Supplementary figure 1: The effect of *Dicer1* deletion on osteoblasts and bone in vivo.

a,b frequency of lineage CD45^-CD31^-GFP^+ osteolineage cells in bone marrow (a) or collagenased bone fragments (b) (n=4)

c-e impaired osteogenic differentiation capacity of OCD^fl/fl^ bone marrow stromal cells as shown by reduced CFU-Alk/CFU-F ratio (c) (n=2, performed in quadruplicate), impaired in vitro osteogenic differentiation upon osteogenic induction (d) and decreased *osteocalcin* gene expression in primary osteolineage cells as shown by RT-PCR on CD45^-Lineage^-CD31^-GFP^+ cells (n=5) (e)

f, altered texture of the bone matrix g, normal trabecular bone volume (BV) and h, increased cortical bone volume as assessed by histomorphometric analysis (n=8) (TV=total volume; BA=bone area, TA total area).

i,j reduced osteoblasts (Ob) number per bone surface (Bs) in OCD^fl/fl^ mice as indicated by histomorphometric analysis (n=8) k, the number of osteoclasts (OC) was unaltered in OCD^fl/fl^ mice (n=8). Data are mean ± s.e.m. * p≤0.05, **p≤0.01. CFU-F=colony-forming assay –fibroblast, CFU-ALK=colony forming unit alkaline phosphatase, AP=alkaline phosphatas
Supplementary figure 2: Ineffective hematopoiesis and myelodysplasia in OCD fl/fl mice. \textbf{a}, Leukopenia comprised all leukocyte subsets (n=10). Cytopenias were present despite normal or increased cellularity of the bone marrow (\textbf{b, c}) and normal hematopoietic stem and progenitor cell numbers and function. \textbf{d, e}, frequency of immunophenotypically defined stem (LKS CD150+CD48-) and progenitor (LKS) cells (n=4). \textbf{f}, hematopoietic stem cell function as determined by competitive reconstitution capacity (n=5) \textbf{g}, hematopoietic progenitor cell function as assessed by CFU-C (n=10). \textbf{h}, increased frequency of (CD11b+Gr1+) myeloid cells (n=6) and \textbf{i}, decreased frequency of (CD43+B220-CD19+/-) B-cell progenitors in the bone marrow (n=5) \textbf{j}, increased bone marrow vascularity confirmed by the endothelial cell marker CD31 (PECAM). Inset: CD31 staining of micro-megakaryocytes. Data are mean ± s.e.m. * p<0.05, **p<0.01. LY=lymphocytes, BASO=basophils, NE=neutrophils, MO=monocytes, EO=eosinophils, CFU-C=colony forming unit in culture. LKS= lineage −C-kit− Sca1+ cells LKS-SLAM= lineage −C-kit− Sca1+ CD150+ CD48- cells, H&E=hematoxylin/eosin.
Supplementary figure 3: Extramedullary hematopoiesis rescues peripheral cytopenia in a subfraction of OCD fl/fl mice.

Extramedullary hematopoiesis (EMH) was observed in a subset of 3/10 animals investigated for its presence as indicated by a, histology showing increased hematopoiesis with increased numbers of magakaryocytes. Megakaryocytes display normal morphology b, increased CFU-C spleen, spleen cellularity, relative frequency of erythroid progenitor (CD45+ter119+) cells and primitive hematopoietic (LKS) progenitors (n=3). c,d, significant anemia and thrombocytopenia in OCD fl/fl mice lacking EMH (n=7) in comparison to Dicer fl/+ littermates. Conversely, the occurrence of EMH (n=3) rescued anemia and thrombocytopenia in these mice. Data are mean ± s.e.m. * p≤0.05, **p≤0.01.
Supplementary figure 4: Representative example of flow-cytometric assessment of primitive hematopoietic LKS/CD150/CD48 subpopulations
Supplementary figure 5: Myelodysplastic features of OCD fl/fl mice. a, neutrophilic dysplasia in peripheral blood. Arrow indicating giant platelet. b, micro-megakaryocytes with hyperchromatic nuclei. c, frequency of dysplastic cells (n=12 mice, ≥ 20 cells counted/sample; average ± sem, range 15.0%-89.5% and 6.5%-92.0% for neutrophils and megakaryocytes respectively)
Supplementary figure 6: Apoptosis in hematopoietic progenitor cells in OCD fl/fl mice: representative FACS plots.

LKS = lineage "C-kit" Sca1" cells
LKS-SLAM = lineage "C-kit" Sca1" CD150" CD48" cells
L-K+ = lineage "C-kit" cells
L-K-int = lineage "C-kit intermediate"

OCD fl/+ OCD fl/fl OCD fl/+ OCD fl/fl

Annexin V 7AAD

LKS - SLAM LKS L-K+ L-K-int
Supplementary figure 7: Apoptosis in hematopoietic progenitor subsets in OCD fl/fl mice.

a. Representative FACS plots of progenitor identification and apoptosis rates, b. overall data (n=4). Data are mean ± s.e.m. * p≤0.05, **p≤0.01.
Supplementary figure 8: Increased proliferation of hematopoietic stem and progenitor cells at the endosteal surface in OCD fl/fl mice.

