Chapter 2:

Parameter Estimation of Weighted New Weibull Pareto Distribution

Sofi Mudasir and S.P. Ahmad

DOI: https://doi.org/10.21467/books.44.2

Additional information is available at the end of the chapter

Introduction

Weighted distributions occur commonly in studies related to reliability, survival analysis, biomedicine, ecology, analysis of family data, and several other areas. There are number of authors worked on weighted distributions among them are Monsef and Ghoneim (2015) proposed weighted Kumaraswamy distribution for modeling some biological data, Sofi Mudasir and Ahmad (2015) study the length biased Nakagami distribution, Jan et al. (2017) studied the weighted Ailamujia distribution and find its applications to real data sets, Sofi Mudasir and Ahmad (2017) estimate the scale parameter of weighted Erlang distribution through classical and Bayesian methods of estimation, Dar et al. studied the characterization and estimation of Weighted Maxwell distribution (2018).

If \(V \geq 0 \) is a random variable with density function \(f(v) \) and \(w(v, \theta) \geq 0 \) is a weight function, then the weighted random variable \(W \) has the probability density function given by

\[
f_w(v) = Z w(v, \theta) f(v)
\]

Where \(Z \) is the normalizing constant.

When \(w(v, \theta) = v^\theta, \theta > 0 \), then the distribution is called the weighted distribution of order \(\theta \). The probability density function of WNWP distribution is obtained by using (2.1) and is given by

\[
f_w(v) = \frac{\beta \eta^{\frac{\theta}{\beta} - 1}}{\alpha^{\beta + \theta} \Gamma \left(\frac{\theta}{\beta} + 1 \right)} v^{\beta + \theta - 1} \exp \left(-\eta \left(\frac{v}{\alpha} \right)^\beta \right), v \geq 0; \alpha, \beta, \eta, \theta > 0.
\]
The corresponding cumulative distribution function is

\[
F(v) = \frac{1}{\Gamma\left(\theta + \frac{1}{\beta}\right)} \theta (\frac{v}{\theta})^{\beta-1} \left(\frac{v}{\theta}\right)^{\beta}
\]

(2.3)

Estimation Procedures

This section is devoted to three parameter estimation procedures: method of moments (MOM), maximum likelihood method of estimation (MLE), and Bayesian method of estimation.

Method of Moments (MOM)

Method of moments is a popular technique for parameter estimation. The moment estimator for the scale parameter \(\alpha \) can be obtained by equating the first sample moment to the corresponding population moment and is given by

\[
\hat{\alpha} = \eta \bar{v} \rho_{\theta+1}.
\]
where $\rho_{\theta,s} = \Gamma\left(\frac{\theta+s}{\beta} + 1\right)$.

Method of Maximum Likelihood Estimation (MLE)

Let $v_1, v_2, ..., v_n$ be a random sample from the WNWP distribution with parameter vector $\Theta = (\alpha, \beta, \eta, \theta)$. By considering (1), the likelihood function is given by

$$L(\Theta) = \frac{\beta \eta^{\theta+1}}{\alpha^{\theta+1} \Gamma\left(\frac{\theta}{\beta} + 1\right)} \left(\prod_{i=1}^{n} v_i^{\beta+\theta-1} \right) \exp\left(-\frac{\eta}{\alpha \beta^t} t\right).$$

The log-likelihood function can be expressed as

$$l(\Theta) = n \log \left(\frac{\beta \eta^{\theta+1}}{\alpha^{\theta+1} \Gamma\left(\frac{\theta}{\beta} + 1\right)} \right) + (\beta + \theta - 1) \sum_{i=1}^{n} \log(v_i) - \frac{\eta}{\alpha \beta^t} t.$$ \hspace{1cm} (2.4)

In order to estimate α, differentiate eq.(4) w.r.t. α and equate to zero, we get

$$\hat{\alpha} = \left(\frac{\beta \eta t}{n(\beta + \theta)}\right)^{\frac{1}{\beta}}.$$

Where $t = \sum_{i=1}^{n} v_i^{\beta}$.

Bayesian Method of Estimation

Here we try to find Bayes estimator for the scale parameter α for the pdf defined in (2.2). We use different priors and different loss functions.

