Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
The coronavirus 2019 (COVID-19) pandemic has severely affected human health and economic activity in countries around the world [1,2]. To slow the spread of the COVID-19 outbreak, most countries have implemented a number of epidemic control interventions, including travel restrictions, business and industry closures, and requests for people to stay at home [2]. In China, the lockdown started in Wuhan City on 23 January 2020 and vehicle movement was restricted there on 26 January 2020. These measures quickly expanded to the entire nation and lasted for >3 weeks. Due to the abrupt and unprecedented restrictions on human activities, emissions of air pollutants were much reduced during the lockdown period (27 January–26 February 2020). We investigated changes in atmospheric NH₃ concentrations as caused by the lockdown measures in China, and the potential need for agricultural emission mitigation in PM₂.₅ abatement when large reductions in non-agricultural pollutant emissions are expected in the future. The detailed information on surface NH₃ measurements, satellite NH₃ observations, and atmospheric chemistry model simulations for the pre-COVID period (1–26 January 2020) and COVID-lockdown period (27 January–26 February 2020). We investigated changes in atmospheric NH₃ concentrations as caused by the lockdown measures in China, and the potential need for agricultural emission mitigation in PM₂.₅ abatement when large reductions in non-agricultural pollutant emissions are expected in the future. The detailed information on surface NH₃ measurements, satellite NH₃ observations, and atmospheric chemistry model simulations, as contributing to PM₂.₅ (particles smaller than 2.5 μm) air pollution [9,10], is still unknown. Agriculture is conventionally viewed as the dominant source of NH₃ [11]. However, this has been challenged by several recent studies that suggested fuel combustion might exceed agriculture as a source of ambient NH₃ in Chinese urban atmospheres [12,13]. The unprecedented emission controls on fossil fuel-based sources during the COVID-19 pandemic provide a unique opportunity to identify NH₃ sources and their potential contribution to PM₂.₅. Here we analyze surface NH₃ measurements from a Nationwide Nitrogen Deposition Monitoring Network (NNDMN) from 2015 to 2020 (Table S1 online), combined with real-time in situ measurements, satellite observations, and atmospheric chemistry model simulations for the pre-COVID period (1–26 January 2020) and COVID-lockdown period (27 January–26 February 2020). We investigated changes in atmospheric NH₃ concentrations as caused by the lockdown measures in China, and the potential need for agricultural emission mitigation in PM₂.₅ abatement when large reductions in non-agricultural pollutant emissions are expected in the future. The detailed information on surface NH₃ measurements, satellite NH₃ observations, GEOS-Chem simulations, as
well as statistical analyses is described in the Supplementary materials (online).

Ambient mean NH$_3$ concentrations at the 36 NNDMN monitoring sites significantly ($P < 0.01$) increased (on average by 17%) during the COVID-lockdown period (average 9.0 ± 6.1 µg m$^{-3}$) compared to those during the pre-COVID period (average 7.7 ± 5.7 µg m$^{-3}$) (Fig. 1a and Table S1 online), but with considerable variation. Separating sites by land-use type, mean NH$_3$ concentrations showed significant ($P < 0.01$) increases during the COVID-lockdown period at rural (8.1 ± 6.2 vs. 9.9 ± 6.6 µg m$^{-3}$) and urban (10.1 ± 3.0 vs. 9.8 ± 3.0 µg m$^{-3}$) sites (Fig. 1b). During equivalent dates for 2015–2019, mean NH$_3$ concentrations ranged from 5.2 ± 3.5 to 7.7 ± 5.7 µg m$^{-3}$ in the “pre-COVID” period, and from 5.7 ± 4.3 to 9.0 ± 6.1 µg m$^{-3}$ in the “COVID-lockdown” period (Fig. S1a online). Compared to these levels, NH$_3$ concentrations in 2020 were 38%–65% higher during the pre-COVID period and 53%–62% higher during the COVID-lockdown (Fig. S1a online). The increases in NH$_3$ concentrations during the COVID-lockdown were larger in 2020 (17%) than during the same periods in 2015–2019 (9%) (Fig. S1b online).

