POINTS OF ORDER TWO ON THETA DIVISORS

VALERIA ORNELLA MARCUCCI AND GIAN PIETRO PIROLA

Abstract. We give a bound on the number of points of order two on the theta divisor of a principally polarized abelian variety A. When A is the Jacobian of a curve C the result can be applied in estimating the number of effective square roots of a fixed line bundle on C.

Introduction

In this paper we give an upper bound on the number of 2-torsion points lying on a theta divisor of a principally polarized abelian variety. Given any principally polarized abelian variety A of dimension g and symmetric theta divisor $\Theta \subset A$, Θ contains at least $2^{2g-1}(2^g - 1)$ points of order two, the odd theta characteristics. Moreover, in [Mum66] and [Igu72, Chapter IV, Section 5] it is proved that Θ cannot contain all points of order two on A.

In this work we use the projective representation of the theta group to prove the following:

Given a principally polarized abelian variety A, any translated $t_a^*\Theta$ of a theta divisor $\Theta \subset A$ contains at most $2^{2g} - 2^g$ points of order 2 ($2^{2g} - (g + 1)2^g$ if $t_a^*\Theta$ is irreducible and not symmetric).

Our bound is far from being sharp and we conjecture that the right estimate should be $2^{2g} - 3^g$ as in the case of a product of elliptic curves.

When A is the Jacobian of a curve C the result can be applied in estimating the number of effective square roots of a fixed line bundle on C (cf. Section 2).

1. Main result

In this section we prove our main result.

Theorem 1.1. Let A be a principally polarized abelian variety of dimension g and let Θ be a symmetric theta divisor.

1. For each $a \in A$ there are at most $2^{2g} - 2^g$ points of order two lying on $t_a^*\Theta$.
2. Let $a \in A$ and assume that Θ is irreducible and $t_a^*\Theta$ is not symmetric with respect to the origin. Then there are at most $2^{2g} - (g + 1)2^g$ points of order two lying on $t_a^*\Theta$.

Proof. Denote by $(K, \langle \cdot, \cdot \rangle)$ the group of 2-torsion points on A with the perfect pairing induced by the polarization. Let

\[\{a_1, \ldots, a_g, b_1, \ldots, b_g\} \]

be a basis of K over the field of order two such that

\[\langle a_i, b_j \rangle = \delta_{ij}, \quad \langle a_i, a_j \rangle = 0, \quad \langle b_i, b_j \rangle = 0, \]

Date: February 8, 2012

2010 Mathematics Subject Classification. 14K25.

This work has been partially supported by 1) FAR 2010 (PV) "Varietà algebriche, calcolo algebrico, grafi orientati e topologici" 2) INdAM (GNSAGA) 3) PRIN 2009 "Moduli, strutture geometriche e loro applicazioni".

1
and let

\[H := \langle a_1, \ldots, a_g \rangle \]

be the subgroup of \(K \) generated by the elements \(a_1, \ldots, a_g \). Consider the projective morphism \(\varphi : A \to \mathbb{P}^{2^g-1} \) associated to the divisor \(2\Theta \). By the construction of the projective representation of the theta group \(K(2\Theta) \) (see [Mum66], Chapter II, Section 6, Corollary 4) and [Kem89], we know that the elements of \(\varphi(H) \) are a basis of the projective space. In the same way, the images of the elements of a coset \(H_b \) of \(H \) in \(K \) generate the projective space \(\mathbb{P}^{2^g-1} \).

Suppose by contradiction that there exists a subset \(S \subset K \) such that all points of \(S \) lie on \(t^{*}_a \Theta \) and \(|S| > 2^{2g} - 2^g \). By the previous argument, since \(H_b \subset S \) for some \(b \), the points of \(\varphi(S) \) generate the entire projective space \(\mathbb{P}^{2^g-1} \). On the other hand, by the Theorem of the Square (see [Mum68] Chapter II, Section 6, Corollary 4),

\[t^{*}_a \Theta + t^{*}_{-a} \Theta \equiv 2\Theta. \]

It follows that the points of \(\varphi(S) \) lie on an hyperplane of \(\mathbb{P}^{2^g-1} \). This proves (1).

