Application Extended Vogel-Tammann-Fulcher Equation for soybean oil

IOANA STANCIU1* and NOUREDDINE OUERFELLI2

1 Department of Physical Chemistry, University of Bucharest, Faculty of Chemistry, 4-12 Elisabeta Blvd, 030018, Bucharest, Romania.
2 Department Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia.
*Corresponding author E-mail: istanciu75@yahoo.com

http://dx.doi.org/10.13005/ojc/370603

(Received: October 16, 2021; Accepted: November 17, 2021)

ABSTRACT

Mathematical models that describe the variation of soybean oil viscosity with temperature according to the recent WLF and VTF (or VFT) equations and traditionally by the Arrhenius equation. The Arrhenius equation shows that the viscosity of the oil is proportional to the absolute temperature and is determined by the activation energy parameter. In Arrhenius’ equation the absolute temperature is replaced by T + b where both adjustable T and b are in °C. The mathematical models described by the equations WLF and VTF, are equal to each other. All three equations are in the same model when used for experimental data of temperature-viscosity dependence, they give exactly the same very high regression coefficient.

Keywords: Viscosity, Soybean oil, VTF Equation, Extend EVTF.

INTRODUCTION

The exact correlation of soybean oil viscosity data is of extreme practical importance when looking for optimal filler conditions for certain applications. Although the best correlations of experimental data for temperature dependence can be made by taking advantage of the VTF equation1-3 and avoiding the use of temperature-dependent variables, correlations are still attempted by combining the use of both dependent variables, such as temperature as well as independent variables in many studies.

In previous research, the change in soybean oil viscosity at different temperatures was analyzed using absolute rate theory4,5. Absolute rate theory, widely applicable to flow processes, describes the viscosity-temperature dependence in the form of Arrhenius5,6,7. This theory has been used to determine changes in the viscoelastic properties of soybean oil at high temperatures6,8,9. In this research, the most widely used empirical equation is the Williams-Landel-Ferry (WLF) equation10. Another equation widely used to model viscosity-temperature dependence is the Vogel-Tammann-Fulcher (VTF) equation1-3. It was initially developed to analyze the...
viscosity-temperature relationship for overheated organic liquids and has recently been applied to polymers, protein solutions and foods\(^{11-15}\).

In this paper, the viscosity data obtained at different temperatures were fitted and compared using both VTF and a proposed extended EVTF equation.

Viscosity temperature dependence

Theoretical background

The fluid having a complex nature there is not yet a theory to describe it. There are some models in the literature such as the theory of the distribution function proposed by Kirkwood et al.,\(^{16}\), the molecular dynamics approach reported by Cumming and Evans\(^{17}\) and Eyring’s reaction rate theory\(^{18-20}\). Empirical and semi-empirical methods do not provide reasonable results, but they lack the general approach, especially in the vicinity of boiling temperature\(^{14}\).

Empirical equations

The dependence dynamic viscosity versus temperature absolute is described by several empirical equations.\(^{15,21-42}\):

\[
\ln \eta = A + \frac{B}{T + C} + a\log T + bT + cT^2 + \frac{D}{T^2} \quad (1)
\]

Viscosity-temperature dependence for liquid systems that have a linear or nonlinear behavior, we represent the logarithm of the dynamic viscosity (\(\ln \eta\)) in relation to the absolute temperature (1/\(T\)). Multi-constant equations (Eq.1) for many fluids that deviate strongly from Arrhenius behavior. There are several fluids such as melting salts, glasses and metals, ionic liquids, heavy and vegetable oils, fuels and biofuels, etc.\(^{16-18}\). For nonlinear behavior, it is found that the temperature dependence of the dynamic viscosity according to the Vogel-Fulcher-Tammann (VTF) equation\(^{1-3}\) expressed as follows:

\[
\ln \eta = \ln A_0 + \frac{A_1}{T - T_c} \quad (2)
\]

