PROPERTIES OF ROTATION SYMMETRIC MULTIPLE-VALUED FUNCTIONS AND THEIR REED-MULLER-FOURIER SPECTRA

Claudio Moraga
LEHRSTUHL INFORMATIK I
LOGIK IN DER INFORMATIK

Radomir S. Stanković
MATHEMATICAL INSTITUTE
SERBIAN ACADEMY OF SCIENCES AND ART

Number 862
October
2017

Technische Universität Dortmund – Fakultät für Informatik
Otto-Hahn-Str. 14, 44227 Dortmund
Abstract. The concept of rotation symmetric functions from the Boolean domain is extended to the multiple-valued (MV) domain. It is shown that symmetric functions are a subset of the rotation symmetric functions. Functions exhibiting these kinds of symmetry may be given a compact value vector representation. It is shown that the Reed-Muller-Fourier spectrum of a function preserves the kind of symmetry and therefore it may be given a compact vector representation of the same length as the compact value vector of the corresponding function. A method is presented for calculating the RMF spectrum of symmetric and rotation symmetric functions from their compact representations.

I INTRODUCTION

As stated in [20], if a switching function has a special property, it is often realized by using few elements. At the same time, the analysis of the network realizing such a function is simplified.

Examples of desirable properties are self-duality, decomposability, linearity, maximal non-linearity, monotonicity, unateness, etc. Important classes of functions with specific properties are threshold functions, majority functions, and symmetric functions that are subject of considerations in the present Research Report. It is important to notice that many functions encountered in practice express symmetry properties. For example, functions appearing in arithmetic circuits often have symmetries [20]. Due to that, such functions can be realized with a reduced number of elements.

Symmetric functions are defined as functions that do not change their values under all possible permutations of their variables. If the permutations are restricted to certain subsets of variables, we speak about partially symmetric functions. A binary elementary symmetric function is a function S_i^n such that it takes the value 1 iff exactly i out of n inputs are equal to 1. The set of all elementary symmetric functions S_i^n for $i = 0, 1, \ldots, n$, forms a basis in terms of which an arbitrary n-variable symmetric function can be expressed as a logic or sum [20]. Elementary symmetric functions, also called simple symmetric functions, appear as voter functions in fault-tolerant computers [5].

Symmetric functions in both binary and multiple-valued cases, have been a subject of extensive study by many authors. We point out here just a grasp of references to early work in this area that we found interesting without pretending to give a deep insight into the relevant literature [1], [2], [5], [6], [11], [12], [15], [16], [17], [29].

In a study of symmetric functions, instead of restrictions to subsets of variables, we can put requirements on the allowed permutations over either subsets or all the variables. In particular, rotation symmetric functions are defined as symmetric functions under a condition that the cyclic shift of variables is a characterizing feature. They were introduced by J. Pieprzyk and C. X. Qu in the context of hashing algorithms for cryptographic applications in 1993 and 1999 [18], [19]. No applications are yet known in the multiple-valued case. These functions are however interesting on their own, as a new class of functions containing the symmetric functions. Notice that in the binary case, some rotation symmetric functions are bent functions. It has been shown by a computer search that in the binary case there are 8, 48, and 15,104, rotation symmetric bent functions in 4, 6, and 8 variables, respectively [3].
II Background Theory

The mathematical framework for this paper is the ring \((\mathbb{Z}_p, \oplus, \cdot) \). The operations are done modulo \(p \), where \(p \) is an integer larger than 2, not necessarily prime. The functions to be considered are mappings \(f : (\mathbb{Z}_p)^n \rightarrow \mathbb{Z}_p \). For space reasons only examples for \(p = 3 \) and \(p = 4 \) will be given, but the results have general validity.

Definition 1 A multiple-valued function \(f \) is called symmetric, if its value does not change with any permutation of the value assignment to its arguments.

Definition 2 A multiple-valued function \(f \) with more than two arguments is called rotation symmetric if its value does not change with any cyclic shift of patterns of value assignment to its arguments.

Example 1 Let \(f \) be a ternary function on three arguments. Let \(v_1, v_2 \in \{0, 1, 2\} \), with \(v_1 \neq v_2 \), be possible value assignments to the arguments.

Consider the following options:

i) \(f(v_1 v_1 v_1) \) has no other restriction than preserving the range,

ii) \(f(v_1 v_2 v_1) = f(v_2 v_1 v_1) \)

iii) \(f(012) = f(120) = f(201) \) and \(f(021) = f(210) = f(102) \)

If \(f \) satisfies the options and, moreover, \(f(012) = f(021) \), then \(f \) is symmetric.

If \(f \) satisfies the options and, moreover, \(f(012) \neq f(021) \), then \(f \) is rotation symmetric: The permutations of the value assignment comprising all three values are partitioned into two disjoint cycles: \((012, 120, 201) \) and \((021, 210, 102) \).

Remark 1 Symmetric functions are clearly a subset of rotation symmetric functions.

Remark 2 When \(p = 3 \) and \(n = 3 \), except for the value assignment of type \((v_1 v_1 v_1) \), all permutations of the value assignment to the arguments (with two different values) are cycles of length 3 and, in the case of value assignments with three different values, they may be partitioned into two cycles of length 3, based on \((012) \) and \((021) \), respectively.

When \(p = 3 \) and \(n > 3 \) the situation is quite different. For example if \(n = 4 \), let \(v_1, v_2, v_3 \in \{0, 1, 2\} \), with \(v_1 \neq v_2 \neq v_3 \). Permutations on a value assignment \((v_1 v_1 v_2 v_2) \) generate a cycle of length 4. A cyclic permutation of a value assignment \((v_1 v_1 v_2 v_2) \) generates a cycle of length 4, while a cyclic permutation of a value assignment \((v_1 v_2 v_1 v_2) \) generates a cycle of length 2. Value assignments comprising \(1 v_1, 2 v_2's \) and \(1 v_3 \) generate three disjoint cycles of length 4, based on cyclic shifts of the assignments \((v_1 v_2 v_1 v_3), (v_2 v_1 v_2 v_3) \) and \((v_2 v_2 v_1 v_3) \).

