An interest rates cluster analysis

T. Di Matteoa,*, T. Astea, R. N. Mantegnab

aApplied Mathematics, Research School of Physical Sciences, Australian National University, 0200 Canberra, Australia.

bINFM-Dipartimento di Fisica e Tecnologie Relative, Università di Palermo - viale delle Scienze, 90128 Palermo, Italy.

Abstract

An empirical analysis of interest rates in money and capital markets is performed. We investigate a set of 34 different weekly interest rate time series during a time period of 16 years between 1982 and 1997. Our study is focused on the collective behavior of the stochastic fluctuations of these time-series which is investigated by using a clustering linkage procedure. Without any a priori assumption, we individuate a meaningful separation in 6 main clusters organized in a hierarchical structure.

Key words: Interest Rates, Data Clustering, Correlations, Econophysics.

1 Introduction

Since long time financial data have been widely studied by economists, mathematicians and, more recently, by physicists [1,2,3]. The variations of these financial time series can be seen as stochastic processes where a set of financial quantities is varying in time as consequence of underlying economic changes. The present availability of enormous sets of financial data allows to get increasingly important insights on the complex behavior of these systems starting from empirical studies. These investigations are leading to more and more accurate results on risk assessment and search for market imperfections. One of the important points in these analyses is to individuate similarities and specificities among the analyzed financial time series. This search has been widely exploited for stocks price changes whereas interest rates have been less investigated [4,5,6,7,8,9]. For several economic reasons, interest rates

* Corresponding author; Tel: +61 2 61250166, fax: +61 2 61250732.

Email address: tiziana.dimatteo@anu.edu.au (T. Di Matteo).
Table 1
Interest rates and standard deviations in the time period 1982-1997.

i	f_i	σ_i									
1	FED	0.30935	10	BA6	0.17225	19	TC5	0.15715	28	TC10P	0.13608
2	SLB	0.13001	11	CD1	0.21291	20	TC7Y	0.15363	29	ED1M	0.2166
3	CP1	0.22257	12	CD3	0.1901	21	TC10Y	0.14863	30	ED3M	0.19926
4	CP3	0.19011	13	CD6	0.19299	22	TC30Y	0.13288	31	ED6M	0.20104
5	CP6	0.17951	14	TC3M	0.1925	23	TBA3M	0.21838	32	AAA	0.10695
6	FP1	0.21418	15	TC6M	0.18271	24	TBA6M	0.20186	33	BAA	0.09411
7	FP3	0.15407	16	TC1Y	0.16993	25	TBS3M	0.17672	34	CM	0.11556
8	FP6	0.13842	17	TC2Y	0.16347	26	TBS6M	0.16262			
9	BA3	0.17838	18	TC3Y	0.16227	27	TBS1Y	0.14789			

and bonds have very similar statistical behavior in time or, in other words, they are all highly correlated. Their multivariate dynamics has been studied with a correlation-based clustering procedure in a set of US treasury securities where an underlying hierarchical structure has been detected [7]. Here we investigated a partially different and less homogeneous set to evaluate the degree of hierarchal organization among different time series in a diversified group of bonds.

2 An empirical analysis on interest rates

We investigate weekly data for 34 selected interest rate time series recorded in the Federal Reserve (FR) Statistical Release database [10]. In the following we will indicate these time series with the symbol $f_i(t)$, where t is the current date and i is a number which labels the different time series (see Tab.1). The different interest rate time series analyzed are: The Federal funds rate (FED); State & local bonds (SLB); Commercial Paper (CP); Finance Paper placed directly (FP); Bankers acceptances (BA); The rate on certificates of deposit (CD); (Note that in these cases the numbers 1, 3 and 6 stand for maturity dates of 1, 3 and 6 months.); The yields on Treasury securities at ‘constant maturity’ (TC) (in particular the TC at 3 and 6 months (TC3M, TC6M) and 1, 2, 3, 5, 7, 10, and 30 years (TC1Y-TC30Y) maturities; The Treasury bill rates (TBA) with maturities of 3 and 6 months (TBA3M, TBA6M, TBS3M, TBS6M) and 1 year (TBS1Y); The Treasury long-term bond yield (TC10P); The Eurodollar interbank interest rates (ED) with maturity dates 1 month, 3 months and 6 months (ED1M, ED3M, ED6M), respectively; The Corporate bonds Moody’s seasoned rates (AAA, BAA) and The Conventional mortgages.
3 Fluctuations

