Entanglement Entropy for the Charged BTZ Black Hole

Alexis Larrañaga

February 26, 2010

Observatorio Astronomico Nacional. Universidad Nacional de Colombia

Abstract

Using the AdS/CFT correspondence we calculate the explicit form of the entanglement entropy for the charged BTZ black hole. The leading term in the large temperature expansion of the entropy function for this black hole reproduces its Bekenstein-Hawking entropy and the subleading term, representing the first corrections due to quantum entanglement, behaves as a logarithm of the BH entropy.

1 Introduction

Recently, the idea of holography has gained a great attention. It claims that the degrees of freedom in $(d+2)$-dimensional quantum gravity will be comparable to those of quantum many body systems in $(d+1)$ dimensions. This was essentially found by remembering that the entropy of a black hole is not proportional to its volume, but to the area its event horizon (Bekenstein-Hawking entropy),

$$ S_{BH} = \frac{A}{4G}, \quad (1.1) $$

where G is Newton constant.

The discovery of the AdS/CFT correspondence show explicit examples where the holography is manifestly realized. This correspondence states that the quantum gravity on $(d+2)$-dimensional anti-de Sitter spacetime (AdS$_{d+2}$) is equivalent to a certain conformal field theory in $d+1$ dimensions (CFT$_{d+1}$). However, the fundamental mechanism of the AdS/CFT correspondence is not known today.

In this paper we investigate quantum entanglement in the context of three-dimensional (3D) AdS gravity, in particular of the charged Bañados-Teitelboim-Zanelli (BTZ) black hole[13], using the AdS3/CFT2 correspondence. In order to obtain the entropy function we will use the standard method for studying correlations in QFT described in [4] in which two external length-scales are
introduced in the boundary 2D CFT. One is a thermal wavelength \(\beta = \frac{1}{T} \) (with \(T \) the CFT’s temperature) and a spatial length \(\gamma \) which is the measure of the observable spatial region of the 2D universe.

2 Entanglement Entropy

Consider a 2D spacetime with a compact spacelike dimension with \(S^1 \) topology and length \(\ell \). If the only part of the universe accessible for measurement is a spacelike slice \(\Sigma \) with length \(\gamma \), we lose information about the degrees of freedom localized in the complementary region \(\Sigma' \). The entanglement entropy originated by tracing over the unobservable degrees of freedom is given by the von Neumann entropy,

\[
S^\text{ent} = -\text{Tr}_\Sigma [\rho_\Sigma \ln \rho_\Sigma],
\]

where \(\rho_\Sigma \) is the reduced density matrix, obtained by tracing the density matrix \(\rho \) over the states of the \(\Sigma' \) region,

\[
\rho_\Sigma = \text{Tr}_{\Sigma'} \rho.
\]

The entanglement entropy for the ground state of the 2D CFT at zero temperature, with a spacelike dimension with \(S^1 \) topology and infinite timelike direction (cylinder), is given by \[4, 14\]

\[
S^\text{ent}_\text{cyl} = c + \bar{c} \frac{6}{\ell} \ln \left(\frac{\ell}{\epsilon \pi \sin \frac{\pi \gamma}{\ell}} \right),
\]

where \(c \) and \(\bar{c} \) are the central charges of the 2D CFT and \(\epsilon \) is an ultra-violet cutoff used to regularize the divergence that appears because of the sharp boundary between the regions \(\Sigma \) and \(\Sigma' \).

When \(\ell \gg \gamma \), the spacelike dimension becomes infinite and the entanglement entropy is independent of \(\ell \). Therefore, the entanglement entropy for a 2D CFT at zero temperature on a plane is given by

\[
S^\text{ent}_\text{cyl} = c + \bar{c} \frac{6}{\ell} \ln \left(\frac{\gamma}{\epsilon} \right).
\]

However, if we consider a 2D CFT at finite temperature \(T = \frac{1}{\beta} \) on a plane, the entanglement entropy is

\[
S^\text{ent}_\text{cyl} = c + \bar{c} \frac{6}{\ell} \ln \left(\frac{\beta}{\epsilon \pi \sinh \frac{\pi \gamma}{\beta}} \right).
\]

As is well known, from the correspondence between 3D AdS gravity and 2D CFT (AdS3/CFT2) there follows that the entanglement entropy of a 2D CFT contains information about quantum gravity correlations of its 3D gravity holographical dual. In this particular case, the CFT has a central charge given by \[3 \[14\]
where L is the AdS length and G is the 3D newtonian constant.

