THE WAYS OF PRODUCING AN UNIFIED MATHEMATICAL MODEL FOR THE CAVITATING FLOW IN HYDRODYNAMIC CAVITATION REACTORS

Ivanitsky G.K., Tcelen B.Ya., Nedbaylo A.E., Gozhenko L.P.

Institute of Engineering Thermophysics of the National Academy of Sciences of Ukraine, 2a, M.Kapnist str., Kiev, 03680, Ukraine

Introduction

In recent years there has been a trend of widespread use of hydrodynamic cavitation in various industrial technologies, such as wastewater treatment and sterilization, the creation of nano-emulsions, the synthesis of biodiesel, food processing and others [1,2]. The cavitation technique not only produces the desirable transformation but also reduces the total processing cost and is found to be more energy efficient than many other conventional techniques.

In practice, cavitation mechanisms are initiated in acoustic fields with using various ultrasonic emitters or by creating optimal hydrodynamic conditions in the liquid flow [1-5]. To implement the hydrodynamic cavitation processes in solving scientific and applied problems various types of rotary-pulsed apparatuses [1,5], Venturi nozzles [2,3,6,7], orifice plates [3,6,8], pulsation dispersers [9,10] centrifugal pumps [11] are used. The experience in using of these devices in scientific research and in carrying out various technological operations proves that the realization of the cavitation phenomena allows to dramatically affects the heat and mass transfer, the hydrodynamic, chemical and biophysical processes in liquid at the micro- and nanoscales [2,7,10,11].

References 17, figures 4.

Key words: hydrodynamic cavitation, mathematical model, gas-vapor bubble, cavitation cluster.

Subscripts:
ac – acoustic;
b – bubble;
cl – cluster;
g – non-condensable gas;
l – liquid;
lR – liquid parameter at the bubble interface;
min – minimum;
sat – saturated vapor.

UDC 532.528

УДК 532.528

THE WAYS OF PRODUCING AN UNIFIED MATHEMATICAL MODEL FOR THE CAVITATING FLOW IN HYDRODYNAMIC CAVITATION REACTORS

Ivanitsky G.K., Tcelen B.Ya., Nedbaylo A.E., Gozhenko L.P.

Institute of Engineering Thermophysics of the National Academy of Sciences of Ukraine, 2a, M.Kapnist str., Kiev, 03680, Ukraine

https://doi.org/10.31472/ttpe.2.2020.3

Possible ways of constructing a general model of cavitation reactors are considered. A mathematical model is proposed that without using any limiting assumptions describes adequately the dynamics of vapor-gas bubbles and the behavior of a cavitation cluster in a wide range of regime parameters. In the framework of the model, the influence of gas content and liquid temperature on the cavitation intensity is considered. The possibility of modifying the model as applied to optimizing the operation of cavitation reactors is discussed.

References 17, figures 4.

Key words: hydrodynamic cavitation, mathematical model, gas-vapor bubble, cavitation cluster.

Subscripts:
ac – acoustic;
b – bubble;
cl – cluster;
g – non-condensable gas;
l – liquid;
lR – liquid parameter at the bubble interface;
min – minimum;
sat – saturated vapor.
The choice and justification of the most effective method of cavitation influence on the liquid material to be handled, as well as the use of the most suitable type of cavitation device, depend on the specific technological task. Obviously, the study of cavitation phenomena with a view to their rational and efficient use in industrial technologies requires a unified approach to the analysis of cavitation mechanisms and prediction of their action on the studied object, regardless of the type of cavitation reactor.

The paper discusses some aspects of the processes and phenomena of hydrodynamic cavitation with recommendations for a rational reactor design and optimal operating parameters. The ways of constructing a mathematical model of cavitation reactors are considered, which are based on both the results of our own research on the study of hydrodynamic cavitation and the analysis of well-known publications on this topic.

The principle of operation of cavitation reactors. Cavitation devices are designed to create conditions that ensure the formation of an ensemble of vapor bubbles (cavities) in a liquid (so-called “cavitation cluster”), their subsequent growth, compression, and final collapse. At the collapse instant the bubbles emit high-amplitude pressure pulses, which are converted into the resulting powerful energy pulse of the cavitation cluster. In the zone of bubble collapse a so-called “thermic” forms, which for extremely short time occupies the micron-sized liquid domain with temperature of $T_1 \gg 1000 \, \text{K}$. These short-term dynamic and thermal effects determine the effectiveness of cavitation influence on micro-objects located in liquid inside and in the vicinity of the cluster.

