Secure Quantum Communication with Orthogonal States

Chitra Shukla
Jaypee Institute of Information Technology, A-10, Sector-62, Noida, India
chitrashukla07@gmail.com

Anindita Banerjee
Bose Institute, Centre of Astro particle Physics and Space Science, EN Block, Sector - V, Salt Lake, Kolkata, India
aninditabanerjee.physics@gmail.com

Anirban Pathak *
Jaypee Institute of Information Technology, A-10, Sector-62, Noida, India
anirban.pathak@jiit.ac.in

R. Srikanth
Poornaprajna Institute of Scientific Research, Sadashivnagar, Bengaluru- 560080, India
srik@poornaprajna.org

Received Day Month Year

In majority of protocols of secure quantum communication (such as, BB84, B92, etc.), the unconditional security of the protocols are obtained by using conjugate coding (two or more mutually unbiased bases). Initially all the conjugate-coding-based protocols of secure quantum communication were restricted to quantum key distribution (QKD), but later on they were extended to other cryptographic tasks (such as, secure direct quantum communication and quantum key agreement). In contrast to the conjugate-coding-based protocols, a few completely orthogonal-state-based protocols of unconditionally secure QKD (such as, Goldenberg-Vaidman (GV) and N09) were also proposed. However, till the recent past orthogonal-state-based protocols were only a theoretical concept and were limited to QKD. Only recently, orthogonal-state-based protocols of QKD are experimentally realized and extended to cryptographic tasks beyond QKD. This paper aims to briefly review the orthogonal-state-based protocols of secure quantum communication that are recently introduced by our group and other researchers.

Keywords: quantum communication using orthogonal states; DSQC; QSDC; QKD; quantum cryptography.

*Corresponding author. This article is a modified version of the tutorial lecture delivered by Anirban Pathak at International Program on Quantum Information (IPQI-2014), February 17-28, 2014, Institute of Physics, Bhubaneswar, India.
1. Introduction

Quantum cryptography is now 30 years old as it was first introduced in 1984 when Bennett and Brassard1 proposed the first protocol of quantum key distribution (QKD) which is now known as BB84 protocol. This pioneering work drew considerable attention of the entire cryptography community as it was successful in achieving unconditional security, a much desirable feat that is never achievable in the classical cryptography. To be precise, all the classical cryptographic protocols including the widely used RSA protocol are secure only under some assumptions, whereas quantum cryptographic protocols are unconditionally secure. Due to this existing feature of QKD, Bennett and Brassard’s initial proposal was followed by a large number of alternate protocols of QKD2,3,4. The applicability of early protocols of quantum cryptography1,2,3,4 were limited to QKD. However, it was soon realized that quantum states can be employed for other cryptographic tasks, too. For example, quantum states can be used for quantum secret sharing (QSS) of classical secrets5, deterministic secure quantum communication (DSQC)6,7,10,11,12,13, quantum secure direct communication (QSDC)11,15,16,17, quantum dialogue18,19, quantum key agreement (Ref. 20 and references therein), etc. Reviews on these topics, present challenges and future prospects of secure quantum communication can be found in Refs.21,22,23. The unconditional security of the existing protocols are usually claimed to be obtained using different approaches and different quantum resources like, single particle states1,3,11,17, entangled state2, teleportation8, entanglement swapping9, rearrangement of order of particles11,26, etc. Although these protocols differ with each other with respect to the procedure followed and the quantum resources used, the security of all these protocols of secure quantum communication essentially arises from the use of conjugate coding (i.e., from the quantum non-commutativity or equivalently from the use of two or more mutually unbiased bases (MUBs)) as in all these protocols the existence of an eavesdropper is traced by measuring verification qubits in 2 or more MUBs. Thus all these protocols may be viewed as conjugate-coding-based protocols of quantum communication, alternatively these protocols may be referred to as BB84-type protocols of quantum communication.

The existence of such a large number of conjugate-coding-based protocols of quantum communication leads to a fundamental question: Is conjugate coding essential for unconditionally secure quantum communication? The answer is “no”. Specifically, it is possible to design protocols of secure quantum communication using orthogonal states alone. Thus we can design protocols of secure quantum communication using orthogonal states for encoding of information, decoding of information and eavesdropping check i.e., using a single basis for implementation of the entire protocol without involving any use of two or more MUBs or conjugate coding. First such orthogonal-state-based protocol was reported in 1995 by Goldenberg and Vaidman4 and subsequently a few other orthogonal-state-based protocols of QKD were reported27,28,29. However, till recent past activities on orthogonal-state
Secure Quantum Communication with Orthogonal States

based protocols of quantum communication were limited to QKD and theoretical studies alone. Only recently a set of exciting experiments on orthogonal-state-based protocols of quantum communication have been reported. Further, new orthogonal-state-based protocols are proposed for quantum cryptographic tasks beyond QKD. These orthogonal-state-based proposals can be broadly classified in two classes: (i) GV-type protocols which are analogous to the original GV-protocol and in which transmission of qubits that carry secret information through the quantum channel is allowed, but the information is protected from the eavesdropping by geographically separating an orthogonal state into two or more quantum pieces that are not simultaneously accessible to Eve and (ii) N09-type protocols or counterfactual protocols that use interaction free measurement and circumvents the transmission of information carrying qubits through the quantum channel. GV-type protocols are mostly investigated by the present authors and their collaborators. Specifically, we have shown that it is feasible to construct orthogonal-state-based protocols of QKA, QSDC and DSQC. Practically, we have established that all the secure quantum communication tasks that can be performed using two or more MUBs can also be achieved by using single basis. Similarly, much progress has recently been made in designing of counterfactual (i.e., N09-type) protocols. For example, in 2013, Salih et al. have claimed to design a counterfactual protocol of direct quantum communication. The claim was subsequently criticized by Vaidman and the criticism lead to a very interesting debate on the issue. Further, recently Salih has also proposed counterfactual protocols for transportation of an unknown qubit and tripartite quantum cryptography. Guo et al. have proposed protocol of counterfactual entanglement distribution, Guo et al. proposed protocol of counterfactual information transfer, Sun and Wen have proposed a modified N09 protocol which is more efficient than the actual N09 protocol and some of the present authors proposed protocols of counterfactual certificate authentication and semi-counterfactual QKD. These exciting developments of recent past motivated us to briefly review these recent achievements with specific attention to works of our group.

