Metagenomic insights into the functions of microbial communities in sulfur-rich sediment of a shallow-water hydrothermal vent off Kueishan Island

Li Wang*, Ziyi Shen1, Xinyi Cheng1, Jiang-Shiou Hwang2, Yizhe Guo3, Mingye Sun1, Junwei Cao1, Rulong Liu4* and Jiasong Fang1,3*

1Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China, 2Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan, 3Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

Hydrothermal vent (HTV) systems are important habitats for understanding the biological processes of extremophiles on Earth and their relative contributions to material and energy cycles in the ocean. Current understanding on hydrothermal systems have been primarily focused on deep-sea HTVs, and little is known about the functions and metabolisms of microorganisms in shallow-water HTVs (SW-HTVs), which are distinguished from deep-sea HTVs by a depth limit of 200 m. In this study, we analyzed metagenomes of sulfur-rich sediment samples collected from a SW-HTV of Kueishan Island, located in a marginal sea of the western Pacific Ocean. Comparing with a previously published report of pelagic samples from the nearby sampling site, microbial communities in the SW-HTV sediments enriching with genes of both aerobic and anaerobic respiration inferred variable environments in the tested sediments. Abundant genes of energy metabolism encoding sulfur oxidation, \(\text{H}_2 \) oxidation, and carbon fixation were detected from the sediment samples. Sixty-eight metagenome-assembled-genomes (MAGs) were reconstructed to further understand the metabolism and potential interactions between different microbial taxa in the SW-HTV sediments. MAGs with the highest abundant were chemolithotrophic sulfur-oxidization bacteria, including \textit{Sulfurovum} represented Campylobacteria involved sox multienzyme, sulfide oxidation genes and rTCA cycle, and Gammaproteobacteria involved dsr gene and CBB cycle. In addition, Desulfobacterales with the potential to participate in sulfur-disproportionating processes also had higher abundance than the sample's overall mean value. The interaction of these bacterial groups allows the microbial communities to efficiently metabolize a large variety of sulfur compounds. In addition, the potential to use simple organic carbon, such as acetate, was found in chemolithotrophic Campylobacterial MAGs. Collectively, our results revealed the complexity of environmental conditions of the vent sediment and highlight the interactive relationships of the dominant microbial
populations in driving sulfur cycles in the SW-HTV sediments off Kueishan Island.

KEYWORDS

Campylobacteria, shallow-water hydrothermal vent, sulfur cycle, sediment, metagenome-assembled-genomes, Kueishan Island
vent systems. In order to know more special traits of these Campylobacteria thrived in SW-HTVs of Kueishan Island, we investigated for the first time the functional potentials of benthic microbial communities in the vent system off Kueishan Island by metagenomic analysis. The genes involving in energy yielding of dominant chemolithotrophic Campylobacteria and other abundant bacterial groups are analyzed based on metagenome-assembled genomes (MAGs). The potential ecological roles and possible interactions of the dominant bacterial taxa will be discussed. The study will advance the knowledge on metabolic mechanisms and ecological functions of microorganisms in SW-HTVs.

Materials and methods

Sample collection

Sediment cores (~10 cm) were collected from site W (121.96232°E, 24.83420°N), located 2 m away from a low-temperature vent (type II) off Kueishan Island, by scuba divers in September 2013. The sampling details and environmental parameter can be found in our previous study (Wang et al., 2015, 2017). Triplicate samples (W1, W2 and W3) were taken and immediately frozen on shipboard. In the laboratory, the samples were stored at −80°C until DNA extraction and other analyses.

DNA extraction and metagenomic sequencing

DNA was extracted from the sediment samples after removal of the top 1 cm using the PowerSoil DNA Isolation Kit (MO BIO Laboratories, Inc., Carlsbad, United States) according to the manufacturer’s instructions. Environmental DNA of the samples was break into short fragment around 350 bp and added the adaptor. Then paired-end sequenced on an Illumina HiSeq 4,000 platform (Illumina, San Diego, CA, United States) according to standard protocols by the Beijing Genomics Institute (BGI, Shenzhen, China). Retrieved reads were filtered using an in-house developed program to remove low-quality reads by BGI. The sequencing data were submitted to the NCBI database (accession number PRJNA851985).

Comparative metagenomic analyses

Raw sequencing reads were submitted to the MG-RAST server (version 3.0) for gene annotation (Meyer et al., 2008). The artificially created duplicate reads (Gomez-Alvarez et al., 2009) were removed automatically by MG-RAST. The putative open reading frames (ORFs) were identified using FragGeneScen (Rho et al., 2010), and their corresponding protein sequences were searched with BLAST against the M5NR non-redundant protein database (Wilke et al., 2012) in the MG-RAST. M5NR is an integration of many databases, including the NCBI GenBank, COG, Kyoto Encyclopedia of Genes and Genomes (KEGG), and SEED. Taxonomic and functional profiles within MG-RAST (hits to IMG, M5NRA, SEED, COG, and KEGG databases) were extracted (an E-value cutoff of less than 1 × 10⁻5, a minimum read length of 50 bp and a minimum abundance of 100).

The functional attributes of our three sediment metagenomes from this study (MG-RAST ID: 4716389.3, 4716390.3 and 4716391.3) were compared with the two pelagic metagenomes previously published (Tang et al., 2013) that was stored in MG-RAST database (MG-RAST ID: 4487625.3 and 4487624.3) and hereby referred to as GS4 and GS7. In addition, nine datasets of DS-HTVs (Supplementary Table S1) were also chosen from MG-RAST to compare with the microbial communities in SW-HTVs (Grzymski et al., 2008; Brazelton and Baross, 2009; Anderson et al., 2014; Cerqueira et al., 2018; Namirimu et al., 2022). The files ("MG-RAST ID”0.299.screen.passed.fna) contained all the sequences which were passed the quality control steps in MG-RAST were downloaded to calculate the average coverage for all the collected metagenomic datasets using Nonpareil tool (Rodriguez-R and Konstantinidis, 2014). The taxonomical profile was also used to calculate the alpha-diversity using mothur (Schloss et al., 2009). The resulting profiles from MG-RAST were further analyzed using statistical software STAMP (Parks et al., 2014).

Sequences processing, assembly, binning, and annotation

All raw sequencing reads from the triplicates (W1, W2 and W3) were assembled into contigs employing IDBA-UD algorithm with the optimized kmer 98 (Peng et al., 2012). Metagenomic binning was then conducted for assemblies longer than 2,500 bp using MetaBAT 2 (Kang et al., 2019). Redundant metagenome-assembled-genomes (MAGs) were subsequently dereplicated using dRep v. 2.3.2 (Olmi et al., 2017) at 99% average nucleotide identity (ANI), and MAGs with the highest quality was selected from each cluster for downstream analysis. Qualities of the MAGs were assessed by CheckM v1.1.2 (Parks et al., 2015). Only MAGs with more than 60% completeness and less than 5% contamination were selected, all the qualified MAGs were imported into anvio v6.2 (Eren et al., 2015) to summary the genomic information of MAGs including abundance. Briefly, metagenomic reads were mapped to contigs using Bowtie2 (Langmead and Salzberg, 2012). The mapping results were converted into sorted and indexed BAM files for each samples (W1, W2 and W3) using samtools (Li et al., 2009). The result file of samtools and MAGs genomes was input to anvio to estimate the abundance and other genomics information for all MAGs.

