REAL HYPERSURFACES IN THE COMPLEX QUADRIC WITH REEB PARALLEL STRUCTURE JACOBI OPERATOR

HYUNJIN LEE AND YOUNG JIN SUH

Abstract. In this paper, we first introduce the full express of the Riemannian curvature tensor of a real hypersurface M in complex quadric Q^m from the equation of Gauss. Next we derive a formula for the structure Jacobi operator R_{ξ} and its derivative under the Levi-Civita connection of M. We give a complete classification of Hopf real hypersurfaces with Reeb parallel structure Jacobi operator, $\nabla_\xi R_{\xi} = 0$, in the complex quadric Q^m, $m \geq 3$.

1. Introduction

For Hermitian symmetric space of compact type different from the above ones, we can give the example of complex quadric $Q^m = SO_{m+2}/SO_m SO_2$, which is a complex hypersurface in the complex projective space $\mathbb{C}P^{m+1}$ (see Romero [23], [24], Smyth [25], Suh [28], [29]). The complex quadric can also be regarded as a kind of real Grassmann manifolds of compact type with rank 2 (see Besse [1], Helgason [6], and Knap [12]). Accordingly, the complex quadric Q^m admits two important geometric structures, a complex conjugation structure A and a Kähler structure J, which anti-commute with each other, that is, $AJ = -JA$. Then for $m \geq 2$ the triple (Q^m, J, g) is a Hermitian symmetric space of compact type with rank 2 and its maximal sectional curvature is equal to 4 (see Kobayashi and Nomizu [14], Reckziegel [22]).

In addition to the complex structure J there is another distinguished geometric structure on Q^m, namely a parallel rank two vector bundle \mathfrak{A} which contains an S^1-bundle of real structures, that is, complex conjugations A on the tangent spaces of Q^m. The set is denoted by $\mathfrak{A} = \{ A_\lambda \mid \lambda \in S^1 \subset \mathbb{C} \}$, $[z] \in Q^m$, and it is the set of all complex conjugations defined on Q^m. Then \mathfrak{A} becomes a parallel rank 2-subbundle of End $T_{[z]}Q^m$, $[z] \in Q^m$. This geometric structure determines a maximal \mathfrak{A}-invariant subbundle \mathcal{Q} of the tangent bundle TM of a real hypersurface M in Q^m. Here the notion of parallel vector bundle \mathfrak{A} means that $(\nabla_X A)Y = q(X)JAY$ for any vector fields X and Y on Q^m, where ∇ and q denote a connection and a certain 1-form defined on $T_{[z]}Q^m$, $[z] \in Q^m$ respectively (see Smyth [25]).

Recall that a nonzero tangent vector $W \in T_{[z]}Q^m$ is called singular if it is tangent to more than one maximal flat in Q^m. There are two types of singular tangent vectors for the complex hyperbolic quadric Q^m:

\[\text{Key words: Reeb parallel structure Jacobi operator, singular normal vector field, } \mathfrak{A}\text{-isotropic, } \mathfrak{A}\text{-principal, Kähler structure, complex conjugation, complex quadric.} \]

\[* \text{This work was supported by grant Proj. Nos. NRF-2018-R1D1A1B-05040381 and NRF-2019-R1I1A1A 01050300 from National Research Foundation of Korea.} \]
• If there exists a conjugation $A \in \mathfrak{A}$ such that $W \in V(A) = \{X \in T_{z|}Q^m \mid AX = X\}$, then W is singular. Such a singular tangent vector is called \mathfrak{A}-principal.

• If there exist a conjugation $A \in \mathfrak{A}$ and orthonormal vectors $Z_1, Z_2 \in V(A)$ such that $W/||W|| = (Z_1 + JZ_2)/\sqrt{2}$, then W is singular. Such a singular tangent vector is called \mathfrak{A}-isotropic, where $V(A) = \{X \in T_{z|}Q^m \mid AX = X\}$ and $JV(A) = \{X \in T_{z|}Q^m \mid AX = -X\}$ are the $(+1)$-eigenspace and (-1)-eigenspace for the involution A on $T_{z|}Q^m$, $[z] \in Q^m$.

On the other hand, Okumura [17] proved that the Reeb flow on a real hypersurface in $\mathbb{C}P^m = SU_{m+1}/S(U_1U_m)$ is isometric if and only if M is an open part of a tube around a totally geodesic $\mathbb{C}P^k$ in $\mathbb{C}P^m$ for some $k \in \{0, \ldots, m - 1\}$. For the complex 2-plane Grassmannian $G_2(\mathbb{C}^{m+2}) = SU_{m+2}/S(U_2U_m)$ a classification was obtained by Berndt and Suh [2]. The Reeb flow on a real hypersurface in $G_2(\mathbb{C}^{m+2})$ is isometric if and only if M is an open part of a tube around a totally geodesic $G_2(\mathbb{C}^{m+1})$ in $G_2(\mathbb{C}^{m+2})$. For the complex quadric $Q^m = SO_{m+2}/SO_2SO_m$, Berndt and Suh [3] have obtained the following result:

Theorem A. Let M be a real hypersurface in the complex quadric Q^m, $m \geq 3$. Then the Reeb flow on M is isometric if and only if m is even, say $m = 2k$, and M is an open part of a tube around a totally geodesic $\mathbb{C}P^k$ in Q^{2k}.

For the complex hyperbolic space $\mathbb{C}H^m$ a classification was obtained by Montiel and Romero [16]. They proved that the Reeb flow on a real hypersurface in $\mathbb{C}H^m$ is isometric if and only if M is an open part of a tube around a totally geodesic $\mathbb{C}H^k$ in $\mathbb{C}H^m$ for some $k \in \{0, \ldots, m - 1\}$. The classification problems related to the Reeb parallel shape operator, parallel Ricci tensor, and harmonic curvature for real hypersurfaces in the complex quadric Q^m were recently given in Suh [26], [28] and [29] respectively.

The notion of isometric Reeb flow was introduced by Hutching and Taubes [7] and the geometric construction of horospheres in a non-compact manifold of negative curvature was mainly discussed in the book due to Eberlein [5].

On the other hand, Jacobi fields along geodesics of a given Riemannian manifold (\tilde{M}, g) satisfy a well known differential equation. This equation naturally inspires the so-called Jacobi operator. That is, if R denotes the curvature operator of \tilde{M}, and X is a tangent vector field to \tilde{M}, then the Jacobi operator $R_X \in \text{End}(T_{z|}\tilde{M})$ with respect to X at $z \in \tilde{M}$, defined by $(R_X Y)(z) = (R(Y, X)X)(z)$ for any $Y \in T_{z|}\tilde{M}$, becomes a self adjoint endomorphism of the tangent bundle TM of M. Thus, each tangent vector field X to \tilde{M} provides a Jacobi operator R_X with respect to X. In particular, for the Reeb vector field ξ, the Jacobi operator R_ξ is said to be the *structure Jacobi operator*.

