The optimal concentration of topical hydroxycamptothecin in preventing intraarticular scar adhesion

Yuan Liang*, Yu Sun*, Xiaolei Li, Lianqi Yan, Jingcheng Wang, Jinlong Hu, Huan Yu, Haixiang Xiao, Hui Chen, Zhongwei Sun, Jun Cai, Xinmin Feng, Chuanzhi Xiong & Jinshan He

Department of Orthopedics, Clinical Medical College of Yangzhou University, Subei People’s Hospital, Nantong West Road 98, Yangzhou, 225001, China.

10-Hydroxycamptothecin could reduce intraarticular adhesion by inhibiting fibroblasts proliferation after knee surgery. However, the ideal concentration of hydroxycamptothecin have not been defined. This study was tried to verify the optimal concentration of 10-hydroxycamptothecin in preventing knee intraarticular adhesion. Sixty rabbits were randomly divided into five groups. Approximately 10 mm × 10 mm of the cortical bone was removed from both sides of the femoral condyle and the underneath cancellous bone was exposed. Various concentrations of hydroxycamptothecin (0.1 mg/ml, 0.5 mg/ml, 1.0 mg/ml, 2.0 mg/ml) or saline were applied to the decorticated areas for 10 minutes. After four weeks, the degree of intraarticular adhesion was assessed by macroscopic evaluation, biochemical analysis of hydroxyproline content and histological evaluation. The results demonstrated that the extent of knee intraarticular adhesion in 1.0 mg/ml group and 2.0 mg/ml hydroxycamptothecin group were significantly lower than those of 0.5 mg/ml group, 0.1 mg/ml hydroxycamptothecin group and control group. Moreover, there was no significant difference between 1.0 mg/ml group and 2.0 mg/ml hydroxycamptothecin group. In conclusion, topical application of 1.0 mg/ml hydroxycamptothecin may be the optimal concentration in reducing intraarticular adhesion after knee surgery in rabbits.

The formation of intraarticular adhesion is a common complication after total knee arthroplasty or anterior cruciate ligament (ACL) reconstruction1–3. Intraarticular adhesion of knee can extremely debilitate for the patients, which often causes the activities of daily living painful and difficult, such as climbing stairs, rising from a chair and tying a shoelace4,5.

A lot of treatment strategies have been made to reduce intraarticular adhesion formation after knee surgery. For example, manipulation under anaesthesia, arthroscopic lysis and open debridement are used to relieve arthrotrophic symptoms6–8. Moreover, many materials and pharmaceutical agents have also been used to prevent intraarticular adhesion in experimental and clinical studies. The result of these treatments are controversial and complete prevention of intraarticular adhesion has not yet been achieved9,10.

Recently, it has been reported that 10-hydroxycamptothecin (HCPT), an chemotherapeutic drug, could inhibit fibroblasts proliferation and reduce epidural scar adhesion after laminectomy surgery11–13. Our previous study showed that topical use of 0.1 mg/ml hydroxycamptothecin could prevent knee intraarticular adhesion by inhibiting fibroblasts proliferation in a rabbit model14.

However, the optimal concentrations of topical HCPT in preventing intraarticular adhesion is still unclear. Based on previous study, we established the intraarticular adhesion in rabbits model and determine the optimal concentration of topical HCPT in preventing intraarticular adhesion after knee surgery. This study may be helpful to reduce complications after knee surgery.

Results

The surgery was well tolerated by all rabbits. There was no any sign of wound infection, cutaneous necrosis and mortality.

Macroscopic evaluation of intraarticular adhesion. Macroscopic observation showed that no or weak intraarticular fibrous adhesions in HCPT-treated groups were found around the decorticated areas, which can be dissected by manual traction. However, there was no significant difference in 1.0 mg/ml HCPT group and...
Biochemical analysis of hydroxyproline content. The hydroxyproline content of intraarticular scar tissues in HCPT-treated groups was significantly less than that in control group (p < 0.05). The hydroxyproline content decreased in a dose-dependent manner in HCPT-treated groups. The hydroxyproline content in 1.0 mg/ml HCPT group and 2.0 mg/ml HCPT group were 19.67 ± 1.21 μg/mg and 18.17 ± 1.94 μg/mg, which were significantly less than those in 0.5 mg/ml HCPT group (26.33 ± 1.75 μg/mg, p < 0.05), 0.1 mg/ml HCPT group (31.67 ± 2.50 μg/mg, p < 0.05) and control group (51.33 ± 2.58 μg/mg, p < 0.05). The hydroxyproline content in 0.5 mg/ml HCPT group was also less than those in 0.1 mg/ml HCPT group (p < 0.05) and control group (p < 0.05). However, the hydroxyproline content showed no significant difference between 1.0 mg/ml group and 2.0 mg/ml HCPT group (p = 0.219). The results of One-Way ANOVA were shown in table 2, the statistical analysis of hydroxyproline contents in the intraarticular scar tissue for each group were shown in the Fig. 1.