According to the accepted definition [2-6,9,10], cavitation occurs, if pressure in liquid p_1 becomes less than the saturated vapor pressure ($p_1 < p_{sat}(T_1)$), which leads to the formation and growth of bubbles, and then increases to a higher value $p_1 > p_{sat}(T_1)$, which results in compression and subsequent collapse of the bubbles. This definition applies equally to acoustic and hydrodynamic cavitation, where the pressure drop and rise are caused by periodic high-frequency tension and compression of the liquid volume, or by stretching of the liquid high-speed stream when passing through a contraction of the channel. The analysis of the operation of hydrodynamic cavitation devices is based on two independent models. One of them - the cavitation model describes the evolution of bubbles from the moment of its formation to the final collapse, regardless of the type of cavitation reactor. Another model, which can be called a cavitating flow model, takes into account the design features of the reactor.

Cavitation models are designed to predict the behavior of a single gas-vapor bubble (or a bubble ensemble) in liquid with temperature T_1 under isothermal variation in liquid pressure in the vicinity of the bubble. The dynamics of a spherical vapor-gas bubble in viscous incompressible liquid, as a result of a sharp change in external pressure $p_1(t)$, is described by the well-known Rayleigh-Plesset equation

$$\frac{d^2 R}{dt^2} = \frac{P_{IR} - p_1 - 3/2 \rho_1(dR/dt)^2}{\rho_1 R}. \quad (1)$$

Here P_{IR} is pressure in liquid at the bubble interface, which is determined from the balance of normal forces acting on the surface of growing or contracting bubble. With account of the contribution of both capillary and viscous stresses to total stresses on the bubble interface the force balance writes as follows: $P_{IR} = p_b - 2\sigma(T_{IR})/R - 4\mu_1(dR/dt)/R$, where pressure inside the bubble $p_b = p_v + p_1$. Obviously, the derivative dR/dt determines the liquid radial velocity of liquid at the bubble interface $(w_{IR}(t) = dR/dt)$.

Equation (1) ought to be solved together with those, which describe the change in temperature $T_b(t)$ and pressure $p_b(t)$ of gas phase within the bubble, heat mass transfer through the interface, the phase changes kinetics with due account of liquid temperature at the interface $T_{IR}(t)$, as well as the temperature dependences of liquid density $\rho_1(T_{IR})$, viscosity $\mu_1(T_{IR})$ and surface tension $\sigma(T_{IR})$.

The Rayleigh-Plesset equation is also included in the system of equations of cavitation cluster models. In a cavitation cluster model the general equation system, in addition to the ones mentioned above, should also include equations, describing the force and thermal interaction between the cluster bubbles. This allows the calculation of non-stationary fields of velocities, temperatures and pressures in liquid within the cluster, where processed micro-objects are present [9].

Adequate description of cavitation mechanisms requires a strict accounting of all the above factors. However, even in the most developed reactor models, the cavitation processes are described with a large number of simplifying assumptions. For instance, the process of bubble compression is believed to be adiabatic one, vapor pressure inside a bubble is equal to the saturation vapor pressure ($p_v = p_{sat}(T_1) = \text{const}$), the parameters ρ_b, μ_1 and σ are temperature-independent, etc ([3-6,8,12,13]). In some cases, calculations are performed for a single bubble only, and in analysis of cluster behavior the interaction of bubbles is not taken into account [1,3,12]. Most models use an unjustifiably large number of empirical
or adjustable parameters. According to the majority of researchers [2-6,12,13], the theoretical basis have yet to be developed to identify key parameters of cavitation, and the problem of studying cavitation mechanisms actually comes down to testing the behavior of a “black box” [6]. An analysis of publications on the topic suggests that there is currently a lack of valid reliable of cavitation models.

Cavitating flow models describe the pressure variation $p_1 = f(\tau)$ in a fixed elementary liquid volume during its movement in a channel of variable geometry. The calculated values $p_1(\tau)$ are included then in equation (1), which enables determination the cavitation cluster behavior in a particular reactor with a given channel geometry. For the flow of liquid through a Venturi tube or an orifice plate the dependence $p_1 = f(\tau)$ is calculated using the Bernoulli equation [4,5] or the Reynolds averaged Navier-Stokes equation [3-6, 13]. In solving the problems of optimizing the structural-operational parameters of cavitation reactors of this type, ready-made software products of the ANSYS type are used [3, 14]. Of particular difficulty is the theoretical description of unsteady hydrodynamic processes in rotary pulsation apparatuses (rotary disintegrators), which are used in various technologies as effective cavitation reactors. This is due to the complexity of the design of such devices and the need to take into account the diverse factors of influence on the processed medium [1,2]. It is also worth noting that mass-flow rate of a two-phase boiling flow through any cavitation reactor varies periodically with time, which determines the specific feature of the cavitation flow modeling.

