Occurrence of *Escherichia coli* and *Salmonella* species in Some Livestock (Poultry) Feeds in Mando, Kaduna, Nigeria

S.S.D. Mohammed1*, S. Al-hassan2, J.R. Wartu2 and A.A. Abdul Rahman3

1Department of Biology, Microbiology and Biotechnology, Faculty of Natural and Applied Sciences, Nile University of Nigeria, FCT, Abuja, Nigeria.
2Department of Microbiology, Faculty of Science, Kaduna State University, Kaduna, Nigeria.
3Department of Microbiology, Federal University, Lokoja, Nigeria.

*Correspondence: mosada78@gmail.com; +234(0)8035861774

(Received: March 05, 2020; accepted: May 17, 2021)
Enterobacter and species of bacteria namely; feeds contamination family include many genera contaminations of feed ingredients. This poultry are mostly associated with environmental. Many bacteria from the family enterobacteriaceae to the processing plant of the farm. Most animals transmission of bacteria and other microorganisms has been implicated to be a major sources for water leaf (Talinum fruticosum) such as tridax, Amaranth (Amaranthus sp.). Feeds in general complete (whole) cereals, vitamins and vegetables common feeds compositions include soya beans, iNtRODUCtiON pigeons as reported by fowl, geese, guinea fowl, turkey, ostriches and to as poultry. These birds include domestic duck, Aspergillus paraciticus etc) and their mycotoxins 32. such as bacteria (Salmonella sp., Shigella sp. E. coli etc) moulds (Fusarium sp. Aspergillus flavus, Aspergillus paraciticus etc) and their mycotoxins 32. Many bacteria from the family enterobacteriaceae are mostly associated with environmental contaminations of feed ingredients. This poultry feeds contamination family include many genera and species of bacteria namely; Salmonella, Enterobacter and Escherichia coli 26. The usual and common feeds compositions include soya beans, complete (whole) cereals, vitamins and vegetables such as tridax, Amaranth (Amaranthus sp.) and water leaf (Talinum fruticosum). Feeds in general has been implicated to be a major sources for transmission of bacteria and other microorganisms to the processing plant of the farm. Most animals harbour pathogens which are of food borne which serves as a good source of contamination, which is of significant in the spread of Escherichia coli and Salmonella species in humans 7. These bacteria can survive for prolonged periods of time without multiplication on materials with low moisture contents therefore providing for the possibilities of the bacteria to be mechanically transmitted from one site to another through fomites, including contaminated feeds 10. Feeds are formulated from different ingredients with different possible levels of Salmonella and Escherichia coli contamination. A research on cereal ingredients in the UK showed that animal feeds were contaminated with Salmonella and Escherichia coli at the farm level, whereas 92% of the meat and bone meal samples tested in the United States were contaminated with Salmonella and Escherichia coli and in the Netherlands 31% Salmonella contamination was recorded in fishmeal samples 35. Feed manufacturing facilities are therefore considered as critical contamination points for 10.4 CFU/g. Both organisms (Salmonella species, E. coli) were found as 37.5% and 25% of the analyzed feeds (Broiler starter and broiler finisher) samples, respectively. There was no level of significant (p>0.05) difference between the level of contamination of Salmonella species and E. coli in the two different feeds analyzed, as p=0.06 and p=0.13 for Salmonella species, and E. coli respectively. Sample A and B (Starter and Finisher) feeds had the highest number of Salmonella species occurrence with six (6) positive samples while E. coli was recorded in four (4) samples of A and B (Starter and Finisher) feeds. The result of the antibiogram indicated that ciprofloxacin (30 µg), Gentamycin (30µg), Perflroxacin (30µg) and Tarvid (30µg) was effective against salmonella species and Escherichia coli. The significant of spread of the species of the Enterobacteriaceae in livestock feeds requires the need for effective quality assurance and control, good hygiene practices in production and proper handling of the poultry feeds.

