A current view on long noncoding RNAs in yeast and filamentous fungi

Petra Till 1 · Robert L. Mach 2 · Astrid R. Mach-Aigner 1,2

Received: 15 May 2018 / Revised: 18 June 2018 / Accepted: 20 June 2018 / Published online: 4 July 2018
© The Author(s) 2018

Abstract
Long noncoding RNAs (lncRNAs) are crucial players in epigenetic regulation. They were initially discovered in human, yet they emerged as common factors involved in a number of central cellular processes in several eukaryotes. For example, in the past decade, research on lncRNAs in yeast has steadily increased. Several examples of lncRNAs were described in Saccharomyces cerevisiae and Schizosaccharomyces pombe. Also, screenings for lncRNAs in ascomycetes were performed and, just recently, the first full characterization of a lncRNA was performed in the filamentous fungus Trichoderma reesei. In this review, we provide a broad overview about currently known fungal lncRNAs. We make an attempt to categorize them according to their functional context, regulatory strategies or special properties. Moreover, the potential of lncRNAs as a biotechnological tool is discussed.

Keywords Long noncoding RNA · lncRNA · Yeast · Saccharomyces cerevisiae · Schizosaccharomyces pombe · Trichoderma reesei

Introduction
Pervasive transcription including intergenic and antisense regions evolved as a common feature in higher and lower eukaryotes (David et al. 2006; Dutrow et al. 2008; Nagarakshmi et al. 2008; Wilhelm et al. 2008). A very heterogeneous group of noncoding transcripts are the long noncoding RNAs (lncRNAs). They are distinguished from small RNA species upon their size of > 200 nt (Djebali et al. 2012; Kapranov et al. 2007), rather than upon any other property. The presence of a poly(A)-tail as well as a 5′-methylguanosine cap or post-transcription splicing events are optional features (Djebali et al. 2012; Kapranov et al. 2010; Yin et al. 2012). More common characteristics of lncRNAs are poor conservation and expression at low levels compared to protein encoding genes (Derrien et al. 2012; Djebali et al. 2012). Furthermore, lncRNAs often fold into complex, high ordered structures (Mercer and Mattick 2013). Transcripts targeted by degradation are also assigned to the lncRNAs (Schulz et al. 2013; van Dijk et al. 2011; Wyers et al. 2005; Yin et al. 2012). Anyhow, it should be considered that the discrimination between lncRNAs and coding transcripts is vague. Several not annotated transcripts, which were initially predicted to lack a protein encoding capacity, were found to be associated with the polyribosomes as they contain small open reading frames (Smith et al. 2014). The modes of action and also the processes, in which lncRNAs are involved in, are manifold. Their strategies range from physical interference with the transcription of adjacent or overlapping sense or antisense-oriented target genes in cis, over nucleosome repositioning, histone modifications or the recruitment of chromatin remodelling factors, to trans interactions with proteins, DNA or other RNAs, in some cases providing a scaffold for the attachment of multiple factors (reviewed in Ponting et al. 2009).
Predominantly, lncRNAs act as repressors, yet also examples for positive regulation of the target genes have been reported (Krishnan and Mishra 2014).

Most lncRNAs were described in human and other mammals (Derrien et al. 2012; Fantom Consortium 2005; Hon et al. 2017; Iyer et al. 2015). In the last years, also the number of lncRNAs identified in the well-studied budding yeast Saccharomyces cerevisiae and model fission yeast Schizosaccharomyces pombe has rapidly increased (reviewed in (Niederer et al. 2017; Yamashita et al. 2016). In
ascomycetes, such as *Neurospora crassa* and *Magnaporthe oryzae*, the physical presence of IncRNAs was reported (Cemel et al. 2017; Jain et al. 2017). And just recently, the first functional characterization of a lncRNA in the filamentous fungus *Trichoderma reesei* was achieved (Till et al. 2018). In this review, we give an overview about relevant research on fungal IncRNAs. Attempts for categorizing them are discussed, and outstanding examples are presented in more detail.

The challenge of classifying IncRNAs

In contrary to protein encoding genes, IncRNAs do not form large homologous families (Ponting et al. 2009). Thus, the attempt to classify of IncRNAs is a challenging task. Examples of thoroughly described IncRNAs identified in different fungi are listed in Table 1. The categorization was made on a *cis* or *trans* mode of action, the functional context, regulatory mechanism or special properties. Anyway, there are hardly any overlaps of the groups formed by the different strategies of classification. Different regulatory mechanisms are followed by IncRNAs involved in the same category of cellular processes, and also, special properties are not necessarily assigned to a functional context. Also, a *cis* or *trans* mode of action is not consistent with the function or mechanism. Conclusively, at least at the current state of knowledge, a generally valid categorization of fungal IncRNAs is rather pointless. Instead, we favour grouping by means of different criteria, consequently tolerating multiple assignments of some fungal IncRNAs.

Cis and trans acting IncRNAs

Most IncRNAs described in yeast act in *cis*. This means that they regulate the expression of genes at proximal locations on the same chromosome, whereas *trans*-acting IncRNA affect either distal loci or the same locus but located on a homologue chromosome. Some *cis*-acting IncRNAs were demonstrated to act strictly in *cis* because *trans*-expression in diploids or ectopic expression in a IncRNA-deleted background results in a loss of function of the IncRNA. Among those are the CDC28 antisense IncRNA (Nadal-Ribelles et al. 2014), *prt* (Shah et al. 2014), *pHO*-IncRNA (Yu et al. 2016), *ICR1* and *PWR1* (Bumgarner et al. 2009) and *RME2* and *RME3* (Hongay et al. 2006). In contrast to this, for some IncRNAs initially described as *cis*-acting factors, the function was shown to be position independent. One example for this is the *PHO84* antisense transcript, which belongs to the group of cryptic unstable transcripts (CUTs) and triggers silencing of its sense gene *PHO84* in *S. cerevisiae* in aged cells (Camblong et al. 2009; Camblong et al. 2007).

Examples for per se *trans*-acting IncRNAs in fungi are rare. In the budding yeast *S. cerevisiae*, a *trans*-mechanism was stated for the stable unannotated transcript (SUT) *SUT457*, which physically interacts with 12 genes essential for telomere organization and homeostasis (Kyriakou et al. 2016). Another example is *SPNCRNA.1164*, a regulator of *att1* expression in response to oxidative stress in *S. pombe* (Leong et al. 2014). Furthermore, recently, a IncRNA termed *HAX1* was identified as a *trans*-activator of cellulase expression in *T. reesei* (Till et al. 2018). Interestingly, all three of these IncRNAs (i.e. *SUT457*, *SPNCRNA.1164* and *HAX1*) have a positive regulatory impact on their target genes. However, also yeast IncRNAs with a repressing function in *trans* are known. For example, members of the class of the Xrn1 unstable transcript (XUTs), such as *TY1*, frequently mediate silencing of *trans*-located target genes (Berretta et al. 2008).