The interest rate time series, $f_i(t)$ v.s. t are shown in Fig.1, where their average $\bar{f}(t) = \sum_i f_i(t)/34$ is also shown. It is evident from Fig.1 that all these data follow very similar trends in time and they lay in a narrow band around $\bar{f}(t)$. The interest rate fluctuations are analyzed by studying the changes in their values from one week to the following week: $\Delta f_i(t) = f_i(t + \Delta t) - f_i(t)$ where $\Delta t = 1$ week. The quantities $\Delta f_i(t)$ show stochastic fluctuations around the zero with similar behaviors for all the interest rates. These fluctuations are analyzed in the ‘tails’ region by computing the cumulative distributions $\Psi_{\pm}(x)$ ($x > 0$), a quantity which tells us the probability to find a weekly change which is larger than x (+), or smaller than $-x$ (−). It is defined as: $\Psi_{\pm}(x) = 1 - \int_{-\infty}^{\pm x} p(\xi) d\xi$ with $p(\xi)$ being the probability density distributions of $\Delta f_i(t)$ (see Fig.1 (Right)). These distributions are highly leptokurtic and are characterized by non-Gaussian profiles. The standard deviation of $\Delta f_i(t)$ is defined as: $\sigma_i = \sqrt{\frac{1}{T_2-T_1} \sum_{t=T_1}^{T_2} (\Delta f_i(t) - \langle \Delta f_i \rangle)^2}$ where T_1 and T_2 delimit the range of t, and $\langle \Delta f \rangle$ is the average over time of $\Delta f_i(t)$ (which tends to zero for $T_2 - T_1 \to \infty$). We compute the standard deviations of Δf_i for each interest rate series for the whole period 1982-1997 (see Tab.1) and for each year (see Fig.2 (Left)). We can observe an overall decreasing trend of σ_i in the time period 1982-1997 with similar fluctuations for all the interest rates series except for FED.
4 Cluster analysis and discussion

To understand the geometrical and topological structure of the correlation coefficients, we use the metric distance $d_{i,j}$ between the series Δf_i and Δf_j which is defined in [11] and used for financial time series in [12]:

$$d_{i,j} = \sqrt{2(1 - c_{i,j})}$$

with $c_{i,j}$ the correlations among the i, j interest rates weekly changes:

$$c_{i,j} = \frac{\langle \Delta f_i \Delta f_j \rangle - \langle \Delta f_i \rangle \langle \Delta f_j \rangle}{\sigma_i \sigma_j},$$

(1)

where the symbol $\langle ... \rangle$ denotes a time average performed over the investigated time period. The correlation coefficients are computed between all the pairs of indices labeling our interest series. Therefore we have a 34×34 symmetric matrix with $c_{i,i} = 1$ on the diagonal. By definition, $c_{i,j}$ is equal to zero if the interest rates series i and j are totally uncorrelated, whereas $c_{i,j} = \pm 1$ in the case of perfect correlation/anti-correlation. Therefore $d_{i,j}$ can vary between 0 to 2. We determine an ultra-metric distance $\hat{d}_{i,j}$ which satisfies the first two properties of the metric distance and replaces the triangular inequality with the stronger condition: $\hat{d}_{i,j} \leq \max[d_{i,k}, d_{k,j}]$, called ‘ultra-metric inequality’.

Once the metric distance $d_{i,j}$ is used, one can introduce several ultra-metric distances. Mantegna et. al have used the ‘subdominant ultra-metric’, obtained by calculating the minimum spanning tree connecting several financial time series [13,14,15,16]. Here we consider a different ultra-metric space that emphasizes the cluster-structure of the data. In our case, a “cluster” is a set of elements with relative distances $d_{i,j}$ which are smaller than a given threshold distance δ, whereas disjoined clusters have some elements which are at distances larger than δ. We define the ultra-metric distance $\hat{d}_{i,j}$ between two distinct elements i, j belonging to two different clusters as the maximum metric distance between all the couples of elements in the two clusters [8]. The link-

Fig. 2. Left) Standard deviations of $\Delta f_i(t)$ for all the rates analyzed ($i = 1..34$) as function of the years between 1982-1997. Right) Hierarchical tree obtained from the correlation coefficients of the 34 interest rates fluctuations time series $\Delta f_i(t)$ in the time period 1982-1997. (On the x-axis are reported the i values and on the y-axis the ultra-metric distances.)
Fig. 3. Left) Ultra-metric distances δ_n and δ_p at which the clustering process begins and ends, as function of the years between 1982-1997. Right) Cluster-structure persistence in the period 1982-1997. In the first column the interest rates are indicated. In the second column, the grey tones distinguish the different clusters as resulting from the analysis over the whole time period. The other columns refer to the cluster analysis over the four selected time periods, namely 82-85, 86-89, 90-93, 94-97. The numbers inside each cluster refer to the ultra-metric distances at which each cluster starts and ends its clusterization.