Posterior Distribution Under the Assumption of Extension of Jeffrey’s Prior

The extension of Jeffrey’s prior relating scale parameter α is given as

$$\pi_1(\alpha) \propto \frac{1}{\alpha^{2c_1}}, \alpha > 0, c_1 \in R^*$$
Remark 1:
If $c_1 = 0$, we get uniform prior, i.e.,

$$\pi_{11}(\alpha) = q,$$

where q is constant of proportionality.

Remark 2:
If $c_1 = \frac{1}{2}$, we have $\pi_{12}(\alpha) \propto \frac{1}{\alpha}$ which is Jeffrey’s prior.

Remark 3:
If $c_1 = \frac{3}{2}$, we get Hartigan’s prior, i.e.,

$$\pi_{13}(\alpha) \propto \frac{1}{\alpha^3}.$$

The posterior distribution of scale parameter α under extension of Jeffrey’s prior is given as

$$P_1(\alpha \mid \mathbf{y}) = \frac{\beta(\eta)\beta^{n\theta+2c_1-1+n} \exp\left(-\frac{\eta}{\alpha^\beta} t\right)}{\Gamma\left(\frac{n\theta + 2c_1 - 1}{\beta} + n\right)\alpha^{n\theta+n\beta+2c_1}}. \quad (2.5)$$

Posterior Distribution Under the Assumption of Quasi Prior

The quasi prior relating to the scale parameter α is given as

$$\pi_2(\alpha) \propto \frac{1}{\alpha^{d_1}}, \alpha > 0, d_1 > 0.$$

The posterior distribution under quasi prior is given as

$$P_2(\alpha \mid \mathbf{y}) = \frac{\beta(\eta)\beta^{n\theta+d_1-1+n} \exp\left(-\frac{\eta}{\alpha^\beta} t\right)}{\Gamma\left(\frac{n\theta + d_1 - 1}{\beta} + n\right)\alpha^{n\theta+n\beta+d_1}}. \quad (2.6)$$

Bayes Estimator Under Squared Error Loss Function (SELF) Using Extension of Jeffrey’s Prior

The SELF relating to the parameter α is defined as

$$L(\hat{\alpha} - \alpha) = b(\hat{\alpha} - \alpha)^2$$
Where b is a constant and $\hat{\alpha}$ is the estimator of α.

Risk function under SELF using extension of Jeffrey’s prior is given by

$$R(\hat{\alpha}) = \int_{0}^{\infty} b(\hat{\alpha} - \alpha)^2 P_1(\alpha | \nu) d\alpha.$$

$$= b\hat{\alpha}^2 + b(\eta t)^2 \frac{\Gamma\left(\frac{n\theta + 2c_1 - 3}{\beta} + n\right)}{\Gamma\left(\frac{n\theta + 2c_1 - 1}{\beta} + n\right)} - 2b(\eta t)\frac{1}{\beta} \frac{\Gamma\left(\frac{n\theta + 2c_1 - 2}{\beta} + n\right)}{\Gamma\left(\frac{n\theta + 2c_1 - 1}{\beta} + n\right)} \hat{\alpha}.$$

Minimization of risk function w.r.t. $\hat{\alpha}$ gives us the Bayes estimator as

$$\hat{\alpha} = \frac{\frac{n\theta + 2c_1 - 2}{\beta} + n}{\frac{n\theta + 2c_1 - 1}{\beta} + n} \left(\eta t\right)^{\frac{1}{\beta}}.$$

Bayes Estimator Under the Combination of Quadratic Loss Function (QLF) And Extension of Jeffrey’s Prior

Risk function under QLF using extension of Jeffrey’s prior is given by

$$R(\hat{\alpha}) = \int_{0}^{\infty} \left(\frac{\hat{\alpha} - \alpha}{\alpha}\right)^2 P_1(\alpha | \nu) d\alpha$$

$$= \frac{\Gamma\left(\frac{n\theta + 2c_1 + 1}{\beta} + n\right)}{\Gamma\left(\frac{n\theta + 2c_1 - 1}{\beta} + n\right)} \left(\eta t\right)^{\frac{2}{\beta}} + 1 - 2 \frac{\Gamma\left(\frac{n\theta + 2c_1 + n}{\beta}\right)}{\Gamma\left(\frac{n\theta + 2c_1 - 1}{\beta} + n\right)} \left(\eta t\right)^{\frac{1}{\beta}}.$$
Now the solution of \(\frac{\partial(R(\hat{\alpha}))}{\partial \hat{\alpha}} = 0 \) is the required Bayes estimator and is given by

\[
\hat{\alpha} = \frac{\Gamma\left(\frac{n\theta + 2c_1 + n}{\beta}\right)}{\Gamma\left(\frac{n\theta + 2c_1 + 1}{\beta}\right)} \left(\eta t\right)^{\frac{1}{\beta}}.
\]

