Original Article

Ubiquitous Distribution of Azole-Resistant Aspergillus fumigatus-Related Species in Outdoor Environments in Japan

Kohei Watanabe¹, Takashi Yaguchi², and Dai Hirose¹

¹ School of Pharmacy, Nihon University
² Medical Mycology Research Center, Chiba University

Abstract

Aspergillus fumigatus-related species are responsible for causing aspergillosis, which is a fatal infectious disease. Recently, there has been a series of reports of A. fumigatus-related species that are resistant to azole drugs used in clinical practice for the treatment of fungal infections. Some of these species have been isolated from outdoor environments. Testing the drug susceptibility of the strains from outdoor environments, therefore, is important. In this study, we isolated and cultured 72 strains of A. fumigatus-related species from the outdoor environment in Japan. The isolates identified via morphological observation and molecular phylogenetic analysis were Aspergillus felis, Aspergillus lentulus, Aspergillus pseudoviridinutans, Aspergillus udagawae, and Aspergillus wyomingensis. The results of the drug susceptibility testing revealed that A. felis (6 of 14 strains) and A. pseudoviridinutans (13 of 17 strains) were resistant to itraconazole (ITCZ), with 4 mg/L or higher minimum inhibitory concentrations (MICs). The voriconazole (VRCZ)-resistant strains with 4 mg/L or higher MICs were A. felis (14 of 14), A. lentulus (4 of 4), A. pseudoviridinutans (15 of 17), A. udagawae (23 of 34), A. wyomingensis (1 of 3), and A. pseudoviridinutans (1 of 3). Among them, A. felis (1 of 14) and A. pseudoviridinutans (7 of 17) demonstrated 8 mg/L or higher MICs for ITCZ and VRCZ. These results indicate that A. fumigatus-related species resistant to ITCZ and VRCZ are widely distributed in outdoor environments in Japan.

Key words: Aspergillus fumigatus, drug susceptibility, TUB-2, Viridinutantes, voriconazole

Introduction

The genus Aspergillus includes the causative agents of allergic diseases and invasive aspergillosis, which is a fatal infection in humans, cats, and dogs⁹⁻¹¹. In particular, Aspergillus fumigatus, which belongs to Aspergillus section Fumigati, is the most important causative agent of invasive aspergillosis. Recently, a series of species genetically related to A. fumigatus have been isolated in clinical practice to determine the importance of these species⁴⁻⁷. The following A. fumigatus-related species have been isolated in clinical settings: Aspergillus aureoles, Aspergillus felis, Aspergillus hiratsukae, Aspergillus lentulus, Aspergillus pseudoviridinutans, Aspergillus thermomutatus, Aspergillus udagawae, Aspergillus viridinutans, and Aspergillus wyomingensis⁶,⁸⁻¹⁶. These species, except A. hiratsukae, A. thermomutatus, and A. lentulus, are included in the series Viridinutantes proposed by Houbraken et al.¹⁷. In addition to these five species, ser. Viridinutantes also includes Aspergillus acrensis, Aspergillus arcoverdensis, A. aureoles, Aspergillus bezerrae, Aspergillus curviformis, Aspergillus frankstonensis, and Aspergillus siamensis and currently consists of 12 species.¹⁷ Houbraken et al.¹⁷ further proposed eight series, including ser. Fumigati to which A. lentulus belongs, ser. Unilaterales to which A. hiratsukae belongs, and ser. Thermomutati to which A. thermomutatus belongs.

Some strains of A. fumigatus have been reported to be resistant to azole antifungals.¹⁸ A. fumigatus resistant to itraconazole (ITCZ) was first discovered by Denning et al.¹⁹ and is now reported worldwide.²⁰ For A. fumigatus-related species, clinical strains of A. felis, A. lentulus, A. pseudoviridinutans, A. udagawae, and A. viridinutans have been reported to have MICs of ≥ 4 mg/L for both ITCZ and voriconazole (VRCZ)²¹⁻²⁴. Lyskova et al.²¹ and Talbot et al.²² conducted drug susceptibility testing to azole antifungals on fungal...
species belonging to ser. *Viridinutan*(es) isolated from outdoor environments and clinical sources. The results indicated that the strains of the following species were resistant to ITCZ or VRCZ, or both, with MICs of ≥ 4 mg/L: *A. acren*ensis, *A. arcov*erden*is*, *A. auro*reol*es*, *A. felis*, *A. frankto*n*en*sis*, *A. pseudovirid*in*utan*(es), *A. siamensis*, *A. udagawa*e, *A. viridi*n*tan*(es), and *A. wyoming*ensis. However, Lyskova et al.\(^{16,23}\) and Talbot et al.\(^{20}\) did not show the results of drug susceptibility testing separately for environmental and clinical strains. Thus, it remains unclear how many species are resistant toazole antifungals in outdoor environments. In Japan, there have been reports of drug susceptibility tests using clinical strains\(^{16,23}\), but few studies have been conducted on environmental strains.

