Supporting Information

Synthesis, antibacterial, and antiviral activity of myricetin derivatives containing a 1,2,4-triazole Schiff base

Ying Chen‡, Pu Li‡, Shijun Su‡, Mei Chen‡, Jun He‡, Liwei Liu‡, Ming He‡, Hua Wang§, Wei Xue§

‡State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, China

§Institute for Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China.

The first and the second authors contributed equally to this work.

*Corresponding author: Wei Xue; e-mail: wxue@gzu.edu.cn; wanghua4@163.com(Hua Wang); Tel/Fax: 0086-0851-88292090
Content

1. Experimental section ... 2
2. Biological activities tests .. 2
2.1 *In vitro* Antibacterial Activity Test ... 2
2.2 Antiviral activities *in vitro* .. 2
2.2.1 Purification of TMV ... 2
2.2.2. Curative activity of the target compounds against TMV *in vivo* 3
2.2.3. Inactivation activity of the target compounds against TMV *in vivo* 3
2.2.4. Protection activity of the target compounds against TMV *in vivo* 3
2.3 Scanning electron microscopy .. 3
2.4 Molecular docking .. 4
2.5 *H NMR, 13C NMR, and HRMS spectrum of the title compounds 4
1. Experimental section

Bruker ASCEND 400 (400 MHz) NMR spectrometer [tetramethylsilane (TMS) for internal standard, Bruker, Switzerland] and JEOL-ECX 500 (500 MHz) NMR (TMS for internal standard, Japan JEOL); Thermo Scientific Q Exactive High Resolution Mass Spectrometer (HRMS, Thermo Fisher Scientific); X-4 Digital Micro Melting Point Tester (Beijing Tektronix Instrument Co., Ltd.); Sartorius Electronic Balance (German Sartorius Group); QY-20 three-purpose ultraviolet analyzer (Shanghai Anting Electronic Instrument Factory). All reagents and solvents were purchased from Chinese Chemical Reagent Company.

2. Biological activities tests

2.1 In vitro Antibacterial Activity Test

In this study, a series of myricetin derivatives containing 1,2,4-triazole Schiff bases were synthesized and their antibacterial activity against Xanthomonas axonopodis pv. citri (Xac), Ralstonia solanacearum (Rs) and Xanthomonas oryzae pv. oryzae (Xoo) in vitro were investigated using turbidity tests. The solvent nutrient broth (NB; 40 μL) medium (1.5 g beef extract, 2.5 g peptone, 0.5 g yeast powder, 5.0 g glucose, and 500 mL distilled water, pH 7.0-7.2) was added to Xac, Rs, or Xoo.

After adding 5 mL of the solvent NB medium, containing the test compound and commercial fungicide, the inoculated tubes were incubated at 28±1 °C and continuously shaken at 180 rpm for 24–48 h until the bacteria were incubated in the logarithmic growth phase. The growth of the culture was monitored by measuring the optical density (OD$_{595}$) at 595 nm using a 680 type plate reader (BIO-RAD, Hercules, CA, USA). The inhibition rate I was then calculated by the following formula:

\[
\text{Inhibition rate } I (\%) = \frac{(C-T)}{C} \times 100
\]

Where C is the corrected turbidity value (OD$_{595}$) of bacterial growth on untreated NB, T is the corrected turbidity value (OD$_{595}$) of bacterial growth on treated NB, and I represents inhibition rate.

2.2 Antiviral activities in vitro

2.2.1 Purification of TMV

The virus was propagated in tobacco using the Gooding method. Tabacum (N. tabacum) cv. K326 was purified. The absorbance at 260 nm was estimated using an ultraviolet spectrophotometer.

\[
\text{Virus concentration (mg/mL)} = \frac{A_{260} \times \text{dilution ratio}}{E_{0.1\%}^{0.1\%} 1 \text{ cm}^{260 \text{ nm}}}
\]

where E represents the extinction coefficient of TMV, E$_{0.1\%}^{0.1\%}$ 1 cm$^{260 \text{ nm}}$ is 3.1.
2.2.2. Curative activity of the target compounds against TMV *in vivo*

To determine curative activity, growing *Nicotiana tabacum* L. (*N. tabacum* L.) leaves of the same age were selected, which were then inoculated with TMV (concentration of 6×10^{-3} mg/mL) by dipping and brushing the entire leaves after they had been spread with silicon carbide. After inoculation, the leaves were then washed with water for 0.5 h. The compound solution was applied to the left side of the leaves, and the solvent was applied to the right side as a control. Then, after 3–4 d of inoculation, the number of local lesions was counted with three replicates being set for each compound.

2.2.3. Inactivation activity of the target compounds against TMV *in vivo*

The virus was inhibited by mixing it with the same volume of the compound solution for 30 min. Note that the right side of the leaves was inoculated with a mixture of solvent and virus as control. All the leaves had been previously spread with silicon carbide. Then, after 3–4 d of inoculation, the number of local lesions was counted with three replicates being set for each compound.

2.2.4. Protection activity of the target compounds against TMV *in vivo*

The compound solution was applied to the left side of the tobacco L leaf. The solvent was applied to the right side as a control for growing the tobacco leaves. After 12 h, crude TMV (concentration 6×10^{-3} mg/mL) was seeded at the same concentration on the entire leaves on either side of the leaves, which had previously been spread with silicon carbide. After 0.5 h, the leaves were washed with water and dried. Then, after 3–4 d of inoculation, the number of local lesions was recorded with three replicates being set for each compound.

The inhibition rate of the compound was calculated according to the following formula ("av" represents the average value):

$$\text{Inhibition rate (\%)} = \frac{\text{av local lesion no. of control (not treated with compd)} - \text{av local lesion no. smeared with drugs}}{\text{av local lesion no. of control (not treated with compd)}} \times 100\%$$

2.3 Scanning electron microscopy

In this assay, 1.5 mL Xanthomonas axonopodis pv.citri (*Xac*) cells incubated at the logarithmic phase were centrifuged and washed with PBS (pH = 7.1), and re-suspended in 1.5 mL of PBS buffer (pH = 7.1). After that, bacteria Xanthomonas axonopodis pv.citri (*Xac*) was incubated with compound 6q at concentration of 12.5 μg/mL, 25.0 μg/mL, and an equivalent volume of DMSO (solvent control) for 4 h at room temperature. After incubation, these samples were washed 3 times with PBS (pH = 7.1). Subsequently, the bacterial cells were fixed for 8 h at 4 °C with 2.5% glutaraldehyde, and then dehydrated with graded ethanol series and pure tert-butanol (2 times with 10 min/time). Following dehydration, samples were freezing dried and coated with gold, and
visualized using Nova Nano SEM 450.

2.4 Molecular docking

Molecular docking. The molecular docking was performed by using DS-CDocker implemented in Discovery Studio (version 4.5). The coat protein subunit amino acid sequence of tobacco mosaic virus (TMV) was searched by the UniProt database. The Protein BLAST server was used to search the template protein and the homologies of TMV-CP sequences were aligned. Homology modeling of TMV-CP was carried out using Create Homology Models, which is a module integrated in Discovery Studio. The obtained models were evaluated by Ramachandran plots. The 3D structures of the compounds were constructed using the Sketching module and optimized by the Full Minimization module. All parameters are default during the docking process.