1 http://metagenomics.anl.gov/
Taxonomic and functional annotation of MAGs

Taxonomy of the MAGs were assigned by multiple approaches. In addition to the taxonomic annotations reported by CheckM, detailed taxonomic classification of the MAGs was determined using GTDB-Tk (Chaumeil et al., 2019) based on the phylogenetically calibrated Genome Taxonomy Database (GTDB). For the interested phylum/class, phylophan (Asnicar et al., 2020) were used to construct phylogenetic tree. As some MAGs cannot get their clear genus information from GTDB or CheckM, the genus level classification of each MAGs was also inferred from the phylogenetic tree. To ascribe functions of the MAGs, coding sequences predicted by Prodigal (Hyatt et al., 2010) were annotated using BlastKOALA against the KEGG database with default parameters (Kanehisa et al., 2016).

Metagenomic fragment recruitment

The distribution of retrieved MAGs was studied via reads recruitment against published metagenomes from SW- and DS-HTVs environments (Supplementary Table S1). Raw reads were downloaded from NCBI-SRA or MG-RAST. The procedure of reads recruitment followed Liu et al. (2022). Briefly, rRNA gene sequences in MAGs were first masked to avoid bias in recruitment results. Recruitments were performed using BLASTN, and hits were filtered with a length cut-off of 50 bp, an identity cut-off of 95%, and an e-value cut-off of 1e−5. Qualified hits were used to compute the RPKG (reads recruited per kilobase of genome per gigabase of metagenome) values, which reflect a normalized abundance of MAGs allowing the comparison across different metagenomes.

Results and discussion

Comparative metagenomic analysis between the sediment and pelagic microbiome in the SW-HTVs

A total of ~40 Gbp unique sequence data was generated for W1, and ~ 5 Gbp for W2 and W3. To eliminate possible impacts of sequencing depth, 5 Gb sequences of W1 was extracted up-loaded to MG-RAST together with the data of W2 and W3. In the MG-RAST pipeline, the three sediment samples (W1, W2 and W3) were analyzed and compared with two previously published metagenomes of pelagic samples, i.e., GS7 and GS4 collected from vent fluid and surface seawater above the vent, respectively (Tang et al., 2013). Taxonomic profile showed that Campylobacteria and Gammaproteobacteria were the dominant class/phylum in all three sediment samples (Figure 1A). Campylobacteria also dominated in vent fluid sample GS7 (Figure 1A), but the compositions of benthic sediment Campylobacteria were apparently different from those in the vent fluid (Figure 1B). Genus *Sulfurovum* was enriched in sediment sample W1, while genera *Nautilia*, *Camylobacter* and *Caminibacter* were greatly enriched in vent fluid sample GS7 (Figure 1B). These results are consistent with findings in previous investigations by 16s rRNA gene (Zhang et al., 2012; Wang et al., 2017). It has been reported that the reduced conditions of vent fluids (high concentration of H2 and other reduced chemicals but out of oxygen) benefited the growth of *Nautilia* which is strictly anaerobic (Nakagawa and Takai, 2014), while the environment in the vent sediments were greatly fluctuated and might facilitate the thriving of facultative aerobic *Sulfurovum* and *Sulfurimonas* (Campbell et al., 2006; Sievert et al., 2008; Yamamoto et al., 2010). Different from the sediment and vent fluid microbiomes, the microbial communities in the surface seawater above vent (sample GS4) were dominated by *Thiimicrospira* of the Gammaproteobacteria (Figures 1A,C). Existing data showed that the genus *Thiimicrospira* mainly contained aerobic, sulfur-oxidizing and mesophilic species, found in hydrothermal environments and sulfide-rich sediment–water interfaces worldwide (Teske, 2009). Comparing with facultative aerobic *Sulfurovum* (Campylobacteria), the Gammaproteobacterial autotrophs (such as *Thiimicrospira*) preferred higher concentrations of dissolved oxygen (Teske, 2009; Dick, 2019). Overall, these results indicated that the composition of the microbial communities in different habitats around the Kueishan Island SW-HTV were greatly controlled by the prevailing redox environments in the vent fluid (GS7), the sediment (W) and the surface water (GS4).

The functional gene profiles also reflected the distinctive patterns related with oxygen availability among the three biomes. In total, about 53–57% of the identified genes were annotated for the analyzed sediment samples. Based on the annotated results of SEED subsystem, the major SEED categories (Supplementary Figures S1–S3), the key genes involving in energy metabolism (Figure 2) and the most abundant genes (Figure 3; Supplementary Figure S4) were further analyzed. Being consistent with the dominance of facultative aerobic *Sulfurovum* in the sediments (Figure 1C), the metagenomes from vent sediments showed genetic features for both anaerobic and aerobic metabolisms. On the one hand, the sediment metagenomes contained more genes related with anaerobic processes than in the surface water (GS4): the category “electron donating/accepting reaction” (level 2) was significantly distinct between the sediment sample W1 and pelagic sample GS4 (Supplementary Figure S2). Their subgroups “anaerobic respiratory reductases” (level 3) was found to be significantly higher in W1 than GS4 (Supplementary Figure S3A). Moreover, the genes related with anaerobic respiration, e.g., *napAB* which encode dissimilatory nitrate reductase and hydrogenase, were higher in sediment samples than GS4 (Figure 2). On the other hand, the sediment metagenomes contained more genes related to aerobic processes than those in the vent fluids. Diverse aerobic processes were identified from the sediment samples, including genes of *Sox*
(sulfur-oxidation) system (soxABCDXYZ encoded), sulfide oxidation (fccB encoded), and cbb3-type O_2 metabolism (ccoNOQP encoded). The relative abundances of genes involved in the above processes were much higher in sediment metagenomes than in vent fluid sample GS7 (Figure 2). In addition, the sediment metagenomes exhibited the highest ratio of genes involving in dissimilatory sulfate reduction/oxidation (such as dsrAB, sat), nitrogenase (nifDK and nifH) and denitrification (nirKS encoding nitrite reductase, norBC encoding nitric oxide reductase and norZ) among the three biomes compared (sediments, vent fluid, and surface water; Figure 2). As a result, the genes encoding both aerobic and anaerobic respiration, including O_2/nitrate reduction, sulfur oxidation, and H_2 oxidation, were retrieved from the sediment samples, indicating variable environments in the tested samples (W1, W2 and W3).

