Rotational Surfaces in S^3 with Constant Mean Curvature

Oscar M. Perdomo

Abstract There is a two-parametric family of rotational symmetric CMC surfaces; more precisely, for every real number H and every $C \geq 2(H + \sqrt{1 + H^2})$ there is a rotational symmetry surface $\Sigma_{H,C}$ with mean curvature H. Perdomo (Asian J Math 14:73–108, 2010) showed that for every H between $\cot\left(\frac{\pi}{m}\right)$ and $\frac{m^2-2}{2\sqrt{m^2-1}}$, there exists an embedded rotational symmetric example with non-constant principal curvatures that is invariant under the cyclic group Z_m. Recently Andrews and Li (J Differ Geom 99:169–189, 2015) showed that these embedded CMC tori are the only embedded genus 1 surfaces with CMC on the sphere. In this paper we complete the study of this family of CMC surfaces and we show that for every integer $m > 2$, there is a properly immersed example in this family that contains a great circle and is invariant under the cyclic group Z_m. We will say that these examples contain the axis of symmetry. We also show that every non-isoparametric surface $\Sigma_{H,C}$ is either properly immersed and invariant under the cyclic group Z_m for some integer $m > 1$ or it is dense in the region bounded by two isoparametric tori if the surface $\Sigma_{H,C}$ does not contain the axis of symmetry or it is dense in the region bounded by a totally umbilical surface if the surface $\Sigma_{H,C}$ contains the axis of symmetry.

Keywords Rotational surfaces · Constant mean curvature · Properly immerse · Sphere · Tori

Mathematics Subject Classification 53C42 · 53C10

Received: 2 March 2014 / Published online: 24 June 2015
© Mathematica Josephina, Inc. 2015
1 Introduction

We say that a surface Σ in the three-dimensional unit sphere S^3 is rotational symmetric with respect to the geodesic $\gamma(s) = (\cos s, \sin s, 0, 0)$, if the surface has the form

$$\phi(s, t) = \left(\sqrt{1 - |\alpha(t)|^2} \cos(s), \sqrt{1 - |\alpha(t)|^2} \sin(s), \alpha(t) \right)$$

where $\alpha: \mathbb{R} \to \mathbb{R}^2$ is a regular curve contained in the unit disk. The curve $\alpha(t)$ is called the profile curve of the surface ϕ and we will say that the surface contains the axis of symmetry if the curve α passes through the origin. When the profile curve is a segment connecting two points in the unit circle, the surface is a totally umbilical sphere. For sake of simplicity in explaining the results in this paper we will omit totally umbilical spheres from the family of rotational symmetric surfaces. When α is a circle centered at the origin, the principal curvatures of the immersion ϕ are constant, that is, the surface is isoparametric. This paper studies rotational symmetric surfaces in S^3 with constant mean curvature, that is, surfaces with CMC such that up to a rigid motion are of the form (1.1). From the results in either [11] or [7] we conclude that all the rotational symmetric surfaces can be described with two parameters in the set

$$\{\Sigma_{H, C}: H \in \mathbb{R}, C \geq 2 \left(H + \sqrt{1 + H^2} \right) \}.$$

At this point we would like to point out that even though we can pick the Gauss map on $\Sigma_{H, C}$ so that the mean curvature of $\Sigma_{H, C}$ is H, H must be viewed as a parameter and not as the mean curvature of the surface. For example, when $C > 2(|H| + \sqrt{1 + H^2})$, $\Sigma_{H, C}$ and $\Sigma_{-H, C}$ are different surfaces even though their Gauss map can be chosen so that they both have constant mean curvature $|H|$.

An interesting property that we show in this paper is the fact that most of these surfaces are not properly immersed. We prove that the properly immersed surfaces are invariant under a cyclic group and also we decide several properties of the surface according to the values of H and C; for example, we show that surfaces that satisfy $C = -\frac{1}{H}$ are exactly those that contain the axis of symmetry. For these surfaces we have that for every $m \geq 3$ there is a rotational symmetric surface that contains the axis of symmetry whose profile curve is invariant under the cyclic group \mathbb{Z}_m. Figure 1 shows some pictures of these profile curves.

