Indirect constraints on lepton-flavour-violating quarkonium decays

Lorenzo Calibbia, Tong Lia†, Xabier Marcanob‡ and Michael A. Schmidtc§

aSchool of Physics, Nankai University, Tianjin 300071, China
bDepartamento de Física Teórica and Instituto de Física Teórica UAM/CSIC, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
cSydney Consortium for Particle Physics and Cosmology, School of Physics, The University of New South Wales, Sydney, New South Wales 2052, Australia

Abstract

Within an effective-field-theory framework, we present a model-independent analysis of the potential of discovering new physics by searching for lepton flavour violation in heavy quarkonium decays and, more in general, we study the phenomenology of lepton-flavour-violating (LFV) \(2q2\ell\) operators with two charm or bottom fields. We compute the constraints from LFV muon and tau decays on the new-physics operators that can induce LFV processes involving \(c\bar{c}\) and \(b\bar{b}\) systems, thus providing a comprehensive list of indirect upper limits on processes such as \(J/\psi \rightarrow \ell\ell'\), \(\Upsilon(nS) \rightarrow \ell\ell'\), \(\Upsilon(nS) \rightarrow \ell\ell'\gamma\) etc., which can be sought at BESIII, Belle II, and the proposed super tau-charm factory. We show that such indirect constraints are so stringent that they prevent the detection of quarkonium decays into \(e\mu\). In the case of decays of quarkonia into \(\ell\tau\) (\(\ell = e, \mu\)), we find that an improvement by 2-3 orders of magnitude on the current sensitivities is in general required in order to discover or further constrain new physics. However, we show that cancellations among different contributions to the LFV tau decay rates are possible, such that \(\Upsilon(nS) \rightarrow \ell\tau\) can saturate the present experimental bounds. We also find that, interestingly, searches for LFV \(Z\) decays, \(Z \rightarrow \ell\tau\), at future \(e^+e^-\) colliders are complementary probes of \(2q2\ell\) operators with third generation quarks.
Contents

1 Introduction 1

2 EFT framework 4

3 Decay rates for LFV quarkonium decays 6
 3.1 LFV leptonic vector quarkonium decay: $V \to \ell_i^- \ell_j^+$ 6
 3.2 Radiative LFV leptonic vector quarkonium decay: $V \to \ell_i^- \ell_j^+ \gamma$ 6
 3.3 LFV leptonic pseudoscalar quarkonium decay: $P \to \ell_i^- \ell_j^+$ 8
 3.4 LFV leptonic scalar quarkonium decay: $S \to \ell_i^- \ell_j^+$ 8

4 Numerical results 9
 4.1 LEFT analysis ... 10
 4.2 SMEFT analysis ... 15

5 Summary and conclusions 21

A EW-scale LEFT-SMEFT matching 22

B Calculational details for radiative LFV vector quarkonium decays 24

C Observables for indirect constraints 25
 C.1 Radiative LFV decays: $\ell_i \to \ell_j \gamma$.. 26
 C.2 3-body LFV decays: $\ell_i \to \ell_j \ell_k \ell_m$ 26
 C.3 $\mu \to e$ conversion in nuclei ... 26
 C.4 Semileptonic LFV τ decays: $\tau \to P \ell, \tau \to V \ell$ 27
 C.5 LFV Z decays ... 29

1 Introduction

The lack of conclusive evidence for new physics (NP) at the Large Hadron Collider (LHC) makes it crucial to pursue a diversified experimental programme in search for Nature’s next fundamental energy scale beyond the electroweak (EW) one. With this respect, high-intensity frontier experiments, in particular searches for charged lepton flavour violation (LFV), represent an ideal laboratory capable to test scales above 10^3-10^4 TeV, way beyond the reach of any foreseeable high-energy collider [1].

Neutrino oscillations have provided evidence that lepton family numbers are not conserved and one can expect non-standard contributions to LFV processes in the context of any extension of the Standard Model (SM) involving new fields that couple to leptons. On the other hand, the physics case for LFV searches has been recently reinforced by the first results of the FNAL Muon $g-2$ experiment [2] and the persistent hints for violation of lepton flavour universality (LFU) in semileptonic B meson decays [3, 4], especially those of the kind $b \to s \mu \mu$. Both anomalies seem to point to a new-physics sector, coupled preferably with muons, at a scale below 100 TeV [5, 6]. Moreover, any new physics interacting with muons is not in general expected to exhibit a flavour structure aligned to the SM one, that is, LFV effects induced by the fields possibly behind the muon $g-2$ and $b \to s \mu \mu$ anomalies are difficult to avoid unless very peculiar flavour symmetries are imposed [7–10]. Therefore, LFV rates at observable level are likely if these experimental anomalies will be confirmed to be signal of new physics.

The hints for LFU violation in B decays require a new-physics sector that couple to both quarks and leptons — the typical example being scalar or vector leptoquarks [11]. Such new physics can be described in a model-independent way within an effective field theory (EFT) in terms of 2 quarks-2 leptons ($2q2\ell$) operators, as long as its scale is much larger than the typical energy scales of the
operators of the schematic form $\bar{q}q \rightarrow \ell_i \ell_j$ will induce a $\ell_i \ell_j$ final state probability $|\mathcal{M}|^2$. On the other hand, the Q-scheme anomaly can be addressed by operators $\bar{q}q \rightarrow \ell_i \ell_j$ involving 3rd-generation fermions only, the couplings to lighter generations being induced by field rotations from the interaction basis to the mass basis [12–15].

The above considerations prompt us to address the experimental prospects of LFV processes involving heavy quark flavours, either flavour-violating or flavour-conserving in the quark sector. In this paper, we focus on the latter case, in particular on new physics that can induce LFV decays of heavy quarkonia, that is, cc and bb bound states. The existing limits on LFV quarkonium decays (LFVQD), concerning vector resonances only, are listed in Table 1. We note the recent results by BESIII and Belle, which improved previous bounds notably and even searched for new channels such as $\Upsilon(1S) \rightarrow \ell \ell \gamma$. The experimental prospects of these processes are even more interesting: the extended run of BESIII [21] and the proposed Super-Tau-Charm Factory (STCF) [22–24] could increase the sensitivity on the $J/\psi \rightarrow \ell_i \ell_j$ decays by several orders of magnitude and, for the first time, search for LFV decays of (pseudo)scalar charmonium states. Similarly, Belle II [25] is expected to reach an integrated luminosity about two orders of magnitude larger than the previous B factories, hence it should improve the limits on the $\Upsilon(nS)$ modes by at least one order of magnitude.

However, any new physics giving rise to this kind of decays would also induce other LFV processes, in particular LFV muon or tau decays [26], as well as other high-energy LFV processes such as LFV Z decays, which will give competitive limits at future high-energy e^+e^- colliders—see Ref. [27]. The obvious question is then whether the stringent constraints on the latter processes (see Table 2) still allow sizeable effects for LFV quarkonia decay. In other words, is it possible to discover new physics searching for quarkonium LFV? The aim of this paper is to give a precise quantitative answer to this question, providing model-independent indirect upper limits on the LFV decay rates of quarkonia, in a similar way to what was done in Ref. [27] for LFV Z decays.

To be agnostic about the new dynamics that can give rise to these effects, we employ an effective-field-theory approach, working within both the so-called Low-Energy Effective Field Theory (LEFT) [45], which involves QED×QCD invariant operators of fields below the EW scale, and the Standard Model Effective Field Theory (SMEFT) where invariance under the full SM gauge group and also heavy fields are considered [46, 47]—for a review cf. Ref. [48]. In this context, new physics contributions to the quarkonium decays we are interested in are described by $2q2\ell$ operators of the schematic form $\bar{c}c\ell_i \ell_j$ and $\bar{b}b\ell_i \ell_j$ ($\ell_{i,j} = e, \mu, \tau, i \neq j$). On the other hand, diagrams obtained by closing the quark loop will induce (e.g. via a virtual photon exchange, as

LFVQD	Present bounds on BR (90% CL)
$J/\psi \rightarrow e\mu$	4.5×10^{-9} BESIII (2022) [16]
$\Upsilon(1S) \rightarrow e\mu$	3.6×10^{-7} Belle (2022) [17]
$\Upsilon(1S) \rightarrow e\mu\gamma$	4.2×10^{-7} Belle (2022) [17]
$J/\psi \rightarrow e\tau$	7.5×10^{-8} BESIII (2021) [18]
$\Upsilon(1S) \rightarrow e\tau$	2.4×10^{-6} Belle (2022) [17]
$\Upsilon(1S) \rightarrow e\tau\gamma$	6.5×10^{-6} Belle (2022) [17]
$\Upsilon(2S) \rightarrow e\tau$	3.2×10^{-6} BaBar (2010) [19]
$\Upsilon(3S) \rightarrow e\tau$	4.2×10^{-6} BaBar (2010) [19]
$J/\psi \rightarrow \mu\tau$	2.0×10^{-6} BES (2004) [20]
$\Upsilon(1S) \rightarrow \mu\tau$	2.6×10^{-6} Belle (2022) [17]
$\Upsilon(1S) \rightarrow \mu\tau\gamma$	6.1×10^{-6} Belle (2022) [17]
$\Upsilon(2S) \rightarrow \mu\tau$	3.3×10^{-6} BaBar (2010) [19]
$\Upsilon(3S) \rightarrow \mu\tau$	3.1×10^{-6} BaBar (2010) [19]

Table 1: Present 90% CL upper limits on vector quarkonium LFV decays. No limit is currently available for LFV decays of (pseudo)scalar or other vector resonances.
The rest of the paper is organised as follows. In Section 2 we introduce the EFT framework we employ and our conventions. Our calculations for the quarkonium LFV decay rates in terms of the coefficients of LEFT operators are presented in Section 3. The running of LEFT operators is employed in Section 4.1 in order to estimate the indirect constraints on quarkonium LFV, while the effects of operator mixing above the EW scale, the sensitivity of LFV experiments to high-scale NP, and possible cancellations due to the interference of multiple operators are discussed in Section 4.2 adopting the SMEFT framework. We summarise our results and conclude in Section 5. In the Appendices, more technical results and useful formulae are collected.
2 EFT framework

As discussed in the introduction, we parameterise the effects of LFV new physics in terms of non-renormalisable operators. Throughout this work, we assume that the new particles related to the NP scale Λ responsible for LFV are much heavier than the EW scale, $\Lambda \gg m_W$. In such a scenario, in order to assess the NP effects across different scales, it is then convenient to work within the SMEFT framework, whose Lagrangian consists of that of the SM extended with a tower of higher-dimensional operators constructed by gauge-invariant combinations of the SM fields only and suppressed by inverse powers of the scale Λ:

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{d>4} \sum_{a} \frac{C_a^{(d)}}{\Lambda^{d-4}} \mathcal{O}_a^{(d)},$$ \label{eq:smeft}

where $\mathcal{O}_a^{(d)}$ are the effective operators of dimension-d and the $C_a^{(d)}$ represent the corresponding Wilson Coefficients (WCs), whose values depend on the renormalisation scale μ. Notice that we are working with dimensionless SMEFT WCs. In the rest of the paper, we will focus on dimension-6 operators — that are expected to provide the dominant contributions to LFV processes — and adopt the conventions of the Warsaw basis [47]. All dimension-6 SMEFT operators that can induce LFV effects [56] are listed in Table 3.

In a specific UV-complete model, the WCs at the scale Λ can be determined by integrating out the heavy NP fields. In the spirit of our model-independent approach, we will instead consider the WC of the $\mathcal{O}_a^{(d)}$ at $\mu = \Lambda$ as independent free parameters. However, at lower energies, the coefficients of different operators will mix as an effect of the RGEs. In particular, multiple operators will be induced at the EW scale even if the UV physics is assumed to match dominantly to a single operator (or just a few of them) at the scale Λ.

Below the EW scale, we work within the LEFT employing the basis introduced by Ref. [45]. As we will see in the next section, the observables that we focus on — the LFV quarkonium decays — and the LFV decays of muons and taus that will set indirect constraints on them can be induced by dimension-5 photon dipole operators

$$\mathcal{L}_{\text{dipole}} = C_{e\gamma,\mu} \left(\bar{\ell}_p \sigma^\mu P_R \ell_r \right) \mathcal{F}_{\mu\nu} + h.c.,$$ \label{eq:dipole}

by dimension-6 $2q2\ell$ operators

$$\mathcal{L}_{2q2\ell} = C_{e\gamma,LL}^{V,LL} \left(\bar{\ell}_p \gamma^\mu P_L \ell_r \right) (\bar{q}_s \gamma_\mu P_L q_t) + C_{e\gamma,RR}^{V,RR} \left(\bar{\ell}_p \gamma^\mu P_R \ell_r \right) (\bar{q}_s \gamma_\mu P_R q_t) + C_{e\gamma,RR}^{V,LR} \left(\bar{\ell}_p \gamma^\mu P_L \ell_r \right) (\bar{q}_s \gamma_\mu P_R q_t) + C_{e\gamma,LR}^{V,LR} \left(\bar{\ell}_p \gamma^\mu P_R \ell_r \right) (\bar{q}_s \gamma_\mu P_L q_t) + \left[C_{e\gamma,RR}^{S,RL} \left(\bar{\ell}_p P_R \ell_r \right) (\bar{q}_s P_L q_t) + C_{e\gamma,LR}^{S,RR} \left(\bar{\ell}_p P_L \ell_r \right) (\bar{q}_s P_R q_t) + C_{e\gamma,LR}^{T,RR} \left(\bar{\ell}_p \sigma_{\mu\nu} P_R \ell_r \right) (\bar{q}_s \sigma_{\mu\nu} P_L q_t) + h.c., \right],$$ \label{eq:2q2l}

\footnote{We adopt the following convention for the fermionic QED couplings: $\mathcal{L}_{\text{QED}} = -e Q \bar{f} A_f$.}
calculated in Refs. [50–52]. Moreover, in order to obtain phenomenological predictions above presented LEFT basis was computed in Ref. [45]. For completeness, we collect the matching factors, certain quarkonia processes are also sensitive to dimension-7 lepton-gluon and lepton-photon operators. The dual field strength tensors are defined by

\[\tilde{F} = \frac{1}{2} \epsilon^{\mu \nu \alpha \beta} F_{\alpha \beta} \]

The tree-level matching at the EW scale of the dimension-6 SMEFT operators of Table 3 to the above presented LEFT basis was computed in Ref. [45]. For completeness, we collect the matching formulae in Appendix A. The dimension-7 lepton-gluon/photonic operators are obtained from tree-level matching to dimension-8 SMEFT operators and from 1-loop matching to dimension-6 scalar operators with quarks, see e.g. Ref. [67]. Moreover, in order to obtain phenomenological predictions in terms of the WCs, the latter need to be evaluated at the energy scale relevant for the process of interest. As usual, this can be done by solving the RGEs of the WCs that, for the LEFT framework, can be found in Ref. [53], while for SMEFT operators the running of the WCs is given by the RGEs calculated in Refs. [50–52].
3 Decay rates for LFV quarkonium decays

In this section we present our calculation for the LFV decay rates of quarkonia in terms of the LEFT operators defined in the previous section. We follow the calculation in Ref. [58] (see also Ref. [68]). Due to the C parity conservation in the decay of vector quarkonia V with $J^C = 1^-$, $V \rightarrow \ell_i \ell_j$ and $V \rightarrow \ell_i \ell_j \gamma$ decays are induced by C-odd and C-even operators, respectively, and are thus complementary. The expressions for the other LFV processes relevant to our analysis are collected in Appendix C.

