Short-term anatomic response of the choroid to tropicamide in myopic patients

Chih-Ying Lin, MDa,b, I. Wang, MDa,b, Chun-Ju Lin, MDa,b,c, Chun-Ting Lai, MDa,b,*, Henry Bair, BMd, Wen-Lu Chen, MDb, Jane-Ming Lin, MDb, Peng-Tai Tien, MDb,e, Ning-Yi Hsia, MDa,b, Yi-Yu Tsai, MD, PhDa,b,c

Abstract

We aimed to investigate how tropicamide alters subfoveal choroidal thickness (SFChT) and choriocapillaris flow density (CD) and determine the predictive factors of choroidal thickness and vascular density in myopic eyes. This retrospective study was conducted from September 2018 to March 2019. SFChT was measured with enhanced depth spectrum-domain optical coherence tomography. The choriocapillaris was imaged using optical coherence tomography angiograms. Ocular parameters were measured thirty minutes before and after 1% tropicamide instillation. Twenty-five eyes of 15 patients (mean age 38.12 ± 6.35 years old and refractive error -8.57 ± 3.37 D) met the study criteria. The baseline linear regression model showed an association of thinner choroid with older age ($P = .027$) and high myopic patients ($P = .001$). Tropicamide substantially increased SFChT ($P = .001$), but had no significant influence on CD ($P = .526$). Moreover, SFChT variation after tropicamide instillation positively correlated with dioptr changes in spherical equivalent ($P = .005$) and percentage changes in CD ($P = .046$). In myopic eyes, choroidal layer thickened substantially in response to tropicamide. The increase of SFChT only correlates with variations in spherical equivalent and CD. Short-term tropicamide installation altered both choroid thickness and choroid microvasculature, which implies an interplay among choroidal volume, perfusion, and ciliary muscle tone.

Abbreviations: BCVA = best corrected visual acuity, CD = choriocapillaris flow density, CT = choroidal thickness, EDI-SD OCT = enhanced depth spectrum-domain optical coherence tomography, IOP = intracocular pressure, IRR = inter-rater reliability, KAC = Krippendorff alpha coefficient, OCTA = optical coherence tomography angiography, RPE = retina pigment epithelium, SE = spherical equivalent, SFChT = subfoveal choroidal thickness.

Keywords: choriocapillaris flow density, choroidal thickness, myopia, optical coherence tomography angiography, tropicamide

1. Introduction

The choroid, a highly vascular layer of the posterior uveal tract, provides oxygen and essential nutrients to outer retinal layers, including the hyper-metabolic photoreceptors and retina pigment epithelium (RPE).[1] The choroid thus plays a pivotal role in normal ocular function.

With enhanced depth imaging modality of spectral domain optical coherence tomography (EDI-SD OCT), cross sectional layers of the retina can be visualized and subtle changes of choroidal thickness (CT) can be detected.[2] Previously, researchers have linked changes in CT to age, ethnicity, and refractive errors.[3] CT changes have only been shown as significant in myopes but not in emmetropes.[6] It is unknown why subfoveal choroidal tissue in myopes reacts differently from emmetropes during accommodative tasks.

Mydriatic agents also dynamically alter the thickness of choroid. For instance, atropine transiently increases CT in emmetropes, an effect associated with the myopic control mechanism.[10,11] However, different mydriatic agents have disparate impacts on the choroid. For instance, while atropine is observed to increase CT, tropicamide decreases CT.[12–14] The reason why the choroid responds divergently to different mydriatics is probably due to the disparate behavior of the choroid between emmetropes and myopes.

Choroidal perfusion is essential for understanding choroid normal physiology and disease pathology. Since choroidal perfusion is challenging to directly quantify, choriocapillaris flow density (CD) is used as a reference value for choroidal perfusion.
Optical coherence tomography angiography (OCTA) allows the fine quantifications of choriocapillaris. Interestingly, Al Shiekh et al. discovered reduced retinal microvasculature and choriocapillaris density in myopic eyes with OCTA. The retinal and choroidal perfusion deficit observed in myopes was also observed in earlier studies using different imaging modalities. However, dynamic changes in CT have not been correlated to perfusion changes and its relation to disease remains a mystery.