Analysis of cavitation mechanisms. One of the most detailed cavitation models is the unified mathematical model of the bubble ensemble dynamics (BED model) [9,15]. Unlike other known models, it takes into account the force and thermal interaction of bubbles in the ensemble, which enables accurate calculation of the pressure change in liquid inside the cluster ($P_{cl} = f(\tau)$) and precise definition of the cavitation inception. A feature of this model is the description of interphase heat and mass transfer in the framework of molecular kinetic theory. Using the same general system of equations, the model adequately describes the bubble cluster dynamics in boiling processes, as well as in the processes of hydrodynamic and acoustic cavitation over the entire temperature range of liquid phase existence up to the thermodynamic critical point [9]. The model uses the generally accepted assumption that a bubble ensemble is monodisperse one at all stages of its evolution. The BED model has been successfully used to calculate cavitation reactors of various types in solving specific technological problems [7, 9-11].

This paper presents the results of numerical investigations on effect of various factors on the cavitation intensity, performed using the BED model.

As noted above, to initiate the cavitation process it is necessary that liquid pressure $p_1(\tau)$ should be sharply decreased to a value p_{min}, lower than saturated vapor pressure ($P_{min} < P_{sat}(T_i)$), and then rapidly increased to value $P_1 > P_{sat}(T_i)$. These conditions, schematically presented in Fig. 1a, are applied equally to acoustic and hydrodynamic cavitation. It is fundamentally important that before the formation of cavitation bubbles (cavitation inception) the values p_{min} should be in the region of negative pressures ($P_{min} \leq 0$) when liquid is in a state of tension. In the theory of acoustic cavitation this is obvious, but when analyzing the processes of hydrodynamic cavitation in almost all known works on cavitation it is assumed a priori that $0 < P_{min} < P_{sat}(T_i)$ [2,6,8,12,13]. This approach excludes the possibility of describing the reactor operation, since the question of directional control of the concentration and

![Fig.1. Schematic representation of the conditions for creating cavitation (a), and typical curves of pressure change over time in fixed volume of water flow in different hydrodynamic cavitation reactors: - in the Venturi nozzle (b), in the channels of a rotary-impulse apparatus (b), in the tube of a pulsating disperser.](image-url)

Теплофізика та теплоенергетика, 2020, т. 42, №2
The initial size of bubbles is no longer considered. The necessity of fulfilling the condition \(p_{\text{min}} \leq 0 \) is considered in detail in [3,9]. The calculated data presented in Fig. 1b,c,d indicate that the condition \(p_{\text{min}} \leq 0 \) is satisfied for any types of hydrodynamic cavitation reactors. These calculated results are in good agreement with experimental data [3-5, 9-11].

Practice shows [2-5,10,11] that the level of cavitation intensity is highly dependent on the gas content of liquid, or on the relative proportion of neutral gas in the initial microns. This is in good agreement with the results of the calculation according to the model [9], which are presented in Fig. 2. Even relatively small gas content in an micronucleous in the stage of bubble formation dramatically reduces the degree of dynamic impact in the final stage of the bubble collapse. This is explained by the fact that the presence of a neutral gas prevents the bubble from being compressed to its minimum size, which excludes the possibility of its collapse with subsequent emission of a high-amplitude pressure pulse [4,5,9,15]. For the reactor to operate efficiently, it is necessary to ensure an extremely high rate of lowering liquid pressure to negative values, and thus initiate the growth of micro- and nanoscale vapor nuclei with relatively low content of neutral gases. In acoustic cavitation this is achieved by increasing the frequency and intensity of the sound field.

Another important factor determining the level of dynamic and thermal effects on an object as a result of the collapse of a cavitation cluster is the value of liquid temperature \(T_i \). When a single bubble collapses, the amplitude of the pressure pulse rapidly and monotonously decreases with increasing temperature [5,9]. However, experiments show [7,16], when a cavitation cluster collapses, a maximum is recorded in the temperature dependence of the pressure pulse amplitude \(p_{\text{imp}} = f(T_i) \) in the temperature range \(T_i = 45 \pm 55^\circ\text{C} \). This is characteristic of both hydrodynamic and acoustic cavitation.

