Strongly correlated multi-impurity models: The crossover from a single-impurity problem to lattice models

Fabian Eickhoff and Frithjof B. Anders

Theoretische Physik 2, Technische Universität Dortmund, 44221 Dortmund, Germany
(Dated: August 21, 2020)

We present a mapping of various correlated multi-impurity Anderson models to a cluster model coupled to a number of effective conduction bands capturing its essential low-energy physics. The major ingredient is the complex single-particle self energy matrix of the uncorrelated problem that encodes the influence to the host conduction band onto the dynamics of a set of correlated orbitals in a given geometry. While the real part of the self-energy matrix generates an effective hopping between the cluster orbitals, the imaginary part, or hybridization matrix, determines the coupling to the effective conduction electron bands in the mapped model. The rank of the hybridization matrix determines the number of independent screening channels of the problem, and allows the replacement of the phenomenological exhaustion criterion by a rigorous mathematical statement.

This rank provides a distinction between multi-impurity models of first kind and of second kind. For the latter, there are insufficient screening channels available, so that a singlet ground state must be driven by the inter-cluster spin correlations. This classification provides a fundamental answer to the question, why ferromagnetic exchange interactions between local moments are irrelevant for the spin compensated ground state in dilute multi-impurity models, whereas the formation of large spins competes with the Kondo-scale in dense impurity arrays, without evoking a spin density wave. The low-temperature physics of three examples taken from the literature are deduced from the analytic structure of the mapped model, demonstrating the potential power of this approach. Numerical renormalization group calculations are presented for up to five site cluster. We investigate the appearance of frustration induced non-Fermi liquid fixed points in the trimer, and demonstrate the existence of several critical points of Kosterlitz-Thouless type at which ferromagnetic correlations suppress the screening of an additional effective spin-1/2 degree of freedom.

I. INTRODUCTION

The different competing phases in strongly correlated electron systems caused a lot of attention in the last 50 years. Heavy Fermions (HF) [1, 2] are a prominent example for a heavy Fermi-liquid (FL) formation and superconducting phases [3]. Magnetically ordered phases [4] can either develop out of a heavy FL with very low magnetic moments, or out of a local moment phase with almost unscreened magnetic moments [1]. Another prominent example are the high-temperature superconductors, where a superconducting dome at finite doping is located next to an antiferromagnetically ordered Mott-Hubbard insulator [5]. External control parameter, such as doping or pressure, have been used to tune between phases of strongly correlated electron systems at low temperatures: strange-metals with non-Fermi liquid (NFL) properties have often been detected [2] in the vicinity of such a quantum critical point (QCP) [4, 6, 7]. A sufficient understanding of such strange-metals, and their origin in strongly correlated electronic systems, is still lacking, and the underlying universality of strange-metal behavior that develops at a quantum critical phase transition is still subject of intense theoretical research.

The physics of the Heavy Fermions is governed by a competition between a heavy Fermi-liquid formation due to the Kondo effect [8], and a magnetic ordering of localized spins due to the RKKY interaction, both mediated by the light quasiparticles of the metallic host [4]. Since these phases are orthogonal, the Doniach picture [9] suggests that there exists a quantum phase transition between those two phases.

This scenario has triggered intensive work on the two-impurity Kondo problem as a simplified model aiming for a microscopic understanding of a potential quantum phase transition (QPT) between a magnetically ordered and a heavy FL phase. For the two-impurity Kondo problem [10], however, it turned out that ferromagnetic exchange interactions between the local moments are irrelevant for the spin compensated ground state, and the antiferromagnetic QCP was shown to be unstable [11, 12]: the two singlet fixed points are adiabatically connected by a continuous change of the conduction electron scattering phase.

The Doniach picture has already been questioned at the advent of early approaches to the PAM or the Kondo lattice model. Grewe [13] pointed out, that this purely local picture neglects the role of the band mediated interaction between the local moments. They influence the Fermi liquid phase, as well as the formation of magnetically ordered phases out of a heavy Fermi liquid phase, driven by the residual quasiparticle interactions. The theory of magnetism in such materials must include localized and itinerant magnetic order. Furthermore, Nozieres’ exhaustion scenario [14, 15] challenged the notion that the heavy Fermi liquid formation can be associated with individual Kondo effects at each lattice site in a periodic system, where the Kondo effect is mediated by the local density of states of the host conduction electrons. In spite of the criticism, the Doniach scenario...
remains a paradigm [4] even today in illustrations of the potential origin of complex phase diagrams [16] in HF.

While most of the HF exhibit an antiferromagnetically ordered phase, there is a growing number of ferromagnetic HF compounds [17–30]. Recent experiments on such ferromagnetic HF revealed strange-metal behavior when the Curie temperature is smoothly suppressed to zero via hydrostatic pressure [28, 29] or chemical pressure [30]. Whereas quantum phase transitions in itinerant ferromagnets are always first-order in the framework of Hertz-Millis-Moriya theory [6, 7], experiments [28–30] demonstrate the existence of local criticality with Kondo-destruction also in ferromagnetic HF. This finding proves that the destruction of antiferromagnetism is not essential for the varied behaviors of strange-metals. New theories for such ferromagnetic QCPs, aside from the first order spin density wave scenario, are, therefore, highly required and may provide new access in the context of strange-metals. Impurity cluster of finite size, where the formation of a spin density wave is suppressed, hence, are a good starting point in order to obtain a microscopic understanding why ferromagnetic correlations in larger correlated cluster can compete with the Kondo-screening, even if such a competition has not been reported in two- and three-impurity models [31–34].

The quest for a many-impurity problem that is solvable, and reveals interesting competing phases connected by a true QCP, triggered the investigation of the frustrated three impurity spin problems [33–38]. The connection to bulk materials, however, remains unclear, although it might be very helpful to illustrate the possibility of emerging complex phases. A key observation of these papers is the central role of magnetic frustration that is able to trigger more exotic phases in correlated materials.

In this paper, we present an approach that is able to shed some light from a different perspective onto this old and fundamental question. We start from the conventional multi-impurity Anderson model (MIAM) where \(N_f \) correlated Hubbard atomic sites are hybridizing with Wannier orbitals of a single conduction electron band. This includes the well studied single-impurity Anderson and Kondo models [39], and the periodic Anderson model (PAM), where \(N_f \) is equal to the number of lattice sites of the host material \(N_L \), as two opposite limits, as well as finite size impurity clusters that become relevant for scanning tunneling microscopy (STM) or as toy models for magnetic frustration. We present a mapping for the original model to an effective low-energy MIAM that is justified in the wide-band limit. The mapping accounts for the conduction band mediated RKKY interaction and the delocalization of the correlated orbitals by effective hopping matrix elements between all orbitals, as well as the Kondo effect by the construction of effective band channels.

The number of effective screening conduction band channels in the mapped model depends on the lattice geometry and the location of the impurities. The number of \(k \)-points on the Fermi surface of the host material provides the upper limit of the screening channels, challenging the Doniach scenario of a Kondo screening of individual local spins by a single conduction band in the PAM. As a consequence of the mapping, the magnetic ordering, the heavy FL formation as well as the screening of the local moments are related to collective phenomena, involving a small number of Kondo screening channels and the conduction band mediated effective interaction between the impurity orbitals.

In Refs. [29, 40] the paramagnetic-ferromagnetic transition in the Kondo lattice was studied within a independent bath approximation for each spin, such that the suppression of the Kondo temperature can be ascribed to the Kondo resonance narrowing in FM coupled single-impurity Kondo models [41] in combination with an infinite number of coupled local moments. However, due to the independent bath approximation, the exhaustion effect of the conduction electrons is neglected in such models.

Within the classification we present below, we propose a different mechanism leading to FM criticality in multi-impurity models, directly based on the reduced number of conduction band screening channels. From the two- and three-impurity problem [31–34] it is known, that FM correlations do not compete with the single-ion Kondo effect and lead to a reduction of the Kondo temperature at most. However, if the number of impurities is large, such that there are not enough conduction screening channels available, the singlet ground state can not be interpreted in terms of the single-ion Kondo effect any longer, and additional collective mechanisms need to be taken into account. We demonstrate that it is this collective singlet formation that competes with the formation of FM correlations between the local moments.

Since the delocalization and the collective screening of the individual local moments is both realized by operators responsible for the antiferromagnetic part of the RKKY interaction, ferromagnetic couplings lead to a competition between (localized) magnetic order and the (delocalized) heavy FL. Consequently, the competition is rather between (delocalizing) AF and (localizing) FM RKKY interaction, than between (delocalizing) Kondo and (localizing) RKKY coupling, as usually assumed [29, 40].

We demonstrate the formation of a ground state with finite magnetic moment and ferromagnetic spin-spin correlations between the local moments in multi-impurity models belonging to the class that adiabatically evolves to the PAM for a large number of correlated orbitals. Due to the finite number of correlated orbitals a spin density wave scenario can be excluded in this case. This ferromagnetic type of ground state is beyond the scope of the generic two impurity model where a spin singlet is always formed at sufficient low temperatures. The transition between a spin-singlet and a spin-full ground state is accompanied by a QCP, at which ferromagnetic correlations lead to a suppression of the screening of an ef-
fective spin-1/2 moment, i.e. a linear combination of the local moments in real space. The QCP is stable against any kind of symmetry breaking and the transition can be driven by several parameters of the model.

Magnetic frustration arises when the nearest and next-nearest hopping matrix elements in the mapped model become equally strong leading to competing antiferromagnetic interactions. We study the impurity trimer in a C_3 symmetric setup, and review the frustration induced NFL fixed points [33, 34] within our effective low-energy model. While at intermediate strengths of AF RKKY interaction $K_{RKKY} > K_{RKKY}^c$ the NFL fixed point is stabilized, we establish the existence of an upper bound $K_{RKKY}^{c_2}$, at which the NFL fixed point gets unstable, and the system becomes a FL at low temperature. Since the RKKY interaction needs to dominate over the Kondo temperature T_K in order to allow for magnetic frustration, the NFL fixed point completely disappears in the phase diagram, if the Kondo temperature exceeds this upper bound $T_K > K_{RKKY}^{c_2}$.

One of the strengths of our effective low-energy mapping is that it incorporates the FM and AF RKKY interaction as well as the generated potential scattering terms: It naturally incorporates the correct symmetries of the original multi-impurity models coupled to only one single conduction band [11, 12, 32]. We do not need to add artificial Heisenberg exchange couplings, which might lead to unphysical fixed points as known from the two impurity model [11, 12, 32], to realize and explore the competing phases.

The paper is organized as follows. After introducing the precise definition of our model in Sec. II A, we provide a preliminary overview of the results in Sec. II B. While the mapped low-energy MIAM is derived in Sec. II C, we introduce the rank of the interaction matrix as quantitative classification in multi-impurity problems of different spatial dimensions. The strength of our mapping is demonstrated in Sec. II F where we revisit three different problems inves-
tions. The strength of our mapping is demonstrated in Sec. II F where we revisit three different problems inves-
tions. The strength of our mapping is demonstrated in Sec. II F where we revisit three different problems inves-
tions. The strength of our mapping is demonstrated in Sec. II F where we revisit three different problems inves-
tions. The strength of our mapping is demonstrated in Sec. II F where we revisit three different problems inves-
tions. The strength of our mapping is demonstrated in Sec. II F where we revisit three different problems inves-
tions. The strength of our mapping is demonstrated in Sec. II F where we revisit three different problems inves-
tions. The strength of our mapping is demonstrated in Sec. II F where we revisit three different problems inves-
tions. The strength of our mapping is demonstrated in Sec. II F where we revisit three different problems inves-
tions. The strength of our mapping is demonstrated in Sec. II F where we revisit three different problems inves-
tions. The strength of our mapping is demonstrated in Sec. II F where we revisit three different problems inves-
tions. The strength of our mapping is demonstrated in Sec. II F where we revisit three different problems inves-
tions. The strength of our mapping is demonstrated in Sec. II F where we revisit three different problems inves-
tions. The strength of our mapping is demonstrated in Sec. II F where we revisit three different problems inves-
tions. The strength of our mapping is demonstrated in Sec. II F where we revisit three different problems inves-
tions. The strength of our mapping is demonstrated in Sec. II F where we revisit three different problems inves-
tions. The strength of our mapping is demonstrated in Sec. II F where we revisit three different problems inves-
tions. The strength of our mapping is demonstrated in Sec. II F where we revisit three different problems inves-
tions. The strength of our mapping is demonstrated in Sec. II F where we revisit three different problems inves-
tions. The strength of our mapping is demonstrated in Sec. II F where we revisit three different problems inves-
tions. The strength of our mapping is demonstrated in Sec. II F where we revisit three different problems inves-
tions. The strength of our mapping is demonstrated in Sec. II F where we revisit three different problems inves-
tions. The strength of our mapping is demonstrated in Sec. II F where we revisit three different problems inves-
tions. The strength of our mapping is demonstrated in Sec. II F where we revisit three different problems inves-
tions. The strength of our mapping is demonstrated in Sec. II F where we revisit three different problems inves-
tions. The strength of our mapping is demonstrated in Sec. II F where we revisit three different problems inves-
tions. The strength of our mapping is demonstrated in Sec. II F where we revisit three different problems inves-
tions. The strength of our mapping is demonstrated in Sec. II F where we revisit three different problems inves-
tions. The strength of our mapping is demonstrated in Sec. II F where we revisit three different problems inves-
tions. The strength of our mapping is demonstrated in Sec. II F where we revisit three different problems inves-
tions. The strength of our mapping is demonstrated in Sec. II F where we revisit three different problems inves-
tions. The strength of our mapping is demonstrated in Sec. II F where we revisit three different problems inves-
tions. The strength of our mapping is demonstrated in Sec. II F where we revisit three different problems inves-
tions. The strength of our mapping is demonstrated in Sec. II F where we revisit three different problems inves-
tions. The strength of our mapping is demonstrated in Sec. II F where we revisit three different problems inves-
tions. The strength of our mapping is demonstrated in Sec. II F where we revisit three different problems inves-
tions. The strength of our mapping is demonstrated in Sec. II F where we revisit three different problems inves-
tions. The strength of our mapping is demonstrated in Sec. II F where we revisit three different problems inves-
tions. The strength of our mapping is demonstrated in Sec. II F where we revisit three different problems inves-
tions. The strength of our mapping is demonstrated in Sec. II F where we revisit three different problems inves-
tions. The strength of our mapping is demonstrated in Sec. II F where we revisit three different problems inves-
tions. The strength of our mapping is demonstrated in Sec. II F where we revisit three different problems inves-
tions. The strength of our mapping is demonstrated in Sec. II F where we revisit three different problems inves-
tions. The strength of our mapping is demonstrated in Sec. II F where we revisit three different problems inves-
tions. The strength of our mapping is demonstrated in Sec. II F where we revisit three different problems inves-
tions. The strength of our mapping is demonstrated in Sec. II F where we revisit three different problems inves-
tions. The strength of our mapping is demonstrated in Sec. II F where we revisit three different problems inves-
tions. The strength of our mapping is demonstrated in Sec. II F where we revisit three different problems inves-
tions. The strength of our mapping is demonstrated in Sec. II F where we revisit three different problems inves-
tions. The strength of our mapping is demonstrated in Sec. II F where we revisit three different problems inves-
tions. The strength of our mapping is demonstrated in Sec. II F where we revisit three different problems inves-
tions. The strength of our mapping is demonstrated in Sec. II F where we revisit three different problems inves-
tions. The strength of our mapping is demonstrated in Sec. II F where we revisit three different problems inves-
tions. The strength of our mapping is demonstrated in Sec. II F where we revisit three different problems inves-
tions. The strength of our mapping is demonstrated in Sec. II F where we revisit three different problems inves-
tions. The strength of our mapping is demonstrated in Sec. II F where we revisit three different problems inves-
tions. The strength of our mapping is demonstrated in Sec. II F where we revisit three different problems inves-

II. THEORY

A. Model

Although strongly correlated electron systems have a large number of incarnations in particular when applied to realistic material science, we focus on the most elementary version in this paper that targets impurity clusters on surfaces as well as the elementary modeling of HF. These models can be easily generalized to more complex situations if need, for instance to multiple correlated 3d-orbitals as required in transition metal ions, but show already rich physics that is worth presenting from a different perspective.

