Band-structure and anomalous contributions to the Hall effect of YbRh$_2$Si$_2$

S. Friedemanna,*, N. Oeschlera, C. Krellnera, C. Geibela, S. Wirtha, F. Steglicha, S. Paschenb, S. MaQuilonc, Z. Fiskc

aMax Planck Institute for Chemical Physics of Solids, Noethnitzer Strasse 40, 01187 Dresden, Germany
bInstitute of Solid State Physics, TU Vienna, Wiedner Hauptstrasse 8-10, 1040 Vienna, Austria
cDepartment of Physics and Astronomy, University of California Irvine, Irvine, CA 92698-4574, USA

Abstract

We report on Hall effect measurements on YbRh$_2$Si$_2$ single crystals with different residual resistivity and on LuRh$_2$Si$_2$ single crystal. The temperature dependence of the linear-response Hall coefficient of YbRh$_2$Si$_2$ is described by the anomalous Hall effect and the normal contribution incorporating multi-band effects. Sample dependencies at low T are found and explained by slight changes in the charge-carrier concentrations.

$^\copyright$ 2007 Elsevier B.V. All rights reserved.

PACS: 71.27.+a; 72.20.My; 75.30.Mb; 73.43.Nq

Keywords: YbRh$_2$Si$_2$; LuRh$_2$Si$_2$; Hall effect; Heavy fermion; Non-Fermi liquid; Quantum critical point

YbRh$_2$Si$_2$ is a stoichiometric heavy fermion (HF) compound showing non-Fermi-liquid (NFL) properties in a wide temperature range above the antiferromagnetic transition at $T_N = 70$ mK [1]. T_N is found to be continuously suppressed with small magnetic fields to $T = 0$ accessing the quantum critical point (QCP) [2]. The QCP in YbRh$_2$Si$_2$ is best described by the local scenario [3]. This is mainly supported by earlier Hall effect studies [4] in which the Hall effect of YbRh$_2$Si$_2$ was measured while tuning the material through the QCP. Here, the Hall coefficient R_H as a mirror of the Fermi surface volume was found to show a crossover which sharpens to a discontinuous jump if extrapolating $T \to 0$. It was concluded that the Fermi surface volume abruptly changes at the QCP. This crossover was followed up to 500 mK introducing a new energy scale which is confirmed by other transport properties as well as thermodynamic quantities [5]. In order to understand differences found in $R_H(T)$ of newer samples we extended the measurements to samples of varying quality including the sample used in Ref. [4] and to the non-magnetic analog LuRh$_2$Si$_2$.

Single crystals of YbRh$_2$Si$_2$ and LuRh$_2$Si$_2$ were synthesized with an In flux-growth technique as described earlier [1]. All samples were polished to thin plates and prescreened via $\rho(T,B)$ to ensure In free samples. Samples of thickness t between 30 and 80 μm were contacted via spot welded gold wires. The current I was applied in the crystallographic ab-plane and the magnetic field B along the crystallographic c-axis of the samples inducing the Hall voltage V_{xy} perpendicular to I and B (see inset of Fig. 1). The Hall resistivity was derived from the asymmetric component of the field-reversed Hall voltage,

$$R_H(B) = \frac{t[2V_{xy}(+B) - V_{xy}(-B)]}{2I}.$$

The comparison of the symmetric component with the transversal magnetoresistivity measured simultaneously was used as a consistency check. R_H was calculated in the low-field limit from the initial slope of the Hall resistivity, $R_H = (\delta \rho_{1H}(B)/\delta B)_{B=0}$. Measurements down to 2 K were performed in a commercial PPMS, measurements between 17 mK and 6 K in a dilution refrigerator newly set up for these experiments.
and of LuRh$_2$Si$_2$. The solid (dashed) line are fits of Eq. (1) to the data of
including the very same sample used in Refs. [4,6]
setup. Furthermore, the Hall coefficient of LuRh$_2$Si$_2$ is
(sample 1: $RRR =$
70) which was remeasured in the new
setup. Therefore, we
associate this maximum with the NFL properties of
YbRh$_2$Si$_2$.

The characteristics of LuRh$_2$Si$_2$ are typical of a non-
magnetic intermetallic system. The resistivity ρ is linear in
T above ≈ 100 K with ρ_{300} (K) $= 20 \mu\Omega$ cm. The magnetic
resistance is quadratic for small fields. All these properties
are consistent with a simple metallic system.

In LuRh$_2$Si$_2$ $R_H(T)$ is positive at all T and constant
below 20 K and above 100 K. Between these temperatures the
Hall coefficient changes its value by a factor of 1.6. Band-structure calculations for LuRh$_2$Si$_2$ [7] reveal two
hole-like bands at the Fermi energy. Therefore, we
approximate the observed T dependence by a simple two-
band model in the low-field limit [8] where $R_H(T)$ is the
mobility weighted sum of two bands of positive charge
carriers. The data are well described assuming one band
dominating at high temperatures due to its high mobility
arising from lower phonon scattering rates and the other
band dominating the low temperature Hall coefficient by
its enhanced mobility due to a lower scattering rate at
residual scatterers. The crossover temperature between
these limits is determined by the Debye temperature known
from specific heat measurements. Surprisingly, very similar
behavior of $R_H(T)$ has been observed in the non-magnetic
La analogs of the Ce-115’s [9].

