Association between APOE Genotype and Change in Physical Function in a Population-Based Swedish Cohort of Older Individuals Followed Over Four Years

Ingmar Skoog¹, Helena Hörder¹, Kerstin Frändin¹, Lena Johansson¹, Svante Östling¹, Kaj Blennow², Henrik Zetterberg²,³ and Anna Zettergren¹*

¹ Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden, ² Clinical Neurochemistry Lab, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, at the University of Gothenburg, Mölndal, Sweden, ³ Department of Molecular Neuroscience, Institute of Neurology, University College of London, London, UK

The association between decline in physical function and age-related conditions, such as reduced cognitive performance and vascular disease, may be explained by genetic influence on shared biological pathways of importance for aging. The apolipoprotein E (APOE) gene is well-known for its association with Alzheimer’s disease, but has also been related to other disorders of importance for aging. The aim of this study was to investigate possible associations between APOE allele status and physical function in a population-based longitudinal study of older individuals. In 2005, at the age of 75, 622 individuals underwent neuropsychiatric and physical examinations, including tests of physical function, and APOE-genotyping. Follow-up examinations were performed at age 79. A significantly larger decline in grip strength ($p=0.015$) between age 75 and 79 was found when comparing APOE ε4 allele carriers with non-carriers [10.3 (±10.8) kg versus 7.8 (±10.1) kg]. No association was seen with decline in gait speed, chair-stand, or balance. The association with grip strength remained after correction for cognitive and educational level, depression, cardiovascular disease, stroke, and BMI.

Keywords: physical function, grip strength, gait speed, APOE ε4 allele, dementia

INTRODUCTION

The apolipoprotein (APOE) gene, encoding APOE involved in lipid metabolism, is a well-established risk factor for Alzheimer’s disease (AD) (Corder et al., 1993; Poirier et al., 1993; Kandimalla et al., 2011, 2013; Yu et al., 2014). The gene has three common alleles ($ε2$, $ε3$, and $ε4$), and carriers of the $ε2$ allele are at lower risk, while $ε4$ allele carriers are at higher risk, of the disorder (Bertram et al., 2007). In cognitively healthy individuals, associations between APOE $ε4$ and worse performance on cognitive tests, especially in old populations, have been reported (Caselli et al., 2009; Wisdom et al., 2011; Davies et al., 2014). Further, the $ε4$ allele is a risk factor for other conditions that mainly affect older individuals, such as atherosclerosis (Zhu et al., 2016) and cardiovascular and cerebrovascular disease (Lehtinen et al., 1995; McCarron et al., 1999;
Zlokovic, 2013). Moreover, in a recent study, our research group found that APOE ε4 predicts future depression in older persons (Skoog et al., 2015).

Physical function, objectively assessed by tests of grip strength, gait speed, chair-stand, and standing balance, has been shown to be a good predictor of several conditions, such as cognitive performance (Deary et al., 2006; Boyle et al., 2009), cardiovascular disease (Leong et al., 2015), activities of daily living (ADL) and disability, as well as mortality (Abellan van Kan et al., 2009; Cooper et al., 2010). The association between decline in physical function and age-related conditions may be explained by genetic influence on shared biological pathways of importance for aging. In view of the above mentioned associations between the APOE gene and several age-related disorders, it is not farfetched to suggest that this gene also affects physical function.

Few studies on the relation between the APOE gene and physical function in old age have been performed (Melzer et al., 2005; Buchman et al., 2009; Batterham et al., 2013; Vasunilashorn et al., 2013; Verghese et al., 2013; Alfred et al., 2014), and the results are inconsistent. The purpose of the present study was to investigate possible associations between APOE allele status and measures of physical function in a Swedish population-based longitudinal study of older individuals.

MATERIALS AND METHODS

Study Sample

Participants originate from two epidemiological studies in Gothenburg, Sweden, the Prospective Population Study of Women (PPSW) and the Gerontological and Geriatric Population Studies (H70), which were merged in 2000–2001 to become one study. The samples have been described in detail previously (Steen and Djurfeldt, 1993; Bengtsson et al., 1997; Skoog, 2004; Karlsson et al., 2009). The participants were sampled from the Swedish Population Register on the basis of birth date and were born in 1930. Adults living in private households and in residential care were included. Examinations were done at an outpatient department or in the participants’ home. In 2005, there were 1287 eligible individuals and 827 agreed to participate (response rate 64%). Six hundred and thirty eight individuals participated in at least one test of physical function, and 622 (97%) of those gave informed consent to participate in genetic analyses. In 2005, tests of physical function were only done at the outpatient department. Thus, no individuals were included among those examined through home visits (n = 129). In 2009, there were 1108 eligible individuals and 662 agreed to participate (response rate 60%). Six hundred and ten participated in the fitness tests and 602 (99%) of them consented to genetic analyses. In 2009, no tests of gait speed were done among individuals examined at home visits (n = 197). Among individuals included in the genetic analyses, 448 participated in at least one test of physical function in both 2005 and 2009. The study was approved by the Regional Ethical Review Board in Gothenburg (approval numbers: S 069-01, T 453-04, 075-09), and written informed consent was obtained from all participants and/or their relatives in cases of dementia.

