Discovery and analysis of pancreatic adenocarcinoma genes using cDNA microarrays

Gang Jin, Xian-Gui Hu, Kang Ying, Yan Tang, Rui Liu, Yi-Jie Zhang, Zai-Ping Jing, Yi Xie, Yu-Min Mao

AIM: To study the pathogenetic processes and the role of gene expression by microarray analyses in expediting our understanding of the molecular pathophysiology of pancreatic adenocarcinoma, and to identify the novel cancer-associated genes.

METHODS: Nine histologically defined pancreatic head adenocarcinoma specimens associated with clinical data were studied. Total RNA and mRNA were isolated and labeled by reverse transcription reaction with Cy5 and Cy3 for cDNA probe. The cDNA microarrays that represent a set of 4,096 human genes were hybridized with labeled cDNA probe and screened for molecular profiling analyses.

RESULTS: Using this methodology, 184 genes were screened out for differences in gene expression level after nine couples of hybridizations. Of the 184 genes, 87 were upregulated and 97 downregulated, including 11 novel human genes. In pancreatic adenocarcinoma tissue, several invasion and metastasis related genes showed their high expression levels, suggesting that poor prognosis of pancreatic adenocarcinoma might have a solid molecular biological basis.

CONCLUSION: The application of cDNA microarray technique for analysis of gene expression patterns is a powerful strategy to identify novel cancer-associated genes, and to rapidly explore their role in clinical pancreatic adenocarcinoma. Microarray profiles provide us new insights into the carcinogenesis and invasive process of pancreatic adenocarcinoma. Our results suggest that a highly organized and structured process of tumor invasion exists in the pancreas.

Abstract

INTRODUCTION

Pancreatic carcinoma is the 12th most common cause of cancer death in China, which is one of the most aggressive form of human tumors and is virtually incurable. Its incidence and mortality rates are almost identical, even after receiving surgical resection and adjuvant chemoradiotherapy, the overall 5-year survival rate is only 4.1%[1]. The etiology of pancreatic carcinoma is still unknown. There is clearly a need for novel and more effective diagnostic and therapeutic methods.

Oncogenesis and development of neoplasm is a complex multiphase process, which involves overexpression of oncogenes or inactivation of tumor suppressor genes, mutation or depletion of normal genes, pleiotropic effects and immunologic function. The genes are involved in vital processes of life, such as gene expression accommodation, immunology or cell differentiation, which are arranged in some gene clusters, in which all the members are being controlled in unity[2]. In the process of oncogenesis, there may exist some different clusters of tumor-related genes. Hence, it is important to find such unique gene clusters involved in carcinogenesis, invasion and metastasis processing.

Current focus of molecular profiling is the large-scale analysis of gene expression using new DNA array technology[3]. This powerful technology is being used to study many biological processes. The experimental or clinical goals range from insights to pathogenesis, cancer diagnosis and prediction of clinical outcome for identification of therapeutic targets. In this way, DNA array analysis is providing the first glimpse of a substantial improvement in our understanding of cancer biology and diagnosis. Identifying and sequencing a set of full-length cDNAs that represent all human genes would help in both gene discovery and functional analysis. It offers a
great opportunity to study the pathogenetic processes and molecular pathophysiology of pancreatic carcinoma.

In this study, we analyzed nine pancreatic adenocarcinomas using the cDNA microarray containing 4,096 human genes with the aim of understanding expression patterns and searching for carcinogenesis-related gene clusters and novel useful markers for the malignant potential of pancreatic carcinoma at the molecular level.

MATERIALS AND METHODS

Patients and tissue specimens

We analyzed samples of pancreatic head adenocarcinoma from nine patients (five males, four females, 51-71 years) who underwent pancreaticoduodenectomy at Shanghai Hospital, Shanghai, China, between November 1999 and May 2000. All samples were collected with informed consent and Ethics Committee approval. Samples were grossly dissected and snap-frozen in liquid nitrogen within 10 min of removal and stored at -80 °C. Initial diagnosis of each sample from the frozen section was later confirmed by detailed analysis of paraffin-embedded sections. Following the fourth Japanese edition of the Classification of Pancreatic Carcinoma (Japan Pancreas Society, 1993), the nine tumors were staged, including two stage I, two stage II, four stage III and one stage IVa. We isolated and purified total RNA from pooled, noncancerous, male adult human pancreas tissues and used as a reference “normal” sample for each microarray experiment.