Based on analysis of real-time measurements, a small increase in daily mean NH$_3$ concentrations was observed at the urban Beijing site (8%, $P > 0.05$) during the COVID-lockdown period compared to the pre-COVID period. Similarly, daily mean NH$_3$ concentrations increased at urban (Pudong: 13%) and rural (Chongming: 35%, $P < 0.01$) sites in Shanghai (Fig. 1c, d). Mean concentrations of secondary inorganic aerosols (NH$_4^+$, NO$_3^-$, SO$_4^{2-}$, and Cl$^-$, abbreviated as SIA) at the urban Beijing site increased from the pre-COVID period (21.6 µg m$^{-3}$) to the COVID-lockdown period (41.4 µg m$^{-3}$) (Fig. S2a online). Meanwhile, the ratio of aerosol NH$_3$ to total NH$_x$ (α(NH$_3$)) showed increases of about 28% ($P > 0.05$) during the COVID-lockdown relative to pre-COVID (Fig. 1e, f). By contrast, in Shanghai, the average SIA concentrations decreased from 33.3 (rural) and 30.6 (urban) µg m$^{-3}$ during the pre-COVID period to 22.2 (rural) and 21.6 µg m$^{-3}$ (urban) during the COVID-lockdown (Fig. S2b, c online), and α(NH$_3$) reduced by 9% and 7% at rural and urban sites, respectively, during the COVID-lockdown (Fig. 1e, f). The similar increases in gaseous NH$_3$, but different changes in α(NH$_3$) between Beijing and Shanghai cities reflect different driving factors in northern and southern China as discussed below.

Increases of NH$_3$ levels during the COVID-lockdown period were also seen in satellite observations. IASI (Infrared Atmospheric Sounding Interferometer) NH$_3$ columns increased by 7% across China from the pre-COVID period to the COVID-lockdown period in 2020, with the largest increase (25%) observed in the North

Fig. 1. Ambient NH$_3$ concentrations at 36 sites during the pre-COVID (1–26 January 2020) and COVID-lockdown (27 January–26 February 2020) periods (a), and average concentrations for rural, urban, and background sites (b). Daily mean NH$_3$ concentrations at urban site in Beijing and urban and rural sites in Shanghai city (c), and average concentrations during the pre-COVID and COVID-lockdown period (d). Daily mean α(NH$_3$) at urban site in Beijing and urban and rural sites in Shanghai city (e), and average concentrations during the pre-COVID and COVID-lockdown period (f). The letters R, U, and B denote, respectively, rural, urban and background sites.
China Plain (Fig. 2). Extracting IASI column values above NNDMN monitoring sites, mean NH$_3$ columns increased by 33.7% from the 2020 pre-COVID to the COVID-lockdown periods (Fig. S3 online).

We designed a series of GEOS-Chem atmospheric chemistry model simulations as shown in Table S2 (online) to investigate drivers of changes in observed NH$_3$ concentrations between the pre-COVID and COVID-lockdown periods. The impact of meteorological conditions was assessed by analyzing the GEOS-FP assimilated meteorological fields. The surface variables of the GEOS-FP data, analyzed during the pre-COVID and COVID-lockdown periods, show good agreements with observations (Fig. S4 online). In the GEOS-Chem standard simulation, we applied the latest estimates of anthropogenic emissions in China. The national mean anthropogenic NO$_x$ and SO$_2$ emissions decreased by 44% (8 Gg N d$^{-1}$) and 31% (4 Gg S d$^{-1}$), respectively, between the pre-COVID and COVID-lockdown period (Fig. S5 online) [7,14]. The GEOS-Chem simulations are able to capture the changes in concentrations of secondary inorganic ions (NH$_4^+$, SO$_4^{2-}$, and NO$_3^-$) and major air pollutants (NO$_x$, SO$_2$, PM$_{2.5}$, O$_3$, and CO) between the pre-COVID and COVID-lockdown periods (Figs. S6 and S7 online). The non-agricultural NH$_3$ emissions were assumed to have the same percentage changes as anthropogenic NO$_x$ emissions and decreased by 1 Gg N d$^{-1}$ between the two periods. In the standard simulation we assumed that agricultural NH$_3$ emissions were unchanged between the pre-COVID and the COVID lockdown period. The influence of meteorological-driven NH$_3$ emission changes (e.g., warmer during COVID lockdown than pre-COVID) was also analyzed in a sensitivity simulation (EF_metf in Table S2 online).

