When is Enough Good Enough in Gravitational Wave Source Modeling?

Louis J. Rubbo

Center for Gravitational Wave Physics, 104 Davey Lab, University Park, PA 16802

Abstract. A typical approach to developing an analysis algorithm for analyzing gravitational wave data is to assume a particular waveform and use its characteristics to formulate a detection criteria. Once a detection has been made, the algorithm uses those same characteristics to tease out parameter estimates from a given data set. While an obvious starting point, such an approach is initiated by assuming a single, correct model for the waveform regardless of the signal strength, observation length, noise, etc. This paper introduces the method of Bayesian model selection as a way to select the most plausible waveform model from a set of models given the data and prior information. The discussion is done in the scientific context for the proposed Laser Interferometer Space Antenna.

INTRODUCTION

The anticipated data from the proposed Laser Interferometer Space Antenna (LISA) introduces a number of exciting and original challenges. Central in these challenges is the development of data analysis routines capable of coaxing out and characterizing individual signals from the noisy time series LISA will return. A great deal of work has already been invested into the development of algorithms applicable to the LISA data. While a number of these algorithms have demonstrated favorable capabilities on simulated data, each make an initial assumption about the functional form for the waveform under consideration. This paper introduces the use of Bayesian model selection as a quantitative method to selecting the waveform model. Using Bayes’ theorem we show how the data and prior information picks out the most plausible model from a set of proposed models.

Gravitational wave data analysis can be loosely described as a three step process as depicted in figure 1. In the first step, a signal is detected within a set of noisy time streams retrieved from the detector. In step two, the signal is characterized by producing estimates for the parameterization variables. Finally, step three is to make physical interpretations based on the estimated parameter values. These steps are not necessarily mutually exclusive. There are no obvious boundaries and areas of overlap do exist. However, each step is necessary when analyzing a detected signal.

In making the transition form detection to characterization (and quite often in the detection process itself) a particular waveform is assumed prior to the investigate. While an obvious assumption to make in the early developmental stages for an algorithm, it can lead to needless complications and even misidentifications. For example, if a signal is characterized by a low signal-to-noise ratio, some of the intricate waveform features can be lost in the noise and therefore a simpler model would have sufficed in the analysis.

In the Bayesian model selection approach presented here, the data and prior information
Bayesian model selection is not a new methodology, but it is one that has not been fully adopted by the still infant gravitational wave community. The aim of this paper is to briefly summarize the theory and to discuss possible applications for analyzing the LISA data. To this end, the paper first introduces the rules of probability theory, including a derivation of Bayes’ theorem. It then outlines the necessary calculations for performing a model selection procedure. From here we give a simple, qualitative example of its use for the LISA data. We conclude by suggesting a few other applications associated with LISA.

BAYESIAN STATISTICS

Rules of Probability Theory

We begin by introducing a notation first used by Jeffreys [1]. We will denote the statement “the probability that proposition A is true given proposition B” as $P(A|B)$. Similarly, “the joint probability that both A and B are true given C” is denoted by $P(A, B|C)$. The notation “$|C$” is the conditional that proposition C is assumed to be true. In Bayesian statistics probability statements such as $P(A)$ are not clear because they do not explicitly state their dependencies. Furthermore, all probabilities are conditional.

Starting with the desiderata that degrees of plausibility are represented by real numbers, the rules for manipulating plausibility statements should agree with common sense, and they should be consistent, then it is possible to show that the only two rules are required for manipulating probabilities [2]: the Sum Rule,

$$P(A + B|C) = P(A|C) + P(B|C) - P(A, B|C)$$

(1)
where the plus sign inside the probability argument means “or”, and the Product Rule,

\[P(A, B|C) = P(A|C)P(B|A, C). \] \hspace{1cm} (2)

By standard Aristotelian logic it must be the case that \(P(A, B|C) = P(B, A|C) \). Consequently, the Product Rule may be re-expressed as

\[P(B, A|C) = P(B|C)P(A|B, C). \] \hspace{1cm} (3)

Equating the last two expressions results in Bayes’ theorem,

\[P(A|B, C) = P(A|C) \frac{P(B|A, C)}{P(B|C)}. \] \hspace{1cm} (4)

Although Bayes’ theorem receives the accolades, it is simply a consistency statement for the Product Rule.

