Structure of Brightest Cluster Galaxies and Intracluster Light

Matthias Kluge
B. Neureiter, A. Riffeser, R. Bender, C. Goessl, U. Hopp, M. Schmidt, C. Ries, N. Brosch
Structure of Brightest Cluster Galaxies and Intracluster Light

Matthias Kluge

B. Neureiter, A. Riffeser, R. Bender, C. Goessl, U. Hopp, M. Schmidt, C. Ries, N. Brosch
Structure of Brightest Cluster Galaxies and Intracluster Light

Matthias Kluge
B. Neureiter, A. Riffeser, R. Bender, C. Goessl, U. Hopp, M. Schmidt, C. Ries, N. Brosch
Open Questions?

- How similar are BCGs to regular Ellipticals?
 - Do they extend the scaling relations for ellipticals?

- How much ICL is there?
 - Go deep!

- Simulations predict remnants of accretion events at low surface brightnesses
 - Find them in real data!

Kormendy+ (2009); Bender+ (2015)

Harris+ (2017)
Previous BCG/ICL Surveys

![Graph showing the relationship between depth [g' mag arcsec⁻²] and sample size for various surveys, including Seigar (2007), Krick (2005), Gonzalez (2005), Patel (2006), Schombert (1986), Bernardi (2007), Postman (1995), and Lauer (2014). Kluge (2019) is highlighted in red.](image)
Background flatness

sky subtraction

30'

Before foreground stars removal

Field of view: 0.7 sq. degree
Background flatness

sky subtraction

30'

After foreground stars removal

100"

Field of view: 0.7 sq. degree
Background flatness

Sky subtraction

30'

Field of view: 0.7 sq. degree

After foreground stars removal

100''

mag_g arcsec$^{-2}$
Surface Brightness profiles

Abell 1177

ΔSB

SB [mag$_g$, arcsec$^{-2}$]

$a^{1/4}$ [arcsec$^{1/4}$]

- 70cm JBRT L
- 2m WWFI g'

sky brightness
PSF de-broadening

$r_e : 12\%$ too large
$SB_e : 0.25 \text{ mag arcsec}^{-2} \text{ too faint}$
$n : 6\%$ too large
Results:

accretion signatures
Accretion signatures:

Tidal Streams (in 22% of BCGs)

Abell 1257

Abell 1213
Accretion signatures:

Shells (in 9% of BCGs)

AWM 1

Abell 2197

Harris+ (2017) Simulation
Accretion signatures:

Multiple Nuclei (in 23% of BCGs)
BCG / ICL decomposition using two Sérsic functions

71% of BCGs

29% of BCGs

Abell 2029

Abell 1177
BCG / ICL decomposition using two Sérsic functions

Remus+2017 (Magneticum Simulation)
Average SS and DS profiles

$r^{1/4}$ [kpc$^{1/4}$]

SB [mag, arcsec$^{-2}$]

$\epsilon = 1 - b/a$

$\Delta P^A [^\circ]$
Accretion signatures

![Graph showing fraction of SS or DS BCGs for different accretion signatures: Two BCGs, Shells, Tidal Streams, Multiple Nuclei, and Any. The graph compares SS BCGs (red) and DS BCGs (gray).]
Scaling Relations

1) Brightest Cluster Galaxies differ from regular Ellipticals in their scaling relations:
 - Broken slopes in Kormendy-, M–SB and size–brightness relations

2) Scaling relations are equivalent for SS and DS BCGs

3) ICL blends in with the clusters
BCG/ICL alignment with their host clusters
Summary

• large & deep photometric survey of 170 Brightest Cluster Galaxies with the Wendelstein Wide Field Imager

• Accretion signatures detected in 1/2 of observed BCGs

• Double Sérsic decomposition of SB profiles is in 1 / 2 cases incapable of decomposing BCG and ICL

• Scaling relations for BCGs differ from those of regular ellipticals due to ICL
 • ICL transitions smoothly into the clusters
Outlook

- color gradients

12 u' 171 g' 27 Ks

- IFU spectroscopy

7 VIRUS-P 1 VIRUS 74 LRS2