Title
Hemotropic mycoplasmas in little brown bats (Myotis lucifugus).

Permalink
https://escholarship.org/uc/item/5kh831xg

Journal
Parasites & vectors, 7(1)

ISSN
1756-3305

Authors
Mascarelli, Patricia E
Keel, Michael K
Yabsley, Michael
et al.

Publication Date
2014

DOI
10.1186/1756-3305-7-117

Peer reviewed
Hemotropic mycoplasmas in little brown bats (Myotis lucifugus)

Patricia E Mascarelli1, Michael K Keel2,3, Michael Yabsley2,4, Lisa A Last2, Edward B Breitschwerdt1 and Ricardo G Maggi1*

Abstract

Background: Hemotropic mycoplasmas are epicellular erythrocytic bacteria that can cause infectious anemia in some mammalian species. Worldwide, hemotropic mycoplasmas are emerging or re-emerging zoonotic pathogens potentially causing serious and significant health problems in wildlife. The objective of this study was to determine the molecular prevalence of hemotropic Mycoplasma species in little brown bats (Myotis lucifugus) with and without Pseudogymnoascus (Geomyces) destrucans, the causative agent of white nose syndrome (WNS) that causes significant mortality events in bats.

Methods: In order to establish the prevalence of hemotropic Mycoplasma species in a population of 68 little brown bats (Myotis lucifugus) with (n = 53) and without (n = 15) white-nose syndrome (WNS), PCR was performed targeting the 16S rRNA gene.

Results: The overall prevalence of hemotropic Mycoplasmas in bats was 47%, with similar (p = 0.5725) prevalence between bats with WNS (49%) and without WNS (40%). 16S rDNA sequence analysis (~1,200 bp) supports the presence of a novel hemotropic Mycoplasma species with 91.75% sequence homology with Mycoplasma haemomuris. No differences were found in gene sequences generated from WNS and non-WNS animals.

Conclusions: Gene sequences generated from WNS and non-WNS animals suggest that little brown bats could serve as a natural reservoir for this potentially novel Mycoplasma species. Currently, there is minimal information about the prevalence, host-specificity, or the route of transmission of hemotropic Mycoplasma spp. among bats. Finally, the potential role of hemotropic Mycoplasma spp. as co-factors in the development of disease manifestations in bats, including WNS in Myotis lucifugus, remains to be elucidated.

Keywords: Hemotropic mycoplasma, Bat, Haemoplasma, Mycoplasma, WNS

Background

Hemotropic mycoplasmas (hemoplasmas, formerly classified as Haemobartonella and Eperythrozoon spp.), are epicellular erythrocytic bacterial parasites lacking a cell wall, that can cause infectious anemia in some mammalian species [1-5]. Worldwide, hemotropic Mycoplasmas are emerging or re-emerging zoonotic pathogens that affect livestock [6-14], wildlife [15-19], companion animals [4,20-27], and humans [28-34]. These bacteria can cause serious and economically significant health problems in production animals. Infections with hemotropic Mycoplasmas can range from asymptomatic to illnesses characterized by overt life-threatening hemolytic anemia, subtle chronic anemia, ill-thrift, and infertility. In addition, these cell wall deficient bacteria may act as cofactors in the progression of retroviral, neoplastic, and immune-mediated diseases [1,34,35]. Unfortunately, little is known about hemotropic Mycoplasma spp. prevalence, host-specificity, or route of transmission in many wildlife species.

Historically, the diagnosis of hemotropic Mycoplasma infections relied upon cytological examination of stained blood smears. However, diagnostic sensitivity of blood smear examination is generally less than 20%, and specificity is hampered by artifacts, such as stain precipitates and Howell-Jolly bodies [23,36,37]. The development of molecular assays, primarily targeting the 16S rRNA gene of
these microbes, has resulted in recognition of several novel animal hemotropic mycoplasmas [37-39], hence the host range has increased in recent years.

The objective of this study was to determine the molecular prevalence of hemotropic Mycoplasma species in a population of 68 little brown bats (Myotis lucifugus) from Northeastern and Eastern US. In addition, all bats were tested for Pseudogymnoascus (Geomyces) destructans, the causative agent of white nose syndrome (WNS) and cause of significant mortality events in bats, to determine if there was an association with Mycoplasma infection status.

