Iterative reweighted minimization methods for l_p regularized unconstrained nonlinear programming

Zhaosong Lu

Abstract In this paper we study general l_p regularized unconstrained minimization problems. In particular, we derive lower bounds for nonzero entries of the first- and second-order stationary points and hence also of local minimizers of the l_p minimization problems. We extend some existing iterative reweighted l_1 (IRL1) and l_2 (IRL2) minimization methods to solve these problems and propose new variants for them in which each subproblem has a closed-form solution. Also, we provide a unified convergence analysis for these methods. In addition, we propose a novel Lipschitz continuous ϵ-approximation to $\|x\|_p^p$. Using this result, we develop new IRL1 methods for the l_p minimization problems and show that any accumulation point of the sequence generated by these methods is a first-order stationary point, provided that the approximation parameter ϵ is below a computable threshold value. This is a remarkable result since all existing iterative reweighted minimization methods require that ϵ be dynamically updated and approach zero. Our computational results demonstrate that the new IRL1 method and the new variants generally outperform the existing IRL1 methods (Chen and Zhou in 2012; Foucart and Lai in Appl Comput Harmon Anal 26:395–407, 2009).

Keywords l_p Minimization · Iterative reweighted l_1 minimization · Iterative reweighted l_2 minimization

This work was supported in part by NSERC Discovery Grant. Part of this work was conducted during the author’s sabbatical leave in the Department of Industrial and Systems Engineering at Texas A&M University. The author would like to thank them for hosting his visit.

Z. Lu (✉)
Department of Mathematics, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
e-mail: zhaosong@sfu.ca
1 Introduction

Recently numerous optimization models and methods have been proposed for finding sparse solutions to a system or an optimization problem (e.g., see [2, 6–10, 12, 13, 20, 22, 23, 26, 30–32, 34, 35]). In this paper we are interested in one of those models, namely, the l_p regularized unconstrained nonlinear programming model

$$\min_{x \in \mathbb{R}^n} \left\{ F(x) := f(x) + \lambda \|x\|^p \right\}$$

for some $\lambda > 0$ and $p \in (0, 1)$, where f is a smooth function with L_f-Lipschitz-continuous gradient in \mathbb{R}^n, that is,

$$\|\nabla f(x) - \nabla f(y)\|_2 \leq L_f \|x - y\|_2, \quad \forall x, y \in \mathbb{R}^n,$$

and f is bounded below in \mathbb{R}^n. Here, $\|x\|_p := \left(\sum_{i=1}^{n} |x_i|^p \right)^{1/p}$ for any $x \in \mathbb{R}^n$. One can observe that as $p \downarrow 0$, problem (1) approaches the l_0 minimization problem

$$\min_{x \in \mathbb{R}^n} f(x) + \lambda \|x\|_0,$$

which is an exact formulation of finding a sparse vector to minimize the function f. Some efficient numerical methods such as iterative hard thresholding [6] and penalty decomposition methods [26] have recently been proposed for solving (3). In addition, as $p \uparrow 1$, problem (1) approaches the l_1 minimization problem

$$\min_{x \in \mathbb{R}^n} f(x) + \lambda \|x\|_1,$$

which is a widely used convex relaxation for (3). When f is a convex quadratic function, model (4) is shown to be extremely effective in finding a sparse vector to minimize f. A variety of efficient methods were proposed for solving (4) over last few years (e.g., see [2, 22, 31, 32, 34]). Since problem (1) is intermediate between problems (3) and (4), one can expect that it is also capable of seeking out a sparse vector to minimize f. As demonstrated by extensive computational studies in [10, 33], problem (1) can even produce a sparser solution than (4) does while both achieve similar values of f.

A great deal of effort was recently made by many researchers (e.g., see [3, 10–12, 14–17, 19–21, 25, 27, 29, 33]) for studying problem (1) or its related problem

$$\min_{x \in \mathbb{R}^n} \left\{ \|x\|^p \mid Ax = b \right\}.$$

In particular, Chartrand [10], Chartrand and Staneva [11], Foucart and Lai [20], and Sun [29] established some sufficient conditions for recovering the sparsest solution to a undetermined linear system $Ax = b$ by model (5). Efficient iterative reweighted l_1 (IRL1) and l_2 (IRL2) minimization algorithms were also proposed for finding an approximate solution to (5) by Rao and Kreutz-Delgado [28], Chartrand and Yin [12],
Iterative reweighted minimization methods

Foucart and Lai [20] and Daubechies et al. [19]. Though problem (5) is generally NP hard (see [14,21]), it is shown in [19, Theorem 7.7(i)] that under some assumptions including a null space property on A and a posteriori check, the sequence generated by IRL$_2$ algorithm converges to the sparsest solution to the above linear system, which is also the global minimizer of (5). Mourad and Reilly [27] proposed a smooth convex approximation approach to solving (5) in which $\|x\|_p^p$ is approximated by a smooth convex function at each iteration. In addition, Chen et al. [16] considered a special case of problem (1) with $f(x) = \frac{1}{2}\|Ax - b\|_2^2$, namely, the problem

$$\min_{x \in \mathbb{R}^n} \frac{1}{2}\|Ax - b\|_2^2 + \lambda \|x\|_p^p.$$ \hfill (6)

They derived lower bounds for nonzero entries of local minimizers of (6) and also proposed a hybrid orthogonal matching pursuit-smoothing gradient method for solving (6). Since $\|x\|_p^p$ is non-Lipschitz continuous, Chen and Zhou [17] recently considered the following approximation to (6):

$$\min_{x \in \mathbb{R}^n} \frac{1}{2}\|Ax - b\|_2^2 + \lambda \sum_{i=1}^{n}(|x_i| + \epsilon)^p$$

for some small $\epsilon > 0$. And they also proposed an IRL$_1$ algorithm to solve this approximation problem. Recently, Lai and Wang [25] considered another approximation to (6), which is

$$\min_{x \in \mathbb{R}^n} \frac{1}{2}\|Ax - b\|_2^2 + \lambda \sum_{i=1}^{n}(|x_i|^2 + \epsilon)^{p/2},$$

and proposed an IRL$_2$ algorithm for solving this approximation. Very recently, Bian and Chen [3] and Chen et al. [15] proposed a smoothing sequential quadratic programming (SQP) algorithm and a smoothing trust region Newton (TRN) method, respectively, for solving a class of nonsmooth nonconvex problems that include (1) as a special case. When applied to problem (1), their methods first approximate $\|x\|_p^p$ by a suitable smooth function and then apply an SQP or a TRN algorithm to solve the resulting approximation problem. Lately, Bian et al. [4] proposed first- and second-order interior point algorithms for solving a class of non-Lipschitz nonconvex minimization problems with bounded box constraints, which can be suitably applied to l_p regularized minimization problems over a compact box.

In this paper we consider general l_p regularized unconstrained optimization problem (1). In particular, we first derive lower bounds for nonzero entries of first- and second-order stationary points and hence also of local minimizers of (1). We then extend the aforementioned IRL$_1$ and IRL$_2$ methods [17,19,20,25] to solve (1) and propose some new variants for them. We also provide a unified convergence analysis for these methods. Finally, we propose a novel Lipschitz continuous ϵ-approximation to $\|x\|_p^p$ and also propose a locally Lipschitz continuous function $F_\epsilon(x)$ to approximate $F(x)$. Subsequently, we develop IRL$_1$ minimization methods for solving the resulting approximation problem $\min_{x \in \mathbb{R}^n} F_\epsilon(x)$. We show that any accumulation point of the
sequence generated by these methods is a first-order stationary point of problem (1), provided that \(\epsilon \) is below a computable threshold value. This is a remarkable result since all existing iterative reweighted minimization methods for \(l_p \) minimization problems require that \(\epsilon \) be dynamically updated and approach zero.

The outline of this paper is as follows. In Sect. 1.1 we introduce some notations that are used in the paper. In Sect. 2 we derive lower bounds for nonzero entries of stationary points, and hence also of local minimizers of problem (1). We also propose a locally Lipschitz continuous function \(F_\epsilon (x) \) to approximate \(F(x) \) and study some properties of the approximation problem \(\min_{x \in \mathbb{R}^n} F_\epsilon (x) \). In Sect. 3 we extend the existing IRL1 and IRL2 minimization methods from problems (5) and (6) to general problems (1) and propose new variants for them. We also provide a unified convergence analysis for these methods. In Sect. 4 we propose new IRL1 methods for solving (1) and establish their convergence. In Sect. 5 we conduct numerical experiments to compare the performance of the IRL1 minimization methods and their variants that are studied in this paper for (1). Finally, in Sect. 6 we present some concluding remarks.

1.1 Notation

Given any \(x \in \mathbb{R}^n \) and a scalar \(\tau \), \(|x|^{\tau}\) denotes an \(n \)-dimensional vector whose \(i \)th component is \(|x_i|^{\tau}\). The set of all \(n \)-dimensional positive vectors is denoted by \(\mathbb{R}_+^n \). In addition, \(x > 0 \) means that \(x \in \mathbb{R}_+^n \) and \(\text{Diag}(x) \) denotes an \(n \times n \) diagonal matrix whose diagonal is formed by the vector \(x \). Given an index set \(B \subseteq \{1, \ldots, n\} \), \(x_B \) denotes the sub-vector of \(x \) indexed by \(B \). Similarly, \(X_{BB} \) denotes the sub-matrix of \(X \) whose rows and columns are indexed by \(B \). In addition, if a matrix \(X \) is positive semidefinite, we write \(X \succeq 0 \). The sign operator is denoted by \(\text{sgn} \), that is,

\[
\text{sgn}(t) = \begin{cases}
1 & \text{if } t > 0, \\
[-1, 1] & \text{if } t = 0, \\
-1 & \text{otherwise}.
\end{cases}
\]

For any \(\beta < 0 \), we define \(0^\beta = \infty \). Finally, we define

\[
\underline{f} = \inf_{x \in \mathbb{R}^n} f(x).
\] (7)

It follows from the early assumption on \(f \) that \(-\infty < \underline{f} < \infty \).

2 Technical results

In this section we derive lower bounds for nonzero entries of stationary points and hence also of local minimizers of problem (1). We also propose a nonsmooth but locally Lipschitz continuous function \(F_\epsilon (x) \) to approximate \(F(x) \). Moreover, we show that when \(\epsilon \) is below a computable threshold value, a certain stationary point of the corresponding approximation problem \(\min_{x \in \mathbb{R}^n} F_\epsilon (x) \) is also that of (1). This result plays a crucial role in developing new IRL1 methods for solving (1) in Sect. 4.
2.1 Lower bounds for nonzero entries of stationary points of (1)

Chen et al. [15] recently studied optimality conditions for a class of non-Lipschitz optimization problems which include (1) as a special case. We first review some of these results in the context of problem (1). In particular, we will review the definition of first- and second-order stationary points of problem (1) and state some necessary optimality conditions for (1). Then we derive lower bounds for nonzero entries of the stationary points and hence also of local minimizers of problem (1).

Definition 1 Let \(x^* \) be a vector in \(\mathbb{R}^n \) and \(X^* = \text{Diag}(x^*) \). \(x^* \) is a first-order stationary point of (1) if

\[
X^* \nabla f(x^*) + \lambda p |x^*|^p = 0. \tag{8}
\]

In addition, \(x^* \) is a second-order stationary point of (1) if

\[
(X^*)^T \nabla^2 f(x^*) + \lambda p (p - 1) \text{Diag}(|x^*|^p) \succeq 0. \tag{9}
\]

The following result states that any local minimizer of (1) is a stationary point, whose proof can be found in [15].

Proposition 2.1 Let \(x^* \) be a local minimizer of (1) and \(X^* = \text{Diag}(x^*) \). The following statements hold:

(i) \(x^* \) is a first-order stationary point, that is, (8) holds at \(x^* \).

(ii) Further, if \(f \) is twice continuously differentiable in a neighborhood of \(x^* \), then \(x^* \) is a second-order stationary point, that is, (9) holds at \(x^* \).

Recently, Chen et al. derived in Theorems 3.1(i) and 3.3 of [16] some interesting lower bounds for the nonzero entries of local minimizers of a special case of problem (1) with \(f(x) = \frac{1}{2} \|Ax - b\|^2 \) for some \(A \in \mathbb{R}^{m \times n} \) and \(b \in \mathbb{R}^m \). We next establish similar lower bounds for the nonzero entries of stationary points and hence also of local minimizers of general problem (1).

