Abstract. Stein Variational Gradient Descent (SVGD), a popular sampling algorithm, is often described as the kernelized gradient flow for the Kullback-Leibler divergence in the geometry of optimal transport. We introduce a new perspective on SVGD that instead views SVGD as the (kernelized) gradient flow of the chi-squared divergence which, we show, exhibits a strong form of uniform exponential ergodicity under conditions as weak as a Poincaré inequality. This perspective leads us to propose an alternative to SVGD, called Laplacian Adjusted Wasserstein Gradient Descent (LAWGD), that can be implemented from the spectral decomposition of the Laplacian operator associated with the target density. We show that LAWGD exhibits strong convergence guarantees and good practical performance.

1. INTRODUCTION

The seminal paper of Jordan, Kinderlehrer, and Otto [JKO98] has profoundly reshaped our understanding of sampling algorithms. What is now commonly known as the JKO scheme interprets the evolution of marginal distributions of a Langevin diffusion as a gradient flow of a Kullback-Leibler (KL) divergence over the Wasserstein space of probability measures. This optimization perspective on Markov Chain Monte Carlo (MCMC) has not only renewed our understanding of algorithms based on Langevin diffusions [Dal17a, Ber18, CB18, Wib18, DMM19, VW19], but has also fueled the discovery of new MCMC algorithms inspired by the diverse and powerful optimization toolbox [MWBG12, SBCR16, CCBJ18, Ber18, HKRC18, Wib18, MCC+19, Wib19, CLL+20, DRD20, ZPFP20].

The Unadjusted Langevin Algorithm (ULA) [Dal17b, DM17] is the most common discretization of the Wasserstein gradient flow for the KL divergence, but it is unclear whether it is the most effective one. In fact, ULA is asymptotically biased, which results in slow convergence and often requires ad-hoc adjustments [DCWY19]. To overcome this limitation, various methods that track the Wasserstein gradient flow more closely have been recently developed [Ber18, Wib18, SKL20].

Let F denote a functional over the Wasserstein space of distributions. The Wasserstein gradient
flow of F may be described as the deterministic and time-inhomogeneous Markov process $(X_t)_{t \geq 0}$ started at a random variable $X_0 \sim \mu_0$ and evolving according to $\dot{X}_t = -[\nabla W_2 F(\mu_t)](X_t)$, where μ_t denotes the distribution of X_t. Here $[\nabla W_2 F(\mu)](\cdot) : \mathbb{R}^d \to \mathbb{R}^d$ is the Wasserstein gradient of F at μ. If $F(\mu) = D_{KL}(\mu \parallel \pi)$, where $\pi \propto e^{-V}$ is a given target distribution on \mathbb{R}^d, it is known [AGS08, Vil09, San17] that $\nabla W_2 F(\mu) = \nabla \ln(d\mu/d\pi)$. Therefore, a natural discretization of the Wasserstein gradient flow with step size $h > 0$, albeit one that cannot be implemented since it depends on the distribution μ_t of X_t, is:

$$X_{t+1} = X_t - h \nabla \ln \left(\frac{d\mu_t}{d\pi}(X_t) \right), \quad t = 0, 1, 2, \ldots.$$

While μ_t can, in principle, be estimated by evolving a large number of particles $X_t^{[1]}, \ldots, X_t^{[N]}$, estimation of μ_t is hindered by the curse of dimensionality and this approach still faces significant computational challenges despite efforts to improve the original JKO scheme [SKL20, WL20].

A major advance in this direction was achieved by allowing for approximate Wasserstein gradients. More specifically, Stein Variational Gradient Descent (SVGD), recently proposed by [LW16] (see Section 2 for more details), consists in replacing $\nabla W_2 F(\mu)$ by its image $\mathcal{K}_\mu \nabla W_2 F(\mu)$ under the integral operator $\mathcal{K}_\mu : L^2(\mu) \to L^2(\mu)$ associated to a chosen kernel $K : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ and defined by $\mathcal{K}_\mu f(x) := \int K(x,y) f(y) d\mu(y)$ for $f \in L^2(\mu)$. This leads to the following process:

$$\dot{X}_t = -[\mathcal{K}_\mu \nabla W_2 F(\mu_t)](X_t), \quad \text{(SVGD)}$$

where we apply the integral operator \mathcal{K}_μ individually to each coordinate of the Wasserstein gradient. In turn, this kernelization trick overcomes most of the above computational bottleneck. Building on this perspective, [DNS19] introduced a new geometry, different from the Wasserstein geometry and which they call the Stein geometry, in which (SVGD) becomes the gradient flow of the KL divergence. However, despite this recent advance, the theoretical properties of SVGD as a sampling algorithm as well as guidelines for the choice of the kernel K are still largely unexplored.

In this work, we revisit the above view of SVGD as a kernelized gradient flow of the KL divergence over Wasserstein space that was put forward in [Liu17].

Our contributions. We introduce, in Section 2.3, a new perspective on SVGD by viewing it as kernelized gradient flow of the chi-squared divergence rather than the KL divergence. This perspective is fruitful in two ways. First, it uses a single integral operator \mathcal{K}_π—as opposed to (SVGD) —which requires a family of integral operators $\mathcal{K}_\mu, \mu \ll \pi$—providing a conceptually clear guideline for choosing K, namely: K should be chosen to make \mathcal{K}_π approximately equal to the identity operator. Second, under the idealized choice $\mathcal{K}_\pi = \text{id}$, we show that this gradient flow converges exponentially fast in KL divergence as soon as the target distribution π satisfies a Poincaré inequality. In fact, our results are stronger than exponential convergence and they highlight strong uniform ergodicity: the gradient flow forgets the initial distribution after a finite time that is at most half of the Poincaré constant. To establish this exponential convergence under a relatively weak condition (Poincaré inequality), we employ the following technique. While the gradient flow aims at minimizing the chi-squared divergence by following the curve in Wasserstein space with steepest descent, we do not track its progress with the objective function itself, the chi-squared divergence, but instead we track it with the KL divergence. This is in a sense dual to argument employed in [CLL+20], where the chi-squared divergence is used to track the progress of a gradient
flow on the KL divergence. A more standard analysis relying on Łojasiewicz inequalities also yields rates of convergence on the chi-squared divergence under stronger assumptions such as a log-Sobolev inequality, and log-concavity. These results establish the first finite-time theoretical guarantees for SVGD in an idealized setting.

Beyond providing a better understanding of SVGD, our novel perspective is instrumental in the development of a new sampling algorithm, which we call Laplacian Adjusted Wasserstein Gradient Descent (LAWGD) and present in Section 4. Although LAWGD is challenging to implement in high dimensions, we show that it possesses a striking theoretical property: assuming that the target distribution π satisfies a Poincaré inequality, LAWGD converges exponentially fast, with no dependence on the Poincaré constant. This scale invariance has been recently demonstrated for the Newton-Langevin diffusion [CLL+20], but under the additional assumption that π is log-concave. A successful implementation of LAWGD hinges on the spectral decomposition of a certain differential operator which is within reach of modern PDE solvers. As a proof of concept, we show that LAWGD performs well in one or two dimensions using a naïve finite differences method and leave the question of applying more sophisticated numerical solvers open for future research.

Related work. Since its introduction in [LW16], a number of variants of SVGD have been considered. They include a stochastic version [LLL+19], a version that approximates the Newton direction in Wasserstein space [DCM+18], a version that uses matrix kernels [WTBL19], an accelerated version [LZC+19], and a hybrid with Langevin [ZZCC18]. Several works have studied theoretical properties of SVGD, including its interpretation as a gradient flow under a modified geometry [Liu17,DNS19], and its asymptotic convergence [LLN19].

Notation. In this paper, all probability measures are assumed to have densities w.r.t. Lebesgue measure; therefore, we frequently abuse notation by identifying a probability measure with its Lebesgue density. For a differentiable kernel $K: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$, we denote by $\nabla_1 K: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^d$ (resp. $\nabla_2 K$) the gradient of the kernel w.r.t. the first (resp. second) argument. When describing particle algorithms, we use a subscript to denote the time index and brackets to denote the particle index, i.e., $X_t^{[i]}$ refers to the ith particle at time (or iteration number) t.

