PROPER CONGRUENCE-PRESERVING EXTENSIONS OF LATTICES

G. GRÄTZER AND F. WEHRUNG

Abstract. We prove that every lattice with more than one element has a proper congruence-preserving extension.

1. Introduction

Let \(L \) be a lattice. A lattice \(K \) is a congruence-preserving extension of \(L \), if \(K \) is an extension and every congruence of \(L \) has exactly one extension to \(K \). (Of course, then, the congruence lattice of \(L \) is isomorphic to the congruence lattice of \(K \).

In \cite{4}, the first author and E. T. Schmidt raised the following question:

Is it true that every lattice \(L \) with more than one element has a proper congruence-preserving extension \(K \)?

Here proper means that \(K \) properly contains \(L \), that is, \(K - L \neq \emptyset \).

The first author and E. T. Schmidt pointed out in \cite{4} that in the finite case this is obviously true, and they proved the following general result:

Theorem 1. Let \(L \) be a lattice. If there exist a distributive interval with more than one element in \(L \), then \(L \) has a proper congruence-preserving extension \(K \).

Generalizing this result, in this paper, we provide a positive answer to the above question:

Theorem 2. Every lattice \(L \) with more than one element has a proper congruence-preserving extension \(K \).

2. Background

Let \(K \) and \(L \) be lattices. If \(L \) is a sublattice of \(K \), then we call \(K \) an extension of \(L \). If \(K \) is an extension of \(L \) and \(\Theta \) is a congruence relation of \(K \), then \(\Theta_L \), the restriction of \(\Theta \) to \(L \) is a congruence of \(L \). If the map \(\Theta \mapsto \Theta_L \) is a bijection between the congruences of \(L \) and the congruences of \(K \), then we call \(K \) a congruence-preserving extension of \(L \). Observe that if \(K \) a congruence-preserving extension of \(L \), then the congruence lattice of \(L \) is isomorphic to the congruence lattice of \(K \) in a natural way.

The proof of Theorem 1 is based on the following construction of E. T. Schmidt \cite{9}, summarized below as Theorem 3. (A number of papers utilize this construction; Date: February 20, 1998.

1991 Mathematics Subject Classification. Primary 06B10; Secondary 08A30.

Key words and phrases. Lattice, congruence, congruence-preserving extension, proper extension.

The research of the first author was supported by the NSERC of Canada.
see, for instance, E. T. Schmidt [10], [11] and the recent paper G. Grätzer and E. T. Schmidt [5].

Let L be a bounded distributive lattice with bounds 0 and 1, and let $M_3 = \{o, a, b, c, i\}$ be the five-element nondistributive modular lattice. Let $M_3[L]$ denote the poset of triples $\langle x, y, z \rangle \in L^3$ satisfying the condition

$$(S) \quad x \land y = y \land z = z \land x.$$

Theorem 3.

Let D be a bounded distributive lattice with bounds 0 and 1.

(i) $M_3[D]$ is a modular lattice.

(ii) The subset \(\overline{M}_3 = \{(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1)\}\) of $M_3[D]$ is a sublattice of $M_3[D]$ and it is isomorphic to M_3.

(iii) The subposet $\overline{D} = \{ (x, 0, 0) \mid x \in D \}$ of $M_3[D]$ is a bounded distributive lattice and it is isomorphic to D; we identify D with \overline{D}.

(iv) \overline{M}_3 and D generate $M_3[D]$.

(v) Let Θ be a congruence relation of $D = \overline{D}$; then there is a unique congruence $\overline{\Theta}$ of $M_3[D]$ such that $\overline{\Theta}$ restricted to \overline{D} is Θ; therefore, $M_3[D]$ is a congruence-preserving extension of D.

Unfortunately, $M_3[L]$ fails, in general, to produce a lattice, if L is not distributive. In this paper, we introduce a variant on the $M_3[L]$ construction, which we shall denote as $M_3(L)$. This lattice $M_3(L)$ is a proper congruence-preserving extension of L, for any lattice L with more than one element, verifying Theorem 2.

3. The Construction

For a lattice L, let us call the triple $\langle x, y, z \rangle \in L^3$ Boolean, if

$$x = (x \lor y) \land (x \lor z),$$
$$y = (y \lor x) \land (y \lor z),$$
$$z = (z \lor x) \land (z \lor y).$$

We denote by $M_3(L) \subseteq L^3$ the poset of Boolean triples of L.

