Voltage-Gated Sodium Channel β1/β1B Subunits Regulate Cardiac Physiology and Pathophysiology

Nnamdi Edokobi and Lori L. Isom*

Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States

Cardiac myocyte contraction is initiated by a set of intricately orchestrated electrical impulses, collectively known as action potentials (APs). Voltage-gated sodium channels (Navs) are responsible for the upstroke and propagation of APs in excitable cells, including cardiomyocytes. Navs consist of a single, pore-forming α subunit and two different β subunits. The β subunits are multifunctional cell adhesion molecules and channel modulators that have cell type and subcellular domain specific functional effects. Variants in SCN1B, the gene encoding the Nav-β1 and -β1B subunits, are linked to atrial and ventricular arrhythmias, e.g., Brugada syndrome, as well as to the early infantile epileptic encephalopathy Dravet syndrome, all of which put patients at risk for sudden death. Evidence over the past two decades has demonstrated that Nav-β1/β1B subunits play critical roles in cardiac myocyte physiology, in which they regulate tetrodotoxin-resistant and -sensitive sodium currents, potassium currents, and calcium handling, and that Nav-β1/β1B subunit dysfunction generates substrates for arrhythmias. This review will highlight the role of Nav-β1/β1B subunits in cardiac physiology and pathophysiology.

Keywords: sodium channel, B subunit, arrhythmia, epilepsy, cell adhesion, electrophysiology

INTRODUCTION

The heart contracts to pump blood throughout the body. It consists of specialized cells called cardiac myocytes (CMs), and contraction of CMs is initiated by electrical impulses called action potentials (APs) (Nerbonne and Kass, 2005). Cardiac APs are generated and propagated through the coordinated signaling of ion channels. Upon membrane depolarization, voltage-gated sodium channels (Navs) activate and inactivate rapidly to allow sodium influx (Hille and Catterall, 2012). This is responsible for the rising phase and propagation of the AP in mammalian CMs (Nerbonne and Kass, 2005). Navs are heterotrimeric transmembrane proteins consisting of one pore-forming α and two β subunits (Catterall, 2000). Nav-β subunits are expressed in mammalian heart (Isom et al., 1992; Makita et al., 1994) and their functional loss can result in electrical abnormalities that predispose patients to arrhythmias. Variants in the gene SCN1B, encoding the splice variants Nav-β1 and Nav-β1B, are implicated in a variety of inherited pathologies including epileptic encephalopathy (O’Malley and Isom, 2015), Brugada syndrome (BrS) (Watanabe et al., 2008; Hu et al., 2012), long-QT syndrome (LQTS) (Riuró et al., 2014), atrial arrhythmias (Watanabe et al., 2009), and sudden infant death syndrome (SIDS) (Hu et al., 2012) (Figure 1, Table 1). Remarkably, regardless of disease etiology, patients with SCN1B mutations have an increased risk of sudden death. Classically, the Nav-β subunits were characterized as modulators of the Nav ion-conducting pore. However, from research over the past two decades, we know that Nav-β subunits are dynamic,
multifunctional proteins that play important roles in cardiac physiology (O’Malley and Isom, 2015). Here, we will focus our review on the current understanding of Na\textsubscript{v}-\(\beta\)1/\(\beta\)1B function in CMs and discuss disease implications.

Na\textsubscript{v}S ARE DIFFERENTIALLY EXPRESSED IN CARDIAC MYOCYTES

To understand Na\textsubscript{v}-\(\beta\) subunit physiology in heart, one must first consider the associated Na\textsubscript{v}-\(\alpha\) subunits. Na\textsubscript{v}1.5 is the predominantly expressed Na\textsubscript{v}-\(\alpha\) in CMs and the primary contributor to recorded sodium current (I\textsubscript{Na}) density (Rogart et al., 1989; Gellens et al., 1992; Catterall, 2000; Maier et al., 2002). Na\textsubscript{v}1.5 is a “tetrodotoxin resistant (TTX-R)” channel (Catterall et al., 2005), in contrast to “TTX-sensitive (TTX-S)” channels, e.g., Na\textsubscript{v}s normally found in brain, for which TTX has nanomolar affinity (Catterall et al., 2005). TTX has micromolar affinity for Na\textsubscript{v}1.5 due to the presence of a cysteine residue in the selectivity filter in a position that is otherwise filled by an aromatic amino acid in TTX-S channels (Satin et al., 1992). TTX-S channels, Na\textsubscript{v}1.1, Na\textsubscript{v}1.3, and Na\textsubscript{v}1.6, are expressed in heart as well as in brain (Malhotra et al., 2001; Lopez-Santiago et al., 2007). They are preferentially localized in the transverse tubules (T-tubules) (Malhotra et al., 2001, 2002; Lopez-Santiago et al., 2007) where they are postulated to function in excitation-contraction coupling (Maier et al., 2002) (Figure 2).

CMs associate at the intercalated disk (ID), where adherens junctions, gap junctions, and desmosomes participate in intercellular communication (Vermij et al., 2017) (Figure 3A). Na\textsubscript{v}1.5 channels cluster at cell–cell junction sites at the ID, where they co-localize with the cardiac gap junction (GJ) protein, connexin-43 (Cx43) (Maier et al., 2002, 2004) (Figure 3B). Na\textsubscript{v}1.5 clustering may contribute to rapid AP conduction from cell-to-cell, similar to the node-to-node saltatory conducting function of TTX-S Na\textsubscript{v}S in myelinated nerves (Freeman et al., 2016). Na\textsubscript{v}1.5 channels are also expressed at the CM lateral membrane (Figure 2), where they have differing biophysical properties and binding partners from those at the ID (Lin et al., 2011; Petitprez et al., 2011; Shy et al., 2013), suggesting two distinct Na\textsubscript{v}1.5 pools.