2. SVGD AS A KERNELIZED WASSERSTEIN GRADIENT FLOW

2.1 Wasserstein gradient flows

In this section, we review the theory of gradient flows on the space $\mathcal{P}_{2,ac}(\mathbb{R}^d)$ of probability measures absolutely continuous w.r.t. Lebesgue measure and possessing a finite second moment, equipped with the 2-Wasserstein metric W_2. We refer readers to [Vil03,San15,San17] for introductory treatments of optimal transport, and to [AGS08,Vil09] for detailed treatments of Wasserstein gradient flows.

Let $F: \mathcal{P}_{2,ac}(\mathbb{R}^d) \to \mathbb{R} \cup \{\infty\}$ be a functional defined on Wasserstein space. We say that a curve
$(\mu_t)_{t \geq 0}$ of probability measures is a Wasserstein gradient flow for the functional F if it satisfies
\[\partial_t \mu_t = \text{div} \left(\mu_t \nabla_{W_2} F(\mu_t) \right) \]
(2.1)
in a weak sense. Here, $\nabla_{W_2} F(\mu) := \nabla F(\mu)$ is the Wasserstein gradient of the functional F at μ, where $\delta F(\mu) : \mathbb{R}^d \to \mathbb{R}$ is the first variation of F at μ, defined by
\[\lim_{\varepsilon \to 0} \frac{F(\mu + \varepsilon \xi) - F(\mu)}{\varepsilon} = \int \delta F(\mu) \, d\xi, \quad \text{for all } \xi \text{ with } \int d\xi = 0, \]
and ∇ denotes the usual (Euclidean) gradient. Hence, the Wasserstein gradient, at each $\mu \in \mathcal{P}_{2,ac}(\mathbb{R}^d)$, is a map from \mathbb{R}^d to \mathbb{R}^d.

Using the continuity equation, we can give an Eulerian interpretation to the evolution equation (2.1) (see [San15, §4] and [AGS08, §8]). Given a family of vector fields $(v_t)_{t \geq 0}$, let $(X_t)_{t \geq 0}$ be a curve in \mathbb{R}^d with random initial point $X_0 \sim \mu_0$, and such that $(X_t)_{t \geq 0}$ is an integral curve of the vector fields $(v_t)_{t \geq 0}$, that is, $X_t = v_t(X_t)$. If we let μ_t denote the law of X_t, then $(\mu_t)_{t \geq 0}$ evolves according to the continuity equation
\[\partial_t \mu_t = -\text{div} (\mu_t v_t). \]
(2.2)
Comparing (2.1) and (2.2), we see that (2.1) describes the evolution of the marginal law $(\mu_t)_{t \geq 0}$ of the curve $(X_t)_{t \geq 0}$ with $X_0 \sim \mu_0$ and $\dot{X}_t = -[\nabla_{W_2} F(\mu)](X_t)$.

Wasserstein calculus provides the following (formal) calculation rule: the Wasserstein gradient flow $(\mu_t)_{t \geq 0}$ for the functional F dissipates F at the rate $\partial_t F(\mu_t) = -\mathbb{E}_{\mu_t}[\| \nabla_{W_2} F(\mu_t) \|^2]$. More generally, for a curve $(\mu_t)_{t \geq 0}$ evolving according to the continuity equation (2.2), the time-derivative of F is given by $\partial_t F(\mu_t) = \mathbb{E}_{\mu_t}[\nabla_{W_2} F(\mu_t), v_t]$.

In this paper, we are primarily concerned with two functionals: the Kullback-Leibler (KL) divergence $D_{KL}(\cdot \| \pi)$, and the chi-squared divergence $\chi^2(\cdot \| \pi)$ (see, e.g., [Tsy09]). It is a standard exercise [AGS08, San15] to check that Wasserstein gradients of these functionals are, respectively,
\[(\nabla_{W_2} D_{KL}(\cdot \| \pi))(\mu) = \nabla \ln \frac{d\mu}{d\pi}, \quad (\nabla_{W_2} \chi^2(\cdot \| \pi))(\mu) = 2\nabla \frac{d\mu}{d\pi}. \]
(2.3)

2.2 SVGD as a kernelized gradient flow of the KL divergence

SVGD\footnote{Throughout this paper, we call SVGD the generalization of the original method of [LW16, Liu17] that was introduced in [WTBL19].} is achieved by replacing the Wasserstein gradient $\nabla \ln (d\mu_t/d\pi)$ of the KL divergence with $\mathcal{K}_\mu \nabla \ln (d\mu_t/d\pi)$, leading to the particle evolution equation (SVGD$_\rho$).

Recalling that $\pi \propto e^{-V}$, we get
\[\mathcal{K}_\mu \nabla \ln \frac{d\mu_t}{d\pi}(x) := \int K(x, \cdot) \nabla \ln \frac{d\mu_t}{d\pi} \, d\mu_t = \int K(x, \cdot) \nabla V \, d\mu_t - \int \nabla K(x, \cdot) \, d\mu_t, \]
(2.4)
where, in the second identity, we used integration by parts. This expression shows that rather than having to estimate the distribution μ_t, it is sufficient to estimate the expectation $\int \nabla K(x, \cdot) \, d\mu_t$.

This is the key to the computational tractability of SVGD. Indeed, the kernelized gradient flow can be implemented by drawing \(N \) particles \(X^{[i]}_0, \ldots, X^{[N]}_0 \) i.i.d. \(\sim \mu_0 \) and following the coupled dynamics

\[
\dot{X}^{[i]}_t = -K_{\mu_t} \nabla \ln \frac{d\mu_t}{d\pi}(X^{[i]}_t) = -\int K(X^{[i]}_t, \cdot) \nabla \nabla V d\mu_t + \int \nabla_2 K(X^{[i]}_t, \cdot) d\mu_t, \quad i \in [N].
\]

With this, we can simply estimate the expectation with respect to \(\mu_t \) with an average over all particles. Discretizing the resulting process in time, we obtain the SVGD algorithm:

\[
X^{[i]}_{t+1} = X^{[i]}_t - \frac{h}{N} \sum_{j=1}^N K(X^{[i]}_t, X^{[j]}_t) \nabla V(X^{[j]}_t) + \frac{h}{N} \sum_{j=1}^N \nabla_2 K(X^{[i]}_t, X^{[j]}_t), \quad i \in [N]. \tag{2.5}
\]

2.3 SVGD as a kernelized gradient flow of the chi-squared divergence

Recall from Section 2.1 that by the continuity equation, the particle evolution equation (SVGD\(_p\)) translates into the following PDE that describes the evolution of the distribution \(\mu_t \) of \(X_t \):

\[
\partial_t \mu_t = \text{div}(\mu_t K_{\mu_t} \nabla \ln \frac{d\mu_t}{d\pi}). \tag{SVGD\(_d\)}
\]

We make the simple observation that

\[
K_{\mu_t} \nabla \ln \frac{d\mu_t}{d\pi}(x) = \int K(x, y) \nabla \ln \frac{d\mu_t}{d\pi}(y) d\mu_t(y) = \int K(x, y) \nabla \frac{d\mu_t}{d\pi}(y) d\pi(y) = K_{\pi} \nabla \frac{d\mu_t}{d\pi}(x).
\]

Thus, the continuous-dynamics of SVGD, as given in (SVGD\(_d\)), can equivalently be expressed as

\[
\partial_t \mu_t = \text{div}(\mu_t K_{\pi} \nabla \frac{d\mu_t}{d\pi}). \tag{SVGD}
\]

To interpret this equation, we recall that the Wasserstein gradient of the chi-squared divergence \(\chi^2(\cdot \| \pi) \) at \(\mu \) is \(2 \nabla (d\mu/d\pi) \) (by (2.3)), so the gradient flow for the chi-squared divergence is

\[
\partial_t \mu_t = 2 \text{div}(\mu_t \nabla \frac{d\mu_t}{d\pi}). \tag{CSF}
\]

Comparing (SVGD) and (CSF), we see that (up to a factor of 2), SVGD can be understood as the flow obtained by replacing the gradient of the chi-squared divergence, \(\nabla (d\mu/d\pi) \), by \(K_{\pi} \nabla (d\mu/d\pi) \).