Actually, many geometers have considered the fact that a real hypersurface M in Kähler manifolds has *parallel structure Jacobi operator* (or Reeb parallel structure Jacobi operator, respectively), that is, $\nabla_X R_\xi = 0$ (or $\nabla_\xi R_\xi = 0$, respectively) for any tangent vector field X on M. Recently Ki, Pérez, Santos and Suh [10] have investigated the Reeb parallel structure Jacobi operator in the complex space form $M^m(c)$, $c \neq 0$, and have used it to study some principal curvatures for a tube over a totally geodesic submanifold. In particular, Pérez, Jeong and Suh [19] have investigated real hypersurfaces M in $G_2(\mathbb{C}^{m+2})$ with parallel structure Jacobi operator, that is, $\nabla_X R_\xi = 0$ for any tangent vector field X on M. Jeong, Suh and Woo [9] and Pérez and Santos [20] have generalized such a notion to the recurrent structure Jacobi operator, that is, $(\nabla_X R_\xi)Y = \beta(X)R_\xi Y$ for a certain
1-form β and any vector fields X, Y on M in $G_2(\mathbb{C}^{m+2})$ or \mathbb{CP}^m. In [8], Jeong, Lee, and Suh have considered a Hopf real hypersurface with Codazzi type of structure Jacobi operator, $(\nabla_X R_\xi) Y = (\nabla_Y R_\xi) X$, in $G_2(\mathbb{C}^{m+2})$. Moreover, Pérez, Santos and Suh [21] have further investigated the property of the Lie ξ-parallel structure Jacobi operator in complex projective space \mathbb{CP}^m, that is, $\mathcal{L}_\xi R_\xi = 0$.

Motivated by these results, in this paper we want to give a classification of Hopf real hypersurfaces in Q^m with non-vanishing geodesic Reeb flow and Reeb parallel structure Jacobi operator, that is, $\nabla_\xi R_\xi = 0$. Here a real hypersurface M is said to be Hopf if the Reeb vector field ξ of M is principal by the shape operator S, that is, $S\xi = g(S\xi, \xi)\xi = \alpha\xi$. In particular, if the Reeb curvature function $\alpha = g(S\xi, \xi)$ identically vanishes, we say that M has a vanishing geodesic Reeb flow. Otherwise, M has a non-vanishing geodesic Reeb flow.

Under these background and motivation, first we prove the following:

Theorem 1. There does not exist any Hopf real hypersurface in the complex quadric Q^m, $m \geq 3$, with Reeb parallel structure Jacobi operator and \mathfrak{A}-principal singular normal vector field, provided with non-vanishing geodesic Reeb flow.

Now let us consider a Hopf real hypersurface with \mathfrak{A}-isotropic singular normal vector field ν in Q^m. Then by virtue of Theorem A we can give a complete classification of Hopf real hypersurfaces in Q^m with Reeb parallel structure Jacobi operator as follows:

Theorem 2. Let M be a Hopf real hypersurface in the complex quadric Q^m, $m \geq 3$, with Reeb parallel structure Jacobi operator and non-vanishing geodesic Reeb flow. If M has the \mathfrak{A}-isotropic singular normal vector field in Q^m, then M is locally congruent to a tube around the totally geodesic \mathbb{CP}^k in Q^{2k}, where $m = 2k$, and $r \in (0, \frac{\pi}{4}) \cup (\frac{\pi}{4}, \frac{\pi}{2})$.

2. The complex quadric

For more background to this section we refer to [11], [14], [22], [26], [27], [29] and [32]. The complex quadric Q^m is the complex hypersurface in \mathbb{CP}^{m+1} which is defined by the equation $z_1^2 + \cdots + z_{m+2}^2 = 0$, where z_1, \ldots, z_{m+2} are homogeneous coordinates on \mathbb{CP}^{m+1}. We equip Q^m with the Riemannian metric which is induced from the Fubini Study metric on \mathbb{CP}^{m+1} with constant holomorphic sectional curvature 4. The Kähler structure on \mathbb{CP}^{m+1} induces canonically a Kähler structure (J, g) on the complex quadric. For a nonzero vector $z \in \mathbb{C}^{m+2}$ we denote by $[z]$ the complex span of z, that is, $[z] = \mathbb{C}z = \{\lambda z | \lambda \in S^1 \subset \mathbb{C}\}$. Note that by definition $[z]$ is a point in \mathbb{CP}^{m+1}. For each $[z] \in Q^m \subset \mathbb{CP}^{m+1}$ we identify $T_{[z]}Q^m$ with the orthogonal complement $\mathbb{C}^{m+2} \ominus \mathbb{C}z$ of $\mathbb{C}z$ in \mathbb{C}^{m+2} (see Kobayashi and Nomizu [14]). The tangent space $T_{[z]}Q^m$ can then be identified canonically with the orthogonal complement $\mathbb{C}^{m+2} \ominus (\mathbb{C}z \oplus \mathbb{C}\rho)$ of $\mathbb{C}z \oplus \mathbb{C}\rho$ in \mathbb{C}^{m+2}, where $\rho \in \nu_{[z]}Q^m$ is a normal vector of Q^m in \mathbb{CP}^{m+1} at the point $[z]$.

The complex projective space \mathbb{CP}^{m+1} is a Hermitian symmetric space of the special unitary group SU_{m+2}, namely $\mathbb{CP}^{m+1} = SU_{m+2} / SU_m U_1$. We denote by $o = [0, \ldots, 0, 1] \in \mathbb{CP}^{m+1}$ the fixed point of the action of the stabilizer $SU_m U_1$. The special orthogonal group $SO_{m+2} \subset SU_{m+2}$ acts on \mathbb{CP}^{m+1} with cohomogeneity one. The orbit containing o is a totally geodesic real projective space $\mathbb{RP}^{m+1} \subset \mathbb{CP}^{m+1}$. The second singular orbit
of this action is the complex quadric $Q^m = SO_{m+2}/SO_m SO_2$. This homogeneous space model leads to the geometric interpretation of the complex quadric Q^m as the Grassmann manifold $G^+_2(\mathbb{R}^{m+2})$ of oriented 2-planes in \mathbb{R}^{m+2}. It also gives a model of Q^m as a Hermitian symmetric space of rank 2. The complex quadric Q^1 is isometric to a sphere S^2 with constant curvature, and Q^2 is isometric to the Riemannian product of two 2-spheres with constant curvature. For this reason we will assume $m \geq 3$ from now on.

