Signal from noise retrieval from one and two-point Green’s function - comparison

Zbigniew Drogosz,† Jerzy Jurkiewicz,‡ Grzegorz Łukaszewski,§ and Maciej A. Nowak

1M. Smoluchowski Institute of Physics, Jagiellonian University, S. Lojasiewicza 11, 30-348 Cracow, Poland
2M. Smoluchowski Institute of Physics and Mark Kac Center for Complex Systems Research, Jagiellonian University, S. Lojasiewicza 11, 30-348 Cracow, Poland
3M. Smoluchowski Institute of Physics, Jagiellonian University, S. Lojasiewicza 11, 30-348 Cracow, Poland

(Dated: January 12, 2015)

We compare two methods of eigen-inference from large sets of data, based on the analysis of one-point and two-point Green’s functions, respectively. Our analysis points at the superiority of eigen-inference based on one-point Green’s function. First, the applied by us method based on Padé approximants is orders of magnitude faster comparing to the eigen-inference based on fluctuations (two-point Green’s functions). Second, we have identified the source of potential instability of the two-point Green’s function method, as arising from the spurious zero and negative modes of the estimator for a variance operator of the certain multidimensional Gaussian distribution, inherent for the two-point Green’s function eigen-inference method. Third, we have presented the cases of eigen-inference based on negative spectral moments, for strictly positive spectra. Finally, we have compared the cases of eigen-inference of real-valued and complex-valued correlated Wishart distributions, reinforcing our conclusions on an advantage of the one-point Green’s function method.

PACS numbers: 02.50.Tt, 02.50.Fz, 02.70.Hm, 05.10.-a

I. INTRODUCTION

In 1928, J. Wishart [1], studying the statistics of population dynamics, has proposed a multidimensional generalization of the $\chi^2$ distribution. The Wishart matrix was a sample covariance matrix, constituting in this way the first historical ensemble of Gaussian random matrix theory. Explicitly, Wishart sample covariance matrix reads $S = \frac{1}{T}XX^\dagger$, where $X_{ia}$ is valued either in real or complex numbers space, $i = 1,...,N$ spans the size of the sample and $a = 1,...,T$ counts the number of measurements. Since that time, Wishart ensemble (sometimes called also Laguerre ensemble) found broad applications in several branches of physics, ranging from chaotic scattering [2], through conductance in mesoscopic physics [3], quantum information theory [4] to description of universal chiral properties of Quantum Chromodynamics [5]. With the advent of computer era, original ideas of Wishart met new challenges. Nowadays, speed of data acquisition and feasibility of massive data storage caused that the sampled Wishart covariance matrices became huge, with $N$ and $T$ ranging easily from $10^3$ up to $10^9$. This has triggered the need for new methodologies going far beyond the classical multivariate statistical analysis. Random matrix theory emerged as one of the most promising methods, since the large dimensionality of the samples turned out to be actually beneficial, due to the fast convergence of spectral properties of covariance matrices to the limiting distributions. This was secured by various central limit theorems, exact in the limit when the dimension of matrices is infinite. This approach was strengthened by the development of free random variable calculus [6], establishing the backbone of non-commutative (matrix-valued) probability calculus. Consequently, random matrix analysis of huge samples has entered several new domains. In economy and financial engineering, twinned papers [7,8] launched massive response for examining the role of spectral properties of covariance matrix for portfolio optimization [9,10]. In telecommunication, papers [11,12] opened new theoretical and practical possibilities for Multiple Output Multiple Input wireless systems [13,14]. Recently, in genomics, random matrix analysis gave hope to understand the mutation of the HIV virus [15].

The estimation of true covariance from the measured data is a subtle problem. In classical papers [17,18], the authors have analyzed spectral properties of the trivial true covariance matrix $\Sigma = \mathbf{1}_N$ in the limit when $N$ and $T$ are large, but their ratio (rectangularity $r \equiv N/T$) is fixed. The spectral distribution in this case is the unimodal (known) function, located on the finite interval $[l_-,l_+]$, where $l_{\pm} = (1 \pm \sqrt{r})^2$. Only in the limit when $r$ approaches 0, one can recover a Dirac delta-like peak located at 1. So the finiteness of the number $T$ of measured samples always introduces the distortion of the original spectrum of the true covariance matrix. The second problem of spectral inference comes from the statistical nature of random matrix ensembles. In many practical realizations, we do not have at our disposal the whole ensemble of estimators of the covariance matrix, but we have only a single measurement (although represented usually by a large matrix). An obvious example is a particular stock market, when one cannot perform the averages over different realizations. Both the above problems are interlinked, and the separation of the true signal from a noisy, single object represents a

zbigniew.drogosz@uj.edu.pl
jerzy.jurkiewicz@uj.edu.pl
lukaszewski@th.if.uj.edu.pl
maciej.a.nowak@uj.edu.pl

arXiv:1501.02108v1 [stat.AP] 9 Jan 2015
formidable challenge, addressed in numerous works \cite{19}. Generally, majority of the methods of inference are related to the analysis of mean spectral functions $\rho(\lambda)$, where $\lambda$ are eigenvalues of the estimator $S$. Recently, a method based on the analysis of spectral fluctuations has been proposed \cite{20,21}, where the central role is played by the two-point spectral function $\rho(\lambda, \lambda')$. In this work, we critically examine both methods and compare their computational efficiency. In Section II, we define basic one-point and two-point objects generating spectral single and double moments, establishing also the notation used for the whole of the paper. In Section III, we explain the methods of eigen-inference, based on previously defined quantities. Additionally, we introduce inverse spectral moments, which have been discussed in the literature only marginally. Section IV presents results of several numerical studies comparing an analytical method to a statistical one. Section V discusses the speed of the algorithms and their accuracy. Section VI identifies and elucidates some potential pitfalls of the statistical method. Short section VII discusses the similarities and differences of the applied algorithms as a function of the parameter $\beta$: $\beta = 2$ in the case of the complex Wishart ensemble and $\beta = 1$ in the case of the real Wishart ensemble. Finally, section VIII represents conclusions and recommendations and discusses further possibilities for improvement of eigen-inference. We also explicitly highlight several novel aspects of our work. The paper is concluded with the three appendices, explaining some technicalities helpful when following our analysis.

II. ONE AND TWO-POINT GREEN’S FUNCTIONS FOR THE WISHART ENSEMBLE.

We recall main definitions and formulae for the case of the complex Wishart ensemble. We populate matrix $X_{ia}$, where $i = 1, \ldots, N$ and $a = 1, \ldots, T$ with independent, complex centered, Gaussian-distributed numbers for each pair $(i, a)$. Complex-valued one-point Green’s function $G_S(z)$ for the Wishart ensemble $S = \frac{1}{N}XX^\dagger$ is defined as

$$G_S(z) = \frac{1}{N} \left\langle \frac{1}{z1_N - S} \right\rangle$$

(1)

where $\langle \ldots \rangle$ denotes average with the respect of the Gaussian joint probability distribution. Discontinuities of the Green’s function yield, on the basis of the Sochocki-Plemelj formula, the spectral distribution

$$\rho_S(\lambda) = -\frac{1}{\pi} \lim_{\epsilon \to 0} \Im G_S(z)|_{z = \lambda + i\epsilon}$$

(2)

