VANISHING VISCOSITY LIMIT OF THE NAVIER-STOKES EQUATIONS TO THE EULER EQUATIONS FOR COMPRESSIBLE FLUID FLOW

GUI-QIANG CHEN AND MIKHAIL PEREPELITSA

Abstract. We establish the vanishing viscosity limit of the Navier-Stokes equations to the isentropic Euler equations for one-dimensional compressible fluid flow. For the Navier-Stokes equations, there exist no natural invariant regions for the equations with respect to the physical viscosity term so that the uniform sup-norm of solutions with respect to the viscosity coefficient may not be directly controllable and, furthermore, convex entropy-entropy flux pairs may not produce signed entropy dissipation measures. To overcome these difficulties, we first develop uniform energy-type estimates with respect to the viscosity coefficient for the solutions of the Navier-Stokes equations and establish the existence of measure-valued solutions of the isentropic Euler equations generated by the Navier-Stokes equations. Based on the uniform energy-type estimates and the features of the isentropic Euler equations, we establish that the entropy dissipation measures of the solutions of the Navier-Stokes equations for weak entropy-entropy flux pairs, generated by compactly supported C^2 test functions, are confined in a compact set in H^{-1}, which lead to the existence of measure-valued solutions that are confined by the Tartar-Murat commutator relation. A careful characterization of the unbounded support of the measure-valued solution confined by the commutator relation yields the reduction of the measure-valued solution to a Delta mass, which leads to the convergence of solutions of the Navier-Stokes equations to a finite-energy entropy solution of the isentropic Euler equations.

1. Introduction

We are concerned with the vanishing viscosity limit of the motion of a compressible viscous, barotropic fluid in Eulerian coordinates $\mathbb{R}^2_+ := [0, \infty) \times \mathbb{R}$, which is described by the system of Navier-Stokes equations:

\[
\begin{aligned}
\rho_t + (\rho u)_x &= 0, \\
(\rho u)_t + (\rho u^2 + p)_x &= \varepsilon u_{xx},
\end{aligned}
\]

with the initial conditions:

\[
\rho(0, x) = \rho_0(x), \quad u(0, x) = u_0(x)
\]

such that $\lim_{x \to \pm \infty}(\rho_0(x), u_0(x)) = (\rho^{\pm}, u^{\pm})$, where ρ denotes the density, u represents the velocity of the fluid when $\rho > 0$, p is the pressure, $m = \rho u$ is the momentum, and
are constant states with $\rho^{\pm} > 0$. The physical viscosity coefficient ε is restricted to $\varepsilon \in (0, \varepsilon_0]$ for some fixed $\varepsilon_0 > 0$. The pressure p is a function of the density through the internal energy $e(\rho)$:

$$p(\rho) = \rho e'(\rho) - e(\rho) \quad \text{for } \rho \geq 0.$$

In particular, for a polytropic perfect gas,

$$p(\rho) = \kappa \rho^{\gamma}, \quad e(\rho) = \frac{\kappa}{\gamma - 1} \rho^{\gamma},$$

(1.3)

where $\gamma > 1$ is the adiabatic exponent and, by the scaling, the constant κ in the pressure-density relation may be chosen as $\kappa = \frac{(\gamma - 1)^2}{4\gamma}$ without loss of generality. One of the fundamental features of this system is that strict hyperbolicity fails when $\rho \to 0$.

The vanishing artificial/numerical viscosity limit to the isentropic Euler equations with general L^∞ initial data has been studied by DiPerna [11], Chen [4, 6], Ding [9], Ding-Chen-Luo [10], Lions-Perthame-Souganidis [21], and Lions-Perthame-Tadmor [22] via the method of compensated compactness. Also see DiPerna [12], Morawetz [23], Perthame-Tzavaras [24], and Serre [28] for the vanishing artificial/numerical viscosity limit to general 2×2 strictly hyperbolic systems of conservation laws. The vanishing artificial viscosity limit to general strictly hyperbolic systems of conservation laws with general small BV initial data was first established by Bianchini-Bressan [3] via direct BV estimates with small oscillation. Also see LeFloch-Westdickenberg [20] for the existence of finite-energy solutions to the isentropic Euler equations with finite-energy initial data for the case $1 < \gamma \leq 5/3$.

The idea of regarding inviscid gases as viscous gases with vanishing real physical viscosity can date back the seminal paper by Stokes [30] and the important contribution of Rankine [26], Hugoniot [15], and Rayleigh [27] (cf. Dafermos [8]). However, the first rigorous convergence analysis of vanishing physical viscosity from the Navier-Stokes equations (1.1) to the isentropic Euler equations was made by Gilbarg [13] in 1951, when he established the mathematical existence and vanishing viscous limit of the Navier-Stokes shock layers. For the convergence analysis confined in the framework of piecewise smooth solutions; see Hoff-Liu [17], Gues-Métivier-Williams-Zumbrun [14], and the references cited therein. The convergence of vanishing physical viscosity with general initial data was first studied by Serre-Shearer [29] for a 2×2 system in nonlinear elasticity with severe growth conditions on the nonlinear function in the system.

In this paper, we first develop new uniform estimates with respect to the real physical viscosity coefficient for the solutions of the Navier-Stokes equations with the finite-energy initial data and establish the H^{-1}-compactness of weak entropy dissipation measures of the solutions of the Navier-Stokes equations for any weak entropy-entropy flux pairs generated by compactly supported C^2 test functions. With these, the existence of measure-valued solutions with unbounded support is established, which are confined by the Tartar-Murat commutator relation with respect to two pairs of weak entropy-entropy flux kernels. Then we establish the reduction of measure-valued solutions with unbounded support for the case $\gamma \geq 3$ and, as corollary, we obtain the existence of global finite-energy entropy solutions of the Euler equations with general initial data for $\gamma \geq 3$. We further simplify the reduction proof of measure-valued solutions with unbounded support for the case $1 < \gamma \leq 5/3$ in LeFloch-Westdickenberg [20] and extend to the whole interval
$1 < \gamma < 3$. With all of these, we establish the first convergence result for the vanishing physical viscosity limit of solutions of the Navier-Stokes equations to a finite-energy entropy solution of the isentropic Euler equations with finite-energy initial data. We remark that, combining Propositions 6.2 and 7.2 in this paper with the uniform estimates in [20], we obtain the existence of finite-energy solutions to the isentropic Euler equations with geometric effects for the case $\gamma > 5/3$, which is also supplement to the existence result in [20] for $1 < \gamma \leq 5/3$.

The organization of this paper is as follows. In Section 2, we analyze some basic properties of weak entropy-entropy flux pairs in the unbounded phase plane and introduce the notion of finite-energy entropy solutions. In Section 3, we make several uniform estimates for the solutions of the Navier-Stokes equations which are independent of the real physical viscosity coefficient $\varepsilon > 0$. These estimates are essential for establishing the convergence of vanishing viscosity limit of the solutions of the Cauchy problem (1.1)–(1.2) for the Navier-Stokes equations. In Section 4, we establish the H^{-1}-compactness of entropy dissipation measures for solutions of (1.1)–(1.2) with initial data (1.2) for any weak entropy-entropy flux pairs generated by compactly supported C^2 test functions. In Section 5, we employ the estimates in Sections 3–4 to construct the measure-valued solutions with possibly unbounded support determined by the solutions of the Navier-Stokes equations (1.1) with initial data (1.2) and show that the measure-valued solutions are confined by the Tartar-Murat commutator relation for any two pairs of weak entropy-entropy flux kernels. In Sections 6–7, we prove that any connected component of the support of the measure-valued solutions must be bounded when $\gamma > 1$, which reduces to the case for the measure-valued solutions with bounded support. Finally, in Section 8, we conclude the strong convergence of vanishing viscosity limit of solutions of the Navier-Stokes equations to a finite-energy entropy solution of the isentropic Euler equations.

2. Entropy for the Isentropic Euler Equations

In this section we analyze some basic properties of weak entropy pairs in the unbounded phase plane and introduce the notion of finite-energy entropy solutions of the isentropic Euler equations with the form:

$$\begin{align*}
\rho_t + (\rho u)_x &= 0, \\
(\rho u)_t + (\rho u^2 + p)_x &= 0.
\end{align*}$$

System (2.1) is an archetype of nonlinear hyperbolic systems of conservation laws:

$$U_t + F(U)_x = 0.$$

For our case, $U = (\rho, m)\top$ and $F(U) = (m, \frac{m^2}{\rho} + p)\top$ for $m = \rho u$.

For $\gamma > 1$, the eigenvalues of system (2.1) are

$$\lambda_j = u + (-1)^j \theta \rho^\theta, \quad j = 1, 2,$$

(2.2)

and the Riemann invariants are

$$w_j = u + (-1)^j \frac{1}{\rho^\theta}, \quad j = 1, 2,$$

(2.3)

where $\theta = \frac{\gamma - 1}{2}$. From (2.2),

$$\lambda_2 - \lambda_1 = 2\theta \rho^\theta \to 0 \quad \text{as} \ \rho \to 0.$$
Therefore, system (2.1) is strictly hyperbolic when $\rho > 0$. However, near the vacuum $\rho = 0$, the two characteristic speeds of (2.1) may coincide and the system be nonstrictly hyperbolic.

A pair of mappings $(\eta, q) : \mathbb{R}^2_+ := \mathbb{R}_+ \times \mathbb{R} \to \mathbb{R}^2$ is called an entropy-entropy flux pair (or entropy pair for short) of system (2.1) if (η, q) satisfy the 2×2 hyperbolic system:

$$\nabla q(U) = \nabla \eta(U) \nabla F(U).$$

(2.4)

Furthermore, $\eta(\rho, m)$ is called a weak entropy if

$$\eta \bigg|_{\rho=0, \ u=m/\rho \text{ fixed}} = 0.$$

(2.5)

An entropy pair is said convex if the Hessian $\nabla^2 \eta(\rho, m)$ is nonnegative in the region under consideration.

For example, the mechanical energy (a sum of the kinetic and internal energy) and the mechanical energy flux

$$\eta^*(\rho, m) = \frac{1}{2} m^2 + e(\rho), \quad q^*(\rho, m) = \frac{1}{2} m^2 + me'(\rho)$$

(2.6)

form a special entropy pair; $\eta^*(\rho, m)$ is convex for any $\gamma > 1$ in the region $\rho \geq 0$.

Let $(\bar{\rho}(x), \bar{u}(x))$ be a pair of smooth monotone functions satisfying $(\bar{\rho}(x), \bar{u}(x)) = (\rho^{\pm}, u^{\pm})$ when $\pm x \geq L_0$ for some large $L_0 > 0$. The total mechanical energy for (1.1) in \mathbb{R} with respect to the pair $(\bar{\rho}, \bar{u})$ is

$$E[\rho, u](t) := \int_{\mathbb{R}} \left(\eta^*(\rho, m) - \eta^*(\bar{\rho}, \bar{m}) - \nabla \eta^*(\bar{\rho}, \bar{m}) \cdot (\rho - \bar{\rho}, m - \bar{m}) \right) dx \geq 0,$$

(2.7)

where $\bar{m} = \bar{\rho} \bar{u}$.

In the coordinates (ρ, u), any weak entropy function $\eta(\rho, \rho u)$ is governed by the second-order linear wave equation:

$$\begin{cases} \eta_{pp} - \frac{p'(\rho)}{\rho^2} \eta_{uu} = 0, & \rho > 0, \\ \eta|_{\rho=0} = 0. \end{cases}$$

(2.8)

Therefore, any weak entropy pair (η, q) can be represented by

$$\begin{cases} \eta^\psi(\rho, \rho u) = \int_{\mathbb{R}} \chi(\rho; s - u) \psi(s) \, ds, \\ q^\psi(\rho, \rho u) = \int_{\mathbb{R}} (\theta s + (1 - \theta)u) \chi(\rho; s - u) \psi(s) \, ds \end{cases}$$

(2.9)

for any continuous function $\psi(s)$, where the weak entropy kernel $\chi(\rho; s - u)$ is determined by

$$\begin{cases} \chi_{\rho\rho} - \frac{p'(\rho)}{\rho^2} \chi_{uu} = 0, \\ \chi(0, u; s) = 0, \quad \chi(0, u; s) = \delta_{u=s}, \end{cases}$$

(2.10)

where $\delta_{u=s}$ is the Dirac mass concentrated at $u = s$.

This implies that, for the γ-law case, the weak entropy kernel as the unique solution of (2.10) is

$$\chi(\rho; s - u) = [\rho^{2\gamma} - (s - u)^2]^\lambda_+$$

(2.11)
where \(\lambda = \frac{3-\gamma}{2(\gamma-1)} > \frac{1}{2} \). Then the weak entropy pairs have the form:

\[
\eta^\psi(\rho, m) = \eta^\psi(\rho, pu) = \int_{\mathbb{R}} [\rho^{2\theta} - (u - s)^{2}]^\lambda \psi(s) \, ds
\]

\[
= \rho \int_{-1}^{1} \psi(u + \rho^\theta s)[1 - s^2]^\lambda \, ds,
\]

(2.12)

\[
q^\psi(\rho, m) = q^\psi(\rho, pu) = \int_{\mathbb{R}} (\theta s + (1 - \theta)u)[\rho^{2\theta} - (u - s)^{2}]^\lambda \psi(s) \, ds
\]

\[
= \rho \int_{-1}^{1} (u + \theta \rho^\theta s)\psi(u + \rho^\theta s)[1 - s^2]^\lambda \, ds.
\]

(2.13)

In particular, when \(\psi_2(w) = \frac{1}{2} |w|^\gamma \), the corresponding entropy pair \((\eta^\psi, q^\psi) := (\eta^\psi_2, q^\psi_2) \) satisfies that there exists \(C > 0 \), depending only on \(\gamma > 1 \), such that

\[
|\eta^\psi(\rho, m)| \leq C(\rho|u|^2 + \rho^\gamma),\quad q^\psi(\rho, m) \geq C^{-1}(\rho|u|^3 + \rho^\gamma + \theta),
\]

(2.14)

\[
|\eta^\psi_m(\rho, m)| \leq C(|u| + \rho^\theta),\quad |\eta^\psi_{mm}(\rho, m)| \leq C\rho^{-1},
\]

(2.15)

and, regarding \(\eta^\psi_\rho \) in the coordinates \((\rho, u) \),

\[
|\eta^\psi_\rho(\rho, pu)| \leq C,\quad |\eta^\psi_{\rho\rho}(\rho, pu)| \leq C\rho^{\theta-1}
\]

(2.16)

for all \(\rho \geq 0 \) and \(u \in \mathbb{R} \) (also see, e.g. [22]).

