Supplementary File 1: PRISMA NMA Checklist of Items to Include When Reporting A Systematic Review Involving a Network Meta-analysis

Section/Topic	Item #	Checklist Item	Reported on Page #
TITLE	Title 1	Identify the report as a systematic review *incorporating a network meta-analysis (or related form of meta-analysis).*	1
ABSTRACT	Structured summary 2	Provide a structured summary including, as applicable:	

 Background: main objectives

 Methods: data sources; study eligibility criteria, participants, and interventions; study appraisal; and *synthesis methods, such as network meta-analysis.*

 Results: number of studies and participants identified; summary estimates with corresponding confidence/credible intervals; *treatment rankings may also be discussed.* Authors may choose to summarize pairwise comparisons against a chosen treatment included in their analyses for brevity.

 Discussion/Conclusions: limitations; conclusions and implications of findings.

 Other: primary source of funding; systematic review registration number with registry name. | 2-3 |
INTRODUCTION	Rationale 3	Describe the rationale for the review in the context of what is already known, *including mention of why a network meta-analysis has been conducted.*	4
	Objectives 4	Provide an explicit statement of questions being addressed, with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	4
METHODS			
Protocol and registration	5	Indicate whether a review protocol exists and if and where it can be accessed (e.g., Web address); and, if available, provide registration information, including registration number.
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale. Clearly describe eligible treatments included in the treatment network, and note whether any have been clustered or merged into the same node (with justification).
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.
Geometry of the network	S1	Describe methods used to explore the geometry of the treatment network under study and potential biases related to it. This should include how the evidence base has been graphically summarized for presentation, and what characteristics were compiled and used to describe the evidence base to readers.
Risk of bias within individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means). Also describe the use of additional summary measures assessed, such as treatment rankings and surface under the cumulative ranking curve (SUCRA) values, as well as modified approaches used to present summary findings from meta-analyses.
Planned methods of analysis	14	Describe the methods of handling data and combining results of studies for each network meta-analysis. This should include, but not be limited to:
 - Handling of multi-arm trials; |
Assessment of Inconsistency
- Selection of variance structure;
- Selection of prior distributions in Bayesian analyses; and
- Assessment of model fit.

Assessment of Inconsistency	S2	Describe the statistical methods used to evaluate the agreement of direct and indirect evidence in the treatment network(s) studied. Describe efforts taken to address its presence when found.

Risk of bias across studies | 15 | Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).

Additional analyses | 16 | Describe methods of additional analyses if done, indicating which were pre-specified. This may include, but not be limited to, the following:
- Sensitivity or subgroup analyses;
- Meta-regression analyses;
- *Alternative formulations of the treatment network; and*
- *Use of alternative prior distributions for Bayesian analyses (if applicable).*

RESULTS†

Study selection
- Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.

Study selection | 17 | 8, Figure 1

Presentation of network structure
- Provide a network graph of the included studies to enable visualization of the geometry of the treatment network.

Presentation of network structure | S3 | Supp. File 3

Summary of network geometry
- Provide a brief overview of characteristics of the treatment network. This may include commentary on the abundance of trials and randomized patients for the different interventions and pairwise comparisons in the network, gaps of evidence in the treatment network, and potential biases reflected by the network structure.

Summary of network geometry | S4 | 8, Supp. File 3,
---|---|---|---

Study characteristics
- For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.

Study characteristics | 18 | 8, Table 1,
---|---|---|---
Section	Item	Description	Supp. References
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment.	Supp. Table 2
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: 1) simple summary data for each intervention group, and 2) effect estimates and confidence intervals. Modified approaches may be needed to deal with information from larger networks.	Supp. File 5 to
			Supp. File 7
Synthesis of results	21	Present results of each meta-analysis done, including confidence/credible intervals. In larger networks, authors may focus on comparisons versus a particular comparator (e.g. placebo or standard care), with full findings presented in an appendix. League tables and forest plots may be considered to summarize pairwise comparisons. If additional summary measures were explored (such as treatment rankings), these should also be presented.	8,9
Exploration for inconsistency	S5	Describe results from investigations of inconsistency. This may include such information as measures of model fit to compare consistency and inconsistency models, P values from statistical tests, or summary of inconsistency estimates from different parts of the treatment network.	Supp. Table 5
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies for the evidence base being studied.	10,
			Table 2 to Table 5
Results of additional analyses	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression analyses, alternative network geometries studied, alternative choice of prior distributions for Bayesian analyses, and so forth).	NA
DISCUSSION

Summary of evidence	24	Summarize the main findings, including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy-makers).
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review level (e.g., incomplete retrieval of identified research, reporting bias). *Comment on the validity of the assumptions, such as transitivity and consistency. Comment on any concerns regarding network geometry (e.g., avoidance of certain comparisons).*
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.

FUNDING

| Funding | 27 | Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review. This should also include information regarding whether funding has been received from manufacturers of treatments in the network and/or whether some of the authors are content experts with professional conflicts of interest that could affect use of treatments in the network. |

PICOS = population, intervention, comparators, outcomes, study design.

* Text in italics indicates wording specific to reporting of network meta-analyses that has been added to guidance from the PRISMA statement.
† Authors may wish to plan for use of appendices to present all relevant information in full detail for items in this section.

Reference: Hutton B, Salanti G, Caldwell DM, Chaimani A, Schmid CH, Cameron C, Ioannidis JP, Straus S, Thorlund K, Jansen JP, Mulrow C, Catalá-López F, Gotzsche PC, Dickersin K, Boutron I, Altman DG, Moher D. The PRISMA Extension Statement for Reporting of Systematic Reviews Incorporating Network Meta-analyses of Health Care Interventions: Checklist and Explanations. *Ann Intern Med.* 2015;162(11):777-784.
We attempted to identify all relevant studies regardless of language or publication status (published, unpublished, in press, ongoing) by searching the Cochrane Pregnancy and Childbirth’s Trials Register (1).

Briefly, the Cochrane Pregnancy and Childbirth’s Trials Register is maintained by their Information Specialist and contains trials identified from monthly searches of the Cochrane Central Register of Controlled Trials (CENTRAL), weekly searches of MEDLINE (Ovid), weekly searches of Embase (Ovid), monthly searches of CINAHL (EBSCO); handsearches of 30 journals and the proceedings of major conferences; weekly current awareness alerts for a further 44 journals plus monthly BioMed Central email alerts. The Register contains over 25,000 reports of controlled trials in the field of pregnancy and childbirth. It represents over 30 years of searching.

For compiling the Register, search results are screened by two people and the full text of all relevant trial reports identified through the searching activities described above is reviewed. Based on the intervention described, each trial report is assigned a number that corresponds to a specific Pregnancy and Childbirth review topic (or topics), and is then added to the Register.

When searching for a systematic review, the Information Specialist searches the Register for each review using this topic number rather than keywords. This results in a more specific search set that will be fully accounted for in the relevant review sections (Included, Excluded, Awaiting Classification or Ongoing).

Topics searched for this review included ‘preterm,’ ‘premature,’ ‘labour,’ ‘labor,’ ‘risk’ and ‘prevention.’

In addition to searches via the Information Specialist, we searched ClinicalTrials.gov and the WHO International Clinical Trials Registry Platform (ICTRP) for unpublished, planned and ongoing trial reports using transparent search methods based on key terms.

ClinicalTrials.gov (Advanced search)

prevention | Interventional Studies | Preterm birth

risk | Interventional Studies | Preterm Labor

ICTRP (each line run separately)

risk AND preterm

risk AND premature

Initial searches for the review were conducted in July 2019, updated on 11 January 2020 and the most recent search for the review was conducted on 8 August 2021.

(1) Cochrane Pregnancy and Childbirth’s Trials Register. Available from: https://pregnancy.cochrane.org/pregnancy-and-childbirth-groups-trials-register (accessed 18/01/2021)
Supplementary File 3: Network Diagrams

Abbreviations for Network Diagrams

17-OHPC= 17alpha hydroxyprogesterone caproate; Amox = Amoxicillin; BR = bed rest; Cerc (McD)= McDonald Cerclage; Cerc (Sh)= Shirodkar Cerclage; Cerclage (Unspec.) = unspecified Cerclage; Clind = Clindamycin; Eryth = Erythromycin; Met = metronidazole; No TMT= no treatment; OP= oral progesterone; VP = vaginal progesterone

Outcomes for pregnant women

1. preterm birth less than 37 weeks' gestation

2. preterm birth less than 34 weeks' gestation
3. spontaneous preterm birth less than 34 weeks' gestation

4. preterm birth less than 28 weeks' gestation
5. maternal death

6. preterm prelabour rupture of membranes
7. maternal infection

Outcomes for offspring

1. perinatal death

2. neonatal death
3. Gestational age at birth
4. low birthweight, less than 2500 g

5. neonatal respiratory distress syndrome
6. neonatal pulmonary disease

7. intraventricular haemorrhage
8. periventricular leukomalacia

9. necrotising enterocolitis
10. Proven neonatal sepsis

11. Admission to neonatal intensive care unit
Supplementary File 4: Reference list of included studies (primary reference).

1. Ahuja R, Sood A, Pal A, Mittal R. Role of micronized progesterone in prevention of preterm labour in women with previous history of one or more preterm births: a research study at a tertiary care hospital. International Journal of Reproduction, Contraception, Obstetrics and Gynecology 2015;4(4):1176-80.

2. Akbari S, Birjandi M, Mohtasham N. Evaluation of the effect of progesterone on prevention of preterm delivery and its complications. Scientific Journal of Kurdistan University of Medical Sciences 2009;14(3):11-9.

3. Althuisius SM, Dekker GA, Hummel P, Bekedam DJ, van Geijn HP. Final results of the cervical incompetence prevention randomized cerclage trial (CIPRACT): therapeutic cerclage versus bedrest alone. American Journal of Obstetrics and Gynecology 2001;185:1106-12.

4. Ashoush S, El-Kady O, Al-Hawwary G, Othman A. The value of oral micronized progesterone in the prevention of recurrent spontaneous preterm birth: a randomized controlled trial. Acta Obstetricia Et Gynecologica Scandinavica 2017;96(12):1460-6.

5. Azargoan A, Ghorbani R, Aslebahar F. Vaginal progesterone on the prevention of preterm birth and neonatal complications in high risk women: a randomized placebo-controlled double-blind study. International Journal of Reproductive Biomedicine 2016;14(5):309-16.

6. Baﬁh AS, Bahrami E, Sekhavat L. Comparative study of vaginal versus intramuscular progesterone in the prevention of preterm delivery: a randomized clinical trial. Electronic Physician 2015;7(6):1301-9.

7. Berghella V, Odibo AO, Tolosa JE. Cerclage for prevention of preterm birth in women with a short cervix found on transvaginal ultrasound examination: a randomized trial. American Journal of Obstetrics and Gynecology 2004; 191:1311-7.

8. Blackwell SC, Gyamﬁ-Bannerman C, Biggio JR Jr, Chauhan SP, Hughes BL, Louis JM, et al. 17-OHPC to Prevent Recurrent Preterm Birth in Singleton Gestations (PROLONG Study): A Multicenter, International, Randomized Double-Blind Trial. Am J Perinatol. 2020 Jan;37(2):127-136. doi: 10.1055/s-0039-3400227. Epub 2019 Oct 25. PMID: 31652479.

9. Breart G, Lanfranchi M, Chavigny C, Rumeau-Rouquette C, Sureau C. A comparative study of the efﬁciency of hydroxyprogesterone caproate and of chlormadinone acetate in the prevention of premature labor. International Journal of Gynecology & Obstetrics 1979;16:381-4.

10. Cabrera-Garcia L, Cruz-Melguizo S, Ruiz-Antoran B, Torres F, Velasco A, Martinez-Payo C, et al. Evaluation of two treatment strategies for the prevention of preterm birth in women identiﬁed as at risk by ultrasound (PESAPRO Trial): Study protocol for a randomized controlled trial. Trials 2015;16(1):427.

11. Care A, Jackson R, O’Brien E, Leigh S, Cornforth C, Haycox A, et al. Cervical cerclage, pessary, or vaginal progesterone in high-risk pregnant women with short cervix: a randomized feasibility study. Journal of Maternal-Fetal & Neonatal Medicine 2019 [ahead of print];1-9.

12. Cetingoz E, Cam C, Sakalli M, Karateke A, Celik C, Sancak A. Progesterone effects on preterm birth in high-risk pregnancies: a randomized placebo-controlled trial. Archives of Gynecology and Obstetrics 2011;283(3):423-9.

13. Chandiramani M, Seed P, Shennan AH, Tribe R. Association between cervicovaginal cytokines and fetal fibronectin in women at risk of spontaneous preterm labour. Archives of Disease in Childhood: Fetal and Neonatal Edition 2011;96:Fa123-4.

14. Choi SJ, Kwak DW, Kil K, Kim SC, Kwon JY, Kim YH, et al. Vaginal compared with intramuscular prostegene for preventing preterm birth in high-risk pregnant women (VICTORIA study): a multicentre, open-label randomised trial and meta-analysis. BJOG: An International Journal of Obstetrics & Gynaecology. 2020 Dec;127(13):1646-54.

15. Crowther CA, Ashwood P, McPhee AJ, Flenady V, Tran T, Dodd JM, et al. Vaginal progesterone pessaries for pregnant women with a previous preterm birth to prevent neonatal respiratory distress syndrome (the PROGRESS Study): a multicentre, randomised, placebo-controlled trial. Plos medicine 2017;14(9): e1002390.

16. da Fonseca EB, Bittar RE, Carvalho MH, Zugaib M. Prophylactic administration of progesterone by vaginal suppository in women at increased risk: a randomized placebo-controlled double-blind study. [Comment]. American Journal of Obstetrics and Gynecology 2003;188(2):419-24.

17. Danesh A, Janghborani M, Mohammadi B. Effects of zinc supplementation during pregnancy on pregnancy outcome in women with history of preterm delivery: a double-blind randomized, placebo-controlled trial. Journal of Maternal-Fetal and Neonatal Medicine 2010;23(5):403-8.

18. Danti L, Zonca M, Barbetti L, Lojacono A, Marini S, Cappello N, et al. Prophylactic oral nifedipine to reduce preterm delivery: a randomized controlled trial in women at high risk. Acta Obstetricia et Gynecologica Scandinavica 2014; 93:802-8.

19. Dugoff L, Berghella V, Sehdev H, Mackeen AD, Goetzl L, Ludmir J. Prevention of preterm birth with pessary in singletons (popp): a randomized controlled trial. Ultrasound in Obstetrics & Gynecology 2018; 51:573-9.

20. El-Gharib MN, El-Hawary TM. Matched sample comparison of intramuscular versus vaginal micronized progesterone for prevention of preterm birth. Journal of Maternal-Fetal & Neonatal Medicine 2013;26(7):716-9.
21. Elimian A, Smith K, Williams M, Knudtson E, Goodman JR, Escobedo MB. A randomized controlled trial of intramuscular versus vaginal progesterone for the prevention of recurrent preterm birth. International Journal of Gynaecology and Obstetrics: The Official Organ of the International Federation of Gynaecology and Obstetrics 2016;134(2):169-72.

