Effectiveness of Biofeedback Therapy in Patients with Bowel Dysfunction Following Rectal Cancer Surgery: A Systemic Review with Meta-Analysis

Haoze Li, Ce Guo, Jiale Gao, Hongwei Yao

Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Cancer Invasion and Metastasis Research and National Clinical Research Center for Digestive Diseases, Beijing, 100050, People’s Republic of China

Correspondence: Hongwei Yao, Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Cancer Invasion and Metastasis Research and National Clinical Research Center for Digestive Diseases, 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, People’s Republic of China, Email yaohongwei@ccmu.edu.cn

Objective: To identify, systematically review and synthesize the evidence on the effectiveness of biofeedback therapy in patients with bowel dysfunction following rectal cancer surgery.

Data Sources: Four electronic databases (PubMed 1974–2021; Embase1980–2021; Cochrane databases and the trial registers) were systematically searched by reviewers from inception through March 2021.

Study Selection: Randomized controlled trials (RCTs), cohort studies, and case series studies were included for adults with bowel dysfunction following rectal cancer surgery. All participants received an intervention of biofeedback treatment. Any outcomes that can evaluate the patient’s bowel function were the primary research endpoint, while the quality of life was the second endpoint. The disagreements between the two reviewers were resolved after discussion and the third independent reviewer’s ruling. As a result, 12 of 185 studies met selection criteria and were included in the review.

Data Extraction: We designed an electronic data extraction form and data were extracted independently. The methodological quality of included studies was assessed using the Cochrane Risk of Bias, the MINORS scale, and the Institute of Health Economics scale.

Data Synthesis: Meta-analyses were conducted for case series only and narrative syntheses were completed. Key findings included significant improvements in bowel function as well as health-related quality of life after biofeedback therapy. (Wexner score: t=7, MD=3.33; 95% CI [2.48, 4.18]) and (Vaizey score: t=3, MD=2.46; 95% CI [1.98, 2.93]). Subgroup analysis of Wexner score: receiving electrical stimulation therapy (t=3, MD=2.36; 95% CI [1.51, 3.22]), not receiving electrical stimulation (t=4, MD=3.79; 95% CI [2.66, 4.93]); not receiving adjuvant chemoradiotherapy (t=3, MD=2.42; 95% CI [1.61, 3.24]), chemotherapy and radiotherapy (t=1, MD=4.10; 95% CI [2.90, 5.30]), radiotherapy and chemotherapy on parts of patients (t=2, MD=3.46; 95% CI [1.41, 5.51]), chemotherapy (t=1, MD=4.81; 95% CI [3.38, 6.24]); performing ISR (t=2, MD=3.32; 95% CI [0.37, 6.27]), performing AR (t=4, MD=3.08; 95% CI [2.12, 4.04]), performing PLRAS surgery (t=1, MD=4.10; 95% CI [2.90, 5.30]).

Conclusion: Although biofeedback therapy may improve intestinal function and quality of life as well as anal function reflected by ARM after surgery, patient satisfaction is still unclear. Due to the scarcity of data, good-quality research is required to delve deeper.

Clinical Trial Registration Number: CRD42020192658.

Keywords: biofeedback, fecal incontinence, rectal neoplasms, surgery, rehabilitation

Introduction

Colorectal cancer has the third incidence (10%) and the second mortality (9.4%) of malignant tumors in the world. Nevertheless, benefiting from the continuous maturity of adjuvant chemoradiotherapy and the continuous improvement of surgical technology, the 5-year survival rate of colorectal cancer has increased from 50% in the mid-1970s to 64% in 2009–2015. Surgical treatment, including sphincter-preserving operations, is the preferred treatment for rectal cancer.

After rectal cancer surgery, various intestinal dysfunctions occur, primarily manifested by defecation disorders resulting from changes in the rectal structure, tissue injuries such as sphincters and nerves, and defecation reflex decline.
Therefore, functional rehabilitation training for patients after rectal cancer surgery has become worthy of our attention. Biofeedback therapy is increasingly being used as a rehabilitation tool to help patients improve their intestinal function.6,7

Biofeedback is a training method that aims to improve the conscious control of the individual’s involuntary physiological activity to improve his/her physical, emotional, mental, and spiritual health.8 It can show patients how the anal sphincter works via visual or verbal feedback through the monitor and teach them to distinguish anal sphincter contraction from the buttck and abdominal muscle effort. Aiming to improve postoperative intestinal function in patients with rectal cancer, patients received sensory, strength, and coordination training for anal sphincter, pelvic floor muscle, and puborectalis muscle as biofeedback treatment.9 The advantages of biofeedback therapy can provide opportunities to improve the accuracy of functional tasks, increase the participation of patients in rehabilitation, and reduce the need for ongoing contact with healthcare professionals to monitor the implementation of rehabilitation programs.10

Biofeedback therapy is not routinely used in the rehabilitation training of patients with intestinal dysfunction after rectal cancer surgery, and there is no national recognition or professional guidance for this therapy. However, a strong interest has been aroused in biofeedback therapy in rehabilitation medicine and colorectal surgery, and biofeedback technology is constantly developing. Few systematic reviews or meta-analyses have reported on the impact of biofeedback therapy on patients with bowel dysfunction after surgery. Moreover, problems such as insufficient sample size and fewer RCT studies exist in the published reviews. So we conducted a systematic review and meta-analysis to describe the evidence for the effectiveness of biofeedback therapy in patients with bowel dysfunction following rectal cancer surgery.

Methods

This review is accomplished strictly under the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Guide.11,12 The review protocol has been registered in advance (PROSPERO CRD42020192658). According to the search habits of different databases, the following terms were used comprehensively by reviewers (GJL) to explore the literature in PubMed (1974–2021), Embase (1980–2021), the Cochrane database, and the trial registers: Fecal Incontinence; Bowel Incontinence; Fecal Soiling; Low anterior resection syndrome; resection syndrome; Bowel dysfunction; Bowel function; Sphincter function; intestinal dysfunction; intestinal function; biofeedback; feedback; Rectal Neoplasms; Rectal Tumors; Rectum Cancer (Please refer to Appendix 1 for the specific search strategy and search results). None of the articles were excluded because of language or publication time. The last retrieval time was May 13, 2021. Supplementary File 1 displays the details.

Study Selection

Two reviewers (LHZ and GC) respectively carried out literature screening of all retrieved articles. The disagreements were resolved after discussion and the third independent reviewer’s ruling. As a result, the following inclusion criteria were formulated: 1. Participants: Patients of any age suffering from malignant rectum tumors (Patients with benign rectal disease and colon disease were excluded); the study included patients undergoing surgical treatment (regardless of the surgical type and whether preoperative neoadjuvant therapy or postoperative radiotherapy and chemotherapy were implemented); 2. Intervention: Biofeedback treatment with or without PFMT (Pelvic Floor Muscle Training) or electrical stimulation treatment (the type, frequency, and duration of biofeedback treatment were not limited); 3. Outcomes: Primary research endpoint (any questionnaire that can evaluate the patient’s bowel function, patient feedback, and intestinal diary, anal manometry, ultrasonic endoscope, etc.); secondary study endpoint (Quality of life after biofeedback treatment); 4. Types of studies: RCTs (randomized controlled trials), cohort studies, case series (not including case studies with only one participant), because the data can fully reflect the effectiveness of biofeedback therapy in patients with bowel dysfunction following rectal cancer surgery. Studies were excluded if they were non-clinical studies or letters to the editor or expert consensus.
The Process of Data Extraction

An electronic data extraction form was specially designed to reflect the data extraction process and ensure the accuracy of the extracted data. Two reviewers (LHZ and GC) carried out data extraction separately and double-checked the accuracy of the data. The disagreements were resolved after discussion. The electronic data extraction form contains the following items: 1. Study summary (Review Title, Date, Reviewer, Study Title, First author, Year of publication, Country of publication, publication type, author contact information); 2. The included article characteristics (research type, whether the evaluation meets the inclusion criteria, the number of participants, gender, age, intervention group, and control group measures, follow-up time, description of outcome indicators); 3. The included study results (Please refer to Appendix 2 for electronic data extraction form).