RNA isolation

Tumor and normal tissue samples were ground into a fine powder in a 10-cm ceramic mortar (RNase-free) and total RNA was extracted according to the original single-step extraction procedure with slight modifications. Ground tissue was homogenized in Solution D containing 1% β-mercaptoethanol. After centrifugation, the supernatant was extracted with an equal volume of phenol:chloroform (5:1) and once with an equal volume of acidic phenol:chloroform (5:1), discarding the organic phase each time. The aqueous phase was then precipitated by adding an equal volume of isopropylalcohol at 4 °C, centrifuged for 2 h at 70% humidity, dried for 0.5 h at room temperature, and UV cross-linked at a dose of 65 mJ/cm. They were further treated with 2 g/L sodium dodecyl sulfate (SDS) for 10 min, distilled H2O for 10 min, and 2 g/L sodium borohydride (NaBH4) for 10 min at room temperature. The slides were dried again and made ready for use.

Probe preparation and hybridization

The fluorescent cDNA probes were prepared through reverse transcription of the isolated mRNAs and then purified. The RNA samples from healthy individuals were labeled with Cy3-dUTP and those from cancerous patients with Cy5-dUTP. The two color probes were then mixed, precipitated with ethanol and dissolved in 20 µL of hybridization solution. Microarrays were pre-hybridized with hybridization solution containing 0.5 mg/mL denatured salmon sperm DNA at 42 °C for 6 h. Fluorescent probe mixtures were denatured at 95 °C for 5 min, and the denatured probe mixtures were applied onto the pre-hybridized chip under a cover glass. Chips were hybridized at 42 °C for 15-17 h. The hybridized chips were then washed at 60 °C for 10 min each in solutions of 2× SSC and 2 g/L SDS, 0.1× SSC and 2 g/L SDS, and 0.1× SSC, and then dried at room temperature.

Data analysis

The chips were scanned with a ScanArray 3000 (GSI Lumonics, Billerica, MA, USA) at two wavelengths to detect emission from both Cy3 and Cy5. The acquired images were analyzed using ImaGene 3.0 software (BioDiscovery, Inc., Los Angeles, CA, USA). The intensities of each spot at the two wavelengths represent the quantity of Cy3-dUTP and Cy5-dUTP, respectively, hybridized to each spot. Ratios of Cy3-Cy5 were computed for each location on each microarray. Overall intensities were normalized with a correction coefficient obtained using the ratios of 40 housekeeping genes (available at http://www.biodoor.com/).

We used the threshold value to define significant relative expression changes, which set at 2.0 for overexpression and at 0.5 for underexpression on the
basis of both the experimental variability in our data and the manufacturer’s established performance criteria. Data filtering with this algorithm identified the genes overexpressed by at least twofold and underexpressed by at least by 50% across, more than 66.7% (6/9) of all specimens. To minimize artifacts arising from low expression values, only the genes with raw intensity values for both Cy3 and Cy5 of >600 counts were chosen for differential analysis.

RESULTS

Sensitivity and reproducibility of the microarray system

The purity and concentration of isolated RNA were analyzed first by using UV spectrophotometer at absorbance wavelengths of 260 and 280 nm (A260 and A280). The average A260/A280 ratio was higher than 1.9. Furthermore, the integrity of the RNA sample was verified by electrophoresis on 10 g/L agarose gel stained with ethidium bromide. The quality of the RNA was assessed by the visualization of the 28S and 18S ribosomal RNA bands. The bands were distinct and sharp, without being diffused and smeared. The results indicated that mRNA preparation expressed continuous polyadenylated transcripts between 0.9 and 4.0 kb in length.

In order to access the “noise” in the differential expression assay, we employed self-comparison experiments. A sample of mRNA from a single fetal liver tissue was divided into two equal aliquots and labeled with Cy3-dUTP and Cy5-dUTP, respectively. The labeled samples were then mixed together and hybridized to the microarray. The results revealed that approximately 1% of the 4 096 cDNA clones showed more than 2.0-fold difference in signal intensity between the two channels. Furthermore, this “noise” in the data was shown upon analysis to occur at random array positions in each microarray experiment. Figure 1 shows the scatter plots of the within-slide normalization experiment. The Cy3/Cy5 log ratios from the different print tip groups were centered around zero, indicating that the types of systematic errors were minimized. The spots in the experiments are expressed differentially in cancer cells when compared with the normal cells. Scatter plot of the values of Cy3 and Cy5 fluorescent signals also revealed a pattern of tight distribution and clustered in an almost 45° diagonal line as expected.