Quantum impurity systems are typically embedded in a metallic host which is represented by an non-interacting tight-binding model

$$H_{\text{host}} = -\sum_{i,j} t_{ij} c_{i,\sigma}^\dagger c_{j,\sigma} = \sum_{\bar{k}\sigma} \epsilon_{\bar{k}\sigma} c_{\bar{k}\sigma}^\dagger c_{\bar{k}\sigma}$$ \hspace{1cm} (1)$$

that is diagonalized in k-space in a periodic lattice. i, j label all lattice points $\vec{R}_i \in T_L$ where T_L defines the set of all lattice points. The dimension of T_L is N_L. $\epsilon_{\bar{k}\sigma}$ denotes the band dispersion obtained from Fourier transformation of the matrix t_{ij}, and can also include a Zeeman term due to an external magnetic field not considered in this paper. $\epsilon_{\bar{k}\sigma}$ becomes a continuous function of \bar{k} for $N_L \rightarrow \infty$. The diagonal element t_{ii} accounts for the local orbital energy and is used to shift the band center of the conduction band. In this paper, we restrict ourselves to nearest neighbor tight-binding models for keeping the parameter space simple, but our approach is applicable to arbitrary dispersions $\epsilon_{\bar{k}\sigma}$.

The N_f impurities are located at the positions $\vec{R}_l \in T_f$ and are modeled by an atomic Hubbard Hamiltonian

$$H_{\text{corr}} = \sum_{l,\sigma} \epsilon_{l,\sigma} f_{l,\sigma}^\dagger f_{l,\sigma} + \frac{1}{2} \sum_{l,\sigma} U_l f_{l,\sigma}^\dagger f_{l,\sigma} f_{l,\sigma}^\dagger f_{l,\sigma},$$ \hspace{1cm} (2)$$

where $f_{l}^{(1)}$ destroys (creates) an electron in the single-impurity orbital at site l. The on-site energies are labeled by $\epsilon_{l,\sigma} = -\sigma$, and U_l denotes the on-site Coulomb repulsion. In general, correlated 3d or 4f-shells contain many more degrees of freedom. Here, we focus on the essentials to keep the number of free parameter to a minimum. We have situations in mind where crystal electric fields separates the ground state doublet energetically from higher
excitations and spin-orbit coupling between the conduction electrons and the local degrees of freedom can be neglected. However, the mapping and the classification introduced below is applicable to an arbitrary number of orbital degrees of freedom as well. The mapping introduced below is applicable to arbitrary locations, but throughout the paper we focus on a finite dimensional subset $T_f \subset T_L$ of the underlying lattice.

Since we are only considering the thermodynamic equilibrium, we can either explicitly use a chemical potential μ to adjust the different fillings, or we absorb μ by collectively shifting all single particle energies, t_{ii} and ϵ_i^f, by the same amount and leave $\mu = 0$. We adapt the later convention and investigate the effect of different conduction band fillings by shifting the band center $\epsilon_c = t_{ii}$.

The most general coupling between the two orthogonal subsystems is given by the spin-diagonalization term

$$H_{\text{hyb}} = \sum_{m,l} V_{m,l} c_{m\sigma}^\dagger f_{\sigma} + \text{h.c.}$$

$$= \sum_{k,\sigma} V_{k,\sigma} c_{k\sigma}^\dagger f_{\sigma} + \text{h.c.}$$

where $V_{k,\sigma}$ is obtained by a Fourier transformation,

$$V_{k,\sigma} = \frac{1}{\sqrt{N_L}} \sum_m V_{m,l} e^{-i\vec{k} \cdot \vec{R}_m}.$$

In this paper, we only consider a local hybridization, i.e. $V_{m,l} = \delta_{ml} V_l$, $V_{k,\sigma} = V_0 \exp(-i\vec{k} \cdot \vec{R}_l)/\sqrt{N_L}$, and a nearest neighbor hybridization $V_{m,l} = V_0$ for \vec{R}_m and \vec{R}_l being nearest neighbor sites and $V_{m,l} = 0$ otherwise, corresponding to $V_{k,\sigma} = -(V_0/t)\epsilon_k$ [45]. The strength of the coupling is typically discussed in terms of $\Gamma_{0,\sigma} = \pi V_0^2 \rho(0)$, which describes the effective hybridization of a single-impurity with a conduction band density of states (DOS) $\rho(\epsilon)$.

The total Hamiltonian of the system is given by

$$H = H_{\text{host}} + H_{\text{corr}} + H_{\text{hyb}}.$$

This formulation includes two well established and well understood limits. If $T_f = T_L$, and $N_f = N_L \to \infty$, we recover the PAM. If T_f only contains a single site, the model is known as single-impurity Anderson model that was accurately solved using the NRG [46, 47] and the Bethe ansatz [48, 49] almost 40 years ago. If the number of sites $1 < N_f \ll N_L$ is small and finite, we refer to a multi-impurity Anderson model (MIAM) whose simplest realization is the two-impurity Anderson model (TIAM) [31, 32].

B. Preliminaries

At the heart of this paper lies the extension of the low-energy mapping developed for the two-impurity model [32] to the multi-impurity situation ($N_f > 2$) and the consequences that can be concluded from this mapping. The single-impurity problem [50] as well as the two-impurity problem [11, 12, 31, 51] has been extensively investigated over the last four decades and are well understood.

The interest for the two-impurity problem originates in the Doniach scenario [9] for Heavy Fermions (HF) [1] which relates the origin of the magnetic ordering found in some of the HF in the competition between the single-ion Kondo effect [8] screening the local moments and the RKKY interaction [52–61] favoring magnetic ordering of those moments. Although lacking a rigorous mathematical prove, such appealing visualizations of the complex physics in HF [4, 16, 62] are popular even today [62], since it provides a simple picture that can intuitively be grasped. This picture was already challenged by Nozieres’ exhaustion scenario [14, 15], as well as by the observation that HF magnetism can form even out of a heavy FL phase but with strongly reduced magnetic moments [1, 13]. This indicates that the Doniach scenario is too simplistic and does not reflect the full physics in such complex correlated electron systems.

Figure 1 summarizes the four categories of the MIAM which we can mathematically rigorous distinguish within our mapping presented below. The two well established limits of the MIAM model, the single-impurity Anderson model ($N_f = 1$) and the periodic Anderson model ($N_f = N_L$) are located at the opposite end of the figure, where the horizontal axis denotes the number of impurities N_f.

We define the MIAM of the first kind by our ability to map the low-energy physics problem onto an effective coupled multi-impurity cluster that couples the N_f localized orbitals to $N_k = N_f$ effective conduction bands: The number of effective conduction bands, N_k, exactly matches the number of impurities which allows for spin-singlet formation by a compensated multi-channel Kondo effect [63].

The first example of such a MIAM of the first kind is the well understood two impurity model [10–12, 31, 51, 64], $N_f = 2$. Jones and Varma showed [31] that the model can be mapped onto a two-impurity, two-band model in the even/odd parity basis. The induced or-
bital hopping [32] is responsible for the antiferromagnetic (AF) exchange, the asymmetry of the couplings to the two bands results in the ferromagnetic (FM) part of the RKKY interaction [31], while the two bands allow to screen the impurity moments via a two-stage Kondo effect. The QCP that emerges, if the energy dependence of the hybridization functions in the even/odd basis is neglected [10], is just a consequence of unphysical approximations [11, 12] which automatically restores a special kind of particle-hole symmetry that is absent in the original model. Since the antiferromagnetic RKKY interaction, which is required to drive the phase transition, in the full model is dynamically generated from the same contributions that break this special symmetry, the QCP is replaced by a continuous crossover once the full energy dependence is correctly incorporated. Any approximative solution of multi-impurity problems, as toy model with regard to quantum criticality in HF therefore, need to ensure the absence of a QCP in the two-impurity limit. Other examples of MIAM of the first kind are trimer models [33–35] involving three effective conduction bands.

Depending on the details of the lattice topology and the geometric arrangement of the impurities, we find a critical value $N_f'(T_L, T_f)$ above which the MIAM maps onto a low-energy multi-impurity cluster that couples to a reduced number of effective conduction bands $N_b < N_f$. We call those type of problems MIAM of the second kind, indicated by the category III in the Fig. 1. This reduced number of coupled conduction bands has profound consequences for the magnetic properties of the system: a large local moment, that is formed at low temperatures, cannot be completely screened by the multi-channel Kondo effect. We argue below that the periodic Anderson model (PAM) is an particular example for such an MIAM problem of the second kind: The screening of the local moments must involve the antiferromagnetic RKKY induced inter-site exchange coupling, which competes with the ferromagnetic ones. As we demonstrate below, this competition results in several QCPs in multi-impurity models of the second kind.

Nozieres [14, 15] and others [65] already suggested that only the fraction $T_K \rho(0)$ of the conduction electrons can contribute to the Kondo screening in the PAM, T_K being the single-impurity Kondo temperature and $\rho(0)$ being the conduction electron density of states at the chemical potential. Therefore, there are not enough conduction electrons available for ensuring the Kondo screening of all local f-moments by independent Kondo screening mechanisms.

The singlet ground state formation in a heavy Fermi liquid must be based on a different mechanism then simply extending the single-impurity Kondo effect to periodic structures. Although the PAM is mapped onto an effective single-site problem [66–70] embedded into a lattice self-consistency condition in the context of the dynamical mean field theory (DMFT) [71], indicating a simple connection between the single-ion Kondo effect and the Kondo lattice problem, Pruschke and collaborators [70] interpreted the occurring chemical potential dependent reduction of the effective conduction electron density of states in the effective single-site problem in terms of Nozieres’ exhaustion scenario.

Based on our low-energy mapping presented below, we provide a different perspective on the heavy FL formation in the PAM and Kondo lattice models (KLM). It replaces the phenomenological exhaustion scenario with a rigorous mathematical criterion and connects the local Kondo screening and magnetic ordering within the DMFT approach to the mechanism [72] known from the Hubbard model.

C. Low-energy effective multi-impurity model

Since an exact solution of complex multi-impurity correlated electron systems is not known in most of the interesting cases, when the number of impurities exceeds $N_f > 2$, the challenge is to find an appropriate approximation to nevertheless extract the relevant low-temperature physics. We propose a mapping onto an effective low-energy model which can be used to analyze the emergence of free local moments in a variety of different situations, and allows to understand their screening as well as the potential magnetic ordering.

The effect of the host conduction band onto the dynamics of the correlated lattice sites is determined by the hybridization function matrix [73],

$$\Delta_{lm}(z) = \frac{1}{N_c} \sum_{\vec{k}} V_{\vec{k}l}^* V_{\vec{k}m} e^{i\vec{R}_l - \vec{R}_m},$$

(6)

derived from Eq. (3).

The exact real space multi-impurity Green’s function matrix of the dimension $N_f \times N_f$, in the absence of the Coulomb interaction, $U_l = 0$, is given by the matrix

$$G(z) = [z - E - \Delta(z)]^{-1},$$

(7)

where the matrix E contains the single-particle energies of the localized orbitals [74], and the matrix elements of the self-energy matrix $\Delta(z)$ are given in Eq. (6).

The energy dependence of $\Delta_{lm}(z)$ can be neglected in the wide band limit, $V_l/D \rightarrow 0$. Its effect onto the local impurity dynamics is mainly determined by the complex matrix elements $\Delta_{lm}(-i0^+)$ for a $\rho(\omega)$ that is almost constant on the relevant low-energy window. We also have to be careful with the distance dependency of the off-diagonal matrix elements $\Delta_{lm}(z)$. The definition (6) reveals that the larger the distance, the more pronounced the frequency oscillation of $\Delta_{lm}(z)$ are close to Fermi energy. The error of the approximation is estimated by the first derivative of the imaginary part of $\Delta_{lm}(z)$, $d\Gamma_{lm}(\omega)/d\omega$ [32]. While the oscillations are very pronounced for an isotropic dispersion of the conduction electrons in 1d, resulting in significant corrections in 1d,
the derivative becomes \(R \) independent in 3d – see Eq. (61) in Ref. [32]. The proposed approximation is valid in the regime \(d\Gamma_{lm}(\omega)/d\omega \to 0 \) which can always be ensured for \(V_i/D \to 0 \). However, as we demonstrate later on, the fixed point of the full model in general is correctly incorporated in the effective model, even for finite \(V/D \).

We divide the complex matrix element \(\Delta_{lm}(-i0^+) \) into its real and imaginary part:
\[
\Delta_{lm}(-i0^+)=\text{Re}\Delta_{lm}(-i0^+)+i\Gamma_{lm}.
\]

We absorb the effective inter-orbital hopping matrix elements \(\text{Re}\Delta_{lm}(-i0^+) \) into the energy matrix \(E \to E + \text{Re}\Delta(-i0^+) \). If we are only interested in the dynamics of the multi-impurity cluster degrees of freedom, the problem can be mapped onto an effective problem where the charge fluctuation matrix \(\Gamma_{lm} \) is generated by an fictions set of conduction bands. For that purpose, we diagonalize the Hermitian matrix \(\Gamma_{lm} \),
\[
\Gamma = U^h \Gamma^d U \tag{8}
\]
where the \(N_f \) eigenvalues \(\Gamma^d_{n} = \pi V_n^Z \rho(0) \) are interpreted as coupling of the new orbital \(n \) to the \(n \)-th new effective conduction band with the same DOS as the original conduction band DOS, and the hybridization strength is given by \(V_n \). This is justified since we are only interested in the different fixed point structure of the model and not in the accurate calculation of the low temperature crossover scale. Its precise number is also determined by the high-energy degrees of freedom [39, 50, 75]. Then the Green’s function is approximated by
\[
G(z) \approx U[z - E' - i\Gamma^d]^\dagger U^h, \tag{9}
\]
where the energy matrix \(E' \),
\[
E' = U[E + \text{Re}\Delta(-i0^+)]U^h \tag{10}
\]
contains diagonal and hopping terms between all correlated impurity orbitals in the new eigenbase diagonalizing \(\Gamma \). The approximation is limited to a range of frequencies \(z \) for which \(\Delta_{lm}(z) \approx \Delta_{lm}(si0^+) \) with \(s = \text{sign}(\text{Im}z) \).

