Review Article

Infrequent use of medicinal plants from India in snakebite treatment

Manali Sughosh Upasania, Sughosh Vishweshwar Upasanib,\ast, Vishal Gokul Beldarc, Chetana Gokul Beldard, Pranjal P. Gujarathie

a KES’s College of Pharmacy, Amalner, India
b R. C. Patel Institute of Pharmacy, Shirpur, India
c Department of Pharmacognosy, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
d Viva College of Pharmacy, Virar, India
e Maliba Pharmacy College, Bardoli, India

\textbf{A B S T R A C T}

Snakes have fascinated humankind for millennia. Snakebites are a serious medical, social, and economic problem that are experienced worldwide; however, they are most serious in tropical and subtropical countries. The reasons for this are 1) the presence of more species of the most dangerous snakes, 2) the inaccessibility of immediate medical treatment, and 3) poor health care. The goal of this study was to collect information concerning rare, less utilized, and less studied medicinal plants. More than 100 plants were found to have potential to be utilized as anti-snake venom across India. Data accumulated from a variety of literature sources revealed useful plant families, the parts of plants used, and how to utilize them. In India, there are over 520 plant species, belonging to approximately 122 families, which could be useful in the management of snakebites. This study was conducted to encourage researchers to create herbal antidotes, which will counteract snake venom. These may prove to be an inexpensive and easily assessable alternative, which would be of immense importance to society. Plants from families such as Acanthaceae, Arecaceae, Apocynaceae, Caesalpiniaeae, Asteraceae, Cucurbiteae, Fabaceae, Euphorbiaceae, Lamiaceae, Rubiaceae, and Zingibeaceae are the most useful. In India, experts of folklore are using herbs either single or in combination with others.

\copyright 2017 Korea Institute of Oriental Medicine. Published by Elsevier. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

\ast Corresponding author at: R. C. Patel Institute of Pharmacy, Shirpur 425405, Dhule, Maharashtra, India.
E-mail address: upasnisughosh@gmail.com (S.V. Upasani).

https://doi.org/10.1016/j.imr.2017.10.003

2013-4220/© 2017 Korea Institute of Oriental Medicine. Published by Elsevier. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. **Introduction**

For centuries, plants have been important in the treatment of a wide variety of illnesses, diseases, and disorders. The inherent traditional systems of medicine, along with information from conservative folklore, are serving a large section of the populace, particularly in rural and tribal areas, despite the dawn of modern medicine. Ethnobotany is the scientific and systematic study of traditional knowledge and customs of people concerning plants and their medical, religious, and other uses. Studies involve literature surveys, detailed investigations, analyses, interpretation, and conclusions concerning various research and scientific data. An ethno-medicinal-botanical appraisal includes discussions with natives, as well as utilization of available facts and data regarding folklore literature. Indigenous medicinal plant species have been added to several recent drug formulations and preparations for fundamental health care.

2. **Methodology**

The current study provides a collection of information on medicinal plants that grow and can be utilized in various regions of India for snakebite treatment. The appropriate literature, including books, journals, and reports, was reviewed. The relevant information was searched using various electronic catalogs (e.g., Google Scholar, Medline, NISCAIR, Science Direct, Scirus, and Scopus) and keywords such as “anti-venom activity,” “ethnobotany,” “ethnopharmacology,” “Indian,” “indigenous,” “medicinal plants,” “snake bite,” and “survey.” It was difficult to include all the information regarding medicinal plants used for snakebite treatment, and as such this study focused on information that would be easily accessible for researchers. Over the last few decades, people from different tribal communities have been recording and maintaining data regarding traditional and tribal knowledge related to the use of medicinal plants. However, this information has, until now, not been made available to the modern world. In this regard, information on tribal and local use of various plants has been made available and a systematic “ready to use” list of medicinal plants has been formed. The list consists of data, including biological source(s), family, local name(s), part(s) used, method(s) of preparation/formulations, and reference(s). In this review, care was taken to ensure the identification of the herbal medicinal plants that were in the original resources (Table 1).

3. **The Indian subcontinent and snakes**

The Republic of India (3rd largest in Asia and 7th by area in world) is a multilingual country home to a diverse culture with a rich and glorious heritage. India’s land border covers 151,067 km, which is shared with neighboring countries, including Bangladesh (border shared = 40,967 km), China (3488 km), Pakistan (3323 km), Nepal (1751 km), Myanmar (1643 km), Bhutan (699 km), and Afghanistan (106 km). India’s coastline covers 75,166 km, and land area including island territories covers more than 3,287,260 km². Some of these countries were part of India before the partition.

India has numerous and diverse medico-herbal plants. They are dispersed, depending upon geographical and ecological conditions, across the country. Of these, more than 1500 species have demonstrated significant medicinal properties. Envenomation, especially by snakebite, is a serious worldwide public health crisis. Inappropriate and unwarranted treatment results from reasons such as the failure to identify the snake species (venomous or non-venomous), which increases the risk of complications. According to the Integrated Taxonomic Information System (ITIS), Elapidae and Viperidae are the two major families of venomous snakes. Elapidae consists of 325 species distributed in 61 genera. Viperidae includes 224 species distributed in 22 genera. In and around India, approximately 216 species of snakes belong to these families, and only 52 are known to be poisonous. The ‘Big Four’ snakes cause the largest number of snakebite deaths on the Indian subcontinent. The ‘Big Four’ snakes consist of Russell’s viper (Daboia russellii; Marathi translation, ghonas tawarya), Indian cobra (Naja naja; Marathi translation, Nag), saw-scaled viper (Echis carinatus; Marathi translation, phoorsa), and common krait (Bungarus caeruleus; Marathi translation, manyar kanadar) (Fig. 1). Apart from these big four, the hump-nosed viper is also hazardous. Envenomation is a ‘choice’ and voluntary action or reaction by snakes. Their bite is a natural protective defense mechanism. All venomous snakes have the ability to bite without including venom (dry bite). Farmers, fieldmen, and outdoor workers find suffering from snakebites to be an occupational hazard. It is also a leading problem in rural areas of India. It is estimated that snakebite poisoning causes approximately 50,000 deaths annually, and the number is likely higher because not all cases from rural areas are reported.

4. **Snake venom and snake anti-venoms**

Snake venom is one of the most intense and ‘mysterious’ biological fluids within the animal kingdom, causing complex medical effects. This is because of the presence of complex mixtures of proteins, peptides, and contain at least 25 enzymes. Venom is a complicated combination of proteins (both enzymatic and non-enzymatic), peptides, and small organic compounds, such as acetylcholine citrate and nucleoside. There are many potential effects of snake envenomation on humans; however, a few broad categories of major clinical significance are:

1. Systemic myolysis
2. Flaccid (drooping) paralysis
3. Coagulopathy and hemorrhage
4. Cardotoxicity
5. Renal damage or failure
6. Local tissue injury at the bite site

