Chemical Diversity of Liverworts From *Frullania* Genus

Agnieszka Ludwiczuk¹ and Yoshinori Asakawa²

Abstract

Frullania is one of the largest and taxonomically most complex genus of leafy liverworts. Current morphology-based estimates of *Frullania* diversity are close to 400 species; however, species level-classification of *Frullania* has been regarded notoriously difficult and subject to many studies. The liverworts classified in this genus have been studied using morphological evidence and molecular markers but also in terms of secondary metabolite composition. Up to now 98 *Frullania* species have been chemically investigated. As a result, it is known that *Frullania* species are characterized by a remarkable chemical diversity. The most characteristic compounds present in this liverwort genus are sesquiterpene lactones with eudesmanolides as the most diverse group, and aromatic compounds belonging to bibenzyls. In this review paper we report the distribution of secondary metabolites in all chemically investigated *Frullania* species and discuss some aspects concerning the division of this genus into chemotypes.

Keywords

Frullania, liverworts, sesquiterpene lactones, eudesmanolides, bibenzyls, chemotypes

Received: August 1st, 2020; Accepted: January 15th, 2021.

Frullania Raddi is a genus of leafy liverworts and is characterized by its often reddish pigmentation and includes both narrow endemics and nearly cosmopolitan species. This liverwort genus has a worldwide distribution with centers of diversity in the humid tropics and warm temperate regions. Many species of *Frullania* occur not only in moist but also in rather dry vegetation.¹² *Frullania* is also the largest and taxonomically most complex liverwort genus classified in order Porellales within family Frullaniaceae.³⁴

Species of liverworts have traditionally been circumscribed using morphological evidence. It was the time that geographical or typological species concepts was preferred and liverwort species were regarded as largely invariable units with small ranges. Then, the intraspecific morphological variation concept was accepted, and it contributed to the reduction of local binomials to synonyms of widespread liverwort species.⁴⁵ More recently, morphology-based species concepts have been tested using evidence from molecular markers including isozymes, and variable regions of the nuclear and the plastid genomes,²⁶ as well as secondary metabolites.⁷⁸

In case of *Frullania* there are estimated 300-375 species,⁹ however, species level-classification of *Frullania* has been regarded notoriously difficult and subject to much controversy.¹ They have been various proposals for a subdivision of *Frullania* into natural species groups.¹⁰¹¹ As a result, more than 15 subgenera and over 30 sections and subsections based on morphology were established.¹¹ Recently, Hentschel et al. (2009)⁶ presented the most comprehensive molecular phylogeny of *Frullania* to date. The liverworts classified in genus *Frullania* have not only been studied using morphological evidence and molecular markers but also in terms of secondary metabolite composition.¹²¹⁶ The use of the secondary metabolites as aids to plant taxonomy was popularized by the publication of Swain (1963).¹³ Terpenoids not only sesquiterpene lactones,¹⁸¹⁹ but also flavonoids²⁰ are of value in the taxonomic and evolutionary investigations of plants. In this review paper we report the distribution of secondary metabolites in all chemically investigated *Frullania* species and discuss some aspects concerning the division of this genus into chemotypes.

¹Independent Laboratory of Natural Products Chemistry, Department of Pharmacognosy, Medical University of Lublin, Lublin, Poland
²Institute of Pharmacognosy, Tokushima Bunri University, Tokushima, Japan

Corresponding Authors:

Agnieszka Ludwiczuk, Independent Laboratory of Natural Products Chemistry, Department of Pharmacognosy, Medical University of Lublin, 1 Chodzki Sr, 20-093, Lublin, Poland.

Email: aludwiczuk@pharmacognosy.org

Yoshinori Asakawa, Institute of Pharmacognosy, Tokushima Bunri University, Tokushima, Japan

Email: asakawa@ph.bunri-u.ac.jp
Table 1. Group of Compounds Found in Chemically Investigated *Frullania* Species.

No.	*Frullania* species	Collection place	Group of compounds	References
1	*Frullania africana*	Herbarium sample	Flavonoids	Yuzawa et al., 1987 23
				Asakawa 1995 22
2	*Frullania amplicipitans*	Miyazaki, Japan; Miyake Island, Japan	Sesquiterpene hydrocarbons; Diterpenes; Bibenzyls	Asakawa et al., 1981 12
3	*Frullania anomala*	South Island, New Zealand	Sesquiterpene hydrocarbons; Bibenzyls; Lipids	Asakawa et al., 2003 14
4	*Frullania apiculata*	Cameron Highlands, Pahang, Malaysia	Sesquiterpene lactones	Asakawa et al., 1983 24
5	*Frullania aroeae*	Colombia, South America	Flavonoids	Kraut et al., 1995 13
6	*Frullania asagayama*	Pounds Escarpment, Illinois, USA	Sesquiterpene lactones	Asakawa et al., 1991 25
7	*Frullania aterrima*	North Island, New Zealand	Sesquiterpene hydrocarbons and lactones; Diterpenes	Asakawa et al., 2003 14
8	*Frullania aterrima* var.	North Island, New Zealand	Sesquiterpene hydrocarbons and lactones	Asakawa et al., 2003 14
9	*Frullania bella*	Proney village and Yate lake, New Caledonia	Sesquiterpene hydrocarbons; Oxygenated sesquiterpenes	Météoy et al., 2016 26
10	*Frullania brachyclada*	Herbarium sample	Flavonoids	Yuzawa et al., 1987 23
11	*Frullania bicornistipula*	Panama	Sesquiterpene hydrocarbons and lactones	Asakawa 1995 22
12	*Frullania bonica*	Hahajima Island, Japan	Bibenzyls	Asakawa et al., 1981 12
13	*Frullania brasiliensis*	Tucuman province, Argentina; Loja province, Ecuador	Sesquiterpene hydrocarbons and lactones; Oxygenated sesquiterpenes; Sterols; Triterpenes; Bibenzyls; Other aromatic compounds	Asakawa 1995 22
				Bardon et al., 2002 27
				Valarezo et al., 2020 26
14	*Frullania brotheri*	Wakayama Prefecture, Japan	Sesquiterpene lactones	Takeda et al., 1983 29
15	*Frullania californica*	Eugene, Oregon, USA	Sesquiterpene lactones	Asakawa et al., 1991 25
16	*Frullania cesatiana*	Switzerland: Tessin; Italy: South Tirol	Flavonoids	Kraut et al., 1995 13
17	*Frullania chesadieri*	North Island, New Zealand	Sesquiterpene hydrocarbons and lactones; Lipids	Asakawa et al., 2003 14
18	*Frullania clavata*	Blue Mountains, New South Wales, Australia	Sesquiterpene hydrocarbons; Oxygenated sesquiterpenes	Asakawa et al., 1983 24
19	*Frullania confertihyla*	Herbarium sample	Sesquiterpene hydrocarbons and lactones	Yuzawa et al., 1987 23
20	*Frullania congesta*	Stewart Island, New Zealand	Sesquiterpene hydrocarbons and lactones	Asakawa et al., 2003 14
21	*Frullania concinuta*	Paramo el Angel, Ecuador	Sesquiterpene lactones; Bibenzyls; Bisbibenzyls	Flégel et al., 1999 30
22	*Frullania cornuta*	Koghis forest, New Caledonia	Sesquiterpene hydrocarbons; Oxygenated sesquiterpenes	Météoy et al., 2010 26
23	*Frullania davurica*	Tokushima, Japan; Hokkaido, Japan	Monoterpenes; Sesquiterpene hydrocarbons and lactones; Bibenzyls; Flavonoids; Sterols	Mues et al., 1984 41
		Tottori, Japan		Asakawa 1995 22
24	*Frullania densiloba*	Tokushima, Japan	Sesquiterpene hydrocarbons and lactones; Oxygenated sesquiterpenes	Asakawa et al., 1980 32
				Asakawa et al., 1981 12
25	*Frullania deplanata*	Tasmania, Australia; North Island, New Zealand	Sesquiterpene hydrocarbons and lactones; Oxygenated sesquiterpenes	Asakawa et al., 2003 14
26	*Frullania dilatata*	Dordogne, France	Monoterpenes; Sesquiterpene hydrocarbons and lactones	Asakawa et al., 1980 32
				Asakawa et al., 1981 12
				Asakawa 1982 28
27	*Frullania dilatata* var.	Black Sea, near Varna, Bulgaria	Monoterpenes; Sesquiterpene hydrocarbons and lactones	Asakawa et al., 1980 32
	anomala			Asakawa et al., 1981 12
				Nagashima et al., 1994 33
28	*Frullania diversitexta*	Miyazaki, Japan	Monoterpenes; Sesquiterpene hydrocarbons and lactones; Oxygenated sesquiterpenes	Asakawa et al., 1980 32
				Asakawa et al., 1981 12

