Majority-layered T hybridization using quantum-dot cellular automata

Chiradeep Mukherjee1*, Saradindu Panda2, Asish Kumar Mukhopadhyay3 and Bansibadan Maji4

Abstract: The atomistic quantum-dot cellular automata (QCA) based implementations of the reversible circuits have got tremendous exposures in the last few days, due to “room-temperature workability” of the QCA. The researchers are in serious need of a methodology that can realize the area-efficient QCA counterparts of reversible benchmark circuits. In this work, a novel methodology named majority-layered T hybridization is proposed to synthesize the reversible circuits using QCA. Firstly the reversible library consisting of CNTS Gates have been generated to validate the usability of the proposed methodology. Then, an elementary QCA module of 3×3 Toffoli Gate have been proposed and extended in the realization of 4×4, 5×5 and 6×6 Toffoli Gates (multi-control Toffoli Gates). The proper mathematical modelling of the several QCA design metrics like effective area, delay and O-cost has been established. The QCA counterpart of 3×3 Toffoli Gate reports 18.61% less effective area and 8.33% less O-cost compared to the previous Toffoli Gate designs. Moreover, the QCA layout of rd-32 reversible benchmark using multi-control Toffoli Gate has been employed to verify the scalability and reproducibility of the proposed methodology.

*Corresponding author: Chiradeep Mukherjee, Department of Electronics and Communication Engineering, University of Engineering and Management, Jaipur, Rajasthan, India
E-mail: chiradeep.1234321@gmail.com

Reviewing editor: Kun Chen, Wuhan University of Technology, China

Additional information is available at the end of the article

ABOUT THE AUTHOR

Chiradeep Mukherjee obtained BTech in Electronics and Communication Engineering and completed Masters in Electronics with the specialization of Microelectronics and VLSI from West Bengal University of Technology, Kolkata, India. Presently he is pursuing PhD in Quantum-dot Cellular Automata at National Institute of Technology, Durgapur, India. He is working as an Assistant Professor in Department of Electronics & Communication Engineering, University of Engineering and Management, Jaipur, India. His current research includes Reversible Computation, Quantum Cellular Automata and Solid State Device Modelling, Solid State Device Modeling. He has published one Book chapter on PIN Diode and more than 10 research articles in peer-reviewed international journals, national and international conferences.

PUBLIC INTEREST STATEMENT

The fundamental concern of this work is to find out the solution in the implementation of reversible computation using quantum-dot cellular automata. Among the other emerging nano-technologies, the reversible computation has attracted the attention of researchers for its extreme low power dissipation. One-to-one mapping between input and output vector elements of reversible circuits which provides excellent controllability becomes the prime cause of ultra-low power dissipation. The base of the reversible computation is reversible gates. The realization of reversible gates using conventional CMOS technology was not possible due to its inadequate power constraints. The pivotal significance of choosing the quantum-dot cellular automata based realization of reversible circuits lies in the facts of extreme low-power dissipation, high operating frequency and high packing density. This crucial article proposes a novel methodology, named majority-layered T hybridization to realize the multi-control Toffoli reversible circuits by using quantum-dot cellular automata. The mathematical formulations of generic (n×n) Toffoli Gate design metrics have been demonstrated through the realization of the 3×3 Toffoli unit.
methodology. The QCA layouts are generated, tested and simulated by renowned computer aided design tool QCADesigner 2.0.3.

Subjects: Quantum Information; Simulation & Modeling; Nanoscience & Nanotechnology; Semiconductors

Keywords: majority voter; Layered T Gate; reversible logic; Toffoli Gate; rd-32 benchmark

1. Introduction

Being a pivotal circuit design metric, the power dissipation compels the scientists to think of reversible computation. This novel computing on the basis of emerging nanotechnology which maps one-to-one input to outputs, exhibits the energy dissipation beyond the bound of SNL (Bennett, 1973; Sen, Dutta, & Some, 2014). Beyond SNL, the irreversible computation can be converted to reversible one with the factors of identical circuit efficiencies and energy dissipations for both the cases. With the reversible computation, the quantum-dot cellular automata (QCA) has attracted the researchers for its extreme low power dissipation, high operating speed and below ultra-high packing density. In QCA, the information flows from one level to the next by the Columbic interactions between the electrons instead of conventional current flow. As the Silicon dangling-bond based semiconductor QCA becomes practically feasible in room temperature, so reversible circuits implementation using QCA have been observed in last two years (Dilabio, Wolkow, Pitters, & Piva, 2015; Tougaw, Will, Graunke, & Wheeler, 2009).