Given that myopia has been associated with both reduced CT during accommodative tasks and decreased choroid perfusion, myopes serve as a unique model for understanding how outer stimuli affect the choriocapillaris and choroid volume. To the best of our knowledge, there have been no published studies examining the effect of mydriatics on CT and perfusion in myopic eyes. Hence, in this study, we aim to examine the variations in CT and perfusion in myopes serving as a unique model for understanding how outer stimuli affect the choriocapillaris and choroid volume. To the best of our knowledge, there have been no published studies examining the effect of mydriatics on CT and perfusion in myopic eyes. Hence, in this study, we aim to examine the variations in CT and perfusion in myopes serving as a unique model for understanding how outer stimuli affect the choriocapillaris and choroid volume. To the best of our knowledge, there have been no published studies examining the effect of mydriatics on CT and perfusion in myopic eyes. Hence, in this study, we aim to examine the variations in CT and perfusion in myopes serving as a unique model for understanding how outer stimuli affect the choriocapillaris and choroid volume.
with respective KAC alpha value being 0.949, 0.938 for SFChT before and after pupil dilation, and a value of 0.897 for SFChT variations.

3.2. Baseline SFChT were thinner in elderly and those with less myopic refractive error

As in Table 2, a simple linear regression model was used to investigate the relationship of baseline SFChT with other ocular parameters. Preliminary calculations were performed to ensure no violations of the assumption of normality and linearity. Baseline SFChT was significantly thinner in elder patients; $P = .027$, adjusted $R^2 = 0.161$, correlation $= 0.443$ (Table 2; Fig. 1A). Conversely, SFChT was thicker in eyes with less myopic refractive error; $P = .001$, adjusted $R^2 = 0.356$, correlation $= 0.619$ (Table 2; Fig. 1B). Other baseline ocular parameters were not significant predictors of SFChT (Table 2).

Table 1
Basic demographics and ophthalmological data of patients.

	All patients (N = 14), eyes (n = 25)	P value
Age, yr	38.12 + 6.35	
Gender		
Male, n (%)	13 (52%)	
Baseline BCVA (LogMAR)	0.078 + 0.135	
IOP (mm Hg)	20/24/24/20/27	
Spherical equivalent	16.44 + 2.50	
Baseline SE	−8.57 + 3.37	
Baseline CD	49.30 + 4.03	
Baseline SFChT (μm)	160.76 + 88.78	
Baseline SFChT (μm)	172.66 + 93.34	.001†***

Table 2
Simple linear regression between baseline SFChT and other predictor variables.

Factors	r (correlation)	Adjusted R^2	P
Age	0.443	0.161	.027†
Pre SE	0.619	0.356	.001***
IOP	0.198	−0.003	.343
CD	0.380	0.108	.061

3.3. Baseline CD decreased with age, while increased with less myopic refractive error

In terms of choroidal vasculature and ocular parameters, CD negatively correlated with age; $P = .001$, adjusted $R^2 = 0.346$, correlation $= 0.611$ (Table 3; Fig. 1C), but positively correlated with every diopter increase in SE; $P < .001$, adjusted $R^2 = 0.413$, correlation $= 0.662$ (Table 3; Fig. 1D).

3.4. After tropicamide instillation, SFChT were correlated with variations in CD and SE

Thirty minutes after tropicamide instillation, SFChT showed a significant increase in thickness, with a P value of .001 (Table 1) in paired-T test. Linear regression analysis showed significant increases in thickness changes of SFChT for every diopter change in SE; $P = .005$, adjusted $R^2 = 0.269$, correlation $= 0.547$ (Table 4; Fig. 2A). After pupil dilation, though changes in percentage of CD failed to attain significance in paired-T test ($P = .526$) (Table 1), linear regression revealed thickness changes of SFChT that were positively correlated with changes in CD, with $P = .046$, adjusted $R^2 = 0.126$, correlation $= 0.403$ (Tables 4 and 5; Fig. 2B). However, only SFChT change was a predictor of CD change (Table 5).