Here we will briefly review a set of existing orthogonal-state-based protocols and describe a trick that helps us to transform BB84-type protocols into Goldenberg-Vaidman (GV) type protocols, which uses only orthogonal states for encoding, decoding and error checking, as was done in the original GV protocol of QKD. Subsequently, we will describe two orthogonal-state-based protocols of quantum communication introduced by us and briefly describe how they can be extended. These two orthogonal-state-based protocols are fundamentally different from conjugate-coding-based (BB84-type) protocols as their security does not depend on noncommutativity. Consequently, they are very important from the foundational perspective.

The trick that can transform BB84-type protocols into GV-type protocol requires the rearrangement of orders of particles or permutation of particles (PoP). As PoP plays a very crucial role in our protocol, it would be apt to note that this
technique was first introduced by Deng and Long in 2003, while they proposed a protocol of QKD based on this technique. \cite{Deng2003} Subsequently, a DSQC protocol based on the rearrangement of orders of particles was proposed by Zhu et al. \cite{Zhu2006} in 2006. However, it was shown to be insecure under a Trojan-horse attack by Li et al. \cite{Li2006}. In Ref. \cite{Li2006}, Li et al. had also provided an improved version of Zhu et al. protocol that is free from the above mentioned Trojan-horse attack. Thus we may consider Li et al. protocol as the first unconditionally secure protocol of DSQC based on PoP. Recently, many PoP based protocols are proposed (See \cite{Banerjee2015} and references therein). Specifically, many such PoP-based protocols of quantum communication have been proposed in recent past. For example, Banerjee and Pathak \cite{Banerjee2015}, Shukla, Banerjee and Pathak \cite{Shukla2015}, Yuan et al. \cite{Yuan2015} and Tsai et al. \cite{Tsai2015} have recently proposed PoP-based protocols of direct secure quantum communication. In what follows, we will see that PoP provides us a useful tool for the generalization of the original GV protocol into corresponding multipartite version.

The remaining part of the present paper is organized as follows, in Section 2, we briefly review the development of orthogonal-state-based secure quantum communication until now by providing a chronological history of developments of protocols of orthogonal-state-based secure quantum communication and their experimental verifications. In Section 3, we discuss the role of no-cloning and randomness in secure communication and with some specific examples show that it is possible to transform all BB84-type protocols of secure quantum communication to corresponding GV-type protocols. Finally, the paper is concluded in Section 4.

2. A chronological history of protocols of orthogonal-state-based secure quantum communication and their experimental verification

1995: All the protocols of quantum cryptography proposed until 1995 were based on nonorthogonal states and security of those protocols arose directly or indirectly through noncommutativity, but in 1995, Goldenberg and Vaidman \cite{Goldenberg1995} proposed a completely orthogonal-state-based protocol of QKD, where the security arises due to duality (for single particle). This was the birth of orthogonal-state-based protocol of quantum cryptography. Interestingly, the fact that GV protocol is fundamentally different from the BB84-type protocol was questioned by Peres \cite{Peres1995}. However, Goldenberg and Vaidman successfully defended their work \cite{Goldenberg1995} and established the fact that this orthogonal-state-based protocol is fundamentally different from the conventional BB84-type protocol. In the next section we have briefly described this protocol and have shown that the protocol uses a slightly modified Mach-Zehnder interferometer (See Fig. 1).

1997: Koashi and Imoto \cite{Koashi1997} generalized the GV protocol and proposed a protocol similar to GV protocol, but does not require random sending time.

1998: Mor \cite{Mor1998} showed that it is not always possible to clone orthogonal states.
Specifically, an orthogonal state cannot be cloned if the full state cannot be accessed at the same time. Using this idea, Mor provided a clear and innovative explanation of the origin of security of GV protocol.

1999: Four years after the introduction of first orthogonal-state-based QKD protocol (i.e., GV protocol), Guo and Shi proposed the second orthogonal-state-based protocol of QKD using the concept of interaction-free measurement or quantum interrogation, an idea that was introduced earlier by Elitzur and Vaidman in context of a very interesting hypothetical situation in which some of the active bombs can be separated from the inactive ones without directly observing the active bombs (i.e., without sending any photon to the isolated active bombs which blasts when receives a photon, whereas inactive bombs does not show any response on receiving a photon). Actually, the bombs are placed in the lower arm of a Mach-Zehnder interferometer and a single photon is sent through the input port (See Fig. 1b). With 50% probability the single photon travels through the upper arm of the interferometer. Even in these 50% cases, if we have an active bomb (thus a detector) in the lower arm, the interference is destroyed as we obtain the which path information, and consequently in half of these incidents (i.e., 25% of the total) the detector present at the output port of the interferometer that does not click in absence of any detector in the lower arm would click. As a consequence we will be able to detect 25% of the active bombs without blasting them. Thus, in brief, the presence of the obstacle (active bomb) disrupts the destructive interference that would otherwise occur and thereby reveal its presence. Guo and Shi modified the idea and in their protocol Alice (Bob) randomly inserts an absorber in upper (lower) arm of the interferometer (See Fig. 1c). From the clicks of the upper detector which does not click in absence of the detector, Bob knows that one of the absorber was present in one of the arm. In these cases he discloses that his upper detector has been clicked. As Alice (Bob) knows whether she (he) has inserted the absorber, using the observation of Bob she (he) can conclude whether Bob (Alice) has inserted the absorber or not and subsequently use this to form a key using a pre-decided rule: presence of Alice’s (Bob’s) absorber implies bit value 0 (1). Anyway, Guo and Shi’s effort was the first step towards orthogonal-state-based counterfactual QKD and in recent years interaction-free measurement is frequently used as a tool for the designing of counterfactual quantum cryptographic protocols.