22. Ezechi OC, Kalu BKE, Nwokoro CA. Prophylactic cerclage for the prevention of preterm delivery. International Journal of Gynecology & Obsetetrics 2004; 85:283-4.

23. Fonseca EB, Celik E, Parra M, Singh M, Nicolaides KH, for theFMFSTSG. Progesterone and the risk of preterm birth among women with a short cervix. New England Journal of Medicine 2007;357(5):462-9.

24. Glover MM, McKenna DS, Downing CM, Smith DB, Croom CS, Sone JD. A randomized trial of micronized progesterone for the prevention of recurrent preterm birth. American Journal of Perinatology 2011;28(5):377-81.

25. Goya M, Pratcorona L, Merced C, Rodó C, Valle L, Romero A, et al. Cervical pessary in pregnant women with a short cervix (PECEP): an open-label randomised controlled trial. [Erratum appears in Lancet. 2012 May 12;379(9828):1790]. Lancet 2012;379(9828):1800-6.

26. Grobman WA, Thom EA, Spong CY, Iams JD, Saade GR, Mercer BM, et al. 17-alpha-hydroxyprogesterone caproate to prevent prematurity in nulliparas with cervical length less than 30 mm. American Journal of Obstetrics and Gynecology 2012;207(5):390.e1-8.

27. Harper M, Thom E, Klebanoff MA Jr, Thorp J, Sorokin Y, Varner MW, et al. Omega-3 fatty acid supplementation to prevent recurrent preterm birth. Obstetrics & Gynecology 2010; 115:234-42.

28. Hassan SS, Romero R, Vidyadhar D, Fusey S, Baxter JK, Khandelwal M, et al. Vaginal progesterone reduces the rate of preterm birth in women with a sonographic short cervix: a multicenter, randomized, double-blind, placebo-controlled trial. Ultrasound in Obstetrics & Gynecology 2011;38(1):18-31.

29. Hui SY, Chor CM, Lau TK, Lao TT, Leung TY. Cerclage pessary for preventing preterm birth in women with a singleton pregnancy and a short cervix at 20 to 24 weeks: a randomized controlled trial. American Journal of Perinatology 2013;30(4):283-8.

30. Ibrahim M, Mohamed Ramy AR, Younis MA-F. Progesterone supplementation for prevention of preterm labor: a randomized controlled trial. Middle East Fertility Society Journal 2010;15(1):39-41.

31. Ionescu AC, Gheorghiu D, Pacu I, Davitoiu B, Dimitriu M, Haradja H. Randomized trial of cerclage and progesterone to prevent spontaneous preterm birth in high-risk women with a short cervix. Journal of Perinatal Medicine 2011;39 Suppl:Abstract no. 008.

32. Jabeen S, Akhtar M, Fatima N, Akram M. Role of progesterone for the prevention of preterm labour. Pakistan Journal of Medical and Health Sciences 2012;6(1):253-5.

33. Jafarpour H, Mousavi SJ, Mirghorbani M, Razavi AR, Atarod Z. Effect of 17α-Hydroxyprogesterone Caproate on the Prevention of Preterm Labor: A Randomized Controlled Trial Study. Journal of Midwifery and Reproductive Health. 2020;8(3):2317-23.

34. Johnson JWC, Austin KL, Jones GS, Davis GH, King TM. Efficacy of 17alpha-hydroxyprogesterone caproate in the prevention of premature labor. New England Journal of Medicine 1975; 295:675-80.

35. Karbasian N, Tara F, Sheikh M, Hazrati S, Hantoushzadeh S, Pirjani R. Combined treatment with cervical pessary and vaginal progesterone for the prevention of preterm birth: a randomized clinical trial. Journal of Obstetrics and Gynaecology Research 2016;42(12):1673-9.

36. Keeler SM, Kiefer D, Rochon M, Quinones JN, Novetsky AP, Rust O. A randomized trial of cerclage vs. 17-alpha-hydroxyprogesterone caproate for treatment of short cervix. Journal of Perinatal Medicine 2009;37(5):473-9.

37. Maher MA, Abdelaziz A, Ellaithy M, Bazeed MF. Prevention of preterm birth: a randomized trial of vaginal compared with intramuscular progesterone. Acta Obstetricia et Gynecologica Scandinavica 2013;92(2):215-22.

38. Majhi P, Bagga R, Kalra J, Sharma M. Intravaginal use of natural micronised progesterone to prevent pre-term birth: a randomised trial in India. Journal of Obstetrics and Gynaecology 2009;29(6):493-8.

39. Meis PJ, Klebanoff M, Thom E, Dombrowski MP, Sibai B, Moawad AH, et al. Prevention of recurrent preterm delivery by 17 alpha-hydroxyprogesterone caproate. New England Journal of Medicine 2003;348(24):2379-85.

40. MacNaughton. Final report of the medical research council/royal college of obstetricians and gynaecologists multicentre randomised trial of cervical cerclage Mrc/rcog working party on cervical cerclage. British Journal of Obstetrics and Gynaecology 1993;100(6):516-23.

41. Nicolaides KH, Syngelaki A, Poon LC, Picciarelli G, Tul N, Zamparakou A, et al. A randomized trial of a cervical pessary to prevent preterm singleton birth. New England Journal of Medicine 2016;374(11):1044-52.

42. Norman JE, Marlow N, Messow CM, Shennan A, Bennett PR, Thornton S, et al. Vaginal progesterone prophylaxis for preterm birth (the OPPTIMUM Study): a multicentre, randomised, double-blind trial. Lancet 2016;387(10033):2106-16.

43. O'Brien JM, Adair CD, Lewis DF, Hall DR, DeFranco EA, Fusey S, et al. Progesterone vaginal gel for the reduction of recurrent preterm birth: primary results from a randomized, double-blind, placebo-controlled trial. Ultrasound in Obstetrics and Gynecology 2007;30(5):687-96.

44. Olsen SF, Secher NJ, Tabor A, Weber T, Walker JJ, Gluud C. Randomised clinical trials of fish oil supplementation in high risk pregnancies. British Journal of Obstetrics and Gynaecology 2000; 107:382-95.

45. Otsuki K, Nakai A, Matsuda Y, Shinozuka N, Kawabata I, Makino Y, et al. Randomized trial of ultrasound-indicated cerclage in singleton women without lower genital tract inflammation. Journal of Obstetrics and Gynaecology Research 2016;42(2):148-57.
46. Owen J, Hankins G, Iams JD, Berghella V, Sheffield JS, Perez-Delboy A, et al. Multicenter randomized trial of cerclage for preterm birth prevention in high-risk women with shortened midtrimester cervical length. American Journal of Obstetrics and Gynecology 2009;201(4): 375.e1-8.

47. Pirjani R, Heidari R, Rahimi-Foroughani A, Bayesh S, Esmailzadeh A. 17-alpha-hydroxyprogesterone caproate versus vaginal progesterone suppository for the prevention of preterm birth in women with a sonographically short cervix: a randomized controlled trial. Journal of Obstetrics and Gynaecology Research 2017;43(1):57-64.

48. Rai P, Rajaram S, Goel N, Ayalur Gopalakrishnan R, Agarwal R, Mehta S. Oral micronized progesterone for prevention of preterm birth. International Journal of Gynecology & Obstetrics 2009;104(1):40-3.

49. Rush RW, Isaacs S, McPherson K, Jones L, Chalmers I, Grant AM. A randomized controlled trial of cervical cerclage in women at high risk of spontaneous preterm delivery. British Journal of Obstetrics and Gynaecology 1984; 91:724-30.

50. Rust OA, Atlas RO, Reed J, van Gaalen J, Balducci J. Revisiting the short cervix detected by transvaginal ultrasound in the second trimester: why cerclage therapy may not help. American Journal of Obstetrics and Gynecology 2001; 185:1098-105.

51. Saccone G, Maruotti GM, Giudicepietro A, Martinelli P, Italian PBP(IPP)WG. Effect of cervical pessary on spontaneous preterm birth in women with singleton pregnancies and short cervical length: A randomized clinical trial. JAMA 2017;318(23):2317-24.

52. Saghafi N, Khadem N, Mohajeri T, Shakeri MT. Efficacy of 17alpha-hydroxyprogesterone caproate in prevention of preterm delivery. Journal of Obstetrics and Gynaecology Research 2011;37(10):1342-5.

53. Shadab W, Riaz S, Aftab F, Shah FH. Efficacy of 17-alpha-hydroxyprogesterone in prevention of preterm labour in high risk pregnant women. Journal of Ayub Medical College, Abbottabad : Jamc April 2018-30 June 2018;30(2):209-12.

54. Shahgheibi S, Hamrah N, Soofizadeh N, Mojtabahzadah A, Seyedoshohadaei F, Rezaie M, et al. The effect of 17a-hydroxyprogesterone caproate on prevention of preterm labor in high-risk pregnant women. Iranian Red Crescent Medical Journal 2016;18(2): e26150.

55. Shambhavi S, Bagga R, Bansal P, Kalra J, Kumar P. A randomised trial to compare 200 mg micronised progesterone effervescent vaginal tablet daily with 250 mg intramuscular 17 alpha hydroxy progesterone caproate weekly for prevention of recurrent preterm birth. Journal of Obstetrics and Gynaecology 2018;38(6):800-6.

56. To MS, Alfirevic Z, Heath VCF, Cicero S, Chaco AM, Williamson PR, et al. Cervical cerclage for prevention of preterm delivery in women with short cervix: randomised controlled trial. Lancet 2004; 363:1849-53.

57. van Os MA, van der Ven AJ, Kleinrouweler CE, Schuit E, Kazemier BM, Verhoeven CJ, et al. Preventing preterm birth with progesterone in women with a short cervical length from a low-risk population: a multicenter double-blind placebo-controlled randomized trial. American Journal of Perinatology 2015;32(10):993-1000.

58. Vanda R, Zoladl M, Aramesh S. Comparison of effects of vaginal progesterone and intramuscular progesterone on prevention of labor in women with a high risk of spontaneous preterm delivery. International Journal of Pharmaceutical Research. 2020;12(3):595-602.

59. Vermeulen GM, Bruinse HW. Prophylactic administration of clindamycin 2% vaginal cream to reduce the incidence of spontaneous preterm birth in women with an increased recurrence risk: a randomised placebo-controlled double-blind trial. British Journal of Obstetrics and Gynaecology 1999;106:652-7.

60. Wajid R, Zafar M, Waheed F. Effectiveness of vaginal versus intramuscular progesterone for the prevention of preterm delivery. Annals of King Edward Medical University 2016; 22:284-9.

61. Winer N, Bretelle F, Senat MV, Bohec C, Deruelle P, Perrotin F, et al. 17-alpha-hydroxyprogesterone caproate does not prolong pregnancy or reduce the rate of preterm birth in women at high risk for preterm delivery and a short cervix: a randomized controlled trial. American Journal of Obstetrics & Gynecology 2015;212(4):485. e1-485.e10.
Reference list of ongoing studies

1. Asemi Z, IRCT201212105623N3. Comparison of effectiveness of multivitamin, multivitamin-mineral supplements, probiotic and normal Gaz on pregnancy outcomes in pregnant women. en.search.irct.ir/view/11730 26 December 2012.

2. Aziz N. Effect of oral probiotic supplementation on group B strep rectovaginal colonization in pregnancy. https://clinicaltrials.gov/ct2/show/NCT01479478 2011.

3. Barthow C, Wickens K, Stanley T, Mitchell EA, Maude R, Abels P, et al. The Probiotics in Pregnancy Study (PiP Study): rationale and design of a double-blind randomised controlled trial to improve maternal health during pregnancy and prevent infant eczema and allergy. BMC Pregnancy and Childbirth 2016;16(1):133.

4. Birch R. A phase 3b, multi-center, randomized, double-blind study of hydroxyprogesterone caproate injection, 250 mg/ml, versus vehicle for the prevention of preterm birth in women with a previous singleton spontaneous preterm delivery. ClinicalTrials.gov 2009.

5. Bocking A. Effect of probiotic lactobacilli on vaginal flora of pregnant women at high risk for preterm delivery. https://clinicaltrials.gov/ct2/show/NCT00217308 2005.

6. Boelig R. Vaginal versus intramuscular progesterone for the prevention of recurrent preterm birth. https://clinicaltrials.gov/ct2/show/NCT02913495 2016.

7. Driggers RW. Preventing preterm birth with a pessary. http://clinicaltrials.gov/ct2/show/record/NCT01380158 (accessed 18 June 2012) 2012.

8. Hezelgrave N. The prevention of pre-term birth in women who develop a short cervix. A multi-centre randomised controlled trial to compare three treatments; a cervical cerclage, cervical pessary and vaginal progesterone. https://www.clinicaltrialsregister.eu/ctr-search/search?query=eudract_number:2015-000456-15 2015.

9. Ho M. Oral probiotics reduce group b streptococci colonization in pregnant women. https://clinicaltrials.gov/ct2/show/NCT01577108 2012.

10. Khandelwal S. Effect of docosa-hexaenoic acid (DHA) supplementation during pregnancy on newborn outcomes in India - the DHANI randomized controlled trial. https://clinicaltrials.gov/ct2/show/NCT01580345 2012.

11. Kim YJ, NCT02304237. A multicenter, randomized, open-label, investigator initiated trial of vaginal compared with intramuscular progesterone for prevention of preterm birth in high risk pregnant women. https://clinicaltrials.gov/ct2/show/NCT02304237 2014.

12. Koullali B, van Kempen LEM, van Zijl MD, Naaktgeboren CA, Schuit E, Bekedam DJ, et al. A multi-centre, non-inferiority, randomised controlled trial to compare a cervical pessary with a cervical cerclage in the prevention of preterm delivery in women with short cervical length and a history of preterm birth - pc study (Protocol). Bmc Pregnancy and Childbirth 2017;17(1):215.

13. Laitinen K. Nutrition and pregnancy intervention study. ClinicalTrials.gov (http://clinicaltrials.gov/) [accessed 5 February 2014] 2013.

14. Lee Y, NCT01421615. Effect of different courses of lactobacilli treatment on bacterial vaginosis and pregnancy outcomes (BV). https://clinicaltrials.gov/ct2/show/NCT01421615 2011.

15. Li D. Effect of omega-3 fatty acids on insulin sensitivity in Chinese gestational diabetic patients. ClinicalTrials.gov (http://clinicaltrials.gov/) [accessed 5 February 2014] 2013.

16. Mehta S, DuPlessis J, Sunanda G, Darragh H. Randomized double-blind placebo-controlled trial of Probiotics In Pregnancy (PIP) and its effect on group-b streptococcal colonization-study protocol. Journal of Paediatrics and Child Health 2016;52:68.