Theorem 2.2 Let \(x^* \) be a first-order stationary point of (1) satisfying \(F(x^*) \leq F(x^0) + \epsilon \) for some \(x^0 \in \mathbb{R}^n \) and \(\epsilon \geq 0 \), \(B = \{i : x^*_i \neq 0\} \), \(L_f \) and \(f \) be defined in (2) and (7), respectively. Then there holds:

\[
|x^*_i|^p \geq \left(\frac{\lambda p}{\sqrt{2L_f[F(x^0) + \epsilon - f]}} \right)^{\frac{1}{1-p}}, \quad \forall i \in B. \tag{10}
\]

Proof Since \(f \) has \(L_f \)-Lipschitz-continuous gradient in \(\mathbb{R}^n \), it is well-known that

\[
f(y) \leq f(x) + \nabla f(x)^T (y - x) + \frac{L_f}{2} \|y - x\|^2, \quad \forall x, y \in \mathbb{R}^n.
\]
Letting $x = x^*$ and $y = x^* - \nabla f(x^*)/L_f$, we obtain that

$$ f(x^* - \nabla f(x^*)/L_f) \leq f(x^*) - \frac{1}{2L_f} \|\nabla f(x^*)\|^2_2. \quad (11) $$

Note that

$$ f(x^* - \nabla f(x^*)/L_f) \geq \inf_{x \in \mathbb{R}^n} f(x) = f, \quad f(x^*) \leq F(x^*) \leq F(x^0) + \epsilon. $$

Using these relations and (11), we have

$$ \|\nabla f(x^*)\|_2 \leq \sqrt{2L_f[f(x^*) - f(x^* - \nabla f(x^*)/L_f)]} $$

$$ \leq \sqrt{2L_f[F(x^0) + \epsilon - f]}. \quad (12) $$

Since x^* satisfies (8), we obtain that for every $i \in B$,

$$ |x^*_i| = \left(\frac{1}{\lambda p} \left| \frac{\partial f(x^*)}{\partial x_i} \right| \right)^{\frac{1}{p-1}} \geq \left(\frac{\|\nabla f(x^*)\|_2}{\lambda p} \right)^{\frac{1}{p-1}}, $$

which together with (12) yields

$$ |x^*_i| \geq \left(\frac{\lambda p}{\sqrt{2L_f[F(x^0) + \epsilon - f]}} \right)^{\frac{1}{1-p}}, \quad \forall i \in B. $$

\[\square \]

Theorem 2.3 Let x^* be a second-order stationary point of (1), $B = \{i : x^*_i \neq 0\}$, and L_f be defined in (2). Suppose further that f is twice continuously differentiable in a neighborhood of x^*. Then there holds:

$$ |x^*_i| \geq \left(\frac{\lambda p(1-p)}{L_f} \right)^{\frac{1}{2-p}}, \quad \forall i \in B, \quad (13) $$

Proof It follows from (2) and the assumption that f is twice continuously differentiable in a neighborhood of x^* that $\|\nabla^2 f(x^*)\|_2 \leq L_f$. In addition, since x^* satisfies (9), we have

$$ e_i^T [(x^*)^T \nabla^2 f(x^*)X^*]e_i + \lambda p(p-1)e_i^T \text{Diag}([x^*_i]^p)]e_i \geq 0, $$

where e_i is the ith coordinate vector. It then follows that for each $i \in B$,

$$ [\nabla^2 f(x^*)]_{ii} + \lambda p(p-1)|x^*_i|^{p-2} \geq 0, $$
which yields

\[|x_i^*| \geq \left(\frac{\lambda p(1 - p)}{[\nabla^2 f(x^*)]_{ii}} \right)^{\frac{1}{2-p}} \geq \left(\frac{\lambda p(1 - p)}{\|\nabla^2 f(x^*)\|_2} \right)^{\frac{1}{2-p}} \geq \left(\frac{\lambda p(1 - p)}{L_f} \right)^{\frac{1}{2-p}}, \quad \forall i \in B. \]

2.2 Locally Lipschitz continuous approximation to (1)

It is known that for \(p \in (0, 1) \), the function \(\|x\|_p^p \) is not locally Lipschitz continuous at some points in \(\mathbb{R}^n \). The non-Lipschitzness of \(\|x\|_p^p \) brings a great deal of challenge for designing algorithms for solving problem (1) (see, for example, [16]). In this subsection we propose a nonsmooth but Lipschitz continuous \(\epsilon \)-approximation to \(\|x\|_p^p \) for every \(\epsilon > 0 \). As a consequence, we obtain a nonsmooth but locally Lipschitz continuous \(\epsilon \)-approximation \(F_{\epsilon}(x) \) to \(F(x) \). Furthermore, we show that when \(\epsilon \) is below a computable threshold value, a certain stationary point of the corresponding approximation problem \(\min_{x \in \mathbb{R}^n} F_{\epsilon}(x) \) is also that of (1).

Lemma 2.4 Let \(u > 0 \) be arbitrarily given, and let \(q \) be such that

\[\frac{1}{p} + \frac{1}{q} = 1. \]

Define

\[h_u(t) := \min_{0 \leq s \leq u} \left\{ \frac{|t|^q}{q} - \frac{s^q}{q} \right\}, \quad \forall t \in \mathbb{R}. \]

Then the following statements hold:

(i) \(0 \leq h_u(t) - |t|^p \leq u^q \) for every \(t \in \mathbb{R} \).

(ii) \(h_u \) is \(pu \)-Lipschitz continuous in \((-\infty, \infty) \), i.e.,

\[|h_u(t_1) - h_u(t_2)| \leq pu|t_1 - t_2|, \quad \forall t_1, t_2 \in \mathbb{R}. \]

(iii) The Clarke subdifferential of \(h_u \), denoted by \(\partial h_u \), exists everywhere, and it is given by

\[\partial h_u(t) = p \min \left\{ \frac{1}{|t|^q - 1}, u \right\} \text{sgn}(t). \]

Proof (i) Let \(g_t(s) = p(|t|^q - s^q/q) \) for \(s > 0 \). Since \(p \in (0, 1) \), we observe from (14) that \(q < 0 \). It then implies that \(g_t(s) \to \infty \) as \(s \downarrow 0 \). This together with the continuity of \(g_t \) implies that \(h_u(t) \) is well-defined for all \(t \in \mathbb{R} \). In addition, it is easy to show that \(g_t(\cdot) \) is convex in \((0, \infty) \), and moreover, \(\inf_{s > 0} g_t(s) = |t|^p \).
Hence, we have

\[h_u(t) = \min_{0 \leq s \leq u} g_t(s) \geq \inf_{s > 0} g_t(s) = |t|^p, \quad \forall t \in \mathbb{R}. \]

We next show that \(h_u(t) - |t|^p \leq u^q \) by dividing its proof into two cases.

1) Assume that \(|t| > u^q - 1 \). Then, the optimal value of (15) is achieved at \(s^* = \frac{1}{q} |t|^q \) and hence,

\[h_u(t) = p \left(|t| s^* - \frac{(s^*)^q}{q} \right) = |t|^p. \]

2) Assume that \(|t| \leq u^q - 1 \). It can be shown that the optimal value of (15) is achieved at \(s^* = u \). Using this result and the relation \(|t| \leq u^q - 1\), we obtain

\[h_u(t) = p \left(|t| u - \frac{u^q}{q} \right) \leq p \left(u^{q-1} u - \frac{u^q}{q} \right) = u^q, \]

which implies that \(h_u(t) - |t|^p \leq h_u(t) \leq u^q \).

Combining the above two cases, we conclude that statement (i) holds.

(ii) Let \(\phi : [0, \infty) \rightarrow \mathbb{R} \) be defined as follows:

\[\phi(t) = \begin{cases}
 t^p & \text{if } t > u^q - 1, \\
 p(tu - u^q / q) & \text{if } 0 \leq t \leq u^q - 1.
\end{cases} \]

It follows from (14) that \((q - 1)(p - 1) = 1\). Using this relation, one can show that

\[\phi'(t) = p \min \left\{ t^{\frac{1}{q-1}}, u \right\}. \quad (17) \]

Hence, we can see that \(0 \leq \phi'(t) \leq pu \) for every \(t \in [0, \infty) \), which implies that \(\phi \) is \(pu \)-Lipschitz continuous on \([0, \infty)\). In addition, one can observe from the proof of (i) that \(h_u(t) = \phi(|t|) \) for all \(t \). Further, by the triangle inequality, we can easily conclude that \(h_u \) is \(pu \)-Lipschitz continuous in \((-\infty, \infty)\).

(iii) Since \(h_u \) is Lipschitz continuous everywhere, it follows from Theorem 2.5.1 of [18] that

\[\partial h_u(t) = \text{cov} \left\{ \lim_{t_k \to t} h_u'(t_k) \right\}, \quad (18) \]

where \(\text{cov} \) denotes convex hull and \(D \) is the set of points at which \(h_u \) is differentiable. Recall that \(h_u(t) = \phi(|t|) \) for all \(t \). Hence, \(h_u'(t) = \phi'(|t|) \text{sgn}(t) \) for every \(t \neq 0 \). Using this relation, (17) and (18), we immediately see that statement (iii) holds. \(\square \)
Corollary 2.5 Let $u > 0$ be arbitrarily given, and let $h(x) = \sum_{i=1}^{n} h_{u}(x_{i})$ for every $x \in \mathbb{R}^{n}$, where h_{u} is defined in (15). Then the following statements hold:

(i) $0 \leq h(x) - \|x\|_{p}^{p} \leq nu^{q}$ for every $x \in \mathbb{R}^{n}$.
(ii) h is $\sqrt{n}pu$-Lipschitz continuous in \mathbb{R}^{n}, i.e.,

$$|h(x) - h(y)| \leq \sqrt{n}pu \|x - y\|_{2}, \quad \forall x, y \in \mathbb{R}^{n}.$$

We are now ready to propose a nonsmooth but locally Lipschitz continuous ϵ-approximation to $F(x)$.

Proposition 2.6 Let $\epsilon > 0$ be arbitrarily given and q satisfy (14). Define

$$F_{\epsilon}(x) := f(x) + \lambda \sum_{i=1}^{n} h_{u_{\epsilon}}(x_{i}),$$

where

$$h_{u_{\epsilon}}(t) := \min_{0 \leq s \leq u_{\epsilon}} p \left(|t - s^{\frac{q}{p}}|^{\frac{1}{q}} \right), \quad u_{\epsilon} := \left(\frac{\epsilon}{\lambda \lambda n} \right)^{\frac{1}{q}}.$$

Then the following statements hold:

(i) $0 \leq F_{\epsilon}(x) - F(x) \leq \epsilon$ for every $x \in \mathbb{R}^{n}$.
(ii) F_{ϵ} is locally Lipschitz continuous in \mathbb{R}^{n}. Furthermore, if f is Lipschitz continuous, so is F_{ϵ}.

Proof Using the definitions of F_{ϵ} and F, we have $F_{\epsilon}(x) - F(x) = \lambda \sum_{i=1}^{n} h_{u_{\epsilon}}(x_{i}) - \|x\|_{p}^{p}),$ which, together with Corollary 2.5 (i) with $u = u_{\epsilon}$, implies that statement (i) holds. Since f is differentiable in \mathbb{R}^{n}, it is known that f is locally Lipschitz continuous. In addition, we know from Corollary 2.5 (ii) that $\sum_{i=1}^{n} h_{u_{\epsilon}}(x_{i})$ is Lipschitz continuous in \mathbb{R}^{n}. These facts imply that statement (ii) holds.

From Proposition 2.6, we know that F_{ϵ} is a locally Lipschitz ϵ-approximation to the non-Lipschitz function F. It is very natural to find an approximate solution of (1) by solving the corresponding ϵ-approximation problem

$$\min_{x \in \mathbb{R}^{n}} F_{\epsilon}(x),$$

where F_{ϵ} is defined in (19). Strikingly, we can show that when ϵ is below a computable threshold value, a certain stationary point of problem (21) is also that of (1).

