Preparation of an anti-dexamethasone monoclonal antibody and its use in development of a colloidal gold immunoassay

Zhongxing Wanga,b, Qiankun Zhenga,b, Lingling Guoa,b, Steven Suryoprabowoa,b, Liqiang Liua,b and Hua Kuanga,b

aState Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China; bInternational Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China

\textbf{ABSTRACT}
A lateral flow colloidal gold (CG) immunoassay strip has been developed for detection of dexamethasone (DEX) residues in milk samples. For this purpose, an anti-DEX monoclonal antibody (McAb), based on a DEX succinic anhydride derivative hapten, was prepared and characterized. The McAb showed a high specificity to DEX, the half inhibitory concentration of the antibody was 0.095 ng/mL, its limit of detection (LOD) was 0.017 ng/mL, and its linear range of detection was 0.034–0.265 ng/mL. The developed CG immunoassay had a visual cut-off value of 0.3 ng/mL in phosphate buffered saline (PBS) and 0.5 ng/mL in milk samples. Each test requires 10 min. Analysis of DEX in milk indicated that the results of strip assay had a strong agreement with indirect competitive enzyme-linked immunosorbent assay. Therefore, the CG immunoassay is a sensitive screening method for semi-quantitative and qualitative detection of DEX residues in milk samples.

\textbf{ARTICLE HISTORY}
Received 11 April 2017
Accepted 13 April 2017

\textbf{KEYWORD}
Dexamethasone; antibody; colloidal gold strip; milk

\section*{Introduction}

Dexamethasone (DEX) is a synthetic glucocorticoid which is frequently used in veterinary practice for treating some diseases of farm animals (Bailey et al., 1973; Tatone et al., 2016). DEX has anti-inflammatory and anti-allergic effects in the primarily therapeutic use of animal (Chu et al., 2014; Sami, Mohri, Seifi, & Chavatte-Palmer, 2015). And, DEX also promotes water retention in meat, lipid metabolism, and beneficial effects on other growth promoters (Yuan et al., 2008). However, their strong pharmacological activity may be making an accumulation of these molecules in animal bodies (Cannizzo et al., 2011; Ferranti et al., 2013; Hansen, Laborde, Wall, Holson, & Young, 1999). A study by Van den Hauwe, Schneider, Sahin, Van Peteghem, and Naegeli (2003) found that the conventional therapeutic use of DEX may cause its concentration in animal tissues exceeding the maximum residue limits (MRLs) more than 10 times. Thus, for ensuring the health of human, the MRLs for DEX equal to 2 μg/kg in liver, 0.75 μg/kg in muscle and kidney, and 0.3 μg/kg in milk have been set by the European Commission (Commission, 2009).
Recently, various analytical methods have been developed for detecting DEX, such as high-performance liquid chromatography (Bhargava et al., 2016; Dési, Kovács, Palotai, & Kende, 2008; Lasić, Bobarević, & Nikolin, 1989; Tsuei, Ashley, Moore, & McBride, 1978), gas chromatography–mass spectrometry (Amendola, Garribba, & Botrè, 2003; Bagnati et al., 1996; Huetos Hidalgo, Jiménez López, Ajenjo Carazo, San Andrés Larrea, & Reuvers, 2003), liquid chromatography–mass spectrometry (LC-MS) (Chen et al., 2011; Creaser, Feely, Houghton, Seymour, & Teale, 1996), radio-immunoassay methods (Meikle, Lagerquist, & Tyler, 1973), and enzyme immunoassay (Hassan, Rowell, Hambleton, & Jackson, 1998; Vdovenko, Gribas, Vylegzhanina, & Sakharov, 2012; Yadav et al., 2013; Yoshino, Yoshiharu, Noriko, Kiyoshi, & Fukuko, 1992). Each method has its own strong and weak points. To reduce the risk of people exposure to DEX, a suitable high-throughput analytical technique would be developed to screen a range of food and feed samples. The instrumental methods require expensive instrumentation, extensive sample cleanup, professional specialist, and long time. The immunoassays such as enzyme-linked immunosorbent assay (ELISA) also require time and personnel. So, these methods are not suitable for screening a large amount of samples at the least time. Compared with the above methods, the immunochromatographic strip assay has some advantages on the routine screening, including easy to carry out, high throughput, quick results (within 5–10 min), and so on. In this study, we attempt to establish a semi-quantitative or qualitative colloidal gold (CG) immunoassay for fast detection of DEX residues in milk.