(Continued)
No.	Frullania species	Collection place	Group of compounds	References
29	*Frullania eboracensis*	New York, Adirondack Mts. and Rensselaer county; New Jersey, Warren county, USA	Flavonoids; Aromatic compounds	Kraut et al., 1995¹³
30	*Frullania ecklonii*	Herbarium sample	Flavonoids	Yuzawa et al., 1987²³
31	*Frullania ericoides*	Kochi, Japan	Sesquiterpene hydrocarbons; Bibenzyls; Flavonoids	Asakawa et al., 1981³⁴
		Tokushima, Japan		Asakawa et al., 1983³⁴
		Noumea, New Caledonia		Métoyer et al., 2016²⁶
32	*Frullania falsiloba*	Blue Mountains, New South Wales, Australia	Monoterpenes; Sesquiterpene hydrocarbons; Oxygenated sesquiterpenes; Diterpenes, Sterols, Bibenzyls, Other aromatic compounds; Lipids	Asakawa et al., 1983³⁴
		North Island, New Zealand		Asakawa et al., 2003³⁴
				Nagashima et al., 2006³⁵
33	*Frullania falcicornuta*	Koghis forest, New Caledonia	Sesquiterpene hydrocarbons; Oxygenated sesquiterpenes	Métoyer et al., 2016²⁶
34	*Frullania fragilifolia*	Haut-Rhin, France	Monoterpenes; Sesquiterpene hydrocarbons	Asakawa et al., 1980³⁶
				Asakawa et al., 1981³²
35	*Frullania franciscana*	Ecola State Park, Cannon Beach, Oregon, USA	Sesquiterpene lactones	Sass 1981¹²
36	*Frullania fugax*	North Island, New Zealand	Sesquiterpene hydrocarbons, Diterpenes; Sterols; Aromatic compounds	Asakawa et al., 2003³⁴
37	*Frullania gandichandii*	Kalimantan Timur, Borneo	Sesquiterpene hydrocarbons; Oxygenated sesquiterpenes	Asakawa et al., 1983²⁴
38	*Frullania gibosa*	Herbarium sample	Flavonoids	Kraut et al., 1995¹³
39	*Frullania grastinii*	Galapagos Island, Ecuador	Flavonoids	Yuzawa et al., 1987²³
40	*Frullania hamatiloba*	Tokushima, Japan	Monoterpenes; Sesquiterpene hydrocarbons and lactones; Oxygenated sesquiterpenes; Diterpenes; Flavonoids; Sterols	Toyota et al., 1988³⁸
		Shanxi Province, China		Hashimoto et al., 1998³⁹
				Qiao et al., 2019⁴⁰
41	*Frullania incumbens*	North Island, New Zealand	Sesquiterpene hydrocarbons and lactones; Diterpenes; Bibenzyls; Lipids	Asakawa et al., 1996⁴¹
				Asakawa et al., 2003¹⁴
42	*Frullania inflata*	Mie, Japan	Sesquiterpene hydrocarbons and lactones	Asakawa et al., 1980³²
				Asakawa et al., 1981¹²
43	*Frullania inflata var. mogybarae*	Herbarium sample	Monoterpenes	Asakawa et al., 1981³⁴
44	*Frullania inouei*	Yunnan Province, China	Diterpenes; Bibenzyls	Guo et al., 2010⁴²
45	*Frullania jackii*	Herbarium sample	Sesquiterpene hydrocarbons; Sterols, Bibenzyls, Flavonoids	Mues et al., 1984³¹
46	*Frullania kagoshimensis*	Miyazaki, Japan	Sesquiterpene hydrocarbons	Asakawa et al., 1995³²
47	*Frullania lasiothra*	Herbarium sample	Flavonoids	Yuzawa et al., 1987²³
48	*Frullania lobulata*	Brunswick Peninsula, Chile	Sesquiterpene hydrocarbons and lactones; Oxygenated sesquiterpenes; Lipids	Asakawa et al., 2003³⁴
49	*Frullania magellanica*	Bahia Buen Suceso, Argentine	Sesquiterpene hydrocarbons and lactones; Lipids	Asakawa et al., 2003³⁴
50	*Frullania mamiillilosa*	Creek Pernod and Prony village, New Caledonia	Sesquiterpene hydrocarbons and lactones	Métoyer et al., 2016²⁶
51	*Frullania media*	Stewart Island, New Zealand	Sesquiterpene hydrocarbons and lactones; Oxygenated sesquiterpenes; Diterpenes	Asakawa et al., 2003¹⁴
52	*Frullania microaestivus*	Prov. Magallanes, Chile	Aromatic compounds	Asakawa et al., 2003¹⁴
53	*Frullania monogena*	Mie, Japan	Sesquiterpene hydrocarbons and lactones; Oxygenated sesquiterpenes; Diterpenes; Bibenzyls	Asakawa et al., 1981¹²
54	*Frullania monoyama*	Miyazaki, Japan	Sesquiterpene hydrocarbons	Asakawa et al., 1980³²
		Mie, Japan		Asakawa et al., 1981¹²
55	*Frullania multilocera*	Koghis forest, New Caledonia	Sesquiterpene hydrocarbons	Métoyer et al., 2016²⁶

