NGC 5824: a luminous outer halo globular cluster with an intrinsic abundance spread

G. S. Da Costa,1⋆ E. V. Held2 and I. Saviane3

1Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 0200, Australia
2INAF, Osservatorio Astronomico di Padova, vicolo Osservatorio 5, I-35122 Padova, Italy
3European Southern Observatory, Alonso de Cordova, 3107 Santiago, Chile

Accepted 2013 December 18. Received 2013 December 18; in original form 2013 November 21

ABSTRACT

We present a detailed study of the strengths of the calcium triplet absorption lines in the spectra of a large sample of red giant members of the luminous outer Galactic halo globular cluster NGC 5824. The spectra were obtained with the FORS2 and GMOS-S multi-object spectrographs at the VLT and the Gemini-S telescope, respectively. By comparing the line strengths of the NGC 5824 stars with those for red giants in clusters with well-established abundances, we conclude that there is an intrinsic abundance dispersion in NGC 5824 characterized by an inter-quartile range in [Fe/H] of 0.10 dex and a total range of ~0.3 dex. As for ω Cen and M22, the abundance distribution shows a steep rise on the metal-poor side and a shallower decline on the metal-rich side. There is also some indication that the distribution is not unimodal with perhaps three distinct abundance groupings present. NGC 5824 has a further unusual characteristic: the outer surface density profile shows no signs of a tidal cutoff. Instead, the profile has a power-law distribution with cluster stars detected to a radius exceeding 400 pc. We postulate that NGC 5824 may be the remnant nuclear star cluster of a now disrupted dwarf galaxy accreted during the formation of the Galaxy’s halo. We further speculate that the presence of an intrinsic [Fe/H] spread is the characteristic that distinguishes former nuclear star clusters from other globular clusters.

Key words: stars: abundances – stars: Population II – globular clusters: general – globular clusters: individual: NGC 5824.

1 INTRODUCTION

On the basis of many detailed spectroscopic and photometric studies carried out over more than a decade, we can now assert with some conviction that most, if not all, of the globular clusters associates with the Milky Way galaxy are not the simple stellar populations they were once considered to be. The evidence to support this assertion can be found, for example, the sodium–oxygen abundance anticorrelation that pervades the stars in essentially all Galactic globular clusters (see the recent review of Gratton, Carretta & Bragaglia 2012). While the exact nature of the ‘polluters’ that give rise to the chemical anomalies remains uncertain, it is clear that the production of the anomalies is intimately connected to the formation process of the cluster, and not to any process involving the current generation of cluster stars.

Nevertheless, despite the ubiquity of the abundance inhomogeneities involving the light elements C, N, O, Na, Mg and Al, it remains the case that most globular clusters are chemically homogeneous with respect to the heavier elements such as Fe and Ca (e.g. Carretta et al. 2010b), elements whose nucleosynthesis lies with supernovae. The classic exception to this general situation is the stellar system ω Cen, which has been known to have an unusual stellar population for almost four decades. Specifically, the stars in ω Cen possess a large range in iron abundance together with distinct element-to-iron abundance ratios (e.g. Johnson & Pilachowski 2010; Marino et al. 2012, and the references therein). These unusual characteristics have led to the suggestion that the stellar system ω Cen is ‘special’, in that it is the nuclear remnant of a now disrupted dwarf galaxy (e.g. Freeman 1993). Chemical evolution models of such systems have been moderately successful in reproducing the observed properties of the cluster (e.g. Marcolini et al. 2007; Romano et al. 2007, 2010) and dynamical models of the tidal disruption process (e.g. Bekki & Freeman 2003) have also shown that plausible scenarios exist in which the nuclear remnant can end up in an orbit similar to the tightly bound and retrograde orbit of the current cluster. The strongest evidence in support of this hypothesis for the origin of ω Cen, however, comes from the recent...
discovery of field stars that show unusual chemical abundance ratios similar to cluster member stars (Wylie-de Boer, Freeman & Williams 2010; Majewski et al. 2012).

It is now recognized, however, that ω Cen is not the only Galactic globular cluster with an internal [Fe/H] abundance spread, although it remains the object with the largest star-to-star [Fe/H] range. For example, the nuclear star cluster of the Sagittarius dwarf galaxy, M54, was first suggested to have an intrinsic abundance spread, σ_{int}(Fe/H), of ~0.16 dex by Sarajedini & Layden (1995) on the basis of the intrinsic colour width of the cluster red giant branch (RGB). Subsequent analyses based on intermediate- and high-resolution spectra of a significant number of M54 red giants have confirmed the existence of this intrinsic spread, yielding σ_{int}(Fe/H) ≈ 0.19 dex (e.g. Carretta et al. 2010a, and the references therein). The Sgr dwarf is currently undergoing tidal disruption, which when complete will leave M54 as a member of the Galactic halo globular cluster population, and its status as a nuclear star cluster of a dwarf galaxy will then no longer be obvious.

A third cluster with an intrinsic range in [Fe/H] abundance is M22. Da Costa et al. (2009) used intermediate-resolution spectra at the Ca II triplet of 41 member stars to demonstrate that there is a broad [Fe/H] abundance distribution in this cluster qualitatively similar (but on a smaller scale) to that for ω Cen. The abundance distribution reveals the presence of at least two components and is characterized by an inter-quartile range (IQR) in [Fe/H] of 0.24 dex (Da Costa et al. 2009). Similar results have been found from the high-dispersion spectroscopic analyses of Marino et al. (2009, 2011). These data show the presence of two populations in the cluster, one of which is enhanced in s-process elements and Fe relative to the other (Marino et al. 2009, 2011, see also Roederer, Marino & Sneden 2011). With MV = −8.5 (Harris 1996), M22 is not especially luminous (as M54 and ω Cen are) and it is kinematically a typical inner-halo globular cluster (Dinescu et al. 1999). It is not known to be associated with any dwarf galaxy remnant or stellar stream.

Three other Galactic globular clusters also show significant (i.e. σ_{int}(Fe/H) ≥ 0.05 dex) intrinsic [Fe/H] ranges. These are the metal-rich bulge cluster Terzan 5 (Ferraro et al. 2009) and the intermediate-metallicity clusters NGC 1851 (Carretta et al. 2011) and NGC 3201 (Simmerer et al. 2013). Terzan 5 shows two distinct stellar populations that differ by ~0.5 dex in [Fe/H] and which also have different α-element to iron abundance ratios, suggesting a complex enrichment history (Orligha, Rich & Ferraro 2011). NGC 1851, on the other hand, shows a relatively small intrinsic iron abundance dispersion characterized by σ_{int}(Fe/H) ≈ 0.07 dex (Carretta et al. 2011). There is, however, a tendency for the more iron-rich stars to have also higher abundances of the s-process element Ba (Carretta et al. 2011), a situation reminiscent of the two (Fe, s-process) groups in M22. NGC 1851 has a number of other abundance and photometric peculiarities (e.g. Milone et al. 2008; Yong et al. 2009; Carretta et al. 2011, 2012). Potential scenarios to explain the observations include the possibility that the current cluster is the product of the merger of two separate globular clusters within a (now disrupted) parent dwarf galaxy (Carretta et al. 2011, and the references therein). The presence of an extensive stellar halo around NGC 1851 (Olszewski et al. 2009; Carballo-Bello et al. 2012) may be a remnant of the disrupted dwarf, although the recent results of Sollima et al. (2012) show that the situation is complex, with the stellar halo apparently containing more than one component. As regards NGC 3201, which has a highly retrograde orbit and a luminosity MV = −7.45 (Harris 1996), somewhat fainter than that of NGC 1851 (MV = −8.3), the high-dispersion spectroscopic analysis of Simmerer et al. (2013) for 24 member red giants revealed a total [Fe/H] abundance range of ~0.4 dex with σ_{int}(Fe/H) ≈ 0.1 dex. However, more recently, Muñoz, Geisler & Villanova (2013) did not find any strong evidence for a substantial abundance range in this cluster from their high-dispersion study of eight NGC 3201 red giants: the dispersion in the [Fe/H] values was only 0.04 dex and the range in the observed abundances was 0.12 dex. Similarly, Carretta et al. (2009) and Saviane et al. (2012) also did not find any significant evidence for an abundance range in this cluster.