2.5 1H NMR, 13C NMR, and HRMS spectrum of the title compounds

The physical characteristics, HRMS, 1H NMR, 13C NMR data for all the target compounds were shown in below.

![Chemical structure](image)

3-(3-(4-(benzylideneamino)-5-methyl-4H-1,2,4-triazol-3-yl(thio)propoxy)-5,7-dimethoxy-2-(3,4,5-
trimethoxyphenyl)-4H-chromen-4-one (6a): White solid, yield: 53.2%, m.p: 82-84 °C; 1H NMR (400 MHz, DMSO-d_6) δ 8.83 (s, 1H, CH=N), 7.91 (d, $J = 2.2$ Hz, 2H, Ar-2,6-H), 7.60 (ddd, $J = 12.6, 9.5, 5.1$ Hz, 3H, Ar-3,4,5-H), 7.34 (s, 2H, Myr-2’,6’-H), 6.82 (s, 1H, Myr-6-H), 6.48 (s, 1H, Myr-8-H), 3.99 (t, $J = 6.2$ Hz, 2H, CH$_2$), 3.90 (s, 3H, Myr-5-OCH$_3$), 3.84 (s, 6H, Myr-3’,5’-OCH$_3$), 3.74 (s, 3H, Myr-7-OCH$_3$), 3.22 (t, $J = 7.0$ Hz, 2H, CH$_2$), 2.44 (s, 3H, triazole-CH$_3$), 2.08 – 2.02 (m, 2H, CH$_2$); 13C NMR (100 MHz, DMSO-d_6) δ 172.56, 164.23, 160.75, 158.64, 153.17, 152.22, 149.49, 146.66, 140.17, 139.88, 133.43, 132.30, 129.63, 129.31, 129.08, 125.96, 108.89, 106.15, 96.38, 93.56, 70.50, 60.63, 56.53, 56.50, 30.27, 29.57, 11.44; HRMS Calcd for C$_{33}$H$_{35}$O$_8$N$_4$S [M+H]$^+$: 647.21701, Found: 647.21680.
3-(3-((4-(4-methylbenzylidene)amino)-5-methyl-4H-1,2,4-triazol-3-yl)thio)propoxy)-5,7-dimethoxy-2-(3,4,5-trimethoxyphenyl)-4H-chromen-4-one (6b): White solid, yield: 61.0%, m.p: 76-78 °C; 1H NMR (400 MHz, DMSO-d_6) δ 8.77 (s, 1H, CH=N), 7.80 (d, J = 8.0 Hz, 2H, Ar-2,6-H), 7.36 (d, J = 8.0 Hz, 2H, Ar-3,5-H), 7.33 (s, 2H, Myr-2',6'-H), 6.83 (s, 1H, Myr-6-H), 6.49 (s, 1H, Myr-8-H), 4.00 (t, J = 6.0 Hz, 2H, CH$_2$), 3.90 (s, 3H, Myr-5-OCH$_3$), 3.84 (s, 6H, Myr-3',5'-OCH$_3$), 3.84 (s, 3H, Myr-7-OCH$_3$), 3.74 (s, 3H, Myr-4'-OCH$_3$), 3.21 (t, J = 6.0 Hz, 2H, CH$_2$), 2.41 (s, 3H, triazole-CH$_3$), 2.39 (s, 3H, Ar-4-CH$_3$), 2.08 – 1.99 (m, 2H, CH$_2$); 13C NMR (100 MHz, DMSO-d_6) δ 172.56, 165.79, 164.22, 160.73, 158.64, 153.16, 152.20, 149.46, 146.54, 143.88, 140.17, 139.84, 130.21, 129.61, 129.34, 125.96, 108.87, 106.10, 96.38, 93.56, 70.49, 60.63, 56.54, 56.51, 30.25, 29.57, 21.75, 11.40; HRMS Calcd for C$_{34}$H$_{37}$O$_8$N$_4$S [M+H]$^+$: 661.23266, Found: 661.23224.

3-(3-((4-(3-methylbenzylidene)amino)-5-methyl-4H-1,2,4-triazol-3-yl)thio)propoxy)-5,7-dimethoxy-2-(3,4,5-trimethoxyphenyl)-4H-chromen-4-one (6c): Yellow solid, yield: 69.4%, m.p: 78-80 °C; 1H NMR (400 MHz, DMSO-d_6) δ 8.78 (s, 1H, CH=N), 7.73 (s, 1H, Ar-2-H), 7.71 (d, J = 4.6 Hz, 1H, Ar-6-H), 7.44 (d, J = 5.0 Hz, 1H, Ar-4-H), 7.37 (t, J = 6.2 Hz, 1H, Ar-5-H), 7.33 (s, 2H, Myr-2',6'-H), 6.82 (s, 1H, Myr-6-H), 6.49 (s, 1H, Myr-8-H), 4.00 (t, J = 5.6 Hz, 2H, CH$_2$), 3.90 (s, 3H, Myr-5-OCH$_3$), 3.86 (s, 3H, Myr-7-OCH$_3$), 3.84 (s, 6H, Myr-3',5'-OCH$_3$), 3.74 (s, 3H, Myr-4'-OCH$_3$), 3.22 (t, J = 7.1 Hz, 2H, CH$_2$), 2.43 (s, 3H, triazole-CH$_3$), 2.38 (s, 3H, Ar-3-CH$_3$), 2.07 – 2.03 (m, 2H, CH$_2$); 13C NMR (100 MHz, DMSO-d_6) δ 172.55, 165.87, 164.23, 160.75, 158.64, 153.17, 152.21, 149.48, 146.58, 140.17, 139.88, 139.06, 134.12, 132.25, 129.52, 126.72, 126.41, 125.96, 108.89, 106.15, 96.38, 93.57, 70.50, 60.63, 56.53, 56.50, 30.27, 29.58, 21.23, 11.42; HRMS Calcd for C$_{34}$H$_{37}$O$_8$N$_4$S [M+H]$^+$: 661.23266, Found: 661.23212.

