CRISPR/Cas9 (D10A) nickase-mediated Hb CS gene editing and genetically modified fibroblast identification

Wei-Hao Wu\textsuperscript{a,b}, Xiao-Mei Ma\textsuperscript{a,b}, Jian-Qing Huang\textsuperscript{a}, Qin Lai\textsuperscript{a}, Fu-Neng Jiang\textsuperscript{b}, Cui-Yun Zou\textsuperscript{c}, Long-Tian Chen\textsuperscript{d}, and Lian Yu\textsuperscript{e}

\textsuperscript{a}Department of Hematology, Longyan First Hospital Affiliated Fujian Medical University, Longyan, China; \textsuperscript{b}Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China; \textsuperscript{c}Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, China

ABSTRACT
This study investigated whether CRISPR/Cas9 (D10A) nickase-mediated gene editing can correct the aberrant Hb Constant Spring mutation (Hb CS or HBA2: c.427 T > C) in fibroblasts. Vectors for repairing the $\alpha$-globin-encoding gene, HBA2:c.427 T > C mutation, including the CRISPR/Cas9(D10A)-sg plasmid and donor with homology arms, were constructed and used to perform gene editing in patient-derived fibroblasts. We subsequently analyzed the genetic correction, the gene editing efficiency and off-target effect. Sequencing analysis and the BamHI assay showed that Hb CS mutant cells were repaired with Hb CS point mutations, the editing efficiency was 4.18%-9.34% and no off-target effects were detected. The results indicate that the Hb CS mutant gene is effectively repaired by the CRISPR/Cas9 (D10A) system, which may enable truly personalized therapy for precise repair of $\alpha$-thalassemia.
Highlight
Cas9 (D10A) only cleaves a single strand of DNA, the Cas9(D10A)-sg plasmid is used in pairs to achieve the two strands of DNA cleavage, which can effectively improve the specificity of target cleavage and reduce off-target.

1. Introduction
Alpha-thalassemia (α-thalassemia) is a hereditary hemolytic disease caused by a complete or partial absence of alpha-globin (α-globin) chain synthesis due to α-globin chain synthesis disorders. It is one of the most common genetic diseases in the world.

A previous study conducted by the authors of this paper shows that the hemoglobin (Hb) Constant Spring (CS) mutation is one of the most common thalassemia alleles in Longyan city [1]. It is caused by the mutation of the stop codon of the HBA2 gene to glutamine; this prolongs messenger RNA (mRNA) molecules and polypeptides, further leading to instability of the mRNA and the corresponding alpha-CS (αCS) peptide.

An analysis of pediatric patients with Hb CS showed that the clinical severity of the syndrome varies widely [2], with approximately 25% of patients with Hb CS having severe anemia [3].

Many studies have shown that anemia symptoms in patients with α(0)-thalassemia and Hb CS (−/αCSα) are more severe than in patients with three α-globin gene deletions (−/−α) [4–7]. This may be caused by the αCS chain binding to the erythrocyte membrane protein, thus causing disturbance, increasing the strength of the erythrocyte membrane, reducing deformability, and changing cell hydration [8–10].

At present, gene therapy research on thalassemia mainly adopts the non-homologous end joining mechanism [11,12]. The principle of this mechanism is that the gene editing technology (e.g., clustered regularly interspaced short palindromic repeats [CRISPR]-Cas9 or zinc finger nuclease) has a key inhibitory effect on the expression of fetal Hb. 4

Gene targeting introduces DNA double strand breaks (DSBs), which reactivate the expression of fetal Hb; this in turn relieves symptoms in patients with β-Hb. However, this gene disruption program is only suitable for the study of beta-thalassemia and sickle-type anemia. Furthermore, DSB is prone to trigger frameshift mutations [13], leading to more serious clinical consequences. Hence, there is still a need for a safer genetic repair program for α-thalassemia.

The donor chosen for repair in the present study was obtained from a patient with a Hb Cs mutation and an -SEA/αCSα genotype (i.e., one chromosome had a large fragment deletion of SEA lacking HBA2 and HBA1 genes, and the other chromosome had a Hb CS mutation in the HBA2 terminator and a normal HBA1 gene).