The role of IncRNAs in cellular processes

Some IncRNAs can be categorized according to their functional roles in the yeast cells. *IRT1*, *RME2* and *RME3*, all of which acting on the regulation of meiosis in *S. cerevisiae*, are similar regarding their function and regulatory mechanisms. *IRT1* (*IME1* regulatory transcript 1) inhibits the expression of the downstream located and partially overlapping sense-oriented gene *IME1* (inducer of meiosis 1), thereby preventing erroneous germ cell differentiation and sporulation in haploids (van Werven et al. 2012). In cells grown in a haploid state, the meiosis-repressive transcription factor Rme1 (repressor of *IME1*) induces the production of the IncRNA *IRT1*. *IRT1* then mediates depositioning of repressive chromatin marks by recruiting the histone methyltransferase Set2 and the histone deacetylase Set3, which leads to a block of transcription initiation of *IME1*. Moreover, *IRT1* hinders binding of the transcription activator Pog1. Upon the onset of meiosis as a response to carbon source and nitrogen starvation in MATa/MATα heterozygous diploid cells, the expression of the Rme1 encoding gene is inhibited by binding of the diploid-specific a1-α1 repressor complex (Mitchell and Herskowitz 1986). This consequently shuts off formation of the nc transcript *IRT1* and allows expression of *IME1*. Anyway, for the switch from vegetative growth to entry into meiosis in diploids, another mechanism is dominating the regulation of *IME1* and *IRT1*. Under nutrient-rich conditions, PKA (protein kinase A) and TORC1 (target of rapamycin complex I) are produced in both haploid and diploid cells. Those factors are required for binding of the Tup1–Cyc8 complex to the *IME1* locus and hence direct inhibition of both *IME1* and *IRT1* when nutrients are available (Moretto and van Werven 2017). Synergistically, the mechanisms based on regulation by PKA/TORC and Rme1 allow tightly control of entry into meiosis only upon nutrient starvation and in heterozygous diploid *S. cerevisiae* cells exclusively.
Name	Fungus	Regulated gene	cis/trans	Cellular process	Regulatory mechanism	Special properties	Reference
SRG1	S. cerevisiae	SER3	cis (s)	Serine biosynthesis	Transcription interference		Martens et al. (2004)
GAL10 IncRNA	S. cerevisiae	GAL10, GAL1	cis (as), cis (s)	Galactose utilization	Histone modification, silencing		Houseley et al. (2008)
GAL4 IncRNA	S. cerevisiae	GAL4	cis (as)	Galactose utilization	Unknown		Geisler et al. (2012)
nc-tgpl	S. pombe	tgrl	cis (s)	Phosphate metabolism	Transcription interference by occlusion of Pho7 (TF)	Unstable (MDED)	Ard et al. (2014)
prl / nc-phol	S. pombe	phol	cis (s)	Phosphate metabolism	Transcription interference by occlusion of Pho7 (TF) (RNAi-mediated silencing)		Chatterjee et al. (2016), Shah et al. (2014)
prt2	S. pombe	phol84, (prl/phol)	cis (s)	Phosphate metabolism	Unknown		Garg et al. (2018)
HAX1	T. reesei	Clulase genes	trans	Cellulose metabolism	Interplay with Xyr1 (TF), details in preparation		Till et al. (2018)
CDC28 asRNA	S. cerevisiae	CDC28	cis (as)	Osmostress	Chromatin remodelling		Nadal-Ribelles et al. (2014)
SPNCRNA.1164	S. pombe	atf1	trans	Oxidative stress	Unknown	Activation	Leong et al. (2014)
mlncRNA	S. pombe	fbp1	cis (s)	Glucose starvation	Chromatin remodelling		Hirota et al. (2008)
ncASP3	S. cerevisiae	ASP3	cis (s)	Nitrogen starvation	Histone modification, chromatin remodelling	Maintaining	Huang et al. (2010)
IRT1	S. cerevisiae	IME1	cis (s)	Meiosis	Transcription initiation block, histone modifications		van Werven et al. (2012)
RME2	S. cerevisiae	IME4	cis (as)	Meiosis	Transcription elongation block		Hongay et al. (2006)
RME3	S. cerevisiae	ZIP2	cis (as)	Meiosis	Transcription elongation block		Gelfand et al. (2011)
meiRNA	S. pombe	Meiosis-specific genes	cis ?	Meiosis	RNA-protein IA, inhibition of Mmi1, RNAi	2 Isoforms, activation	Watanabe and Yamamoto (1994)
SUT169	S. cerevisiae	SPS100	cis (as)	Sporulation	Regulation of mRNA length and stability		Huber et al. (2016)
ICR1	S. cerevisiae	FLO11	cis (s)	Cell-cell adhesion (filament formation)	Promoter occlusion, silencing		Bumgarner et al. (2009)
PWR1	S. cerevisiae	ICR1 (FLO11)	cis (as)	Cell-cell adhesion (filament formation)	Transcription interference		Bumgarner et al. (2009)
pHO-lncRNA	S. cerevisiae	HO genes	cis (s)	Mating type interconversion, re-entering cell-cycle	Nucleosome repositioning		Yu et al. (2016)
Name	Fungus	Regulated gene	cis/trans	Cellular process	Regulatory mechanism	Special properties	Reference
---------------------	----------------	----------------	-----------	-----------------	--	--	-------------------------------------
TERRA S. cerevisiae	Telomeric DNA	?	Telomere replication	Regulation of telomerase activity, heterochromatin formation, scaffold	Luke et al. (2008)		
Telomerase RNA, TLC1	S. cerevisiae	Telomeric DNA	?	Telomere replication	Scaffold for telomerase complex, telomere template	Ribonucleo-protein	Zappulla and Cech (2004)
Telomerase RNA	S. pombe	Telomeric DNA	?	Telomere replication	Scaffold for telomerase complex, telomere template	Ribonucleo-protein	Leonardi et al. (2008)
SUT457	12 genes	trans ?	Telomere control	RNA-DNA IA, details unknown	Activation	Kyriakou et al. (2016)	
PHO84 antisense	S. cerevisiae	cis (as),	Cell aging, silencing	Histone modification	Unstable (CUTs)	Camblong et al. (2007)	
transcripts	PHO84	trans		Unknown			
TY1	S. cerevisiae	trans	Transposon silencing	Unknown	Unstable (XUTs)	Berretta et al. (2008)	
XUTs, screening	S. pombe	cis (as),	Meiosis, others?	Unknown	Unstable (XUTs)	Wery et al. (2018)	
NUTs, screening	S. cerevisiae	cis (as/s)	Silencing	Transcription interference, antisense repression	Unstable (NUTs)	Schulz et al. (2013)	
NUTs, screening	S. pombe	?	TGS	Histone modification, nucleosome repositioning, protein recruitment	Unstable (NUTs)	Marina et al. (2013)	

*as antisense, CRF chromatin remodelling factors, IA interaction, intra intragenic, MDED Mmi1-directed exosome degradation, s sense, TGS transcription gene silencing, TF transcription factor
Though less research has been done on the two other meiotic lncRNAs in *S. cerevisiae*, some parallels regarding their regulatory strategies can be noted. Like *IRT1*, *RME2* (regulator of meiosis 2) prevents germ cell differentiation in haploids and interferes with the transcription of its target gene *IME4* depending on the presence or absence of Rme1 (Hongay et al. 2006). Also, *RME3* (regulator of meiosis 3) represses the expression of its adjacent gene *ZIP2*, thereby preventing formation of the synaptonemal complex, which is required for chromosome pairing during meiosis (Gelfand et al. 2011). Both *RME2* and *RME3* are initiated downstream and transcribed in antisense orientation relative to their target genes, and both are interfering with transcription elongation rather than initiation (Gelfand et al. 2011). Furthermore, for both lncRNAs, a mechanism based on regulation of the chromatin status was postulated. However, there are not any details known.

