Recent Advances in SmFe$_{12}$-based Permanent Magnets

Y. K. TAKAHASHI*, H. SEPEHRI-AMIN and T. OHKUBO

National Institute for Materials Science, Research Center for Magnetic and Spintronic Materials, 1-2-1 Sengen, Tsukuba 305-0047, Japan.

Received April 27, 2021; Revised May 30, 2021; Accepted June 8, 2021

ABSTRACT

To realize a sustainable society, “green technology” with low (or even zero) CO$_2$ emissions, is required. A key material in such technology is a permanent magnet because it is utilized for electric-power conversion in several applications including electric vehicles (EVs), hybrid EVs (HEVs), and turbines for wind power generation. To realize highly efficient electric-power conversion, a stronger permanent magnet than Nd–Fe–B is necessary. One potential candidate is a Fe-rich SmFe$_{12}$-based compound with a ThMn$_{12}$ structure. In this paper, the phase stability, structure, and intrinsic and extrinsic magnetic properties in both film and bulk forms are reviewed. Based on these results, a possible way to realize a strong SmFe$_{12}$-based permanent magnet in bulk form is discussed.

KEY WORDS

permanent magnet, ThMn$_{12}$, Sm(Fe-Co)$_{12}$, coercivity

1 はじめに

CO$_2$排出量を削減する「クリーンテクノロジー」の実現には、高効率な電気モーターや発電機の開発が必要不可欠である。特に電気自動車（EV）、ハイブリッド電気自動車（HEV）のトラクション・モーター、および風力発電のタービン用に高性能な永久磁石が必要とされている。EV/HEVのモーターの使用温度は約150°Cであるため、この温度で0.8 T以上の高保磁力（μ$_H$）が必要である。Nd-Fe-Bはクリーン・テクノロジーの実現のために最も重要な永久磁石であるが、キュリー温度（T_C）が低いため、μ$_H$が耐熱性が低いという欠点がある。そのため、Nd-Fe-Bよりも優れた磁気特性を持つ高温での磁気特性が良好な永久磁石の開発が強く求められている。このような次世代永久磁石材料の候補の一つとして、ThMn$_{12}$構造を持つRT$_{12}$系化合物が挙げられる。RとTはそれぞれ希土類元素と遷移金属元素を表す。

SmFe$_{12}$系磁石は、希土類化合物の中でFeのモル分率が高いことから、高い飽和磁化（μ$_M$）を示すことが期待される。また、結晶磁気異方性（K_u）およびT_Cが高いことから、1990年代に次世代磁石材料として大きな注目を集めていた。しかし、次に示すような理由から、人々の関心が薄れた。1つ目の理由は、NdFe$_{12}$系化合物の構造が不安定性ある。室温でのThMn$_{12}$構造を得るためには、Ti、V、Cr、Mn、Al、W、Si、Mo、Zrなどの安定化元素を添加する必要があります。これらの成分による磁気特性の変化は、NdFe$_{12}$系化合物に添加すると磁化を低下させてしまう。2つ目の理由は、μ$_H$が低いことである。高いμ$_H$を得るには、結晶粒径を大きくして各結晶粒を磁的に孤立させるか、磁壁移動を止めるビニングサイトを導入する必要がある。したがって、高いμ$_H$を得るためには、K_uおよびK_xが異なる複数組織が必要となる。Nd-Fe-B系磁石は、Nd、Fe、B主相が磁壁のビニングサイトとして機能するNdリッチ相と平衡し、高いμ$_H$を実現している。一方で、NdFe$_{12}$系化合物は高いμ$_H$が得られていない。Neivaらによって報告されたSm–Fe–Ti系の状態図からわかるように、NdFe$_{12}$相と平衡する非磁性相が存在しない。すなわち、この系で永久磁石の応用に必要な十分大きなμ$_H$を得ることは難しいことが示唆される。しかし、2011年のレアアース危機以前、希土類磁石、さらには希土類フリーマグ石の発売への関心が高まっており、この流れを受けた、永久磁石への応用を目指したRFe$_{12}$系化合物の研究が再度活性化している。

* Corresponding author. E-mail: takahashi.yukiko@nims.go.jp

** Science and Technology of Advanced Materials (STAM)**, Vol. 22, No. 1, pp. 449-460. に掲載済みである。
SmFe₃₅系永磁磁石の最近の進展

RFe₃₅化合物の永磁磁石としてのポテンシャルを検討するため、安定化元素を添加しないSmFe₃₅系エピタキシャル薄膜の磁気物性値を調べた。

FeをCoで置換することで、Nd₂Fe₁₈Bよりも高いμₘ₃₅。高いμₘ₃₅を得られ、室温および高温での永磁磁石への応用の可能性が示された。

材料の天然存在比を考慮すると、SmはNdよりも少ないが、現時点では、SmはNdを特徴とする際の副産物であるため、Sm(Fe₃₅Co₁₈)₂₅系化合物を次世代の中、高性能永磁磁石用に用いる上で大きな問題点を有さない。また、SmFe₃₅系化合物のμₘ₃₅増大のためにはCoの添加が必要不可欠であるが、Coも希少元素の一つである。今後、ThMn₁₂型結晶構造を持つSmFe₃₅系化合物を実用化するには、大きな飽和磁化を維持しつつCoの使用量を最小限に抑えうる方法を見つける必要がある。