In the 11 novel genes screened by our microarray experiments, an overexpressed clone in pancreatic adenocarcinomas was identified. The average Cy5/Cy3 ratio of the clone is 4.92. As we have reported recently, this clone is the full-length cDNA of the human gene S100P (GenBank accession number AF539739). The sequence is of 1 297 bp and encodes a protein identical to previously characterized human S100P, but it is much longer than the previously reported 439 bp. The cDNA is near full-length as confirmed by Northern blot analysis. We examined its distribution in tissues by using Northern blot and RT-PCR analysis, and found that it was abundantly expressed in many tissues including placenta, unlike the expression pattern of other S100 family genes.

DISCUSSION

DNA microarray technology has offered us a new insight into the secrets of life by monitoring the activities and
profiles of thousands clones simultaneously. The gene expression profiles can led us to mapping a cross-section of genetic activities and biological entity.

In this experiment, the genes identified as differentially expressed in microarrays revealed a wealth of information that pancreatic adenocarcinomas are complex tumors, as evidenced by the wide range of investigations. However, these findings not only provide novel insight into the biology of pancreatic carcinoma, but also serve to identify numerous new targets for development into serologic markers or therapeutic target. The differentially expressed genes in pancreatic adenocarcinomas included oncogenes and tumor suppression genes, cell-cycle-related genes, signal transduction factors, extracellular matrix and skeleton related genes, transcription factors, DNA damage and repair related genes and apoptosis-related genes (Tables 1 and 2).

The screened genes with good concordance in these pancreatic adenocarcinoma patients may have the potential to become candidates for tumor markers and the molecular target for gene therapy, whereas genes that show concordance in a patient subset may reflect different disease stages or physiological and genetic differences between the patients.

Griffin et al. reported that more than 70% of pancreatic adenocarcinomas possessed consistent chromosome abnormalities. The most frequent whole chromosomal gains were chromosomes 20 and 7, and

