Three Homologous ArfGAPs Participate in Coat Protein I-mediated Transport

Saito, Akina

京都大学

2010-03-23

http://hdl.handle.net/2433/120521

Thesis or Dissertation

京都大学学術情報リポジトリ

Kyoto University Research Information Repository
京都大学 博士（薬学） 氏名 齋藤 明奈

論文題目 Three Homologous ArfGAPs Participate in Coat Protein I-mediated Transport（ArfGAP1-ArfGAP3はCOPI依存的な輸送経路で働く）

（論文内容の要旨）
＜第一章 ArfGAP1-ArfGAP3の重複する細胞内局在と機能＞

ArfGAP1-ArfGAP3の背景
細胞内のタンパク質の輸送は、主として輸送小胞を介して行なわれる。低分子量GTPaseのARFは、GDP結合型（不活性型）とGTP結合型（活性型）の間をサイクルすることで輸送小胞の形成を調節する。ARFの不活性型への変換は、ARF-GAP（GTPase活性化タンパク質）により触媒される。ヒトでは少なくとも23種類のARF-GAPが存在するが、小胞体-ゴルジ体間で働くとされるARF-GAPは、ArfGAP1のみであった。そこで、ArfGAP1が小胞体-ゴルジ体間で働く唯一のARF-GAPであるのかを確かめるために、RNAi法によってArfGAP1の発現を抑制して機能を解析した。しかし、様々なタンパク質の輸送に影響は無く、ArfGAP1以外にこの経路で働くARF-GAPが存在する可能性が示唆された。その候補として、データベース上よりArfGAP1と高い相同性を有する遺伝子をデータベース上に見出し、それらがコードするタンパク質をArfGAP2およびArfGAP3と名づけて、細胞内局在と機能の解析を行なった。

ArfGAP1-ArfGAP3の局在と機能の解析
著者は、ArfGAP2とArfGAP3に対する抗体をそれぞれ作製し、免疫蛍光染色により細胞内局在を調べた。その結果、内在性のArfGAP2とArfGAP3は、ArfGAP1と同様にゴルジ体シス領域に局在することが判明した。
次に、RNAi法を用いてArfGAP2およびArfGAP3をそれぞれ単独で発現抑制して機能を解析した。しかし、ArfGAP1発現抑制と同様に、様々なタンパク質の輸送に変化は無かった。そこで、ArfGAP1-ArfGAP3を二種ずつ、もしくは三種全てを発現抑制した細胞を解析した。その結果、ArfGAP1-ArfGAP3の三種全てを発現抑制した細胞で、本来はゴルジ体に局在する様々なタンパク質に影響が見られた。これらの結果は、ArfGAP1-ArfGAP3が補償的に働いてゴルジ体周辺で機能することを示唆する。

＜第二章 ArfGAPの細胞内小胞輸送における役割＞

小胞体-ゴルジ体間のタンパク質輸送とArfGAP
小胞体で合成された分泌タンパク質や受容体などの膜タンパク質は、COPII被覆小胞に詰め込まれ、小胞体からゴルジ体シス領域へと順行輸送される。輸送されたタンパク質のうち、分泌タンパク質はトランスゴルジ網に到達した後にエンドソームや細胞膜へと選別輸送される。一方、小胞輸送に必須の膜タンパク質や小胞体タンパク質は、COPI被覆小胞に詰め込まれてゴルジ体から小胞体へと逆行輸送される。これまでに、ArfGAP1がCOPI依存的な逆行輸送を調節す
るという報告はあるが、その詳細は不明であった。そこで、ArfGAP1-ArfGAP3が補償的に働いて、COPI依存的な逆行輸送を調節する可能性について解析した。

ArfGAP1-ArfGAP3はCOPI依存的な逆行輸送を調節する

著者はまず、ArfGAP1-ArfGAP3の全てを発現抑制した細胞における様々なオルガネラマーカーの局在を解析した。その結果、ゴルジ体と小胞体の間をリサイクルするERGIC-53、およびゴルジ体から小胞体への逆行輸送に関与するCOPI被覆小胞のコートタンパク質が、ゴルジ体と小胞体の間の中間コンパートメント（ERGIC）に蓄積することが判明した。さらに、この細胞では、モデルタンパク質のゴルジ体から小胞体への逆行輸送が抑制されていた。これらの結果から、ArfGAP1-ArfGAP3は補償的に働いて、COPI依存的な逆行輸送を調節する可能性が強まった。

＜第三章 ArfGAPの発現抑制とCOPIの発現抑制における表現型の類似性＞

COPIの背景

COPI被覆は、7種のサブユニットから成るCOPI複合体とARFから成る。著者は、ArfGAP1-ArfGAP3がCOPI依存的なゴルジ体から小胞体への逆行輸送を調節するのであれば、ArfGAP発現抑制細胞とCOPI機能を抑制した細胞は同じ表現型になるのではないかと考え、COPIサブユニットのうちのβ-COPを発現抑制して解析した。