a, representative FACS histogram of BRDU+ cells by in vivo BRDU labeling **b**, confocal microscopy of transplanted DiD-labeled LKS cells. (osteoblasts green, vasculature red, LKS cells (arrows) white) **c**, distance to endosteal surface (n=2, 20±3.6 cells/animal) and **d**, frequency of cell duplets. Data are mean ± s.e.m. * p≤0.05, **p≤0.01.
Supplementary figure 9: Representative example of flow-cytometric assessment of B-cell subpopulations
Supplementary figure 10: Hematological abnormalities in OCD fl/fl mice cannot be propagated in a hematopoietic cells autonomous manner. Bone marrow mononuclear cells of OCD fl/fl or littermate OCD fl/+ mice (n=2) were transplanted into lethally irradiated WT (B6.SJL) mice (n=4 per OCD mouse). \textbf{a}, near complete donor chimerism 16 weeks post-transplant with normalization of \textbf{b}, peripheral blood numbers, and \textbf{c}, apoptosis of primitive progenitors. Data are mean ± s.e.m. * p≤0.05, **p≤0.01.
Supplementary figure 11: Hematopoietic cells from OCD \textit{fl/fl} mice do not confer hematological abnormalities: Data of mutant into WT transplantation at 12 months post-transplant. \textbf{a}, bone marrow mononuclear cells of OCD \textit{fl/fl} (n=4) or littermate OCD \textit{fl/+} mice (n=6) were transplanted into lethally irradiated WT (B6.SJL) mice. \textbf{b}, near complete donor chimerism \textbf{c}, peripheral blood numbers, \textbf{d}, granulocyte and megakaryocyte morphology, \textbf{e}, frequency of B cells and B cell progenitors. \textbf{f}, frequency of myeloid cells \textbf{g}, apoptosis of primitive progenitors. Data are mean \pm s.e.m. * \(p \leq 0.05 \), ** \(p \leq 0.01 \).
Supplementary figure 12: Myelodysplasia in OCD fl/fl mice is induced by the bone marrow microenvironment. Wildtype (CD45.1) B6.SJL cells were transplanted into OCD fl/+ (n=8) or OCD fl/fl (n=8) mice. a,b, hematopoiesis at 8 weeks was predominantly of WT origin but c, displayed prominent dysplastic features (n=4; 40 neutrophils or megakaryocytes were scored per sample) d,e, anemia and thrombopenia f, increased frequency of myeloid cells in the bone marrow with g, reduced frequency of B-cells and B-cell progenitors and h, increased apoptosis of hematopoietic progenitors. Data are mean ± s.e.m. * p≤0.05, **p≤0.01.
Supplementary figure 13: Co-culture assays reveal direct effects of OCD fl/fl osteolineage cells on hematopoietic progenitor cell proliferation and megakaryocytic differentiation

Two hundred DS-red LKS or MEP were co-cultured on bone marrow derived stromal cells for 7 days as described in the section 'methods' \textbf{a}, osterix and osteocalcin gene expression in stromal cells in A-MEM indicating osteolineage commitment in the absence of terminally differentiated (osteocalcin+) osteoblasts \textbf{b}. The total number of hematopoietic cells was significantly increased in LKS co-cultured with OCD fl/fl stroma with \textbf{c}, preferential expansion of ckit+lin- cells in the absence of decreased apoptosis in this fraction \textbf{d} consistent with increased proliferation of primitive hematopoietic subsets on OCD fl/fl stroma. Plating of MEPs on OCD fl/fl stromal cells resulted in increased numbers of hematopoietic cells \textbf{e} but significantly impaired differentiation towards (CD41+) megakaryocytes \textbf{f,g}. Apoptosis was not increased in hematopoietic subsets under these conditions \textbf{h} \textbf{i}, representative picture of morphological abnormalities of CD41+ megakaryocytic cells showing small megakaryocytes with condensed, hypolobular nuclei on OCD fl/fl stroma. (Data show representative experiments with n=2 mice, experiments performed at least in triplicate; data are mean \pm s.e.m. * p≤0.05, **p≤0.01). ND=not detectable, AMEM=minimal essential medium alpha
Supplementary figure 14: Deletion of Dicer1 in terminally differentiated osteoblasts does not confer myelodysplasia. a, deletion of Dicer1 in long bones and calvarium of ocn-cre+Dicer fl/+ and fl/fl animals. b, alteration in texture of bone matrix and, c, increased cortical bone volume (n=2). Effects on hematopoiesis were examined in 4-6 weeks old animals showing d, no effect on peripheral blood cell numbers, e, peripheral blood cells morphology, f, bone marrow vasculature or megakaryocyte morphology g, frequency of myeloid cells and h, B-cell progenitors. n=5. Data are mean ± s.e.m.
Supplementary figure 15: Hematopoietic phenotype of OCD fl/fl mice at the age of three weeks.

- **a,** anemia,
- **b,** dysplasia of neutrophils and megakaryocytes,
- **c,** decreased frequency of B-cell progenitors,
- **d,** increased frequency of myeloid cells,
- **e,** Increased apoptosis of hematopoietic progenitor cells. (n=5 for all analyses). Data are mean ± s.e.m. *p≤0.05, **p≤0.01.
Supplementary figure 16: Genomic location and probe information on cytogenetic abnormalities in myeloid sarcomas as detected by CGH

a, tumor1 b, tumor2 c, tumor3
Supplementary figure 17: Infiltrative tumor behavior a, infiltration of tumor into muscle (a1) and glandular tissue (a2).
Supplementary figure 18: Targeted deletion of the Sbds gene from osteoprogenitor cells

a, altered texture of the cortical bone similar to OCD \(^{+/+} \) mice, b, reduced frequency of B cells and pre-B cells in the bone marrow \((n=8) \) c, increased frequency of myeloid cells in the bone marrow \((n=8) \). Data are mean ± s.e.m. * \(p \leq 0.05 \), ** \(p \leq 0.01 \).
Supplementary tables

Supplementary table 1: Significantly (p<0.05 (t-test) up (> 2-fold) - and down regulated (>2-fold) genes in OCD fl/fl in comparison to OCD fl/+ osteolineage cells

