A GYÁRTÁS KÖZBEN ALKALMAZOTT HŰTÉS HATÁSA HŐÁLLÓ PLA-ALAPANYAGRA

THE IMPACT OF ACTIVE COOLING ON HEAT RESISTANT PLA

Lukács Norbert László, 1 Ficzere Péter, 2 Szebényi Gábor 3

Budapesti Műszaki és Gazdaságtudományi Egyetem, Budapest, Magyarország

1 lukacsnorbert98@gmail.com
2 ficzere@kge.bme.hu
3 szebenyi@pt.bme.hu

Abstract
In this study the properties of HT-PLA were determined with tensile tests. The influence of cooling was determined and influence of manufacturing environment shown to be predictable. Heat resistant 3D printing materials can be widely used in the manufacturing process but these materials are relatively expensive. HT-PLA is one of the cheapest materials with these parameters.

Keywords: FDM, high temperature PLA, additive manufacturing, 3D printing, cooling.

Összefoglalás
Ezen tanulmányban a HT-PLA fantasztikus hőálló PLA-anyag tulajdonságait vizsgáltuk hagyományos szakitóvizsgálattal. A vizsgálat segítségével megismertük a tárgyhűtés hatását az alkatrész tulajdonságaira, és következtetéseket tudtunk levezetni a környezet hatásáról a munkadarabra. A hőálló filamentek széles körben használhatóak a gyártási folyamatok során, azonban gyakran nagyon magas ár jellemzi őket. A HT-PLA az egyik legolcsóbb olyan anyag, amely elméletileg akár 100°C elviselésére is képes.

Kulcsszavak: FDM, additív gyártástechnológiák, 3D nyomtatás, hőálló alapanyagok, hűtés.

1. Bevezető
Az FDM-technológia terjedésével a felhasználási területek is változnak, egyre több ilyen módon gyártott alkatrész kerül közvetlen felhasználásra [1]. Mára már számtalan típusú alapanyag áll rendelkezésünkre, van köztük hőálló, flexibilis, UV-álló is. Az alapanyagok egy új fajtája a hőkezelhető filamentek csoportja, mely könnyebbé teszi a gyártást és számunkra megfelelő anyag tulajdonságait biztosít, azonban az utólagos hőkezelés egyéb várható kellemetlenségeket okozhat, köztük a vetemedést, illetve méretváltozást is. Ebben a tanulmányban a gyártás során alkalmazott hűtés hatását tárgyaljuk, azonban a jövőben a hőkezelés hatásait is vizsgáljuk.

2. Módszer
„A HT-001-ből nyomtatott alkatrészek eleve a hagyományos PLA-nál magasabb hőállósággal rendelkeznek (65–70 °C HDT érték E2092 szabvány szerint). Ezt az értéket könnyen 100°C fölé növelhetjük egy rövid hőkezelés elvégzésével: A kinyomtatott tárgyat helyezzük előlőg elmelegített kemencébe (sütőbe) 20 perc időtartamra, 80–100 °C-os hőmérséklet mellett, majd óvatossan hagyjuk lehűlni. A polimerszerkezet az eljárás során kristályalakul, ezen keresztül, mely magasabb hőállóságot és szilárdságot eredményez [2].”
A gyártáshoz egy CrealityEnder 3 nyomtomtatót használtunk fel, mely egy egyszerű, kereskedel-
mi forgalomban kapható, bárki számára elérhető áru FDM (FFF) 3D-nyomtató.

A próbatesteket fekvő, valamint álló helyzetben is kinyomtattuk hűtés alkalmazásával, majd anélkül is (1. ábra). A gyártási paraméterek:
- 215 °C-os fej-, illetve 60 °C-os asztalhőmérséklet;
- 40 mm/s-os sebesség;
- 100%-os belső kitöltöttség;
- a rétegvastagság 0,2 mm.

Ezeket az adatokat több korábbi tanulmány is a legmegfelelőbb általános paramétereknek jelölte meg PLA-nyomtatás során [3, 4, 5]. A próbatestek szakítóvizsgálata a BME Polimertechnika tanszék Zwick Z005-ös berendezésén történt (2. ábra).

Minden esetben 5-5 szabványos próbatestet vizsgáltunk. A szakítási sebesség szabvány szerint 5 mm/s volt (3. ábra).

3. Eredmények

A fekvő helyzetben nyomtatott próbatestek szakítóvízsgálatainak eredményeit a következő diagramok szemléltetik. Mint látható, a hűtés nélkül gyártott próbatestek szakítószilárdsága átlagosan körülbelül 45 MPa (4. ábra) volt, ami jelentősen eltér a gyártó által megadott 66 MPa értéktől. Ez önmagában adódhat a nyomtatás során alkalmazott kitöltés irányából [6], valamint a nem megfelelő szálak közti tapadásból [4]. A gyártó nem ad meg irányfüggést.

