Special Issue Article

Integrating greenhouse gas capture and C1 biotechnology: a key challenge for circular economy.

Introduction

Life is supported by a small number of elements of the periodic table, i.e. between 25 and 28 elements according to different criteria. While all of them are relevant, carbon is the key element that explains life in our planet, even though elemental carbon cannot be used directly as a carbon source by any organism. Carbon must be previously bound to other elements, forming small or very large molecules to become metabolizable by the living beings. In fact, life arose from the combination of small molecules such as hydrogen (H₂), water (H₂O), ammonia (NH₃), hydrogen sulfide (H₂S), carbon monoxide (CO), carbon dioxide (CO₂), methane (CH₄), formaldehyde (H₂CO) or hydrocyanic acid (HCN), within others. Several of them contain a single carbon atom and form part of a group of molecules named as C1 compounds. Interestingly, all these prebiotic small molecules still remain in the biosphere, and some of them are quite abundant and useful to support life, remaining many micro- and macroorganisms able to use them as carbon and/or energy sources. The aim of this editorial is to analyse the present and future prospects and the valorization of C1 carbon sources obtained either from natural or anthropogenic origin through microbial biotechnology as a key challenge for the ‘Green Deal’ and the circular economy.

To focus this analysis, it is important to define the scope of C1 compounds. Although C1 compounds are usually defined as substances that contain a single carbon atom, some authors extend this scope to those compounds that contain carbon atoms without C-C bonds. Among the first, we can consider CO, CO₂, CH₄, H₂CO, methanol (CH₃OH), formic acid (HCOOH), methylamine (CH₃NH₂), methanethiol (CH₃SH), different halomethanes (e.g. CHCl₃) and others. Among the latter, we can list, for instance, dimethyl or trimethyl amines, dimethylsulfides, dimethylsulfoxide, dimethylsulfone, dimethylformamide and others. Special mention should be made of soluble or insoluble mineral carbonates that can be converted into CO₂ under specific environmental conditions and then used by some organisms as a carbon source (Kral et al., 2014).

On the other hand, we should consider that not all C1 compounds are equally applicable as potential feedstock for industrial scale biomanufacturing mainly due to their limited availability. The most relevant C1 compounds for biotech purposes include CO₂, CO, CH₄, HCOOH and CH₃OH. Significantly, CO₂ and CH₄ are greenhouse gases that are increasing their concentration in the atmosphere due to the large current anthropogenic activity, and consequently, developing biotechnology processes aimed at their sequestration and transformation is essential for planet survival. Additionally, other anthropogenic gases such as power plant flue gas, steel mill gas, anaerobic digestion-derived biogas, synthesis gas (syngas) and others produced by gasification of organic waste are abundant, rich in C1 substrates (i.e. CO, CO₂, CH₄) and, therefore, useful to develop different bioprocesses. Finally, HCOOH or CH₃OH derived from catalytic processing of CO₂ or from other sources are liquid substances more amenable than C1 gases to transportation and more affordable for a microbial utilization, due to their higher water solubility.

Except CO₂, the other relevant C1 compounds mentioned above can be used both as carbon and energy sources. Therefore, metabolizing CO₂ requires an additional energy source that can be provided by light, H₂, CO, electricity or some organic and inorganic compounds. Although some of these C1 compounds can be metabolized by plants and animals, this analysis will be focussed only in the biotech processes based on C1-utilizing microbes including bacteria, fungi, microalgae and archaea. Native and synthetic C1 assimilation pathways have been used to validate the transformation of C1 compounds to biofuels, and biobased chemicals or even to food and feed (single cell protein) as industrially promising manufacturing procedures, but a deeper understanding of the governing mechanisms of C1 metabolic pathways is needed to develop most efficient C1-based biotech processes (Jiang et al., 2021).
Finally, we have to consider that a circular bioeconomy based on C1 compounds has the potential to sustainably produce a large number of compounds, at the same time that can contribute to reduce accumulation of C1 greenhouse and waste gases responsible of climate change, such as CO₂ and CH₄. Moreover, technologies that facilitate treatments of all kind of organic waste by gasification followed by carbon capture and conversion of gases into useful products will help also to mitigate climate change by enabling a circular carbon economy (Fackler et al., 2021a; Wood et al., 2021). Figure 1 shows a scheme of the most relevant biomanufacturing processes that can be carried out using C1 compounds and that will be briefly reviewed hereinafter.

Fermentations of C1 gases

Syngas fermentation

We currently have at our disposal a collection of more than 100 isolated anaerobic bacteria named acetogens that synthesize acetyl-CoA from CO or from CO₂ plus H₂ (Bengelsdorf et al., 2016; Takors et al., 2018; Müller, 2019; Jin et al., 2020; Katsyv and Müller, 2020; Lemaire et al., 2020; Bourgade et al., 2021). These organisms use CO and CO₂ as substrates for the methyl or carbonyl branches of the Wood–Ljungdahl pathway that produce acetyl-CoA as metabolic precursor. Acetogens can grow using syngas that is mainly composed of CO₂, CO and H₂, a mixture of CO₂ and H₂ or only CO. These microorganisms have been used to produce acetate, ethanol, 2,3-butanediol or butyrate as the most relevant products although others such as acetone or butanol can also be produced from syngas by genetic modifications (Minton et al., 2016; Jin et al., 2020; Bourgade et al., 2021). In this sense, several industrially useful acetogenic bacteria have been already modified using synthetic biology tools, such as *Clostridium ljungdahlii* (Köpke et al., 2010; Molitor et al., 2016; Zhang et al., 2020a), *Clostridium autoethanogenum* (Liew et al., 2016; Fackler et al., 2021b), *Acetobacterium woodii* (Straub et al., 2014) or *Moorella thermoacetica* (Kita et al., 2013; Kato et al., 2021).

Acetogenic bacteria can be used not only to capture CO₂ or CO produced as contaminants by anthropogenic activities, but also as a biological alternative to transform syngas into valuable products within the gasification stream of a chemical refinery. To reduce the volume of organic waste (or biomass) generated in cities or industries, it is possible to construct biorefineries that transform organic waste into syngas through different gasification processes (Chan et al., 2021; Fackler et al., 2021b). Up to now, syngas has been further transformed into different chemicals and fuels of industrial interest by using Fischer–Tropsch catalytic procedures. However, more recently, several research approaches from the academia and the industry (e.g. LanzaTech, IneosBio, Coskata) have demonstrated that syngas can be alternatively transformed into valuable products by using

Fig. 1. Main biomanufacturing processes that can be carried out using C1 compounds.

© 2021 The Authors. *Microbial Biotechnology* published by Society for Applied Microbiology and John Wiley & Sons Ltd., *Microbial Biotechnology*, 15, 228–239
bacterial syngas fermentations (Molitor et al., 2017; Bengelsdorf et al., 2018; De Tissela et al., 2019). However, the efficiency of syngas fermentation is still low and needs to be improved to compete with chemical catalysis (Phillips et al., 2017; Sun et al., 2019; Geinitz et al., 2020).

