New Designs of Universal Reversible Gate Library

Rasha Montasera1,2, Ahmed Youneb1,3 and Mahmoud Abdel-Atyc2,4

1 Department of Mathematics and Computer Science, Faculty of Science, Alexandria University, Egypt
2 Zewail City of Science and Technology, University of Science and Technology, Cairo, Egypt
3 School of Computer Science, University of Birmingham, Birmingham, B15 2TT, United Kingdom
4 Department of Mathematics, Faculty of Science, Sohag University, Sohag, Egypt

E-mail: arashamontaser@gmail.com, bayounes@alexu.edu.eg and cmabdelaty@zewailcity.edu.eg

Abstract. We present new algorithms to synthesize exact universal reversible gate library for various types of gates and costs. We use the powerful algebraic software GAP for implementation and examination of our algorithms and the reversible logic synthesis problems have been reduced to group theory problems. It is shown that minimization of arbitrary cost functions of gates and orders of magnitude are faster than its previously counterparts for reversible logic synthesis. Experimental results show that a significant improvement over the previously proposed synthesis algorithm is obtained compared with the existing approaches to reversible logic synthesis.

Keywords: Reversible gates; Reversible circuits; Quantum circuits; Quantum cost; Universal library; Universal gate.

1. Introduction

A logic circuit is synthesized using a set of elementary components. This set is called the library of synthesis, where the members of this set are logic gates \cite{1}. A gate is said to be reversible if it is used to synthesize a reversible function or a reversible circuit \cite{7}. A function is reversible if the number of inputs is equal to the number of outputs, and each input pattern maps to a uniquely output pattern (bijection) \cite{8}. Synthesizing circuits with pure quantum gates improves the cost and the time efficiency of these circuits since no heat dissipation and no information destroyed from the system, in addition, we gain the advantages of quantum computing \cite{7}. The studies to improve the efficiency of the reversible circuits have focused on either developing algorithms that improves the quantum cost of the circuit by optimizing the gates used to synthesize the circuits, as in \cite{2,3,4}, or by defining new universal libraries with less number of gates that leads
to circuits with better size on average, as in \[5, 6\].

Methods developed to improve the quantum cost of reversible circuits using the \(NCT\) library are proposed in many studies such as \[3, 11, 12, 13\]. An algorithm that reduces the reversible logic synthesis problem into permutation group using group theory is presented in \[2\]. An algorithm that uses a method that finds the tight bounds on the synthesized 3-bits reversible circuits using \(NCT\) library to reduce the quantum cost of the circuits is presented in \[4\]. A library based synthesis methodology for reversible circuits is presented in \[7, 14\] to introduce optimization methods by decomposing the functions into smaller building blocks. A new gate type that is universal for \(n\)-in/out reversible circuits is proposed in \[5\]. A minimal universal library which includes only two gates, such that all the \(n \times n\) reversible circuits can be synthesized by these two gates is proposed in \[6\].

The aim of this paper is to propose a new universal reversible gate library to be used in the synthesis of reversible circuits. The results presented in this paper are implemented and tested using the group theory algebraic software GAP \[10\]. The results shown in this paper are compared with the results shown in \[2, 5, 14\] and \[15\]. This paper is organized as follows: Sect.2 gives a short introduction to the elementary quantum gates used to build quantum circuits and defines the terminologies used in this paper. Sect.3 describes the proposed gate library. Sect.4 shows the experimental results and compares the proposed universal gate library with the libraries proposed by others. Finally the conclusion is shown in Sect.5.

2. Synthesizing Reversible Circuit

Here we introduce some basic definitions and terminologies used in the synthesizing of the reversible circuit.

Definition 2.1 A Boolean function \(f\) is reversible such that, \(f : x \rightarrow y\) if and only if each input vector \(x \in X^n\) maps to a unique output vector \(y \in X^n\). For \(X^n\) there are \(n\) input vector \((x_1, x_2, x_3, \ldots, x_n)\) and \(n\) output vector \((y_1, y_2, y_3, \ldots, y_n)\). For \(n\)-inputs and \(n\)-outputs, there are \((2^n)!\) reversible functions, \(\forall X = \{0, 1\}\) and \(n \in Z\) \[4\].

Definition 2.2 \(C^n\text{NOT}\) is the main reversible gate that is commonly used to synthesize any reversible circuit. It is defined as follows,

\[
C^n\text{NOT}(x_1, x_2, \ldots, x_{n-1}; f_{in}) = C^n\text{NOT}(y_1, y_2, \ldots, y_{n-1}; f_{out}),
\]

where \(y_i = x_i\) for \(1 \leq i \leq n - 1\) and \(f_{out} = f_{in} \oplus x_1x_2\ldots x_{n-1} \forall n \in Z\), \(x \in X^n\) and \(X = \{0, 1\}\). \(x_1x_2\ldots x_{n-1}\) are called the control bits and \(f_{in}\) is called the target bit \[4\].

Definition 2.3 The minimum cost \(Minc(g)\) is the realization of reversible gate \(g\) with a minimum cost \(Minc(g)\), such that; there is no realization with cost less than the \(Minc(g)\) \[2\].
Definition 2.4 The cost of the circuit is the summation of the total costs of all the gates used to synthesize that circuit \[2\].

Definition 2.5 A gate \(g\) is said to be reversible if it computes a reversible function \(f\) and is bijective \[4, 9\].

Definition 2.6 A logic gate \(g\) is said to be universal if it is sufficient to synthesize an arbitrary logical operation on these \(n\) inputs \[1\].