Methods
Sample collection
A total of 68 dead little brown bats were sampled primarily during the mid-hibernation period from eastern and northeastern US (Pennsylvania, Ohio, Kentucky, West Virginia, Tennessee and North Carolina). Protocols for capturing, handling and sample collection followed the United States Fish and Wildlife Service Disinfection Protocol for Bat Studies. Dead bats collected by hand for capturing, handling and sample collection followed West Virginia, Tennessee and North Carolina). Protocols and northeastern US (Pennsylvania, Ohio, Kentucky, West Virginia, Tennessee and North Carolina). Protocols (evolutionary history) using the Neighbor-Joining method (MEGA4) and are in the units of the

Nucleic acid preparations
Total DNA from 25 mg of spleen tissue from each bat was extracted according to manufacturers instructions using a QIAamp DNA Mini Kit. After extraction, DNA concentration and quality was measured using absorbance ratio between 260/280 nm. DNA was stored at -20°C until testing.

PCR amplification
Amplification of hemotropic Mycoplasma 16S rRNA was performed using two sets of oligonucleotides as previously described [17]: HemMycop16S-41 f: 5’ GYA TGC MTA AYA CAT GCA AGT CGA RCG 3’ and HemMycop16S-938as: 5’ CTC CAC CAC TTG ‘TTT AGG TCC CCG TC 3’ and HemMycop16S-322 s: 5’ GCC CAT ATT CCT ACG GGA AGC AGC AGT 3’ and HemMycop16S- 1420as: 5’ GTT TGA CGG GCG GTG TGT ACA AGA CC 3’. Sequences derived from amplicons obtained from each primer set (with an overlap of 600 bp) were aligned and edited using AlignX (Vector NTI suite 11.5.1). Amplification was performed in a 25-μl final volume reaction, the 25 μl reaction mix contained 12.5 μl of Takara Ex Taq DNA Polymerase® Premix (Fisher Scientific, Hampton, NH, USA), 0.2 μl of 100 μM of each forward and reverse primer, 7.3 μl of molecular grade water and 5 μl of template DNA. Five microliters of RNAse free water was used as a PCR negative control. Positive controls were prepared using 5 μl of DNA from dog blood spiked with a 700 bp region of M. hematoparvum 16S rRNA cloned in pGEM plasmid at a final concentration of 2 copies per microliter. Amplification was performed in an Eppendorf Mastercycler EPgradient® (Hauppauge, NY, USA) as previously described [17]. PCR products were analyzed by 2% agarose gel electrophoresis and detected using ethidium bromide under ultraviolet light. Amplicon products were sequenced by Eton Bio, Inc (RTP, NC, USA) to establish species strain identification using chromatogram and alignment analysis (ContigExpress® and AlignX software, Vector NTI® v10, Invitrogen, Carlsbad, CA, USA).

Phylogenetic analysis
Each 16S rRNA sequence was compared to 26 other hemotropic Mycoplasma sequences deposited in GenBank database in order to compare phylogenetic relatedness (evolutionary history) using the Neighbor-Joining method (MEGA4® software). The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary distances used to infer the phylogenetic tree. The evolutionary distances were computed using the Maximum Composite Likelihood method and are in the units of the number of base substitutions per site. MEGA4.

Results
Molecular and histological examination of little brown bats
From a total of 68 bats, 53 (78%) had gross and histologic lesions consistent with WNS and were all PCR positive for P. destructans. The remaining 15 bats did not show any signs of clinical abnormalities or fungal infection.

Hemotropic mycoplasma spp. DNA analysis
A total of 32 (47%) bats tested positive for hemotropic Mycoplasma spp. using primers targeting a region covering 700 bp of the 16S rRNA gene. All 32 sequences were identical. Interestingly, a similar prevalence was found for hemotropic Mycoplasma infection in bats with and without WNS (26/53 (49%) and 6/15 (40%) respectively). Mycoplasma amplification did not occur in 27 and 9 bats with and without evidence of WNS, respectively. There was no
statistical difference (Fisher’s exact, p = 0.5725) between the prevalence of hemotropic *Mycoplasma* in WNS vs non-WNS affected bats.

A longer DNA sequence was obtained for 18 randomly selected PCR positive samples (four of which were from non-WNS animals), covering a 1,200 bp of the 16S rRNA gene as previously described [19]. Again, all sequences were identical. Sequence analysis using 1103/1200 bp, identified the closest homology (91.9%) to a hemotropic *Mycoplasma* detected in a human (Genbank GU562823), and 1101/1200 (91.8%) with *Mycoplasma haemomuris* (AB758440), suggesting the presence a novel hemotropic *Mycoplasma* species in the sampled little brown bats (Figure 1). There were no differences in the *Mycoplasma* 16S rDNA sequences derived from WNS-positive and WNS-negative animals. The 16SrRNA sequence of the hemotropic *Mycoplasma* species detected in bats was deposited in Genbank (accession number KF713538).