Consequently, the same low-frequency single-particle Green’s function matrix is generated by the effective single-particle Hamiltonian
\[
H_{sp}' = H_{cl} + H_{\text{deloc}} \tag{11}
\]
in the new eigenbase of \(\Gamma \) in the limit \(V_i/D \to 0 \). The cluster part of the mapped Hamiltonian \(H_{sp}' \),
\[
H_{cl} = \sum_{m,l} E'_{lm} \Gamma_{lm}^d \Gamma_{lm}, \tag{12}
\]
defines the single-particle Hamiltonian of the correlated orbitals in the new basis that has acquired additional orbital hopping terms mediated by the conduction band of the host. The second part,
\[
H_{\text{deloc}} = \sum_{n=1}^{N_f} \sum_{k} \epsilon_k c_{k,n}^\dagger c_{k,n} + \sum_{n=1}^{N_f} \sum_{k} \left(\frac{V_n}{\sqrt{N_c}} f_n + h.c. \right), \tag{13}
\]
includes the new \(N_f \) effective conduction band degrees and the flavor diagonal coupling to the cluster orbitals for each conduction band flavor \(n \). Note, however, that the total number of particles in each flavor \(n \) is in general not conserved, since this operator does not commute with the single-particle cluster Hamiltonian \(H_{cl} \).

Whereas the hybridizations \(V_n \) of the mapped model are exclusively determined by the Fermi-surface, all high energy conduction band states contribute to the dynamics of the cluster \(H_{cl} \) via the energy matrix elements \(E'_{lm} \). The real part of the complex hybridization function, and the effective hopping elements \(t_{lm}^\text{eff} \) respectively, can be deduced via a Hilbert transformation
\[
t_{lm}^\text{eff} = \text{Re}\Delta_{lm}(-i0^+) = \frac{1}{\pi} \int_{-\infty}^{\infty} d\epsilon \frac{\Gamma_{lm}(\epsilon)}{\epsilon} \tag{14}
\]
that incorporates the whole energy dependence of the coupling functions. These hopping elements generate the antiferromagnetic part of the RKKY interaction and simultaneously lead to destruction of the QCP in the two impurity limit [11, 12, 32] since it is a relevant perturbation of the fixed point [11].

The correlated MIAM is recovered after the local Coulomb matrix elements in \(H_{\text{corr}}, \) Eq. (2), has also been rotated into the new orbital basis as well, and added to the single-particle Hamiltonian \(H_{sp}' \). This leads to a complicated, coupled multi-impurity problem that still contains the full spatial correlations in contrary to a local approximation in real space that is employed by the DMFT.

This mapping generates \(N_f \) fictitious conduction bands labeled with the index \(n \) and the corresponding, orthogonal single particle orbitals, augmented by new orbital energies and an inter-orbital hopping, both included in the matrix elements \(E'_{lm} \). As a side product of this mapping, we have separated the AF part of the RKKY interaction that is generated by the inter-site matrix elements of \(E'_{lm} \) from the Kondo screening channels. Since the hybridization strengths \(\Gamma_n \) are in general all different, multi-stage screening of local moments is found in such situations. Furthermore, the differences generate the FM part of the RKKY interaction [31, 32]. In addition we found that for large \(N_f \), only a few \(\Gamma_n \) are different from zero, therefore, the number of Kondo screening channels is typically much smaller than \(N_f \).

This mapping was previously investigated [32] in the two-impurity Anderson model (\(N_f = 2 \)) where the two conduction bands represent states with even and with odd parity. In this case, one can either use the full energy dependency of the even-parity and the odd-parity band [11, 12, 76, 77] in an numerical renormalization group (NRG) [39] calculation, or investigate the mapped Hamiltonian (11) with a particle-hole symmetric band density of states. Both Hamiltonians, the original MIAM, as well as the mapped Hamiltonian, produced the same RG fixed points for a featureless initial \(\rho(\omega) \), and the same spin-spin correlation functions in the wide band limit, establishing the quality of the mapping for \(N_f = 2 \). It was
shown that the particle-hole asymmetry in the even and
odd conduction band dynamically generates an effective
hopping between the two local orbitals, which is respon-
sible for the AF part of the RKKY interaction via an
exchange mechanism once $U_{l} > 0$. The FM part of
the RKKY interaction is generated by the imbalance between
the two eigenvalues of Γ.

D. Classification of the multi-impurity problem by
the $\text{rank}(\Gamma)$

Having an effective low-energy multi-impurity model
at hand, we can now rigorously define different classes of
MIAMs, as well as distinguish between a multi-impurity
model of the first kind versus one of the second kind.
Mathematically, the hybridization matrix Γ has exactly
N_f eigenvalues if its rank is equal to the number of im-
purity orbitals, i. e. $\text{rank}(\Gamma) = N_f$. Since the original
model only contains a single conduction electron band,
the phase correlations between different lattice sites en-
coded in Eq. (6), however, are responsible that the rank
of the matrix is often less than the number of impurity or-
bital: $\text{rank}(\Gamma) < N_f$. Therefore, we use the $\text{rank}(\Gamma)$ to
classify the MIAM into two categories: A multi-impurity
problem of first kind requires that $\text{rank}(\Gamma) = N_f$, while
$\text{rank}(\Gamma) < N_f$ defines a multi-impurity problem of sec-
ond kind.

The multi-impurity problem of first kind is an exam-
ple for a compensated multi-channel Kondo problem [63]:
there are always enough conduction band channels avail-
able for a complete screening of all local moments via a
multi-stage Kondo effect [63]. When reducing the tem-
perature of the system, the details of the eigenvalues Γ_n^α of Γ define a cascade of low-energy scales at which the lo-
cal moments are quenched by 1/2 until the singlet ground
state is reached. Although the transfer matrix E_{lm}^α is
responsible for generating an effective low-energy Heisen-
berg model, representing the AF part of the RKKY inter-
action, the pre-quenching of the moments via the effec-
tive Heisenberg couplings is not needed to obtain a sin-
glet ground state. Consequently, ferromagnetic exchange
couplings between the local moments are irrelevant with
respect to the singlet ground state for models of the first
kind. However, interesting physics can arises in problems
that contain magnetically frustrated systems requiring at
least three impurities [33–35, 37, 38]. Our mapping pro-
vides an ideal tool to investigate which physical condi-
tions. In this case, we know that the problem can be
diagonalized in \vec{k} space: The new multi-impurity orbitals
are labeled also by the quantum number \vec{k}, and acquire a
very complicated non-local Coulomb matrix. The single-
particle matrix $\Delta(z)$, however, must be diagonal in \vec{k},
and the matrix elements take the very simple form

$$
\Delta_{\vec{k}}(z) = \frac{|V_{\vec{k}}|^2}{z - \epsilon_{\vec{k}}},
$$

(15)

which is the well known self-energy of the f-lattice Green
function. As a consequence, only the \vec{k}-values for which
$\epsilon_{\vec{k}} = 0$ holds, yield a finite $\Gamma_{\vec{k}}$ in the mapped model.
Therefore, $\text{rank}(\Gamma) \ll N_f$ for the PAM, and the num-
er of available screening channels is related to the size of
the Fermi surface and not by the number of corre-
lated orbitals. We can conclude that in one-dimension
$\text{rank}(\Gamma) \leq 2$ since the Fermi surface is discrete and only
contains two points.

Our concept of classifying the MIAM including the pe-
riodic model in terms of $\text{rank}(\Gamma)$ allows a much more pre-
cise definition of the phenomenological exhaustion prin-
ciple: for a Kondo screening in the MIAM there are only
$\text{rank}(\Gamma)$ screening channels available. Obviously, this def-
inition is only governed by the single-particle properties,
introduced by the arrangement of the impurities, the un-
derlying lattice and the host dispersion $\epsilon_{\vec{k}}$. This math-
ematically precise definition, however, is able to replace
tween a two-stage Kondo singlet and an RKKY induced
singlet turned out to be an artifact of the approxima-
tion. This model shows a crossover between both phases
accompanied by a continuous variation of the scattering
phase [11, 12] which is also included in our mapped model
[32]. The QPT is destroyed by the real part of $\Delta(-i\delta)$
inducing a hopping term in the cluster that is a relevant
perturbation in the vicinity of the QPT [11, 12, 32].

The TIAM is an ideal system to explicitly understand
the origin of the rank reduction in our effective model,
since the original mapping by Jones and Varma always
leads to a coupling to two conduction bands. Following
the arguments of Refs. [32, 79], or inspecting the imag-
inary part of $\Delta_{lm}(\omega)$, Eq. (6), in the even or odd par-
ity basis for certain dispersions $\epsilon_{\vec{k}}$ and relative distances
$\vec{R}_l - \vec{R}_m$ between the impurities, yields a vanishing of the
energy dependent coupling function $\Gamma(\omega)$ at the chemi-
cal potential of a power-law form $|\omega|^{\alpha}$, where $\alpha > 1$.
For such an exponent of pseudo-gap coupling functions the
local moment fixed point has been proven to be stable
[80–82] in the RG flow. Therefore, the approximation
made in the effective low-energy model (11), by neglect-
ing the full energy dependency of the bands, is fully jus-
tified since the low-energy fixed point remains unaltered.
The rank of the coupling function matrix Γ is a simple
measure to identify the number of independent effective
conduction electron channels that can be potentially used
for the screening of local moments by the Kondo effect.

A interesting consequence arises for large N_f, for in-
stance in the PAM where $N_f = N_L$. Let us consider a
very large but finite system with periodic boundary con-
ditions. In this case, we know that the problem can be
diagonalized in \vec{k} space: The new multi-impurity orbitals
are labeled also by the quantum number \vec{k}, and acquire a
very complicated non-local Coulomb matrix. The single-
particle matrix $\Delta(z)$, however, must be diagonal in \vec{k},
and the matrix elements take the very simple form

$$
\Delta_{\vec{k}}(z) = \frac{|V_{\vec{k}}|^2}{z - \epsilon_{\vec{k}}},
$$

(15)

which is the well known self-energy of the f-lattice Green
function. As a consequence, only the \vec{k}-values for which
$\epsilon_{\vec{k}} = 0$ holds, yield a finite $\Gamma_{\vec{k}}$ in the mapped model.
Therefore, $\text{rank}(\Gamma) \ll N_f$ for the PAM, and the num-
er of available screening channels is related to the size of
the Fermi surface and not by the number of corre-
lated orbitals. We can conclude that in one-dimension
$\text{rank}(\Gamma) \leq 2$ since the Fermi surface is discrete and only
contains two points.

Our concept of classifying the MIAM including the pe-
riodic model in terms of $\text{rank}(\Gamma)$ allows a much more pre-
cise definition of the phenomenological exhaustion prin-
ciple: for a Kondo screening in the MIAM there are only
$\text{rank}(\Gamma)$ screening channels available. Obviously, this def-
inition is only governed by the single-particle properties,
introduced by the arrangement of the impurities, the un-
derlying lattice and the host dispersion $\epsilon_{\vec{k}}$. This math-
ematically precise definition, however, is able to replace
the phenomenological notion of a fraction $\rho(0)T_K$ of electrons contributing to the Kondo screening, which requires the definition of T_K although T_K became a questionable quantity in MIAM.

This finding is a strong indicator that the singlet ground state in the PAM is caused by a different mechanism: it is driven by the hopping matrix elements E'_{lm} delocalizing the local impurity electrons within the f-impurity subsystem and not by N_f independent conduction electron channels, as already conjectured by Grewe [13] more than 30 years ago. For this second kind of MIAMs, the formation of large spins due to ferromagnetic exchange couplings competes with the self-screening of the correlated electrons, and leads to several QCPs in the phase diagram of such models. Interesting physics also arises from the competition between self-screening of the correlated impurity cluster and magnetically frustration due to long range hopping matrix elements E'_{lm} in finite dimensions. By inspecting Eq. (6), one can conclude that E'_{lm} decays rather rapidly in higher spatial dimensions destroying the physics of magnetic frustration in the limit $d \to \infty$, in accordance with the arguments of Metzner and Vollhardt [83], Brandt and Mielsch [84] as well as Müller-Hartmann [85].

1. The rank(Γ) for finite impurity-cluster in various dimensions

In the PAM the number of k-points on the Fermi surface of the host material provides the upper limit for the number the available screening channels, independent of the structure and the dimension of the underlying lattice. Since the number of decoupled f-orbitals in the PAM must continuously develop out of the MIAM with a finite number N_f of correlated impurities, we study the reduction of rank(Γ) for finite impurity clusters with different geometries and in different dimensions. For this purpose we consider a simple cubic lattice with nearest neighbor hopping t such that the dispersion ε_k in d dimensions reads $\varepsilon_k = -2t \sum \cos(k d) + \epsilon_c$. In the following we concentrate on dense impurity arrays where all the impurities are placed next to each other. Dilute impurity configurations can always be deduced from a dense array, by shifting the on-site energy ϵ_f of the depleted sites to infinity. Therefore, the rank(Γ) of the dense array serves as an upper limit for any depleted configuration that can be deduced from the dense case.

In one dimension, the Fermi surface consist of two single points which determine the rank of the charge-fluctuation matrix for the PAM: rank$(\Gamma) = 2$. Consequently for any finite number N_f of correlated impurities we can conclude rank$(\Gamma) \leq 2$ and $N_f = 3$. Every MIAM in 1d with $N_f \geq N_f$ belongs to the MIAM of second kind and thus exhibits QCPs due to FM correlations between the local moments in its parameter space.

In higher dimensions the Fermi surface itself becomes a continuum in the thermodynamic limit and an argumentation analogue to the 1d case is not possible. Hence we focus on some explicit configurations in 2d which are schematically depicted in Fig. 2.

If the impurities are placed in line along the x-direction as schematically depicted in Fig. 2 (a), we can diagonalize the charge-fluctuation matrix in the limit $N_f \to \infty$ via a 1d Fourier transformation

$$\Gamma_{k_x} \propto \sum_{k_y} |V_{k_y}|^2 \delta(\epsilon_{\vec{k}}).$$

For a half filled conduction band, $\epsilon_c = 0$, one can always find a k_y such that $\vec{k} = (k_x, k_y)^T$ belongs to the Fermi surface and, consequently, $\Gamma_{k_x} \neq 0$ which implies a MIAM of the first kind: rank$(\Gamma) = N_f$. Deviations from half-filling, $\epsilon_c \neq 0$, lead to a small number of k_x-points for which no k_y can be found such that $\vec{k} = (k_x, k_y)^T$ belongs to the Fermi surface. In this case the MIAM with $N_f \to \infty$ belongs to the second kind, however, the number of decoupled orbitals $N_{\text{free}} = N_f - \text{rank}(\Gamma)$ remains small and for $N_f \leq 50$ a numerical evaluation yields rank$(\Gamma) = N_f$ for various fillings.