Risk of Bias

RCT studies, cohort studies, and case series studies were included in this research. We assessed the risk of bias in RCT studies using the Cochrane quality assessment tool, in cohort studies using the MINORS scale, in case series using the Institute of Health Economics scale for Case Series. The risk bias assessment of literature was reviewed by two team members independently. Disagreements were resolved through discussion, resulting in unified results.

Analysis

We carried out the quantitative analysis and meta-analysis based on the literature whose outcome indicators were complete and adequate. Systematic reviews were carried out on the remaining portion of the literature. Since most of the literature available for meta-analysis is case series studies with continuous variables, most outcomes are presented by mean. The review was conducted using StataMP16 (64-bit) for meta-analysis. We used the fixed effect model and the random effect model to combine effect quantities. Heterogeneity is quantified mainly by the value of I². If heterogeneity is (I²>50%), a random effect model is used to calculate the results. Conversely, if heterogeneity is (I²≤50%), a fixed effect model is used to calculate the results. For further discussion, heterogeneity was assessed in the process of meta-analysis. A subgroup analysis was conducted to examine the surgery type, electrical stimulation, and adjuvant therapy. Data has been presented in the form of images in this regard. We used an online tool to extract data from images. We contacted the article’s author via email and requested the original data (2 replies were received with no other data, and 1 did not reply out of 3 emails). Due to the limited number of studies, no funnel plot was proposed.

Results

Study Selection

A total of 285 articles were retrieved after searching the electronic database mentioned earlier. 252 articles were excluded after removing duplicate articles and reading titles or abstracts roughly. 17 articles did not meet the inclusion criteria (Please refer to Appendix 3): not rectal disease (including colon disease or other diseases): 6; No surgery performed: 5; rectal benign tumor surgery (including endoscopic surgery, Transanal minimally Invasive surgery, Transanal Endoscopic Microsurgery, etc.): 4; containing the same data: 2. After re-reading the full text and eliminating four articles with no clinical data, a total of 12 articles with extractable and analytic data were included. Figure 1 displays the detailed study selection process.

Study Characteristics

The review includes 12 studies (2 RCTs, 2 no randomized controlled trials, 8 case series). A total of 561 patients who suffered from bowel dysfunction after rectal cancer were included in this review, of whom 422 patients received biofeedback treatment as the intervention group, 103 patients did not receive any intervention, and 36 patients received PFMT only without biofeedback as a controlled group.
Participants’ Characteristics
In both the intervention and control groups, male patients accounted for a higher or roughly equal proportion of female patients, while only two studies found female patients significantly outnumbered male patients. It may be related to the higher incidence of rectal cancer in male patients than in female patients. The majority of patients in all 12 studies were older, middle-aged, and younger elderly people, with a range of mean (SD) ages ranging from 51.2–67.6; 3 studies did not mention the approach of surgery specifically (just mentioned the anastomotic method or sphincter-saving TME); 1 study implemented AR; 3 studies implemented LAR; 2 studies implemented ISR; 2 studies implemented different procedures for different patients (AR, LAR, ULAR, ISR). Table 1 displays the detailed participants’ characteristics.

Intervention Characteristics
Although all included studies operated biofeedback therapy on patients with intestinal dysfunction after resection of rectal cancer, different studies had different measures. From surgery to biofeedback treatment, the time ranges from 1 month, half a year, and 1 year. The duration of biofeedback treatment ranges from 20 to 90 minutes, while the frequency ranges from 1 to 3 weeks per time. Some studies performed enhanced-frequency (6 to 32 weeks) biofeedback treatments to improve efficacy. In most studies, PEF or electrical stimulation was performed together with biofeedback treatment, and visual or visual + verbal feedback was used for the strength, sensation, and coordination training for anal muscles. Table 2 displays the detailed Intervention and outcome characteristics.
Table 1 Participants Characteristics in Included Studies

Author and Year	Sex, (M/F)	Age(Years)	Surgery Type	Tumor Height (cm)	Anostomosis Height (cm)	Adjuvant Therapy	Ostomy
Prospective randomized trials							
Kye et al 2016²⁸							
N=47 (BFT Group: 21; Control Group: 26)							
	BFT Group						
M:10 (47.6%) F:11 (52.4%)							
Control Group (Conservative Self-rehabilitation)							
M:15 (57.7%) F:15 (57.7%)							
	BFT Group						
61.7±9.8³	CRA:15 (71.4%)						
CAA:6 (38.6%)							
Control Group							
64.5±9.4³	CRA:23 (88.5%)						
CAA:3 (11.5%)							
	BFT Group						
≤5 cm:6 (28.6%)	CRA:15 (71.4%)						
>5 cm:15 (71.4%)							
Control Group							
≤5 cm:8 (30.8%)	CRA:15 (71.4%)						
>5 cm:18 (69.2%)							
	NR						
BFT Group							
Pre-op: CRT	Control Group						
Post-op: CT							
All							
Zheng et al 2019¹⁰							
N=109 (Blank control group: 38; PFMT Group: 36; BFT Group: 35)							
	Blank control group						
M:30 (79%) F:8 (21%)							
PFMT Group							
M:27 (75%) F:9 (25%)							
BFT Group							
M:25 (71%) F:10 (29%)							
	Blank control group						
51.2±12.3³	Dixon						
PFMT Group							
52.5±10.4³							
BFT Group							
54.3±9.9³							
	Rehabilitation Group: 3						
5.1±1.9³	Rehabilitation Group: 3						
Pre-op: CRT	Rehabilitation Group: 3						
All							
Laforest et al 2012²⁵							
N=46 (Rehabilitation Group: 22; Control Group: 24)							
	Rehabilitation Group						
M:11 (50.0%) F:11 (50.0%)							
Control Group							
M:15 (62.5%) F:9 (37.5%)							
	Laparoscopic sphincter-saving TME						
Laparoscopic sphincter-saving TME							
Laparoscopic sphincter-saving TME							
	Rehabilitation Group: 3						
0.5–9.0⁴	Rehabilitation Group: 3						
Pre-op CRT 32 (69.6%)	Rehabilitation Group: 3						
NR							
Lee et al 2019²⁶							
N=31 (BFT Group: 16; Control Group: 15)							
	BFT Group						
M:7 (43.8%) F:9 (56.2%)							
Control Group							
M:12 (80.0%) F:3 (20.0%)							
	BFT Group						
<70.1 (87.5%) ≥70.1 (12.5%)							
Control Group							
<70.9 (60.0%) ≥70.6 (40.0%)							
	BFT Group						
LAPAROSCOPIC RESECTION: 13 (81.2%)							
INTERSPHINCTERIC RESECTION: 3 (18.8%)							
Control Group							
LAPAROSCOPIC RESECTION: 14 (93.3%)							
INTERSPHINCTERIC RESECTION: 1 (6.7%)							
	BFT Group						
<5 cm:8 (50.0%) ≥5 cm:8 (50.0%)							
Control Group							
<5 cm:1 (6.7%) ≥5 cm:14 (93.3%)							
	BFT Group						
<5 cm:13 (81.2%) ≥5 cm:3 (18.8%)							
Control Group							
<5 cm:5 (33.3%) ≥5 cm:10 (66.7%)							
	NR						
Pre-op: RT 6 (19.4%)							
12 (38.7%)							
Case series							
Allgayer et al 2005¹⁹							
N=95 (irradiated patients: 41; Non-irradiated patients: 54)							
	Irradiated M: 28 (68.3%) F: 13 (31.7%)						
	Non-irradiated M: 33 (61.1%) F: 38.9%						
	Irradiated: 58.5 (31–76)⁶						
	Non-irradiated: 67 (48–83)⁶						
	LAPAROTOMIC ANASTOMOSIS	NR					
	Post-op: RT 4 (31.7%)						
	7.62±3.1⁴						
	Non-irradiated: 10.3 ±4.2³						
	NR						

