Analysis of Mitragynine in Blood Samples using Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS)
Table of Contents

INTRODUCTION .. 2
MATERIALS AND METHODS .. 3
 Chemicals and Standards ... 3
 Materials .. 3
 Instrumentation ... 3
 Instrument Parameters ... 4
 Analyte MS/MS Fragmentation Parameters .. 5
 Mobile phase A: 0.1% Formic Acid in 10 mM Ammonium Formate 6
 Mobile phase B: 0.1% Formic Acid in Acetonitrile .. 6
RESULTS .. 8
REFERENCES ... 13
APPENDIX .. 14
 Appendix 1: MRM Mitragynine Reference Standard .. 14
 Appendix 2: MRM Sample 107553 ... 18
 Appendix 3: MRM Sample 107558 ... 22
 Appendix 4: MRM Sample 107559 ... 26
 Appendix 5: MRM Sample 107561 ... 30
 Appendix 6: MRM Sample 107563 ... 34
 Appendix 7: MRM Sample 107564 ... 38
 Appendix 8: MRM Sample 107565 ... 42
 Appendix 9: MRM Sample 107566 ... 46
 Appendix 10: MRM Sample 107567 ... 50
INTRODUCTION

A method using solid-phase extraction (SPE) and liquid chromatography-tandem mass spectrometry was performed to detect and quantify for mitragynine in 15 human serum samples. These samples were submitted to USAINS Biomics Laboratory Testing Services Sdn Bhd (BIOMICS) by the Centre for Drug Research, Universiti Sains Malaysia (USM). The sample extraction procedure was modified from a published and validated method by Lee, M.J. (2016) and Lee et al. (2018). Mitragynine was identified with multiple reaction monitoring (MRM) in the positive electrospray ionization (ESI) mode using nalorphine as the internal standard (IS).

A batch of 9 human serum samples were submitted for analysis and quantification of mitragynine. These samples were subjected to solid-phase extraction (SPE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis modified from a method validated by Lee, M.J. (2018).

No.	Laboratory Code	Sample ID
1	107553	10039288
2	107554	10039286
3	107559	10039287
4	107561	20038840
5	107563	10040642
6	107564	10040935
7	107565	10040906
8	107566	10040890
9	107567	10040891

Table 1: Sample identification and coding for the 9 human serum samples received for mitragynine analysis.
MATERIALS AND METHODS

Chemicals and Standards

Chemicals	Company / Source
Mitragynine	Chemtron Biotechnology Sdn Bhd, Malaysia.
Nalorphine	Cerilliant Corporation, Round Rock, Texas
Methanol (HPLC grade)	Fischer Scientific, UK.
Acetonitrile (ACN) HPLC grade	Merck KGaA, Darmstadt, Germany
Ammonium formate	Fluka, Switzerland
Formic acid, OPTIMA LC/MS	Fischer Scientific, Fair Lawn, NJ07410
Ammonium hydroxide	J.T. Baker®, USA
Hydrochloric acid	Fischer Chemicals, USA
Formic acid	Fluka Analytical, Germany, Sigma-Aldrich Corporation
Puriss p.a. eluent additive for LC-MS ~ 98% (T)	
Methanol (HPLC grade)	Fisher Scientific UK

Materials

Materials Description	Company / Source
Bond-Elut Certify SPE (100 mg, 1 mL)	Agilent Technologies Inc., USA
SB-C18 Guard Cartridge Dimension: 4.6 mm x 12.5 mm, 5 µm	Agilent Technologies Inc., USA
ZORBAX Eclipse XDB-C18 HPLC Column Dimension: 4.6 mm x 150 mm, 5 µm	Agilent Technologies Inc., USA

Instrumentation

Instrument Description	Company / Source
Agilent Technologies 1290 Infinity II High-Performance Liquid Chromatograph (HPLC) with quaternary pump	Agilent Technologies Inc., USA
Liquid Chromatography-Mass Spectrometry (LC-MS) System Model: 6470 Triple Quad LC/MS with 1290 Infinity II HPLC using Agilent Infinity II 1290 quaternary pump	Agilent Technologies Inc., USA
Instrument Parameters

The following table showed the instrument parameters used for the Agilent HPLC and LC-MS System for the analysis of mitragynine.

Instrument Parameter	Parameter Description			
Sample injection volume:	5 µL			
Column compartment temperature:	35°C			
Mobile phases:	**A**: 0.1% formic acid in 10 mM ammonium formate			
	B: 0.1% formic acid in acetonitrile			
Solvent gradient programme:				
	Time (minute)	**Mobile Phase** % A	% B	**Flow rate** (mL/min)
	0	90	10	1.0
	9	0	100	1.0
	12	0	100	1.0
	12.2	90	10	1.5
	20	90	10	1.5
Post-run time:	2 minutes			
MS/MS conditions:				
	Gas temperature: 300°C			
	Gas flow: 5 L/min			
	Nebulizer pressure: 45 psi			
	Sheath gas temperature: 250°C			
	Sheath gas flow: 11 L/min			
	Capillary voltage: 3500 V			
	Nozzle voltage: 500 V			
	MS1 temperature: 100°C			
	MS2 temperature: 100°C			

Table 2: The Agilent HPLC and 6470 Triple Quad LC-MS instrument parameters for the analysis of mitragynine in human serum sample.
Analyte MS/MS Fragmentation Parameters

Analyte	Precursor ion	Product ion	Collision energy (CE)	Fragmentor voltage (V)
Mitragynine	399.2	174.1	21	176
	238.1	50	29	176
	226.1	29	176	
	159.1	50	176	
Nalorphine	312.2	152.1	74	62
	77.1	110	62	

The following figure is a proposed fragmentation and structural rearrangements pathway of mitragynine.

