SUPERHEAVY NUCLEI AND BEYOND:
HYPERMATTER AND ANTIMATTER

Walter Greiner
Frankfurt Institute for Advanced Studies, J. W. Goethe-Universität, D-60438, Frankfurt a.M.,
Germany
E-mail: greiner@fias.uni-frankfurt.de

Abstract. The extension of the periodic system into various new areas is investigated. Experiments for the synthesis of superheavy elements and the predictions of magic numbers are reviewed. Further on, investigations on hypernuclei and the possible production of antimatter-clusters in heavy-ion collisions are reported. Various versions of the meson field theory serve as effective field theories at the basis of modern nuclear structure and suggest structure in the vacuum which might be important for the production of hyper- and antimatter.

1. Introduction
There are fundamental questions in science, like e. g. “how did life emerge” or “how does our brain work” and others. However, the most fundamental of those questions is “how did the world originate?”. The material world has to exist before life and thinking can develop. Of particular importance are the substances themselves, i. e. the particles the elements are made of (baryons, mesons, quarks, gluons), i. e. elementary matter. The vacuum and its structure is closely related to that. I want to report on these questions, beginning with the discussion of modern issues in nuclear physics.

The elements existing in nature are ordered according to their atomic (chemical) properties in the periodic system, which was developed by Dmitri Mendeleev and Lothar Meyer. The heaviest element of natural origin is uranium. Its nucleus is composed of $Z = 92$ protons and a certain number of neutrons ($N = 128$–150). They are called the different uranium isotopes. The transuranium elements reach from neptunium ($Z = 93$) via Californium ($Z = 98$) and fermium ($Z = 100$) up to lawrencium ($Z = 103$). The heavier the elements are, the larger are their radii and their number of protons. Thus, the Coulomb repulsion in their interior increases, and they undergo fission. In other words: the transuranium elements become more unstable as they get bigger. In the late sixties, the dream of the superheavy elements arose. Theoretical nuclear physicists around S. G. Nilsson (Lund) and from the Frankfurt school [1, 2] predicted that so-called closed proton and neutron shells should counteract the repelling Coulomb forces. Atomic nuclei with these special “magic” proton and neutron numbers and their neighbours could again be rather stable. These magic proton (Z) and neutron (N) numbers were thought to be $Z = 114$ and $N = 184$ or 196. Typical predictions of their life-times varied between seconds and many thousand years. Figure 1 summarizes the expectations at the time. One can see the islands of superheavy elements around $Z = 114$, $N = 184$ and 196, respectively, and the one around $Z = 164$, $N = 318$.

Published under licence by IOP Publishing Ltd
2. Cold Valleys in the Potential

The important question was how to produce these superheavy nuclei. There were many attempts, but only little progress was made. It was not until the middle of the seventies that the Frankfurt school of theoretical physics together with foreign guests (R. K. Gupta (India), A. Sandulescu (Romania)) [3] theoretically understood and substantiated the concept of bombarding of double magic lead nuclei with suitable projectiles, which had been proposed intuitively by the Russian nuclear physicist Y. Oganessian [4]. The two-center shell model, which is essential for the description of fission, fusion and nuclear molecules, was developed in 1969–1972 by W. Greiner and his students U. Mosel [1] and J. Maruhn [5]. It showed that the shell structure of the two final fragments was visible far beyond the barrier into the fusioning nucleus. The collective potential energy surfaces of heavy nuclei were calculated in the framework of the two-center shell model, exhibit pronounced valleys. These valleys provide promising doorways to the fusion of superheavy nuclei for certain projectile-target combinations (Fig. 2). If projectile and target approach each other through those “cold” valleys [3, 6], they get only minimally excited and the barrier, which has to be overcome (fusion barrier) is lowest (as compared to the neighbouring projectile-target combinations). In this way, the correct projectile- and target-combinations for fusion were predicted. In fact, Gottfried Unzenberg and Sigurd Hofmann and their group at GSI [7] have followed this approach. With the help of the SHIP mass-separator and the position sensitive detectors, which were especially developed by them, they produced the pre-superheavy elements Z = 106, 107, . . . 112, each of them with the theoretically predicted projectile-target combinations, and only with these. Everything else failed. This is an impressive success, which crowned the laborious construction work of many years. The last but one example of this success, was the discovery of element 112 and its long α-decay chain. The Dubna group produced the six isotopes of Z = 113–118 by bombarding 244Pu with 48Ca [8]. This is also a
Figure 2. Left: The collective potential energy surface of $^{184}_{114}$ calculated within the two center shell model by J. Maruhn et al. shows clearly the cold valleys, which reach up to the barrier and beyond. Right: Collective potential energy surface of the element $^{302}_{120}$ calculated by A. Karpov, Y. M. Palenzuela and L. F. Ruiz.