A similar regulatory model as described for *IRT1* has also been postulated for the *SRG1*, a lncRNA that negatively interferes with the expression of the *SER3* gene under serine-rich conditions in *S. cerevisiae* (Martens et al. 2004).

Interestingly, also in *S. pombe*, meiosis is controlled by a lncRNA termed meiRNA; however, its regulatory strategy is strikingly different. Compared to *IRT1* in *S. cerevisiae*, meiRNA is not involved in the induction of meiosis, but in meiosis progression (Watanabe and Yamamoto 1994) and also chromosome pairing (Ding et al. 2012). Two isoforms of the meiRNA (i.e. meiRNA-S and meiRNA-L) are transcribed from the locus and physically interact with RNA-binding protein Mei2 upon onset of meiosis (Watanabe and Yamamoto 1994). During meiosis progression, the meiRNA-Mei2-complexes accumulate at the locus, leading to the formation of the so-called Mei2 dot (Yamashita et al. 1998). This finally causes baiting and inhibition of Mmi1, a key-silencing factor associated with heterochromatin formation, RNAi and also Mmi1-mediated RNA degradation (Shichino et al. 2014). As a consequence, genes required for meiosis progression are stably expressed (Fig. 1). Interestingly, due to its ability to physically interact with Mmi1, meiRNA itself is a target of Mmi1-mediated RNA degradation in mitotic cells (Hiriart et al. 2012; Yamashita et al. 2012). However, during meiosis, meiRNA is supposed to be stabilized upon complex formation with Mei2 and sequestering of Mmi1 (Harigaya et al. 2006; Hiriart and Verdel 2013). Schematic illustrations of the mechanisms of the here presented lncRNA are provided in several review articles (Hiriart and Verdel 2013; Niederer et al. 2017; Yamashita et al. 2016).

Besides meiosis, a couple of lncRNAs involved in telomere synthesis and maintenance in yeast are known. This process is essential to protect chromosome ends from shortening and prevent erroneous repair initiated by the DNA-damage response (de Lange 2005). In *S. cerevisiae*, two sorts of telomere-associated lncRNAs have been described: TERRA (telomeric repeat-containing RNA) and the telomerase RNA *TCL1*. TERRA acts as a scaffold for telomeric DNAs and chromatin-modifying enzymes during telomere synthesis and regulates telomerase activity (Luke et al. 2008). It has been extensively reviewed elsewhere (Cusanelli and Chartrand 2015; Luke and Lingner 2009).

TLC1 provides a platform for the formation for the telomerase complex itself and serves as a template for reverse transcription by Est2 (Zappulla and Cech 2004). A homologue to...
TLCI was also discovered in *S. pombe*, namely the telomerase RNA TER1 (Leonardi et al. 2008). Some characteristics are shared between the two telomerase RNAs; however, TER1 was found to be larger than TLCI and contains a higher number of invariant repeats compared to TLCI that is rather heterogeneous.

Gene silencing and broad heterochromatin formation is often associated with the degradation of unstable transcripts (reviewed in Tudek et al. 2015; Wu et al. 2012). This issue will be discussed in more detail in “lncRNAs with special properties”.

Also, the response to phosphate starvation in *S. pombe* is regulated by a set of lncRNAs sharing some features. All of them are transcribed under phosphate-rich conditions and repressed upon starvation and all of them cause repression of their sense-oriented target genes in cis via transcription interference (Ard et al. 2014; Chatterjee et al. 2016; Garg et al. 2018). Nc-tgp1 and prt have been investigated in more detail. In response to extracellular inorganic phosphate, the lncRNA *nc-tgp1* is produced and alters the nucleosome density at the promoter of its adjacent gene *tgp1* (transporter for glycerophosphodiester 1) (Ard et al. 2014). This results in dissociation of the central transactivator Pho7 and, thus, in a total shut-off of *tgp1* transcription (Fig. 2a).

A similar regulatory model was proposed for the regulation of *pho1* expression by the lncRNA *prt* (*pho1*-repressing transcript). Also in this case, *pho1* is repressed in response to *prt*1 transcription under phosphate-rich conditions and expressed upon phosphate starvation, strictly depending on activation by Pho7 (Fig. 2b) (Chatterjee et al. 2016). Initially, another model for the regulation of *pho1* expression by the lncRNA *prt* was suggested. It is based on the recruitment of Mmi1 by the lncRNA *prt*, which results in deposition of repressive chromatin marks and RNAi-mediated silencing (Shah et al. 2014). Yet, later research rather supports the concept of transcription interference by hampering binding of Pho7 (Chatterjee et al. 2016; Garg et al. 2018). Recently, the dissociation of Pho7 from the *pho1* locus as a consequence of *prt* transcription was reported to be governed not only by the lncRNA *prt* itself but also by RNA polymerase II (Pol II), depending on its phosphorylation status (Chatterjee et al. 2016). According to this model, Pol II moves towards the *pho1* promoter during progression of *prt* transcription and antagonizes binding of Pho7 close to the Poly(A) site of *prt*, thus resulting in the loss of *pho1* initiation (Fig. 2b). Changes in the phosphorylation status of Pol II are supposed to lead to prior termination of *prt* transcription, consequently resulting in de-repression of *pho1*. A likewise mechanism was also shown for *nc-tgp1* and its target gene *tgp1* (Sanchez et al. 2018). Both lncRNAs, *prt* and *nc-tgp1*, are controlled by Mmi1-directed exosome degradation and RNAi, as they harbour a cluster of DSR (determinant of selective removal) motifs which are recognized and bound by the central silencing factor Mmi1. Yet, this mechanism is independent from the regulatory impact on their adjacent genes (Ard et al. 2014; Chatterjee et al. 2016).

Recently, a third lncRNA acting on the phosphate metabolism in *S. pombe* has been discovered, namely *prt2* (Garg et al. 2018). Like its two functionally related lncRNAs, *prt2* is transcribed upon phosphate starvation and governs repression of its adjacent gene *pho84* (Fig. 2b). Moreover, also for *prt2*, an impact of the phosphorylation status of Pol II on expression of its target gene was confirmed. Conclusively, a similar mechanism as described for *prt* and *nc-tgp1* can be supposed. Interestingly, *prt2* was shown to effect the production of the proximal located lncRNA *prt* and its regulated gene *pho1*.