Effect of HCPT on intraarticular adhesion in histological analysis. In control group, dense scar adhesions were found around the decorticated areas of femoral condyle, which tethered surrounding soft tissues to the femur. In 0.1 mg/ml and 0.5 mg/ml HCPT-treated groups, mild scar tissues were observed around the decorticated areas compared with those of control group. However, no or loose fibrous adhesion tissue were observed in 1.0 mg/ml 2.0 mg/ml HCPT-treated groups (Fig. 2).

Effect of HCPT on intraarticular collagen density. In Masson’s trichrome staining, collagen density of intararticular adhesion tissue in HCPT-treated groups was coincidence with hematoxylin and eosin staining. The collagen density of intararticular tissue in control group was dense. However, the collagen density was weak in 1.0 mg/ml and 2.0 mg/ml HCPT-treated groups, which revealed significant decrease compared with those in 0.5 mg/ml and 0.1 mg/ml HCPT-treated groups. Moreover, the collagen density was moderate in 0.5 mg/ml HCPT-treated group, which was also revealed decrease compared with that in 0.1 mg/ml HCPT group (Fig. 3).

Table 2 | The result of One-Way ANOVA as follows

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	4299.2	4	1074.8	253.093	0.000
Within Groups	106.167	25	4.247		
Total	4405.367	29			

Discussion

This study demonstrated that topical applied HCPT could reduce collagen synthesis and prevent intraarticular scar adhesion in rabbit models after knee surgery. 1.0 mg/ml and 2.0 mg/ml HCPT-treated groups had better effect in preventing intraarticular scar adhesion compared with other HCPT-treated groups and control group. However, there was no significant difference between 1.0 mg/ml HCPT group and 2.0 mg/ml HCPT group. Moreover, the higher of the concentration of HCPT, the more possibility of the potential toxicity for the wound healing, articular cartilage and survival. Considering the preventive effect and potential toxicity of HCPT, 1.0 mg/ml HCPT maybe the optimal concentration in preventing intraarticular scar adhesion in rabbit models.

Though the pathophysiological mechanism of knee intraarticular adhesion still remain unclear, many studies have reported that some cytokines and cells were essential in the formation of scar adhesion. The fibroblast was assumed to play an extremely important role on intraarticular scar adhesion. After being activated by some cytokines, such as fibroblast growth factor (FGF) and transforming growth factor-beta (TGF-β), the fibroblasts proliferate, synthesize collagen and form intraarticular scar adhesion.

Camptothecin (CPT) is one of the camptothecin analogues that is isolated from extracts of Camptotheca acuminate. CPT is the inhibitor of topoisomerase 1 and can convert topoisomerase 1 into a cellular poison by inhibiting the religation step of the DNA nicking-closing reaction, thereby trap topoisomerase 1 in a covalent complex with DNA. Then the stable topoisomerasel-CTP-DNA complex can result in the cytotoxic lesions. CPTs exhibit a broad spectrum of anti-tumor activity against a panel of solid tumors in animal models. Among natural CPTs, 10-hydroxycamptothecin (HCPT) has been shown to be more active and less toxic in treating malignant tumor in vitro and in vivo.

Previous studies showed that HCPT could inhibiting fibroblast proliferation and reduce scar formation after lamincoty. Recently, we found that topical applied 0.1 mg/ml HCPT could reduce knee intraarticular adhesion in rabbit models. However, there is no report about the optimal concentrations of

![Figure 1](image-url)
HCPT in preventing knee intraarticular adhesion in rabbit models. The present study were to evaluate the optimal concentrations of topical applied HCPT in inhibiting collagen synthesis and preventing intraarticular scar adhesion.

In the study, we found that all HCPT-treated groups could reduce intraarticular fibrosis by reducing hydroxyproline content and collagen synthesis. Hydroxyproline is the permanent component of the collagen and accounts for 13.4% of the amino acid in collagen tissue. The hydroxyproline content could reflect the formation of collagen and indicate the amount and consistency of scar tissue. However, topical application of 1.0 mg/ml HCPT group and 2.0 mg/ml HCPT group had better effect compared with other groups in reducing intraarticular scar adhesion. Moreover, there is no significantly adverse effect in the signs of wound healing and infections. Considering the preventive effect and potential toxicity of HCPT, we recommend that topical application of 1.0 mg/ml HCPT maybe the optimal concentration in preventing knee intraarticular scar adhesion in rabbit models.