With respect to the problem of deciding if these surfaces are embedded, Furuya [3], and independently Otsuki [5] showed that the only rotational symmetric minimal hypersurfaces in the n-dimensional unit sphere are the Clifford tori—the only isoparametric minimal examples with two principal curvatures. In 1986, Ripol [9] showed that there is a non-isoparametric embedded rotational symmetric surface with constant mean curvature H, for any H different from 0 and $\pm \frac{1}{\sqrt{3}}$. In 1990, Leite and Brito [2] showed the existence of infinitely many embedded non-isoparametric rotational symmetric hypersurfaces in S^{n+1} with constant mean curvature. Perdomo [7] showed that for every integer $m \geq 2$ and any H between $\cot(\frac{\pi}{m})$ and $\frac{m^2 - 2}{m^2 - 1} \sqrt{n-1}$, there is a non-isoparametric rotational symmetric embedded hypersurface in S^{n+1} whose profile curve is invariant under the cyclic group \mathbb{Z}_m. For rotational symmetric surfaces, using complex variables, Li and Andrews [1] showed that the examples found by Perdomo [7] are the only embedded rotational surfaces in the family $\Sigma_{H, C}$ when $H \geq 0$.
Fig. 1. Profile curve of some CMC rotational symmetric surface that contains the axis of symmetry.
It is not difficult to show that for the immersion (1.1), the vector fields $\frac{\partial \phi}{\partial s}$ and $\frac{\partial \phi}{\partial t}$ define principal directions associated with the principal curvatures μ and λ respectively and that for any s, the curve $t \rightarrow \phi(s, t)$ is a geodesic. The curve α can be re-parameterized so that, for any s, the curve $\gamma(t) = \phi(s, t)$ is parameterized by arc-length. It is known that CMC rotational symmetry surfaces do not have umbilical points. Besides, assuming that $\frac{\partial \phi}{\partial t}$ has length 1, we will assume that $\lambda(t) - \mu(t)$ is positive. Wei [10] showed that if $g(t) = (\lambda(t) - \mu(t))^2 - 1^2$ then,

$$g'(t)^2 + g(t)^2 \left(1 + \left(H + g(t)^{-2}\right)^2\right) = C.$$ (2.1)

This differential equation creates a one-to-one correspondence between rotational symmetric surfaces with constant mean curvature H and positive solutions of the differential equation. It is not difficult to see that a positive solution exists if and only if $C \geq 2(H + \sqrt{1 + H^2})$. When $C = 2(H + \sqrt{1 + H^2})$, the solution is constant, more precisely $g = (1 + H^2)^{-\frac{1}{2}}$. In this case the curve α reduces to a circle centered at the origin with radius $\frac{1}{\sqrt{2 + 2H(H - \sqrt{1 + H^2})}}$. These solutions are known as Clifford surfaces. A direct computation shows that when $C > 2(H + \sqrt{1 + H^2})$

$$g(t) = \sqrt{\frac{C - 2H}{2 + 2H^2} + \frac{\sqrt{C^2 - 4CH - 4}}{2 + 2H^2}} \sin \left(2\sqrt{1 + H^2} t\right)$$ (2.2)

solves the differential equation (2.1). We have that $g(t)$ is a periodic function with period $T = \frac{\pi}{\sqrt{1 + H^2}}$, that reaches the maximum value $\sqrt{\frac{C - 2H + \sqrt{C^2 - 4CH - 4}}{2 + 2H^2}}$ when $t = \frac{T}{4}$ and the minimum value $\sqrt{\frac{C - 2H - \sqrt{C^2 - 4CH - 4}}{2 + 2H^2}}$ when $t = \frac{3T}{4}$. Figure 2 shows the graph of the function g.

The following lemma gives us explicit immersions, the proof is a direct computation and also can be found in ([8], Theorem 2.4)

Lemma 2.1 If $C > 2(H + \sqrt{1 + H^2})$ and $C \neq -\frac{1}{H}$, then the immersion ϕ in (1.1) with

$$\alpha(t) = \sqrt{\frac{C - g(t)^2}{C}} (\cos(\theta(t)), \sin(\theta(t))) with \theta(t) = \int_{\frac{T}{2}}^{t+\frac{T}{2}} \sqrt{C g(\tau)(H + g(\tau)^{-2})} \frac{d\tau}{C - g(\tau)^2}$$

has constant mean curvature H. The function g is given by (2.2). We will denote this surface as $\Sigma_{H,C}$.