Definition 2.7 The set of reversible gates that can be used to build a reversible circuit is called gate library \(L\) \[4\].

Definition 2.8 The universal library of synthesis is the smallest set of building blocks used in the synthesis process \[1\].

Definition 2.9 A universal reversible gate library \(L\) is a set of reversible gates such that any reversible \(n\)-bit circuit can be synthesized by cascading gates in \(L\). \[5\].

Definition 2.10 A universal reversible gate sub library \(SL \subseteq L\) is a set of reversible gates such that any \(n\)-bit reversible circuit can be synthesized using \(SL\). \[5\].

Definition 2.11 Utilization is the percentage of universal sub libraries from all sub libraries \(SL\) of a certain library. \[5\].

Definition 2.12 A permutation \(\sigma\) is a bijection such that, \(\sigma:A \rightarrow A\) which maps an input to an output from a finite set \(= \{1, 2, \ldots, N\}\), which can be written as follows,

\[
\sigma = \begin{pmatrix}
1 & 2 & 3 & \ldots & N \\
\sigma(1) & \sigma(2) & \sigma(3) & \ldots & \sigma(N)
\end{pmatrix}
\]

(2)

The top row can be eliminated and written as follows,

\[
\sigma = \begin{pmatrix}
\sigma(1) & \sigma(2) & \sigma(3) & \ldots & \sigma(N)
\end{pmatrix}
\]

(3)

Another notation having a permutation in the form of \(\begin{pmatrix}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
8 & 2 & 1 & 4 & 7 & 5 & 6 & 3\end{pmatrix}\), it can be written as \((1,8,3)(5,7,6)\), this notation is called the product of disjoint cycles \[4\].

2.1. Reversible Gates

The reversible gates that can be used to synthesize any 3-bit reversible circuits are: NOT \((N)\) gate, Feynman \((C)\) gate, Toffoli \((T^3)\) gate, Fredkin \((F)\) gate, Peres \((P)\) gate, the \(G^3\) gate and the square-root NOT gate which are the controlled-\(v\) (\(v\)) and the controlled-\(v^\dagger\) (\(u\)), such that \(v.u = u.v = N, u.v = v.u = I, v.N = N.v = u, u.N = N.u = v\) and \(I\) is the identity gate \[2, 5\]. For a 3-bit reversible circuit, there are three different \(N\) gates, six different \(C\) gates as shown in Fig[1], three different \(T^3\) gates, three different \(F\) gates as shown in Fig[2], six different \(P\) gates as shown in Fig[3] six different \(G^3\) gates
as shown in Fig. 4, six different v gates and six different u gates as shown in Fig. 5.

The N gate is used to flip the input bits unconditionally with quantum cost equal to zero. Eqn. 4 shows the functionality of the N gate. There are 8 circuits that can
be realized using the three possible \(N \) gates [5].

\[
N^3_j : y_j = x_j \oplus 1, y_k = x_k, y_l = x_l,
\]

\[
N^3_1 : (x_1, x_2, x_3) \rightarrow (1,5)(2,6)(3,7)(4,8),
\]

\[
N^3_2 : (x_1, x_2, x_3) \rightarrow (1,3)(2,4)(5,7)(6,8),
\]

\[
N^3_3 : (x_1, x_2, x_3) \rightarrow (1,2)(3,4)(5,6)(7,8),
\]

where \(j, k \) and \(l \in \{1, 2, 3\} \) in any order.

The \(C \) gate is used to flip the target bit if the controlled bit is set to 1 with quantum cost equals to 1 [14]. Eqn.5 shows the functionality of the \(C \) gate. There are 168 circuits that can be realized by the six possible \(C \) gates [5].

\[
C^3_{j,k} : y_j = x_j, y_k = x_k \oplus x_j, y_l = x_l,
\]

\[
C^3_{1,2} : (x_1, x_2, x_3) \rightarrow (5,7)(6,8),
\]

\[
C^3_{1,3} : (x_1, x_2, x_3) \rightarrow (5,6)(7,8),
\]

\[
C^3_{2,3} : (x_1, x_2, x_3) \rightarrow (3,4)(7,8),
\]

\[
C^3_{2,1} : (x_1, x_2, x_3) \rightarrow (3,7)(4,8),
\]

\[
C^3_{3,2} : (x_1, x_2, x_3) \rightarrow (2,4)(6,8),
\]

\[
C^3_{3,1} : (x_1, x_2, x_3) \rightarrow (2,6)(4,8).
\]

The \(T^3 \) gate is used to flip the target bit if the control bits are set to 1 with quantum cost equals to 5 [14]. Eqn.6 shows the functionality of the \(T^3 \) gate. There are 24 circuits that can be realized by the three possible \(T^3 \) gates [5].

\[
T^3_{j,k,l} : y_j = x_j, y_k = x_k, y_l = x_l \oplus x_j x_k,
\]

\[
T^3_{1,2,3} : (x_1, x_2, x_3) \rightarrow (7,8),
\]

\[
T^3_{1,3,2} : (x_1, x_2, x_3) \rightarrow (6,8),
\]

\[
T^3_{2,3,1} : (x_1, x_2, x_3) \rightarrow (4,8).
\]

The \(F \) gate is used to perform conditional swap on two of its inputs if the third input is set to 1 with quantum cost equals to 5 [13]. Eqn.7 shows the functionality of the \(F \) gate. There are 6 circuits that can be realized by the three possible \(F \) gates [5].

