Supplementary Material

Different modes of regulation of the expression of dextranucrase in *Leuconostoc lactis* AV1n and *Lactobacillus sakei* MN1

Besrour Aouam Norhane¹,², Mohedano M.L.², Fhoula Imene¹, Zarour Kenza²,³, Najjari Afef¹, Aznar Rosa⁴,⁵,⁶, Prieto Alicia², Ouzari Hadda-Imene¹*, López Paloma²*

¹Laboratoire Microorganismes et Biomolécules Actives (LR03ES03), Faculté des Sciences de Tunis, Université Tunis El Manar, Tunis, Tunisia

²Department of Microorganisms and Plant Biotechnology. Biological Research Center (CIB), CSIC, Madrid, Spain

³Laboratoire de Microbiologie Appliquée (LMA), Faculté des Sciences de la Nature et de la Vie, Université d’Oran 1 Ahmed Ben Bella, Oran, Algeria

⁴Department of Microbiology and Ecology, University of Valencia, Burjassot, Spain

⁵Spanish Type Culture Collection (CECT), University of Valencia, Paterna, Spain

⁶Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology (IATA), CSIC, Paterna, Spain

* Correspondence:

Corresponding Author: Paloma López, plg@cib.csic.es

Corresponding Author: Ouzari Hadda-Imene, ouzari.imene@gmail.com
Supplementary Figure S1. Analysis of the maturation of the mCherry protein in *Leuconostoc lactis* AV1n [pRCR15] strain. The bacterium was grown in MRSG medium until the middle of the exponential phase and after sedimentation and resuspension in PBS pH 7.4 the fluorescence of the cultures was measured at the indicated times. The depicted values are the average of three independent experiments.
Supplementary Figure S2. EPS production by *Leuconostoc lactis* AV1n, *Lc. lactis* AV1n[pRCR21] and *Lc. lactis* AV1n[pRCR15] in solid media. Pictures of the plates were taken after 3 days of growth on MRS agar supplemented with 2% sucrose (MRSS), glucose (MRSG), 2% maltose (MRSM) or 2% fructose (MRSF) at the indicated temperatures.
CM70	NRRL	Sequence Information		
1	140	TTCAACGGATGCCCGTTGACATATTATCGTAGCGTACTGTTTAAGTATGTCAAATATGT		
61	200	AAGGTGTGATTCTTTCAACATGTATCATGTTAACTACATTCGCCAGTAAACATAAGTCAT		
121	260	ATGCGACTAGGAAATCTAAGTGATACAAAGTAGACAGCGACATTAAATAATAATGACGCA		
181	300	TGAATGGGTCGCTAGGATTCTTGATTGTATCATTTTGTAATAATTGCGTTAATTGATTCA		
241	359	AAGGTGTGATTCTTTCAACATGTATCATGTTAACTACATTCGCCAGTAAACATAAGTCAT		
301	360	TGTTTTTTTTTTTCCAAAAGCAGCCGAAAAATATTCTTCAAATGAAATGTTTAGGGCGTC		
421	480	AATTTTTTATATTTTATTTA		
481	540	TGTTTTTTTTTTTCCAAAAGCAGCCGAAAAATATTCTTCAAATGAAATGTTTAGGGCGTC		
541	600	AATTTTTTATATTTTATTTA		
581	660	TGTTTTTTTTTTTCCAAAAGCAGCCGAAAAATATTCTTCAAATGAAATGTTTAGGGCGTC		
601	720	TGTTTTTTTTTTTCCAAAAGCAGCCGAAAAATATTCTTCAAATGAAATGTTTAGGGCGTC		
661	840	TGTTTTTTTTTTTCCAAAAGCAGCCGAAAAATATTCTTCAAATGAAATGTTTAGGGCGTC		
721	918	TGTTTTTTTTTTTCCAAAAGCAGCCGAAAAATATTCTTCAAATGAAATGTTTAGGGCGTC		
781	978	TGTTTTTTTTTTTCCAAAAGCAGCCGAAAAATATTCTTCAAATGAAATGTTTAGGGCGTC		
841	1038	TGTTTTTTTTTTTCCAAAAGCAGCCGAAAAATATTCTTCAAATGAAATGTTTAGGGCGTC		
901	1098	TGTTTTTTTTTTTCCAAAAGCAGCCGAAAAATATTCTTCAAATGAAATGTTTAGGGCGTC		