The processor based architecture of a digital systems need arithmetic logic unit (ALU) as the core element. Several gates may be basic gates, or may be universal gates, are connected accordingly in order to perform the arithmetic and logical operations of ALU. In classical digital circuits AND, OR, NOT, NAND, NOR, Ex-OR, Ex-NOR gates are the elementary gates. Like such elemental gates of classical circuits, reversible circuits also require certain gates like CNOT, NOT, Toffoli, SWAP Gates (CNTS Gates) to implement reversible circuits. These gates of reversible computation form the reversible library. The Toffoli Gate has been an elementary gate through which the characterization of entire reversible library becomes viable (Wille, Große, Teuber, Dueck, & Drechsler, 2008). One important way to implement the reversible benchmark lies through the realization of multi-control Toffoli Gate. Several Toffoli Gate using QCA have been reported in literature (Abdullah-Al-Shafi, Shifatul, & Newaz, 2015; Bahar, Habib, & Biswas, 2015; Chandra & Netam, 2012; Chaves, Silva, Camargos, & Vilela Neto, 2015; Cvetkovska, Kostadinovska, & Danek, 2013; Iqbal & Banday, 2015; Kunalan, Cheong, Chau, & Ghazali, 2014; Mahalakshmi, Hjajeri, Jayasheer, & Agrawal, 2016; Moustafa, Younes, & Hassan, 2015; Rolih, 2013; Shobeena & Pathak, 2015) which lag in optimal design area and delay optimization. This work introduces the majority-layered T hybridization which needs the majority voter (Zhang, Walus, Wang, & Jullien, 2004) and the Layered T Gate (Mukherjee et al., 2015) for effective implementation. Primarily the proposed methodology extends its idea in the successful realization of CNTS Gates of reversible computation. Then the methodology have been extended to model \(n \times n \) Toffoli Gate with respect to the circuit design metrics such as number of elemental blocks requirement, area requirement, O-cost and delay optimization. The \(n \times n \) Toffoli Gate helps in multi-control Toffoli (MCT) Realization of reversible benchmarks (Wille et al., 2008). The rd-32 benchmark acts as one-bit reversible full adder. Designing the rd-32 benchmark circuit confirms the scalability and reproducibility of the proposed methodology in reversible circuits.

The rest of the article has been organized as follows: Section 2 discusses the background of QCA and introduces the majority-layered T hybridization. It realizes reversible library for the proposed hybridization methodology. Section 3 successful realizes and simulates \(n \times n \) Toffoli gates through 3×3, 4×4, 5×5 and 6×6 Toffoli Gates. Moreover, this section formulates the effective area, O-cost, delay and number of majority AND blocks in terms of number of inputs to the Toffoli Gate. Section 4 introduces the rd-32 benchmark circuit realization using majority-layered T hybridization. The detailed statistical analysis of CNTS Gates, Toffoli Gates and the rd-32 benchmark in terms of QCA design metrics have been analyzed in Section 5. Lastly Section 6 concludes the work and discusses about the future scope of majority-layered T hybridization.
2. The majority-layered T hybridization methodology

2.1. Background of QCA

The QCA technology employs quantum cells. The squared shaped quantum cells have four quantum dots within it. Two excess electrons arrange themselves to occupy the corner positions within the square. The CMOS technology didn’t employ the Majority Voter due to certain limitations of hardware. The Majority Voter has been implemented as the basic primitive in QCA technology (Walus, Schulhof, Jullien, Zhang, & Wang, 2004). The majority voter takes three inputs A, B and C, evaluates the output as \(AB + BC + CA \) and forwards the result to output cell. The state-of-the-art Inverter and QCA binary wire are the other elemental blocks in QCA. The functionality of inverter which inverts the input for the next intermediary levels is identical to the CMOS Inverter whereas the QCA binary wire copies input to the output. The figures of the majority voter, inverter and QCA binary wire is shown in Figure 1(a), (b) and (c) respectively.

2.2. Layered T Gate

After the majority logic reduction technique, several QCA logics have been reported in the literature among which only Layered T Gate employs universal NAND/NOR operations in multi-level digital circuit design. The Layered T Gate have two inputs A, B and one output Z as shown in Figure 2. Depending upon the polarization of upper layer cell, the Gate produces either NAND or NOR waveforms. The “+1” polarization of upper layer cell forces the Gate to operate as \(AB \) but the same block would generate \(A + B \) if upper layer cell is polarized at “−1” (Mukherjee et al., 2015).

2.3. Majority-layered T hybridization methodology

The QCA layout generations of reversible circuits require few points to keep in mind. These worthwhile points are given as below:

(a) The reversible circuits may have flow of elementary particles connecting the ports of reversible circuits. The reversible circuits can also possess the series or parallel connections of quantum cells like the presence of physical wire in classical circuits.

(b) The reversible circuits would not have memory forming loops. The presence of such loops make the circuit no longer reversible one (Nielsen & Chuang, 2011).

