Zygmund’s Type Inequality to the Polar Derivative of A Polynomial

M.S. Pukhta
SKUAST-Kashmir, Srinagar 190025, India
mspukhta_67@yahoo.co.in

Keywords: Polynomials, Zygmund’s inequality, polar derivative.

Abstract. In this paper we improve a result recently proved by Irshad et al. [On the Inequalities Concerning to the Polar Derivative of a Polynomial with Restricted Zeroes, Thai Journal of Mathematics, 2014 (Article in Press)] and also extend Zygmund’s inequality to the polar derivative of a polynomial.

Introduction
Let $P(z)$ be a polynomial of degree n, then
\[
\max_{|z|=1} |P'(z)| \leq n \max_{|z|=1} |P(z)|
\] (1)

inequality (1) is a well known result of S. Bernstein [1]. Equality holds in (1) if and only if $P(z)$ has all its zeros at the origin.

Inequality (1) was extended to L_p-norm $p \geq 1$ by Zygmund [2], who proved that if $P(z)$ is a polynomial of degree n, then
\[
\left\{ \frac{1}{2\pi} \int_0^{2\pi} |P'(e^{i\theta})|^p d\theta \right\}^{\frac{1}{p}} \leq n \left\{ \frac{1}{2\pi} \int_0^{2\pi} |P(e^{i\theta})|^p d\theta \right\}^{\frac{1}{p}}
\] (2)

Equality holds in (2) for $P(z) = \alpha z^n$, $|\alpha| \neq 0$. If we let $p \to \infty$ in (2), we get inequality (1).

Let α be a complex number. If $P(z)$ is a polynomial of degree n, then the polar derivative of $P(z)$ with respect to the point α, denoted by $D_\alpha P(z)$, is defined by
\[
D_\alpha P(z) = nP(z) + (\alpha - z)P'(z)
\]
clearly $D_\alpha P(z)$ is a polynomial of degree at most $n - 1$ and it generalizes the ordinary derivative in the sense that
\[
\lim_{\alpha \to \infty} \left[\frac{D_\alpha P(z)}{\alpha} \right] = P'(z).
\] (3)

As an extension of (1) to the polar derivative, Aziz and Shah [3], have shown that if $P(z)$ is a polynomial of degree n, then for every real or complex number α with $|\alpha| > 1$ and for $|z| = 1$,
\[
|D_\alpha P(z)| \leq n|\alpha| \max_{|z|=1} |P(z)|
\] (4)

As a generalization of (2) to the polar derivative Aziz et al. [4], proved the following result.
Theorem A If \(P(z) \) is a polynomial of degree \(n \), then for every complex number \(\alpha \) with \(|\alpha| \geq 1\) and \(p \geq 1 \)

\[
\left\{ \int_0^{2\pi} |D_{\alpha} P(e^{i\theta})|^p d\theta \right\}^{\frac{1}{p}} \leq n(|\alpha| + 1) \left\{ \int_0^{2\pi} |P(e^{i\theta})|^p d\theta \right\}^{\frac{1}{p}}
\]

(5)

For the Class of polynomials having no zeros in \(|z| < 1\), inequality (2) was improved by D-Bruijn [5] that if \(P(z) \neq 0 \) in \(|z| < 1\), then for \(p \geq 1 \)

\[
\left\{ \int_0^{2\pi} |P'(e^{i\theta})|^p d\theta \right\}^{\frac{1}{p}} \leq n C_p \left\{ \int_0^{2\pi} |P(e^{i\theta})|^p d\theta \right\}^{\frac{1}{p}}
\]

(6)

where

\[
c_p = \left\{ \frac{1}{2\pi} \int_0^{2\pi} \left| 1 + e^{i\theta} \right|^p d\theta \right\}^{-\frac{1}{p}}
\]

(7)

As an extension to the polar derivative. A. Aziz and N. Rather [6], proved the following generalization of (5). In fact they proved.

Theorem B If \(P(z) \) is a polynomial of degree \(n \) which does not vanish in \(|z| < 1\), then for every complex number \(\alpha \) with \(|\alpha| \geq 1\) and \(p \geq 1 \)

\[
\left\{ \int_0^{2\pi} |D_{\alpha} P(e^{i\theta})|^p d\theta \right\}^{\frac{1}{p}} \leq n C_p \left\{ \int_0^{2\pi} |D_{\alpha} P(e^{i\theta})|^p d\theta \right\}^{\frac{1}{p}}
\]

(8)

where \(C_p \) is defined by (7).