Figure 3. Grey scale plots of proton gaps (left column) and neutron gaps (right column) in the N-Z plane for deformed calculations with the forces SkI4 and PL-40. Besides the spherical shell closures one can see the deformed shell closures for protons at $Z = 104$ (PL-40) and $Z = 108$ (SkI4) and the ones for neutrons at $N = 162$ for both forces.
cold valley reaction (in this case due to the combination of a spherical and a deformed nucleus), as predicted by Gupta, Sandulescu and Greiner in 1977 [3]. There exist also cold valleys for which both fragments are deformed [6], or have non-axial orientations [9], but these have not been verified experimentally. The cold valleys also play an important role in nuclear fission giving rise to asymmetric and superasymmetric [10, 11] fission and to cluster radioactivity [12].

3. Shell structure in the superheavy region

![Diagram of the neutron drip line and elements](image)

Figure 4. Fragment of the neutron drip line and elements (red squares) that are stable against one neutron emission [17]. One can see the formation of stability peninsulas along neutron magic numbers.

Studies of the shell structure of superheavy elements in the framework of the meson field theory and the Skyrme-Hartree-Fock approach have recently shown that the magic shells in the superheavy region are very isotope dependent [3]. Additionally, there is a strong dependence on the parameter set and the model. Some forces hardly show any shell structure, while other predict the magic numbers $Z = 114, 120$ and 126. Using the heaviest known even-even nucleus Hassium $^{264}_{154}$ as a criterion to find the best parameter sets in each model, it turns out that PL-40 and SkI4 produce best its binding energy. However, these two forces make conflicting predictions for the magic number in the superheavy region: SkI4 predicts $Z = 114, 120$ and PL-40 $Z = 120$. Most interesting, $Z = 120$ as magic proton number seems to be as probable as $Z = 114$. Calculations of deformed systems within the two models [13] reveal again different predictions: Though both parametrizations predict $N = 162$ as the deformed neutron-shell closure, the deformed proton-shell closures are $Z = 108$ (SkI4) and $Z = 104$ (PL-40) (see Fig. 3). Calculations of the potential energy surfaces [13] show single humped barriers; their heights and widths strongly depend on the predicted magic number. Furthermore, recent investigations in a chirally symmetric mean-field theory (see also below) result also in the prediction of these two magic numbers [14, 15]. The corresponding magic neutron numbers are predicted to be $N = 172$ and to a lesser extent $N = 184$. Thus, this region provides an open field of research. The charge distribution of the $Z = 120,N = 184$ nucleus indicates a hollow inside. This may suggest
that it might be essentially a fullerene consisting of 60 α-particles and one binding neutron per alpha. The cold valleys in the collective potential energy surface are basic for understanding this exciting area of nuclear physics! It is a master example for understanding the structure of elementary matter, which is so important for other fields, especially astrophysics, but even more so for enriching our “Weltbild”, i.e. the status of our understanding of the world around us.

The investigation of the neutron drip line by extended Hartree-Fock+BCS calculations led to a surprise: extremely neutron rich nuclei along the magic neutron numbers become stable against one-and tow-neutron separation [17], see Fig. 4. The standard production of superheavy nuclei by fusing two smaller stable nuclei leads automatically to neutron poor isotopes near the proton drip line (therefore the lifetime of the produced superheavies is so small). Only a few suerheavy atoms are produced this way. This leads us directly to the question of how superheavies with larger neutron numbers (and therefore having larger lifetimes: up to thousands of years) can be produced. One also wants to produce such long–living superheavies in macroscopic quantities (milligrams, grams,...) so that they can eventually be used technically. This can be done either by double (or multiple) underground atomic bomb explosions or by pulsed reactors with very high neutron flux ($\approx 10^{21}$ neutrons/ sec cm2) see Figs. 5 and 6.