2009: A protocol of counterfactual QKD (orthogonal-state-based) was proposed by Noh in 2009 using the Elitzur and Vaidman’s idea of interaction-free measurement. This protocol of QKD is now known as N09 protocol or counterfactual protocol. This protocol led to many subsequent counterfactual protocols of secure quantum communication. The beauty of this protocol and other counterfactual protocols is that a secure key is distributed (or other cryptographic task is achieved) without transmitting a particle
that carries secret information through the quantum channel. Interestingly, in GV, Koashi-Imoto and Guo-Shi protocols Mach-Zehnder interferometer was used, but in this protocol a Michelson interferometer is used (See Fig. 1d).

2010: Sun and Wen [38] improved the original N09 protocol by providing analogous counterfactual protocol with higher frequency. In the same year, Avella et al. experimentally implemented GV protocol [30]. To the best of our knowledge this was the first ever experimental demonstration of orthogonal-state-based protocol of QKD.

2011: Experimental realization of N09 protocol was reported shortly after realization of GV protocol. Precisely, in 2011, Ren et al. reported experimental realization of N09 protocol [31].

2012: Soon after Ren et al.’s work two more groups reported experimental realization of N09 protocol. Specifically, Brida et al. [32] and Liu et al. [33], independently implemented this protocol of counterfactual quantum communication. In theoretical front, some of the present authors generalized the single particle GV protocol to multipartite case [35] and showed that GV-type protocol can be used for secure direct communication and established that while in GV the encoding states are perfectly indistinguishable, in the bi-partite case, they are partially distinguishable, leading to a qualitatively different kind of information-vs-disturbance trade-off and also options for Eve in the two cases. Further, generalizing the idea we had also established that GV-type protocol of DSQC, QSDC and QKD can be realized using arbitrary quantum states [34]. Essential ideas that lead to these multipartite GV-type protocols will be explained briefly in the next section.

2013: While the above counterfactual protocols are probabilistic, H. Salih et al. proposed a protocol for counterfactual direct quantum communication [37]. This work of Salih et al., led to an interesting debate and whether the protocol is counterfactual for only one of the two bit values has been controversial [38]. This protocol efficiently uses chained quantum Zeno effect and an arrangement of sequence of Mach-Zehnder interferometers, where each of the Mach-Zehnder interferometer essentially uses Elitzur and Vaidman setup for interaction free measurement. In the same year, Zhang et al. proposed a counterfactual protocol of private database queries [39] which also uses a similar setup of sequence of Mach-Zehnder interferometer. Further, the applicability of GV-type orthogonal-state-based protocols of secure quantum communication was extended by some of the present authors to quantum key agreement (QKA) where Alice and Bob contribute equally to the final shared key and none of them can control the final key [20].

Interested readers may refer to Refs. [24,30] for detail description of the setup.
2014: 2014 is the most active year in the history of orthogonal-state-based secure quantum communication. In this year many interesting results appeared. Here we list a few of them: (i) Guo et al. proposed a protocol of counterfactual quantum-information transfer, (ii) Guo et al. proposed a counterfactual protocol of entanglement distribution, (iii) Salih proposed a multiparty (tripartite) scheme of counterfactual quantum communication and (iv) some of the present authors proposed a scheme for counterfactual quantum certificate authorization.

In the above chronological review we have seen that majority of the interesting developments in orthogonal-state-based secure quantum communication happened in last few years. The development is expected to continue and it is expected to play important role in practical realization of secure quantum communication and also in our understanding of quantum mechanics in general and origin of security in quantum mechanics and post-quantum theories in particular. Keeping these facts in mind, in the next section we briefly review role of no-cloning theorem in realization of orthogonal-state-based protocols and also briefly describe a few orthogonal-state-based GV-type protocols of secure quantum communication.

3. Role of no-cloning and randomness in secure communication and how to transform BB84-type protocols to GV-type protocols

It is well known that unknown quantum states cannot be cloned and several proofs of no-cloning theorem are provided using unitary evolution, no-signaling, linearity. A closer look into these proofs reveals that there exist fine differences among these proofs and those differences lead to a fundamental question: What nonclassical resources are required for the existence of no-cloning theorem in a theory T. Recently, we have shown that no-cloning theorem should hold in any theory possessing uncertainty and disturbance on measurement. Thus we can construct post-quantum theories with no-cloning. Without going into detail of those theories, let us try to follow a simpler argument that can give us a general perception of no-cloning theorem. To begin with let us try to address another simple question: What distinguishes a completely stochastic classical theory from the quantum mechanics? Clearly, in a completely stochastic classical theory the outcomes of measurement are always probabilistic whereas in quantum mechanics we can have a deterministic outcome if the state to be measured is part of the basis set used for the measurement. For example, if we measure $|0\rangle$ in $\{|0\rangle, |1\rangle\}$ basis we will always get $|0\rangle$ (thus the outcome is deterministic as the state is part of the basis), but if we measure $|0\rangle$ in $\{|+, |-\rangle\}$ basis we will have probabilistic outcome. We may say that the $\{|0\rangle, |1\rangle\}$ basis is special basis as it leads to deterministic outcome. We may now generalize the idea and say that for measurement of a state a particular basis set will be referred to as special basis if the state can be perfectly measured in that basis. It is easy to recognize that existence of special basis implies perfect measurement and
thus complete information of the state being measured. This information implies that the state is known and thus can be cloned. In contrast, absence of special basis implies no-cloning. As the elements of any basis set are orthogonal to each other, two nonorthogonal states cannot be part of the same basis set and thus cannot be cloned. However, this viewpoint does not demand that the orthogonal states can always be cloned. Specifically, by using geographical separation among the components of a superposition state we can make it non-clonable. In a completely different language this viewpoint was elaborated by Mor in 1998. Of course Mor’s work appeared after the GV protocol, but it helped us to understand and generalize GV protocol. Let us elaborate this point by briefly describing GV protocol.