Fig. 2 Response to extracellular inorganic phosphate in *S. pombe*. **a** Inversely correlated expression of *tgp1* and the lncRNA *nc-tgp1* in the presence or absence of phosphate. Under phosphate-rich conditions, the lncRNA *nc-tgp1* is transcribed and blocks the expression of its sense gene *tgp1* by modulation of the local nucleosome arrangement and promoting the dissociation of the central transactivator Pho7. Upon phosphate starvation, *nc-tgp1* initiation is prevented, thus allowing binding of Pho7 and expression of *tgp1*. **b** Inversely correlated expression of *pho84* and the lncRNA *prt2* as well as *pho1* and the lncRNA *prt* in the presence or absence of phosphate. Under phosphate-rich conditions, the lncRNA *prt2* is transcribed and blocks the expression of its sense gene *pho84* by an unknown mechanism. Similarly, the adjacent lncRNA *prt* is transcribed and blocks the expression of its sense gene *pho1* by promoting the dissociation of the central transactivator Pho7. Upon phosphate starvation, *prt2* initiation is prevented; thus, *Pho84* is produced and in turn acts as a repressor of *prt* transcription, finally resulting in the expression of *pho1*.

© Springer
Inactivation of prt2 results in an upregulation of Pho84, which consequently leads to a downregulation of prt and finally a stimulation of pho1 transcription (Garg et al. 2018).

Regulatory strategies of IncRNAs

The simplest and probably most common regulatory strategy of IncRNAs is interference with the transcription of proximal located genes (reviewed in Kornienko et al. 2013; Vance and Ponting 2014). They can govern the expression of sense or antisense located genes in a repressing or activating manner by blocking the transcription machinery, modulation of the nucleosome arrangement and thereby provoking dissociation or binding of regulatory factors like transcription factors. Examples for a repressing effect of sense directed IncRNAs are nc-tgp1, prt and prt2, which have been described in the prior section.

Besides those, an interesting pair of IncRNAs is known that enables cell-cell adhesion during filament formation of *S. cerevisiae* cells in response to nutrient starvation, namely *ICR1* and *PWR1* (Bumgarner et al. 2009). They regulate the expression of their adjacent gene *FLO11* in a synergetic and sophisticated way. The current concept is a three-state model, comprising an activated, a repressed and a basal state (Bumgarner et al. 2012; Octavio et al. 2009). In the basal state, theIncRNA *ICR1* is produced and causes dissociation of the potentially bound activating factor Flo8 as well the repressing factor Sfl1 from the *FLO11* promoter. For activation of *FLO11* expression, Flo8 is bound and triggers the transcription of the antisense IncRNA *PWR1*, which acts as a suppressor of *ICR1* transcription. In the repressed state, Sfl1 binds to the promoter and mediates silencing by the recruitment of the histone deacetylase Hda1.

Another prominent example for transcription interference by IncRNAs is *SRG1*, which has been extensively reviewed (Hiriart and Verdel 2013; Niederer et al. 2017; Yamashita et al. 2016) and was briefly mentioned in the prior paragraph. It is transcribed under serine-rich conditions in response to activation by Cha4 (Martens et al. 2005) and mediates nucleosome deposition at the *SER3* promoter depending on FACT, Spt6/Spn1 and Spt2 in order to repress the expression of *SER3* (Martens et al. 2004). As depicted in the prior section, similar mechanisms were described for *IRT1*, *RME2* and *RME3*, yet in this case, also an impact on the chromatin arrangement by directing deposition of repressive chromatin marks was postulated.

The quite newly identified pHO-IncRNA forces nucleosome repositioning at the locus of the downstream located *HO* gene in *S. cerevisiae* (Yu et al. 2016). The regulated gene encodes the *HO* endonuclease, which is responsible for mating type interconversion during re-entering of the cell cycle after pheromone-dependent arrest in G1. Transcription of pHO-IncRNA is induced in response to the production of a pheromone (i.e. the α-factor) and causes nucleosome rearrangement and displacement of the factor SFB from the *HO* promoter. The loss of the activating signal from SFB results in a shut-off of *HO* expression and thus prevention of mating-type interconversion during re-entering into the cell cycle.

An exceptional mechanism for the regulation by a IncRNA was recently described for *SUT169* (Huber et al. 2016). Upon nutrient starvation, *SUT169* is transcribed and promotes the production of a sporulation-specific protein encoded by the *SPS100* gene. However, in contrast to other IncRNAs, *SUT169* does not activate the expression of its target gene, but it interferes with the transcription by supporting the production of a longer and more stable isoform of *SPS100*.

Another regulatory strategy followed by IncRNAs is depositioning of histone modifications and the recruitment of chromatin remodelling factors. One well-known example for this is the *GAL10* IncRNA. In *S. cerevisiae*, the expression of the *GAL* genes (i.e. *GAL1* and *GAL10*) is switched on in the presence of galactose and repressed in the presence of glucose to allow regulation of galactose metabolism. Under repressing conditions, *GAL10* ncRNA is produced and mediates di- and trimethylation of K4 and dimethylation of K36 on histone 3 by Set2 (Houseley et al. 2008). Those repressive chromatin marks are bound by Eaf3, which recruits the histone deacetylase Rpd3S, thus resulting in broad deacetylation and silencing of the whole *GAL* locus. In addition, H3K4me2 and H3K4me3 cause a delay in the recruitment of Pol II and TBP to the *GAL10* promoter (Geisler et al. 2012). Another IncRNA acting on the *GAL* genes is *GAL4* IncRNA. Here, more studies are required to understand its mechanism in detail (Geisler et al. 2012).

Further examples of IncRNAs effecting the chromatin organization are the mlonRNA from *S. pombe* and the ncASP3 and the antisense IncRNA of the *CDC28* gene in *S. cerevisiae*, all of which are involved in stress response. The latter is induced by the stress-activated protein kinase Hog1 upon osmостress and supports translocation of Hog1 to the overlapping gene *CDC28* by bending the local genomic region into a loop (Nadal-Ribelles et al. 2014). This results in the recruitment of chromatin remodelers and thus activates the expression of the cyclin-dependent kinase 1 encoding gene *CDC28*.

Similarly, glucose starvation in *S. pombe* triggers the production of noncoding transcripts upstream of the *fbp1* gene, the so-called mlonRNAs (Hirot a et al. 2008). These metabolic stress-induced IncRNAs trigger a switch of the chromatin configuration to an open state, which makes DNA more accessible for binding of Pol II and activators such as Atf1 (Hirot a et al. 2008; Takemata et al. 2016). As a consequence, the *fbp1* gene (encoding the fructose-1,6-bisphosphatase) is expressed in the absence of glucose. The production of mlonRNAs in *S. pombe* is anticorrelated with antisense transcripts, which are produced from the *fbp1* locus under glucose-rich conditions.
(Miki et al. 2016). Compared to the *fbp1* mRNA, both mlonRNAs and their antisense transcripts were found to be prone to degradation by the nuclear exosome/Rrp6 complex (Galipon et al. 2013; Miki et al. 2016).