(Continued)
Author and Year	Sex(M/F)	Age(Years)	Surgery Type	Tumor Height (cm)	Anostomosis Height (cm)	Adjuvant Therapy	Ostomy
Cong et al 2006²⁰ N=16	M:5 F:11	56(41–74)	ISR	3.3(2–4.5)⁶	NR	NR	NR
Du et al 2010²¹ N=24	M:16 F:8	67.6±10.5[‡]	LAR	6.6±3.6¹	NR	No	NR
Bartlett et al 2011²² N=19	M:10 F:9	64.1 (95% CI: 47.0–81.3)[†]	Anterior resection: 3 (15.8%) Ultra-low anterior Resection:10 (52.6%) Segmental colectomy:2 (10.5%) Proctocolectomy 4 (21.1%)	NR	NR	NR	NR
Cong et al 2011²³ N=11	M:4 F:7	51(38–65)⁶	PLRAS	NR	NR	Pre-op:CRT All	
Kim et al 2011²⁴ N=70	M:49 F:21	58.1±10.1[‡]	AR	NR	4.1±1.8⁶ Pre-op:CT:1(1.4%) RT:30(42.9%) Post-op: CT:25(35.7%) RT:19(27.1%) Both: CT:3(44.3%)	21(30%)	
Kuo et al 2015²⁵ N=32	M:17 F:15	56.5 (31–70)⁶	ISR	3.89 (1.5–5.0)⁶	NR	Pre-op:CRT25 (78.1%)	5 (15.6%)
Liang et al 2016²⁶ N=61	M:40 F:21	63.1±10.5[‡]	TME	NR	5.2±3.1⁶ RT:14(23.0%) CT:13(21.3%)	No	

Notes: Values in parentheses are percentages unless indicated otherwise; values are median (range)⁸, mean (95% CI.)[†]Mean±SD¹.
Abbreviations: M, male; F, female; BFT, Biofeedback therapy; CRA, Colorectal anastomosis; CAA, Coloanal anastomosis; NR, not reported; Pre-op, Pre-operation; Post-op, Post-operation; CT, Chemotherapy; RT, Radiotherapy; CRT, Chemoradiotherapy; PFMT, Pelvic Floor Muscle Training; TME, Total Mesorectal Excision; LAR, Low Anterior Resection; ISR, Intersphincteric Resection.
Author and Year	Time from Surgery to Biofeedback (Week)	Training Type	BF Type	Practice Type at Home	BFT Duration (min)	Frequency	Length (Week)	Outcomes (Bowel Function)	Outcomes (Quality of Life)	
Prospective randomized trials										
Kye et al 2016²⁸	28	During stoma interval	NR	NR	PEFT	NR	1–2/week	10	ARM Number of daily defecation CCIS score	
Zheng et al 2019¹⁰	30	64	Strength training	Visual Verbal	PEFT	20	3/week	16	MSKCC	
Prospective non-randomized trials										
Laforest et al 2012²⁵	25	NR	NR	Visual	PEFT	60	1/week	15	Gastrointestinal standardized questionnaire Wexner score Kirwan’s classification	SF-36 FIQL
Lee et al 2019²⁶	26	NR	NR	Visual	PEFT	NR	2/week	5	ARM Wexner score NBM LARS	NR
Case series										
Allgayer et al 2005¹⁹	19	6 (4–40)⁶	Strength training	Visual	PEFT	60	Daily	3	ARM MCIS EUS	
Cong et al 2006³⁰	20	4	Strength training Sensory training Coordination training	Visual Verbal	PFET Electrical stimulation	PEF:30 Electrical stimulation:15	Strength training:1/week Sensory training:2/week Electrical stimulation:1/week	3	ARM Vaizey score Wexner score	NR

(Continued)

Table 2 (Continued).

Author and Year	Time from Surgery to Biofeedback (Week)	Training Type	BF Type	Practice Type at Home	BFT Duration (min)	Frequency	Length (Week)	Outcomes (Bowel Function)	Outcomes (Quality of Life)
Du et al 2010^21 N=24	21	NR	Strength training	PFET	PEF:30 Electrical stimulation:15	PEF:1–2/day electrical Stimulation:1/day	6–32	ARM Vaizey score Wexner score	NR
Bartlett et al 2011^22 N=19	18 (12–24)*	Strength training	Relaxation breathing Anal squeeze PEFT Evacuation techniques	Visual Verbal	60–90	Daily	mean: 7	ARM The Continence Grading Scale VAS	FIQL
Cong et al 2011^24 N=11	25.5±21.2‡	Strength training	PFET	Visual Verbal	NR	1/week	10	ARM Wexner score Daily stool frequency satisfaction score	NR
Kuo et al 2015^27 N=32	NR	Coordination training	NMES	Visual	NR	2–3/week	8–12	ARM Wexner score	NR
Liang et al 2016^29 N=61	7.7±2.9§	Strength training	NR	NR	30	2/day	NR	ARM Wexner score Vaizey score	NR

Note: Values are median (range)*, mean±SD‡.
Abbreviations: BF, Biofeedback; BFT, Biofeedback therapy; PEFT, Pelvic Floor Muscle Training; NR, Not reported; ARM, Anorectal Manometry; CCIS, Cleveland Clinic Incontinence Score; MSKCC, Memorial Sloan-Kettering Cancer Center bowel score; SF-36, Health Status and Fecal Incontinence Quality of Life score; FIQL, The Fecal Incontinence Quality of Life; NBM, The number of bowel movement; LARS, Low Anterior Resection Symptom; MCIS, Modified Cleveland Incontinence Score; EUS, Endoscopic Ultra Sonography; VAS, Visual analog scale; EORTC QLQ-C30, European Organization for Research and Treatment of Cancer Quality of Life Questionnaire Core 30; NMES, Neuromuscular electrical stimulation.
Outcomes Characteristics

The 12 included studies evaluated bowel function by subjective and objective measures and quality of life by questionnaires. Almost all studies evaluated subjective-feedback intestinal function through a gastrointestinal questionnaire (CCIS MSKCC LARS MCIS GS CGS), while 4 studies evaluated that in terms of stool frequency, fecal incontinence episodes, and severity of fecal incontinence. Nine studies performed an ARM to evaluate anal function through objective indicators. In addition, one study performed an EUS examination to explore trends in the structure of the external anal sphincter (SE) and internal anal sphincter (SI). Three studies evaluated the quality of life using different questionnaires (EORTC QLQ-C30 FIQL SF-36).