CM70 2850	GATCCGGATTTCTGATGGGCTTATCACCACACGATGGACCAATTAACAGAAGCATTTAAAATT			
NRRL 3001	GATCCGGATTTCTGATGGGCTTATCACCACACGATGGACCAATTAACAGAAGCATTTAAAATT			
CM70 2910	TATAATGCTGATCAATTGAAAACAGATAAAGAATTCACACAATTCACACAATATAACATT			
NRRL 3061	TATAATGCTGATCAATTGAAAACAGATAAAGAATTCACACAATTCACACAATATAACATT			
CM70 2970	CCAAGTACTTATGCCACAATACTAACGAATAAAGATACAGTGCCACGTGTGTACTATGGG			
NRRL 3112	CGTTATGGTAATGGTGCCATGACTGCTACCGATGCAGGGCAAACAATGTCTATGAAAA			
CM70 3030	GATATGTATACAGATGATGGTCAATACATGGCAACAAAGTCACTTTATTACGATGCAATT			
NRRL 3172	GATATGTATACAGATGATGGTCAATACATGGCAACAAAGTCACTTTATTACGATGCAATT			
CM70 3090	GATACTTTGCTGAAGTCTCGTATCAAGTATGTTTCTGGCGGGCAAACAATGTCTATGAAAA			
NRRL 3232	GATACTTTGCTGAAGTCTCGTATCAAGTATGTTTCTGGCGGGCAAACAATGTCTATGAAAA			
CM70 3150	TATAATGCTGATCAATTGAAAACAGATAAAGAATTCACACAATTCACACAATATAACATT			
NRRL 3292	TATAATGCTGATCAATTGAAAACAGATAAAGAATTCACACAATTCACACAATATAACATT			
CM70 3210	CGTTATGGTAATGGTGCCATGACTGCTACCGATGCAGGGCAAACAATGTCTATGAAAA			
NRRL 3352	CGTTATGGTAATGGTGCCATGACTGCTACCGATGCAGGGCAAACAATGTCTATGAAAA			
CM70 3270	GGTATTGCAGTAATTGAAAGTAATAACCCAGATTTGAAGTTGAGCAGTACAGATCAAGTA			
NRRL 3412	GGTATTGCAGTAATTGAAAGTAATAACCCAGATTTGAAGTTGAGCAGTACAGATCAAGTA			
CM70 3330	GTTGTAGATATGGGCATAGCGCACAAAAATCAGGCTTATCGTCCTGCTTTGTTAACAACT			
NRRL 3472	GTTGTAGATATGGGCATAGCGCACAAAAATCAGGCTTATCGTCCTGCTTTGTTAACAACT			
CM70 3390	AAAGATGGCATAGATACTTATGTATCTGATAGTGATGTCTCACAAAGCTTAATAAGATAT			
NRRL 3532	AAAGATGGCATAGATACTTATGTATCTGATAGTGATGTCTCACAAAGCTTAATAAGATAT			
CM70 3450	ACAAATAGTAATGGGCAACTTATTTTCAATAGTTCAGATATTGTTGGTACAGCAAATCCA			
NRRL 3592	ACAAATAGTAATGGGCAACTTATTTTCAATAGTTCAGATATTGTTGGTACAGCAAATCCA			
CM70 3510	CAAGTTTCTGGATACCTTGGCGGTCTGGGTACCCTTCAGATCTCAAGATGCC			
NRRL 3652	CAAGTTTCTGGATACCTTGGCGGTCTGGGTACCCTTCAGATCTCAAGATGCC			
CM70 3570	CGAACTGAAAGTATGATACACGACCAAAACATACTGATGGGAAAGACATTTGCAATCCTCAATGCGGA			
NRRL 3712	CGAACTGAAAGTATGATACACGACCAAAACATACTGATGGGAAAGACATTTGCAATCCTCAATGCGGA			
CM70 3630	CTTGATTCTCAAGTTATTTATGAAAGTTTCTCTAACTTCCAATCTACACCAACAACAGAA			
NRRL 3772	CTTGATTCTCAAGTTATTTATGAAAGTTTCTCTAACTTCCAATCTACACCAACAACAGAA			
CM70 3690	GCTGAAATGCTAATGTGCAAATTGCAAACAATACTGATTTTATACAGAGATGTTGGGAAATT			
NRRL 3832	GCTGAAATGCTAATGTGCAAATTGCAAACAATACTGATTTTATACAGAGATGTTGGGAAATT			
CM70 3750	ACGAACTTCGAGTTCCTCCACACATAATCGTTCAGATGATTGATTGTTCCCTTATAGTCA			
NRRL 3892	ACGAACTTCGAGTTCCTCCACACATAATCGTTCAGATGATTGATTGTTCCCTTATAGTCA			
CM70 3810	CAAGTTTCTGGATACCTTGGCGGTCTGGGTACCCTTCAGATCTCAAGATGCC			
NRRL 3951	CAAGTTTCTGGATACCTTGGCGGTCTGGGTACCCTTCAGATCTCAAGATGCC			
	CM70	NRRL	CM70	NRRL
-----	------	------	------	------
3810	ATTATTCAAAATGGTTGTTGTTGATTATTTCTGATGTTGATCGTTGATCTGATGTTATGATCTTTGAGTTGAATACACCAACG	3869		
3870	AAGTATGCTCGCTGATGTTGTTGTTGATTATTTCTGATGTTGATCGTTGATCTGATGTTATGATCTTTGAGTTGAATACACCAACG	3929		
3930	AAGCCTATGCTCAACTAGAGATTATCTTATATATCAAGAGATTTCTGTGATCAGTTGAGTTGTTGTTGTTGATTATTTCTGATGTTGATCGTTGATCTGATGTTATGATCTTTGAGTTGAATACACCAACG	3989		