Recently, Irshad et al. [7] proved the following result.

Theorem C If \(P(z) \) is a polynomial of degree \(n \) which does not vanish in \(|z| < K \leq 1\), then for every \(\alpha, \beta \in C \) with \(|\alpha| \geq K\), \(|\beta| \leq 1\) and \(p \geq 1 \)

\[
\left\{ \int_0^{2\pi} \left| e^{i\theta} D_{\alpha} P(e^{i\theta}) + n \frac{|\alpha| - K}{K + 1} \beta P(e^{i\theta}) \right|^p d\theta \right\}^{\frac{1}{p}} \leq n \left(1 + |\alpha| + 2 \frac{(|\alpha| - K)}{K + 1} |\beta| \right) C_p \left\{ \int_0^{2\pi} |P(e^{i\theta})|^p d\theta \right\}^{\frac{1}{p}}
\]

(9)

where \(C_p \) is defined by (7).

In this paper we prove the following more general result which also generalize Theorem B and yields a number of known polynomial inequalities.
Theorem 1. If \(P(z) = a_n z^n + \sum_{j=\mu}^{n} a_{n-j} z^{n-j}, \) \(1 \leq \mu \leq n \) be a polynomial of degree \(n \) which does not vanish in \(|z| < K \leq 1 \), then for every \(\alpha, \beta \in C \) with \(|\alpha| \geq K, |\beta| \leq 1 \) and \(p \geq 1 \)

\[
\left\{ \int_{0}^{2\pi} e^{i\theta} D_{\alpha} P(e^{i\theta}) + n \left(\frac{|\alpha| - K^\mu}{K^\mu + 1} \beta P(e^{i\theta}) \right)^p d\theta \right\}^{\frac{1}{p}} \leq n \left(1 + |\alpha| + 2 \left(\frac{|\alpha| - K^\mu}{K^\mu + 1} |\beta| \right) \right) C_p \left\{ \int_{0}^{2\pi} |P(e^{i\theta})|^p d\theta \right\}^{\frac{1}{p}}
\]

(10)

where \(C_p \) is defined by (7), or equivalently

\[
\left\| e^{i\theta} D_{\alpha} P(e^{i\theta}) + n \left(\frac{|\alpha| - K^\mu}{K^\mu + 1} \beta P(e^{i\theta}) \right) \right\|_p \leq n \left(1 + |\alpha| + 2 \left(\frac{|\alpha| - K^\mu}{K^\mu + 1} |\beta| \right) \right) \left\| \frac{P(e^{i\theta})}{1 + e^{i\theta}} \right\|_p
\]

(11)

Remark. If we choose \(\mu = 1 \) in (10), we get Theorem C and if we choose \(\beta = 0 \) and \(K = 1 \) in (10), we get Theorem B.

\section*{Lemmas}

For the proof of this theorem, we need the following lemmas. The first lemma is due to Gulshan Singh et al. [8].

\begin{lemma}
Let \(P(z) = a_n z^n + \sum_{j=\mu}^{n} a_{n-j} z^{n-j}, \) \(1 \leq \mu \leq n \) be a polynomial of degree having all its zeros in the disk \(|z| \leq K, K \leq 1 \), then for every real or complex number \(\alpha \) with \(|\alpha| \geq K, K \leq 1 \) and for \(|z| = 1 \)

\[|D_{\alpha} P(z)| \geq n \left(\frac{|\alpha| - K^\mu}{K^\mu} \right) |P(z)| \]

\end{lemma}

\begin{lemma}
Let \(Q(z) \) be a polynomial of degree \(n \) having all its zeros in \(|z| < K, K \leq 1 \) and \(P(z) \) is a polynomial of degree not exceeding that of \(Q(z) \). If \(|P(z)| \leq |Q(z)| \) for \(|z| = K \leq 1 \), then for every \(\alpha, \beta \in C \) with \(|\alpha| \geq K, |\beta| \leq 1 \)

\[|zD_{\alpha} P(z) + n \left(\frac{|\alpha| - K^\mu}{K^\mu + 1} \beta P(z) \right)| \leq |zD_{\alpha} Q(z) + n \left(\frac{|\alpha| - K^\mu}{K^\mu + 1} \beta Q(z) \right)| \]