Definition 3 For a given \(p \) and \(n > 2 \), the lexicographic first value assignment in a cycle will be its “representative”.

Since the representatives depend on the value assignments comprised in the cycles, if the permutation of a value assignment may be decomposed into disjoint cycles, the corresponding resulting representatives will automatically distinguish them.

Definition 4 For a given \(p \) and \(n > 2 \), if the representatives are ordered lexicographically, their position in the list (starting with 0) will be called their rank.

Example 2 The maps of Fig. 1 show the distribution of the rank of the representatives of the vectors of value assignments when \(p = 3 \) and \(n = 3 \), and the values of a function which may be only symmetric or rotation symmetric depending on the ternary parameters \(\alpha = \beta \) or \(\alpha \neq \beta \), respectively.
As shown already in the early times of binary symmetric functions [22], [10], these functions may be given a compact representation as a vector of \(n+1 \) values ordered with increasing value of the Hamming weight of the value assignments. In the multiple-valued case a similar situation is also possible, but instead of the Hamming weight, the rank of the representatives of the value assignments in each cycle must be considered. It has been shown [16], [25], [30], that in the case of symmetric multiple-valued functions, the compact representation is given by a value vector of length \(\kappa \), where

\[
\kappa = \frac{(n+p-1)!}{(p-1)!n!} \tag{1}
\]

Accordingly, for the ternary case, if \(n = 3 \), symmetric functions may be given a compact representation with a vector of length 10 and, if the function is rotation symmetric, the length of the compact vector increases to 11. There is only one permutation of value assignments that may be decomposed as a product of two disjoint cycles of length 3: \((012, 120, 201)\) and \((021, 210, 102)\). In summary, there are \(3^{10} = 59,049\) ternary symmetric and \(3^{11} = 177,147\) ternary rotation symmetric functions of three variables. If \(p = 3 \) and \(n = 4 \) and the function is symmetric, its compact representation has a length of 15, and if the function is rotation symmetric the compact representation may reach a length of 24, if all permutations of value assignments are decomposed as products of disjoint cycles and the function takes a different value in each disjoint cycle. Clearly 24 is however still smaller than \(3^4 = 81\), which would be the length of the whole list of function values. If \(p = 4 \) and \(n = 3 \) and the functions is symmetric, its compact representation has a length of 20, and if the function is rotation symmetric the compact representation may reach a length of 24. The compact representations allow to find the total number of corresponding functions. There are \(3^{15} = 14,348,907\) ternary symmetric functions of 4 variables, while the number of rotation symmetric functions is \(3^{24} = 282,429,536,481\).

Example 3 The compact representation of the ternary function of example 2 is given by

Representative	000	001	002	011	012	021	022	111	112	122	222
Rank	0	1	2	3	4	5	6	7	8	9	10
\(F \)	0	1	2	\(\alpha \)	\(\beta \)	1	2	1	0	1	

Let \(\Sigma \) denote the set of representatives of the vectors of value assignments to the arguments of functions for a given \(p \) and \(n \).

Following [25], but allowing to include rotation symmetric functions, we introduce elementary (rotation) symmetric multiple-valued functions as follows:

Definition 5 An elementary (rotation) symmetric function takes the value 1 at all places with value assignments belonging to the cycle of a representative from \(\Sigma \).
Table 1: Full length value vectors of elementary rotation symmetric functions for \(p = 3 \) and \(n = 3 \)

\(x_1 \)	\(x_2 \)	\(x_3 \)	\(\phi_0 \)	\(\phi_1 \)	\(\phi_2 \)	\(\phi_3 \)	\(\phi_4 \)	\(\phi_5 \)	\(\phi_6 \)	\(\phi_7 \)	\(\phi_8 \)	\(\phi_9 \)
000	1	0	0	0	0	0	0	0	0	0	0	0
001	0	1	0	0	0	0	0	0	0	0	0	0
002	0	0	1	0	0	0	0	0	0	0	0	0
011	0	0	0	1	0	0	0	0	0	0	0	0
012	0	0	0	0	1	0	0	0	0	0	0	0
021	0	0	0	0	0	1	0	0	0	0	0	0
022	0	0	0	0	0	0	1	0	0	0	0	0
100	0	1	0	0	0	0	0	0	0	0	0	0
101	0	0	0	1	0	0	0	0	0	0	0	0
102	0	0	0	0	1	0	0	0	0	0	0	0
110	0	0	0	1	0	0	0	0	0	0	0	0
111	0	0	0	0	0	1	0	0	0	0	0	0

Elementary rotation symmetric functions are consistent with their name: they are rotation symmetric, and therefore (for \(p = 3 \) and \(n = 3 \)) they may be given a compact representation as binary valued vectors of length 11 (instead of 27). Furthermore it holds that \(\phi_k(x_1, x_2, x_3) = 1 \) iff the rank of the representative of the value assignment to the variables equals \(k \).

III SPECTRAL VIEW

Before moving to the spectral view of the elementary rotation symmetric functions, the Reed-Muller-Fourier transform should be recalled. This transform was introduced in 1992 [23] as a new generalization of the Reed-Muller transform to the multiple-valued domain. For a recent presentation, please refer to [27]. D.H. Green and I.S. Taylor introduced a generalization of the Reed-Muller transform to the new domain in 1976 [8]. Their generalization preserved several important properties of the binary Reed-Muller transform, however it lost the lower triangular structure and the fact of being its own inverse. The Reed-Muller-Fourier transform recovered these features besides preserving the other important properties. This was obtained by using the convolution product of Gibbs [7]. In recent comparative studies between the Reed-Muller-Transform matrix and the Pascal matrix, [26], [28], an equivalent compact definition was obtained. If for any \(p \times p \) matrix representing the basic Reed-Muller-Fourier transform, and \(R_i \) is expressed as \([r_{ij}], i, j \in \mathbb{Z}_p\), then

\[
r_{ij} = (-1)^j \binom{i}{j} \mod p.
\] (2)

Figure 2 shows the basic matrices \(R_i \) for \(p = 3 \) through 7.