Figure 3 shows the temperature dependences of the pressure pulse amplitude \(p_{\text{imp}} = f(T_{i\text{c}}) \) calculated

![Fig. 2. The pressure (1) and temperature (2) of the medium inside the extremely compressed cavitation bubble, depending on the relative gas content in the initial micro-bubble.](image1)

![Fig. 3. Influence of liquid temperature on the intensity of cavitation action: 1 - loss of mass of an aluminum sample due to cavitation erosion in acoustic field at various values of liquid temperature (experimental data [16]); 2 - change in pressure amplitude during collapse of a bubble cluster in an acoustic field depending on liquid temperature (calculation with the BED model). The frequency of the ultrasonic field \(f_{\text{ac}} = 20 \text{kHz} \), the field intensity \(p_{\text{ac}} = 0.12 \text{MPa} \).](image2)
with the model [9] during the collapse of a cavitation
cluster in pure water in an acoustic field with a frequency
\(f_{ac} = 20 \text{ kHz} \) at field intensity value \(P_{ac} = 0.12 \text{ MPa} \) (solid
line). The curves show a pronounced maximum at liquid
temperature of \(T_i = 55^\circ \text{C} \) (solid line). The dotted line
shows the experimental data [16] on erosive mass loss of
an aluminum sample in water over a certain period of time
during cavitation ultrasonic exposure, depending on liquid
temperature. It is seen that the maximum erosion is recorded
at the same temperature. The reason for the appearance of the
maximum in the curves \(P_{ac} = f(T_i) \) in the temperature range
\(T_i = 45–55^\circ \text{C} \) is still the subject of discussion. Nevertheless,
this nature of the dependence of cavitation effects on liquid
temperature should be taken into account when using
cavitation, for example, in technological operations of
extraction or sterilization, where the temperature of the
liquid is an important factor in the intensity of the process.

Using the BED model a large amount of useful
information can be obtained, including the specifics of the
processes occurring in the most interesting and important
stage of the bubble collapse. It is at this extremely short
stage that intense energy transformations take place.

Due to the adiabaticity of processes at the final
stage of the bubble compression, temperature inside the
extremely compressed bubble significantly exceeds the
critical temperature, so that the bubble and its immediate
environment pass into the state of supercritical fluid (SCF),
where there is no difference between the gaseous and liquid
phases. Any substance in the SCF state is able, like gases,
to seep through solid materials and dissolve substances
like liquids. It is known, for example, that almost all both
organic and inorganic substances dissolve in supercritical
water. In the supercritical state, water mixes unlimitedly
with oxygen, hydrogen and hydrocarbons, facilitating their
interaction with each other - all oxidation reactions occur in
it extremely quickly [17]. The most indicative characteristics
of an extremely compressed bubble in the SCF state are
shown in Fig. 4a.

Figure 4b,c shows the change in pressure (b) and liquid
temperature (c) calculated with the BED model at the bubble
interface over a nanosecond period of its stay in the SCF
state. These results prove that when analyzing the cavitation
effect on supramolecular and microbiological objects, as
well as on the kinetics of chemical reactions, it is necessary
to take into account the transition of the liquid in the vicinity
of the bubble, as well as the vapor-gas mixture in the bubble
itself, to the state of supercritical fluid.

Conclusions

The study of cavitation phenomena with a view to
their rational and efficient use in industrial technologies
requires a unified approach to the description of cavitation
mechanisms, regardless of the type of cavitation device.
Within the framework of this concept, a mathematical
model is developed and improved, which, taking
into account the determining factors and an adequate
representation of thermophysical system parameters, will
provide an opportunity to evaluate and control the level
of impact on liquid disperse systems, depending on the
design and operating parameters of cavitation reactors.
These optimization strategies developed through the
theoretical analysis of many experimental studies may help
in the design, optimization, and scale-up of hydrodynamic
cavitation on an industrial scale for conducting various

![Fig.4. Schematic representation of an extremely compressed cavitation bubble in the state of supercritical fluid (a), and typical nature of the change in time of pressure (b) and temperature (c) in water at the bubble interface at final stage of the bubble collapse.](image)
chemical and physical processes.

REFERENCES

1. Ashokkumar M., Krasulya O., Rink R. A New Look at Cavitation and the Applications of Its Liquid-Phase Effects in the Processing of Food and Fuel. Appl. Phys. Research, 2012. V.4, №1. P. 19–25.