Abstract

The study aimed at assessing the proximate composition, isolation, characterization of some Enterobacteriaceae from two (2) brands of poultry feeds marketed in Mando, Kaduna, Nigeria. A total of sixteen (16) samples of two (2) different poultry feeds (starter and finisher) from four (4) poultry farms in mando were collected and subjected to proximate and microbiological analysis. The proximate analysis was carried out using standard techniques and procedures. All the feed samples were cultured on separate media which include Eosin methylene blue (EMB), nutrient Agar (NA) and Salmonella-Shigella Agar (SSA) media using standard procedures. The antibiogram of the selected antibiotics were evaluated against the test isolates. The result of proximate analysis of the starter and finisher feeds indicated that the Dry matter of starter feed had the highest percentage composition of 95.02% and crude fiber of the finisher feed had the lowest composition of 3.78%. The highest number of bacterial load was recorded to be 10.0×10^4 CFU/g for the feed sample A (starter feed) and 12.0×10^4CFU/g was recorded for the feed sample B (finisher feed) which had the highest number of bacterial load recorded among the two (2) different poultry feeds analyzed. The bacteria isolates were identified as Salmonella species and Escherichia coli. Total viable count (TVC) of Salmonella species and E. coli in the feed samples (starter and finisher) ranges from 3.0×10^4CFU/g to 12.0×10^4CFU/g. Both organisms (Salmonella species, E. coli) were found as 37.5% and 25% of the analyzed feeds (Broiler starter and broiler finisher) samples, respectively. There was no level of significant (p>0.05) difference between the level of contamination of Salmonella species and E. coli in the two different feeds analyzed, as p=0.06 and p=0.13 for Salmonella species, and E. coli respectively. Sample A and B (Starter and Finisher) feeds had the highest number of Salmonella species occurrence with six (6) positive samples while E. coli was recorded in four (4) samples of A and B (Starter and Finisher) feeds. The result of the antibiogram indicated that ciprofloxacin (30 µg), Gentamycin (30µg), Perflroxacin (30µg) and Tarvid (30µg) was effective against Salmonella species and Escherichia coli. The significant of spread of the species of the Enterobacteriaceae in livestock feeds requires the need for effective quality assurance and control, good hygiene practices in production and proper handling of the poultry feeds.

Keywords: Livestock feeds, microbiological, techniques, proximate, isolates

INTRODUCTION

All domesticated birds by man are referred to as poultry. These birds include domestic duck, fowl, guese, guinea fowl, turkey, ostriches and pigeons as reported by 14. Livestock feeds can serve as a medium for a range of microbial contaminants such as a bacteria (Salmonella sp., Shigella sp. E. coli etc) moulds (Fusarium sp. Aspergillus flavus, Aspergillus paraciticus etc) and their mycotoxins 32. Many bacteria from the family enterobacteriaceae are mostly associated with environmental contaminations of feed ingredients. This poultry feeds contamination family include many genera and species of bacteria namely; Salmonella, Enterobacter and Escherichia coli 26. The usual and common feeds compositions include soya beans, complete (whole) cereals, vitamins and vegetables such as tridax, Amaranth (Amaranthus sp.) and water leaf (Talinum fruticosum). Feeds in general has been implicated to be a major sources for transmission of bacteria and other microorganisms to the processing plant of the farm. Most animals...
Salmonella and Escherichia coli entry into the food chain. The feeds and their ingredients are also a significant sources of extensive contaminations by antibiotic resistant bacteria along side multi-drug resistant strains of Salmonella sp. Other bacteria such as Escherichia coli Streptococcus sp. and Enterococcus sp. have been isolated in feeds. The constant control of bacteria contaminations in feeds has shown to improve performances in production from poultry and it also reduces the occurrences of salmonella in farm environment breeding animals, and their products. The increase in chicken production has resulted in high demand of feeds, and consequently, proliferation of feed mills, some of which operates under substandard conditions. This may result into packaging of feed contaminated with pathogens and thereby spreading diseases to both humans and farms. Despite advances in medical science, infections due to Salmonella and E. coli strains remain the most important food borne diseases (FBDs) of human. Moreover, a majority of FBDs are implicated with the consumption of contaminated poultry eggs and meats. Though many approaches have been employed to counter these infections both in human and poultry, application of effective antibiotics (therapy) is the main control strategy. The research aimed at assessing the occurrence of Escherichia coli and Salmonella species in some livestock feeds in Mando, Kaduna.

MATERIALS AND METHODS

Sample Collections

Sixteen (16) samples in total of two (2) different chicken feeds: (Broiler starter and finisher) were collected. Eight (8) samples each starter and finisher were collected from four (4) different poultry farms: four (4) per farm in Mando, Kaduna State. The feed samples were aseptically collected separately into sterile universal containers and were well labeled with regards to the feeds after seeking an informed consent from the poultry/livestock farmers. The feed samples were transferred to the Microbiology laboratory, Kaduna State University, Kaduna, Nigeria for proximate and bacteriological analysis.