In the above discussion, we have left aside clusters such as M15, which shows an intrinsic spread in neutron-capture elements, particularly the s-process element Eu, but not in [Fe/H] (Sobeck et al. 2011, and references therein). Indeed, Yong et al. (2013) propose that the Galactic globular clusters can be grouped into three classes: (i) those that exhibit abundance variations in the light elements only; (ii) those in which in addition to the light element variations show a range in the abundances of neutron-capture elements; and (iii) those which also possess an intrinsic dispersion in the Fe-peak element abundances. The one exception to this scheme is the luminous extreme outer halo globular cluster NGC 2419, which appears to be a very different stellar system as regards its elemental abundances. Mucciarelli et al. (2012, and the references therein) show that the red giants in this cluster have very similar [Fe/H], [Ca/Fe] and [Ti/Fe] abundance and abundance ratios while at the same time possessing large anticorrelated variations in Mg and K abundances. The origin of these abundance anomalies is not easily explained (Mucciarelli et al. 2012).

In a recent paper, Saviane et al. (2012) reported that the relatively unstudied cluster NGC 5824 could be a further Galactic globular cluster with an intrinsic [Fe/H] abundance range. This object is a metal-poor globular cluster that lies 32 kpc from the Sun and 26 kpc the Galactic Center in the outer halo (Harris 1996). With MV = −8.9 it is a relatively luminous system: for the globular clusters further from the Galactic Center than M54 (i.e. RGC ≥ 20 kpc), only NGC 2419 is more luminous (Harris 1996). NGC 5824 is also highly centrally concentrated (c = 2.0) with a small core-radius of 0.6 pc (Harris 1996). The cluster is of further interest because of its possible association with the Cetus Polar Stream (Newberg, Yanny & Willett 2009). The Cetus Polar Stream is low-luminosity metal-poor stellar stream in the south Galactic gap characterized by blue horizontal branch (HB) stars (Newberg et al. 2009; Koposov et al. 2012). Newberg et al. (2009) did not observe the stream in the vicinity of NGC 5824, which is in fact in the opposite Galactic hemisphere, but noted that the cluster has a location, distance and radial velocity consistent with the predictions of the best-fitting orbit to their Cetus Polar Stream data (Newberg et al. 2009). The metallicity is also consistent with that of the stream stars (Newberg et al. 2009).

NGC 5824 was included in the Saviane et al. (2012) study because the only previous metallicity estimate was based on an integrated light spectrum. Intermediate-resolution spectra at the Ca II triplet were obtained for 17 RGB members. The line-strength data showed a dispersion that was notably larger than that expected from the measurement errors alone, leading to the suggestion of the presence of an internal abundance spread characterized by σ_{int}(Fe/H) ≈ 0.12 dex (Saviane et al. 2012). As noted by Saviane et al. (2012), NGC 5824 was the only cluster besides M22 and M54 in the sample of 20 programme and 8 ‘standard’ clusters studied to show a spread in line strengths in excess of that expected from the errors.

1 Data values used are those from the latest version of the Harris (1996) catalogue available at http://physwww.physics.mcmaster.ca/~harris/mwgc.dat.
Given the relatively small numbers of Galactic globular clusters with intrinsic [Fe/H] distributions, it is important to verify the Saviane et al. (2012) results. We present here, the outcome of an intermediate-resolution spectroscopic study of a much larger sample of NGC 5824 red giants than that presented in Saviane et al. (2012). The observations and data analysis techniques are discussed in the following section, while in Section 3, we pay careful attention to the cluster membership status for the stars in the observed sample. The results for the final set of cluster red giant probable members are presented in Section 4 and are discussed in a broader context in the final section.

2 OBSERVATIONS AND REDUCTIONS

2.1 Sample selection

Observing time to follow up the possibility of an intrinsic [Fe/H] spread in NGC 5824 was allocated for intermediate-resolution spectroscopy of candidate red giant members on both the VLT with the FORS2 multi-object spectrograph, and on the Gemini-S telescope with the GMOS-S multi-object spectrograph. The targets for the GMOS-S observations were chosen from the photometry derived from the CCD images of the cluster obtained as pre-imaging for the FORS2 observations discussed in Saviane et al. (2012). In this case, the images were centred on the cluster. For the new FORS2 observations, a further set of pre-images (30 s exposures in V and I) was obtained that covers a larger area around the cluster. In both cases, the list of potential targets was restricted to those stars that lie relatively close to the cluster RGB in the colour–magnitude diagrams (CMD) derived from the imaging data. The selected stars were also chosen to cover a magnitude range from the vicinity of the RGB tip to approximately 0.5 mag brighter than the HB magnitude.

The photometry derived from the new FORS2 pre-imaging, which was obtained over a number of nights and under different seeing conditions, was subsequently brought on to a single system using stars in the field-to-field overlap regions, and calibrated to the standard V, I system using stars whose standard magnitudes are available in the photometric standard star fields database generated and maintained by Stetson.2 The stars observed with GMOS-S are included in this calibrated photometry set.

In Fig. 1, we show the final calibrated CMD for NGC 5824 from the FORS2 pre-imaging. The conventional definition of V(HB), the mean magnitude of the horizontal branch, for clusters like NGC 5824 that have a strong blue HB population, is the mean magnitude of the HB stars at the blue edge of the RR Lyrae instability gap. The blue edge lies at \((B - V)_{\text{HB}} \approx 0.22 \) in metal-poor globular clusters (e.g. Sandage 2006) which, allowing for the NGC 5824 reddening of \(E(B - V) = 0.13 \) (Harris 1996), corresponds to \(V - I \approx 0.47 \) mag. Our CMD then suggests for NGC 5824 \(V(\text{HB}) = 18.50 \) with an uncertainty of \(\pm 0.03 \) mag. This value is in good agreement with the value \(V(\text{HB}) = 18.45 \) tabulated by Harris (1996), which is derived from the CMD study of Brocato et al. (1996). It is also consistent with NGC 5824 CMD derived from \(HST \) WFPC2 photometry in Piotto et al. (2002). Also shown in the figure is the photometry from the pre-imaging data for 24 of the 27 NGC 5824 variable stars (all candidate RR Lyrae variables) listed in the online version of the Globular Cluster Variable Star Catalogue3 (Clement et al. 2001) that we were able to unambiguously identify via a position match. It is likely that the search for variables in this cluster is not complete.