4050	TGCTTTCAAAATCTTCTGCTGTGATGTTGTTGTTGATTATTTCTGATGTTGATCGTTGATCTGATGTTATGATCTTTGAGTTGAATACACCAACG	4011		
4120	ACAACCTCAAAATCTTCTGCTGTGATGTTGTTGATTATTTCTGATGTTGATCGTTGATCTGATGTTATGATCTTTGAGTTGAATACACCAACG	4071		
4190	TGCTTTCAAAATCTTCTGCTGTGATGTTGTTGATTATTTCTGATGTTGATCGTTGATCTGATGTTATGATCTTTGAGTTGAATACACCAACG	4119		
4250	TGCTTTCAAAATCTTCTGCTGTGATGTTGTTGATTATTTCTGATGTTGATCGTTGATCTGATGTTATGATCTTTGAGTTGAATACACCAACG	4191		
4320	TGCTTTCAAAATCTTCTGCTGTGATGTTGTTGATTATTTCTGATGTTGATCGTTGATCTGATGTTATGATCTTTGAGTTGAATACACCAACG	4270		
4390	TGCTTTCAAAATCTTCTGCTGTGATGTTGTTGATTATTTCTGATGTTGATCGTTGATCTGATGTTATGATCTTTGAGTTGAATACACCAACG	4419		
4460	TGCTTTCAAAATCTTCTGCTGTGATGTTGTTGATTATTTCTGATGTTGATCGTTGATCTGATGTTATGATCTTTGAGTTGAATACACCAACG	4559		
4530	TGCTTTCAAAATCTTCTGCTGTGATGTTGTTGATTATTTCTGATGTTGATCGTTGATCTGATGTTATGATCTTTGAGTTGAATACACCAACG	4619		
4600	TGCTTTCAAAATCTTCTGCTGTGATGTTGTTGATTATTTCTGATGTTGATCGTTGATCTGATGTTATGATCTTTGAGTTGAATACACCAACG	4769		
4670	TGCTTTCAAAATCTTCTGCTGTGATGTTGTTGATTATTTCTGATGTTGATCGTTGATCTGATGTTATGATCTTTGAGTTGAATACACCAACG	4839		
4740	TGCTTTCAAAATCTTCTGCTGTGATGTTGTTGATTATTTCTGATGTTGATCGTTGATCTGATGTTATGATCTTTGAGTTGAATACACCAACG	4909		
4810	TGCTTTCAAAATCTTCTGCTGTGATGTTGTTGATTATTTCTGATGTTGATCGTTGATCTGATGTTATGATCTTTGAGTTGAATACACCAACG	4989		
CM70	4770	CGGAAAGCTAGCTACCTTTGACCATGATTCTGGTGATATGGAGGCGACTCGCTTTGGTG	4829	
-------	------	--	------	
NRRL	4912	CGGAAAGCTAGCTACCTTTGACACTGATTCTGGTGATATGGTGACGAACCGCTTTG	4971	
CM70	4830	AAACACAGATGGTTCATGGTCATACTTTGGTGCTGACGGTATCGCTGTATCTGGCGCTCA	4889	
NRRL	4972	AAACACAGATGGTACATGGTCATACTTTGGTGCTGACGGTATCGCTGTAACTGGGTCA	5031	
CM70	4890	GACAATTAGTGGGCAAAAATTGTTCTTTGATGCTGGCGGTCAACAGATTAAAGGTAAGGA	4949	
NRRL	5032	GACAATTAGTGGGCAAAAATTGTTCTTTGATGCTGACGGACAACAGATTAAAGGTAAGGA	5091	
CM70	4950	AGCGTCTGATAAAAAGGGCAAAGTGCAATTATTATGATGCTAATTCTGGTGAAATGATCGC	5009	
NRRL	5092	AGCGACTGATAAAAAGGGCAAAGTGCAATTATTATGATGCTAATTCTGGTGAAATGATCAC	5151	
CM70	5010	TAATCGTTTTGAAAAGTTATCAGATGGATCATGGGCGTACTTTAATAAAAAAGGTAACAT	5069	
NRRL	5152	TAATCGTTTTGAAAAGTTATCAGATGGATCATGGGCGTACTTTAATAAAAAAGGTAACAT	5111	
CM70	5070	CTAACCGGCAGCAATCTGCAATTATCTGGCTAATTCTGGTGAAATGATCGC	5129	
NRRL	5212	CTAACCGGCAGCAATCTGCAATTATCTGGCTAATTCTGGTGAAATGATCGC	5271	
CM70	5130	AGTTAAGGGTCGTGAATACACGGCTACTGATGGGAAGATGCGCTACTACGATGCAGATTC	5189	
NRRL	5272	AGTTAAGGGTCGTGAATACACGGCTACTGATGGGAAGATGCGCTACTACGATGCAGATTC	5331	
CM70	5190	TGGTGATATGGTGACGGAATCTTCTGGTGATATGGTAACCA	5249	
NRRL	5332	TGGTGATATGGTGACGGAATCTTCTGGTGATATGGTAACCA	5391	
CM70	5250	TGCTATTGGTTGCTGGTATCTTGGGGACAAAAATAAAAAATGAAACAACTGTATTTTG	5309	
NRRL	5392	TGCTATTGGTTGCTGGTATCTTGGGGACAAAAATAAAAAATGAAACAACTGTATTTTG	5451	
CM70	5310	TGCCAATGGTCATCAGTTAAGGGGACCGCAGTAAAACAAGCTGCGGTAGCAGAAAATA	5369	
NRRL	5452	TGCCAATGGTCATCAGTTAAGGGGACCGCAGTAAAACAAGCTGCGGTAGCAGAAAATA	5511	
CM70	5370	TTATGACCAAAATCTGGGGA	5390	
NRRL	5512	TTATGACCAAAATCTGGGGA	5532	