Proximate Analysis of Chicken Feeds

Proximate analysis of the some chicken feed samples were carried out for percentage total dry matter, crude protein, moisture, crude fat, ash, crude fibre and carbohydrate content using the methods described by Bukar and Saeed. Media Preparation

All culture media used in this research were prepared with regards to manufacturer’s instructions. The media used include: NA, SSA, EMB and MHA.

Isolation of Bacteria from Chicken Feeds

Total Viable Count (TVC)

Twenty five (25) grams of each feed sample were homogenized into 225ml of peptone water. One (1) ml of the homogenized sample was suspended in 9.0 ml distil water, then serial dilutions from 10^{-1} to 10^{-5} was carried out. One (1) ml of each two dilutions (10^{-3} and 10^{-4}) was inoculated into petri dishes containing nutrient agar for each respectively. The petri dishes was incubated at 37°C for 24 hours. Colonies that appeared on the plate were counted and recorded in CFU/g. The Total Viable Bacterial Count (TVC) was carried out as described by Atere et al. Viable colonies from nutrient agar were inoculated into EMB and SSA agar for each bacterial isolates respectively. The plates were incubated at 37°C for 24 hours.

Characterization and Identification of Bacteria from Chicken Feeds

The characterization and identification of bacteria isolates from samples of chicken feeds were based on Grams staining and selected biochemical tests which include Catalase, Indole production, Voges-Proskauer (VP), Methyl red, Citrate, Coagulase and Triple Sugar Iron Agar (TSI) test described by Grant et al. and Dougnon et al. Antimicrobial Susceptibility Testing of Selected Antibiotics against the Bacteria Isolates

Mueller Hinton Agar was prepared according to the manufacturer’s instruction. The bacteria suspension for each respectively was prepared and compared with the turbidity of 0.5 McFarland standard which is approx. cell density (1.5x10⁸ CFU/mL) (standardization of inoculum), then 5 μl of the prepared bacteria suspension was placed on each of the series of plates with already different concentrations of the antimicrobial agent using a replicator device. The plate were incubated at 37°C for 24 hours as described by Mathew et al.

Statistical Analysis of Data

Data generated were statistically analyzed.
using IBM - SPSS Statistics version 20 computer program. The student T-test and one way analysis of variance (ANOVA) was used to determine the prevalence of *Escherichia coli* and *Salmonella* species contaminations among the two different feeds (broiler starter feed and finisher feed) collected from four different farms. The significant difference were considered between and within variables.

RESULTS

Table 1 showed the proximate composition of poultry feeds. The dry matter of broiler starter feed (A) was 95.02%, Dry matter of broiler finisher feed (B) was 94.86 %, Ash content of broiler starter recorded 7.89 %, the Ash content of broiler finisher feed was 7.85 %. The protein content of broiler starter feed was 22.54 %, 23.99 % was recorded for protein content of broiler finisher. Crude fat/Oil content indicated 5.99 % for broiler starter feed, 6.11 % was recorded for crude fat/oil content. The crude fiber content recorded for broiler starter was 4.92%, crude fiber content recorded for broiler finisher feed was 3.78 %. Nitrogen Free Extract recorded for broiler starter feed was 57.22 % and 55.24 % was recorded for finisher. Table 2 showed the estimation of total viable bacteria count of chicken feeds. The mean microbial load of broiler starter from AS₁ and AS₂ ranged between 3.0x10⁵ to 5.0x10⁴ CFU/25g . While the mean microbial load for broiler finisher feed from AF₁ and AF₂ ranged between 5.0x10⁵ to 8.0 x10⁴ CFU/25g. BS₁ and BS₂ mean microbial load for broiler starter feed ranged between 3.0 x10⁵ to 4.0x10⁴ CFU/25g. While BF₁ and BF₂ broiler finisher feed was recorded as 4.0 x10⁴ and to 6.0 x10⁴ CFU/25g. CS₁ and CS₂ broiler starter feed indicated the present of microbial load between 6.0x10⁵ to 10.0 x10⁵ CFU/25g. While CF₁ and CF₂ of the broiler finisher feed was recorded as 6.0x10⁵ to 12.0 x10⁴ CFU/g. DS₁ and DS₂ broiler starter feed ranged from 3.0 x10⁵ to 8.0 x10⁵ CFU/25g and the DF₁ and DF₂ broiler finisher feed ranged from 3.0 x10⁴ to 9.0 x10⁴ CFU/25g for each of the two dilutions (10⁴, 10⁵) respectively. Table 3 showed characterization and identification of bacteria isolates. Isolate from AS₁ feed was Gram negative rod shape, methyl red positive ,catalase positive, citrate negative, indole positive, Voges–Proskauer negative and TSI (Acid production, no gas produced and buttom