![Proposed fragmentation and structural rearrangements pathway of mitragynine (Avula et al., 2015).](image)

Figure 1: Proposed fragmentation and structural rearrangements pathway of mitragynine (Avula et al., 2015).
Mobile Phase A: 0.1% Formic Acid in 10 mM Ammonium Formate

Weigh 0.63 g ammonium formate into a 1 L volumetric flask and dissolve in approximately 500 mL of deionised water. Then, add 1 mL of formic acid into the solution and make up volume to 1 L with deionised water.

Mobile Phase B: 0.1% Formic Acid in Acetonitrile

Dispense 1 mL of formic acid into a 1 L volumetric flask and make up volume to 1 L with acetonitrile.

Sample Preparation and Solid-Phase Extraction

In this experiment, nalorphine was used as the internal standard to correct for extraction efficiency and helped to improve the method accuracy and precision. The mitragynine 1 mg/mL stock solution was prepared in duplicates (stock solution A and stock solution B). One stock was used for calibration standards preparation and another stock used for quality control purposes.

The 1 mg/mL mitragynine stock solution A was diluted to 1 µg/mL, 10 µg/mL, and 100 µg/mL working solutions with methanol to prepare the series of calibrators.

Calibrator	Calibrator Concentration (ng/mL)	Concentration of Working Solution A (µg/mL)	Volume of Working Solution Required (µL)	Volume of Blank Serum Sample (µL)
C0	0	-	-	1,000
C1	10	1	10	990
C2	100	10	10	990
C3	250	10	25	975
C4	500	100	5	995
C5	750	100	7.5	993
C6	1,000	100	10	990

Table 3: Table summarizing the preparation of the series of calibrators in blank serum matrix.

The 1 mg/mL mitragynine stock solution B was diluted to 10 µg/mL and 100 µg/mL working solutions with methanol to be used for spiking into blank serum sample.

QC Sample	Calibrator Concentration (ng/mL)	Concentration of Working Solution B (µg/mL)	Volume of Working Solution Required (µL)	Volume of Blank Serum Sample (µL)
QC-L	55	10	5.5	995
QC-M	375	10	37.5	963
QC-H	875	100	8.75	992

Table 4: Table summarizing the preparation of the 3 levels of QC in blank serum matrix.
All the coded serum samples were mixed well and centrifuged at 3,000 rpm at room temperature for 5 minutes. The same was applied to the series of calibrators and QC samples.

A 100 µL of each calibrator and QC sample was dispensed into the respective microcentrifuge tube and added with 2.5 µL of 10 µg/mL nalorphine (internal standard). They were mixed thoroughly ready to be loaded onto the solid-phase extraction (SPE) cartridges.

A 100 µL of the centrifuged serum samples were aliquoted into the respective microcentrifuge tubes and diluted with 900 µL of blank serum. The diluted serum samples were mixed thoroughly and 100 µL of each diluted sample was transferred to a new microcentrifuge. Each sample was then added with 2.5 µL of 10 µg/mL nalorphine and vortexed to mix well ready to be loaded onto the SPE cartridges.

The Bond-Elut Certify II Solid-Phase Extraction cartridges were conditioned sequentially with 1 mL of methanol and distilled water. Then, 100 µL of the respective calibrators, QC samples, and subject test samples were loaded onto the assigned SPE cartridges. The SPE cartridges were then washed with 1 mL of distilled water followed by 10 mM hydrochloric acid, and finally methanol. The cartridges were then vacuum-dried before eluting with freshly prepared 2% (v/v) ammonium hydroxide in methanol (elution solvent). The eluent was dried at 60°C under a gentle stream of nitrogen. The dried sample was reconstituted with 100 µL of the starting mobile phase (mobile phase A : mobile phase B, 90:10, v/v) and filtered prior to analysis with the Agilent Technologies 6470 Triple Quad LC/MS System coupled with the Agilent Technologies Infinity II 1290 High Performance Liquid Chromatography System (LC-MS/MS).
RESULTS

The following table summarized the concentration (µg/mL) of mitragynine detected in the 9 human plasma samples using the extraction method mentioned in the previous section. Each sample was subjected to a 100 times dilution. Therefore, the final concentrations reported in table 5 were after taking the dilution factor into consideration.

No.	Laboratory Code	Sample ID	Mitragynine Concentration in serum (µg/mL)
1	107553	10039288	11.3
2	107554	10039286	9.6
3	107559	10039287	20.4
4	107561	20038840	22.4
5	107563	10040642	3.6
6	107564	10040935	8.5
7	107565	10040906	6.8
8	107566	10040890	2.5
9	107567	10040891	8.0

Table 5: Summary of analysis for the detection of mitragynine in 9 human serum samples. *ND – Not detected.

