Acute generalized exanthematous pustulosis caused by gemcitabine after nivolumab in metastatic lung adenocarcinoma followed by a dramatic tumor response: A case report

Pierre Magdelaine | Adrien Costantini | Lucie Fabre | Etienne Giroux-Leprieur

1Department of Respiratory Diseases and Thoracic Oncology, APHP – Hopital Ambroise Pare, Boulogne-Billancourt, France
2University Paris-Saclay, UVSQ, EA 4340 BECCOH, Boulogne-Billancourt, France
3Department of pathology, APHP-Hopital Ambroise Pare, Boulogne-Billancourt, France

Abstract
Herein, we report a case of a 73-year-old female patient diagnosed with cT4N0M1a lung adenocarcinoma with KRAS G12C mutation, PDL1 < 1% and treated in fourth-line setting with gemcitabine after progression under nivolumab. After one infusion of gemcitabine, the patient presented with an acute worsening of general condition (performance status 4) with extensive skin lesions and fever, leading to hospitalization and diagnosis of acute generalized exanthematous pustulosis. Initial blood work revealed multiple organ failures with an important inflammatory syndrome. Patient state improved after intravenous hydration and local and systemic corticosteroids. The decision was made to stop systemic cancer treatment. Two months follow-up showed a remarkable response on all cancer localizations. Although immunotherapy is transforming cancer care, predicting response to immunotherapy remains challenging and resistant mechanisms remain mostly unknown. This case underlines that important immune-stimulation can lead to tumor response in a patient previously refractory to all antitumor treatments.

KEYWORDS
acute generalized exanthematous pustulosis, gemcitabine, lung adenocarcinoma, nivolumab

INTRODUCTION
Immunotherapy (IO) has transformed the treatment of advanced lung cancer. However, IO resistance mechanisms leading to treatment failure remain unclear and prognostic markers such as PD-L1 tumor proportion score (TPS) determined by immunohistochemistry (IHC) are not sufficient to predict tumor response. Acute immune events could be involved in immunotherapy efficacy by increasing therapeutic effects even for patients initially considered as nonresponders. Furthermore, some studies suggest that dermatological toxicity can be associated with the efficacy of IO although the related mechanism remains unclear. Herein, we report a case of a patient with metastatic lung adenocarcinoma who had tumor progression with nivolumab in the third-line setting. After one infusion of fourth-line gemcitabine, she presented with acute generalized exanthematous pustulosis (AGEP) associated with worsening of general condition and a dramatic tumor response on follow-up CT-scan performed 2 months after hospital discharge.

CASE REPORT
A 73-year-old woman who presented with advanced (cT4N0M1a) non-small cell lung cancer (NSCLC) of adenocarcinoma histology with KRAS G12C mutation, PDL1 < 1% was admitted to the pulmonology ward with anorexia, nausea, dyspnea, fever and extensive skin lesions as well as impaired general condition with performance status (PS) at 4. She had previously received first-line chemotherapy with carboplatin and weekly paclitaxel (progression after 2 cycles), second-line pemetrexed (progression after 4 cycles) and third-line immunotherapy with nivolumab (progression after 6 infusions). Past medical history included hypothyroidism, infectious pneumonia and tobacco use. The last nivolumab
infusion was performed three-weeks prior to admission, and the patient had received her first gemcitabine infusion a week prior to admission.

Initial clinical examination found oxygen saturation levels at 95% under 4 L/min of oxygen and erythematous maculopapular plaques of the trunk and limbs associated with micropustular lesions. Blood work revealed anemia (8.6 g/dl), lymphopenia with no other CBC defects, acute renal failure (creatinine 270 μmol/l, GFR = 14 ml/min/1.73 m²), hepatic cytolysis (ASAT: 281 U/L, ALAT: 61 U/L) and C-reactive protein at 390 mg/l. Electrocardiogram was normal, and chest X-ray showed no new lesions. Dermatological consult concluded to AGEP caused by gemcitabine. The skin biopsy confirmed this diagnosis (Figure 1). The patient was treated with dermocorticosteroids, systemic corticosteroid therapy and intravenous hydration. Blood, sputum and urine cultures were negative. Respiratory multiplex polymerase chain reaction (PCR) as well as legionella and pneumococcus antigenuria were negative.

The patient’s condition quickly improved, allowing weaning of oxygen and progressive normalization of the liver and kidney functions. The patient’s erythematous lesions decreased and she was discharged 10 days later under 20 mg of oral prednisone per day.