Due to the deletion of a HBA2 gene copy, only one copy of the mutation required repair, making it a suitable candidate for the study of α-thalassemia gene therapy. The extensive distribution of autologous fibroblasts provides a sufficient source of cells for the clinical application of mutations in α-thalassemia correction, and the use of cells in patient treatment avoids the problem of immune response to allogeneic transplantation. This study investigated whether CRISPR/Cas9 (D10A) nickase-mediated gene editing can correct the aberrant Hb Constant Spring mutation (Hb CS or HBA2: c.427 T > C) in fibroblasts. The homology-directed recombination method and CRISPR/Cas9 (D10A) technology were used to accurately repair α-thalassemia Hb CS mutant fibroblasts. It may enable truly personalized therapy for precise repair of α-thalassemia.

2 Materials and methods

2.1 Materials

2.1.1 General information
The present study was approved by the Hospital of Fujian Province ethics committee. The case of an 11-year-old male patient with thalassemia carrying an α-thalassemia mutation common in China was selected in Longyan city. The patient had standard SEA, resting Hb CS, an -SEA/αCSα genotype, and moderate anemia, for which he required frequent iron therapy. The child and his guardian were acquainted with the test content and signed an informed consent form.

2.1.2 Main reagent
Fibroblast serum-free medium (Tianjin Haoyang Biological Products Technology Co., Ltd.); serum-
free digestive enzyme (Youkang Hengye Biotechnology Co., Ltd.); Basic fibroblast growth factor, (Yikesai Biotechnology Co., Ltd.); type I collagenase (Sigma); HiPure Tissue DNA Mini Kit (Guangzhou Xinyan Biotechnology Co., Ltd.); agarose (Biowest, Spain); Ethidium bromide (Shanghai Aladdin Biochemical Technology Co., Ltd.); TransStart FastPfu Fly DNA Polymerase (Beijing Gold Biotechnology Co., Ltd.); Human Dermal Fibroblasts Nucleofector kit (containing control plasmid pmaxGFP) (Lonza, USA); DNA Marker (TaKaRa Bio Group); Big Dye Terminator v3.1 Cycle sequencing kit (Applied Biosystems, USA); and primers (Guangzhou Zhen Biotechnology Co., Ltd. synthesis); pMD™18-Vector Cloning kit(TaKaRa Code No. 6011).

2.2 Methods

2.2.1 Skin tissue collection
Approximately 5 mm³ of the patient’s skin tissue was collected and immediately placed in a DMEM medium Eppendorf (EP) tube containing 10% fetal bovine serum.

2.2.2 Primary culture of fibroblasts
The tissue was removed with forceps, placed in a petri dish, and washed several times with sterile phosphate-buffered saline (PBS); the skin tissue was transferred to 1.5 ml of EP tube, and 500 µl of 0.075% sputum collagenase (PBS containing 0.36 mM CaCl₂) was added while using sterile scissors. The tissue was completely shredded and transferred to a new culture dish, placed in 1 ml of collagenase, and digested overnight in a 37°C 5% CO₂ cell incubator. Transferred to a centrifuge tube, 300 g, centrifuged for 10 min. The medium was resuspended and placed in an incubator for two to three days. The cells were adherently grown for approximately seven days, and the solution was changed every three days.

2.2.3 Plasmid construction and identification
2.2.3.1 Construction of Cas9(D10A)-sg plasmid.
A pair comprising Cas9 (D10A)-sg and its repair donor plasmid were designed for the Hb CS mutation in the HBA2 gene encoding α-globin using a site-specific repair protocol. Simultaneous expression of single guide RNA (sgRNA) and Cas9 (D10A) was achieved through use of the sg target-related sequence (synthesized by Generic Biosystems) on the vector pX330 clone (Plasmid #110403, Addgene) [14].

2.2.3.2 Target selection via sg. As Cas9 (D10A) only cleaves a single strand of DNA, the Cas9 (D10A)-sg plasmid is used in pairs to achieve two-strand DNA cleavage; this can effectively improve the specificity of target cleavage and reduce off-target events. Even if one target is off-target, Cas9 (D10A) cleaves a single strand of DNA near the off-target site without causing DNA mutations (the body’s self-healing mechanism can repair single-strand DNA breaks).

An online software provided by Zhangfeng Laboratory (http://crispor.tefor.net/) [15] was used to predict the sg target of Cas9 near the HBA2 gene mutation site; the sgRNA expression plasmid with a cleavage efficiency and high specificity was selected. The target sequences were sg21-rev: 5'-CCGTGCTGACCTCCAAATACCGT-3' and sg24-fw: 5'-AGCCGTTCCCTCCTGCCCCTGGG-3'.