4. Discussion

Prior to pupil dilation, the subfoveal choroidal layer appeared thinner in older and highly myopic patients (Table 2; Fig. 1A). Males had thicker choroid layers, an observation consistent with a previous study in a healthy Asian population. Apart from gender, other parameters such as best corrected visual acuity, IOP, macular thickness, and CD were not predictors of SFChT (Table 2) in our study. This was compatible with previous epidemiologic studies of choroidal thickness in healthy subjects, which makes our subsequent analysis of SFChT changes more accountable for how myopic eyes differ in response to stimuli.

In this study, the subfoveal choroidal layer of myopic eyes significantly thickened in response to tropicamide ($P = .001$). We propose that blockage of accommodation by tropicamide and antagonism of muscarinic receptors contribute to the increase in choroidal thickness. The choroid being contiguous with the ciliary body, it is possible that cycloplegics may exert similar local effects on choroidal tissues. Early study in primates found that tendons from the ciliary muscle extend to regions of the anterior choroid. Moreover, ciliary muscle fibers are derived from the corneoscleral spur and insert at Bruch membrane. Drexler et al. postulated that during ciliary body contraction, there is a forward pulling of the choroid, inducing a transient elongation of axial length. Consistent with Drexler hypothesis, Woodman et al. further discovered thinning of choroid during accommodation. Hence, many have proposed that the contracting forces from the ciliary muscle transmit to the choroid and mechanically reduce choroidal thickness. Our observation of choroidal thickening might as well be a result of 1% tropicamide blocking the accommodative ciliary muscle tone and hindering the associative choroidal contraction.

The antagonism of muscarinic receptors could be an additional factor that contributes to choroidal thickening after mydriatic application. For instance, Nickla et al. observed that in animal studies, anti-muscarinic agents seemed to decrease nonvascular smooth muscle tone and cause thickening of choroid. Moreover, in experimental studies in which the parasympathetic nerve was resected, there was convincing thickening of choroidal tissue in chickens. Nickla et al. also discovered that atropine and other anti-muscarinics cause an increase in choroid thickness in chickens while preventing myopia progression. They hypothesized that cholinergic agents affected the
Figure 1. Simple regression model for baseline SFChT (μm) and CD (% of area) with respect to age and baseline SE in myopic patients. (A) SFChT negatively correlated with age (the regression line for baseline SFChT (μm) = 396.502 − 6.184 × Age, $P = .027$, adjusted $R^2 = 0.161$, correlation = 0.443). (B) However, SFChT positively correlated with SE (the regression line for baseline SFChT (μm) = 300.324 + 16.285 × SE (diopters); $P = .001$, adjusted $R^2 = 0.356$, correlation = 0.619). (C) CD negatively correlated with age (the regression line for baseline CD (% of area) = 64.08 − 0.39 × Age, $P = .001$, adjusted $R^2 = 0.346$, correlation = 0.611). (D) while CD positively correlated with SE (the regression line for baseline CD = 56.08 + 0.79 × Baseline SE (diopters), $P < .001$, adjusted $R^2 = 0.413$, correlation = 0.662). CD = choriocapillaris density, SE = spherical equivalent, SFChT = subfoveal choroidal thickness.

Table 3
Simple linear regression between baseline CD and other predictor variables.

Factors	r (correlation)	Adjusted R^2	P
Age	0.611	0.346	.001***
Pre SE	0.662	0.413	<.001***
IOP	0.349	0.083	.088
SFChT	0.380	0.108	.061

CD = choriocapillaris density, IOP = intraocular pressure, Pre SE = spherical equivalent before Mydriacyl instillation, SFChT = subfoveal choroidal thickness.

***Statistical significance of $P < .001$.

Table 4
Simple linear regression results of variations in SFChT and other ocular parameters after Mydriacyl.