From 2012 to 2017, we surveyed the diversity of species of *Aspergillus* in the outdoor environment in Japan and isolated many *A. fumigatus*-related species in the process. In this study, we conducted drug susceptibility tests and molecularphylogenetic analysis using partial nucleotide sequences of the β-tubulin gene (*TUB-2*) on these environmental strains andJapanese clinical strains deposited at the Medical Mycology Research Center (MMRC), Chiba University. Our results indicate that *A. fumigatus*-related species resistant to azole antifungal drugs may be universally distributed in outdoor environments in Japan.

Materials and methods

Sampling and fungal isolation

An ecological survey was conducted from 2012 to 2017 to investigate the species diversity of the causative agents of invasive aspergillosis and the distribution pattern of each fungal species in outdoor environments throughout Japan across diverse climates and landscapes. The strains of *A. fumigatus*-related species isolated in that survey from soil and air by the following methods were used in this study. The soil-sampling sites from where the strains of *A. fumigatus*-related species were isolated are listed in Table 1. At each sampling site, 10–15 soil samples at least 5 m apart were obtained. The source of each soil was classified into four types in accordance with the landscape of the sampling site: forest (13 sites), grassland (1 site), bare land (2 sites), and farmland (2 sites) (Table 1). Approximately 100 g of soil was collected from the field after removing any plant litter accumulating on the surface and brought to the laboratory. Approximately 20–40 g of soil was placed in a sterilized culture bottle (5 cm in diameter and 10 cm in height), and then sterilized corn grains were placed on top of the soil and incubated at 35 °C for 7–10 days. After incubation, the conidia possibly identified as *A. fumigatus*-related species, which appeared on the corn grains, were isolated under a stereomicroscope (SZH10; Olympus, Tokyo, Japan) and cultured on corn meal agar (CMA, Nissui Pharmaceutical, Tokyo, Japan) supplemented with chloramphenicol (CP) at room temperature. Subsequently, the conidia that formed on the CMA were isolated and cultured on malt extract agar (MA, Nissui Pharmaceutical, Tokyo, Japan). Air sample (200 L) was collected in 2016 from the roof of a building that was approximately 40-m high in Funabashi, Chiba, Japan, and from an adjacent forest (elevation: 25 m) using an air sampler (Mas-100 Eco; Merck, Darmstadt, Germany) with CMA medium supplemented with CP. The strains cultured on MA were identified via macroscopic and microscopic morphological observations and the *TUB-2* sequences and are presented in Table 1. Isolates from the same sample were excluded when the strains were identified as the same species. The strains isolated from human and animal clinical specimens in Japan were obtained from MMRC, Chiba University, through the National Bio-Resource Project, Japan (http://www.nbrp.jp/) (Table 1).

DNA extraction and molecular studies

Genomic DNA was extracted from the mycelia cultured on MA overlaid with a cellophane membrane using the cetyltrimethylammonium bromide method\(^{25}\). Polymerase chain reaction (PCR) was performed using Quick Taq HS DyeMix (Toyobo, Osaka, Japan). PCR primer pair Bt2a (5´‒GGTAACCAAATCGGTGCTGCTTTC‒3´) or T10 (5´‒ACGATAGGTTCACCTCCAGAC‒3´) and BenA2 (5´‒AGTTGTCGGGACGGAAGAG‒3´) or Bt2a and Bt2b (5´‒ACCTCAGTGATGTAGACCCCTTGCGC‒3´)\(^{21}\) were used to obtain the sequences of *TUB-2*. DNA fragments were amplified using a PCR thermal cycler (DNA Engine; Bio-Rad, California, USA) with the following thermal cycling schedule: the first cycle of 5 min at 94°C, followed by 35 cycles of 30 s at 94°C, 30 s at 54°C for annealing, and 1 min at 72°C, with a final cycle of 10 min at 72°C. PCR products were purified according to the manufacturer’s protocol using a FastGene Gel/PCR Extraction Kit (Nippon Genetics, Tokyo, Japan). Purified PCR products were sequenced by Fasmac (Kanagawa, Japan). The sequences obtained in this study were deposited in the DNA Data Bank of Japan (DDBJ) (Table 1).

