First report of the termite *Glyptotermes ceylonicus* (Blattodea: Isoptera: Kalotermitidae) from India: an example of discontinuous distribution

Edwin Joseph 1, Chinnu Ipe 2, Nisha P. Aravind 3, Sherin Antony 4 & Jobin Mathew 5

1–3 Department of Zoology, CMS College, Kottayam, Kerala 686001, India.
4 Department of Zoology, Bharata Mata College, Thrikkakara, Kochi Kerala 682021, India.
5 Department of Zoology, CMS College, Kottayam, Kerala 686001, India.

1 edwinjoseph@cmscollege.ac.in, 2 chinnurupen@gmail.com, 3 nishaparavind@cmscollege.ac.in, 4 sherin@bharatamatacollege.in, 5 jobin@cmscollege.ac.in (corresponding author)

Abstract: We report *Glyptotermes ceylonicus* (Holmgren, 1911), an endemic Sri Lankan termite, for the first time from India. *Glyptotermes* show a high degree of endemism throughout the world. Record of this species from the current location indicates a wide distribution of this species in southern India, in the past, before the complete separation of Sri Lanka from India. The current distribution of *Glyptotermes ceylonicus* is also an example of discontinuous distribution. Pictorial illustrations of the morphologically important parts and revised key for the Indian species are provided.

Keywords: Dichotomous key, diversity, endemism, southern India.

Glyptotermes ceylonicus is a species of damp wood termite endemic to the high elevations of Sri Lanka. Holmgren (1911) described *G. ceylonicus* from Peradeniya, Ceylon. *Glyptotermes* is a highly endemic genus of the family Kalotermitidae. Krishna et al. (2013), reported 456 species from this family, including 127 species of *Glyptotermes*. Two more species were introduced into the genus recently, making a total of 129 *Glyptotermes* species worldwide. In India, eight of the 13 species of *Glyptotermes* species reported are endemic (Thakur et al. 2010; Amina & Rajmohana 2016; Sengupta et al. 2019). Three species of *Glyptotermes*—*ceylonicus* Holmgren (1911), *dilatatus* (Bugnion & Popoff 1910), and *minutes* Kemner 1932—reported from Sri Lanka are endemic to the area (Sri Lanka). None of the Indian species of *Glyptotermes* were reported from Sri Lanka. Likewise, none of the Sri Lankan species of *Glyptotermes* were reported from India. The total termite species reported from Kerala is 67, which belongs to three families and 30 genera (Mathew & Ipe 2018).

Materials and Methods

Termites were collected from Pinnakkanadu, Kottayam district of Kerala State, located in southern India. The study area is situated between 9.64°N and 76.76°E at an altitude of 97.536 m. The collection was made from the core of a rotten wood of *Hevea brasiliensis* Müll.Arg., 1857, with high moisture content. The periphery of the wood was severely infected with *Heterotermes indicola* (Wasmann, 1902). The specimens were collected using an aspirator and preserved in 80% alcohol. Voucher specimens were deposited in the Zoological Survey of India (ZSI) Western Ghats Regional Centre Specimen Repository with register number ZSI/WGRC/I.R.-INV.17975. Measurements were...
made in 80% alcohol under a stereo zoom microscope, Labomed Luxeo 4D binocular microscope with attached camera and pixel pro software at magnification of 8–35X. Morphological terminology, measurements and indices for describing soldiers, workers and imago follow Roonwal & Chhotani (1989) and Sands (1998). Mandibles, antennae, and labrum of the imago, soldier and worker caste were mounted on a glass slide for examining diagnostic characters. Photographs were taken using Labomed Luxeo 4D binocular microscope with an attached camera.

Systematics

Family Kalotermitidae Froggatt, 1897
Genus *Glyptotermes* Froggatt, 1897
Glyptotermes ceylonicus (Holmgren, 1911)

Materials examined

CMSZMAI-111, Soldier-10, Imago-5, worker-10. 08.10.2018, Pinnakkanadu, Kottayam, Kerala, India, 9.63°N and 76.76°E, 97.536 m, coll. Jobin Mathew.