Table 1: Representative list of highly expressed genes in pancreatic carcinoma

Categories	Accessions	Descriptions	Symbols	Gene map locus	Average ratios
Oncogenes	AF183421	RAB22b, RAS oncogene family	Rab22b	18p11.3	3.530
	NM_001175	Rho GDP dissociation inhibitor	Rho GDI	12p12.3	4.504
	NM_001788	Cell division cycle 10	CDC10	7p14.3-14.1	3.219
	NM_001798	Cyclin-dependent kinase 2	CDK2	12q13	2.853
	NM_002592	Proliferating cell nuclear antigen	PCNA	20pter-p12	3.388
	NM_002835	Protein tyrosine phosphatase, non-receptor type 12	PTPN2	7q11.23	4.236
Signal transduction	NM_007039	Protein tyrosine phosphatase, non-receptor type 1	PTPN2	14q31.3	2.65
	NM_004721	Mitogen-activated protein kinase kinase kinase 13	MAPK13	3q25.29	2.361
	NM_000876	Insulin-like growth factor 2 receptor	IGF2R	6q26	2.192
	NM_000700	Annexin I	ANXA1	9q12.21.2	4.092
Extracellular matrix	NM_002345	Lumican	LUM	12q13.3-22.2	9.892
	NM_000889	α 2 type I collagen	COL1A2	7q22.1	11.638
	NM_000920	α 1 type III collagen	COL3A1	2q31	18.165
	M26576	α 1 type IV collagen preproprotein	COL4A1	13q34	4.171
	NM_000393	α 2 type V collagen preproprotein	COL5A2	2q14.3-32	3.677
	NM_011920	Decorin	DCN	12q13.2	3.633
	NM_005862	Secreted phosphoprotein 1	SPP1	4q12-25	5.033
	NM_004385	Chondroitin sulfate proteoglycan 2	CSPG2	5q14.3	6.073
	NM_003380	Vimentin	VIM	10q15	2.543
	NM_003158	Caldesmon 1	CALD1	7q33	5.937
	NM_002926	Fibronectin 1	FN1	4q34	18.298
	NM_003254	Tissue inhibitor of metalloproteinase 1	TIMP1	Xp11.3-p11.23	13.791
Cytoskeleton and motility	NM_001613	α 2 actin	ACTA2	10q23.3	2.79
	NM_006009	Tubulin, α 3	TUBA3	12q12.14.3	2.647
	NM_005717	Actin related protein complex subunit 5	TPM1	15q22.1	2.113
Cell surface antigen	NM_002659	Plasminogen activator, urokinase receptor	UPAR	19q13	6.073
	NM_001769	CD9 antigen	CD9	12p13	2.614
Enzymes	NM_003096	Cathepsin K preproprotein	CTSK	1q21	2.809
	NM_002654`	Pyruvate kinase, muscle protein	PKM2	15q22	3.187
Cytokines	NM_005554	Interferon 1 receptor 2	IFNGR2	21q22.11	2.492
	NM_003641	Interferon-induced transmembrane protein 1	IFITM1	11	3.187
	NM_006438	Interferon-induced transmembrane protein 2	IFITM2	11p15.5	4.149
Transcription factor	NM_007315	Signal transducer and activator of transcription 1	STAT1	2q32.2-32.3	2.945
	BC007874	Fructose biphosphatase 3	FBP3	9q34.2	2.35
	NM_001530	Hypoxia-inducible factor 1, α	HIF1a	14q12.21	2.796
	NM_006940	SRY-box 5 isoform A	SOX5	12p12.1	2.671
	AF332129`	Regulatory factor X, 4	RFX4	12q	2.094
the chromosomal losses were much more frequent in chromosomes 18, 13, 12, 17, and 6. Structural abnormalities were frequently involved in chromosomes 1p, 6q, 7q, 17p, 1q, 3p, 11p, and 19q. From our microarrays, we found that the overexpressed genes in pancreatic adenocarcinomas are mainly located in chromosomes 1, 2q, 7q, 9q, 12, 14q, 15q, and 21q, and the downexpressed genes are mainly located in chromosomes 1p, 6q, 7q, 17p, 1q, 3p, 11p, and 19q. These results are similar to the previous reports. This phenomenon suggests the existence of acquired genomic alterations in pancreatic carcinomas.

Among the genes overexpressed in pancreatic adenocarcinomas, RAB22B and Rho GDP dissociation inhibitor (Rho GDI) are the members of Ras superfamily, whose Cy3/Cy3 ratios are 3.53 and 4.504, respectively. As it is well known that many pancreatic carcinoma cells show “addiction” to K-ras mutation, while normal cells appear resistant to suppression of K-ras-mediated signaling by antisense K-ras RNA expression adenosiviral vector[10]. So, overexpressed RAB22B may be the result of K-ras mutation in pancreatic adenocarcinoma. The Rho family proteins were found to reorganize cytoskeletons and regulate the cell migration via the activation of effector proteins. GTP-bound Rho is an active form, whereas the GDP-bound form is inactive. Rho GDI can block the conversion between the GTP- and GDP-bound forms. Expression of Rho family molecules has recently been reported in breast, lung, pancreas and colon carcinomas, and testicular germ cell tumors[12]. Moreover, three guanine nucleotide exchange factors (RCC1-like G

