EXTRACELLULAR ALKALINE PECTINASES PRODUCTION: A REVIEW

Pitambri THAKUR1, Abhishek K. SINGH2, Manjeet SINGH1, Gunjan MUKHERJEE1*

Address(es):
1University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India.
2University Institute of Engineering, Department of Biotechnology Engineering, Chandigarh University, Mohali, Punjab, India.

*Corresponding author: gunjamukherjee@gmail.com

INTRODUCTION

In the mid nineteenth century, enzyme turned up and since then they are being spasmodically used in several industrial tasks. Enzymes are tremendously effective and very particular biocatalyst. There is an expansion in the demand of using biotechnological processes in place of conventional processes. Many biotechnological processes include microorganisms and enzymes such as pectinases, xylanases, cellulases, mannanase α-galactosidase, lactases and liginases which are eco-friendly and cost effective (Hoondal et al., 2002). Basically, pectin are high molecular weight acid polysaccharides, initially containing α-(1-4) linkage D-galacturonic acid residues with a short number of rhamnose residues in the main chain and arabinose, galactose, and xylose on its side chain. An enzyme family which generate breakdown of the glycosidic bonds in the pectin can also be called pectinase which is a generic name (Rangarajan et al., 2010). Plant pathogens build various cell wall degrading enzymes to strike on target cells, which clear the path for entrance and evolution of pathogen in host tissue. These phyto pathogenic enzymes contain pectinases, cellulases and proteases. Pectinases take part in the breakdown of pectins. Based on mode of action and substrates used, pectinases are categorized as pectin esterase (E.C.3.1.1.11), Hydrolases (pectin methyl galacturonase (E.S.3.2.1.14) and polygalacturonases (E.S.3.2.1.15), and Lyases (pectin lyase) (E.C.4.2.2.10) and pectate lyase (E.C.4.2.2.2).

Pectinase and its types

Pectinases are the enzymes which hydrolyzes the pectic substances. Pectinases includes polygalacturonases, pectate lyases, pectinesterases and pectin lyases relying on the mode of action (Alkorta et al., 1998). Pectinases are mostly used in food industries for clarifying fruit juices and wines to improve the level of cloudiness, haze as well as utilized to produce tea, coffee, and oil extraction. Alkaline pectinases are used to separate the mucilage from coffee beans and to speed up fermentation of tea (Willats et al., 2006). They are also used for striping of plants fibers, textile and paper industry, animal feed and wastewater treatments because of their capability to denuke pectic polymers (Demir and Taskin, 2013). According to Taskin (2013) various types of pectinases endo and exopolygalacturonase are most important and broadly applicable pectinases and contribute as 25% of industrial sales of enzymes globally. This will continue to grow up.

Keywords: Alkaline Pectinases; Optimization strategies; Genetic engineering; Fermentation media

Figure 1 Classification of pectinase enzyme
Alkaline Pectinases Occurrence

Pectinases are delegated in the higher plants in which they are indulged in alteration of pectinaceous materials in the time of natural maturing of various fruits. Pectinases can be acquired from different plant, animal, and microbial sources, but to satisfy the commercial needs enzymes are to be acquired from microbial sources. Due to various benefits of microorganisms such as biodiversity, faster growth represents a good role of these enzymes (Amin et al., 2017). To produce this enzyme, which is an important enzyme for industry purposes, 30 various types of fungi, bacteria and yeasts had been identified (Favela-Torres et al., 2006). Origin of microbial toolbox is from the filamentous fungi, yeast, non-filamentous and filamentous bacteria. Alkaline pectinases are secreted by bacterial strains, where as these pectinolytic derived from fungus are acidic in nature. Specifically, filamentous fungi are the best resource of commercial pectinolytic biocatalysts. It represents all members of polygalacturonic acid. It defines gene and shows differences in accordance with the cleavage rate, substrate specificity, temperature and pH optima for activity (Jacob, 2009). Enzyme’s status from this fungus lies on the 97 pectinase genes which were glossed and 60 new genes that are generated from the whole genome of Aspergillus niger (Khan et al., 2013). Genus Aspergillus other species are also identified in the studies for the biosynthesis of the pectinases, various other acid natured pectinase making fungi and yeast are generally from genus Rhizomucor sp., Pencillium sp., Rhizopus sp., Aureobasidium sp., Trichoderma sp., Thermotoga sp., Candida sp., Saccharomyces sp., Pichia sp., Klyveromyces sp., Schizosaccharomyces sp., whereas, Klebsiella sp., Bacillus sp., Pseudomonas sp. and Cryptococcus sp., have been selected for alkaline pectinase production. Various types of pectinases made by bacterial, fungal and yeast cultures are present at commercial scale (Kashyap et al., 2001). Pectinase enzyme is also produced by bacteria belonged to species of Enterobacter (Enterobacter sp. MF41, Enterobacter sp. MF84, and Enterobacter sp. MF90. Enterobacter sp. MF84), Erwinia (E. carotovora and E. chrysanthemi) (Matsumoto et al., 2003), Pseudomonas (Sohal & Latif, 2016), Bacillus and, Streptomyces (Ramirez-Tapia et al., 2015) Lactobacillus (Karam & Belbari, 1995) etc. Many researchers reported that, pectinolytic properties of Bacillus strains are selected as the major source of pectinase enzymes (Kavuthodi et al., 2015; Sohail & Latif, 2016, Kavuthodi and Sebastian, 2018). Microbial strains are selected on various measures like number of pectinases produced, type of fermentation technique, thermostability properties and pH of enzymes and genotype of the microbial strain (Favela-Torres et al., 2006).

