Hospital and intensive care unit management of decompensated pulmonary hypertension and right ventricular failure

Angel Coz Yataco1 · Melina Aguinaga Meza2 · Ketan P. Buch1 · Margaret A. Disselkamp1

Published online: 20 October 2015
© Springer Science+Business Media New York 2015

Abstract Pulmonary hypertension and concomitant right ventricular failure present a diagnostic and therapeutic challenge in the intensive care unit and have been associated with a high mortality. Significant co-morbidities and hemodynamic instability are often present, and routine critical care unit resuscitation may worsen hemodynamics and limit the chances of survival in patients with an already underlying poor prognosis. Right ventricular failure results from structural or functional processes that limit the right ventricle’s ability to maintain adequate cardiac output. It is commonly seen as the result of left heart failure, acute pulmonary embolism, progression or decompensation of pulmonary hypertension, sepsis, acute lung injury, or in the perioperative setting. Prompt recognition of the underlying cause and institution of treatment with a thorough understanding of the elements necessary to optimize preload, cardiac contractility, enhance systemic arterial perfusion, and reduce right ventricular afterload are of paramount importance. Moreover, the emergence of previously uncommon entities in patients with pulmonary hypertension (pregnancy, sepsis, liver disease, etc.) and the availability of modern devices to provide support pose additional challenges that must be addressed with an in-depth knowledge of this disease.

Keywords Right ventricular failure · Intensive care management · Pulmonary hypertension · Sepsis · Pregnancy

Introduction

The understanding of the function of the right ventricle (RV) in health and disease is an understudied field that has evolved considerably over the last century. The RV, once considered a passive conduit of blood and a bystander in disease, is now recognized to play an important role in determining the outcome of many patients admitted to the intensive care unit (ICU) [1–3]. Acute dysfunction of the RV, irrespective of baseline pulmonary vascular resistance (PVR), has been a well-recognized entity in ICU patients with septic shock and acute respiratory distress syndrome (ARDS) [4, 5]. The decompensation of the RV function is detrimental to survival, especially in patients with pulmonary hypertension (PH) who often have compromised RV function at baseline [6]. Despite the better understanding and available therapies for PH, the mortality of patients admitted to the ICU with decompensated PH and right ventricular failure (RVF) remains unacceptably high [7–10]. This review will describe the epidemiology, evaluation, and management of patients requiring hospitalization and ICU admission for decompensated PH and RVF.

Epidemiology

The true prevalence of PH is unknown, likely due to the variable etiologies which have been classified into groups by the World Health Organization (WHO) (Table 1) [11]. Recent literature estimates the prevalence of group 1
PAH which is around 15 per million people [12, 13]. Left heart disease is the most common cause of PH and comprises group 2 with an estimated 25–100 % of patients with left heart disease having PH [14]. Chronic obstructive pulmonary disease (COPD) is the most common cause of group 3 PH, with prevalence varying with disease severity. Over 90 % of patients with severe COPD have a mean pulmonary artery pressure (mPAP) > 20 mmHg, and 3–5 % have mPAP > 35–40 mmHg [15, 16]. Chronic thromboembolic pulmonary hypertension (CTEPH), group 4, occurs in up to 3.8 % of patients suffering from an acute pulmonary embolism (PE) with an estimated prevalence of 3.2 cases per million adults [15–17]. Group 5 includes patients with PH from multifactorial mechanisms with an unknown prevalence. As a whole, groups 2–5 are more common than group 1 and can progress to RVF conveying a higher mortality risk [18–21].

Right ventricular failure

RVF results from a structural or functional process that limits the right ventricle’s ability to effectively pump blood through the pulmonary circulation to maintain adequate filling of the left ventricle (LV) and cardiac output (CO) [9, 22]. These processes cause derangements in RV preload,
contractility, or afterload (Table 2). The most frequent causes of decompensation are infection, anemia, trauma, surgery, unplanned modification or withdrawal of pulmonary vasodilator therapy, unplanned withdrawal of diuretics, cardiac arrhythmias, pregnancy, and PE. However, up to 48% of cases have no apparent causative factor and mortality is very high, ranging from 32 to 61% [10].

The RV is more effective at adapting to volume overload than it is to pressure overload, and the outcome of RVF depends on the underlying cause. A gradual increase in RV afterload leads to chronic adaptation of the RV enabling it to tolerate a significant elevation in pulmonary artery pressures (PAP), whereas the RV without pre-existing hypertrophy will be unable to generate a systolic PAP above 50–60 mmHg [7–10, 23]. RVF secondary to PE has a much better prognosis compared to decompensated PH in a patient with underlying connective tissue disease (CTD) [10]. The management of the patient with RVF is complex and should include the investigation of the underlying causes, appropriate routine ICU care, and hemodynamic optimization (Fig. 1).

Initial evaluation of RVF

The initial evaluation of any patient in the ICU should focus on promptly establishing the cause of decompensation and identifying reversible conditions. Owing to the increasing awareness of PH, most patients suspected of having RVF from PH have a pre-existing diagnosis [23]. However, physical examination findings may be helpful in the unknown patient, and, although no specific biomarkers for RVF exist, several serum chemistries, cardiac enzymes, imaging, and diagnostic tests aid in the diagnosis and prognosis.

Physical examination

Physical examination, especially in the early stages, is neither sensitive nor specific. Patients can present with tachycardia, tachypnea, hypotension, hypoxia, anxiety, cyanosis, and facial plethora. Cardiac examination is characterized by an elevated jugular venous pulse with a large “v” wave, a prominent pulmonary component of the second heart sound (P2), a palpable RV heave, and a holosystolic tricuspid regurgitant murmur along the left lower sternal border that increases during inspiration. The height of the jugular venous distention and the quality of the venous wave pattern should be assessed (elevated a vs. v wave). The distance from the sternal angle to the top of the waveform is measured in centimeters, and by convention, the distance between the right atrium (RA) and the sternal angle is added (approximately 5 cm) [24]. Auscultation of the lungs is usually unremarkable unless an underlying condition exists (COPD, pulmonary fibrosis, ARDS). Patients often have tender, palpable hepatomegaly, ascites, and peripheral edema. Cyanosis and digital clubbing may be seen, especially in patients with chronic hypoxemia. Findings of underlying conditions such as CTD (e.g., telangiectasia, sclerodactyly, and malar rash) may also be apparent [25, 26].

Laboratory and ancillary examinations

Although no specific test exists to diagnose RVF, several routine and disease-specific biochemical parameters aid in the

Table 2 Common triggers for acute right ventricular failure in the ICU

Trigger	Mechanism
Left ventricular failure	Increased RV afterload and RV dysfunction due to ventricular interdependence effect
Right ventricular ischemia	Decreased RV contractility
Sepsis	Decreased contractility, decreased RV preload, and/or increased RV afterload
Acute lung injury	Increased RV afterload
Post-cardiothoracic surgery	Increased RV afterload
Acute chest syndrome	Increased RV afterload
Pregnancy/delivery	Increased RV preload and increased CO
Cardiac tamponade	Decreased RV preload
Hypoxemia/acidosis	Increased RV afterload
Pulmonary embolism	Increased RV afterload
Mechanical ventilation	Increased RV afterload
Arrhythmia	Decreased RV preload

325

Heart Fail Rev (2016) 21:323–346 325

2 Springer
diagnosis, management, and prognostication of patients with decompensated PH and RVF (Table 3). Liver function tests may be abnormal as a result of underlying liver disease or due to hepatic congestion. Patients with Na \(\leq 136 \) mEq/L have more symptoms, markers for RV dysfunction, and higher hospitalization and mortality rates (HR = 10.16) than their counterparts with normal sodium levels [7, 27]. Elevated serum creatinine level is associated with a worse hemodynamic profile and increased mortality [7, 28]. Elevated C-reactive protein (CRP), common in infection and inflammation, is associated with an increased mortality [29, 30]. Cardiac enzymes, although not specific for RVF, can be elevated in settings overstretching and ischemia of the RV. B-type natriuretic peptide (BNP) is closely related to the functional impairment of PAH patients and parallels the extent of pulmonary hemodynamic changes and RVF [31]. It can provide prognostic information in patient with stable PH as well as in decompensated patients admitted to the ICU [32–37]. High-sensitivity troponin T levels have been associated with higher risk of death and hospitalization in patients with PH [38–40]. Moreover, patients presenting with acute PE and elevated troponin or BNP levels

![Fig. 1 Treatment of acute right ventricular (RV) failure in the intensive care unit (ICU). In addition to routine ICU care, treatment of RV failure consists of treating the underlying cause and optimizing hemodynamics in systematic approach. PE pulmonary embolism, PH pulmonary hypertension, LV left ventricle, CTPH chronic thromboembolic pulmonary hypertension, VAD ventricular assist device, ECMO extracorporeal membrane oxygenation](image_url)

Table 3 Biochemical markers associated with outcome of PH and RV failure in ICU
Serum sodium
BNP, NT-pro BNP
Troponin
Serum creatinine
C-reactive protein (CRP)
Liver function (transaminases)

ASD indicates atrial septal defect, VSD ventricular septal defect, PDA patent ductus arteriosus, MR mitral regurgitation, MS mitral stenosis, AS Aortic stenosis, etc.
have a higher risk of adverse outcomes and mortality than those with normal levels [36, 37, 41].

Electrocardiography (ECG) is specific (83–95 %) but not sensitive (18–43 %) enough for the diagnosis of right ventricular hypertrophy (RVH) [42–44]. However, ECG parameters reflective of physiologic and anatomic abnormalities in the RV are significant predictors of mortality in patients with PAH. These include p-wave amplitude $>0.25 \text{ mV}$ in lead II, presence of qR in V1, and the WHO RVH criteria (Fig. 2) [45]. In addition, the ECG may reveal signs of RV ischemia or infarct.

Imaging

Radiographic examinations of the chest including chest X-ray and CT scan lack sensitivity or specificity in the diagnosis of early RV decompensation or failure, and their use is limited. Nonetheless, they can play an important role in defining an underlying pulmonary disease (pneumonia, pulmonary fibrosis, PE, etc.) [46]. Cardiac magnetic resonance imaging is a very effective noninvasive method to assess RV function, but is rarely used in the management of critically ill patients due to logistical issues [47].

Diagnostic strategies

Since electrocardiography and different biomarkers are not sensitive for the diagnoses of RVF in the ICU, the most reliable methods of diagnosis and monitoring of treatment response in the ICU are echocardiography (transthoracic and/or transesophageal) and the pulmonary artery catheter (PAC).

Echocardiography

Bedside echocardiography has a pivotal role in the critically ill patient with decompensated PH and RVF, as it can provide information regarding the morphology and function of the RV, estimate RA and RV pressures, and identify cardiac causes of PH (Table 4) [48, 49].

Disease states that cause RV volume or pressure overload will lead to dilation and eventual hypertrophy of the RV. Findings of significant PH on echocardiography include: inferior vena cava dilatation, RA enlargement, RV enlargement and/or hypertrophy, decreased RV function, intraventricular septal flattening (D-shaped LV), and tricuspid regurgitation (TR) (Figs. 3, 4, 5). The TR jet or the pulmonary regurgitation jet velocities, in conjunction with an estimated RA pressure, are used to calculate the right ventricular systolic pressure (RVSP). RVSP correlates well with systolic PAP in the absence of pulmonary stenosis and can diagnose PH with a sensitivity of 83 % and specificity of 72 % (Fig. 5) [50, 51]. However, about 10–25 % of patients will have an insufficient spectral Doppler profile of the TR jet to measure the RV to RA pressure gradient; in these instances, the presence of right heart chamber enlargement or septal flattening suggests elevated right heart pressures [52, 53].

The severity of symptoms in patients with PH is strongly associated with RV function. This can be evaluated by

![Fig. 2](image-url) Electrocardiogram of a patient with right ventricular hypertrophy due to pulmonary hypertension. Notice presence of qR pattern in V1, R amplitude $< S$ amplitude in V5, R amplitude $< S$ amplitude in I, p amplitude $>0.25 \text{ mm}$ in II, QRS complex right axis deviation $>110^\circ$
echocardiography using multiple parameters including the fractional area change (FAC), RV free-wall longitudinal systolic tissue velocity(s’), tricuspid annular plane systolic excursion (TAPSE) (Fig. 6), RV myocardial performance index (MPI or Tei index), isovolumic contraction velocity (IVCv), RV strain, and 3D RV ejection fraction [54–57].

