A Language Model-based Generative Classifier for Sentence-level Discourse Parsing

Ying Zhang, Hidetaka Kamigaito and Manabu Okumura
Tokyo Institute of Technology
{zhang,kamigaito,oku}@lr.pi.titech.ac.jp

Abstract
Discourse segmentation and sentence-level discourse parsing play important roles for various NLP tasks to consider textual coherence. Despite recent achievements in both tasks, there is still room for improvement due to the scarcity of labeled data. To solve the problem, we propose a language model-based generative classifier (LMGC) for using more information from labels by treating the labels as an input while enhancing label representations by embedding descriptions for each label. Moreover, since this enables LMGC to make ready the representations for labels, unseen in the pre-training step, we can effectively use a pre-trained language model in LMGC. Experimental results on the RST-DT dataset show that our LMGC achieved the state-of-the-art F_1 score of 96.72 in discourse segmentation. It further achieved the state-of-the-art relation F_1 scores of 84.69 with gold EDU boundaries and 81.18 with automatically segmented boundaries, respectively, in sentence-level discourse parsing.

1 Introduction

Textual coherence is essential for writing a natural language text that is comprehensible to readers. To recognize the coherent structure of a natural language text, Rhetorical Structure Theory (RST) is applied to describe an internal discourse structure for the text as a constituent tree (Mann and Thompson, 1988). A discourse tree in RST consists of elementary discourse units (EDUs), spans that describe recursive connections between EDUs, and nuclearity and relation labels that describe relationships for each connection.

Figure 1 (a) shows an example RST discourse tree. A span including one or more EDUs is a node of the tree. Given two adjacent non-overlapping spans, their nuclearity can be either nucleus or satellite, denoted by N and S, where the nucleus represents a more salient or essential piece of information than the satellite. Furthermore, a relation label, such as Attribution and Elaboration, is used to describe the relation between the given spans (Mann and Thompson, 1988; Carlson and Marcu, 2001). To build such trees, RST parsing consists of discourse segmentation, a task to detect EDU boundaries in a given text, and discourse parsing, a task to link spans for detected EDUs.

In this paper, we focus on discourse segmentation and sentence-level discourse parsing, which are indispensable in RST parsing (Joty et al., 2013; Feng and Hirst, 2014a; Joty et al., 2015; Wang et al., 2017; Kobayashi et al., 2020) and are applicable to many downstream tasks, such as machine translation (Guzmán et al., 2014; Joty et al., 2017) and sentence compression (Sporleder and Lapata, 2005).

In discourse segmentation, Carlson et al. (2001) proposed a method for using lexical information and syntactic parsing results. Many researchers (Fisher and Roark, 2007; Xuan Bach et al., 2012; Feng and Hirst, 2014b) utilized these clues as features in a classifier although automatic parsing errors degraded segmentation performance. To avoid this problem, Wang et al. (2018b) used BiLSTM-CRF (Huang et al., 2015) to handle an input without these clues in an end-to-end manner. Lin et al. (2019) jointly performed discourse segmentation and sentence-level discourse parsing in their pointer-network-based model. They also intro-
duced multi-task learning for both tasks and reported the state-of-the-art results for discourse segmentation and sentence-level discourse parsing in terms of F_1 scores. Despite these achievements, there is still room for improvement for both tasks due to the scarcity of labeled data. It is important to extract more potential information from the current dataset for further performance improvement.

Under this motivation, in this research, we propose a language model-based generative classifier (LMGC) as a reranker for both discourse segmentation and sentence-level discourse parsing. LMGC can jointly predict text and label probabilities by treating a text and labels as a single sequence, like Figure 1 (b). Therefore, different from conventional methods, LMGC can use more information from labels by treating the labels as an input. Furthermore, LMGC can enhance label representations by embedding descriptions of each label defined in the annotation manual (Carlson and Marcu, 2001), that allows us to use a pre-trained language model such as MPNet (Song et al., 2020) effectively, since we can already have the representations for labels, that were unseen in the pre-training step.

Experimental results on the RST-DT dataset (Carlson et al., 2002) show that LMGC can achieve the state-of-the-art scores in both discourse segmentation and sentence-level discourse parsing. LMGC utilizing our enhanced label embeddings achieves the best F_1 score of 96.72 in discourse segmentation. Furthermore, in sentence-level discourse parsing, LMGC utilizing our enhanced relation label embeddings achieves the best relation F_1 scores of 84.69 with gold EDU boundaries and 81.18 with automatically segmented boundaries, respectively.

2 Related Work

Discourse segmentation is a fundamental task for building an RST discourse tree from a text. Carlson et al. (2001) proposed a method for using lexical information and syntactic parsing results for detecting EDU boundaries in a sentence. Fisher and Roark (2007); Xuan Bach et al. (2012); Feng and Hirst (2014b) utilized these clues as features in a classifier, while Wang et al. (2018b) utilized BiLSTM-CRF (Huang et al., 2015) in an end-to-end manner to avoid prediction bias caused by using different decoding directions. Since LMGC is on the basis of generative models, it can jointly consider an input text and its predictable labels, and map the embeddings of both input tokens and labels onto the same space. Due to this characteristic, LMGC can effectively use the label information through constructing label embeddings from the description of a label definition (Carlson and Marcu, 2001). Furthermore, recent strong pre-trained models such as MPNet (Song et al., 2020) are available for any input tokens in LMGC.

3 Base Models

Our LMGC reranks the results from a conventional discourse segmenter and parser, which can be constructed as discriminative models. In this section, we explain these base models and introduce our mathematical notations.

3.1 Discourse Segmenter

In discourse segmentation, given an input text $x = \{x_1, \cdots, x_n\}$, where x_i is a word, a segmenter detects EDUs $e = \{e_1, \cdots, e_m\}$ from x. Since there is no overlap or gap between EDUs,
discourse segmentation can be considered as a kind of sequential labeling task, which assigns labels \(l = \{l_1, \cdots, l_n\} \), where each \(l_i \in \{0, 1\} \) indicates whether the word is the start of an EDU or not. By using a discriminative model, such as BiLSTM-CRF (Wang et al., 2018b) and pointer-networks (Lin et al., 2019), the probability of predicting EDUs from \(x \) can be \(P(l|x) \) or \(P(e|x) \). Because of its simple structure and extensibility, we choose BiLSTM-CRF as our base model for discourse segmentation. In BiLSTM-CRF, \(P(l|x) \) is formulated as follows:

\[
P(l|x) = \frac{\prod_{t=1}^{n} \psi_l(l_t, l_{t-1}, h)}{\sum_{l'} \prod_{t=1}^{n} \psi_l(l'_t, l'_{t-1}, h)},
\]

where \(\psi_l(l_t, l_{t-1}, h) = \exp(W^Th_t + b) \) is the potential function, \(h_t \) is the hidden state at time step \(t \), \(W \) is a weight matrix, \(b \) is a bias term, and \(Y \) is the set of possible label sequences.

