Photoinduced Bisphosphination of Alkynes with Phosphorus Interelement Compounds and Its Application to Double-Bond Isomerization

Yuki Yamamoto, Ryo Tanaka, Shintaro Kodama, Akihiro Nomoto and Akiya Ogawa *

Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Osaka 599-8531, Japan; syb02137@edu.osakafu-u.ac.jp (Y.Y.); sab02988@edu.osakafu-u.ac.jp (R.T.); skodama@chem.osakafu-u.ac.jp (S.K.); nomoto@chem.osakafu-u.ac.jp (A.N.)

* Correspondence: ogawa@chem.osakafu-u.ac.jp

Abstract: The addition of interelement compounds with heteroatom-heteroatom single bonds to carbon-carbon unsaturated bonds under light irradiation is believed to be an atomically efficient method to procure materials with carbon-heteroatom bonds. In this study, we achieved the photoinduced bisphosphination of alkynes using the phosphorus interelement compound, tetraphenyldiphosphine monosulfide (1), to stereoselectively obtain the corresponding (E)-vic-1,2-bisphosphinoalkenes, which are important transition-metal ligands. The bisphosphination reaction was performed by mixing 1 and various alkynes and then exposing the mixture to light irradiation. Optimization of the conditions for the bisphosphination reaction resulted in a wide substrate range and excellent trans-selectivity. Moreover, the completely regioselective introduction of pentavalent and trivalent phosphorus groups to the terminal and internal positions of the alkynes, respectively, was achieved. We also found that the novel double-bond isomerization reaction of the synthesized bisphosphinated products occurred with a catalytic amount of a base under mild conditions. Our method for the photoinduced bisphosphination of carbon-carbon unsaturated compounds may have strong implications for both organic synthesis and organometallic and catalyst chemistry.

Keywords: interelement compounds; photoinduced bisphosphination; radical reaction; stereoselective synthesis; double-bond isomerization

1. Introduction

The addition of interelement compounds with heteroatom-heteroatom single bonds to carbon-carbon unsaturated bonds has recently attracted wide attention as an atomically efficient method for carbon-heteroatom bond formation [1–6]. This addition reaction is promoted by transition-metal catalysts, acids, bases, and radical initiators [7–26]. On the other hand, photoirradiation has recently attracted much attention as a clean, eco-friendly, and powerful method in organic synthesis [27–29]. Thus, given the drawbacks of conventional methods, photoirradiation-induced radical addition reactions, which do not require additives, are becoming increasingly important from the viewpoint of green innovation [30,31]. The radical addition reactions of halogens and organic disulfides have been reported to occur under photoirradiation, but their synthetic applications are limited. To clarify the universality of the photoinduced radical reaction of heteroatom compounds as a method for generating carbon-heteroatom bonds, we previously investigated a series of radical addition reactions to the carbon-carbon unsaturated bonds, of group 16 (e.g., diselenides and ditellurides) [32–36], group 15 (e.g., diphosphines) [37–42], and group 13 (e.g., diboranes) compounds [43,44]. We then combined these reactions with disulfides and fluorinated iodoalkanes and successfully formed a variety of carbon-heteroatom bonds [45–53]. We also recently developed the radical addition reactions of diphosphines containing pentavalent phosphorus groups, such as Ph$_2$P(O)-PPh$_2$, Ph$_2$P(S)-PPh$_2$, and
Ph$_2$P(S)-P(S)Ph$_2$, to alkenes (Scheme 1) [38–40]. Because the synthesized vicinally diphosphinated adducts are excellent ligands for transition metals [54–58], the development of a novel method for the photoinduced bisphosphination of carbon-carbon unsaturated compounds is expected to have a great impact on both organic synthesis and organometallic and catalyst chemistry.

As shown in Scheme 1, pentavalent and trivalent phosphorus groups can be simultaneously introduced to the terminal and internal positions of terminal alkenes, respectively, to obtain the corresponding adducts with excellent regioselectivity. This method can be used to obtain a variety of vicinal phosphines in a simple manner. The radical addition of diphosphines to alkynes generates E- and Z-isomers; therefore, the development of stereoselective methods to obtain $\text{vic}-1,2$-bisphosphinoalkenes may lead to the production of novel phosphorus ligands with the use of synthetic intermediates. However, only one example of the photoinduced radical addition of the diphosphine Ph$_2$P(S)-PPh$_2$ to alkynes has been studied thus far [39], and the details of the substrate scope, factors influencing the stereoselectivity of the adducts, and relevant synthetic applications have not been elucidated.

In this paper, we report the results of a detailed study on the radical addition reaction of Ph$_2$P(S)-PPh$_2$ to alkynes under light irradiation (Scheme 2a) and investigate the synthetic utilization of the generated $\text{vic}-1,2$-bisphosphinoalkenes. Interestingly, we found that the novel double-bond isomerization reaction of $\text{vic}-1,2$-bisphosphinoalkenes proceeded smoothly under mild conditions in the presence of a catalytic amount of a base (Scheme 2b).

Scheme 1. Photoinduced radical addition of phosphorus–phosphorus interelement compounds to alkenes.

Scheme 2. (a) Photoinduced bisphosphination of alkynes with phosphorus-based interelement compounds; (b) applications of vic-1,2-bisphosphinoalkenes to double-bond isomerization.
2. Results and Discussion

Obtaining a single isomer with the highest selectivity among several possible regio- and stereoisomers is necessary to develop a straightforward method for the synthesis of functional phosphorus-based ligands for metals. Therefore, we began our research by monitoring the time-dependent profiles of the photoinduced bisphosphination of alkynes with Ph₂P(S)-PP₂ (1) by ³¹P NMR spectroscopy. The results are summarized in Tables 1 and 2. When aliphatic 1-octyne 2a was used as the substrate (Table 1), the E-isomer of 3a was gradually formed with excellent stereoselectivity under light irradiation for up to 9 h; minimal formation of the Z-isomer was observed. After 9 h, the yield of Z-3a gradually increased and the stereoselectivity of E-3a decreased.

Table 1. Time-dependent profiles of the photoinduced bisphosphination of 1-octyne 2a.

Time (h)	Yield 3a (%)	E-Selectivity (%)
0.5	19	2
1.0	28	1
1.5	34	1
2.0	39	1
3.5	47	2
6.0	52	3
9.0	55	5
13	56	7

Yields were determined by ³¹P NMR spectroscopy.

Table 2. Time-dependent profiles of the bisphosphination of phenylacetylene 2b.

Time (h)	Yield 3b (%)	E-Selectivity (%)
0.5	41	2
1.0	51	3
2.0	65	8
4.5	64	8
6.0	61	19
12	52	32

Yields were determined by ³¹P NMR spectroscopy.

Table 2 shows the results of the photoinduced addition reaction of 1 with phenylacetylene 2b as an aromatic alkyn. The yield of Z-3b increased at a much shorter photoirradiation time with 2b than with the aliphatic acetylene, thereby suggesting that photoirradiation led to the rapid isomerization of E-3b to Z-3b. These results indicate that the optimum reaction times for the selective synthesis of E-adducts are 9 h for aliphatic alkynes and 2 h for aromatic alkynes.