Substrate for alkaline pectinase

Pectin is the well layered homo polysaccharide appearing in the primary cell walls and middle lamella of terrestrial plants, inhabited in 1/3 of the dry mass of plant tissue (Gupta et al., 2008). It consists of long galacturonic acid chains along with residues of carbohydrate groups and methyl esters. A pectic substance forms the middle lamella of terrestrial plants, inhabited in 1/3 of the dry mass of plant tissue. Pectinase activity is an important part of middle lamella and these substances are omni-present in plant kingdom. Pectic acid is the main chain of pectin which is half methyl-esterified-1, 4-D galacturonan. Pectin substances are amorphous with polymerization of 200-400. Substituents are located either on C-2 or C-3 locus of main chain. They can be sugar or non-sugar, based on sources of pectic substances, kind of branching differentiates. In the initial stages of rise in immature enlarging cell walls there appear production of pectin substances in the golgi apparatus by UDP-D-galacturonic acid (Hoondal et al., 2002; Ali et al., 2013). As compared to young actively growing tissues less than 1% of pectin substances are present in higher plants which are quite low. These mainly contribute to vegetables and fruits but comprise a huge part of algal biomass up to 50%. Pectic substances are divided as pectic acids, pectic acids, pectin, and protopectin. Pectic acids are basically a complex designation which is given to pectic substances in collodial polygalacturonic acids is more and there are independent of methoxy groups salts of pectic acids can be acidic pectates. Pectic acid consists of 75% methylated galacturonate units. Pectinic acid can be used to produce gels containing sugars and acids only under satisfied conditions. Protopectin is located in the middle lamella serving as a cement to bind cells altogether in the cell wall. Pectinic acid is a water-insoluble parent pectin substance. It produces pectin and pectic acid on restriction hydrolysis. This acid is insoluble in water due to its high molecular mass, formation of ester bond in between carboxyl and hydroxyl group, and bonding of salt between the basic groups and carboxyl group of proteins. This model has been made for chemical shape of pectin into which neutralized sugar side are organized into blocks unconnected by unsubstantial parts consisting exclusively almost galacturonic acid residues (Yoshitake et al., 1994). It is soluble in nature. It is also able to form gels with sugars and acids under certified conditions. According to Thakur and Mukherjee (2021) different agricultural waste such as jaggery, animal bone and wheat bran and sugar cane bagasse etc can utilized for the production of pectinase. Residues from production of fruit juices, citrus fruits and apple pomace are used for manufacturing pectin (Alkorta et al., 1998).

Sources of Pectinases

Pectinases have variety of sources for example yeast, actinomycetes, bacteria and fungi (Hoondal et al., 2002). Basic pectinases are of two types: alkaline and acidic pectinases. Both the types have various industrial applications like fruit juice clearance and wastewater treatment, degumming of fibers such as hemp, flax, and jute etc. (Tanabe et al., 1988). And these fibers are used for various modern potential purposes such as ropes, nets etc. Various microbial sources of alkaline pectinases are Bacillus licheniformis (Kapoor et al., 2000), Bacillus subtilis (Ward and Forgary, 2010), Aspergillus fumigatus (Phutela et al., 2005), Wickerhamomyces anomalus (Martos et al., 2013), and actinomyces etc (Brühlman et al., 1994).

Alkaline pectinases production strategies

For the production of pectinases from the microorganisms, the most common strategy is fermentation techniques. Certain strategies such as submerged fermentation (SmF), entire cell immobilization and strong state aging are used for pectinase production from various microbial sources (Couto and Sanromán, 2006).

Fermentation Techniques

Major soluble pectinase producing varieties are Bacillus and Pseudomonas sp. and at the commercial scale around 90% of enzymes are produced via submerged fermentation (Kashyap, 2001; Pedrolli and Carmona, 2010). Also, theSSF procedure is a static procedure without industrial vitality uses. In disparity, the SmF cultures fill in as homogeneous frameworks requiring expansive vitality uses to adapt to high oxygen requirements (Viniegra-Gonzalez et al., 2003).SSF is used from last two decades to produce industrially important enzymes (Couto and Sanromán, 2006).SSF in comparison to SmF produces high enzyme titers (Hoondal et al., 2002). And sadly, no extensive reports clarifying the explanation behind this are available. This absence of data makes troublesome any evaluation regarding the value of one process versus the other. For the biosynthesis of enzymes, less common technique immobilized cell culture offers many advantages. It is used in liquid-state fermentations using immobilized cells, because it provides reusability and catalytic stability of enzyme (Hoondal et al., 2002; Kapoor and Kuhad, 2000).