Fig. 2: Reed-Muller-Fourier basic matrices for \(p = 3, 4, 5, 6, \) and 7.
Since the Reed-Muller Fourier transform matrix has a Kronecker product structure [Festschrift], matrices for higher dimensions are obtained as \(n\)-fold Kronecker product of the basic matrices with themselves.

\[
R_n = R_1 \otimes R_{n-1} = R_{n-1} \otimes R_1 = (R_1)^{\otimes n}
\]

(3)

Theorem 1.

Preliminaries:

Let \(\mathbb{Z}_p\) be the domain of \(p\)-valued functions and let \(f : (\mathbb{Z}_p)^2 \rightarrow \mathbb{Z}_p\), with value vector \(F\) of length \(p^2\). Moreover let \(g : (\mathbb{Z}_p)^2 \rightarrow \mathbb{Z}_p\), be such that \(g(x_1, x_2) = f(x_2, x_1)\). Let the value vector of \(g\) be \(G\). Furthermore, let \(P\) be a permutation matrix such that when applied upon \(F\) induces a permutation of its components according to the reordering of the arguments of the function. Hence \(G = P \cdot F\).

Claim:

The RMF transform of a \(p\)-valued function on two variables preserves the order of the arguments:

\[
R_2 \cdot G = R_2 \cdot P \cdot F = P_2 \cdot R_2 \cdot F \mod p.
\]

(4)

Proof:

Let \(i, j \in (\mathbb{Z}_p)^2\), with \(i = (i_1, i_0)\) and \(j = (j_1, j_0)\).

Since \(R\) has a Kronecker product structure, then \(R_2 = R_1 \otimes R_1 \mod p\).

If \(R_2\) is expressed as \([r_{i,j}]\) then

\[
r_{i,j} = \left(\begin{array}{c} i_1 \\ j_1 \\ i_0 \\ j_0 \end{array}\right) = \frac{i_1^{i_0} i_0^{i_1}}{i_1 (i_1 - i_0) (j_0 - j_1) (j_1 - j_0)} \mod p
\]

(5)

If \(i_1\) and \(i_0\) are exchanged, then

\[
\text{modified } r_{i,j} = \frac{i_0^{i_1} i_1^{i_0}}{j_1 (i_1 - i_0) (j_0 - j_1) (j_1 - j_0)} \mod p
\]

(6)

and if \(j_1\) and \(j_0\) are exchanged, then

\[
\text{modified } r_{i,j} = \frac{i_0^{i_1} i_1^{i_0}}{j_0 (i_1 - i_0) (j_0 - j_1) (j_1 - j_0)} \mod p
\]

(7)

Since scalar products and sums are commutative, equations (6) and (7) are equivalent. Therefore, exchanging \(i_1\) and \(i_0\) has the same effect as exchanging \(j_1\) and \(j_0\). Moreover exchanging \(i_1\) and \(i_0\) has the effect of exchanging (the corresponding) two rows of \(R_2\) and, similarly, exchanging \(j_1\) and \(j_0\) has the effect of exchanging (the corresponding) two columns of \(R_2\). Exchanging \(i_1\) and \(i_0\) corresponds to \(P_2 \cdot R_2\), while exchanging \(j_1\) and \(j_0\) corresponds to \(R_2 \cdot P_2\).

The assertion follows.

Theorem 2.

Let \(n > k > 1\). Define \(f\) and \(g\) to be \(n\)-place \(p\)-valued functions with value vectors \(F\) and \(G\), respectively, such that for all value assignments to the arguments, \(g\) equals \(f\), but with transposed arguments \(x_k\) and \(x_{k+1}\). Let \(P_n\) be a permutation which when applied to \(F\) has the effect of transposing only the two selected arguments, i.e., \(P_n = (L_{k,1} \otimes P_2 \otimes L_{n, k-1})\).

Then

\[
R_n \otimes P_n \otimes F = P_n \otimes R_n \otimes F \mod p,
\]

(8)

Proof:

Decompose \(R_n\) to match the structure of \(P_n\), i.e. \(R_n = R_{k,1} \otimes R_2 \otimes R_{n, k-1}\), and apply it to both sides of the claim, taking advantage of the compatibility between Kronecker and matrix products [9]:

\[
R_n \otimes P_n \otimes F = (R_{k,1} \otimes R_2 \otimes R_{n, k-1}) \cdot (L_{k,1} \otimes P_2 \otimes L_{n, k-1}) \cdot F = (R_{k,1} \otimes R_2 \otimes R_{n, k-1}) \cdot F \mod p.
\]

(9)

\[
P_n \otimes R_n \otimes F = (L_{k,1} \otimes P_2 \otimes L_{n, k-1}) \cdot (R_{k,1} \otimes R_2 \otimes R_{n, k-1}) \cdot F = (R_{k,1} \otimes P_2 \otimes R_{n, k-1}) \cdot F \mod p.
\]

(10)
It is easy to see that the claim will be satisfied if and only if \(P_j R_2 = R_j P_2 \). Since this was proven in Theorem 1, the assertion follows.

Theorem 3.

Let \(f \) and \(g \) be \(n \)-place \(p \)-valued functions with value vectors \(F \) and \(G \), respectively, such that for all value assignments to the arguments, \(g \) equals \(f \), but with transposed arguments \(x_k \) and \(x_{k+1} \) and transposed arguments \(x_k \) and \(x_{k+1} \). \((n > k > h > 0) \). If applied independently, let the corresponding transposition matrices be \(P^{(k)}_n \) and \(P^{(h)}_n \), respectively, leading to \(G = P^{(k)}_n P^{(h)}_n F \). The following holds:

\[
R_x \cdot G = P^{(k)}_n \cdot P^{(h)}_n \cdot R_x \cdot F \mod p.
\]

Proof:

Consider first one of the transpositions. Let \(G' = P^{(h)}_n \cdot F \mod p \).

Then from Theorem 1 follows that \(R_x \cdot G' = R_x \cdot P^{(h)}_n \cdot F = P^{(h)}_n \cdot R_x \cdot F \mod p \).

Now let the second transposition be executed: \(G = P^{(k)}_n \cdot G' \).

Then from Theorem 1 follows that \(R_x \cdot G = R_x \cdot P^{(k)}_n \cdot G' = P^{(k)}_n \cdot P^{(h)}_n \cdot R_x \cdot F \mod p \).

