Abstract

Background: The main symptoms of schistosomiasis are granuloma and fibrosis, caused by Schistosoma eggs. Numerous types of cells and cytokines are involved in the progression of Schistosoma infection. As a class of innate immune cells, γδ T cells play critical roles in the early immune response. However, their role in modulating granuloma and fibrosis remains to be clarified.

Methods: Liver fibrosis in wild-type (WT) mice and T cell receptor (TCR) δ knockout (KO) mice infected with Schistosoma japonicum was examined via Masson's trichrome staining of collagen deposition and quantitative reverse transcriptase-PCR (RT-PCR) of fibrosis-related genes. Granuloma was detected by hematoxylin-eosin (H&E) staining and quantified. Flow cytometry was used for immune cell profiling and for detecting cytokine secretion. The abundance of the related cytokines was measured using quantitative RT-PCR.

Results: The livers of S. japonicum-infected mice had significantly increased proportions of interleukin (IL)-17A producing γδ T cells and secreted IL-17A. Compared with the WT mice, TCR δ deficiency resulted in reduced pathological impairment and fibrosis in the liver and increased survival in infected mice. In addition, the profibrogenic effects of γδ T cells in infected mice were associated with enhanced CD11b+Gr-1+ cells, concurrent with increased expression of transforming growth factor (TGF)-β in the liver.

Conclusions: In this mouse model of Schistosoma infection, γδ T cells may promote liver fibrosis by recruiting CD11b+Gr-1+ cells. These findings shed new light on the pathogenesis of liver pathology in murine schistosomiasis.

Keywords: γδ T cells, IL-17A, Granuloma, Fibrosis, Schistosomiasis

Background

Schistosomiasis is a neglected tropical disease caused by the parasites of the genus Schistosoma. Infection is prevalent in over 74 countries, and nearly 200 million people are at risk [1–3]. Following infection, liver fibrosis is the major pathological manifestation of the disease. This is mainly due to the deposition of Schistosoma eggs in the host liver. The excretory secretory antigens produced by the eggs induce strong immune responses and inflammation, and trigger granuloma formation around the eggs, which in turn leads to the activation of hepatic stellate cells (HSCs) and consequent liver fibrosis [4].

The mechanisms of fibrosis have been studied extensively in the murine model of schistosomiasis. One major mechanism is the switching of the immune pattern from a predominant T helper cell 1 (Th1) response to a Th2-dominant response, which promotes granuloma and fibrosis formation by secreting cytokines such as interleukin (IL)-4, IL-5 and IL-13 [5–9]. As a member of the IL-17 family, IL-17A is involved in various biological processes by binding its cognate receptor, IL-17RA [10–13]. Accumulating evidence demonstrates that IL-17A is related to a variety of inflammatory and autoimmune diseases...
such as inflammatory bowel diseases (IBD) and multiple sclerosis [14–16]. Multiple studies have demonstrated that Th17 cells, natural killer T cells and γδ T cells produce IL-17A [17–19]. Th17 promotes hepatic granuloma formation by secreting IL-17A [20–22]. Moreover, the absence of IL-17A signaling has been implicated in alleviating liver fibrosis in murine schistosomiasis [23].

Multiple cell types, including macrophages, T follicular helper cells (Tfh), regulatory T cells (Treg), and dendritic cells (DC) are activated and involved in granuloma formation and in the process of fibrosis [24–28]. γδ T cells are a subgroup of T cells that express a distinct T cell receptor (TCR) consisting of a γ and a δ chain, which allows rapid response to antigens without the requirement of major histocompatibility complex (MHC) presentation [29, 30]. γδ T cells play pivotal roles in autoimmune, inflammatory diseases, and tumor development [31–34]. They also have important regulatory functions [35]. Of note, they are an important regulator in liver diseases, including liver infection, non-alcoholic fatty liver disease, autoimmune hepatitis, and liver fibrosis [36]. Although a correlation between γδ T cell and neutrophil recruitment and liver fibrosis has been implicated [37], the exact mechanism underlying the regulatory role of γδ T cells in liver fibrosis remains elusive. In the present study, we aimed to characterize the role of γδ T cells in the early formation of granuloma and fibrosis in the livers of TCR δ knockout (KO) mice infected with *Schistosoma japonicum*. We provide evidence that deleting TCR δ markedly ameliorates liver fibrosis and improves liver function. We explored the mechanism by which γδ T cells promote liver pathology in murine schistosomiasis. Our findings indicate that γδ T cells may promote liver fibrosis by recruiting CD11b+Gr-1+ cells, which thereby furthers understanding of fibrosis formation and provides a strategy for the basis of anti-schistosomiasis therapy.