(Continued)
No.	Frullania species	Collection place	Group of compounds	References
56	Frullania musciola (Frullania brittoniae spp. truncatifolia)	Miyazaki, Japan; Hiroshima, Japan; Shandong Province, China; Ilha Terceira, Azores	Sesquiterpene lactones; Flavonoids; Bibenzyls; Phthalides; Other aromatic compounds	Asakawa et al., 1976; Asakawa et al., 1981; Kraut et al., 1993; Kraut et al., 1994; Lou et al., 2002
57	Frullania nepalensis	Arishan, Taiwan	Sesquiterpene lactones; Oxygenated sesquiterpenes;	Tori et al., 1990; Asakawa et al., 1991; Asakawa 1995
58	Frullania insignisensis	Oregon, USA	Sesquiterpene lactones; Aromatic compounds	Asakawa et al., 1991; Kim et al., 1996
59	Frullania obscura	Herbarium sample	Flavonoids	Yuzawa et al., 1987
60	Frullania ossumiensis	Miyazaki, Japan	Sesquiterpene hydrocarbons and lactones; Oxygenated sesquiterpenes; Bibenzyls	Asakawa et al., 1980; Asakawa et al., 1981
61	Frullania orientalis	Herbarium sample	Flavonoids	Yuzawa et al., 1987
62	Frullania parvispina	Kyoto, Japan	Sesquiterpene hydrocarbons and lactones; Bibenzyls	Asakawa et al., 1981; Asakawa et al., 1981
63	Frullania patula	North Island, New Zealand	Sesquiterpene hydrocarbons; Diterpenes; Bibenzyls	Asakawa et al., 2003
64	Frullania prusilhata	Tokushima, Japan; Miyazaki, Japan	Monoterpenes; Sesquiterpene hydrocarbons; Bibenzyls	Asakawa et al., 1979; Asakawa et al., 1981
65	Frullania planicarinata	Herbarium sample	Flavonoids	Yuzawa et al., 1987
66	Frullania polysticta	Madeira	Flavonoids	Kraut et al., 1993
67	Frullania probochophora	Tasmania, Australia; South Island, New Zealand	Sesquiterpene hydrocarbons and lactones; Oxygenated sesquiterpenes; Aromatic compounds	Asakawa et al., 2003
68	Frullania pychanthha	Stewart Island, New Zealand	Sesquiterpene hydrocarbons and lactones; Oxygenated sesquiterpenes; Bibenzyls	Asakawa et al., 2003
69	Frullania pyrnantha	North Island and Stewart Island, New Zealand	Monoterpenes; Sesquiterpene hydrocarbons; Diterpenes; Bibenzyls; Lipids	Asakawa et al., 2003
70	Frullania ramuligera	Miyazaki, Japan	Sesquiterpene hydrocarbons and lactones	Asakawa et al., 1980; Asakawa et al., 1981
71	Frullania riganeirensis	Colombia, South America	Flavonoids	Yuzawa et al., 1987
72	Frullania rostrata	Stewart Island, New Zealand	Sesquiterpene lactones	Asakawa et al., 2003
73	Frullania scalaris	Yate lake, New Caledonia	Sesquiterpene hydrocarbons and lactones	Métoyer et al., 2016
74	Frullania scadens	North Island, New Zealand	Sesquiterpene hydrocarbons; Bibenzyls; Lipids	Asakawa et al., 2003
75	Frullania serrata	Cameron Highlands, Pahang, Malaysia Yunnan Province, China	Sesquiterpene hydrocarbons and lactones; Oxygenated sesquiterpenes; Bibenzyls	Asakawa et al., 1983; Asakawa et al., 1991; Li et al., 2014
76	Frullania solanderiana	North Island, New Zealand	Sesquiterpene hydrocarbons; Lipids	Asakawa et al., 2003
77	Frullania spinifera	North Island, New Zealand	Monoterpenes; Sesquiterpene hydrocarbons; Bibenzyls; Lipids	Asakawa et al., 2003
78	Frullania sphaerocephala	Herbarium sample	Sesquiterpene hydrocarbons and lactones; Flavonoids	Asakawa 1995; Yuzawa et al., 1987
79	Frullania squamissula	North Island, New Zealand	Sesquiterpene hydrocarbons and lactones; Oxygenated sesquiterpenes; Diterpenes, Triterpenes, Aromatic compounds	Asakawa et al., 2003; Asakawa et al., 2008
80	Frullania tamariscii	Dordogne, France; Jura, France; Corsica, France	Monoterpenes; Sesquiterpene hydrocarbons and lactones; Oxygenated sesquiterpenes	Asakawa et al., 1979; Asakawa et al., 1980; Asakawa 1995; Asakawa et al., 2013; Pannequin et al., 2017
One of the outstanding features of the liverworts is their chemistry. They produce a wide array of secondary metabolites, and up to now over several hundred new terpenoids, and aromatic compounds including bibenzyls and bisbibenzyls with more than 40 new carbon skeletons have been isolated. As a result of phytochemical studies, *Frullania* species are now known to produce a wide array of secondary metabolites. As shown in Table 1, 98 *Frullania* species have been chemically investigated. Most of the compounds either detected in or isolated from these species are terpenoids, aromatic compounds, and flavonoids. Among terpenoids, the sesquiterpenes are the most diverse group, but the presence of mono-, di-, and triterpenes was also confirmed. α-Pinene (1), β-pinene (2), camphene (3), δ-phellandrene (4), myrcene (5), limonene (6), and α-terpinene (7) are the monoterpenoids frequently found in *Frullania* species (Figure 1). Due to the fact that most of the *Frullania* species elaborate the same monoterpenoids, it is difficult to use them as chemosystematic markers.

As a result of phytochemical studies, *Frullania* species are now known to produce a wide array of secondary metabolites. As shown in Table 1, 98 *Frullania* species have been chemically investigated. Most of the compounds either detected in or isolated from these species are terpenoids, aromatic compounds, and flavonoids. Among terpenoids, the sesquiterpenes are the most diverse group, but the presence of mono-, di-, and triterpenes was also confirmed. α-Pinene (1), β-pinene (2), camphene (3), δ-phellandrene (4), myrcene (5), limonene (6), and α-terpinene (7) are the monoterpenoids frequently found in *Frullania* species (Figure 1). Due to the fact that most of the *Frullania* species elaborate the same monoterpenoids, it is difficult to use them as chemosystematic markers.

In comparison to monoterpenoids, the sesquiterpenoids present in this liverwort genus are characterized by a wide range of different sesquiterpene skeletons. There are especially eudesmanes, elemenides, eremophilanes, germacranes, bazzananes, pacifigor-ganes, and other minor groups of sesquiterpenoids, like aromadendranes, africanes, barbaranes, cadinanes, cuparanes, ditaranes, farnesanes, guainanes, monocyclofarnesanes, pinguinanes, and thu-jopsanes. The sesquiterpenoids, that seem to be the most

