Hybrid Assembly of the Genome of the Entomopathogenic Nematode Steinernema carpocapsae Identifies the X-Chromosome

Lorrain Serra,*1 Marissa Macchietto,† Aide Macias-Muñoz,* Cassandra Joan McGill,* Isaryhia Maya Rodriguez,* Bryan Rodriguez,* Rabi Murad,* and Ali Mortazavi*‡

*Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, †Institute of Health Informatics, University of Minnesota, Minneapolis, MN, 55455, and ‡Center for Complex Biological Systems, University of California, Irvine, CA 92697

ORCID ID: 0000-0002-4259-6362 (A.M.)

ABSTRACT Entomopathogenic nematodes from the genus Steinernema are lethal insect parasites that quickly kill their insect hosts with the help of their symbiotic bacteria. Steinernema carpocapsae is one of the most studied entomopathogens due to its broad lethality to diverse insect species and its effective commercial use as a biological control agent for insect pests, as well as a genetic model for studying parasitism, pathogenesis, and symbiosis. In this study, we used long-reads from the Pacific Biosciences platform and BioNano Genomics Irys system to assemble the most complete genome of the S. carpocapsae ALL strain to date, comprising 84.5 Mb in 16 scaffolds, with an N50 of 7.36 Mb. The largest scaffold, with 20.9 Mb, was identified as chromosome X based on sex-specific genome sequencing. The high level of contiguity allowed us to characterize gene density, repeat content, and GC content. RNA-seq data from 17 developmental stages, spanning from embryo to adult, were used to predict 30,957 gene models. Using this improved genome, we performed a macrosyntenic analysis to Caenorhabditis elegans and Pristionchus pacificus and found S. carpocapsae’s chromosome X to be primarily orthologous to C. elegans’ and P. pacificus’ chromosome II and IV. We also investigated the expansion of protein families and gene expression differences between adult male and female stage nematodes. This new genome and more accurate set of annotations provide a foundation for additional comparative genomic and gene expression studies within the Steinernema clade and across the Nematoda phylum.

Nematodes are round, non-segmented worms with a simple body plan that populate all known biological niches. Caenorhabditis elegans is by far the best-characterized nematode species and was the first metazoan to have its genome assembled (C. elegans Sequencing Consortium 1998). Studies in C. elegans have been crucial for the study of a multitude of biological processes such as development, cell specification, cell differentiation, apoptosis and genome evolution (Deppe et al., 1978; Kaletta and Hengartner 2006; Rothman et al., 2014; Segreg et al. 2010). Other free-living, androdiecius nematode genomes such as Pristionchus pacificus and Panagrellus redivivus have provided tools for genomic comparisons in developmental processes and phenotypic plasticity (Rödelsperger et al., 2017; Srinivasan et al., 2013).

However, free-living nematodes represent only a subset of the entire nematode phylum as they exclude parasitic nematodes, which are of most agricultural and biomedical interest. Parasitic nematodes have a diverse group of hosts including insects, plants, and humans. Steinernema carpocapsae is an entomopathogenic nematode (EPN) that is a lethal insect parasite but is not harmful to humans or plants. S. carpocapsae is of great interest because of its wide host range with approximately 200 possible insect hosts and the possible orthology of its toxins...
to mammalian-parasitic nematodes (Shapiro-Ilan et al., 2017; Yang et al., 2015). In many countries, S. carpocapsae are commercialized for use as insect pest control (Dillman et al., 2012; Dito et al., 2016). Steinernema has a symbiotic relationship with pathogenic Xenorhabdus bacteria where they collectively infect and kill a host within a few days, reproduce separately within the host, and reassociate when forming infective juveniles that will seek out the next host (Hirao et al., 1999). Steinernema and its bacterial symbiont have been extensively studied as genetic models to explore symbiosis and pathogenesis (Martens and Goodrich-Blair 2005; Sicard et al., 2003). EPNs are also an excellent satellite organism to study mammalian parasitism as they are closely related to the Strongyloidae nematodes (Blaxter et al., 1998). In particular, Steinernema’s mechanism of host seeking by olfactory and other sensory cues likely offers a great model for mammalian-parasitic nematodes (Gang & Hallen 2016).

Previously published draft genomes done using Illumina sequencing for five Steinernema species opened the door to study evolutionary traits among these parasitic nematodes and compare them to free-living nematodes. These genomes helped elucidate gene families involved in parasitism that were expanded in Steinernema, such as proteases and protease inhibitors, while a comparative analysis to C. elegans revealed orthologous non-coding regulatory motifs (Dillman et al., 2015). S. carpocapsae and S. feltiae were further used to study the extent of expression conservation in orthologous genes across nematode families that were associated with embryonic development (Macchietto et al., 2017). This study found a funnel-shaped model of embryonic development based on high conservation of orthologous genes between Caenorhabditis and Steinernema (Macchietto et al., 2017). The draft genomes also allowed for further studies in neuropeptide sensory perception in S. carpocapsae, and the study of lethal venom proteins in both S. carpocapsae and S. feltiae (Chang et al., 2019, Lu et al., 2017; Morris et al., 2017).