Materials and methods

Chemicals and materials

DEX, betamethasone (BET), hydrocortisone (HDS), fludrocortisone (FDS), estradiol (E2), progesterone (P) and testosterone (T) were purchased from J&K Scientific Ltd (Beijing, China). Bovine Serum Albumin (BSA), ovalbumin (OVA), succinic anhydride (HS), 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC), N-hydroxysuccinimide (NHS), Freund’s complete adjuvant (FCA), Freund’s incomplete adjuvant (FIA), 3,3′,5,5′-tetramethylbenzidine, and gold chloride trihydrate were obtained from Sigma-Aldrich (St Louis, MO, USA). RPMI-1640 cell culture medium, hypoxanthine–aminopterin–thymidine supplement, hypoxanthine–thymidine supplement, polyethylene glycol (PEG) 1500 and fetal calf serum were purchased from Gibco BRL (Paisley, UK). All the reagents and solvents were of analytical grade or higher.

The hapten and antigen were characterized by UV/VIS scanner (Bokin instruments, Tsushima, Japan); all buffer solutions were prepared with ultrapure water produced by Waters Maldi Synapt Q-Tof MS (Waters, Shanghai, China); the results of indirect competitive (ic) ELISA was measured by Multiskan MKS microplate reader (Thermo Lab-systems Company, Beijing, China); and other instruments used in this study are as follows: membrane dispenser (Xinqidian Gene-Technology Co. Ltd, Beijing, China), vortex machine (Shanghai Huxi Analysis Instrument Factory Co., Ltd, Shanghai, China), and water bath (Shanghai Instrument Group Co., Ltd, Supply & Sales Co., Shanghai, China).
Preparation of the hapten and antigen

A scheme for the production of DEX–HS conjugates by the succinic anhydride method (Zhang et al., 2016) is shown in Figure 1. The steps are briefly described as follows.

DEX (100 mg) and succinic anhydride (28 mg) were dissolved in 8 ml of anhydrous pyridine and refluxed at 60°C for 12 h. Then, the reaction residue dried by rotary evaporation was dissolved in 6 ml of 50% methanol aqueous solution and extracted three times with ethyl acetate. After 10% HCl (v/v) was added to the organic layer, the white precipitate was collected and dried at 37°C in a drying oven. An LC-MS analysis confirmed that the production met our requirements.

The DEX–HS–BSA conjugate and the DEX–HS–OVA conjugate prepared with the active ester method (Gu, Liu, Song, Kuang, & Xu, 2016) were used as immunogen and coating antigen, respectively. 6.6 mg of DEX, 4.5 mg of NHS, and 7.8 mg of EDC were dissolved in 0.3 mL of dimethyl formamide and stirred for 6 h at room temperature. The mixture solution was divided into two parts at 0.2 and 0.1 mL, respectively; the first part was added dropwise into 10 mg of BSA dissolved in 3 mL of 0.1 M sodium carbonate–bicarbonate buffer (CB, pH 9.6) and the other was added 10 mg of OVA dissolved in CB. The solution was incubated overnight with continuous stirring. Then, the end products were dialyzed against 0.01 M PBS (pH 7.4) for 3 days and were stored at −20°C. The final antigens were characterized with UV/VIS spectroscopy.