Methods

Mice, parasite and infection

Eight-week-old male C57BL/6 mice were purchased from Shanghai Jiesiie Animal Feeding Co. Ltd. (Shanghai, China). TCR δ KO mice on C57BL/6 background were purchased from Jackson Laboratory (Bar Harbor, USA) and bred in our facility. For the comparison experiment, wild-type (WT) and KO mice were bred under specific pathogen-free conditions. In the infection experiments, 31 WT mice and 31 KO mice were each infected percutaneously via the shaved skin of the abdomen, with 2 × 106 cells per 100 μl. Serum samples were collected at day 0, 4 and 6 weeks post-infection, respectively. Sixteen WT mice and 16 KO mice were used for the survival time observation, and the survival rates in each group were evaluated.

Liver pathology and measurement of aspartate aminotransferase/alanine aminotransferase (AST/ALT) levels

Fresh liver samples were fixed in 10% neutral buffered formalin, then processed with routine paraffin-embedding procedures. The paraffin-embedded sections (5 μm) were dewaxed and stained with hematoxylin-eosin (H&E) or Masson’s trichrome for analyzing granuloma or fibrosis, respectively. Granulomas around single eggs were selected to assess the levels of granuloma and fibrosis. Each stained section was examined by optical microscopy under 100× magnification with identical settings. Thirty pictures were taken of granulomas around single eggs from three sections in each tissue. The areas featuring granuloma and fibrosis surrounding a single egg were estimated using ImageJ (NIH, Bethesda, MD, USA). Sera from individual infected mice were separated by centrifugation at 1000 × g for 10 min. ALT and AST levels were detected by Adicon Clinical Laboratories, Inc. (Shanghai, China).

Isolation of liver non-parenchymal cells and spleen cells

Single-cell suspension of hepatic leukocytes were prepared using a conventional method according to a previous report with some modifications [17]. Briefly, infected or control mice were perfused with phosphate-buffered saline (PBS) via the portal vein. The excised liver was minced, then pressed through a 70-μm cell strainer (BD Biosciences, San Jose, CA, USA). The total hepatic cells were then resuspended in 40% Percoll solution (GE Healthcare, Chicago, IL, USA), and centrifuged for 15 min at 750 × g. Then, the leukocytes were resuspended in erythrocyte-lysing buffer. Lastly, the cells were washed and resuspended in RPMI 1640 medium. For the spleen, all cells were washed and resuspended in RPMI 1640 medium immediately after they had been pressed through a 70-μm cell strainer (BD Biosciences).

Flow cytometry

To assess cytokine and biological marker expression on γδ T cells and CD11b+Gr-1+ cells, 2 × 106 cells per 100 μl were incubated with the following fluorescence-labeled antibodies for 30 min at 4 °C: fluorescein isothiocyanate (FITC) labeled anti-CD3; phycoerythrin (PE)-Cy7-labeled anti-γδ TCR; allophycocyanin (APC)-labeled anti-Vγ1; PE-labeled anti-Vγ2; Brilliant Violet 421-labeled anti-CD11b; APC-labeled anti-Gr-1;
2.8% of the total CD3+ T cells. The γδ T cells constituted approximately 2%, 3% and 3% of the total CD3+ T cells in the liver at 0, 4 and 6 weeks post-infection, respectively (Fig. 1a-c). During infection, the proportion of γδ T cells did not change greatly \((F_{(2, 12)} = 4.657, P = 0.0318)\) (Fig. 1d). However, the absolute number of γδ T cells was approximately \(4.0 \times 10^4\), \(7.5 \times 10^4\) and \(10.0 \times 10^4\) at 0, 4 and 6 weeks post-infection, respectively, which was a significant increase \((F_{(2, 12)} = 100.7, P < 0.0001)\) (Fig. 1e). Notably, γδ T cell subtype analysis revealed mainly two subtypes: Vγ1 and Vγ2 (Fig. 1f-h). The percentage of Vγ1 cells peaked at 4 weeks post-infection \((F_{(2, 12)} = 49.46, P < 0.0001)\) (Fig. 1i), whereas that of the Vγ2 cells increased gradually post-infection \((F_{(2, 12)} = 11.98, P = 0.0014)\) (Fig. 1j). We then detected the cytokines secreted by the two subtypes. Additional file 2: Figure S2a-b shows the isotype controls. Vγ1 cells mainly secreted IFN-γ (Fig. 2a-c) rather than IL-17A \((F_{(2, 12)} = 7.481, P = 0.0078)\) (Fig. 2e-h), while Vγ2 cells secreted both IFN-γ (Fig. 2a-k) and IL-17A (Fig. 2m-o). IFN-γ from the Vγ1 cells increased at 4 weeks post-infection, and then decreased at 6 weeks post-infection \((F_{(2, 12)} = 44.56, P < 0.0001)\) (Fig. 2d), as did IFN-γ from the Vγ2 cells \((F_{(2, 12)} = 23.84, P < 0.0001)\) (Fig. 2l). However, IL-17A from the Vγ2 cells increased during infection \((F_{(2, 12)} = 31.37, P < 0.0001)\) (Fig. 2p). These results suggest that γδ T cells may participate in the liver pathological process in mice infected with *S. japonicum*.