The draft genome assembly of S. carpocapsae ALL strain had 1,578 contigs with an estimated genome size of 85.6 Mb, N50 of 300 kb and more than 28,000 predicted genes (Dillman et al., 2015). Another study, also using short-reads assembled S. carpocapsae Breton strain into 347 scaffolds with an N50 of 1.24 Mb (Rougou-Cardoso et al., 2016). The draft genome status, although helpful, could hinder further studies of protein families’ expansions involved in parasitism. The high fragmentation also deters the analysis of conserved gene sequences, which could play a significantly larger role in the evolution of this phylum. Therefore, a more contiguous assembly of the S. carpocapsae genome will contribute to further understanding the mechanisms of Steinernema genome evolution. In this study, we reassembled the genome with long-read sequencing from Pacific Biosciences (PacBio) in conjunction with optical mapping using the BioNano Irys system, which produces high throughput physical maps (Lam et al., 2012; Rhoads and Au 2015). The newly assembled genome consists of 16 scaffolds with nearly 31 thousand predicted genes and we identified the largest scaffold as chromosome X. We observed clusters of expansion of proteases families and found gene expression differences in catalytic activity between adult male and female stage nematodes.

MATERIALS AND METHODS

Axenic S. carpocapsae culture

S. carpocapsae infective Juveniles (IJ) were cultured on Xenorhabdus nematophila colonization defective mutant (HGB315) bacteria to produce axenic IJs. The IJs were first cultured in vivo in Galleria mellonella (wax-worms) and surface sterilized (Gaugler and Kaya 1990). X. nematophila bacteria (HGB315) were cultured in tryptic soy broth (cat. No. A00169, BD Scientific) and shaken at 220rpm in a 26°C incubator overnight. Cultures were plated on lipid agar (LA) plates (8 g/L of yeast extract, 2 g/L of MgCl2, 7 ml/L of corn syrup, 4 ml/L of corn oil, and 15 g/L of Bacto Agar), using 600µL of culture per plate. Approximately 300,000 IJs were plated across 20 lipid agar plates (~15,000 IJs/plate) seeded with lawns of Xenorhabdus nematophila. Axenic IJs were collected from LA plates after 2-3 weeks by placing the LA plates in larger petri plates filled with DI water. The IJs were collected from the DI and surface sterilized (Gaugler and Kaya 1990). IJs were stored in Ringer’s solution in tissue culture flasks at a density < 15 IJs/µL until enough IJs (~2 million) were collected for the DNA isolation.

PacBio DNA isolation

Sucrose float to remove dead IJs and bacterial contamination. Axenic IJs stored in the tissue culture flasks were transferred to conical tubes, spun down, and washed 3x with DI water. IJs were re-surface sterilized by adding 7.5 mL of distilled (DI) water to the worm pellet and 7.5 mL of egg solution (3 mL DI water, 4.5 mL 1 M NaOH, 2.5 mL of fresh Clorox bleach) and incubating for 5 min. The egg solution was immediately removed, and the IJs were rinsed 3 times by centrifuging at 2000 rpm for 1-2 min and then suspended in 7 mL of molecular grade water. 7 mL of cold 60% sucrose was added, and the sample was mixed and spun at 50 x g (630 rpm/660 rpm) for 1 min at 4°C, and then immediately at 1500 x g (3000 rpm/3180 rpm) for 3 min at 4°C. The live IJs were collected from the top layer and transferred to a sterile conical tube and washed 3x (centrifuging at 1650g (3600 rpm/3810rpm) for 5 min) with molecular grade water.

Grinding of the IJs with a mortar and pestle in liquid nitrogen to break nematode cuticles. A mortar, pestle, and four ultracentrifuge tubes were wrapped in aluminum foil and autoclaved for at least 20 min at 121°C. The cleaned IJs were added to the autoclaved mortar and liquid nitrogen was poured into the mortar and ground with the pestle until the liquid nitrogen evaporated. IJs were ground for 10 min adding liquid nitrogen as needed. The ground powder was transferred into a 50mL conical tube on ice.

If cell/tissue lysis and protein and RNA digestion. In a 15 mL conical, 9.5 mL Qiagen Buffer G2 from the Genomic DNA Buffer Set (Cat. No. 19060, Qiagen), 19 µL RNase A (100mg/mL; Cat. No. EN05231, Thermofisher) and 375 µL of protease K (> 800mili-absorbance units (mAU), Cat. No. P4850-5ML, Sigma-Aldrich) were mixed, added to the ground IJ sample, and incubated at 50°C in a water bath for 3-4 hr until the lysate was clear. After incubated the sample was spun down at 5,000 x g for 10 min at 4°C to separate out any particulate matter that can clog the genomic tip column. The supernatant was transferred to a clean 15 mL conical tube.

Genomic DNA measurements. The total amount of genomic DNA was measured with the Qubit fluorometer to determine which genomic tip size to use. We used the 100G genomic-tip because we had between 80-100 µg of gDNA.

Genomic-tip protocol. A 100G Qiagen Genomic-tip (100/G) was equilibrated with 4 mL of Buffer QB. Separately, the DNA sample was diluted with an equal volume of buffer QBT and vortexed for 10s at maximum speed and immediately applied to the equilibrated genomic-tip. The following steps of the genomic-tip were followed according to the manufacturer’s instructions, except that the ethanol and isopropanol precipitation centrifugation steps were performed at 10,000 x g for 45 min each. The DNA was eluted in EB buffer overnight at 55°C. The DNA was sheared using 10 pumps of a blunt 24-gauge needle followed by 10 pumps using a blunt 21-gauge needle. The gDNA concentration, absorbance ratios, and fragment size range were determined before SMRT-bell library preparation.
S. carpocapsae genome assembly

The *S. carpocapsae* genome was assembled with Illumina reads and PacBio reads. Then, further improved in contiguity with BioNano genomics Iris system. Previously published Illumina libraries were assembled into high quality contigs using the Platanus (version 1.2.4) command *platanus assemble* with a k-mer size of 51 (-k 51) and a minimum k-mer coverage cut-off of 5 (-c 5) (Dillman et al., 2015; Kajitani et al., 2014). Then, we sequenced six SMRT cells on the PacBio RS II and obtained a total of 500,026 reads (616,611 sub reads) with a N50 read length of 18,308 bp and a mean subread length of 13,036 bp. This translated to 76.8X PacBio read coverage of the 85 Mb genome. All PacBio reads (76.8X genome coverage) were used with the PBcR pipeline (Chakraborty et al., 2015). Reads were mixed with quickmerge and MUMmer (version 3.23) using the de-fault settings to generate a merged assembly (Chakraborty et al.; Kurtz et al., 2004).