Gene name	Description	T-test p-value	Fold Change	Status
ESF1	2610101J03RIK	0.036	5.42682	up
PRG2	PRG2:proteoglycan 2, bone marrow (natural killer cell activator, eosinophil granule major basic protein)	0.04697	4.69371	up
FABP6	FABP6:fatty acid binding protein 6, ileal (gastrotropin)	0.02693	4.16036	up
SLC26A6	SLC26A6:solute carrier family 26, member 6	0.02134	3.83104	up
AA591059	na	0.04591	3.76227	up
TUBA4	TUBA4:tubulin, alpha 4	0.03639	3.27486	up
C430042M11RIK	na	0.02185	3.23017	up
CRTAC1	CRTAC1:cartilage acidic protein 1	0.0473	3.09731	up
GP49A /// LILRB4	na	0.04749	2.75924	up
D3ERTD108E	na	0.03166	2.70639	up
ZFP397	na	0.0182	2.68709	up
COL4A4	COL4A4:collagen, type IV, alpha 4	0.05033	2.60923	up
KIF13B	KIF13B:kinesin family member 13B	0.0291	2.60515	up
SLC7A2	SLC7A2:solute carrier family 7 (cationic amino acid transporter, y+ system), member 2	0.04061	2.5453	up
2310007H09RIK	na	0.00718	2.49706	up
4930441O14RIK	na	0.05163	2.49114	up
CML3	na	0.0004	2.4063	up
ITSN2	ITSN2:intersectin 2	0.05006	2.3858	up
4930579C12RIK	na	0.05379	2.35791	up
WRN	WRN:Werner syndrome	0.03028	2.30526	up
TEX19	na	0.05461	2.30136	up
ARL6IP2	ARL6IP2:ADP-ribosylation factor-like 6 interacting protein 2	0.04964	2.29179	up
LOC548102	na	0.05069	2.27919	up
CUZD1	CUZD1:CUB and zona pellucida-like domains 1	0.02772	2.24676	up
RABGAP1	RABGAP1:RAB GTPase activating protein 1	0.04486	2.21999	up
SMEK1	1110034C04RIK	0.03913	2.19501	up
MLSTD1	MLSTD1: male sterility domain containing 1	0.01118	2.18289	up
SYT1	SYT1:synaptotagmin I	0.03581	2.1705	up
2700022O18RIK	na	0.03128	2.15625	up
LSAMP	LSAMP:limbic system-associated membrane protein	0.0478	2.14451	up
IL2RB	IL2RB:interleukin 2 receptor, beta	0.01355	2.13979	up
AI844685	na	0.01838	2.13573	up
Gene	Description	Log2 Fold Changes	p-value	
------------	---	-------------------	---------	
RAD23B	RAD23 homolog B (S. cerevisiae)	0.02611	2.1244	
STX19	A030009B12RIK	0.01625	2.12178	
9430081G06RIK		0.0154	2.12048	
1810033B17RIK		0.004	2.1112	
DHPS	DHPS: deoxyhypusine synthase	0.03132	2.10313	
1700034F02RIK		0.01501	2.05275	
STX19	A030009B12RIK	0.01625	2.12178	
9430081G06RIK		0.0154	2.12048	
1810033B17RIK		0.004	2.1112	
DHPS	DHPS: deoxyhypusine synthase	0.03132	2.10313	
1700034F02RIK		0.01501	2.05275	
STX19	A030009B12RIK	0.01625	2.12178	
9430081G06RIK		0.0154	2.12048	
1810033B17RIK		0.004	2.1112	
DHPS	DHPS: deoxyhypusine synthase	0.03132	2.10313	
1700034F02RIK		0.01501	2.05275	
STX19	A030009B12RIK	0.01625	2.12178	
9430081G06RIK		0.0154	2.12048	
1810033B17RIK		0.004	2.1112	
DHPS	DHPS: deoxyhypusine synthase	0.03132	2.10313	
1700034F02RIK		0.01501	2.05275	
STX19	A030009B12RIK	0.01625	2.12178	
9430081G06RIK		0.0154	2.12048	
1810033B17RIK		0.004	2.1112	
DHPS	DHPS: deoxyhypusine synthase	0.03132	2.10313	
1700034F02RIK		0.01501	2.05275	
STX19	A030009B12RIK	0.01625	2.12178	
9430081G06RIK		0.0154	2.12048	
1810033B17RIK		0.004	2.1112	
DHPS	DHPS: deoxyhypusine synthase	0.03132	2.10313	
1700034F02RIK		0.01501	2.05275	

Note: The table above lists genes and their associated fold changes and p-values. The direction of change (up or down) is indicated by 'up' or 'down.'
Gene	Description	Log2 Fold Change	p Value
SHF	SHF:Src homology 2 domain containing F	0.004	4.09982
GLOD4	2010085E05Rik	0.04616	4.06067
NR2F6	NR2F6:nuclear receptor subfamily 2, group F, member 6	0.0285	4.03937
RUSC2	RUSC2:RUN and SH3 domain containing 2	0.01736	4.03404
TIPRL	TIPRL:TIP41, TOR signalling pathway regulator-like (S. cerevisiae)	0.0255	4.03344
BTBD5	BTBD5:BTB (POZ) domain containing 5	0.0146	4.02652
EIF2C2	EIF2C2:eukaryotic translation initiation factor 2C, 2	0.0503	3.89805
NFIA	NFIA:nuclear factor I/A	0.0445	3.89446
PROS1	PROS1:protein S (alpha)	0.02681	3.83777
MAP4K3	MAP4K3 LOC675560	na	
LDB2	LDB2:LIM domain binding 2	0.002	3.79608
RBM19	RBM19:RNA binding motif protein 19	0.0466	3.78786
MCMDC1	MCMDC1:minichromosome maintenance deficient domain containing 1	0.01879	3.74637
SMO	SMO:smoothened homolog (Drosophila)	0.001	3.72639
DDX24	DDX24: DEAD (Asp-Glu-Ala-Asp) box polypeptide 24	0.02098	3.69234
PLAC9	PLAC9:placenta-specific 9	0.01527	3.65417
2610014I16RIK	na	0.04731	3.64898
GLT28D2	na	0.04701	3.61421
NAGLU	NAGLU:N-acetylglucosaminidase, alpha- (Sanfilippo disease IIIB)	0.01324	3.60552
SLC10A3	SLC10A3:solute carrier family 10 (sodium/bile acid cotransporter family), member 3	0.02873	3.59452
NFATC2IP	NFATC2IP:nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 2 interacting protein	0.05147	3.59288
MCOLN1	MCOLN1:mucolipin 1	0.02559	3.59093
FBXO18	FBXO18:F-box protein, helicase, 18	0.05395	3.57977
HOXA10	HOXA10:homeobox A10	0.01077	3.57055
DNAJA4	DNAJA4:DnaJ (Hsp40) homolog, subfamily A, member 4	0.05295	3.56585
9230104K21RIK	na	0.04956	3.56259
TMEM16K	TMEM16K:transmembrane protein 16K	0.04528	3.55635
ENOPH1	2310057D15RIK	0.04873	3.54497
ABHD14B	ABHD14B:abhydrolase domain containing 14B	0.03567	3.52646
NINJ1	NINJ1:ninjurin 1	0.004	3.5251
SMAD3	SMAD3:SMAD, mothers against DPP homolog 3 (Drosophila)	0.0405	3.50195
TRABD	5730502D15RIK	0.03846	3.4988
YIPF2	YIPF2:Yip1 domain family, member 2	0.0275	3.48257
MTIF2	MTIF2:mitochondrial translational initiation factor 2	0.0486	3.46648
METTL7A	METTL7A /// UBIE ///	na	
ISLR	ISLR:immunoglobulin superfamily containing leucine-rich repeat	0.001	3.45555