Tests of Physical Function

Grip strength was tested with a Jamar dynamometer at an elbow angle of 90 degrees and with the shoulder joint in a neutral position. The test was repeated three times for each hand, and the highest value of the best hand was used as outcome (kg). The method has been shown to have high intra- and inter-test reliability (Peolsson et al., 2001) and validity (Bellace et al., 2000). Self-selected and maximum gait speed for 20-m indoors with standing start (meter/second) were measured (Frändin and Grimby, 1994). The walking test has shown good intra- and inter-rater reliability (Connelly et al., 1996). Timed chair-stand measures mobility by testing the ability to stand up and sit down from a chair five times in a row as quickly as possible. The total time (seconds) was used as outcome. The test displays discriminative and concurrent validity properties.

General Examinations and Diagnoses

Clinical examinations included comprehensive social, functional, physical, neuropsychiatric, and neuropsychological examinations, as well as close informant interviews (Skoog, 2004). All examinations were carried out by health professionals, such as nurses or physiotherapists. Dementia was diagnosed by geriatric psychiatrists according to the Diagnostic and Statistical Manual of Mental Disorders 3rd Edition Revised (DSM-III-R; APA, 1987), based on symptoms rated during the neuropsychiatric examinations and information from the close informant interviews, as described previously (Skoog et al., 1993, 2015; Guo et al., 2007). Cognitive function was assessed with the Mini-Mental State Examination (MMSE) (Folstein et al., 1975). Major and minor depression were diagnosed based on the neuropsychiatric examination according to the Diagnostic and Statistical Manual of Mental Disorders 4th Edition (DSM-IV) (APA, 1994) criteria for minor depression, and Diagnostic and Statistical Manual of Mental Disorders 5th edition (DSM-5) (APA, 2013) for major depression. Cardiovascular disease was defined as angina pectoris according to the Rose criteria (Rose, 1962) and/or myocardial infarction (MI) according to self-reported history or ECG criteria (Minnesota code 1-1-1 to 1-2-5 or 1-2-7). The diagnosis of stroke/TIA was based on information from self-reports, close informants and the Swedish hospital discharge register, as described previously (Liebetrut et al., 2003). Diabetes was diagnosed based on self-reported history and use of antidiabetic drugs. Cholesterol was measured with standard methods at the laboratory at Sahlgrenska University Hospital. Regarding physical activity, participants were asked about level of physical activity in their leisure time based on the Saltin–Grimby Physical Activity Level Scale (Grimby et al., 2015). The scale is a combined frequency–intensity measure including the following options: (1) ‘Almost totally inactive’ (e.g., reading, watching TV, going to the movies), (2) ‘Some physical activity at a minimum of 4 h/week’ (e.g., bicycling, walking to/from workplace, or during leisure time, walking with family), (3) ‘Regular physical activity’ (e.g., gardening, golfing, running, keep-fit exercise, tennis, dancing), and (4) ‘Regular intense physical activity and contests’ (e.g., running several times/week, swimming several times/week, competitive sports).
Genotyping
Blood samples were collected and the SNPs rs7412 and rs429358 in APOE (gene map locus 19q13.2) were genotyped with KASPar® PCR SNP genotyping system (LGC Genomics, Hoddesdon, Herts, UK) or by mini-sequencing (as previously described in detail; Blennow et al., 2000). Genotype-data for these two SNPs were used to unambiguously define ε2, ε3, and ε4 alleles. The genotyping success rate was >95% (genotyping failed for 13 individuals in 2005 and 21 individuals in 2009).