COPI発現抑制細胞はArfGAP発現抑制細胞と類似的表現型を示す

ArfGAP発現抑制細胞と同様に、β-COP発現抑制細胞では、ゴルジ体と小胞体の間をリサイクルするタンパク質がERGICに蓄積した。また、モデルタンパク質のゴルジ体から小胞体への逆行輸送が阻害されていた。さらに、各発現抑制細胞を電子顕微鏡で観察したところ、どちらの細胞にも空胞状の構造体が蓄積していることが判明した。また、この構造体にβ-COPが蓄積していたことから、この構造体はゴルジ体に由来すると考えられた。β-COP発現抑制細胞とArfGAP発現抑制細胞が類似の表現型を示すことから、ArfGAP1-ArfGAP3はCOPI依存的な輸送経路で働くことが証明された。
細胞内のタンパク質の輸送は、主として膜で覆われた輸送小胞を介して行なわれる。低分子量GTPaseのARFは、GDP結合型とGTP結合型の間をサイクルすることによって輸送小胞の形成を調節する。ARFのGDP結合型への変換は、ARF-GAP（GTPase活性化タンパク質）によって触媒される。ヒトには少なくとも23種類のARF-GAPが存在するが、小胞体とゴルジ体の間で働くARF-GAPはArfGAP1のみであった。しかし、ArfGAP1の発現を抑制しても輸送に影響が見られないことや、酵母ではこの経路で機能するARF-GAPが複数存在することから、哺乳動物細胞においても複数のARF-GAPが小胞体とゴルジ体の間で機能する可能性が考えられた。

そこで本研究では、ArfGAP1と相同性の高いArfGAP2およびArfGAP3を見出し、それらの発現抑制による機能解析を行なった。その結果、ArfGAP2とArfGAP3は、ArfGAP1と同様にゴルジ体シス領域に局在し、これから三種のGAPが補償的に働いて、COPI依存的なゴルジ体から小胞体への逆行輸送を調節することが明らかになった。

まず本論文第一章では、ArfGAP1-ArfGAP3の細胞内局在と機能の解析について報告している。内在性的ArfGAP2とArfGAP3の局在を調べるために、これらのタンパク質に対する抗体を作製してその局在を調べたところ、ArfGAP1と同様にシスゴルジ体に局在することが判明した。また、ArfGAP1-ArfGAP3の機能を探るためにRNAiによるこれら三種のGAPの発現抑制を行う。その結果、ArfGAP1-ArfGAP3発現抑制細胞で、本来はゴルジ体に局在する様々なタンパク質に影響が見られ、ArfGAP1-ArfGAP3が補償的に働いてゴルジ体周辺で機能することが明らかになった。

次に第二章では、第一章で確立したArfGAP1-ArfGAP3の発現抑制系を用いて、細胞内小胞輸送におけるArfGAPの機能解析について報告している。ArfGAPの発現抑制細胞では、ゴルジ体と小胞体の間をリサイクルするERGIC-53や、ゴルジ体から小胞体への逆行輸送に関与するCOPI被覆小胞のコートタンパク質がERGICに蓄積することが判明した。さらに、このような発現抑制細胞では、モデルタンパク質のゴルジ体から小胞体への逆行輸送が抑制されていた。これらの結果から、ArfGAP1-ArfGAP3はCOPI依存的なゴルジ体から小胞体への逆行輸送を調節することが明らかになった。

さらに第三章では、ArfGAP発現抑制とCOPI発現抑制における表現型の類似性について報告している。各発現抑制細胞を電子顕微鏡で観察したところ、どちらの細胞にも空胞状の構造体が蓄積していることが判明した。また、この構造体はゴルジ体由来と考えられた。β-COP発現抑制細胞とArfGAP発現抑制細胞が類似の表現型を示すことから、ArfGAP1-ArfGAP3はCOPI依存的な輸送経路で働くことが証明された。
本研究により複雑な小胞輸送の調節機構の一端が明らかとなった。これらの研究成果は今後の小胞輸送の研究に大きな発展をもたらすものと期待される。

よって本論文は博士（薬学）の学位論文として価値あるものと認める。
さらに、平成22年2月22日、論文内容とそれに関連する口頭試問を行った結果、合格と認めた。

論文内容の要旨及び審査の結果の要旨は、本学学術情報リポジトリに掲載し、公表とする。特許申請、雑誌掲載等の関係により、学位授与後即日公表することに支障がある場合は、以下に公表可能とする日付を記入すること。

要旨公開可能日： 平成 年 月 日以降