\[
F^3_{j,k,l} : y_j = x_j,
\]

\[
x_j = \begin{cases} 1 & y_k = x_l, y_l = x_k \\ 0 & y_k = x_k, y_l = x_l \end{cases}
\]

\[
F^3_{1,2,3} : (x_1, x_2, x_3) \rightarrow (6,7),
\]

\[
F^3_{2,1,3} : (x_1, x_2, x_3) \rightarrow (4,7),
\]

\[
F^3_{3,2,1} : (x_1, x_2, x_3) \rightarrow (4,6).
\]

The \(P \) gate combines the functions of \(T^3 \) gate and \(C \) gate in a single gate; it acts on an arbitrary 3-bits \(x_j, x_k \) and \(x_l \), \(C \) gate is applied on \(x_j \) and \(x_k \) using \(x_j \) as a controller bit and \(x_k \) as a target bit, then \(T^3 \) gate is applied on \(x_j, x_k \) and \(x_l \) using \(x_j \) and \(x_k \) as
controller bits and \(x_l \) as a target bit. The quantum cost of \(P \) is 4 [13]. Eqn.8 shows the functionality of the \(P \) gate. There are 5040 circuits that can be realized by the six possible \(P \) gates [5].

\[
P_{j,k,l}^3 : y_j = x_j, y_k = x_j \oplus x_k, y_l = x_l \oplus x_j x_k,
\]

\[
P_{123} : (x_1, x_2, x_3) \rightarrow (5, 7, 6, 8),
P_{132} : (x_1, x_2, x_3) \rightarrow (5, 6, 7, 8),
P_{213} : (x_1, x_2, x_3) \rightarrow (3, 7, 4, 8),
P_{231} : (x_1, x_2, x_3) \rightarrow (3, 4, 7, 8),
P_{312} : (x_1, x_2, x_3) \rightarrow (2, 6, 4, 8),
P_{321} : (x_1, x_2, x_3) \rightarrow (2, 4, 6, 8).
\]

The \(G^3 \) gate combines the function of \(N \), \(C \) and \(T^3 \) gates in a single gate; it acts on an arbitrary 3-bits \(x_j, x_k \) and \(x_l \). \(x_l \) is flipped if \(x_j \) and \(x_k \) are set to 1, then \(x_k \) is flipped if \(x_j \) is set to 1, finally the bit \(x_j \) is flipped unconditionally. The quantum cost of \(G^3 \) is 5 [5]. Eqn.9 shows the functionality of the \(G^3 \) gate. There are 40320 circuits that can be realized by the six possible \(G^3 \) gates, thus \(G \) gate is universal [5].

\[
G_{j,k,l}^3 : y_j = x_j \oplus 1, y_k = x_j \oplus x_k, y_l = x_l \oplus x_j x_k,
\]

\[
G_{123} : (x_1, x_2, x_3) \rightarrow (1, 5, 3, 7, 2, 6, 4, 8),
G_{132} : (x_1, x_2, x_3) \rightarrow (1, 5, 2, 6, 3, 7, 4, 8),
G_{213} : (x_1, x_2, x_3) \rightarrow (1, 3, 5, 7, 2, 4, 6, 8),
G_{231} : (x_1, x_2, x_3) \rightarrow (1, 3, 2, 4, 5, 7, 6, 8),
G_{312} : (x_1, x_2, x_3) \rightarrow (1, 2, 5, 6, 3, 4, 7, 8),
G_{321} : (x_1, x_2, x_3) \rightarrow (1, 2, 3, 4, 5, 6, 7, 8).
\]

2.2. Universal Libraries

Many universal libraries have been defined from the combination of the reversible gates, such as \(NCT \) (NOT- Feynman- Toffoli), \(NCTF \) (NOT- Feynman- Toffoli- Fredkin), \(NCP \) (NOT- Feynman- Peres), \(NCPF \) (NOT- Feynman- Peres- Fredkin), \(NCPT \) (NOT- Feynman- Peres- Toffoli), \(NT \) (NOT- Toffoli), \(NP \) (NOT- Peres), \(NCF \) (NOT- Feynman- Fredkin), \(NFT \) (NOT- Feynman- Toffoli), \(NCTPF \) (NOT- Feynman- Toffoli- Peres- Fredkin) and \(G \)-gate Library [2] [5] [15].

3. The Proposed Universal Reversible Library

This section proposes a new universal \(n \)-bit reversible gate \(R^n \) for \(n \)-bits input/output reversible circuits, which is a universal gate on its own. To reduce the quantum cost of the circuits synthesized with \(R^n \) gate, \(N \) gate might be added to form another library called \(NR^n \) which is also universal.
New Designs of Universal Reversible Gate Library

3.1. 1-bit Gate (R^1 gate)

R^1 is a 1-bit gate. It acts as N gate which inverses the input bit unconditionally. There are 2 possible 1-bit input/output reversible circuits. The R^1 gate is sufficient to realize these two circuits. For 1-bit reversible circuits built using R-gate library, there is one R^1 gate as shown in Fig. 6, it function as shown in Eqn. (10) and its quantum cost is 0.

\[
R^1_1: (x_1) = x_1 \oplus 1 = (1, 2). \tag{10}
\]

3.2. 2-bits Gate (R^2 gate)

R^2 is a 2-bits gate. It acts as a combination between N gate and C gate. It uses one bit as a controller to flip the other bit and then it flips the controller bits unconditionally. For 2 input/output reversible circuits there are 24 possible circuits. R^2 gate is sufficient to realize these 24 circuits. For 2-bits reversible circuits built using R-gate library, there are two possible R^2 gates as shown in Fig. 7, they function as shown in Eqn. (11) and their quantum cost is 1.

\[
R^2_{j,k}: y_j = x_j \oplus 1, \\
y_k = x_k \oplus x_j, \tag{11}
\]

\[
R^2_{1,2}: (x_1, x_2) \rightarrow (1, 3, 2, 4), \\
R^2_{2,1}: (x_1, x_2) \rightarrow (1, 2, 3, 4),
\]

where j and $k \in \{1, 2\}$ in any order.

