Title: Estimation of losses of quality-adjusted life expectancy attributed to the combination of cognitive impairment and multimorbidity among Chinese adults aged 45 years and older

Authors: Suting Xiong a, Siyuan Liu a, Yanan Qiao a, Dingliu He a, Yuxia Zhang a, Yaoyu Ying a, Chaofu Ke a*, and Yueping Shen a*

Address: a Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou 215123, P. R. China.

*Correspondence should be addressed to:
Chaofu Ke, Ph.D.
Tel.: +86-512-6588-0079
Fax: +86-512-6588-3323
E-mail: cfke@suda.edu.com

Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou 215123, P. R. China.

or Yueping Shen, Ph.D.
Tel.: +86-512-6588-0079
Fax: +86-512-6588-3323
E-mail: shenyueping@suda.edu.cn

Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou 215123, P. R. China.
Abstract

Objectives: This study aims to estimate the losses of quality-adjusted life expectancy (QALE) due to the joint effect of cognitive impairment and multimorbidity, and further to confirm additional losses attributable to their interaction among the middle-aged and elderly Chinese.

Methods: The National Cause of Death Monitoring Data were linked with the China Health and Retirement Longitudinal Study (CHARLS). A mapping and assigning method was used to estimate health utility values, which were further used to calculate QALE. Losses of QALE were measured by comparing the differences between subgroups. And all the losses of QALE were displayed at two levels: the individual and the population level.

Results: At age 45, the individual-level and population-level losses of QALE (95% CI) attributed to the combination of cognitive impairment and multimorbidity were 7.606 (5.679, 9.566) years and 4.297 (3.425, 5.200) years. The losses (95% CI) for cognitive impairment alone were 3.104 (2.287, 3.954) years and 1.709 (1.318, 2.132) years at two levels. Similarly, the losses (95% CI) for multimorbidity alone were 3.526 (2.528, 4.556) years and 1.914 (1.235, 2.625) years at two levels. Additional losses due to their interaction were indicated by the 0.976 years of the individual-level gap and 0.674 years of the population-level gap.

Conclusion: Among the middle-aged and elderly Chinese, cognitive impairment and multimorbidity resulted in much losses of QALE, and additional QALE losses were seen due to their interaction at both individual and population levels.

Keywords: Quality-adjusted life expectancy; cognitive impairment; multimorbidity; CHARLS
Introduction

Age-associated cognitive impairment is a transition link between healthy aging and dementia with the 10% conversion rate, featuring declines in memory, attention, and cognitive function [1]. At the end of 2019, the population aged 65 and above in China accounted for 176.0 million [2]. And a large-sample, multi-region study showed that the prevalence (95% CI) of total dementia for the population aged 65 years and older in China was 5.60% (3.50%, 7.60%) in 2019 [3]. Moreover, mild cognitive impairment (MCI) is estimated >4 times more common than dementia [1, 4].

Meanwhile, age-dependent noncommunicable diseases (NCD) are proved to experience a continuous increase among the elders in the near decades [5]. Nearly 50% of the NCD burden in China occurred in people aged 65 years and older [6], while 47.5% of the elderly aged 65+ had ≥ 2 chronic conditions [7]. Multimorbidity, which is defined as the co-occurrence of two or more chronic diseases in an individual, is widely observed beyond two-thirds of older adults [8, 9]. Many patient-based studies suggested that older adults with at least two diseases were more susceptibie to develop cognitive impairment [10-18]. The hypothesis that multimorbidity may increase the risk of cognitive impairment has also been verified in population-based researches [10-12, 14].

Despite the documented risk of cognitive impairment and multimorbidity to health aging, few studies have been conducted to measure how long those aging people would be expected to live less in a quality damaged state caused by this combined burden. Quality-adjusted life expectancy (QALE), as a more sensitive and comprehensive population-health measure, combines the health-related quality of life (HRQoL) with life expectancy (LE) to obtain a single summary score [19-21]. When it is hard to estimate HRQoLs directly, the mapping methods could help a lot to generate predictive utility values based on
existing health-related data [22-24]. As is widely acknowledged, QALE is better for public health
surveillance among older adults compared to other health expectancy measures [20, 22]. The QALE
losses demonstrated in the previous study [25, 26], could quantify the difference in disease burden due
to cause-specific mortality and morbidity, and could be displayed at both individual and population levels
[25]. Researches about losses of QALE quantifying the severity of the health damages are valuable for
both clinical intervention assessments over a pre-determined time interval and resource optimization in
public health strategies for those in high-risk groups [22, 27].