For a finite number of $N_f = 5$ impurities, which are arranged as depicted in panel Fig. 2(b) we can analytically calculate rank(Γ) using the irreducible representation of the C_4 point group. In this basis one obtains three 1d subspaces with $\Gamma_{\alpha} \neq 0$, for a general filling ϵ_c, and one 2d subspace. The 2d subspace contains the correlated orbital in the center of the impurity array f_e and the even combination $f_e = \frac{1}{2} \sum_i f_{i,o}$, where $f_{i,o}$ denotes the annihilation operator of the outer impurities. The charge-fluctuation matrix of this 2d subspace for arbi-

FIG. 2. MIAM with 2d simple cubic lattice, containing uncorrelated lattice orbitals (green) and correlated impurities (blue). The individual panels depict different geometries of the impurity configuration leading to a different number of decoupled orbitals $N_{\text{free}} = N_f - \text{rank}(\Gamma)$. (a) $N_{\text{free}} = 0$, (b) $N_{\text{free}} = 1$, (c) $N_{\text{free}} = 1$ and (d) $N_{\text{free}} = 2$.

and exhibits an incomplete rank for every ϵ_c due to $\det(\Gamma_{\text{even}}) = 0$. We can conclude $\text{rank}(\Gamma) = 4 = N_f - 1$ for the configuration in Fig. 2(b), which, consequently, belongs to the second kind of MIAMs.

For arbitrary arrangements of N_f impurities on a 2d simple cubic lattice, the charge-fluctuation matrix Γ can be numerically evaluated using Eq. (6). For the configuration in panel (c) of Fig. 2, for instance, we obtain $\text{rank}(\Gamma) = 8 = N_f - 1$, whereas $\text{rank}(\Gamma)$ for an arrangement as depicted in Fig. 2(d), yields $\text{rank}(\Gamma) = 6 = N_f - 2$. The analytical and numerical evaluation of the rank of the charge-fluctuation matrix Γ for a simple cubic lattice in 2d, as well as in 3d, indicates, that the number of available screening-channels is proportional to the number of the outermost impurities of a certain arrangement. This finding is compatible with the fact, that $\text{rank}(\Gamma)$ for the PAM is limited to the number of \vec{k}-points on the Fermi surface of the host material, which in general is proportional to N^{d-1}.

For STM experiments, impurity cluster on a 2d surface of a 3d crystal are of particular interest. In order to qualitatively study such situations we used the exact 2d surface Greens function $G_{2d}^0(\vec{k}_i, \omega)$, with $\vec{k}_i = (k_x, k_y)^T$, of a semi-infinite 3d simple cubic lattice, which can be found in [86, 87], to construct the complex hybridization matrix $\Delta(z)$. If the number N_f of impurities is small, we found a MIAM of the first kind in general. Configurations which belong to the second kind of MIAMs in the pure 2d case, however, exhibit a clear hierarchy of hybridizations Γ_n in the mapped model. Hence, due to the finite temperature in experiments, the fully spin-compensated ground state may not be reached since the smallest Kondo temperature is exponential suppressed. For a large number of impurities arranged in a dense cluster one will continuously reach the limit of a fully covered 2d surface. In that case we can diagonalize the charge-fluctuation matrix Γ via a 2d Fourier transformation which, according to [86, 87], yields

$$\Gamma_{\vec{k}_i} \propto \begin{cases} \left(1 - \frac{\epsilon_{\text{c}}(\vec{k}_i)}{2} \right)^2 & \text{if } |\epsilon_{\text{c}}(\vec{k}_i)/2| \leq 1, \\ 0 & \text{else} \end{cases},$$

and, consequently, reveals a MIAM of the second kind.

E. Constructing effective cluster models in the local moment regime

Having an effective multi-impurity model at hand, we can use the results of Sec. IIIC to propose a two step process in order to gain some physical insight in the low-energy properties of the original model. In a first step, we set the couplings \tilde{V}_n to the effective conduction bands to zero, and focus on the decoupled cluster dynamics. After understanding the ground state and the elementary excitations within the cluster, we couple the cluster to the neglected conduction bands. Such a procedure implies a certain hierarchy of energy scales: the Coulomb repulsion, being the largest energy scale causes a local moment formation, dividing the cluster Hilbert space in irreducible subspaces of the total spin. The hopping matrix defines the intermediate energy scale selecting the ground state multiplet of the cluster. In the last step, the effective local moment fixed point of the decoupled cluster becomes unstable due to the coupling to the neglected conduction bands.

For this energy hierarchy one can employ a two step Schrieffer-Wolff type [88] transformation. In a first step, such a transformation is applied to the decoupled cluster. This leads to a finite size t-J model for large N_f as used in the context of the high temperature superconductors [5]. Depending on the particle-hole asymmetry, a pure spin model might emerge, favoring locally antiferromagnetically aligned spins that might order for $N_f \to \infty$, or a more complicated model with two and three site interactions. In a second Schrieffer-Wolff type [88] transformation, an effective Kondo coupling is obtained between the ground state multiplets and the now included coupling to the previously neglected conduction bands.

In the SIAM [39, 46, 47], the system flows to same strong coupling fixed point in case of a dominating coupling to conduction electrons but without a clear signature of the local moment fixed point. Therefore, the energy hierarchy outlined above is not essential in a full NRG and only helps shaping our physical intuition in some limited cases. Hence, our low-energy MIAM also contains the correct physics for the cases in which the hybridization strengths $\tilde{\Gamma}_n$ dominate over the magnetic exchange terms that would be generated by the first Schrieffer-Wolff type transformation. In this case the local moments are starting to be partially screened before the interaction between the magnetic moments becomes relevant.
F. Applying the mapping to some cases discussed in the literature

1. The dilute Kondo lattice model in 1d

An interesting version of a diluted Kondo lattice model in 1d was investigated by Potthoff and collaborators [42, 43] at half-filling. The correlated electron sites are only coupled to the B-sublattice of the bi-partite lattice as depicted in Fig. 3. The authors report that the ground state is ferromagnetic, and the total spin $S = (N_f - 1)/2$ contains one local moment less than the total number of correlated sites.

This surprising finding can be very easily explained by employing our mapping onto a low-energy multi-impurity model. The 1d chain [42, 43] with a constant lattice spacing a forms a bi-partite lattice. A simple nearest neighbor tight binding band structure, $\epsilon_k = -2t \cos(ka)$, was considered by Potthoff and collaborators [42, 43, 89, 90]. Starting from a half-filled ($k_F = \pm \pi/2a$) conduction band, the real and imaginary parts of $\Delta_{lm}(-i0^+)$ are given by

$$\text{Im}\Delta_{lm}(-i0^+) = \pi V_i V_m \rho_{1d}(0) \cos \left(\frac{\pi R_{lm}}{2a} \right)$$ (19a)

$$\text{Re}\Delta_{lm}(-i0^+) = V_i V_m \int_{-\mathcal{D}}^\mathcal{D} d\epsilon \rho_{1d}(\epsilon) \cos \left(\frac{\epsilon R_{lm}}{\epsilon} \right)$$ (19b)

If the impurities are placed on the same (different) sublattice, i.e. $R_{lm} = 2na$ ($R_{lm} = [2n+1]a$) with $n \in \mathbb{Z}$, the real (imaginary) part of $\Delta_{lm}(-i0^+)$ vanishes. For $V_i = V$ we obtain

$$\Delta_{lm}(-i0^+) = \begin{cases} \pm i \Gamma_0 & \text{same sublattice} \\ \text{Re}\Delta_{lm}(-i0^+) & \text{different sublattice} \end{cases}$$ (20)

where $\Gamma_0 = \pi V^2 \rho_{1d}(0)$. Then, the hybridization function matrix of the correlated lattice sites at the sublattice B, as depicted in Fig. 3, is given by a purely imaginary matrix

$$\Delta = i \Gamma_0 \begin{pmatrix} +1 & -1 & +1 & \cdots \\ -1 & +1 & -1 & \cdots \\ +1 & -1 & +1 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$ (21)

at zero frequency. The matrix is finite dimensional for a finite lattice of size $N_c = 2N_f$ with rank$(i\Delta) = 1$, such that only a single eigenvalue $\Gamma_0 = N_f \Gamma_0$ is different from zero. Only one of the N_f new orbitals couples to an effective conduction electron band, and in real space a $1/N_f$ fraction of the local moments on each lattice site is screened by the flow to the strong coupling fixed point. The other $N_f - 1$ orthogonal orbitals are disconnected from a conduction band since Re[$\Delta| = 0$.

Since the asymmetry of the coupling constants is responsible for the FM part of the RKKY interaction [31, 32], those remaining $N_f - 1$ effective moments are aligned ferromagnetically at low temperatures, as reported using a DMRG calculation [42, 43, 89, 90]. Therefore, our mapping provides a simple and intuitive understanding of such a complex correlated system as the dilute PAM in 1d.

The question arises whether this finding for the 1d dilute PAM is symmetry related or a consequence of the phase relation in Eq. (6), connecting two lattice sites via a single conduction band. Let us imagine the case in which the coupling to the impurity site at the origin is much larger than to all others: $V_0 \gg V_i, i \neq 0$. Then we can solve the problem in two steps: solve a single-impurity problem by setting $V_i = 0, i \neq 0$, and once the low-energy fixed point of that problem is reached, switch on the other couplings V_i. The diagonal component of the conduction electron Green’s function in real space,

$$G_{ii}(z) = G_{i0}(z) + V_i^2 G_{00}(z) G_{iimp}^L(z) G_{i0}^L(z),$$ (22)

is obtained from the exact equation of motion and determines the local density of states prior to switching on V_i. $G_{i0}(z)$ denotes the free propagator from R_i to R_j.

$$G_{ij}^0(z) = \frac{1}{N} \sum_k e^{i(kR_i - R_j)} = \int_{-\mathcal{D}}^\mathcal{D} \rho_{1d}^0(\omega) \cos \left(\frac{(R_i - R_j) \cos^{-1} \left[\omega \mathcal{D} \right]}{\omega - \epsilon} \right)$$ (23)

and $V_i^2 G_{iimp}^L(z)$ the t-matrix of the impurity located at the origin, calculated for a finite U. For a particle-hole symmetric band, the real part of $G_{ij}^0(z)$ essentially vanishes for $(R_i - R_j) = 2na$, and $n \in \mathbb{Z}$, at low frequencies. If we substitute a Lorentzian approximation for $G_{iimp}^L(z)$ (Kondo effect), we obtain the approximate solution

$$\rho R_i(\omega) \approx \hat{\rho} R_i(\omega) = \rho_{1d}^0(\omega) - \sqrt{\rho_{1d}^0(\omega) \cos \left(\frac{R_i \cos^{-1} \left[\omega / \omega_0 \right]}{\omega_0} \right)}$$ (24)

for the local conduction electron spectral function at site R_i. A careful analysis of this DOS reveals a pseudo-gap formation of the spectrum at all other correlated impurity sites: the larger the distance, the faster the DOS oscillations in energy space, the smaller the energy interval of the pseudo-gap. Since the pseudo-gap always vanishes quadratically, $\Gamma_i(\omega) \propto |\omega|^2$ in this energy window, a local magnetic moment of another impurity coupled to the conduction electrons at site R_i remains unscreened in the limit $T \to 0$.

As a consequence, the artificial distortion of the coupling constants V_i, in favor of a single dominating hybridization, provides a real space interpretation of our finding that rank$(\Gamma) = 1$ in the 1d dilute PAM. The delocalized orbital coupling to the single effective band for
\(V_I = V_0 \) is adiabatically deformed to the localized orbital at the origin for \(V_I \ll V_0 (t \neq 0) \), which does not alter the rank of the matrix. In our approach, the real space nature of this orbital is encoded in the eigenvector of \(\Gamma \) corresponding to the single finite eigenvalue.

In an approach that includes the full energy dependency of the conduction bands in an effective \(N_f \) band model, we obtain \(N_f - 1 \) channels that decouple quadratically at the chemical potential, and, therefore, cannot screen a local moment [80–82]: The rank is independent of coupling asymmetries and governed by the dispersion \(\epsilon_{k} \) and the topology of the impurity locations. Consequently, the fixed point of the full model is correctly captured by the effective low-energy Hamiltonian, even for large \(V/D \) apart from the wide band limit, contrary to local quantities. As demonstrated by DMRG calculations [42, 43], the size of the magnetic moment of the ground state is independent from the strength of \(V/D \). However, whereas it posses mainly \(f \)-character in the wide band limit \(V/D \to 0 \), it continuously shifts into the host, and becomes a pure conduction band quantity in the limit \(V/D \to \infty \). This flow of the magnetic moment, from \(f \)-to \(c \)-character, obviously is absent in the effective low-energy description for the wide band limit.

2. Limit of the one-electron Kondo-lattice model

Extending the consideration to the full PAM in 1d at half-filling, the problem can be interpreted as coupling the two dilute PAM problems of each sublattice via the hopping matrix elements define in Eq. (19b). On each sublattice, one spin is screened while the remaining \(N_f/2 - 1 \) spins are ferromagnetically aligned. The mapping (20) generates an effective hopping between the orbitals on the different sublattices. This yield a band formation within the correlated sites as well as an AF coupling between the ferromagnetically aligned spins on the sublattices favoring an antiferromagnetic ordering.

Sigrist et al. [44] derived rigorous results for the ground states for the one-electron Kondo lattice model almost 30 years ago. The authors have proven that the ground state is of incomplete ferromagnetic order with \(S_{\text{tot}} = (N_f-1)/2 \) for antiferromagnetic Kondo couplings always present in the PAM as well. We demonstrate that is can also be concluded from our mapped model. For that purpose we recall that we have to shift the chemical potential \(\mu \to -2td \) or \(\epsilon_c \to 2td \), while keeping the correlated site singly occupied, where \(d \) is the dimension of the simple cubic lattice. For \(\kappa_{Z_0} \to 0 \), we obtain \(\Gamma_{lm} = \Gamma_{0} \) and as a consequence again \(\text{rank}(\Gamma) = 1 \).

The same holds for \(\kappa_{Z_0} \to \pi(1, \cdots, 1)^T \). Therefore, one effective moment is screened, and our mapping predicts a FM ground state of \(S_{\text{tot}} = (N_f-1)/2 \) as proven by Sigrist et al. [44]. Note that the limit \(J \to \infty \) of the Kondo lattice model, where a ground state formed by local singlets is expected, is a singular point [44] and not accessible within the PAM. While the exact form of the ground state and the ground state energy still require a detailed calculations, the rank of \(\Gamma \) provides already a basic understanding of the elementary magnetic properties of the model in the limit of a vanishing band filling.

