Insect management with refugia plant in upland rice
(*Oryza sativa* L.)

Sutriono, E Purba and Marheni*

Faculty of Agriculture, Universitas Sumatera Utara, Medan, Indonesia.

E-mail: *marheni.sembiring@yahoo.com*

Abstract. Refugia is a microhabitat that provides spatial or temporal shelter for pest natural enemies, and supports biotic interaction components in ecosystems, such as pollinators or pollinating insects. The research objective was to study the best types of refugia plant in pest insect management. The treatments consisted of five plant refugia, R0 (control), R1 (*Ageratum conyzoides*), R2 (*Axonopus compressus*), R3 (*Cosmos caudatus*), and R4 (*Wedelia trilobata*) and each treatment was made in five replicates. This research is descriptive using the transect method and sampling is done using several tools, namely: *yellow traps*, *pitfall traps* and *sweep nets*. The findings indicate that the highest pest insect in refugia's composition is R0 as many as seven species, and R2 does not have the highest composition of insect pests due to predator domination over insect pests. The highest predator insects found in R2 is four species, while R1 didn't have the highest composition of predator insects. Data on morphospecies diversity index of pest and predator insect are moderate. Evenness index of morphospecies is in high criteria, ≥ 0.6.

1. **Introduction**

According to Law No. 12 /1992 concerning Plant Cultivation System in Indonesia the use of pesticides as a pest control system can only be used as the last effort. Non-pesticide pest control must take precedence and given priority [1]. Efforts to control crop pests in an agro-ecosystem can be increased by manipulating habitat (refugia). Refugia is a microhabitat that provides spatial and/or temporal shelter for pest natural enemies, such as predators and parasitoids, and supports biotic interaction components in ecosystems, such as pollinators or pollinating insects [2].

The role of weeds or other wild plants is linking between organism trophies both directly and indirectly which lives in an agricultural ecosystem. Besides the main crops, weed or non-cropping plants (main) is an alternative feed source for disturbing organism sand also as a place for natural enemies to get feed or hosts. In such case, weeds or wild plants act as anchors or links between various organisms involved in the ecosystem [3]. Weeds planted intermittently can increase the natural enemy population [4]. The numbers of arthropods that come to refugia plants is enough high and reduce arthropods population in red rice [5]. The number of arthropods who attracted to refugia is higher than on land without refugia [6]. Of this study, the objective was to evaluable the best types refugia weed in insects pest management.
2. Materials and Methods

2.1. Study Site
This research was carried out in farmer's field, at district of Percut Sei Tuan, Regency of Deli Serdang. This research was carried out from February to May 2018.

2.2. Procedures
The treatments consisted of five plant refugia, namely: R0 (control), R1 (A.conyzoides), R2 (A. compressus), R3 (C. caudatus), and R4 (W.trilobata) and each treatment was made in five replicates. This research is descriptive using the transect method and sampling is done using several tools, namely: yellow traps, pitfall traps and sweep nets. Observed parameters are insect composition present in refugia, index of insect morphospecies diversity and index of insect morphospecies evenness.

2.3. Data analysis
Diversity index \(H'\)
Data analysis on natural enemy morphospecies diversity index was measured using the Shannon-Wienner diversity index. The Shannon-Wienner diversity index uses formulas [7,8]

\[
H' = \sum_{i=1}^{s} p_i \ln\left(\frac{n}{N}\right)
\]

\[P_i = \frac{n}{N}\]

Where: \(H = \) Diversity Index, \(p_i = \) Proportion of \(i^{th}\) species in the community, \(n = \) Individual abundance of morphospecies I, \(N = \) Total individual number of all species.

The calculation results of insects’ abundance categorized into three [9] as follows:

Diversity Value \((H')\)	Category
\(H' \leq 2\)	Low Diversity
\(2 < H' \leq 3\)	Moderate Diversity
\(H' \geq 3\)	High Diversity

Evenness Index \((E')\)
Evenness index analysis of insect morphospecies was measured using Simpson’s evenness index which measures the proportion of each species in a population at a certain place and time.

\[
E' = \frac{H'}{\ln(S)}
\]

Where: \(E' = \) Evenness index, \(H' = \) Diversity Index, \(\ln = \) (natural logarithm), \(S = \) number of species found.

