The VLSAT-1 Benchmark Suite

Pierre Bouvier, Hubert Garavel
The VLSAT-1 Benchmark Suite

Pierre Bouvier, Hubert Garavel

Project-Team CONVECS

Technical Report n° 0510 — November 2020 — 6 pages

Abstract: This report presents VLSAT-1 (an acronym for “Very Large Boolean SATisfiability problems”), the first part of a benchmark suite to be used in scientific experiments and software competitions addressing SAT-solving issues. VLSAT-1 contains 100 benchmarks of increasing complexity, proposed in DIMACS CNF format under a permissive Creative Commons license. These benchmarks have been used by the 2020 International Competition on Model Counting.

Key-words: benchmark suite, Boolean satisfiability problem, data set, DIMACS CNF, Nested-Unit Petri Net, NUPN, Petri Net, SAT formula, SAT solving
Le jeu de tests VLSAT-1

Résumé : VLSAT-1 (acronyme anglais de “très grands problèmes de satisfaisabilité booléenne”) est le premier volet d’une suite de tests destinée aux expérimentations scientifiques et aux compétitions de logiciels pour la résolution de problèmes SAT. VLSAT-1 contient 100 tests de complexité croissante, fournis en format DIMACS CNF sous une licence Creative Commons permissive. Ces tests ont été utilisés lors de l’édition 2020 de la compétition internationale sur le comptage de modèles.

Mots-clés : DIMACS CNF, ensemble de données, formule SAT, Nested-Unit Petri Net, NUPN, problème SAT, réseau de Petri, satisfaisabilité booléenne, suite de tests
1 Benchmark Description

VLSAT-1 is a collection of 100 SAT formulas, which are listed in Table 1. All these formulas are satisfiable and have been designed to accept a large number of models. Each formula is provided as a separate file, expressed in Conjunctive Normal Form and encoded in the DIMACS-CNF format. Each file is then compressed using bzip2 to save disk space and allow faster downloads. The 100 formulas require 2.1 gigabytes of disk space and 419 megabytes when compressed using bzip2.

2 Scientific Context

These formulas have been generated as a by-product of our recent work [1] on the decomposition of Petri nets into networks of automata, a problem that has been around since the early 70s. Concretely, we developed a tool chain that takes as input a Petri net (which must be ordinary, safe, and hopefully not too large) and produces as output a network of automata that execute concurrently and synchronize using shared transitions. Precisely, this network is expressed as a Nested-Unit Petri Net (NUPN) [4], i.e., an extension of a Petri net, in which places are grouped into sets (called units) that denote sequential components. A NUPN provides a proper structuration of its underlying Petri net, and enables formal verification tools to be more efficient in terms of memory and CPU time. Hence, the NUPN concept has been implemented in many tools and adopted by software competitions, such as the Model Checking Contest [7, 6] and the Rigorous Examination of Reactive Systems challenge [5, 8]. Each NUPN generated by our tool chain is flat, meaning that its units are not recursively nested in each other, and unit-safe, meaning that each unit has at most one execution token at a time.

Our tool chain works by reformulating concurrency constraints on Petri nets as logical problems, which can be later solved using third-party software, such as SAT solvers, SMT solvers, and tools for graph colouring and finding maximal cliques [1]. We applied our approach to a large collection of more than 12,000 Petri nets from multiple sources, many of which related to industrial problems, such as communication protocols, distributed systems, and hardware circuits. We thus generated a huge collection of SAT formulas, from which we carefully selected a subset of 100 formulas for VLSAT. Figure 1 shows the scalability of our benchmark suite, which properly represents the diversity of our experiments.

3 Structure of VLSAT Formulas

Each of our formulas was produced for a particular Petri net. A formula depends on three factors:

- the set P of the places of the Petri net;
- a concurrency relation \parallel defined over P such that $p \parallel p'$ is the two places p and p' may simultaneously have an execution token; and
- a chosen number n of units.

1 https://cadp.inria.fr/resources/vlsat
2 http://www.satcompetition.org/2009/format-benchmarks2009.html
3 https://mcc.lip6.fr
4 http://rers-challenge.org
Table 1: List of VLSAT-1 formulas

no.	variables	clauses
1	10	17
2	12	16
3	14	19
4	15	23
5	16	24
6	18	21
7	18	49
8	21	40
9	24	34
10	24	56
11	27	54
12	28	56
13	30	58
14	32	84
15	33	116
16	35	82
17	38	53
18	40	108
19	44	91
20	44	167
21	48	128
22	51	194
23	54	99
24	54	270
25	56	270
26	60	178
27	64	152
28	68	161
29	72	186
30	75	367
31	80	178
32	81	333
33	85	377
34	90	316
35	93	409
36	96	611
37	102	481
38	108	345
39	112	238
40	117	328
41	120	724
42	120	1016
43	120	393
44	130	510
45	140	1371
46	144	648
47	153	714
48	160	1028
49	168	722
50	170	1247
51	185	1132
52	195	899
53	196	1092
54	210	1275
55	222	1477
56	228	3437
57	240	1624
58	252	3132
59	264	1474
60	272	1898
61	288	2066
62	304	2782
63	315	3608
64	336	2394
65	354	3239
66	378	1893
67	400	1580
68	402	10,189
69	418	3119
70	448	7592
71	476	1523
72	496	18,680
73	510	9201
74	584	28,218
75	588	8050
76	652	29,387
77	702	5565
78	735	23,842
79	810	22,731
80	900	15,616
81	992	13,641
82	1104	75,598
83	1200	31,325
84	1365	26,963
85	1600	31,240
86	1984	60,716
87	2289	274,818
88	2450	58,066
89	3480	149,734
90	3920	93,576
91	4114	186,615
92	5184	184,104
93	6954	399,521
94	9588	392,364
95	14,847	1,769,105
96	15,498	838,393
97	21,110	2,753,207
98	22,110	7,490,695
99	227,046	49,947,755
100	4,114,810	3,879,649,625
A formula expresses whether there exists a partition of \(P \) into \(n \) subsets \(P_i \) (\(1 \leq i \leq n \)) such that, for each \(i \), and for any two places \(p \) and \(p' \) of \(P_i \), \(p \neq p' \implies \neg(p \parallel p') \). A model of this formula is thus an allocation of places into \(n \) units, i.e., a valid decomposition of the Petri net. The value of \(n \) is chosen large enough so that the formula is satisfiable, i.e., at least one decomposition exists. This can also be seen as an instance of the graph coloring problem, in which \(n \) colors are to be used for the graph with vertices defined by the places of \(P \) and edges defined by the concurrency relation.