3.3. 3-bits Gate (R^3 gate)

R^3 is a 3-bits gate. It combines the action of the three gates N, C and T^3. It acts on an arbitrary 3-bits x_j, x_k and x_l in any order. First x_j and x_k are used as controller bits to flip x_l, then x_j is used as a controller bit to flip x_k, after that x_l is flipped unconditionally and finally x_l is used as a controller bit to flip x_j. For 3-bits reversible circuits built using R-gate library, there are three possible R^3 gates.
circuits built using R-gate library, there are six possible R^3 gates as shown in Fig.8 and they function as shown in Eqn.12

$$R^3_{j,k,l} : y_j = x_j \oplus x_k \oplus x_l, x_1 \oplus 1, $$
$$y_k = x_k \oplus x_j, x_1 \oplus 1,$$
$$y_l = x_l \oplus x_j.$$ \hspace{1cm} (12)$$

$R^3_{1,2,3} : (x_1, x_2, x_3) \rightarrow (1, 7, 6, 5, 4, 2, 8, 3),$
$R^3_{3,2,1} : (x_1, x_2, x_3) \rightarrow (1, 4, 6, 2, 7, 5, 8, 3),$
$R^3_{3,1,2} : (x_1, x_2, x_3) \rightarrow (1, 4, 7, 3, 6, 5, 8, 2),$
$R^3_{1,3,2} : (x_1, x_2, x_3) \rightarrow (1, 6, 7, 5, 4, 3, 8, 2),$
$R^3_{2,3,1} : (x_1, x_2, x_3) \rightarrow (1, 6, 4, 2, 7, 3, 8, 5),$
$R^3_{2,1,3} : (x_1, x_2, x_3) \rightarrow (1, 7, 4, 3, 6, 2, 8, 5),$

where j, k and $l \in \{1, 2, 3\}$ in any order.

The quantum cost for the R^3 gate is 4, Fig.10 shows the decomposition of the gate. Fig.10(a) shows the gate representation of $R^3_{1,2,3}$ gate, Fig.10(b) shows the four component gates of the $R^3_{1,2,3}$ gate, and Fig.10(c) shows the representation of the $R^3_{1,2,3}$ gate into its five elementary gates after applying circuit optimization over it as defined in [14]. The first gate is $v_{3,2}$, the second gate is $C_{1,3}$, the third gate is $u_{3,2}$, the fourth gate is N_2 and the last gate is $vC_{2,1}$, which is a merging gate between $v_{1,2}$ and $C_{2,1}$ in order, as shown in Fig.9 the process of merging gates is defined in [11].
New Designs of Universal Reversible Gate Library

Figure 10. The circuit representation for the decomposition of the $R_{1,2,3}^3$ gate where: (a) the representation of the gate, (b) the decomposition of the gate into its four components two C gates, one N gate and one T^3 gate, and (c) the optimized decomposition of $R_{1,2,3}^3$ into its five elementary quantum gates.

$$R_{j,k,l,m}^4 : y_j = x_j \oplus x_k \oplus x_j x_l \oplus 1,$$
$$y_k = x_k \oplus x_j x_l \oplus 1,$$
$$y_l = x_l \oplus x_j,$$
$$y_m = x_m \oplus x_j x_k x_l,$$