In words, Bayes’ theorem is often stated as

\[\text{Posterior} = \text{Prior} \cdot \frac{\text{Marginal Likelihood}}{\text{Global Likelihood}}. \]

In this form it is evident that Bayes’ theorem quantitatively describes a learning process. We start with a prior state of knowledge about proposition \(A \) when \(C \) is assumed true, \(P(A|C) \). We then gain new information \(B \), which in return updates our final state of knowledge as given by the posterior probability, \(P(A|B, C) \). The proportionality factor between our prior and posterior states of knowledge is a normalized statement about how likely the proposition \(B \) will occur given that both \(A \) and \(C \) are true.

While Bayes’ theorem is a useful byproduct of the Product Rule, the use of the Sum Rule is equally important. It is through the Sum Rule that we are able to take a joint probability of multiple propositions, and reduce it to a distribution of a smaller subset of the larger joint distribution. For example, consider the joint distribution between \(A \) and a set of \(n \) exhaustive \(B_i \)’s, given prior information \(I \). From the Sum Rule we have

\[P(A, \sum_{i=1}^{n} B_i|I) = P(A|I) \]

\[= P(A, B_1|I) + P(A, \sum_{i=2}^{n} B_i|I) - P(A, B_1, \sum_{i=2}^{n} B_i|I), \] \hspace{1cm} (5)

where the first equality follows from the Product Rule and the fact that the \(B_i \)’s are exhaustive. If the \(B_i \)’s are mutually exclusive, that is only one value can be realized at a time, then the last term is zero. Repeated applications of the Sum Rule leads to

\[P(A|I) = \sum_{i=1}^{n} P(A, B_i|I). \] \hspace{1cm} (6)

When the \(B_i \)’s take on continuous values the above goes over to an integral,

\[P(A|I) = \int P(A, B|I) dB. \] \hspace{1cm} (7)
The process which we have just described is referred to as *marginalization*. In it we have removed a *nuisance parameter*, B, from a joint distribution by a repeated application of the Sum Rule.

Model Selection

In model selection the central question that is being addressed is the following: “Given a particular set of data, and prior information, which hypothesis from a library $\mathcal{L} \equiv \{H_1, \ldots, H_\ell\}$ of hypotheses is the most plausible?” Key to this question are the ideas that all prior information is included and that the most plausible hypothesis is based on the given data. The hypotheses within a library are either assumed to be exhaustive or, by a careful choice in models, the space is made so [3].

A model itself consists of a functional form dependent on a vector of parameters $\vec{\lambda}$, and two probability distributions [4]. The first distribution describes the probability distribution for the parameter values given the model prior to the new data, $P(\vec{\lambda}|H_\alpha)$. This is a key point; two models are distinct even if they have the same parameterization but different priors about how those parameters are believed to be distributed. The second distribution is the probability of a data set given the model and a particular set of parameter values, $P(D|\vec{\lambda}, H_\alpha)$.

From Bayes’ theorem (4), the posterior probability for a particular model is given by

$$
P(H_\alpha|D, I) = P(H_\alpha|I) \frac{P(D|H_\alpha, I)}{P(D|I)}, \tag{8}$$

where I symbolizes our unenumerated prior information. The denominator can be viewed as a normalization constant,

$$
P(D|I) = \sum_{\alpha=1}^\ell P(H_\alpha|I)P(D|H_\alpha, I). \tag{9}$$

By investigating the *odds ratio* between two competing models, we can eliminate the need to calculate the normalization constant,

$$
O_{12} = \frac{P(H_1|D, I)}{P(H_2|D, I)} = \frac{P(H_1|I)P(D|H_1, I)}{P(H_2|I)P(D|H_2, I)} = \frac{P(D|H_1, I)}{P(D|H_2, I)}. \tag{10}
$$

The second line arises by assuming that our prior information does not favor one model over the other. The odds ratio gives us a means to directly compare competing models. If our library contains more than two models, one model may be used as a reference. For example, the reference model may be a constant (i.e. a no signal present model), while the remaining library contains a spectrum of waveform models.