Submerged Fermentation

To produce extracellular microbial enzymes at industrial scale, submerged fermentation is the matured process. Nonetheless, the yield of the catalyst relies upon strain type utilized and a few physical and nutritional factors, for example, pH, temperature, a substrate, incubation time, extra dietary sources, air circulation, fomentation, and extraction techniques etc. Under submerged fermentation many reports are available for pectinase production. Bacterial cultures lead to the production of alkaline pectinase and yeast pectinases are of acidic nature. Various microorganisms unravel fungal and alkaline pectinases production under submerged fermentation (Alimardani-Theull et al., 2011). Various fermentation- processing factors were optimized by Glinka and Liao (2011) and recorded highest production 329 U/mL of pectin methyl esterase. 21 U/mL pectinase titer was observed by Padma et al., (2011) under liquid-state fermentation using orange peel. 1015 Umg fermentation (Kashyap, 2001; Pedrolli and Carmona, 2010). And112 U EL enzyme titers from Streptomyces species was produced by Saadoun et al., (2013). Also, in submerged fermentation utilizing food waste reported 24.18 U/mL. After utilizing cheaper growth substrate increased biosynthesis of pectinase is observed particularly for textile industry (Ahmed et al., 2016). By using agro-industrial waste PGase enzyme using various isolated bacterial strains was produced (Jahan et al., 2017).
Solid State Fermentation

In the present era of biotechnology due to certain advantages solid state fermentation is exceptionally enticing specified underneath (Jacob, 2009; Pedrolli and Gaimona, 2010). It prevents the use of cost-effective agro-waste substrate for the growth of microbes. As compare to submerged fermentation, solid-state fermentation has better and enhanced properties. Also, less contribution of energy is required. It is sustainable and green with high generation of microbial metabolites.SSF is very promising tool for enzymes extraction from fungi. Although, there are a few reports exhibiting the development of microorganisms and about great yields of the enzymes. The last yield of the pectinases relies upon a few procedure factors like sort of strain utilized, and other parameters such as extra nourishing sources, pH, temperature, incubation time and type of substrate etc. (I. et al., 2005; Ahlawat et al., 2009). Sixty fungal strains from the spoiled foods of the soil observed as the high producer of pectinase with 74.0 U/mL (Sandri et al., 2013). Further, unique working factors, for example, maturation time, temperature, pH, and dampness content were applied as one-variable-at-time measurable strategy. Alkaline pectinase B. subtilis ZGL14 activity was optimized using RSM with Box-Behnken design (Yu et al., 2017).

Factors Affecting Pectinases Production

Nitrogen source

The effects of various nitrogen sources (organic and inorganic) on pectinase production have extensively studied. Rasheedia et al. (2010) observed that ammonium sulphate did influence production of Penicillus chrysogenum pectinase. Hours and coworkers (1988) reported that lower levels of inorganic nitrogen sources (K2HPO4) in growth medium did not influence the pectinase production. Additionally, Patil and Dayanand (2006) found that ammonium phosphate and pyrophosphate increased pectinase production. In contrast, Sapuova (1990) found that malt sprouts and ammonium salts stimulated the pectinolytic enzyme production in Aspergillus alliaceus BIM-83. Fawole and Odunfa (2003) reported that ammonium sulphate and ammonium nitrate have the best nitrogen source for the production of pectinase from Aspergillus niger. Reda et al. (2008) reported that the highest production of pectin depolymerase by Bacillus firmus 1-1014 in the presence of peptone. In addition, Vivek et al., (2010) reported the organic nitrogen sources showed higher endopolygalacturonase, exopolygalacturanase activities than inorganic nitrogen sources.

Carbon source

Teixeira et al. (2000) found that the best carbon sources for high pectinolytic activities from Aspergillus japonicus 586 were 0.5% pectin (pectinesterase), 0.2% pectin and 0.2% glycerol (endopolygalacturonase) and pectin associated to glucose (exopolygalacturonase). Pectinesterase activity was susceptible to catabolic repression with high pectin, glucose and saccharose concentrations. Aguilar and Huitron (1987) reported that the enhanced the production of pectinases from A. niger by the presence of glucose or saccharose associated with pectic in low concentrations. Fawole and Odunfa (2003) observed that pectin and poly galacturonic acid enhanced the pectinase production. In addition, the highest polygalacturonase activity of Bacillus firmus was observed when the pure pectin give the highest pectin depolymerase production (Phutela et al., 2005).