Table 1. Average Proximate Composition of Selected Poultry Feeds

Parameters	Sample:	t-cal	P value	
Ingredient (%)	A	B		
Dry matter	95.02±23.12	94.86±24.13	0.008	0.994
Ash content	7.89±3.123	7.85±2.153	0.018	0.986
Protein content	22.54±4.512	23.99±4.419	0.007	0.941
Crude fat/Oil content	5.99±1.912	6.11±1.841	0.039	0.711
Crude fiber content	4.92±0.988	3.78±0.671	1.540	0.174
Nitrogen Free Extract (NFE)	57.22±14.67	55.24±13.68	0.171	0.873

Sample A: Broiler starter feed, Sample B: Broiler finisher feed

Table 2. Total Viable Bacterial Count of Chicken Feeds from Mando, Kaduna

Starter feed (CFU/25g)	Finisher feed (CFU/25g)			
Range of Count	Range of Count			
Average Count	Average Count			
	t-cal	p value		
A	3.0 - 5.0	5.0 - 8.0		
	4.00±1.01	6.50±72	2.171	0.091
B	3.0 - 4.0	4.0 - 6.0		
	3.50±1.07	5.00±1.02	2.052	0.109
C	6.0 - 10.0	6.0 - 12.0		
	8.00±1.98	9.00±2.17	0.589	0.587
D	3.0 - 8.0	3.0 - 9.0		
	5.50±2.01	6.00±2.42	0.275	0.797

Keys: Sample codes: A: Mando Market, B: Neco, C: Sarki Lane, D: Jibril Close: L:Location
yellow) which confirmed probably the presence of *Escherichia coli* while isolate from AS$_2$ was Gram negative rod, methyl red positive, citrate positive, catalase positive, voge-proskauer negative, indole negative and TSI positive (red slant, yellow butt, gas positive, blackbutt (H2S produced) which confirmed probably the presence of *Salmonella* species. Isolate from BS$_1$ also confirmed probable presence of *Salmonella* species and isolate from BS$_2$ feed also indicated the probable presence of *Salmonella* species. The other probable bacteria shows that BF$_1$ isolate showed the presence of *Escherichia coli*. The CS$_1$ isolate indicated the presence of *Escherichia coli* while CS$_2$ isolate indicated the presence of *Salmonella* species while CF$_1$ isolate was positive for *Salmonella* species. Further more, the DS$_1$ isolate indicated the presence of *Escherichia coli* while DS$_2$ isolate was positive for *Salmonella* species. Table 4 showed the percentage occurrence of *Salmonella* sp and *E. coli* isolated from two (2) different brands of poultry feeds (Broiler starter and finisher feeds) from ABC and D. This showed *Salmonella* had 6 positive occurrence from the four (4) farms with 37.5% in the two different feeds as the most predominant pathogen, and *E. coli* having

Table 3. Characterization and Identification of Bacterial Isolates from Chicken Feeds