Genes related with “resistance to antibiotics and toxic compounds” (level 2; Supplementary Figure S2) were greatly enriched in the vent sediments than any of the pelagic samples. In the comparison of 10 most abundant genes among vents, three genes of “resistance to antibiotics and toxic compounds” (level 2) were preferentially enriched in SW- and DS-HTVs’ sediment metagenomes (Figure 3), including “cation efflux system protein CusA,” “copper-translocating P-type ATPase” and “acriflavine resistance protein.” The former two genes implicated the role of copper homeostasis in the sediments, while the third gene encodes a kind of multidrug resistance efflux system to protect bacteria by decreasing the intracellular concentration of acriflavine, other dyes and sodium dodecylsulfate (Nakamura, 1968). Acriflavine was used as typical antiseptic for freshwater fish as well as marine fish. The higher ratio of resistant genes of toxic compound and aquaculture drugs may indicate the accumulation of related chemicals in the sediments, which might be sourced from the hydrothermal activities (such as trace metal) or anthropogenic sources (such as aquaculture around the SW-HTVs). Fluid chemistry characteristics present both opportunities and lethal challenges to hydrothermal vent organisms. As the high temperature hydrothermal fluids were rich in heavy metal and reduced chemicals, a common characteristic of vent organisms is their ability to take advantage of the carbon and energy sources provided by hydrothermal processes while evolving mechanisms to counteract the toxic effects of high concentrations of heavy metals or short-term exposure to lethal high temperatures (Kelley et al., 2002). However, in a comparative metagenomics among mangrove, ocean, forest, grassland and agricultural soil samples, acriflavine resistance proteins were found to be highly enriched in all the samples.

![Figure 1](image-url)
irrespective of ecosystem types or anthropogenic activities (Imchen et al., 2018). The exact role of "acriflavine resistance protein" in SW- and DS-HTVs still needs more studies.

Although the three studied sediment samples and two published pelagic samples may not have been taken from the exactly same vent site, the sampling sites were close to each other as they were all located in the eastern vent area of the Kueishan Island with an area of only 0.5 km2 (Chen et al., 2005b). Furthermore, the sampling sites were all with moderate temperature (49 ~ 30°C), low pH (4.8 ~ 5.9) and shallow depth (0 ~ 21 m; Tang et al., 2013; Wang et al., 2015). Moreover, the different vents were not isolated from each other, and the vent plumes could affect the nearby vents (Han et al., 2014). All of these facts support the validity of the metagenomic comparison conducted in this study. However, our sediment samples were taken in different years from the pelagic samples, and the possible temporal variations might cause uncertainties in the comparison. Nevertheless, our preliminary study presented the first metagenomic comparisons between sediment and pelagic biomes in SW-HTVs systems, lays a foundation for future studies.

Genomes of the dominant taxa revealed the significance of sulfur oxidation in the SW-HTV sediments

To further reveal the metabolic processes and the ecological roles of the microorganisms in the SW-HTV sediments, genomes of the dominant microbial taxa were retrieved from the metagenomes via binning. A total of 68 MAGs (> 60% completeness and < 5% contaminations) were retrieved from all the data of three sediment samples, including. 49 from W1, 8 from W2, and 12 from W3 (Figure 4). Within them, 27 MAGs were high quality with more than 90% completeness according to the standards mentioned in Bowers et al. (2017). All the 68 MAGs were accounting for 21.68, 31.01 and 21.60% of all nucleotides in the three metagenomes, respectively. Information of the MAGs, including taxonomy, abundance, completeness, was included in Figure 4. In this study, MAG abundance was defined as its mean coverage divided by that sample's overall mean coverage. MAGs with high abundance values were more represented in that sample than those with low abundance values. A total number of 20 "abundant MAGs" (abundance value >1) were identified, and they
were belonging to phyla Desulfobulbia (bin10037 and bin100106), Campylobacteria (bin20011, bin1004, bin10034, bin30019 and bin10083), Calditrichia (bin100119 and bin100120), Bacteroidia (bin10020 and 100,117), Acidimicrobiia (bin10092) and class Gammaproteobacteria (bin10019, bin10026, bin30013, bin3008 and bin 20,021).

Functional annotation revealed that genes related with sulfur or sulfide oxidation processes (soxABCDZY, dsrAB, aprAB, sap or fccB) were found in nearly all MAGs of Gammaproteobacteria and Campylobacteria (Figure 5), suggesting the significance of sulfur oxidation in the SW-HTV sediments. Two different modes of sulfur oxidation have been previously proposed for bacteria. The first mode involved the reverse dissimilatory sulfite reductase (rDSR, dsrAB gene), and the product sulfite is subsequently oxidized to sulfate by adenosine 5′-phosphosulfate (APS) reductase (apxAB encoded) with sulfate adenylyltransferase (sat encoded), or sulfite:acceptor oxidoreductase (sor encoded; Grimm et al., 2010). The second mode was the sulfur oxidation via the Sox system, which involves seven sox structural genes coding for four periplasmic proteins, SoxA, SoxY, SoxB, and SoxC, responsible for thiosulfate-, sulfite-, sulfate-, and hydrogen sulfide-dependent cytochrome c reduction (Friedrich et al., 2001, 2005). By these metabolic features, the sulfur-oxidizing bacteria (SOB) can oxidize reduced sulfur compounds (such as sulfide, sulfur, thiosulfide) to intermediate sulfur species (sulfite and thiosulfate) or completely to sulfate.

In our study, the 16 Campylobacterial MAGs were classified into five genera (Sulfurovum, Sulfurimonas, Sulfuricurvum, Sulfurospirillum, and Nitratifractor; Supplementary Figure S5). All the retrieved Campylobacterial MAGs harbored or partially harbored genes encoding the Sox system (soxABCDZY) but not the reverse dissimilatory sulfate reductase (rDSR, dsrAB gene), and the bacteria suggesting their potential ability to fix CO2 through rTCA cycle (aclB and porA genes; Figure 5). Genes encoding fructose-1,6-bisphosphatase and phosphoenolpyruvate carboxykinase for gluconeogenesis were also annotated in these MAGs (Supplementary Table S2), suggesting that the fixed carbon can be stored as glucose. Similar processes have been reported in previous studies on deep-sea lineages of Campylobacteria (Waite et al., 2017). Among the Campylobacterial lineages, the genus

FIGURE 3
The 10 most abundant functions in our data and collected metagenomic datasets form both SW- and DS-HTVs. The dendrogram for the samples (the row) and the function (the column) were cluster by furthest neighbor and average neighbor (UPGMA) method, respectively. The name of level 2 SEED category is also listed for the functional genes.