Here are some of the basic properties of Boolean triples:

Lemma 1. Let L be a lattice.

(i) Every Boolean triple of L satisfies (S), so $M_3(L) \subseteq M_3[L]$.

(ii) $\langle x, y, z \rangle \in L^3$ is Boolean iff there is a triple $\langle u, v, w \rangle \in L^3$ satisfying

$$x = u \land v,$$
$$y = u \land w,$$
$$z = v \land w.$$

(R)

(iii) For every triple $\langle x, y, z \rangle \in L^3$, there is a smallest Boolean triple $\langle x, y, z \rangle \in L^3$ such that $\langle x, y, z \rangle \leq \langle x, y, z \rangle$; in fact,

$$\langle x, y, z \rangle = \langle (x \lor y) \land (x \lor z), (y \lor x) \land (y \lor z), (z \lor x) \land (z \lor y) \rangle.$$
(iv) $M_3(L)$ is a lattice with the meet operation defined as
\[(x_0, y_0, z_0) \land (x_1, y_1, z_1) = (x_0 \land x_1, y_0 \land y_1, z_0 \land z_1) \]
and the join operation defined by
\[(x_0, y_0, z_0) \lor (x_1, y_1, z_1) = (x_0 \lor x_1, y_0 \lor y_1, z_0 \lor z_1) . \]

(v) If L has 0, then the subposet $\{ (x, 0, 0) \mid x \in L \}$ is a sublattice and it is isomorphic to L.

If L has 0 and 1, then $M_3(L)$ has a spanning M_3, that is, a $\{0, 1\}$-sublattice isomorphic to M_3, namely,
\[\{ (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1) \} . \]

(vi) If $\langle x, y, z \rangle$ is Boolean, then one of the following holds:
(a) the components form a one-element set, so $\langle x, y, z \rangle = \langle a, a, a \rangle$, for some $a \in L$;
(b) the components form a two-element set and $\langle x, y, z \rangle$ is of the form $\langle b, a, a \rangle$, or $\langle a, b, a \rangle$, or $\langle a, a, b \rangle$, for some $a, b \in L$, $a < b$.
(c) the components form a three-element set and two components are comparable and L has two incomparable elements a and b such that

 $\langle x, y, z \rangle$ is of the form $\langle a, b, a \land b \rangle$, or $\langle a, a \land b, b \rangle$, or $\langle a \land b, a, b \rangle$.
(d) the components form a three-element set and the components are pairwise incomparable and L has an eight-element Boolean sublattice B so that the components are the atoms of B.

Proof.
(i) If $\langle x, y, z \rangle$ is Boolean, then
\[x \land y = ((x \lor y) \land (x \lor z)) \land ((y \lor x) \land (y \lor z)) \]
\[= (x \lor y) \land (y \lor z) \land (z \lor x) , \]
which is the upper median of x, y, and z. So (S) holds.

(ii) If $\langle x, y, z \rangle$ is Boolean, then $u = x \lor y$, $v = x \lor z$, and $w = y \lor z$ satisfy (R).
Conversely, if there is a triple $\langle u, v, w \rangle \in L^3$ satisfying (R), then by Lemma 1.5.9 of [1], the sublattice generated by x, y, and z is isomorphic to a quotient of C_3 (where C_2 is the two element chain) and x, y, and z are the images of the three atoms of C_3. Thus $\langle x \lor y \rangle \land \langle x \lor z \rangle = x$, the first part of (B). The other two parts are proved similarly.

(iii) For $\langle x, y, z \rangle \in L^3$, define $u = x \lor y$, $v = x \lor z$, $w = y \lor z$. Set $x_1 = u \land v$, $y_1 = u \land w$, $z_1 = v \land w$. Then $\langle x_1, y_1, z_1 \rangle$ is Boolean by (ii) and $\langle x, y, z \rangle \leq \langle x_1, y_1, z_1 \rangle$ in L^3. Now if $\langle x, y, z \rangle \leq \langle x_2, y_2, z_2 \rangle$ in L^3 and $\langle x_2, y_2, z_2 \rangle$ is Boolean, then
\[x_2 = (x_2 \lor y_2) \land (x_2 \lor z_2) = (x_2 \land y_2) \lor (x_2 \land z_2) \]
\[\geq (x \lor y) \land (x \lor z) \]
\[= u \lor v = x_1 , \]
and similarly, $y_2 \geq y_1$, $z_2 \geq z_1$. Thus $\langle x_2, y_2, z_2 \rangle \geq \langle x_1, y_1, z_1 \rangle$, and so $\langle x_1, y_1, z_1 \rangle$ is the smallest Boolean triple containing $\langle x, y, z \rangle$.