2.2 Spectroscopic observations

2.2.1 VLT

The spectroscopic observations of the candidate NGC 5824 red giants defined from the pre-imaging data were carried out in Service Mode with the FORS2 instrument (Appenzeller et al. 1998) at the Cassegrain focus of VLT1/UT1-Antu under ESO programme 087.D-0465. The instrumental setup employed was identical to that used in Saviane et al. (2012): MOS-mode with 1 arcsec slit widths and with the 1028z grism plus the OG590+32 order-blocking filter providing a maximum spectral coverage of \(\sim \lambda 7700–9500 \) Å which includes the Ca II triplet feature. The MOS-mode uses 19 moveable slitlets of 20 arcsec length that are placed on the target stars. A total of 14 MOS configurations were observed over seven nights in the period 2011 May 9 to 2011 June 27. Each observation consisted of a pair of 480 s integrations. One of the MOS configurations observed was deliberately chosen to be identical to that observed in Saviane et al. (2012). Bias frame, arc lamp and flat-field exposures were also obtained in the morning following each observing night as part of the standard calibration procedures.

2.2.2 Gemini South

Observations of candidate NGC 5824 red giants were also carried out in Queue-Scheduled mode on the Gemini-S telescope under

2 http://www3.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/community/STETSON/standards/

3 http://www.astro.utoronto.ca/~cclement/read.html
programme GS-2011A-Q-47 using the GMOS-S multi-object spectrograph. The spectrograph was configured with the R831 grating and a RG610 filter and set to a central wavelength of 8600 Å. Four masks were observed on 2011 May 6 with a fifth observed on 2011 May 13. For both observations the seeing was ~1 arcsec with relatively clear skies, consistent with the requested conditions. Each mask used a slit width of 1 arcsec and a slit length 10 arcsec to allow adequate subtraction of the bright night-sky emission line features. A total of 76 candidate RGB stars (plus three acquisition stars per mask) were allocated across the five masks. One star was common to four masks, two were common to three masks and one common to two masks. The sample also included NGC 5824 red giants originally observed in Saviane et al. (2012) to ensure line strength measures from the GMOS-S spectra could be placed on the same system as that of the FORS2 spectra.

The observation of each mask consisted of a 1200 s integration at the central wavelength of 8600 Å followed by a second 1200 s integration at a central wavelength of 8550 Å, with each observation followed or preceded by a flat-field integration at the corresponding central wavelength. The observations with different central wavelengths allow for the possibility of a Ca II triplet feature falling on the gaps between the three GMOS-S CCD detectors. Arc lamp exposures for each mask were obtained as part of the routine baseline calibration procedures.

2.3 Data reduction

2.3.1 FORS2

The FORS2 spectral data were reduced using version 4.6.3 of the FORS2 pipeline (Izzo & Larsen 2008) in an identical manner to that described in Saviane et al. (2012). The two exposures per mask were average-combined after the pipeline processing and the final reduced spectra have a resolution of \(\lambda \Delta \lambda = 3.5 \) Å at \(\lambda = 8600 \) Å and a scale of 0.82 Å per pixel. A total of 233 usable spectra of 172 stars resulted.

The radial velocities for the stars in each of the 14 FORS2 masks were measured using the three lines (\(\lambda \lambda 8498, 8542 \) and 8662 Å) of the Ca II triplet and the IRAF package RVIDLINES following an identical process to that adopted in Saviane et al. (2012). In Fig. 2, we show the mean heliocentric velocity for the probable NGC 5824 members in each mask. In general, there is reasonable agreement between these mean mask velocities and the Harris (1996) catalogue velocity (\(-27.5 \pm 1.5 \) km s\(^{-1}\)) for the cluster. The one exception is mask 9 where the mean velocity of the probable members is \(-15 \) km s\(^{-1}\) lower than the mean velocity for the other 13 masks. Consequently, we have adjusted the velocities for the stars observed in this mask by +15 km s\(^{-1}\) to place them in accord with the other FORS2 velocities. We note in particular that unlike the earlier NGC 5824 velocities discussed in Saviane et al. (2012), we see no disagreement between the FORS2 velocities derived here and the Harris (1996) catalogue velocity for the cluster.

2.3.2 GMOS-S

The CCD detectors in GMOS-S at the time of the observations fringe badly at wavelengths beyond \(\sim 7000 \) Å. It is the ability to deal with this large amplitude fringing that ultimately sets the signal-to-noise (S/N) of the reduced spectra rather than the actual signal. The data frames for each mask were reduced by following example IRAF Gemini package scripts, modified during the course of the process to achieve as best a reduction in the fringe amplitude as possible. In this process, the frames with the different central wavelengths, which have the Ca II triplet features at different locations on the detectors and which are thus subject to different fringing, were kept separate. The final wavelength-calibrated, sky-subtracted spectra have a resolution of \(\sim 3.5 \) Å and a (binned) pixel-scale of 0.68 Å per pixel. Examples of GMOS-S spectra where the fringing compensation has worked well, and where it has not, are shown in Fig. 3.

As for the FORS2 spectra, initial radial velocity estimates for each of the stars observed with GMOS-S were determined by measuring with RVIDLINES the Ca II triplet line centres on the reduced spectra. The velocities from the \(\lambda 8600 \) Å and \(\lambda 8550 \) Å central wavelength observations for each star were then averaged. Since the arc lamp exposures for each mask and central wavelength setting were carried out during daylight hours (and in one case on a different day) the zero-point of the velocity scale for each mask is not necessarily well determined. Consequently, we have used the stars in common between the set of five masks to determine relative mean velocities for each mask, and then assumed that after correction for the mean mask-to-mask offsets, the mean velocity of the likely members on each mask corresponds to the cluster velocity given in the Harris (1996) catalogue. In detail, the velocities were placed on a uniform system by adjusting those for mask 1 by \(-15 \) km s\(^{-1}\) and those for mask 5 by +7 km s\(^{-1}\) while leaving those for masks 2, 3 and 4 unaltered. A final overall correction of +37 km s\(^{-1}\) (equivalent to a shift of 1.5 pixels) was then applied to place all the velocities on a system that reproduces the Harris (1996) catalogue velocity for the cluster.

Two independent checks of this process are possible. First, there are six stars observed with GMOS-S that were also observed in Saviane et al. (2012). For these stars the mean velocity difference between the GMOS-S and Saviane et al. (2012) observations is \(-13 \) km s\(^{-1}\) with a standard deviation of 10.2 km s\(^{-1}\). Given
that Saviane et al. (2012) suggest velocity errors of ~ 5–6 km s$^{-1}$, the standard deviation indicates that the GMOS-S velocity errors are of similar size. The offset, not surprisingly given the way the GMOS-S velocities have been adjusted, accounts for the difference between the mean velocity found for NGC 5824 in Saviane et al. (2012) and that in the Harris (1996) catalogue. The second check is provided by a comparison of the velocities for the 25 stars that have a radial velocity determination from both the GMOS-S observations and from the current FORS2 observations. These stars have a reassuringly low mean velocity difference (GMOS-S observations and from the current FORS2 observations). These stars have a radial velocity determination from both the GMOS-S observations and from the current FORS2 observations. These stars have a reassuringly low mean velocity difference (GMOS-S observations and from the current FORS2 observations). These stars have a reassuringly low mean velocity difference (GMOS-S observations and from the current FORS2 observations).

2.4 Line-strength analysis

The strengths of the $\lambda 8542$ Å and $\lambda 8662$ Å lines of the Ca II triplet (ΣW) for the NGC 5824 stars observed in Saviane et al. (2012) were measured on both the GMOS-S and the FORS2 spectra using identical techniques to those described in Saviane et al. (2012). In particular, we can directly apply the abundance calibration developed in Saviane et al. (2012) to the new FORS2 data.