Diagnosis

Soldier: (Image 1, Table 1). Head-capule brownish yellow, frons reddish-brown with an inclination angle of about 70°. Labrum and antennae pale yellow. Mandibles black, body and legs straw yellow. Head sparsely and body moderately hairy. Mandibles with short hairs at basal humps. Head-capule sub-rectangular, length a little less than twice width. Antennae with 12 segments, segment three shortest. Mandibles thick, stout, and short, broadly narrowed at tips. Left mandible with two large and broad marginal teeth. First marginal situated at about one-fourth from the distal tip or closer to tip, second marginal broader and situated medially or just below first postmentum long, club-shaped, widest anteriorly at one fourth, waist long and narrow, minimum width of waist less than half to about half of maximum width.

Imago: (Image 2, Table 2). Head brown, paler in front. Pronotum paler than head. Abdomen brownish above paler below. Wings iridescent, with brownish anterior veins. Head thick, almost quadrately oval. Eyes and ocelli are small, ocelli separated from the eyes by their diameter or a little more. Clypeus short. Antenna 13 segmented, distinctly thickened distally. Segment two is almost as long as three.

Pseudoworker: (Image 3, Table 3). Head-capule pale yellow, antennae, labrum, legs and body paler. Head and body moderately hairy. Head-capule subcircular, a little broader than its length to base of mandibles. Eyes translucent and round. Ocelli absent. Antennae with 13 segments, segment three shortest. Labrum broadly tongue-shaped, hairy near anterior margin and on body. Mandibles typically *Glyptotermes*-type.

Biology

Glyptotermes ceylonicus is a rare species in Sri Lanka and India. It is reported from dead, decaying logs and branches of *Hevea, Acacia*, and *Artocarpus integrifolia* Linn.f. 1782. In Sri Lanka, it is found at an altitude between 460–610 m. In India, it is reported at 97.536 m. The nest is in the form of longitudinal galleries. The galleries and chambers contain a small round heap of faecal matter.

Distribution

Sri Lanka: Chilaw, Hewaheta, Elpitiya, Kurunegala, Pasara, and Peradeniya.
India: Kottayam (new record)
First report of Sri Lankan termite *Glyptotermes ceylonicus* from India

Joseph et al.

Discussion

Kalotermitidae is a monophyletic lineage (Inward et al. 2007); it contains lower termites that evolved during the Cretaceous period. Three species of Kalotermitidae are preserved in Miocene amber from the Dominican Republic, which belong to the living genera *Cryptotermes*, *Glyptotermes*, and *Incisitermes* (Rohr et al. 1986). The higher distribution and abundance of *Glyptotermes* in the Neotropical (34.2%) and Indo-Malayan (31.5%) regions suggest, the genus had its origin in either of these regions. They got dispersed in the late Jurassic or early Cretaceous to the Australian and Papuan regions and dispersed through the Bering land bridge (Emerson 1952, 1955) or they originated in southern landmass when they were contiguous and dispersed before landmass drifted apart according to Warner’s hypothesis (Chhotani 1970). Either of the two theories gives an insight into the reason behind the peculiar distribution.

Studies show that East Gondwana, including India, split from West Gondwana between 165 and 150 million years ago (Krutzhc 1989; McLoughlin 2001; Briggs 2003). The collision of the Deccan plate (comprising India, Sri Lanka, and Seychelles) with Laurasia during the Eocene between 55 and 40 million years ago led to the rise of the Himalayan chain (Partridge 1997; Willis & McElwain 2002). The tropical climate of this region supports the development of the tropical biome in southeastern Asia. Sri Lanka was probably connected to India until 6,000 years ago, with a continuous stretch of tropical rain forest, which permitted the exchange of fauna of these regions. Later, Sri Lanka separated from the Indian mainland due to rise in sea levels (McLoughlin 2001).