BioNano: DNA was extracted from *S. carpocapsae* Infective Juveniles (IJs) using the Animal Tissue DNA Isolation kit (Bionano Genomics). Bionano Irys optical data were generated and assembled with IrysSolve 2.1. We then merged the Bionano assembly with the merged assembly using IrysSolve, retaining Bionano assembly features when the two assemblies disagreed (Figure S1A).

The new *S. carpocapsae* genome assembly also went through Haploemerger to create an assembly with minimum possible number of haplotypes. First, the assembly was softmasked with Windowmasker (version 2.2.22) (Morgulis et al., 2006). Next, the softmasked genome was cleaned using the faDnaPolishing.pl script provided by HaploMerger2 (Huang et al., 2012). Then, the longest 5% of the genome was used as a target and the remaining 95% was used as a query for alignment with Lastz, which created a score matrix. The alignment threshold was kept at 95% to best identify heterozygosity. Lastly, the *S. carpocapsae* ALL strain was compared to the Breton strain through genomeevolution.org using synmap function with default settings (Lyons & Freeling 2008).

de novo developmental transcriptome assembly with Oases

Smartseq2 RNA-seq datasets spanning 16 developmental stages (zygote, 2-cell, 4-cell, 8-cell, 24–44-cell, 64–78-cell, comma, 1.5fold, twofold, moving, L1, nonactivated L1, 9-15h activated L1, L4, male, and female) in replicates of 2-4 were assembled into stage-specific transcriptomes using Oases 0.2.8 and Velvet 1.2.10. Stage-specific transcriptomes were assembled using different kmer sizes from 22-35 in steps of 2, and then merged into a final assembly. The merged final transcriptome assemblies were compiled into a single fasta file to use for gene model prediction.

Genome annotation training and prediction with Augustus

539 *S. carpocapsae* genes sequences that matched 458 C. elegans CEGMA genes (OrthoMCL) were used together with de novo assembled stage-specific transcriptomes to automatically train Augustus gene model exon and intron prediction (Stanke et al., 2008). *C. elegans* UTR models provided by Augustus were used for predicting the *S. carpocapsae* UTRs. A compiled set of *de novo* assembled stage-specific transcriptomes (from above) was mapped onto the merged genome using Blat version 36 with the following settings: -maxIntron 70000 -minScore = 100 -minIdentity = 94. The best alignments were then sorted and converted into hints file for Augustus using blat2hints.pl from Augustus (version 3.2.1).

Assessing genome assembly completeness with Benchmarking Universal Single-Copy Orthologs (BUSCO)

Genome completeness was checked with BUSCO v3 software with default settings for genome and using near-universal single-copy orthologs selected from OrthoDB v9 nematoda_odb9 (Simão et al., 2015). Nematode_odb9 has 982 groups for which 854 groups were found in the *S. carpocapsae* assembly, which is an 87% completeness (Figure S1B).

S. carpocapsae female and male DNA collection

IJs were cultured with *X. nematophila* for approximately 54 hr to collect 100 males and 62 hr to collect 50 females. Female and male DNA were extracted with DNeasy blood and Tissue kit (Qiagen Cat No. 69504). The DNA of females and males were processed following the steps F through J from protocol of Serra et al. (2018). Briefly, DNA was tagged using the Nextera DNA library prep kit (Illumina, FC-121-1030). Then, tagged DNA was amplified using Phusion High Fidelity PCR master mix with the amplification program set to 1) 72° 5 min 2) 98° 30 sec 3) 98° 10 sec, 63° 30 sec., 72° 1 min. (repeat 10x). 4) 4° Hold. PCR samples were cleaned with Ampure XP beads with a 1:1 ratio, concentrations measured with Qubit fluorometer and bioAnalyzed with Agilent 2100 Bioanalyzer. Libraries were prepared and sequenced as paired-end, 43 base pair reads on the Illumina Nextseq 500.

Genome analysis

To calculate coverage of genome for male and female, first, *S. carpocapsae* genome was indexed with bowtie (version 1.0.0) and DNA reads were mapped to the genome with the following options: -X 1500 -a -v 2–best–strata –S (Langmead et al., 2009). Bam files were used to calculate coverage using DeepTools2 (version 3.1.1) with default settings for 100 kb (Ramírez et al., 2016). Next, gene density was calculated and graphed with Genomic-Features (version 3.8) and KaryoploterR (version 3.8) packages for R/Bioconductor (Gel & Serra 2017; Lawrence et al., 2013). GC content was calculated with perl script GC-content-in-sliding-window using default settings for 100-kb windows (Richard 2018). Number of repeats were calculated with RepeatModeler (version 1.0.8) and RepeatMasker (version 4.0.7) using default settings (Smit, Hubley, & Green, n.d.).

Orthology analysis

Orthologs were determined across *S. carpocapsae* and *C. elegans,* and *S. carpocapsae* and *P. pacificus* by blasting the longest protein sequence for each gene using OrthoMCL (version 1.4) with the default settings (Li et al. 2003). Protein sequences were downloaded from WormBase Paradise for *C. elegans* (version PRJNA13758) and *P. pacificus* (version PRJNA12644).

