A CHARACTERISTIC NUMBER OF BUNDLES DETERMINED BY MASS LINEAR PAIRS

ANDRÉS VIÑA

Abstract. Let Δ be a Delzant polytope in \mathbb{R}^n and $b \in \mathbb{Z}^n$. Let E denote the symplectic fibration over S^2 determined by the pair (Δ, b). We prove the equivalence between the fact that (Δ, b) is a mass linear pair (D. McDuff, S. Tolman, Polytopes with mass linear functions, part I. arXiv:0807.0900 [math.SG]) and the vanishing of a characteristic number of E in the following cases: When Δ is a Δ_{n-1} bundle over Δ_1; when Δ is the polytope associated with the one point blow up of $\mathbb{C}P^n$; and when Δ is the polytope associated with a Hirzebruch surface.

MSC 2000: 53D05, 57S05

1. Introduction

Let T be the torus $(U(1))^n$ and $\Delta = \Delta(\mathbf{n}, k)$ the polytope in t^* with m facets defined by

\begin{equation}
\Delta(\mathbf{n}, k) = \bigcap_{j=1}^{m} \{ x \in t^* : \langle x, \mathbf{n}_j \rangle \leq k_j \},
\end{equation}

where $k_j \in \mathbb{R}$ and the $\mathbf{n}_j \in t$ are the outward conormals to the facets. The facet defined by the equation $\langle x, \mathbf{n}_j \rangle = k_j$ will be denoted F_j, and we put $\text{Cm}(\Delta)$ for the mass center of the polytope Δ.

In [3] is defined the chamber C_Δ of Δ as the set of $k' \in \mathbb{R}^m$ such that the polytope $\Delta' := \Delta(\mathbf{n}, k')$ is analogous to Δ; that is, the intersection $\cap_{j \in J} F_j$ is nonempty iff $\cap_{j \in J} F'_j \neq \emptyset$ for any $J \subset \{1, \ldots, m\}$. When we consider only polytopes which belong to the chamber of a fixed polytope we delete the \mathbf{n} in the notation introduced in (1.1).

Further McDuff and Tolman introduced the concept of mass linear pair: Given the polytope Δ and $b \in t$, the pair (Δ, b) is mass linear if the map

$$k \in \mathbb{R}^m \mapsto \langle \text{Cm}(\Delta(k)), b \rangle \in \mathbb{R}$$

is linear on C_Δ.

Let (N, Ω) be a closed connected symplectic $2n$-manifold. By $\text{Ham}(N, \Omega)$ we denote the Hamiltonian group of (N, Ω) [3]. If ψ is a loop in $\text{Ham}(N, \Omega)$, then ψ determines a Hamiltonian fibre bundle $E \to S^2$ with standard fibre N via the clutching construction. In [3] various characteristic numbers for the fibre bundle E ...
are defined. These numbers give rise to topological invariants of the loop ψ. In this note we will consider only the following characteristic number

$$I(\psi) := \int_E c_1(VTE) c^n,$$

where VTE is the vertical tangent bundle of E and $c \in H^2(E, \mathbb{R})$ is the coupling class of the fibration $E \to S^2$ [2, 3]. $I(\psi)$ depends only on the homotopy class of the loop ψ. Moreover the map

$$I : \psi \in \pi_1(\Ham(N)) \to I(\psi) \in \mathbb{R}$$

is an \mathbb{R}-valued group homomorphism [3].

Let us suppose that Δ is a Delzant polytope. We shall denote by $(M_{\Delta}, \omega_{\Delta}, \mu_{\Delta})$ the toric manifold determined by Δ ($\mu_{\Delta} : M \to t^*$ being the corresponding moment map). Given \mathbf{b}, an element in the integer lattice of t, we shall write $\psi_{\mathbf{b}}$ for the loop of Hamiltonian diffeomorphisms of $(M_{\Delta}, \omega_{\Delta})$ defined by \mathbf{b}. The bundle with fibre M_{Δ} determined by $\psi_{\mathbf{b}}$ will be denoted $E_{\Delta, \mathbf{b}}$, and we will let $I(\Delta; \mathbf{b})$ for the characteristic number $I(\psi_{\mathbf{b}})$. When we consider only polytopes in the chamber of a given polytope, we will write $I(k; \mathbf{b})$ instead of $I(\Delta(k); \mathbf{b})$ for k in this chamber.

In Section 2 we study the characteristic number $I(k; \mathbf{b})$, when (Δ, \mathbf{b}) is a linear pair and k varies in the chamber of Δ, and we prove that $I(k; \mathbf{b})$ is a homogeneous polynomial of ten k_j (see Proposition 11).

In Section 3 we consider the case when the polytope Δ is a Δ_p bundle over Δ_1 with $p > 1$ [5]. Then M_{Δ} is a $2(p + 1)$-dimensional manifold diffeomorphic to the total space of the fibre bundle $\mathbb{P}(L_1 \oplus \cdots \oplus L_p \oplus \mathbb{C}) \to \mathbb{C}P^1$, where each L_j is a holomorphic line bundle over $\mathbb{C}P^1$. Given $\mathbf{b} \in \mathbb{Z}^{p+1}$, we prove that $I(k; \mathbf{b})$ is the product of two factors, \mathcal{K} and $\mathcal{Z}(\mathbf{b})$, and that the first one is independent of \mathbf{b} and the second one is independent of $k \in \mathcal{C}_{\Delta}$ (Theorem 10). We also prove the equivalence between the vanishing of $\mathcal{Z}(\mathbf{b})$ and the fact that (Δ, \mathbf{b}) is a mass linear pair (Theorem 11). As a consequence we deduce that a necessary and sufficient condition for the vanishing of $I(k; \mathbf{b})$ on \mathcal{C}_{Δ} is that (Δ, \mathbf{b}) be a mass linear pair (see Theorem 12). From this theorem we will deduce that $\psi_{\mathbf{b}}$ generates an infinite cyclic subgroup in $\pi_1(\Ham(M_{\Delta}))$, if the pair (Δ, \mathbf{b}) is not mass linear (Proposition 13).

The case when the polytope Δ is the one associated with a Hirzebruch surface is considered in Subsection 1.1. Using calculations carried out in [7], we will prove the equivalence between the vanishing of $I(\Delta; \mathbf{b})$ and the fact that (Δ, \mathbf{b}) is a mass linear pair (Theorem 14). In a Remark we give a general proof, based in general properties of the characteristic number I, of the implication: (Δ, \mathbf{b}) is a mass linear pair $\implies I(k; \mathbf{b})$ vanishes on the chamber of Δ. The arguments developed in this proof are applicable to other polytopes; for example to the polytope associated with the one point blow up of $\mathbb{C}P^n$ (see Proposition 20).

In Subsection 1.2 we consider the polytope Δ associated to the manifold one point blow up of $\mathbb{C}P^n$. We also prove the equivalence: $I(k; \mathbf{b}) = 0$ for all $k \in \mathcal{C}_{\Delta} \iff (\Delta, \mathbf{b})$ is a mass linear pair (see Theorem 22). As a consequence we deduce a simple sufficient condition for $\psi_{\mathbf{b}}$ to generate an infinite cyclic subgroup in $\pi_1(\Ham(M_{\Delta}))$ (Proposition 23).