Bayes Estimator Under the Combination of Al-Bayyati’s Loss Function (ALF) and Extension of Jeffrey’s Prior

The risk function under the combination of ALF and extension of Jeffrey’s prior is

\[
R(\hat{\alpha}) = \int_{0}^{\infty} b(\hat{\alpha} - \alpha)^2 P_1(\alpha | y) d\alpha.
\]

\[
= \frac{\Gamma\left(\frac{n\theta + 2c_1 - c_2 - 1}{\beta} + n\right)}{\Gamma\left(\frac{n\theta + 2c_1 - 1}{\beta} + n\right)} \left(\eta t\right)^{\frac{c_2}{\beta}} \hat{\alpha}^2 + \frac{\Gamma\left(\frac{n\theta + 2c_1 - c_2 - 3}{\beta} + n\right)}{\Gamma\left(\frac{n\theta + 2c_1 - 1}{\beta} + n\right)} \left(\eta t\right)^{\frac{c_2 + 2}{\beta}} - 2 \frac{\Gamma\left(\frac{n\theta + 2c_1 - c_2 - 2}{\beta} + n\right)}{\Gamma\left(\frac{n\theta + 2c_1 - 1}{\beta} + n\right)} \left(\eta t\right)^{\frac{c_2 + 1}{\beta}} \hat{\alpha}.
\]

On solving \(\frac{\partial(R(\hat{\alpha}))}{\partial \hat{\alpha}} = 0 \) for \(\hat{\alpha} \), we get the Bayes estimator given as

\[
\hat{\alpha} = \frac{\Gamma\left(\frac{n\theta + 2c_1 - c_2 - 2}{\beta} + n\right)}{\Gamma\left(\frac{n\theta + 2c_1 - c_2 - 1}{\beta} + n\right)} \left(\eta t\right)^{\frac{1}{\beta}}.
\]

Bayes Estimator Under Squared Error Loss Function (SELF) Using Quasi Prior

Under the combination of SELF and quasi prior, the risk function is given by

\[
R(\hat{\alpha}) = \int_{0}^{\infty} b(\hat{\alpha} - \alpha)^2 P_2(\alpha | y) d\alpha.
\]

(2.7)
After substituting the value of eq. (2.6) in eq. (2.7) and simplification, we get

\[
R(\hat{\alpha}) = b\hat{\alpha}^2 + b(\eta t)^{\beta} \frac{\Gamma\left(\frac{n\theta + d_1 - 3}{\beta} + n\right)}{\Gamma\left(\frac{n\theta + d_1 - 1}{\beta} + n\right)} - 2b(\eta t)^{\beta} \frac{\Gamma\left(\frac{n\theta + d_1 - 2}{\beta} + n\right)}{\Gamma\left(\frac{n\theta + d_1 - 1}{\beta} + n\right)} \hat{\alpha}.
\]

The solution of \(\frac{\partial (R(\hat{\alpha}))}{\partial \hat{\alpha}} = 0 \) is the required Bayes estimator and is given by

\[
\hat{\alpha} = \frac{\Gamma\left(\frac{n\theta + d_1 - 2}{\beta} + n\right)}{\Gamma\left(\frac{n\theta + d_1 - 1}{\beta} + n\right)} (\eta t)^{\frac{1}{\beta}}.
\]

Bayes Estimator Under Quadratic Loss Function (QLF) Using Quasi Prior

The risk function under the combination of QLF and quasi prior is given by

\[
R(\hat{\alpha}) = \frac{\Gamma\left(\frac{n\theta + d_1 + 1}{\beta} + n\right)}{\Gamma\left(\frac{n\theta + d_1 - 1}{\beta} + n\right)} (\eta t)^{\frac{2}{\beta}} \hat{\alpha}^2 + 2\frac{\Gamma\left(\frac{n\theta + d_1}{\beta} + n\right)}{\Gamma\left(\frac{n\theta + d_1 - 1}{\beta} + n\right)} (\eta t)^{\frac{1}{\beta}} \hat{\alpha}.
\]