Phylogenetic analysis

The sequences were aligned by MAFFT v.7\(^{32}\), and the dataset was utilized for phylogenetic analysis using maximum-likelihood estimation with RAxML-NG\(^{1,20}\) implemented in raxmlGUI 2.0.5\(^{50}\). The best-fitting nucleotide substitution model (K80 + I model) was selected using ModelTest-Ng v.0.1.6\(^{10}\) according to the Akaike information criterion (AICc). The bootstrap procedure of Lemoine et al.\(^{32}\) was used with 1,000 replicates to estimate clade support.

Antifungal susceptibility testing

Each strain was tested for susceptibility to ITCZ and VRCZ and cultured for 7–14 days to form conidia, and then conidia suspensions were prepared. The micro-liquid dilution method according to the Clinical and Laboratory Standards Institute’s M38-A2 procedure was used with the yeast-like fungi DP.
Species	Strain No.	Source	Location	Accession No.	Reference
A. udagawae	CBS 114217	Soil	Brazil	LT795800	Lyskova et al (Unpublished)
A. aureus	CBS 13334	Soil	Brazil	AR811845	Matsuzawa et al 2015
A. freenis	NREL 2244	Soil	Ghana	EF69808	Peterson et al 2008
A. fumigatus	NREL 2439	Soil	Australia	EF69012	Peterson et al 2008
A. aegerita	SRA 7291	Grassland soil	in cattle farm	LC631859	This study
A. tatenoi	CBS 407.93	Soil from sugarcane plantation	Brazil	LC631860	This study
A. spinosus	CBS 54303	Soil	Japan	LC631861	This study
A. siamensis	IFM 59564	Soil	Japan	LC631862	This study
A. wyomingensis	IFM 60053	Soil	Japan	LC631863	This study
A. acrensis	IFM 61579	Soil	Japan	LC631864	This study
A. pseudoviridinutans	IFM 62091	Soil	Japan	LC631865	This study
A. brevipes	NHVA 1	Bare land soil	Japan	LC631866	This study
A. fumigatus	NHVA 1	Bare land soil	Japan	LC631867	This study
A. felis	NHVA 1	Bare land soil	Japan	LC631868	This study
A. brevipes	NHVA 1	Bare land soil	Japan	LC631869	This study
A. aegerita	NHVA 1	Bare land soil	Japan	LC631870	This study
A. pseudoviridinutans	NHVA 1	Bare land soil	Japan	LC631871	This study
A. fumigatus	NHVA 1	Bare land soil	Japan	LC631872	This study
A. brevipes	NHVA 1	Bare land soil	Japan	LC631873	This study
A. aegerita	NHVA 1	Bare land soil	Japan	LC631874	This study
A. pyriformis	NHVA 1	Bare land soil	Japan	LC631875	This study
A. aegerita	NHVA 1	Bare land soil	Japan	LC631876	This study
A. pseudoviridinutans	NHVA 1	Bare land soil	Japan	LC631877	This study
A. pyriformis	NHVA 1	Bare land soil	Japan	LC631878	This study
A. aegerita	NHVA 1	Bare land soil	Japan	LC631879	This study
A. pseudoviridinutans	NHVA 1	Bare land soil	Japan	LC631880	This study
A. pyriformis	NHVA 1	Bare land soil	Japan	LC631881	This study
A. aegerita	NHVA 1	Bare land soil	Japan	LC631882	This study
A. pyriformis	NHVA 1	Bare land soil	Japan	LC631883	This study
A. aegerita	NHVA 1	Bare land soil	Japan	LC631884	This study
A. pyriformis	NHVA 1	Bare land soil	Japan	LC631885	This study
A. aegerita	NHVA 1	Bare land soil	Japan	LC631886	This study
A. pyriformis	NHVA 1	Bare land soil	Japan	LC631887	This study
A. aegerita	NHVA 1	Bare land soil	Japan	LC631888	This study
A. pyriformis	NHVA 1	Bare land soil	Japan	LC631889	This study