Statistical Analysis
Differences in distribution or mean value of sample characteristics between age 75 and 79 were investigated with Fischer’s exact test or t-test, respectively. The relation between change in physical function, between age 75 and 79, and APOE ε4 status, as well as cross-sectional associations between physical function and APOE ε4 status, were analyzed with linear regressions including sex as a covariate. The association with change in grip strength was further analyzed using body mass index (BMI) at baseline (age 75), diabetes at any occasion (i.e., at age 75 or 79), total cholesterol at baseline, cardiovascular disease at any occasion, stroke up to age 79, depression (major and minor) at any occasion, MMSE score at baseline, change in MMSE score, and educational level [dichotomized as compulsory (7 years), or more] as covariates. The cross-sectional association with grip strength found at age 79 was further analyzed using BMI at age 79, diabetes at age 79, total cholesterol at age 79, cardiovascular disease at age 79, stroke up to age 79, depression at age 79, MMSE score at age 79, and educational level as covariates. As a first step, both in the longitudinal and cross-sectional analysis, covariates were included in four different models; model one included covariates related to cognition (i.e., MMSE score and educational level), model two included covariates related to mental health (i.e., major and minor depression), model three included cardiovascular disease and stroke, and model four included BMI, diabetes and total cholesterol. As a final step, all covariates were included in the same model. Further, all analyses were re-done after excluding individuals with a dementia diagnosis up to year 2009. In addition, we performed the analyses only including individuals who reported that they were physically active (option 2–4 on the Saltin–Grimby Physical Activity Level Scale), and to be included in the longitudinal analyses an individual should have been physically active at both examinations. We also did sensitivity analyses, where only those who were examined at the out-patient department were included, as gait speed was not done at any home visits. All analyses were performed using SPSS version 22 for Windows. The power of the study varied between 90 and 58%, depending on the outcome (largest power for detecting an association with maximum gait speed and lowest power for detecting an association with chair-stand). The power-calculations were based on the assumption that the difference in decrease between APOE ε4 carriers and non-carriers would be 3 kg (SD: 10 kg) for grip strength, 0.05 m/s (SD: 0.15 m/s) for regular gait speed, 0.1 m/s (SD: 0.25 m/s) for maximum gait speed, 1 s (SD: 4 s) for chair-stand, and 3 s (SD: 10 s) for balance. The power-calculations were done using SAS version 9.4.

RESULTS
Relevant characteristics of the samples at age 75 and/or 79 are summarized in Table 1. The difference in percentage of APOE ε4 carriers between age 75 and 79 (Table 1) can at least partly be explained by the fact that a non-significantly larger percentage of APOE ε4 carriers, who participated at age 75, had died or declined to participate at age 79, compared to non-carriers. A significant association (p = 0.015) was found between possession of the APOE ε4 allele and larger decline in grip strength between age 75 and 79 (Table 2). No association was found between APOE ε4 status and change in gait speed, chair-stand, or balance. In the cross-sectional analyses, no association was found between APOE ε4 status and physical function at age 75, while a significant association was found with grip strength (p = 0.006) at age 79 years (Table 3). Analyses of the interaction between APOE ε4 and age showed that the effect of the ε4 allele on grip strength was significantly larger at age 79 than at age 75 (p = 0.033). Both the longitudinal and the cross-sectional association with grip strength remained after correction for MMSE score, educational level, depression, cardiovascular disease, stroke, BMI, diabetes, and total cholesterol. Further, exclusion of all cases with dementia, or inclusion of only physically active individuals, did not change the results. Also, the main results did not change when only individuals who were examined at the out-patient department were included. Moreover, after excluding individuals with the ε2ε4 genotype (n = 6 in the longitudinal analysis and n = 9 in the cross-sectional analysis at age 79), the relation between grip strength and APOE ε4 became stronger [mean 19.2 (±10.5) kg for ε4 carriers and 23.0 (±11.9) kg for ε4 non-carriers among 79 year olds (p = 0.001), and a decline of 11.4 (±9.7) kg for ε4 carriers and 7.8 (±10.1) kg for ε4 non-carriers (p = 0.001) between 75 and 79 years of age].

DISCUSSION
In this study, we report an association between the APOE ε4 allele and larger decline in grip strength between age 75 and 79. This association was independent of cognitive function, as measured with MMSE, and remained after exclusion of cases with dementia. A similar result was seen in cross-sectional analyses in the larger sample of all individuals examined at age 79, showing weaker grip strength among APOE ε4 carriers compared to non-carriers. No association with grip strength was seen at age 75, and analyses of the influence of age revealed that the effect of APOE ε4 was significantly larger at age 79 compared to age 75.

So far, possible associations between the APOE gene and measures of physical function in old age have not been
TABLE 1 | Characteristics of the study sample.