CARDIAC Na\textsubscript{v}S FORM MULTI-PROTEIN COMPLEXES

Na\textsubscript{v}-\(\alpha\) subunits interact with multi-protein complexes that are subcellular domain specific in heart. These interactions,
TABLE 1 | SCN1B variants linked to human disease.

Disease	#1	#1B
Atrial fibrillation	R85H (Watanabe et al., 2009), D153N (Watanabe et al., 2009)	R85H (Watanabe et al., 2009), D153N (Watanabe et al., 2009)
Brugada syndrome	E87Q (Watanabe et al., 2008)	E87Q (Watanabe et al., 2008), H162P (Holst et al., 2012), W179X, R214Q (Holst et al., 2012; Hu et al., 2012)
Dravet syndrome	I106F (Ogivara et al., 2012), Y119D (Ramadan et al., 2017), C121W (Wallace et al., 1998), R125C (Patino et al., 2009)	I106F (Ogivara et al., 2012), Y119D (Ramadan et al., 2017), C121W (Wallace et al., 1998), R125C (Patino et al., 2009)
Generalized Epilepsy with Febrile Seizures Plus (GEFS+)	D25N (Orico et al., 2009), R85H (Scheffer et al., 2006), R85C (Scheffer et al., 2006), R125L (Fendri-Kriaa et al., 2011), five amino acid deletions (IVS2-2A>C) (Audenaert et al., 2003)	D25N (Orico et al., 2009), R85H (Scheffer et al., 2006), R85C (Scheffer et al., 2006), R125L (Fendri-Kriaa et al., 2011), five amino acid deletions (IVS2-2A>C) (Audenaert et al., 2003)
Idiopathic epilepsy	V138I (Liu et al., 2014), T189M (Liu et al., 2014)	G257R (Patino et al., 2011)
Sudden Infant Death Syndrome (SIDS)		R214Q (Hu et al., 2012), R225C (Neubauer et al., in press)
Sudden Unexpected Nocturnal Death Syndrome (SUNDS)		V138I (Liu et al., 2014)
Long QT Syndrome (LQTS)		P213T (Fluró et al., 2014)

which involve Na\(_v\)-β1, as discussed throughout this review, are essential for proper cardiac electrical signaling (Figure 3C, Table 2). Ankyrin-G, a cytoskeletal adaptor protein, is necessary for normal expression of Na\(_v\)1.5 and coupling of the channel to the actin cytoskeleton (Mohler et al., 2004). A human SCN5A BrS variant eliminates Na\(_v\)1.5-ankyrin-G interactions (Mohler et al., 2004). This mutation, located in the Na\(_v\)1.5 DII–III loop, prevents channel cell surface expression in ventricular CMs and alters channel properties. In agreement with this result, rat CMs with reduced expression of ankyrin-G have reduced levels of Na\(_v\)1.5 expression and I\(_{\text{Na}}\). Abnormal Na\(_v\)1.5 localization can be rescued in ankyrin-G deficient CMs through exogenous over-expression of ankyrin-G (Lowe et al., 2008). Ankyrin-G recruits βIV spectrin, which forms important scaffolding structures and plays a role in the maintenance and integrity of the plasma membrane and cytoskeleton (Yang et al., 2007). βIV spectrin associates with and targets a subpopulation of Ca\(_{\text{2+}}\)/calmodulin-dependent protein kinase II (CaMKIIβ) to the ID to phosphorylate a critical serine residue in the Na\(_v\)1.5 I–II linker (Hund et al., 2010; Makara et al., 2014). Mouse CMs expressing a mutant form of βIV spectrin show a positive shift in I\(_{\text{Na}}\), steady-state inactivation, elimination of late I\(_{\text{Na}}\), shortened APD, and decreased QT intervals (Hund et al., 2010), confirming that formation of the Na\(_v\)1.5-ankyrin-G signaling complex is critical for maintaining normal cardiac excitability.

Cytoskeletal integrity is a pre-requisite for normal electrical coupling. During cardiac development, GJ proteins and Na\(_v\)1.5 appear at the ID after formation of adherens junctions (Vreeker et al., 2014). The perinexus, a newly identified region of the ID, is defined as the area surrounding the plaque of functional GJs (Rhett et al., 2013) (Figure 3B). Here, free connexons appear at the periphery of the GJ, after which they bind to zonula occludens1 (ZO-1). GJs form when ZO-1 free connexons from one cell associate with ZO-1 free connexons of a neighboring cell (Rhett et al., 2011). Disruption of Cx43/ZO-1 interactions increases Gj size (Hunter, 2005), and in a ZO-1 null model, GJ plaques are larger (Palatinus et al., 2010). Cx43 also interacts with Na\(_v\)1.5 in the perinexus (Rhett et al., 2012). The presence of Na\(_v\)1.5 at the perinexus may suggest that, in addition to GJ proteins, Navs may participate in coupling across the extracellular space, with increasing evidence supporting that both Cx43 and Na\(_v\)1.5 are necessary for cell-to-cell transmission of APs (Guststein et al., 2001; Lin et al., 2011; Jansen et al., 2012).