Minimization of risk function w.r.t. \(\hat{\alpha} \) gives us the Bayes estimator as

\[
\hat{\alpha} = \frac{\Gamma\left(\frac{n\theta + d_1 + 1}{\beta} + n\right)}{\Gamma\left(\frac{n\theta + d_1 + 1}{\beta} + n\right)} (\eta t)^{\frac{1}{\beta}}.
\]
Bayes Estimator Under the Combination of Al-Bayyati’s Loss Function (ALF) and Quasi Prior

The risk function under the combination of ALF and quasi prior is given by

\[R(\hat{\alpha}) = \frac{\Gamma\left(\frac{n\theta + d_1 - c_2 - 1}{\beta} + n\right)}{\Gamma\left(\frac{n\theta + d_1 - 1}{\beta} + n\right)} (\eta t)^{c_2} \hat{\alpha}^2 + \frac{\Gamma\left(\frac{n\theta + d_1 - c_2 - 2}{\beta} + n\right)}{\Gamma\left(\frac{n\theta + d_1 - 1}{\beta} + n\right)} (\eta t)^{c_2+1} \hat{\alpha}. \]

On solving \(\frac{\partial R(\hat{\alpha})}{\partial \hat{\alpha}} = 0 \) for \(\hat{\alpha} \), we get the Bayes estimator given as

\[\hat{\alpha} = \frac{\Gamma\left(\frac{n\theta + d_1 - c_2 - 2}{\beta} + n\right)}{\Gamma\left(\frac{n\theta + d_1 - c_2 - 1}{\beta} + n\right)} (\eta t)^{\frac{1}{\beta}}. \]

The Bayes estimates using different priors under different loss functions are given below in table 2.1.

Table 2.1: Bayes estimators under different combinations of loss functions and prior distributions

Prior	Loss function	Estimator
Extension of Jeffrey’s	Squared error	\(\hat{\alpha} = \frac{\Gamma\left(\frac{n\theta + 2c_1 - 2}{\beta} + n\right)}{\Gamma\left(\frac{n\theta + 2c_1 - 1}{\beta} + n\right)} (\eta t)^{\frac{1}{\beta}} \)
	Quadratic	\(\hat{\alpha} = \frac{\Gamma\left(\frac{n\theta + 2c_1 + n}{\beta} \right)}{\Gamma\left(\frac{n\theta + 2c_1 + 1}{\beta} + n\right)} (\eta t)^{\frac{1}{\beta}} \)
	Al-Bayyati’s	\(\hat{\alpha} = \frac{\Gamma\left(\frac{n\theta + 2c_1 - c_2 - 2}{\beta} + n\right)}{\Gamma\left(\frac{n\theta + 2c_1 - c_2 - 1}{\beta} + n\right)} (\eta t)^{\frac{1}{\beta}} \)
Chapter 2: Parameter Estimation of Weighted New Weibull Pareto Distribution

Bayesian Analysis and Reliability Estimation of Generalized Probability Distributions

Data Analysis

In this subdivision we analyze two real life data sets for illustration of the proposed procedure.

The first data set represents the exceedances of flood peaks (m³/s) of the Wheaton river near car cross in Yukon territory, Canada. The data set consists of 72 exceedances for the year 1958-1984, rounded to one decimal place. The second data set represents the survival times (in days) of guinea pigs injected with different doses of tubercle bacilli.