3-(3-((4-(4-methoxybenzylidene)amino)-5-methyl-4H-1,2,4-triazol-3-yl)thio)propoxy)-5,7-dimethoxy-2-(3,4,5-trimethoxyphenyl)-4H-chromen-4-one (6d): Brown solid, yield: 75.1%, m.p: 76-78 °C; 1H NMR (500 MHz, DMSO-d_6) δ 8.72 (s, 1H, CH=N), 7.87 (d, J = 8.7 Hz, 2H, Ar-2,6-H), 7.34 (s, 2H, Myr-2',6'-H), 7.10 (d, J = 8.7 Hz, 2H, Ar-3',5'-H), 6.82 (s, 1H, Myr-6-H), 6.49 (s, 1H, Myr-8-H), 4.00 (t, J = 6.0 Hz, 2H, CH$_2$), 3.90 (s, 3H, Myr-5-OCH$_3$), 3.86 (s, 3H, Myr-7-OCH$_3$), 3.84 (s, 6H, Myr-3',5'-OCH$_3$), 3.74 (s, 3H, Myr-4'-OCH$_3$), 3.22 (t, J = 7.1 Hz, 2H, CH$_2$), 2.43 (s, 3H, triazole-CH$_3$), 2.38 (s, 3H, Ar-3-CH$_3$), 2.07 – 2.03 (m, 2H, CH$_2$); 13C NMR (100 MHz, DMSO-d_6) δ 172.55, 165.87, 164.23, 160.75, 158.64, 153.17, 152.21, 149.48, 146.58, 140.17, 139.88, 139.06, 134.12, 132.25, 129.52, 126.72, 126.41, 125.96, 108.89, 106.15, 96.38, 93.57, 70.50, 60.63, 56.53, 56.50, 30.27, 29.58, 21.23, 11.42; HRMS Calcd for C$_{34}$H$_{37}$O$_8$N$_4$S [M+H]$^+$: 661.23266, Found: 661.23212.
Ar-3,5-H), 6.82 (s, 1H, Myr-6-H), 6.48 (s, 1H, Myr-8-H), 4.00 (t, J = 5.9 Hz, 2H, CH₂), 3.90 (s, 3H, Myr-5-OCH₃), 3.85 (s, 9H, Myr-3′,5′-OCH₃ and Ar-4-OCH₃), 3.84 (s, 3H, Myr-7-OCH₃), 3.74 (s, 3H, Myr-4′-OCH₃), 3.20 (t, J = 7.0 Hz, 2H, CH₂), 2.40 (s, 3H, triazole-CH₃), 2.05 – 2.02 (m, 2H, CH₂); ¹³C NMR (125 MHz, DMSO-d₆) δ 172.61, 165.93, 164.27, 163.62, 160.78, 158.69, 153.22, 152.24, 149.49, 146.46, 140.24, 139.88, 131.44, 126.02, 124.79, 115.18, 108.93, 106.15, 96.43, 93.60, 70.55, 60.69, 56.57, 56.11, 30.35, 29.61, 11.38; HRMS Calcd for C₃₄H₃₇O₉N₄S [M+H]⁺: 677.22758, Found: 677.22681.

3-{3-(4-{(2-methoxybenzylidene)amino}-5-methyl-4H-1,2,4-triazol-3-yl)propoxy}-5,7-dimethoxy-2-(3,4,5-trimethoxyphenyl)-4H-chromen-4-one (6e): White solid, yield: 66.3%, m.p: 74-76 °C; ¹H NMR (400 MHz, DMSO-d₆) δ 8.95 (s, 1H, CH=N), 7.94 (d, J = 9.5 Hz, 1H, Ar-6-H), 7.60 (t, J = 7.4 Hz, 1H, Ar-4-H), 7.33 (s, 2H, Myr-2′,6′-H), 7.20 (d, J = 8.3 Hz, 1H, Ar-3-H), 7.09 (t, J = 7.5 Hz, 1H, Ar-5-H), 6.82 (s, 1H, Myr-6-H), 6.48 (s, 1H, Myr-8-H), 4.01 (t, J = 6.1 Hz, 2H, CH₂), 3.90 (s, 3H, Myr-5-OCH₃), 3.88 (s, 3H, Myr-7-OCH₃), 3.84 (s, 9H, Myr-3′,5′-OCH₃ and Ar-2-OCH₃), 3.74 (s, 3H, Myr-4′-OCH₃), 3.22 (t, J = 7.0 Hz, 2H, CH₂), 2.40 (s, 3H, triazole-CH₃), 2.13 – 2.00 (m, 2H, CH₂); ¹³C NMR (100 MHz, DMSO-d₆) δ 172.55, 164.23, 160.77, 160.34, 159.77, 158.64, 153.18, 152.18, 150.00, 145.81, 140.19, 139.92, 135.30, 127.24, 125.96, 121.40, 120.20, 112.82, 108.91, 106.18, 96.39, 93.58, 70.53, 60.63, 56.54, 56.51, 30.28, 29.82, 11.36. HRMS Calcd for C₃₄H₃₇O₉N₄S [M+H]⁺: 677.22758, Found: 677.22681.

3-{3-{4-{(3,4-dimethylbenzylidene)amino}-5-methyl-4H-1,2,4-triazol-3-yl)propoxy}-5,7-dimethoxy-2-(3,4,5-trimethoxyphenyl)-4H-chromen-4-one (6f): Yellow solid, yield: 51.5%, m.p: 81-83 °C; ¹H NMR (400 MHz, DMSO-d₆) δ 8.72 (s, 1H, CH=N), 7.67 (s, 1H, Ar-2-H), 7.62 (d, J = 8.1 Hz, 1H, Ar-6-H), 7.36 (d, J = 8.3 Hz, 1H, Ar-5-H), 7.33 (s, 2H, Myr-2′,6′-H), 6.83 (s, 1H, Myr-6-H), 6.49 (s, 1H, Myr-8-H), 4.00 (t, J = 6.2 Hz, 2H, CH₂), 3.90 (s, 3H, Myr-5-OCH₃), 3.84 (s, 6H, Myr-3′,5′-OCH₃), 3.76 (s, 3H, Myr-7-OCH₃), 3.74 (s, 3H, Myr-4′-OCH₃), 3.20 (t, J = 7.0 Hz, 2H, CH₂), 2.40 (s, 3H, triazole-CH₃), 2.30 (s, 3H, Ar-4-CH₃), 2.28 (s, 3H, Ar-3-CH₃), 2.05 – 2.02 (m, 2H, CH₂); ¹³C NMR
(100 MHz, DMSO-d$_6$) δ 172.55, 166.20, 164.25, 160.79, 158.65, 153.19, 152.21, 146.40, 142.77, 140.19, 139.95, 137.79, 130.67, 129.96, 129.91, 127.17, 125.96, 108.92, 106.23, 96.41, 93.61, 70.52, 60.64, 56.61, 56.57, 56.52, 30.27, 29.64, 20.14, 19.69, 11.35; HRMS Calcd for C$_{35}$H$_{39}$O$_8$N$_4$S [M+H]$^+$: 675.24831, Found: 675.24750.

3-(3-((4-(3,4-dimethoxybenzylidene)amino)-5-methyl-4H-1,2,4-triazol-3-yl)thio)propoxy)-5,7-dimethoxy-2-(3,4,5-trimethoxyphenyl)-4H-chromen-4-one (**6g**): White solid, yield: 64.9%, m.p: 85-87 °C; 1H NMR (400 MHz, DMSO-d$_6$) δ 8.69 (s, 1H, CH=N), 7.48 (d, $J = 1.8$ Hz, 1H, Ar-6-H), 7.45 (d, $J = 1.9$ Hz, 1H, Ar-5-H), 7.33 (s, 2H, Myr-2',6'-H), 7.13 (s, 1H, Ar-2-H), 6.83 (s, 1H, Myr-6-H), 6.49 (s, 1H, Myr-8-H), 4.00 (t, $J = 6.1$ Hz, 2H, CH$_2$), 3.90 (s, 3H, Myr-5-OCH$_3$), 3.85 (s, 3H, Ar-3-OCH$_3$), 3.84 (s, 3H, Ar-4-OCH$_3$), 3.82 (s, 3H, Myr-7-OCH$_3$), 3.75 (s, 3H, Myr-4'-OCH$_3$), 3.67 (s, 3H, Myr-5'-OCH$_3$ and Ar-4-OCH$_3$), 3.65 (s, 3H, Myr-3'-OCH$_3$ and Ar-3-OCH$_3$), 3.30 (t, $J = 7.0$ Hz, 2H, CH$_2$), 2.39 (s, 3H, triazole-CH$_3$), 2.07 – 1.99 (m, 2H, CH$_2$); 13C NMR (100 MHz, DMSO-d$_6$) δ 172.56, 166.32, 164.26, 160.78, 158.65, 153.60, 153.19, 152.23, 149.62, 149.46, 146.30, 140.19, 139.94, 125.96, 125.23, 124.78, 112.01, 109.96, 108.92, 106.23, 94.62, 93.61, 70.54, 60.65, 56.57, 56.11, 30.31, 29.61, 11.29; HRMS Calcd for C$_{35}$H$_{39}$O$_8$N$_4$S [M+H]$^+$: 707.23814, Found: 707.23749.