3.1. Goldenberg-Vaidman (GV) protocol

Let us consider two orthogonal states

\[|\psi_0\rangle = \frac{1}{\sqrt{2}} (|a\rangle + |b\rangle) \]

Fig. 1. (a) A schematic diagram of a modified Mach-Zehnder interferometer that can be used to implement GV protocol [4] if the symmetric beam splitters used are 50:50, otherwise (i.e., if the symmetric beam splitters are not 50:50) the same device implements Koashi-Imoto protocol [29]. Here SR1 denotes a delay. (b) A schematic diagram of a Mach-Zehnder interferometer that can be used to implement Elitzur and Vaidman’s idea of interaction-free measurement or quantum interrogation [54]. Here the absorber is an active bomb that blasts when receives a photon. (c) A schematic diagram of Mach-Zehnder interferometer that can be used to realize orthogonal-state-based protocol of Guo-Shi [28] which uses interaction-free measurement. Here O1 and O2 are the obstacles that are randomly inserted by Alice and Bob, respectively. (d) A schematic diagram of the experimental setup used in Refs. [24, 32] to implement N09 protocol [27] of counterfactual QKD. In all the diagrams BS, M, C, PBS, HWP, D and OD represent beam splitter, mirror, circulator, polarizing beam splitter, half wave plate, detector and optical delay, respectively.
Secure Quantum Communication with Orthogonal States

and

\[|\psi_1\rangle = \frac{1}{\sqrt{2}} (|a\rangle - |b\rangle), \]

where \(|a\rangle\) and \(|b\rangle\) are two localized wave packets. Further, \(|\psi_0\rangle\) and \(|\psi_1\rangle\) represent bit values 0 and 1, respectively. Alice sends wave packets \(|a\rangle\) and \(|b\rangle\) to Bob by using two different arms of a Mach-Zehnder interferometer as shown in the Fig. 1 a. Alice sends Bob either \(|\psi_0\rangle\) or \(|\psi_1\rangle\), but \(|a\rangle\) is always sent first and \(|b\rangle\) is delayed by time \(\tau\). Here traveling time \((\theta)\) of wave packets from Alice to Bob is shorter than \(\tau\). Thus \(|b\rangle\) enters the communication channel only after \(|a\rangle\) is received by Bob. Consequently, both the wave packets \(|a\rangle\) and \(|b\rangle\) (i.e., the entire superposition) are never found simultaneously in the transmission channel. This geographic separation between \(|a\rangle\) and \(|b\rangle\) restricts Eve from measuring the state communicated by Alice in \{\(|\psi_0\rangle, |\psi_1\rangle\}\} basis. In fact, this geographic separation method compels Eve to measure the state communicated by Alice either in \{\(|a\rangle, |b\rangle\}\} basis or in some suitably constructed positive-operator valued measure (POVM). Thus the geographic separation ensures unavailability of special basis and thus implies no-cloning and security of GV protocol. This is how one can look at the security of GV protocol using the concept of special basis or the idea of Mor.

Although the special basis is not available to Eve, it is available to Bob as Bob delays \(|a\rangle\) by \(\tau\) and recreates the superposition state sent by Alice after he receives \(|b\rangle\) (cf. Fig. 1 a). In order to restrict Eve to perform the similar operation (i.e., to delay \(|a\rangle\) till the arrival of \(|b\rangle\)) Alice and Bob need to perform following tests:

1. Alice and Bob compare the receiving time \(t_r\) with the sending time \(t_s\) for each state to ensure that Eve cannot delay \(|a\rangle\) and wait for \(|b\rangle\) to reach her so that she can do a measurement in \{\(|\psi_0\rangle, |\psi_1\rangle\}\}. Specifically, Alice and Bob checks that \(t_r = t_s + \theta + \tau\).

 This test ensures that Eve cannot delay a wave packet, but it does not stop her from replacing a wave packet by a fake wave packet. The following test detects such an attack.

2. Alice and Bob look for changes in the data by comparing a portion of the transmitted bits with the same portion of the received bits.

It is important to note that sending time in GV protocol must be random. Otherwise, Eve can prepare a fake state in \(|\psi_0\rangle\) and send the fake \(|a\rangle\) to Bob at the known arrival time. Eve can keep the original \(|a\rangle\) and the fake \(|b\rangle\) wave packets with her till the arrival of original \(|b\rangle\). When \(|b\rangle\) arrives then she measures the original state. If the measurement yields \(|\psi_0\rangle\) then she sends the fake wave packet \(|b\rangle\) to Bob. Otherwise, she corrects the phase of the fake wave packet and sends \(-|b\rangle\) to Bob. If we assume that the time required for Eve’s measurement is negligible, then following this procedure Eve can obtain the key without being detected. Interestingly, this requirement of random sending time can be circumvented just by replacing the 50:50 beam splitters present in the GV setup (cf. Fig. 1 a) by identical beam splitters having \(R \neq T\), where \(R\) and \(T\) are reflectivity and transmissivity,
respectively. This small change in GV setup (1a) turns it into Koashi-Imoto protocol.

In the above we have already seen that it is possible to separate two pieces of orthogonal state and that leads to unavailability of special basis and thus no-cloning and orthogonal-state-based QKD. In what follows we will show that validity of GV-type protocol is not limited to single particle case and QKD, it can be easily generalized to multipartite case and to design protocols of DSQC and QSDC.

Before we describe an orthogonal-state-based protocol of secure direct quantum communication, we wish to note that GV in its original form is a protocol of QKD only and it cannot be directly used for secure direct quantum communication. Keeping this in mind, let us first describe a conjugate coding based protocol of secure direct quantum communication. The protocol is popularly known as ping-pong (PP) protocol and is described in the following section.

3.2. Ping-pong and modified ping-pong protocols

Ping-pong (PP) protocol which was introduced by Boström and Felbinger in 2002 is a protocol of QSDC and it may be described briefly as follows:

PP1 Bob prepares \(n \) copies of the Bell state \(|\psi^+\rangle \equiv \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)_{AB} \) (i.e., \(|\psi^+\rangle^\otimes n \)), and transmits all the first qubits of the Bell pairs to Alice, keeping all the second particles with himself.

PP2 Alice randomly selects a set of \(\frac{n}{2} \) qubits from the string received by her as a verification string, and applies the BB84 subroutine on the verification string to detect eavesdropping. If sufficiently few errors are found, they proceed to the next step; else, they return to the previous step.