Theorem 2.7 Let $x^{0} \in \mathbb{R}^{n}$ be an arbitrary point, and let ϵ be such that

$$0 < \epsilon < n\lambda \left[\frac{\sqrt{2L_{f}(F(x^{0}) + \epsilon - f^{0})^{q}}}{\lambda p} \right].$$

Springer
where \(f \) and \(q \) are defined in (7) and (14), respectively. Suppose that \(x^* \) is a first-order stationary point of (21) such that \(F_\epsilon(x^*) \leq F_\epsilon(x^0) \). Then, \(x^* \) is also a first-order stationary point of (1), i.e., (8) holds at \(x^* \). Moreover, the nonzero entries of \(x^* \) satisfy the first-order lower bound (10).

Proof Let \(\mathcal{B} = \{ i : x_i^* \neq 0 \} \). Since \(x^* \) is a first-order stationary point of (21), we have \(0 \in \partial F_\epsilon(x^*) \). Hence, it follows that

\[
\frac{\partial f(x^*)}{\partial x_i} + \lambda \partial h_{u_\epsilon}(x_i^*) = 0, \quad \forall i \in \mathcal{B}.
\]

(23)

In addition, we notice that

\[
f(x^*) \leq F(x^*) \leq F_\epsilon(x^*) \leq F_\epsilon(x^0) \leq F(x^0) + \epsilon.
\]

(24)

Using this relation and similar arguments as for deriving (12), we see that (12) also holds for such \(x^* \). It then follows from (23) and (12) that

\[
|\partial h_{u_\epsilon}(x_i^*)| = \frac{1}{\lambda} \left| \frac{\partial f(x^*)}{\partial x_i} \right| \leq \frac{1}{\lambda} \| \nabla f(x^*) \|_2 \leq \frac{\sqrt{2L_f[F(x^0) + \epsilon - f]}}{\lambda}, \quad \forall i \in \mathcal{B}.
\]

(25)

We now claim that \(|x_i^*| > u_\epsilon q^{-1} \) for all \(i \in \mathcal{B} \), where \(u_\epsilon \) is defined in (20). Suppose for contradiction that there exists some \(i \in \mathcal{B} \) such that \(0 < |x_i^*| \leq u_\epsilon q^{-1} \). It then follows from (16) that \(|\partial h_{u_\epsilon}(x_i^*)| = pu_\epsilon \). Using this relation, (22) and the definition of \(u_\epsilon \), we obtain that

\[
|\partial h_{u_\epsilon}(x_i^*)| = pu_\epsilon = p \left(\frac{\epsilon}{\lambda n} \right)^{1/q} > \frac{\sqrt{2L_f[F(x^0) + \epsilon - f]}}{\lambda},
\]

which contradicts (25). Therefore, \(|x_i^*| > u_\epsilon q^{-1} \) for all \(i \in \mathcal{B} \). Using this fact and (16), we see that \(\partial h_{u_\epsilon}(x_i^*) = p|x_i^*|^{p-1} \text{sgn}(x_i^*) \) for every \(i \in \mathcal{B} \). Substituting it into (23), we obtain that

\[
\frac{\partial f(x^*)}{\partial x_i} + \lambda p|x_i^*|^{p-1} \text{sgn}(x_i^*) = 0, \quad \forall i \in \mathcal{B}.
\]

Multiplying by \(x_i^* \) both sides of this equality, we see that (8) holds. In addition, recall from (24) that \(F(x^*) \leq F(x^0) + \epsilon \). Using this relation and Theorem 2.2, we immediately see that the second part of this theorem also holds. \(\square \)

Remark It is not hard to observe that Theorem 2.7 still holds if \(f \) and \(L_f \) are replaced by a number below \(f \) and a number above \(L_f \) in (22), respectively. For practical application, an upper bound on \(L_f \) and a lower bound on \(f \) thus suffice for estimating the parameter \(\epsilon \) satisfying (22). These bounds can be easily found for some important regression problems such as the least squares and the logistic regressions (see Sect. 5).
Corollary 2.8 Let $x^0 \in \mathbb{R}^n$ be an arbitrary point, and let ϵ be such that (22) holds. Suppose that x^* is a local minimizer of (21) such that $F_\epsilon (x^*) \leq F_\epsilon (x^0)$. Then the following statements hold:

i) x^* is a first-order stationary point of (1), i.e., (8) holds at x^*. Moreover, the nonzero entries of x^* satisfy the first-order lower bound (10).

ii) Suppose further that f is twice continuously differentiable in a neighborhood of x^*. Then, x^* is a second-order stationary point of (1), i.e., (9) holds at x^*. Moreover, the nonzero entries of x^* satisfy the second-order lower bound (13).

Proof (i) Since x^* is a local minimizer of (21), we know that x^* is a stationary point of (21). Statement (i) then immediately follows from Theorem 2.7.

(ii) Let $B = \{i : x^*_i \neq 0\}$. Since x^* is a local minimizer of (21), we observe that x^* is also a local minimizer of

$$
\min_{x \in \mathbb{R}^n} \left\{ f(x) + \lambda \sum_{i \in B} h_{u_\epsilon} (x_i) : x_i = 0, \ i \notin B \right\}.
$$

(26)

Notice that x^* is a first-order stationary point of (21). In addition, $F(x^*) \leq F(x^0) + \epsilon$ and ϵ satisfies (22). Using the same arguments as in the proof of Theorem 2.7, we have $|x^*_i| > u_\epsilon q^{-1}$ for all $i \in B$. Recall from the proof of Lemma 2.4 (i) that $h_{u_\epsilon} (i) = |i|^p$ if $|i| > u_\epsilon q^{-1}$. Hence, $\sum_{i \in B} h_{u_\epsilon} (x_i) = \sum_{i \in B} |x_i|^p$ for all x in a neighborhood of x^*. This, together with the fact that x^* is a local minimizer of (26), implies that x^* is also a local minimizer of

$$
\min_{x \in \mathbb{R}^n} \{ f(x) + \lambda \|x_B\|_p^p : x_i = 0, \ i \notin B \}.
$$

(27)

By the assumption, we observe that the objective function of (27) is twice continuously differentiable at x^*. The second-order optimality condition of (27) at x^* yields

$$
\nabla^2 f(x^*)_B + \lambda p(p - 1) \text{Diag}(|x^*_B|^{p-2}) \succeq 0,
$$

which, together with the fact that $X^* = \text{Diag}(x^*)$ and $x^*_i = 0$ for $i \notin B$, implies that (9) holds and hence x^* is a second-order stationary point of (1). The rest of the statement follows from Theorem 2.3.

□

3 A unified analysis for some existing iterative reweighted minimization methods

Recently two types of IRL$_1$ and IRL$_2$ methods have been proposed in the literature [17,19,20,25] for solving problem (5) or (6). In this section we extend these methods to solve (1) and also propose a variant of them in which each subproblem has a closed-form solution. Moreover, we provide a unified convergence analysis for them.
3.1 The first type of IRL$_\alpha$ methods and its variant for (1)

In this subsection we consider the iterative reweighted minimization methods proposed in [17,25] for solving problem (6), which apply an IRL$_1$ or IRL$_2$ method to solve a sequence of problems $\min_{x \in \mathbb{R}^n} Q_{\alpha, \epsilon_k}(x)$ or $\min_{x \in \mathbb{R}^n} Q_{\alpha, \epsilon_k}(x)$, where $\{\epsilon_k\}$ is a sequence of positive vectors approaching zero as $k \to \infty$ and

$$Q_{\alpha, \epsilon}(x) := \frac{1}{2} \|Ax - b\|^2_2 + \lambda \sum_{i=1}^n (|x_i|^\alpha + \epsilon_i)^{\frac{\alpha}{\alpha - 1}}.$$ \hspace{1cm} (28)

In what follows, we extend the above methods to solve (1) and also propose a variant of them in which each subproblem has a closed-form solution. Moreover, we provide a unified convergence analysis for them. Our key observation is that problem

$$\min_{x \in \mathbb{R}^n} \left\{ F_{\alpha, \epsilon}(x) := f(x) + \lambda \sum_{i=1}^n (|x_i|^\alpha + \epsilon_i)^{\frac{\alpha}{\alpha - 1}} \right\}$$ \hspace{1cm} (29)

for $\alpha \geq 1$ and $\epsilon \in \mathbb{R}_+^n$ can be suitably solved by an iterative reweighted l_α (IRL$_\alpha$) method. Problem (1) can then be solved by applying the IRL$_\alpha$ method to a sequence of problems (29) with $\epsilon = \epsilon_k \in \mathbb{R}_+^n \to 0$ as $k \to \infty$.

We start by presenting an IRL$_\alpha$ method for solving problem (29) with $\alpha \geq 1$ and $\epsilon \in \mathbb{R}_+^n$, which becomes an IRL$_1$ (resp., IRL$_2$) method studied in [17,25], respectively, when $\alpha = 1$ (resp., $\alpha = 2$) and $f(x) = \|Ax - b\|^2_2/2$.

Algorithm 1 An IRL$_\alpha$ minimization method for (29)

Let $\alpha \geq 1$ and $\epsilon \in \mathbb{R}_+^n$ be given. Choose an arbitrary $x^0 \in \mathbb{R}^n$. Set $k = 0$.

1) Solve the weighted l_α minimization problem

$$x^{k+1} \in \text{Arg min}_{x \in \mathbb{R}^n} \left\{ f(x) + \frac{\lambda}{\alpha} \sum_{i=1}^n (|x_i|^\alpha + \epsilon_i)^{\frac{\alpha}{\alpha - 1}} \right\},$$ \hspace{1cm} (30)

where $s_i^{k} = (|x_i|^\alpha + \epsilon_i)^{\frac{\alpha}{\alpha - 1}}$ for all i.

2) Set $k \leftarrow k + 1$ and go to step 1).

end

We next show that the sequence $\{x^k\}$ generated above is bounded and moreover any accumulation point of $\{x^k\}$ is a first-order stationary point of (29).

Theorem 3.1 Let the sequence $\{x^k\}$ be generated by the above IRL$_\alpha$ minimization method. There hold:

(i) The sequence $\{x^k\}$ is bounded.

(ii) Let x^* be any accumulation point of $\{x^k\}$. Then x^* is a first-order stationary point of (29).
Proof (i) Let \(q \) be such that
\[
\frac{\alpha}{p} + \frac{1}{q} = 1. \tag{31}
\]

It is not hard to show that for any \(\delta > 0 \),
\[
(\|t\|^\alpha + \delta)^\frac{p}{\alpha} = \frac{p}{\alpha} \min_{s \geq 0} \left\{ (\|t\|^\alpha + \delta)s - \frac{s^q}{q} \right\}, \quad \forall t \in \mathbb{R}, \tag{32}
\]

and moreover, the minimum is achieved at \(s = (\|t\|^\alpha + \delta)^\frac{1}{\alpha} \). Using this result, the definition of \(s^k \), and (31), one can observe that for \(k \geq 0 \),
\[
s^k = \min_{s \geq 0} G_{\alpha,\epsilon}(x^k, s), \quad x^{k+1} \in \text{Arg min}_{x \in \mathbb{R}^n} G_{\alpha,\epsilon}(x, s^k), \tag{33}
\]

where \(s^k = (s_1^k, \ldots, s_n^k)^T \) and
\[
G_{\alpha,\epsilon}(x, s) = f(x) + \frac{\lambda p}{\alpha} \sum_{i=1}^n \left[(|x_i|^\alpha + \epsilon_i) s_i - \frac{s_i^q}{q} \right]. \tag{34}
\]

In addition, we see that \(F_{\alpha,\epsilon}(x^k) = G_{\alpha,\epsilon}(x^k, s^k) \). It then follows that
\[
F_{\alpha,\epsilon}(x^{k+1}) = G_{\alpha,\epsilon}(x^{k+1}, s^{k+1}) \leq G_{\alpha,\epsilon}(x^{k+1}, s^k) \leq G_{\alpha,\epsilon}(x^k, s^k) = F_{\alpha,\epsilon}(x^k). \tag{35}
\]

Hence, \(\{F_{\alpha,\epsilon}(x^k)\} \) is non-increasing. It follows that \(F_{\alpha,\epsilon}(x^k) \leq F_{\alpha,\epsilon}(x^0) \) for all \(k \). This together with (7), \(\epsilon > 0 \), and the definition of \(F_{\alpha,\epsilon} \) implies that
\[
f + \lambda \sum_{i=1}^n |x_i^k|^p \leq f + \lambda \sum_{i=1}^n (|x_i^k|^\alpha + \epsilon_i)^\frac{p}{\alpha} \leq f(x^k)
\]
\[
+ \lambda \sum_{i=1}^n (|x_i^k|^\alpha + \epsilon_i)^\frac{p}{\alpha} = F_{\alpha,\epsilon}(x^k) \leq F_{\alpha,\epsilon}(x^0).
\]

It follows that \(\|x^k\|_p^p \leq (F_{\alpha,\epsilon}(x^0) - f)/\lambda \) and hence \(\{x^k\} \) is bounded.

