Composite measures of quality of health care: Evidence mapping of methodology and reporting

Pinar Kara1,2*, Jan Brink Valentin1, Jan Mainz1,2,3,4, Søren Paaske Johnsen1

1 Danish Center for Clinical Health Services Research (DACS), Department of Clinical Medicine, Aalborg University, Aalborg, Denmark, 2 Psychiatry, Aalborg University Hospital, Aalborg, Denmark, 3 Department for Community Mental Health, University of Haifa, Haifa, Israel, 4 Department of Health Economics, University of Southern Denmark, Odense, Denmark

* p.kara@rn.dk

Abstract

Background
Quality indicators are used to quantify the quality of care. A large number of quality indicators makes assessment of overall quality difficult, time consuming and impractical. There is consequently an increasing interest for composite measures based on a combination of multiple indicators.

Objective
To examine the use of different approaches to construct composite measures of quality of care and to assess the use of methodological considerations and justifications.

Methods
We conducted a literature search on PubMed and EMBASE databases (latest update 1 December 2020). For each publication, we extracted information on the weighting and aggregation methodology that had been used to construct composite indicator(s).

Results
A total of 2711 publications were identified of which 145 were included after a screening process. Opportunity scoring with equal weights was the most used approach (86/145, 59%) followed by all-or-none scoring (48/145, 33%). Other approaches regarding aggregation or weighting of individual indicators were used in 32 publications (22%). The rationale for selecting a specific type of composite measure was reported in 36 publications (25%), whereas 22 papers (15%) addressed limitations regarding the composite measure.

Conclusion
Opportunity scoring and all-or-none scoring are the most frequently used approaches when constructing composite measures of quality of care. The attention towards the rationale and limitations of the composite measures appears low.
Discussion

Considering the widespread use and the potential implications for decision-making of composite measures, a high level of transparency regarding the construction process of the composite and the functionality of the measures is crucial.

Introduction

Quality of health care is essential for all healthcare stakeholders, including, patients, healthcare providers, institutes, insurers, policy makers, and government. Hence, valid assessment of the quality is crucial in order to monitor, evaluate and improve the quality of healthcare services. Quality indicators are measurement tools that are used to quantify the quality of care. They serve various purposes such as documenting the quality, benchmarking, setting priorities, facilitating quality improvement and supporting patient choice of providers. The indicators can be classified in various ways with Donabedian’s structure, process and outcome indicator classification being the most frequently adopted approach [1]. The use of quality indicators is widespread in health care and the number of indicators is huge. Consequently, there is an increasing interest for composite measures based on a combination of multiple indicators.

A composite measure can be defined as a combination of multiple individual indicators [2]. Individual indicators are useful for measuring specific aspects of quality, however, an overall measure that reflects multiple aspects and dimensions of quality may have considerable advantages over individual indicators. Indeed, composite indicators can summarize the quality of care as a single value. Hence, they can be helpful when comparing, rating, ranking and selecting healthcare providers as an alternative to assessing providers’ performance according to many individual indicators [3]. Using composite indicators rather than individual indicators may also result in increased reliability since the combination of multiple individual indicators will imply that the underlying number of observations is larger [4].

However, composite indicators also come with limitations. Differences and relationships between individual indicators may be masked and information regarding specific aspect(s) of performance can be lost [2]. Using different approaches for construction of the composite measures may give different results. In other words, composite measures can be sensitive to the methodology that has been used [5]. Therefore, if the construction process for the composite indicators is not transparent, composite indicators may be misused and if not constructed in a methodologically sound way, the results obtained by using these indicators (such as hospital rankings) may not be reliable [6].

Detailed recommendations on the construction of reliable composite indicators have been published previously [2, 7]. The steps include development of a theoretical framework, selection of indicators, multivariable assessment of indicators, weighting and aggregation of indicators and as the last step, validation of the composite indicator [2, 7].

The aim of this study was to investigate the use of composite measures of quality of care based on process indicators in the peer-reviewed literature. In addition, we examined whether methodological considerations were provided in the publications.

Methods

This review was done in accordance with the recommendations in the PRISMA statement [8].
Definitions and terminology

Different approaches for construction of composite indicators exist, which mostly differ in terms of weighting and aggregation of individual indicators. Some of the methods to construct composite indicators are introduced (Table 1).

In patient average, all-or-none scoring and 70% standard approaches, composite scores are calculated at patient-level and requires patient-level information. The scores obtained for each patient can subsequently be averaged to get provider-level, region-level or other levels of interest scores.

There are several approaches for assigning weights to individual indicators before aggregating them into composites. Some of the methods to assign weights to individual indicators are provided (Table 2).

Note that in the literature opportunity scoring is sometimes also referred to as denominator-based weights approach and is a weighted average for which the weights are the rate of eligibility for each indicator. In our review, we preferred to distinguish between this kind of weights which occurs naturally due to aggregation method and the weights which are additionally assigned to indicators by investigators according to each indicator’s association with the outcome, reliability, feasibility, importance or an expert judgement. Therefore, if opportunity scoring is used in a study without further assignment of weights to individual indicators and no differentiation is made between indicators, we referred this method as “opportunity scoring with equal weights”. Furthermore, the scores obtained by using patient average, overall percentage and indicator average methods will be the same if all of the patients are eligible for all indicators, even though the interpretation of the results will differ. Finally, it should be

Table 1. Examples of methods for constructing composite measures.

Methods	Definition
Overall percentage (Opportunity scoring)	The composite score is calculated as the total number of processes of care delivered to all patients divided by the total number of eligible care processes [9]. Overall percentage = \(\frac{\sum \text{Number of processes provided to patient } i}{n} \)
	where \(n \) denotes the number of patients in a provider (or other level of interest).
Patient average (Opportunity scoring)	Composite scores are calculated for each patient (number of care processes delivered divided by number of patient specific eligible care processes) and can then be averaged to obtain provider-level composite scores [9]. Score for patient \(i \) = \(\frac{\text{Number of processes provided to patient } i}{\text{Number of processes patient } i \text{ is eligible for}} \)
	Composite score for provider = \(\frac{\sum \text{Score for patient } i}{n} \)
	where \(n \) denotes the number of patients in a provider (or other level of interest).
Indicator average	For each indicator the percentage of times that indicator is fulfilled is calculated and then averaged across all indicators [9]. Score for indicator \(j \) = \(\frac{\text{Number of times indicator } j \text{ is provided}}{\text{Number of times patient } i \text{ is eligible for indicator } j} \)
	Composite score for provider = \(\frac{\sum \text{Score for indicator } j}{k} \)
	where \(k \) denotes the number of indicators.
All-or-none (defect-free scoring)	Composite measure is calculated on patient level. Each patient gets either 1 (all eligible care processes are fulfilled) or 0 (at least 1 of the eligible care processes is unachieved). This approach can be preferred especially (1) when process indicators interact or partial achievement of a series of steps is insufficient to obtain the desired result, (2) when adherence rates for indicators are very high so using methods that award partially provided care will neither be helpful in order to distinguish between providers’ performance nor motivates providers to improve the quality of care [10]. Score for patient \(i \) = \(\begin{cases} 1 & \text{All eligible processes are delivered to the patient} \\ 0 & \text{At least one eligible care process is not delivered} \end{cases} \)
	Composite score for provider = \(\frac{\sum \text{Score for patient } i}{n} \)
	where \(n \) denotes the number of patients in a provider (or other level of interest).
70% standard and other thresholds	This approach is similar to all-or-none scoring but using a lower threshold than 100% [8].

https://doi.org/10.1371/journal.pone.0268320.t001
emphasised that weighting individual indicators before aggregation is not relevant in all-or-none scoring.

Search strategy

We conducted a literature search to identify publications that used composite measures to assess quality of care. We queried the PubMed and EMBASE databases (latest update 1 December 2020), using the following terms: composite measures, quality of health care and other variations (S1 Appendix). We did not use any restrictions on date of publication in our search. The full search string is provided (S1 Appendix).

Eligibility criteria

In this review, we included studies using composite measures based exclusively on process of care indicators. Process indicators (for example, β-blocker prescription at discharge for patients with acute myocardial infarction, oxygenation assessment for patients with pneumonia or eye examination for patients with diabetes) have some advantages over outcome indicators. First, these indicators reflect actual care delivered to the patients, hence, they can be more actionable. Second, outcome indicators like 30-day mortality or readmission rate may be influenced by confounding factors, e.g., age, sex, severity of underlying disease or level of comorbidity, which may not be completely eliminated by risk adjustment [13]. Third, process indicators are a particular appealing alternative in clinical scenarios where the most relevant outcome requires long follow-up time, e.g., recurrence of cancer [13]. Fourth, composite measures consisting of a combination of both process and outcome indicators comes with additional challenges due to the inherent problem of meaningful weighting and aggregation of these two different types of indicators (for example, assessment of the relative importance of providing CT scan to patients compared to an outcome indicator such as mortality). As a conclusion, we restrict this review to only process indicators as would not be feasible to cover composite measures of multiple types of indicators satisfactory in a single paper. However, we recognize the value of outcome indicators and an assessment of composite measures of outcome indicators could be a relevant scope for a separate study.

Whereas clinical process indicators reflect actual delivered care, indicators reflecting utilization or access to care were not included as they reflect a complex result of organizational

Table 2. Examples of weighting approaches for constructing composite measures.