(iv) $M_3(L) \neq \emptyset$; for instance, for all $x \in L$, the diagonal element $\langle x, x, x \rangle \in M_3(L)$. It is obvious from (ii) that $M_3(L)$ is meet closed. By (iii), $M_3(L)$ is a closure system in L^3, from which the formulas of (iv) follow.

The proofs of (v) and (vi) are left to the reader.
4. Proof of the theorem

Let L be a lattice with more than one element. We identify $x \in L$ with the diagonal element $⟨x, x, x⟩ ∈ M_3(L)$, so we regard $M_3(L)$ an extension of L. This is an embedding of L into $M_3(L)$ different from the embedding in Lemma 3(v). Moreover, the embedding in Lemma 4(v) requires that L have a zero, while the embedding discussed here always works.

Note that $M_3(L)$ is a proper extension; indeed, since L has more than one element, we can choose the elements $a < b$ in L. Then $⟨a, a, b⟩ ∈ M_3(L)$ but $⟨a, a, b⟩$ is not on the diagonal, so $⟨a, a, b⟩ ∈ M_3(L) - L$. In fact, if $L = C_2$, the two-element chain, then this is the only type of nondiagonal element:

$$M_3(C_2) = \{ ⟨0, 0, 0⟩, ⟨1, 0, 0⟩, ⟨0, 1, 0⟩, ⟨0, 0, 1⟩, ⟨1, 1, 1⟩ \}.$$

For a congruence $Θ$ of L, let $Θ^3$ denote the congruence of L^3 defined componentwise. Let $M_3(Θ)$ be the restriction of $Θ^3$ to $M_3(L)$.

Lemma 2. $M_3(Θ)$ is a congruence relation of $M_3(L)$.

Proof. $M_3(Θ)$ is obviously an equivalence relation on $M_3(L)$. Since $M_3(L)$ is a meet subsemilattice of L^3, it is clear that $M_3(Θ)$ satisfies the Substitution Property for meets. To verify for $M_3(Θ)$ the Substitution Property for joins, let $⟨x_0, y_0, z_0⟩, ⟨x_1, y_1, z_1⟩ ∈ M_3(L)$, let

$$⟨x_0, y_0, z_0⟩ \equiv ⟨x_1, y_1, z_1⟩ \quad (M_3(Θ)),$$

(that is,

$$x_0 \equiv x_1 \quad (Θ), \quad y_0 \equiv y_1 \quad (Θ), \quad \text{and} \quad z_0 \equiv z_1 \quad (Θ)$$

in L) and let $⟨u, v, w⟩ ∈ M_3(L)$. Set

$$⟨x'_i, y'_i, z'_i⟩ = ⟨x_i, y_i, z_i⟩ \lor ⟨u, v, w⟩$$

(the join formed in $M_3(L)$), for $i = 0, 1$.

Then, using Lemma 3(iii) and (iv) for $x_0 \lor u$, $y_0 \lor v$, and $z_0 \lor w$, we obtain that

$$x'_0 = (x_0 \lor u \lor y_0 \lor v) \land (x_0 \lor u \lor z_0 \lor w)$$

$$\equiv (x_1 \lor u \lor y_1 \lor v) \land (x_1 \lor u \lor z_1 \lor w) = x'_1 \quad (M_3(Θ)),$$

and similarly, $y'_0 \equiv y'_1 \quad (M_3(Θ))$, $z'_0 \equiv z'_1 \quad (M_3(Θ))$, hence

$$⟨x_0, y_0, z_0⟩ \lor ⟨u, v, w⟩ \equiv ⟨x_1, y_1, z_1⟩ \lor ⟨u, v, w⟩ \quad (M_3(Θ)).$$

Since L was identified with the diagonal of $M_3(L)$, it is obvious that $M_3(Θ)$ restricted to L is $Θ$. So to complete the proof of Theorem 2 it is sufficient to verify the following statement:

Lemma 3. Every congruence of $M_3(L)$ is of the form $M_3(Θ)$, for a suitable congruence $Θ$ of L.