Production of monoclonal antibody against DEX

Ten 6-week-old female BALB/c mice were subcutaneously injected (Hao et al., 2009; Xu, Xu, Ma, Kuang, & Xu, 2015), respectively, with antigen DEX–HS–BSA. The first immunizing dose consisted of 100 μg of antigen as an emulsion of PBS and FCA. Four sequential boosters were administered at 3-week intervals with 50 μg of immunogen emulsified in FIA. After each booster, the serum collected from the tail vessel of each mouse was detected for the antibody specificity by ic-ELISA. The mouse with the highest titer and the best specificity to DEX was chosen to be injected intraperitoneally with 25 μg of immunogen dissolved in 100 μL normal saline.

Hybridomas secreting anti-DEX antibodies were generated as described previously (Chen et al., 2016; Kong et al., 2015). Briefly, the splenocytes isolated from the target mice were fused with SP2/0 cell using PEG 1500 and then the fused cells were distributed into 96 well-culture plates. The supernatants from the plates were detected with an ic-ELISA after one week. Selected cells were subcloned by the limiting dilution method. Five female BALB/c mice (10 weeks old) were prepared to product ascites fluids, and then the monoclonal antibody (McAb) was purified with the caprylic-acid–ammonium-sulfate precipitation method (Liu, Hung, Lu, Chou, & Yu, 2014). After 3-day dialysis, the McAb was stored at −20°C.

![Figure 1](image) The scheme for the production of DEX–HS conjugate.
Characterization of McAb

The antibody was isotyped according to a mouse McAb isotyping kit. The sensitivity of the McAb was evaluated from its half inhibitory concentration (IC50) value, which is defined as the concentration of DEX needed to inhibit 50% of the maximum absorbance, the linear range to detect DEX defined as the concentration of DEX toward from 20% to 80% inhibition of the control, and the LOD value, which is equivalent to IC10.

The affinity constant (K_{aff}) was calculated by the method of Beatty (Beatty, Beatty, & Vlahos, 1987). The formula for calculating the same is as follows:

$$K_{aff} = \frac{(n - 1)}{2(n[Ab_t] - [Ab])},$$

where $[Ag]$ was concentration of coating antigen and $[Ab]$ was concentration of McAb at 50% of the ODmax, and $n = [Ag]/[Ag_t]$.

The specificity of the McAb was determined by evaluating the cross-reactivity (CR) of the analytes compared to DEX. The CR of the McAb against DEX, BET, HDS, FDS, estradiol (E2), P and testosterone (T) was calculated by the following equation:

$$CR(\%) = \frac{IC_{50}\text{of DEX}}{IC_{50}\text{of a related analogue}} \times 100\%.$$

Preparation of CG particles

The CG particles with an average diameter 17 nm were produced using previously reported methods (Song et al., 2016; Zhao et al., 2008). Briefly, 50 mL of 0.01% of chloroauric acid solution (HAuCl4) was heated to boiling point, and then 2.5 mL of 1% trisodium citrate solution was added with vigorous stirring. The color of the solution turned black within 20 s, and then quickly changed to wine-red. After the color change, the solution was boiled for another 10 min, then cooled to room temperature, and stored at 4°C for further use.

Labeling the McAb with CG

The anti-DEX McAb labeled CG particles was prepared across to the previous methods (Chen et al., 2009; Peng et al., 2009; Wang et al., 2016). Briefly, 8 µg antibody (0.1 mg/mL) diluted in PBS was added to 1 mL of CG solution (adjusted to pH 8.8 by 0.1 mol/L K2CO3) with mild shaking, and then the mixture was stirred for 45 min at room temperature. After blocking the free CG with 1 mL of 10% BSA aqueous solution, the solution incubated at room temperature for another 1 h. The labeled McAb washed by repeated centrifugation (20,000 g) at 4°C for 30 min with gold-labeled resuspension buffer (20 mmol/L Tris [pH 8.2], 0.1% Tween, 0.1% PEG, 5% trehalose, 5% sucrose, 5% Brij, 0.2% BSA). The precipitate was resuspended in the resuspension buffer and stored at 4°C for use.