Sample Code	Gram Reaction	Catalase	Methyl Red	Indole	VP	Citrate	TSI	H₂S	Slant	Butt	Probable Organisms
AS1	-rod	+	+	-	-	-	AA	NG	Yellow	E. coli	
AS2	-rod	+	+	-	-	+	AL	G	Red	Salmonella sp.	
AF1	-	-	-	-	-	-	NA	NG	-	-	
AF2	-	-	-	-	-	-	NA	NG	-	-	
BS1	-rod	+	+	-	-	-	AL	G	Red	Sal. sp.	
BS2	-rod	+	+	-	-	-	AL	G	Red	Sal.sp.	
BF1	-rod	+	+	+	-	-	AA	NG	Yellow	E. coli	
BF2	-	-	-	-	-	-	NA	NG	-	-	
CS1	-rod	+	+	+	-	-	AA	NG	Yellow	E. coli	
CS2	-rod	+	+	-	-	+	AL	G	Red	Sal. sp.	
CF1	-rod	+	+	-	-	+	AL	G	Red	Sal. sp.	
CF2	-	-	-	-	-	-	NA	NG	-	-	
DS1	-rod	+	+	+	-	-	AA	NG	Yellow	E. coli	
DS2	-rod	+	+	+	-	+	AL	G	Red	Sal. sp.	
DF1	-	-	-	-	-	-	NA	NG	-	-	
DF2	-	-	-	-	-	-	NA	NG	-	-	

AS: Mando market Broiler Starter feed, AF: Mando market Broiler finisher feed, BS: NecO Broiler starter feed, BF: NecO Broiler finisher feed, CS: Sarki lane Broiler starter feed, CF: Sarki lane Broiler finisher feed, DS: jubril close Broiler starter feed, DF: jibril close Broiler finisher feed, -ve: gram negative, +ve: gram positive, *E. coli*: *Escherichia coli*, *Salmonella/Sal.* sp: *Salmonella* species, Slant-AA: Acid, AL: Alkaline, H2S-NG: No Gas, G: Gas produced, Butt.: Buttom.

Table 4. Percentage Occurrence of Some *Enterobacteriaceae* in Broiler Starter and Finisher Feeds Collected from Different Farms in Mando, Kaduna

Locations	Samples collected	Salmonella sp present	E. coli present	t-cal	p value
A	4	1.00±0.01	1.00±0.02	0.000	1.000
B	4	2.00±0.02	1.00±0.01	71.611	0.000
C	4	2.00±0.03	1.00±0.02	45.656	0.000
D	4	1.00±0.02	1.00±0.03	0.000	1.000
Total	16	37.5%(p=0.13)	25%(p=0.06)		

A= Mando market Broiler stater/finisher, B=Neco Broiler starter/finisher, C= Sarki lane Broiler stater/finisher, D=Jibril close Broiler starter/finisher finisher
4 positive occurrence with 25% in the two feeds analyzed from the four farms as the less predominant pathogen. Table 5 shows the result of antibacterial susceptibility test of *Salmonella* species and *Escherichia coli* to the antibiotic disc which indicated that *Salmonella* *sp.* and *E.coli* were either sensitive (R), moderately sensitive (MS) and resistant (R) at different concentrations (ranging from 10 to 30 µg) respectively.

DISCUSSION

The ingredient percentage composition of broiler starter feed was higher than that of broiler finisher feed. This could be attributed to the chicks needs for higher amount of nutrient to enable them grow. The broiler finisher feed has less percentage composition of the feed ingredients as compared to broiler starter feed. This might be as a result of the chicken having the ability to have acquired the essential nutrients for their growth and so do not need more nutrients for growth but need just enough nutrient to keep them healthy. Dry matter has the highest ingredient percentage composition of the feed of 95.02 % for broiler starter feed and 94.86 % for broiler finisher feed making. This is to enable the chicken pick the feed easily. Nitrogen Free Extract (NFE) has the second high value of percentage composition of the feed ingredient. This shows the sugar and starch content of the feed which are essential for the meat content of the chicken. Ash content recorded the lowest % composition of the feed ingredient. This is because it is trace minerals which are needed only in a small quantity. Crude fat, protein content and crude fiber were present in small quantities. Crude fat provide essential fatty acids and energy, protein content that maintains the growth in the chicken while fiber is associated with the reduced energy availability. This is similar to the research conducted in Zaria Kaduna State by Bukar et al who reported proximate composition of chicken feed for crude fiber content with the lowest composition of 1.70 while dry matter recorded was with the highest percentage composition of 90.02. The statistical analysis of the ingredient for broiler starter and finisher feeds, indicates that there were no significant difference (p>0.05) between broiler starter and finisher feeds in all the proximate percentage compositions. Total viable count of the isolates showed the 10³ dilution samples with higher colony forming unit and 10⁴ dilution having less colony forming unit. This could be because colonies of microorganism varies with the dilution factor as reported by Pattabhiramaiah and Mallikarjunaiah. The CF₁ feed recorded the highest number of colonies of 12 CFU/g while CS₁ feed recorded the second highest colony of 10 CFU/g The possible reason why CF₁ feed indicated the highest number of colonies could be due to the fact that it contains higher nutrient composition as compared to other feeds. BS₁ feed recorded the least number of colonies of 3 CFU/g which could also be as a result of low nutritional composition of the feed. The statistical analysis indicated