3-(3-((4-(2,4-dimethoxybenzylidene)amino)-5-methyl-4H-1,2,4-triazol-3-yl)thio)propoxy)-5,7-dimethoxy-2-(3,4,5-trimethoxyphenyl)-4H-chromen-4-one (**6h**): White solid, yield: 56.7%, m.p: 74-76 °C; 1H NMR (400 MHz, DMSO-d$_6$) δ 8.79 (s, 1H, CH=N), 7.89 (d, $J = 8.6$ Hz, 1H, Ar-6-H), 7.33 (s, 2H, Myr-2',6'-H), 6.80 (s, 1H, Myr-6-H), 6.67 (d, $J = 9.8$ Hz, 2H, Ar-3,5-H), 6.47 (s, 1H, Myr-8-H), 4.00 (t, $J = 6.1$ Hz, 2H, CH$_2$), 3.90 (s, 3H, Myr-5-OCH$_3$), 3.87 (s, 9H, Myr-3',5'-OCH$_3$ and Ar-4-OCH$_3$), 3.84 (s, 6H, Myr-7-OCH$_3$ and Ar-2-OCH$_3$), 3.75 (s, 3H, Myr-4'-OCH$_3$), 3.20 (t, $J = 7.0$ Hz, 2H, CH$_2$), 2.36 (s, 3H, triazole-CH$_3$), 2.16 – 2.00 (m, 2H, CH$_2$); 13C NMR (100 MHz, DMSO-d$_6$) δ 172.54, 165.54, 164.21, 161.60, 160.84, 160.75, 158.61, 153.16, 152.11, 147.78, 145.65, 140.20, 139.91, 128.82, 125.96, 112.91, 108.89, 107.63, 106.15, 98.65, 96.34, 93.55, 70.51, 60.62, 56.52, 56.20, 30.29, 29.81, 11.21; HRMS Calcd for C$_{35}$H$_{39}$O$_8$N$_4$S [M+H]$^+$: 707.23814, Found: 707.23773.
3-(3-(4-((4-((4-(tert-butyl)benzylidene)amino)-5-methyl-4H-1,2,4-triazol-3-yl)thio)propoxy)-5,7-dimethoxy-2-(3,4,5-trimethoxyphenyl)-4H-chromen-4-one (6i): White solid, yield: 44.6%, m.p: 75-77 °C; 1H NMR (500 MHz, DMSO-d$_6$) δ 8.78 (s, 1H, CH=N), 7.83 (d, J = 8.2 Hz, 2H, Ar-2,6-H), 7.57 (d, J = 8.1 Hz, 2H, Ar-3,5-H), 7.36 (s, 2H, Myr-2’,6’-H), 6.83 (s, 1H, Myr-6-H), 6.48 (s, 1H, Myr-8-H), 4.01 (t, J = 6.0 Hz, 2H, CH$_2$), 3.90 (s, 3H, Myr-5-OCH$_3$), 3.84 (s, 3H, Myr-7-OCH$_3$), 3.84 (s, 3H, Myr-4’-OCH$_3$), 3.21 (t, J = 6.9 Hz, 2H, CH$_2$), 2.41 (s, 3H, triazole-CH$_3$), 2.07 – 2.00 (m, 2H, CH$_2$), 1.31 (s, 9H, Ar-4-CH$_3$); 13C NMR (125 MHz, DMSO-d$_6$) δ 172.61, 165.93, 164.29, 160.79, 158.70, 156.72, 153.22, 152.21, 149.50, 146.54, 140.25, 139.90, 129.70, 129.31, 129.06, 126.54, 126.02, 108.93, 106.15, 96.45, 93.62, 70.56, 60.69, 56.57, 35.45, 31.31, 30.33, 29.65, 11.42; HRMS Calcd for C$_{37}$H$_{43}$O$_8$N$_4$S [M+H]$^+$: 703.27961, Found: 703.27643.