Each of these may cause a number of secondary effects, and each is associated with potential morbidity and mortality. Similar to other modern medicines, anti-venom can have side effects. In addition, it takes too long to develop and
Biological source	Family	Local names	Part used	Method of administration	References
Ajuga reptans Wall	Lamiales	Neelkanthi, Nilkanthi, Kanasar	Rt	Root extract is used as an antidote	29
Alstonia involucrata Thwaites	Simaroubaceae	-	Br	Bark paste is taken orally	32
Alstonia involucrata Thwaites	Simaroubaceae	Ankol, Ankula, Alangi, Aankla	Wp, R, Lw, St, Br	Approximately 15 g of bark ground + 10–12 black peppers mixed with 72 g animal fat given every 2 h to cure snakebite	33–36
Albizia lebbeck (Linn) Benth	Fabaceae	Siris, Kala, Siris, Segta/Siris, Hombage, bhandi	Lw, Br, Fl, Wp, R	Paste of bark is used	31,37–40
Allium cepa Linn	Liliaceae	Piya, Venkayam	Bb	The paste made from fresh skin of bulb is used for external application (5 d)	38,41
Allium cepa Linn	Liliaceae	Lasoon	Bb	Bulb is made into paste and given orally	41,42
Allium sativum Linn	Liliaceae	-	Db	Unknown	43
Ailanthus altissima (L.) ex DC	Simaroubaceae	-	Br	Bark decoction given orally	44–47
Alternanthera sessilis (Linn) R Brown ex DC	Amaranthaceae	Analivegham, Elaipalai, Analivegham	St, Br, Rt	Tablets made from paste of stem bark are taken with cow's urine	48,49
Amaranthus spinosus Linn	Amaranthaceae	Chaulai	Rt	Root powder is used	39
Amaranthus viridis Linn	Amaranthaceae	Khodora, Chaulai	Lw, St	Leaf/stem paste is applied externally	53
Anonemum amarcatinum Roxb	Zingiberaceae	Borelachi, Chakma, Bodealachi	Sd	Whole plant powder mixed with hot cow's milk to drink	57
Anonemum subalatum Roxb	Zingiberaceae	Bara elach	Pd	Seed paste is used	58
Amorphophallus campanulatus Blume	Araceae	Bhabdi	Tb	Boil 2–3 pods and drink the extract twice daily for a week	59
Amorphophallus commutatus (Schott) Engler	Araceae	-	Tb	The tubers are crushed and applied externally	60
Andrographis alata Nees	Acanthaceae	Periyangani	Lw	A handful of fresh leaves or juice is taken orally	61
Andrographis echioides Nees	Acanthaceae	Nadnur, Gusum puru, Gopuranthangi	Wp	Paste of whole plant is given orally with water	62
Andrographis lineate Wall ex	Acanthaceae	Siriyanangai, Periyanangai, Malaiweempu	Wp, Lw	It is also applied externally	63–65
Andrographis paniculata (Burm f) Wall Ex Nees	Acanthaceae	Kalmegh, Bhume, neem, Neelweppu, Nilavaembu, Chirianangai, Sirianangai, Periyanangai	Lw, Lw, Wp	Paste of leaves is applied externally	30,63,65–74
Biological source	Family	Local names	Part used	Method of administration	References
-------------------	-------------------	--	-----------	---	------------
Anisomeles indica	Lamiaceae	Paeimiratti	Lv	Paste of leaf is taken	75
Anisomeles malabarica	Lamiaceae	Siriyapaeyamarati, Peymarutti	Lv, St, Br	The leaf or juice mixed with water to drink	75, 57, 76
Annona squamosa	Annonaceae	Seethaphala		Unknown	
Anogeissus acuminata Wall	Linn	Dhavra	Pl	Poultice is applied	77
Anthocephalus cadamba Miq	Rubiaceae	Kadam	Wp	Unknown	39
Antidesma bunius	Phyllanthaceae	Tuaitit	Lv	Unknown	78
Arachne cordifolia	Euphorbiaceae	–	Lv, St	Unknown	79
Ardisia humilis Vahl	Myrsinaceae	Kumbreth	Br	Crushed paste is applied	80, 53, 81, 82
Argyomeone Mexicana	Papaveraceae	Sialkatahi, Datturi, Pilikateli, Bhrbhhand, Brahmathandu	Br, Sd, Rt	Leaf/seed decoction given orally (7 d) Root paste is also used	80, 53, 81, 82
Arisaema barnesii C Fischer	Araceae	Kaattuchenai	Tb	Dried tuber of this plant and whole plant paste of Andrographis paniculata (1:1) applied over wounds twice a day The tubers are crushed and a paste is made that is applied	69
Arisaema flavum (Forsskai) Schott	Araceae	Sapp googli	Tb	Unkown	83
Arisaema jacquemontii Blume	Araceae	Khaprya	Fr, Rz	Unknown	79, 80
Arisaema leschenaultii Bl ume	Araceae	Havina jola	Rt, Lv, Fr	Fruit/leaf and root paste is applied on the spot of snakebite thrice a day for about 8 d Paste of the tuber in applied Infusion of fresh bulb is taken orally thrice daily Leaf paste applied externally, as well as infusion taken orally Fresh roots are ground along with Rouwalfia serpentina mixed in water taken twice daily (3 d) Root powder is snuffed Root juice is given orally and root paste applied locally	81
Arisaema tortuosum (Wall) Schott	Araceae	Haap rookdaroo, Halida, Kotukand, Chambus, Chakrata	Tb, Bb	Paste of the tuber in applied Infusion of fresh bulb is taken orally thrice daily Leaf paste applied externally, as well as infusion taken orally Fresh roots are ground along with Rouwalfia serpentina mixed in water taken twice daily (3 d) Root powder is snuffed Root juice is given orally and root paste applied locally	60, 84, 85, 60, 75, 85, 86, 3, 4, 5, 6, 7, 8, 9, 75, 87, 89
Aristolochia bracteolate Lamk	Aristolochiaceae	Kalipad, Aduthinnapalai, Sapasan, Garalika, Garudi, Nagbel, Arkamul, Bhrthwurt, Ishkuskemul, Bhdhi-janete, Karalakam, Karupar, Kaligulesar, Eashwari, Eshwarkeli, Perumarindu, Karuda kodi, Garudakodi, Thalaisuruli	Lv, Rt, Wp	Paste of the fasciculate root is applied externally Leaf paste is given	3, 4, 5, 6, 7, 8, 9, 75, 87, 89
Aristolochia indica Linn	Aristolochiaceae	Samta, Vallya, Eswaramulli, Perumarunt, Hukodi	Rt	Crushed and mixed with water and drunk, as well as fresh roots ground and applied externally on affected area Drink 1 cup juice thrice daily Bark paste made with coconut oil and applied	80, 98, 94, 99
Aristolochia tagala Cham	Aristolochiaceae	Samta, Vallya, Eswaramulli, Perumarunt, Hukodi	Rt	Crushed and mixed with water and drunk, as well as fresh roots ground and applied externally on affected area Drink 1 cup juice thrice daily Bark paste made with coconut oil and applied	80, 98, 94, 99
Artocarpus heterophyllus Lam	Moraceae	Kanthal	Pn	Drink 1 cup juice thrice daily Bark paste made with coconut oil and applied	94
Artocarpus hirsutus Lam	Moraceae	–	Br	Drink 1 cup juice thrice daily Bark paste made with coconut oil and applied	94
Artocarpus integrifolia	Moraceae	Kothal, Theibong, Halavu, Makkala, Beru, Satvari, Sildhindhinaayagam	Fr, Rt, Lv	Paste of the fasciculate root is applied externally Leaf paste is given	94, 99, 78, 79, 100
Asparagus racemosus Willd	Liliaceae	–	Br	Unknown	
Asystasia gangetica Linn	Acanthaceae	–	Br	Unknown	
Azadirachta indica A Juss	Meliaceae	Vembu, Veempu, Neem	Fl, Br, Lv, Fr	Decoction/paste is prepared and given orally (7 d)	38, 54, 59, 101
Biological source	Family	Local names	Part used	Method of administration	References
--------------------------	---------------------	--	-----------	--	------------
Bacopa monnieri (Linn)	Pennell Scrophulariaceae	Brahmisak, Nirbirami, Neeripirami, Brahmi	Br, Lv, Wp	Juice mixed with castor oil is applied externally to treat	3, 66
Barleria cristata Linn	Anacanthaceae	Kali, Brenkad, Kattukanagambaram R, Purnarana, Dabball bhaji, Gotam bhaji, Patharhotta, Bishapara Ittsitt	Lv, R, Sd	Leaf powder decoction mixed with hot cow’s milk taken orally	50
Barleria prionitis Linn	Anacanthaceae	Ilavu, Kate savar, Semal, Semul, Semar, Punhachwong, Sinbali, Pilkisii	Lv, Wp	Leaf juice is applied	49
Boerhavia diffusa Linn	Nyctaginaceae	Ponownowa, Iruv, Kate savar, Semal, Purnarana, Dabball bhaji, Gotam bhaji, Patharhotta, Bishapara Ittsitt	Rt	Decoction taken orally	39, 50
Boerhavia repens Linn	Nyctaginaceae	Ilavu, Kate savar, Semal, Semul, Punhachwong, Sinbali, Pilkisii	Ls, RBr, Sd	Leaf juice is also applied locally and taken orally for 7 d	
Bombax ceiba Linn	Bombaceae	Dapartenga	Lv	Unknown	39, 80
Bryophyllum pinnatum Kuntz	Crassulaceae	Char, Chironji, Achar, Chironji, Chironji, Pial	Br	Unknown	53
Butea monosperma (Lamk) Taub	Fabaceae	Palash, Dhak, Pasa, Plash	Br, Lv, F, Gu, Sd, St, Br, Re, Lx	Bark paste applied on swelling	38
Caesalpinia bonduc (Linn) Roxb	Caesalpiniaceae	Poonainagam, Kannj	Sd	Paste of one seed in 10 mL lemon juice is given orally	39, 95
Calotropis gigantea (L) R Br	Asclepiadaceae	Dev rui, Aak, Ekke, Akanda, Erukku, Aakdo, Safedaakdo, Gadsa, Akanda, Erukku	R, Lx	Seeds paste applied externally (2 weeks)	43, 76, 77, 90
Calotropis procera (Ait) R Br	Asclepiadaceae	Rui, Rai, Aakori: Aak, Biilekke, Ekka (Safed Ak), Rakta arka, Erukk, Aakdo, Safedaakdo, Gadsa, Akanda, Erukku	Lx, Rt, Young, Bd	Root bark is ground into paste and made into pills and given orally	75, 99
Cannabis sativa Linn	Cannabaceae	Bhang, Kareel, Kareerua	Lv	Leaf latex is applied on cutaneous area	38
Capsicum annum Linn	Solanaceae	Marchiya	Rt	Root is crushed and given to drink and applied externally	39, 92
Carispermum luridum Linn	Sapindaceae	Moddacoatan	Wp	Leaf paste is used	41
Caris papaya Linn	Caricaceae	Papita, Amurubhanda, Papita	Fr, Sd, Lx	The whole plant powder mixed with goat’s milk to drink	75
Cassia alata Linn	Caesalpiniaceae	Senna, Khor-pat daopata, Sennaiyagathi, Amaltash, Dhanba, Amalas, Sonarkhi, Kakke	Lv	Unripened fruit of Carica papaya is taken and the skin is removed by slicing, salt is then rubbed over it, and the fruit is then placed over the bite with sliced portions in contact with the bite and bandaged. Few drops of latex are applied to snakebite wound for quick healing.	34
Cassia fistula Linn	Caesalpiniaceae	Fr, Sd, Lv, St, R, Br		Paste of leaves is applied externally, as well as given orally	78
Cassia fistula Linn	Caesalpiniaceae	Fr, Sd, Lv, St, R, Br		The paste & decoction of root bark with black pepper is given orally	37–39, 62
Biological source	Family	Local names	Part used	Method of administration	References
-------------------	--------	-------------	-----------	--------------------------	------------
Cassia occidentalis Linn	Caesalpiniaceae	Kasaudni, Kasondi, Peeperambi, Thagarai	Rt, Lv	Oral administration of root paste	36,39,67
Cassia sophora Linn	Caesalpiniaceae	Salarai, Takala, Sickle, senna, Chakwad, Chakunda, Tagarai, Bon medelwa	Rt, Lv	Root paste & leaf decoction is applied externally (30 d)	86,39,53
Catharanthus roseus G Don	Apocynaceae	Nithya pushpa	Rt	Root paste mixed with pepper and lime is applied externally	81
Cayratia trifolia (Linn) Domin	Vitaceae	Khhata nimbi	Tb	Paste of tuber applied on the affected area	84
Centratherum anthelminticum (L) Kunze	Asteraceae	Kattujeerakam	Sd	Unknown	66
Chelocostus speciosis (JKeonig) CDSpecht	Costaceae	Keu, Chengalva kostu	Rz	Unknown	95
Chlorophyllum laxum R Br	Liliaceae	Neerootikizangu	Tb	Tuber paste applied on affected area	89
Cissampelos pareira Linn	Menispermaceae	Patha, Patindu, Batindu, Patha, Urrakkodi, Chokipar, Tijumala, Kasaundi, Ekladi Poa	Tb, Rt	Root paste with long pepper is prescribed once daily for 5 d	92,93,96
Citrullus colocynthis (Linn) Schrad	Cucurbitaceae	Kadva inravarma, Tumba, Gudumba, Tumbo, Indrayan	Sd, Rt, Fr	Seed oil used externally, as well as root crushed and given to drink	33,38
Clematis triloba Linn	Ranunculaceae	Badarisiti, Jangali, Bhoda, Bendar, Siti	Rt	Root paste is applied	77
Cleome glycandra Linn	Cleomaceae	Hul-hul	Lw, Wp	Unknown	39
Cleome viscosa Linn	Capparidaceae	Nayivelai	Lv	Leaf paste applied externally	30
Clerodendron inerme Gaertn	Verbenaceae	Vishaparihari	Rt	Root paste mixed with lime is applied twice daily for a week	81
Clitoria ternatea Linn	Fabaceae	Ruhu tuhu, Aparajita, Syahiful, Aparajita, Gokarni, Aparajita, Bili, Shankhapushpa	R	The root extract is taken with the root of Aristolochia indica and Rauwolfia serpentina	39,87
Cocculus illovosus DC	Menispermaceae	Nagdu, Vachan karalla	Rt	The root bark extract is given internally and applied	3,38
Commelina bengalensis Linn	Commelinaceae	Kana simolu	R	Roots are useful	53
Corallocarpus epigeae (Rottl & Wild) Hook f	Cucurbitaceae	Aathalai, Marsikkand, Kollan, Kova killangu	Rt, Tb	Root decoction given internally 3–7 times	64,68,97
Costus speciosus (Koen) Sm	Costaceae	Keon, Kanda, Kebuk, Mahalaki, Jamlakhuti, Sawmbul, Jomalkhuti, Khongbam, Takhelei, Sumbul, Jomalkhuti, Myonpobap	Rt, Rz	Rhizome and root paste is used internally & externally	58,60,80,87
Crateva magna (Lour) DC	Capparaceae	Jong-sia	Br	Chewed and applied on bitten area	80
Curculigo orchioides Gaertn	Amaryllidaceae	Nilapanai, Nela tengu, Kali musli	Rt, Tb	Root paste use topically	39,80,81
Curcuma amada Roxb	Zingiberaceae	Amba haldi	Rz	The powder of the rhizome is applied locally	84
Curcuma aromatica	Zingiberaceae	Bon haladhi, Lam-yangang Kalaahalud, Kalaahaldi krushna kedara, Neelkanth	Rz	Paste of rhizome taken with water	58
Curcuma caesia Roxb	Zingiberaceae	The dried rhizome powder is mixed with powdered seeds of Andrographis paniculata and applied			34,58
Table 1 (Continued)

