Electrochemical fluoromethylation triggered lactonizations of alkenes under semi-aqueous conditions†

Sheng Zhang, Lijun Li, Jinjin Zhang, Junqi Zhang, Mengyu Xue and Kun Xu

An electrochemical difluoromethylation triggered lactonization of alkenes was developed for the first time. This protocol employs readily prepared CF₂HSO₂Na as the difluoromethylating reagent, affording unprecedented CF₂H-containing lactones in moderate yields. Moreover, with CF₃SO₂Na as the trifluoromethylating reagent, a wide array of CF₃-containing lactones were obtained under additional supporting electrolyte- and catalyst-free conditions.

Introduction

The introduction of fluorine atoms into organic molecules has attracted increasing interest because the incorporation of fluorine-containing groups can significantly modify the properties of bioactive molecules. In contrast to various methods for trifluoromethylation of organic substrates, direct difluoromethylation is still underdeveloped, even though the difluoromethyl group (CF₂H) is an intriguing structural motif in drug design. Among the existing methods for direct difluoromethylation, radical processes have played an important role in obtaining CF₂H-containing compounds. It is noteworthy that there are many recent reports of photoinduced difluoromethylations of heterocycles and alkenes. However, expensive Ir- or Ru-based photoredox catalysts and synthetically challenging CF₂H radical precursors are commonly required. Synthetic electrochemistry has the obvious advantage of generating radicals in a controllable way to minimize the possibilities of radical dimerizations, and can realize some transformations in ways that were previously difficult or inaccessible by traditional methods. In this context, Baran, Blackmond and co-workers disclosed an electrochemical difluoromethylation of heterocycles in a divided cell with zinc sulfonates as the difluoromethylating reagent and n-Bu₄NClO₄ as the supporting electrolyte (Scheme 1a). Recently, a breakthrough in electrochemical difluoromethylation of alkenes with CF₂HSO₂NHNHBoc was reported by Xu and co-workers with Et₄NBF₄ as the supporting electrolyte (Scheme 1b). Given the importance of the CF₂H group in medicinal chemistry and the advantages of synthetic electrochemistry, the development of new electrochemical difluoromethylation reactions in a user-friendly single cell setup in the absence of an additional supporting electrolyte is attractive.

Lactones constitute useful building blocks in many pharmaceutically relevant molecules. In this regard, the construction of unprecedented CF₂H-containing lactones may be

Scheme 1 Electrochemical difluoromethylations.
beneficial for medicinal chemistry. We have been interested in electrochemical lactonizations; however, only C–O bonds were constructed for these transformations. Considering the powerfulness of radical alkene difunctionalizations for the enhancement of molecular complexity in a single preparative operation, we speculated that it might be possible to construct CF₂H-containing lactones via an electrochemical difluoromethylation triggered lactonization of alkenes. The proposed synthetic pathway is shown in Scheme 1c. First, electrochemically generated fluoromethyl radical undergoes alkene addition to give a carbon radical intermediate. Further electrochemical oxidation gives a carbocationic intermediate, which undergoes subsequent nucelophic cyclization to afford desired fluoromethylated lactones. While the proposed reaction pathway appears quite reasonable, its implementation proved to be challenging. First, the electrochemical oxidation of the carbon radical intermediate should occur quickly before H̅ reduction. Second, the oxidation potentials of R₂ radical precursors should be much lower than that of alkenes. Otherwise, the undesired single C–O bond formation would be the predominant process instead of desired alkene difunctionalization. In this report, we establish that electrochemical difunctionalization of alkenes can be achieved using semi-aqueous conditions to afford unprecedented CF₂H-containing lactones with CF₂HSO₂Na as the CF₂H radical precursor under catalyst-free conditions. Moreover, this environmentally benign protocol could also be applicable for the access to CF₃-containing lactones. While the proposed reaction pathway was shown in Table 2, the aromatic carboxylic acids were tolerated as the CF₂H radical precursor under catalyst-free conditions. Considering the model substrates in an undivided cell equipped with platinum electrodes (Table 1). When HOAc was employed as the additive with a mixture of CH₃CN and H₂O as the solvent, the isolated yield of the corresponding CF₂H-containing lactone 3c was obtained to be 67% (entry 1). Interestingly, adding supporting electrolytes into this reaction mixture led to a decrease in the yields (entries 2 and 3). Changing the Pt electrodes to graphite failed to maintain the reaction yield (entries 4 and 5). When the reaction was carried out in the absence of HOAc, only a trace amount of the desired product 3c was detected (entry 6). This result suggested that the cathodic proton reduction may limit the overall reaction rate. Replacing HOAc with HCl only led to a trace amount of the product 3c (entry 7). Increasing or decreasing the current density failed to improve the yield (entries 8 and 9).