CO metabolism

CO, one component of syngas, is a highly toxic compound for most living beings, but there are many microbes which can deal with its toxicity and use it as a carbon and energy source (Robb and Techtmann, 2018; Cordero et al., 2019; Duan et al., 2021). Curiously, CO occurs at relatively high concentration in Mars’ atmosphere, and it represents a focal point for astrobiological research (King, 2015). CO oxidation coupled to the generation of energy for growth is achieved by aerobic and anaerobic bacteria, and archaea, belonging to the physiological groups of aerobic carboxydovore, facultatively anaerobic phototrophic, and anaerobic aceticogenic, methanogenic or sulfate-reducing bacteria. However, not all microbes that metabolize CO are able to grow only using 100% CO. Within the aerobic CO-oxidizing microorganisms, we can categorize two major groups, the carboxydovores and the carboxydotrophs (Cordero et al., 2019). While carboxydovores grow chemolithoautotrophically with CO as the sole energy and carbon source when present at elevated concentrations, carboxydotrophs represent a broader group of bacteria and archaea which oxidize CO at low concentrations, and in contrast to carboxydovores require organic carbon to grow. The possibility that CO can be used by some bacteria to convert it into a variety of chemicals and to generate bio-H2 is also promoting a new field of research (Revelles et al., 2016, 2017; Robb and Techtmann, 2018; Rodriguez et al., 2021).

CO2 capture

Since CO2 cannot be used as the sole carbon and energy source, all organisms that capture CO2 require an additional source of energy (Claassens et al., 2016; Claassens, 2017; Hu et al., 2018; Kumar et al., 2018; Liang et al., 2020). In the case of aceticogenic bacteria, CO2 is captured by reduction using the energy provided by CO or H2. Nevertheless, some aceticogenic bacteria can also use electric energy from a cathode to fix CO2 by a process called microbial electrosynthesis (MES) (Dessi et al., 2021) (see below).

On the other hand, chemolithoautotrophic bacteria can use H2 or inorganic compounds as electron donors for energy requirement and growth using CO2 as a carbon source. One example of such bacteria is Cupriavidus necator that is able to grow and produce different industrial products using CO2 and H2 under aerobic conditions (Li et al., 2020; Nangle et al., 2020; Panich et al., 2021). Methanotrophs can also sequester CO2 and transform it into CH3OH using H2 or an organic compound as energy source. Therefore, methanotrophs are used as cell factories for the production of a wide range of high-value products (Sahoo et al., 2021).

In addition to H2, there are other compounds used by microbes as electron donors (Gargaud, 2011). In this sense, the most common sulfur compounds utilized as electron donors by denitrifying bacteria (e.g. Thiobacillus, Thiomicrospira) are hydrogen sulfide (H2S), elemental sulfur (S0), sulfite (SO32-) and thiosulfate (S2O32-). The aerobic oxidation of ferrous iron (Fe2+) to ferric iron (Fe3+) is an energy-yielding reaction, used by some prokaryotes to conserve energy (e.g. Ferroglobus). The most common nitrogen compounds used as electron donors for energy conservation are NH3 (e.g. Nitrosomonas, Nitrosospira, Nitroscococcus and Nitrosolobus) and nitrite (NO2-) (e.g. Nitrobacter, Nitrosipira and Nitrococcus). A special case of nitrogen-oxidizing microorganisms corresponds to those capable of carrying out the anoxic oxidation of NH4+, a process known as anamox. In this case, the electron acceptor is NO2-, and the product of the metabolic reaction in addition to proton motive force is the generation of N2. This metabolic reaction is carried out by a special type of microorganisms belonging to the Planctomycetes phylum of bacteria.

Phototrophic bacteria utilize light as energy source to capture CO2 (Choi et al., 2019; Naduthodi et al., 2021). It is well known that oxygenic phototrophic cyanobacteria as well as the eukaryotic microalgae, algae and plants use CO2 as a carbon source and many reviews have been devoted to show the utility of these bacteria for biotechnological purposes (Singh et al., 2018; Veaudor et al., 2020; Leong et al., 2021; Sarma et al., 2021). In addition, anoxicogenic phototrophic bacteria can also use CO2 to grow and have been utilized for biotech purposes (George et al., 2020).

Geologic sequestration of CO2, i.e. carbon capture and storage (CCS), is one strategy to reduce the emission of greenhouse gases. Mineralization of CO2 into CaCO3 is possible if the equilibrium of the reaction of Ca2+ with CO32- is moved to the formation of CaCO3 under a saturation state. This is achieved in the presence of sufficient dissolved Ca2+ at alkaline pH and in the presence of a nucleation substrate. Microbes have been shown to enhance CaCO3 precipitation (microbiologically induced calcium carbonate precipitation, MICP) via cation adsorption to negatively charged functional groups on microbe surfaces and by metabolically driven changes in the solution chemistry, which increase mineral saturation and induce nucleation (Castro-Alonso
et al., 2019). In general, two metabolic pathways are involved in this biomineralization, i.e. the autotrophic and the heterotrophic pathways (Görgen et al., 2020). Autotrophic precipitation of carbonates includes oxygenic and anoxygenic photosynthesis, and non-methylotrophic methanogenesis. In the heterotrophic pathway, two processes are reported involving sulfur and nitrogen cycles respectively. The microbial induced carbonate precipitation has been biotechnologically used for bioconcretization of materials (Reddy and Sumit, 2018). Moreover, MICP was investigated for crack repair and the surface treatment of various types of construction materials (Joshi et al., 2017; Lee and Park, 2018; Seifan and Berenjian, 2018). Fungi and bacteria can be used in these processes (Menon et al., 2019).

However, most interestingly, a number of researches are currently focussed on the creation of new synthetic organisms able to capture CO2 using HCOOH or light, opening new frontiers in this field (Woo, 2017; François et al., 2020; Liang et al., 2020; Satanowski and Bar-Even, 2020; Satanowski et al., 2020). Rewiring *Escherichia coli* for CO2 fixation to convert it into sugar may enable diverse biotechnological applications (Antonovsky et al., 2017; Flamholz et al., 2020). An *E. coli* recombinant strain was created to use CO2 and HCOOH, and although it still required glucose to grow, authors anticipated that with some additional modifications, it could grow only using CO2 and HCOOH (Bang and Lee, 2018; Bang et al., 2021). A similar approach had been also carried out using a different metabolic strategy to capture CO2 in combination with a complex organic energy source (e.g. glycerol and xylose) (Antonovsky et al., 2016; Kerfeld, 2016). Interestingly, the hypothesis was demonstrated, and very recently, a new *E. coli* autotrophic recombinant was constructed by laboratory evolution able to capture CO2 using HCOOH as the only source of energy (Gleizer et al., 2019).

On the other hand, light-driven CO2 sequestration has been achieved in *E. coli* by using self-assembled cadmium sulfide nanoparticles (Hu et al., 2021). Biohybrids had been also investigated in other organisms (Nichols et al., 2015; Zhang and Tremblay, 2017; Guo et al., 2018; Ding et al., 2019; Dogutan and Nocera, 2019; Kumar et al., 2019; Sahoo et al., 2020) (see below).

Finally, as a proof of concept, a complex *in vitro* system with 17 enzymes was generated to sequester CO2 (Schwander et al., 2016). An example of how protein engineering and synthetic biology could assist in this mission is the new-to-nature glycolyl-CoA carboxylase created by combining rational design, high-throughput microfluidics and microplate screens that improved its catalytic efficiency by three orders of magnitude to match the properties of natural CO2-fixing enzymes (Scheffen et al., 2021). Moreover, enzymes can also be used in combination with electrochemistry for CO2 capture (see below).