Evenness Value \((E')\)	Category
\(E' \leq 0.3\)	Low Evenness
\(0.3 < E' \leq 0.6\)	Moderate Evenness
\(E' \geq 0.6\)	High Evenness
3. Results and Discussion

3.1. Composition of insects present in refugia

The results showed that there were 14 species, 11 families, 7 orders that acted as pests and 8 species, 6 families, 4 orders that acted as predators, and 1 species. The composition of pests and predators can be seen in Tables 1 and 2.

No	Ordo	Family	Species	Treatments*
1	Coleoptera	Chrysomelidae	*Dicladispa armigera* (Rice Hispa Pest)	R0
			Pleuraltica cyanea (Karamu leaf beetle)	82
				63
				48
				62
				69
2	Diptera	Muscidae	*Hydrellia philippina* Ferino (Seed Fly)	R1
				146
				89
				66
				83
				118
3	Hemiptera	Alydidae	*Leptocorisa oratorius* Fabricius (Ladybug)	R2
			Nilaparvata lugens (brown planthopper)	158
			Scotinophara Lurida	102
		Delphacidae		73
		Pentatomidae		73
				52
				47
				53
		Cicadellidae	*Burmeister* (Kepinding Tanah)	R3
			Cofana spektra	92
				94
				78
				91
				97
		Cicadellidae	*Nephettix virescens* (green planthopper)	R4
				129
				82
				84
				94
				96
5	Hemiptera	Lygaidae	*Paraeucosmetus pallicornis* Dallas	R5
			(black ladybug)	92
				74
				78
				82
				81
6	Lepidoptera	Pyralidae	*Cnaphalocrocis medinalis* Guenee (Leaf Folder)	R6
			Melanitis leda ismene	135
				98
				82
				107
				116
7	Orthoptera	Acrididae	*Acrida conica* (Grasshopper)	R7
				90
				79
				87
				97
				82
		Tettonioidae	*Conocephalus fuscus* Fabricius (Grasshopper)	R8
				62
				63
				70
				76
		Gryllotalpidae	*Gryllotalpa hirsuta* (stray dogs)	R9
				137
				96
				51
				91
				105

R0 (control), R1 (Ageratum conyzoides), R2 (Axonopus compressus), R3 (Cosmos caudatus), and R4 (Wedelia trilobata).

Table 3 shows that the highest insect pests present are R0 (control), R1 (A. conyzoides), R3 (C. caudatus), and R4 (W. trilobata), while R2 (A. compressus) has no composition of the highest insect pest.

R0 (control) has the highest composition of insect pests. There are seven species namely *Dicladispa armigera*, *Hydrellia Philippine* Ferino, *Leptocorisa oratorius* Fabricius, *Nephettix virescens*, *Paraeucosmetus pallicornis* Dallas, *Cnaphalocrocis medinalis* Guenee, and *Gryllotalpa hirsuta*. Abundance of insect pests from seven species is found from upland rice fields without refugia.
This is due to the lack of predatory insect populations so that suhinsect pests increase. Low predatory insect populations are unable to prevent and balance the number of insects that damage rice due to absence of shelter and hiding place for predatory insects.

In R4 (W.trilobata), the highest composition of insect pests are 5 species namely Nilaparvata lugens, Scotinophara lurida Burmeister, Cofana spectra, Melanitis leda ismene Cramer, and Conocephalus fuscus Fabricius.

W.trilobata are flowering plants that have specific attraction for insects, among others, due to flowers color, namely yellow which is preferred by insects. Most of insects prefer small-sized flowers, tend to be open, and long flowering time which is usually found in the family Compositae or Asteraceae (e.g. W. trilobata) [10].