本論文では、まずRFe₃₅相の基本特性を紹介する。次に、薄膜を用いたモデル実験でSmFe₃₅系化合物の永磁磁石としてのポテンシャル示すと、特に磁石磁石の最近の進展についても紹介する。

2 RT₁₂相の結晶構造と相安定性

RT₁₂相は、空間群がI₄/mmmのThMn₁₂型の結晶構造を持つ。Fig. 1 は、(a) CaCu₅型と、(b) ThMn₁₂型のRFe₃₅の結晶構造の模式図を示す。(b) にはCaCu₅型構造を3つの軸方向に積み重ねた模式図。(c) Th₁₂N₃型、(d) Th₂Zn₁₇型、(e) ThMn₁₂型のc方向を原子粒子を示す。これらの化合物は、Rₙ₃Ca₅₉(Nₙ₃Ca₅₉)(nは3、2または1、mは0または0の組成式で表される。

ThMn₁₂の基礎となる結晶構造は、Fig. 1 (a)に示す希土類磁石のT₁₂型も示す。Rₙ₃Th₁₂(Nₙ₃Th₁₂)(nは3、2または1、mは0または0の組成式で表される。R原子の3分の1を2個の準子で置換すると、Fig. 1 (c), (d)に示すように、R₁₂T₁₂型構造が得られる。この2つの準子はc軸に並んでいて5个でループのように見えることから「ダンベル」と呼ばれている。R₁₂T₁₂型、Th₁₂N₃型の2種類がある。R原子には1から5までの番号を付ける。CaCu₅型構造をc軸方向に3个積層したものをFig. 1 (b)に示す。Th₁₂N₃型構造は、2番目と5番目、3番目とR原子をダンベルで置換して形成される（Fig. 1 (c)）。また、2番目と5番目、3番目と4番目でR原子をランスに置換するとTh₂Zn₁₇型構造が形成される（Fig. 1 (d)）。

R₁₂N₃型構造と重希土類元素を含むR₁₂T₁₂型化合物は、それぞれTh₂Zn₁₇型構造とTh₁₂N₃型構造を示す。R原子の半分をダンベルで置換すると、Fig. 1 (e)のようなTh₃Mn₁₂型構造が得られる。また、R原子をランダムにダンベルで置換すると、R:T比例が1:5から1:9の比を示す。このโครニスト構造は形成される。

Fig. 1 (f)は、R₁₂N₃型化合物の模式図である。Feには3種類のサイト（8i, 8j, 8f）があり、希土類元素のサイトは2aである。軽元素は2bサイトに侵入する。

Th₃Mn₁₂構造を持つR₁₂相の欠点は、室温での構造不安定性である。Kobayashiらは、R₁₂相が構造的に不安定になる理由の一つとして、8iサイトのFe-Feダンベルの2つのFe原子間の距離が大きすぎることを挙げている。Tiを含む(Nd,Zr)(Fe,Co)₁₂₅₀₃₅₀₁₂₅₀₁₂₅₀₁₀₅₀₁₀₅₀₁₀₅₀₁₀₅₀₁₀₅₀の中間距離は、それぞれ0.271 nm, 0.259 nm, 0.251 nmである。

Feの原子半径（~0.252 nm）と比較すると、8iサイトの原子間距離が大きいがわかる。8iサイトの原子間距離が大きくなれると、電子層の緩和により運動エネルギーが増大し、構造が不安定になる。結晶構造を安定化するためには、原子半径の直径を軽原子で添加する必要がある。Table 1に示すように、原子半径が大きい非磁性安定化元素、例えば、原子半径が大きい非磁性安定化元素、ダンベルの原子間距離が最も大きい8iサイトを置換する傾向があるが、均一化元素の半分必須とこの傾向に従っているわけではないようである。Harashimaらの理論計算によると、原子半径の小さい元素では、安定化元素の置換による生成エネルギーが3種類のFeサイトではほぼ同じであることが報告されている。原子半径の小さい安定化元素は、これら3つのサイトを

![Fig. 1 Schematic view of the crystal structures (a) CaCu₅-type and (f) R₁₂N₃-with Th₃Mn₁₂-type. (b) Three CaCu₅-type structures are stacked in the c direction. Atomic arrangement in the c direction of (c) Th₁₂N₃-type, (d) Th₂Zn₁₇-type, and (e) ThMn₁₂-type.](image)
同等に置換できることを意味している。
ThMn₁₂構造を安定化させるために、Rサイトを代替できる安定化元素も報告されている。Kunoら36)やTozmannら37)は、ZrがThMn₁₂型構造を安定化させ、それが2aサイトを置換することを報告している38)。さらにTozmannらは、薄膜実験より、Zr添加が飽和磁化を向上させることが報告している38)。Rの原子半径は非常に大きいため、周囲の元素に大きなストレスを与え、それが8iサイトと8jサイトのFe原子間の距離が大きい原因の1つと考えられる。2aサイトの塩素類元素を、より原子半径の小さい元素に置き換えると、系のエネルギーは小さくなるために構造が安定化と考えられる。しかし、2aサイトを安定化させる元素は、これまでZrしか知られていない。