Methane fermentation

CH4 can be obtained from natural sources, such as wetlands or animal digestion, along with many anthropogenic activities such as the use of anaerobic digesters (methanogens and biogas) or by thermogenic processes. However, the largest reservoir of CH4 is under the seafloor in the form of CH4 clathrates. Natural gas is approximately 90% CH4. Therefore, it is normal to found many organisms capable of oxidizing CH4 in the biosphere that are known as methanotrophs utilizing CH4 as the source of carbon and energy. All aerobic methanotrophs oxidize CH4 to CO2 through a common enzymatic cascade. This oxidation process produces CH3OH, CH2O and HCOOH as reaction intermediates. Methanotrophs are therefore excellent candidates for CH4 sequestration (Sahoo et al., 2021). These capabilities enable them as cell factories for a wide range of high-value products (Nguyen et al., 2021). In this sense, methanotrophs have been used to synthesize polyhydroxyalkanoates for plastic sector, single cell proteins for feeding animals and lipids for biofuel production (Wang et al., 2020).

Fermentation of C1 liquids

Common challenges associated with C1 gas fermentation systems are gas-to-liquid mass transfer limitations and lower solubility of the gaseous substrates. This problem does not exist when using C1 liquids, such as CH3OH or HCOOH. Therefore, CH3OH is considered a promising C1 feedstock adding its great availability from different sources (Pirola et al., 2018; Simon Araya et al., 2020). However, CH3OH can inhibit the growth of microorganisms under aerobic conditions, mainly because of the high reactivity of its toxic downstream metabolite H2CO. Methylotrophs, including bacteria, such as *Bacillus methanolicus*, and yeasts, such as *Pichia pastoris*, can use CH3OH as a carbon and energy source. With some exceptions such as *P. pastoris*, the use of native methylotrophic microorganisms suffers from the drawbacks of poor genetic availability and low metabolic yield, and therefore, engineering non-native methylotrophic microbes has been used to convert methanol into value-added products (Zhang et al., 2019; Zhan et al., 2021). Different bioengineering efforts have shown that these recombinant organisms can be engineered to convert CH3OH into biofuels and other commodity chemicals (Bennett et al., 2018; Chistoserdova, 2018; Antoniewicz, 2019; Zhu et al., 2020). Engineering CH3OH metabolic pathways have been mainly carried out in *E. coli*, *Saccharomyces cerevisiae* and *Corynebacterium

© 2021 The Authors. Microbial Biotechnology published by Society for Applied Microbiology and John Wiley & Sons Ltd., Microbial Biotechnology, 15, 228–239
glutamicum. However, to date, none of engineered strains can grow on CH₃OH as the sole carbon source.

On the other hand, HCOOH can be efficiently produced via electrochemical or photochemical catalytic conversion of CO₂, and it can be directly used as an organic carbon source by microorganisms (Yishai et al., 2016; Cotton et al., 2020). HCOOH has recently been suggested as an industrial feedstock, although bio-production based on this carbon source is still not commercially mature (Satanowski and Bar-Even, 2020). Consequently, the construction of efficient HCOOH-assimilation pathways in microorganisms is essential for the utilization of cheap, renewable C₁ compounds (Mao et al., 2020; Tuyishime and Sinumvayo, 2020; Bang et al., 2021). Natural microorganisms that possess HCOOH utilization pathways mainly use two strategies to grow on HCOOH as the sole carbon source. In the first one, HCOOH is completely oxidized to generate CO₂ and reducing equivalents, being Calvin–Benson–Bassham (CBB) cycle an example of this type. In the second one, not all HCOOH is oxidized into CO₂, while some is directly assimilated via the central metabolism. CBB cycle (reductive pentose-phosphate cycle) discovered in C. necator is the only natural pathway for autotrophic growth on HCOOH, and thus, initial metabolic engineering of HCOOH utilization was mainly concentrated in this pathway. However, new synthetic alternative HCOOH utilization pathways have been recently investigated (Claassens et al., 2020; Mao et al., 2020). Currently, only some engineered strains of E. coli have been able to grow on HCOOH as the sole carbon source although the low cell density and specific growth rate need further improvement (Yishai et al., 2018; Bang et al., 2020; Kim et al., 2020).

Electrocatalysis

As remarked above, MES is emerging as a promising technology to improve the microbial utilization of C₁ compounds (Chu et al., 2020; Dessi et al., 2021). The first proof-of-concept experiment of MES was conducted in 2010 showing that homoacetogens can produce extracellular acetate and 2-oxobutyrate from CO₂ with electrons delivered from a graphite electrode (Nevin et al., 2010). Since then, many hybrid electro-biochemical systems have been developed (Li et al., 2012; Hwang et al., 2015; Bajracharya et al., 2017; Gimkiewicz et al., 2017; Jang et al., 2018; Le et al., 2018; Tashiro et al., 2018; Yuan et al., 2019; Hegner et al., 2020).

Nevertheless, electric energy can be also used to synthesize C₁ by chemical catalysis and upgraded via microbial fermentation to produce biobased chemicals. In this sense, electrocatalysis represents an attractive strategy with a huge potential in the field of biomanufacturing. The high efficiencies and rates of electrochemical catalysis can be combined with the high selectivity and access to complex end products of microbial catalysis. The electrochemical CO₂ reduction renders HCOOH or CO that, as stated above, can be used as carbon and energy sources from many microorganisms (Jin et al., 2021; Park et al., 2021). On the other hand, H₂ can be generated by electrolysis of H₂O and used as an energy source to grow. Moreover, the co-electrolysis of CO₂ and H₂O can render at the same time CO and H₂, this is, a syngas equivalent (Lu et al., 2020). Syngas can also be catalytically transformed into methanol suitable for methylotrophs.

Finally, enzyme based electro-catalysed production of HCOOH from CO₂ has received great attention (Srikanth et al., 2014, 2017; Zhang et al., 2016; Schlager et al., 2017; Jayathilake et al., 2019). Effective oxygen tolerant biocatalysts capable of utilizing electrons supplied from a cathode are being sought to render biocatalytic HCOOH production from CO₂ feasible. Bioelectrochemical CO₂ reduction with enzymes or whole-cell biocatalysts is generally characterized by a high selectivity of products and a high energy efficiency with a small overpotential to drive the desired reaction.

Future prospects

The utilization of C₁ raw materials is crucial for establishing a sustainable circular carbon economy. C₁ compounds are envisioned as ideal resources for both the chemical industry and the biotechnological sector.Probably, the truly sustainable feedstock for a circular carbon economy is CO₂ not only because its conversion to chemicals and fuels represents a sustainable solution for reducing greenhouse gas emissions, but also because it is abundant and can be obtained from different sources. Although direct CO₂ capture from air will result in a net removal from the atmosphere, this process possesses technical and economic problems because it is highly dilute, only about 400 ppm, i.e. 100–300 times more dilute than in gas- and coal-fired power plants. The estimated cost of capturing CO₂ from air ranged from $300 to $1000 per ton. Thus, alternatively, the industrial production of chemicals from CO₂ should consider the use of CO₂ high-volume waste as raw material (Bui et al., 2018).