Proof. Since \(|\lambda P(z)| \leq |P(z)| \leq |Q(z)| \), for \(\lambda < 1 \) and \(|z| = K \), then for Rouche’s Theorem \(Q(z) - \lambda P(z) \) and \(Q(z) \) have the same number of zeros in \(|z| < K \). On the other hand by inequality \(|P(z)| \leq |Q(z)| \) for \(|z| = K \), any zero of \(Q(z) \), that lies on \(|z| = K \), in the zero of \(P(z) \). Therefore, \(Q(z) - \lambda P(z) \) has all its zero in the closed disk \(|z| \leq K \). Hence by Lemma 1 for all real or complex numbers \(\alpha \) with \(|\alpha| \geq K \) and \(|z| = 1 \), we have

\[|zD_{\alpha}(Q(z) - \lambda P(z))| \geq n \left(\frac{|\alpha| - K^\mu}{K^\mu + 1} \right) |Q(z) - \lambda P(z)| \]

(12)

Now consider a similar argument that for any value of \(\beta \) with \(|\beta| < 1 \), we have

\[|zD_{\alpha}(Q(z) - \lambda P(z))| \geq n \left(\frac{|\alpha| - K^\mu}{K^\mu + 1} \right) |Q(z) - \lambda P(z)| \]
\[\frac{n|\beta| \left(\frac{|\alpha| - K^\mu}{K^\mu + 1} \right) |Q(z) - \lambda P(z)|}{K^\mu + 1} \]

(13)

where \(|z| = 1 \), resulting in

\[T(z) = |zD_{\alpha}Q(z) - \lambda zD_{\alpha}P(z)| + n\beta \frac{|\alpha| - K^\mu}{K^\mu + 1} \{Q(z) - \lambda P(z)\} \neq 0 \]

(14)

where \(|z| = 1 \).

That is

\[T(z) = \left| zD_{\alpha}Q(z) + n\beta \frac{|\alpha| - K^\mu}{K^\mu + 1} Q(z) - \lambda \left| zD_{\alpha}P(z) + n\beta \frac{|\alpha| - K^\mu}{K^\mu + 1} P(z) \right| \right| \neq 0 \]

(15)

for \(|z| = 1 \).

We also conclude that

\[\left| zD_{\alpha}Q(z) + n\beta \frac{|\alpha| - K^\mu}{K^\mu + 1} Q(z) \right| \geq \left| zD_{\alpha}P(z) + n\beta \frac{|\alpha| - K^\mu}{K^\mu + 1} P(z) \right| \]

(16)

for \(|z| = 1 \).

If (16) is not true, then there is a point \(z = z_0 \) with \(|z_0| = 1 \), such that

\[\left| z_0D_{\alpha}Q(z_0) + n\beta \frac{|\alpha| - K^\mu}{K^\mu + 1} Q(z_0) \right| < \left| z_0D_{\alpha}P(z_0) + n\beta \frac{|\alpha| - K^\mu}{K^\mu + 1} P(z_0) \right| \]

(17)

Take

\[\lambda = \frac{z_0D_{\alpha}Q(z_0) + n\beta \frac{|\alpha| - K^\mu}{K^\mu + 1} Q(z_0)}{z_0D_{\alpha}P(z_0) + n\beta \frac{|\alpha| - K^\mu}{K^\mu + 1} P(z_0)} \]

(18)

then \(|\lambda| < 1 \) with this choice, we have from (15), \(T(z_0) = 0 \) for \(|z_0| = 1 \). But this contradicts the fact that \(T(z) \neq 0 \) for \(|z| = 1 \). For \(\beta \) with \(|\beta| = 1 \), (16) follows by continuity.

This completes the proof.

The next lemma is due to Aziz and Rather [4].