Theorem 4.

Let \(f \) and \(g \) be \(n \)-place \(p \)-valued functions with value vectors \(F \) and \(G \), respectively, such that for all value assignments to the arguments, \(g \) equals \(f \), but with permuted arguments. Let \(P_n \) be a permutation matrix, which when applied to \(F \) has the same effect as permuting the corresponding arguments. Then

\[
R_x \cdot G = R_x \cdot P_n P^{(h)}_n F = P_n R_x \cdot F \mod p.
\]

Proof:

Recall that any permutation of an ordered set of arguments may be decomposed as a product of disjoint cycles, and any (non-singleton) cycle may be obtained with a cascade of transpositions. (Furthermore, any transposition may be realized as a cascade of neighbor transpositions; e.g. \((14) = (43)(32)(12)(23)(34)\).) Apply accordingly Theorems 2 and 3 as many times as needed.

Theorem 5.

Let \(n > 2 \). The RMF spectrum of an \(n \)-place \(p \)-valued rotation symmetric function is rotation symmetric.

Proof:

Recall that a \(p \)-valued function is rotation symmetric iff it is invariant with respect to any cyclic permutation of the value assignment of its arguments.

Let \(F \) be the value vector of a rotation symmetric function and let \(P_n \) be equivalent to a random cyclic permutation of the value assignment of its arguments. Then, since \(F \) is the value vector of a rotation symmetric function,

\[
F = P_n F.
\]

From Theorem 4,

\[
R_x \cdot F = R_x \cdot P_n F = P_n R_x \cdot F \mod p.
\]

Therefore \(R_x \cdot F \mod p \) is rotation symmetric.

III Computational Aspects

The Reed-Muller-Fourier spectrum of the elementary rotation symmetric functions on \(n \) variables will be (first) calculated by multiplying the \(p^n \times p^n \) transform matrix \(R_x \) with the value vector \(\Phi \) (of length \(p^n \)) of the corresponding function. In what follows, angular parentheses will be used to denote the compact representation of a vector. Taking in
account Theorem 1, a rotation symmetric function will be shown in its compact representation \(\langle F \rangle \). Similarly for Reed-Muller-Fourier spectra. For the full vectors, the notation \(SB(n,k) \) introduced in [21] and used in [25] will be adopted, where \(n \) denotes the number of variables of the function, and \(k \) indicates the rank of the representative of the characterizing value assignment to the variables.

For \(p = 3 \) and \(n = 3 \), the compact \(\langle SB(3,k) \rangle \) functions specifications are shown in Table 2.

Table 2: Compact RMF-spectrum \(\langle SB(3,k) \rangle \) of elementary rotation symmetric functions for \(p = 3 \) and \(n = 3 \).

\(x_1 x_2 x_3 \) (repr.)	\(\langle SB(3,0) \rangle \)	\(\langle SB(3,1) \rangle \)	\(\langle SB(3,2) \rangle \)	\(\langle SB(3,3) \rangle \)	\(\langle SB(3,4) \rangle \)	\(\langle SB(3,5) \rangle \)	\(\langle SB(3,6) \rangle \)	\(\langle SB(3,7) \rangle \)	\(\langle SB(3,8) \rangle \)	\(\langle SB(3,9) \rangle \)	\(\langle SB(3,10) \rangle \)
000	1	0	0	0	0	0	0	0	0	0	0
001	1	2	0	0	0	0	0	0	0	0	0
002	1	1	1	0	0	0	0	0	0	0	0
011	1	1	0	1	0	0	0	0	0	0	0
012	1	0	1	2	2	0	0	0	0	0	0
021	1	0	1	2	0	2	0	0	0	0	0
022	1	2	2	1	1	1	0	0	0	0	0
111	1	0	0	0	0	0	2	0	0	0	0
112	1	2	1	2	2	2	0	1	1	0	0
122	1	1	2	2	0	0	1	2	1	2	0
222	1	0	0	0	0	0	0	1	0	0	1

Theorem 6

Let \(f \) be a rotation symmetric \(p \)-valued function specified by a value vector \(F \) and a compact value vector \(\langle F \rangle \). The Reed-Muller-Fourier compact spectrum \(\langle S_i \rangle \) of \(f \), may be obtained directly from \(\langle F \rangle \) based on the \(\langle SB(n,k) \rangle \) vectors as follows:

\[
\langle S_i \rangle = \langle F \rangle_j \cdot \langle SB(n,j) \rangle \mod 3, \tag{14}
\]

where \(\langle F \rangle_j \) denotes the \(j \)-th component of \(\langle F \rangle \).

Proof:

Let \(\phi_j \) denote the \(j \)-th elementary rotation symmetric function and \(\Phi_j \) its value vector.

The Reed-Muller-Fourier spectrum of \(f \) with value vector \(F \) is given by

\[
S_f = R_n \cdot F \mod 3 = R_n \sum_j \langle F \rangle_j \cdot \Phi_j \mod 3 = \sum_j R_n \cdot \langle F \rangle_j \cdot \Phi_j \mod 3 = \sum_j \langle F \rangle_j \cdot S_{\phi_j} = \sum_j \langle F \rangle_j \cdot SB(n,j) \mod 3. \tag{15}
\]

Then \(\forall w \) belonging to a value assignment cycle with rank \(j \) holds:

\[
S_f(w) = \sum_j \langle F \rangle_j \cdot S_{\phi_j}(w) \mod 3, \tag{16}
\]

from where

\[
\langle S_f \rangle = \sum_j \langle F \rangle_j \cdot \langle SB(n,j) \rangle \mod 3. \tag{17}
\]

Since the Reed-Muller-Fourier transform is its own inverse, the following holds:

Corollary 6.1

\[
\langle F \rangle = \sum_j \langle S_f \rangle_j \cdot \langle SB(n,j) \rangle \mod 3 \tag{18}
\]

8
Example 4 Consider the function of Example 2, with \(\alpha = 1 \) and \(\beta = 0 \). The function is clearly rotation symmetric.