Na\(_v\)1.5 contributes to at least two distinct multiprotein complexes in ventricular CMs, one at the lateral membrane containing dystrophin and syntrophin (Figure 2), and the other at the ID involving the membrane-associated guanylate kinase (MAGUK) protein adapter protein, synapse-associated protein 97 (SAP97), and ankyrin-G (Petitprez et al., 2011) (Figure 3C). In heterologous cells, surface expression of Na\(_v\)1.5 is regulated by its interaction with SAP97 via a PDZ-domain (post-synaptic density protein-PSD95, disc large tumor suppressor-Dlg1, zonula occludens1-ZO1). Either the truncation of the fourth domain of Na\(_v\)1.5 (Shy et al., 2014) or depletion of SAP97 (Matsumoto et al., 2012) results in reduced channel cell surface expression, with a subsequent decrease of I\(_{\text{Na}}\).

Na\(_v\)1.5 also interacts with fibroblast growth factor homologous factor 1B (FFH1B) (Liu et al., 2003), calmodulin (Kim et al., 2004; Young and Caldwell, 2005), Nedd4-like-ubiquitin-protein ligases (Van Bemmelen et al., 2004; Rougier et al., 2005), and is phosphorylated by Fyn (Ahern et al., 2005), a src family tyrosine kinase, all of which are involved in the regulation of channel subcellular localization and activity (Figure 3C). Taken together, these results accentuate the idea that cardiac Na\(_v\)1.5 associate with protein complexes that are specific to subcellular domains, and these interactions are critical to cardiac physiology. Undoubtedly, changes in one component of a given complex results in significant consequences to overall cardiac excitability and synchrony.
NA\text{V}-\beta SUBUNITS MODULATE CARDIAC EXCITABILITY**

In mammalian genomes, five Na\text{V}-\beta subunits are encoded by four genes, SC\text{N}1\text{B}-SC\text{N}4\text{B} (O’Malley and Isom, 2015). Na\text{V}-\beta1-\beta4 are transmembrane proteins with type 1 topology consisting of an extracellular N-terminal containing an immunoglobulin (Ig) domain, a transmembrane segment, and an intracellular C-terminus (Brackenbury and Isom, 2011) (Figure 1). Na\text{V}-\beta1B, a splice variant of SC\text{N}1\text{B}, contains the Na\text{V}-\beta1 N-terminal and Ig domains, but lacks a transmembrane domain (Kazen-Gillespie et al., 2000), resulting in a secreted protein (Patino et al., 2011) (Figure 1). Na\text{V}-\beta subunits can interact both covalently and non-covalently with Na\text{V}-\alpha subunits: Na\text{V}-\beta1 and -\beta3 interact non-covalently with Na\text{V}-\alpha via their N- and C-termini (McCormick et al., 1998; Meadows et al., 2001), while Na\text{V}-\beta2 and -\beta4 interact covalently with Na\text{V}-\alpha via a single N-terminal cysteine located in the extracellular Ig loop (Chen et al., 2012; Gilchrist et al., 2013).

Canonically, Na\text{V}-\beta subunits are known as modulators of Na\text{V} electrophysiological properties and cell surface expression (Brackenbury and Isom, 2011). Heterologous expression systems and mouse models have shown that Na\text{V}-\beta subunits control Na\text{V} – α subunit composition of a given cell confers unique biophysical properties that can be finely tuned (Calhoun and Isom, 2014). Not surprisingly, Na\text{V}-\beta1 modulation of Na\text{V}1.5 varies depending on the system studied. In *Xenopus* oocytes, the amplitude of I\text{Na}1.5 expressed I\text{Na} increases with increasing amounts of \beta1 mRNA (Qu et al., 1995). Antisense-mediated post-transcriptional silencing of *Scn1b* in H9C2, a CM line, alters TTX-S and TTX-R...
FIGURE 3 | VGSC complexes at the cardiac intercalated disk. CMs associate at the ID, where Na\(_v\)1.5, Nav-β1 subunits, adherens junctions, gap junctions, and desmosomes define intercellular communication. (A) Associated CMs. (B) Proposed model of the GJ plaque, perinexus, and perinexus edge. Nav-β1 subunits at the ID are tyrosine phosphorylated, possibly through Fyn kinase activation, and may function in cell–cell adhesion in the perinexus and perinexus edge. (C) At the ID, Nav1.5 associates with a multi-protein complex (also see Table 2). The S4 segment of each Na\(_v\)-α subunit homologous domain forms the voltage sensing domain (VSD) and segments 5 and 6 in each domain create the ion-conducting pore. Three hydrophobic amino acids, IFM, form the inactivation gate. Abbreviations: Ankyrin-G (AnkG), Calmodulin (Cal), Ca\(^{2+}\)/calmodulin-dependent protein kinase II (CaMKII), Fibroblast growth factor homologous factor 1B (FHF1B), N-Cadherin (N-Cad), Nedd4-like-ubiquitin-protein ligases (Nedd4), Synapse-associated protein 97 (SAP97).

Na\(_v\)-α mRNA and protein expression, resulting in decreased I\(_{Na}\) (Baroni et al., 2014). In contrast, Scn1b null mouse CMs have increased expression of Scn3a and Scn5a, along with increased TTX-S and TTX-R I\(_{Na}\) (Lopez-Santiago et al., 2007). In heterologous cells, Nav-β1 expression results in slight changes in Na\(_v\)-1.5 I\(_{Na}\), but significant effects on voltage-dependence and channel kinetics. In Tsa201 cells transfected with Na\(_v\)-1.5, co-expression of Na\(_v\)-β1 positively shifts the voltage-dependence of activation (Malhotra et al., 2001). Co-expression of Na\(_v\)-β1 with Na\(_v\)-1.5 in Xenopus oocytes causes a depolarizing shift in steady-state inactivation compared with WT alone (Zhu et al., 2017), suggesting that β1 may allow the α subunit voltage-sensing domains to recover more rapidly to the resting state. Thus, Na\(_v\)-β1 may initiate fine-tuned acute and chronic feedback mechanisms that differentially control expression and function of Na\(_v\)-αs in the heart.