Having established the optimized reaction conditions, we then examined the substrate scope of electrochemical difluoromethylation triggered lactonization of alkenes. As shown in Table 2, the aromatic carboxylic acids were tolerated

Results and discussion

Initially, we commenced the electrochemical carboxydiﬂuoromethylation reaction by using 1c and CF₂HSO₂Na (2) as

Table 1 Optimization of carboxydiﬂuoromethylation of alkenes

Entry	Changes from standard conditions	Yield (%)
1	None	67
2	0.1 M Bu₄NPF₆ was used as the electrolyte	59
3	0.1 M LiClO₄ was used as the electrolyte	52
4	Graphite(+) and Pt(–) were used as the electrodes	47
5	Pt(+) and graphite(–) were used as the electrodes	39
6	No HOAc	Trace
7	HCl was used instead of HOAc	Trace
8	J = 10 mA cm⁻²	61
9	J = 5 mA cm⁻²	43

* Reaction conditions: undivided cell, Pt plate (1.5 × 1.5 cm², J = 6.7 mA cm⁻²), 1c (0.5 mmol), 2 (1.25 mmol), CH₃CN/H₂O (7/1 mL, v/v), rt, 3 h, and 3.4 F. * Isolated yield.

Table 2 The substrate scope of electrochemical carboxydiﬂuoromethylation

Entry	Changes from standard conditions	Yield (%)
1	None	67
2	0.1 M Bu₄NPF₆ was used as the electrolyte	59
3	0.1 M LiClO₄ was used as the electrolyte	52
4	Graphite(+) and Pt(–) were used as the electrodes	47
5	Pt(+) and graphite(–) were used as the electrodes	39
6	No HOAc	Trace
7	HCl was used instead of HOAc	Trace
8	J = 10 mA cm⁻²	61
9	J = 5 mA cm⁻²	43

* Reaction conditions: undivided cell, Pt plate (1.5 × 1.5 cm², J = 6.7 mA cm⁻²), 1 (0.5 mmol), 2 (1.25 mmol), additive HOAc (1.5 mmol), CH₃CN/H₂O (7/1 mL, v/v), rt, 3 h, and 3.4 F. * Additive HOAc was replaced with TFA (1.5 mmol).
well to give the corresponding CF2H-containing lactones in moderate yields (3a–3o). For the substituents on the Ar2 ring, the para-substituents had little effect on the chemical yields (3b–3i). The ortho-substituted substrate 1j showed decreased reactivity to give the corresponding product 3j in 50% yield with TFA as the acidic additive instead of HOAc. When the fluoro group was placed at the meta position of the Ar2 ring, the corresponding lactone 3k was obtained in 79% yield. Replacing the phenyl group with the 1-naphthyl group decreased the yield of 3l to 57%.

When Ar2 was replaced with the methyl group, the corresponding lactone 3o was afforded in 46% yield. It is noteworthy that the challenging substrates of aliphatic carboxylic acids could also be tolerated to give the corresponding lactones 3p–3r in 38–42% yields.

To make this synthetic methodology more appealing, the electrochemical trifluoromethylation triggered lactonization of alkenes was then examined. As shown in Table 3, moderate to excellent yields of CF3-containing lactones were obtained regardless of the electronic nature of para-substitutions on the Ar2 ring (5a–5i). Changing the substitution on the Ar2 ring from the para-position to the ortho- or meta-position caused lower yields (5j–5l). The substrate containing a disubstituted Ar2 group was also tolerated well affording the product 5m in 64% yield. The fused ring substituted substrates also underwent the cyclizations smoothly to give the corresponding lactones 5n and 5p in 66% and 63% yields, respectively. Replacing the aromatic Ar1 or Ar2 group with aliphatic ones decreased the reaction efficiency, giving the corresponding lactones 5q and 5r in 53% and 69% yields, respectively. More importantly, the trisubstituted olefin was demonstrated to be a suitable substrate to give the lactone 5s in 42% yield.

In order to provide a rationale for the reaction pathway proposed in Scheme 1c, cyclic voltammetric (CV) experiments were carried out. As shown in Fig. 1, CF3HSO2Na and CF3SO2Na have the oxidation potentials of 0.72 V and 1.06 V, respectively. However, the oxidation potential of alkenes is 1.58 V. These results indicated that CF3HSO2Na and CF3SO2Na are much easier to be electrochemically oxidized to generate fluoroalkyl radicals than the alkene moiety. The CV experiments which were carried out in CH3CN/HOAc or CH3CN/H2O also indicated that CF3HSO2Na and CF3SO2Na are much easier to be electrochemically oxidized than the alkene moiety (see the ESI† for details). The much lower oxidation potentials of CF3H and CF3 radicals precursors than that of alkenes are the key to electrochemical carboxyfluoromethylation reactions.