The situation for the GMOS-S line-strength measurements is, unfortunately, not so clear cut. In Fig. 5, we show the difference between the ΣW values for the spectra centred at $\lambda 8600$ Å and for the spectra centred at $\lambda 8550$ Å, as a function of the average S/N of the spectra. We note that since the $\lambda 8550$ Å observations for mask 4 were impacted by cloud, the comparison is possible only for the brighter stars observed with this mask. Similarly, the comparison is not possible for the small number of stars where either the $\lambda 8542$ or the $\lambda 8662$ line fell in an inter-chip gap on one of the individual spectra. The S/N of each spectrum was calculated from the mean and the standard deviation of the counts in the wavelength region $\lambda \lambda 8557$–8647 Å (i.e. between the two stronger triplet lines). This wavelength region is relatively free of stellar absorption lines and the approach takes into account the effect of residual fringing, which reduces the S/N below that which would be inferred from the continuum count level alone.

Fig. 5 shows that for most stars there is reasonable agreement between the two measurements of ΣW, particularly for the higher S/N spectra. However, there are also stars where the difference is substantial despite apparently good S/N values. In these cases, the residual fringing has most likely affected either the line profile or the continuum level resulting in an uncertain line-strength measurement. Consequently, we have excluded, from the subsequent analysis, all stars observed with GMOS-S for which the absolute value of the difference between the two ΣW values exceeds 0.45 Å: within this limit the uncertainty in the average of the two determinations is nominally less than 0.23 Å, which is the largest ΣW error given in Saviane et al. (2012) for their NGC 5824 members. This cut reduces the GMOS-S sample to 45 spectra of 37 stars but given the science aim of the programme, the increased confidence in the reliability of the line strength measures outweighs the reduction in sample size. For the 45 spectra pairs with $\Delta (\Sigma W) \leq 0.45$ Å, the mean difference is 0.05 Å with a standard deviation of 0.20 Å. The...
The S/N values are computed over the wavelength interval are plotted against the average signal-to-noise (S/N) for each pair of spectra. λ spectra centred at averaged, and all subsequent use of the GMOS-S lack of any significant difference between the S/N values are computed over the wavelength interval λ8557–8647 Å. Stars from mask 1 are shown as filled circles, mask 2 as filled stars, mask 3 as open circles, mask 4 as open stars and mask 5 as filled triangles, respectively. The dashed line indicates equality and the dotted lines are ±0.45 Å; stars lying outside these lines have not been included in the subsequent analysis.

Figure 5. The differences in summed equivalent widths of the λ8542 Å and λ8662 Å Ca II triplet lines between measurements made on GMOS-S spectra centred at λ8600 Å, and those made on spectra centred at λ8550 Å, are plotted against the average signal-to-noise (S/N) for each pair of spectra. The S/N values are computed over the wavelength interval λ8557–8647 Å. Stars from mask 1 are shown as filled circles, mask 2 as filled stars, mask 3 as open circles, mask 4 as open stars and mask 5 as filled triangles, respectively. The dashed line indicates equality and the dotted lines are ±0.45 Å; stars lying outside these lines have not been included in the subsequent analysis.

3 CLUSTER MEMBERSHIP

In order to fully evaluate the existence of an internal [Fe/H] range in NGC 5824, it is necessary to have a sample of stars for which

Figure 6. The corrected line strengths from the GMOS-S spectra are plotted against the line strengths from the current FORS2 spectra for the 19 stars in common between the two data sets. The dashed line shows 1:1 correspondence and the error bars are those returned by the line-strength measurement code.

the membership status is as unambiguous as possible. For many clusters such a task is relatively straightforward because the heliocentric radial velocity of the cluster is sufficiently different from the velocities of non-member field stars that member/non-member classification is readily achieved. This is not the case for NGC 5824 as the relatively low velocity (−27.5 ± 1.5 km s\(^{-1}\); Harris 1996) does not offer much discrimination against field stars. Consequently, we have made use of a series of membership criteria in determining our final sample of NGC 5824 red giant members. We now discuss these criteria in turn.

3.1 Use of the 8807 Mg I line

In a recent paper, Battaglia & Starkenburg (2012) showed that the strength of the λ8806.8 Å Mg I line, which is gravity sensitive and stronger in dwarfs than in giants, could be used in conjunction with the equivalent widths of the Ca II triplet lines to effectively discriminate metal-poor red giants from foreground dwarfs. The FORS2 spectra obtained here generally have sufficient S/N that the λ8807 Å Mg I line could be straightforwardly measured on the spectra with the same Gaussian-fitting code used for the Ca II triplet line-strength measurements. Unfortunately, this was not the case for the GMOS-S spectra where the residual fringing meant that the continuum could not be well enough defined for a sensible measurement of the line strength.

In Fig. 7, we show the strength of the Mg I λ8807 Å line against \(\Sigma W\) for 163 of the stars observed with FORS2 (Mg I line strengths could not be measured for nine FORS2 stars). As found by Battaglia & Starkenburg (2012) there are clearly a significant number of stars with relatively large Mg I equivalent widths, which are presumably foreground dwarfs, together with a population showing relatively weak Mg I and Ca II line strengths. These latter stars are presumably predominantly metal-poor giant members of NGC 5824. After considering the location of the brightest probable cluster red giants in this diagram, candidate members of NGC 5824 were selected as having Mg I line strengths weaker than 0.35 Å and \(\Sigma W\) values less
The equivalent width of the $\lambda 8807$ Å Mg I line, $W(8807 \text{ Mg I})$, is plotted against the sum of the equivalent widths of the $\lambda 8542$ Å and $\lambda 8662$ Å Ca II lines, $W_{8542} + W_{8662}$, for 163 stars observed with FORS2. The stars inside the region outlined by the dot–dashed lines are considered possible cluster members while the stars outside the region are classified as non-members. The star (52005547) with a relatively weak $W_{8542} + W_{8662}$ and intermediate but uncertain $W(8807 \text{ Mg I})$ value, shown by the open diamond symbol, is also included in the possible member sample.

than 4.65 Å. The sole exception is star 52005547 for which the MgI line-strength measurement is quite uncertain. This star was retained as a possible member, as were the nine FORS2 stars without a MgI measurement and the 18 stars in the GMOS-S sample not also in the FORS2 sample, leaving a reduced sample of 148 stars.

3.2 Radial velocities

Inspection of the radial velocities of the 148 stars that passed the Mg I selection criteria reveals one obvious outlier – star 62000110 with a velocity of $+288$ km s$^{-1}$. The radial velocities of the remaining 147 stars are plotted against ΣW in Fig. 8. Consideration of this figure suggests two further non-members: stars 12002438 and 41001292 which are plotted as open symbols in Fig. 8. The velocities of these two stars are notably lower than those of the rest of the sample. Excluding these two stars the 145 remaining candidate members (shown as filled symbols) have mean velocity of -28.9 km s$^{-1}$ and a standard deviation σ_v of 11.7 km s$^{-1}$. Both 12002438 and 41001292 then lie further than 3 σ_v from the mean.

