Estimation of the carrier frequencies and proportions of potential patients by detecting causative gene variants associated with autosomal recessive bone dysplasia using a whole-genome reference panel of Japanese individuals

Shinichi Nagaoka1,2, Yumi Yamaguchi-Kabata1,3, Naomi Shiga1, Masahito Tachibana1, Jun Yasuda1,4, Shu Tadaka1,3, Gen Tamiya1,3,5, Nobuo Fuse1,3, Kengo Kinoshita6,7,8, Shigeo Kure1,3, Jun Murotsuki1, Masayuki Yamamoto1,3,8, Nobuo Yaegashi1,3 and Junichi Sugawara1,3

Abstract
Bone dysplasias are a group of rare hereditary diseases, with up to 436 disease types. Perinatal diagnosis is clinically important for adequate personalized management and counseling. There are no reports focused on pathogenic variants of bone dysplasias in the general population. In this study, we focused on autosomal recessive bone dysplasias. We identified pathogenic variants using whole-genome reference panel data from 3552 Japanese individuals. For the first time, we were able to estimate the carrier frequencies and the proportions of potential patients. For autosomal recessive bone dysplasias, we detected 198 pathogenic variants of 54 causative genes. We estimated the variant carrier frequencies and the proportions of potential patients with variants associated with four clinically important bone dysplasias: osteogenesis imperfecta (OI), hypophosphatasia (HPP), asphyxiating thoracic dysplasia (ATD), and Ellis–van Creveld syndrome (EvC). The proportions of potential patients with OI, ATD, and EvC based on pathogenic variants classified as “pathogenic” and “likely pathogenic” by InterVar were closer to the reported incidence rates in Japanese subjects. Furthermore, the proportions of potential patients with HPP variants classified as “pathogenic” and “likely pathogenic” in InterVar and “pathogenic” in ClinVar were closer to the reported incidence rates. For bone dysplasia, the findings of this study will provide a better understanding of the variant types and frequencies in the Japanese general population, and should be useful for clinical diagnosis, genetic counseling, and personalized medicine.

Introduction
Bone dysplasias are a group of inherited disorders caused by mutations in genes affecting the development and differentiation of bones and cartilage from the fetal stage, thereby resulting in abnormalities in skeletal shape and structure1. The clinical manifestations include a wide range of prognoses, from cases diagnosed during the fetal period to mild cases in adults that are difficult to diagnose2,3. The birth incidence of bone dysplasia is estimated to be ~1/5000 births4,5. The international classification of bone diseases involves a combination of single genes or multiple related genes,
specific phenotypes, and radiological findings, and is updated every 4–5 years. The classification from 2015 comprises 42 groups of bone dysplasias and 436 specific diseases. Thus, the actual frequency of each disease is low. In addition, new genes and genetic variants are continually being reported due to developments in next-generation sequencing (NGS), and the number of causative genes and variants are expected to increase.

Determining the incidence of bone dysplasia and its diagnosis can be difficult. First, there have been few reports on the incidence of bone dysplasia in Western countries since the 1980s. The major reports were from Italy and South America. In both reports, the incidence of each bone dysplasia was calculated as the sum of live births and stillbirths in a certain region or multiple countries over a period of several years. However, no survey of bone dysplasia incidence has been reported since that time. Furthermore, the trend in disease incidence according to racial differences has not been clarified. Second, there has been no nationwide survey of the incidence of bone dysplasia in Japan. Satoh et al. (article in Japanese) reported the prevalence of fetal bone dysplasia in obstetrics, which included children diagnosed at a single institution for 20 years and those registered at multiple institutions for 1 year. However, there was a large bias in the target population selection and the total number of patients was not reported. There have been no subsequent reports on the frequencies of bone dysplasia in Japan. As bone dysplasia is a rare hereditary disease, it is difficult to grasp the total number of cases via nationwide efforts and the target population setting is unclear even if the patients are registered at individual institutions. Third, new causative genes and variants predicting the diagnosis of bone dysplasia are continually being identified by NGS and confirmed for their utility in diagnosis. NGS is useful for the diagnosis and discovery of causative genes and variants. However, estimated causative variants and carrier frequencies of genes related to bone dysplasia have not been reported in the general population. Carriers of disease-causing genetic variants may exist in the healthy general population. Therefore, using genomic information from the general population to investigate genetic variations and determine the frequency of mutation carriers and potential patients is helpful in understanding genetic epidemiology and applying it to perinatal care, genetic counseling, and personalized medicine.

We used 3.5KJPv2, a genome-wide allele-frequency reference panel, to estimate the carrier frequencies of variants associated with bone dysplasia in the Japanese population. In collaboration with the Tohoku Medical Megabank Organization and Iwate Tohoku Medical Megabank Organization, we conducted cohort studies using a biobank that integrates medical and genomic information from the general healthy population. Whole-genome sequences were analyzed in samples collected from 3552 of these healthy individuals to produce a whole-genome reference panel, 3.5KJPv2. Allele frequency, genotype frequency, and allele count information have been made partially available to the public (https://jmorp.megabank.tohoku.ac.jp/201905).

The aims of this study were to detect genetic variants responsible for autosomal recessive bone dysplasia using 3.5KJPv2 and to estimate the frequencies of carriers and potential patients with genetic factors among Japanese individuals.

Materials and methods

This study was conducted after obtaining approval from the Ethics Committee of Tohoku Medical Megabank Organization of Tohoku University (authorization numbers: 2018-4-038) and written consent from all participants.

Causative genes of bone dysplasia

We obtained information regarding bone dysplasia registered in the Surveillance Registry for Bone Dysplasia of the Japanese Orthopedic Association (https://www.joa.or.jp/). A total of 7234 cases were registered between 1990 and 2016, and were classified into 217 different diseases. The top 100 diseases with the greatest incidence rates of these 4 diseases were obtained from a study with subsequent updates, in which diallelic variants after VQSR filtering in 3.5KJPv2 were annotated using AnnoVAR, InterVar (2.0.1), ClinVar (March 2019), and personal observation.

The aims of this study were to detect genetic variants responsible for autosomal recessive bone dysplasia using 3.5KJPv2 and to estimate the frequencies of carriers and potential patients with genetic factors among Japanese individuals.
Table 1 The 73 genes for autosomal recessive 30 bone dysplasias.