A. aegerita	NHVA 1	Bare land soil	Japan	LC631890	This study
A. pyriformis	NHVA 1	Bare land soil	Japan	LC631891	This study
A. aegerita	NHVA 1	Bare land soil	Japan	LC631892	This study
A. pyriformis	NHVA 1	Bare land soil	Japan	LC631893	This study
A. aegerita	NHVA 1	Bare land soil	Japan	LC631894	This study
A. pyriformis	NHVA 1	Bare land soil	Japan	LC631895	This study
A. aegerita	NHVA 1	Bare land soil	Japan	LC631896	This study
A. pyriformis	NHVA 1	Bare land soil	Japan	LC631897	This study
A. aegerita	NHVA 1	Bare land soil	Japan	LC631898	This study
A. pyriformis	NHVA 1	Bare land soil	Japan	LC631899	This study
A. aegerita	NHVA 1	Bare land soil	Japan	LC631900	This study
A. pyriformis	NHVA 1	Bare land soil	Japan	LC631901	This study
A. aegerita	NHVA 1	Bare land soil	Japan	LC631902	This study
A. pyriformis	NHVA 1	Bare land soil	Japan	LC631903	This study
A. aegerita	NHVA 1	Bare land soil	Japan	LC631904	This study
A. pyriformis	NHVA 1	Bare land soil	Japan	LC631905	This study
A. aegerita	NHVA 1	Bare land soil	Japan	LC631906	This study
A. pyriformis	NHVA 1	Bare land soil	Japan	LC631907	This study
A. aegerita	NHVA 1	Bare land soil	Japan	LC631908	This study
A. pyriformis	NHVA 1	Bare land soil	Japan	LC631909	This study
A. aegerita	NHVA 1	Bare land soil	Japan	LC631910	This study
A. pyriformis	NHVA 1	Bare land soil	Japan	LC631911	This study
A. aegerita	NHVA 1	Bare land soil	Japan	LC631912	This study
A. pyriformis	NHVA 1	Bare land soil	Japan	LC631913	This study
A. aegerita	NHVA 1	Bare land soil	Japan	LC631914	This study
A. pyriformis	NHVA 1	Bare land soil	Japan	LC631915	This study
A. aegerita	NHVA 1	Bare land soil	Japan	LC631916	This study
A. pyriformis	NHVA 1	Bare land soil	Japan	LC631917	This study
A. aegerita	NHVA 1	Bare land soil	Japan	LC631918	This study
A. pyriformis	NHVA 1	Bare land soil	Japan	LC631919	This study
A. aegerita	NHVA 1	Bare land soil	Japan	LC631920	This study
A. pyriformis	NHVA 1	Bare land soil	Japan	LC631921	This study
A. aegerita	NHVA 1	Bare land soil	Japan	LC631922	This study
A. pyriformis	NHVA 1	Bare land soil	Japan	LC631923	This study
A. aegerita	NHVA 1	Bare land soil	Japan	LC631924	This study
A. pyriformis	NHVA 1	Bare land soil	Japan	LC631925	This study
A. aegerita	NHVA 1	Bare land soil	Japan	LC631926	This study
A. pyriformis	NHVA 1	Bare land soil	Japan	LC631927	This study
A. aegerita	NHVA 1	Bare land soil	Japan	LC631928	This study
A. pyriformis	NHVA 1	Bare land soil	Japan	LC631929	This study
A. aegerita	NHVA 1	Bare land soil	Japan	LC631930	This study
A. pyriformis	NHVA 1	Bare land soil	Japan	LC631931	This study
A. aegerita	NHVA 1	Bare land soil	Japan	LC631932	This study
A. pyriformis	NHVA 1	Bare land soil	Japan	LC631933	This study
A. aegerita	NHVA 1	Bare land soil	Japan	LC631934	This study
A. pyriformis	NHVA 1	Bare land soil	Japan	LC631935	This study
A. aegerita	NHVA 1	Bare land soil	Japan	LC631936	This study
A. pyriformis	NHVA 1	Bare land soil	Japan	LC631937	This study
A. aegerita	NHVA 1	Bare land soil	Japan	LC631938	This study
A. pyriformis	NHVA 1	Bare land soil	Japan	LC631939	This study
Results