Preparation of the immunochromatographic strip

The immunochromatographic strip consists of sample pad, nitrocellulose (NC) membrane, absorption pad, and polyvinylchloride (PVC) backing card. The coating antigen (1 mg/mL DEX–HS–BSA) and the goat anti-mouse IgG (1 mg/mL) were immobilized on NC membrane as the test and control lines (T/C) by dispenser,
respectively. The sample pad was saturated with 0.01 M PBS containing 1% BSA, 1% sucrose, and 0.2% Tween 20 and dried for 3 h at room temperature. The absorption pad was made from pure cotton linter filter paper. The sample pad, NC membrane containing T and C lines, and absorption pad were assembled on the PVC backing card sequentially.

Test procedure and principle

Fifty microliters of anti-DEX McAb labeled CG and 150 μL of standard DEX solution or sample extract were mixed and incubated for 5 min at room temperature. Then, the mixture was added to the sample pad and migrated toward the absorption pad. The results would be visually obtained after 5 min.

When DEX was absent from the sample, all of McAb labeled CG would be trapped by coating antigen immobilized on T line to form a red line. When DEX is present in the sample, it would compete with the immobilized antigen for limited amount of McAb labeled CG. Therefore, the color of T line depended on the amount of DEX in sample. The more DEX existed, the lighter the T line colored. When there was enough DEX to react with all of McAb labeled CG, T line would be invisible. Whether or not DEX was present in the sample, the C line would become red because of the reaction of McAb labeled CG and goat anti-mouse antibody. So the C line colored red would ensure that the test strip and procedure were correct.

Sample pretreatment

Milk samples purchased from local markets were confirmed to be DEX-free by LC-MS. In this study, milk samples required no processing before testing, and would be spiked by a series of DEX to validate the CG assay. Each sample was analyzed more than three times in this experiment.

Results

Characterization of antigen

The molecular weight of DEX is so low that it could not induce a specific immune response. So DEX must be conjugated with a carrier protein to generate the immunogenicity. In this work, DEX was derived by succinic anhydride method for generating the hapten. Then the hapten was, respectively, conjugated with BSA and OVA as immunogen and coating antigen. This selection is critical for producing a specific antibody to DEX.

As shown in Figure 2(a), BSA had an absorption peak at 280 nm, and DEX–HS had a peak at ~250 nm. After DEX–HS being conjugated with BSA, the absorption peak of DEX–HS–BSA exhibited the peak of BSA and shifted to the peak of DEX–HS. These phenomena were also present in the spectroscopy of DEX–HS–OVA (Figure 2(b)). That indicated that the hapten was successfully conjugated to the carrier protein.
Characterization of the McAb 6D7

The McAb 6D7 was purified from the ascites fluid by the caprylic-acid–ammonium-sulfate precipitation method. As shown in the Figure 3(a,b), the subclass of the McAb was identified as IgG2b, and 6D7 had high affinity constant with 6.3×10^9 L/mol. The results in Figure 3(c) showed that the McAb is highly specific to DEX, where the CR of 6D7 to DEX analogues tested was <5%. As shown in Figure 3(d), a standard curve was built for DEX detection and the equation is $y = 0.01706 + 1.6682/(1 + (x/0.09518)^{1.35289})$, with a correlation coefficient (R^2) of 0.9988. From above equation, IC_{10}, IC_{20}, IC_{50}, and IC_{80} of the McAb to DEX was 0.017, 0.034, 0.095, and 0.265 ng/mL, respectively. Thus, the linear range to detect DEX was 0.034–0.265 ng/mL and the LOD was 0.017 ng/mL. Because of the high affinity and specificity, 6D7 would be chosen for further experiments.

CG immunoassay establishment

The PBS spiked a series of DEX concentrations of 0, 0.05, 0.1, 0.2, and 0.3 ng/mL was prepared and incubated with the McAb labeled CG to ensure sufficient reaction of antigen and antibody. The cut-off value was defined as the concentration of DEX at the time only C line was visible on strip and would be used to assess the sensitivity of the CG strip. As shown in Figure 4(a), when there was no DEX present, both the T line and C line showed red color. As the concentration of DEX risen, the color of T line became lighter and lighter. Until the concentration reached 0.3 ng/mL, only C line could be observed. Thus, the cut-off value of this strip method was 0.3 ng/mL in PBS.