Biological source	Family	Local names	Part used	Method of administration	References
Cyathula tomentosa Roth	Amaranthaceae	–	Lv	Unknown	79
Cyphostemma auriculatum (Roxb) Singh & Shetty	Vitaceae	Kali-vel	Br	Bark is taken in some water and once a day (7–8 d)	96
Daemia extensa RBr	Asclepiadaceae	Vaelipparuththi	Rt	Powder of root is given	90
Datura metel Linn	Solanaceae	Kala Dhatura, Dhatura	Sd, Rt, Lr	Extract of roots are taken with garlic	39,70,80,81
Delphinium denudatum Wall ex Hook f & Thomson	Ranunculaceae	Nibishi	Rt	Unknown	41
Desmodium gangeticum (Linn) DC Dick	Fabaceae	Kareti, Salparni	R	Half-cup root decoction is taken orally	39,60
Dichrostachys cinerea Linn Wight & Arn	Araceae	Vedatalai, Kheri	Lr, Rt	Root powder is used	54
Dicliptera paniculata (Forsk) Darbasy	Acanthaceae	Chebeera	Wp	Leaves are crushed into paste and applied locally	95
Dioscorea pentaphylla Linn	Dioscoreaceae	Lalvala vahrikand	Tp	Extract is also given	60
Dregia volubilis (L) Benth Ex Hookf	Apocynaceae	Dudipala, Bandi gurija	Lr	Unknown	95,96
Drymaria cordata (L) Willd Ex Roem & Schult	Caryophyllaceae	Mecanachil, Theiphelwang, Kynbat thalap Ghoti Bhulan	Wp, Lr, R	Whole plant is used (crushed paste applied)	80
Dryopteris cochleata CChr	Aspidiaceae	–	Wp, Lr, R	The whole plant crushed in a bowl and the extract is given orally twice a day	43
Eleptra alba (Linn) Hassk	Asteraceae	Manchal karisalankanni, Bhringraj, Maka	Wp	The leaves and roots are applied on the bite wound	38
Elaeodendron glaucum Pers	Celastraceae	Ratangaur, Bhairao, Niuri Mamri, Jamrasi Mukarthi (Bhuphal) Elasi	Sd, Pd	Whole plant juice is given orally (30 d)	62
Elettaria cardamomum Maton	Zingiberaceae	L	Root and bark infusion mixed with milk and butter, filtered, and used	58	
Eulmisine indica (L) Gaertn	Poaceae	Maltkantari-Mundari	Rt	Decoction	92
Enicostemma axillare (Lam) A Raynal	Gentianaceae	Vellaru	Rt	20 g root is crushed along with 10 g Zingiber officinale and nine black pepper pieces; paste is divided into two equal parts	91
Ervatsamia coronaria Stapf	Apocynaceae	–	Rt, Br	One part with a few drops of honey is administered orally and the other part is applied on the snake bitten area	99
Eruatania heynana Cooke	Apocynaceae	Kadunandibattalo	Rt	5–10 drops of root extract is poured in the spot	91
Euphorbia neriifolia Linn	Euphorbiaceae	Mauza sij, Dudhbol, Thor, Thundar, Manasa	Lx, Rt	Root paste mixed with lemon juice & applied	81
Ficus benghalensis Linn	Moraceae	Badd, Bar, Bargad	Lx, Ap, Rt, Fr	Latex is applied locally	54,80
Ficus glomerata Roxb	Moraceae	Medi	St, Br	Root is used with black pepper	31
Ficus kirta Vahl	Moraceae	Tamangaddu	Rt	The stem bark paste is applied	47
Ficus racemosa Linn	Moraceae	Gular	Br	Root crushed & rubbed	54
Biological source	Family	Local names	Part used	Method of administration	References
--------------------	--------	-------------	-----------	--------------------------	------------
Ficus religiosa Linn	Moraceae	Peepal	Lv, Br, Fr	25 g stem bark and 8–10 cloves are pounded with animal fat (pure ghee) and given 4–6 times a day	35,37,59
Ficus tinctoria Forstf	Moraceae	Telia barnika	Lv	Unknown	31
Fimbristylis spathacea Roth	Cyperaceae	Hathiya	Rt	The fresh root is taken internally & externally	87
Gloriosa superba Linn	Liliaceae	Vadhavadiyo, Vach, Nag, Nagardi, Gowri, Huvu, Kalihari, Kalihari, Karianaga, Agnishikha, Kariyari, Kalappa, Kilangu	Tb, Rt, Rz, Sd	Root paste or tuber paste is applied externally (2–5 d)	38,39,81,82
Habenaria communis Wall	Orchidaceae	Ankra	Tb	The tuber paste is applied	59
Hedychium spicatum SM	Zingiberaceae	Aithur, Tahhellei-hanggam-mapan	Rz, Rt	Root decoction is used	58
Helicteres isora Linn	Sterculiaceae	Hatapi, Murud sheng, Maror Phali	Br, Rt	Bark power is given in snakebite	39,57
Heliotropium indicum Linn	Boraginaceae	Nakkipoo	Lv	The leaf juice mixed with hot water is used	75
Heliotropium marifolium Koen ex Retz	Boraginaceae	Choti-santri	Wp	Unknown	82
Hemidesmus indicus (Linn) R Br	Asclepiadaceae	Suganti Jad, Anantmul, Choti dudha, Anantamul, Analasing, Nannari, Anantamul	Rt, Lv	Aqueous extract of root is prepared in water and given orally & root paste is applied two or three times a day	92,94
Heteropogon contortus (Linn) P Beauv	Poaceae	Lapia, Lapida, Soorwala	Rt	Root paste is taken orally & poultice of root paste is also applied on the bitten portion for early cure	60
Holarrhena pubescens (Buch-Ham)Wall ex GDon	Apocynaceae	Pandharu Kula, Bolmatra	Sd, Rt, St, Br	Paste is applied on the bitten area two times a day	80
Hordeum vulgare Linn	Poaceae	Jav, Jav Ban Talu	Gr	Unknown	54
Hyptis suaveolens (Linn) Poit	Lamiaceae	Banu	R	Unknown	39
Impatiens glandulifera Royle	Balsaminaceae	Hilla	Fls	Unknown	83
Ipomoea obscura (L) Ker Gawler	Convolvulaceae	Siruthaadikkodhi	Lv	Leaf juice is administered	91
Jatropha gossypifolia Linn	Euphorbiaceae	Kattamanakku	Lv, St, Br, Sd, Lx	Unknown	55
Kyllinga monoecephala Rothb	Cyperaceae	Safad, Nirbashi	Un	Unknown	38
Lantana camara Linn	Verbenaceae	Ragadd, Gajukampa, Arippu Durum bon, Gumba, Bhodaki, Tumbe, Thumbai, Gadde tumbe, Thumbi, Thumbai, Kennathumhai Gomma	R, Fl, St, Lv, Wp	Decoction of roots, flower, and stem are used	75
Leucas aspera Spreng	Lamiaceae	Gomma, Gumbi, Gumma	Wp, Lw, Rt	Leaf paste or crushed leaf is taken both externally & internally to treat	73,75,81,90,99,100
Leucas cephalotes (Roth) Spreng	Lamiaceae	Gomma, Gumbi, Gumma Chatti	Wp	The root juice is mixed with goat’s milk three times a day (4 d)	38,39
Lindenhergia muraria (Roxb) Brühl	Scrophulariaceae			Decoction of whole plant (twice a day for 6 d)	82
Biological source	Family	Local names	Part used	Method of administration	References
-----------------------------------	----------------------	---	-----------	---	------------
Lobelia nichotianaefolia Heyne	Campanulaceae	Heddumbe, Kadu hokesoppu	Lv, Lx	Latex is applied externally	81,100
Luffa acutangula (Linn) Roxb	Cucurbitaceae	Torai, Peerkan, Jangli Fr, Tn, Sd		Tendrils & seed paste is used	39,90
Malva sylvestris Linn	Malvaceae	Torai		Extract of leaf mixed with lime juice given	99
Martynia annua Linn	Martyniaceae	Bagnakha, Thota, Sinungi, Uskadpoda, Chhuimui/Lajwanti, Thottal surungi, Thottalvadi, Thottasiniki		Decoction	67
Mimosa pudica Linn	Mimosaceae			Whole plants are made into extract in drinking water and shaken well and filtered	31,39,47,90
Ochis phylla	Ochnaceae			Extract of whole plant is given twice a day for one day only Leaves are ground and made into paste and applied over affected area	
Moringa oleifera Lam	Moringaceae	Sajina, Nugge, Sahigan, Mungna, Sainjna, Sahjan, Sainjnad, Murungah	Rt, Sd, Wp, St, Br, Lv	Fresh extract of bark is taken orally	3,54
Mucuna pruriens (Linn) DC	Fabaceae	Kevach, Konch	Sd, Fr, Rt	Bark root tincture applied externally (3 d)	39
Musa paradisiaca Linn	Musaceae	Vazhai, Valaimaram, Br, St, skin, Br Valai		Aqueous extract of root is given orally twice a day	30,68
Nerium indicum Mill Gard	Apocynaceae	Kaner, Kaner/Kanail, Lv, Br Rt		A plant extract is given orally	39,54
Nymphoides hydrophylla O Kuntze	Menyanthaceae	–	Lv	The root is crushed with roots of Capparis sepia and Datura innoxia and paste applied externally thrice for 5 d	52
Ocima lutea	Lamiaceae	Heddumbe	Rt	Leaf paste is used	
Ocima sanctum Linn	Lamiaceae	Naitulis, Kali Tulsi	Wp	Powder of root drunk with hot water frequently	80
Ophiopogon mungos Linn	Rubiaceae	Havina gedde, Pambupoo, Keeripundu		Unknown	99
Opuntia dillenii (Ker-Gawl) Haw	Cactaceae	Sappathikali	St, Br, Fr, Wp	The fruit paste is applied	75
Othelia alisoides (L) Pers	Verbenaceae	–	Lv	Unknown	57
Oxalis debilis HK var corymbosa (DC) Lour O martiana Zucc	Oxalidaceae	Khatti Booti	Wp	Unknown	39
Pandanus nepalensis St John	Pandanaceae	–	Lv	The fruit is applied	42
Parnassia rubicola Wall ex Royle	Parnassiaceae	–	Tbs, Rt	Unknown	79
Martynia annua Linn	Martyniaceae	Bagnakha, Thota, Sinungi, Uskadpoda, Chhuimui/Lajwanti, Thottal surungi, Thottalvadi, Thottasiniki		Decoction	67
Mimosa pudica Linn	Mimosaceae			Whole plants are made into extract in drinking water and shaken well and filtered	31,39,47,90
Ochis phylla	Ochnaceae			Extract of whole plant is given twice a day for one day only Leaves are ground and made into paste and applied over affected area	
Biological source	Family	Local names	Part used	Method of administration	References
--	-----------------------	------------------------------	-----------	---	------------
Pavetta indica Linn	Rubiaceae	Therani	Lv, Rt	A leaf paste is used externally	68
Pericaria daemia (Forsk) Chiov	Apocynaceae	Veilaputhi	Rt, Lv	The decoction of the leaves is used	30,75,95
Peucedanum anallayense Cl	Apiaceae	Padachurukki	Wp	Whole plant paste along with cow’s urine is taken	48
Phyllanthus acidus (Linn) Skeels	Euphorbiaceae	Kawsunhlu	Rt	Decoction of roots is given	78
Piper nigrum Linn	Piperaceae	Bolkaalu, Menasina kaalu,	Fl, Sd, Fr	Seed powder mixed with butter is given orally against	3,54
		Maricha, Kali-mirch, Milagu		snakebite	
				Flower paste with ghee given orally (4 d)	
Pistia stratiotes Linn	Araceae	Jalkumbhi	Sd, Br	Decoction of seeds is given	67
Pittosporum tetraspernum Wight & Arn	Pittosporaceae	Analivegam		Paste of stem bark is taken with cow’s urine	48,66
Plantago erosa Wall	Plantaginaceae	Chhakur-blang, Nela site huvu	Lv, Rt	Poultice of the leaves is given	80
Platanthera susannae Lind	Orchidaceae			In combination with lime and salt, the paste of root	81
				tubers is applied on the affected area	
Pouzolzia indica Gaud	Urticaceae	Dudhmor	Wp, Br	Unknown	53
Prosopis cineraria Druce	Fabaceae	Khejdi, Vanni maram		Paste of bark tied on the affected area	71
Quercus leucotrichophora A Camus	Fagaceae	Banj	Sd	Unknown	41
Randia dumetorum (Retz) Poiret Linn	Rubiaceae	Kaare	Rt	Paste with water	81
				The root of this plant and leaves of Acacia suma	
				(Mimosaceae) are pounded with salt and applied	
				externally	
				Leave juice used as antidote Roots and leaf buds	34,39,43,62,76,99
				crushed with milk to make into paste used both	
				internally and externally on affected area	
Rauwolfia serpentina (Linn) Benth ex Kurz	Apocynaceae	Nagbel, Bhuin karuan, Patal-	Lv, Rt	Leave juice/paste is orally taken	49,61
		garuda, Bhuikurma, Sarpagandha, Keramaddinagaddi, Sutranabhi, Sarpagandha lairisich, Sarpagandha			
Rhinacanthus nasutus (L) Kurz	Acanthaceae	Nagamalli	Lv	Fresh leaves are taken orally, as well as the leaf	49,96
				applied externally	
				The plant juice/paste is orally taken	
Rivea hypercitriformis (Desr) Choisy	Convolvulaceae	Parh	Wp, Rt	Root paste is used	79
Rubus niveus Thunb	Rosaceae	–	Fr	Tuberous root paste is applied on the area of	97
Rutaceae		Nagadali	Rt	snakebite	
Sanseveria roxburghiana Schultes F	Agavaceae	Saganaara, Gaju kura	Rt		
Saraca asoca (Roxb) De Wilde	Celasalpiniaceae	Ashok, Asoka	Sd		40
Sauratomatum venosum (Ait) Kuntz	Araceae	Halida, Samp ki dawa	Tb		33,84
Sausurea costus (Pall) Lipsch	Asteraceae	Kuth	Rt	The paste of tuber is applied on the affected area	41
Sesamum indicum Linn	Pedaliaceae	Til	Sd	Seed is mixed with ghee, ginger powder, and oil and	54
				given orally	
Sida acuta Burm	Malvaceae	–	Wp	The whole plant extract is given internally and	3
				applied externally	