2.2.3.3. Gene targeting using pX335-sg plasmids.
The pX330-sg vector has two BbsI enzyme sites on which a vector fragment with two different cohesive ends is formed. The forward primer (sg-F) and reverse primer (sg-R) containing the target sequence were obtained using artificial synthesis; they were then inserted into the pX330-sg vector to construct the sgRNA cloning plasmids pX330-sg21-HBA2(fw) and pX330-sg24-HBA2(rev).

2.2.3.4 Donor plasmids. In the present study, Invitrogen’s transient plasmid pcDNA3.1(+) (Plasmid #V79020) was used as the donor plasmid backbone, and the vector was digested with SpeI and XbaI enzymes to obtain the donor vector fragment. The complete target repair sequence could be ligated to obtain the complete donor plasmid.

As the HBA2 gene encoding the globin alpha chain and the HBA1 gene sequence coding region are basically identical and the stop rear sequence is different, the left arm is inevitably mismatched
with the HBA1 gene, but the right arm specificity provides the HBA2 donor with specificity.

The protospacer adjacent motif (PAM) site of the donor repair sequence (i.e., NGG) was engineered to prevent the sequence from being cut by Cas9 (D10A)-sg. The PAM sites of sg21 and sg31 on the left arm are in the coding region, and the NGG sequence is altered by codon degeneracy; sg24 and sg33 on the right arm mutate NGG to NAG. The sg31-fw sequence was 5'-CGCCTCCCTGGACAAGTTCCTGG-3' and the sg33-rev sequence was 5'-GGCAGGAGGAACCGCTACCGAGG-3'.

In the present study, the BamHI sequence was added to the HBA2 gene to facilitate subsequent detection of knock in (KI) repair efficiency. The sequence was designed to insert the T2A and BamHI sequences after the stop codon (TAA) (there is no BamHI restriction site on the left arm and right arm). After the design, a repair sequence fragment was synthesized by General Biosystems (Anhui) Co., Ltd., and the fragment was ligated into the above-described pcDNA3.1 (+) plasmid (pcDNA3.1-Donor-HBA2-BamHI).

### 2.2.4 Electroporation and gene editing

The pX330-sg21-HBA2(fw), pX330-sg24-HBA2 (rev), and pcDNA3.1-Donor-HBA2-BamHI plasmids were simultaneously electroporated into fibroblasts for site-fixed repair using nucleofactor II (Lonza) set at program A023 in accordance with the protocol of Human Dermal Fibroblasts Nucleofector kits. The cells were expanded for polymerase chain reaction (PCR) screening and sequencing verification four days after the transfection.

### 2.2.5 PCR detection of targeted homologous recombination and correction of mutation

Primers for the HB CS mutation site and its flanking series were designed to identify cells successfully repaired after transfection. The primer sequences were HBA2-KI-SF: 5'-ACCCGGTCAAC TTCAAGGT-3' and HBA2-R-R: 5'-CTCCGACC AGCTTGCAAT-3'. Genomic PCR was performed using HiPure Tissue DNA Mini Kit in accordance with the manufacturer's instructions. Primers HBA2-KI-SF and HBA2-R-R were used to amplify the 2-kb product. The efficiency of CRISPR/Cas9-mediated genome editing was determined using BamHI digestion at 37°C for 20 min and electrophoresis.

### 2.2.6 Off-target detection

Six sites with the most potential to be off-target were predicted using CRISPOR (http://crispor.tefor.net/) [15] (Table 1). The cell genomes were extracted after editing as PCR templates, and the target genome fragments were obtained by PCR amplification using the identification primers of the potential off-target sites. The PCR products were sequenced and verified by Suzhou Jinweizhi biotechnology co., LTD.

### 3 Results

In this study, CRISPR/Cas9 (D10A) technology and Homology-directed recombination (HDR) method were used to accurately repair α-thalassemia Hb CS mutant fibroblasts. Sequencing analysis and the BamHI assay showed that HB CS mutant cells were repaired with Hb CS point mutations, the editing efficiency was 4.18%
~9.34% and no off-target effects were detected. The results indicate that the HB CS mutant gene is effectively repaired by the CRISPR/Cas9 (D10A) system, which may enable truly personalized therapy for precise repair of α-thalassemia.