In this study, we only evaluated the effect of different concentrations of HCPT on reducing intraarticular scar adhesion by morphology and histology. However, as an anti-tumor agent, HCPT could inhibit various cells proliferation and affect wound healing. As a scientific and rigorous experiment, we need more experiments to verify its specific mechanism, safety and potential toxicity in preventing intraarticular scar adhesion before medical application.

Methods

Ethics statement. This study was carried out in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All protocol were performed in accordance with the approved guidelines and were approved by the Ethics Committee of Clinical Medical College of Yangzhou University.

Animals. Sixty mature male New Zealand white rabbits, weighing 2.0 to 3.0 kg, were used for this study. They were purchased from the experimental animal center of Yangzhou university, China. The rabbits were randomly and equally divided into five groups: 0.1 mg/ml group; 0.5 mg/ml group; 1.0 mg/ml group; 2.0 mg/ml group or control (saline) group. Before the experiment, the rabbits were acclimated to the condition of laboratory for 1 week.

Reagents. HCPT was obtained from Santa Cruz Biotechnology (Santa Cruz, CA).

Animal model. The animal model of intraarticular adhesion was developed in the knee of New Zealand White rabbits according to previous study. After general anesthesia by intravenous administration of 2% pentobarbital (1.5 ml/kg), the femoral condyle of the left femur was exposed through a medial parapatellar approach. The cortical bone on both sides of the condyle about 10 mm × 10 mm was removed with a dental burr, and the underlying cancellous bone was exposed. The articular cartilage was left intact.
After satisfactory hemostasis, the decorticated areas of femoral condyle were covered with cotton pads soaked with various concentrations of HClP or saline. The surrounding tissues were covered by wet gauzes to avoid getting in touch with the agent. After 10 min, the cotton pads were removed and then the decorticated areas of femoral condyle were irrigated immediately. After the procedure, the articular capsule and skin were closed with silk sutures, and the knee was immobilized in the fully flexed position with a Kirschner wire for 4 weeks. Cefazolin sodium (50 mg/kg) was administered intramuscularly to prevent infection from the postoperative 3 days.

Macroscopic evaluation. Four weeks after the surgery, six rabbits were randomly selected from each group and sacrificed with overdose of pentobarbital. The knee was opened through a cruciate ligament incision. Gross observation of the intraarticular adhesions was done by three professional pathologists who were blinded to the treatment groups according to the visual scoring system: Grade 1: no adhesions; Grade 2: weak, mild, filmy adhesions that can be easily dissected by minimal manual traction; Grade 3: moderate adhesions that can be dissected by manual traction; and Grade 4: dense and firmly fibrous adhesions that must be surgically removed.

Biochemical analysis of hydroxyproline content. After macroscopic evaluation, about 20 mg scar tissue was harvested from the decorticated areas of the knee joint from each rabbit for hydroxyproline content analysis. The hydroxyproline content in scar tissue was determined according to previous methods. The samples were lyophilized, ground and hydrolyzed with 6 mol/L HCl at 130 °C for 12 h separately. Then they were neutralized with 2.5 N NaOH on the indication of methyl red. 1 ml chloromamine T was added to the hydrolyzed samples and hydroxyproline standards of four known concentrations. After incubation for 20 min at room temperature, 1 ml hydroxyproline developer (β-dimethylaminobenzaldehyde solution) was added to the samples and the standards. The absorbance of the solution was measured at 558 nm wavelength, and the levels of hydroxyproline per milligram of scar tissue were calculated using the standard curve constructed by a serial concentrations of commercial hydroxyproline.

Histological analysis. Six remaining rabbits in each group were killed by intravenous injection of lethal dose of pentobarbital for histological analysis. The connective tissue involved in fibrotic adhesion scar formation around joints were excised. Then the samples were fixed in 4% paraformaldehyde, and embedded in paraffin. Eight successive transversal sections of four-micrometer were obtained. Four odd sections of each group were stained with hematoxylin and eosin (H & E) and the intraarticular scar adhesions were evaluated under the light microscope with the magnification ×200. Four even sections of each group were stained with Masson’s trichrome and the collagen density of intrarticular adhesion tissue was calculated using the standard curve constructed by a serial concentrations of natural product DNA topoisomerase I inhibitors 10-hydroxycamptothecin and camptothecin in SCID mice bearing human breast cancer xenografts. Int J Oncol. 10, 1147–1156 (1997).

Zhu, L. et al. Hydroxyproline contents in the rabbit knee joint after surgery: a study on the prevention of postoperative adhesions. Acta Orthop Traumatol Traumatol. 440–447 (1961).

Statistical analysis. All of the statistical analyses were performed using the SPSS software (version 15.0). The results of the data were expressed as mean ± standard deviation values. The single factor analysis of variance and q-test were used to calculate the significance in hydroxyproline content. Statistically significant differences were considered when p < 0.05.