A negative sample-independent $R_H(T)$ is found for all
YbRh$_2$Si$_2$ samples at high temperatures, followed by a
minimum at $T \approx 100$ K and a sign change at $T \approx 20$ K.
However, below 25 K sample dependencies are obvious.

$R_H(T)$ exhibits a maximum at ≈ 1 K for all samples but with
different absolute values and at slightly different
 temperatures. At lowest temperatures $R_H(T)$ saturates at
different values R_H^0. Furthermore, for sample 2 of highest
quality, a plateau between 7 and 13 K is found at a value
quite close to R_H^0. For the other samples a shoulder is
observed in this temperature range roughly pointing
 towards R_H^0 for each sample.

The Hall effect of HF compounds is usually the sum of a
normal contribution, $R_H^0(T)$, reflecting the band-structure
and an anomalous contribution due to skew scattering of
the conduction electrons on the orbital j moment,
$R_H(T) = C \rho(T) / \chi(T)$, with χ the susceptibility and C a
constant [10]:

$$R_H(T) = R_H^0(T) + R_H^I(T) = R_H^0(T) + C \rho(T) / \chi(T).$$

(1)

Previously, the Hall effect of sample 1 was described by
Eq. (1) with the normal contribution being constant and
equal to the low-T saturation value, $R_H^0(T) = R_H^0$ [6].

However, for samples 2 and 3 this does not hold true.
Fits of Eq. (1) with constant R_H^0 to the high temperature
data yield similar normal contributions which thus differ
from R_H^0 (cf. solid line in Fig. 1). If we incorporate the
multi-band effects observed in LuRh$_2$Si$_2$ we can understand
$R_H(T)$ of these samples down to lowest T. The step
observed for LuRh$_2$Si$_2$ is also present in YbRh$_2$Si$_2$.
Particularly, sample 2 shows the same slope of
$R_H(T)$ for $7 K < T \leq 100$ K, even the step height is identical (although
shifted by -5×10^{-10} m3 C$^{-1}$). Thus, $R_H(T)$ may be
described by Eq. (1) if we take into account the
T-dependent normal Hall coefficient seen in LuRh$_2$Si$_2$ and the constant C being lowered below the coherence
temperature as often found in HF [10]. Furthermore, we are
now able to account for the sample dependencies within
the two-band model used for LuRh$_2$Si$_2$. Here, the low-T
value R_H^0 strongly depends on the charge-carrier concen-
tration n of the low-T dominating band. Thus, the different
R_H^0 are reasonably explained by small deviations of n suggesting the normal contribution to be dominant
below 100 K.

The dominance of $R_H^0(T)$ at low T is further supported
by the absence of any scaling between ρ_0 and R_H^0 expected
for the anomalous Hall effect in the $T = 0$ limit where
$R_H^a(T = 0) = C \rho_0 / \chi(T = 0)$ with $\chi(T = 0)$ usually much
smaller than ρ_0. The slight variation of n would also suggest
a scaling of ρ_0 and R_H^0 but this might be hidden by a change of the impurity concentration for different samples.

According to this analysis $R_H(T)$ is expected to be
almost temperature independent below 10 K. By contrast
the data show a pronounced maximum around 1 K
superposed to the underlying constant contribution. We
associate this maximum with the NFL properties of
YbRh$_2$Si$_2$.

To conclude, the Hall effect of YbRh$_2$Si$_2$ is described by
contributions of the anomalous and the normal Hall effect reflecting the band structure. The band-structure
effect is deduced by analyzing the Hall effect of LuRh$_2$Si$_2$

in terms of a two-band model. Below 100 K, the normal

Hall effect dominates and is superposed by a broad

maximum at $T \approx 1$ K assigned to the NFL properties. Sample dependencies are explained in the two-band model by small deviations of the charge-carrier concentration.

The authors would like to thank P. Gegenwart, Q. Si, T. Westerkamp and G. Wigger for fruitful discussions. This work was partially supported by NSF-DMR-0710492.

References

[1] O. Trovarelli, et al., Phys. Rev. Lett. 85 (2000) 626.
[2] P. Gegenwart, et al., Phys. Rev. Lett. 89 (2002) 056402.
[3] Q. Si, et al., Nature 413 (2001) 804.
[4] S. Paschen, et al., Nature 432 (2004) 881.
[5] P. Gegenwart, et al., Science 315 (2007) 969.
[6] S. Paschen, et al., Physica B 359 (2005) 44.
[7] G. Knebel, et al., J. Phys. Soc. Japan 75 (2006) 114709.
[8] R.G. Chambers, Phys. Soc. London, Sect. A 65 (1952) 903.
[9] M.F. Hundley, et al., Phys. Rev. B 70 (2004) 035113.
[10] A. Fert, P.M. Levy, Phys. Rev. B 36 (1987) 1907.