Quantitative reverse transcriptase PCR (qRT-PCR)

The total RNA was extracted from liver tissue with TRIzol (Invitrogen, Carlsbad, CA, USA). For each sample, 2 μg of total RNA was reverse-transcribed using a complementary DNA (cDNA) reverse transcription kit (TaKaRa, Dalian, China). The comparative threshold cycle \((2^{-\Delta\Delta Cq})\) was calculated to evaluate the relative mRNA expression, and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) levels were used as a normalization control. The qRT-PCR primers used in this study are listed in Table 1.

Statistical analysis

All quantitative data were reported as the mean and standard error of the mean (SE). All samples were compared using an unpaired Student’s t-test or one-way analysis of variance (ANOVA). The survival rate was analysed by using the Kaplan–Meier method, the difference between survival curves was tested for statistical significance using the log-rank test. \(P < 0.05\) was considered to indicate statistical significance. GraphPad Prism 6 (GraphPad Software, San Diego, CA, USA) was used for all statistical analysis and graphs.

Results

The liver γδ T cells of infected mice had significantly increased IL-17A secretion

To profile the dynamic changes of the γδ T cells, we performed fluorescence-activated cell sorting and quantified the ratio of γδ T cells in the liver of *S. japonicum*-infected mice. Additional file 1: Figure S1 shows the gating strategy. The γδ T cells constituted approximately 2%, 3% and 2.8% of the total CD3+ T cells in the liver at 0, 4 and 6

Gene	Forward (5′–3′)	Reverse (5′–3′)
GAPDH	GAGGCGAACGGGTCTT	TGGCAGACGAGCAC
TGF-β	GAGGGACGCAAGGTCATTT	GGCAGTACCTT
IL-13	TGGAGCAACATCACAAGGACC	GGCCTGCGTACAGAGAGG
IL-17A	GCCCGAGGCCCCTCAAGA	CTTTCCCTCCGGATTGACA

Infected TCR δ KO mice had alleviated pathology and liver damage

To evaluate whether γδ T cells were involved in the pathogenesis of *S. japonicum* infection in mice, WT and TCR δ KO mice were infected with *S. japonicum*, and were sacrificed at 6 weeks post-infection. Hepatic granuloma size was determined using H&E staining (Fig. 3a, b). The average granuloma area in the KO mouse livers was much less than that of the WT mice \((t_{(58)} = 5.248, P < 0.0001)\) (Fig. 3c). Collagen deposition was detected using Masson’s trichrome staining (Fig. 3d, e), the KO mouse livers had significantly less severe fibrosis than that of the WT mice \((t_{(58)} = 6.481, P < 0.0001)\) (Fig. 3f). We also determined liver function (ALT/AST) at 0, 4 and 6 weeks after infection. The KO mice showed improved liver function in comparison with the WT mice at 4 and 6 weeks post-infection \((t_{(8)} = 2.690, P = 0.0275\), \(t_{(8)} = 2.982, P = 0.0175\); and \(t_{(8)} = 3.626, P = 0.0067\), \(t_{(8)} = 4.657, P = 0.0318\)).
4.691, \(P = 0.0016 \), respectively (Fig. 3g, h). Further, we monitored the survival rates of the mice. From week 11 onwards, the KO mice had significantly higher survival rates than the WT mice (\(P = 0.0301 \)) (Additional file 3: Figure S3). Taken together, these data suggest that γδ T cell deficiency protects *S. japonicum*-infected mice from liver fibrosis and damage caused by *Schistosoma* eggs.