Table 5. Antibacterial Susceptibility Profile of *Salmonella* species and *Escherichia coli* to Selected Antibiotics

Antibiotics (dose)	Zones of Inhibition against *Salmonella* sp. (mm)	Zones of Inhibition against *Escherichia coli* (mm)
Spt(30µg)	R	R
Chlo (30µg)	MS	MS
Spf (10µg)	R	S
Cpf(30µg)	MS	S
Amp(30µg)	R	S
Aug(10µg)	R	R
Gen (30µg)	MS	MS
Pef(30µg)	S	MS
Tar (10µg)	S	MS
Str (10µg)	R	MS

Spt: Septrin, Chlo: Chloramphenicol, Spf: Sparfloxacin, Cpf: Ciproflaxacin, Amp: Ampicillin, Aug: Augmentin, Gen: Gentamycin, Pef: Pefloxacin, Tar: Tarvid, Str: Streptomycin, S: Sensitive; MS: Moderately sensitive, R: Resistant.
that there was no significant difference (p>0.05) between the total viable count of broiler starter feeds and broiler finisher feeds in farm A and D but occurred significantly in farm B and C from the four different locations. The bacteria isolated were *Escherichia coli* and *Salmonella* species which are commonly associated with disease of the poultry and has resulted in the death of the poultry birds. It can also result in food borne infections. This study is similar to the study conducted by Leaumont et al.\(^1\) were they reported isolates such as *Escherichia coli* and *Salmonella* species in poultry feeds. Similarly, Keddy et al.\(^2\) reported the presence of *Salmonella* species, *Escherichia coli*, *Staphylococcus* species, *Streptococcus* species and *Bacillus* species in poultry feeds. The occurrence of *Salmonella* species and *Escherichia coli* in the feed samples may be as a result of fecal contamination during the preparation of the feeds or from the product’s retailers. These is possible because no any form of sterilization is usually carried out by the farmers during compounding of the feeds which enhances the growth and survival of these bacteria\(^3\). The prevalence of *E. coli* and *Salmonella* sp. contaminations in this study was 62.5% which was less than the prevalence of 71.43% reported in a study on poultry feeds from farms and markets in Bangladesh, as reported by Chowdhury et al.\(^4\) but higher than 22.2% prevalence recorded in a study from feed outlets in Nigeria as reported by Nourmohamadi and Shokrollahi\(^5\). A much lower prevalence of 3.6% was reported by Nigra et al.\(^6\) from broiler feeds in Iran. Detection of *E. coli* and *Salmonella* and in feeds is a common study which have been reported from different countries. The statistical analysis between the four farms revealed no significant difference between the occurrence of *Salmonella* species and *E. coli* in farm A and D (p>0.05) while location B and C recorded significant occurrence of *Salmonella* species and *E. coli*. The percentage prevalence of *Salmonella* sp. and *E. coli* from the two different feeds (broiler starter and broiler finisher) was 25%, and 37.5%, respectively. This findings partially agrees with the work of Nourmohamadi and Shokrollahi\(^7\) who reported a prevalence of 40%, for *Salmonella* species and 25%, for *E. coli* in broiler starter and broiler finisher feeds respectively. Although *Salmonella* showed a slightly higher contamination rate in both starter feed and finisher feed (37.5%, p=0.13) than *E. coli*, (25%, p=0.06), there was no significant difference between the data obtained.