様々な安定化元素を用いてThMn₁₂型の結晶構造を実現する研究が盛んに行われているが、安定化元素の添加による構造安定化については普及的な理解が得られていない。元素添加による相安定化のメカニズムを完全に理解するには、さらなる研究が必要である。そのような基礎研究は、大きなKᵣとμₑχ₀を維持しつつ、μₑχ₀の減少を最小限に抑えたThMn₁₂型化合物を実現するための指針となる。

3 Sm(Fe-Co)ₓの合成と磁気物性

本節では、Sm(Fe-Co)ₓの合成と磁気物性を説明する。Hirayamaらは、適切な下地層を選択することで、ThMn₁₂型の結晶構造をもつSm(FeₐCoₜ)ₓ薄膜の作製に成功している39)。V下地層上に約600nmの厚さの薄膜を成長することで、Sm(FeₐCoₜ)ₓが異方性磁場（μₑχ₀）12T、Tₛが859Kで178Tの大きなμₑχ₀を示すことを示した。Ogawaらは、Sm(FeₐCoₜ)ₓ薄膜の磁気物性をさらに詳細に調べた40)。Fig.2 (a) (b) に、膜厚300nmのSm(FeₐCoₜ)ₓ薄膜のX線回折パターンを示す。(a)よりSm(Fe₀.₈Co₀.₂)ₓが強く(001)に配向し、(b)より(332)や(332)などの超格子反射が観測されていることがわかる。またSm(Fe₀.₈Co₀.₂)ₓがV下地上にエビタキシャル成長していることも確かめている。Fig.2 (c)の断面の透過型電子顕微鏡(TEM)像では柱状構造を示しているが、Fig.2 (d)のナノビーム回折パターンに示すように、これらの結晶方位がわずかにずれたThMn₁₂構造を有していることがわかる。

Fig.3は、SmFe₁₂薄膜の面内方向と面内方向の磁化曲線である41)。この薄膜は強い垂直異方性を持っており、強い(001)配向を示したX線回折(XRD)の結果と一致する。面内の磁化曲線の飽和磁場は約12Tと非常に大きな値を示すが、薄膜がエビタキシャル成長をしており壁移動を阻害するビニングサイトが存在しないため、μₑχ₀は非常に小さい。μₑχ₀は約1.64Tであり、NdₓFe₁₂Bと同程度である。Fig.3 (b)は、Sm(FeₓCo₁₋ₓ)ₓ薄膜の磁化温度依存性を示している42)。図には、NdₓFe₁₂B、SmCo₉、NdₓFeₓNdₓB、NdₓFeₓB、NdₓFeₓNdₓB、NdₓFeₓBのデータも示した。Nd含量（x）の増加に伴い、Tₓはx＝0の555Kからx＝0.2の859Kまで増大し、Sm(FeₓCo₁₋ₓ)ₓのTₓはNdₓFe₁₂Bよりも高い。SmCo₉のTₓはSm(FeₓCo₁₋ₓ)ₓ薄膜のTₓよりもはるかに高いが、μₑχ₀はSm(FeₓCo₁₋ₓ)ₓの方が高い値を示している。

「粉体および粉末冶金」第69巻第6号
SmFe₁₂系永久磁石の最近の進展

Fig. 4 First and second-order uniaxial magnetic anisotropy constants K_1 and K_2 for SmFe₆(Co₁₀₈)₂ films ($x = 0, 0.07, 0.2$) as a function of temperature. Reprinted with permission from Elsevier [31].

$\mu_B M$ は、室温では$x = 0$の1.64 Tから$x = 0.19$の1.78 Tへと増加する[30]。

Ogawaらは、Fig. 4に示すように、SmFe₆(Co₁₀₈)₂薄膜の結晶磁気異方性定数K_1およびK_2の温度依存性を測定した[31]。K_1およびK_2は、異常ホール効果を用いたトルク(AHE-torque)法[30]を用いて求めた。理論計算の結果も同図に示している。Co濃度に従わず、K_1およびK_2は温度とともに単調に減少している。K_1は低温で負の値を示し、200 K以上で正の値へと変化する。K_2は負の値になるとき、困難軸方向の面内磁化曲線の低磁界部分の直線的な外挿から上方にずれることになる。K_1の絶対値はSmFe₂₂薄膜ほど大きく、CoをFeサイトに置換することで減少する。

SmFe₆(Co₁₀₈)₂の磁気物性値をTable 2にまとめた。SmFe₆(Co₁₀₈)₂薄膜、室温で$\mu_B M = 1.78$ T、$\mu_B H = 8.20$ T、$T_c = 859$ Kという高い磁気物性値を示した[30]。NdFe₄B薄膜（室温で$\mu_B M = 1.61$ T、$\mu_B H = 7.5$ T、$T_c = 585$ K）や商用NdFe₄B磁石のN50（室温で$\mu_B M = 1.44$ T、$T_c = 593$ K）よりも優れた値を示すことがわかる。