Reduced fibrosis is associated with decreased TGF-β and IL-17A in infected TCR δ KO mice

To study which factor is related to reduced fibrosis in *S. japonicum*-infected TCR δ KO mice, we extracted RNA from the liver tissue of the WT and KO mice at 6 weeks post-infection, and measured the mRNA transcripts of collagen, TGF-β, IL-17A and IL-13 using qRT-PCR. TCR δ deletion led to reduced expression of collagen I, TGF-β and IL-17A (\(t_{(8)} = 3.296, P = 0.0301, t_{(4)} = 3.218, P = 0.0324 \) and \(t_{(4)} = 5.966, P = 0.004 \), respectively) (Fig. 4a-c), but not IL-13 (Fig. 4d). To rule out the difference between the number of *Schistosoma* adults and the *Schistosoma* egg burden, we examined the total number of adults (Fig. 4e) and egg burden (Fig. 4f) in each mouse at 6 weeks post-infection. There was no significant difference between the findings for the WT and KO mice. The involvement of IL-17A and TGF-β was implicated in the fibrotic effects in the *S. japonicum* infection [28, 38, 39]. Taken together, our results indicate the involvement of TGF-β in alleviating the fibrosis in TCR δ KO mice infected with *S. japonicum*.

The profibrotic effects of γδ T cells were associated with CD11b+Gr-1+ cells

In the WT mice, CD11b+Gr-1+ cells increased rapidly after infection (data not shown). To explore the relationship between γδ T cells and CD11b+Gr-1+ cells, we examined the percentage of CD11b+Gr-1+ cells in the liver and spleen from the WT and TCR δ KO mice at 0, 4 and 6 weeks post-infection. At 0 weeks post-infection, the WT and KO mouse livers had only about 1.4% and 1.3% CD11b+Gr-1+ cells, respectively (Fig. 5a, d), and there was no significant difference between the two groups (Fig. 5g). At 4 weeks post-infection, the percentage of CD11b+Gr-1+ cells in the WT and KO mouse livers increased to about 10.9% and 11.2%, respectively (Fig. 5b, e). At 6 weeks post-infection, the WT mouse livers had about 33% CD11b+Gr-1+ cells (Fig. 5c), while that in the KO mouse livers was about 20% (Fig. 5f), representing a significant reduction (\(t_{(8)} = 7.028, P = 0.0001 \)) (Fig. 5g). At 0 weeks post-infection, the WT and KO mouse spleens had only about 0.6% and 1.2% CD11b+Gr-1+ cells, respectively (Fig. 5h, k); there was no significant difference between the two groups (Fig. 5n). At 4 weeks post-infection, the percentage CD11b+Gr-1+ cells in the WT mouse spleens increased to about 3.5% (Fig. 5i), and that in the KO mice was about 1.6% (Fig. 5l); there was a significant difference between the two groups (\(t_{(8)} = 7.212, P < 0.0001 \)) (Fig. 5n). At 6 weeks post-infection, the percentage CD11b+Gr-1+ cells in the WT mouse spleens continued to increase to around 15% (Fig. 5j). The percentage of CD11b+Gr-1+ cells in the KO mouse spleens decreased to around 7% (Fig. 5m), which was significantly lower than of wild-type mice (\(t_{(8)} = 5.748, P = 0.0004 \)) (Fig. 5n). These data suggest that the fibrotic effects of γδ T cells in *S. japonicum* infection may be related to CD11b+Gr-1+ cells.

The possible mechanisms of γδ cell promotion of liver fibrosis

We interrogated the mechanism underlying the contribution of CD11b+Gr-1+ cells in mediating the fibrotic effects of γδ T cells. First, we examined the relationship between γδ cells and CD11b+Gr-1+ cells. Flow cytometric analysis showed that liver CD11b+Gr-1+ cells also expressed IL-17RA at 4 and 6 weeks post-infection (Fig. 6a, b). The same result was found for the spleen CD11b+Gr-1+ cells (Fig. 6c, d). As a receptor of IL-17A, IL-17RA may promote CD11b+Gr-1+ cell recruitment from the liver and spleen. In studying how CD11b+Gr-1+ cells promote fibrosis, we observed that the liver CD11b+Gr-1+ cells (WT and KO mice, about 35% and 20%, respectively) expressed TGF-β (Fig. 6e, f) (Additional file 2: Figure S2c shows the isotype). There was a significant difference between the two groups (\(t_{(8)} = 3.974, P = 0.0041 \)) (Fig. 6g). These
Fig. 2 Vγ1 and Vγ2 cells secrete IFN-γ and IL-17A, respectively, in the liver. a-d Flow cytometric and statistical analyses of the percentage of IFN-γ from Vγ1 cells at 0 (a), 4 (b) and 6 (c) weeks post-infection. e-h Flow cytometric and statistical analyses of the percentage of IL-17A from Vγ1 cells at 0 (e), 4 (f) and 6 (g) weeks post-infection. i-l Flow cytometric and statistical analyses of the percentage of IFN-γ from Vγ2 cells at 0 (i), 4 (j) and 6 (k) weeks post-infection. m-p Flow cytometric and statistical analyses of the percentage of IL-17A from Vγ2 cells at 0 (m), 4 (n) and 6 (o) weeks post-infection. Liver leukocytes were stimulated with PMA (phorbol 12-myristate 13-acetate) + ionomycin for 4 h; intracellular IL-17A and IFN-γ staining were performed and representative dot plots are shown. The differences at 0, 4 and 6 weeks were analyzed using a one-way ANOVA, n = 5 per group, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001; ns, no significant difference.
results suggest that IL-17A secreted by γδ T cells may directly contribute to the recruitment of CD11b+Gr-1+ cells and that CD11b+Gr-1+ cells may be associated with liver fibrosis via the expression of TGF-β.