Protease identification, location, and phylogeny

Protein sequences for the new *S. carpocapsae* genome were aligned to the MEROPS (Rawlings et al. 2018) database using command-line BLAST
analyses, gene expression was reported in Transcripts Per Million (TPM). For all RNA-seq analysis of time course, embryos, female and male, and female RNA-seq analysis of embryos, female and male. The nematodes were washed from the plate into a 1.5-mL eppendorf tube and subsequently washed 2 times with Ringer’s and 3 times with HyPure water. Then, S. carpocapsae single nematode transcriptome sequencing was performed according to Serra et al. (2018). Briefly, a single nematode was picked, transferred to a PCR tube and cut with a 25-gauge needle. Then, 2 μl of lysis buffer (for recipe see Serra et al., 2018) which has RNase inhibitor and proteinase K was added to the tube and incubated at 65°C for 10 min, 85°C for 1 min. Immediately after, 1 μl oligo-dT VN primer and 1 μl dNTP was added to the tube and incubated at 72°C for 3 min. After the incubation period samples were reverse transcribed and PCR amplified according to Serra et al. After PCR, samples were cleaned with Ampure XP beads, concentrations measured with Qubit fluorometer and bioanalyzed with Agilent 2100 Bioanalyzer to check for cDNA quality. If samples had a good BioAnalyzer profile, they were tagmented with Nextera DNA Library Prep Kit, amplified with adapters and sequenced.

RNA-seq analysis of time course, male, and female

S. carpocapsae genome was indexed with a GTF file via RSEM (version 1.2.25) using the command rsem-calculate-expression. For all samples had a good BioAnalyzer profile, they were tagmented with Nextera DNA Library Prep Kit, amplified with adapters and sequenced.

RESULTS

S. carpocapsae largest scaffold identified as chromosome X

We used PacBio sequencing along with BioNano optical mapping to generate a S. carpocapsae genome assembly consisting of 17 scaffolds with a N50 of 7.36 Mb and GC content of 45.7%. Comparison of our genome to the Breton strain from Rougon-Cardoso et al. (2016) allowed us to merge our smallest contig of 150 kb with scaffold 7 for a total of 16 scaffolds. S. carpocapsae is known to have 5 chromosomes, and the largest scaffold of 20.9 Mb, could correspond to an assembled chromosome (Table S1). We performed Illumina sequencing of the DNA of males and females, being careful to collect females that had not mated to identify scaffolds that would encompass the chromosome X in our new assembly. The largest scaffold displayed a characteristic twofold difference in coverage between females (orange) and males (blue), which we therefore renamed as Chromosome X (Figure 1A). Scaffolds 15, which is much smaller (207 kb or 1% of the size of chromosome X) also showed a similar difference in coverage and is likely a small part of the X chromosome. The remaining scaffolds of ≥ 1 Mb suggest that we have the remaining four chromosomes in 14 pieces at most.

We used our RNA-seq transcriptomes from published studies (Marissa Macchiotto et al., 2017) and this study to reannotate the genes on this new assembly and identified 30,957 genes using Augustus (see methods). We then calculated the gene density along the scaffolds and observed a uniform distribution of genes on chromosome X, which is similar to observations in Caenorhabditis elegans and P. pacifica (Andersen et al., 2012; Rödelsperger et al., 2017). Gene density varied little along and among all other scaffolds (Figure 1B). Chromosome X has a rich %GC content in its center when compared to its arms. All other scaffolds either have uniform %GC content or show a distinct increase or decrease (Figure 1C). Lastly, we analyzed the repeat content of chromosome X and scaffolds. As expected from other assembled nematode chromosomes, chromosome X repeats are more frequent on the arms than in its central region (Hillier et al., 2007; Rödelsperger et al., 2017; Yin et al., 2018). All other scaffolds that are part of autosomal chromosomes either have uniform repetitive sequences (such as scaffold 3) or scaffolds in which repetitive sequence either decrease or increase (such as scaffolds 2 and 4) (Figure 1D). In summary, we assembled the S. carpocapsae genome into 16 scaffolds, 14 of which are greater than 1 Mb, including a nearly complete chromosome X that shows similar characteristics to other assembled nematode chromosomes.

S. carpocapsae chromosome X is primarily syntenic to C. elegans chromosomes II and IV

We performed a macrosyntenic analysis between S. carpocapsae and C. elegans genomes by identifying the one-to-one orthologs between both species and plotting these genes according to their position in S. carpocapsae scaffolds (Figure 2). We found that S. carpocapsae chromosome X is primarily homologous to sections of C. elegans chromosomes II, X, and IV. S. carpocapsae chromosome X has approximately 10 Mb homologous to C. elegans chromosome II, 7.5 Mb homologous to C. elegans chromosome IV, and 2.5 Mb homologous to C. elegans chromosome X. The other scaffolds are largely homologous to only one
of the *C. elegans* chromosomes. Scaffolds 1, 9, and 11 are homologous to chromosome I. Scaffold 15 is homologous to chromosome II. Scaffolds 4, 7, 8, 13, and 16 are homologous to chromosome III. Scaffolds 2, 6, 10, and 14 are homologous to chromosome IV. Lastly, scaffolds 3, 5, and 12 are homologous to chromosome X.