Name of disorders	Gene	MIM#	Phenotype
1 Osteogenesis imperfecta	BMP1	112264	614856
2 Hypophosphatemic rickets	DMP1	600980	241520
3 Metaphyseal dysplasia	POP1	602486	617396
4 Mucopolysaccharidosis	ARSB	611542	252300
5 Osteopetrosis	CA2	611492	259730
6 Pyknody sostosis	CTSK	601105	265800
7 Spondyloepiphyseal dysplasias (SMD)	PCYT1A	123695	608940
8 Stickler syndrome, recessive type	COL9A1	120210	614134
9 Spondylocostal dysostosis	DL3	602768	273300
10 Mesomelic dysplasia (Kozlowski–Reardon type)	MESP2	605195	608681
11 Hypophosphatasa	ALPL	171760	241500
12 Mucolipidosis	GNPTAB	607840	252500
13 Ehlers–Danlos syndrome	B4GALT7	604327	130070
14 Chondroectodermal dysplasia (Ellis–van Creveld)	EVC	604831	225500
15 Acromesomelic dysplasia type Moroteaux (AMDM)	NRP2	108961	602875
16 Desbuquois dysplasia	CANT1	613165	251450
17 Spondylo-epi-metaphyseal dysplasias (SEMD)	DDR2	191311	271665
18 RAPADILINO syndrome Poland	RECO1q	603780	266280
19 Metaphyseal anadysplasia	MMP13	600108	250400
20 Antley–Bixler syndrome	POR	124015	201750
21 Oto-spondylo-mega-epiphyseal dysplasia (OSMED)	COL11A2	120290	215150
22 Diastrophic dysplasia (DTD)	SLC2A2	606718	222600
23 Duggie–Melchior–Clausen dysplasia (DMC)	DYM	607461	223800
24 Dysegmental dysplasia (Silverman–Handmaker type/ Rolland–Desbuquios type)	HSPG2	142461	224410
25 Progressive pseudorheumatoid dysplasia (PRRD; SED with progressive arthropathy)	SLC2A2	606718	222600
26 Progressive pseudorheumatoid dysplasia (PRRD; SED with progressive arthropathy)	WISP3	603400	208230
27 Asphyxiating thoracic dysplasia (ATD; Jeune)	DYNC2H1	603297	613091
28 Craniometaphyseal dysplasia	CTN2H1	613363	615633
29 Pyle disease	WDR34	611177	611263
30 Robinow syndrome	DYM	607386	615630
	FT8	614620	266920
	WDR19	608151	614376
	TTC2B	611064	613819
	GJA1	121014	218400
	ROR2	602337	268310

MIM# assembly
aWe obtained MIM# and phenotype MIM# from Online Mendelian Inheritance in Man (https://omim.org/).

![Table 1 continued](https://example.com/table1continued.png)

Classification of the genetic variants

In the same way as in the previous study, we evaluated variants in 73 genes. First, we obtained primary interpretation by InterVar and the variants were classified into five classes: pathogenic (P), likely pathogenic (LP), variant of uncertain significance (VUS), likely benign (LB), and benign (B). Then, the pathogenic variants were examined by four different inclusion criteria (set 1 – set 4) with a threshold of allele frequency (≤0.03) and correspondence to reported pathogenic variants in ClinVar and HGMD (Fig. 1).
Estimation of the population frequency of risk alleles and expected carriers

We estimated the risk allele and carrier frequencies based on the detected pathogenic variants. First, supposing that there are \(n \) pathogenic variants of a gene, we calculated the sum of the risk allele frequencies at \(n \) sites as the estimated population frequency of pathogenic alleles of that gene (\(Q \)). It was assumed that the probability of having a risk allele for the disease in the haploid genome of a population was \(Q \) and that of not having the risk allele was \(1 − Q \). The estimated carrier frequency was then calculated as \(2 \times (1 − Q) \times Q \) based on Hardy–Weinberg equilibrium. We also calculated \(Q^2 \) as the expected frequency of individuals having pathogenic variants in both chromosomes of each gene (termed the “proportion of homozygotes” in this paper) and estimated the proportion of potential patients by summing the value of \(Q^2 \) for the same disease.

Statistical analysis

A comparison of allele frequencies was performed using Excel 2016 (Microsoft, Redmond, Washington, USA). We used Fisher’s exact test to compare the allele frequencies in 3.5KJPNv2 with previously reported frequencies in the Genome Aggregation Database (gnomAD; https://gnomad.broadinstitute.org/) for Finnish (gnomAD FIN) and non-Finnish European (gnomAD NFE) individuals. The threshold for significance was \(p < 0.05 \).

Results

Based on the annotation and interpretation of variants using InterVar, 82,818 genetic variants (from the 5 classifications [P, LP, VUS, LB, and B]) of 73 genes associated with 30 bone dysplasias were extracted (Fig. 1). Next, we selected potential pathogenic variants from sets 1–4 based on filtering those with a minor allele frequency (MAF) \(\leq 0.03 \), evaluating the output of InterVar, and matching with classifications provided in ClinVar and HGMD. The total number of variants classified in sets 1–4 was 198 within 54 genes (Fig. 1). Thus, potentially pathogenic variants were detected in 54 of the 73 total genes associated with bone dysplasia in 3.5KJPNv2 but not in the remaining 19 genes (XVLT1, DYM, RAB33B, DMP1, SLC34A3, MMP9, SBDS, GNS, CREB3L1, PPIB, SP7, WNT1, PLEKHM1, SNX10, TNFRSF11, TNFSF11, DDR2, HES7, and MESP2) (Table 2 and Supplementary Table S1). No variant with an MAF \(\leq 0.03 \) and classified as VUS was found (0 variant).

After the detection of pathogenic variants, we examined the status of individuals using individual genotype data from 3.5KJPNv2. Of note, we checked whether there was any compound heterozygote or homozygote for a single gene. There were two exceptional individuals with multiple pathogenic variants in single genes and we manually inspected the cases of these two individuals. One individual had seven predicted pathogenic variants of the RECQL4 gene. The seven variants are indels located in a short region (67 bp, Chr7:145737572–145737639) and all were singletons. Through the inspection of the status of mapped reads in BAM files (binary format of sequence alignment map)\(^\text{10}\) using the Integrative Genomic Viewer, we found that variant calls by HaploTypeCaller were not successful for this local region in the individual. Thus, we did not use these variants in further analysis of the estimation of frequency. Another individual had 2 predicted pathogenic variants in the BMP1 gene. These two variants are 1 bp (A) deletions at very close (3 bp) genomic sites (chr8:22034590 and chr8:22034593). They were singleton variants and were located on the same chromosome of the individual. Thus, these two variants could be a single variant. After corrections based on these two exceptional cases, the proportions (and number) of individuals having at least one pathogenic variant were 1.89% (67), 6.28% (222), 6.95% (247), and 15.0% (534) for sets 1–4, respectively. The number of individuals having 2 pathogenic variants was 1, 7, 7, and 25 for sets 1–4, respectively, and 2 individuals in set 4 had 3 pathogenic variants.

The carrier frequencies were estimated based on Hardy–Weinberg equilibrium using the allele frequencies of the variants associated with OI, EvC, ATD, and HPP (Tables 2 and 3). We calculated the expected frequency of individuals with homozygous variants from the estimated carrier frequency, estimated the proportions of potential patients, and compared them with the reported frequency in Japan (Table 4).

Osteogenesis imperfecta

BMP1 (MIM# 614856)

A stopgain variant, p.Glu547*, and a splicing variant, c.2826 + 2 T > C, were automatically classified as P by InterVar. A frameshift variant, p.His223fs (p.Glu224fs), was automatically classified as LP by InterVar. The remaining six nonsynonymous SNVs were automatically classified as LP by InterVar. One individual was heterozygous for all ten variants and the allele frequency was 0.00014 for each variant (Table 3). None had been reported in ClinVar or HGMD and, thus, these variants were included in our set 2 (Fig. 1). The carrier frequency of the BMP1 variants was estimated to be 0.00253 in set 2 (Table 2).