PP3 Alice randomly selects half of the unmeasured qubits as verification string for the return path and encodes her message in the remaining \(\frac{n}{2} \) qubits using following rule: Alice does nothing to encode 0 on a message qubit, and applies an \(X \) gate to encode 1. After completion of the encoding operation, she sends all the \(\frac{n}{2} \) qubits of her possession to Bob.

PP4 Alice discloses the coordinates of the verification qubits after receiving authenticated acknowledgment of receipt of all the qubits from Bob. Bob applies the BB84 subroutine on the verification qubits and computes the error rate. If sufficiently few errors are found, they proceed to the next step; else, they return to PP1.

\[\text{BB84 subroutine means eavesdropping is checked by following a procedure similar to that adopted in the original BB84 protocol. Specifically, BB84 subroutine implies that Alice (Bob) randomly selects half of the qubits received by her (him) to form a verification string. She (He) measures verification qubits randomly in \{0, 1\} or \{+, −\} basis and announces the measurement outcome, position of that qubit in the string and the basis used for the particular measurement. Bob (Alice) also measures the corresponding qubit using the same basis (if needed) and compares his (her) results with the announced result of Alice (Bob) to detect eavesdropping.} \]
Bob performs Bell-state measurements on the remaining Bell pairs, and decodes the message.

If in PP3 Alice has encoded 0 then Bob will obtain $|\psi^+\rangle$ (the same as he had sent) in PP5, otherwise he will receive $|\phi^+\rangle$. Since $|\psi^+\rangle$ and $|\phi^+\rangle$ are orthogonal a Bell measurement will deterministically distinguish $|\psi^+\rangle$ and $|\phi^+\rangle$ and consequently decode the message encrypted by Alice. This two-way protocol is referred to as the ping-pong protocol as the travel qubit moves from Bob to Alice and comes back just like a table tennis (ping-pong) ball which moves back and forth between two sides of the table. It is easy to observe that in the original PP protocol full power of dense coding is not used. Alice could have used I, X, iY and Z to encode 00, 01, 10 and 11 respectively and that would have increased the efficiency of ping-pong protocol. This is so because the same amount of communication would have successfully carried two bits of classical information. This fact was first formally included in a modified PP protocol proposed by Cai and Li in 2004. In fact, in principle any entangled state can be used to design a ping-pong type protocol for QSDC. Here it is interesting to observe that in the above version of PP protocol (and in CL protocol) encoding and decoding of information is done by using orthogonal states alone. However, the eavesdropping checking is done with the help of BB84 subroutine. Thus to convert PP protocol into an orthogonal-state-based protocol we would require to replace BB84 subroutine by a GV-type subroutine for eavesdropping check. While describing the role of special basis on the origin of security of GV protocol, we have already mentioned that if we can visualize an orthogonal state as superposition of two quantum pieces that are geographically separable then the orthogonal state can be transmitted in such a way that Eve can neither clone it nor measure it without disturbing. In addition, we may note that an entangled state is a superposition in tensor product space. Now just consider a simple situation that Alice prepares a product of two Bell states say $|\psi^+\rangle^2 = |\psi^+\psi^+\rangle_{1234}$ and randomly changes the sequence of the particles and sends them to Bob over a channel. Now Eve knows that two Bell states are sent and she has to do a Bell measurement to know which Bell state is sent, but she does not know which particle is entangled to which particle. Consequently, any wrong choice of partner particles would lead to entanglement swapping (say if Eve does Bell measurement on 13 and/or 24 that would lead to entanglement swapping). Now consider that at a later time, when Bob informs Alice that he has received 4 qubits then Alice discloses the actual sequence of the transmitted qubits and Bob uses that data to rearrange the qubits in his hand into the original sequence and perform Bell measurement on them. Clearly, attempts of eavesdropping will leave detectable traces through the entanglement swapping and whenever Bob’s Bell measurement would yield any result other than $|\psi^+\rangle$ they will know there exists a Eve. Clearly, this new eavesdropping checking subroutine is of GV-type as it uses orthogonal states only and as it geographically separates two quantum pieces of an orthogonal state. Further, PoP technique applied here actually ensures that the special basis (Bell basis in
this case) is not available with Eve when the particles are in the channel, but after
Alice’s disclosure of the actual sequence of the qubit, Bob obtains access to the
special basis. Once we understand the essence of this strategy, we may generalize
it to develop a GV-type subroutine as follows:

(1) To communicate a sequence A of n message qubits, Alice creates an additional
sequence D of n decoy qubits prepared as $|\psi\rangle^\otimes n$.

(2) She concatenates D with A to obtain a new sequence P of $2n$ qubits and applies
a permutation operator Π_{2n} on P to yield $P' = \Pi_{2n}P$.

(3) After receiving authenticated acknowledgment from Bob that he has received
all the $2n$ qubits sent to him, Alice discloses the actual sequence of the decoy
qubits only (she does not disclose the sequence of message qubits) so that Bob
can perform Bell measurement on partner particles (original Bell pairs) and
reveal any effort of eavesdropping through the disturbance introduced by Eve’s
measurements.

As the message qubits are also randomized and as Alice does not disclose the actual
sequence till she knows that eavesdropping has not happened. Above subroutine
for eavesdropping checking which we referred to as GV subroutine can be used
to convert any BB84-type protocol of secure quantum communication that utilizes
orthogonal states for encoding and decoding. For example, PP15, Cai-Li25 and DLL
58 protocol can be converted easily into GV-type protocol. This idea is extensively
discussed in our recent publications20,34,35,36. For the completeness of the present
paper we elaborate this point here by explicitly describing a GV-type version of
PP protocol which we referred to as PPGV. More detail about this protocol can be
found at Refs. 23,35.