Based on the availability of CHARLS data, this study aims to 1) estimate the losses of QALE
attributed to the combination of cognitive impairment and multimorbidity at both individual and
population levels, and 2) confirm the additional losses of QALE due to their interaction.

Data and methods

The baseline wave (2011) of CHARLS was used for estimating the HRQoLs among participants
included, and the follow-up data (2013, 2015) were used for estimating the cause-specific mortality rates
of cognitive impairment and multimorbidity [28]. The detailed profile [29] and data of CHARLS
published are available in the CHARLS repository, http://charls.pku.edu.cn/index/zh-cn.html.

Measurement of cognitive impairment

To judge cognitive impairment, we took the two-part brief cognition measure sets of CHARLS [30-
32], similar to the imputed cognition part of the American Health and Retirement Study (HRS). The first
part evaluates episodic memory through a calculation of average scores (0-10) between 10-Chinese-word
immediate and delayed recalling. And the second part measures executive function based on the 11-score
sum, which is consisted of the orientation of dates (day, week, month, season, and year), serial subtracting
7 from 100 five times successively, and the item repainting the specific picture. The current study
evaluated the cognitive function of the participants employing the total scores of two parts, ranging from
0 to 21 [30, 33, 34]. Therefore, the cut-off value for judgment of cognitive impairment was estimated by
the receiver operating characteristic (ROC) curve analysis combining the cognitive scores (0-21) and the
diagnosis of the memory-related problem included in the CHARLS.

Definition of multimorbidity

The CHARLS longitudinal study covered 14 chronic conditions diagnosed by doctors significant to
the elders (including hypertension, diabetes or high blood sugar, cancer or a malignant tumor, chronic
lung disease, stroke, other cardiovascular problems, emotional or psychiatric problems, arthritis,
dyslipidemia, liver diseases, kidney diseases, digestive diseases, asthma, and memory-related diseases)
[29]. More detailed definitions of these 14 conditions can be found in the data using documents provided
on their website [35]. According to the most common approach [33], this study defined multimorbidity
as a count of the number of diseases without weighting for severity [36]. Of course, we excluded the
diagnosis of the memory-related problem included in the CHARLS.

Health utility value——morbidity rate

To describe the HRQoL using a summary value between 0 (for death) and 1 (for perfect health),
preference-based measure——health utility value——was used to estimate the impacts of physical and
mental dysfunction [37]. This study obtained the health utility values by a mapping and assigning method.

From a total of 17,224 individuals (aged 45+) included in CHARLS, random 3636 participants
answered five questions profiling health at the baseline wave (2011), which were analogous to the five domains of the EuroQol-5 Dimensions instrument (EQ-5D). The descriptive system of ED-5D classifies people's health into 1 to 5 levels of 5 domains: anxiety/depression, pain/discomfort, usual activities, self-care, and mobility [38]. We substituted the five existing similar questions for five domains of EQ-5D, using a nonparametric mapping method rather than the mapping function [23]. And then, we estimated predictive values through an EQ-5D-5L utility database (a full set of predicted values for all 3,125 health states) for China [39]. Cronbach's alpha and confirmatory factor analyses were performed to test the reliability and validity of mapping.

To enlarge the sample size, a propensity score matching (PSM) method was used to assign health utility values to participants matched, who had no health utility values. From 17,224 individuals aged 45+, 3,600 participants had complete data of covariables and health utility values, and 11,850 participants had complete information on covariables of propensity score matching (PSM) without health utility values. Under the control of the 1:3 matching ratio and the 0.1 caliper value, 10,214 out of 11,850 participants were assigned with health utility values. The balance of the PSM-based assigning method was examined by multiple logistic regression.