Figure 5. Half-lives (up) and decay modes (bottom) of nuclei in the upper part of the nuclear map. Schematic view of slow (terminated at the short-lived fission Fermium isotopes) and fast neutron capture processes with subsequent beta-minus decays are shown by the arrows.
Figure 6. Schematic picture for multiple neutron irradiation of initial ^{238}U material (up) and probability for formation of heavy nuclei (bottom) in such process (one, three and ten subsequent explosions). Dotted line denotes the level of few atoms.

4. Extension of the periodic system into the field of hyper- and antimatter

Nuclei that are found in nature consist of nucleons (protons and neutrons) which themselves are made of u (up) and d (down) quarks. However, there also exist s (strange) quarks and even heavier flavours, called charm, bottom, top. The latter has just recently been discovered. Let us stick to the s quarks. They are found in the “strange” relatives of the nucleons, the so-called hyperons ($\Lambda, \Sigma, \Theta, \Omega$). The Λ–particle, e. g., consists of one u, d and s quark, the Θ–particle even of an u and two s quarks, while the Ω (sss) contains strange quarks only.

If such a hyperon is taken up by a nucleus, a hyper-nucleus is created. Hypernuclei with one hyperon have been known for 20 years [16]. Several years ago, Carsten Greiner, Jürgen Schaffner and Horst Stöcker [20] theoretically investigated nuclei with many hyperons, hypermatter, and found that the binding energy per baryon of strange matter is in many cases even higher than that of ordinary matter (composed only of u and d quarks). This leads to the idea of extending the periodic system of elements in the direction of strangeness.

One can also ask for the possibility of building atomic nuclei out of antimatter, that means searching e. g. for anti-helium [21], anti-carbon, anti-oxygen. Figure 7 depicts this idea. Due to charge conjugation symmetry, antinuclei should have the same magic numbers and the same spectra as ordinary nuclei. However, as soon as they get in touch with ordinary matter, they annihilate with it and the system explodes. Now the important question arises, how these strange matter and antimatter clusters can be produced. First, one thinks of collisions of heavy nuclei, e. g. lead on lead, at high energies (energy per nucleon ≥ 200 GeV). Calculations with the URQMD-model of the Frankfurt school show that through nuclear shock waves [22] nuclear matter gets compressed to 510 times of its usual value, $\rho_0 \approx 0.17 \text{ fm}^{-3}$, and heated up to temperatures of $kT \approx 200 \text{ MeV}$. As a consequence, about 10 000 pions, 100 Λ’s, 40 Sigma’s and
Θ’s and about as many antiprotons and many other particles are created in a single collision. It seems conceivable that it is possible in such a scenario for some Λ’s to get captured in a nuclear cluster. This happens indeed rather frequently for one or two Λ-particles; however, more of them get built into nuclei with rapidly decreasing probability only. This is due to the low probability for finding the right conditions for such a capture in the phase space of the particles: the numerous particles travel with all possible momenta (velocities) in all directions. The chances for hyperons and antibaryons to meet get rapidly worse with increasing number. In order to produce multi-Λ-nuclei and antimatter nuclei, one has to look for a different source.

In the framework of the meson field theory, the energy spectrum of baryons has a peculiar structure, depicted in upper part of Fig. 8. It consists of an upper and a lower continuum, as it is known for electrons (see, e. g. Ref.[23]). Of special interest in the case of the baryon spectrum is the potential well, built of the scalar and the vector potential, which rises from the lower continuum. Naftali Auerbach and collaborators noticed this first [24]. It is known since P. A. M. Dirac (1930) that the negative energy states of the lower continuum have to be occupied by particles (electrons or, in our case, baryons). Otherwise our world would be unstable, because the “ordinary” particles are found in the upper states which can decay through the emission of photons into lower lying states. However, if the “underworld” is occupied, the Pauli-principle will prevent this decay. Holes in the occupied “underworld” (Dirac sea) are antiparticles.