Prior Type	Squared error	Quadratic	Al-Bayyati’s
Quasi prior	$\hat{\alpha} = \frac{\Gamma \left(\frac{n\theta + d_1 - 2}{\beta} + n \right)}{\Gamma \left(\frac{n\theta + d_1 - 1}{\beta} + n \right)} (\eta t)^{\frac{1}{\beta}}$	$\hat{\alpha} = \frac{\Gamma \left(\frac{n\theta + d_1}{\beta} + n \right)}{\Gamma \left(\frac{n\theta + d_1 + 1}{\beta} + n \right)} (\eta t)^{\frac{1}{\beta}}$	$\hat{\alpha} = \frac{\Gamma \left(\frac{n\theta + d_1 - c_2 - 2}{\beta} + n \right)}{\Gamma \left(\frac{n\theta + d_1 - c_2 - 1}{\beta} + n \right)} (\eta t)^{\frac{1}{\beta}}$
Hartigan’s prior	$\hat{\alpha} = \frac{\Gamma \left(\frac{n\theta + 1}{\beta} + n \right)}{\Gamma \left(\frac{n\theta + 2}{\beta} + n \right)} (\eta t)^{\frac{1}{\beta}}$	$\hat{\alpha} = \frac{\Gamma \left(\frac{n\theta + 3}{\beta} + n \right)}{\Gamma \left(\frac{n\theta + 4}{\beta} + n \right)} (\eta t)^{\frac{1}{\beta}}$	$\hat{\alpha} = \frac{\Gamma \left(\frac{n\theta - c_2 + 1}{\beta} + n \right)}{\Gamma \left(\frac{n\theta - c_2 + 2}{\beta} + n \right)} (\eta t)^{\frac{1}{\beta}}$
Data set 2.1. Exceedances of flood peaks (m3/s) of the Wheaton River near Carcross in Yukon Territory, Canada. The data consists of 72 exceedances for the year 1958-1984, rounded to one decimal place as shown below.

1.7	2.2	14.4	1.1	0.4	20.6	5.3	0.7
1.4	18.7	8.5	25.5	11.6	14.1	22.1	1.1
0.6	2.2	39.0	0.3	15.0	11.0	7.3	22.9
0.9	1.7	7.0	20.1	0.4	2.8	14.1	9.9
5.6	30.8	13.3	4.2	25.5	3.4	11.9	21.5
1.5	2.5	27.4	1.0	27.1	20.2	16.8	5.3
1.9	10.4	13.0	10.7	12.0	30.0	9.3	3.6
2.5	27.6	14.4	36.4	1.7	2.7	37.6	64.0
1.7	9.7	0.1	27.5	1.1	2.5	0.6	27.0

Data set 2.2. The data set is from Kundu & Howlader (2010), the data set represents the survival times (in days) of guinea pigs injected with different doses of tubercle bacilli. The regimen number is the common logarithm of the number of bacillary units per 0.5 ml. (log (4.0) 6.6). Corresponding to regimen 6.6, there were 72 observations listed below:

12 15 22 24 24 32 32 33 34 38 38 43 44 48
52 53 54 54 55 56 57 58 58 59 60 60 60 60
61 62 63 65 65 67 68 70 70 72 73 75 76 76
81 83 84 85 87 91 95 96 98 99 109 110 121 127
129 131 143 146 146 175 175 211 233 258 258 263 297 341
341 376
Table 2.2: Estimates and (posterior risk) under extension of Jeffrey’s prior using different loss functions using data set 1.

θ	β	η	B	c₁	c₂	MOM	MLE	SELF	QLF	ALF	
1.0	4.0	1.0	1.5	1.0	1.0	12.36694	169.11393	169.05506	(0.0006941971)	169.40861	(3403.479)
	4.5	1.5	2.0	1.5	1.5	13.63276	105.17297	105.09922	(0.0005599442)	105.30611	(6766.528)
	5.5	2.5	2.5	2.5	2.0	14.81888	49.80533	49.79078	(0.0003865627)	49.82950	(2401.806)
	6.0	3.0	3.0	3.0	2.5	15.08626	37.15070	37.13227	(0.0003286734)	37.16296	(3851.661)
2.0	4.0	1.0	1.5	1.0	1.0	11.65966	161.57869	161.53183	(0.0005785327)	161.81316	(2468.287)
	4.5	1.5	2.0	1.5	1.5	12.98237	101.34020	101.28007	(0.0004739584)	101.44871	(5019.687)
	5.5	2.5	2.5	2.5	2.0	14.30474	48.52619	48.51391	(0.0003352443)	48.54660	(1874.647)
	6.0	3.0	3.0	3.0	2.5	14.63197	36.33304	36.31726	(0.0002878088)	36.34353	(3047.827)
3.0	4.0	1.0	1.5	1.0	1.0	11.11300	155.47028	155.43165	(0.0004959065)	155.66358	(1881.713)
	4.5	1.5	2.0	1.5	1.5	12.46849	98.16827	98.19853	(0.0004108653)	98.25934	(3887.504)
	5.5	2.5	2.5	2.5	2.0	13.88447	47.43435	47.42376	(0.0002959546)	47.45196	(1509.457)
	6.0	3.0	3.0	3.0	2.5	14.25562	35.62675	35.61301	(0.0002559819)	35.63591	(2479.360)
Table 2.3: Estimates and (posterior risk) under Quasi prior using different loss functions using data set 1.