References:
- Kurz, W. (1913). *The Medical Plants of India*. Memoirs of the Madras Government Printing Offic
- Wild, S. (1916). *The Medicinal Plants of India*. Government Printer
- Harve, L. (1753). *The Botanical Magazine*. Printed by J. May
- Druce, A. (1826). *The Genera of the Plantae*. Printed by J. May
- Poiret, E. (1833). *The Genera of the Plantae*. Printed by J. May
- Kurz, W. (1913). *The Medical Plants of India*. Memoirs of the Madras Government Printing Offic
- Wild, S. (1916). *The Medicinal Plants of India*. Government Printer
- Harve, L. (1753). *The Botanical Magazine*. Printed by J. May
- Druce, A. (1826). *The Genera of the Plantae*. Printed by J. May
- Poiret, E. (1833). *The Genera of the Plantae*. Printed by J. May
| Biological source | Family | Local names | Part used | Method of administration | References |
|-------------------|--------|-------------|-----------|--------------------------|------------|
| Sida caprinifolia Linn | Malvaceae | Arivaal mania poondu, Kungyi, Makoi, Bhui ringani, Bhat katiyan, Choti kateli, Rohina | Lv, Rp | Leaf paste is used | 90 |
| Sida cordifolia Linn | Malvaceae | | | | |
| Solanum nigrum Linn | Solanaceae | | | | |
| Solanum xanthocarpum Schard & Wendl | Solanaceae | | | | |
| Sowaida febrifuga A Juss | Meliaceae | | | | |
| Sterculia urens Roxb | Sterculiaceae | Karaya, Kajara, Kaasarka, Kanjiram, Vishamushi, Etti, Visakkotai, Yeti | Rt, Sd | Root bark juice in cow’s milk is externally rubbed 3–4 times a day to treat | 60, 69 |
| Strychnos nux-vomica Linn | Loganiaceae | Kajana, Kaasarka | Rp | The crushed root mixed with salt and turmeric is applied | 81, 80 |
| Strychnos potatorum Linn | Leguminosae | Thethamkottai | Sd | The seed powder is also used | 49 |
| Tabernaemontana coronaria RBr | Apocynaceae | Nandibattalu huvu | Rt | Seed powder given orally | |
| Tabernaemontana divaricata (Linne) RBr | Apocynaceae | Nanjatte, Madderasa, Kathlona, Amli, Tengtere, Tetul, Kuttalvayana, Padamchurukkil-pam, Kuttalavayana | Rt, Lv Sd | The extract of the seed is given, as well as crushed paste applied on bitten area | |
| Tamrindus indica Linn | Caesalpiniaceae | Pul, | Sd, Rt | Unknown | 51, 55 |
| Tectona grandis Linnaeus (DC) Wight & Arn | Verbenaceae | Sagwan, Arjun, Marutham, Vellamarthu, Kuttalvayana, Padamchurukkil-pam, Kuttalavayana | Lv, Br | Unknown | 44, 45 |
| Thotea siliquosa (lamk) Ding Hou | Aristolochiaceae | | | | |
| Tiliacora acuminata (Lamk) Miers | Menispermaceae | Kappa teega | Lv | Roots and leaves decoction are given orally | 66, 89 |
| Trichosanthes cucumerina Linn | Cucurbitaceae | Nagfani beldi | Tb | | 84 |
| Tridax procumbens Linn | Asteraceae | Munya arxa, Dagas Ful | Lv | | |
| Tylophora indica (Burm f) Merr | Asclepiadaceae | Nangilai, Ashamakodi | Lv, Rt | | 31, 63, 65 |
| Urginea indica (Roxb) Kunth | Liliaceae | Kolknada | Cm | | 35 |