Weighting approach	Definition
Equal weights	All indicators receive the same weight. This approach generally indicates that all indicators are equally important in the composite [7].
Expert weights	An expert panel assigns weights to individual indicators depending on the panel's criteria, such as indicators' importance, impact, evidence score, feasibility and reliability.
Regression weights	Each indicator is weighted according to the degree of its association with an outcome, e.g., 30-day mortality. Using regression weights, the indicator with the strongest association with the outcome receives the highest weight [11]. This approach may be preferred if there is a gold standard end point.
Principle component analysis-based weights	PCA-based weights may be preferred when individual indicators are highly correlated. In this approach, correlated indicators are grouped, since they may share underlying characteristics. In this approach, each indicator is weighted according to its proportional factor loading [12]. This should not be confused with methods, in which factor analysis is used only as a part of the selection process for individual indicators.

https://doi.org/10.1371/journal.pone.0268320.t002
These indicators are therefore not under the full control of the healthcare system. Even though patient-reported indicators may carry useful information, they typically lack details on the timeliness and appropriateness of individual clinical processes, which are crucial when evaluating the quality of care. Therefore, the studies that used these types of indicators in the composite measure were also excluded in the current review.

The exclusion criteria were as follows: (1) the composite measure included other types of indicators besides process indicators, (2) the composite measure included indicators related to access or utilization, (3) the composite measure included patient-reported indicators, (4) the scientific contribution was a protocol, trial design, purely methodological, letter, comment, editorial or a review, (5) the publication was not in English and (6) full text was not available.
Study selection

Study selection was performed using Rayyan [15]. Records were screened independently by two reviewers (PK and JBV).

Information retrieved from included studies

For each publication, we extracted information on the weighting and aggregation methodology that had been used to construct the composite indicator(s).

In addition, we registered justifications made for the selected methodology. We defined “justification” as the presence of any stated methodological argument for the methodology that had been used in the individual publications. We preferred not to use a very strict and detailed criterion to prevent subjective use and understanding of the term. We also obtained information on limitations and advantages of using composite indicators stated in the included publications. Finally, we examined whether publications using a single approach for construction of composite measures mentioned any alternative approaches.

We preferred to accept publications that only provided reference to these information (for example, the publication did not describe limitations regarding use of composite indicators itself but informed the reader about presence of limitations and included a reference for further information) as “provided information”. We recognize that especially when the main aim is not to assess the use of composite indicators directly, but rather to use composite indicators to support operational use (for example, a study that investigates effect of a programme participation and uses composite indicators as a tool to support decision making), providing detailed information about composite indicators may seem out of the scope of the publications. However, it is still important to provide the reader with some information about presence of potential limitations in relation to these indicators and the approaches used to construct them.

Results

Study selection

The search resulted in a total of 2711 publications, 1835 publications from PubMed database and 876 publications from EMBASE database. After removing 549 duplicates, 2162 unique publications were screened. First, title and abstracts were assessed for eligibility and 1889 publications were excluded since at least one of the exclusion reasons mentioned above was present. A total of 273 publications were included for the full-text screening and 145 of those met the full inclusion criteria. The list of included publications are provided (S1 Appendix). Detailed summary of the literature search is presented (Fig 1).

Context

We categorized the publications according to (1) methodology that was used, (2) whether the publication used a single approach or multiple approaches to construct composite indicator(s), and (3) context. For context, we classified the primary objective of the publications under two main categories: operational use (for example, the composite indicator in the study was constructed to evaluate the effect of a quality improvement program or to compare performance of healthcare providers) and research purposes (for example, to investigate the association between process and outcome indicators or to assess the construction, use and implementation of composite indicators) (Table 3). We provided tables for characteristics of the included studies (S1 Table) and classification of context for each included publication (S2 Table).
Of the publications classified as operational use (n = 61, 42%), 51 publications [16–66] investigated whether program participation or implementation of an intervention was associated with improved quality of care as measured by a composite indicator. In 10 publications [67–76] the primary aim was to measure hospital performance and/or changes in performance over time (Table 3).

Of the studies classified as research (n = 84, 58%), 25 publications [77–101] reported on the association between processes of care, assessed by one or more composite indicators, and outcome indicators. In 32 studies [102–133] the attention was on the link between hospital and/or patient characteristics and quality of care. Finally, other research aims were addressed in the remaining 26 studies [11, 12, 134–157] including whether composite indicators could better inform hospital performance than single indicators, the reliability and/or validity of composite indicators, development and implementation of composite indicators and the impact of using different methodologies for the construction of composite indicators. One study [158] investigated the correlation between quality of care for heart failure and acute myocardial infarction (n = 1).

Out of 145 publications, three included composite measures for mental health care, including depression [145], bipolar disorder [146], and overall mental health care [94]. Two publications [52, 99] addressed both somatic and mental health care components, whereas the remaining 140 publications were focused on composite indicators for somatic diseases.

Preferred composite score methodology

Opportunity scoring was the most used scoring method and represented in 89 (61%) publications. Of these, 62 (43%) publications had applied the overall percentage approach and 28
Publications applied patient average. The second most used method was all-or-none scoring \((n = 48, 36\%)\). Out of 145 publications, 8 (6\%) publications used 70\% standard and other thresholds approach. Indicator average approach was present in 19 (13\%) publications. Other approaches included two publications using latent variable models, one publication with principal component analysis and one publication with 70\% standard approach on indicator level rather than patient-level (Fig 2). References corresponding to each aggregation method is provided (S3 Table). We also included a table to illustrate examples for selected process indicators for each methodology (S4 Table).

Weighting of individual indicators before aggregation were not relevant in the 27 publications using only all or none score approach. Of the remaining 118 publications, 107 used equal weights. Differential weights were present in 16 publications: 7 publications used weights obtained by expert opinion/subjective assessment, one publication used regression weights, three publications used weights obtained by item response theory, one publication used weights obtained by Bayesian approach, one publication used the benefit of doubt approach (assigning hospital specific weights in order to maximize performance) and three publications applied principal component analysis based weights (Fig 3). References corresponding to each weighting method is provided (S5 Table).

One publication [98] used patient specific weights according to care needs, i.e., care of patients is weighted by the natural logarithm of the total number of indicated care components, \(\ln(n)\), to account for differences in number of needed care components for each case.
All of the studies that were conducted in order to support operational use preferred either equal weights or expert weights whereas more diverse approaches were used in publications with research purposes.

It was not possible to determine the methodology in four publications [22, 91, 95, 97]. In 26 publications, more than one aggregation and/or weighting approach were present.

Other considerations and findings

Justification for the selected methodology used in the construction of the composite measure was found in 36 (25%) publications. The justifications included both limited justifications and justifications that were referenced (Table 4). Examples of the used justifications are provided

Table 4. Methodological information in publications reporting composite measures of quality of health care based on process indicators.

Methodological information	Number of papers (%)	References
Any justification for the selected methodology was provided or referenced	36 (25%)	[11, 12, 23, 25, 27, 34, 54, 55, 57, 75, 86, 87, 98, 100, 118, 122, 123, 127, 134–136, 140–147, 149–153, 156, 157]
Any limitation regarding composite measures is given or referenced	22 (15%)	[11, 53, 75, 80, 98, 99, 116, 122, 134, 135, 139–142, 144–147, 149, 151, 152, 157]
Any advantage regarding composite measures is given or referenced	42 (29%)	[11, 23, 31, 38, 52, 53, 55, 66, 75, 80, 83, 86, 87, 100, 101, 116, 122, 123, 127, 134–136, 138–156]
For papers that used a single approach, presence of any other approach was mentioned or referenced	10 (8%)	[75, 87, 93, 122, 123, 139, 142, 146, 152, 156]
Of 145 publications, methodological limitations of composite measures were addressed in 22 (15%) publications, including limitations that were referenced (Table 4). The reported limitations included concerns regarding loss of important information (n = 6, 4%), findings being sensitive to the choice of methodology for construction of the composite measures (n = 9, 6%), concerns over the construction process, such as weighting and aggregation methods or the selection of indicators included in the composite (n = 7, 5%), concerns over transparency (3, 2%) and oversimplifying complex data (n = 2, 1%).

Of 145 publications, 42 (29%) publications mentioned specific advantages of composite indicators (Table 4). Reported advantages included the comprehensiveness of the composite indicator (for example, summarizing overall quality, presents overall picture) (n = 26, 18%), facilitation of comparisons (n = 10, 7%), interpretability and being easier to understand (n = 8, 6%), increased reliability and stability (n = 6, 4%), and simplification (for example, reduced number of indicators and numbers in quality reports) (n = 5, 3%).

Of the 119 publications, which used a single composite score methodology, a total of 10 (8%) publications mentioned the presence of alternative methods for the construction of composite indicators (Table 4).

Some examples regarding methodological statements found in the literature is provided (S7 Table).

Discussion

Despite the importance and widespread use of composite indicators to summarize the quality of health care, we found that methodological considerations were not addressed in the majority of the publications and that there was only modest variation regarding the chosen methodology for construction of the composite measure(s). Opportunity-based scoring, indicator average and all-or-none scoring were the most frequently preferred approaches to obtain composite measures, whereas use of other methods was sparse.

To our knowledge, this is the first review that investigates the use of composite measures of quality of health care based on process indicators. Some strengths of this review were: (1) It complied with the PRISMA guideline for systematic reviews whenever possible, (2) A large number of studies were included as we did not restrict our search to a specific clinical condition but considered all clinical conditions and disease areas relevant, (3) all publications were carefully screened by two independent reviewers to reduce possible bias.