Na\(_v\)-β1B is expressed in fetal brain and in heart at all developmental time points. When expressed alone or in the
presence of TTX-S Na\textsubscript{\&} as a CAM ligand to promote signal transduction in cultured neurons (Patino et al., 2011). In contrast, Na\textsubscript{\&}-\beta1B is retained at the cell surface when co-expressed with Na\textsubscript{\&}1.5 (Patino et al., 2011) and Na\textsubscript{\&}-\beta1B co-expression increases I\textsubscript{\textsc{na}} density compared to Na\textsubscript{\&}1.5 alone (Watanabe et al., 2008). The disease variant, \beta1B-G257R (Figure 1, Table 1), causes Na\textsubscript{\&}-\beta1B to be retained inside the cell, resulting in a functional null phenotype (Patino et al., 2011). The variant, \beta1B-W179X (Figure 1, Table 1), fails to increase Na\textsubscript{\&}1.5 I\textsubscript{\textsc{na}} density, suggesting that it may also be a functional null mutation (Watanabe et al., 2008). A number of Na\textsubscript{\&}-\beta1B variants have now been linked to cardiac arrhythmias (Figure 1, Table 1), thus this subunit is critical to cardiac physiology.

While the Na\textsubscript{\&}-\alpha\textsubscript{s} are known to form and function as monomers, recent evidence suggests that they can also form dimers, and that dimerization is mediated through an interaction site within the first intracellular loop (Clatot et al., 2017). Nav\textsubscript{\&}-\alpha\textsubscript{s} dimers display coupled gating properties, which are mediated through the action of 14-3-3 proteins (Clatot et al., 2017). The 14-3-3 family of proteins is important for the regulation of cardiac I\textsubscript{\textsc{na}}, and disrupted 14-3-3 expression may exert pro-arrhythmic effects on cardiac electrical properties (Allouis et al., 2006; Sreedhar et al., 2016). The functional importance of cardiac Nav\textsubscript{\&}-\alpha dimerization may be to target and enhance the density of channels at specific subcellular domains. Na\textsubscript{\&}1.5-R1432G, a surface localization defective Scn5a mutant, displays a dominant negative effect on WT Na\textsubscript{\&}1.5, but only in the presence of Nav\textsubscript{\&}-\beta1 (Mercier et al., 2012). Thus, Nav\textsubscript{\&}-\beta1 may normally mediate physical interactions between Na\textsubscript{\&}1.5 dimers, however further research must be performed.

TABLE 2 | Na\textsubscript{\&}1.5 ID interacting proteins.

Interacting protein	Effects on Na\textsubscript{\&}1.5	Reference(s)
Ankyrin-G (AnK)	Proper expression at plasma membrane and coupling to actin cytoskeleton	Mohler et al., 2004
Calmodulin (Cal)	Regulates biophysical properties	Tan et al., 2002; Kim et al., 2004; Young and Caldwell, 2005; Gabelli et al., 2014
Ca2+/calmodulin-dependent protein kinase II (CaMKII)	Phosphorylation and modulates excitability	Hund et al., 2010; Makara et al., 2014
Fibroblast growth factor homologous factor 1B (FHF1B)	Modulate channel gating	Liu et al., 2003
Nedd4-like-ubiquitin-protein ligases (Nedd4)	Ubiquitination and regulated internalization. Possible mechanism in modulation of channel density at the plasma membrane	Van Bemmelen et al., 2004; Rougier et al., 2005
Synapse-associated protein 97 (SAP97)	Stability and anchoring to the cell membrane	Petitprez et al., 2011; Matsumoto et al., 2012

NA\textsubscript{\&}\textsubscript{-\beta\textsubscript{s}} DO MORE THAN MODULATE I\textsubscript{\textsc{na}}

Nav\textsubscript{\&}-\beta subunits are multifunctional (O'Malley and Isom, 2015). In addition to modulating channel gating and cell surface expression/localization, Nav\textsubscript{\&}-\beta\textsubscript{s} are Ig superfamily cell adhesion molecules (CAMs) that facilitate cell–cell communication and initiate intracellular signaling cascades. Nav\textsubscript{\&}-\beta1 and -\beta2 participate in trans-homophilic cell adhesion, resulting in the recruitment of ankyrin-G to the plasma membrane at sites of cell–cell contact (Malhotra et al., 2000). Importantly, this occurs both in the presence and absence of Nav\textsubscript{\&}-\alpha, at least in vitro. Nav\textsubscript{\&}-\beta1 and -\beta2 also participate in cell–matrix adhesion, binding tenascin-R and tenascin-C to modulate cell migration (Srinivasan et al., 1998; Xiao et al., 1999). The Nav\textsubscript{\&}-\beta3 amino acid sequence is most similar to Nav\textsubscript{\&}-\beta1 compared to the other Nav\textsubscript{\&}-\beta subunits (Morgan et al., 2000). While Nav\textsubscript{\&}-\beta3 does not function as a CAM when expressed in Drosoophila S2 cells, as shown for Nav\textsubscript{\&}-\beta1 and -\beta2 (Chen et al., 2012), it does so in mammalian cells where trans homophilic adhesion was shown to require an intact Cys2–Cys24 disulfide bond (Yereddi et al., 2013).