With the optimized conditions (aliphatic alkynes: 9 h, arylacetylenes: 2 h) in hand, we then evaluated the substrate scope of the photoinduced bisphosphination of a series of
alkynes with 1 (Table 3). Because the formed vic-1,2-bisphosphinoalkene 3 has a trivalent phosphorus group in its structure and is, therefore, sensitive to air, it was successfully isolated by sequential oxidation to 4 at 25 °C for 30 min using 30% aqueous H2O2. As shown in Table 3, 1-octyne 2a and phenylacetylene 2b were successfully converted to the corresponding adducts 4a and 4b, respectively, in good yields with excellent stereoselectivity (E/Z = 90/10, entries 1 and 2). The phosphorylphosphination of alkynes under light irradiation could also be applied to various alkynes containing a branched chain (2c), cyclohexyl group (2d), benzyl group (2e), and phenethyl group (2f), and the corresponding adducts 4c–4f were obtained in moderate yields with good stereoselectivity (E/Z = 89/11–100/0, entries 3–6). The use of ethyl propiolate 2h, an electron-deficient alkyne, did not provide the desired adducts in sufficient yield, and a complex mixture was obtained after 9 h of irradiation (entry 7 in Table 3). The reaction was also applicable to an alkyne with a chloro group, and the desired adduct 4h was obtained in 54% yield with excellent stereoselectivity (E/Z = 91/9, entry 8 in Table 3). Moreover, arylacetylenes 2i and 2j were successfully converted to the corresponding adducts 4i and 4j in 65% and 64% yields, respectively, after irradiation for 2 h, and the E-adducts were isolated as nearly pure isomers (entries 9 and 10). When 4-octyne, one of the internal alkynes, was used as a substrate, the photoinduced bisphosphination with 1 did not proceed at all, even after 9 h of irradiation, and 1 was recovered in 78% yield. This might be due to the steric hindrance of the substrate to Ph2P(S)-PPh2.

Based on the results of this study and our previous studies, a plausible reaction pathway for the photoinduced bisphosphination of alkynes with 1 is shown in Scheme 3. In the initiation stage, homolytic cleavage of the P–P bond occurred reversibly under light to form Ph2P(S)• and Ph2P•. The generated Ph2P(S)• selectively attacks the terminal position of alkyne to form A. Then, the carbon radical A selectively reacts with the Ph2P-moiety of 1, which is sterically less hindered than the Ph2P(S)-moiety. Finally, the following oxidation of the trivalent phosphorus group of the product 3 resulted in the corresponding vic-1,2-bisphosphinoalkene 4.

![Scheme 3](image)

Scheme 3. A plausible pathway for the photoinduced bisphosphination of alkyne with 1.

Our previous studies also showed that the addition reaction of Ph2P(O)–PPh2 to terminal alkynes can selectively introduce Ph2P(O) and Ph2P groups to the terminal and internal positions of alkynes, respectively, under light irradiation or in the presence of a catalytic radical initiator (e.g., AIBN, V-40, etc.). Treatment of adduct 3′ with elemental sulfur resulted in the formation of adduct 5 featuring Ph2P(O) and Ph2P(S) groups at the terminal and internal positions, respectively (Scheme 4) [38,59]. As shown in Table 3, a variety of vic-1,2-bisphosphinoalkenes 4 were obtained in good yields with remarkable stereoselectivity upon the addition of Ph2P(S)-PPh2 to the corresponding alkynes under light irradiation. Interestingly, our method allowed the regio-complementary introduction of Ph2P(S) and Ph2P(O) groups to the terminal and internal positions of alkynes, respectively, thereby providing a versatile synthetic approach to obtain bisphosphinated materials. The synthesized bisphosphinated products 4 and 5 could easily be reduced to afford the corresponding trivalent phosphine compounds, (E)-Ph2PCH=CR(PPh2), as monodentate ligands for mononuclear complexes. This feature is highly attractive because a hierarchical structure can be constructed by cross-linking the two metals [60–63].
Table 3. Substrate scope for the photoinduced bisphosphination of alkynes with tetraphenylidiphosphine monosulfide (1).

Entry	Alkyne 2	3	Yield (%) a [E/Z]	Product 4	Yield (%) b [E/Z]			
1 c	=C−^3^Hex	Ph2P=S−^3^Hex	Ph2P=S−^3^Hex	Ph2P[S=S]Ph2	57 [91/9]	Ph2P=S−^3^Hex	Ph2P=S−^3^Hex	63 [90/10]
2 d	=C−Ph	Ph2P=S−Ph	Ph2P=S−Ph	Ph2P[S=S]Ph2	67 [90/10]	Ph2P=S−Ph	Ph2P=S−Ph	62 [90/10]
3 c	=C−2c	Ph2P=S−2c	Ph2P=S−2c	Ph2P[S=S]Ph2	58 [91/9]	Ph2P=S−2c	Ph2P=S−2c	48 [100/0]
4 c	=C−2d	Ph2P=S−2d	Ph2P=S−2d	Ph2P[S=S]Ph2	41 [90/10]	Ph2P=S−2d	Ph2P=S−2d	42 [89/11]
5 c	=C−2e	Ph2P=S−2e	Ph2P=S−2e	Ph2P[S=S]Ph2	50 [90/10]	Ph2P=S−2e	Ph2P=S−2e	57 [90/10]
6 c	=C−2f	Ph2P=S−2f	Ph2P=S−2f	Ph2P[S=S]Ph2	56 [89/11]	Ph2P=S−2f	Ph2P=S−2f	50 [98/2]
7 c	=C−2g	complex mixture	-	-	-			
8 c	=C−2h	Ph2P=S−2h	Ph2P=S−2h	Ph2P[S=S]Ph2	overlapped	Ph2P=S−2h	Ph2P=S−2h	54 [91/9]
9 d	=C−2i	Ph2P=S−2i	Ph2P=S−2i	Ph2P[S=S]Ph2	62 e	Ph2P=S−2i	Ph2P=S−2i	65 [99/1]
10 d	=C−2j	Ph2P=S−2j	Ph2P=S−2j	Ph2P[S=S]Ph2	67 [90/10]	Ph2P=S−2j	Ph2P=S−2j	64 [100/0]

a Yields were determined by 31P NMR spectroscopy; b isolated yields; c reaction time: 9 h; d reaction time: 2 h.

* Peaks of stereoisomers in 31P NMR overlapped.
Present work

![Diagram of present work](image)

Our previous work

(Ogawa, A. et al. *Beilstein JOC*, 2021, 17, 866.)

Scheme 4. Regio-complementary synthesis of vic-1,2-bisphosphinoalkenes.

In addition, if the position of the carbon-carbon double bond in the series of addition products 4 and 5 can be controlled by an isomerization reaction, it will be possible to prepare a more diverse group of phosphorus ligands. Therefore, we started to investigate the isomerization of the carbon-carbon double bond using various inorganic and organic bases. Here, regarding the synthesis and purification of 4 and 5, the separation of 4 and Ph$_2$P(S)PPh$_2$ was rather difficult, and 4 could only be purified on a small scale. In contrast, 5 could be synthesized on a gram scale and was easily isolated by silica gel column chromatography. Therefore, 5 was chosen as a model substrate for the isomerization reaction.