Springer
Fig. 2 Graph of a non-constant positive solution of (2.1)

Remark 2.2 The function θ defined in Lemma 2.1 is not periodic but, for any $t \in [0, T]$ and any integer q, it satisfies that $\theta(t + qT) = \theta(t) + q\theta(T)$ where $T = \frac{\pi}{\sqrt{1 + H^2}}$ is the period of the function g. Therefore, if

$$K(H, C) = \theta(T) = \int_{T}^{\frac{5T}{4}} \sqrt{C} \frac{g(\tau)(H + g(\tau)^{-2})}{C - g(\tau)^2} d\tau,$$

then the immersion in Lemma 2.1 is invariant under the subgroup of $O(4)$ given by

$$\left\{ \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \cos(qK(H, C)) & \sin(qK(H, C)) \\ 0 & 0 & -\sin(qK(H, C)) & \cos(qK(H, C)) \end{pmatrix} : q \in \mathbb{Z} \right\}.$$

This group is finite if and only if, $\frac{K(H, C)}{\pi}$ is rational.

When $H \geq 0$ the function $\theta(t)$ is increasing, therefore, if $K(H, C) = \frac{2\pi}{m}$ for some integer $m \geq 1$ and some constant H and C, then it is easy to see that the profile curve of $\Sigma_{H, C}$ is a simple curve and therefore $\Sigma_{H, C}$ is embedded. Solutions of the equation $K(H, C) = \frac{2\pi}{m}$ were found in [7] and a proof that these solutions were the only ones when $H \geq 0$ was given in [1] using the following lemma.

Lemma 2.3 (Andrews and Li [1]) If $a = \frac{1}{C}$, then

$$T(H, a) = K(H, \frac{1}{a}) = \int_{x_1}^{x_2} \frac{Hu + a}{(1 - u)\sqrt{u}\sqrt{1 + H^2}\sqrt{(u - x_1)(x_2 - u)}} du,$$

where,

$$x_1 = \frac{C - 2H - \sqrt{C^2 - 4CH - 4}}{2(1 + H^2)C} \quad \text{and} \quad x_2 = \frac{C - 2H + \sqrt{C^2 - 4CH - 4}}{2(1 + H^2)C}.$$

Moreover, if $H \geq 0$, then $\frac{\partial T}{\partial a} > 0$.

\(\text{Springer}\)
The variation of the angle function θ over a period of the function g for the profile curve of minimal rotational symmetric hypersurfaces in S^{n+1} was extensively studied by Otsuki. For a paper that reviews the story of this problem we refer to [6]. Otsuki was the first one who provided explicit examples of non-isoparametric rotational symmetric minimal hypersurfaces in S^{n+1} [4].

The main goal of this paper is to study the surfaces $\Sigma_{H,C}$ when $H < 0^2$. We will need to deal with three issues. The first one is that even though the family of surfaces $\Sigma_{H,C}$ varies continuously with the parameters H and C, the immersions given in Lemma 2.1 are not well defined when $C = -\frac{1}{H}$. The second issue is that when H is negative the derivative of the function θ is positive everywhere for some values of H and C and it changes sign for other values of H and C. We need to analyze when each case happens and analyze both cases. The third issue is that the function $K(H,C)$ is not continuous when $C = -\frac{1}{H}$, it has a jump discontinuity. We need to analyze the jump of this discontinuity.

3 The Immersions

In this section we provide a formula that parameterizes all the immersions $\Sigma_{H,C}$. As a consequence we obtain the continuity of this family of immersions with respect to the parameters H, C. It turns out that the reason why the formula given in Lemma 2.1 fails when $C = -\frac{1}{H}$ is because it essentially uses polar coordinates for the profile curve and we can check that when $C = -\frac{1}{H}$ the profile curve passes through the origin. A similar formula for all CMC hypersurfaces in S^{n+1} with rotational symmetry was provided by Wu in [11].