Lemma 3. If \(P(z) \) is a polynomial of degree \(n \) such that \(P(0) \neq 0 \) and \(Q(z) = z^n p \left(\frac{1}{z} \right) \), then for every \(p \geq 0 \) and \(\phi \) real

\[\int_0^{2\pi} \int_0^{2\pi} |Q'(e^{i\theta}) + e^{i\theta} P'(e^{i\theta})|^p d\theta d\phi \leq n^p \int_0^{2\pi} |P(e^{i\theta})|^p d\theta \]

Proof of the theorem

Proof of the Theorem. Let \(P(z) \) be a polynomial of degree \(n \) which does not vanish in \(|z| < K, K \leq 1 \). By Lemma 2 for complex numbers \(\alpha, \beta \) with \(|\alpha| \geq K, |\beta| \leq 1 \), we have

\[\left| zD_{\alpha}P(z) + n \frac{|\alpha| - K^\mu}{K^\mu + 1} \beta P(z) \right| \leq \left| zD_{\alpha}Q(z) + n \frac{|\alpha| - K^\mu}{K^\mu + 1} \beta Q(z) \right| \]

(19)
For every real \(\phi \) and \(\xi \geq 1 \), we have
\[
|\xi + e^{i\phi}| \geq |1 + e^{i\phi}|
\]
which implies for any \(p \geq 0 \)
\[
\left\{ \int_0^{2\pi} |\xi + e^{i\phi}|^p d\phi \right\}^{1/p} \geq \left\{ \int_0^{2\pi} |1 + e^{i\phi}|^p d\phi \right\}^{1/p} \tag{20}
\]
If \(e^{i\theta}D_\alpha P(e^{i\theta}) + n\frac{|\alpha| - K^\mu}{K^\mu + 1} \beta P(e^{i\theta}) \neq 0 \), we can take
\[
\xi = \frac{e^{i\theta}D_\alpha Q(e^{i\theta}) + n\frac{|\alpha| - K^\mu}{K^\mu + 1} \beta Q(e^{i\theta})}{e^{i\theta}D_\alpha P(e^{i\theta}) + n\frac{|\alpha| - K^\mu}{K^\mu + 1} \beta P(e^{i\theta})}
\]
where according to (19), \(|\xi| \geq 1 \). Now
\[
\int_0^{2\pi} \left| e^{i\theta}D_\alpha Q(e^{i\theta}) + n\frac{|\alpha| - K^\mu}{K^\mu + 1} \beta Q(e^{i\theta}) \right|^p d\phi
\]
\[
+ e^{i\phi} \left[e^{i\theta}D_\alpha P(e^{i\theta}) + n\frac{|\alpha| - K^\mu}{K^\mu + 1} \beta P(e^{i\theta}) \right]^p d\phi
\]
\[
= \left| e^{i\theta}D_\alpha P(e^{i\theta}) + n\frac{|\alpha| - K^\mu}{K^\mu + 1} \beta P(e^{i\theta}) \right|^p \int_0^{2\pi} |1 + e^{i\phi}|^p d\phi
\]
\[
\geq \left| e^{i\theta}D_\alpha P(e^{i\theta}) + n\frac{|\alpha| - K^\mu}{K^\mu + 1} \beta P(e^{i\theta}) \right|^p \int_0^{2\pi} |\xi + e^{i\phi}|^p d\phi \tag{21}
\]
This inequality is trivially true if
\[
e^{i\theta}D_\alpha P(e^{i\theta}) + n\frac{|\alpha| - K^\mu}{K^\mu + 1} \beta P(e^{i\theta}) = 0
\]
Integrating both sides of (21) with respect to \(\theta \) from 0 to \(2\pi \), we have
\[
\int_0^{2\pi} \int_0^{2\pi} \left| e^{i\theta}D_\alpha Q(e^{i\theta}) + n\frac{|\alpha| - K^\mu}{K^\mu + 1} \beta Q(e^{i\theta}) \right|^p d\theta d\phi
\]
\[
+ e^{i\phi} \left[e^{i\theta}D_\alpha P(e^{i\theta}) + n\frac{|\alpha| - K^\mu}{K^\mu + 1} \beta P(e^{i\theta}) \right]^p d\theta d\phi
\]
\[
\geq \int_0^{2\pi} \left| e^{i\theta}D_\alpha P(e^{i\theta}) + n\frac{|\alpha| - K^\mu}{K^\mu + 1} \beta P(e^{i\theta}) \right|^p d\theta \int_0^{2\pi} |1 + e^{i\phi}|^p d\phi \tag{22}
\]
Now for $0 \leq \theta < 2\pi$
\[
\left| e^{i\theta} D_\alpha Q(e^{i\theta}) + n \left(\frac{|\alpha| - K^\mu}{K^\mu + 1} \right) \beta Q(e^{i\theta}) + e^{i\phi} \left[e^{i\theta} D_\alpha P(e^{i\theta}) + n \left(\frac{|\alpha| - K^\mu}{K^\mu + 1} \right) \beta P(e^{i\theta}) \right] \right|
\]
\[
= \left| e^{i\theta} \left(nQ(e^{i\theta}) + (\alpha - e^{i\theta})Q'(e^{i\theta}) \right) + n \left(\frac{|\alpha| - K^\mu}{K^\mu + 1} \right) \beta Q(e^{i\theta}) \right|
\]
\[
+ e^{i\phi} \left[e^{i\theta} \left(nP(e^{i\theta}) + (\alpha - e^{i\theta})P'(e^{i\theta}) \right) + n \left(\frac{|\alpha| - K^\mu}{K^\mu + 1} \right) \beta P(e^{i\theta}) \right] \right| \quad (23)
\]
\[
= \left| e^{i\theta} \left(nQ(e^{i\theta}) - e^{i\theta} Q'(e^{i\theta}) \right) + \alpha e^{i\theta} Q'(e^{i\theta}) + n \left(\frac{|\alpha| - K^\mu}{K^\mu + 1} \right) \beta Q(e^{i\theta}) \right|
\]
\[