CRTAP (MIM# 610682)

A splicing variant, c.621 + 1 G > A, was interpreted as P by InterVar and included in set 2, although it is not reported in ClinVar or HGMD (Table 3). The allele frequency was 0.00028 and the carrier frequency of CRTAP was estimated to be 0.00056 in set 2 (Table 2).
LEPRE1 (P3H1) (MIM# 610915)

A stopgain variant, p.Gln576*, and a nonsynonymous single nucleotide variant (SNV), p.Ala614Thr, were detected in one heterozygous individual, each with an allele frequency of 0.00014, and these variants were interpreted as P by InterVar and thus included in set 2 (Table 3). A nonsynonymous SNV, p.Ala614Thr, was interpreted as LP by InterVar and thus included in set 2 (Table 3). The estimated carrier frequency of LEPRE1 was 0.00056 in set 2 (Table 2).

FKBP10 (MIM # 610968)

A nonsynonymous SNV, p.Glu575Gln, of FKBP10 was interpreted as LP by InterVar and included in our set 2, although it is not reported in ClinVar or HGMD (Table 3). The allele frequency was 0.00014 and the carrier frequency was 0.00028 in set 2 (Table 2).

SERPINH1 (MIM# 613848)

All eight variants were nonsynonymous variants and were interpreted as LP by InterVar, and thus included in set 2; none are reported in ClinVar or HGMD (Table 3). Of the eight nonsynonymous variants, all were heterozygous, with p.Thr227Ile, p.Val256Met, p.Arg339Leu, and p.Ala354Thr identified in one individual, each with an allele frequency of 0.00014; p.Set77Leu was identified in nine individuals, with an allele frequency of 0.00127; p.Val219Met and p.Asn244Ile was identified in two individuals, each with an allele frequency of 0.00028; and p.Ala349Val was identified in five individuals, with an allele frequency of 0.0007. The carrier frequency was 0.00618 in set 2 (Table 2).

PLOD2 (MIM# 609220)

Two stopgain variants, p.Arg495* and p.Arg54*, were not reported in ClinVar or HGMD and were interpreted as P by InterVar and included in our set 2 (Table 3). These variants were found in one heterozygous individual. The allele frequency was 0.00014 and the carrier frequency was 0.00056 in set 2 (Table 2).

SERPINF1 (MIM# 613848)

A splicing variant, c.284-2 A > G, was detected in five heterozygous individuals with an allele frequency of 0.0007. This variant was interpreted as P by InterVar. However, it was not reported in ClinVar or HGMD (Table 3). A nonsynonymous SNV, p.Ala56Gly, was heterozygous in 86 individuals with an allele frequency of 0.01239, which is much higher than that reported in gnomAD in European subjects (p < 0.001, Table 3). This variant was reported in HGMD, so it was included in our set 4. The carrier frequencies were 0.00141 in set 2 and 0.02584 in set 4 (Table 2).

SEC24D (MIM# 616295)

A stopgain variant, p.Gln302*, was identified in one heterozygous individual in 3.5KJPNv2 and was interpreted as P by InterVar, and thus included in our set 2 (Table 3). The allele frequency was 0.00014 and the carrier frequency was 0.00028 in set 2 (Table 2).

Of the 12 causative genes registered in the international classification of autosomal recessive OI, 4 genes (PPIB, WNT1, CREB3L1, and SP7) were not recognized as pathogenic variants in this study (Tables 2 and 3). Except for p.Ala56Gly in SERPINF1, none of the pathogenic...
Table 2 Detection of pathogenic variants and estimated carrier frequencies of 73 genes for bone dysplasias.