Immobilized Cell Culture

The microbes on diverse inert polymeric solid supports gives different advantages like to use them again; distinction of product without presence of microbes, distinction of from biomass produces better enzymatic stability (Moreno-Garcia et al., 2018). A wide heterogeneity of nature such as chitin and carrageenan, agar-agar, alginate, collagen, chitosan and synthetic polymers such as polyurethane, polyacrylamide, and polyethylene glycol are being regarded as assisting resources. agar, alginate, collagen, chitosan and synthetic polymers such as polyurethane, distinction of from biomass produces better enzymatic stability and additional vitamin. In fermentation period, yield of pectinase is improved by 75% for 36 hours at 37 ºC due to use of amalgamation of neurobin at 27 μL/g to personalize target products. But execution of immobilized cells in industries is still not overcomes (Berbegal et al., 2017). Attention must be given on long term preservation of immobilized cells for future purposes. New bioreactors and bioprocesses should be made that are not of complex nature, cheap and flexible and which can be also be scaled up (Nedovic et al., 2011). Solid supports which are being used must also be inexpensive, eco-friendly, good quality for better industrial exploitation (Moreno-Garcia et al., 2018).

Production through genetic engineering

In the modern biotechnology era, tools of r-DNA technology like mutation, gene cloning etc. have captivated the attention of researchers to produce enzymes that can be applied in industries. These techniques had helped a lot to scientists to get all the information of a specific gene of interest and achieve required over-expression of the pectinolytic genes. Consequently, expression of pectinolytic enzymes can be easily used in industries. That is why; scientists had focused on the study of these enzymes from past many years. Enzymologists are benefited through genetic engineering as it gives different techniques to manufacture a specific enzyme on industrial scale at a low cost. Different pectinolytic genes are cloned and then expressed in wide variety of organisms to produce homologous and heterologous expression with low cost, time, and energy (Goncalves et al., 2012; Almeida et al., 2003). High yield of pectinases are attained through genetically engineered construction of different stains such as P. griseoseom. Bacillus subtilis was utilized for the advanced level extracellular production of alkaline polygalacturamate lyase (PGL) with gene expression and PGL, titers raised to 632.6 U/ml (Zhang et al., 2010). The recombinant expression of the P. pastoris strain showed maximum yield of 632.6 U/ml attained the highest yield of this enzyme (Zou et al., 2013). The recombinant expression of Aspergillus in P. pastoris concluded maximum yield of 2408.70 U/ml after utilizing batch fermentation of high cell density and it observed the yield was 4.8 folds higher (Abdulruchman et al., 2017).

Optimization strategies for the production of alkaline pectinases

Pectinases production are widely influenced by the cultivation conditions, substrates of growth medium, pH, aeration, temperature, the supplementary nutrients (salts, nitrogen and carbon sources) type of strain, moisture, and inducers (Amin et al., 2017). Agriculture food industry plays a vital role as it provides all the required nutritional ingredients for the growth of microbes for biosynthesis of pectinases. US department of energy stated that approximate 500,000,000 tons of commercial waste materials take place in USA per year. Most of this waste material is being processed through optimization. Various agro-food waste like rice bran, wheat bran, fruit peels, leftovers etc. are utilized in industries to produce various types of enzymes (Munir et al., 2015). This agro based waste material is rich in pectin and used as important natural substrates for pectinase production (6 Reda et al., 2008; Fawole et al., 2003). Several authors cherished the use of this waste material as fermentation food stuffs in fermentation biotechnology (Bilal et al., 2015). Several other synthetic mediums like starch, sugar, etc and complex components played an important role to fulfill the nutrient requirements of the growth of micro-organisms and used in pectinase expression (Teixeira et al., 2000; Goncalves et al., 2012). The synthetic media can be utilized to manufacture pectinolytic enzymes (Sandri et al., 2013; Zou et al., 2013). These media mostly used to get proper production of enzymes. Various techniques like synthetic based medium and its optimizations to use the agro-waste to get sufficient yield of enzymes are being made by researchers. Some of the scientists tend to obtain the protein expressions by combining the genetic engineering with enzyme biotechnology (Zhang et al., 2013). To obtain a crude pectinase, the fermentation medium has filtered using dry, pre-sterilized filter paper, refrigerated centrifuged. Supernatant is collected for partial purification of pectinase. Crude pectinase is partial purified by using ethanol, ammonium sulphate precipitation (Barman et al., 2015). Pectinase has purified through gel filtration chromatography on Sephadex G 150 and ion exchange chromatography using DEAE-Sephacel (Kashyap et al., 2000).