3-(3-(4-((thiophen-2-ylmethylene)amino)-5-methyl-4H-1,2,4-triazol-3-yl)thio)propoxy)-5,7-dimethoxy-2-(3,4,5-trimethoxyphenyl)-4H-chromen-4-one (6j): Yellow solid, yield: 40.8%, m.p: 98-100 °C; 1H NMR (400 MHz, DMSO-d$_6$) δ 9.01 (s, 1H, CH=N), 7.98 (d, J = 5.1 Hz, 1H, thiophene-5-H), 7.82 (d, J = 3.6 Hz, 1H, thiophene-3-H), 7.34 (s, 2H, Myr-2’,6’-H), 7.29 (t, J = 4.9, 3.7 Hz, 1H, thiophene-4-H), 6.82 (s, 1H, Myr-6-H), 6.48 (s, 1H, Myr-8-H), 4.00 (t, J = 6.2 Hz, 2H, CH$_2$), 3.90 (s, 3H, Myr-5-OCH$_3$), 3.85 (s, 3H, Myr-7-OCH$_3$), 3.84 (s, 3H, Myr-4’-OCH$_3$), 3.75 (s, 3H, Myr-4’-OCH$_3$), 3.21 (t, J = 7.0 Hz, 2H, CH$_2$), 2.40 (s, 3H, triazole-CH$_3$), 2.08 – 2.02 (m, 2H, CH$_2$); 13C NMR (100 MHz, DMSO-d$_6$) δ 172.56, 164.22, 160.74, 158.63, 153.17, 152.21, 149.42, 146.56, 140.17, 139.88, 137.09, 136.26, 133.99, 129.12, 125.96, 108.89, 106.15, 96.37, 93.56, 70.49, 60.69, 56.57, 35.45, 31.31, 30.33, 29.65, 11.33; HRMS Calcd for C$_{31}$H$_{33}$O$_8$N$_4$S$_2$ [M+H]$^+$: 653.17343, Found: 653.17279.
3-((4-((4-methylbenzylidene)amino)-5-methyl-4H-1,2,4-triazol-3-yl)thio)butoxy)-5,7-dimethoxy-2-(3,4,5-
trimethoxyphenyl)-4H-chromen-4-one (6l): Yellow solid, yield: 46.6%, m.p: 82-84 °C; ¹H NMR (400 MHz, DMSO-d₆)
δ 8.79 (s, 1H, CH=N), 7.82 (d, J = 8.2 Hz, 2H, Ar-2,6-H), 7.37 (d, J = 7.6 Hz, 2H, Ar-3,5-H), 7.35 (s, 2H, Myr-2',6'-H),
6.80 (s, 1H, Myr-6-H), 6.47 (s, 1H, Myr-8-H), 3.95 (t, J = 6.0 Hz, 2H, CH₃O), 3.90 (s, 3H, Myr-5-CH₃), 3.85 (s, 6H,
Myr-3',5'-OCH₃), 3.84 (s, 3H, Myr-7-CH₃), 3.75 (s, 3H, Myr-4'-OCH₃), 3.18 (t, J = 6.3 Hz, 2H, CH₂), 2.42 (s, 3H,
triazole-CH₃), 2.39 (s, 3H, Myr-4-CH₃), 1.77 (s, 4H, 2×CH₂); ¹³C NMR (100 MHz, DMSO-d₆) δ 172.61, 165.64, 164.18,
160.72, 158.59, 153.13, 151.99, 146.64, 143.86, 140.29, 139.85, 130.21, 129.65, 129.32, 129.08, 126.02, 108.89,
106.09, 96.31, 93.51, 71.32, 60.61, 56.51, 56.46, 32.32, 28.91, 26.21, 21.73, 11.39; HRMS Calcd for C₃₅H₃₉O₈N₄S [M+H]⁺: 675.24831, Found: 675.24792.
3-(4-{[(4-((4-methoxybenzylidene)amino)-5-methyl-4H-1,2,4-triazol-3-yl)thio)butoxy}-5,7-dimethoxy-2-(3,4,5-trimethoxyphenyl)-4H-chromen-4-one (6n): White solid, yield: 65.7%, m.p: 68-70 °C; 1H NMR (400 MHz, DMSO-d$_6$) δ 8.74 (s, 1H, CH=N), 7.88 (d, J = 8.8 Hz, 2H, Ar-2,6-H), 7.35 (s, 2H, Myr-2',6'-H), 7.11 (d, J = 8.8 Hz, 2H, Ar-3,5-H), 6.82 (s, 1H, Myr-6-H), 6.48 (s, 1H, Myr-8-H), 3.98 (t, J = 6.4 Hz, 2H, CH$_2$), 3.90 (s, 3H, Myr-5-OCH$_3$), 3.85 (s, 6H, Myr-3',5'-OCH$_3$), 3.84 (s, 6H, Myr-7-OCH$_3$ and Ar-4-OCH$_3$), 3.74 (s, 3H, Myr-4'-OCH$_3$), 3.15 (t, J = 6.4 Hz, 2H, CH$_2$), 2.40 (s, 3H, triazole-CH$_3$), 1.87 – 1.77 (m, 2H, CH$_2$), 1.76 – 1.69 (m, 2H, CH$_2$); 13C NMR (100 MHz, DMSO-d$_6$) δ 172.62, 165.85, 164.21, 163.59, 160.76, 158.62, 153.15, 152.04, 149.40, 146.47, 140.31, 139.91, 131.38, 126.04, 124.78, 115.16, 108.93, 106.18, 96.37, 93.57, 71.37, 60.64, 56.56, 56.05, 32.34, 28.90, 26.24, 11.31.; HRMS Calcd for C$_{35}$H$_{39}$O$_9$N$_4$S [M+H]$^+$: 691.24323, Found: 691.24255.

3-(4-{[(4-((3-methylbenzylidene)amino)-5-methyl-4H-1,2,4-triazol-3-yl)thio)butoxy}-5,7-dimethoxy-2-(3,4,5-trimethoxyphenyl)-4H-chromen-4-one (6m): Yellow solid, yield: 43.5%, m.p: 73-75 °C; 1H NMR (400 MHz, DMSO-d$_6$) δ 9.86 (s, 1H, CH=N), 7.73 (s, 1H, Ar-2-H), 7.71 (d, J = 4.9 Hz, 1H, Ar-6-H), 7.47 (t, J = 6.0 Hz, 1H, Ar-5-H), 7.45 (d, J = 5.3 Hz, 1H, Ar-4-H), 7.37 (s, 2H, Myr-2',6'-H), 6.86 (s, 1H, Myr-6-H), 6.50 (s, 1H, Myr-8-H), 4.14 (t, J = 6.8 Hz, 2H, CH$_2$), 3.96 (t, J = 6.3 Hz, 2H, CH$_2$), 3.90 (s, 3H, Myr-5-OCH$_3$), 3.86 (s, 6H, Myr-3',5'-OCH$_3$), 3.84 (s, 3H, Myr-7-OCH$_3$), 3.74 (s, 3H, Myr-4'-OCH$_3$), 2.40 (s, 3H, triazole-CH$_3$), 1.92 – 1.84 (m, 2H, CH$_2$), 1.73 – 1.66 (m, 2H, CH$_2$); 13C NMR (100 MHz, DMSO-d$_6$) δ 172.66, 164.67, 164.24, 160.75, 158.65, 153.16, 152.13, 147.74, 140.33, 139.84, 139.07, 135.39, 133.91, 132.50, 129.55, 129.36, 126.47, 126.05, 108.91, 106.15, 96.42, 93.60, 71.51, 60.66, 56.54, 48.01, 27.18, 27.06, 24.86, 21.29, 11.07; HRMS Calcd for C$_{35}$H$_{39}$O$_8$N$_4$S [M+H]$^+$: 675.24831, Found: 675.24768.
3-(4-{4-{[(2-methoxybenzylidene)amino]-5-methyl-4H-1,2,4-triazol-3-yl}thiobutoxy}-5,7-dimethoxy-2-(3,4,5-trimethoxyphenyl)-4H-chromen-4-one (6o): Yellow solid, yield: 58.1%, m.p: 62-64 °C; 1H NMR (400 MHz, DMSO-d_6) δ 8.97 (s, 1H, CH=N), 7.97 (d, J = 7.6 Hz, 1H, Ar-6-H), 7.61 (t, J = 7.1 Hz, 1H, Ar-4-H), 7.35 (s, 2H, Myr-2',6'-H), 7.20 (d, J = 8.4 Hz, 1H, Ar-3-H), 7.10 (t, J = 7.5 Hz, 1H, Ar-5-H), 6.80 (s, 1H, Myr-6-H), 6.47 (s, 1H, Myr-8-H), 4.03 (t, J = 6.5 Hz, 2H, CH$_2$), 3.89 (s, 3H, Myr-5-OCH$_3$), 3.87 (s, 3H, Myr-7-OCH$_3$), 3.85 (s, 9H, Myr-3',5'-OCH$_3$ and Ar-2-OCH$_3$), 3.75 (s, 3H, Myr-4'-OCH$_3$), 3.18 (s, 2H, CH$_2$), 2.41 (s, 3H, triazole-CH$_3$), 1.79 – 1.57 (m, 2H, CH$_2$); 13C NMR (100 MHz, DMSO-d_6) δ 172.60, 164.17, 160.75, 160.10, 159.77, 158.59, 153.14, 151.98, 149.99, 145.94, 140.30, 139.92, 135.26, 127.23, 126.02, 121.40, 120.23, 112.81, 108.92, 106.16, 96.31, 93.53, 71.35, 60.62, 56.54, 56.45, 32.56, 31.42, 28.93, 26.23; HRMS Calcd for C$_{35}$H$_{39}$O$_9$N$_4$S [M+H]$^+$: 691.24323, Found: 691.24286.