Table 2 displays the details.

Risk of Bias Evaluation

The risk of bias of studies is presented in Figures 2 and 3. Different questionnaire scales were adopted to evaluate different types of studies, using the Cochrane risk-of-bias (RoB) to evaluate the quality of RCT studies, using the MINORS scale to evaluate cohort studies, using the IHE scale to evaluate case series studies. Two independent reviewers (LHZ and GC) had no major differences during the evaluation process, and all disagreements were resolved. The majority of studies have made detailed statements about purpose and methods, patient selection process, intervention measures description, completeness of outcome indicators, and credibility. However, problems existed with the process of sample size calculation, whether blinding is operated or not, single-center studies, vague inclusion and exclusion criteria, insufficient follow-up, unclear source of support, and unexplained authors’ contributions and relationships. In addition, an RCT study and a cohort study both show incomplete data. In terms of case series, 1 study did not describe the interventions of interest and others.

Outcomes

Objective Evaluation Outcome Measures

ARM

Eight studies applied ARM to objectively evaluate intestinal function after rectal surgery. Allgayer et al believed that
ARM indicators were almost identical after biofeedback treatment, and there was no detailed presentation of the data and P-value. Most studies believed that after receiving biofeedback treatment, there is a significant improvement in the maximal resting pressure, maximum maximal squeeze pressure, and rectal capacity (P≤0.05). However, there is no statistically significant difference in the sensory threshold. Two studies have analyzed mean resting pressure. As a result, Du et al21 believed that there was a statistical difference, while Kuo et al27 did not think so. When comparing the biofeedback treatment group and the control group (comparison between groups), only mean squeezing pressure and rectal capacity were considered to be statistically different.

Subjective Evaluation Method

Wexner Score

Two studies performed a comparison between the biofeedback treatment group and the control group. As a result, the biofeedback treatment group showed a lower Wexner score and better bowel function. The study of Laforest et al25 had statistical significance, while Lee et al26 did not.
Patient Diary
Regarding the measurement of bowel function reported by patients, four studies showed that patients’ reported incontinent episodes, bowel motions (per day), Bristol stool form scale, number of bowel movements/day, etc. improved after the intervention. Bartlett et al22 together with Kim24 showed statistical differences in Bowel motions (per day). Lee et al26 reported that there was no significant difference in defecation between the intervention group and the control group after biofeedback treatment. Kye et al28 did not perform baseline assessment, P-value, and also had no comparison with the control group.

Patient Satisfaction
Two articles followed up on patients’ feedback satisfaction after biofeedback treatment. Unfortunately, none of the baseline assessment data was collected. Moreover, there was no control group for comparison, and no P-values were calculated. According to the analysis of existing data, the overall satisfaction score and the satisfaction with components of the biofeedback treatment were high. Table 3 displays the objective and subjective evaluation outcome measures.

Quality of Life
A total of 3 studies focused on the patients’ quality of life. Three studies were respectively applied to FIQL, SF-36, and EORTC QLQ-C30 to evaluate the quality of life comprehensively from different perspectives. Table 4 displays the details.

FIQL
Bartlett et al22 followed up on 12 patients undergoing biofeedback treatment after rectal surgery for up to two years. After receiving biofeedback treatment for 2 years, the median values of lifestyle, coping, and embarrassment, etc., were further improved. Although the degree was not significant, it was statistically significant. Laforest et al25 compared the rehabilitation group with the control group at the same period. The results were as follows: regarding specific FIQL, the frequency of depression in the rehabilitation group was significantly reduced, and the self-perception was better, but there was no significant difference in the other 3 sub-indicators.

SF-36
Laforest et al25 believe that compared with the control group, biofeedback treatment combined with PFMT can significantly improve the overall quality of life, and statistical differences occurred in the vitality and mental function of SF-36.

EORTC QLQ-C30
Cong et al23 concluded that the changes in EORTC QLQ-C30 have no statistical significance in general. EORTC QLQ-C30 is a questionnaire developed to assess the quality of life of cancer patients in which higher scores in the fields of functional and general health status were associated with better functional status. Conversely, lower scores in the symptom domain were better. Compared with data before biofeedback treatment, patients score higher on diarrhea but lower on constipation and financial difficulties after treatment. There were no significant differences in the other 11 sub-indicators.

Quantitative Synthesis
Different studies have different outcome indicators to evaluate intestinal function. The Wexner score was used in 9 studies.20–27,29 Two of them25,26 were excluded from quantitative synthesis because of insufficient data and the different types of study. The remaining 7 studies met the criteria for quantitative synthesis; the Wexner scores before and after biofeedback treatment can be meta-analyzed. Similarly, the Vaizey scores of the three studies20,21,29 can also be meta-analyzed.

In Figure 4, a meta-analysis of the Wexner score and the Vaizey score after Bio-feedback treatment is displayed. From the results of meta-analysis, it is easy to find that after biofeedback treatment, the Wexner score ($t^* = 7$, MD = 3.33; 95% CI
Table 3: Results: Objective and Subjective Evaluation Outcome Measures

Author and Year	N	Outcomes	Pre-Biofeedback Therapy	Post-Biofeedback Therapy	P-value
Objective evaluation method			**Mean±SD/Median (range)**	**Mean±SD/ Median (Range)**	**P-value**
ARM					
Allgayer et al 2005	41	Irradiated	Resting pressure (mmHg) 27.3±17.2	Resting pressure (mmHg) 27.3±17.2	Almost identical
			Squeeze pressure (mmHg) 79.5±34.0	Squeeze pressure (mmHg) 79.5±34.0	
			Sphincter length (cm) 2.5±0.5	Sphincter length (cm) 2.5±0.5	
			Sensation threshold (mL) 44.7±16.9	Sensation threshold (mL) 44.7±16.9	
			Pain threshold (mL) 91.2±36.8	Pain threshold (mL) 91.2±36.8	
		Non-irradiated	Resting pressure (mmHg) 33.3±17.8	Resting pressure (mmHg) 33.3±17.8	<0.001
	54		Squeeze pressure (mmHg) 79.5±34.1	Squeeze pressure (mmHg) 79.5±34.1	0.001
			Sphincter length (cm) 2.4±0.6	Sphincter length (cm) 2.4±0.6	
			Sensation threshold (mL) 43.0±13.8	Sensation threshold (mL) 43.0±13.8	
			Pain threshold (mL) 103.0±29.5	Pain threshold (mL) 103.0±29.5	
Cong et al 2006	16	The maximal resting pressure (mmHg) 66.6±13.0	The maximal resting pressure (mmHg) 66.6±13.0	<0.01	
		The maximal contraction pressure (mmHg) 143.6±46.5	The maximal contraction pressure (mmHg) 143.6±46.5	<0.001	
		Contraction vector volume (cm×mmHg) 133337.0±7491.1	Contraction vector volume (cm×mmHg) 133337.0±7491.1	<0.001	
		Resting vector volume (cm×mmHg) 509.2±95.0	Resting vector volume (cm×mmHg) 509.2±95.0	0.001	
Du et al 2010	24	Maximum tolerated volume (mL) 189.1±39.0	Maximum tolerated volume (mL) 189.1±39.0	<0.01	
		Resting pressure (mmHg) 27.8±9.0	Resting pressure (mmHg) 27.8±9.0	<0.01	
		Maximum squeeze pressure (mmHg) 118.3±42.9	Maximum squeeze pressure (mmHg) 118.3±42.9	<0.01	
		Sensory threshold (mL) 19.0±6.1	Sensory threshold (mL) 19.0±6.1	0.101	
		Maximum tolerated volume (mL) 97.5±52.8	Maximum tolerated volume (mL) 97.5±52.8	<0.01	
	Maximal resting pressure (mmHg)	Maximal squeezing pressure (mmHg)	Rectal capacity (mL)		
----------------	---------------------------------	----------------------------------	--------------------		
LARS					
Time from surgery to start of biofeedback:					
<18months	39.1±11.1	44.9±18.1	39.0±12.6		
≥18months	39.2±8.8	49.1±15.0	39.2±8.8		
The primary symptom:					
Fecal incontinence	39.0±11.0	44.5±18.1	39.0±11.0		
Incomplete evacuation	NR	NR	NR		
Frequent defecation	40.1±15.2	49.3±21.4	40.1±15.2		