+ e^{i\phi} \left[e^{i\theta} \left(nP(e^{i\theta}) - e^{i\theta} P'(e^{i\theta}) \right) + \alpha e^{i\theta} P'(e^{i\theta}) + n \left(\frac{|\alpha| - K^\mu}{K^\mu + 1} \right) \beta P(e^{i\theta}) \right] \right| \quad (24)
\]
Since $Q(z) = z^n P \left(\frac{1}{z} \right)$, we have $P(z) = z^n Q \left(\frac{1}{z} \right)$ and it can be easily verified that for $0 \leq \theta < 2\pi$
\[
nP(e^{i\theta}) - e^{i\theta} P'(e^{i\theta}) = e^{i(n-1)\theta} Q'(e^{i\theta})
\]
and
\[
nQ(e^{i\theta}) - e^{i\theta} Q'(e^{i\theta}) = e^{i(n-1)\theta} P'(e^{i\theta})
\]
From (24)
\[
\left| e^{i\theta} D_\alpha Q(e^{i\theta}) + n \left(\frac{|\alpha| - K^\mu}{K^\mu + 1} \right) \beta Q(e^{i\theta}) + e^{i\phi} \left[e^{i\theta} D_\alpha P(e^{i\theta}) + n \left(\frac{|\alpha| - K^\mu}{K^\mu + 1} \right) \beta P(e^{i\theta}) \right] \right|
\]
\[
= \left| e^{i\theta} \left(e^{i(n-1)\theta} P'(e^{i\theta}) \right) \right| + \alpha e^{i\theta} Q'(e^{i\theta}) + e^{i\phi} \left[e^{i\theta} P'(e^{i\theta}) \right] + n \left(\frac{|\alpha| - K^\mu}{K^\mu + 1} \right) \beta [Q(e^{i\theta}) + e^{i\phi} P(e^{i\theta})] + e^{i\phi} e^{i(n-1)\theta} Q'(e^{i\theta}) \right| \quad (25)
\]
Therefore, (22) in conjunction with (25) gives
\[
\left\{ \begin{array}{l}
\int_0^{2\pi} \int_0^{2\pi} \left| e^{i\theta} e^{i(n-1)\theta} \left[P'(e^{i\theta}) + e^{i\phi} Q'(e^{i\theta}) \right] + \alpha e^{i\phi} [Q'(e^{i\theta}) e^{i\phi} P'(e^{i\theta})] \\
+ n \left(\frac{|\alpha| - K^\mu}{K^\mu + 1} \right) \beta [Q(e^{i\theta}) + e^{i\phi} P(e^{i\theta})]\right| d\theta d\phi \right\} \frac{1}{p}
\]
\[
\geq \left\{ \int_0^{2\pi} \left| e^{i\theta} D_\alpha P(e^{i\theta}) + n \left(\frac{|\alpha| - K^\mu}{K^\mu + 1} \right) \beta P(e^{i\theta}) \right| d\theta \int_0^{2\pi} \left| 1 + e^{i\phi} \right|^p d\phi \right\} \frac{1}{p} \quad (26)
\]
By Minkowski inequality, we have
\[
\left\{ \int_0^{2\pi} |e^{i\theta} D_\alpha P(e^{i\theta}) + n \left(\frac{\alpha - K^\mu}{K^\nu + 1} \right) \beta P(e^{i\theta})|^p d\theta \right\}^{\frac{1}{p}}
\leq \left\{ \int_0^{2\pi} \left(\frac{\alpha}{K^\nu + 1} \right) \beta \int_0^{2\pi} |e^{i\theta} P(e^{i\theta})|^p d\theta \right\}^{\frac{1}{p}} \{1 + |\alpha| \}
\]
\[
+ n \left(\frac{|\alpha| - K^\mu}{K^\nu + 1} \right) \left\{ \int_0^{2\pi} |P(e^{i\theta})|^p d\theta \right\}^{\frac{1}{p}} \{1 + |\alpha| \}
\]
By Lemma 3, we have
\[
\left\{ \int_0^{2\pi} |e^{i\theta} D_\alpha P(e^{i\theta}) + n \left(\frac{\alpha - K^\mu}{K^\nu + 1} \right) \beta P(e^{i\theta})|^p d\theta \right\}^{\frac{1}{p}}
\leq 2n^p \left[\int_0^{2\pi} |P(e^{i\theta})|^p d\theta \right]^{\frac{1}{p}} \{1 + |\alpha| \}
\]
\[
+ 2n \left(\frac{|\alpha| - K^\mu}{K^\nu + 1} \right) \left\{ \int_0^{2\pi} |P(e^{i\theta})|^p d\theta \right\}^{\frac{1}{p}} \{1 + |\alpha| \}
\]
\[
= n(1 + |\alpha|) + 2n \left(\frac{|\alpha| - K^\mu}{K^\nu + 1} \right) \left\{ \int_0^{2\pi} |P(e^{i\theta})|^p d\theta \right\}^{\frac{1}{p}} \{1 + |\alpha| \}
\]
This implies
\[
\left\{ \int_0^{2\pi} |e^{i\theta} D_\alpha P(e^{i\theta}) + n \left(\frac{\alpha - K^\mu}{K^\nu + 1} \right) \beta P(e^{i\theta})|^p d\theta \right\}^{\frac{1}{p}}
\leq n \left(1 + |\alpha| + 2 \left(\frac{|\alpha| - K^\mu}{K^\nu + 1} \right) \right) C_p \left\{ \int_0^{2\pi} |P(e^{i\theta})|^p d\theta \right\}^{\frac{1}{p}}
\]
where C_p in defined by (7),
or equivalently,
\[
\left\| e^{i\theta} D_\alpha P(e^{i\theta}) + n \left(\frac{\alpha - K^\mu}{K^\nu + 1} \right) \beta P(e^{i\theta}) \right\|
\leq n \left(1 + |\alpha| + 2 \left(\frac{|\alpha| - K^\mu}{K^\nu + 1} \right) \right) \left\| P(e^{i\theta}) \right\|_p \left\| 1 + P(e^{i\theta}) \right\|_p
\]
Hence the result.
References