17. Price JT, Vwalika B, Freeman BL, Cole SR, Mulenga HB, Winston J, et al. Intramuscular 17-hydroxyprogesterone caproate to prevent preterm birth among hiv-infected women in zambia: study protocol of the ipop randomized trial. Bmc Pregnancy and Childbirth 27 February 2019;19(1):81.
18. Samy M, NCT03537287. Different types of progesterone in the prevention of preterm labor. https://clinicaltrials.gov/ct2/show/NCT03537287 2018.

19. Sharpe MJ, McGrath KM. Effect of probiotics on Group B Streptococcus (GBS) colonization status during pregnancy: Midwifery-led pilot randomized controlled trial (RCT). In: 31st International Confederation of Midwives Triennial Congress. Midwives - Making a Difference in the World; 2017 June 18-22; Toronto, Canada. 2017:Abstract no: B07.03.

20. van Zijl MD, Koullali B, Naaktgeboren CA, Schuit E, Bekedam DJ, Moll E, et al. Pessary or progesterone to prevent preterm delivery in women with short cervical length: the Quadruple P randomised controlled trial. BMC Pregnancy and Childbirth 2017;17(1):284.

21. Visser L, de Boer MA, de Groot CJM, Nijman TAJ, Hemels MAC, Bloemenkamp KWM, et al. Low dose aspirin in the prevention of recurrent spontaneous preterm labour - the april study: a multicenter randomized placebo controlled trial. BMC Pregnancy and Childbirth 14 July 2017;17(1):223.

22. Wu MH. Probiotics capsule as supplemental therapy for group B streptococci infection and vaginitis during pregnancy. ClinicalTrials.gov (accessed 21 May 2013) 2013.
Supplementary File 5: Summary of results of studies disconnected from the network

Four trials were disconnected from the network for at least one outcome. All four studies included an intervention which combined McDonald cerclage with another intervention. We calculated odds ratios or mean differences (with 95% confidence intervals) of the intervention compared to control for each individual study.

Study	Intervention	Control	Outcome	Result
Althuisius 2001	McDonald cerclage and bed rest and antibiotics [amoxicillin plus metronidazole] (n=19)	Bed rest and antibiotics [amoxicillin plus metronidazole] (n=16)	Preterm birth < 37 weeks gestation	**OR 0.16 (95% CI 0.04 to 0.72)**
			Preterm birth < 34 weeks gestation	**OR 0.06 (95% CI 0.003 to 1.06)**
			Preterm birth < 28 weeks gestation	**OR 0.10 (95% CI 0.005 to 2.08)**
			Preterm prelabour rupture of membranes	**OR 0.03 (95% CI 0.001 to 0.50)**
			Maternal infection	**OR 0.04 (95% CI 0.005 to 0.40)**
			Perinatal Death	**OR 0.10 (95% CI 0.005 to 2.08)**
			Neonatal Death	**OR 0.10 (95% CI 0.005 to 2.08)**
			Gestational age at birth (weeks)	**MD 4.8 (95% CI 1.62 to 7.98)**
Berghella 2004	McDonald cerclage and bed rest (n=29)	Bed rest (n=28)	Spontaneous preterm birth < 34 weeks gestation	**OR 0.78 (95% CI 0.26 to 2.31)**
			Preterm prelabour rupture of membranes	**OR 0.76 (95% CI 0.25 to 2.33)**
			Perinatal Death	**OR 1.33 (95% CI 0.27 to 6.58)**
Keeler 2009	McDonald cerclage and clindamycin (n=37)	17-OHPC and clindamycin (n=42)	Preterm birth < 37 weeks gestation	**OR 0.75 (95% CI 0.31 to 1.83)**
			Preterm birth < 28 weeks gestation	**OR 0.75 (95% CI 0.25 to 2.21)**
			Preterm prelabour rupture of membranes	**OR 1.21 (95% CI 0.47 to 3.09)**
			Maternal infection	**OR 0.69 (95% CI 0.25 to 1.93)**
			Neonatal death	**OR 1.11 (95% CI 0.28 to 4.50)**
			Gestational age at birth (weeks)	**MD -0.10 (95% CI -2.81 to 2.61)**
Rust 2001	McDonald cerclage and clindamycin (n=55)	Clindamycin (n=58)	Gestational age at birth (weeks)	**MD 0.00 (95% CI -2.13 to 2.13)**

17-OHPC = 17alpha hydroxyprogesterone caproate, CI = Confidence Interval, MD = Mean Difference, OR = Odds Ratio

1. See Supplementary File 4 for references of studies
2. OR<1 or MD>0 indicates an advantage to the intervention over the control, and statistically significant results are highlighted in bold.

Fewer preterm births at less than 37 weeks gestation, preterm prelabour rupture of membranes and cases of maternal infection occurred on McDonald cerclage and bed rest and antibiotics compared to bed rest and antibiotics. Gestational age at birth was also later on cerclage and bed rest and antibiotics compared to bed rest and antibiotics.

No statistically significant differences were demonstrated for preterm birth less than 34 weeks or 28 weeks gestation, nor for perinatal or neonatal death. There were also no statistically significant differences for any outcomes between McDonald cerclage and bed rest compared to bed rest and McDonald cerclage and clindamycin compared to Clindamycin alone or 17-OHPC and clindamycin.
However, due to small numbers of patients included in the trials and low numbers of events, confidence intervals of the individual study results are wide and therefore the magnitude of any difference between the any of the treatments is associated with great uncertainty.
Supplementary File 6: Network meta-analysis results of outcomes for pregnant women

Results are presented for the best fitting NMA model for each outcome (see Supplementary Table 5).

Results expressed as odds ratio (OR) and 95% credible interval (CI). OR<1 indicates an advantage to the treatment over the reference. A credible interval is interpreted as the interval where there is a 95% probability that the values of the OR will lie.

Due to the large number of pairwise comparisons made in NMAs, for practical reasons, comparisons to control, vaginal progesterone and intramuscular progesterone only are presented.

Extremely wide credible intervals were estimated for some treatment comparisons, particularly for the outcomes preterm birth <28 weeks, maternal death and maternal infection, where few events occurred and data were sparse. These results are very uncertain and should be interpreted with extreme caution.

Preterm Birth at <37 weeks (Random Effects, Consistency model)
Preterm Birth at <34 weeks (Random Effects, Consistency model)

Treatment	Odds (95% CI)
Reference: Control (Placebo / No Treatment)	
Vaginal Progesterone	0.50 (0.34, 0.70)
Oral Progesterone	0.42 (0.12, 1.40)
17-OHPC	0.68 (0.43, 1.02)
McDonald Cerclage	0.66 (0.21, 2.03)
Shidrokar Cerclage	0.06 (0.00, 0.84)
Unspecified Cerclage	0.66 (0.29, 1.44)
Pessary	0.65 (0.39, 1.08)
Fish Oil	0.30 (0.06, 1.23)
Bed Rest	0.41 (0.05, 3.18)
Clindamycin	2.95 (0.63, 15.55)
Combo (Pessary + Vaginal Progesterone)	0.79 (0.18, 4.33)
Combo (McDonald Cerclage + Clindamycin)	2.75 (0.37, 22.31)
Combo (Shirodkar Cerclage + Erythromycin)	0.79 (0.25, 2.52)
Combo (17-OHPC + Clindamycin)	0.98 (0.17, 5.70)
Combo (Omega3 + 17-OHPC)	0.63 (0.20, 1.96)
Combo (McDonald Cerclage + Bed Rest)	0.32 (0.02, 3.92)

Reference: Vaginal Progesterone	
Oral Progesterone	0.83 (0.24, 3.03)
17-OHPC	1.34 (0.87, 2.12)
McDonald Cerclage	1.32 (0.42, 4.40)
Shidrokar Cerclage	0.13 (0.00, 1.76)
Unspecified Cerclage	1.32 (0.59, 2.99)
Pessary	1.29 (0.74, 2.39)
Fish Oil	0.59 (0.12, 2.63)
Bed Rest	0.82 (0.10, 6.65)
Clindamycin	5.89 (1.22, 27.75)
Combo (Pessary + Vaginal Progesterone)	1.58 (0.38, 6.86)
Combo (McDonald Cerclage + Clindamycin)	5.48 (0.72, 46.81)
Combo (Shirodkar Cerclage + Erythromycin)	1.58 (0.48, 5.47)
Combo (17-OHPC + Clindamycin)	1.95 (0.33, 12.05)
Combo (Omega3 + 17-OHPC)	1.26 (0.46, 4.08)
Combo (McDonald Cerclage + Bed Rest)	0.64 (0.05, 8.20)

Reference: 17-OHPC	
Oral Progesterone	0.62 (0.17, 2.27)
McDonald Cerclage	0.98 (0.30, 3.34)
Shidrokar Cerclage	0.10 (0.00, 1.32)
Unspecified Cerclage	0.98 (0.41, 2.36)
Pessary	0.96 (0.51, 1.88)
Fish Oil	0.44 (0.09, 1.98)
Bed Rest	0.61 (0.07, 5.01)
Clindamycin	4.38 (0.89, 24.83)
Combo (Pessary + Vaginal Progesterone)	1.17 (0.26, 5.40)
Combo (McDonald Cerclage + Clindamycin)	4.07 (0.53, 35.34)
Combo (Shirodkar Cerclage + Erythromycin)	1.17 (0.35, 4.12)
Combo (17-OHPC + Clindamycin)	1.46 (0.24, 9.04)
Combo (Omega3 + 17-OHPC)	0.94 (0.33, 2.72)
Combo (McDonald Cerclage + Bed Rest)	0.48 (0.04, 6.19)
Spontaneous Preterm Birth at <34 weeks (Random Effects, Consistency model)

Treatment	Odds Ratio (95% CI)
Reference: Control (Placebo / No Treatment)	
Vaginal Progesterone	0.85 (0.15, 4.68)
17-OHPC	0.65 (0.09, 4.19)
Pessary	0.63 (0.20, 1.99)
Reference: Vaginal Progesterone	
17-OHPC	0.76 (0.10, 5.41)
Pessary	0.74 (0.13, 4.47)
Reference: 17-OHPC	
Pessary	0.98 (0.12, 8.45)

Preterm Birth at <28 weeks (Fixed Effects, Consistency model)

Treatment	Odds Ratio (95% CI)
Reference: Control (Placebo / No Treatment)	
Vaginal Progesterone	0.91 (0.71, 1.17)
Oral Progesterone	0.07 (0.00, 1.13)
17-OHPC	0.77 (0.48, 1.22)
McDonald Cerclage	0.75 (0.55, 1.02)
Shidrokar Cerclage	0.76 (0.00, 559.48)
Unspecified Cerclage	1.64 (0.27, 10.89)
Pessary	0.86 (0.59, 1.25)
Bed Rest	0.80 (0.00, 546.21)
Combo (Shirodkar Cerclage + Erythromycin)	0.85 (0.40, 1.82)
Combo (McDonald Cerclage + Bed Rest)	0.83 (0.00, 663.15)
Reference: Vaginal Progesterone	
Oral Progesterone	0.07 (0.00, 1.25)
McDonald Cerclage	0.84 (0.52, 1.33)
Shidrokar Cerclage	0.82 (0.55, 1.22)
Unspecified Cerclage	0.84 (0.00, 599.44)
Pessary	1.80 (0.30, 11.82)
Bed Rest	0.94 (0.61, 1.44)
Combo (Shirodkar Cerclage + Erythromycin)	0.87 (0.00, 611.55)
Combo (McDonald Cerclage + Bed Rest)	0.94 (0.42, 2.07)
Reference: 17-OHPC	
Oral Progesterone	0.09 (0.00, 1.55)
McDonald Cerclage	0.98 (0.56, 1.72)
Shidrokar Cerclage	1.00 (0.00, 716.95)
Unspecified Cerclage	2.16 (0.34, 14.92)
Pessary	1.12 (0.63, 2.03)
Bed Rest	1.05 (0.00, 745.46)
Combo (Shirodkar Cerclage + Erythromycin)	1.12 (0.46, 2.72)
Combo (McDonald Cerclage + Bed Rest)	1.10 (0.00, 879.19)
Maternal Death (Random Effects, Consistency model)

Treatment	Reference: Control (Placebo / No Treatment)	Odds Ratio (95% CI)
Vaginal Progesterone		1.00 (0.00, 4217.51)
17-OHPC		0.52 (0.00, 2230.54)
Unspecified Cerclage		0.89 (0.00, 103777.05)
Pessary		1.01 (0.00, 225.88)

Reference: Vaginal Progesterone

Treatment	Reference: Vaginal Progesterone	Odds Ratio (95% CI)
17-OHPC		0.53 (0.00, 57526.45)
Unspecified Cerclage		0.90 (0.00, 3718.22)
Pessary		0.96 (0.00, 16531.13)

Reference: 17-OHPC

Treatment	Reference: 17-OHPC	Odds Ratio (95% CI)
Unspecified Cerclage		1.68 (0.00, 2235554.50)
Pessary		1.87 (0.00, 35596.39)

Preterm Rupture of Membranes (Fixed Effects, Consistency model)

Treatment	Reference: Control (Placebo / No Treatment)	Odds Ratio (95% CI)
Vaginal Progesterone		0.90 (0.73, 1.12)
Oral Progesterone		0.76 (0.42, 1.37)
17-OHPC		1.13 (0.77, 1.65)
McDonald Cerclage		1.65 (0.75, 3.77)
Unspecified Cerclage		2.41 (0.84, 7.68)
Pessary		0.76 (0.49, 1.18)
Combo (Pessary + Vaginal Progesterone)		0.83 (0.31, 2.20)
Combo (Shirodkar Cerclage + Erythromycin)		1.25 (0.64, 2.45)

Reference: Vaginal Progesterone

Treatment	Reference: Vaginal Progesterone	Odds Ratio (95% CI)
Oral Progesterone		0.84 (0.45, 1.57)
17-OHPC		1.24 (0.85, 1.84)
McDonald Cerclage		1.83 (0.81, 4.28)
Unspecified Cerclage		2.66 (0.93, 8.44)
Pessary		0.84 (0.53, 1.33)
Combo (Pessary + Vaginal Progesterone)		0.92 (0.36, 2.36)
Combo (Shirodkar Cerclage + Erythromycin)		1.38 (0.69, 2.80)

Reference: 17-OHPC

Treatment	Reference: 17-OHPC	Odds Ratio (95% CI)
Oral Progesterone		0.68 (0.34, 1.36)
McDonald Cerclage		1.47 (0.61, 3.66)
Unspecified Cerclage		2.13 (0.70, 7.19)
Pessary		0.68 (0.38, 1.20)
Combo (Pessary + Vaginal Progesterone)		0.74 (0.27, 2.05)
Combo (Shirodkar Cerclage + Erythromycin)		1.11 (0.51, 2.41)
Supplementary File 7: Network meta-analysis results of outcomes for offspring

Results are presented for the best fitting NMA model for each outcome (see Supplementary Table 5).