The lncRNA *ncASP3* in *S. cerevisiae* influences the expression of its target gene *ASP3* in a peculiar way. *ASP3* is regulated by nitrogen catabolite repression (NCR) and encodes asparaginase II, an enzyme performing hydrolysis of asparagine to aspartate and ammonium cations in response to nitrogen starvation (Dunlop et al. 1978). *ncASP3* is expressed in both cases, when nitrogen is available and upon nitrogen depletion, and maintains an open chromatin configuration at *ASP3* by mediating trimethylation of H3K4. Thus, *ASP3* is kept in an accessible status, allowing immediate expression upon the onset of NCR (Huang et al. 2010).

Another type of regulatory strategy of lncRNAs is the interaction with proteins. lncRNAs can attract proteins, affect their function or act as scaffolds for several factors. Well-described examples for this in yeast are meiRNAs, TERRA or telomerase RNAs. They have been presented in detail in the prior section. Also for the recently identified lncRNA *HAX1* in *T. reesei*, an interaction with the main transactivator of cellulase expression can be supposed as a sequence element rich in Xyr1-binding sites is present at its 5′ end (Till et al. 2018). To date, details regarding the regulatory strategy of *HAX1* have not been reported.

lncRNAs with special properties

Some lncRNAs are unstable transcripts (reviewed in Garneau et al. 2007; Tudek et al. 2015). They can be destabilized by different cellular components; anyway, their degradation allows tight control of their regulatory impact. One type of unstable lncRNAs are CUTs, which are degraded in the nucleus by the exosome/Rp6p complex (Davis and Ares Jr 2006; Wyers et al. 2005). Examples are the *PHO84* antisense transcript (Camblong et al. 2007) or *TY1* (Berretta et al. 2008). As described for *prt* and *nc-tpg1*, degradation by the nuclear exosome can also be triggered by Mmi1 (Harigaya et al. 2006). XUTs and SUTs in contrast are exported to the cytoplasm for processing. There, they might be destabilized by de-capping mediated by Dcp1 and Dcp2 (Gameau et al. 2007). XUTs then are degraded by the 5′-3′ exonuclease Xrn1 (Nagarajan et al. 2013) or the *S. pombe* ortholog Exo2 (Szankasi and Smith 1996), whereas SUTs are processed by the cytoplasmic exosome (Gameau et al. 2007). Several XUTs and SUTs were shown to be targeted by the nonsense-mediated decay pathway, which is a cytoplasmic surveillance mechanism for recognizing and discarding mRNAs with premature stop codons (Smith et al. 2014; Tudek et al. 2015; Wery et al. 2016). One example for XUTs is the *GAL10* lncRNA (Houseley et al. 2008). NUTs (Nrd1-undetermined transcripts) are not controlled by post-transcriptional degradation but are sensitive to prior termination of lncRNA transcription by Nrd1 (Schulz et al. 2013) or the *S. pombe* ortholog Seb1 (Mitsuzawa et al. 2003). All these types of unstable transcripts cause silencing of their target genes. The mechanisms of degradation described here arise as a control of pervasive transcription and often act as a protection from gene silencing throughout the life cycle (Wyers et al. 2005). Hence, one could question whether the production of these unstable transcripts is really an explicit mechanism or rather an unwanted side effect of exhaustion of transcriptome surveillance.

Most lncRNA have a repressing effect on their target genes. The few examples of fungal lncRNAs acting as activators comprise the *CDC28* antisense transcript, meiRNA, *SUT169, SUT457, SPNCRNA.1164* and *HAX1*. Yet, in fact, they hardly share any features: some act in cis, others in trans; they occur in different organisms and are involved in different cellular processes ranging from telomere control over sporulation to metabolism and stress response. Details regarding the regulatory mechanisms of *SUT457, SPNCRNA.1164* and *HAX1* are unknown. However, due to its outstanding role as the first characterized lncRNA in a filamentous fungus, we will further address to *HAX1* in this chapter.

HAX1 was incidentally discovered by random integration of a marker cassette into the genome of *T. reesei* (Till et al. 2018). *T. reesei* is a saprophyte, growing on dead plant material (Klein and Eveleigh 1998). It secretes large quantities of cellulases and hemicellulases, which cause degradation of complex plant biopolymers (Ouyang et al. 2006). Especially, cellulases are commonly used for several processes meeting human regards; hence, *T. reesei* is widely applied as a high-yield producer of those enzymes in industry (Kubicek and Penttilä 1998). The lncRNA *HAX1* was identified as an activator of cellulase expression (Till et al. 2018). Thus, *HAX1* has a pivotal role, both as a player in the complex regulatory network of cellulase expression and as a potential biotechnological tool for the improvement of enzyme production. While details on the regulatory strategy are not reported yet, the presence of a sequence element rich in Xyr1-binding sites suggests an interplay with the main transactivator of cellulase and xylanase expression, the Xylanase regulator 1 (*Xyr1*) (Rauscher et al. 2006; Stricker et al. 2006). One special feature regarding *hax1* expression is the strain-specific variation of RNA length (Till et al. 2018). Interestingly, much shorter versions of *HAX1* are present in the *T. reesei* wild-type strain than in moderate or in high cellulase overproduction strains. Overexpression of the three identified *HAX1* versions in the wild-type strain led to an increase in cellulase activity, depending on RNA length. The shortest version only slightly improved cellulase expression, whereas the longest version led to the strongest increase in cellulase activity (Fig. 3).

Conclusively, a direct link between *HAX1* length and its regulatory role can be supposed.
Another example for the variation of transcript length in fungi is the above-discussed meiRNA in *S. pombe*. Two isoforms of this lncRNA are produced: the 0.5 kb meiRNA-S and the approximately 1.2 kb meiRNA-L (Watanabe and Yamamoto 1994). The production of these isoforms depends on the presence of different polyadenylation sites, initiating transcription termination (Fig. 1). In contrast, the differences in *HAX1*-length result from variation of the transcription start point in different *T. reesei* strains: *HAX1*QM6a, *HAX1*QM9414 and *HAX1*Rut-C30. They act as activators of cellulase expression. The longest version *HAX1*Rut-C30 has a higher impact on the cellulase activity compared to *HAX1*QM9414 and *HAX1*QM6a (indicated by triple, double and single plus symbols, respectively). The regulatory mechanism of *HAX1* is unknown, yet an interplay with the main transactivator Xyr1 is supposed. For details, see text.

![Expression of cellulase genes](image)

Fig. 3 Regulation of cellulase gene expression by the lncRNA *HAX1* in *T. reesei*. Three isoforms of *HAX1* differing in length result from variation of the transcription start point in different *T. reesei* strains: *HAX1*QM6a, *HAX1*QM9414 and *HAX1*Rut-C30. They act as activators of cellulase expression. The longest version *HAX1*Rut-C30 has a higher impact on the cellulase activity compared to *HAX1*QM9414 and *HAX1*QM6a (indicated by triple, double and single plus symbols, respectively). The regulatory mechanism of *HAX1* is unknown, yet an interplay with the main transactivator Xyr1 is supposed. For details, see text.