Detection of DEX in milk samples by strip assay

In fact, milk samples were different to PBS due to its matrix effects. In order to validate whether the assay could be used for detecting DEX in milk samples, a series of DEX were spiked into blank milk that were purchased in the local markets and confirmed by LC-MS. A series of DEX concentrations of 0, 0.05, 0.1, 0.2, 0.3, and 0.5 ng/mL were spiked in milk samples and analyzed by the strip assay. As shown in Figure 4(b), the cut-off values were 0.5 ng/mL in milk sample. The test results of CG assay can be converted into

![Figure 2](image_url). The UV–VIS spectroscopy of DEX, DEX–HS, protein and conjugates: (a) confirmation of immunogen (DEX–HS–BSA) and (b) confirmation of coating antigen (DEX–HS–OVA).
numeric values of DEX content. A negative result occurred when the concentration of DEX was \(\leq 0.05 \) ng/mL; a weakly positive result occurred when the concentration of DEX was 0.05–0.5 ng/mL; and positive results occurred when the concentration of DEX was \(\geq 0.5 \) ng/mL. So this detection method could be used to investigate the presence of DEX residue in milk. However, compared with results in PBS, the visual cut-off values were

![Figure 3](image.png)

Figure 3. Characterization of McAb 6D7. (a) Isotype determination of 6D7; (b) Affinity result of 6D7; (c) Cross-reaction of 6D7; and (d) Standard curve for DEX detection.

![Figure 4](image.png)

Figure 4. Image of detection DEX by CG strip in PBS (a) and milk sample (b). (a) 1 = 0 ng/mL, 2 = 0.05 ng/mL, 3 = 0.1 ng/mL, 4 = 0.2 ng/mL, and 5 = 0.3 ng/mL; Cut-off value was 0.3 ng/mL. (b) 1 = 0 ng/mL, 2 = 0.05 ng/mL, 3 = 0.1 ng/mL, 4 = 0.2 ng/mL, 5 = 0.3 ng/mL, and 6 = 0.5 ng/mL; Cut-off value was 0.5 ng/mL.
higher, and the color of C line was lighter. The reason for this phenomenon may be that complex compositions in milk influenced the reaction of antibody and antigen.

Analysis of DEX in milk samples

To validate the accuracy of CG assay, a comparison experiment between ic-ELISA and CG assay was carried out. As shown in Table 1, with the ic-ELISA, the recovery rates ranged from 92.4% to 102.8% for DEX and the coefficients of variation (CV) ranged from 4.43% to 10.82%. And with the strip assay, DEX can be semi-quantitatively analyzed and all detection results were acquired within 10 min. The results obtained from ic-ELISA and the CG strip assay were consistent for detection of DEX in milk samples.

Conclusion

In this study, DEX was derived by the succinic anhydride method and a carboxyl group was introduced to allow protein coupling. Then a sensitive anti-DEX McAb was obtained by immunization and cell fusion. Anti-DEX McAb with high affinity of 6.3×10^9 L/mol and high specificity to DEX was successfully applied to establish CG immunoassay for detecting DEX in PBS and milk. The cut-off values were different in PBS and milk due to matrix interference. In spiked samples and a recovery test, the recovery rates of ic-ELISA ranged from 92.4% to 102.8% for DEX, and the results of strip assay had a strong agreement with ic-ELISA. Thus, the CG assay could be used as a screening method for detecting DEX in real samples.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was funded by the Key Programs from MOST [grant numbers 2016YFD0401101, 2016YFF0202300], and grants from the Natural Science Foundation of Jiangsu Province, MOF and MOE [grant numbers BE2016307, BK20140003, BX20151038, BE2013613, BE2013611].