3.1 LFV leptonic vector quarkonium decay: $V \rightarrow \ell_i^- \ell_j^+$

We parameterise the quarkonium decay amplitude by

$$\mathcal{M} = \frac{1}{2} \bar{u}_i f_V(V_L P_L + V_R P_R) v_j + \frac{2i}{m_V} \bar{u}_i \epsilon^\nu v_j P^\nu (T_L P_L + T_R P_R) v_j,$$

where P^ν, m_V, and ϵ_V are respectively the momentum, mass, and polarisation vector of the vector quarkonium. The coefficients parametrising vector and tensor interactions can be expressed in terms of the LEFT Wilson coefficients and are given by

$$V_L = f_V m_V \left(C^{V,LL}_{eq,ijqq} + C^{V,LR}_{eq,ijqq} + \frac{2e^2 Q_q Q_i \delta_{ij}}{m_V^2} \right), \quad T_L = m_V f_V^L C^{T,RR}_{eq,ijqq} - e Q_q f_V C_{\gamma,ji}^*,$$

$$V_R = f_V m_V \left(C^{V,RR}_{eq,ijqq} + C^{V,LR}_{eq,ijqq} + \frac{2e^2 Q_q Q_i \delta_{ij}}{m_V^2} \right), \quad T_R = m_V f_V^R C^{T,RR}_{eq,ijqq} - e Q_q f_V C_{\gamma,ij}^*,$$

where $Q_\ell = -1$ and Q_q are the electric charges of leptons and quarks. The lepton flavour conserving contribution is dominated by tree-level photon exchange which enters the coefficients parametrising the vector interactions V_L,R. The two form factors f_V and f_V^T parameterise the hadronic vector and tensor matrix elements

$$\langle 0 | \bar{q} \gamma^\mu q | V(P) \rangle = f_V m_V \epsilon^\nu \gamma_\mu, \quad \langle 0 | \bar{q} \sigma^{\mu\nu} q | V(P) \rangle = i f_V^T (\epsilon^\nu \gamma^\mu - \epsilon^\mu \gamma^\nu).$$

The resulting branching ratio for $V \rightarrow \ell_i^- \ell_j^+$ is

$$\text{BR}(V \rightarrow \ell_i^- \ell_j^+) = \frac{m_V \lambda^{1/2}(1, y_i^2, y_j^2)}{16 \pi} \left[\frac{|V_L|^2 + |V_R|^2}{12} \left(2 - y_i^2 - y_j^2 - (y_i^2 - y_j^2)^2 \right) + \frac{4}{3} \left(|T_L|^2 + |T_R|^2 \right) \left(1 + y_i^2 + y_j^2 - 2(y_i^2 - y_j^2)^2 \right) + 2y_i y_j \left(\text{Re}(V_L V_R^* + 16 \text{Re}(T_R T_L^*) \right) + 2y_i \left(1 + y_i^2 - y_j^2 \right) \text{Re}(V_R T_R^* + V_L T_L^*) + 2y_j \left(1 + y_i^2 - y_j^2 \right) \text{Re}(V_L T_R^* + V_R T_L^*) \right].$$

where $y_i = m_i/m_V$, for a lepton of mass m_i, and $\lambda(x, y, z) = x^2 + y^2 + z^2 - 2xy - 2xz - 2yz$ denotes the Källén function. We used FeynCalc [69–71] to obtain the squared matrix element. Our result agrees with Ref. [58] in the limit $y_i \rightarrow 0$ except for an additional factor $(1 + y_j^2/2)$ in the first line for the vector operator contribution.

3.2 Radiative LFV leptonic vector quarkonium decay: $V \rightarrow \ell_i^- \ell_j^+ \gamma$

In light of the recent analysis of the radiative LFV $\Upsilon(1S)$ decays performed by Belle [17], we calculate the radiative LFV leptonic vector quarkonium decay using the non-relativistic colour singlet model, following Refs. [72] and [73]. The final state photon can originate from one of the
initial state quarks, one of the final state leptons or result from the effective vertex in Eq. (6). The operators contributing to final state radiation are strongly constrained by the LFV vector quarkonium decay \(V \to \ell_i^- \ell_j^+ \). We thus neglect contributions from final state radiation in the analysis of the radiative decay \(V \to \ell_i^- \ell_j^+ \gamma \), see Appendix B for full details. Taking the different Lorentz and polarisation structures into account, the quarkonium decay amplitude for \(V(P,\epsilon_V) \to \ell_i^- (p_i) \ell_j^+ (p_j) \gamma(q,\epsilon) \) is given by

\[
\mathcal{M} = \frac{Q_{eF}}{x_s m_V^3} \left[(P \cdot q) (\epsilon_V \cdot \epsilon') - (P \cdot \epsilon) (q \cdot \epsilon_V) \right] \bar{u}_i \left[(S_R + \tilde{S}_R x_\gamma) P_R + (S_L + \tilde{S}_L x_\gamma) P_L \right] v_j \\
+ \frac{Q_{eF}}{x_s m_V} i\epsilon_{\alpha \beta \mu \nu} P^\alpha q^\beta \epsilon_{\mu \nu} \bar{u}_i \left[(P' R + i\tilde{P}' R x_\gamma) P_R + (P' L + i\tilde{P}' L x_\gamma) P_L \right] v_j \\
+ \frac{Q_{eF}}{x_s m_V} i\epsilon_{\alpha \beta \mu \nu} P^\alpha q^\beta \epsilon_{\mu \nu} \bar{u}_i (A_R P_R + A_L P_L) v_j ,
\]

and depends on the following combinations of LEFT WCs

\begin{align*}
S_R &= 2m_V f_V \left(c^{S,RR}_{eq,ijqq} + c^{S,R\bar{L}}_{eq,ijqq} \right), \\
S_L &= 2m_V f_V \left(c^{S,RL}_{eq,ijqq} + c^{S,RR\ast}_{eq,ijqq} \right), \\
P'_R &= 2m_V f_V \left(c^{S,RR}_{eq,ijqq} - c^{S,RL}_{eq,ijqq} \right), \\
P'_L &= 2m_V f_V \left(c^{S,RL}_{eq,ijqq} - c^{S,RR\ast}_{eq,ijqq} \right), \\
A_R &= 2m_V f_V \left(c^{V,LR}_{eq,ijqq} - c^{V,RR}_{eq,ijqq} \right),
\end{align*}

Here, \(A_{LR} \) denote axial-vector contributions, \(S_{LR} \) scalar contributions and \(P'_{LR} \) pseudoscalar contributions. Finally terms with an overtilde correspond to contributions from the dimension-7 operators with two photon field strength tensors, Eq. (6). Note that the contributions proportional to \(C_{eFF} \) and \(C_{e\bar{F}F} \) are proportional to an additional factor \(x_\gamma = 2E_\gamma/m_V \) compared to the pseudoscalar contributions.

In the limit of one massless final state lepton, the phase space integration can be carried out analytically and we obtain for the branching ratio

\[
\text{BR}(V \to \ell_i^- \ell_j^+) = \frac{\alpha Q_{eF}^2 m_V}{192\pi^2 V} \left[\left(|A_L|^2 + |A_R|^2 \right) G_A(y) + \left(|S_L|^2 + |P'_L|^2 + |S_R|^2 + |P'_R|^2 \right) G_S(y) \right. \\
+ \left. \left(|S_L|^2 + |P'_L|^2 + |S_R|^2 + |P'_R|^2 \right) G_S(y) + I_{PA} G_{PA}(y) + \tilde{I}_{PA} G_{PA}(y) \right. \\
+ \Re(S_L \tilde{S}_L^* + S_R S_R^*) G_S(y) + \Im(P'_L \tilde{P}'_L^* + P'_R \tilde{P}'_R^*) \left(\tilde{G}_S(y) - \frac{1}{12} \right) \right],
\]

where \(y \) denotes the non-zero mass of the charged (anti-)lepton normalised to the vector quarkonium mass, i.e. \(y = y_i (y = y_j) \). \(I_{PA} \) and \(\tilde{I}_{PA} \) denote the interference terms which differ for the two cases

\[
I_{PA} = \begin{cases}
+\Re(A_L P'_L + A_R P'_R) & \text{for } y = y_i \neq 0, y_j = 0, \\
-\Re(A_L P'_L + A_R P'_R) & \text{for } y = 0, y = y_j \neq 0,
\end{cases}
\]

\[
\tilde{I}_{PA} = \begin{cases}
+\Im(A_L \tilde{P}'_L + A_R \tilde{P}'_R) & \text{for } y = y_i \neq 0, y_j = 0, \\
-\Im(A_L \tilde{P}'_L + A_R \tilde{P}'_R) & \text{for } y = 0, y = y_j \neq 0,
\end{cases}
\]

because for a massless final state lepton the different chiralities do not interfere. The kinematic functions entering the branching ratio are given by

\[
G_A(y) = \frac{1}{36} \left(8 - 45y^2 + 36y^4 + y^6 + 12(y^2 - 6)y^4 \ln y \right),
\]

\[
G_S(y) = \frac{1}{12} \left(1 - 6y^2 + 3y^4 + 2y^6 - 12y^4 \ln y \right),
\]

7
\[\tilde{G}_S(y) = \frac{1}{120} (3 - 30y^2 - 20y^4 + 60y^6 - 15y^8 + 2y^{10} - 120y^4 \ln y) , \]

\[\tilde{G}_P(y) = \frac{1}{12} (1 - 8y^2 + 8y^6 - y^8 - 24y^4 \ln y) , \]

\[G_{PA}(y) = \frac{y}{2} (1 + 4y^2 - 5y^4 + 4(2 + y^2)y^2 \ln y) , \]

\[\tilde{G}_{PA}(y) = \frac{y}{3} (1 + 9y^2 - 9y^4 - y^6 + 12(1 + y^2)y^2 \ln y) . \]

3.3 LFV leptonic pseudoscalar quarkonium decay: \(P \to \ell_i^- \ell_j^+ \)

Using the equations of motion for the final state spinors, the pseudoscalar decay amplitude

\[iM = \bar{u}_i (S_R P_R + S_L P_L) v_j , \]

can be parameterised in terms of two coefficients

\[S_R = \frac{h_P}{4m_q} \left(C_{eq,iqj}^{S,RR} - C_{eq,iqj}^{S,RL} \right) - \frac{f_P}{2} \left[m_j \left(C_{eq,iqj}^{V,LR} - C_{eq,iqj}^{V,LL} \right) + m_i \left(C_{eq,iqj}^{V,RR} - C_{eq,iqj}^{V,LR} \right) \right] + \frac{4\pi}{\alpha_s} a_P C_{cG\bar{G},ij} , \]

\[S_L = \frac{h_P}{4m_q} \left(C_{eq,iqj}^{S,RL} - C_{eq,iqj}^{S,RR} \right) - \frac{f_P}{2} \left[m_i \left(C_{eq,iqj}^{V,LR} - C_{eq,iqj}^{V,LL} \right) + m_j \left(C_{eq,iqj}^{V,RR} - C_{eq,iqj}^{V,LR} \right) \right] + \frac{4\pi}{\alpha_s} a_P C^*_{cG\bar{G},ji} . \]

Given the proportionality to the final state lepton masses, the pseudoscalar quarkonium decay is mostly sensitive to pseudoscalar WCs. The form factors \(f_P, h_P \) and \(a_P \) parameterise the hadronic axialvector, pseudoscalar, and anomaly matrix elements

\[\langle 0 | \bar{q} \gamma^\mu \gamma_5 q | P(p) \rangle = i f_P p^\mu , \quad \langle 0 | \bar{q} i \gamma_5 q | P(p) \rangle = \frac{h_P}{2m_q} , \quad \langle 0 | \alpha_s \frac{G}{4\pi} \tilde{G} | P(p) \rangle = a_P , \]

which satisfy the relation \(h_P = m_P^2 f_P - a_P \) from axialvector current conservation. The gluonic matrix elements are expected to be small for \(\eta_{b,c} \) and thus we take \(a_P = 0 \). The resulting branching ratio for \(P \to \ell_i^- \ell_j^+ \) is given by

\[\text{BR}(P \to \ell_i^- \ell_j^+) = \frac{m_p}{\Gamma_P} \frac{\lambda^{1/2}(1, y_i^2, y_j^2)}{16\pi} \left(|S_L|^2 + |S_R|^2 \right) \left(1 - y_i^2 - y_j^2 \right) - 4y_i y_j \text{Re}(S_L S_R^*) . \]

where \(y_i = m_i/m_P \) and we used FeynCalc [69–71] to obtain the squared matrix element. Our result agrees with Ref. [58] in the limit of \(m_i \to 0 \) for the pseudoscalar and axial-vector contributions and we also find agreement for the anomaly contribution, if we disregard the superfluous +h.c. for the dimension-7 terms with the field strength tensors in Ref. [58].

3.4 LFV leptonic scalar quarkonium decay: \(S \to \ell_i^- \ell_j^+ \)

Using the fact that the vector current form factor vanishes for scalar quarkonia, the scalar decay amplitude

\[\mathcal{M} = \bar{u}_i (S_R P_R + S_L P_L) v_j , \]

can be parameterised in terms of two coefficients

\[S_R = \frac{m_S f_S}{2} \left(C_{eq,iqj}^{S,RR} + C_{eq,iqj}^{S,RL} \right) + \frac{4\pi}{\alpha_s} a_S C_{cG\bar{G},ij} , \]

\[S_L = \frac{m_S f_S}{2} \left(C_{eq,iqj}^{S,RL} + C_{eq,iqj}^{S,RR} \right) * + \frac{4\pi}{\alpha_s} a_S C^*_{cG\bar{G},ji} . \]
The branching ratio for \(\chi_b \) and \(\chi_b^0 \) (1) is

\[
\text{BR}(\chi_b \to \ell_i \ell_j^0) = \frac{m_{\ell_i} \chi_{1/2}^2 (1, \psi_i^2, \psi_j^2)}{16\pi} \left[(|S_L|^2 + |S_R|^2) \left(1 - \frac{y_i y_j}{m_{\ell_i} m_{\ell_j}} \right) - 4 y_i y_j \text{Re}(S_L S_R^*) \right],
\]

where \(y_i = m_i/m_S \) and we used \texttt{FeynCalc} [69–71] to obtain the squared matrix element. Our result agrees with Ref. [58] in the limit of \(m_i \to 0 \).

4 Numerical results

In this section we analyse the LFV decays of quarkonium states, focusing mostly on the vector quarkonium \(c\bar{c} \) states \(J/\psi \) and \(\Psi(2S) \), and the \(b\bar{b} \) states \(\Upsilon(1S), \Upsilon(2S) \) and \(\Upsilon(3S) \). We also provide indirect upper limits on the LFV decay rates of the lightest (pseudo)scalar \(c\bar{c} \) and \(b\bar{b} \) resonances, as well as on the radiative decays of vector quarkonia. In contrast to the 2-body decays of vector quarkonia \(V \to \ell\ell' \), these latter processes are all sensitive to scalar operators, as shown by the formulae presented in Section 3. Hence they potentially provide complementary information.