The QCA counterparts of the reversible circuits in this work consider the aforementioned points. The Figure 3 extends the concepts of QCA implementation of reversible circuits where horizontal lines of Reversible circuits are replaced by Binary wires. The target bits and control bits are applied through the horizontal lines. The input “1” at control character “•” forces the inverter to flip the input. The target character “⊕” equivalents to Exclusive-OR (Ex-OR) Gate. The Ex-OR Gate inverts its one input if and only if other one is set to logic high. From Figure 3(a), it is noticed that bits A, B are control bit and Z is...
target bit. As logic “1” at control bit makes the target bit to be operated as Ex-OR, so the target bit Z becomes $B \oplus A$. Figure 3(b) demonstrates the 3×3 Reversible unit as an example. The Logical AND is represented by using red circle on Reversible circuit and its QCA counterpart as shown in Figure 3(b). A single majority voter as AND Gate (Walus et al., 2004) and Layered T Ex-OR module (Mukherjee et al., 2015) are used as the symbols “•”, “⊕” represents AND, Ex-OR operations respectively. The use of majority and layered T units in elemental reversible circuit makes the name “majority-layered T hybridization”.

The majority-layered T hybridization methodology proposes an algorithm, named Reversible_to_QCA to generate QCA counterpart of reversible circuits. This algorithm requires following sensitivity list:

(a) Control Reversible and Target Reversible: These are the inputs to the algorithm during the traversal of Reversible Circuit,

(b) QCA Cell Array, Maj_AND and LT_Ex-OR: The execution of the algorithm would produce QCA Cell Array, Maj_AND and LT_Ex-OR as the outputs. The QCA Cell Array, Maj-AND and LT_Ex-OR correspond to QCA Binary Wire, QCA Majority Gate and QCA Layered T Ex-OR respectively. The symbols “•” and “⊕” fetched during the traversal of reversible circuits are control-reversible, target-reversible. The control-reversible from the most significant input of Reversible circuit would be replaced by QCA Cell Array. But the other control-reversible would be replaced by Maj_AND i.e. “QCA Majority Gate operating as AND Gate”. During the segmentation of Reversible Circuits, the presence of target-reversible will be converted to QCA Layered T Ex-OR module. The algorithm Reversible_to_QCA is given as follows:

Algorithm1: Reversible_to_QCA (control-reversible, target-reversible, QCA Cell Array, Maj_AND, LT_Ex-OR)

Step 1: Segment the Reversible Circuit into columns consisting at least one spur

Step 2: Within one level

If “•” (control-reversible) is present then

If “•” (control-reversible) is from upmost wire

replace “•” (control-reversible) by QCA Cell Array

else if “•” (control-reversible) is NOT from upmost wire

replace “•” (control-reversible) by Maj_AND,

else if “⊕” (target-reversible) is present then

replace “⊕” (target-reversible) by LT_Ex-OR

else

replace “•” (control-reversible) by Maj_AND, “⊕” (target-reversible) by LT_Ex-OR.

endif
Step 3: Continue the Step 2 until level ends.

Figure 3(a) shows the 2×2 Reversible Circuit with its QCA Layouts. The realization of 2×2 reversible circuit by using majority-layered T hybridization needs a Layered T Ex-OR Gate and QCA binary wire while 3×3 Reversible Circuit conversion to QCA requires an extra majority AND Gate along with a Layered T Ex-OR Gate and QCA binary wire. This is indicated by using red circle and red box in Figure 3(b).

2.4. Realization of CNTS Gates

The usability, reproducibility and scalability of the majority-layered T hybridization requires the implementation of universal gate library (Shende, Prasad, Markov, & Hayes, 2002) consisting of CNOT, NOT, 3×3 Toffoli and SWAP Gates (CNTS Gates). The NOT Gate inverts input to produce the output Z. The QCA Implementation of NOT gate needs a Layered T Ex-OR Gate with an input fixed at logic 1. The Reversible NOT and its QCA Layout are shown in Figure 4(a) and (e) respectively. The Reversible CNOT Gate which has two inputs A, B is illustrated in Figure 4(b). The logic 1 at control bit A forces the other input B to toggle. On the other hand, the control bit A set to logic 0 forces CNOT output Z to copy the target bit B. The Majority-Layered T conversion of CNOT Gate requires one Layered T Ex-OR Gate as shown in Figure 4(b) and (f). The multi-control Toffoli realization of the reversible library (Wille et al., 2008; http://www.revlib.org) shows inevitable significance of the 3×3 Toffoli Gate as an elementary reversible gate. The outs Z1 and Z2 are following the inputs A and B. But the third output Z3 of Toffoli Gate copies the input bit C if and only if both the inputs A and B are true. It means the Gate follows the equation Z3 = C ⊕ AB (Zilic, Radecka, & Kazamiphur, 2007). The term AB Ex-ORed with input C clears the requirement of a Majority AND Gate and a Layered T Ex-OR as demonstrated in Figure 4(c)–(g). The SWAP Gate copies A, B to Z2, Z1 respectively. The QCA layout generation of SWAP Gate using the proposed methodology confirms three cascaded Layered T Ex-OR Gates as shown in Figure 4(h). The summary of CNTS QCA layouts of Figure 4(e)–(h) is reported in Table 1. The implementations of the Standard Functions (Mukherjee, Roy, Panda, & Maji, 2016) confirm the requirements of low AUF, low O-cost and optimal delay QCA circuits. The NOT, CNOT and Toffoli Gates need 0.75 clock-delays to get the outputs as observed from Table 1. The cascaded connections of three Layered T Ex-OR Gates result 2.75 clock-delays for the SWAP Gate. The CNTS Gates implementation by using majority-layered T hybridization generates multilayer QCA layouts. The multilayer QCA layouts guide the researchers along the better reliability and stability during the fabrication of QCA layouts (Kumar, Ghosh, & Gupta, 2015). The input A = “01010101” has been inverted to Z as “10101010” as given in Figure 5(a). The CNOT Gate output of Figure 5(b) shows that Z1 has got the A Ex-ORed B waveform whereas the input has been copied to Z2. The Toffoli Gate output has been captured in Figure 5(c). The vectors “00001111”, “00110011” at Z1, Z2 respectively conforms the input vectors A, B. The remaining output Z3 which resembles C Ex-ORed AB has got the vector “01010110”.