A CT-scan was performed 2 months later. Compared to baseline CT-scan performed before the first infusion of gemcitabine (Figure 2a,b), a major tumor response with

FIGURE 1 Skin biopsy of patient showing typical histological features of AGEP with subcorneal pustule (1), apoptotic keratinocyte (2) and eosinophil infiltration (3)

FIGURE 2 Chest computed tomography (CT) showing the dramatic response observed after one infusion of gemcitabine. (a, b) Baseline CT scan before gemcitabine. (c, d) CT scan after one injection of gemcitabine and AGEP, with a dramatic tumor response
Moreover, AGEP caused by immunotherapy alone, or in association with chemotherapy, in lung cancer has already been described with a short delay between immunotherapy initiation and first clinical signs of AGEP. Other reports suggest that AGEP induced by a combination of two different checkpoints inhibitors could appear later after the beginning of immunotherapy.

We hypothesize that the resulting acute immune reaction induced a major antitumor response, possibly enhanced by the previous treatment line by nivolumab. It is indeed unlikely that a single infusion of gemcitabine in the fourth line setting would result in such a dramatic tumor response, and previous studies have shown that chemotherapy received after immunotherapy does not yield increased response rates.

In conclusion, IO is a milestone in the treatment of advanced lung cancer. However, its efficacy remains difficult to predict, with unreliable markers and unknown resistant mechanisms. Our case suggests that acute immune reactions, such as AGEP, can greatly increase IO efficacy.

ACKNOWLEDGMENTS

Figure 1 was created with BioRender.com

CONFLICT OF INTEREST

EGL: BMS (advisory board, honoraria); PM, AC, JF: none.

ORCID

Etienne Giroux-Leprieur https://orcid.org/0000-0001-8441-1701

REFERENCES

1. Fukuoka T, Yamamoto Y, Utsunomiya J, Usami E, Kimura M, Yoshimura T, et al. Association between immune-related dermatologic adverse events and efficacy of pembrolizumab in non-small cell lung cancer patients. Pharmacol. 2021;76(5):39-42.

2. Haratani K, Hayashi H, Chiba Y, Kudo K, Yonesaka K, Kato R, et al. Association of immune-related adverse events with nivolumab efficacy in non–small-cell lung cancer. JAMA Oncol. 2018;4(3):374.

3. Socinski MA, Jotte RM, Cappuzzo F, Nishio M, Mok TSK, Reck M, et al. Pooled analyses of immune-related adverse events (irAEs) and efficacy from the phase 3 trials IMpower130, IMpower132, and IMpower150. JCO. 2021;39(Suppl 15):9002-2.

4. Hussaini S, Chehade R, Boldt RG, Raphael J, Blanchette P, Maleki Vareki S, et al. Association between immune-related side effects and efficacy and benefit of immune checkpoint inhibitors – a systematic review and meta-analysis. Cancer Treat Rev. 2021;92:102134.

5. Feldmeyer L, Heidemeyer K, Yawalkar N. Acute generalized exanthematous pustulosis: pathogenesis, genetic background, clinical variants and therapy. JIMs. 2016;17(8):1214.

6. Creadore A, Desai S, Alloo A, Dewan AK, Bakhtiar M, Cruz-Diaz C, et al. Clinical characteristics, disease course, and outcomes of patients with acute generalized exanthematous pustulosis in the US. JAMA Dermatol. 2022;158(2):176.

7. George J, De D, Mahajan R, Saikia UN, Kanwar AJ. Acute generalized exanthematous pustulosis caused by gemcitabine. Int J Dermatol. 2014;53(3):e184-e5.

8. Chang H-C, Ko P-H, Chang Y-S, Chou P-C. Acute generalized exanthematous pustulosis induced by atezolizumab in a patient with lung adenocarcinoma. Lung Cancer. 2021;159:175-6.

9. Matsubara T, Uchi H, Haratake N, Takamori S, Toyozawa R, Miura N, et al. Acute generalized Exanthematous Pustulosis caused by pembrolizumab in a patient with non-small cell lung cancer. J Dermatol. 2021;48(11):1172-4.
by the combination of Pembrolizumab plus chemotherapy in a patient with squamous-cell carcinoma. Clinical Lung Cancer. 2020; 21(2):e54–6.

10. Page B, Borradori L, Beltraminelli H, Yawalkar N, Hunger RE. Acute generalized exanthematous pustulosis associated with ipilimumab and nivolumab. J Eur Acad Dermatol Venereol. 2018; 32(7):e256–7.

11. Costantini A, Corny J, Fallet V, Renet S, Friard S, Chouaid C, et al. Efficacy of next treatment received after nivolumab progression in patients with advanced nonsmall cell lung cancer. ERJ Open Res. 2018;4(2):00120–2017.

How to cite this article: Magdelaine P, Costantini A, Fabre L, Giroux-Leprieur E. Acute generalized exanthematous pustulosis caused by gemcitabine after nivolumab in metastatic lung adenocarcinoma followed by a dramatic tumor response: A case report. Thorac Cancer. 2022;13:1994–7. https://doi.org/10.1111/1759-7714.14405