In the previous section we computed the contributions to the LFV quarkonia decays (LFVQD) to leading order. Nevertheless, in order to reduce the hadronic uncertainties, we will compute LFVQD as a double ratio, normalising the LFV channel to the experimentally measured lepton flavour conserving decay to electrons:

\[
\text{BR}(V \to \ell\ell') = \frac{\text{BR}(V \to \ell\ell')_{\text{exp}}}{\text{BR}(V \to \ell\ell')_{\text{LO}}} \text{BR}(V \to \ell\ell')_{\text{LO}},
\]

where the subscript LO refers to the leading order expressions derived in Section 3 and the subscript exp to the corresponding experimental value [75]. We checked that this introduces a small correction, in general a 2-4\% reduction of the rates, with the only exception of \(\Upsilon(3S) \), whose rates increase by about 8\%. The (pseudo)scalar quarkonium decays to an electron-positron pair have not been measured yet, therefore we just consider the LO predictions for those decays. For all quarkonium decays we include both lepton flavour combinations as final states, \(\ell^+\ell^- \) and \(\ell^-\ell^+ \).

For the numerical analysis, we implemented the expressions of Section 3 for LFVQD in the \texttt{flavio} [76] \texttt{python} code. This allows us to use the range of flavour observables already included in the routine, as well as the renormalisation group evolution implemented by means of the \texttt{wilson} [77] package. The latter also includes the full tree-level matching between SMEFT and LEFT (cf. Appendix A), which we use in the following to explore both EFT frameworks. When evaluating quarkonium processes, we set the renormalisation scales for decays of bottomonium resonances to their respective masses, while the renormalisation scales for charmonium decays are fixed at \(\mu = 2 \text{ GeV} \).

The numerical values for the masses, decay widths and decay constants of the quarkonia we consider are collected in Table 4. Notice that the total widths of the scalar bottomonium states \(\chi_b \) have not been measured yet. Following Ref. [78], we evaluate it using the theoretically calculated partial decay width of the radiative decays \(\chi_b (nP) \to \Upsilon(mS) + \gamma \) and the experimentally measured branching ratio \(\text{BR}(\chi_b (nP) \to \Upsilon(mS) + \gamma) \) in order to obtain

\[
\Gamma_{\chi_b (nP)} = \frac{\Gamma(\chi_b (nP) \to \Upsilon(mS) + \gamma)_{\text{th}}}{\text{BR}(\chi_b (nP) \to \Upsilon(mS) + \gamma)_{\text{exp}}},
\]

For \(\chi_b (1P) \) the only available decay is \(\chi_b (1P) \to \Upsilon(1S) + \gamma \) with \(\Gamma(\chi_b \to \Upsilon(1S) + \gamma) = 23.8 \text{ keV} \) [79] and \(\text{BR}(\chi_b (1P) \to \Upsilon(1S) + \gamma) = 1.94 \pm 0.27\% \) [80]. For \(\chi_b (2P) \), we take the simple weighted average of the total widths obtained from the decay rates to \(\Upsilon(1S) + \gamma \) and \(\Upsilon(2S) + \gamma \), which have partial widths of 2.5 keV and 10.9 keV [79], and branching ratios of \((3.8 \pm 1.7) \times 10^{-3} \) and \((1.38 \pm 0.30)\% \) [80], respectively, with the errors added in quadrature.
Table 4: Quarkonium masses, widths, and decay constants, taken from the PDG [80] with the exception of $\chi_{b0}(nP)$ which have not been measured yet. They have been obtained following Ref. [78] from the calculated decay width of the radiative decay $\chi_{b0}(nP) \to \Upsilon(mS) + \gamma$ and its measured branching ratio as discussed in the text. When the transverse form factor is missing, we assume $f_T^V \equiv f_V$, following Ref. [87], which is motivated by the observation that vector and tensor decay constants of light vector mesons are of a similar order of magnitude. This is also consistent with the non-relativistic colour singlet model [88–95]. Following Ref. [58], we also use the scalar decay constants obtained in Ref. [78] using the mock meson approach in the quark model.

4.1 LEFT analysis

We are interested in assessing how large LFVQD are allowed to be given the current constraints on any other LFV process. We can already get a good feeling about the answer to this question by working in the LEFT framework, valid below the EW scale, and switching on only those WCs that contribute directly to the LFVQD, which is the a priori most favourable scenario for these processes. Due to RGE effects these WCs will still generate other LFV processes, including in particular strongly constrained leptonic decays, which will actually tell us how large the LFVQD could be without violating any existing bound.

We start showing our numerical results obtained by switching on a single LEFT operator at a time. While certainly being a simplified scenario, and probably unrealistic within many UV theories, we regard this as a useful first exercise in order to assess the most relevant WCs for the processes we are interested in. We discuss deviations from this simplified assumption in the next subsection, where we show the results of our analysis within the SMEFT framework. The main results of our LEFT study are collected in Tables 5 and 6.

In Table 5a we summarise the results for vector and tensor operators with two charm quarks. The first two columns list the WCs (following the notation presented in Section 2) and the most constraining process for a given operator. In the last two columns, we quote the resulting indirect upper limits on the branching ratios of $J/\psi \to \ell\ell'$ and $\psi(2S) \to \ell\ell'$ considering a single non-vanishing LEFT operator at a scale μ that we choose to be either the quarkonium mass scale m_{qg} or the Z boson mass scale m_Z. As one can see, the indirect upper limits become stronger as the scale μ increases, due to the larger separation of scales (and thus a larger logarithm from the RGEs). Notice that the choice $\mu = m_{qg}$ corresponds to the arguably unrealistic case that, right at the quarkonium mass scale, the single non-vanishing operator is the one the induces LFVQD, thus enhancing the latter process compared to other LFV observables. From an UV point of view this situation—if possible at all—may require very unlikely cancellations or correlations among the parameters. We still show this possibility in order to encompass even tuned scenarios favourable
Table 5: Indirect upper limits on the branching ratio of LFV charmonium decays considering a single non-vanishing LEFT operator at a scale $\mu \in (m_{\psi}, m_Z)$. The intervals show how the indirect limits become stronger as μ increases. The second column displays the low-energy observable that gives the strongest constraint.

Operator	Strongest constraint	Indirect upper limits on BR $J/\psi \rightarrow \ell\ell'$	$\psi(2S) \rightarrow \ell\ell'$
$C_{ru,pecc}$ $\mu \rightarrow e\gamma$	$[3.4 - 0.5] \times 10^{-21}$	$[7.8 - 1.4] \times 10^{-22}$	
$C_{ru,pecc}$ $\mu \rightarrow e\gamma$	$[2.6 - 2.5] \times 10^{-26}$	$[6.3 - 0.5] \times 10^{-27}$	

(a) Vector and tensor operators. The operators $C_{ru,pecc}$, $C_{ru,pecc}$, $C_{ru,pecc}$ and $C_{ru,pecc}$ lead, respectively, to the same results as $C_{ru,pecc}$, $C_{ru,pecc}$, $C_{ru,pecc}$ and $C_{ru,pecc}$.

Operator	Str. const.	Indirect upper limits on BR $J/\psi \rightarrow \ell\ell'$	$\eta_c \rightarrow \ell\ell'$	$\chi_{c0}(1P) \rightarrow \ell\ell'$
$C_{ru,pecc}$ $\mu \rightarrow e\gamma$	$[1.5 - 1.4] \times 10^{-21}$	$[2.0 - 1.9] \times 10^{-20}$	$[3.4 - 3.2] \times 10^{-19}$	
$C_{ru,pecc}$ $\mu \rightarrow e\gamma$	$[1.5 - 1.4] \times 10^{-21}$	$[2.0 - 1.9] \times 10^{-20}$	$[3.4 - 3.2] \times 10^{-19}$	

(b) Scalar operators. We find similar limits for $\psi(2S) \rightarrow \ell\ell\gamma$, about a factor of 4(2) stronger for the $\mu e (\tau\ell)$ channels. See text for details on how the indirect upper limits have been estimated.
to the same results as Scalar operators. The results for (b) Vector and tensor operators. The operators constrained. See text for details on how the indirect upper limits have been estimated.

Operator	Str. const.	Indirect upper limits on BR		
$C_{ed,\mu bb}^{V,LL}$	$\mu \to e$, Au	$[1.1 - 0.08] \times 10^{-12}$	$[9.9 - 0.8] \times 10^{-13}$	$[1.1 - 0.1] \times 10^{-12}$
$C_{ed,\mu bb}^{V,LR}$	$\mu \to e$, Au	$[1.1 - 0.08] \times 10^{-12}$	$[9.9 - 0.8] \times 10^{-13}$	$[1.1 - 0.1] \times 10^{-12}$
$C_{ed,\mu bb}^{T,RR}$	$\mu \to e\gamma$	$[4.7 - 0.7] \times 10^{-19}$	$[4.3 - 0.7] \times 10^{-19}$	$[4.8 - 0.9] \times 10^{-19}$
$C_{\gamma,\mu e}$	$\mu \to e\gamma$	1.6×10^{-25}	1.5×10^{-25}	1.6×10^{-25}

Operator	Str. const.	Indirect upper limits on BR		
$C_{ed,\tau bb}^{V,LL}$	$\tau \to \rho e$	$[3.1 - 0.2] \times 10^{-6}$	$[2.8 - 0.2] \times 10^{-6}$	$[3.0 - 0.3] \times 10^{-6}$
$C_{ed,\tau bb}^{V,LR}$	$\tau \to \rho e$	$[3.1 - 0.2] \times 10^{-6}$	$[2.8 - 0.2] \times 10^{-6}$	$[3.0 - 0.3] \times 10^{-6}$
$C_{ed,\tau bb}^{T,RR}$	$\tau \to e\gamma$	$[4.0 - 0.6] \times 10^{-11}$	$[3.7 - 0.6] \times 10^{-11}$	$[4.1 - 0.8] \times 10^{-11}$
$C_{\gamma,\tau e}$	$\tau \to e\gamma$	1.4×10^{-17}	1.3×10^{-17}	1.4×10^{-17}

(a) Vector and tensor operators. The operators $C_{ed,ijbb}^{V,RR}$, $C_{de,bbij}^{V,LL}$, $C_{ed,ijbb}^{T,RR}$, and $C_{\gamma,ji}$ lead, respectively to the same results as $C_{ed,ijbb}^{V,LL}$, $C_{ed,ijbb}^{V,LR}$, $C_{ed,ijbb}^{T,RR}$, and $C_{\gamma,ij}$.

Operator	Str. const.	Indirect upper limits on BR		
$C_{ed,\mu bb}^{S,RR}$	$\mu \to e$, Au	$[9.2 - 5.6] \times 10^{-19}$	$[1.2 - 0.73] \times 10^{-16}$	$[3.0 - 1.9] \times 10^{-16}$
$C_{ed,\mu bb}^{S,RL}$	$\mu \to e$, Au	$[9.2 - 5.6] \times 10^{-19}$	$[1.2 - 0.73] \times 10^{-16}$	$[3.0 - 1.9] \times 10^{-16}$
$C_{ed,\tau bb}^{S,RR}$	$\tau \to e\gamma$	$[7.6 - 0.1] \times 10^{-9}$	$[1.1 - 0.02] \times 10^{-6}$	$[2.8 - 0.05] \times 10^{-6}$
$C_{ed,\tau bb}^{S,RL}$	$\tau \to e\gamma$	$[3.5 - 0.3] \times 10^{-8}$	$[5.3 - 0.4] \times 10^{-6}$	$[1.2 - 0.09] \times 10^{-5}$

(b) Scalar operators. The results for $\Upsilon(2S)$ are similar in size and the ones for $\Upsilon(3S)$ are slightly less constrained. See text for details on how the indirect upper limits have been estimated.

Table 6: Same as Table 5, but for $b\bar{b}$ states.
to LFVQD, although the case $\mu = m_Z$ leading to stronger bounds should be regarded as a more realistic situation.

For tensor and dipole operators, the strongest constraint arises from muon and tau LFV radiative decays. While the dipole operator directly contributes to the radiative LFV decay $\ell \to \ell' \gamma$, the tensor WC $C_{eq,\ell\ell'qq}^{T,RR}$ contributes to $C_{\gamma,\ell \ell'}$ via RG running. Instead, the vector operators contribute to the dipole operator only at 2-loop in the RG running, while the relevant vector operators for $\tau \to \rho \ell$, $\ell = e, \mu$, and $\mu \to e$ conversion in nuclei are generated at 1-loop, as illustrated by Figure 1. Thus we find that $\tau \to \rho \ell$ and $\mu \to e$ conversion in gold provide the most stringent constraints. We also find the same upper limits for operators with exchanged chiralities, $L \leftrightarrow R$.

In Table 5b we present the results for the scalar operators. Scalar operators with heavy quarks contribute to $\mu \to e$ conversion via gluon operators after integrating out the heavy quark, see Appendix C.3. The dimension-7 gluon operators are not implemented in \texttt{flavia}, but we estimate the contribution of $2q2\ell$ scalar operators with heavy quarks to gluon operators following Ref. [49, 96–98]. Neglecting other loop-induced operators, we find for the $\mu \to e$ conversion rate from the operator $C_{eq,\mu eqq}^S$ or $C_{eq,\mu eqq}^L$

$$\text{CR}(\mu N \to e N) = \frac{m_\mu^5}{36\pi^2 \Gamma_{\text{capt}}} \left| m_p S(p) f_{Gp} + m_n S(n) f_{Gn} \right|^2 \frac{|C_{eq,\mu eqq}^S(\mu = m_q)|^2}{m_q^2},$$

where m_q denotes the quark mass $m_{b,c}$, $X = R, L$, $N = p, n$ the nucleon, f_{GN} is the gluon form factor, $S(N)$ the scalar overlap integral, and Γ_{capt} the muon capture rate. As the ratio $C_{eq,\mu eqq}^S/m_q$ does not run in QCD, the Wilson coefficient at scale μ can be obtained by multiplying with the running quark mass at μ. The expressions for the other two $2q2\ell$ scalar operators are obtained by replacing the Wilson coefficients $C_{eq,\mu eqq}^S$ by $C_{eq,\mu eqq}^L$.

Furthermore, scalar operators with same chirality contribute to the RG running of the dipole operator at 1-loop order and thus are strongly constrained by the non-observation of radiative LFV lepton decays. On the contrary, scalar operators with mixed chirality do not contribute the dipole operator at 1-loop order in the RG evolution. However, starting from 2-loop order, there are contributions which we estimate in the leading-log approximation as

$$C_{\gamma,ij}(m_\ell) = \frac{e^3}{(4\pi)^4} \frac{16}{3} m_\ell \ln \left(\frac{\bar{\mu}}{\max(m_\ell, m_c)} \right) C_{eq,ijcc}^{S,RL}(\bar{\mu}),$$

where we employed the 2-loop anomalous dimensions calculated in [49]. Using this equation and setting $\bar{\mu} = m_Z$ or the quarkonium mass scale $m_{q\bar{q}}$, we estimate the indirect bounds for the scalar operators with mixed chiralities.