Of 13,850 individuals with health utility values, 12,300 with complete information on cognition were used to estimate the average health utility values in age-specific intervals (9 five-year intervals), replacing morbidity. The bootstrapping-based estimates of confidence intervals for average health utility values were computed from 2.5th to 97.5th percentile, and confidence intervals for the differences of average health utility values (2.5th, 97.5th).
Cause-specific mortality rate

The age-specific death rate (m) was derived from the national cause of death monitoring data (2011) [40]. However, age-specific death rates stratified by cognitive impairment and multimorbidity were not available, so these rates were estimated through the following formulas. For example, death rates for those with cognitive impairment \(m_1 \) and those without cognitive impairment \(m_0 \) were calculated using the hazard ratio \(h \) of dying for cognitive impairment versus none cognitive impairment and the prevalence of cognitive impairment \(p \) by

\[
m_1 = \frac{hm}{hp + (1-p)} \quad \text{and} \quad m_0 = \frac{m}{hp + (1-p)},
\]

respectively [25]. Likewise, the death rates for the combination of cognitive impairment and multimorbidity were estimated through the same formulas above. Based on the Cox proportional hazards model, hazard ratios were computed. The prevalence of cognitive impairment and multimorbidity obtained from the CHARLS were assessed only at the start of 45 years old.

QALE and losses of QALE

The life table of the general population was constructed with the age-specific mortality rates from the national cause of death monitoring data (2011) [40]. Based on the cause-specific mortality rate, the life tables of the subgroups were constructed. Let \(A_i \) be the number of the population surviving to age \(i \) \((i \geq 45)\). The quality-adjusted life-years (QALYs) \(D_i y_i \) in the age-specific interval \([i, i+5]\) were calculated using the average health utility value \(y_i \) and the person-year of survival \(D_i \) in the age-specific interval \([i, i+5]\) so that \(\text{QALE}_i \) at the age \(x \) was calculated by

\[
\text{QALE}_i = \sum_{i \geq z} D_i y_i/A_i \quad i, x \in [45, 80] \quad [21, 25].
\]

And the confidence intervals for QALEs were computed through the confidence intervals for health utility values. A completive process regarding the
estimation of QALE was presented in Figure 1.

Similar to the definition of attributable risk (AR) and population attributable risk (PAR) in epidemiology [41, 42], losses of QALE could be measured at both individual and population levels [25]. For instance, the definition of individual-level losses of QALE due to cognitive impairment is referred to as the difference in QALE between groups with and without cognitive impairment. The population-level losses of QALE were considered as the difference in QALE between the group with cognitive impairment and the total population. Losses of QALE due to the combination of cognitive impairment and multimorbidity were estimated in the same way. And the confidence intervals for losses of QALEs were computed through the confidence intervals for differences of health utility values.

Results

Characteristics of participants

According to the results of ROC, the cut-off value for judging cognitive impairment under both high sensitivity and specificity was 8.25, and the AUC (95% CI) for this value was 0.613 (0.575, 0.650). All participants (n=13,850) in this study were divided into four subgroups with another missing cognitive subgroup by the combination of cognitive impairment and multimorbidity. Characteristics in these subgroups were presented in Appendix Table 1. Participants figuring higher age, female, divorced/separated status, lower education level, living in urban, smoking, drinking, lower BMI, and multimorbidity, were more likely to be low-level-cognition. However, the characteristics described in the missing cognitive subgroup were similar to the subgroups of low-level-cognition.
Results of the mapping and assigning values

Based on the results of the mapping, the Cronbach's alpha based on standardized items ($\alpha' = 0.829$) and the results of confirmatory factor analyses (with five eigenvalues obliquely rotated ≥ 1 corresponding for the five dimensions of EQ-5D) reflected excellent reliability and validity. And the results of assigning values based on PSM were examined by multiple logistic regression, showing a good balance on almost all of the covariates of PSM between participants owned health utility values before and those who were given health utility values after (Appendix Table 2). Except for the married or partnered status which was more likely to be matched ($P = 0.028$), other covariates of PSM had no statistical significance between the two groups ($P > 0.05$), particularly the differences in health utility values no significant ($P = 0.124$).

Quality-adjusted life expectancy (QALE)

The QALEs among the four subgroups were increased in turn at the same age interval (including low-level-cognition with multimorbidity, high-level-cognition with multimorbidity, low-level-cognition without multimorbidity, and high-level-cognition without multimorbidity). The QALEs of the missing subgroup were lower than those in any high-level-cognition group. QALE results of all age intervals were described in Appendix Table 3.