Nav\textsubscript{\&}-\beta function, localization, and expression are regulated by multiple post-translational modifications including phosphorylation, glycosylation, and proteolytic cleavage (Calhoun and Isom, 2014). All Nav\textsubscript{\&}-\beta\textsubscript{s} have highly glycosylated N-terminal domains, containing 3 to 4 N-linked glycosylation sites each (Isom et al., 1992; McCormick et al., 1998; Johnson et al., 2004), and these modifications contribute to cell surface expression and channel modulation (Johnson et al., 2004). Lastly, Nav\textsubscript{\&}-\beta\textsubscript{s} are targets for sequential proteolytic cleavage by \alpha-secretase/BACE1 and \gamma-secretase, resulting in the release of N-terminal and C-terminal domains (Wong et al., 2005). These cleavage products may have important physiological effects on transcriptional regulation of Nav\textsubscript{\&}-\alpha subunit genes. For example, \gamma-secretase cleavage of Nav\textsubscript{\&}-\beta2 in neurons in vitro leads to translocation of the intracellular domain to the nucleus, where it increases SCNIA mRNA expression and Na\textsubscript{\&}1.1 protein (Kim et al., 2007).

Of the five Na\textsubscript{\&}-\beta\textsubscript{s} subunits, Na\textsubscript{\&}-\beta1 has been the most studied in terms of its CAM function. In the heart, Nav\textsubscript{\&}-\beta1 ID localization suggests a role in cardiac cell–cell contact. Scn1b and Scn5a have overlapping temporal and spatial expression profiles during heart development (Domínguez et al., 2005). In ventricular CMs, Nav\textsubscript{\&}-\beta1 is co-localized at the ID (Kaufmann...
et al., 2010) with Na\textsubscript{v}1.5 (Maier et al., 2004), as well as at the T-tubules with TTX-S channels (Malhotra et al., 2001; Lopez-Santiago et al., 2007). Recent evidence suggests that Na\textsubscript{v}-\textbeta\textsubscript{1}-mediated cell–cell adhesion may occur at the perinexal membrane, and this putative interaction can be acutely inhibited by \textbeta\textsubscript{adp1}, a novel peptide mimic of the Na\textsubscript{v}-\textbeta\textsubscript{1} CAM domain (Veeraraghavan et al., 2016). Dose-dependent administration of \textbeta\textsubscript{adp1} decreased cellular adhesion in Na\textsubscript{v}-\textbeta\textsubscript{1}-overexpressing fibroblasts. 75\% of \textbeta\textsubscript{adp1}-treated hearts exhibited spontaneous ventricular tachycardias, revealing preferential slowing of transverse conduction. These data support a role for \textit{trans} Na\textsubscript{v}-\textbeta\textsubscript{1}-mediated cell–cell adhesion at the perinexal membrane and suggest a role for adhesion in conduction (Figure 3B). Because a large proportion of SCN1B disease variants affect the Ig domain (Figure 1), it is likely that disruption of Na\textsubscript{v}-\textbeta\textsubscript{1}-mediated cell–cell adhesion contributes to disease mechanisms and, if so, that restoring adhesion may be a future therapeutic target.

The Na\textsubscript{v}-\textbeta\textsubscript{1} intracellular domain can be phosphorylated at tyrosine (Y) residue 181 (Malhotra et al., 2002, 2004; McEwen et al., 2004), possibly through activation of Pyn kinase (Brackenbury et al., 2008; Nelson et al., 2014) (Figure 1). \textbeta\textsubscript{1Y181E}, a phosphomimetic, participates in cell adhesion but does not interact with ankyrin or modulate Na\textsubscript{v}, suggesting that Y181 is an important regulatory point for cytoskeletal association and channel modulation (Malhotra et al., 2002). In CMs, tyrosine-phosphorylated Na\textsubscript{v}-\textbeta\textsubscript{1} and non-phosphorylated Na\textsubscript{v}-\textbeta\textsubscript{1} are differentially localized to subcellular domains where they interact with specific cytoskeletal and signaling proteins (Malhotra et al., 2004). At the T-tubules, non-phosphorylated Na\textsubscript{v}-\textbeta\textsubscript{1} interacts with TTX-S Navs and ankyrin-B (Figure 2) (Malhotra et al., 2004). In contrast, tyrosine-phosphorylated Na\textsubscript{v}-\textbeta\textsubscript{1} is localized to the ID where it interacts with Na\textsubscript{v}-1,5 and N-cadherin (Figures 3B,C) (Malhotra et al., 2004). We do not yet know whether phosphorylation targets Na\textsubscript{v}-\textbeta\textsubscript{1} to specialized subcellular regions or whether Na\textsubscript{v}-\textbeta\textsubscript{1} is differentially phosphorylated upon arrival. Phosphorylation may be a signaling mechanism by which cells regulate the density and localization of Na\textsubscript{v}-1, and by association Na\textsubscript{v}-\textalpha\textsubscript{1}, to specific subcellular domains. In summary, Na\textsubscript{v}-\beta\textsubscript{1} subunits serve as critical links between the extracellular and intracellular signaling environments of cells through ion channel modulation as well as cell–cell adhesion.

IN VIVO ROLES OF SCN1B

Animal models have been instrumental in understanding the role of Scn1b in cardiac excitability. Scn1b deletion in mice results in severe seizures, ventricular arrhythmias, and sudden death prior to weaning (Chen, 2004). Scn1b null ventricular CMs exhibit prolonged AP repolarization, increased Scn5a/Na\textsubscript{v}-1,5 gene and protein expression, increased Scn3a expression, increased transient and persistent I\textsubscript{Na} density, and prolonged QT and RR intervals (Lopez-Santiago et al., 2007). In agreement with an adhesive role for \textbeta\textsubscript{1}, cytoskeletal disruption in CMs also results in increased I\textsubscript{Na} density (Undrovinas et al., 1995). Consistent with this, ventricular CMs isolated from cardiac-specific Scn1b null mice have increased I\textsubscript{Na} density, increased susceptibility to polymorphic ventricular arrhythmias, and altered intracellular calcium handling that is TTX-S (Lin et al., 2015). These data indicate that loss of Scn1b expression is arrhythmogenic, mediated by altered ion channel gene and protein expression, I\textsubscript{Na}, I\textsubscript{K}, and calcium handling. Cardiac specific Scn1b deletion increases the duration of calcium signaling, resulting in delayed afterdepolarizations (Lin et al., 2015). It will be interesting to determine if expression of disease-associated SCN1B variants leads to dysfunctional ryanodine receptor signaling, which can also result in altered levels of intracellular calcium and the generation of arrhythmias (Bers, 2008; Fearnley et al., 2011; Glasscock, 2014).