The SWAP Gate of Figure 4(d), exchanges the inputs A, B to get the vectors “00110011” and “01010101” as observed in Figure 5(d).
3. Realization of generic Toffoli Gate

The rigorous experimental works (Dilabio et al., 2015; Tougaw et al., 2009) prove the operability of the QCA in a room temperature. The reversible gate layouts of QCA have already been proposed. Still in this field, their exist lack of optimal design of generic Toffoli Gate. As the reversible library has been synthesized by using MCT Gates (Wille et al., 2008; http://www.revlib.org), so recently the utmost importance have been given to $n \times n$ Toffoli Gate design.

3.1. 3×3 Toffoli Gate

An optimal design of 3×3 Toffoli Gate which is further used in the design of higher order Toffoli Gates has been introduced in this section. The proper functionality of 3×3 Toffoli Gate confirm the presence of three inputs A_1, A_2, A_3 and three outputs Z_1, Z_2, Z_3. The control inputs A_1, A_2 have been duplicated in the outputs Z_1, Z_2. The remaining output Z_3 equals $A_1 A_2 \oplus A_3$. According to the definition of nth order Toffoli Gate, the least significant $(n-1)$ bits are copied to first $(n-1)$ outputs $Z_1, Z_2, ..., Z(n-1)$. At the same time, the most significant nth output produces $A_1, A_2, A_3, ..., A(n-1) \oplus A_n$ (Zilic et al., 2007).

The implementation of optimal 3×3 Toffoli of Figure 6 has been reported with 33 cells, 0.75 clock-delay and 31584 nm² effective area. The comparison of proposed layout with previous 3×3 Toffoli Gate (Abdullah-Al-Shafi et al., 2015; Bahar et al., 2015; Chandra & Netam, 2012; Chaves et al., 2015; Cvetkovska et al., 2013; Iqbal & Banday, 2015; Kunalan et al., 2014; Mahalakshmi et al., 2016; Moustafa et al., 2015; Rolih, 2013; Shabeena & Pathak, 2015) is reported in Table 2. In the proposed Hybridization methodology, the intermediary output of the majority AND $A_1 A_2$ has been forwarded to one of the inputs of the Layered T Ex-OR Gate. Finally the Layered T Ex-OR takes A_3 to evaluate the final output.

3.2. $n \times n$ Toffoli Gate

The lower order 3×3 Toffoli of Figure 6 is reproduced to generate higher order Toffoli Gates like 4×4, 5×5 and 6×6 Toffoli Gates using majority layered T hybridization methodology. The implementation of higher order Toffoli using 3×3 Toffoli unit observes two subsequent stages. Firstly least significant control bits are ANDed by using majority voter to generate $A_1, A_2, A_3, ..., A(n-1)$. Then the intermediary output is Ex-ORed with A_n in the final stage by using Layered T Ex-OR Gate. The mathematical model of generic Toffoli Gate has been employed as follows:
Lemma 1. The implementation of $n \times n$ Toffoli Gate using QCA requires $(n-2)$ number of majority AND Gates.

Proof. The application of the proposed methodology in $n \times n$ Toffoli Gate synthesis, the $(n-2)$ majority AND Gates are required. From Figure 7(a), it can be observed that 4×4 Toffoli Gate implementation of QCA needs $(4 - 2) = 2$ majority AND units. Here 4×4 makes the input variable n as 4. These two majority AND takes inputs A_2, A_3, A_4 and produces $A_2A_3A_4$. Like 4×4 Toffoli Gate, the $5 \times 5, 6 \times 6$ Toffoli Gates require $(5 - 2) = 3, (6 - 2) = 4$ majority AND Gates respectively.
Lemma 2 The \((n-2)\) majority ANDs for \(n\times n\) generic Toffoli Gate requires higher order control bits \(A_2, A_3, \ldots, A_n\) to make intermediary output \(A_2A_3\ldots A_n\).