Losses of QALE

The differences in three trend lines among these nine age intervals showed the QALE losses at both individual and population levels due to the joint effect of cognitive impairment and multimorbidity (Figure 2). Among the two groups (Figure 3A): high-level-cognition without multimorbidity group and low-level-cognition with multimorbidity group, the individual-level losses of QALE (95% CI) for these
people (aged 45 years) were 7.606 (5.679, 9.566) years. Analogously, the QALE losses (95% CI) for
cognition impairment alone were 3.104 (2.287, 3.954) years, and the QALE losses (95% CI) for
multimorbidity alone were 3.526 (2.528, 4.556) years. According to Figure 3B, the population-level
losses of QALE (95% CI) between the two groups (the high-level-cognition without multimorbidity
group and the general population group) were 4.297 (3.425, 5.200) years. At the same age interval,
compared with the general population group, the QALE losses (95% CI) for cognition impairment alone
were 1.709 (1.318, 2.132) years, and the QALE losses (95% CI) for multimorbidity alone were 1.914
(1.235, 2.625) years.

Obviously, the 0.976 (= 7.606-3.104-3.526) years for the individual-level gap showed that there
were additional losses of QALE due to their interaction, with 0.674 (= 4.297-1.709-1.914) years of losses
at population-level also the same. The other results at both two levels, which were described in detail in
all age intervals, were shown in (Tables 1 and 2).

Discussion

The current study measured the losses of QALE due to the combination of cognitive impairment
and multimorbidity, and then discovered significantly additional burden from the interaction of cognitive
impairment and multimorbidity at both individual and population levels. Unlike previous studies [26, 43,
44], our consequences were confirmed by losses of QALE based on the representative sample of a
country rather than patient-based clinical studies.

The three trend lines of QALE represented the aging-related health burden under the joint effect of
cognitive impairment and multimorbidity (Figure 2). They declined with age owing to a decrease in life
expectancy [45, 46]. Strangely, it seemed that the health burden of participants declined because the losses of QALE at the individual level decreased by age (Table 1, Figure 3A). However, it did not mean that the exposure to the combination had a weaker influence on older generations. On the contrary, the losses at population level kept steady comparatively (Table 2, Figure 3B), which exactly confirmed that the damage due to the combination could not be weakened among the elderly population, and even had a little rising range between age from 70 to 85 years. It is worth mentioning that the losses of QALE due to the combination could be divided into three parts: only due to cognitive impairment, only due to multimorbidity, and due to the interaction of cognitive impairment and multimorbidity. According to Table 1 and Table 2, we discovered the significantly additional losses due to the interaction in all age intervals without intersecting confidence intervals after subtracting the losses due to cognitive impairment and multimorbidity from the combination losses successively.

The losses of QALE had different influences at the individual and population levels so that the losses of QALE at both two levels had different meanings. For instance, the population-level losses of QALE due to the combination of cognitive impairment and multimorbidity, the burden to the total population, estimated the maximum number of QALEs for the general population that could be attained if those who had the combination did not have the burden of this combination after the early intervention for high-risk groups in the community. The years of QALEs for the general population could be obtained more if they had never had the burden above were 4.297 and 3.456 among the seniors aged 45 and 85 years old (accounting for the QALEs of the general population 14.80% and 123.9%, respectively). As for the individual-level burden, the losses of QALE quantified the level at which the risk could be prevented or decreased for those who had both cognitive impairment and multimorbidity if they were without this combination above under specific treatment. The individual-level losses of QALE could
account for more helpfully than the population-level burden to assess therapies for diseases in clinical researches. This study indicated that more focus and early intervention should be placed on the group with both risks of cognitive impairment and multimorbidity not only for clinical individuals under treatment but also among these high-risk groups in the community.