Results expressed as odds ratio (OR) or mean difference (MD) and 95% credible interval (CI). OR<1 or MD>0 indicates an advantage to the treatment over the reference. A credible interval is interpreted as the interval where there is a 95% probability that the values of the MD or the OR will lie.

Due to the large number of pairwise comparisons made in NMAs, for practical reasons, comparisons to control, vaginal progesterone and intramuscular progesterone only are presented.

Extremely wide credible intervals were estimated for some treatment comparisons, particularly for outcomes perinatal death, periventricular leukomalacia, necrotising enterocolitis and sepsis, where few events occurred and data were sparse. These results are very uncertain and should be interpreted with extreme caution.

Perinatal Death (Fixed Effects, Consistency model)

Treatment	Odds Ratio (95% CI)
Reference: Control (Placebo / No Treatment)	
Vaginal Progesterone	0.66 (0.44, 0.97)
17-OHPC	0.78 (0.50, 1.21)
McDonald Cerclage	0.59 (0.33, 1.03)
Unspecified Cerclage	0.77 (0.53, 1.11)
Pessary	0.90 (0.52, 1.54)
Clindamycin	4.01 (0.44, 130.97)
Combo (Pessary + Vaginal Progesterone)	1.66 (0.12, 54.82)
Combo (McDonald Cerclage + Clindamycin)	7.59 (0.64, 274.24)
Combo (Shirodkar Cerclage + Erythromycin)	0.72 (0.28, 1.78)
Combo (Omega3 + 17-OHPC)	0.70 (0.30, 1.61)
Reference: Vaginal Progesterone	
17-OHPC	1.18 (0.65, 2.15)
McDonald Cerclage	0.89 (0.44, 1.79)
Unspecified Cerclage	1.17 (0.70, 1.96)
Pessary	1.37 (0.73, 2.59)
Clindamycin	6.12 (0.64, 202.76)
Combo (Pessary + Vaginal Progesterone)	2.52 (0.19, 81.45)
Combo (McDonald Cerclage + Clindamycin)	11.60 (0.94, 431.38)
Combo (Shirodkar Cerclage + Erythromycin)	1.10 (0.40, 2.95)
Combo (Omega3 + 17-OHPC)	1.07 (0.43, 2.69)
Reference: 17-OHPC	
McDonald Cerclage	0.76 (0.36, 1.54)
Unspecified Cerclage	0.99 (0.55, 1.76)
Pessary	1.16 (0.57, 2.34)
Clindamycin	5.21 (0.54, 171.23)
Combo (Pessary + Vaginal Progesterone)	2.14 (0.15, 72.68)
Combo (McDonald Cerclage + Clindamycin)	9.85 (0.79, 358.88)
Combo (Shirodkar Cerclage + Erythromycin)	0.93 (0.32, 2.53)
Combo (Omega3 + 17-OHPC)	0.91 (0.45, 1.83)
Neonatal Death (Fixed Effects, Consistency model)

Treatment	Odds (95% CI)
Reference: Control (Placebo / No Treatment)	
Vaginal Progesterone	0.29 (0.19, 0.46)
Oral Progesterone	0.26 (0.12, 0.55)
17-OHPC	0.56 (0.34, 0.93)
McDonald Cerclage	0.73 (0.13, 3.60)
Shidrokar Cerclage	0.13 (0.00, 6.09)
Unspecified Cerclage	0.57 (0.25, 1.26)
Pessary	0.79 (0.37, 1.69)
Bed Rest	0.73 (0.03, 17.83)
Combo (Pessary + Vaginal Progesterone)	0.30 (0.01, 11.52)
Combo (Shirodkar Cerclage + Erythromycin)	0.82 (0.25, 2.61)
Combo (McDonald Cerclage + Bed Rest)	0.53 (0.01, 19.41)
Reference: Vaginal Progesterone	
Oral Progesterone	0.89 (0.36, 2.13)
17-OHPC	1.91 (1.12, 3.33)
McDonald Cerclage	2.48 (0.42, 13.08)
Shidrokar Cerclage	0.44 (0.00, 21.31)
Unspecified Cerclage	1.93 (0.78, 4.69)
Pessary	2.70 (1.11, 6.55)
Bed Rest	2.48 (0.10, 64.01)
Combo (Pessary + Vaginal Progesterone)	1.03 (0.03, 38.13)
Combo (Shirodkar Cerclage + Erythromycin)	2.79 (0.78, 9.59)
Combo (McDonald Cerclage + Bed Rest)	1.79 (0.05, 67.90)
Reference: 17-OHPC	
Oral Progesterone	0.46 (0.18, 1.14)
McDonald Cerclage	1.29 (0.22, 6.87)
Shidrokar Cerclage	0.23 (0.00, 11.21)
Unspecified Cerclage	1.01 (0.39, 2.55)
Pessary	1.41 (0.57, 3.49)
Bed Rest	1.29 (0.05, 33.08)
Combo (Pessary + Vaginal Progesterone)	0.54 (0.01, 20.66)
Combo (Shirodkar Cerclage + Erythromycin)	1.45 (0.40, 5.12)
Combo (McDonald Cerclage + Bed Rest)	0.93 (0.02, 35.77)
Low Birthweight (Random Effects, Consistency model)

Reference: Control (Placebo / No Treatment)
- Vaginal Progesterone
- Oral Progesterone
- 17-OHPC
- McDonald Cerclage
- Unspecified Cerclage
- Pessary
- Zinc
- Combo (Pessary + Vaginal Progesterone)
- Combo (Omega3 + 17-OHPC)

Reference: Vaginal Progesterone
- Oral Progesterone
- 17-OHPC
- McDonald Cerclage
- Unspecified Cerclage
- Pessary
- Zinc
- Combo (Pessary + Vaginal Progesterone)
- Combo (Omega3 + 17-OHPC)

Reference: 17-OHPC
- Oral Progesterone
- McDonald Cerclage
- Unspecified Cerclage
- Pessary
- Zinc
- Combo (Pessary + Vaginal Progesterone)
- Combo (Omega3 + 17-OHPC)

Odds Ratio (95% CI)
- Reference worse
 - Vaginal Progesterone: 0.59 (0.31, 1.07)
 - Oral Progesterone: 0.38 (0.08, 1.76)
 - 17-OHPC: 0.71 (0.38, 1.31)
 - McDonald Cerclage: 0.61 (0.18, 1.87)
 - Unspecified Cerclage: 0.84 (0.20, 3.50)
 - Pessary: 0.59 (0.27, 1.24)
 - Zinc: 0.42 (0.06, 2.82)
 - Combo (Pessary + Vaginal Progesterone): 0.86 (0.15, 4.87)
 - Combo (Omega3 + 17-OHPC): 0.54 (0.11, 2.52)

- Reference better
 - Vaginal Progesterone: 0.65 (0.13, 3.42)
 - Oral Progesterone: 1.21 (0.55, 2.76)
 - 17-OHPC: 1.05 (0.26, 3.75)
 - McDonald Cerclage: 1.43 (0.31, 6.80)
 - Unspecified Cerclage: 1.00 (0.42, 2.41)
 - Pessary: 0.72 (0.09, 5.34)
 - Zinc: 1.46 (0.29, 7.47)
 - Combo (Pessary + Vaginal Progesterone): 0.91 (0.18, 4.69)

- 17-OHPC
 - Oral Progesterone: 0.54 (0.11, 2.80)
 - McDonald Cerclage: 0.86 (0.21, 3.06)
 - Unspecified Cerclage: 1.18 (0.26, 5.64)
 - Pessary: 0.82 (0.31, 2.15)
 - Zinc: 0.59 (0.08, 4.34)
 - Combo (Pessary + Vaginal Progesterone): 1.21 (0.20, 7.45)
 - Combo (Omega3 + 17-OHPC): 0.75 (0.18, 3.14)
Intraventricular haemorrhage (Fixed Effects, Consistency model)

Comparison	Odds Ratio (95% CI)
Reference: Control (Placebo / No Treatment)	
Vaginal Progesterone	0.66 (0.42, 1.03)
Oral Progesterone	0.65 (0.24, 1.71)
17-OHPC	0.64 (0.32, 1.31)
McDonald Cerclage	0.11 (0.00, 2.05)
Unspecified Cerclage	0.64 (0.08, 4.90)
Pessary	1.07 (0.54, 2.12)
Nifedipine	0.18 (0.00, 5.53)
Combo (Shirodkar Cerclage + Erythromycin)	0.40 (0.01, 5.24)
Combo (Omega3 + 17-OHPC)	0.68 (0.22, 2.23)

Reference: Vaginal Progesterone

Comparison	Odds Ratio (95% CI)
Oral Progesterone	0.99 (0.32, 2.85)
17-OHPC	0.97 (0.47, 1.99)
McDonald Cerclage	0.16 (0.00, 3.22)
Unspecified Cerclage	0.96 (0.13, 7.06)
Pessary	1.62 (0.73, 3.63)
Nifedipine	0.27 (0.00, 8.66)
Combo (Shirodkar Cerclage + Erythromycin)	0.61 (0.02, 8.26)
Combo (Omega3 + 17-OHPC)	1.04 (0.32, 3.40)

Reference: 17-OHPC

Comparison	Odds Ratio (95% CI)
Oral Progesterone	0.99 (0.30, 3.38)
McDonald Cerclage	0.10 (0.00, 3.52)
Unspecified Cerclage	0.99 (0.12, 9.24)
Pessary	1.67 (0.63, 4.41)
Nifedipine	0.29 (0.00, 9.31)
Combo (Shirodkar Cerclage + Erythromycin)	0.62 (0.02, 9.12)
Combo (Omega3 + 17-OHPC)	1.07 (0.43, 2.78)

Periventricular Leukomalacia (Fixed Effects, Consistency model)

Comparison	Odds Ratio (95% CI)
Reference: Control (Placebo / No Treatment)	
Vaginal Progesterone	0.99 (0.03, 37.83)
17-OHPC	5.29 (0.66, 158.22)

Reference: Vaginal Progesterone

Comparison	Odds Ratio (95% CI)
17-OHPC	5.89 (0.08, 727.78)
Necrotising enterocolitis (Fixed Effects, Consistency model)

Treatment	Odds Ratio (95% CI)
Reference: Control (Placebo / No Treatment)	
Vaginal Progesterone	0.79 (0.49, 1.24)
Oral Progesterone	0.48 (0.14, 1.51)
17-OHPC	0.40 (0.16, 0.93)
McDonald Cerclage	1.03 (0.11, 9.87)
Unspecified Cerclage	4.17 (0.13, 2145.23)
Pessary	1.24 (0.55, 2.65)
Combo (Omega3 + 17-OHPC)	0.27 (0.04, 1.67)

Reference: Vaginal Progesterone

Treatment	Odds Ratio (95% CI)
Oral Progesterone	0.62 (0.16, 2.09)
17-OHPC	0.51 (0.20, 1.22)
McDonald Cerclage	1.31 (0.13, 13.08)
Unspecified Cerclage	5.28 (0.17, 2694.59)
Pessary	1.58 (0.65, 4.00)
Combo (Omega3 + 17-OHPC)	0.35 (0.05, 2.14)

Reference: 17-OHPC

Treatment	Odds Ratio (95% CI)
Oral Progesterone	1.22 (0.27, 5.19)
McDonald Cerclage	2.62 (0.23, 29.46)
Unspecified Cerclage	10.67 (0.30, 5602.68)
Pessary	3.14 (0.98, 10.51)
Combo (Omega3 + 17-OHPC)	0.70 (0.13, 3.37)

Sepsis (Fixed Effects, Consistency model)

Treatment	Odds Ratio (95% CI)
Reference: Control (Placebo / No Treatment)	
Vaginal Progesterone	0.43 (0.24, 0.77)
17-OHPC	0.65 (0.37, 1.17)
Unspecified Cerclage	0.40 (0.05, 2.98)
Pessary	0.86 (0.58, 1.28)
Clindamycin	24.56 (1.72, 13413.27)
Combo (Shirodkar Cerclage + Erythromycin)	2.78 (0.55, 22.31)
Combo (Omega3 + 17-OHPC)	1.11 (0.23, 6.31)

Reference: Vaginal Progesterone

Treatment	Odds Ratio (95% CI)
17-OHPC	1.52 (0.76, 3.06)
Unspecified Cerclage	0.92 (0.12, 6.57)
Pessary	2.00 (1.00, 4.11)
Clindamycin	57.63 (3.75, 31257.05)
Combo (Shirodkar Cerclage + Erythromycin)	6.52 (1.15, 56.71)
Combo (Omega3 + 17-OHPC)	2.58 (0.52, 15.00)

Reference: 17-OHPC

Treatment	Odds Ratio (95% CI)
Unspecified Cerclage	0.61 (0.07, 4.73)
Pessary	1.32 (0.65, 2.66)
Clindamycin	38.13 (2.46, 20292.37)
Combo (Shirodkar Cerclage + Erythromycin)	4.28 (0.76, 36.38)
Combo (Omega3 + 17-OHPC)	1.69 (0.39, 8.80)
Treatment Comparison	Odds Ratio (95% CI)
----------------------	---------------------
Reference: Control (Placebo / No Treatment)	
Vaginal Progesterone	0.61 (0.40, 0.86)
Oral Progesterone	0.23 (0.10, 0.52)
17-OHPC	0.82 (0.48, 1.22)
McDonald Cerclage	0.07 (0.00, 0.63)
Pessary	0.90 (0.46, 1.71)
Nifedipine	0.94 (0.02, 37.68)
Combo (Pessary + Vaginal Progesterone)	1.13 (0.19, 7.73)
Combo (Omega3 + 17-OHPC)	0.90 (0.28, 2.44)
Reference: Vaginal Progesterone	
Oral Progesterone	0.38 (0.16, 0.97)
17-OHPC	1.34 (0.83, 2.08)
McDonald Cerclage	0.12 (0.00, 1.09)
Pessary	1.47 (0.76, 3.10)
Nifedipine	1.55 (0.04, 64.39)
Combo (Pessary + Vaginal Progesterone)	1.86 (0.32, 12.50)
Combo (Omega3 + 17-OHPC)	1.47 (0.48, 4.22)
Reference: 17-OHPC	
Oral Progesterone	0.28 (0.12, 0.77)
McDonald Cerclage	0.09 (0.00, 0.84)
Pessary	1.09 (0.53, 2.54)
Nifedipine	1.17 (0.03, 49.21)
Combo (Pessary + Vaginal Progesterone)	1.39 (0.23, 10.12)
Combo (Omega3 + 17-OHPC)	1.09 (0.41, 2.91)
Supplementary Table 1: Summary of key trial and participant baseline characteristics

