Ref	0.001	Ref	0.164
Married	525 (70.4)	221 (29.6)	1.55 (1.19-2.01)	1.34 (0.89-2.01)		
Type of health facility						
Government	528 (67.1)	259 (32.9)	Ref	0.977	Ref	0.579
Private	219 (67.2)	107 (32.8)	1.00 (0.76-1.32)	1.11 (0.76-1.62)		
Experience						
<5 years	232 (61.9)	143 (38.1)	Ref	0.008	Ref	0.939
≥5 years	515 (69.8)	223 (30.2)	1.42 (1.10-1.85)	1.00 (0.98-1.03)		
Income category in Indian National						
Rupees	85 (72.0)	33 (28.0)	Ref	0.685	Ref	0.796
<25000	92 (69.7)	40 (30.3)	0.89 (0.52-1.54)	0.597	1.09 (0.57-2.07)	0.481
25000 to 50000	278 (69.5)	122 (30.5)	0.88 (0.56-1.39)	0.167	1.22 (0.71-2.10)	0.766
50000 to 100000	270 (65.2)	144 (34.8)	0.73 (0.46-1.14)	1.08 (0.63-1.86)		
≥100000						
Experience of attending online training						
No	172 (64.2)	96 (35.8)	Ref	0.240	Ref	0.337
Yes	575 (68.0)	270 (32.0)	1.19 (0.89-1.59)	1.20 (0.83-1.73)		
Experience of attending offline training						
No	219 (70.6)	91 (29.4)	Ref	0.120	Ref	0.076
Yes	528 (65.7)	275 (34.3)	0.79 (0.60-1.06)	0.72 (0.50-1.03)		
Perception						
Offline	527 (88.0)	72 (12.0)	Ref	<0.001	Ref	<0.001
Online	220 (42.8)	294 (57.2)	9.78 (7.23-13.22)	9.63 (6.99-13.29)		

*P-value of model: <0.001 ; R²=0.22; OR: Odds ratio; aOR: Adjusted odds ratio; CI: confidence intervals; Ref: Reference