Optimization of Bacterial Strains

SmF are basically used for microbial enzyme production. During fermentation, they need high water potential. Reports by author’s states their consumption in solid state fermentation under ratios of high moisture and amended the procedure to acquire advantages of enhanced metabolites features given by SSF (Kashyap et al., 2003; Li et al., 2005). The manufacture of pectinase efficiently improved by using organic nitrogen sources like amino acids, glycerol, glucose and additional vitamin. In fermentation period, yield of pectinase is improved by 75% for 36 hours at 37 ºC due to use of amalgamation of neurobin at 27 μL/g
(Kashyap et al., 2003). A bacterial strain which was recently secluded, B. gibsoniiS-2 for optimizing yield of alkaline pectinase utilizing pulp of sugar beet acquired 3600 U/g after 48 h at 35 °C of incubation (Ouatarta et al., 2011). The fermentation media additive 1 physical variant of pH and 3 dummy variants with the help of Plackett-Burman design. Optimization of pectinase production concluded in 41-times of improvement in pectinase yield by B. Pumilus (Sharma and Satyanarayana 2006). Murugan et al. (2020) reported pectinase production from Bacillus species with 3.40 mg/mL of total protein and 484.70 U/mg of specific enzyme activity. In characterization studies, the pectinase demonstrated good activity at pH 6.0 and 40 °C. Also, the bacterial strain showed maximum growth when the medium pH was 7.0 and incubated 37 °C.

Optimization of Yeast Strains

The two kinds of yeasts included in the production of pectinolytic enzymes are one group which is constitutive i.e. cannot use pectic substances as carbon source. Present complex of yeast helps in secreting endo-polygalacturonases. The next group surrounds the yeasts such as filamentous fungi which can release pectinase on induction through the usage of pectinaceous material, giving a more complex set of enzymes of them. This complex is half constitutive. Canva boidity and C. albidus have these features. However, both the groups possess different origin of pectinases. These behaviors are disclosed by evaluating the origin of various pectin genes in yeasts. Yeast pectinases are extracellular in nature. Statistics based strategy of optimization for the better yield of pectinase using genetically modified yeast with grape skin as a source of carbon (Arevalo-Villena et al. 2009). Maximum pectinolytic activity by using raw fruit as a substrate at 5°C was observed by Padma et al., (2011). Exo-polygalacturonase recorded yield 28.6 U/mL from immobilized cells and 26.9 U/mL from free cells. For 14 and 18 cycles the immobilized cell was securely used and at the end of 18 cycles recorded yield 503.1 U/mL (Taskin, 2013).

Optimization of fungal strains

The agriculture food industrial effluents are utilized much appropriately by fungal strains to produce series of microbial metabolites. These are a great contribution of authors in fungal species culture to produce pectinases. The two important factors for statistical yield of proper amount of 29.09 U/mL pectinase were two stages optimizing strategy which utilizes D-optimal and central composite design under solid state fermentation employing Aspergillus niger inoculums and incubating duration (Ustrak et al., 2007). After fermenting for 5 days, production of exo-polygalacturonase (1450 U/g) was successfully acquired by utilizing oil cake of pumpkin as substrate of water activity of 0.9232 (Pedroli and Carmona, 2010). The fermentation medium optimization used peel of orange as substrate by Fisurium solani for the improved production with peptone and glucose at 1% level was observed 102.21 U/g (Hamid et al., 2008). Two distinct substrates and strains of A. niger to attain the highest pectinase quantity was observed in bran of wheat resulted better than pectin (Khairnar et al., 2009). Enshasy et al., (2018) reported pectinase production from Aspergillus niger of 109.63 U/mL, which was about 10% higher than the uncontrolled pH culture. Furthermore, fed-batch cultivation using sucrose as a feeding substrate with a rate of 2 g/L/h increased the enzyme production up to 450 U/mL (Saha et al., 2017). Han, h et al. (2020) observed 1.9- to 2.3-fold higher pectinase production and 2.2- to 2.3-fold higher α-galactosidase after 72 h, at pH 6 and 7 for the utilisation in environment friendly enzymatic processing.

Application of pectinase in wastewater treatment

The wastewater from the citrus-processing industry contains pectinaceous materials that are barely decomposed by microbes during the activated-sludge treatment (Tanabe et al., 1986). Tanabe et al. (1987) has tried to develop a new wastewater treatment process by using an alkalophilic microorganism. Their soil isolate an alkalophilic Bacillus sp. (GR 621), produced an extracellular endopolygalacturonase lyase in alkaline media at pH 10.0. Treatment with this strain has proved to be useful in removing pectic substances from the wastewater. Treatment of waste water generated through various industries such as paper processing industries, food processing industries and agro-based industries is a challenge since it releases various plant polysaccharides such as starch and pectin. Waste water treatment can be done through chemical, physical and enzymatic methods. Chemical methods utilized for the treatment waste water are harsh on the environment and cause direct or indirect environmental pollution. Alternatively, enzymes are utilized; enzymes such as pectinase is utilized for the pre-treatment of pectin rich wastewaters generated through above mentioned industries before releasing the water to streams, rivers (Pitambari and Jai, 2019).