NA\textsubscript{v}-\textbeta\textsubscript{1} MODULATES POTASSIUM CHANNELS

Na\textsubscript{v}-\textbeta\textsubscript{1} can interact with and modulate voltage-gated potassium channels (K\textsubscript{v}s) in addition to Navs. K\textsubscript{v}-\alpha subunits assemble as tetramers that normally associate with modulatory K\textsubscript{v}-\beta subunits (Snyders, 1999). The K\textsubscript{v}-4.x subfamily of channels express rapidly activating, inactivating, and recovering cardiac transient outward currents (I\textsubscript{to}) (Snyders, 1999). Co-expression of Na\textsubscript{v}-\textbeta\textsubscript{1} with K\textsubscript{v}-4.3 results in a ~four-fold increase in I\textsubscript{to} density (Deschênes and Tomasselli, 2002). Additionally, Na\textsubscript{v}-\textbeta\textsubscript{1} alters the voltage-dependence and kinetics of channel gating compared to K\textsubscript{v}-4.3 expressed alone (Deschênes and Tomasselli, 2002). Importantly, Na\textsubscript{v}-\textbeta\textsubscript{1} associates with K\textsubscript{v}-4.2 and enhances its surface expression (Marionneau et al., 2012). Whole-cell voltage-clamp recordings obtained from cells expressing K\textsubscript{v}-4.2 with Na\textsubscript{v}-\textbeta\textsubscript{1} resulted in higher I\textsubscript{to} densities compared to K\textsubscript{v}-4.2 alone (Marionneau et al., 2012). Na\textsubscript{v}-\textbeta\textsubscript{1} can also interact with and modulate K\textsubscript{1} (K\textsubscript{1}-1.1, K\textsubscript{1}-1.2, K\textsubscript{1}-1.3, or K\textsubscript{1}-1.6) and K\textsubscript{7} (K\textsubscript{7}-7.2) channels (Nguyen et al., 2012). Lastly, Na\textsubscript{v}-\textbeta\textsubscript{1} can also associate with K\textsubscript{v}-4.3, resulting in increased I\textsubscript{to} (Hu et al., 2012). Thus, K\textsubscript{v} currents can be modulated by Na\textsubscript{v}-\beta subunits, at least in heterologous expression systems. Transfection of neonatal rat ventricular myocytes with siRNA targeting Na\textsubscript{v}-\textbeta\textsubscript{1} significantly reduced the expression of K\textsubscript{v}-4.x protein and reduced both I\textsubscript{Na} and I\textsubscript{to} (Deschênes et al., 2008), suggesting that Na\textsubscript{v}-\textbeta\textsubscript{1} can modulate K\textsubscript{v} currents in the heart in vivo.

The inward rectifier current I\textsubscript{K1}, expressed by Kir2.1, is critical for setting the resting membrane potential and modulating the late-phase of repolarization and AP duration in CMs (Nerbonne and Kass, 2005). Similar to Na\textsubscript{v}-1,5, Kir2.x channels contain a C-terminal PDZ-binding domain which mediates interaction with SAP97 and syntrophin (Matamoros et al., 2016). It is thought that Kir2.x channels associate in microdomains that include caveolin 3, Na\textsubscript{v}-1,5, SAP97, and syntrophin (Vaidyanathan et al., 2013). Na\textsubscript{v}-1.5 interacts with α1-syntrophin via an internal N-terminal PDZ-like binding domain in addition to the C-terminal PDZ-binding domains (Matamoros et al., 2016). Importantly, Na\textsubscript{v}-1.5-β co-expression increases Kir2.1 and Kir2.2, but not Kir2.3, currents, again suggesting that these channels are functionally linked and that Na\textsubscript{v}-\textbeta\textsubscript{1} is critical to the formation of multi-ion channel complexes.
The cardiac AP relies on the orchestration of multiple ion channels in concert. \(\text{Nav}_1.5 \) is an important modulator of \(\text{Na}_\alpha \)-\(\alpha \) as well as some \(\text{K} \)-\(\beta \)- and \(\text{Kir} \)-\(\alpha \) subunits. \(\text{Nav} \) and \(\text{K} \) channels may be functionally linked through \(\text{Nav}_1.5/\beta 1 \), and if so, defects in this mechanism may contribute to cardiac disease. It will be critical to determine the physiological effects of \(\text{Nav}_1.5 \) interaction with other \(\text{K} \) channels, calcium channels, or other calcium-handling proteins at the T-tubules. It is intriguing to consider that \(\text{Nav}_1.5 \) may serve as a central communication hub between sodium, potassium, and calcium channel families to coordinate depolarization, repolarization, and calcium signaling in CMs.