\begin{align*}
R_{1,2,3,4}^4 &: (x_1, x_2, x_3, x_4) \rightarrow (1, 13, 11, 9, 7, 3, 15, 6, 2, 14, 2, 10, 8, 4, 16, 5), \\
R_{3,2,1,4}^4 &: (x_1, x_2, x_3, x_4) \rightarrow (1, 7, 11, 3, 13, 9, 15, 6, 2, 8, 12, 4, 14, 10, 16, 5), \\
R_{3,1,2,4}^4 &: (x_1, x_2, x_3, x_4) \rightarrow (1, 7, 13, 5, 11, 9, 15, 4, 2, 8, 14, 6, 12, 10, 16, 3), \\
R_{1,3,2,4}^4 &: (x_1, x_2, x_3, x_4) \rightarrow (1, 11, 13, 9, 7, 5, 15, 4, 2, 12, 14, 10, 8, 6, 16, 3), \\
R_{2,3,1,4}^4 &: (x_1, x_2, x_3, x_4) \rightarrow (1, 11, 7, 3, 13, 5, 15, 10, 2, 12, 8, 4, 14, 6, 16, 9), \\
R_{2,1,3,4}^4 &: (x_1, x_2, x_3, x_4) \rightarrow (1, 13, 7, 5, 11, 3, 15, 10, 2, 14, 8, 6, 12, 4, 16, 9), \\
R_{1,2,4,3}^4 &: (x_1, x_2, x_3, x_4) \rightarrow (1, 13, 10, 9, 6, 2, 14, 7, 3, 15, 12, 11, 8, 4, 16, 5), \\
R_{2,3,2,4}^4 &: (x_1, x_2, x_3, x_4) \rightarrow (1, 6, 10, 2, 13, 9, 14, 7, 3, 8, 12, 4, 15, 11, 6, 5), \\
R_{2,1,4,2}^4 &: (x_1, x_2, x_3, x_4) \rightarrow (1, 6, 13, 5, 10, 9, 14, 4, 3, 8, 15, 7, 12, 11, 6, 2), \\
R_{1,3,2,4}^4 &: (x_1, x_2, x_3, x_4) \rightarrow (1, 11, 13, 4, 2, 12, 14, 9, 7, 5, 15, 10, 8, 6, 16, 3), \\
R_{2,3,4,1}^4 &: (x_1, x_2, x_3, x_4) \rightarrow (1, 10, 6, 2, 13, 5, 14, 11, 3, 12, 8, 4, 15, 7, 16, 9), \\
R_{2,1,4,3}^4 &: (x_1, x_2, x_3, x_4) \rightarrow (1, 13, 6, 5, 10, 2, 14, 11, 3, 15, 8, 7, 12, 4, 16, 9), \\
R_{1,4,2,3}^4 &: (x_1, x_2, x_3, x_4) \rightarrow (1, 11, 10, 9, 4, 2, 12, 7, 5, 15, 14, 13, 8, 6, 16, 3), \\
R_{1,3,2,1}^4 &: (x_1, x_2, x_3, x_4) \rightarrow (1, 4, 10, 2, 11, 9, 12, 7, 5, 8, 14, 6, 15, 13, 16, 3), \\
R_{2,4,1,2}^4 &: (x_1, x_2, x_3, x_4) \rightarrow (1, 4, 11, 3, 10, 9, 12, 6, 5, 8, 15, 7, 14, 13, 16, 2), \\
R_{1,4,3,2}^4 &: (x_1, x_2, x_3, x_4) \rightarrow (1, 10, 11, 9, 4, 3, 12, 6, 5, 14, 15, 13, 8, 7, 16, 2), \\
R_{2,4,3,1}^4 &: (x_1, x_2, x_3, x_4) \rightarrow (1, 10, 4, 2, 11, 3, 12, 13, 5, 14, 8, 6, 15, 7, 16, 9), \\
R_{2,4,1,3}^4 &: (x_1, x_2, x_3, x_4) \rightarrow (1, 11, 4, 3, 10, 2, 12, 13, 5, 15, 8, 7, 14, 6, 16, 9), \\
R_{1,2,3}^4 &: (x_1, x_2, x_3, x_4) \rightarrow (1, 7, 6, 5, 4, 2, 8, 11, 9, 15, 14, 13, 12, 10, 16, 3), \\
R_{4,3,2,1}^4 &: (x_1, x_2, x_3, x_4) \rightarrow (1, 4, 6, 2, 7, 5, 8, 11, 9, 12, 14, 10, 15, 13, 16, 3), \\
R_{4,3,1,2}^4 &: (x_1, x_2, x_3, x_4) \rightarrow (1, 4, 7, 3, 6, 5, 8, 10, 9, 12, 15, 11, 14, 13, 16, 2), \\
R_{4,1,3,2}^4 &: (x_1, x_2, x_3, x_4) \rightarrow (1, 6, 7, 5, 4, 3, 8, 10, 9, 14, 15, 13, 12, 11, 16, 2), \\
R_{4,2,3,1}^4 &: (x_1, x_2, x_3, x_4) \rightarrow (1, 6, 4, 2, 7, 3, 8, 13, 9, 14, 12, 10, 15, 11, 16, 5), \\
R_{4,2,1,3}^4 &: (x_1, x_2, x_3, x_4) \rightarrow (1, 7, 4, 3, 6, 2, 8, 13, 9, 15, 12, 11, 14, 10, 16, 5),
3.4. 4-bits Gate (R^4 gate)

R^4 is 4-bits gate, which combines the action of the four gates N, C, T^3 and T^4. The four gates are applied on an arbitrary 4-bits x_j, x_k, x_l, x_m in any order as follows, First the 3 bits x_j, x_k and x_l are used as controller bits to flip the bit x_m, then the 2 bits x_j and x_k are used as controller bits to flip x_l. After that x_j is used as a controller bit to flip x_k, then x_l is flipped unconditionally and finally x_l is used as a controller bit to flip x_j. Fig.11 shows the decomposition of the gate, Fig.11(a) shows the representation of the $R^4_{1,2,3,4}$ gate, and Fig.11(b) shows the decomposition of the $R^4_{1,2,3,4}$ gate into its five components. There are 24 possible R^4 gates. These 24 gates are sufficient to realize the $(2^4)!$ circuits. For 4-bits reversible circuits built using R-gate library, there are 24 possible R^4 gates, their function is shown in Eqn.13.

![Figure 11](image)

Figure 11. The circuit representation for the decomposition of the R^4 gate where: (a) the representation of the gate, (b) the decomposition of the gate into its 5 components one T^4 gate, one T^3 gate, two C gates and one N gate.

3.5. n-bits Gate (R^n gate)

The R^n gate is universal of n-bit gate, where it can be extended according to the value of n. For $n ≥ 3$, R^n combines the action of the n gates $N, C, T^3, T^4, ..., T^{n-1}, T^n$ as shown in Fig.12. There are $n!$ possible R^n gates which are sufficient to realize any n-bits circuit. The function of the $n!$ R^n gates are shown in Eqn.14.
New Designs of Universal Reversible Gate Library