Proof. Let $Φ$ be a congruence of $M_3(L)$, and let $Θ$ denote the congruence of L obtained by restricting $Φ$ to the diagonal of $M_3(L)$, that is, $x \equiv y \quad (Θ)$ in L iff $⟨x, x, x⟩ \equiv ⟨y, y, y⟩ \quad (Φ)$ in $M_3(L)$. We prove that $Φ = M_3(Θ)$.

To show that $Φ ⊆ M_3(Θ)$, let

$$⟨x_0, y_0, z_0⟩ \equiv ⟨x_1, y_1, z_1⟩ \quad (Φ).$$

(1)
Define
\(o = x_0 \wedge x_1 \wedge y_0 \wedge y_1 \wedge z_0 \wedge z_1, \)
\(i = x_0 \vee x_1 \vee y_0 \vee y_1 \vee z_0 \vee z_1. \)

Meeting the congruence \(1 \) with \(\langle i, o, o \rangle \) yields
\(\langle x_0, o, o \rangle \equiv \langle x_1, o, o \rangle \) \((\Phi)\).

Since
\(\langle x_0, o, o \rangle \vee \langle o, o, i \rangle = \langle x_0, o, i \rangle = \langle x_0, x_1, i \rangle, \)
joining the congruence \(4 \) with \(\langle o, o, i \rangle \) yields
\(\langle x_0, x_0, i \rangle \equiv \langle x_1, x_1, i \rangle \) \((\Phi)\).

Similarly,
\(\langle x_0, o, o \rangle \equiv \langle x_1, i, x_1 \rangle \) \((\Phi)\).

Now we meet the congruences \(5 \) and \(6 \) to obtain
\(\langle x_0, y_0, z_0 \rangle \equiv \langle x_1, y_1, z_1 \rangle \) \((\Theta^3)\)
in \(L^3 \), proving that \(\Phi \subseteq M_3(\Theta) \).

To prove the converse, \(M_3(\Theta) \subseteq \Phi \), take
\(\langle x_0, y_0, z_0 \rangle \equiv \langle x_1, y_1, z_1 \rangle \) \((M_3(\Theta))\)
in \(M_3(L) \), that is,
\[x_0 \equiv x_1 \quad (\Theta), \]
\[y_0 \equiv y_1 \quad (\Theta), \]
\[z_0 \equiv z_1 \quad (\Theta) \]
in \(L \). Equivalently,
\(\langle x_0, x_0, x_0 \rangle \equiv \langle x_1, x_1, x_1 \rangle \) \((\Phi)\),
\(\langle y_0, y_0, y_0 \rangle \equiv \langle y_1, y_1, y_1 \rangle \) \((\Phi)\),
\(\langle z_0, z_0, z_0 \rangle \equiv \langle z_1, z_1, z_1 \rangle \) \((\Phi)\)
in \(M_3(L) \).

Now, define \(o, i \) as in \(2 \) and \(3 \). Meeting the congruence \(10 \) with \(\langle i, o, o \rangle \), we obtain
\(\langle x_0, o, o \rangle \equiv \langle x_1, o, o \rangle \) \((\Phi)\).

Similarly, from \(11 \) and \(14 \), we obtain the congruences
\(\langle o, y_0, o \rangle \equiv \langle o, y_1, o \rangle \) \((\Phi)\),
\(\langle o, o, z_0 \rangle \equiv \langle o, o, z_1 \rangle \) \((\Phi)\).

Finally, joining the congruences \(12 \) and \(14 \), we get
\(\langle x_0, y_0, z_0 \rangle \equiv \langle x_1, y_1, z_1 \rangle \) \((\Phi)\),
that is, \(M_3(\Theta) \subseteq \Phi \). This completes the proof of this lemma and of Theorem \(2 \). \(\square \)
5. Discussion

Special extensions. We can get a slightly stronger result by requiring that the extension preserve the zero and the unit, provided they exist. To state this result, we need the following concept.

An extension K of a lattice L is extensive, provided that the convex sublattice of K generated by L is K.

Note that if L has a zero, 0, then an extensive extension is a $\{0\}$-extension (and similarly for the unit, 1); if L has a zero, 0, and unit 1, then an extensive extension is a $\{0, 1\}$-extension.

Theorem 4. Every lattice L with more than one element has a proper congruence-preserving extensive extension K.