Interestingly, the isomerization of the carbon-carbon double bond of adduct 5 occurred when amines, which are representative organic bases, were used (Scheme 5). When adduct 5a bearing an alkyl chain was treated with an equimolar amount of n-octylamine in acetonitrile at 80 °C for 15 h, the double-bond isomerization products 6a and 6a' were obtained in 90% and 6% yields, respectively.

![Diagram of scheme 5](image)

Scheme 5. Base-promoted double-bond isomerization of vic-1,2-bisphosphinoalkene 5a.

To clarify the influence of the base, solvent, and temperature on the regioselectivity of the double-bond isomerization of 5a, we performed detailed optimization studies of the reaction conditions, as shown in Table 4. When the amount of the base was reduced to 20 mol% and the isomerization reaction was attempted under toluene reflux conditions (110 °C), 6a was obtained in high yield (90%, entry 2 in Table 4). This result indicates that the double-bond isomerization reaction proceeds with a catalytic amount of the base. When the amount of the base was reduced to 5 mol% and the reaction was performed under the same conditions, the yield of 6a decreased (entry 3 in Table 4). When the base was changed from n-octylamine to 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), the yield of 6a increased to 59%; very interestingly, 6a' in 39% yield was also obtained (entry 4 in Table 4). When the amount of DBU was increased to 40 mol%, 6a' was preferentially formed in 83% yield (entry 5 in Table 4). In the absence of the base, the isomerization did not occur (entry 6 in Table 4).
was changed from n-octylamine to DBU (20 mol%) in toluene at 110 °C, and 6b was successfully obtained in excellent yield (entry 11 in Table 5). Moreover, the use of only 5 mol% DBU led to the nearly quantitative formation of 6b (entry 11 in Table 5).

Table 4. Optimization of the reaction conditions for the base-catalyzed double-bond isomerization of 5a.

Entry	Base (mol%)	Solvent	Temp. (°C)	Yield 6a (%) a	Yield 6b (%) a
1	6-Oct-NH₂ (100)	CH₃CN	80	90 [87/13]	6
2	6-Oct-NH₂ (20)	Toluene	110	59 [88/12]	N. D.
3	6-Oct-NH₂ (5)	Toluene	110	29 [83/17]	N. D.
4	DBU (50)	Toluene	110	15 [93/7]	83 (56)
5	DBU (40)	Toluene	110	N. D.	N. D.
6	-	Toluene	110	N. D.	N. D.

a Yields were determined by 31P NMR spectroscopy; b reaction conditions: 5a (1.2 mmol), base (5 mol%), toluene (1.2 mL), 110 °C, 15 h.

Next, we investigated the same double-bond isomerization reaction using the addition product 5b with a phenethyl group (Table 5). Surprisingly, the isomerization reaction of 5b using primary amines, such as n-butylamine and n-octylamine, in acetonitrile selectively produced 6b as the sole product, which was formed by the double isomerization of the carbon-carbon double bond of 5b (entries 1 and 2 in Table 5). This might be attributed to the C–C double bond of 6b being stabilized by conjugation with aromatic rings. The use of secondary or tertiary amines resulted in the formation of very small amounts of 6b, most likely because of the steric hindrance of the bases used (entries 3–5 in Table 5). When DBU was used as the base, 6b was successfully obtained in 94% yield (entry 6 in Table 5). Other baselines, such as 4-dimethylaminopyridine (DMAP) and Cs₂CO₃, were ineffective for double-bond isomerization (entries 7 and 8 in Table 5). Base-catalyzed isomerization was attempted using n-octylamine and DBU (20 mol%) in toluene at 110 °C, and 6b was successfully obtained in excellent yield (entries 9 and 10 in Table 5). Moreover, the use of only 5 mol% DBU led to the nearly quantitative formation of 6b (entry 11 in Table 5).

Table 5. Optimization of the reaction conditions for the base-catalyzed double-bond isomerization of 5b.

Entry	Base (mol%)	Solvent	Temp. (°C)	Yield 6b (%) a
1	6-Oct-NH₂ (100)	CH₃CN	80	74
2	6-Bu-NH₂ (100)	CH₃CN	80	62
3	6-Pr₂NH (100)	CH₃CN	80	4
4	6-Pr₂NEt (100)	CH₃CN	80	trace
5	Et₃N (100)	CH₃CN	80	2
6	DBU (100)	CH₃CN	80	94
7	DMAP (100)	CH₃CN	80	23
8	Cs₂CO₃ (100)	CH₃CN	80	trace
9	6-Oct-NH₂ (20)	Toluene	110	94
10	DBU (20)	Toluene	110	98
11	DBU (5)	Toluene	110	99 (95)

a Yields were determined by 31P NMR spectroscopy (isolated yield); b reaction conditions: 5b (1.2 mmol), DBU (5 mol%), toluene (1.2 mL), 110 °C, 15 h.
Figure 1 represented the result of X-ray single-crystal structure analysis of the double-bond isomerization product 6b. The result shown in Figure 1 clarifies the regio- and stereoselective formation of E-isomer as a single product, having different types of phosphorus functional groups in one molecule. Such a compound with both two phosphorus functional groups and one vinyl functional group is very rare; thus, the developed method in this work will be a powerful protocol for the facile preparation of a variety of new phosphorus ligands.

![Crystal structure of 6b with numbered atoms. Ellipsoids are shown at the 50% probability level. Selected interatomic distances (Å) and angles (deg): P1–S1, 1.9577(4); P1–C11, 1.8171(12); P1–C17, 1.8123(12); P1–C1, 1.8420(12); P2–O1, 1.4905(9); C2–C1, 1.5494(15); P2–C29, 1.8130(12); P2–C23, 1.8035(12); P2–C2, 1.8084(12); C4–C3, 1.3326(17); C3–C1, 1.5066(16); C5–C4, 1.4727(17); C11–P1–S1, 119.52(9); C17–P1–S1, 112.79(4); C17–P1–C11, 104.27(5); C17–P1–C1, 107.85(5); C23–P2–C29, 106.72(5); C23–P2–C2, 107.09(6); C2–P2–C29, 105.04(5); C30–C29–P2, 123.46(9); C3–C4–C5, 127.10(12); C34–C29–P2, 117.36(9); C4–C3–C1, 121.29(11); C12–C11–P1, 118.14(9); C2–C1–P1, 106.85(7); C3–C1–P1, 110.00(8); C16–C11–P1, 122.12(9); C3–C1–C2, 114.34(9); C24–C23–P2, 117.07(9); C9–C10–C5, 120.76(15); C28–C23–P2, 123.42(10); C22–C17–P1, 119.52(9); C18–C17–P1, 120.30(9); C6–C5–C4, 122.56(12); C10–C5–C4, 118.81(13).](image_url)

We also performed the base-catalyzed isomerization reaction on the regio-complementary bisphosphination product 4f, and successfully obtained 7a in 99% yield with good regioselectivity (Scheme 6).