[1] S. Bernstein, Lecons sur Less propries extréxtremaleset la meilleure dune fonctions, (Paris, 1926).

[2] A. Zygmund, A remark on conjugate series, Proc. London Math. Soc. 34(2) (1932), 392–400.

[3] A. Aziz and W.M. Shah, Inequalities for the polar derivaive of a polynomial, Indian J. Pure Appl. Math., 29 (1998), 163–173.

[4] A. Aziz and N.A. Rather, Some Zygmunds type L^p-inequaity for polynomial, J. Math. Anal. Appl., 289 (2004), 14–29.

[5] N.G. De-Bruijin, Inequalitis concerning polynomials in the complex domain, Nedrel. Akad. Weternsch.Proc. Ser. A., 50 (1947), 1265–1272; Indag. Math., 9 (1947), 591–598.

[6] A. Aziz and N.A. Rather, On an inequality concerning the polar derivative of a poly, Proc. Indian Acad. Sci. (Math. Sci.), 117(3) (August 2003), 349–357.

[7] Irshad Ahmed, A. Liman and W.M. Shah, On the inequalities concering to the polar derivative of a polynomial with restricted zeros, Thai Journal of Mathematics, (2014).

[8] G. Singh, W.M. Shah and A. Liman, A generalized inequality for the polar deriivative of poly-
nomial, Journal of Inequalities and Applicaitons, 2013 2013:183.