3-(4-{4-{[(3,4-dimethylbenzylidene)amino]-5-methyl-4H-1,2,4-triazol-3-yl}thiobutoxy}-5,7-dimethoxy-2-(3,4,5-trimethoxyphenyl)-4H-chromen-4-one (6p): Yellow solid, yield: 42.3%, m.p: 64-66 °C; 1H NMR (400 MHz, DMSO-d_6) δ 8.74 (s, 1H, CH=N), 7.70 (s, 1H, Ar-2-H), 7.64 (d, J = 7.6 Hz, 1H, Ar-6-H), 7.35 (s, 2H, Myr-2',6'-H), 7.32 (d, J = 7.9 Hz, 1H, Ar-5-H), 6.83 (s, 1H, Myr-6-H), 6.49 (s, 1H, Myr-8-H), 3.98 (t, J = 6.4 Hz, 2H, CH$_2$), 3.90 (s, 3H, Myr-5-OCH$_3$), 3.85 (s, 6H, Myr-3',5'-OCH$_3$), 3.84 (s, 3H, Myr-7-OCH$_3$), 3.74 (s, 3H, Myr-4'-OCH$_3$), 3.19 (t, J = 6.7 Hz, 2H, CH$_2$), 2.41 (s, 3H, triazole-CH$_3$), 2.30 (s, 3H, Ar-4-CH$_3$), 2.29 (s, 3H, Ar-3-CH$_3$), 1.76 – 1.72 (m, 4H, 2xCH$_2$); 13C NMR (100 MHz, DMSO-d_6) δ 172.62, 166.09, 164.21, 160.75, 158.62, 153.15, 152.04, 149.47, 146.55, 142.78, 140.30, 139.86, 137.82, 130.69, 129.93, 127.19, 126.85, 126.03, 108.91, 106.12, 96.37, 93.56, 71.36, 60.63, 56.54, 56.50, 32.35, 28.89, 26.22, 20.15, 19.70, 11.37; HRMS Calcd for C$_{36}$H$_{41}$O$_8$N$_4$S [M+H]$^+$: 689.26396. Found: 689.26196.
3-(4-((4-(3,4-dimethoxybenzylidene)amino)-5-methyl-4H-1,2,4-triazol-3-yl)thio)butoxy)-5,7-dimethoxy-2-(3,4,5-trimethoxyphenyl)-4H-chromen-4-one (6q): Brown solid, yield: 61.8%, m.p: 65-67°C; ¹H NMR (400 MHz, DMSO-d₆) δ 8.71 (s, 1H, CH=N), 7.50 (d, J = 7.8 Hz, 1H, Ar-6-H), 7.47 (s, 1H, Ar-2-H), 7.35 (s, 2H, Myr-2',6'-H), 7.13 (d, J = 8.3 Hz, 1H, Ar-5-H), 6.83 (s, 1H, Myr-6-H), 6.48 (s, 1H, Myr-8-H), 3.98 (t, J = 6.1 Hz, 2H, CH₂), 3.90 (s, 3H, Myr-5-OCH₃), 3.87 (s, 3H, Ar-3-OCH₃), 3.85 (s, 9H, Myr-3',5'-OCH₃ and Ar-4-OCH₃), 3.83 (s, 3H, Myr-7-OCH₃), 3.74 (s, 3H, Myr-4'-OCH₃), 3.22 (t, J = 6.3 Hz, 2H, CH₂), 2.40 (s, 3H, triazole-CH₃), 1.79 – 1.64 (m, 4H, 2×CH₂); ¹³C NMR (100 MHz, DMSO-d₆) δ 172.63, 166.19, 164.22, 160.75, 158.62, 153.57, 153.15, 152.05, 149.61, 149.42, 146.46, 140.30, 139.86, 126.03, 125.24, 124.78, 112.01, 109.88, 108.90, 106.12, 96.37, 93.57, 71.38, 60.64, 56.55, 55.98, 32.32, 28.90, 26.24, 11.31; HRMS Calcd for C₃₆H₄₁O₁₀N₄S [M+H]⁺: 721.25379, Found: 721.25275.

3-(4-((2,4-dimethoxybenzylidene)amino)-5-methyl-4H-1,2,4-triazol-3-yl)thio)butoxy)-5,7-dimethoxy-2-(3,4,5-trimethoxyphenyl)-4H-chromen-4-one (6r): Yellow solid, yield: 67.5%, m.p: 72-74 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.51 (s, 1H, CH=N), 7.77 (s, 1H, Ar-3-H), 7.74 (d, J = 3.7 Hz, 1H, Ar-6-H), 7.32 (d, J = 3.8 Hz, 1H, Ar-5-H), 7.29 (s, 2H, Myr-2',6'-H), 6.49 (s, 1H, Myr-6-H), 6.36 (s, 1H, Myr-8-H), 4.11 (t, J = 6.9 Hz, 2H, CH₂), 3.96 (s, 3H, Myr-5-OCH₃), 3.96 (s, 3H, Myr-7-OCH₃), 3.93 (s, 3H, Ar-2-OCH₃), 3.91 (s, 9H, Myr-3',5'-OCH₃ and Ar-4-OCH₃), 3.90 (s, 3H, Myr-4'-OCH₃), 3.37 (t, J = 7.0 Hz, 2H, CH₂), 2.45 (s, 3H, triazole-CH₃), 2.24 – 2.16 (m, 2H, CH₂), 1.95 – 1.83(m, 2H, CH₂); ¹³C NMR (100 MHz, CDCl₃) δ 173.93, 164.01, 162.87, 160.75, 158.81, 153.02, 152.85, 150.97, 145.83, 143.83, 140.37, 139.89, 129.86, 129.65, 129.15, 128.98, 128.69, 125.95, 109.38, 105.80, 95.85, 92.43, 70.58, 61.03, 56.37, 55.86, 30.31, 30.03, 21.83, 11.21; HRMS Calcd for C₃₆H₄₃O₁₀N₄S [M+H]⁺: 721.25379, Found: 721.25287.
3-(4-((4-((tert-butyl)benzylidene)amino)-5-methyl-4H-1,2,4-triazol-3-yl)thio)butoxy)-5,7-dimethoxy-2-(3,4,5-trimethoxyphenyl)-4H-chromen-4-one (6s): Yellow solid, yield: 45.0%, m.p: 89-91 °C; 1H NMR (400 MHz, DMSO-d_6) δ 8.80 (s, 1H, CH=N), 7.86 (d, $J = 8.4$ Hz, 2H, Ar-2,6-H), 7.57 (d, $J = 8.3$ Hz, 2H, Ar-3,5-H), 7.35 (s, 2H, Myr-2',6'-H), 6.79 (s, 1H, Myr-6-H), 6.46 (s, 1H, Myr-8-H), 3.94 (t, $J = 6.5$ Hz, 2H, CH$_2$), 3.90 (s, 3H, Myr-5-OCH$_3$), 3.88 (s, 6H, Myr-3',5'-OCH$_3$), 3.86 (s, 3H, Myr-7-OCH$_3$), 3.78 (s, 3H, Myr-4'-OCH$_3$), 3.14 (t, $J = 6.7$ Hz, 2H, CH$_2$), 2.43 (s, 3H, triazole-CH$_3$), 2.34 – 2.29 (m, 2H, CH$_2$), 1.78 – 1.73 (m, 2H, CH$_2$), 1.32 (s, 9H, Ar-4-CH$_3$); 13C NMR (100 MHz, DMSO-d_6) δ 172.62, 165.70, 164.17, 160.74, 158.58, 156.66, 153.14, 151.96, 140.34, 140.31, 139.93, 129.66, 129.23, 128.95, 126.04, 108.92, 106.15, 96.29, 93.51, 71.41, 60.64, 56.53, 56.43, 35.34, 32.39, 31.21, 29.12, 26.54, 22.52; HRMS Calcd for C$_{38}$H$_{45}$O$_8$N$_4$S [M+H]$^+$: 717.29526, Found: 717.29498.