Where \(A_0\) and \(A_1\) are optimal constants and \(T_c\) is the VTF temperature. It’s also interesting to use the modified VTF equation which is expressed as follow:

\[
\ln \eta = A_0 + \frac{E_1}{R(T - T_c)} \quad (3)
\]

Where \(R\)-perfect gas constant, \(E_1\) is the VTF activation energy, \(A_0\), \(T_0\) are identical to the \(A_0\) and \(T_c\) parameters in Eq. (2), respectively.\(^{6,7,14-16}\)

Likewise, to describe the behavior of soybean oil at different temperatures we found in the literature the following relationship, named Williams-Landel-Ferry (WLF) equation and frequently used for honey\(^{43-46}\):

\[
\ln(a_T) = \frac{-C_1(T - T_c)}{C_2 + (T - T_c)} \quad (4)
\]

Material and methods

Non-additive soybean oil used in this study was produced in Romania. To determine the dynamic viscosity of soybean oil we used the Haake 550 viscometer with the VH1 viscoscose sensor at all shear rates. For temperature control we used a thermostatic bath at temperatures between 40 and 100°C.

RESULTS AND DISCUSSION

Table 1 shows the temperature range at which the determinations were made, the \(\ln\) dynamic viscosity.

Temperature (°C)	ln(\(\eta/\text{Pa.s}\))
0	3.4484
10	3.3278
20	3.2004
30	3.0810
40	3.0146
50	2.9556
60	2.8906
70	2.8246
80	2.7576
90	2.6896
100	2.6206

Table 1: Logarithm dynamic viscosity for soybean oil at different temperatures
Generally when the viscosity-temperature dependence deviates from the Arrhenius behavior, experimenters prefer to use the usual expression of VTF (Eq. 2) to minimize the discrepancy with experimental data.

If we extend the VTF model which has a linear dependence of the variables a second degree polynomial, we can write (Eq. 5).

\[
\ln \eta = \ln A_0 + \frac{A_1}{T - T_c} + \frac{A_2}{(T - T_c)^2} + \ldots
\]

(5)

Where \(A_i \) are three new free adjustable parameters which can be determined with non-linear regression.

The Table 2 summarizes results of the two different fits for VTF model (Eq. 2) and the present extended EVTF model (Eq. 5) related to the soybean oil system at seven different temperatures (293.15–353.15) K and for each fixed eight shear rates (3.3–120) s\(^{-1}\). Overall, the \(R\)-square (\(R^2 \)) and standard deviation (\(\sigma \)) are better for the proposed model (Eq. 5) when \(A_2 \neq 0 \) than of the usual VTF model (Eq. 2) when \(A_2 = 0 \) in Eq. 5.

Figures 1 to 8 show that the discrepancy between experimental values and the calculated ones by the EVTF proposed model (Eq. 5), in comparison with the simple VTF model (Eq. 2). In addition, the VTF model starts to deviate and diverge at high temperature.
Stanciu, Ouerfelli, Orient. J. Chem., Vol. 37(6), 1287-1294 (2021)

Fig. 5. Dependence of ln dynamic viscosity versus absolute temperature at shear rate 30 s\(^{-1}\) and comparison VTF model with EVTF proposed model

Fig. 6. Dependence of ln dynamic viscosity versus absolute temperature at shear rate 52.95 s\(^{-1}\) and comparison VTF model with EVTF proposed model

Fig. 7. Dependence of ln dynamic viscosity versus absolute temperature at shear rate 80 s\(^{-1}\) and comparison VTF model with EVTF proposed model

Fig. 8. Dependence of ln dynamic viscosity versus absolute temperature at shear rate 120 s\(^{-1}\) and comparison VTF model with EVTF proposed model

Table 2: Optimal coefficients (\(A_i\)), VTF temperature (\(T_C\)), R-square (\(R^2\)) and standard deviation (\(\sigma\)), VTF model (Eq. 3, \(A_2 = 0\)) and that for proposed EVTF model (Eq. 5, \(A_2 \neq 0\)).