For a unit normal vector ρ of Q^m at a point $[z] \in Q^m$ we denote by $A = A_\rho$ the shape operator of Q^m in $\mathbb{C}P^{m+1}$ with respect to ρ. The shape operator is an involution on the tangent space $T_{[z]}Q^m$ and

$$T_{[z]}Q^m = V(A_\rho) \oplus JV(A_\rho),$$

where $V(A_\rho)$ is the $(+1)$-eigenspace and $JV(A_\rho)$ is the (-1)-eigenspace of A_ρ. Geometrically this means that the shape operator A_ρ defines a real structure on the complex vector space $T_{[z]}Q^m$, or equivalently, is a complex conjugation on $T_{[z]}Q^m$. Since the real codimension of Q^m in $\mathbb{C}P^{m+1}$ is 2, this induces an S^1-subbundle \mathfrak{A} of the endomorphism bundle $\text{End}(TQ^m)$ consisting of complex conjugations. There is a geometric interpretation of these conjugations. The complex quadric Q^m can be viewed as the complexification of the m-dimensional sphere S^m. Through each point $[z] \in Q^m$ there exists a one-parameter family of real forms of Q^m which are isometric to the sphere S^m. These real forms are congruent to each other under action of the center SO_2 of the isotropy subgroup of SO_{m+2} at $[z]$. The isometric reflection of Q^m in such a real form S^m is an isometry, and the differential at $[z]$ of such a reflection is a conjugation on $T_{[z]}Q^m$. In this way the family \mathfrak{A} of conjugations on $T_{[z]}Q^m$ corresponds to the family of real forms S^m of Q^m containing $[z]$, and the subspaces $V(A)$ in $T_{[z]}Q^m$ correspond to the tangent spaces $T_{[z]}S^m$ of the real forms S^m of Q^m.

The Gauss equation for $Q^m \subset \mathbb{C}P^{m+1}$ implies that the Riemannian curvature tensor \bar{R} of Q^m can be described in terms of the complex structure J and the complex conjugations $A \in \mathfrak{A}$:

$$\bar{R}(X, Y)Z = g(Y, Z)X - g(X, Z)Y + g(JY, Z)JX - g(JX, Z)JY$$

$$- 2g(JX, Y)JZ + g(AY, Z)AX$$

$$- g(AX, Z)AY + g(JAY, Z)JAX - g(JAX, Z)JAY. \quad (2.1)$$

It is well known that for every unit tangent vector $U \in T_{[z]}Q^m$ there exist a conjugation $A \in \mathfrak{A}$ and orthonormal vectors $Z_1, Z_2 \in V(A)$ such that

$$U = \cos(t)Z_1 + \sin(t)JZ_2$$

for some $t \in [0, \pi/4]$ (see [22]). The singular tangent vectors correspond to the values $t = 0$ and $t = \pi/4$. If $0 < t < \pi/4$ then the unique maximal flat containing U is $\mathbb{R}Z_1 \oplus \mathbb{R}JZ_2$. Later we will need the eigenvalues and eigenspaces of the Jacobi operator $\bar{R}_U = \bar{R}(\cdot, U)U$ for a singular unit tangent vector U.

1. If U is an \mathfrak{A}-principal singular unit tangent vector with respect to $A \in \mathfrak{A}$, then the eigenvalues of \bar{R}_U are 0 and 2 and the corresponding eigenspaces are $\mathbb{R}U \oplus J(V(A) \oplus \mathbb{R}U)$ and $(V(A) \oplus \mathbb{R}U) \oplus \mathbb{R}JU$, respectively.

2. If U is an \mathfrak{A}-isotropic singular unit tangent vector with respect to $A \in \mathfrak{A}$ and $X, Y \in V(A)$, then the eigenvalues of \bar{R}_U are 0, 1 and 4 and the corresponding eigenspaces are $\mathbb{R}U \oplus \mathbb{C}(JZ_1 + Z_2)$, $T_{[z]}Q^m \ominus (\mathbb{C}Z_1 \oplus \mathbb{C}Z_2)$ and $\mathbb{R}JU$, respectively.
3. Real hypersurfaces in Q^m

Let M be a real hypersurface in Q^m and denote by (ϕ, ξ, η, g) the induced almost contact metric structure. By using the Gauss and Wingarten formulas the left-hand side of (2.1) becomes

$$\bar{R}(X, Y)Z = R(X, Y)Z - g(SY, Z)SX + g(SX, Z)SY$$

$$+ \{ g((\nabla_X S)Y, Z) - g((\nabla_Y S)X, Z) \} N,$$

where R and S denote the Riemannian curvature tensor and the shape operator of M in Q^m, respectively. Taking tangent and normal components of (2.1) respectively, we obtain

$$g(R(X, Y)Z, W) - g(SY, Z)g(SX, W) + g(SX, Z)g(SY, W)$$

$$= g(Y, Z)g(X, W) - g(X, Z)g(Y, W) + g(JY, Z)g(JX, W)$$

$$- g(JX, Z)g(JY, W) - 2g(JX, Y)g(JZ, W) + g(AY, Z)g(AX, W)$$

$$- g(AX, Z)g(AY, W) + g(JAY, Z)g(JAX, W) - g(JAX, Z)g(JAY, W),$$

and

$$g((\nabla_X S)Y, Z) - g((\nabla_Y S)X, Z)$$

$$= \eta(X)g(JY, Z) - \eta(Y)g(JX, Z) - 2\eta(Z)g(JX, Y)$$

$$+ g(JY, Z)g(AX, N) - g(AX, Z)g(AY, N)$$

$$+ \eta(AX)g(JAY, Z) - \eta(AY)g(JAX, Z)$$

where X, Y, Z and W are tangent vector fields of M.

Note that $JX = \phi X + \eta(X) N$ and $JN = -\xi$, where ϕX is the tangential component of JX and N is a (local) unit normal vector field of M. The tangent bundle TM of M splits orthogonally into $TM = C \oplus \mathbb{R} \xi$, where $C = \ker \eta$ is the maximal complex subbundle of TM. The structure tensor field ϕ restricted to C coincides with the complex structure J restricted to C, and $\phi \xi = 0$. Moreover, since the complex quadric Q^m has also a real structure A, we decompose AX into its tangential and normal components for a fixed $A \in \mathfrak{a}_{[2]}$ and $X \in T_{[2]} M$:

$$AX = BX + \rho(X) N$$

(3.3)

where BX is the tangential component of AX and

$$\rho(X) = g(AX, N) = g(X, AN) = g(X, A\xi) = g(JX, A\xi).$$

From these notations, the equations (3.1) and (3.2) can be written as

$$R(X, Y)Z - g(SY, Z)SX + g(SX, Z)SY$$

$$= g(Y, Z)X - g(X, Z)Y + g(JY, Z)\phi X - g(JX, Z)\phi Y - 2g(JX, Y)\phi Z$$

$$+ g(JY, Z)BX - g(AX, Z)BY + g(JAY, Z)\phi BX$$

$$- g(JAY, Z)\rho(X)\xi - g(JAX, Z)\phi BY + g(JAX, Z)\rho(Y)\xi$$

and

$$(\nabla_X S)Y - (\nabla_Y S)X$$

$$= \eta(X)\phi Y - \eta(Y)\phi X - 2g(JX, Y)\xi$$

$$+ g(AX, N)BY - g(AY, N)BX + \eta(AX)\phi BY$$

$$- \eta(AX)\rho(Y)\xi - \eta(AY)\phi BX + \eta(AY)\rho(X)\xi,$$
which are called the equations of Gauss and Codazzi, respectively. Moreover, from (3.1) the Ricci tensor \(\text{Ric} \) of \(M \) is given by
\[
\text{Ric}X = (2m - 1)X - 3\eta(X)\xi + g(A\xi, \xi)BX - g(A\xi, N)\phi A\xi \\
+ g(AX, \xi)A\xi + hSX - S^2X,
\]
where \(h = \text{Tr}S \).