Roonwal & Chottani (1989) conducted extensive studies on the termite fauna of the Indian subcontinent and reported 12 species of *Glyptotermes*. Thakur et al. (2010), introduced a new species, *Glyptotermes roonwali*, from northern India. Amina & Rajmohana (2016), introduced a new species, *Glyptotermes chiraharitae*,
First report of Sri Lankan termite *Glyptotermes ceylonicus* from India

Joseph et al.
Journal of Threatened Taxa | www.threatenedtaxa.org | 26 June 2022 | 14(6): 21290–21295

from southern India in 2016, and the presence of two Glyptotermes species were revalidated by Rituparna et al. (2019) in 2019. Currently, a total of 17 Glyptotermes species are reported from the Indian region. Earlier it was thought that *Glyptotermes ceylonicus* was restricted to Sri Lanka. This is not a very common species and was earlier reported from Chilaw, Hewaheta, Elpitiya, Kurunegala, Pasara, and Peradeniya at an elevation of 460–610 m (Hemachandra et al. 2012). This species prefers to feed on dead, decaying logs and branches of *Hevea, Acacia, and Artocarpus integrifolia* with high water content (Roonwal & Chhotani 1989). Through the present study, we report *Glyptotermes ceylonicus* for the first time in India. The population is found in the western part of Western Ghats, 500 km (aerial distance) away from the currently known location, at an elevation of 97.536 m. The species may have been widely distributed in southern India before the separation of Sri Lanka from India. Invasion through traded goods is thin because artificial transport of this rare species is difficult (Chhotani 1970). These family of termites are obscure in nature, except *Paraneotermes simplicicornis*, which exclusively dwells in woody structures (Thakur et al. 2010), resulting in under-exploration. Another reason for the absence of this species from the area between Sri Lanka and current location might be due to the extinction in the intermediate areas due to the influence of anthropogenic factors (Basu et al. 1996). Amina et al. (2013) reported Sri Lankan termite *Hospitalitermes monoceros* (Konig, 1779) from Chinnar Wildlife Sanctuary, Western Ghats, Kerala. This also supports our view that many termites are distributed in southern India and Sri Lanka and later dwindled to narrow geographical areas. The present documentation of *Glyptotermes ceylonicus* is an example of discontinuous distribution.

References

Amina, P. & K. Rajmohana (2016). *Glyptotermes chiraharitae* n. sp., a new dampwood termite species (Isoptera: Kalotermitidae) from India. *Zoosystema* 38(3): 309–316. https://doi.org/10.5252/z2016n3a2

Amina, P., K. Rajmohana, C. Bijoy, C. Radhakrishnan & N. Saha (2013). First record of the Sri Lankan Processional Termite, *Hospitalitermes monoceros* (Konig) (Termitidae: Nasutitermitinae) from India. *Halteres* 4: 48–52.

Table 1. Measurements of soldier cast of *Glyptotermes ceylonicus*.

Characters	Present study	Roonwal & Chhotani (1989)	
	Range Mean	Range Mean	
Total body Length	7.00–7.3 1	7.15	6.5–10.4
Head Length to the base of mandible	2.11–2.19	2.15	2.67–3.00
Head Width	1.37–1.4	1.38	1.5–1.67
Mandible Length	0.97–1.00	0.98	0.90–1.00
Labrum Length	0.35–0.38	0.36	-
Labrum Width	0.34–0.35	0.345	-
Pronotum Length	1.72–1.75	1.73	-
Pronotum Width	1.32–1.38	1.35	-
Postmentum Length	1.92–1.95	1.93	1.90–2.33
Postmentum Width Maximum	0.49–0.58	0.53	0.5–0.6
Postmentum Width Minimum	0.2–0.23	0.21	0.23
Antenna segments	12	-	12

Table 2. Measurements of imago cast of *Glyptotermes ceylonicus*.

Characters	Present study	Roonwal & Chhotani (1989)	
	Range Mean	Range Mean	
Total Length with wings	8.5–9.63	9.06	8.5–11.0
Total Length without wings	4.8–5.77	5.28	4.7–6.0
Head Length	1.47–1.49	1.48	1.33–1.52
Head Width	1.24–1.29	1.26	1.15–1.30
Labrum Length	0.31–0.33	0.32	-
Labrum Width	0.29–0.31	0.30	-
Pronotum Length	0.61–0.66	0.63	-
Pronotum Width	1.06–1.09	1.07	-
Diameter of the eye	0.27–0.30	0.28	-
Diameter of Ocellus	0.09–0.11	0.10	-
Antenna segments	13	-	13–14

Table 3. Measurements of pseudo-worker cast of *Glyptotermes ceylonicus*.