Solar energy is envisioned as the most suitable renewable energy source to reduce CO₂ and provide a sustainable system. Besides the firstly discovered Calvin–Benson–Bassham (CBB) cycle, other five natural CO₂ fixation pathways have been described, i.e. the Wood-Ljungdahl pathway, the reductive TCA cycle, the dicarboxylate/4-hydroxybutyrate cycle, the 3-hydroxypropionate bicycle and the 3-hydroxypropionate/
4-hydroxybutyrate cycle. Refining the efficiencies of the native pathways as well as the design of synthetic pathways will provide new opportunities to improve the assimilation efficiencies of CO₂. Developing new artificial autotrophic microorganisms, and especially phototrophic ones, for reinforcing carbon capture utilization (CCU) should be considered a key target in the next years. However, the use of artificial autotrophic cell factories still requires additional improvements in the CO₂ fixation pathways, in order to solve compartmentalization, and to decide the best host as well as to reduce the cost of pathways to improve the efficiency. In the same way, solar-powered electrochemical reduction in CO₂ and H₂O to syngas, coupled to bacterial fermentation, can be also considered as an alternative to the sustainable production of useful chemicals (Haas et al., 2018).

Although it has been demonstrated that syngas, CO or CO₂ can be directly transformed at industrial scale by acetogenic fermentation in useful alcohols (e.g. ethanol, butanediol), the main product generated by acetogenic bacteria is acetic acid. The potential of acetate to become a next-generation platform substrate for its further fermentation into value-added bioproducts has been underexplored so far (Kiefer et al., 2021; Kim et al., 2021).

Attractive platforms involving photomixotrophic metabolism in cyanobacteria can provide unparalleled improvements in yield for the conversion of CO₂. Of particular interest is the ability to combine CO₂ with other C1 compounds such as CH₄ or chemically produced CH₃OH and HCOOH (Kanno et al., 2017; Singh et al., 2018).

The creation of artificial bacterial consortia to improve the efficiency of C1 conversion into chemicals is a promising alternative (Hays et al., 2017). Strategies involving co-cultivation of methanotrophic and oxygenic photosynthetic bacteria in biogas have been already explored (Van der Ha et al., 2012; Hill et al., 2017). An engineered Synechococcus elongatus able to convert CO₂ into secreted sucrose can be used in co-culture with other bacteria to generate biotechnological applications (Löwe et al., 2017; Weiss et al., 2017; Fedeson et al., 2020; Zhang et al., 2020b).

A proof-of-concept experiment conducted by Cheng et al. (2009) demonstrated that a biocathode enriched with the methanogenic archaea Methanobacterium palustre can store electricity in the form of CH₄. In this CH₄-producing bioelectrochemical system (BES), CO₂ and electrical energy are converted into CH₄, using electrodes that supply either electrons or H₂ to the archaea (Blasco-Gómez et al., 2017). This technology is referred to as bioelectrochemical power-to-gas (BEP2G) and considered as a way of storing renewable surplus electricity (Geppert et al., 2016), i.e. CH₄ generated with excess renewable power that cannot be fed into the electric grid can be directly stored in the existing gas infrastructures.

The main objective of the so call third-generation-(3G)-biorefineries is to use cell factories to convert renewable energies and CO₂ into chemicals, searching for routes for biomanufacturing chemicals in a carbon-neutral manner. However, there are still many trends and key challenges for future advancement to make them competitive with the petroleum industry (Liu et al., 2020). Within this challenge, the design of efficient CO₂ reduction systems by mimicking the mechanism of natural photosynthesis using semiconducting nanomaterials interfaced with electroactive bacteria in a photosynthetic microbial electrosynthesis system opens a revolutionary alternative (Xu et al., 2020; Gupta et al., 2021).

Table 1 tries to summarize some examples of the main industrial approaches without pretending to be exhaustive. While CH₃OH was explored years ago at industrial scale to produce single cell protein

C1 compound	Company	Final product
Syngas	LanzaTech (Basf, Global Bioenergies, Evonik, ArcelorMittal, Aemetis, IndianOil, Swayana)	Ethanol, butanediol, chemicals
Syngas	Inos Bio (New Planet Bioenergy)	Ethanol
Syngas	Coskata (Syna Bio)	Polyhydroxyalkanoates
CH₄	Newlight Technologies	Polyhydroxyalkanoates
CH₄	Mango Materials	Protein, chemicals
CH₄	Calysta (BP, Carell, NortTech)	Protein, chemicals
CH₄	Unibio	Methanol
CH₄	Industrial Microbes	Protein, chemicals
CH₄	MBP Titan (formerly Intrexon)	Lactic acid
CH₄	NatureWorks (Calysta)	Protein
CO₂	Deep Branch	Methanol
CO₂	Solar Foods	Protein
CO₂	Air Protein	Protein
CO₂	Novo Nutrients	Protein
CO₂	Kiverdi	Protein
CO₂	White Dog Labs	Protein
CO₂	OPX Biotechnologies (Cargill)	Biofuels
CO₂	Trelys	Amino acids
CO₂	BioMason (Novo Holdings)	Bioconcretation
CO₂	BioCement Technologies Inc.	Bioconcretation
CO₂	Basilisk	Self-healing concrete
CO₂	Ginkgo Bioworks	Biofuels

© 2021 The Authors. Microbial Biotechnology published by Society for Applied Microbiology and John Wiley & Sons Ltd., Microbial Biotechnology, 15, 228–239
by bacteria or yeasts, the C1 liquids, neither CH3OH nor HCOOH are currently being used at industrial scale as feedstock to produce materials of commercial interest through fermentation. Interestingly, Feedstocks United (Netherlands) has developed a new technology that uses trioxane derived by chemical synthesis from C1 compounds as feedstock for microbial fermentation, exemplifying that there are still other options to be explored in the field of C1 biotechnology. All this leads to the conclusion that we are facing a large scenario of opportunities and strategies for biotechnological companies to face the challenge posed by the Green Deal in the coming years.

Conflict of interest
None declared.

José L. García* and Beatriz Galán (✉)
Environmental Biotechnology Laboratory, Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas (CIB-MS, CSIC), Madrid, Spain
E-mail: jlgarcia@cib.csic.es
Tel: +34 91 837 31 12; Fax: +34 91 536 04 32.