Experimental

An undivided cell was equipped with a magnet stirrer and platinum plate (1.5 × 1.5 cm²) electrodes. The substrate 2-(1-phenylvinyl)benzoic acid 1a (112 mg, 0.5 mmol), CF3SO2Na 4 (195 mg, 1.25 mmol) and additive HOAc (86 μL, 1.5 mmol) were added to a mixed solvent of CH3CN/H2O (7/1 v/v), 3 h, and 3.4 F. Additive HOAc (1.5 mmol) was replaced with TFA (1.5 mmol).

Reaction conditions: undivided cell, Pt plate (1.5 × 1.5 cm², J = 6.7 mA cm⁻²), 1 (0.5 mmol), 4 (1.25 mmol, purity > 98%), additive HOAc (1.5 mmol), CH3CN/H2O (7/1 mL, v/v), 3 h, and 3.4 F. Additive HOAc (1.5 mmol) was replaced with TFA (1.5 mmol).

Table 3 The substrate scope of electrochemical carboxytrifluoromethylation

Substrate	Yields (%)
3a–3r	38–42
5a–5l	38–69
5m	64
5n–5p	66–63
5q–5r	53–69
5s	42

Fig. 1 Cyclic voltammograms of substrates in 0.1 M LiClO4/CH3CN, using a Pt wire working electrode and glassy carbon and Ag/AgNO3 (0.1 M in CH3CN) as counter and reference electrodes at a 100 mV s⁻¹ scan rate: (a) background (0.1 M LiClO4 in CH3CN), (b) CF3SO2Na (5 mmol L⁻¹), (c) CF3HSO2Na (5 mmol L⁻¹), and (d) 1a (5 mmol L⁻¹).
Conclusions

We have developed the first example of electrochemical difluoromethylation triggered lactonization of alkenes. Under additional supporting electrolyte- and catalyst-free conditions, a wide array of CF$_2$H-containing lactones were obtained in moderate yields. Moreover, this environmentally benign method is also applicable to access pharmaceutically important CF$_3$-containing lactones in the absence of a metal catalyst, chemically oxidant, and additional supporting electrolyte.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

We are grateful to the National Natural Science Foundation of China (21702113, U1504208 and 21602119), project funded by the China Postdoctoral Science Foundation, and Program for Science and Technology Innovation Talents in Universities of Henan Province (19HASTIT033).