The same analysis performed on each year, gives comparable δ_n and δ_p values which are plotted in Fig.3 (Left). Let now consider the intermediate region by analyzing the cluster evolution at the threshold distance $\bar{\delta} = 1/\sqrt{2} = 0.707...$, which is half the way between completely uncorrelated series ($c_{i,j} = 0$ and $d_{i,j} = \sqrt{2}$) and completely correlated ones ($c_{i,j} = 1$ and $d_{i,j} = 0$). At this threshold distance, the cluster analysis on the whole data set (1982-1997) leads to 6 clusters and 3 isolated elements, as one can see from Fig.2 (Right).

The corresponding interest rates associated with these clusters are summarized in first column (1982-1997) of Fig.3 (Right) where the ultra-metric distances at which the nucleation process starts and ends for each cluster are also indicated. As one can see, the empirical analysis allow us to distinguish several different clusters that gather together meaningful quantities:

- all the interest rates with maturities equal to 1 months;
- all the interest rates with maturities 3 and 6 months with distinctions for the Treasury securities at ‘constant maturity’ (TC), Treasury bill rates (TBA) and Treasury bill secondary market rates (TBS);
- all the interest rates with maturities between 1 and 3 years;
- all the interest rates with maturities larger than 3 years.

Fig.4 reports the plot for the interest rates time series $f_i(t)$ grouped into the different sets retrieved from the cluster analysis described above. For some of the series the data-collapse is impressive, indicating that the correlations inside the clusters are strong in any part of the analyzed period. It is therefore interesting to investigate whether a cluster structure, similar to the one obtained for the period 1982-1997, could be retrieved from an analysis on shorter periods. This is of course a delicate point since the fragmentation of the data sets will increase the fluctuations due to the noise. We choose to divide the whole period 1982-1997 in four smaller periods of 4 years. The results are reported in Fig.3 (Right) where it is evident how the cluster structure is mostly conserved (and partially modified) in this 4-years period analysis. In conclusion, from the analysis of different kinds of interest rates in money and capital markets, referring to government, private, industries securities and commitments, we have shown how the used clustering linkage procedure is useful to detect differences and analogies among these tangled correlated data.

References

[1] R. N. Mantegna and H. E. Stanley, “An Introduction to Econophysics”, Cambridge University Press (Cambridge, 2000).

[2] J. P. Bouchaud, and M. Potters, “Theory of Financial Risks”, Cambridge University Press (Cambridge, 2000).

[3] M. M. Dacorogna, R. Gencay, U. A. Muller, R. Olsen, O. V. Pictet, “An Introduction to High-Frequency Finance”, Academic Press (2001).

[4] A. R. Pagan, A. D. Hall, and V. Martin, “Modeling the Term Structure”, HandBook of Statistics 14, Elsevier Science B. V. (1997).

[5] R. Rebonato, “Interest-rate option models”, John Wiley & Sons (New York 1998).

[6] J. P. Bouchaud, N. Sagna, R. Cont, N. EL-Karoui and M. Potters, cond-mat/9712164 (1997), Applied Mathematical Finance 6 (1999) 209-232.

[7] M. Bernaschi, L. Grilli and D. Vergni, Physica A 308 (2002) 381-390.

[8] T. Di Matteo and T. Aste, J. Theoret. Appl. Finance 5 (2002) 122-127, cond-mat(0101009).
Fig. 4. Interest rates behaviors in the period 1982-1997. The figures refer to the data sets gathered into the clusters obtained from the linkage procedure. (a) FED, SLB and CM; (b) BAA, AAA, TC5Y, TC7Y, TC10Y, TC30Y, TC10P; (c) CP3, CP6, FP3, FP6, BA3, BA6, CD3, CD6, ED3M, ED6M; (d) TC1Y, TC2Y, TC3Y, TBS1Y; (e) TC3M, TC6M, TBA3M, TBA6M, TBS3M, TBS6M; (f) CP1, FP1, CD1, ED1M.

[9] T. Alderweireld, J. Nuyts, *Physica A* **331** (2004) 602-616.

[10] http://www.federalreserve.gov/releases/h15/data.htm

[11] J. C. Gower, *Biometrika* **53**, (1966) 325-338.

[12] R. N. Mantegna, *Eur. Phys. J. B* **25** (1999) 193-197.

[13] G. Bonanno, N. Vandewalle and R. N. Mantegna, *Phys. Rev. E* **62** (2000) R7615-R7618.

[14] G. Bonanno, F. Lillo and R.N. Mantegna, *Quantitative Finance* **1** (2001) 96-104.

[15] S. Miccichè, G. Bonanno, F. Lillo and R. N. Mantegna, *Physica A* **324** (2003) 66-73.

[16] G. Bonanno, G. Caldarelli, F. Lillo and R.N. Mantegna, Topology of correlation based minimal spanning trees in real and model markets, *Phys. Rev. E* **68** (2003) 046130.