Next, we investigated whether *S. carpocapsae* represents the ancestral state by repeating the macrosyntenic analysis with *Pristionchus pacificus* (Figure S2). The *P. pacificus* chromosome configuration has been reported to represent an ancestral state while *C. elegans* and strongylid nematodes represent the derived state (Rödelsperger et al., 2017). *S. carpocapsae* chromosome X is primarily syntenic to *P. pacificus* chromosomes II, X and IV. The other scaffolds are largely homologs to only one of *P. pacificus*’ chromosomes. Scaffold 15 is homologous to chromosome II. Scaffolds 2, 3, 5, 6, 7, 10, 12, and 14 are homologous to chromosome I. Scaffolds 4, 8, and 13 are homologous to chromosome III. Lastly, scaffolds 1, 9 and 11 are homologous to chromosome V. *P. pacificus* chromosomes II, III, IV, X are homologous to the same chromosomes in *C. elegans* (Rödelsperger et al., 2017). However, *P. pacificus* chromosome I is partially homologous to *C. elegans* chromosome V and X. The similar pattern of homologies between chromosome X of *S. carpocapsae* and chromosomes II, X, and V of both *C. elegans* and *P. pacificus* is unsurprising, given that these species’ chromosomes are themselves homologous. *S. carpocapsae* chromosome X configuration is likely similar between *C. elegans* and *P. pacificus* because of the homology between these species for chromosomes II, IV, X. *S. carpocapsae* scaffolds do not share homologous regions with chromosome X of *P. pacificus*. However, several scaffolds are homologous with chromosome I (Figure S2). In summary, *S. carpocapsae* chromosome X is homologous to *C. elegans* and *P. pacificus* chromosomes II, IV, and X. Therefore, *S. carpocapsae* have a derived state and translocation has occurred in the branch leading to the ancestors of Steinernema.

Rapid metalloprotease expansion in *S. carpocapsae*

A previous study comparing nematode genomes found an expansion of proteases and protease inhibitors in *Steinernema* (Dillman et al., 2015). *S. carpocapsae* in particular had 654 peptidase genes, approximately one-third of them encoding metalloproteases and one-third being serine proteases (Dillman et al., 2015). It was suggested that the potential function of these genes may be to aid in parasitism (Dillman et al., 2015). Further studies on the mechanisms of *S. carpocapsae* infection identified 472 venom proteins that included proteases and protease inhibitors (Lu et al., 2017). Our new genome allows us to investigate potential molecular mechanisms by which these gene families may be expanding. In addition, an improved assembly allows us to determine the location of these genes and these genes are in fact numerous individual unique genes or misassembled genes.

In our assembly, we identified 228 unique metalloprotease genes and 254 serine protease genes. Mapping the genes to their chromosomal locations revealed aggregation of gene clusters (Figure 3A-B). In order to visualize the location of venom genes, we colored them in red. Venomous metalloprotease genes form a cluster on scaffold 7, while venomous serine protein genes cluster on scaffolds 5, 8 and 14 (Figure 3A-3B). The location of these expanded genes suggest that they are evolving by tandem duplications. One-to-one orthologs to *C. elegans* shows that the 228 metalloprotease genes correspond to 90 *C. elegans* gene models and the 284 serine proteases correspond to 50 genes in *C. elegans*. The phylogenetic trees for these gene families inform us about their potential molecular history and sequence similarity. While many of the metalloproteins have orthologs in *C. elegans* with a few
duplications, serine proteins seem to have undergone an extensive and rapid expansion in S. carpocapsae. Interestingly, there is a small grouping of metalloprotease duplicates that belong to the cluster on chromosome 7; these venomous genes all encode an M14A domain (Figure 2C). Similarly, many of the venomous serine proteases group within the clusters. These venomous genes all encode an M14A domain (Figure 2C).

Similarly, many of the venomous serine proteases group within the clusters. These venomous genes all encode an M14A domain (Figure 2C).

We then conducted a comparative gene expression analysis between adult males and females. We found 2,328 genes downregulated in males and 1,026 upregulated in females (Figure 4B). GO terms for the 2,328 downregulated genes showed strong enrichment for lipid metabolic process ($P = 1.6 \times 10^{-6}$), catalytic activity ($P = 2.3 \times 10^{-11}$), immune response ($P = 3.2 \times 10^{-4}$) and embryo development ($P = 3.0 \times 10^{-2}$). In contrast, the 1,026 upregulated genes are related to male gamete generation ($P = 8.7 \times 10^{-3}$), sperm motility ($P = 2.0 \times 10^{-5}$), biological regulation ($P = 1.6 \times 10^{-9}$) and catalytic activity ($P = 4.4 \times 10^{-4}$). We generally recovered distinct major GO term categories between female and male except for the category "catalytic activity," which led us to investigate whether the GO terms for females and males are enriched for distinct enzymes. Such distinct enzymes have been extensively studied in S. carpocapsae IJ activation but not in adults (Lu et al., 2017). Male GO terms were enriched for phosphotransferase activity ($P = 5.93 \times 10^{-94}$), kinase activity ($P = 1.14 \times 10^{-23}$), phosphatase activity ($P = 5.69 \times 10^{-9}$) and phosphoric ester hydrolase activity ($P = 1.38 \times 10^{-7}$). In contrast, female GO terms are enriched for peptidase activity ($P = 2.38 \times 10^{-6}$), serine-type peptidase activity ($P = 5.22 \times 10^{-6}$), serine hydrolase activity ($P = 5.22 \times 10^{-6}$) and amine-lyase activity ($P = 8.87 \times 10^{-5}$). This indicates that females and males express different enzymes at higher levels in adulthood. In a separate analysis, we analyzed the genes from Figure 3B with highest expression in male and highest expression in female (Figure S3A). GO terms for highly expressed genes in females and males confirmed that females’ enzymatic activity is related to hydrolase, peptidase and serine activity while males are enriched for kinase activity, and phosphorous processes (Figure S3B).