### 3.1 Cell culture

Skin tissue was obtained via biopsy in patients with α-thalassemia and an -SEA/αCSα genotype, and the fibroblasts were obtained by three-week primary culturing (Figure 1).

### 3.2 Generation of corrected fibroblasts

The pmaxGFP plasmid was used as a positive control for electroporation conditions; a transfection efficiency of >80% was achieved in the fibroblast genome (Figure 2). Using the same electroporation conditions, pX330-sg21-HBA2 (fw), pX330-sg24-HBA2 (rev) and Cas9 (D10A) expression plasmids and donor plasmids were co-nucleated to the patient fibroblasts; there was a cell-death rate of approximately 30% after plasmid transfection.

In order to improve the repair efficiency, the cells were transferred to a 24-well plate for four days after the official transfection, and the genomic DNA of the cells was extracted for PCR amplification.

### 3.3 Gene editing efficiency

The repair efficiency of fibroblasts was analyzed to investigate the effectiveness of sgRNA and donor plasmids in mutated gene repair. Primers were designed near the repair site, and PCR sequences were amplified. The genomic fragments were amplified and subjected to BamHI digestion. The un repaired HBA2 gene terminator was mutated to glutamine, and the PCR amplified fragment size was 2242 bp. The size of the PCR amplified fragment after repair was 2254 bp, and the length could be cut into two strips at 1433 bp and 821 bp. This confirmed that the CRISPR/Cas9 (D10A) repair system can achieve gene repair in fibroblasts. The edit rates of 2, 5, and 10 μg of pcDNA3.1-Donor-HBA2 plasmid after electroporation were 4.18%, 8.70%, and 9.34% (Figure 3).

### 3.4 HBA2 gene sanger method sequencing

The PCR product was cloned into the pMD18-T vector and transformed into the Escherichia coli...
compliant cell DH5α. Sanger sequencing was performed using HBA2-KI-SF and HBA2-R-R primers.

The results showed that the insert and integration sites were consistent with expectations (Figure 4). Analysis of the sequencing results showed that the three E. coli monoclonal α-thalassemia mutations had been successfully repaired. The above results confirmed that the fibroblast cell line of the HBA2 hybrid clone had been successfully obtained.

The six potential off-target sites were sequenced using sanger DNA sequencing; no off-target mutation was detected (Figure 5).

4 Discussion

The CRISPR/Cas9 system, known as the third-generation gene editing technology, has been extensively tested on human cells, bacteria, etc. [16], and thalassemia has been studied through induced pluripotent stem cells (iPSC). In β-globulin gene (HBB) mutations cd41/42 (-tcct) and CD17(A > T) in β-thalassemia, iPSCs were repaired by CRISPR/cas9-mediated homologous recombination with an efficiency of 0.045%-54% [17,18]. Gene therapy research regarding α-thalassemia is difficult; this may be due to the fact that the alpha protein is encoded by both HBA2 and HBA1 genes. The coding regions of the two genes are the same; however, the sequences after termination signals are different.

Therefore, the authors of this study decided to use a single-gene correction technique (the improved Cas9 variant, Cas9 nickase (Cas9n)), which has no nuclease activity, to design the sg target and the repair of the donor homology arm with the aim of minimizing the risk of nonspecific mutations being introduced into the locus of interest.

The Cas9 (D10A) only cleaves one strand of DNA; this can precisely modify one base, effectively improve the specificity of target cleavage, and reduce the risk of being off-target [19,20]. The use of electroporation Cas9 (D10A) and a donor to deliver normal HBA2 gene to

Figure 3. BamHI restriction map after fibroblast electroporation. The first line mark is DL2000 and the last line mark is DL15000.

Figure 4. Hb CS gene mutation target sequence repair and sequencing results. After the patient’s fibroblast repair, the Hb CS mutation CAA of the HBA2 gene was corrected to TAA (arrow indication). The BbsI site was inserted after the stop codon, and the GGG of the donor repair sequence PAM site was mutated to GAG, avoiding Cas9 (D10A)-sg cleavage. PAM: protospacer adjacent motif.
fibroblasts can successfully repair fibroblast Hb CS mutations in cells (Figure 4).

The use of gene correction is limited by off-target activity and the efficiency of DNA delivery to cells. The CRISPR/Cas9-mediated editing efficiency in filtration the Cas9(D10A)-sg plasmid and the donor plasmid into fibroblasts using plasmid electroporation is usually 3 ~ 10% [21,22]; a gene editing efficiency of 4 ~ 10% has been achieved in the present study (Figure 3). Gene editing is less efficient within the interval; therefore, designing an efficient enrichment strategy to screen out the corrected cells in vitro may be the key to gene editing technology application in clinical treatment.