![Scheme 6. Base-catalyzed double-bond isomerization of 4f.](image_url)
3. Materials and Methods

3.1. General Information

Unless otherwise stated, all starting materials were purchased from commercial sources and used without further purification. The diphosphine 1 was prepared according to the previously reported procedure [39]. All solvents were distilled and degassed with argon before use. 1H, 13C(1H), and 31P NMR spectra were recorded in CDCl$_3$ using a Bruker BioSpin Ascend 400 spectrometer (Tokyo, Japan) at 400, 100, and 162 MHz, respectively, with Me$_4$Si as the internal standard. The characterization data of compounds are shown as follows (1H, 13C(1H), and 31P NMR spectra are included in the Supplementary Materials).

3.2. General Procedure for the Photoinduced Bisphosphination of Alkynes with Tetrphenylidiphosphine Monosulfide

The diphosphine 1 (0.4 mmol), alkyne 2 (0.4 mmol), and degassed dry CH$_2$Cl$_2$ (0.4 mL) were added to a sealed Pyrex NMR tube under an argon atmosphere. The mixture was irradiated with a xenon lamp (100 W) at a distance of 10 cm for 2–9 h at 20–25 °C. Since the reaction is sensitive to the reaction temperature [39], the NMR tube was immersed in water during light exposure to maintain a reaction temperature of 20–25 °C. After the reaction, the mixture was transferred to a 10 mL test tube with a stir bar and then dried with anhydrous MgSO$_4$. Finally, the residue was purified by silica gel column (AcOMe/iso-hexane) and preparative thin-layer (AcOMe/iso-hexane) chromatography to yield 4 (Table 3).

(E)-(1-(Diphenylphosphoryl)oct-1-en-2-yl)diphenylphosphine oxide (4a) (CAS: 2271208-25-2) [39]. After purification, the molar ratio of E-isomer/Z-isomer was 90/10. Colorless oil, 133.1 mg, 63%; 1H NMR (400 MHz, CDCl$_3$): δ 7.84–7.79 (dd, J = 13.4, 7.0 Hz, 4H), 7.73–7.69 (dd, J = 11.6, 7.2 Hz, 4H), 7.57–7.54 (m, 2H), 7.43–7.38 (m, 4H), 7.20 (dd, $J_{\text{H-P}}$ = 23.7, 21.6 Hz, 1H), 2.67–2.59 (m, 2H), 0.85–0.78 (m, 4H), 0.71 (t, J = 7.3 Hz, 3H); 13C(1H) NMR (100 MHz, CDCl$_3$): δ 159.9, 143.9, 127.6 (dd, $J_{\text{C-P}}$ = 72.3, 8.1 Hz), 133.6 (d, $J_{\text{C-P}}$ = 84.3 Hz), 132.4 (d, $J_{\text{C-P}}$ = 2.6 Hz), 132.1 (d, $J_{\text{C-P}}$ = 9.6 Hz), 131.7 (d, $J_{\text{C-P}}$ = 2.9 Hz), 131.1 (d, $J_{\text{C-P}}$ = 10.7 Hz). 130.9 (d, $J_{\text{C-P}}$ = 100.9 Hz), 128.7 (d, $J_{\text{C-P}}$ = 11.8 Hz), 128.6 (d, $J_{\text{C-P}}$ = 12.4 Hz), 31.0, 30.6 (dd, $J_{\text{C-P}}$ = 8.8, 8.8 Hz), 29.4, 28.9, 22.3, 14.0; 31P NMR (162 MHz, CDCl$_3$): δ 30.3 (d, $J_{\text{P-P}}$ = 56.0 Hz), 27.8 (d, $J_{\text{P-P}}$ = 56.1 Hz) (for Z-isomer: δ 34.9 (d, $J_{\text{P-P}}$ = 18.0 Hz), 26.0 (d, $J_{\text{P-P}}$ = 18.0 Hz)).

(E)-(2-(Diphenylphosphoryl)-1-phenylvinyl)diphenylphosphine oxide (4b). After purification, the molar ratio of E-isomer/Z-isomer was 90/10. White solid, 128.8 mg, 62%, mp 47.0–47.5 °C; 1H NMR (400 MHz, CDCl$_3$): δ 7.69 (m, 9H), 7.51–7.47 (m, 2H), 7.41–7.37 (m, 4H), 7.32–7.28 (m, 2H), 7.25–7.20 (m, 4H), 6.93–6.86 (m, 3H), 6.81–6.78 (m, 2H); 13C(1H) NMR (100 MHz, CDCl$_3$): δ 152.8 (d, $J_{\text{C-P}}$ = 79.8 Hz), 137.0 (d, $J_{\text{C-P}}$ = 71.9, 7.9 Hz), 132.6, 132.3 (d, $J_{\text{C-P}}$ = 9.2 Hz), 132.3 (d, $J_{\text{C-P}}$ = 2.4 Hz), 132.1 (d, $J_{\text{C-P}}$ = 84.9 Hz), 131.3 (d, $J_{\text{C-P}}$ = 10.5 Hz), 131.28 (d, $J_{\text{C-P}}$ = 3.2 Hz), 129.9 (dd, $J_{\text{C-P}}$ = 4.5, 1.7 Hz), 129.7 (d, $J_{\text{C-P}}$ = 102.5 Hz), 128.5 (d, $J_{\text{C-P}}$ = 11.9 Hz), 128.3 (d, $J_{\text{C-P}}$ = 12.4 Hz), 128.1 (d, $J_{\text{C-P}}$ = 1.8 Hz), 127.3; 31P NMR (162 MHz, CDCl$_3$): δ 30.0 (d, $J_{\text{P-P}}$ = 48.5 Hz), 27.8 (d, $J_{\text{P-P}}$ = 48.8 Hz) (for Z-isomer: δ 33.7 (d, $J_{\text{P-P}}$ = 12.3 Hz), 23.1 (d, $J_{\text{P-P}}$ = 12.3 Hz)); HRMS (EI) m/z calcd for C$_{32}$H$_{26}$OP$_2$S [M]+: 520.1180, found: 520.1173.