3.3. \textit{PPGV protocol}

In what follows we briefly describe the PPGV protocol introduced by Yadav,
Srikanth and Pathak.35 We can convert PP protocol to PPGV protocol by modifying steps PP1, PP2 and PP4 of PP protocol described above as follows:

\textbf{PPGV1} Bob prepares the state $|\psi^+\rangle^\otimes n$. He keeps half of the second qubits of
the Bell pairs with himself. On the remaining $\frac{3}{2}n$ qubits he applies a random
permutation operation $\Pi_{\frac{3}{2}n}$ and transmits them to Alice. n of the transmitted
qubits are Bell pairs and the remaining $\frac{1}{2}$ are the partner particles of the
particles which remained with Bob.

\textbf{PPGV2} After receiving Alice’s authenticated acknowledgment, Bob announces
$\Pi_n \in \Pi_{\frac{3}{2}n}$, the coordinates of the transmitted Bell pairs. Alice measures them
in the Bell basis to determine if they are each in the state $|\psi^+\rangle$. If the error
detected by Alice is within the tolerable limit, they continue to the next step.
Otherwise, they discard the protocol and restart from PPGV1.

\textbf{PPGV4} Alice discloses the coordinates of the verification qubits after receiving
Bob’s authenticated acknowledgment of receipt of all the qubits. Bob combines
the qubits of verification string with their partner particles already in his pos-
session and measures them in the Bell basis to compute the (return trip) error
rate.

The other steps in PP remain the same.

Briefly, security in PP\textsubscript{GV} and CL\textsubscript{GV} arises as follows. The reordering has the
same effect as time control and time randomization in GV. Eve is unable to apply a
2-qubit operation on legitimate partner particles to determine the encoding in spite
of their orthogonality. Any correlation she generates by interacting with individual
particles will diminish the observed correlations between Alice and Bob because
of restrictions on shareability of quantum correlations35. It is not our purpose to
discuss the security of the protocol in detail here. Interested readers may found
detailed discussions on the security of PP\textsubscript{GV} in Refs.34,35. The PP\textsubscript{GV}
protocol of Yadav, Srikanth and Pathak was the first ever orthogonal-state-based protocol of
QSDC.

PP protocol described above is a two way protocol in the sense that the qubits
travel in both the direction (i.e., from Alice to Bob and Bob to Alice). However,
it is possible to modify them into one-way protocols. A very interesting one-way
protocol known as DLL protocol was introduced by Deng, Long and Liu in 2003
58. This protocol can be obtained by modifying CL protocol. In what follows we
will describe DLL protocol and subsequently modify that to a GV-type protocol
which we refer to as DLL\textsubscript{GV}. A relatively detailed description of this protocol can
be found at Ref.23.

Before we describe DLL protocol we may note that after PP1, Alice and Bob
share entanglement. To share an entanglement it is not required to be created by
Bob as in PP protocol, even Alice can create an entangled state and send a qubit
to Bob. Let us modify the first step of PP protocol and see what happens.

\subsection*{3.4. DLL protocol}

\textbf{DLL1} Alice prepares the state $|\psi^+\rangle^\otimes n$, where $|\psi^+\rangle \equiv \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)_{AB}$, and
transmits all the second qubits (say B) of the Bell pairs to Bob, keeping the
other half (A) with herself.

\textbf{DLL2} Bob randomly chooses a set of $\frac{n}{2}$ qubits from the string received by him to
form a verification string, on which the BB84 subroutine to detect eavesdropping is applied. If sufficiently few errors are found, they proceed to the next
step; else, they return to DLL1.

\textbf{DLL3} Alice randomly chooses half of the qubits in her possession to form the ver-
ification string for the next round of communication, and encodes her message
in the remaining $\frac{n}{2}$ qubits. To encode a 2-bit key message, Alice applies one
of the four Pauli operations I, X, iY, Z on her qubits. Specifically, to encode
00, 01, 10 and 11 she applies I, X, iY and Z, respectively. After the encoding
operation, Alice sends all the qubits in her possession to Bob.

\textbf{DLL4} Alice discloses the coordinates of the verification qubits after receiving au-
thenticated acknowledgment of receipt of all the qubits from Bob. Bob applies a BB84 subroutine to the verification string and computes the error rate.

DLL5 If the error rate is tolerably low, then Bob decodes the encoded states via a Bell-state measurement on the remaining Bell pairs.

DLL protocol described in this way helps us to illustrate the symmetry among PP, CL and DLL protocols. This is a one-way two-step QSDC protocol. DLL protocol looks similar to PP protocol with dense coding (i.e., CL protocol). However, there is a fundamental difference between a two-way protocol and a two-step one-way protocol which uses the same resources and encoding operations. The difference lies in the fact that in a two-way protocol home qubit always remains at sender’s port but in a one-way two-step protocol both the qubits travel through the channel. At this specific point we observe a symmetry between DLL protocol and GV protocol. Here the superposition is broken into two pieces in such a way that the entire superposed (entangled) state is never available in the transmission channel but only the entire superposition (i.e., the superposed state or entangled state) contains meaningful information. Visualization of this intrinsic symmetry helps us to generalize DLL protocol to obtain an orthogonal version of GV protocol.

3.4.1. The modified DLL protocol (DLLGV)

Based on the reasoning analogous to the one used for turning PP to PPGV, we may propose the following GV-like version of DLL, which may be called DLLGV in accordance with the recent work of Yadav, Srikanth and Pathak. As before, we retain the steps of DLL, replacing only steps DLL\textsubscript{1}, DLL\textsubscript{2} and DLL\textsubscript{4} as follows:

DLLGV1 Alice prepares the state $|\psi^+\rangle^\otimes n$. She keeps half of the first qubits of the Bell pairs with herself. On the remaining $\frac{3n}{2}$ qubits she applies a random permutation operation Π_3 and transmits them to Bob; n of the transmitted qubits are Bell pairs while the remaining $\frac{n}{2}$ are the entangled partners of the particles remaining with Alice.

DLLGV2 After receiving Bob’s authenticated acknowledgment, Alice announces $\Pi_s \in \Pi_{3\pi}$, the coordinates of the transmitted Bell pairs. Bob measures them in the Bell basis to determine if they are each in the state $|\psi^+\rangle$. If the error detected by Bob is within a tolerable limit, they continue to the next step. Otherwise, they discard the protocol and restart from DLLGV1.