The value of σ_v is consistent with the combination of the individual velocity errors (9–10 km s$^{-1}$, see Section 2.3.2) and a radial decrease in the intrinsic velocity of dispersion of NGC 5824 stars from the central value of 11 ± 2 km s$^{-1}$ (Dubath, Meylan & Mayor 1997). The mean velocity for the sample of -28.9 ± 1.0 km s$^{-1}$ is fully consistent with the value of -27.5 ± 1.5 km s$^{-1}$ listed in the Harris (1996) catalogue.

3.3 Colour–magnitude diagram

In Fig. 9, we show the CMD for the candidate NGC 5824 members that have passed the (Mg I, Ca II) line-strength and radial velocity selection criteria. We note first that, as is immediately apparent from the figure, there exist a sizeable number of stars that lie away from the cluster RGB in the CMD. Many of these were included in the FORS2 observations in order to ensure a broad colour selection to prevent any bias
in the [Fe/H] determinations. A number of these stars are clearly asymptotic giant branch (AGB) members of the cluster. Because of their lower mass, AGB stars have lower gravities than RGB stars and at the same colour, or effective temperature, AGB stars are also brighter than RGB stars. This offset can be significant at luminosities fainter than the vicinity of the RGB tip. Consequently, it is clear that AGB stars will occupy a different location in the customary line-strength analysis plot (e.g. Saviane et al. 2012), which uses $V - V_{\text{HB}}$ as the abscissa, even if the actual abundance of the AGB stars is the same as that for the RGB stars. We have therefore visually identified 33 AGB star candidate members in the CMD of Fig. 9, and these stars are shown as open symbols. Shown also on the figure is a fit of a fourth-order polynomial to the RGB stars that defines the locus of the mean RGB in the CMD. The line-strength analysis is then restricted to the 112 RGB candidate members.

3.4 Line-strength diagram

The sum of the equivalent widths of the $\lambda 8542$ Å and the $\lambda 8662$ Å Ca II triplet lines, ΣW, is plotted against magnitude difference from the HB, $V - V_{\text{HB}}$, for the 112 candidate RGB members of NGC 5824 in Fig. 10. Shown also on the plot as dashed lines are the (line strength, magnitude) relations for abundances $[\text{Fe/H}] = -2.3$, -2.0, and -1.7 dex as implied by the abundance calibration derived in Saviane et al. (2012). Four stars stand out as having line strengths notably stronger than the rest of the sample. As inferred from Fig. 10, these stars have abundances of $[\text{Fe/H}] \approx -1.7$ dex or larger and should therefore lie to the red of the mean RGB in Fig. 9. However, this is not the case – all four lie within the dispersion about the mean RGB. Consequently, we shall assume that these four stars (41001144, 42006240, 42011950 and 61002588) are not cluster members and not consider them further. We note, however, that the star 42006240 is star 2_32429 in the Saviane et al. (2012) study and was considered a cluster member in that work. The final sample is then 108 RGB candidate members.

For completeness, we note that the equivalent plot to Fig. 10 for the AGB stars identified in Fig. 9 shows that all the stars, with the sole exception of star 61000920, have line strengths that are consistent with cluster membership. Star 61000920 has a much larger $W_{8542} + W_{8662}$ value than the other AGB stars with similar $V - V_{\text{HB}}$ and is thus unlikely to be a cluster member. We also note that, as expected, the mean line through the AGB data points is ~ 0.4 weaker at fixed $V - V_{\text{HB}}$ compared to the equivalent relation for the RGB stars.

In Table 1, we list the identification number, position, photometry, line-strength measurements and additional information for the entire sample of 190 stars observed at both the VLT and Gemini-S.

4 ANALYSIS

In a process identical to that followed in Saviane et al. (2012), an unweighted fit of a line with slope -0.627 Å mag$^{-1}$ to the final sample of NGC 5824 RGB stars in Fig. 10 yields a (W) value of 2.62 Å, with a standard deviation of the mean of 0.02 Å. Using the abundance calibration given in Saviane et al. (2012), this yields a mean abundance for NGC 5824 of $[\text{Fe/H}] = -2.01 \pm 0.13$, where the uncertainty is dominated by that of the calibration relation. This abundance is in fact identical to that found in Saviane et al. (2012). Again following the same procedures as Saviane et al. (2012), the rms dispersion about the fitted line is 0.19 Å while the mean of the errors returned by the measurement code, is significantly smaller, at 0.11 Å. This implies an intrinsic dispersion in the line strengths of 0.15 Å, or $\sigma_{\text{int}}(\text{[Fe/H]}) = 0.06$ dex. This value is lower than that, 0.12 dex, found in Saviane et al. (2012) from a sample of 17 stars, as against the 108 employed here. As noted in Saviane et al. (2012), the largest contribution to their rms dispersion came from two stars: 2_32429 (42006240), which we now consider a non-member and 1_8575 (42013479) whose line strength is measured here as ~ 0.4 Å less than the value given in Saviane et al. (2012). Removing these two stars from the Saviane et al. (2012) data set then results in an intrinsic line-strength dispersion of 0.16 Å, which is then completely consistent with the new value found here. We conclude that Saviane et al. (2012) were correct in reporting that NGC 5824 possesses an intrinsic $[\text{Fe/H}]$ range, although the size of the intrinsic dispersion measured here is considerably smaller.

The above analysis assumes that the line-strength errors returned by the measurement code are a reasonable estimate of the true errors. Saviane et al. (2012) adopted this assumption but with these new data we can make use of the stars with repeat spectra to gain an independent assessment of the line-strength measurement errors as a function of S/N. For the FORS2 spectra, there are 40 stars with at least two observations, and we estimate the error in a single FORS2 measurement of ΣW as follows. The error estimate for a single observation is calculated using the formalism of Keeping (1995) in which the error is given by the expression $k \times |\Delta W|$, where $|\Delta W|$ is the range of the equivalent width measures for a given star and k is a constant that depends on the number of observations, e.g. for two observations $k = 0.886$. In Fig. 11, this single observation error estimate is plotted against the average S/N in the wavelength region $\lambda 8557$–8647 Å for the 40 stars with at least two FORS2 observations. As noted above, this wavelength region, which lies between the two stronger Ca II triplet lines, is
Table 1. NGC 5824 stars observed.

ID	RA (2000)	Dec. (2000)	V	V − I	Rad vel (km s⁻¹)	Σ(W)₆ (Å)	Error (Å)	W₈807 (Å)	Error (Å)	Nₖ₆	N₉₃	Class[^d]
11000467	226.10370	−33.06391	17.433	0.952	+95	4.28	0.20	0.52	0.05	1	0	NM
11000781	226.13540	−33.05518	16.471	1.152	−46	5.28	0.24	0.99	0.05	1	0	NM
11001198	226.06163	−33.04313	16.352	1.343	−14	3.84	0.10	0.26	0.02	1	0	MR
11001586	226.11004	−33.02972	17.897	0.953	−50	4.64	0.15	0.55	0.04	3	0	NM

[^a]: W₈542 + W₈862.
[^b]: Number of observations with FORS2 at the VLT.
[^c]: Number of observations with GMOS-S at Gemini South.
[^d]: MR indicates star is member of the final RGB sample, MA for stars in the final AGB member sample, and NM for probable non-member of the cluster.
[^e]: This table is available in its entirety in a machine-readable form in the online journal. A portion is shown here for guidance regarding its form and content.

Figure 11. Estimates of the error in the summed equivalent width of the λ8542 Å and λ8662 Å Ca II triplet lines for a single FORS2 observation as a function of the S/N ratio in the wavelength region λλ8557–8647 Å. The filled circles are estimates from the stars which have at least two FORS2 observations. The dot–dashed curves are exponentials that define the adopted upper and lower envelopes to the data points.