In addition to yeast lncRNAs, recently, the first functional characterization of a lncRNA was reported for a filamentous fungus, namely *T. reesei*. It was presented as a potential tool for strain improvement and the industrial exploitation of *T. reesei*. Similarly, a specific use of yeast lncRNAs for industrial purposes might be considered. Both *S. cerevisiae* and *S. pombe* are commonly applied for biotechnological production processes. Hence, targeted intervention in processes...
influenced by IncRNAs represents a promising strategy for process optimisation. Ongoing research and steadily improving technologies provide the basis for uncovering yet unknown mechanisms of IncRNAs, their biotechnological applications and the identification of new candidates in yeasts and higher fungi.

Funding Information Open access funding provided by Austrian Science Fund (FWF). This work was supported by a grant from the Austrian Science Fund (FWF): [P26618]. Further financial support by Novozymes, by the Austrian Federal Ministry of Science, Research and Economy and by the National Foundation for Research, Technology and Development is gratefully acknowledged.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Ethical approval This article does not contain any studies with human participants or animals performed by any of the authors.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

Ard R, Tong P, Allshire RC (2014) Long non-coding RNA-mediated transcriptional interference of a permease gene confers drug tolerance in fission yeast. Nat Commun 5:5576. https://doi.org/10.1038/ncomms6576

Berretta J, Pinskaya M, Morillon A (2008) A cryptic unstable transcript mediates transcriptional trans-silencing of the Ty1 retrotransposon in *S. cerevisiae*. Genes Dev 22(5):615–626. https://doi.org/10.1101/gad.458008

Bumgarner SL, Dowell RD, Grisafi P, Gifford DK, Fink GR (2009) Toggle involving cis-interfering noncoding RNAs controls variegated gene expression in yeast. Proc Natl Acad Sci U S A 106(43):18321–18326. https://doi.org/10.1073/pnas.0909641106

Bumgarner SL, Neuer G, Voight BF, Symbor-Nagrabska A, Grisafi P, van Oudenaarden A, Fink GR (2012) Single-cell analysis reveals that noncoding RNAs contribute to clonal heterogeneity by modulating transcription factor recruitment. Mol Cell 45(4):470–482. https://doi.org/10.1016/j.molcel.2011.11.029

Camblong J, Iglesias N, Fickentscher C, Dieppois G, Stutz F (2007) Antisense RNA stabilization induces transcriptional gene silencing via histone deacetylation in *S. cerevisiae*. Cell 131(4):706–717. https://doi.org/10.1016/j.cell.2007.09.014

Camblong J, Beyrouthy N, Gufilani E, Schlapfert G, Steinmetz LM, Stutz F (2009) Trans-acting antisense RNAs mediate transcriptional gene cosuppression in *S. cerevisiae*. Genes Dev 23(13):1534–1545. https://doi.org/10.1101/gad.522509

Cemel IA, Ha N, Schermann G, Yonekawa S, Brummer M (2017) The coding and noncoding transcriptome of *Neurospora crassa*. BMC Genomics 18(1):978. https://doi.org/10.1186/s12864-017-4360-8

Chatterjee D, Sanchez AM, Goldgur Y, Shimun S, Schwer B (2016) Transcription of IncRNA pret, clustered pret RNA sites for Mmi1 binding, and RNA polymerase II CTD phospho-sites govern the repression of *phol* gene expression under phosphate-repeat conditions in fission yeast. RNA 22(7):1011–1025. https://doi.org/10.1261/rna.056515.116

Cusanelli E, Chartrand P (2015) Telomeric repeat-containing RNA TERRA: a noncoding RNA connecting telomere biology to genome integrity. Front Genet 6:143. https://doi.org/10.3389/fgene.2015.00143

Dandjinou AT, Levesque N, Larousse S, Lucier JF, Abou Elela S, Wellinger RJ (2004) A phylogenetically based secondary structure for the yeast telomerase RNA. Curr Biol 14(13):1148–1158. https://doi.org/10.1016/j.cub.2004.05.054

David L, Huber W, Granovskiaia M, Toedling J, Palm CJ, Botkin L, Jones T, Davis RW, Steinmetz LM (2006) A high-resolution map of transcription in the yeast genome. Proc Natl Acad Sci U S A 103(14):5320–5325. https://doi.org/10.1073/pnas.0601091103

Davis CA, Ares M Jr (2006) Accumulation of unstable promotor-associated transcripts upon loss of the nuclear exosome subunit Rrp6p in *Saccharomyces cerevisiae*. Proc Natl Acad Sci U S A 103(9):3262–3267. https://doi.org/10.1073/pnas.0507783103

de Lange T (2005) Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev 19(18):2100–2110. https://doi.org/10.1101/gad.1346005

Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, Guernec G, Martin D, Merkel A, Knowles DG, Lagarde J, Veeravalli L, Ruan X, Ruan Y, Lassmann T, Carninci P, Brown JB, Lipovich L, Gonzalez JM, Thomas M, Davis CA, Shiekhattar R, Gingeras TR, Hubbard TJ, Notredame C, Harrow J, Guigo R (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22(9):1775–1789. https://doi.org/10.1101/gr.132159.111

Ding DQ, Okamasa K, Yamane M, Tsutsumi C, Haraguchi T, Yamamoto M, Hiraoka Y (2012) Meiosis-specific noncoding RNA mediates robust pairing of homologous chromosomes in meiosis. Science 336(6082):732–736. https://doi.org/10.1126/science.1219518

Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, Tanzer A, Lagarde J, Lin W, Schlesinger F, Xue C, Marinov GK, Khatun J, Williams BA, Zaleski C, Rozowsky J, Roder M, Kokocinski F, Abdelhamid RF, Alioto T, Antoshechkin I, Baer MT, Bar NS, Batut P, Bell K, Bell I, Chakrabortty S, Chen X, Chrait J, Curado J, Derrien T, Drenkow J, Dumas E, Dumais J, Duttagupta R, Falconett E, Fastuca M, Fejes-Toth K, Ferreira P, Foissac S, Fullwood MJ, Gao H, Gonzalez D, Gordon A, Gunawardena H, Howald C, Jha S, Johnson R, Kapranov P, King B, Kingswood C, Luo OJ, Park E, Persaud K, Preall JB, Ribeca P, Risk B, Robyr D, Sammeth M, Schaffner L, See LH, Shahab A, Skancke J, Suzuki AM, Takahashi H, Tilgner H, Trout D, Walters N, Wang H, Wrobel J, Yu Y, Ruan X, Hayashizaki Y, Harrow J, Gerstein M, Hubbard T, Reymond A, Antonarasik SE, Hannon G, Giddings MC, Ruan Y, Wold B, Carninci P, Guigo R, Gingeras TR (2012) Landscape of transcription in human cells. Nature 489(7414):101–108. https://doi.org/10.1038/nature11233

Dunlop PC, Meyer GM, Ban D, Roon RJ (1978) Characterization of two forms of asparaginase in *Saccharomyces cerevisiae*. J Biol Chem 253(4):1297–1304