Table 1. Continued

No.	*Frullania* species	Collection place	Group of compounds	References
81	*Frullania tamarisci* subsp. *tamarisci*	Cote de Jor, France; Jula, France; Vosges, France	Monoterpenes; Sesquiterpene hydrocarbons and lactones; Oxygenated sesquiterpenes	Asakawa et al., 1979⁴⁹ Asakawa et al., 1980⁴² Asakawa et al., 1991²⁵ Asakawa 1995²²
82	*Frullania tamarisci* subsp. *asagrayama*	Pounds Escarpment, Illinois, USA	Oxygenated sesquiterpenes	Asakawa et al., 1979⁴⁹ Asakawa et al., 1980⁴²
83	*Frullania tamarisci* subsp. *nigra*	Japan (Hirosima, Miyazaki, Hokkaido, Ehime, Kochi, Tokushima); Trasas, East Java, Indonesia	Monoterpenes; Sesquiterpene hydrocarbons and lactones; Oxygenated sesquiterpenes; Bibenzyls	Asakawa et al., 1979⁴⁹ Asakawa et al., 1980⁴² Asakawa et al., 1981⁴²
84	*Frullania taradakensis*	Eugene, Oregon, USA	Sesquiterpene lactones	Asakawa 1982²¹ Asakawa et al., 1991²⁵
85	*Frullania tamarisci* subsp. *nigra*	Tokushima, Japan	Sesquiterpene hydrocarbons	Asakawa et al., 1980³² Asakawa et al., 1981¹²
86	*Frullania ternatensis*	Kalimantan Seratan, Borneo	Sesquiterpene lactones	Asakawa et al., 1983⁴⁴
87	*Frullania tenerifae*	Madeira: Juncal, near Fanal, Lombo dos Cedros Portugal: Estremadura	Flavonoids	Kraut et al., 1995⁵³
88	*Frullania tolimensis*	Herbarium sample	Flavonoids	Yuzawa et al., 1987⁶²
89	*Frullania 'truncata'*	Stewart Island, New Zealand	Sesquiterpene hydrocarbons	Asakawa et al., 2003⁴⁴
90	*Frullania usamiiensis*	Ehime, Japan	Monoterpenes; Sesquiterpene hydrocarbons and lactones; Bibenzyls	Asakawa et al., 1979⁴⁹ Asakawa et al., 1980⁴² Asakawa et al., 1981¹²
91	*Frullania wallichiana*	Herbarium sample	Flavonoids	Yuzawa et al., 1987⁶²
92	*Frullania retusa*	Miyazaki, Japan	Sesquiterpene hydrocarbons and lactones; Flavonoids	Asakawa et al., 1979⁴⁹ Asakawa et al., 1980³² Asakawa et al., 1981¹²
93	*Frullania yunnanensis*	Darjeeling, India	Monoterpenes; Sesquiterpene lactones	Asakawa et al., 1979⁴⁹ Asakawa et al., 1981¹²
94	unidentified *Frullania* sp. 1 (Venezuela)	Caracas, Venezuela	Sesquiterpene hydrocarbons and lactones; Oxygenated sesquiterpenes; Triterpenes; Bibenzyls	Hasimoto et al., 1993³⁵ Tori et al., 1995³⁶ Asakawa 1995²²
95	unidentified *Frullania* sp. 2 (New Zealand)	New Zealand	Oxygenated sesquiterpenes; Triterpenes	Asakawa et al., 1996⁴¹
96	unidentified *Frullania* sp. 3 (Indonesia)	West Sumatra, Indonesia	Sesquiterpene hydrocarbons; Diterpenes; Bibenzyls; Aromatic compounds	Komala et al., 2010³⁷
97	unidentified *Frullania* sp. 4 (Tahiti)	Mount Marau, Tahiti	Sesquiterpene hydrocarbons and lactones; Oxygenated sesquiterpenes	Komala et al., 2010³⁷
98	unidentified *Frullania* sp. 4	Mount Marau, Tahiti	Oxygenated sesquiterpenes	Komala et al., 2011³⁸

Chemistry of *Frullania* Species

One of the outstanding features of the liverworts is their chemistry. They produce a wide array of secondary metabolites, and up to now over several hundred new terpenoids, and aromatic compounds including bibenzyls and bisbibenzyls with more than 40 new carbon skeletons have been isolated.^{16,21,22} As a result of phytochemical studies, *Frullania* species are now known to produce a wide array of secondary metabolites. As shown in Table 1, 98 *Frullania* species have been chemically investigated. Most of the compounds either detected in or isolated from these species are terpenoids, aromatic compounds, and flavonoids. Among terpenoids, the sesquiterpenes are the most diverse group, but the presence of mono-, di-, and triterpenes was also confirmed. α-Pinene (1), β-pinene (2), camphene (3), δ-phellandrene (4), myrcene (5), limonene (6), and α-terpinene (7) are the monoterpenoids frequently found in *Frullania* species (Figure 1). Due to the fact that most of the *Frullania* species elaborate the same monoterpenoids, it is difficult to use them as chemosystematic markers.

In comparison to monoterpenoids, the sesquiterpenoids present in this liverwort genus are characterized by a wide range of different sesquiterpene skeletons. There are especially eudesmanes, elemenides, eremophilanes, germacranes, bazzananes, pacifigor-ganes, and other minor groups of sesquiterpenoids, like aromadendranes, africanes, barbaranes, cadinanes, cuparanes, ditaranes, farnesanes, guaianes, monocyclofarnesanes, pinguinanes, and thu-jopsanes. The sesquiterpenoids, that seem to be the most
characteristic of this genus are lactones (Figure 2). These components have been found in almost 50 Frullania species. Sesquiterpene lactones detected in and/or isolated from Frullania are mainly eudesmanolides. The most characteristic compounds belonging to this group are (+)-frullanolide (8) and (-)-frullanolide (9), but other, for example, α-(10), β-(11), and γ-cyclocostunolides (12) are also popular. Such α-methylene-γ-butyrolactones cause very strong allergic contact dermatitis. Their dihydroderivatives (13, 14) are also popular components in Frullania species but do not cause allergy.16 In the group of eudesmanolides it is also worth mentioning about rearranged spiroeudesmane-type lactones, called spirodilatanolides A-C (15-17) isolated from the European Frullania dilatata var. anomala.33

Almost all sesquiterpene lactones found in Frullania possess a 12,6-olide moiety. The exception of this rule was the isolation of densilobolides A (18) and B (19) form F. densiloba59 and eremorfrullanolate (20) together with dihydro-derivative (21) from F. lobulata, F. media, and F. proboscophora.16 The mentioned compounds have in their structures 12,8-olide moiety.

Another interesting feature of the sesquiterpene lactones occurring in Frullania is the presence of dimeric compounds. A good example is the isolation of two dimeric lactones with eudesmanolide structure called muscicolide A (22) and B (23) from the Portuguese F. muscicola.45

Frullania species, occasionally produce sesquiterpenoids which are very rare in this genus and are characteristic for just a few species. The good example is the presence of pacifigorgianes (eg, 24-26) in F. fragilifolia, as well as F. tamarisci and their subspecies. The second example are bazzarane-type sesquiterpenoids (eg, 27-29) found in F. falciloba, F. squarrosula and unidentified Frullania from New Zealand (Figure 3).16

Among the diterpenoids, labdane-, and fusicoccane-type compounds are most prevalent in Frullania, but kauranes have also been found in a few species. There are two Frullania species rich in labdane-type diterpenoids. These are F. hamatiloba and F. inouei and both produce manoyl oxide derivatives.22,40 The most characteristic components for the former species are hamatilobenes (eg., 30),22 while structurally similar labdanes, for example, 1,2-dehydro-3,7-dioxomanoyl oxide (31) were isolated from the second species (Figure 3).16

Frullania species occasionally also produce triterpenoids and these mainly belongs to oleanane, taraxane, hopane, lupane, and friedelan group. The major component of an unidentified Frullania species collected in Venezuela was methyl 3α-hydroxyolean-18-en-28-onate (32).56 F. fugax from New Zealand produces a triterpene alcohol, taraxerol, and the major component (88%),14 while α-zeorin (33) was isolated from the Argentine F. braziliensis.27 Another triterpene, friedelin, was found in F. tamarisci.21 The ether extracts from the New Zealand F. falciloba and F. squarrosula were fractionated to give epi-betulinic acid (34) (Figure 3).52

Besides terpenoids, the second group of compounds with a great diversity are bibenzyls (eg., 35-37) (Figure 4). The most abundant compounds in this group are bibenzyls possessing the methylenedioxy group. 3-Methoxy-3′,4′-methylenedioxybibenzyl (35) is the most predominant.16,21,22 In comparison to bibenzyls, their dimers called bissbibenzyls are very rare in Frullania. Such components together with acyclic bibenzyl-dihydrophenanthrenes were found in the Ecuadorian F. convoluta.30 The isolated bissbibenzyls,
Ludwiczuk and Asakawa 7

(40-43) are perrottetin-type compounds and are widespread in the Radulaceae and Marchantiaceae liverwort families. The acyclic bibenzyl-dihydrophenanthrenes, 38 and 39, seem to be good chemical markers of this liverwort, since these have been found only in this species.