More precisely, each formula was generated as follows. For each place \(p \) and each unit \(u \), we created a propositional variable \(x_{pu} \) that is true iff place \(p \) belongs to unit \(u \). We then added constraints over these variables:

- For each unit \(u \) and each two places \(p \) and \(p' \) such that \(p \parallel p' \) and \(\#p < \#p' \), where \(\#p \) is a bijection from places names to the interval \([1, \text{card}(P)]\), we added the constraint \(\neg x_{pu} \lor \neg x_{p'u} \) to express that two concurrent places cannot be in the same unit.

- For each place \(p \), we could have added the constraint \(\bigvee_u x_{pu} \) to express that \(p \) belongs to at least one unit, but this constraint was too loose and allowed \(n! \) similar solutions, just by permuting unit names. We thus replaced this constraint by a stricter one that
breaks the symmetry between units: for each place \(p \), we added the refined constraint
\[
\forall 1 \leq \#u \leq \min(\#p, n) \cdot x_{pu},
\]
where \(\#u \) is a bijection from unit names to the interval \([1, n]\).

Application

The VLSAT-1 benchmarks are licensed under the CC-BY Creative Commons Attribution 4.0 International License\(^5\).

Some of the VLSAT-1 formulas have been reused (after some scrambling) in the Instances Track 1 of the Model Counting 2020 Competition \([2, 3]\).

Acknowledgements

Experiments presented in this paper were carried out using the Grid’5000\(^6\) testbed, supported by a scientific interest group hosted by INRIA and including CNRS, RENATER and several Universities as well as other organizations.

References

[1] Pierre Bouvier, Hubert Garavel, and Hernán Ponce de León. Automatic Decomposition of Petri Nets into Automata Networks – A Synthetic Account. In Ryszard Janicki, Natalia Sidorova, and Thomas Chatain, editors, *Proceedings of the 41st International Conference on Application and Theory of Petri Nets and Concurrency (PETRI NETS’20)*, Paris, France, volume 12152 of *Lecture Notes in Computer Science*, pages 3–23. Springer, June 2020.

[2] Johannes K. Fichte and Markus Hecher. MCC 2020 - Model Counting Competition. https://mccompetition.org/assets/files/2020/MC2020_awards.pdf, July 2020.

[3] Johannes K. Fichte, Markus Hecher, and Florim Hamiti. The Model Counting Competition 2020. Technical Report, November 2020.

[4] Hubert Garavel. Nested-Unit Petri Nets. *Journal of Logical and Algebraic Methods in Programming*, 104:60–85, April 2019.

[5] Marc Jasper, Maximilian Fecke, Bernhard Steffen, Markus Schordan, Jeroen Meijer, Jaco van de Pol, Falk Howar, and Stephen F. Siegel. The RERS 2017 Challenge and Workshop. In Hakan Erdogan and Klaus Havelund, editors, *Proceedings of the 24th ACM SIGSOFT International SPIN Symposium on Model Checking of Software (SPIN’17)*, Santa Barbara, CA, USA, pages 11–20. ACM, July 2017.

[6] Fabrice Kordon, Hubert Garavel, Lom Messan Hillah, Emmanuel Paviot-Adet, Loïg Jezequel, Francis Hulin-Hubard, Elvio Amparore, Marco Beccuti, Bernard Berthomieu, Hugues Evrard, Peter G. Jensen, Didier Le Botlan, Torsten Liebke, Jeroen Meijer, Jiří Srba, Yann Thierry-Mieg, Jaco van de Pol, and Karsten Wolf. MCC’2017 – The Seventh Model Checking Contest. *Transactions on Petri Nets and Other Models of Concurrency*, XIII:181–209, 2018.

[7] Fabrice Kordon, Hubert Garavel, Lom Messan Hillah, Emmanuel Paviot-Adet, Loïg Jezequel, César Rodríguez, and Francis Hulin-Hubard. MCC’2015 – The Fifth Model Checking Contest. *Transactions on Petri Nets and Other Models of Concurrency*, XI:262–273, 2016.

[8] Bernhard Steffen, Marc Jasper, Jeroen Meijer, and Jaco van de Pol. Property-Preserving Generation of Tailored Benchmark Petri Nets. In *Proceedings of the 17th International Conference on Application of Concurrency to System Design (ACSD’17)*, Zaragoza, Spain, pages 1–8. IEEE Computer Society, June 2017.