Factors	r (correlation)	Adjusted R^2	P
Age	0.230	0.012	.268
Baseline SE	0.385	0.111	.058
Post-dilation SE	0.424	0.144	.035
SE change	0.547	**0.269**	**.005****
IOP	0.201	−0.001	.336
Baseline SFChT	0.232	0.013	.265
Baseline CD	0.320	0.064	.119
CD change	0.403	**0.126**	**.046**

CD = choriocapillaris flow density, IOP = intraocular pressure, SE = spherical equivalent, SFChT = subfoveal choroidal thickness.

**Statistical significance of $P < .01$.

*Statistical significance of $P < .05$.
parasympathetic plexus and induced nonvascular smooth muscle contraction, which led to efflux of fluid from the choroid stroma, resulting in a thinner choroid.[11] Nevertheless, considering that choroid vessels are not in vertical alignments with the choroid smooth muscle and small lacunae in the choroid stroma serve as a fluid reservoir, it is possible for muscle contraction to facilitate choroid filling. Cholinergic agonists, under this theory, would paradoxically thicken the choroid.[1,24] Further studies are warranted to discuss how autonomic nerve plexus regulate non-vascular smooth muscle contraction and tissue perfusion.

While debates of the physiological mechanisms of flexible choroid linger, experimental studies have reported conflicting effects of mydriatics on the parafoveal and subfoveal choroidal layers in healthy populations.[11,13,24] For instance, atropine, as an anticholinergic, thickens the choroidal layer,[24] while Mydrin-P, a combination of tropicamide and phenylephrine, either thins CT or causes no significant changes in emmetropes.[12,13] Yuvaci et al.[27] speculated that the discrepancy in results was a result of the combination of anti-cholinergics and sympathomimetics, considering that both types of agents possibly affect nonvascular smooth muscles and intrinsic choroidal nerves differently. Therefore, to investigate the effect of anti-cholinergics by themselves, we have chosen tropicamide to avoid the effect of sympathomimetics. However, in studies that apply the same single agent, such as that of Mwanza et al.[24] and Li et al.[29] contrasting results still persist. One possible explanation is that the demographic data of most experimental studies involve emmetropes, but it is recognized that emmetropes have less dynamic responses of the choroid during accommodative tasks.[9] Since blocking accommodation potentially accounts for the transient coordination of choroidal thickness, we supposed that more consistent results of mydriatics would be reported in a myopic population.

Our study added to the literature by identifying a positive correlation between the variations in SFChT and diopter changes of SE and percentage changes of CD (Tables 4 and 5; Fig. 2). With SE being a positive predictive factor of choroidal thickness, this might confirm the aforementioned biomechanical effect of mydriatics inducing relaxation of choroidal smooth muscles and affecting choroidal volume. On the other hand, we observed that thicker subfoveal choroids were correlated with increased choriocapillaris density after accommodation (Fig. 2B). This positive relevance of CT and CD might indicate that a thickened choroid may not impair choriocapillaris circulation, which differs from what is observed in pachychoroid disease. Pachychoroid diseases that involve diffuse or focal thickening of the choroid, however, have reduced choriocapillaris perfusion due to compression from larger dilating vessels in Haller layer.[6,30] Judging from how CD reacts to choroidal thickness changes in myopes in our study, the mechanism of how choroid volume of myopic eyes affect perfusion might be disparate from that of pachychoroid disease.

Unexpectedly, OCTA revealed no significant variations in subfoveal CD after tropicamide use. In a subset analysis of our data, however, twelve eyes actually had increased CD after tropicamide instillation. This raised the question of whether tropicamide could increase choriocapillaris density in some patients but not others, and whether tropicamide would benefit

| Table 5 |
| Simple linear regression results of changes in CD and other ocular parameters. |

Factors	r	Adjusted R^2	P
Age	0.165	−0.015	.43
Baseline SE	0.080	−0.037	.705
Post-dilation SE	0.045	−0.041	.832
SE change	0.312	0.058	.129
IOP	0.020	−0.043	.926
Baseline SFChT	0.019	−0.043	.956
SFChT change	0.403	0.126	.046*
Baseline CD	0.134	−0.025	.524

CD = choriocapillaris flow density, IOP = intraocular pressure, SE = spherical equivalent, SFChT = subfoveal choroidal thickness.

