Search for diphoton events with large missing transverse energy in 7 TeV proton-proton collisions with the ATLAS detector

Aad, G.; et al., [Unknown]; Bentvelsen, S.; Colijn, A.P.; de Jong, P.; de Nooij, L.; Doxiadis, A.D.; Ferrari, P.; Garitaonandia, H.; Gosselink, M.; Kayl, M.S.; Koffeman, E.; Lee, H.; Linde, F.; Mechnich, J.; Mussche, I.; Ottersbach, J.P.; Tsiakiris, M.; van der Kraaij, E.; van Kesteren, Z.; van Vulpen, I.; Vermeulen, J.C.; Vreeswijk, M.

DOI
10.1103/PhysRevLett.106.121803

Publication date
2011

Document Version
Final published version

Published in
Physical Review Letters

Citation for published version (APA):
Aad, G., et al., U., Bentvelsen, S., Colijn, A. P., de Jong, P., de Nooij, L., Doxiadis, A. D., Ferrari, P., Garitaonandia, H., Gosselink, M., Kayl, M. S., Koffeman, E., Lee, H., Linde, F., Mechnich, J., Mussche, I., Ottersbach, J. P., Tsiakiris, M., van der Kraaij, E., ... Vreeswijk, M. (2011). Search for diphoton events with large missing transverse energy in 7 TeV proton-proton collisions with the ATLAS detector. Physical Review Letters, 106(12), Article 121803. https://doi.org/10.1103/PhysRevLett.106.121803

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Search for Diphoton Events with Large Missing Transverse Energy in 7 TeV Proton-Proton Collisions with the ATLAS Detector

G. Aad et al.*

(Received 20 December 2010; published 23 March 2011)

A search for diphoton events with large missing transverse energy is presented. The data were collected with the ATLAS detector in proton-proton collisions at $\sqrt{s} = 7$ TeV at the CERN Large Hadron Collider and correspond to an integrated luminosity of 3.1 pb$^{-1}$. No excess of such events is observed above the standard model background prediction. In the context of a specific model with one universal extra dimension with compactification radius R and gravity-induced decays, values of $1/R < 729$ GeV are excluded at 95% C. L., providing the most sensitive limit on this model to date.

Published by American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
$\eta = - \ln[\tan(\theta/2)]$. Closest to the beam line are tracking detectors which use layers of silicon-based and straw-tube detectors, located inside a thin superconducting solenoid that provides a 2 T magnetic field, to measure the trajectories of charged particles. The solenoid is surrounded by a hermetic calorimeter system. A liquid-argon (LAr) sampling calorimeter is divided into a central barrel calorimeter and two end-cap calorimeters, each housed in a separate cryostat. Fine-grained LAr electromagnetic (EM) calorimeters, with excellent energy resolution, provide coverage for $|\eta| < 3.2$. In the region $|\eta| < 2.5$, the EM calorimeters are segmented into three longitudinal layers and the second layer, in which most of the EM shower energy is deposited, is divided into cells of granularity of $\Delta \eta \times \Delta \phi = 0.025 \times 0.025$. A presampler, covering $|\eta| < 1.8$, is used to correct for energy lost upstream of the calorimeter. An iron-scintillator tile calorimeter provides hadronic coverage in the range $|\eta| < 1.7$. In the end caps ($|\eta| > 1.5$), LAr hadronic calorimeters match the outer $|\eta|$ limits of the end-cap EM calorimeters. LAr forward calorimeters provide both EM and hadronic energy measurements, and extend the coverage to $|\eta| < 4.9$. Outside the calorimeters is an extensive muon system including large superconducting toroidal magnets.

The reconstruction of photons is described in detail in Ref. [13]. To select photon candidates, EM calorimeter clusters were required to pass several quality criteria and to lie outside problematic calorimeter regions. Photon candidates were required to have $|\eta| < 1.81$ and to be outside the transition region $1.37 < |\eta| < 1.52$ between the barrel and the end-cap calorimeters. The analysis uses a “loose” photon selection, which includes cuts on the energy in the hadronic calorimeter as well as on variables that require the transverse width of the shower, measured in the second EM calorimeter layer, be consistent with the narrow width expected for an EM shower. The loose selection provides a high photon efficiency with modest rejection against the background from jets.