DLLGV4 Same as PPGV4, except that the ‘return trip’ is replaced by Alice’s second onward communication.

So two-way protocols of QSDC are now converted to one-way protocols. But still we need two steps. This motivates us to ask: Do we always need at least two steps for secure direct quantum communications? Apparently it looks so because if we send both the qubits of an entangled pair together then Eve may perform
Secure Quantum Communication with Orthogonal States

Bell measurement and find out the message. Even if Eve is detected afterward it would not be of any use because she has already obtained the message. However, using rearrangement of particle order (PoP) we can restrict Eve from measuring in Bell (special) basis and circumvent this problem. We have already used PoP in implementing PP^{GV}, CL^{GV} and DLL^{GV}. Using PoP a one-step one-way protocol of DSQC is already provided by us in Ref. 34. However, due to space restriction we do not elaborate the one-step one-way orthogonal-state-based protocol here.

We end-up this section by drawing your attention to the fact that in all the existing protocols information splitting is done in such a way that Eve does not get access to the special basis. Thus unavailability of special basis leads to no-cloning and thus to secure quantum communication and in the above described orthogonal-state-based protocol we have primarily ensured unavailability of special basis by geographically separating a quantum state into two pieces and avoiding Eve’s simultaneous access to both the pieces.

4. Conclusions

In the present work we have briefly reviewed the recent developments on orthogonal-state-based protocols of secure quantum communication. We have classified the recently proposed orthogonal-state-based protocols into two sub-classes: GV-type and Counterfactual. GV-type protocols are discussed with relatively more detail and it is explicitly shown that by using a GV-type subroutine where Bell states are used as decoy qubits we can convert any conjugate coding based protocol with orthogonal-state-based encoding and decoding into GV-type completely orthogonal-state-based protocol. Thus in principle, every task that can be done using conjugate coding can also be done using orthogonal states alone. As examples, we have explicitly shown here how PP and DLL protocols can be converted to corresponding GV-type protocols. Further, since earlier proposals of orthogonal-state-based protocols are experimentally implemented recently, we may hope that ideas presented in this work and our more detailed related works 20, 34, 35, 36 will be implemented soon and this type of protocols would draw much more attention of cryptography community because of their fundamentally different nature.

Acknowledgment: A. P. thanks Department of Science and Technology (DST), India for support provided through the DST project No. SR/S2/LOP-0012/2010. He also thanks K. Thapliyal for carefully reading the manuscript and for helping in preparation of the figures. A. P. and R. S. thank N. Alam, P. Yadav, A. Shenoy and S. Arvinda for their contribution on the research works of the group that are reviewed in the present paper. Authors dedicate this work to Prof. Jozef Gruska on his 80th birth day.

References

1. Bennett, C. H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Proceedings of the IEEE International Conference on Computers, Sys-
1. Ekert, A. K.: Quantum cryptography based on Bell’s Theorem. Phys. Rev. Lett. 67, 661-663 (1991)
2. Bennett, C. H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121-3124 (1992)
3. Goldenberg, L., Vaidman, L.: Quantum cryptography based on orthogonal states. Phys. Rev. Lett. 75, 1239-1243 (1995)
4. Hillery, M., Buzek, V., Bertiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829-1834 (1999)
5. Liu, J., Liu, Y.-M., Cao, H.-J., Shi, S.-H., Zhang, Z.-J.: Revisiting quantum secure direct communication with W state. Chin. Phys. Lett. 23, 2652-2655 (2006)
6. Li, X.-H., Deng, F.-G., Li, C.-Y., Liang, Y.-J., Zhou, P., Zhou, H.-Y.: Deterministic secure quantum communication without maximally entangled states. J. Korean Phys. Soc. 49, 1354-1359 (2006)
7. Yan, F. L., Zhang, X.: A scheme for secure direct communication using EPR pairs and teleportation. Euro. Phys. J. B 41, 75-78 (2004)
8. Man, Z. X., Zhang, Z. J., Li, Y.: Deterministic secure direct communication by using swapping quantum entanglement and local unitary operations. Chin. Phys. Lett. 22, 18-21 (2005)
9. Hwang, T., Hwang, C. C., Tsai, C. W.: Quantum key distribution protocol using dense coding of three-qubit W state. Euro. Phys. J. D 61, 785-790 (2011)
10. Zhu, A. D., Xia, Y., Fan, Q. B., Zhang, S.: Secure direct communication based on secret transmitting order of particles. Phys. Rev. A 73, 022338 (2006)
11. Yuan, H., Song, J., Zhou, J., Zhang, G., Wei, X.-f.: High-capacity deterministic secure four-qubit W state protocol for quantum communication based on order rearrangement of particle pairs. Int. J. Theo. Phys. 50, 2403-2409 (2011)
12. Long, G. L., Liu, X. S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)
13. Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)
14. Degiovanni, I. P., Berchera, I. R., Castelletto, S., Rastello, M. L., Bovino, F. A., Colla, A. M., Castagnoli, G.: Quantum dense key distribution. Phys. Rev. A 69, 032310 (2004)
17. Lucamarini, M., Mancini, S.: Secure deterministic communication without entanglement. Phys. Rev. Lett. 94, 140501 (2005)
18. An, N. B.: Quantum dialogue. Phys. Lett. A 328, 6-10 (2004)
19. Shukla, C., Kothari, V., Banerjee, A., Pathak, A.: On the group-theoretic structure of a class of quantum dialogue protocols. Phys. Lett. A 377, 518-527 (2013)
20. Shukla, C., Alam, N., Pathak, A.: Protocols of quantum key agreement solely using Bell states and Bell measurement. Quant. Info. Process. (2014) In Press, DOI: 10.1007/s11128-014-0784-0.
21. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145-195 (2002)
22. Long, G.-l., Deng, F.-g., Wang, C., Li, X.-h., Wen, K., Wang, W.-y.: Quantum secure direct communication and deterministic secure quantum communication. Front. Phys. China 2, 251-271 (2007)
23. Pathak, A.: Elements of quantum computation and quantum communication. CRC Press, Boca Raton, USA (2013)
Secure Quantum Communication with Orthogonal States