Note: Log2 Fold Change and p Value columns represent the statistical significance of the changes in gene expression.
Gene	Description	Log2 Fold Change	Significance	
ACYP1	acylphosphatase 1, erythrocyte (common) type	0.03783	down	
FBXL3	F-box and leucine-rich repeat protein 3	0.05226	down	
HNRPH3		na	down	
LOC669773		na	down	
PQLC3	PQLC3:PQ loop repeat containing 3	0.0431	down	
PALLD	PALLD:palladin, cytoskeletal associated protein	0.04649	down	
5330431N19RIK		0.03947	down	
ALCAM	ALCAM:activated leukocyte cell adhesion molecule	0.01269	down	
RG9MTD2	RG9MTD2:RNA (guanine-9-) methyltransferase domain containing 2	0.04216	down	
LRRC17	LRRC17:leucine rich repeat containing 17	0.02977	down	
EIF2AK1	EIF2AK1:eukaryotic translation initiation factor 2-alpha kinase 1	0.01791	down	
EXTL2	EXTL2:exostoses (multiple)-like 2	0.03894	down	
CRTC3	CRTC3:CREB regulated transcription coactivator 3	0.0159	down	
PAOX	PAOX:polyamine oxidase (exo-N4-amino)	0.00757	down	
HMBOX1	HMBOX1:homeobox containing 1	0.046	down	
GTF3C2	GTF3C2:general transcription factor IIIC, polypeptide 2, beta 110kDa	0.02639	down	
NEK8	NEK8:NIMA (never in mitosis gene a)- related kinase 8	0.02814	down	
BNIP1	BNIP1:BCL2/adenovirus E1B 19kDa interacting protein 1	0.04001	down	
RFX5	RFX5:regulatory factor X, 5 (influences HLA class II expression)	0.005	down	
KNS2	KNS2:kinesin 2	0.01367	down	
SORBS2	SORBS2:sorbin and SH3 domain containing 2	0.01624	down	
COL5A3	COL5A3:collagen, type V, alpha 3	0.03875	down	
EXT1	EXT1:exostoses (multiple) 1	0.04278	down	
1600002K03RIK		0.02141	down	
CLIP3	1500005P14RIK /// AL	0.05159	down	
POLR3C	POLR3C:polymerase (RNA) III (DNA directed) polypeptide C (62kD)	0.0366	down	
TBCC	TBCC:ubilin-specific chaperone c	0.03781	down	
ERC1	ERC1:ELKS/RAB6-interacting/CAST family member 1	0.04342	down	
TRIP6	TRIP6:thyroid hormone receptor interactor 6	0.04633	down	
HSBP1	HSBP1:heat shock factor binding protein 1	0.04248	down	
PPP2CB	PPP2CB:protein phosphatase 2 (formerly 2A), catalytic subunit, beta isoform	0.0088	down	
PANK3	PANK3:parothenate kinase 3	0.01014	down	
TMEM50A	TMEM50A:transmembrane protein 50A	0.03696	down	
AV025504		0.00837	down	
WDFY2	WDFY2:WD repeat and FYVE domain containing 2	0.03629	down	
DDR2	DDR2:discoidin domain receptor family, member 2	0.03946	down	
ZFP618 /// LOC667396		0.00761	down	
Gene Symbol	Description	log2FoldChange	P.Value	
-------------	-------------	----------------	----------	
PTX3	PTX3:pentraxin-related gene, rapidly induced by IL-1 beta	0.03079	2.92064	down
BC017612	na	0.05424	2.89922	down
ATG4C	ATG4C:ATG4 autophagy related 4 homolog C (S. cerevisiae)	0.00837	2.89476	down
RBM43	0610033I05RIK	0.04051	2.87449	down
RBM42	3100004P22RIK /// 23	0.03254	2.87222	down
ALOX12	ALOX12:arachidonate 12-lipoxygenase	0.01951	2.86592	down
NCOA5	NCOA5:nuclear receptor coactivator 5	0.01723	2.86006	down
WNK4	WNK4:WNK lysine deficient protein kinase 4	0.04324	2.85777	down
PGP	1700012G19RIK	0.02712	2.84566	down
MYO18A	MYO18A:myosin XVIIIA	0.02934	2.84086	down
CYB5R3	CYB5R3:cytochrome b5 reductase 3	0.02474	2.83949	down
AA536749	na	0.03247	2.8289	down
BC005624	na	0.03948	2.82785	down
IPO9	IPO9:importin 9	0.03469	2.81781	down
EXOSC7	EXOSC7:exosome component 7	0.03156	2.81313	down
AP3S1	AP3S1:adaptor-related protein complex 3, sigma 1 subunit	0.05259	2.8084	down
OXNAD1	OXNAD1:oxidoreductase NAD-binding domain containing 1	0.05392	2.80498	down
RRAS	RRAS:related RAS viral (r-ras) oncogene homolog	0.03705	2.79071	down
2610002F03RIK	na	0.04775	2.78366	down
ZCCHC14	ZCCHC14:zinc finger, CCHC domain containing 14	0.0329	2.77777	down
STS	STS:steroid sulfatase (microsomal), arylsulfatase C, isozyme S	0.00883	2.76881	down
RCOR3	RCOR3:REST corepressor 3	0.02713	2.74565	down
ST3GAL2	ST3GAL2:ST3 beta-galactoside alpha-2,3-sialyltransferase 2	0.01937	2.7313	down
HPS4	HPS4:Hermansky-Pudlak syndrome 4	0.04004	2.68525	down
1110005A03RIK	na	0.01849	2.68201	down
D930050J11	na	0.01927	2.67306	down
SLC45A4	SLC45A4:solute carrier family 45, member 4	0.04853	2.67167	down
PANK1	PANK1:pantothenate kinase 1	0.04199	2.67069	down
CCDC84	CCDC84:coiled-coil domain containing 84	0.03089	2.66777	down
SAPS1	SAPS1:SAPS domain family, member 1	0.04673	2.64874	down
POMT1	POMT1:protein-O-mannosyltransferase 1	0.04783	2.64598	down
PSD3	4931420C21RIK	0.03173	2.64312	down
REXO1	REXO1:REX1, RNA exonuclease 1 homolog (S. cerevisiae)	0.02204	2.63142	down
MLLT1	MLLT1:myeloid/lymphoid or mixed-lineage leukemia (trithorax homolog, Drosophila); translocated to, 1	0.05544	2.62691	down
CARM1	CARM1:coactivator-associated arginine methyltransferase 1	0.04902	2.60999	down
PBXIP1	PBXIP1:pre-B-cell leukemia transcription factor interacting protein 1	0.04893	2.60147	down
Gene Symbol	Description	Fold Change	Status	
-------------	-------------	-------------	--------	
ANTXR2	anthrax toxin receptor 2	0.04345	down	
PARG	poly (ADP-ribose) glycohydrolase	0.004	down	
31100821I7RIK		0.03931	down	
2700097O09RIK		0.003	down	
2510003E04RIK		0.04721	down	
MED25	mediator of RNA polymerase II transcription, subunit 25 homolog (S. cerevisiae)	0.0162	down	
FKB1B	FK506 binding protein 1B, 12.6 kDa	0.04954	down	
C030013C21RIK		0.01692	down	
METAP1		0.04655	down	
PDPK1	3-phosphoinositide dependent protein kinase-1	0.05226	down	
A130038J17RIK		0.04504	down	
PXMP3	peroxisomal membrane protein 3, 35kDa (Zellweger syndrome)	0.03348	down	
ZFAND2B	zinc finger, AN1-type domain 2B	0.045459	down	
5230400M03RIK		0.034336	down	
2410006H16RIK		0.034442	down	
B230216N24RIK		0.008545	down	
ENO3	enolase 3 (beta, muscle)	0.010466	down	
CNNM2	cyclin M2	0.023387	down	
WHSC2	Wolf-Hirschhorn syndrome candidate 2	0.052867	down	
2610507B11RIK		0.042471	down	
4930471M23RIK		0.045363	down	
PREPL	prolyl endopeptidase-like	0.040585	down	
COQ6	coenzyme Q6 homolog, monooxygenase (S. cerevisiae)	0.036103	down	
SBDS	Shwachman-Bodian-Diamond syndrome	0.027655	down	
C920006C10RIK		0.040843	down	
ZFAND3	zinc finger, AN1-type domain 3	0.051068	down	
5830472M02RIK		0.022833	down	
ACADVL	acyl-Coenzyme A dehydrogenase, very long chain	0.051178	down	
5330421F07RIK		0.031995	down	
TCF7L2	transcription factor 7-like 2 (T-cell specific, HMG-box)	0.017742	down	
C1R	complement component 1, r subcomponent	0.034414	down	
PVRL2	poliovirus receptor-related 2 (herpesvirus entry mediator B)	0.016279	down	
UBE2G1	ubiquitin-conjugating enzyme E2G 1 (UBC7 homolog, yeast)	0.052156	down	
0610037M15RIK		0.030055	down	
TOM1L2	target of myb1-like 2 (chicken)	0.042417	down	
Gene ID	Description	Fold Change	p-Value	
--------------	---	-------------	----------	
4930453N24RIK	SKI:v-ski sarcoma viral oncogene homolog (avian)	0.012838	2.333928	
BC048355	na	0.021395	2.328441	
PPCDC	PPCDC:phosphopantothenoylcysteine decarboxylase	0.002518	2.31653	
SKAP2	SKAP2:src kinase associated phosphoprotein 2	0.048548	2.316329	
LOC619719	na	0.031426	2.303352	
TPD52L1	TPD52L1:tumor protein D52-like 1	0.052966	2.303352	
1810048P08RIK	na	0.038413	2.295201	
COMMD4	COMMD4:COMM domain containing 4	0.043682	2.292841	
HEXA	HEXA:hexosaminidase A (alpha polypeptide)	0.041359	2.285667	
SLC44A1	SLC44A1:solute carrier family 44, member 1	0.020211	2.259007	
3010001K23RIK	na	0.038181	2.242436	
FLI1	FLI1:Friend leukemia virus integration 1	0.006129	2.224242	
DENND1A	DENND1A:DENN/MADD domain containing 1A	0.010247	2.210609	
TRIP10	TRIP10:thyroid hormone receptor interactor 10	0.022136	2.206315	
RBL1	RBL1:retinoblastoma-like 1 (p107)	0.029564	2.190662	
PHF2	PHF2:PHD finger protein 2	0.04758	2.187651	
FZD1	FZD1:frizzled homolog 1 (Drosophila)	0.035345	2.181633	
TMEM141	TMEM141:transmembrane protein 141	0.019349	2.166158	
C030040A22RIK	na	0.041693	2.147752	
2810439F02RIK	na	0.041809	2.136875	
NME7	NME7:non-metastatic cells 7, protein expressed in (nucleoside-diphosphate kinase)	0.037948	2.135189	
INPP5A	INPP5A:inositol polyphosphate-5-phosphatase, 40kDa	0.050672	2.131062	
IFT172	IFT172:intraflagellar transport 172 homolog (Chlamydomonas)	0.025341	2.111549	
RNF19	RNF19:ring finger protein 19	0.042536	2.09939	
E130303B06RIK	na	0.034074	2.098219	
SGTB	SGTB:small glutamine-rich tetratricopeptide repeat (TPR)-containing, beta	0.040253	2.09804	
MUM1	MUM1:melanoma associated antigen (mutated) 1	0.026382	2.092568	
NCBP2	NCBP2:nuclear cap binding protein subunit 2, 20kDa	0.032454	2.089116	
ARM CX1	ARM CX1:armadillo repeat containing, X-linked 1	0.037973	2.081989	
SPHK1	SPHK1:sphingosine kinase 1	0.007448	2.076194	
MTA3	MTA3:metastasis associated 1 family, member 3	0.008551	2.073348	
C530028I08RIK	na	0.015106	2.062652	
6330403L08RIK	na	0.047984	2.062485	
IFI47	na	0.030068	2.056686	
ARHGAP5	ARHGAP5:Rho GTPase activating protein 5	0.02651	2.05092	