Echocardiography provides prognostic information in patient with PH and RVF (Table 5). Several echocardiographic parameters of RV dysfunction predict worse outcomes including an increased RV diameter, a decreased

Table 4 Cardiac causes of PH/RVF that can be identified with echocardiography

1. Congenital disease with shunt: ASD, VSD, coronary fistula, PDA, anomalous pulmonary venous return
2. Congenital or acquired valvular disease: MR, MS, AS, prosthetic valve dysfunction
3. Other congenital diseases: coarctation, supravalvular AS, subaortic membrane, cor triatriatum
4. Severe left ventricular systolic or diastolic dysfunction
5. Pulmonary embolus, pulmonary vein thrombosis/stenosis

Fig. 3 Two-dimensional echocardiography apical four-chamber view during diastole (a) and systole (b) of a patient with pulmonary hypertension. Notice a dilated RV/RA and poor RV systolic function

Fig. 4 Two-dimensional echocardiography (parasternal short-axis view) showing ventricular interdependence. Normally, LV end-diastolic pressure is greater than RV end-diastolic pressure, and the septum bows toward the RV during diastole (a, b). In patients with pulmonary hypertension and RV failure, RV end-diastolic pressure exceeds that of the LV and the septum bows toward the LV during diastole forming a “D”-shaped pattern and impaired LV filling. Also, notice red arrow pointing to pericardial effusion (c). The combination of high RV systolic pressure and decreased LV filling may lead to near obliteration of the LV at end-systole (d)
TAPSE, an elevated Tei, an increased RA area, a decreased isovolumic contraction velocity (IVCv), and alterations in RV free-wall strain [58–65]. In addition, the presence and severity of a pericardial effusion, theoretically caused by elevated RA pressures due to RV dysfunction leading to impaired lymphatic drainage through the thoracic duct, are a strong predictor of mortality (Fig. 4) [63, 66, 67].

Pulmonary artery catheter

Accurate and complete invasive assessment of pulmonary hemodynamics is essential in the evaluation of patients with RVF, especially in those with RVF due to PH, as some hemodynamic values are predictors of survival [68–71]. In patients with newly diagnosed primary PH, the NIH registry showed that mortality was closely associated with an increased mean RA pressure, an increased mPAP, and a decreased cardiac index. An increase in mPAP from <55 mmHg to ≥85 mmHg correlated with a decrease in median survival from 48 months to 12 months, an increase in RA pressure from <10 mm Hg to ≥20 mm Hg was associated with a decrease in median survival from 46 months to 1 month, and an increase in cardiac index from <2.0 L/min/m² to ≥4.0 L/min/m² correlated with an increase in survival time from 17 months to 43 months. Although these parameters have prognostic implications in chronic disease, their significance in acute decompensated PH or RVF has not been established [68].

In the critically ill patients, the hemodynamic values obtained when placing a PAC can help to assess the response to pharmacologic agents and aid in their titration to meet specific endpoints. When evaluating hemodynamic variables in a patient with RVF, the clinician must keep in mind that the mPAP may decrease as the RV function worsens. While patients who respond to the acute vasoreactivity test have excellent prognosis (95% survival at

![Fig. 5](image1.png)

Fig. 5 Right ventricular systolic pressure (RVSP) estimation using the tricuspid regurgitation jet V_{max} with CW Doppler. Bernoulli equation: pressure gradient $= 4 \times V_{\text{max}}$. RAP is estimated using the size and collapsibility (during inspiration) of the IVC. V_{max} maximum velocity, CW continuous wave, RAP right atrial pressure

![Fig. 6](image2.png)

Fig. 6 Tricuspid annulus plane systolic excursion (TAPSE). M-cursor placed through the RV apex to the lateral tricuspid annulus (apical four-chamber view) to measure the distance traveled by the annulus in centimeters from end-diastole to end-systole. a Normal TAPSE of 2.8 cm. b Abnormal TAPSE of 1.21 cm
The placement of a PAC, albeit invasive, is a relatively safe procedure, especially when performed by experienced operators. A large cohort study reviewed, retrospectively and prospectively, the placement of 7218 PACs at 20 major pulmonary vascular centers over a 5-year period [74]. The overall number of serious adverse events was 76 (1.1, 95 CI 0.8–1.3 %). The most frequent complications were related to venous access (e.g., hematoma, pneumothorax), arrhythmias, and hypotension related to vagal reactions or pulmonary vasoreactivity testing. Only four fatal events were recorded, resulting in an overall procedure-related mortality of 0.055 %. Similar results have been published in more recent but smaller cohorts [74, 75]. Although the evidence does not support the routine placement of PACs in the overall critical care population, this intervention has not been studied in patients with acute RVF and its use is advocated by most experts to monitor hemodynamic parameters and mixed venous oxygen saturation (SvO₂) [9, 23, 76, 77].

Hemodynamic management

The hemodynamic optimization of patients with RVF is complex and encompasses the precise manipulation of different variables to improve systemic perfusion including optimization of preload, enhancement of cardiac contractility, RV afterload reduction, and maintenance of systemic perfusion pressure.

Preload Optimization

The optimization of right-sided filling pressures is crucial in the management of RVF as both hypovolemic and hypervolemic states have deleterious effects leading to decreased CO. In hypovolemic patients, fluid loading produces a 30 % mean increase in right ventricular end-diastolic volume index (RVEDVI) and a 17 % increase in LV end-diastolic volume index (LVEDVI) resulting in an enhanced stroke volume index (SVI) [78]. Similar response to fluid loading has been described in patients with RVF caused by massive PE [79]. The clinician must exert caution because excessive fluid administration in patients with increased PVR can have adverse effects that are explained by the phenomenon of *ventricular interdependence* (displacement of the interventricular septum toward the LV leading to decreased LV preload as seen in Fig. 4) and increased RV free-wall tension that result in increased myocardial oxygen consumption and decreased perfusion [80–83]. Therefore, liberal volume administration should be discouraged.

Most cases of RVF are associated with volume overload requiring the administration of diuretics or ultrafiltration to achieve a negative fluid balance. However, excessive volume removal can also be detrimental by reducing the already impaired CO. Although the optimal filling

Table 5 Echocardiographic parameters that provide prognostic information in patients with PH and RVF

Echocardiographic parameter	Characteristics, advantages, and limitations	Prognosis
RA and RV dimensions, ventricular interdependence, RVEF	Clinically validated, simple to perform, pre-load dependent [293]	Dilated RA and RV, as well as septal displacement predict adverse outcomes [58, 63]
Pericardial effusion	Clinically validated, simple to perform	The presence and severity have consistently shown to predict mortality [63, 66, 67]
Tricuspid annular plane systolic excursion (TAPSE)	Simple to perform, highly reproducible, not limited by endocardial border recognition, correlates well with RVEF, right heart remodeling and RV-LV disproportion [59, 294]	A TAPSE < 18 mm correlates with worse survival [59]
RV myocardial performance index (MPI or Tei index)	Index of combined RV systolic and diastolic function assessed by PW Doppler of the RVOT, TV inflow or regurgitation, or using DTI of the tricuspid annulus [61]	A value ≥ 0.83 has shown to correlate with adverse outcomes [61, 62]
Less affected by load and heart rate; may be underestimated in high RA pressure (as IVRT decreases)		
Isovolumic contraction velocity (IVCv)	Doppler tissue imaging, relatively preload and afterload independent and may reflect a more global ventricular contractility [295]	A value ≤ 9 cm/s correlates with worse survival [65]
RV strain	By speckle-tracking strain, requires additional processing, vendor specific deformation	Worsening of RV longitudinal strain has been associated with increased mortality [296, 297]

RA indicates right ventricle, RV right ventricle, RVEF right ventricular ejection fraction, PAH pulmonary arterial hypertension, LV left ventricle, PW pulse wave, RVOT right ventricular outflow tract, TV tricuspid valve, DTI Doppler tissue imaging, IVRT isovolumic relaxation time.
pressures vary considerably between individual patients, preload should be kept at a goal between 8 and 12 mm Hg and subsequently adjusted to optimize cardiac output [22]. In summary, the clinician will need to closely monitor the effect of fluid administration or removal on filling pressures, CO, and perfusion parameters.

Enhancement of cardiac contractility

The enhancement of RV contractility with the addition of inotropic agents (Table 6) is important in the management of RVF.

Dobutamine, the most commonly used agent, has very dose-specific hemodynamic effects. At low doses (up to 5 μg/Kg/min), it produces increased cardiac contractility and decreased systemic vascular resistance (SVR) and PVR. At higher doses, it is associated with tachycardia and premature ventricular contractions without further reduction in the PVR [84]. In animal studies, doses > 10 μg/Kg/min were associated with increased PVR and hypotension [85]. The clinician must be aware of the latter complication that often necessitates vasopressors. Dobutamine is more effective than norepinephrine at improving CO, but it can increase the shunt fraction (venous admixture) affecting oxygenation (PaO2). Simultaneous administration of dobutamine and inhaled nitric oxide can improve cardiac output without impairing oxygenation [86–88].

Milrinone produces a significant improvement in RV contractility, decrease in PVR, and improvement in LV filling [89, 90]. However, because of its vasodilator properties, it can cause or worsen preexisting hypotension [91]. Several studies report that inhaled delivery is well tolerated and produces similar effects in PAP and PVR with a higher SVR and less hypotension than the intravenous form [92–94]. In addition, the combination of milrinone and iNO has been associated with a more pronounced decrease in PAP than either agent alone [95].

Levosimendan has inotropic and vasodilator properties without increasing oxygen demand [96]. It increases right ventricular contractility and produces pulmonary vasodilation in patients with ARDS and RVF caused by PE [97, 98]. In canine models, levosimendan had similar inotropic effects and stronger pulmonary vasodilatory effects than dobutamine [99]. In comparison with milrinone, levosimendan exerts a positive inotropic effect with a smaller increase in myocardial oxygen consumption [100]. In spite of these promising results, levosimendan has not been fully investigated in patients with RVF and its use can be complicated by arrhythmias and a low SVR leading to hypotension [98, 101–103]. Therefore, more evidence is needed before levosimendan can be widely used for this indication.

Vasopressor agents to restore systemic blood pressure

Maintaining adequate systemic arterial pressure has a dual importance in patients with RVF as it allows the organs to maintain autoregulation of perfusion and preserves blood flow to the right coronary artery (RCA) territory which is perfused throughout the cardiac cycle. The reduced RCA driving pressure due to lower aortic root pressure and/or higher RV pressure is detrimental to RV coronary perfusion. Therefore, increasing the aortic root pressure and SVR by using vasopressors in the setting of increased RV afterload will improve perfusion to the RCA territory [81, 104]. The ideal vasopressor agent should increase systemic arterial pressure (SVR) with minimal effect on the PVR (reduce the PVR/SVR ratio) and improve contractility of the RV. The clinician must exert caution because these drugs (Table 7) can increase PVR and cause unwanted effects.

Norepinephrine predominantly produces systemic vasopressor effects through the α1 receptors. Doses of 0.5 μg/Kg/min do not cause a significant increase in PAP, whereas doses of 10 μg/Kg/min are sufficient to produce a 50% increase in PVR. However, such high doses are not typical in the management of ICU patients [86, 105]. Norepinephrine reduces the PVR/SVR ratio in patients with chronic PH and can improve myocardial oxygen

Table 6	Inotropes					
Agent	Effect	PVR	SVR	RV contractility	CO	Comments
Dobutamine	β1 agonist, minimal β1 and β2 agonist	↓	↓	↑	↑↑	Synergistic effect with iNO; higher doses cause ↑ PVR, hypotension, tachycardia
Milrinone	Phosphodiesterase-3 inhibitor	↓	↓	↑	↑↑	Synergistic effect with iNO; inhaled milrinone has minimal hypotension
Levosimendan	Cardiac troponin C calcium sensitizers	↓	↓	↑	↑↑	Not approved in the USA
delivery to the RV in septic patients with RVF [106, 107].

The stimulation of β1 receptors improves the CO and the RV/PA coupling which is a measure of the efficiency of transmission of energy from RV to PA [86, 107, 108].

Dopamine increases CO and SVR. It exerts a pulmonary vasoconstrictor effect that can increase the PVR/SVR ratio leading to a decrease in the left to right shunt seen in infants with patent ductus arteriosus [109, 110]. Animal studies show that doses ≤10 μg/Kg/min increase CO leading to an increase in PAP without increasing the PVR [111, 112]. Nonetheless, dopamine has been associated with tachycardia in patients with PH, increased risk of arrhythmias in patients with septic shock, and increased mortality in patients with cardiogenic shock [113, 114].

Epinephrine has a potent vasoconstrictor effect due to its α1 activity. In animal models, epinephrine at doses from 0.2 to 3.2 μg/Kg/min was superior to dopamine in decreasing the PVR/SVR ratio [115]. After epinephrine administration, patients with RVF caused by septic shock experienced improved RV contractility, CO and mPAP without significantly affecting the PVR [116].

Phenylephrine has vasopressor but no inotropic activity. It has the ability to improve perfusion to the RCA because of the elevation of SVR [81, 117]. However, due to its effect of increasing the PVR, it can significantly impair RV function and decrease CO [106, 108].

Vasopressin produces systemic vasoconstriction while relatively sparing the pulmonary circulation; such combined effects produce a desirable decrease in the PVR/SVR ratio [118–123]. Vasopressin has been used in pediatric and adult settings as a rescue agent in the management of PH and RVF [120, 124–126]. However, at high doses (>0.4 U/min), vasopressin can cause bradycardia and decrease in RV contractility and CO likely related to a decrease in coronary blood flow [127–130].