3-((5-((4-(benzylideneamino)-5-methyl-4H-1,2,4-triazol-3-yl)thio)pentyl)oxy)-5,7-dimethoxy-2-(3,4,5-trimethoxyphenyl)-4H-chromen-4-one (6t): Brown solid, yield: 51.6%, m.p: 88-90 °C; 1H NMR (400 MHz, DMSO-d_6) δ 9.92 (s, 1H, CH=N), 7.93 (d, $J = 2.2$ Hz, 1H, Ar-6-H), 7.91 (d, $J = 1.5$ Hz, 1H, Ar-2-H), 7.63 (t, $J = 6.7$ Hz, 1H, Ar-4-H), 7.59 (t, $J = 6.5$ Hz, 1H, Ar-5-H), 7.55 (t, $J = 6.6$ Hz, 1H, Ar-3-H), 7.39 (s, 2H, Myr-2',6'-H), 6.85 (s, 1H, Myr-6-H), 6.49 (s, 1H, Myr-8-H), 4.08 (t, $J = 7.0$ Hz, 2H, CH$_2$), 3.94 (t, $J = 6.8$ Hz, 2H, CH$_2$), 3.90 (s, 3H, Myr-5-OCH$_3$), 3.88 (s, 6H, Myr-3',5'-OCH$_3$), 3.84 (s, 3H, Myr-7-OCH$_3$), 3.75 (s, 3H, Myr-4'-OCH$_3$), 2.38 (s, 3H, triazole-CH$_3$), 1.82 – 1.75 (m, 2H, CH$_2$), 1.73 – 1.66 (m, 2H, CH$_2$), 1.45 – 1.38 (m, 2H, CH$_2$); 13C NMR (100 MHz, DMSO-d_6) δ 172.70, 164.42, 164.22, 160.74, 160.54, 153.15, 152.00, 147.75, 140.55, 140.45, 139.83, 133.20, 132.56, 129.65, 129.11, 126.10, 108.92, 106.18, 96.40, 93.58, 71.91, 60.64, 56.53, 56.43, 35.34, 32.39, 31.21, 29.12, 26.54, 22.52; HRMS Calcd for C$_{35}$H$_{39}$O$_8$N$_4$S [M+H]$^+$: 675.24831, Found: 675.24719.

3-((5-((4-(benzyldeneamino)-5-methyl-4H-1,2,4-triazol-3-yl)pentyl)oxy)-5,7-dimethoxy-2-(3,4,5-trimethoxyphenyl)-4H-chromen-4-one (6u): Yellow solid, yield: 64.4%, m.p: 57-59 °C; 1H NMR (400 MHz, DMSO-d_6) δ 9.29 (s, 1H, CH=N), 7.93 (d, $J = 2.2$ Hz, 1H, Ar-6-H), 7.91 (d, $J = 1.5$ Hz, 1H, Ar-2-H), 7.63 (t, $J = 6.7$ Hz, 1H, Ar-4-H), 7.59 (t, $J = 6.5$ Hz, 1H, Ar-5-H), 7.55 (t, $J = 6.6$ Hz, 1H, Ar-3-H), 7.39 (s, 2H, Myr-2',6'-H), 6.85 (s, 1H, Myr-6-H), 6.49 (s, 1H, Myr-8-H), 4.08 (t, $J = 7.0$ Hz, 2H, CH$_2$), 3.94 (t, $J = 6.8$ Hz, 2H, CH$_2$), 3.90 (s, 3H, Myr-5-OCH$_3$), 3.88 (s, 6H, Myr-3',5'-OCH$_3$), 3.84 (s, 3H, Myr-7-OCH$_3$), 3.75 (s, 3H, Myr-4'-OCH$_3$), 2.38 (s, 3H, triazole-CH$_3$), 1.82 – 1.75 (m, 2H, CH$_2$), 1.73 – 1.66 (m, 2H, CH$_2$), 1.45 – 1.38 (m, 2H, CH$_2$); 13C NMR (100 MHz, DMSO-d_6) δ 172.70, 164.42, 164.22, 160.74, 160.54, 153.15, 152.00, 147.75, 140.55, 140.45, 139.83, 133.20, 132.56, 129.65, 129.11, 126.10, 108.92, 106.18, 96.40, 93.58, 71.91, 60.64, 56.53, 56.43, 29.65, 27.62, 27.60, 22.84, 11.09; HRMS Calcd for C$_{38}$H$_{45}$O$_8$N$_4$S [M+H]$^+$: 717.29526, Found: 717.29498.
DMSO-d_6 δ 8.79 (s, 1H, CH=N), 7.81 (d, $J = 2.0$ Hz, 2H, Ar-2,6-H), 7.38 (d, $J = 1.6$ Hz, 2H, Ar-3,5-H), 7.36 (s, 2H, Myr-2',6'-H), 6.82 (s, 1H, Myr-6-H), 6.48 (s, 1H, Myr-8-H), 3.95 (t, $J = 6.8$ Hz, 2H, CH$_2$), 3.90 (s, 3H, Myr-5-OCH$_3$), 3.86 (s, 6H, Myr-3',5'-OCH$_3$), 3.84 (s, 3H, Myr-7-OCH$_3$), 3.75 (s, 3H, Myr-4'-OCH$_3$), 3.60 (t, $J = 7.1$ Hz, 2H, CH$_2$), 2.42 (s, 3H, triazole-CH$_3$), 2.38 (s, 3H, Ar-4-CH$_3$), 1.67 – 1.61 (m, 4H, 2×CH$_2$), 1.47 – 1.42 (m, 2H, CH$_2$); 13C NMR (100 MHz, DMSO-d_6) δ 172.64, 165.78, 164.17, 160.73, 158.59, 153.12, 151.93, 149.46, 146.60, 143.85, 140.43, 139.83, 130.81, 129.33, 126.09, 108.91, 106.16, 93.32, 93.52, 71.83, 60.56, 56.47, 32.75, 29.11, 24.95, 21.72, 11.37; HRMS Calcd for C$_{36}$H$_{41}$O$_8$N$_4$S [M+H]$^+$: 689.26396, Found: 689.26233.