Furthermore, we have

Lemma 2.1. For a \(C^2 \) function \(\psi : \mathbb{R} \to \mathbb{R} \), compactly supported on the interval \([a, b]\), we have

\[
\text{supp} \eta^\psi, \text{supp} q^\psi \subset \{ (\rho, m) = (\rho, pu) : \rho^\theta + u \geq a, u - \rho^\theta \leq b \}.
\]

Furthermore, there exists a constant \(C_\psi > 0 \) such that, for any \(\rho \geq 0 \) and \(u \in \mathbb{R} \), we have

(i) For \(\gamma \in (1, 3] \),

\[
|\eta^\psi(\rho, m)| + |q^\psi(\rho, m)| \leq C_\psi \rho;
\]

(ii) For \(\gamma > 3 \),

\[
|\eta^\psi(\rho, m)| \leq C_\psi \rho,\quad |q^\psi(\rho, m)| \leq C_\psi \rho \max\{1, \rho^\theta\};
\]

(iii) If \(\eta^\psi \) is considered as a function of \((\rho, m), m = pu \), then

\[
|\eta^\psi_\rho(\rho, m)| + |\rho \eta^\psi_{\rho\rho}(\rho, m)| \leq C_\psi;
\]

and, if \(\eta^\psi_m \) is considered as a function of \((\rho, u) \), then

\[
|\eta^\psi_{\rho\rho}(\rho, pu)| + |\rho^{1-\theta} \eta^\psi_{\rho\rho}(\rho, pu)| \leq C_\psi.
\]

Proof. We first notice that, if \((\rho, u) \) is such that \(\rho^\theta + u < a \), then \(u + \rho^\theta s < a \) for any \(s \in [-1, 1] \). Similarly, if \(u - \rho^\theta > b \), then \(u + s \rho^\theta > b \) for any \(s \in [-1, 1] \).

For (i), since \(\psi \) has compact support, it is clear from (2.12) that

\[
|\eta^\psi(\rho, m)| \leq C_\psi \rho.
\]
When $\gamma = 3$,
\[
q^\psi(\rho,m) = \rho \int_{-1}^{1} (u + \rho s) \psi(u + \rho s) \, ds,
\]
which implies that $|q^\psi(\rho,m)| \leq C_\psi \rho$ since ψ has compact support.

When $\gamma < 3$, we use the first formula in (2.13) to obtain
\[
|q^\psi(\rho,m)| \leq C_\psi \rho^{2\theta \lambda + \theta} \leq C_\psi \rho.
\]

For (ii), since ψ has compact support, it is clear from the formulas in (2.12)–(2.13) that
\[
|\eta^\psi(\rho,m)| \leq C_\psi \rho,
\]
\[
|q^\psi(\rho,m)| \leq C_\psi \rho \max\{1, \rho\theta\}
\]

To prove (iv), we first notice that
\[
\eta^\psi_m(\rho,m) = \int \psi'(m \rho + \rho^\theta s)[1 - s^2]_+^\lambda \, ds,
\]
which implies that $|\eta^\psi_m| \leq C_\psi$. Furthermore, we have
\[
\eta^\psi_{mm}(\rho,m) = -\frac{1}{\rho} \int \psi''(m \rho + \rho^\theta s)[1 - s^2]_+^\lambda \, ds,
\]
which yields that $|\rho \eta^\psi_{mm}(\rho,m)| \leq C_\psi$.

When η^ψ_m is regarded as a function of (ρ,u),
\[
\eta^\psi_m(\rho,\rho u) = \int \psi'(u + \rho^\theta s)[1 - s^2]_+^\lambda \, ds.
\]
Then
\[
\eta^\psi_{mu}(\rho,\rho u) = \int \psi''(u + \rho^\theta s)[1 - s^2]_+^\lambda \, ds,
\]
(2.17)
which leads to $|\eta^\psi_{mu}(\rho,\rho u)| \leq C_\psi$; while
\[
\eta^\psi_{mp}(\rho,\rho u) = \theta \rho^{\theta - 1} \int \psi''(u + \rho^\theta s)s[1 - s^2]_+^\lambda \, ds,
\]
(2.18)
which implies that $|\eta^\psi_{mp}(\rho,\rho u)| \leq C_\psi \rho^{\theta - 1}$. This completes the proof.

Definition 2.1. Let (ρ_0, u_0) be given initial data with finite-energy with respect to the end states (ρ^\pm, u^\pm) at infinity, i.e., $E[\rho_0, u_0] \leq E_0 < \infty$. A pair of measurable functions $(\rho, u) : \mathbb{R}_+^2 \to \mathbb{R}_+^2$ is called a finite-energy entropy solution of the Cauchy problem (2.1) and (1.2) if the following holds:

(i) The total energy is bounded in time: There is a bounded function $C(E, t)$, defined on $\mathbb{R}_+ \times \mathbb{R}_+$ and continuous in t for each $E \in \mathbb{R}_+$, such that, for a.e. $t > 0$,
\[
E[\rho, u](t) \leq C(E_0, t);
\]

(ii) The entropy inequality:
\[
\eta^\psi(\rho,m)_t + q^\psi(\rho,m)_x \leq 0
\]
is satisfied in the sense of distributions for the test function $\psi(s) \in \{\pm 1, \pm s, s^2\}$;

(iii) The initial data (ρ_0, u_0) are attained in the sense of distributions.
The existence of entropy solutions in L^∞ was established by DiPerna \cite{DiPerna} for the case $\gamma = (N + 2)/N, N \geq 5$ odd, by Chen \cite{Chen} and Ding-Chen-Luo \cite{Ding-Chen-Luo} for the general case $1 < \gamma \leq 5/3$ for usual gases, by Lions-Perthame-Tadmor \cite{Lions-Perthame-Tadmor} for the cases $\gamma \geq 3$, and by Lions-Perthame-Souganidis \cite{Lions-Perthame-Souganidis} for closing the gap $5/3 < \gamma < 3$. The existence of finite-energy solutions was recently established by LeFloch-Westdickenberg \cite{LeFloch-Westdickenberg} for the case $1 < \gamma \leq 5/3$ even for the spherically symmetric solutions. As a corollary of Theorem 8.1 in this paper, the existence of finite-energy entropy solutions is also established for the case $\gamma > 5/3$. Combining Propositions 6.2 and 7.2 with the estimates in \cite{LeFloch-Westdickenberg}, we also obtain the existence of finite-energy solutions with spherical symmetry for the multidimensional Euler equations for compressible, isentropic fluids for the case $\gamma > 5/3$.

3. Uniform Estimates for the Solutions of the Navier-Stokes Equations

Consider the Cauchy problem (1.1)–(1.2) for the Navier-Stokes equations in $\mathbb{R}^2 := [0, \infty) \times \mathbb{R}$. Assume that $(\rho^\varepsilon(t, x), u^\varepsilon(t, x))$ are smooth solutions of (1.1)–(1.2), globally in time, with $\rho^\varepsilon(t, x) \geq c_\varepsilon(t)$ for some $c_\varepsilon(t) > 0$ for $t \geq 0$ and $\lim_{x \to \pm \infty}(\rho^\varepsilon(t, x), u^\varepsilon(t, x)) = (\rho^\pm, u^\pm)$.

We now make several uniform estimates for the solutions $(\rho^\varepsilon(t, x), u^\varepsilon(t, x))$ of (1.1)–(1.2), which are independent of the physical viscosity coefficient $\varepsilon > 0$. These estimates are essential for establishing the convergence of vanishing viscosity limit of solutions of the Cauchy problem (1.1)–(1.2) for the Navier-Stokes equations to a finite-energy entropy solution of the isentropic Euler equations (2.1) with initial data (1.2).

For simplification of notation, throughout this section, we denote $\int = \int_{\mathbb{R}}$, $(\rho, u) = (\rho^\varepsilon, u^\varepsilon)$, and $C > 0$ is a universal constant independent of ε.

3.1. Estimate I: Energy Estimate. The total mechanical energy for (1.1) in \mathbb{R} introduced in (2.7) is equal to

$$E[\rho, u](t) = \int \left(\frac{1}{2} \rho(t, x)|u(t, x) - \bar{u}(x)|^2 + e^*(\rho(t, x), \bar{\rho}(x)) \right) dx,$$

where $e^*(\rho, \bar{\rho}) = e(\rho) - e(\bar{\rho}) - e'(\bar{\rho})(\rho - \bar{\rho}) \geq 0$ satisfies

$$e^*(\rho, \bar{\rho}) = e^*_p(\rho, \bar{\rho}) = 0, \quad e^*_pp(\rho, \bar{\rho}) = \frac{(\gamma - 1)^2}{4}\rho^{\gamma - 2} \geq 0 \quad \text{for } \gamma > 1.$$

This implies that $e^*(\rho, \bar{\rho})$ is a convex function in $\rho \geq 0$ that behaves like ρ^γ for large ρ and like $(\rho - \bar{\rho})^2$ for ρ close to $\bar{\rho}$. In particular, for later use, we notice that there exists $C_0 > 0$ such that

$$\rho(\rho^\theta - \bar{\rho}^\theta)^2 \leq C_0 e^*(\rho, \bar{\rho}) \quad \text{for } \rho \in [0, \infty), \quad (3.1)$$

where C_0 is a continuous function of $\bar{\rho}$ and γ.

We start with the standard energy estimate.

Lemma 3.1 (Energy Estimate). Let $E[\rho_0, u_0] \leq E_0 < \infty$, where $E_0 > 0$ is independent of ε. Then there exists $C = C(E_0, t, \bar{\rho}, \bar{u}) > 0$, independent of ε, such that

$$\sup_{\tau \in [0, t]} E[\rho, u](\tau) + \int_0^t \int |u|^2 dx d\tau \leq C. \quad (3.2)$$
Lemma 3.2. \(\frac{dE}{dt} = \frac{d}{dt} \int \eta^*(\rho, m) \, dx - \frac{d}{dt} \int \eta^*(\bar{\rho}, \bar{m}) \, dx - \int \nabla \eta^*(\bar{\rho}, \bar{m}) \cdot (\rho_t, m_t) \, dx. \) (3.3)

Since \((\eta^*, q^*)\) is an entropy pair, we have
\[
\eta^*(\rho, m)_t + q^*(\rho, m)_x - \varepsilon \eta^*_m(\rho, m) \, u_{xx} = 0,
\]
from which we conclude that
\[
\frac{d}{dt} \int \eta^*(\rho, m) \, dx + \varepsilon \int |u_x|^2 \, dx = q^*(\rho^-, m^-) - q^*(\rho^+, m^+). \tag{3.4}
\]

The second integral in (3.3) depends only on \(x\), which implies that the second term on the right-hand side of (3.3) vanishes. For the last integral, we employ (1.1) to obtain
\[
\left| \int \nabla \eta^*(\bar{\rho}, \bar{m}) \cdot (\rho_t, m_t) \, dx \right| = \left| \int \nabla \eta^*(\bar{\rho}, \bar{m}) \cdot (m_x, (\rho u^2 + p)_x - \varepsilon u_{xx}) \, dx \right|
\leq \varepsilon \int |u_x|^2 \, dx + \frac{1}{2} \int \rho |u - \bar{u}|^2 \, dx + C \left(1 + \int_{-L_0}^{L_0} (\rho + p) \, dx\right),
\]
where we used that the compact support of \((\bar{\rho}_x, \bar{u}_x)\) lies in the interval \([-L_0, L_0]\) for some \(L_0 > 0\). Since
\[
\int_{-L_0}^{L_0} (\rho + p) \, dx \leq C \left(1 + \int_{-L_0}^{L_0} e^*(\rho, \bar{\rho}) \, dx\right),
\]
we obtain
\[
\left| \int \nabla \eta^*(\bar{\rho}, \bar{m}) \cdot (\rho_t, m_t) \, dx \right| \leq \varepsilon \int |u_x|^2 \, dx + C(E + 1),
\]
for some \(C\) depending only on \((\gamma, \bar{\rho}, \bar{u})\). Combining this with (3.4), we have
\[
\frac{dE}{dt} + \varepsilon \int |u_x|^2 \, dx \leq C E + C.
\]
Then the lemma follows by Gronwall’s inequality.

3.2. \textbf{Estimate II: Space-Derivative Estimate for the Density}. We now develop an essential estimate for \(\rho_x(t, x)\) involving the \(x\)-derivative of the density, motivated by an argument in [18].