At the vicinity of the point $z = \infty$ Green’s function serves as a generating function for spectral moments of the Wishart ensemble (defined as $\alpha_{ij}^2 = \int_{L} \rho_S(\lambda)\lambda_i\lambda_j d\lambda$, where $L$ denotes the support of eigenvalues $\lambda$):

$$G_S(z) = \sum_{i=0}^{\infty} \frac{1}{z^{i+1}} \left\langle \frac{1}{N} \text{tr} S^i \right\rangle \equiv \sum_{i=0}^{\infty} \frac{\alpha_i^S}{z^{i+1}}$$

(3)

We consider the case $N, T \to \infty$ and $r \equiv N/T < 1$. Green’s function for the Wishart ensemble is given in this case as

$$G_S(z) = \frac{1}{2\pi z} \left[ r + z - 1 - \sqrt{(z - s_-)(z - s_+)} \right]$$

(4)

where $s_{\pm} = (1 \pm \sqrt{r})^2$ denote the ends of the eigenvalue spectrum. Corresponding spectral function is given by the Marcenko-Pastur formula

$$\rho(\lambda) = \frac{1}{2\pi z} \lambda \sqrt{\lambda - s_-} \sqrt{\lambda - s_+}$$

(5)

For completeness we mention that the case $r > 1$ has the same spectral distribution, modulo $T - N$ trivial zero modes. The case $r = 1$ is also singular at $z = 0$ as visible from (1). Since now we consider only the cases $r < 1$, when the eigenvalues are strictly positive, so $S^{-1}$ does exist.

Note that since the spectrum of the considered by us case of the asymptotic Wishart ensemble is strictly positive, we can define also inverse spectral moments, which we call dual moments. Simple algebraic manipulation shows that the generating function for such moments $G_{S^{-1}}(1/z)$ can be rephrased as expansion around $z = 0$ for the Green’s function $G_S(z)$, i.e.

$$G_{S^{-1}}(\frac{1}{z}) = \frac{1}{N\text{tr} \frac{1}{1_N - S^{-1}}}$$

$$= z \left\langle \frac{1}{N} \text{tr} 1_N \left( \frac{1}{1_N - S} \right) \right\rangle$$

$$= z(1 - zG_S(z))$$

(6)

One can easily generalize the definition of one-point Green’s function for the case of two-point Green’s function, defined as

$$G_S(z, w) = \frac{1}{N^2} \left\langle \frac{1}{\text{tr} \frac{1}{1_N - S} \frac{1}{w1_N - S}} \right\rangle$$

(7)

where the subscript $c$ denotes the connected part, defined as $< AB >_c = < AB > - < A > < B >$ for any $A, B$. In analogy to the case of one-point Green’s function, a double expansion in $z$ and $w$ around infinity yields double spectral moments $\alpha_{ij}^{S,2} = < \frac{1}{N} \text{tr} S^i \frac{1}{N} \text{tr} S^j >_c$. Continuing the analogy, the properly taken discontinuities of the two-point Green’s functions give the two-point spectral density function, yielding the probability of finding a pair of eigenvalues $\lambda, \lambda'$, where the separation between the eigenvalues is of order $O(N^0)$ (so-called “wide” correlator). Explicitly

$$\rho_c(\lambda, \lambda') = -\frac{1}{4\pi^2} \left( G_{++} - G_{+-} + G_{-+} - G_{--} \right)$$

(8)

where the shorthand notation reflects double use of Sochocki-Plemelj formula, e.g. $G_{+-} = \lim_{\epsilon \to 0} \text{tr} G_{-\epsilon} \rightarrow \lim_{\epsilon \to 0} G(z = \lambda + i\epsilon, w = \lambda' - i\epsilon)$. This quantity should not be confused which so-called universal (microscopic) kernel, representing similar function when the spacing between the eigenvalues is of order $1/N$. Remarkably, double spectral moments can be
expressed in terms of usual spectral moments, which allows to infer the information on the spectral density $\rho(\lambda)$ from two-point Green’s functions as well. This is a consequence of so-called AJM universality [27]. In particular, in the case of Wishart ensemble the exact relation between two-point and one-point Green’s function reads [17, 28, 29]

$$G_S(z, w) = \frac{1}{N^2} \frac{\partial_x \partial_w \ln \left[ \frac{G_S(w) - G_S(z)}{z - w} \right]}{z - w} = \frac{1}{N^2} \left[ \frac{\partial_x G_S(z) \partial_w G_S(w)}{[G_S(z) - G_S(w)]^2} - \frac{1}{(z - w)^2} \right]$$

(9)

where the second line comes after explicit differentiation of the first formula and the corresponding Green’s functions and their derivatives (6) lead to relation

$$G_{S^{-1}}(1/z, 1/w) = z^2w^nG_S(z, w)$$

(10)

Combining the above expression with the AJM universality we arrive at the explicit formula generating double dual spectral moments of the "estimator" $G_{S^{-1}}$, for the purpose of easier comparison between two-point and one-point Green’s functions. We summarize this section with the definition of spectral moments, dual moments, double moments and dual double moments. We arrive at the explicit formula generating double dual spectral moments of the "estimator"

$$\Theta = (\Lambda_1, \ldots, \Lambda_{m_{\max}}, p_1, \ldots, p_{m_{\max} - 1})$$

(13)

where $p_i = n_i/N$ with the obvious constraint $\sum_i p_i = 1$.

A. Analytical estimator for single moments

The cornerstone of the analytic method is the conformal mapping [29] between the generating functions for the "true" moments of matrix $\Sigma$ and the measured moments of the "estimator" $S$,

$$M_S(z) = M_\Sigma(Z)$$

(14)

where $Z$ is related to $z$ by

$$Z = \frac{1}{1 + rM_S(z)}$$

(15)

The origin of conformal mapping is briefly explained in Appendix A. Explicitly,

$$\sum_{k=1}^{\infty} \frac{\alpha_k^S}{z^k} = \frac{1}{1 + r \sum_{i=1}^{\infty} \frac{\alpha_i^S}{z^i}}$$

(16)

Iteration of the above formula allows one to write down an infinite tower of algebraic relations between moments $\alpha_i^\Sigma$ and moments $\alpha_i^S$:

$$\alpha_i^\Sigma = \alpha_i^S$$

$$\alpha_2^\Sigma = \alpha_2^S + r(\alpha_1^S)^2$$

$$\alpha_3^\Sigma = \alpha_3^S + 3r\alpha_1^S\alpha_2^S + r^2(\alpha_1^S)^3$$

$$\ldots$$

(17)

One can rephrase as well moments of $\Sigma$ in terms of moments of $S$, using backward iteration

$$\alpha_1^\Sigma = \alpha_1^S$$

$$\alpha_2^\Sigma = \alpha_2^S - r(\alpha_1^S)^2$$

$$\alpha_3^\Sigma = \alpha_3^S - 3\alpha_1^S\alpha_2^S + 2r^2(\alpha_1^S)^3$$

$$\ldots$$

(18)