3. Mott transition in the periodic Anderson model with nearest neighbor hybridization

As a third example we consider the periodic Anderson model with nearest neighbor hybridization [45]. The real-space matrix \(\Delta(z) \) becomes diagonal in \(\kappa \)-space,

\[
\Delta_{\kappa}(z) = \frac{|V_0|^2}{t^2} \frac{\epsilon_{\kappa}^2}{z - \epsilon_{\kappa}}. \tag{25}
\]

Clearly, the imaginary part of \(\Delta_{\kappa}(\omega - i\delta) \) vanishes for a half-filled conduction band for all \(\kappa \), reducing \(\text{rank}(\Gamma) = 0 \): no effective conduction band couples to the impurity orbitals, and one is left with a decoupled infinite size cluster of \(f \)-orbitals.

The real part of \(\Delta_{\kappa}(z) \), takes the form

\[
\dot{\epsilon}_{\kappa} = \epsilon_{\kappa} - \frac{|V_0|^2}{t^2} \frac{\epsilon_{\kappa}^2}{z - \epsilon_{\kappa}}, \tag{26}
\]

leading to a renormalized band dispersion for \(U = 0 \)

\[
\epsilon_{\kappa} = \epsilon_0 - \frac{|V_0|^2}{t^2} \frac{\epsilon_{\kappa}^2}{z - \epsilon_{\kappa}}. \tag{27}
\]

in \(\kappa \)-space. Our approximation maps the PAM with nearest neighbor hybridization onto an effective single-band Hubbard model. The band dispersion of this decoupled \(f \)-electron subsystem is identical to those of the host conduction electron but rescaled by the factor \((V_0/t)^2 \) and a different sign.

Without any further calculations, we can conclude that this model must undergo a Mott-Hubbard metal-insulator transition at two different critical values \(U_{c1}^f, U_{c2}^f \) for \(T \to 0 \) depending on whether one comes from the metallic or the insulating site of the QPT [71, 91]. The values for \(U_{c1}^f \) are related to the established results for the Hubbard model by the scaling factor \(V_0^2/t^2 \). This prediction of our mapping perfectly agrees with the elaborate DMFT calculation by Held and Bulla [45].

They found (i) a Mott-Hubbard metal-insulator transition in their full DMFT calculation and (ii) a scaling of \(U_{c1}^f = (V_0/t)^2 U_{c1}^{Hub} \) for small \(V_0 \). The scaling factor is modified for larger hybridization strength \(V_0 \) exactly as discussed in Sec. II C: corrections must be included for the deviations from the wide-band limit. This demonstrates the power and the potential of our mapping for the qualitative understanding of such correlated lattice models.
III. NUMERICAL RENORMALIZATION GROUP RESULTS FOR MULTI-IMPURITY PROBLEMS

A. Emerging trimer with three conduction electron bands

In the last decades the role of magnetic frustration for HF has been discussed in the context of strongly correlated multi-impurity models [4, 33–38]. Since it was realized that the two-impurity problem lacks the complexity and the reported QCP appears to be an artifact of the approximation [11, 12] made in the originally approach, nowadays the focus lies on models with three local moments coupled to an arbitrary number of conduction bands [33–38]. These papers in particular focus on the emergence of a frustration induced NFL fixed point that might be related to QCPs found in bulk materials. In this section we review these kind of models from the perspective of our effective low-energy mapping.

In case of three identical correlated orbitals, the structure of the effective low-energy model reduces to four free parameters: The diagonal elements of $\Delta(-i0^+)$ are equal for all impurities, whereas the off-diagonal elements $\Delta_{ij}^{\text{eff}}(-i0^+)$ depend on the geometric arrangement of the impurities and the structure, as well as the filling, of the underlying lattice of the crystal. For $\Gamma^{\text{off}}_{ij} = \text{Im}\Delta^{\text{off}}_{ij}(-i0^+) = 0$ each of the correlated orbitals couples to its own, independent conduction band, as studied in [35]. In general, however, the impurities are coupled to the same conduction band, which implies $\Gamma^{\text{off}}_{ij} \neq 0$, such that a precurcive diagonalization of Γ is necessary in order to obtain an "independent-bath" description of the model.

For a generic setup of the three impurity problem in a metallic host, the Hamiltonian does not preserve the symmetry of the C_3 point group, and, consequently, at least either $\Gamma^{\text{off}}_{12} \neq \Gamma^{\text{off}}_{23}$ or $\text{Re}\Delta^{\text{off}}_{12}(-i0^+) = \Gamma^{\text{off}}_{12} = \Gamma^{\text{off}}_{23}$. For such a situation a frustration induced NFL fixed point is unlikely to be found, since either the Kondo-scale or the RKKY-scale induces an imbalance that prevents a possible frustration.

In some special setups, however, the Hamiltonian may preserve the symmetry of the C_3 point group, as studied in Ref. [33, 34], where the Kondo-impurities are placed in a crystal with an isotrop dispersion relation in an arrangement of an equilateral triangle with impurity separation ΔR. In this case, the authors found three different fixed points.

If the ferromagnetic RKKY interaction dominates, the local moment that forms at intermediate temperature is screened by the three independent effective conduction bands, leading to a FL with spin-singlet ground state. This corresponds to the trivial case of individual Kondo-screening of the three local moments for $\Delta R \to \infty$ and is referred to as the independent Kondo FP. In case of a dominating antiferromagnetic RKKY interaction, the authors of Refs. [33, 34] still differentiate between two frustrated scenarios, which they called "frustrated Kondo regime" and "isospin Kondo-regime", both characterized by NFL FP (for further explanation see Ref. [33] and [34]). Whereas the isospin Kondo-regime was found to be unstable against weak PH asymmetry, the frustrated Kondo regime is robust against moderate PH asymmetry.

In order to study the model with a C_3 symmetry within our effective low-energy mapping, we applied the NRG with a discretization of $\lambda = 4$ and kept $N_n = 3000$ states after each diagonalization in the NRG procedure. Note, that even if $N_n = 3000$ states might be insufficient to calculate thermodynamic quantities within a three-channel NRG calculation, the authors of Ref. [33] only kept $N_n = 1200$ states in their NRG calculations, which was sufficient to reproduce a conformal field theoretical description [34] of the model.

Due to the C_3 symmetry, two independent parameters determine the influence of the original host conduction band onto the dynamics of the correlated orbitals in the effective low-energy model, $\Gamma^{\text{off}} = \Gamma^{\text{off}}_{12} = \Gamma^{\text{off}}_{23}$ and $\epsilon^{\text{off}} = \epsilon^{\text{eff}}_{12} = \epsilon^{\text{eff}}_{23}$. In this section we focus on the parameter regime $-0.5 < \Gamma^{\text{off}}/\Gamma_0 < 1$, such that rank($\Gamma$) = 3 is satisfied, and we are always studying a MIAM of the first kind.

The case of dominating ferromagnetic RKKY interaction, or $\Delta R \to \infty$ respectively, corresponds to small $\epsilon^{\text{eff}} \to 0$ and results in the fully Kondo-screened FL fixed point, independent from the choice of Γ^{off}.

For dominating AF RKKY interactions, corresponding to an appropriate value of ϵ^{eff}, we can still differentiate between two situations: Applying C_3 point group properties, two of the three eigenvalues of Γ are identical. These are associated with the two helical states which are complex conjugated to each other. For $\Gamma^{\text{off}}/\Gamma_0 < 0$, these two eigenvalues define the larger couplings in the effective low-energy model, whereas for $\Gamma^{\text{off}}/\Gamma_0 > 0$, the single eigenvalue dominates. $\Gamma^{\text{off}}/\Gamma_0 = 0$ implies an independent conduction band for each impurity in real space and, consequently, to three identical eigenvalues $\Gamma_n = \Gamma_0$.

In order to artificially restore PH symmetry, which is necessary to reproduce both NFL fixed points found in Ref. [33, 34], we replace the effective tunneling elements ϵ^{eff} by an effective Heisenberg exchange interaction $J = 4(\epsilon^{\text{eff}})^2/U$ between the correlated orbitals

$$
\sum_\sigma \sum_{ij, i \neq j} \epsilon^{\text{eff}} f_{ij, \sigma} f_{j, \sigma} \to \sum_{ij, i \neq j} J S_i^z S_j^z.
$$

This incorporates the correct AF part of the RKKY interaction but removes the PH symmetry breaking term by hand. For this PH symmetric setting, and $J/T_K > 1$, we can identify the isospin Kondo-regime for $\Gamma^{\text{off}}/\Gamma_0 \leq 0$ and the frustrated Kondo FP for $\Gamma^{\text{off}}/\Gamma_0 > 0$. Whereas the isospin Kondo FP is unstable against small deviations from the PH symmetric point, $\epsilon^{\text{eff}} \to \epsilon^{\text{eff}} \pm \delta \epsilon$, the frustrated Kondo FP remains stable in accordance with Refs. [33, 34]. However, our NRG calculations reveal, that even the frustrated Kondo FP is unstable when a
sufficient tunneling element $t > t_c$ between the correlated orbitals is added.

This finding has profound consequences for the NFL fixed point, since such a tunneling matrix element is always dynamically generated in the full model, if the impurities are coupled to the same conduction band [32]. The strength of RKKY interaction and potential scattering in the conduction band channels can not be treated as independent parameters, as done in Refs. [33, 34]. In our effective low-energy model the AF part of the RKKY interaction, as well as the potential scattering, is generated by the same parameter Γ_{off}.

In order to study the phase diagram of our mapped C_3 symmetric MIAM, we recall that due to the symmetry restrictions we have only two independent parameters Γ_{off} and t_{off}, stemming from the real and imaginary part of the self-energy matrix $\Delta(z)$. We keep the ratios U/Γ_0 and $\Gamma_{\text{off}}/\Gamma_0 > 0$ fixed in order to access the frustrated Kondo-regime of the model. We summarized the low-energy fixed points found in the NRG calculation for $U/\Gamma_0 = 20$ and $\Gamma_{\text{off}}/\Gamma_0 = 0.2$ as function of the remaining free parameter t_{off} in Fig. 4.

The impurity contribution to the entropy, S_{imp} [39], is a measure for the fixed point properties and is related to the ground state degeneracy g of simple low-energy fixed points, $S_{\text{imp}} = k_B \ln(g)$. In the local moment regime, g is given by an integer value $g = 2S + 1$, where S is the effective spin of the local moment. At NFL FPs, however, g can also acquire an irrational number parametrizing the unconventional low-energy excitation spectrum at the FP [34].

Since a finite Γ_{off} is responsible for a FM RKKY interaction, we find the fully Kondo-screened FL FP for small t_{eff}. The spin-spin correlation function starts from ferromagnetically aligned spins for $t_{\text{eff}} = 0$ and is reduced with increasing t_{eff}. Shortly before the critical values $t_{\text{eff}}^{c,1}$ the correlation function changes its sign to weakly AF coupled local moments. At a critical $t_{\text{eff}}^{c,1}/\Gamma_0 \approx 0.18$, the AF part of the RKKY interaction dominates, leading to the frustrated Kondo regime with irrational degeneracy g of the ground state, $g = [1/2(5 + \sqrt{5})]^{0.5}$, as reported in [34].

While further increasing t_{eff} we observe a second critical value $t_{\text{eff}}^{c,2}/\Gamma_0 \approx 0.41$ at which the NFL fixed point becomes unstable: For $t_{\text{eff}} > t_{\text{eff}}^{c,2}$, the system flows to the unstable frustrated Kondo fixed point at intermediate temperatures, but crosses over to a stable FL below the low-energy scale Γ_0 (purple linepoints in Fig. 4), which is defined at the point where the entropy reaches the midpoint between both fixed points, $S_{\text{imp}}(\Gamma_0) = 1/2(S_{\text{FL}} + S_{\text{NFL}})$. This new crossover scale is exponentially suppressed when approaching the QCP for $(t_{\text{eff}} - t_{\text{eff}}^{c,2}) \rightarrow 0^+$. In order to find a finite interval of t_{eff} in which the NFL fixed point is stable, the total RKKY coupling K_{RKKY}, comprising the FM and AF contributions $K_{\text{RKKY}} = K_{\text{FM}} + K_{\text{AF}}$ needs to fulfill two conditions: (i) the AF part of the RKKY interaction has to dominate over the FM one, $K_{\text{AF}} > K_{\text{FM}}$, and (ii) K_{RKKY} needs to be larger than the single-ion Kondo temperature but must not exceed an upper critical value

$$T_K < K_{\text{RKKY}} < K_{\text{RKKY}}^\ast,$$

since an increasing K_{RKKY}^\ast is associated with increasing potential scattering destroying the NFL fixed point. As a result of the upper bound in Eq. (29), the NFL fixed point is absent once $T_K > K_{\text{RKKY}}^\ast$.

We repeated the NRG calculations for two other ratios of $\Gamma_{\text{off}}/\Gamma_0$ as well and find the same sequence of low-energy fixed points. We summarized the two critical $t_{\text{eff}}^{c,1}$ for three different values of $\Gamma_{\text{off}}/\Gamma_0$ and two different Coulomb interactions U/Γ_0, for PH symmetric impurities, i.e. $\epsilon_i = -U/2$ in table I. The larger the value of $\Gamma_{\text{off}}/\Gamma_0$, the larger is the interval $[t_{\text{eff}}^{c,3} - t_{\text{eff}}^{c,2}]$ of the NFL regime as apparent for $U/\Gamma_0 = 20$. Since a large Γ_{off} increases the FM RKKY interaction, a larger $t_{\text{eff}} > t_{\text{eff}}^{c,1}$ is necessary in order to reach the stable frustrated Kondo regime.

In case of $U/\Gamma_0 = 10$, the single-ion Kondo temperature is too large in order to fulfill Eq. (29), and the NFL fixed point is absent for all three values of $\Gamma_{\text{off}}/\Gamma_0$ listed.