	75 year olds (n = 609)	79 year olds (n = 581)	p-value
Women, n (%)	364 (59.8)	347 (59.7)	1.00
APOE ε4 carriers, n (%)	167 (27.4)	118 (20.3)	0.004
Body mass index, mean (SD)	26.8 (4.2)	26.1 (4.2)	0.007
Cardiovascular disease*, n (%)	95 (15.6)	97 (16.7)	0.64
Diabetes, n (%)	78 (12.8)	80 (13.6)	0.67
Cholesterol (mmol/l), mean (SD)	5.33 (1.07)	5.39 (1.09)	0.34
Stroke, n (%)	52 (8.5)	66 (11.4)	0.12
Dementia, n (%)	16 (2.6)	37 (6.4)	0.002
MMSE, mean (SD)	27.6 (1.8)	27.7 (3.4)	0.52
Education more than compulsory, n (%)	281 (46.1)	257 (44.2)	0.52
Major depression, n (%)	25 (4.1)	29 (5.0)	0.49
Minor depression, n (%)	85 (14.0)	84 (14.5)	0.87
Physical activity**, n (%)	548 (90.0)	500 (86.1)	0.04
Grip strength (kg), mean (SD)	29.2 (9.9)	22.1 (11.7)	<0.0001
Regular gait speed (m/s), mean (SD)	1.18 (0.19)	1.08 (0.19)	<0.0001
Max gait speed (m/s), mean (SD)	1.64 (0.33)	1.48 (0.31)	<0.0001
Chair-stand (s), mean (SD)	13.3 (4.7)	14.1 (5.3)	0.008
Balance (s), mean (SD)	19.6 (10.9)	12.7 (10.8)	<0.0001

*Cardiovascular disease includes as angina pectoris and/or myocardial infarction. **Physical activity based on the Satin–Grimby Physical Activity Level Scale (Grimby et al., 2013, option 2–4). P-values based on Fischer’s exact test or 1-test.

TABLE 2 | Associations between the APOE ε4 allele and change in physical fitness measures between age 75 and 79.

	APOE ε4 carrier mean (SD)	APOE ε4 non-carrier mean (SD)	p-value
Grip strength (kg)	n = 390, −10.3 (10.8)	−7.8 (10.1)	0.015
Regular gait speed (m/s)	n = 327, −0.17 (0.16)	−0.14 (0.15)	0.18
Max gait speed (m/s)	n = 326, −0.25 (0.26)	−0.24 (0.23)	0.53
Chair-stand (s)	n = 389, 1.3 (7.1)	1.1 (4.5)	0.78
Balance (s)	n = 347, −9.5 (10.1)	−8.9 (10.1)	0.60

P-values based on linear regression analyses adjusted for sex. Significant p-values are shown in bold.

comprehensively investigated, and results have been inconsistent. In a study by Batterham et al. (2013), the ε2 allele was found to be related to a smaller decline in grip strength over a 12-year period. However, after excluding participants with low cognitive scores, the finding became non-significant. The study included individuals aged 70 and older at baseline, but the long follow-up time included the ages examined in our study. In contrast to the findings by Batterham et al. (2013), our result remained significant after correction for cognitive function, and exclusion of individuals carrying the “protective” ε2 allele strengthened the association.

Another study reported associations between the ε4 allele and more rapid motor decline in older individuals (mean age 80 years at baseline) over a period of 10 years (Buchman et al., 2009). The composite measure of global motor function used in that study, included both muscle strength (such as grip strength) and motor performance (such as gait speed), and the association of ε4 with motor decline was for the most part explained by an association with change in muscle strength. In addition, the association between the ε4 allele and motor function increased with age. The results of our study are thus in line with the results from this study, although the participants in the study by Buchman et al. (2009) were a selected group of individuals who agreed to post-mortem donation, while our participants are from a general population.

In our study, no associations were found between APOE allele status and gait speed or chair-stand. In contrast, Alfred et al. (2014) studied participants from eight UK cohorts of the HALCyon program, and found associations between the APOE ε4 allele and decline in both these measures in one of the cohorts (age 64–82). However, in the cohort including individuals aged 77–80 (the Lothian Birth Cohort 1921), which is most comparable with the ages investigated in our study, no associations with physical performance could be seen. Furthermore, in studies only including tests of chair stand time and/or gait speed, associations with APOE ε4 status have been reported in individuals older than 65 years (Melzer et al., 2005) and in men aged 70 years and older (Verghese et al., 2013). Investigation of the relation between APOE allele status and physical performance has also been performed in an Asian cohort (Vasunilashorn et al., 2013). No associations were reported, but the proportion of participants with the ε4 allele was much lower in this Asian cohort than in populations of Caucasian origin.