3 The Charged BTZ Black Hole

The $(2+1)$-dimensional BTZ (Banados-Teitelboim-Zanelli) black holes have obtained great importance in recent years because they provide a simplified model for exploring some conceptual issues, not only about black hole thermodynamics \([8,1]\) but also about quantum gravity and string theory. The charged BTZ black hole is a solution of the $(2+1)$-dimensional gravity theory with a negative cosmological constant $\Lambda = -1/L^2$. The metric is given by\[ds^2 = -f(r)dt^2 + \frac{dr^2}{f(r)} + r^2 d\varphi^2,\] (3.1)

where

$$f(r) = -M + \frac{r^2}{L^2} - \frac{Q^2}{2} \ln \left[\frac{r}{L} \right]$$ (3.2)

is known as the lapse function and M and Q are the mass and electric charge of the BTZ black hole, respectively. The lapse function vanishes at the radii $r = r\pm$, where r_+ gives the position of the event horizon. The electric potential of this black hole is

$$\Phi = \frac{\partial M}{\partial Q} = -Q \ln \left[\frac{r}{L} \right]$$ (3.3)

while the Hawking temperature is given, as usual, by

$$T_H = \frac{1}{4\pi} \left. \frac{df(r)}{dr} \right|_{r=r_+} = \frac{r_+}{2\pi L^2} - \frac{Q^2}{8\pi r_+},$$ (3.4)

and its entropy by

$$S_{BH}^{\text{BTZ}} = \frac{A}{4G} = \frac{\pi r_+}{2G}.$$ (3.5)

The spinless charged BTZ black hole can be considered as the thermalization at temperature $T = T_H = \frac{1}{\beta_H}$ of the charged AdS spacetime. On the 2D boundary of the AdS spacetime, and in the large temperature limit ($r_+ \gg L$), this thermalization corresponds to a plane/cylinder transformation that maps the CFT on the plane in the CFT on the cylinder. The conformal map plane/cylinder has the form

$$z = \exp \left[\frac{2\pi}{\beta_H} (\varphi + it) \right].$$ (3.6)
The above transformation is the asymptotic form of the map between the BTZ black hole and AdS$_3$ in Poincaré coordinates, and corresponds to the conformal transformation that maps the entanglement entropy of a CFT at zero temperature (on the plane) in that of a CFT at finite temperature (in the cylinder). Correspondingly, the holographic entanglement entropy of the charged AdS spacetime becomes the holographic entanglement entropy of the BTZ black hole

\[S_{\text{ent}}^{\text{BTZ}} \approx \frac{c}{3} \ln \left[\frac{8r_+L^2}{\epsilon (4r_+^2 - L^2Q^2)} \sinh \left(\frac{\pi r_+}{L} - \frac{\pi LQ^2}{4r_+} \right) \right] \]

(3.14)

This entanglement entropy depends on the UV cutoff given by the parameter \(\epsilon \). To obtain a renormalized entropy we will subtract the contribution of the vacuum (i.e. the zero mass, zero temperature BTZ black hole solution). This is given by equation (2.4),

\[S_{\text{ent}}^{\text{vac}} = S_{\text{ent}}^{\text{cyl}} (\gamma = 2\pi L) = \frac{c}{3} \ln \left(\frac{2\pi L}{\epsilon} \right) \]

(3.9)

Therefore, the renormalized entanglement entropy is given by

\[S_{\text{ent}}^{\text{BTZ}} = S_{\text{ent}}^{\text{BTZ}} - S_{\text{ent}}^{\text{vac}} \]