This review has several limitations. First, it was restricted to peer-reviewed publications included in the PubMed and EMBASE databases. However, these two databases cover a substantial amount of publications within the field. Second, relevant publications might have been excluded if they were not in English. And third, although guidelines for validating composite measures of quality of health care have been developed [2], we did not investigate the extent to which the applied composite measures were validated in the publications under review, as this is a broad topic outside the scope of this review.

Implications and recommendations

Composite measures have the advantage of summarizing the quality of care with a single number and have been increasingly used to evaluate the quality of healthcare services. One of the concerns regarding use of composite measures is the lack of a standard approach to construct them and possible effects and consequences of using different approaches. Several studies in the literature examined the effects of using different approaches regarding weighting and
aggregation. However, the findings have been contradictory with some studies indicating that
the use of different methods provided substantially different results, whereas others have
found highly correlated results, e.g., in healthcare provider rankings, using different methods.

Jacobs et al. [5] investigated the effect of using different aggregation and weighting methods
on hospital rankings and concluded that these measures are sensitive to the methodology and
hospital rankings can change substantially depending on the methods that has been used.
Simms et al. [11] constructed composite indicators for acute myocardial infarction care, using
opportunity scoring with equal weights, opportunity scoring with regression weights and all-
or-none scoring approaches. While these composite indicators were associated with the out-
come, the rankings of hospitals were substantially influenced by the method that had been
used to construct composite indicators.

In contrast, Eapen et al. [149] compared two methodologies that are most commonly used
for composite indicators: overall percentage with equal weights and all-or-none scoring to
examine their effects on hospital rankings for acute myocardial infarction care. In their study,
the rankings obtained by these two methods were highly correlated (r = 0.93).

Kolfschoten et al. [150] investigated several types of composite measures both on patient-
level (patient average, all-or-none and 70% standard) and hospital-level (overall percentage,
indicator average, patient average, all-or-none and 70% standard) and these measures’ associa-
tion with morbidity and mortality for patients with rectum carcinoma and colon carcinoma.
They found that none of the patient-level composite measures were associated with the out-
come, except for an association between the 70% standard method and morbidity for patients
with rectum carcinoma. In contrast, all hospital-level composite indicators were associated
with morbidity for both rectum carcinoma and colon carcinoma. This difference between
patient level and hospital level composite measures was attributed to other factors that may
have more effect on patient-level while on hospital-level, composite scores may better present
the quality of care in a hospital. This finding indicates the importance of a clear framework for
the composite measure and also the consideration regarding for what and by whom it will be
used.

The requirements for specific clinical conditions should be taken into account when select-
ing the most suitable methodology. As an example, the two most commonly used approaches,
opportunity-based scoring and all-or-none scoring, emphasize different aspects of quality.
Opportunity-based scoring awards partial performance and improvements, whereas all-or-
one scoring promotes excellence and defect-free care. While using all-or-none scoring can be
more suitable for conditions that require 100% adherence and anything other than ideal care is
not enough to achieve success, opportunity-based scoring can be more useful to investigate
and award improvements over time. For statistical approaches for construction, using prin-
cipal component analysis can be beneficial when individual indicators are highly correlated with
each other and can be grouped together (for example, a composite indicator with multiple care
dimensions for diagnosis, treatment and consultation), whereas regression weights can be con-
sidered when there is a gold standard end point (for example, mortality).

Selection of individual indicators to be included in the composite requires careful evaluation.
Investigating overall structure of the dataset including correlations and interrelationships
between indicators may be useful and important to have meaningful composite measures and
to prevent possible problems, such as double counting and can be a primer for the decision
regarding assigning weights to individual indicators. Including clinical experts (for example,
by establishing an expert panel) for indicator selection and weighting of indicators can be also
considered in order to achieve potentially more clinically meaningful composite indicators.

Validation of the final composite indicator is an important step of construction in order to
assure the composite indicator is fit for purpose, reliable, accurate and robust. National Quality
Forum states that even if studies use already validated individual indicators, the final composite measure may not be the true reflection of quality after weighting and aggregation steps [159]. Hence, a separate validation process of the composite is still warranted in order to obtain a reliable composite score. Although it may be difficult to select the most suitable methodology to construct composite measures and perform validation when a study lacks gold standard, readers should be informed about possible limitations and challenges regarding the specific composite measures and the presence of alternative approaches.

Conclusion

This review provides an overview of the methodologies for composite measures used in the peer-reviewed literature to evaluate the quality of care based on process indicators, including the justifications and methodological considerations made regarding these measures. An increased awareness among researchers and healthcare professionals is warranted regarding the presence of alternative methodologies and the importance of a transparent and robust methodology when constructing and reporting composite measures of process quality of health care.

Supporting information

- **S1 Appendix. Search strategy.** (DOCX)
- **S1 Checklist. PRISMA checklist.** (DOC)
- **S1 Table. Characteristics of included publications.** (DOCX)
- **S2 Table. Context, methods and methodological considerations in included publications.** (DOCX)
- **S3 Table. Aggregation methods used in publications.** (DOCX)
- **S4 Table. Examples for included indicators for each aggregation method.** (DOCX)
- **S5 Table. Weighting methods used in publications.** (DOCX)
- **S6 Table. Justifications for selected methodologies as stated in the included publications.** (DOCX)
- **S7 Table. Examples for methodological considerations counted as “provided”.** (DOCX)

Author Contributions

- **Conceptualization:** Pinar Kara, Jan Brink Valentin, Jan Mainz, Søren Paaske Johnsen.
- **Data curation:** Pinar Kara, Jan Brink Valentin.
- **Formal analysis:** Pinar Kara.
- **Funding acquisition:** Jan Mainz, Søren Paaske Johnsen.
Methodology: Pinar Kara, Jan Brink Valentin, Jan Mainz, Søren Paaske Johnsen.

Resources: Jan Mainz, Søren Paaske Johnsen.

Supervision: Jan Brink Valentin, Jan Mainz, Søren Paaske Johnsen.

Validation: Pinar Kara.

Visualization: Pinar Kara.

Writing – original draft: Pinar Kara.

Writing – review & editing: Pinar Kara, Jan Brink Valentin, Jan Mainz, Søren Paaske Johnsen.

References

1. Mainz J. Defining and classifying clinical indicators for quality improvement. Int J Qual Health Care. 2003; 15: 523–530. https://doi.org/10.1093/intqhc/mzg081 PMID: 14660535

2. Peterson ED, DeLong ER, Masoudi FA, O’Brien SM, Peterson PN, Rumsfeld JS, et al. ACCF/AHA 2010 Position Statement on Composite Measures for Healthcare Performance Assessment: a report of American College of Cardiology Foundation/American Heart Association Task Force on Performance Measures (Writing Committee to Develop a Position Statement on Composite Measures). J Am Coll Cardiol. 2010; 55: 1755–1766. https://doi.org/10.1016/j.jacc.2010.02.016 PMID: 20394884

3. Shwartz M, Restuccia JD, Rosen AK. Composite Measures of Health Care Provider Performance: A Description of Approaches. Milbank Q. 2015; 93: 788–825. https://doi.org/10.1111/1468-0009.12165 PMID: 26626986

4. Austin PC, Ceyisakar IE, Steyerberg EW, Lingsma HF, Marang-van de Mheen PJ. Ranking hospital performance based on individual indicators: can we increase reliability by creating composite indicators? BMC Med Res Methodol. 2019; 19: 131. https://doi.org/10.1186/s12874-019-0769-x PMID: 31242857

5. Jacobs R, Goddard M, Smith PC. How robust are hospital ranks based on composite performance measures? Med Care. 2005; 43: 1177–1184. https://doi.org/10.1097/01.mlr.0000185692.72905.4a PMID: 16299428

6. Barclay M, Dixon-Woods M, Lyatzopoulos G. The problem with composite indicators. BMJ Qual Saf. 2019; 28: 338–344. https://doi.org/10.1136/bmjqs-2018-007798 PMID: 30100565

7. Nardo M, Saisana M, Saltelli A, et al. Handbook on constructing composite indicators: methodology and user guide. 2008. https://www.oecd.org/elis/soc/handbookonconstructingcompositeindicatorsmethodologyanduserguide.htm

8. Moher D, Liberati A, Tetzlaff J, Altman DG, The PG. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLOS Medicine. 2009; 6: e1000097. https://doi.org/10.1371/journal.pmed.1000097 PMID: 19621072

9. Reeves D, Campbell SM, Adams J, Shekelle PG, Kontopantelis E, Roland MO. Combining multiple indicators of clinical quality: an evaluation of different analytic approaches. Med Care. 2007; 45: 489–496. https://doi.org/10.1097/MLR.0b013e31803bb479 PMID: 17515775

10. Nolan T, Berwick DM. All-or-none measurement raises the bar on performance. JAMA. 2006; 295: 1168–1170. https://doi.org/10.1001/jama.295.10.1168 PMID: 16522838

11. Simms AD, Batin PD, Weston CF, Fox KAA, Timmis A, Long WR, et al. An evaluation of composite indicators of hospital acute myocardial infarction care: a study of 136,392 patients from the Myocardial Ischaemia National Audit Project. Int J Cardiol. 2013; 170: 81–87. https://doi.org/10.1016/j.ijcard.2013.10.027 PMID: 24182669

12. Glickman SW, Boulding W, Roos JM, Staelin R, Peterson ED, Schulman KA. Alternative pay-for-performance scoring methods: implications for quality improvement and patient outcomes. Med Care. 2009; 47: 1062–1068. https://doi.org/10.1097/CLR.0b013e3181a7e6c4 PMID: 19648833

13. Lilford RJ, Brown CA, Nicholl J. Use of process measures to monitor the quality of clinical practice. BMJ. 2007; 335: 648–650. https://doi.org/10.1136/bmj.39317.641296.AD PMID: 17901516

14. National Academies of Sciences, Engineering, and Medicine. Health-Care Utilization as a Proxy in Disability Determination. Washington, DC: National Academies Press; 2018.