Although (SVGD\(_d\)) and (SVGD) are equivalent ways of expressing the same dynamics, the formulation of (SVGD) presents a significant advantage: it involves a kernel integral operator \(K_{\pi} \) that does not change with time and depends only on the target distribution \(\pi \).

3. CHI-SQUARED GRADIENT FLOW

In this section, study the idealized case where \(K_{\pi} \) taken to be the identity operator. In this case, (SVGD) reduces to the gradient flow CSF. The existence, uniqueness, and regularity of this flow are studied in [OT11, OT13] and [AGS08, Theorem 11.2.1].

The rate of convergence of the gradient flow of the KL divergence is closely related to two functional inequalities: the Poincaré inequality controls the rate of exponential convergence in chi-squared divergence ([Pav14, Theorem 4.4], [CLL+20]) while a log-Sobolev inequality characterizes
the rate of exponential convergence of the KL divergence [BGL14, Theorem 5.2.1]. In this section, we show that these inequalities also guarantee exponential rates of convergence of CSF.

Recall that π satisfies a Poincaré inequality with constant C_P if
\[
\var f \leq C_P \mathbb{E}_\pi[\|\nabla f\|^2], \quad \text{for all locally Lipschitz } f \in L^2(\pi),
\tag{P}
\]
while π satisfies a log-Sobolev inequality with constant C_{LSI}
\[
\operatorname{ent}(f^2) := \mathbb{E}_\pi[f^2 \ln(f^2)] - \mathbb{E}_\pi[f^2] \ln \mathbb{E}_\pi[f^2] \leq 2C_{LSI} \mathbb{E}_\pi[\|\nabla f\|^2]
\tag{LSI}
\]
for all locally Lipschitz f for which $\operatorname{ent}(f^2) < \infty$.

We briefly review some facts regarding the strength of these assumptions. It is standard that the log-Sobolev inequality is stronger than the Poincaré inequality: (LSI) implies (P) with constant $C_P \leq C_{LSI}$. In turn, if π is α-strongly log-concave, i.e. $\nabla^2 V \succeq \alpha I_d$, then it implies the validity of (LSI) with $C_{LSI} \leq 1/\alpha$, and thus a Poincaré inequality holds too. However, a Poincaré inequality is in general much weaker than strong log-concavity. For instance, if λ_2^π denotes the largest eigenvalue of the covariance matrix of π, then it is currently known that π satisfies a Poincaré inequality as soon as it is log-concave, with $C_P \leq C(d)\lambda_2^\pi$, where $C(d)$ is a dimensional constant [Bob99, AGB15, LV17], and the well-known Kannan-Lovász-Simonovitz (KLS) conjecture [KLS95] asserts that $C(d)$ does not actually depend on the dimension.

Our first result shows that a Poincaré inequality suffices to establish exponential decay of the KL divergence along CSF. In fact, we establish a remarkable property, which we call strong uniform ergodicity: under a Poincaré inequality, CSF forgets its initial distribution after a time of no more than $C_P/2$. Uniform ergodicity is central in the theory of Markov processes [MT09, Ch. 16] but is often limited to compact state spaces. Moreover, this theory largely focuses on total variation, so the distance from the initial distribution to the target distribution is trivially bounded by 1.

Theorem 1. Assume that π satisfies a Poincaré inequality (P) with constant $C_P > 0$ and let $(\mu_t)_{t \geq 0}$ denote the law of CSF. Assume that $\chi^2(\mu_0 \| \pi) < \infty$. Then,
\[
D_{KL}(\mu_t \| \pi) \leq D_{KL}(\mu_0 \| \pi) e^{-\frac{2t}{C_P}}, \quad \forall \ t \geq 0.
\tag{3.1}
\]

In fact, a stronger convergence result holds:
\[
D_{KL}(\mu_t \| \pi) \leq (D_{KL}(\mu_0 \| \pi) \wedge 2) e^{-\frac{2t}{C_P}}, \quad \forall \ t \geq \frac{C_P}{2}.
\tag{3.2}
\]

Proof. Given the Wasserstein gradients (2.3) in Section 2.1, we get that $(\mu_t)_{t \geq 0}$ satisfies
\[
\partial_t D_{KL}(\mu_t \| \pi) = -2 \mathbb{E}_{\mu_t} \langle \nabla \ln \frac{d\mu_t}{d\pi}, \nabla \frac{d\mu_t}{d\pi} \rangle = -2 \mathbb{E}_{\pi} [\|\nabla \frac{d\mu_t}{d\pi}\|^2].
\]
Applying the Poincaré inequality (P) with $f = \frac{d\mu_t}{d\pi} - 1$, we get
\[
\partial_t D_{KL}(\mu_t \| \pi) \leq -\frac{2}{C_P} \chi^2(\mu_t \| \pi) \leq -\frac{2}{C_P} D_{KL}(\mu_t \| \pi),
\]
where, in the last inequality, we use the fact that $D_{KL}(\cdot \| \pi) \leq \chi^2(\cdot \| \pi)$ (see [Tsy09, §2.4]). The bound (3.1) follows by applying Grönwall’s inequality.
To prove (3.2), we use the stronger inequality $D_{KL}(\cdot \| \pi) \leq \ln[1 + \chi^2(\cdot \| \pi)]$ (see [Tsy09, §2.4]). Our differential inequality now reads:

$$\partial_t D_{KL}(\mu_t \| \pi) \leq -\frac{2}{C_p} \left(e^{D_{KL}(\mu_t \| \pi)} - 1 \right) \iff \partial_t \psi(D_{KL}(\mu_t \| \pi)) \leq -\frac{2}{C_p} \psi(D_{KL}(\mu_t \| \pi)),$$

where $\psi(x) = 1 - e^{-x} \leq 1$. Grönnwall’s inequality now yields

$$\psi(D_{KL}(\mu_t \| \pi)) \leq e^{-\frac{2t}{C_p}} \psi(D_{KL}(\mu_0 \| \pi)) \leq e^{-\frac{2t}{C_p}}.$$

Note that $x \leq 2\psi(x)$ whenever $\psi(x) \leq 1/e$. Thus, if $t \geq C_p/2$, we get $\psi(D_{KL}(\mu_t \| \pi)) \leq e^{-1}$ so

$$D_{KL}(\mu_t \| \pi) \leq 2\psi(D_{KL}(\mu_t \| \pi)) \leq e^{-\frac{2t}{C_p}},$$

which, together with (3.1), completes the proof of (3.2).

\[\square\]

Remark 1. In [CLL+20], it was observed that the chi-squared divergence decays exponentially fast along the gradient flow $(\mu_t)_{t \geq 0}$ for the KL divergence, provided that π satisfies a Poincaré inequality. This observation is made precise and more general in [MMS09] where it is noted that the gradient flow of a functional U dissipates a different functional V at the same rate that the gradient flow of W dissipates the functional U. A similar method is used to study the thin film equation in [CT02] and [Car11, §5].

Since we are studying the gradient flow of the chi-squared divergence, it is natural to ask whether CSF converges to π in chi-squared divergence as well. In the next results, we show quantitative decay of the chi-squared divergence along the gradient flow under a Poincaré inequality (P), but we obtain only a polynomial rate of decay. However, if we additionally assume either that π is log-concave or that it satisfies a log-Sobolev inequality (LSI), then we obtain exponential decay of the chi-squared divergence along CSF.

Theorem 2. Suppose that π satisfies a Poincaré inequality (P). Then, provided $\chi^2(\mu_0 \| \pi) < \infty$, the law $(\mu_t)_{t \geq 0}$ of CSF satisfies

$$\chi^2(\mu_t \| \pi) \leq \chi^2(\mu_0 \| \pi) \land \left(\frac{9C_p}{8t} \right)^2.$$

If we further assume that π is log-concave, then

$$\chi^2(\mu_t \| \pi) \leq \chi^2(\mu_0 \| \pi) e^{- \frac{t}{C_{LSI}}}.$$

Proof. The proof is deferred to Appendix B. \[\square\]

Under the stronger assumption (LSI), we can show strong uniform ergodicity as in Theorem 1.