We then used a Principal Component Analysis (PCA) to assess how gene expression of embryos, late post-developmental stages and adults varies across stages (Figure 4C). Principal component 1 (PC1) accounts for 19.7% of the variance across stages and PC2 accounts for 14.2%.

Figure 2 Macrosynteny between S. carpocapsae and C. elegans. C. elegans one-to-one orthologous genes had their position predicted in the S. carpocapsae assembly. Each rectangle represents the fraction of C. elegans genes present per 500 kb window in S. carpocapsae. Red rectangle indicates no synteny.
Interestingly, PC3 (10.3%) separated all stages into two clusters. One cluster (blue circle) has all the stages that are developing while the other cluster (pink circle) has all the stages that are fully developed or developmentally arrested (namely infective juveniles (IJ$s)). GO analysis of PC3 positive values were enriched for catalytic activity, embryo development, testosterone dehydrogenase, female sex differentiation, steroid dehydrogenase, regulation of hormone process and female genitalia development. Meanwhile, PC3 negative values were enriched for kinase activity, ligand-gated ion channel, calcium-release channel activity, nicotinate nucleotide metabolic process, NAD metabolic process and regulation of autophagy (Figure S4). In summary, profilting gene expression in 11 post-activation developmental stages of *S. carpocapsae* shows that starting at 24 hr nematodes are differentiating their gonads and are transcriptionally different from early post-developmental stages. We also found that a gene expression comparison between female and male reveals catalytic activity as differentially expressed with females enriched for peptidase and serine activity while males are enriched for phosphatases. Lastly, PCA separated embryos, late post-developmental stages and adults into two clusters based on their developmental activity.

We investigated conservation of the *C. elegans* sex determination pathway in *S. carpocapsae*. We performed an orthology analysis of the genes described in Haag (2005) to identify which sex determination genes are conserved in *S. carpocapsae*, including genes with more than one paralog (Table S2). Out of the 27 *C. elegans* sex determination pathway genes, we found 10 that have one to one orthologs such as sex-1 and fox-1, which are responsible for X dosage counting elements and are female-promoting (Hodgkin et al., 1994). Another seven genes have one to many paralogs such as the case of sdc-1, the her-1 transcriptional repressor, which have three homologs; however, as expected, sdc-2 and sdc-3 do not have orthologs in *S. carpocapsae* (Klein and Meyer 1993; Lieb et al., 1996; Nonet and Meyer 1991). Interestingly, mog-4 and mog-5, which are global repressors of fem-3, are orthologous to the same five genes in *S. carpocapsae* with the best hit for gene g2524 (Puoti & Kimble 2000). Genes fbf-1 and fbf-2, which are germline translational repressors of fem-3, are orthologous to one gene g11152 which suggests that this duplication happened along the *C. elegans* lineage (Zhang et al., 1997). Lastly, fog-1, which is a promoter of spermatogenesis, has one orthologous gene, contrary to fog-3 which has orthologs in multiple nematodes species but not in *S. carpocapsae* (Chen et al., 2000; Jin et al., 2001). In summary, we found 19 out of the 27 genes to *C. elegans* in the sex-determination pathway, which might be the core genes important in the nematode sex determination pathway.
DISCUSSION

In this study we improved the genome of *S. carpocapsae* ALL strain with PacBio technology and BioNano Iris system and identified chromosome X. The *S. carpocapsae* genome is in 16 scaffolds with an N50 of 7.36 Mb. The sum of the 10 largest scaffolds' lengths achieves ~90% of the genome size, while the top 4 scaffolds cover 50% of the genome. In addition, we used stage-specific developmental transcriptomes to re-annotate our new assembly and predicted 30,957 genes, which we used to infer patterns of rearrangements between scaffolds based on macrosynteny analysis compared to *C. elegans*. This also allowed us to map the expansion of metalloproteases clusters and to identify the set of genes differentially expressed between males and females.

S. carpocapsae has four autosomes and one sex chromosome (Curran 1989). Chromosome-level macrosynteny revealed that *S. carpocapsae*...
chromosome X is orthologous to both C. elegans and P. pacificus chromosome II and IV. In addition, S. carpocapsae chromosome X has a small 3 Mb section orthologous to P. pacificus and C. elegans chromosome X. The small 3 Mb of S. carpocapsae chromosome X section is the only section orthologous to P. pacificus chromosome X, while most of the scaffolds are orthologous to P. pacificus chromosome I. This small segment of chromosome X orthologous among S. carpocapsae, C. elegans and P. pacificus might represent a Nigon unit, which are proposed to be deeply conserved linkage groups found conserved between nematodes (Tandonnet et al., 2018). A comparison of A. rhodensis chromosomes to four Caenorhabditis species including C. elegans pinpointed these Nigon units, one of which (NX) was found as a sole component of chromosome X or found combined with other Nigon units (Tandonnet et al., 2018). Interestingly, S. carpocapsae scaffolds are orthologous to single C. elegans chromosomes, which is reminiscent of a macrosynteny analysis in other nematode clades that also found conservation of orthologous chromosomal parts (Fradin et al., 2017). If the last common ancestor among clades had 6 chromosomes, then it is likely that S. carpocapsae had a fusion of C. elegans chromosomes II and IV, which also occurred in unichromosomal nematode Diploscopa pachys in which the order of chromosomes fused were I, X, III, II, IV, and V (Fradin et al., 2017). The conservation of synteny of S. carpocapsae to both C. elegans and P. pacificus highlights the large-scale chromosomal rearrangements in nematode genome evolution. High quality genomes of other Steirnerina species will allow for comparisons of evolution of parasitism in this genus. Thus, the nematode field would continue to benefit from assembling high quality genomes which would further the study of parasitology.