In summary, norepinephrine is the preferred agent given its effects on SVR, PVR, and improvement in RV/PA coupling. Vasopressin at low doses, dopamine, and norepinephrine are reasonable alternatives. Phenylephrine must be used with caution given the isolated α1 effect that will increase systemic perfusion but will also increase PVR, potentially worsening RV function.

Table 7 Vasopressors

Agent	Effect	PVR	SVR	PVR/SVR	CO	Comments
Norepinephrine	α1 and weak β1 agonist	↑	‡	↓	↑	Most favorable hemodynamic profile
Dopamine	Dopamine-1, α1, and β1 agonist	↑	‡	↑	‡	Use limited by tachycardia and arrhythmias
Epinephrine	α1 and β1 agonist	↑	‡	↓	↑	
Phenylephrine	α1 agonist	‡	‡	↑	←	May worsen RV function
Vasopressin	V1 receptor agonist	–	‡	↓	←	Low dose

Effects shown in table are at low doses. At high doses (>0.4 U/min), vasopressin can cause bradycardia and affect RV contractility.

RV afterload reduction

Reduction in PVR is one of the most important components in the management of RVF because of the particular sensitivity of the RV to afterload changes. The pharmacologic agents (Table 8) to reduce PVR must be used with caution as they have the potential to cause hypotension.

Inhaled nitric oxide (iNO) is a very potent pulmonary vasodilator. Once inhaled, it diffuses across the alveolar capillary membrane into the smooth muscle of the pulmonary vessels and is rapidly inactivated by hemoglobin [131, 132]. iNO decreases PVR, has a neutral effect on SVR, and increases CO [133, 134]. In patients with RVF secondary to ARDS, iNO decreases PAP, increases PaO2 by improving the ventilation perfusion relationship, and may decrease inflammatory cytokine production in the lungs [135–137]. iNO improves oxygenation with lower doses than those required to decrease mPAP, but it can have the opposite effect on oxygenation at higher doses [138]. Small studies have shown that iNO produces hemodynamic improvement in different settings of RVF including those caused by RV infarct, acute PE, post-surgical, post-left ventricular assist device (LVAD) implantation, and cardiac transplantation [139–155]. Complications encountered with the use of iNO include: accumulation of potentially toxic reactive metabolites, rebound PH, and rarely methemoglobinemia [156–161]. Despite reducing afterload and improving hypoxemia in RVF and ARDS, there is no demonstrated survival benefit [162–164]. Combination of iNO and prostacyclin derivatives has been reported with success in the perioperative management of portopulmonary hypertension (PoPH) and in RVF after high-risk cardiac surgery, LVAD insertion, and pulmonary endarterectomy [165–169].

The phosphodiesterase-5 (PDE5) inhibitors prevent the hydrolysis of cyclic guanosine monophosphate (cGMP), producing vasodilatory and antiproliferative effects in the pulmonary vasculature [170]. Sildenafil produces an acute decline in mPAP and PVR associated with an increase in CO. The vasodilatory effect of sildenafil is comparable to the effect of iNO with the added benefit of maintaining the pulmonary capillary wedge pressure (PCWP) and producing systemic vasodilatory effects [171–173]. Sildenafil has been used with success in patients with RVF at induction of...
anesthesia, during cardiac surgery, after LVAD placement, after cardiac transplant, and as an adjunct in the weaning of iNO to prevent rebound PH [174–181].

Prostacyclin derivatives are potent systemic and pulmonary vasodilators. These drugs act on the prostacyclin receptor (present in platelets and endothelial cells) that produces an increase in cyclic adenosine monophosphate (cAMP), resulting in inhibition of platelet aggregation, relaxation of smooth muscle, and vasodilation of the pulmonary arteries [182]. Prostacyclin derivatives decrease PVR and increase CO and exercise capacity in patients with PAH and have been used successfully in the perioperative setting in cardiac surgery and thoracic transplant [183–194]. In the setting of life-threatening PE, inhaled aerosolized prostacyclin was associated with a transient improvement in pulmonary hemodynamics and gas exchange [195]. In ARDS, inhaled prostacyclins have been associated with important physiologic benefits (improved hypoxemia, lower PAP, and improved RV function and CO) with no systemic hemodynamic effects given the aerosolized alveolar delivery. Unfortunately, there is no evidence supporting outcome benefits and, although controversial, its use should be reserved as a rescue therapy in refractory hypoxemia associated with ARDS [196–198].

Although the other available vasodilator agents including endothelin receptor antagonists (ERAs) and soluble guanylate cyclase stimulator (riociguat) are effective in PH, their use is not recommended in the setting of RVF. The ERAs have long half-lives and are associated with liver toxicity [199, 200]. Riociguat is a potent pulmonary vasodilator that produces significant systemic vasodilation and hypotension [201].

Intensive care unit supportive management

In addition to routine ICU care (nutrition, prophylaxis, etc.), the specific goals for care provided in the ICU are aimed at managing the factors that would further impair the function of the failing RV. The management of hypoxemia, acidemia, increased intrathoracic pressures caused by mechanical ventilation, and the treatment of cardiac arrhythmias are extremely important.

Hypoxemia and acidemia

The management of the patient with RVF must address low oxygen saturation and acidemia as both increase mPAP and PVR with synergistic effects [202–205]. An oxygen saturation level ≥92% has been proposed as an ideal target by experts [9, 22]. While acidemia increases the sensitivity of the pulmonary vasculature to hypoxemia, alkalemia decreases such sensitivity and produces pulmonary vasodilation [202]. Therefore, the clinician must strive for a PCO$_2$ and pH as close to normal as possible.

Mechanical ventilation

Mechanical ventilation, while often necessary in the management of patient with RVF, has the potential to produce unfavorable hemodynamic effects. The skillful adjustment of the ventilator to improve oxygenation and acidemia while minimizing the effects of increased intrathoracic pressures on the cardiovascular system becomes a priority.

Positive pressure ventilation causes decreased venous return, decreased RV stroke volume, distention of alveoli and compression of alveolar blood vessels, and increased PVR. Lung volumes near the functional residual capacity (FRC) minimally affect the PVR, whereas atelectasis and overdistention increase it (Fig. 7) [206–208]. While the patient with normal RV function may tolerate these changes relatively well, the consequences can be severe in patients with impending RVF. Therefore, the ventilatory strategy in the patient with RVF must strive to achieve normoxia using conservative tidal volumes and PEEP to avoid atelectasis, overdistention, increased PVR, and elevated intrathoracic pressures.

Table 8 Pulmonary vasodilators

Mechanism	Agent	Effect	PVR	SVR	Comments
iNO	Inhaled nitric oxide	Cyclic GMP activator	↓	–	Short half-life with minimal systemic effects
PDE5 inhibitors	Sildenafil, vardenafil, tadalafil	Inhibit hydrolysis of cGMP	↓	↓	Can reduce rebound PH when weaning iNO
Prostacyclin	Epoprostenol, iloprost, treprostinil	PGE2a and PGE2 → ↑cAMP	↓	↓	↑ CO; synergistic effect with iNO
Analogs	Bosentan, ambrisentan, macitentan	Block endothelin receptors in vascular smooth muscle	↓	↓	Long half-lives and associated with liver toxicity
sGC stimulator	Riociguat	Guanylate cyclase stimulator (NO receptor)	↓↓↓	↓↓↓	Not used in acute RVF

iNO inhaled nitric oxide, PDE5 phosphodiesterase-5 inhibitors, ERAs endothelin receptor antagonists, sGC soluble guanylate cyclase
Although protective lung strategies are typically associated with respiratory acidosis, they confer a mortality benefit in ARDS that may be partially related to the lower incidence of RVF seen with lower tidal volumes and plateau pressures [209, 210]. Unfortunately, acute cor pulmonale is present in 20–25% of patients with ARDS ventilated with protective lung strategies. Although this represents a decrease in the incidence of RVF from the pre-protective lung strategies era, it is still associated with poor clinical outcomes [210–215].

Prone positioning is associated with a significant decrease in airway pressures, PaCO₂, and improvement in echocardiographic parameters of RV pressure overload [216]. Moreover, it provides a mortality benefit in patients with severe ARDS [217].

High-frequency oscillatory ventilation (HFOV) is associated with unfavorable hemodynamic effects including an increase in central venous pressure, PCWP, and decrease in CO [218]. In patients with ARDS, HFOV can worsen RV function and does not provide a mortality benefit when compared with conventional protective lung strategies [219–221].

Rhythm control

Cardiac arrhythmias can be a cause or a complication of RVF in patients admitted to the ICU. Atrial flutter and fibrillation are the most common arrhythmias in this population, whereas bradyarrhythmias and ventricular arrhythmias are rare except in the setting of cardiac arrest [222]. The RV is very sensitive to abnormalities in cardiac rhythm and synchrony. In RVF, augmented RA contraction and intact atrioventricular (AV) synchrony are important determinants of CO. The augmented RA contractility constitutes a compensatory response to RV dysfunction [223]. Restoration of AV synchrony produced positive hemodynamic results in patients with RV infarct and congenital heart disease [224–229]. AV pacing in patients with right bundle-branch block and RV dysfunction augments RV and systemic performance [230]. Although there are no large-scale studies to support resynchronization therapy in RVF, this intervention could be considered as part of the management.

Mechanical circulatory support

Mechanical circulatory support is typically reserved for patients with persistent RVF in spite of medical interventions and used as a bridge to heart, lung, or dual heart–lung transplantation. The currently available mechanical circulatory support modalities include the different ventricular assist devices and extracorporeal membrane oxygenation (ECMO).

The mechanical assist devices are available as left, right, or biventricular (LVAD, RVAD, or BiVAD, respectively). LVADs have been used with success in patients with PH and RVF caused by left heart dysfunction with the goal to reduce the mPAP and PVR, effects that are typically achieved in 3–6 months. A higher number of patients can be considered for heart transplantation after LVAD therapy with a possible benefit in post-transplant survival [231–236]. Although beneficial for the RV in the long term, LVADs can exacerbate or cause new-onset RVF because the decrease in LV end-diastolic volume will shift the interventricular septum to the left, increasing the RV end-diastolic volume, compromising its contractility [237]. Approximately 6–10% of patients with a LVAD will require the implantation of a RVAD [238].

RVADs have been successfully used for the management of RVF in patients with RV infarct, after cardiac surgery, after LVAD implantation, and following heart transplantation [239–244]. RVADs will increase pressure but not sufficiently to overcome the increased RV afterload potentially injuring the lung [245]. BiVADs may be used in cases of bilateral ventricular failure as a bridge to transplantation [246].

Veno-arterial (V-A) ECMO has the ability to provide both cardiovascular and respiratory support as it drains deoxygenated blood from the venous circulation and returns oxygenated blood to the arterial circulation. V-A ECMO can be considered in patients with RVF secondary to increased afterload as a bridge to transplantation when medical interventions do not suffice. Although small studies suggest...
favorable outcomes with the use of ECMO, further research is needed before general recommendations can be made and its use should be reserved for centers with expertise [247].

Miscellaneous ICU situations

Given the improvement in survival in patients with PH produced by modern available therapies, an increase in other conditions that were not as common in this group of patients has occurred. The clinician must be familiar with the pathophysiologic differences of the PH patient to provide the best possible care.

Pregnant patient with PH

During pregnancy, significant physiologic changes occur including increased blood volume, increased CO, decreased SVR, and increased pulmonary blood flow [248]. During delivery, pain, anxiety, raised levels of catecholamine and uterine contractions produce an increase in CO. After delivery, the venous return increases significantly as a result of the involution of the uterus producing a sizeable increase in CO. Patients with normal PVR can readily tolerate these changes through vasodilation and recruitment of pulmonary vessels, whereas patients with PH cannot adapt making them prone to develop acute RVF [249]. Consequently, the mortality rate, albeit lower than in previous times, remains very high ranging from 17 to 28 %, with most complications occurring in the peripartum period [250, 251].

Vaginal delivery may be better tolerated by PH patients given the smaller shifts in blood volume and greater stability in hemodynamics, but cesarean section (CS) may become urgently necessary in cases of fetal distress or maternal deterioration. Recent literature reports the use of prostacyclin analogs [265–267], ERAs [266, 268–270], and PDE5 inhibitors [268, 271, 272] in the management of PH. In the peripartum period, combined use of iNO and epoprostenol has been reported with good outcomes [165, 166].

Liver disease and PH

PoPH is a complication of portal hypertension that occurs more commonly in patients with chronic liver disease. It is often asymptomatic and discovered during the perioperative period for liver transplantation when it poses the highest risk [260, 261]. The acute increase in CO at the time of reperfusion cannot be handled by the RV of the patient with PoPH leading to acute RVF [262]. The evaluation of risk, indications for advanced therapy, and contraindications to liver transplant are based on hemodynamic variables including mPAP and PVR. A mPAP > 50 is considered a contraindication for liver transplant, whereas a mPAP <35 is considered safe [263, 264]. Pulmonary vasodilators are used in the management of PoPH to improve hemodynamics. Several small studies report the use of prostacyclin analogs [265–267], ERAs [266, 268–270], and PDE5 inhibitors [268, 271, 272] in the management of patients with PoPH. In the perioperative period, combined use of iNO and epoprostenol has been reported with good outcomes [254–259].