Supplementary Figure S3. Blast alignment of the *Leuconostoc mesenteroides* CM70 *dsrLL* gene (CM70, GenBank: MK401907) and *Lc. mesenteroides* NRRL B-512F *dsrT* gene (NRRL, GenBank: AB020020.1) as well as their corresponding upstream regions.
Supplementary Figure S4. Influence of temperature and carbon source on bacterial growth. The bacterial growth of the indicated strains was represented as a function of the growth temperature (A) or the growth medium (B). Also, in (B) the ANOVA statistical analysis of the results is depicted. A p value ≤ 0.05 was considered significant. Mean pairwise comparisons were computed with a Tukey's test ($\alpha=0.05$). Means with the same letter were not significantly different.
Supplementary Figure S5. EPS production by *Lactobacillus sakei* MN1 in solid media. Pictures of the plates were taken after 4 days of growth on MRS agar supplemented with 2% sucrose (MRSS) or 2% glucose (MRSG).
Protein	Accession	Sequence	Length							
DsrLS TMW1411		MLRNYYFGETKTHYKLYKCGKNWAVMGISLFLPGMLVTSQPVSAADVATATSTSSSAVRT	60							
Consensus		MLRNYYFGETKTHYKLYKCGKNWAVMGISLFLPGMLVTSQPVSAADVATATSTSSSAVRT								
DsrLS MN1	1	MLRNYYFGETKTHYKLYKCGKNWAVMGISLFLPGMLVTSQPVSAADVATATSTSSSAVRT	60							
DsrLS TMW1411	61	DAISESSSAKAETTSAASSSSAVKAETTTSSSAKAETIAATTGAVANADSGQTSQAV	120							
Consensus		DAISESSSAKAETTSAASSSSAVKAETTTSSSAKAETIAATTGAVANADSGQTSQAV								
DsrLS MN1	61	DAISESSSAKAETTSAASSSSAVKAETTTSSSAKAETIAATTGAVANADSGQTSQAV	120							
DsrLS TMW1411	121	TADSTSTSQVTNSQQNNTAQPSAQEAAPVSEDTSDDSDTSRTPTVTWANNKPAISDVS	180							
Consensus		TADSTSTSQVTNSQQNNTAQPSAQEAAPVSEDTSDDSDTSRTPTVTWANNKPAISDVS								
DsrLS MN1	121	TADSTSTSQVTNSQQNNTAQPSAQEAAPVSEDTSDDSDTSRTPTVTWANNKPAISDVS	180							
DsrLS TMW1411	181	TSQPATAPKADTDVSTQLVTDKTDSDSRTPTVQVAVSTTVQVTEGSKQVVT	240							
Consensus		TSQPATAPKADTDVSTQLVTDKTDSDSRTPTVQVAVSTTVQVTEGSKQVVT								
DsrLS MN1	181	TSQPATAPKADTDVSTQLVTDKTDSDSRTPTVQVAVSTTVQVTEGSKQVVT	240							
DsrLS TMW1411	241	PKEESDTDSSVQKDSQTVATATTVQKPSVSQTVGQYFDEKTYTFTGKD	300							
Consensus		PKEESDTDSSVQKDSQTVATATTVQKPSVSQTVGQYFDEKTYTFTGKD								
DsrLS MN1	241	PKEESDTDSSVQKDSQTVATATTVQKPSVSQTVGQYFDEKTYTFTGKD	300							
DsrLS TMW1411	301	HPVTGLVYANNILQYFDETGHQVKGQYVTIAGHVYVFDPASGAAGAQTVGQIDGKMKV	360							
Consensus		HPVTGLVYANNILQYFDETGHQVKGQYVTIAGHVYVFDPASGAAGAQTVGQIDGKMKV								
DsrLS MN1	301	HPVTGLVYANNILQYFDETGHQVKGQYVTIAGHVYVFDPASGAAGAQTVGQIDGKMKV	360							
DsrLS TMW1411	361	DGSQITSGFSNDAGNSQYFDESGTMQRTIAGKTYFDDKDHGLRKYGIIDNQLY	420							
Consensus		DGSQITSGFSNDAGNSQYFDESGTMQRTIAGKTYFDDKDHGLRKYGIIDNQLY								
DsrLS MN1	361	DGSQITSGFSNDAGNSQYFDESGTMQRTIAGKTYFDDKDHGLRKYGIIDNQLY	420							