(ii) Since \(x^* \) is an accumulation point of \(\{x^k\} \), there exists a subsequence \(K \) such that \(\{x^k\}_K \rightarrow x^* \). By the continuity of \(F_{\alpha,\epsilon} \), we have \(\{F_{\alpha,\epsilon}(x^k)\}_K \rightarrow F_{\alpha,\epsilon}(x^*) \), which together with the monotonicity of \(F_{\alpha,\epsilon}(x^k) \) implies that \(F_{\alpha,\epsilon}(x^k) \rightarrow F_{\alpha,\epsilon}(x^*) \). In addition, by the definition of \(s^k \), we have \(\{s^k\}_K \rightarrow s^* \), where \(s^* = (s_1^*, \ldots, s_n^*)^T \) with \(s_i^* = (|x_i^*|^\alpha + \epsilon_i)^\frac{p}{\alpha} - 1 \) for all \(i \). Also, we observe that \(F_{\alpha,\epsilon}(x^*) = G_{\alpha,\epsilon}(x^*, s^*) \). Using (35) and \(F_{\alpha,\epsilon}(x^k) \rightarrow F_{\alpha,\epsilon}(x^*) \), we see that \(G_{\alpha,\epsilon}(x^{k+1}, s^k) \rightarrow F_{\alpha,\epsilon}(x^*) = G_{\alpha,\epsilon}(x^*, s^*) \). Further, it follows from (33) that \(G_{\alpha,\epsilon}(x, s^k) \geq G_{\alpha,\epsilon}(x^{k+1}, s^k) \) for every \(x \in \mathbb{R}^n \). Upon taking limits on both sides of this inequality as \(k \rightarrow \infty \),
\(K \to \infty \), we have \(G_{\alpha, \epsilon}(x, s^*) \geq G_{\alpha, \epsilon}(x^*, s^*) \) for all \(x \in \mathbb{R}^n \), that is, \(x^* \in \text{Arg min}_{s \in \mathbb{R}^n} G_{\alpha, \epsilon}(x, s^*) \), which, together with the first-order optimality condition and the definition of \(s^* \), yields
\[
0 \in \frac{\partial f(x^*)}{\partial x_i} + \lambda p \left(|x_i^*|^\alpha + \epsilon_i \right)^{p-1} |x_i^*|^\alpha - 1 \text{ sgn}(x_i^*), \quad \forall i.
\] (36)

Hence, \(x^* \) is a stationary point of (29). \(\square \)

The above IRL\(_\alpha\) method needs to solve a sequence of reweighted \(l_\alpha \) minimization subproblems (30) whose solution generally cannot be computed exactly. Therefore, the sequence \(\{x^k\} \) usually can only be found inexactly. This may bring a great deal challenge to the practical implementation of this method due to the facts: 1) it is unknown how much inexactness on \(\{x^k\} \) can be allowed to ensure the global convergence of the method; 2) it may not be cheap to find a good approximate solution to (30). Especially, when \(f \) is nonconvex, the subproblem (30) is also nonconvex and it is clearly hard to find \(x^k \) in this case. Thus, this method may be practically inefficient or numerically unstable. We next propose a variant of this method in which each subproblem is much simpler and has a closed-form solution for the commonly used \(\alpha \)'s such as \(\alpha = 1 \) or 2.

Algorithm 2 A variant of IRL\(_\alpha\) minimization method for (29)

Let \(\alpha \geq 1, 0 < L_{\min} < L_{\max}, \tau > 1 \) and \(c > 0 \) be given. Choose an arbitrary \(x^0 \in \mathbb{R}^n \) and set \(k = 0 \).

1) Choose \(L^0_k \in [L_{\min}, L_{\max}] \) arbitrarily. Set \(L_k = L^0_k \).
 1a) Solve the weighted \(l_\alpha \) minimization problem
\[
\begin{aligned}
 x^{k+1} &\in \text{Arg min}_{x \in \mathbb{R}^n} \left\{ f(x^k) + \nabla f(x^k)^T (x - x^k) + \frac{L_k}{2} \|x - x^k\|^2_2

 + \frac{\lambda p}{\alpha} \sum_{i=1}^n s_i^k |x_i|^\alpha \right\},
\end{aligned}
\] (37)

where \(s_i^k = (|x_i^k|^\alpha + \epsilon_i)^{p-1} \) for all \(i \).

1b) If
\[
F_{\alpha, \epsilon}(x^k) - F_{\alpha, \epsilon}(x^{k+1}) \geq \frac{c}{2} \|x^{k+1} - x^k\|^2_2
\] (38)

is satisfied, where \(F_{\alpha, \epsilon} \) is given in (29), then go to step 2).

1c) Set \(L_k \leftarrow \tau L_k \) and go to step 1a).

2) Set \(k \leftarrow k + 1 \) and go to step 1).

end

We first show that for each outer iteration, the number of its inner iterations is finite.

Theorem 3.2 For each \(k \geq 0 \), the inner termination criterion (38) is satisfied after at most \(\left\lceil \frac{\log(L_f + c) - \log(2L_{\min})}{\log\tau} + 2 \right\rceil \) inner iterations.
Proof Let $H(x)$ denote the objective function of (37). Notice that $H(\cdot)$ is strongly convex with modulus L_k due to $\alpha \geq 1$. By the first-order optimality condition of (37) at x^{k+1}, we have

$$H(x^k) \geq H(x^{k+1}) + \frac{L_k}{2} \|x^{k+1} - x^k\|^2,$$

which is equivalent to

$$f(x^k) + \frac{\lambda p}{\alpha} \sum_{i=1}^n s_i^k |x_i^k|^\alpha \geq f(x^k) + \nabla f(x^k)^T (x^{k+1} - x^k) + \frac{\lambda p}{\alpha} \sum_{i=1}^n s_i^k |x_i^{k+1}|^\alpha + L_k \|x^{k+1} - x^k\|^2.$$

Recall that ∇f is L_f-Lipschitz continuous. We then have

$$f(x^{k+1}) \leq f(x^k) + \nabla f(x^k)^T (x^{k+1} - x^k) + \frac{L_f}{2} \|x^{k+1} - x^k\|^2.$$

Combining these two inequalities, we obtain that

$$f(x^k) + \frac{\lambda p}{\alpha} \sum_{i=1}^n s_i^k |x_i^k|^\alpha \geq f(x^{k+1}) + \frac{\lambda p}{\alpha} \sum_{i=1}^n s_i^k |x_i^{k+1}|^\alpha + \left(L_k - \frac{L_f}{2}\right) \|x^{k+1} - x^k\|^2,$$

which together with (34) yields

$$G_{\alpha,\epsilon}(x^k, s^k) \geq G_{\alpha,\epsilon}(x^{k+1}, s^k) + \left(L_k - \frac{L_f}{2}\right) \|x^{k+1} - x^k\|^2. \quad (39)$$

Recall that $F_{\alpha,\epsilon}(x^k) = G_{\alpha,\epsilon}(x^k, s^k)$. In addition, it follows from (32) that $F_{\alpha,\epsilon}(x) = \min_{s \geq 0} G_{\alpha,\epsilon}(x, s)$. Using these two equalities and (39), we obtain that

$$F_{\alpha,\epsilon}(x^{k+1}) = G_{\alpha,\epsilon}(x^{k+1}, s^{k+1}) \leq G_{\alpha,\epsilon}(x^{k+1}, s^k) \leq G_{\alpha,\epsilon}(x^k, s^k) - \left(L_k - \frac{L_f}{2}\right) \|x^{k+1} - x^k\|^2 = F_{\alpha,\epsilon}(x^k) - \left(L_k - \frac{L_f}{2}\right) \|x^{k+1} - x^k\|^2.$$

Hence, (38) holds whenever $L_k \geq (L_f + c)/2$, which implies that L_k is updated only for a finite number of times. Let \bar{L}_k denote the final value of L_k at the kth outer iteration. It follows that $\bar{L}_k/\tau < (L_f + c)/2$, that is, $\bar{L}_k < \tau (L_f + c)/2$. Let n_k denote the number of inner iterations for the kth outer iteration. Then, we have
\[L_{\min} \tau^{n_k-1} \leq L_k^0 \tau^{n_k-1} = \bar{L}_k < \tau (L_f + c)/2. \]

Hence, \(n_k \leq \left\lceil \frac{\log(L_f+c) - \log(2L_{\min})}{\log \tau} + 2 \right\rceil \) and the conclusion holds.

We next establish that the sequence \(\{x^k\} \) generated above is bounded and moreover any accumulation point of \(\{x^k\} \) is a first-order stationary point of problem (29).

Theorem 3.3 Let \(\{x^k\} \) be the sequence generated by the above variant of IRL_\(\alpha \) method. There hold:

(i) The sequence \(\{x^k\} \) is bounded.

(ii) Let \(x^* \) be any accumulation point of \(\{x^k\} \). Then \(x^* \) is a first-order stationary point of (29).

Proof (i) It follows from (38) that \(\{F_{\alpha, \epsilon}(x^k)\} \) is non-increasing and hence \(F_{\alpha, \epsilon}(x^k) \leq F_{\alpha, \epsilon}(x^0) \) for all \(k \). The rest of this proof is similar to that of Theorem 3.1 (i).

(ii) Since \(x^* \) is an accumulation point of \(\{x^k\} \), there exists a subsequence \(K \) such that \(\{x^k\}_K \to x^* \). By the continuity of \(F_{\alpha, \epsilon} \), we have \(\{F_{\alpha, \epsilon}(x^k)\}_K \to F_{\alpha, \epsilon}(x^*) \), which together with the monotonicity of \(\{F_{\alpha, \epsilon}(x^k)\} \) implies that \(F_{\alpha, \epsilon}(x^k) \to F_{\alpha, \epsilon}(x^*) \). Using this result and (38), we can conclude that \(\|x^{k+1} - x^k\| \to 0 \).

Let \(\bar{L}_k \) denote the final value of \(L_k \) at the \(k \)th outer iteration. From the proof of Theorem 3.2, we know that \(\bar{L}_k \in [L_{\min}, \tau(L_f + c)/2) \). The first-order optimality condition of (37) with \(L_k = \bar{L}_k \) yields

\[0 = \frac{\partial f(x^k)}{\partial x_i} + \bar{L}_k (x^{k+1}_i - x^k_i) + \lambda p x^k_i |x^{k+1}_i|^\alpha - 1 \sgn(x^{k+1}_i), \quad \forall i. \]

(40)

Noticing \(\{x^k_i\}_K \to (|x^*_i| + \epsilon_i)^{p-1} \) for all \(i \) and taking limits on both sides of (40) as \(k \to \infty \), we see that \(x^* \) satisfies (36) and hence \(x^* \) is a first-order stationary point of (29).

Corollary 3.4 Let \(\delta > 0 \) be arbitrarily given, and let the sequence \(\{x^k\} \) be generated by the above IRL_\(\alpha \) method or its variant. Then, there exists some \(k \) such that

\[\|X^k \nabla f(x^k) + \lambda p |x^k|^\alpha (|x^k|^\alpha + \epsilon) \bar{\alpha}^{-1} \| \leq \delta, \]

where \(X^k = \text{Diag}(x^k) \) and \(|x^k|^\alpha = \text{Diag}(|x^k|^\alpha) \).