Trial	High Risk Population	Total	GA at initiation of intervention	GA at stopping intervention	Nulliparous	History of PTB or SPTB < 37 weeks	History of PTB or SPTB < 34 weeks	Short cervix < 25mm	Smoking at start of pregnancy	Black or African race					
Ahuja 2015	History of PTB < 37 wks	80	24 to 26 weeks	34 weeks	NR	25%	NR	NR	NR	NR					
Akbari 2009	History of sPTB, cervical cerclage or uterine malformation, 18 - 35 yrs old	150	24 weeks	36 weeks	NR	93%	NR	NR	NR	NR					
Althuisius 2001	1. History PTB/PPROM < 34 wks, 2. Uterine anomaly, knife cone biopsy 3. Short CL < 25mm 15-27wks on TVU	36	before 27 weeks	37 weeks	20%	80%	NR	100%	NR	NR					
Ashoush 2017	History of sPTB < 37 wks	212	14 to 18 weeks	37 weeks	0%	100%	NR	NR	NR	NR					
Azargoon 2016	Prior PTB, prior PTB and short cervix < 28 mm, prior cerclage, uterine anomalies	103	16 to 22 weeks	36 weeks	NR	53%	NR	27%	NR	NR					
Bafghi 2015	History of previous preterm delivery or a short cervix (< 25 mm) on TVU. Women with both risk factors excluded.	78	16 to 20 weeks	delivery	NR	42%	NR	58%	NR	NR					
Berghella 2004	Asymptomatic women high risk due to: 1) > 1 PTB between 14-34 weeks of gestation, 2) >2 curettage procedures for spontaneous/voluntary abortions, 3) diethylstilbestrol (DES) exposure, 4) cone biopsy, or 5) Mullerian anomaly and who were identified to have a short cervix (< 25 mm) or significant funnelling (> 25%) between 14 weeks 0 days of gestation and 23 weeks 6 days of gestation. (Twin data excluded)	61	14 to <24 weeks	delivery	NR	64%	NR	100%	28%	77%					
Study Year	Study Details	Participants	Pregnancy Weeks	Delivery Weeks	Preterm Delivery	Preterm Rate	NR Rate	NR Rate	NR Rate						
------------	---	--------------	-----------------	----------------	------------------	--------------	---------	---------	---------						
2020 Blackwell	Previous singleton sPTB	1708	16 to 20 weeks	delivery	0%	100%	NR	2%	8%	7%					
1979 Breart	20-34 weeks incidental finding of short cervix with effacement or premature cervical dilatation in asymptomatic women	211	24 to 34 weeks	37 weeks	NR	NR	NR	NR	NR	NR					
2015 Cabrera-Garcia	Pregnant women with a short cervix (<25 mm) as identified by TVU at 19 to 22 weeks	254	20 to 23 weeks	37 weeks	46%	11%	NR	100%	17%	4%					
2019 Care	16-24 weeks' gestation, history of sPTB, cervix < 3rd centile for gestation, 18+, treating physician in equipoise as to the best treatment	18	16 to 24 weeks	37 weeks	NR	78%	NR	100%	45%	NR					
2011 Cetingoz	High risk pregnancy including twin (twin data excluded), prior sPTB or uterine malformation	150	24 weeks	34 weeks	NR	NR	NR	NR	NR	NR					
2010 Chandirani	Pregnant women (14 to 24 weeks’ gestation) with at least 1 previous preterm delivery and short cervix (< 25 mm) at < 24 weeks’ gestation were randomised. A third arm of controls were not randomised and not eligible for this review.	37	14 to 24 weeks	37 weeks	NR	NR	31%	100%	6%	NR					
2020 Choi	Singleton pregnancy, >20yrs, with history of sPTB or short cervix (<25mm) at 15-22weeks.	247	16-22 weeks	36 weeks	20%	58%	NR	48%	NR	NR					
2017 Crowther	Singleton or twin pregnancy 18-24 weeks' gestation; history of PTB < 37 weeks (Twin data excluded)	787	18 weeks	24 weeks	0%	100%	64%	NR	NR	NR					
2003 da Fonseca	Asymptomatic high risk women with singleton pregnancy (history of sPTB,	156	24 weeks	34 weeks	NR	94%	NR	NR	NR	30%					
Study	Population Details	n	Follow-up	Outcome	Delivery Rate	Pre-eclampsia Rate	Preeclampsia Rate	Intrauterine Growth Restriction Rate	NTD Rate	Macrosomia Rate	Perinatal Mortality Rate	Small For Gestational Age Rate	Preterm Labor Rate	Preterm Birth Rate	Preterm Birth Rate
-------	---------------------	---	------------	---------	--------------	-------------------	------------------	-------------------------------	--------	----------------	------------------------	---------------------------	-----------------	-----------------	------------------
Danesh 2010	Healthy pregnant women with previous PTB, 12 to 16 weeks' gestation, age 19 - 35	110	12 to 16 weeks	Delivery	0%	100%	NR	NR	NR	NR	NR				
Danti 2014	Singleton pregnancy with CL ≤ 25 mm between 24 and 32 weeks gestation, without uterine contractions	87	24 to 32 weeks	28 days after start of treatment	38%	NR	NR	100%	NR	NR	NR				
Dugoff 2018	18 - 50 yrs, CL ≤ 20 mm, singleton pregnancy	122	18 to <24 weeks	37 weeks	66%	0%	0%	100%	7%	61%					
El-Gharib 2013	20 - 34 years, history of PTB, singleton pregnancy, cervical length ≥ 15mm at 20-24 weeks, uterine malformation, or symptomatic bacteriuria	160	20 to 24 weeks	36 weeks	NR										
Elimian 2016	Singleton pregnancy 16 - 20 weeks gestation and history of sPTB	174	16 to 20 weeks	before 37 weeks or delivery	0%	100%	NR	NR	17%	NR	NR				
Elzachi 2004	History of PTB <37	81	14 weeks	NR	0%	100%	NR	NR	NR	NR	NR				
Fonseca 2007	All women with singleton or twin pregnancy with short cervix < 15 mm detected on US at 20-25 weeks' gestation (twin data excluded from this review)	274	24 weeks	before 34 weeks	56%	NR	NR	100%	6%	55%					
Glover 2011	< 20 weeks gestation, history of sPTB	33	16 to 20 weeks	34 weeks	0%	100%	NR	NR	53%	46%					
Goya 2012	Singleton pregnancy, 18 to 43 years, 18 to 22 weeks gestation, CL ≤ 25 mm	385	18 to 22 weeks	37 weeks	50%	11%	NR	100%	20%	13%					
Grobman 2012	Nulliparous with a viable singleton gestation and had a CL<30 mm between 16 weeks 0 days and 22 weeks 3 days.	657	16 to 22 weeks	before 37 weeks	100%	NR	NR	100%	17%	52%					
Harper 2010	Prior singleton preterm delivery from 20 to 36.6 weeks' gestation due	852	20 weeks	37 weeks	0%	100%	NR	NR	16%	34%					
Study (Year)	Description	n	First Trimester	Mid-Trimester	Late Trimester	Delivery	5-Year	1-Year	2-Year	5-Year	1-Year	2-Year			
--------------	-------------	---	----------------	---------------	---------------	----------	--------	--------	--------	--------	--------	--------			
Hassan 2011	Singleton, 19 to 23 + 6 weeks, CL 10 - 20 mm on US, asymptomatic of PTL	465	20 to < 24 weeks	before 37 weeks	55%	13%	NR	100%	NR	31%					
Hui 2013	Singleton pregnancy, CL < 25 mm at 20 to 24 weeks gestation	108	20 to 24 weeks	37 weeks	64%	8%	NR	100%	4%	NR					
Ibrahim 2010	Singleton pregnancy in the second trimester with previous PTB	50	second trimester	36 weeks	0%	100%	NR	NR	NR	NR					
Ionescu 2011	Singleton pregnancy, CL < 25 mm at 19 to 24 weeks' and history of PTB	92	19 to 24 weeks	NR	0%	100%	NR	100%	NR	NR					
Jabeen 2012	Singleton pregnancy, history of PTB, 16 to 20 weeks' gestation	60	16 to 20 weeks	36 weeks	0%	100%	NR	NR	NR	NR					
Jafarpour 2020	Singleton pregnancy, history of PTL.	100	16 weeks	37 weeks	0%	100%	NR	NR	NR	NR					
Johnson 1975	History of PTB or second trimester pregnancy loss.	50	12 to 24 weeks	36 weeks	0%	100%	NR	NR	NR	55%	78%				
Karbasian 2016	Singleton pregnancy, CL ≤ 25 mm at 18 to 22 weeks gestation	146	18 to 22 weeks	37 weeks	NR	13%	NR	100%	NR	NR					
Keeler 2009	US evidence of short cervix ≤ 25 mm	79	16 to 24 weeks	36 weeks	NR	23%	NR	100%	NR	NR					
Maher 2013	History of PTB or cerclage in previous pregnancy, singleton, 14 to 18 weeks gestation	518	14 to 18 weeks	36 weeks	NR	95%	NR	6%	NR	NR					
Majhi 2009	History of sPTB, singleton pregnancy, 16 to 24 weeks gestation	100	20 to 24 weeks	36 weeks	0%	100%	NR	NR	1%	NR					
Meis 2003a	Prior sPTB, 15 - 20 weeks gestation	463	16 to 20 weeks	36 weeks	0%	100%	NR	NR	21%	59%					
MRC/RCOG 1993	History of PTB or cervical surgery	1292	up to 29 weeks (80% before 20 weeks)	NR	NR	71%	NR	NR	NR	NR					
Nicolaides 2016	Singleton, 16+ years of age, CL < 25 mm on US between 20+0 to 24+6 week's gestation	935	20 to < 25 weeks	37 weeks or labour	54%	16%	NR	29%	14%	27%					
Norman 2016	+fFN plus any risk factor for PTB history, prior cervical	1228	22 to 24 weeks	34 weeks or delivery	6%	79%	NR	36%	20%	15%					
Study	Criteria	N	Duration	Pregnancy Outcome	0%	100%	NR	NR	NR	NR	Percentage				
------------	--	----	----------	-------------------	----	------	-----	-----	-----	-----	------------				
O'Brien 2007	18 - 45 yrs old, 16 to 22 weeks gestation, history of sPTB	659	18 to < 23 weeks	37 weeks	0%	100%	NR	NR	NR	26%					
Olsen 2000	history of preterm delivery, 16 - 20 weeks gestation, singleton pregnancy.	232	20 weeks	delivery	0%	100%	NR	NR	43%	NR					
Otsuki 2016	CL 25mm or less, 16-26 weeks with or without history of sPTB	106	16 to 26 weeks	37 weeks	NR	13%	NR	100%	5%	NR					
Owen 2009	16 to 21 weeks, history of sPTB < 34 and short CL < 25 mm	302	16 to 21 weeks	37 weeks	0%	100%	NR	100%	18%	57%					
Pirjani 2017	Singleton pregnancy, 16-24 weeks gestation, CL < 25 mm, asymptomatic of PTL	304	16 to 24 weeks	36 weeks	66%	NR	NR	100%	NR	NR					
Rai 2009	Asymptomatic women age 18 - 35 between 18 and 24 weeks gestation, history of sPTB, singleton pregnancy	150	18 to 24 weeks	36 weeks	0%	100%	NR	NR	NR	NR					
Rush 1984	history of sPTB	194	15 to 21 weeks	37 weeks	0%	100%	NR	0%	0%	NR					
Rust 2001	16 - 24 weeks gestation, internal os dilation, membrane prolapse into the endocervial canal but not beyond the external os, shortened CL < 25 mm, and exacerbation of these with fundal pressure	113	16 to 24 weeks	36 weeks	NR	45%	NR	NR	NR	NR					
Saccone 2017	18 - 50 yrs of age, singleton pregnancy, CL < or = 25 mm on US at 18 - 23+6 weeks	300	18 to < 24 weeks	37 weeks	70%	0%	0%	100%	13%	4%					
Saghahi 2011	history of PTB	100	16 to 20 weeks	37 weeks	0%	100%	NR	NR	NR	NR					
Shadab 2018	< 20 weeks' gestation in the current pregnancy; history of preterm birth; women intending to delivery elsewhere	132	16 to 20 weeks	36 weeks	0%	100%	NR	NR	NR	NR					
and < 12 weeks' gestation were excluded

Shahgheibi 2016 Women considered to be high risk of sPTB including history of preterm labour and uterine malformation. | 100 | 24 weeks | 34 weeks | NR | 9% | NR | NR | NR | NR

Shambhavi 2018 history of sPTB, singleton pregnancy, 16 to 24 weeks' gestation | 100 | 16 to 24 weeks | 37 weeks | 0% | 90% | NR | NR | 0% | NR

To 2004 CL < 15 mm at 22-24 weeks' gestation | 253 | 22 to 24 weeks | 37 weeks | NR | NR | 19% | 100% | 11% | 54%

van Os 2015 CL ≤ 30 mm, no history of sPTB, singleton pregnancy | 80 | 18 to 22 weeks | 34 weeks | 69% | 0% | 0% | 100% | 23% | NR

Vanda 2020 Singleton pregnancy at high risk of PTB; 15-45yrs, one or more risk factors including history of PTB or late miscarriage, short CL 16-18wks. | 166 | unclear | Labour | 40% | 27% | NR | NR | NR | NR

Vermuelen 1999 sPTB in the previous pregnancy with or without PPROM, < 36 weeks's gestation, a viable pregnancy without fetal anomalies | 168 | during week 26 and week 32 gestation | Unclear | 0% | 100% | NR | NR | NR | NR

Wajid 2016 18 to 35 years old, 20 to 24 weeks' gestation with prior history of PTB | 800 | 20 to 24 weeks | 37 weeks | 0% | 100% | NR | NR | NR | NR

Winer 2015 asymptomatic singleton pregnancies from 20(+0) through 31(+6) weeks of gestation with a CL< 25 mm and a history of preterm delivery or cervical surgery or uterine malformation or prenatal DES exposure. | 105 | 24 to 31 weeks | 36 weeks | NR | 56% | NR | 100% | 15% | NR

Abbreviations: GA = gestational age; NR = not reported; PTB = preterm birth; SPTB = spontaneous preterm birth
Supplementary Table 2: Risk of bias of included studies