In R1 (A.conyzoides) and R3 (C.caudatus), each composition of the highest insect pests has 1 species namely Cyanea pleuraltica and Acrida conica. The R2 (Axonopus compressus) does not have the highest composition of insect pests because there are many predatory insects such as Oxyopes javanus Thorell, Cheilomenes sexmaculata, Coelophora inaequalis, and Coccinella transversalis hal as shown in Table 2.

| Table 4. Composition of Predator Insect in Upland rice (Oryza sativa L.) |
|---|---|---|---|---|---|
No	Ordo	Famili	Spesies	Treatments*					
1.	Araneae	Tetragnathidae	Oxyopes javanus Thorell (Spider)	R0 120	R1 124	R2 155	R3 137	R4 147	
2.	Coleoptera	Coccinellidae	Cheilomenes sexmaculata Fabricius (Koksi Beetle)	R0 61	R1 77	R2 116	R3 91	R4 67	
3.	Coleoptera	Coccinellidae	Coelophora inaequalis (Koksi Beetle)	R0 64	R1 76	R2 104	R3 79	R4 68	
4.	Coleoptera	Coccinellidae	Coccinella transversalis (Koksi Beetle)	R0 117	R1 137	R2 154	R3 122	R4 124	
5.	Carabidae	Ophionea interstitialis (karabit Beetle)		R0 91	R1 44	R2 57	R3 82	R4 63	
6.	Staphylinidae	Paederus fuscipes (Tomcat)		R0 113	R1 115	R2 121	R3 126	R4 125	
7.	Hymenoptera	Formicidae	Solenopsis geminata (Ant)		R0 94	R1 67	R2 87	R3 79	R4 77
8.	Orthoptera	Gryllidae	Eunemobius carolinus (Cricket)		R0 80	R1 73	R2 68	R3 68	R4 109

*R0 (control), R1 (Ageratum conyzoides), R2 (Axonopus compressus), R3 (Cosmos caudatus), and R4 (Wedelia trilobata).

Table 4 shows that the highest predatory insects present are R0 (without refugia), R2 (A. compressus), R3 (C.caudatus), and R4 (W.trilobata), whereas R1 (A.conyzoides) has no composition of the highest predator insect.

In the treatment of R2 (A.compressus), the highest composition of insect pests is consisted of five species, namely Oxyopes javanusThorell, Cheilomenes sexmaculata, Coelophora inaequalis, and Coccinella transversalis.

In the treatment of R0 (without refugia), the highest composition of insect pests is consisted of 2 species, namely Ophionea interstitialis and Solenopsis geminata. In the treatment of R3 (C.caudatus) and R4 (W.trilobata), each treatment has one highest composition of insect namely Paederus fuscipes and Eunemobius carolinus, respectively.
High population of Coccinellidae (Cheilomenes sexmaculata, Coelophora inaequalis, Coccinella transversalis) in R2 (A. compressus) in upland rice is because predator Coccinellidae has oligophageal properties, that is eating certain types of small insects, such as aphids and mites from various stages of egg, nymph or imago. Besides the coccinellidae imago, the larvae are also actively looking for prey and usually greedy than imago. The body fluids of captured prey will be sucked; the carcass will be discarded in dry state [11]. In a farm that does not use pesticides, type and population of arthropods are more than apply pesticides. Such case applies both in simultaneous planting and non-simultaneous planting area [12]. One of the pest predators of rice is Koksi beetle. Koksi beetles of Coccinellidae family are commonly found in cultivated plants and weeds that produce nectar and pollen [13].

The highest composition of predator insects on R2 (A. compressus) is spider (Oxyopes javanus Thorell). Spiders (Oxyopes javanus Thorell) are important predators for leafhoppers, stem borer, and other pests. Spiders are important predators in regulating insect pest populations [14].

3.2. Data analysis of insect morphospecies diversity index

Treatments*	Diversity Index(H')	Criteria	
	Pest	Predator	
R0 (control)	2.59	2.05	Moderate
R1 (Ageratum conyzoides)	2.62	2.02	Moderate
R2 (Axonopus compressus)	2.61	2.03	Moderate
R3 (Cosmos caudatus)	2.62	2.05	Moderate
R4 (Wedelia trilobata)	2.62	2.03	Moderate

Table 5 show that the value of pest insect and predator insect morphospecies diversity is fall in $2 < H' \leq 3$, which means the pest and predator diversity index classified as moderate. Such condition shows that the productivity is high enough, pest and predator is in balance and moderate ecological pressure.