Notes and references

1 (a) P. Kirsch, Modern Fluoroorganic Chemistry: Synthesis Reactivity Applications, Wiley-VCH, Weinheim, 2004; (b) T. Yamazaki, T. Taguchi and I. Ojima, Fluorine in Medicinal Chemistry and Chemical Biology, Wiley-Blackwell, Chichester, Great Britain, 2009.
2 For recent reviews on trifluoromethylation, see: (a) E. Merino and C. Nevado, Chem. Soc. Rev., 2014, 43, 6598; (b) J. Charpentier, N. Früh and A. Togni, Chem. Rev., 2015, 115, 650; (c) X. Pan, H. Xia and J. Wu, Org. Chem. Front., 2016, 3, 1163; (d) H.-X. Song, Q.-Y. Han, C.-L. Zhao and C.-P. Zhang, Green Chem., 2018, 20, 1662; (e) S. Barata-Vallejo, M.-V. Cooke and A. Postigo, ACS Catal., 2018, 8, 7287.
3 For recent examples on trifluoromethylation, see: (a) W. Yang, D. Ma, Y. Zhou, X. Dong, Z. Lin and J.-W. Sun, Angew. Chem., Int. Ed., 2018, 57, 12097; (b) E. Valverde, S. Kawamura, D. Sekine and M. Sodeoka, Chem. Sci., 2018, 9, 7115; (c) H. Wang, Q. Xu and S.-Y. Yu, Org. Chem. Front., 2018, 5, 2224; (d) B.-K. Mai, K.-J. Szabó and F. Himo, ACS Catal., 2018, 8, 4483; (e) A.-J. Borah and Z.-Z. Shi, Chem. Commun., 2017, 53, 3945; (f) H.-S. Han, E.-Y. Oh, Y.-S. Jung and S.-B. Han, Org. Lett., 2018, 20, 1698; (g) B. Yang, D. Yu, X.-H. Xu and F.-L. Qing, ACS Catal., 2018, 8, 2839; (h) M. Imiółek, G. Karunanithy, W.-L. Ng, A.-J. Baldwin, V. Gouverneur and B.-G. Davis, J. Am. Chem. Soc., 2018, 140, 1568.
4 For recent reviews, see: (a) J.-B. Hu, W. Zhang and F. Wang, Chem. Commun., 2009, 7465; (b) M.-C. Belhomme, T. Berset, T. Poisson and X. Pannecoucke, Chem.-Eur. J., 2015, 21, 12836; (c) D. E. Yerien, S. Barata-Vallejo and A. Postigo, Chem.-Eur. J., 2017, 23, 14676; (d) A. D. Dilman and V. V. Levin, Acc. Chem. Res., 2018, 51, 1272. For selected recent works, see: (e) P. S. Fier and J. F. Hartwig, J. Am. Chem. Soc., 2012, 134, 5524; (f) Y. Fujiwara, J. A. Dixon, R. A. Rodriguez, R. D. Baxter, D. D. Dixon, M. R. Collins, D. G. Blackmond and P. S. Baran, J. Am. Chem. Soc., 2012, 134, 1494; (g) K. S. Prakash, S. K. Ganesh, J.-P. Jones, A. Kulkarni, K. Masood, J. K. Swabec and G. A. Olah, Angew. Chem., Int. Ed., 2012, 51, 12090; (h) T. Iida, R. Hashimoto, K. Aikawa, S. Ito and K. Mikami, Angew. Chem., Int. Ed., 2012, 51, 9535; (i) P. K. Mykhailiuk, Angew. Chem., Int. Ed., 2015, 54, 6558; (j) N.-B. Heine and A. Studer, Org. Lett., 2017, 19, 4150; (k) T. Tung, S. B. Christensen and J. Nielsen, Chem.-Eur. J., 2017, 23, 18125.
5 (a) M. A. Chowdhury, K. R. A. Abdellatif, Y. Dong, D. Das, M. R. Suresh and E. E. Knaus, J. Med. Chem., 2009, 52, 1525; (b) N.-A. Meanwell, J. Med. Chem., 2011, 54, 2529.
6 T. Koike and M. Akita, Chem., 2018, 4, 409 and references cited therein.
7 (a) P. Xu, S. Guo, L. Wang and P. Tang, Synlett, 2014, 26, 36; (b) R. Sakamoto, H. Kashiwagi and K. Maruoka, Org. Lett., 2017, 19, 5126; (c) S.-Q. Zhu, Y.-L. Liu, H. Li, X.-H. Xu and F.-L. Qing, J. Am. Chem. Soc., 2018, 140, 11613.
8 (a) X.-J. Tang and W. R. Dolbier Jr, Angew. Chem., Int. Ed., 2015, 54, 4246; (b) Y. Xiang, Y. Li, Y. Kuang and J. Wu, Chem.-Eur. J., 2016, 23, 1032; (c) J. Rong, L. Deng, P. Tan, C. Ni, Y. Gu and J.-B. Hu, Angew. Chem., Int. Ed., 2016, 55, 2743; (d) Q.-Y. Lin, X.-H. Xu, K. Zhang and F.-L. Qing, Angew. Chem., Int. Ed., 2016, 55, 1479; (e) J.-S. Lin, F.-L. Wang, X.-Y. Dong, W.-W. He, Y. Yuan, S. Chen and X.-Y. Liu, Nat. Commun., 2017, 8, 14841; (f) N. Noto, T. Koike and M. Akita, Chem. Sci., 2017, 8, 6375.
9 For recent reviews, see: (a) R. Feng, J. A. Smith and K. D. Moeller, Acc. Chem. Res., 2017, 50, 2346; (b) M. Yan, Y. Kawamata and P. S. Baran, Chem. Rev., 2017, 117, 13230; (c) S. R. Waldvogel, S. Lips, M. Selt, B. Riehl and C. J. Kampf, Chem. Rev., 2018, 118, 6706; (d) C. Ma, P. Fang and T.-S. Mei, ACS Catal., 2018, 8, 7179; (e) N. Sauermann, T. H. Meyer, Y. Qiu and L. Ackermann, ACS Catal., 2018, 8, 7086; (f) J.-i. Yoshida, A. Shimizu and R. Hayashi, Chem. Rev., 2018, 118, 4702; (g) Y. Okada and K. Chiba, Chem. Rev., 2018, 118, 4592; (h) Y. Jiang, K. Xu and C.-C. Zeng, Chem. Rev., 2018, 118, 4485; (i) M. D. Kärkäs, Chem. Soc. Rev., 2018, 47, 5786.
10 For selected recent examples, see: (a) Y. Kawamata, M. Yan, Z. Liu, D.-H. Bao, J. Chen, J. T. Starr and P. S. Baran, J. Am. Chem. Soc., 2017, 139, 7448; (b) T. Gieshoff, A. Kehl, D. Schollmeyer, K. D. Moeller and S. R. Waldvogel, J. Am. Chem. Soc., 2017, 139, 12317; (c) N. Fu, G. S. Sauer, A. Saha, A. Loo and S. Lin, Science, 2017, 357, 575; (d) Q.-L. Yang, D.-H. Bao, J.-Y. Lu, L.-P. Zhang, P. Fang and T.-S. Mei, J. Am. Chem. Soc., 2018, 140, 11487; (e) S. Tang, L. Zeng and A. Lei, J. Am. Chem. Soc., 2018, 140, 13128; (f) R. Mei, N. Sauermann, J. C. A. Oliveira and L. Ackermann, J. Am. Chem. Soc., 2018, 140, 7913; (g) S. Zhang, L. Li, M. Xue, R. Zhang, K. Xu and C. Zeng, Org. Lett., 2018, 20, 3443; (h) K.-S. Du and J.-M. Huang, Org. Lett., 2018, 20, 2911; (i) H. Wang, J. Zhang, J. Tan, L. Xin, Y. Li, S. Zhang and K. Xu, Org. Lett., 2018, 20, 2505; (j) Q. Liu, B. Sun,
11 A. G. O’Brien, A. Maruyama, Y. Inokuma, M. Fujita, P. S. Baran and D. G. Blackmond, Angew. Chem., Int. Ed., 2014, 53, 11868.

