Superconducting fault current limiter with fast vacuum commutation modulus.

D Alferov, D Yevsin, L Fisher, V Ivanov and V Sidorov

All-Russian Electrical Engineering Institute (VEI),
12 Krasnokazarmennaya street, Moscow, Russia

E-mail: sidorov@vei.ru

Abstract. A new approach to a problem of creation of a resistive version of superconducting fault current limiters (FCL) on the basis of HTS materials has been considered. According to this approach, a scheme of FCL is added by a commutation modulus which contains a fast vacuum interrupter. This interrupter allows one to switch off the transport current as soon as 5 ms after transition of the HTS element to the normal state. The proposed scheme allows one to restrict more than an order in value a necessary operation time of FCL in a regime of a current limitation. As a result, a time of recovering the superconducting state can be significantly reduced that allows FCL to operate in automatic iterative regime. The considering device can operate not only in high voltage ac transmission lines but also in dc electrical networks. A numerical simulation of transit processes in a proposed scheme of FCL has been performed for different regimes and its features are analyzed with respect to other schemes of FCL. An experimental study of test mock-up commutation elements of FCL has been performed. This study demonstrates an efficiency of the proposed scheme. A test of a FCL model with the limiting current up to 15 kA has been realized.

1. Introduction

The issues of power supply reliability and protection of costly electrical equipment from damage due to short-circuits in electric systems become more vital as these systems become more powerful. Mechanical and thermal strains (proportional to the square of current) occurring in the system due to short circuits make engineers design all the components of the system with much greater tolerances, which causes a significant price boost of electrical equipment.

One of the solutions to this problem is the use of different current-limiting devices. The issue of current-limiter characteristics improvement is one of the challenges in power grids of any voltage class, as it has always been.

Designing of short-circuit current-limiters based on high-temperature superconductors (HTSC) is one of the most promising ways of electrical equipment protection [1, 2].

The resistive current-limiter on the basis of second generation HTSC appears to be one of the most promising technologies among the other current-limiters in terms of size and price. It limits current due to high nonlinearity of current-voltage characteristic in the process of transition from superconductivity to normal state.

Economic expediency of resistor-type current-limiters designing is specified by the cost of HTSC-coil and cryostat, which is proportional to the volume of superconductor. The minimum volume of HTSC-coil under the condition of its adiabatic heating is

\[V \sim Uldt/C_p\Delta T \]

(1)

\(^{1}\text{To whom any correspondence should be addressed.}\)
is mainly specified by the network voltage U, amplitude of current I, thermal capacity C_r in the normal state, duration of current-limitation mode dt and the admissible temperature of HTSC-coil heating ΔT.

Switchgear is supposed to provide automatic reclosing (ARC) for reliable electric power supply. ARC mode stands for reclosing of the network section where short circuit took place as fast as 0.3 seconds after it was switched off.

To provide the automatic reclosing mode, HTSC coil must regain its superconducting mode in a period faster than 0.3 seconds. The heating temperature of HTSC coil during current limitation can be decreased by increasing of the weight of HTSC-wire and shortening of current-limiting mode duration. Considering the high price of HTSC-wire ranging from 60 to 100 per a meter the way of weight increasing is not an option. The only alternative is to decrease the duration of current-limiting mode dt, which is determined by the total shutdown time of the network circuit-breakers. The total shutdown time of modern network circuit-breakers is approximately 3-5 cycles. These circuit-breakers are designed to cut off short-circuit currents as high as tens of kA.

Duration of current-limitation mode dt can be reduced to half cycle if the HTSC element limiting short-circuit current to an acceptable value (less than 10 kA) is connected in series with a high speed vacuum circuit-breaker [3].

2. Basic circuit diagram of fault current limiter with vacuum commutation modulus.

The present paper outlines the circuit of the superconducting resistive current-limiting device with the use of high speed vacuum circuit-breaker and triggered vacuum switch with the purpose to reduce the duration of the current-limiting operation (dt). Such a diagram allows to limit and cut off short-circuit currents in the AC and DC networks. The basic circuit diagram is shown on figure 1.

![Figure 1. The basic circuit diagram of the superconducting current limiter.](image)

The current limiter features an HTSC resistive coil R_2, capacitor C, linear resistor Z and high-speed vacuum circuit-breaker CB. To decrease the time it influences HTSC-coil R_1 the time of circuit-breaker CB actuation shouldn’t exceed 5 ms.