Theorem 3. Assume that π satisfies a log-Sobolev inequality (LSI). Let $(\mu_t)_{t \geq 0}$ denote the law of CSF, and assume that $\chi^2(\mu_0 \| \pi) < \infty$. Then, for all $t \geq 7C_{LSI}$,

$$\chi^2(\mu_t \| \pi) \leq \left(\chi^2(\mu_0 \| \pi) \land 2 \right) e^{- \frac{t}{2C_{LSI}}}.$$
The proof is deferred to Appendix B.

Convergence in chi-squared divergence was studied in recent works such as [CLL19, VW19, CLL+20]. From standard comparisons between information divergences (see [Tsy09, §2.4]), it implies convergence in total variation distance, Hellinger distance, and KL divergence. Moreover, recent works have shown that the Poincaré inequality (P) yields transportation-cost inequalities which bound the 2-Wasserstein distance by powers of the chi-squared divergence [Din15, Led18, CLL+20, Liu20], so we obtain convergence in the 2-Wasserstein distance as well. In particular, we mention that [CLL+20] uses the chi-squared gradient flow (CSF) to prove a transportation-cost inequality.

4. LAPLACIAN ADJUSTED WASSERSTEIN GRADIENT DESCENT (LAWGD)

While the previous section leads to a better understanding of the convergence properties of SVGD in the case that K_π is the identity operator, it is still unclear how to choose the kernel K to approach this idealized setup. For SVGD with a general kernel K, the calculation rules of Section 2.1 together with the method of the previous section yield the formula

$$\partial_t D_{KL}(\mu_t \| \pi) = -\mathbb{E}_\pi \langle \nabla \frac{d\mu_t}{d\pi}, K_\pi \nabla \frac{d\mu_t}{d\pi} \rangle,$$

for the dissipation of the KL divergence along SVGD. From this, a natural way to proceed is to seek an inequality of the form

$$\mathbb{E}_\pi \langle f, K_\pi f \rangle \gtrsim \mathbb{E}_\pi [f^2], \quad \text{for all locally Lipschitz } f \in L^2(\pi). \tag{4.1}$$

Applying this inequality to each coordinate of $\nabla (d\mu_t / d\pi)$ separately and using a Poincaré inequality would then allow us to conclude as in the proof of Theorem 1. The inequality (4.1) can be interpreted as a positive lower bound on the smallest eigenvalue of the operator K_π. However, this approach is doomed to fail; under mild conditions on the kernel K, it is a standard fact that the eigenvalues of K_π form a sequence converging to 0, so no such spectral gap can hold.\(^2\)

This suggests that any approach which seeks to prove finite-time convergence results for SVGD in the spirit of Theorem 1 must exploit finer properties of the eigenspaces of the operator K_π. Motivated by this observation, we develop a new algorithm called Laplacian Adjusted Wasserstein Gradient Descent (LAWGD) in which the kernel K is chosen carefully so that $K_\pi = \mathcal{L}^{-1}$ is the inverse of the generator of the Langevin diffusion that has π as invariant measure.

More precisely, the starting point for our approach is the following integration-by-parts formula, which is a crucial component of the theory of Markov semigroups [BGL14]:

$$\mathbb{E}_\pi \langle \nabla f, \nabla g \rangle = \mathbb{E}_\pi [f \mathcal{L} g], \quad \text{for all locally Lipschitz } f, g \in L^2(\pi), \tag{4.2}$$

where $\mathcal{L} := -\Delta + \langle \nabla V, \nabla \cdot \rangle$. The operator \mathcal{L} is the (negative) generator of the standard Langevin diffusion with stationary distribution π [Pav14, §4.5]. We refer readers to Appendix A for background on the spectral theory of \mathcal{L}.

\(^2\)It is enough that K is a symmetric kernel with $K \in L^2(\pi \otimes \pi)$, and that π is not discrete (so that $L^2(\pi)$ is infinite-dimensional); see [BGL14, Appendix A.6].
In order to use (4.2), we replace \(-\mathcal{K}_\pi \nabla (d\mu_t/d\pi)\) by the vector field \(-\nabla \mathcal{K}_\pi (d\mu_t/d\pi)\). The new dynamics follow the evolution equation

\[
\partial_t \mu_t = \text{div}(\mu_t \nabla \mathcal{K}_\pi (d\mu_t/d\pi)). \tag{LAWGD}
\]

The vector field in the above continuity equation may also be written

\[
-\nabla \mathcal{K}_\pi \frac{d\mu_t}{d\pi}(x) = -\int \nabla_1 K(x, \cdot) \frac{d\mu_t}{d\pi} \, d\pi = -\int \nabla_1 K(x, \cdot) \, d\mu_t.
\]

Replacing \(\mu_t\) by an empirical average over particles and discretizing the process in time, we again obtain an implementable algorithm, which we give as Algorithm 1.

A careful inspection of Algorithm 1 reveals that the update equation for the particles in Algorithm 1 does not involve the potential \(V\) directly, unlike the SVGD algorithm (2.5); thus, the kernel for LAWGD must contain all the information about \(V\).

Our choice for the kernel \(K\) is guided by the following observation (based on (4.2)):

\[
\partial_t D_{\text{KL}}(\mu_t \| \pi) = -\mathbb{E}_\pi \langle \nabla \mathcal{K}_\pi (d\mu_t/d\pi), \nabla \mathcal{K}_\pi (d\mu_t/d\pi) \rangle = -\mathbb{E}_\pi \left[\frac{d\mu_t}{d\pi} \mathcal{L}_\pi \frac{d\mu_t}{d\pi} \right].
\]

As a result, we choose \(K\) to ensure that \(\mathcal{K}_\pi = \mathcal{L}^{-1}\). This choice yields

\[
\partial_t D_{\text{KL}}(\mu_t \| \pi) = -\mathbb{E}_\pi \left[(\frac{d\mu_t}{d\pi} - 1)^2 \right] = -\chi^2(\mu_t \| \pi). \tag{4.3}
\]

It remains to see which kernel \(K\) implements \(\mathcal{K}_\pi = \mathcal{L}^{-1}\). To that end, assume that \(\mathcal{L}\) has a discrete spectrum and let \((\lambda_i, \phi_i), i = 0, 1, 2, \ldots\) be its eigenvalue-eigenfunction pairs where \(\lambda_i\)'s are arranged in nondecreasing order. Assume further that \(\lambda_1 > 0\) (which amounts to a Poincaré inequality; see Appendix A) and define the following spectral kernel:

\[
\mathcal{K}_\mathcal{L}(x, y) = \sum_{i=1}^{\infty} \frac{\phi_i(x)\phi_i(y)}{\lambda_i} \tag{4.4}
\]

We now show that this choice of kernel endows LAWGD with a remarkable property: it converges to the target distribution exponentially fast, with a rate which has no dependence on the Poincaré constant. Moreover, akin to CSF—see (3.2)—it also also exhibit strong uniform ergodicity.

Theorem 4. Assume that \(\mathcal{L}\) has a discrete spectrum and that \(\pi\) satisfies a Poincaré inequality \((P)\) with some finite constant. Let \((\mu_t)_{t \geq 0}\) be the law of LAWGD with the kernel described above. Then, for all \(t \geq 1\),

\[
D_{\text{KL}}(\mu_t \| \pi) \leq \left(D_{\text{KL}}(\mu_0 \| \pi) \wedge 2 \right) e^{-t}.
\]

Proof. In light of (4.3), the proof is identical to that of Theorem 1. \(\square\)
The convergence rate in Theorem 4 has no dependence on the target measure. This scale-invariant convergence also appears in [CLL+20], where it is shown for the Newton-Langevin diffusion with a strictly log-concave target measure \(\pi \). In Theorem 4, we obtain similar guarantees under the much weaker assumption of a Poincaré inequality; indeed, there are many examples of non-log-concave distributions which satisfy a Poincaré inequality [VW19].