4 拡散プロセスおよび軽元素添加による高保磁力化

前章で紹介したように、SmFe₆(Co₁₀₈)₂は、磁気物性値である$\mu_B M$、T_cがNdFe₄Bよりも高く、次世代の永久磁石材料としてのポテンシャルがあることが明らかとなった。しかし、大きな残留磁化（$\mu_B M$）と十分な大きな保磁力（$\mu_B H > \mu_B M/2 > 0.9$ T）を実現しない限り、SmFe₆系化合物は実用的な永久磁石材料としての可能性は低い。$\mu_B H$は組織構造であるため、高い$\mu_B M$を実現するには微細組織の制御が必要となる。$\mu_B H$は、磁性材料における磁壁移動の難しさを示している。高い$\mu_B H$を得るには、結晶粒径や粒子相など、さまざまな微細組織の制御が必要となる。非磁性粒子相は、磁壁のビニングサイトとして機能し、$\mu_B H$を大きく増加させる。さらに、より強い磁石を作るには高い$\mu_B M$も必要となるため、非磁性相の体積比率が少ない方が望ましい。この2つの要件を考慮すると、永久磁石の理想的な微細組織は、磁気的にハードな磁性微粒子が薄い非磁性粒子相に包まれたナノグラフィー構造となる。理想的な微細組織を持つ磁石の例としては、Nd-Fe-B磁石が挙げられる。数個ナノメートルのNd₄Fe₈B粒子がNdリッチ相によって取り囲まれ、その結果、2 T以上の$\mu_B H$が得られている[41,42]。Nd-Fe-B磁石の利点は、Nd₄Fe₈BとNd-rich相が高熱力学的に平衡していることである[41,42]。Nd-Fe-B磁石では、Nd₄Fe₈Bの粒子にNd-Cu共晶合金を拡散させることで、$\mu_B H$を大幅に向上させた[41,42]。

しかし、前項で述べたように、RT₄₋₄₂Ti系には、RT₄₋₀相と平衡するような非磁性相が存在しない。薄膜では微細組織の制御が比較的容易であるため、SmFe₆系薄膜で最適な微細組織を実現するためにいくつかの研究がなされてきた。ここではOgawaらが行った拡散プロセスによるSmFe₆(Co₁₀₈)₂薄膜の高保磁力化について紹介したい[31]。

薄膜の磁性は、小角粒子界における磁性コンパクトの状態に従って、SmFe₆(Co₁₀₈)₂薄膜の磁性物性を直接測定する方法[30]が報告されている。また、低磁界での磁気物性を測定する方法[43]も報告されている。

Table 2 Intrinsic properties of SmFe₆(Co₁₀₈)₂. Numbers in parentheses of $\mu_B H$ are anisotropy field $\mu_B H$ estimated by magnetization curves, reprinted with permission from Elsevier [30].

x	$\mu_B M$ (T)	$\mu_B H$ (T)	K_1 (M/M²)	K_2 (M/M²)	T_c (K)	$\mu_B M$ (T)	$\mu_B H$ (T)	s (meV/Å²)	D (meV/Å²)
0.00	1.64	7.62 (12)	5.56	0.11	555	1.94	1.01	179	
0.09	1.71	7.54 (12)	4.45	0.53	710	1.89	0.90	251	
0.19	1.78	8.20 (12)	4.37	0.71	859	1.88	0.73	351	

2022年1月
Fig. 5 (a) XRD patterns of the out-of-plane and various planes for the as-deposited Sm(Fe,Co,Cu,Ga) thin film. (b) Cross-sectional bright-field TEM image, and (c) in-plane bright-field TEM image of the as-deposited Sm(Fe,Co,Cu,Ga) thin film. Reprinted with permission from Elsevier [45].

Fig. 6 (a) Out-of-plane and in-plane magnetization curves with demagnetization field correction for (a) the as-deposited anisotropic polycrystalline Sm(Fe,Co,Cu,Ga) thin film and (b) Cu-Ga diffused Sm(Fe,Co,Cu,Ga) thin film. Elemental maps of Cu in the (c) plane view and (d) cross-sectional view. Energy dispersive X-ray spectroscopy (EDS) line scan profiles obtained from the white rectangular region in the Cu map across the grain boundary (e) in-plane view, and (f) in cross-sectional view for the Cu-Ga deposited and post-annealed Sm(Fe,Co,Cu,Ga) thin film. Reprinted with permission from Elsevier [45].

Fig. 7 Out-of-plane and in-plane magnetization curves of (a) B-free and (b) B-containing samples [50].