Characters	Present study	Roonwal & Chhotani (1989)	
	Range Mean	Range Mean	
Total body Length	7.94–8.6	7.15	7.9–8.6
Head Length to the base of mandible	1.30–1.42	1.36	1.40
Head Width	1.45–1.5	1.47	1.5
Labrum Length	0.46–0.48	0.47	0.47
Labrum Width	0.39–0.42	0.40	0.43
Pronotum Length	0.57–0.62	0.59	-
Pronotum Width	1.09–1.14	1.11	-
Antenna segments	13	-	13
Revised key to the Indian species of Glyptotermes (based on soldier caste)

(Froggatt 1897; Thakur et al. 2010; Amina & Rajmohana 2016; Rituparna et al. 2019)

Step	Description	Species
1	Large species; frons sharply inclined in front at an angle of more than 65°	G. ceylonicus
	Small species; frons gradually inclined in front at an angle of 45–50°	G. taruni
2	Head much longer (1.7–1.85 times) than wide, left mandible with four marginal teeth	G. caudomunitus
	Head not much longer (a little more than 1.5 times) than wide left mandible with three marginal teeth	G. tripurensis
3	Head length to base of mandible 3.20–3.50 mm, head width 1.90–2.05 mm. Antennae 14–15 segmented; mandibles long (1.48–1.58 mm)	G. ceylonicus
	Head length to base of mandibles 2.67–3.00 mm, headwidth 1.50–1.67 mm; antennae 12-segmented; mandibles shorter (0.90–1.00 mm)	G. ceylonicus
4	Antennae 14 segmented; labrum subsquare, broader than long; postmentum long (1.78 mm), waist much narrower, postmentum contraction index 0.42; small species	G. taruni
	Antennae 12 segmented; labrum tongue shaped, longer than wide; postmentum not much long (1.48–1.70 mm), waist comparatively wider, postmentum contraction index 0.47–0.52; large species	G. chinahraritae
5	Head capsule large and wide (head length to base of mandibles 1.93–2.27 mm, head width 1.25–1.40 mm); antennae 12–14 segmented	G. tekafensis
	Head capsule small and narrow (head length to base of mandibles 1.18–1.73 mm, head width 0.88–1.20 mm); antennae 8–12 segmented	G. caudomunitus
6	Head width less than 1.00 mm	G. ukhiaensis
	Head width more than 1.00 mm	G. caudomunitus
7	Ocelli absent; antennae 10–11 segmented	G. caudomunitus
	Ocelli present; antennae 8–12 segmented	G. caudomunitus
8	Epicranial suture faintly visible; antennae 9–10 segmented	G. caudomunitus
	Epicranial suture distinct; antennae 8–12 segmented	G. caudomunitus
9	Mandibles basally bumped at outer margins; antennae 8–10 segmented	G. tripurensis
	Mandibles with a weak basal bump; antennae 11–12 segmented	G. roonwali
10	Antero-lateral corners of head sharply pointed in font	G. almorensis
	Antero-lateral corners of head rounded and not pointed in font	G. caudomunitus
11	Mandibles with prominent basal hump; antennae 9–11 segmented	G. coorgensis
	Mandibles with weaker basal humps; antennae 11–12 segmented	G. coorgensis
12	Margin between 2nd and 3rd marginal teeth of left mandible not sharp and rounded incurved; postmentum narrow at waist (width at waist 0.16–0.20 mm)	G. sensarmai
	Margin between 2nd and 3rd marginal teeth of left mandible, not continuous, but with angular cutting edges; postmentum comparatively wider at waist (0.19–0.29 mm)	G. brevicaudatus
13	Head comparatively wide (head width index 0.67–0.77); epicranial suture incomplete; postmentum wide (maximum width of postmentum 0.40–0.43 mm)	G. coorgensis
	Head comparatively narrow (head width index 0.59–0.66); epicranial suture complete; postmentum narrow (maximum width of postmentum 0.30–0.37 mm)	G. coorgensis

References

Basu, P., E. Blanchart & M. Lepage (1996). Termite (Isoptera) community in the Western Ghats, South India: influence of anthropogenic disturbance of natural vegetation. *European Journal of Soil Biology* 32(3): 113–21.

Briggs, J.C. (2003). The biogeographic and tectonic history of India. *Journal of Biogeography* 30: 381–388. https://doi.org/10.1046/j.1365-2699.2003.00809.x

Chhotani, G.B. (1970). Revision of the genus Glyptotermes Froggatt (Kalotermitidae, Isoptera, Insecta) from the Indian Region. *Records of the Zoological Survey of India* 68(1/4): 109–159.