The reconstruction of E_T^{miss} is based on topological calorimeter clusters [14] with $|\eta| < 4.5$ that are seeded by any cell with energy higher than 4 times its noise level. In an iterative procedure, the cluster grows by including all neighboring cells with energy higher than twice the noise, plus all cells neighboring the boundary of this three-dimensional collection. Each cluster is classified as EM or hadronic, depending on its topology, and the cluster energy is calibrated to correct for the noncompensating calorimeter response, energy losses in dead material, and out-of-cluster energies. Events reconstructed with large E_T^{miss} were studied in detail with early data [15]. Rare background events with large transverse energies, unrelated to the collision and concentrated in a few cells, due mainly to discharges and noise, have been observed. Cuts were applied to eliminate such backgrounds, rejecting less than 0.05% of the selected events while having a negligible impact on the signal efficiency.

The data sample was collected during stable beam periods of 7 TeV pp collisions at the LHC, and corresponds to an integrated luminosity of 3.1 pb$^{-1}$. The events selected had to satisfy a trigger requiring at least one loose photon candidate with $E_T > 20$ GeV, and had to contain at least one reconstructed primary vertex consistent with the average beam spot position and with at least three associated tracks. The trigger and vertex requirements are $\approx 99\%$ efficient for signal MC events. The presence of multiple pp collisions within the same bunch crossing, known as ‘‘pileup,’’ can be analyzed by examining N_{vtx}, the number of reconstructed primary vertices in each event. In this data sample, the average value of N_{vtx} was ≈ 2.1. The MC signal samples included the simulation of pileup and were weighted to match the N_{vtx} distribution observed in data.

Events were retained if they had at least two photon candidates, each with $E_T > 25$ GeV. In addition, a photon isolation cut was applied, wherein the E_T in a radius of 0.2 in the η-ϕ space around the center of the cluster, excluding the cells belonging to the cluster in a region corresponding to 5×7 cells in $\eta \times \phi$ in the second layer of the EM calorimeter, had to be less than 35 GeV. This requirement had a signal efficiency greater than 95% but rejected some of the background from multijet events. An event in which each of the two photon candidates satisfied the loose photon cuts was considered a $\gamma\gamma$ candidate event. An independent “misidentified jet” control sample, enriched in events with jets misidentified as photons, was defined as those events where at least one of the photon candidates did not pass the loose photon identification. After all cuts, the $\gamma\gamma$ and misidentified jet samples totaled 520 and 7323 events, respectively. Figure 1 shows the E_T spectrum of the leading photon for the $\gamma\gamma$ candidates and for UED $1/R = 700$ GeV MC events; the UED spectrum extends to much higher E_T values.

The background was evaluated entirely using data. Noncollision backgrounds, such as cosmic rays and beam-halo events, are reduced to a negligible level by the

![FIG. 1. E_T spectrum of the leading photon for the $\gamma\gamma$ candidate sample and for UED $1/R = 700$ GeV MC events (normalized to 100 times the leading order (LO) cross section).](image-url)
selection cuts. The main background source, referred to hereafter as QCD background, arises from a mixture of SM processes including $\gamma\gamma$ production, and $\gamma +$ jet and multi-jet events with at least one jet misidentified as a photon. With the loose photon identification, it is expected that $\gamma +$ jet and multi-jet events dominate, with only a small $\gamma\gamma$ contribution. The misidentified jet sample provided a model of the E_T^{miss} response for events with jets faking photons. The response for $\gamma\gamma$ events was modeled using the E_T^{miss} spectrum measured in a high purity sample of $Z \to ee$ events, selected by a combination of kinematic cuts and electron identification requirements [14]. The E_T^{miss} spectrum for $Z \to ee$ events, which is dominated by the calorimeter response to two genuine EM objects, was verified in MC simulations to model the E_T^{miss} response in SM $\gamma\gamma$ processes, despite their kinematic differences. As shown in Fig. 2, $Z \to ee$ events typically have somewhat lower E_T^{miss} values than events of the misidentified jet sample, as expected since the presence of jets faking photons should result in a broader E_T^{miss} distribution. The spectrum for the $\gamma\gamma$ candidates, which for low E_T^{miss} is dominated by the QCD background with an unknown mixture of events with zero, one, and two fake photons, lies between these two samples. The E_T^{miss} spectrum of the total QCD background was modeled by a weighted sum of the spectra of the $Z \to ee$ and misidentified jet samples. The QCD background was normalized to have the same number of events as the $\gamma\gamma$ candidate sample in the region $E_T^{\text{miss}} < 20$ GeV, where any UED signal contribution can be neglected. The relative contributions of the $Z \to ee$ and misidentified jet samples were determined by fitting the QCD background shape to the E_T^{miss} spectrum of the $\gamma\gamma$ candidates in this same low E_T^{miss} region. The fraction attributed to $\gamma\gamma$ production, as modeled with the $Z \to ee$ distribution, was determined to be (36 ± 22)%.