As mentioned in section 2 since the normal vector field \(N \) belongs to \(T_{[z]}Q^m, [z] \in M \), we can choose \(A \in \mathfrak{A}_{[z]} \) such that
\[
N = \cos(t)Z_1 + \sin(t)JZ_2
\]
for some orthonormal vectors \(Z_1, Z_2 \in V(A) \) and \(0 \leq t \leq \frac{\pi}{4} \) (see Proposition 3 in [22]). Note that \(t \) is a function on \(M \). If \(t = 0 \), then \(N = Z_1 \in V(A) \), therefore we see that \(N \) becomes the \(\mathfrak{A} \)-principal singular tangent vector field. On the other hand, if \(t = \frac{\pi}{4} \), then \(N = \frac{1}{\sqrt{2}}(Z_1 + JZ_2) \). That is, \(N \) is to be the \(\mathfrak{A} \)-isotropic singular tangent vector field. In addition, since \(\xi = -JN \), we have
\[
\begin{align*}
\xi &= \sin(t)Z_2 - \cos(t)JZ_1, \\
AN &= \cos(t)Z_1 - \sin(t)JZ_2, \\
A\xi &= \sin(t)Z_2 + \cos(t)JZ_1.
\end{align*}
\]
This implies \(g(\xi, AN) = 0 \) and \(g(A\xi, \xi) = -g(AN, N) = -\cos(2t) \) on \(M \). At each point \([z] \in M \) we define the maximal \(\mathfrak{A} \)-invariant subspace of \(T_{[z]}M, [z] \in M \) as follows:
\[
\mathcal{Q}_{[z]} = \{ X \in T_{[z]}M \mid AX \in T_{[z]}M \text{ for all } A \in \mathfrak{A}_{[z]} \}.
\]
It is known that \(N_{[z]} \) is \(\mathfrak{A} \)-principal, then \(\mathcal{Q}_{[z]} = \mathcal{C}_{[z]} \) (see [20]).

We now assume that \(M \) is a Hopf hypersurface in the complex quadric \(Q^m \). Then the shape operator \(S \) of \(M \) in \(Q^m \) satisfies \(S\xi = \alpha \xi \) with the Reeb function \(\alpha = g(S\xi, \xi) \) on \(M \). By virtue of the Codazzi equation, we obtain the following lemma.

Lemma 3.1 ([31]). Let \(M \) be a Hopf hypersurface in \(Q^m, m \geq 3 \). Then we obtain
\[
X\alpha = (\xi\alpha)\eta(X) + 2g(A\xi, \xi)g(X, AN) \quad (3.6)
\]
and
\[
2g(S\phi SX, Y) - \alpha g((\phi S + S\phi)X, Y) - 2g(\phi X, Y) \\
+ g(X, AN)g(Y, A\xi) - g(Y, AN)g(X, A\xi) \\
- g(X, A\xi)g(JY, A\xi) + g(Y, A\xi)g(JX, A\xi) \\
- 2g(X, AN)g(\xi, A\xi)\eta(Y) + 2g(Y, AN)g(\xi, A\xi)\eta(X) = 0 \quad (3.7)
\]
for any tangent vector fields \(X \) and \(Y \) on \(M \).

Remark 3.2. By virtue of (3.6) we know if \(M \) has vanishing geodesic Reeb flow (or constant Reeb curvature, respectively), then the normal vector \(N \) is singular. In fact, under this assumption (3.6) becomes \(g(A\xi, \xi)g(X, AN) = 0 \) for any tangent vector field \(X \) on \(M \). Since \(g(A\xi, \xi) = -\cos(2t) \), the case of \(g(A\xi, \xi) = 0 \) implies that \(N \) is \(\mathfrak{A} \)-isotropic. Besides, if \(g(A\xi, \xi) \neq 0 \), that is, \(g(AN, X) = 0 \) for all \(X \in TM \), then
\[
AN = \sum_{i=1}^{2m} g(AN, e_i)e_i + g(AN, N)N = g(AN, N)N,
\]
which implies that \(N = A^2 N = g(AN, N)AN \). Taking an inner product with \(N \), it follows \(g(AN, N) = \pm 1 \). Since \(g(AN, N) = \cos(2t) \) where \(t \in [0, \frac{\pi}{4}) \), we obtain \(AN = N \). Hence \(N \) should be \(\mathfrak{A} \)-principal.

Lemma 3.3 (26). Let \(M \) be a Hopf hypersurface in \(Q^m \) such that the normal vector field \(N \) is \(\mathfrak{A} \)-principal everywhere. Then \(\alpha \) is constant. Moreover, if \(X \in \mathcal{C} \) is a principal curvature vector of \(M \) with principal curvature \(\lambda \), then \(2\lambda \neq \alpha \) and its corresponding vector \(\phi X \) is a principal curvature vector of \(M \) with principal curvature \(\frac{\alpha \lambda + 2}{2\lambda - \alpha} \).

Lemma 3.4 (26). Let \(M \) be a Hopf hypersurface in \(Q^m \), \(m \geq 3 \), such that the normal vector field \(N \) is \(\mathfrak{A} \)-isotropic everywhere. Then \(\alpha \) is constant.

If the normal vector \(N \) is \(\mathfrak{A} \)-isotropic, then we obtain

\[
g(A\xi, N) = g(A\xi, \xi) = g(AN, N) = 0
\]

from (3.5) and the notation of \(N \). Taking the covariant derivative of \(g(AN, N) = 0 \) along the direction of any \(X \in T_{[z]}M, [z] \in M \), it becomes

\[
0 = X(g(AN, N)) = g(\nabla_X(AN), N) + g(AN, \nabla_X N)
= g((\nabla_X A)N + A(\nabla_X N), N) + g(AN, \nabla_X N)
= g(q(X)JAN - ASX, N) - g(AN, SX)
= -2g(ASX, N),
\]

where we have used the covariant derivative of the complex structure \(A \), that is, \((\nabla_X A)Y = q(X)JAY \) and the formula of Weingarten. Then the above formula gives \(SAN = 0 \), because \(AN \) becomes a tangent vector field on \(M \) for \(\mathfrak{A} \)-isotropic unit normal vector field \(N \).