We isolated 72 strains of *A. fumigatus*-related species from outdoor environments in Japan. Based on morphological characteristics and molecular phylogenetic analysis, the isolates were identified as *A. felis* (14), *A. lentulus* (4), *A. pseudoviridinutans* (17), *A. udagawae* (34), and *A. wyomingensis* (3) (Table 1). A comparison of the number of isolates of each *A. fumigatus*-related species among the isolation sources demonstrated their widespread distribution; namely, *A. felis*: 28.6% from bare land soil, 14.3% from grassland soil, and 57.1% from forest soil; *A. lentulus*: 50% from forest soil, 25% from farm soil, and 25% from air; *A. pseudoviridinutans*: 5.9% from bare land soil, 35.3% from grassland soil, 52.9% from forest soil, and 5.9% from farm soil; *A. udagawae*: 55.9% from forest soil, 38.2% from farm soil, and 5.9% from air; and *A. wyomingensis*: 100% from forest soil. The clinical strains newly identified in this study were *A. felis* (1), *A. lentulus* (4), *A. pseudoviridinutans* (1), and *A. udagawae* (3). Molecular phylogenetic analysis based on the TUB-2 sequences revealed three major clades: *A. felis* and *A. pseudoviridinutans* clade (Bootstrap values (BS) = 94%), *A. lentulus* clade (BS = 85%), and *A. udagawae* and *A. wyomingensis* clade (BS = 95%) (Fig. 1). *A. fumigatus*-related species formed clades with high BS (*A. felis*, BS = 92%; *A. lentulus*, BS = 92%; *A. pseudoviridinutans*, BS = 97%; *A. udagawae*, BS = 100%; and *A. wyomingensis*, BS = 93%) (Fig. 1). For all species, environmental and clinical strains were found to be genetically similar (Fig. 1).

The results of the drug susceptibility testing are summarized in Table 2 (See Table S for results of each strain). Of the 72 strains, 19 (26.4%) and 57 (79.2%) were resistant to ITCZ and VRCZ, respectively, with MICs ≥ 4 mg/L. No ITCZ-resistant strains of *A. felis* and VRCZ, respectively, with MICs ≥ 8 mg/L; these strains were also highly resistant to VRCZ. The molecular phylogenetic tree showed that azole drug-resistant strains were found in various lineages regardless of genetic relatedness (Fig. 1).

Discussion

In this study, we isolated *A. felis*, *A. lentulus*, *A. pseudoviridinutans*, *A. udagawae*, and *A. wyomingensis*, which are *A. fumigatus*-related species and cause aspergillosis, from outdoor environments in Japan. Among these, *A. fumigatus*-related species that have been reported from clinical isolates are considered to be clinically important owing to their pathogenicity. The first step in the pathogenesis of aspergillosis is the inhalation of airborne spores and their entry into the human body. Therefore, it is important to evaluate the species diversity of *A. fumigatus*-related species in outdoor environments and clinical settings since the dominant habitat of *A. fumigatus*-related species is considered to be the outdoor environment. All the *A. fumigatus*-related species identified in this study have been previously reported to be isolated from outdoor environments, such as the following: *A. felis*: soil from coal mine accumulations in the United States, forest soil in Australia, spoil banks and soil crusts in the Czech Republic, water surface in Portugal, and air in Germany and Spain; *A. lentulus*: corn and pepper fields in Korea, soil after herbicide use in Australia, *Coffea* sp. in Denmark, and cocoa beans of unknown origin; *A. pseudoviridinutans*: soils from India and Brazil (environment details unknown) and *Pinus caribaea* in Sri Lanka; *A. udagawae*: soils from prairie and soil from mine waste dump in the United States, plantations in Brazil, spoil bank and soil crust in the Czech Republic, and soils in China, Russia, Thailand, and Turkey (environment details unknown); and *A. wyomingensis*: soils from coal mine accumulations in the United States and soils in China and Russia (environment details unknown). Multiple strains of *A. felis*, *A. udagawae*, and *A. wyomingensis* have been reported in Australia, Brazil, and the United States. Conversely, only one strain each of *A. lentulus* and *A. pseudoviridinutans* has been reported in each of the aforementioned countries. Interestingly, we isolated numerous *A. lentulus* and *A. pseudoviridinutans* species in this study. Reports of isolation of *A. fumigatus*-related species in outdoor environments are incomplete; however, there are many reports of isolation from large animals and also humans. In Japan, most reports were on *A. fumigatus*-related species obtained from clinical sources; there were only few reports on these species obtained from outdoor environments. In this study, we isolated...
Fig. 1 Maximum-likelihood phylogenetic tree of *Aspergillus fumigatus*-related species isolated in this study based on the TUB-2 sequences.

The bootstrap (BS) values (> 50%) are presented at the nodes. The strain name in bold indicates environmental strains. Other strains are clinical strains. The “T” at the end of the strain name indicates the ex type.
A. fumigatus-related species in a wide area of Japan, regardless of the latitude or altitude, as presented in Table 1. So far, although the diversity of this taxon in outdoor environments has not been sufficiently investigated, there have been few reports of its isolation, and it seems to be widely distributed in outdoor environments regardless of the climatic zone.