Model	Shear rate s\(^{-1}\)	ln\(A_i\)	Values of parameters	\(A_i/K\)	\(A_i/K^2\)	\(T/K\)	R-square \(R^2\)	SD \(\sigma\)
VTF	3.3000	2.5220	11.074	0	301.4	0.99333	0.0225	
EVTF	6.0000	2.3359	8.8138	0	303.1	0.99265	0.0255	
EVTF	10.600	2.2570	8.8189	0	303.6	0.99602	0.0271	
VTF	17.870	2.1906	8.5447	0	304.7	0.98486	0.0339	
EVTF	30.000	2.2001	4.9953	0	306.4	0.98327	0.0367	
EVTF	52.950	2.1082	5.5600	0	307.1	0.98591	0.0333	
EVTF	80.000	2.0735	5.4813	0	307.4	0.98369	0.0397	
EVTF	120.00	1.9611	7.8488	0	307.8	0.98595	0.0401	
EVTF	1.8781	11.814	25.307	0	307.4	0.99293	0.0283	
Eqs. 2 and 5 can be re-expressed as follows:

\[
\ln \eta = \ln A_0 + \frac{E_1}{R(T-T_c)}
\]

(6)

for the VTF Model, and:

\[
\ln \eta = \ln A_0 + \frac{E_1}{R(T-T_c)} - \frac{E_2^2}{R^2(T-T_c)^2} + \frac{E_2}{R(T-T_c)}
\]

(7)

for the suggested extended EVTF model, where the parameters \(E_1\) and \(E_2\) are energies, \(R\) is the perfect gas constant, \(T_c\) and \(A_0\) is a viscosity at infinite temperature.

The Table 3 summarizes values of the two new energies for the VTF model (Eq. 6) and the present extended EVTF model (Eq. 7) related to the soybean oil system at seven different temperatures (293.15–353.15) K and for each fixed eight shear rates (3.3–120) s\(^{-1}\).

Effect of shear rate on the VTF-parameters.

Figure 9a shows that the pre-exponential factor \((A_0)\) decreases exponentially at very low shear rate values, after that, it continues decreasing slowly. However, thinking about the physical significance of \((A_0)\) which is equivalent to a viscosity and the eventual its obedience to the power law, we discover an optimal very interesting linearization revealed by the Fig. 9b, which permit us to suggest an interesting empirical model expressed as follows:

\[
A_0 = a \cdot \gamma + b \cdot \gamma^{0.21}
\]

(8)

Where the 0.21-value can represent a certain rheological flow index and, \((a)\) and \((b)\) are adjustable parameters. Values of \((a)\) and \((b)\) are given into the (Figure 9b).

As a first step of attributing a significance meaning, \((E_1)\) can be considered as the VTF activation energy, comparing with the mathematical Arrhenius-type equation. We note that the VTF temperature \((T_c)\) is practically identical for the two models VTF and EVTF. We can justify this finding by the fact that the viscosity of soybean oil exponentially increases near a given temperature and physically diverges regardless of the used model such as VTF or EVTF. In addition, starting from that the viscosity value of solid state is almost infinite, we can conclude that the VTF temperature \((T_c)\) is close and in relationship with the melting point \((T_m)\). Comparing Eqs. 6 and 7, we can consider that \((E_2)\) is a corrective term to the VTF activation energy \((E_1)\) and must be highly correlated. By analogy with the Arrhenius-type equation, \((A_0)\) is in causal correlation with the viscosity of the soybean oil at vapor state near the normal boiling temperature \((T_b)\).
Figures 10 and 11 show that the optimal coefficients (A_i) decrease rapidly at low shear rate to reach a minimum and vary very slightly in the shear rate range between 30 and 80 s$^{-1}$. Considering that these parameters are in relationship with the VTF activation energy (E_i), we can conclude that there is a certain stabilization in the shear rate range in (s$^{-1}$), where the molecules of soybean oil find facility to transit from one fluid layer to an adjacent one.