As estimated by the standard simulation (with agricultural NH$_3$ emissions unchanged), the model results showed near zero changes (light purple, Fig. S8a online) in the mean NH$_3$ concentration averaged over the 36 NNDMN monitoring sites between the pre-COVID and COVID-lockdown periods. Using sensitivity simulations with fixed non-agricultural NH$_3$ emissions (i.e., emissions fixed to the pre-COVID condition; Pre-COVID_NH$_3$ in Table S2 online), fixed anthropogenic emissions of other species (mainly SO$_2$ and NO$_x$; Pre-COVID_other in Table S2 online), and fixed meteorology (Pre-COVID_mett in Table S2 online), we could separate their contributions to the NH$_3$ concentration changes (Methods; Fig. S9 online). Decreased anthropogenic emissions of air pollutants other than NH$_3$ during the lockdown period increased the mean NH$_3$ concentration by 0.8 µg m$^{-3}$ (yellow, Fig. S8a online) of which 85% (0.6 µg m$^{-3}$) were shown to be caused by reduced NO$_x$ and VOCs emissions. The reduction in anthropogenic emissions largely suppressed conversion of NH$_3$ to NH$_4^+$ aerosol (Figs. S9 and S10 online), but this increase in NH$_3$ concentrations was largely offset by a 0.7 µg m$^{-3}$ reduction due to the decreases in non-agricultural NH$_3$ source emissions (mainly from vehicle emissions in the model, yellow, Fig. S8a online).

The standard model simulation showed different changes in surface NH$_3$ concentrations during the COVID lockdown in northern China vs. southern China (Fig. S8c, d online). The model captured the observed NH$_3$ increase in Southeast China (1.5 µg m$^{-3}$ in the model versus 1.6 µg m$^{-3}$ in observations), but underestimated changes over the North China Plain (1–2 µg m$^{-3}$ decreases in the model vs. up to 6 µg m$^{-3}$ increases in the observations) (Fig. S8b online). The differences between the two regions were largely attributed to the different changes associated with reductions in anthropogenic emissions during the COVID lockdown (Fig. S9a, b online). Reductions of SO$_2$ and NO$_x$ emissions tended to reduce the formation of sulfate and nitrate aerosols, which allow more gaseous NH$_3$ to stay in the atmosphere. Such effects were distinct in central and Southeast China (Fig. S9b online), while insignificant or even led to slight NH$_3$ decreases over northern China, including Beijing and the northern part of North China Plain (Fig. S9a online). This model simulated spatial features were consistent with the synchronous measurements of NH$_3$ and NH$_4^+$ as reported above: decreases in NH$_3$ (NH$_4^+$) in Shanghai (Southeast China) and increases in NH$_3$ (NH$_4^+$) in Beijing (Northern China) during the COVID lockdown.

Changes in non-agricultural NH$_3$ emissions and meteorological conditions led to additional decreases in NH$_3$ concentrations over North China Plain (Fig. S9a online). This analysis provided a strong hint that the agricultural NH$_3$ emissions should have increased during the COVID-lockdown period. Here we tested two possible factors driving the predicted increases in agricultural NH$_3$ emissions. First, we found that accounting for meteorological influences on NH$_3$ volatilization following Paulot et al. [15] could result in 1 Gg d$^{-1}$ increases in agricultural emissions during the COVID lockdown. Second, official reports from the Ministry of Agriculture and Rural Affairs of the People’s Republic of China (http://www.moa-
showed that the COVID lockdown partly inhibited the movement and sale of agricultural products, with the breeding stock of hogs and chickens increased by 2.8% and 3.6%, respectively. The model sensitivity simulations considering these NH\textsubscript{3} emission changes (EF\textsubscript{metf} and +5%, manure in Table S2 online) estimated increases of ~20%–50% in surface NH\textsubscript{3} concentrations (light blue, Fig. S8a online) allowing the model to better capture the observed increases. The analyses above concluded that increased NH\textsubscript{3} concentrations during the COVID-lockdown period could be explained by the reduced conversion of gaseous NH\textsubscript{3} to NH\textsubscript{4} aerosols in the southern China and increases in agricultural NH\textsubscript{3} emissions in northern China. We estimated that a 20% reduction in agricultural NH\textsubscript{3} emissions would be needed to offset the increases in national mean surface NH\textsubscript{3} concentrations during the COVID-lockdown period (dark blue, Fig. S8a online).