Through drug susceptibility testing of A. fumigatus-related species from outdoor environments using ITCZ and VRCZ, we were able to identify ITCZ-resistant strains of A. felis and A. pseudoviridinutans and VRCZ-resistant strains of A. felis, A. lentulus, A. udagawae, and A. wyomingensis. In A. felis and A. pseudoviridinutans, we isolated strains that are highly resistant to ITCZ and VRCZ with MICs ≥ 8 mg/L. Studies have tested the susceptibility of these species and found resistant strains with the following MICs: A. felis (MIC against ITCZ: > 16 mg/L, MIC against VRCZ: 8 mg/L), A. lentulus (MIC against ITCZ and VRCZ: 4 mg/L), A. pseudoviridinutans (MIC against ITCZ: > 16 mg/L, MIC against VRCZ: 4 mg/L), A. udagawae (MIC against ITCZ: > 16 mg/L, MIC against VRCZ: 16 mg/L), and A. wyomingensis (MIC against ITCZ: > 16 mg/L, MIC against VRCZ: 4 mg/L)\(^5\), \(^21\), \(^22\), \(^36\).

However, although studies have described the results of the susceptibility testing of clinical and environmental strains, there was no clear genetic differentiation between the strains resistant to ITCZ or VRCZ or both and those that were not resistant in the drug susceptibility testing. The mechanism of drug resistance of A. fumigatus-related species was recently studied by Talbot et al \(^22\), and the M172A/V and D255G mutations in the cyp51A gene associated with the resistance of A. fumigatus to azole were found in the test species (A. arcoverdensis, A. aureolus, A. felis, A. frankstonensis, A. pseudoviridinutans, A. siamensis, A. udagawae, A. viridinutans, and A. wyomingensis). However, the mechanism of drug resistance of A. fumigatus-related species has not yet been elucidated. Although the cyp51A mutation was not analyzed in this study, it should be considered in future studies to clarify the evolutionary process of drug-resistant strains in outdoor environments.

This study demonstrated that A. fumigatus-related species, which adapt to various environments, are widely distributed in outdoor environments and suggested that many of these strains are resistant to ITCZ or VRCZ or both. We are currently conducting ecological studies to elucidate the distribution patterns of A. fumigatus-related species in various outdoor environments in Japan.

Acknowledgments

We thank Ms. Ayano Kuroiwa, Ms. Ayako Hogaki, Ms. Ayami Nagatsu, and Ms. Yuka Tsutsumi for their assistance with fungal isolation and DNA experiments; and Dr. Somay Murayama for valuable discussion. This study was partially

Table 2. Minimum inhibitory concentrations (MICs) of Aspergillus fumigatus-related species resistant to ITCZ and VRCZ isolated in Japan

Species	Number of strains	Source	MIC value (mg/L)	
			ITCZ	VRCZ
			2 > 2 ≥ 4	2 > 2 ≥ 4
Aspergillus felis	14	E*	4	4
	4	C**	3	1
A. lentulus	4	E	4	4
	6	C	6	2
A. pseudoviridinutans	17	E	1	3
	3	C	1	2
A. udagawae	34	E	32	2
	8	C	8	2
A. wyomingensis	3	E	3	2

*: Environmental, **: Clinical
supported by the Japan Society for the Promotion of Science KAKENHI Grant (No. 24710277 and 19K06826 to D.H. and 25290079 to T.Y.), The Asahi Group Foundation (H23) to D. H. and the Joint Usage / Research Center for Tropical Diseases, Institute of Tropical Medicine, Nagasaki University (2020-Kyoten-1) to T.Y.

Conflicts of interest

The authors declare that they have no conflict of interest.

Transparency declarations

All authors: none to declare.