1. Strum, G. M. et al. Acute anterior cruciate ligament reconstruction. Analysis of complications. Clin Orthop Relat Res. 184–189 (1990).
2. Yernan, H. S. et al. Stiffness after total knee arthroplasty: prevalence, management and outcomes. Knee. 13, 111–117 (2006).
3. Aglietti, P., Buzzi, R., De Felice, R., Paolini, G. & Zacheretti, G. Results of surgical treatment of arthrofibrosis after ACL reconstruction. Knee Surg Sports Traumatol Arthrosc. 3, 83–88 (1995).
4. Laubenthal, K. N., Smidt, G. L. & Kettelkamp, D. B. A quantitative analysis of knee complications after anterior cruciate ligament reconstruction. J Bone Joint Surg Br. 81-B, 27–29 (1999).
5. Fukui, N., Tashiro, T., Hiroaka, H., Oda, H. & Nakamura, K. Adhesion formation can be reduced by the suppression of transforming growth factor-beta1 activity. J Orthop Res. 18, 212–219 (2000).
6. Brunelli, G., Longinotti, C., Bertazzo, C., Pavesio, A. & Pressato, D. Anticancer effects of low-dose 10-hydroxycamptothecin in human colon cancer. Oncol Rep. 15, 1273–1279 (2006).
7. Peng, Y. H. et al. Anticancer effects of 10-hydroxycamptothecin in a murine melanoma pulmonary metastasis model in vivo and in vitro. Toxicol In Vitro. 25, 513–520 (2011).
8. Wu, R., Wu, Y., Yuan, Y. R. & Qu, Z. Y. Hydroxyproline developer (β-dimethylaminobenzaldehyde solution) was added to the samples and the standards. The absorbance of the solution was measured at 558 nm wavelength, and the levels of hydroxyproline per milligram of scar tissue were calculated using the standard curve constructed by a serial concentrations of commercial hydroxyproline.

Statistical analysis. All of the statistical analyses were performed using the SPSS software (version 15.0). The results of the data were expressed as mean ± standard deviation values. The single factor analysis of variance and q-test were used to calculate the significance in hydroxyproline content. Statistically significant differences were considered when p < 0.05.

1. Strum, G. M. et al. Acute anterior cruciate ligament reconstruction. Analysis of complications. Clin Orthop Relat Res. 184–189 (1990).
2. Yernan, H. S. et al. Stiffness after total knee arthroplasty: prevalence, management and outcomes. Knee. 13, 111–117 (2006).
3. Aglietti, P., Buzzi, R., De Felice, R., Paolini, G. & Zacheretti, G. Results of surgical treatment of arthrofibrosis after ACL reconstruction. Knee Surg Sports Traumatol Arthrosc. 3, 83–88 (1995).
4. Laubenthal, K. N., Smidt, G. L. & Kettelkamp, D. B. A quantitative analysis of knee motion during activities of daily living. Phys Ther. 52, 43–47 (1972).
5. Esler, C. N., Lock, K., Harper, W. M. & Gregg, P. J. Manipulation of total knee replacement. Is the flexion gained retained? J Bone Joint Surg Br. 81-B, 27–29 (1999).
6. Fukui, N., Tashiro, T., Hiroaka, H., Oda, H. & Nakamura, K. Adhesion formation can be reduced by the suppression of transforming growth factor-beta1 activity. J Orthop Res. 18, 212–219 (2000).
7. Brunelli, G., Longinotti, C., Bertazzo, C., Pavesio, A. & Pressato, D. Adhesion reduction after knee surgery in a rabbit model by Hyaloglide, a hyaluronan derivative gel. J Orthop Res. 23, 1377–1382 (2005).
8. Kim, D. H., Gill, T. J. & Millett, P. J. Arthroscopic treatment of the arthrofibrotic knee. Arthroscopy. 20, 187–194 (2004).
9. Millett, P. J., Williams, R. J., 3rd & Wickiewicz, T. L. Open debridement and soft-tissue release as a salvage procedure for the severely arthrofibrotic knee. Am J Sports Med. 27, 552–561 (1999).
10. Babis, G. C., Trousdale, R. T., Pagnano, M. W. & Morrey, B. F. Poor outcomes of isolated tibial insert exchange arthroplasty and arthrolysis for the management of stiffness following total knee arthroplasty. J Bone Joint Surg Am. 83-A, 1534–1536 (2001).
11. Sun, G. et al. The effect of 10-hydroxycamptothecin in preventing fibroblast proliferation and epidermal scar adhesion after laminecotomy in rats. Eur J Pharmacol. 593, 44–48 (2008).
12. Tang, W., Zhang, Y., Qian, C., Yuan, Z. & Du, J. Induction and mechanism of apoptosis by hydroxyproline in human Tenon’s capsule fibroblasts. Invest Ophthalmol Vis Sci. 53, 4874–4880 (2012).