\textbf{Lemma 3.2.} \(\varepsilon^2 \int \frac{|\rho_0, x(x)|^2}{\rho_0(x)^3} \, dx \leq E_1 < \infty,\)
where \(E_1\) is independent of \(\varepsilon\). Then there exists \(C = C(E_0, E_1, \bar{\rho}, \bar{u}, t) > 0\) independent of \(\varepsilon\) such that, for any \(t > 0\),
\[
\varepsilon^2 \int \frac{|\rho_x(t, x)|^2}{\rho(t, x)^3} \, dx + \varepsilon \int_0^t \int \rho \gamma^{-3} |\rho_x|^2 \, dx \, d\tau \leq C. \tag{3.5}
\]
Proof. Set $v = \frac{1}{\rho}$. Then the first equation in (1.1) can be written as

$$v_t + uv_x = vu_x.$$

Differentiating the above equation in x, we have

$$v_{xt} + (uv_x)_x = (vu_x)_x.$$ \hfill (3.6)

Then we multiply (3.6) by $2v_x$ to obtain

$$(|v_x|^2)_t + u(|v_x|^2)_x + 2u_x|v_x|^2 = 2v_x(vu_x)_x.$$

Multiplying this by ρ and using the equation of conservation of mass yield

$$(\rho|v_x|^2)_t + (\rho u|v_x|^2)_x + 2\rho u_x|v_x|^2 = 2\rho v_x(vu_x)_x,$$

or

$$(\rho|v_x|^2)_t + (\rho u|v_x|^2)_x = 2v_xu_{xx}. \hfill (3.7)$$

Using the second equation in (1.1) and (3.6), we obtain

$$2v_xu_{xx} = \frac{2}{\varepsilon}v_x(p_x + (\rho u)_t + (\rho u^2)_x)$$

$$= \frac{2}{\varepsilon}v_x p_x + \frac{2}{\varepsilon} \left((\rho(u - \bar{u})v_x)_x - (\bar{u}(\ln \rho)_x)_t - \rho u(vu_x)_x + \rho u(vu_x)_x + v_x(\rho u^2)_x \right). \hfill (3.8)$$

By integration by parts, we have

$$\int J \, dx = \int (vu_x(pu)_x - uv_x(pu)_x + v_x(u(pu)_x + \rho uu_x)) \, dx$$

$$= \int (vu_x(pu)_x + \rho uu_x) \, dx = \int |u_x|^2 \, dx. \hfill (3.9)$$

Furthermore,

$$v_x p_x = - \frac{(\gamma - 1)^2}{4} \rho^{\gamma - 3} |p_x|^2. \hfill (3.10)$$

Integrating (3.7) over $[0, t] \times \mathbb{R}$ and using the calculations in (3.8)–(3.10), we conclude

$$\frac{\varepsilon^2}{4} \int \frac{|\rho_x(t, x)|^2}{\rho(t, x)} \, dx + \frac{(\gamma - 1)^2}{2} \varepsilon \int_0^t \int \rho^{\gamma - 3} |p_x|^2 \, dx \, d\tau$$

$$= - 2\varepsilon \int \frac{\rho_x(t, x)(u(t, x) - \bar{u}(x))}{\rho(t, x)} \, dx + 2\varepsilon \int \bar{u}(x)(\ln \rho)_x(t, x) \, dx - 2\varepsilon \int_0^t \int |u_x|^2 \, dx \, d\tau$$

$$+ 2\varepsilon \int \frac{\rho_0(x)(u_0(x) - \bar{u}(x))}{\rho_0(x)} \, dx + 2\varepsilon \int \bar{u}(x)(\ln \rho_0)_x(x) \, dx. \hfill (3.11)$$

The first integral on the right-hand side is estimated by

$$\frac{\varepsilon^2}{4} \int \frac{|\rho_x(t, x)|^2}{\rho(t, x)} \, dx + 8 \int \rho(t, x)|u(t, x) - \bar{u}(x)|^2 \, dx$$

$$\leq \frac{\varepsilon^2}{4} \int \frac{|\rho_x(t, x)|^2}{\rho(t, x)} \, dx + 16E[\rho, u](t). \hfill (3.12)$$

Similarly, the forth integral on the right-hand side is controlled by

$$\frac{\varepsilon^2}{4} \int \frac{|\rho_0(x)|^2}{\rho_0(x)} \, dx + 16E_0. \hfill (3.13)$$
To estimate the second integral, we write
\[2\varepsilon \int \bar{u}(\ln \rho)_x \, dx = -2\varepsilon \int_{A_1} \bar{u}_x \ln \rho \, dx - 2\varepsilon \int_{A_2} \bar{u}_x \ln \rho \, dx + 2\varepsilon (u^+ \ln \rho^+ - u^- \ln \rho^-), \]
where
\[A_1 = \left\{ x : \rho(t, x) \leq \frac{\bar{\rho}}{2} \right\}, \quad A_2 = A_1^c \quad \text{for} \quad \bar{\rho} = \min\{\rho^-, \rho^+\}. \]
Since, on \(A_2 \), \(|\ln \rho(t, x)| \leq C(\rho(t, x))\) and \(\bar{u}_x\) is compactly supported, we can obtain
\[\left| 2\varepsilon \int_{A_2} \bar{u}_x \ln \rho \, dx \right| \leq C \left(1 + \int e^*(\rho(t, x), \bar{\rho}(x)) \, dx \right). \tag{3.14} \]
If the set \(A_1 \) is not empty, then
\[\left| 2\varepsilon \int_{A_1} \bar{u}_x \ln \rho \, dx \right| \leq C \varepsilon \sup_{x \in A_1} |\ln \rho(t, x)| \leq C \varepsilon \sup_{x \in A_1} \frac{1}{\sqrt{\rho(t, x)}}, \]
and \(A_1 \) has finite measure, which can be estimated from (3.12) by
\[|A_1| \leq \frac{C}{e^*(\frac{\bar{\rho}}{2}, \bar{\rho})} =: d(t). \]
In particular, for any \((t, x)\), there is a point \(x_0(t, x)\) such that \(|x - x_0| \leq d(t)\) and \(\rho(t, x_0) = \frac{\bar{\rho}}{2}\). Then we have
\[\varepsilon \sup_{x \in A_1} \frac{1}{\sqrt{\rho(t, x)}} \leq \varepsilon \sup_{x \in A_1} \left| \frac{1}{\sqrt{\rho(t, x)}} - \frac{1}{\sqrt{\rho(t, x_0)}} \right| + \frac{\varepsilon}{\sqrt{\bar{\rho}/2}} \]
\[\leq \varepsilon \int_{x_0 - d(t)}^{x_0 + d(t)} \left| \left(\frac{1}{\sqrt{\rho(t, x)}} \right)_{x} \right| \, dx + \frac{\varepsilon}{\sqrt{\bar{\rho}/2}} \]
\[\leq \left(\frac{\varepsilon^2}{2} \int \frac{\rho_x^2}{\rho^3} \, dx \right)^{1/2} \sqrt{d(t)} + \frac{\varepsilon}{\sqrt{\bar{\rho}/2}} \]
\[\leq \frac{\varepsilon^2}{4} \int \frac{\rho_x^2}{\rho^3} \, dx + C(t). \]
Thus, we obtain
\[2\varepsilon \left| \int \bar{u}(\ln \rho)_x \, dx \right| \leq \frac{\varepsilon^2}{4} \int \frac{\rho_x^2}{\rho^3} \, dx + C. \]
Combining this with (3.12) in (3.11), we obtain
\[\varepsilon^2 \int \frac{\rho_x(t, x)^2}{\rho(t, x)^3} \, dx + \frac{(\gamma - 1)^2}{2} \varepsilon \int_0^t \rho^{\gamma - 3} |\rho_x|^2 \, dx \, dx \]
\[\leq \frac{\varepsilon^2}{2} \int \frac{\rho_x(t, x)^2}{\rho(t, x)^3} \, dx + \varepsilon^2 \int \frac{\rho_0(x)^2}{\rho_0(x)^3} \, dx + C. \]\n
The estimate of the lemma then follows.
3.3. **Estimate III: Higher Integrability.** We now make uniform estimates for higher integrability of the solutions.

Lemma 3.3 (Higher Integrability–I). Let \(E[\rho_0, u_0] \leq E_0 < \infty \) for \(E_0 \) independent of \(\varepsilon \). Then, for any \(-\infty < a < b < \infty\) and all \(t > 0 \), there exists \(C = C(a, b, E_0, \gamma, \bar{\rho}, \bar{u}, t) > 0 \), independent of \(\varepsilon > 0 \), such that

\[
\int_0^t \int_a^b \rho(t, x)^{\gamma + 1} \, dx \, dt \leq C.
\]

Proof. Let \(\omega(x) \) be an arbitrary smooth, compactly supported function such that \(0 \leq \omega(x) \leq 1 \). Multiplying the second equation in (1.1) by \(\omega(x) \) and then integrating with respect to the space variable over \((-\infty, x)\), we have

\[
\rho u^2 \omega + p \omega = \varepsilon u_x \omega - \left(\int_{-\infty}^x \rho u \omega \, dy \right)_t + \int_{-\infty}^x \left((\rho u^2 + p) \omega_x - \varepsilon u_x \omega_x \right) dy.
\]

Multiply this by \(\rho \omega \) and use the first equation in (1.1) to obtain

\[
\rho p \omega = -\rho^2 u^2 \omega^2 + \varepsilon \rho u_x \omega^2 - \left(\rho \omega \int_{-\infty}^x \rho u \omega \, dy \right)_t - (\rho u)_x \omega \int_{-\infty}^x \rho u \omega \, dy
\]

\[
+ \rho \omega \int_{-\infty}^x ((\rho u^2 + p) \omega_x - \varepsilon u_x \omega_x) \, dy
\]

\[
= \varepsilon \rho u_x \omega^2 - \left(\rho \omega \int_{-\infty}^x \rho u \omega \, dy \right)_t - (\rho u)_x \omega \int_{-\infty}^x \rho u \omega \, dy
\]

\[
+ \rho u x \int_{-\infty}^x \rho u \omega \, dy + \rho \omega \int_{-\infty}^x ((\rho u^2 + p) \omega_x - \varepsilon u_x \omega_x) \, dy.
\]

Integrating the above equation over \((0, t) \times \mathbb{R}\), we have

\[
\int_0^t \int pp \omega^2 \, dy \, dt = \varepsilon \int_0^t \int pp \omega^2 \, dy \, dt - \int \rho \omega \left(\int_{-\infty}^x \rho u \omega \, dy \right) dx
\]

\[
+ \int \rho \omega \left(\int_{-\infty}^x \rho u_0 \omega \, dy \right) dx + r_1(t), \tag{3.15}
\]

where

\[
r_1(t) = \int_0^t \int pp \omega \left(\int_{-\infty}^x \rho u \omega \, dy \right) dx \, dt + \int_0^t \int \rho \omega \left(\int_{-\infty}^x ((\rho u^2 + p) \omega_x - \varepsilon u_x \omega_x) \, dy \right) dx \, dt.
\]

Note that, by the Hölder inequality, for any \(\delta > 0 \),

\[
\varepsilon \int_0^t \int \rho u_x \omega^2 \, dx \, dt \leq \frac{\varepsilon^2}{\delta} \int_0^t \int |u_x|^2 \, dx \, dt + \delta \int_0^t \int \rho^2 \omega^4 \, dx \, dt
\]

\[
\leq \frac{\varepsilon_0}{\delta} \varepsilon \int_0^t \int |u_x|^2 \, dx \, dt + C \delta \int_0^t \int (1 + \rho^{\gamma+1}) \rho^2 \, dx \, dt
\]

\[
\leq C + C \delta \int_0^t \int \rho^{\gamma+1} \omega^2 \, dx \, dt, \tag{3.16}
\]
since \(\varepsilon \in (0, \varepsilon_0] \). By Lemma 3.1 and the Hölder inequality, we have
\[
\left| \int_{-\infty}^{x} \rho u \omega \, dy \right| \leq \int_{\text{supp} \omega} |\rho u| \, dy \leq \left(\int_{\text{supp} \omega} \rho \, dy \right)^{1/2} \left(\int_{\text{supp} \omega} \rho u^2 \, dy \right)^{1/2} \leq C \left(\int_{\text{supp} \omega} (1 + e^*(\rho, \bar{\rho})) \, dy \right)^{1/2} \left(\int_{\text{supp} \omega} \rho u^2 \, dy \right)^{1/2} \leq C. \tag{3.17}
\]
It follows then that
\[
\left| \int \rho \omega \left(\int_{-\infty}^{x} \rho u \omega \, dy \right) \, dx \right| \leq C. \tag{3.18}
\]
Similarly, we have
\[
\left| \int_{0}^{t} \int \rho u \omega \left(\int_{-\infty}^{x} \rho u \omega \, dy \right) \, dxd\tau \right| + \left| \int_{0}^{t} \int \rho \omega \left(\int_{-\infty}^{x} (\rho u^2 + p) \omega \, dy \right) \, dxd\tau \right| + \left| \int_{0}^{t} \int \rho \omega \left(\int_{-\infty}^{x} \varepsilon u_x \omega \, dy \right) \, dxd\tau \right| \leq C. \tag{3.19}
\]
Combining estimates \((3.16), (3.18), \) and \((3.19)\) for the terms on the right-hand side of \((3.15)\), we obtain
\[
\int_{0}^{t} \int \rho^{\gamma+1} \omega^2 \, dxd\tau \leq C \delta \int_{0}^{t} \int \rho^{\gamma+1} \omega^2 \, dxdt + C.
\]
Choosing suitably small \(\delta > 0 \), we conclude
\[
\int_{0}^{t} \int \rho^{\gamma+1} \omega^2 \, dxd\tau \leq C. \tag{3.21}
\]

Lemma 3.4 (Higher Integrability-II). Let \((\rho_0(x), u_0(x)) \) satisfy, in addition to the conditions in Lemmas 3.1–3.2,
\[
\int_{-\infty}^{\infty} \rho_0(x)|u_0(x) - \bar{u}(x)| \, dx \leq M_0 < \infty, \tag{3.20}
\]
where \(M_0 > 0 \) is a constant independent of \(\varepsilon \). Then, for any compact set \(K \subset \mathbb{R} \) and \(t > 0 \), there exists \(C > 0 \) independent of \(\varepsilon \) such that
\[
\int_{0}^{t} \oint_{K} (\rho|u|^3 + \rho^{\gamma+\theta}) \, dxd\tau \leq C. \tag{3.21}
\]

Proof. Choose \(\psi(w) = \frac{1}{2} w|w| \) in \((2.12)-(2.13)\). Then the corresponding weak entropy pair \((\eta^\sharp, q^\sharp) = (\eta^\psi, q^\psi)\) satisfies estimates \((2.14)-(2.16)\).