Proof As seen from Theorem 3.1 or 3.3, \(\{x^k\} \) is bounded. Hence, \(\{x^k\} \) has at least one accumulation point \(x^* \). Moreover, it follows from these theorems that \(x^* \) satisfies (36). Multiplying by \(x^*_i \) both sides of (36), we have

\[x^*_i \frac{\partial f(x^*)}{\partial x_i} + \lambda p (|x^*_i|^\alpha + \epsilon_i) \bar{\alpha}^{-1} |x^*_i|^\alpha = 0 \quad \forall i, \]

which, together with the continuity of \(\nabla f(x) \) and \(|x|^\alpha \), implies that the conclusion holds.
We are now ready to present the first type of IRL$_\alpha$ methods and its variant for solving problem (1) in which each subproblem is in the form of (29) and solved by the IRL$_\alpha$ or its variant described above. The IRL$_1$ and IRL$_2$ methods proposed in [17,25] can be viewed as the special cases of the following general IRL$_\alpha$ method (but not its variant) with $f(x) = \|Ax - b\|_2^2/2$ and $\alpha = 1$ or 2.

Algorithm 3 The first type of IRL$_\alpha$ minimization methods and its variant for (1)

Let $\alpha \geq 1$ be given, and $\{\delta_k\}$ and $\{\epsilon_k\}$ be a sequence of positive scalars and vectors, respectively. Choose an arbitrary $x^0 \in \mathbb{R}^n$ and set $k = 0$.

1) Apply the IRL$_\alpha$ method or its variant to problem (29) with $\epsilon = \epsilon^k$ starting at $x_k, 0$ until finding x_k satisfying

$$
\|X_k \nabla f(x_k) + \lambda p|X_k|^\alpha (|x_k|^\alpha + \epsilon^k)p^{p-1}\| \leq \delta_k,
$$

where $X_k = \text{Diag}(x_k)$ and $|X_k|^\alpha = \text{Diag}(|x_k|^\alpha)$.

2) Set $k \leftarrow k + 1$, $x_k, 0 \leftarrow x_k - 1$ and go to step 1).

end

We next establish that the sequence $\{x_k\}$ generated by this IRL$_\alpha$ method or its variant is bounded and moreover any accumulation point of $\{x_k\}$ is a first-order stationary point of (1).

Theorem 3.5 Let $\{x_k\}$ be the sequence generated by the first type of IRL$_\alpha$ method or its variant. Suppose that $\{\epsilon^k\}$ is component-wise non-increasing, $\{\epsilon^k\} \rightarrow 0$ and $\{\delta_k\} \rightarrow 0$. There hold:

(i) The sequence $\{x_k\}$ is bounded.

(ii) Let x^* be any accumulation point of $\{x^k\}$. Then x^* is a first-order stationary point of (1), i.e., (8) holds at x^*.

Proof (i) One can see from the proof of Theorem 3.1 (i) or 3.3 (i) that

$$
F_{\alpha, \epsilon^k+1}(x^{k+1}) \leq F_{\alpha, \epsilon^k+1}(x^{k+1}, 0) = F_{\alpha, \epsilon^k+1}(x^k),
$$

where the equality is due to $x^{k+1, 0} = x^k$. Since $\{\epsilon^k\}$ is non-increasing, we have $F_{\alpha, \epsilon^k+1}(x^k) \leq F_{\alpha, \epsilon^k}(x^k)$ for all k. This together with (42) implies that $F_{\alpha, \epsilon^k+1}(x^{k+1}) \leq F_{\alpha, \epsilon^k}(x^k)$ for all k, which yields $F_{\alpha, \epsilon^k}(x^k) \leq F_{\alpha, \epsilon^0}(x^0)$ for every k. The rest of the proof is similar to that of Theorem 3.1 (i).

(ii) Let $\mathcal{B} = \{i : x^*_i \neq 0\}$. It follows from (41) that

$$
\left| x^*_i \frac{\partial f(x^k)}{\partial x_i} + \lambda p|x^*_i|^\alpha (|x^*_i|^\alpha + \epsilon^k_i)p^{p-1} \right| \leq \delta_k \ \forall i \in \mathcal{B}.
$$

Since x^* is an accumulation point of $\{x^k\}$, there exists a subsequence K such that $\{x^k\}_K \rightarrow x^*$. Upon taking limits on both sides of (43) as $k \in K \rightarrow \infty$, we see that x^* satisfies (8) and it is a first-order stationary point of (1). \qed
3.2 The second type of IRL\(_\alpha\) methods and its variant for (1)

In this subsection we are interested in the IRL\(_1\) and IRL\(_2\) methods proposed in [19, 20] for solving problem (5). Given \(\{e^k\} \subset \mathbb{R}_+^n \to 0\) as \(k \to \infty\), these methods solve a sequence of problems \(\min_{x \in \mathbb{R}^n} Q_{1,e^k}(x)\) or \(\min_{x \in \mathbb{R}^n} Q_{2,e^k}(x)\) extremely “roughly” by executing IRL\(_1\) or IRL\(_2\) method only one iteration for each \(e^k\), where \(Q_{\alpha,e}\) is defined in (28).

We next extend the above methods to solve (1) and also propose a variant of them in which each subproblem has a closed-form solution. Moreover, we provide a unified convergence analysis for them. We start by presenting the second type of IRL\(_\alpha\) methods for solving (1), which becomes the IRL\(_1\) or IRL\(_2\) method studied in [19, 20] when \(\alpha = 1\) or 2, respectively.

Algorithm 4 The second type of IRL\(_\alpha\) minimization method for (1)

Let \(\alpha \geq 1\) be given and \(\{e^k\} \subset \mathbb{R}^n\) be a sequence of positive vectors. The rest of the algorithm is the same as Algorithm 1 except by replacing Step 1) by:

1) Solve problem (30) with \(s^k_i = (|x_i^k|^\alpha + e^k_i)^\frac{\beta}{\alpha} - 1\) for all \(i\) to obtain \(x^{k+1}\).

We next show that the sequence \(\{x^k\}\) generated by this method is bounded and moreover any accumulation point of \(\{x^k\}\) is a first-order stationary point of (1).

Theorem 3.6 Suppose that \(\{e^k\}\) is a component-wise non-increasing sequence of positive vectors in \(\mathbb{R}^n\) and \(e^k \to 0\) as \(k \to \infty\). Let the sequence \(\{x^k\}\) be generated by the second type of IRL\(_\alpha\) method. There hold:

(i) The sequence \(\{x^k\}\) is bounded.

(ii) Let \(x^*\) be any accumulation point of \(\{x^k\}\). Then \(x^*\) is a first-order stationary point of (1), i.e., (8) holds at \(x^*\).

Proof (i) Let \(G_{\alpha,e}(\cdot, \cdot)\) be defined in (34), and \(s^k = (s^k_1, \ldots, s^k_n)^T\), where \(s^k_i\) is defined above. One can observe that \(G_{\alpha,e^k}(x^{k+1}, s^k) \leq G_{\alpha,e^k}(x^k, s^k)\). Also, by a similar argument as in the proof of Theorem 3.1, we have \(G_{\alpha,e^k+1}(x^{k+1}, s^{k+1}) = \inf_{s \geq 0} G_{\alpha,e^k+1}(x^{k+1}, s)\). Hence, we obtain that \(G_{\alpha,e^k+1}(x^{k+1}, s^{k+1}) \leq G_{\alpha,e^k+1}(x^{k+1}, s^k)\). Since \(s^k > 0\) and \(\{e^k\}\) is non-increasing, we observe that \(G_{\alpha,e^k+1}(x^{k+1}, s^k) \leq G_{\alpha,e^k}(x^{k+1}, s^k)\). By these three inequalities, we have

\[
G_{\alpha,e^k+1}(x^{k+1}, s^{k+1}) \leq G_{\alpha,e^k+1}(x^{k+1}, s^k) \leq G_{\alpha,e^k}(x^{k+1}, s^k) \leq G_{\alpha,e^k}(x^k, s^k), \quad \forall k \geq 0.
\]

Hence, \(\{G_{\alpha,e^k}(x^k, s^k)\}\) is non-increasing. By the definitions of \(s^k\) and \(F_{\alpha,e}\), one can verify that

\[
G_{\alpha,e^k}(x^k, s^k) = f(x^k) + \lambda \sum_{i=1}^n (|x_i^k|^\alpha + e_i^k)^\frac{\beta}{\alpha} = F_{\alpha,e^k}(x^k).
\]

It follows that \(\{F_{\alpha,e^k}(x^k)\}\) is non-increasing and hence \(F_{\alpha,e^k}(x^k) \leq F_{\alpha,e^0}(x^0)\) for all \(k\). The rest of the proof is similar to that of Theorem 3.5 (i).
(ii) Since x^* is an accumulation point of $\{x^k\}$, there exists a subsequence K such that $\{x^k\}_K \to x^*$. It then follows from $\epsilon^k \to 0$ and (45) that $\{G_{\alpha,\epsilon^k}(x^k, s^k)\}_K \to f(x^*) + \lambda\|x^*\|_p^p$. This together with the monotonicity of $\{G_{\alpha,\epsilon^k}(x^k, s^k)\}$ implies that $G_{\alpha,\epsilon^k}(x^k, s^k) \to f(x^* + \lambda\|x^*\|_p^p$. Using this relation and (44), we further have

$$G_{\alpha,\epsilon^k}(x^{k+1}, s^k) \to f(x^*) + \lambda\|x^*\|_p^p. \tag{46}$$

Let $B = \{i : x_i^* \neq 0\}$ and \overline{B} be its complement in $\{1, \ldots, n\}$. We claim that

$$x^* \in \text{Arg min}_{x_B = 0} \left\{ f(x) + \frac{\lambda p}{\alpha} \sum_{i \in B} |x_i^*|^{p-\alpha} |x_i|^{\alpha} \right\}. \tag{47}$$

Indeed, using the definition of s^k, we see that $\{s_i^k\}_K \to |x_i^*|^{p-\alpha}$, $\forall i \in B$. Due to $\epsilon^k > 0$, $x^k \geq 0$, $s^k > 0$ and $q < 0$, we further observe that

$$0 < \frac{p}{\alpha} \sum_{i \in B} \left[\epsilon_i^k s_i^k - \frac{(s_i^k)^q}{q} \right] \leq \frac{p}{\alpha} \sum_{i \in B} \left[\left(|x_i^k|^{\alpha} + \epsilon_i^k s_i^k \right) - \frac{(s_i^k)^q}{q} \right] = \sum_{i \in B} \left(|x_i^k|^{\alpha} + \epsilon_i^k \right)^{\frac{p}{q}},$$

which, together with $\epsilon^k \to 0$ and $\{x_i^k\}_K \to 0$ for $i \in \overline{B}$, implies that

$$\lim_{k \to K \to \infty} \sum_{i \in B} \left[\epsilon_i^k s_i^k - \frac{(s_i^k)^q}{q} \right] = 0. \tag{48}$$

In addition, by the definition of x^{k+1}, we know that $G_{\alpha,\epsilon^k}(x, s^k) \geq G_{\alpha,\epsilon^k}(x^{k+1}, s^k)$. Then for every $x \in \mathbb{R}^n$ such that $x_{B} = 0$, we have

$$f(x) + \frac{\lambda p}{\alpha} \sum_{i \in B} \left[\left(|x_i|^{\alpha} + \epsilon_i^k s_i^k \right) - \frac{(s_i^k)^q}{q} \right] + \frac{\lambda p}{\alpha} \sum_{i \in \overline{B}} \left[\epsilon_i^k s_i^k - \frac{(s_i^k)^q}{q} \right] = G_{\alpha,\epsilon^k}(x, s^k) \geq G_{\alpha,\epsilon^k}(x^{k+1}, s^k).$$

Upon taking limits on both sides of this inequality as $k \to K \to \infty$, and using (46), (48) and the fact that $\{s_i^k\}_K \to |x_i^*|^{p-\alpha}$, $\forall i \in B$, we obtain that

$$f(x) + \frac{\lambda p}{\alpha} \sum_{i \in B} \left[|x_i|^{\alpha} |x_i^*|^{p-\alpha} - \frac{|x_i^*|^{q(p-\alpha)}}{q} \right] \geq f(x^*) + \lambda\|x^*\|_p^p$$
for all $x \in \mathbb{R}^n$ such that $x_B = 0$. This inequality and (31) immediately yield (47).