References
Antoniewicz, M.R. (2019) Synthetic methylotrophy: strategies to assimilate methanol for growth and chemicals production. Curr Opin Biotechnol 59: 165–174. https://doi.org/10.1016/j.copbio.2019.07.001.
Antonovsky, N., Gleizer, S., Noor, E., Zohar, Y., Herz, E., Barenholz, U., et al. (2016) Sugar synthesis from CO2 in Escherichia coli. Cell 166: 115–125. https://doi.org/10.1016/j.cell.2016.05.064.
Antonovsky, N., Gleizer, S., and Milo, R. (2017) Engineering carbon fixation in E. coli from heterologous RuBi5CO expression to the Calvin-Benson-Bassham cycle. Curr Opin Biotechnol 47: 83–91. https://doi.org/10.1016/j.copbio.2017.06.006.
Bajacharya, S., Vanbroekhoven, K., Buisman, C.J.N., Strik, D.P.B.T.B., and Pant, D. (2017) Bioelectrochemical conversion of CO2 to chemicals: CO2 as a next generation feedstock for electricity-driven bioproduction in batch and continuous modes. Faraday Discuss 202: 433–449. https://doi.org/10.1039/c7fd00050b.
Bang, J., Ahn, J.H., Lee, J.A., Hwang, C.H., Kim, G.B., Lee, J., and Lee, S.Y. (2021) Synthetic formatrophes for one-carbon biorefinery. Adv Sci (Wien) 8: 2100199. https://doi.org/10.1002/advs.202100199.
Bang, J., Wang, C.H., Ahn, J.H., Lee, J.A., and Lee, S.Y. (2020) Escherichia coli is engineered to grow on CO2 and formic acid. Nat Microbiol 5: 1459–1463. https://doi.org/10.1038/s41564-020-00793-9.
Bang, J., and Lee, S.Y. (2018) Assimilation of formic acid and CO2 by engineered Escherichia coli equipped with reconstructed one-carbon assimilation pathways. Proc Natl Acad Sci USA 115: E9271–E9279. https://doi.org/10.1073/pnas.1810386115.
Bengelsdorf, F.R., Beck, M.H., Erz, C., Hoffmeister, S., Karl, M.M., Riegler, P., et al. (2018) Bacterial anaerobic synthesis gas (Syngas) and CO2+H2 fermentation. Adv Appl Microbiol 103: 143–221. https://doi.org/10.1016/ba.aambs.2018.01.002.
Bengelsdorf, F.R., Poehlein, A., Linder, S., Erz, C., Hummel, T., Hoffmeister, S., et al. (2016) Industrial acetogenic biocatalysts: A comparative metabolic and genomic analysis. Front Microbiol 7: 1036. https://doi.org/10.3389/fmictb.2016.01036.
Bennett, R.K., Steinberg, L.M., Chen, W., and Papoutsakis, E.T. (2018) Engineering the bioconversion of methane and methanol to fuels and chemicals in native and synthetic methylotrophs. Curr Opin Biotechnol 50: 81–93. https://doi.org/10.1016/j.copbio.2017.11.010.
Blasco-Gómez, R., Batlle-Vilanova, P., Villano, M., Balaguer, M.D., Colprim, J., and Puig, S. (2017) On the edge of research and technological application: A critical review of electromethanogenesis. Int J Mol Sci 18: 874. https://doi.org/10.3390/ijms18040874.
Bourgade, B., Minton, N.P., and Islam, M.A. (2021) Genetic and metabolic engineering challenges of C1-gas fermenting acetogenic chassis organisms. FEMS Microbiol Rev 45: fuab008. https://doi.org/10.1093/femsre/fuab008.
Bui, M., Adjiman, C.S., Bardow, A., Anthony, E.J., Boston, A., Brown, S., et al. (2018) Carbon capture and storage (CCS): the way forward. Energy Environ Sci 11: 1062. https://doi.org/10.1039/c7ee02342a.
Castro-Alonso, M.J., Montanez-Hernandez, L.E., Sanchez-Muñoz, M.A., Macias Franco, M.R., Narayanasamy, R., and Balagurusamy, N. (2019) Microbially induced calcium carbonate precipitation (MICP) and its potential in bioconcrete: Microbiological and molecular concepts. Front Mat 6: 126. https://doi.org/10.3389/fmats.2019.00126.
Chan, Y.H., Syed Abdul Rahman, S.N.F., Lahuri, H.M., and Khalid, A. (2021) Recent progress on CO-rich syngas production via CO2 gasification of various wastes: a critical review on efficiency, challenges and outlook. Environ Pol lut 278: 116843. https://doi.org/10.1016/j.envpol.2021.116843.
Cheng, S., Xing, D., Call, D.F., and Logan, B.E. (2009) Direct biological conversion of electrical current into methane by electromethanogenesis. Environ Sci Technol 43: 3953–3958. https://doi.org/10.1021/es803531g.
Chistoserdova, L. (2018) Applications of methylotrophs: can single carbon be harnessed for biotechnology? Curr Opin Biotechnol 50: 189–194. https://doi.org/10.1016/j.copbio.2018.01.012.
Choi, Y.Y., Patel, A.K., Hong, M.E., Chang, W.S., and Sim, S.J. (2019) Microalgae bioenergy with carbon capture and storage (BECCS): an emerging sustainable bioprocess for reduced CO2 emission and biofuel production. Biore Technol Rep 7: 1001270. https://doi.org/10.1016/j.btreb.2019.1001270.
Chu, N., Liang, Q., Jiang, Y., and Zeng, R.J. (2020) Microbial electrochemical platform for the production of renewable fuels and chemicals. Biosens Bioelectron 150: 111922. https://doi.org/10.1016/j.bios.2019.111922.
Claassens, N.J. (2017) A warm welcome for alternative CO₂ fixation pathways in microbial biotechnology. Microb Biotechnol 10: 31–34. https://doi.org/10.1111/1751-7915.12456.

Claassens, N.J., Bordanaba-Florit, G., Cotton, C.A.R., De Maria, A., Finger-Bou, M., Friedeheim, L., et al. (2020) Replacing the Calvin cycle with the reductive glycolytic pathway in Cupriavidus necator. Metab Eng 62: 30–41. https://doi.org/10.1016/j.mib.2020.08.004.

Claassens, N.J., Sousa, D.Z., Dos Santos, V.A., de Vos, W.M., and van der Oost, J. (2016) harnessing the power of microbial autotrophy. Nat Rev Microbiol 14: 692–706. https://doi.org/10.1038/nrmicro.2016.130.

Cordero, P.R.F., Bayly, K., Man Leung, P., Huang, C., Islam, Z.F., Schittenhelm, R.B., et al. (2019) Atmospheric carbon monoxide oxidation is a widespread mechanism supporting microbial survival. ISME J 13: 2868–2881. https://doi.org/10.1038/s41396-019-0479-8.

Cotton, C.A., Claassens, N.J., Benito-Vaquero, S., and Bar-Even, A. (2020) Renewable methanol and formate as microbial feedstocks. Curr Opin Biotechnol 62: 168–180. https://doi.org/10.1016/j.copbio.2019.10.002.

De Tissera, S., Köpke, M., Simpson, S.D., Humphreys, C., Minton, N.P., and Durre, P. (2019) Syngas biorefinery and syngas utilization. Adv Biochem Eng Biotechnol 166: 247–280. https://doi.org/10.1007/10170.5.

Dessi, P., Rovira-Alsina, L., Sánchez, C., Dinesh, G.K., Tong, W., Chatterjee, P., et al. (2021) Microbial electrolys is: Towards sustainable biorefineries for production of green chemicals from CO₂ emissions. Biotechnol Adv 46: 107675. https://doi.org/10.1016/j.biotechadv.2020.107675.

Ding, Y., Bertram, J.R., Eckert, C., Bommarredy, R.R., Patel, R., Conradie, A., et al. (2019) Nanorg microbial factories: Light-driven renewable biochemical synthesis using quantum dot-bacteria nanobiohybrid. J Am Chem Soc 141: 10272–10282. https://doi.org/10.1021/jacs.9b02549.

Dogutan, D.K., and Nocera, D.G. (2019) Artificial photosynthesis at efficiencies greatly exceeding that of natural photosynthesis. Acc Chem Res 52: 3143–3148. https://doi.org/10.1021/acs.accounts.9b00380.

Duan, H., He, P., Shao, L., and Lü, F. (2021) Functional genome-centric view of the CO-driven anaerobic microbe. ISME J 15: 2906–2919. https://doi.org/10.1038/s41396-021-00983-1.

Fackler, N., Hefferman, J., Juminaga, A., Doer, D., Nagaraju, S., González-Garcia, R.A., et al. (2021) Transcriptional control of Clostridium autoethanogenum using CRISPRi. Synth Biol (Oxf) 6: ysa008. https://doi.org/10.1093/synbio/ysa008.

Fackler, N., Heijstra, B.D., Rasor, B.J., Brown, H., Martin, J., Ni, Z., et al. (2021) Stepping on the gas to a circular economy: accelerating development of carbon-negative chemical production from gas fermentation. Annu Rev Chem Biolom Eng 12: 439–470. https://doi.org/10.1146/annurev-chembioeng-120120-021122.