12 P. Xiong, H.-H. Xu, J. Song and H.-C. Xu, J. Am. Chem. Soc., 2018, 140, 2460.

13 (a) Y.-J. Zhang, T. Abe, T. Tanaka, C.-R. Yang and I. Kouno, J. Nat. Prod., 2001, 64, 1527; (b) J. J. Beck and S.-C. Chou, J. Nat. Prod., 2007, 70, 891.

14 The use of α-bromodifluoromethyl substituted esters and amides to stabilize the in situ generated CF₂H⁻ to access to CF₂H-containing lactones has been described, see: Y. Da, S. Han, X. Du, S. Liu, L. Liu and J. Li, Org. Lett., 2018, 20, 5149.

15 (a) S. Zhang, F. Lian, M. Xue, T. Qin, L. Li, X. Zhang and K. Xu, Org. Lett., 2017, 19, 6622; (b) S. Zhang, L. Li, H. Wang, Q. Li, W. Liu, K. Xu and C.-C. Zeng, Org. Lett., 2018, 20, 252.

16 A previous work on the construction of two C-O bonds during lactonization of alkenes was reported by Moeller and co-workers, see: R. J. Perkins, H.-C. Xu, J. M. Campbell and K. D. Moeller, Beilstein J. Org. Chem., 2013, 9, 1630.

17 For selected recent reviews, see: (a) G. Yin, X. Mu and G. Liu, Acc. Chem. Res., 2016, 49, 2413; (b) J. R. Coombs and J. P. Morken, Angew. Chem., Int. Ed., 2016, 55, 2636. For recent examples of electrochemical alkyne difunctionalizations, see: (c) Y. Yuan, Y. Gao, Y. Lin, Y. Li, Z. Huang and A. Lei, ACS Catal., 2018, 8, 10871; (d) K.-Y. Ye, G. Pombar, N. Fu, G. S. Sauer, I. Keresztes and S. Lin, J. Am. Chem. Soc., 2018, 140, 2438; (e) Y. Wang, L. Deng, H. Mei, B. Du, J. Han and Y. Pan, Green Chem., 2018, 20, 3444; (f) C.-Y. Cai and H.-C. Xu, Nat. Commun., 2018, 9, 3551; (g) S. Zhang, L. Li, P. Wu, P. Gong, R. Liu and K. Xu, Adv. Synth. Catal., 2019, 361, 485. For recent example of electrochemical alkyne difunctionalizations, see: (h) C. Tian, L. Massignan, T. H. Meyer and L. Ackermann, Angew. Chem., Int. Ed., 2018, 57, 2383.

18 Z. He, P. Tan, C. Ni and J.-B. Hu, Org. Lett., 2015, 17, 1838.

19 The addition of additional electrolyte may be favourable for the formation of a more defined double layer, which could slow the bimolecular reactions.

20 The adding of acidic additives also lower the pH of the solvent. The low pH of the solvent is unfavourable for the unexpected Kolbe reactions.