The algorithm of eigen-inference is as follows. First, we truncate the infinite tower of relations at some $K_{\max}$.
We calculate $K_{\text{max}}$ empirical moments and, using the above formulae, we rephrase them in terms of moments $\alpha_i^S$, with $i = 1, \ldots, K_{\text{max}}$. By definition, the unknown generating function for $\Sigma$ can be expressed in terms of moments $\Theta$, 

$$
zG_\Sigma(z) = \sum_{\alpha} \frac{p_i}{z - \Lambda_i} = \sum_{\alpha} \frac{p_i}{1 - x\Lambda_i} 
$$

where we have introduced $x = 1/z$. Second, we note, that by construction the above estimator is the ratio of two polynomials in $x$, numerator $A_{m_{\text{max}}-1}(x)$ of order $m_{\text{max}} - 1$ and denominator $B_{m_{\text{max}}}(x)$ of order $m_{\text{max}}$. As the next step, we make an assumption on the value of $m_{\text{max}}$, and we approximate $zG_\Sigma(z)$ with the help of Padé approximant (cf. Appendix C), ideally suited for an approximation of the unknown functions being the ratios of polynomials of fixed and known order. Note that $K_{\text{max}} = 2m_{\text{max}} - 1$. Third, we read from the approximant the parameters of the vector $\Theta$. Eigenvalues $\Lambda_i$ correspond to the poles of the Green’s function, therefore corresponding to the inverse of the zeroes of the denominator $B_{m_{\text{max}}}(x)$. Multiplicities $p_i$ correspond to the residues of the Green’s functions, so can be easily found from the relation 

$$
p_i = -\left. \frac{1}{x} A(x) \right\vert_{x=\frac{1}{\Lambda_i}} 
$$

Lastly, we repeat the above procedure for other guesses of $m_{\text{max}}$ in order to choose the best estimator $\Theta$. If our guess is too small, we usually obtain eigenvalue estimations that are between the “true” eigenvalues, as a kind of an average. If, on the other hand, the tested $m_{\text{max}}$ is greater than the number of different eigenvalues of the “true” spectrum, then there appear spurious eigenvalue estimations, which either have an incorrect real value and a very small probability, or are created in pairs while a real eigenvalue splits into two complex conjugate eigenvalues with complex conjugate probabilities. In most cases, the choice of the best $m_{\text{max}}$ should be clear. 

The above procedure is very fast, as we demonstrate on several examples presented in the following section. 

We can perform similar eigen-inference from the dual moments. The corresponding algorithm is as follows: First, we calculate matrix $S^{-1}$, then moments $\alpha_i^S$, and finally moments $\alpha_i^{\Sigma}$, combining (15) with (6), i.e.

$$
\begin{align*}
\alpha_1^S &= (1 - r)\alpha_1^S \\
\alpha_2^S &= (1 - r)\alpha_2^S - r(1 - r)(\alpha_1^S)^2 \\
\alpha_3^S &= (1 - r)\alpha_3^S - 3r(1 - r)\alpha_2^S + r^2(1 - r)(\alpha_1^S)^3 \\
\end{align*}
$$

Few lowest backward relations read

$$
\begin{align*}
\alpha_1^{\Sigma} &= \frac{1}{1 - r} \alpha_1^S \\
\alpha_2^{\Sigma} &= \frac{1}{1 - r^2} \alpha_2^S + \frac{r}{1 - r^2}(\alpha_1^S)^2 \\
\alpha_3^{\Sigma} &= \frac{1}{1 - r^3} \alpha_3^S + \frac{3r}{1 - r^2} \alpha_1^S \alpha_2^S + \frac{2r^2}{1 - r^3}(\alpha_1^S)^3 \\
\end{align*}
$$

Second, we calculate $zG_{\Sigma-1}(1/z)$, and, assuming $K_{\text{max}}$, we get the Padé approximant. Finally, we infer the eigenvalues as zeroes of the denominator of Padé approximant, and multiplicities as the corresponding residua. 

### B. Statistical estimator for double moments

Let us consider an infinite vector of fluctuations for the matrix ensemble $S$, whose components are defined as follows 

$$
v_j = \text{tr}S^j - <\text{tr}S^j> = \text{tr}S^j - N\alpha_j^S 
$$

The cornerstone of the statistical estimator is represented by the following theorem [17 [20 [21]. The statistical distribution of vector $v$ is represented by the multidimensional Gaussian ensemble, where the elements of the dispersion matrix $Q$ are given by the corresponding double moments $\alpha_{ij}^S$. For sample estimator $\Theta$, we can write therefore probability distribution function (hereafter pdf) for vector $v$ as

$$
f(v_\Theta) \sim \frac{1}{\text{det}Q_\Theta} \exp\left[-v_\Theta^\dagger Q_\Theta^{-1} v_\Theta\right] 
$$

The maximum likelihood principle tells us that the desired estimator $\Theta$ is the maximizer of the pdf. Technically, it is easier to maximize the logarithm of the above expression, since the logarithm is a monotonic function and is well defined due to the positivity of the pdf. Therefore the optimal estimator $\Theta$ is the minimizer of the following function 

$$
g_\Theta = v_\Theta^\dagger Q_\Theta^{-1} v_\Theta + \ln \text{det}Q_\Theta 
$$

Note that double moments are not measured in an explicit way. We have however AJM universality [9], which allows us to express them in terms of single moments, which are directly related to the measurement. Resulting formulae are lengthy due to the tangled relation [9], but can be easily generated numerically, as collected in the Appendix B. For the simplest case of 2 by 2 covariance matrix $Q$ relations are as follows

$$
\begin{align*}
\alpha_{11} &= -\alpha_1^S + \alpha_2 \\
\alpha_{12} &= \alpha_{21} = 2\alpha_3^S - 4\alpha_1\alpha_2 + 2\alpha_3 \\
\alpha_{22} &= -6\alpha_4^S + 16\alpha_2^S - 8\alpha_1\alpha_3 - 8\alpha_3^S + \alpha_4 \\
\end{align*}
$$

where, for clarity, we have suppressed the index $S$. Appendix B lists higher double moments, up to $\alpha_{55}$. 

Finally, we note that similar construction can be performed for the dual double moments. For the simplest case of the 2 by 2 dispersion matrix, relation \(10\) yields

\[
\begin{align*}
\hat{\alpha}_{11} \hat{\alpha}_{22}^2 &= -\hat{\alpha}_3^2 + \hat{\alpha}_2 \hat{\alpha}_4 \\
\hat{\alpha}_{12} \hat{\alpha}_{22}^3 &= \hat{\alpha}_{21} \hat{\alpha}_{32}^2 - 2\hat{\alpha}_3^2 - 2\hat{\alpha}_2 \hat{\alpha}_5 + 2\hat{\alpha}_5^2 \\
\hat{\alpha}_{22} \hat{\alpha}_{22}^4 &= 4\hat{\alpha}_3^2 \hat{\alpha}_6 - 6\hat{\alpha}_3^4 + 16\hat{\alpha}_2 \hat{\alpha}_3^2 \hat{\alpha}_4 - 8\hat{\alpha}_2 \hat{\alpha}_5 \hat{\alpha}_5 - 6\hat{\alpha}_2^2 \hat{\alpha}_6^2
\end{align*}
\]

(27)

where, for clarity, we have suppressed the index \(S^{-1}\) and denoted dual moments by tilde, to avoid confusion with the relation \([26]\). Higher double dual moments (up to \(\hat{\alpha}_{35}\)) are listed in the Appendix B.

### IV. DATA INFERENCE - ANALYTICAL VERSUS STATISTICAL METHOD

To make sure that the methods were implemented correctly, they were tested on several ensembles of matrices that had already been studied by Rao, Mingo, Speicher and Edelman (Table 7 of [21]).