We inherit top-\(k \) Viterbi results of BiLSTM-CRF, scored by Eq.(1), to our LMGC, as described in Section 4.

3.2 Discourse Parser

In discourse parsing, given an input text \(x \) and its EDUs \(e \), we can build a binary tree \(p = \{p_1, \cdots, p_{2n-1}\} \), where each node \(p_i \in p \) has three kinds of labels: span \(s_i \), nuclearity \(u_i \), and relation \(r_i \). The sequences of span \(s \) and nuclearity \(u \) can be predicted simultaneously, as in 2-stage Parser (Wang et al., 2017), or span \(s \) can be predicted in advance for labeling nuclearity \(u \) and relation \(r \), as in pointer-networks (Lin et al., 2019) and span-based Parser (Kobayashi et al., 2020). Because of its better performance, we choose 2-stage Parser as our base model for sentence-level discourse parsing. 2-stage Parser extracts several features and does classification with SVMs in two stages. In the first stage, it identifies the span and nuclearity simultaneously to construct a tree based on the transition-based system with four types of actions: Shift, Reduce-NN, Reduce-NS, and Reduce-SN. In the second stage, for a given node \(p_i \), \(r_i \) is predicted as the relation between the left and right children nodes of \(p_i \) by using features extracted from \(p_i \) and its children nodes. In spite of its limited features, it achieves the best results compared with pointer-networks and span-based Parser. Since 2-stage Parser utilizes SVMs, we normalize the action scores and inherit top-\(k \) beam search results of 2-stage Parser for LMGC to perform discourse parsing.

4 Language Model-based Generative Classifier (LMGC)

In this section, we introduce our generative classifier, LMGC, that utilizes a masked and permuted language model to compute sequence probabilities in both discourse segmentation and sentence-level discourse parsing tasks. More specifically, as we mention in Section 5, we can utilize our LMGC in three tasks, (a) discourse segmentation, (b) sentence-level discourse parsing with gold segmentation, and (c) sentence-level discourse parsing with automatic segmentation. Figure 2 shows the overview of our LMGC for the whole task (c). As shown in the figure, the prediction process in LMGC is the following. We assume that, in task (c), discourse segmentation and sentence-level discourse parsing are performed in a pipeline manner with models trained for tasks (a) and (b).

1. Predict top-\(k_s \) EDU segmentations \(\{e_1, \cdots, e_{k_s}\} \) from a given sentence \(x \) with the base discourse segmenter, described in Section 3.1.
2. Compute joint probability \(P(x, e_i) \) and select the best segmentation \(e \) from \(\{e_1, \cdots, e_{k_s}\} \) with a language model, as we describe below.
3. Parse and rank top-\(k_p \) trees \(\{p_1, \cdots, p_{k_p}\} \) from \(x \) and best segmentation \(e \) with the base discourse parser, described in Section 3.2.
4. Compute joint probability \(P(x, e, p_j) \) to select the best tree from \(\{p_1, \cdots, p_{k_p}\} \) with a language model, as we describe below.

Figure 2: Overview of our Language Model-based Generative Classifier (LMGC).
In task (a), we apply Step 2 to predict the best segmentation after Step 1. In task (b), we skip Steps 1 and 2, and apply just Steps 3 and 4 for gold segmentation to yield the best parse tree.

4.1 Tree Representations

To calculate joint probabilities for a discourse tree with a language model, we need to represent a tree as a linear form, like Figure 1 (b). Since there are several predictable label sets in discourse segmentation and parsing tasks, as shown in Figure 3, we prepare linearized forms for each label set.\(^1\)

In discourse segmentation, we can consider joint probability \(P(x, e)\) for a sequence with inserting a symbol, [EDU], at an EDU boundary (Figure 3 (a)). In discourse parsing, a discourse tree is represented as a sequence with several kinds of label sets: span labels \(s\), nucleusity labels \(u\) including span labels, and relation labels \(r\) including span and nucleusity labels (Figures 3 (b)-(d)). To investigate the effectiveness of each label set in the reranking step, we consider \(P(x, e, s)\), \(P(x, e, u)\), and \(P(x, e, r)\) for each label set to represent \(P(x, e, p)\) in this paper. To build a sequence, we combine each label in a tree with brackets to imply the boundary for the label. For example, "(N" and ")N" stand for the start and end of a nucleus EDU. For a node \(p_i\) of the tree, \(r_i\) describes the relation between its children nodes, leading to \(r_i\) of leaf nodes being "Null". When the child nodes of \(p_i\) are nucleus and satellite, we assign label "Span" to the nucleus child node of \(p_i\) and label \(r_i\) to the satellite child node of \(p_i\), respectively. When the child nodes of \(p_i\) are both nucleus, we assign label \(r_i\) to both child nodes of \(p_i\).

For simpler illustration, in Figure 1 (b), we show the linearized discourse tree only with nucleusity and relation labels, since the nucleusity labels can also show span and EDU boundary labels. "Null" labels for leaf nodes are also omitted in the figure.