Proof. Indeed, every $\langle x, y, z \rangle \in M_3(L)$ is in the convex sublattice generated by L since $\langle x \land y \land z, x \land y \land z, x \land y \land z \rangle \leq \langle x, y, z \rangle \leq \langle x \lor y \lor z, x \lor y \lor z, x \lor y \lor z \rangle$. □

In Theorem 3.(iii), we pointed out that $M_3[D]$ is a congruence-preserving extension of $D = \{0\}$, where D is an ideal of $M_3[D]$. This raises the question whether Theorem 2 can be strengthened by requiring that L be an ideal in K. This is easy to do, if L has a zero, 0, since then we can identify $x \in L$ with $\langle x, 0, 0 \rangle \in M_3(L)$.

Theorem 5. Every lattice L with more than one element has a proper congruence-preserving extension K with the property that L is an ideal in K.

Proof. Take an element $a \in L$ such that $[a]$ (the dual ideal generated by a) has more than one element. Then by Lemma 1.(v), $A = M_3([a])$ is a proper congruence-preserving extension of $[a]$ and $I = [a]$ is an ideal in A. Now form the lattice K by gluing L with the dual ideal $[a]$ to A with the ideal I. It is clear that K is a proper congruence-preserving extension of L. □

Modularity and semimodularity. R. W. Quackenbush [8] proved that if L is a modular lattice, then $M_3[L]$ is a semimodular lattice. For our construction, the analogous result fails: $M_3(P)$ is not semimodular, where P is a projective plane (a modular lattice). Indeed, let a, b, c be a triangle in P, with sides l, m, n, that is, let l, m, n be three distinct lines in the plane P, and define the points $a = n \land m$, $b = n \land l$, $c = m \land l$. Let p be a point in P not on any one of these lines. Then $\langle p, \emptyset, \emptyset \rangle$ is an atom in $M_3(P)$, $\langle a, b, c \rangle \in M_3(P)$ but $\langle \{p\}, \emptyset, \emptyset \rangle \lor \langle a, b, c \rangle = \langle p \lor a, b, c \rangle = \langle P, l, l \rangle$ and $\langle a, b, c \rangle < \langle n, b, l \rangle < \langle P, l, l \rangle$, showing that $M_3(P)$ is not semimodular.

Now we characterize when $M_3(L)$ is modular.

Theorem 6. Let L be a lattice with more than one element. Then $M_3(L)$ is modular iff L is distributive.

Proof. If L is distributive, then $M_3(L) = M_3[L]$, so $M_3(L)$ is modular by Theorem 3.

Conversely, if $M_3(L)$ is modular, then L is modular since it is a sublattice of $M_3(L)$. Now if L is not distributive, then L contains an $M_3 = \{o, a, b, c, i\}$ as a sublattice. By Lemma (vi), the elements
\[
\langle o, o, a \rangle, \langle o, c, a \rangle, \langle c, c, i \rangle, \langle i, i, i \rangle, \langle b, o, a \rangle
\]
belong to $M_3(L)$. Obviously,
\[
\langle o, o, a \rangle < \langle o, c, a \rangle < \langle c, c, i \rangle < \langle i, i, i \rangle
\]
and
\[
\langle o, o, a \rangle < \langle b, o, a \rangle < \langle i, i, i \rangle.
\]
To prove that these five elements form an N_5, it is enough to prove that
\[
\langle c, c, i \rangle \land \langle b, o, a \rangle = \langle o, o, a \rangle
\]
and
\[
\langle o, c, a \rangle \lor \langle b, o, a \rangle = \langle i, i, i \rangle.
\]
The meet is obvious. Now the join:
\[
\langle o, c, a \rangle \lor \langle b, o, a \rangle = \langle b, c, a \rangle = \langle i, i, i \rangle.
\]
So $M_3(L)$ contains N_5 as a sublattice, contradicting the assumption that $M_3(L)$ is modular. Therefore, L is distributive.

Further results. $M_3[L]$ is not a lattice for a general L. See, however, G. Grätzer and F. Wehrung [6], where a new concept of n-modularity is introduced, for any natural number n. Modularity is the same as 1-modularity.

By definition, n-modularity is an identity; for larger n, a weaker identity. For an n-modular lattice L, $M_3[L]$ is a lattice, a congruence-preserving extension of L.

For distributive lattices (in fact, for n-modular lattices), the construction $M_3[L]$ is a special case of the tensor product construction of two semilattices with zero, see, for instance, G. Grätzer, H. Lakser, and R. W. Quackenbush [2] and R. W. Quackenbush [8]. The $M_3(L)$ construction is generalized in G. Grätzer and F. Wehrung [7] to two bounded lattices; the new construction is called box product. Some of the arguments of this paper carry over to box products.