We find similar results for LEFT operators with b quarks which are presented in Table 6. The strongest constraints also originate from radiative LFV lepton decays for all operators with the exception of vector operators where $\tau \to \rho \ell$ and $\mu \to e$ conversion in gold provide the most stringent upper bounds. The 2-loop contribution of mixed chirality scalar operators to the dipole operator can be estimated as

$$C_{\gamma,ij}(m_\ell) = \frac{e^3}{(4\pi)^4} \frac{4}{3} m_b \ln \left(\frac{\bar{\mu}}{m_b} \right) C_{eq,ijbb}^{S,RL}(\bar{\mu}).$$

Looking at the results in Tables 5 and 6, one can already get a good feeling about the most promising WCs and decay channels. Firstly, we see that there is no hope to study LFV dipole operators via LFVQD. This should not be surprising, since these operators generate the severely constrained processes $\ell' \to \ell \gamma$ already at the tree level. Tensor operators share the same fate, as large RGE effects mix them to the dipole operators. Secondly, we note that the $e\mu$ LFVQD modes, if induced by vector operators, are less suppressed but still far from the current experimental sensitivities both for $c\bar{c}$ and $b\bar{b}$ states, cf. Table 1. In this case, the most relevant constraints arises from $\mu \to e$ conversion in nuclei, whose bound is expected to improve impressively in the next few years (see Table 2) thus suppressing even more our hope to observe $q\bar{q} \to e\mu$ decays.
Finally, the results in the $\tau\ell$ sector seem more optimistic for future LFVQD searches. In the case of $c\bar{c} \rightarrow \ell\tau$ decays, we find maximum allowed rates at the level of 10^{-9}-10^{-10}, which are about one-two orders or magnitude below the latest BESIII results for $J/\psi \rightarrow e\tau$, and may be partly within the sensitivity of a future super tau-charm factory (STCF). On the other hand, we find larger allowed rates for $b\bar{b} \rightarrow \ell\tau$ decays, of the order of 10^{-6}-10^{-7}. This is a consequence of a combination of phase space, narrower widths and smaller QED-induced RGE effects, since b quarks carry half the electric charge of c quarks. Interestingly, the resulting rates for $b\bar{b} \rightarrow \ell\tau$ decays are at the level of current sensitivities, implying that Belle II can probe these LEFT vector operators beyond the reach of any other experiment. Notice that the results in Table 6a show that the sensitivities to new physics of $\Upsilon(1S)$, $\Upsilon(2S)$ and $\Upsilon(3S)$ are comparable, since the effect of the different widths ($\Gamma[\Upsilon(1S)] > \Gamma[\Upsilon(2S)] > \Gamma[\Upsilon(3S)]$) is largely compensated by the different masses.

The effectiveness of indirect constraints from tau decays such as $\tau \rightarrow \ell\rho$ stems from the fact that the width of the J/ψ resonance is about 7 orders of magnitude larger than the tau width. This obviously contributes to suppress the branching ratios of the LFV J/ψ decays compared to the tau ones.

Although BESIII has not provided results for $J/\psi \rightarrow \mu\tau$ yet, we assume they can set a limit at the same level as the $J/\psi \rightarrow e\tau$ one, thus improving the current bound by almost two orders of magnitude, cf. Table 1.

In a ~ 3-year run, the STCF could produce $\sim 10^{13} J/\psi$ decays [24], that is, 1000 more than those employed by BESIII to set the present constraint [16].
and decay constants, cf. Table 4. Hence, running the experiment longer at the centre-of-mass energy of only one of these resonances may be a more effective probe of our LFV operators than collecting data in shorter runs for each resonance.\(^5\)

The results for scalar operators reported in Tables 5b and 6b give a quantitative target for future experiments. Indeed, they provide indirect upper limits for a number of processes that have never been searched for, with the exception of the \(\Upsilon(1S) \to \ell\ell\gamma\) modes. As shown in Table 1, the Belle collaboration has recently released the first limits on these processes, which are about 2-3 orders of magnitude above our indirect limits (for the \(\ell\tau\) modes). Certainly, searches for the processes in Tables 5b and 6b are worth pursuing, since they are sensitive to different LEFT operators — hence potentially to different kinds of new physics — compared to the 2-body quarkonia decays. However, one should point out that the UV completion of some of these operators is not straightforward. For instance, one can see from Eqs. (44,48) in Appendix A that \(C^{S,RL}_{eu}\) and \(C^{S,RR}_{ed}\) match to no dimension-6 SMEFT operator at tree level.

Before moving forward, it is important to clarify that, even if Tables 5 and 6 indicate the most constraining observable for each operator, these are not the only relevant processes. In order to illustrate this, we show in Figure 2 the relative importance of different LFV processes for each individual LEFT operator. For each WC, we take the largest possible value (at \(\mu = m_Z\)) that is still allowed by all constraints. The rate of each observable is normalised to its current experimental upper limit, so the closer it is to 1 (darker colour), the more relevant that process is. We see, for instance, that the three-body leptonic decays are also important for constraining the vectorial operators, even if \(\tau \to \rho\ell\) gives the strongest bound at present. This fact is important in particular when considering more complex scenarios in an attempt to evade some of the bounds and maximise the LFVQD rates, since suppressing the most constraining observable given in Tables 5 and 6 might not be enough. We will discuss this point in the following subsection within the SMEFT framework.

It is also interesting to compare these results with the limits obtained from high-energy measurements of the tail of di-lepton distributions at the LHC \([62]\), although it is important to note that they are valid only if the NP scale is high enough so that the EFT is still valid at the LHC \((i.e., \text{above a few } \text{TeV})\). We see that the LHC bounds in the last column of Figure 2 are several orders of magnitude weaker than low-energy constraints in the \(\mu e\) sector, although they are similar (even slightly stronger in some cases) for the \(\tau \ell\) sector. This nicely shows the complementarity between low- and high-energy LFV searches.

4.2 SMEFT analysis

Next, we consider the SMEFT framework. While it is the natural EFT setup when the new physics scale lies above the EW scale, it does not provide a valid description for low-energy processes such as the LFVQD. Therefore, a proper LFV analysis of our observables in terms of the SMEFT operators requires a convolution of SMEFT RGE \([50-52]\) down to the EW scale, matching to LEFT \([45]\), and LEFT RGE \([53]\) to the physical scale of interest, \(i.e.,\) the quarkonium mass. The first two steps introduce additional contributions that might distort the LEFT results discussed in the previous subsection.

Given the results of the analysis above, here we only focus on LFV vector quarkonium decays, \(V \to \ell\ell'\). Moreover, due to the strong bounds from \(\ell_i \to \ell_j\gamma\), we neglect the dipole operators and consider just the \(2q2\ell\) operators in Table 3, with the exception of \(\mathcal{O}_{\text{eqru}}^{(1/3)}\) and \(\mathcal{O}_{\text{edru}}\), since they induce large dipole operators through RGE and are thus very tightly constrained.

In Figure 3 we present the results for the single SMEFT operator analysis for the \(\mu e\) sector, switching on at the scale \(\Lambda\) just a single \(2q2\ell\) operator. We show for each operator the maximum new physics scale that is being probed by each observable, as accessing larger scales would require of non-perturbative WCs, that is \(|C(\Lambda)| > 1\). The different coloured bars show the current limits (dark colour) and future reach (light colour) for different observables. For LFVQD (orange-red)

\(^5\)On the other hand the width of \(\Upsilon(4S)\) is about 1000 times larger than that of \(\Upsilon(3S)\), thus we do not expect that studying exotic decays of the former resonance would be beneficial to testing new physics.
we illustrate with different shadings possible improvements of the sensitivity to the branching ratio by one, two, and three orders of magnitude. The left (right) plot shows the results for 2q2ℓ operators with second (third) generation quarks, motivated by searches for LFV charmonium (bottomonium) decays. For all operators, searches for μ → e conversion in nuclei (yellow), followed by μ → eee (blue) provide the most stringent constraints with an expected improvement of one order of magnitude in the future. Both LFVQD and μ → eγ (grey) are less sensitive to 4-fermion 2q2ℓ SMEFT operators. If new physics mainly generates the operators in Figure 3 with couplings C/Λ^2 ≳ 1/(1000 TeV)^2 − 1/(100 TeV)^2, we thus expect that both μ → e conversion in nuclei and μ → eee will be observed at upcoming experiments, while μ → eγ and LFVQD, such as J/ψ → eμ and Y(nS) → eμ, will not. Hence any observation of LFVQD to eμ would be a most striking signal that cannot be explained in terms of a single 2q2ℓ SMEFT operator.

Figure 4 displays the analogous results for the single SMEFT operator analysis in the τe sector. The different coloured bars illustrate now the sensitivity of LFVQD (orange-red), τ → eee (blue), τ → eμμ (green), τ → ρe (yellow), τ → πe (purple), Z → eτ (dark red) and the radiative decay.

6Similar results are obtained for the τµ sector with the only exception being J/ψ → µτ, for which there is no BESIII analysis yet.
\(\tau \to e\gamma \) (grey). We find that current constraints (dark colour) for LFV \(\tau \) decays provide the most stringent constraints. Nevertheless, if the sensitivity of LFVQD searches is improved by 2-3 orders of magnitude, they may probe currently unexplored new physics scales \(\Lambda \) for some of the operators. While this observation is in line with the results of the above LEFT analysis for \(J/\psi \to e\tau \), the results for \(\Upsilon(nS) \to e\tau \) in Figure 4 look somewhat less optimistic than those obtained within the LEFT framework, cf. Table 6a.

The origin of these strong constraints for some of the operators involving \(b \) quarks is precisely the above-mentioned additional RGE effects that SMEFT operators are subject to. In particular, diagrams obtained by closing the quark loop of a \(2q2\ell \) operator can contribute to the lepton-Higgs operators displayed in Table 3, which induce LFV couplings of the \(Z \) boson, see Eqs. (53, 54). In turn, such couplings give rise to both LFV \(Z \) decays and all kinds of LFV 4-fermion operators (\(2q2\ell \) as well as \(4\ell \)) through the matching shown in Appendix A, see e.g. Ref. [27]. Due to the large coupling to the Higgs field, this effect is particularly pronounced for those operators involving top quarks and it enhances the relative importance of LFV \(\tau \) decays and \(Z \to e\tau \) compared to LFVQD, as can be seen in the right plot of Figure 4. Interestingly, this plot also shows that, in line to the observations in Ref. [27], a \(Z \)-pole run of future \(e^+e^- \) colliders such as the FCC-ee or the CEPC would probe these operators through \(Z \) LFV as well as (or better than) Belle II will do searching for LFV \(\tau \) decays. On the other hand, operators that do not involve top quarks will not generate large \(Z \) LFV effects (e.g. \(C_{el,zebb} \) and \(C_{ed,zebb} \)) and can be probed better by searches for \(\Upsilon(nS) \to e\tau \) (and LFV \(\tau \) decays) than \(Z \to e\tau \). This provides an interesting example of the complementarity between low-energy and high-energy searches for LFV phenomena.

Figure 4: Same as Figure 3 for the \(\tau e \) sector.
As in the previous LEFT analysis, switching on a single WC is a good first approach to analysing the LFVQD. However, it is a somewhat unrealistic scenario for any UV-complete theory. Unless some additional symmetry is present, we could expect that several of our SMEFT operators are generated at the new physics scale Λ where we can integrate out the new degrees of freedom, and this could induce possible interferences and cancellations among different operators, changing the conclusions drawn above. Indeed, this is not an unlikely outcome, given the interplay among $2q2\ell$ operators and RGE-induced lepton-Higgs operators that we have just discussed.

In order to explore possible deviations from the single operator analysis, we now turn to a two-operator SMEFT analysis in the τe sector. In Figures 5 and 6 we show the resulting LFVQD branching ratios as functions of the $2q2\ell$ and lepton-Higgs Wilson coefficients on a logarithmic scale. We choose the lepton-Higgs WC to be positive, hence in the right panels both WCs are
Figure 6: Contours of \(\text{BR}(\Upsilon(1S) \rightarrow e\tau) \) as a function of the Wilson coefficients \(C_{\text{ed},\tau e33} \) and \(C_{\varphi e,\tau e} \) (top panel) and \(C_{\text{eq},\tau e33} \) and \(C_{\varphi e,\tau e} \) (bottom panel) at the scale \(\Lambda = 1 \text{ TeV} \). Colours as in Figure 5.

positive, while in the left panels the \(2q2\ell \) WC is negative. The top panels show results for operators involving right-handed quark currents and the bottom panels for left-handed quark currents. For illustration purposes, we only show results for right-handed lepton currents but we find qualitatively similar results for operators built from the corresponding left-handed currents. Notice that we set \(\Lambda = 1 \text{ TeV} \) for all plots.

The light-coloured regions in Figures 5 and 6 are allowed by the present bounds on \(\tau \rightarrow eee \) (blue), \(\tau \rightarrow \pi e \) (green), \(\tau \rightarrow \rho e \) (yellow). The corresponding darker colours indicate the future reach of these processes, that is, how negative results of future searches would reduce the allowed parameter space. Besides those three \(\tau \) decays, we display the impact of the future sensitivity on \(Z \rightarrow e\tau \) (red), while we do not show its current bound, as this process is not sensitive enough to constrain the displayed WCs at present. The plots show that constraints from LFV \(Z \) (future) and \(\tau \) decays are generally more relevant than LFVQD, in line with the results previously shown in Figure 4. However, there exist non-trivial relations among the Wilson coefficients that can lead
to cancellations in one or more of the decay rates. These are visible as flat directions, where the contour lines or the shaded regions extend to arbitrarily large values of the Wilson coefficients. The cancellation is generally only possible for a single observable in a given direction, so that the overall bound on the size of the WCs is not much affected. In other words, most of the times different LFV τ decays are complementary and cover each others flat directions. There is, however, the possibility of an intriguing simultaneous cancellation in all observables with the exception of $\Upsilon(1S) \to e\tau$, as shown in the bottom right panel of Figure 6. This means that, along that direction, $\text{BR}(\Upsilon(1S) \to e\tau)$ is not subject to indirect constraints from LFV τ decays and can in principle be as large as to saturate the present experimental limit.