SCN1B AND HUMAN DISEASE

SCN1B variants are implicated in a variety of inherited pathologies, including epileptic encephalopathy and cardiac arrhythmias (O’Malley and Isom, 2015) (Figure 1, Table 1). The epileptic encephalopathy Dravet syndrome is linked to heterozygous variants in SCN1A leading to haploinsufficiency in most patients, however, a subset of patients has SCN1B homozygous loss-of-function variants (Patino et al., 2009). The leading cause of mortality in Dravet syndrome is Sudden Unexpected Death in Epilepsy (SUDEP) (Nobili et al., 2011; Kalume, 2013; Devinsky et al., 2016). SCN1B variants are also linked to inherited cardiac arrhythmia syndromes that increase the risk of sudden death, including BrS (Hu et al., 2012), LQTS (Riuró et al., 2014), atrial arrhythmias (Watanabe et al., 2009), and SIDS (Hu et al., 2012). Diagnostic overlap between epilepsy and cardiac conduction disease can confound causative links between the two phenotypes (Ravindran et al., 2016). Cardiac conduction abnormalities can be poorly recognized in patients with epilepsy and vice versa (Zaidi et al., 2000). A retrospective electrocardiography study revealed that abnormal ventricular conduction was more common in SUDEP cases than in epileptic controls (Chyou et al., 2016). We propose that variants in SCN1B, including those linked to epilepsy, predispose patients to compromised cardiac electrical abnormalities. Thus, cardiovascular evaluation may be helpful in treating epileptic encephalopathy patients.

SUMMARY

\(\text{Nav}_1.5 \) and \(\beta 1 \) are multifunctional molecules that associate with \(\text{Na}_\alpha \), and \(\text{K} \) channels, cytoskeletal proteins, CAMs, and extracellular matrix molecules in the heart and brain. In addition, \(\text{Nav}_1.5/\beta 1 \) modulate multiple ionic currents, channel expression levels, and channel subcellular localization. Thus, it is not surprising that variants in SCN1B are linked to devastating cardiac and neurological diseases with a high risk of sudden death. In the field of cardiac physiology, important questions remain regarding specific cardiac \(\text{Nav}_1.5/\beta 1 \) binding partners, potential effects of \(\text{Nav}_1.5 \) on calcium-handling, the potential role of \(\text{Nav}_1.5 \) in \(\text{Na}_\alpha \) dimerization, and the mechanism of phosphorylation events that affect \(\text{Nav}_1.5 \) targeting to and association with subcellular domain specific signaling complexes at the ID, lateral membrane, and T-tubules. Understanding the functions of \(\text{Nav}_1.5 \) within these protein complexes will help to elucidate underlying mechanisms of cardiac arrhythmias and associated sudden death, as well as lead to the discovery of novel biomarkers and therapeutic targets for human disease.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and intellectual contribution to the work, and approved it for publication.

FUNDING

This work was funded by NIH R37-NS-076752 to LI and by T32GM0077637 to LI on which NE is a trainee.
Malhotra, J. D., Chen, C., Rivolta, I., Abriel, H., Malhotra, R., Mattel, L. N., et al. (2001). Characterization of sodium channel alpha- and beta-subunits in rat and mouse cardiac myocytes. Circulation 103, 1303–1310. doi: 10.1161/01.CIR.103.9.1303

Malhotra, J. D., Kazen-Gillespie, K., Hortsch, M., and Isom, L. L. (2000). Sodium channel β subunits mediate homophilic cell adhesion and recruit ankyrin to points of cell-cell contact. J. Biol. Chem. 275, 11383–11388. doi: 10.1074/jbc.275.15.11383

Malhotra, J. D., Koopmann, M. C., Kazen-Gillespie, K. A., Fettman, N., Hortsch, M., and Isom, L. L. (2002). Structural requirements for interaction of sodium channel beta 1 subunits with ankyrin. J. Biol. Chem. 277, 26681–26688. doi: 10.1074/jbc.M202354200

Matamoros, M., Perez-Hernández, M., Guerrero-Serna, G., Amorós, I., Barana, A., Mohler, P. J., Rivolta, I., Napolitano, C., LeMaillet, G., Lambert, S., Priori, G., Morgan, K., Stevens, E. B., Shah, B., Cox, P. J., Dixon, A. K., Lee, K., Neubauer, J., Rougier, J.-S., Abriel, H., and Haas, C. (in press). Functional implications of a rare variant in the sodium channel beta1B subunit in a five-month old male sudden infant death syndrome (SIDS) case. Circulation 135, 2338–2351. doi: 10.1016/j.circres.2008.09.007

Nerbonne, J. M., and Kass, R. S. (2005). Molecular physiology of cardiac repolarization. Physiol. Rev. 85, 1205–1253. doi: 10.1152/physrev.00002.2005

Neubauer, J., Rougier, J.-S., Abriel, H., and Haas, C. (in press). Functional implications of a rare variant in the sodium channel β1B subunit (SCN1B) in a five-month old male sudden infant death syndrome (SIDS) case. Heart. Case Rep. doi: 10.1016/j.2014.01.010

Nguyen, H. M., Miyazaki, H., Hoshi, N., Smith, B. J., Nukina, N., Goldin, A. L., et al. (2012). Modulation of voltage-gated K+ channels by the sodium channel β1 subunit. Proc. Natl. Acad. Sci. U.S.A. 109, 18577–18582. doi: 10.1073/pnas.1209142109

Nobili, L., Proserpio, P., Rubboli, G. B., Montano, N. C., Didato, G., and Tassinari, C. (2011). Sudden unexpected death in epilepsy (SUDEP) and sleep. Sleep Med. Rev. 15, 237–246. doi: 10.1016/j.smrv.2010.07.006

O’Malley, H., and Isom, L. L. (2015). Sodium channel β subunits: emerging targets in channelopathies. Annu. Rev. Physiol. 77, 481–504. doi: 10.1146/annurev-physiol-021014-071846