Problems

Lattices. As usual, let us denote by T, D, M, and L the variety of one-element, distributive, modular, and all lattices, respectively. A variety V is nontrivial if $V \neq T$.

Let us say that a variety V of lattices has the Congruence Preserving Extension Property (CPEP, for short), if every lattice in V with more than one element has a proper congruence-preserving extension in V. It is easy to see that no finitely generated lattice variety has CPEP. (Indeed, by Jónsson’s lemma, a nontrivial finitely generated lattice variety V has a finite maximal subdirectly irreducible member L; if K is a proper congruence-preserving extension of L, then K is also subdirectly irreducible and $|L| > |K|$, a contradiction.) In particular, D does not have CPEP.

Theorem [2] can be restated as follows: L has CPEP.

Problem 1. Find all lattice varieties V with CPEP. In particular, does M have CPEP?
Groups. Let us say that a variety \mathbf{V} of groups has the Normal Subgroup Preserving Extension Property (NSPEP, for short), if every group G in \mathbf{V} with more than one element has a proper supergroup \overline{G} in \mathbf{V} with the following property: every normal subgroup N in G can be uniquely represented in the form $N \cap \overline{G}$, where N is a normal subgroup of G.

Not every group variety \mathbf{V} has NSPEP, for instance, the variety \mathbf{A} of Abelian groups does not have NSPEP.

Problem 2. Does the variety \mathbf{G} of all groups have NSPEP? Find all group varieties having NSPEP?

Rings. For ring varieties, we can similarly introduce the Ideal Preserving Extension Property (IPEP, for short). The variety \mathbf{R} of all (not necessarily commutative) rings has IPEP. Indeed, if R is a ring with more than one element, then embed R into $M_2(R)$ (the ring of 2×2 matrices over R) with the diagonal map. The two-sided ideals of $M_2(R)$ are of the form $M_2(I)$, where I is a two-sided ideal of R, and $I = M_2(I) \cap R$.

Problem 3. Find all ring varieties having IPEP? In particular, does the variety of all commutative rings have IPEP?

The second author found a positive answer for Dedekind domains: every Dedekind domain with more than one element has a proper ideal-preserving extension that is, in addition, a principal ideal domain.

Acknowledgment

This work was partially completed while the second author was visiting the University of Manitoba. The excellent conditions provided by the Mathematics Department, and, in particular, a quite lively seminar, were greatly appreciated.

References

[1] G. Grätzer, General Lattice Theory, Pure and Applied Mathematics 75, Academic Press, Inc. (Harcourt Brace Jovanovich, Publishers), New York-London; Lehrbücher und Monographien aus dem Gebiete der Exakten Wissenschaften, Mathematische Reihe, Band 52. Birkhäuser Verlag, Basel-Stuttgart; Akademie Verlag, Berlin, 1978. xiii+381 pp.
[2] G. Grätzer, H. Lakser, and R. W. Quackenbush, The structure of tensor products of semilattices with zero, Trans. Amer. Math. Soc. 267 (1981), 503–515.
[3] G. Grätzer and E. T. Schmidt, The Strong Independence Theorem for automorphism groups and congruence lattices of finite lattices, Beiträge Algebra Geom. 36 (1995), 97–108.
[4] A lattice construction and congruence-preserving extensions, Acta Math. Hungar. 66 (1995), 275–288.
[5] On the Independence Theorem of related structures for modular (arguesian) lattices, manuscript. Submitted for publication in Studia Sci. Math. Hungar.
[6] G. Grätzer and F. Wehrung, the $M_3[D]$ construction and n-modularity, Algebra Universalis 41, no. 2 (1999), 87–114.
[7] A new lattice construction: the box product, manuscript.
[8] R. W. Quackenbush, Nonmodular varieties of semimodular lattices with a spanning M_3, Special volume on ordered sets and their applications (L’Arbresle, 1982). Discrete Math. 53 (1985), 193–205.
[9] E. T. Schmidt, Über die Kongruenzverbände der Verbände, Publ. Math. Debrecen 9 (1962), 243–256.
[10] Zur Charakterisierung der Kongruenzverbände der Verbände, Mat. Časopis Sloven. Akad. Vied 18 (1968), 3–20.
Every finite distributive lattice is the congruence lattice of a modular lattice, Algebra Universalis 4 (1974), 49–57.