It then follows from (31) and the first-order optimality condition of (47) that x^* satisfies (8) and hence it is a stationary point of (1).

Notice that the subproblem of the above method generally cannot be solved exactly. For the similar reasons as mentioned earlier, this may bring a great deal of challenge to the implementation of this method. We next propose a variant of this method in which each subproblem is much simpler and has a closed-form solution for some commonly used α’s (e.g., $\alpha = 1$ or 2).

Algorithm 5 A variant of the second type of IRL-α minimization method for (1)

Let $\alpha \geq 1$ be given and $\{\varepsilon_i\} \subset \mathbb{R}^n$ be a sequence of positive vectors. The rest of the algorithm is the same as Algorithm 2 except by replacing Steps 1a) and 1b) by:

1a) Solve problem (37) with $s_i^k = (|x_i^k|^\alpha + \varepsilon_i^k)^{\alpha - 1}$ for all i to obtain x^{k+1}.

1b) If

$$F_{\alpha, \varepsilon}^k(x^k) - F_{\alpha, \varepsilon}^{k+1}(x^{k+1}) \geq \frac{c}{2} \|x^{k+1} - x^k\|^2_2$$

is satisfied, then go to step 2).

We first show that for each outer iteration of the above method, the associated inner iterations terminate in a finite number of iterations.

Theorem 3.7 For each $k \geq 0$, the inner termination criterion (49) is satisfied after at most $\left\lceil \frac{\log(L_f + c) - \log(2L_{\text{min}})}{\log \tau} + 2 \right\rceil$ inner iterations.

Proof Let $G_{\alpha, \varepsilon}^k(\cdot, \cdot)$ be defined in (34) and $s^k = (s_1^k, \ldots, s_n^k)^T$, where s_i^k is defined above for all i. By a similar argument as in the proof of Theorem 3.2, one can show that (39) holds for all $k \geq 0$. In addition, similar as in the proof of Theorem 3.6, we can show that $G_{\alpha, \varepsilon}^{k+1}(x^{k+1}, s^{k+1}) \leq G_{\alpha, \varepsilon}^k(x^{k+1}, s^k)$. Also, one can verify that $G_{\alpha, \varepsilon}^k(x^k, s^k) = F_{\alpha, \varepsilon}^k(x^k)$ for all k. Using these relations and (39), we obtain that

$$F_{\alpha, \varepsilon}^{k+1}(x^{k+1}) = G_{\alpha, \varepsilon}^{k+1}(x^{k+1}, s^{k+1}) \leq G_{\alpha, \varepsilon}^k(x^{k+1}, s^k) \leq G_{\alpha, \varepsilon}^k(x^k, s^k)$$

$$= \left(L_k - \frac{L_f}{2} \right) \|x^{k+1} - x^k\|^2_2$$

$$= F_{\alpha, \varepsilon}^k(x^k) - \left(L_k - \frac{L_f}{2} \right) \|x^{k+1} - x^k\|^2_2.$$

Hence, (49) holds whenever $L_k \geq (L_f + c)/2$. The rest of the proof is similar to that of Theorem 3.2.

We next show that the sequence $\{x^k\}$ generated by the variant of the second type of IRL-α method is bounded and moreover any accumulation point of $\{x^k\}$ is a first-order stationary point of (1).
Theorem 3.8 Suppose that \(\{e^k\} \) is a sequence of non-increasing positive vectors in \(\mathbb{R}^n \) and \(e^k \to 0 \) as \(k \to \infty \). Let the sequence \(\{x^k\} \) be generated by the variant of the second type of IRL\(_\alpha \) method. There hold:

(i) The sequence \(\{x^k\} \) is bounded.

(ii) Let \(x^* \) be any accumulation point of \(\{x^k\} \). Then \(x^* \) is a first-order stationary point of (1), i.e., (8) holds at \(x^* \).

Proof (i) It follows from (49) that \(\{F_{\alpha,\epsilon^k}(x^k)\} \) is non-increasing and hence \(F_{\alpha,\epsilon^k}(x^k) \leq F_{\alpha,\epsilon^0}(x^0) \) for all \(k \). The rest of this proof is similar to that of Theorem 3.5 (i).

(ii) Let \(\bar{L}_k \) denote the final value of \(L_k \) at the \(k \)th outer iteration. By similar arguments as in the proof of Theorem 3.3, we can show that \(\bar{L}_k \in [L_{\min}, \tau(L_f + c)/2] \) and \(\|x^{k+1} - x^k\| \to 0 \). Let \(B = \{i : x^*_i \neq 0\} \). Since \(x^* \) is an accumulation point of \(\{x^k\} \), there exists a subsequence \(K \) such that \(\{x^k\}_K \to x^* \). By the definition of \(s^k_i \), we see that \(\lim_{k \in K \to \infty} s^k_i = |x^*_i|^{p-\alpha} \) for all \(i \in B \). The first-order optimality condition of (37) with \(L_k = \bar{L}_k \) yields

\[
\frac{\partial f(x^{k+1})}{\partial x_l} + \bar{L}_k(x^{k+1}_i - x^k_i) + \lambda ps^k_i |x^{k+1}_i|^{\alpha-1} \text{sgn}(x^{k+1}_i) = 0, \quad \forall i \in B.
\]

Upon taking limits on both sides of this equality as \(k \in K \to \infty \), and using the relation \(\lim_{k \in K \to \infty} s^k_i = |x^*_i|^{p-\alpha} \), one can see that \(x^* \) satisfies (8). \(\square \)

4 New iterative reweighted \(l_1 \) minimization for (1)

The IRL\(_1 \) and IRL\(_2 \) methods studied in Sect. 3 require that the parameter \(\epsilon \) be dynamically adjusted and approach to zero. One natural question is whether an iterative reweighted minimization method can be proposed for (1) that shares a similar convergence with those methods but does not need to adjust \(\epsilon \). We will address this question by proposing a new IRL\(_1 \) method and its variant.

As shown in Sect. 2.2, problem (21) has a locally Lipschitz continuous objective function and it is an \(\epsilon \)-approximation to (1). Moreover, when \(\epsilon \) is below a computable threshold value, a certain stationary point of (21) is also that of (1). Therefore, it is natural to find an approximate solution of problem (1) by solving (21). In this section we propose new IRL\(_1 \) methods for solving (1), which can be viewed as the IRL\(_1 \) methods directly applied to problem (21). The novelty of these methods is in that the parameter \(\epsilon \) is chosen only once and then fixed throughout all iterations. Remarkably, we are able to establish that any accumulation point of the sequence generated by these methods is a first-order stationary point of (1).

Algorithm 6 A new IRL\(_1 \) minimization method for (1) Let \(q \) be defined in (14). Choose an arbitrary \(x^0 \in \mathbb{R}^n \) and \(\epsilon \) such that (22) holds. Set \(k = 0 \).
1) Solve the weighted \(l_1 \) minimization problem

\[
x^{k+1} \in \text{Arg min}_{x \in \mathbb{R}^n} \left\{ f(x) + \lambda p \sum_{i=1}^{n} s_i^k |x_i| \right\},
\]

where \(s_i^k = \min \left\{ \frac{1}{\lambda n} \frac{1}{q}, |x_i^k|^{\frac{1}{q-1}} \right\} \) for all \(i \).

2) Set \(k \leftarrow k + 1 \) and go to step 1).

end

We next show that the sequence \(\{x^k\} \) generated by this method is bounded and moreover any accumulation point of \(\{x^k\} \) is a first-order stationary point of (1).

Theorem 4.1 Let the sequence \(\{x^k\} \) be generated by the new \(\text{IRL}_1 \) method. Assume that \(\epsilon \) satisfies (22). There hold:

(i) The sequence \(\{x^k\} \) is bounded.

(ii) Let \(x^* \) be any accumulation point of \(\{x^k\} \). Then \(x^* \) is a first-order stationary point of (1), i.e., (8) holds at \(x^* \). Moreover, the nonzero entries of \(x^* \) satisfy the first-order bound (10).

Proof (i) Let \(u_\epsilon = (\frac{\epsilon}{\lambda n})^{1/q} \), \(s^k = (s_1^k, \ldots, s_n^k)^T \), and

\[
G(x, s) = f(x) + \lambda p \sum_{i=1}^{n} |x_i| s_i - \frac{s_i^q}{q}.
\]

By the definition of \(\{s^k\} \), one can observe that for \(k \geq 0 \),

\[
s^k = \arg \min_{0 \leq s \leq u_\epsilon} G(x^k, s), \quad x^{k+1} \in \text{Arg min}_{x \in \mathbb{R}^n} G(x, s^k).
\]

In addition, we observe that \(F_\epsilon(x) = \min_{0 \leq s \leq u_\epsilon} G(x, s) \) and \(F_\epsilon(x^k) = G(x^k, s^k) \) for all \(k \), where \(F_\epsilon \) is defined in (19). It then follows that

\[
F_\epsilon(x^{k+1}) = G(x^{k+1}, s^{k+1}) \leq G(x^{k+1}, s^k) \leq G(x^k, s^k) = F_\epsilon(x^k).
\]

Hence, \(\{F_\epsilon(x^k)\} \) is non-increasing and \(F_\epsilon(x^k) \leq F_\epsilon(x^0) \) for all \(k \). This together with Proposition 2.6 (i) implies that \(F(x^k) \leq F_\epsilon(x^0) \). Using this relation, (1) and (7), we see that \(\|x^k\|_p^p \leq (F_\epsilon(x^0) - f)/\lambda \) and hence \(\{x^k\} \) is bounded.

(ii) Since \(x^* \) is an accumulation point of \(\{x^k\} \), there exists a subsequence \(K \) such that \(\{x^k\}_K \rightarrow x^* \). By the continuity of \(F_\epsilon \), we have \(\{F_\epsilon(x^k)\}_K \rightarrow F_\epsilon(x^*) \), which together with the monotonicity of \(\{F_\epsilon(x^k)\} \) implies that \(F_\epsilon(x^k) \rightarrow F_\epsilon(x^*) \).

Let \(s^*_k = \min \{u_\epsilon, |x^*_i|^{\frac{1}{q-1}} \} \) for all \(i \). We then observe that \(\{s^k\}_K \rightarrow s^* \) and \(F_\epsilon(x^*) = G(x^*, s^*) \). Using (52) and \(F_\epsilon(x^k) \rightarrow F_\epsilon(x^*) \), we see that \(G(x^{k+1}, s^k) \rightarrow F_\epsilon(x^*) = G(x^*, s^*) \). Also, it follows from (51) that \(G(x, s^k) \geq G(x^{k+1}, s^k) \) for all \(x \in \mathbb{R}^n \). Taking limits on both sides of this inequality as
Iterative reweighted minimization methods

$k \in K \to \infty$, we have $G(x, s^*) \geq G(x^*, s^*)$ for all $x \in \mathbb{R}^n$. Hence, we have $x^* \in \text{Arg min}_{x \in \mathbb{R}^n} G(x, s^*)$, whose first-order optimality condition yields

$$0 \in \frac{\partial f(x^*)}{\partial x_i} + \lambda p s_i^* \text{sgn}(x_i^*), \ \forall i. \quad (53)$$

Recall that $s_i^* = \min\{u_\epsilon, |x_i^*|^{\frac{1}{q-1}}\}$. Substituting it into (53) and using (16), we obtain that

$$0 \in \frac{\partial f(x^*)}{\partial x_i} + \lambda \partial h_{u_\epsilon}(x_i^*), \ \forall i. \quad (54)$$

It then follows from (19) that x^* is a first-order stationary point of F_ϵ. In addition, by the monotonicity of $\{F_\epsilon(x^k)\}$ and $F_\epsilon(x^k) \to F_\epsilon(x^*)$, we know that $F_\epsilon(x^*) \leq F_\epsilon(x^0)$. Using these results and Theorem 2.7, we conclude that x^* is a first-order stationary point of (1). The rest of conclusion immediately follows from Theorem 2.2.

The subproblem (50) of the above IRL₁ method generally does not have a closed-form solution. Therefore, it requires some numerical method to find an approximate solution instead. Due to the similar reasons as mentioned in Sect. 3, this method may be practically inefficient or numerically unstable. We next propose a variant of this method in which each subproblem has a closed-form solution.