15. Ouzzani M, Hammad Y, Fedorowicz Z, Elmagarmid A. Rayyan—a web and mobile app for systematic reviews. Syst Rev. 2016; 5: 210–4. https://doi.org/10.1186/s13643-016-0384-4 PMID: 27919275
16. Wang Y, Li Z, Zhao X, Wang C, Wang X, Wang D, et al. Effect of a Multifaceted Quality Improvement Intervention on Hospital Personnel Adherence to Performance Measures in Patients With Acute Ischemic Stroke in China: A Randomized Clinical Trial. JAMA. 2018; 320: 245–254. https://doi.org/10.1001/jama.2018.8802 PMID: 29959443

17. Hsieh F, Jeng J, Chern C, Lee T, Tang S, Tsai L, et al. Quality improvement in acute ischemic stroke care in Taiwan: the breakthrough collaborative in stroke. PloS one. 2016; 11: e0160426. https://doi.org/10.1371/journal.pone.0160426 PMID: 27487190

18. Holbrook A, Thabane L, Keshavjee K, Dolovich L, Bernstein B, Chan D, et al. Individualized electronic decision support and reminders to improve diabetes care in the community: COMPETE II randomized trial. Canadian Medical Association journal (CMAJ). 2009; 181: 37–44. https://doi.org/10.1503/cmaj.081272 PMID: 19581618

19. Bouadma L, Mourviller B, Deiler V, Le Corre B, Lolom I, Régnier B, et al. A multifaceted program to prevent ventilator associated pneumonia: Impact on compliance with preventive measures. Critical care medicine. 2010; 38: 789–796. https://doi.org/10.1097/CCM.0b013e3181ce21af PMID: 2068461

20. Zurovac D, Sudo RK, Akhware WS, Ndiritu M, Hamer DH, Rowe AK, et al. The effect of mobile phone text-message reminders on Kenyan health workers’ adherence to malaria treatment guidelines: a cluster randomised trial. The Lancet (British edition). 2011; 378: 795–803. https://doi.org/10.1016/S0140-6736(11)60783-6 PMID: 21820166

21. Lewis WR, Peterson ED, Cannon CP, Super DM, LaBresh KA, Quealy K, et al. An organized approach to improvement in guideline adherence for acute myocardial infarction: results with the Get With The Guidelines quality improvement program. Arch Intern Med. 2008; 168: 1813–1819. https://doi.org/10.1001/archinte.168.16.1813 PMID: 18779470

22. Jacobson JO, Neuss MN, McNiff KK, Kadlubek P, Thacker LR, Song F, et al. Improvement in oncology practice performance through voluntary participation in the Quality Oncology Practice Initiative. J Clin Oncol. 2008; 26: 1893–1898. https://doi.org/10.1200/JCO.2007.24.592 PMID: 18398155

23. Sperl-Hillen JM, Solberg LI, Hroscikoski MC, Crain AL, Engbergretson KI, O’Connor PJ. The effect of advanced access implementation on quality of diabetes care. Prev Chronic Dis. 2008; 5: A16. PMID: 18082005

24. Glickman SW, Ou FS, DeLong ER, Roe MT, Lylko BL, Mulgund J, et al. Pay for performance, quality of care, and outcomes in acute myocardial infarction. JAMA. 2007; 297: 2373–2380. https://doi.org/10.1001/jama.297.21.2373 PMID: 17551130

25. Krantz MJ, Baker WA, Estacio RO, Haynes DK, Mehler PS, Fonarow GC, et al. Comprehensive coronary artery disease care in a safety-net hospital: results of Get With The Guidelines quality improvement initiative. J Manag Care Pharm. 2007; 13: 319–325. https://doi.org/10.18553/jmcp.2007.13.4.319 PMID: 17506598

26. Landon BE, Hicks LS, O’Malley AJ, Lieu TA, Keegan T, McNeil BJ, et al. Improving the management of chronic disease at community health centers. N Engl J Med. 2007; 356: 921–934. https://doi.org/10.1056/NEJMsao62860 PMID: 17329699

27. Lindeman PK, Remus D, Roman S, Rothenberg MB, Benjamin EM, Ma A, et al. Public reporting and pay for performance in hospital quality improvement. N Engl J Med. 2006; 355: 486–496. https://doi.org/10.1056/NEJMsa064944 PMID: 17259444

28. Alvarez Morán JL, Alé FGB, Rogers E, Guerrero S. Quality of care for treatment of uncomplicated severe acute malnutrition delivered by community health workers in a rural area of Mali. Matern Child Nutr. 2018; 14: e12449. https://doi.org/10.1111/mcn.12449 Epub 2017 Apr 5. PMID: 28378463

29. Loftus TJ, Stelton S, Efaw BW, Bloomston J. A System-Wide Enhanced Recovery Program Focusing on Two Key Process Steps Reduces Complications and Readmissions in Patients Undergoing Bowel Surgery. J Healthc Qual. 2017; 39: 129–135. https://doi.org/10.1111/jhq.12068 PMID: 28481841

30. Baker JW, Persell SD, Kho AN, Thompson JA, Kaiser D. The marginal value of pre-visit paper reminders when added to a multifaceted electronic health record based quality improvement system. J Am Med Inform Assoc. 2011; 18: 805–811. https://doi.org/10.1136/amiajnl-2011-000169 PMID: 21659446

31. Vichare A, Eads N, Punjlia R, Potters L. American Society for Radiation Oncology’s Performance Assessment for the Advancement of Radiation Oncology Treatment: A practical approach for informing practice improvement. Pract Radiat Oncol. 2013; 3: 37. https://doi.org/10.1016/j.prro.2012.09.005 PMID: 24674319

32. Cadilhac D, Grimeley R, Kilkenny M, Andrew N, Lannin N, Hill K, et al. Multicenter, prospective, controlled, Before-and-After, Quality Improvement Study (Stroke123) of acute Stroke Care. Stroke (1970). 2019; 50: 1525–1530. https://doi.org/10.1161/STROKEAHA.118.020375 PMID: 31084337

33. Tawfiq E, Alawi SAS, Natiq K. Effects of Training Health Workers in Integrated Management of Childhood Illness on Quality of Care for Under-5 Children in Primary Healthcare Facilities in Afghanistan.
International journal of health policy and management. 2019; 9: 17–26. https://doi.org/10.15171/ijhpm.2019.69 PMID: 31902191

34. Schneider EC, Sorbero ME, Haas A, Ridgely MS, Khodyakov D, Setodji CM, et al. Does a quality improvement campaign accelerate take-up of new evidence? A ten-state cluster-randomized controlled trial of the IHI’s Project JOINTS. Implementation science: IS. 2017; 12: 51. https://doi.org/10.1186/s13021-017-0579-7 PMID: 28412954

35. Heselmann A, Delvaux N, Laenen A, Van de Velde S, Ramaekers D, Kunnamo I, et al. Computerized clinical decision support system for diabetes in primary care does not improve quality of care: a cluster-randomized controlled trial. Implementation science: IS. 2020; 15: 5. https://doi.org/10.1186/s13021-019-0955-6 PMID: 31910877

36. Wolfe HA, Morgan RW, Zhang B, Topjian AA, Fink EL, Berg RA, et al. Deviations from AHA guidelines during pediatric cardiopulmonary resuscitation are associated with decreased event survival. Resuscitation. 2020; 149: 89–99. https://doi.org/10.1016/j.resuscitation.2020.01.035 PMID: 32057946

37. Schumacher DJ, Martini A, Holmboe E, Carraccio C, van der Vleuten C, Sobolewski B, et al. Initial Implementation of Resident-Sensitive Quality Measures in the Pediatric Emergency Department: A Wide Range of Performance. Academic medicine. 2020; 95: 1248–1255. https://doi.org/10.1097/ACM.0000000000003147 PMID: 31913678

38. Jung K. The impact of information disclosure on quality of care in HMO markets. International journal for quality in health care. 2010; 22: 461–468. https://doi.org/10.1093/Inq/qmq062 PMID: 20940251

39. Wu Y, Li S, Patel A, Li X, Du X, Wu T, et al. Effect of a Quality of Care Improvement Initiative in Patients with Heart Failure and Acute Coronary Syndromes: An Analysis From the Get With The Guidelines-Coronary Artery Disease (GWTG-CAD) Program. JAMA Cardiology. 2019; 4: 418–427. https://doi.org/10.1001/jamacardiology.2019.0897 PMID: 30994898

40. Lytle BL, MS, Li S, MS, Lothrus DM, MD, Thomas L, PhD, Poteat JL, BA, Bhatt DL, MD, et al. Targeted versus standard feedback: Results from a Randomized Quality Improvement Trial. The American heart journal. 2014; 169; 132–142.e2. https://doi.org/10.1016/j.ahj.2014.08.017 PMID: 25497258