Fedeson, D.T., Saake, P., Galero, P., Nikel, P.I., and Ducat, D.C. (2020) Biotransformation of 2,4-dinitrotoluene in a photosynthetic co-culture of engineered Synechococcus elongatus and Pseudomonas putida. Microb Biotechnol 13: 997–1011. https://doi.org/10.1111/1751-7915.13544.

Flamholz, A.I., Dugan, E., Blikstad, C., Gleizer, S., Ben-Nissan, R., Arram, S., et al. (2020) Functional reconstitution of a bacterial CO₂ concentrating mechanism in Escherichia coli. eLife 9: e59882. https://doi.org/10.7554/eLife.59882.

Francois, J.M., Lachaux, C., and Morin, N. (2020) Synthetic biology applied to carbon conservative and carbon dioxide recycling pathways. Front Bioeng Biotechnol 7: 446. https://doi.org/10.3389/fbioe.2019.00446.

Gargaud, M. (ed) (2011) Encyclopedia of Astrobiology. Berlin, Heidelberg, Germany: Springer-Verlag.

Geinitz, B., Hüser, A., Mann, M., and Büchs, J. (2020) Gas fermentation expands the scope of a process network for material conversion. Chem Ing Tech 92: 1665–1679. https://doi.org/10.1002/cite.202000086.

George, D.M., Vincent, A.S., and Mackey, H.R. (2020) An overview of anoxic photosynthetic bacteria and their applications in environmental biotechnology for sustainable resource recovery. Biotechnol Rep (Amst) 28: e00563. https://doi.org/10.1016/j.btre.2020.e00563.

Geppert, F., Liu, D., van Eerten-Jansen, M., Weidner, E., Buismann, C., and Ter Heijne, A. (2016) Bioelectrochemical power-to-gas: state of the art and future perspectives. Trends Biotechnol 34: 879–894. https://doi.org/10.1016/j.tibtech.2016.08.010.

Gimkiewicz, C., Hegner, R., Gutensohn, M.F., Koch, C., and Harnisch, F. (2017) Study of electrochemical reduction of CO₂ for future use in secondary microbial electrochemical technologies. ChemSusChem 10: 958–967. https://doi.org/10.1002/cssc.201601675.

Gleizer, S., Ben-Nissan, R., Bar-On, Y.M., Antonovsky, N., Noor, E., Zohar, Y., et al. (2019) Conversion of Escherichia coli to generate all biomass carbon from CO₂. Cell 179: 1255–1263.e12. https://doi.org/10.1016/j.cell.2019.11.009.

Görgen, S., Benzerar, K., Skoun-Panet, F., Gugger, M., Chauvat, F., and Cassier-Chauvat, C. (2020) The diversity of molecular mechanisms of carbonate biominalization by bacteria. Discover Mat 1: 2. https://doi.org/10.1007/s43939-020-00001-9.

Guo, J., Suástegui, M., Sakimoto, K.K., Moody, V.M., Xiao, G., Nocera, D.G., and Joshi, N.S. (2018) Light-driven fine chemical production in yeast biohybrids. Science 362: 813–816. https://doi.org/10.1126/science.aat9777.

Gupta, P., Noori, M.T., Núñez, A.E., and Verma, N. (2021) An insight into the bioelectrochemical photoreduction of CO₂ to value-added chemicals. iScience 24: 102294. https://doi.org/10.1016/j.isci.2021.102294.

van der Ha, D., Nachtergaele, L., Kerckhof, F.-M., Rameijanti, D., Bossier, P., Verstraete, W., and Boon, N. (2012) Conversion of biogas to bioproducts by algae and methane oxidizing bacteria. Environ Sci Technol 46: 13425–13431. https://doi.org/10.1021/es303929s.

Haas, T., Krause, R., Weber, R., Demler, M., and Schmid, G. (2018) Technical photosynthesis involving CO₂ electrolysis and fermentation. Nat Catalysis 1: 32–39. https://doi.org/10.1038/s41929-017-0005-1.

Hays, S.G., Yan, L.L.W., Silver, P.A., and Ducat, D.C. (2017) Synthetic photosynthetic consortia define interactions leading to robustness and photoproduction. J Biol Eng 11: 4. https://doi.org/10.1186/s13036-017-0048-5.
Hegner, R., Neubert, K., Kroner, C., Holtmann, D., and Harmsisch, F. (2020) Coupled electrochemical and microbial catalysis for the production of polymer bricks. ChemSusChem 13: 5295–5300. https://doi.org/10.1002/cssc.2020001272.

Hill, E.A., Chrisler, W.B., Beliaev, A.S., and Bernstein, H.C. (2017) A flexible microbial co-culture platform for simultaneous utilization of methane and carbon dioxide from gas feedstocks. Bioresour Technol 228: 250–256. https://doi.org/10.1016/j.biortech.2016.12.111.

Hu, G., Li, Y., Ye, C., Liu, L., and Chen, X. (2018) Engineering microorganisms for enhanced CO2 sequestration. Trends Biotechnol 37: 532–547. https://doi.org/10.1016/j.tibtech.2018.10.008.

Hu, G., Li, Z., Ma, D., Ye, C., Zhang, L., Gao, C., et al. (2017) Light-driven CO2 sequestration in Escherichia coli to achieve theoretical yield of chemicals. Nat Catal 4: 395–406. https://doi.org/10.1038/s41929-021-00660-0.

Hwang, H., Yeon, Y.J., Lee, S., Choe, H., Jang, M.G., Cho, D.H., et al. (2015) Electro-biocatalytic production of formate from carbon dioxide using an oxygen-stable whole cell biocatalyst. Bioresour Technol 185: 35–39. https://doi.org/10.1016/j.biortech.2015.02.086.

Jang, J., Jeon, B.W., and Kim, Y.H. (2018) Bioelectrochemical conversion of CO2 to value added product formate using engineered Methylobacterium extorquens. Sci Rep 8: 7211. https://doi.org/10.1038/s41598-018-23924-z.

Jayathilake, B.S., Bhattacharya, S., Vaidhehi, N., and Narayanan, S.R. (2019) Efficient and selective electrochemically driven enzyme-catalyzed reduction of carbon dioxide to formate using formate dehydrogenase and an artificial cofactor. Acc Chem Res 52: 676–685. https://doi.org/10.1021/acs.accounts.8b00551.

Jiang, W., Hernández Villamar, D., Peng, H., Chen, J., Liu, L., Haritos, V., and Ledesma-Amaro, R. (2021) Metabolic engineering strategies to enable microbial utilization of C1 feedstocks. Nat Chem Biol 17: 845–855. https://doi.org/10.1038/s41589-021-00836-0.

Jin, S., Bae, J., Song, Y., Peacky, N., Shin, J., Kang, S., et al. (2020) Synthetic biology on Acetogenic bacteria for efficient and selective electrochemically driven enzyme-catalyzed conversion of CO2 to CO: From fundamentals to industrialization. Angew Chem Int Ed 60: 2–24. https://doi.org/10.1002/anie.20201818.

Joshi, S., Goyal, S., Mukherjee, A., and Reddy, M.S. (2017) Microbial healing of cracks in concrete: a review. J Ind Microbiol Biotechnol 44: 1511–1525. https://doi.org/10.1007/s10295-017-1978-0.