Figure 12. Generalized histograms representing abundance distributions derived from the observed summed equivalent width values. The red curve is the mean generalized histogram assuming that the measured summed equivalent widths translate directly to abundance [Fe/H], while the grey curves show the ±3σ deviations about the mean from the sampling of the measurement errors. The blue curve is the mean generalized histogram under the assumption that there is no intrinsic abundance dispersion among the NGC 5824 red giants.

FORS2 sample there are nine stars[^4] with computed S/N ≤ 50, beyond the limits of the exponential envelope curves in Fig. 11. We have not considered these stars further leaving a final sample of 99 NGC 5824 red giants. We can now simulate the effect of the measurement errors on the summed equivalent width determinations, and hence on the abundance distribution.

In Fig. 12, we show the outcome of 1000 trials in which the observed summed equivalent widths are translated directly to metallicity, with errors assigned as described above. The red line is the mean generalized histogram from these trials while the grey curves represent the ±3σ deviations about the mean. As a comparison, we assume as a null hypothesis that the cluster has a single metallicity equal to the mean determined above and that the error for each star is the absolute value of the difference between the observed summed equivalent width and the value expected for the mean abundance at the (V − V₁₈₁) of the star. The generalized histogram under this assumption is shown as the blue line. In both cases, the minimum

[^4]: The stars are 31003802, 32004263, 42007205, 42007589, 51001013, 52005984, 52010221, 61000102 and 61000435.
error in [Fe/H] has been taken as 0.015 dex in order to minimize the influence on the overall histograms of δ-function-like spikes, which can occur if the error in [Fe/H] becomes unrealistically small. The exact value of this limit, within the range 0.010–0.020 dex, does not affect the interpretation of the histograms.

It is clear from Fig. 12, that even allowing for the ±3σ deviates, the two assumptions provide curves that are significantly different, confirming that NGC 5824 does indeed possess an intrinsic dispersion in [Fe/H]. We can characterize the distribution shown by the red curve in Fig. 12 in a number of ways; for example, the full width at half-maximum of the distribution is 0.16 dex. Alternatively, using the abundance determinations themselves, the IQR of the sample is 0.10 dex and the total range in [Fe/H] is ~0.30 dex. We have also investigated whether any correlation is present between the deviations in line strength at fixed $V - V_{\text{HB}}$ from the mean relation in Fig. 10 and deviations in $(V - I)$ colour at fixed V from the mean RGB in Fig. 9. No convincing correlation is present. This lack of a correlation, however, is not surprising given the small size of the abundance dispersion and the comparative lack of sensitivity of RGB colour to abundance at low abundances. For example, using the Dartmouth isochrones (Dotter et al. 2008), the difference in $(V - I)$ at $V = 16.0$ ($V - V_{\text{HB}} = -2.5$) between an RGB with [Fe/H] = −2.1 and one with [Fe/H] = −1.9 is only 0.033 mag, while at $V = 17.5$ ($V - V_{\text{HB}} = -1.0$), the difference is even smaller, 0.013 mag. Intrinsic colour differences of this order are simply too small to convincingly detect given the errors in the photometry.

Fig. 12 also shows that NGC 5824 abundance distribution is apparently not unimodal – the red solid line in the figure shows three distinct peaks that correspond to abundances of [Fe/H] ≈−2.09, −2.01 and −1.91 dex, with approximately equal numbers in the first two groups and a smaller population in the third more metal-rich group. We have endeavoured to model this observed distribution to investigate its implications. The modelling has been carried out by randomly selecting 99 abundances (corresponding to the number of stars in the final observed RGB sample) from an assumed input abundance distribution, and assigning errors to these abundances in the same way as for the observed stars allowing computation of a generalized histogram. The selection process is then repeated 1000 times and the mean generalized histogram for the model calculated. A model is then accepted as a satisfactory fit to the observations if the model mean generalized histogram is contained entirely within the ±3σ limits of the observational data histogram shown in Fig. 12.

Examples of this process are shown in the panels of Fig. 13. In the upper panel, a model was constructed using the input abundance distribution that decreases linearly from matching the uniform population relative number at [Fe/H] = −1.97 to zero at [Fe/H] = −1.87 dex. The results show that the selected model, which also provides an acceptable fit to the observed data and which does not contain any discrete components. For this model, 80 per cent of the population is assumed to have metallicities distributed uniformly between [Fe/H] = −2.11 and −1.97 dex, while the remaining 20 per cent have metallicities drawn from a distribution that decreases linearly from matching the uniform population relative number at [Fe/H] = −1.97 to zero at [Fe/H] = −1.87 dex.

There are nevertheless robust conclusions that can be drawn from the modelling process aside from the obvious one that an intrinsic abundance spread is required. The first is that on the metal-poor side the abundance distribution must rise rapidly with increasing abundance. It is not possible to determine whether a particular abundance cut-off near [Fe/H] ≈−2.1 is required, below which no stars are found, or whether there is simply a very rapid increase in numbers above this abundance, but a feature of this nature is required. A sharp rise in the metallicity distribution function on the metal-poor side is reminiscent of the abundance distributions in clusters such as ω Cen and M22 [see Da Costa et al. (2009) and fig. 1 in Da Costa & Marino 2011]. In this respect, these star cluster abundance distributions contrast strongly with those for dwarf galaxies where the abundance distributions show much less steep increases with increasing metallicity on the metal-poor side of the distribution (see for example, fig. 17 in Norris et al. 2010). In contrast to the metal-poor side, the metal-rich side of the NGC 5824 abundance distribution declines more slowly but the extent of the metal-richer population is less than for M22 and much less than for ω Cen.
The second conclusion that can be drawn from the modelling process is that distributions with strong single peaks, such as a Gaussian, provide a poor representation of the observations. Instead, the observations suggest input distributions that are more ‘flat-topped’, either as discrete components of approximately similar strength or more uniform distributions such as the model used to generate the lower panel of Fig. 13. Unfortunately, given the sample size observed here, it is unlikely that further progress can be made in characterizing the NGC 5824 abundance distribution until a comparable number of precise [Fe/H] determinations are made using high-dispersion spectroscopy.

One additional point, however, needs to be discussed. NGC 2419 is a luminous outer halo globular cluster whose overall abundance, [Fe/H] = −2.09 (e.g. Mucciarelli et al. 2012), is similar to that for NGC 5824. Mucciarelli et al. (2012) have shown that while NGC 2419 does show large anticorrelated variations in Mg and K abundances, it apparently does not possess an intrinsic range in [Fe/H] or [Ca/H] (Mucciarelli et al. 2012). This is despite initial suggestions to the contrary (e.g. Cohen et al. 2010), which were based on analysis of Ca triplet line strengths. Mucciarelli et al. (2012) instead ascribe the observed variations in the Ca triplet line strengths to opacity differences that result from variations in the abundance of the electron-donor element Mg: the Mg deficient stars consequently show stronger λ8542 Å and λ8662 Å Ca II lines and vice versa without any true variation in [Ca/H] or [Fe/H]. Therefore, given these results for NGC 2419, it is necessary for us to check that our inferred Ca triplet line strength spread is due to a real spread in Ca (and Fe) abundances rather than to an opacity effect.