Heeraman\(^8\) reported that cereal ingredients for animal feeds were contaminated with *Salmonella* and *Escherichia coli* at the farm level, whereas 92% of the meat and bone meal samples tested in the US were contaminated with *Escherichia coli* and *Salmonella* sp., and 31% of *Salmonella* contamination was recorded in fishmeal samples in the Netherlands\(^9\). The poultry feeds from the four (4) farms showed higher contamination with *Salmonella* species than with *E. coli* even though there was no significant different (p>0.05) between them. A possible explanation for this may be due to the increased use of antibiotics in the feed for treatment which made poultry feed a major reservoir of antimicrobial resistant *Salmonella* and *E. coli*. This agrees with the work of Atere et al.\(^10\) and Brown et al.\(^11\) who reported the increased use of antibiotics in feed result in the contamination of feed by *Salmonella* and *Eschericia. coli* that develop antibiotic resistance due to transposons. The sensitivity, moderate sensitivity and resistant of *Salmonella* sp. and *E. coli* at different concentrations of the antibiotics (ranging from 10 to 30 µg) respectively which could be attributed to the efficacy of the antibiotics on bacterial and/or resistant genes that are possessed by the bacterial genome as the case may be towards some of the antibiotics. due to the indiscriminate use of antibiotics by farmers This antibacterial susceptibility pattern is similar to reports of Alabi et al.\(^12\) who conducted a research in Abeokuta, Nigeria and reported a higher prevalence and antibacterial susceptibility pattern of *Salmonella* isolates from chicken carcasses while Atere et al.\(^13\) and Silva et al.\(^14\) both also reported isolation and antibiotic susceptibility pattern of *Salmonella* and *E. coli* from livestock feeds.

CONCLUSION

The result of proximate analysis indicated dry matter having the highest percentage and crude fiber having the least percentage. The isolation and identification of the collected chicken feeds indicated *Salmonella* species having high number (6 positive samples) of contaminations in broiler starter and broiler finisher feeds then...
E. coli having lesser number (4 positive samples) of contaminations. Antibiogram of the bacteria carried out indicated ciprofloxacin, Gentamycin, Perflaxin and Tarvid to be effective against Salmonella species and Escherichia coli isolated from the chicken feeds analyzed.

Recommendations
1. The application of Hazard Analysis and Critical Control Points (HACCP) in poultry feed production should be paramount in the industries and to local feed producers.
2. Disinfection of ingredients before addition to the pool of the feed is highly recommended.
3. Addition of probiotics to the prepared poultry feeds is also highly recommended, this will reduce indiscriminate use of antibiotics which usually result to antibiotic resistance by microorganisms that attacks the feeds.
4. Adhering to Surveillance, Good Manufacturing Practices (GMP) and personal hygiene by the feed producers will reduce or eliminate contamination of the feeds.

ACKNOWLEDGMENTS
We would like to express our heartfelt thanks to the laboratory technologists for their technical supports and the Department of Microbiology, Kaduna State University, Kaduna, Nigeria for providing the laboratory facilities for this research.

CONFLICT OF INTEREST
The authors declare that there is no conflict of interest.

AUTHORS’ CONTRIBUTION
All authors listed have made a substantial, direct and intellectual contribution to the work, and approved it for publication.

FUNDING
This study was self supported and publication incentive was provided by Nile University of Nigeria.

DATA AVAILABILITY
All datasets generated or analyzed during this study are included in the manuscript.

ETHICS STATEMENT
This article does not contain any studies with human participants or animals performed by any of the authors.