PH in biventricular failure

Left ventricular failure is among the most common causes of RVF [9]. The backflow caused by left heart disease increases LV end-diastolic pressure and RV afterload. Therefore, the treatment of patients with biventricular failure should focus on optimizing LV function through improvement in preload, contractility, and afterload. However, even after optimization of the left heart function, the transpulmonary gradient (mPAP–PCWP) may remain elevated, a phenomena known as “out of proportion” PH that is thought to be caused by an intrinsic abnormality in the pulmonary vasculature [273, 274]. The persistent elevation in PVR is especially important in patients being considered for cardiac transplant or LVAD placement because of an increased perioperative risk and decreased long-term survival after transplantation and the potential need for additional mechanical RV support [238, 275]. Sildenafil has been linked to improved exercise capacity and pulmonary hemodynamics in secondary PH patients with systolic heart failure, but not in patients with diastolic heart failure [276–278]. Prostacyclin analogs have also been used with positive hemodynamic changes [279, 280]. ERAs have not been associated with improved clinical outcomes and may increase the risk of decompensation [281–284]. Nevertheless, more evidence is needed before general recommendations can be made regarding the use of pulmonary vasodilators in this setting.
Sepsis

Sepsis poses a myriad of physiologic derangements including increased vascular permeability, vasodilation, hypovolemia, and decreased SVR that must be overcome by an increment in CO [4–6, 10]. Low SVR leads to decreased RV coronary perfusion, myocardial ischemia, and failure. In addition, there is often an increase in PVR causing decreased RV output. An increase in RV afterload or intrinsic myocardial depression may be the dominant cause of RV dysfunction in sepsis [4–6, 10]. Given the increased PVR, increasing cardiac output may prove very difficult in patients with PH and sepsis can trigger acute RVF. The management of the septic patient with PH must include early administration of antibiotics and hemodynamic optimization that should encompass the optimization of preload, enhancement of SVR, improvement of CO, and prevention of increase in PVR (as discussed above) [285]. Fluid resuscitation should not be liberal in this population and ideally must be guided by invasive hemodynamic monitoring devices. The use of pulmonary vasodilators in sepsis should be reserved to cases where further decrease in PVR is needed to improve cardiac output and systemic perfusion, keeping in mind that these agents produce systemic effects that could worsen the hemodynamic status.

Advance directives and resuscitation outcomes

The etiology of acute RVF largely influences the prognosis; patients with severe left heart disease or progressive PH in the setting of CTD have a worse prognosis compared to patients with acute PE [10, 286]. Despite the recent advancements in therapy that have improved the quality of life and survival in PH, it still remains a progressive disease that will ultimately have fatal outcomes. Therefore, it is important that the patient’s wishes pertaining to end-of-life care be discussed in a serene environment during the course of the disease. Grinnan et al. reported that the majority of patients with PAH died in the hospital and most of those deaths happened in the ICU [287]. Unfortunately, the ICU may not be the best setting to have this conversation for the first time when decompensation typically occurs rapidly and decisions may need to be made very quickly. Cardiopulmonary resuscitation (CPR) is attempted in 25 % of patients that ultimately die of progression of the disease. The survival of PH patients who arrested and had CPR is quite low (0–6 %) compared to the survival from other causes of cardiac arrest, a fact that is not surprising given that chronic disease is associated with poor outcomes after CPR [288, 289]. Moreover, almost every patient that survived had a correctable cause [290]. Recent evidence shows that palliative care services were infrequently utilized in the care of patients with PH [287, 291, 292].

The care of patients with progressive disease should include a discussion of goals of care, potentially limiting aggressive therapy, and referral to palliative care when appropriate for the management of symptoms and potentially improve quality of life.

Conclusions

PH and concomitant RVF present a diagnostic and therapeutic challenge in the ICU and have been associated with increased mortality. Prompt recognition is essential for the appropriate management in these patients. The use of biochemical markers and echocardiography may help in the diagnosis and have prognostic value, and invasive monitoring with PAC is likely necessary to monitor hemodynamics and therapeutic changes. Careful manipulation of RV preload is required as under- or overfilling of the RV will worsen its contractility. Pulmonary vasodilators have a profound effect on PVR and can be used to increase CO but co-administration of systemic vasopressors and restoration of cardiac output with the use of inotropes are usually required. Mechanical circulatory support is predominately being utilized as a bridge to transplant. Despite the advances in therapy that have improved the survival in patients with PH, realistic expectations should be discussed in the outpatient setting as patients who suffer cardiac arrest have very poor outcomes. Overall, more studies of RVF are required to improve overall outcomes of this disease.

References

1. Voelkel NF, Quaife RA, Leinwand LA, Barst RJ, McGoon MD, Meldrum DR, Dupuis J, Long CS, Rubin LJ, Smart FW, Suzuki YJ, Gladwin M, Denholm EM, Gail DB, National Heart, Lung, and Blood Institute Working Group on C, Molecular Mechanisms of Right Heart F (2006) Right ventricular function and failure: report of a National Heart, Lung, and Blood Institute working group on cellular and molecular mechanisms of right heart failure. Circulation 114(17):1883–1891. doi:10.1161/CIRCULATIONAHA.106.632208
2. Kawat SM, Barr RG, Lima JA, Praestgaard A, Johnson WC, Chahal H, Ogynyakin KO, Bristow MR, Kizer JR, Tandri H, Bluemke DA (2012) Right ventricular structure is associated with the risk of heart failure and cardiovascular death: the Multi-Ethnic Study of Atherosclerosis (MESA)—right ventricle study. Circulation 126(14):1681–1688. doi:10.1161/CIRCULATIONAHA.112.095216
3. Hurford WE, Zapol WM (1988) The right ventricle and critical illness: a review of anatomy, physiology, and clinical evaluation of its function. Intensive Care Med 14(Suppl 2):448–457
4. Kumar A, Haery C, Parrillo JE (2000) Myocardial dysfunction in septic shock. Crit Care Clin 16(2):251–287
5. Mitsuo T, Shimazaki S, Matsuda H (1992) Right ventricular dysfunction in septic patients. Crit Care Med 20(5):630–634
6. Hoffman MJ, Greenfield LJ, Sugerman HJ, Tatum JL (1983) Unsuspected right ventricular dysfunction in shock and sepsis. Ann Surg 198(3):307–319
before echocardiography in acute pulmonary embolism. J Cardiol 60(6):508–513. doi:10.1016/j.jjcc.2012.07.006
38. Roy AK, McCullagh BN, Segurado R, McGorrion C, Keane E, Keaney J, Fitzgibbon MN, Mahon NG, Murray PT, Gaine SP (2014) Detection of high-sensitivity troponin in outpatients with stable pulmonary hypertension identifies a subgroup at higher risk of adverse outcomes. J Cardiac Fail 20(1):31–37. doi:10.1016/j.cardfail.2013.12.001
39. Schuuring MJ, van Riel AC, Vis JC, Dufets MG, van Straalen JP, Boekholdt SM, Tijssen JG, Mulder BJ, Bouma BJ (2013) High-sensitivity troponin T is associated with poor outcome in adults with pulmonary arterial hypertension due to congenital heart disease. Congenit Heart Dis 8(6):520–526. doi:10.1111/chd.12022
40. FILUSCH A, GIANNITIS E, KATUS HA, MEYER FJ (2010) High-sensitive troponin T: a novel biomarker for prognosis and disease severity in patients with pulmonary arterial hypertension. Clin Sci (Lond) 119(5):207–213. doi:10.1042/CS20100014
41. Becattini C, Vedovati MC, Agnelli G (2007) Prognostic value of troponins in acute pulmonary embolism: a meta-analysis. Circulation 116(4):427–433. doi:10.1161/CIRCULATIONAHA.106.680421
42. Chronic Cor Pulmonale: Report of an Expert Committee (1963) Circulation 27(4):594–615. doi:10.1161/cir.27.4.594
43. Murphy ML, Thenabadu PN, de Soyza N, Doherty JE, Meade J, Baker BJ, Whittle JL (1984) Reevaluation of electrocardiographic criteria for left, right and combined cardiac ventricular hypertrophy. Am J Cardiol 53(8):1140–1147
44. Lehtonen J, Sutinen S, Ikaheimo M, Paakko P (1988) Electrocardiographic criteria for the diagnosis of right ventricular hypertrophy verified at autopsy. Chest 93(4):839–842
45. Bossone E, Pacioci G, Larusso D, Aggetto A, Iacono A, Gille-spie BW, Rubentile M (2002) The prognostic role of the ECG in primary pulmonary hypertension. Chest 121(2):513–518
46. Barst RJ, McGoon M, Torbicki A, Sitbon O, Krowka MJ, Olsonowski H, Gaine S (2004) Diagnosis and differential assessment of pulmonary arterial hypertension. Journal of the American College of Cardiology 43 (12 Suppl S):40S–47S. doi:10.1016/j.jacc.2004.02.032
47. Bourji KI, Hassoun PM (2015) Right ventricle dysfunction in pulmonary hypertension: mechanisms and modes of detection. Curr Opin Pulm Med. doi:10.1097/MCP.0000000000000192
48. Feigenbaum H, Armstrong WF, Ryan T, Feigenbaum H, Ovid Technologies Inc. (2005) Feigenbaum's echocardiography
49. Meluzin J, Spinarova L, Bakala J, Toman J, Krejci J, Hude P, Karon T, Soucek M (2001) Pulsed Doppler tissue imaging of the velocity of tricuspid annular systolic motion; a new, rapid, and non-invasive method of evaluating right ventricular systolic function. Eur Heart J 22(4):340–348. doi:10.1053/euhj.2000.2296
50. Ghio S, Pazzano AS, Klerscy S, Scelsi L, Raineri C, Camporondot R, D’Armini A, Visconti LO (2011) Clinical and prognostic relevance of echocardiographic evaluation of right ventricular geometry in patients with idiopathic pulmonary arterial hypertension. Am J Cardiol 107(4):628–632. doi:10.1016/j.amjcardio.2010.10.027
51. Forfia PR, Fisher MR, Mathai SC, Housten-Harris T, Hemnes AR, Borlaug BA, Chamura E, Corretti MC, Champion HC, W. ABRAHAM TP, Girgis RE, Hassoun PM (2006) Tricuspid annular displacement predicts survival in pulmonary hypertension. Am J Respir Crit Care Med 174(9):1034–1041. doi:10.1164/rccm.200604-547OC
52. Lee CY, Chang SM, Hsiao SH, Tseng JC, Lin SK, Liu CP (2007) Right heart function and scleroderma: insights from tricuspid annular plane systolic excursion. Echocardiography 24(2):118–125. doi:10.1111/j.1540-8175.2007.00365.x
53. Tei C, Dujardin KS, Hodge DO, Bailey KR, McGoon MD, Tajik AJ, Seward JB (1996) Doppler echocardiographic index for assessment of global right ventricular function. J Am Soc Echocardiogr 9(6):838–847
54. Yeo TC, Dujardin KS, Tei C, Mahoney DW, McGoon MD, Seward JB (1998) Value of a Doppler-derived index combining systolic and diastolic time intervals in predicting outcome in primary pulmonary hypertension. Am J Cardiol 81(9):1157–1161
55. Raymond RJ, Hinderliter AL, Willis PW, Ralph D, Caldwell EJ, Williams W, Ettinger NA, Hill NS, Summer WR, De Boisblanc B, Schwartz T, Koch G, Clayton LM, Jobsis MM, Crow JW, Long W (2002) Echocardiographic predictors of adverse
outcomes in primary pulmonary hypertension. J Am Coll Cardiol 39(7):1214–1219.