Kanno, M., Carroll, A.L., and Atsumi, S. (2017) Global metabolic rewiring for improved CO2 fixation and chemical production in cyanobacteria. Nat Commun 8: 14724. https://doi.org/10.1038/ncomms14724.

Kato, J., Takemura, K., Kato, S., Fujii, T., Wada, K., Iwasaki, Y., et al. (2021) Metabolic engineering of Moorella thermoacetica for thermophilic bioconversion of gaseous substrates to a volatile chemical. AMB Express 11: 59. https://doi.org/10.1186/s13568-021-01220-w.

Katsyu, A., and Müller, V. (2020) Overcoming energetic barriers in aceticogenic C1 conversion. Front Bioeng Biotechnol 8: 621166. https://doi.org/10.3389/fbioe.2020.621166.

Kerfeld, C.A. (2016) Rewiring Escherichia coli for carbon-dioxide fixation. Nat Biotechnology 34: 1035–1036. https://doi.org/10.1038/nbt.3693.

Kiefer, D., Merkel, M., Lilge, L., Henkel, M., and Hausmann, R. (2021) From acetate to bio-based products: Underexploited potential for industrial biotechnology. Trends Biotechnol 39: 397–411. https://doi.org/10.1016/j.tibtech.2020.09.004.

Kim, S., Lindner, S.N., Aslan, S., Yishai, O., Wenk, S., Schann, K., and Bar-Even, A. (2020) Growth of E. coli on formate and methanol via the reductive glycine pathway. Nat Chem Biol 16: 538–545. https://doi.org/10.1038/s41589-021-00836-0.

King, G.M. (2015) Carbon monooxide as a metabolic energy source for extremely halophilic microbes: implications for microbial activity in Mars regolith. Proc Natl Acad Sci USA 112: 4465–4470. https://doi.org/10.1073/pnas.1424989112.

Kita, A., Iwasaki, Y., Sakai, S., Okuto, S., Takaoka, K., Suzuki, T., et al. (2013) Development of genetic transformation and heterologous expression system in carboxydotrophic thermophilic acetogen Moorella thermoacetica. J Biosci Bioeng 115: 347–352. https://doi.org/10.1016/j.jbiosc.2012.10.013.

Kopke, M., Held, C., Hujer, S., Liesegang, H., Wiezer, A., Wollherr, A., et al. (2010) Clostridium ljungdahlii represents a microbial production platform based on syngas. Proc Natl Acad Sci USA 107: 13087–13092. https://doi.org/10.1073/pnas.1004716107.

Kral, T.A., Birch, W., Lavender, L.E., and Virden, B.T. (2014) Potential use of highly insoluble carbonates as carbon sources by methanogens in the subsurface of Mars. Planet Space Sci 101: 181–185. https://doi.org/10.1016/j.pss.2014.07.008.

Kumar, M., Sahoo, P.C., Srikanth, S., Bagai, R., Puri, S.K., and Ramakumar, S.S.V. (2019) Photosensitization of electro-active microbes for solar assisted carbon dioxide transformation. Bioresour Technol 272: 300–307. https://doi.org/10.1016/j.biortech.2018.10.031.

Kumar, M., Sundaram, S., Gnanasoundi, E., Larocco, C., and Thakur, I.S. (2018) Carbon dioxide capture, storage and production of biofuel and biomaterials by bacteria: A review. Bioresour Technol 247: 1059–1068. https://doi.org/10.1016/j.biortech.2017.09.050.

Le, Q.A.T., Kim, H.G., and Kim, Y.H. (2018) Electrochemical synthesis of formic acid from CO2 catalyzed by Shewanella oneidensis MR-1 whole-cell biocatalyst. Enzyme Microb Technol 116: 1–5. https://doi.org/10.1016/j.enzmictec.2018.05.005.

Lee, Y.S., and Park, W. (2018) Current challenges and future directions for bacterial self-healing concrete. Appl Microbiol Biotechnol 102: 3059–3070. https://doi.org/10.1007/s00253-018-8830-y.
polyhydroxyalkanoates in Rhodospirillum rubrum. Environ Microbiol 18: 708–720.

Robb, F.T., and Technmann, S.M. (2018) Life on the fringe: microbial adaptation to growth on carbon monoxide. F1000Res 7: 1981. https://doi.org/10.12688/f1000research.16059.1.

Rodriguez, A., Hernández-Herreros, N., García, J.L., and Prieto, M.A. (2021) Enhancement of biohydrogen production rate in Rhodospirillum rubrum by a dynamic CO-feeding strategy using dark fermentation. Biotechnol Biofuels 14: 168. https://doi.org/10.1186/s13068-021-02017-6.

Sahoo, K.K., Goswami, G., and Das, D. (2021) Biotransformation of methane and carbon dioxide into high-value products by methanotrophs: current state of art and future prospects. Front Microbiol 12: 636486. https://doi.org/10.1038/s13205-021-02911-8.

Sahoo, P.C., Pant, D., Kumar, M., Puri, S.K., and Ramakumar, S.S.V. (2020) Material-microbe interfaces for solar-driven CO2 bioelectrosynthesis. Trends Biotechnol 38: 1245–1261. https://doi.org/10.1016/j.tibtech.2020.03.008.

Sarma, S., Sharma, S., Rudakiya, D., Upadhyay, J., Rathod, V., Patel, A., and Narra, M. (2021) Valorization of microalgae biomass into bioproducts promoting circular bioeconomy: a holistic approach of bioremediation and biofinery. 3 Biotechnol 11: 378. https://doi.org/10.1007/s13205-021-02911-8.

Satanowski, A., and Bar-Even, A. (2020) A one-carbon path for fixing CO2: C1 compounds, produced by chemical catalysis and upgraded via microbial fermentation, could become key intermediates in the valorization of CO2 into commodity chemicals. EMBO Rep 21: e50273. https://doi.org/10.15252/embr.202050273.

Satanowski, A., Dronsella, B., Noor, E., Vogeli, B., He, H., Wichmann, P., et al. (2020) Awakening a latent carbon fixation cycle in Escherichia coli. Nat Commun 11: 5812. https://doi.org/10.1038/s41467-020-19564-5.

Scheffen, M., Marchal, D.G., Beneyton, T., Schuller, S.K., Klose, M., Diehl, C., et al. (2021) A new-to-nature carboxylation module to improve natural and synthetic CO2 fixation. Nat Catalysis 4: 105–115. https://doi.org/10.1038/s41929-020-00557-y.

Schlager, S., Dibenedetto, A., Aresta, M., Apaydin, D.H., Dumitru, L.M., Neugebauer, H., and Sariciftci, N.S. (2017) Biocatalytic and bioelectrocatalytic approaches for the reduction of carbon dioxide using enzymes. Energy Technol 5: 1–11. https://doi.org/10.1002/ente.20160610.

Schwander, T., Schada von Borzyskowski, L., Burgener, S., Cortina, N.S., and Erb, T.J. (2016) A synthetic pathway for the fixation of carbon dioxide in vitro. Science 354: 900–904. https://doi.org/10.1126/science.aah5237.

Seifan, M., and Benenjian, A. (2018) Application of microbially induced calcium carbonate precipitation in designing bio self-healing concrete. World J Microbiol Biotechnol 34: 168. https://doi.org/10.1007/s11274-018-2552-2.

Simon Araya, S., Liso, V., Cui, X., Li, N.A., Zhu, J., Sahlin, S.L., et al. (2020) A review of the methanol economy: the fuel cell route. Energies 13: 596. https://doi.org/10.3390/en13030596.