4.2 Joint Probabilities

To calculate joint probabilities in the last subsection with a language model, we consider probability \(P(z)\) for a sequence \(z = (z_1, \cdots, z_a)\), which corresponds to the probabilities for the sequential representations \(P(x, e)\), \(P(x, e, s)\), \(P(x, e, u)\), and \(P(x, e, r)\).

\[\text{According to Song et al. (2020), masked and permuted language modeling (MPNet) takes the advantages of both masked language modeling and permuted language modeling while overcoming their issues. Compared with Bert (Devlin et al., 2019) and XLNet (Yang et al., 2019), MPNet considered more information about tokens and positions, and achieved better results for several downstream tasks (GLUE, SQuAD, etc). Taking into account its better performance, we choose pre-trained MPNet (Song et al., 2020) as our language model. Because considering all possible inter-dependence between \(z_t\) is intractable, we follow the decomposition of pseudo-log-likelihood scores \((PLL) (Salazar et al., 2020)\) in the model. Thus, we decompose and calculate logarithmic \(P(z)\) as follows:}

\[
\log P(z; \theta) \\
\approx PLL(z; \theta) = \sum_{t=1}^{a} \log P(z_{<t}, z_{>t}, M_t; \theta),
\]

where \(z_{<t}\) is the first sub-sequence \((z_1, \cdots, z_{t-1})\) in \(z\) and \(z_{>t}\) is the latter sub-sequence \((z_{t+1}, \cdots, z_a)\) in \(z\). \(M_t\) denotes the mask token \([MASK]\) at position \(t\). \(P(z_t | z_{<t}, z_{>t}, M_t; \theta)\) is computed by two-stream self-attention (Yang et al., 2019). In inference, we select \(z\) based on \(\frac{1}{a}PLL(z; \theta)\).

This model converts \(z\) into continuous vectors \(w = \{w_1, \cdots, w_a\}\) through the embedding layer. Multi-head attention layers further transform the vectors to predict each \(z_t\) in the softmax layer.

Since pre-trained MPNet does not consider EDU, span, nucleusity, and relation labels in the pre-training step, we need to construct vectors \(w\) for these labels from the pre-trained parameters to enhance the prediction performance. We describe the details of this method in the next subsection.

4.3 Label Embeddings

In LMGC, we embed input text tokens and labels in the same vector space (Wang et al., 2018a) of the embedding layer. Under the setting, to deal with unseen labels in the pre-trained model, we compute the label embeddings by utilizing token embeddings in the pre-trained model.

We try to combine the input text with four kinds of labels, EDU, span, nucleusity, and relation labels, which were defined and clearly described in the annotation document (Carlson and Marcu, 2001) (See Appendix B for the descriptions). In taking into account the descriptions for the labels as additional
Figure 3: Example joint representations of an input text and labels for sentence. We've got a lot to do, he acknowledged. e1 represents the corresponding EDU, and "_" is whitespace.

information, we adopt two different methods, Average and Concatenate, for representing the label embeddings.

Average: We average the embeddings of tokens that appear in the definition of a label and assign the averaged embedding to the label.

Concatenate: We concatenate a label name with its definition and insert the concatenated text to the end of sequence z, so that the label embedding can be captured by self-attention mechanisms (Vaswani et al., 2017). Note that we do not try it in the parsing task, because the length of a sequence increases in proportion to the increase of the number of labels, that causes a shortage of memory space.

4.4 Objective Function

Because the search space for sequences of a text and its labels is exponentially large, instead of considering all possible sequences $Z(x)$ for x, we assume $Z'(x)$ as a subset of sequences based on top-k results from the base model. We denote $z_g \in Z'(x)$ as the correct label sequence of x. To keep pre-trained information in MPNet, we continue masking and permutation for training model parameter θ. Assuming that O_a lists all permutations of set $\{1, 2, \cdots, a\}$, the number of elements in O_a satisfies $|O_a| = a!$. For $z \in Z'(x) \cup \{z_g\}$, we train the model parameter θ in LMGC by maximizing the following expectation over all permutations:

$$E_{\theta \in O_a} \sum_{t=c+1}^{a} [I_z \log(P(z_o_t | z_{o_{<t}}, M_{o>c}; \theta)) + (1 - I_z) \log(1 - P(z_o_t | z_{o_{<t}}, M_{o>c}; \theta))],$$

where I_z is the indicator function, defined as follows:

$$I_z := \begin{cases} 1 & \text{if } z = z_g \\ 0 & \text{if } z \neq z_g \end{cases}$$

c, denoting the number of non-predicted tokens $z_{o_{<c}}$, is set manually. $o_{c:t}$ denotes the first $t - 1$ elements in o. $M_{o>c}$ denotes the mask tokens [MASK] at position $o_{c:t}$. $P(z_o_t | z_{o_{<t}}, M_{o>c}; \theta)$ is computed by two-stream self-attention (Yang et al., 2019).

5 Experiments

In this section, we present our experiments in three tasks, (a) discourse segmentation, (b) sentence-level discourse parsing with gold segmentation, and (c) sentence-level discourse parsing with automatic segmentation.

5.1 Experimental Settings

5.1.1 Datasets

Following previous studies (Wang et al., 2017, 2018b; Lin et al., 2019), we used the RST Discourse Treebank (RST-DT) corpus (Carlson et al., 2002) as our dataset. This corpus contains 347 and 38 documents for training and test datasets, respectively.

We divided the training dataset into two parts, following the module RSTFinder (Heilman and Sagae, 2015), where 307 documents were used to train models and the remaining 40 documents were used as the validation dataset.

We split the documents into sentences while ignoring footnote sentences, as in Joty et al. (2012). There happens two possible problematic cases for the splitted sentences: (1) The sentence consists of exactly an EDU, and so it has no tree structure. (2) The tree structure of the sentence goes across to other sentences. Following the setting of Lin et al. (2019), we did not filter any sentences in task (a). In task (b), we filtered sentences of both cases. In task (c), we filtered sentences of case (2).

Table 1 shows the number of available sentences for the three different tasks.

^1Note that the concatenated text of the label name and its definition is not masked during training.
As our proposed methods, we used LMGC\textsubscript{e}, Top-Down-RST-Parser, NeuralEDUSeg, the document-level. Since the experimental re-stage Parser in the sentence-level rather than in the setting of Lin et al. (2019), we retrained 2-stage Parser in the following experiments. BiLSTM-CRF by Wang et al. (2018b) is our base segmenter in five runs, and the experimental results for BiLSTM-CRF for fairness. We retrained the hidden state of MPNet as the word embeddings, we also tried the last adopted the hidden states of ELMo (Peters et al., 2018) as word embeddings, which respectively model probability \(P(x, e) \), \(P(x, e, s) \), \(P(x, e, u) \), and \(P(x, e, r) \) with initialized label embeddings. We represent LMGC with Average and Concatenate label embeddings as Enhance and Extend, respectively.