*Statistical significance of $P < .05$.

Figure 2. Simple regression model for SFChT (μm) with respect to variations in SE and CD after tropicamide use in myopic patients. (A) SFChT positively correlated with SE variations (the regression line for SFChT (μm) = 4.43 (μm) + 22.64 × SE variations (diopter change); $P = .005$, adjusted $R^2 = 0.269$, correlation = 0.547). (B) SFChT positively correlated with CD (the regression line for SFChT (μm) = 12.67 (μm) + 2.28 × CD variations (change in % of area); $P = .046$, adjusted $R^2 = 0.126$, correlation = 0.403).

CD = choriocapillaris flow density, IOP = intraocular pressure, SE = spherical equivalent, SFChT = subfoveal choroidal thickness.
some myopic patients by increasing choriocapillaris perfusion. Further studies with larger cohorts are warranted to address perfusion changes of choriocapillaris.

Our study is limited in sample size and may be insufficient to represent the possible heterogeneous responses of SFChT and CD in a greater myopic population. The sample size was inadequate for achieving statistical power with multiple regression as proposed by Green et al, so simple linear regression was preferred in our study. Axial length change may have influences on SFChT change or CD change after pupil dilation. However, axial length change after pupil dilation was not significant, demonstrated by several studies focusing on IOL power calculation before or after pupil dilation. Moreover, Tsai et al. had investigated the effect of short-term tropicamide on axial length, but failed to demonstrate significant difference in axial length before and after tropicamide installation. Nonetheless, the role of baseline axial length in association with SFChT change or CD change after pupil dilation was not examined in previous studies and is a topic of interest to explore. In our study, the manual measurements of choroid thickness might be inadequate to fully denote changes in CT. However, the quantifying methodology of CT is limited, so previous studies have adopted the same manual calibration of choroid. Despite concerns of manual calibration, we as well as other studies report a high reproducibility in IRR measurements of choroid parameters.

In conclusion, tropicamide significantly altered the SFChT after 30 minutes in myopic eyes. Choroid thickness alteration was only associated with diopeter changes of SE and percentage changes of CD. We established an interrelation among changes of SFChT, SE, and subfoveal CD, and the changes in these parameters might serve as biomarkers for denoting changes in choroidal volume, perfusion, and ciliary muscle tone after tropicamide use. Our study is the first to report the dynamic changes of choroidal layer and its interrelation with choroidal microvasculature and ciliary tone after anticholinergic treatment in myopia. Larger prospective studies are necessary to elucidate the interplay of choroid volume, perfusion, and ciliary muscle tone.

Author contributions

CTL contributed to the conception and design of the study. CJL, CTL, IW, CHC, WLC, JML, PTT, NYH, WCW, HB and YYT, all participated in data acquisition. CJL, CTL and CYL analyzed and interpreted the data set. CYL and CTL drafted the manuscript. CJL, CTL and HB supervised and revised the manuscript to meet academic standards. All authors have approved the final manuscript and take responsibility for the integrity and accuracy of this study.

Conceptualization: Chih-Ying Lin, Chun Ting Lai, Wen-Lu Chen, Jane-Ming Lin, Peng-Tai Tien, Ning-Yi Hsia, Yi-Yu Tsai.

Data curation: I. Wang, Chun-Ju Lin, Chun Ting Lai, Peng-Tai Tien, Ning-Yi Hsia, Yi-Yu Tsai.

Formal analysis: Chih-Ying Lin, I. Wang, Chun-Ju Lin, Chun Ting Lai, Ning-Yi Hsia.

Investigation: Chih-Ying Lin, Chun Ting Lai, Wen-Lu Chen.

Methodology: Chih-Ying Lin, I. Wang, Wen-Lu Chen.