The large reductions of NO\textsubscript{2} emissions during the COVID lockdown have led to increases in surface ozone and atmospheric oxidizing capacity facilitating secondary aerosol formation [7]. This was also shown in the GEOS-Chem standard simulation using the SO\textsubscript{2}/SO\textsubscript{2} and NO\textsubscript{2}/NO\textsubscript{2} ratios as proxies for secondary inorganic aerosol formation efficiency that showed higher values during the COVID lockdown than the pre-COVID period over both the North China Plain and the Yangtze River Delta (in the Southeast China) (Fig. S8c, d online). The sensitivity simulations that applied emissions fixed to the pre-COVID conditions (pre-COVID_all, yellow) confirmed that decreases in other anthropogenic emissions (e.g., NO\textsubscript{X} emissions) resulted in the enhancement of SO\textsubscript{2} and NO\textsubscript{2} formation in both regions (Fig. S8c, d online), consistent with Huang et al. [7]. We found that a 50% reduction of this source would fully offset the enhanced secondary inorganic aerosol formation during the COVID lockdown (blue bars in Fig. S8c, d online). This 50% reduction was larger than the 31% reduction in NO\textsubscript{X} and 27% reduction in SO\textsubscript{2} emissions over this period [7], suggesting that strict agricultural NH\textsubscript{3} emission control strategies are needed to suppress winter haze formation in addition to NO\textsubscript{X} and SO\textsubscript{2} emission controls. In summary, we reported significant and large-scale increases in atmospheric NH\textsubscript{3} concentrations over China during the COVID-19 lockdown. The increases in NH\textsubscript{3} concentrations were most distinct at rural sites (22% enhancement), less notable at urban and background sites, and were stronger during COVID-19 in 2020 than the equivalent periods in earlier years. In northern (southern) China the NH\textsubscript{3} enhancements were largely driven by increased agricultural NH\textsubscript{3} emissions (lowered aerosol partitioning). Such adverse effects on inorganic aerosol formation can be offset by a 50% reduction of agricultural NH\textsubscript{3} emissions.

Conflict of interest

The authors declare that they have no conflict of interest.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (42175137, 41705130, 41922037, and 71961137011), the National Key Research and Development Program of China (2021YFD1700902), the Chinese State Key Special Program on Severe Air Pollution Mitigation “Agricultural Emission Status and Enhanced Control Plan” (DQCG0208), the Shandong Provincial Natural Science Foundation (2022HWYQ-066), the Global International Nitrogen Management System (INMS), the High-level Team Project of China Agricultural University, and the Beijing Advanced Discipline Funding. The work in Belgium was supported by the Fonds de la Recherche Scientifique (F.R.S.-F.NRS) and the Belgian State Federal Office for Scientific, Technical and Cultural Affairs (Proxim arrangement IASI.FLOW). The IASI-NH\textsubscript{3} datasets are available from the Aeris data infrastructure (http://iasi.aeris-data.fr). We thank Prof. Peter Vitousek at Stanford University for his valuable suggestions on improving the manuscript.

Author contributions

Wen Xu, Xuejun Liu, Lin Zhang, and Kebin He designed the study. Wen Xu, Yuanhong Zhao, Zhang Wen, Yunhua Chang, Yele Sun, Yuepeng Pan, Yixin Guo, Lin Zhang, Xin Ma, Zhipeng Sha, Ziyue Li, Jiahui Kang, Lei Liu, Xiuming Zhang, Baoqing Gu, Martin Van Damme, Lieven Clarisse, and Pierre-François Coheur conducted the research (collected the data, performed the measurements, and prepared the figures and tables). Wen Xu, Yuanhong Zhao, Lin Zhang, Xuejun Liu, Jeffrey L. Collett Jr, and Keith Goulding wrote the manuscript. All authors were involved in the discussion and interpretation of the data.

Appendix A. Supplementary materials

Supplementary materials to this short communication can be found online at https://doi.org/10.1016/j.scib.2022.07.021.