References: 31, 63, 65
is expensive. Strict and specific conditions are required for long-term storage.15 Because of the lack of availability of antidotes and anti-venoms at any specific time, alternatives from plant sources (which are abundant) should developed. Adequate information about herbal preparations or formulations is needed. The Indian system of medicine, especially Ayurveda medicine, has thrown light on this subject. A variety of plants mentioned in Ayurvedic literature are useful in snakebite treatment.20 Considering that treatment at a proper clinic or hospital is at an unreachable distance for approximately 80\% of victims, these people are primarily treated or handled by a traditional practitioner, or Vaidya, or other tribal herbalist. If the situation is beyond their control, they must proceed to a nearby clinic or hospital for advanced therapy.8 The traditional practitioners rely on various plants for treatment because they are knowledgeable about a variety of plant species that are helpful against snakebites and associated complications.3,21 In the management of snakebites, there are two main aspects:

Table 1 (Continued)

Biological source	Family	Local names	Part used	Method of administration	References
Vitex negundo Linn	Verbenaceae	Nukki, Lakkigida, Karinochi notchi, Nishindi, Shet nishinda	Br, Rt, Lv, Sd	Leaf paste applied over the bitten area (5 d), as well as root extract is given with warm water	81
Vitex penduncularis Wall	Verbenaceae	Charanigorh	Br	Decoction of the bark is given orally at 30 min intervals	62,68
Zingiber rubens Roxb	Zingiberaceae	Pauphok	Lv	The leaves are torn into thin strips and rope is made that is used to tie up parts of snakebite to prevent flow of venom in blood	45

Abbreviations used – Ap, arial portion; Bb, bulb; Bd, bud; Br, bark; Cm, corm; Fl, flower; Fr, fruit; Gr, grain; Gu, gum; Lv, leaves; Lx, latex; Pd, pods; Pl, poultice; Pn, penduncle; Re, resin; Rt, root; Rz, rhizomes; Sd, seeds; Sh, shoot; St, stem; Tb, tuber; Tn, tendril; Un, unknown; Wp, whole plant; d, day(s); h, hour(s).

Fig. 1 – Big Four Russell’s viper (Daboia russelii, Marathi – ghonas, tawarya), Indian cobra (Naja naja, Marathi – Nag), saw-scaled viper (Echis carinatus, Marathi – phoorsa), and the common krait (Bungarus caerules, Marathi – manyar, kanadar). Images reprinted with permission from indiansnakes.org.
1. Proper first aid treatment and
2. Anti-venom/anti-ophidian treatment, such as serum therapy

Because of side effects or adverse reactions (e.g., anaphylacti-
c reactions), serum sickness and sometimes the anti-venom itself produces complications during treatment.22

5. Diversity of India

World Health Organization (WHO) stated that almost 80% of the population in developing countries depend on various herbal plants for the management of diverse diseases and illnesses because of the lack of modern health care services.3,23 In addition, for prime health care, people are dependent on their earnings and improvement of the standard of living. More than 65,000 plant species are traditionally used in addition to modern medicines.24 In India, Ayurveda is the most widely practiced system of medicine, which has a marvelous diversity of plant information. The Republic of India has 29 states and seven union territories comprising an area of 3,287,263 km². The Indian people speak a variety of languages, including 23 regional languages: Assamese, Bengali, Bodo, Dogri, Gujarathi, Kannada, Kashmiri, Kokborok, Konkani, Malayalam, Manipuri, Marathi, Mizoram, Nepali, Odia, Punjabi, Sanskrit, Santali, Sindhi, Tamil, Telugu, and Urdu. Apart from these, other local or tribal people have their own native or native language per locality. India encompasses different ethnic groups with over 539 core indigenous people living in diverse territories. It has varied cultures, foods, traditions, and religious rituals, which causes separations among the people. Furthermore, there is a wealth of knowledge of conventional medicine, particularly herbal and folk medicine, for treatment of snakebites.

6. Clinical significance of snakebite

Traditional herbalists treat people earlier and use plants to cure various complications and ailments.3 The snake is still not perfectly understood to worldwide researchers. The word ‘snake’ invokes feelings of fear because of an instinctive human emotion and its image is powerful and primal. Snakes are as fascinating to psychologists, pharmacologists, and clinicians as they are to evolutionists. Snakes are either poisonous or nonpoisonous. Snakebites can be considered as environmental or occupational hazard because they occur regularly and repeatedly, with overwhelming frequency, particularly in remote rural areas in tropical developing nations. It is estimated that each year in India there are more than 80,000 snake envenomings and 11,000 deaths, which makes India a seriously affected nation. Snakes are present on each continent, except Antarctica.9 Mishal et al listed some critical and medically significant (clinical) conditions and syndromes related to snakebite envenomation14 as follows:

1. Local or restricted area envenoming (swelling of the affected part) with hemorrhage or difficulty clotting (this is particularly seen in Viperidae envenomation).
2. Local or restricted area envenoming (viz. swelling) with hemorrhage or difficulty clotting damages the kidneys or contributes to infections that cause neuro-paralysis and shock.
3. Local or restricted area envenoming (such as swelling) along with paralysis.
4. Paralysis with/without local or restricted area envenoming.
5. Paralysis with urine that is dark brown in color in addition to acute kidney injury.