![Fig. 4. Phase diagram for the low-energy model with C_3 symmetry as function of the tunneling element t_{eff} between the correlated orbitals and $\Gamma_{\text{off}}/\Gamma_0 = 0.2$, $U/\Gamma_0 = 20$, $\epsilon_i/\Gamma_0 = -10$, $D/\Gamma_0 = 10$. Small values of t_{eff} result in a FM or weak AF exchange interaction and a FL. Intermediate $t_{\text{eff}}^{c,1} < t_{\text{eff}} < t_{\text{eff}}^{c,2}$ lead to an AF exchange and the frustrated Kondo regime. For large $t_{\text{eff}} > t_{\text{eff}}^{c,2}$, the PH asymmetry destroys the NFL fixed point on a crossover scale (purple linepoints) which is exponentially small for $(t_{\text{eff}} - t_{\text{eff}}^{c,2}) \rightarrow 0^+$.](image-url)
In this section we present the results for several MI-AMs of the second kind by applying the NRG to the effective low-energy models. We focus on the low-energy fixed points, the crossover temperatures and spin-spin correlation function for $N_f = 3, 4$ and $N_f = 5$ as function of the band filling, and identify a series of Kosterlitz-Thouless type QCPs that are associated with a change of the fixed point degeneracy. Since the decay of the effective hopping matrix element with the impurity-impurity distance is the slowest in 1d, we used a 1d host to maximize the magnetic frustration induced by hopping matrix $\text{Re}\Delta$. Note that one of the main results, namely the existence QCPs in the phase diagram, which emerge due to FM correlations between the local moments, is not restricted to 1d systems. These QCPs originate from the fact, that we are studying MIAMs of the second kind with $\text{rank} (\Gamma) \leq 2 < N_f$, which likewise exist in higher spatial dimensions as discussed in Sec. IID.1. We also use a simple nearest-neighbor tight binding model with a dispersion $\epsilon_k = -2t \cos(ka) + \epsilon_c$. In case of an odd number N_f we prevent a spin singlet formation already within the multi-impurity cluster.

The N_f impurities form a short finite size chain in 1d. The orbital energies and the Coulomb repulsion U are chosen such that the local orbitals are approximately singly occupied at low temperature, and the induced local moment is subject to the remaining interactions.

By shifting the band center $t_{ii} = \epsilon_c$ from $\epsilon_c = 0$ to $\epsilon_c \rightarrow D = 2t_c$, we reduce the electron filling in the conduction band of the host, reduce the Fermi wave vector k_F, and hence altering the matrix elements $\Delta_{lm}(-i0^+)$ such that the spin-spin correlation functions are associated with a longer wave length. While $\epsilon_c = 0$ refers to a half-filled particle-hole symmetric conduction band, we approach the one conduction electron limit for $|\epsilon_c|/D \rightarrow 1$ that has been considered by Sigrist et al. [44]. The analysis of this 1d finite size impurity chain problem shows that $\text{rank} (\Gamma) = 2$, with the exception of $|\epsilon_c| = D$ where the change to one.

Three points are worth to note. Such problems (i) can be treated by a two-band NRG approach as a consequence of $\text{rank} (\Gamma) \leq 2$ and are limited only by the maximally manageable dimension of the local cluster Hilbert space. (ii) The cluster contribution [50] to the low-energy fixed point entropy, S_{imp}, is given by $S_{\text{imp}} = k_B \ln(N_f)$ in the limit $|\epsilon_c| \rightarrow D$ in accordance with Ref. [44]. For $N_f > 2$, we are (iii) always investigating a MIAM problem of the second kind depicted as regime III in Fig. 1.

In this section we start with dense impurity arrays where the correlated orbitals are placed next to each other, such that the antiferromagnetic RKKY interaction dominates for a roughly half-filled conduction band. We study the effect of frustrated RKKY interaction at intermediate band-fillings and QCPs due to FM correlations occur near the band-edges for PH symmetric impurities and at intermediate fillings for large PH asymmetry. Following this, we present NRG results for dilute impurity configurations with dominating ferromagnetic RKKY interactions for a half-filled conduction band, which is more suited for ferromagnetic HF materials. These dilute multi-impurity models exhibit FM correlations and the associated QCPs in a realistic region of the parameter space which might be connected to those found in the quasi 1d ferromagnetic HF materials [20, 28, 29].

Unless otherwise stated, we set the NRG discretization parameter $\lambda = 3$ and kept $N_S = 5000$ states after each iteration.

FIG. 5. Effective tunneling element $t^\text{eff} = \text{Re} \Delta^\text{off}(-i0^+)$ (black) and $\Gamma^\text{off} = \text{Im} \Delta^\text{off}(-i0^+)$ (light blue) as function of the dimensionless distance Rk_F for an isotropic linear dispersion ϵ_k in (a) 2d and (b) 3d.
1. Kosterlitz-Thouless type Quantum Phase transitions and the Phase diagram in dense impurity arrays

![Graph showing impurity contribution to the entropy for T → 0 as function of the band center for three particle-hole symmetric impurities with U/T₀ = 10, eᵢ = -U/2 and D/T₀ = 10. The two spin-spin correlation functions for the same parameter. The center impurity is labeled i = 2, the two outer correlated sites i = 1, 3.](image)

Above, we introduced the parametrization of the the impurity contribution to the entropy, S_IMP, in terms of an ground state degeneracy g: S_IMP = k_B ln(g). This effective degeneracy g = exp(S_IMP/k_B) is plotted as function of |ε_c| in Fig. 6(a) for N_f = 3 and a particle-hole symmetric Hamiltonian H_corr. It shows the typical behavior of the MIAM under investigation here. Starting from a singlet ground state, g = 1, the degeneracy increases in integer steps to the maximum g = N_f, which is always reached for |ε_c|/D → 1. The point of increase defines a quantum critical point (QCP) which is Kosterlitz-Thouless (KT) type as shown below.

In Fig. 6, we concentrate to parameters close to the changes of entropy. In order to understand the physics of the two different quantum phases in the depicted region of ε_c, the two different spin-correlation functions are plotted in Fig. 6(b).

In region I, S_IMP(T → 0) vanishes, and the correlation function of the two outer impurity spins are anti-parallel while the central spin moment is screened by the Kondo effect. This setup is equivalent to the triangular spin cluster investigated in Ref. [92]. The correlation function between the two outer spins with the central spin almost vanishes. The spin singlet formation involves two components: the AF interaction mediated by the dominating next-nearest hopping between two outer spins, and the Kondo effect in the even sector that removes the local moment of the central spin.

The QCP occurs at the red point added to the horizontal axis in Fig. 6(a): At this point S_IMP jumps to k_B ln(2) indicating a doubly degenerate ground state in region II. The spin-spin correlation function, however, shows a smooth crossover at this point indicating the physics of the new ground state. The nearest neighbor spin-spin correlation function depicted in red in Fig. 6(b) arises from an anti-alignment to a finite ferromagnetic correlation. This observation is consistent with the notion that a reduction of k_f eventually changes the nearest neighbor RKKY interaction from AF to FM. The next-nearest neighbor spin-spin correlation function changes sign to ferromagnetic correlations of the same magnitude: All three local moments of the correlated cluster are ferromagnetically coupled in this parameter regime and form a large I = 3/2 total spin at the unstable local moment fixed point. Since we only have two effective conduction electron band channels due to rank(Γ) = 2, we are in an underscreened Kondo regime. We found a two stage Kondo effect quenching the I = 3/2 local spin down to I = 1/2 via the two conduction electron channels coupling with different coupling constants. This is consistent with the residual entropy of a remaining decoupled doublet in the stable low-energy fixed point.

The rank of the Γ-matrix changes to rank(Γ) = 1 at the point |ε_c|/D = 1: the total I = 3/2 spin formed by the FM RKKY interaction defining the unstable local moment fixed point can only be screened by the single remaining conduction electron channel leading to the cluster entropy of S_IMP/k_B = ln(3).

The black entropy curve in Fig. 6(a) suggests that this is a smooth transition at finite temperature, governed by a crossover value |ε_c|/D < 1. This data, however, was obtained for a fixed number of NRG iteration that correspond to a fixed temperature of T/T₀ = 10⁻¹⁰. We increased the number of NRG iteration and added the results as light-blue curve representing a temperature that is 20 orders of magnitude lower, i. e. T/T₀ = 10⁻³⁰. The crossover region is clearly pushed closer to |ε_c|/D = 1.

The finding in region II of Fig. 6(a) can be understood in terms of a band filling dependent low-energy scale T_L(ε_c) that governs the crossover from the unstable local moment fixed point with I = 3/2 to the stable low-energy fixed point which is characterized by S_IMP = k_B ln(2). This low-energy scale can be associated with the Kondo-screening due to the smaller coupling Γ_n that vanishes for |ε_c| → D. To access the entropy of the low-energy fixed point requires that T ≪ T_L(ε_c). From our NRG data we can conclude that

\[\lim_{|ε_c| → D} T_L(ε_c) = 0 \]

and, therefore, the critical point (i) is located at |ε_c|/D = 1 and (ii) is of Kosterlitz-Thouless type since it vanishes as T_L(ε_c) ∝ exp(A/√(D - |ε_c|)) with some fitting parameter A.
The investigation of the low-energy fixed points of the MIAM with \(N_f = 4 \) and \(N_f = 5 \) reveals a similar picture as shown in Fig. 7: for a half-filled conduction band we always find a vanishing \(S_{\text{imp}} \) for the stable low-temperature fixed point that can be interpreted as a spin-singlet ground state formation. In the limit \(|\epsilon_c| \to D \), we reproduce the prediction of Sigrist et al. [44, 93] even in our finite size system: an unstable local moment fixed point with \(I = N_f/2 \) is formed via FM RKKY interactions, and is screened by the Kondo effect to the stable fixed point spin \(I = (N_f - 1)/2 \), corresponding to \(S_{\text{imp}} = k_b \ln(N_f) \), since rank(\(\Gamma \)) = 1 at this point independent of \(N_f \). The ground state degeneracy \(g \) rises in integer steps from \(g = 1 \) to \(g = N_f \), and the corresponding QPTs are of KT type.

In each of the regions one additional moment is aligned ferromagnetically with the others: The self-screening of the local impurity spins via the RKKY mediated interaction becomes less and less effective since this interaction becomes predominating ferromagnetic for low band fillings. The hopping matrix elements \(\Re \Delta_{\text{imp}}(\epsilon_c) \) reach their maximum at \(|\epsilon_c| = D \) due to the maximal particle-hole asymmetry of the conduction band. At the same time, the density of states diverges at the band edge in 1d, such that the hybridization to the conduction bands start to dominate resulting in a FM alignment of the spins [31, 32].

Depleting the conduction band more and more, leaves asymptotically a Hubbard type model [72] where close to half-filling the FM aligned local moments could be interpreted as a precursor of the Nagaoka mechanism [93] to ferromagnetism in the Hubbard model. Energy is gained by allowing the impurity electrons to delocalized in a uniform polarized background.

We still need to prove the claim that the transitions between the different regions in Fig 6(a) and Fig. 7, indicated by the red dots on the horizontal axis, are indeed QCPs of the KT type. We exemplify this point by investigating the low temperature scale \(T_0(\epsilon_c) \) as a function of \(\epsilon_c \) in the three impurity problem, \(N_f = 3 \), for four different values of \(\epsilon' \) and a fixed \(U/\Gamma_0 = 50 \). We selected these parameters to demonstrate that the transition type is unrelated to the particle-hole symmetry and that the critical value of \(\epsilon'_c \) depends on the particle-hole asymmetry of the correlated cluster. In Ce, for instance, the 4f-shell occupation fluctuates between zero and one, so that the limit \(U \to \infty \) was successfully employed [67, 94, 95] to understand the basic properties of such systems.

The low-temperature scale \(T_0(\epsilon_c) \) is defined via the crossover from the last unstable local moment fixed point to the stable low-temperature fixed point when \(S_{\text{imp}}(T) \)
reaches the mid point between both entropies:

\[S_{\text{imp}}(T_0) = \frac{1}{2}(S_{\text{imp}}^{\text{LM}} + S_{\text{imp}}^{\text{LT}}(0)) \]

We fitted the \(T_0(\epsilon_c) \) to the exponential form

\[T_0(\epsilon_c) = C_1 e^{-c_2/\epsilon_c} \]

close to the transition point and extracted the transition point \(\epsilon_c^* \) as well as the parameters \(C_1 \) and \(C_2 \). We plotted the NRG data \(T_0(\epsilon_c)/C_1 \) as a function of \((\epsilon_c^* - \epsilon_c)/D \) in Fig. 8(a). In addition we added the fitting curve defined in Eq. (32) as black solid lines for the four cases demonstrating an excellent agreement with the NRG data with this analytical form. This can be done in the vicinity of all QCPs for different cluster sizes \(N_f \). Therefore, all QCPs at the critical values indicated by red or black dots in Figs 6(a) and Fig. 7 are of the KT universality class.

We added the particle-hole asymmetry dependency of \(\epsilon_c^* \) as Fig. 8(b). Upon increasing \(\epsilon^f \) from \(\epsilon^f/\Gamma_0 = -5 \) to \(\epsilon^f/\Gamma_0 = -2 \), \(\epsilon_c^* \) is significantly reduced.

2. The role of magnetic frustration in the \(S_{\text{imp}} = 0 \) phase

After establishing a step wise increase of the fixed point degeneracy \(g \) in the limit \(|\epsilon_c|/D \rightarrow 1 \) (vanishing electron or hole conduction band filling) we focus on the largest interval in the \(\epsilon_c \) parameter space in this section. This regime is determined by \(S_{\text{imp}} = 0 \), indicating a singlet ground state of the low-energy fixed point.

The notion of a competition between an AF RKKY screening and the Kondo screening by the two conduction channels was established in the two-impurity model [31]. In this MIAM of first kind, there are always enough conduction electron channels available to Kondo screen all the local moments. For \(N_f > 2 \) and rank(\(\Gamma \)) < \(N_f \), the topology of the model becomes different and such a scenario is not applicable any more. The concept of competing Kondo effect and RKKY interaction, both generated by the host conduction electrons, become less meaningful due to the lack of available screening channels. For periodic systems, Eq. (6) suggests that the rank(\(\Gamma \)) is of the order of the \(\bar{E} \)-points on the Fermi surface and, therefore, is much smaller than \(N_f \).

We begin with the three impurity model and calculate the two low-energy crossover temperatures to the \(S_{\text{imp}} = 0 \) stable fixed point: \(T_1(\epsilon_c) \) denotes the crossover temperature to the last unstable \(S = 1/2 \) LM fixed point, and \(T_0(\epsilon_c) \) characterizes the approach to the stable low-energy fixed point. The temperature \(T_0 \) replaces \(T_k \) in the single-impurity model since it is associated to the Kondo effect. The results are plotted in Fig. 9(a). We note that both crossover temperatures change continuously with \(\epsilon_c \) but develop a cusp at \(|\epsilon_c|/D = 0.5 \). \(T_0 \) remains finite over the whole parameter range until the end at about \(|\epsilon_c|/D \approx 0.945 \) where the KT type QPT to a stable fixed point with \(S_{\text{imp}}/k_B = \ln(2) \) occurs that was discussed in the previous section. The overall decrease in \(T_0(\epsilon_c) \) is related to the dependency of the effective change of fluctuation strengths \(\Gamma_n \) as function of \(\epsilon_c \): the coupling to the relevant orbital involved in the Kondo screening decreases with increasing \(|\epsilon_c| \).