5. EXPERIMENTS

To implement Algorithm 1, we numerically approximate the kernel \(K = K_\mathcal{L} \) given in (4.4). When \(\pi \) is the standard Gaussian distribution on \(\mathbb{R} \), the eigendecomposition of the operator \(\mathcal{L} \) in (4.2) is known explicitly in terms of the Hermite polynomials [BGL14, §2.7.1], and we approximate the kernel via a truncated sum: \(\hat{K}(x,y) = \sum_{i=1}^{k} \lambda_i^{-1} \phi_i(x)\phi_i(y) \) (Figure 2) involving the smallest eigenvalues of \(\mathcal{L} \).

In the general case, we implement a basic finite difference (FD) method to approximate the eigenvalues and eigenfunctions of \(\mathcal{L} \). We obtain better numerical results by first transforming the operator \(\mathcal{L} \) into the Schrödinger operator \(\mathcal{L}_S := -\Delta + V_S \), where \(V_S := \frac{1}{4}\|\nabla V\|^2 - \frac{1}{2}\Delta V \). If \(\phi_S \) is an eigenfunction of \(\mathcal{L}_S \) with eigenvalue \(\lambda \) (normalized such that \(\int \phi_S^2 \, d\pi = 1 \)), then \(\phi := e^{V/2}\phi_S \) is an eigenfunction of \(L \) also with eigenvalue \(\lambda \) (and normalized such that \(\int \phi^2 \, d\pi = 1 \)); see [BGL14, §1.15.7].

On a grid of points (with spacing \(\varepsilon \)), if we replace the Laplacian with the FD operator \(\Delta_\varepsilon f(x) := \{ f(x-\varepsilon) + f(x+\varepsilon) - 2f(x) \}/\varepsilon^2 \) (in 1D), then the FD Schrödinger operator \(\mathcal{L}_{S,\varepsilon} := -\Delta_\varepsilon + V_S \) can be represented as a sparse matrix, and its eigenvalues and (unit) eigenvectors are found with standard linear algebra solvers. When the potential \(V \) is known only up to an additive constant, then the approximate eigenfunctions produced by this method are not normalized correctly; instead, they satisfy \(\|\phi\|_{L^2(\pi)} = C \) for some constant \(C \) (which is the same for each eigenfunction). In turn, this causes the kernel \(K \) in LAWGD to be off by a multiplicative constant. For implementation purposes, however, this constant is absorbed in the step size of Algorithm 1. We also note that the eigenfunctions are differentiated using a FD approximation.

To demonstrate, we sample from a mixture of three Gaussians: \(\frac{2}{5}\mathcal{N}(-3,1) + \frac{1}{5}\mathcal{N}(0,1) + \frac{2}{5}\mathcal{N}(4,2) \). We compare LAWGD with SVGD using the RBF kernel and median-based bandwidth as in [LW16]. We approximate the eigenfunctions and eigenvalues using a finite difference scheme, on 256 grid points evenly spaced between \(-14 \) and 14. Constant step sizes for LAWGD and SVGD are tuned and the algorithms are run for 5000 iterations, and the samples are initialized to be uniform on \([1,4] \). The results are displayed in Figure 3. All 256 discrete eigenfunctions and eigenvalues are used.
6. OPEN QUESTIONS

We conclude this paper with some interesting open questions. The introduction of the chi-squared divergence as an objective function allows us to obtain both theoretical insights about SVGD and a new algorithm, LAWGD. This perspective opens the possibility of identifying other functionals defined over Wasserstein space and that yield gradient flows which are amenable to mathematical analysis and efficient computation. Towards this goal, an intriguing direction is to develop alternative methods, besides kernelization, which provide effective implementations of Wasserstein gradient flows. Finally, we note that LAWGD provides a hitherto unexplored connection between sampling and computing the spectral decomposition of the Schrödinger operator, the latter of which has been intensively studied in numerical PDEs. We hope our work further stimulates research at the intersection of these communities.

Acknowledgments.
Philippe Rigollet was supported by NSF awards IIS-1838071, DMS-1712596, DMS-TRIPODS-1740751, and ONR grant N00014-17-1-2147. Sinho Chewi and Austin J. Stromme were supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program. Thibaut Le Gouic was supported by ONR grant N00014-17-1-2147 and NSF IIS-1838071.

APPENDIX A: REVIEW OF SPECTRAL THEORY

In this paper, we consider elliptic differential operators of the form $L = -\Delta + \langle \nabla V, \nabla \cdot \rangle$, where V is a continuously differentiable potential. In this section, we provide a brief review of the spectral theory of these operators, and we refer to [Eva10, §6.5] for a standard treatment.

The operator L (when suitably interpreted) is a linear operator defined on a domain $\mathcal{D} \subset L^2(\pi)$. For any locally Lipschitz function $f \in L^2(\pi)$, integration by parts shows that

$$E\pi[fL f] = E\pi[\|\nabla f\|^2].$$

Therefore, L has a non-negative spectrum. Also, we have $L 1 = 0$, so that 0 is always an eigenvalue of L. We say that L has a discrete spectrum if it has a countable sequence of eigenvalues $0 = \lambda_0 \leq \lambda_1 \leq \lambda_2 \leq \lambda_3 \leq \cdots$ and corresponding eigenfunctions $(\phi_i)_{i=1}^{\infty}$ which form a basis of \mathcal{D}. The eigenfunctions can be chosen to be orthogonal and normalized such that $\|\phi_i\|_{L^2(\pi)} = 1$; we always assume this is the case. Then, L can be expressed as

$$L = \sum_{i=1}^{\infty} \lambda_i \langle \phi_i, \cdot \rangle_{L^2(\pi)} \phi_i.$$

The operator L has a discrete spectrum under the following condition ([Fri34], [RS78, Theorem XIII.67], [BGL14, Corollary 4.10.9]):

$$V_S \in L^1_{\text{loc}}(\mathbb{R}^d), \quad \inf_{x} V_S > -\infty, \quad \text{and} \quad \lim_{\|x\| \to \infty} V_S(x) = +\infty,$$

where $V_S := -\Delta V + \frac{1}{2} \|\nabla V\|^2$. Moreover, under this condition we also have $\lambda_i \to \infty$ as $i \to +\infty$. For example, this condition is satisfied for $V(x) = \|x\|^\alpha$ for $\alpha > 1$, but not for $\alpha = 1$. In fact, for $\alpha = 1$, the spectrum of L is not discrete [BGL14, §4.1.1].
The Poincaré inequality (P) is interpreted as a spectral gap inequality, since it asserts that $\lambda_1 = 1/C_P > 0$. Thus, under a Poincaré inequality, $\mathcal{L} : \mathcal{D} \cap \{ f \in L^2(\pi) \mid \mathbb{E}_\pi f = 0 \} \to L^2(\pi)$ is bijective. Moreover, if it has a discrete spectrum, its inverse satisfies

$$\mathcal{L}^{-1} = \sum_{i=1}^{\infty} \lambda_i^{-1} \langle \phi_i, \cdot \rangle_{L^2(\pi)} \phi_i.$$

APPENDIX B: PROOFS OF THE CONVERGENCE GUARANTEES FOR THE CHI-SQUARED FLOW

In this section, we give proofs of the convergence results we stated in Section 3.

Proof of Theorem 2 (non-log-concave case). According to [CLL+20, Proposition 1], the Poincaré inequality implies the following inequality for the chi-squared divergence:

$$\chi^2(\mu \parallel \pi)^{3/2} \leq \frac{9C_P}{4} \mathbb{E}_\mu [\| \nabla \frac{d\mu}{d\pi} \|^2], \quad \forall \mu \ll \pi. \quad (B.1)$$

Since the Wasserstein gradient of $\chi^2(\cdot \parallel \pi)$ at μ is given by $2\nabla(d\mu/d\pi)$ (see Section 2.1), it yields

$$\partial_t \chi^2(\mu_t \parallel \pi) = -4 \mathbb{E}_{\mu_t} [\| \nabla \frac{d\mu_t}{d\pi} \|^2] \leq -\frac{16}{9C_P} \chi^2(\mu_t \parallel \pi)^{3/2}$$

Solving the above differential inequality yields

$$\chi^2(\mu_t \parallel \pi) \leq \frac{\chi^2(\mu_0 \parallel \pi)}{\{1 + 8t \sqrt{\chi^2(\mu_0 \parallel \pi) / (9C_P)}\}^2},$$

which implies the desired result.