24. Traina, P., Gramegna, M., Avella, A., Cavanna, A., Carpentras, D., Degiovanni, I. P., Brida, G., Genovese, M.: Review on recent groundbreaking experiments on quantum communication with orthogonal states. Quantum Matter 2, 153-166 (2013)

25. Cai, Q.-y., Li, B.-w.: Improving the capacity of the Boström-Felbinger protocol. Phys. Rev. A 69, 054301 (2004)

26. Tsai, C. W., Hsieh, C. R., Hwang, T.: Dense coding using cluster states and its application on deterministic secure quantum communication. Eur. Phys. J. D 61, 779-783 (2011)

27. Noh, T.-G.: Counterfactual quantum cryptography. Phys. Rev. Lett. 103, 230501 (2009)

28. Guo, G.-C., Shi, B.-S.: Quantum cryptography based on interaction-free measurement. Phys. Lett. A 256, 109-112 (1999)

29. Koashi, M., Imoto, N.: Quantum cryptography based on split transmission of one-bit information in two steps. Phys. Rev. Lett. 79, 2383-2386 (1997)

30. Avella, A., Brida, G., Degiovanni, I. P., Genovese, M., Gramegna, M., Traina, P.: Experimental quantum-cryptography scheme based on orthogonal states. Phys. Rev. A 82, 062309 (2010)

31. Ren, M., Wu, G., Wu, E., Zeng, H.: Experimental demonstration of counterfactual quantum key distribution. Laser Phys. 21, 755-760 (2011)

32. Brida, G., Cavanna, A., Degiovanni, I. P., Genovese, M., Traina, P.: Experimental realization of counterfactual quantum cryptography. Laser Phys. Lett. 9, 247-252 (2012)

33. Liu, Y., Ju, L., Liang, X.-L., Tang, S.-B., Tu, G.-L. S., Zhou, L., Peng, C.-Z., Chen, K., Chen, T.-Y., Chen, Z.-B., Pan, J.-W.: Experimental demonstration of counterfactual quantum communication. Phys. Rev. Lett. 109, 030501 (2012)

34. Shukla, C., Pathak, A., Srikanth, R.: Beyond the Goldenberg-Vaidman protocol: Secure and efficient quantum communication using arbitrary, orthogonal, multi-particle quantum states. Int. J. Quant. Info. 10, 1241009 (2012)

35. Yadav, P., Srikanth, R., Pathak, A.: Generalization of the Goldenberg-Vaidman QKD protocol. arXiv:1209.4304 (2012)

36. Shukla, C., Pathak, A.: Direct quantum communication without actual transmission of the message qubits. Quant. Info. Process. (2014) In Press, DOI: 10.1007/s11128-014-0792-0. (2013)

37. Salih, H., Li, Z. H., Al-Amri, M., Zubairy, M. S.: Protocol for direct counterfactual quantum communication. Phys. Rev. Lett. 110, 170502 (2013)

38. Sun, Y., Wen, Q.-Y.: Counterfactual quantum key distribution with high efficiency. Phys. Rev. A 82, 52318 (2010)

39. Guo, Q., Cheng, L.-Y., Chen, L., Wang, H.-F., Zhang, S.: Counterfactual quantum-information transfer. arXiv:1404.6401 (2014)

40. Shenoy, A., Srikanth, R., Srinivas, T.: Counterfactual quantum certificate authorization. Phys. Rev. A 89, 052307 (2014)

41. Salih, H.: Protocol for counterfactually transporting an unknown qubit. arXiv:1404.2200 (2014)

42. Guo, Q., Cheng, L.-Y., Chen, L., Wang, H.-F., Zhang, S.: Counterfactual entanglement distribution without transmitting any particles. Optics express 22, 8970-8984 (2014)

43. Zhang, J.-L., Guo, F.-Z., Gao, F., Liu, B., Wen, Q.-Y.: Private database queries based on counterfactual quantum key distribution. Phys. Rev. A 88, 022334 (2013)

44. Salih, H.: Tripartite counterfactual quantum cryptography. arXiv:1404.5540 (2014)

45. Vaidman, L.: Comment on “Protocol for direct counterfactual quantum communication” by Salih et al. Phys. Rev. A 89, 052308 (2014)
18 Chitra Shukla et al.

cation”. Phys. Rev. Lett. 112, 208901 (2014)
46. Salih, H., Li, Z.-H., Al-Amri, M., Zubairy, M. S.: Salih et al. Reply. Phys. Rev. Lett. 112, 208902 (2014)
47. Shenoy, A., Srikanth, R., Srinivas, T.: Semi-counterfactual cryptography, Europhys. Lett. 103, 60008 (2013)
48. Deng, F.-G., and Long, G. L.: Controlled order rearrangement encryption for quantum key distribution. Phys. Rev. A 68, 042315 (2003)
49. Banerjee, A., Pathak, A.: Maximally efficient protocols for direct secure quantum communication. Phys. Lett. A 376, 2944-2950 (2012)
50. Shukla, C., Banerjee, A., Pathak, A.: Improved protocols of secure quantum communication using W states. Int. J. Theor. Phys. 52, 1914-1924 (2013)
51. Peres, A.: Quantum cryptography with orthogonal states?. Phys. Rev. Lett. 77, 3264 (1996)
52. Goldenberg, L., Vaidman, L.: Goldenberg and Vaidman Reply. Phys. Rev. Lett. 77, 3265 (1996)
53. Mor, T.: No cloning of orthogonal states in composite systems. Phys. Rev. Lett. 80, 3137-3140 (1998)
54. Elitzur, A. C., Vaidman, L.: Quantum mechanical interaction-free measurements. Found. Phys. 23, 987-997 (1993)
55. Gisin, N.: Quantum cloning without signaling. Phys. Lett. A 242, 1-3 (1998)
56. Wootters, W. K., Zurek, W. H.: A single quantum cannot be cloned. Nature 299, 802-803 (1982)
57. Aravinda, S., Yadav, P., Srikanth, R., Pathak, A.: Post-quantum cryptography. Communicated
58. Deng, F.-G., Long, G. L., Liu, X.-S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)