Figure 2. Sesquiterpene lactones characteristic for Frullania species.

Flavonoids are ubiquitous minor components in the liverworts, also in genus Frullania. Among the flavonoids found in Frullania species more common are flavones, but also some flavanones were also detected. As in all liverworts, luteolin and apigenin derivatives dominate in this genus. It is worth
mentioning that the most common flavonoid glycosides are glucuronides, for example, luteolin-7-O-glucuronide (44), luteolin-7,4′-diglucuronide (45), or apigenin-7-O-glucuronide (48). Besides O-glycosides, flavone-C-glycosides were also found, but the most popular flavonoids are flavone methyl ethers (eg., 46, 47, 49) and hydroxy and methoxy derivatives of flavone and flavanone (Figure 5).13,16,21,22

Chemosystematic Approach

On the basis of the sesqui- and diterpenoids as well as bibenzyls composition, the Frullania species have been divided into six groups, namely, type I: sesquiterpene lactone-bibenzyl, type II: sesquiterpene lactone, type III: bibenzyl, type IV: labdane, type V: bazzanane, and type VI: pacifigorgiane-type (Table 2).

As shown in this table, the most significant markers of Frullania species are sesquiterpene lactones and bibenzyls. Five types of sesquiterpene γ-lactones have been recognized in Frullania species. There are the eudesmanolides, elemanolides, eremophilanolides, germacrnanolides, and guaianolides, and, among these, the eudesmane-type sesquiterpene lactones are the most prevalent. In case of bibenzyls found in Frullania, compounds possessing the methylenedioxy group and polymethoxylated bibenzyls occur much more often.16,21,22

Thirteen among ninety-eight chemically investigated Frullania species were classified as chemotype I. These species produce sesquiterpene lactones and bibenzyls as the main components.

South American Frullania brasiliensis belongs to the type I since it elaborates sesquiterpene lactones (eg., 8, 12, 13) and
3,3′,4-trimethoxybibenzyl.27 The most known eudesmanolide, frullanolide occurs in this species in both enantiomeric forms (8, 9). Besides eudesmanolides, this Argentine liverwort also produce eremophila-12,6-olides, 5-epi-dilatanolides A and B, which are very rare occurring lactones. Such kind of eremophilane lactones were also found in 2 more \textit{Frullania} species, \textit{F. muscicola} (type I) and \textit{F. dilatata} (type II).16

From a Bulgarian collection of \textit{F. dilatata} var. anomala which belongs to chemotype I, unusual spiroeudesmane-type lactones (15-17) were isolated along with C12/C6- and C12/C8-eremophilanolides and common eudesmanolides, frullanolide (8) and its dihydroderivative (13).33 It is chemosystematically interesting to note that neither C12/C6 eremophilanolides nor spirolactones as well as bibenzyls have been found in \textit{F. dilatata} from French collections.16,22

The Ecuadorian \textit{F. convoluta} is chemically very characteristic. Together with sesquiterpene lactones and bibenzyls, acyclic bisbibenzyls, perrottetins E–G (40-42), and bibenzyl-dihydrophenanthrenes (38, 39) were isolated.30 \textit{F. convoluta} is the only species that produce bisbibenzyls.

Two Venezuelan collections of an unidentified \textit{Frullania} species have been chemically analyzed. Phytochemical studies showed that one collection should be classified within type I, since it produces 3-methoxy-3′,4′-methylenedioxybibenzyl, α-cyclocostunolide (10) and rothin A acetate. The second collection showed just the presence of the mentioned sesquiterpene lactones, thus should be classified in type II.56

\textit{F. muscicola} is another liverwort classified in chemotype I. It produces both sesquiterpene lactones and bibenzyls.22,45 This liverwort is also known for the presence of dimeric

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure4.jpg}
\caption{Bibenzyls and bisbibenzyls characteristic for \textit{Frullania} species.}
\end{figure}
sesquiterpene lactones, muscicolides A (22) and B (23) as well as phthalides. Two other Frullania species, *F. tamarisci* ssp. *obscura* and *F. yunnanensis*, are known for the content of eudesmanolide dimers, while phthalides has been isolated from *F. falciloba*. 41,14,16,22

Frullania vethii, which was classified in chemotype II, produces guianolides together with elemane-type sesquiterpene lactones. 21,34 Guianolides have not been detected in the other *Frullania* species so far.

The New Zealand *Frullania chevalieri* (type II) elaborates eudesmane-type sesquiterpenes. The chemical analysis of the New Zealand *Frullania chevalieri* (type II) elaborates eudesmane-type sesquiterpenoids. 22

Frullania species classified in chemotype III do not produce sesquiterpene lactones at all, but these species are known for the presence of bibenzyls. Among eleven liverworts classified in chemotype III, 8 species elaborate bibenzyls possessing the methylenedioxy group; 3-methoxy-3′,4′-methylenedioxybibenzyl (35) is the most predominant. 16,21,22

Frullania hamatiloba and *F. fugax* represent the labdane chemotype (IV), since both species produce structurally similar labdane-type diterpenoids. Manoyl oxide has been isolated from *F. fugax*, 14 while its derivatives, hamatilobenes A-E (eg, 30), have been found in *F. hamatiloba*. 32 A second collection of *F. hamatiloba* was found to produce structurally different labdanes. Labdane-type epoxides, has been isolated from this species together with the fusicoccane-type diterpenoids. 39 From the Chinese collection of the same species six additional labdane diterpenoids, frullanians A-F were also isolated. 40 *F. hamatiloba* is thus a really reach source of labdanoïds. Structurally similar compounds has also been found in the other Chinese *Frullania* species, *F. inouei*. From the hydroalcoholic extract of this species seven labdane diterpenoids (eg, 31) were isolated together with highly methoxylated bibenzyl derivatives. 42 The New Zealand *F. falciloba* belongs to chemotype V of the Frullaniaceae, since it elaborates characteristic bazzanane-type sesquiterpenoids (27-29), with no sesquiterpene lactones having been detected. 35 Bazzanenes A-D have been isolated from an unidentified New Zealand *Frullania* species. 11 The bazzanane sesquiterpenoids have also been found in *F. squarrosula*. 14,52

Chemical analysis of the New Zealand *Frullania falciloba* from different collections showed the presence of β-bazzanene (27), but no other bazzananes were detected. This species produces 3-methoxy-3′,4′-methylendioxybibenzyl (35), as the main component, along with the fusicoccane diterpenoid, fusicocigantepoxide. 14 On the other hand, in an Australian specimen, a large amount of the monocyclofarnesane-type sesquiterpene hydrocarbon, striatene, together with fusicoccyane-type diterpenoids has been found. 14 It is worth mentioning that the same fusicoccyanes has also been confirmed in *F. squarrosula*. 14 Further detailed analysis is required in order to investigate the chemical variations within *Frullania falciloba*.