Algorithm 7 A variant of new IRL₁ minimization method for (1)

Let $0 < L_{\min} < L_{\max}$, $\tau > 1$ and $c > 0$ be given. Let q be defined in (14). Choose an arbitrary x^0 and ϵ such that (22) holds. Set $k = 0$.

1) Choose $L_k^0 \in \left[L_{\min}, L_{\max}\right]$ arbitrarily. Set $L_k = L_k^0$.
 1a) Solve the weighted l_1 minimization problem

$$x^{k+1} \in \text{Arg min}_{x \in \mathbb{R}^n} \left\{ f(x^k) + \nabla f(x^k)^T (x - x^k) + \frac{L_k}{2} \|x - x^k\|_2^2 + \lambda p \sum_{i=1}^n s_i^k |x_i| \right\}, \quad (54)$$

where $s_i^k = \min\left\{ (\frac{\epsilon}{L_n})^{\frac{1}{2}}, |x_i^k|^{\frac{1}{q-1}} \right\}$ for all i.

1b) If

$$F_\epsilon(x^k) - F_\epsilon(x^{k+1}) \geq \frac{c}{2} \|x^{k+1} - x^k\|_2^2 \quad (55)$$

is satisfied, where F_ϵ is defined in (19), then go to step 2).

1c) Set $L_k \leftarrow \tau L_k$ and go to step 1a).

2) Set $k \leftarrow k + 1$ and go to step 1).

end

We first show that for each outer iteration, the number of its inner iterations is finite.
Theorem 4.2 For each \(k \geq 0 \), the inner termination criterion (55) is satisfied after at most
\[
\left\lceil \frac{\log(L_f+c)-\log(2L_{\min})}{\log \tau} + 2 \right\rceil
\]
inner iterations.

Proof By a similar argument as for proving (39), one can show that for all \(k \geq 0 \),
\[
G(x^k, s^k) \geq G(x^{k+1}, s^k) + \left(L_k - \frac{L_f}{2} \right) \| x^{k+1} - x^k \|_2^2. \tag{56}
\]
Recall that \(F_\epsilon(x) = \min_{0 \leq s \leq u_\epsilon} G(x, s) \) and \(F_\epsilon(x^k) = G(x^k, s^k) \), where \(u_\epsilon = (\frac{\epsilon}{\lambda n})^{1/q} \). Using these two relations and (56), we obtain that
\[
F_\epsilon(x^{k+1}) = G(x^{k+1}, s^{k+1}) \leq G(x^{k+1}, s^k) \leq G(x^k, s^k) - (L_k - \frac{L_f}{2}) \| x^{k+1} - x^k \|_2^2
= F_\epsilon(x^k) - (L_k - \frac{L_f}{2}) \| x^{k+1} - x^k \|_2^2.
\]
Hence, (55) holds whenever \(L_k \geq (L_f+c)/2 \). The rest of the proof is similar to that of Theorem 3.2.

We next establish that the sequence \(\{x^k\} \) generated by the above variant of new IRL_1 method is bounded and moreover any accumulation point of \(\{x^k\} \) is a first-order stationary point of (1).

Theorem 4.3 Let the sequence \(\{x^k\} \) be generated by the above variant of new IRL_1 method. Assume that \(\epsilon \) satisfies (22). There hold:

(i) The sequence \(\{x^k\} \) is bounded.

(ii) Let \(x^* \) be any accumulation point of \(\{x^k\} \). Then \(x^* \) is a first-order stationary point of (1), i.e., (8) holds at \(x^* \). Moreover, the nonzero entries of \(x^* \) satisfy the first-order bound (10).

Proof (i) It follows from (55) that \(\{F_\epsilon(x^k)\} \) is non-increasing. The rest of the proof is similar to that of Theorem 4.1 (i).

(ii) Let \(\bar{L}_k \) denote the final value of \(L_k \) at the \(k \)th outer iteration. By similar arguments as in the proof of Theorem 3.3, we can show that \(\bar{L}_k \in [L_{\min}, \tau(L_f+c)/2] \) and \(\| x^{k+1} - x^k \| \to 0 \). Let \(B = \{i : x_i^* \neq 0\} \). Since \(x^* \) is an accumulation point of \(\{x^k\} \), there exists a subsequence \(K \) such that \(\{x^k\}_K \to x^* \). The first-order optimality condition of (54) with \(L_k = \bar{L}_k \) yields
\[
0 \in \frac{\partial f(x^k)}{\partial x_i} + \bar{L}_k(x_i^{k+1} - x_i^k) + \lambda ps_i^k \text{sgn}(x_i^{k+1}) = 0, \quad \forall i.
\]
Upon taking limits on both sides of this equality as \(k \in K \to \infty \), we see that (53) holds with \(s_i^* = \min\{ (\frac{\epsilon}{\lambda n})^{1/q}, |x_i^*|^{\frac{1}{q-1}} \} \) for all \(i \). The rest of the proof is similar to that of Theorem 4.1.
5 Computational results

In this section we conduct numerical experiment to compare the performance of the IRL1 methods (Algorithms 3, 4, 6) and their variants (Algorithms 3, 5, 7) studied in Sects. 3.1 and 3.2 and 4. In particular, we apply these methods to problem (1) with \(f \) being chosen as a least squares loss and a logistic loss, respectively, on randomly generated data. For convenience of presentation, we name these IRL1 methods as IRL1-1, IRL1-2 and IRL1-3, and their variants as IRL1-1-v, IRL1-2-v and IRL1-3-v, respectively. All codes are written in MATLAB and all computations are performed on a MacBook Pro running with Mac OS X Lion 10.7.4 and 4 GB memory.

The same initial point \(x^0 \) is used for all methods. In particular, we choose \(x^0 \) to be a solution of (4), which can be computed by a variety of methods (e.g., [2,22,31,32,34]). And all methods terminate according to the following criterion

\[
\|\text{Diag}(x) \nabla f(x) + \lambda p|x|^p\|_\infty \leq 10^{-6}.
\]

For the method IRL1-1 (Algorithms 3), we set \(\delta_k = 0.1^k \) and \(\epsilon_k = 0.1^k e \), where \(e \) is the all-ones vector. In this method, for each pair of \((\delta_k, \epsilon_k) \), Algorithm 1 is called to find a \(x^k \) satisfying (41), whose subproblem (30) with \(\alpha = 1 \) is solved by the spectral projected gradient (SPG) method [32] with the termination criterion

\[
\|\text{Diag}(x) \nabla f(x) + \lambda p\text{Diag}(s^k)|x|\|_\infty \leq \max\{0.995^i, 0.1 \delta_k\},
\]

(57)

where \(s^k \) is given in Step 1) of Algorithm 1 and \(i \) denotes the number of subproblem (30) solved so far in the current call of Algorithm 1. We set \(\epsilon_k = 0.5^k e \) for the method IRL1-2 (Algorithm 4). In addition, each subproblem of IRL1-2 and IRL1-3 (Algorithm 6) is solved by the SPG method [32] with a similar termination criterion as (57).

For the method IRL1-2-v (Algorithm 5), we choose \(\epsilon_k = 0.5^k e \). Also, for this method and IRL1-3-v (Algorithm 7), we set \(L_{\min} = 10^{-8}, L_{\max} = 10^8, c = 10^{-4}, \tau = 1.1, \) and \(L_0 = 1 \). And we update \(L_0 \) by the same strategy as used in [1,5,32], that is,

\[
L_0^k = \max\left\{ L_{\min}, \min\left\{ L_{\max}, \frac{\Delta x^T \Delta g}{\|\Delta x\|^2} \right\} \right\},
\]

where \(\Delta x = x^k - x^{k-1} \) and \(\Delta g = \nabla f(x^k) - \nabla f(x^{k-1}) \). In addition, for the method IRL1-1-v (Algorithm 3), we choose \(\delta_k = 0.1^k \) and \(\epsilon_k = 0.1^k e \). In this method, for each pair of \((\delta_k, \epsilon_k) \), Algorithm 2 is employed to find a \(x^k \) satisfying (41) with \(\alpha = 1 \). And the parameters for Algorithm 2 are set to be the same as those for IRL1-2-v and IRL1-3-v mentioned above.

In the first experiment, we compare the performance of the above methods for solving problem (1) with \(\lambda = 3 \times 10^{-3} \) and

\[
f(x) = \frac{1}{2}\|Ax - b\|_2^2 \quad \text{(least squares loss)}.
\]
It is easy to see that $f \geq 0$ and the Lipschitz constant of ∇f is $L_f = \|A\|^2$. As remarked in the end of Sect. 2, for IRL$_1$-3 and IRL$_1$-3-v, ϵ can be chosen as the one satisfying (22) but within 10^{-6} to the supremum of all ϵ’s satisfying (22) with f being replaced by 0.

We randomly generate matrix A and vector b with entries randomly chosen from standard uniform distribution. The results of these methods with $p = 0.1$ and 0.5 on these data are presented in Tables 1, 2, 3 and 4, respectively. In detail, the parameters m and n of each instance are listed in the first two columns, respectively. The objective function value of problem (6) for these methods is given in columns three to five, and CPU times (in seconds) are given in the last three columns, respectively. We shall mention that the CPU time reported here does not include the time for obtaining initial point x^0. We can observe that: 1) all methods produce similar objective function values; 2) the new IRL$_1$ method (i.e, IRL$_1$-3) is generally faster than the other two

Table 1 Comparison of three IRL$_1$ methods for least squares loss with $p = 0.1$

Problem	Objective value	CPU time					
m	n	IRL$_1$-1	IRL$_1$-2	IRL$_1$-3	IRL$_1$-1	IRL$_1$-2	IRL$_1$-3
100	500	0.174	0.177	0.175	7.7	4.7	3.7
200	1,000	0.338	0.338	0.338	10.3	11.6	8.9
300	1,500	0.465	0.465	0.465	30.6	31.1	30.3
400	2,000	0.616	0.616	0.616	94.0	83.5	78.8
500	2,500	0.776	0.776	0.776	215.4	218.9	198.7
600	3,000	0.923	0.923	0.923	541.1	543.4	499.8
700	3,500	1.076	1.069	1.051	353.3	510.4	816.5
800	4,000	1.213	1.213	1.213	628.3	689.9	487.8
900	4,500	1.352	1.352	1.352	1,118.7	1,151.9	1,229.3
1,000	5,000	1.512	1.512	1.512	1,807.4	1,654.3	1,610.5

Table 2 Comparison of three variants of IRL$_1$ methods for least squares loss with $p = 0.1$

Problem	Objective value	CPU Time					
m	n	IRL$_1$-1-v	IRL$_1$-2-v	IRL$_1$-3-v	IRL$_1$-1-v	IRL$_1$-2-v	IRL$_1$-3-v
100	500	0.174	0.175	0.175	4.5	3.0	0.6
200	1,000	0.328	0.337	0.337	12.6	6.9	0.8
300	1,500	0.468	0.464	0.464	10.3	29.0	6.2
400	2,000	0.630	0.620	0.620	31.3	23.0	5.9
500	2,500	0.782	0.791	0.791	47.2	60.0	13.9
600	3,000	0.918	0.908	0.910	46.8	154.5	21.3
700	3,500	1.048	1.066	1.047	90.5	110.7	32.0
800	4,000	1.193	1.215	1.215	88.6	146.5	53.2
900	4,500	1.353	1.388	1.388	219.3	199.6	45.5
1,000	5,000	1.511	1.534	1.513	221.6	242.3	64.8
Iterative reweighted minimization methods

Table 3 Comparison of three IRL1 methods for least squares loss with $p = 0.5$

Problem	Objective value	CPU time					
m	n	IRL1-1	IRL1-2	IRL1-3	IRL1-1	IRL1-2	IRL1-3
100	500	0.065	0.065	0.065	6.0	5.3	5.3
200	1,000	0.106	0.106	0.106	7.8	6.7	6.9
300	1,500	0.139	0.139	0.139	29.5	32.2	30.4
400	2,000	0.177	0.177	0.177	54.5	60.2	48.5
500	2,500	0.217	0.217	0.217	136.9	138.1	118.5
600	3,000	0.241	0.241	0.241	219.3	404.5	216.4
700	3,500	0.265	0.265	0.265	306.2	465.8	254.3
800	4,000	0.299	0.299	0.299	473.8	436.6	557.4
900	4,500	0.330	0.330	0.329	612.1	715.7	821.3
1,000	5,000	0.358	0.358	0.358	974.0	1,215.0	877.1

Table 4 Comparison of three variants of IRL1 methods for least squares loss with $p = 0.5$

Problem	Objective value	CPU time					
m	n	IRL1-1-v	IRL1-2-v	IRL1-3-v	IRL1-1-v	IRL1-2-v	IRL1-3-v
100	500	0.065	0.065	0.065	4.4	4.1	4.3
200	1,000	0.106	0.106	0.106	5.3	3.9	3.2
300	1,500	0.139	0.139	0.139	20.4	13.9	13.8
400	2,000	0.176	0.176	0.176	38.2	24.4	27.3
500	2,500	0.216	0.217	0.217	74.7	61.0	118.5
600	3,000	0.241	0.241	0.241	148.8	94.6	89.8
700	3,500	0.265	0.265	0.265	146.2	148.7	144.5
800	4,000	0.298	0.300	0.299	409.7	299.4	245.1
900	4,500	0.329	0.329	0.329	591.2	423.8	489.6
1,000	5,000	0.358	0.358	0.358	748.7	273.2	267.1

IRL1 methods, namely, IRL1-1 and IRL1-2; 3) the variant of the new IRL1 method (i.e, IRL1-3-v) is generally faster than IRL1-1-v and IRL1-2-v that are the variants of the other two IRL1 methods; 4) the method IRL1-i-v, namely, the variant of IRL1-i, substantially outperforms the IRL1-i method in terms of CPU time for $i = 1, 2, 3$; and 5) the variant of the new IRL1 method (namely, IRL1-3-v) is generally faster than all other methods.