(E)-(1-(Diphenylphosphoryl)-5-methylhex-1-en-2-yl)diphenylphosphine oxide (4c). White solid, 98.0 mg, 48%, mp 174.0–174.5 °C; 1H NMR (400 MHz, CDCl$_3$): δ 7.85–7.80 (m, 4H), 7.73–7.68 (m, 4H), 7.58–7.54 (m, 2H), 7.50–7.45 (m, 6H), 7.45–7.40 (m, 4H), 7.28 (dd, $J_{\text{H-P}}$ = 25.7, 21.7 Hz, 1H), 2.68–2.59 (m, 2H), 1.71 (m, 1H), 0.80–0.75 (m, 2H), 0.46 (d, J = 6.6 Hz, 6H); 13C(1H) NMR (100 MHz, CDCl$_3$): δ 157.2 (d, $J_{\text{C-P}}$ = 78.6 Hz), 136.4 (dd, $J_{\text{C-P}}$ = 72.4, 8.0 Hz), 133.7 (d, $J_{\text{C-P}}$ = 84.0 Hz), 132.3 (d, $J_{\text{C-P}}$ = 2.8 Hz), 132.2 (d, $J_{\text{C-P}}$ = 9.6 Hz), 131.6 (d, $J_{\text{C-P}}$ = 2.9 Hz), 131.2 (d, $J_{\text{C-P}}$ = 10.5 Hz), 131.0 (d, $J_{\text{C-P}}$ = 101.0 Hz), 128.7 (d,
Molecules 2022, 27, 1284

131.8 (d, 1.17–1.09 (m, 2H); 130.6 (d, 9.2, 9.1 Hz), 130.8 (d, JCP = 80.6 Hz), 130.6 (d, JCP = 90.6 Hz), 128.9 (d, JCP = 118.8 Hz), 128.8 (d, JCP = 123.5 Hz), 128.3, 128.2, 34.8, 32.8 (dd, JCP = 9.0, 8.8 Hz); 31P NMR (162 MHz, CDCl3): δ 29.4 (d, JFP = 54.2 Hz), 27.7 (d, JFP = 54.3 Hz) (for Z-isomer: δ 54.2 (d, JFP = 16.4 Hz), 25.8 (d, JFP = 16.9 Hz)); HRMS (EI) m/z calc for C30H32O2P2S [M]+: 548.1493, found: 548.1496.

(E)-6-Chloro-1-(diphenylphosphorothioiyl)hex-1-en-2-yl)diphenylphosphine oxide (4h). After purification, the molar ratio of E-isomer/Z-isomer was 91/9. White solid, 122.6 mg, 54%, mp 168.5–169.0 °C; 1H NMR (400 MHz, CDCl3): δ 7.83–7.77 (m, 4H), 7.73–7.68 (m, 4H), 7.60–7.56 (m, 2H), 7.52–7.47 (m, 6H), 7.45–7.40 (m, 4H), 7.20 (dd, JFP = 23.7, 21.3 Hz, 1H), 3.12 (t, J = 6.9 Hz, 2H), 2.72–2.64 (m, 2H), 1.37–1.30 (m, 2H), 1.17–1.09 (m, 2H); 13C [M]+/θNMR (100 MHz, CDCl3): δ 156.2 (d, JCP = 79.2 Hz), 136.8 (dd, JCP = 71.5, 8.0 Hz), 133.5 (d, JCP = 84.1 Hz), 132.5 (d, JCP = 2.7 Hz), 132.1 (d, JCP = 9.5 Hz), 131.8 (d, JCP = 2.8 Hz), 131.1 (d, JCP = 10.7 Hz), 130.6 (d, JCP = 101.4 Hz), 128.8 (d, JCP = 12.0 Hz), 128.8 (d, JCP = 12.3 Hz), 44.1, 32.7, 29.7 (d, JCP = 9.0, 9.0 Hz), 26.5; 31P NMR (162 MHz, CDCl3): δ 30.3 (d, JFP = 54.3 Hz), 27.7 (d, JFP = 54.3 Hz) (for Z-isomer: δ 34.8 (d, JFP = 18.0 Hz), 25.9 (d, JFP = 17.0 Hz)); HRMS (EI) m/z calc for C30H29ClO2P2S [M]+: 534.1103, found: 534.1104.

(E)-(1-4-(tert-Butyl)phenyl)-2-(diphenylphosphorothioiyl)vinyl)diphenylphosphine oxide (4i). After purification, the molar ratio of E-isomer/Z-isomer was 99/1. White solid, 148.6 mg, 65%, mp 179.0–179.5 °C; 1H NMR (400 MHz, CDCl3): δ 7.67–7.61 (m, 8H),
White solid, 624.3 mg, 95%, mp 189.0–189.5 °C.

The residue was removed under reduced pressure. Finally, the residue was purified by preparative chromatography (AcOme/iso-hexane = 1:3) to give product 6a (entry 2 in Table 4).

(E)-(1-(4-Bromophenyl)-2-(diphenylphosphorothioyl)vinyl)diphenylphosphine oxide (4j). White solid, 152.3 mg, 64%, mp 186.7–187.3 °C; 1H NMR (400 MHz, CDCl3): δ 7.68–7.59 (m, 8H), 7.54–7.48 (m, 3H), 7.45–7.41 (m, 4H), 7.37–7.33 (m, 2H), 7.28–7.24 (m, 4H), 6.93–6.91 (m, 2H), 6.78–6.77 (m, 2H); 13C NMR (100 MHz, CDCl3): δ 150.7, 132.6, 129.9, 129.2, 128.2 (dd, J = 9.8 Hz), 127.8, 127.2, 126.9, 126.6, 124.1, 122.7 (dd, J = 9.8 Hz), 121.8, 121.6, 120.4, 113.9 (d, J = 11.3 Hz), 113.7, 113.5 (d, J = 11.3 Hz), 110.0 (d, J = 11.3 Hz), 110.0 (d, J = 11.3 Hz), 87.5 (d, J = 9.8 Hz), 44.3, 31.1, 28.6 (d, J = 9.8 Hz). HRMS (EI) m/z calcd for C38H34O3P2S [M+]: 576.1808, found: 576.1801.

3.3. Base-Catalyzed Double Bond Isomerization of vic-1,2-Bisphosphinaalkenes 5a

Degassed dry toluene (0.3 mL), 5a (0.3 mmol), and 1-octylamine (20 mol%) were added to a 10 mL two-neck flask, and stirred for 15 h at 110 °C in an oil bath. The resulting solution was transferred to a round-bottom flask with acetone (5 mL), and the solvent was removed under reduced pressure. Finally, the residue was purified by preparative thin-layer chromatography (AcOme/iso-hexane = 1:3) to give product 6a (entry 2 in Table 4).

(E)-(2-(Diphenylphosphorothioyl)oct-2-en-1-yl)diphenylphosphine oxide (6a). After purification, the molar ratio of E-isomer/Z-isomer was 98/2. Colorless oil, 66.4 mg, 42%; 1H NMR (400 MHz, CDCl3): δ 7.75–7.70 (m, 4H), 7.57–7.52 (m, 4H), 7.39–7.24 (m, 12H), 6.00–5.90 (m, 1H), 3.96 (dd, J = 16.2, 13.5 Hz, 2H), 2.55–2.48 (m, 2H), 1.35–1.30 (m, 3H, 2H), 1.28–1.12 (m, 4H), 0.82 (t, J = 7.1 Hz, 3H); 13C NMR (100 MHz, CDCl3): δ 153.0 (d, J = 7.6 Hz), 133.4 (d, J = 98.1 Hz), 132.2 (d, J = 10.4 Hz), 131.7 (d, J = 84.5 Hz), 131.4 (d, J = 28.3 Hz), 131.3 (d, J = 9.2 Hz), 128.29 (d, J = 11.4 Hz), 128.28 (d, J = 11.4 Hz), 122.9 (dd, J = 78.6, 8.8 Hz), 31.5 (d, J = 15.8 Hz), 31.4, 29.4 (dd, J = 66.0, 14.6 Hz), 28.1, 22.4, 14.0; 31P NMR (162 MHz, CDCl3): δ 50.9 (d, J = 9.5 Hz), 27.3 (d, J = 8.3 Hz) (for Z-isomer: δ 48.9 (d, J = 58.3 Hz), 19.6 (d, J = 58.6 Hz)); HRMS (EI) calcd for C32H25BrO3P2S [M+]: 528.1806, found: 528.1807.