64. Sachdev A, Villarraga HR, Frantz RP, McGoon MD, Hsiao JF, Maalouf JF, Ammash NM, McCully RB, Miller FA, Pellikka PA, Oh JK, Kane GC (2011) Right ventricular strain for prediction of survival in patients with pulmonary arterial hypertension. Chest 139(6):1299–1309. doi:10.1378/chest.10-2015

65. Ernande L, Cottin V, Leroux PY, Girerd N, Huez S, Mulliez A, Bergerot C, Ovize M, Mornex JF, Cordier JF, Naeije R, Derumeaux G (2013) Right isovolumic contraction velocity predicts survival in pulmonary hypertension. J Am Soc Echocardiogr 26(3):297–306. doi:10.1016/j.echo.2012.11.011

66. Eysmann SB, Palevsky HI, Reichek N, Hackney K, Douglas PS (1989) Two-dimensional and Doppler-echocardiographic and cardiac catheterization correlates of survival in primary pulmonary hypertension. Circulation 80(2):353–360

67. Hinderliter AL, Willis PW, Long W, Clarke WR, Ralph D, Caldwell EJ, Williams W, Ettinger NA, Hill NS, Summer WR, de Bosis BL, Koch G, Li S, Clayton LM, Jobsis MM, Crow JW (1999) Frequency and prognostic significance of pericardial effusion in primary pulmonary hypertension. PPH Study Group. Primary pulmonary hypertension. Am J Cardiol 84 (4):481-484, A410

68. D’Alonzo GE, Barst RJ, Ayres SM, Bergofsky EH, Brundage BH, Detre KM, Fishman AP, Goldring RM, Groves BM, Kernis JT et al (1991) Survival in patients with primary pulmonary hypertension. Results from a national prospective registry. Ann Intern Med 115(5):343–349

69. McLaughlin VV, Shillington A, Rich S (2002) Survival in primary pulmonary hypertension: the impact of epoprostenol therapy. Circulation 106(12):1477–1482

70. Sibton O, Humbert M, Nunes H, Parent F, Garcia G, Herve P, Rainisio M, Simonneau G (2002) Long-term intravenous epoprostenol infusion in primary pulmonary hypertension: prognostic factors and survival. Am J Cardiol 90(4):780–788

71. Vlahakes GJ, Turley K, Hoffman JJ (1981) The pathophysiology of failure in acute right ventricular hypertension: hemodynamic and biochemical correlations. Circulation 63(1):87–95

72. Santamore WP, Dell’Italia LJ (1998) Ventricular interdependence: significant left ventricular contributions to right ventricular systolic function. Prog Cardiovasc Dis 40(4):289–308

73. Zwissler B (2000) [Acute right heart failure. Etiology–pathophysiology–diagnosis–therapy]. Der Anaesthesist 49(9):788–808

74. Leier CV, Heban PT, Huss P, Bush CA, Lewis RP (1978) Comparative systemic and regional hemodynamic effects of dopamine and dobutamine in patients with cardiomyopathic heart failure. Circulation 58(3 Pt 1):466–475

75. Bradford KK, Deb B, Pearl RG (2000) Combination therapy with inhaled nitric oxide and intravenous dobutamine during pulmonary hypertension in the rabbit. J Cardiovasc Pharmacol 36(2):146–151

76. Kerbau F, Rondelet B, Motte S, Fesler P, Habilou E, Elwanlou P, Naeije R, Brimouille S (2004) Effects of norepinephrine and dobutamine on pressure load-induced right ventricular failure. Crit Care Med 32(4):1035–1040

77. Bryan TL, van Diepen S, Bhutani M, Shanks M, Welsh RC (1985) Stickland MK (2012) The effects of dobutamine and dopamine on intrapulmonary shunt and gas exchange in healthy humans. J Appl Physiol 113(4):541–548. doi:10.1152/japplphy solutions.00404.2012

78. Vizza CD, Rocca GD, Roma AD, Iacobini C, Pierconti F, Valente F, Rendina E, Schrmd G, Pietropaoli P, Fedele F (2001) Acute hemodynamic effects of inhaled nitric oxide, dobutamine and a combination of the two in patients with mild to moderate secondary pulmonary hypertension. Crit Care 5(6):355–361

79. Chen EP, Bittner HB, Davis RD Jr, Van Trigt P III (1997) Milrinone improves pulmonary hemodynamics and right ventricular function in chronic pulmonary hypertension. Ann Thorac Surg 63(3):814–821

80. Chen EP, Bittner HB, Davis RD, Van Trigt P (1998) Hemodynamic and inotropic effects of milrinone after heart transplantation in the setting of recipient pulmonary hypertension. J Heart Lung Transplant 17(7):669–678

81. Solina A, Papp D, Ginsberg S, Krause T, Grubw B, Scholz P, Pena LL, Cody R (2000) A comparison of inhaled nitric oxide and milrinone for the treatment of pulmonary hypertension in adult cardiac surgery patients. J Cardiothorac Vasc Anesth 14(1):12–17

82. Haglund NA, Burdorff A, Jones T, Shostrom V, Um J, Ryan T, Shillcutt S, Fischer P, Cox ZL, Raichlin E, Lowes BD, Dumitr I (2015) Inhaled milrinone after left ventricular assist device implantation. J Cardiac Fail. doi:10.1016/j.cardfail.2015.04.011

83. Lamarche Y, Malo O, Thorin E, Denault A, Carrier M, Roy J, Perrault LP (2005) Inhaled but not intravenous milrinone prevents pulmonary endothelial dysfunction after cardiopulmonary
bypass. J Thorac Cardiovasc Surg 130(1):83–92. doi:10.1016/j.
jcvs.2009.09.011
94. Wang H, Gong M, Zhou B, Dai A (2009) Comparison of inhaled
and intravenous milrinone in patients with pulmonary hyper-
tension undergoing mitral valve surgery. Adv Ther 26(4):462–468. doi:10.1007/s12325-009-0019-4
95. Khazin V, Kaufman Y, Zabedda D, Medailon B, Sasslon L,
Schachner A, Ezri T (2004) Milrinone and nitric oxide: com-
bined effect on pulmonary artery pressures after cardiopul-
monary bypass in children. J Cardiothorac Vasc Anesth 18(2):156–159
96. Vildbrad MD, Andersen A, Holmboe S, Ringgaard S, Nielsen
JM, Nielsen-Kudsk JE (2014) Acute effects of levoisemidan in
experimental models of right ventricular hypertrophy and fa-
ure. Pulm Circ 4(3):511–519. doi:10.1086/677366
97. Kerbaul F, Gariboldi V, Giorgi R, Mekkaoui C, Guieu R, Fesler
P, Gouin F, Brimioulle S, Collart F (2007) Effects of levoi-
semidan on acute pulmonary embolism-induced right ventricular
failure. Crit Care Med 35(8):1948–1954. doi:10.1097/01.CCM.
0000275266.33910.8D
98. Morelli A, Teboul JL, Maggiore SM, Vieillard-Baron A, Rocco
M, Conti G, De Gaetano A, Piccioni U, Orecchioni A, Carbone
I, Tritapepe L, Pietropaoli P, Westphal M (2006) Effects of
levoisemidan on right ventricular afterload in patients with acute
respiratory distress syndrome: a pilot study. Crit Care Med 34(9):2287–2293. doi:10.1097/01.CCM.0000230244.17171.4F
99. Kerbaul F, Rondelet D, Demeter JP, Fesler P, Huez S, Naeije R,
Brimioulle S (2006) Effects of levoisemdan versus dobutamine
on pressure load-induced right ventricular failure. Crit Care Med 34(11):2814–2819. doi:10.1097/01.CCM.0000242157.19347.50
100. Kerbaul F, Rondelet D, Demeter JP, Fesler P, Huez S, Naeije R,
Brimioulle S (2006) Effects of levoisemidan versus dobutamine
on pressure load-induced right ventricular failure. Crit Care Med 34(11):2814–2819. doi:10.1097/01.CCM.0000242157.19347.50
101. Kerbaul F, Gariboldi V, Giorgi R, Mekkaoui C, Guieu R, Fesler
P, Gouin F, Brimioulle S, Collart F (2007) Effects of levoi-
semidan on acute pulmonary embolism-induced right ventricular
failure. Crit Care Med 35(8):1948–1954. doi:10.1097/01.CCM.
0000275266.33910.8D
102. Mebazaa A, Nieminen MS, Packer M, Cohen-Solal A, Kleber
103. Moiseyev VS, Poder P, Andrejevs N, Ruda MY, Golikov AP,
104. Lowensohn HS, Khouri EM, Gregg DE, Pyle RL, Patterson RE
105. Bergofsky EH (1980) Humoral control of the pulmonary cir-
106. Kwak YL, Lee CS, Park YH, Hong YW (2002) The effect of
dopamine and norepinephrine in patients with chronic pulmo-
nary hypertension*. Anaesthesia 57(1):9–14
107. Schreuder WO, Schneider AJ, Groeneveld AB, Thijs LG (1989)
Effect of dopamine versus norepinephrine on hemodynamics in
septic shock. Emphasis on right ventricular performance. Chest 95(6):1282–1288
108. Hirsch Lf, Rooney MW, Wat SS, Kleinmann B, Mathru M
(1991) Norepinephrine and phenylephrine effects on right
ventricular function in experimental canine pulmonary embo-
109. Bouissou A, Rakza T, Klosowski S, Tourneux P, Vanderborgh
M, Storme L (2008) Hypotension in preterm infants with sig-
nificant patent ductus arteriosus: effects of dopamine. J Pediatr 153(6):790–794. doi:10.1016/j.jpeds.2008.06.014
110. Liet JM, Boscher C, Gras-Leguen C, Gournay V, Debillon T,
Roze JC (2002) Dopamine effects on pulmonary artery pressure in
hypotensive preterm infants with patent ductus arteriosus. J Pediatr 140(3):373–375. doi:10.1067/mpd.2002.123100
111. Lejeune P, Leeman M, Deloof T, Naeije R (1987) Pulmonary
hemodynamic response to dopamine and dobutamine in hyper-
oxic and in hypoxic dogs. Anesthesiology 66(1):49–54
112. Lejeune P, Naeije R, Leeman M, Melot C, Deloof T, Deleroux M
(1987) Effects of dopamine and dobutamine on hypoxic and
hypoxic pulmonary vascular tone in dogs. Am Rev Respir Dis 136(1):29–35. doi:10.1164/ajrccm/136.1.29
113. De Backer D, Biston P, Devriendt J, Madl C, Chochrad D,
Aldeca C, Brasseur A, Defrance P, Gouin F, Brimioulle S, Collart F (2007) Effects of levoi-
semidan on acute pulmonary embolism-induced right ventricular
failure. Crit Care Med 35(8):1948–1954. doi:10.1097/01.CCM.
0000275266.33910.8D
114. Holloway EL, Polumbo RA, Harrison DC (1975) Acute circu-
latory effects of dopamine in patients with pulmonary hyper-
115. Barrington KJ, Finer NN, Chan WK (1995) A blind, randomized
comparison of the circulatory effects of dopamine and epi-
nephrine infusions in the newborn piglet during normoxia and
hypoxia. Crit Care Med 23(4):740–748
116. Le Tulzo Y, Seguin P, Gacouin A, Camus C, Suprin E, Jouannic
I, Thomas R (1997) Effects of epinephrine on right ventricular
function in patients with severe septic shock and right ventric-117. Rich S, Gubin S, Hart K (1990) The effects of phenylephrine on
right ventricular performance in patients with pulmonary hyper-
118. Walker BR, Haynes J Jr, Wang HL, Voelkel NF (1989) Vasop-
119. Currigan DA, Hughes RJ, Wright CE, Angus JA, Soeding PF
120. Nagamine Y, Hara M (2012) Intravenous arginine vasopressin
for two pediatric cases of pulmonary hypertension after con-
genital heart surgery. Masui 61(10):1112–1116
121. Tayama E, Ueda T, Shojima T, Akasu K, Oda T, Fukunaga S,
Akashi H, Aoyagi S (2007) Arginine vasopressin is an ideal drug
for cardiac surgery for the management of low systemic vas-
cular resistant hypertension concomitant with pulmonary hyper-
122. Jeon Y, Ryu JH, Lim YJ, Kim CS, Bahk JH, Yoon SZ, Choi JY
(2006) Comparative hemodynamic effects of vasopressin and
norepinephrine after milrinone-induced hypotension in off-
pump coronary artery bypass surgical patients. Eur J Cardio-
thorac Surg 29(6):952–956. doi:10.1016/j.ejcts.2006.02.032
123. Sarkar J, Golden PJ, Kajiura LN, Murata LA, Uyehara CF
(2015) Vasopressin decreases pulmonary-to-systemic vascular
resistance ratio in a porcine model of severe hemorrhagic shock.
Shock 43(5):475–482. doi:10.1097/SHK.0000000000000325
124. Mohamed A, Nasef N, Shah V, McNamara PJ (2014) Vaso-
pressin as a rescue therapy for refractory pulmonary hyper-
esten in neonates: case series. Pediatr Crit Care Med 15(2):148–154. doi:10.1097/PCC.0b013e31829f5fce
125. Price LC, Forrest P, Sodhi V, Adamson DL, Nelson-Piercy C, Lucey M, Howard LS (2007) Use of vasopressin after Caesarean section in idiopathic pulmonary arterial hypertension. Br J Anaesth 99(4):552–555. doi:10.1093/bja/aem180

126. Braun EB, Palin CA, Hogue CW (2004) Vasopressin during spinal anesthesia in a patient with primary pulmonary hypertension treated with intravenous epoprostenol. Anesth Analg 99(1):36–37

127. Leather HA, Segers P, Berends N, Vandermeersch E, Wouters PF (2002) Effects of vasopressin on right ventricular function in an experimental model of acute pulmonary hypertension. Crit Care Med 30(11):2548–2552. doi:10.1097/01.CCM.0000034696.32358.54

128. Mols P, Hallems R, Van Kuyk M, Melot C, Lejeune P, Ham H, Vertongen F, Naeije R (1984) Hemodynamic effects of vasopressin, alone and in combination with nitroprusside, in patients with liver cirrhosis and portal hypertension. Ann Surg 199(2):176–181