Biofeedback			
Time from surgery to start of biofeedback:			
<18months	127.7±45.3	149.5±50.0	127.7±45.3
≥18months	150.1±43.3	183.4±60.9	150.1±43.3
The primary symptom:			
Fecal incontinence	136.4±45.2	162.7±56.1	136.4±45.2
Incomplete evacuation	NR	NR	NR
Frequent defecation	135.2±62.2	206.0±102.5	135.2±62.2
Rectal capacity (mL)	102.3±42.3	120.3±30.6	102.3±42.3

Control group vs Biofeedback group

	MRP:0.783	Max-RP:0.739	Rectal capacity:0.005
Mean resting pressure	67.826667 (24.4–142.7)†	78.9533 (28.7–189.9) *	
Maximal resting pressure	67.780000 (22.4–137.0)†	60.3600 (17.6–132.9) *	
Mean squeezing pressure	143.0400 (55.1–269.2)†	135.306 (45.1–286.4)†	
Maximal squeezing pressure	82.67 (40–180)	62.67 (10–110)	
Rectal capacity	27.913333 (8.9–64.6) *	28.10625 (10.7–54.0) *	
Biofeedback group	73.45625 (27.4–126.9)†	79.8750 (26.0–191.4)†	
Mean resting pressure	55.61250 (22.9–118.2)†	61.1875 (20.1–144.3)†	
Maximal resting pressure	119.7687 (65.4–217.3)†	136.081 (73.2–256.1)†	
Mean squeezing pressure	106.7±45.1	115.0±40.0	106.7±45.1
Maximal squeezing pressure	105.00 (10–240)		
Rectal capacity	105.0 (10–240)		105.0 (10–240)

Continued
Author and Year	N	Outcomes	Pre-Biofeedback Therapy	Post-Biofeedback Therapy	P-value
Kuo et al 201527	32	Resting pressure (hPa)	−4.21±7.29	−4.08±3.80	0.061
		Maximal squeeze pressure (hPa)	34.32±35.37	37.08±22.42	0.014
		Resting electromyography (hPa)	−0.47±2.21	−0.58±5.67	0.760
		Maximal squeeze EMG (hPa)	28.37±16.75	30.79±16.00	0.990
Kye et al 201628	26	Control group			
		Mean resting pressure	0.79±0.4		
		Maximal squeezing pressure	0.83±0.4		
		Rectal compliance	0.82±0.7		
		Rectal sensory threshold	0.77±0.5		
		Biofeedback group	NR		
	21	Mean resting pressure	0.88±0.7		
		Maximal squeezing pressure	0.74±0.3		
		Rectal compliance	0.93±0.7		
		Rectal sensory threshold	0.66±0.4		
Liang et al 201629	61	Maximal resting pressure	25.8±12.3	37.0±12.8	<0.001
		Maximal squeezing pressure	120.2±42.0	146.5±40.9	0.001
		Rectal Sensitivity	23.4±12.7	27.4±12.5	0.089
		Rectal Capacity	119.0±50.7	143.6±52.8	0.015
Subjective evaluation method		Rehabilitation group	NR	8.3±3.9	
Wexner	22	Control group	NR	9.9±3.0	
Laforet al 201225	15	Control group	10.47 (7–13) *	8.53 (4–12)*	
Lee et al 201926	16	Biofeedback group	13.06 (6–16) *	6.81 (3–10)*	
Patient diary	Incontinent episodes	Bowel motions (per day)	Bristol stool form scale	\(p \)-value	
---------------	----------------------	-------------------------	-------------------------	--------------	
Bartlett et al 2011	19	1.0(0.0–6.5) *	5.0(2.9–8.6) *	0.5(0.0–3.0) *	0.183
Kim et al 2011		0.5(0.0–6.2) *	4.5(4.0–5.3) *	0.213	
	70	Number of bowel movements/day			
	35	LARS			
	<18months	9.4±4.5	5.8±3.3	<0.001	
	≥18months	10.1±4.7	6.6±4.1	<0.001	
	8	Fecal incontinence			
	4	10.1±4.4	6.3±3.4	<0.001	
	8	Incomplete evacuation			
	4	4.1±2.7	3.6±2.5	0.321	
	4	Frequent defecation			
		8.3±2.1	3.5±0.6	0.019	
Lee et al 2019	15	Control group	11.00 (6–20) *	6.80 (5–10) *	
	16	Biofeedback group	13.63 (6–20) *	6.31 (4–10) *	
Kye et al 2016	26	Control group	NR	7.1±3.7	
	21	Biofeedback group	NR	0.109	

Patient satisfaction	Overall mean satisfaction rating	Patient satisfaction VAS	\(p \)-value	
Bartlett et al 2011	19	NR	8.0(7–9.75) *	NR
Kim et al 2011	70	LARS	NR	NR
	70	NR	61.9±27.6 *	NR
	35	<18months	NR	NR
	35	≥18months	NR	NR
	58	Fecal incontinence	NR	NR
	8	Incomplete evacuation	NR	NR
	4	Frequent defecation	NR	NR

\(^* \): Values in parentheses are mean±SD unless indicated otherwise; values is median (range).
Note: Values in parentheses are mean±SD unless indicated otherwise; values is median (range).
Abbreviations: LARS, Low Anterior Resection Symptom; NR, not reported.
Quality of life	FIQL	Bartlett et al. 2011	12	Laforest et al. 2012	22	24	25
FIQL		Valid					
Bartlett		22.6 (2.1–3.7) *					
Laforest		22.6 (2.1–3.7) *					
Coping		2.6 ± 0.9					
Depression		2.3 ± 0.7					
Embarrassment		2.4 ± 0.9					
SF-36		49.1 ± 6.8					
Physical		50.0 ± 12.4					
Role limitations		48.1 ± 11.2					
Bodily pain		46.5 ± 9.0					
Vitality		47.3 ± 9.9					
Social function		42.0 ± 10.4					
Role limitations		43.5 ± 11.0					
Mental health		44.2 ± 12.4					
Physical		48.8 ± 8.5					
Mental function		48.3 ± 7.1					
Control group		47.4 ± 7.4					
Physical		39.3 ± 9.7					
Role limitations		48.7 ± 9.6					
Bodily pain		43.0 ± 7.8					
Vitality		39.3 ± 8.2					
Social function		45.6 ± 10.2					
Role limitations		43.0 ± 12.5					
Mental health		44.0 ± 9.5					
Physical		46.0 ± 6.7					
Mental function		42.7 ± 8.6					

Between Group

Lifestyle: 0.27
Depression: 0.001
Coping/Behaviour: 0.56
Embarrassment: 0.64

Funding

This study was supported by the National Institute for Health Research (NIHR) Collaboration for Leadership in Applied Health Research and Care (CLAHRC) West Midlands.