In summary, we prove the equivalence between the vanishing of $I(k; \mathbf{b})$ for all $k \in \mathcal{C}_{\Delta}$ and the property of (Δ, \mathbf{b}) being a mass linear pair, in the following cases: When Δ is a Δ_p bundle over Δ_1, when Δ is the trapezoid associated to a Hirzebruch
A CHARACTERISTIC NUMBER OF BUNDLES DETERMINED BY MASS LINEAR PAIRS

In the proof of the mentioned results plays a crucial role a formula for the characteristic number $I(\psi_b)$ obtained in [8]. This formula gives $I(\psi_b)$ in terms of the integrals, on the facets of the polytope, of the normalized Hamiltonian corresponding to the loop ψ_b (see (2.1)).

Let (Δ, b) be a pair consisting of a Delzant polytope in $\mathbb{C}P^n$ and an element in the integer lattice of t. In view the above results one is tempted to conjecture the equivalence between the following statements

a) $I(k; b) = 0$ for all $k \in C_{\Delta}$.

b) (Δ, b) is a mass linear pair.

We think that a possible proof of this conjecture using formula (2.1) will probably involve general properties, valid for all Delzant polytopes, about $Cm(\Delta)$ and the mass center of the facets F_j.

Acknowledgements. I thank Dusa McDuff and Susan Tolman for sending me a working draft of the paper [5] and for comments.

2. A CHARACTERISTIC NUMBER

Let us suppose that the polytope Δ defined in (1.1) is a Delzant polytope in t^*. If b is in the integer lattice of t, an expression for the value of $I(\psi_b)$ in terms of integrals of the Hamiltonian function has been obtained in Section 4 of [8]

\begin{equation}
I(\Delta; b) := I(\psi_b) = -n \sum_{j=1}^{m} \int_{D_j} (\omega_{\Delta})^{n-1}, \tag{2.1}
\end{equation}

where $D_j := \mu_{\Delta}^{-1}(F_j)$ is oriented by the restriction of ω_{Δ}, and f being the normalized Hamiltonian of the corresponding circle action; that is,

$$f = \langle \mu_{\Delta}, b \rangle + \text{constant} \quad \text{and} \quad \int_{M_{\Delta}} f (\omega_{\Delta})^n = 0.$$

That is,

\begin{equation}
I(\Delta; b) = n \sum_{j=1}^{m} \left(\langle Cm(\Delta), b \rangle \int_{D_j} (\omega_{\Delta})^{n-1} - \int_{D_j} \langle \mu_{\Delta}, b \rangle (\omega_{\Delta})^{n-1} \right), \tag{2.2}
\end{equation}

where

\begin{equation}
\langle Cm(\Delta), b \rangle = \frac{\int_{M_{\Delta}} \langle \mu_{\Delta}, b \rangle (\omega_{\Delta})^n}{\int_{M_{\Delta}} (\omega_{\Delta})^n}. \tag{2.3}
\end{equation}

If $\Delta = \Delta(n, k)$ we consider the polytope $\Delta' = \Delta(n, k')$ obtained from Δ by the translation defined by a vector a of t^*. As we said, we write $I(k; b)$ and $I(k'; b)$ for the corresponding characteristic numbers. According to the construction of the respective toric manifolds (see [1]),

$$M_{\Delta'} = M_{\Delta}, \quad \omega_{\Delta'} = \omega_{\Delta}, \quad \mu_{\Delta'} = \mu_{\Delta} + a.$$

But the normalized Hamiltonians f and f' corresponding to the action of b on M_{Δ} and $M_{\Delta'}$ are equal. Thus it follows from (2.1) that $I(k; b) = I(k'; b)$. More precisely, we have the evident proposition

Proposition 1. If a is an arbitrary vector of t^*, then $I(k; b) = I(k'; b)$, for $k' = k_i + \langle a, n_i \rangle$, $i = 1, \ldots, m$.
Following [1] we recall some points of the construction of \((M_\Delta, \omega_\Delta, \mu_\Delta)\) from the polytope \(\Delta\) defined by (1.1), in order to study the value of the integrals that appear in (2.2) and (2.3). Given \(\Delta\), we put \(r := m - n\) and \(\tilde{T} := (S^1)^r\). The \(n_i\) determine weights \(w_j \in \tilde{t}^\ast\), \(j = 1, \ldots, m\) for a \(\tilde{T}\)-action on \(C^m\). Then moment map for this action is

\[
J : z \in C^m \mapsto J(z) = \pi \sum_{j=1}^{m} |z_j|^2 w_j \in \tilde{t}^\ast.
\]

The \(k_i\) define a regular value \(\sigma\) for \(J\), and the manifold \(M\) is the following orbit space

\[
(2.4) \quad M_\Delta = \{ z \in C^m : \pi \sum_{j=1}^{m} |z_j|^2 w_j = \sigma \}/\tilde{T},
\]

where the relation defined by \(\tilde{T}\) is

\[
(2.5) \quad (z_j) \simeq (z'_j) \text{ iff there is } y \in \tilde{t} \text{ such that } z'_j = z_j e^{2\pi i (w_j, y)} \text{ for } j = 1, \ldots, m.
\]

Identifying \(\tilde{t}^\ast\) with \(R^r\), \(\sigma = (\sigma_1, \ldots, \sigma_r)\) and each \(\sigma_a\) is a linear combination of the \(k_j\)'s.

After a possible change in numeration of the facets, we can assume that \(F_1, \ldots, F_n\) intersect at a vertex of \(\Delta\). If we write \(z_j = \rho_j e^{i\theta_j}\), then the symplectic form can be written on \(\{ [z] \in M : z_i \neq 0, \forall i \}\)

\[
(2.6) \quad \omega_\Delta = (1/2) \sum_{i=1}^{n} d\rho_i^2 \wedge d\varphi_i,
\]

with \(\varphi_i\) an angular variables, linear combination of the \(\theta_j\)'s.

The action of \(T = (S^1)^n\) on \(M\)

\[
(\alpha_1, \ldots, \alpha_n)[z_1, \ldots, z_m] := [\alpha_1 z_1, \ldots, \alpha_n z_n, z_{n+1}, \ldots, z_m]
\]

gives \(M\) a structure of toric manifold. Identifying \(t^\ast\) with \(R^n\), the moment map \(\mu_\Delta : M_\Delta \rightarrow t = R^n\) is defined by

\[
\mu_\Delta([z]) = \pi(\rho_1^2, \ldots, \rho_n^2) + (d_1, \ldots, d_n),
\]

where the constants \(d_i\) are linear combinations of the \(k_j\)'s and

\[
(2.7) \quad \text{im } \mu_\Delta = \Delta.
\]

By Proposition [1] we can assume that all \(d_j\) are zero in the determination of \(I(k; b)\).

We write \(x_i := \pi \rho_i^2\), then

\[
\int_{M_\Delta} (\omega_\Delta)^n = n! \int_{\Delta} dx_1 \ldots dx_n, \quad \int_{M_\Delta} \langle \mu_\Delta, b \rangle (\omega_\Delta)^n = n! \int_{\Delta} \sum_{i=1}^{n} b_i x_i dx_1 \ldots dx_n.
\]

The following Lemma is useful to evaluate some integrals which will appear henceforth.

Lemma 2. If

\[
S_n(\tau) := \left\{ (x_1, \ldots, x_n) \in \mathbb{R}^n \left| \sum_{i=1}^{n} x_i \leq \tau, \quad 0 \leq x_j, \forall j \right. \right\},
\]
Thus, in the particular case that $\Delta = S$ then
\[
\text{degree } n (2.8) \text{ hence the coordinates of any vertex of } \Delta \text{ are linear combinations of the vertices are the solutions to subsets of } \Delta \text{ such that:}
\]
\[
\langle \alpha \rangle \text{ in an hyperplane } R \text{ of Euclidean motions in } \mathbb{R} \kappa \text{ is a linear combination of the form (2.9) with } \kappa \text{ linear combination of the } k_j.
\]

A hyperplane in \mathbb{R}^n through a vertex (x_1^0, \ldots, x_n^0) of Δ is given by an equation of the form
\[
\langle x, n \rangle = \langle x^0, n \rangle = : \kappa.
\]

So κ is a linear combination of the k_j.