DsrLS TMW1411	421	FDLDKTGVESTTSNFKGLSQTSQDDTDPPHSASAVNMSKDSFTTVDGLTAESWYVPKDIQ	480							
Consensus		FDLDKTGVESTTSNFKGLSQTSQDDTDPPHSASAVNMSKDSFTTVDGLTAESWYVPKDIQ								
DsrLS MN1	421	FDLDKTGVESTTSNFKGLSQTSQDDTDPPHSASAVNMSKDSFTTVDGLTAESWYVPKDIQ	480							
DsrLS TMW1411	481	TSATDWRSTPDREDPRMIMTMTWPQIQAAAYLNHMSSEGLLLSDKFKSATDQRTQLNQAA	540							
Consensus		TSATDWRSTPDREDPRMIMTMTWPQIQAAAYLNHMSSEGLLLSDKFKSATDQRTQLNQAA								
DsrLS MN1	481	TSATDWRSTPDREDPRMIMTMTWPQIQAAAYLNHMSSEGLLLSDKFKSATDQRTQLNQAA	540							
DsrLS TMW1411	541	HAVQLQIEKIQQTKEVWRLTSTMNHFIFKQSPGYNVTSETPSNDHLQGGALSINSVLT	600							
Consensus		HAVQLQIEKIQQTKEVWRLTSTMNHFIFKQSPGYNVTSETPSNDHLQGGALSINSVLT								
DsrLS MN1	541	HAVQLQIEKIQQTKEVWRLTSTMNHFIFKQSPGYNVTSETPSNDHLQGGALSINSVLT	600							
	Description	Sequence	Consensus	Sequence	Consensus	Sequence				
---	-------------	----------	-----------	----------	-----------	----------				
DsrLS TMW1411 601	DANSNFLMRNNPQDDGTRHYNTDTSEGYYELLANDVDNSNPVQAEQLNWLYFLTHF	DANSNFLMRNNPQDDGTRHYNTDTSEGYYELLANDVDNSNPVQAEQLNWLYFLTHF	DsrLS MN1 601	DANSNFLMRNNPQDDGTRHYNTDTSEGYYELLANDVDNSNPVQAEQLNWLYFLTHF	DsrLS TMW1411 661	GEIVKNDPSANFDSVRDADVNDVADLLNITAAYFRDYGVKNDLTANQLISILWGEDH	Consensus	GEIVKNDPSANFDSVRDADVNDVADLLNITAAYFRDYGVKNDLTANQLISILWGEDH	DsrLS MN1 661	GEIVKNDPSANFDSVRDADVNDVADLLNITAAYFRDYGVKNDLTANQLISILWGEDH
DsrLS TMW1411 661	GEIVKNDPSANFDSVRDADVNDVADLLNITAAYFRDYGVKNDLTANQLISILWGEDH	Consensus	GEIVKNDPSANFDSVRDADVNDVADLLNITAAYFRDYGVKNDLTANQLISILWGEDH	DsrLS MN1 661	GEIVKNDPSANFDSVRDADVNDVADLLNITAAYFRDYGVKNDLTANQLISILWGEDH					
DsrLS TMW1411 721	NDPLYVKHDGSDLTMDDYMQQLWSLTKNPDNRARSAMRRFMEYLYLVDRAKDNSTSDQAI	Consensus	NDPLYVKHDGSDLTMDDYMQQLWSLTKNPDNRARSAMRRFMEYLYLVDRAKDNSTSDQAI	DsrLS MN1 721	NDPLYVKHDGSDLTMDDYMQQLWSLTKNPDNRARSAMRRFMEYLYLVDRAKDNSTSDQAI					
DsrLS TMW1411 721	NDPLYVKHDGSDLTMDDYMQQLWSLTKNPDNRARSAMRRFMEYLYLVDRAKDNSTSDQAI	Consensus	NDPLYVKHDGSDLTMDDYMQQLWSLTKNPDNRARSAMRRFMEYLYLVDRAKDNSTSDQAI	DsrLS MN1 721	NDPLYVKHDGSDLTMDDYMQQLWSLTKNPDNRARSAMRRFMEYLYLVDRAKDNSTSDQAI					
DsrLS TMW1411 781	NYSFVRAHSEVQTIGIVALPKVSNLAPSMEQLAAAFKVIDQRAXDSALLKARIYVAGGQTMA	Consensus	NYSFVRAHSEVQTIGIVALPKVSNLAPSMEQLAAAFKVIDQRAXDSALLKARIYVAGGQTMA	DsrLS MN1 781	NYSFVRAHSEVQTIGIVALPKVSNLAPSMEQLAAAFKVIDQRAXDSALLKARIYVAGGQTMA					
DsrLS TMW1411 781	NYSFVRAHSEVQTIGIVALPKVSNLAPSMEQLAAAFKVIDQRAXDSALLKARIYVAGGQTMA	Consensus	NYSFVRAHSEVQTIGIVALPKVSNLAPSMEQLAAAFKVIDQRAXDSALLKARIYVAGGQTMA	DsrLS MN1 781	NYSFVRAHSEVQTIGIVALPKVSNLAPSMEQLAAAFKVIDQRAXDSALLKARIYVAGGQTMA					
DsrLS TMW1411 841	MPAAYAMLNKTNKTIPVYGDYMDDQQYMATKSPYDIASSLARKARIYVAGGQTMA	Consensus	MPAAYAMLNKTNKTIPVYGDYMDDQQYMATKSPYDIASSLARKARIYVAGGQTMA	DsrLS MN1 841	MPAAYAMLNKTNKTIPVYGDYMDDQQYMATKSPYDIASSLARKARIYVAGGQTMA					