41. Schwarm LH, Fonarow GC, Reeves MJ, Pan W, Frankel MR, Smith EE, et al. Get With The Guidelines-Stroke is associated with sustained improvement in care for patients hospitalized with acute stroke or transient ischemic attack. Circulation. 2009; 119: 107–115. https://doi.org/10.1161/CIRCULATIONAHA.108.783688 PMID: 19075103

42. Brush JE, Rensing E, Song F, Cook S, Lynch J, Thacker L, et al. A statewide collaborative initiative to improve the quality of care for patients with acute myocardial infarction and heart failure. Circulation. 2009; 119: 1609–1615. https://doi.org/10.1161/CIRCULATIONAHA.108.764613 PMID: 19298932

43. Hicks LS, O’Malley AJ, Lieu TA, Keegan T, McNeill BJ, Guadagnoli E, et al. Impact of Health Disparities Collaboratives on Racial/Ethnic and Insurance Disparities in US Community Health Centers. Arch Intern Med. 2010; 170: 279–286. https://doi.org/10.1001/archinternmed.2010.493 PMID: 20142575

44. Xian Y, Pan W, Peterson ED, Heidenreich PA, Cannon CP, Hernandez AF, et al. Are quality improvements associated with the Get With The Guidelines—Coronary Artery Disease (GWTG-CAD) program sustained over time? A longitudinal comparison of GWTG-CAD hospitals versus non-GWTG-CAD hospitals. Am Heart J. 2010; 159: 207–214. https://doi.org/10.1016/j.ahj.2009.11.002 PMID: 20152218

45. Laskey W, Spence N, Zhao X, Mayo R, Taylor R, Cannon CP, et al. Regional differences in quality of care and outcomes for the treatment of acute coronary syndromes: an analysis from the get with the guidelines coronary artery disease program. Crit Pathw Cardiol. 2010; 9: 1–7. https://doi.org/10.1097/HPC.0b013e3181cedb5a5 PMID: 20215903

46. Birtcher KK, Pan W, Labresh KA, Cannon CP, Fonarow GC, Ellrodt G. Performance achievement award program for Get With The Guidelines—Coronary Artery Disease is associated with global and sustained improvement in cardiac care for patients hospitalized with an acute myocardial infarction. Crit Pathw Cardiol. 2010; 9: 103–112. https://doi.org/10.1097/HPC.0b013e3181ed763e PMID: 20802262

47. Shubrook JH, Snow RJ, McGill SL. Effects of repeated use of the American Osteopathic Association’s Clinical Assessment Program on measures of care for patients with diabetes mellitus. J Am Osteopath Assoc. 2011; 111: 13–20. PMID: 21258012

48. Morgan DJ, Day HR, Harris AD, Furuno JP, Perencevich EN. The impact of Contact Isolation on the quality of inpatient hospital care. PloS one. 2011; 6: e22190. https://doi.org/10.1371/journal.pone.0022190 PMID: 2181572

49. Appari A, Eric Johnson M, Anthony DL. Meaningful use of electronic health record systems and process quality of care: evidence from a panel data analysis of U.S. acute-care hospitals. Health Serv Res. 2013; 48: 354–375. https://doi.org/10.1111/j.1475-6773.2012.01448.x PMID: 22816527
50. Perlin JB, Horner SJ, Englebright JD, Bracken RM. Rapid core measure improvement through a business case for quality. J Healthc Qual. 2014; 36: 50–61. https://doi.org/10.1111/jhq.12043 PMID: 24689543

51. McHugh M, Neimeyer J, Powell E, Khare RK, Adams JG. An early look at performance on the emergency care measures included in Medicare's hospital inpatient Value-Based Purchasing Program. Ann Emerg Med. 2013; 61: 616–623.e2. https://doi.org/10.1016/j.annemergmed.2013.01.012 PMID: 23489652

52. Paustian ML, Alexander JA, El Reda DK, Wise CG, Green LA, Fetters MD. Partial and Incremental PCMH Practice Transformation: Implications for Quality and Costs. Health Serv Res. 2014; 49: 52–74. https://doi.org/10.1111/1475-6773.12085 PMID: 23829322

53. Peacock WF, Kontos MC, Amsterdam E, Cannon CP, Diercks D, Garvey L, et al. Impact of Society of Cardiovascular Patient Care accreditation on quality: an ACTION Registryâ“™-Get With The Guidelinesâ™ analysis. Crit Pathw Cardiol. 2013; 12: 116–120. https://doi.org/10.1097/HPC.0b013e31828940e3 PMID: 23992940

54. Mitchell J, Probst J, Brock-Martin A, Bennett K, Glover S, Hardin J. Association between clinical decision support system use and rural quality disparities in the treatment of pneumonia. J Rural Health. 2014; 30: 186–195. https://doi.org/10.1111/jrhl.12043 PMID: 24689543

55. Mitchell J, Probst JC, Bennett KJ, Glover S, Martin AB, Hardin JW. Differences in pneumonia treatment between high-minority and low-minority neighborhoods with clinical decision support system implementation. Inform Health Soc Care. 2016; 1: 128–142. https://doi.org/10.3109/17538157.2014.965304 PMID: 25325354

56. Herrera AL, Góngora-Rivera F, Muruet W, Villarreal HJ, Gutiérrez-Herrera M, Huerta L, et al. Implementation of a Stroke Registry Is Associated with an Improvement in Stroke Performance Measures in a Tertiary Hospital in Mexico. J Stroke Cerebrovasc Dis. 2015; 24: 725–730. https://doi.org/10.1016/j.jstrokecerebrovasdis.2014.09.008 PMID: 25680667

57. Bogh SB, Falstie-Jensen AM, Bartels P, Hollnagel E, Johnsen SP. Accreditation and improvement in process quality of care: a nationwide study. Int J Qual Health Care. 2015; 27: 336–343. https://doi.org/10.1093/intqhc/mzv053 PMID: 26239473

58. Nkoy F, Fassl B, Stone B, Uchida DA, Johnson J, Reynolds C, et al. Improving Pediatric Asthma Care and Outcomes Across Multiple Hospitals. Pediatrics. 2015; 136: e1602–e1610. https://doi.org/10.1542/peds.2015-0285 PMID: 26527553

59. Baack Kukreja JE, Kiemann M, Schempp B, Siebert A, Hontar A, Nelson B, et al. Quality Improvement in Cystectomy Care with Enhanced Recovery (QUICCER) study. BJU Int. 2017; 119: 38–49. https://doi.org/10.1111/bju.13521 PMID: 27128851

60. Li Z, Wang C, Zhao X, Liu L, Wang C, Li H, et al. Substantial Progress Yet Significant Opportunity for Improvement in Stroke Care in China. Stroke. 2016; 47: 2843–2849. https://doi.org/10.1161/STROKEAHA.116.014143 PMID: 27758941

61. Diop M, Fiset-Laniel J, Provost S, Tousignant P, Borgès Da Silva R, Ouimet M, et al. Does enrollment in multidisciplinary team-based primary care practice improve adherence to guideline-recommended processes of care? Quebec's Family Medicine Groups, 2002–2010. Health Policy. 2017; 121: 378–388. https://doi.org/10.1016/j.healthpol.2017.02.001 PMID: 28233598

62. Ryan AM, Krinsky S, Maurer KA, Dimick JB. Changes in Hospital Quality Associated with Hospital Value-Based Purchasing. N Engl J Med. 2017; 376: 2358–2366. https://doi.org/10.1056/NEJMs1613412 PMID: 2814675

63. Ndumele CD, Schpero WL, Schlesinger MJ, Trivedi AN. Association Between Health Plan Exit From Medicaid Managed Care and Quality of Care, 2006–2014. JAMA. 2017; 317: 2524–2531. https://doi.org/10.1001/jama.2017.1118 PMID: 28655014

64. Peterson GG, Geonnotti KL, Hula L, Day T, Blue L, Kranker K, et al. Association Between Extending CareFirst’s Medical Home Program to Medicare Patients and Quality of Care, Utilization, and Spending. JAMA Intern Med. 2017; 177: 1334–1342. https://doi.org/10.1001/jamainternmed.2017.2775 PMID: 28759685

65. Falstie-Jensen AM, Bogh SB, Hollnagel E, Johnsen SP. Compliance with accreditation and recommended hospital care—a Danish nationwide population-based study. Int J Qual Health Care. 2017; 29: 625–633. https://doi.org/10.1093/intqhc/mzx104 PMID: 28992159

66. Starks MA, Dai D, Nichol G, Al-Khatib SM, Chan P, Bradley SM, et al. The association of Duration of participation in get with the guidelines-resuscitation with quality of Care for in-Hospital Cardiac Arrest. Am Heart J. 2018; 204: 156–162. https://doi.org/10.1016/j.ahj.2018.04.018 PMID: 30121017

67. Dentan C, Forestier E, Roustil M, Boisset S, Chanoine S, Epaullard O, et al. Assessment of linezolid prescriptions in three French hospitals. Eur J Clin Microbiol Infect Dis. 2017; 36: 1133–1141. https://doi.org/10.1007/s10096-017-2900-4 PMID: 28127641
68. Katzenellenbogen JM, Bond-Smith D, Ralph AP, Wilmot M, Marsh J, Baille R, et al. Priorities for improved management of acute rheumatic fever and rheumatic heart disease: analysis of cross-sectional continuous quality improvement data in Aboriginal primary healthcare centres in Australia. Australian health review: a publication of the Australian Hospital Association. 2020; 44: 212–221. https://doi.org/10.1071/AH19132 PMID: 32241338