増加したと考えられる。Fig. 10に示すように、Al-Zn、Mg-Zn、Sn-Znなどの低共晶温度合金は、拡散プロセスにおいて低温でμ_Hを高めるのに有効である。Ogawaらは、Mg-Znを拡散源とし673 Kで熱処理後、0.87 Tという拡散プロセスを行った試料の中で最高のμ_Hを報告している。μ_Hの温度係数βは、μ_Hの熱安定性を示し、次のように定義される。

\[\beta = \frac{\mu_H(T) - \mu_H(300)}{\mu_H(300) - \mu_H(T)} \]

ここで、μ_H(300)およびμ_H(T)は、それぞれ300 Kおよび温度Tにおけるμ_Hを表す。Ogawaらは、Cu-Gaを拡散させた試料のβが-0.20%/K（300-650 K）であることを報告している[40]。このβ値は、市販のNd-Fe-B系結晶磁石（β = 0.6～0.43%/K）よりも優れており[41,42]。RTまたはR_T, Tの構造のSm(Fe,Co)系磁石（β = -0.2～0.16%/K）と同等である[43]。

高いμ_Hを実現するために別のアプローチとして、固溶体を形成しない非磁性元素をSm(Fe,Co,Cu,Ga)に同時にスパッタする方法がある。Sepehri-Aminらは、BをSm(Fe,Co,Cu,Ga)と同時にスパッタすることで、μ_Hが1.2 Tと大幅に向上することを示した[50]。Fig. 7にSm(Fe,Co,Cu,Ga)薄膜とSm(Fe,Co,Cu,Ga),B_b薄膜の磁化曲線を示す。Fig. 7 (b)の点線は反磁場補正前の面内磁化曲線を示し、いずれの薄膜も強い垂直方向性を示している。Bを含まない試料のμ_Hは約0.1 Tと小さいが、Bを含む試料のμ_Hは1.2 Tと高い値を示す。高いμ_Hに加えて、Bを含むSm(Fe,Co,Cu,Ga),B_b薄膜では1.5 Tの高い残留磁化（μ_M）が得られている[50]。B添加による高磁化力化のメカニズムを理解するために、Sepehri-Aminらは詳細な微細組織解析を行った。Fig. 8 (a)は、Sm(Fe,Co,Cu,Ga),B_b薄膜の面内および断面の明視野のTEM像である。Bを含まないSm(Fe,Co,Cu,Ga)薄膜では、断面（c）に示したように同様に、Sm(Fe,Co,Cu,Ga),B_bの柱状結晶粒が直接接触した状態で成長している。Bを添加することで、直径約50 nmのSm(Fe,Co,Cu,Ga),B_b粒子が粒界に囲まれたナノクラスター構造になってい

Fig. 8 (b)および(c)は、断面および面内方向の高分解能角間透過電子顕微鏡（HAADF-STEM）像である。1.2 Tのμ_Hを発現する薄膜では、Sm(Fe,Co,Cu,Ga),B_bの結晶粒の中、厚さ約3 nmのアモルファス粒界相が存在している[50]。Sepehri-Aminらは、μ_H向上のメカニズムを解明するため、3次元アトムクラスター（3DAP）を用いて、より詳細な微細組織解析を行った[50]。Fig. 9 (a)は、Sm(Fe,Co,Cu,Ga),B_b
Fig. 8 Microstructures of Sm(Fe\(_{0.8}Co_{0.2})_{12}B_{0.5}\) thin film. (a) In-plane and cross-sectional bright-field TEM images, and high-resolution HAADF-STEM images in the (b) cross-sectional and (c) in-plane directions [50].

Fig. 9 (a) Atom maps of Sm&B, Co, and Fe as well as the isosurface of the B-rich region in the Sm(Fe\(_{0.8}Co_{0.2})_{12}B_{0.5}\) thin film. (b) Composition diagram in the box in the Sm&B map is shown in (a) [50].

Fig. 10 Coercivity (\(\mu H_c\)) in the Sm(Fe\(_{0.8}Co_{0.2})_{12}B_{0.5}\)-based thin films after the diffusion process. B was introduced by co-sputtering. Reprinted with permission from Elsevier [45].
Sm(Fe_{0.8}Co_{0.2})₁₂系磁石では、Sm(Fe_{0.8}Co_{0.2})₁₂の結晶粒を磁気的に孤立させるような非磁性の粒界相を実現すれば、はるかに大きなμμ_Hが期待できることがわかる。

5 RT₁₂パルク磁石の最新動向

ThMn₁₂型結晶構造を持つSm(Fe_{0.8}Co_{0.2})₁₂薄膜は、適切な下地層を用いれば、安定化元素として合成できる。しかし、パルクでThMn₁₂型の結晶構造を実現するためには、安定化元素を添加する必要がある。したがって、1-12化合物が永久磁石材料として応用できるか、Sm(Fe,Co)_{12-2x}M_x化合物（M=安定化元素）の磁気物性値が、Nd,Fe₁₄B相のそれを凌駕できるかどうかにかかっている。