We started for the case of the exact covariance matrices \(\Sigma\) with two different eigenvalues, \(\Lambda_1 = 2\) and \(\Lambda_2 = 1\) with the degeneracies \(p_1 = p_2 = 1/2\). In every test \(L = 100\) complex data matrices \(X\) were generated from a suitable ensemble, and for each \(X\) an experimental covariance matrix was calculated as \(S = \frac{1}{L}XX^\dagger\). The size \(N\times T\) and the rectangularity \(r = N/T\) of matrices \(X\) varied from test to test.

For each thus obtained \(S\), eigen-inference was performed using the analytical, the analytical dual, and the statistical (for \(3 \times 3\) matrix \(Q\)) method to get the estimations \(\lambda_1, \lambda_2\) and \(p_1^S\) of the parameters \(\Lambda_1, \Lambda_2\) and \(p_1\) (the calculation time was noted). All obviously incorrect (non-real or real negative) estimations of eigenvalues and degeneracies were rejected, leaving \(n\) sets of estimations. The arithmetical means and standard deviations of real positive estimations of every parameter were calculated. Then \(\eta\) (defined in the next section) was calculated for every method. Lastly, a subjective assessment \(q\) of the quality of estimation, ranging from one to four stars, was performed by the authors. Four stars might have been given for a method that would give significantly better results than the other methods.

The comparison is presented in Table [21].

In the first place, it should be noted that in all of the cases the parameter \(r\) was large (equal to 2, 1 or 0.5 - this means short samples of data). There were no cases with a smaller value of \(r\) analyzed in [21].

For such large \(r\), the analytical dual method failed to give even remotely reasonable results (in most cases producing negative or non-real eigenvalues or probabilities).

All the other methods behaved very similarly to each other. The accuracy uniformly increased with increasing size of matrices and decreasing \(r\). Our results agree with the results [21].

It can therefore be assumed that the analytical and statistical method were implemented correctly. Most remarkably, the analytical method succeeded in producing almost the same results as the statistical method, but several thousands times faster. Its speed may be a key advantage in practical applications.

The analytical dual method is unsuitable for large \(r\). This section will show, however, that it works well when \(r\) is small.

All the methods were tested on several large sets of matrices with complex entries. The real entries were tested as well, and the discussion of the comparison between real and complex Wishart ensembles is included in section 7. The testing process included for the first time the statistical dual method and the statistical method \(4 \times 4\). It was also tested whether using the estimation from the analytical method as a starting point for any version of the statistical method improves the precision.
TABLE I: Comparison with the results in [21]

| method          | q | n   | \(\langle \lambda_1 \rangle\) | \(\sigma(\lambda_1)\) | \(\langle \lambda_2 \rangle\) | \(\sigma(\lambda_2)\) | \(\sigma(p^3_1)\) | \(\eta\) | time [s] |
|-----------------|---|-----|-------------------------------|----------------------|-------------------|-------------------|----------------|--------|--------|
| A               | ** | 96  | 2.1036                        | 0.5307               | 0.6007            | 0.6757            | 0.5572         | 0.3208 | 0.8599 | 0.14   |
| AD              | *  | 0   | -                             | -                    | -                 | -                 | -              | -      | -      | -      |
| S 3x3           | ** | 100 | 2.0377                        | 0.4555               | 0.6969            | 0.5212            | 0.3080         | 0.2164 | 0.7487 | 1676.9 |
| S 3x3 RMSE      | n.d. | 2.0692 | 0.4064                      | 0.7004               | 0.4754            | 0.6624            | 0.2060         |        | n.d.   |
| A               | ** | 100 | 1.9179                        | 0.1513               | 0.9698            | 0.1484            | 0.4940         | 0.1307 | 0.2426 | 0.13   |
| AD              | *  | 0   | -                             | -                    | -                 | -                 | -              | -      | -      | -      |
| S 3x3           | ** | 100 | 2.0117                        | 0.1499               | 0.9654            | 0.1496            | 0.5105         | 0.1307 | 0.2425 | 387.7  |
| S 3x3 RMSE      | n.d. | 2.0089 | 0.1398                      | 0.9763               | 0.1341            | 0.5076            | 0.1239         | n.d.   | n.d.   |
| A               | ** | 100 | 1.9698                        | 0.2321               | 0.8819            | 0.2319            | 0.5671         | 0.1901 | 0.3759 | 0.16   |
| AD              | *  | 0   | -                             | -                    | -                 | -                 | -              | -      | -      | -      |
| S 3x3           | ** | 100 | 1.9461                        | 0.2233               | 0.8630            | 0.2576            | 0.5834         | 0.1886 | 0.3738 | 584.9  |
| S 3x3 RMSE      | n.d. | 2.0021 | 0.2275                      | 0.9257               | 0.2423            | 0.5310            | 0.1856         | n.d.   | n.d.   |
| A               | ** | 100 | 2.0119                        | 0.0541               | 1.0065            | 0.0452            | 0.4916         | 0.0473 | 0.0826 | 0.13   |
| AD              | *  | 0   | -                             | -                    | -                 | -                 | -              | -      | -      | -      |
| S 3x3           | ** | 100 | 2.0101                        | 0.0540               | 1.0055            | 0.0453            | 0.4929         | 0.0473 | 0.0826 | 779.4  |
| S 3x3 RMSE      | n.d. | 2.0001 | 0.0548                      | 0.9960               | 0.0469            | 0.5024            | 0.0492         | n.d.   | n.d.   |
| A               | ** | 100 | 2.0110                        | 0.0937               | 0.9777            | 0.0772            | 0.4977         | 0.0798 | 0.1407 | 0.14   |
| AD              | *  | 89  | -                             | -                    | -                 | -                 | -              | -      | -      | -      |
| S 3x3           | ** | 100 | 2.0023                        | 0.0924               | 0.9936            | 0.0783            | 0.5030         | 0.7990 | 1.4038 | 1188.3 |
| S 3x3 RMSE      | n.d. | 1.9925 | 0.0975                      | 0.9847               | 0.0781            | 0.5116            | 0.0807         | n.d.   | n.d.   |
| A               | ** | 100 | 2.0017                        | 0.0220               | 1.0027            | 0.0180            | 0.4974         | 0.0192 | 0.0331 | 0.16   |
| AD              | *  | 100 | 2.5734                        | 1.8594               | 0.3746            | 6.1721            | 0.4918         | 0.2266 | 0.1437 | 0.17   |
| S 3x3           | ** | 100 | 2.0011                        | 0.0220               | 1.0024            | 0.0180            | 0.4978         | 0.0192 | 0.0331 | 1385.6 |
| S 3x3 RMSE      | n.d. | 1.9994 | 0.0232                      | 0.9993               | 0.0178            | 0.5008            | 0.0193         | n.d.   | n.d.   |

Explanation of the symbols:
- A/S - the analytical/ statistical method
- AD - the analytical dual method
- 3x3 - the size of the matrix Q used
- RMSE - results from the article [21]
- q - subjective assessment of the quality of the estimation (1 - 4 stars)
- n - number of matrices with all parameters estimated as positive real
- \(\langle \cdot \rangle\) - arithmetical mean of the estimations
- \(\sigma(\cdot)\) - standard deviation of the estimations
- \(\eta\) - a parameter measuring the quality of the estimation (less is better)
- n.d. - no data

and decreases the computation time.

Figures 1 and 2 show in blue the spectrum of the covariance matrix estimated by collecting the results of eigen-inference from all the tested matrices (smoothed so as to make the graph continuous instead of discrete). The eigenvalues of the underlying exact covariance matrix are shown in red (scaled for the better presentation).