A typical MRM chromatogram for mitragynine reference standard was depicted in figure 2.

A typical MRM chromatogram for mitragynine in human serum sample was shown in figure 3. Mitragynine isomers (i.e. speciogynine, mitracilliatine, speciocilliatine, paynantheine, and isopaynantheine) might contribute to the chromatographic peaks after the mitragynine chromatographic peak. However, the data was non conclusive since the reference standards for the isomers were not available.
Figure 2: Typical MRM chromatogram of mitragynine reference standard using the ZORBAX Eclipse XDB-C18 HPLC column (4.6 mm x 150 mm; 5 μm).
Figure 3: Typical MRM chromatogram of mitragynine in human serum sample using the ZORBAX Eclipse XDB-C18 HPLC column (4.6 mm x 150 mm; 5 μm).
The calibration curve for calculating the 15 human serum samples were as shown in figure 4 below.

![Graph of the calibration curve](image)

Figure 4: Typical MRM chromatogram of mitragynine reference standard using the ZORBAX Eclipse XDB-C18 HPLC column (4.6 mm x 150 mm; 5 μm).

The raw data for the calibration curve, QC levels, and 15 human serum samples were as shown in the table below.

Calibrator	Concentration (ng/mL)	AUC	Ratio	Average Ratio	
		Mitragynine	Nalorphine (IS)		
C0	0	0	599,030	0.00	0.00
C1	10	58,356	590,624	0.10	0.08
C2	100	448,965	639,946	0.70	0.64
C3	250	1,395,946	724,915	1.93	1.91
C4	500	2,223,959	735,630	3.02	3.09
C5	750	2,484,201	495,904	5.01	5.94
C6	1,000	6,200,765	706,166	8.78	7.92

| | | 4,496,430 | 636,970 | 7.06 |

Table 6: Chromatographic area under the curve (AUC) data for the mitragynine calibration curve shown in figure 4.
Table 6: Chromatographic area under the curve (AUC) data for the mitragynine calibration curve shown in figure 4.

Sample ID	Conc. (ng/mL)	AUC	Ratio	Calculated Conc. (ng/mL)	Final Conc. (ng/mL)	% Recovery	
QC-L	0	199,606	650,844	0.31	55.25	56.90	103.5
		173,033	520,096	0.33	58.54		
QC-M	10	1,483,402	575,035	2.58	342.97	330.26	88.1
		1,557,071	654,538	2.38	317.56		
QC-H	100	3,387,103	604,964	5.60	725.15	778.85	89.0
		3,452,392	535,468	6.45	832.56		

Table 7: Chromatographic area under the curve (AUC) data for mitragynine in the 15 human serum samples.

Sample ID	AUC	Ratio	Calculated Conc. (ng/mL)	Final Conc. (ng/mL)	
107553	462,534	606,406	0.76	112.98	11,298.06
107554	397,323	629,384	0.63	96.34	9,634.03
107555	-	776,545	-	-	-
107556	261,734	561,029	0.47	75.48	7,548.42
107557	279,886	522,271	0.54	84.27	8,426.61
107558	466,885	610,617	0.76	113.22	11,321.67
107559	768,454	517,878	1.48	204.26	20,425.97
107560	1,884,687	538,746	3.50	459.25	45,925.13
107561	908,487	552,172	1.65	224.70	22,469.58
107562	640,183	575,793	1.11	157.17	15,716.81
107563	82,000	522,649	0.16	36.29	3,629.03
107564	358,446	666,446	0.54	84.51	8,451.23
107565	242,210	596,805	0.41	67.80	6,780.31
107566	39,247	575,859	0.07	25.06	2,505.74
107567	372,319	736,799	0.51	80.39	8,039.49
REFERENCES

Avula, B., Wang, Y.H., Sagi, S., and Wang, M. (2015). Identification and characterization of indole and oxindole alkaloids from leaves of Mitragyna speciosa Korth using liquid chromatography-Accurate QToF Mass Spectrometry. Journal of AOAC International. 98(1): 13-21.

Lee, M.J. (2016). Development of an immunoassay for mitragynine. Ph.D. Thesis. Universiti Sains Malaysia.

Lee, M.J., Ramanathan, S., Mansor, S.M., Yeong, K.Y., and Tan, S.C. (2018). Method validation in quantitative analysis of phase I and phase II metabolites of mitragynine in human urine using liquid chromatography-tandem mass spectrometry. Analytical Biochemistry. 543: 146-161.

Philipp, A.A., Wissenbach, D.K., Weber, A.A., Zapp, J., and Maurer, H.H. (2011). Metabolism studies of the Kratom alkaloids mitraciliatine and isopaynantheine, diastereoisomers of the main alkaloids mitragynine and paynantheine, in rat and human urine using liquid-chromatography-linear ion trap-mass spectrometry. Journal of Chromatography B. 879(15-16): 1049-1055.
APPENDIX

Appendix 1: MRM Mitragynine Reference Standard

Qualitative Analysis Report

Data File	PS1.d
Sample Type	Calibration
Instrument Name	Instrument 1
Acq Method	Mitragynine_LRU_Flex_2.m
IRM Calibration	Not Applicable
Comment	
Sample Group	LC 1
Stream Name	
Acquisition SW	6400 Series Triple Quadrupole B.08.02 (B8260.0)