3-((5-((4-methoxybenzylidene)amino)-5-methyl-4H-1,2,4-triazol-3-yl)thio)pentyloxy)-5,7-dimethoxy-2-(3,4,5-trimethoxyphenyl)-4H-chromen-4-one (6v): Yellow solid, yield: 66.8%, m.p: 54-56 °C; 1H NMR (400 MHz, DMSO-d_6) δ 8.74 (s, 1H, CH=N), 7.88 (d, $J = 8.8$ Hz, 2H, Ar-2,6-H), 7.36 (s, 2H, Myr-2',6'-H), 7.10 (d, $J = 8.8$ Hz, 2H, Ar-3,5-H), 6.84 (s, 1H, Myr-6-H), 6.49 (s, 1H, Myr-8-H), 3.99 (t, $J = 7.2$ Hz, 2H, CH$_2$), 3.90 (s, 3H, Myr-5-OCH$_3$), 3.85 (s, 6H, Myr-3',5'-OCH$_3$), 3.84 (s, 6H, Myr-7-OCH$_3$ and Ar-4-OCH$_3$), 3.74 (s, 3H, Myr-4'-OCH$_3$), 3.05 (t, $J = 7.1$ Hz, 2H, CH$_2$), 2.39 (s, 3H, triazole-CH$_3$), 1.64 – 1.56 (m, 4H, 2×CH$_2$), 1.46 – 1.41 (m, 2H, CH$_2$); 13C NMR (100 MHz, DMSO-d_6) δ 172.67, 166.00, 164.21, 163.57, 160.75, 158.63, 153.14, 152.01, 149.43, 146.46, 140.43, 139.84, 131.40, 126.10, 124.76, 115.16, 108.92, 106.20, 96.38, 93.57, 71.88, 60.66, 56.56, 56.04, 32.73, 29.59, 29.11, 24.93, 11.30; HRMS Calcd for C$_{36}$H$_{41}$O$_9$N$_4$S [M+H]$^+$: 705.25888, Found: 705.25720.

3-((5-((4-(3,4-dimethoxybenzylidene)amino)-5-methyl-4H-1,2,4-triazol-3-yl)thio)pentyloxy)-5,7-dimethoxy-2-(3,4,5-trimethoxyphenyl)-4H-chromen-4-one (6w): Yellow solid, yield: 69.7%, m.p: 86-88 °C; 1H NMR (400 MHz, DMSO-d_6) δ 8.71 (s, 1H, CH=N), 7.50 (d, $J = 7.7$ Hz, 1H, Ar-6-H), 7.47 (s, 1H, Ar-2-H), 7.36 (s, 2H, Myr-2',6'-H), 7.12 (d, $J = 8.3$ Hz, 1H, Ar-5-H), 6.81 (s, 1H, Myr-6-H), 6.47 (s, 1H, Myr-8-H), 3.94 (t, $J = 7.6$ Hz, 2H, CH$_2$), 3.90 (s, 3H, Myr-5-OCH$_3$), 3.89 (s, 3H, Ar-3-OCH$_3$), 3.86 (s, 9H, Myr-3',5'-OCH$_3$ and Ar-4-OCH$_3$), 3.83 (s, 3H, Myr-7-OCH$_3$), 3.75
(s, 3H, Myr-4′-OCH₃), 3.08 (t, J = 7.1 Hz, 2H, CH₂), 2.41 (s, 3H, triazole-CH₃), 1.68 – 1.62 (m, 4H, 2×CH₂), 1.49 – 1.43 (m, 2H, CH₂); ¹³C NMR (100 MHz, DMSO-d₆) δ 172.64, 166.14, 164.16, 160.72, 158.59, 153.55, 153.12, 151.92, 149.60, 149.43, 146.45, 140.42, 139.83, 126.09, 125.18, 124.78, 111.97, 109.90, 108.91, 106.16, 96.31, 93.51, 71.83, 60.64, 56.53, 55.97, 32.65, 29.62, 29.14, 24.98, 11.28; HRMS Calcd for C₃₇H₄₃O₁₀N₄S [M+H]+: 735.26944, Found: 735.26782.
1H NMR, 13C NMR, 19F NMR and HRMS spectrum of the title compounds

Figure S1. 1H NMR spectrum of compound 6a

Figure S2. 13C NMR spectrum of compound 6a
Figure S3. HRMS spectrum of compound 6a

Figure S4. 1H NMR spectrum of compound 6b
Figure S5. 13C NMR spectrum of compound $6b$

Figure S6. HRMS spectrum of compound $6b$
Figure S7. \(^1\)H NMR spectrum of compound 6c

Figure S8. \(^{13}\)C NMR spectrum of compound 6c
Figure S9. HRMS spectrum of compound 6c

Figure S10. 1H NMR spectrum of compound 6d
Figure S11. 13C NMR spectrum of compound 6d

Figure S12. HRMS spectrum of compound 6d
Figure S13. 1H NMR spectrum of compound 6e
Figure S14. 13C NMR spectrum of compound 6e

Figure S15. HRMS spectrum of compound 6e

Figure S16. 1H NMR spectrum of compound 6f
Figure S17. 13C NMR spectrum of compound 6f

Figure S18. HRMS spectrum of compound 6f
Figure S19. 1H NMR spectrum of compound 6g

Figure S20. 13C NMR spectrum of compound 6g
Figure S21. HRMS spectrum of compound 6g

Figure S22. 1H NMR spectrum of compound 6h
Figure S23. 13C NMR spectrum of compound 6h
Figure S24. HRMS spectrum of compound $6h$

![HRMS spectrum of compound 6h](image)

Figure S25. 1H NMR spectrum of compound $6i$

![1H NMR spectrum of compound 6i](image)
Figure S26. 13C NMR spectrum of compound 6i

Figure S27. HRMS spectrum of compound 6i

Figure S28. 1H NMR spectrum of compound 6j
Figure S29. 13C NMR spectrum of compound 6j
Figure S30. HRMS spectrum of compound 6j

Figure S31. ^1H NMR spectrum of compound 6k
Figure S32. 13C NMR spectrum of compound 6k

Figure S33. HRMS spectrum of compound 6k
Figure S34. 1H NMR spectrum of compound 6l

Figure S35. 13C NMR spectrum of compound 6l
Figure S36. HRMS spectrum of compound 6l

Figure S37. 1H NMR spectrum of compound 6m
Figure S38. 13C NMR spectrum of compound 6m

Figure S39. HRMS spectrum of compound 6m
Figure S40. 1H NMR spectrum of compound 6n

Figure S41. 13C NMR spectrum of compound 6n
Figure S42. HRMS spectrum of compound 6n

Figure S43. 1H NMR spectrum of compound 6o
Figure S44. 13C NMR spectrum of compound 6o

Figure S45. HRMS spectrum of compound 6o
Figure S46. 1H NMR spectrum of compound 6p

Figure S47. 13C NMR spectrum of compound 6p
Figure S48. HRMS spectrum of compound 6p

Figure S49. 1H NMR spectrum of compound 6q
Figure S50. 1C NMR spectrum of compound 6q

Figure S51. HRMS spectrum of compound 6q

Figure S52. 1H NMR spectrum of compound 6r
Figure S53. 13C NMR spectrum of compound 6r
Figure S54. HRMS spectrum of compound 6r

Figure S55. 1H NMR spectrum of compound 6s
Figure S56. 13C NMR spectrum of compound 6s

Figure S57. HRMS spectrum of compound 6s

Figure S58. 1H NMR spectrum of compound 6t
Figure S59. 13C NMR spectrum of compound 6t

Figure S60. HRMS spectrum of compound 6t
Figure S61. 1H NMR spectrum of compound 6u

Figure S62. 13C NMR spectrum of compound 6u
Figure S63. HRMS spectrum of compound 6u

Figure S64. 1H NMR spectrum of compound 6v
Figure S65. 13C NMR spectrum of compound 6v
Figure S66. HRMS spectrum of compound 6v

Figure S67. 1H NMR spectrum of compound 6w
Figure S68. 13C NMR spectrum of compound 6w

Figure S69. HRMS spectrum of compound 6w