DsrLS TMW1411 841	MPAAYAMLNKTNKTIPVYGDYMDDQQYMATKSPYDIASSLARKARIYVAGGQTMA	Consensus	MPAAYAMLNKTNKTIPVYGDYMDDQQYMATKSPYDIASSLARKARIYVAGGQTMA	DsrLS MN1 841	MPAAYAMLNKTNKTIPVYGDYMDDQQYMATKSPYDIASSLARKARIYVAGGQTMA					
DsrLS TMW1411 901	DKHDILTSVRFQDGDIMNASDDKSTARTQGIVSVSNNDALAKGDTVLTMSMGHAANQA	Consensus	DKHDILTSVRFQDGDIMNASDDKSTARTQGIVSVSNNDALAKGDTVLTMSMGHAANQA	DsrLS MN1 901	DKHDILTSVRFQDGDIMNASDDKSTARTQGIVSVSNNDALAKGDTVLTMSMGHAANQA					
DsrLS TMW1411 901	DKHDILTSVRFQDGDIMNASDDKSTARTQGIVSVSNNDALAKGDTVLTMSMGHAANQA	Consensus	DKHDILTSVRFQDGDIMNASDDKSTARTQGIVSVSNNDALAKGDTVLTMSMGHAANQA	DsrLS MN1 901	DKHDILTSVRFQDGDIMNASDDKSTARTQGIVSVSNNDALAKGDTVLTMSMGHAANQA					
DsrLS TMW1411 961	YRALLLLTTDDGLMKYSDNGAPIYTDANGDLIFTSADIKYQNEVSGFLSVWPGAS	Consensus	YRALLLLTTDDGLMKYSDNGAPIYTDANGDLIFTSADIKYQNEVSGFLSVWPGAS	DsrLS MN1 961	YRALLLLTTDDGLMKYSDNGAPIYTDANGDLIFTSADIKYQNEVSGFLSVWPGAS					
DsrLS TMW1411 961	YRALLLLTTDDGLMKYSDNGAPIYTDANGDLIFTSADIKYQNEVSGFLSVWPGAS	Consensus	YRALLLLTTDDGLMKYSDNGAPIYTDANGDLIFTSADIKYQNEVSGFLSVWPGAS	DsrLS MN1 961	YRALLLLTTDDGLMKYSDNGAPIYTDANGDLIFTSADIKYQNEVSGFLSVWPGAS					
DsrLS TMW1411 1021	DTQDARATGSSAANKTGDTHSNAALDSNVIEGFSNFQEMPTTHDEFTNKIAQNDLF	Consensus	DTQDARATGSSAANKTGDTHSNAALDSNVIEGFSNFQEMPTTHDEFTNKIAQNDLF	DsrLS MN1 1021	DTQDARATGSSAANKTGDTHSNAALDSNVIEGFSNFQEMPTTHDEFTNKIAQNDLF					
DsrLS TMW1411 1021	DTQDARATGSSAANKTGDTHSNAALDSNVIEGFSNFQEMPTTHDEFTNKIAQNDLF	Consensus	DTQDARATGSSAANKTGDTHSNAALDSNVIEGFSNFQEMPTTHDEFTNKIAQNDLF	DsrLS MN1 1021	DTQDARATGSSAANKTGDTHSNAALDSNVIEGFSNFQEMPTTHDEFTNKIAQNDLF					
DsrLS TMW1411 1141	KSWGVTSSQLAPQYRSDTDTSFLDSLIIKNGYAFDTDRYLGFTPTKYGDVLADAILAR	Consensus	KSWGVTSSQLAPQYRSDTDTSFLDSLIIKNGYAFDTDRYLGFTPTKYGDVLADAILAR	DsrLS MN1 1141	KSWGVTSSQLAPQYRSDTDTSFLDSLIIKNGYAFDTDRYLGFTPTKYGDVLADAILAR					
DsrLS TMW1411 1141	KSWGVTSSQLAPQYRSDTDTSFLDSLIIKNGYAFDTDRYLGFTPTKYGDVLADAILAR	Consensus	KSWGVTSSQLAPQYRSDTDTSFLDSLIIKNGYAFDTDRYLGFTPTKYGDVLADAILAR	DsrLS MN1 1141	KSWGVTSSQLAPQYRSDTDTSFLDSLIIKNGYAFDTDRYLGFTPTKYGDVLADAILAR					
DsrLS TMW1411 1141	HSVGQVMDAFVPDPQIYNLPGQEVVAVNVRTNNNGTPQDNSDLQNYLVTSNKKGGGEYQAK	Consensus	HSVGQVMDAFVPDPQIYNLPGQEVVAVNVRTNNNGTPQDNSDLQNYLVTSNKKGGGEYQAK	DsrLS MN1 1141	HSVGQVMDAFVPDPQIYNLPGQEVVAVNVRTNNNGTPQDNSDLQNYLVTSNKKGGGEYQAK					
DsrLS TMW1411 1141	HSVGQVMDAFVPDPQIYNLPGQEVVAVNVRTNNNGTPQDNSDLQNYLVTSNKKGGGEYQAK	Consensus	HSVGQVMDAFVPDPQIYNLPGQEVVAVNVRTNNNGTPQDNSDLQNYLVTSNKKGGGEYQAK	DsrLS MN1 1141	HSVGQVMDAFVPDPQIYNLPGQEVVAVNVRTNNNGTPQDNSDLQNYLVTSNKKGGGEYQAK					
DsrLS TMW1411 1201 YGGEFLDLRLREHPDLFTTNQISTGVFIDGSTKKEWSAKYFNGSDIQGKADYVLDGA 1260
Consensus YGGEFLDLRLREHPDLFTTNQISTGVFIDGSTKKEWSAKYFNGSDIQGKADYVLDGA 1260
DsrLS MN1 1201 YGGEFLDLRLREHPDLFTTNQISTGVFIDGSTKKEWSAKYFNGSDIQGKADYVLDGA 1260