Gene	Pathogenic variants in 3SKJPNv2 (3552 individual)																
	Set 1a	Set 2a	Set 3a	Set 4a													
	No. Var	Allele Cnt	Carrier Freq.	No. Var	Allele Cnt	Carrier Freq.	No. Var	Allele Cnt	Carrier Freq.	No. Var	Allele Cnt	Carrier Freq.					
Osteogenesis imperfecta																	
BMP1	0	0	0.00000	9	9	0.00282	9	9	0.00282	9	9	0.00282					
LEPRE1	0	0	0.00000	2	2	0.00056	2	2	0.00056	2	2	0.00056					
CRTAP	0	0	0.00000	1	2	0.00056	1	2	0.00056	1	2	0.00056					
PPIB	0	0	0.00000	0	0	0.00000	0	0	0.00000	0	0	0.00000					
PLOD2	0	0	0.00000	2	2	0.00056	2	2	0.00056	2	2	0.00056					
SERPINH1	0	0	0.00000	8	22	0.00618	8	22	0.00618	8	22	0.00618					
FKBP10	0	0	0.00000	1	1	0.00028	1	1	0.00028	1	1	0.00028					
SERPINF1	0	0	0.00000	1	1	0.00141	1	1	0.00141	2	91	0.02721					
SEC24D	0	0	0.00000	1	1	0.00028	1	1	0.00028	1	1	0.00028					
WNT1	0	0	0.00000	0	0	0.00000	0	0	0.00000	0	0	0.00000					
CREB3L1	0	0	0.00000	0	0	0.00000	0	0	0.00000	0	0	0.00000					
SP7	0	0	0.00000	0	0	0.00000	0	0	0.00000	0	0	0.00000					
Hypophosphatemic rickets																	
DMP1	0	0	0.00000	0	0	0.00000	0	0	0.00000	0	0	0.00000					
ENPP1	0	0	0.00000	0	0	0.00000	0	0	0.00000	2	5	0.00141					
SLC34A3	0	0	0.00000	0	0	0.00000	0	0	0.00000	0	0	0.00000					
Metaphyseal dysplasia																	
POP1	0	0	0.00000	2	3	0.00085	2	3	0.00085	2	3	0.00085					
SBDS	0	0	0.00000	0	0	0.00000	0	0	0.00000	0	0	0.00000					
Mucopolysaccharidosis																	
ARSB	1	1	0.00028	1	1	0.00028	1	1	0.00028	1	1	0.00028					
GALNS	1	2	0.00056	4	4	0.00113	4	4	0.00113	5	5	0.00141					
GLB1	3	3	0.00085	5	5	0.00141	5	5	0.00141	6	6	0.00169					
GN5	0	0	0.00000	0	0	0.00000	0	0	0.00000	0	0	0.00000					
Gene	Pathogenic variants in 35KJPv2 (3552 individual)																
--------	---																
	Set 1^a	Set 2^a	Set 3^a	Set 4^a													
	No. Var	Allele Cnt	Carrier Freq.	No. Var	Allele Cnt	Carrier Freq.	No. Var	Allele Cnt	Carrier Freq.	No. Var	Allele Cnt	Carrier Freq.					
GUSB	0	0	0.00000	1	1	0.00028	1	1	0.00028	2	2	0.00056					
HS3GNT	0	0	0.00000	1	1	0.00028	1	1	0.00028	2	2	0.00056					
IDUA	1	1	0.00028	3	3	0.00085	4	4	0.00113	5	5	0.00141					
NAALD	1	1	0.00028	2	2	0.00056	2	2	0.00056	3	3	0.00085					
SGSH	0	0	0.00000	1	1	0.00028	1	1	0.00028	2	2	0.00056					
Osteopetrosis																	
CA2	1	1	0.00028	1	1	0.00028	1	1	0.00028	1	1	0.00028					
CLCN7	0	0	0.00000	9	13	0.00366	9	13	0.00366	9	13	0.00366					
FERMT3	0	0	0.00000	3	4	0.00113	3	4	0.00113	3	4	0.00113					
OSTM1	0	0	0.00000	1	1	0.00028	1	1	0.00028	1	1	0.00028					
PLEKH1	0	0	0.00000	0	0	0.00000	0	0	0.00000	0	0	0.00000					
RASGRF2	0	0	0.00000	2	2	0.00056	2	2	0.00056	2	2	0.00056					
SNDX10	0	0	0.00000	0	0	0.00000	0	0	0.00000	0	0	0.00000					
TCIRG1	0	0	0.00000	0	0	0.00000	1	1	0.00028	2	2	0.00056					
TNFRSF11A	0	0	0.00000	0	0	0.00000	0	0	0.00000	0	0	0.00000					
TNFSF11	0	0	0.00000	0	0	0.00000	0	0	0.00000	0	0	0.00000					
Pyknody sostosis																	
CTSK	1	2	0.00056	2	3	0.00085	2	3	0.00085	2	3	0.00085					
Spondyloepimetaphyseal dysplasias (SMD)																	
PCYT1A	2	2	0.00056	2	2	0.00056	2	2	0.00056	2	2	0.00056					
Stickler syndrome, recessive type																	
COL9A1	1	1	0.00028	3	3	0.00113	3	3	0.00113	3	3	0.00113					
Spondylocostal dysostosis																	
DLL3	1	1	0.00028	2	2	0.00056	2	2	0.00056	2	2	0.00056					
HES7	0	0	0.00000	0	0	0.00000	0	0	0.00000	0	0	0.00000					
Gene	Allele Cnt	Carrier Freq.	Set 1^a	Allele Cnt	Carrier Freq.	Set 2^a	Allele Cnt	Carrier Freq.	Set 3^a	Allele Cnt	Carrier Freq.	Set 4^a	Allele Cnt	Carrier Freq.			
--	------------	---------------	-------------------	------------	---------------	-------------------	------------	---------------	-------------------	------------	---------------	-------------------	------------	---------------			
LFNG			0			0			0			1		0.00028			
MESP2			0			0			0			0		0.00000			
Hypophosphatasia			0			0			0			0		0.00000			
ALPL	2	18	0.00506	5	22	0.00618	6	34	0.00953	13	156	0.04404					
Mucolipidosis			0			0			0			0		0.00000			
GNPTAB	5	8	0.00225	6	9	0.00253	6	9	0.00253	6	9	0.00253					
GNPTG	0	0	0.00000	1	1	0.00028	1	1	0.00028	1	1	0.00028					
Ehlers–Danlos syndrome			0			0			0			0		0.00000			
B4GALT7	0	0	0.00000	1	1	0.00028	1	1	0.00028	1	1	0.00028					
Chondroectodermal dysplasia (Ellis–van Creveld)			0			0			0			0		0.00000			
EVC	0	0	0.00000	1	1	0.00028	1	1	0.00028	3	10	0.00281					
EVC2	2	3	0.00085	7	8	0.00226	7	8	0.00226	8	9	0.00254					
Acromesomelic dysplasia type Maroteaux (AMDM)			0			0			0			0		0.00000			
NLR2	0	0	0.00000	1	1	0.00028	2	5	0.0141	2	5	0.0141					
Desbuquois dysplasia			0			0			0			0		0.00000			
CANT1	0	0	0.00000	2	3	0.00085	3	6	0.00169	3	6	0.00169					
XYLT1	0	0	0.00000	0	0	0.00000	0	0	0.00000	0	0	0.00000					
Spondylo-epi-metaphyseal dysplasias (SEMD)			0			0			0			0		0.00000			
DDR2	0	0	0.00000	0	0	0.00000	0	0	0.00000	0	0	0.00000					
MATN3	0	0	0.00000	0	0	0.00000	0	0	0.00000	2	17	0.00478					
RAPADILINO syndrome Poland			0			0			0			0		0.00000			
RECQL4	2	2	0.00056	6	9	0.00253	7	10	0.00281	7	10	0.00281					
Metaphyseal anadysplasia			0			0			0			0		0.00000			
MMP13	0	0	0.00000	1	3	0.00084	1	3	0.00084	1	3	0.00084					
MMP9	0	0	0.00000	0	0	0.00000	0	0	0.00000	0	0	0.00000					
Gene	Pathogenic variants in 3.5KJPNv2 (3552 individual)																
--	--																
	Set 1^a	Set 2^a	Set 3^a	Set 4^a													
	No. Var	Allele Cnt	Carrier Frq.	No. Var	Allele Cnt	Carrier Frq.	No. Var	Allele Cnt	Carrier Frq.	No. Var	Allele Cnt	Carrier Frq.					
Antley–Bixler syndrome	POR	3	15	0.00422	5	17	0.00478	5	17	0.00478	8	41	0.01148				
Oto-spondylo-mega-epiphyseal dysplasia (OSMED)	COL11A2	0	0	0.00000	4	4	0.00113	4	4	0.00113	5	6	0.00169				
Diastrophic dysplasia (DTD)/ Atelosteogenesis type2 (AO2)	SLC26A2	0	0	0.00000	0	0	0.00000	1	2	0.00000	0	0	0.00000				
Duggve–Melchior–Clausen dysplasia (DMC)	DYM	0	0	0.00000	0	0	0.00000	0	0	0.00000	0	0	0.00000				
Distysseggmental dysplasia (Silverman–Handmaker type/Rolland–Desbuquios type)	HSPG2	0	0	0.00000	6	7	0.00197	6	7	0.00197	9	16	0.00450				
Progressive pseudorheumatoid dysplasia (PPRD; SED with progressive arthropathy)	WISP3	0	0	0.00000	1	1	0.00028	1	1	0.00028	1	1	0.00028				
Asphyxiating thoracic dysplasia (ATD; Jeune)	DYNC2H1	2	4	0.00113	6	8	0.00225	6	8	0.00225	7	12	0.00337				
	WDR34	0	0	0.00000	1	1	0.00028	1	1	0.00028	1	1	0.00028				
	IFT80	0	0	0.00000	3	14	0.00393	3	14	0.00393	3	14	0.00398				
	IFT172	1	1	0.00028	5	5	0.00141	5	5	0.00141	5	5	0.00141				
	IFT140	0	0	0.00000	3	3	0.00085	3	3	0.00085	5	5	0.00141				
	WDR19	1	2	0.00056	4	6	0.00169	4	6	0.00169	4	6	0.00169				
	TTC21B	0	0	0.00000	4	5	0.00141	4	5	0.00141	6	7	0.00197				
Cranio-metaphyseal dysplasia	GJA1	0	0	0.00000	1	1	0.00028	1	1	0.00028	1	1	0.00028				
Robinow syndrome	ROR2	0	0	0.00000	1	1	0.00028	1	1	0.00028	2	2	0.00056				