By drawing hyperplanes through vertices of Δ we can obtain a family $\{ \beta S \}$ of subsets of Δ such that:

a) Each βS is the transformed of a simplex $S_\alpha(b, \tau)$ by an element of the group of Euclidean motions in \mathbb{R}^n.

b) For $\alpha \neq \beta$, $\alpha S \cap \beta S$ is a subset of the border of αS.

c) $\bigcup_{\beta} \beta S = \Delta$.

So, by construction, each facet of βS is of the form (2.9) with κ linear combination of the k_j.

On the other hand the hyperplane π, $\langle x, n \rangle = \kappa$, is transformed by an element of $SO(n)$ in an hyperplane $\langle x, n' \rangle = \kappa$. If T is a translation in \mathbb{R}^n which applies $S_\alpha(b, \tau)$ onto βS, then this transformation maps $(0, \ldots, 0)$ in a vertex $a = (a_1, \ldots, a_n)$ of βS. So the translation T transforms π in $\langle x, n \rangle = \kappa + \langle a, n \rangle = : \kappa'$.

As the a_i are linear combinations of the k_j, so is κ'. Hence any element of the group of Euclidean motions in \mathbb{R}^n which maps $S_\alpha(b, \tau)$ onto βS transforms the hyperplane π through a vertex of Δ in an hyperplane $\langle x, n' \rangle = \kappa'$ with κ' a linear combination of the k_j. In particular, τ is a linear combination of the k_j, and by (2.8)

\[
\int_{S_\alpha(b, \tau)} dx_1 \ldots dx_n = \int_{S_\alpha(b)} dx_1 \ldots dx_n
\]
is a monomial of degree n of a linear combination of the k_j. Thus,

$$\int_M (\omega_\Delta)^n = \sum_{\beta} \int_\beta d\xi_1 \ldots d\xi_n,$$

is a homogeneous polynomial of degree n of the k_j.

Similarly

$$\int_{M_\Delta} \langle \mu_\Delta, b \rangle (\omega_\Delta)^n$$

is a homogeneous polynomial of degree $n + 1$ of the k_j. Analogous results hold for $\int_D (\omega_\Delta)^{n-1}$ and $\int_D \langle \mu_\Delta, b \rangle (\omega_\Delta)^{n-1}$.

It follows from (2.2), (2.3) together with the preceding argument the following proposition

Proposition 3. Given a Delzant polytope Δ, if b belongs to the integer lattice of t, then $I(k; b)$ is a rational function of the k_i for $k \in C_\Delta$.

Analogously we have

Proposition 4. If (Δ, b) is mass linear pair, then $I(k; b)$ is a homogeneous polynomial in the k_i of degree n, when $k \in C_\Delta$.

Proposition 5. If for the polytope Δ defined in (1.1) $n_i = -n_i$, with $i \neq a$, and (Δ, b) is a mass linear pair, then $I(k; b)$ is a polynomial divisible by $k_a - k_i$.

Proof. Given $k \in C_\Delta$, maintaining k_a fixed we vary k so that $k \in C_\Delta$ and $k_i \to k_a$.

In the limit Δ collapses in the facet F_a. As (Δ, b) is mass linear

$$\lim_{k_i \to k_a} \langle \text{Cm}(\Delta), b \rangle = \langle \text{Cm}(F_a), b \rangle,$$

where

$$\langle \text{Cm}(F_a), b \rangle = \frac{\int_{D_a} \langle \mu_\Delta, b \rangle (\omega_\Delta)^{n-1}}{\int_{D_a} (\omega_\Delta)^{n-1}}.$$

We write (2.2) as

$$I(k; b) = n \sum_{j=1}^m \mathcal{E}_j,$$

with

$$\mathcal{E}_j = \langle \text{Cm}(\Delta), b \rangle \int_{D_j} (\omega_\Delta)^{n-1} - \int_{D_j} \langle \mu_\Delta, b \rangle (\omega_\Delta)^{n-1}.$$

In this limit process the facet F_a remains unchanged, so by (2.10) and (2.11)

$$\lim_{k_i \to k_a} \mathcal{E}_a = \langle \text{Cm}(F_a), b \rangle \int_{D_a} (\omega_\Delta)^{n-1} - \int_{D_a} \langle \mu_\Delta, b \rangle (\omega_\Delta)^{n-1} = 0.$$

On the other hand, the facets F_j, with $j \neq a$ give rise, in the limit $k_i \to k_a$, to a subdivision of F_a (in Remark after Theorem 14 is detailed this subdivision in a particular case). Hence

$$\lim_{k_i \to k_a} \sum_{j \neq a} \int_{D_j} (\omega_\Delta)^{n-1} = \int_{D_a} (\omega_\Delta)^{n-1},$$

$$\lim_{k_i \to k_a} \sum_{j \neq a} \int_{D_j} \langle \mu_\Delta, b \rangle (\omega_\Delta)^{n-1} = \int_{D_a} \langle \mu_\Delta, b \rangle (\omega_\Delta)^{n-1}.$$
3. Δ_p Bundle over Δ_1

Given the integer $p > 1$, following [5] we consider the following vectors in \mathbb{R}^{p+1}

\[n_i = -e_i, \quad i = 1, \ldots, p, \quad n_{p+1} = \sum_{i=1}^{p} e_i, \quad n_{p+2} = -e_{p+1}, \quad n_{p+3} = e_{p+1} - \sum_{i=1}^{p} a_i e_i, \]

where e_1, \ldots, e_{p+1} is the standard basis of \mathbb{R}^{p+1} and $a_i \in \mathbb{Z}$. We write

\[a := (a_1, \ldots, a_p) \in \mathbb{Z}^p, \quad A := \sum_{i=1}^{p} a_i. \]

Let λ, τ be real positive numbers with $\lambda + a_i > 0$, for $i = 1, \ldots, p$. We will consider the polytope Δ in $(\mathbb{R}^{p+1})^*$ defined by the above conormals n_i and the following k_i

\[k_1 = \cdots = k_p = k_{p+2} = 0, \quad k_{p+1} = \tau, \quad k_{p+3} = \lambda. \]

The polytope Δ is a Δ_p bundle on Δ_1 (see [5]). When $p = 2$, Δ is the prism whose base is the triangle of vertices $(0, 0, 0)$, $(\tau, 0, 0)$ and $(0, \tau, 0)$ and whose ceiling is the triangle determined by $(0, 0, \lambda)$, $(\tau, 0, \lambda + a_1 \tau)$ and $(0, \tau, \lambda + a_2 \tau)$

We assume that the above polytope Δ is a Delzant polytope. The manifold (2.4) is in this case

\[M_\Delta = \{ z \in \mathbb{C}^{p+3} : \sum_{i=1}^{p+3} |z_i|^2 = \tau/\pi, \quad -\sum_{j=1}^{p} a_j |z_j|^2 + |z_{p+2}|^2 + |z_{p+3}|^2 = \lambda/\pi \}/\sim, \]

where $(z_j) \simeq (z'_j)$ iff there are $\alpha, \beta \in U(1)$ such that

\[z'_j = \alpha \beta^{-a_j} z_j, \quad j = 1, \ldots, p; \quad z'_{p+1} = \alpha z_{p+1}; \quad z'_{k} = \beta z_k, \quad k = p + 2, p + 3. \]

The symplectic form (2.6) is

\[\omega_\Delta = (1/2)(\sigma_1 + \cdots + \sigma_p + \sigma_{p+2}), \]

where $\sigma_k = d\rho_k^2 \wedge d\varphi_k$.