Lemma 3.1 If $C > 2(H + \sqrt{1 + H^2})$, then the immersion ϕ in (1.1) with profile curve

$$\beta = \frac{1}{\sqrt{C g'(\tau)^2 + C g(\tau)^2}} \times \left(-\sqrt{C} g' \cos(\theta) - (H g^2 + 1) \sin(\theta), \sqrt{C} g' \sin(\theta) - (H g^2 + 1) \cos(\theta) \right)$$

with

$$\theta(\tau) = \int_{\tau}^{\tau + t} \frac{\sqrt{C} g(\tau)(H - g(\tau)^{-2})}{g'(\tau)^2 + g(\tau)^2} d\tau$$

has constant mean curvature H.

Proof The proof is a direct computation. Also we can show that for any $C \neq -\frac{1}{H}$ with $H < 0$, the curve α defined in Lemma 2.1 agrees with the curve β defined in this lemma. We can see this by directly checking that

$$|\alpha(\tau)|^2 = |\beta(\tau)|^2 = \frac{C + 2H + 2CH^2 - \sqrt{-4 + C^2 - 4CH^2}}{2C + 2CH^2} \sin(2\sqrt{1 + H^2} \tau)$$

(3.1)
and also checking that if $a(t)$ denotes the angle from the positive direction of the x-axis to the position vector $\beta(t)$, then $a'(t) = \frac{\sqrt{C g(t)(H + g(t)^2)}}{C - g(t)^2}$, which agrees with the derivative of the angle from the positive direction of the x-axis to the position vector $\alpha(t)$.

Definition 1 For any $C > 2(H + \sqrt{1 + H^2})$, we will refer to the surface in S^3 given by the immersion in Lemma 3.1 as $\Sigma_{H,C}$.

4 The Function $K(H, C)$

In this section, using the technique introduced in [1] we will study the function $K(H, C)$ as a function of C for any real number H. We have the following proposition.

Proposition 4.1 For any real number H and any $C > 2(H + \sqrt{1 + H^2})$ different from $-\frac{1}{H}$, let us define $K(C, H)$ as in Lemma 2.3, that is,

$$K(H, C) = \int_{x_1}^{x_2} \frac{H u + C^{-1}}{(1 - u)\sqrt{u\sqrt{1 + H^2}}\sqrt{(u - x_1)(x_2 - u)}} \, du$$

where,

$$x_1 = \frac{C - 2H - \sqrt{C^2 - 4CH - 4}}{2(1 + H^2)C} \quad \text{and} \quad x_2 = \frac{C - 2H + \sqrt{C^2 - 4CH - 4}}{2(1 + H^2)C}$$

The following statements are true:

- The function $C \to K(H, C)$ is decreasing, differentiable and continuous at any value $C \neq -\frac{1}{H}$

- $$\lim_{C\to 2(H + \sqrt{1 + H^2})^+} K(H, C) = \pi \sqrt{2 - \frac{4H}{\sqrt{4 + 4H^2}}}$$

- if $H > 0$ then,
 $$\lim_{C\to \infty} K(H, C) = 2 \arccot(H) \text{ with } 0 < \arccot(H) < \frac{\pi}{2}$$

- if $H < 0$ then,
 $$\lim_{C\to \infty} K(H, C) = 2 \arccot(H) \text{ with } -\frac{\pi}{2} < \arccot(H) < 0$$

- if $H < 0$ then,
 $$\lim_{C\to -\frac{1}{H}^-} K(H, C) = \int_0^1 \frac{-H}{\sqrt{v(1 - v)(H^2 + v)}} \, dv + \pi$$
\begin{align*}
\lim_{C \to -\frac{1}{H}} K(H, C) &= \int_0^1 \frac{-H}{\sqrt{v(1-v)(H^2 + v)}} \, dv - \pi \\
\end{align*}

- The function \(b(H) = \int_0^1 \frac{-H}{\sqrt{v(1-v)(H^2 + v)}} \, dv \) defined in the interval \((-\infty, 0)\) is strictly decreasing. Moreover

\[\lim_{H \to -\infty} b(H) = \pi \quad \text{and} \quad \lim_{H \to 0} b(H) = 0 \]