Note also that
\[
\eta^\sharp(\rho, 0) = 0, \quad q^\sharp(\rho, 0) = \frac{\theta}{2} \rho^{3\theta+1} \int |s|^3 [1 - s^2]_+^\lambda \, ds > 0,
\]
and
\[
\eta^m_{\theta}(\rho, 0) = \alpha \rho^\theta \quad \text{with} \quad \alpha := \int |s|[1 - s^2]_+^\lambda \, ds.
\]
We also need the Taylor expansion of \(\eta^\sharp(\rho, m) \) at \(m = 0 \) for fixed \(\rho \):
\[
\eta^\sharp(\rho, m) = \alpha \rho^\theta m + r_2(\rho, m) \tag{3.22}
\]
with
\[|r_2(\rho, m)| \leq C \frac{m^2}{\rho} = C \rho |u|^2 \] (3.23)
for some positive \(C > 0 \). Finally, we introduce an entropy pair \((\tilde{\eta}, \tilde{q})\) by choosing the density function \(\psi(s) = \psi_x(s - u^-) \), where \(u^- \) is the left end limit of \(u(t, x) \). Then
\[\tilde{\eta}(\rho, m) = \eta^\#(\rho, m - \rho u^-), \quad \tilde{q}(\rho, m) = q^\#(\rho, m - \rho u^-) - u^- \eta^\#(\rho, m - \rho u^-). \]
Moreover, from (3.22) and (3.23), we conclude
\[\tilde{\eta}(\rho, m) = \alpha \rho^{\theta + 1}(u - u^-) + r_2(\rho, \rho(u - u^-)) \] (3.24)
with
\[|r_2(\rho, \rho(u - u^-))| \leq C \rho |u - u^-|^2. \] (3.25)

Multiplying the first equation in (1.1) by \(\tilde{\eta}_\rho \) and the second equation by \(\tilde{\eta}_m \), adding them together, and integrating the result over \((0, t) \times (-\infty, x)\), we obtain
\[
\int_{-\infty}^{x} (\tilde{\eta}(\rho, m) - \tilde{\eta}_{\rho, m}(0)) \, dy + \int_0^t q^\#(\rho, \rho(u - u^-)) - u^- \eta^\#(\rho, \rho(u - u^-)) \, d\tau - t \tilde{q} - \varepsilon \int_0^t \tilde{\eta}_m u_x \, d\tau + \varepsilon \int_0^t \tilde{\eta}_{\rho, m} u_x \, dy \, d\tau + \varepsilon \int_0^t \int_{-\infty}^{x} \tilde{\eta}_{\rho, \rho} u_x \, dy \, d\tau = 0, \] (3.26)
where \(\tilde{q} = q^\#(\rho^-, 0) \). From the pointwise estimate (2.16) on \((\tilde{\eta}_{\rho, \rho}, \tilde{\eta}_{\rho, m})\), which also holds for \((\tilde{\eta}_{\rho, \rho}, \tilde{\eta}_{\rho, m})\), and Lemmas 3.1–3.2, we have
\[
|\varepsilon \int_0^t \int_{-\infty}^{x} \tilde{\eta}_{\rho, m} |u_x|^2 \, dy \, d\tau| \leq C, \] (3.27)
\[
|\varepsilon \int_0^t \int_{-\infty}^{x} \tilde{\eta}_{\rho, \rho} u_x \, dy \, d\tau| \leq C. \] (3.28)

Using estimates (2.14) and (3.27)–(3.28) in (3.26), we obtain
\[
\int_0^t \int_K (\rho |u - u^-|^3 + \rho^{\gamma + \theta}) \, dx \, dt \leq C(\mathcal{E}_0, \mathcal{E}_1, |K|, \tilde{q}, t) + 2 \sup_{\tau \in [0, t]} \left| \int_K \left(\int_{-\infty}^{x} \tilde{\eta}(\rho(y, \tau), (\rho u)(y, \tau)) \, dy \right) \, dx \right|
+ \sup_{\tau \in [0, t]} \int_K |\eta^\#(\rho, \rho(u - u^-))| \, d\tau \, dx + \varepsilon \int_0^t \int_K |u| |u_x| \, dx \, d\tau
+ \varepsilon C \int_0^t \int_K \rho^{\theta}|u_x| \, dx \, d\tau. \] (3.29)

Clearly, by the Hölder inequality,
\[
\varepsilon \int_0^t \int_K \rho^{\theta}|u_x| \, dx \, d\tau \leq \varepsilon \int_0^t \int_K |u_x|^2 \, dx \, d\tau + \varepsilon \int_0^t \int_K \rho^{\gamma - 1} \, dx \, d\tau \leq C. \] (3.30)
Similarly,
\[
\varepsilon \int_0^t \int_K |u| |u_x| \, dx \, d\tau \leq \varepsilon \int_0^t \int_K |u_x|^2 \, dx \, d\tau + \varepsilon \int_0^t \int_K |u|^2 \, dx \, d\tau \\
\leq C + \varepsilon \int_0^t \int_K |u|^2 \, dx \, d\tau.
\] (3.31)

Note from Lemma 3.1 that there exists a nondecreasing function \(C(t) > 0 \) such that, for any \(t > 0 \),
\[
\int_{\{\rho(t,x) \leq \frac{\bar{\rho}}{2}\}} e^*(\rho(t,\cdot),\bar{\rho}) \, dx \leq C(t),
\]
which implies that
\[
|\{x : \rho(t,x) \leq \frac{\bar{\rho}}{2}\}| \leq \frac{C(t)}{e^*(\frac{\bar{\rho}}{2},\bar{\rho})}, \quad \bar{\rho} = \min\{\rho^- , \rho^+\}.
\]

Without loss of generality, we assume that \(K \) contains the interval \([a, b]\) of length \(\frac{2C(t)}{e^*(\frac{\bar{\rho}}{2},\bar{\rho})} \). It follows then that, for any \(t \geq 0 \), there is a (measurable) subset \(A = A(t) \subset (a, b) \) of measure not less than \(\frac{C(t)}{e^*(\frac{\bar{\rho}}{2},\bar{\rho})} \) on which \(\rho(t,x) \geq \frac{\bar{\rho}}{2} \).

Denote
\[
u_A(t) := \frac{1}{|A|} \int_A u(t, x) \, dx.
\]
Then
\[
|u(t,x)| \leq |\nu_A(t)| + \int_K |u_x| \, dx \quad \text{for} \quad x \in [a, b].
\]

We estimate
\[
|\nu_A(t)| \leq \frac{1}{|A|} \int_A |u(t, x)| \, dx \\
\leq \frac{1}{|A|} \sqrt{\frac{2}{\bar{\rho}}} \int_A \sqrt{\rho(t,x)} |u(t,x)| \, dx \\
\leq \frac{1}{|A|} \sqrt{\frac{2}{\bar{\rho}}} \int \rho(t,x) |u(t,x)|^2 \, dx \\
\leq \sqrt{\frac{2C(t)e^*(\frac{\bar{\rho}}{2},\bar{\rho})}{\bar{\rho}}}.
\]

Then
\[
\varepsilon \int_0^t \int_K |u|^2 \, dx \, d\tau \leq C \left(\varepsilon \int_0^t \int_K |u_x|^2 \, dx \, d\tau + \int_0^t |\nu_A(\tau)|^2 \, d\tau \right) \leq C,
\]
and, from (3.31),
\[
varepsilon \int_0^t \int_K |u| |u_x| \, dx \, d\tau \leq C.
\] (3.32)

Also, for the compact set \(K \),
\[
\int_0^t \int_K \eta^k(\rho, \rho(u-u^-)) \, d\tau dx \leq C \left(1 + \int_0^t E[\rho, u](\tau) \, d\tau \right).
\] (3.33)
Finally, we estimate the term \(\int_K \left(\int_{-\infty}^x \tilde{\eta}(\rho, \rho u) \, dy \right) \, dx \). Consider

\[
\left| \int_{-\infty}^x \tilde{\eta}(\rho, \rho u) \, dy \right| = \left| \int_{-\infty}^x (\tilde{\eta}(\rho, \rho u) - \alpha \rho^{\theta+1}(u - u^-)) \, dy \right| + \left| \int_{-\infty}^x \alpha \rho^{\theta+1}(u - u^-) \, dy \right|
\]

\[
= \left| \int_{-\infty}^x r_2(\rho, \rho(u - u^-)) \, dy \right| + \left| \int_{-\infty}^x \alpha(\rho^\theta - (\rho^-)^\theta)\rho(u - u^-) \, dy \right|
\]

\[
+ \left| \alpha(\rho^-)^\theta \int_{-\infty}^x \rho(u - u^-) \, dy \right|
\]

\[
\leq C \left(1 + \int |\rho|u - u^-|^2 + e^*(\rho, \bar{\rho}) \, dx \right) + \alpha(\rho^-)^\theta \int_{-\infty}^x \rho(u - u^-) \, dy
\]

\[
\leq C + \alpha(\rho^-)^\theta \left| \int_{-\infty}^x \rho(u - u^-) \, dy \right|,
\]

where we used (3.1)–(3.2), (3.24)–(3.25) for \(r_2(\rho, \rho(u - u^-)) \), and the following inequality by using (3.1): For \(x \in K \),

\[
\int_{-\infty}^x \rho(\rho^\theta - (\rho^-)^\theta) \, dx \leq C \int_{-\infty}^x e^*(\rho, \rho^-) \, dx \leq C \left(1 + \int e^*(\rho, \bar{\rho}) \, dx \right).
\]

It remains to estimate \(\left| \int_{-\infty}^x \rho(u - u^-) \, dy \right| \). For this, we integrate equations in (1.1) with respect to the space-variable from \(-\infty\) to \(x\) and the time-variable from 0 to \(t\):

\[
\int_{-\infty}^x \rho(t, y)(u(t, y) - u^-) \, dy
\]

\[
= \int_{-\infty}^x \rho_0(u_0 - \bar{u}) \, dy + \int_{-\infty}^x \rho_0(\bar{u} - u^-) \, dy
\]

\[
- \int_0^t (\rho u^2 + p - p(\rho^-) + u^- (\rho u - \rho^- u^-)) \, d\tau + \varepsilon \int_0^t u_x \, d\tau.
\]

Then, by a straightforward application of Lemma 3.1 we obtain

\[
\int_K \left| \int_{-\infty}^x \rho(t, y)(u(t, y) - u^-) \, dy \right| \, dx \leq C.
\]

Combining this with (3.34), we have

\[
\int_K \left| \int_{-\infty}^x \tilde{\eta}(\rho, \rho u)(t, y) \, dy \right| \, dx \leq C.
\]

Using this, (3.30), (3.32), and (3.33) in (3.29), we conclude the proof. \(\square\)

Remark 3.1. In the uniform estimate above, we require that the initial functions \((\rho_0(x), u_0(x))\) satisfy

(i) \(\rho_0(x) > 0, \quad \int \rho_0(x)|u_0(x) - \bar{u}(x)| \, dx < \infty; \)

(ii) The total mechanical energy with respect to \((\bar{\rho}, \bar{u})\) is finite:

\[
\int \left(\frac{1}{2} \rho_0(x)|u_0(x) - \bar{u}(x)|^2 + e^*(\rho_0(x), \bar{\rho}(x)) \right) \, dx =: E_0 < \infty;
\]

(iii) \(\varepsilon^2 \int \frac{|\rho_0(x)|^2}{\rho_0(x)^\theta} \, dx \leq E_1 < \infty. \)
Proposition 4.1. Let \(W \) which implies its compactness in \(C \) pairs generated by compactly supported solutions to the Navier-Stokes equations (1.1) with initial data (1.2) for the weak entropy \(\psi \) the Navier-Stokes equations (1.1) for any \(t \in [0, T] \), we obtain that
\[
\eta(\rho_{0}^{\varepsilon}, m_{0}^{\varepsilon})_{t} + q(\rho_{0}^{\varepsilon}, m_{0}^{\varepsilon})_{x} = 0
\]
for \(E_{1} > 0 \) independent of \(\varepsilon \).

4. \(H^{-1} \)-Compactness of the Weak Entropy Dissipation Measures

In this section we establish the \(H^{-1} \)-compactness of entropy dissipation measures for solutions to the Navier-Stokes equations (1.1) with initial data (1.2) for the weak entropy pairs generated by compactly supported \(C^{2} \) test functions \(\psi \).

Proposition 4.1. Let \(\psi : \mathbb{R} \to \mathbb{R} \) be any compactly supported \(C^{2} \) function. Let \((\eta^{\psi}, q^{\psi}) \) be a weak entropy pair generated by \(\psi \). Then, for the solutions \((\rho^{\varepsilon}, u^{\varepsilon}) \) with \(m^{\varepsilon} = \rho^{\varepsilon} u^{\varepsilon} \) of the Navier-Stokes equations (1.1)–(1.2), the entropy dissipation measures
\[
\eta^{\psi}(\rho^{\varepsilon}, m^{\varepsilon})_{t} + q^{\psi}(\rho^{\varepsilon}, m^{\varepsilon})_{x} \quad \text{are confined in a compact subset of} \quad H_{loc}^{-1}(\mathbb{R}^{2}_{+}). \tag{4.1}
\]

Proof. Multiplying the first equation in (1.1) by \(\eta^{\psi}(\rho^{\varepsilon}, m^{\varepsilon}) \) and the second by \(\eta_{m}(\rho^{\varepsilon}, m^{\varepsilon}) \) and adding them up, we obtain
\[
\begin{align*}
\eta^{\psi}(\rho^{\varepsilon}, m^{\varepsilon})_{t} + q^{\psi}(\rho^{\varepsilon}, m^{\varepsilon})_{x} &= \varepsilon(\eta_{m}(\rho^{\varepsilon}, \rho^{\varepsilon} u^{\varepsilon})u_{x}^{2})_{x} - \varepsilon \eta_{m}(\rho^{\varepsilon}, \rho^{\varepsilon} u^{\varepsilon})|u_{x}^{2} - \varepsilon \eta_{m}(\rho^{\varepsilon}, \rho^{\varepsilon} u^{\varepsilon})\rho_{x}^{\varepsilon} u_{x}^{\varepsilon}, \tag{4.2}
\end{align*}
\]
where \(\eta_{m}(\rho, \rho u) = \partial_{\rho}(\eta_{m}(\rho, \rho u)) \) and \(\eta_{m}(\rho, \rho u) = \partial_{\rho}(\eta_{m}(\rho, \rho u)) \).