Now we prove the second part. Suppose by contradiction that there exists a subset \(S \subset K \) such that all points of \(S \) lie on \(t^{*}_a \Theta \) and \(|S| > 2^{2g} - (g + 1)2^g \). We claim that

\[\text{the points in } \varphi(S) \text{ lie on a } 2^g - g - 2 \text{-plane in } \mathbb{P}^{2^g-1}. \]

Given a point \(\varepsilon \in S \), it holds also \(\varepsilon \in t^{*}_a \Theta \). Thus \(S \subset t^{*}_a \Theta \cap t^{*}_{-a} \Theta \). If \(t^{*}_a \Theta \) is not symmetric and irreducible, \(t^{*}_a \Theta \cap t^{*}_{-a} \Theta \) has codimension 2 in \(A \) and we can consider the natural exact sequence

\[0 \to \mathcal{O}_A(-2\Theta) \to \mathcal{O}_A(-t^{*}_{-a} \Theta) \oplus \mathcal{O}_A(-t^{*}_a \Theta) \to I_{t^{*}_a \Theta \cap t^{*}_{-a} \Theta} \to 0; \]

by tensoring it with \(\mathcal{O}_A(2\Theta) \) we get

\[0 \to \mathcal{O}_A \to \mathcal{O}_A(t^{*}_a \Theta) \oplus \mathcal{O}_A(t^{*}_{-a} \Theta) \to I_{t^{*}_a \Theta \cap t^{*}_{-a} \Theta} \otimes \mathcal{O}_A(2\Theta) \to 0. \]

Passing to the corresponding sequence on the global sections, we have

\[0 \to H^0(A, \mathcal{O}_A) \to H^0(A, \mathcal{O}_A(t^{*}_a \Theta)) \oplus H^0(A, \mathcal{O}_A(t^{*}_{-a} \Theta)) \to H^0(I_{t^{*}_a \Theta \cap t^{*}_{-a} \Theta} \otimes \mathcal{O}_A(2\Theta)) \to H^1(A, \mathcal{O}_A(2\Theta)) \to 0, \]

since, by the Kodaira vanishing theorem (see e.g. [GH94] Chapter 1, Section 2]),

\[H^1(A, \mathcal{O}_A(t^{*}_a \Theta)) = H^1(A, \mathcal{O}_A(t^{*}_{-a} \Theta)) = 0. \]

It follows that

\[\dim H^0(I_{t^{*}_a \Theta \cap t^{*}_{-a} \Theta} \otimes \mathcal{O}_A(2\Theta)) \geq g + 1. \]

Thus the points in \(\varphi(t^{*}_a \Theta \cap t^{*}_{-a} \Theta) \) lie on a \(2^g - g - 2 \)-plane of \(\mathbb{P}^{2^g-1} \) and the claim (1) is proved.

To conclude the proof of (2) we notice that if \(|S| > 2^{2g} - (g+1)2^g \) then \(|S \cap H_b| > 2^g - (g + 1) \) for some coset \(H_b \) of \(H \) (see (1)). Then it follows that \(\varphi(S) \) contains at least \(2^g - g \) independent points and we get a contradiction. \(\square \)

Remark 1.2. One might expect the right bound to be \(2^{2g} - 3^g \) and that this is realized only in the case of a product of elliptic curves.

Remark 1.3. The argument of Theorem 1.1 can be also used to obtain a bound on the number of \(n \)-torsion points (with \(n > 2 \)) lying on a theta divisor.
2. Applications

In this section we apply Theorem [1.1] to the case of Jacobians. This gives a generalization of [MP, Proposition 2.5].

Proposition 2.1. Let \(C \) be a curve of genus \(g \) and \(M \) be a line bundle of degree \(d \leq g - 1 \). Given an integer \(k \leq g - 1 - d \), for each \(L \in \text{Pic}^{2k}(C) \) there are at least \(2^g \) line bundles \(\eta \in \text{Pic}^k(C) \) such that \(\eta^2 \simeq L \) and \(h^0(\eta \otimes M) = 0 \).