On the other hand, by differentiating \(g(A\xi, N) = 0 \) and using the formula of Gauss, we have:

\[
0 = g(\nabla_X (A\xi), N) + g(A\xi, \nabla_X N)
= g((\nabla_X A)\xi + A(\nabla_X \xi), N) + g(A\xi, \nabla_X N)
= g((\nabla_X A)\xi, N) + g(\nabla_X \xi + \sigma(X, \xi), AN) + g(A\xi, \nabla_X N)
= g(q(X)JA\xi, N) + g(\phi SX + g(SX, \xi)N, AN) - g(A\xi, SX)
= -2g(A\xi, SX),
\]

where \(\sigma \) is the second fundamental form of \(M \) and \(\phi AN = JAN = -AJN = A\xi \). By \(g(A\xi, N) = 0 \), the vector field \(A\xi \) becomes a tangent vector field on \(M \) with \(\mathfrak{A} \)-isotropic unit normal vector field \(N \). Then the above formula gives \(SA\xi = 0 \).

Moreover, when the normal vector \(N \) is \(\mathfrak{A} \)-isotropic, the tangent vector space \(T_{[z]}M, [z] \in M \), is decomposed

\[
T_{[z]}M = [\xi] \oplus [A\xi, AN] \oplus \mathcal{Q},
\]

where \(\mathcal{C} \oplus \mathcal{Q} = \mathcal{Q}^\perp = \text{Span}[A\xi, AN] \). From the equation (3.7), we obtain

\[
(2\lambda - \alpha)S\phi X = (\alpha \lambda + 2)\phi X
\]

for some principal curvature vector \(X \in \mathcal{Q} \subset T_{[z]}M \) such that \(SX = \lambda X \). If \(2\lambda - \alpha = 0 \) (i.e. \(\lambda = \frac{\alpha}{2} \)), then \(\alpha \lambda + 2 = \frac{\alpha^2 + 4}{2} = 0 \), which makes a contradiction. Hence we obtain:
Lemma 3.5. Let M be a Hopf hypersurface in Q^m such that the normal vector field N is \mathfrak{X}-isotropic. Then $SA\xi = 0$ and $SAN = 0$. Moreover, if $X \in Q$ is a principal curvature vector of M with principal curvature λ, then $2\lambda \neq \alpha$ and its corresponding vector ϕX is a principal curvature vector of M with principal curvature $\frac{\alpha + 2}{\lambda - \alpha}$.

On the other hand, from the property of $g(A\xi, N) = 0$ on a real hypersurface M in Q^m we see that the non-zero vector field $A\xi$ is tangent to M. Hence by Gauss formula it induces

$$\nabla_X(A\xi) = \nabla_X(A\xi) - \sigma(X, A\xi)$$

for any $X \in TM$. From $AN = AJ\xi = -JA\xi$ and $JA\xi = \phi A\xi + \eta(A\xi)N$, it gives us

\[
\begin{aligned}
\text{Tangent Part : } \nabla_X(A\xi) &= q(X)\phi A\xi + B\phi S\xi \quad - g(S\xi, A\xi)N \\
\text{Normal Part : } q(X)g(A\xi, \xi) &= -g(AN, \nabla_X\xi) + g(S\xi, A\xi)g(A\xi, \xi) + g(S\xi, A\xi)
\end{aligned}
\]

In particular, if M is Hopf, then the second equation in (3.8) becomes

$$g(\xi)g(A\xi, \xi) = 2\alpha g(A\xi, \xi).$$

(3.9)

4. Proof of Theorem 1

- Reeb parallel structure Jacobi operator with \mathfrak{X}-principal normal -

Let us M be a real hypersurface in the complex quadric Q^m, $m \geq 3$, with Reeb parallel structure Jacobi operator, that is,

$$(\nabla_\xi R_\xi)Y = 0$$

(*)

for all tangent vector fields Y of M.

As mentioned in section 1 the structure Jacobi operator $R_\xi \in \text{End}(TM)$ with respect to the unit tangent vector field $\xi \in TM$ is induced from the curvature tensor R of M given in section 3 as follows: for any tangent vector fields Y, $Z \in TM$

$$g(R_\xi Y, Z) = g(R(Y, \xi)\xi, Z)$$

$$= g(Y, Z) - \eta(Y)\eta(Z) + g(A\xi, \xi)g(AY, Z) - g(Y, A\xi)g(A\xi, Z)$$

$$- g(AY, N)g(AN, Z) + \alpha g(SY, Z) - \alpha^2 \eta(Y)\eta(Z),$$

where we have used $J\xi = N$, $JA = -AJ$, and $g(A\xi, N) = 0$.

Remark. For any tangent vector field X of M the vector field AX belongs to TQ^m, that is, $AX = BX + \rho(X)N \in TM \oplus (TM)^\perp = TQ^m$. Therefore, from 14 the structure Jacobi operator of M is given by

$$R_\xi Y = Y - \eta(Y)\xi + g(A\xi, \xi)BY - g(A\xi, Y)A\xi$$

$$- g(\phi A\xi, Y)\phi A\xi + \alpha SY - \alpha^2 \eta(Y)\xi.$$

(4.1)

Here we have used that $A\xi = B\xi \in TM$ (i.e. $\rho(\xi) = g(AN, \xi) = 0$) and $AN = AJ\xi = -JA\xi = -\phi A\xi - \eta(A\xi)N$.

Taking the covariant derivative of (4.1) along the direction of $X \in TM$, then we have

$$(\nabla_X R_\xi)Y = -g(Y, \nabla_X \xi)\eta(Y) \nabla_X \xi + g(\nabla_X (A\xi), \xi)BY + g(A\xi, \nabla_X \xi)BY$$

$$+ g(A\xi, \xi)(\nabla_X BY) - g(\nabla_X (A\xi), Y)A\xi - g(A\xi, Y)\nabla_X (A\xi)$$

$$- g((\nabla_X \phi)A\xi, Y)\phi A\xi + g(\nabla_X (A\xi), \phi Y)\phi A\xi$$

$$- g(\phi A\xi, Y)(\nabla_X \phi)A\xi - g(\phi A\xi, Y)\phi(\nabla_X (A\xi))$$

$$+ (X\alpha)SY + \alpha(\nabla_X S)Y - 2\alpha(X\alpha)\eta(Y)\xi - \alpha^2 g(Y, \nabla_X \xi)\xi - \alpha^2 \eta(Y) \nabla_X \xi$$

$$= -g(Y, \phi SX)\xi - \eta(Y)\phi SX + g(\phi SX, \xi)BY + g(A\xi, \phi SX)BY$$

$$+ g(A\xi, \xi)\left\{ q(X)JAY + g(SX, Y)AN - q(X)g(AY, \xi)N \right\}$$

$$+ g(A\xi, \xi)\left\{ g(SX, Y)g(A\xi, \xi)N + g(AN, Y)SX \right\}$$

$$- \left\{ (q(X) - \alpha \eta(X))g(\phi A\xi, Y) + g(\phi SX, Y) \right\} A\xi$$