129. Wilson MF, Brackett DJ, Archer LT, Hinshaw LB (1980) Mechanisms of impaired cardiac function by vasopressin. Ann Surg 191(4):494–500

130. Boyle WA 3rd, Segel LD (1986) Direct cardiac effects of vasopressin and their reversal by a vascular antagonist. Am J Physiol 251(4 Pt 2):H734–H741

131. Ichinose F, Roberts JD Jr, Zapol WM (1993) Inhaled nitric oxide selectively reverses human pulmonary vasodilatation in pulmonary hypertension. Lancet 338(8776):1173–1174

132. Braun EB, Palin CA, Hogue CW (2004) Vasopressin during spinal anesthesia in a patient with primary pulmonary hypertension treated with intravenous epoprostenol. Anesth Analg 99(1):36–37

133. Leather HA, Segers P, Berends N, Vandermeersch E, Wouters PF (2002) Effects of vasopressin on right ventricular function in an experimental model of acute pulmonary hypertension. Crit Care Med 30(11):2548–2552. doi:10.1097/01.CCM.0000034696.32358.54

134. Frostell CG, Blomqvist H, Hedenstierna G, Lundberg J, Zapol WM (1993) Inhaled nitric oxide selectively reverses human hypoxic pulmonary vasoconstriction without causing systemic vasodilation. Anesthesiology 78(3):427–435

135. Rossaint R, Falke KJ, Lopez IF, Zapol WM, Semigran MJ (2004) Hemodynamic effects of inhaled nitric oxide in right ventricular myocardial infarction and cardiogenic shock. J Am Coll Cardiol 44(4):793–798. doi:10.1016/j.jacc.2004.05.047

136. Fujita Y, Nishida O, Sobue K, Ito H, Kusama N, Inagaki M, Katsuya H (2002) Nitric oxide inhalation is useful in the management of right ventricular failure caused by myocardial infarction. Crit Care Med 30(6):1379–1381

137. Papania MJ, Crespo-Leiro MG, Rodriguez JA, Fojoan S, Pastor J, Castro MJ, Hermida LF, Cuenca JJ, Jaffe-Stein A, Castro-Beiras A (1999) Usefulness of nitric oxide inhalation for management of right ventricular failure after heart transplantation in patients with pretransplant pulmonary hypertension. Transplant Proc 31(6):2505–2506

138. Hsu CW, Lee DL, Lin SL, Sun SF, Chang HW (2008) The initial response to inhaled nitric oxide treatment for intensive care unit patients with acute respiratory distress syndrome. Respiration 75(3):288–295. doi:10.1159/000101478

139. Ardehali A, Hughes K, Sadeghi A, Esmailian F, Marelli D, Barnhart KV, Wallwork J (1991) Inhaled nitric oxide as a cause of selective pulmonary vasodilation. Biophys Acta 1411(2–3):290–309

140. Fernandez-Perez ER, Keegan MT, Harrison BA (2006) Inhaled nitric oxide for pulmonary hypertension after heart transplantation. Crit Care Med 33(6):710–714

141. Syed AU, Jelly AE, Algebaly AA, Altoonisi MM, Shatoory AE (2003) Methemoglobinemia: toxicity of inhaled nitric oxide therapy. Pediatr Crit Care Med 4(5):521–523

142. Griffiths MJ, Evans TW (2005) Inhaled nitric oxide therapy in adults. N Engl J Med 353(25):2683–2695. doi:10.1056/NEJMra051884
159. Christenson J, Lavoie A, O’Connor M, Bhorade S, Pohlman A, Hall JB (2000) The incidence and pathogenesis of cardiopulmonary deterioration after abrupt withdrawal of inhaled nitric oxide. Am J Respir Crit Care Med 161(5):1443–1449. doi:10.1164/ajrccm.161.5.9806138
160. Lavoie A, Hall JB, Olson DM, Wylam ME (1996) Life-threatening effects of discontinuing inhaled nitric oxide in severe respiratory failure. Am J Respir Crit Care Med 153(6 Pt 1):1985–1987. doi:10.1164/ajrccm.153.6.8665066
161. Atz AM, Adatia I, Wessel DL (1996) Rebound pulmonary hypertension after inhalation of nitric oxide. Ann Thorac Surg 62(6):1759–1764
162. Adhikari NK, Dellinger RP, Lundin S, Payen D, Vallet B, Afshari A, Brok J, Moller AM, Wetterslev J (2010) Inhaled nitric oxide for acute respiratory distress syndrome regardless of severity: systematic review and meta-analysis. Crit Care Med 42(2):404–412. doi:10.1097/CMJ.0b013e31827909
163. Antoniou T, Koletsis EN, Prokakis C, Rellia P, Thanopoulos A, Ramsay MA, Spikes C, East CA, Lynch K, Hein HA, Ramsay KJ, Klintmalm GB (1999) The perioperative management of portopulmonary hypertension with nitric oxide and epoprostenol. Anesthesiology 90(1):299–301
164. Antoniou T, Koletsis EN, Prokakis C, Rellia P, Thanopoulos A, Theodoraki K, Zarkalis D, Syfrakis P (2013) Hemodynamic effects of combination therapy with inhaled nitric oxide and iloprost in patients with pulmonary hypertension and right ventricular dysfunction after high-risk cardiac surgery. J Cardiothorac Vasc Anesth 27(3):459–466. doi:10.1053/j.jvca.2012.07.020
165. Antoniou T, Prokakis C, Athanasopoulos G, Thanopoulos A, Rellia P, Zarkalis D, Kogerakis N, Koletsis EN, Bairaktaris A (2012) Inhaled nitric oxide plus iloprost in the setting of post-left assist device right heart dysfunction. Ann Thorac Surg 94(3):792–798. doi:10.1016/j.thorsurg.2012.04.046
166. Flondor M, Merkel M, Hofstetter C, Irlbeck M, Frey L, Zwissler B (2006) The effect of inhaled nitric oxide and inhaled iloprost on hypoxaemia in a patient with pulmonary hypertension after pulmonary thromboarterectomy. Anaesthesia 61(12):1200–1203. doi:10.1111/j.1365-2044.2006.04861.x
167. Wharton J, Strange JW, Moller GM, Growcott EJ, Ren X, Franklyn AP, Phillips SC, Wilkins MR (2005) Antiproliferative effects of phosphodiesterase type 5 inhibition in human pulmonary artery cells. Am J Respir Crit Care Med 172(1):105–113. doi:10.1164/rccm.200411-1587OC
168. Preston IR, Klinger JR, Houtches J, Nelson D, Farber HW, Hill NS (2005) Acute and chronic effects of sildenafil in patients with pulmonary arterial hypertension. Respir Med 99(12):1501–1510. doi:10.1016/j.rmed.2005.03.026
169. Michelakis E, Tymchak W, Lien D, Webster L, Hashimoto K, Archer S (2002) Oral sildenafil is an effective and specific pulmonary vasodilator in patients with pulmonary arterial hypertension: comparison with inhaled nitric oxide. Circulation 105(20):2398–2403
170. Lepore JJ, Maroo A, Pereira NL, Ginns LC, Dec GW, Zapol WM, Bloch KD, Semigran MJ (2002) Effect of sildenafil on the acute pulmonary vasodilator response to inhaled nitric oxide in adults with primary pulmonary hypertension. Am J Cardiol 90(6):677–680
171. Madden BP, Sheth A, Ho TB, Park JE, Kanagasabay RR (2004) Potential role for sildenafil in the management of perioperative pulmonary hypertension and right ventricular dysfunction after cardiac surgery. Br J Anaesth 93(1):155–156. doi:10.1093/bja/eh457
172. Tedford RJ, Hennes AR, Russell SD, Wittstein IS, Mahmud M, Zaiman AL, Mathai SC, Thiemann DR, Hassoun PM, Giris GE, Orens JB, Shah AS, Yuh D, Conte JV, Champion HC (2008) PDE5A inhibitor treatment of persistent pulmonary hypertension after mechanical circulatory support. Circ Heart Fail 1(4):213–219. doi:10.1111/CIRCHEARTFAILURE.10796789
173. Singh RK, Richmond ME, Zuckerman WA, Lee TM, Giblin TB, Rodriguez R, Chen JM, Addonizio LJ (2014) The use of oral sildenafil for management of right ventricular dysfunction after pediatric heart transplantation. Am J Transplant 14(2):453–458. doi:10.1111/ajt.12552
174. De Santo LS, Mastroianni C, Romano G, Amarelli C, Marra C, Maiello C, Galdieri N, Della Corte A, Cotrufo M, Caianiello G (2008) Role of sildenafil in acute posttransplant right ventricular dysfunction: successful experience in 13 consecutive patients. Transplant Proc 40(6):2015–2018. doi:10.1016/j.transproceed.2008.05.055
175. Boffini M, Sansone F, Ceresa F, Ribezzo M, Patane F, Comoligio C, Rinaldi M (2009) Role of oral sildenafil in the treatment of right ventricular dysfunction after heart transplantation. Transplant Proc 41(4):1353–1356. doi:10.1016/j.transproceed.2009.03.042
176. Trachte AL, Lobato EB, Urdaneta F, Hess PJ, Klodell CT, Martin TD, Staples ED, Beaver TM (2005) Oral sildenafil reduces pulmonary hypertension after cardiac surgery. Ann Thorac Surg 79(1):194–197. doi:10.1016/j.athoracsur.2004.06.086 discussion 194–197
177. Lee JE, Hillier SC, Knoderer CA (2008) Use of sildenafil to facilitate weaning from inhaled nitric oxide in children with pulmonary hypertension following surgery for congenital heart disease. J Intensive Care Med 23(5):329–334. doi:10.1177/0885066608321389
178. Madanichayavam P, Theilen U, Butt WW, Cooper SM, Penny DJ, Shekerdemian LS (2006) Sildenafil prevents rebound pulmonary hypertension after withdrawal of nitric oxide in children. Am J Respir Crit Care Med 174(9):1042–1047. doi:10.1164/rccm.200605-6940C
179. Ruan CH, Dixon RA, Willerson JT, Ruan KH (2010) Prostacyclin therapy for pulmonary arterial hypertension. Texas Heart Institute journal/from the Texas Heart Institute of St Luke’s Episcopal Hospital, Texas Children’s Hospital 37(4):391–399
180. Barst RJ, Rubin LJ, Long WA, McGoon MD, Rich S, Badesch DB, Groves BM, Tapsen VF, Bourge RC, Brundage BH, Koerner SK, Langleben D, Keller CA, Murali S, Uretsky BF, Clayton LM, Jobes MM, Blackburn SD, Storrow D, Crow JW (2008) A comparison of continuous intravenous epoprostenol (prostacyclin) with conventional therapy for primary pulmonary hypertension. N Engl J Med 353(5):296–301. doi:10.1056/NEJM20061213430054
181. McMahon VV, Gaine SP, Barst RJ, Oudiz RJ, Bourge RC, Frost A, Robbins IM, Tapsen VF, McGoon MD, Badesch DB, Sigman J, Roscigno R, Blackburn SD, Arneson C, Rubin LJ, Rich S (2003) Efficacy and safety of treprostinil: an
eprostenol analog for primary pulmonary hypertension. J Cardiovasc Pharmacol 41(2):293–299

185. Olschewski H, Simonneau G, Galie N, Higenbottam T, Naeije R, Rubin LJ, Nikkho S, Speich R, Hoeper MM, Behr J, Winkler J, Sitbon O, Popov W, Ghofrani HA, Manes A, Kiely DG, Ewert R, Meyer A, Corris PA, Delcroix M, Gomez-Sanchez M, Siedentop H, Seeger W (2002) Inhaled iloprost for severe pulmonary hypertension. N Engl J Med 347(5):322–329. doi: 10.1056/NEJMoa020204

186. Muzaffar S, Shukla N, Angelini GD, Jeremy JY (2004) Inhaled prostacyclin is safe, effective, and affordable in patients with pulmonary hypertension, right-heart dysfunction, and refractory hypoxemia after cardiopulmonary surgery. J Thorac Cardiovasc Surg 128(6):949–950. doi: 10.1016/j.jtcvs.2004.05.035

187. De Wet CJ, Affleck DG, Jacobsohn E, Avidan MS, Tymkew H, Schroeder RA, Wood GL, Plotkin JS, Kuo PC (2000) Intraop-

188. Rex S, Schaelte G, Metzelder S, Flier S, de Waal EE, Autschbach Theodoraki K, Rellia P, Thanopoulos A, Tsourelis L, Zarkalis Haraldsson A, Kieler-Jensen N, Ricksten SE (1996) Inhaled

190. Elliott CG, Palevsky HI (2004) Treatment with epoprostenol of

191. Webb SA, Stott S, van Heerden PV (1996) The use of inhaled

192. Siedentop H, Seeger W (2002) Inhaled iloprost for severe pul-

193. R, Meyer A, Corris PA, Delcroix M, Gomez-Sanchez M, Siedentop H, Seeger W (2002) Inhaled iloprost for severe pulmonary hypertension. N Engl J Med 347(5):322–329. doi:10.