And the moment map

\[\mu_\Delta([z]) = \pi(\rho_1^2, \ldots, \rho_p^2, \rho_{p+2}^2). \]

Thus M_Δ is the total space of the fibre bundle $\mathbb{P}(L_1 \oplus \cdots \oplus L_p \oplus \mathbb{C}) \to \mathbb{C}P^1$, where L_j is the holomorphic line bundle over $\mathbb{C}P^1$ with Chern number a_j.

Given $\hat{b} = (b_1, \ldots, b_p, 0) \in \mathbb{Z}^{p+1}$ we write

\[B := \sum_{j=1}^{p} b_j, \quad a \cdot \hat{b} := \sum_{j=1}^{p} a_j b_j. \]
Proposition 6. Let \(\hat{b} = (b_1, \ldots, b_p, 0) \) be an element of \(\mathbb{Z}^{p+1} \), then

\[
\langle C_m(\Delta), \hat{b} \rangle = \frac{\tau}{p+2} \frac{\lambda(p+2)B + \tau(AB + a \cdot \hat{b})}{\lambda(p+1) + \tau A}.
\]

Proof. By Lemma 2

\[
\int_{M_\Delta} (\omega_\Delta)^{p+1} = (p+1)! \int_{\mathcal{S}_{p}(\tau)} (\lambda + \sum_{j=1}^{p} a_j x_j) = (p+1)! \left(\frac{\lambda \tau^p}{p!} + \frac{\tau^{p+1} A}{(p+1)!} \right).
\]

Similarly, for \(k = 1, \ldots, p \)

\[
\int_{M_\Delta} x_k (\omega_\Delta)^{p+1} = (p+1)! \left(\frac{\lambda \tau^p}{(p+1)!} + \frac{\tau^{p+2}}{(p+2)!} \sum_{j \neq k} a_j + \frac{2 \tau^{p+2} a_k}{(p+2)!} \right).
\]

So the \(k \)-th coordinate of \(C_m(\Delta), \bar{x}_k \), is

\[
\bar{x}_k = \frac{\tau}{p+2} \frac{\lambda(p+2) + \tau(A + a_k)}{\lambda(p+1) + \tau A}.
\]

So

\[
\langle C_m(\Delta), \hat{b} \rangle = \frac{\tau}{p+2} \frac{\lambda(p+2)B + \tau(AB + a \cdot \hat{b})}{\lambda(p+1) + \tau A}.
\]

\[\square\]

Theorem 7. Let \(\hat{b} = (b_1, \ldots, b_p, 0) \) be an element of \(\mathbb{Z}^{p+1} \). For all \(\tau > 0 \) and all \(\lambda \) with \(\lambda + a_i > 0 \),

\[
I(\lambda, \tau; \hat{b}) = K(\lambda, \tau) \hat{Z},
\]

where

\[
K(\lambda, \tau) = \frac{\tau^{p+1}}{p+2} \left(\frac{\tau}{\lambda(p+1) + \tau A} - 1 \right) \text{ and } \hat{Z} = 2((p+1)a \cdot \hat{b} - AB).
\]

Proof. We write

\[
\frac{1}{p+1} I(\lambda, \tau; \hat{b}) = \sum_{j=1}^{p+3} \langle (C_m(\Delta), \hat{b}) \Phi_j - \Phi_j' \rangle,
\]

where

\[
\Phi_j := \int_{z_j=0} (\omega_\Delta)^p, \quad \Phi_j' := \int_{z_j=0} (\mu_\Delta, b)(\omega_\Delta)^p.
\]

To calculate the values of the \(\Phi_i \), we will distinguish three cases, according to the value of \(i \):

a) \(i = 1, \ldots, p \)

b) \(i = p + 1 \)

c) \(i = p + 2, p + 3 \).

We will also respect this classification in the calculation of the \(\Phi_j' \).

a) We calculate the value of \(\Phi_1 \). On \(z_1 = 0 \)

\[
(\omega_\Delta)^p = \frac{p!}{2^p} (\sigma_2 \wedge \cdots \wedge \sigma_p \wedge \sigma_{p+2}).
\]

If we put \(x_i = \pi \rho_i^2 \), then

\[
\frac{1}{p!} \Phi_1 = \int_0^\tau dx_2 \int_0^{\tau-x_2} dx_3 \cdots \int_0^{\tau-\sum_{j=2}^{p-1} x_j} dx_p \int_0^{\lambda+\sum_{j=2}^{p} a_j x_j} dx_{p+2}.
\]
A CHARACTERISTIC NUMBER OF BUNDLES DETERMINED BY MASS LINEAR PAIRS

It follows from Lemma 2
\[
\frac{1}{p!} \Phi_1 = \int_{S_{p-1}(\tau)} (\lambda + \sum_{j=2}^{p} a_j x_j) = \frac{\lambda \tau^{p-1}}{(p-1)!} + \frac{\tau^p}{p!} \sum_{j=2}^{p} a_j.
\]

For \(k = 1, \ldots, p \), a similar calculation gives
\[
\frac{1}{p!} \Phi_k = \int_{S_{p-1}(\tau)} \left(\lambda + \sum_{j=1}^{p-1} a_{jp} x_j + a_p \tau \right) = \frac{\lambda \tau^{p-1}}{(p-1)!} + \frac{\tau^p}{p!} \sum_{j=2}^{p} a_j.
\]

b) Next we consider \(\Phi_{p+1} \). Now \(x_{p+1} = 0 \). So \(x_p = \tau - \sum_{j=1}^{p-1} x_j \) and
\[
- \sum_{j=1}^{p-1} a_{jp} x_j - a_p \tau + x_{p+2} + x_{p+3} = \lambda, \quad \text{with } a_{jp} := a_j - a_p.
\]

Hence
\[
\frac{1}{p!} \Phi_{p+1} = \int_{S_{p-1}(\tau)} \left(\lambda + \sum_{j=1}^{p-1} a_{jp} x_j + a_p \tau \right) \left(\tau - \sum_{i=1}^{p} b_i x_i \right) = \frac{\lambda \tau^p}{(p-1)!} + \frac{\tau^p}{p!} A.
\]

\(\Phi_{p+2} = \Phi_{p+3} = \tau^p \).

Thus, it follows from (3.9) and (3.8)
\[
\Phi_{p+3} = (2 + pA) \tau^p + (p(p+1)) \lambda \tau^{p-1}
\]

Next we determine the values of the \(\Phi'_i \).

a') On \(z_k = 0 \), with \(k = 1, \ldots, p \), \(\langle \mu \Delta [z], \hat{b} \rangle = \sum_{i \neq k} b_i x_i \). Then
\[
\frac{1}{p!} \Phi'_k = \int_{S_{p-1}(\tau)} \left(\lambda + \sum_{j=1}^{p} a_j x_j \right) \sum_{i \neq k} b_i x_i.
\]