$$- g(A\xi, Y)\left\{ (q(X) - \alpha \eta(X))\phi A\xi + B\phi SX \right\}$$

$$- \left\{ g(A\xi, \xi)g(SX, Y) - g(SX, A\xi)\eta(Y) \right\} \phi A\xi + (q(X) - \alpha \eta(X))g(A\xi, Y)\phi A\xi$$

$$- \left\{ (q(X) - \alpha \eta(X))g(A\xi, \xi)\eta(Y) - g(B\phi SX, \phi Y) \right\} \phi A\xi$$

$$- g(\phi A\xi, Y)\left\{ \eta(A\xi)SX - g(SX, A\xi)\xi \right\}$$

$$+ g(\phi A\xi, Y)\left\{ (q(X) - \alpha \eta(X))A\xi - g(A\xi, \xi)\xi - \phi B\phi SX \right\}$$

$$+ (X\alpha)SY + \alpha(\nabla_X S)Y - 2\alpha(X\alpha)\eta(Y)\xi - \alpha^2 g(Y, \phi SX)\xi - \alpha^2 \eta(Y)\phi SX,$$

where we have used (3.8) and

$$(\nabla_X B)Y = \nabla_X (BY) - B(\nabla_X Y)$$

$$= \tilde{\nabla}_X (BY) - \sigma(X, BY) - B(\nabla_X Y)$$

$$= \tilde{\nabla}_X (AY - g(AY, N)N) - g(SX, BY)N - B(\nabla_X Y)$$

$$= (\nabla_X A)Y + A(\tilde{\nabla}_X Y) - g(\nabla_X (AY), N)N - g(AY, \tilde{\nabla}_X N)N$$

$$- g(AY, N)\nabla_X N - g(SX, BY)N - B(\nabla_X Y)$$

$$= q(X)JAY + A(\nabla_X Y) + g(SX, Y)AN - q(X)g(JAY, N)N$$

$$- g(\nabla_X Y, AN)N - g(SX, Y)g(AN, N)N$$

$$+ g(AY, N)SX + g(AY, N)SX - g(SX, BY)N - B(\nabla_X Y)$$

$$= q(X)JAY + g(SX, Y)AN - q(X)g(AY, \xi)N$$

$$+ g(SX, Y)g(A\xi, \xi)N + g(AY, N)SX.$$

Since M is a Hopf real hypersurface in Q^m with Reeb parallel structure Jacobi operator, it yields that

$$g(A\xi, \xi)\left\{ q(\xi)JAY + \alpha \eta(Y)AN - q(\xi)g(AY, \xi)N \right\} \quad (4.2)$$
\[g(A\xi, \xi) \{ \alpha \eta(Y)g(A\xi, \xi)N + \alpha g(AN, Y)\xi \} \]
\[- (q(\xi) - \alpha)g(A\xi, \xi)\eta(Y)\phi A\xi - g(\phi A\xi, Y)g(\xi, A\xi)(q(\xi) - \alpha)\xi \]
\[+ (\xi \alpha)SY + \alpha(\nabla_\xi S)Y - 2\alpha(\xi \alpha)\eta(Y)\xi = 0. \]

From now on, we assume that \(M \) is a Hopf real hypersurface with non-vanishing geodesic Reeb flow and with Reeb parallel structure Jacobi operator in the complex quadric \(Q^m \), \(m \geq 3 \). In addition, we suppose that the normal vector field \(N \) of \(M \) is \(A \)-principal. Then this assumption gives us

\[AN = N \quad \text{and} \quad A\xi = -\xi \]

from (3.5). So it follows that \(AY \in TM \) for all \(Y \in TM \), that is, \(g(AY, N) = g(Y, AN) = 0 \). Moreover, taking the derivative to \(AN = N \) with respect to the Levi-Civita connection \(\bar{\nabla} \) of \(Q^m \) and using (3.8), we get

\[ASY = SY - 2\alpha(Y)\xi, \quad (4.3) \]

together with \((\nabla_Y A)X = q(Y)JAX \) and \(\nabla_Y N = -SY \).

From these properties, the equation (4.2) can be rearranged as follows.

\[0 = (\nabla_\xi R_\xi)Y \]
\[= -q(\xi)JAY - q(\xi)\eta(Y)N + (\xi \alpha)SY + \alpha(\nabla_\xi S)Y - 2\alpha(\xi \alpha)\eta(Y)\xi \quad (4.4) \]

In addition, from (3.9) we know \(q(\xi) = 2\alpha \). By Lemma 3.3 and our assumption, the Reeb curvature function \(\alpha \) is non-zero constant on \(M \). So (4.4) reduces to the following

\[(\nabla_\xi S)Y = 2\phi AY, \quad (4.5) \]

together with \(JAY = \phi AY + \eta(AY)N = \phi AY - \eta(Y)N \).

On the other hand, by using the equation of Codazzi in section (3.6), we have

\[g((\nabla_\xi S)Y - (\nabla_Y S)\xi, Z) = g(\phi Y, Z) - g(AY, N)g(A\xi, Z) \]
\[+ g(\xi, A\xi)g(JAY, Z) + g(\xi, AY)g(AN, Z) \]
\[= g(\phi Y, Z) - g(\phi AY, Z). \]

Since \(M \) is Hopf and Lemma 3.3, it leads to

\[(\nabla_\xi S)Y = (\nabla_Y S)\xi + \phi Y - \phi AY \]
\[= \alpha \phi SY - S\phi SY + \phi Y - \phi AY. \]

From this, together with (4.5), it follows that

\[\alpha \phi SY - S\phi SY + \phi Y = 3\phi AY. \quad (4.6) \]

By virtue of Lemma 3.1 for the \(\mathfrak{A} \)-principal unit normal vector field, we obtain

\[2S\phi SY = \alpha(S\phi + \phi S)Y + 2\phi Y. \quad (4.7) \]

Therefore, (4.6) can be written as

\[\alpha(\phi S - S\phi)Y = 6\phi AY. \quad (4.8) \]

Inserting \(Y = SX \) for \(X \in \mathfrak{C} \) into (4.8) and taking the structure tensor \(\phi \) leads to

\[\alpha S^2X + \alpha \phi S\phi SX = 6ASX, \]
where \(C = \ker \eta \) denotes the maximal complex subbundle of \(TM \), which is defined by a distribution \(C = \{ X \in T[z]M \mid \eta(X) = 0 \} \) in \(T[z]M \), \(z \in M \). By using (4.3) and (4.7) this equation gives us

\[
\alpha^2 \phi S \phi X = -2\alpha S^2 X + \alpha^2 SX + 2\alpha X + 12SX
\]

(4.9)

for all \(X \in C \).