Trial	Random sequence generation (selection bias)	Allocation concealment (selection bias)	Blinding of participants and personnel (performance bias)	Blinding of outcome assessment (detection bias)	Incomplete outcome data (attrition bias)	Selective reporting (reporting bias)	Other bias	
Ahuja 2015	Unclear risk	Unclear risk	Low risk	Unclear risk	Low risk	Low risk	Low risk	
Akbari 2009	Unclear risk	Unclear risk	High risk	Unclear risk	Low risk	Low risk	Low risk	
Althuisius 2001	Unclear risk	Low risk	High risk	Unclear risk	Low risk	Low risk	Low risk	
Ashoush 2016	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	
Azargoon 2015	Low risk	Low risk	Low risk	Unclear risk	Low risk	Low risk	Low risk	
Bafghi 2015	Low risk	Low risk	High risk	Low risk	Low risk	Low risk	Low risk	
Berghella 2004	Low risk	Low risk	High risk	Unclear risk	Low risk	Low risk	Low risk	
Blackwell 2020	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	
Breart 1979	Low risk	High risk	Unclear risk	Unclear risk	Low risk	Low risk	Low risk	
Cabrera-Garcia 2015	Low risk	Low risk	High risk	Unclear risk	Low risk	Low risk	Low risk	
Care 2019	Low risk	Low risk	High risk	Unclear risk	Low risk	Low risk	Unclear risk	
Chandiramani 2003	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Unclear risk	
Choi 2020	Low risk	Low risk	Unclear risk	Unclear risk	Low risk	Low Risk	Low Risk	
Crowther 2017	Low risk	Low risk	Low risk	Low risk	Unclear risk	Low risk	Low risk	
da Fonseca 2003	Low risk	Low risk	Low risk	Low risk	Unclear risk	Low risk	Low risk	
Danesh 2010	Low risk	Low risk	Low risk	Unclear risk	High risk	Unclear risk	Unclear risk	
Danti 2014	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	
Dugoff 2018	Low risk	Low risk	High risk	Unclear risk	Low risk	Low risk	Low risk	
El-Gharib 2013	Unclear risk	Low risk	Low risk	Unclear risk	Low risk	Low risk	Unclear risk	
Elimian 2016	Low risk	Unclear risk	High risk	High risk	Low risk	Un unclear risk	Low risk	
Ezechi 2004	Unclear risk	Unclear risk	High risk	Unclear risk	Low risk	Low risk	Low risk	
Fonseca 2007	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	
Glover 2011	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	
Goya 2012	Low risk	Low risk	High risk	Unclear risk	Low risk	Low risk	Low risk	
Grobman 2012	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	
Harper 2010	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	
Hassan 2011	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	
Hui 2013	Low risk	Low risk	High risk	Unclear risk	Low risk	Low risk	Unclear risk	
Ibrahim 2010	Unclear risk	Low risk	Unclear risk	Low risk	Un unclear risk	Low risk	Low risk	
Ionescu 2011	Unclear risk	Unclear risk	High risk	Unclear risk	Low risk	Un unclear risk	Low risk	
Jabeen 2012	Unclear risk	Unclear risk	High risk	Unclear risk	Low risk	Un unclear risk	Low risk	
Jafarpour 2020	Low risk	Low risk	Unclear risk	Unclear risk	Low risk	Unclear risk	Low risk	
Johnson 1975	Unclear risk	Low risk	Unclear risk	Unclear risk	Low risk	Low risk	Low risk	
Karbaskan 2016	Low risk	Unclear risk	Unclear risk	Unclear risk	Low risk	Low risk	Low risk	
Keeler 2009	Low risk	Low risk	High risk	Unclear risk	Low risk	Low risk	Un unclear risk	
Maher 2013	Low risk	Unclear risk	High risk	Unclear risk	Low risk	Low risk	Low risk	
Majhi 2009	Low risk	Low risk	High risk	Unclear risk	Low risk	Low risk	Low risk	
Meis 2003 a	Low risk	Low risk	Low risk	Unclear risk	Low risk	Unclear risk	Low risk	
MRC/RCOG 1993	Low risk	Low risk	High risk	High risk	Low risk	Low risk	Low risk	
Nicolaides 2016	Low risk	Low risk	High risk	Low risk	Low risk	Low risk	Low risk	
Norman 2016	Unclear risk	Unclear risk	Low risk	Unclear risk	Low risk	Unclear risk	Low risk	
O’Brien 2007	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	
Olsen 2000	Low risk	Low risk	Low risk	Low risk	Low risk	Unclear risk	Low risk	
Otsuki 2016	Low risk	Low risk	High risk	Unclear risk	Low risk	Low risk	Low risk	
Owen 2009	Low risk	Low risk	High risk	Unclear risk	Low risk	Low risk	Low risk	
Pirjani 2017	Unclear risk	Unclear risk	Unclear risk	Unclear risk	Low risk	Low risk	Low risk	
Study	Risk Level 1	Risk Level 2	Risk Level 3	Risk Level 4	Risk Level 5	Risk Level 6	Risk Level 7	Risk Level 8
--------------	--------------	--------------	--------------	--------------	--------------	--------------	--------------	--------------
Rai 2009	Unclear risk	Low risk	Low risk	Unclear risk	Low risk	Low risk	Low risk	Low risk
Rush 1984	Unclear risk	Unclear risk	High risk	Unclear risk	Low risk	Low risk	Low risk	Low risk
Rust 2001	Unclear risk	Unclear risk	High risk	Unclear risk	Unclear risk	Low risk	Low risk	Unclear risk
Saccone 2017	Low risk	Low risk	High risk	Low risk	Low risk	Low risk	Low risk	Low risk
Saghafi 2011	Unclear risk	Unclear risk	High risk	Unclear risk	Unclear risk	Low risk	Unclear risk	Unclear risk
Shadab 2018	Low risk							
Shambhavi 2018	Unclear risk	Unclear risk	Low risk	Unclear risk	Low risk	Unclear risk	Unclear risk	Unclear risk
To 2004	Low risk	Low risk	High risk	Unclear risk	Low risk	Low risk	Low risk	Low risk
van Os 2015	Low risk	Unclear risk	Unclear risk					
Vanda 2020	Low risk	Low risk	Unclear risk	Unclear risk	Unclear risk	Unclear risk	Unclear risk	Unclear risk
Vermuellen 1999	Low risk	Low risk	Low risk	Low risk	High risk	Unclear risk	Unclear risk	Unclear risk
Wajid 2016	Low risk	Unclear risk	High risk	Unclear risk	Low risk	Unclear risk	Unclear risk	Unclear risk
Winer 2015	Low risk	Low risk	High risk	Unclear risk	Low risk	Low risk	Low risk	Unclear risk
Supplementary Table 3: Total studies and participants contributing to each outcome

Study	Outcomes: Pregnant women	Outcomes: Offspring																	
	1	2	3	4	5	6	7	1	2	3	4	5	6	7	8	9	10	11	
Ahuja 2015	✓	✓						✓	✓										✓
Akbari 2009	✓							✓	✓										✓
Althuisius 2001	✓	✓	✓	✓	✓	✓	✓	✓	✓										
Ashoush 2017	✓	✓						✓	✓	✓									
Azargoon 2016	✓	✓						✓	✓	✓									
Bafghi 2015	✓							✓	✓										
Berghella 2004	✓	✓	✓	✓	✓	✓	✓	✓	✓										
Blackwell 2020	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓							
Breart 1979	✓							✓	✓										
Cabrera-Garcia 2015	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓							
Care 2019	✓		✓	✓	✓	✓	✓	✓	✓										
Cetingoz 2011	✓	✓								✓	✓	✓							
Chandiramani 2010	✓	✓						✓	✓	✓									
Choi 2020	✓	✓	✓	✓	✓	✓	✓	✓	✓										
Crowther 2017	✓	✓	✓	✓	✓	✓	✓	✓	✓										
da Fonseca 2003	✓	✓						✓	✓	✓									
Danesh 2010	✓							✓	✓										
Danti 2014	✓							✓	✓										
Dugoff 2018	✓	✓	✓	✓	✓	✓	✓	✓	✓										
El-Gharib 2013	✓							✓	✓	✓									
Elimian 2016	✓	✓						✓	✓	✓									
Ezeki 2004	✓		✓					✓	✓	✓									
Fonseca 2007	✓		✓		✓	✓	✓	✓	✓										
Glover 2011	✓							✓	✓	✓									
Goya 2012	✓	✓	✓	✓	✓	✓	✓	✓	✓										
Grobman 2012	✓	✓	✓	✓	✓	✓	✓	✓	✓										
Harper 2010	✓	✓						✓	✓	✓									
Hassan 2011	✓	✓						✓	✓	✓									
Hui 2013	✓	✓	✓	✓	✓	✓	✓	✓	✓										
Ibrahim 2010	✓							✓	✓	✓									
Ionescu 2011	✓	✓	✓	✓	✓	✓	✓	✓	✓										
Jabeen 2012	✓	✓						✓	✓	✓									
Jafapour 2020	✓							✓	✓	✓									
Johnson 1975	✓							✓	✓	✓									
Karbasian 2016	✓	✓	✓	✓	✓	✓	✓	✓	✓										
Keeler 2009	✓	✓	✓	✓	✓	✓	✓	✓	✓										
Study	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓								
----------------------------	---	---	---	---	---	---	---	---	---	---	---								
Maher 2013	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓								
Majhi 2009	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓								
Meis 2003a	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓								
MRC/RCOG 1993	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓								
Nicolaides 2016	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓								
Norman 2016	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓								
O'Brien 2007	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓								
Olsen 2000	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓								
Otsuki 2016	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓								
Owen 2009	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓								
Pirjani 2017	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓								
Rai 2009	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓								
Rush 1984	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓								
Rust 2001	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓								
Saccone 2017	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓								
Shagha 2011	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓								
Shadab 2018	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓								
Shahgheibi 2016	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓								
Shambhavi 2018	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓								
To 2004	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓								
van Os 2015	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓								
Vanda 2020	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓								
Vermuelen 1999	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓								
Wajid 2016	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓								
Winer 2015	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓								
Total trials	55	41	9	25	5	24	19	32	36	29	23	27	14	28	4	23	23	25	

Study	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓							
Total participants	13,913	13,345	4,057	8,122	3,766	7,687	8,056	12,211	11,890	6,569	7,233	9,714	7,469	10,641	2,034	10,443	8,566	8,400

Study	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓							
N (%) of participants	4,563	3	2,222	467	759	0	788	252	511	344	1886	894	151	184	7	139	219	1,490

Study	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓							
Total (%)	32.7%	(0%)	16.7%	(10.3%)	9.3%	(3.1%)	0%	(4.2%)	(2.9%)	NA	(26.1%)	(9.2%)	(2.0%)	(1.7%)	(0.3%)	(1.3%)	(2.6%)	(17.7%)

1. See Supplementary File 3 for list of outcomes for pregnant women and offspring
Supplementary Table 4: Treatments included in the analysis of each outcome (number of trials)

Treatment	Outcomes: Pregnant women	Outcomes: Offspring
Control: Placebo or no treatment	36 26 6 14 4 15 12	12 21 4 17 18
Progesterone: vaginal	23 19 3 10 2 11 8	12 7 8 3 14 10 14
17alpha hydroxyprogesterone caproate (17-OHPC)	20 11 2 5 1 4 5	7 9 9 8 7 1 7 9 2
Progesterone: oral	4 1 1 1 1 1 1 1 1 1 2	
Cerclage: McDonald	4 2 1 1 1 1 1 1 1 1 1	
Cerclage: Shirodkar	1 1 1 1 1 1 1 1 1 1 1	
Cerclage: Unspecified	4 3 1 1 1 1 1 1 1 1 1	
Pessary	6 6 5 7 2 6 5	6 5 3 4 6 2 6 5 6 3
Antibiotics: Clindamycin	1 1 1 1 1 1 1 1 1 1 1	
Bed rest	2 2 1* 2 1* 1* 1* 1* 1*	
Tocolytics: Nifedipine	1 1 1 1 1 1 1 1 1 1 1	
Nutritional supplements: Zinc	1 1 1 1 1 1 1 1 1 1 1	
Omega 3 / Fish Oil	1 1 1 1 1 1 1 1 1 1 1	
Pessary + vaginal progesterone	1 1 1 1 1 1 1 1 1 1 1	
McDonald cerclage + clindamycin	1* 1* 1* 1* 1* 1* 1* 1*	
Cerclage (Shirodkar) + Erythromycin	1 1 1 1 1 1 1 1 1 1 1	
Omega 3 + 17-OHPC	1 1 1 1 1 1 1 1 1 1 1	
Clindamycin + 17-OHPC	1* 1* 1* 1* 1* 1* 1* 1*	
Cerclage (McDonald) + Bed Rest	1 1 1* 1* 1* 1* 1* 1* 1* 1	
Cerclage (McDonald) + Bed Rest + Amoxicillin + Metronidazole	1* 1* 1* 1* 1* 1* 1* 1* 1* 1* 1* 1	
Bed Rest + Amoxicillin + Metronidazole	1* 1* 1* 1* 1* 1* 1* 1* 1* 1* 1* 1	

1. See Supplementary File 3 for list of outcomes for pregnant women and offspring. Treatments marked with an asterisk (*) are disconnected from the network for the outcome.
Supplementary Table 5: Network meta-analysis models and model fit statistics