A small additional background results from $W \to ev$ events, which have genuine E_T^{miss} and which can pass the selection if the electron is misidentified as a photon and the second photon is either a real photon in $W\gamma$ events or a jet faking a photon in $W +$ jets events. A high purity sample of inclusive $W \to ev$ events was selected by a combination of kinematic and electron identification cuts [14]. Requiring in addition a loose photon with $E_T^\gamma > 25$ GeV, a “$W + \gamma$” sample of only 5 events was selected. Accounting for the probability for an electron to be misidentified as a loose photon, as determined using the $Z \to ee$ sample, the total background contribution due to $W \to ev$ events was then estimated to be only ≈ 0.4 events. Since the number of $W\gamma$ events was too small to measure their E_T^{miss} spectrum, a sample of $W +$ jets events was used instead, requiring a jet reconstructed with an anti-k_T clustering algorithm [16] with radius parameter 0.4 and $E_T^\gamma > 25$ GeV. The $W(\to ev) +$ jets/γ background contribution was then estimated by normalizing the $W +$ jets E_T^{miss} spectrum to the expected total of ≈ 0.4 events, as shown on Fig. 2.

Figure 3 shows the E_T^{miss} spectrum of the $\gamma\gamma$ candidates, superimposed on the total background prediction, as well

![Graph 2](image2.png)

FIG. 2 (color online). E_T^{miss} spectra for the $\gamma\gamma$ candidates, for the $Z \to ee$ and misidentified jet samples used to model the QCD background (each normalized to the number of $\gamma\gamma$ candidates with $E_T^{\text{miss}} < 20$ GeV), and for the $W(\to ev) +$ jets/γ background (normalized to its expected total of ≈ 0.4 events). Variable sized bins are used, and the vertical error bars and shaded bands show the statistical errors.

![Graph 3](image3.png)

FIG. 3 (color online). E_T^{miss} spectrum for the $\gamma\gamma$ candidates, compared to the total SM background as estimated from data. Also shown are the expected UED signals for $1/R = 500$ GeV and 700 GeV. Variable sized bins are used, and the vertical error bars and shaded bands show the statistical errors.
as example UED signals. Table I summarizes the number of observed \(\gamma\gamma\) candidates, as well as the expected backgrounds and example UED signal contributions, in several \(E_T^{\text{miss}}\) ranges. The QCD background dominates, and falls steeply with rising \(E_T^{\text{miss}}\), while the \(W \rightarrow e\nu\) background is very small, and flatter as a function of \(E_T^{\text{miss}}\). The UED signals would peak at large values of \(E_T^{\text{miss}}\). There is good agreement between the data and predicted background over the entire \(E_T^{\text{miss}}\) range, with no indication of an excess at high \(E_T^{\text{miss}}\) values.

The signal search region was chosen to be \(E_T^{\text{miss}} > 75\) GeV, before looking at the data, to obtain the best sensitivity to the UED signal. In the signal region, there are zero observed events, compared to an expectation of \(0.32 \pm 0.16\) (stat) \(+0.37\) (syst) background events. The systematic uncertainty was derived by studying variations of the background determination, including varying within its error the \(\gamma\gamma\) fraction determined in the fit of the QCD background, varying the definition of the misidentified jet sample, and eliminating the photon isolation cut.

The UED signal efficiency, determined from MC simulations, increases smoothly from \(\approx 43\%\) for \(1/R = 500\) GeV to \(\approx 48\%\) for \(1/R = 700\) GeV, with the lower efficiencies for smaller \(1/R\) due mostly to the \(E_T^{\text{miss}} > 75\) GeV definition of the signal region. The various relative systematic uncertainties on the extraction of the UED signal cross section are summarized in Table II, including the dominant 11\% uncertainty on the integrated luminosity [17]. Uncertainties on the efficiency for reconstructing and identifying the \(\gamma\gamma\) pair arise mainly due to differences between MC simulations and data in the distributions of the photon identification variables, the need to extrapolate to the higher \(E_T\) values (see Fig. 1) typical of the UED photons, the impact of the photon quality cuts, varying the scale of the photon \(E_T\) cut, and uncertainties in the detailed material composition of the detector. Together these provide a systematic uncertainty of 4\%. The influence of pileup, evaluated by comparing MC samples with and without pileup, gives a systematic uncertainty of 2\%. Systematic effects on the \(E_T^{\text{miss}}\) reconstruction [14], including pileup, varying the cluster energies within the current uncertainties, and varying the expected \(E_T^{\text{miss}}\) resolution between the measured performance and MC expectations, combine to give a 1\% uncertainty on the signal efficiency. Finally, the 1\% statistical error on the signal efficiency as determined by MC simulations is treated as a systematic uncertainty on the result. Adding in quadrature, the total systematic uncertainty on the signal yield is 12\%.