7. Composition of snake venom

Medical science occasionally ignores community health values. Snake venom is rich in protein and peptide toxins. These proteins have a definite action on numerous tissue receptors. The wide range of action of snake venoms makes them clinically demanding and scientifically interesting, in particular, for drug design.25 The mysterious biological nature of venom and its complex medical effects have long captured human imagination and inquisitiveness. Venoms, mainly snake venoms, have been the focus of ancient mythology, early biomedical speculation, folklore, and scientific investigation, in addition to pharmacognosy.24 The venom of any species may have more than 100 diverse toxic and non-toxic proteins and peptides, along with non-protein toxins (amines, carbohydrates, lipids, and additional small molecules).25 Proteins and peptides comprise approximately 90 ± 05% of the dry weight of venom. Supplementary components in the venom consist of carbohydrates, metallic cations, nucleo-sides, biogenic amines, and a small amount of free amino acids and lipids. The venom of snakes contains at least 25 enzymes, although no single snake venom has all of them. Enzymes are responsible for catalyzing numerous precise biochemical reactions that occur in living matter. They are the mediators upon which cellular metabolism depend. Among the available choices, the more important snake venom enzymes are as follows: 5’-nucleotidase, acetylcholinesterase, arginine ester hydrolyase, collagenase, DNase, hyaluronidase, lactate dehydrogenase, l-amino acid oxidase, NAD nucleosidase, phosphodiesterase, phospholipase A2 (A), phospholipase B, phospholipase C, phosphomonoesterase, proteolytic enzymes, RNase, and thrombin-like enzymes. All these enzymes are not present in all venoms. Among the peptides originating in snake venoms are pre-synaptic and postsynaptic neurotoxins, myotoxins, cytotoxins, cardiotoxins, and potassium channel-binding neurotoxins, along with platelet aggregation inhibitors (disinterring).23,26,27

8. Snakebite treatment in India

Because India is the only country of its kind in terms of the diversity of geographical, environmental, and climatic features, it has a rich and wide-ranging flora of medicinal herbal plants that have been used since the Vedic period. A huge portion of the nation still uses plants as home remedies in rural and remote areas for a number of illness, infections, and diseases, including snakebites. India is a nation with mega diversity; moreover, approximately 10% of world’s species are
indigenous to India. Because India has a prosperous, flourishing, enlightening legacy, almost all Indians have directly and indirectly been connected with a variety of herbs during their ritualistic ceremonies and various cultural activities. A recent study found that rich ethno-medicinal knowledge could be gathered from the community members, which would provide a great advantage to future generations by documenting and preserving the knowledge. This requires that the ethnomedicinal plants used by the native tribal people should be comprehensively revised and the proper significance of these plant species assigned, such that they can be managed and conserved for the welfare of mankind. Reliable progress has been made in that direction. Snakebite treatment in India (before partition) consisted of various snake antivenom drugs and/or combination formulations, such as Suruimuina (1908), Ofidina (1909), Viborina (1910), an unknown plant used by the Civil Surgeon of Hugli (1912), an ointment made by Mr M Robert of Bordeaux (1914), Goor Boineche Antitoxicum (1915), Tiiriyaq (1916, repeated in 1929), white champa pod and root (1920), Payam-i-Hayat (February 14, 1921), El Elixir Antiviperino Lexin (1923), remedy by firuzuddin (June 1928), and lobelin (1929) that have been tested since 1906 in various pharmacological labs across India, then British India and the Indian subcontinent. The severity of snakebite poisoning is always a catastrophic issue for the sufferer and physician. Usually death will result because of many reasons, such as failure of the patient to reach the hospital, lack of appropriate treatment, difficulty in production, deployment, and accessibility of current snake anti-venoms. The mortality rate depends largely on the species of snake. Elapid poisoning (viz. cobra and krait) always has a higher mortality rate than that of Viperidae poisoning (saw-scaled viper and Russell’s viper). The point to be considered is that an approximately 70-kg healthy person will succumb to only a small quantity of venom, and typically it takes the venom 6 seconds or less to reach the heart. In various ancient texts and literature, more than 320 medicinal plants and more than 180 different combinations are reported to have snake anti-venom activity. However, after comprehensive evaluation, all of these Ayurvedic preparations from medicinal plants had no snake anti-venom properties.

9. Vaidya – Indian herbalist, physician, compoudner and dispenser

In the Indian system of medicine, the Vaidya is known as doctor of herbs, who makes a diagnosis of illness and compounds medicinal preparations, such as asava, arista, churna (powders), lotions, liniments, pills, syrup, and taila. Furthermore, many old-aged persons (such as a grandmother) are familiar with the application of various herbs. Practitioners of Ayurveda believe that every plant on the Earth has some significant medicinal property for the purpose of the good of the world; the right person just has to show you. The practitioner of Ayurveda states (Naasti Moolam Anaushadhim translation Every plant on earth has a medicinal property). Allopathy (the treatment of disease by conventional means, that is, with drugs having effects opposite to the symptoms) or modern medicinal systems sometimes has a number of undesired effects from drugs, such as adverse drugs reactions. Therefore, an increasing number of people in developed and developing countries are using medicinal plants for some betterment. The formulations or plant preparations rely on the availability of the plant part(s). Usually preparation is made by crushing the plant or its part(s) by using stones or pieces of wood. Often a juice or paste is made to apply to the affected area or sometimes is given orally. A number of villagers or Vaidya have a specific stone set called a “Paata-Varvanta” (Fig 2). The Paata is a Marathi language word meaning base on which the plant or its part(s) are kept. The Varvanta is a Marathi language word meaning a pastel-like stone to crush the plants or its part(s). The present review is an attempt to cover the traditional/ethnobotanical medicinal plants utilized in various parts of India for snakebites. Apart from previous reviews, this will also help future researchers to recognize the herbal approach for the treatment of snakebites. In Table 1, the data from the current analysis is presented. Arrangement of medicinal plant species is in alphabetical order.

10. Conclusion

Mother Nature has given humans a most precious gift in medicinal plants. The natives of India are people who are very connected to Nature, as Indians are “celebration affectionate” people. In almost every festival in India, there is connectivity of human beings to animals and Mother Nature. The local tribes understand biodiversity and serve as a source of knowledge regarding proper use of medicinal plants. For various reasons, the focus altered from modern medicine to Ayurveda herbs and medicinal plants for various diseases or disorders. India is homeland for such a marvelous variety of diversity. In cultural heritage, India has a long history.
of medicinal plant utilization. This review has attempted to cover remarkable similarities among medicinal plants that are used across India. In our study, a total of 523 plant species belonging to 122 families were reported for treatment of snakebites. Furthermore, this review encompasses some plants that are rarely or less often used. The most common families include Acanthaceae, Apocynaceae, Areceae, Asteraceae, Caesalpiniaceae, Cucurbitaceae, Euphorbiaceae, Fabaceae, Lamiaceae, Rubiaceae, and Zingiberaceae (Fig. 3).

For a long time, the traditional healers have practiced using herbal traditional medications for snakebite treatment, as well as numerous other diseases. Biological source(s), family, local name(s), part(s) used (Fig. 4), method of preparation, and reference(s) are provided to increase the ease of availability for the data.

There is a lot of information yet to be gathered and formulated. Ethno-botanical investigation is the future branch that will aid in maintaining good health for all mankind because much is still hidden and there are chances to make new phytochemical phytopharmacological drug discoveries, which will become the most reliable progression in the direction of utilization of medicinal plants for the treatment of various illnesses.

Conflict of interest statement
The authors declare no conflict of interest.

Sources of funding
Nil.

Acknowledgments
The authors are thankful to all relevant personnel from R C Patel Institute of Pharmaceutical Education and Research Shirpur, as well as R C Patel Institute of Pharmacy Shirpur for their help, encouragement, and occasional suggestions. The authors are very thankful to Jose Louies, Member – IUCN Viper Specialist Group and Founder of indiansnakes.org (http://indiansnakes.org/) & snakebiteinitiative.in (http://snakebiteinitiative.in/) and his team for providing high resolution images of Big four snakes.

REFERENCES

1. Nasab FK, Khoeravi AR. Ethnobotanical study of medicinal plants of Sirjan in Kerman Province Iran. J Ethnopharmacol 2014;154:190–7.
2. Ody P. The complex medicinal herbal. New York: Dorling Kindersley Limited; 1993.
3. Upasani SV, Beldar VG, Upasani MS, Tatiya AU, Surana SJ, Patil DJ. Ethnomedicinal plants used for snakebite in India: a brief overview. Integr Med Res 2017;6:114–30. http://dx.doi.org/10.1016/j.imr.2017.03.001.

4. Ministry of Home Affairs Government of India official website http://mhanicin/sites/upload_files/mha/files/bmintro-1011.pdf. Published March 23, 2017. Updated March 23, 2017. Accessed March 23, 2017.