69. Ranasinghe WG, Beane A, Vithanage TDP, Priyadarshani GDD, Colombage DDE, Ponnamperuma CJ, et al. Quality evaluation and future priorities for delivering acute myocardial infarction care in Sri Lanka. Heart (British Cardiac Society). 2020; 106: 603–608. https://doi.org/10.1136/heartjnl-2019-315396 PMID: 31843877

70. Wang Y, Li Z, Zhao X, Wang C, Wang X, Wang D, et al. China Stroke Statistics 2019: A Report From the National Center for Healthcare Quality Management in Neurological Diseases, China National Clinical Research Center for Neurological Diseases, the Chinese Stroke Association, National Center for Chronic and Non-communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention and Institute for Global Neuroscience and Stroke Collaborations. Stroke Vasc Neurol. 2020 Sep; 5(3):211–239. https://doi.org/10.1117/svm-2020-000457 Epub 2020 Aug 21. PMID: 32826385

71. Bintabara D, Nakamura K, Ntwenya J, Seino K, Mpondo B. Adherence to standards of first-visit antenatal care among providers: A stratified analysis of Tanzanian facility-based survey for improving quality of antenatal care. PLoS One. 2019; 14: e0216520. https://doi.org/10.1371/journal.pone.0216520 PMID: 31083696

72. Hong JY, Kang YA. Evaluation of the Quality of Care among Hospitalized Adult Patients with Community-Acquired Pneumonia in Korea. Tuberc Respir Dis (Seoul). 2018; 81: 175–186. PMID: 29926542

73. Nuti SV, Wang Y, Masoudi FA, Bratzler DW, Bernheim SM, Murugiah K, et al. Improvements in the distribution of hospital performance for the care of patients with acute myocardial infarction, heart failure, and pneumonia, 2006–2011. Med Care. 2015; 53: 485–491. https://doi.org/10.1097/MLR.0000000000000358 PMID: 25906012

74. Flotta D, Rizza P, Coscarelli P, Pileggi C, Nobile CGA, Pavia M. Appraising hospital performance by using the JCHAO/CMAS quality measures in Southern Italy. PloS one. 2012; 7: e48923. https://doi.org/10.1371/journal.pone.0048923 PMID: 23145023

75. Williams SC, Koss RG, Morton DJ, Loeb JM. Performance of top-ranked heart care hospitals on evidence-based process measures. Circulation. 2006; 114: 558–564. https://doi.org/10.1161/CIRCULATIONAHA.105.600973 PMID: 16880327

76. Plackett TP, Cherry DC, Delk G, Satterly S, Theler J, McVay D, et al. Clinical practice guideline adherence during Operation Inherent Resolve. J Trauma Acute Care Surg. 2017; 83: S66–S70. https://doi.org/10.1097/TA.0000000000001473 PMID: 28383471

77. Starks MA, Wu J, Peterson ED, Stafford JA, Matsouka RA, Boulware LE, et al. In-Hospital Cardiac Arrest Resuscitation Practices and Outcomes in Maintenance Dialysis Patients. Clinical journal of the American Society of Nephrology. 2020; 15: 219–227. https://doi.org/10.2215/CJN.05070419 PMID: 31911423

78. Getachew T, Abebe SM, Yitayal M, Persson LÅ, Berhanu D. Assessing the quality of care in sick children services at health facilities in Ethiopia. BMC health services research. 2020; 20: 1–574. https://doi.org/10.1186/s12913-020-05444-7 PMID: 32576187

79. Zhang X, Li Z, Zhao X, Liu Y, Wang C, et al. Relationship between hospital performance measures and outcomes in patients with acute ischaemic stroke: a prospective cohort study. BMJ open. 2018; 8: e020467. https://doi.org/10.1136/bmjopen-2017-020467 PMID: 3068610

80. Rehman S, Li X, Wang C, Ikram M, Rehman E, Liu M. Quality of Care for Patients with Acute Myocardial Infarction (AMI) in Pakistan: A Retrospective Study. International journal of environm ental research and public health. 2020; 17: 3980. https://doi.org/10.3390/ijerph17020390 PMID: 31615067

81. Bosko T, Wilson K. Assessing the relationship between patient satisfaction and clinical quality in an ambulatory setting. J Health Organ Manag. 2016; 30: 1063–1080. https://doi.org/10.1108/JHOM-11-2015-0181 PMID: 27700474

82. Sequist TD, Schneider EC, Anastario M, Odigie EG, Marshall R, Rogers WH, et al. Quality monitoring of physicians: linking patients’ experiences of care to clinical quality and outcomes. J Gen Intern Med. 2008; 23: 1784–1790. https://doi.org/10.1007/s11606-008-0760-4 PMID: 18752026

83. Arora VM, Plein C, Chen S, Siddique J, Sachs GA, Meltzer D. Relationship between quality of care and functional decline in hospitalized vulnerable elders. Med Care. 2009; 47: 895–901. https://doi.org/10.1097/MLR.0b013e31817a3ec PMID: 19597372

84. Patterson ME, Hernandez AF, Hammill Bradley G, Fonarow GC, Peterson ED, Schulman KA, et al. Process of Care Performance Measures and Long-Term Outcomes in Hospitalized With
Heart Failure. Med Care. 2010; 48: 210. https://doi.org/10.1097/MLR.0b013e3181ca3eb4 PMID: 20125043

85. Shafi S, Parks J, Ahn C, Gentilello L, Nathens A, Hemmila M, et al. Centers for Medicare and Medicaid Services Quality Indicators Do Not Correlate With Risk-Adjusted Mortality at Trauma Centers. J Trauma. 2010; 68: 771–777. https://doi.org/10.1097/TA.0b013e3181d03a20 PMID: 20386272

86. Stulberg JJ, Delaney CP, Neuhauser DV, Aron DC, Fu P, Koroukian SM. Adherence to surgical care improvement project measures and the association with postoperative infections. JAMA. 2010; 303: 2479–2485. https://doi.org/10.1001/jama.2010.841 PMID: 20571014

87. Aaronson DS, Bardach NS, Lin GA, Chattopadhyay A, Goldman LE, Dudley RA. Prediction of hospital acute myocardial infarction and heart failure 30-day mortality rates using publicly reported performance measures. J Healthc Qual. 2013; 35: 15–23. https://doi.org/10.1111/j.1945-1474.2011.00173.x PMID: 22093186

88. Sills MR, Ginde AA, Clark S, Camargo CA. Multicenter analysis of quality indicators for children treated in the emergency department for asthma. Pediatrics. 2012; 129: 325. https://doi.org/10.1542/peds.2010-3302 PMID: 22250025

89. Sequist TD, Von Glahn T, Li A, Rogers WH, Safran DG. Measuring chronic care delivery: patient experiences and clinical performance. Int J Qual Health Care. 2012; 24: 206–213. https://doi.org/10.1093/intqhc/mzs018 PMID: 22490300

90. Saleh S, Callan M, Kassak K. The association between the hospital quality alliance’s pneumonia measures and discharge costs. J Health Care Finance. 2012; 38: 50–60. PMID: 22515044

91. Ashby J, Juarez DT, Berthiaume J, Sibley P, Chung RS. The relationship of hospital quality and cost per case in Hawaii. Inquiry. 2012; 49: 65–74. https://doi.org/10.5034/inquiryjrnl_49.01.06 PMID: 22650018

92. Hasegawa K, Chiba T, Hagiwara Y, Watase H, Tsugawa Y, Brown DFM, et al. Quality of Care for Acute Asthma in Emergency Departments in Japan: A Multicenter Observational Study. J Allergy Clin Immunol Pract. 2013; 1: 509–515. https://doi.org/10.1016/j.jaip.2013.05.001 PMID: 24565623

93. Kontos MC, Rennysom SL, Chen AY, Alexander KP, Peterson ED, Roe MT. The association of myocardial infarction process of care measures and in-hospital mortality: A report from the NCDR. Am Heart J. 2014; 168: 766–775. https://doi.org/10.1016/j.ahj.2014.07.005 PMID: 25440806

94. Dusheiko M, Gravelle H, Martin S, Smith PC. Quality of Disease Management and Risk of Mortality in English Primary Care Practices. Health Serv Res. 2015; 50: 1452–1471. https://doi.org/10.1111/1475-6773.12283 PMID: 25597263

95. Congiusta S, Solomon P, Conigliaro J, O’Gara-Shubinsky R, Kohn N, Nash IS. Clinical Quality and Patient Experience in the Adult Ambulatory Setting. Am J Med Qual. 2019; 34: 87–91. https://doi.org/10.1177/1062860618777878 PMID: 29790371

96. Speece LJ, Donovan LM, Griffith MF, Collins MP, Feemster LC, Au DH. Quality of Care Delivered to Veterans with COPD Exacerbation and the Association with 30-Day Readmission and Death. COPD. 2018; 15: 489–495. https://doi.org/10.1080/15412555.2018.1543390 PMID: 30822247

97. Barbayannis G, Chiu I, Sargsyan D, Cabrera J, Beavers TE, Kostis JB, et al. Relation Between State-wide Hospital Performance Reports on Myocardial Infarction and Cardiovascular Outcomes. Am J Cardiol. 2019; 123: 1587–1594. https://doi.org/10.1016/j.amjcard.2019.02.016 PMID: 30850213