^aSee “Materials and Methods” and Fig. 1.
Variation	Functional category	Genomic location	dbSNP	3.5KJPN genotype count	3.5KJPN allele freq	InterVar	gnomAD ALL*	gnomAD FIN*	gnomAD NFE	Mutation database	Classification	Set
BMP1												
c.G1639T:p.Glu547Stopgain.chr8:22052432	3551	1	0	0.00014 P	P_P_interpreted	2						
c.G1840Ala:p.Ala614Thr.Nonsynonymous SNV.chr1:43213468	3551	1	0	0.00014 P	P_LP_interpreted	2						
c.Gly2137Ap.Gly713Ser.Nonsynonymous SNV.chr11:75279833	3551	1	0	0.00014 LP	LP_LP_interpreted	2						
PLOD2												
c.C1483T:p.Arg495Stopgain.chr3:145796920	3551	1	0	0.00014 P	P_P_interpreted	2						
c.G766A:p.Val256Met.Nonsynonymous SNV.chr11:75280028	3551	1	0	0.00014 LP	LP_LP_interpreted	2						
FKBP10												
c.G1723C:p.Glu575Gln.Nonsynonymous SNV.chr17:739978634	3551	1	0	0.00014 LP	LP_LP_interpreted	2						
Table 3 continued

Variation	Functional category	Genomic location	dbSNP	Position (GRCh37/hg19)	3.5K/JPN genotype count	InterVar	gnomAD ALL*	gnomAD FIN*	gnomAD NFE	Mutation database	Classification	Set
Hypophosphatasia (HPP)	ALPL											
c.G407A:p.Arg136His	Nonsynonymous SNV	chr1:21889712	rs121918011	3550 2 0	0.00028	LP	3.23E-05	0	0			P
c.T979C:p.Phe327Leu	Nonsynonymous SNV	chr1:21900274	rs121918010	3536 16 0	0.00225	LP	9.66E-05	0	0			P
c.G904A:Glu191Gly	Nonsynonymous SNV	chr1:21887155	rs121918005	3551 1 0	0.00014	LP	0.00014	0	0			
c.782A:p.Pro281Gln	Nonsynonymous SNV	chr1:21894730	rs765149569	3550 2 0	0.00028	LP	0.00028	0	0			
c.A118G:p.Ile395Val	Nonsynonymous SNV	chr1:21902411	rs121918004	3551 1 0	0.00014	LP	0.00014	0	0			
c.1595delT:p.Leu520fs	Frameshift deletion	chr1:21904125	rs367900652	3540 12 0	0.00169	VUS	0.00169	0	0			3
c.A184G:p.Met62Val	Nonsynonymous SNV	chr1:21887592	rs121918007	3551 1 0	0.00014	LP	0.00014	0	0			
c.A529G:p.Ile395Val	Nonsynonymous SNV	chr1:21909050	rs12190063	3551 1 0	0.00014	VUS	0.00014	0	0			
c.1022G:p.Tyr341Arg	Nonsynonymous SNV	chr1:21902250	rs121903083	3551 1 0	0.00014	LP	0.00014	0	0			
c.Gly1276A:p.Gly426Ser	Nonsynonymous SNV	chr1:21903101	rs770548228	3551 1 0	0.00014	VUS	0.00014	0	0			
c.A1307G:p.Tyr436Cys	Nonsynonymous SNV	chr1:21903132	rs121903132	3551 1 0	0.00014	VUS	0.00014	0	0			
Ellis–van Creveld syndrome (EvC)												
c.1887-1 G > C	Splicing	chr4:5798748	rs543532808	3550 2 0	0.00028	VUS	3.24E-05	0	0			
c.C884G:p.Thr295Ser	Nonsynonymous SNV	chr4:5747013	rs121890683	3551 1 0	0.00014	VUS	0.00014	0	0			
c.C982T:p.Leu328Phe	Nonsynonymous SNV	chr4:5749917	rs765149569	3550 2 0	0.00028	LP	9.66E-05	0	0			
c.1230+1 G > C	Splicing	chr4:57701827	rs121890683	3551 1 0	0.00014	LP	0.00014	0	0			
c.904-2 A > C	Splicing	chr4:5742567	rs121890683	3551 1 0	0.00014	LP	0.00014	0	0			
c.25+3delG:p.Glu844fs	Frameshift deletion	chr4:5620375	rs121890683	3551 1 0	0.00014	LP	0.00014	0	0			
c.11277+1 G > C	Splicing	chr4:5642240	rs121890683	3551 1 0	0.00014	LP	0.00014	0	0			
c.450A:Glu1504	Frameshift deletion	chr4:5620375	rs121890683	3551 1 0	0.00014	LP	0.00014	0	0			
Asphyxiation thoracic dystrophy (ATD)												
c.5681_5682delT:p.Glu1894fs	Frameshift deletion	chr11:103046970	rs121890683	3551 1 0	0.00014	LP	0.00014	0	0			
c.10045T:p.Arg3349P	Stopgain	chr1:21889712	rs121890683	3551 1 0	0.00014	LP	0.00014	0	0			
c.11277+1 G > C	Splicing	chr4:5642240	rs121890683	3551 1 0	0.00014	LP	0.00014	0	0			
c.5518_5519insTA:p.Val1840fs	Frameshift insertion	chr4:5620375	rs121890683	3551 1 0	0.00014	LP	0.00014	0	0			
c.8062delA:p.Lys2688fs	Frameshift deletion	chr4:5620375	rs121890683	3551 1 0	0.00014	LP	0.00014	0	0			
c.9977delG:p.Arg3326fs	Frameshift deletion	chr4:5620375	rs121890683	3551 1 0	0.00014	LP	0.00014	0	0			
c.2848T:p.Arg950Trp	Nonsynonymous SNV	chr4:55886559	rs121890683	3551 1 0	0.00014	LP	0.00014	0	0			

ClinVar HGV/DM

HGMD
Variation	Functional category	Genomic location	dbSNP	3.5KJPN genotype count	InterVar gnomAD ALL*	gnomAD FIN*	gnomAD NFE Mutation database	Classification	Set
c.1372+2T>C	Splicing	chr9:131396503	rs758936528	3551 1 0	0.00014 P	P	P_interpreted 2		
c.401G>p.Ser134A	Stopgain	chr3:160093638	3545 7	0.00099 P	P_interpreted 2	P	P_interpreted 2		
c.371-1G>C	Splicing	chr3:160093669	rs76974505S	3546 6 0	0.00085 P	P	P_interpreted 2		
c.401T>C	Stopgain	chr3:160099511	3551 1	0.00014 P	P_interpreted 2	P	P_interpreted 2		
c.3811T>G	Frameshift deletion	chr2:1667868997	3551 1	0.00014 LP	P	LP	LP_interpreted 2		
c.2992T>G	Stopgain	chr3:160192885	3551 1	0.00014 P	P_interpreted 2	P	P_interpreted 2		
c.3224_3225insGAACTGT:p.Val1075fs	Frameshift insertion	chr2:166747027	3550 2	0.000028 P	P	LP	LP_interpreted 2		
c.2142T>G	Splicing	chr2:166798853	3551 1	0.00014 P	P_interpreted 2	P	P_interpreted 2		
c.4302A>C	Splicing	chr2:166798853	3551 1	0.00014 P	P_interpreted 2	P	P_interpreted 2		
c.3845_3846delTyr1282fs	Frameshift deletion	chr2:166732702-166732703	3551 1	0.00014 LP	LP	LP_interpreted 2			
c.3234A>CT	Frameshift insertion	chr2:166747027	3550 2	0.000028 P	P	LP	LP_interpreted 2		
c.1598A>G	Non-synonymous SNV	chr2:166758899	3551 1	0.00014 LP	P	LP	LP_interpreted 2		
c.2142T>G	Frameshift insertion	chr2:166747027	3550 2	0.000028 P	P	LP	LP_interpreted 2		
c.3234A>CT	Frameshift insertion	chr2:166747027	3550 2	0.000028 P	P	LP	LP_interpreted 2		