Table II is organized similarly to Table I, but includes results from a larger number of methods. The results for one set of matrices with large \(r (r = 0.7)\) and another with small \(r (r = 0.01)\) are presented. The differences are manifest. In the first case the statistical method \(4 \times 4\) produced the most precise estimation (although it used a lot of computation time), while the analytical dual method sometimes failed even to give real and positive estimations of parameters. In the second case, however, the analytical dual method offered the most accurate estimation in a short amount of time. The simple analytical method was the most robust, performing well in all cases, and using always almost the same, little amount of time.

Since the analytical method is so fast, one might think it would be clever to use its result as a starting point for the minimization procedure of the statistical method. However, it was shown that the possible gain of accuracy hardly recompenses the invested computation time.
TABLE II: Comparison of the methods of eigen-inference.

| method | \( q \) | \( n \) | \( \langle \Lambda_1 \rangle \) | \( \langle \sigma(\Lambda_1) \rangle \) | \( \langle \Lambda_2 \rangle \) | \( \langle \sigma(\Lambda_2) \rangle \) | \( p_1 \) | \( p_2 \) | \( \eta \) | time [s] |
|--------|------|------|----------------|----------------|----------------|----------------|------|------|------|-------|
| A      | ***  | 100  | 0.4910        | 0.0966         | 1.0026         | 0.0437         | 0.3344 | 0.0976 | 0.1253 | 0.13  |
| AD     | 60   | -    | -             | -              | -              | -              | -     | -     | -     | 0.14  |
| S 3x3  | ***  | 100  | 0.4876        | 0.0760         | 0.9998         | 0.0431         | 0.3292 | 0.0968 | 0.1247 | 2436.1|
| S 3x3 w| *    | 100  | 0.5310        | 0.0521         | 1.0059         | 0.0354         | 0.3452 | 0.0762 | 0.0967 | 6603.5|
| S 4x4  | ***  | 100  | 0.5058        | 0.0521         | 1.0057         | 0.0354         | 0.3449 | 0.0761 | 0.0967 | 419.0 |
| S 4x4 w| *    | 100  | 0.1701        | 0.1999         | 2.3348         | 1.4125         | 0.0935 | 0.2406 | 1.4107 | 2048.7|
| SD 3x3 | *    | 100  | 0.5447        | 0.2018         | 64.0592        | 80.604         | 0.6052 | 0.3644 | 80.200 | 214.5 |
| SD 3x3 w| *    | 100  | 0.5001        | 0.0010         | 1.0000         | 0.0015         | 0.3334 | 0.0012 | 0.0016 | 0.13  |
| AD     | *    | 100  | 0.5001        | 0.0009         | 1.0000         | 0.0015         | 0.3334 | 0.0007 | 0.0015 | 0.14  |
| S 3x3  | *    | 100  | 0.4474        | 0.2000         | 0.9590         | 0.2102         | 0.3610 | 0.3317 | 0.3485 | 895.4 |
| S 3x3 w| *    | 100  | 0.5003        | 0.0010         | 0.9999         | 0.0015         | 0.3332 | 0.0012 | 0.0016 | 396.3 |
| S 4x4  | *    | 100  | 0.2568        | 0.1379         | 0.9454         | 0.1109         | 0.2433 | 0.1611 | 0.1638 | 517.8 |
| S 4x4 w| *    | 100  | 0.5036        | 0.0040         | 1.0009         | 0.0016         | 0.3381 | 0.0045 | 0.0059 | 333.1 |
| SD 3x3 | *    | 100  | 2.7383        | 0.3670         | 4.1544         | 0.7060         | 0.1568 | 0.2881 | 0.7929 | 2798.4|
| SD 3x3 w| *    | 100  | 0.5002        | 0.0010         | 0.9997         | 0.0020         | 0.3334 | 0.0015 | 0.0022 | 449.7 |

Explanation of the symbols:

- A/S - the analytical/statistical method
- AD/SD - the analytical dual/statistical dual method
- 3x3/4x4 - the size of the matrix Q used
- w - with a starting point from the analytical method

- \( \eta \) - a parameter measuring the quality of the estimation (less is better)
- \( \sigma \) - standard deviation of the estimations
- \( n \) - number of matrices with all parameters estimated as positive real
- \( q \) - subjective assessment of the quality of the estimation (1 - 4 stars)

V. SPEED OF THE ALGORITHMS, COMPLEXITY AND QUALITY MEASURES

The procedures written in Mathematica 9 for the present work succeeded in reducing the time needed to generate all the formulae for \( \alpha_j^S \) and \( \alpha_j^{2d} \), \(-1 \leq j \leq -10\), from over 10000 seconds (as in the work [23], where a computer with the processor Inter Core(TM) 2 Duo 6400 (2x2.0 GHz) and 4 GB RAM was used) to 24 seconds (on a comparable computer: Intel Core(TM) i3-3227U (2x1.9 GHz) and 4 GB RAM).

Furthermore, the time for generating the formulae for \( \alpha_{i,j}^S \), \( i, j \leq 5 \), was reduced from 1000 to 26 seconds.

With such fast algorithms, calculation of the higher degree relations becomes feasible.

Figure 8 presents the complexity of the formulae used in the statistical method. The size of the expressions for single moments of the empirical covariance matrix in terms of single moments of the exact covariance matrix, and for double moments in terms of single moments grow polynomially with the value of the index \( i \). They are so complicated that it is better not to perform symbolically all the algebraical calculations leading to the form (25) of the function \( g_\Theta \). This final form, which involves the inverse of the matrix \( Q_\Theta \), is unwieldy and may use, depending on the size of the matrix \( Q_\Theta \), megabytes or even gigabytes of computer memory (Fig.3c). Byte count apparently grows exponentially with the size of \( Q_\Theta \).

Therefore, it is more appropriate to make step-by-step numerical calculations: when the minimization algorithm needs the value \( g_\Theta \) for certain values of the parameters \( \{\Lambda_i, p_i\} \), let it first calculate the values of all the needed single moments \( \alpha_k^{2d} \) then the single moments \( \alpha_k^S \), then the double moments \( \alpha_{k,l}^S \), then construct the matrix \( Q_\Theta \) and calculate its inverse, and only then calculate \( g_\Theta \).
The mean estimations $\langle \lambda_i \rangle$, $\langle p_i \rangle$ should be close to the exact values of the parameters $\Lambda_i$, $p_i$. The standard deviations $\sigma(\lambda_i)$, $\sigma(p_i)$ should be small. The disadvantage of this approach to estimation quality assessment is the difficulty of comparing two methods if some of these numbers are better for the first of them while the others for the second.