Chromatograms

Fragmentor Voltage	17
Collision Energy	5
Ionization Mode	1

Mitragynine: +ESI MRM Frag=176.0V CID@50.0 (399.2 -> 159.1) PS1.d

Integration Peak List

Peak	Start	RT	Height	Area	Area %
1	6.77	6.89	7.634	83621	100

Agilent Technologies
Qualitative Analysis Report

Integration Peak List

Peak	Start	RT	End	Height	Area	Area %
1	6.771	6.89	7.690	70571	345910	100

Fragmentor | 6 | Collision | 11 | Ionization | ES
Voltage | 2 | Energy | 0 | Mode | 1

Integration Peak List

Peak	Start	RT	End	Height	Area	Area %
1	3.5	3.619	4.172	11514	46983	100
2	7.28	7.423	7.621	25	136	0.29
3	10.577	10.697	10.864	110	557	1.18

Fragmentor | 6 | Collision | 7 | Ionization | ES
Voltage | 2 | Energy | 4 | Mode | 1
Qualitative Analysis Report

Integration Peak List

Peak	Start	RT	End	Height	Area	Area %
1	3.5	3.619	4.156	16599	67499	100
2	10.733	10.877	10.975	55	296	0.44

--- End Of Report ---
Appendix 2: MRM Sample 107553

Qualitative Analysis Report

Data File: Sample 107553b.d
Sample Type: Sample
Instrument Name: Instrument 1
Acq Method: Mitragynine_LM_Flex_2.m
IRM Calibration Status: Not Applicable
Comment: Sample 107553b
User Name: P2:C2
Acquired Time: 31/10/2020 3:56:17 AM (UTC+08:00)
DA Method: APCI Chemstation.m
Info.
Acquisition Time (Local): 31/10/2020 3:56:17 AM (UTC+08:00)

Chromatograms

Fragmentor Voltage	Collision Energy	Ionization Mode	ES
1	7.044	7.163	7.260
2	7.358	7.451	7.984

Mitragynine: +ESI MRM Frag=176.0V CID@50.0 (399.2 -> 159.1) Sample 107553b.d

Integration Peak List

Peak	Start	RT	End	Height	Area	Area %
1	7.044	7.163	7.260	37977	132098	100
2	7.358	7.451	7.984	12999	87693	45.65

Agilent Technologies
Qualitative Analysis Report

Integration Peak List

Peak	Start	RT	End	Height	Area	Area %
1	4.794	4.913	5.075	34	129	0.08
2	5.26	5.403	5.679	186	1381	0.9
3	7.072	7.167	7.268	30841	153967	100
4	7.266	7.296	7.328	3370	0	0
5	7.274	7.302	7.354	3139	11678	7.58
6	7.355	7.45	8.015	9445	62890	40.84

Fragmentor Voltage 17
Collision Energy 2
Ionization Mode 9
ES 1

Agilent Technologies
Qualitative Analysis Report

Integration Peak List

Peak	Start	RT	End	Height	Area	Area %
1	7.066	7.167	7.266	30347	155950	100
2	7.311	7.311	7.358	3777	8029	5.15
3	7.359	7.449	8.047	10159	68718	44.06

Fragmentation
- **Emission**: 6
- **Collision**: 2
- **Energy**: 11
- **Ionization**: 1
- **Mode**: 1

Nalorphine

ESI MRM Frag: 52.0V CID@110.0 (312.2 → 77.1) Sample 107553b.d

Integration Peak List

Peak	Start	RT	End	Height	Area	Area %
1	3.751	3.871	4.585	92023	426995	100

Fragmentation
- **Emission**: 6
- **Collision**: 7
- **Energy**: 4
- **Mode**: 1

Agilent Technologies
Qualitative Analysis Report

![Graph showing counts vs. acquisition time with peak at 3.871 at 4.5 min]

Integration Peak List

Peak	Start	RT	End	Height	Area	Area %
1	3.752	3.871	4.617	130682	605466	100

--- End Of Report ---
Appendix 3: MRM Sample 107554

Qualitative Analysis Report

Data File	Sample 107554d.d	Sample Name	Sample 107554b
Sample Type	Sample	Position	P2-C4
Instrument Name	Instrument 1	User Name	
Acq Method	Mitragynine_U4_Flex_2.m	Acquired Time	31/10/2020 4:40:34 AM (UTC+08:00)
IRM Calibration	Not Applicable	DA Method	APCI Chemstation.m
Status		Info.	31/10/2020 4:40:34 AM (UTC+08:00)
Comment		Acquisition Time	
Sample Group		(Local)	
Stream Name	LC 1		
Acquisition SW	6400 Series Triple Quadrupole B.08.02 (B8260.0)		

Chromatograms

Fragmentor 17 6 Collision Energy 0 Ionization Mode ES

Integration Peak List

Peak	Start	RT	End	Height	Area	Area %
1	7.127	7.243	7.338	31689	165513	100
2	7.426	7.532	8.254	20853	157511	98.93

Fragmentor Voltage 6 Collision Energy 2 Ionization Mode ES
Qualitative Analysis Report

Integration Peak List

Peak	Start	RT	End	Height	Area	Area %	
1	7.048	7.048	7.243	7.338	75425	397323	100
2	7.427	7.552	8.572	51058	387023	97.41	