DsrLS TMW1411 1261 SQEYFKITSNANESFLPKQMNDAMTDGFTDEKTTYYSTSGYQAKQSFQDGDDGQYY 1320
Consensus SQEYFKITSNANESFLPKQMNDAMTDGFTDEKTTYYSTSGYQAKQSFQDGDDGQYY 1320
DsrLS MN1 1261 SQEYFKITSNANESFLPKQMNDAMTDGFTDEKTTYYSTSGYQAKQSFQDGDDGQYY 1320

DsrLS TMW1411 1321 YFDADGYMTGTSQTINGKQYYFNGVELREALFQNASGNTVYYGKTGSAVKSYVDQS 1380
Consensus YFDADGYMTGTSQTINGKQYYFNGVELREALFQNASGNTVYYGKTGSAVKSYVDQS 1380
DsrLS MN1 1321 YFDADGYMTGTSQTINGKQYYFNGVELREALFQNASGNTVYYGKTGSAVKSYVDQS 1380

DsrLS TMW1411 1381 GVAYYFDVNGVMADRMILDGHQYFFAGGSQAKDQFLIGSCLNRLYFDQGSGMNVTNR 1440
Consensus GVAYYFDVNGVMADRMILDGHQYFFAGGSQAKDQFLIGSCLNRLYFDQGSGMNVTNR 1440
DsrLS MN1 1381 GVAYYFDVNGVMADRMILDGHQYFFAGGSQAKDQFLIGSCLNRLYFDQGSGMNVTNR 1440