Dutrow N, Nix DA, Holt D, Milash B, Dalley B, Westbrook E, Parnell TJ, Cairns BR (2008) Dynamic transcriptome of *Schizosaccharomyces*
Huang YC, Chen HT, Teng SC (2010) Intragenic transcription of a non-coding RNA modulates expression of ASP3 in budding yeast. RNA 16(11):2085–2093. https://doi.org/10.1261/rna.2177410

Huber F, Bunina D, Gupta I, Khmelinskii A, Meurer M, Theeer P, Steinmetz LM, Knop M (2016) Protein abundance control by non-coding antisense transcription. Cell Rep 15(12):2625–2636. https://doi.org/10.1016/j.celrep.2016.05.043

Iyer MK, Niknafs YS, Malik R, Singhal U, Sahu A, Hosono Y, Barrette TR, Prensner JR, Evans Jr, Zhao S, Poliakov A, Cao X, Dhana sekar SM, Wu YM, Robinson DR, Beer DG, Feng FY, Iyer HK, Chinnaiyan AM (2015) The landscape of long noncoding RNAs in the human transcriptome. Nat Genet 47(3):199–208. https://doi.org/10.1038/ng.3192

Jain P, Sharma V, Dubey H, Singh PK, Kapoor R, Kumari M, Singh J, Pawar DV, Bisht D, Solanku AE, Mondal TK, Sharma TR (2017) Identification of long non-coding RNA in rice lines resistant to rice blast pathogen Magnaporthe oryzae. Bioinformation 13(8):249–255. https://doi.org/10.6026/9729730630113249

Kaparanov P, Cheng J, Dike S, Nix DA, Dattagupta R, Willingham AT, Stadler PF, Hertel J, Hackermuller J, Hofacker IL, Bell I, Cheung E, Drenkow J, Dumas E, Patel S, Helt G, Ganesh M, Ghosh S, Piccolboni A, Sementchenko V, Tammana H, Gingeras TR (2007) RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316(5830):1484–1488. https://doi.org/10.1126/science.1138341

Kaparanov P, St Laurent G, Raz T, Ozsolak F, Reynolds CP, Soren sen P, Reaman G, Milos P, Arcce RJ, Thompson JF, Triche TJ (2010) The majority of total nuclear-encoded non-ribosomal RNA in a human cell is ‘dark matter’ un-annotated RNA. BMC Biol 8:149. https://doi.org/10.1186/1741-7007-8-149

Kertesz M, Wan Y, Mazor E, Rimm JL, Nutter RC, Chang HY, Segal E (2010) Genome-wide measurement of RNA secondary structure in yeast. Nature 467(7311):103–107. https://doi.org/10.1038/ nature09322

Klein D, Evellede DE (1998) Ecology of Trichoderma. In: Harman GE, Kubicek CP (eds) Trichoderma & Gladiolus, vol 1. Taylor & Francis, London, pp 57–74

Kornienko AE, Guenzl PM, Barlow DP, Pauler FM (2013) Gene regulation by the act of long non-coding RNA transcription. BMC Biol 11:59. https://doi.org/10.1186/1741-7007-11-59

Krishnan J, Mishra RK (2014) Emerging trends of long non-coding RNAs in gene activation. FEBS J 281(1):34–45. https://doi.org/10.1111/febs.12578

Kubicek CP, Pentilä ME (1998) Regulation of production of plant polysaccharide degrading enzymes by Trichoderma. In: Harman GE, Kubicek CP (eds) Trichoderma & Gladiolus, vol 1. Taylor & Francis, London, pp 49–71

Kyriakou D, Stavrout E, Demosthenous P, Angelidou G, San Luis BJ, Boone C, Primononas VJ, Kimiziz A (2016) Functional characterisation of long intergenic non-coding RNAs through genetic interaction profiling in Saccharomyces cerevisiae. BMC Biol 14(1):106. https://doi.org/10.1186/s12915-016-0325-7

Leonardi J, Box JA, Bunch JT, Baumann P (2008) TER1, the RNA subunit of fission yeast telomerase. Nat Struct Mol Biol 15(1):26–33. https://doi.org/10.1038/nsmb1343

Leong HS, Dawson K, Wirth C, Li Y, Connolly N, Smith DL, Wilkinson CR, Miller CJ (2014) A global non-coding RNA system modulates fission yeast protein levels in response to stress. Nat Commun 5:3947. https://doi.org/10.1038/ncomms3947

Luke B, Linger J (2009) TERRA: telomeric repeat-containing RNA. EMBO J 28(17):2503–2510. https://doi.org/10.1038/emboj.2009.166

Luke B, Panza A, Redon S, Iglesias N, Li Z, Linger J (2008) The Rat1p 5′ to 3′ exonuclease degrades telomeric repeat-containing RNA and promotes telomere elongation in Saccharomyces cerevisiae. Mol Cell 32(4):465–477. https://doi.org/10.1016/j.molcel.2008.10.019
Marina DB, Shankar S, Natarajan P, Finn KJ, Madhani HD (2013) A conserved ncRNA-binding protein recruits silencing factors to heterochromatin through an RNAi-independent mechanism. Genes Dev 27(17):1851–1856. https://doi.org/10.1101/gad.226019.113

Martens JA, Laprade L, Winston F (2004) Intergenic transcription is required to repress the Saccharomyces cerevisiae SERS gene. Nature 429(6991):571–574. https://doi.org/10.1038/nature02538

Martens JA, Wu PY, Winston F (2005) Regulation of an intergenic transcript controls adjacent gene transcription in Saccharomyces cerevisiae. Genes Dev 19(22):2695–2704. https://doi.org/10.1101/gad.1367605

Merce TR, Mattick JS (2013) Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol 20(3):300–307. https://doi.org/10.1038/nsmb.2480

Miki A, Galipon J, Sawai S, Inada T, Ohta K (2016) RNA decay systems enhance reciprocal switching of sense and antisense transcripts in response to glucose starvation. Genes Cells 21(12):1276–1289. https://doi.org/10.1111/gtc.12443

Mitchell AP, Herskowitz I (1986) Activation of meiosis and sporulation by repression of the RME1 product in yeast. Nature 319(6056):738–742. https://doi.org/10.1038/319738a0

Mitsuzawa H, Kanda E, Ishihama A (2003) Rpb7 subunit of RNA polymerase II interacts with an RNA-binding protein involved in processing of transcripts. Nucleic Acids Res 31(16):4696–4701

Moretto F, van Werven FJ (2017) Transcription of the mating-type-regulated IncRNA IRT1 is governed by TORC1 and PKA. Curr Genet 63(2):325–329. https://doi.org/10.1007/s00294-016-0639-6

Nadal-Ribelles M, Sole C, Xu Z, Steinmetz LM, de Nadal E, Posas F (2014) Control of Cdc28 CDK1 by a stress-induced IncRNA. Mol Cell 53(4):549–561. https://doi.org/10.1016/j.molcel.2014.01.006