Fragmentor Voltage: 17
Collision Energy: 2
Ionization Mode: I

Integration Peak List

Peak	Start	RT	End	Height	Area	Area %	
1	5.339	5.468	5.742	5.742	200	1168	0.89
2	7.076	7.247	7.413	7.413	24925	131035	100
3	7.413	7.413	7.421	2758	1090	0.83	
4	7.424	7.531	8.143	15039	111645	85.2	

Fragmentor Voltage: 17
Collision Energy: 2
Ionization Mode: I

Agilent Technologies
Qualitative Analysis Report

Integration Peak List

Peak	Start	RT	End	Height	Area	Area %
1	7.119	7.247	7.342	25820	13333	100
2	7.429	7.469	7.469	2954	3159	3.23

Fragmentor Voltage 2
Collision Energy 0
Ionization Mode I
ES

Integration Peak List

Peak	Start	RT	End	Height	Area	Area %
1	3.827	3.948	4.833	93333	448480	100
2	10.161	10.971	10.992	33	722	0.16

Fragmentor Voltage 2
Collision Energy 0
Ionization Mode I
ES
Qualitative Analysis Report

Integration Peak List

Peak	Start	RT	End	Height	Area	Area %
1	3.827	3.946	4.681	131164	629384	100

--- End Of Report ---
Appendix 4: MRM Sample 107559

Qualitative Analysis Report

Data File	Sample 107559b.d	Sample Name	Sample 107559b
Sample Type	Sample	Position	F2-D5
Instrument Name	Instrument 1	User Name	
Acq Method	Mitragynine_LMU_Rexi_2.m	Acquired Time	31/10/2020 8:22:00 AM (UTC+08:00)
IRM Calibration Status	Not Applicable	DA Method	APCI Chemstation.m
Comment		Info.	
Stream Name	LC 1	Acquisition Time	31/10/2020 8:22:00 AM (UTC+08:00)
Acquisition SW	6400 Series Triple Quadrupole B.03.02 (B8260.0)	(Local)	

Chromatograms

Fragmentor Voltage 17 Collision Energy 5 Ionization Mode 0 E5 1

Mitragynine: +ESI MRM Frag=175.0V CID@50.0 (399.2 -> 159.1) Sample 107559b.d

Counts vs. Acquisition Time (min)

Integration Peak List

Peak	Start	RT	End	Height	Area	Area %
1	6.313	6.893	6.992	63058	311960	95.76
2	7.086	7.184	7.484	481101	325721	100

Fragmentor Voltage 17 Collision Energy 5 Ionization Mode 0 E5 1
Qualitative Analysis Report

Integration Peak List

Peak	Start	RT	End	Height	Area	Area %
1	3.772	4.021	4.343	39	326	0.13
2	4.808	4.677	4.918	34	171	0.07
3	5.021	5.163	5.408	204	1239	0.48
4	6.774	6.897	6.996	53187	25763	100
5	7.081	7.184	7.872	37579	237844	92.31

Fragmentor

Voltage	6
Energy	1

Agilent Technologies

Page 27 of 76 Printed at 3:07 PM on 2 Dec 2020
Qualitative Analysis Report

Integration Peak List

Peak	Start	RT	End	Height	Area	Area %
1	6.774	6.897	6.992	51559	250556	100
2	7.088	7.184	7.968	39938	250375	99.80

Fragmentor Voltage: 6
Collision Energy: 11
Ionization Mode: ES

Integration Peak List

Peak	Start	RT	End	Height	Area	Area %
1	3.501	3.521	4.538	83842	356729	100

Fragmentor Voltage: 6
Collision Energy: 11
Ionization Mode: ES
Qualitative Analysis Report

Integratioon Peak List

Peak	Start	RT	End	Height	Area	Area %
1	3.502	3.621	4.871	118818	517878	100

--- End Of Report ---
Appendix 5: MRM Sample 107561

Qualitative Analysis Report

Data File: Sample 107561b.d
Sample Type: Sample
Instrument Name: Instrument 1
Acq Method: Mitragynine_LMU_Field_2.m
IRM Calibration Status: Not Applicable
Comment:
Sample Group:
Stream Name: LC 1
Acquisition SW Version: 6400 Series Triple Quad: pole B.08.02 (B0260.0)

Sample Name: Sample 107561b
Position: P2-D9
User Name:
Acquired Time: 31/10/2020 9:50:35 AM (UTC+08:00)
DA Method: APCI Chemstation.m
Info.
Acquisition Time (Local): 31/10/2020 9:50:35 AM (UTC+08:00)

Chromatograms

Fragmentor Voltage: 17
Collision Energy: 6
Ionization Mode: 5
ES: 0

Integration Peak List

Peak	Start	End	Height	Area	Area %	
1	6.685	7.024	7.115	74019	363512	100
2	7.215	7.313	8.095	49831	334445	91.98

Fragmentor Voltage: 17
Collision Energy: 6
Ionization Mode: 5
ES: 0
Qualitative Analysis Report

Integration Peak List

Peak	Start	RT	End	Height	Area	Area %
1	5.325	5.368	5.603	190	1099	0.12
2	6.754	7.024	7.123	24253	98487	1.00
3	7.210	7.313	8.238	212195	805803	86.7
4	9.490	9.601	9.891	25	276	0.03