All four measures of physical function (grip strength, gait speed, chair-stand, and standing balance) investigated in this study are predictors of all cause mortality in older individuals from the general population (Cooper et al., 2010). However, the relative value of gait speed, chair-stand, and balance is unclear, since these measures are correlated with each other (Cooper et al., 2010). Grip strength and gait speed are both key components of sarcopenia (Sayer et al., 2013) and frailty (Fried et al., 2001), where grip strength is an estimate of overall muscle strength (Rantanen et al., 1994), while gait speed includes both muscle strength, balance, motor control, and cardiorespiratory function (Studenski et al., 2011). Since grip strength is based on decline in muscle strength only, one might expect to find the clearest association between the APOE ε4 allele and this measure, like the result in our study. Still, we cannot give any stable conclusions regarding the possible association between the APOE ε4 allele and gait speed, as this test did not include individuals who had home visits at age 79, and persons with the largest decline in gait speed might have been missed.

The mechanism behind the relation between the ε4 allele and motor decline is not clear, but associations have been found with several different diseases and pathologies which can damage the widely distributed motor systems in the brain. One is subclinical
TABLE 3 | Associations between the APOE ε4 allele and measures of physical fitness at age 75 and 79.

	APOE ε4 carrier mean (SD)	APOE ε4 non-carrier mean (SD)	p-value	APOE ε4 carrier mean (SD)	APOE ε4 non-carrier mean (SD)	p-value
Grip strength (kg)						
75 year olds	28.9 (9.7)	29.4 (9.9)	0.53	19.6 (10.8)	23.0 (11.9)	0.006
n = 607				n = 501		
Regular gait speed (m/s)	1.16 (0.20)	1.18 (0.19)	0.35	1.06 (0.21)	1.09 (0.18)	0.20
Max gait speed (m/s)	1.64 (0.35)	1.64 (0.32)	1.00	1.47 (0.35)	1.49 (0.29)	0.69
Chair-stand (s)	13.4 (5.6)	13.2 (4.4)	0.68	14.4 (5.2)	14.0 (5.3)	0.50
Balance (s)	19.3 (11.3)	19.8 (10.7)	0.90	13.1 (10.7)	12.6 (10.8)	0.56
n = 597				n = 496		
79 year olds	14.4 (5.2)	14.0 (5.3)	0.50			
n = 609				n = 445		
P-values based on linear regression analyses adjusted for sex. Significant p-values are shown in bold.						
Council (no. 11267, 2005-8460, 825-2007-7462, 825-2012-5041, 2013-8717, 2015-02830), Stena Foundation, Sahlgrenska University Hospital (ALF), the Bank of Sweden Tercentenary Foundation, Swedish Brain Power, Swedish Society for Medical Research, Stiftelsen Gamla Tjänarinnor, Handlanden Hjalmar Svenssons Forskningsfond, Systrarna Greta Johansson, and Brita Anderssons minnesfond, Fredrik och Ingrid Thurbings stiftelse, Wilhelm och Martina Lundgrens Vetenskapsfond, and Stiftelsen Söderström-Königska sjukkhemmet. The funding sources were not involved in the study design, collection, analysis, and interpretation of data, the writing of the paper nor had any involvement in the decision to submit the paper for publication.

REFERENCES

Abellan van Kan, G., Rolland, Y., Andrieu, S., Bauer, J., Ben-Shlomo, Y., Bellace, J. V., et al. (2000). Validity of the dexter evaluation system's jamar dynamometer attachment for assessment of hand grip strength in a normal population. J. Hand Ther. 13, 46–51. doi: 10.1016/s0894-1130(00)80052-6

Bellace, J. V., Healy, D., Besser, M. P., Byron, T., and Hohman, L. (2000). APOE genotype influences functional status among elderly without dementia. Am. J. Med. Genet. 80, 583–587. doi: 10.1002/ajmg.1320600621

Bennett, D. A. (2009). Apolipoprotein E e4 allele is associated with more rapid motor decline in older persons. Alzheimer Dis. Assoc. Disord. 21, 1010–1019. doi: 10.1007/s12603-009-0052-6

Blazier, D. G., Fillenbaum, G., and Burchett, B. (2001). The APOE-E4 allele and the risk of functional decline in a community sample of African American and white older adults. J. Gerontol. A Biol. Sci. Med. Sci. 56, M785–M789. doi: 10.1093/gerona/56.12.M785