Kunoらは、ストリップキャストされた(Sm,Zr)(Fe,Co)_{12-2x}Ti_x粉末の磁気特性を調べ、室温で6.63 Tの高いμμ_Mと7.4 Tの異方性磁場（μμ_H）を報告している^[49]。安定化元素であるTiの添加量を減らすことで高いμμ_Mを、ZrとCoを添加することで相安定性が向上している。Tozamanらは、Sm(Fe_{1-x}Zr_x)₁₂Ti_yおよびSm_{1-x}Zr_x(Fe_{1-x}Co_x)₁₂Ti_y合金の磁気物性値（μμ_Hおよびμμ_M)が、高温においてNd₆Fe₁₄B相よりも優れていることを示した^[50]。Sm(Fe_{1-x}Zr_x)₁₂系パルク磁石を実現するためのもう一つの課題は、高μμ_Mと高μμ_Hを実現するための最適な微細組織を実現することである。

SmFe₁₂系化合物において高いμμ_Hを実現するためには、いくつもの試みがなされてきた。その主なアプローチは、液体急冷、メカニックアロイング、メカシケミカルプロセスによる結晶粒径の低減である。Fig. 12は、安定化元素の異なるSmFe₁₂系化合物の残留磁化とμμ_Hの関係を示している^[51-54]。メカシケミカルプロセスで作製された(Sm₂,Zr_x)Fe₁₄Si₂合金を除き、メカニカルアロイングや液体急冷で作製された合金はすべて等方的である。1.2 Tという高い磁磁力は、安定化元素の一つとしてVを用いた場合のみ実現できていることがわかる。RF₁₂-Sm系においてThMn₁₂型の結晶構造を安定化させるために必要なVの含有量は、Tiの必要量のほぼ2倍であり、その結果、μμ_Mの減少が大きくなる^[55]。Schönühbelらがメカニカルアロイングにより合成した粉末から作製した熱間加工Sm₂Fe₁₄Cu₂磁石の研究によると、高いμμ_Hの実現にはSm-richとFe-lean粒界相の形成が深く関係していることが示されている^[56]。Fig. 13 (a)に示す1100 ℃でSm-Fe-Vの三元状態図では、1-12相が3-29相およびSmリッチ相と平衡しており^[57]。このためにVを安定化元素とするSmFe₁₂系磁石ではSmリッチ粒界相が形成されたと考えられる。Fig. 13 (b)に示すSm-Fe-Ti三元系の状態図の場合は、1-12相と平衡する液相や非磁性相がないため、1-12粒子の磁気的な孤立化が困難である。これによりSmFe₁₂系合金
SmFe_{12}系永久磁石の最近の進展

图13 期相图的Sm-Fe-V [62]和Sm-Fe-Ti [28]。

金で大きな保磁力を得られない理由の一つと考えられる。さらに、\(\mu_B \)が1.0～1.2の1-12相粉末の磁化は、安定化元素が大に含まれているため低い。ある程度の\(\mu_B \)を示すSmFe_{12}系粉末やホットプレス磁石の合金組成には、Coは含まれていない。

Tozmaらの報告によると、Sm(Fe_{x}Co_{y})_{Ti}合金では、\(x \leq 0.2 \)の場合、\(\mu_B \)を犠牲にすることなく\(\mu_B \)が増加することが知られている[50]。したがって、Coを添加することは、\(\mu_B \)を増加させるための1つの方法となり得る。

異方性のSmFe_{12}系バールク磁石の開発のために、Dīrbaらは誘導溶接法とジェットミリング法によって、平均粒径5μmの微細なSm(Fe_{x}Co_{y})_{Ti}, Sm(Fe_{x}Co_{y})_{Ti}Sn, Sm(Fe_{x}Co_{y})_{Ti}Sn, Cu, Ga, Tiの粉末を作製した。Dīrbaらは、CuとCoの微細な粉末が、1-12相粉末の磁化を高めることができる。Cuは、粉末表面のSmの蒸発に影響を及ぼし、\(\mu_B \)の増加をもたらすと報告している[51]。粒径相を形成するための微細亜微粒子を増加させる方法は、良好な磁性、1-12相への変換を容易にする。粉末表面のSmの蒸発により、FeおよびFe_{Ti}相を形成する。粉末は、\(\mu_B \)を小さくすることにより磁性を高め、保磁力を増加させる。Smの蒸発は、1000℃以上の焼結プロセスではより深刻な問題である。1-12相粒子表面のSm蒸発は、液体焼結プロセスによるバールクの異方性磁石の開発のための前提条件として、超微粒子の使用を制限する可能性がある。十分な大きさの\(\mu_B \)を得るためには、表面の酸化を抑制する必要がある。

NdFe-B系磁石で広く用いられているHDDR（Hydrogenation-Disproportionation-Desorption-Recombination）プロセスは、粉末の径を30～300μm程度に保ったまま、結晶粒径を250nm程度まで小さくする方法として知られている。HDDR処理されたNdFe-B粉末に関する報告によると、適切なHDDR処理条件によって異方性粉末が合成できる[51-53]。Dīrbaらは、HDDRプロセスを採用し、超微細粒サイズのSm(Fe_{x}Co_{y})_{Ti}粉末を開始した[54]。適切なHDDR条件でThMn_{12}相の結晶構造を実現した。GaやCuなどの他の元素を微細添加しても大きな\(\mu_B \)は得られなかった[51]。さらに、開発されたHDDR粉末は等方的であり、HDDRプロセス中に1-12相粒子とFe_{Ti}の間の局所的な配向関係が観察されただけだった。