Fragmentor: 17, Collision: 2, Ionization: ES, Voltage: 6, Energy: 9, Mode: 1

Integration Peak List

Peak	Start	RT	End	Height	Area	Area %
1	5.000	5.246	5.599	221	1892	0.63
2	6.905	7.024	7.123	81901	302595	100
3	7.213	7.312	8.063	37620	244159	80.69

Fragmentor: 17, Collision: 2, Ionization: ES, Voltage: 6, Energy: 1, Mode: 1

Agilent Technologies
Qualitative Analysis Report

Intetration Peak List

Peak	Start	RT	End	Height	Area	Area %
1	3.582	3.701	4.506	125409	552172	100

--- End Of Report ---
Appendix 6: MRM Sample 107563

Qualitative Analysis Report

Data File: Sample 107563a.d
Sample Type: Sample
Instrument Name: Instrument 1
Acq Method: Mitragynine_LIQ_Hexv_2.m
IBM Calibration Status: Not Applicable
Comment:
Sample Group:
Stream Name: LC 1
Acquisition SW Version: 6400 Series Triple Quadrupole B.03.02 (B0260.0)
Sample Name: Sample 107563a
Position: P2-E3
User Name:
Acquired Time: 31/10/2020 10:57:02 AM (UTC+08:00)
DA Method: APCI Chemstation.m
Info.
Acquisition Time (Local): 31/10/2020 10:57:02 AM (UTC+08:00)

Chromatograms

Fragmentor Voltage: 6
Collision Energy: 5
Ionization Mode: E5

Mitragynine: +ESI MRM Frag=179.0V CID@50.0 (399.2 -> 159.1) Sample 107563a.d

Integration Peak List

Peak	Start	RT	End	Height	Area	Area %
1	6.944	7.06	7.165	6685	32997	100
2	7.255	7.349	7.682	3475	25663	77.76

Fragmentor Voltage: 17
Collision Energy: 2
Ionization Mode: E5
Qualitative Analysis Report

Integration Peak List

Peak	Start	RT	End	Height	Area	Area %
1	6.94	7.056	7.151	17104	82000	100
2	7.256	7.349	7.867	9099	63422	77.34

Fragmentor 17
Voltage 6
Collision Energy 2
Ionization ES 9
Mode 1

Integration Peak List

Peak	Start	RT	End	Height	Area	Area %
1	3.827	4.045	4.359	35	393	1.47
2	5.18	5.279	5.456	223	1123	4.2
3	6.929	7.056	7.159	5516	26056	100
4	7.253	7.349	7.818	2094	18282	68.7

Fragmentor 17
Voltage 6
Collision Energy 2
Ionization ES 1
Mode 1

Agilent Technologies
Qualitative Analysis Report

Integration Peak List

Peak	Start	RT	End	Height	Area	Area %
1	6.844	7.050	7.155	5589	26832	100
2	7.208	7.349	7.655	2916	19707	73.31

Fragmentor 6
Voltage 2
Collision 11
Energy 0
Ionization ESI
Mode I

Integration Peak List

Peak	Start	RT	End	Height	Area	Area %
1	3.605	3.724	4.553	80338	357756	100
2	7.108	7.298	7.445	18	159	0.04
3	7.446	7.599	7.798	18	108	0.03
4	10.862	10.973	10.992	89	382	0.1

Fragmentor 6
Voltage 2
Collision 7
Energy 4
Ionization ESI
Mode I
Qualitative Analysis Report

nalorphine: +ESI MRM Frag=62.0 V Cl(D)@74.0 (312.2 -> 152.1) Sample 107563a.d

Counts vs. Acquisition Time (min)

Integration Peak List

Peak	Start	RT	End	Height	Area	Area %
1	3.605	3.724	4.776	114617	522649	100

--- End Of Report ---
Appendix 7: MRM Sample 107564

Qualitative Analysis Report

Data File: Sample 107564a.d
Sample Type: Sample
Instrument Name: Instrument 1
Acq Method: Mitragynine_LRU_Flexi_3.m
IBRM Calibration Status: Not Applicable
Comment: Info.
Sample Group: LC 1
Stream Name: LC 1
Acquisition SW Version: 6400 Series Triple Quadrupole 8.08.02 (85280.0)

Sample Name: Sample 107564a
Position: P2-ES
User Name: Info.
Acquired Time: 31/10/2020 11:41:20 AM (UTC+08:00)
DA Method: APCE Chemstation.m
Acquisition Time (Local): 31/10/2020 11:41:20 AM (UTC+08:00)

Chromatograms

Fragmentor Voltage: 17
Collision Energy: 6
Ionization Mode: 0
ES: 1

Integration Peak List

Peak	Start	RT	End	Height	Area	Area %
1	6.897	7.000	7.107	30241	140719	100
2	7.202	7.258	7.902	20530	139731	94.8

Fragmentor Voltage: 17
Collision Energy: 6
Ionization Mode: 0
ES: 1

Agilent Technologies
Qualitative Analysis Report

Integration Peak List

Peak	Start	RT	End	Height	Area	Area %
1	6.296	7.008	7.103	71866	358946	100
2	7.202	7.298	8.015	51228	343612	95.86