The main innovation of this study is the method to estimate health utility values from existing health-related data without standardized scales for HRQoLs. To date, increasing preference-based HRQoL data are widely collected at the national, provinces, or lower levels. At the same time, only a few standardized measures could provide a summary index to assess health states, though most of the rest measures have similar question-settings. Previous mapping studies reported mapping functions by regression analyses to estimate or generate utility values from one standardized scale to another standardized scale [23, 24]. Firstly, this study substituted the five existing similar questions in CHARLS for five domains of EQ-5D, using a nonparametric mapping method rather than a mapping function. It is a pity that this study could not evaluate the bias of estimation due to the unavailability of observed EQ-5D-based data. However, QALEs estimated from other measures different from EQ-5D would be very similar because the variables set for "health" are closely correlated [23, 25, 47]. To some extent, the results of Cronbach's alpha and confirmatory factor analyses showed the reliability and validity of mapping. Secondly, the PSM-based assigning value method enlarged the application fields of PSM, while standard propensity score matching was used to create a highly comparable control group [48]. And the results of good balance proved the reasonable assigning value among matched groups.

People without cognitive data had the penultimate QALE. Likely, missing cognitive data lead to underestimation for describing the health burden of cognitive impairment (Appendix Table 3). A
Sensitivity analysis was conducted to evaluate the impact of missing values. Unlike the analysis above that excluded participants (n=1,550) without cognitive scores, we classified these participants towards the low-cognition-level group. The new individual-level losses of QALE increased in all age intervals, which suggested that people who had missing values tended to have lower values (more severe morbidity) and that we underestimated losses of QALE at the individual level. However, there were not similar outcomes at the population level.

The main limitation refers to the definition of cognitive impairment. The definition of mild cognitive impairment (MCI) is distinguished from dementia, and the criteria for MCI are as following: cognitive decline as evidenced by self and/or informant and/or clinician report and impairment on objective cognitive tasks, and/or evidence of decline overtime on objective tasks; preserved basic activities of daily living (ADLs) (or minimal impairment in complex instrumental functions); and does not meet DSM-IV, ICD-10 criteria for a dementia syndrome [49]. However, it is difficult to diagnose by MIC in older adults from a large national epidemiological study, and CHARLS covered simple scale-based tests of cognitive function. Instead of using the definition of MCI, the ROC curve analysis was performed to generate the cut-off score for cognitive impairment in this study.

Conclusion

In conclusion, this current study measured the losses of QALE due to the joint effect of cognitive impairment and multimorbidity, which confirmed additional burden from the interaction of cognitive impairment and multimorbidity at both individual and population levels. Therefore, this study indicated that more focus and early interventions should be placed on the group with both risks of cognitive impairment and multimorbidity, and these measures should be taken not only for clinical individuals
under treatment but also among these high-risk groups in the community.

Abbreviations

QALE: Quality-Adjusted Life Expectancy; CHARLS: China Health and Retirement Longitudinal Study; CI: Confidence interval; MCI: Mild cognitive impairment; NCD: Noncommunicable diseases; HRQoL: Health-Related Quality of Life; LE: Life expectancy; HRS: Health and Retirement Study; ROC: Receiver operating characteristic curve; EQ-5D: EuroQol-5 Dimensions instrument; PSM: Propensity Score Matching; HRs: Hazard Ratios; BMI: Body mass index (kg/m²); ADL: Activities of daily living; IADL: Instrumental activities of daily living; CESD: Centre for Epidemiology Studies-Depression Scale; SroH: Self-report of Health; SD: Standard deviation

Declarations

Acknowledgements

The authors thank the Centre for Health Statistics and Information of China for providing demographic data support. And this work used other data or information from the Baseline and Harmonized CHARLS dataset (with their) Codebook, Version C as of April 2018 developed by the Gateway to Global Aging Data. The development of the Harmonized CHARLS was funded by the National Institute on Ageing (R01 AG030153, RC2 AG036619, R03 AG043052). The datasets generated and/or analysed during the current study are available in the CHARLS repository (http://charls.pku.edu.cn/en).

Fund

This work was supported by the National Natural Science Foundation of China (project number 81973143) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).
The demographic data that support the findings of this study are available from the Chinese National Bureau of Statistics. And the other data that support the findings of this study are available in the CHARLS repository (http://charls.pku.edu.cn/en).

Authors’ contributions

SX, CK and YS contributed to the study design, data collection, data analyses. SL and YQ contributed to the literature collection, data cleaning and data analyses. DH, YZ and YY helped a lot for the interpretation of results and manuscript writing. SX was a major contributor in writing this manuscript, and CK and YS polished this manuscript finally. All authors read and approved the final manuscript.