Proof The intermediary output \(A_2A_3A_4A_5\) which is further processed as one input of Layered T Ex-OR module is generated for \(5\times5\) Toffoli Gate. The control bit \(A_1\) has been given to the other input of Layered T Ex-OR as demonstrated in Figure 7(b). The \(6\times6\) unit employs \((6 - 2) = 4\) majority ANDs to produce \(A_2A_3A_4A_5A_6\). Hence for \((n-2)\) majority ANDs, the \(A_2A_3\ldots A_n\) would be the intermediary output.

Lemma 3 The QCA implementation of \(n\times n\) generic Toffoli Gate requires \(0.25n\) clock to evaluate the target bit \(Z_n\).

Proof The QCA layout of \(3\times3\) Toffoli Gate observes the output after 0.75 clock-delays. For \(5\times5\), \(6\times6\) Toffoli units, the clock-delays become \(0.75 + 0.25 \times 2, 0.75 + 0.25 \times 3\) respectively as given in Figure 7(b) and (c). So the generalized delay for the \(n\times n\) Toffoli unit becomes \(0.75 + 0.25 \times (n-3) = 0.75 + 0.25 \times n-0.75 = 0.25 \times n\) clock-delays.

Lemma 4 The O-cost of QCA implementation of \(n\times n\) Toffoli Gate is:

- \(33; \text{ for } n = 3\)
- \(9(1+n); \text{ for } n > 3\).

Proof The number of quantum cells for the implementation of a QCA layout is O-cost (Mukherjee et al., 2016). The \(3\times3\) Toffoli unit of Figure 6 shows the O-cost as 33. The O-cost for \(4\times4\) Toffoli Gate becomes 45. The \(4\times4\) unit O-cost is rewritten as \(9 \times (1 + 4)\). Similarly the \(5\times5\), \(6\times6\) Toffoli units have the O-costs of \(9 \times (1 + 5) = 54, 9 \times (1 + 6) = 63\) respectively. These calculations formulate the O-cost for \(n\times n\) Toffoli unit as \(9 \times (1 + n)\) when \(n\) is more than 3.

Lemma 5 QCA implementation of \(n\times n\) generic Toffoli Gate requires:

- \(31,584 \text{ nm}^2; \text{ effective area for } n = 3\)
- \(20,808 + 13,008(n-3) \text{ nm}^2; \text{ effective area for } n > 3\).

Proof Figure 6 shows the requirement of \(31,584 \text{ nm}^2\) effective area for the \(3\times3\) Toffoli unit. Similarly, the \(4\times4, 5\times5, 6\times6\) Toffoli Gates need \(53,349, 66,507, 79,665 \text{ nm}^2\) effective areas respectively. These area requirements can be rewritten as \(20,808 + 13,008(4 - 3), 20,808 + 13,008(5 - 3), 20,808 + 13,008(6 - 3) \text{ nm}^2\). Hence for input \(n > 3\), the effective area becomes \(20,808 + 13,008(n - 3) \text{ nm}^2\).
The formulations for \(n \times n \) Toffoli Gate have been simulated by taking the variations of the \(n \) from 3 to 10. The QCA circuit design metrics (Mukherjee et al., 2016) which have been validated in Lemmas 1–5 are listed in Table 3. The Figure 8 reports O-cost curve, delay curve, area curve and AUF Curve for \(n \times n \) Toffoli Gate design by using majority-layered T hybridization Methodology.

3.3. The validation of outputs

Figure 9(a)–(d) show the outputs of the 3×3, 4×4, 5×5 and 6×6 Toffoli Gates respectively. From Figure 9(a), the outputs Z1, Z2, Z3 have the vector patterns of “010101011001010110”, “0011001100110011”, “0101010101010101” in accordance with the functionality of the 3×3 Toffoli units. The red-box of Figure 9(a) reports the fact of \(Z1 = A1A2 \oplus A3 \). The output 3×3 Toffoli unit which has been shown by the grey box of Figure 9(a) gets the appropriate value at the negative edge of clock 2. Figure 9(b) provides the functionality of the 4×4 Toffoli Gate. The negative edge of clock 3 which produces the outputs of 4×4 Toffoli unit is emphasized by using the both sided arrow. The outputs Z2, Z3, Z4 follow the vector patterns “00001111000011110000111100001111”, “00110011001100110011001100110011” of the inputs \(A2, A3, A4 \) respectively. The bit \(Z1 \) produces 4×4 Toffoli output as “01010101010101010101010101010110”.

Table 3. The summary of Toffoli gate designs obtained by applying the proposed methodology

Sl No.	Gate design	O-cost	Cell area (nm²)	Effective area (nm²)	Delay	AUF	No. of layer	Coplanar/multilayer
1	3×3 Toffoli	33	10,692	31,584	0.75	2.95	1	Multilayer
2	4×4 Toffoli	45	14,580	53,349	1	3.65	1	Multilayer
3	5×5 Toffoli	54	17,496	66,507	1.25	3.80	1	Multilayer
4	6×6 Toffoli	63	20,412	79,665	1.50	3.90	1	Multilayer
confirming the appropriateness of Toffoli unit. The operation of bit Z1 has been signified by indicating red portion of the Figure 9(b).