Discussion

Although the formation of granuloma and fibrosis limits the viability of *Schistosoma* eggs to a certain extent and helps improve the host survival rate, but the subsequent liver pathology is nonetheless very severe, and even leads to death. Therefore, more rational treatment of schistosomiasis requires more comprehensive understanding of granuloma and fibrosis formation. In the present study, we explored whether γδ T cells play a role in granuloma formation in the early stages of *S. japonicum* infection. Our results indicate that IL-17A-producing γδ T cells are involved in the processes of granuloma and fibrosis, although the abundance of the cells was relatively low. Moreover, the IL-17A-producing γδ T cells promoted the increase in CD11b+Gr-1+ cells. Further, we explored how γδ T cells promote CD11b+Gr-1+ cells. Our results suggest that γδ T cells may secrete IL-17A and mediate CD11b+Gr-1+ cell recruitment by engaging
IL-17RA expressed on the CD11b+Gr-1+ cell surface. Next, we explored the possible mechanisms of fibrosis by CD11b+Gr-1+ cells. Our findings show that CD11b+Gr-1+ cells contribute to fibrogenesis by the high production of TGF-β.

γδ T cells are typically found at surface of barrier tissue such as the mucosa, lungs and skin. As innate T cells, γδ T cells are non-abundant; however, they play an important role in diverse diseases. For example, TCR-deficient mice are more susceptible to infection by bacteria and viruses, and have significantly increased incidence of tumors. γδ cells are well-documented as being involved in liver disease, such as non-alcoholic fatty liver disease, autoimmune hepatitis, liver fibrosis and cirrhosis and liver cancer [40–43]. Our results indicate that γδ T cells constitute approximately 3% of the total CD3+ T cells, and consist of two major subsets, which is consistent with previous reports [37, 44, 45]. In some disease models, Vγ1 cells, which are IFN-γ-producing γδ T cells, play an essential role in liver infection and liver cancer [46, 47]. In the present study, IFN-γ secretion by Vγ1 cells began to increase at 0 and 4 weeks post-infection, but then decreased at 6 weeks post-infection. Vγ2 cells, whose most striking feature is the secretion of IL-17A, are involved in immune responses and various diseases. They not only play protective roles against colitis and viruses, but also promote liver fibrosis [16, 48], especially, γδ T cells could exacerbate liver fibrosis by aiding the activation of HSCs in liver fibrosis induced by carbon tetrachloride injection [49]. Our observations show that during infection, the increase in Vγ2 cells was accompanied by an increase in their secreted IL-17A. These results suggest that IL-17A-producing γδ T cells (i.e. Vγ2 cells) may participate in liver pathological processes in mice infected with S. japonicum.

In the present study, we used TCR δ KO mice to confirm that γδ T cells are involved in liver fibrosis in S. japonicum-infected mice. Our results show that the KO mice had reduced granuloma area and attenuated liver fibrosis as compared with the WT mice. We selected granuloma caused by single eggs to ensure that the pathological improvement was due to the host immune response rather than the number of eggs, and this is consistent with previous reports [24, 50]. The improvement
of liver function in the KO mice may have enhanced their survival rate as compared with the WT mice.

TGF-β and IL-13 are well-documented as two important cytokines of liver fibrosis in mice infected with *S. mansoni* and *S. japonicum*, and IL-13 is the key driving liver fibrosis [38, 39, 51, 52]. Here, TGF-β, and not IL-13, was decreased in the KO mouse livers at 6 weeks post-infection; IL-17A was also decreased in the KO mouse livers. These data suggest that the ameliorated liver fibrosis caused by the lower TGF-β was accompanied by decreased IL-17A expression.