Given the good agreement between the measured \(E_T^{\text{miss}}\) spectrum and the expected background, a limit was set on \(1/R\) in the specific UED model considered here. A Bayesian approach was used to calculate a limit based on the number of observed and expected events with \(E_T^{\text{miss}} > 75\) GeV. A Poisson distribution was used as the likelihood function for the expected number of signal events, and a flat prior was used for the signal cross section. Log-normal priors were used for the various sources of uncertainty, which were treated as nuisance parameters. It was verified that the result is not very sensitive to the detailed form of the assumed priors. Figure 4 depicts the resulting 95\%C.L. upper limit within the context of the UED model considered, together with the LO UED cross section as a function of \(1/R\). The LO cross section was used since higher order corrections have not been calculated for the UED model. An uncertainty on the signal cross section due to parton distribution functions (PDF’s) was determined by comparing the predictions using MRST2007 [18] PDF’s with those from the full set of error PDF’s of CTEQ6.6 [19]. The resultant uncertainty, namely \(\pm 8\%\) essentially independent of \(1/R\), is shown by the width of the theory curve band. The observed 95\%C.L. exclusion region is \(1/R < 729\) GeV. The result depends weakly on the systematic

Table I

\(E_T^{\text{miss}}\) range (GeV)	Data	Predicted background events	Expected UED signal events			
	events	Total QCD	\(W(\rightarrow e\nu) + \text{jets}/\gamma\)	\(1/R = 500\) GeV	\(1/R = 700\) GeV	
0–20	465	465.0 ± 9.1	465.0 ± 9.1	0.28 ± 0.06	0.02 ± 0.01	
20–30	45	40.5 ± 2.2	40.41 ± 2.17	0.11 ± 0.07	0.45 ± 0.07	0.03 ± 0.01
30–50	9	10.3 ± 1.3	10.13 ± 1.30	0.16 ± 0.10	1.60 ± 0.12	0.08 ± 0.01
50–75	1	0.93 ± 0.23	0.85 ± 0.23	0.08 ± 0.05	2.84 ± 0.16	0.14 ± 0.01
>75	0	0.32 ± 0.16	0.28 ± 0.15	0.04 ± 0.03	40.45 ± 0.62	4.21 ± 0.06

Table II

Source of uncertainty	Uncertainty
Integrated luminosity	11\%
Photon reconstruction and identification	4\%
Effect of pileup	2\%
\(E_T^{\text{miss}}\) reconstruction and scale	1\%
Signal MC statistics	1\%
Total	12\%
conducted using a result. more of the background from jets, produced a consistent both photons pass tighter identification cuts that reject using a higher purity would change the limit by only a few GeV. A cross-check uncertainties, and would only increase to 732 GeV if they were neglected. Changing the E_T^{miss} cut to 60 or 90 GeV would change the limit by only a few GeV. A cross-check using a higher purity $\gamma\gamma$ sample, achieved by requiring that both photons pass tighter identification cuts that reject more of the background from jets, produced a consistent result.

In conclusion, a search for $\gamma\gamma$ events with large E_T^{miss}, conducted using a 3.1 pb$^{-1}$ sample of 7 TeV pp collisions recorded with the ATLAS detector at the LHC, found no evidence of an excess above the SM prediction. The results were used to set limits on a specific model with one UED production cross section, and the LO theory cross section pre-

uncertainties, and would only increase to 732 GeV if they were neglected. Changing the E_T^{miss} cut to 60 or 90 GeV would change the limit by only a few GeV. A cross-check using a higher purity $\gamma\gamma$ sample, achieved by requiring that both photons pass tighter identification cuts that reject more of the background from jets, produced a consistent result.

In conclusion, a search for $\gamma\gamma$ events with large E_T^{miss}, conducted using a 3.1 pb$^{-1}$ sample of 7 TeV pp collisions recorded with the ATLAS detector at the LHC, found no evidence of an excess above the SM prediction. The results were used to set limits on a specific model with one UED and gravity-induced LKP decays, excluding at the 95\% C.L. values of $1/R < 729$ GeV, and significantly surpassing the only existing experimental limit [7] on this model.