These flat directions can be understood by looking at the leading order running and matching conditions of our two EFTs. The LFVQD branching ratio for right-handed charged leptons is proportional to the square of $|V_R|$ in Eq. (9), which can be expressed in terms of SMEFT operators at the matching scale $\mu = m_Z$ following the relations in Appendix A. Neglecting RGE effects, the amplitude for $J/\psi \to e\tau$ is then proportional to

$$V_R \propto C_{eu,\tau e 22} + C_{qe,22\tau e} + \left(1 - \frac{8}{5}s_w^2\right)C_{\phi e,\tau e} \approx C_{eu,\tau e 22} + C_{qe,22\tau e} + 0.4C_{\phi e,\tau e}, \quad (32)$$

where $s_w \equiv \sin \theta_W$ is the sine of the weak mixing angle. Then, we clearly see that there are flat directions with vanishing V_R, which can be observed in the left panels of Figure 5. Similarly for $\Upsilon(1S) \to e\tau$ the amplitude is proportional to

$$V_R \propto C_{ed,\tau e 33} + V_{ib}^*V_{jb}C_{qe,ij\tau e} - \left(1 - \frac{4}{3}s_w^2\right)C_{\phi e,\tau e} \approx C_{ed,\tau e 33} + V_{ib}^*V_{jb}C_{qe,ij\tau e} - 0.7C_{\phi e,\tau e}, \quad (33)$$

where V is the CKM matrix. Notice that the relative sign between the C_{qe} and the $2q2\ell$ operators is now opposite, hence the flat directions for $\Upsilon(1S) \to e\tau$ appear in the right panels of Figure 6.

Understanding the flat directions for the other LFV decays in the figures is more involved. The reason is that the $2q2\ell$ operators we are switching on at $\mu = \Lambda$ do not generate directly any of these processes, therefore we need to consider their RGE effects that induce the relevant WCs: $2q2\ell$ operators with uu or dd, 4ℓ operators and lepton-Higgs operators. In general, the dominant contributions come from the gauge RGEs $[52]$, whose coefficients depend on the quantum numbers of all the involved particles. This means that the RGE-induced WCs will be different for each observable in each panel, so in general we can expect that the flat directions, if any, will be different for every observable. Indeed, by doing this exercise and solving the gauge RGEs in the leading log approximation, it is straightforward to reproduce almost every flat direction in Figures 5 and 6.

The only exception is when the third generation of the quark doublet is involved, as in the lower panels of Figure 6. Even if we were interested just in bottom quarks, the same $SU(2)_L$-invariant operator involves the top quark, whose large Yukawa coupling dominates the RGEs over the gauge contributions. In particular, this Yukawa term induces a large lepton-Higgs operator $[51]$, which in the leading log approach is given by

$$C_{\phi e,\tau e}(\mu) \approx \frac{6Y_t^2}{16\pi^2} \log\left(\frac{\mu}{\Lambda}\right)C_{qe,\tau e 33}(\Lambda), \quad (34)$$

Due to this large contribution every observable, but the LFVQD, in Figure 6 is completely dominated by the lepton-Higgs operator, either by the one we switched on directly at $\mu = \Lambda$ (if $C_{qe} \simeq C_{eq}$) or by the RGE-induced one (if $C_{qe} \ll C_{eq}$). In between, these two contributions compete and can actually cancel each other. In other words, along the common flat direction in the right panel of Figure 6 both effect conspire in order to have $C_{\phi e,\tau e}(\mu = m_Z) \simeq 0$, suppressing all the constraining LFV processes at the same time.

This last result is just an example pointing towards the LFVQD as the only observable to explore this kind of flat directions along which all the other observables vanish. Notice however

As the LEFT $2q2\ell$ vector Wilson coefficients do not receive 1-loop QCD RG corrections, it is enough to consider the SMEFT running.
that these cancellations do not necessarily exactly hold at higher orders, which we did not include in our analysis. Nevertheless, even if these higher order terms would spoil this perfect cancellation, we still expect a strong suppression in all these LFV processes, leading the LFVQD as our best hope to explore these directions of the parameter space.\(^8\)

5 Summary and conclusions

In this paper, we have addressed the prospects of testing new physics in LFV decays of \(c\bar{c}\) and \(b\bar{b}\) bound states and, more in general, studied the low-energy phenomenology of LFV \(2q2\ell\) operators with two charm or bottom fields. Within an EFT framework, we could identify in a model-independent way the muon and tau LFV processes that, through radiative effects as illustrated in Figure 1, indirectly limit the rates of processes such as \(J/\psi \rightarrow \ell\ell', J/\psi \rightarrow \ell\ell'\gamma, \Upsilon(nS) \rightarrow \ell\ell'\) etc., which can be sought at BESIII, Belle II, and the proposed super tau-charm factory (STCF). Our analysis goes beyond previous work by considering both LEFT and SMEFT and in the number of considered processes. The main results of our work can be summarised as follows.

- In Section 3, we recomputed the rates of vector quarkonia LFV decays (with or without the emission of a photon) as well as those of (pseudo)scalar quarkonium states. We found good agreement with analogous calculations published in Ref. [58] and Ref. [72] with the appropriate adjustments for neutrinos in the final state, apart from minor differences with the results for vector quarkonium decays in Ref. [58], see Section 3.1 and Appendix B for details.

- Indirect limits, obtained within the LEFT, for a comprehensive list of LFV decays of heavy quarkonia are shown in Tables 5 and 6.

- For flavour violation in the \(\mu e\) sector, \(\mu \rightarrow e\) conversion in nuclei and \(\mu \rightarrow e\gamma\) set such strong constraints on the relevant operators that the rates of the processes we considered are bound to be way below the most optimistic future expected sensitivities, e.g. \(BR(J/\psi \rightarrow e\mu) \lesssim 10^{-15}\), \(BR(\Upsilon(nS) \rightarrow e\mu) \lesssim 10^{-12}\). Observing processes of this kind would then be a striking signal of some new physics not captured by our EFT framework.

- In the case of flavour violation in the \(\tau\ell\) sector, the maximum allowed rates for \(c\bar{c} \rightarrow \ell\tau\) decays are at the level of \(10^{-9}-10^{-10}\), about one-two orders or magnitude below the latest BESIII bounds, and may be within the sensitivity of the STCF. The maximal rates for \(b\bar{b} \rightarrow \ell\tau\) decays can be larger, of the order of \(10^{-6}-10^{-7}\), that is, at the level of the current best limits set by B-factory experiments, cf. Table 1. Hence Belle II has the potential to test new physics by searching for LFV bottomonium decays.

- Our LEFT analysis did not consider possibly relevant effects of the running of the operators above the EW scale, nor possible cancellations among different operators. Both these effects are analysed within the SMEFT framework in Section 4.2.

- As shown in Figure 4, the SMEFT running tends to increase the relative importance of the constraints from LFV tau decays compared to \(J/\psi \rightarrow \ell\tau\) and \(\Upsilon(nS) \rightarrow \ell\tau\). As a consequence, for most \(2q2\ell\) operators, an improvement of three orders of magnitude on the experimental sensitivity to the latter processes would barely suffice to test new physics scales at the level of LFV tau decays.

- This effect is particularly pronounced in the case of operators contributing to \(\Upsilon(nS) \rightarrow \ell\tau\) that involve top quarks. Interestingly, such operators could be better tested not only through

\(^8\)At the level of precision of our calculations, analogous flat directions can be observed in the \(\mu e\) sector. However, given the strong constraints set by muon processes, they require fine-tuned cancellations that will likely be destabilised by higher-order corrections. For these reasons, we refrain from a detailed discussion of this possibility.
tau decays by Belle II, but also by searches for LFV Z decays, $Z \rightarrow \ell\tau$, at a Tera-Z run of a future e^+e^- collider up to scales ~ 10 TeV.

- On the other hand, $\Upsilon(nS) \rightarrow \ell\tau$ (and LFV tau decays) are more sensitive than $Z \rightarrow \ell\tau$ to operators that do not involve top quarks. This provides a nice example of the complementarity between low-energy and high-energy searches for LFV phenomena.

- If the new physics effects are not dominantly captured by a single SMEFT operator, cancelations (accidental or perhaps induced by symmetries of the UV-complete theory) among different contributions to the LFV decay rates are possible. In particular, we showed in Figure 6 an example of a flat direction, along which all tau decays are suppressed and thus $\Upsilon(nS) \rightarrow \ell\tau$ can saturate the present experimental bounds. A qualitatively similar picture is obtained when considering operators involving left-handed instead of right-handed lepton currents.

- As a by-product of our analysis, we revisited the prospects for μe flavour violation induced by $2q2\ell$ operators with heavy quarks, see Figure 3. This can be observable by Mu3e and Mu2e/COMET up to new-physics scales ~ 1000 TeV, while no other LFV process (in particular $\mu \rightarrow e\gamma$) should be observed if these operators are the main source of flavour violation. Hence, if both $\mu \rightarrow eee$ and $\mu \rightarrow e$ conversion in nuclei are detected and the orders of magnitude of their rates are comparable, that would be an indication of this kind of operators as the origin of lepton flavour violation. In contrast, new physics dominantly inducing 4-lepton operators would give $\text{BR}(\mu \rightarrow eee) \gg \text{CR}(\mu N \rightarrow e N)$, while it would be the other way round for $2q2\ell$ operators involving light quarks. This nice interplay of different processes highlights once more the model-discriminating power of the upcoming campaign of searches for LFV muon decays.

Acknowledgements

We would like to thank Claudia García-García for valuable discussions and tips for designing the figures, and Martin Hoferichter for useful feedback on a previous version of this paper. LC and TL are partially supported by the National Natural Science Foundation of China (NSFC) under the Grant No. 12035008. TL is also supported by the NSFC (Grant No. 11975129) and “the Fundamental Research Funds for the Central Universities”, Nankai University (Grant No. 63196013). MS acknowledges support by the Australian Research Council through the ARC Discovery Project DP200101470. XM acknowledges partial support from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 860881-HIDDeN and from the Spanish Research Agency (Agencia Estatal de Investigación) through the Grant IFT Centro de Excelencia Severo Ochoa No CEX2020-001007-S and Grant PID2019-108892RB-I00 funded by MCIN/AEI/10.13039/501100011033. This research includes computations using the computational cluster Katana [99] supported by Research Technology Services at UNSW Sydney.

A EW-scale LEFT-SMEFT matching

As discussed in Ref. [45], at the EW scale, the SMEFT operators shown in Table 3 match to the dipole operator in Eq. (2) as

$$\hat{C}_{eB,pr} \approx \frac{v}{\sqrt{2} \Lambda^2} (C_{eB,pr} \cos \theta_W - C_{eW,pr} \sin \theta_W) . \quad (35)$$

Here and in the following, \hat{C} denote the WCs in the flavour basis. The corresponding WCs C in the physical mass basis are obtained by applying the unitary transformation $\hat{f}_X = X_f f_X$, where hatted fields are in the flavour basis, and unhatted fields in the physical mass basis, $f = u, d, e, \nu$.
and $X = L, R$. Throughout this work, we work in the basis where $R_{u,d,e,\nu} = L_{u,d,e,\nu} \equiv 1$, the identity matrix, and $L_d = V_{\text{CKM}}$, the CKM matrix.

The LEFT-SMEFT matching for the $2q2\ell$ operators in Eq. (3) reads

\begin{align}
\hat{\mathcal{O}}_{ee,prst} &= \frac{\Lambda^2}{2} \left(C_{ee,prst}^{(1)} - C_{ee,prst}^{(3)} \right) - \frac{g_Z^2}{m_Z^2} [Z_{eL}]_{pr} [Z_{uL}]_{st}, \\
\hat{\mathcal{O}}_{ed,prst} &= \frac{\Lambda^2}{2} \left(C_{ed,prst}^{(1)} + C_{ed,prst}^{(3)} \right) - \frac{g_Z^2}{m_Z^2} [Z_{eL}]_{pr} [Z_{dL}]_{st}, \\
\hat{\mathcal{O}}_{ue,prst} &= \frac{\Lambda^2}{2} \left(C_{ue,prst}^{(1)} - C_{ue,prst}^{(3)} \right) - \frac{g_Z^2}{m_Z^2} [Z_{eR}]_{pr} [Z_{uR}]_{st}, \\
\hat{\mathcal{O}}_{ed,prst} &= \frac{\Lambda^2}{2} \left(C_{ed,prst}^{(1)} + C_{ed,prst}^{(3)} \right) - \frac{g_Z^2}{m_Z^2} [Z_{eL}]_{pr} [Z_{dR}]_{st}, \\
\hat{\mathcal{O}}_{ue,prst} &= \frac{\Lambda^2}{2} \left(C_{ue,prst}^{(1)} - C_{ue,prst}^{(3)} \right) - \frac{g_Z^2}{m_Z^2} [Z_{eR}]_{st} [Z_{uL}]_{pr}, \\
\hat{\mathcal{O}}_{de,prst} &= \frac{\Lambda^2}{2} \left(C_{de,prst}^{(1)} - C_{de,prst}^{(3)} \right) - \frac{g_Z^2}{m_Z^2} [Z_{eR}]_{st} [Z_{dL}]_{pr},
\end{align}

(36) (37) (38) (39) (40) (41) (42) (43) (44) (45) (46) (47) (48) (49)

and that of the 4-lepton operators in Eq. (4) is

\begin{align}
\hat{\mathcal{O}}_{ee,prst} &= \frac{\Lambda^2}{2} \left(C_{ee,prst}^{(1)} - C_{ee,prst}^{(3)} \right) - \frac{g_Z^2}{4m_Z^2} [Z_{eL}]_{pr} [Z_{eL}]_{st} - \frac{g_Z^2}{4m_Z^2} [Z_{eL}]_{pr} [Z_{eL}]_{sr}, \\
\hat{\mathcal{O}}_{ee,prst} &= \frac{\Lambda^2}{2} \left(C_{ee,prst}^{(1)} - C_{ee,prst}^{(3)} \right) - \frac{g_Z^2}{4m_Z^2} [Z_{eR}]_{pr} [Z_{eR}]_{st} - \frac{g_Z^2}{4m_Z^2} [Z_{eR}]_{pr} [Z_{eR}]_{sr}, \\
\hat{\mathcal{O}}_{ee,prst} &= \frac{\Lambda^2}{2} \left(C_{ee,prst}^{(1)} - C_{ee,prst}^{(3)} \right) - \frac{g_Z^2}{4m_Z^2} [Z_{eL}]_{pr} [Z_{eL}]_{st}.
\end{align}

(50) (51) (52)

In the above expressions, the effective interactions of the Z boson read

\begin{align}
[Z_{eL}]_{pr} &= \left[\delta_{pr} \left(-\frac{1}{2} + \sin^2 \theta_W \right) \right] - \frac{1}{2} \frac{v^2}{\Lambda^2} \left(C_{\ell L,pr}^{(1)} + C_{\ell L,pr}^{(3)} \right), \\
[Z_{eR}]_{pr} &= \left[\delta_{pr} \left(\sin^2 \theta_W \right) \right] - \frac{1}{2} \frac{v^2}{\Lambda^2} C_{\ell e,pr}, \\
[Z_{uL}]_{pr} &= \left[\delta_{pr} \left(\frac{1}{2} - \frac{2}{3} \sin^2 \theta_W \right) \right] - \frac{1}{2} \frac{v^2}{\Lambda^2} \left(C_{qL,pr}^{(1)} - C_{qL,pr}^{(3)} \right), \\
[Z_{uR}]_{pr} &= \left[\delta_{pr} \left(\frac{2}{3} \sin^2 \theta_W \right) \right] - \frac{1}{2} \frac{v^2}{\Lambda^2} C_{qL,pr}.
\end{align}

(53) (54) (55) (56)
\[[Z_{dL}]_{pr} = \left[\delta_{pr} \left(-\frac{1}{2} \frac{1}{3} \sin^2 \theta_W \right) - \frac{1}{2} \frac{v^2}{\Lambda^2} \left(C_{\varphi q, pr}^{(1)} + C_{\varphi q, pr}^{(3)} \right) \right], \quad (57) \]
\[[Z_{dR}]_{pr} = \left[\delta_{pr} \left(\frac{1}{3} \sin^2 \theta_W \right) - \frac{1}{2} \frac{v^2}{\Lambda^2} C_{\varphi d, pr} \right]. \quad (58) \]

For simplicity, we set all other SMEFT operators to zero, when defining the theory at the high scale, in particular, those involving Higgs fields together with gauge field strengths or Higgs fields only. While other Higgs operators will be generated by RG corrections, in particular LFV lepton-Higgs operators, the latter ones will not \([50–52]\). Hence, under this assumption, the Higgs vacuum expectation value, the \(Z \) coupling and the Weinberg angle receive no corrections and they are simply given by the usual SM definitions. In particular, in the above expressions, one has \(g_Z = e/\left(\sin \theta_W \cos \theta_W \right) \). For these reasons, the above formulae are somewhat simplified compared to the full ones presented in Ref. \([45]\). Given our choice of basis, the only non-trivial relations between WC in the flavour and physical mass basis for neutral-current LFV 4-fermion LEFT operators are

\[
C_{ed, prst}^{V, LL} = \hat{C}_{ed, prab}^{V, LL} V_s^* V_t, \quad C_{de, prst}^{V, LR} = \hat{C}_{de, abst}^{V, LR} V_s^* V_{br},
\]
\[
C_{ed, prst}^{S, RL} = \hat{C}_{ed, prat}^{S, RL} V_s^* V_t, \quad C_{de, prst}^{S, RR} = \hat{C}_{de, prst}^{S, RR} V_s^* V_{as}, \quad C_{ed, prst}^{T, RR} = \hat{C}_{ed, prst}^{T, RR} V_s^* V_{as}, \quad (59)
\]

where \(v_{ij} \) are entries of the CKM matrix. For all other Wilson coefficients of LFV LEFT operators, the flavour basis agrees with the mass basis by construction.