2. Carpenter J., Badve M., Rajoriya S., George S., Saharan V.K., Pandit A.B. Hydrodynamic cavitation: an emerging technology for the intensification of various chemical and physical processes in a chemical process industry. Rev. Chem. Engng. 2017. V.33, P. 433–468.

3. Rooze J. Cavitation in gas-saturated liquids. Eindhoven: Techn. Univers. Eindhoven, 2012. 120 p.

4. Franc J.-P. Physics and Control of Cavitation. In Design and Analysis of High Speed Pumps, Educat. Notes.– RTO-EN-AVT-143, 2006. Paper 2. P. 1–36.

5. Brennen Ch. E. Cavitation and Bubble Dynamics.— N.-Y.: Oxford University Press, 1995. 294 p.

6. Arrojo S., Benito Y. A theoretical study of hydrodynamic cavitation. Ultrasonics Sonochemistry, 2008. V.15, №3. P.203–211.

7. Ivanitsky G.K, Avdeyeva L.Y., Makarenko A.A. Using the effects of hydrodynamic cavitation for purposeful dynamical action on the supramolecular structures. Physics of aerodisperse systems. 2016. № 53. P. 142–151.

8. Sharma A., Gogate P.R., Mahulkar A., Pandit A. B. Modeling of hydrodynamic cavitation reactors using orifice plates considering hydrodynamics and chemical reactions occurring in bubble. Chem. Engng Journ., 2008. V.143, №1–3. P.201–209.

9. Dolinskiy А.А., Ivanitskiy G.K. [Heat and mass transfer and hydrodynamics in vapor-liquid dispersed media]. Kiev, Naukova dumka, 2008. 381 p. (in Rus)

10. Ivanitsky G.K., Gozhenko L.P. [An analytical study of the conditions for the cavitation occurrence in tube of the shock type pulsation disperser]. [Industrial Heat Engineering.] 2014. V. 36, № 6. P. 49–56. (in Rus)

11. Ivanitsky G.K., Nedbaylo A.E. [Analytical study of cavitation in the impeller of centrifugal pumps]. [Industrial Heat Engineering], 2011. V.34, №2. P. 40–47. (in Rus)

12. Kanthale P.M., Gogate P.R., Pandit A.B., Wilhelm A.-M. Dynamics of cavitation bubbles and design of a hydrodynamic cavitation reactor: cluster approach. Ultrasonics Sonochem., 2005. V.12, P.441–452.

13. Singhal A.K., Athavale M.M., Li H., Jiang Y. Mathematical basis and validation of the full cavitation model. Journ. Fluids Engng, 2002. V.124, № 3. P.617–624.

14. Kapranova A.B., Solopov S.A., Melser A.M. [On the methods of describing the process of formation of cavitation flows]. [Eurasian Union of Scientists (EUS)] 2015. № 66 (15), 99–102. (in Rus)

15. Ivanitskiy G.K. [Numerical modeling the bubble cluster behavior in processes of hydrodynamic cavitation]. [Collection of research papers “Modern science: researches, ideas, results, technologies”], 2011. №2(7). Kiev, Trianon, P.52–58. (in Rus)

16. Novitskii B.G. [The use of acoustic vibrations in chemical engineering processes]. Moscow, [Chemia], 1983. 191 p. (in Rus)

17. Gorbaty Yu.E., Bondarenko G.V. [Supercritical state of water]. [Supercritical fluids: Theory and practice]. 2007. №2. P. 5–19. (in Rus)
ШЛЯХИ ПОБУДОВИ УНИФІКОВАНОЇ МАТЕМАТИЧНОЇ МОДЕЛІ КАВІТАЦІЙНОЇ ТЕЧІЇ В ГІДРОДИНАМІЧНИХ КАВІТАЦІЙНИХ РЕАКТОРАХ

Іваницький Г.К., докт. техн. наук, Целень Б.Я., канд. техн. наук, Недбайло А.Є., канд. техн. наук, Гоженко Л.П., канд. техн. наук

Інститут технічної теплофізики НАН України, вул.М.Капніст,2а, Київ, 03680, Україна

https://doi.org/10.31472/ttpe.2.2020.3

Застосування потужних кавітаційних механизмів є одним з найбільш дієвих способів досягнення високих енергетичних показників в технологіях пов'язаних з обробкою рідинних і газовмістних середовищ з мінімальними непродуктивними енерговитратами. Вивчення явив кавітації з метою їх раціонального та ефективного використання в промислових технологіях вимагає єдиного підходу до аналізу кавітаційних ефектів і прогнозування їх впливу на досліджуваний об'єкт незалежно від типу кавітаційного реактора. На сьогодні відсутня чітка теоретична база для обґрунтування можливості чи обмежень використання кавітаційних пристроїв при вирішенні конкретних технологічних завдань.