CONCLUSION AND FUTURE PERSPECTIVE

Pectinases are most potent enzyme of the commercial sector with numerous industrial applications due to its extraordinary properties to catalyze various reactions with suitable environmental parameters. Previous reports revealed that pectinolytic enzymes have two major targets: first, production of pure pectinolytic enzyme cocktail with improved properties and stability is required for various industrial processes. Second, new and cheaper sources are required for the production of cost-effective commercial pectinases for the potential market. Alkaline pectinases are the major enzyme of textile and paper industry. Genetic engineering is a promising approach to produce pure pectinolytic cocktails in very small time slot. Also, conventional optimization techniques are encouraging for the pure pectinolytic cocktail synthesis. Major stable and advanced pectinolytic enzymes can be produced using advanced protein engineering techniques to achieve improved properties and activities by in vitro modifications of protein primary structure. It will be of utmost significance for the advancement in alkaline pectinase properties.

REFERENCES

Abdulrahman, D., Thongkro, P., Kocharin, K., Nakhpathom, M., Somboon, B., Narumol, N., & Chantsasing, D. (2017). Heterologous expression of Aspergillus aculeatus endo-polygalacturonase in Pichia pastoris by high cell density fermentation and its application in textile scouring. BMC biotechnology, 17(1), 15. https://doi.org/10.1186/s12896-017-0354-9
Aguilar, G., & Hoppe, C. (1987). Stimulation of the production of extracellular pectinolytic activities of Aspergillus sp. by galactaric acid and glucose addition. Enzyme and Microbial Technology, 9(11), 690-696. https://doi.org/10.1016/0141-0229(87)90129-3
Ahlawat, S., Dhiman, S.S., Batran, B., Mandhan, R.P., Sharma, J. (2009). Pectinase production by Bacillus subtillis and its potential application in biopreparation of pectinase. Biotechnology, 44(5), 521-526. https://doi.org/10.1007/problogo.2009.01.003
Ahmed, I., Zia, M.A., Hussain MA, Akram Z, Naved MT, Nowrouzi A (2016) Bioprocessing of citrus waste peel for induced pectinase production by Aspergillus niger; its purification and characterization. Journal of Radiation Research and Applied Sciences 9(2):138-154. https://doi.org/10.1016/j.jrras.2015.11.003
Ali, S. B. R., Muthulelayudham, R., & Viruthagiri, T. (2013). Statistical optimization of medium components for hemi-cellulase production using tapioca starch. Journal of Microbiology, Biotechnology and Food Sciences, 2(6), 2377–2382.
Almardani-Theul et P. Guinovars-Classe A, Duchiron F (2011) Yeasts: An attractive source of pectinases—from gene expression to potential applications: A review. Process Biochemistry 46(8):1525-1537.
Annan F, Bhatti HN, Bilal M, Asgher M (2017) Multiple parameter optimizations for enhanced biosynthesis of exopolypgalecturonase enzyme and its application in juice fruit clarification. Int J Food Eng 13(2):256. https://doi.org/10.1515/ifje-2016-0252
Angelim AL, Costa SP, Farias WCS, Aquino LF, Melo VM M (2013) An innovative bioremediation strategy using a bacterial consortium entrapped in chitosan beads. Journal of environmental management127:10-17. https://doi.org/10.1016/j.jenvman.2013.04.014.
Arevalo-VillenaM, Fernandez M, Lopez J, Briones A (2011) Pectinases yeast production using grape skin as carbon source. Advances in Bioscience and Biotechnology 2(02): 89. https://doi.org/10.4236/abib.2011.220014
Barmam, S., Sit, N., Badwai, L. S., & Deka S. C. (2014). Pectinase production by Aspergillus niger using banana (Musa balbisiana) peel as substrate and its effect on clarification of banana juice. J Food Sci Technol. 52(6), 3579–3589.
Berbegal C, SpanoA, Truesteza M, Greco F, Capozzi V (2017) Microbial resources and innovation in the wine production sector. South African Journal of Enology and Viticulture 38(2):156-166. https://doi.org/10.21548/58-2-1333.
Bilal M, Asgher M, Iqbal HM, Ramzan M (2017). Enhanced bioethanol production from old newspapers waste through alkali and enzymatic delignification. Waste Biomass Valorization 8(7):2271-2281. https://doi.org/10.1007/s12671-017-9871-7
Bilal M, Asgher M, Ramzan M (2015) Purification and biochemical characterization of extracellular manganese peroxidase from Ganoderma lucidum IBL-5 and its application. Scientific research and Essays 10(4):456-464. https://doi.org/10.5897/2015.JE.3698.
Brulman F, Kam KS, Zimmerman W, Fiechter A (1994) Pectinolytic enzymes from actinomycetes for the degumming of ramie bast fibers. Appl Environ Microbiol60:2107–2112. https://doi.org/10.1128/aem.60.6.2107-2112.1994.
Couto SR, Sanromán MA (2006) Application of solid-state fermentation to food industry—A review. Journal of Food Engineering 76(3):291-302. https://doi.org/10.1016/j.jfoodeng.2005.05.022
Demir H, Tari C (2014) Valorization of wheat bran for the production of polygalacturonase in SSF of Aspergillus sojae. Industrial Crops and Products 54:302-309. https://doi.org/10.1016/j.indcrop.2014.01.025