B Calculational details for radiative LFV vector quarkonium decays

This section provides additional calculational details for the radiative LFV vector quarkonium decay presented in Section 3.2. The full matrix element for \(V(P, \epsilon V) \rightarrow \ell_i^- (p_i) \ell_j^+ (p_j) \gamma (q, \epsilon) \) is given by

\[
\mathcal{M} = \frac{Q_{q} e}{x_{m_{V}^{2}}} \left[(P \cdot q) (\epsilon_{\nu} \cdot \epsilon^{*}) - (P \cdot \epsilon^{*}) (q \cdot \epsilon_{\nu}) \right] \bar{u}_i \left[(S_R + \bar{S}_R x_\gamma) P_R + (S_L + \bar{S}_L x_\gamma) P_L \right] v_j
\]
\[
+ \frac{Q_{q} e}{x_{m_{V}^{2}}} \epsilon_{\alpha \beta \mu \nu} P^\alpha q^\beta \epsilon_{\nu}^{\epsilon^{*}} \bar{u}_i \left[(P_R' + i P_R' x_\gamma) P_R + (P_L' + i P_L' x_\gamma) P_L \right] v_j
\]
\[
+ \frac{Q_{q} e}{x_{m_{V}^{2}}} \epsilon_{\alpha \beta \mu \nu} q^\beta \epsilon_{\nu}^{*} \bar{u}_i \gamma^{\gamma} (A_R P_R + A_L P_L) v_j
\]
\[
+ e Q_{l} \frac{2}{V_{L}} \bar{u}_i \left[\frac{2 p_i \cdot \epsilon^{*} + \epsilon^{*} q}{2 p_i \cdot q} \epsilon_{\nu}^{\nu} P_L - \epsilon_{\nu}^{\nu} P_L - \frac{2 p_j \cdot \epsilon^{*} + \epsilon^{*} q}{2 p_j \cdot q} \right] v_j
\]
\[
+ e Q_{l} \frac{2}{V_{R}} \bar{u}_i \left[\frac{2 p_i \cdot \epsilon^{*} + \epsilon^{*} q}{2 p_i \cdot q} \epsilon_{\nu}^{\nu} P_R - \epsilon_{\nu}^{\nu} P_R - \frac{2 p_j \cdot \epsilon^{*} + \epsilon^{*} q}{2 p_j \cdot q} \right] v_j
\]
\[
+ \frac{2 e Q_{l} T_{L}}{m_{V}} \bar{u}_i \left[\frac{2 p_i \cdot \epsilon^{*} + \epsilon^{*} q}{2 p_i \cdot q} \epsilon_{\nu}^{\nu} \sigma_{\mu \nu} p^\mu P_L - \epsilon_{\nu}^{\nu} \sigma_{\mu \nu} p^\mu P_L - \frac{2 p_j \cdot \epsilon^{*} + \epsilon^{*} q}{2 p_j \cdot q} \right] v_j
\]
\[
+ \frac{2 e Q_{l} T_{R}}{m_{V}} \bar{u}_i \left[\frac{2 p_i \cdot \epsilon^{*} + \epsilon^{*} q}{2 p_i \cdot q} \epsilon_{\nu}^{\nu} \sigma_{\mu \nu} p^\mu P_R - \epsilon_{\nu}^{\nu} \sigma_{\mu \nu} p^\mu P_R - \frac{2 p_j \cdot \epsilon^{*} + \epsilon^{*} q}{2 p_j \cdot q} \right] v_j, \quad (60)
\]

where the first three lines originate from initial state radiation and the last four from final state radiation. The coefficients are defined in Eqs. (8), (9) and (13). The relevant scalar products are

\[
P \cdot q = m_{V}^{2} x_\gamma / 2, \quad p^{2} = m_{V}^{2}, \quad q^{2} = 0, \quad p_{i}^{2} = y_{i}^{2} m_{V}^{2}, \quad P \cdot p_{i} = \frac{m_{V}^{2}}{2} x_i, \quad P \cdot q = \frac{m_{V}^{2}}{2} x_\gamma, \quad (61)
\]

and the products of final state momenta are

\[
p_{i} \cdot p_{j} = \frac{m_{V}^{2}}{2} (1 - y_{i}^{2} - y_{j}^{2} - x_\gamma), \quad p_{i} \cdot q = \frac{m_{V}^{2}}{2} (1 + y_{j}^{2} - y_{i}^{2} - x_\gamma), \quad (62)
\]
where the variables x and y are defined as $x_i = 2E_i/m_V$ and $y_i = m_i/m_V$, and the x_i satisfy the relation $x_1 + x_2 + x_3 = 2$. Similar expressions apply for $i \leftrightarrow j$. Using FeynCalc [69–71], we calculate the summed and averaged squared matrix element

$$|\mathcal{M}|^2 = \frac{1}{3} \sum_{\text{spin,pol}} |\mathcal{M}|^2.$$ (63)

The differential decay rate is then given by

$$\frac{d\Gamma}{dx_i dx_j} = \frac{m_V}{256\pi^3} |\mathcal{M}|^2,$$ (64)

with

$$2y_a \leq x_a \leq 1 + y_a^2 - y_b^2 - y_c^2 - 2ykyc, \quad x_b^- \leq x_b \leq x_b^+,$$ (65)

$$x_b^\pm = \frac{1}{2(1 - x_a + y_a^2)} \left[(2 - x_a)(1 + y_a^2 + y_b^2 - y_c^2 - x_a) \pm \sqrt{x_a^2 - 4y_a^2\lambda^{1/2}(1 + y_a^2 - x_a, y_b^2, y_c^2)} \right],$$ (66)

where we choose $a = \gamma, \ b = i$ and $c = j$. In the following we do not consider operators which are also constrained by the LFV 2-body decay, i.e. we set $V_{L,R} = T_{L,R} = 0$ and thus only the contributions from initial state radiation contribute. Furthermore, we assume a hierarchy among the final state lepton masses. The results slightly differ depending on which of the lepton masses is neglected, because the chirality of the massless lepton determines which operators interfere, e.g. if the lepton is massless the relevant chirality is the one of the first lepton field \bar{L}, \tilde{e} in the bilinear, while it is the second lepton field L, e for massless antileptons. We find, for the limiting case where either the lepton or antilepton is taken to be massless,

$$\frac{d\Gamma}{dx_\gamma} = \alpha Q_e^2 m_V^2 \left[(|A_L|^2 + |A_R|^2) g_A(x_\gamma, y) + I' g_{PA}(x_\gamma, y) \right] + \left[|S_L + \bar{S}_L x_\gamma|^2 + |S_R + \bar{S}_R x_\gamma|^2 + |P'_L + i\bar{P}'_L x_\gamma|^2 + |P'_R + i\bar{P}'_R x_\gamma|^2 \right] g_S(x_\gamma, y),$$ (67)

where $y = y_i$ ($y = y_j$) denotes the non-zero (anti)lepton mass and the interference term is given by

$$I' = \begin{cases} +\text{Re}(A_L(P'_L + i\bar{P}'_L x_\gamma)* + A_R(P'_R + i\bar{P}'_R x_\gamma)*) & \text{for } y_i \neq 0, y_j = 0, \\ -\text{Re}(A_L(P'_L + i\bar{P}'_L x_\gamma)* + A_R(P'_R + i\bar{P}'_R x_\gamma)*) & \text{for } y_i = 0, y = y_j \neq 0, \end{cases}$$ (68)

The kinematic functions are given by

$$g_A(x, y) = \frac{x(1 - x - y^2)(2x^2 - (6 + y^2)x + 4 + 5y^2)}{6(1 - x)^3},$$
$$g_S(x, y) = \frac{x(1 - x - y^2)^2}{2(1 - x)},$$
$$g_{PA}(x, y) = \frac{yx(1 - x - y^2)^2}{(1 - x)^2}.$$ (69)

We find agreement with the results in Ref. [72] taking into account that the latter work studied final states with neutrinos instead of charged leptons. We also find agreement with Ref. [58] for the scalar contribution up to a prefactor, but our result differs for the axial-vector contribution.

C Observables for indirect constraints

In this appendix we collect the analytical expressions for the computation of the LFV observables we studied in this work and used to set indirect limits on the LFVQD. They are given in terms of the LEFT Wilson coefficients, with the exception of the LFV Z decays that are given in the SMEFT. All these WC are to be evaluated at the relevant scale, that is, setting μ to the mass of the decaying particle.
C.1 Radiative LFV decays: $\ell_i \to \ell_j \gamma$

Neglecting the mass of the final-state lepton, the branching ratio for $\ell_i \to \ell_j \gamma$ reads [100]:

$$\text{BR}(\ell_i \to \ell_j \gamma) = \frac{m_{\ell_i}^3}{4\pi \Gamma_{\ell_i}} \left(|C_{\ell_i,j,i}|^2 + |C_{\ell_i,j,j}|^2 \right),$$

(70)

where Γ_{ℓ_i} is the total width of the decaying lepton.

C.2 3-body LFV decays: $\ell_i \to \ell_j \ell_k \ell_m$

For $j = k = m$, i.e. the decays $\mu \to ee\bar{\nu}$, $\tau \to ee\bar{\nu}$ and $\tau \to \mu\mu\bar{\nu}$, we have [27]

$$\text{BR}(\ell_i \to \ell_j \ell_k \ell_m) = \frac{m_{\ell_i}^5}{3(16\pi)^3 \Gamma_{\ell_i}} \left\{ 16 |C_{\ell_i,j,k,k}|^2 + 16 |C_{\ell_i,j,k,j}|^2 + 8 |C_{\ell_i,j,j,k}|^2 + 8 |C_{\ell_i,j,j,j}|^2
+ |C_{\ell_i,j,k,k}|^2 + |C_{\ell_i,j,k,j}|^2 + \frac{256e^2}{m_{\ell_i}^2} \left(\log \frac{m_{\ell_i}^2}{m_{\ell_j}^2} - \frac{11}{4} \right) \left(|C_{\ell_i,j,j}|^2 + |C_{\ell_i,j,j}|^2 \right)
- \frac{64e}{m_{\ell_i}} \text{Re} \left[\left(C_{\ell_i,j,j,k} + C_{\ell_i,j,k,k} \right) \bar{C}_{\ell_i,j,j,k}^* + \left(C_{\ell_i,j,j,k} + C_{\ell_i,j,k,k} \right) \bar{C}_{\ell_i,j,k,k}^* \right] \right\}. \quad (71)$$

Similarly, for $j \neq k = m$, that is, the decays $\tau \to e\mu\bar{\nu}$ and $\tau \to \mu\bar{\nu}e$, we find [27]

$$\text{BR}(\ell_i \to \ell_j \ell_k \ell_m) = \frac{m_{\ell_i}^5}{3(16\pi)^3 \Gamma_{\ell_i}} \left\{ 8 |C_{\ell_i,j,k,k}|^2 + 8 |C_{\ell_i,j,k,j}|^2 + 8 |C_{\ell_i,j,j,k}|^2 + 8 |C_{\ell_i,j,j,j}|^2
+ 2 |C_{\ell_i,j,k,k}|^2 + 2 |C_{\ell_i,j,k,j}|^2 + \frac{256e^2}{m_{\ell_i}^2} \left(\log \frac{m_{\ell_i}^2}{m_{\ell_k}^2} - 3 \right) \left(|C_{\ell_i,j,j}|^2 + |C_{\ell_i,j,j}|^2 \right)
- \frac{64e}{m_{\ell_i}} \text{Re} \left[\left(C_{\ell_i,j,j,k} + C_{\ell_i,j,k,k} \right) \bar{C}_{\ell_i,j,j,k}^* + \left(C_{\ell_i,j,j,k} + C_{\ell_i,j,k,k} \right) \bar{C}_{\ell_i,j,k,k}^* \right] \right\}. \quad (72)$$

In the above expressions the masses of the lighter leptons have been all neglected.

Finally, notice that the case $j = k \neq m$ corresponds to processes with $|\Delta L_e| = 2$, $|\Delta L_{\mu}| = |\Delta L_{\tau}| = 1$ or $|\Delta L_{\mu}| = 2$, $|\Delta L_e| = |\Delta L_{\tau}| = 1$ ($\tau \to e\mu\bar{\nu}$ and $\tau \to \mu\bar{\nu}e$) that are never relevant to constrain the hadronic LFV decays we are interested in.