Competing Interests

The authors declare that they have no competing interests.

Conflict of Interest

The authors declare that they have no conflict of interest.

Consent to Participate

All participants provided written informed consent.

Ethics Approval

This study was approved by the University of Birmingham Research Ethics Committee.

Results

Table 4 Results: Quality of Life Outcome Measures

Quality of life	FIQL	Bartlett et al. 2011	12	Laforest et al. 2012	22	24	25							
FIQL		Valid												
Bartlett		22.6 (2.1–3.7) *												
Laforest		22.6 (2.1–3.7) *												
Coping		2.6 ± 0.9												
Depression		2.3 ± 0.7												
Embarrassment		2.4 ± 0.9												
SF-36		49.1 ± 6.8												
Physical		50.0 ± 12.4												
Role limitations		48.1 ± 11.2												
Bodily pain		46.5 ± 9.0												
Vitality		47.3 ± 9.9												
Social function		42.0 ± 10.4												
Role limitations		43.5 ± 11.0												
Mental health		44.2 ± 12.4												
Physical		48.8 ± 8.5												
Mental function		48.3 ± 7.1												
Control group		47.4 ± 7.4												
Physical		39.3 ± 9.7												
Role limitations		48.7 ± 9.6												
Bodily pain		43.0 ± 7.8												
Vitality		39.3 ± 8.2												
Social function		45.6 ± 10.2												
Role limitations		43.0 ± 12.5												
Mental health		44.0 ± 9.5												
Physical		46.0 ± 6.7												
Mental function		42.7 ± 8.6												
EORTC QLQ-C30	Functional scales	Cognitive functioning	Emotional functioning	Social functioning	Pain	Nausea and vomiting	Fatigue	Symptom scales / items	Dyspepsia	Sleep disturbance	Appetite loss	Constipation	Diarrhoea	Financial difficulties
----------------	-------------------	-----------------------	----------------------	-------------------	------	---------------------	---------	----------------------	-----------	---------------------	-------------	-------------	-----------	----------------------
Cong et al 2011	80.3 ± 13.6	75.3 ± 12.1	61.4 ± 21.8	56.8 ± 12.5	50.4 ± 11.6	61.4 ± 21.8	38.6 ± 5.4	40.6 ± 4.7	20.3 ± 4.1	31.5 ± 2.2	30.8 ± 2.7	13.1 ± 2.7	64.4 ± 5.2	21.7 ± 3.8

Note: Values in parentheses are mean±SD unless indicated otherwise; values is median (range)*.

Abbreviations: SF-36, Health Status and Fecal Incontinence Quality of Life score; FIQL, The Fecal Incontinence Quality of Life; EORTC QLQ-C30, European Organization for Research and Treatment of Cancer Quality of Life Questionnaire Core 30; NR, not reported.
Figure 4 Meta-analysis of the Wexner score (A) and the Vaizey score (B) after bio-feedback treatment.

Notes: Forest plot of all studies included for this meta-analysis with pooled standardized mean difference for Wexner and Vaizey score. Values represent effect sizes (weighted mean differences) and 95% confidence intervals. The pooled effect sizes were calculated using a random effects model.

[2.48, 4.18], Figure 4A) and Vaizey score (t* = 3, MD = 2.46; 95% CI [1.98, 2.93], Figure 4B) of patients with bowel dysfunction after rectal cancer surgery were significantly decreased. It indicates that bowel function was significantly improved. There is significant heterogeneity in the Wexner score ($I^2 = 70.8\%$, $p = 0.002$, $H = 1.850$), while no evidence shows that the Vaizey score is heterogeneous ($I^2 = 0.0\%$, $p = 0.944$, $H = 0.240$). Therefore, we performed subgroup analysis stratified by whether to conduct electrical stimulation, adjuvant chemoradiotherapy, and surgery approach. Note: “t” is the number of included studies.*

Two of the seven studies were included in the Wexner score meta-analysis that used biofeedback therapy together with electrical stimulation therapy20,21 (t = 3, MD = 2.36; 95% CI [1.51, 3.22], Figure 5A) while patients of five studies did not receive electrical stimulation$^{22-24,27,29}$ (t = 4, MD = 3.79; 95% CI [2.66, 4.93], Figure 5A); Patients in three studies$^{20-22}$ did not receive adjuvant chemoradiotherapy (t = 3, MD = 2.42; 95% CI [1.61, 3.24], Figure 5B); one study23 performed chemotherapy and radiotherapy for all patients (t = 1, MD = 4.10; 95% CI [2.90, 5.30], Figure 5B); two studies24,29 performed radiotherapy on parts of patients, and others27 received chemotherapy (t = 2, MD = 3.46; 95% CI [1.41, 5.51], Figure 5B); one study only performed chemotherapy on patients (t = 1, MD = 4.81; 95% CI [3.38, 6.24], Figure 5B); Different studies performed different approaches of surgery for patients. Two studies20,27 performed ISR (t = 2, MD = 3.32; 95% CI [0.37, 6.27], Figure 5C); four studies21,22,24,29 performed AR (t = 4, MD = 3.08; 95% CI [2.12, 4.04], Figure 5C); one study performed transabdominal and transanal Surgical PLRAS surgery23 (t = 1, MD = 4.10; 95% CI [2.90, 5.30], Figure 5C). Changes in heterogeneity between groups are reflected by I^2.

https://doi.org/10.2147/TCRM.S344375

Therapeutics and Clinical Risk Management 2022:18

Li et al

Dovepress

Powered by TCPDF (www.tcpdf.org)
Figure 5 Sub-group analysis of the Wexner score after Bio-feedback treatment (A), Adjuvant therapy (B), and Surgery type (C). Notes: Forest plot for Wexner and Vaizey scores in the subgroup analysis. Values represent effect sizes (weighted mean differences) and 95% confidence intervals.
Discussion
This review aims to analyze and explore the evidence for the effect of biofeedback therapy on patients with bowel dysfunction after surgery. Based on the existing studies, the patient’s bowel function has recovered after biofeedback treatment, and the overall quality of life has improved. Limited to fewer RCTs in related fields, the comparison of intestinal function and quality of life between the intervention group and the control group still needs further research. It reflects our urgent need for more good-quality RCTs in the field, which may provide higher-level evidence to clarify whether biofeedback treatment should be performed to improve bowel function and promote quality of life.

Some published systematic reviews hold the opinion that biofeedback therapy alone as well as PFMT mixed with biofeedback therapy show a positive effect in improving intestinal function. The conclusion is the same as in our review, which affirms the positive effect of biofeedback therapy.