The red-box of Figure 9(c) which shows the output bit Z1 of 5×5 Toffoli Gate has been specified the vector pattern “01010101010101010101010101010110". This pattern of Z1 satisfies the expression $A_1A_2A_3A_4 \oplus A_5$. The outputs Z2, Z3, Z4, Z5 simply copy the inputs A2, A3, A4, A5 by generating “00000000000001111111111111111111", “000000001111111111000000001111111111", “000111110000111111000011111111”, “001100110011100111001110011100111" respectively. The entire outputs get their significance at the negative edge of clock 0 as marked by grey-box in Figure 9(c).

The operability of 6×6 Toffoli Gate has been validated as shown in grey, red colored box of Figure 9(d). The negative edge of clock 1 is generates the outputs of 6×6 Toffoli unit by making the neat delay of 1.50.

4. The rd-32 circuit realization using majority-layered T hybridization
The validity of majority-layered T hybridization Methodology becomes unquestionable through the verification of the proposed methodology in Benchmark realization. The previous sections discuss CNTS Gates creations and Generic Toffoli Gate implementations. The benchmark circuit rd-32 (Feynman, 1986) is extensively tested and verified with the proper layout by using the proposed hybridization methodology.

4.1. The rd-32 benchmark implementation using majority-layered T hybridization
The benchmark function rd-32 functions as one-bit Full Adder (Feynman, 1986). The rd-32 take four inputs A_1, A_2, and A_3, A_4 and produces four outputs Z_1, Z_2, Z_3, and Z_4. The input bit A_4 is fixed at logic “0” as mentioned in Figure 10. The rd-32 computes one-bit addition of the inputs A_1, A_2, and A_3 causing $Z_3 = A_1 \oplus A_2 \oplus A_3$. On the other side, the output Z_4 equals the Sum-of-Products $A_1A_2 + A_2A_3 + A_3A_1$ and confirms the Carry output of the one-bit full adder circuit. The rd-32 results the garbage outputs Z_1, Z_2 with conventional full-adder outputs Sum and Carry unlike classical one-bit Full Adder.

4.2. The QCA layout of the rd-32 benchmark
The requirement of an extra upper layer with main cell layer makes the rd-32 QCA layout multi-layer circuit. Figure 11 demonstrates the QCA realization of the rd-32 benchmark circuit. The QCA Layout of rd-32 which has 3.75 clock-delays evaluates outputs at the negative edge of the clock 2. The QCA design summary of the proposed rd-32 benchmark is reported in Table 4.
5. Result analysis

The proposed hybridization methodology requires the Layered T Ex-OR Gate along with the employment of the majority voter as AND Gate. The 2×2 reversible element has one Layered T Ex-OR Gate but the majority voter with Layered T Ex-OR module have been used in 3×3 reversible unit. Figure 3(a) and (b) show the 2×2 and 3×3 reversible elements respectively. The optimal designs of CNTS Gates in terms of O-cost, Effective Area and Delay have been communicated in this work to build the Reversible Library. The analysis of Figure 12 shows the dependency of AUF on effective area and O-Cost. The NOT Gate have shown the lesser effective area and O-cost with the higher value of AUF. The requirements of three successive Ex-OR Gates have made higher O-cost, Effective Area and Delay as shown in Figure 12. The area utilization of SWAP Gate has attended the excellent optimization as the AUF of 2.75 becomes the lowest among the four CNTS Gates.

The analysis of Table 2 reports 18.61% less requirement of effective area and 8.33% less QCA Cells compared to the previously reported design (Moustafa et al., 2015) so far. The statistical improvements of the effective area and O-cost have been demonstrated in Figures 13(a) and (b). The proposed 3×3 Toffoli Gate of Figure 6 possesses lowest value of AUF among the previous 3×3 Toffoli Gate designs (Abdullah-Al-Shafi et al., 2015; Bahar et al., 2015; Chandra & Netam, 2012; Chaves et al., 2015; Cvetkovska et al., 2013; Iqbal & Banday, 2015; Kunalan et al., 2014; Mahalakshmi et al., 2016; Moustafa et al., 2015; Rolih, 2013; Shabeena & Pathak, 2015) as communicated in Figure 13(d). The lower value of AUF means the higher utilization of effective area in QCA layouts. The best previous design (Moustafa et al., 2015) has the AUF as 3.32 but in the proposed design, the AUF reduces to 2.95. Hence the Toffoli Gate of Figure 6 has been proposed for the further implementation of Reversible Logic Synthesis (Shende et al., 2002; http://www.revlib.org) as the lower AUF QCA layouts are also desirable (Mukherjee et al., 2016).