![Figure 7](image_url)

Figure 7. The extension of the periodic system into the sectors of strangeness S, \bar{S} and antimatter ZN. The stable valley winds out of the known proton (Z) and neutron (N) plane into the S and \bar{S} sector, respectively. The same can be observed for the antimatter sector. In the upper part of the figure only the stable valley in the usual proton (Z) and neutron (N) plane is plotted, however, extended into the sector of antiprotons and antineutrons. In the second part of the figure it has been indicated, how the stable valley winds out of the Z-N-plane into the strangeness sector.

The occupied states of this underworld, including up to 40 000 occupied bound states of the lower potential well, represent the vacuum. The peculiarity of this strongly correlated vacuum
structure in the region of atomic nuclei is that — depending on the size of the nucleus — more than 20 000 up to 40 000 (occupied) bound nucleon states contribute to this polarization effect. Obviously, we are dealing here with a **highly correlated vacuum**. Pronounced shell structure can be recognized [25]. Holes in these states have to be interpreted as bound antinucleons (antiprotons, antineutrons). If the primary nuclear density rises due to compression, the lower well increases while the upper decreases and soon is converted into a repulsive barrier. This compression of nuclear matter can only be carried out in relativistic nucleus-nucleus collision with the help of shock waves, which have been proposed by the Frankfurt school (see W. Scheid et al., Ref. [26]) and which have since then been confirmed extensively (see, e. g. Ref. [27]). These **nuclear shock waves** are accompanied by heating of the nuclear matter. Indeed, density and temperature are intimately coupled in terms of the hydrodynamic Rankine–Hugoniot equations. Heating as well as the violent dynamics cause the creation of many holes in the very deep (measured from $-M_Bc^2$) vacuum well. These numerous bound holes resemble antimatter clusters which are bound in the medium; their wave functions have large overlap with antimatter clusters. When the primary matter density decreases during the expansion stage of the heavy–ion collision, the potential wells, in particular the lower one, disappear.

![Figure 8](image)

Figure 8. Baryon spectrum in a nucleus. Below the positive energy continuum exists the potential well of real nucleons. It has a depth of 50-60 MeV and shows the correct shell structure. The shell model of nuclei is realized here. However, from the negative continuum another potential well arises, in which about 40 000 bound particles are found, belonging to the vacuum. A part of the shell structure of the upper well and the lower (vacuum) well is depicted in the lower figures.

The bound antinucleons are then pulled down into the (lower) continuum. In this way antimatter clusters may be set free. Of course, a large part of the antimatter will annihilate on ordinary matter present in the course of the expansion. However, it is important that this mechanism for the production of antimatter clusters out of the highly correlated vacuum does not proceed via the phase space. The required coalescence of many particles in phase space
suppresses the production of clusters, while it is favoured by the direct production out of the highly correlated vacuum. In a certain sense, the highly correlated vacuum is a kind of cluster vacuum (vacuum with cluster structure). The shell structure of the vacuum levels (see Fig. 8) supports this latter suggestion. Fig. 9 illustrates this idea. Recently the STAR Collaboration at RHIC observed Anti-4He with production rate in excess of coalescent nucleosynthesis production [21].

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure9.png}
\caption{Due to the high temperature and the violent dynamics, many bound holes (antinucleon clusters) are created in the highly correlated vacuum, which can be set free during the expansion stage into the lower continuum. In this way, antimatter clusters can be produced directly from the vacuum. The horizontal arrow in the lower part of the figure denotes the spontaneous creation of baryon-antibaryon pairs, while the antibaryons occupy bound states in the lower potential well. Such a situation, where the lower potential well reaches into the upper continuum, is called supercritical. Four of the bound holes states (bound antinucleons) are encircled to illustrate a “quasi-antihelium” formed. It may be set free (driven into the lower continuum) by the violent nuclear dynamics.}
\end{figure}

The mechanism is similar for the production of multi-hyper nuclei ($\Lambda, \Sigma, \Theta, \Omega$). Meson field theory predicts also for the Λ energy spectrum at finite primary nucleon density the existence of upper and lower wells. The lower well belongs to the vacuum and is fully occupied by Λ’s.