C.3 $\mu \to e$ conversion in nuclei

The conversion rate is defined as $\Gamma(\mu N \to e N)/\Gamma_{\text{capt}}(N)$, where $\Gamma_{\text{capt}}(N)$ is the capture rate of muons by the nucleus N [96], and the $\mu N \to eN$ transition rate is given by is [49, 96–98]

$$\Gamma(\mu N \to e N) = \frac{m_{\mu}}{4} \left(\frac{1}{m_{\mu}} C_{\bar{\nu}_{\mu}e}^* \mathcal{D} + 4 \left(m_{\mu} C_{\nu_{\mu}e}^* S(p) + C_{\nu_{\mu}e}^* V(p) + p \to n \right) \right)^2 + \frac{m_{\mu}}{4} \left(\frac{1}{m_{\mu}} C_{\bar{\nu}_{\mu}e}^* \mathcal{D} + 4 \left(m_{\mu} C_{\nu_{\mu}e}^* S(p) + C_{\nu_{\mu}e}^* V(p) + p \to n \right) \right)^2, \quad (73)$$

where

$$C_{\nu_{\mu}e}^{(N)} = \sum_{q=u,d,s} \left(C_{\nu_{\mu}e}^{(N)LR} + C_{\nu_{\mu}e}^{(N)RR} \right) f_{V,N}^q, \quad (74)$$

$$C_{\bar{\nu}_{\mu}e}^{(N)} = \sum_{q=u,d,s} \frac{C_{\bar{\nu}_{\mu}e}^{(N)LR} + C_{\bar{\nu}_{\mu}e}^{(N)RR}}{m_q} f_{SN} + \frac{C_{\bar{\nu}_{\mu}e}^{(N)LR} + C_{\bar{\nu}_{\mu}e}^{(N)RR}}{m_q} f_{GN}, \quad (75)$$

$$C_{\nu_{\mu}e}^{(N)} = \sum_{q=u,d,s} \left(C_{\nu_{\mu}e}^{(N)LR} + C_{\nu_{\mu}e}^{(N)RR} \right) f_{V,N}^q, \quad (76)$$
\[C_{SL}^{(N)} = \sum_{q=u,d,s} \left(C_{eq;qpqq} + C_{eq;ppqq} \right) f_{SN}^{(q)} + \left(\frac{C_{eGG,SM}}{\alpha_s} - \frac{1}{12\pi} \sum_{q=e,b} \left(C_{eq;cpqq} + C_{eq;ppqq} \right) \right) f_{GN}, \]

with \(N = p, n \). The nuclear vector form factors are determined from vector current conservation

\[f_{Vp}^{(u)} = f_{Vn}^{(d)} = 2, \quad f_{Vp}^{(d)} = f_{Vn}^{(u)} = 1, \quad f_{Vp}^{(s)} = f_{Vn}^{(s)} = 0, \]

and we follow Ref. [49] for the nuclear scalar form factors

\[f_{Sp}^{(u)} = (20.8 \pm 1.5) \times 10^{-3}, \quad f_{Sp}^{(d)} = (41.1 \pm 2.8) \times 10^{-3}, \quad f_{SN}^{(s)} = (53 \pm 27) \times 10^{-3}, \]

\[f_{Sn}^{(u)} = (18.9 \pm 1.4) \times 10^{-3}, \quad f_{Sn}^{(d)} = (45.1 \pm 2.7) \times 10^{-3}. \]

The scalar form factors for up and down quarks are taken from Ref. [101] and the ones for the strange quark have been obtained on the lattice [102], which can also be determined using effective field theory [103, 104]. See also Ref. [105] for a recent calculation of next-to-leading order contributions. Finally, the form factor \(f_{GN} \) is related to the nuclear scalar form factors of light quarks

\[f_{GN} = 1 - \sum_{q=u,d,s} f_{SN}^{(q)} . \]

The overlap integrals \(D, S^{(p)}, S^{(n)}, V^{(p)}, \) and \(V^{(n)} \) for the different nuclei have been calculated in Ref. [96]. For a recent reassessment see Ref. [106].

C.4 Semileptonic LFV \(\tau \) decays: \(\tau \to p\ell, \tau \to \nu\ell \)

Expressions for the \(\tau \to \nu\ell \) processes, with \(\ell = e, \mu \) and \(\nu = \rho, \phi \) a vector meson, in terms of the LEFT Wilson coefficients can be found in Ref. [107]. The branching ratio reads

\[\text{BR}(\tau \to \nu\ell) = \frac{\sqrt{\lambda(m_\tau^2, m_\nu^2, m_\ell^2)}}{16\pi m_\tau^2 \Gamma_\tau} \left| M_{\tau \to \nu\ell} \right|^2, \]

where \(\lambda(a, b, c) = a^2 + b^2 + c^2 - 2(ab + ac + bc) \). The squared amplitude is given by

\[\left| M_{\tau \to \nu\ell} \right|^2 = \left| M_{\tau \to \nu\ell}^V \right|^2 + \left| M_{\tau \to \nu\ell}^T \right|^2 + \mathcal{I}_{\tau \to \nu\ell}, \]

where the first term comes from couplings of the meson to leptonic vector currents, the second one is due to tensor currents, and the last term is the interference of the two:

\[\left| M_{\tau \to \nu\ell}^V \right|^2 = \frac{1}{2} \left[\left(|g_{\nu LL}|^2 + |g_{\nu LR}|^2 \right) \left(\frac{m_\mu^2 - m_\tau^2}{m_\nu^2} + m_\mu^2 + m_\ell^2 - 2m_\nu^2 \right) \right. \]

\[- 12m_\tau m_\ell \text{Re} \left(g_{\nu LR}^V (g_{\nu LR}^V) \right), \]

\[\left. \left| M_{\tau \to \nu\ell}^T \right|^2 = \frac{1}{2} \left[\left(|g_{\tau LL}|^2 - g_{\tau LL}^* |g_{\tau LL}^*|^2 \right) \left(|g_{\tau LR}|^2 + |g_{\tau LR}^*|^2 \right) \right. \right. \]

\[\left. \left. \left. \left(2m_\mu^2 - m_\tau^2 \right)^2 - m_\nu^2 (m_\mu^2 + m_\ell^2 - m_\nu^2) \right) \right. \right. \]

\[- 12m_\tau m_\ell \text{Re} \left(\left(g_{\tau LR}^T + g_{\tau LR}^T \right) \left(g_{\tau LL}^T - g_{\tau LL}^T \right)^* \right), \]

\[\mathcal{I}_{\tau \to \nu\ell} = 3m_\tau (m_\mu^2 - m_\tau^2 - m_\nu^2) \text{Re} \left(g_{\tau LL}^V (g_{\tau LR}^V + g_{\tau LR}^V) + g_{\tau LR}^V (g_{\tau LL}^V - g_{\tau LL}^V) \right) \]

\[+ 3m_\ell (m_\mu^2 - m_\tau^2 - m_\nu^2) \text{Re} \left(g_{\tau LL}^V (g_{\tau LR}^V + g_{\tau LR}^V) + g_{\tau LR}^V (g_{\tau LL}^V - g_{\tau LL}^V) \right). \]

In terms of the LEFT Wilson coefficients, the effective couplings appearing in the above expressions read in the case of decays into a \(\rho \) meson

\[g_{V LL}^\rho = \frac{1}{2} m_\rho f_\rho \left(\frac{C_{V LL}^{e,\ell uu} - C_{V LL}^{e,\ell e,\ell d}}{\sqrt{2}} + \frac{C_{V LL}^{e,\ell uu} - C_{V LL}^{e,\ell d,\ell dd}}{\sqrt{2}} \right), \]

\[(86) \]
\[g_{V\rho} = \frac{1}{2} m_{\rho} f_{\rho} \left(\frac{C_{V,RR}^{\tau} - C_{V,LL}^{\tau}}{\sqrt{2}} + \frac{C_{V,LR}^{\tau} - C_{V,LL}^{\tau}}{\sqrt{2}} \right), \tag{87} \]
\[g_{\tau L} = f_{\rho} T \left(C_{V,RR}^{\tau} - C_{V,LL}^{\tau} \right) \]
\[g_{\tau R} = f_{\rho} T \left(C_{V,RR}^{\tau} - C_{V,LL}^{\tau} \right) \]
\[\tilde{g}_{\tau L} = - f_{\rho} T \left(C_{V,RR}^{\tau} - C_{V,LL}^{\tau} \right) \]
\[\tilde{g}_{\tau R} = f_{\rho} T \left(C_{V,RR}^{\tau} - C_{V,LL}^{\tau} \right) \tag{88} \]

where \(f_{\rho} \) is the decay constant of the \(\rho \) meson, and \(f_{\rho}^T \) is the transverse decay constant.

The corresponding effective couplings for the case of the \(\phi \) are
\[g_{V\phi} = \frac{1}{2} m_{\phi} f_{\phi} \left(C_{V,LL}^{\phi} + C_{V,LR}^{\phi} \right), \tag{92} \]
\[g_{\phi} = \frac{1}{2} m_{\phi} f_{\phi} \left(C_{V,RR}^{\phi} + C_{V,LR}^{\phi} \right), \tag{93} \]
\[g_{\phi L} = f_{\phi} ^T \left(C_{V,RR}^{\phi} + C_{V,LR}^{\phi} \right) \]
\[g_{\phi R} = f_{\phi} ^T \left(C_{V,RR}^{\phi} + C_{V,LR}^{\phi} \right) \]
\[\tilde{g}_{\phi L} = - f_{\phi} ^T \left(C_{V,RR}^{\phi} + C_{V,LR}^{\phi} \right) \]
\[\tilde{g}_{\phi R} = f_{\phi} ^T \left(C_{V,RR}^{\phi} + C_{V,LR}^{\phi} \right) \tag{97} \]

As for the case of the decays into a vector, we can find the expressions for the decays into pseudoscalar mesons in Ref. [107]. The branching ratio for \(\tau \rightarrow \mathcal{P} \ell, \) with \(\ell = e, \mu \) is
\[\text{BR}(\tau \rightarrow \mathcal{P} \ell) = \frac{\sqrt{\lambda(m_{\tau}^2, m_{\ell}^2, m_{\mathcal{P}}^2)} |M_{\tau \rightarrow \mathcal{P} \ell}|^2}{16\pi m_{\tau}^3 \Gamma_{\tau}}, \tag{98} \]
where
\[|M_{\tau \rightarrow \mathcal{P} \ell}|^2 = \frac{1}{2} \left(m_{\tau}^2 + m_{\ell}^2 - m_{\mathcal{P}}^2 \right) \left(|g_{L}^{\tau \mathcal{P}}|^2 + |g_{R}^{\tau \mathcal{P}}|^2 \right) + 2m_{\tau}m_{\ell}\text{Re}(g_{L}^{\tau \mathcal{P}}(g_{R}^{\tau \mathcal{P}})^*) \tag{99} \]

with
\[g_{L}^{\tau \mathcal{P}} = g_{S_{L}}^{\tau \mathcal{P}} - m_{\ell}g_{V_{L}}^{\tau \mathcal{P}} + m_{\tau}g_{V_{R}}^{\tau \mathcal{P}} \]
\[g_{R}^{\tau \mathcal{P}} = g_{S_{R}}^{\tau \mathcal{P}} - m_{\ell}g_{V_{R}}^{\tau \mathcal{P}} + m_{\tau}g_{V_{L}}^{\tau \mathcal{P}} \tag{100} \]

The effective couplings of \(\pi^0 \) to leptonic currents are
\[g_{S_{L}}^{\pi \tau} = \frac{f_{\pi} m_{\pi}^2}{\sqrt{2(m_{\mu} + m_{d})}} \left(C_{S,RL}^{\tau} - C_{S,RR}^{\tau} \right) \]
\[g_{S_{R}}^{\pi \tau} = \frac{f_{\pi} m_{\pi}^2}{\sqrt{2(m_{\mu} + m_{d})}} \left(C_{S,RL}^{\tau} - C_{S,RR}^{\tau} \right) \]
\[g_{V_{L}}^{\pi \tau} = \frac{f_{\pi}}{\sqrt{2}} \left(C_{V,LL}^{\tau} - C_{V,LR}^{\tau} \right) \]
\[g_{V_{R}}^{\pi \tau} = \frac{f_{\pi}}{\sqrt{2}} \left(C_{V,LL}^{\tau} - C_{V,LR}^{\tau} \right) \tag{104} \]
C.5 LFV Z decays

The branching ratios of LFV decays of the Z boson are given by [27, 56, 108]

$$\text{BR} (Z \rightarrow \ell_i \ell_j) = \frac{m_Z}{12\pi \Gamma_Z} \left[\left| g_{VR}^{ij} \right|^2 + \left| g_{VL}^{ij} \right|^2 + \frac{m_Z^2}{2} \left(\left| g_{TR}^{ij} \right|^2 + \left| g_{TL}^{ij} \right|^2 \right) \right],$$

(105)

with

$$g_{VR}^{ij} = \frac{e}{\sin \theta_W \cos \theta_W} [Z e_R]_{ij}, \quad g_{VL}^{ij} = \frac{e}{\sin \theta_W \cos \theta_W} [Z e_L]_{ij},$$

(106)

$$g_{TR}^{ij} = \delta g_{TR}^{ji*} = -\frac{v}{\sqrt{2} \Lambda} \left(\sin \theta_W C_{e_B,ij} + \cos \theta_W C_{e_W,ij} \right),$$

(107)

where the LFV Z couplings $Z e_L, Z e_R$ are given in terms of WCs of lepton-Higgs operators in Eqs. (53, 54).

References

[1] L. Calibbi and G. Signorelli, *Charged Lepton Flavour Violation: An Experimental and Theoretical Introduction*, Riv. Nuovo Cim. 41 (2018) 71–174, [1709.00294].

[2] Muon g-2 collaboration, B. Abi et al., *Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm*, Phys. Rev. Lett. 126 (2021) 141801, [2104.03281].

[3] S. Bifani, S. Descotes-Genon, A. Romero Vidal and M.-H. Schune, *Review of Lepton Universality tests in B decays*, J. Phys. G 46 (2019) 023001, [1809.06229].

[4] D. London and J. Matias, *B Flavour Anomalies: 2021 Theoretical Status Report*, Ann. Rev. Nucl. Part. Sci. 72 (2022) 37–68, [2110.13270].

[5] L. Allwicher, L. Di Luzio, M. Fedele, F. Mescia and M. Nardecchia, *What is the scale of new physics behind the muon g-2?*, Phys. Rev. D 104 (2021) 055035, [2105.13981].

[6] L. Di Luzio and M. Nardecchia, *What is the scale of new physics behind the B-flavour anomalies?*, Eur. Phys. J. C 77 (2017) 536, [1706.01868].

[7] S. L. Glashow, D. Guadagnoli and K. Lane, *Lepton Flavor Violation in B Decays?*, Phys. Rev. Lett. 114 (2015) 091801, [1411.0565].

[8] L. Calibbi, M. L. López-Ibáñez, A. Melis and O. Vives, *Implications of the Muon g-2 result on the flavour structure of the lepton mass matrix*, Eur. Phys. J. C 81 (2021) 929, [2104.03296].

[9] G. Isidori, J. Pagès and F. Wilsch, *Flavour alignment of New Physics in light of the (g − 2)μ anomaly*, JHEP 03 (2022) 011, [2111.13724].

[10] I. Bigaran, T. Felkl, C. Hagedorn and M. A. Schmidt, *Flavour anomalies meet flavour symmetry*, 2207.06197.

[11] I. Dorsch, S. Fajfer, A. Greljo, J. F. Kamenik and N. Košnik, *Physics of leptoquarks in precision experiments and at particle colliders*, Phys. Rept. 641 (2016) 1–68, [1603.04993].

[12] B. Bhattacharya, A. Datta, D. London and S. Shivashankara, *Simultaneous Explanation of the R_K and $R(D^{(*)})$ Puzzles*, Phys. Lett. B 742 (2015) 370–374, [1412.7164].