\[
\begin{array}{c|cccccccccccc}
00 & 0 & 1 & 2 & 1 & 0 & 2 & 0 & 1 \\
01 & 1 & 0 & 0 & 2 & 1 & 1 & 0 & \\
02 & 2 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
\end{array}
\]

Its RMF spectrum is:

\[
\begin{array}{c|cccccccccccc}
00 & 0 & 2 & 0 & 2 & 1 & 1 & 0 & 2 & 2 \\
01 & 0 & 1 & 2 & 0 & 2 & 1 & 2 & 1 & 0 & 2 & \\
02 & 2 & 0 & 1 & 2 & 0 & 2 & 2 & 0 & & & \\
\end{array}
\]

The compact representation of \(\langle F \rangle \) and of the compact RMF-spectra of elementary rotation symmetric functions scaled by the non-zero coefficients of \(\langle F \rangle \) according to Theorem 6, is the following:

\(x_1x_2x_3 \) (repr.)	\(\langle F \rangle \)	\(\langle SB(3,1) \rangle \)	\(\langle SB(3,2) \rangle \)	\(\langle SB(3,4) \rangle \)	\(\langle SB(3,6) \rangle \)	\(\langle SB(3,7) \rangle \)	\(\langle SB(3,8) \rangle \)	\(\langle SB(3,10) \rangle \)	\(\oplus \)
000	0	0	0	0	0	0	0	0	0
001	1	2	0	0	0	0	0	2	2
002	2	1	2	0	0	0	0	0	0
011	0	1	0	0	0	0	0	0	1
012	1	0	2	2	0	0	0	0	1
021	0	0	2	0	0	0	0	0	2
022	1	2	1	1	0	0	0	0	2
111	2	0	0	0	0	0	0	1	0
112	1	2	2	2	0	2	1	0	0
122	0	1	1	0	1	1	1	0	2
222	1	0	0	0	0	2	0	1	0

The columns are scaled according to the elements of \(\langle F \rangle \). It may be seen that the column labelled “\(\oplus \)” represents the results of Eq. (17), returning \(\langle S_f \rangle \).

Similarly, Corollary 6.1 may be illustrated as follows, where the columns are now scaled by the non-zero coefficients of \(\langle S_f \rangle \) and the column labelled “\(\oplus \)” represents the results of Eq. (18), returning \(\langle F \rangle \).

\(x_1x_2x_3 \) (repr.)	\(\langle S_f \rangle \)	\(2\langle SB(3,1) \rangle \)	\(\langle SB(3,3) \rangle \)	\(\langle SB(3,4) \rangle \)	\(\langle SB(3,5) \rangle \)	\(\langle SB(3,6) \rangle \)	\(\langle SB(3,7) \rangle \)	\(\langle SB(3,9) \rangle \)	\(\oplus \)
000	0	0	0	0	0	0	0	0	0
001	2	1	0	0	0	0	0	0	1
002	0	2	0	0	0	0	0	0	2
011	1	2	1	0	0	0	0	0	0
012	1	0	2	2	0	0	0	0	1
021	2	0	2	0	1	0	0	0	0
022	2	1	1	1	2	2	0	0	1
111	1	0	0	0	0	2	0	0	2
112	0	1	2	2	1	0	1	0	1
122	2	2	2	0	2	2	1	0	0
222	0	0	0	0	0	0	1	0	1
Remark 3 Notice that if \(p = 3 \) and \(n = 3 \), there are 59,049 symmetric functions [25] and \(3^{11} = 177,147 \) rotation symmetric functions. However the 11 elementary rotation symmetric functions must be calculated only once, to move between the functions and their Reed-Muller-Fourier spectra with Theorem 6 and its Corollary. The computational complexity of Theorem 6 is in \(O(n^2) \), but all weighted sums may be run in parallel.

Lemma 1: For a given \(p \) and a given \(n > 2 \) holds the following:

i) The sum mod \(p \) of two symmetric functions is symmetric

ii) The sum mod \(p \) of a symmetric and a rotation symmetric functions is rotation symmetric

iii) The sum mod \(p \) of two rotation symmetric functions may be

- rotation symmetric with the same number of cycles of common permutations with different values
- rotation symmetric with a smaller number of cycles with different values if the entries of all cycles of some permutations add up (mod \(p \)) to a common value
- just symmetric if the entries of all cycles of each permutation add up (mod \(p \)) to a common value

An example instead of a formal proof:

Let the assignment \(A_1 \) comprise the values \((0, 0, 1, 2)\), whose permutations may be partitioned into three disjoint cycles \(c_{1,1}, c_{1,2} \) and \(c_{1,3} \) as follows:

\[
c_{1,1} = (0012–0120–1200–2001), \quad c_{1,2} = (0102–1020–0201–2010) \quad \text{and} \quad c_{1,3} = (1002–0021–0210–2100)
\]

Similarly, let \(A_2 \) comprise the values \((0, 0, 2, 2)\), whose permutations may be partitioned into two disjoint cycles as follows:

\[
c_{2,1} = (0022–2022–2200–2002) \quad \text{and} \quad c_{2,2} = (0202–2020)
\]

Let \(F_1, F_2, F_3, F_4, F_5 \) and \(F_6 \) be the value vectors of ternary 4-place (rotation) symmetric functions, which are equal respectively at all places, except at the places in the above cycles. Let \(F_1 \) and \(F_2 \) be straight symmetric and the other functions, rotation symmetric. Accordingly, the relevant parts of these functions may be represented as follows:

	\(c_{1,1} \)	\(c_{1,2} \)	\(c_{1,3} \)	\(c_{2,1} \)	\(c_{2,2} \)			
\(F_1 \)	…………	1	1	1	…………	2	2	…………
\(F_2 \)	…………	0	0	0	…………	1	1	…………
\(F_3 \)	…………	2	1	0	…………	2	1	…………
\(F_4 \)	…………	2	0	1	…………	2	1	…………
\(F_5 \)	…………	1	2	0	…………	2	1	…………
\(F_6 \)	…………	0	2	1	…………	2	0	…………
\(F_1 \oplus F_2 \)	…………	1	1	1	…………	0	0	…………
\(F_1 \oplus F_3 \)	…………	0	2	1	…………	1	0	…………
\(F_1 \oplus F_5 \)	…………	0	2	1	…………	1	2	…………
\(F_3 \oplus F_5 \)	…………	0	0	0	…………	1	2	…………
\(F_2 \oplus F_6 \)	…………	1	1	1	…………	1	1	…………