\[R_{a_1,a_2,a_3,a_4,a_5,a_6,...,a_{n-1},a_n}^n: \]
\[y_{a_1} = x_{a_1} \oplus x_{a_3} \oplus x_{a_1} \cdot x_{a_2} \oplus 1, \]
\[y_{a_2} = x_{a_2} \oplus x_{a_1} \cdot x_{a_3} \oplus 1, \]
\[y_{a_3} = x_{a_3} \oplus x_{a_1}, \]
\[y_{a_4} = x_{a_4} \oplus x_{a_1} \cdot x_{a_2} \cdot x_{a_3}, \]
\[y_{a_5} = x_{a_5} \oplus x_{a_1} \cdot x_{a_2} \cdot x_{a_3} \cdot x_{a_4}, \]
\[y_{a_6} = x_{a_6} \oplus x_{a_1} \cdot x_{a_2} \cdot x_{a_3} \cdot x_{a_4} \cdot x_{a_5}, \]
\[\vdots \]
\[y_{a_{n-1}} = x_{a_{n-1}} \oplus x_{a_1} \cdot x_{a_2} \cdot x_{a_3} \cdot x_{a_4} \cdot x_{a_5} \cdots x_{a_{n-2}}, \]
\[y_{a_n} = x_{a_n} \oplus x_{a_1} \cdot x_{a_2} \cdot x_{a_3} \cdot x_{a_4} \cdot x_{a_5} \cdots x_{a_{n-1}}, \]

where \(a_1, a_2, a_3, \ldots \) and \(a_n \in \{1, 2, 3, \ldots, n\} \) in any order. While the total number of possible gates for the general \(T_n \) is shown in Eqn. [15] [3].

\[n \sum_{r=0}^{n-1} \left(\begin{array}{c} n-1 \\ r \end{array} \right), \]

where \(n \) is the number of bits and \(r \geq 0 \) is the number of controls per gate.

![Circuit Diagram](image-url)

Figure 12. The circuit representation for the decomposition of the \(R_{1,2,3,4,...,n}^n \) gate where: (a) the representation of the gate, (b) the decomposition of the gate into its main components gates.
Table 1. Utilization of gates in universal sub Libs.

Lib	Lib Size	Num of sub Lib	Num of universal sub Lib	Utilization
NT	6	64	4	6.250%
NP	9	512	333	65.039%
NCT	12	4096	1960	47.852%
NCF	12	4096	2460	60.059%
NCP	15	32768	26064	79.541%
NCTF	15	32768	23132	70.593%
NCPF	18	262144	217384	82.925%
G^3	6	64	51	79.688%
R^3	6	64	55	85.938%
NR^3	9	512	340	66.406%

4. Experimental Results

This section compares the performance of the proposed two gate libraries R^3 and NR^3, with the known libraries in [2], [4], [5], [14] and [15]. It is found that the permutation group of the R^3 generators is of size 40320, thus the six R^3 generators are universal. There are 64 possible sub libraries from the main R^3 gate library, 55 of them are universal for the 3-bits reversible circuits. It is also found that the permutation group of the NR^3 generators is of size 40320, thus the nine generators in NR^3 library are universal. There are 512 possible sub libraries from the main library NR^3, 340 of them are universal. Table 1 compares the utilization of the different universal libraries. It can be seen that the gate library R^3 gives the best utilization of 85.938% and NR^3 gives a utilization of 66.406%, which is better than the utilization of the libraries NT, NP, NCT and NCF.

The size of the minimum universal sub libraries from the main R^3 library and NR^3 library is two. For R^3, there are 13 universal sub libraries of size two, such as $\{R_{1,3,2}, R_{2,1,3}\}$, $\{R_{1,3,2}, R_{2,3,1}\}$ and $\{R_{1,3,2}, R_{3,1,2}\}$, while for NR^3 there are 8 universal sub libraries of size two, such as $\{R_{1,3,2}, R_{3,1,2}\}$, $\{R_{1,3,2}, R_{3,2,1}\}$ and $\{R_{3,1,2}, R_{3,2,1}\}$. Table 2 compares the utilization of gates in the smallest universal sub libraries. The utilization of the universal sub libraries with minimum size for R^3 is 86.667%, while for NR^3 is 22.222%. It shows that R^3 gives the best utilization, while NR^3 is better than NP, NCT, NCF, NCP, $NCTF$, $NCPT$ and $NCPF$.

Table 3 compares the minimum length for the 3-bits circuits using different libraries. It shows that the average minimum length for R^3 is 6.425, while for NR^3 it is 5.325 which is less than NT, NP, NCT, NCF, $NCTF$, G^3 and R^3.
Table 2. Utilization of gates in the smallest universal sub libraries.

Lib	Size of min universal sub Lib	Num of sub Lib with min size	Num of universal sub Lib with min size	utilization
NT	5	6	3	50%
NP	3	84	18	21.429%
NCT	4	495	21	4.242%
NCF	4	495	60	12.121%
NCP	3	455	30	6.593%
NCTF	4	1365	105	7.692%
NCPT	3	816	36	4.412%
NCPF	3	816	42	5.147%
G^3	2	15	9	60%
R^3	2	15	13	86.667%
NR3	2	36	8	22.222%

Table 3. Minimum length of 3-bits reversible circuits using NT, NP, NCT, NCF, NCP, $NCTF$, $NCPT$, $NCPF$, G^3, R^3 and NR^3 libraries.