Level 2 SEED category
- NULL of Nucleotidases and Nucleotides
- Protein Metabolism
- Protein Metabolism
- Purines
- Electron donating reactions
- NULL of iron acquisition and metabolism
- NULL of Nucleotides and Nucleotides
- NULL of RNA Metabolism
- Folate and porphyrins
- NULL of Virulence metabolism
- Aromatic amino acids and derivatives
- Aromatic amino acids and derivatives
- NULL of Chaperone-based substructures
- NULL of RNA Metabolism
- NULL of RNA Metabolism
- Alanine, serine, and glycine
- NULL of DNA Metabolism
- NULL of DNA Metabolism
- DNA repair
- Folate and porphyrins
- NULL of Virulence metabolism
- Hypothetical proteins possibly functionally linked with AasG-6DNA
- One-carbon Metabolism
- Protein degradation
- Protein export
- NULL of Chaperone-based substructures
- Electron donating reactions
- DNA repair
- Protein biosynthesis
- NULL of Chaperone-based substructures
- Cell division
- Protein secretion system, Type VI
- Protein biosynthesis
- NULL of Chaperone-based substructures
- Transcription
- NULL of Chaperone-based substructures
- NULL of Nitrogen Metabolism
- NULL of Carboxylase and Cofactor Cycle
- Resistance to antibiotics and toxic compounds
- Resistance to antibiotics and toxic compounds
- Copper-reducing Pertibacteraceae
- Respiration
- Phagoc, Phagopy
Sulfurovum was identified as the most dominant taxa, reflected by either the taxonomic profile (Figure 1) or MAG abundance (Figure 4; Supplementary Table S3). Although gene sqr was contained in all Campylobacterial MAGs, only MAGs of the Sulfurovum (bin20011, bin1004, bin30019, bin10034, bin30011, bin2006, and bin1001, Figure 5) were found to contain the fcc gene (Figure 5). Both the membrane-bound Sqr and periplasmic Fcc enzymes catalyzed sulfide oxidation to form S\(^0\). However, Fcc was sensitive for the H\(_2\)S concentration since its downstream cytochrome c oxidase (Cco) enzyme was sensitive to HS\(^-\) even at moderate sulfide concentrations (Collman et al., 2009). On the contrary, Sqr was not subjected to sulfide inhibition because it used the non-cytochrome system – the quinone pool for electron transfer (Brune, 1989). The presence of both Fcc and Sqr in Sulfurovum enhanced their ability to use sulfide, especially under the conditions of low H\(_2\)S concentration and the presence of O\(_2\). Such metabolic features would provide survival advantages for Sulfurovum species in the variable environmental conditions of the vent sediments.

Most of the retrieved Gammaproteobacterial MAGs harbored the genes encoding incomplete Sox system lacking of soxCD (encoding the sulfur dehydrogenase). These Gammaproteobacterial MAGs also contained gene sets encoding the rDsr pathway, an additional pathway for sulfur oxidation. Moreover, the Gammaproteobacteria in the vent sediments showed the potential for CO\(_2\) fixation via the CBB pathway (rbcLS; Figure 5). These genomic features were consistent with previous reports of chemotrophic and phototrophic sulfur-oxidizing Gammaproteobacteria (Yamamoto and Takai, 2011). The rDsr enzyme was homologous to, but phylogenetically clearly distinguishable from the dissimilatory sulfite reductase catalysing the energy-conserving reduction of sulfite to sulfide in sulfite/sulfate-reducing prokaryotes (SRP). The paralogous genes dsrA and dsrB, encoding its \(\alpha\) and \(\beta\)-subunits respectively, were used as phylogenetic markers for SOB capable of sulfur storage (intracellular sulfur globules). In the phylogenetic tree of dsrAB gene, Gammaproteobacterial MAGs formed a highly supported monophyletic branch with other SOB, separating from typical sulfite/sulfate-reducing prokaryotes (SRP; Figure 6). Among the other retrieved MAGs, those from the phyla Desulfobacterota (bin10051, bin10054 and bin30021) and Acidobacteria (bin100100 and bin100110; Figure 6) also harbored the dsrAB genes (Figure 5), but they clustered with the SRP in the phylogenetic tree (Figure 6), indicating their role in sulfate reduction not sulfur oxidation. Obviously higher abundance of Gammaproteobacterial SOB containing rDsr pathway (as high as 9.81,
Supplementary Table S3) than MAGs of SRP (abundance lower than the mean of community at value <0.6; Supplementary Table S3) suggested the predominance of sulfur oxidation process in the vents’ sediments of Kueishan Island.

The potential to use simple organic carbon in chemolithotrophic campylobacteria

To date, nearly all of the existing Campylobacterial isolates from deep-sea hydrothermal vents have been described as chemolithoautotrophs (Campbell et al., 2006), fixing carbon via the rTCA cycle (Hügler et al., 2005). Except dissimilatory oxidizing inorganic sulfur compounds (sulfide, sulfur or thiosulfate), they gain energy by oxidizing hydrogen/formate (Waite et al., 2017) using hydrogenase and formate dehydrogenase ($fdhF$ encoded). Some other simple organic substances such as acetate were also reported to be used in host-associated isolates of Campylobacteria (Campbell et al., 2006), or from the genomes of MAGs in sulfidic hydrocarbon-rich aquifer (Keller et al., 2015), and co-culture Campylobacterial groups of benzene-degrading microbial community (Starke et al., 2016), but were seldom reported in the free living microbes of vent area.

Our result showed for the first time that the Campylobacteria in SW-HTV sediments may have the potential to use acetate and some simple organic carbon, as genes related with the metabolism of acetate and some C4 organic carbon was found in the genomes of our Campylobacterial MAGs (Figure 5; Supplementary Table S2). Firstly, acetate may be absorbed and used by the cells. Acetate kinase (Ack, EC 2.7.2.1, encoded by ack gene) and phosphate acetyltransferase (Pta, EC 2.3.1.8, encoded by pta gene) presented in nearly all MAGs of Sulfurovum and most of other Campylobacteria MAGs (Figure 5). The Ack-Pta pathway not only catalyzes the conversion of acetyl-CoA and ADP to acetate and ATP in most facultative and strictly anaerobic
microbes, but also reversibly catalyzes the activation of acetate to acetyl-CoA as a first step in the assimilation or dissimilation of acetate in some aerobic and anaerobic bacteria (Preston et al., 1989). The Ack-Pta pathway was able to dissipilate high concentrations of acetate (Kumari et al., 1995), and it also allowed the bacteria to switch from acetate production to consumption rapidly. The presence of actP gene encoding acetate permease for acetate absorbing and enhancing the possibility of using extracellular acetate in Campylobacteria, was found in the nearly complete MAGs bin30019 (completeness = 98%) of Sulfurovum (data not shown). Secondly, genes related with C4-dicarboxylates sensing and sugar transport was annotated from the MAGs of Campylobacteria. In our study, dctB and dctD were detected in Campylobacterota-like MAGs (Supplementary Table S2), which were the key genes encoding the C4-dicarboxylate transport system (Dct), a regulatory system to monitor the external concentration of C4-dicarboxylic molecules (Janausch et al., 2002). C4-dicarboxylates (fumarate, succinate, malate, oxaloacetate, aspartate, etc.) were intermediates of central metabolism in most living organisms, serving as important carbon and energy sources for growth. Besides, fumarate also can be used as electron acceptor to performed oxidative phosphorylation with H2 or formate as electron donors, as revealed from model organism Wolinella succinogenes of phylum Campylobacterota (Kröger et al., 2002). Given the great importance of the C4 dicarboxylates, the presence of Dct system would undoubtably benefit the survival of Campylobacteria in nutrient-limited environments. In addition, genes encoding multiple sugar transport system ATP-binding protein (K10112) and phospholipid/cholesterol/gamma-HCH transport system mlaDEF (K02065, K02066 and K02067) were annotated from genomes of genus Nitratrificator of Campylobacterota (Supplementary Table S2), indicating the ability to uptake of different types of organic compounds such as disaccharides and/or oligosaccharides as well as lipids. All of these results showed the potential of Campylobacteria to perform heterotrophic metabolisms. Till now, nearly all of the existing Campylobacteria isolates from hydrothermal vents were chemolithotrophic (Campbell et al., 2006), and the mechanisms and ecological implications of their potentials for heterotrophic metabolism in

![Phylogenetic tree of dsrAB amino acid sequences from all related MAGs](https://example.com/tree.png)
SW-HTV sediments may need to be further explored in future studies.