Abbreviations:
- *P* benign, *DM* disease-causing mutation, *FIN* Finnish, *gnomAD gnomAD* the Genome Aggregation Database (https://gnomad.broadinstitute.org/), *LB* likely benign, *LP* likely pathogenic, *NFE* non-Finnish European, *P* pathogenic, *VUS* variant of significance.
- aSee "Materials and Methods" and Fig. 1.

See "Materials and Methods" and Fig. 1.
variants of the eight genes detected in this study was registered in ClinVar or HGMD. They were pathogenic variants detected for the first time in association with OI in this study. Most of the 12 OI-associated variant genes were included in set 2 and p.Ala56Gly was included in set 4, with a total carrier frequency of 0.01238 (set 2) and 0.03681 (set 4). The expected proportions of potential patients calculated by allele frequencies were 1/20,967 (set 2) and 1/4474 (set 4) (Table 4).

Hypophosphatasia

Thirteen pathogenic variants of ALPL (MIM# 241500) were detected in 3.5KJPNv2. Two nonsynonymous SNVs, p.Arg136His and p.Phe327Leu, were classified as LP by InterVar and reported as P in ClinVar and DM in HGMD. Thus, they were included in our set 1 (Table 3 and Fig. 1). The allele frequency of p.Arg136His was 0.00028 and this variant was identified in 2 heterozygous individuals, whereas the allele frequency of p.Phe327Leu was 0.00225 and this variant was identified in 16 individuals. Three nonsynonymous SNVs, p.Ala33Gly, p.Pro261Gln, and p.Ile395Val, were included in our set 2, because they were classified as LP by InterVar but not reported in ClinVar or HGMD (Table 3). Two variants, p.Ala33Gly and p.Ile395Val, were identified in one heterozygous individual and p.Pro261Gln was detected in two individuals. A frameshift variant, c.1559delT, was reported as P in ClinVar and DM in HGMD but classified as VUS by InterVar. This variant was classified in our set 3 and it was identified in 12 heterozygous individuals. Seven nonsynonymous SNVs, p.Met62Val, p.Ala177Thr, p.Glu191Gly, p.Pro261Gln, p.His341Arg, p.Gly420Ser, and p.Gly426Ser, were classified as VUS by InterVar and DM in HGMD. These variants were classified in our set 4. Six variants, p.Arg136His, p.Glu191Gly, p.Phe327Leu, p.His341Arg, p.Gly420Ser, and c.1559delT, have been reported in the Japanese population 19,20. Among these variants, p.Phe327Leu and c.1559delT were identified in 16 and 12 heterozygous individuals, respectively, and p.Ala177Thr was identified in 116 heterozygous individuals, with an allele frequency of 0.01689, which is much higher than that in gnomAD in European subjects (p < 0.001, Table 3). The carrier frequencies estimated from the sum of the allele frequencies were 0.00506 (set 1), 0.00618 (set 2), 0.00953 (set 3), and 0.04404 (set 4) (Table 2). The expected proportions of potential patients were 1/39,132 (set 1), 1/15,697 (set 2), 1/6473 (set 3), and 1/1511 (set 4) (Table 4).

Ellis–van Creveld syndrome

EVC (MIM# 225500)

One individual was heterozygous for the splicing variant c.1887+1 G > C, which was not reported in ClinVar or HGMD. This variant was interpreted as P by InterVar;
thus, we included it in set 2 (Table 3 and Fig. 1). The allele frequency was 0.000141. Although two nonsynonymous variants, p.Thr295Ser and p.Leu328Phe, were considered DM in HGMD, they were interpreted as VUS by InterVar; thus, we included them in set 4. Both variants were identified in genetic testing of patients with fetal limb shortening. We identified 2 and 7 heterozygous individuals for p.Thr295Ser and p.Leu328Phe, respectively. The allele frequencies of p.Thr295Ser and p.Leu328Phe were 0.00028 and 0.000985, respectively, which were higher than those in gnomAD in European subjects (p < 0.05). The carrier frequencies were 0.00028 in set 2 and 0.00281 in set 4 (Table 2).

EVC2 (MIM# 225500)

A stopgain variant, p.Arg399*, was heterozygous in two individuals. This variant was reported as P both by InterVar and in ClinVar but as DM in HGMD; we included it in set 1 (Table 3). This variant was detected in stillborn children with a ventricular septal defect and limb shortening with polydactyly. A stopgain variant, p.Trp828*, was detected as heterozygous in one individual. Because it was reported as P by InterVar, as DM in HGMD and as LP in ClinVar, we included it in set 1. This was reported in genetic testing of a boy with distal limb shortening and polydactyly. Two splicing variants, c.1230 + 1 G > C and c.906-2 A > C, were interpreted as P by InterVar and categorized in set 2, although they were not reported in ClinVar or HGMD. They were detected as heterozygous in one individual each and the allele frequencies of both were 0.00014. Two frameshift variants, p.Glu846fs and p.Asn361fs, were interpreted as LP by InterVar and included in set 2, although neither is reported in ClinVar or HGMD. Each was heterozygous in one individual, with an allele frequency of 0.00014. A stop codon, p.Arg698*, was included in set 2 according to InterVar and identified as heterozygous in one individual. A nonsynonymous variant, p.Arg950Trp, was reported as DM in HGMD but as VUS in ClinVar and InterVar by default. Therefore, p.Arg950Trp was included in set 4. This variant was identified in one heterozygous individual, with an allele frequency of 0.00014. The carrier frequencies of EVC2 were estimated to be 0.00085 in set 1, 0.00225 in set 2, and 0.00253 in set 4 (Table 2).

The sums of the estimated carrier frequencies of EVC and EVC2 were 0.00085 (set 1), 0.00225 (set 2), and 0.00535 (set 4). The proportions of potential patients calculated by allele frequencies were 1/1,398,385 (set 1), 1/193,890 (set 2), and 1/69,771 (set 4) (Table 4).