Outcome	Clinical heterogeneity observed?	Continuity correction used?	Model	Number of data points	Posterior mean residual deviance	pD	DIC	Between-trial variance (Tau-squared)
Outcomes for pregnant women								
1. preterm birth <37 weeks' gestation	No	No	FE, consistency	108	222.35	68.38	290.73	NA
	RE, consistency		108	110.88	93.18	204.06	0.28 (0.14 to 0.57)	
	FE, inconsistency		108	211.58	72.32	283.89	NA	
	RE, inconsistency		108	111.52	95.36	206.88	0.31 (0.15 to 0.64)	
2. preterm birth <34 weeks' gestation	No	No	FE, consistency	81	123.39	56.64	180.03	NA
	RE, consistency		81	82.56	70.53	153.08	0.22 (0.07 to 0.60)	
	FE, inconsistency		81	126.27	59.68	185.95	NA	
	RE, inconsistency		81	81.75	72.78	154.53	0.28 (0.10 to 0.77)	
3. spontaneous preterm birth <34 weeks' gestation	Yes	No	FE, consistency	16	41.86	11.02	52.88	NA
	RE, consistency		16	15.90	15.34	31.24	0.83 (0.17 to 6.42)	
	FE, inconsistency		16	40.70	13.16	53.86	NA	
	RE, inconsistency		16	16.21	16.00	32.21	1.55 (0.22 to 16.5)	
4. preterm birth <28 weeks' gestation	No	Yes	FE, consistency	48	54.18	34.24	84.42	NA
	RE, consistency		48	54.18	34.24	84.42	NA	
	FE, inconsistency		48	54.18	34.24	84.42	NA	
	RE, inconsistency		48	54.18	34.24	84.42	NA	
5. maternal death	Yes	Yes	FE, consistency	10	10.96	10.96	21.92	NA
	RE, consistency		10	11.69	11.69	23.38	4.00 (0.01 to 23.8)	
	FE, inconsistency		NA	NA	NA	NA	NA	
	RE, inconsistency		NA	NA	NA	NA	NA	
6. preterm prelabour rupture of membranes	No	Yes	FE, consistency	43	55.49	29.43	84.92	NA
	RE, consistency		43	48.88	35.06	83.95	0.14 (0.00 to 1.17)	
	FE, inconsistency		43	54.39	32.71	87.09	NA	
	RE, inconsistency		43	47.18	38.14	85.32	0.23 (0.00 to 1.76)	
Outcomes for offspring	No	Yes						
------------------------	----	-----						
7. maternal infection	No	Yes						
FE, consistency	35	31.86	24.00	55.86	NA			
RE, consistency	35	32.08	25.78	57.87	0.05 (0.00 to 0.79)			
FE, inconsistency	35	34.28	27.77	62.05	NA			
RE, inconsistency	35	34.35	29.36	63.71	0.06 (0.00 to 1.22)			
Outcomes for offspring								
1. perinatal death	No	No						
FE, consistency	61	124.06	38.75	162.81	NA			
RE, consistency	61	121.29	42.60	163.89	0.07 (0.00 to 0.66)			
FE, inconsistency	61	125.03	40.94	165.97	NA			
RE, inconsistency	61	120.90	45.47	166.37	0.13 (0.00 to 1.06)			
2. neonatal death	No	Yes						
FE, consistency	69	66.09	47.43	113.53	NA			
RE, consistency	69	63.67	51.14	114.81	0.09 (0.00 to 0.67)			
FE, inconsistency	69	68.23	49.71	117.94	NA			
RE, inconsistency	69	65.09	53.74	118.83	0.12 (0.00 to 0.85)			
3. gestational age at birth	No	No						
FE, consistency	57	38.78	37.93	76.71	NA			
RE, consistency	57	39.78	39.05	78.83	0.72 (0.00 to 9.07)			
FE, inconsistency	57	39.70	38.99	78.68	NA			
RE, inconsistency	57	40.52	39.89	80.41	0.73 (0.00 to 9.99)			
4. low birthweight <2500 g	No	No						
FE, consistency	44	86.30	31.18	117.49	NA			
RE, consistency	44	44.61	40.82	85.42	0.41 (0.13 to 1.26)			
FE, inconsistency	44	87.40	33.18	120.58	NA			
RE, inconsistency	44	44.56	41.77	86.33	0.51 (0.16 to 1.71)			
5. neonatal respiratory distress syndrome	No	No						
FE, consistency	54	81.78	35.66	117.44	NA			
RE, consistency	54	57.43	45.95	103.38	0.26 (0.05 to 0.87)			
FE, inconsistency	54	83.82	37.73	121.55	NA			
RE, inconsistency	54	57.33	47.78	105.11	0.33 (0.08 to 1.11)			
6. neonatal pulmonary disease	No	No						
FE, consistency	28	27.38	19.60	46.98	NA			
RE, consistency	28	27.29	21.50	48.79	0.08 (0.00 to 1.55)			
FE, inconsistency	28	28.26	20.67	48.93	NA			
RE, inconsistency	28	28.04	22.59	50.63	0.11 (0.00 to 2.30)			
Table 1: Clinical Heterogeneity and Model Specifications

Outcome	No	Yes	FE, consistency	RE, consistency	FE, inconsistency	RE, inconsistency		
7. intraventricular haemorrhage	No	Yes	56	58.15	39.45	97.59	NA	
				56	57.36	41.68	99.04	0.17 (0.00 to 1.32)
			56	54.98	43.65	98.64	NA	
			56	55.20	45.19	100.39	0.14 (0.00 to 1.37)	
8. periventricular leukomalacia	No	No	8	8.56	5.72	14.28	NA	
	8		6.63	5.31	11.93	0.05	0.04 to 24.2	
	NA		NA	NA	NA	NA	NA	
9. necrotising enterocolitis	No	Yes	46	47.40	34.06	81.46	NA	
	46		45.12	37.33	82.45	0.16	0.00 to 1.32	
	46		46.87	36.41	83.28	NA	0.13	0.00 to 1.34
10. proven neonatal sepsis	No	Yes	45	51.10	31.33	82.43	NA	
	45		44.36	36.61	80.97	0.25	0.00 to 1.33	
	45		53.17	33.62	86.79	NA		
	45		45.64	39.19	84.83	0.32	0.01 to 1.66	
11. admission to neonatal intensive care	No	No	50	72.22	33.65	105.87	NA	
unit	50		54.78	43.12	97.90	0.17	0.01 to 0.65	
	50		72.27	35.69	107.96	NA		
	50		51.89	44.39	96.27	0.21	0.04 to 0.75	

DIC=deviance information criterion; FE=fixed effects; pD=effective number of parameters; RE=random effects

1. We judged clinical heterogeneity by visual inspection of trial and participant characteristics (Supplementary Table 1). Where we considered clinical heterogeneity to be present (important differences in proportions of women with short cervix or a history of pre-term birth), random-effects models were used (regardless of model fit).
2. Continuity corrections (i.e. adding 0.5 to all event counts) were used where model convergence issues were encountered, likely due to zero cell counts.
3. Values highlighted in **bold** indicate the model used for each analysis. Results of other models were similar for each outcome, and available from the authors on request. Where model fit was similar and no clinical heterogeneity was present, the simplest model (fixed-effects assumed to be simpler than random-effects and consistency models assumed to be simpler than inconsistency models) was used.
4. Between trial variance (median and 95% credible interval of tau-squared) calculated only for random-effects models.
5. No closed loops were present within networks, therefore only consistency models could be considered.
Supplementary Table 6: Probability each treatment is the best (outcomes for pregnant women)1

Treatment	1. preterm birth < 37 weeks’ gestation	2. preterm birth < 34 weeks’ gestation	3. spontaneous preterm birth < 34 weeks’ gestation	4. preterm birth < 28 weeks’ gestation	5. maternal death	6. preterm prelabour rupture of membranes	7. maternal infection
Control: Placebo or no treatment	0.0%	0.0%	4.7%	0.0%	7.8%	0.1%	6.9%
Progesterone: vaginal	0.3%	0.2%	17.5%	0.0%	14.5%	2.7%	0.8%
Progesterone: oral	8.1%	3.6%	NA	63.0%	NA	31.9%	62.7%
17-OHPC	0.1%	0.0%	39.4%	0.7%	31.4%	0.9%	1.4%
Cerclage: McDonald	0.4%	0.1%	NA	0.6%	NA	1.2%	NA
Cerclage: Shirodkar	26.0%	71.0%	NA	15.9%	NA	NA	NA
Cerclage: Unspecified	0.3%	0.3%	NA	0.9%	28.1%	0.6%	2.3%
Pessary	0.8%	0.0%	38.4%	0.2%	18.1%	28.2%	18.2%
Omega 3 / Fish Oil	5.7%	10.3%	NA	NA	NA	NA	NA
Nutritional supplements: Zinc	8.5%	NA	NA	NA	NA	NA	NA
Bed rest	3.2%	1.0%	NA	8.5%	NA	NA	NA
Antibiotics: Clindamycin	0.2%	0.0%	NA	NA	NA	NA	NA
Tocolytics: Nifedipine	11.3%	NA	NA	NA	NA	NA	NA
Pessary + vaginal progestosterone	6.4%	1.1%	NA	NA	NA	31.2%	7.8%
McDonald cerclage + clindamycin	NA	0.2%	NA	NA	NA	NA	NA
Cerclage (Shirodkar) + Erythromycin	NA	0.3%	NA	0.8%	NA	3.3%	NA
Clindamycin + 17-OHPC	NA	1.2%	NA	NA	NA	NA	NA
Omega 3 + 17-OHPC	8.2%	0.9%	NA	NA	NA	NA	NA
Cerclage (McDonald) + Bed Rest	20.6%	9.4%	NA	9.4%	NA	NA	NA

Abbreviations: 17-OHPC= 17-alpha hydroxyprogesterone caproate; NA=not applicable (treatment not included in the network)

1. Values highlighted in \textbf{bold} indicate the treatment with the highest probability of being the best for the outcome.
Supplementary Table 7: Ranking of treatments (outcomes for pregnant women)

Treatment	1. preterm birth < 37 weeks' gestation	2. preterm birth < 34 weeks' gestation	3. spontaneous preterm birth < 34 weeks' gestation	4. preterm birth < 28 weeks' gestation	5. maternal death	6. preterm prelabour rupture of membranes	7. maternal infection
Control: Placebo or no treatment	14 (10 to 16)	13 (9 to 16)	3 (1 to 4)	8 (5 to 11)	3 (1 to 5)	5 (3 to 7)	3 (1 to 4)
Progesterone: vaginal	7 (3 to 11)	6 (3 to 11)	3 (1 to 4)	7 (3 to 10)	3 (1 to 5)	4 (1 to 6)	5 (2 to 6)
Progesterone: oral	5 (1 to 12)	5 (1 to 15)	NA	1 (1 to 8)	NA	2 (1 to 7)	1 (1 to 5)
17-OHPC	8 (4 to 12)	9 (5 to 14)	2 (1 to 4)	5 (2 to 10)	3 (1 to 5)	6 (2 to 8)	4 (2 to 6)
Cerclage: McDonald	9 (3 to 14)	9 (3 to 16)	NA	5 (2 to 9)	NA	8 (2 to 9)	NA
Cerclage: Shirodkar	3 (1 to 15)	1 (1 to 10)	NA	5 (1 to 11)	NA	NA	NA
Cerclage: Unspecified	12 (4 to 16)	9 (3 to 15)	NA	9 (2 to 11)	3 (1 to 5)	9 (3 to 9)	6 (2 to 7)
Pessary	8 (2 to 13)	9 (4 to 14)	2 (1 to 4)	6 (2 to 10)	3 (1 to 5)	2 (1 to 6)	3 (1 to 6)
Omega 3 / Fish Oil	8 (1 to 16)	4 (1 to 14)	NA	NA	NA	NA	NA
Nutritional supplements: Zinc	8 (1 to 16)	NA	NA	NA	NA	NA	NA
Bed rest	8 (1 to 16)	5 (2 to 16)	NA	5 (1 to 11)	NA	NA	NA
Antibiotics: Clindamycin	15 (5 to 16)	16 (9 to 17)	NA	NA	NA	NA	NA
Tocolytics: Nifedipine	8 (1 to 16)	NA	NA	NA	NA	NA	NA
Pessary + vaginal progesterone	9 (1 to 16)	11 (2 to 17)	NA	NA	3 (1 to 9)	7 (1 to 7)	NA
McDonald Cerclage + Clindamycin	NA	16 (5 to 17)	NA	NA	NA	NA	NA
Cerclage (Shirodkar) + Erythromycin	NA	11 (3 to 16)	NA	6 (2 to 11)	NA	7 (1 to 9)	NA
Clindamycin + 17-OHPC	NA	13 (2 to 17)	NA	NA	NA	NA	NA
Omega 3 + 17-OHPC	6 (1 to 15)	9 (2 to 16)	NA	NA	NA	NA	NA
Cerclage (McDonald) + Bed Rest	5 (1 to 16)	4 (1 to 17)	NA	6 (1 to 11)	NA	NA	NA

Abbreviations: 17-OHPC= 17alpha hydroxyprogesterone caproate; NA=not applicable (treatment not included in the network)

1. Ranks presented as Median and 95% credible interval. A CrI is interpreted as the interval where there is a 95% probability that the values of the MD (or OR) will lie. Values highlighted in **bold** indicate the treatment with the highest rankings.
Supplementary Table 8: Probability each treatment is the best (outcomes for offspring)¹

Treatment	1. perinatal death	2. neonatal death	3. GA at birth	4. low birthweight < 2500 g	5. neonatal RDS	6. neonatal pulmonary disease	7. IVH	8. PVL	9. necrotising enterocolitis	10. proven neonatal sepsis	11. admission to neonatal ICU
Control: Placebo or no treatment	0.0%	0.0%	1.9%	0.0%	0.8%	0.0%	46.7%	0.0%	0.0%	0.0%	0.0%
Progesterone: vaginal	10.4%	5.3%	0.4%	1.9%	1.6%	5.8%	0.2%	49.7%	0.4%	36.4%	0.0%
Progesterone: oral	NA	11.9%	4.8%	30.1%	22.5%	24.9%	1.0%	3.6%	18.0%	NA	13.3%
17-OHPC	2.0%	0.0%	0.9%	0.4%	0.4%	NA	0.4%	NA	14.7%	4.5%	0.0%
Cerclage: McDonald	27.3%	0.6%	4.6%	7.6%	2.0%	NA	45.4%	NA	10.1%	NA	76.2%
Cerclage: Shirodkar	NA	45.3%	6.9%	NA	NA	NA	NA	NA	NA	NA	NA
Cerclage: Unspecified	2.5%	0.5%	23.1%	4.2%	52.8%	NA	4.3%	NA	5.2%	NA	NA
Pessary	2.0%	0.1%	4.3%	3.5%	1.1%	30.9%	0.0%	NA	0.2%	0.7%	0.0%
Omega 3 / Fish Oil	NA	NA	11.5%	NA	NA	NA	NA	NA	NA	NA	NA
Nutritional supplements: Zinc	NA	NA	14.1%	NA	NA	NA	NA	NA	NA	NA	NA
Bed rest	NA	2.0%	16.4%	NA	NA	NA	NA	NA	NA	NA	NA
Antibiotics: Clindamycin	2.4%	NA	NA	NA	NA	NA	NA	0.0%	NA	NA	NA
Tocolytics: Nifedipine	NA	NA	11.0%	NA	18.8%	NA	33.9%	NA	NA	9.2%	NA
Pessary + vaginal progesterone	16.4%	23.6%	NA	6.9%	NA	NA	NA	NA	NA	NA	0.9%
McDonald cerclage + clindamycin	0.5%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cerclage (Shirodkar) + Erythromycin	19.0%	0.5%	0.2%	NA	NA	24.4%	13.7%	NA	0.8%	NA	NA
Omega 3 + 17-OHPC	17.6%	NA	NA	14.9%	0.9%	13.2%	1.1%	NA	51.4%	7.2%	0.4%
Cerclage (McDonald) + Bed Rest	NA	10.2%	NA	NA	NA	NA	NA	NA	NA	NA	NA

Abbreviations: 17-OHPC= 17alpha hydroxyprogesterone caproate; GA=gestational age, ICU=intensive care unit; IVH=intraventricular haemorrhage; NA=not applicable (treatment not included in the network); PVL= periventricular leukomalacia; RDS=respiratory distress syndrome

¹ Values highlighted in bold indicate the treatment with the highest probability of being the best for the outcome.
Supplementary Table 9: Ranking of treatments (outcomes for offspring)