![Graph showing the variation of optimal coefficients (A_i) with shear rate](image1)

Fig. 10. Comparison of the optimal coefficients (A_1), related to \cdot: VTF model (Eq. 3) and that (•): the proposed EVTF model (Eq. 5)

![Graph showing the variation of optimal coefficients (A_2) with shear rate](image2)

Fig. 11. Variation of the optimal coefficients (A_2), related to the proposed EVTF model (Eq. 5) as a function of the shear rate (Table 2)

Figure 12 shows that the VTF temperature (T_c) increases with the shear rate and tends to a limiting value about 308 K at high values of shear rate which is probably in relationship with the melting point (T_m).

CONCLUSION

The present paper proposes a new rheological model extending the usual Vogel-Tammann-Fulcher model (VTF) linear in $1/(T_T-C)$ to a non linear one (i.e. polynomial form in $1/(T-T_c)$) which can be called Extended Vogel-Tammann-Fulcher expression (EVTF) and depending on the discrepancy with experimental data, we can choose the optimal polynomial degree since two.

In addition, the present paper proposes a new EVTF model of dynamic temperature viscosity dependence for soybean oil. The present work comes into within the general framework of empirical and semi-empirical modeling by proposing original expressions in rheology or by extending certain existing models.42,50,51

If we compare the activation energies of VTF (E_i), as well as the temperatures of VTF (T_c) to provide and classify the behavior of rheological fluids to provide some interesting theoretical interpretations and to contribute to the development of the theory.

ACKNOWLEDGMENT

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Conflict of Interest

No potential conflict of interest was reported by the co-authors.

REFERENCES

1. Vogel H., *Physikalische Zeitschrift* (in German), 1921, 22, 645.
2. Fulcher G.S., *Journal of the American Ceramic Society*. Wiley, 1925, 8(6), 339–355.
3. Tammann G.; Hesse W., Zeitschrift für anorganische und allgemeine Chemie (in German). Wiley, 1926, 156(1), 245–257.
4. Herrin M. and Jones G.E., *Journal of Association of Asphalt Paving Technologists*, 1963, 32, 82-105.
5. Salomon D. and Zhai H., *Journal of Applied Asphalt Binder Technology*, 2002, 2(2).
6. Christensen D.W., Bahia, H.D. and Anderson, D.A., 1996, *Journal of Association of Asphalt Paving Technologists*, 65, 385-399.
43. Williams M.L.; Landel R.F.; and Ferry J.D.; *Journal of the American Chemistry Society.*, 1955, 77, 3701-3706.

44. Huachun Z.; Delmar S., *Transportation Research Record: Journal of the Transportation Research Board.*, 2005, 1, 25-27.

45. Sopade P.A.; Halley P.; Bhandari B.; D’Arcy B.; Doebler C.; Caffin N.; *Journal of Food Engineering.*, 2002, 56, 67–75.

46. Ridha H.; Imen M.; Duaa A.; Noureddine O.; *Chemical Physics.*, 2021, 452, 111076.

47. Snoussi L.; Shaik B.; Herráez J.V.; Akhtar S.; Al-Arfaj A.A.; Ouerfelli N.; *Iranian Journal of Chemistry and Chemical Engineering.*, 2020, 39(3), 287-301.

48. Dallel M.; Al-Arfaj A.A.; Al-Omair N.A.; Alkhalidi M.A.; Alzamel N.O.; Al-Zahrani A.A.; Ouerfelli N., *Asian Journal of Chemistry.*, 2017, 29(9), 2038–2050.

49. Dallel M.; Al-Zahrani A.A.; Al-Shahrani H.M.; Al-Enzi G.M.; Snoussi L.; Vrinceanu N., Al-Omair N.A.; Ouerfelli N.; *Physics and Chemistry of Liquids.*, 2017, 55(4), 541-557.

50. Stanciu I.; Ouerfelli N.; *Journal of Biochemical Technology.*, 2020, 11(3), 52-57.

51. Stanciu I.; Messaâdi A.; Diez-Sales O.; Jameel S.S.; Mliki E.; Herráez J.V.; Ouerfelli N.; *Journal of Biochemical Technology.*, 2020, 11(3), 102-114.