(3.10)

or using (2.6),

\[S_{\text{ent}}^{\text{BTZ}} = \frac{L}{2G} \ln \left[\frac{4r_+L}{\pi (4r_+^2 - L^2Q^2)} \sinh \left(\frac{\pi r_+}{L} - \frac{\pi LQ^2}{4r_+} \right) \right] \]

(3.12)

Note that, as expected, the renormalized entanglement entropy goes to zero as \(4r_+^2 - L^2Q^2 \to 0 \) or \(r_+ \to \frac{LQ}{2} \) (this is the condition for the charged BTZ black hole ground state). The entanglement entropy for the charged BTZ black hole reduces to the entropy obtained for the spinless BTZ solution reported in [4] and using the relation between 2D and 3D Newton constant,

\[G_2 = \frac{L}{4G} \]

(3.13)

it reproduces exactly the result of [3].

In the large temperature limit \((r_+ \gg L) \), equation (3.12) can be expanded as

\[S_{\text{ent}}^{\text{BTZ}} \approx \frac{\pi r_+}{2G} - \frac{\pi L^2Q^2}{2G} - \frac{L}{2G} \ln \left[\frac{\pi (4r_+^2 - L^2Q^2)}{4r_+L} \right] + O \left(\frac{L}{r_+} \right)^2 \]

(3.14)
The first term in the expansion is the Bekenstein-Hawking entropy for the BTZ black hole, $S_{BH}^{BTZ} = \frac{\pi r_+}{2G}$, and describes the situation in which thermal fluctuations dominates, i.e. the entanglement entropy becomes the thermodynamical entropy in this limit. The second term describes the first corrections to the entropy due to quantum entanglement. This behavior reproduces results of Cadoni and Melis\[4\], as well as the logarithmic term obtained in [10, 12].

It is also interesting that the second term in (3.14) is an inverse of area term in subleading order similar to the one obtained by S. K. Modak in the equation (63) of\[10\] for the rotating BTZ black hole and also in the general case studied by Akbar and Saifullah \[2\]. In this paper, the authors calculate the entropy of the black hole considering the quantum tunneling of paricles through the event horizon, using two unknown parameters, α_1 and α_2. The present analysis let us fix those parameters for the charged BTZ black hole as

$$\alpha_1 = \frac{L}{8\pi G}$$

$$\alpha_2 = \frac{L^3 Q^2}{64G}$$

4 Conclusion

We have derived the entanglement entropy function for the charged BTZ black hole, obtaining an expansion with a leading term that corresponds to the thermodynamical entropy and subleading terms that describe the corrections due to quantum entanglement. This result sheds light on the meaning of the holographic entanglement entropy for the charged BTZ black hole. The resulting function for the entropy seems to have a meaning only in the regime $r_+ \gg L$, i.e. for macroscopic black holes.

Acknowledgements. This work was supported by the Universidad Nacional de Colombia. Project Code 2010100.

References

[1] A. Ashtekar, Adv. Theor. Math. Phys. 6 (2002) 507
[2] M. Akbar, K. Saifullah. arXiv:1002.3581
[3] J. D. Brown and M. Henneaux, Commun. Math. Phys. 104 (1986) 207.
[4] M. Cadoni, M. Melis. arXiv:0907.1559
[5] M. Cadoni. Phys. Lett. B 653 (2007) 434-438
[6] P. Calabrese and J. Cardy, J. Stat. Mech. 0406 (2004) P002
[7] P. Calabrese and J. Cardy, arXiv:0905.4013
[8] S. Carlip, Class. Quant. Grav. 12 (1995)2853.
[9] C. Holzhey, F. Larsen and F. Wilczek, Nucl. Phys. B 424 (1994) 443
[10] S. K. Modak. Phys. Lett. B 671 (2009) 167-173
[11] D. Maity, S. Sarkar, N. Sircar, B. Sathiapalan, R.Shankar, arXiv:0909.4051
[12] R. B. Mann, S. N. Solodukhin. Phys. Rev. D 55 (1997) 3622-3632
[13] C. Martinez, C. Teitelboim and J. Zanelli. Phys. Rev. D61 (2000) 104013
[14] T. Nishioka, S. Ryu and T. Takayanagi. J. Phys. A. 42 (2009) 504008