The conclusion requires careful analysis. Recent studies have indicated that the distance from the lower end to the dentate line, the height of the anastomosis, and whether a defunctioning stoma is performed are risk factors for postoperative bowel dysfunction in patients with rectal cancer. However, the data in these aspects is missing various degrees, so it is difficult for us to perform subgroup analysis or quantitative synthesis of these heterogeneous indicators.

The factor of electrical stimulation and adjuvant therapy accounted for the inter-study heterogeneity while surgery type did not, which was consistent with the result of subgroup analysis. When mentioning surgery type, it is worth recalling that patients underwent a new surgical procedure (PLRAS), which is indicated for rectal adenocarcinomas located below the dentate line or with external sphincter muscle invasion. Tumor height is closely related to the surgical approach. Most patients who underwent ISR surgery had a distance of < 5 cm from the lower end to the dentate line, whereas patients who underwent other procedures were ≥ 5 cm. What is more, we have no way to assess the baseline level of bowel function before surgery. Some of the patients suffered more severe bowel dysfunction before surgery, which led to the evaporation of a certain degree of credibility in bowel function changes.

Some studies used ARM and EUS to evaluate the anorectal function objectively. Seven studies believe that varying degrees of improvement occurred in different sub-indicators after biofeedback treatment, which is trustworthy. Although different centers implement different ARM equipment and set different values for parameters, resulting in data that cannot accord well with each other, the risk of bias is reduced after converting to the changes before and after treatment. Although there is no statistical difference because of the small sample size, Allgayer et al used EUS as an evaluation index of postoperative bowel function. The effectiveness of biofeedback therapy combined with PFMT in the postoperative bowel function of this review is consistent with the results of the systematic review conducted by Maris et al.

The present results indicate that patients’ reported incident episodes, bowel motions (per day), and number of bowel movements/day improved properly after biofeedback treatment. Overall, it is hard to tell whether the positive effect of biofeedback treatment on the patients’ reported bowel function measurement is the result of natural recovery or the Hawthorne effect. In our review, few studies performed dynamic and continuous follow-up evaluations on patients’ bowel function after biofeedback treatment which means their variation trend cannot be assessed. Therefore, we urgently need a randomized controlled trial in longitudinal follow-up to explore whether the long-term efficacy of biofeedback therapy can be maintained or not. Due to the lack of data, we cannot draw any valid conclusions on patients’ satisfaction with bowel function.

Only three studies focused on changes in quality of life, and different questionnaires were used to evaluate different aspects of the quality of life. The sample size is small. The study by Bartlett et al has a long follow-up interval of up to 2 years. There are too many interfering factors during this period, so positive results are not credible. Therefore, we should pay more attention to the quality of life of those with intestinal dysfunction, and we also need large sample sizes and high-quality RCTs with high-frequency follow-up.

After integrating studies that can be quantitative synthesis, meta analysis of Wexner score shows highly heterogeneous results, which may be related to patients who underwent biofeedback therapy combined with PFMT and electrical stimulation therapy. PFMT is recommended as an early intervention in the 5th International Consultation on Incontinence, which is considered to positively affect the treatment of fecal incontinence. So it is hard to say whether the Wexner score’s recovery is the result of biofeedback treatment, PFMT, and electrical stimulation together or separately. Almost all studies that can be meta-analyzed were performed using PFMT, so we can only perform subgroup
analysis on electrical stimulation treatment. The duration and frequency of biofeedback treatment affect the dosage and efficacy of biofeedback therapy. It is necessary to carry out more high-quality randomized controlled trials to determine the primary treatment option for biofeedback therapy and provide guidance for clinicians caring for this population in clinical practice.

Study Limitation

The main limitations of this review lie in the following aspects: 1. Selection bias: Although our studies have no language restrictions, we did not conduct literature searches in specialized databases in other countries. This may result in possible selection bias. 2. Lacking randomized controlled trial studies. At the same time, few included studies finished explaining whether to blind, and the data opacity also existed. Most studies are case series or cohort studies, with no high-quality control group, and no longitudinal studies. 3. We hope for more quantitative synthesis and meta-analysis to draw a watertight conclusion. However, in addition to the Wexner score and Vaizey score, it is difficult to find a unified outcome index to evaluate intestinal function. 4. Most patients were treated with PFMT while undergoing biofeedback treatment, so there is no way to perform subgroup analysis on patients treated with PFMT. Therefore, this systematic review may not tell us the therapeutic effect of biofeedback treatment, but it will show the effect of biofeedback therapy combined with various treatments. 5. None of the studies reported adverse events related to training.

Conclusion

Although biofeedback therapy may improve intestinal function, quality of life as well as anal function reflected by ARM after surgery, patients’ satisfaction is still unclear. However, the data was obtained from small studies with a high risk of bias and the conclusion must be interpreted with caution. This intervention can be viewed as being in the development phase of research. At the same time, more good-quality research is necessary to explore the best biofeedback treatment options (single duration/quality frequency/length of treatment time), so that biofeedback therapy can be applied to clinical practice more accurately.

Abbreviations

RCTs, randomized controlled trials studies; ARM, Anorectal Manometry; ISR, Intersphincteric Resection; AR, Anterior Resection; PLRAS, Partial Longitudinal Resection of the Anorectum and Sphincter; LAR, Low Anterior Resection; ULAR, Ultra Low Anterior Resection; TME, Total Mesorectal Excision; TaTME, Transanal Total Mesorectal Excision; PFMT, Pelvic Floor Muscle Training; EUS, Endoscopic Ultra Sonography.

Funding

This study was supported by National Science and Technology Support Programme Project (2015BAI13B09), National Science and Technology Support Programme Project (2015BAI13B09).

Disclosure

The authors declared no conflicts of interest.