Proof The proof of the first part of this proposition follows the proof of Lemma 2.3 presented in [1] and we will present the proof here in order to make clear the behavior of the function \(K(H, C) \) when \((H, C)\) is near the hyperbola \(C = -\frac{1}{H} \). Let \(U = \mathbb{C} - \{x + iy : y = 0, x \geq 0\} \). In the set \(U \), let us define the complex function \(sr \) as

\[sr(z) = \sqrt{|z|} e^{i\theta} \text{ where } z = |z|e^{i\theta} \text{ with } 0 < \theta < 2\pi \]

Clearly the function \(sr \) is an analytic function that satisfies \(sr^2(z) = z \). A direct computation shows that \(0 < x_1 < x_2 \leq 1 \) and, \(x_2 = 1 \) if and only if \(H < 0 \) and \(C = -\frac{1}{H} \). Let \(l_1 = \{x + iy : y = 0, x_1 < x < x_2\} \) and \(l_2 = \{x + iy : y = 0, x < 0\} \). Since the Möbius transformation \(T(z) = \frac{z - x_1}{x_2 - z} \) sends the segment \(l_1 = \{x + iy : y = 0, x_1 < x < x_2\} \) to the set of positive real numbers, the function \(sr(T(z)) \) is well defined for all \(z \notin l_1 \). We also have that the function \(sr(-z) \) is well defined for all \(z \notin l_2 \). Let \(\Omega \) be the complement of the set \(l_1 \cup l_2 \cup \{0, x_1, x_2\} \) and let \(f : \Omega \to \mathbb{C} \) be the holomorphic function

\[f(z) = -i \sqrt{1 + H^2} sr(-z) (x_2 - z) sr\left(\frac{z - x_1}{x_2 - z}\right) \]

Let \(\gamma_1, \gamma_2 \) and \(\gamma_3 \) be the curves given in Fig. 3. Using the fact that for every \(x_1 < x < x_2 \) and and \(\epsilon \neq 0 \) we have that

\[\lim_{\epsilon \to 0^+} sr\left(\frac{(x + i\epsilon) - x_1}{x_2 - (x + i\epsilon)}\right) = \sqrt{\frac{x - x_1}{x_2 - x}} \quad \text{and} \quad \lim_{\epsilon \to 0^-} sr\left(\frac{(x + i\epsilon) - x_1}{x_2 - (x + i\epsilon)}\right) = -\sqrt{\frac{x - x_1}{x_2 - x}} \]

and

\[\lim_{\epsilon \to 0} sr(-(x + i\epsilon)) = i\sqrt{x} \]
Fig. 3 The closed curves γ_1, γ_2 and γ_3

using these three limits, we can prove (as pointed out in [1]) that,

$$K(H, C) = \int_{x_1}^{x_2} \frac{H u + C^{-1}}{(1 - u)\sqrt{u} \sqrt{1 + H^2 \sqrt{(u - x_1) (x_2 - u)}}} \, du$$

$$= -\frac{1}{2} \int_{\gamma_1} \frac{H z + C^{-1}}{(1 - z) f(z)} \, dz$$

Since the function $\frac{H + C^{-1}}{(1 - z) f(z)}$ is holomorphic, we have that

$$\int_{\gamma_3} \frac{H z + C^{-1}}{(1 - z) f(z)} \, dz + \int_{-\gamma_1} \frac{H z + C^{-1}}{(1 - z) f(z)} \, dz + \int_{-\gamma_2} \frac{H z + C^{-1}}{(1 - z) f(z)} \, dz = 0$$

We can evaluate the limit when $\epsilon \to 0^+$ of the integral above over γ_3, using the fact

$$f(1) = -i \sqrt{1 + H^2} \sqrt{(1 - x_1)(1 - x_2)} = -i C^{-1} |1 + HC|$$

The last equality follows because we have that $(1 - x_1)(1 - x_2) = \frac{(1 + CH)^2}{C^2(1 + H^2)}$

Therefore,

$$K(H, C) = \begin{cases}
-\pi - \frac{1}{2} \int_{\gamma_3} \frac{H z + C^{-1}}{(1 - z) f(z)} \, dz & \text{if } C > -\frac{1}{H} \\
\pi - \frac{1}{2} \int_{\gamma_3} \frac{H z + C^{-1}}{(1 - z) f(z)} \, dz & \text{if } C < -\frac{1}{H}
\end{cases} \quad (4.1)$$
A direct computation shows that
\[
\frac{\partial}{\partial C} \left(\frac{Hz + C^{-1}}{(1-z)f(z)} \right) = -\frac{z^2}{C^2 f(z)^3}
\]