Ethics approval and consent to participate

The CHARLS obtained ethics approval (license number: IRB00001052-11015, IRB00001052-14030 and IRB00001052-17053) from the institutional review board of the Peking University National School of Development. All procedures performed in the studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The interviewers explained the purpose of the survey before obtaining oral informed consent from the individual participants.

Consent for publication

Not applicable.

Competing interests
The authors declare that they have no competing interests.

Figure legends

Figure 1 The diagram for the calculation of QALE. CHARLS (2011), Baseline data of the China Health and Retirement Longitudinal Study; PSM, Propensity Score Matching; HRs, Hazard Ratios; LEs, Life Expectancies; QALEs, Quality-Adjusted Life Expectancies;

Figure 2 QALE tendency among different groups. Population-level QALE loss: the difference of QALE between population with the combination of cognitive impairment and multimorbidity and the general population; Individual-level QALE loss: the difference of QALE between population with the combination of cognitive impairment and multimorbidity and the population without the combination.

Figure 3 Losses of QALE (with the corresponding 95% confidence intervals). These losses displayed for cognitive impairment, for multimorbidity, and for the combination of cognitive impairment and multimorbidity, which were displayed at the individual level (3A) and population level (3B).

References

1. Eshkoor SA, Hamid TA, Mun CY, Ng CK: Mild cognitive impairment and its management in older people. Clin Interv Aging 2015, 10:687-693.

2. Statistics NBo, PRC: China’s Main Demographic Indicators from the National data. 2019.

3. Jia L, Quan M, Fu Y, Zhao T, Li Y, Wei C, Tang Y, Qin Q, Wang F, Qiao Y, et al: Dementia in China: epidemiology, clinical management, and research advances. The Lancet Neurology 2020, 19:81-92.

4. DeCarli C: Mild cognitive impairment: prevalence, prognosis, aetiology, and treatment. The
5. Prince MJ, Wu F, Guo Y, Gutierrez Robledo LM, O'Donnell M, Sullivan R, Yusuf S: *The burden of disease in older people and implications for health policy and practice*. *Lancet* 2015, 385:549-562.

6. Organization WH: *China country assessment report on aging and health*. Geneva: World Health Organization; 2015.

7. Wang HH, Wang JJ, Wong SY, Wong MC, Li FJ, Wang PX, Zhou ZH, Zhu CY, Griffiths SM, Mercer SW: *Epidemiology of multimorbidity in China and implications for the healthcare system: cross-sectional survey among 162,464 community household residents in southern China*. *BMC Med* 2014, 12:188.

8. Garin N, Koyanagi A, Chatterji S, Tyrovolas S, Olaya B, Leonardi M, Lara E, Koskinen S, Tobiasz-Adamczyk B, Ayuso-Mateos JL, Haro JM: *Global Multimorbidity Patterns: A Cross-Sectional, Population-Based, Multi-Country Study*. *Journals of Gerontology Series a-Biological Sciences and Medical Sciences* 2016, 71:205-214.

9. Hu X, Huang J, Lv Y, Li G, Peng X: *Status of prevalence study on multimorbidity of chronic disease in China: Systematic review*. *Geriatrics & Gerontology International* 2015, 15:1-10.

10. Zhang Q, Wu Y, Han T, Liu E: *Changes in Cognitive Function and Risk Factors for Cognitive Impairment of the Elderly in China: 2005-2014*. *Int J Environ Res Public Health* 2019, 16.

11. Virta JJ, Heikkila K, Perola M, Koskenvuo M, Raiha I, Rinne JO, Kaprio J: *Midlife cardiovascular risk factors and late cognitive impairment*. *European Journal of Epidemiology* 2013, 28:405-416.

12. Vasilaki M, Aakre JA, Cha RH, Kremers WK, St Sauver JL, Mielke MM, Geda YE, Machulda MM,
Knopman DS, Petersen RC, Roberts RO: Multimorbidity and Risk of Mild Cognitive Impairment. *J Am Geriatr Soc* 2015, **63**:1783-1790.

Chen B, Jin X, Guo R, Chen Z, Hou X, Gao F, Zhang Y, Zheng S, Fu C, Xue F, et al: Metabolic Syndrome and Cognitive Performance Among Chinese >/=50 Years: A Cross-Sectional Study with 3988 Participants. *Metab Syndr Relat Disord* 2016, **14**:222-227.