We used the paired bootstrap resampling (Koehn, 2004) for the significance test in all tasks when comparing two systems.

5.1.2 Evaluation Metrics

In task (a), we evaluated the segmentation in micro-averaged precision, recall, and \(F_1 \) score with respect to the start position of each EDU. The position at the beginning of a sentence was ignored. In task (b), we evaluated the parsing in micro-averaged \(F_1 \) score with respect to span, nuclearity, and relation. In task (c) for parsing with automatic segmentation, we evaluated both the segmentation and parsing in micro-averaged \(F_1 \) score.

We used the paired bootstrap resampling (Koehn, 2004) for the significance test in all tasks when comparing two systems.

5.1.3 Compared Methods

As our proposed methods, we used LMGC\textsubscript{e}, LMGC\textsubscript{s}, LMGC\textsubscript{u}, and LMGC\textsubscript{r}, which respectively model probability \(P(x, e) \), \(P(x, e, s) \), \(P(x, e, u) \), and \(P(x, e, r) \) with initialized label embeddings. We represent LMGC with Average and Concatenate label embeddings as Enhance and Extend, respectively.

We used the base discourse segmenter and parser described in Section 3 as our baseline. We reproduced the base discourse segmenter BiLSTM-CRF4 (Wang et al., 2018b). Because BiLSTM-CRF adopted the hidden states of ELMo (Peters et al., 2018) as word embeddings, we also tried the last hidden state of MPNet as the word embeddings for BiLSTM-CRF for fairness. We retrained the segmenter in five runs, and the experimental results are showed in Appendix C. The publicly shared BiLSTM-CRF by Wang et al. (2018b) is our base segmenter in the following experiments.

As for the base parser, we retrained two models, 2-stage Parser5 (Wang et al., 2017) and span-based Parser6 (Kobayashi et al., 2020). Different from the setting of Lin et al. (2019), we retrained 2-stage Parser in the sentence-level rather than in the document-level. Since the experimental results show our retrained 2-stage Parser achieved the highest \(F_1 \) scores among several parsers (See Appendix C), we selected it as our base parser in the following experiments.

Furthermore, for comparing LMGC with an unidirectional generative model (Mabona et al., 2019), we constructed another baseline method which utilizes a GPT-2 (Radford et al., 2019) based reranker. This method follows an unidirectional language model-based generative parser (Choe and Charniak, 2016), and considers top-\(k \) results from the base model by an add-1 version of infinilog loss (Ding et al., 2020) during training. We denote this baseline as GPT2LM hereafter. GPT2LM models \(P(x, e) \) for task (a) and \(P(x, e, r) \) for tasks (b) and (c), respectively. Both LMGC and GPT2LM are the ensemble of 5 models with different random seeds. See Appendix D for a complete list of hyperparameter settings.

5.1.4 Number of Candidates

As described in Section 4, LMGC requires parameters \(k_s \) and \(k_p \) for the number of candidates in the steps for different tasks. We tuned \(k_s \) and \(k_p \) based on the performance on the validation dataset.7

In task (a), \(k_s \) was set to 20 and 5 for training and prediction, respectively. In task (b), \(k_p \) was set to 20 and 5 for training and prediction, respectively. In task (c), \(k_s \) and \(k_p \) were both set to 5 for prediction. The set of parameters was similarly tuned for GPT2LM on the validation dataset. We list all of them in Appendix E.

5.2 Results

5.2.1 Discourse Segmentation

Table 2 shows the experimental results for the discourse segmentation task. Oracle indicates the upper bound score that can be achieved with candidates generated by the base model. To compute the Oracle score, if the candidates by the base model include the correct answer, we assume the prediction is correct.

LMGC\textsubscript{e} significantly outperformed GPT2LM\textsubscript{e}.8

We think the reason is similar to what Zhu et al. (2020) reported: BERT-based bidirectional Transformer encoders encode more rhetorical features than GPT2-based unidirectional Transformer en-

4https://github.com/PKU-TANGENT/NeuralEDUSeg

5https://github.com/yizhongw/StageDP

6https://github.com/nttcslab-nlp/Top-Down-RST-Parser

7Note that we should separately tune the number of candidates for training and prediction stages because LMGC utilizes Eq.(2) for prediction and Eq.(3) for training, respectively.

8We chose GPT2LM\textsubscript{e} for the significance test because we had only reported scores for the pointer-networks.

Task	Train	Valid	Test
(a) Segmentation	6,768	905	991
(b) Parsing w/ gold segmentation	4,524	636	602
(c) Parsing w/ auto segmentation	-	861	951

Table 1: The number of sentences for each task.
Table 2: Results for the discourse segmentation task. * indicates the reported score by Lin et al. (2019). The best score in each metric among the models is indicated in bold. † indicates that the score is significantly superior to GPT2LM with a p-value < 0.01.

Model	Precision	Recall	F1
Oracle	97.73	98.67	98.20
Pointer-networks*	93.34	97.88	95.55
Base segmenter	92.22	95.35	93.76
GPT2LM	94.05	95.72	94.88
LMGC_e	95.31	97.56	96.43†
Enhance_e	95.54	97.93	96.72†
Extend_e	95.05	97.86	94.44†

Table 3: Results for the sentence-level discourse parsing task with gold segmentation. * indicates the reported score by Lin et al. (2019). The best score in each metric among the models is indicated in bold. † and ‡ indicate that the score is significantly superior to the base parser with a p-value < 0.01 and < 0.05, respectively.

Model	Span	Nuclearity	Relation
Oracle	98.67	95.88	90.07
Pointer-networks*	97.44	91.34	81.70
Base parser	97.92	92.07	82.06
GPT2LM	96.35	88.11	77.86
LMGC_u	98.23†	92.31	82.22
Enhance_u	98.27†	92.39	82.42
LMGC_e	98.31‡	94.00‡	83.63‡
Enhance_e	98.31‡	93.88‡	83.56‡
LMGC_r	98.00‡	93.09‡	83.99‡
Enhance_r	98.12‡	93.13‡	84.69†

5.2.2 Sentence-level Discourse Parsing

Gold Segmentation: Table 3, Figures 4 and 5 show the experimental results for the sentence-level discourse parsing task with gold segmentation. In Table 3, LMGC_e achieved the highest span and nuclarity F1 scores of 98.31 and 94.00, respectively. Enhance_e achieved the state-of-the-art relation F1 score of 84.69, which is significantly superior to the base parser. Although using Average label embeddings improved LMGC_r, it can provide no or only limited improvement for LMGC_u and LMGC_s. We guess that this difference is caused by the number of different kinds of labels in span, nuclarity, and relation. The performance of GPT2LM_r is even worse than the base parser. We think this is because we added the relation labels to the vocabulary of GPT-2 and resized the pre-trained word embeddings.