We now prepare for the proof of exponentially fast convergence in chi-squared divergence for log-concave measures. The key to proving such results lies in differential inequalities of the form

$$\chi^2(\mu \parallel \pi) \leq C_{PL} \mathbb{E}_\mu [\| \nabla \frac{d\mu}{d\pi} \|^2], \quad \forall \mu \ll \pi, \quad (B.2)$$

which may be interpreted as a Polyak-Lojasiewicz (PL) inequality [KNS16] for $\chi^2(\cdot \parallel \pi)$. PL inequalities are well-known in the optimization literature, and can be even used when the objective is not convex [CMRS20]. In contrast, the preceding proof uses the weaker inequality (B.1), which may be interpreted as a Lojasiewicz inequality [Loj63].

To see that a PL inequality readily yields exponential convergence, observe that

$$\partial_t \chi^2(\mu_t \parallel \pi) = -4 \mathbb{E}_{\mu_t} [\| \nabla \frac{d\mu_t}{d\pi} \|^2] \leq -\frac{4}{C_{PL}} \chi^2(\mu_t \parallel \pi).$$

Together with Grönwall’s inequality, the differential inequality yields $\chi^2(\mu_t \parallel \pi) \leq \chi^2(\mu_0 \parallel \pi) e^{-\frac{4t}{C_{PL}}}.$

In order to prove a PL inequality of the type (B.2), we require two ingredients. The first one is a transportation-cost inequality for the chi-squared divergence proven in [Liu20], building on
the works [Din15, Led18]. It asserts that if π satisfies a Poincaré inequality (P), then the following inequality holds:

$$W_2^2(\mu, \pi) \leq 2C_P \chi^2(\mu \parallel \pi), \quad \forall \mu \ll \pi. \quad (B.3)$$

For the second ingredient, we use an argument of [OV00] to show that if π satisfies a chi-squared transportation-cost inequality such as (B.3), and in addition is log-concave, then it satisfies an inequality of the type (B.2). We remark that the converse statement, that is, if π satisfies a Poincaré inequality (B.2) then it satisfies an appropriate chi-squared transportation-cost inequality, was proven in [CLL+20] without the additional assumption of log-concavity. It implies that for log-concave distributions, the Poincaré inequality (B.2) and the chi-squared transportation-cost inequality (B.3) are, in fact, equivalent.

Theorem 5. Let π be log-concave, and assume that for some $q \in (1, \infty)$ and a constant $C > 0$,

$$W_2^2(\mu, \pi) \leq C \chi^2(\mu \parallel \pi)^{2/q}, \quad \forall \mu \ll \pi.$$

Then,

$$\chi^2(\mu \parallel \pi)^{2/p} \leq 4C E_{\mu} \left[\| \nabla d\mu / d\pi \|^2 \right], \quad \forall \mu \ll \pi, \quad (B.4)$$

where p satisfies $1/p + 1/q = 1$.

Proof. Following [OV00], let T be the optimal transport map from μ to π. Since $\chi^2(\cdot \parallel \pi)$ is displacement convex [OT11, OT13] and has Wasserstein gradient $2 \nabla (d\mu / d\pi)$ at μ (c.f. Section 2.1), the “above-tangent” formulation of displacement convexity ([Vil03, Proposition 5.29]) yields

$$0 = \chi^2(\pi \parallel \pi) \geq \chi^2(\mu \parallel \pi) + 2 E_{\mu} \left(\nabla d\mu / d\pi, T - \text{id} \right) \geq \chi^2(\mu \parallel \pi) - 2W_2(\mu, \pi) \sqrt{E_{\mu} \left[\| \nabla d\mu / d\pi \|^2 \right]},$$

where we used the Cauchy-Schwarz inequality for the last inequality. Rearranging the above display and using the transportation-cost inequality assumed in the statement of theorem, we get

$$\chi^2(\mu \parallel \pi) \leq 2W_2(\mu, \pi) \sqrt{E_{\mu} \left[\| \nabla d\mu / d\pi \|^2 \right]} \leq 2 \sqrt{C E_{\mu} \left[\| \nabla d\mu / d\pi \|^2 \right]} \chi^2(\mu \parallel \pi)^{1/q}.$$

The result follows by rearranging the terms. \qed

Proof of Theorem 2 (log-concave case). From the transportation-cost inequality (B.3) and Theorem 5 with $p = q = 2$, we obtain

$$\chi^2(\mu \parallel \pi) \leq 8C_P E_{\mu} \left[\| \nabla d\mu / d\pi \|^2 \right].$$

This PL inequality together with Grönwall’s inequality readily yields the result. \qed

We conclude this section with the proof of Theorem 3, which shows exponential convergence of CSF in chi-squared divergence under the assumption of a log-Sobolev inequality (LSI) (but without the assumption of log-concavity).
Proof of Theorem 3. We first claim that
\[\partial_t \chi^2(\mu_t \parallel \pi) \leq \frac{-4}{9C_{\text{LSI}}} \left[\chi^2(\mu_t \parallel \pi) + 1 \right]^{3/2} \ln \left[\chi^2(\mu_t \parallel \pi) + 1 \right]. \] (B.5)
Indeed, applying (LSI), we obtain
\[\partial_t \chi^2(\mu_t \parallel \pi) = -4 \int \| \nabla \frac{d\mu_t}{d\pi} \|^2 \, d\mu_t = -\frac{16}{9} \int \| \nabla \frac{d\mu_t}{d\pi} \|^{3/2} \, d\pi \leq -\frac{8}{9C_{\text{LSI}}} \text{ent}_\pi \left(\left\| \frac{d\mu_t}{d\pi} \right\|^3 \right). \]
Next, the variational formula for the entropy gives
\[\text{ent}_\pi f = \sup \{ \mathbb{E}_\pi (fg) : g \text{ satisfies } \mathbb{E}_\pi \exp g = 1 \}, \]
see [vH16, Lemma 3.15] or [BLM13, Theorem 4.13]. Choosing \(g = \ln \left(\frac{d\mu_t}{d\pi} \right) \) yields
\[\text{ent}_\pi \left(\left\| \frac{d\mu_t}{d\pi} \right\|^3 \right) \geq \frac{1}{2} \chi^2(\mu_t \parallel \pi) + 1 \]^{3/2} \ln \left[\chi^2(\mu_t \parallel \pi) + 1 \right],
where in the second inequality, we used that \(x \mapsto x \ln x \) is convex on \(\mathbb{R}_+ \) and in the third, we used that it increasing when \(x \geq 1 \) together with
\[\mathbb{E}_\pi \left(\left\| \frac{d\mu_t}{d\pi} \right\|^2 \right) = 1 + \chi^2(\mu_t \parallel \pi) \geq 1. \]
This proves (B.5).

To simplify the inequality (B.5), we use the crude bounds
\[\ln \left[\chi^2(\mu_t \parallel \pi) + 1 \right] \geq \begin{cases} 1, & \text{if } \chi^2(\mu_t \parallel \pi) \geq e - 1, \\ \chi^2(\mu_t \parallel \pi)/2, & \text{otherwise.} \end{cases} \]
It yields respectively
\[\partial_t \chi^2(\mu_t \parallel \pi) \leq \frac{-2}{9C_{\text{LSI}}} \begin{cases} 2\chi^2(\mu_t \parallel \pi)^{3/2}, & \text{if } \chi^2(\mu_t \parallel \pi) \geq e - 1, \\ \chi^2(\mu_t \parallel \pi), & \text{otherwise.} \end{cases} \] (B.6)
Solving the differential inequality in the first case yields
\[e - 1 \leq \chi^2(\mu_t \parallel \pi) \leq \left[\frac{9C_{\text{LSI}} \sqrt{\chi^2(\mu_0 \parallel \pi)}}{9C_{\text{LSI}} + 2t \sqrt{\chi^2(\mu_0 \parallel \pi)}} \right]^2 \leq \left[\frac{9C_{\text{LSI}}}{2t} \right]^2, \]
so that in this first case, it must holds that
\[t \leq \frac{9C_{\text{LSI}}}{2\sqrt{e - 1}} < 3.5C_{\text{LSI}} =: t_0. \]
Therefore, if \(t \geq t_0 \), we are in the second case. In particular, \(\chi^2(\mu_0 \parallel \pi) \leq e - 1 \leq 2 \) and integrating the differential inequality between \(t_0 \) and \(t \) we get

\[
\chi^2(\mu_t \parallel \pi) \leq \chi^2(\mu_0 \parallel \pi) \, e^{-\frac{2(t-t_0)}{\|C_{LSI}\|}} \leq \left(\chi^2(\mu_0 \parallel \pi) \wedge 2 \right) \, e^{-\frac{2(t-t_0)}{\|C_{LSI}\|}},
\]

where in the last inequality, we used the fact that \(t \mapsto \chi^2(\mu_t \parallel \pi) \) is decreasing so that it also holds \(\chi^2(\mu_0 \parallel \pi) \leq \chi^2(\mu_0 \parallel \pi) \). In particular, taking \(t \geq 2t_0 = 7C_{LSI} \) yields the desired result.