θ	β	η	b	c_2	d_1	MOM	MLE	SELF	QLF	ALF
1.0	4.0	1.0	1.0	1.0	1.0	12.3694	169.1193	169.4086	169.1725	169.5278
	4.5	1.5	1.5	1.5	1.5	13.6327	105.1729	105.3061	105.1876	105.3954
	5.5	2.5	2.5	2.0	2.5	14.8188	49.8053	49.83921	49.80044	49.87818
	6.0	3.0	3.0	2.5	3.0	15.0862	37.1507	37.16912	37.14453	37.20003
2.0	4.0	1.0	1.0	1.0	1.0	11.6566	161.5769	161.8132	161.6253	161.9074
	4.5	1.5	1.5	1.5	1.5	12.9823	101.3402	101.4487	101.3521	101.5214
	5.5	2.5	2.5	2.0	2.5	14.3047	48.5261	48.5548	48.52207	48.58767
	6.0	3.0	3.0	2.5	3.0	14.6319	36.3330	36.3488	36.32775	36.37523
3.0	4.0	1.0	1.0	1.0	1.0	11.1130	155.4702	155.6635	155.5087	155.74127
	4.5	1.5	1.5	1.5	1.5	12.4684	98.1682	98.25934	98.17831	98.32035
	5.5	2.5	2.5	2.0	2.5	13.8844	47.4343	47.45903	47.43080	47.48736
	6.0	3.0	3.0	2.5	3.0	14.2556	35.6267	35.64050	35.62215	35.66352
Table 2.4: Estimates and (posterior risk) under Hartigan’s prior using different loss functions using data set 1.

θ	β	η	b	c_2	d_1	MOM	MLE	SELF	QLF	ALF
1.0	4.0	1.0	1.0	1.0	1.0	12.36694	169.11393	169.17250	168.93803	169.29035
	4.5	1.5	1.5	1.5	1.5	13.63276	105.17297	105.21717	105.09922	105.30611
	5.5	2.5	2.5	2.0	2.5	14.81888	49.80533	49.82950	49.79078	49.86842
	6.0	3.0	3.0	2.5	3.0	15.08626	37.15070	37.16912	37.14453	37.20003
2.0	4.0	1.0	1.0	1.0	1.0	11.65966	161.57869	161.6253	161.43860	161.71912
	4.5	1.5	1.5	1.5	1.5	12.98237	101.34020	101.3762	101.28007	101.44871
	5.5	2.5	2.5	2.0	2.5	14.30474	48.52619	48.5466	48.51391	48.57944
	6.0	3.0	3.0	2.5	3.0	14.63197	36.33304	36.3488	36.32775	36.37523
3.0	4.0	1.0	1.0	1.0	1.0	11.11300	155.47028	155.50877	155.35472	155.58608
	4.5	1.5	1.5	1.5	1.5	12.46849	98.16827	98.19853	98.11778	98.25934
	5.5	2.5	2.5	2.0	2.5	13.88447	47.43435	47.45196	47.42376	47.48027
	6.0	3.0	3.0	2.5	3.0	14.25562	35.62675	35.64050	35.62215	35.66352
Table 2.5: Estimates and (posterior risk) under extension of Jeffrey's prior using different loss functions using data set 2.