Figure 4 shows the comparison between the base parser and Enhance_r with respect to each relation label. In most relation labels, Enhance_r outperformed 2-stage Parser except for the labels Explanation, Evaluation, and Topic-Comment. 2-stage Parser achieved the F1 score of 17.14 for label Temporal while Enhance_r achieved the F1 score of 44.44 by reranking the parsing results from 2-stage Parser. Such great improvement with Enhance_r can also be found for labels such as Contrast, Back-
We guess this might be due to some similarities ground, and Cause. Obviously, Enhance_r tends to improve the performance for labels whose training data is limited.

Figure 5 shows a confusion matrix of Enhance_r for each relation label. It shows that the relation labels Comparison, Cause, and Temporal were often predicted wrongly as Contrast, Joint, and Joint or Background, respectively, by Enhance_r, even though these labels have at least 100 training data. We guess this might be due to some similarities between those labels.

By using the t-SNE plot (Van der Maaten and Hinton, 2008), we visualize the trained relation label embeddings of LMGC_r and Enhance_r. Figures 6a and 6b show the results. Figure 6a shows a clearer diagonal that divides labels with parenthesis

```
Model          Seg  Span  Parse  Relation
Oracle         98.24 - - -
Base segmenter 93.92 - - -
GPT2LM_r       95.03 - - -
LMGC_r         96.51 - - -
Enhance_r      96.79 - - -
Extend_r       96.48 - - -
Oracle         93.95 91.25 85.93
Base parser    93.53 88.08 78.75
GPT2LM,       92.02 84.20 74.49
LMGC,         93.96† 88.46 79.25
Enhance,      94.00† 88.50 79.33
LMGC,         93.96† 89.90† 80.33†
Enhance,      93.92‡ 89.74‡ 80.22‡
LMGC,         93.65 89.08‡ 80.57‡
Enhance,      93.73 89.16‡ 81.18‡
```

Table 4: Results for the sentence-level discourse parsing task with automatic segmentation. * indicates the reported score by Lin et al. (2019). The best score in each metric among the models for each block is indicated in **bold**. We used the discourse segmentation results of Enhance_r as the input of the discourse parsing stage for all models, for fair comparison of sentence-level discourse parsing. † and ‡ indicate that the score is significantly superior to the base parser with a p-value < 0.01 and < 0.05, respectively.

"(" from the ones with ")", while Figure 6b shows more distinct divisions between labels.

Automatic Segmentation: Table 4 shows the experimental results for the sentence-level discourse parsing task with automatic segmentation. The second and third blocks in the table show the results for the first and second stages, discourse segmentation and sentence-level discourse parsing, respectively.

Enhance_r achieved the highest relation F₁ score of 81.18, which is a significant improvement of 2.43 points compared to the base parser. Enhance_s and LMGC_u achieved the highest span and nucleus F₁ scores of 94.00 and 89.90, respectively. Since LMGC and Enhance were the models trained in task (b), and Enhance_r achieved the F₁ score of 96.79 in discourse segmentation, it is not surprising to find that the tendency of those results is similar to that in sentence-level discourse parsing with gold segmentation.

6 Conclusion

In this research, we proposed a language model-based generative classifier, LMGC. Given the top-
The experimental results also showed the potential of constructing label embeddings from token embeddings by using label descriptions in the manual. In the future, we plan to apply LMGC to other diverse classification tasks.

References

Lynn Carlson and Daniel Marcu. 2001. Discourse tagging reference manual. ISI Technical Report ISI-TR-545.

Lynn Carlson, Daniel Marcu, and Ellen Okurowski Mary. 2002. Rst discourse treebank ldc2002t07. Philadelphia: Linguistic Data Consortium.

Lynn Carlson, Daniel Marcu, and Mary Ellen Okurovsky. 2001. Building a discourse-tagged corpus in the framework of Rhetorical Structure Theory. In Proceedings of the Second SIGdial Workshop on Discourse and Dialogue.

Do Kook Choe and Eugene Charniak. 2016. Parsing as language modeling. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 2331–2336, Austin, Texas. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota. Association for Computational Linguistics.

Xiaoan Ding, Tianyu Liu, Baobao Chang, Zhifang Sui, and Kevin Gimpel. 2020. Discriminatively-Tuned Generative Classifiers for Robust Natural Language Inference. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 8189–8202, Online. Association for Computational Linguistics.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros, and Noah A. Smith. 2016. Recurrent neural network grammars. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 199–209, San Diego, California. Association for Computational Linguistics.

Vanessa Wei Feng and Graeme Hirst. 2014a. A linear-time bottom-up discourse parser with constraints and post-editing. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 511–521, Baltimore, Maryland. Association for Computational Linguistics.

Vanessa Wei Feng and Graeme Hirst. 2014b. Two-pass discourse segmentation with pairing and global features.

Seeger Fisher and Brian Roark. 2007. The utility of parse-derived features for automatic discourse segmentation. In Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, pages 488–495, Prague, Czech Republic. Association for Computational Linguistics.

Francisco Guzmán, Shafiq Joty, Lluís Márquez, and Preslav Nakov. 2014. Using discourse structure improves machine translation evaluation. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 687–698, Baltimore, Maryland. Association for Computational Linguistics.

Michael Heilman and Kenji Sagae. 2015. Fast rhetorical structure theory discourse parsing. arXiv preprint arXiv:1505.02425.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirectional lstm-crf models for sequence tagging.

Shafiq Joty, Giuseppe Carenini, and Raymond Ng. 2012. A novel discriminative framework for sentence-level discourse analysis. In Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, pages 904–915, Jeju Island, Korea. Association for Computational Linguistics.