Table 2 Representative list of downregulated genes in pancreatic adenocarcinoma

Categories	Accessions	Descriptions	Symbols	Gene map locus	Average ratios
DNA injury and repair	NM_006763	BTG family, member 2	BTG2	1q22	0.141
	NM_014877	Helicase with zinc finger domain	HELZ	17q24.2	0.337
	NM_014140	SWI/SNF-related matrix-associated			
Tumor suppressor	NM_000551	Von Hippel-Lindau syndrome gene	VHL	3p25	0.4
Apoptosis	NM_001229	Caspase 9 isoform and preprotoxin	CASP9	1p36.3-36.1	0.29
Cell-cycle dependent	NM_002923	Regulator of G-protein signaling 2	RGS2	1q31	0.186
	NM_005381	Nucleolin	NCL	2q12	0.411
Adhesive molecule	NM_001078	Vascular cell adhesion molecule 1	VCAM	1p32	0.363
Ribosomal protein	BC001365	Ribosomal protein L4	RPL4	15q22	0.399
	NM_005617	Ribosomal protein S14	RPS14	5q31-33	0.319
Guanine nucleotide	NM_001268	RCC1-like G-exchanging factor	CHC1L	13q14.3	0.363
exchange factor	NM_001960	Eukaryotic translation elongation	EEF1D	19p13.13	0.242
	NM_001959	Eukaryotic translation elongation	EEF1B2	2q33-34	0.305
Transcription factor	NM_014900	EBNA-2 co-activator (100 ku)	p100	7q31.3	0.322
Signal transduction	NM_004301	BRF1-associated factor BAF53a			
	NM_004236	Thyroid receptor interacting protein 15	SGN2	15q21.2	0.377
	NM_002825	Pleiotrophin	PTN	7q33-34	0.355
	NM_002928	Regulator of G-protein signaling 16	RCS16	1q25-31	0.422
	NM_005645	TF-β-associated factor 13	TAF2K	1p31	0.462
Enzymes	NM_002514	IGFBP9	IGFBP9	8q24.1	0.376
	NM_001979	Epoxide hydrolase 2	EPHX2	8q12-12	0.315
	NM_001482	Glycine amidinotransferase	GATM	15q15.3	0.179
	NM_000170	Glycine dehydrogenase	GLDC	9p22	0.428
	NM_000362	Aldo/hydrogenase 3 family member	ALDH3A2	17p11.2	0.393
	NM_005600	Nitrilase 1	NIT1	1q21-22	0.358
	NM_004990	Methionine-RNA synthetase	MARS	12p13.2	0.438
	NM_001064	Transketolase	TKT	3p14.3	0.317
	NM_000221	Ketohexokinase	KHK	2p23.3-2	0.309
exchanging factor, eukaryotic translation elongation factor 1-δ, eukaryotic translation elongation factor 1-δ, were downregulated in our microarrays, which implied that GDP-bound forms might be related to tumorogenesis of pancreatic adenocarcinoma. Furthermore, VHL gene, which has been confirmed as a tumor suppressor gene[13], was also downexpressed in pancreatic adenocarcinoma.

The result showed that pancreatic carcinoma cells are much more active than normal cells in many steps of multiple pathways of signal transduction. The stable state of normal somatic cells depends on the dynamic equilibrium of apoptosis and proliferation. Apoptosis-related genes were downexpressed in cancer. These findings revealed that the phenotypical similarities among different cancers are also reflected at the molecular level.

Gene expression profiling of pancreatic carcinoma has also provided new insights into the process of tumor invasion. In pancreatic carcinoma tissue, many invasion and metastasis related genes, such as ECM and cell skeleton related genes (type I collagen, type III collagen, type IV collagen, decorin, secreted phosphoprotein 1, vimentin, tissue inhibitor of matrix metalloproteinase 1, fibronectin 1,α2-actin, tubulin, tropomyosin 1, etc.), showed high expression level, reflecting the cellular components of the host stromal response seen in the presence of infiltrating carcinoma. Moreover, the urokinase-type plasminogen activator receptor (uPAR) was found highly expressed in pancreatic adenocarcinomas, which is a key molecule in the regulation of cell-surface plasminogen activation and, as such, plays an important role in many normal as well as pathologic processes[14]. Memarzadeh et al[15] concluded that uPAR is a useful prognostic marker for biologically aggressive forms of endometrial cancer. These phenomena suggest that poor prognosis of pancreatic carcinoma may have a solid molecular biological basis, and also indicate that a highly organized and structured process of tumor invasion exists in the pancreas.

The downregulated genes in the patients with pancreatic adenocarcinoma are also divided into distinct functional categories. Reduced expression was observed in genes encoding products that function in the apoptosis, immune system, cell regulation, DNA injury and repair processing and GTP/GDP signaling, which were in agreement with the previous reports[16,17].

In conclusion, the application of cDNA microarray technique for analysis of gene expression patterns is a powerful strategy to identify novel cancer-associated genes, and can rapidly explore their role in clinical pancreatic adenocarcinomas. Microarray profiles provide us new insights into the carcinogenesis and invasive process in pancreatic adenocarcinoma. Our results suggest that a highly organized and structured process of tumor invasion exists in the pancreas.