We wish to thank CERN for the efficient commissioning and operation of the LHC during this initial high-energy data-taking period as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERSYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular, from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

1. T. Appelquist, H.C. Cheng, and B.A. Dobrescu, Phys. Rev. D 64, 035002 (2001).
2. H. C. Cheng, K. Matchev, and M. Schmaltz, Phys. Rev. D 66, 036005 (2002).
3. C. Macesanu, C. D. McMullen, and S. Nandi, Phys. Rev. D 66, 015009 (2002).
4. A. DeRujula et al., Phys. Lett. B 482, 195 (2000).
5. C. Macesanu, C. D. McMullen, and S. Nandi, Phys. Lett. B 546, 253 (2002); C. Macesanu, Int. J. Mod. Phys. A 21, 2259 (2006).
6. M. El Kacimi et al., Comput. Phys. Commun. 181, 122 (2010).
7. V.M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 105, 221802 (2010).
8. T. Sjostrand, S. Mrenna, and P. Skands, J. High Energy Phys. 05 (2006) 026.
9. ATLAS Collaboration, Report No. ATL-PHYS-PUB-2010-002 (2010) (http://cdsweb.cern.ch/record/1247375).
10. G. Aad et al. (ATLAS Collaboration), Eur. Phys. J. C 70, 823 (2010).
11. S. Agostinelli et al. (GEANT4 Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).
12. G. Aad et al. (ATLAS Collaboration), JINST 3, S08003 (2008).
13. ATLAS Collaboration, arXiv:1012.4389 [Phys. Rev. D (to be published)].
14. ATLAS Collaboration, J. High Energy Phys. 12 (2010) 060.
15. ATLAS Collaboration, Report No. ATLAS-CONF-2010-038 (2010) (http://cdsweb.cern.ch/record/1277678).
16. M. Cacciari, G. P. Salam, and G. Soyez, J. High Energy Phys. 04 (2008) 063.
17. ATLAS Collaboration, Report No. ATLAS-CONF-2010-060 (2010) (http://cdsweb.cern.ch/record/1281333).
18. A. Sherstnev and R.S. Thorne, Eur. Phys. J. C 55, 553 (2008).
19. P. Nadolsky et al., Phys. Rev. D 78, 013004 (2008).
S. Snyder,24 M. Soares,124a R. Sobie,169,i J. Sodomka,127 A. Soffer,153 C. A. Solans,167 M. Solar,127 J. Solc,127 U. Soldevilla,167 E. Solfaroli Camillocci,132a,132b A. A. Solodkov,228 O. V. Soloyovann,128 J. Sondericker,24 N. Soni,2 V. Sopko,127 B. Sopko,127 M. Sorbi,39a,39b M. Sosebee,7 A. Soukharev,107 S. Spagnolo,72a,72b F. Spano,34 R. Spighi,19a G. Spigo,29 F. Spila,132a,132b E. Spirti,134a R. Spiwoks,29 M. Spousla,126 T. Spreitzer,158 B. Spurlock,7 R. D. St. Denis,53 T. Stahl,41 J. Stahlmann,120 R. Stamen,58a E. Stanecka,95 R. W. Stanek,34 C. Stanescu,134a S. Stapnes,117 E. A. Starchenko,128 J. Stark,55 P. Staroba,125 P. Starovoitov,91 A. Staudte,98 P. Stavina,144a G. Stavropoulos,14 G. Steele,53 P. Steinbach,43 P. Steinberg,24 I. Steki,127 B. Stelzer,142 H. J. Stelzer,41 O. Stelzer-Chilton,159a H. Stenzel,25 K. Stevenson,75 G. Stockmann,20 M. C. Stockton,29 K. Storteg,48 G. Stoicea,25a S. Stonjek,99 P. Strachota,126 A. R. Stradling,7 A. Straessner,43 J. Strandberg,87 S. Strandberg,146a,146b A. Stradlinc,117 M. Strang,109 E. Strauss,143 M. Strauss,111 P. Strizhene,144b R. Ströhmer,173 D. M. Strom,114 J. A. Strong,76,a R. Stroynowski,39 J. Strube,129 B. Stugu,153 I. Stumer,24,a J. Stupak,148 P. Sturm,174 R. Spighi,19a G. Spigo,29 F. Spila,132a,132b E. Spiriti,134a R. Spiwoks,29 M. Spousla,126 T. Spreitzer,158 B. Spurlock,7 U. Soldevilla,167 E. Solfaroli Camillocci,132a,132b A. A. Solodkov,128 O. V. Soloyovann,128 J. Sondericker,24 N. Soni,2 V. Sopko,127 B. Sopko,127 M. Sorbi,39a,39b M. Sosebee,7 A. Soukharev,107 S. Spagnolo,72a,72b F. Spano,34