Shafiq Joty, Giuseppe Carenini, Raymond Ng, and Yashar Mehdad. 2013. Combining intra- and multi-sentential rhetorical parsing for document-level discourse analysis. In Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 486–496, Sofia, Bulgaria. Association for Computational Linguistics.

Shafiq Joty, Giuseppe Carenini, and Raymond T. Ng. 2015. CODRA: A novel discriminative framework for rhetorical analysis. Computational Linguistics, 41(3):385–435.

Shafiq Joty, Francisco Guzmán, Lluís Márquez, and Preslav Nakov. 2017. Discourse structure in machine translation evaluation. Computational Linguistics, 43(4):683–722.

Dan Jurafsky. 2000. Speech & language processing. Pearson Education India.

Naoki Kobayashi, Tsutomu Hiraio, Hidetaka Kameigaito, Manabu Okumura, and Masaaki Nagata. 2020. Top-down rst parsing utilizing granularity levels in documents. volume 34, pages 8099–8106.
Philipp Koehn. 2004. Statistical significance tests for machine translation evaluation. In Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing, pages 388–395, Barcelona, Spain. Association for Computational Linguistics.

Xiang Lin, Shafiq Joty, Prathyusha Jwalapuram, and Ma Saiful Bari. 2019. A unified linear-time framework for sentence-level discourse parsing. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 4190–4200, Florence, Italy. Association for Computational Linguistics.

Amanda Mabona, Laura Rimell, Stephen Clark, and Andreas Vlachos. 2019. Neural generative rhetorical structure parsing. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 2284–2295, Hong Kong, China. Association for Computational Linguistics.

William C Mann and Sandra A Thompson. 1988. Rhetorical structure theory: Toward a functional theory of text organization.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, and Michael Auli. 2019. fairseq: A fast, extensible toolkit for sequence modeling. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics (Demonstrations), pages 48–53, Minneapolis, Minnesota. Association for Computational Linguistics.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettlemoyer. 2018. Deep contextualized word representations. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 2227–2237, New Orleans, Louisiana. Association for Computational Linguistics.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. 2019. Language models are unsupervised multitask learners.

Julian Salazar, Davis Liang, Toan Q. Nguyen, and Katrina Kirchhoff. 2020. Masked language model scoring. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 2699–2712, Online. Association for Computational Linguistics.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. 2018. Self-attention with relative position representations. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pages 464–468, New Orleans, Louisiana. Association for Computational Linguistics.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. 2020. Mpnmt: Masked and permuted pre-training for language understanding. arXiv preprint arXiv:2004.09297.

Caroline Sporleder and Mirella Lapata. 2005. Discourse chunking and its application to sentence compression. In Proceedings of Human Language Technology Conference and Conference on Empirical Methods in Natural Language Processing, pages 257–264, Vancouver, British Columbia, Canada. Association for Computational Linguistics.

Laurens Van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-sne. Journal of machine learning research, 9(11).

Ashish Vaswani, Noam Shazeer, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In NIPS.

Guoyin Wang, Chunyuan Li, Wenlin Wang, Yizhe Zhang, Dinhau Shen, Xinyuan Zhang, Ricardo Henao, and Lawrence Carin. 2018a. Joint embedding of words and labels for text classification. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 2321–2331, Melbourne, Australia. Association for Computational Linguistics.

Yizhong Wang, Sujuan Li, and Houfeng Wang. 2017. A two-stage parsing method for text-level discourse analysis. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 184–188, Vancouver, Canada. Association for Computational Linguistics.

Yizhong Wang, Sujuan Li, and Jingfeng Yang. 2018b. Toward fast and accurate neural discourse segmentation. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 962–967, Brussels, Belgium. Association for Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. 2020. Transformers: State-of-the-art natural language processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 38–45, Online. Association for Computational Linguistics.

Ngo Xuan Bach, Nguyen Le Minh, and Akira Shimazu. 2012. A reranking model for discourse segmentation using subtree features. In Proceedings of the 13th Annual Meeting of the Special Interest Group on Discourse and Dialogue, pages 160–168, Seoul, South Korea. Association for Computational Linguistics.
Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, and Quoc V Le. 2019. Xlnet: Generalized autoregressive pretraining for language understanding. arXiv preprint arXiv:1906.08237.

Zining Zhu, Chuer Pan, Mohamed Abdalla, and Frank Rudzicz. 2020. Examining the rhetorical capacities of neural language models. In Proceedings of the Third BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP, pages 16–32.

A Experimental Results of LMG with Tree

Since the raw s-expression-style tree is longer than our joint representations with span, nuclearity and relation, we transformed the raw tree into a sequence as Figure 7 shows, where the nuclearity and relation labels are connected together by the colons. To construct the label embedding for $P(x, e, p)$, we combined the descriptions of the nuclearity and relation (see descriptions in Appendix B), and assigned the combination to the corresponding node. For example, the description of "(Attribution:S" is the start of a supporting or background piece of information attribution, attribution represents both direct and indirect instances of reported speech.

Figure 7: Example joint representation of an input text with all tree labels for sentence "We’ve got a lot to do, he acknowledged. e_i represents the corresponding EDU, and "_" is whitespace.

LMGC_p models the joint probability $P(x, e, p)$ with initialized label embedding. The experimental results of LMGCP and Enhancemp for the sentence-level discourse parsing task with gold segmentation are showed in Table 5. LMGCP and Enhancep are the ensemble of 5 models with different random seed, although the training loss of Enhancep in 2 of 5 models did not decrease.

Model	Span	Nuclearity	Relation
LMGCP	97.84	92.90	84.11
Enhancep	98.04	92.74	84.18

Table 5: Performances of LMGCP and Enhancep in the sentence-level discourse parsing task with gold segmentation.

B Label Descriptions

We list our extracted label descriptions from Carlson and Marcu (2001) in Table 6. For parsing symbols with brackets "(" and ")" like "(N" and ")N"", we inserted the position phrase, the start of and the end of, to the beginning of their label definitions. So the description of ")N" is the end of a more salient or essential piece of information.

C Experiment Results of Reproduced Base Model

Table 7 shows the experimental results of BiLSTM-CRF in discourse segmentation, where the results of our reproduced BiLSTM-CRF are averaged in five runs. Table 8 shows the experimental results of different parsers in the sentence-level discourse parsing task with gold segmentation.