Wang Y, Song M, Yu L, Wang L, An C, Xun S, Zhao X, Gao Y, Wang X: Mild cognitive impairment: vascular risk factors in community elderly in four cities of Hebei Province, China. *PLoS One* 2015, **10**:e0124566.

Wei MY, Kabeto MU, Langa KM, Mukamal KJ: Multimorbidity and Physical and Cognitive Function: Performance of a New Multimorbidity-Weighted Index. *J Gerontol A Biol Sci Med Sci* 2018, **73**:225-232.

Wei MY, Levine DA, Zahodne LB, Kabeto MU, Langa KM: Multimorbidity and cognitive decline over 14 years in older Americans. *J Gerontol A Biol Sci Med Sci* 2019.

Loprinzi PD: Multimorbidity, cognitive function, and physical activity. *Age (Dordr)* 2016, **38**:8.

Calderon-Larranaga A, Vetrano DL, Ferrucci L, Mercer SW, Marengoni A, Onder G, Eriksdotter M, Fratiglioni L: Multimorbidity and functional impairment-bidirectional interplay, synergistic effects and common pathways. *J Intern Med* 2019, **285**:255-271.

Kaplan RM, Anderson JP, Kaplan CM: Modeling Quality-Adjusted Life Expectancy Loss Resulting from Tobacco use in the United States. *Social Indicators Research* 2006, **81**:51-64.

Zhang T, Shi W, Huang Z, Gao D, Guo Z, Chongsuvivatwong V: Gender and ethnic health disparities among the elderly in rural Guangxi, China: estimating quality-adjusted life expectancy. *Glob Health Action* 2016, **9**:32261.
21. Jia H, Zack MM, Thompson WW: State Quality-Adjusted Life Expectancy for U.S. adults from 1993 to 2008. *Qual Life Res* 2011, 20:853-863.

22. Brown DS, Jia H, Zack MM, Thompson WW, Haddix AC, Kaplan RM: Using health-related quality of life and quality-adjusted life expectancy for effective public health surveillance and prevention. *Expert Rev Pharmacoecon Outcomes Res* 2013, 13:425-427.

23. Mukuria C, Rowen D, Harnan S, Rawdin A, Wong R, Ara R, Brazier J: An Updated Systematic Review of Studies Mapping (or Cross-Walking) Measures of Health-Related Quality of Life to Generic Preference-Based Measures to Generate Utility Values. *Appl Health Econ Health Policy* 2019, 17:295-313.

24. Ara R, Rowen D, Mukuria C: The Use of Mapping to Estimate Health State Utility Values. *Pharmaco economics* 2017, 35:57-66.

25. Jia H, Zack MM, Thompson WW, Dube SR: Quality-adjusted life expectancy (QALE) loss due to smoking in the United States. *Qual Life Res* 2013, 22:27-35.

26. Lee HY, Hwang JS, Jeng JS, Wang JD: Quality-adjusted life expectancy (QALE) and loss of QALE for patients with ischemic stroke and intracerebral hemorrhage: a 13-year follow-up. *Stroke* 2010, 41:739-744.

27. Romero M, Vivas-Consuelo D, Alvis-Guzman N: Is Health Related Quality of Life (HRQoL) a valid indicator for health systems evaluation? *Springerplus* 2013, 2:664.

28. Yaohui Z, John S, Gonghuan Y: China Health and Retirement Longitudinal Study (2011 baseline). V1 edition: Peking University Open Research Data Platform; 2015.

29. Zhao Y, Hu Y, Smith JP, Strauss J, Yang G: Cohort profile: the China Health and Retirement Longitudinal Study (CHARLS). *Int J Epidemiol* 2014, 43:61-68.
Lei X, Hu Y, McArdle JJ, Smith JP, Zhao Y: Gender Differences in Cognition among Older Adults in China. *J Hum Resour* 2012, **47**:951-971.

Harmonized CHARLS Documentation http://charls.pku.edu.cn/index/zh-cn.html

Delia Bugliari NC, Chris Chan, Orla Hayden, Jessica Hayes, Michael Hurd, Adam Karabataks, Regan Main, Joshua Mallett, Colleen McCullough, Erik Meijer, Michael Moldoff, Philip Pantoja, Susann Rohwedder, Patricia St.Clair: RAND HRS Longitudinal File 2016 (V1) Documentation. the RAND Center for the Study of Aging; 2019.