194. Sampognaro R, Ruvolo G (2005) Inhaled prostacyclin, nitric oxide, and nitroprusside in pulmonary hypertension after mitral replacement for mitral stenosis. Thorax 59(6):536–537

195. Hill LL, Zanaboni PB, Moazami N, Smith JR (2004) Inhaled prostacyclin (IAP) in the treatment of pulmonary hypertension during mechanical ventilation: incidence, clinical implications, and prognosis. Crit Care Med 32(8):CD007733. doi: 10.1002/14651858.CD007733.pub2

196. Siobal MS, Hess DR (2010) Are inhaled vasodilators useful in acute lung injury and acute respiratory distress syndrome? Respir Care 55(2):144–157 discussion 157–161

197. Afshari A, Brok J, Moller AM, Wetterlev J (2010) Aerosolized prostacyclin for acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Cochrane Database Syst Rev (8):CD007733. doi: 10.1002/14651858.CD007733.pub2

198. Dzierba AL, Abel EE, Buckley MS, Lat I (2014) A review of inhaled nitric oxide and aerosolized epoprostenol in acute lung injury or acute respiratory distress syndrome. Pharmacotherapy 34(3):279–290

199. Channick RN, Simonneau G, Sitbon O, Robbins IM, Frost A, Tapson VF, Badesch DB, Roux S, Rainisio M, Bodin F, Rubin LJ (2001) Effects of the dual endothelin-receptor antagonist bosentan in patients with pulmonary hypertension: a randomised placebo-controlled study. Lancet 358(9288):1119–1123. doi: 10.1016/S0140-6736(01)06250-X

200. Rubin LJ, Badesch DB, Barst RJ, Galie N, Black CM, Keogh A, Pulido T, Frost A, Roux S, Lecomte I, Landzberg M, Simonneau G (2002) Bosentan therapy for pulmonary arterial hypertension. N Engl J Med 346(12):896–903. doi: 10.1056/NEJMoa021212

201. Ghofrani HA, Galie N, Grimminger F, Grunig E, Humbert M, Jing ZC, Keogh AM, Langleben D, Kilama MO, Fritsch A, Neuser D, Rubin LJ (2013) Riociguat for the treatment of pulmonary arterial hypertension. N Engl J Med 369(4):330–340. doi: 10.1056/NEJMoa1209655

202. Enson Y, Giuntini C, Lewis ML, Morris TQ, Ferrer MI, Harvey RM (1964) The influence of hydrogen ion concentration and hypoxia on the pulmonary circulation. J Clin Invest 43:1146–1162. doi:10.1172/JCI104999

203. Rudolph AM, Yuan S (1966) Response of the pulmonary vasculature to hypoxia and H + ion concentration changes. J Clin Invest 45(3):399–411. doi: 10.1172/JCI105355

204. Rose CE Jr, Van Benthuyzen K, Jackson JT, Tucker CE, Kaiser DL, Grover RF, Weil JV (1983) Right ventricular performance during increased afterload impaired by hypercapnic acidosis in conscious dogs. Circ Res 52(1):76–84

205. Viitanen A, Salmenpera M, Heinonen J (1990) Right ventricular response to hypercarbia after cardiac surgery. Anesthesiology 73(3):393–400

206. Cherpanath TG, Lagrand WK, Schultz MJ, Groeneveld AB (2013) Cardiopulmonary interactions during mechanical ventilation in critically ill patients. Neth Heart J 21(4):166–172. doi:10.s12471-013-0383-1

207. Jardin F, Delorme G, Hardy A, Auvert B, Beauchet A, Bour- darias JP (1990) Reevaluation of hemodynamic consequences of positive pressure ventilation: emphasis on cyclic right ventric- ular afterloading by mechanical lung inflation. Anesthesiology 72(6):966–970

208. Vieillard-Baron A, Loubieres Y, Schmitt JM, Page B, Dubourg O (1985) Jardin F (1999) Cyclic changes in right ventricular output impedance during mechanical ventilation. J Appl Physiol 87(5):1644–1650

209. Vieillard-Baron A (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342(18):1301–1308. doi: 10.1056/NEJM20000504342180

210. Jardin F, Vieillard-Baron A (2007) Is there a safe plateau pressure in ARDS? The right heart only knows. Intensive Care Med 33(4):444–447. doi: 10.1007/s00134-007-0552-z

211. Repesse X, Charron C, Vieillard-Baron A (2012) Right ventric- ular failure in acute lung injury and acute respiratory distress syndrome. Minerva Anestesiol 78(8):941–948

212. Vieillard-Baron A, Schmitt JM, Augarde R, Fellahi JL, Prin S, Vieillard-Baron A, Loubieres Y, Schmitt JM, Page B, Beauchet A, Bour- darias JP (1990) Reevaluation of hemodynamic consequences of positive pressure ventilation: emphasis on cyclic right ventric- ular afterloading by mechanical lung inflation. Anesthesiology 72(6):966–970

213. Bull TM, Clark B, McFann K, Moss M (2010) Pulmonary vascular dysfunction is associated with poor outcomes in patients with acute lung injury. Am J Respir Crit Care Med 182(9):1123–1128. doi:10.1164/rccm.201002-0250OC

214. Boissier F, Katashian S, Razazi K, Thille AW, Roche-Campo F, Leon R, Vivier E, Brochard L, Vieillard-Baron A, Brun-Buisson C, Mekontso Dessap A (2013) Prevalence and prognosis of cor pulmonale during protective ventilation for acute respiratory
distress syndrome. Intensive Care Med 39(10):1725–1733. doi:10.1007/s00134-013-2941-9

215. Vieillard-Baron A, Jardin F (2003) Why protect the right ventricle in patients with acute respiratory distress syndrome? Curr Opin Crit Care 9(1):15–21

216. Vieillard-Baron A, Charron C, Caille V, Belliard G, Pace B, Jardin F (2007) Prone positioning unloads the right ventricle in severe ARDS. Chest 132(5):1440–1446. doi:10.1378/chest.07-1013

217. Guerin, C, Reignier J, Richard JC, Beuret P, Gacouin A, Boulin T, Mercier E, Badet M, Mercat A, Baudin O, Clavel M, Chatellier D, Jaber S, Rosselli S, Mancebo J, Sirodot M, Hilbert G, Bengler C, Richerre J, Gaignier M, Bayle F, Bourdin G, Leray V, Girard R, Baboi L, Ayzac L (2013) Prone positioning in severe acute respiratory distress syndrome. N Engl J Med 368(23):2159–2168. doi:10.1056/NEJMoa1214103

218. David M, von Bardeleben RS, Weiler N, Marksteller K, Scholz A, Karmrod J, Eberle B (2004) Cardiac function and haemodynamics during transition to high-frequency oscillatory ventilation. Eur J Anaesthesiol 21(12):944–952

219. Guervilly C, Forel JM, Hraiech S, Demory D, Allardet-Servent J, Adda M, Barreau-Baumstark K, Castanier M, Papazian L, Roch A (2012) Right ventricular function during high-frequency oscillatory ventilation in adults with acute respiratory distress syndrome. Crit Care Med 40(5):1539–1545. doi:10.1097/CCM.0b013e3182451b4a

220. Young D, Lamb SE, Shah S, MacKenzie I, Tunnicliffe W, Lall R, Rowan K, Cuthbertson BH (2013) High-frequency oscillation for acute respiratory distress syndrome. N Engl J Med 369(8):806–813. doi:10.1056/NEJMoa1215716

221. Fergusson ND, Cook DJ, Guyatt GH, Mehta S, Hand L, Austin P, Dubin AM, Feinstein JA, Reddy VM, Van Hare GF, Rosenthal DN (2003) Electrical resynchronization: a novel therapy for the failing right ventricle. Circulation 107(18):2287–2289. doi:10.1161/01.CIR.0000070930.33499.9F

222. Tongers J, Schwerdtfeger B, Gacouin A, Boulin T, Mercier E, Badet M, Mercat A, Baudin O, Clavel M, Chatellier D, Jaber S, Rosselli S, Mancebo J, Sirodot M, Hilbert G, Bengler C, Richerre J, Gaignier M, Bayle F, Bourdin G, Leray V, Girard R, Baboi L, Ayzac L (2013) Prone positioning in severe acute respiratory distress syndrome. N Engl J Med 368(23):2159–2168. doi:10.1056/NEJMoa1214103

223. Goldstein JA, Harada A, Yagi Y, Barzilai B, Cox JL (1990) Hemodynamic importance of systolic ventricular interaction, augmented right atrial contractility and atrioventricular asynchrony in acute right ventricular dysfunction. J Am Coll Cardiol 16(1):181–189

224. Topol EJ, Goldschlager N, Ports TA, Dicarlo LA Jr, Schiller NB, Botvinick EH, Chatterjee K (1982) Hemodynamic benefit of atrial pacing in right ventricular myocardial infarction. Ann Intern Med 96(5):594–597

225. Love JC, Haffajee CI, Gore JM, Alpert JS (1984) Reversibility and clinical relevance of supraventricular tachyarrhythmias in pulmonary hypertension. Am Heart J 153(1):127–132. doi:10.1016/j.ahj.2006.09.008

226. Abraham KA, Brown MA, Norris RM (1985) Right ventricular infarction, bradyarrhythmias, and cardiogenic shock: importance of atrial or atrioventricular sequential pacing. Aust N Z J Med 15(1):52–54

227. Burks JM, Calder JR Jr, Roland DL (1979) Sinus arrest in pulmonary hypertension. Am Heart J 107(18):2287–2289. doi:10.1161/01.CIR.0000070930.33499.9F

228. Nader DA, Ceretto WJ, Vieweg WV (1981) Atrial pacing in the management of right ventricular infarction. South Med J 74(3):362–363

229. Janousek J, Tomek V, Chaloupecky VA, Reich O, Gebauer RA, Kautzner J, Hucin B (2004) Cardiac resynchronization therapy: a novel adjunct to the treatment and prevention of systemic right ventricular failure. J Am Coll Cardiol 44(9):1927–1931. doi:10.1016/j.jacc.2004.08.044

230. Dubin AM, Feinstein JA, Reddy VM, Hanley FL, Van Hare GF, Rosenthal DN (2003) Electrical resynchronization: a novel therapy for the failing right ventricle. Circulation 107(18):2287–2289. doi:10.1161/01.CIR.0000070930.33499.9F

231. Zimpfer D, Zrunek P, Roethy W, Czerny M, Schima H, Huber L, Grimm M, Rajek A, Wolner E, Wieseltiiler G (2007) Post-transplant survival after lowering fixed pulmonary hypertension using left ventricular assist devices. Eur J Cardiothorac Surg 31(4):698–702. doi:10.1016/j.ejcts.2006.12.036

232. Liden H, Haraldsson A, Ricksten SE, Kjellman U, Wiklund L (2009) Does pretransplant left ventricular assist device therapy improve results after heart transplantation in patients with elevated pulmonary vascular resistance? Eur J Cardiothorac Surg 35 (6):1029-1034; discussion 1034-1025. doi:10.1016/j.ejcts.2008.12.024

233. Mikus E, Stepantenko A, Krabatsch T, Loforte A, Dandel M, Lehmkuhl HB, Hetzer R, Potapov EV (2011) Reversibility of fixed pulmonary hypertension in left ventricular assist device support recipients. Eur J Cardiothorac Surg 40(4):971–977. doi:10.1016/j.ejcts.2011.01.019

234. Salzberg SP, Lachat ML, van Houbo K, Zund G, Turina MI (2005) Normalization of high pulmonary vascular resistance with LVAD support in heart transplantation candidates. Eur J Cardiothorac Surg 27(2):222–225. doi:10.1016/j.ejcts.2004.11.001

235. Martin J, Siegenthaler MP, Friesewinkel O, Fader T, van de Loo A, Trummer G, Berchtold-Herz M, Beyersdorf F (2004) Implantable left ventricular assist device for treatment of pulmonary hypertension in candidates for orthotopic heart transplantation—a preliminary study. Eur J Cardiothorac Surg 25(6):971–977. doi:10.1016/j.ejcts.2004.01.052

236. Zimpfer D, Zrunek P, Roethy W, Czerny M, Schima H, Huber L, Grimm M, Rajek A, Wolner E, Wieseltiiler G (2007) Left ventricular assist devices decrease fixed pulmonary hypertension in cardiac transplant candidates. J Thorac Cardiovasc Surg 133(3):689–695. doi:10.1016/j.jtcvs.2006.08.104

237. Guglin M, Verma S (2012) Right side of heart failure. Heart Fail Rev 17(3):511–527. doi:10.1007/s10741-011-9272-0

238. Boulate D, Marques MA, Ha R, Banerjee D, Haddad F (2014) Biventricular VAD versus LVAD for right heart failure. Annals of cardiothoracic surgery 3(6):585–588. doi:10.3978/j.issn.2225-319X.2014.08.08