Diaz-Godinez G, Soriano-Santos J, Augur C, Vinegra-Gonzalez G (2001). Exopolipopolygalacturonase produced by Aspergillus niger in solid-state and submerged fermentation: a comparative study. Journal of Industrial Microbiology and Biotechnology 25(6):271-275. https://doi.org/10.1007/s5267-001-00013

Djordjevic V, Willaert R, Gibson B, Nedovic V (2017) Immobilized yeast cells and secondary metabolites. Fungal Metabolites 599-638. https://doi.org/10.1016/j.functbio.2017.09.078

Enshasy, EL., Elsayed, H.A., Sulaiman, E.A., N. et al. (2018). Bioprocess optimization for pectinase production using Aspergillus niger in a submerged cultivation system. BMC Biotech 18, 71 https://doi.org/10.1186/s12896-018-0481-7

Fawole E, Volke-Sepulveda T, Vinegra-Gonzalez G (2006) Production of Hydrolytic Depolymerising Pectinases.Food Technology & Biotechnology 44(2):221-227.

Fawole, O.B., & Odufa, S.A. (2003). Some factors affecting production of pectic enzymes by Aspergillus niger. International Biodeterioration and Biodegradation, 52(4), 223-227. https://doi.org/10.1016/S0169-5347(02)00094-5

Gophane S.R., Khobragadea C.N., and Jayabheya S.G. (2016) Extracellular pectinase activity from Bacillus Cereus GC subgroup a: isolation, production, optimization and partial characterization. Journal of Microbiology, Biotechnology and Food Sciences, 6(2), 767-772. https://doi.org/10.15411/jmbfs.2016.6.2.767-772

Glinka EM, Liao YC (2011) Purification and partial characterization of pectin methylsterase produced by Fusarium asiaticum. Fungal Biol 115(11):1112-1121. https://doi.org/10.1016/j.funbio.2011.06.009

Gonzalves DB, Texeira JA, Bazzoli DMS, de Queiroz MV, de Araujo EF (2012) Use of response surface methodology to optimize production of pectinases by recombinant Thermopileum salsus. Biotechnology and Agricultural Biotechnology J 2(1):140-146. https://doi.org/10.1186/1947-6114-2-140

Gupta S, Kapoor M, Sharma, K, NaR LM, Kuhad RC (2008) Production and recovery of an alkaline exo-polygalacturonase from Bacillus subtilis RCK under solid-state fermentation using statistical approach. Biosorrel Technol 99(5):937-945. https://doi.org/10.1016/j.biosorrel.2008.06.009

Handa S, Nivedita S, Shruti P (2016) Multiple Parameter Optimization for Maximization of Pectinase production by Rhizopus sp. C4 under Solid State Fermentation. Journal of Microbiology, 6(2):2-9. https://doi.org/10.3930/jfr.2016.02010

Hand S, Bharti HN, Qayyum UA (2008) Enhanced Production of Exo-Polygalacturonase by Fusarium solaniin Solid-State Fermentation. Asian Journal of Chemistry 20(6):4273-4281.

Hours, R.A., Voget, C.E. & Ertoa, R.J. (1988). Some factors affecting pectinase production from apple pomace in solid-state cultures. Biols. Wastes, 24: 147-157. https://doi.org/10.1007/s12816-009-0057-2

Hooindal G, Tiwari R, Tewari R, Dahiya NBQK, Beg Q (2002) Microbial alkaline pectinases and their industrial applications: a review. Applied microbiology and biotechnology 59(4-5):409-418. https://doi.org/10.1007/s00253-002-1061-1

Irshad M, Anwar Z, Mahmood Z, Aqil T, Mehmood S, Nawaz H (2014) Bioprocessing of agro-industrial waste orange peel for production of pectinolytic enzyme in solid-state fermentation and characterization. Turkish Journal of Biochemistry 39(1):9-18. https://doi.org/10.3402/tjb.v39.55707

Jahan N, Shahid F, Aman A, Mujahid TY, Qader SAU (2017) Utilization of agro-waste for production of pectinolytic enzymes in liquid state fermentation by Phanerochaete chrysosporium - IBL-03. JIBS 7:9-14.

Murugan, T., Deepika, P., Kowsalya, A., Sivasubramanian, K., Rejisha, R.P., Murugan, M. Wins, J. A. (2020). Production and characterization of the exopolysaccharide produced by Trichoderma viridi sp. C4 under Solid State Fermentation. https://doi.org/10.3389/fmicb.2018.00241

Mohandas A, Sivadasa R, Pandravindana A, Aruna Subramaniana A, Raj SR Arthila, Anil Kuruvillia Mathesh, Ashok Pandey (2017) Production of Pectinolytic Enzymes from decomposting orange peels. Braz J Microbiol 36(1): 63-70.