Min Len	NT	NP	NCT	NCF	NCP	$NCTF$	$NCPT$	$NCPF$	G^3	R^3	NR^3
0	1	1	1	1	1	1	1	1	1	1	1
1	6	9	12	12	15	15	18	18	6	6	9
2	24	69	102	101	174	143	228	248	36	33	72
3	88	502	625	676	1528	1006	1993	2356	207	180	541
4	296	3060	2780	3413	8968	5021	10503	12797	1097	960	3774
5	870	13432	8921	11378	23534	15083	23204	22794	4946	4686	18027
6	2262	21360	17049	17970	6100	17261	4373	2106	13819	14611	17556
7	5097	1887	10253	6739	0	1790	0	0	14824	15257	340
8	9339	0	577	0	0	0	0	0	5208	4555	0
9	12237	0	0	0	0	0	0	0	31	0	0
10	8363	0	0	0	0	0	0	0	0	0	0
11	1690	0	0	0	0	0	0	0	0	0	0
12	47	0	0	0	0	0	0	0	0	0	0
Avg	8.500	5.516	5.866	5.649	4.839	5.330	4.730	4.598	6.403	6.425	5.325

The optimization rules defined in [14] has been applied on the circuits built using R, NR and NT Libraries, which can be summarized as follows: first the R gate is decomposed into its five main components, then the T^3 gate is decomposed into its five main components as defined in [14]. The adjacent gates are compared with each other, if the two adjacent gates work on the same input/output vectors, then they are merged to form one new gate, such that: if gate $C_{i,j}^3$ is adjacent to gate $C_{i,j}^3$, then the two gates are merged to give identity, otherwise if it is adjacent to $C_{j,i}^3$ or $v_{j,i}$ or $u_{j,i}$, then these gates are merged to form one gate. If $C_{i,j}^3$ is adjacent to $v_{i,j}$, then they are merged to form $u_{i,j}$, otherwise if it is adjacent to $u_{i,j}$, then they are merged to form $v_{i,j}$. If $v_{i,j}$ is adjacent to $v_{i,j}$, then they are merged to form $C_{i,j}$, or if it is adjacent to $u_{i,j}$, then these
two gates are merged to give identity, otherwise if it is adjacent to $v_{j,i}$ or $u_{j,i}$, then they are merged to form one gate. If $u_{i,j}$ is adjacent to $u_{i,j}$, then they are merged to $C_{i,j}$, otherwise if it is adjacent to $u_{j,i}$ or $v_{j,i}$, then these two gates are merged to form one gate, where $i, j, k \in \{1, 2, 3\}$ in any order. Some adjacent gates can be swapped with each other, if the target vector of one gate is not affecting the controller vector of the other gate, as defined in [14].

The costs of all the 40320 specifications synthesized by the R^3, NR^3 and NT gate libraries are calculated and compared before and after optimization in Table 4. For circuits built using R^3-gate library, the maximum cost is 36 and the average cost is 25.701 before optimization, while after optimization, the maximum cost is 34 and the average cost is 23.954, giving 6.8% of improvement. After adding the N gate to the gate library, the maximum cost has been reduced to 24, having an average cost of 14.062 before optimization and 13.388 after optimization, giving 44.1% of improvement. For circuits built using NT-gate library, the maximum cost is 40 and the average cost is 25.766 before optimization, while after optimization the maximum cost has been reduced to 36 and the average cost became 22.321, giving 13.4% of improvement. As shown in Table 4 the cost of the circuits built using NR^3-gate library have improved by 40% over those built using NT-gate library.

Table 4 compares the minimum cost for 3-bits circuits using different libraries. The average minimum cost for the circuits built using R^3 is 23.954, while the average minimum cost for those built using NR^3 is 13.388, which is less than those built using NT, NCF, $NCTF$ and R^3.

5. Conclusion

We have presented new algorithms to synthesize exact universal reversible gate library. Experimental results have been used to compares the proposed universal gate library with the existing approaches to reversible logic synthesis. We compares the minimum cost for 3-bits circuits using different libraries. It is shown that the cost of 40320 specifications synthesized by the R^3, NR^3 and NT gate library can be calculated and optimized. Also, the average minimum cost for R^3 is 23.954, while the average minimum cost for NR^3 is 13.388, which is less than NT, NCF, $NCTF$ and R^3. For $n \geq 3$, R^n combines the action of the n gates $N, C, T^3, T^4, ..., T^{n-1}, T^n$. There are $n!$ possible R^n gates which are sufficient to realize any n-bits circuit. We have found that for n-bit circuits built using NR-gate library, there are $n!$ R^n gates and n N gates. Finally, we have applied our optimal synthesis tool to obtain much smaller circuits than previous methods.
Table 4. Comparing the cost of the 3-bits circuits built using R^3, NR^3 and NT-gate libraries before and after optimization.

Min Cost	Num spc in R^3 bfr optm.	Num spc in R^3 aft optm.	Num spc in NR^3 bfr optm.	Num spc in NR^3 aft optm.	Num spc in NT bfr optm.	Num spc in NT aft optm.	Num spc in NT aft optm.
0	1	1	7	7	7	7	7
1	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0
4	6	6	192	192	0	0	0
5	0	0	0	0	96	94	
6	0	0	0	0	0	0	0
7	0	9	851	0	0	0	0
8	33	24	3442	2591	0	16	
9	0	0	0	0	0	0	340
10	0	16	636	648	288		
11	0	68	6050	0	32		
12	180	96	16040	9353	0	179	
13	0	28	0	39	0	790	
14	0	162	0	2829	0	1487	
15	0	394	0	7175	2694	324	
16	960	422	16676	6331	0	574	
17	0	341	344	0	2052		
18	0	1121	0	1200	0	3616	
19	0	1919	0	1278	0	1462	
20	4686	1798	3928	1053	7640	1041	
21	0	1798	0	9	0	3405	
22	0	4218	0	14	0	5357	
23	0	5553	0	2	0	2894	
24	4059	495	34	7	0	1435	
25	0	3097	0	0	12881	3191	
26	0	4934	0	0	0	4369	
27	0	4578	0	0	0	2436	
28	15257	2410	0	0	806		
29	0	1407	0	0	0	1444	
30	0	1273	0	0	11502	1482	
31	0	524	0	0	761		
32	4555	56	0	0	125		
33	0	4	0	0	126		
34	0	4	0	0	109		
35	0	0	0	0	4489	60	
36	31	0	0	0	0	6	
37	0	0	0	0	0		
38	0	0	0	0	0		
39	0	0	0	0	0		
40	0	0	0	0	362	0	
Avg	25.701	23.954	14.062	13.388	25.766	22.321	
Table 5. Optimal quantum cost of 3-bits reversible circuits using NT, NCT, NCF, NFT, $NCTF$, $NCTPF$, NR^3 and R^3 libraries.