Type VI of *Frullania* species produces the pacifigorgiane-type sesquiterpenoids. (–)-Tamariscol (24), a pacifigorgiane alcohol, has been demonstrated to be the main component in the American *F. tamarisci* and *F. tamarisci* subsp. *asagrayana*. 22,61

The same compound has also been isolated from *F. tamarisci* subsp. *tamarisci* and *F. nepalensis*, while the (+)-enantiomer has been found in the European *F. tamarisci* subsp. *obscura*. 22 Besides tamariscol (24), *F. tamarisci* produces other pacifigorgianes (eg, 26), together with the rearranged pacifigorgiane, tamariscene (25). 61 Tamariscene (25) is the major constituent of the German *F. fragilifolia*, and the other pacifigorgianes have also been found. 61

The phytochemical studies of the Asian collections of *F. tamarisci* subsp. *obscura* showed that this species is not homogeneous and should be further divided into 2 subtypes, type-T and type-O. 22 Type-T produces the usual pacifigorgiane alcohol tamariscol (24) and eudesman-4α,6α-diol as the major components, whereas type-O lacks these 2 sesquiterpenoids while eudesmanolides are predominant. 22 Representatives of type T
Table 2. Chemotypes of *Frullania* Species.

Type	*Frullania* species	SES	DI								
		Pac	Ger	Baz	Eud	SL	Lab	Fus	BB	BB2	AR
I											
	F. brasiliensis	+				+++	+				
	F. convoluta	+				+++	+				
	F. davurica	+				+++	+				
	F. dilatata					+++	+				
	F. incumbens	+				+++	+				
	F. momoea	+				+++	+				
	F. muscicola					+++	+				
	F. osumiensis					+++	+				
	F. parvistipula					+++	+				
	F. ptychantha					+++	+				
	F. serrata					+++	+				
	F. usamiensis					+++	+				
	unidentified					+++	+				
	Frullania sp. 1					+++	+				
II						+++	+				
	F. apiculata					+++	+				
	F. asagrayama					+++	+				
	F. aterrima var. aterrima	+				+++	+				
	F. aterrima var. leptida					+++	+				
	F. biornistipula					+++	+				
	F. brotheri					+++	+				
	F. californica					+++	+				
	F. chesalieri					+++	+				
	F. congesta					+++	+				
	F. densiloba					+++	+				
	F. deplanata					+++	+				
	F. dilatata					+++	+				
	F. diversitexta					+++	+				
	F. franciscana					+++	+				
	F. inflata					+++	+				
	F. lobulata					+++	+				
	F. magellanica					+++	+				
	F. mammillloa					+++	+				
	F. media					+++	+				
	F. nisquallensis					+++	+				
	F. probosciphora					+++	+				
	F. ramuligera					+++	+				
	F. rostrata					+++	+				
	F. scalaris					+++	+				
	F. spathulopetala					+++	+				
	F. tamarisci subsp. nisquallensis					+++	+				
	F. ternatensis					+++	+				
	F. vethii					+++	+				
	F. yunnanensis					+++	+				
	unidentified					+++	+				

(Continued)
have been found in high mountains at 1500-3000 m altitude and in the northern part of Japan (42, 44°N), while type-O occurs more frequently at lower altitudes between 32 and 40°N.25

There are other thirty-two Frullania species difficult to classify in terms of the six chemotypes indicated above, and further chemical analysis will be necessary. However, among these species, the New Zealand F. solanderiana produces very characteristic 2-alkanones, such as 2-undecanone, 2-tridecanone, and 2-pentadecanone, as the main components.14 This is the first record of the identification of the 2-alkanones in the genus Frullania.

Type	Frullania species	SES	DI
III	F. amplicrania	+	+
	F. anomala		+++
	F. boninoda		+
	F. ericoides		+++
	F. jackii	+	+++
	F. patula	+	+++
	F. pedicellata		+
	F. pycnantha		+++
	F. scandonii		+++
	F. spinifera		+
	unidentified		+++
IV	F. fugax		+
	F. hamatiloba		+++
	F. inoue		+++
	F. solanderiana		+++
	F. squarroidea		+++
	unidentified		+++
V	F. falcinoba		+++
	F. nepalesis		+++
	F. tamarisci		+++
	F. tamarisci subsp. asagrayama	+	+++
	F. tamarisci subsp. obscura	+	+++
	F. tamarisci subsp. tamarisci	+	+++
VI	F. fragilifolia	+++	++
	F. neapalesis		+++
	F. tamarisci		+++
	F. tamarisci subsp. asagrayama	+	+++
	F. tamarisci subsp. obscura	+	+++
	F. tamarisci subsp. tamarisci	+	+++
	unidentified		+++

Abbreviations: SES, sesquiterpenes; Pac, pacifigorgianes; Ger, germacranes; Baz, bazzananes; Eud, eudesmanes; SL, sesquiterpene lactones; DI, diterpenes; Lab, labdanes; Fus, fusioceanes; BB, bibenzyls; BB₂, bisbibenzyls; AR, aromatic compounds; MON, monoterpenes; FLA, flavonoids.
Summary

Frullania species, although morphologically simple, are characterized by enormous diversity of secondary metabolites, especially terpenoids and aromatic compounds. The most characteristic compounds present in this liverwort genus are sesquiterpene lactones with eudesmanolides as the most diverse group, and aromatic compounds belonging to bibenzyls. It was already shown that the relationship between various types of liverworts can be predicted based on the similarity or differences in the chemical substances present in them. Here, we reported the distribution of secondary metabolites in all chemically investigated *Frullania* species, and discussed some aspects concerning the division of this genus into chemotypes. Based on the chemical composition, the *Frullania* species have been divided into six chemotypes, namely, type I: sesquiterpene lactone-bibenzyl, type II: sesquiterpene lactone, type III: bibenzyl, type IV: labdane, type V: bazzanane, and type VI: pacificigorgiane-type. However, it does not appear that this research could be completed at this stage. Within some of the recognized chemotypes, there are some *Frullania* that could be divided into some sub-chemotypes, for example, *Frullania tam-arisic* subsp. *obscura*, because of the chemical differences between different collections of particular species. There are also thirty-two *Frullania* species that could not be classified into the proposed six chemotypes. Further studies on secondary metabolites occurring in liverworts are still needed. The most valuable would be those conducted in parallel with the morphological and genetic studies. Despite the fact that around one quarter of the available species have already been studied chemically and the abundance of morphological and genetic data available, it is still difficult to suggest the division of the genus into some natural sections or propose phylogenetic tree of *Frullania* genus.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

ORCID ID

Agnieszka Ludwiczuk https://orcid.org/0000-0003-1108-613X

References

1. Schuster RM. *The Hepaticae and Anthocerotae of North America. East of the Hundredth Meridian*. Field Museum of Natural History. vol. 5; 1992:1-854.