Complex relationships among diverse bacteria involving in sulfur metabolism

The SW-HTV sediments we analyzed in this study were rich in sulfur with visible sulfur globules, as seen in our previous study (Wang et al., 2017). Elemental sulfur is widely distributed in the vent sediments of Kueishan island, represented by the extensive distribution of sulfur chimney, sulfur sand etc. (Zeng et al., 2011). However, the natural orthorhombic sulfur (formed abiotically, most in the form of S8) was hard to be directly used by microbes due to their hydrophobic nature and low aqueous solubility. In contrast, the biologically produced elemental sulfur is hydrophilic and was recognized as the “microbiologically preferred form” (Prange, 2008). For example, chainlike type R-Sn−R with R being H, Cl, Br, SO3− and/or organic group were usually found in phototrophs (Kleinjan et al., 2003). For chemotrophs, soluble extracellular S0 coating with organic envelopes rich in amide and carboxylic groups were also found in Sulfuricurvum kuijense (Campylobacteria; Cron et al., 2021). In our study, potential SOBs, i.e., Campylobacteria and Gammaproteobacteria were found to be the dominant bacterial taxa in the vent sediments analyzed, and their genomes harbored multiple types of energy-yielding pathways (Figure 5) allowing the oxidation of different forms of sulfur compounds, with different end products, depending on the redox conditions in the surrounding environments (Figure 7). Particularly, the bio-active element sulfur can be formed under incomplete oxidation of sulfide when the availability of electron acceptor such as oxygen and nitrate is limited, while complete sulfide oxidation to sulphate may be occurred when oxygen or nitrate is sufficient (Lavik et al., 2009).

Except the potential sulfur oxidizing Campylobacteria and Gammaproteobacteria, MAGs of phylum Desulfobacterota were also retrieved in high abundance, such as bin100106 (abundance 1.54, completeness 85.25%) and bin10037 (abundance 4.76, completeness 83.04%; Supplementary Figure S3; Supplementary Table S3). These abundant MAGs were affiliated with genus Desulfurivibrio of family Desulfurivibrionaceae (Supplementary Figure S6). Previous study showed that bacteria from genus Desulfurivibrio were incapable of driving sulfate or sulfite reduction, but can perform sulfur disproportionation utilizing sulfur compounds as electron acceptor and short-chain fatty acids or hydrogen as electron donors (Sorokin et al., 2008). The high abundance of the sulfur disproportionation bacteria (SDB) affiliated MAGs indicated sufficient substrate for their growth. As the natural orthorhombic sulfur own low aqueous solubility, SDB can use the intermediate products (biotic sulfur) formed by SOB under partial oxidation when the electron acceptor such as oxygen and nitrate is limited (Figure 7). It was also reported that chemoautotrophic strain Sulforimonas denitrificans (Campylobacteria) was able to access cyclooctasulfur (S8) with a metabolic feature not yet demonstrated (Pjevac et al., 2014). As a result, SDB may also benefit from Campylobacteria during its activating orthorhombic sulfur (Figure 7).

Based on the physical reports of phototrophic SOB, the complete Sox pathway results in sulfate as the sole end product, whereas the incomplete pathway (with SoxCD absent) results in either intra- (Sakurai et al., 2010) or extracellular (Gregersen et al., 2011) accumulation of S8. However, it was found that Sox system gene clusters split into two major clusters in chemoautotrophic Campylobacteria (Nakagawa et al., 2007). Enzymatic activity measurements and partial protein purification indicated that the Sox enzyme system was constitutively expressed when H2 or thiosulfate as the electron donor (Yamamoto et al., 2010). As most knowledge of sulfur oxidizing process were originated and reviewed from the studies on phototrophic SOB (Frigaard and Dahl, 2008), further study on the process of sulfur oxidation need to be noticed for chemolithotrophic SOB. The detection of sulfur oxidation process under diver electron donor (H2, S8, etc.) with different concentration of electron donors should give deeper studies by transcriptomics or proteomics. Furthermore, the lack of pure cultures of the dominant sulfur oxidizers in deep-sea and shallow-water vents limited the understanding of the mechanisms. As a result, isolate SOB from vent system is needed as the first step.

Comparative metagenomics analysis between DS-HTVs and SW-HEVs

We compared our dataset to a collection of metagenomes derived from the sediments, epibiont, water and chimney biofilm of DS-HTVs (Supplementary Table S1). As shown by the Nonpareil curve (Supplementary Figure S7), the coverage of our samples was as high as 92% when the sequences number reached 50 Gb (Supplementary Figure S7; Supplementary Table S4). Majority of the DS-HTV’s sediment samples (except MG35 sediment sample) had higher Nonpareil diversity than the SW-HTV’s sediments analyzed in this study (Supplementary Figure S7; Supplementary Table S4), while MG35 had comparable diversity value with ours. The sediment samples of both DS- and SW-HTVs had Shannon diversity above 5.28 except MG35, while the epibionts and GS7 had lower Shannon index (below 3.72; Supplementary Figure S8). Bacteria dominated in all of the compared metagenomes (Supplementary Table S1). Campylobacteria was the most abundant bacterial phylum in most datasets, with higher relative abundance in GS7 of SW-HTVs, epibiont samples and sediment sample MG35 of DS-HTVs, following by the water sample from “Hulk” DS-HTVs and sediment samples from SW-HTVs (Supplementary Figure S9A). At the genus level, Sulforuvum was the most abundant Campylobacteria group in SW-HTV sediment samples, whose relative abundance was comparable with the epibiont samples, but lower than sediment sample MG35 in DS-HTVs (Supplementary Figures S9B, S10). The dominance of
Sulfurovum in MG35, W1, W2, W3 and epibiont samples (Supplementary Figure S10B) of oxic mixing zone, and with high rate of H₂S and CO₂ indicate the special niche for these bacteria (Cerqueira et al., 2018). For the reconstructed MAGs, their distribution among the collected datasets was shown in Supplementary Figure S11. Most of the MAGs had much higher RPKG value in the SW-HTV sediment samples analyzed in this study, suggesting an endemic distribution of the dominant bacterial species. The heatmap of top 10 abundant functions shown the acriflavin resistance protein and copper homeostasis proteins (including CusA and Copper translocating P-type ATPase) were abundant in the sediments of both DS- and SW-HTVs (Figure 3). The resistance of acriflavin was highest in W1, W2 W3 and MG35. The copper homeostasis proteins were higher in GTV1902, GTV1904, GTV1906 and RB35 of DS-HTVs sediments biome than the SW-HTVs, but MG35 of DS-HTVs sediments own comparable ratio with SW-HTVs sediments.