REFERENCES

1. Yeon CJ, Cameron JL, Sohn TA, Lillemo KD, Pitt HA, Talalamin MA, Hruban RH, Ord SE, Sauter PK, Coleman J, Zahurak ML, Grochow LB, Abrams RA. Six hundred fifty consecutive pancreaticoduodenectomies in the 1990s: pathology, complications, and outcomes. Ann Surg 1997; 226: 248-57; discussion 257-260

2. Holland EC. Regulation of translation and cancer. Cell Cycle 2004; 3: 452-455

3. Wulfkuhle J, Espina V, Liotta L, Petricoin E. Genomic and proteomic technologies for individualisation and improvement of cancer treatment. Eur J Cancer 2004; 40: 2623-2632

4. Hall EC, Smith S, Brown P. A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization. Genome Res 1996; 6: 639-645

5. Jin G, Wang S, Xu X, Jing Z, Chen J, Ying K, Xie Y, Mao Y. Characterization of the tissue-specific expression of the s100P gene which encodes an EF-hand Ca2+-binding protein. Mol Biol Rep 2003; 30: 243-248

6. van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AA, Voskuil DW, Schreiber GJ, Petersen JL, Roberts C, Marton MJ, Parrish M, Atsma D, Witteveen A, Glas A, Delahaye L, van der Velde T, Baltelink H, Rodenhuis S, Rutgers ET, Friend SH, Bernards R. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 2002; 347: 1999-2009

7. Missiaglia E, Blaveeri E, Terris B, Wang YH, Costello E, Neoptolemos JP, Cernogorac-Jurcevic T, Lemoine NR. Analysis of gene expression in cancer cell lines identifies candidate markers for pancreatic tumorigenesis and metastasis. Int J Cancer 2004; 112: 100-112

8. Ryu B, Jones J, Blades NJ, Parmigiani G, Hollingsworth MA, Hruban RH, Kern SE. Relationships and differentially expressed genes among pancreatic cancers examined by large-scale serial analysis of gene expression. Cancer Res 2002; 62: 819-826

9. Tarbé N, Lösch S, Burtscher H, Jarsch M, Weidle UH. Identification of rat pancreatic carcinoma genes associated with lymphogenous metastasis. Anticancer Res 2002; 22: 2015-2027

10. Griffin CA, Hruban RH, Morsberger LA, Ellingham T, Long PP, Jaffe EM, Haude KM, Bohlander SK, Yeo CJ. Consistent chromosome abnormalities in adenocarcinoma of the pancreas. Cancer Res 1995; 55: 2394-2399

11. Yoshida H, Owman N, Aoki K. Development of gene therapy to target pancreatic cancer. Cancer Sci 2004; 95: 283-289

12. Aznar S, Fernández-Valerón P, Espina C, Lelic J. RhTNTas: potential candidates for anticancer therapy. Cancer Lett 2004; 206: 181-191

13. Maynard MA, Ohm M. Von Hippel-Lindau tumor suppressor protein and hypoxia-inducible factor in kidney cancer. Am J Nephrol 2004; 24: 1-13

14. Choong PF, Nadesapillai AP. Urokinase plasminogen activator system: a multifunctional role in tumor progression and metastasis. Clin Orthop Relat Res 2003; : 546-558

15. Memarzadeh S, Kozak KK, Chang L, Natarajan S, Shintaku P, Reddy ST, Farias-Eisner R. Urokinase plasminogen activator receptor: Prognostic biomarker for endometrial cancer. Proc Natl Acad Sci USA 2002; 99: 10647-10652

16. Grützmun R, Forerder M, Alldinger I, Staub E, Grümmendorf T, Röpcke S, Li X, Kristiansen G, Jesenofsky R, Löhr M, Lüttges J, Ockert D, Klöppel G, Pilarsky C. Gene expression profiles of microdissected pancreatic ductal adenocarcinoma. Virchows Arch 2003; 443: 508-517

17. Logsdon CD, Simeone DM, Binkley C, Atzumugam T, Greenson JK, Giordano TJ, Misek DE, Kuick R, Hanash S. Molecular profiling of pancreatic adenocarcinoma and chronic pancreatitis identifies multiple genes differentially regulated in pancreatic cancer. Cancer Res 2003; 63: 2649-2657

Science Editor Kumar M, Li WZ and Guo SY Language Editor Elsevier HK