References

1) Balajee SA, Nickle D, Varga J, Marr KA: Molecular studies reveal frequent misidentification of Aspergillus fumigatus by morphotyping. Eukaryot Cell 5: 1705-1712, 2006.
2) Raper KB, Fennell DF: The genus Aspergillus, pp. 82-126, Williams and Wilkins, Baltimore, 1965.
3) Sklenář F, Jurjević Ž, Zalar P, et al: Phylogeny of xerophilic aspergilli (subgenus Aspergillus) and taxonomic revision of section Restricti. Stud Mycol 88: 161-236, 2017.
4) Balajee SA, Kano R, Baddley JW, Moser SA, Marr KA, Alexander BD, Andes D, Kontoyiannis DP, Perrone G, Peterson S, Brandt ME, Pappas PG, Chiller T: Molecular identification of Aspergillus species collected for the Transplant-Associated Infection Surveillance Network. J Clin Microbiol 47: 3138-3141, 2009.
5) Alastrauey-Izquierdo A, Mellado E, Peláez T, Pemán J, Zapico S, Alvarez M, Rodriguez-Tudela JL, Cuenca-Estrella M, FILPOP Study Group: Population-based survey of filamentous fungi and antifungal resistance in Spain (FILPOP Study). Antimicrob Agents Chemother 57: 3380-3387, 2013.
6) Negri CE, Gonçalves SS, Xafranski H, Bergamasco MD, Aquino VR, Castro PTO, Colombo AL: Cryptic and rare Aspergillus species in Brazil: prevalence in clinical samples and in vitro susceptibility to triazoles. J Clin Microbiol 52: 3633-3640, 2014.
7) Sabino R, Verissimo C, Parada H, Brandão J, Viegas C, Carolino E, Clemons KV, Stevens DA: Molecular screening of 246 Portuguese Aspergillus isolates among different clinical and environmental sources. Med Mycol 52: 519-529, 2014.
8) Barrs VR, van Doorn TM, Houbraken J, Kidd SE, Martin P, Pinheiro MD, Richardson M, Varga J, Samson RA: Aspergillus felis sp. nov., an emerging agent of invasive aspergillosis in humans, cats and dogs. PLoS ONE 8: e64871, 2013.
9) Barrs VR, Beatty JA, Dhand NK, Talbot JJ, Bell E, Abraham LA, Chapman P, Bennett S, van Doorn T, Makara M: Computed tomographic features of feline sino-nasal and sino-orbital aspergillosis. Vet J 201: 215-222, 2014.
10) Balajee SA, Gribskov J, Brandt M, Ito J, Fothergill A, Marr KA: Mistaken identity: Neosartorya pseudofischeri and its anamorph masquerading as Aspergillus fumigatus. J Clin Microbiol 43: 5996-5999, 2005.
11) Balajee SA, Gribskov JL, Hanley E, Nickle D, Marr KA: Aspergillus lentulus sp. nov., a new sibling species of A. fumigatus. Eukaryot Cell 4: 625-632, 2005.
12) Hubka V, Barrs V, Dudová Z, Sklenář F, Kubátová A, Matsuzawa T, Yaguchi T, Horie Y, Nováková A, Frisvad JC, Talbot JJ, Kolařík M: Unravelling species boundaries in the Aspergillus viridinutans complex (Section Fumigati): opportunistic human and animal pathogens capable of interspecific hybridization. Persoonia 41: 142-174, 2018.
13) Alcazar-Fuoli L, Mellado E, Alastrauey-Izquierdo A, Cuenca-Estrella M, Rodriguez-Tudela JL: Aspergillus section Fumigati: Antifungal susceptibility patterns and sequence-based identification. Antimicrob Agents Chemother 52: 1244-1251, 2008.
14) Sugui JA, Peterson SW, Figat A, Hansen B, Samson RA, Mellado E, Cuenca-Estrella M, Kwon-Chung KJ: Genetic relatedness versus biological compatibility between Aspergillus fumigatus and related species. J Clin Microbiol 52: 3707-3721, 2014.
15) Farrell JJ, Kasper DJ, Taneja D, Baman S, O’Rourke LM, Lowery KS, Sampath R, Bonomo RA, Peterson SW: Acute respiratory distress caused by Neosartorya udagawae. Med Mycol Case Rep 6: 1-5, 2014.
16) Tamiya H, Ochiai E, Kikuchi K, Yahiro M, Toyotome T, Watanabe A, Yaguchi T, Kamei K: Secondary metabolite profiles and antifungal drug susceptibility of Aspergillus fumigatus and closely related species, Aspergillus lentulus, Aspergillus udagawae, and Aspergillus viridinutans. J Infect Chemother 21: 385-391, 2015.
17) Houbraken J, Kocubík S, Visagie CM, Yilmaz N, Wang XC, Meijer M, Kraak B, Hubka V, Bensch K, Samson RA, Frisvad JC: Classification of Aspergillus, Penicillium, Talaromyces and related genera (Eurotiales): an overview of families, genera, subgenera, sections, series and species. Stud Mycol 95: 5-169, 2020.
18) Talbot JJ, Barrs VR: One—health pathogens in the Aspergillus viridinutans complex. Med Mycol 56: 1-12, 2018.
19) Denning DW, Venkateswarlu K, Oakley KL, Anderson MJ, Manning NJ, Stevens DA, Warnock DW, Kelly SL: Itaconazole resistance in Aspergillus fumigatus. Antimicrob Agents Chemother 41: 1364-1368, 1997.
20) Rivero-Menendez O, Alastrauey-Izquierdo A, Mellado E, Cuenca-Estrella M: Triazole resistance in Aspergillus spp.: A worldwide problem? J Fungi (Basel) 2: 3, 2016.
21) Lyskova P, Hubka V, Svobodova L, Barrs V, Dhand NK, Yaguchi T, Matsuzawa T, Horie Y, Kolařík M, Dobias R, Hamal P: Antifungal susceptibility of the Aspergillus viridinutans complex: comparison of two in vitro methods. Antimicrob Agents Chemother 62: e01927-17, 2018.
22) Talbot JJ, Frisvad JC, Meis JF, Hagen F, Verweij PE, Hibbs DE, Lai F, Groundwater PW, Samson RA, Kidd SE, Barrs VR, Houbraken J: cycp51A mutations, exotolite profiles, and antifungal susceptibility in clinical and environmental isolates of the Aspergillus viridinutans species complex. Antimicrob Agents Chemother 63: e00632-19, 2019.
23) Yaguchi T, Horie Y, Tanaka R, Matsuzawa T, Ito J, Nishimura K: Molecular phylogenetics of multiple genes on Aspergillus section Fumigati isolated from clinical specimens in Japan. Jpn J Med Mycol 48: 37-46, 2007.
24) Murray MG, Thompson WF: Rapid isolation of high molecular
weight plant DNA. Nucleic Acids Res 8: 4321-4326, 1980.