2. Hentschel J, von Konrat MJ, Pócs T, et al. Molecular insights into the phylogeny and subgeneric classification of *Frullania Raddi* (Frullaniaceae, Porellales). *Mol Phylogenet Evol*. 2009;52(1):142-156. doi:10.1016/j.molphev.2008.12.021

3. Crandall-Stotler B, Stotler RE, Long DG. Phylogeny and classification of the Marchantiophyta. *Edinb J Bot*. 2009;66(1):155-198. doi:10.1017/s0960428609005393

4. Heinrichs J, Hentschel J, Feldberg K, Bombosch A, Schneider H. Phylogenetic biogeography and taxonomy of disjunctly distributed bryophytes. *J Syst Evol*. 2009;47(5):497-508. doi:10.1111/j.1759-6831.2009.00028.x

5. Heinrichs J, Hentschel J, Bombosch A, et al. One species or at least eight? Delimitation and distribution of *frullania tama-risi* (L.) Dumort. S. L. (Jungermanniopsida, Porellales) inferred from nuclear and chloroplast DNA markers. *Mol Phylogenet Evol*. 2010;56(3):1105-1114. doi:10.1016/j.molphev.2010.05.004

6. Odrzykoski IJ, Szewykowski J. Genetic differentiation without concordant morphological divergence in the thallose liverwort *Conocephalum conicum*. *Pl Syst Evol*. 1991;178:135-151.

7. Ludwiczuk A, Gradstein SR, Nagashima F, Asakawa Y. Chemosystematics of *Porella* (Marchantiophyta, Porellaceae). *Nat Prod Commun.*. 2011;6(3):315-321.

8. Ludwiczuk A, Odrzykoski IJ, Asakawa Y. Identification of cryptic species within liverwort *conocephalum conicum* based on the volatile components. *Phytochemistry*. 2013;95:234-241. doi:10.1016/j.phytochem.2013.06.011

9. Gradstein SR, Churchill SP, Salazar-Allen N. Guide to the bryophytes of tropical America. *Mem New York Bot Gard*. 2001;86:1-577.

10. Yuzawa Y. A monograph of subg. Chonanthelia of gen. *Frullania* (Hepaticae) of the world. *J Hattori Bot Lab*. 1991;70:181-291.

11. Hentschel J, Von Konrat M, Söderström L, et al. Notes on early land plants today. 72. Infrageneric classification and new combinations, new names, new synonyms in *Frullania* (Marchantio- phyta). *Phytotaxa*. 2015;220(2):127-142. doi:10.11646/phytotaxa.220.2.3

12. Asakawa Y, Matsuda R, Toyota M, Hattori S, Ourisson G. Terpenoids and bibenzyls of 25 liverwort *Frullania* species. *Phytochemistry*. 1981;20(9):2187-2194. doi:10.1016/0031-9422(81)80111-2

13. Krat L, Scherer B, Mues R, Sim-Sim M. Flavonoids from some *Frullania* species (Hepaticae). *Z Naturforsch C*. 1995;50(5-6):345-352. doi:10.1515/znc-1995-5-603
14. Asakawa Y, Toyota M, von Konrat M, Braggins JE. Volatile components of selected species of the liverwort genera Frullania and Schistostella (Frullaniaceae) from New Zealand, Australia and South America: a chemosystematic approach. Phytochemistry. 2003;62(3):439-452. doi:10.1016/S0031-9422(02)00542-3

15. Asakawa Y. Chemosystematics of the hepaticae. Phytochemistry. 2004;65(6):623-669. doi:10.1016/j.phytochem.2004.01.003

16. Asakawa Y, Ludwiczuk A, Nagashima F. Chemical constituents of bryophytes: Bio- and chemical diversity, biological activity, and chemosystematics. In: Kinghorn AD, Falk H, Kobayashi J, eds. Progress in the Chemistry of Organic Natural Products. Springer-Verlag; Vol 95; 2013:1-796.

17. Swain T. Chemical Plant Taxonomy. Academic Press; 1963:1-554.

18. Zidorn C. Sesquiterpene lactones and their precursors as chemosystematic markers in the tribe Cichorieae of the Asteraceae. Phytochemistry. 2008;69(12):2270-2296. doi:10.1016/j.phytochem.2008.06.013

19. Da Costa FB, Terflloth L, Gasteiger J. Sesquiterpene lactone-based classification of three Asteraceae tribes: a study based on self-organizing neural networks applied to chemosystematics. Phytochemistry. 2005;66(3):345-353. doi:10.1016/j.phytochem.2004.12.006

20. Emerenciano VP, Militão JSLT, Campos CC, et al. Flavonoids as chemotaxonomic markers for Asteraceae. Biochem Syst Ecol. 2001;29(9):947-957. doi:10.1016/S0305-1978(01)00033-3

21. Asakawa Y. Chemical constituents of the Hepaticae. In: Herz W, Grisebach H, Kirby GW, eds. Progress in the Chemistry of Organic Natural Products. Springer; 1995:1-618.

22. Yuzawa Y, Mues R, Hattori S. Morphological and chemical studies on the taxonomy of 14 Frullania species, subgenus Chonanthus. J Hattori Bot Lab. 1987;63:425-436.

23. Asakawa Y, Matsuda R, Toyota M, Takemoto T, Connolly JD, Phillips WR. Sesquiterpenoids from Claviscus, Clasmatocolea and Frullania species. Phytochemistry. 1983;22(4):961-964. doi:10.1016/0031-9422(83)8050-4

24. Asakawa Y, Matsuda R, Toyama Y, Kondo K, Hattori S, Mizutani M. Geographical distribution of tamariscol, a mossy odoriferous sesquiterpene alcohol, in the liverwort Frullania tamarisci and related species. Phytochemistry. 1991;30(7):2295-2300. doi:10.1016/0031-9422(91)83633-3

25. Mfytoyer B, Coulère P, Lebouvier N, et al. Volatile constituents of new Caledonian Frullania species. Nat Prod Commun. 2016;11(8):1934578X1601100-1934578X1601164. doi:10.1177/1934578X1601100832

26. Bdzán A, Mitre GB, Kamiya N, Toyama M, Asakawa Y. Eremophilanolidides and other constituents from the Argentine liverwort Frullania brasiliensis. Phytochemistry. 2002;59(2):205-213. doi:10.1016/S0031-9422(01)00452-6

27. Valarezo E, Tandazo O, Galán K, Rosales J, Benítez Ángel. Volatile metabolites in liverworts of ecuador. Metabolites. 2020;10(3):92 doi:10.3390/metabo10030092

28. Valarezo E, Galán K, Rosales J, Benítez Ángel. Volatile metabolites in liverworts of ecuador. Metabolites. 2020;10(3):92 doi:10.3390/metabo10030092

29. Takeda R, Ohya Y, Hirose Y. Sesquiterpenoid constituents of the liverwort Frullania brevifolia. Jpn J Pharmacol. 1983;56(4):1120-1124. doi:10.1246/bcsj.56.1120

30. Flegel M, Adam K-P, Becker H. Sesquiterpene lactones and bisbienzyln derivatives from the neotropical liverwort Frullania convoluta. Phytochemistry. 1999;52(8):1633-1638. doi:10.1016/S0031-9422(99)00200-9

31. Muess R, Hattori S, Asakawa Y, Grollie R. Biosystematic Studies on Frullania jacksonii and F. dawsonia. J Hattori Bot Lab. 1984;56:227-239.