Asphyxiating thoracic dysplasia

DYNC2H1 (MIM# 613091)

A frameshift variant, p.Glu1894fs, and a stopgain variant, p.Arg3349* was classified in set 1 because they were interpreted as P by InterVar and reported as P in ClinVar (Table 3 and Fig. 1). Three individuals were identified to be heterozygous for p.Glu1894fs and 1 individual was identified to be heterozygous for p.Arg3349*. A splicing variant, c.11277 + 1 G > A, which was interpreted as P by InterVar, and three frameshift variants, p.Val1840fs, p.Lys2688fs, and p.Arg3326fs, which were interpreted as LP by InterVar, were classified in set 2. However, they were not reported in ClinVar or HGMD. Each was identified in one heterozygous individual. A nonsynonymous variant, p.Arg3004Cys, was identified in 4 heterozygous individuals. This variant was reported as DM in HGMD and was identified in a Japanese patient with prominent shortening of the ribs and extremities, evident in the fetal period. This variant was labeled VUS by ClinVar but as DM in HGMD; it was included in set 4. The carrier frequencies of DYNC2H1 were 0.00113 in set 1, 0.00225 in set 2, and 0.00337 in set 4 (Table 2).

WDR34 (MIM# 615633)

A splicing variant, c.1372 + 2 T > C, was identified as heterozygous in one individual. This variant was not reported in ClinVar or HGMD but was interpreted as P by InterVar and classified in set 2 (Table 3). The estimated carrier frequency was 0.00028 (Table 2).

IFT80 (MIM# 611263)

A stopgain variant, p.Ser134*, found in seven heterozygous individuals; two splicing variants, c.371-1 G > C, found in six heterozygous individuals and c.40-1 T > C, found in one heterozygous individual were classified as P by InterVar but were not reported in ClinVar or HGMD (Table 3). The carrier frequency was 0.00393 in set 2 (Table 2).

IFT172 (MIM# 615630)

All five variants of IFT172 result in a loss of function: p.Arg271* results in a stopgain variant; c.3229-1 G > C, c.2116-1 G > A, and c.571-1 G > A are splicing variants; and p.Tyr923fs results in a frameshift variant. InterVar interpreted p.Arg271* and c.3229-1 G > C, c.2116-1 G > A, and c.571-1 G > A as P and p.Tyr923 as LP. p.Arg271* was included in set 1, and the remaining variants were included in set 2 (Table 3). One individual was heterozygous for all five variants, and the estimated carrier frequencies were 0.00028 in set 1 and 0.00141 in set 2 (Table 2).

IFT140 (MIM# 266920)

Two stopgain variants, p.Gln998* and p.Arg1072*, one frameshift variant, p.Tyr923fs, and two synonymous SNVs, p.Thr1394Thr and p.Gly163Gly, were identified. None of these variants are reported in ClinVar. In InterVar, p.Gln998* was interpreted as P and p.Arg1072* and
p.Tyr923fs were interpreted as LP, and thus included in set 2. Two variants, p.Thr1394Thr and p.Gly163Gly, were reported as DM in HGMD but not in InterVar and ClinVar; thus, they were included in set 4 (Table 3). All variants were found in one heterozygous individual each and the carrier frequencies were 0.00085 in set 2 and 0.00141 in set 4 (Table 2).

WDR19 (MIM# 614376)

One frameshift variant, p.Leu211fs, and two splicing variants, c.2165 + 1 G > T and c.2782-2 A > G, were interpreted as P, and one nonsynonymous SNV, p.Gly789Arg, was identified as LP by InterVar. Only p.Leu211fs was included in set 1 and the remaining three pathogenic variants were included in set 2 (Table 3). The carrier frequencies were 0.00056 in set 1 and 0.00169 in set 2 (Table 2).

TTC21B (MIM# 613819)

A stopgain variant, p.Glu371*, and a splicing variant, c.430-2 A > C, were interpreted as P, and two frameshift variants, p.Tyr1282fs and p.Val1075fs, were interpreted as LP by InterVar. None of these four variants are reported in ClinVar or HGMD and all were included in set 2. Two nonsynonymous SNVs, p.Arg867Cys and p.His566Arg, were interpreted as VUS by InterVar but were included in set 4 because of their DM in HGMD (Table 3). The estimated carrier frequencies were 0.00141 in set 2 and 0.00197 in set 4 (Table 2).

The carrier frequencies, estimated from the sum of the allele frequencies, of the variants of the six ATD-associated genes were 0.00197 (set 1), 0.01182 (set 2), and 0.01408 (set 4). The proportions of potential patients calculated were 1/601,010 (set 1), 1/35,498 (set 2), and 1/26,553 (set 4) (Table 4).

Discussion

We investigated variants of genes related to bone dysplasia using 3.5KJPNv2, which contains genomic information from a large general population. This is the first investigation of this type. We tried to estimate the allele frequency, carrier frequency, and proportion of potential patients in the general population by evaluating the pathogenic significance by original variant interpretation. However, an automatic and efficient method for variant interpretation has not yet been established. Although many studies refer to existing databases such as ClinVar and HGMD for variant interpretation, the assessment of pathogenic significance in these databases is heterogeneous, with some reports misclassified as false-positive variants. By combining useful bioinformatic tools such as InterVar with databases such as ClinVar and HGMD, we detected and evaluated not only previously reported but also novel variants and further classified the detected variants from sets 1–4 based on the reliability of pathogenic significance (Fig. 1).

We used a similar method as a previous study, to estimate carrier frequency for diseases subject to neonatal screening. The proportions of potential patients with OI, ATD, and EvC based on pathogenic variants in set 2 were close to the reported incidence rates in Japanese patients. Furthermore, the proportions of potential patients with HPP based on set 1 variants were close to the reported incidence rates in Japanese patients (Table 4).

Several factors are considered to be the reason for the difference between the estimated proportion of potential patients and the frequency in the previous report. They might include variants with penetrance of <100%, those with false-positive results and those that are not present or have a mild effect on onset because allele frequencies are estimated from genomic information. It is possible that the carrier frequencies and the proportions of potential patients were overestimated, because they were considered to be pathogenically significant despite not being reported previously by the automatic determination of InterVar. On the other hand, some of the pathogenic variants identified as VUS by InterVar may actually be highly pathogenically significant. Furthermore, genetic testing is rarely performed in clinical practice, because many cases of bone dysplasia show severe clinical findings from the fetal stage, resulting in abortion and fetal death. Thus, the number of reported variants may be less than the actual number. For these reasons, the carrier frequencies and the proportions of potential patients may have been underestimated. In addition, we assume that the following factors could alter variant assessments and affect estimates of the carrier frequency and proportion of potential patients: (1) increasing the sample size of the whole-genome reference panel beyond the 3552 individuals and expanding the number of subjects analyzed in this study; (2) revising the ACMG-AMP variant interpretation guidelines; and (3) increasing the reported disease-associated variants and the number of causative variants enrolled in ClinVar and HGMD.

Few studies have compared bone dysplasia incidence between Japanese and other ethnic groups or reported bone dysplasia-associated variants unique to the Japanese population. Two pathogenic variants, p.Phe327Leu and c.1559delT, are frequent mutations in the *ALPL* gene in Japanese patients with HPP. On the other hand, in Caucasians, there are two common variants: c.571 G > A, which is observed in 50% of mild HPP cases, and c.1133 A > T, which is the most common variant in perinatal benign HPP cases. These variants were not detected in 3.5KJPNv2, suggesting ethnic differences in bone dysplasia-associated variants. In the future, with...
the expansion of whole-genome reference panels, variants with a high frequency in Caucasians and those that are potentially pathogenic will be detected.