3.4. Base-Catalyzed Double Bond Isomerization of vic-1,2-Bisphosphinaalkenes 5b

Degassed dry toluene (1.2 mL), 5b (1.2 mmol), and DBU (5 mol%) were added to a 10 mL two-neck flask, and stirred for 15 h at 110 °C in an oil bath. The resulting solution was transferred to a round-bottom flask with CH2Cl2 (5 mL), and the solvent was removed under reduced pressure. Finally, the residue was purified by recrystallization (iso-hexane/CH2Cl2) to give pure product 6b (entry 11 in Table 5).

(E)-(2-(Diphenylphosphorothioyl)-4-phenylbut-3-en-1-yl)diphenylphosphine oxide (6b). White solid, 624.3 mg, 95%, mp 189.0–189.5 °C; 1H NMR (400 MHz, CDCl3): δ 8.14–8.09 (m, 2H), 7.78–7.73 (m, 2H), 7.69–7.64 (m, 2H), 7.61–7.56 (m, 2H), 7.53–7.51 (m, 3H), 7.44–7.40 (m, 1H), 7.37–7.31 (m, 3H), 7.30–7.25 (m, 2H), 7.22–7.15 (m, 3H), 7.10–7.03 (m, 3H), 6.69–6.67 (m, 2H), 5.88 (dd, J = 15.8 Hz, J = 5.1 Hz, 1H), 5.69–5.61 (m, 1H), 4.35–4.25 (m, 1H), 2.97–2.87 (m, 1H), 2.64–2.53 (m, 1H), 31P NMR (100 MHz, CDCl3): δ 136.2 (d, J = 3.6 Hz), 136.1 (d, J = 13.0 Hz), 134.0 (d, J = 98.9 Hz), 132.3 (d, J = 91.3 Hz), 132.0 (d, J = 2.8 Hz), 131.83 (d, J = 9.2 Hz), 131.78 (d, J = 8.7 Hz), 131.84 (d, overlapping), 131.5 (d, J = 2.8 Hz), 131.3 (d, J = 2.9 Hz), 131.1 (d, J = 9.5 Hz), 130.8 (d,
$J_{C-P} = 80.1$ Hz), 130.4 (d, $J_{C-P} = 75.0$ Hz), 130.3 (d, $J_{C-P} = 9.4$ Hz), 129.1 (d, $J_{C-P} = 11.6$ Hz), 128.7 (d, $J_{C-P} = 11.6$ Hz), 128.4 (d, $J_{C-P} = 11.9$ Hz), 128.2 (d, $J_{C-P} = 12.0$ Hz), 127.9, 127.5, 126.3 (d, $J_{C-P} = 1.9$ Hz), 122.8 (dd, $J_{C-P} = 7.5, 1.6$ Hz), 38.8 (dd, $J_{C-P} = 51.9, 2.8$ Hz), 29.3 (d, $J_{C-P} = 68.9$ Hz); 31P NMR (162 MHz, CDCl$_3$): δ 51.7 (d, $J_{P-P} = 15.7$ Hz), 29.8 (d, $J_{P-P} = 51.2$ Hz); HRMS (EI) m/z calc'd for C$_{34}$H$_{30}$OP$_2$S [M]$^+$: 548.1493, found: 548.1502.

3.5. X-ray Diffraction Studies of 6b

An X-ray crystallographic measurement was carried out on a Rigaku VariMax RAPID diffractometer (Tokyo, Japan) with Mo-Kα radiation at 103 K. Of 48,252 reflections collected, 6590 were unique ($R_{int} = 0.0233$). Using Olex2, [64] the structure of 6b was solved with the SHELXT [65] structure solution program using Intrinsic Phasing and refined with the SHELXL [66] refinement package using least squares minimization.

Crystallographic data: formula weight = 548.58; monoclinic; space group $P2_1/c$; $a = 11.2160(2)$ Å, $b = 19.5271(4)$ Å, $c = 13.8308(3)$ Å; $V = 2874.78(15)$ Å3; $Z = 4$; $\rho_{calc'd} = 1.267$ g cm$^{-3}$; total reflections collected = 48252; $GOF = 1.058$; $R_1 = 0.0314$; $wR_2 = 0.0810$. Crystallographic data have been deposited with Cambridge Crystallographic Data Centre (CCDC-2132957). These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html (accessed on: 7 January 2022) (or from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: +44 1223 336033; E-mail: deposit@ccdc.cam.ac.uk).

3.6. Base-Catalyzed Double Bond Isomerization of vic-1,2-Bisphosphinoalkenes 4f

Degassed dry toluene (0.3 mL), 4f (0.3 mmol), and DBU (5 mol%) were added to a 10 mL two-neck flask, and stirred for 15 h at 110 °C in an oil bath. The resulting solution was transferred to a round-bottom flask with CH$_2$Cl$_2$ (5 mL), and the solvent was removed under reduced pressure. Finally, the residue was purified by recrystallization (iso-hexane/CH$_2$Cl$_2$) to give pure product 7a (Scheme 5).

(E)-(1-(Diphenylphosphorothioyl)-4-phenylbut-3-en-2-yl)diphenylphosphine oxide (7a). White solid, 154.9 mg, 94%, mp 190.0–190.5 °C; 1H NMR (400 MHz, CDCl$_3$): δ 8.01–7.99 (m, 2H), 7.79–7.74 (m, 2H), 7.70–7.64 (m, 4H), 7.54 (m, 3H), 7.40–7.32 (m, 6H), 7.13–7.05 (m, 6H), 6.64–6.63 (m, 2H), 5.96 (dd, $J_{H-H} = 15.8$ Hz, $J_{H-P} = 4.0$ Hz, 1H), 5.51–5.44 (m, 1H), 4.31–4.20 (m, 1H), 3.31–3.23 (m, 1H), 2.67–2.57 (m, 1H); 31C[1H] NMR (100 MHz, CDCl$_3$): δ 136.5 (d, $J_{C-P} = 11.2$ Hz), 136.2 (d, $J_{C-P} = 3.0$ Hz), 134.3 (d, $J_{C-P} = 82.7$ Hz), 132.2 (d, $J_{C-P} = 2.7$ Hz), 131.74 (d, $J_{C-P} = 10.5$ Hz), 131.72 (d, $J_{C-P} = 1.9$ Hz), 131.5 (d, overlapped), 131.4 (d, $J_{C-P} = 8.5$ Hz), 131.38 (d, $J_{C-P} = 99.8$ Hz), 131.2 (d, $J_{C-P} = 8.9$ Hz), 131.0 (d, $J_{C-P} = 2.7$ Hz), 130.4 (d, $J_{C-P} = 9.9$ Hz), 131.0 (d, $J_{C-P} = 87.5$ Hz), 130.6 (d, $J_{C-P} = 93.4$ Hz), 129.1 (d, $J_{C-P} = 11.4$ Hz), 128.8 (d, $J_{C-P} = 12.0$ Hz), 128.3 (d, $J_{C-P} = 117$ Hz), 128.2 (d, $J_{C-P} = 12.3$ Hz), 127.9, 127.4, 126.1 (d, $J_{C-P} = 1.0$ Hz), 121.8 (dd, $J_{C-P} = 9.3, 1.0$ Hz), 39.1 (dd, $J_{C-P} = 66.2, 2.3$ Hz), 30.4 (d, $J_{C-P} = 54.5$ Hz); 31P NMR (162 MHz, CDCl$_3$): δ 42.8 (d, $J_{P-P} = 54.4$ Hz), 35.7 (d, $J_{P-P} = 54.4$ Hz); HRMS (EI) m/z calc'd for C$_{34}$H$_{30}$OP$_2$S [M]$^+$: 548.1493, found: 548.1502.