CD11b⁺Gr-1⁺ cells are involved in diverse disease such as IBD, tumor, and liver fibrosis [53–55]. CD11b⁺Gr-1⁺ cells and γδ T cells are reciprocally regulated [16, 56]. Our data show that CD11b⁺Gr-1⁺ cells in the WT mice increased rapidly during infection. However, CD11b⁺Gr-1⁺ cells in the KO mice were decreased in comparison. These data indicate that γδ T cells may promote liver fibrosis by recruiting CD11b⁺Gr-1⁺ cells. The notable characteristic of γδ T cells is the expression of IL-17A, and our data show that CD11b⁺Gr-1⁺ cells can express IL-17RA. IL-17RA or the IL-17RA/IL-17RC
heterodimer is considered the receptor of IL-17A [57], so we speculate that γδ T cells promote CD11b+Gr-1+ cells via an IL-17A–IL-17RA pathway. Compared with WT mice, liver fibrosis is decreased in IL-17RA-deficient mice [14]. In addition, IL-17RA deficiency can prevent the development of tubulointerstitial fibrosis in the kidney [58]. In two different models of airway fibrosis, IL-17RA-deficient mice were protected against both airway inflammation and fibrosis [59]. Finally, our data imply that CD11b+Gr-1+ cells facilitate the development of liver fibrosis by expressing TGF-β. Similarly, CD11b+Gr-1+ cells can promote silica-induced lung fibrosis in mice [60]. Taken together, we speculate that IL-17A may recruit CD11b+Gr-1+ cells and promote liver fibrosis by expressing TGF-β. However, we should point out that more studies and evidence are needed to reveal and clarify the integrated mechanism involved.
Conclusions
We assessed the role of γδ T cells in liver fibrosis caused by acute murine schistosomiasis. We confirm that γδ T cells are involved in the development of liver fibrosis.

Supplementary information

Abbreviations
DC: dendritic cell; Tfh cells: T follicular helper cells; Treg: regulatory T cells; MHC: major histocompatibility complex; ALT: aspartate aminotransferase; AST: aspartate aminotransferase; TGF-β: transforming growth factor β; IFN-γ: interferon-γ; IL-17A: interleukin-17A; COL 1A: collagen 1A.

Acknowledgements
We are grateful to Mr Yuxin Xu at the National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, for assisting with the mouse infection experiments, and to Dr Haipeng Liu at Shanghai Pulmonary Hospital, Tongji University, for helping with the draft of the manuscript.

Authors' contributions
JS and JC conceived and designed the experiment. LS, WG, YS, LL, XZ, TL, TTC and YH performed the experiments. JC and LS contributed reagents and materials. LS wrote the draft and JC revised the manuscript. All authors read and approved the final manuscript.

Funding
This study was supported by the National Natural Science Foundation of China (Nos. 8177225 and 81971969 to JC). The funders had no role in the study design, data collection and analysis, the decision to publish, or preparation of the manuscript.

Availability of data and materials
The datasets supporting the conclusions of this article are included within the article and its additional files.

Ethics approval and consent to participate
This study was carried out in strict accordance with the recommendations of the Guide for the Care and Use of Laboratory Animals of the Ministry of Science and Technology, China. The protocol was approved by the Laboratory Animals Welfare and Ethics Committee of the National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Permit Number: NIPD-2017001). All animal carcasses were disposed of by the Shanghai Animal Harmless Treatment Center. A special effort was made to reduce the number of mice used in the study, to provide them with the most comfortable conditions possible, and to minimize animal suffering where possible.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai 200025, China. 2 National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai 200025, China. 3 Chinese Center for Tropical Diseases Research, Shanghai 200025, China. 4 WHO Collaborating Centre for Tropical Diseases, Shanghai 200025, China. 5 National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 200025, China.