Treatment	1. perinatal death	2. neonatal death	3. GA at birth	4. low birthweight < 2500 g	5. neonatal RDS	6. neonatal pulmonary disease	7. IVH	8. PVL	9. necrotising enterocolitis	10. proven neonatal sepsis	11. admission to neonatal ICU
Control: Placebo or no treatment	8 (5 to 10)	10 (7 to 12)	4 (2 to 8)	8 (6 to 10)	7 (5 to 9)	4 (2 to 6)	8 (5 to 10)	2 (1 to 3)	6 (4 to 7)	5 (3 to 7)	7 (5 to 9)
Progesterone: vaginal	3 (1 to 7)	4 (1 to 7)	8 (3 to 12)	5 (2 to 8)	4 (2 to 6)	4 (1 to 6)	5 (3 to 8)	2 (1 to 3)	4 (2 to 7)	2 (1 to 4)	4 (3 to 6)
Progesterone: oral	NA	3 (1 to 7)	7 (1 to 13)	2 (1 to 10)	2 (1 to 8)	2 (1 to 5)	5 (2 to 10)	3 (1 to 3)	3 (1 to 7)	NA	2 (1 to 4)
17-OHPC	5 (2 to 9)	7 (3 to 10)	8 (2 to 12)	6 (2 to 9)	5 (2 to 8)	NA	5 (2 to 9)	NA	2 (1 to 5)	3 (1 to 5)	6 (3 to 8)
Cerclage: McDonald	2 (1 to 8)	8 (2 to 12)	8 (1 to 13)	5 (1 to 10)	7 (2 to 9)	NA	2 (1 to 10)	NA	6 (1 to 8)	NA	1 (1 to 4)
Cerclage: Shirodkar	NA	2 (1 to 12)	10 (1 to 13)	NA	NA	NA	NA	NA	NA	NA	NA
Cerclage: Unspecified	5 (1 to 9)	7 (2 to 11)	11 (1 to 13)	7 (1 to 10)	1 (1 to 7)	NA	5 (1 to 10)	NA	8 (1 to 8)	1 (1 to 7)	NA
Pessary	7 (2 to 10)	9 (4 to 12)	8 (1 to 13)	5 (1 to 9)	5 (2 to 8)	2 (1 to 6)	8 (4 to 10)	NA	6 (3 to 8)	4 (2 to 6)	6 (3 to 9)
Omega 3 / Fish Oil	NA	NA	7 (1 to 13)	NA	NA	NA	NA	NA	NA	NA	NA
Nutritional supplements: Zinc	NA	NA	5 (1 to 13)	3 (1 to 10)	NA	NA	NA	NA	NA	NA	NA
Bed rest	NA	8 (2 to 12)	8 (1 to 13)	NA	NA	NA	NA	NA	NA	NA	NA
Antibiotics: Clindamycin	10 (2 to 11)	NA	NA	NA	NA	NA	NA	NA	NA	NA	8 (7 to 8)
Tocolytics: Nifedipine	NA	NA	5 (1 to 12)	NA	7 (1 to 9)	2 (1 to 10)	NA	NA	NA	NA	7 (1 to 9)
Pessary + vaginal progesterone	9 (1 to 11)	4 (1 to 12)	NA	7 (1 to 10)	NA	NA	NA	NA	NA	8 (2 to 9)	NA
McDonald cerclage + clindamycin	11 (4 to 11)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cerclage (Shirodkar) + Erythromycin	4 (1 to 10)	9 (3 to 12)	7 (3 to 11)	NA	4 (1 to 6)	3 (1 to 10)	NA	NA	7 (3 to 8)	NA	NA
Omega 3 + 17-OHPC	4 (1 to 9)	NA	NA	4 (1 to 10)	8 (2 to 9)	5 (1 to 6)	6 (2 to 10)	NA	1 (1 to 7)	6 (1 to 7)	6 (2 to 9)
Cerclage (McDonald) + Bed Rest	NA	6 (1 to 12)	NA	NA	NA	NA	NA	NA	NA	NA	NA

Abbreviations: 17-OHPC= 17α-hydroxyprogesterone caproate; GA=gestational age, ICU=intensive care unit; IVH=intraventricular haemorrhage; NA=not applicable (treatment not included in the network); PVL= periventricular leukomalacia; RDS=respiratory distress syndrome

2. Ranks presented as Median and 95% credible interval. A CrI is interpreted as the interval where there is a 95% probability that the values of the MD (or OR) will lie. Values highlighted in **bold** indicate the treatment with the highest rankings.
Supplementary Table 10: Summary of direct evidence

Treatment comparison	Outcome	Direct pairwise meta-analysis	NMA results \(^4 \)	
		Number of trials and participants	OR (95% CrI) \(^2,3 \)	OR (95% CrI) \(^2 \)
Reference: Control (placebo or no treatment)				
Vaginal progesterone				
Preterm birth < 37 weeks gestation (RE)	10 trials, 2594 participants	0.55 (0.31 to 0.88)	0.47 (0.33 to 0.64)	
Preterm birth < 34 weeks gestation (RE)	9 trials, 3023 participants	0.41 (0.18 to 0.74)	0.50 (0.34 to 0.70)	
Preterm birth < 28 weeks gestation (FE)	3 trials, 1856 participants	0.84 (0.13 to 5.20)	0.91 (0.71 to 1.17)	
Preterm prelabour rupture of membranes (FE)	5 trials, 2818 participants	0.97 (0.77 to 1.23)	0.90 (0.73 to 1.12)	
Maternal Infection (FE)	3 trials, 1034 participants	1.26 (0.76 to 2.11)	1.42 (0.90 to 2.27)	
Perinatal death (FE)	7 trials, 3499 participants	0.69 (0.45 to 1.07)	0.66 (0.44 to 0.97)	
Neonatal death (FE)	10 trials, 3835 participants	0.29 (0.17 to 0.48)	0.29 (0.19 to 0.46)	
Low birthweight < 2500 g (RE)	5 trials, 1048 participants	0.61 (0.20 to 1.52)	0.59 (0.31 to 1.07)	
Neonatal respiratory distress syndrome (RE)	8 trials, 2534 participants	0.51 (0.26 to 0.90)	0.54 (0.34 to 0.82)	
Neonatal pulmonary disease (FE)	4 trials, 2482 participants	0.97 (0.59 to 1.62)	0.94 (0.58 to 1.52)	
Intraventricular haemorrhage (FE)	8 trials, 3200 participants	0.71 (0.45 to 1.14)	0.66 (0.42 to 1.03)	
Periventricular leukomalacia (FE)	3 trials, 1389 participants	0.98 (0.02 to 37.9)	0.99 (0.03 to 37.8)	
Necrotising enterocolitis (FE)	8 trials, 3568 participants	0.90 (0.56 to 1.46)	0.79 (0.49 to 1.24)	
Proven neonatal sepsis (FE)	6 trials, 1851 participants	0.40 (0.19 to 0.79)	0.43 (0.24 to 0.77)	
Admission to neonatal intensive care unit (RE)	8 trials, 2176 participants	0.46 (0.19 to 0.84)	0.61 (0.40 to 0.86)	
Gestational age at birth (mean difference) (FE)	5 trials, 2191 participants	1.62 (-1.89 to 5.12)	1.96 (-1.05 to 4.98)	
Oral progesterone				
Preterm birth < 37 weeks gestation (RE)	3 trials, 368 participants	0.41 (0.07 to 1.94)	0.37 (0.18 to 0.75)	
Neonatal death (FE)	2 trials, 335 participants	0.26 (0.12 to 0.55)	0.26 (0.12 to 0.55)	
Admission to neonatal intensive care unit (RE)	2 trials, 335 participants	0.23 (0.01 to 7.51)	0.23 (0.10 to 0.52)	
Gestational age at birth (mean difference) (FE)	2 trials, 220 participants	1.32 (-4.03 to 6.68)	1.30 (-3.96 to 6.60)	
17alpha hydroxyprogesterone caproate (17-OHPC)				
Preterm birth < 37 weeks gestation (RE)	11 trials, 3509 participants	0.42 (0.20 to 0.74)	0.53 (0.37 to 0.72)	
Preterm birth < 34 weeks gestation (RE)	5 trials, 2987 participants	0.76 (0.47 to 1.16)	0.68 (0.43 to 1.02)	
Preterm prelabour rupture of membranes (FE)	2 trials, 760 participants	0.87 (0.52 to 1.44)	1.13 (0.77 to 1.65)	
Maternal Infection (FE)	3 trials, 2822 participants	1.49 (0.92 to 2.46)	1.34 (0.86 to 2.12)	
Perinatal death (FE)	6 trials, 3038 participants	0.78 (0.50 to 1.21)	0.78 (0.50 to 1.21)	
Neonatal death (FE)	5 trials, 2917 participants	0.59 (0.32 to 1.07)	0.56 (0.34 to 0.93)	
Low birthweight < 2500 g (RE)	6 trials, 1413 participants	0.75 (0.30 to 1.79)	0.71 (0.38 to 1.31)	
Condition	Trials	Participants	Ratio (95% CI)	
--	--------	--------------	-------------------------	
Neonatal respiratory distress syndrome (RE)	4	2851	0.82 (0.60 to 1.12)	
Neonatal pulmonary disease (FE)	4	2850	0.67 (0.31 to 1.46)	
Intraventricular haemorrhage (FE)	4	2853	0.43 (0.16 to 1.06)	
Necrotising enterocolitis (FE)	3	2753	**0.22 (0.01 to 0.70)**	
Proven neonatal sepsis (FE)	4	2850	0.68 (0.35 to 1.32)	
Admission to neonatal intensive care unit (RE)	4	2462	1.03 (0.48 to 1.91)	
Gestational age at birth (mean difference)	3	750	2.42 (-2.37 to 7.20)	
McDonald cerclage				
Preterm birth < 37 weeks gestation (RE)	3	576	0.54 (0.04 to 5.99)	
Preterm birth < 28 weeks gestation (FE)	2	495	0.72 (0.03 to 23.06)	
Perinatal death (FE)	3	575	0.59 (0.33 to 1.03)	
Low birthweight < 2500 g (RE)	2	275	0.55 (0.01 to 27.09)	
Pessary				
Preterm birth < 37 weeks gestation (RE)	4	906	0.51 (0.10 to 3.00)	
Preterm birth < 34 weeks gestation (RE)	5	1830	0.70 (0.18 to 2.92)	
Spontaneous preterm birth < 34 weeks' gestation (RE)	4	1722	0.58 (0.09 to 3.94)	
Preterm birth < 28 weeks gestation (FE)	5	1830	0.86 (0.57 to 1.28)	
Maternal death (RE)	2	1239	0.99 (0.00 to 225.7)	
Preterm prelabour rupture of membranes (FE)	4	906	0.65 (0.39 to 1.10)	
Maternal Infection (FE)	4	1724	0.98 (0.50 to 1.97)	
Perinatal death (FE)	4	1730	0.79 (0.44 to 1.42)	
Neonatal death (FE)	5	1823	0.80 (0.37 to 1.70)	
Low birthweight < 2500 g (RE)	3	1612	0.54 (0.04 to 6.40)	
Neonatal respiratory distress syndrome (RE)	5	1812	0.70 (0.17 to 3.31)	
Neonatal pulmonary disease (FE)	2	418	0.73 (0.34 to 1.57)	
Intraventricular haemorrhage (FE)	5	1808	1.18 (0.59 to 2.41)	
Necrotising enterocolitis (FE)	4	1706	1.10 (0.46 to 2.64)	
Proven neonatal sepsis (FE)	5	1812	0.76 (0.23 to 2.08)	
Admission to neonatal intensive care unit (RE)	2	1014	1.06 (0.04 to 32.43)	
Gestational age at birth (mean difference) (FE)	3	788	1.69 (-3.95 to 7.31)	

Reference: Vaginal progesterone

Condition	Trials	Participants	Ratio (95% CI)
Preterm birth < 37 weeks gestation (RE)	8	2327	1.38 (0.95 to 1.87)
Preterm birth < 34 weeks gestation (RE)	5	1289	1.21 (0.52 to 2.70)
Treatment	Outcome	Trials, Participants	OR (95% CI)
---------------------------	---	----------------------	---
17α-hydroxyprogesterone	Preterm birth < 28 weeks gestation (FE)	4, 987	0.93 (0.51 to 1.70)
caproate (17-OHPC)			0.84 (0.52 to 1.33)
	Preterm prelabour rupture of membranes (FE)	2, 600	1.68 (0.98 to 2.96)
			1.24 (0.85 to 1.84)
	Maternal Infection (FE)	2, 649	0.56 (0.18 to 1.62)
			0.94 (0.53 to 1.68)
	Neonatal death (FE)	4, 827	1.79 (0.86 to 3.88)
			1.91 (1.12 to 3.33)
	Neonatal respiratory distress syndrome (RE)	3, 745	1.23 (0.15 to 10.91)
			1.36 (0.75 to 2.49)
	Neonatal pulmonary disease (FE)	2, 647	1.03 (0.23 to 4.63)
			0.78 (0.36 to 1.69)
	Intraventricular haemorrhage (FE)	3, 747	1.61 (0.58 to 4.76)
			0.97 (0.47 to 1.99)
	Necrotising enterocolitis (FE)	3, 747	1.08 (0.27 to 4.38)
			0.51 (0.20 to 1.22)
	Proven neonatal sepsis (FE)	3, 745	1.39 (0.51 to 3.99)
			1.52 (0.76 to 3.06)
	Admission to neonatal intensive care unit (RE)	4, 1022	1.00 (0.24 to 3.41)
			1.34 (0.83 to 2.08)
	Gestational age at birth (mean difference) (FE)	6, 1524	-0.41 (-3.58 to 2.77)
			-0.14 (-2.92 to 2.69)
Unspecified Cerclage	Preterm birth < 28 weeks gestation (FE)	2, 103	1.50 (0.02 to 117.5)
			1.80 (0.30 to 11.4)
	Maternal Infection (FE)	2, 107	2.23 (0.40 to 19.4)
			2.19 (0.50 to 12.21)
	Neonatal death (FE)	2, 122	2.67 (0.38 to 34.7)
			1.93 (0.78 to 4.69)
	Neonatal respiratory distress syndrome (RE)	2, 128	0.49 (0.11 to 1.81)
			0.44 (0.08 to 2.01)
	Proven neonatal sepsis (FE)	2, 50	0.84 (0.11 to 6.62)
			0.92 (0.12 to 6.57)
	Preterm prelabour rupture of membranes (FE)	2, 254	0.98 (0.43 to 2.27)
			0.84 (0.53 to 1.33)

3. Results are presented for the best fitting NMA model for each outcome (see Supplementary Table 5). Direct pairwise meta-analysis conducted with fixed effects (FE) or random effects (RE) corresponding to the approach taken for the NMA model.

4. Results expressed as odds ratio (OR) or mean difference (MD) and 95% credible interval (CrI). A CrI is interpreted as the interval where there is a 95% probability that the values of the MD (or OR) will lie. OR<1 or MD>0 indicates an advantage to the treatment over the reference. Values highlighted in **bold** indicate statistically significant results.

5. For most outcomes, non-informative prior distributions (Normal ~ (0, 0.0001)) were used for trial baselines (mu) and treatment effects (d). For two outcomes (maternal death and Neonatal respiratory distress syndrome), where model convergence issues were encountered, weakly informative prior distributions were used (Normal ~ (0, 0.001)). Continuity corrections (i.e. adding 0.5 to all event counts) were used when zero cell counts were encountered to alleviate where model convergence issues.

6. See Supplementary Table 3 for numbers of trials and participants contributing to NMAs for each outcome.