Therefore, we obtain that
\[
\frac{\partial K(H, C)}{\partial C} = \frac{1}{2C^2} \int_{\gamma_3} \frac{z^2}{f(z)^3} dx < 0
\]

Taking the limit when the bigger radius in the curve \(\gamma_3\) goes to infinity and the small radius in the curve \(\gamma_3\) goes to 0 we obtain that
\[
\frac{\partial K(H, C)}{\partial C} = \frac{1}{2C^2} \int_{\gamma_3} \frac{z^2}{f(z)^3} dx < 0
\]

A direct computation shows that if \(H < 0\), then
\[
\lim_{C \to -\frac{1}{H}} x_2 = 1 \quad \text{and} \quad \lim_{C \to -\frac{1}{H}} x_1 = \frac{H^2}{1 + H^2}
\]

We also have that, on the curve \(\gamma_3\),
\[
\frac{Hz + C^{-1}}{(1-z)f(z)} \rightarrow G(z) = \frac{H}{i(1-z)\text{sr}(-z) \text{sr} \left(\frac{(1+H^2)z-H^2}{1-z} \right)} \quad \text{as} \quad C \rightarrow -\frac{1}{H}
\]

The function \(G\) is holomorphic in the complement of the set
\[
\left\{ x + iy : y = 0 \text{ and, either } x \leq 0 \text{ or } \frac{H^2}{1 + H^2} \leq x \leq 1 \right\}
\]

If we define \(\gamma_4\) like in Fig. 4, we have that \(\int_{\gamma_3} g(z)dz + \int_{\gamma_4} g(z)dz = 0\), and taking the limit when the radius of the small circle in the curve \(\gamma_4\) goes to zero we obtain that
\[
-\frac{1}{2} \int_{\gamma_3} G(z)dz = \frac{1}{2} \int_{\gamma_4} G(z)dz = \int_{\gamma_4} \frac{-H}{u(1-u)((1+H^2)u-H^2)} du = \int_{0}^{1} \frac{-H}{v(1-v)(H^2 + v)} dv
\]

The last equation follows by doing the substitution \(v = (1 + H^2)u - H^2\). Using the expression for \(K(H, C)\) given in (4.1) we obtain the expressions in the proposition for the limit of \(K(H, C)\) when \(C\) goes to \(-\frac{1}{H}^+\) and \(-\frac{1}{H}^-\). Using the fact that
Fig. 4 The closed curves γ_3 and γ_4

Fig. 5 The shaded region shows the possible values of $K(H, C)$ for every H.

$$b(H) = \int_0^1 \frac{-H\, dv}{\sqrt{v(1-v)(H^2+v)}}$$

$$y(H) = \text{ArcCot}(H)$$

$$y(H) = \pi - \frac{4H}{\sqrt{4+4H^2}}$$

$$b(H) = -2iH\, \text{EllipticK}(-H^2) + 2H\, \text{EllipticK}(1 + H^2),$$ we obtain that $\lim_{H \to 0^-} b(H) = 0$ and $\lim_{H \to -\infty} b(H) = \pi$.

The limits for $K(H, C)$ when C goes to $2(H + \sqrt{1 + H^2})$ and when C goes to ∞ were computed in [7].

Figure 5 shows the limit values of the function $K(H, C)$ as well as all possible values of this function for every H. It also shows the discontinuity of this function when C approaches $-\frac{1}{H}$.
5 Fundamental Piece

The profile curve of CMC rotational surface in S^3 can be built as the union of rotations of a single piece that we will call the fundamental piece.

Definition 2 The fundamental piece of the surface $\Sigma_{H,C}$ is defined as the profile curve $\beta(t)$ given in Lemma 3.1 restricted to the interval $\left[\frac{-\pi}{4\sqrt{1+H^2}}, \frac{3\pi}{4\sqrt{1+H^2}}\right]$.

Here are some easy-to-check properties of the fundamental piece of the surfaces $\Sigma_{H,C}$.