Project administration: I. Wang, Wen-Lu Chen, Jane-Ming Lin, Peng-Tai Tien, Yi-Yu Tsai.

Resources: Jane-Ming Lin, Yi-Yu Tsai.

Software: Henry Bair, Peng-Tai Tien.

Supervision: Chun-Ju Lin, Chun Ting Lai, Wen-Lu Chen, Jane-Ming Lin, Yi-Yu Tsai.

Validation: Chih-Ying Lin, Henry Bair, Peng-Tai Tien, Ning-Yi Hsia.

Visualization: Chih-Ying Lin.

Writing – original draft: Chih-Ying Lin.

Writing – review & editing: Chih-Ying Lin, Chun-Ju Lin, Chun Ting Lai, Henry Bair, Wen-Lu Chen, Jane-Ming Lin, Peng-Tai Tien, Ning-Yi Hsia, Yi-Yu Tsai.

References

[1] Nickla DL, Wallman J. The multifunctional choroid. Prog Retin Eye Res. 2010;29:144–68.
[2] Spaide RF, Koizumi H, Pozzoni MC. Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol. 2008;146:496–500.
[3] Entezari M, Karimi S, Ramezani A, Niskhah H, Fekri Y, Kheiri R. Choroidal thickness in healthy subjects. J Ophthalmic Vis Res. 2018;13:39–43.
[4] Jin P, Zou H, Xu X, et al. Longitudinal changes in choroidal and retinal thickness in children with myopic shift. Retina. 2019;39:1091–9.
[5] Spaide RF. Choroidal neovascularization. Retina. 2017;37:609–10.
[6] Cheung CMG, Lee WK, Dansingani K, Lai TYY, Freund KB. Pachychoroid disease. Eye (Lond). 2019;35:14–33.
[7] Warrow DJ, Hoang QV, Freund KR. Pachychoroid pigment epitheliopathy. Retina. 2013;33:1659–72.
[8] Sayin N, Kara N, Pekel G, Altinkaynak H. Choroidal thickness changes after dynamic exercise as measured by spectral-domain optical coherence tomography. Indian J Ophthalmol. 2015;63:445–50.
[9] Woodman EC, Read SA, Collins MJ. Axial length and choroidal thickness changes accompanying prolonged accommodation in myopes and emmetropes. Vision Res. 2012;72:34–41.
[10] Tran HDM, Tran YH, Tran TD, Jong M, Corneo M, Sankarpurig D. A review of myopia control with atropine. J Ocul Pharmacol Ther. 2018;34:374–9.
[11] Nickla DL, Zhu X, Wallman J. Effects of muscarinic agents on chick choriocapillaris in intact eyes and eyecups: evidence for a muscarinic mechanism in choroidal thinning. Ophthalmic Physiol Opt. 2013;33:245–56.
[12] Kara N, Demircan A, Karatas G, et al. Effects of two commonly used mydriatics on choroidal thickness: direct and crossover effects. J Ocul Pharmacol Ther. 2014;30:366–70.
[13] Kim M, Kwon HJ, Lee SC. Influence of mydriatics on choroidal thickness measurement using enhanced depth imaging-OCT. Optom Vis Sci. 2012;89:1150–5.
[14] Sander BP, Collins MJ, Read SA. The effect of topical adrenergic and anticholinergic agents on the choroidal thickness of young healthy adults. Exp Eye Res. 2014;128:181–9.
[15] Corvi F, Su L, Sadda SR. Evaluation of the inner choroid using OCT angiography. Eye (London, England). 2021;35:110–20.
[16] Al-Sheikh M, Phasukkijwatana N, Dolz-Marco R, et al. Quantitative OCT angiography of the retinal microvasculature and the choriocapillaris in myopic eyes. Invest Ophthalmol Vis Sci. 2017;58:2063–9.
[17] Shimada N, Ohno-Matsui K, Harino S, et al. Reduction of retinal blood flow in high myopia. Graefes Arch Clin Exp Ophthalmol. 2004;242:284–8.
[18] Spaide RF, Fujimoto JG, Waheed NK. Image artifacts in optical coherence tomography angiography. Retina. 2015;35:2163–80.