By Lemma 2
\[
\frac{1}{p!} \Phi'_k = \left(\sum_{i \neq k} b_i \right) \frac{\lambda \tau^p}{p!} + 2 \left(\sum_{i \neq k} a_i b_i \right) \frac{\tau^{p+1}}{(p+1)!} + \left(\sum_{i \neq j, j \neq k} a_i b_j \right) \frac{\tau^{p+1}}{(p+1)!}
\]

b') Using the notation introduced in b),
\[
\frac{1}{p!} \Phi'_{p+1} = \int_{S_{p-1}(\tau)} \left(\lambda + \sum_{j=1}^{p-1} a_{jp} x_j + a_p \tau \right) \left(\sum_{i=1}^{p-1} b_i x_i + b_p \tau \right),
\]

with \(b_{ip} := b_i - b_p \). Lemma 2 and a straightforward calculation give
\[
\Phi'_{p+1} = \lambda \tau^p B + (a \cdot \hat{b} + AB) \frac{\tau^{p+1}}{p+1}
\]

c')
\[
\Phi'_{p+2} = \Phi'_{p+3} = \frac{B \tau^{p+1}}{p+1}.
\]
From this last result together with (3.11) and (3.12) it follows

\[(3.13) \quad \sum_{j=1}^{p+3} \Phi'_j = B\lambda \tau^p + \left((p + 1)a \cdot \hat{b} + (p - 1)AB + 2B\right)\frac{\tau^{p+1}}{p + 1}\]

Taking into account (3.10), Proposition 6, (3.13) and (3.10), by means of an easy but tedious calculation one obtains

\[(3.14) \quad I(\Delta, \hat{b}) = \frac{2((p + 1)a \cdot b - AB)}{(p + 2)(\lambda(p + 1) + \tau A)} ((1 - A)\tau^{p+2} - (p + 1)\lambda\tau^{p+1}).\]

If we define \(\hat{Z}\) and \(\mathcal{K}(\tau, \lambda)\) as in the statement of theorem, then (3.14) can be written \(I(\Delta, \hat{b}) = \mathcal{K}(\tau, \lambda)\hat{Z}\).

\[\square\]

We write \(\hat{b}\) for the element \((0, \ldots, 0, b) \in \mathbb{Z}^{p+1}\).

Proposition 8. Given \(\hat{b} = (0, \ldots, 0, b) \in \mathbb{Z}^{p+1}\), then

\[(3.15) \quad \langle \text{Cm}(\Delta), \hat{b} \rangle = \frac{b}{2} \frac{(p + 1)(p + 2)\lambda^2 + 2(p + 2)A\lambda\tau + (a \cdot a + A^2)\tau^2}{(p + 2)((p + 1)\lambda + A\tau)},\]

where \(a \cdot a = \sum a_i^2\).

Proof. We need to calculate \(\int_M bx_{p+2}\omega^{p+1}\). By Lemma 2

\[(3.16) \quad \frac{1}{(p + 1)!} \int_M bx_{p+2}\omega^{p+1} = \frac{b}{2} \int_{S_p(\tau)} \left(\lambda + \sum_{j=1}^{p} a_j x_j\right)^2\]

\[= \frac{b}{2}\left(\frac{\lambda^2 \tau^p}{p!} + \frac{2A\lambda\tau^{p+1}}{(p + 1)!} + \frac{(a \cdot a + A^2)\tau^{p+2}}{(p + 2)!}\right).\]

Formula (3.15) is a consequence of (3.1) together with (3.16).

\[\square\]

Theorem 9. Let \(\hat{b} = (0, \ldots, 0, b)\) be an element of \(\mathbb{Z}^{p+1}\). For all for all \(\tau > 0\) and all \(\lambda\) with \(\lambda + a_i > 0\),

\[I(\lambda, \tau; \hat{b}) = \mathcal{K}(\lambda, \tau)\hat{Z},\]

where

\[\hat{Z} = b((p + 1)a \cdot a - A^2),\]

and \(\mathcal{K}(\lambda, \tau)\) is defined as in (3.3).

Proof. As in the preceding theorem

\[(3.17) \quad \frac{1}{p + 1} I(\lambda, \tau; \hat{b}) = \sum_{j=1}^{p+3} \langle \text{Cm}(\Delta), \hat{b} \rangle \Phi_j - \Phi'_j.\]

The \(\Phi_j\) in (3.17) as the same as in (3.6). But now \(\langle \mu, \hat{b} \rangle = bx_{p+2}\). We will follow the same steps as in the proof of Theorem 7 for calculating the \(\Phi'_j\).

\[a')\] The corresponding \(\Phi'_k = \int_M \langle \mu, \hat{b} \rangle \omega^p\) can be calculated as in Theorem 7. For \(k = 1, \ldots, p\) one has

\[\frac{1}{p!} \Phi'_k = \frac{b}{2}\left(\frac{\lambda^2 \tau^{p-1}}{(p - 1)!} + \frac{2\lambda \tau^p}{p!} \sum_{j \neq k} a_j + 2\frac{\tau^{p+1}}{(p + 1)!} \sum_{j \neq k} a_j^2 + \frac{\tau^{p+1}}{(p + 1)!} \sum_{j \neq i, j \neq k \neq i} a_ia_j\right).\]
b') Now
\[\frac{1}{p!} \Phi'_p = \frac{b}{2} \left(\frac{\lambda^p - 1}{p!} + \frac{2\lambda A}{p!} + \frac{(a \cdot a + A^2)\tau}{p!} \right) + \frac{2\lambda^p A}{p!} + \frac{(a \cdot a + A^2)\tau}{p!} \]
\[c') \text{In this case } \Phi'_{p+2} = 0, \quad \frac{1}{p!} \Phi'_{p+3} = b \left(\frac{\lambda^p}{p!} + \frac{A\tau + 1}{p!} \right). \]

If we insert in \(3.17 \) the values for the \(\Phi_j \) obtained in the proof of Theorem 7, the above values of the \(\Phi'_j \) and \(3.15 \) we arrive to \(I(\tau, \lambda; b) = K(\tau, \lambda)Z \).

Given \(b = (b_1, \ldots, b_p, b) \in \mathbb{Z}^{p+1} \), we write \(\hat{b} = (b_1, \ldots, b_p, 0) \) and \(\dot{b} := b - \hat{b} \).

We put \(Z(b) := (p + 1)(a \cdot (2\hat{b} + b\hat{a})) - A(2B + bA), \)
that is, \(Z = \hat{Z} + \hat{Z}. \) It follows from \(2.2 \) that \(I(\tau, \lambda; b) \) is a group homomorphism with respect to the variable \(b \). By Theorem 7 and Theorem 9 one has

Theorem 10. If \(b = (b_1, \ldots, b_p, b) \in \mathbb{Z}^{p+1}, \) then
\[I(\tau, \lambda; b) = K(\tau, \lambda)Z(b), \]
where \(Z(b) \) is given by \(3.18 \).

This theorem expresses the value of \(I(\tau, \lambda; b) \) as the product of two factors. \(K \) is independent of the Hamiltonian loop, it depends only on \(\lambda, \tau \). On the contrary, the factor \(Z \) is constant on the chamber of the polytope.