D Hyperparameters

For LMGC, we used the source code shared in the public github\(^{10}\) of Song et al. (2020). We used the uploaded pre-trained MPNet and same setup as illustrated in Table 9. 15% tokens as the predicted tokens were masked by replacement strategy 8:1:1. Relative positional embedding mechanism (Shaw et al., 2018) was utilized. Since the vocab we used is same as the one of BERT (Devlin et al., 2019), we used the symbol [SEP] to represent [EDU] and symbol [unused#] starting from 0 to represent parsing labels such as "(N" and "(Attribution".

For GPT2LM, we used the source code shared in the public github\(^{11}\) (Ott et al., 2019). Following the steps in Choe and Charniak (2016), we utilized Eq (5) (Jurafsky, 2000) to compute the joint distribution.

$$
P(x, y) = P(z) = P(z_1, \ldots, z_a) = \prod_{t=1}^{a} P(z_t | z_1, \ldots, z_{t-1}),$$ \hspace{1cm} (5)

where $P(z_t | z_1, \ldots, z_{t-1})$ was computed by GPT-2 (Radford et al., 2019). And in inference, we selected z based on $\frac{1}{a} \log P(z)$. An add-1 version of infinilog loss (Ding et al., 2020) was utilized for training GPT2LM as follows:

$$
- \log f(z) + \log[1 + \sum_{z' \in Z(x), z' \neq z} f(z')], \hspace{1cm} (6)
$$

\(^{10}\)https://github.com/microsoft/MPNet
\(^{11}\)https://github.com/pytorch/fairseq/tree/master/fairseq/models/huggingface
Label	Definition
[EOS]	elementary discourse units are the minimal building blocks of a discourse tree
Span	span
Nucleus	a more salient or essential piece of information
Satellite	a supporting or background piece of information
Attribution	attribution, attribution represents both direct and indirect instances of reported speech
Background	background or circumstance
Cause	cause or result
Comparison	comparison, preference, analogy or proportion
Condition	condition, hypothetical, contingency or otherwise
Contrast	contrast relation, spans contrast with each other along some dimension. Typically, it includes a contrastive discourse cue, such as but, however, while.
Elaboration	elaboration, elaboration provides specific information or details to help define a very general concept
Enablement	enablement, enablement presents action to increase the chances of the unrealized situation being realized.
Evaluation	evaluation, interpretation, conclusion or comment
Explanation	evidence, explanation or reason
Joint	list, list contains some sort of parallel structure or similar fashion between the units
Manner-Means	explaining or specifying a method, mechanism, instrument, channel or conduit for accomplishing some goal
Topic-Comment	problem solution, question answer, statement response, topic comment or rhetorical question
Summary	summary or restatement
Temporal	situations with temporal order, before, after or at the same time
Topic change	topic change
Textual-organization	links that are marked by schemata labels
Same-unit	links between two non-adjacent parts when separated by an intervening relative clause or parenthetical

Table 6: Extracted label definitions.
Table 7: Performances of BiLSTM-CRF (Wang et al., 2018b) in the discourse segmentation task. The best score in each metric among the models is indicated in **bold**. * indicates the reported score by Lin et al. (2019). Shared is the publicly shared model by Wang et al. (2018b). Reproduced (ELMo) and Reproduced (MPNet) are our reproduced models with different word embeddings.

Model	Precision	Recall	F1
Reported*	92.04	94.41	93.21
Shared	92.22	95.35	93.76
Reproduced (ELMo)	**93.16**	**96.26**	**94.68**
Reproduced (MPNet)	92.84	95.63	94.21

Table 8: Performance of retrained parsers in the sentence-level discourse parsing task with gold segmentation. The best score in each metric among the models is indicated in **bold**. * indicates the reported score by Lin et al. (2019).

Model	Span	Nuclearity	Relation
2-Stage Parser*	95.60	87.80	77.60
Pointer-networks*	97.44	91.34	81.70
Span-based Parser	96.67	90.23	74.76
2-Stage Parser	**97.92**	**92.07**	**82.06**

Table 9: List of used hyperparameters for LMGC.

Hyperparameter	Value
Optimizer	adam
Adam β_1	0.9
Adam β_2	0.98
Adam ϵ	1e-6
weight decay	0.01
Learning rate	0.00009
Batch size	8192 tokens
Warm up steps	2.4 epoch
Epoch	30
Attention layer	12
Attention head	12
dropout	0.1
attention dropout	0.1
Hidden size	768
Vocab size	30527
Tokenizer	Byte pair encoder
Max sentence length	512

Table 10: List of used hyperparameters for GPT2LM.

Hyperparameter	Value
Optimizer	adam
Adam β_1	0.9
Adam β_2	0.98
Adam ϵ	1e-6
weight decay	0.01
Learning rate	0.00009
Batch size	512 gold tokens + candidate tokens
Warm up steps	2.4 epoch
Epoch	30
Attention layer	12
Attention head	12
dropout	0.1
attention dropout	0.1
Hidden size	768
Vocab size	50257+ added tokens
Tokenizer	Byte pair encoder
Max sentence length	512

Table 11 shows the setting of candidates for different tasks. As described in Section 4.4, we do data augmentation by using additional top-k results generated by a base method, a larger k during training is expected to bring more promotion for LMGC. However, a larger k during prediction step introduces more candidates and may make the prediction more difficult. Taking this into consideration, we tuned k_s and k_p for training and prediction separately based on the performance on the validation dataset.

where

$$f(z) = \frac{\exp\left(\frac{1}{n} \log P(z)\right)}{\sum_{z' \in Z'(x)} \exp\left(\frac{1}{n} \log P(z')\right)}.$$ \hspace{1cm} (7)

We used the uploaded pretrained "gpt2" model (Wolf et al., 2020) and same setup as illustrated in Table 10. We used symbol "=====" in vocab to represent the symbol [EDU]. Because the vocab of GPT-2 has no available symbol for representing an unseen symbol, we added <pad> and our relation symbols to the vocab of GPT-2 and resized the pre-trained word embeddings.

E Setting of Candidates

Table 11 shows the setting of candidates for different tasks. As described in Section 4.4, we do data augmentation by using additional top-k results generated by a base method, a larger k during training is expected to bring more promotion for LMGC. However, a larger k during prediction step introduces more candidates and may make the prediction more difficult. Taking this into consideration, we tuned k_s and k_p for training and prediction separately based on the performance on the validation dataset.