Notes on contributors

Zhongxing Wang, got his bachelor from Zhaozhuang University, Zhaozhuang, China in 2014 and then he began to study in Jiangnan University(Wuxi, China) for his Master Degree and Ph.D in food science. His research interests are immunoassay development for veterinary drugs.
Qiankun Zheng graduated from Nanjing Agricultural University in 1996. Currently, he works as a senior engineer in Delicious food company, China. He is good at food quality control and assurance.

Lingling Guo got her Master’s degree from Jiangnan University, Wuxi, China in 2015 and then she began to study in Jiangnan University (Wuxi, China) for as a Ph.D student in food science in 2016. Her research interests are immunoassay applications in food.

Steven Suryoprabowo was born in Indonesia and got his bachelor in Pelita Harapan University (Indonesia) then he got his master degree in food science (2014) from Jiangnan University, Wuxi, China. His research interests are monoclonal antibodies development and immunochromatographic strip test and applications.

Liqiang Liu got his Ph.D in Food science in 2014 from Jiangnan University, Wuxi, China and then became a faculty in college of Food science and technology of Jiangnan University. His research interests are immunochromatographic strip design and application.

Hua Kuang, got her Ph.D from China Agricultural University in 2009 and then began to work as a faculty in college of Food science and technology of Jiangnan University. She is currently a full professor in food safety. Her research interests are biosensor development.

References

Amendola, L., Garribba, F., & Botrè, F. (2003). Determination of endogenous and synthetic glucocorticoids in human urine by gas chromatography–mass spectrometry following microwave-assisted derivatization. *Analytica Chimica Acta*, 489(2), 233–243.

Bagnati, R., Ramazza, V., Zucchi, M., Simonella, A., Leone, F., Bellini, A., & Fanelli, R. (1996). Analysis of dexamethasone and betamethasone in bovine urine by purification with an “online” immunoaffinity chromatography–high-performance liquid chromatography system and determination by Gas chromatography–mass spectrometry. *Analytical Biochemistry*, 235(2), 119–126.

Bailey, L. F., McLennan, M. W., McLean, D. M., Hartford, P. R., & Munro, G. L. (1973). The use of dexamethasone trimethylacetate to advance parturition in dairy cows. *Australian Veterinary Journal*, 49, 567–573.

Beatty, J. D., Beatty, B. G., & Vlahos, W. G. (1987). Measurement of monoclonal antibody affinity by non-competitive enzyme immunoassay. *Journal of Immunological Methods*, 100(1), 173–179.

Bhargava, D., Deshpande, A., Thomas, S., Sharma, Y., Khare, P., Sahu, S. K., … Sreekumar, K. (2016). High performance liquid chromatography determination of dexamethasone in plasma to evaluate its systemic absorption following intra-space pterygomandibular injection of twin-mix (mixture of 2% lignocaine with 1:200,000 epinephrine and 4 mg dexamethasone): randomized control trial. *Oral and Maxillofacial Surgery*, 20(3), 259–264.

Cannizzo, F. T., Capra, P., Divari, S., Ciccotelli, V., Biolatti, B., & Vincenti, M. (2011). Effects of low-dose dexamethasone and prednisolone long term administration in beef calf: Chemical and morphological investigation. *Analytica Chimica Acta*, 700(1–2), 95–104.

Chen, Y., Kong, D., Liu, L., Song, S., Kuang, H., & Xu, C. (2016). Development of an ELISA and immunochromatographic assay for tetracycline, oxytetracycline, and chlortetracycline residues in milk and honey based on the class-specific monoclonal antibody. *Food Analytical Methods*, 9(4), 905–914.

Chen, D., Tao, Y., Liu, Z., Zhang, H., Liu, Z., Wang, Y., … Yuan, Z. (2011). Development of a liquid chromatography-tandem mass spectrometry with pressurized liquid extraction for determination of glucocorticoid residues in edible tissues. *Journal of Chromatography B*, 879(2), 174–180.