Lemma 2.1 indicates that
\[
|\eta_{m}(\rho^{\varepsilon}, \rho^{\varepsilon} u^{\varepsilon})| + |(\rho^{\varepsilon})^{-1} \eta_{m}(\rho^{\varepsilon}, \rho^{\varepsilon} u^{\varepsilon})| \leq C,
\]
where \(C > 0 \) is independent of \(\varepsilon \). Using this and the Hölder inequality, we obtain that, for any \(T \in (0, \infty) \),
\[
\begin{align*}
\|\varepsilon \eta_{m}(\rho^{\varepsilon}, \rho^{\varepsilon} u^{\varepsilon})u_{x}^{2} + \varepsilon \eta_{m}(\rho^{\varepsilon}, \rho^{\varepsilon} u^{\varepsilon})\rho_{x}^{\varepsilon} u_{x}^{\varepsilon}u_{x}^{\varepsilon} \|_{L^{1}([0, T] \times \mathbb{R})} &\leq C_{\psi} \|\sqrt{\varepsilon u_{x}^{\varepsilon}} \|_{L^{q}_{loc}(0, T] \times \mathbb{R})} \leq C.
\end{align*}
\]
This yields that
\[
- \varepsilon \eta_{m}(\rho^{\varepsilon}, \rho^{\varepsilon} u^{\varepsilon})u_{x}^{2} - \varepsilon \eta_{m}(\rho^{\varepsilon}, \rho^{\varepsilon} u^{\varepsilon})\rho_{x}^{\varepsilon} u_{x}^{\varepsilon}
\]
is bounded in \(L^{1}([0, T] \times \mathbb{R}) \),
\[
\tag{4.3}
\]
which implies its compactness in \(W_{loc}^{-1,q_{1}}(\mathbb{R}^{2}_{+}), 1 < q_{1} < 2 \).

Furthermore, since \(\|\eta_{m}(\rho^{\varepsilon}, \rho^{\varepsilon} u^{\varepsilon})\|_{L^{1}([0, T] \times \mathbb{R})} \leq C \sqrt{\varepsilon} \|\sqrt{\varepsilon u_{x}^{\varepsilon}} \|_{L^{2}(0, T] \times \mathbb{R})} \leq C \sqrt{\varepsilon} \to 0 \quad \text{as} \quad \varepsilon \to 0, \tag{4.4}
\]
Combining (4.3) with (4.4) yields that
\[
\eta^{\psi}(\rho^{\varepsilon}, m^{\varepsilon})_{t} + q^{\psi}(\rho^{\varepsilon}, m^{\varepsilon})_{x} \quad \text{are confined in a compact subset of} \quad W_{loc}^{-1,q_{1}}(1 < q_{1} < 2, \mathbb{R}^{2}_{+}). \tag{4.5}
\]

On the other hand, using the estimates in Lemma 2.1 (i)-(ii) and in Lemmas 3.3, 3.4, we obtain that
\[
\eta^{\psi}(\rho^{\varepsilon}, m^{\varepsilon}), q^{\psi}(\rho^{\varepsilon}, m^{\varepsilon}) \quad \text{are uniformly bounded in} \quad L^{q_{2}}_{loc}(\mathbb{R}^{2}_{+}),
\]
for \(q_{2} > 2 \).
for $q_2 = \gamma + 1 > 2$ when $\gamma \in (1,3]$, and $q_2 = \frac{\gamma + \theta}{1+\theta} > 2$ when $\gamma > 3$. This implies that, for some $q_2 > 2$,

$$\eta^\nu (\rho^\varepsilon, m^\varepsilon)_t + q^\nu (\rho^\varepsilon, m^\varepsilon)_x$$

are uniformly bounded in W^{1,q_2}_{loc}. (4.6)

The interpolation compactness theorem (cf. [5, 10]) indicates that, for $q_1 > 1$, $q_2 \in (q_1, \infty]$, and $p \in [q_1, q_2)$,

$$(\text{compact set of } W^{1,q_1}_{\text{loc}}(\mathbb{R}^2_+)) \cap (\text{bounded set of } W^{1,q_2}_{\text{loc}}(\mathbb{R}^2_+))$$

$$\subset (\text{compact set of } W^{1,p}_{\text{loc}}(\mathbb{R}^2_+)),$$

which is a generalization of Murat’s lemma in [24, 31].

Combining this interpolation compactness theorem for $1 < q_1 < 2$, $q_2 > 2$, and $p = 2$ with the facts in (4.5)–(4.6), we conclude the result. □

5. Compensated Compactness and Measure-Valued Solutions

In this section, we employ the estimates in Sections 3–4 to construct the measure-valued solutions of the Cauchy problem (1.1)–(1.2) for the Navier-Stokes equations and show that the measure-valued solutions are confined by the Tartar-Murat commutator relation for any two pairs of weak entropy-entropy flux kernels via the method of compensated compactness.

For convenience, we will work with measures defined on the phase space:

$$\mathbb{H} = \{ (\rho, u) : \rho > 0 \}.$$

As in LeFloch-Westdickenberg [20], let \mathcal{H} be a compactification of \mathbb{H} such that the space $C(\mathcal{H})$ is equivalent (isometrically isomorphic) to the space

$$C(\mathbb{H}) = \left\{ \phi \in C(\mathbb{H}) : \phi(\rho, u) \text{ is constant on } \{ \rho = 0 \} \text{ and the map } (\rho, u) \mapsto \lim_{s \to -\infty} \phi(s\rho, su) \text{ belongs to } C(\mathbb{S}^1 \cap \mathbb{H}) \right\},$$

where $\mathbb{S}^1 \subset \mathbb{R}^2$ is the unit circle. These spaces allow to deal with the two difficulties of the problem when $\rho = 0$ (vacuum) and when $\rho \gg 1$ in the large. As usual, we will not distinguish between the functions in $C(\mathcal{H})$ and in $C(\mathcal{H})$. The topology of \mathcal{H} is the weak-star topology induced by $C(\mathcal{H})$, which is separable and metrizable. Note that the topology above does not distinguish points in the compactification of the set $\{ \rho = 0 \}$, that is, all points in the vacuum are equivalent. Denote by V the weak-star closure of $\{ \rho = 0 \}$ and define $\mathcal{H} = \mathbb{H} \cup V$.

Following Alberti-Müller [1] (also see Ball [2] and Tartar [31]), we find that, given any sequence of measurable functions $(\rho^\varepsilon, u^\varepsilon) : \mathbb{R}^2_+ \to \mathcal{H}$, there exists a subsequence (still labeled $(\rho^\varepsilon, u^\varepsilon)$) and a function

$$\nu_{t,x} \in L^\infty_w (\mathbb{R}^2_+; \text{Prob}(\mathcal{H}))$$

such that, for all $\phi \in C(\mathcal{H})$,

$$\phi(\rho^\varepsilon(t,x), u^\varepsilon(t,x)) \rightharpoonup \int_{\mathcal{H}} \phi(\rho, u) \, d\nu_{t,x}(\rho, u) \quad \text{in } L^\infty (\mathbb{R}^2_+).$$

(5.1)

The sequence of functions $(\rho^\varepsilon, u^\varepsilon)$ converges in measure to $(\rho, m) : \mathbb{R}^2_+ \to \mathcal{H}$ if and only if

$$\nu_{t,x} = \delta_{(\rho(t,x),m(t,x))} \quad \text{a.e. } (t,x).$$
In what follows we will often abbreviate $\nu_{t,x}$ as ν implicitly assuming the dependence on (t,x) when no confusion may arise.

Let B_R be a closed ball of radius R centered at the origin. The restriction of ν to $C(B_R \cap \mathbb{H})$ can be identified with a Radon (regular, Borel) measure $\nu_R \in C(B_R \cap \mathbb{H})^*$. By taking a sequence of radii, $R_n \to \infty$, we obtain a probability measure ν on \mathbb{H} such that,

$$\int_{\mathbb{H}} \phi d\nu = \langle \nu, \phi \rangle_{\mathbb{H}} = \int_{\mathbb{H}} \phi d\nu_{t,x}$$

(5.2)

and

$$\phi(\rho^\varepsilon, u^\varepsilon) \rightharpoonup \int_{\mathbb{H}} \phi(\rho, u) d\nu \quad \text{in} \quad L^\infty(\mathbb{R}^2_+) .$$

(5.3)

We will often use later the same letter ν for an element of $(\mathbb{C}^0(\mathbb{H}))^*$, $(\mathbb{C}(\bar{\mathbb{H}}))^*$, and for its restriction (a Radon measure on \mathbb{H}) to $(C_0(\mathbb{H}))^*$, but it will be clear from the context which one is used.

Let $(\rho^\varepsilon, u^\varepsilon)$ be the sequence of solutions of the Navier-Stokes equations (1.1) with initial data (1.2). Let $\nu = \nu_{t,x}$ be a Young measure corresponding to this sequence of functions $(\rho^\varepsilon, u^\varepsilon)$.

In the following proposition (analogous to Proposition 2.3 in [20]), we can extend the Young measure $\nu_{t,x}$ to a class of test functions larger than $\mathbb{C}^0(\mathbb{H})$.

Proposition 5.1. The following statements hold:

(i) For the Young measure $\nu_{t,x}$ introduced above,

$$\int_{\mathbb{H}} (\rho^{\gamma+1} + \rho|u|^3) \, d\nu_{t,x} \in L^1([0,T] \times K) .$$

(5.4)

(ii) Let $\phi(\rho, u)$ be a function such that

(a) $\phi \in C_0(\mathbb{H})$, i.e., continuous on \mathbb{H} and zero on $\partial \mathbb{H}$;

(b) $\supp \phi \subset \{(\rho, u) : \rho^\theta + u \geq -c, u - \rho^\theta \leq c\}$ for some constant $c > 0$;

(c) $|\phi(\rho, u)| \leq \rho^{\beta(\gamma+1)}$ for all (ρ, u) with large ρ and some $\beta \in (0, 1)$.

Then ϕ is $\nu_{t,x}$–integrable and

$$\phi(\rho^\varepsilon, u^\varepsilon) \rightharpoonup \int_{\mathbb{H}} \phi d\nu_{t,x} \quad \text{in} \quad L^1_{loc}(\mathbb{R}^2_+) .$$

(5.5)

(iii) For $\nu_{t,x}$ viewed as an element of $(\mathbb{C}(\mathcal{H}))^*$,

$$\nu_{t,x}[\mathcal{H} \setminus (\mathbb{H} \cup V)] = 0 ,$$

(5.6)

which means that $\nu_{t,x}$ is concentrated in \mathbb{H} and/or on the vacuum $V = \{\rho = 0\}$.

Proof. To prove (i), we define a cut-off function $\omega_k(\rho, u)$ that is nonnegative and continuous, equals 1 on the box

$$\left\{(\rho, u) : \rho^\theta \in \left[\frac{1}{k}, k\right], |u| \leq k\right\}$$
and equals to 0 outside the box
\[\{(\rho, u) : \rho^\theta \in \left[\frac{1}{2k}, 2k \right], |u| \leq 2k \}. \]

Then the functions \(((\rho^\varepsilon)^{\gamma+1} + \rho^\varepsilon |u^\varepsilon|^3)\omega_k(\rho^\varepsilon, u^\varepsilon)\) are in \(\bar{C}(\mathbb{H})\) so that
\[
\lim_{\varepsilon \to 0} \int_{[0,T] \times K} ((\rho^\varepsilon)^{\gamma+1} + \rho^\varepsilon |u^\varepsilon|^3)\omega_k(\rho^\varepsilon, u^\varepsilon) \, dx \, dt
= \int_{[0,T] \times K} \left(\int_{\mathbb{H}} (\rho^{\gamma+1} + \rho |u|^3) \omega_k(\rho, u) \, d\nu_{t,x} \right) \, dx \, dt,
\]
where \(K\) is a compact subset of \(\mathbb{R}\). Note that, by Lemmas 3.3–3.4,
\[
\int_{[0,T] \times K} ((\rho^\varepsilon)^{\gamma+1} + \rho^\varepsilon |u^\varepsilon|^3)\omega_k(\rho^\varepsilon, u^\varepsilon) \, dx \, dt \leq C,
\]
where \(C > 0\) is independent of \(\varepsilon > 0\). By the monotone convergence theorem,
\[
\lim_{k \to \infty} \int_{\mathbb{H}} (\rho^{\gamma+1} + \rho |u|^3) \omega_k(\rho, u) \, d\nu = \int_{\mathbb{H}} (\rho^{\gamma+1} + \rho |u|^3) \, d\nu
\]
is a \((t,x)\)-integrable function, which is finite a.e. \((t,x) \in [0,T] \times K:\)
\[
\int_{[0,T] \times K} \left(\int_{\mathbb{H}} (\rho^{\gamma+1} + \rho |u|^3) \, d\nu_{t,x} \right) \, dx \, dt < \infty.
\]

To prove (ii), we define another cut-off function \(\hat{\omega}_k(\rho, u)\) such that \(0 \leq \hat{\omega}_k(\rho, u) \leq 1\), \(\hat{\omega}_k(\rho, u) \) is 1 on the set
\[
\left\{ \frac{1}{k} \leq |(\rho^\theta, u)| \leq k, \arg(\rho^\theta, u) \in \left[-\frac{\pi}{2} + \frac{1}{k}, \frac{\pi}{2} - \frac{1}{k} \right] \right\},
\]
and \(\hat{\omega}_k(\rho, u) \) is 0 outside the set
\[
\left\{ \frac{1}{2k} \leq |(\rho^\theta, u)| \leq 2k, \arg(\rho^\theta, u) \in \left[-\frac{\pi}{2} + \frac{1}{2k}, \frac{\pi}{2} - \frac{1}{2k} \right] \right\}.
\]

Note that, with \(\phi(\rho, u)\) satisfying (ii)(a)-(c), \(\hat{\omega}_k(\rho, u)\phi(\rho, u) \in \bar{C}(\mathbb{H})\) and thus \(\langle \nu_{t,x}, \hat{\omega}_k \phi \rangle\) is well-defined for a.e. \((t,x)\).