98. Ido MS, Franken MR, Okosun IS, Rothenberg RB. Quality of Care and Its Impact on One-Year Mortality: The Georgia Coverdell Acute Stroke Registry. Am J Med Qual. 2018; 33: 86–92. https://doi.org/10.1177/1062860617769578 PMID: 28693340

99. Smith LM, Anderson WL, Lines LM, Pronier C, Thornburg V, Butler JP, et al. Patient experience and process measures of quality of care at home health agencies: Factors associated with high performance. Home Health Care Serv Q. 2017; 36: 29–45. https://doi.org/10.1080/01621424.2017.1320698 PMID: 28448222

100. Mason MC, Chang GJ, Petersen LA, Sada YH, Tran Cao HS, Chai C, et al. National Quality Forum Colon Cancer Quality Metric Performance: How Are Hospitals Measuring Up? Ann Surg. 2017; 266: 1013–1020. https://doi.org/10.1097/SLA.0000000000002003 PMID: 27617852

101. Chui PW, Parzynski CS, Nallamothu BK, Masoudi FA, Krumholz HM, Curtis JP. Hospital Performance on Percutaneous Coronary Intervention Process and Outcomes Measures. J Am Heart Assoc. 2017; 6: e004276. https://doi.org/10.1161/JAHA.116.004276 PMID: 28446493

102. Wang C, Li X, Su S, Wang X, Li J, Bao X, et al. Factors analysis on the use of key quality indicators for narrowing the gap of quality of care of breast cancer. BMC cancer. 2019; 19: 1099. https://doi.org/10.1186/s12885-019-6334-5 PMID: 31718596

103. Hess BJ, Weng W, Holmboe ES, Lipner RS. The Association Between Physicians’ Cognitive Skills and Quality of Diabetes Care. Academic medicine. 2012; 87: 157–163. PMID: 22189883
104. Levine DA, Kollman CD, Olorode T, Giordani B, Lisabeth LD, Zahuranec DB, et al. Physician decision-making and recommendations for stroke and myocardial infarction treatments in older adults with mild cognitive impairment. PLoS One. 2020; 15: e0230446. https://doi.org/10.1371/journal.pone.0230446 PMID: 32182264

105. Al Qawasmeh M, Alhusban A, AlFwass F, El-Salem K. An Assessment of Patients Factors Effect on Prescriber Adherence to Ischemic Stroke Secondary Prevention Guidelines. Current clinical pharmacology. 2020; 15. https://doi.org/10.2174/1574884715666200123145350 PMID: 31971113

106. Kovács N, Varga O, Nagy A, Pálinkás A, Sipos V, Kőrösi L, et al. The impact of general practitioners’ gender on process indicators in Hungarian primary healthcare: a nationwide-cross-sectional study. BMJ open. 2019; 9: e027296. https://doi.org/10.1136/bmjopen-2018-027296 PMID: 31495989

107. Min LC, Reuben DB, MacLean CH, Shekelle PG, Solomon DH, Higashi T, et al. Predictors of overall quality of care provided to vulnerable older people. J Am Geriatr Soc. 2005; 53: 1705–1711. https://doi.org/10.1111/j.1532-5415.2005.53520.x PMID: 16181169

108. Holmboe ES, Wang Y, Meehan TP, Tate JP, Ho SY, Starkey KS, et al. Association between maintenance of certification examination scores and quality of care for medicare beneficiaries. Arch Intern Med. 2008; 168: 1396–1403. https://doi.org/10.1001/archinte.168.13.1396 PMID: 18625919

109. Correa-de-Araujo R, McDermott K, Moy E. Gender differences across racial and ethnic groups in the quality of care for diabetes. Womens Health Issues. 2006; 16: 56–65. https://doi.org/10.1016/j.whi.2005.08.003 PMID: 16635222

110. Lindenauner PK, Pekow P, Gao S, Crawford AS, Gutierrez B, Benjamin EM. Quality of care for patients hospitalized for acute exacerbations of chronic obstructive pulmonary disease. Ann Intern Med. 2006; 144: 894–903. https://doi.org/10.7326/0003-4819-144-12-200606200-00006 PMID: 16785478

111. Landon BE, Normand ST, Lesser A, O’Malley AJ, Schmaitz S, Loeb JM, et al. Quality of care for the treatment of acute medical conditions in US hospitals. Arch Intern Med. 2006; 166: 2511–2517. https://doi.org/10.1001/archinte.166.22.2511 PMID: 17159018

112. Mehta RH, Liang L, Karve AM, Hernandez AF, Rumsfeld JS, Fonarow GC, et al. Association of Patient Case-Mix Adjustment, Hospital Process Performance Rankings, and Eligibility for Financial Incentives. JAMA. 2008; 300: 1897–1903. https://doi.org/10.1001/jama.300.16.1897 PMID: 18940976

113. Colwell C, Mehler P, Harper J, Cassell L, Vazquez J, Sabel A. Measuring quality in the prehospital care of chest pain patients. Prehosp Emerg Care. 2009; 13: 237–240. https://doi.org/10.1080/14440130802170194093217016005510 PMID: 21321267

114. López L, Hicks LS, Cohen AP, McKean S, Weissman JS. Hospitalists and the quality of care in hospitals. Arch Intern Med. 2009; 169: 1389–1400. https://doi.org/10.1001/archinternmed.2009.222 PMID: 19722428

115. Reeves MJ, Gargano J, Maier KS, Broderick JP, Frankel M, LaBresh KA, et al. Practice factors associated with improvement in use of guideline-recommended therapies for outpatients with heart failure (from the IMPROVE HF trial). Am J Cardiol. 2011; 107: 250–258. https://doi.org/10.1016/j.amjcard.2010.09.012 PMID: 21211602

116. Ross JS, Arling G, Otner S, Roumaine CL, Keyhani S, Williams LS, et al. Correlation of inpatient and outpatient measures of stroke care quality within veterans health administration hospitals. Stroke. 2011; 42: 2269–2275. https://doi.org/10.1161/STROKEAHA.110.611913 PMID: 21719771

117. Kapoor JR, Fonarow GC, Zhao X, Kapoor R, Hernandez AF, Heidenreich PA. Diabetes, quality of care, and in-hospital outcomes in patients hospitalized with heart failure. Am Heart J. 2011; 162: 480–486.e3. https://doi.org/10.1016/j.amjcard.2011.06.008 PMID: 21884864

118. Buïer JB, Shubrook JH, Snow R. Racial disparities in African Americans with diabetes: process and outcome mismatch. Am J Manag Care. 2012; 18: 407–413. PMID: 22928755

119. Gale CP, Cattle BA, Baxter PD, Greenwood DC, Simms AD, Deanfield J, et al. Age-dependent inequalities in improvements in mortality occur early after acute myocardial infarction in 478,242 patients in the Myocardial Ischaemia National Audit Project (MINAP) registry. Int J Cardiol. 2013; 168: 881–887. https://doi.org/10.1016/j.ijcard.2012.10.025 PMID: 23177996

120. Schiele F, Capuano F, Loirat P, Desplanques-Leperre A, Derumeaux G, Thebaut J, et al. Hospital case volume and appropriate prescriptions at hospital discharge after acute myocardial infarction: a nationwide assessment. Circ Cardiovasc Qual Outcomes. 2013; 6: 50–57. https://doi.org/10.1161/CIRCOUTCOMES.112.967133 PMID: 23233747
123. Ukawa N, Ikai H, Imanaka Y. Trends in hospital performance in acute myocardial infarction care: a retrospective longitudinal study in Japan. Int J Qual Health Care. 2014; 26: 516–523. https://doi.org/10.1093/intqhc/mzu073 PMID: 25107593

124. Seghieri C, Policardo L, Francesconi P, Seghieri G. Gender differences in the relationship between diabetes process of care indicators and cardiovascular outcomes. Eur J Public Health. 2016; 26: 219–224. https://doi.org/10.1093/eurpub/ckv158 PMID: 26342130

125. Policardo L, Barchielli A, Seghieri G, Francesconi P. Does the hospitalization after a cancer diagnosis modify adherence to process indicators of diabetes care quality? Acta Diabetol. 2016; 53: 1009–1014. https://doi.org/10.1007/s00592-016-0898-1 PMID: 27600441

126. Pan Y, Chen R, Li Z, Li H, Zhao X, Liu L, et al. Socioeconomic Status and the Quality of Acute Stroke Care: The China National Stroke Registry. Stroke. 2016; 47: 2836–2842. https://doi.org/10.1161/STROKEAHA.116.013292 PMID: 27758939

127. Desai NR, Udell JA, Wang Y, Spatz ES, Dharmarajan K, Ahmad T, et al. Trends in Performance and Opportunities for Improvement on a Composite Measure of Acute Myocardial Infarction Care. Circ Cardiovasc Qual Outcomes. 2019; 12: e004983. https://doi.org/10.4143/CIRCOUTCOMES.118.004983 PMID: 30871375

128. Ji R, Wang D, Liu G, Shen H, Li H, Schwamm LH, et al. Impact of macroeconomic status on prehospital management, in-hospital care and functional outcome of acute stroke in China. Clin Pract. 2013; 10: 701–712.