Chen, W., Xu, E., Liu, L., Peng, C., Zhu, Y., Ma, W., … Wang, L. (2009). Ultrasensitive detection of trace protein by western blot based on POLY-quantum dot probes. *Analytical Chemistry*, 81(21), 9194–9198.
Chu, C.-C., Hsing, C.-H., Shieh, J.-P., Chien, C.-C., Ho, C.-M., & Wang, J.-J. (2014). The cellular mechanisms of the antiemetic action of dexamethasone and related glucocorticoids against vomiting. European Journal of Pharmacology, 722, 48–54.

Commission, C. A. (2009). Compendium of methods of analysis identified as suitable to support Codex MRLs. 32nd session.

Creaser, C. S., Feely, S. J., Houghton, E., Seymour, M., & Teale, P. (1996). On-line immunoaffinity chromatography-high-performance liquid chromatography-mass spectrometry for the determination of dexamethasone. Analytical Communications, 33(1), 5–8.

Dési, E., Kovács, Á., Palotai, Z., & Kende, A. (2008). Analysis of dexamethasone and prednisolone residues in bovine milk using matrix solid phase dispersion-liquid chromatography with ultraviolet detection. Microchemical Journal, 89(1), 77–81.

Ferranti, C., Famele, M., Palleschi, L., Bozzetta, E., Pezzolato, M., & Draisci, R. (2013). Excretion profile of corticosteroids in bovine urine compared with tissue residues after therapeutic and growth-promoting administration of dexamethasone. Steroids, 78(9), 803–812.

Gu, H., Liu, L., Song, S., Kuang, H., & Xu, C. (2016). Development of an immunochromatographic strip assay for ractopamine detection using an ultrasensitive monoclonal antibody. Food & Agricultural Immunology, 27(4), 471–483.

Hansen, D. K., Laborde, J. B., Wall, K. S., Holson, R. R., & Young, J. F. (1999). Pharmacokinetic considerations of dexamethasone-induced developmental toxicity in rats. Toxicological Sciences an Official Journal of the Society of Toxicology, 48(2), 230–239.

Hao, X. L., Kuang, H., Li, Y. L., Yuan, Y., Peng, C. F., Chen, W., … Xu, C. L. (2009). Development of an enzyme-linked immunosorbent assay for the α-cyano pyrethroids multiresidue in Tai Lake water. Journal of Agricultural and Food Chemistry, 57(8), 3033–3039.

Hassan, S. S., Rowell, F. J., Hambleton, P., & Jackson, L. S. (1998). A rapid on-filter immunoassay screen for dexamethasone in equine urine. Analytical Communications, 35(8), 249–252.

Huertos Hidalgo, O., Jiménez López, M., Ajenjo Carazo, E., San Andrés Larrea, M., & Reuvers, T. B. A. (2003). Determination of dexamethasone in urine by gas chromatography with negative chemical ionization mass spectrometry. Journal of Chromatography B, 788(1), 137–146.

Kong, N., Song, S., Peng, J., Liu, L., Kuang, H., & Xu, C. (2015). Sensitive, fast, and specific immunoassays for methyltestosterone detection. Sensors (Basel), 15(5), 10059–10073.

Lasić, S., Bobarević, N., & Nikolin, B. (1989). Simultaneous determination of prednisone, prednisolone, cortisol and dexamethasone in plasma by high-performance liquid chromatography. Journal of Pharmaceutical and Biomedical Analysis, 7(6), 777–782.

Liu, B. H., Hung, C. T., Lu, C. C., Chou, H. N., & Yu, F. Y. (2014). Production of monoclonal antibody for okadaic acid and its utilization in an ultrasensitive enzyme-linked immunosorbent assay and one-step immunochromatographic strip. Journal of Agricultural and Food Chemistry, 62(6), 1254–1260.

Meikle, A. W., Lagerquist, L. G., & Tyler, F. H. (1973). A plasma dexamethasone radioimmunoassay. Steroids, 22(2), 193–202.

Peng, C., Li, Z., Zhu, Y., Chen, W., Yuan, Y., Liu, L., … Xu, C. (2009). Simultaneous and sensitive determination of multiplex chemical residues based on multicolor quantum dot probes. Biosensors and Bioelectronics, 24(12), 3657–3662.