From the odds ratio it is apparent that to compare models in a library only their marginal likelihoods need to be calculated. The likelihoods are found by marginalizing,
over all model parameters, the joint distribution for the data and the model parameters,

\[P(D|H_\alpha, I) = \int P(D, \tilde{\lambda}_\alpha|H_\alpha, I) \, d\tilde{\lambda}_\alpha = \int P(\tilde{\lambda}_\alpha|H_\alpha, I) P(D|\tilde{\lambda}_\alpha, H_\alpha, I) \, d\tilde{\lambda}_\alpha , \quad (11) \]

where the second equality follows from the Product Rule.

If the data is informative, i.e. we have learned something new, then the parameter likelihood function, \(P(D|\tilde{\lambda}_\alpha, H_\alpha, I) \), will be more peaked than the parameter priors, \(P(\tilde{\lambda}_\alpha|H_\alpha, I) \). Figure 2 illustrates this for a one dimensional model. In this instance we can estimate the marginal likelihood as

\[P(D|H_\alpha, I) \approx P(D|\lambda_{ML}, H_\alpha, I) \left[P(\lambda_{ML}|H_\alpha, I) \, \delta\lambda \right] . \quad (12) \]

Here \(\lambda_{ML} \) is the parameter value at the maximum likelihood and \(\delta\lambda \) is the characteristic width for the parameter likelihood function. The term in square brackets is an Occam factor; a term that naturally penalizes complicated models. To see this consider a uniform prior, \(P(\lambda|I) = (\Delta\lambda)^{-1} \), where \(\Delta\lambda \) is the interval width for the range of expected parameter values before the data is collected. The marginal likelihood is now

\[P(D|H_\alpha, I) \approx P(D|\tilde{\lambda}_{ML}, H_\alpha, I) \frac{\delta\lambda}{\Delta\lambda} . \quad (13) \]

For informative data the Occam factor is always less than unity. Consequently, for a complicated model to be favored over a simpler one, the data must justify it by having a corresponding larger value for the parameter likelihood function.

The proceeding argument is quickly extended to multiple dimensions. If the model has more than one parameter, then there is a corresponding Occam factor for each parameter,

\[P(D|H_\alpha, I) \approx P(D|\tilde{\lambda}_{ML}, H_\alpha, I) \frac{\delta\lambda_1}{\Delta\lambda_1} \cdots \frac{\delta\lambda_i}{\Delta\lambda_i} , \quad (14) \]

where \(i \) is the number of parameters.
As a last point of emphasis, it is not enough to perform a parameter estimation analysis and find that $\lambda_i = 0$, therefore ruling out the model that includes λ_i. Doing so would neglect the Occam factors that arise in Bayesian model selection and are not present in a parameter estimation analysis, even a Bayesian analysis.

WHITE DWARF TRANSFORM

As a conceptually trivial but applicable example of Bayesian model selection for the LISA mission, consider the detection of a supermassive black hole binary inspiral. For black hole binaries with component masses in the range of $10^{4-7} \, M_\odot$, LISA will observe the binary evolution as the binary sweeps through frequencies from $\sim 0.01 \, \text{mHz}$ up to a few milliHertz (depending on the actual masses). In this same range of frequencies is the gravitational wave background formed from the $\sim 10^8 \, \text{solar mass}$ binaries in our own galaxy. As the black holes inspiral, their detected signal will overlap with the collective galactic background signal. Moreover, at any instant of time the black hole binary looks like a monochromatic binary. That is, as a supermassive black hole binary with a time to coalescence of t_c sweeps past a galactic binary of period T, the two signals have a significant overlap for an interval equal to the geometric mean of t_c and T [5]. Consequently the black hole inspiral signal may be decomposed into a population of monochromatic galactic binaries. Such a process is often referred to as a white dwarf transform.