It is easy to see that \(F_1 \oplus F_2 \) produces another symmetric function; \(F_1 \oplus F_3 \) as well as \(F_3 \oplus F_5 \) produce new rotation symmetric functions, while \(F_1 \oplus F_5 \) produces a “weaker” rotation symmetric function since only for the cycles of the assignments of \(A_2 \) takes different values. Finally, \(F_5 \oplus F_6 \), the sum mod 3 of two rotation symmetric functions, produces a straight symmetric function.
Remark 4 In the case of \(p = 4 \) and \(n = 3 \), (minimum size of \(n \) required to have one permutation of a value assignment to be decomposable into two disjoint cycles of length 3, and therefore to have the possibility of building rotation symmetric functions), \(k \) equals 20. There are \(4^{20} \approx 10^{12} \) symmetric functions. There are 24 elementary rotation symmetric functions, each compact value vector is of length 24. It follows that there are \(4^{24} \approx 256 \cdot 10^{12} \) quaternary rotation symmetric functions of three variables.

Representatives, ranks and cycles are summarized in Table 3.

repr.	rank	cycle	repr.	rank	cycle	repr.	rank	cycle
000	0	(000)	022	8	(022-220-202)	122	16	(122-221-212)
001	1	(001-010-100)	023	9	(023-230-302)	123	17	(123-231-312)
002	2	(002-020-200)	031	10	(031-310-103)	132	18	(132-321-213)
003	3	(003-030-300)	032	11	(032-320-203)	133	19	(133-331-313)
011	4	(011-110-101)	033	12	(033-330-303)	222	20	(222)
012	5	(012-120-201)	111	13	(111)	223	21	(223-232-322)
013	6	(013-130-301)	112	14	(112-121-211)	233	22	(233-332-323)
021	7	(021-210-102)	113	15	(113-131-311)	333	23	(333)

Table 3: Disjoint cycles of value assignments for \(p = 4 \) and \(n = 3 \)

Notice that the cycles with ranks 5 and 7; 6 and 10; 9 and 11; as well as 17 and 18, are disjoint cycles obtained from permutations of length 6 where the value assignments comprise three different values. If a function has to be rotation symmetric, then it should have different values at least in one pair of these disjoint cycles (but a constant value in each cycle).

The distribution of ranks for \(p = 4 \) and \(n = 3 \) is shown in the following map:

Before analyzing examples with \(p = 4 \) and \(n = 3 \), the elementary rotation symmetric functions and their RMF spectra are needed. Notice that in the compact representation, \(\phi_k(x_1,x_2,x_3) \equiv 1 \iff \text{rank}(x_1,x_2,x_3) = k \). An explicit table is not needed.

The RMF spectra of the elementary rotation symmetric functions are needed before working the following examples. For space reasons in the next tables let \(i_k \) denote \((SB(4,k))\).

rep.	\(k \)	\(i_1 \)	\(i_2 \)	\(i_3 \)	\(i_4 \)	\(i_5 \)	\(i_6 \)	rep.	\(k \)	\(i_1 \)	\(i_2 \)	\(i_3 \)	\(i_4 \)	\(i_5 \)	\(i_6 \)
000	0	0	0	0	0	0	0	022	8	0	2	0	0	2	0
001	1	3	0	0	0	0	0	023	9	3	0	3	2	2	123
002	2	2	1	0	0	0	0	031	10	0	3	3	0	3	132
003	3	1	3	3	0	0	0	032	11	3	3	2	1	0	133
011	4	2	0	0	1	0	0	033	12	2	2	1	3	3	222
012	5	1	1	0	2	3	0	111	13	1	0	0	3	0	223
013	6	0	3	3	3	1	1	112	14	0	1	0	1	3	233
Example 4:

Consider the following rotation symmetric function, where cells shaded with a same color indicate the 4 pairs of disjoint cycles where the function takes different values.

Table:

x_{2x3}	00	01	02	03	10	11	12	13	20	21	22	23	30	31	32	33
0	0	1	2	3	1	0	1	2	2	2	0	1	3	1	2	0
1	1	0	2	1	0	1	2	1	2	0	2	2	1	1	0	0
2	2	1	0	2	2	0	1	0	0	2	1	1	2	1	0	0
3	3	2	1	0	1	1	2	0	2	1	1	0	0	0	3	1

Compact representation

rank	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	
F	0	1	2	3	0	1	2	2	0	1	1	1	2	0	1	2	1	0	2	1	0	2	1	0	3
RMF spectrum of f

S_f	x_2x_3
x_1	00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33
0	0 0 3 0 0 3 2 2 0 1 2 3 0 2 1 1
1	3 2 1 2 0 3 2 2 3 2 0 2 0 2 0 0
2	0 2 2 1 1 3 2 0 2 2 0 1 3 0 1 0
3	0 2 3 1 2 2 0 0 1 0 1 0 1 0 0 0

(Notice that S_f is “less rotation symmetric” than f in the sense that in the blocks with rank 6 and 10 and with rank 17 and 18, the spectrum does not have respectively different values)

Compact representation

| rank | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
|------|
| $|S_f||0\ 0\ 0\ 0\ 2\ 2\ 2\ 2\ 1\ 1\ 1\ 0\ 3\ 2\ 2\ 0\ 0\ 0\ 0\ 0|0|0|0|0|

From Theorem 6:

$\langle S_f \rangle = \langle SB(4,1) \rangle \oplus 2\langle SB(4,2) \rangle \oplus 3\langle SB(4,3) \rangle \oplus \langle SB(4,5) \rangle \oplus 2\langle SB(4,6) \rangle \oplus 2\langle SB(4,7) \rangle \oplus \langle SB(4,9) \rangle \oplus \langle SB(4,10) \rangle \oplus \\
\oplus 2\langle SB(4,11) \rangle \oplus \langle SB(4,13) \rangle \oplus 2\langle SB(4,14) \rangle \oplus \langle SB(4,15) \rangle \oplus 2\langle SB(4,17) \rangle \oplus \langle SB(4,18) \rangle \oplus 2\langle SB(4,20) \rangle \oplus \\
\oplus \langle SB(4,21) \rangle \oplus 3\langle SB(4,23) \rangle \mod 4$