APPENDIX C: DETAILS FOR THE EXPERIMENTS

We give additional details for the experiments presented in this paper. All methods were implemented in Python. Since the Schrödinger operator requires the Laplacian and gradient of the potential \(V \), we employ automatic differentiation to avoid laborious calculations of these derivatives.

The probabilists’ Hermite polynomials are well-known to be eigenfunctions of the 1D Ornstein-Uhlenbeck operator \(\mathcal{L} \) given by \(\mathcal{L} f(x) := -f''(x) + xf'(x) \), and they satisfy the recursive relationship \(H_{n+1}(x) = xH_n(x) - nH_{n-1}(x) \), with \(H_0(x) = 1 \) and \(H_1(x) = x \). It also holds that \(H'_n(x) = nH_{n-1}(x) \). With these equations, it is easy to check that the eigenvalue corresponding to \(H_n \) is \(\lambda_n = n \). These are used as the eigenfunctions and eigenvalues in the standard normal example given in Figure 2. In the simulation, we use the first 150 Hermite polynomials. We run LAWGD for 2000 iterations with a constant step size, with initial points drawn uniformly from the interval \([2.5, 4.5]\).

In Figure 1, we display an example of sampling 50 particles from a mixture of two 2-dimensional Gaussian distributions given by \(\pi = \frac{1}{2}N((-1, -1)^\top, I_2) + \frac{1}{2}N((1, 1)^\top, I_2) \). To run this experiment, we use a 2-dimensional FD method, which approximates the Laplacian as

\[
\Delta_{\varepsilon} f(x, y) := \frac{f(x - \varepsilon, y) + f(x + \varepsilon, y) + f(x, y + \varepsilon) + f(x, y - \varepsilon) - 4f(x)}{\varepsilon^2}.
\]

We again use the Schrödinger operator for stability and use FD again to compute the gradients of the eigenfunctions. We use a 128 \times 128 grid of evenly spaced \(x \) and \(y \) values between \(-6\) and \(6\). We calculate only the bottom 100 eigenvalues and eigenfunctions, since the other eigenfunctions incur additional computational cost without noticeably changing the result. Any negative eigenvalues (which arise from numerical errors) are discarded.

Fig 4. Left: 50 particles and trajectories generated from \(\frac{1}{2}N((-1, -1)^\top, I_2) + \frac{1}{2}N((1, 1)^\top, I_2) \) with LAWGD. Middle: 50 particles and trajectories generated by SVGD. Right: true samples from the distribution.
Additionally, we display the results from running SVGD with the RBF kernel and median-based bandwith on this example with a less favorable initialization. True samples from π are displayed for comparison. Both LAWGD and SVGD are run for 20000 iterations with a constant step size. The samples from LAWGD tend to move very fast from their initial positions and then tend to settle into their final positions as seen in Figure 4. On the other hand, with constant step size, the samples of SVGD do not seem to converge, and one must use a decreasing step size scheme in order for the particles to stabilize. We also note that many of the samples generated by SVGD tend to blow up with a constant step size.

In Figure 5, we plot the particles of LAWGD and SVGD at iterations 100, 200, 1000, and 2000 to compare the speed of convergence.

REFERENCES

[AGB15] D. Alonso-Gutiérrez and J. Bastero, *Approaching the Kannan-Lovász-Simonovits and variance conjectures*, Lecture Notes in Mathematics 2131, Springer, Cham, 2015.

[AGS08] L. Ambrosio, N. Gigli, and G. Savaré, *Gradient flows: in metric spaces and in the space of probability measures*, Springer Science & Business Media, 2008.

[BGL14] D. Bakry, I. Gentil, and M. Ledoux, *Analysis and geometry of Markov diffusion operators*, Grundlehren der Mathematischen Wissenschaften /Fundamental Principles of Mathematical Sciences/ 348, Springer, Cham, 2014.

[Ber18] E. Bernton, Langevin Monte Carlo and JKO splitting, in *Proceedings of the 31st Conference On Learning Theory* (S. Bubeck, V. Perchet, and P. Rigollet, eds.), *Proceedings of Machine Learning Research* 75, PMLR, 2018, pp. 1777–1798.

[Bob99] S. G. Bobkov, Isoperimetric and analytic inequalities for log-concave probability measures, 27 (1999), 1903–1921.
SVGD AS A KERNELIZED WASSERSTEIN GRADIENT FLOW

[BLM13] S. Boucheron, G. Lugosi, and P. Massart, Concentration inequalities, Oxford University Press, Oxford, 2013, A nonasymptotic theory of independence, With a foreword by Michel Ledoux.

[CLL19] Y. Cao, J. Lu, and Y. Lu, Exponential decay of Rényi divergence under Fokker-Planck equations, J. Stat. Phys. 176 (2019), 1172–1184.

[Car11] E. A. Carlen, Functional inequalities and dynamics, in Nonlinear PDE’s and Applications, Springer, 2011, pp. 17–85.

[CT02] J. A. Carrillo and G. Toscani, Long-time asymptotics for strong solutions of the thin film equation, Comm. Math. Phys. 225 (2002), 551–571.

[CB18] X. Cheng and P. Bartlett, Convergence of Langevin MCMC in KL-divergence, in Algorithmic Learning Theory 2018, Proc. Mach. Learn. Res. (PMLR) 83, Proceedings of Machine Learning Research PMLR, 2018, p. 26.

[CCBJ18] X. Cheng, N. S. Chatterji, P. L. Bartlett, and M. I. Jordan, Underdamped Langevin MCMC: A non-asymptotic analysis, in Proceedings of the 31st Conference On Learning Theory (S. Bubeck, V. Perchet, and P. Rigollet, eds.), Proceedings of Machine Learning Research 75, PMLR, 07 2018, pp. 300–323.

[CLL+20] S. Chewi, T. Le Gouic, C. Lu, T. Maunu, P. Rigollet, and A. J. Stromme, Exponential ergodicity of mirror-Langevin diffusions, arXiv e-prints (2020).

[CMRS20] S. Chewi, T. Maunu, P. Rigollet, and A. J. Stromme, Gradient descent algorithms for Bures-Wasserstein barycenters, arXiv e-prints (2020).

[Dal17a] A. Dalalyan, Further and stronger analogy between sampling and optimization: Langevin Monte Carlo and gradient descent, in Proceedings of the 2017 Conference on Learning Theory (S. Kale and O. Shamir, eds.), Proceedings of Machine Learning Research 65, PMLR, Amsterdam, Netherlands, 2017, pp. 678–689.

[Dal17b] A. S. Dalalyan, Theoretical guarantees for approximate sampling from smooth and log-concave densities, Journal of the Royal Statistical Society: Series B (Statistical Methodology) 79 (2017), 651–676.

[DRD20] A. S. Dalalyan and L. Riou-Durand, On sampling from a log-concave density using kinetic Langevin diffusions, Bernoulli 26 (2020), 1956–1988.

[DCM+18] G. Detommaso, T. Cui, Y. Marzouk, A. Spantini, and R. Scheichl, A Stein variational Newton method, in Advances in Neural Information Processing Systems, 2018, pp. 9169–9179.

[Din15] Y. Ding, A note on quadratic transportation and divergence inequality, Statist. Probab. Lett. 100 (2015), 115–123.