Murugan, T20. https://doi.org/10.1186/s12896-017-1122-4

Ouattara HG, Reverchon S, Niamke SL, Nasser W (2011) Molecular identification of regulatory mechanisms for pectinase production by Erwinia carotovora subsp. carotovora and Erwinia chrysanthemi. Molecular plant-microbe interactions, 16(3), 226-237. https://doi.org/10.1099/mpmi.0.03336-0

Moreno-Garcia J, Garcia-Martinez T, Mauricio JC, Moreno J (2018) Yeast Enzymes Systems for Alcoholic Wine Fermentations: Actual Trends and Future Perspectives. Frontiers in Microbiology 9:241. https://doi.org/10.3389/fmicb.2018.00221

Padma PN, Anuradhaa K, Reddy G (2011) Pectinolytic yeast isolates for cold-active polygalacturonase production. Innovative food science & emerging technologies 12(2):178-181. https://doi.org/10.1016/j.ifset.2011.02.001

Patil, S.R. & Dayanand, A. (2006). Production of pectinase from deseeded sunflower head by Aspergillus niger in submerged and solid-state conditions. International Biodeterioration and Biodegradation, 57, 2054-2058. https://doi.org/10.1016/j.ibiod.2005.09.015

Pedroli DB, Carmona EC (2010) Purification and characterization of the exopolysaccharide produced by Aspergillus giganteus in submerged cultures. J Ind Microbiol Biotechnol 37(6):567-573. https://doi.org/10.1007/s10295-010-0921-7

Phutela, U., Dhuna, V., Sandhu, S., & Chadha, B.S. (2005). Pectinase and polygalacturonase production by Thermophilic Aspergillus fumigatus isolated from decompositing orange peels. Braz J Microbiol 36(1): 63-69. https://doi.org/10.1590/S1517-83262005000100013

Quan Li, Christopher S. Ray, Nicholas V. Callow, Abdullah A. Loman, S.M.M. Khairnar Y, Krishna VK, Boraste A, Gupta N, Trivedi S, Patil, J, Joshi B (2009) Study of pectinase production in submerged fermentation using different strains of Aspergillus niger. International journal of microbiology research 2(1): https://doi.org/10.3973/jbmr.2009.01.13.17-13

Khan M, Nakkeeran E, Umesh-Kumar S (2013) Potential application of pectinase enzyme for developing functional food. Innovative Food Science & Emerging Technologies, 16(3), 226-237. https://doi.org/10.1016/j.ifset.2011.02.001

Krashan MA, Krishna VK, Boraste A, Gupta N, Trivedi S, Patil, J, Joshi B (2009) Study of pectinase production in submerged fermentation using different strains of Aspergillus niger. International journal of microbiology research 2(1): https://doi.org/10.3973/jbmr.2009.01.13.17-13

Khan M, Nakkeeran E, Umesh-Kumar S (2013) Potential application of pectinase enzyme for developing functional food. Innovative Food Science & Emerging Technologies, 16(3), 226-237. https://doi.org/10.1016/j.ifset.2011.02.001

Khairnar Y, Krishna VK, Boraste A, Gupta N, Trivedi S, Patil, J, Joshi B (2009) Study of pectinase production in submerged fermentation using different strains of Aspergillus niger. International journal of microbiology research 2(1): https://doi.org/10.3973/jbmr.2009.01.13.17-13
Yoshihake S, Numata T, Katsuragi T, Hours RA, Sakai T (1994) Purification and characterization of a pectin-releasing enzyme produced by Kluyveromyces wickerhamii. Journal of fermentation and bioengineering 77(4):370-375. https://doi.org/10.1016/0222-338X(94)90006-X

Zhang J, Kang Z, Ling Z, Cao W, Liu L, Wang M, Chen J (2013) High-level extracellular Pectinase production in Bacillus subtilis with optimized regulatory elements. Biosource technology 146:543-548. https://doi.org/10.1016/j.bios.2013.07.129

Zhou JM, Ge XY, Zhang WG (2011) Improvement of polygalacturonase production at high temperature by mixed culture of Aspergillus niger and Saccharomyces cerevisiae. Biosource technology 102(21):10085-10088. https://doi.org/10.1016/j.bios.2011.08.077

Zou M, Guo F, Li X, Zhao J, Qu Y (2014) Enhancing production of alkaline polygalacturonase lyase from Bacillus subtilis by fed-batch fermentation. PloS one 9(3):90392. https://doi.org/10.1371/journal.pone.0090392

Zou M, Li X, Shi W, Guo F, Zhao J, and Qu Y (2013) Improved production of alkaline polygalacturonase lyase by homologous overexpression pelA in Bacillus subtilis. Process Biochemistry 48(8):1143-1150. https://doi.org/10.1016/j.procbio.2013.05.023

Rasheedha, A.B., Rasheedha, M., Vastrakar, B., and Shukla, K. (2012) Production of pectinase and cellulase by Aspergillus niger strain and their characterization. J. Nat. Prod. Res. 1: 263-267.