Fold Change and **p-Value** indicate the relative decrease or increase in expression compared to the reference.
Gene	Description	Fold Change	Status
NUDCD3	NudC domain containing 3	0.047587	down
GAG	na	0.040636	down
D8BWG1414E		0.04943	down
PPP1R12B	PPP1R12B:protein phosphatase 1, regulatory (inhibitor) subunit 12B	0.026326	down
D15WSU169E		0.028883	down
ODZ4	ODZ4:odz, odd Oz/ten-m homolog 4 (Drosophila)	0.043972	down
Supplementary table 2: GSEA: Gene sets significantly enriched in OCDflo+ osteolineage cells

PATHWAY	NAME	SIZE	NES	NOM p-value	FDR q-value
Osteogenic differentiation¹	UP_GENES_OSTEOGENIC	43	1.60	0	0.000
TGF-β	TGFBETA_EARLY_UP	45	2.578963	0	0.000
	TGF_BETA_SIGNALING_PATHWAY	46	2.433784	0	0.008223
	TGFBETA_ALL_UP	75	2.432784	0	0.006167
Wnt/βcatenin	AMBROSETTI_UP-WNT ACTIVATION	54	1.797488	0	0.001945
	KENNY_WNT_DN	39	1.757821	0	0.032086
	ST_WNT_BETA_CATENIN_PATHWAY	30	1.699135	0	0.041116
UV	UVC_LOW_ALL_DN	49	2.407943	0	0.004112
	UVB_NHEK3_C5	33	2.405828	0	0.003524
	UVB_NHEK1_DN	233	2.254912	0	0.005181
	UVC_TTD_ALL_DN	319	2.227531	0	0.009852

Gene Sets from:

¹ Schilling, T. et al., Microarray analyses of transdifferentiated mesenchymal stem cells, J. Cell Biochem. 103(2), 413 (2008).