DsrLS TMW1411 1441 FAVNRGDFWFGDIALKGWQTIAGKYYFDADGRQV-----KAEEQAAAAAADA 1495
Consensus FAVNRGDFWFGDIALKGWQTIAGKYYFDADGRQV KAAA++AAAAQAADA 1495
DsrLS MN1 1441 FAVNRGDFWFGDIALKGWQTIAGKYYFDADGRQVKAAADKAAADKAAEQAADA 1500

DsrLS TMW1411 1452 DIDNQHVPGTSVDDNQKQAEKDIDTEDIKNDPDNKTLPEAIELPNTGVDKTESITITGVVMLI 1790
Consensus DIDNQHVPGTSVDDNQKQAEKDIDTEDIKNDPDNKTLPEAIELPNTGVDKTESITITGVVMLI 1790
DsrLS MN1 1652 DIDNQHVPGTSVDDNQKQAEKDIDTEDIKNDPDNKTLPEAIELPNTGVDKTESITITGVVMLI 1750
Protein	Accession	Amino Acid Sequence
DsrLS TMW1.411	1791	LTTIFGLLFTSKHKKD
Consensus		LTTIFGLLFTSKHKKD
DsrLS MN1	1751	LTTIFGLLFTSKHKKD

Supplementary Figure S6. Blast alignment of the *Lactobacillus sakei* TMW1.411 (translation from sequence 28 of WGS project published in DDBJ/ENA/GenBank under the accession QOSE00000000) and *Lb. sakei* MN1 (translated from GenBank ATN28243) dextransucrases amino acid sequences.