θ	β	η	B	c_1	c_2	MOM	MLE	SELF	QLF	ALF
1.0	4.0	1.0	1.0	1.0	1.0	102.0919	2473.4000	2475.9802 (6423.77429)	2472.5390 (0.0006941971)	2477.7098 (10647998)
	4.5	1.5	1.5	1.5	1.5	112.5415	1141.7260	1142.2058 (1469.27156)	1140.9254 (0.0005599442)	1143.1713 (28521214)
	5.5	2.5	2.5	2.5	2.0	122.3332	350.4549	350.3525 (119.17625)	350.0814 (0.0003865627)	350.6250 (5887940)
	6.0	3.0	3.0	3.0	2.5	124.5405	222.1827	222.0725 (48.83544)	221.9264 (0.0003268734)	222.2561 (12050165)
2.0	4.0	1.0	1.0	1.0	1.0	96.25317	2363.1922	2365.2461 (4880.21339)	2362.5070 (0.0005783527)	2366.6216 (7722190)
	4.5	1.5	1.5	1.5	1.5	107.17238	1100.1187	1100.5099 (1153.51019)	1099.4659 (0.0004739584)	1101.2966 (21158203)
	5.5	2.5	2.5	2.5	2.0	118.08883	341.4543	341.3678 (98.06123)	341.1388 (0.0003352443)	341.5979 (4595628)
	6.0	3.0	3.0	3.0	2.5	120.79026	217.2926	217.1983 (40.88520)	217.0732 (0.0002878088)	217.3554 (9535319)
3.0	4.0	1.0	1.0	1.0	1.0	91.74031	2273.8528	2275.5464 (3869.05665)	2273.2878 (0.0004959065)	2276.6800 (26855836)
	4.5	1.5	1.5	1.5	1.5	102.93017	1065.6851	1066.0136 (937.65483)	1065.1370 (0.0004108653)	1066.6737 (64929980)
	5.5	2.5	2.5	2.5	2.0	114.61948	333.7715	333.6970 (82.68276)	333.4994 (0.0002959546)	333.8955 (11511443)
	6.0	3.0	3.0	3.0	2.5	117.68336	213.0687	212.9864 (34.95281)	212.8773 (0.0002559819)	213.1234 (21993921)
Table 2.6: Estimates and (posterior risk) under Quasi prior using different loss functions using data set 2.

θ	β	η	b	c_2	d_1	MOM	MLE	SELF	QLF	ALF
1.0	4.0	1.0	1.0	1.0	1.0	102.0919	2473.4000	2477.7098 (6450.77712)	2474.2566 (0.0006961301)	2479.4455 (214534.4)
	4.5	1.5	1.5	1.5	1.5	112.5415	1141.7260	1143.1713 (1477.37186)	1141.8850 (0.0005620686)	1144.1413 (847675.2)
	5.5	2.5	2.5	2.0	2.5	122.3332	350.4549	350.6933 (120.04928)	350.4205 (0.0003886283)	350.9675 (316830.4)
	6.0	3.0	3.0	2.5	3.0	124.5405	222.1827	222.2929 (49.22489)	222.1458 (0.0003306295)	222.4778 (815467.2)
2.0	4.0	1.0	1.0	1.0	1.0	96.25317	2363.1922	2366.6216 (4897.28552)	2363.8745 (0.0005738746)	2368.0012 (159118.2)
	4.5	1.5	1.5	1.5	1.5	107.17238	1100.1187	1101.2966 (1158.88497)	1100.2484 (0.0004754796)	1102.0863 (640200.6)
	5.5	2.5	2.5	2.0	2.5	118.08883	341.4543	341.6556 (98.68333)	341.4253 (0.0003367968)	341.8869 (250283.6)
	6.0	3.0	3.0	2.5	3.0	120.79026	217.2926	217.3869 (41.17032)	217.2611 (0.0002893075)	217.5450 (651791.2)
3.0	4.0	1.0	1.0	1.0	1.0	91.74031	2273.8528	2276.6800 (3880.64442)	2274.4157 (0.0004968921)	2277.8163 (123634.9)
	4.5	1.5	1.5	1.5	1.5	102.93017	1065.6851	1066.6737 (941.3805)	1065.7941 (0.0004120079)	1067.3360 (503508.5)
	5.5	2.5	2.5	2.0	2.5	114.61948	333.7715	333.9452 (83.14533)	333.7466 (0.0002971639)	334.1446 (203680.8)
	6.0	3.0	3.0	2.5	3.0	117.68336	213.0687	213.1509 (35.16938)	213.0411 (0.0002571668)	213.2885 (534999.0)
θ	β	η	b	c₂	d₁	MOM	MLE	SELF	QLF	ALF
---	----	----	----	----	----	------------	------------	-------------	------------	------------
1.0	4.0	1.0	1.0	1.0	1.0	102.0919	2473.4000	2474.2566	(6396.95932)	2475.9802
	4.5	1.5	1.5	1.5	1.5	112.5415	1141.7260	1142.2058	(1469.27156)	1143.1713
	5.5	2.5	2.5	2.0	2.5	122.3332	350.4549	350.6250	(119.87379)	350.8989
	6.0	3.0	3.0	2.5	3.0	124.5405	222.1827	222.2929	(49.22489)	222.4778
2.0	4.0	1.0	1.0	1.0	1.0	96.25317	2363.1922	2363.8745	(4863.24419)	2365.246
	4.5	1.5	1.5	1.5	1.5	107.17238	1100.1187	1100.5099	(1153.51019)	1101.297
	5.5	2.5	2.5	2.0	2.5	118.08883	341.4543	341.5979	(98.55836)	341.829
	6.0	3.0	3.0	2.5	3.0	120.79026	217.2926	217.3869	(41.17032)	217.5450
3.0	4.0	1.0	1.0	1.0	1.0	91.74031	2273.8528	2274.4157	(3857.52644)	2275.5464
	4.5	1.5	1.5	1.5	1.5	102.93017	1065.6851	1066.0136	(937.65483)	1066.6737
	5.5	2.5	2.5	2.0	2.5	114.61948	333.7715	333.8955	(83.05246)	334.0946
	6.0	3.0	3.0	2.5	3.0	117.68336	213.0687	213.1509	(35.16938)	213.2885
Conclusion