From Corollary 6.1:

$\langle F \rangle = 3\langle SB(4,1) \rangle \oplus 2\langle SB(4,4) \rangle \oplus 2\langle SB(4,5) \rangle \oplus 2\langle SB(4,6) \rangle \oplus \langle SB(4,7) \rangle \oplus 2\langle SB(4,8) \rangle \oplus 3\langle SB(4,9) \rangle \oplus 2\langle SB(4,10) \rangle \oplus \\
\oplus \langle SB(4,11) \rangle \oplus \langle SB(4,12) \rangle \oplus 3\langle SB(4,14) \rangle \oplus 2\langle SB(4,15) \rangle \oplus 2\langle SB(4,16) \rangle \oplus \langle SB(4,21) \rangle \mod 4$

Both expressions give the correct result.

Example 5:

A function was built based on the function of Example 4, but in each pair of disjoint cycles, in one cycle the value was changed. In the “only symmetric” part of the function at a few random places the value was changed, but preserving the symmetry.

f	x_2x_3
x_1	00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33
0	0 0 3 2 3 3 1 3 0 2 2 1 0 3 1 2 1
1	3 1 2 1 1 1 2 1 3 2 0 3 0 1 1 0
2	2 3 1 2 2 2 0 1 1 0 2 1 0 3 1 0
3	3 0 0 1 1 1 3 0 2 1 1 0 1 0 0 3

Compact representation:

| rank | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
|------|
| $|F||0\ 3\ 2\ 3\ 1\ 3\ 0\ 2\ 1\ 0\ 1\ 2\ 1\ 1\ 2\ 1\ 0\ 3\ 1\ 0|2|1|0|3|
RMF spectrum

S_f	x_{2x3}
x_1	00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33
0 0 1 0 2 1 3 0 1 0 1	3 2 1 2 3 2 1 0 1 0
1 1 3 1 1 3 1 2 3 0 2 3 2 1 3 0 1	
2 0 0 3 2 1 2 3 0 3 3 3 3 3 2 3 0	
3 2 1 3 3 1 3 2 1 2 0 3 0 3 1 0 3	

Compact representation

rank	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
$\langle S_f \rangle$	0	1	0	2	3	0	1	1	3	1	2	3	1	2	3	3	2	0	1	3	3	0	3	

The function and the RMF spectrum satisfy Theorem 6 and Corollary 6.1

$$\langle F \rangle = \bigoplus_{k=0}^{k=23} \langle S_f \rangle \langle SB(4, k) \rangle \mod 4$$

$$\langle F \rangle = \bigoplus_{k=0}^{k=23} \langle S_f \rangle \langle SB(4, k) \rangle \mod 4$$

Example 6:

f	x_{2x3}
x_1	00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33
0 0 1 2 3 1 0 1 2 2 2 0 1	3 1 2 0
1 1 0 2 1 0 1 2 1 1 2 1 3 2 1 1 0	
2 2 1 0 2 2 2 1 1 0 1 2 1 1 3 1 0	
3 3 2 1 0 1 1 3 0 2 1 1 0 0 0 0 3	

Compact representation:

rank	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
$\langle F \rangle$	0	1	2	3	0	1	2	2	0	1	2	1	1	3	1	0	2	1	0	3				

RMF spectrum:

S_f	x_{3x3}
x_1	00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33
0 0 3 0 0 3 2 2 2 0 1	3 2 0 1 1
1 3 2 1 2 2 0 3 2 2 3 1 2 2 2 1 2	
2 0 2 2 1 1 3 1 1 2 1 2 0 3 2 0 1	
3 0 2 3 1 2 2 2 1 2 0 1 1 2 1 2	

Compact representation:

rank	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
$\langle S_f \rangle$	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Notice that the spectrum has the value “2” in roughly 40% of the places, meaning that when evaluating the equation of Corollary 6.1, a considerable amount of $SB(4,k)$ coefficients will be scaled by 2; and 2 is a zero divider in $(\mathbb{Z}_4, \oplus, \cdot)$. The corollary was satisfied. It may be concluded that the zero divider does not affect the Theorem and its Corollary.

Example 7: The following function is rotation symmetric and except for the necessary disjoint cycles with different values, and the places where the cycle has size 1, in all other places the function has the value 2.

f	$x_2 \times 3$															
x_1	00	01	02	03	10	11	12	13	20	21	22	23	30	31	32	33
0	0	2	2	2	2	2	2	1	2	2	2	1	2	1	2	2
1	2	2	1	2	2	1	2	2	2	1	2	2	2	2	2	1
2	2	1	2	2	2	1	2	2	2	1	2	2	2	2	2	2
3	2	2	1	2	1	2	2	2	1	2	2	2	2	2	2	3

Compact representation

$\langle S \rangle$	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
$\langle F \rangle$	0	2	2	2	1	2	2	1	1	2	2	1	2	2	2	2	2	1	2	2	2	2	3	

RMF Spectrum

S_f	$x_2 \times 3$																
x_1	00	01	02	03	10	11	12	13	20	21	22	23	30	31	32	33	
0	0	2	2	2	2	2	2	3	1	2	2	0	1	2	1	3	3
1	2	2	2	1	2	2	3	1	3	3	1	1	3	1	3	3	3
2	2	3	0	3	2	1	1	3	0	1	0	2	1	3	2	0	
3	2	1	1	3	1	3	3	3	3	3	2	0	3	3	0	0	

The RMF spectrum is rotation symmetric, although only in two pairs of disjoint cycles it takes different values.