Fabbri E, An Y, Zoli M, Tanaka T, Simonsick EM, Kitner-Triolo MH, Studenski SA, Resnick SM, Ferrucci L: Association Between Accelerated Multimorbidity and Age-Related Cognitive Decline in Older Baltimore Longitudinal Study of Aging Participants without Dementia. *J Am Geriatr Soc* 2016, **64**:965-972.

Huang W, Zhou Y: Effects of education on cognition at older ages: evidence from China’s Great Famine. *Soc Sci Med* 2013, **98**:54-62.

Harmonized CHARLS Documentation http://charls.pku.edu.cn/Public/ashelf/public/uploads/document/harmonized_charls/application/Harmonized_CHARLS_C.pdf

Fortin M, Stewart M, Poitras ME, Almirall J, Maddocks H: A systematic review of prevalence studies on multimorbidity: toward a more uniform methodology. *Ann Fam Med* 2012, **10**:142-151.

Jia H, Zack MM, Gottesman, II, Thompson WW: Associations of Smoking, Physical Inactivity, Heavy Drinking, and Obesity with Quality-Adjusted Life Expectancy among US Adults with Depression. *Value Health* 2018, **21**:364-371.
38. Rabin R, de Charro F: **EQ-5D: a measure of health status from the EuroQol Group.** *Ann Med* 2001, **33**:337-343.

39. Luo N, Liu G, Li M, Guan H, Jin X, Rand-Hendriksen K: **Estimating an EQ-5D-5L Value Set for China.** *Value Health* 2017, **20**:662-669.

40. Prevention CCfDCa: **National disease surveillance system cause of death surveillance data set 2011.** (Prevention CCfDCa ed., 1 edition. Beijing: People's Medical Publishing House; 2013.

41. Deubner DC, Tyroler HA, Cassel JC, Hames CG, Becker C: **Attributable risk, population attributable risk, and population attributable fraction of death associated with hypertension in a biracial population.** *Circulation* 1975, **52**:901-908.

42. MacMahon, Brian: **EPIDEMIOLOGY PRINCIPLES AND METHODS.** 1970, 2:77-87.

43. Yang SC, Lai WW, Chang HY, Su WC, Chen HH, Wang JD: **Estimation of loss of quality-adjusted life expectancy (QALE) for patients with operable versus inoperable lung cancer: adjusting quality-of-life and lead-time bias for utility of surgery.** *Lung Cancer* 2014, **86**:96-101.

44. Hung MC, Yan YH, Fan PS, Lin MS, Chen CR, Kuo LC, Yu CJ, Wang JD: **Estimation of quality-adjusted life expectancy in patients under prolonged mechanical ventilation.** *Value Health* 2011, **14**:347-353.

45. Fries JF: **Aging, natural death, and the compression of morbidity.** *N Engl J Med* 1980, **303**:130-135.

46. Sanders JL, Arnold AM, Hirsch CH, Thielke SM, Kim D, Mukamal KJ, Kizer JR, Ix JH, Kaplan RC, Kritchevsky SB, Newman AB: **Effects of Disease Burden and Functional Adaptation on Morbidity and Mortality on Older Adults.** *J Am Geriatr Soc* 2016, **64**:1242-1249.

47. Fryback DG, Palta M, Cherepanov D, Bolt D, Kim JS: **Comparison of 5 Health-Related Quality-
of-Life Indexes Using Item Response Theory Analysis. *Medical Decision Making* 2010, **30**:5-15.

437 48. Austin PC: *An Introduction to Propensity Score Methods for Reducing the Effects of Confounding in Observational Studies*. *Multivariate Behav Res* 2011, **46**:399-424.

439 49. Lin JS, O’Connor E, Rossom RC, Perdue LA, Burda BU, Thompson M, Eckstrom E: Screening for Cognitive Impairment in Older Adults: An Evidence Update for the U.S. Preventive Services Task Force. In *Screening for Cognitive Impairment in Older Adults: An Evidence Update for the U.S. Preventive Services Task Force*. Rockville (MD); 2013: U.S. Preventive Services Task Force Evidence Syntheses, formerly Systematic Evidence Reviews].