Proof. We prove the statement for \(M = \mathcal{O}_C \) and \(k = g - 1 \). The general case follows from this by replacing \(L \) with \(M^2 \otimes L \otimes \mathcal{O}_C(p)^{2n} \), where \(p \) is an arbitrary point of \(C \) and \(n := g - 1 - k - d \). Denote by \(\Theta \) the divisor of effective line bundles of degree \(g - 1 \) in \(\text{Pic}^{g-1}(C) \). Given the morphism

\[
m_2: \text{Pic}^{g-1}(C) \to \text{Pic}^{2g-2}(C)
\eta \mapsto \eta^2,
\]

we want to prove that \(|m_2^{-1}(L) \cap \Theta| \leq 2^{2g} - 2^g \). Let \(\alpha \in m_2^{-1}(L) \), we have

\[
m_2^{-1}(L) = \{ \alpha \otimes \sigma \text{ s.t. } \sigma^2 = \mathcal{O}_C \}.
\]

If \(|m_2^{-1}(L) \cap \Theta| > 2^{2g} - 2^g \), then there are more than \(2^{2g} - 2^g \) points of order two lying on a translated of a symmetric theta divisor of \(J(C) \) and, by [11] of Theorem [11.1] we get a contradiction. \(\square \)

Remark 2.2. If we apply Proposition [2.1] to \(M = \mathcal{O}_C, L = \omega_C \), we get that on a curve of genus \(g \) there are at most \(2^{2g} - 2^g \) effective theta characteristics. We notice that when \(g = 2 \) they are the 6 line bundles of type \(\mathcal{O}_C(p) \) where \(p \) is a Weierstrass point. When \(g = 3 \) and \(C \) is not hyperelliptic, they correspond to the 28 bi-tangent lines to the canonical curve.

Corollary 2.3. Let \(C \) be a curve of genus \(g \) and \(M_1, \ldots, M_N \) be a finite number of line bundles of degree \(d \leq g - 1 \). Given an integer \(k \leq g - 1 - d \), if \(\eta \) is a generic line bundle of degree \(k \) such that \(h^0(\eta^2) > 0 \), then

\[
h^0(\eta \otimes M_i) = 0 \quad \forall i = 1, \ldots, N.
\]

Proof. Let

\[
\Lambda := \left\{ \eta \in \text{Pic}^k(C) : h^0(\eta^2) > 0 \right\},
\]

and, for each \(i = 1, \ldots, N \), consider its closed subset

\[
\Lambda_i := \left\{ \eta \in \Lambda : h^0(M_i \otimes \eta) > 0 \right\}.
\]

We remark that \(\Lambda \) is a connected \(2^{2g} \)-étale covering of the image of the \(2k \)-th symmetric product of \(C \) in \(\text{Pic}^{2k}(C) \). By Proposition [2.1] for each effective \(L \in \text{Pic}^{2k}(C) \) there exists \(\eta \in \Lambda \setminus \Lambda_i \) such that \(\eta^2 \simeq L \). It follows that \(\Lambda_i \) is a proper subset of \(\Lambda \). Since \(\Lambda \) is irreducible, also the set

\[
\bigcup_{i=1}^N \Lambda_i = \left\{ \eta \in \text{Pic}^k(C) : h^0(M_i \otimes \eta) > 0 \text{ for some } i \right\}
\]

is a proper closed subset of \(\Lambda \). \(\square \)

References

[GH94] P. Griffiths and J. Harris. *Principles of algebraic geometry*. Wiley Classics Library. John Wiley & Sons Inc., New York, 1994. Reprint of the 1978 original.

[Igu72] J. Igusa. *Theta functions*. Springer-Verlag, New York, 1972. Die Grundlehren der mathematischen Wissenschaften, Band 194.
G. R. Kempf. The addition theorem for abstract theta functions. In \textit{Algebraic geometry and complex analysis (Pátzcuaro, 1987)}, volume 1414 of \textit{Lecture Notes in Math.}, pages 1–14. Springer, Berlin, 1989.

G. R. Kempf. \textit{Complex abelian varieties and theta functions}. Universitext. Springer-Verlag, Berlin, 1991.

V. Marcucci and G. P. Pirola. Generic Torelli theorem for Prym varieties of ramified coverings. \textit{Compositio Math.} to appear, arXiv:1010.4483v3.

D. Mumford. On the equations defining abelian varieties. I. \textit{Invent. Math.}, 1:287–354, 1966.

D. Mumford. \textit{Abelian varieties}, volume 5 of \textit{Tata Institute of Fundamental Research Studies in Mathematics}. Published for the Tata Institute of Fundamental Research, Bombay, 2008.

\textsc{Dipartimento di Matematica “F. Casorati”, Università di Pavia, via Ferrata 1, 27100 Pavia, Italy}
\textit{E-mail address: valeria.marcucci@unipv.it}

\textsc{Dipartimento di Matematica “F. Casorati”, Università di Pavia, via Ferrata 1, 27100 Pavia, Italy}
\textit{E-mail address: gianpietro.pirola@unipv.it}