References
1. Ross AG, Bartley PB, Sleigh AC, Olds GR, Li Y, Williams GM, et al. Schistosomiasis. N Engl J Med. 2002;346:1212–20.
2. Gryseels B, Polman K, Claris J, Kestens H. Human schistosomiasis. Lancet. 2006;368:1106–18.
3. Gryseels B. Schistosomiasis. Infect Dis Clin North Am. 2012;26:383–97.
4. Pearce EJ, MacDonald AS. The immunobiology of schistosomiasis. Nat Rev Immunol. 2002;2:499–511.
5. Chiaramonte MG, Donaldson DD, Cheever AW, Wynn TA. An IL-13 inhibitor blocks the development of hepatic fibrosis during a Thelper type 2-dominated inflammatory response. J Clin Invest. 1999;104:777–85.
6. Fallon PG, Richardson AJ, McKenzie GJ, McKenzie AN. Schistosome infection of transgenic mice defines distinct and contrasting pathogenic roles for IL-4 and IL-13: IL-13 is a profibrotic agent. J Immunol. 2000;164:2585–91.
7. McKenzie GJ, Fallon PG, Emson CL, Gencris RK, McKenzie AN. Simultaneous disruption of interleukin (IL)-4 and IL-13 defines individual roles in T helper cell type 2-mediated responses. J Exp Med. 1999;189:1655–72.
8. Wynn TA. Fibrotic disease and the T(H)1/T(H)2 paradigm. Nat Rev Immunol. 2004;4:583–94.
9. Kamdem SD, Moyado-Somo R, Bronbacher F, Nono JK. Host regulators of liver fibrosis during human schistosomiasis. Front Immunol. 2018;9:2781.
10. Kolls JK, Lindén A. Interleukin-17 family members and inflammation. Immunity. 2004;21:467–76.
11. Gaffen SL. Structure and signalling in the IL-17 receptor family. Nat Rev Immunol. 2009;9:556–67.
12. Chang SH, Dong C. Signaling of interleukin-17 family cytokines in immunity and inflammation. Cell Signal. 2011;23:1069–75.
13. Lafádil, Miller AM, Ki SH, Gao B. Th17 cells and their associated cytokines in liver diseases. Cell Mol Immunol. 2010;7:250–4.
14. Miossec P, Korn T, Kuchroo VK. Interleukin-17 and type 17 helper T cells. N Engl J Med. 2009;361:888–98.
15. Wilke CM, Bishop K, Fox D, Zou W. Deciphering the role of Th17 cells in human disease. Trends Immunol. 2011;32:603–11.
16. Sun X, Cai Y, Fleming C, Tong Z, Wang Z, Ding C, et al. Innate γδ T17 cells play a protective role in DSS-induced colitis via recruitment of GR-1+ CD11b+ myeloid suppressor cells. Oncoimmunology. 2017;6:e1313369.
17. Steinman L. A brief history of T(H)17, the first major revision in the T(H)1/T(H)2 hypothesis of T cell-mediated tissue damage. Nat Med. 2007;13:439–45.
18. Bendelac A, Savage PB, Teytot L. The biology of NKT cells. Annu Rev Immunol. 2007;25:297–336.
19. St Leger AJ, Desai JV, Drummond RA, Kugadas A, Almaghrabi F, Silver P, et al. An ocular commensal protects against corneal infection by driving an interleukin-17 response from mucosal γδ T cells. Immunity. 2017;47(148–58):e5.
20. Shainheit MG, Lasocki KW, Finger E, Larkin BM, Smith PM, Sharpe AH, et al. The pathogenic Th17 cell response to major histocompatibility complex class II antigen is sequentially dependent on IL-23 and IL-1-beta. J Immunol. 2011;187:5328–35.
21. Wen X, He L, Chi Y, Zhou S, Hoellwarth J, Zhang C, et al. Dynamics of Th17 cells and their role in Schistosoma japonicum infection in C57BL/6 mice. PLoS Negl Trop Dis. 2011;5:e1399.
22. Chen D, Luo X, Xie H, Gao Z, Fang H, Huang J. Characteristics of IL-17 induction by Schistosoma japonicum infection in C57BL/6 mouse liver. Immunology. 2013;139:23–32.
23. Zhang Y, Huang D, Gao W, Yan J, Zhou W, Hou X, et al. Lack of IL-17 signaling decreases liver fibrosis in murine schistosomiasis japonica. Int Immunol. 2015;27:317–25.
24. Chen X, Yang X, Li Y, Zhu J, Zhou S, Xu Z, et al. Follicular helper T cells promote liver pathology in mice during Schistosoma japonicum infection. PLoS Pathog. 2014;10:e1004097.

25. Farava A, He C, Xia L, Zhou H. Immune modulation of Th1, Th2, and T-reg transcriptional factors differing from cytokine levels in Schistosoma japonicum infection. Parasitol Res. 2018;117:175–26.