Singh, A.K., Kishore, G.M., and Pakrasi, H.B. (2018) Emerging platforms for co-utilization of one-carbon substrates by photosynthetic organisms.Curr Opin Biotechnol 53: 201–208. https://doi.org/10.1016/j.copbio.2018.02.002.

Srikantan, S., Alvarez-Gallego, Y., Vanbroekhoven, K., and Pant, D. (2017) Enzymatic electrolysissynthesis of formic acid through carbon dioxide reduction in a bioelectrochemical system: effect of immobilization and carbonic anhydrase addition. ChemPhysChem 18: 3174–3181. https://doi.org/10.1002/cphc.201700017.

Srikantan, S., Maesen, M., Dominguez-Benetton, X., Vanbroekhoven, K., and Pant, D. (2014) Enzymatic electrolysissynthesis of formate through CO2 sequestration/reduction in a bioelectrochemical system (BES). Bioresour Technol 165: 350–354. https://doi.org/10.1016/j.biortech.2014.01.129.

Straub, M., Demler, M., Weuster-Botz, D., and Dürr, P. (2014) Selective enhancement of autotrophic acetate production with genetically modified Acetobacterium woodii. J Biotechnol 178: 67–72. https://doi.org/10.1016/j.jbiotec.2014.03.005.

Sun, X., Atyiye, K.H., Huhnke, R., and Tunner, R.S. (2019) Syngas fermentation process development for production of biofuels and chemicals: a review. Bioresour Technol Rep 7: 100279. https://doi.org/10.1016/j.birep.2019.100279.

Takors, R., Kopf, M., Mampel, J., Blumek, W., Blombach, B., et al. (2018) Using gas mixtures of CO, CO2 and H2 as microbial substrates: the do’s and don’ts of successful technology transfer from laboratory to production scale. Microb Biotechnol 11: 606–625. https://doi.org/10.1111/1751-7915.13270.

Tashiro, Y., Hirano, S., Matson, M.M., Atsumi, S., and Kondo, A. (2018) Electrical-biological hybrid system for CO2 reduction. Metab Eng 47: 211–218. https://doi.org/10.1016/j.ymben.2018.03.015.

Teixeira, L.V., Moutinho, L.F., and Romão-Dumaresq, A.S. (2018) Gas fermentation of C1 feedstocks: commercialization status and future prospects. Biofuels Bioprod Bioref 12: 1013–1117. https://doi.org/10.1002/bbb.1912.

Tuyshima, P., and Sinumvayo, J.P. (2020) Novel outlook in engineering synthetic methylotrophs and formatotrophs: a course for advancing C1-based chemicals production. World J Microbiol Biotechnol 36: 118. https://doi.org/10.1007/s11274-020-2899-y.

Veaudor, T., Blanc-Garin, V., Chenebault, C., Diaz-Santos, E., Sassi, J.F., Cassier-Chauvat, C., et al. (2020) Recent advances in the photoautotrophic metabolism of Cyanobacteria: biotechnological implications. Life 10: 71. https://doi.org/10.3390/life10050071.

Wang, S., Anb, Z., and Wang, Z.W. (2020) Bioconversion of methane to chemicals and fuels by methane-oxidizing bacteria. Adv Bioenergy 5: 169–247. https://doi.org/10.1016/bs.aibe.2020.04.005.

Weiss, T.L., Young, E.J., and Ducat, D.C. (2017) A synthetic, light-driven consortium of cyanobacteria and heterotrophic bacteria enables stable polyhydroxybutyrate production. Metab Eng 44: 236–245. https://doi.org/10.1016/j.ymben.2017.10.009.

Woo, H.M. (2017) Solar-to-chemical and solar-to-fuel production from CO2 by metabolically engineered microorganisms. Curr Opin Biotechnol 45: 1–7. https://doi.org/10.1016/j.copbio.2016.11.017.
Wood, J.C., Grové, J., Marcellin, E., Hefferman, J.K., Hu, S., Yuan, Z., and Virdis, B. (2021) Strategies to improve viability of a circular carbon bioeconomy-A techno-economic review of microbial electrosynthesis and gas fermentation. Water Res 201: 117306. https://doi.org/10.1016/j.watres.2021.117306.

Xu, L., Xiu, Y., Liu, F., Liang, Y., and Wang, S. (2020) Research progress in conversion of CO2 to valuable fuels. Molecules 25: 3653. https://doi.org/10.3390/molecules25163653.

Yishai, O., Bouzon, M., Döring, V., and Bar-Even, A. (2018) In vivo assimilation of one-carbon via a synthetic reductive glycine pathway in Escherichia coli. ACS Synth Biol 7: 2023–2028. https://doi.org/10.1021/acssynbio.8b00131.

Yishai, O., Lindner, S.N., Gonzalez de la Cruz, J., Tenenboim, H., and Bar-Even, A. (2016) The formate bioeconomy. Curr Opin Chem Biol 35: 1–9. https://doi.org/10.1016/j.cbpa.2016.07.005.

Yuan, M., Kummer, M.J., and Minteer, S.D. (2019) Strategies for bioelectrochemical CO2 reduction. Chemistry 25: 14258–14266. https://doi.org/10.1002/chem.201902880.

Zhan, C., Li, X., Yang, Y., Nielsen, J., Bai, Z., and Chen, Y. (2021) Strategies and challenges with the microbial conversion of methanol to high-value chemicals. Biotechnol Bioeng 118: 3655–3668. https://doi.org/10.1002/bit.27862.

Zhang, L., Chen, L., Diao, J., Song, X., Shi, M., and Zhang, W. (2020) Construction and analysis of an artificial consortium based on the fast-growing cyanobacterium Synechococcus elongatus UTEX 2973 to produce the platform chemical 3-hydroxypropionic acid from CO2. Biotechnol Biofuels 13: 82. https://doi.org/10.1186/s13068-020-01720-0.

Zhang, L., Liu, J., Ong, J., and Li, S.F. (2016) Specific and sustainable bioelectro-reduction of carbon dioxide to formate on a novel enzymatic cathode. Chemosphere 162: 228–234. https://doi.org/10.1016/j.chemosphere.2016.07.102.

Zhang, L., Zhao, R., Jia, D., Jiang, W., and Gu, Y. (2020) Engineering Clostridium ljungdahlii as the gas-fermenting cell factory for the production of biofuels and biochemicals. Curr Opin Chem Biol 59: 54–61. https://doi.org/10.1016/j.cbpa.2020.04.010.

Zhang, M., Yuan, X.-J., Zhang, C., Zhu, L.-P., Mo, X.-H., Chen, W.-J., and Yang, S. (2019) Bioconversion of methanol into value-added chemicals in native and synthetic methylotrophs. Curr Issues Mol Biol 33: 225–236. https://doi.org/10.21775/cimb.033.225.

Zhang, T., and Tremblay, P.L. (2017) Hybrid photosynthesis-powering biocatalysts with solar energy captured by inorganic devices. Biotechnol Biofuels 10: 249. https://doi.org/10.1186/s13068-017-0943-5.

Zhu, T., Zhao, T., Bankefa, O.E., and Li, Y. (2020) Engineering unnatural methylotrophic cell factories for methanol-based biomanufacturing: Challenges and opportunities. Biotechnol Adv 39: 107467. https://doi.org/10.1016/j.biotechadv.2019.107467.