4. Conclusions

In this study, we achieved the photoinduced bisphosphination of alkynes using the phosphorous interelement compound Ph$_2$P(S)-PPh$_2$ to obtain the corresponding vic-1,2-bisphosphinoalkenes. Optimization of the reaction conditions resulted in a wide substrate range and excellent trans-selectivity. Moreover, the completely regioselective introduction of pentavalent and trivalent phosphorus groups to the terminal and internal positions of the alkynes, respectively, was achieved.

We found that the novel double-bond isomerization reaction of the synthesized 1,2-bisphosphinated products occurs with a catalytic amount of the base under mild conditions. Our method for the photoinduced bisphosphination of carbon-carbon unsaturated compounds may have strong implications for both organic synthesis and organometallic and catalyst chemistry. For example, several diphosphine compounds are believed to be useful as monodentate, bidentate, and tridentate ligands for various metals (Scheme 7).
6. Iwasaki, M.; Nishihara, Y. Synthesis of multisubstituted olefins through regio- and stereoselective addition of interelement compounds.

7. Tokitoh, N. New aspects in the chemistry of low-coordinated inter-element compounds of heavier Group 15 elements. J. Organomet. Chem. 2000, 611, 217-227.

8. Beletskaya, I.; Moberg, C. Element–element additions to unsaturated carbon-carbon bonds catalyzed by transition metal complexes.

9. Ogawa, A. Addition of X=Y reagents to alkenes, alkynes, and allenes.

10. Tamao, K.; Yamaguchi, S. Introduction to the chemistry of interelement linkage.

Supplementary Materials: The following are available online. Copies of 1H, 15C,1H, and 31P NMR spectra.

Author Contributions: Investigation, Y.Y., R.T., S.K., A.N. and A.O.; formal analysis, Y.Y. and R.T.; resources, S.K., A.N. and A.O.; writing—original draft preparation, Y.Y., R.T. and A.O.; writing—review and editing, Y.Y., S.K., A.N. and A.O.; funding acquisition, S.K., A.N. and A.O. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by JSPS KAKENHI Grant Numbers JP21H01977, JP19H02791, and JP19H02756, the Ministry of Education, Culture, Sports, Science and Technology, Japan, and also the Nanotechnology Platform Program of the Nara Institute of Science and Technology (NAIST).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available in the article and in its Supplementary Materials.

Acknowledgments: The authors also acknowledge Shin-ichi Kawaguchi (Saga University) for his initial contribution to this work.

Conflicts of Interest: The authors declare no conflict of interest.

Sample Availability: Samples of the compounds are not available from the authors.

References
1. Tamao, K.; Yamaguchi, S. Introduction to the chemistry of interelement linkage. J. Organomet. Chem. 2000, 611, 3-4. [CrossRef]
2. Tokitoh, N. New aspects in the chemistry of low-coordinated inter-element compounds of heavier Group 15 elements. J. Organomet. Chem. 2000, 611, 217-227. [CrossRef]
3. Hata, T.; Kitagawa, H.; Masai, H.; Kurahashi, T.; Shimizu, M.; Hiyama, T. Geminal difunctionalization of alkenylidene-type carbenoids by using interelement compounds. Angew. Chem. Int. Ed. 2001, 40, 790-792. [CrossRef]
4. Beletskaya, I.; Moberg, C. Element–element addition to unsaturated carbon-carbon bonds catalyzed by transition metal complexes. Chem. Rev. 2006, 106, 2320-2354. [CrossRef]
5. Ogawa, A. Addition of X= Y reagents to alkenes, alkynes, and allenes. Compr. Organic Synth. II 2014, 4, 392-411.
6. Iwasaki, M.; Nishihara, Y. Synthesis of multisubstituted olefins through regio- and stereoselective addition of interelement compounds having B–Si, B–B, and Cl–S bonds to alkynes, and subsequent cross-couplings. Chem. Rev. 2016, 16, 2031-2045. [CrossRef]
7. Han, L.-B.; Choi, N.; Tanaka, M.Facile oxidative addition of the phosphorous–selenium bond to Pd(0) and Pt(0) complexes and development of Pd-catalyzed regio- and stereoselective selenophosphorylation of alkynes. J. Am. Chem. Soc. 1996, 118, 7000-7001. [CrossRef]
8. Han, L.-B.; Tanaka, M. The first platinum(0)-catalyzed regio- and stereoselective thiosilylation of alkynes using disulfides and disilanes: A new strategy for introducing two different heteroatoms into carbon-carbon unsaturated bonds. J. Am. Chem. Soc. 1998, 120, 8249-8250. [CrossRef]
9. Kondo, T.; Uenoyama, S.-Y.; Fujita, K.-I.; Mitsudo, T.-A. First transition-metal complex catalyzed addition of organic disulfides to alkenes enables the rapid synthesis of vicinal-Dithioethers. J. Am. Chem. Soc. 1999, 121, 482-483. [CrossRef]
10. Han, L.-B.; Tanaka, M. Transition metal-catalysed addition reactions of H–heteroatom and inter-heteroatom bonds to carbon-carbon unsaturated linkages via oxidative additions. Chem. Commun. 1999, 5, 395–402. [CrossRef]

11. Kondo, T.; Mitsudo, T.-A. Metal-catalyzed carbon–sulfur bond formation. Chem. Rev. 2000, 100, 3205–3220. [CrossRef] [PubMed]

12. Yamamoto, H.; Oshima, K. (Eds.) Main Group Metals in Organic Synthesis; Wiley-VCH: Weinheim, Germany, 2004.

13. Sato, A.; Yorimitsu, H.; Oshima, K. Synthesis of (E)-1,2-diphenylphosphinylethene derivatives from alkynes by radical addition of tetraorganodiphosphane generated in situ. Angew. Chem. Int. Ed. 2005, 44, 1694–1696. [CrossRef] [PubMed]

14. Sato, A.; Yorimitsu, H.; Oshima, K. Radical phosphination of organic halides and alkyl imidazole-1-carbothioates. J. Am. Chem. Soc. 2006, 128, 4240–4241. [CrossRef] [PubMed]