Sl. No.	Design	O-cost	Cell area (nm²)	Effective area (nm²)	Delay	AUF	No. of layers
1	rd 32	321	104,004	499,522	3.75	4.802	2
The Section 3.2 discusses 4×4, 5×5 and 6×6 Toffoli Gates by using optimal design of 3×3 Toffoli Gate. The use of 3×3 Toffoli Gate validates the generic sense as this work have dealt with the higher order Toffoli Gates with inputs up to \(n = 10 \). The curves for several QCA design metrics as shown in Figure 8 have been generated by keeping Lemma 1–5 in mind. The linear natures have been observed in the O-cost and delay curves. The AUF curve of generic Toffoli Gate has interesting characteristics to show. The higher orders Toffoli have lower AUFs than the lower order Toffoli units. The values of AUFs for the Toffoli Gates have been listed in the Table 3. The usefulness of lower AUF Toffoli has been justified as multi-control Toffoli unit instantiates higher order Toffoli Gates.

The layout of \(rd-32 \) Benchmark Circuit which reports the AUF value as 4.802 has been generated by using the majority-layered T hybridization methodology as mentioned in Figure 11. The QCA layout of the \(rd-32 \) Benchmark is first communicated in this work as the best of the author’s knowledge.
6. Conclusion
A novel methodology, named majority-layered T hybridization is proposed in this work to convert the reversible circuits to QCA layouts. The validity of the proposed hybridization methodology has been established by creating the reversible library of CNTS Gates. The higher order Toffoli Gates has been generated to confirm the scalability of the proposed methodology in the multi-control Toffoli realization of reversible circuits. This work communicates the detailed analysis of 3×3, 4×4, 5×5 and 6×6 Toffoli Gates with the appropriate output graphs. The mathematical formulations of the design metrics like the effective area, O-cost, delay of generic Toffoli units help the researchers to implement MCT (multi-control Toffoli) reversible circuits. The formulations are considered along with the effective area, O-cost, delay and AUF graphs of generic Toffoli Gates. The QCA Layout of rd-32 Benchmark Function generated by using the proposed Methodology is first reported to the best of the author’s knowledge. As the rd-32 circuit has lower AUF value, so the implementation of entire reversible benchmarks along with the other reversible circuits excel in terms of effective area, O-cost, AUF and delay. The advancement of quantum information processing and reversible logics implementations would achieve another milestone if the majority-layered T hybridization methodology is adopted.

Acknowledgements
The authors would like to thank Prof. Arindam Chakraborty for insightful discussions with us and also thankful to Prof. Debdatta Banerjee for literature contributions in this work.

Funding
The authors received the partial funds from University of Engineering & Management, Jaipur.

Author details
Chiradeep Mukherjee
E-mail: chiradeep.1234321@gmail.com
ORCID ID: http://orcid.org/0000-0001-1068-6555
Saradindu Panda
E-mail: saradindupanda@gmail.com
Asish Kumar Mukhopadhyay
E-mail: askm55@gmail.com
Bansibadan Maji
E-mail: bmajiecenit@yahoo.com

1 Department of Electronics and Communication Engineering, University of Engineering & Management, Jaipur, Rajasthan, India.
2 Department of Electronics and Communication Engineering, Nura Institute of Technology, Kolkata, West Bengal, India.
3 Department of Electronics and Communication Engineering, S R Group of Institutions, Jhansi, Uttar Pradesh, India.
4 Department of Electronics and Communication Engineering, National Institute of Technology, Durgapur, West Bengal, India.

Citation information
Cite this article as: Majority-layered T hybridization using quantum-dot cellular automata, Chiradeep Mukherjee, Saradindu Panda, Asish Kumar Mukhopadhyay & Bansibadan Maji, Cogent Engineering (2017), 4: 1286732.

References
Abdullah-Al-Shafi, M., Shifatul, M., & Newaz, A. (2015, October). A review on reversible logic gates and its QCA implementation. International Journal of Computer Applications, 128, 27–34. http://dx.doi.org/10.5120/ijca2015906434

Bohair, A. N., Habib, Md A., & Biswas, N. K. (2015, October). A novel presentation of Toffoli Gate in quantum-dot cellular automata (QCA). International Journal of Computer Applications, 82, 1–4.

Bennett, C. H. (1973, November). Logical reversibility of computation. IBM Journal of Research and Development, 17, 525–532. doi:10.1147/rd.176.0525

Chandra, S. K., & Netam, D. K. (2012). Exploring quantum dot cellular automata based reversible circuit. International Journal of Advanced Computer Research, 2, 70–75.

Chaves, J. F., Silva, D. S., Camargos, V. V., & Vilela Neto, O. P. (2015, February). Towards reversible QCA computers: Reversible gates and ALU. In Proceedings of Latin American Symposium on Circuits & Systems (pp. 1–4). doi:10.1109/LASCAS.2015.7250458

Cvetkovska, B., Kostodinovska, I., & Danek, J. (2013). Implementing the Toffoli Gate in quantum-dot cellular automata (Seminar project, pp. 1–10). University of Ljubljana, Ljubljana.