Compact representation

$\langle S \rangle$	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
$\langle S \rangle$	0	2	2	2	3	1	2	0	1	1	3	3	3	1	3	1	3	3	3	0	2	0	0	
REFERENCES

[1] R.C. Born: Transformation of ternary switching functions to completely symmetric ternary switching functions, *IEEE Trans. on Computers*, C-18, (6), 559-560, 1969
[2] J.T. Butler, T. Sasao: On the properties of multiple-valued functions that are symmetric in both variable values and labels, In *Proc. 28th Int. Symp. on Multiple-Valued Logic*, 83-88, IEEE Press, 1998
[3] T.W. Cusick, P. Stǎnicǎ: Cryptographic Boolean Functions and Applications, Academic Press, 2009.
[4] G. Epstein: Synthesis of electronic circuits for symmetric functions, *IRE Trans. on Electronic Computers*, EC-7, 57-59, 1958.
[5] G. Epstein: *Multiple-Valued Logic Design - An Introduction*, Institute of Physics Publishing, Bristol and Philadelphia, 1993, ISBN 0-7503-0210-0
[6] G. Epstein, D.M. Miller, J.C. Muzio: Some preliminary views on the general synthesis of electronic circuits for symmetric and partially symmetric functions, In *Proc. 7th Int. Symp. on Multiple-Valued Logic*, 29-34, IEEE Press, 1977
[7] J.E. Gibbs: Instant Fourier transform, *Electronics Letters*, 13 (5), 122-123, 1977.
[8] D.H. Green, I.S. Taylor: Multiple-valued switching circuit design by means of generalized Reed Muller expansions. *Digital Processes*, 2, 63-81, 1976
[9] R.A. Horn, and Ch.R. Johnson: *Topics in matrix analysis*. Cambridge University Press, New York, 1991
[10] Y. Komamiya: Theory of computing networks. Research Report of the Applied Mathematics Section, Electrotechnic Laboratory of the Japanese Government, July 10, 1959
[11] S.C. Lee, T.C. Lee: On multiple-valued symmetric functions. *IEEE Trans. Computers*, C-21, 312-316, 1972
[12] R.D. Merrill: Symmetric ternary switching functions - Their detection and realization with threshold logic, *IEEE Trans. on Electronic Computers*, EC-16, (5), 624 - 637, 1967
[13] C. Moraga: On a property of the Reed-Muller-Fourier transform, *Facta Universitatis, Series Electronics and Energetics*, accepted, 2017
[14] C. Moraga: On the Reed-Muller spectrum of symmetric Boolean functions. In *Proc. Int. Conference Information and Digital Technologies*, 269-279, Žilina, Slovakia, IEEE Press, 2017
[15] A. Mukhopadhyay: Symmetric ternary switching functions, *IEEE Trans. on Electronic Computers*, EC-15, (5), 731-739, 1966
[16] J.C. Muzio: Concerning the maximum size of the terms in the realization of symmetric functions. In *Proc. 20th Int. Symposium on Multiple-valued Logic*, 292-299, Charlotte, N.C. IEEE Press, 1990
[17] B.L. Ovsievic: Some properties of symmetric functions of the three valued logic. Problemy Peredaci Informacii, vyp. 1, 1965, 57-614 (in Russian)
[18] J. Pieprzyk: On bent permutations. In Mullen G.L., Shiue P.J., (eds.), *Finite Fields, Coding Theory and Advances in Communications and Computing*, Vol. 141, 173-181, New York, Marcel Decker, 1993
[19] J. Pieprzyk, C.X. Qu: Fast hashing and rotation-symmetric functions *J. Universal Comput. Sci.*, 5 (1), 20–31, 1999
[20] T. Sasao: *Switching Theory for Logic Design*, Kluwer, 1999.
[21] T. Sasao: A New Expansion of Symmetric Functions and their application to non-disjoint functional decompositions for LUT type FPGAs. IEEE Int. Workshop on Logic Synthesis, IWLS-2000, May 31- June 2, Dana Point, CA, USA
[22] C.E. Shannon: A symbolic analysis of relay and switching circuits. *Transactions of the AIEE*, 57, 713-723, 1938
[23] R.S. Stanković: Some remarks on Fourier transforms and differential operators for digital functions. In *Proc. 22nd Int. Symp. on Multiple-valued Logic*, 365-370, IEEE Press, 1992.
[24] R.S. Stanković: The Reed-Muller-Fourier transform – Computing methods and factorizations. In R. Seising, H. Allende-Cid, (Eds.), *Claudio Moraga: A Passion for Multi-Valued Logic and Soft Computing*, 121-151, Springer, 2017
[25] R.S. Stanković, J. Astola, K. Egiazarian: Remarks on symmetric binary and multiple-valued functions. In *Proc. 6th Int. Workshop on Boolean Problems*, 83-87, Press Technische Universität Bergakademie Freiberg, ISBN: 3-86012-233-9, 2004
[26] R.S. Stanković, J.T. Astola, C. Moraga: Pascal matrices, Reed-Muller expressions, and Reed-Muller error correcting codes. In *Logic in Computer Science II*, (S. Ghilezan, Ed.) , Zbornik radova 18 (26), 145-172, Press Mathematical Institute of the Serbian Academy of Science, Belgrade, Serbia, 2015
[27] R.S. Stanković, M.G. Karpovsky, C. Moraga: Remarks on codes, spectral transforms, and decision diagrams, in Tabus, I., Egiazarian, K., Gabouj, M., (eds.), *Festschrift in Honor of Jaakko Astola on the Occasion of his
60th Birthday, 226-246, Tampere University of Technology, TTY, Tampere, Finland, ISBN 978-952-15-2142-3, ISSN 1456-2774, 2009

[28] R.S. Stanković, M. Stanković, C. Moraga: The Pascal triangle (1654), the Reed-Muller-Fourier Transform (1992), and the Discrete Pascal Transform (2005). In Proc. 46th Int. Symposium on Multiple-Valued Logic, 229-234, IEEE Press, 2016

[29] S.Y.H. Su, P.T. Cheung: Algebraic properties of multi-valued symmetric switching functions, In Proc. 1st Int. Symp. on Multiple-Valued Logic, Buffalo, NY, USA, May 1971, 26-35

[30] R. Tošić, I. Stojmenović, M. Miyakawa: On the maximum size of the terms in the realization of symmetric functions. In Proc. 21st Int. Symposium on Multiple-valued Logic, 110-117. Victoria, Canada. IEEE Press, 1991