On the other hand, in this subsection we have assumed that the normal vector field \(N \) of \(M \) is \(\mathfrak{A} \)-principal. It follows that \(AY \in TM \) for all \(Y \in TM \). From this, the anti-commuting property with respect to \(J \) and \(A \) implies \(\phi AX = -A\phi X \). Hence (4.8) can be expressed as

\[
\alpha(\phi S - S\phi)Y = -6A\phi Y.
\]

(4.10)

Putting \(Y = \phi X \) into (4.10), it gives

\[
\alpha \phi S \phi X = -\alpha SX + 6AX
\]

for all \(X \in C \). Inserting this into (4.9) gives

\[
3\alpha AX + \alpha S^2X - \alpha^2 SX - \alpha X - 6SX = 0.
\]

(4.11)

Taking the complex conjugate \(A \) to (4.11) and using (4.3) again, we get

\[
3\alpha X + \alpha S^2X - \alpha^2 SX - \alpha AX - 6SX = 0,
\]

(4.12)

for all \(X \in C \). Summing up (4.11) and (4.12), gives \(AX = X \) for all \(X \in C \). This gives a contradiction. In fact, it is well known that the trace of the real structure \(A \) is zero, that is, \(\text{Tr}A = 0 \) (see Lemma 1 in [25]). For an orthonormal basis \(\{ e_1, e_2, \ldots, e_{2m-2}, e_{2m-1} = \xi, e_{2m} = N \} \) for \(TQ^m \), where \(e_j \in C \) \((j = 1, 2, \ldots, 2m - 2) \), the trace of \(A \) is given by

\[
\text{Tr}A = \sum_{i=1}^{2m} g(Ae_i, e_i)
\]

\[
= g(AN, N) + g(A\xi, \xi) + \sum_{i=1}^{2m-2} g(Ae_i, e_i)
\]

\[
= 2m - 2.
\]

It implies that \(m = 1 \). But we now consider for the case \(m \geq 3 \).

Consequently, this completes the proof that there does not exists a Hopf real hypersurface \((\alpha \neq 0) \) in complex quadrics \(Q^m \), \(m \geq 3 \), with Reeb parallel structure Jacobi operator and \(\mathfrak{A} \)-principal normal vector field.

5. Proof of Theorem 2
- Reeb parallel structure Jacobi operator with \(\mathfrak{A} \)-isotropic normal -

In this section, we assume that the unit normal vector field \(N \) is \(\mathfrak{A} \)-isotropic and \(M \) is a real hypersurface in complex quadric \(Q^m \) with non-vanishing geodesic Reeb flow and with Reeb parallel structure Jacobi operator. Then the normal vector field \(N \) can be written as

\[
N = \frac{1}{\sqrt{2}}(Z_1 + JZ_2)
\]
for some orthonormal vectors $Z_1, Z_2 \in V(A)$, where $V(A)$ denotes a $(+1)$-eigenspace of the complex conjugation $A \in \mathfrak{a}$. Then it follows that

$$AN = \frac{1}{\sqrt{2}}(Z_1 - JZ_2), \quad AJN = -\frac{1}{\sqrt{2}}(JZ_1 + Z_2), \quad JN = \frac{1}{\sqrt{2}}(JZ_1 - Z_2).$$

Then it gives that

$$g(\xi, A\xi) = g(JN, AJN) = 0, \quad g(\xi, AN) = 0 \quad \text{and} \quad g(AN, N) = 0,$$

which means that both vector fields AN and $A\xi$ are tangent to M. From this and Lemma 3.4, we see that the shape operator S of M becomes to be Reeb parallel, that is, $(\nabla_{\xi} S)Y = 0$ for all tangent vector field Y on M.

On the other hand, from the Codazzi equation (3.2) we obtain

$$(\nabla_{\xi} S)Y = (\nabla_Y S)\xi + \phi Y - g(AY, N)A\xi + g(A\xi, Y)AN$$

$$= (Y \alpha)\xi + \alpha \phi SY - S\phi SY + \phi Y + g(A\xi, Y)AN - g(AN, Y)A\xi$$

$$= \frac{\alpha}{2}(\phi S - S\phi)Y,$$

where the third equality holds from Lemmas 3.1 and 3.4. From this and M has non-vanishing geodesic Reeb flow, we see that M has isometric Reeb flow, that is, $S\phi = \phi S$.

Consequently, we obtain:

Proposition 5.1. Let M be a real hypersurface with non-vanishing geodesic Reeb flow in the complex quadrics Q^m, $m \geq 3$. If the unit normal vector field N of M is \mathfrak{a}-isotropic and the structure Jacobi operator R_{ξ} of M is Reeb parallel, then the shape operator S of M satisfies the property of Reeb parallelism. Moreover, it means that the Reeb flow of M is isometric.

Theorem B. Let M be a real hypersurface of the complex quadric Q^m, $m \geq 3$. The Reeb flow on M is isometric if and only if m is even, say $m = 2k$, and M is an open part of a tube around a totally geodesic $\mathbb{C}P^k$ in Q^{2k}.

Then by virtue of Theorem B, we assert: if M is a real hypersurface in Q^m, $m \geq 3$, with the assumptions given in Proposition 5.1, then M is an open part of (\mathcal{T}_A). Here the model space (\mathcal{T}_A) is a tube over a totally geodesic complex projective space $\mathbb{C}P^k$ in Q^{2k}, $m = 2k$.

From now on, let us check the converse problem, that is, the model space (\mathcal{T}_A) satisfies the all assumptions stated in Proposition 5.1. In order to do this, we first introduce one proposition given in [26].

Proposition A. Let (\mathcal{T}_A) be the tube of radius $0 < r < \frac{\pi}{2}$ around the totally geodesic $\mathbb{C}P^k$ in Q^{2k}. Then the following statements hold:

(i) (\mathcal{T}_A) is a Hopf hypersurface.

(ii) Every unit normal vector N of (\mathcal{T}_A) is \mathfrak{a}-isotropic and therefore can be written in the form $N = (Z_1 + JZ_2)/\sqrt{2}$ with some orthonormal vectors $Z_1, Z_2 \in V(A)$ and $A \in \mathfrak{a}$.

(iii) (\mathcal{T}_A) has four distinct constant principal curvatures and the property that the shape operator leaves invariant the maximal complex subbundle \mathcal{C} of $T(\mathcal{T}_A)$ are J-invariant. The principal curvatures and corresponding principal curvature spaces of (\mathcal{T}_A) are as follows.
principal curvature	eigenspace	multiplicity
0	$\mathbb{C}(JZ_1 + Z_2)$	2
$-\tan(r)$	W_1	$2k - 2$
$\cot(r)$	W_2	$2k - 2$
$2 \cot(2r)$	RJN	1

(iv) Each of the two focal sets of (T_A) is a totally geodesic $\mathbb{C}P^k \subset Q^{2k}$.
(v) $S\dot{\phi} = \phi S$ (isometric Reeb flow).
(vi) (T_A) is a homogeneous hypersurface of Q^{2k}. More precisely, it is an orbit of the U_{k+1}-action on Q^{2k} isomorphic to $U_{k+1}/U_{k-1}U_1$, an S^{2k-1}-bundle over $\mathbb{C}P^k$.