Nagalakshmi U, Wang Z, Waern K, Shou C, Gerstein M, Snyder S, Kubicek CP, Penttilä M, Mach RL (2006) Transcriptional regulation is distributed among activators of noncoding RNAs. Cell 136(4):629–642. https://doi.org/10.1016/j.cell.2008.10.024

Nagalakshmi U, Wang Z, Waern K, Shou C, Gerstein M, Snyder S, Kubicek CP, Penttilä M, Mach RL (2006) XRN 5′–3′ exonuclease II promotes cellulase expression in the filamentous fungus Trichoderma reesei. Biotechnol J 1(11):1266–1274. https://doi.org/10.1002/biot.200600103

Niederer RO, Hass EP, Zappulla DC (2017) Long noncoding RNAs in the yeast S. cerevisiae. Adv Exp Med Biol 1008:119–132. https://doi.org/10.1007/978-981-10-5203-3_4

Ocito LM, Gedeon K, Maheshi N (2009) Epigenetic and conventional regulation is distributed among activators of FLO11 allowing tuning of population-level heterogeneity in its expression. PLoS Genet 5(12):e1000673. https://doi.org/10.1371/journal.pgen.1000673

Ouyang J, Yan M, Kong D, Xu L (2006) A complete protein pattern of hypochromatin through an RNAi-independent mechanism. Genes Dev 15(5):1075–1087. https://doi.org/10.1101/gad.15.5.1075

Paulsson PJ, van Dijk EL, Chen CL, d’Aubenton-Carafa Y, Gourvennec S, Kwapisz T, Pucher ME, Mach RL, Mach-Aigner AR (2018) A long noncoding RNA promotes cellulase expression in Trichoderma reesei. Biotechnol Biofuels 11:78. https://doi.org/10.1186/s13068-018-1018-4

Stricker AR, Grosstessner-Hain K, Würleitner E, Mach RL (2006) Xyr1 (xylanase regulator 1) regulates both the hydrolytic enzyme system and D-xylose metabolism in Hypocre a je corina. Eukaryot Cell 5(12):2128–2137

Sanchez AM, Schwalb B, Kiesel A, Baejen C, Torkler P, Gagneur J, Soeding J, Baker KE (2014) Translation of small open reading frames within unannotated RNA transcripts in Saccharomyces cerevisiae. Cell Rep 7(6):1858–1866. https://doi.org/10.1016/j.celrep.2014.05.023

Stricker AR, Grosstessner-Hain K, Würleitner E, Mach RL, Vance KW, Ponting CP (2014) Transcriptional regulatory functions of long non-coding RNAs. Trends Genet 30(8):348–355. https://doi.org/10.1016/j.tig.2014.06.001

Washietl S, Hofacker IL, Stadler PF (2005b) Fast and reliable prediction of conserved RNA secondary structures predicts thousands of functional non-coding RNAs in the human genome. Nat Biotechnol 23(11):1383–1390. https://doi.org/10.1038/nbt1144

Washietl S, Hofacker IL, Strickler AR, Grosstessner-Hain K, Würleitner E, Mach RL, Vance KW, Ponting CP (2014) Transcriptional regulatory functions of long non-coding RNAs. Trends Genet 30(8):348–355. https://doi.org/10.1016/j.tig.2014.06.001

Washietl S, Hofacker IL, Stadler PF (2005a) Mapping of conserved RNA secondary structures predicts thousands of functional non-coding RNAs in the human genome. Nat Biotechnol 23(11):1383–1390. https://doi.org/10.1038/nbt1144

Washietl S, Hofacker IL, Stadler PF (2005b) Fast and reliable prediction of noncoding RNAs. Proc Natl Acad Sci U S A 102(7):2454–2459. https://doi.org/10.1073/pnas.0409169102

Watanabe Y, Yamamoto M (1994) S. pombe mel2+ encodes an RNA-binding protein essential for premeiotic DNA synthesis and meiosis I, which cooperates with a novel RNA species meiRNA. Cell 78(3):487–498

Wery M, Describes M, Vogt N, Dallongeville AS, Gautheret D, Morillon A (2016) Non-sense-mediated decay restricts LncRNA levels in yeast unless blocked by double-stranded RNA structure. Mol Cell 61(3):379–392. https://doi.org/10.1016/j.molcel.2015.12.020

Wery M, Gautier C, Describes M, Yoda M, Vennin-Rendos H, Migeot V, Gautheret D, Hermand D, Morillon A (2018) Native elongating transcript sequencing reveals global anti-correlation between sense and antisense nascent transcription in fission yeast. RNA 24(2):196–208. https://doi.org/10.1216/ma.063446.117

Wilhelm BT, Magaret S, Watt S, Shubert F, Wood V, Goodhead I, Penkett CJ, Rogers J, Bahler J (2008) Dynamic repertoire of a
eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature 453(7199):1239–1243. https://doi.org/10.1038/nature07002

Wu J, Delneri D, O’Keefe RT (2012) Non-coding RNAs in *Saccharomyces cerevisiae*: what is the function? Biochem Soc Trans 40(4):907–911. https://doi.org/10.1042/BST20120042

Wyers F, Rougemaille M, Badis G, Rousselle JC, Dufour ME, Boulay J, Regnault B, Devaux F, Namane A, Seraphin B, Libri D, Jacquier A (2005) Cryptic pol II transcripts are degraded by a nuclear quality control pathway involving a new poly(A) polymerase. Cell 121(5):725–737. https://doi.org/10.1016/j.cell.2005.04.030

Yamashita A, Watanabe Y, Nukina N, Yamamoto M (1998) RNA-assisted nuclear transport of the meiotic regulator Mei2p in fission yeast. Cell 95(1):115–123

Yamashita A, Shichino Y, Tanaka H, Hiriart E, Touat-Todeschini L, Vavasseur A, Ding DQ, Hiraoka Y, Verdel A, Yamamoto M (2012) Hexanucleotide motifs mediate recruitment of the RNA elimination machinery to silent meiotic genes. Open Biol 2(3):120014. https://doi.org/10.1098/rsob.120014

Yamashita A, Shichino Y, Yamamoto M (2016) The long non-coding RNA world in yeasts. Biochim Biophys Acta 1859(1):147–154. https://doi.org/10.1016/j.bbagrm.2015.08.003

Yin QF, Yang L, Zhang Y, Xiang JF, Wu YW, Carmichael GG, Chen LL (2012) Long noncoding RNAs with snoRNA ends. Mol Cell 48(2):219–230. https://doi.org/10.1016/j.molcel.2012.07.033

Yu Y, Yarrington RM, Chuong EB, Elde NC, Stillman DJ (2016) Disruption of promoter memory by synthesis of a long noncoding RNA. Proc Natl Acad Sci U S A 113(34):9575–9580. https://doi.org/10.1073/pnas.1601793113

Zappulla DC, Cech TR (2004) Yeast telomerase RNA: a flexible scaffold for protein subunits. Proc Natl Acad Sci U S A 101(27):10024–10029. https://doi.org/10.1073/pnas.0403641101