Emerson, A.E. (1952). The Neotropical genera Procornitermes and Cornitermes (Isoptera, Termitidae). *Bulletin of the American Museum of Natural History* 99(8): 475–539.

Emerson, A.E. (1955). Geographical origins and dispersals of termite genera. *Fieldiana: Zoology* 37: 465–521. https://doi.org/10.5962/bhl.title.2783

Froggatt W.W. (1897). Australian Termitidae. Part II. *Proceedings of the Linnean Society of New South Wales* 21: 510–552. https://doi.org/10.5962/bhl.part.8483

Hemachandra, I.I., J.P. Edirisinghe, W.A.I.P.A. Karunaratne & C.V.S. Gunettileke (2012). An annotated checklist of termites (Isoptera) of Sri Lanka. MAB Checklist and Handbook Series Publication No. 24. National Science Foundation of Sri Lanka, Colombo, 29 pp.

Holmgren, N. (1911). Ceylon-Termite gesammelt von Prof. K. Escherisch, nebst iner synoptischen übersicht tiber alle bisjetzt von Ceylon und den angrenzenden Festland bekannten Termitenarten, pp. 183–212. In: *Termiten lebena Uf Ceylon, u.s. w.* (by K. Escherisch). Systematischer Anhang: Termiten und Termiotphilen von Ceylon.

Inward, D. J., A.P. Vogler & P. Eggleton (2007). A comprehensive phylogenetic analysis of termites (Isoptera) illuminates key aspects of their evolutionary biology. *Molecular phylogenetics and evolution* 44(3): 953–967.

Krishna, K., D.A. Grimoldi, V. Krishna & M.S. Engel (2013). Treatise on the Isoptera of the world. *Bulletin of the American Museum of Natural History* B377(5): 2282–2310. https://digitallibrary.amnh.org/handle/2246/6430

Krutzw, W. (1989). Paleogeography and historical phytogeography (paleoecology) in the Neophyticum. *Plant Systematics and Evolution* 138: 221–250.
First report of Sri Lankan termite Glyptotermes ceylonicus from India

Joseph et al.
Journal of Threatened Taxa | www.threatenedtaxa.org | 26 June 2022 | 14(6): 21290–21295

Evolution 162: 5–61. https://doi.org/10.1007/BF00936909
Mathew, J. & C. Ipe (2018). New species of termite Pericapritermes travancorensis sp. nov. (Isoperta: Termitidae: Termitinae) from India. Journal of Threatened Taxa 10(11): 12582–12588. https://doi.org/10.11609/jott.3389.10.11.12582-12588
Mcloughlin, S. (2001). The breakup history of Gondwana and its impact on pre-Cenozoic floristic provincialism. Australian Journal of Botany 48: 271–300. https://doi.org/10.1071/BT00023
Partridge, T.C. (1997). Late Neogene uplift in eastern and southern Africa and its paleoclimatic implications, pp. 63–86. In: Ruddiman, W.F. (eds.). Tectonic Uplift and Climate Change. Springer, Boston, xxi+535 pp. https://doi.org/10.1007/978-1-4615-5935-1_4
Rohr, D.M., J. Boucot, A.J. Miller & M. Abbott (1986). Oldest termite nest from the Upper Cretaceous of west Texas. Geology (Boulder) 14(1): 87–88. https://doi.org/10.1130/0091-7613(1986)14<87:OTNFTU>2.0.CO;2
Roonwal, M.L. & O. B. Chhotani (1989). The Fauna of India and the Adjacent Countries: Isoptera (Termites) - Vol. 1. Zoological Survey of India, Calcutta, 672 pp.