Discussion

Hemotropic *Mycoplasma* spp. appear to have co-evolved with many animal species. The development of molecular assays, primarily targeting the 16S rRNA gene of these microbes, has resulted in the recent recognition of several novel animal and human hemoplasmas [15,17-19,44-47]. This study represents the first report of a novel, and as yet incompletely characterized hemotropic *Mycoplasma* species in little brown bats, with an overall prevalence of 47%. There was no causative association with WNS, suggesting that this bat species acts as a natural reservoir for this uncharacterized *Mycoplasma* species. It is important to note that the results presented here may be biased either by the low number of bats assessed in either group or the lack of appropriate control bats obtained from non-WNS study sites. Therefore, conclusions on the role of hemotropic *Mycoplasma* as a potential co-factor in the development of WNS in bats cannot be derived from this study.
Conclusion
The relative high hemotropic Mycoplasmas DNA prevalence detected in WNS and non-WNS animals (49% and 40% respectively) together with the sequence analysis generated from the 16SrRNA gene suggest that the little brown bats could serve as a natural reservoir for a novel hemotropic Mycoplasma species. Hemotropic Mycoplasma infection in mammals can cause a wide range of clinical conditions, from sub-clinical to life-threatening hemolytic anemia (particularly when immunosuppressed, stressed from poor nutrition, pregnancy, or lactation, or when concurrently infected with other more virulent pathogens, or more than one Mycoplasma species) [1,27,48].

Currently, there is no information about the prevalence, host-specificity, or the route of transmission of hemotropic Mycoplasma spp. in bats. The potential role of hemotropic Mycoplasma as a cause of disease manifestations, and specifically WNS in Myotis lucifigus remains to be elucidated.

Endnotes
aQiagen Inc., Valencia, CA.
bNanodrop, Thermo Scientific, USA.

Abbreviations
WNS: White nose syndrome; RTP: Research Triangle Park.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
Pem, RGM, and LAL performed the PCR testing of the patient samples, performed DNA sequencing and alignments. MIK and LAL assisted in sample acquisition and testing. EBB, MY, and RGM coordinated various aspects of the investigation. EBB, Pem, and RGM helped to draft the final manuscript. All authors read and approved the manuscript.

Acknowledgement
We would like to thank Tonya Lee for editorial assistance with this manuscript, and Bayer HealthCare-Animal Health Division, for the support on this project. This work was funded in part by the state of North Carolina. This project was funded in part by the state of North Carolina.

Author details
1College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA. 2Department of Population Health, Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA. 3Department of Pathology, Microbiology, and Immunology, University of California, Davis, CA 95616, USA. 4D.B. Warrnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA.