26. Romano A, Hou X, Sertorio M, Desseen H, Cabantous S, Oliveira P, et al. FOXP3+ regulatory T cells in hepatic fibrosis and spleenomegaly caused by Schistosoma japonicum: the spleen may be a major source of Tregs in subjects with spleenomegaly. PLoS Negl Trop Dis. 2016;10:e0004306.

27. Gong W, Huang F, Sun L, Yu A, Zhang X, Xu Y, et al. Toll-like receptor-2 regulates macrophage polarization induced by excretory-secretory antigens from Schistosoma japonicum eggs and promotes liver pathology in murine schistosomiasis. PLoS Negl Trop Dis. 2018;12:e0007000.

28. Xu L, Yue B, Zhou L, Qiu Z, Zhang X, Xu N, et al. NP 30 stimulates Th17 differentiation through DC in schistosomiasis japonicum. Parasite Immunol. 2018;40:e12528.

29. Hayday AC. γδ cells: a right time and a right place for a conserved third way of protection. Annu Rev Immunol. 2000;18:975–1026.

30. Chien Y, Meyer C, Bonneville M. γδ T cells: first line of defense and beyond. Annu Rev Immunol. 2014;32:121–55.

31. Paul S, Lal G. Role of gamma-delta (γδ) T cells in autoimmunity. J Leukoc Biol. 2015;97:259–71.

32. Silva-Santos B, Serre K, Norell H. γδ T cells in cancer. Nat Rev Immunol. 2015;15:683–91.

33. Papotto PH, Ribot JC, Silva-Santos B. IL-17+γδ T cells as kick-starters of inflammation. Nat Immunol. 2017;18:604–11.

34. Akitsu A, Iwakura Y. Interleukin-17-producing γδ T (γδ17) cells in inflammation. Nat Immunol. 2014;15:181–94.

35. Peters C, Kabelitz D, Wesch D. Regulatory functions of γδ T cells. Cell Mol Life Sci. 2018;75:2125–35.

36. Wang X, Tian Z. γδ T cells in liver diseases. Front Med. 2018;12:262–8.

37. Zheng L, Xue B, Zhou L, Qiu Z, Zhang X, Xu N, et al. NP 30 stimulates Th17 differentiation through DC in schistosomiasis japonicum. Parasite Immunol. 2018;40:e12528.

38. Gressner AM, Weiskirchen R. Modern pathogenetic concepts of liver fibrosis suggest stellate cells and TGF-beta as major players and therapeutic targets. J Cell Mol Med. 2006;10:76–99.

39. Kresina TF, He Q, Degli Esposti S, Zern MA. Gene expression of transforming growth factor beta 1 and extracellular matrix proteins in murine Schistosoma mansoni infection. Gastroenterology. 1994;107:773–80.

40. Haile LA, von Wasielewski R, Gamekelashvili J, Kruger C, Bachmann O, Westendorf AM, et al. Myeloid-derived suppressor cells in inflammatory bowel disease: a new immunoregulatory pathway. Gastroenterology. 2008;135:871–81.

41. Kumar V, Patel S, Tsyganov E, Gabrilovich DJ. The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol. 2016;37:208–20.

42. Weston CJ, Zimmermann HW, Adams DH. The role of myeloid-derived cells in the progression of liver disease. Front Immunol. 2019;10:10893.

43. Tsoylkoski MR, Stephen TL, Svoronos N, Allegreze MA, Tedone AJ, Perales-Puchalt A, et al. Microbially driven TLR5-dependent signaling governs distal malignant progression through tumor-promoting inflammation. Cancer Cell. 2015;27:27–40.

44. Krstic J, Obradovic H, Kukolj T, Slavko M, Ivana OD, Diana B, et al. An overview of interleukin-17A and interleukin-17 receptor a structure, function and signaling. Protein Pept Lett. 2015;22:570–8.

45. Ramani K, Tan RJ, Zhou D, Coleman BM, Jawale CV, Liu Y, et al. IL-17 receptor signaling negatively regulates the development of tubulointerstitial fibrosis in the kidney. Mediators Inflamm. 2018;2018:5103672.

46. Yanagiwaia H, Hashimoto M, Minagawa S, Takasaka N, Ma R, Moermans C, et al. Role of IL-17A in murine models of COPD airway disease. Am J Physiol Lung Cell Mol Physiol. 2017;312:122–30.

47. Lebrun A, Lo Re S, Chantry M, Izquierdo Caterra X, Uvambayinen F, Ricci D, et al. CCR2 monocytic myeloid-derived suppressor cells (MD-SCs) inhibit collagen degradation and promote lung fibrosis by producing transforming growth factor-beta1. J Pathol. 2017;243:320–30.

Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.