References

1. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. *CA Cancer J Clin.* 2021;71:209–249. doi:10.3322/caac.21660
2. Siegel RL, Miller KD, Goding Sauer A, et al. Colorectal cancer statistics, 2020. *CA Cancer J Clin.* 2020;70:145–164. doi:10.3322/caac.21601
3. Chawla N, Butler EN, Lund J, et al. Patterns of colorectal cancer care in Europe, Australia, and New Zealand. *J Natl Cancer Inst Monogr.* 2013;2013:36–61. doi:10.1093/jncimonographs/lg009
4. Damin DC, Lazzaron AR. Evolving treatment strategies for colorectal cancer: a critical review of current therapeutic options. *World J Gastroenterol.* 2014;20:877–887. doi:10.3748/wjg.v20.i4.877
5. Bryant CL, Lunniss PJ, Knowles CH, et al. Anterior resection syndrome. *Lancet Oncol.* 2012;13:e403–e408. doi:10.1016/S1470-2045(12)70236-X
6. Sioots K, Bartlett L. Practical strategies for treating postsurgical bowel dysfunction. *J Wound Ostomy Contin Nurs.* 2009;36:522–527. doi:10.1097/WON.0b013e3181b55e95
7. Sloots K, Bartlett L, Ho YH. Treatment of postsurgery bowel dysfunction: biofeedback therapy. J Wound Ostomy Contin Nurs. 2009;36:651–658. doi:10.1097/WON.0b013e3181bd8811
8. Tate JJ, Milner CE. Real-time kinematic, temporo-spatial, and kinetic biofeedback during gait retraining in gait patients: a systematic review. Phys Ther. 2010;90:1123–1134. doi:10.2522/ptj.20080281
9. Giggins OM, Persson UM, Caultfield B. Biofeedback in rehabilitation. J Neuroeng Rehabil. 2013;10:60. doi:10.1186/1743-0003-10-60
10. Zhang Z, Wu H, Wang W, Wang B. A smartphone based respiratory biofeedback system. In Proceedings of The Third International Conference on Biomedical Engineering and Informatics. Yantai, China: IEEE; 2010.
11. Panic N, Leoncini E, de Belvis G, Ricciardi W, Bocciu S. Evaluation of the endorsement of the preferred reporting items for systematic reviews and meta-analysis (PRISMA) statement on the quality of published systematic review and meta-analyses. PLoS One. 2013;8:e83138. doi:10.1371/journal.pone.0083138
12. Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6:e1000097. doi:10.1371/journal.pmed.1000097
13. Buchter RB, Weise A, Pieper D. Development, testing and use of data extraction forms in systematic reviews: a review of methodological guidance. BMC Med Res Methodol. 2020;20:259. doi:10.1186/s12874-020-01143-3
14. Sterne JAC, Savovic J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 2019;366:l4898. doi:10.1136/bmj.l4898
15. Slim K, Nini E, Forestier D, Kwiatkowski F, Panis Y, Chipponi J. Methodological index for non-randomized studies (MINORS): development and validation of a new instrument. ZNZ J Surg. 2003;73:712–716.
16. MagoC, GuoB, SchopflocherD, et al. BMC Med Res Methodol. 2014;14:e83138. doi:10.1371/journal.pmed.1000097
17. Higgins JPT, Green S. Cochrane Handbook for Systematic Reviews of Interventions. Chichester: John Wiley & Sons; 2011.
18. Allgayer H, Dietrich CF, Rohde W, Koch GF, Tuschhoff T. Prospective comparison of short- and long-term effects of pelvic floor exercise/biofeedback training in patients with fecal incontinence after surgery plus irradiation versus surgery alone for colorectal cancer: clinical, functional and endoscopic/endosonographic findings. Scand J Gastroenterol. 2005;40:1168–1175. doi:10.1080/003655205010023477
19. Bartlett L, Sloots K, Nowak M, Ho YH. Treatment of postsurgery bowel dysfunction: biofeedback therapy. Tech Coloproctol. 2011;15:319–326. doi:10.1007/s10151-011-0713-5
20. Cong JC, Zhang H, Chen CS, Liu EQ. Biofeedback therapy can improve the anal sphincter function in patients with intersphincteric resection for low rectal cancer. World J Gastrointest Endosc. 2016;25:2566–2570. doi:10.11596/wjejd.v14.i25.2566
21. Xu D, Zeng ZY, Chen W, Chen Y, Cui L. Biofeedback therapy for fecal incontinence in patients with mid or low rectal cancer after restorative resection. Zhonghua Wei Chang Wai Ke Za Zhi. 2010;8:580–582.
22. Bartlett L, Sloots K, Nowak M, Ho YH. Biofeedback therapy for symptoms of bowel dysfunction following surgery for colorectal cancer. Tech Coloproctol. 2011;15:319–326. doi:10.1007/s10151-011-0713-5
23. Cong JC, Chen CS, Zhang H, Qiao L, Liu EQ. Partial longitudinal resection of the anorectum and sphincter for very low rectal adenocarcinoma: a surgical approach to avoid permanent colostomy. Colorectal Dis. 2011;14:697–704. doi:10.1111/j.1463-1318.2011.02686.x
24. Kim K, Yu C. Effectiveness of biofeedback therapy in treatment of anterior resection syndrome after rectal cancer surgery. Dis Colon Rectum. 2011:53:662.
25. Laforest A, Bretagnol F, Mouazan AS, Maggiori L, Ferron M, Panis Y. Functional disorders after rectal cancer resection: does a rehabilitation programme improve anal continence and quality of life? Colorect Dis. 2012;14:1231–1237. doi:10.1111/j.1463-1318.2012.02956.x
26. Lee KH, Kim JS, Kim YJ. Efficacy of biofeedback therapy for objective improvement of pelvic function in low anterior resection syndrome. Ann Surg Treat Res. 2019;97:194–201. doi:10.4174/astr.2019.97.4.194
27. Kuo LJ, Lin YC, Lai CH, et al. Improvement of fecal incontinence and quality of life by electrical stimulation and biofeedback for patients with low rectal cancer after intersphincteric resection. Arch Phys Med Rehabil. 2015;96:1442–1447. doi:10.1016/j.apmr.2015.03.013
28. Kye BH, Kim HJ, Kim G, Yoo RN, Cho HM. The effect of biofeedback therapy on anorectal function after the reversal of temporary stoma when administered during the temporary stoma period in rectal cancer patients with sphincter-saving surgery: the interim report of a prospective randomized controlled trial. Medicine (Baltimore). 2016;95:e3611. doi:10.1097/MD.0000000000003611
29. Liang Z, Ding W, Chen W, Wang Z, Du P, Cui L. Therapeutic evaluation of biofeedback therapy in the treatment of anterior resection syndrome after sphincter-saving surgery for rectal cancer. Clin Colorectal Cancer. 2016;15:101–7. doi:10.1016/j.ccc.2015.11.002
30. Zheng M, Wu XD, Fu CF, Chen YL, Kong LH, Pan ZZ. Intervention effect of biofeedback combined with pelvic floor muscle exercise on low anterior resection syndrome in patients with low anus-preserving rectal cancer. Zhonghua Yi Xue Za Zhi. 2019;99:2337. doi:10.3760/cma.j.issn.0376-2491.2019.30.004
31. Heymen S, Jones KR, Ringel Y, Scarlett Y, Whitehead WE. Biofeedback treatment of fecal incontinence: a critical review. Current Status. 2001;44:728–736.
32. Lundy B, Duenand-Jakobsen J. Management of fecal incontinence after treatment for rectal cancer. Curr Opin Support Palliat Care. 2011;5:60–64. doi:10.1097/SPC.0b013e3283435dd4
33. Massa L. Pelvic floor physical therapy interventions for oncology patients. Top Geriatr Rehabil. 2011;27:206–214. doi:10.1097/ TGR.0b013e31821986c0
34. Juul T, Ahlberg M, Biondo S, et al. International validation of the low anterior resection syndrome score. Ann Surg. 2014;259:728–734. doi:10.1097/SLA.0b013e318283fac0b
35. Sedgwick P, Greenwood N. Understanding the Hawthorne effect. BMJ. 2015;351:h4672. doi:10.1136/bmj.h4672
36. Bliss DZ, Mellgren A, Whitehead WE, et al. Assessment and Conservative Management of Faecal Incontinence and Quality of Life in Adults. Paris: 5th International Consultation on Incontinence; 2013.

37. Bharucha AE, Lacy BE. Mechanisms, evaluation, and management of chronic constipation. *Gastroenterology*. 2020;158:1232–1249.e3. doi:10.1053/j.gastro.2019.12.034

38. Bo K, Herbert RD. There is not yet strong evidence that exercise regimens other than pelvic floor muscle training can reduce stress urinary incontinence in women: a systematic review. *J Physiother*. 2013;59:159–168. doi:10.1016/S1836-9553(13)70180-2

39. Craig P, Dieppe P, Macintyre S, et al. Developing and evaluating complex interventions: the new Medical Research Council guidance. *Int J Nurs Stud*. 2013;50:587–592. doi:10.1016/j.ijnurstu.2012.09.010