Let \(b = \hat{b} + \dot{b} \) be as before, since \(\langle \text{Cm}(\Delta), b \rangle = \langle \text{Cm}(\Delta), \hat{b} \rangle + \langle \text{Cm}(\Delta), \dot{b} \rangle \), by \(3.3 \) and \(3.15 \)
\[\lim_{\lambda \to 0} \langle \text{Cm}(\Delta), b \rangle = \frac{b}{2} \left(\frac{a \cdot a + A^2}{p + 2} \right) + \frac{(a \cdot \hat{b} + AB)}{(p + 2)} \]
\[\lim_{\tau \to 0} \langle \text{Cm}(\Delta), b \rangle = \frac{b\lambda}{2}. \]

Therefore, \((\Delta, b) \) is a mass iff
\[3.19 \quad \langle \text{Cm}(\Delta), b \rangle = \frac{b\lambda}{2} + \left(\frac{b}{2} \left(\frac{a \cdot a + A^2}{p + 2} \right) + \frac{(a \cdot \hat{b} + AB)}{(p + 2)} \right) \tau. \]

If we insert in the equation \(3.19 \) the expressions for \(\langle \text{Cm}(\Delta), \hat{b} \rangle \) and \(\langle \text{Cm}(\Delta), \dot{b} \rangle \) given by \(3.3 \) and \(3.15 \) we obtain the following equivalent condition for the pair \((\Delta, b) \) to be mass linear.

\[3.20 \quad B(p + 2) + bA(p + 2) = \frac{bA(p + 2)}{2} + \left(\frac{b(a \cdot a + A^2)}{2A} + \frac{b\cdot \hat{b} + AB}{A} \right)(p + 1). \]

That is,
\[\frac{b(A^2 - (p + 1)a \cdot a)}{2} = (p + 1)a \cdot \hat{b} - AB. \]

Taking into account the definition of \(Z \) given in \(3.18 \) we can state the following theorem

Theorem 11. If \(b \in \mathbb{Z}^{p+1}, \) then \((\Delta, b) \) is a mass linear pair iff \(Z(b) = 0. \)
A consequence of Theorem 10 and Theorem 11 is the following result.

Theorem 12. Assume that the Delzant polytope Δ is a Δ_p bundle over Δ_1. Given $b \in \mathbb{Z}^{p+1}$, then the pair (Δ, b) is mass linear iff the the characteristic number $I(k; b)$ of the Hamiltonian fibration $E_{\Delta(k), b} \to S^2$ is zero for all k in the chamber of Δ.

Given λ and τ, the map $b \in \mathbb{Z}^{p+1} \mapsto I(\lambda, \tau; b) \in \mathbb{R}$ is a group homomorphism. By Theorem 10 its kernel is $\mathcal{H} := \{ b \mid Z(b) = 0 \}$.

Taking into account (1.3), if $b \notin \mathcal{H}$ then $1 \neq [\psi_b] \in \pi_1(\text{Ham}(M_\Delta))$. So we have the following Proposition

Proposition 13. If (Δ, b) is not mass linear, then ψ_b generates an infinite cyclic subgroup in $\pi_1(\text{Ham}(M_\Delta))$.

In particular $\hat{b} = (b_1, \ldots, b_p, 0)$ belongs to \mathcal{H} iff

\begin{equation}
\label{eq:3.21}
\sum_{j=1}^{p} b_j((p+1) a_j - \sum_{i=1}^{p} a_i) = 0.
\end{equation}

We put $c_j := (p+1) a_j - \sum_{i=1}^{p} a_i$. If $(a_1, \ldots, a_p) \neq 0$, then $\hat{c} := (c_1, \ldots, c_p, 0)$ does not satisfy (3.21). Thus one has the following corollary

Corollary 14. If $(a_1, \ldots, a_p) \neq (0, \ldots, 0)$, then $[\psi_c]$ generates an infinite cyclic subgroup of $\pi_1(\text{Ham}(M_\Delta))$.

Analogously

Corollary 15. If $(a_1, \ldots, a_p) \neq (0, \ldots, 0)$ and $\hat{b} = (0, \ldots, 0, b) \neq 0$, then $[\psi_b]$ generates an infinite cyclic subgroup of $\pi_1(\text{Ham}(M_\Delta))$.

4. **One point blow up of $\mathbb{C}P^n$.**

4.1. **Hirzebruch surfaces.** Given $k \in \mathbb{Z}_{>0}$ and $\tau, \lambda \in \mathbb{R}_{>0}$ with $\sigma := \tau - k \lambda > 0$, we consider the Hirzebruch surface M determined by these numbers. M is the quotient

$$\{ z \in \mathbb{C}^4 : |z_1|^2 + k|z_2|^2 + |z_4|^2 = \tau / \pi, |z_2|^2 + |z_4|^2 = \lambda / \pi \} / \mathbb{T},$$

where the equivalence defined by $\mathbb{T} = (S^1)^2$ is given by

$$(a, b) \cdot (z_1, z_2, z_3, z_4) = (az_1, a^k b z_2, bz_3, az_4),$$

for $(a, b) \in (S^1)^2$. (The definition of Hirzebruch surface given in [7] can be obtained exchanging z_1 for z_2 in the above definition.)

The manifold M equipped with the following $(U(1))^2$ action

$$(\xi_1, \xi_2) \cdot [z_j] = [\xi_1 z_1, \xi_2 z_2, z_3, z_4],$$

is a toric manifold. The corresponding moment polytope Δ is the trapezium in \mathbb{R}^2 with vertices $P_1 = (0, 0), P_2 = (0, \lambda), P_3 = (\tau, 0), P_4 = (\sigma, \lambda)$. The mass center of Δ is

\begin{equation}
\label{eq:4.1}
\text{Cm}(\Delta) = \left(\frac{3\sigma^2 - 3k\tau \lambda + k^2 \lambda^2}{3(2\tau - k\lambda)}, \frac{3\lambda \tau - 2k\lambda^2}{3(2\tau - k\lambda)} \right).
\end{equation}
A characteristic number of bundles determined by mass linear pairs

Given $b = (b_1, b_2) \in \mathbb{Z}^2$, the pair (Δ, b) is mass linear, iff there exist $A, B, C \in \mathbb{R}$ such that

$$\langle Cm(\Delta), b \rangle = A\tau + B\lambda + C,$$

can be expressed in terms of concepts introduced in [5]. The facets P_1P_2 and P_3P_4 of Δ are equivalent (according to Definition 1.11 of [5]). Thus, if $2b_2 = kb_1$, then b is inessential (see Definition 1.13 in [5]).

We denote by ϕ the following isotopy of M

$$\phi_t[z] = [e^{2\pi it}z_1, z_2, z_3, z_4].$$

ϕ is a loop in the Hamiltonian group of M. By ϕ' we denote the Hamiltonian loop

$$\phi'_t[z] = [z_1, e^{2\pi it}z_2, z_3, z_4].$$

In Theorem 8 of [7] we proved that $I(\phi') = (-2/k)I(\phi)$. If $b = (b_1, b_2) \in \mathbb{Z}^2$, then

$$I(\psi_b) = b_1I(\phi) + b_2I(\phi') = (b_1 - (2/k)b_2)I(\phi).$$

From Proposition 16 one deduces the following theorem

Theorem 17. The pair (Δ, b) is mass linear iff $I(\psi_b) = 0$. (Equivalently $I(\tau, \lambda; b) = 0$ for all (τ, λ) in the chamber of Δ.)

Remark. We will deduce the vanishing of $I(\tau, \lambda; b)$ on C_Δ when (Δ, b) is mass linear, by an indirect way; that is, without calculating the integrals of (2.2).

If (Δ, b) is a mass linear pair, $I(\tau, \lambda; b)$ is a homogeneous polynomial of degree 2 in τ, λ, by Proposition 4. That is, (4.2)

$$I(\tau, \lambda; b) = C_1\lambda^2 + C_2\lambda\tau + C_3\tau^2.$$

Fixed τ, if $\lambda \to 0$, then Δ converts into the segment $[0, \tau]$, and $\lim_{\lambda \to 0} Cm(\Delta) = (\tau/2, 0)$. In the limit, the facets of Δ give rise to the segments

$$F_1 = [0, \tau], F_2 = [0, \sigma], F_3 = [\sigma, \tau],$$

on the axis of abscissas. So $\lim_{\lambda \to 0} I(\tau, \lambda; b)$ is the sum of the contributions of $D_j = \mu^{-1}(F_j)$, $j = 1, 2, 3$ (see (2.2)). As F_2, F_3 is a decomposition of F_1, then

$$\int_{D_1} f_\omega = \sum_{j=2}^3 \int_{D_j} f_\omega,$$

and $\lim_{\lambda \to 0} I(\tau, \lambda; b) = -4 \int_{D_1} f_\omega$. On the other hand

$$\int_{D_1} f_\omega = \int_0^\tau x b_1 dx - \frac{\tau b_1}{2} = 0.$$

Hence $\lim_{\lambda \to 0} I(\tau, \lambda; b) = 0$, and C_3 in (4.2) is zero. This result can also be deduced from Proposition 4.