Proposition 5.1 Let $\gamma: \left[\frac{-\pi}{4\sqrt{1+H^2}}, \frac{3\pi}{4\sqrt{1+H^2}}\right] \to \mathbb{R}^2$ be the fundamental piece of the surface $\Sigma_{H,C}$. The following properties hold true:

- The distance from points in the fundamental piece to the origin satisfies the following inequality:
 $$\left|\gamma\left(\frac{\pi}{4\sqrt{1+H^2}}\right)\right| \leq |\gamma(t)| \leq \left|\gamma\left(\frac{3\pi}{4\sqrt{1+H^2}}\right)\right| = \left|\gamma\left(-\frac{\pi}{4\sqrt{1+H^2}}\right)\right|$$

- If $C \neq -\frac{1}{H}$, then, the angle between $\gamma\left(-\frac{\pi}{4\sqrt{1+H^2}}\right)$ and $\gamma\left(-\frac{3\pi}{4\sqrt{1+H^2}}\right)$ is given by $K(H, C)$. If $C = -\frac{1}{H}$, then, the angle between $\gamma\left(-\frac{\pi}{4\sqrt{1+H^2}}\right)$ and $\gamma\left(-\frac{3\pi}{4\sqrt{1+H^2}}\right)$ is given by $b(H, C) = \int_0^1 \frac{-H}{\sqrt{v(v-1)(H^2+v)}} dv$

- The profile curve of $\Sigma_{H,C}$ is the union of rotations of the fundamental piece (Fig. 6).

Proof The first item follows from (3.1). The second item follows from Remark 2.2 and the continuity in terms of H and C of the immersions given in Lemma 3.1. The last item again follows from Remark 2.2. \qed

![Fig. 6](image-url) The first picture shows the profile curve and its fundamental piece when $H = -0.2$ and $C = 7.10621080709656$. The second picture shows part of the profile curve when $H = -0.2$ and $C = 6$.

© Springer
The next theorem shows a properly immersed vs. dense duality property for the immersions $\Sigma_{H,C}$.

Theorem 5.2 If $C = -\frac{1}{H}$ with $H < 0$, then the immersion $\Sigma_{H,C}$ is either properly immersed or it is dense in the region

$$\left\{ (x, y, z, w) \in S^3: z^2 + w^2 \leq \frac{1}{1 + H^2} \right\}$$

Moreover, if $C \neq -\frac{1}{H}$, then the immersion $\Sigma_{H,C}$ is either properly immersed or it is dense in the region

$$R_{H,C} = \left\{ (x, y, z, w) \in S^3: m_{H,C} \leq z^2 + w^2 \leq M_{H,C} \right\}$$

where,

$$m_{H,C} = \frac{C + 2H + 2CH^2 - \sqrt{-4 + C^2 - 4CH}}{2C + 2CH^2}$$

$$M_{H,C} = \frac{C + 2H + 2CH^2 + \sqrt{-4 + C^2 - 4CH}}{2C + 2CH^2}$$

Proof When $C \neq -\frac{1}{H}$ we have that if $\frac{K(H,C)}{2\pi} = \frac{m}{k}$ with k and m relatively prime integers and $k > 0$, then, it is easy to see that the profile curve is the union of k copies of rotations of the fundamental piece. Therefore the immersion is proper. If $\frac{K(H,C)}{2\pi}$ is an irrational number, for any $r \in [\sqrt{m_{H,C}}, \sqrt{M_{H,C}}]$, using the first item of Proposition 5.1 and the intermediate value theorem, we have that as t goes from 0 to ∞, the profile curve $\beta(t)$ of the surface $\Sigma_{H,C}$, hits the circle C_r centered at the origin with radius r at points that differ by a fixed angle $K(H,C)$. The union of all these points in the circle C_r is dense in the C_r. The problem of proving this last statement reduces to that of showing that for any irrational number τ, the set $\{n\tau - \lfloor n\tau \rfloor : n \in \mathbb{Z}\}$ is dense in the interval $[0, 1]$, which is a known fact. We therefore have that the profile curve is dense in the annulus, $\{(z, w) \in \mathbb{R}^2 : m_{H,C} \leq z^2 + w^2 \leq M_{H,C}\}$. Looking at the formula for rotational immersion (formula 1.1), we conclude that $\Sigma_{H,C}$ is dense in $R_{H,C}$. The proof of the case $C = -\frac{1}{H}$ is similar. \qed

Let us finish this section by considering in more detail the rotational immersions obtained when $C = -\frac{1}{H}$ with $H < 0$. As pointed out before, for this case the immersions given in Lemma 2.1 are not well defined and therefore the immersions given in Lemma 3.1 are needed.