239. Moazami N, Hill L (2003) Right ventricular dysfunction in patients with acute inferior MI: role of RV mechanical support. Thorac Cardiovasc Surg 51(5):290–292. doi:10.1055/s-2003-43079

240. Moazami N, Pasque MK, Moon MR, Herren RL, Bailey MS, Lawton JS, Damiano RJ Jr (2004) Mechanical support for isolated right ventricular failure in patients after cardiomyopathy. J Heart Lung Transplant 23(12):1371–1375. doi:10.1016/j.healun.2003.09.022

241. Haneya A, Philipp A, Puehler T, Rupprecht L, Kobuch R, Hilker M, Schmid C, Hirt SW (2012) Temporary percutaneous right ventricular support using a centrifugal pump in patients with postoperative acute refractory right ventricular failure after left ventricular assist device implantation. Eur J Cardiothorac Surg 41(1):219–223. doi:10.1016/j.ejcts.2011.04.029

242. Chen JM, Levin HR, Rose EA, Addonizio LJ, Landry DW, Sistino JJ, Michler RE, Oz MC (1996) Experience with right ventricular assist devices for perioperative right-sided circulatory failure. Ann Thorac Surg 61(1):305–310. doi:10.1016/0003-4975(95)01010-6 discussion 311–303

243. Takeda K, Naka Y, Yang JA, Uriel N, Colombo PC, Jorde UP, Takayama H (2014) Outcome of unplanned right ventricular
assist device support for severe right heart failure after implantable left ventricular assist device insertion. J Heart Lung Transplant 33(2):141–148. doi:10.1016/j.healun.2013.06.025

244. Yerebakan C, Buz S, Huebler M, Weng Y, Lehmkuhl H, Hetzer R (2008) Right ventricular failure following heart transplantation—recovery after extended mechanical support. J Card Surg 23(5):578–580. doi:10.1111/j.1540-8191.2008.00698.x

245. Berman M, Tsui S, Vuylsteke A, Klein A, Jenkins DP (2008) Life-threatening right ventricular failure in pulmonary hypertension: RVAD or ECMO? J Heart Lung Transplant 27(10):1188–1189. doi:10.1016/j.healun.2008.07.017

246. Miller JR, Epstein DJ, Henn MC, Guthrie T, Schuessler RB, Martinez MV, Rutherford JD (2013) Pulmonary hypertension in transplantation. Ann Thorac Surg 87(5):1644–1649. doi:10.1016/j.athorac.2004.04.059

247. Budev MM, Arroliga AC, Emery S (2005) Exacerbation of pulmonary vascular disease in pregnancy. Crit Care Med 33(10 Suppl):S313–S318

248. Taghavi S, Zuckermann A, Ankersmit J, Wieselthaler G, Rajek A, Bossert T, Gummert JF, Bittner HB, Barten M, Walther T, Falk V, Mohr FW (2004) Extracorporeal membrane oxygenation is superior to right ventricular assist device for acute right ventricular failure after heart transplantation. Ann Thorac Surg 78(5):1644–1649. doi:10.1016/j.athorac.2004.04.059

249. Budev MM, Arroliga AC, Emery S (2005) Exacerbation of pulmonary vascular disease in pregnancy. Crit Care Med 33(10 Suppl):S313–S318

250. Weinberg C, Zuckermann A, Ankersmit J, Wieselthaler G, Rajek A, Bossert T, Gummert JF, Bittner HB, Barten M, Walther T, Falk V, Mohr FW (2004) Extracorporeal membrane oxygenation is superior to right ventricular assist device for acute right ventricular failure after heart transplantation. Ann Thorac Surg 78(5):1644–1649. doi:10.1016/j.athorac.2004.04.059

251. Monnery L, Nanson J, Charlton G (2001) Primary pulmonary hypertension in pregnancy: a role for novel vasodilators. Br J Anaesth 87(2):295–298

252. Bossett T, Gummert JF, Bittner HB, Barten M, Walther T, Falk V, Mohr FW (2006) Swan-Ganz catheter-induced severe complications in cardiac surgery: right ventricular perforation, knotting, and rupture of a pulmonary artery. J Card Surg 21(3):292–295. doi:10.1111/j.1540-8191.2006.00235.x

253. Stewart R, Tsazon D, Olson D, Duarte AG (2001) Pregnancy and primary pulmonary hypertension: successful outcome with epoprostenol therapy. Chest 119(3):973–975

254. Easterling TR, Ralph DD, Schmucker BC (1999) Pulmonary hypertension in pregnancy: treatment with pulmonary vasodilators. Obstet Gynecol 93(4):494–498

255. Goland S, Tsai F, Habib M, Janmohamed M, Goodwin TM, Elkayam U (2010) Favorable outcome of pregnancy with an elective use of epoprostenol and sildenafil in women with severe pulmonary hypertension. Cardiology 115(3):205–208. doi:10.1159/000287638

256. Lam GK, Stafford RE, Thorp J, Moise KJ Jr, Cairns BA (2001) Inhaled nitric oxide for primary pulmonary hypertension in pregnancy. Obstet Gynecol 98(5 Pt 2):895–898

257. Robinson PN, Banerjee R, Landzberg MJ, Thielt MP (1999) Inhaled nitric oxide therapy in pregnancy complicated by pulmonary hypertension. Am J Obstet Gynecol 180(4):1045–1046

258. Deceoene C, Bourzouul K, Moreau D, Narducci F, Crepin F, Krivose-Horber R (2001) Use of inhaled nitric oxide for emergency Cesarean section in a woman with unexpected primary pulmonary hypertension. Cana J Anaesth 48(6):584–587. doi:10.1007/BF03016836

259. Castro M, Krowka MJ, Schroeder DR, Beck KC, Plevak DJ, Rettke SR, Cortese DA, Wiesner RH (1996) Frequency and
Semigran MJ (2007) Sildenafil improves exercise capacity and quality of life in patients with systolic heart failure and secondary pulmonary hypertension. Circulation 116(14):1555–1562. doi: 10.1161/CIRCULATIONAHA.107.716373

277. Jiang R, Wang L, Zhu CT, Yuan P, Pudasaini B, Zhao QH, Gong SG, He J, Liu JM, Hu QH (2015) Comparative effectiveness of sildenafil for pulmonary hypertension due to left heart disease with HFpEF. Hypertens Res. doi: 10.1038/hr.2015.73

278. Hoendermis ES, Liu LC, Hummel YM, van der Meer P, de Boer RA, Berger RM, van Veldhuisen DJ, Voors AA (2015) Effects of sildenafil on invasive haemodynamics and exercise capacity in heart failure patients with preserved ejection fraction and pulmonary hypertension: a randomized controlled trial. Eur Heart J. doi: 10.1093/eurheartj/ehv336

279. Bautin AE, Iakovlev AS, Tashkhanov DM, Datsenko SV, Kaluski E, Cotter G, Leitman M, Milo-Cotter O, Krakover R, Anand I, McMurray J, Cohn JN, Konstam MA, Notter T, McMurray JJ, Teerlink JR, Cotter G, Bourge RC, Cleland JG, Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, Semigran MJ (2007) Sildenafil improves exercise capacity and quality of life in patients with systolic heart failure and secondary pulmonary hypertension. Circulation 116(14):1555–1562. doi: 10.1161/CIRCULATIONAHA.107.716373

282. Guazzi M, Borlaug BA (2012) Pulmonary hypertension due to left heart disease. Circulation 126(8):975–990. doi: 10.1161/CIRCULATIONAHA.111.085761

283. Myrianthefs P, Kalafati M, Lemosidou C, Minasidou E, Evangelopoulou P, Karatzas S, Baltopoulos G (2003) Efficacy of CPR in a general, adult ICU. Resuscitation 57(1):43–48

284. Hooper MM, Galie N, Murali S, Olschewski H, Rubenstein M, Robbins IM, Farber HW, McLaughlin V, Shapiro S, Pepke-Zaba J, Winkler J, Ewert R, Opitz C, Westerkamp V, Vachiery JL, Torbicki A, Behr J, Barst RJ (2002) Outcome after cardiopulmonary resuscitation in patients with pulmonary arterial hypertension. Am J Respir Crit Care Med 165(3):341–344. doi: 10.1164/ajrccm.165.3.200109-0130c

285. Stenstad ER, Shanafelt TD, Sloan JA, Novotny PJ, Durst LA, Frantz RP, McGoone MD, Swetz KM (2014) Physician attitudes toward palliative care for patients with pulmonary arterial hypertension: results of a cross-sectional survey. Pulm Circ 4(3):504–510. doi: 10.1086/677365

286. Guazzi M, Borlaug BA (2012) Pulmonary hypertension due to left heart disease. Circulation 126(8):975–990. doi: 10.1161/CIRCULATIONAHA.111.085761

287. Myrianthefs P, Kalafati M, Lemosidou C, Minasidou E, Evangelopoulou P, Karatzas S, Baltopoulos G (2003) Efficacy of CPR in a general, adult ICU. Resuscitation 57(1):43–48

288. Hooper MM, Galie N, Murali S, Olschewski H, Rubenstein M, Robbins IM, Farber HW, McLaughlin V, Shapiro S, Pepke-Zaba J, Winkler J, Ewert R, Opitz C, Westerkamp V, Vachiery JL, Torbicki A, Behr J, Barst RJ (2002) Outcome after cardiopulmonary resuscitation in patients with pulmonary arterial hypertension. Am J Respir Crit Care Med 165(3):341–344. doi: 10.1164/ajrccm.165.3.200109-0130c

289. Myrianthefs P, Kalafati M, Lemosidou C, Minasidou E, Evangelopoulou P, Karatzas S, Baltopoulos G (2003) Efficacy of CPR in a general, adult ICU. Resuscitation 57(1):43–48

290. Hoeper MM, Galie N, Murali S, Olschewski H, Rubenstein M, Robbins IM, Farber HW, McLaughlin V, Shapiro S, Pepke-Zaba J, Winkler J, Ewert R, Opitz C, Westerkamp V, Vachiery JL, Torbicki A, Behr J, Barst RJ (2002) Outcome after cardiopulmonary resuscitation in patients with pulmonary arterial hypertension. Am J Respir Crit Care Med 165(3):341–344. doi: 10.1164/ajrccm.165.3.200109-0130c

291. Stenstad ER, Shanafelt TD, Sloan JA, Novotny PJ, Durst LA, Frantz RP, McGoone MD, Swetz KM (2014) Physician attitudes toward palliative care for patients with pulmonary arterial hypertension: results of a cross-sectional survey. Pulm Circ 4(3):504–510. doi: 10.1086/677365

292. Swetz KM, Shanafelt TD, Drozdzowicz LB, Sloan JA, Novotny PJ, Durst LA, Frantz RP, McGoone MD (2012) Symptom burden, quality of life, and attitudes toward palliative care in patients with pulmonary arterial hypertension: results from a cross-sectional patient survey. J Heart Lung Transplant 31(10):1102–1108. doi: 10.1016/j.healun.2012.08.010

293. Haddad F, Hunt SA, Rosenthal DN, Murphy DJ (2008) Right ventricular function in cardiovascular disease, part I: anatomy, physiology, aging, and functional assessment of the right ventricle. Circulation 117(11):1436–1448. doi: 10.1161/CIRCULATIONAHA.107.653576

294. Kaul S, Tei C, Hopkins JM, Shah PM (1984) Assessment of right ventricular function using two-dimensional echocardiography. Am Heart J 107(3):526–531

295. Leather HA, Ama R, Missant C, Rex S, Rademakers FE, Wouters IF (2006) Longitudinal but not circumferential deformation reflects global contractile function in the right ventricle with open pericardium. Am J Physiol Heart Circ Physiol 290(6):H2369–H2375. doi: 10.1152/ajpheart.01211.2004

296. Hoeper MM, Galie N, Murali S, Olschewski H, Rubenstein M, Robbins IM, Farber HW, McLaughlin V, Shapiro S, Pepke-Zaba J, Winkler J, Ewert R, Opitz C, Westerkamp V, Vachiery JL, Torbicki A, Behr J, Barst RJ (2002) Outcome after cardiopulmonary resuscitation in patients with pulmonary arterial hypertension. Am J Respir Crit Care Med 165(3):341–344. doi: 10.1164/ajrccm.165.3.200109-0130c

297. Fine NM, Chen L, Bastiansen PM, Frantz RP, Pellikka PA, Oh JK, Kane GC (2013) Outcome prediction by quantitative right ventricular function assessment in 575 subjects evaluated for pulmonary hypertension. Circ Cardiovasc Imaging 5(5):628–636. doi: 10.1161/CIRCIMAGING.111.071465

298. Fine NM, Chen L, Bastiansen PM, Frantz RP, Pellikka PA, Oh JK, Kane GC (2013) Outcome prediction by quantitative right ventricular function assessment in 575 subjects evaluated for pulmonary hypertension. Circ Cardiovasc Imaging 5(5):628–636. doi: 10.1161/CIRCIMAGING.111.071465