Conclusion

In this study, we report for the first time the sediment microbial community functional potential of a shallow water hydrothermal vent off Kueishan Island. Comparative metagenomic analysis with two published pelagic datasets of the vent revealed the different microbial taxa and functional potentials of biomes in the sediments and the water column above the vent. The microbial community structure was largely controlled by the prevailing redox conditions, with the dominance of facultative aerobic Sulfurovum (Campylobacteria) in the sediments, as oppose to strictly anaerobic Nautilia in the vent fluid and aerobic Thiomicrospira in seawater above the vent. Chemolithotrophs, implicated in carbon fixation, dissimilatory sulfur oxidation/reducing, dissimilatory nitrate reduction, and hydrogen oxidation were detected in SW-HTVs as their deep-sea cousin. In addition, the dominant MAGs of sulfur-disproportionation bacteria

![Schematic diagram showing relationship of the abundant MAGs involving in the sulfur cycle.](image)

SOB represented by Gammaproteobacteria

SOB represented by Campylobacteria

SDB represented by genus *Desulfurivibrio* of Desulfobacterota

FIGURE 7

Schematic diagram showing relationship of the abundant MAGs involving in the sulfur cycle. Although both Gammaproteobacterial and Campylobacterial SOB can oxidize various sulfur form (H₂S, Sn₂⁻, S₂O₃²⁻, etc.), their mechanism and processes were different. Gammaproteobacteria (colored with yellow) can form intracellular sulfur globules and use reverse dissimilatory sulfite reductase (encoded by dsrAB gene) to form oxidative sulfate, while Campylobacteria (colored with blue) use the Sox multi-enzymes to form sulfate, or partially oxidized sulfur compounds (POSCs) when the availability of electron acceptor such as oxygen and nitrate was limited. The formed POSCs or soluble extracellular S²⁻ activated by some kind of Campylobacteria can offer growth for SDB (colored with red). SOB: sulfur-oxidizing bacteria; SDB: sulfur disproportionation bacteria.
illustrated the diverse energy-yielding processes related with element sulfur in SW-HTVs. As element sulfur was the most important precipitate from fluids in SH-HTVs of Kueishan Island, the special characteristics to use element sulfur, or interactive cooperation with others to do so, may be an advantage to survive for the microbes there. The details of the sulfur related process could be followed in the future. Furthermore, we also detected the potential to use simple organic carbon from the genomes of chemolithotrophic Campylobacterial MAGs.

Data availability statement

The data presented in the study are deposited in the NCBI repository, accession number PRJNA851985.

Author contributions

LW, RL, and JF designed the expedition and sampling scheme. LW, XC, and MS conducted experimental procedures including DNA extraction and PCR amplification. LW, ZS, and YG performed bioinformatical analyses including sequence processing, metagenomic comparison, binning, and phylogenetic analysis. LW and RL analyzed and summarized the data and wrote the article. J-SH managed the sampling. JC made comments and suggestions to the text. All authors contributed to the article and approved the submitted version.

Funding

This work was supported by the National Natural Science Foundation of China (grant nos. 41906134 and 91951210), the special developmental project of Shanghai Ocean University (grant no. A2-2006-00-200217), and a direct grant for research from the research committee of The Chinese University of Hong Kong.

Acknowledgments

We thank students and technicians in J-SH laboratory of National Taiwan Ocean University for their assistance with sample collection. We are grateful to Chongkimg Wong of Chinese University of Hong Kong for his advice and support in the progressing of this study. We also thank Shioua Peng and Liangbiao Chen for their kindly supports in the beginning of this study. We thank all the reviewers for their suggestions and advice to improve the manuscript.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmicb.2022.992034/full#supplementary-material

References

Anderson, R. E., Sogin, M. L., and Baross, J. A. (2014). Evolutionary strategies of viruses, bacteria and archaea in hydrothermal vent ecosystems revealed through metagenomics. PLoS One 9:e109696. doi: 10.1371/journal.pone.0109696.

Asnicar, F., Thomas, A. M., Beghini, F., Mengoni, C., Manara, S., Manghi, P., et al. (2020). Precise phylogenetic analysis of microbial isolates and genomes from metagenomes using PhyloPhlAn 3.0. Nat. Commun. 11:2500. doi: 10.1038/s41467-020-16366-7.

Bowers, R. M., Kyripides, N. C., Stepanauskas, R., Harmon-Smith, M., Doud, D., Reddy, T. B. K., et al. (2017). Minimum information about a single amplified genome metagenomes using PhyloPhlAn 3.0. Nat. Commun. 11:2500. doi: 10.1038/s41467-020-16366-7.

Bowers, R. M., Kyripides, N. C., Stepanauskas, R., Harmon-Smith, M., Doud, D., Reddy, T. B. K., et al. (2017). Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat. Biotechnol. 35, 725–731. doi: 10.1038/nbt.3893.

Brazelton, W., and Baross, J. (2009). Abundant transposases encoded by the metagenome of a hydrothermal chimney biofilm. ISME J. 3, 1420–1424. doi: 10.1038/ismej.2009.79.

Brune, D. C. (1989). Sulfur oxidation by phototrophic bacteria. Biochim. Biophys. Acta 975, 189–221. doi: 10.1016/0005-2728(89)90253-8.

Campbell, B. J., Engel, A. S., Porter, M. L., and Takai, K. (2006). The versatile epsilon-proteobacteria: key players in sulphidic habitats. Nat. Rev. Microbiol. 4, 458–468. doi: 10.1038/nrmicro1414.

Cerqueira, T., Barroso, C., Proufe, H., Egas, C., and Bettencourt, R. (2018). Metagenomic signatures of microbial communities in deep-sea hydrothermal sediments of Azores vent fields. Microb. Ecol. 76, 387–403. doi: 10.1007/s00248-018-1144-x.

Chaumeil, P. A., Mussig, A. J., Hugenholtz, P., and Parks, D. H. (2019). GTDB-Tk: a toolkit to classify genomes with the genome taxonomy database. Bioinformatics 36, 1925–1927. doi: 10.1093/bioinformatics/btz848.

Chen, C. T. A., Wang, B. Y., Huang, J. F., Lou, J. Y., Kuo, F. W., Tu, Y. Y., et al. (2005b). Investigation into extremely acidic hydrothermal fluids off Kueishan Tao, Taiwan, China. Acta Oceanol. Sin. 24, 125–133.

Chen, C. T. A., Zeng, Z., Kuo, F. W., Yang, T. F., Wang, B.-J., and Tu, Y.-Y. (2005a). Tide-influenced acidic hydrothermal system offshore NE Taiwan. Chem. Geol. 224, 69–81. doi: 10.1016/j.chemgeo.2005.07.022.

Collman, J. P., Ghosh, S., Dey, A., and Decréau, R. A. (2009). Using a functional enzyme model to understand the chemistry behind hydrogen sulﬁde induced hibernation. Proc. Natl. Acad. Sci. U. S. A. 106, 22090–22095. doi: 10.1073/pnas.0904082106.