Differential expression analysis between males and females uncovered an interesting divergence in catalytic activity. Females have high levels of hydrolase activity, serine-peptidase activity, and proteolysis. Similar catalytic activity is found in adult parasitic females (PF) of Strongyloides species (Hunt et al., 2015; Nolan et al., 2018). The role of females in infecting a host populations, little is known about the role of Steirnerina females in infecting a host populations (Alsaiyah et al., 2009). On the other hand, the catalytic activity for males was enriched for phosphorylation, phosphorous activity and kinase activity. Protein phosphorylation and dephosphorylation regulates protein function with phosphatases important in spermatogenesis and regulation of sperm motility (Cottet et al., 2004; Guillermuet-Guibert et al., 2015). Kinases are important in nematode male fertility and a target of drugs to treat human parasites (Guillermuet-Guibert et al., 2015; Nolan et al., 2004). The role of females in infecting a host and the molecular biology of reproduction processes in EPNs are largely unexplored. The study of the reproductive and developmental processes in parasitic nematodes will be important because it could lead to better methods for biocontrol and for mammalian parasite control through the disruption or interruption of the reproductive cycle.

In conclusion, we have improved the S. carpocapsae genome from 1,578 to 16 scaffolds and identified its X chromosome. A macrosynteny analysis found that chromosome X is orthologous to C. elegans and P. pacificus chromosomes II and IV. Our results point to a conserved region of chromosome X among the three species. We also found catalytic activity differences between adult females and males. Further analysis will be required to assess the role of female adults in EPN infection and regulatory relationships of male development. Lastly, we believe the improved genome of S. carpocapsae will advance the field of comparative nematode genomics and allow for the mining of new insights in the evolution of nematode parasitism.

ACKNOWLEDGMENTS

The authors thank Neil Rawlings for helping with the MEROPS analysis.

Initiative for Maximizing Student Development (IMSD) NIH Grant R25GM05524.

LITERATURE CITED

Alsaiyah, A. M. A., L. Ebssa, A. Zenner, K. M. O’Callaghan, and C. T. Griffin, 2009 Sex ratios and sex-biased infection behaviour in the entomopathogenic nematode genus Steinernema. Int. J. Parasitol. 39: 725–734. https://doi.org/10.1016/j.ijpara.2008.11.003

Andersen, E. C., J. P. Gerke, J. A. Shapiro, J. R. Crissman, and R. Ghosh, 2012 Chromosome-scale selective sweeps shape Caenorhabditis elegans genomic diversity. Nat. Genet. 44: 285–290. https://doi.org/10.1038/ng.1050

Blaxter, M. L., P. De Ley, J. R. Garey, L. X. Liu, P. Scheldeman et al., 1998 A molecular evolutionary framework for the phylum Nematoda. Nature 392: 71–75. https://doi.org/10.1038/32160

Camacho, C., G. Coulouris, V. Avagyan, N. Ma, J. Papadopoulos et al., 2009 BLAST+: architecture and applications. BMC Bioinformatics 10, 421.

C. elegans Sequencing Consortium, T. C. elegans S., 1998 Genome sequence of the nematode C. elegans: a platform for investigating biology. Science (New York, N.Y.), 282(5396), 2012–2018. https://doi.org/10.1126/science.282.5396.2012

Chang, D. Z., L. Serra, D. Lu, A. Mortazavi, and A. R. Dillman, 2019 A core set of venom proteins is released by entomopathogenic nematodes in the genus Steinernema. PLoS Pathog. 15: e1007626. https://doi.org/10.1371/journal.ppat.1007626

Chakraborty, M., J. G. Baldwin-Brown, A. D. Long, and J. J. Emerson, 2015 A practical guide to de novo genome assembly using long reads. https://doi.org/10.1011/029306

Conesa, A., S. Gotz, J. M. Garcia-Gomez, J. Terol, M. Talon et al., 2005 Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21: 3674–3676. https://doi.org/10.1093/bioinformatics/bti610

Chen, P.-J., A. Singal, J. Kimble, and R. E. Ellis, 2000 A Novel Member of the Tob Family of Proteins Controls Sexual Fate in Caenorhabditis elegans Germ Cells. Dev. Biol. 217: 77–90. https://doi.org/10.1006/dbio.1999.9521

Cottet, P. A., A. J. Nisbet, P. R. Boag, M. Larsen, and R. B. Gasser, 2004 Characterization of major sperm protein genes and their expression in Oesophagostomum dentatum (Nematoda: Strongylida). Parasitology 129: 179–190. https://doi.org/10.1017/S003118200400561X

Currain, J., 1989 Chromosome numbers of Steinernema and Heterorhabditis species. Revue Nématolgie 12: 145–148. Retrieved from https://core.ac.uk/download/pdf/39865835.pdf.

de Hoon, M. J. L., S. Imoto, J. Nolan, and S. Miyano, 2004 Open source clustering software. Bioinformatics 20: 1453–1454. https://doi.org/10.1093/bioinformatics/bth078

Deppe, U., E. Schierenberg, T. Cole, C. Krieg, D. Schmitt et al., 1978 Cell lineages of the embryo of the nematode Caenorhabditis elegans. Proceedings of the National Academy of Sciences, 75(1), 376 LP – 380. Retrieved from http://www.pnas.org/content/75/1/376.abstract; https://doi.org/10.1073/pnas.75.1.376

Dillman, A. R., J. M. Chaston, B. J. Adams, T. A. Ciche, H. Goodrich-Blair et al., 2012 An Entomopathogenic Nematode by Any Other Name. Proceedings of the National Academy of Sciences, 109. https://doi.org/10.1073/pnas.1116207109