Sami, M., Mohri, M., Seifi, H. A., & Chavatte-Palmer P. (2015). Effects of dexamethasone and insulin alone or in combination on energy and protein metabolism indicators and milk production in dairy cows in early lactation — a randomized controlled trial. Plos One, 10(9), e0139276.

Song, Y., Song, S., Liu, L., Kuang, H., Guo, L., & Xu, C. (2016). Simultaneous detection of tylosin and tilmicosin in honey using a novel immunoassay and immunochromatographic strip based on an innovative hapten. Food & Agricultural Immunology, 27(3), 314–328.

Tatone, E. H., Duffield, T. F., Capel, M. B., DeVries, T. J., LeBlanc, S. J., & Gordon, J. L. (2016). A randomized controlled trial of dexamethasone as an adjunctive therapy to propylene glycol for treatment of hyperketonemia in postpartum dairy cattle. Journal of Dairy Science, 99(11), 8991–9000.
Tsuei, S. E., Ashley, J. J., Moore, R. G., & McBride, W. G. (1978). Quantitation of dexamethasone in biological fluids using high-performance liquid chromatography. *Journal of Chromatography B: Biomedical Sciences and Applications, 145*(2), 213–220.

Van den Hauwe, O., Schneider, M., Sahin, A., Van Peteghem, C. H., & Naegeli, H. (2003). Immunochemical screening and liquid chromatographic-tandem mass spectrometric confirmation of drug residues in edible tissues of calves injected with a therapeutic dose of the synthetic glucocorticoids dexamethasone and flumethasone. *Journal of Agricultural and Food Chemistry, 51*(1), 326–330.

Vdovenko, M. M., Gribas, A. V., Vylegzhanina, A. V., & Sakharov, I. Y. (2012). Development of a chemiluminescent enzyme immunoassay for the determination of dexamethasone in milk. *Analytical Methods, 4*(8), 2550–2554.

Wang, Z., Zou, S., Xing, C., Song, S., Liu, L., & Xu, C. (2016). Preparation of a monoclonal antibody against testosterone and its use in development of an immunochromatographic assay. *Food and Agricultural Immunology, 27*(4), 547–558.

Xu, N., Xu, L., Ma, W., Kuang, H., & Xu, C. (2015). Development and characterisation of an ultra-sensitive monoclonal antibody for chloramphenicol. *Food & Agricultural Immunology, 26*(3), 440–450.

Yadav, R., Mohan, K., Kumar, V., Sarkar, M., Nitu, K., Meyer, H. H. D., & Prakash, B. S. (2013). Development and validation of a sensitive enzyme immunoassay (EIA) for blood plasma cortisol in female cattle, buffaloes, and goats. *Domestic Animal Endocrinology, 45*(2), 72–78.

Yoshino, N., Yoshiharu, K., Noriko, T., Kiyoshi, M., & Fukuko, W. (1992). Enzyme immunoassay for serum dexamethasone using 4-(carboxymethylthio)dexamethasone as a new hapten. *Steroids, 57*(4), 178–182.

Yuan, Y., Xu, C., Peng, C., Jin, Z., Chen, W., & Liu, L. (2008). Analytical methods for the detection of corticosteroids-residues in animal-derived foodstuffs. *Critical Reviews in Analytical Chemistry, 38*(4), 227–241.

Zhang, L., Long, H., Li, X., Xu, K., Meng, M., Yin, Y., & Xi, R. (2016). Production of a sensitive antibody against sirolimus for chemiluminescence immunoassay potential in its therapeutic drug monitoring. *Analytical Methods, 8*(33), 6298–6304.

Zhao, Y., Zhang, G., Liu, Q., Teng, M., Yang, J., & Wang, J. (2008). Development of a lateral flow colloidal gold immunoassay strip for the rapid detection of enrofloxacin residues. *Journal of Agricultural and Food Chemistry, 56*(24), 12138–12142.