Sands, W.A. (1998). The Identification of Worker Castes of Termite Genera from Soils of Africa and the Middle East. CAB International, Wallingford, 500 pp. https://doi.org/10.1017/50007485399000413
Sengupta, R., K. Rajmohana, A. Poovoli, J. Basak & B. Baraik (2019). Revalidation of the presence of Glyptotermes brevicaudatus (Haviland) and Glyptotermes caudominitus Kenner in India (Isoperta: Kalotermitidae). Oriental Insects 53(4): 588–598.
Thakur, R.K., T. Vivek & K. Sachin (2010). Glyptotermes roonwali (Isoperta: Kalotermitidae), a new species from India. Entomamon 35(2): 111–119.
Wasmann, E. (1902). Termiten, Termitophilen und Myrmekophilen, gesammelt auf Ceylon von Dr W Horn, 1899, mitandernostindischen Material bearbeitet. Beitragezur Kenntnis der Myrmekophilen und der Termitophilen. Zoologische Jahrbücher (Syst.) 17(1): 99–164.
Willis, J.K. & J.C. Mcelwain (2002). The evolution of plants. Annals of Botany 90(5): 678–679. https://doi.org/10.1093/aob/mcf232
Identification of confiscated pangolin for conservation purposes through molecular approach
– Wiradet, R. Taufiq P. Nugraha, Yulianto & Gono Semiadi, Pp. 21127–21139

The trade of Saiga Antelope horn for traditional medicine in Thailand
– Lalita Gomez, Penthai Siriwat & Chris R. Shepherd, Pp. 21140–21148

The occurrence of IndoChinese Serow Capricornis sumatraensis in Virachey National Park, northeastern Cambodia
– Gregory McCann, Keith Pawlowski & Thon Soukhon, Pp. 21149–21154

Atitudes and perceptions of people about the Capped Langur Trachypithecus pileatus (Mammalia: Primates: Cercopithecidae): a preliminary study in Barail Wildlife Sanctuary, India
– Rofik Ahmed Barbhuya, Amir Sohail Choudhury, Nazimur Rahman Talukdar & Partshankar Choudhury, Pp. 21155–21160

Feather characteristics of Common Myna Acridotheres tristis (Passeriformes: Sturnidae) from India
– Swapna Devi Ray, Goldin Quadros, Prateek Dey, Padmanabhan Pramod & Ram Pratap Singh, Pp. 21161–21169

Population and distribution of Wattled Crane Buceranus carunculatus, Gmelin, 1899 at lake Tana area, Ethiopia
– Shimelis Aynalem Zelelew & George William Archibald, Pp. 21170–21178

Waterbird assemblage along Punatsangchu River, Punakha and Wangdue Phodrang, Bhutan
– Nima & Ugyen Dorji, Pp. 21179–21189

Freshwater fishes of the Chimmony Wildlife Sanctuary, Western Ghats, India
– P.S. Eldho & M.K. Sajeevan, Pp. 21190–21198

Butterflies of Eravikulam National Park and its environs in the Western Ghats of Kerala, India
– Kalesh Sadasivan, Toms Augustine, Edalayil Kumhikrishnan & Baiju Kochunarayan, Pp. 21199–21212

The dragonflies and damselflies (Insecta: Odonata) of Kerala – Status and Distribution
– Tharindu Ranasinghe & Hemant V. Ghate, Pp. 21218–21220

Rediscovery of Gardena melinarthrum Dohrn from Sri Lanka
– Sangamesh R. Hiremath, Santana Saikia & Hemant V. Ghate, Pp. 21295–21301

Notes

New breeding site record of Oriental White Ibis Threskiornis melanocephalus (Aves: Threskiornithidae) at Thirunavaya wetlands, Kerala, India
– Binu Chullakkattil, Pp. 21315–21317

Rediscovery of Gardena melinarthrum Dohrn from Sri Lanka
– Tharindu Rasangire & Hemant V. Ghate, Pp. 21321–21328

A report on the occurrence of the cicada Callogeaena festiva (Fabricius, 1803) (Insecta: Cicadidae) from Mizoram, India
– Kholinhrong Manova, Fanai Malawmdawngliana, Lal Muansanga & Hmar Tlawmte Lairemsga, Pp. 21321–21323

New distribution records of two species of metallic ground beetles of the genus Chlaenius (Coleoptera: Carabidae: Chlaeninae) from the Western Ghats, India
– Sangamesh R. Hiremath, Santana Saikia & Hemant V. Ghate, Pp. 21321–21323

Report of Euphae a pseudispars Sadasivan & Bhakare, 2021 (Insecta: Odonata) from Kerala, India
– P.K. Muneer, M. Madhavan & A. Vivek Chandran, Pp. 21327–21330