The spin-spin correlation functions calculated at the low-energy fixed point reveals that two different regions emerge as shown in Fig. 9(b). For small values \(|\epsilon_c|/D \), the nearest neighbor spins are AF aligned while the two outer impurity spin are FM correlated. The spin-spin correlation functions indicate that the three local spins always add up to a \(S = 1/2 \) ground state at intermediate temperature due to the RKKY interaction. The approach to the ground state configuration of the impurity cluster.
occurs on the temperature scale T_1. One of the two conduction electron channels is sufficient to Kondo screen the remaining $S = 1/2$ distributed over all impurities. That occurs on the crossover temperature scale T_0 where the impurity entropy is removed. For $0.5 < |\epsilon_c|/D$, the two local spins connected to the same sublattice are AF aligned while the center spin is screened by the Kondo effect.

In order to shed some light into the nature of the observed cusp, $|\epsilon_c|/D \approx 0.5$, we solved the three impurity cluster model for $\Gamma = 0$, i.e., by decoupling the impurities from the two effective conduction bands, using exact diagonalization. We calculated the crossover temperature to the low-energy ground state from the temperature dependence of the entropy $S_{\text{imp}}(T)$. This crossover scale was added as continuous black line to Fig. 9(a) and traces the NRG temperature T_1 very well. At the cusp, however, this crossover temperature vanishes in the decoupled cluster model: a level crossing between two different twofold degenerate cluster ground states occurs which can be characterized by different spin-spin correlations function. This defined a point of maximal magnetic frustration in the system.

The nature of those local ground states can be understood in terms of the effective hopping parameters in the mapped model as shown schematically in Fig 10. By only considering $\text{Re}\Delta_{13}(\epsilon_c)$, we obtain from the orbitals 1 and 3, two molecular orbitals that have even or odd symmetry under a parity transformation can be constructed. The even orbital couples to the orbital 2 via $\text{Re}\Delta_{12}(\epsilon_c)$ and $\text{Re}\Delta_{23}(\epsilon_c)$ and two new even orbitals which are generated. Then we fill these orbitals with three electrons. For $|\epsilon_c|/D < 0.5$, the one of the even orbitals has the lowest energy and is filled with two electrons forming a singlet. The third electron occupies the orbital with odd symmetry. Therefore, the local moment is located at the outer edge on the orbitals 1 and 3 in real space. For $|\epsilon_c|/D > 0.5$, $\text{Re}\Delta_{13}(\epsilon_c)$ dominates and the odd symmetry orbital has the lowest single particle energy, and is doubly occupied. This single singlet formation results in a strong AF correlation function $\langle \vec{S}_1 \vec{S}_3 \rangle$ in this regime. The local moment is located in the higher lying even orbital, and therefore, more localized in the orbital 2.

At the degeneracy point, all three hopping matrix elements in Fig 10 become equal and generate a maximally magnetically frustrated system. A level crossing between these two doublet ground states occurs forming a four-fold degenerate cluster ground state. This emerging local picture also explains the observed change in the spin-spin correlation function shown in Fig. 9(b) for the full problem. For $|\epsilon_d|/D > 0.5$, the nearest neighbor spin correlations are suppressed and the central spin is Kondo screened.

Although the real-space geometry of our cluster is a short three-site chain, the hopping matrix elements $\text{Re}\Delta_{ij}$ generate a trimer with degenerate AF Heisenberg couplings as investigated in the literature [33–35, 92]. The different physics found here is related to the reduced number of screening channels: While the Refs. [33–35] investigate a Kondo trimer model of first kind, we derived an example of a trimer model of second kind [92].

Right at the degeneracy point, both doublets with different parity symmetry couple to one of the two effective conduction bands. If we assume PH symmetry and identical couplings Γ_n, this would result in the isospin Kondo regime found in Refs. [33, 34] and already discussed in Sec. III A. However, the effective tunneling elements $\text{Re}\Delta_{ij}$, which generate the AF RKKY interaction and, therefore, are necessary in order to obtain magnetic frustration, break the PH symmetry and cause a FL with spin-singlet ground state, since this is a relevant perturbation of the isospin Kondo FP [33, 34].

Furthermore, the mapped MIAM lacks the helicity symmetry of the C_3 group in general, and, consequently, the two couplings Γ_n of the degenerate doublets are not identical. In this case, the cluster ground state degeneracy is lifted at the degeneracy point by the asymmetric coupling to the two conduction band channels, such that even the coupling of only one of the conduction electron channels to one of the two degenerate doublets can quench the remaining cluster entropy. The energy splitting of both doublets, however, is dynamically generated by the RG procedure and remains small. Therefore, we do not observe a two-stage screening process: only one low energy scale T_0 emerges, even at the degeneracy point, defining the crossover from the LM fixed point with $S_{\text{imp}} \approx k_B \ln(4)$ to the stable strong coupling fixed point with $S_{\text{imp}} = 0$.

At the degeneracy point, the definition of T_1 becomes obsolete since we observe a direct crossover from a four-fold degenerate unstable local moment fixed point to the singlet ground state. Therefore, we do not find another QCP in the $S_{\text{imp}} = 0$ regime.

While the low-energy scale T_0 decreases with increasing $|\epsilon_c|/D$ due to the change in the eigenvalues Γ_n that couple to the impurity ground state multiplet, the enhancement of the magnetic fluctuations in the vicinity of the degeneracy point causes the cusp in T_0 signaling the adiabatic change of the spin correlations in the low-energy fixed point. The crossover temperature $T_0(\epsilon_c)$ and the location of the cusp is symmetric in $\pm \epsilon_c$, for particle-hole symmetric impurities, qualitatively the same phases are observed for particle-hole asymmetric impurities but with asymmetric curves, not shown here.
A similar picture emerges for \(N_f = 5 \) in the \(S_{\text{imp}} = 0 \) regime, as shown in Fig. 11. For even \(N_f \), the impurity cluster can form a singlet ground state without coupling to the conduction bands: Hence we focus on odd \(N_f \) where the interplay between the RKKY interaction and the Kondo effect is relevant. Clearly visible are the continuous change of \(T_0(\epsilon_c) \) but now showing four cusps.

Since the total spin is conserved in the model, the impurity cluster eigenstates can be classified by the total angular momentum. The hopping matrix \(\text{Re}\Delta_{ij}(\epsilon_c) \) induces AF interactions between the spins, so that the cluster ground state is located in the subspace with the lowest angular moment. Adding \(N_f = 5 \) local moments \(S = 1/2 \) yields five spin \(J = 1/2 \) multiplets. Changing \(\epsilon_c \) is changing the energy spectrum of the five \(J = 1/2 \) eigenstates, and, therefore, the nature of the cluster ground state within the subspace \(J = 1/2 \). The black solid line for \(T_1 \) added to Fig. 11 was calculated from the impurity cluster spectrum including the Coulomb interaction but neglecting the coupling to conduction electrons channels in Eq. (11).

The cluster calculation demonstrates that the cusps obtained from the full model are associated with a change of the cluster ground state in the unstable intermediate fixed point. Note, however, that in the impurity cluster the scale \(T_1 \) vanishes at the four level crossing points of the ground states, which is not visibly here since we did not zoom into the degeneracy point with high resolution.

For the five different \(J = 1/2 \) multiplets four different cluster degeneracy points are found. At each degeneracy point, the two low-lying doublets couple to the two conduction electron bands. The screening of the impurity cluster entropy \(S_{\text{imp}} = k_B \ln(4) \) is characterized by the crossover temperature \(T_0 \). Quantum fluctuations enhance \(T_0 \) at the degeneracy point and we also found, that a single spin degenerate band is sufficient to quench the local moments even at the degeneracy point of the impurity cluster, where the local system is magnetically frustrated.

3. Kosterlitz-Thouless type Quantum Phase transitions and the Phase diagram in dilute impurity arrays

In dense impurity arrays, where the correlated orbitals are located next to each other, the antiferromagnetic RKKY interaction typically dominates the interaction between the local moments of the correlated orbitals for a roughly half-filled host conduction band. In order to qualitatively simulate ferromagnetic HF materials \([17–24, 28–30]\), we study the dilute impurity configuration already discussed in Sec II F 2 and schematically depicted in Fig. 3. In this case, the correlated orbitals only hybridize with the host Wannier orbitals of one of two sublattices in a bipartite lattice. In Sec. II F 2 we ascribed the ferromagnetic ground state at half-filling, \(\epsilon_c = 0 \), obtained by DMRG calculations \([42, 43, 89, 90]\), to the absence of an effective tunneling between the correlated orbitals \(\text{Re}\Delta(\epsilon_c = 0) = 0 \) and \(\text{rank}(\Gamma) < N_f \).

In the non-interacting limit \((U = 0) \), the d-dimensional, depleted PAM can be exactly diagonalized, resulting in three bands. At particle-hole symmetry, corresponding to half-filling, one of these bands is totally flat, leading to a high degeneracy of the ground state, and posses mainly \(f \)-character for small couplings \(V/D \). As demonstrated by a first-order perturbation theory in \(U \), weak interactions within this flat band result in a fully polarized ground state of the model \([89]\). For 1d and 2d, it was further shown, that this polarized state persists to arbitrary strengths of the Coulomb interaction \(U \) \([42, 43, 89, 90]\).

From the perspective of our low-energy mapping, this result is just a consequence of the absence of the delocalizing, band generated effective hopping matrix elements \(\text{Re}\Delta_{ij}(\epsilon_c = 0) = 0 \) in combination with an extreme reduction of available conduction band screening channels due to \(\text{rank}(\Gamma) = 1 \). However, for any \(\epsilon_c \neq 0 \), the flat band becomes dispersive, tantamount with the appearance of delocalizing tunneling elements \(\text{Re}\Delta_{ij}(\epsilon_c \neq 0) \neq 0 \) in the mapped Hamiltonian. This delocalizing terms might lead to a localized/delocalized Mott-Hubbard insulator transition in the strongly interacting limit of the depleted PAM, with a possible connection to the emerging NFL behavior at the FM QCP in heavy Fermion ferromagnets \([20, 28, 29]\).

In order to qualitative study this competition between the AF and FM RKKY interaction, we analyze the depleted Anderson model for a finite number of \(N_f = 3 \)
and \(N_f = 4 \) correlated orbitals in 1d, the simplest MIAMs of the second kind. However, as already discussed, such QCPs generally occur in MIAMs of the second kind and, therefore, are not restricted to 1d.

In Fig. 12, we color plotted the degeneracy \(g = \exp(S_{\text{imp}}/k_B) \) for the dilute MIAM at a fixed temperature \(T/\Gamma_0 = 10^{-15} \) with (a) \(N_f = 3 \) and (b) \(N_f = 4 \) impurities, as a function of the band-filling \(\epsilon_c/D \) and the strength of the Coulomb interaction \(U/\Gamma_0 \). The phase diagram for \(N_f = 3 \) and \(N_f = 4 \) correlated orbitals is qualitatively identical, separating a spin compensated singlet phase at finite \(\epsilon_c \) (black) from a phase with finite degeneracy around \(\epsilon_c = 0 \) (yellow red blue).

The maximal value of the degeneracy near \(\epsilon_c = 0 \) (yellow) is \(\exp(S_{\text{imp}}/k_B) = 3 \) for \(N_f = 3 \) in Fig. 12(a), and \(\exp(S_{\text{imp}}/k_B) = 4 \) for \(N_f = 4 \) in Fig. 12(b). At \(T = 0 \), however, this value color coded in yellow can only be reached at precisely \(\epsilon_c = 0 \), where \(\text{rank}(\Gamma) = 1 \): for a very small but finite \(|\epsilon_c| > 0 \), \(\text{rank}(\Gamma) = 2 \) such that \(g = g_{\text{max}} - 1 \). Since one of the two effective hybridizations, \(\Gamma_n \), is very small for small deviations from half-filling, the associated Kondo temperature is exponentially suppressed. Consequently, the extended yellow region of the maximal degeneracy is only replaced by a region with \(g_{\text{max}} - 1 \), once the temperature is lower than the exponentially suppressed lowest Kondo temperature. However, even at \(T = 0 \), two/three regions with different degeneracy of the ground state remain for \(N_f = 3/N_f = 4 \).

As discussed in Sec. III B 1, regions with different degeneracy of the ground state are separated by a QCP of Kosterlitz-Thouless type and associated with the decoupling of an effective spin-1/2 degree of freedom from the continuum: the coupling of that spin to the continuum changes from antiferromagnetic to ferromagnetic, and the screening breaks down.

The phase boundaries are symmetric with respect to \(\epsilon_c \) for PH symmetric impurities (\(U = -2eJ = 6\Gamma_0 \) in Fig. 12). In case of \(U < -2eJ \), the degenerate phase is shifted into the \(\epsilon_c/D < 0 \) side of the phase diagram, whereas it is vice versa for \(U > -2eJ \).

In the two impurity model, a spin-singlet ground state is always generated for finite \(\epsilon_c \) since enough screening channels are available. The emergence of QCPs due to FM correlations, as reported in this and the previous section, however, are a common feature of MIAMs of the second kind. Since the phase diagram for \(N_f = 3 \) and \(N_f = 4 \), shown in Fig. 12, is qualitatively identical for \(N_f = 5 \) (not shown here), and the physical origin of the QCPs is just a consequence of a competition between AF and FM RKKY interactions in combination with the reduced number of available conduction band screening channels, the phase diagram will be qualitatively identical if more correlated orbitals are added. The geometric arrangement of the correlated orbitals onto the lattice governs the hybridization matrix \(\Delta(\epsilon) \). While the FM QCPs occur in depleted host bands, \(|\epsilon_c/D| \to 1 \), in dense impurity setups, they are shifted to half-filling in dilute impurity arrays. First-order perturbation theory in \(U \) revealed that the FM ground state in the depleted model at half-filling also exists in higher spatial dimensions of the lattice [89], and is not an artifact of a 1d host geometry. Altogether, these results indicate, that a transition from a delocalized paramagnetic to a localized ferromagnetic state, which is beyond a HertzMillisMoriya spin density wave scenario, might be realizable in the depleted PAM with \(\epsilon_c \neq 0 \). Due to the exponential suppression of the lowest crossover scale in such models, the unstable intermediate fixed points might be more relevant for the experimentally accessible temperatures.

IV. CONCLUSION AND OUTLOOK

We presented a mapping of a strongly correlated multi-impurity models onto a correlated cluster model subject to couplings to a number of effective conduction bands. The AF exchange interaction is encoded in the cluster orbital hopping matrix, whereas the FM interaction and the competing Kondo effect by the remaining host degrees of freedom are included in the coupling to the effective conduction band channels. This allows us to study the self-screening of the local moments as well as the emerging local moment fixed points via exact diagonalization of the cluster prior to an investigation of the full problem. It also opens the door for determining the re-
quirements in the models with potential magnetic frustrations such as the trimer model.

Since our mapping incorporates the RKKY interaction and the related potential scattering on an equal footing, we were able to show that the frustration induced NFL fixed point of a trimer model with C_2-symmetry \cite{33, 34} is restricted to only a finite range of AF RKKY interaction strength, and can completely disappear in the phase diagram if the Kondo temperature exceeds a certain limit.