Blennow, K., Ricksten, S., Ersson, J., Englund, R., Emes, R., Ess County, K., et al. (2006). Association between the alpha2-macroglobulin (A2M) deletion and Alzheimer's disease, and no change in A2M mRNA, protein, or protein expression. J. Neurotransm. (Vienna) 107, 1065–1079. doi: 10.1007/s007020060052

Boyle, P. A., Buchman, A. S., Wilson, R. S., and Bennett, D. A. (2009). Association of muscle strength with the risk of Alzheimer disease and the rate of cognitive decline in community-dwelling older persons. Arch. Neurol. 66, 1339–1344. doi: 10.1001/archneurol.2009.240

Boch, A. S., Boyle, P. A., Wilson, R. S., Beck, T. L., Kelly, J. F., and Bennett, D. A. (2009). Apolipoprotein E e4 allele is associated with more rapid motor decline in older persons. Alzheimer Dis. Assoc. Disord. 23, 63–69. doi: 10.1097/WAD.0b013e31818877b5

Burns, J. M., Galvin, J. E., Roe, C. M., Morris, J. C., and McKeel, D. W. (2005). The pathology of the substantia nigra in Alzheimer disease with extrapyramidal signs. Neurology 64, 1397–1403. doi: 10.1212/01.WNL.00000158423.05224.7f

Caselli, R. J., Dueck, A. C., Osborne, D., Sabbagh, M. N., Connor, D. J., Ahern, G. L., et al. (2009). Longitudinal modeling of age-related memory decline and the APOE epsilon4 effect. N. Engl. J. Med. 361, 255–263. doi: 10.1056/NEJMoa0809437

Connelly, D. M., Stevenson, T. J., and Vandervoort, A. A. (1996). Between- and within-rater reliability of walking tests in a frail elderly population. Physiother. Can. 58, 47–51

Cooper, R., Kuh, D., Hardy, R., Mortality Review Group, and FALCon and HALCyon Study Teams. (2010). Objectively measured physical capability levels and mortality: systematic review and meta-analysis. BMJ 341:c4467. doi: 10.1136/bmj.c4467

Corder, E. H., Saunders, A. M., Strittmatter, W. J., Schmechel, D. E., Gaskell, P. C., Small, G. W., et al. (1993). Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261, 921–923. doi: 10.1126/science.8346443

Davis, G., Harris, S. A., Reynolds, C. A., Payton, A., Knight, H. M., Liewald, D. C., et al. (2014). A genome-wide association study implicates the APOE locus in nonpathological cognitive ageing. Mol. Psychiatry 19, 76–87. doi: 10.1038/mp.2012.159

Deary, I. J., Whalley, L. J., Batty, G. D., and Starr, J. M. (2006). Physical fitness and lifetime cognitive change. Neurology 67, 1195–1200. doi: 10.1212/01.wnl.0000238520.06958.6a

Folstein, M. F., Folstein, S. E., and McHugh, P. R. (1975). “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 12, 189–198

Frdinand, K., and Grinyb, G. (1994). Assessment of physical activity, fitness and performance in 76-year-olds. Scand. J. Med. Sci. Sports 4, 41–46. doi: 10.1111/j.1600-0838.1994.tb00404.x

Fried, L. P., Tangen, C. M., Walston, J., Newman, A. B., Hirsch, C., Gottfiedier, J., et al. (2001). Frailty in older adults: evidence for a phenotype. J. Gerontol. A Biol. Sci. Med. Sci. 56, M146–M156. doi: 10.1093/gerona/56.3.M146

Grimby, G., Borjesson, M., Jonsdottir, I. H., Schro, M., Thelie, D. S., and Saltin, B. (2015). “The Saltin-Grimby Physical Activity Level Scale” and its application to health research. Scand. J. Med. Sci. Sports 25(Suppl. 4), 119–125. doi: 10.1111/sms.12611

Guo, X., Warren, M., Jogren, K., Lissner, L., Bengtsson, C., Bjorklund, C., et al. (2007). Midlife respiratory function and incidence of Alzheimer’s disease: a 29-year longitudinal study in women. Neurobiol. Aging 28, 343–350. doi: 10.1016/j.neurobiolaging.2006.01.008

Head, D., Bugg, J. M., Goate, A. M., Fagan, A. M., Mintun, M. A., Benzinger, T. L., et al. (2012). Exercise engagement as a moderator of the effects of APOE genotype on amyloid deposition. Arch. Neurol. 69, 636–643. doi: 10.1001/archneurol.2011.845