5. Kasturaritane A, Wickremasinghe AR, de Silva N, Gunawardena K, Pathmeswaran A, Premaratna R. The global burden of snakebite: a literature analysis and modelling based on regional estimates of envenoming and deaths. PLoS Med 2008;5:e218.

6. Gutiérrez JM, Theakston RDG, Warrell DA. Confronting the neglected problem of snake bite envenoming: the need for a global partnership. PLoS Med 2008;5:e150.

7. Gutiérrez JM, Williams D, Fan HW. Snakebite envenoming from a global perspective: towards an integrated approach. Toxicon 2008;56:1223–35.

8. Chippaux JP. Snake-bites: appraisal of the global situation. Bull World Health Organ 1998;76:515.

9. Bawaskar HS. Snake venoms and antivenoms: critical supply issues. J Assoc Phys India 2008;52:11–3.

10. Meenatchisundaram S, Parameswari G, Subbaraj T, Michael A. Anti-venom activity of medicinal plants – a mini review. Ethnobotan Leaf 2008;12:1218–20.

11. Indian snakes on indiansnakes.org website (accessed 28.12.2015). Published March 23, 2017. Updated March 23, 2017. Accessed March 23, 2017.

12. Simpson ID, Norris RL. Snakes of medical importance in India: is the concept of the “Big 4” still relevant and useful? Wilderness Environ Med 2007;18:2–9.

13. Young BA, Cynthia EL, Kylie MD. Do snakes meter venom? BioScience 2002;12:1121–6.

14. Mishal HB, Mishal RH, Saudagar RB. Focus on the various corridors of snake bite envenomation treatment – a review. Int J Curr Res Life Sci 2015;4:492–8.

15. David AW. Guidelines for the clinical management of snakebite in the south east Asia region. New Delhi: WHO Regional Office for South East Asia; 2005.

16. Zelanis A, Tashima AK. Unraveling snake venom complexity with ‘omics’ approaches: challenges and perspectives. Toxicon 2005;87:131–4.

17. Markland FS. Snake venoms and the hemostatic system. Toxicon 1998;36:1749–800.

18. Elbery B, Baykal B, Yazgan UC. The prognostic value of the neutrophil/lymphocyte ratio in patients with snake bites for clinical outcomes and complications. Saudi J Biol Sci 2017;24:362–6.

19. Aird SD. Ophidian envenomation strategies and the role of purines. Toxicon 2002;40:335–93.

20. Kanojia A, Chaudhari KS, Gotheca VK. Medicinal plants active against snake envenomation. IJRAP 2012;3:363–6.

21. Mors WB, DoNascimento MC, Pereira BMR, Pereira NA. Plant natural products active against snake bite – the molecular approach. Phytochemistry 2000;55:627–42.

22. Lakshmi V, Lakshmi T. Antivenom activity of traditional herbal drugs: an update. Int J Pharmac 2008;4:1–3.

23. Calixto JB. Twenty-five years of research on medicinal plants in Latin America: a personal review. J Ethnopharmacol 2005;100:131–4.

24. Polat R, Satli F. An ethno-botanical survey of medicinal plants in Edremit Gulf (Balkesir – Turkey). J Ethnopharmacol 2012;139:626–41.

25. Warrell DA. Snake bite. Lancet 2010;375:77–88.

26. Stocker K. Composition of snake venom. In: Stocker KF, editor. Medical use of snake venom proteins. Boca Raton: CRC Press; 1990:33–56.

27. Niewiarowski S, McLane MA, Kloczewiak M. Disintegrins and other naturally occurring antagonists of platelet brinogen receptors. Sem Hematol 1994;31:289–300.

28. Mhaskar KS, Caius JF. Indian Med Res Memoirs 1931:1–96.

29. Guleria V, Vaisithth A. Ethnobotanical uses of wild medicinal plants by Guddi and Gujar Tribes of Himachal Pradesh. Ethnobotan Leaf 2009;13:1158–67.

30. Alagesabooopathi C. Ethnomedicinal plants used as medicine by the Kurumba Tribals in Pennagaram Region Dharmpuri District of Tamil Nadu India. Asian J Exp Biol Sci 2011;2:140–2.

31. Krishna NR, Varma YN, Saidulu C. Ethnobotanical studies of Adilabad District Andhra Pradesh. India J Pharmacognosy Phytochem 2014;3:18–36.

32. Kadhurvel K, Ramya S, Sathyu Sudha TP, Ravi AV, Rajasekaran C, Selvi VR, et al. Ethnomedicinal survey on plants used by tribals in Chitteri Hills. Environ We Int J Sci Technol 2010;5:35–46.

33. Meena KL, Yadav BL. Studies on ethnomedicinal plants conserved by Garasia tribes of Sirohi district Rajasthan India. Indian J Nat Prod Res 2010;1:500–6.

34. Panda T, Padhy RN. Ethnomedicinal plants used by tribes of Kalahandi district Orissa. Indian J Tradit Knowl 2008;7:242–9.

35. Anis M, Sharma MP, Iqbal M. Herbal ethnomedicine of the Gwalior forest division in Madhya Pradesh. India Pharm Biol 2000;38:241–53.

36. Mallik BK, Panda T, Padhy RN. Ethnoveterinary practices of aborigine tribes in Odisha India. Asian Pacific J Trop Biomed 2012;2:S1520–5.

37. Samar R, Shrivastava PN, Jain M. Ethnombotanical study of traditional medicinal plants used by tribe of Guna District Madhya Pradesh India. Int J Curr Microbiol Appl Sci 2015;4:466–71.

38. Panghal M, Arya V, Yadav S, Kumar S, Yadav JP. Indigenous knowledge of medicinal plants used by Saperas community of Khetawas Jhajjar District Haryana India. J Ethnobiol Ethnomed 2010;6:1–11.

39. Singh PK, Kumar V, Tiwari RK, Sharma A, Rao CV, Singh RH. Medico-ethnobotany of ‘chatarra’ block of district sonebhadra Uttar Pradesh India. Adv Biol Res 2010;4:65–80.

40. Shiddamallayya N, Yasmeen A, Gopakumar K. Hundred common forest medicinal plants of Karnataka in primary healthcare. Indian J Tradit Knowl 2010;9:90–5.

41. Phondani PC, Maikhuri RK, Kala CP. Ethnoveterinary uses of medicinal plants among traditional herbal healers in Alaknanda catchment of Uttarakhand India. Afr J Tradit Complement Altern Med 2010;7:195–206.

42. Pradhan BK, Badola HK. Ethnomedicinal plant use by Lepcha tribe of Dzongu valley bordering Khangchendzonga Biosphere Reserve in north Sikkim India. J Ethnobiol Ethnomed 2008;4:1–18.

43. Rout SD, Panda T, Mishra N. Ethn-medicinal plants used to cure different diseases by tribes of Mayurbhanj district of North Orissa. Ethn-medu 2009;3:27–32.

44. Harney NV. Ethnomedicinal plants diversity of Bhadravati Tahsil of Chandrapur District Maharashtra India. Int J Sci Res Publ 2013;3:1–6.

45. Choudhury S, Sharma P, Choudhury MD, Sharma GD. Ethnomedicinal plants used by Chorei tribes of Southern Assam North Eastern India. Asian Pacific J Trop Dis 2012;2:141–7.

46. Hazarika R, Abujam SS, Neog B. Ethno medicinal studies of common plants of Assam and Manipur. Int J Pharm Biol Arch 2012;3:809–15.

47. Choudhury PR, Choudhury MD, Ningthoujam SS, Das D, Nath D, Das TA. Ethnomedicinal plants used by traditional healers of North Tripura district Tripura North East India. J Ethnopharmacol 2015;166:135–48.
48. Udayan PS, George S, Tushar KV, Bhalchandrana I. Medicinal plants used by the Kaadar tribes of Sholayar forest Thrissur district Kerala. Indian J Tradit Knoul 2005;4:159–63.

49. Karuppusamy S. Medicinal plants used by Paliyan tribes of Sirumalai hills of southern India. Nat Prod Radi 2007;6:436–42.

50. Bhaita H, Sharma VP, Manhas RK, Kumar K. Ethnomedicinal plants used by the villagers of district Udhampur &K India. J Ethnopharmacol 2014;151:1005–18.

51. Das AK, Dutta BK, Sharma GD. Medicinal plants used by different tribes of Cachar district Assam. Indian J Tradit Knoul 2008;7:446–54.

52. Swapna MM, Prakash Kumar R, Anoop KP, Manju CN, Rajith NP. A review on the medicinal and edible aspects of aquatic and wetland plants of India. J Med Plants Res 2011;5:7163–76.

53. Sikdar M, Dutta U. Traditional phytotherapy among the Neth people of Assam. Ethno Med 2008;2:39–45.

54. Upadhyay B, Dhaker AK, Kumar A. Ethnomedicinal and ethnopharmacoc-statistical studies of Eastern Rajasthan India. J Ethnopharmacol 2010;129:64–86.

55. Rameshkumar S, Ramakritinan CM. Floristic survey of traditional herbal medicinal plants for treatments of various diseases from coastal diversity in Pudukottai District Tamilnadu India. J Coastal Life Med 2013;1:225–32.

56. Sharma P, Rana JC. Assessment of ethnomedicinal plants in Shivalik Hills of Northwest Himalaya India. Am J Ethnomed 2014;1:186–205.