Fragmentor 17 Collision 2 Ionization E5 Voltage 6 Energy 9 Mode I

Integration Peak List

Peak	Start	RT	End	Height	Area	Area %
1	3.724	4.113	4.63	36	593	0.49
2	4.647	4.771	4.963	39	190	0.16
3	5.118	5.261	5.504	190	1206	1
4	6.897	7.008	7.111	24684	119905	100
5	7.199	7.299	7.857	15673	100546	83.85

Fragmentor 17 Collision 2 Ionization E5 Voltage 6 Energy 9 Mode I
Qualitative Analysis Report

Integration Peak List

Peak	Start	RT	End	Height	Area	Area %
1	6.895	7.008	7.103	24787	118853	100
2	7.204	7.298	7.857	16505	105708	88.94

Fragmentor Voltage: 6
Collision Voltage: 11
Ionization Mode: II

Integration Peak List

Peak	Start	RT	End	Height	Area	Area %
1	3.586	3.705	4.522	99857	473313	100

Fragmentor Voltage: 5
Collision Voltage: 7
Ionization Mode: I

Agilent Technologies
Qualitative Analysis Report

![Graph showing counts vs. acquisition time with peak at 3.705 minutes.]

Integration Peak List

Peak	Start	RT	End	Height	Area	Area %
1	3.585	3.705	4.363	140546	665446	100

--- End Of Report ---
Appendix 8: MRM Sample 107565

Qualitative Analysis Report

Data File Sample 107565a.d
Sample Type Sample
Instrument Name Instrument 1
Acq Method Mitragynine_LU_Relix_Z.m
IRM Calibration Status Not Applicable
Comment
Sample Group LC 1
Stream Name LC 1
Acquisition SW 6400 Series Triple Quadrupole 8.08.02 (B8260.0)
Version

Sample Name Sample 107565a
Position P2-E7
User Name
Acquired Time 31/10/2020 12:25:35 PM (UTC+08:00)
DA Method APCI Chemstation.m
Info.
Acquisition Time (Local) 31/10/2020 12:25:35 PM (UTC+08:00)

Chromatograms

Fragmentor Voltage 17
Collision Energy 6
Ionization Mode 5
ES

Counts vs. Acquisition Time (min)

Mitragynine: +ESI MRM Frag=176.0V CID@50.0 (399.2 -> 159.1) Sample 107565a.d

Integration Peak List

Peak	Start	RT	End	Height	Area	Area %
1	6.669	6.994	7.084	20342	97318	76.83
2	7.109	7.209	7.004	21815	137418	100

Fragmentor Voltage 17
Collision Energy 2
Ionization Mode 9
ES

Agilent Technologies
Qualitative Analysis Report

Integration Peak List

Peak	Start	RT	End	Height	Area	Area %
1	5.311	5.581	5.901	47	594	0.17
2	6.779	6.984	7.084	59283	242210	71.3
3	7.166	7.209	8.238	53460	339695	100

Fragmentor Voltage 17
Collision Energy 2
Ionization ES 9
Mode I

Integration Peak List

Peak	Start	RT	End	Height	Area	Area %
1	3.803	4.114	4.566	31	412	0.42
2	4.366	4.750	5.043	24	175	0.18
3	5.109	5.24	5.552	188	1265	1.29
4	6.859	6.988	7.08	16259	70782	78.45
5	7.163	7.268	7.763	15890	98258	100

Fragmentor Voltage 6
Collision Energy 1
Ionization ES Mode I

Agilent Technologies
Qualitative Analysis Report

Integration Peak List

Peak	Start	RT	End	Height	Area	Area %
1	6.859	6.984	7.076	16612	78193	74.56
2	7.165	7.268	7.809	17058	104730	100

Fragmentor 6
Collision 11
Ionization ES
Voltage 2
Energy 0
Mode I

Integration Peak List

Peak	Start	RT	End	Height	Area	Area %
1	3.559	3.678	4.49	92736	421905	100
2	7.335	7.529	8.098	22	346	0.08

Fragmentor 6
Collision 7
Ionization ES
Voltage 2
Energy 4
Mode I
Qualitative Analysis Report

nalorphine: +ESI MRM Frag=62.0V CID@74.0 (312.2 -> 152.1) Sample 107565a.d

Peak	Start	RT	End	Height	Area	Area %
1	3.559	3.678	4.776	132236	595808	100

--- End Of Report ---
Appendix 9: MRM Sample 107566

Qualitative Analysis Report

Data File	Sample 107566b.d	Sample Name	Sample 107566b
Sample Type	Sample	Position	P2:F1
Instrument Name	Instrument 1	User Name	
Acq Method	Mitragynine_LHU_Flex_2.m	Acquired Time	31/10/2020 1:32:01 PM (UTC+08:00)
IBM Calibration	Not Applicable	DA Method	APCI Chemstation.m
Status			
Comment			
Sample Group			
Stream Name	LC 1	Info.	
Acquisition SW	0400 Series Triple Quadrupole B.08.02	Acquisition Time	31/10/2020 1:32:01 PM (UTC+08:00)
Version		(Local)	