Kandimalla, R. J., Prabhakar, S., Binukumar, B. K., Warri, Y. G., Gupta, N., Sharma, D. R., et al. (2011). Apo-Epsilon4 allele in conjunction with Abeta42 and tau in CSF: biomarker for Alzheimer’s disease. Curr. Alzheimer Res. 8, 187–196. doi: 10.2174/15672051179525667

Kandimalla, R. J., Warri, Y. G., Anand, R., Kaushal, A., Prabhakar, S., Grover, V. K., et al. (2013). Apolipoprotein E levels in the cerebrospinal fluid of north Indian patients with Alzheimer’s disease. Am. J. Alzheimers Dis. Other Dement. 28, 258–262. doi: 10.1177/153337513489029

Karlsson, B., Klenfeldt, I. F., Sigstrom, R., Waern, M., Ostling, S., Gustafson, D., et al. (2008). Association between APOE epsilon 2/epsilon 4 genotype and amyloid deposition. Arch. Neurol. 65, 1424–1428. doi: 10.1001/archneurol.2008.434

Kulinski, A., Krusinska, A. S., Krusinskas, A. S., and Krusinskas, A. S. (2008). Association between APOE epsilon 2/epsilon 3/epsilon 4 polymorphism and disability severity in a national long-term care survey sample. Age Ageing 37, 288–293. doi: 10.1093/ageing/afn003