3.3. Data Analysis of insect morphospecies evenness index

Treatment*	Evenness index(E')	Criteria	
	Pest	Predator	
R0 (control)	0.98	0.99	High
R1 (Ageratum conyzoides)	0.99	0.97	High
R2 (Axonopus compressus)	0.99	0.98	High
R3 (Cosmos caudatus)	0.99	0.99	High
R4 (Wedelia trilobata)	0.99	0.98	High

Table 6 shows distribution index of insect morphospecies. Both pest and predatory insects in he rice ecosystem fall in high criteria, namely ≥ 0.6, which means there is even distribution of individual species and no species dominance over other species. They can use the rice plant to build large populations together with equal opportunities, thus there is no dominance of one type against another.

4. Conclusions

Abundance of pest insect in control (R0) shows the lack of predatory insect populations so increase the pest insect. Low predator insect populations mean unable to prevent and make a balance with the number of pest insect that damage rice due to the absence of shelter and hiding. High population of Coccinellidae and spiders in R2 (A. compressus) means that the treatment recommended both for
upland and lowland rice, to attract predatory insect populations as natural enemies of pests insect. The diversity index of pest and predatory insects is moderate, shows that the productivity is high enough, pest and predator is in balance and moderate ecological pressure. High evenness index explained that the distribution of individuals is relatively even so that there was no dominance of species to other types. They can use the rice plant to build large populations together with equal opportunities, thus there is no dominance of one type against another.

References
[1] Kasumbogo U 2013 Introduction to Integrated Pest Management (Yogyakarta: Gadjah Mada University Press)
[2] Keppel G, Van Niel K P, Wardell-Johnson G W, Yates C J, Byrne M, Mucina L, Schut A G T, Hopper S D and Franklin S E 2012 Refugia: Identifying and understanding safe havens for biodiversity under climate change Global Ecology and Biogeography 21 4 pp 393–404
[3] Norris R F and Kogan M 2000 Interactions between Weeds, Arthropod Pests, and their Natural Enemies in Managed Ecosystems Weed Science 48 pp 94–158
[4] Skirvin D J, Garden L K, Reynolds K, Wright C and Mead A 2011 The effect of within crop habitat manipulations on the conservation biological control of aphids in field grown lettuce Bulletin of Entomological Research 101 pp 623-31
[5] Sari R P and Yanuwiadi B 2014 Effect of Refugia on Herbivorous Populations in Organic Red Rice Fields in Sengguruh Village, Kepanjen, Malang Biotropika 2 1 pp 14-9
[6] Wardani F S, Leksono A S, Yanuwiadi B 2013 Effect of Refugia Block (Ageratum conyzoides, Ageratum houstonianum, Commelina diffusa) on Pattern of Arthropod Visit at Apple Plantation in Ponokusumo Village, Malang Jurnal Biotropika 1 4
[7] Magurran A E 1996 Ecological Diversity and Its Measurement (London: Chapmanand Hall)
[8] Krebs C J 2000 Ecological Metodology. Second Edition. An Imprint of Addison Wesley (New York: Longmen, Inc.)
[9] Suwarno 2011 Diversity of the Butterfly Type Butterfly Pieridae in the Sarah River Tourism Area, Aceh Besar, After the Tsunami Disaster Journal of Environment 51 pp 31-6
[10] Untung K 1993 Introduction to Integrated Pest Management (Yogyakarta: Gajah Mada University Press)
[11] Laba I W, Djaftnika K and Arifin 2000 Biodiversity Analysis of Natural Enemies in Rice Field Ecosystems Inside; E. Soenarjo et al. (ed.), Proceedings of Arthropod Biodiversity Symposium on Agricultural Production Systems; Cipayung, October 16-18, 2000. PEI KEHATI
[12] Altieri M A and Toledo V M 2011 The agroecological revolution in Latin America: rescuing nature, ensuring food sovereignty and empowering peasants J Peasant Stud 38 pp 587–612
[13] Nur S, Ngatimin A, Agus N and Saranga A P 2014 The Potential of Flowering Weeds as Refugia for Predatory Insects at Bantimurung-Bulusaraung National Park, South Sulawesi Journal of Tropical Crop Science 1 2 pp 25–9
[14] Munyuli T 2009 Is Pardosa pseudoannulata an effective predator agent of Aphis craccivora in Uganda and in Democratic Republic of Congo? Tunisian Journal of Plant Protection 4 pp 91–8