[19] Diaz JD, Wang JC, Oellers P, et al. Imaging the deep choroidal vasculature using spectral domain and swept source optical coherence tomography angiography. J Vitreoretin Dis. 2018;2:146–54.
[20] Hayes AF, Krippendorff K. Answering the call for a standard reliability measure for coding data. Commun Methods Measures. 2007;1:77–89.
[21] Wang W, He M, Zhong X. Sex-dependent choroidal thickness differences in healthy adults: a study based on original and synthesized data. Eur Eye Res. 2018;43:796–803.
[22] Tamim E, Lijnen-Drecoll E, Jungkunz W, Rohen JW. Posterior attachment of ciliary muscle in young, accommodating old, presbyopic monkeys. Invest Ophthalmol Vis Sci. 1991;32:1678–92.
[23] Drexler W, Findl O, Schmetterer L, Hitzenberger CK, Fercher AF. Anticholinergic agents on the choroidal thickness of young healthy adults. Invest Ophthalmol Vis Sci. 1998;39:2140–7.
[24] Zhang Z, Zhou Y, Xie Z, et al. The effect of topical atropine on the choroidal thickness of healthy children. Sci Rep. 2016;6:34936.
[25] Woodman-Pieterse EC, Read SA, Collins MJ, Alonso-Caniero D. Regional changes in choroidal thickness associated with accommodation. Invest Ophthalmol Vis Sci. 2015;56:6414–22.
[26] Nickla DL, Schroedl F. Parasympathetic influences on emmetropization in chicks: evidence for different mechanisms in form deprivation vs negative lens-induced myopia. Exp Eye Res. 2012;102:93–103.
[27] Yuvacı I, Pangal E, Yuvacı S, et al. An evaluation of effects of different mydriatics on choroidal thickness by examining anterior chamber parameters: the Scheimpflug imaging and enhanced depth imaging-OCT study. J Ophthalmol. 2015;2015:981274.
[28] Mwanza JC, Sayyad FE, Banitt MR, Budenz DL. Effect of pupil dilation on macular choroidal thickness measured with spectral domain optical coherence tomography in normal and glaucomatous eyes. Int Ophthalmol. 2013;33:335–41.
[29] Li Z, Zeng J, Jin W, Long W, Lan W, Yang X. Time-course of changes in choroidal thickness after complete mydriasis induced by compound tropicamide in children. PLoS One. 2016;11:e0162468.
[30] Phasukkijwatana N, Freund KB, Dolz-Marco R, et al. Peripapillary pachychoroid syndrome. Retina. 2018;38:1652–67.
[31] Green SB. How many subjects does it take to do a regression analysis. Multivariate Behav Res. 1991;26:499–510.
[32] Rodriguez-Raton A, Jimenez-Alvarez M, Arteche-Limousin L, Mediavilla- Peña E, Larrucea-Martinez I. Effect of pupil dilation on biometry measurements with partial coherence interferometry and its effect on IOL power formula calculation. Eur J Ophthalmol. 2015;25:309–14.
[33] Cheung SW, Chan R, Cheng RC, Cho P. Effect of cycloplegia on axial length and anterior chamber depth measurements in children. Clin Exp Optom. 2009;92:476–81.
[34] Sheng H, Botter J, Bullimore MA. Ocular component measurement using the Zeiss IOL Master. Optom Vis Sci. 2004;81:27–34.
[35] Tsai IL, Tsai CY, Kuo LL, Liou SW, Lin S, Wang IJ. Transient changes of intraocular pressure and anterior segment configuration after diagnostic mydriasis with 1% tropicamide in children. Clin Exp Optom. 2012;95:166–72.
[36] Ikuno Y, Maruko I, Yasuno Y, et al. Reproducibility of retinal and choroidal thickness measurements in enhanced depth imaging and high-penetration optical coherence tomography. Invest Ophthalmol Vis Sci. 2011;52:5536–40.