By the Lebesgue dominated convergence theorem and (i), it follows that
\[
\lim_{k \to \infty} \int_{\mathbb{H}} \phi \hat{\omega}_k \, d\nu_{t,x} = \int_{\mathbb{H}} \phi \, d\nu_{t,x} \quad \text{a.e. } (t,x) \in [0,T] \times K,
\]
and
\[
\lim_{k \to \infty} \int_{[0,T] \times K} \int_{\mathbb{H}} \phi \hat{\omega}_k \, d\nu_{t,x} \, dx \, dt = \int_{[0,T] \times K} \int_{\mathbb{H}} \phi \, d\nu_{t,x} \, dx \, dt.
\]
On the other hand, by definition of Young measures, it implies that
\[
\lim_{k \to \infty} \lim_{\varepsilon \to 0} \int_{[0,T] \times K} \langle \nu_{t,x}^\varepsilon, \phi \hat{\omega}_k \rangle \, dx \, dt = \int_{[0,T] \times K} \int_{\mathbb{H}} \phi \, d\nu_{t,x} \, dx \, dt. \tag{5.7}
\]

Claim. \(\int_{[0,T] \times K} \langle \nu_{t,x}^\varepsilon, \phi \hat{\omega}_k \rangle \, dx \, dt \to \int_{[0,T] \times K} \langle \nu_{t,x}^\varepsilon, \phi \rangle \, dx \, dt\) as \(k \to \infty\) uniformly for \(\varepsilon \in [0,\varepsilon_0]\).
If this is true, then we can interchange the limits in (5.7) to obtain

\[
\lim_{\varepsilon \to 0} \int_{[0,T] \times K} \phi(\rho^\varepsilon(t,x), u^\varepsilon(t,x)) \, dx \, dt = \lim_{\varepsilon \to 0} \int_{[0,T] \times K} \langle \nu_{t,x}^\varepsilon, \phi \rangle \, dx \, dt
\]

\[
= \lim_{\varepsilon \to 0} \lim_{k \to \infty} \int_{[0,T] \times K} \langle \nu_{t,x}^\varepsilon, \phi \hat{\omega}_k \rangle \, dx \, dt
\]

\[
= \lim_{k \to \infty} \lim_{\varepsilon \to 0} \int_{[0,T] \times K} \phi \, d\nu_{t,x} \, dx \, dt
\]

\[
= \int_{[0,T] \times K} \phi \, d\nu_{t,x} \, dx \, dt,
\]

which is what we want.

We now prove the claim. With \(k_1 < k_2 \), consider

\[
\int_{[0,T] \times K} \langle \nu_{t,x}^\varepsilon, (\hat{\omega}_{k_1} - \hat{\omega}_{k_2}) \phi \rangle \, dx \, dt.
\]

Notice that

\[
\text{supp}(\hat{\omega}_{k_1} - \hat{\omega}_{k_2}) \subset B_{\frac{1}{k_1}}(0) \cup (B_{k_1}(0)^c \cap B_{2k_2}(0)),
\]

\[
\sup_{B_{\frac{1}{k_1}}(0)} |\phi(\rho, u)| \leq c_{k_1} \to 0 \quad \text{as } k_1 \to \infty,
\]

and, if \((\rho, u) \in \text{supp} \phi \cap (B_{k_1}(0))^c\), then

\[
\rho^\theta \geq \frac{k_1}{2}.
\]

Furthermore, by the Young’s inequality, for any \(\alpha > 0 \), there exists \(C(\beta, \alpha) > 0 \) such that

\[
|\phi(\rho, u)| \leq C(\beta, \alpha) + \alpha \rho^{\gamma+1}.
\]

Thus we can estimate

\[
\left| \int_{[0,T] \times K} \langle \nu_{t,x}^\varepsilon, (\hat{\omega}_{k_1} - \hat{\omega}_{k_2}) \phi \rangle \, dx \, dt \right|
\]

\[
\leq T |K| c_{k_1} + C(\beta, \alpha) \left| ([0,T] \times K) \cap \{(t, x) : (\rho^\varepsilon)^\theta > \frac{k_1}{2} \} \right|
\]

\[+ \alpha \int_{[0,T] \times K} |\rho^\varepsilon(t,x)|^{\gamma+1} \, dx \, dt. \tag{5.8}\]

By the Chebyshev inequality,

\[
\left| ([0,T] \times K) \cap \{(t, x) : (\rho^\varepsilon)^\theta > \frac{k_1}{2} \} \right| \leq \left(\frac{k_1}{2} \right)^{-\frac{\gamma+1}{\theta}} \int_{[0,T] \times K} |\rho^\varepsilon(t,x)|^{\gamma+1} \, dx \, dt.
\]
Using the uniform estimate in Lemma 3.3 we deduce from (5.8) that
\[\left| \int_{[0,T] \times K} (\nu_{t,x}^\varepsilon, (\hat{\omega}_{k_1} - \hat{\omega}_{k_2}) \phi) \, dx \, dt \right| \leq T |K| c_{k_1} + C(\beta, \alpha) \left(\frac{k_1}{2} \right)^{-\frac{2+\beta}{\beta}} + C \Delta, \]
where $C > 0$ and c_{k_1} are independent of ε, and $\alpha > 0$ is an arbitrary constant. The claim then follows.

The result in (iii) follows directly from the uniform estimates for $(\rho^\varepsilon, u^\varepsilon)$ in Lemmas 3.3–3.4 and Proposition 5.1. \(\Box\)

For simplifying the notation, we denote the entropy kernel:
\[\chi(s) := [\rho^{2\theta} - (u - s)^2]_0^\lambda, \]
and, for any function $f(\rho, u)$ with growth slower than $\rho|u|^3 + \rho^{\gamma+\max\{1, \theta\}}$,
\[f(\rho^\varepsilon, u^\varepsilon) \rightharpoonup f(\rho, u)(t, x) := \langle \nu_{t,x}, f(\rho, u) \rangle. \]

Proposition 5.2. Let $\nu_{t,x}$ be the Young measure determined by the solutions of the Navier-Stokes equations (1.1)–(1.2) with initial data (1.2). Then the Young measure $\nu_{t,x}$ is a measure-valued solution of (1.1)–(1.2): For the test functions $\psi \in \{ \pm 1, \pm s, s^2 \}$,
\[\langle \nu_{t,x}, \eta^\psi \rangle_t + \langle \nu_{t,x}, q^\psi \rangle_x \leq 0, \quad \langle \nu_{t,x}, \eta^\psi(0, \cdot) \rangle = \eta^\psi(\rho_0, \rho_0 u_0), \]
in the sense of distributions in \mathbb{R}^2_+. Furthermore, the measure-valued solution $\nu_{t,x}$ is confined by the following commutator relation: For a.e. $s_1, s_2 \in \mathbb{R}$,
\[\theta(s_2 - s_1) \left(\chi(s_1) \chi(s_2) - \chi(s_1) \chi(s_2) \right) = (1 - \theta) \left(u\chi(s_2) \chi(s_1) - u\chi(s_1) \chi(s_2) \right). \]

Proof. First, from (2.18), we find that, when $\psi \in \{ \pm 1, \pm s, s^2 \}$,
\[\eta^\psi_{\text{mix}}(\rho,\rho u) = 0. \]
Then we employ (2.17) to obtain that the solutions $(\rho^\varepsilon, u^\varepsilon)$ of (1.1)–(1.2) satisfy
\[\eta^\psi(\rho^\varepsilon, m^\varepsilon)_t + q^\psi(\rho^\varepsilon, m^\varepsilon)_x \]
\[= \varepsilon(\eta^\psi_{\text{mix}}(\rho^\varepsilon, m^\varepsilon) u^\varepsilon_2)_x - \varepsilon \int \psi''(\frac{m^\varepsilon}{\rho^\varepsilon} + (\rho^\varepsilon)^\theta s)[1 - s^2]_0^\lambda ds |u^\varepsilon|^2. \]
When $\psi(s) \in \{ \pm 1, \pm s, s^2 \}$, $\psi''(s) \geq 0$, which implies
\[\eta^\psi(\rho^\varepsilon, m^\varepsilon)_t + q^\psi(\rho^\varepsilon, m^\varepsilon)_x \leq \varepsilon(\eta^\psi_{\text{mix}}(\rho^\varepsilon, m^\varepsilon) u^\varepsilon_2)_x. \]
Taking $\varepsilon \to 0$ in (5.12), we conclude (5.9).

Furthermore, combining Proposition 4.1 and the uniform estimates in Lemmas 3.3–3.4 with the Div-Curl lemma (cf. Murat [24] and Tartar [31]), we deduce that, for any C^2 compactly supported functions ϕ, ψ, the quadratic functions $\eta^\psi \eta^\phi - \eta^\phi \eta^\psi$ are weakly continuous with respect to the weakly convergent physical viscosity sequence $(\rho^\varepsilon, m^\varepsilon) \rightharpoonup (\rho, m)$:
\[\eta^\psi(\rho^\varepsilon, m^\varepsilon) q^\phi(\rho^\varepsilon, m^\varepsilon) - \eta^\phi(\rho^\varepsilon, m^\varepsilon) q^\psi(\rho^\varepsilon, m^\varepsilon) \rightharpoonup \eta^\psi(\rho, m) \ q^\phi(\rho, m) - \eta^\phi(\rho, m) \ q^\psi(\rho, m) \]
in the sense of distributions in $[0, \infty) \times \mathbb{R}$.

In terms of the Young measure, (5.13) yields the Tartar-Murat commutator relation:
\[
\eta \psi q - \eta \phi q = \eta \psi q - \eta \phi q.
\] (5.14)

Thus, we have
\[
\int \psi(s_1)\chi(s_1)ds_1 \int \phi(s_2)(\theta s_2 + (1 - \theta)u)\chi(s_2)ds_2
- \int \psi(s_2)\chi(s_2)ds_2 \int \phi(s_1)(\theta s_1 + (1 - \theta)u)\chi(s_1)ds_1
= \int \psi(s_1)\phi(s_2)\chi(s_1)(\theta s_2 + (1 - \theta)u)\chi(s_2)ds_1ds_2
- \int \psi(s_1)\phi(s_2)\chi(s_1)(\theta s_1 + (1 - \theta)u)\chi(s_1)\chi(s_2)ds_1ds_2,
\]
which holds for arbitrary functions \(\psi\) and \(\phi\). This yields
\[
\chi(s_1) (\theta s_2 + (1 - \theta)u)\chi(s_2) - \chi(s_2) (\theta s_1 + (1 - \theta)u)\chi(s_1) = \theta(s_2 - s_1)\chi(s_1)\chi(s_2),
\]
which implies (5.10).

6. Reduction of the Measure-Valued Solutions for \(\gamma \in (3, \infty)\)

In this section, we prove that any connected component of the support of the measure-valued solution \(\nu = \nu_{t,x}\) must be bounded for a.e. \((t, x) \in \mathbb{R}^2_+\).

Lemma 6.1. Let \(\gamma > 3\). Then
\[
\overline{\chi(s)} \in L^1_{\text{loc}}(\mathbb{R}^2_+; L^p(\mathbb{R})) \quad \text{for} \quad 1 \leq p < \frac{\gamma - 1}{\gamma - 3}.
\]

This can be seen by the following direct calculation: For any \(K \in \mathbb{R}\) and \(T \in (0, \infty)\),
\[
\int_{[0,T] \times K} \|\overline{\chi(s)}\|_{L^p} dx dt \leq \int_{[0,T] \times K} \int_{\mathbb{H}} \left(\int |\rho^{2\theta} - (u - s)^{2p\lambda} ds \right)^{1/p} d\nu_{t,x} dx dt
= \int_{[0,T] \times K} \int_{\mathbb{H}} \rho^{\frac{\theta}{p}(2\lambda p + 1)} \left(\int_{-1}^{1} (1 - \tau^2)^p d\tau \right)^{1/p} d\nu_{t,x} dx dt
\leq C \int_{[0,T] \times K} \int_{\mathbb{H}} \max\{1, \rho\} d\nu_{t,x} dx dt < \infty,
\]
if \(\frac{\theta}{p}(2\lambda p + 1) > 0\) and \(p\lambda > -1\), which hold if \(1 \leq p < \frac{\gamma - 1}{\gamma - 3}\).

Let \(A\) be the open set defined as
\[
A := \cup \{ (u - \rho^\theta, u + \rho^\theta) : (\rho, u) \in \text{supp} \nu \},
\]
and let \(J\) be any connected component of \(A\).

Proposition 6.1. When \(\gamma > 3\), \(J\) is bounded. That is, any connected component of the support of the measure-valued solution \(\nu\) is bounded.
Proof. Note that
\[\text{supp} \, \chi(s) = \{(\rho, u) : u - \rho^\theta \leq s \leq u + \rho^\theta\}. \]

By definition of \(J \), \(\chi(s) > 0 \) for a.e. \(s \in J \).