² Ambrosetti, D. et al., Fibroblast Growth Factor Signaling Uses Multiple Mechanisms To Inhibit Wnt-Induced Transcription in Osteoblasts. Molecular and Cellular Biology, 28 (15), 4759 (2008)

Details of other gene sets can be found at http://www.broad.mit.edu/gsea/
Supplementary Table 3: Cytokines, interleukins, growth factors and other secreted factors differentially expressed in OCD \(^{fl/fl}\) osteolineage cells (\(>1.5\)-fold; \(t\)-test\(<0.05\))

Factors upregulated in OCD \(^{fl/fl}\) osteolineage cells

Symbol	Name	\(t\)-test	Fold-difference
PF4	platelet factor 4	0.0006	1.58
NPTX2	neuronal pentraxin II	0.004	1.61
IL31	interleukin 31	0.005	1.78
CCK	cholecystokinin	0.039	1.71
OLFM4	olfactomedin 4	0.039	1.94
PRG2	proteoglycan 2, bone marrow	0.046	4.69
CRTAC1	cartilage acidic protein 1	0.047	3.10
STC1	stanniocalcin 1	0.048	1.54
COL4A4	collagen, type IV, alpha 4	0.050	2.61

Factors downregulated in OCD \(^{fl/fl}\) osteolineage cells

Symbol	Name	\(t\)-test	Fold-difference
PLAC9	placenta-specific 9	0.015	3.65
PROS1	protein S (alpha)	0.027	3.84
JAG1	jagged 1 (Alagille syndrome)	0.034	4.58
COL5A3	collagen, type V, alpha 3	0.039	3.12
BAI1	brain-specific angiogenesis inhibitor 1	0.045	1.61
ADM	adrenomedullin	0.050	4.57
Supplementary methods and materials

Mice and genotyping

Osx-Cre transgenic mice⁹, Ocn-Cre transgenic mice²⁰ and floxed Dicer1 mice¹⁰, have been described. B6.SJL-Ptprc⁸ Pep3⁰/BoyJ mice were purchased from the Jackson Laboratory. Floxed Dicer1 mice were on a mixed C57/B6/J129 background. Other mice strains were on a C57/B6 background. Genotyping of Cre transgenic mice was performed by PCR using primers detecting the Cre sequence³⁶. The floxed and wild-type Dicer1 alleles were detected by using primers, P1: 5'-AGTGTAGCCTTAGCCATTTG-3' and P2: 5'-CTGGTGGCTTGAGGACAGAC-3'. These primers amplify the region spanning the downstream loxP sequence. Deletion of the floxed sequence from the Dicer1 gene was demonstrated by using primers: P1: 28290: 5'-AGTAATGTGAGCAATAGTCCCAG-3' and P2: 32050AS: 5'-CTGGTGGCTTGAGGACAGAC-3'. OCD fl/fl animals were compared to OCD fl/+ littermates for the studies described in this paper. The Subcommittee on Research Animal Care of the Massachusetts General Hospital approved all animal work according to federal and institutional policies and regulations.

RT-PCR

RNA extraction, real-time quantitative RT-PCR and relative gene expression quantitation was performed on sorted cells (GFP+CD45-CD31-Lineage -) as described previously³⁷ using the following primers: Dicer1-F, 5'-AATTGGCTCTCCTCTGGTTAT-3' and Dicer1-R, GTCAGGTCCTCCTCCTCCTC-3'; Osteocalcin-F, 5'-CTGACCTCACAGATCCCAAGC -3' and Osteocalcin-R, 5'-TGGCTGTAGCTGCTCACAAATG -3'; GAPDH-F, 5'-AGGTCAAGGATTTTG -3' GAPDH-R, 5'-TGTAGACCATGTAGTTGAGGTCA -3'
Isolation and osteogenic differentiation of bone marrow derived stromal cells

Mice were sacrificed; tibiae, femurs, and spine were removed and excess soft tissue was eliminated. Using a pestle and mortar, the bones were crushed and washed in PBS with 0.5% FBS and passed through a 40-μm filter into a collection tube. Cells were spun at 1500rpm for 5 minutes; the supernatant was removed, and cells were resuspended in a minimal volume of ACK lysing buffer (Cambrex) for 4 minutes on ice and washed once with PBS. After pelleting once again, the cells were resuspended and plated in αMEM, 20% fetal bovine serum (HyClone), and penicillin and streptomycin solution (CellGro) - henceforth referred to as αMEM20%- and incubated at 33°C with 5% CO₂. After 3 weeks of culture and expansion, plastic adherent cells were CD45 depleted by magnetic isolation (Invitrogen; Dynabeads M-280 Streptavidin, 112-06D) using an anti-mouse CD45 biotin antibody (BD Bioscience; 550539). The plastic adherent CD45 negative cells were then maintained in αMEM20% as before. To assess osteogenic differentiation, bone marrow derived stromal cells (passage 3) were plated at 10 × 10³ cells/well in a 96-well plate (BD Biosciences) at 33° in osteogenic induction medium: α20% modified with glycerol 2-phosphate (2.16 mg/ml), 2-phospho-L-ascorbic acid (0.05 mg/ml), and dexamethasone (10 nM) (Sigma-Aldrich, G6251, 49752 and D1756, respectively). After 7 days of differentiation, alkaline phosphatase staining was carried out with BCIP/NBT solution (Sigma-Aldrich) per the manufacturer’s instructions. For the von Kossa assay and staining, cells were fixed and washed in water, and a 5% silver nitrate solution was added to the well under incandescent light for 20–45 minutes. After granules developed, the silver nitrate was removed and wells were washed with water to stop the reaction.