Ogiwara, I., Nakayama, T., Yamagata, T., Ohtani, H., Mazaki, E., Tsuichiya, S., et al. (2012). A homzygous mutation of voltage-gated sodium channel beta(I) gene SCN1B in a patient with Dravet syndrome. Epilepsia 53, e200–e203. doi: 10.1111/j.1365-2878.2010.71004.x

Orrico, A., Galli, L., Grosso, S., Buoni, S., Pianigiani, R., Balestri, P., et al. (2009). Mutational analysis of the SCN1A, SCN1B and GABRG2 genes in 150 Italian patients with idiopathic childhood epilepsies. Clin. Genet. 75, 579–581. doi: 10.1111/j.1399-0004.2009.01155.x

Palatinus, J. A., O’Quinn, M. P., Barker, R. J., Harris, B. S., Jourdan, J., and Gourdie, R. G. (2010). ZO-1 determines adherens and gap junction localization at intercalated disks. Am. J. Physiol. Heart Circ. Physiol. 300, H583–H594. doi: 10.1152/ajpheart.00999.2010

Patino, G. A., Brackenbury, W. J., Bao, Y., Lopez-Santiago, L. F., O’Malley, H. A., Chen, C., et al. (2011). Voltage-gated Na+ channel beta1B: a secreted cell adhesion molecule involved in human epilepsy. J. Neurosci. 31, 14577–14591. doi: 10.1523/JNEUROSCI.0361-11.2011

Patino, G. A., Claes, L. R. F., Lopez-Santiago, L. F., Slat, E. A., Dondeti, R. S. R., Chen, C., et al. (2009). A functional null mutation of SCN1B in a patient with Dravet Syndrome. J. Neurosci. 29, 10764–10778. doi: 10.1523/JNEUROSCI.2475-09.2009

Petitprez, S., Zmoo, A. F., Ogrodnik, J., Balse, E., Raad, N., El-Haou, S., et al. (2011). SAP97 and dystrophin macromolecular complexes determine two pools of cardiac sodium channels Nav1.5 in cardiomyocytes. Circ. Res. 108, 294–304. doi: 10.1161/CIRCRESAHA.110.228312

Qu, Y., Isom, L. L., Westenbroek, R. E., Rogers, J. C., Tanada, T. N., McCormick, K. A., et al. (1995). Modulation of cardiac Na+ channel expression in Xenopus oocytes by beta 1 subunits. J. Biol. Chem. 270, 25696–25701. doi: 10.1074/jbc.270.43.25696

Ravindran, W., Patel, N., Anazi, S., Kentah, A. Y., Bashiri, F. A., Hamad, M. H., et al. (2017). Confirming the recessive inheritance of SCN1B mutations in developmental epileptic encephalopathy. Clin. Genet. 92, 327–331. doi: 10.1111/cge.12999

Ravindran, K., Powell, K. L., Todaro, M., and O’Brien, T. J. (2016). The pathophysiology of cardiac dysfunction in epilepsy. Epilepsy Res. 127, 19–29. doi: 10.1016/j.eplepsyres.2016.08.007

Rett, J. M., Jourdan, J., and Gourdie, R. G. (2011). Connexin 43 connexon to gap junction transition is regulated by zona occludens-1. Mol. Biol. Cell 22, 1516–1528. doi: 10.1091/mbc.E10-06-0548

Rett, J. M., OnRIEND, E. L., Jourdan, J., and Gourdie, R. G. (2012). Ca2+ associates with Nav1.5 in the cardiomyocyte perinexus. J. Membr. Biol. 245, 411–422. doi: 10.1007/s00232-012-9465-z

Rett, J. M., Veeraraghavan, R., Poelzing, S., and Gourdie, R. G. (2013). The perinexus: Sign-post on the path to a new model of cardiac conduction? Trends Cardiovasc. Med. 23, 222–228. doi: 10.1016/j.tcm.2012.12.005

Riouré, H., Campuzano, O., Arbelo, E., Iglesias, A., Batlle, M., Pérez-Villa, F., et al. (2014). A missense mutation in the sodium channel β1B subunit reveals SCN1B as a susceptibility gene underlying long QT syndrome. Heart Rhythm 11, 1202–1209. doi: 10.1016/j.hrthm.2014.03.044

Rogart, R. B., Cribbs, L. L., Muglia, L. K., Kerpath, D. H., and Kaiser, M. W. (1989). Molecular cloning of a putative tetrodotoxin-resistant rat heart Na+ channel isoform. Proc. Natl. Acad. Sci. U.S.A. 86, 8170–8174. doi: 10.1073/pnas.86.20.8170

Rouger, J.-S., van Bemmelen, M. X., Bruce, M. C., Jespersen, T., Gavillet, B., Apotheloz, F., et al. (2005). Molecular determinants of voltage-gated sodium channel regulation by the Nedd4/Nedd4-like proteins. Am. J. Physiol. Cell Physiol. 288, C692–C701. doi: 10.1152/ajpcell.00469.2004

Satlin, J., Kyle, J. W., Chen, M., Bell, P., Cribs, L. L., Pozzard, H. A., et al. (1992). A mutant of TTX-resistant cardiac sodium channels with TTX-sensitive properties. Science 256, 1202–1205. doi: 10.1126/science.256.5060.1202

Scheffer, I. E., Harkin, L. A., Grinton, B. S., Dibbens, L. M., Turner, S. J., Zielinski, M. A., et al. (2006). Temporal lobe epilepsy and GEFS+ phenotypes associated with SCN1B mutations. Brain 130, 100–109. doi: 10.1093/brain/awl272