У роботі обговорюються шляхи побудови загальної математичної моделі кавітаційних реакторів, в основі якої лежать механізми, в яких впливає на процеси комп'ютерного моделировання. Пропонується уніфікована модель, яка в рамках загальних термодинамічних положень з максимальним урахуванням визначальних чинників адекватно описує динаміку одиничних бульбашок і кавітаційних зон широкому діапазону зміни режимних параметрів з мінімальною кількістю обмежуючих припущень.

В рамках моделі проаналізовано ряд факторів, таких як температура і газовміст рідини, які впливають на інтенсивність кавітаційної дії. Стосовно до задач оптимізації роботи кавітаційних реакторів обговорюються шляхи подальшої модифікації цих моделей відповідно до їх використання при вирішенні задач оптимізації роботи кавітаційних реакторів.

1. Ashokkumar M., Krasulya O., Rink R.A. New Look at Cavitation and the Applications of Its Liquid-Phase Effects in the Processing of Food and Fuel. Appl. Phys. Research. 2012.V.4, №.1.P.19–25.
2. Carpenter J., Badve M., Rajoriya S., George S., Saharan V.K., Pandit A.B. Hydrodynamic cavitation: an emerging technology for the intensification of various chemical and physical processes in a chemical process industry. Rev. Chem. Engng. 2017.V.33, P.433–468.
3. Rooze J. Cavitation in gas-saturated liquids. Eindhoven. Techn. Univers. Eindhoven. 2012.–120 p.
4. Franc J.-P. Physics and Control of Cavitation. In Design and Analysis of High Speed Pumps, Educat. Notes.– RTO-EN-AVT-143, 2006. Paper 2. P. 1–36.
5. Brennen Ch. E. Cavitation and Bubble Dynamics.– N.-Y.: Oxford University Press, 1995. 294 p.
6. Arrojo S., Benito Y.A. Theoretical study of hydrodynamic cavitation. Ultrasonochemistry, 2008. V, 15, №3. P.203–211.
7. Ivanitsky G.K., Avdeyeva L.Yu., Makarenko A.A. Using the effects of hydrodynamic cavitation for purposeful dynamical action on the supramolecular structures. Fizika aerodispersних систем. 2016. № 53. P. 142–151.
8. Sharma A., Gogate P. R., Mahulkar A., Pandit A. B. Modeling of hydrodynamic cavitation reactors using orifice plates considering hydrodynamics and chemical reactions occurring in bubble. Chem. Engng. Journal, V.143, №1–3. P.201–209.
9. Долинский А.А., Иваницкий Г.К. Тепломассообмен и гидродинамика в парожидкостных дисперсных средах.–Киев: Наук. думка, 2008.–381 с.
10. Иваницкий Г.К., Гоженко Л.П. Аналитическое исследование условий возникновения кавитации в трубе пульсационного диспергатора ударного типа // Пром. теплотехника.–2014.–Т.36, № 6.–С.49–56.
11. Иваницкий Г.К., Недбайло А.Е. Аналитическое исследование кавитации в рабочем колесе центробежных насосов. Пром. теплотехника.–2011.–Т.34, №2. – С.40–47.
12. Kanthale P.M., Gogate P.R., Pandit A.B., Wilhelm A.-M. Dynamics of cavitation bubbles and design of a hydrodynamic cavitation reactor: cluster approach. Ultrasonochemistry–2005.–V.12, P.441–452.
13. Singhal A. K., Athavale M.M., Li H., Jiang, Y. Mathematical basis and validation of the full cavitation model. Journal of Fluids Engineering, –2002.–V.124, №3.– P.617–624.
15. Іваницький Г.К. Численне моделювання поведінки кавитационного кластера в процесах гідродинамічної кавитації. Сучасна наука: наукові дослідження, ідеї, результати, технології. Сб. наук. статей. Вип. 2(7).–Київ: –Трианон, 2011.–С.52–58.

16. Новицький Б.Г. Применение акустических колебаний в химико-технологических процессах. – М.: Хімія, 1983. 191 с.

17. Горбатий Ю.Е., Бондаренко Г.В. Сверхкритичное состояние воды. Сверхкритические флюиды: Теория и практика.–2007. – № 2.– С.5–19.

Отримано 25.02.2020

Received 25.02.2020