CFU-F and CFU-ALK

0.5 × 10⁶ primary bone marrow cells were plated in 12-well plates in αMEM20% for CFU-F assay or osteogenic medium for CFU-Alk assay. Medium was changed at 24 hours to eliminate nonadherent cells. After 7 days, colonies were
assessed by methylene blue staining for the CFU-F assay or BCIP staining (alkaline phosphatase) for CFU-Alk.

Histomorphometric analysis

Bones were fixed in 4% paraformaldehyde and undecalcified sections embedded in methyl methacrylate resin. Five-micrometer sections were stained with Masson Trichrome or coverslipped unstained, and histomorphometric analysis was performed with the Osteomeasure system (Osteometrics Inc., Atlanta, GA) using standard procedures. Tibial sections were measured in the proximal metaphysis beginning 340 µm below the chondro-osseous junction. Osteoblasts were identified as mononuclear cells directly abutting either mineralized bone or osteoid and restricted to the endosteal surface.

In Situ Hybridization.

In situ hybridization was carried out as described\(^3^6\). Complementary \(^{35}\)S-labeled riboprobes were transcribed from the plasmids encoding mouse osteocalcin (OC) using Riboprobe systems from Promega (Madison, WI). Probes for *Osteocalcin* were described\(^3^6\).

Hematological Measurements

Peripheral blood samples were obtained by lateral tail vein bleeding. Peripheral blood cell counts were performed on a HEMAVET Multispecies Hematology Analyzer (CDC Technologies).

Methylcellulose colony formation assay

Bone marrow or spleen cells (10X10\(^3\)) were plated into methylcellulose M3434 (StemCell Technologies) in a 6-well plate and grown for 10 days before being scored.

FACS analysis
Hematopoietic progenitors were identified based on their expression of lineage markers as well as c-Kit, Sca-1, CD48 and CD150 expression. Lineage staining used a cocktail of biotinylated antimouse antibodies to Mac-1α (CD11b), Gr-1(Ly-6G and Ly-6C), Ter119 (Ly-76), CD3, CD4, CD8α (Ly-2), and B220 (CD45R; BD Biosciences). For detection we used lineage-streptavidin conjugated with PERCP, c-Kit-APC (CD117), CD48-Pacific blue (CD135), CD150-PE-Cy7 (all from BD Biosciences) and Sca1-PE-Cy5.5 (Ly 6A/E; Caltag Laboratories). For congeneric strain discrimination, anti-CD45.1-PE and anti-CD45.2 FITC antibodies (BD Biosciences) were used. For the apoptosis assay we used 7-AAD and AnnexinV-APC (BD Biosciences) in combination with lineage-streptavidin-PE and c-kit-FITC (both Biolegend). For the intracellular detection of BRDU-FITC, bone marrow cells were fixed and permeabilized using BD Cytofix/Cytoperm Fixation/Permeabilization Solution Kit (BD Biosciences) according to the manufacturer's recommendations. Compensation and data analysis were performed using Flowjo 8.5.3

FACS- sorting of osteolineage cells

Whole bone-marrow and bone cells were collected by crushing tibias and femurs of mice, stained with biotin-conjugated lineage cocktail antibodies and subjected to lineage depletion using magnetic isolation (Invitrogen; Dynabeads M-280 Streptavidin, 112-06D). The resulting lineage-depleted fraction was stained with lineage and CD31-biotin-streptavidin APC-Cy7 (BD Biosciences) and CD45-APC (eBioscience) and sorted using FACS DiVa or FACS ARIA (Becton Dickinson). A small fraction of the collected cells was re-run through the sorter and over 95% purity was consistently confirmed.

Collagenase treatment of bone for PCR

Collagenase digestion was performed on the bone fragments left in the mortar and 70-μm filter after crushing long bones. A solution of DMEM (Cellgro; 10-013-CV), 0.2% collagenase (WAKO; 034-10533) and 10mM HEPES (Fisher; BP299-100) was warmed to 37°C. In a centrifuge tube, bone fragments were added to
the collagenase solution and kept at 37°C for 90 minutes, vortexing every 15-30 minutes. Excess PBS was added to the slurry which was then filtered through a 40-μm filter. The flow-through was then pelleted.

Bone marrow histology and peripheral blood morphology

For histological analysis, long bones were dissected, fixed in paraformaldehyde 4%, decalcified in 10% EDTA, paraffin-processed, cut, and subjected to hematoxylin/eosin staining. Peripheral blood smears were formalin fixed for 5 minutes, stained with May-Grunwald (Sigma-Aldrich) for 5 minutes, rinsed in distilled water with PBS and in Giemsa stain (Sigma-Aldrich) for another 30 minutes. Permount (Fisher Scientific) was used to mount the sections. Images were acquired with a Nikon Eclipse 80i epifluorescence microscope equipped with a Qimaging Micropublisher digital CCD colour camera. Bone and bone marrow histology was assessed by two independent investigators blinded to mice genotypes.

Bone marrow transplantation

All bone marrow transplantations were performed by retro-orbital venous plexus injection. For competitive transplantation, 5 × 10^5 whole bone-marrow cells from 6-week-old OCD fl/+ or OCD fl/fl (CD45.2) littermates were mixed with 5 × 10^5 CD45.1+ (competitor) WT cells and injected into lethally irradiated (9 Gy, split dose on the day of transplant) recipient BL6-SJL (CD45.1+) mice. Engraftment efficiency in recipients was monitored by donor contribution of CD45.2+ cells using FACS analysis. For limiting dilution assays, 2 × 10^5, 5 × 10^4 1 × 10^4 and 0.5 X 10^4 OCD fl/+ or OCD fl/fl mononuclear bone marrow cells were mixed with 2 × 10^5 wild type bone marrow and injected into lethally irradiated recipients (9 mice per cell dose per genotype). Engraftment efficiency in recipients was monitored by donor contribution of cells using FACS analysis. The frequencies of competitive repopulating units were calculated using the L-Calc software. Greater than or equal to 1% donor cells in both myeloid and lymphoid lineages was used
to determine whether an animal had a positive engraftment. For “wt into mutant” experiments, wildtype congenic BL6/SJL (CD45.1+) bone marrow cells (1 x 10^6 cells/recipient) were transplanted into lethally irradiated 4 week old OCD fl/+ and OCD fl/fl (CD45.2+) recipients. Complete donor cell engraftment by wildtype CD45.1+ cells was confirmed by FACS. Conversely, for “mutant into wt” experiments OCD fl/+ or OCD fl/fl (CD45.2+) were transplanted into lethally irradiated 4 week old BL6/SJL (CD45.1+) animals. Complete donor cell engraftment by CD45.1/CD45.2+ cells was confirmed by FACS.