Non-linear resistor R_1 is aimed at limiting switching overloads occurring at the moment of current cut-off with the circuit-breaker CB and power absorption, accumulated in the inductance of the external circuit L_1. Electric circuit consisting of capacitor C, inductance L_2 and triggered vacuum switch TVS creates countercurrent in the circuit of circuit-breaker CB. The following equations must be true for current cut-off in circuit-breaker CB and triggered vacuum switch TVS.
Capacitor C is charged by resistance Z after transition of the HTSC into the normal state. After the actuation of TVS alternating current with the frequency $\omega_2 \approx \frac{2\pi}{\sqrt{L_2C}}$ arises in L_2C circuit. This current provides zero-crossing of current in the circuit-breaker CB in condition the equations 2 and 3 are true.

The current-limiting device operates as follows.

When the current rises up to the current setting I_0, a command is given to move apart the contacts of the circuit-breaker CB. Parameters of HTSC are precisely selected to transition it from superconducting operation into normal state just before (~1 ms before) the contacts of the circuit-breaker are moved apart.

After the superconductor transitions to normal state the capacitor C is charged up to the voltage $U_c \approx IR_2$. At the moment when the gap between the contacts is at maximum, a command is given to turn on the TVS. After the TVS is on, the current in CB goes rapidly to zero until the current is finally off. Provided the conditions 2 and 4 are observed, an alternating current with frequency $\omega_1 \approx \frac{2\pi}{\sqrt{(L_1+L_2)C}}$ flows through the TVS and it is cut off when the current crosses zero for the first time. The energy accumulated in the inductance of the external circuit L_1 is absorbed by non-linear resistance R_1 and the full current rapidly drops to zero. After the HTSC R_2 returns to the superconducting state, current-limiting device for short-circuit is ready for work again.

As an example, a short-circuit current limiting process in the DC circuit was calculated. We have reviewed the electric circuit shown on figure 1. The calculation was made under the following conditions: rated voltage 4kV, inductance $L_1 = 2$ mH, capacitance of the capacitor $C=100$ μF, inductance $L_2 = 40$ μH, resistance $Z=10$ Ohm, HTSC resistance $R_2=1$ Ohm. The contacts of the circuit-breaker CB are moved apart 3 ms after the setting current is reached. The superconductor transitions to normal state at $I=8$ kA. The level of voltage limitation in non-linear resistance is 9 kV. Figure 2 shows the currents in the circuit-breaker CB (curve 1), R_2 (curve 2) and TVS (curve 3).

![Figure 2](image_url)
Figure 3. Diagrams of currents in current-limiter: 1-current of the inductance of external circuit L_1, 2-current of non-linear resistance Z, 3-current of capacitor C.

Figure 3 shows current changes in the inductance of external circuit L_1 (curve 1), HTSC voltage R_2 (curve 2) and capacitor voltage C (curve 3). Figure 4 illustrates the change in voltage of the circuit-breaker CB (curve 1), HTSC R_2 (curve 2) and capacitor C (curve 3). The calculated diagrams of current and voltage show that circuit-breaker CB is capable of disconnecting current 1 ms after the superconductor transitions to the normal state, after which the current in HTSC R_2 goes down to zero within 2 seconds.

Figure 4. Diagrams of voltage in current-limiter: 1- voltage of the circuit-breaker CB, 2- voltage of HTSC R_2, 3- voltage of capacitor C.

Thus, according to (1), the minimal volume of HTSC in the diagram of the switching superconducting current-limiting device for short-circuit currents can be significantly (by several times) reduced in comparison with other known superconducting current-limiting devices. This allows to reduce the cost of the superconducting current-limiting device.

3. Testing of the basic circuit diagram of the current limiter

Electric diagram of the experiment is shown on figure 5 HTSC-coil was simulated with a R_1 resistance connected in parallel with the vacuum interrupter Q_3 driven by electromagnetic drive Y_3. Closed
position of the contacts of Q_1 modeled the superconducting state of HTSC whereas the open contacts simulated the normal state of HTSC with resistance R_1. As Q_1 we used vacuum interrupter (VI) with a transverse axially symmetric magnetic field. Such a vacuum interrupter is capable of disconnecting direct current up to 300 A at voltage up to 10 kV [4].

The model of the current-limiting device consisted of HTSC-coil model (R_1Q_3) connected in parallel with the series-connected circuit of linear resistance $R_2=13$ Ohm and capacitor $C_1=5 \mu$F. The vacuum interrupter Q_2 with electromagnetic drive Y_3 was connected in-series to this circuit. For creation of a countercurrent impulse in circuit Q_2 the circuit containing capacitor C_1, inductance $L_1 = 2 \mu$H and a triggered vacuum switch TVS were used. In parallel Q_2 the nonlinear resistor R_3 limiting voltage at a level of 1.5 kV was connected.