Received: 13 December 2013 Accepted: 18 March 2014 Published: 24 March 2014

References
1. Mesick JB. Hemotropic mycoplasmas (hemoplasmas): a review and new insights into pathogenic potential. Vet Clin Pathol 2004, 33(1):12–13.
2. Biondo AW, Dos Santos AP, Guimarães AM, Vieira RF, Vidotto O, Maceira Dde B, Almosny NR, Molenço MB, Timenetsky J, de Morais HA, González FH, Mesick JB. A review of the occurrence of hemoplasmas (hemotropic mycoplasmas) in Brazil. Rev Bras Parasitol Vet 2009, 18(3):1–7.
3. Hoelze LE. Haemotropic mycoplasmas: recent advances in Mycoplasma suis. Vet Microbiol 2008, 130(3–4):215–226.
4. Sykes JE. Feline hemotropic mycoplasmas. J Vet Emerg Crit Care (San Antonio) 2010, 20(1):62–69.
5. Shang DQ, Li LY, Lu ZG. [An epidemiological investigation of eperythrozoon infection in human and animals (III)]. Zhonghua Liu Xing Bing Bing Xue Za Zhi 1997, 18(3):150–152.
6. Fujiyara Y, Sasaoka F, Suzuki J, Watanabe Y, Fujihara M, Ooshita K, Aso E, Harasawa R. Prevalence of hemoplasma infection among cattle in the western part of Japan. J Vet Med Sci 2011, 73(12):1653–1655.
7. Hoelze K, Hofmann-Lehmann R, Hoelze LE. ‘Candidatus Mycoplasma haemobos’, a new bovine haemotrophic Mycoplasma species? Vet Microbiol 2010, 144(3–4):525–526.
8. Nicholas RA, Ayling RD. Mycoplasma bovis: disease, diagnosis, and control. Rev Vet Sci 2003, 74(2):105–112.
9. Aquerre OH, Thompson C, Neumann RD, Salatin AO, Gaido AB, de Echaide ST. Clinical mycoplasmosis outbreak due to Mycoplasma ovis in sheep from Shalita, Argentina. Clinical, microbiological and molecular diagnosis. Rev Argent de Microbiol 2009, 41(2):212–214.
10. Neimark H, Hoff B, Gantier M. Mycoplasma ovis comb. nov. (formerly Eperythrozoon ovis), an erythroytic agent of haemolytic anaemia in sheep and goats. Int J Syst Evol Microbiol 2004, 54(Pt. 23):665–717.
11. Suzuki J, Sasaoka F, Watanabe T, Tasaki T, Oda S, Kobayashi S, Sato R, Nagai K, Harasawa R. Molecular identification of ‘Candidatus Mycoplasma haemovis’ in sheep with hemolytic anaemia. J Vet Med Sci 2011, 73(8):1113–1115.
12. Tagawa M, Takeuchi T, Fujisawa T, Konno Y, Yamamoto S, Matsumoto K, Yokoyama N, Inokuma H. A clinical case of severe anemia in a sheep coinfected with Mycoplasma ovis and ‘Candidatus Mycoplasma haemovis’ in Hokkaido, Japan. J Vet Med Sci 2012, 74(99–102.
13. Dierckx SM, Winkler M, Groebel K, Dierckx MP, Hofmann-Lehmann R, Hoelze K, Wittenbrink MM, Hoelze LE. Haemotrophic Mycoplasma infection in horses. Vet Microbiol 2010, 145(3–4):351–353.
14. Groebel K, Hoelze K, Wittenbrink MM, Ziegler U, Hoelze LE. Mycoplasma suis invades porcine erythrocytes. Infect Immun 2009, 77(5):576–584.
15. Boes NM, Goncharov KV, Thompson CA, Halik LA, Santos AP, Guimaraes AM, Feutz MM, Holman PJ, Vermulenpall R, Messick JB. Identification of a Mycoplasma ovis-like organism in a herd of farmed white-tailed deer (Odocoileus virginianus) in rural Indiana. Vet Clin Pathol 2012, 41(1):77–83.
16. Grazziolli AT, Santos AP, Guimaraes AM, Mohammad A, Cubas ZS, de Oliveira MJ, dos Santos LC, de Moraes W, Vieira RF, Donatti L, de Barros Filho IR, Biondo AW, Messick JB. Mycoplasma ovis in captive cervids: prevalence, molecular characterization and phylogeny. Vet Microbiol 2011, 152(3–4):415–419.
17. Maggi RG, Chitwood MC, Kennedy-Stoskopf S, DePerno CS. Novel hemotropic Mycoplasma species in white-tailed deer (Odocoileus virginianus). Comp Immun Microbiol Infect Dis 2013, 36(6):607–611.
18. Willi B, Filoni C, Catia-Olas JL, Catton V, Melli ML, Vargas A, Martinez F, Roelke ME, Ryse-Degirgiris MP, Leutenegger CM, Lutz H, Hofmann-Lehmann R. Worldwide occurrence of feline hemoplasma infections in wild felid species. J Clin Microbiol 2007, 45(4):1159–1166.
19. Maggi RG, Mascarelli PE, Balakrishnan N, Rohde CM, Kelly CM, Ramiahl L, Leach MW, Breitschwerdt EB. ‘Candidatus Mycoplasma haemomacaque’ and Bartonella quintana bacteremia in cynomolgus monkeys. J Clin Microbiol 2013, 51(5):1488–1491.
20. Mesick JB. New perspectives about Hemotropic mycoplasma (formerly, Haemobartonella and Eperythrozoon species) infections in dogs and cats. Vet Clin North Am Small Anim Pract 2003, 33(6):1453–1465.
21. Novacco M, Boretti FS, Wolf-Jackel GA, Riond B, Melli ML, Willi B, Lutz H, Hofmann-Lehmann R. Chronic ‘Candidatus Mycoplasma turicensis’ infection. Vet Res 2011, 42(1):59.
22. Roura X, Peters IR, Allet L, Tabar MD, Barker EN, Planellas M, Helps CR, Tranzonio O, Shaw SE, Tasker S. Prevalence of hemotropic mycoplasma in healthy and unhealthy cats and dogs in Spain. J Vet Diagn Invest 2010, 22(2):270–274.
23. Tasker S, Lappin MR. Haemobartonella felis: recent developments in diagnosis and treatment. J Feline Med Surg 2002, 4(1):13–11.
24. Sykes JE, Petty JC, Lindsay LL, Owers SD. Prevalences of various hemoplasma species among cats: a survey of the United States with possible hemoplasmosis. J Am Vet Med Assoc 2008, 232(3):372–379.
25. Compton SM, Maggi RG, Breitschwerdt EB. Candidatus Mycoplasma haematoparvum and Mycoplasma haemocanis infections in dogs from the United States. Comp Immun Microbiol Infect Dis 2012, 35(6):557–562.
26. Novacco M, Melli ML, Gentillini F, Mansillo F, Ceci C, Pennisi MG, Lombardo G, Uberti A, Santos L, Carfapisco T, Willi B, Wolf G, Lutz H, Hofmann-Lehmann R.