REFERENCES
1. Abdellah C, Fouzia RF, Abdelkader S, Rachida SB, Mouloud Z. Prevalence and anti-microbial susceptibility of Salmonella isolates from chicken carcasses and giblets in Meknès, Morocco. African J Microbiol Res. 2009;3(5), 215-219.
2. Alabi JO, Fafiolu AO, Akande FA, et al. Assessment of microbial profile of selected proprietary broiler chicken feeds sold in Abeokuta, South-West, Nigeria. Nigerian. J Anim Sci. 2018;2011:183-190.
3. Angelo KM, Nisler AL, Hall AJ, Brown LG, Gould LH. Epidemiology of restaurant-associated foodborne disease outbreaks, United States, 1998-2013. Epidemiology & Infection. 2015;145(3):523-534. doi: 10.1017/S0950268816002314
4. Antunes P, Campos M, Peixie L. Salmonellosis: the role of poultry meat. Clinical Microbiology and Infection. 2017;22(2):110-121. doi: 10.1016/j.cmi.2015.12.004
5. Ashraf A, Rahman FA, Abdullah N. Poultry Feed in Malaysia: An Insight into the Halal and Tuyo Bill issues. Proceedings of the 3rd International Halal Conference (INHAC 2016). 2016;511-531. doi: 10.1007/978-981-10-7257-4_45
6. Atere VA, Ramikole AM, Ajuoro OA. Antibiotic Susceptibility of bacteria isolate from poultry feeds sold in Ado Ekiti, Nigeria. Journal of Medical Life Science. 2015;3:1-4
7. Ayeni FA, Odumosu BT, Oluseyi AE, Ruppitsch W. Identification and prevalence of tetracycline resistance in enterococci isolated from poultry in Ilishan, Ogun State, Nigeria. J Pharm Bioall Sci. 2016;8(1):69-73. doi: 10.4103/0975-7406.171729
8. Brown AC, Grass JE, Richardson LC, Nisler AL, Bicknese AS, Gould LH. Antimicrobial resistance in Salmonella that caused foodborne disease outbreaks: United States, 2003-2012. Epidemiology and Infection. 2017;145(4):766-774. doi: 10.1017/ S0950268816002867
9. Bukar H, Saeed MD. Proximate Analysis and Concentration of some heavy metals in selected poultry feeds in Kano Metropolitan, Nigeria. Bayero J Pure Appl Sci. 2014;7(1):75-79. doi: 10.4314/bajopas.v7i1.14
10. Burgess CM, Gianotti A, Gruzdev N, et al. The response of foodborne pathogens to osmotic and desiccation stresses in the food chain. Int J Food Microbiol. 2016;221(1):37-53. doi: 10.1016/j. ijfoodmicro.2015.12.014
11. Campilongo O, Di Martino ML, Marcocci L, et al. Molecular and Functional Profiling of the Polyamine Content in Enteroinvasive E. coli : Looking into the Gap between Commensal E. coli and Harmful Shigella. PLoS One. 2014;9(9):e106589. doi: 10.1371/journal. pone.0106589
12. Choi S, Myers MA. Poultry and Products Annual. USDA Foreign Agricultural Report. Serial number S1342.
feed. 2014;3(3):105-109. Okogun GRA, Jemikalajah DJ, Ebhohimen EV. Bacteriological Evaluation of Poultry Feeds in Ekpoma, Nigeria. African Journal of Cellular Pathology. 2016;6:6-9.
40. Okogun GRA, Jemikalajah DJ, Ebhohimen EV. Bacteriological Evaluation of Poultry Feeds in Ekpoma, Nigeria. African Journal of Cellular Pathology. 2016; 6:6-9.
41. Okoli IC, Ndujihe GE, Ogbuewu IP. “Frequency of isolation of salmonella from commercial poultry feeds and their anti-microbial resistance profiles, Imo State, Nigeria,” Online Journal. Heal Allied Science. 2006;5(2):1-10.
42. Pattabhiramaiah M, Mallikarjunaiah S. High-Throughput Sequencing for Detection of Foodborne Pathogens in Food Safety. Chapter In: Sequencing Technologies in Microbial Food Safety and Quality, First Edition, CRC Press. 2021;32. doi: 10.1201/9780429329869-19
43. Dougnon TV, legba B, Deguenon E, et al. Pathogenicity, Epidemiology and Virulence Factors of Salmonella species: A Review. Notulae Scientia Biologicae. 2017;9(4): 460-466. doi: 10.15835/nsb9410125
44. Rahmn G, Price L, Hanna-Grace R. Implications of Foodborne Bacteria on HumanHealth: Isolation and Antibiotic Resistance of Salmonella enterica and Campylobacter spp. on Retail Chicken Sold in California. J Health Sci Res. 2017;1(3)1-9.
45. Rajan K, Shi Z, Ricke SC. Current aspects of Salmonella contamination in the US poultry production chain and the potential application of risk strategies in understanding emerging hazards. Crit Rev Microbiol. 2017;43(3):370-392. doi: 10.1080/1040841X.2016.1223600
46. Rogawska ET, Guerrant RL, Havit A, et al. Epidemiology of entericaggregative Escherichia coli infections and associated outcomes in the MAL-ED birth cohort. African Journal of Cellular Pathology. 2016;1(1), 1-15.
47. Santiago AE, Ruiz-Perez F, Jo NY, Vijayakumar V, Gong MQ, Nataro JP. A Large Family of Antivirulence Regulators Modulates the Effects of Transcriptional Activators in Gram-negative Pathogenic Bacteria. PloS Pathogen. 2014;10(5):e1004153. doi: 10.1371/journal.