![Figure 5. The test circuit.](image)

The experimental stand consisted from charging device G, the capacitor bank with capacity $C_0 = 10 \mu$F at maximum voltage 5 kV and inductance $L_0 = 6$ mH. The breadboard model of a HTSC current limiting device was connected to preliminary charged capacitor bank by means of vacuum contactor (Q_1Y_1). Before tests contacts in VI Q_1 were opened, and in VI Q_2 and Q_3 were closed. The maximum gap of contacts in all VI was $d = 4$ mm.

A current value was adjusted by change of charging voltage U_0. After charging of capacitor bank S_0, up to set up voltage U_0, control unit CS gave out a command on closing contactor Q_1Y_1. After that with time delay the control pulse on opening contacts in Q_2 and Q_3 were applied. The triggering pulse on closing TVS was applied approximately through 2-3 ms after transition of a current to resistance R_1.

During experiments a current in charging circuit was measured with a current sensor LT-100 working on the basis of Hall effect (106 A/V) and a current I_l in the inductance L_1 was measured with Rogovsky coil with sensitivity 430 A/V. A voltage U_1 on resistor R_1 was measured with help of voltage divider with factor 1:217. A voltage U_2 on VI Q_2 was measured with voltage sensor based on Hall effect LV-100 with ration factor 1:200. Electric signals were registered with a digital oscillograph Tektronix TDS3000B with the subsequent computer-based processing.
The experimental testing of current-limiting model was carried out at voltage $U_0=500-600$ V. After the contacts of Q_1 were closed (without application of any control signals to Q_2 and Q_3) a sinusoidal current simulating short-circuit current flowed in the discharge circuit. This current had a period of 48.6 ms and an amplitude of the first half-wave equaling 550-670 A. When all the control impulses were applied the current-limiting device limited the current to 200-300 A with its subsequent switching-off in 2-3 ms. The delay for the control impulse applied to the drive of Q_1 was elaborately selected to provide for the current transition to resistance R_1 at current level \sim300A. The typical oscillograms of I_0 and I_t currents and U_0 and U_2 voltages for $R_1=0.9$ Ohm and 1.9 Ohm are shown on figure 6 and figure 7 respectively. The oscillograms of currents and voltages match the results of numerical modeling.

![Figure 6](image1.png)

Figure 6. Oscillograms of currents I_0 (trace 2, 530 A/div., 2 ms/ div.), I_t (trace 3, 860 A/ div., 2 ms/ div.) and voltages U_1 (trace 1, 434 V/ div., 2 ms/ div.), U_2 (trace 4, 1000 V/ div., 2 ms/ div.) at $R_1 = 0.9$ Ohm.

![Figure 7](image2.png)

Figure 7. Oscillograms of currents I_0 (trace 2, 530 A/div., 2 ms/ div.), I_t (trace 3, 860 A/ div., 2 ms/ div.) and voltages U_1 (trace 1, 1085 V/ div., 2 ms/ div.), U_2 (trace 4, 1000 V/ div., 2 ms/ div.) at $R_1 = 1.9$ Ohm.

4. **Acknowledgments**

In course of experiments the short-circuit current-limitation circuit proved efficient both in AC and DC networks. That circuit provides for auto fine-tuning of the counter current impulse amount to the limiting current.

For testing of the current-limiting device we have designed a high speed vacuum circuit-breaker featuring 3 ms break-time, 3000 A rated current and breaking current up to 15 kA.

The work is supported by the Russian fund of basic research (grant 06-08-01483 and grant 06-08-00096).
5. References
1. Salasoo L et al. 1995 IEEE Trans. on Magnetics Comparison of superconducting fault current limiter concepts in electric utility applications 28 No 2 1079-1082
2. Kalsi S and Malozemoff A 2004 Proceeding of IEEE Power Engineering Society Meeting HTS Fault Current Limiter Concept June 6-10
3. Hori T, Otani A, Kaiho K, Yamaguchi I, Morita M. and Yanabu S 2006 IEEE Trans. Appl. Superconductivity Study of superconducting fault current limiter using vacuum interrupter driven by electromagnetic repulsion force for commutating switch Vol. 16 No 4 1999-2004
4. Alferov D F, Ivanov V P, Sidorov V A, 2003 IEEE Trans. on Plasma Science Characteristics of DC Vacuum Arc in the Transverse Axially Symmetric Magnetic Field 31 No 5 918-922.