Az aktív hűtessel gyártott próbatestek szakítószilárdsága jelentősen csökkent a hűtés nélkül gyártott próbatestekéhez képest (5. ábra). Mint látható, a szakítószilárdságuk nem sokkal nőtt 35 MPa fölé.
A hűtés alkalmazása sok esetben elengedhetetlen az FDM-nyomtatás során, különösen a nagy túllógásokkal tűzdelt alkatrészek esetében, ahol szükséges az anyag mielőbb megszilárdulása a megfelelő felületminőség eléréséhez.

Az álló helyzetben gyártott próbatestek mechanikai tulajdonságai nem érték el a korábbi eredmények alapján várt értékeket [7], azonban az aktív hűtés nélkül gyártott próbatestek ebben az esetben is jobb tulajdonságokat mutattak.

Az aktív hűtéssel gyártott, állított próbatestek szakítódiagramjai a 7. ábrán figyelhetők meg.

Az eredmények táblázatos formában:

Próbatest típusa	Átlagos szakítószilárdsága (MPa)
Fekvő, hűtéssel	35,21
Fekvő, hűtés nélkül	44,23
Álló, hűtéssel	9,18
Álló, hűtés nélkül	13,44

4. Következtetések

A vizsgálatok alapján elmondható, hogy a hűtés hatására jelentősen csökkent a próbatestek szakítószilárdsága – az átlagos 44 MPa-ról körülbelül 35 MPa-ra, ami körülménytől 20%-os csökkenést jelent – így az FDM-technológiával előállítani kívánt alkatrészeket ajánlott úgy megtervezni, hogy azok ne igényeljenek hűtést. Ezt a jelenséget magyarázhatja az, hogy hűtés hatására a fűvöká-
ból kiáramló anyag már azelőtt elkezd megszilárdulni, hogy összeolvadna az előző rétegekkel (8. ábra).

Az álló próbatestek esetében ez az arány tovább romlott, itt már körülbélül 30%-ra tehető a különbség a hűtve, illetve a hűtés nélkül gyártott darabok esetében (9. ábra).

5. Összefoglalás

A kapott eredmények alapján könnyen megállapíthatjuk a tárgyhűtés negatív hatását az FDM-technológiával gyártott alkatrészek mechanikai tulajdonságaira. Az eredmények ismeretében fontos az így készítendő tárgyakat, alkatrészeket úgy tervezni, hogy azok ne igényeljenek hűtést a nyomtatás során. A jövőbeni felhasználás előtt a hőkezelés anyagra gyakorolt hatásait, valamint az alkatrész formai követelményeire gyakorolt hatásait is szükséges megvizsgálni.

Köszönetnyilvánítás

Ez a tanulmány nem jöhetett volna létre Dr. Török Ádám közreműködése nélkül. Köszönjük a munkáját!

Szakirodalmi hivatkozások

[1] Gerendás P., Károly D., Pammer D., Kiss R. M.: Egyedi kézrögzítő fejlesztés és gyártása 3D nyomtatással. Biomechanica Hungarica XI/2., 23–30.
[2] 3DEE Store Budapest (letöltve: 2020.01.28.) https://3dee.hu/termek/ht-pla-001/
[3] Lukács N. L., Ficzere P., Temesi T.: Gyártási paraméterektől függő rétegközi hibák vizsgálata CAD szoftverekkel. GÉP, LXX/3, 54–57.
[4] Ogjan L. et al.: Impact of processing parameters on tensile strength in-process crysallinity and mesostructure in FDM-fabricated PLA specimens. Rapid Prototyping Journal 25/8. (2019) 1398–1410
[5] Ficzere P., Lukács N. L.: Evaluation opportunities of SEM pictures by CAD software. Design of Machines And Structures 9/2. (2019) 20–24.
[6] K. Álvarez C., Lagos R. F., Aizpun M.: Investigating the influence of infill percentage on the mechanical properties of fused deposition modelled ABS parts. Ingeniería e Investigación 36/3. (2016) 110–116. https://doi.org/10.15446/ing.investig.v36n3.56610
[7] Ficzere P., Borbas L., Falk Gy., Szabényi G.: Experimental determination of material model of machine parts produced by Selective laser sintering (SLS) technology. Materials Today: Proceedings, 5/13. Part 2, (2018) 26489–26494. https://doi.org/10.1016/j.matpr.2018.08.104.