Theorem 5.3 The profile curves of all these examples contain the origin and therefore these immersions contain a circle of radius 1. Also, for any $m > 2$, there exists an $H < 0$ such that the profile curve of the rotational immersion $\Sigma_{H,C}$, with $C = -\frac{1}{H}$, is invariant under the cyclic group \mathbb{Z}_m. Figure 1 in the Introduction shows some of these immersions.
Proof. Let us start by pointing out that, since $2(H + \sqrt{1 + H^2}) = \frac{2}{\sqrt{1 + H^2 - H}}$, then we have that for every $H < 0$, $2(H + \sqrt{1 + H^2}) < -\frac{1}{H}$. Therefore, for any $H < 0$ there is a rotational surface in S^3 such that $C = -\frac{1}{H}$. If $C = -\frac{1}{H}$, then, the values of the function g moves from $g\left(\frac{3\pi}{4\sqrt{1 + H^2}}\right) = \sqrt{\frac{1 - H}{1 + H^2}}$ to $g\left(\frac{\pi}{4\sqrt{1 + H^2}}\right) = \sqrt{-\frac{1}{H}}$. By the continuity with respect to the variables H and C of the immersion given in (3.1) and Proposition 4.1, we have that the angle between the initial and final point of the fundamental piece is given by $b(H) = \int_0^1 \frac{-H}{\sqrt{v(v-1)(H^2+v)}} dv$. We also know from Proposition 4.1 that $b(H)$ takes every value in the open interval $(0, \pi)$. Therefore for any $m > 2$ we can find a $H_m < 0$ such that $b(H_m) = \frac{2\pi}{m}$. Since for this value of H_m the profile curve is the union m fundamental pieces, then the immersion $\Sigma_{H_m, C}$ with $C = -\frac{1}{H_m}$ is properly immersed. These examples are invariant under the cyclic group Z_m. This finishes the proof of the theorem.

References

1. Andrews, L., Li, H.: Embedded constant mean curvature tori in the three-sphere. J. Differ. Geom. 99, 169–189 (2015)
2. Brito, F., Leite, M.: A remark on rotational hypersurfaces of S^n. Bull. Soc. Math. Belg. Ser. B 42(3), 303–318 (1990)
3. Furuya, S.: On periods of periodic solutions of a certain nonlinear differential equation, Japan-United States seminar on ordinary differential and functional equations (Kyoto, 1971). Lecture Notes in Mathematics, vol. 243, pp. 320–323, Springer, Berlin (1971)
4. Otsuki, T.: Minimal hypersurfaces in a Riemannian manifold of constant curvature. Am. J. Math. 92, 145–173 (1970)
5. Otsuki, T.: On integral inequalities related with a certain non-linear differential equation. Proc. Jpn. Acad. 48, 9–12 (1972)
6. Otsuki, T.: On a differential equation related with differential geometry. Mem. Fac. Sci. Kyushu Univ. Ser. A 47(2), 228–245 (1993)
7. Perdomo, O.: Embedded constant mean curvature hypersurfaces of spheres. Asian J. Math. 14(1), 73–108 (2010)
8. Perdomo, O.: CMC hypersurfaces on riemannian and semi-riemannian manifolds. Math. Phys. Anal. Geom. 15(1), 17–37 (2012)
9. Ripoll, J.B.: Superficies Invariantes de Curvatura Media Constante. Tese de Doutorado, IMPA, Rio de Janeiro (1986)
10. Wei, G.: Complete hypersurfaces with constant mean curvature in a unit sphere. Monatsh. Math. 149(3), 251–258 (2006)
11. Wu, B.: On hypersurfaces with two distinct principal curvatures in an unit sphere. Diff. Geom. Appl. 27(5), 623–634 (2009)