[DNS19] A. Duncan, N. Nuesken, and L. Szpruch, On the geometry of Stein variational gradient descent, arXiv e-prints (2019).

[DMM19] A. Durmus, S. Majewski, and B. A. Miasojedow, Analysis of Langevin Monte Carlo via convex optimization, J. Mach. Learn. Res. 20 (2019), Paper No. 73, 46.

[DM17] A. Durmus and E. Moulines, Nonasymptotic convergence analysis for the unadjusted Langevin algorithm, Ann. Appl. Probab. 27 (2017), 1551–1587.

[DCWY19] R. Dwivedi, Y. Chen, M. J. Wainwright, and B. Yu, Log-concave sampling: Metropolis-Hastings algorithms are fast, Journal of Machine Learning Research 20 (2019), 1–42.

[Eva10] L. C. Evans, Partial differential equations, second ed., Graduate Studies in Mathematics 19, American Mathematical Society, Providence, RI, 2010.
[Fri34] K. Friedrichs, Spektraltheorie halbbeschränkter Operatoren und Anwendung auf die Spektralzerlegung von Differentialoperatoren, 109 (1934), 465–487.

[vH16] R. van Handel, Probability in high dimension, 2016, Lecture Notes (Princeton University).

[HKRC18] Y.-P. Hsieh, A. Kavis, P. Rolland, and V. Cevher, Mirrored Langevin dynamics, in Advances in Neural Information Processing Systems, 2018, pp. 2878–2887.

[JKO98] R. Jordan, D. Kinderlehrer, and F. Otto, The variational formulation of the Fokker-Planck equation, SIAM Journal on Mathematical Analysis 29 (1998), 1–17.

[KLS95] R. Kannan, L. Lovász, and M. Simonovits, Isoperimetric problems for convex bodies and a localization lemma, Discrete Comput. Geom. 13 (1995), 541–559.

[KNS16] H. Karimi, J. Nutini, and M. Schmidt, Linear convergence of gradient and proximal-gradient methods under the Polyak-Lojasiewicz condition, in Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Springer, 2016, pp. 795–811.

[Led18] M. Ledoux, Remarks on some transportation cost inequalities, 2018.

[LV17] Y. T. Lee and S. S. Vempala, Eldan’s stochastic localization and the KLS hyperplane conjecture: an improved lower bound for expansion, in 58th Annual IEEE Symposium on Foundations of Computer Science—FOCS 2017, IEEE Computer Soc., Los Alamitos, CA, 2017, pp. 998–1007.

[LLL+19] L. Li, Y. Li, J.-G. Liu, Z. Liu, and J. Lu, A stochastic version of Stein variational gradient descent for efficient sampling, arXiv e-prints (2019).

[LZC+19] C. Liu, J. Zhuo, P. Cheng, R. Zhang, and J. Zhu, Understanding and accelerating particle-based variational inference, in International Conference on Machine Learning, 2019, pp. 4082–4092.

[Liu17] Q. Liu, Stein variational gradient descent as gradient flow, in Advances in Neural Information Processing Systems 30 (I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, eds.), Curran Associates, Inc., 2017, pp. 3115–3123.

[LW16] Q. Liu and D. Wang, Stein variational gradient descent: A general purpose Bayesian inference algorithm, in Advances in Neural Information Processing Systems, 2016, pp. 2378–2386.

[Liu20] Y. Liu, The Poincaré inequality and quadratic transportation-variance inequalities, Electron. J. Probab. 25 (2020), Paper No. 1, 16.

[Loj63] S. Lojasiewicz, Une propriété topologique des sous-ensembles analytiques réels, Les équations aux dérivées partielles 117 (1963), 87–89.

[LLN19] J. Lu, Y. Lu, and J. Nolen, Scaling limit of the Stein variational gradient descent: The mean field regime, SIAM Journal on Mathematical Analysis 51 (2019), 648–671.

[MCC+19] Y.-A. Ma, N. Chatterji, X. Cheng, N. Flammarion, P. Bartlett, and M. I. Jordan, Is there an analog of Nesterov acceleration for MCMC?, arXiv e-prints (2019).

[MWBG12] J. Martin, L. C. Wilcox, C. Burstedde, and O. Ghattas, A stochastic Newton MCMC method for large-scale statistical inverse problems with application to seismic inversion, SIAM J. Sci. Comput. 34 (2012), A1460–A1487.

[MMS09] D. Matthes, R. J. McCann, and G. Savaré, A family of nonlinear fourth order equations of gradient flow type, Comm. Partial Differential Equations 34 (2009), 1352–1397.
S. Meyn and R. L. Tweedie, Markov chains and stochastic stability, 2nd ed., Cambridge University Press, USA, 2009.

S.-i. Ohta and A. Takatsu, Displacement convexity of generalized relative entropies, *Adv. Math.* 228 (2011), 1742–1787.

S.-i. Ohta and A. Takatsu, Displacement convexity of generalized relative entropies. II, *Comm. Anal. Geom.* 21 (2013), 687–785.

F. Otto and C. Villani, Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality, *Journal of Functional Analysis* 173 (2000), 361–400.

G. A. Pavliotis, Stochastic processes and applications: diffusion processes, the Fokker-Planck and Langevin equations, 60, Springer, 2014.

M. Reed and B. Simon, Methods of modern mathematical physics. IV. Analysis of operators, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978.

A. Salim, A. Korba, and G. Luise, Wasserstein proximal gradient, *arXiv e-prints* (2020).

F. Santambrogio, Optimal transport for applied mathematicians, Progress in Nonlinear Differential Equations and their Applications 87, Birkhäuser/Springer, Cham, 2015, Calculus of variations, PDEs, and modeling.

F. Santambrogio, {Euclidean, metric, and Wasserstein} gradient flows: an overview, *Bulletin of Mathematical Sciences* 7 (2017), 87–154.

U. Simsekli, R. Badeau, A. T. Cemgil, and G. Richard, Stochastic quasi-Newton Langevin Monte Carlo, in Proceedings of the 33rd International Conference on International Conference on Machine Learning - Volume 48, ICML’16, JMLR.org, 2016, p. 642–651.

A. B. Tsybakov, Introduction to nonparametric estimation, Springer Series in Statistics, Springer, New York, 2009, Revised and extended from the 2004 French original, Translated by Vladimir Zaiats.

S. Vempala and A. Wibisono, Rapid convergence of the unadjusted Langevin algorithm: isoperimetry suffices, in *Advances in Neural Information Processing Systems* 32 (H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett, eds.), Curran Associates, Inc., 2019, pp. 8094–8106.

C. Villani, Topics in optimal transportation, Graduate Studies in Mathematics 58, American Mathematical Society, Providence, RI, 2003.

C. Villani, Optimal transport, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 338, Springer-Verlag, Berlin, 2009, Old and new.

D. Wang, Z. Tang, C. Bajaj, and Q. Liu, Stein variational gradient descent with matrix-valued kernels, in *Advances in Neural Information Processing Systems* 32 (H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett, eds.), Curran Associates, Inc., 2019, pp. 7836–7846.

Y. Wang and W. Li, Information Newton’s flow: second-order optimization method in probability space, *arXiv e-prints* (2020).

A. Wibisono, Sampling as optimization in the space of measures: The Langevin dynamics as a composite optimization problem, in *Conference on Learning Theory, COLT*
2018, Stockholm, Sweden, 6-9 July 2018 (S. Bubeck, V. Perchet, and P. Rigollet, eds.), Proceedings of Machine Learning Research 75, PMLR, 2018, pp. 2093–3027.

[Wib19] A. Wibisono, Proximal Langevin algorithm: rapid convergence under isoperimetry, arXiv e-prints (2019).

[ZZCC18] J. Zhang, R. Zhang, L. Carin, and C. Chen, Stochastic particle-optimization sampling and the non-asymptotic convergence theory, arXiv e-prints (2018).

[ZPFP20] K. S. Zhang, G. Peyré, J. Fadili, and M. Pereyra, Wasserstein control of mirror Langevin Monte Carlo, arXiv e-prints (2020).

Department of Mathematics
Massachusetts Institute of Technology
77 Massachusetts Avenue,
Cambridge, MA 02139-4307, USA