Dynamics and temperature then induce transitions ($\Lambda \bar{X}$ creation) and deposit many Λ’s in the upper well. These numerous bound Λ’s are sitting close to the primary baryons: in a certain sense a giant multi-$\bar{\Lambda}$ hypernucleus has been created. When the system disintegrates (expansion stage) the Λ’s distribute over the nucleon clusters (which are most abundant in peripheral collisions). In this way multi-$\bar{\Lambda}$ hypernuclei can be formed. Of course this vision has to be worked out and probably refined in many respects. This requires a much more and thorough investigation in the future. It is particularly important to gain more experimental information on the properties of the lower well by $(e, e p)$ or $(e, e p p)$ and also $(\bar{p}_c p_b, p_c \bar{p}_b)$ reactions at high energy (\bar{p}_c denotes an incident antiproton from the continuum, p_b is a proton in a bound state; for the
reaction products the situation is just the opposite). Also the reaction \((p, p' d), (p, p' ^3He), (p, p' ^4He)\) and others of similar type need to be investigated in this context. The systematic studies of antiproton scattering on nuclei can contribute to clarify these questions. Various effective theories, e. g. of the Walecka-type on the one side and theories with chiral invariance on the other side, have been constructed to describe dense strongly interacting matter [4]. It is important to note that they seem to give different strengths of the potential wells and also different dependence on the baryon density.

According to chirally symmetric meson field theories, the antimatter-cluster-production and multi–hypermatter-cluster production out of the highly correlated vacuum takes place at approximately the same heavy-ion energies as compared to the predictions of the Dürr-Teller-Walecka type meson field theories. This in itself is a most interesting, quasi-fundamental question to be clarified. In the future, the question of the nucleonic substructure (form factors, quarks, gluons) and its influence on the highly correlated vacuum structure has to be studied. The nucleons are possibly strongly modified in the correlated vacuum: the \(\Delta\) resonance correlations are probably important. Is this highly correlated vacuum state, especially during the compression, a preliminary stage to the quark-gluon cluster plasma? To which extent is it similar or perhaps even identical with it?

5. Concluding remarks – outlook

The extension of the periodic system into the sectors of hypermatter (strangeness) and antimatter is of general and astrophysical importance. Indeed, microseconds after the big bang, the new dimensions of the periodic system we have touched upon, certainly have been populated in the course of the baryo- and nucleo-genesis. In the early history of the universe, even higher dimensional extensions (charm, bottom, top) may have played a role, which we did not pursue here. It is an open question, how the depopulation (the decay) of these sectors influences the structure and composition of our world today. Our conception of the world will certainly gain a lot through the clarification of these questions.

References

[1] U. Mosel and W. Greiner, Z. Phys. 217 (1968) 256; 222 (1969) 261; see also Memorandum zur Errichtung eines gemeinsamen Ausbildungszentrums für Kernphysik Hessischer Hochschulen, this was the initiative for building GSI.
[2] S. G. Nilsson et al., Nucl. Phys. A 115 (1968) 545; S. G. Nilsson, S. G. Thompson and C. F. Tsang, Phys. Lett. B 28, 7 (1969) 458.
[3] A. Sândulescu, R. K. Gupta, W. Scheid and W. Greiner, Phys. Lett. B 60, 3 (1976) 225; R. K. Gupta, A. Sândulescu and W. Greiner, Phys. Lett. B 67, 3 (1976) 257.
[4] Yu. Ts. Oganesian, A. G. Demin et al., Nucl. Phys. A 239 (1975) 157.
[5] J. A. Maruhn and W. Greiner, Phys. Rev. Lett. 32 (1974) 548; J. A. Maruhn, Ph. D. Thesis, J. W. Goethe Universität, Frankfurt an Main (1973).
[6] R. K. Gupta, G. Münzenberg and W. Greiner, J. Phys. G 23 (1997) L13.
[7] S. Hofmann and G. Münzenberg, Rev. Mod. Phys. 72 (2000) 733.
[8] Yu. Ts. Oganesian, V. K. Iyyonkov and K. J. Moody, Sci. Am. 282 (Jan. 2000) 4.
[9] Ş. Mişuc and W. Greiner, Phys. Rev. C 66 (2002) 044606.
[10] M. G. Itkis, S. M. Luk’yanov, V. N. Okolovich et al., Yad. Fiz. 52, 23 (1990) [Sov. J. Nucl. Phys. 52, 15 (1990)].
[11] F. Gönnenwein et al., AIP Conference Proceedings 1224, (2010) 338.
[12] D. N. Poenaru and W. Greiner, Cluster Radioactivity in Clusters in Nuclei 1, C. Beck, ed., vol. 818 of Lecture Notes in Physics, pp. 1–56, Springer, 2010.
[13] K. Rutz, M. Bender, T. Bürvenich, T. Schilling, P.-G. Reinhard, J. A. Maruhn and W. Greiner, Phys. Rev. C 56 (1997) 238; T. Bürvenich, K. Rutz, M. Bender, P.- G. Reinhard, J. A. Maruhn and W. Greiner, Eur. Phys. J. A 3 (1998) 139; M. Bender, K. Rutz, P.-G. Reinhard, J. A. Maruhn and W. Greiner, Phys. Rev. C 58 (1998) 2126.
[14] B. D. Serot and J. D. Walecka, Advances in Nuclear Physics, 16, Plenum Press, New York (1986); J. Theis, G. Graebner, G. Buchwald, J. Maruhn, W. Greiner, H. Stöcker and J. Polonyi, Phys. Rev. D 28 (1983) 2286; S. Klimt, M. Lutz and W. Weise, Phys. Lett. B 249 (1990) 386; I. N. Mishustin, Proc. Int. Conf. Structure of Vacuum and Elementary Matter, South Africa, Wilderness, World Scientific, Singapore (1996) p. 499; P. Papazoglou, D. Zschiesche, S. Schramm, J. Schaffner-Bielich, H. Stöcker and W. Greiner, Phys. Rev. C 59 (1999) 411; I. N. Mishustin, L. M. Satarov, H. Stöcker and W. Greiner, Phys. Rev. C 62 (2000) 034901.