HDDRプロセスを施したSmFe_{12}系粉末の保磁力が低い主な理由は、1-12相粒子を磁的に分離するための非磁性粒界相がないことである。異方性の熱間加工Nd-Fe-B磁石を開発する方法として、急速冷凝粉末のホットプレスおよび熱間塑性加工が多く知られている[50,51]。しかし、Schönhöbelらによって開発された熱間加工SmFe_{12}系磁石の配向度は小さい[51,52]。したがって、ホットプレス・熱間組成加工プロセスは、異方的なSmFe_{12}系磁石を開発するための理想的な方法と言えないと考えられる。

以上より、1-12相の結晶粒を磁的に分割したり、磁壁のビニングサイトとして機能する等方性粒界相を実現することにより、より高い性能を持つSmFe_{12}系バールク磁石の開発に向けたポテンシャルがあると考えられる。大塚らの最近の報告では、従来の粉末プロセスと液体焼結により、\(\mu_B \)が0.87Tの異方性SmFe_{12}系磁石の実現に成功した[51]。さらに、\(\mu_B \)は、SmFe_{12}系相の異方性磁場の8%に過ぎない[50]。さらに、ThMn_{12}相を安定化させるために多量のVが必要であるため、\(\mu_B \)は0.73Tと小さい値とどまっている。粒子粒度を制限するためには、状態図を再検討し、4元系のSmFe_{12}系X相の理解を深める必要がある。さらに、十分な大きさの\(\mu_B \)を持つ異方性バールク磁石を開発するには、1-12相粒子を取り扱う粒界相にはThMn_{12}相との良い濡れ性が必要である。

6 まとめ

本稿では、SmFe_{12}系永久磁石の開発における最近の進展を紹介してきた。Sm(Fe_{x}Co_{y})_{Ti}薄膜の最近の研究で、その高い磁気物性値\(\mu_B \)、\(K \)、\(T_B \)より、永久磁石への適用の可能性が示された。EV/HEVのモーター用磁石の使用温度である150℃においても、Nd-Fe-B系磁石よりも優れた磁気特性を有している。これらの高い磁気特性を加えて、薄膜中Bを添加することで、1.2Tという高い\(\mu_B \)が得られた。この高\(\mu_B \)は、Bリチアマルフィス粒界相で開発されたSm(Fe_{x}Co_{y})_{Ti}粒子からなるナノグラニュラー構造が形成されたことに起因すると考えられる。さらに、\(\mu_B \)は、Sm(Fe_{x}Co_{y})_{Ti}化合物の異方性磁石の15%に過ぎず、粒界相の磁性を制御することができれば、はるかに大きな\(\mu_B \)が期待できる。異方性磁石では結晶配向が等方性であるゆえに高\(\mu_B \)が実現されているが、ランダム配向で多量の安定化元素添加のため\(\mu_B \)が小さいバールク磁石となっている。異方性SmFe_{12}系永久磁石において、大きな\(\mu_B \)を維持しながら大きな\(\mu_B \)を実現するためには、まず安定化元素の添加量を最小化することが必要である。さらに、異方性SmFe_{12}系磁石で十分に高い\(\mu_B \)を得るためには、状態図を再検討し、粉末がSmFe_{12}系結晶構造と平衡し非磁性粒界相を形成するような新しい系についての理解を深める必要がある。

謝辞

本研究は、文部科学省による元素戦略拡大磁性材料研究センター（ESICMM）、助成番号JPMXP0112101004の支援を受けた。
けて実施されました。物質・材料研究機構の平山悠介博士（現産総研）、小川大介博士（現マグネテザイン）、P. Tozmann博士。Xin Tang博士、I. Dirba博士（現Technische Universität Darmstadt）、J. Li博士（現Kumming University of Science and Technology）、Srinitthi Ashok氏、X. D. Xu博士（現Hunan University）、広沼哲博士。宝野浩博士、東京大学院の玉澤幸也氏、神林守人氏、斎藤俊太氏、鶴敏之博士。東北大学の吉岡健太郎博士、土浦宏記博士、岡本聡博士、Spring8の豊本研太郎博士（現大阪大学）、A. Martin-Cid博士。小林慎太郎博士、鈴木俊悟博士、中村哲也博士（現東北大学）。三井隆也博士。上野哲朗博士。高崎隆司応用研究所の境誠司博士。S. Li博士に感謝します。