In task (a), we used the Viterbi-topk algorithm for the base segmenter to select top-k_s segmentations. We tuned $k_s \in \{0, 10, 20\}$ for training while k_s for prediction was fixed as 5. Note that we used only gold segmentations for training when k_s was set to 0. Table 12 shows the experimental results, where both LMGC_e and GP2TLM_e are the ensemble of 5 models. Then we tuned $k_s \in \{5, 10, 20\}$ for prediction by using the LMGC_e and GP2TLM_e trained with top-20 candidates, Table 13 shows the results.

In task (b), we utilized beam search in each stage
of the base parser and after two stagings we computed
the perplexity to keep top-\(k_p\) parsings. We tuned
\(k_p \in \{0, 10, 20\}\) for training while \(k_p\) for predic-
tion was fixed as 5. Note that we used only gold
parsings for training when \(k_p\) was set to 0. Table 14 shows the experimental results, where both
LMGC\(_r\) and GPT2LM\(_r\) are the ensemble of 5 mod-
els. Then we tuned \(k_p \in \{5, 10, 20\}\) for prediction
by using the LMGC\(_r\) and GPT2LM\(_r\) trained with
top-20 candidates, Table 15 shows the results.

In task (c), same as in task (a), we tuned \(k_s \in \{5, 10, 20\}\) for predicting discourse segmentation
by using the LMGC\(_e\) and GP2TL\(_e\) trained with
top-20 candidates for task (a), Table 16 shows the result. We utilized LMGC\(_e\) to select the best
segmentation from top-5 segmentations for fol-
lowing discourse parsing. Then same as in task
(b), we tuned \(k_p \in \{5, 10, 20\}\) for predicting dis-
course parsing by using the LMGC\(_e\) and GPT2LM\(_e\)
trained with top-20 candidates for task (b), Table 17
shows the result.

In tasks (b) and (c), LMGC\(_a\) and Enhance\(_a\) cannot distinguish the candidates with the same
span labels but different nuclearity or relation labels,
LMGC\(_u\) and Enhance\(_u\) cannot distinguish the can-
didates with the same nuclearity labels but different
relation labels. Under this condition, the indistin-
guishable parsings would be ranked by the base
parser. And in task (b), for training data with span or
nuclearity labels, we used the beam sizes 20 and
1 in the first and second stages of the base parser,
respectively.

Task Data	Segmentation \(k_s\)	Parsing 1st stage	2nd stage \(k_p\)	# of data	
(a) Training	20	-	-	-	140924
Prediction	5	-	-	-	
(b) Training w/ span or nuclearity	-	20	1	20	60742
Prediction	-	3	7	20	95004
(c) Prediction	5	5	5	5	-

Table 11: Setting of top candidates for different tasks. The Prediction data denotes the validation and test dataset.

Model	\(k_s\) for training	Precision	Recall	\(F_1\)
LMGC\(_e\)	0	87.76	95.72	91.57
	10	97.67	97.73	97.70
	20	97.99	97.86	97.92
GPT2LM\(_e\)	0	81.72	96.18	88.36
	10	96.67	96.05	96.36
	20	96.93	96.05	96.48

Table 12: Results of tuning \(k_s\) for training in task (a). The best score in each metric among different \(k_s\) for training is indicated in **bold**.

Model	\(k_s\) for prediction	Precision	Recall	\(F_1\)
Oracle	5	99.94	99.68	99.81
	10	99.94	99.68	99.81
	20	99.94	99.68	99.81
LMGC\(_e\)	5	97.99	97.86	97.92
	10	97.47	97.54	97.51
	20	97.41	97.60	97.51
GPT2LM\(_e\)	5	96.93	96.05	96.48
	10	96.47	95.59	96.03
	20	95.76	95.14	95.45

Table 13: Results of tuning \(k_s\) for prediction in task (a). The best score in each metric among different \(k_s\) for prediction is indicated in **bold**.

Model	\(k_p\) for training	Span	Nuclearity	Relation
LMGC\(_r\)	0	97.25	92.21	83.37
	10	97.46	92.11	83.23
	20	97.50	93.02	83.44
GPT2LM\(_r\)	0	97.36	92.07	79.11
	10	96.93	90.80	80.76
	20	96.79	90.66	80.94

Table 14: Results of tuning \(k_p\) for training in task (b). The best score in each metric among different \(k_p\) for training is indicated in **bold**.
Model	k_p for prediction	Span	Nuclearity	Relation
Oracle	5	98.66	96.41	92.11
	10	99.30	98.03	94.43
	20	**99.47**	**98.48**	**95.42**
LMGC	5	97.50	93.02	83.44
	10	97.50	92.46	83.30
	20	97.29	92.25	83.30
GPT2LM	5	**96.79**	**90.66**	**80.94**
	10	94.26	81.08	70.82
	20	93.27	77.20	66.67

Table 15: Results of tuning k_p for prediction in task (b). The best score in each metric among different k_p for prediction is indicated in **bold**.

Model	k_s for prediction	Precision	Recall	F_1
Oracle	5	99.93	99.65	99.79
	10	99.93	99.65	99.79
	20	99.93	99.65	99.79
LMGC	5	**97.96**	**97.74**	**97.85**
	10	97.32	97.39	97.36
	20	97.33	97.53	97.43
GPT2LM	5	**96.94**	**95.91**	**96.42**
	10	96.45	95.63	96.04
	20	95.75	95.35	95.55

Table 16: Results of tuning k_s for prediction in task (c). The best score in each metric among different k_s for prediction is indicated in **bold**.

Model	k_p for prediction	Span	Nuclearity	Relation
Oracle	5	95.05	92.95	89.02
	10	95.93	94.73	91.25
	20	**96.21**	**95.36**	**92.45**
LMGC	5	94.39	90.12	80.88
	10	94.39	89.45	80.74
	20	94.18	89.24	80.63
GPT2LM	5	**93.65**	**87.80**	**78.59**
	10	91.18	78.55	68.99
	20	90.30	74.96	65.19

Table 17: Results of tuning k_p for prediction in task (c). The best score in each metric among different k_p for prediction is indicated in **bold**.