A useful idea is to introduce a measure of the quality of estimation that during a test produces a single number for each eigen-inference method. The parameter $\eta$ used in [24] and in the present work, although defined rather arbitrarily, serves this purpose. The estimations taken from all the data matrices may themselves be written as a matrix $E$ of dimension $(2K - 1) \times L$, where $K$ is, as in previous sections, the number of different eigenvalues of the exact covariance matrix, and $L$ is the number of generated data matrices. The parameter $\eta$ is defined as the square root of the largest eigenvalue of the covariance matrix built from $E$:

$$\eta = \left[\text{Max}(\text{Eig}(\text{Cov}(E)))\right]^{\frac{1}{2}}$$  \hspace{1cm} (28)

It, one might say, measures the width of the cloud of estimations in a $2K - 1$-dimensional space. The smaller it is, the better the estimation.
VI. LACK OF POSITIVITY CONDITION IN THE STATISTICAL METHOD

The process of minimization of function \[ Q \] depends crucially on the "entropic" term \( \ln \det Q \). In the limit, when the dimension of vector \( \Theta \) tends to infinity, the limiting spectral distribution of \( Q \) tends to the \( \Lambda \), therefore is positive defined. However, this might not be true in the case when we approximate the exact result by a truncated, finite dimensional vector \( \Theta \). In this case, as a result of truncation, \( \det Q \) can reach zero and can become negative for some range of the parameters. This pathology can be demonstrated even in the case of a very simple spectrum, consisting of two distinct eigenvalues \( \Lambda_1 \) and \( \Lambda_2 \) occurring with the probabilities \( p_1 \) and \( p_2 \) respectively. In order to present simple, two-dimensional plots, we rescale the eigenvalues, so \( \Lambda_s = \Lambda_1/\Lambda_2 \) and the second eigenvalue is always fixed to 1. Then, we plot the sign of \( \det Q \) as a function of \( \Lambda_s \) and \( p = p_1 \) (note that \( p_2 = 1 - p_1 \), so is not an independent variable).

![Figure 4](image1.png)
FIG. 4: Dark regions correspond to non-positivity of \( \det Q \) for the case when \( Q \) is approximated by the 3 × 3 matrix built of double moments.

![Figure 5](image2.png)
FIG. 5: Dark regions correspond to non-positivity of \( \det Q \) for the case when \( Q \) is approximated by the 4 × 4 matrix built of double moments.

The figure shows the case when we estimate matrix \( Q \) by 3 × 3 matrix, using statistical method based on double moments, for several values of rectangularity parameter \( r \). The shaded region corresponds to the range of parameters \( \Lambda_s, p \) when the value of \( \det Q \) is negative. The smaller the values of \( r \), the more pathological is the behavior of \( \det Q \), covering almost whole region of the parameter space in the case of extremely small \( r = 10^{-3} \).

![Figure 6](image3.png)
FIG. 6: Dark regions correspond to non-positivity of \( \det Q \) for the case when \( Q \) is approximated by the 5 × 5 matrix built of double moments.
FIG. 7: Dark regions correspond to non-positivity of det $Q$ for the case when $Q$ is approximated by the $3 \times 3$ matrix built of dual double moments.

FIG. 8: Dark regions correspond to non-positivity of det $Q$ for the case when $Q$ is approximated by the $4 \times 4$ matrix built of dual double moments.

FIG. 9: Dark regions correspond to non-positivity of det $Q$ for the case when $Q$ is approximated by the $5 \times 5$ matrix built of dual double moments.

But even in the case of "reasonable" $r = 0.1$ one can notice large regions of wrong behavior of the entropic term. The figure 8 summarizes the repetition of the above analysis for the same case, when estimating matrix $Q$ with the help of $4 \times 4$ matrix. One can see an improvement, especially in the case of small $r$. Finally, the figure 9 shows the same case, when we estimate the matrix $Q$ with the help of $5 \times 5$ matrix. One can see the shrinkage of the shaded region for all values of $r$. This is expected since the larger the dimension of matrix $Q$, the better the convergence toward the "true" spectrum of the covariance matrix. We would like to stress that in this case the estimator of matrix $Q$ involves all double moments up to $\alpha_{55}$. All double moments are relatively complicated, e.g. $\alpha_{55}$ is composed of 42 terms involving various products of powers of single moments from $\alpha_1$ up to $\alpha_{10}$. This clearly shows that approaching the limiting distribution becomes less and less numerically tractable in the statistical method. The same problem holds when we apply the dual statistical method. The triple of figures 7, 8 and 9 summarize the analysis for the same values of the parameter $r$ as in the simple statistical method. In general, we see the same tendency of improvement when the dimension of the estimator grows. The "fractal-like" structures, visible for example in the $5 \times 5$ dual case for $r = 10^{-4}$ are the artifact of numerical accuracy. In general, we see that statistical analysis works better comparing to the case of dual statistical analysis.
VII. COMMENT ON REAL WISHART ENSEMBLE

Technically, complex Wishart ensemble is the easiest one from the point of view of the formal methods of random matrix theory, alike Gaussian Unitary Ensemble is the easiest among the triple of classical Dyson’s ensembles. However, in practice we encounter several situations when the measured data are strictly real, which leads to the question, to what extend the analysis and the comparison between both methods presented in this work is transferable to the real case. We start from the analytical method. In this case, there is no difference between the Green’s functions for the real and complex Wishart ensemble, since the value of the parameter \( \beta \) can always be absorbed into the definition of the variance. Similar statement holds for the Green’s functions generating dual moments. In the case of two-point functions situation is a bit more subtle. The first difference is of similar origin to the one discussed for the Green’s functions i.e. corresponds only to the redefinition of \( Q \) by the value 2/\( \beta \). Note that this redefinition does not change the function \( q_0 \). The second difference is more fine. In the case of real Wishart ensemble, already 1/\( N \) corrections are present, contrary to the complex Wishart ensemble, where subleading corrections start at the order of 1/\( N^2 \). In this case the pdf of multidimensional Gaussian \( f(v_\theta) \) develops additionally the non-zero mean-values \( \mu_\theta \), which, unfortunately, are given only in terms of some contour integral, which makes the operational use of their representation difficult. In the literature [21], this problem was avoided in such a way that the non-zero means were neglected and the minimizer was based on central multidimensional Gaussian alike in the complex case. The numerical accuracy based on this approximation was quite satisfactory. We have performed similar studies and we confirm the rationale of this approximation, see Table VIII. We believe that it is possible to get numerically tractable representation for the means \( \mu_\theta \), but it is perhaps not worthy to invest a lot of work in order to achieve this goal, taking into account: first, how well the approximation of zero mean works; second, that the statistical method in general is much more complicated and time-consuming comparing to the analytical one. For completeness, we mention also the case of \( \beta = 4 \), corresponding to quaternion-valued Wishart. This is almost an academic case, since we are not aware of any statistical problem when quaternion-valued measurements appear. On the other side, there exists a closely related to the quaternionic Wishart ensemble so-called chiral symplectic ensemble, which plays the role for certain lattice version of the Dirac operator in Quantum Chromodynamics. In case the analysis of the moments of such operator would be needed, one should use analytic method. Then, alike in the case of the real Wishart, the effect of quaternion variable can be incorporated into the redefinition of the variance of the Gaussian, and all our formulae relating the moments still hold.