Cron, B., Macalady, J. L., and Cosmidis, J. (2021). Organic stabilization of extracellular elemental sulfur in a sulfurovum-rich biofilm: a new role for
extracellular polymeric substances? Front. Microbiol. 1:720101. doi: 10.3389/fmicb.2021.720101

Dahl, C., Engels, S., Pott-Sperling, A. S., Schulte, A., Sander, J., Lubbe, Y., et al. (2005). Novel genes of the dir gene cluster and evidence for close interaction of Dur proteins during sulfur oxidation in the phototrophic sulfur bacterium, Allochromatium vinosum. J. Bacteriol. 187, 1392–1404. doi: 10.1128/JB.187.9.1392-1404.2005

Dick, G. J. (2019). The microbiomes of deep-sea hydrothermal vents: distributed globally, shaped locally. Nat. Rev. Microbiol. 17, 271–283. doi: 10.1038/s41579-019-0160-2

Eren, A. M., Eisen, O. C., Quince, C., Vinjes, J. H., Morrison, H. G., Sogin, M. L., et al. (2015). Anvi: an advanced analysis and visualization platform for 'omics data. Peer. 3:e1319. doi: 10.7717/peer.1319

Friedrich, C. G., Bardischewsky, F., Rother, D., and Quentein, A. J. (2005). Prokaryotic sulfur oxidation. Curr. Opin. Microbiol. 8, 253–259. doi: 10.1016/j.mib.2005.04.005

Friedrich, C. G., Rother, D., Bardischewsky, F., Quentein, A., and Fischer, J. (2001). Oxidation of reduced inorganic sulfur compounds by bacteria: emergence of a common mechanism? Appl. Environ. Microbiol. 67, 2873–2882. doi: 10.1128/AEM.67.7.2873-2882.2001

Frigaard, N.-U., and Dahl, C. (2008). "Sulfur metabolism in phototrophic sulfur bacteria," in Advances in microbiology. Ed. R. Koeppe (Cham: Springer), 103–200.

Giovannoni, D., and Price, R. E. (1997). "Marine shallow-water hydrothermal vents: microbiology," in Encyclopedia of ocean sciences. Eds. J. K. Cochran, H. J. Bokuniewicz and P. L. Yager. Third ed (Oxford: Academic Press), 353–363.

Gomez-Alvarez, V., Tral, T. K., and Schmidt, T. M. (2009). Systematic artifacts in metagenomes from diverse microbial communities. ISME J. 3, 1314–1317. doi: 10.1038/isemj.2009.72

Gregersen, L., Bryant, D., and Frigaard, N.-U. (2011). Mechanisms and evolution of oxidative sulfur metabolism in green sulfur bacteria. Front. Microbiol. 2:116. doi: 10.3389/fmicb.2011.00116

Grümmer, D., Dobler, N., and Dahl, C. (2010). Regulation of dir genes encoding proteins responsible for the oxidation of stored sulfur in Allochromatium vinosum. Microbiology 156, 764–773. doi: 10.1099/mic.0.044645-0

Grymzycki, J. J., Murray, A. E., Campbell, B. J., Kaplarevic, M., Gao, G. R., and Grzymski, J. J., Murray, A. E., Campbell, B. J., Kaplarevic, M., Gao, G. R., and Grzymski, J. J. (2010). Regulation of dsr genes encoding reverse dissimilatory sulfite reductase as phylogenetic marker for a subgroup of sulfur-oxidizing prokaryotes. Environ. Microbiol. 11, 289–299. doi: 10.1111/j.1462-2980.2008.01760.x

Hieltjes, P. D. V., Pjevac, P., Kamyshny, A. Jr., Dyksma, S., and Mußmann, M. (2014). Microbial community structure and functional potential of deep-sea sediments on the column of a shallow-water hydrothermal ecosystem. Front. Microbiol. 9:2718. doi: 10.3389/fmicb.2018.02718

Liu, C. C. (1995). The Ilan plain and the southwestern extending Okinawa trough. J. Geol. Soc. China. 38, 229–242.

Lee, C. (2008). Metagenome analysis of an extreme microbial symbiosis reveals insights into emergence of pathogens. PLoS Comput. Biol. 4, e1000116. doi: 10.1371/journal.pcbi.1000116

Liu, C. C. (1995). The Ilan plain and the southwestern extending Okinawa trough. J. Geol. Soc. China. 38, 229–242.

Liu, R., Wei, X., Song, W., Wang, L., Cao, J., Wu, J., et al. (2022). Novel Chlororflexi genomes from the deepest ocean reveal metabolic strategies for the adaption to deep-sea habitats. Microbiome. 10:75. doi: 10.1186/s41612-022-02163-6

Loy, A., Duller, S., Baranyi, C., Mussmann, M., Ott, J., Sharon, I., et al. (2009). Reverse dissimilatory sulfite reduce as phylogenetic marker for a subgroup of sulfur-oxidizing prokaryotes. Environ. Microbiol. 11, 289–299. doi: 10.1111/j.1462-2980.2008.01760.x

Meier, D. V., Pjevac, P., Bach, W., Houzéard, S., Girsiguis, F. R., Vidoudez, C., et al. (2017). Niche partitioning of diverse sulfur-oxidizing bacteria at hydrothermal vents. ISME J. 11, 1545–1558. doi: 10.1038/isemj.2017.37

Meyer, F., Paarmann, D., Souza, M., Olson, R., Glass, E. M., Kubal, M., et al. (2008). The metagenomics RAST server – a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics. 9:386. doi: 10.1186/1471-2105-9-386

Nakagawa, S., and Takai, K. (2008). Deep-sea vent chemosulfatobacteria: diversity, biochemistry and ecological significance. FEMS Microbiol. Ecol. 65, 1–14. doi: 10.1111/j.1574-6941.2008.00502.x

Nakagawa, S., and Takai, K. (2014). "The family Nautiliacese: the genera Canimonibacter, Lebetimonas, and Nautilia," in The prokaryotes: Deltaproteobacteria and Epsilonproteobacteria. Eds. E. Rosenberg, E. F. DeLong, S. Lory, E. Stackebrandt and F. Thompson (Berlin; Heidelberg: Springer Berlin Heidelberg), 393–399

Nakagawa, S., Takai, Y., Shimamura, S., Reysenbach, A. L., Takai, K., and Horikoshi, K. (2007). Deep-sea vent epsilon-proteobacterial genomes provide insights into emergence of pathogens. Proc. Natl. Acad. Sci. U. S. A. 104, 12146–12150. doi: 10.1073/pnas.0700768104

Nakamura, H. (1968). Genetic determination of resistance to acriflavine, phenethyl alcohol, and 2,3-dichloroacetic acid in Escherichia coli. J. Bacteriol. 96, 987–996. doi: 10.1128/jb.96.5.987-996.1968

Namirumit, T., Kim, Y. J., Park, M. J., Lim, D., Lee, J. H., and Kwon, K. K. (2022). Microbial community structure and functional potential of deep-sea sediments on low activity hydrothermal area in the central Indian ridge. Front. Mar. Sci. 9:784807. doi: 10.3389/fmars.2022.784807

Olm, M. R., Brown, C. T., Brooks, B., and Banfield, J. F. (2017). dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 11, 2864–2868. doi: 10.1038/ismej.2017.126

Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P., and Tyson, G. W. (2015). CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055. doi: 10.1101/ gr.186672.114

Parks, D. H., Tyson, G. W., Hugenholtz, P., and Beiko, R. G. (2014). STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics. 30, 3123–3124. doi: 10.1093/bioinformatics/btu494

Peng, Y., Leung, H. C., Liu, S. M., and Chin, F. Y. (2012). BDIA-UDA: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics. 28, 1420–1428. doi: 10.1093/bioinformatics/bts174

Pjevac, P., Kamysny, A. Jr., Dyksma, S., and Mußmann, M. (2014). Microbial consumption of zero-valence sulfur in marine benthic habitats. Environ. Microbiol. 16, 3416–3430. doi: 10.1111/1462-9902.12410
Prange, P. (2008). "Speciation analysis of microbiologically produced sulfur by X-ray absorption near edge structure spectroscopy," in Microbial sulfur metabolism. eds. C. Dahl and C. G. Friedrich (Berlin: Springer Berlin Heidelberg), 259–272.