57. Rao DM, Rao UV, Sudharshana G. Ethno-medico-botanical studies from Rayalaseema region of southern Eastern Ghats Andhra Pradesh India. Ethnobot Leaf 2006;1:198–207.

58. Basak S, Sarma GC, Rangan L. Ethnomedical uses of Zingiberaceous plants of Northeast India. J Ethnopharmacol 2010;132:286–96.

59. Maheshwari JK, Kalakoti BS, Lal B. Ethnomedicine of Bhil tribe of Jhabua District MP. Anc Sci Life 1986;5:255–61.

60. Jain A, Katewa SS, Galav PK, Sharma P. Medicinal plant diversity of Sitamata wildlife sanctuary Rajasthan India. J Ethnopharmacol 2005;102:143–57.

61. Kottaimuthu R. Ethnobotany of the Valaiyans of Karandamali Dinigul District Tamil Nadu India. Ethnobot Leaf 2008;12:195–203.

62. Marandi RR, Britto SJ. Ethnomedicinal plants used by the Oraon Tribals of Latehar District of Jharkhand India. Asian J Pharm Res 2014;4:126–33.

63. Ignacimuthu S, Ayyanan M. Ethnobotanical investigations among tribes in Madurai district of Tamil Nadu India. J Ethnobiol Ethnomed 2006;2:1–7.

64. Rajendram SM, Sekar KC, Sundaresan V. Ethnomedicinal lore of Valaya tribals in Seithur Hills of Virudunagar district Tamil Nadu India. Indian J Tradit Knoul 2002;1:59–71.

65. Ignacimuthu S, Ayyanan M, Sivaraman SK. Ethnobotanical investigations among tribes in Madurai District of Tamil Nadu (India). J Ethnobiol Ethnomed 2006;2:56–63.

66. Yesodharan K, Sujana KA. Ethnomedicinal knowledge among Malamalasar tribe of Parambikulam wildlife sanctuary Kerala. Indian J Tradit Knoul 2007;6:481–5.

67. Vijendra N, Kumar KP. Traditional knowledge on ethno-medical uses prevailing in tribal pockets of Chhindwara and Betul Districts Madhya Pradesh India. Afr J Pharm Pharmacol 2010;4:662–70.

68. Ganesan S, Pandi NR, Banumathy N. Ethnobotanical survey of Alagarkoil Hills (Reserved forest) Tamil Nadu India. E J Indian Med 2008;1:1–18.

69. Udayan PS, George S, Tushar KV, Bhalchandran I. Medicinal plants used by the Malayali tribe of Servarayar Hills Yercard Salem District Tamil Nadu India. Zoos’ Print J 2006;21:2223–4.

70. Beverly CD, Sudarsanam G. Ethnomedicinal plant knowledge and practice of people of Javadhlu hills in Tamilnadu. Asian Pacific J Trop Biomed 2011;1:79–81.

71. Boscio FC, Arumugam R. Ethnobotany of Irular tribes in redhills tamilnadu India. Asian Pacific J Trop Dis 2012;2:S874–7.

72. Ganesan S, Suresh N, Kesaven L. Ethnomedicinal survey of lower Palini Hills of Tamilnadu. Indian J Tradit Knoul 2004;3:299–304.

73. Revathi P, Parmelazhagan T. Traditional knowledge on medicinal plants used by the Irula tribe of Hasurun Hills Erode District Tamil Nadu India. Ethnobotan Leaf 2010;14:136–60.

74. Pattanak C, Sudhakar Reddy C. Medicinal plant wealth of local communities in Kuldiha Wildlife Sanctuary Orissa India. J Herbs Spices Med Plants 2008;14:175–84.

75. Alagesabasothi P C. Ethnomedicinal plants and their utilization by villagers in Kumargarhi hills of Salem district of Tamilnadu India. Afr J Tradit Complement Altern Med 2009;6:222–7.

76. Srvan PM, Venkateshwar RKN, Santhoshda S, Chaitanyn RSNAXK, David B. Medicinal plants used by the ethnic practitioners in Nalonda District Andhra Pradesh India. Int J Res Ayurveda Pharm 2010;1:493–4.

77. Dahare DK, Jain A. Ethnobotanical studies on plant resources of Tahsil Multai District Betul Madhya Pradesh India. Ethnobot Leaf 2010;14:694–705.

78. Hazarika TK, Nautiyal BP. Studies on wild edible fruits of Mizoram India used as ethno-medicine. Genet Resour Crop Evol 2012;59:1767–76.

79. Bhat JA, Kumar M, Bussmann RW. Ecological status and traditional knowledge of medicinal plants in Kedarnath Wildlife Sanctuary of Garhwali Himalaya. India J Ethnobiol Ethnomed 2013;3:1–18.

80. Singh B, Borthakur SK, Phukan SJ. A Survey of ethnomedicinal plants utilized by the indigenous people of Garo Hills with special reference to the Nokrek Biosphere Reserve (Meghalaya) India. J Herbs Spices Med Plants 2014;20:1–30.

81. Lingaraju DP, Sudarshana MS, Rajashker N. Ethnopharmacological survey of traditional medicinal plants in tribal areas of Kodagu district Karnataka. India J Pharm Res 2013;6:284–97.

82. Jain SC, Jain R, Singh R. Ethnobotanical survey of Sariska and Siliserh regions from Alwar district of Rajasthan India. Ethnobotan Leaf 2009;13:171–88.

83. Kumar M, Paul Y, Anand VK. An ethnobotanical study of medicinal plants used by the locals in Kishwar Jammu and Kashmir India. Ethnobotan Leaf 2009;13:1240–60.

84. Swarnkar S, Katewa SS. Ethnobotanical observation on tuberous plants from tribal area of Rajasthan (India). Ethnobotan Leaf 2008;12:647–66.

85. Katewa SS, Chaudhary BL, Jain A. Folk herbal medicines from tribal area of Rajasthan. India J Ethnopharmacol 2004;92:41–6.

86. Vanila D, Ghanthikumar S, Manickam VS. Ethnomedicinal uses of plants in the plains area of the Tirunelveli-District Tamilnadu India. Ethnobotan Leaf 2008;12:1198–205.

87. Kumar K, Murthy AR, Upadhyay NP. Plants used as antiotics by the tribals of Bihar. Anc Sci Life 1998;17:268–72.

88. Chandra K, Paney BN, Lal VV. Folk-lore medicinal plants of Dumka (Bihar). Anc Sci Life 1985;4:181–5.

89. Vanam A. Traditional remedies of Kani tribes of Kottoor reserve forest Agasthyavanam Thiruvananthapuram Kerala. Indian J Tradit Knoul 2007;6:589–94.

90. Vijayakumar S, Yabesh JM, Prabhu S, Manikandan R, Muralidharan B. Quantitative ethnomedicinal study of
plants used in the Nelliyampathy hills of Kerala India. J Ethnopharmacol 2015;161:238–54.
91. Shanmugam S, Rajendran K, Suresh K. Traditional uses of medicinal plants among the rural people in Sivagangai district of Tamilnadu Southern India. Asian Pacific J Trop Biomed 2012;2:5429–34.
92. Dey A, De JN. Traditional use of plants against snakebite in Indian subcontinent: a review of the recent literature. Afr J Tradit Complement Altern Med 2012;9:153–74.
93. Chakraborty MK, Bhattacharjee A. Some common ethnomedicinal uses of various diseases in Purulia district West Bengal. Indian J Tradit Knoul 2006;5:554–8.
94. Ghosh A. Ethnomedicinal plants used in West Rarrh region of West Bengal. Nat Prod Rad 2008;7:461–5.
95. Suthari S, Kanneboyena O, Raju VS. Ethnomedicinal knowledge of inhabitants from Gundlabrahmeswaram Wildlife Sanctuary (Eastern Ghats) Andhra Pradesh India. Am J Ethnomed 2015;2:333–46.
96. Suthari S, Sreeramulu N, Omkar K, Raju V. The climbing plants of northern Telangana in India and their ethnomedicinal and economic uses. Indian J Plant Sci 2014;3:86–100.
97. Reddy MB. Reddy KR, Reddy MN. A survey of medicinal plants of Chenchu tribes of Andhra Pradesh India. Pharm Biol 1988;26:189–96.
98. Rajendran SM, Agarwal SC, Sundareshan V. Lesser known ethnomedicinal plants of the Ayyakarkoil Forest Province of Southwestern Ghats Tamilnadu India—Part I. J Herbs Spices Med Plants 2004;10:103–12.
99. Parinitha M, Harish GU, Vivek NC, Mahesh T, Shivanna MB. Ethno-botanical wealth of Bhadra wild life sanctuary in Karnataka. Indian J Tradit Knoul 2004;3:37–50.
100. Prakash RA, Krishnappa M. People’s knowledge on medicinal plants in Sringeri taluk Karnataka. Indian J Tradit Knoul 2006;5:353–7.
101. Koche DK, Shirsat RP, Imran S, Nafees M, Zingare AK, Donode KA. Ethnobotanical and ethnomedicinal survey of Nagzira Wildlife Sanctuary District Gondia (MS) India-Part I. Ethnobotan Leaf 2008;12:56–69.