Min Cost	Num spc in NT	Num spc in NCT	Num spc in NCF	Num spc in NFT	Num spc in $NCTF$	Num spc in $NCTPF$	Num spc in NR^3	Num spc in R^3
0	7	7	1	7	1	1	5	1
1	0	48	9	48	9	9	0	0
2	0	324	51	192	51	51	0	0
3	0	607	187	408	187	187	0	0
4	0	601	393	480	393	405	195	6
5	94	1148	474	288	477	609	0	0
6	0	2462	215	592	260	998	0	0
7	0	3576	17	1962	338	2648	851	9
8	16	2710	48	3887	1335	4397	2591	24
9	340	2855	408	2916	3224	2712	0	0
10	288	5601	1919	1299	3686	5994	636	16
11	32	6567	3931	3683	902	10249	6050	68
12	179	3183	2634	7221	933	1750	9354	96
13	790	2043	462	6059	4053	3488	396	28
14	1487	3771	5	1465	8690	6640	2829	162
15	324	3496	78	3562	4903	182	7175	394
16	574	1284	1038	4201	244	0	6331	422
17	2052	36	6079	2049	1094	0	344	341
18	3616	0	9571	0	4346	0	1200	1121
19	1462	0	2036	0	4724	0	1278	1919
20	1041	0	12	0	470	0	1053	1798
21	3405	0	0	0	0	0	9	1798
22	5357	0	24	0	0	0	14	4218
23	2894	0	732	0	0	0	2	5553
24	1435	0	5496	0	0	0	7	4059
25	3191	0	4482	0	0	0	0	3097
26	4369	0	18	0	0	0	0	4934
27	2436	0	0	0	0	0	0	4578
28	806	0	0	0	0	0	0	2410
29	1444	0	0	0	0	0	0	1407
30	1482	0	0	0	0	0	0	1273
31	761	0	0	0	0	0	0	524
32	125	0	0	0	0	0	0	56
33	126	0	0	0	0	0	0	4
34	109	0	0	0	0	0	0	4
35	60	0	0	0	0	0	0	0
Avg	22.321	10.348	17.468	11.770	13.740	10.520	13.388	23.954
References

[1] De Vos, A.: Reversible computing: fundamentals, quantum computing, and applications. Quantum Computing and Applications, Wiley-VCH Verlag GmbH and Co.KGaA, 183–190 (2010).
[2] Yang, G., Song, X., Hung, W. N. N., Perkowski, M. A. and Seo, C.-J.: Synthesis of reversible circuits with minimal costs. CALCOLO, 45, 193–206 (2008).
[3] Osama, M., Younes, A. and Fahmy, M. H.: Integration of irreversible gates in reversible circuits using NCT library. IOSR J. Comput. Eng., 14, 69–79 (2013).
[4] Younes, A.: Tight bounds of the synthesis of 3-bit reversible circuits:NFT library. arXiv:1304.5804 (2013).
[5] Younes, A.: On the Universality of n-bit reversible gate libraries. Appl. Math. Inf. Sci., 9(5), 2579–2588 (2015).
[6] Yang, G., Song, X. Perkowski, M. A., Hung, W. N. N. and Seo, C.-J.: Minimal universal library for n × n reversible circuits. Comput. Math. Appl., 56(1), 160–165 (2008).
[7] Saeedi, M., Sedighi, M. and Zanami, M. S.: A Library-based synthesis methodology for reversible logic. Microelectron. J., (41), 185–194 (2010).
[8] Shende, L., De Vos, A. and Jacobs, G., Group theoretical aspects of reversible logic gates. J. Univers. Comput. Sci., 5(5), 307–321 (1999).
[9] Shende, V. V., Prasad, A. K., Markov, I. L., and Hayes, J. P.: Synthesis of reversible logic circuits. IEEE T. Comput. Aid. D., 22(6), 710–722 (2003).
[10] The GAP Group. GAP - Groups, Algorithms, and Programming, Version 4.6.3; 2013. [http://www.gap-system.org]
[11] Banerjee, A. and Pathak A.: An Algorithm for minimization of quantum cost. Appl. Math. Inform. Sci. 6(1), 157–165 (2012).
[12] Szyprowski, M. and Kerntopf, P.: An approach to quantum cost optimization in reversible circuits. IEEE Nanotechnology, International Conference,1521 - 1526 (2011).
[13] Al Mamuni, S. and Menville, D.: Quantum cost optimization for reversible sequential circuit. Int. J. Adv. Comput. Sci. Appl., 4(12), 15–21 (2013).
[14] Montaser, R., Younes, A. and Abdel-Aty, M.: Improving the quantum cost of NCT-based reversible circuit. Quant. Inf. Process., Springer, 14(2), 325–351 (2015).
[15] Chattopadhyay, A. Chandak, C. and Chakraborty, K.: Complexity analysis of reversible logic synthesis. arXiv:1402.0491v3 (2014).