Although Porteus et al. believe that successfully repaired cells have more selective growth advantages, 2 ~ 10% of the gene correction efficiency should be effective for the treatment of thalassemia; however, the reliability of this ratio still requires verification through future clinical trials [23].

The HBA2 gene and HBA1 gene encoding α-globin have the same coding region, although the sg target (sg24) after the stop codon of the HBA2 gene was designed to be specific, the sg target before the stop codon (sg21) was inevitably mismatched with the HBA1 gene. Hence, Cas9 (D10A), which only cleaves a single DNA strand and has a smaller risk of being off-target than wild-type Cas9, was chosen as the editing tool in the present study.

According to the off-target detection results, no off-target events were observed in the predicted sgRNA sequence at the predicted site; this indicates that the currently selected sgRNA sequence has a low risk of being off-target. The CRISPOR prediction and sequencing method for the

---

**Figure 5.** The CCTOP CRISPR/Cas9 online prediction system (http://crispr.cos.uni-heidelberg.de) was used to predict the potential miss sites that may be brought by sgRNA designed in the experiment, and six potential high-risk miss sites were obtained. They are HBA1, LOC105378339, LOC105369981, loc15 74835396–74835415, SLUR P2 and LOC107985941, respectively. The sequencing results were shown in Figure 5. After comparing the original sequence, it was found that the sequences of the 6 potential high-risk miss sites were consistent, and no miss events occurred. a: HBA1 b: LOC105378339 c: LOC105369981 d: chromosome15 74835396–74835415 e:SLUR P2 f: LOC107985941.
verification of off-target events is one of the most commonly used methods; however, it does not fully eliminate off-target events [24–26]. Finding a genome-wide sequencing technique to assess off-target effects [27] may be necessary. The most target specific DNA-cleaving nuclease and sgRNA sequences with the lowest off-target risk were screened to meet the safety requirements for subsequent clinical applications.

The present results indicate that the single-base editor CRISPR/Cas9 (D10A) technology and the extended homologous repair DNA template for electroporation can be used to repair Hb CS gene mutations in vitro. Further study on hematopoietic stem cell reprogramming for hematopoietic differentiation may be required to further identify whether the designed tools are capable of repairing HBA2 protein.

Acknowledgements

We would like to acknowledge the hard and dedicated work of all the staff that implemented the intervention and evaluation components of the study.

Authors’ contributions

Conception and design of the research: Lian Yu
Acquisition of data: Wei-Hao Wu, Xiao-Mei Ma, Cui-Yun Zou
Analysis and interpretation of the data: Long-Tian Chen, Qin Lai, Fu-Neng Jiang
Statistical analysis: Jian-Qing Huang
Obtaining financing: None
Writing of the manuscript: Lian Yu, Wei-Hao Wu
Critical revision of the manuscript for intellectual content: Lian Yu, Jian-Qing Huang
All authors read and approved the final draft.

Availability of data and materials

We declared that materials described in the manuscript, including all relevant raw data, will be freely available to any scientist wishing to use them for non-commercial purposes, without breaching participant confidentiality. The data that support the findings of this study are available from the corresponding author, upon reasonable request.

Consent for publication

All patient guardians signed a document of informed consent.

Ethics approval and consent to participate

Ethical approval was obtained from the Ethics Committee of Longyan First Hospital Affiliated Fujian Medical University (No. 2019-007). This study was conducted in accordance with the declaration of Helsinki. Written informed consent was obtained from all participants.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

Sponsored by Longyan City Science and Technology Plan Project. (NO.2019LYF12006).Sponsored by Fujian Province Natural Science Foundation(2016J01424).