Now let us assume that $k = 1$. We denote by $\Delta'(\tau)$ the triangle of vertices $(0, 0)$, $(0, \tau)$, and $(\tau, 0)$; the corresponding toric manifold is \mathbb{CP}^2. As $\text{Ham}(\mathbb{CP}^2)$ has the homotopy type of $PU(3)$, the group homomorphism $I : \pi_1(\text{Ham}(\mathbb{CP}^2)) \to \mathbb{R}$ is zero.
For $\lambda >> 1$ and $0 < \sigma << 1$, the difference between the polytopes $\Delta(\tau, \lambda)$ and $\Delta'(\tau)$ is a triangle with small sides. Thus, by formula (2.2) for the characteristic class I, the expression $|I(\tau, \lambda; b) - I(\Delta'(\tau); b)|$ will be as small as we wish, if λ is big enough and σ is sufficiently small. As $I(\Delta'(\tau); b) = 0$, we conclude that

$$\lim_{\lambda \to \infty; \sigma \to 0} I(\lambda, \tau; b) = 0.$$

If we take $\sigma = a/\lambda$, with a an arbitrary positive number, then

$$0 = \lim_{\lambda \to \infty} ((C_1 + C_2)\lambda^2 + aC_2).$$

That is, $C_i = 0$; and by (4.2), $I(\tau, \lambda; b) = 0$ on the chamber of Δ.

4.2. One point blow up of $\mathbb{C}P^n$.

The mass center of the simplex $S_n(\tau)$, defined in Lemma 2, is the point w with $\tau, \lambda \in \mathbb{R}_{> 0}$ and $\sigma := \tau - \lambda > 0$. Thus, by formula (2.2) for the characteristic class I, the expression $|I(\tau, \lambda; b)|$ will be as small as we wish, if λ is big enough and σ is sufficiently small. As $I(\Delta'(\tau); b) = 0$, we conclude that

$$\lim_{\lambda \to \infty; \sigma \to 0} I(\lambda, \tau; b) = 0.$$

If we take $\sigma = a/\lambda$, with a an arbitrary positive number, then

$$0 = \lim_{\lambda \to \infty} ((C_1 + C_2)\lambda^2 + aC_2).$$

That is, $C_i = 0$; and by (4.2), $I(\tau, \lambda; b) = 0$ on the chamber of Δ.

We have the following proposition

Proposition 18. The invariant $I(S_n(\tau); b)$ is zero for all τ and all $b \in \mathbb{Z}$.

In this subsection Δ will be

$$\Delta = \{(x_1, \ldots, x_n) \in \mathbb{R}^n | \sum_{i=1}^{n} x_i \leq \tau, 0 \leq x_i, x_n \leq \lambda\},$$

where $\tau, \lambda \in \mathbb{R}_{> 0}$ and $\sigma := \tau - \lambda > 0$. That is, Δ is the polytope obtained truncating the simplex $S_n(\tau)$ by a “horizontal” hyperplane through the point $(0, \ldots, 0, \lambda)$.

As the volume of $S_n(\tau)$ is $\tau^n/n!$, it follows from (4.3)

$$(\tau^n - \sigma^n) \text{Cm}(\Delta) = \frac{\tau^n}{n+1} w - \sigma^n (\frac{\sigma}{n+1} w + \lambda \epsilon_n).$$

That is,

$$\text{Cm}(\Delta) = \frac{1}{\tau^n - \sigma^n} \left((\frac{\tau^{n+1} - \sigma^{n+1}}{n+1}) w - \lambda \sigma^n \epsilon_n \right).$$

The pair $(\Delta, b = (b_1, \ldots, b_n))$ is mass linear iff there exist $A, B, C \in \mathbb{R}$ such that

$$\sum_{j=1}^{n-1} b_j \frac{\tau^{n+1} - \sigma^{n+1}}{n+1} + b_n \left(\frac{\tau^{n+1} - \sigma^{n+1}}{n+1} - (\tau - \sigma)\sigma^n \right) = (A\tau + B\sigma + C)(\tau^n - \sigma^n),$$

where
for all \(\tau, \sigma \) “admissible”. A straightforward calculation proves the following proposition

Proposition 19. The pair \((\Delta, b)\) is mass linear iff

\[
b_n = \frac{1}{n} \sum_{j=1}^{n-1} b_j.
\]

The manifold \(M_\Delta\) associated with \(\Delta\) is the one point blow up of \(\mathbb{CP}^n\). On the other hand, the general arguments showed in the Remark after Theorem 17 allow us to prove following Proposition

Proposition 20. Let \(\Delta\) be the polytope \((4.4)\), if \((\Delta, b)\) is a mass linear pair, then

\[
I(\tau, \lambda; b) = 0
\]

on \(\mathbb{C}^{\Delta}\).

Proof. By Proposition 11, \(I(\tau, \lambda; b) = \sum_{i=0}^{n} B_i \lambda^{n-i} \tau^i\). From (4.6) one obtains

\[
\lim_{\lambda \to 0} \text{Cm}(\Delta) = \frac{\tau}{n} \hat{w},
\]

with \(\hat{w} = (1, \ldots, 1, 0)\). Hence the contribution of the base \(F := \{x \in \Delta | x_n = 0\}\) to \(\lim_{\lambda \to 0} I(\tau, \lambda; b)\) is proportional to

\[
\left(\frac{n}{n} \sum_{j=1}^{n-1} b_j \int_{S_{n-1}(\tau)} 1 - \int_{S_{n-1}(\tau)} \sum_{i=1}^{n-1} b_i x_i\right) = 0.
\]

On the other hand, the other facets \(F_i\) of \(\Delta\) different from the base \(F\) give rise to a decomposition of \(F\) in the limit \(\lambda \to 0\). Thus, with the notation of (2.1),

\[
\lim_{\lambda \to 0} \sum_{D_i \neq D} \int_{D_i} f \omega^{n-1} = \lim_{\lambda \to 0} \int_{D} f \omega^{n-1},
\]

where \(D_i := \mu^{-1}(F_i)\) and \(D := \mu^{-1}(F)\). By (4.6) this limit vanishes. It follows from (2.2) that \(\lim_{\lambda \to 0} I(\tau, \lambda; b) = 0\). So

\[
I(\tau, \lambda; b) = \sum_{i=0}^{n-1} B_i \lambda^{n-i} \tau^i.
\]

For \(\lambda \gg 1\) and \(0 < \sigma << 1\), the difference between the polytopes \(\Delta(\tau, \lambda)\) and \(S_n(\tau)\) is a polytope with small edges. Thus, \(|I(\tau, \lambda; b) - I(S_n(\tau); b)|\) will be as small as we wish, when \(\lambda\) is big enough and \(\sigma\) is sufficiently small. By Proposition 18 \(I(S_n(\tau); b) = 0\) for all \(\tau\). Hence, \(\lim_{\lambda \to \infty; \sigma \to 0} I(\tau, \lambda; b) = 0\).