This study has some limitations. First, the genomic information used here was based on the whole-genome reference panel data from 3552 individuals and the number of samples may not have been sufficient to obtain reliable estimates of the variant frequencies for rare diseases. However, it is possible to estimate the proportion of potential patients with autosomal recessive inheritance, making this the first study meaningful for autosomal recessive bone dysplasia in the Japanese population. Second, this study did not use the ten criteria in the ACMG-AMP variant interpretation guidelines that are not subject to the automatic determinations of InterVar. The reliability of pathogenic significance in the variants obtained in this study may be changed by adding evidence and evaluating them by custom analysis of InterVar. Third, large insertions/deletions and structural polymorphisms were not included in the public version of 3.5KJPNv2. That is, 3.5KJPNv2 was constructed by sequence analysis of short reads, but large insertions/deletions and structural polymorphisms may be detected by reanalysis using long-read NGS. Finally, the study looked at genes associated with bone dysplasia that are inherited in an autosomal recessive mode, including those with autosomal dominant or X-linked inheritance (OI and HPP). Investigating genomic information, including these modes of inheritance, may lead to more accurate estimates of carrier frequency and the proportion of potential patients.

It is difficult to appropriately estimate the carrier frequency and the proportion of potential patients based on pathogenic variants detected from genomic information. Furthermore, the establishment of an ideal and plausible method remains challenging. However, this is an unprecedented study of rare autosomal recessive bone dysplasias and the first study to attempt to estimate the carrier frequency and the proportion of potential patients from the allele frequency of pathogenic variants. From a genetic epidemiologic perspective, the findings from this study will help in the understanding of what types of pathogenic variants of bone dysplasia exist in the general population and the differences between reported frequencies observed in clinical practices in Japan and the proportions of potential patients calculated from allele frequencies. In terms of perinatal care, the findings of this study are expected to be useful for clinical diagnosis in cases where differential diagnosis is difficult, for accurate risk calculation such as the risk of recurrence for the next child, for information for parents who may be carriers, for genetic counseling such as prenatal diagnosis, and for personalized medicine such as neonatal treatment by utilizing variant information.

Acknowledgements
We thank all past and present members of the Tohoku Medical Megabank Organization at Tohoku University (present members are listed at https://www.megabank.tohoku.ac.jp/english/a200601/). The Tohoku Medical Megabank is supported by grants from the Reconstruction Agency; the Ministry of Education, Culture, Sports, Science and Technology (MEXT); and the Japan Agency for Medical Research and Development (AMED). This study was supported by AMED under grant numbers JP19km0105001 and JP19km0105002.

Author details
1Graduate School of Medicine, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan. 2Tohoku Metropolitan Ohtsuka Hospital, 2-8-1, Minamiohtsuka, Toshima-ku, Tokyo 170-8476, Japan. 3Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan. 4Miyagi Cancer Center Research Institute, 47-1, Noda-yama, Medeshima-shoode, Natori 981-1293, Japan. 5Statistical Genetics Team, RIKEN Center for Advanced Intelligence Project, Nihonbash 1-chome Mitui Building, 15th Floor, 1-4-1 Nihonbash Chuo-ku, Tokyo 103-0027, Japan. 6Graduate School of Information Sciences, Tohoku University, 6-3-09, Aza-aoa, Aramaki, Aoba-ku, Sendai 980-8579, Japan. 7Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan. 8Advanced Research center for Innovations in Next-Generation Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-9573, Japan

Conflict of interest
The authors declare that they have no conflict of interest.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information
is available for this paper at https://doi.org/10.1038/s41439-020-00133-7.

Received: 22 July 2020 Revised: 7 December 2020 Accepted: 8 December 2020.
Published online: 15 January 2021

References
1. Krakow, D. & Rimoin, D. L. The skeletal dysplasias. Genet. Med. 12, 327–341 (2010).
2. Forlino, A. & Marini, J. C. Osteogenesis imperfecta. Lancet 387, 1657–1671 (2016).
3. Ozono, K. et al. Identification of novel missense mutations (Phe310Leu and Gly439Arg) in a neonatal case of hypophosphatasia. J. Clin. Endocrinol. Metab. 81, 4458–4461 (1996).
4. Camera, G. & Mastroiacovo, P. Birth prevalence of skeletal dysplasias in the Italian Multicentric Monitoring System for Birth Defects. Prog. Clin. Biol. Res. 104, 441–449 (1982).
5. Orioli, I. M., Castilla, E. E. & Barbosa-Neto, J. G. The birth prevalence rates for the skeletal dysplasias. J. Med. Genet. 23, 328–332 (1986).
6. Bonafe, L. et al. Nosology and classification of genetic skeletal disorders: 2015 revision. Am. J. Med. Genet. A 167A, 2899–2892 (2015).
7. Bae, J. S. et al. Comprehensive genetic exploration of skeletal dysplasia using targeted exome sequencing. Genet. Med. 18, 565–569 (2016).
8. Tallaudier, A. et al. Molecular diagnosis of hypophosphatasia and differential diagnosis by targeted next generation sequencing. Mol. Genet. Metab. 116, 215–220 (2015).
9. Satoh, N., Murotsuki, J. & Sawai, H. Incidence rates of fetal bone dysplasias in Japanese (in Japanese). J. Jpn. Soc. Perin. Neon. Med. 45, 1005–1007 (2009).
10. Tadaka, S. et al. 3.5KJPNv2: an allele frequency panel of 3552 Japanese individuals including the X chromosome. Hum. Genome Var. 6, 28 (2019).
11. Kusugiyama, S. et al. The Tohoku Medical Megabank Project: design and mission. J. Epidemiol. 26, 493–511 (2016).
12. Kato, H., Kitano, T. & Iba, K. (eds). Surveillance registry for bone dysplasias of Japanese Orthopedic Association. p 20–26. (The Japanese Orthopedic Association, Japan, 2016)
13. Yamaguchi-Kabata, Y. et al. Estimating carrier frequencies of newborn screening disorders using a whole-genome reference panel of 3552 Japanese individuals. Hum. Genet. 138, 389–409 (2019).

14. Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164 (2010).

15. Li, Q. & Wang, K. InterVar: clinical interpretation of genetic variants by the 2015 ACMG-AMP guidelines. Am. J. Hum. Genet. 100, 267–280 (2017).

16. Landrum, M. J. et al. ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res. 44, D862–D868 (2016).

17. Stenson, P. D. et al. Human Gene Mutation Database (HGMD): 2003 update. Hum. Mutat. 21, 577–581 (2003).

18. Richards, S. et al. Standards and guidelines for the interpretation of sequence variants. Am. J. Hum. Genet. 93, 631–640 (2013).

19. MacArthur, D. G. et al. Guidelines for investigating causality of sequence variants in human disease. Nature 508, 469–476 (2014).

20. Obenklaid, F., Danks, D. M., Mayne, V. & Campbell, P. Asphyxiating thoracic dysplasia. Clinical, radiological, and pathological information on 10 patients. Arch. Dis. Child. 52, 758–765 (1977).

21. Mornet, E. Hypophosphatasia. Best. Pr. Res Clin. Rheumatol. 22, 113–127 (2008).