[13] L. Calibbi, A. Crivellin and T. Ota, *Effective Field Theory Approach to $b \rightarrow s\ell(\nu)$, $B \rightarrow K^{(*)}\ell\nu$ and $B \rightarrow D^{(*)}\tau\nu$ with Third Generation Couplings*, Phys. Rev. Lett. 115 (2015) 181801, [1506.02661].

[14] F. Feruglio, P. Paradisi and A. Pattori, *Revisiting Lepton Flavor Universality in B Decays*, Phys. Rev. Lett. 118 (2017) 011801, [1606.00524].

[15] D. Buttazzo, A. Greljo, G. Isidori and D. Marzocca, *B-physics anomalies: a guide to combined explanations*, JHEP 11 (2017) 044, [1706.07808].

29
[16] BESIII collaboration, M. Ablikim et al., *Search for the lepton flavor violating decay J/ψ → eμ*. 2206.13956.

[17] Belle collaboration, S. Patra et al., *Search for charged lepton flavor violating decays of Y(1S)*, *JHEP* **05** (2022) 095, [2201.09620].

[18] BESIII collaboration, M. Ablikim et al., *Search for the charged lepton flavor violating decay J/ψ → eτ*, *Phys. Rev. D* **103** (2021) 112007, [2103.11540].

[19] BABAR collaboration, J. P. Lees et al., *Search for Charged Lepton Flavor Violation in Narrow Upsilon Decays*, *Phys. Rev. Lett.* **104** (2010) 151802, [1001.1883].

[20] BES collaboration, M. Ablikim et al., *Search for the lepton flavor violation processes J/ψ → μτ and eτ*, *Phys. Lett. B* **598** (2004) 172–177, [hep-ex/0406018].

[21] BESIII collaboration, M. Ablikim et al., *Future Physics Programme of BESIII*, *Chin. Phys. C* **44** (2020) 040001, [1912.05983].

[22] Super Charm-Tau Factory collaboration, A. Y. Barnyakov, *The project of the Super Charm-Tau Factory in Novosibirsk*, *J. Phys. Conf. Ser.* **1561** (2020) 012004.

[23] STCF Working Group collaboration, X. Zhou, *Experimental Program at Super Tau-Charm Facility*, *PoS CHARM2020* (2021) 007.

[24] STCF Working Group collaboration, X.-R. Lyu, *Physics Program of the Super Tau-Charm Factory*, *PoS BEAUTY2020* (2021) 060.

[25] Belle-II collaboration, W. Altmannshofer et al., *The Belle II Physics Book*, *PTEP* **2019** (2019) 123C01, [1808.10567].

[26] S. Nussinov, R. D. Peccei and X. M. Zhang, *On unitarity based relations between various lepton family violating processes*, *Phys. Rev. D* **63** (2001) 016003, [hep-ph/0004153].

[27] L. Calibbi, X. Marcano and J. Roy, *Z lepton flavour violation as a probe for new physics at future e+e− colliders*, *Eur. Phys. J. C* **81** (2021) 1054, [2107.10273].

[28] MEG collaboration, A. M. Baldini et al., *Search for the lepton flavour violating decay μ+ → e+γ with the full dataset of the MEG experiment*, *Eur. Phys. J. C* **76** (2016) 434, [1605.05081].

[29] MEG II collaboration, A. Baldini et al., *The design of the MEG II experiment*, *Eur. Phys. J. C* **78** (2018) 380, [1801.04688].

[30] SINDRUM collaboration, U. Bellgardt et al., *Search for the Decay μ+ → e+e+e−*, *Nucl. Phys. B* **299** (1988) 1–6.

[31] A. Blondel et al., *Research Proposal for an Experiment to Search for the Decay μ → eee*, 1301.6113.

[32] SINDRUM II collaboration, W. H. Bertl et al., *A Search for muon to electron conversion in muonic gold*, *Eur. Phys. J. C* **47** (2006) 337–346.

[33] COMET collaboration, Y. Kuno, *A search for muon-to-electron conversion at J-PARC: The COMET experiment*, *PTEP* **2013** (2013) 022C01.

[34] Mu2e collaboration, L. Bartoszek et al., *Mu2e Technical Design Report*, 1501.05241.

[35] ATLAS collaboration, ATLAS Collaboration, *Search for the charged-lepton-flavor-violating decay Z → eμ in pp collisions at √s = 13 TeV with the ATLAS detector*, 2204.10783.

[36] M. Dam, *Tau-lepton Physics at the FCC-ee circular e+e− Collider*, *SciPost Phys. Proc.* **1** (2019) 041, [1811.09408].

[37] BABAR collaboration, B. Aubert et al., *Searches for Lepton Flavor Violation in the Decays τ± → e±γ and τ± → μ±γ*, *Phys. Rev. Lett.* **104** (2010) 021802, [0908.2381].

[38] S. Banerjee et al., *Snowmass 2021 White Paper: Charged lepton flavor violation in the tau sector*, 2203.14919.

[39] K. Hayasaka et al., *Search for Lepton Flavor Violating Tau Decays into Three Leptons with 719 Million Produced Tau+−Pairs*, *Phys. Lett. B* **687** (2010) 139–143, [1001.3221].
[40] Belle collaboration, Y. Miyazaki et al., *Search for lepton flavor violating τ⁻ decays into ℓ⁻η, ℓ⁻η' and ℓ⁻π⁰*, Phys. Lett. B 648 (2007) 341–350, hep-ex/0703009.

[41] Belle collaboration, Y. Miyazaki et al., *Search for Lepton-Flavor-Violating tau Decays into a Lepton and a Vector Meson*, Phys. Lett. B 699 (2011) 251–257, [1101.0755].

[42] ATLAS collaboration, G. Aad et al., *Search for lepton-flavor-violation in Z-boson decays with τ-leptons with the ATLAS detector*, Phys. Rev. Lett. 127 (2022) 271801, [2105.12491].

[43] Belle collaboration, A. Abdesselam et al., *Search for lepton-flavor-violating tau decays to ℓγ modes at Belle*, JHEP 10 (2021) 019, [2103.12994].

[44] Babar collaboration, B. Aubert et al., *Search for Lepton Flavor Violating Decays \(\tau^± \to ℓ^±π^0, \ell^±η, \ell^±η' \)*, Phys. Rev. Lett. 98 (2007) 061803, hep-ex/0610067.

[45] E. E. Jenkins, A. V. Manohar and P. Stoffer, *Low-Energy Effective Field Theory below the Electroweak Scale: Operators and Matching*, JHEP 03 (2018) 016, [1709.04486].

[46] W. Buchmuller and D. Wyler, *Effective Lagrangian Analysis of New Interactions and Flavor Conservation*, Nucl. Phys. B 268 (1986) 621–653.

[47] B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, *Dimension-Six Terms in the Standard Model Lagrangian*, JHEP 10 (2010) 085, [1008.4884].

[48] I. Brivio and M. Trott, *The Standard Model as an Effective Field Theory*, Phys. Rept. 793 (2019) 1–98, [1706.08945].

[49] A. Crivellin, S. Davidson, G. M. Pruna and A. Signer, *Renormalisation-group improved analysis of \(µ \to e \) processes in a systematic effective-field-theory approach*, JHEP 05 (2017) 117, [1702.03020].

[50] E. E. Jenkins, A. V. Manohar and M. Trott, *Renormalization Group Evolution of the Standard Model Dimension Six Operators I: Formalism and lambda Dependence*, JHEP 10 (2013) 087, [1308.2627].

[51] E. E. Jenkins, A. V. Manohar and M. Trott, *Renormalization Group Evolution of the Standard Model Dimension Six Operators II: Yukawa Dependence*, JHEP 01 (2014) 035, [1310.4838].

[52] R. Alonso, E. E. Jenkins, A. V. Manohar and M. Trott, *Renormalization Group Evolution of the Standard Model Dimension Six Operators III: Gauge Coupling Dependence and Phenomenology*, JHEP 04 (2014) 159, [1312.2014].

[53] E. E. Jenkins, A. V. Manohar and P. Stoffer, *Low-Energy Effective Field Theory below the Electroweak Scale: Anomalous Dimensions*, JHEP 01 (2018) 084, [1711.05270].

[54] T. Gutsche, J. C. Helo, S. Kovalenko and V. E. Lyubovitskij, *On lepton flavor violating decays of vector mesons*, Phys. Rev. D 81 (2010) 037702, [0912.4562].

[55] M. Carpentier and S. Davidson, *Constraints on two-lepton, two quark operators*, Eur. Phys. J. C 70 (2010) 1071–1090, [1008.0280].

[56] A. Crivellin, S. Najjari and J. Rosiek, *Lepton Flavor Violation in the Standard Model with general Dimension-Six Operators*, JHEP 04 (2014) 167, [1312.0634].

[57] Y. Cai and M. A. Schmidt, *A Case Study of the Sensitivity to LFV Operators with Precision Measurements and the LHC*, JHEP 02 (2016) 176, [1510.02486].

[58] D. E. Hazard and A. A. Petrov, *Lepton flavor violating quarkonium decays*, Phys. Rev. D 94 (2016) 074023, [1607.00815].

[59] D. E. Hazard and A. A. Petrov, *Radiative lepton flavor violating B, D, and K decays*, Phys. Rev. D 98 (2018) 015027, [1711.05314].

[60] S. Davidson and A. Saporta, *Constraints on 2ℓf2q operators from \(µ \to e \) flavour-changing meson decays*, Phys. Rev. D 99 (2019) 015032, [1807.10288].

[61] C. O. Dib, T. Gutsche, S. G. Kovalenko, V. E. Lyubovitskij and I. Schmidt, *Bounds on lepton flavor violating physics and decays of neutral mesons from \(τ(µ) \to 3ℓ, ℓγγ \)-decays*, Phys. Rev. D 99 (2019) 035020, [1812.02638].
B. Colquhoun, R. J. Dowdall, C. T. H. Davies, K. Hornbostel and G. P. Lepage, \(\Upsilon \) and \(\Upsilon' \) Leptonic Widths, \(a^b_\mu \) and \(m_b \) from full lattice QCD, *Phys. Rev. D* **91** (2015) 074514, [1408.5768].

H. S. Chung, \(\bar{\overline{M}}S \) renormalization of S-wave quarkonium wavefunctions at the origin, *JHEP* **12** (2020) 065, [2007.01737].

D. Bečirević, G. Duplančić, B. Klajn, B. Melić and F. Sanfilippo, Lattice QCD and QCD sum rule determination of the decay constants of \(\eta_c, J/\psi \) and \(h_c \) states, *Nucl. Phys. B* **883** (2014) 306–327, [1312.2888].

A. Khodjamirian, T. Mannel and A. A. Petrov, Direct probes of flavor-changing neutral currents in \(e^+e^- \)-collisions, *JHEP* **11** (2015) 142, [1509.07123].

T. Appelquist and H. D. Politzer, Orthocharmonium and \(e^+e^- \) Annihilation, *Phys. Rev. Lett.* **34** (1975) 43.

A. De Rujula and S. L. Glashow, Is Bound Charm Found?, *Phys. Rev. Lett.* **34** (1975) 46–49.

J. H. Kuhn, J. Kaplan and E. G. O. Safiani, Electromagnetic Annihilation of \(e^+e^- \) Into Quarkonium States with Even Charge Conjugation, *Nucl. Phys. B* **157** (1979) 125–144.

W.-Y. Keung, Off Resonance Production of Heavy Vector Quarkonium States in \(e^+e^- \) Annihilation, *Phys. Rev. D* **23** (1981) 2072.

E. L. Berger and D. L. Jones, Inelastic Photoproduction of \(J/\psi \) and Upsilon by Gluons, *Phys. Rev. D* **23** (1981) 1521–1530.

L. Clavelli, Associated Heavy Vector Meson Production in \(e^+e^- \) Annihilation, *Phys. Rev. D* **26** (1982) 1610.

L. Clavelli, T. Gajdosik and I. Perevalova, Parity and time reversal in \(J / \psi \) decay, *Phys. Lett. B* **523** (2001) 249–254, [hep-ph/010076].

L. Clavelli, P. Coulter and T. Gajdosik, Quarkonium polarization in lepton annihilation, *Phys. Lett. B* **526** (2002) 360–364, [hep-ph/0111250].

R. Kitano, M. Koike and Y. Okada, Detailed calculation of lepton flavor violating muon electron conversion rate for various nuclei, *Phys. Rev. D* **66** (2002) 096002, [hep-ph/0203110].

V. Cirigliano, R. Kitano, Y. Okada and P. Tuzon, On the model discriminating power of \(\mu \rightarrow e \) conversion in nuclei, *Phys. Rev. D* **80** (2009) 013002, [0904.0957].

A. Crivellin, M. Hoferichter and M. Procura, Improved predictions for \(\mu \rightarrow e \) conversion in nuclei and Higgs-induced lepton flavor violation, *Phys. Rev. D* **89** (2014) 093024, [1404.7134].

PVC (Research Infrastructure), UNSW Sydney, *Katana*, 2010. 10.26190/669X-A286.

Y. Kuno and Y. Okada, Muon decay and physics beyond the standard model, *Rev. Mod. Phys.* **73** (2001) 151–202, [hep-ph/9909265].

M. Hoferichter, J. Ruiz de Elvira, B. Kubis and U.-G. Meißner, High-Precision Determination of the Pion-Nucleon \(\pi \) Term from Roy-Steiner Equations, *Phys. Rev. Lett.* **115** (2015) 092301, [1506.04142].

P. Junnarkar and A. Walker-Loud, Scalar strange content of the nucleon from lattice QCD, *Phys. Rev. D* **87** (2013) 114510, [1301.1114].

J. M. Alarcon, J. Martin Camalich and J. A. Oller, The chiral representation of the \(\pi N \) scattering amplitude and the pion-nucleon sigma term, *Phys. Rev. D* **85** (2012) 051503, [1110.3797].

J. M. Alarcon, L. S. Geng, J. Martin Camalich and J. A. Oller, The strangeness content of the nucleon from effective field theory and phenomenology, *Phys. Lett. B* **730** (2014) 342–346, [1209.2870].
V. Cirigliano, K. Fuyuto, M. J. Ramsey-Musolf and E. Rule, \textit{Next-to-leading order scalar contributions to $\mu \to e$ conversion}, \textit{Phys. Rev. C} \textbf{105} (2022) 055504, [2203.09547].

J. Heeck, R. Szafron and Y. Uesaka, \textit{Isotope dependence of muon-to-electron conversion}, \textit{Nucl. Phys. B} \textbf{980} (2022) 115833, [2203.00702].

J. Aebischer, J. Kumar, P. Stangl and D. M. Straub, \textit{A Global Likelihood for Precision Constraints and Flavour Anomalies}, \textit{Eur. Phys. J. C} \textbf{79} (2019) 509, [1810.07698].

A. Brignole and A. Rossi, \textit{Anatomy and phenomenology of mu-tau lepton flavor violation in the MSSM}, \textit{Nucl. Phys. B} \textbf{701} (2004) 3–53, [hep-ph/0404211].