Frontiers in Aging Neuroscience | www.frontiersin.org 6 October 2016 | Volume 8 | Article 225
Lehtinen, S., Lehtimäki, T., Sisto, T., Salenius, J. P., Nikkilä, M., Jokela, H., et al. (1995). Apolipoprotein E polymorphism, serum lipids, myocardial infarction and severity of angiographically verified coronary artery disease in men and women. Atherosclerosis 114, 83–91. doi: 10.1016/0021-9150(94)05469-Y
Leong, D. P., Teo, K. K., Ranganaraj, S., Lopez-Jaramillo, P., Avezum, A. Jr., Orlandini, A., et al. (2015). Prognostic value of grip strength: findings from the prospective urban rural epidemiology (PURE) study. _Lancet_ 386, 266–273. doi: 10.1016/S0140-6736(14)62000-6
Liebetrau, M., Steen, B., and Skoog, I. (2003). Stroke in 85-year-olds: prevalence, incidence, risk factors, and relation to mortality and dementia. _Stroke_ 34, 2617–2622. doi: 10.1161/01.STR.0000094420.80781.A9
McCarron, M. O., Delong, D., and Alberts, M. J. (1999). APOE genotype as a risk factor for ischemic cerebrovascular disease: a meta-analysis. _Neurology_ 53, 1308–1311. doi: 10.1221/WNL.53.6.1308
Melzer, D., Dik, M. G., van Kamp, G. J., Jonker, C., and Deeg, D. J. (2005). The apolipoprotein E e4 polymorphism is strongly associated with poor mobility performance test results but not self-reported limitation in older people. _J. Gerontol. A Biol. Sci. Med. Sci._ 60, 1319–1323. doi: 10.1093/gerona/60.10.1319
Peolsson, A., Hedlund, R., and Oberg, B. (2001). Intra- and inter-tester reliability and reference values for hand strength. _J. Rehabil. Med._ 33, 36–41. doi: 10.1080/165019703100006524
Poirier, J., Davignon, J., Bouthiller, D., Kogan, S., Bertrand, P., and Gauthier, S. (1993). Apolipoprotein E polymorphism and Alzheimer’s disease. _Lancet_ 342, 697–699. doi: 10.1016/0140-6736(93)91705-Q
Rantanen, T., Era, P., and Heikkinen, E. (1994). Maximal isometric strength and mobility among 75-year-old men and women. _Age Ageing_ 23, 132–137. doi: 10.1093/ ageing/23.2.132
Rananto, C., Brach, J., Longstreth, W. T. Jr., and Newman, A. B. (2006). Quantitative measures of gait characteristics indicate prevalence of underlying subclinical structural brain abnormalities in high-functioning older adults. _Neuroepidemiology_ 26, 52–60. doi: 10.1159/000089240
Rose, G. A. (1962). The diagnosis of ischaemic heart pain and intermittent claudication in field surveys. _Bull. World Health Organ._ 27, 645–658.
Sayer, A. A., Robinson, S. M., Patel, H. P., Shavlikadze, T., Cooper, C., and Grounds, M. D. (2013). New horizons in the pathogenesis, diagnosis and management of sarcopenia. _Age Ageing_ 42, 145–150. doi: 10.1093/ageing/afs191
Skoog, I. (2004). Psychiatric epidemiology of old age: the H70 study—the NAPE lecture 2003. _Acta Psychiatr. Scand._ 109, 4–18. doi: 10.1046/j.1600-0447.2003.00260.x
Skoog, I., Nilsson, L., Palmertz, B., Andreasson, L. A., and Svanborg, A. (1993). A population-based study of dementia in 85-year-olds. _N. Engl. J. Med._ 328, 153–158. doi: 10.1056/NEJM199301213280301
Skoog, I., Waern, M., Duberstein, P., Blennow, K., Zetterberg, H., Borjeson-Hanson, A., et al. (2015). A 9-year prospective population-based study on the association between the APOE E4 allele and late-life depression in Sweden. _Biol. Psychiatry_ 78, 730–736. doi: 10.1016/j.biopsych.2015.01.006
Smith, J. C., Nielsen, K. A., Woodard, J. L., Seidenberg, M., Durgerian, S., Hazlett, K. E., et al. (2014). Physical activity reduces hippocampal atrophy in elders at genetic risk for Alzheimer’s disease. _Front. Aging Neurosci._ 6:61. doi: 10.3389/ fnagi.2014.00061
Steen, B., and Djurfeldt, H. (1993). The gerontological and geriatric population studies in Gothenburg, Sweden. Z. Gerontol. 26, 163–169.
Stones, M. J., and Kozma, A. (1987). Balance and age in the sighted and blind. _Arch. Phys. Med. Rehabil._ 68, 85–89.
Studenski, S., Perera, S., Patel, K., Rosano, C., Faulkner, K., Inzitari, M., et al. (2011). Gait speed and survival in older adults. _JAMA_ 305, 50–58. doi: 10.1001/jama.2010.1923
Vasanilashorn, S., Glei, D. A., Lin, Y. H., and Goldman, N. (2013). Apolipoprotein E measured and physical and pulmonary function in older Taiwanese adults. _Biodemography Soc. Biol._ 59, 57–67. doi: 10.1080/19485565.2013.778703
Verghese, J., Holtzer, R., Wang, C., Katz, M. J., Barzilai, N., and Lipton, R. B. (2013). Role of APOE genotype in gait decline and disability in aging. _J. Gerontol. A Biol. Sci. Med. Sci._ 68, 1395–1401. doi: 10.1093/gerona/glt115
Whitney, S. L., Wrisley, D. M., Marchetti, G. F., Gee, M. A., Redfern, M. S., and Furman, J. M. (2005). Clinical measurement of sit-to-stand performance in people with balance disorders: validity of data for the five-times-sit-to-stand test. _Phys. Ther._ 85, 1034–1045.
Wisdom, N. M., Callahan, J. L., and Hawkins, K. A. (2011). The effects of apolipoprotein E on non-impaired cognitive functioning: a meta-analysis. _Neurol. Aging._ 32, 63–74. doi: 10.1016/j.neurobiolaging.2009.02.003
Wolf, D. S., Gearing, M., Snowden, D. A. M., Mori, H., Marksbery, W. R., and Mirra, S. S. (1999). Progression of regional neuropathology in Alzheimer disease and normal elderly: findings from the Nun study. _Alzheimer Dis. Assoc. Disord._ 13, 226–231. doi: 10.1097/00002093-199910000-00009
Woodard, J. L., Sugarman, M. A., Nielson, K. A., Smith, J. C., Seidenberg, M., Durgerian, S., et al. (2012). Lifestyle and genetic contributions to cognitive decline and hippocampal structure and function in healthy aging. _Curr. Alzheimer Res._ 9, 436–446. doi: 10.2174/156720512800492477
Yu, J. T., Tan, L., and Hardy, J. (2014). Apolipoprotein E in Alzheimer’s disease: an update. _Annu. Rev. Neurosci._ 37, 79–100. doi: 10.1146/annurev-neuro-071013-014300
Zhu, H., Xue, H., Wang, H., Ma, Y., Liu, J., and Chen, Y. (2016). The association of apolipoprotein E (APOE) gene polymorphisms with atherosclerosis susceptibility: a meta-analysis. _Minerva Cardioangiol._ 64, 47–54.
Zlokovic, B. V. (2013). Cerebrovascular effects of apolipoprotein E: implications for Alzheimer disease. _JAMA Neurol._ 70, 440–444. doi: 10.1001/jamaneurol.2013.2152

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2016 Skoog, Hörder, Frändin, Johansson, Östling, Blennow, Zetterberg and Zettergren. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.