25) Glass NL, Donaldson GC: Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 61: 1323-1330, 1995.

26) O’Donnell K, Cigelnik E: Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Mol Phylogenet Evol 7: 103-116, 1997.

27) Geiser DM, Frisvad JC, Taylor JW: Evolutionary relationships in Aspergillus section Fumigati inferred from partial β-tubulin and hydrophobin DNA sequences. Mycologia 90: 831-845, 1998.

28) Katoh K, Rozewicki J, Yamada KD: MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 20: 1160-1166, 2019.

29) Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A: RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35: 4453-4455, 2019.

30) Edler D, Klein J, Antonelli A, Silvestro D: raxmlGUI 2.0: A graphical interface and toolkit for phylogenetic analyses using RAxML. Methods Ecol Evol 12: 373-377, 2021.

31) Darriba D, Posada D, Kozlov AM, Stamatakis A, Morel B, Flouri T: ModelTest-NG: A new and scalable tool for the selection of DNA and protein evolutionary models. Mol Biol Evol 37: 291-294, 2020.

32) Lemoine F, Domelevo Entfellner JB, Wilkinson E, Correia D, Dávila Felipe M, De Oliveira T, Gascuel O: Renewing Felsenstein’s phylogenetic bootstrap in the era of big data. Nature 556: 452-456, 2018.

33) Sugui JA, Kwon-Chung KJ, Juvvadi PR, Latgé JP, Steinbach WJ: Aspergillus fumigatus and related species. Cold Spring Harb Perspect Med 5: a019786, 2015.

34) Talbot JJ, Houbraken J, Frisvad JC, Samson RA, Kidd SE, Pitt J, Lindsay S, Beatty JA, Barrs VR: Discovery of Aspergillus frankstonensis sp. nov. during environmental sampling for animal and human fungal pathogens. PLoS ONE 12: e0181660, 2017.

35) Nováková A, Hubka V, Dudová Z, Matsuzawa T, Kubátová A, Yaguchi T, Kolarik M: New species in Aspergillus section Fumigati from reclamation sites in Wyoming (U.S.A.) and revision of A. viridinutans complex. Fungal Divers 64: 253-274, 2014.

36) dos Santos RAC, Steenwyk JL, Rivero-Menendez O, Mead ME, Silva LP, Bastos RW, Alastruey-Izquierdo A, Goldman GH, Rokas A: Genomic and phenotypic heterogeneity of clinical isolates of the human pathogens Aspergillus fumigatus, Aspergillus lentulus, and Aspergillus fumigatiassif. Front Genet 11: 459, 2020.

37) Matsuzawa T, Campos Takagi GM, Yaguchi T, Okada K, Abril P, Gonoi T, Horie Y: Aspergillus arccoverdensis, a new species of Aspergillus section Fumigati isolated from caatinga soil in State of Pernambuco, Brazil. Mycoscience 56: 123-131, 2015.