15. Beletskaya, I.P.; Ananikov, V.P. Addition reactions of E-E and E-H bonds to triple bond of alkenes catalyzed by Pd, Pt, and Ni complexes (E = S, Se). Pure Appl. Chem. 2007, 79, 1041–1056. [CrossRef]

16. Wada, T.; Kondo, A.; Yorimitsu, H.; Oshima, K. Intermolecular radical addition of alkylthio- and arylthiodiphenylphosphines to terminal alkynes. Org. Lett. 2008, 10, 1155–1157. [CrossRef] [PubMed]

17. Sato, A.; Yorimitsu, H.; Oshima, K. Regio- and stereoselective synthesis of 1-aryl-1-thio-2-thiophosphinylethene derivatives via a radical process. Tetrahedron 2009, 65, 1553–1558. [CrossRef]

18. Beletskaya, I.P.; Ananikov, V.P. Transition-metal-catalyzed C–S, C–Se, and C–Te bond formation via cross-coupling and atom-economic addition reactions. Chem. Rev. 2011, 111, 1596–1636. [CrossRef]

19. Yorimitsu, H. Homolytic substitution at phosphorus for C–P bond formation in organic synthesis. Beilstein J. Org. Chem. 2013, 9, 1269–1277. [CrossRef]

20. Wille, U. Radical cascades initiated by intermolecular radical addition to alkynes and related triple bond systems. Chem. Rev. 2013, 113, 813–853. [CrossRef]

21. Okugawa, Y.; Hirano, K.; Miura, M. Copper-catalyzed vicinal diphosphination of styrenes: Access to 1,2-bis(diphenylphosphino)ethane-type bidentate ligands from olefins. Angew. Chem. Int. Ed. 2016, 55, 13558–13561. [CrossRef]

22. Okugawa, Y.; Hirano, K.; Miura, M. Brintsted base mediated stereoselective diphosphination of terminal alkynes with diphosphanes. Org. Lett. 2017, 19, 2973–2976. [CrossRef] [PubMed]

23. Otomura, N.; Okugawa, Y.; Hirano, K.; Miura, M. Vic-Diphosphination of alkenes with silylphosphine under visible-light-promoted photoredox catalysis. Org. Lett. 2017, 19, 4802–4805. [CrossRef] [PubMed]

24. Hirano, K.; Miura, M. Recent advances in diphosphination of alkynes and alkenes. Tetrahedron Lett. 2017, 58, 4317–4322. [CrossRef]

25. Kawaguchi, S.-I.; Hirano, K.; Miura, M. Diphosphination of 1,3-dienes with diphosphines under visible-light-promoted photoredox catalysis. Org. Lett. 2018, 20, 7965–7968. [CrossRef] [PubMed]

26. Kawaguchi, S.-I.; Yamamoto, Y.; Ogawa, A. Catalytic synthesis of sulfur and phosphorus compounds via atom-economic reactions. Molecules 2020, 30, 129–138. [CrossRef]

27. Escobedo, R.; Miranda, R.; Martinez, J. Infrared irradiation: Toward green chemistry, a review. Int. J. Mol. Sci. 2016, 17, 453. [CrossRef] [PubMed]

28. Pawlowski, R.; Stanek, F.; Stodulski, M. Recent advances on metal-free, visible-light-induced catalysis for assembling nitrogen- and oxygen-based heterocyclic scaffolds. Molecules 2019, 24, 1533. [CrossRef] [PubMed]

29. Albano, G.; Decandia, G.; Capozzi, M.A.M.; Zappimbulso, N.; Punzi, A.; Farinola, G.M. Infrared irradiation-assisted solvent-free Pd-catalyzed (hetero)aryl-aryl coupling via C–H bond activation. ChemSusChem 2021, 14, 3391–3401. [CrossRef]

30. Nomoto, A.; Higuchi, Y.; Kobiki, Y.; Ogawa, A. Synthesis of selenium compounds by free radical addition based on visible-light-activated Se-Se bond cleavage. Mini-Rev. Med. Chem. 2013, 13, 814–823. [CrossRef]

31. Kawaguchi, S.-I.; Ogawa, A. Future trends in organophosphorus chemistry. Organophosphorus Chemistry: From Molecules to Applications; Iaroshenko, V., Ed.; Wiley-VCH: Weinheim, Germany, 2019; pp. 545–556.

32. Ogawa, A.; Yokoyama, K.; Sekiguchi, M.; Kambe, N.; Sonoda, N. Photo-initiated addition of diphenyl diselenide to allenes. Tetrahedron Lett. 1990, 31, 5931–5934. [CrossRef]

33. Ogawa, A.; Yokoyama, H.; Sekiguchi, M.; Kambe, N.; Sonoda, N. Photo-initiated addition of diphenyl diselenide to acetylenes. J. Org. Chem. 1991, 56, 5721–5723. [CrossRef]

34. Ogawa, A.; Yokoyama, K.; Sekiguchi, M.; Obayashi, R.; Kambe, N.; Sonoda, N. Photo-initiated addition of diphenyl ditelluride to acetylenes. J. Chem. Soc. Chem. Commun. 1991, 56, 1748–1750. [CrossRef]

35. Ogawa, A.; Yokoyama, K.; Obayashi, R.; Han, L.-B.; Kambe, N.; Sonoda, N. Photo-induced ditellurilation of acetylenes with diphenyl ditelluride. Tetrahedron 1993, 49, 1177–1188. [CrossRef]

36. Tran, C.C.; Kawaguchi, S.-I.; Sato, F.; Nomoto, A.; Ogawa, A. Photoinduced cyclizations of o-diisocyanoarenes with organic diselenidines and thions that afford chalcogenated quinoxalines. J. Org. Chem. 2020, 85, 7258–7266. [CrossRef] [PubMed]

37. Kawaguchi, S.-I.; Nagata, S.; Shirai, T.; Tsuchii, K.; Nomoto, A.; Ogawa, A. Photochemical behaviors of tetraphenylidiphosphine in the presence of alkynes. Tetrahedron Lett. 2006, 47, 3919–3922. [CrossRef]

38. Sato, Y.; Kawaguchi, S.-I.; Nomoto, A.; Ogawa, A. Highly selective phosphinylation of phosphines with tetraphenylidiphosphinoxide. Angew. Chem. Int. Ed. 2016, 55, 9700–9703. [CrossRef]

39. Sato, Y.; Kawaguchi, S.-I.; Nomoto, A.; Ogawa, A. Synthesis of bis(phosphinyl)alkane monosulfides by the addition of diphosphane monosulfides to alkynes under light. Chem. Eur. J. 2019, 25, 2295–2302. [CrossRef]

40. Sato, Y.; Nishimura, M.; Kawaguchi, S.-I.; Nomoto, A.; Ogawa, A. Reductive rearrangement of tetraphenylidiphosphine disulfide to trigger the bisthiophosphinylation of alkynes and alkynes. Chem. Eur. J. 2019, 25, 6797–6806. [CrossRef]