Chromatograms

Fragmentor Voltage 17 6 5 0 1
Collision Energy
Ionization Mode
ES

Mitragynine: +ESI MRM Frag=175.0V CID@50.0 (399.2 -> 159.1) Sample 107566b.d

Integration Peak List

Peak	Start	End	Height	Area	Area %	
1	6.231	6.25	7.045	3334	16064	46.54
2	7.045	7.23	7.602	4427	34512	100

Fragmentor Voltage 17 6 9 1
Collision Energy
Ionization Mode
ES

Agilent Technologies
Qualitative Analysis Report

Integration Peak List

Peak	Start	RT	End	Height	Area	Area %
1	6.623	6.95	7.044	7769	39247	44.35
2	7.044	7.229	7.713	11292	87516	100

Fragmentsor Voltage: 17 Collision Energy: 6 Ionization ES Rate: 3

Integration Peak List

Peak	Start	RT	End	Height	Area	Area %
1	4.636	4.732	4.863	94	142	0.6
2	5.068	5.211	5.424	204	1156	4.84
3	6.83	6.949	7.05	2772	13542	56.73
4	7.05	7.23	7.65	3202	23870	100

Fragmentsor Voltage: 17 Collision Energy: 6 Ionization ES Rate: 3

Agilent Technologies
Qualitative Analysis Report

Integration Peak List

Peak	Start	RT	End	Height	Area	Area %
1	6.633	6.952	7.043	2657	13113	47.14
2	7.043	7.229	7.87	4009	27819	100

Fragmentor Voltage 2
Collision Energy 0
Ionization Mode 1

Integration Peak List

Peak	Start	RT	End	Height	Area	Area %
1	3.54	3.659	4.363	88718	405414	100
2	7.37	7.499	7.653	26	196	0.05
3	9.911	10.79	10.927	33	327	0.08

Fragmentor Voltage 6
Collision Energy 4
Ionization Mode 1

Agilent Technologies
Qualitative Analysis Report

![Graph showing counts vs. acquisition time](image)

Integration Peak List

Peak	Start	RT	End	Height	Area	Area %
1	3.541	3.66	4.697	125451	575859	100
2	10.921	10.950	10.952	47	143	0.02

--- End Of Report ---
Appendix 10: MRM Sample 107567

Qualitative Analysis Report

Data File: Sample 107567a.d
Sample Type: Sample
Instrument Name: Instrument 1
Acq Method: Mitragynine_LH1_Flexi_2.m
IRM Calibration Status: Not Applicable
Comment:
Sample Group:
Stream Name: LC 1
Acquisition SW Version: 6400 Series Triple Quadrupole B.08.02 (B8260.0)

Sample Name: Sample 107567a
Position: P2-F2
User Name:
Acquired Time: 31/10/2020 1:54:10 PM (UTC+08:00)
DA Method: APCI Chemstation.m
Info.
Acquisition Time (Local): 31/10/2020 1:54:10 PM (UTC+08:00)

Chromatograms

Fragmentor Voltage: 17
Collision Energy: 6
Ionization Mode: 5
ES: 0

Mitragynine: ESI MRM Frag=176.0V CID@50.0 (399.2 -> 159.1) Sample 107567a.d

Integration Peak List

Peak	Start	End	Height	Area	Area %	
1	6.793	6.933	7.02	32356	151585	100
2	7.119	7.213	7.872	20483	135530	89.41

Fragmentor Voltage: 17
Collision Energy: 6
Ionization Mode: 5
ES: 1
Qualitative Analysis Report

Integration Peak List

Peak	Start	RT	End	Height	Area	Area %
1	5.059	5.315	5.725	25	398	8.11
2	6.313	6.933	7.028	77849	372319	100
3	7.119	7.215	7.92	51916	335545	90.07

Fragmentor Voltage 17
Energy 6
Ionization Mode ES 1

Integration Peak List

Peak	Start	RT	End	Height	Area	Area %
1	4.581	4.7	4.861	34	131	0.13
2	5.066	5.211	5.455	210	1355	1.11
3	6.817	6.937	7.032	25561	122006	100
4	7.116	7.214	7.745	15285	96939	79.45

Fragmentor Voltage 17
Energy 6
Ionization Mode ES 1

Agilent Technologies
Qualitative Analysis Report

Integration Peak List

Peak	Start	RT	End	Height	Area	Area %
1	6.317	6.933	7.024	6577	12371	100
2	7.121	7.213	7.761	10515	104331	84.61

Fragmentor 6 Collision 11 Ionization ES
Voltage 2 Energy 0 Mode I

Integration Peak List

Peak	Start	RT	End	Height	Area	Area %
1	3.532	3.651	4.299	51594	514930	100
2	6.652	6.811	6.967	18	152	0.03
3	6.977	7.123	7.558	29	318	0.06
4	8.975	9.353	9.708	31	568	0.11
5	9.708	10.767	10.93	104	1667	0.32
6	10.9	10.974	10.992	59	222	0.04

Fragmentor 6 Collision 7 Ionization ES
Voltage 2 Energy 4 Mode I

Agilent Technologies
Qualitative Analysis Report

Integration Peak List

Peak	Start	RT	End	Height	Area	Area %
1	3.533	3.652	4.633	156673	736799	100
2	10.864	10.944	10.992	51	254	0.03

--- End Of Report ---