References

[1] Wu WH, Yu L, Chen LT, et al. Sequencing detection of new point mutations in hemoglobin genes of thalassemia patients from longyan,Fujian Province in China. J New Med. 2019;50:98.
[2] Lal A, Goldrich ML, Haines DA, et al. Heterogeneity of hemoglobin H disease in childhood. New Engl J Med. 2011;364(8):710–718.
[3] Viprakasit V, Tanphaichitr VS, Pung-Amritt P, et al. Clinical phenotypes and molecular characterization of Hb H-Pakse disease. Haematologica. 2002;87(2):117–125.
[4] Chen FE, Ooi C, Ha SY, et al. Genetic and clinical features of hemoglobin H disease in Chinese patients. New Engl J Med. 2000;343(8):544–550.
[5] Viprakasit V, Tanphaichitr S. COMPOUND HETEROZYGOSITY FORα0-THALASSEMIA (−−Thai) AND Hb CONSTANT SPRING CAUSES SEVERE Hb H DISEASE. Hemoglobin. 2002;26(2):155–162.
[6] Liao C, Zhou JY, Xie XM, et al. Screening for Hb Constant spring in the Guangdong Province, South China, using the Sebia capillary electrophoresis system. Hemoglobin. 2011;35(1):87–90.
[7] Viprakasit V. α-thalassaemia: a genotype–phenotype correlation and management. ISBT Sci Ser. 2015;10(S1):295–304.
[8] Schrier SL, Rachmilewitz E, Mohandas N. Cellular and membrane properties of alpha and beta thalassemic erythrocytes are different: implication for differences in clinical manifestations. Blood. 1989;74(6):2194–2202.
[9] Fucharoen S, Bunyaratvej A, Greenbaum A, et al. Hydration of red cells in α and β thalassemias
differs: a useful approach to distinguish between these red cell phenotypes. Am J Clin Pathol. 1994;102(2):217–222.

[10] Schrier SL, Bunyaratvej A, Khuhapinant A, et al. The unusual pathobiology of hemoglobin constant spring red blood cells. Blood. 1997;89(5):1762–1769.

[11] Dever DP, Porteus MH. The changing landscape of gene editing in hematopoietic stem cells: a step towards Cas9 clinical translation. Curr Opin Hematol. 2017;24(6):481–488.

[12] Srivastava A, Shaji RV. Cure for thalassemia major—from allogeneic hematopoietic stem cell transplantation to gene therapy. Haematologica. 2017;102(2):214–223.

[13] Rodgers K, McVey M. Error-Prone Repair of DNA double-strand breaks. J Cell Physiol. 2016;231(1):15–24.

[14] Pyzocha NK, Ran FA, Hsu PD, et al. RNA-guided genome editing of mammalian cells. Methods Mol Biol. 2014;1114:269–277.

[15] Haeussler M, Schonig K, Eckert H, et al. Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol. 2016;17(1):148.

[16] Leonhard K, Marion K, Sabine S. CRISPR-Cas9: from a bacterial immune system to genome-edited human cells in clinical trials. Bioengineered. 2017;8(3):280–286.

[17] Niu XH, He WY, Song B, et al. Combining single strand oligodeoxynucleotides and CRISPR/Cas9 to correct gene mutations in β-thalassemia-induced pluripotent stem cells. J Biol Chem. 2016;291(32):16576–16585.

[18] Liu YL, Yang Y, Kang XJ, et al. One-step biallelic and scarless correction of a β-thalassemia mutation in patient-specific iPSCs without drug selection. Mol Ther Nucleic Acids. 2017;6:57–67.

[19] Gasiunas G, Barrangou R, Horvath P, et al. Cas9-crRNA ribonuclease protein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A. 2012;109(39):E2579–86.

[20] Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816–821.

[21] Yu C, Liu Y, Ma T, et al. Small molecules enhance CRISPR genome editing in pluripotent stem cells. Cell Stem Cell. 2015;16(2):142–147.

[22] Smirnikhina SA, Anuchina AA, Lavrov AV. Ways of improving precise knock-in by genome-editing technologies. Hum Genet. 2019;138(1):1–19.

[23] Porteus M. Genome editing: a New approach to human therapeutics. Annu Rev Pharmacol Toxicol. 2016;56(1):163–190.

[24] Concordet JP, Haeussler M. CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Res. 2018;46(W1):W242–W5.

[25] Zhang S, Li X, Lin Q, Wong, KC. Synergizing CRISPR/Cas9 Off-Target predictions for ensemble insights and practical applications. Bioinformatics. 2019;35(7):1108–1115.

[26] Muhammad N, Saman M, Mubasher ZH, et al. Latest Developed Strategies to Minimize the Off-Target Effects in CRISPR-Cas-Mediated Genome Editing. Cells. 2020;9(7):1608.

[27] Jin S, Zong Y, Gao Q, et al. Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice. Science. 2019;364(6437):292–295.