For a gravitational wave data analyst the task is to select which of two models is more plausible. The models under consideration are

$$H_{WD} = \left(\begin{array}{c} \text{the detected signal is from a population} \\ \text{of monochromatic galactic binaries} \end{array} \right)$$

$$H_{BH} = \left(\begin{array}{c} \text{the detected signal is from a single} \\ \text{supermassive black hole binary} \end{array} \right).$$

Model H_{WD} is parameterized by $7N$ variables, where N is the number of binaries required to describe the apparent inspiral signal. For an inspiral signal between 0.01 and 1 mHz, N is on the order of 10^4 assuming a binary per frequency bin and for a one year observation1. Conversely, model H_{BH} is characterized by only seventeen parameters.

Estimating the posterior probabilities using equation (14) quickly leads to the conclusion that the large parameter space associated with the white dwarf population model has associated with it an overwhelming number of Occam factors. These Occam factors penalize the white dwarf population model and in turn make the plausibility for the model extremely low. The black hole model, on the other hand, only has seventeen Occam factors and therefore is not as severely penalized. Consequently, although an ensemble of galactic binaries could conspire to look like a supermassive black hole binary inspiral,

1 A frequency bin Δf is equal to one on the observation time, $\Delta f = T^{-1}$. For a one year observation, which is used here, $\Delta f = 3.2 \times 10^{-8} \, \text{Hz}$.
the relative probability for such a model is many orders of magnitude less than a model that contains a single black hole binary.

CONCLUDING REMARKS

The white dwarf transform is an obvious application of Bayesian model selection. More informative and interesting examples include using Bayesian model selection as a criteria for deciding when a signal is present in the data; characterizing complicated but detected signals that have low signal-to-noise ratios; and counting the number of detectable galactic binaries within the larger population. The first application is simply answering the question, when does the data justify declaring a detection for a particular waveform? The second application is concerned with deciding the information content from a weak signal. That is, what features of an emitting system are actually measurable and what features are lost to the noise. Counting the number of detectable galactic binaries is one of the few Bayesian model selection applications used in the LISA literature [6, 7]. Embedded within Reversible Jump Markov Chain Monte Carlo techniques is the use of odds ratios in deciding the number of galactic binaries that are detectable.

In general, Bayesian model selection gives a logical and quantitative approach to directly comparing competing models. By using a model selection procedure we are able to maximize the amount of information we can extract from LISA’s data. The most plausible model is the one that is most justified by the data and our prior state of knowledge prior to the experiment. As progress is made in the development of LISA analysis routines it is conceivable that Bayesian approaches will be a central tool.

ACKNOWLEDGMENTS

The author would like to thank Edward Cazalas, Matthew Francis, and Deirdre Shoemaker for a number of helpful discussions. Also, Lee Samuel Finn for introducing the author to the Bayesian approach and for guidance on a number of its subtler points. This work was supported by the Center for Gravitational Wave Physics. The Center for Gravitational Wave Physics is funded by the National Science Foundation under cooperative agreement PHY 01-14375.

REFERENCES

1. H. Jeffreys, Theory of Probability, The International Series of Monographs on Physics, Clarendon Press, Oxford, 1961, 3 edn.
2. R. T. Cox, American Journal of Physics 14, 1–13 (1946).
3. G. L. Bretthorst, “An Introduction to Model Selection using Probability Theory as Logic,” in Maximum Entropy and Bayesian Methods, edited by G. R. Heidbreder, Kluwer Academic Publishers, Dordrecht, 1996, pp. 1–42.
4. D. J. C. MacKay, Neural Systems 4, 415–447 (1992).
5. N. J. Cornish, and J. Crowder, Physical Review D 72, 043005 (2005).
6. R. Umstätter, et al., Physical Review D 72, 022001 (2005).
7. A. Stroeer, and A. Vecchio, Automatic Bayesian Inference for LISA Data Analysis (2006), presentation at the Sixth International LISA Symposium.