文 献
1) M. Sagawa, S. Fujimura, N. Togawa, H. Yamamoto, Y. Matsuura: J. Appl. Phys., 55 (1984) 2083-2087.
2) K. Ohashi, Y. Tawara, R. Osugi, M. Shimao: J. Appl. Phys., 64 (1988) 5714-5716.
3) B. P. Hu, H. S. Li, J. P. Gavigan, J. M. D. Coey: J. Phys. Condens. Matter, 1 (1989) 755.
4) X. C. Kou, T. S. Zhao, R. Grössinger, H. R. Kirchmayr, X. Li, F. R. De Boer.: Phys. Rev. B., 47 (1993) 3231-3242.
5) H. Fuji, H. Sun: Handbook of Magnetic Materials, 9 (1995) Elsevier, North Holland, pp. 303-404.
6) K. H. J. Buschow: J. Magn. Magn. Mater., 100(1-3) (1991) 79-89.
7) W. Kömer, G. Krugel, C. Elsässer: Sci. Rep., 6 (2016) 24686.
8) I. S. Tereshina, N. V. Kostyuchenko, E. A. Tereshina-Chitrova, Y. Skourski, M. Doerr, I. A. Pelevin, E.-Th. Henig, G. Petzow: J. Less-Common Met., 170 (1991) 293-299.
9) H. Sepehr-Amin, T. Ohkubo, T. Shima, K. Hono: Acta Mater., 60 (2012) 819-830.
10) Y. Hirayama, Y. K. Takahashi, S. Hiroswa, K. Hono: Scr. Mater., 138 (2017) 62.
11) D. Ogawa, T. Yoshioka, X. D. Xu, Y. K. Takahashi, H. Tsuchiura, T. Ohkubo, S. Hiroswa, K. Hono: J. Magn. Magn. Mater., 497 (2020) 165965.
12) S. Sakurada: Doctor thesis, 2006, Tohoku univ.
13) S. Suzuki, H. Yamamoto: IEEE Trans. Magn., 31 (1995) 902-905.
14) S. Suzuki, T. Kuno, K. Urushibata, K. Kobayashi, S. Washio, H. Kishimoto, A. Kato, A. Manabe: J. Magn. Magn. Mater., 401 (2016) 259.
15) Y. Harashima, K. Terakura, H. Kino, S. Ishibashi, T. Miyake: J. Appl. Phys., 120 (2016) 203904.
16) T. Kuno, S. Suzuki, K. Urushibata, K. Kobayashi: AIP Advances, 6 (2016) 025221.
17) P. Tozmann, H. Sepehr-Amin, Y. K. Takahashi, S. Hiroswa, K. Hono: Acta Mater., 153 (2018) 354.
18) P. Tozmann, Y. K. Takahashi, H. Sepehr-Amin, D. Ogawa, S. Hiroswa, K. Hono: Acta Mater., 178 (2019) 114.
19) T. Ono, N. Kikuchi, S. Okamoto, O. Kitakami, T. Shimatsu: Scr. Mater., 63 (2010) 1124.
20) W. B. Cui, Y. K. Takahashi, K. Hono: Acta Mater., 59 (2011) 7768-7775.
Hattori, K. Hono, J. Appl. Phys., 115 (2014) 17A766.
44) Y. Matsuura, S. Hirosawa, H. Yamamoto, S. Fujimura, M. Sagawa, K. Osamura: Jpn. J Appl. Phys., 24 (1985) L635-L637.
45) D. Ogawa, X. D. Xu, Y. K. Takahashi, T. Ohkubo, S. Hirosawa, K. Hono: Scr. Mater., 164 (2019) 140.
46) S. Sakurada, A. Tsutai, T. Hirai, Y. Yanagida, M. Sahashi, S. Abe, T. Kaneko: J. Appl. Phys., 79 (1996) 4611.
47) D. Brown, B. Ma, Z. Chen: J. Magn. Magn. Mater., 248 (2002) 432-440.
48) http://www.hitachi-metals.co.jp/products/auto/el/pdf/nmx.pdf
49) H. F. Liu, Y. Zhang, G. Hadjipanayis: J. Magn. Magn. Mater., 202 (1999) 69-76.
50) H. Sepehri-Amin, Y. Tamazawa, M. Kambayashi, G. Saito, Y. K. Takahashi, D. Ogawa, T. Ohkubo, S. Hirosawa, M. Doi, T. Shima, K. Hono: Acta Mater., 194 (2020) 337-342.
51) A. M. Schönhöbel, R. Madugundo, J. M. Barandiaran, G. C. Haadjipanayis, D. Palanisamy, T. Schwarz, B. Gault, D. Raabe, K. Skokov, O. Guttfleisch, J. Fischbacher, T. Schrefl: Acta Mater., 200 (2020) 652-658.
52) T. Schrefl: J. Magn. Magn. Mater., 207 (1999) 45.
53) H. Sepehri-Amin, W. F. Li, T. Ohkubo, T. Nishiuchi, S. Hirosawa, K. Hono: Acta Mater., 85 (2015) 42-52.
54) I. Dirba, H. Sepehri-Amin, T. Ohkubo, K. Hono: Acta Mater., 165 (2019) 373-380.
55) R. W. Lee, E. G. Brewer, N. A. Schaffel: IEEE Trans Magn., MAG-21 (1985) 1958-1963.
56) R. W. Lee: Appl. Phys. lett., 46 (1985) 790-791.
57) A. M. Schönhöbel, R. Madugundo A. M. Gabay, J. M. Barandiaran, G. C. Hadjipanayis: J. All. Comp., 786 (2019) 969-974.