[15] P. Papazoglou, Ph. D. Thesis, University of Frankfurt (1998); Ch. Beckmann, P. Papa-zoglou, D. Zschiesche, S. Schramm, H. Stöcker and W. Greiner, Phys. Rev. C 65 (2002) 024301.

[16] B. Povh, Rep. Progr. Phys. 39 (1976) 823.

[17] K.A. Gridnev, V.N. Tarasov, D.V. Tarasov, D.K. Gridnev, V.V. Pilipenko, W. Greiner, Int. Jour. Mod. Phys. E19 (2010) 449-457; V.N. Tarasov, K.A. Gridnev, D.K. Gridnev, D.V. Tarasov, S. Schramm and W. Greiner, Stability Peninsulas near Neutron Drip Line, ssubmitted to Phys. Rev. Lett.

[18] A. Botvina, I. Mishustin, V. Zagrebaev, and W. Greiner, Int. J. Mod. Phys. E19 (2010) 20632075

[19] V. I. Zagrebaev, A. V. Karpov, I. N. Mishustin, and W. Greiner, Superheavies: Theoretical incitements and predictions (2011) arXiv:1105.1659 [nucl-th].

[20] J. Schaffner, C. Greiner and H. Stöcker, Phys. Rev. C 46 (1992) 322.

[21] The STAR Collaboration, Nature aop, (2011) doi:10.1038/nature10079.

[22] H. Stöcker, W. Greiner and W. Scheid, Z. Phys. A 286 (1978) 121.

[23] W. Greiner, B. Müller and J. Rafelski, QED of Strong Fields, Springer Verlag, Heidelberg (1985). For a more recent review see W. Greiner and J. Reinhardt, Supercritical Fields in Heavy-Ion Physics, Proc. 15th Advanced ICFA Beam Dynamics Workshop on Quantum Aspects of Beam Physics, World Scientific, Singapore (1998).

[24] N. Auerbach, A. S. Goldhaber, M. B. John- son, L. D. Miller and A. Picklesimer, Phys. Lett. B 182 (1986) 221.

[25] I. Mishustin, L. M. Satarov, J. Schaffner, H. Stöcker and W. Greiner, J. Phys. G 19 (1993) 1303; P. K. Panda, S. K. Patra, J. Reinhardt, J. Maruhn, H. Stöcker and W. Greiner, Int. J. Mod. Phys. E 6 (1997) 307.

[26] W. Scheid, I. Hoffmann and W. Greiner, in Proc. Symp. Physics with Relativistic Heavy Ions, Lawrence Berkeley Lab., Berkeley, Cal. (1974).

[27] H. Stöcker and W. Greiner, Phys. Rep. 137 (1986) 279.