In this chapter, method of moments, maximum likelihood and Bayesian methods of estimation were studied for estimating the scale parameter of the WNWP distribution. Bayes estimators are obtained using different loss functions under different types of priors. For comparison of different loss functions and different types of priors, two real life data sets are used, and the outcomes are obtained through R-software. On equating the posterior risk obtained under different loss functions, it is clear from the above tables that QLF has minimum value of posterior risk and is thus preferable as compared to other loss functions used in this paper. It is also observed that as we increase the value of weighted parameter θ, the posterior risk decreases. Also, from tables 2.2 to 2.7, it is clear that in order to estimate the said parameter combination of quadratic loss function and extension of Jeffrey’s prior can be preferred.

Author’s Detail

Sofi Mudasir* and S.P Ahmad
Department of Statistics, University of Kashmir, Srinagar, India
*Corresponding author email: sofimudasir3806@gmail.com

How to Cite this Chapter:

Mudasir, Sofi, and S. P. Ahmad. “Parameter Estimation of Weighted New Weibull Pareto Distribution.” *Bayesian Analysis and Reliability Estimation of Generalized Probability Distributions*, edited by Afaq Ahmad, AIJR Publisher, 2019, pp. 13-29, ISBN: 978-81-936820-7-4, DOI: 10.21467/books.44.2.

References

Fisher, R.A. (1934). The effects of methods of ascertainment upon the estimation of frequencies. *The Annals of Eugenics* 6, 13-25.
C.R. Rao, On discrete distributions arising out of methods of ascertainment in classical and contagious discrete distributions. Pergamon press and statistical publishing society, Calcutta, 320-332 (1965).
Monsef, M.M.E. and Ghoneim, S.A.E. (2015). The weighted kumaraswamy distribution. *International information institute*, 18, 3289-3300.
Sofi Mudasir and Ahmad, S.P. (2017). Parameter estimation of weighted Erlang distribution using R-software. *Mathematical theory and Modelling*, 7, 1-21.
Uzma Jan, Kawser Fatima and Ahmad, S.P. (2017) on weighted Ailamujia distribution and its applications to life time data journal of statistics applications and probability, 6(3), 619-633.
Sofi Mudasir and Ahmad, S.P.(2015). Structural properties of length biased Nakagami distribution. *International Journal of Modern Mathematical Sciences*, 13(3), 217-227.
Aijaz Ahmad Dar, A. Ahmed and J.A. Reshi (2018). Characterization and estimation of weighted Maxwell distribution. *An international journal of applied mathematics and information sciences*. 12(1), 193-202.

Bayesian Analysis and Reliability Estimation of Generalized Probability Distributions

29