VIII. CONCLUSIONS AND PROSPECTS

In this paper, we have compared two methods of eigen-inference, based on the analysis of one-point and two-point Green’s functions, respectively. As far as we know, this is the first so extensive comparative analysis of this type of inference. We have also confirmed (both analytically and numerically) recent results based on two-point Green’s functions performed by [20]. Our analysis clearly points at the superiority of eigen-inference based on one-point Green’s function. The procedure is of orders of magnitude faster comparing to the analysis based on two-point functions, and involves much less computer memory. It is also not restricted to the case of only two or maximum three distinct eigenvalues of the true covariance method. It works equally well for real and complex data points. Second, we have observed a numerical instability of the statistical method in the case of very small values of the rectangularity parameter \( r \). This was a priori puzzling, since usually the smallness of \( r \) improves the inference (in the case of the analysis based on one-point functions). We have identified the source of this puzzle, linking the failure of the method to the appearance of the spurious zero and negative modes in the truncated approximation of the double moments matrix \( Q_\theta \). Third, we have performed analysis based on inverse single and double moments. In particular, we have pointed out that in several cases the inverse single moments can be used to perform eigen-inference as well as the standard moments, whereas inverse double moments inherit the above-mentioned pathology in even more pronounced way. In this paper, we have not performed the comparison between the errors of analytical method based on our conformal mapping (31) and the popular and powerful method of so-called G-estimators, proposed originally by Girko [23] and widely used e.g. by Mestre et al. [22]. Examples are so-called Generalized Likelihood Ratio Test (GLRT) or Frobenius test. From preliminary numerical studies done by us, we got relatively similar results for the eigen-inference, with slight advantage of the G-estimators method. It is not puzzling, since the conformal mapping we use [11, 20] is closely related G-estimators. Simple comparison is however not easy, since G-estimator method [22] requires the knowledge of probabilities \( p_i \) and infers the values on the unknown eigenvalues only, whereas analytic method infers both sets of values of unknown probabilities and spectrum. G-method gives good results in the case when one of the eigenvalues is ”spiked” with a very low (known) probability \( p_i \sim 1/N \). Analytic method assumes that all probabilities are of the same order, so again a direct comparison is not justified. Taking into account the importance of the ”spiked” events, we plan to extend our analysis in the future for the case of unusual \( N \) scaling of both probabilities and eigenvalues, and to present the results of such analysis in future publication.
TABLE III: Comparison between the real and the complex case

Table showing the comparison between the real and complex cases, including columns for methods, size of matrices, and various parameters.

IX. APPENDICES

A. Conformal mapping

Let us consider the case when the true covariance matrix is given by the unknown, multidimensional, complex correlated Gaussian distribution

\[ P(X) = (\pi)^{-NT}(\det B)^{-T}(\det A)^{-N} \]

\[ e^{-\sum_{i,j=1}^{N} \sum_{a,b=1}^{T} X_{ia} [B^{-1}]_{ij} X_{jb} [A^{-1}]_{ba}} \]

(29)

where the true matrices \( A \) and \( B \) are unknown. Standard procedure relies on approximating them by the Pearson estimators, built from empirical data \( b = \frac{1}{N}XX^T \) and \( c = \frac{1}{N}XX^T \). Introducing functional inverse of the generating function \( M(z) \), i.e. the function \( N(z) \) such that \( N[M(z)] = M[N(z)] = z \), and using the theory of free random variables [6] (valid in the limit when dimensions \( N, T \) tend to infinity while the ratio is \( r = N/T \) is kept fixed), one can reduce the problem of inference to surprisingly simple relation [11]

\[ N_c(z) = rz N_A(rz) N_B(z) \]

(30)

or, equivalently, after substitution \( z \to M_c(z) \),

\[ z = rM_c(z)N_A(rM_c(z))N_B(M_c(z)) \]

(31)

The formula (15), representing conformal mapping between the \( z \) complex plane and \( Z \) complex plane, originally derived by diagrammatical methods [20], is a special case of last relation, corresponding to the case when \( A = 1_T, c = S \) and \( B = \Sigma \), since in this case \( N_A(z) = 1 + 1/z \). Similar mapping appears also as the heart of the G-estimator method.

B. Tables of double and double dual moments of \( \Sigma \) rephrased in terms of moments of \( S \)

Single and dual moments can be easily calculated using the conformal mappings. The authors are willing to provide appropriate symbolic codes. Calculation of double moments is more involved, so we list the Table of double moments up to \( \alpha_{55} \). The values of all coefficients agree with [20, 21]. For completeness, we list also the double dial moments up to \( \tilde{\alpha}_{55} \). As far as we know, this result was never published. Alike in the case of single moments,
we are willing to provide appropriate symbolic codes for double moments as well.

C. Padé approximants

Padé approximant of function $G(x)$ of order $\lfloor m/n \rfloor$, denoted usually as $\lfloor m/n \rfloor_G(x)$, represents the "optimal" approximation of the unknown function $G(x)$ by the ratio of two polynomials $A(x)$ and $B(x)$, of orders $m$ and $n$, correspondingly. By construction, Padé approximant agrees with $G(x)$ to the highest possible order, i.e. to $n + m$ term in Taylor expansion of $G(x)$. It is perfectly suited for numerical analysis, since it works even in the case when the convergence of the Taylor series is difficult to hold. On may therefore say, that the Padé approximant is the optimal deterministic G-estimator. In our case, after simple change of variables in the Green’s function $G(z)$, by the nature of the resolvent we have an approximant $G(z) \approx \left[K_{\text{max}} - 1, K_{\text{max}}\right](x = 1/z)$. Since fast Padé algorithms are incorporated into several standard numerical packages, "Padéization" of the calculation speeds up considerably the eigen-inference.

X. ACKNOWLEDGMENTS

The authors appreciate discussions with Roland Speicher and Xavier Mestre. MAN is supported by the Grant DEC-2011/02/A/ST1/00119 of the National Centre of Science. JJ is supported by the Grant DEC-2012/06/A/ST2/00389 of the National Centre of Science.

[1] J. Wishart, Biometrika 20A, 32 (1928).
[2] Y. Fyodorov and H.J. Sommers, J. Math. Phys. 38, 1918 (1997) and references therein.
[3] C.V. Beenakker, Rev. Mod. Phys. 69, 731 (1997) and references therein.
[4] P. J. Forrester and D.-Z. Liu, Raney distributions and random matrix theory, arXiv 1404.5759 and references therein.
[5] J.J.M. Verbaarschot, in Oxford Handbook of Random Matrix Theory, Oxford Handbooks in Mathematics, edited by G. Akemann, J. Baik and Ph. Di Francesco (Oxford University Press, USA, 2011) and references therein.
[6] D.V. Voiculescu, K.J. Dykema and A. Nica, Free random variables, CRM Monograph Series, Vol. 1 (American Mathematical Society, Providence, 1992).
[7] L. Laloux, P. Cizeau, J.-P. Bouchaud and M. Potters, Phys. Rev. Lett. 83, 1467 (1999).
[8] V. Plerou, P. Gopikrishnan, B. Rosenow, L.A.N. Amaral, and H.E. Stanley, Phys. Rev. Lett. 83, 1471 (1999).
[9] G. Livian and L. Rebecchi, European Phys. J. B85, 1 (2012).
[10] J.-P. Bouchaud and M. Potters, Theory of Financial Risks (Cambridge University Press, Cambridge, 2001).
[11] Z. Burda et al, Quantitative Finance 11(7), 1103 (2011).
[12] G.J. Foschini, Bell Labs tech. J. 1 41 (1996)
[13] E. Telatar, Eur. Trans. Telecommun. 10 585 (1999).
[14] R. Couillet and M. Debbah, Random Matrix Methods for Wireless telecommunications (Cambridge University Press, Cambridge, 2011).
[15] A. Tulino and S. Verdu, Random Matrix Theory and Wireless Communications, Foundations and Trends in Communication and Information Theory, 1, 1-182 (2004)
[16] V. Dahlírel et al., Proc. Natl. Acad. Sci. USA 108, 11530 (2011).
[17] Z.D. Bai, J. Silverstein, Ann. Prob. 32 (2004) 533.
[18] V. A. Marchenko and L. A. Pastur, Math. USSR-Sb, 1, 457-483 (1967)
[19] Zh. Bai and J.W. Silverstein, Spectral Analysis of large Dimensional Random Matrices(Springer Press, Beijing, 2011) and references therein; N. El Karoui, Annals of Statistics 36 (6), 2757 (2008).
[20] N. Raj Rao, Applied Stochastic Eigen-Analysis, Ph.D. Thesis, MIT 2007.
[21] N. Raj Rao, J. Mingo, R. Speicher and A. Edelman, Annals of Statistics 36 (6), 2850 (2008).
[22] X. Mestre, IEEE Transactions on Information Theory, 50(11), 5113 (2008).
[23] V.L.Girko, An Introduction to Statistical Analysis of Random Arrays (VSP Science, 1998).
[24] G. Łukaszewski, Ph.D. Thesis, Jagiellonian University, 2011 (unpublished).
[25] Z. Drogosz, yearly scientific paper, Jagiellonian University, 2014 (unpublished).
[26] Z. Burda, M.A. Nowak and J. Jurkiewicz, Acta Phys. Pol. B39, 87 (2003). Z. Burda, A. Görlich, A. Jarosz and J. Jurkiewicz, Physica A, 343, 295-310 (2004); Z. Burda and J. Jurkiewicz, Physica A 344, 67 (2004); Z. Burda, J. Jurkiewicz and B. Waclaw, Phys. Rev. E 71, 026111 (2005).
[27] J. Ambjørn, J. Jurkiewicz, Y. Makeenko, Phys. Lett. B251 (1990) 517.
[28] B. Collins, J.A. Mingo, P. Śniady, R. Speicher, Documenta Mathematica 12 (2007)1.
[29] J. Jurkiewicz, G. Łukaszewski, M.A. Nowak, Acta Phys. Polon. B39 (2008) 799.
### TABLE IV: Double moments.