From (5.10), we obtain that, if \(\chi(s_1) \chi(s_2) \neq 0 \), then
\[
1 - \frac{\theta}{\rho} \frac{1}{s_2 - s_1} \left(\frac{u \chi(s_2)}{\chi(s_2)} - \frac{u \chi(s_1)}{\chi(s_1)} \right) = \frac{\chi(s_1) \chi(s_2)}{\chi(s_1)} - 1. \tag{6.1}
\]

Taking the limits \(s_1, s_2 \to s \) in (6.1) (cf. [22], pp. 426), we conclude that
\[
1 - \frac{\theta}{\rho} \frac{\partial}{\partial s} \left(\frac{u \chi(s)}{\chi(s)} \right) = \frac{\chi^2(s)}{(\chi(s))^2} - 1 \geq 0. \tag{6.2}
\]

This implies that the function
\[
1 - \frac{\theta}{\rho} \frac{u \chi(s)}{\chi(s)} \text{ is non-decreasing on } J. \tag{6.3}
\]

Consequently, from (6.1), we obtain
\[
\frac{\chi(s_1) \chi(s_2)}{\chi(s_1)} \geq \chi(s_2) \quad \text{a.e. } s_1, s_2 \in J, \quad s_1 < s_2. \tag{6.4}
\]

On the contrary, suppose now that \(J \) is unbounded from below, that is, \(\inf\{s : s \in J\} = -\infty \).

We fix \(M_0 > 0 \) such that \(M_0 + 1 \in J \) and restrict \(s_2 \in (M_0, M_0 + 1) \). We will take \(s_1 \leq -2|M_0| \). For such \(s_1 \),
\[
|M_0 - s_1| > \frac{|s_1|}{2}. \tag{6.5}
\]

If \((\rho, u) \in \text{supp} \, \chi(s_2) \cap \text{supp} \, \chi(s_1) \), then, by the above assumptions on \(s_1 \) and \(M_0 \), we have
\[
\rho^\theta - u + s_2 = \rho^\theta - u + s_1 + (s_2 - s_1) \geq s_2 - s_1 \geq M_0 - s_1 > \frac{|s_1|}{2}.
\]

Since \(\gamma > 3 \), i.e. \(\lambda < 0 \), it follows that
\[
\int \chi(s_1) \chi(s_2) \, d\nu = \int \chi(s_1)[\rho^\theta - u + s_2]^\lambda \, d\nu
\leq 2^{-\lambda}|s_1|^\lambda \int_{\text{supp} \, \chi(s_2)} \chi(s_1)[\rho^\theta + u - s_2]^\lambda \, d\nu. \tag{6.6}
\]

We integrate (6.6) in \(s_2 \) over the interval \((M_0, M_0 + 1) \) to obtain
\[
\int_{M_0}^{M_0+1} \int_{\text{supp} \, \chi(s_2)} \chi(s_1)[\rho^\theta + u - s_2]^\lambda \, d\nu \, ds_2
\leq 2^{-\lambda}|s_1|^\lambda \int_{M_0}^{M_0+1} \int_{\text{supp} \, \chi(s_2)} \chi(s_1)[\rho^\theta + u - s_2]^\lambda \, d\nu \, ds_2
= 2^{-\lambda}|s_1|^\lambda \int \chi(s_1) \left(\int_{(M_0,M_0+1) \cap (u-\rho^\theta, u+\rho^\theta)} [\rho^\theta + u - s_2]^\lambda \, ds_2 \right) \, d\nu. \tag{6.7}
\]

We now consider the integral in the parentheses in (6.7).
When $\rho^\theta + u \geq M_0 + 2$, then $\rho^\theta + u - s_2 \geq M_0 + 2 - (M_0 + 1) = 1$ and
$$\int_{(M_0,M_0+1) \cap (u-\rho^\theta,u+\rho^\theta)} [\rho^\theta + u - s_2]_+^{\lambda} \, ds_2 \leq 1,$$
since $\lambda < 0$.

When $\rho^\theta + u < M_0 + 2$, then
$$\int_{(M_0,M_0+1) \cap (u-\rho^\theta,u+\rho^\theta)} [\rho^\theta + u - s_2]_+^{\lambda} \, ds_2 \leq \int_{M_0}^{M_0+1} [\rho^\theta + u - M_0]_+^{1+\lambda} \, ds_2$$
$$\leq \frac{1}{1+\lambda} \int_{M_0}^{M_0+1} [\rho^\theta + u - M_0]_+^{1+\lambda} \, ds_2$$
$$\leq \frac{1}{1+\lambda} 2^{1+\lambda},$$

since $1 + \lambda > 0$.

Combining the two observations above into (6.7), we find that there exists $C = C(\lambda) > 0$ such that
$$\int_{M_0}^{M_0+1} \int_{M_0}^{M_0+1} \chi(s_1) \chi(s_2) \, dvds_2 \leq C(\lambda) |s_1|^{\lambda} \chi(s_1).$$

Combining this with (6.4), we obtain
$$C(\lambda) |s_1|^{\lambda} \geq \int_{M_0}^{M_0+1} \chi(s_2) \, ds_2 \equiv C(M_0,\lambda) > 0.$$

Since $\lambda < 0$ and $|s_1|$ can be chosen arbitrary large, we arrive at a contradiction.

The case when J is unbounded from above can be treated similarly. \square

With this proposition, a simple argument (cf. [22], Lemma 6) implies that ν is reduced to a Dirac mass on the set $\{\rho > 0\}$ or is supported completely in the vacuum $V = \{\rho = 0\}$ for the case $\gamma > 3$. This can be seen as follows: Let $J = (s_-,s_+)$ be the open connected component. Then the values (ρ,u) such that $\chi(s) > 0$ in an interval $(s_+ - \varepsilon, s_+)$ satisfy
$$u + \rho^\theta \geq s_+ - \varepsilon.$$

Since $s_- \leq u - \rho^\theta$ for these (ρ,u) values, we have
$$\lim_{s \to s_+} \frac{u\chi(s)}{\chi(s)} \geq \min\{u : (\rho,u) \in \text{supp} \nu, u + \rho^\theta = s_+ \} \geq \frac{s_+ + s_-}{2}. \quad (6.9)$$

Similarly, we have
$$\lim_{s \to s_-} \frac{u\chi(s)}{\chi(s)} \leq \frac{s_+ + s_-}{2}. \quad (6.10)$$

Combining (6.9)–(6.10) with (6.3), we conclude that $\frac{u\chi(s)}{\chi(s)}$ is constant, which implies from (6.2) that
$$\frac{\chi(s)}{\chi(s)} = \chi(s).$$

Since $\nu_{t,x}$ is a probability measure,
$$\langle \nu_{t,x}, (\chi(s) - \langle \nu_{t,x}, \chi(s) \rangle)^2 \rangle = 0 \quad \text{for any } s \in \mathbb{R},$$
which yields
\[\text{supp } \nu_{t,x} \subset \{ \chi(s) = \langle \nu_{t,x}, \chi(s) \rangle \} \quad \text{for any } s \in \mathbb{R}. \]
This arrives at the conclusion. That is, in the phase coordinates \((\rho, m)\),
\[\nu_{t,x} = \delta_{(\rho(t,x), m(t,x))} \]
for some \((\rho(t,x), m(t,x))\).

When \(\gamma = 3\), then \(\theta = 1\) and the commutator relation (5.10) reads
\[\chi(s_1) \chi(s_2) = \chi(s_1) \chi(s_2), \]
which implies \(\bar{\chi}(s)^2 = \bar{\chi}(s)^2\) by taking \(s_1 = s_2\). This again implies that \(\nu_{t,x} = \delta_{(\rho(t,x), m(t,x))}\)
for some \((\rho(t,x), m(t,x))\).

Proposition 6.2. When \(\gamma \geq 3\), the measure-valued solution \(\nu_{t,x}\) is a Dirac mass in the phase coordinates \((\rho, m)\):
\[\nu_{t,x} = \delta_{(\rho(t,x), m(t,x))}. \]

7. Reduction of the Measure-Valued Solutions for \(\gamma \in (1, 3)\)

In this section, we directly prove that any connected component of the support of the measure-valued solution \(\nu = \nu_{t,x}\) is bounded.

Lemma 7.1. When \(\gamma \in (1, 3)\), \(\bar{\chi}(s)\) is a continuous and weakly differentiable function for which
\[\frac{\partial}{\partial s} \bar{\chi}(s) \in L^1_{\text{loc}}(\mathbb{R}^2; L^1(\mathbb{R})). \]

This can been seen as follows: We compute
\[\partial_s \chi(s) = 2\lambda \frac{du}{ds} \left[(\rho^{2\theta} - (u - s)^2)^{\frac{\lambda - 1}{2}} \right], \]
and
\[\int |\partial_s \chi(s)| ds \leq 2\lambda \int \left(\int_{u - \rho^\theta}^u (s - u) \left[(\rho^{2\theta} - (u - s)^2)^{\frac{\lambda - 1}{2}} \right] ds \right) d\nu_{t,x} \]
\[+ 2\lambda \int \left(\int_{u - \rho^\theta}^u (s - u) \left[(\rho^{2\theta} - (u - s)^2)^{\frac{\lambda - 1}{2}} \right] ds \right) d\nu_{t,x} \]
\[\leq C(\lambda) \int \rho^{2\theta \lambda} d\nu_{t,x} \in L^1_{\text{loc}}(\mathbb{R}^2), \]
since \(0 < 2\theta \lambda \leq \gamma + 1\) and by using Proposition 5.1(i).

Let \(A\) be the open set defined as
\[A := \bigcup \{(u - \rho^\theta, \rho^\theta + u) : (\rho, u) \in \text{supp } \nu \} \]
and let \(J\) be any connected component of \(A\).

Proposition 7.1. When \(\gamma \in (1, 3)\), \(J\) is bounded.
\begin{proof}
We divide the proof into three steps.

Step 1. On the contrary, suppose as before that \(J \) is unbounded from below and let \(M_0 = \sup \{ s : s \in J \} \in (\infty, \infty] \).

Let \(s_1, s_2, s_3 \in (\infty, M_0) \) with \(s_1 < s_2 < s_3 \). From equation (5.10), it can be derived that
\[
(s_2 - s_1) \frac{\chi(s_1)\chi(s_2)}{\chi(s_1)} + (s_3 - s_2) \frac{\chi(s_3)\chi(s_2)}{\chi(s_3)} = (s_3 - s_1)\frac{\chi(s_2)}{\chi(s_1)\chi(s_3)}.
\]

Differentiating this equation in \(s_2 \) and dividing by \(s_3 - s_1 \), we obtain
\[
\frac{s_2 - s_1}{s_3 - s_1} \frac{\chi'(s_1)\chi(s_2)}{\chi(s_1)} + \frac{s_3 - s_2}{s_3 - s_1} \frac{\chi'(s_2)\chi(s_3)}{\chi(s_3)} + \frac{1}{s_3 - s_1} \frac{\chi(s_1)\chi'(s_2)}{\chi(s_1)} - \frac{1}{s_3 - s_1} \frac{\chi(s_3)\chi'(s_2)}{\chi(s_3)} = \frac{\chi'(s_1)\chi(s_3)}{\chi(s_1)\chi(s_3)}.
\]

Our strategy is to take \(s_1 \to -\infty \) and show that the left-hand side of (7.2) has a smaller order than the right-hand side, which arrives at a contradiction.

Step 2. Claim: \(\chi(s) \to 0 \) as \(s \to -\infty \) and \(s \to M_0 \).

If \(M_0 < \infty \), then the result follows by the definition of \(J \) and the fact that \(\chi(s) \) is continuous (which follows from Lemma 7.1).

We now show that \(\chi(s) \to 0 \) as \(|s| \to \infty \) for \(M_0 = \infty \).

Using Lemma 3.3 and Young's inequality, we have
\[
\chi(s) = \int \rho^{2\theta} - (u - s)^2 d\nu \leq \int \mathbb{H} \cap \text{supp} \chi(s) \rho^{2\theta} d\nu \leq \varepsilon^{2\lambda} + \int \mathbb{H} \cap \{ \rho^\theta \geq \varepsilon \} \cap \text{supp} \chi(s) (C(\delta) + \delta \rho^{\gamma + 1}) d\nu
\leq \varepsilon^{2\lambda} + \delta C + C(\delta) \nu \{ \rho^\theta \geq R \} \cup \{ \rho^\theta \geq \varepsilon, |u| \geq R \},
\]
where \(\varepsilon \) and \(\delta \) are positive constants (to be taken small) and \(C(\delta) \) is some constant depending on the negative powers of \(\delta \) and \(R := \frac{|s|}{\varepsilon} \). Then, by Chebyshev's inequality and Proposition 5.1(i), we conclude
\[
\nu \{ \rho^\theta \geq R \} \leq \frac{\nu^{\gamma + 1} d\nu}{R^{\gamma + 1}} \leq \frac{M^\theta}{R^{\gamma + 1}},
\]
\[
\nu \{ \rho^\theta \geq \varepsilon, |u| \geq R \} \leq \frac{\nu^0 |u|^3 d\nu}{\varepsilon^{1/\theta} R^3} \leq \frac{N}{\varepsilon^{1/\theta} R^3},
\]
where \(M \) and \(N \) are the constants depending only on \((t, x) \). Thus, choosing first \(\delta \) small, then \(\varepsilon \) small, and finally \(R \) (i.e. \(|s| \)) large, we can make \(\chi(s) \) as small as we want.