Dillman, A. R., M. Macchietto, C. F. Porter, A. Rogers, B. Williams et al., 2015 Comparative genomics of Steinernema reveals deeply conserved gene regulatory networks. Genome Biol. 16: 200. https://doi.org/10.1186/s13059-015-0746-6

Dito, D. F., D. I. Shapiro-Ilan, C. A. Dunlap, R. W. Behle, and E. E. Lewis, 2016 Enhanced biological control potential of the entomopathogenic nematode, Steinernema carpocapsae, applied with a protective gel
Ritchie, M. E., B. Phipson, D. Wu, Y. Hu, C. W. Law et al., 2015 limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research 43: e47–e47. https://doi.org/10.1093/nar/gkv007

Robinson, M. D., D. J. McCarthy, and G. K. Smyth, 2010 edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26: 139–140. https://doi.org/10.1093/bioinformatics/btp616

Rödelsperger, C., J. M. Meyer, N. Prabh, C. Lanz, F. Bemm et al., 2017 Single-Molecule Sequencing Reveals the Chromosome-Scale Genome Architecture of the Nematode Model Organism Pristionchus pacificus. Cell Reports 21: 834–844. https://doi.org/10.1016/j.celrep.2017.09.077

Rothman, J. H., A. Singson, L. Rose, P. Gönczy, 2014 Polarity establishment, asymmetric division and segregation of fate determinants in early C. elegans embryos. https://doi.org/10.1895/wormbook.1.30.2

Rougon-Cardoso, A., M. Flores-Ponce, H. E. Ramos-Abotiz, C. E. Martinez-Guerrero, Y. J. Hao et al., 2016 The genome, transcriptome, and proteome of the nematode Steinernema carpocapsae: evolutionary signatures of a pathogenic lifestyle. Sci. Rep. 6: 37536. https://doi.org/10.1038/srep37536

Segref, A., J. Cabello, C. Clucas, R. Schnabel, and I. L. Johnstone, 2010 Fate Specification and Tissue-specific Cell Cycle Control of the Caenorhabditis elegans Intestine. Mol. Biol. Cell 21: 725–738. https://doi.org/10.1091/mbc.e09-04-0268

Saldanha, A. J., 2004 Java Treeview--extensible visualization of microarray data. Bioinformatics 20: 3246–3248. https://doi.org/10.1093/bioinformatics/bth349

Serra, L., D. Z. Chang, M. Macchietto, K. Williams, R. Murad et al., 2018 Adapting the Smart-seq2 Protocol for Robust Single Worm RNA-seq. Bio Protoc. 8. https://doi.org/10.21769/BioProtoc.2729

Shapiro-Ilan, D. I., I. Hiltpold, and E. E. Lewis, 2017 Nematodes, pp. 415–440 in Ecology of Invertebrate Diseases, John Wiley & Sons, Ltd., Chichester, UK. https://doi.org/10.1002/9781119256106.ch11

Sicard, M., N. Le Brun, S. Pages, B. Godelle, N. Boemare et al., 2003 Effect of native Xenorhabdus on the fitness of their Steinernema hosts: contrasting types of interaction. Parasitol. Res. 91: 520–524. https://doi.org/10.1007/s00436-003-0998-z

Simão, F. A., R. M. Waterhouse, P. Ioannidis, E. V. Kriventseva, and E. M. Zdobnov, 2015 BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31: 3210–3212. https://doi.org/10.1093/bioinformatics/btv351

Srinivasan, J., A. R. Dillman, M. G. Macchietto, L. Heikkinen, M. Lakso et al., 2013 The draft genome and transcriptome of Panagrellus redivivus are shaped by the harsh demands of a free-living lifestyle. Genetics 193: 1279–1295. https://doi.org/10.1534/genetics.112.148809

Stanke, M., M. Diekhans, R. Baertsch, and D. Haussler, 2008 Using Native and Syntenically Mapped CDNA Alignments to Improve de Novo Gene Finding. Bioinformatics 24: 637–644. https://doi.org/10.1093/bioinformatics/btn103

Strauch, O., R. U. Ehlers, and A. Hirao, 2010 Life cycle and population development of the entomopathogenic nematodes Steinernema carpocapsae and S. feltiae (Nematoda, Rhabditida) in monoxenic liquid culture. Nematology 12: 201–210. https://doi.org/10.1163/156854109X463756

Tandonnet, S., G. D. Koutsovoulos, S. Adams, D. Cloarec, M. Parihar et al., 2018 Chromosome-wide evolution and sex determination in a nematode with three sexes. https://doi.org/10.1101/466961

Walker, B. J., T. Abeel, T. Shea, M. Priest, A. Abouelliel et al., 2014 Pilon: An Integrated Tool for Comprehensive Microbial Variant Detection and Genome Assembly Improvement. PLoS ONE 9: e112963. https://doi.org/10.1371/journal.pone.0112963

Yang, Y., Y. Wen, Y. N. Cai, I. Vallée, P. Boireau et al., 2015 Serine proteases of parasitic helminths. Korean J. Parasitol. 53: 1–11. https://doi.org/10.3347/kjp.2015.53.1.1

Yin, D., E. M. Schwarz, C. G. Thomas, R. L. Felde, I. F. Korf et al., 2018 Rapid genome shrinkage in a self-fertile nematode reveals sperm competition proteins. Science 359: 55–61. https://doi.org/10.1126/science.aao0827

Zhang, B., M. Gallegos, A. Puoti, E. Durkin, S. Fields et al., 1997 A conserved RNA-binding protein that regulates sexual fates in the C. elegans hermaphrodite germ line. Nature 390: 477–484. https://doi.org/10.1038/37297

Communicating editor: M.-A. Félix