Immunohistochemistry

For immunohistochemistry, antigen retrieval was carried out with proteinase K (20 mg/ml, Roche), followed by 3% H2O2 treatment to block endogenous peroxidase. The TSA Biotin system (PerkinElmer) was used according to the manufacturer's instructions. Specimens were incubated with mouse anti-CD31 antibody (BD Biosciences) or anti-CD13 antibody (Santa Cruz Biotechnology) for 1 hr at room temperature.

BrdU Labeling and Detection.

Mice received 150 l BrdU solution (10 mg ml^-1) via intraperitoneal injection. After 15 hrs bone marrow was harvested for flow cytometric detection of BrdU-FITC uptake according to or the manufacture’s instructions (FITC-BrdU Flow Kit (BD Biosciences)).

In vivo imaging

In vivo imaging has been extensively described elsewhere. Briefly, 1–5 10^5 wild-type (Bl6/SJL) LKS cells were stained with 5 M DiD in PBS without serum for 10 min at 37 °C, washed once in PBS and immediately injected into the tail vein of recipient mice. Mice were anaesthetized and prepared for in vivo imaging as described. Immediately before imaging 20 l of non-targeted Qdot 800 or 655 (Invitrogen) diluted in 130 l sterile PBS was injected retro-orbitally to allow vasculature visualization. All mice were imaged with a custom-built confocal two-
A photon hybrid microscope specifically designed for live animal imaging. Microscopy and image processing have been described. Images were colored and merged using Adobe Photoshop and LKS-microenvironment distance measures were obtained using Adobe Illustrator and Microsoft Excel. A two-tailed type 2 t-test was applied to all data. P values 0.05 were considered statistically significant.

Co-culture studies

Bone marrow stromal cells were isolated and CD45 depleted by magnetic isolation upon confluence and expanded for an additional week. The expanded cells were then plated at 1750 cells/well in 384-well tissue culture plates coated with fibronectin (Millipore; FC010) in either αMEM20% or osteogenic induction media. After four days of culture, 200 LKS or MEP (megakaryocyte-erythroid progenitor, lineage−, CD 127−, Sca−,kit+, CD34−,CD16/32− cells.) cells from 8-12 week old Actin-DsRed positive mice (Jackson Laboratory; 005441) were added to each well. Co-culture was performed without any cytokines. After 7 days of co-culture the number of DS-red cells was assessed by automated microscopy. Megakaryocytes were quantified morphologically as large cells with prominent multinucleated megakaryons (the identity of these cells was additionally confirmed by CD41 staining).

Comparative genomic hybrydization

Direct amplification of DNA from paraformaldehyde fixed paraffin-embedded (FFPE) tissue samples was performed using a REPLI-g FFPE kit (Qiagen) following the manufactory instruction. Briefly, FFPE samples were incubated at 95C for 10 min followed by lysis at 60C for 60 min and ligation at 24C for 30 min. Amplification took place at 30C for 2h. Agilent genomic DNA labeling kit was used for the amplified FFPE DNA labeling and purification. For each 244K array, 2 ug of FFPE DNA and 2 ug of germline reference DNA were labeled with Cy5 and Cy3 respectively. Labeled FFPE DNA and reference DNA were combined and mixed with Cot-1 DNA, blocking agent and hybridization buffer. After
denaturation at 95°C for 3 min and incubation at 37°C for 30 min, the hybridization mix was loaded onto a gasket slide in an Agilent SureHyb chamber. Array slide was placed on top the gasket slide. The SureHyb chamber was covered, clamped and incubated in a rotator rack in 65°C oven for 40 hour. In an ozone-controlled environment, hybridized arrays were disassembled, and washed in Agilent Oligo aCGH wash buffer 1 for 5 min, in wash buffer 2 for 1 min at 37°C, and immediately scanned using an Agilent DNA microarray scanner. Data extraction was conducted using the feature extraction software. Finally FE data files were analyzed using the Agilent DNA analytics software.

Oligonucleotide microarrays

RNA was isolated from sorted GFP+CD45-CD31-Lineage- cells by Trizol extraction (Invitrogen) according to the manufacturer’s protocol. Up to 4 mice were pooled per sample. Linear amplification of 20 ng of total RNA was performed using the Ovation Biotin RNA Amplification and Labeling System (Nugen). The biotinylated cRNA was hybridized to the Affymetrix Mouse430 v2 chip. Signal normalization was performed by RMA method. Data of three samples of OCD fl/fl cells vs. three samples of OCD fl/+ cells was analyzed using GEPAS package. A t-test was carried to identify probes differentially expressed between OCD fl/+ and OCD fl/fl samples. Gene set enrichment analysis was performed using GSEA. The signal-to-noise metric and permutation of gene sets was used to rank the genes and calculate significance and false discovery rate. Analysis was performed by collapsing probe sets to unique gene symbols and used to interrogate an established collection of curated gene sets provided by the Molecular Signatures Database (MsigDB, http://broad.mit.edu/gsea/msigdb). The osteogenic gene expression signature was collected from the literature and used to interrogate the gene expression dataset comparing OCD fl/+ and OCD fl/fl samples for gene set enrichment.

Statistical analysis
In all cases, analysis was performed by a standard unpaired, 2-tailed Student’s t test. All data have been plotted as average ± SEM. Statistical significance is indicated by * (P≤0.05) or ** (p≤0.01). The number of experiments is indicated in the figure legends.

36 T. Kobayashi, et al., "Dicer-dependent pathways regulate chondrocyte proliferation and differentiation," Proc. Natl. Acad. Sci. U. S. A 105 (6), 1949 (2008).

37 M. H. Raaijmakers, et al., "Quantitative assessment of gene expression in highly purified hematopoietic cells using real-time reverse transcriptase polymerase chain reaction," Exp. Hematol. 30 (5), 481 (2002).

38 D. Montaner, et al., "Next station in microarray data analysis: GEPAS," Nucleic Acids Res. 34 (Web Server issue), W486-W491 (2006).

39 A. Subramanian, et al., "Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles," Proc. Natl. Acad. Sci. U. S. A 102 (43), 15545 (2005).