32. Asakawa Y, Tokunaga N, Takemoto T, Hattori S, Mizutani M, Suire C. Chemosystematics of bryophytes IV: The distribution of terpenoids and aromatic compounds in Hepaticae and Anthocerotae. J Hattori Bot Lab. 1980;47:153-164.

33. Nagashima F, Takaoka S, Asakawa Y, Huneck S. New rearranged ent-eudesmane- and ent-eremophilane-type sesquiterpene lactones from the liverwort Frullania dilatata (L.) Dum. var. anomala Corb. Chem Pharm Bull. 1994;42(6):1370-1372. doi:10.1248/cpb.42.1370

34. Asakawa Y, Matsuda R, Takemoto T, et al. Chemosystematics of bryophytes VII. The distribution of terpenoids and aromatic compounds in some European and Japanese hepaticae. J Hattori Bot Lab. 1981;50:107-122.

35. Nagashima F, Toyota M, Asakawa Y. Bazzanian sesquiterpenoids from the New Zealand liverwort Frullania falciloba. Chem Pharm Bull. 2006;54(9):1347-1349. doi:10.1248/cpb.54.1347

36. Asakawa Y, Suire C, Toyama M, et al. Chemosystematics of bryophytes V: the distribution of terpenoids and aromatic compounds in European and Japanese Hepaticae. J Hattori Bot Lab. 1980;48:285-303.

37. Sass MS. Isolation and characterization of frullanolide from Frullania frutescens (Howe), Dissertations and Theses. 1981;3093

38. Toyota M, Nagashima F, Asakawa Y. Labdane type diterpenoids from the New Zealand liverwort Frullania hamackei. Phytochemistry. 1988;27(6):1789-1793. doi:10.1016/0031-9422(88)80444-8

39. Hashimoto T, Irita H, Yoshida M, et al. Chemical constituents of the Japanese liverworts Odontoschisma denudatum, Polarella japonica, P. acutifolia subsp. tisonsa, and Frullania hamatiloba. J Hattori Bot Lab. 1998;84:309-314.

40. Qiao Y-N, Sun Y, Shen T, et al. Diterpenoids from the Chinese liverwort Frullania hamatiloba and their Nrf2 inducing activities. Phytochemistry. 2019;158:77-85. doi:10.1016/j.phytochem.2018.11.002

41. Asakawa Y, Toyota M, Nakaishi E, Tada Y. Distribution of terpenoids and aromatic compounds in New Zealand liverworts. J Hattori Bot Lab. 1996;80:271-296.

42. Guo D-X, Xiang F, Wang X-N, et al. Labdane diterpenoids and highly methoxylated bibenzyls from the liverwort Frullania inouei. Phytochemistry. 2010;71(13):1573-1578. doi:10.1016/j.phytochem.2010.05.023

43. Asakawa Y, Tanikawa K, Aratani T. New substituted bibenzyls from the liverwort Frullania inouei. Phytochemistry. 2001;34(1):211-218. doi:10.1016/S0031-9422(00)09807-0
45. Kraut L, Mues R, Sim-Sim M. Sesquiterpene lactones and 3-benzylphthalides from Frullania muscicola. Phytochemistry. 1994;37(5):1337-1346. doi:10.1016/S0031-9422(00)90409-6
46. Lou H-X, Li G-Y, Wang F-Q. A cytotoxic diterpenoid and antifungal phenolic compounds from Frullania muscicola Steph. J Asian Nat Prod Res. 2002;4(2):87-94. doi:10.1080/10286020290027353
47. Tori M, Miyazaki N, Taira Z, Asakawa Y. Nepalen-solide A, novel sesquiterpene lactone from the liverwort Frullania nepalensis. Compound breaking the Samek rule. A study by NOE and X-Ray. Chem Lett. 1990;19(11):2115-2116. doi:10.1246/cl.1990.2115
48. Kim YC, da S Bolzani V, Baj N, Gunatilaka AA, Kingston DG. A DNA-damaging sesquiterpene and other constituents from Frullania nisquallensis. Planta Med. 1996;62(1):61-63. doi:10.1055/s-2006-957800
49. Asakawa Y, Tokunaga N, Toyota M, Takemoto T, Suire C. Chemosystematics of bryophytes I. The distribution of terpenoids of bryophytes. J Hattori Bot Lab. 1979;45:395-407.
50. Asakawa Y, Toyota M, Nagashima F, Hashimoto T. Chemical constituents of selected Japanese and New Zealand liverworts. Nat Prod Commun. 2008;3(2):289-300. doi:10.1177/1934578X0800300238
51. Li R-J, Zhu R-X, Zhao Y, et al. Two new cadinane-type sesquiterpenes from the Chinese liverwort Frullania serrata. Nat Prod Res. 2014;28(19):1519-1524. doi:10.1080/14786419.2014.909416
52. Asakawa Y, Toyota M, Nagashima F, Hashimoto T. Chemical constituents of selected Japanese and New Zealand liverworts. Nat Prod Commun. 2008;3(2):289-300. doi:10.1177/1934578X0800300238
53. Pannequin A, Tintaru A, Desjober J-M, Costa J, Muselli A. New advances in the volatile metabolites of Frullania tamarisci. Flavour Fragr J. 2017;1:1-10.
54. Asakawa Y, Tokunaga N, Toyota M, et al. Chemosystematics of bryophytes II. The distribution of terpenoids in Hepaticae and Anthocerotae. J Hattori Bot Lab. 1979;46:67-76.
55. Hashimoto T, Asakawa Y, Nakashima K, Tori M. Chemical constituents of 25 liverworts. J Hattori Bot Lab. 1993;74:121-138.
56. Tori M, Aoki M, Nakashima K, Asakawa Y. Terpenoids from the liverworts Symphyogyna brasiliensis and unidentified Frullania species. Phytochemistry. 1995;39(1):99-103. doi:10.1016/0031-9422(94)00846-L
57. Komala I, Ito T, Yagi Y, Nagashima F, Asakawa Y. Volatile components of selected liverworts, and cytotoxic, radical scavenging and antimicrobial activities of their crude extracts. Nat Prod Commun. 2010;5(9):1375-1380. doi:10.1177/1934578X1000500908
58. Komala I, Ito T, Nagashima F, Yagi Y, Asakawa Y. Cytotoxic bibenzyls, and germacrane- and pinguisane-type sesquiterpenoids from Indonesian, Tahitian and Japanese liverworts. Nat Prod Commun. 2011;6(3):303-309. doi:10.1177/1934578X1100600301
59. Nagashima F, Tanaka H, Takaoka S, Asakawa Y. Eudesmane-type sesquiterpene lactones from the Japanese liverwort Frullania densiloba. Phytochemistry. 1997;45(3):555-558. doi:10.1016/S0031-9422(96)00019-2
60. von Konrat M, Braggins JE, Toyota YA, Muhle H. Pacifigorgianes and tamariscene as constituents of Frullania tamarisci and Valeriana officinalis. Phytochemistry. 2001;57(2):307-313. doi:10.1016/S0031-9422(01)00018-8
61. Ludwiczuk A, Asakawa Y. Fingerprinting of secondary metabolites of liverworts: chemosystematic approach. J AOAC Int. 2014;97(5):1234-1243. doi:10.5740/jaoacint.2014.97.5
62. Ludwiczuk A, Asakawa Y. Chemotaxonomic value of essential oil components in liverwort species. A review. Flavour Fragr J. 2015;30(3):189-196. doi:10.1002/ffj.3236