We have carried out this check by investigating the strength of the λ8688.6 Å Fe I line and of the λ8806.7 Å Mg I line as a function of RV(Fe). We considered only the brighter RGB stars, those with (V − VHB) ≤ −2.0 and with FORS2 spectra, in order to maximize the S/N of the measurements. The Fe I line was measured via Gaussian fitting using the same continuum regions as for the λ8662 Å Ca II triplet line. If the NGC 2419 effect was also present in NGC 5824 then we would expect the red giants with stronger Ca II triplet lines to have weaker Mg I lines at fixed (V − VHB), and vice versa, and for there to be no intrinsic scatter in the iron line strengths about any mean trend with (V − VHB). We find from our measurements that first, there is only marginal support for any anticorrelation between RV(Fe) and the strength of the Mg I λ8807 Å line. After removing a (small) trend with V − VHB we find that the stars with weaker Ca II triplet lines have stronger Mg I lines at only the ∼1σ level (5 ‘weak’ stars versus 3 ‘strong’ stars from a full sample of 22 objects).

Secondly, and more significantly, we find, again after removing a small trend with V − VHB, that the stars with stronger Ca II lines do indeed have stronger λ8688.6 Å Fe I lines, at the 2σ level, compared to the stars with weaker Ca II lines. Consequently, while the outcome is undoubtedly limited by the S/N of the spectra and the weakness of the Mg I and Fe I lines (typical measured equivalent widths of 0.24 Å and 0.18 Å, respectively), we see no compelling reason to suggest that the observed intrinsic variation in Ca triplet lines among the red giants in NGC 5824 is anything else other than the result of an intrinsic overall abundance dispersion in this cluster.

5 DISCUSSION

With our results NGC 5824 joins the small list of Galactic globular clusters that possess sizeable intrinsic [Fe/H] abundance dispersions. As noted in the Introduction this list also includes ω Cen, M54, M22, NGC 1851 and perhaps NGC 3201 (see Section 1 for references); we again choose to exclude the metal-rich Galactic bulge cluster Terzan 5 from this list given that the large difference in abundance between the two distinct stellar populations present in the cluster (Origlia et al. 2011) suggests a different mechanism is involved. In Fig. 14, we show an updated version of the relation between intrinsic [Fe/H] dispersion, as measured by the standard deviation of the [Fe/H] distribution, and absolute visual magnitude for a number of Galactic globular clusters. The open symbols are clusters with measured intrinsic [Fe/H] abundance dispersions exceeding 0.05 dex. In order of decreasing absolute magnitude the clusters are ω Cen and M54, from Carretta et al. (2009), NGC 5824 from this work, M22 (Marino et al. 2011), NGC 1851 (Carretta et al. 2011) and NGC 3201 (Simmerer et al. 2013).

![Figure 14. Standard deviation in [Fe/H] abundances is plotted against absolute visual magnitude for a number of Galactic globular clusters.](http://mnras.oxfordjournals.org/)

As noted in the Introduction this list also includes ω Cen, M54, M22, NGC 1851 and perhaps NGC 3201 (see Section 1 for references); we again choose to exclude the metal-rich Galactic bulge cluster Terzan 5 from this list given that the large difference in abundance between the two distinct stellar populations present in the cluster (Origlia et al. 2011) suggests a different mechanism is involved. In Fig. 14, we show an updated version of the relation between intrinsic [Fe/H] dispersion, as measured by the standard deviation of the [Fe/H] distribution, and absolute magnitude for Galactic globular clusters. The open symbols are clusters with measured intrinsic [Fe/H] abundance dispersions exceeding 0.05 dex. In order of decreasing absolute magnitude the clusters are ω Cen and M54, from Carretta et al. (2009), NGC 5824 from this work, M22 (Marino et al. 2011), NGC 1851 (Carretta et al. 2011) and NGC 3201 (Simmerer et al. 2013).

Figure 14. Standard deviation in [Fe/H] abundances is plotted against absolute visual magnitude for a number of Galactic globular clusters. The open symbols are upper limits on any intrinsic abundance dispersions and are taken from Carretta et al. (2009). The filled circle is NGC 2419 using the [Fe/H] abundance dispersion limit from Mucciarelli et al. (2012). The star symbols are clusters with measured intrinsic [Fe/H] abundance dispersions exceeding 0.05 dex. In order of decreasing absolute magnitude the clusters are ω Cen and M54, from Carretta et al. (2009), NGC 5824 from this work, M22 (Marino et al. 2011), NGC 1851 (Carretta et al. 2011) and NGC 3201 (Simmerer et al. 2013).

5 We note that if studies at the exquisite level of precision obtained by Yong et al. (2013) for NGC 6752 red giants were common, it is conceivable that they would reveal many globular clusters possess intrinsic iron abundance dispersions at the σ_int([Fe/H]) ∼ 0.02–0.03 dex level.

6 The IQR of the distributions would be a better measure to employ here as it makes no assumption about the form of the distribution, but this statistic is not available for all the clusters.
from Carretta et al. (2011). The value for NGC 5824 is the one derived here, while for M22 we use the value derived from the [Fe/H] abundances listed in Marino et al. (2011); Da Costa et al. (2009) list a somewhat higher value of $\sigma_{\text{int}}([\text{Fe/H}]) = 0.15$ dex. The other change from the depiction of this figure in Carretta et al. (2010a) is for the cluster NGC 2419. Mucciarelli et al. (2012) have established that the intrinsic [Fe/H] abundance range in NGC 2419 is actually small, in contrast to earlier estimates (see the discussion in Mucciarelli et al. 2012).

Although the number of clusters studied is not large, and selection effects are undoubtedly important, there does not seem to be any definite correlation between the size of $\sigma_{\text{int}}([\text{Fe/H}])$ and M_V in Fig. 14, particularly if the Simmerer et al. (2013) results for NGC 3201 are valid. Instead, while ω Cen and M54 clearly stand out in terms of luminosity and size of abundance spread, for the other four clusters with intrinsic spreads the size of the intrinsic dispersion does not clearly change with absolute magnitude. This differs from the suggestion in Carretta et al. (2010a) of an apparently statistically significant relation between the size of the intrinsic iron abundance spread and luminosity. What is apparent from Fig. 14 however, is that the likelihood of an intrinsic abundance dispersion is larger for more luminous clusters: 5 of the 12 clusters in Fig. 14 with $M_\text{V} < -8.8$ show intrinsic dispersions, while only 1 or none (depending on the reality of the NGC 3201 result) of the 14 less luminous clusters show intrinsic dispersions. Abundance dispersion limits or determinations for a larger sample of clusters are needed to fully explore the implications of this figure.