References

[1] Chinazzi M, Davis JT, Ajelli M, et al. The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak. Science 2020;368:395–400.
[2] Liu R, Zhong JY, Hong RH, et al. Predicting local COVID-19 outbreaks and infectious disease epidemics based on landscape network entropy. Sci Bull 2021;66:2265–70.
[3] Zander SV, Kristin A, Sorousng S, et al. COVID-19 lockdowns cause global air pollution declines. Proc Natl Acad Sci USA 2020;117:18984–90.
[4] Daniella RJ, Leonardo RJ. Air quality during the COVID-19: PM\textsubscript{2.5} analysis in the 50 most polluted capital cities in the world. Environ Pollut 2020;266:115042.
[5] Christoph AK, Mathew JE, Emma K, et al. Global impact of COVID-19 restrictions on the surface concentrations of nitrogen dioxide and ozone. Atmos Chem Phys 2021;21:3555–92.
[6] Shi X, Brasseur GP. The response in air quality to the reduction of Chinese economic activities during the COVID-19 outbreak. Geophys Res Letts 2020;47: e2020GL088070.
[7] Huang X, Ding AJ, Gao J, et al. Enhanced secondary pollution offset reduction of primary emissions during COVID-19 lockdown in China. Natl Sci Rev 2020;8: inwa137.
[8] Le TH, Wang Y, Liu L, et al. Unexpected air pollution with marked emission reductions during the COVID-19 outbreak in China. Science 2020;369:702–6.
[9] Gu B, Zhang L, Van Dingenen R, et al. Abating ammonia is more cost-effective than nitrogen oxides for mitigating PM\textsubscript{2.5} air pollution. Science 2021;374:758–62.
[10] Xu W, Song W, Zhang YY, et al. Air quality improvement in a megacity: implications from 2015 Beijing Parade Blue pollution control actions. Atmos Chem Phys 2017;17:31–46.
[11] Zhang L, Chen YF, Zhao Y, et al. Agricultural ammonia emissions in China: reconciling bottom-up and top-down estimates. Atmos Chem Phys 2018;18:339–55.
[12] Pan YP, Tian SL, Liu DW, et al. Fossil fuel combustion-related emissions dominate atmospheric ammonia sources during severe haze episodes: evidence from 15N-stable isotope in size-resolved aerosol ammonium. Environ Sci Technol 2016;50:8049–56.
[13] Feng SJ, Xu W, Cheng MM, et al. Overlooked nonagricultural and wintertime agricultural NH\textsubscript{3} emissions in Quzhou county, North China Plain: evidence from 15N-stable isotopes. Environ Sci Technol Lett 2022;9:127–33.
[14] Zheng B, Zhang Q, Geng GN, et al. Changes in China’s anthropogenic emissions during the COVID-19 pandemic. Earth Syst Sci Data 2021;13:2895–907.
[15] Paulot F, Jacob DJ, Pinder RW, et al. Ammonia emissions in the United States, European Union, and China derived by high-resolution inversion of ammonium wet deposition data: interpretation with a new agricultural emissions inventory (MASAGE_NH\textsubscript{3}). J Geophys Res Atmos 2014;119:4343–64.
Wen Xu is an assistant professor at College of Resources and Environmental Sciences, China Agricultural University. He received his Ph.D. degree in 2016 from China Agricultural University. His research interest focuses on reactive nitrogen emission and atmospheric deposition, and the optimized agricultural nitrogen management to mitigate air pollution and agricultural non-point source pollution.

Lin Zhang received his B.S. degree from Peking University in 2004, and Ph.D. degree from Harvard University in 2009. He is presently a research professor at the Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University. His research aims to better understand the sources, transformation, and sinks of air pollution, as well as its environmental and climatic effects.

Yuanhong Zhao received her B.S. degree from Lanzhou University in 2013 and Ph.D. degree from Peking University in 2018. She is an associate professor at the College of Oceanic and Atmospheric Sciences, Ocean University of China. Her research mainly focuses on the sources and sinks of atmospheric reactive nitrogen and methane.

Kebin He is an academician of the Chinese Academy of Engineering, the deputy director of National Ecological and Environmental Protection Expert Committee, and a professor of School of Environment, Tsinghua University. His research mainly focuses on atmospheric compound pollution especially PM$_{2.5}$ and the coordinated control of multiple pollutants.

Zhang Wen is a postdoctoral fellow at College of Resources and Environmental Sciences, China Agricultural University. Her research mainly focuses on nitrogen deposition and driving factors, agricultural ammonia emissions and environmental effects.

Xuejun Liu is a professor at College of Resources and Environmental Sciences, China Agricultural University. He is member of International Nitrogen Initiates (INI) in East Asia. His research mainly focuses on N cycling, atmospheric deposition and environmental impacts.