We take \(\sigma = \lambda^{-1/n}\); from

\[
0 = \lim_{\lambda \to \infty} \sum_{i=0}^{n-1} B_i \lambda^{n-i} (\lambda + \lambda^{-1/n})^i,
\]

one obtains a homogeneous system of \(n\) linearly independent equations

\[
B_0 + \cdots + B_{n-1} = 0, \quad B_1 + 2B_2 + \cdots + (n-1)B_{n-1} = 0, \quad \ldots, B_{n-1} = 0,
\]

for the \(n\) constants. So \(B_j = 0\), and \(I(\tau, \lambda; b) = 0\) on \(\mathbb{C}_\Delta\).

Next we will prove the reciprocal proposition of the preceding one. We denote by \(F_j\) the facet of \(\Delta\) defined by \(x_j = 0\), for \(j = 1, \ldots, n\); \(F_{n+1}\) will be the “ceiling”
\[x_n = \lambda \text{ and } F_{n+2} \text{ the facet } x_1 + \cdots + x_n = \tau. \] We write as above

\[\frac{1}{n} I(\tau, \lambda; b) = \langle Cm(\Delta), b \rangle \sum_{j=1}^{n+2} \Phi_j - \sum_{j=1}^{n+2} \Phi_j', \]

with \(\Phi_j = \int_{F_j} 1, \quad \Phi'_j = \int_{F_j} \sum_i b_ix_i. \) By Lemma 2

\[\Phi_j = \tau^{n-1} - \sigma^{n-1}; \text{ for } j = 1, \ldots, n-1, n+2. \quad \Phi_n = \tau^{n-1}. \quad \Phi_{n+1} = \sigma^{n-1}. \]

Thus we have

\[\sum_{j=1}^{n+2} \Phi_j = (n+1)\tau^{n-1} + (1-n)\sigma^{n-1}. \]

If \(b = \hat{b} = (b_1, \ldots, b_{n-1}, 0) \), by (4.5)

\[\langle Cm(\Delta), \hat{b} \rangle = \frac{1}{n+1} \frac{\tau^{n+1} - \sigma^{n+1}}{\tau^n - \sigma^n} \sum_{j=1}^{n-1} b_j. \]

Similarly,

\[\sum_{j=1}^{n+2} \Phi'_j = \frac{1}{n} (n\tau^n + (2-n)\sigma^n) \sum_{j=1}^{n-1} b_j. \]

If we put \(\epsilon := \sigma/\tau \), it follows from (4.7), (4.8) and (4.9)

\[\frac{1}{n!} I(\tau, \lambda; \hat{b}) = -\frac{\tau^n}{n+1} \frac{\epsilon^{n-1}}{(n-2)!} \sum_{j=1}^{n-1} b_j + O(\epsilon^n). \]

Next we determine \(I(\tau, \lambda; \hat{b}) \), when \(\hat{b} = (0, \ldots, 0, b_n) \). Now

\[\sum_{j=1}^{n+2} \Phi'_j = b_n \tau^n (1 + (1-n)\epsilon^{n-1} + (n-2)\epsilon^n) \]

and

\[\langle Cm(\Delta), \hat{b} \rangle = b_n \frac{\tau^n}{n+1} \left(1 - \frac{n\epsilon^n}{n} \right) + O(\epsilon^{n+1}). \]

Hence

\[\frac{1}{n!} I(\tau, \lambda; \hat{b}) = b_n \frac{n\tau^n}{n+1} \frac{\epsilon^{n-1}}{(n-2)!} + O(\epsilon^n). \]

Now, if \(b = (b_1, \ldots, b_n) \), it follows from (4.10), (4.11)

\[\frac{1}{n!} I(\tau, \lambda; b) = \left(n b_n - \sum_{j=1}^{n-1} b_j \right) \frac{\tau^n}{n+1} \frac{\epsilon^{n-1}}{(n-2)!} + O(\epsilon^n). \]

From (4.12) together with Proposition 19 we deduce the following proposition

Proposition 21. If \(\Delta \) is the polytope (4.4) and \(I(k; b) = 0 \) for all \(k \in C_\Delta \), then \((\Delta, b)\) is a mass linear pair.

Propositions 20 and 21 imply the following theorem

Theorem 22. If \(\Delta \) is the polytope (4.4), then \((\Delta, b)\) is a mass linear pair iff \(I(k; b) = 0 \) for all \(k \in C_\Delta \).
It follows from Theorem 22 together with Proposition 19 and the homomorphism (1.3) the following proposition

Proposition 23. If \(b = (b_1, \ldots, b_n) \in \mathbb{Z}^n \) and \(\sum_{j=1}^{n-1} b_j \neq nb_n \), then \(\psi_b \) generates an infinite cyclic subgroup in \(\pi_1(\text{Ham}(M_\Delta)) \).

Remark. When \(n = 3 \) the toric manifold \(M \) corresponding to \(\Delta \) is
\[
M = \left\{ z \in \mathbb{C}^5 : |z_1|^2 + |z_2|^2 + |z_3|^2 + |z_5|^2 = \frac{\tau}{\pi}, \quad |z_3|^2 + |z_4|^2 = \frac{\lambda}{\pi} \right\}/T,
\]
where the action of \(T = (U(1))^2 \) is defined by
\[
(a, b)(z_1, z_2, z_3, z_4, z_5) = (az_1, az_2, abz_3, bz_4, az_5),
\]
for \(a, b \in U(1) \).

We consider the following loops in the Hamiltonian group of \(M \)
\[
\psi_t[z] = [z_1e^{2\pi it}, z_2, z_3, z_4, z_5], \quad \psi'[z] = [z_1, z_2e^{2\pi it}, z_3, z_4, z_5],
\]
\[
\tilde{\psi}_t[z] = [z_1, z_2, z_3e^{2\pi it}, z_4, z_5].
\]
In [8] (Remark in Section 4) we gave formulas that relate the characteristic numbers associated with these loops
\[
I(\psi) = I(\psi') = (1/3)I(\tilde{\psi}).
\]
So for \(b = (b_1, b_2, b_3) \in \mathbb{Z}^3 \),
\[
I(\psi_b) = (b_1 + b_2 - 3b_3)I(\psi).
\]
By Proposition 19 the vanishing of \(I(\psi_b) \) in (4.14) is equivalent to the fact that \((\Delta, b) \) is a mass linear pair. This equivalence is a particular case of Theorem 22.

References

[1] V. Guillemin, *Moment maps and combinatorial invariants of Hamiltonian \(T^n \)-spaces*. Birkhäuser, Boston, (1994).
[2] V. Guillemin, L. Lerman, S. Sternberg, *Symplectic fibrations and multiplicity diagrams*. Cambridge U.P., Cambridge, (1996).
[3] F. Lalonde, D. McDuff, L. Polterovich, *Topological rigidity of Hamiltonian loops and quantum homology*. Invent. Math. 135 (1999), 369-385.
[4] D. McDuff, D. Salamon, *Introduction to symplectic topology*. Clarendon Press, Oxford, (1998).
[5] D. McDuff, S. Tolman, *Polytopes with mass linear functions, part I*. arXiv:0807.0900 [math.SG].
[6] L. Polterovich, *The geometry of the group of symplectic diffeomorphisms*, Birkhäuser, Basel, (2001).
[7] A. Viña, *A characteristic number of Hamiltonian bundles over \(S^2 \)*. J. Geom. Phys. 56 (2006), 2327-2343.
[8] A. Viña, *Hamiltonian diffeomorphisms of toric manifolds and flag manifolds*. J. Geom. Phys. 57 (2007), 943-965.

Departamento de Física. Universidad de Oviedo. Avda Calvo Sotelo. 33007 Oviedo. Spain.

E-mail address: vina@uniovi.es