Preston, G. G., Zeiher, C., Wall, J. D., and Emerich, D. W. (1989). Acetate-activating enzymes of Bradyrhizobium japonicum. Bacteroids. Appl. Environ. Microbiol. 55, 165–170. doi: 10.1128/aeem.55.1.165-170.1989

Price, R. E., and Giovannelli, D. (2017). "A review of the geochemistry and microbiology of marine shallow-water hydrothermal vents," in Reference module in earth systems and environmental sciences. (Netherlands: Elsevier), 1–9.

Rho, M., Tang, H., and Ye, Y. (2010). FragGeneScan: predicting genes in short and error prone reads. Nucleic Acids Res. 38:e191. doi: 10.1093/nar/gqg747

Rodriguez-R, L., and Konstantinidis, K. (2014). Nonpareil: a redundancy-based approach to assess the level of coverage in metagenomic datasets. Bioinformatics 30, 629–635. doi: 10.1093/bioinformatics/btt584

Sakurai, H., Ogawa, T., Shiga, M., and Inoue, K. (2010). Inorganic sulfur oxidizing system in green sulfur bacteria. Photosynth. Res. 104, 163–176. doi: 10.1007/s11120-010-9531-2

Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. R., et al. (2009). Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541. doi: 10.1128/AEM.01541-09

Sievert, S. M., Scott, K. M., Klotz, M. G., Chain, P. S., Hauser, L. J., Hemp, J. L., et al. (2008). Genome of the epsilonproteobacterial chemolithoautotroph Sulfurimonas denitrificans. Appl. Environ. Microbiol. 74, 1145–1156. doi: 10.1128/AEM.01844-07

Sorokin, D. Y., Tourova, T. P., Mullmann, M., and Muyzer, G. (2008). Dethiobacter alkaliphilus gen. Nov. sp. nov., and Desulfurellibacter alkaliphilus gen. Nov. sp. nov.: two novel representatives of a reductive sulfur cycle from soda lakes. Extremophiles 12, 431–439. doi: 10.1007/s00792-008-0148-8

Starke, R., Keller, A., Jehmlich, N., Vogt, C., Richnow, H. H., Kleinsteuber, S., et al. (2016). Pulsed 13C-acetate protein-SIP unveils Epsilonproteobacteria as dominant acetate utilizers in a sulfate-reducing microbial community mineralizing benzene. Microb. Ecol. 71, 901–911. doi: 10.1007/s00248-016-0731-y

Tang, K., Liu, K., Jiao, N., Zhang, Y., and Chen, C.-T. A. (2013). Functional metagenomic investigations of microbial communities in a shallow-sea hydrothermal system. PLoS One 8:e72958. doi: 10.1371/journal.pone.0072958

Tarasov, V. G., Geburk, A. V., Mitrovn, A. N., and Moskaliev, L. I. (2005). Deep-sea and shallow-water hydrothermal vent communities: two different phenomena? Chem. Geol. 224, 5–39. doi: 10.1016/j.chemgeo.2005.07.021

Teske, A. (2009). "Deep-sea hydrothermal vents," in Encyclopedia of microbiology. ed. M. Schaechter. Third ed (Oxford: Academic Press), 80–90.

Waite, D. W., Vanwonterghem, I., Rinke, C., Parks, D. H., Zhang, Y., Takai, K., et al. (2017). Comparative genomic analysis of the class Epsilonproteobacteria and proposed re-classification to Epsilonbacterioa (phyl. Nov.). Front. Microbiol. 8:682. doi: 10.3389/fmicb.2017.00682

Wang, L., Cheung, M. K., Kwan, H. S., Hwang, J.-S., and Wong, C. K. (2015). Microbial diversity in shallow-water hydrothermal sediments of Kueishan Island, Taiwan as revealed by pyrosequencing. Front. Microbiol. 55, 1308–1318. doi: 10.1002/jobm.201400811

Wang, L., Cheung, M. K., Liu, R., Wong, C. K., Kwan, H. S., and Hwang, J.-S. (2017). Diversity of total bacterial communities and chemosynthetic populations in sulfur-rich sediments of shallow-water hydrothermal vents off Kueishan Island. Taiwan Microb. Ecol. 73, 571–582. doi: 10.1007/s00248-016-0898-2

Wölke, A., Harrison, T., Wilkening, J., Field, D., Glass, E. M., Kyripides, N., et al. (2012). The M5nR: a novel non-redundant database containing protein sequences and annotations from multiple sources and associated tools. BMC. Bioinformatics. 13:141. doi: 10.1186/1471-2105-13-141

Yamamoto, M., Nakagawa, S., Shitamura, S., Takai, K., and Horikoshi, K. (2010). Molecular characterization of inorganic sulfur-compound metabolism in the deep-sea Epsilonproteobacterium Sulfurellibacter sp. NBC37-1. Environ. Microbiol. 12, 1144–1153. doi: 10.1111/j.1462-2920.2010.02155.x

Yamamoto, M., and Takai, K. (2011). Sulfur metabolisms in epsilon- and gamma-Proteobacteria in deep-sea hydrothermal fields. Front. Microbiol. 2:192. doi: 10.3389/fmicb.2011.00192

Yang, T. F., Lan, T. F., Lee, H.-F., Fu, C.-C., Chiang, P.-C., Lo, C.-H., et al. (2005). Gas compositions and helium isotopic ratios of fluid samples around Kueishantao, NE offshore Taiwan and its tectonic implications. Geochem. J. 39, 469–480. doi: 10.2343/geochemj.39.469

Zeng, Z., Chen, C.-T. A., Yin, X., Zhang, X., Wang, X., Zhang, G. L., et al. (2011). Origin of native sulfur ball from the Kueishantao hydrothermal field offshore Northeast Taiwan: evidence from trace and rare earth element composition. J. Asian Earth Sci. 40, 661–671. doi: 10.1016/j.jseaes.2010.10.019

Zeng, Z., Liu, C., Chen, C. A., Yin, X., Chen, D., Wang, X., et al. (2007). Origin of native sulfur ball from the Kueishantao hydrothermal field offshore Northeast Taiwan: evidence from trace and rare earth element composition. J. Asian Earth Sci. 39, 469–480. doi: 10.2343/geochemj.39.469

Zheng, Y., Zhao, Z., Chen, C.-T. A., Tang, K., Su, J., and Jiao, N. (2012). Sulfur metabolizing microbes dominate microbial communities in anodesite-hosted shallow-sea hydrothermal systems. PLoS One 7:e44593. doi: 10.1371/journal.pone.0044593