Nevertheless, we can speculate on a possible interpretation. Given the location of M54 as the nuclear star cluster of the Sagittarius dwarf galaxy, and given the frequently assumed status of ω Cen as the nuclear remnant of a disrupted dwarf galaxy, it is tempting to postulate, as did Saviane et al. (2012), that the other clusters, including NGC 5824, with significant intrinsic [Fe/H] dispersions, i.e. exceeding $\sigma_{\text{int}}([\text{Fe/H}]) \approx 0.05$ dex, are also the remnant central star clusters of tidally disrupted dwarf galaxies. Bekki & Yong (2012) investigated this possibility in the context of NGC 1851 (see also Carretta et al. 2010a), and in the same sense NGC 3201, with its highly retrograde orbit (Casertani-Dinescu et al. 2007) has long been suggested as having originated in an extragalactic system accreted by the Milky Way (e.g. Rodgers & Paltoglou 1984). As regards ω Cen, M22 and NGC 5824, the steep slope of the metal-poor side of the metallicity distribution is consistent with the rapid enrichment that would be expected to occur in the central regions of a dwarf galaxy during its initial formation. Further evidence to support our speculation lies in the discovery of Olszewski et al. (2009, see also Carballo-Bello et al. 2012) that NGC 1851 is surrounded by a diffuse envelope of stars whose location in the CMD replicate the cluster main sequence. The diameter of the NGC 1851 envelope is ~ 500 pc, much larger than the nominal tidal radius of the cluster (Olszewski et al. 2009; Carballo-Bello et al. 2012). Olszewski et al. (2009) suggest that the envelope may represent stars lost from the cluster via a variety of dynamical processes, but it could equally represent the remnants of a disrupted dwarf galaxy in which NGC 1851 was

7 For example, Carretta et al. (2009) give an upper limit for the [Fe/H] abundance dispersion in NGC 3201 as 0.049 dex and Saviane et al. (2012) also find no evidence for an [Fe/H] abundance dispersion in the cluster. Both results contrast with the intrinsic dispersion of 0.10 dex found by Simmerer et al. (2013). A possible explanation for the difference is that the first two studies deliberately selected stars near the mean RGB for observation, while the Simmerer et al. (2013) study is less biased in that respect. See also the discussion in Muñoz et al. (2013).
NGC 5824 intrinsic abundance spread

APPENDIX A

ACKNOWLEDGEMENTS

GSDC would like to acknowledge research support from the Australian Research Council through Discovery Grant programmes DP120101237 and DP120100475. He is also grateful for the support received during an extended visit to the Institute of Astronomy, University of Cambridge, and for shorter visits to Observatorio Astronomico di Padova, INAF and ESO-Santiago.

Based in part on observations for programme GS-2011A-Q-47 obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (US), the Science and Technology Facilities Council (UK), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil) and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina).

Based also in part on observations obtained under ESO programme 087.D-0465.

REFERENCES

Appenzeller I. et al., 1998, The Messenger, 94, 1
Battaglia G., Starkenburg E., 2012, A&A, 539, A123
Bekki K., Freeman K. C., 2003, MNRAS, 346, L11
Bekki K., Yong D., 2012, MNRAS, 419, 2063
Brocato E., Buonanno R., Malakhova Y., Piersimoni A. M., 1996, A&A, 311, 778
Carballo-Bello J. A., Gieles M., Sollima A., Koposov S., Martínez-Delgado D., Peñarrubia J., 2012, MNRAS, 419, 14
Caretta E., Bragaglia A., Gratton R., D’Orazi V., Lucatello S., 2009, A&A, 508, 695
Caretta E., 2010a, A&A, 520, A95
Caretta E., Bragaglia A., Gratton R. G., Lucatello S., Bellazzini M., D’Orazi V., 2010b, ApJ, 712, L21
Caretta E., Lucatello S., Gratton R. G., Bragaglia A., D’Orazi V., 2011, A&A, 533, A69
Caretta E., D’Orazi V., Gratton R. G., Lucatello S., 2012, A&A, 543, A117
Cassetti-Dinescu D. I., Girard T., Herrera D., van Altena W. F., López C. E., Castillo D. J., 2007, AJ, 134, 195
Clement C. et al., 2001, AJ, 122, 2587
Cohen J. G., Kirby E. N., Simon J. D., Geha M., 2010, ApJ, 725, 288
Da Costa G. S., Marino A. F., 2011, Publ. Astron. Soc. Aust., 28, 28
Da Costa G. S., Held E. V., Sivanaoe D. G., Hilleusikizik M., 2009, ApJ, 705, 1481
D’Antona F., Bellazzini M., Caloi V., Fusi-Picetti F., Galleti S., Rood R. T., 2005, ApJ, 631, L48
Dinescu D. I., Girard T. M., van Altena W. F., 1999, AJ, 117, 1792
Dotter A., Chaboyer B., Jevremović D., Kostov V., Baron E., Ferguson J. W., 2008, ApJS, 178, 89
Dubath P., Meylan G., Mayor M., 1997, A&A, 324, 505
Ferraro F. R. et al., 2009, Nature, 463, 483
Freeman K. C., 1993, in Smith G. H., Brodie J. P., eds, ASP Conf. Ser. Vol. 48, The Globular Cluster – Galaxy Connection. Astron. Soc. Pac., San Francisco. p. 608
Gratton R. G., Carretta E., Bragaglia A., 2012, A&AR, 20, 50
Grillmair C. J., Freeman K. C., Irwin M., Quinn P. J., 1995, AJ, 109, 2553
Harris W. E., 1996, AJ, 112, 1487
Ivezić Z., Beers T. C., Jurić M., 2012, ARA&A, 50, 251
Izzo C., Larsen J. M., 2008, FORS Pipeline User Manual, VLT-MAN-ESO-1950-4106, Issue 2.0, ESO, Garching, 2008-09-09
Johnson C. I., Pilachowski C. A., 2010, AJ, 722, 1373
Keeping E. S., 1995, Introduction to Statistical Inference, 3rd edn., Dover Press, New York
Koposov S. E. et al., 2012, ApJ, 750, 80
Lee Y.-W., Gim H. B., Cassetti-Dinescu D. I., 2007, ApJ, 661, L49
McConnachie A., 2012, AJ, 144, 4
Majewski S. R., Nidever D. L., Smith V. M., Danke G. J., Kunkel W. E., Patterson R. J., Bizyaev D., García Pérez E. A., 2012, ApJ, 747, L37
Marcolini A., Sollima A., D’Ercole A., Gibson B. K., Ferraro F. R., 2007, MNRAS, 382, 443
Marino A. F., Milone A. P., Piotto G., Villanova S., Bedin L. R., Bellini A., Renzini A., 2009, A&A, 505, 1099
Marino A. F. et al., 2011, A&A, 532, A8
Marino A. F. et al., 2012, ApJ, 746, 14
Martin N. F., de Jong J. T. A., Rix H.-W., Gilmore G., 2008, ApJ, 684, 1075
Milone A. P. et al., 2008, ApJ, 673, 241
Mucciarelli A., Bellazzini M., Ibata R., Merle T., Chapman S. C., Dalessandro E., Sollima A., 2012, MNRAS, 426, 2889
Muñoz C., Geisler D., Villanova S., 2013, MNRAS, 433, 2006
Newberg H. J., Yanny B., Willett B. A., 2009, ApJ, 700, L61
Norris J. E., Wyse R. F. G., Gilmore G., Yong D., Frebel A., Wilkinson M. I., Belokurov V., Zucker D. B., 2010, ApJ, 723, 1632
Olszewski E. W., Saha A., Kurek P., Subramaniam A., de Boer T., Seitz P., 2009, AJ, 138, 1570
Origlia L., Rich R. M., Ferraro F. R., 2011, ApJ, 726, L20
Piotto G. et al., 2002, A&A, 391, 945
Rodgers A. W., Paltoglou G., 1984, ApJ, 283, L5
Roederer I. U., Marino A. F., Sneden C., 2011, ApJ, 742, 37
6 SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article:

Table 1. NGC 5824 stars observed (http://mnras.oxfordjournals.org/lookup/suppl/doi:10.1093/mnras/stt2467/-/DC1).

Please note: Oxford University Press is not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.