| α₁,₁  | = −a₁² + a₂ |
|--------|--------------|
| α₁,₂  | = 2(a₁ − 2a₂a₃ + a₄) |
| α₁,₃  | = −3(a₅² − 3a₂a₅ + 2a₃a₅ + a₇ − a₄) |
| α₁,₄  | = 4(a₅ + 2a₄a₅ + 3a₃a₅ + (3a₅ − 2a₄)a₁ − 2a₃a₁ + a₆) |
| α₁,₅  | = −5(a₅² − 3a₂a₅ + 4a₃a₅ + (6a₅ + 3a₆)a₁ + (2a₅ + 6a₂a₅)a₁ − a₂ + a₇ + 2a₂a₄ − a₆) |
| α₂,₂  | = −6a₁ + 16a₂a₁ − 8a₃a₁ + 6a₄ + 4a₅ |
| α₂,₃  | = 6(2a₄ + 7a₆a₄ + 4a₃a₅ + (5a₅ − 2a₄)a₁ − 3a₃a₁ + a₅) |
| α₂,₄  | = −4(5a₅ + 22a₂a₅ + 14a₃a₅ + 8(3a₅ + 2a₄)a₁ + (a₅ + 5a₂a₅)a₁ − a₂ + 4a₅ + 3a₃a₅ + 2a₆a₅ + 2a₆) |
| α₂,₅  | = 10(3a₅ + 16a₂a₅ + 11a₃a₅ + (2a₅ + 7a₆a₅)a₁ + (−3a₅ + 6a₂a₅)a₁ + 2a₅ + 5a₃ + a₄) |
| α₃,₃  | = −3(10a₅ + 42a₂a₅ + 24a₃a₅ + 3(15a₅ − 4a₆)a₅ + (6a₅ + 6a₃a₅)a₅ + 7a₂a₅ + 6a₅ + 9a₂a₅ − 3a₆) |
| α₃,₄  | = 12(5a₅ + 25a₂a₅ + 15a₃a₅ + 4(3a₅ − 2a₆a₅)a₅ + (−3a₅ + 12a₂a₅ + 7a₃a₅ + 2a₆a₅)a₅ + 8a₂a₅ + 3a₃a₅ + a₅) |
| α₃,₅  | = 15 + 4(5a₅ + 6a₃a₅ + 198a₅ + 31a₃a₅ + (16a₅ − 25a₂a₅)a₅ + (−16a₅ + 92a₃a₅ + 52a₅ + 8a₆a₅)a₅) |
| α₄,₄  | = −9 + 4(5a₅ + 7a₆a₅ + 12(a₅ + 15a₃a₅ + 4a₇a₅)a₅ + (35a₅ − 51a₂a₅ + 12a₅ + 57a₃a₅ + 9a₆ + 16a₃a₅ + 2a₆a₅ + 4a₇ + 4a₈a₅) |
| α₄,₅  | = −9 + a₅ + 10(88a₅ + 27a₆a₅ + (67 − 66a₃a₅)a₅ + 12a₅ + 10a₃a₅ + 8a₆a₅ + a₉a₅ − a₉a₅ − a₉a₅ + 12a₅ + 12a₅a₅ |
| α₅,₅  | = 15 + a₅ + 13(a₅ + 24a₃a₅ − 3a₆) − 5(14a₅ + 4a₇a₅ − 3a₆) − 5(14a₅ + 4a₇a₅ − 3a₆) |

### TABLE V: Double dual moments.

| α₁,₁  | = (a₂a₅ − a₅²)/a₅³ |
|--------|---------------------|
| α₁,₂  | = 2(a₅² − 2a₄a₅ + a₅²)/a₅³ |
| α₁,₃  | = −3(a₅² − 3a₂a₅ + 2a₃a₅ + a₅²)/a₅³ |
| α₁,₄  | = 4(a₅² − 4a₄a₅ + 3a₃a₅ + a₅²)/a₅³ |
| α₁,₅  | = −5(a₅² − 5a₂a₅ + 4a₃a₅ − 5a₄a₅ − 2a₅² + 2a₅(a₂a₇ − 3a₅a₅))a₆/a₅³ |
| α₂,₂  | = 2(−3a₅² + 8a₅a₅ − a₅²(a₂a₅ − 3a₅²))/a₅³ |
| α₂,₃  | = 6(a₅² − 7a₆a₅ + 4a₃a₅ + a₅²)/a₅³ |
| α₂,₄  | = 8(a₅² − 23a₄a₅ + 14a₃a₅ − 8a₂a₅ + 3a₅²)a₆/a₅³ |
| α₂,₅  | = 10(a₅² − 36a₃a₅ + 11a₄a₅ + a₅²)/a₅³ |
| α₃,₃  | = −3(a₅² − 42a₄a₅ + 24a₃a₅ + a₅²)/a₅³ |
| α₃,₄  | = 12(a₅² − 25a₄a₅ + 15a₃a₅ + a₅²)/a₅³ |
| α₃,₅  | = 15(a₅² − 9a₄a₅ + 26a₃a₅ + a₅²)/a₅³ |
| α₄,₄  | = 8(a₅² − 32a₄a₅ + 21a₃a₅ + a₅²)/a₅³ |
| α₄,₅  | = 10(a₅² − 26a₃a₅ + a₅²)/a₅³ |
| α₅,₅  | = 10(a₅² − 26a₃a₅ + a₅²)/a₅³ |