For large N_f, the MIAMs fall typically into problems of the second kind, where the number of impurities exceeds the number of available Kondo screening channels. The most prominent example is the PAM. Since the maximal number of independent conduction bands that couple to the correlated cluster scales with the number of k-points on the Fermi surface, it is limited to $N_b = 2$ in 1d. As a consequence, our mapped model predicts a local moment fixed point for the dilute Anderson lattice in 1d \cite{42, 43} with a local moment of $I = (N_f - 1)/2$.

The physical properties of strongly correlated multi-impurity models strongly depend on whether they are of first or second kind. Ferromagnetic correlations between the local moments are irrelevant for the spin-compensated ground state in MIAMs of the first kind, whereas they lead to QCPs of KT type and the suppression of effective spin-1/2 degrees of freedom in models belonging to the second kind. Therefore, it would be helpful to decide in advance in which kind of category these models fall.

We demonstrated how the matrix elements of the mapped model depend on the chemical potential or the band center of the original model. With increasing particle-hole asymmetry, the ground state multiplet in the cluster shows a precursor of a spin-density wave modulation in the spin-spin correlation function. Level crossings between different cluster ground states are associated with magnetic frustrations and an enhancement of the lowest temperature scale of the problem taking the role of the Kondo temperature. The magnetic energy scale, defined via the change of the cluster entropy, however, is decreasing. It vanishes for a decoupled cluster but remains finite due to the asymmetric couplings to the remaining conduction electron bands.

For an exponential suppression of the Kondo scale, the strong decrease of the magnetic energy scale T_1 at the point of magnetic frustration could be misread as an indication of a QCP between different ground states. NRG calculations reveal, however, that there is still a smooth crossover between two different singlet states since the asymmetry is a relevant perturbation for the frustrated isospin Kondo regime \cite{33, 34}, just as been shown for the two-impurity problem \cite{11, 12}. At the band edges the ferromagnetic correlations are recovered even for a small finite size impurity cluster, and the system shows a series of QCPs of KT-type when changing the ground state degeneracy by one.

There is an ongoing debate about a confinement/deconfinement transition in HF's where magnetic order might reduce the number of conduction electrons contributing to the Fermi surface: a heavy FL should be characterized by a large Fermi surface while in a local-moment magnetic metal the correlated electrons are excluded from the Fermi volume \cite{4}. Such a scenario of fractionalized Fermi liquids \cite{96} requires a two fluid model, where the well defined light quasiparticles and a spin-liquid are disconnected. This might be achievable by a Mott-Hubbard insulator transition within the correlated electron subsystem, in which the remaining spin-spin interactions induce a spin liquid. The lack of charge fluctuation channels suppresses the coherent quasiparticle formation decoupling the light quasiparticles on a low-energy scale.

Recent experiments \cite{28–30} revealed strange-metal behavior at the FM-PM transition in HF's, and from the theoretical point of view it is known that the FM Kondo lattice posses a small Fermi surface excluding the local moments \cite{97}. Motivated by theses results, we investigated dilute multi-impurity models of the second kind, where the FM RKKY interaction dominates for a roughly half filled conduction band, and demonstrated the existence of several QCPs of KT-type at which local moments decouple from the continuum. This finding indicates a possible confinement/deconfinement transition in a periodic extension of such models, the depleted PAM.

Another fascinating subject is the physics of Kondo holes \cite{98–101}. Our mapping can provide some insight into the spatial distribution of the generated local magnetic moments by those holes as well as providing another low-energy scale characterizing the screening of those moments under realistic conditions.

\begin{thebibliography}{99}
\bibitem{1} N. Grewe and F. Steglich, in \textit{Handbook on the Physics and Chemistry of Rare Earths}, Vol. 14, edited by K. A. Gschneidner, Jr. and L. Eyring (North-Holland, Amsterdam, 1991) p. 343.
\bibitem{2} M. B. Maple, M. C. de Andrade, J. Herrmann, Y. Dalichaouch, D. A. Gajewski, C. L. Seaman, R. Chau, R. Movshovich, M. C. Aronson, and R. Osborn, J. Low Temp. Phys. \textbf{99}, 223 (1995).
\bibitem{3} F. Steglich, J. Aarts, C. D. Bredl, W. Lieke, D. Meschede, W. Franz, and H. Schäfer, Phys. Rev. Lett. \textbf{43}, 1892 (1979).
\bibitem{4} H. v. Löhneysen, A. Rosch, M. Vojta, and P. Wölfle, Rev. Mod. Phys. \textbf{79}, 1015 (2007).
\bibitem{5} P. A. Lee, N. Nagaosa, and X.-G. Wen, Rev. Mod. Phys. \textbf{78}, 17 (2006).
\bibitem{6} J. A. Hertz, Phys. Rev. B \textbf{14}, 1165 (1976).
\bibitem{7} A. J. Millis, Phys. Rev. B \textbf{48}, 7183 (1993).
\bibitem{8} J. Kondo, Progress of Theoretical Physics \textbf{32}, 37 (1964).
\bibitem{9} S. Doniach, Physica B \textbf{91}, 231 (1977).
\bibitem{10} B. A. Jones, C. M. Varma, and J. W. Wilkins, Phys.
[11] I. Affleck, A. W. W. Ludwig, and B. A. Jones, Phys. Rev. B 52, 9528 (1995).
[12] J. B. Silva, W. L. C. Lima, W. C. Oliveira, J. L. N. Mello, L. N. Oliveira, and J. W. Wilkins, Phys. Rev. Lett. 76, 275 (1996).
[13] N. Grewe, Solid State Communications 66, 1053 (1988).
[14] P. Nozières, Ann. Phys. (Paris) 10, 19 (1985).
[15] Nozières, Eur. Phys. J B 6, 447 (1998).
[16] P. Coleman and A. Nevidomskyy, J Low Temp Phys 161, 182 (2010).
[17] C. Krellner, N. S. Kini, E. M. Brüning, K. Koch, H. Rosner, M. Nicklas, M. Baenitz, and C. Geibel, Phys. Rev. B 76, 104418 (2007).
[18] V. H. Tran and Z. Bukowski, Journal of Physics: Condensed Matter 26, 255602 (2014).
[19] M. Szlawska, A. Gribanov, S. Gribanova, and D. Kaczorowski, Intermetallics 93, 106 (2018).
[20] T. Okano, S. Kitao, M. Seto, T. Atou, M. Itoh, M. Matoba, and Y. Kamihara, Journal of Applied Physics 117, 17E123 (2015).
[21] Y.-F. Yang, Science China Physics, Mechanics and Astronomy 63 (2020).
[22] T. R. Kirkpatrick and D. Belitz, Phys. Rev. Lett. 124, 147201 (2020).
[23] J. L. J., M. B. Fontes, A. D. Alvarenga, E. M. Baggio-Saitovitch, T. Burghardt, A. Eichler, and M. A. Continentino, Phys. Rev. B 72, 035129 (2005).
[24] R. Khan, J. Yang, H. Wang, Q. Mao, J. Du, B. Xu, Y. Zhou, Y. Zhang, B. Chen, and M. Fang, Materials Research Express 3, 106101 (2016).
[25] Y. Tada, S. Takayoshi, and S. Fujimoto, Phys. Rev. B 93, 174512 (2016).
[26] E. M. Brüning, C. Krellner, M. Baenitz, A. Jesche, F. Steglich, and C. Geibel, Phys. Rev. Lett. 101, 117206 (2008).
[27] D. Rojas, L. Fernández Barquín, C. Echevarría-Bonet, and J. Rodríguez Fernández, Solid State Communications 152, 1834 (2012).
[28] H. Kotegawa, E. Matsuzuka, T. Uga, M. Takemura, M. Manago, N. Chikuchi, H. Sugawara, H. Tou, and H. Harima, Journal of the Physical Society of Japan 88, 093702 (2019).
[29] B. Shen, Y. Zhang, Y. Komijani, M. Nicklas, R. Borth, A. Wang, Y. Chen, Z. Nie, R. Li, X. Lu, H. Lee, M. Smidman, F. Steglich, P. Coleman, and H. Yuan, Nature 570 (2020).
[30] A. Steppke, R. Küchler, S. Lausberg, E. Lengyel, L. Steinke, R. Borth, T. Lühmann, C. Krellner, M. Nicklas, C. Geibel, F. Steglich, and M. Brando, Science 339, 933 (2013).
[31] B. A. Jones and C. M. Varma, Phys. Rev. Lett. 58, 843 (1987).
[32] F. Eickhoff, B. Lechtenberg, and F. B. Anders, Phys. Rev. B 98, 115103 (2018).
[33] B. C. Paul and K. Ingersent, “Frustration-induced non-fermi-liquid behavior in a three-impurity kondo model,” (1996), arXiv:cond-mat/9607190.
[34] K. Ingersent, A. W. W. Ludwig, and I. Affleck, Phys. Rev. Lett. 95, 257204 (2005).
[35] E. J. König, P. Coleman, and Y. Komijani, “Frustrated kondo impurity triad: A toy model of deconfinement,” (2020), arXiv:2002.12338.
[36] K. P. Wójcik, I. Weymann, and J. Kroha, Phys. Rev. B 102, 045144 (2020).
[37] Y. B. Kudasov and V. M. Uzdin, Phys. Rev. Lett. 89, 276802 (2002).
[38] V. V. Savkin, A. N. Rubtsov, M. I. Katsnelson, and A. I. Lichtenstein, Phys. Rev. Lett. 94, 026402 (2005).
[39] R. Bulla, T. A. Costi, and T. Pruschke, Rev. Mod. Phys. 80, 395 (2008).
[40] Y. Komijani and P. Coleman, Phys. Rev. Lett. 120, 157206 (2018).
[41] A. H. Nevidomskyy and P. Coleman, Phys. Rev. Lett. 103, 147205 (2009).
[42] I. Titvinidze, A. Schwabe, and M. Potthoff, The European Physical Journal B 88, 9 (2015).
[43] A. Schwabe, I. Titvinidze, and M. Potthoff, Phys. Rev. B 88, 121107 (2013).
[44] M. Sigrist, H. Tsunetsuga, and K. Ueda, Phys. Rev. Lett. 67, 2211 (1991).
[45] K. Held and R. Bulla, Eur. Phys. J. B 17, 7 (2000).
[46] H. R. Krishna-murthy, J. W. Wilkins, and K. G. Wilson, Phys. Rev. B 21, 1003 (1980).
[47] H. R. Krishna-murthy, J. W. Wilkins, and K. G. Wilson, Phys. Rev. B 21, 1044 (1980).
[48] N. Andrei, K. Furuya, and J. H. Lowenstein, Rev. Mod. Phys. 55, 331 (1983).
[49] P. Schlottmann, Physics Rep. 181, 1 (1989).
[50] K. G. Wilson, Rev. Mod. Phys. 47, 773 (1975).
[51] C. Jayaprakash, H. R. Krishna-murthy, and J. W. Wilkins, Phys. Rev. Lett. 47, 737 (1981).
[52] M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954).
[53] T. Kasuya, Progress of Theoretical Physics 16, 45 (1956).
[54] K. Yosida, Phys. Rev. 106, 893 (1957).
[55] Z. M. Mahmoud, J. Büenemann, and F. Gebhard, physica status solidi (b) 254, 1600842 (2017).
[56] M. I. Katsnelson and A. I. Lichtenstein, Phys. Rev. B 61, 8006 (2000).
[57] L. Zhou, J. Wiebe, S. Lounis, E. Vedmedenko, F. Meier, S. Blügel, P. H. Dederichs, and R. Wiesendanger, Nat Phys 6 (2010).
[58] A. Allerdt, C. A. Büsser, G. B. Martins, and A. E. Feiguin, Phys. Rev. B 91, 085101 (2015).
[59] D. N. Aristov and S. V. Maleyev, Phys. Rev. B 56, 8841 (1997).
[60] R. Masrour, A. Jabar, A. Benyoussaf, and M. Hame doun, Journal of Magnetism and Magnetic Materials 401, 695 (2016).
[61] K. Nefedov, V. I. Belokon, V. Kapitan, and O. I. Dyachenko, Journal of Physics: Conference Series, Vol. 490 (2014).
[62] P. Coleman, “Local moment physics in heavy electron systems,” cond-mat/0206003.
[63] D. L. Cox and A. Zawadowski, Advances in Physics 47, 599 (1998), for a review on the multi-channel models.
[64] K. Ingersent, B. A. Jones, and J. W. Wilkins, Phys. Rev. Lett. 69, 2594 (1992).
[65] A. N. Tahvildar-Zadeh, M. Jarrell, T. Pruschke, and J. K. Freericks, Phys. Rev. B 60, 10782 (1999).
[66] Y. Kuramoto, in Theory of Heavy Fermions and Valence Fluctuations, edited by T. Kasuya and T. Saso (Springer Verlag, Berlin, 1985) p. 152.
[67] N. Grewe, Z. Phys. B 67, 323 (1987).
[68] C. I. Kim, Y. Kuramoto, and T. Kasuya, J. Phys. Soc. Japan 59, 2414 (1990).
Note that for the translational invariant periodic Anderson model (PAM) the Green's function matrix is diagonalized by Fourier transformation where $\Delta(\vec{k}) = V^2/\left(\epsilon - \epsilon_{\vec{k}}\right)$.

[74] T. Esat, T. Deilmann, B. Lechtenberg, C. Wagner, P. Krüger, R. Temirov, F. B. Anders, M. Rohlfing, and F. S. Tautz, Phys. Rev. B 91, 144415 (2015).

[75] B. Lechtenberg and F. B. Anders, Phys. Rev. B 90, 045117 (2014).

[76] B. Lechtenberg and F. B. Anders, Phys. Rev. B 98, 035109 (2018).

[77] T. Esat, B. Lechtenberg, T. Deilmann, Christian Wagner, P. Krüger, R. Temirov, M. Rohlfing, F. B. Anders, and F. S. Tautz, Nature Physics 12, 8 (2016).

[78] B. Lechtenberg, F. Eichhoff, and F. B. Anders, Phys. Rev. B 96, 041109 (2017).

[79] D. Withoff and E. Fradkin, Phys. Rev. Lett. 64, 1835 (1990).

[80] C. Gonzalez-Buxton and K. Ingersent, Phys. Rev. B 57, 14254 (1998).

[81] M. Vojta, Philosophical Magazine 58, 1807 (2006).

[82] W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989).

[83] U. Brandt and C. Mielsch, Z. Phys. B 75, 365 (1989).

[84] E. Müller-Hartmann, Z. Phys. B 76, 211 (1989).

[85] A. K. Mitchell, P. G. Derry, and D. E. Logan, Phys. Rev. B 91, 235127 (2015).

[86] P. G. Derry, A. K. Mitchell, and D. E. Logan, Phys. Rev. B 92, 035126 (2015).

[87] J. R. Schrieffer and P. A. Wolff, Phys. Rev. 149, 491 (1966).