129. Halim SA, Mulgund J, Chen AY, Roe MT, Peterson ED, Gibler WB, et al. Use of Guidelines-Recommended Management and Outcomes Among Women and Men With Low-Level Troponin Elevation: Insights From CRUSADE. Circ Cardiovasc Qual Outcomes. 2009; 2: 199–206. https://doi.org/10.1161/CIRCOUTCOMES.108.810127 PMID: 20031838

130. Seghieri G, Seghieri C, Policardo L, Gualdani E, Francesconi P, Voller F. Adherence to diabetes care process indicators in migrants as compared to non-migrants with diabetes: a retrospective cohort study. Int J Public Health. 2018; 64: 595–601. https://doi.org/10.1007/s00038-018-10220-5 PMID: 30882858

131. Su S, Bao H, Wang X, Wang Z, Li X, Zhang M, et al. The quality of invasive breast cancer care for low reimbursement rate patients: A retrospective study. PLoS one. 2017; 12: e0184866. https://doi.org/10.1371/journal.pone.0184866 PMID: 28910357

132. McDermott M, Lisabeth LD, Baek J, Adelman EE, Garcia NM, Case E, et al. Sex Disparity in Stroke Outcomes For High-Needs Patients: Practices With A Higher Proportion Of These Patients Have An Edge. Health Aff (Millwood). 2017; 36: 476–484. https://doi.org/10.1377/hlthaff.2016.1308 PMID: 28264949

133. Cross DA, Cohen GR, Lemak CH, Adler-Milstein J. Outcomes Of High-Needs Patients: Practices With A Higher Proportion Of These Patients Have An Edge. Health Aff (Millwood). 2017; 36: 476–484. https://doi.org/10.1377/hlthaff.2016.1308 PMID: 28264949

134. Murtas R, Decarlì A, Greco MT, Andreano A, Russo AG. Latent composite indicators for evaluating adherence to colorectal cancer guidelines in patients with a colorectal cancer diagnosis. Medicine (Baltimore). 2020; 99: e19277. https://doi.org/10.1016/j.md.2020.06.019277 PMID: 32080139

135. Halterman JS, Kitzman H, McMullen A, Lynch K, Fagnano M, Conn KM, et al. Quantifying preventive asthma care delivered at office visits: the Preventive Asthma Care-Composite Index (PAC-CI). J Asthma. 2006; 43: 559–64. https://doi.org/10.1080/027709006006591725 PMID: 16939999

136. Samuel CA, Zaslavsky AM, Landrum MB, Lorenz K, Keating NL. Developing and Evaluating Composite Measures of Cancer Care Quality. Medical care. 2015; 53: 54–64. https://doi.org/10.1097/MCR.00000000000019277 PMID: 32080139

137. Halasanyan KE, Davis MM. Conflicting measures of hospital quality: ratings from “Hospital Compare” versus “Best Hospitals”. J Hosp Med. 2007; 2: 128–34. PMID: 17549759

138. Kaplan Sherrie H., Griffith John L., Price Lori L., Pawlson L. Gregory, Greenfield Sheldon. Improving the Reliability of Physician Performance Assessment: Identifying the “Physician Effect” on Quality and Creating Composite Measures. Medical care. 2009; 10: 701–712. https://doi.org/10.1007/s00592-016-0898-1 PMID: 25107593

139. O’Brien SM, Ferraris VA, Haan CK, Rich JB, Shewan CM, Dokholyan RS, et al. Quality measurement in adult cardiac surgery: part 2—Statistical considerations in composite measure scoring and provider rating. Ann Thorac Surg. 2007; 83: 13. https://doi.org/10.1016/j.athoracsur.2007.01.055 PMID: 17383406

140. Schwartz M, Ren J, Peköz EA, Wang X, Cohen AB, Restuccia JD. Estimating a composite measure of hospital quality from the Hospital Compare database: differences when using a Bayesian hierarchical
latent variable model versus denominator-based weights. Med Care. 2008; 46: 778–785. https://doi.org/10.1097/MLR.0b013e31817893dc PMID: 18665057

142. Scholle SH, Roski J, Adams JL, Dunn DL, Kerr EA, Dugan DP, et al. Benchmarking physician performance: reliability of individual and composite measures. Am J Med Care. 2008; 14: 833–838. PMID: 19067500

143. Bilimoria KY, Raval MV, Bentrem DJ, Wayne JD, Balch CM, Ko CY. National assessment of melanoma care using formally developed quality indicators. J Clin Oncol. 2009; 27: 5445–5451. https://doi.org/10.1200/JCO.2008.20.9965 PMID: 19826131

144. Willis CD, Stoelwinder JU, Lecky FE, Woodford M, Jenks T, Bouamra O, et al. Applying composite performance measures to trauma care. J Trauma. 2010; 69: 256–262. https://doi.org/10.1097/TA.0b013e3181e5e2a3 PMID: 20699733

145. Holmboe ES, Weng W, Arnold GK, Kaplan SH, Normand S, Greenfield S, et al. The Comprehensive Care Project: Measuring Physician Performance in Ambulatory Practice. Health Serv Res. 2010; 45: 1912–1933. https://doi.org/10.1111/j.1475-6773.2010.01160.x PMID: 20819110

146. Kilbourne AM, Farmer Teh C, Welsh D, Pincus HA, Lasky E, Perron B, et al. Implementing composite quality metrics for bipolar disorder: towards a more comprehensive approach to quality measurement. Gen Hosp Psychiatry. 2010; 32: 636–643. https://doi.org/10.1016/j.genhosppsych.2010.09.011 PMID: 21112457

147. Couralet M, Guérin S, Le Vaillant M, Loirat P, Minvielle E. Constructing a composite score quality for the care of acute myocardial infarction patients at discharge: impact on hospital ranking. Med Care. 2011; 49: 569–576. https://doi.org/10.1097/MLR.0b013e31825f386 PMID: 21532510

148. Martirosyan L, Haaijer-Ruskamp FM, Braspenning J, Denig P. Development of a minimal set of prescribing quality indicators for diabetes management on a general practice level. Pharmacoepidemiol Drug Saf. 2012; 21: 1053–1059. https://doi.org/10.1002/pds.2248 PMID: 20220240

149. Eapen ZJ, Fonarow GC, Dai D, O’Brien SM, Schwamm LH, Cannon CP, et al. Comparing composite measure methodologies for rewarding quality of care: an analysis from the American Heart Association’s Get With The Guidelines program. Circ Cardiovasc Qual Outcomes. 2011; 4: 610–618. https://doi.org/10.1161/CIRCOUTCOMES.111.961391 PMID: 22010200

150. Kolfschoten NE, Gooiker GA, Bastiaannet E, van Leersum NJ, van de Velde CJH., Eddes EH, et al. Combining process indicators to evaluate quality of care for surgical patients with colorectal cancer: are scores consistent with short-term outcome? BMJ Qual Saf. 2012; 21: 481–489. https://doi.org/10.1136/bmjqs-2011-000439 PMID: 22491529

151. de Wet C, McKay J, Bowie P. Combining QOF data with the care bundle approach may provide a more meaningful measure of quality in general practice. BMC Health Serv Res. 2012; 12: 351. https://doi.org/10.1186/1472-6963-12-351 PMID: 23043262

152. Simms AD, Baxter PD, Cattle BA, Batin PD, Wilson Ji, West RM, et al. An assessment of composite measures of hospital performance and associated mortality for patients with acute myocardial infarction. Analysis of individual hospital performance and outcome for the National Institute for Cardiovascular Outcomes Research (NICOR), Eur Heart J Acute Cardiovasc Care. 2013; 2: 9–18. https://doi.org/10.1177/2048872612469132 PMID: 24062929

153. Weng W, Hess BJ, Lynn LA, Lipner RS. Assessing the Quality of Osteoporosis Care in Practice. J Gen Intern Med. 2015; 30: 1681–1687. https://doi.org/10.1007/s11606-015-3342-2 PMID: 25956825

154. Amoah AO, Amirfar S, Sebek K, Silfen SL, Singer J, Wang JJ. Developing Composite Quality Measures for EHR-Enabled Primary Care Practices in New York City. J Med Pract Manage. 2015; 30: 231–239. PMID: 26223100

155. Kinnier CV, Ju MH, Kmiecik T, Barnard C, Halverson T, Yang AD, et al. Development of a Novel Composite Process Measure for Venous Thromboembolism Prophylaxis. Med Care. 2016; 54: 210–217. https://doi.org/10.1097/MLR.0000000000000474 PMID: 26683781

156. Aliprandi-Costa B, Sockler J, Kritharides L, Morgan L, Snell L, Gillick J, et al. The contribution of the composite of clinical process indicators as a measure of hospital performance in the management of acute coronary syndromes—insights from the CONCORDANCE registry. Eur Heart J Qual Care Clin Outcomes. 2017; 3: 37–46. https://doi.org/10.1093/ehjqcco/qcw023 PMID: 28927185

157. Normand ST, Wolf RE, McNeil BJ. Discriminating Quality of Hospital Care in the United States. Med Decis Making. 2008; 28: 308–322. https://doi.org/10.1177/0748829070312710 PMID: 18310529

158. Wang TY, Dai D, Hernandez AF, Bhatt DL, Heidenreich PA, Fonarow GC, et al. The importance of consistent, high-quality acute myocardial infarction and heart failure care results from the American Heart Association’s Get with the Guidelines Program. J Am Coll Cardiol. 2011; 58: 637–644. https://doi.org/10.1016/j.jacc.2011.05.012 PMID: 21798428

159. National Quality Forum. Composite Performance Measure Evaluation Guidance. 2013. https://www.qualityforum.org/publications/2013/04/composite_performance_measure_evaluation_guidance.aspx