Step 3. Now we prove Proposition 7.1. Since \(\chi(s) \geq 0 \) is not identically zero and \(\chi(s) \to 0 \) as \(s \to \inf J, \sup J \),
there exists \(s_2 \) such that
\[
\chi'(s_2) > 0, \quad \chi(s_2) > 0. \tag{7.3}
\]
Moreover, following the same argument for (6.4) from (5.10), we still have
\[
\frac{\chi(s_1)\chi(s_3)}{\chi(s_1)\chi(s_3)} \geq 1 \quad \text{for any } s_1, s_3 \in J. \tag{7.4}
\]
Let \(s_3 > s_2 \) be points such that \(\chi(s_3) > 0 \) and let \(s_1 \to -\infty \). Then, from (7.1), we conclude
\[
\frac{\chi(s_1)\chi(s_2)}{\chi(s_1)} = \frac{\chi(s_2)\chi(s_3)}{\chi(s_1)\chi(s_3)} + o(1) \quad \text{as } s_1 \to -\infty. \tag{7.5}
\]
From (7.2), by throwing away the negative terms, we obtain
\[
\chi'(s_2)\frac{\chi(s_1)\chi(s_3)}{\chi(s_1)\chi(s_3)} \leq \frac{\chi(s_1)|\chi'(s_2)|}{\chi(s_1)} + \frac{1}{s_3 - s_1}\frac{\chi(s_1)\chi(s_2)}{\chi(s_1)} + o(1), \tag{7.6}
\]
where \([w]_+\) stands for the nonnegative part of \(w \). For \((\rho, u) \in \text{supp} \chi(s)_+\), consider
\[
[\chi'(s)]_+ = 2\lambda[\rho^\theta - s + u]^\lambda_+ - [\rho^\theta - s + u]_+^\lambda - 1\left[u - s\right]_+ = 2\lambda[\rho^\theta - s + u]^\lambda_+ - [\rho^\theta + s - u]_+^\lambda - 1\left[u - s\right]_+ + \frac{1}{[\rho^\theta + s - u]_+^\lambda - 1\left[u - s\right]_+^\lambda}.
\]
Note that, if \((\rho, u) \in \text{supp} \chi(s_1)\), then \(\rho^\theta \geq u - s_1 \). If, in addition \((\rho, u) \in \text{supp} \chi(s)\) with \(s > s_1 \), then
\[\rho^\theta + s - u \geq s - s_1.\]
Thus, we have
\[
[\chi'(s)]_+ \leq \frac{2\lambda}{s - s_1}[\rho^\theta - s + u]^\lambda_+ - [\rho^\theta + s - u]_+^\lambda = \frac{2\lambda}{s - s_1}\chi(s), \tag{7.7}
\]
when \((\rho, u) \in \text{supp} \chi(s_1) \cap \text{supp} \chi(s)\) for \(s_1 < s \). Setting \(s = s_2 \) and using (7.7) in (7.6), we obtain
\[
\chi'(s_2)\frac{\chi(s_1)\chi(s_3)}{\chi(s_1)\chi(s_3)} \leq \left(\frac{2\lambda}{s_2 - s_1} + \frac{1}{s_3 - s_1}\right)\frac{\chi(s_1)\chi(s_2)}{\chi(s_1)} + o(1). \tag{7.8}
\]
From this, recalling (7.5), we obtain
\[
\frac{\chi'(s_2)}{s_2 - s_1} - \frac{\chi(s_2)}{s_3 - s_1} \frac{\chi(s_1)\chi(s_3)}{\chi(s_1)\chi(s_3)} \leq o(1). \tag{7.9}
\]
Because of (7.3) and (7.4), the last inequality is a contradiction when \(s_1 \to -\infty \). This completes the proof.

Then, by the well-known result, see [11, 14, 10, 21], the measure-valued solution \(\nu \) reduced to a delta function in the phase coordinates \((\rho, m)\).

Proposition 7.2. When \(\gamma \in (1, 3) \), the measure-valued solution \(\nu_{t,x} \) is a Dirac mass in the phase coordinates \((\rho, m)\):
\[
\nu_{t,x} = \delta_{(\rho_{t,x}, m(t,x))}.
\]
Remark 7.1. The above proof provides another way to establish the reduction of measure-value solutions, which simplifies the proof by LeFloch-Westdickenberg [20].

8. Vanishing Viscosity Limit of the Navier-Stokes Equations to the Euler Equations with Finite-Energy Initial Data

Consider the Cauchy problem (1.1)–(1.2) for the Navier-Stokes equations in $\mathbb{R}^2_+ := \mathbb{R} \times [0, \infty)$. Hoff’s theorem in [16] (also see Kanel [18] for the case of the same end states) indicates that, when the initial functions $(\rho_0(x), u_0(x))$ are smooth with the lower bounded density $\rho_0(x) \geq c_0^\ast > 0$ for $x \in \mathbb{R}$ and

$$\lim_{x \to \pm \infty} (\rho_0(x), u_0(x)) = (\rho^\pm, u^\pm),$$

then there exists a unique smooth solution $(\rho^\varepsilon(t, x), u^\varepsilon(t, x))$, globally in time, with $\rho^\varepsilon(t, x) \geq c_\varepsilon(t)$ for some $c_\varepsilon(t) > 0$ for $t \geq 0$ and $\lim_{x \to \pm \infty}(\rho^\varepsilon(t, x), u^\varepsilon(t, x)) = (\rho^\pm, u^\pm)$.

Combining the uniform estimates and Remark 3.1 in Section 3 and the compactness of weak entropy dissipation measures in H^{-1}_{loc} in Section 4 with the compensated compactness argument in Section 5 and the reduction of the measure-valued solution $\nu_{t,x}$ in Sections 6–7, we conclude the following main theorem of this paper.

Theorem 8.1. Let the initial functions $(\rho_0^\varepsilon, u_0^\varepsilon)$ be smooth and satisfy the following conditions: There exist $E_0, E_1, M_0 > 0$, independent of ε, and $c_0^\ast > 0$ such that

(i) $\rho_0^\varepsilon(x) \geq c_0^\ast > 0$, $\int \rho_0^\varepsilon(x)|u_0^\varepsilon(x) - \bar{u}(x)|\,dx \leq M_0 < \infty$;

(ii) The total mechanical energy with respect to ρ, \bar{u} is finite:

$$\int \left(\frac{1}{2} \rho_0^\varepsilon(x)|u_0^\varepsilon(x) - \bar{u}(x)|^2 + e^\ast(\rho_0^\varepsilon(x), \bar{\rho}(x))\right)\,dx \leq E_0 < \infty;$$

(iii) $\varepsilon^2 \int |\rho_0^\varepsilon(x)|^2\,dx \leq E_1 < \infty$;

(iv) $(\rho_0^\varepsilon(x), \rho_0^\varepsilon(x)u_0^\varepsilon(x)) \to (\rho_0(x), \rho_0(x)u_0(x))$ in the sense of distributions as $\varepsilon \to 0$, with $\rho_0(x) \geq 0$ a.e.,

where $(\rho(x), \bar{u}(x))$ is some pair of smooth monotone functions satisfying $(\rho(x), \bar{u}(x)) = (\rho^\pm, u^\pm)$ when $\pm x \geq L_0$ for some large $L_0 > 0$. Let $(\rho^\varepsilon, m^\varepsilon)$, $m^\varepsilon = \rho^\varepsilon \bar{u}^\varepsilon$, be the solution of the Cauchy problem (1.1)–(1.2) for the Navier-Stokes equations with initial data $(\rho_0^\varepsilon(x), u_0^\varepsilon(x))$ for each fixed $\varepsilon > 0$. Then, when $\varepsilon \to 0$, there exists a subsequence of $(\rho^\varepsilon, m^\varepsilon)$ that converges almost everywhere to a finite-energy entropy solution (ρ, m) to the Cauchy problem (2.1) and (1.2) with initial data $(\rho_0(x), \rho_0(x)u_0(x))$ for the isentropic Euler equations with $\gamma > 1$.

Acknowledgments. Gui-Qiang Chen’s research was supported in part by the National Science Foundation under Grants DMS-0935967, DMS-0807551, and DMS-0505473, the National Science Foundation of China under Grant NSFC-10728101, and the Royal Society–Wolfson Research Merit Award (UK). This paper was written as part of the International Research Program on Nonlinear Partial Differential Equations at the Centre for Advanced Study at the Norwegian Academy of Science and Letters in Oslo during the Academic Year 2008–09.
References

[1] G. Alberti and S. Müller, A new approach to variational problems with multiple scales, Comm. Pure Appl. Math. 54 (2001), 761–825.
[2] J. Ball, A version of the fundamental theorem of Young measures, In: PDEs and Continuum Models of Phase Transitions, pp. 207–215, Eds. Rascle, Serre, and Slemrod, Lecture Notes of Physics, 344, Springer-Verlag, 1989.
[3] S. Bianchini and A. Bressan, Vanishing viscosity solutions of nonlinear hyperbolic systems, Ann. of Math. (2), 161 (2005), 223–342.
[4] G.-Q. Chen, Convergence of the Lax-Friedrichs scheme for isentropic gas dynamics (III), Acta Math. Sci. 6B (1986), 75–120 (in English); 8A (1988), 243–276 (in Chinese).
[5] G.-Q. Chen, The compensated compactness method and the system of isentropic gas dynamics, Lecture Notes, Preprint MSRI-00527-91, Berkeley, October 1990.
[6] G.-Q. Chen, Remarks on R. J. DiPerna’s paper: “Convergence of the viscosity method for isentropic gas dynamics” [Comm. Math. Phys. 91 (1983), 1–30], Proc. Amer. Math. Soc. 125 (1997), 2981–2986.
[7] G.-Q. Chen and Ph. G. LeFloch, Compressible Euler equations with general pressure law, Arch. Rational Mech. Anal. 153 (2000), 221–259; Existence theory for the isentropic Euler equations, Arch. Rational Mech. Anal. 166 (2003), 81–98.
[8] C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Springer-Verlag: Berlin, 2000.
[9] X. Ding, On a lemma of DiPerna and Chen, Acta Math. Sci. 26B (2006), 188–192.
[10] X. Ding, G.-Q. Chen, and P. Luo, Convergence of the Lax-Friedrichs scheme for the isentropic gas dynamics (I)-(II), Acta Math. Sci. 5B (1985), 483-500, 501–540 (in English); 7A (1987), 467-480; 8A (1989), 61–94 (in Chinese); Convergence of the fractional step Lax-Friedrichs scheme and Godunov scheme for the isentropic system of gas dynamics, Comm. Math. Phys. 121 (1989), 63–84.
[11] R. J. DiPerna, Convergence of the viscosity method for isentropic gas dynamics, Commun. Math. Phys. 91 (1983), 1–30.
[12] R. J. DiPerna, Convergence of approximate solutions to conservation laws, Arch. Rational Mech. Anal. 82 (1983), 27–70.
[13] D. Gilbarg, The existence and limit behavior of the one-dimensional shock layer, Amer. J. Math. 73 (1951), 256–274.
[14] O. Guès, G. Métivier, M. Williams, and K. Zumbrun, Navier-Stokes regularization of multidimensional Euler shocks, Ann. Sci. École Norm. Sup. (4), 39 (2006), 75–175.
[15] H. Hugonnier, Sur la propagation du movement dans les corps et spécialement dans les gaz parfaits, J. Ecole Polytechnique, 58 (1889), 1–125.
[16] D. Hoff, Global solutions of the equations of one-dimensional, compressible flow with large data and forces, and with differing end states, Z. Angew. Math. Phys. 49 (1998), 774–785.
[17] D. Hoff and T.-P. Liu, The inviscid limit for the Navier-Stokes equations of compressible, isentropic flow with shock data, Indiana Univ. Math. J. 38 (1989), 861–915.
[18] Ya. Kanel, On a model system of equations of one-dimensional gas motion, Diff. Urav. 4 (1968), 721–734.
[19] P. D. Lax, Shock wave and entropy, In: Contributions to Functional Analysis, ed. E.A. Zarantonello, pp. 603–634, Academic Press: New York, 1971.
[20] Ph. LeFloch and M. Westdickenberg, Finite energy solutions to the isentropic Euler equations with geometric effects, J. Math. Pures Appl. 88 (2007), 386–429.
[21] Lions P.-L., Perthame B., and Souganidis P.E., Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates, Comm. Pure Appl. Math. 49 (1996), 599–638.
[22] P.-L. Lions, B. Perthame, and E. Tadmor, Kinetic formulation of the isentropic gas dynamics and p-systems, Commun. Math. Phys. 163 (1994), 415–431.
[23] C. Morawetz, An alternative proof of DiPerna’s theorem, Comm. Pure Appl. Math. 44 (1991), 1081–1090.
[24] F. Murat, Compacité par compensation, Ann. Scuola Norm. Sup. Pisa Sci. Fis. Mat. 5 (1978), 489–507.
[25] B. Perthame and A. Tzavaras, Kinetic formulation for systems of two conservation laws and elastodynamics, Arch. Ration. Mech. Anal. 155 (2000), 1–48.

[26] W. J. M. Rankine, On the thermodynamic theory of waves of finite longitudinal disturbance, Phi. Trans. Royal Soc. London, 1960 (1870), 277-288.

[27] Lord Rayleigh (J. W. Strutt), Aerial plane waves of finite amplitude, Proc. Royal Soc. London, 84A (1910), 247–284.

[28] D. Serre, La compacité par compensation pour les systèmes hyperboliques non linéaires de deux équations à une dimension d’espace, J. Math. Pures Appl. (9), 65 (1986), 423–468.

[29] D. Serre and J. W. Shearer, Convergence with physical viscosity for nonlinear elasticity, Preprint, 1994 (unpublished).

[30] G. G. Stokes, On a difficulty in the theory of sound, Philos. Magazine, 33 (1848), 349–356.

[31] L. Tartar, Compensated compactness and applications to partial differential equations, In: Research Notes in Mathematics, Nonlinear Analysis and Mechanics, Herriot-Watt Symposium, Vol. 4, R. J. Knops ed., Pitman Press, 1979.