In the second experiment, we compare the performance of the above methods for solving problem (1) with $\lambda = 3 \times 10^{-3}$ and

$$f(x) = \sum_{i=1}^{m} \log(1 + \exp(-b_i(a_i^T x)))$$

(logistic loss).
Table 5 Comparison of three IRL$_1$ methods for logistic loss with $p = 0.1$

Problem	Objective value	CPU time					
	IRL$_1$-1	IRL$_1$-2	IRL$_1$-3	IRL$_1$-1	IRL$_1$-2	IRL$_1$-3	
m	n						
500	1,000	0.082	0.082	0.082	2.8	1.1	0.7
1,000	2,000	0.102	0.105	0.097	9.3	3.8	7.1
1,500	3,000	0.152	0.152	0.149	11.5	5.5	6.1
2,000	4,000	0.166	0.158	0.166	19.8	31.1	13.3
2,500	5,000	0.204	0.197	0.204	15.4	24.4	10.5
3,000	6,000	0.234	0.227	0.214	26.6	21.4	58.7
3,500	7,000	0.246	0.251	0.255	50.1	26.8	36.2
4,000	8,000	0.262	0.271	0.248	90.2	25.7	36.2
4,500	9,000	0.265	0.266	0.265	52.5	69.8	40.6
5,000	10,000	0.278	0.293	0.304	253.3	170.1	121.1

Table 6 Comparison of three variants of IRL$_1$ methods for logistic loss with $p = 0.1$

Problem	Objective value	CPU time					
	IRL$_1$-1-v	IRL$_1$-2-v	IRL$_1$-3-v	IRL$_1$-1-v	IRL$_1$-2-v	IRL$_1$-3-v	
m	n						
500	1,000	0.069	0.085	0.090	0.7	0.2	0.1
1,000	2,000	0.100	0.105	0.097	3.5	1.6	1.3
1,500	3,000	0.149	0.143	0.146	2.9	2.3	1.4
2,000	4,000	0.166	0.166	0.164	5.4	7.6	2.6
2,500	5,000	0.189	0.194	0.184	16.6	11.4	6.0
3,000	6,000	0.224	0.237	0.231	9.0	20.8	3.5
3,500	7,000	0.241	0.246	0.245	22.7	16.1	4.4
4,000	8,000	0.269	0.271	0.266	34.8	24.1	14.7
4,500	9,000	0.265	0.260	0.238	45.9	37.6	25.9
5,000	10,000	0.288	0.303	0.293	86.7	23.5	17.3

It can be verified that $\underline{f} \geq 0$ and the Lipschitz constant of ∇f is $L_f = \| \tilde{A} \|^2$, where

$$\tilde{A} = \begin{bmatrix} b_1 a^1, \ldots, b_m a^m \end{bmatrix}.$$

Similar as above, for IRL$_1$-3 and IRL$_1$-3-v, ϵ is chosen as the one satisfying (22) but within 10^{-6} to the supremum of all ϵ’s satisfying (22) with \underline{f} being replaced by 0.

The samples $\{a^1, \ldots, a^m\}$ and the corresponding outcomes b_1, \ldots, b_m are generated in the same manner as described in [24]. In detail, for each instance we choose equal number of positive and negative samples, that is, $m_+ = m_- = m/2$, where m_+ (resp., m_-) is the number of samples with outcome $+1$ (resp., -1). The features of positive (resp., negative) samples are independent and identically distributed, drawn
from a normal distribution \(N(\mu, 1)\), where \(\mu\) is in turn drawn from a uniform distribution on \([0, 1]\) (resp., \([-1, 0]\)). The results of the above methods for these randomly generated instances with \(p = 0.1\) and 0.5 are presented in Tables 5, 6, 7 and 8, respectively. The CPU time reported here again does not include the time for obtaining initial point \(x^0\). The similar phenomenon mentioned above can be observed in this experiment.

6 Concluding remarks

In this paper we studied iterative reweighted minimization methods for \(l_p\) regularized unconstrained minimization problems (1). In particular, we derived lower bounds for nonzero entries of first- and second-order stationary points, and hence also of
local minimizers of (1). We extended some existing IRL$_1$ and IRL$_2$ methods to solve (1) and proposed new variants for them. Also, we provided a unified convergence analysis for these methods. In addition, we proposed a novel Lipschitz continuous ϵ-approximation to $\|x\|_p^p$. Using this result, we developed new IRL$_1$ methods for (1) and showed that any accumulation point of the sequence generated by these methods is a first-order stationary point of problem (1), provided that the approximation parameter ϵ is below a computable threshold value. This is a remarkable result since all existing iterative reweighted minimization methods require that ϵ be dynamically updated and approach to zero. Our computational results demonstrate that the new IRL$_1$ method and the new variants generally outperform the existing IRL$_1$ methods [17, 20].

Recently, Zhao and Li [35] proposed an IRL$_1$ minimization method to identify sparse solutions to undetermined linear systems based on a class of regularizers. When applied to the l_p regularizer, their method becomes one of the first type of IRL$_1$ methods discussed in Sect. 3.1. Though we only studied the l_p regularized minimization problems, the techniques developed in our paper can be useful for analyzing the iterative reweighted minimization methods for the optimization problems with other regularizers. In addition, most of the results in this paper can be easily generalized to l_p regularized matrix optimization problems.

References

1. Barzilai, J., Borwein, J.M.: Two point step size gradient methods. IMA J. Numer. Anal. 8, 141–148 (1988)
2. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2, 183–202 (2009)
3. Bian, W., Chen, X.: Smoothing SQP algorithm for non-Lipschitz optimization with complexity analysis. Preprint, February (2012)
4. Bian, W., Chen, X., Ye, Y.: Complexity analysis of interior point algorithms for non-Lipschitz and nonconvex minimization. Preprint, July (2012)
5. Birgin, E.G., Martínez, J.M., Raydan, M.: Nonmonotone spectral projected gradient methods on convex sets. SIAM J. Optim. 4, 1196–1211 (2000)
6. Blumensath, T., Davies, M.E.: Iterative hard thresholding for compressed sensing. Appl. Comput. Harmon. Anal. 27(3), 265–274 (2009)
7. Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52, 489–509 (2006)
8. Candès, E., Tao, T.: Decoding by linear programming. IEEE Trans. Inf. Theory 51(12), 4203–4215 (2005)
9. Candès, E., Wakin, M., Boyd, S.: Enhancing sparsity by reweighted l_1 minimization. J. Fourier Anal. Appl. 14, 877–905 (2008)
10. Chartrand, R.: Exact reconstruction of sparse signals via nonconvex minimization. IEEE Signal Process. Lett. 14, 707–710 (2007)
11. Chartrand, R., Staneva, V.: Restricted isometry properties and nonconvex compressive sensing. Inverse Probl. 24, 1–14 (2008)
12. Chartrand, R., Yin, W.: Iteratively reweighted algorithms for compressive sensing. In: 33rd International Conference on Acoustics, Speech, and Signal Processing (ICASSP) (2008)
13. Chen, S., Donoho, D., Saunders, M.: Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 20, 33–61 (1998)
14. Chen, X., Ge, D., Wang, Z., Ye, Y.: Complexity of unconstrained L_2-L_p minimization. Submitted to Math. Program, May 2011
15. Chen, X., Niu, L., Yuan, Y.: Optimality conditions and smoothing trust region Newton method for non-Lipschitz optimization. Preprint, March (2012)
16. Chen, X., Xu, F., Ye, Y.: Lower bound theory of nonzero entries in solutions of l_2-l_p minimization. SIAM J. Sci. Comput. 32, 2832–2852 (2010)
17. Chen, X., Zhou, W.: Convergence of reweighted l_1 minimization algorithms and unique solution of truncated l_p minimization. Preprint, April 2010
18. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)
19. Daubechies, I., DeVore, R., Fornasier, M., Gunturk, C.S.: Iteratively reweighted least squares minimization for sparse recovery. Commun. Pure. Appl. Math. 63, 1–38 (2010)
20. Foucart, S., Lai, M.: Sparest solutions of underdetermined linear systems via l_q-minimization for $0 < q \leq 1$. Appl. Comput. Harmon. Anal. 26, 395–407 (2009)
21. Ge, D., Jiang, X., Ye, Y.: A note on the complexity of L_p minimization. Math. Program. 21, 1721–1739 (2011)
22. Hale, E.T., Yin, W., Zhang, Y.: Fixed-point continuation applied to compressed sensing: Implementation and numerical experiments. J. Comput. Math 28(2), 170–194 (2010)
23. Herrity, K.K., Gilbert, A.C., Tropp, J.A.: Sparse approximation via iterative thresholding. IEEE Int. Conf. Acoust. Speech Signal Processing (2006)
24. Koh, K., Kim, S.J., Boyd, S.: An interior-point method for large-scale l_1-regularized logistic regression. J. Mach. Learn. Res. 8, 1519–1555 (2007)
25. Lai, M., Wang, J.: An unconstrained l_q minimization with $0 < q \leq 1$ for sparse solution of underdetermined linear systems. SIAM J. Optim. 21, 82–101 (2010)
26. Lu, Z., Zhang, Y.: Sparse approximation via penalty decomposition methods. SIAM J. Optim. (to appear) (2013)
27. Mourad, N., Reilly, J.P.: Minimizing nonconvex functions for sparse vector reconstruction. IEEE Trans. Signal Process. 58, 3485–3496 (2010)
28. Rao, B.D., Kreutz-Delgado, K.: An affine scaling methodology for best basis selection. IEEE Trans. Signal Process. 47, 187–200 (1999)
29. Sun, Q.: Recovery of sparsest signals via l_q minimization. Appl. Comput. Harmon. Anal. 32, 329–341 (2012)
30. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. B 58(1), 267–288 (1996)
31. Van Den Berg, E., Friedlander, M.P.: Probing the Pareto frontier for basis pursuit solutions. SIAM J. Sci. Comput. 31(2), 890–912 (2008)
32. Wright, S.J., Nowak, R., Figueiredo, M.: Sparse reconstruction by separable approximation. IEEE T. Image Process. 57, 2479–2493 (2009)
33. Xu, Z., Zhang, H., Wang, Y., Chang, X.: L_1 regularizer. Sci. China 52, 1–9 (2009)
34. Yun, S., Toh, K.-C.: A coordinate gradient descent method for l_1-regularized convex minimization. Comput. Optim. Appl. 48, 273–307 (2011)
35. Zhao, Y., Li, D.: Reweighted l_1-minimization for sparse solutions to underdetermined linear systems. SIAM J. Optim. 22, 1065–1088 (2012)