By virtue of (i) and (ii) in Proposition A, (T_A) is a Hopf real hypersurface with \(\mathfrak{A}\)-isotropic normal vector N in Q^m. Moreover, the structure Jacobi operator R_ξ of (T_A) should be Reeb parallel, because of $\alpha = 2 \cot(2r) \neq 0$, $0 < r < \frac{\pi}{2}$.

References

[1] A. L. Besse, *Einstein Manifolds*, Springer-Verlag, 2008.
[2] J. Berndt and Y.J. Suh, *Real hypersurfaces with isometric Reeb flow in complex two-plane Grassmannians*, Monatsh. Math. 137 (2002), 87–98.
[3] J. Berndt and Y.J. Suh, *Real hypersurfaces with isometric Reeb flow in complex quadrics*, Internat. J. Math. 24 (2013), 1350050, 18 pp.
[4] J. Berndt and Y.J. Suh, *Contact hypersurfaces in Kähler manifolds*, Proceedings of the American Math. Soc. 143 (2015), 2637-2649.
[5] P.B. Eberlein, *Geometry of nonpositively curved manifolds*, University of Chicago Press, Chicago, IL, 1996.
[6] S. Helgason, *Differential geometry, Lie groups and symmetric spaces*, Graduate Studies in Math., Amer. Math. Soc., 34, 2001.
[7] M. Hutching and C.H. Taubes, *The Weinstein conjecture for stable Hamiltonian structures*, Geom. Topol. 13 (2009), 901–941.
[8] I. Jeong, H. Lee and Y.J. Suh, *Real hypersurfaces in complex two-plane Grassmannians whose structure Jacobi operator is of Codazzi type*, Acta Math. Hungar. 125 (2009), 141–160.
[9] I. Jeong, Y.J. Suh and C. Woo, *Real hypersurfaces in complex two-plane Grassmannians with recurrent structure Jacobi operator*, Real and Complex Submanifolds, Springer Proc. Math. Stat. 106, Springer, Tokyo, 2014, 267–278.
[10] U-H. Ki, J.D. Pérez, F.G. Santos and Y.J. Suh, *Real hypersurfaces in complex space forms with ξ-parallel Ricci tensor and structure Jacobi operator*, J. Korean Math. Soc. 44 (2007), 307–326.
[11] S. Klein, *Totally geodesic submanifolds in the complex quadric*, Differential Geom. Appl. 26 (2008), 79-96.
[12] A. W. Knapp, *Lie Groups Beyond an Introduction (2nd Ed.)*, Progress in Mathematics, Birkhäuser Boston, 2002.
[13] S. Kobayashi and K. Nomizu, *Foundations of Differential Geometry, Vol. I*, Reprint of the 1963 original, Wiley Classics Library, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1996.
[14] S. Kobayashi and K. Nomizu, *Foundations of Differential Geometry, Vol. II*, A Wiley-Interscience Publication, John Wiley & Sons Inc., New York, 1996.
[15] H. Lee and Y.J. Suh, *Real hypersurfaces with recurrent normal Jacobi operator in the complex quadric* (accepted in J. Geom. Phys.).
[16] S. Montiel and A. Romero, *On some real hypersurfaces of a complex hyperbolic space*, Geom. Dedicata 20 (1986), 245–261.
[17] M. Okumura, *On some real hypersurfaces of a complex projective space*, Trans. Amer. Math. Soc. 212 (1975), 355–364.
[18] J.D. Pérez, *Commutativity of Cho and structure Jacobi operators of a real hypersurface in a complex projective space*, Ann. Mat. Pura Appl. 194 (2015), no. 6, 1781-1794.

[19] J.D. Pérez, I. Jeong and Y.J. Suh, *Real hypersurfaces in complex two-plane Grassmannian with parallel structure Jacobi operator*, Acta. Math. Hungar. 22 (2009), 173-186.

[20] J.D. Pérez and F.G. Santos, *Real hypersurfaces in complex projective space with recurrent structure Jacobi operator*, Differential Geom. Appl. 26 (2008), 218-223.

[21] J.D. Pérez, F.G. Santos and Y.J. Suh, *Real hypersurfaces in complex projective space whose structure Jacobi operator is Lie ξ-parallel*, Diff. Geom. Appl. 22 (2005), 181-188.

[22] H. Reckziegel, *On the geometry of the complex quadric*, Geometry and topology of submanifolds, VIII (Brussels, 1995/Nordfjordeid, 1995), 302-315, World Sci. Publ., River Edge, NJ, 1996.

[23] A. Romero, *Some examples of indefinite complete complex Einstein hypersurfaces not locally symmetric*, Proc. Amer. Math. Soc. 98 (1986), 283-286.

[24] A. Romero, *On a certain class of complex Einstein hypersurfaces in indefinite complex space forms*, Math. Z. 192 (1986), 627-635.

[25] B. Smyth, *Differential geometry of complex hypersurfaces*, Ann. of Math. 85 (1967), 246-266.

[26] Y.J. Suh, *Real hypersurfaces in the complex quadric with Reeb parallel shape operator*, Internat. J. Math. 25 (2014), no. 6, 1450059 (17pages).

[27] Y.J. Suh, *Real hypersurfaces in the complex quadric with Reeb invariant shape operator*, Differential Geom. Appl. 38 (2015), 10-21.

[28] Y.J. Suh, *Real hypersurfaces in the complex quadric with parallel Ricci tensor*, Adv. in Math. 281 (2015), 886-905.

[29] Y.J. Suh, *Real hypersurfaces in the complex quadric with harmonic curvature*, J. Math. Pures Appl. 106 (2016), no. 3, 393-410.

[30] Y.J. Suh, *Real hypersurfaces in the complex quadric with parallel normal Jacobi operator*, Math. Nachr. 290 (2017), 442-451.

[31] Y.J. Suh, *Real hypersurfaces in the complex quadric with parallel structure Jacobi operator*, Differential Geom. Appl. 51 (2017), 33-48.

[32] Y.J. Suh and D.H. Hwang, *Real hypersurfaces in the complex quadric with commuting Ricci tensor*, Sci. China Math. 59 (2016), no. 11, 2185-2198.

HYUNJIN LEE
The Research Institute of Real and Complex Manifolds (RIRCM),
Kyungpook National University,
Daegu 41566, Republic of Korea
E-mail address: lhjibis@hanmail.net

YOUNG JIN SUH
Department of Mathematics & RIRCM,
Kyungpook National University,
Daegu 41566, Republic of Korea
E-mail address: yjsuh@knu.ac.kr