Dilabio, G. A., Walkow, R. A., Pitters, J. L., & Ivo, G. (2015, March). Atomic quantum dots (US Patent No: US 2015/0060771A1).

Feynman, R. P. (1986, February). Quantum mechanical computers. Foundations of Physics, 16, 507–531. doi:10.1007/BF01886518

Iqbal, J., & Bandey, M. T. (2015, March). Applications of Toffoli Gate for designing the classical gates using quantum-dot cellular automata. International Journal of Recent Scientific Research, 6, 7764–7769.

Kumar, R., Ghosh, B., & Gupta, S. (2015, April). Adder design using a 5-input majority gate in a novel “multilayer gate design paradigm” for quantum dot cellular automata circuits. Journal of Semiconductor, 36, Article No: 045001. doi:10.1088/1674-4926/36/04/045001

Kunalan, D., Cheong, C. L., Chau, C. F., & Ghazali, A. B. (2014, August). Design of a 4-bit adder using reversible logic in quantum-dot cellular automata (QCA). In Proceedings of the IEEE International Conference on Semiconductor Electronics (pp. 60–63). doi:10.1109/SMELEC.2014.6920795

Mahalakshmi, K. S., Hajeri, S., Jayashree, H. V., & Agrawal, V. K. (2016, March). Performance estimation of conventional and reversible logic circuits using QCA implementation platform. In Proceedings of the International Conference on Circuit, Power and Computing Technologies (pp. 1–9). doi:10.1109/ICCPT.2016.7530135

Moustafa, A., Younes, A., & Hasson, Y. F. (2015). A customizable quantum-dot cellular automata building block for the synthesis of classical and reversible circuits. The Scientific World Journal, 2015, Article ID 705056. doi:10.1155/2015/705056

Mukherjee, C., Roy, S. S., Panda, S., & Maji, B. (2016, May). T-Gate: Concept of partial polarization in quantum dot cellular automata. Presented at the 20th International Symposium on VLSI Design and Test (Paper 47). Guwahati.

Mukherjee, C., Sukla, A. S., Basu, S. S., Chakraborty, R., Khan, A., & De, D. (2015, July). Layered T full adder using quantum-
dot cellular automata. In Proceedings of the IEEE International Conference on Electronics, Computing and Communication Technologies (pp. 1–6). doi:10.1109/CONECCIT.2015.7383867

Nielson, M. A., & Chuang, I. L. (2011). Quantum computation and quantum information. New York, NY: Cambridge University Press. ISBN 110700217 69781107002173.

Rolih, M. (2013). Analiza možnosti realizacije logičnih reverzibilnih vrat v trostanjskem kvantnem celčnem avtomatu (PhD thesis). Univerza v Ljubljani, Ljubljana.

Sen, B., Dutta, M., & Some, S. (2014, December). Realizing reversible computing in QCA framework resulting in efficient design of testable ALU. ACM Journal on Emerging Technologies in Computing Systems, 11, Article No. 30. doi:10.1145/2629538

Shabeena, S., & Pathak, J. (2015, March). Design and verification of reversible logic gates using quantum dot cellular automata. International Journal of Computer Applications, 114, 39-42.

Shende, V. V., Prasad, A. K., Markov, I. L., & Hayes, J. P. (2002, June). Reversible logic circuit synthesis. In Proceedings of the IEEE/ACM International Conference on Computer Aided Design (pp. 353–360). doi:10.1109/ICCAD.2002.1167558

Tougaw, P. D., Will, J. D., Graunke, C. R., & Wheeler, D. I. (2009, October). Quantum-dot cellular automata methods and devices (US Patent No: US 7,602,207 B2, 2009).

Walus, K., Schulhof, G., Juliien, G. A., Zheng, R., & Wang, W. (2004, November). Circuit design based on majority gates for applications with quantum-dot cellular automata. Asilomar Conference on Signals Systems and Computers, 2, 1354–1357. doi:10.1109/ACSSC.2004.1399374

Wille, R., Große, D., Teuber, L., Dueck, G. W., & Drechsler, R. (2008). RevLib: An online resource for reversible functions and reversible circuits. In Proceedings of the International Symposium on Multiple Valued Logic (pp. 220–225). doi:10.1109/ISMVL.2008.43

Zhang, R., Walus, K., Wang, W., & Juliien, G. A. (2004, December). A method of majority logic reduction for quantum cellular automata. IEEE Transactions On Nanotechnology, 3, 443–450. doi:10.1109/TNANO.2004.834177

Zilic, Z., Rideck, K., & Kazamiphur, A. (2007, April). Reversible circuit technology mapping from non-reversible specifications. In Proceedings of the Conference on Design, Automation and Test in Europe (pp. 558–563). ISBN: 978-3-9810801-2-4.