http://www.parasitesandvectors.com/content/7/1/117
Page 4 of 5
Prevalence and geographical distribution of canine hemotropic mycoplasma infections in Mediterranean countries and analysis of risk factors for infection. Vet Microbiol 2010, 142(3–4):276–284.

27. Willi B, Novacco M, Melli M, Wolf-Jackel G, Boretti F, Wengi N, Lutz H, Hofmann-Lehmann R: Haemotropic mycoplasmas of cats and dogs: transmission, diagnosis, prevalence and importance in Europe. Schweiz Arch Tierheilkd 2010, 152(3):237–244.

28. dos Santos AP, dos Santos RP, Biondo AW, Dora JM, Goldani LZ, de Oliveira ST, de Sa Guimaraes AM, Timenetsky J, de Morais HA, Gonzalez FH, Messick JB: Hemoplasma infection in HIV-positive patient, Brazil. Emerg Infect Dis 2008, 14(12):2192–2194.

29. Hu Z, Yin J, Shen K, Kang W, Chen Q: Outbreaks of hemotropic mycoplasma infections in China. Emerg Infect Dis 2009, 15(7):1139–1140.

30. Steer JA, Tasker S, Barker EN, Jensen J, Mitchell J, Stocki T, Chalker VJ, Helps CR, Day MJ, Harbour DA, Shaw SE, Harrus S, Baneth G, Meli ML, Wengi N, Lutz H, Hofmann-Lehmann R: From Haemobartonella to hemoplasma: molecular methods for screening a population of captive cepparics (Tayassu tajacu and Tayassu pecari). Rev Bras Parasitol Vet 2011, 20(1):75–77.

31. Bandi KM, Salikumar C: Sarcoptic mange: a zoonotic ectoparasitic skin disease. J Clin Diagn Res 2013, 7(1):156–157.

32. Hobi S, Linek M, Marignac G, Olivy T, Beco L, Nett C, Fontaine J, Roosje P, Bergvall K, Belova S, Koebirich S, Pin D, Kovalk M, Meury S, Wilhelm S, Favrot C: Clinical characteristics and causes of pruritus in cats: a multicentre study on feline hypersensitivity-associated dermatoses. Vet Dermatol 2011, 22(5):406–413.

33. Huang DS, Guan P, Wu W, Shen TF, Liu HL, Cao S, Zhou H: Infection rate of Eperythrozoon spp. in Chinese population: a systematic review and meta-analysis since the first Chinese case reported in 1991. BMC Infect Dis 2012, 12:171.

34. Maggi RG, Compton SM, Trull CL, Mascarelli PE, Mozayeri BR, Breitschwerdt EB: Infection with hemotropic Mycoplasma species in pets with or without extensive arthropod or animal contact. J Clin Microbiol 2013, 51(10):3237–3241.

35. Eremeeva ME, Karpathy SE, Levin ML, Caballero CM, Bermudez S, Dasch GA, Maeslinte JR, Webber RL, Memoli PJ, Nadler SV, Ewing WH, Redburn JG: Comparison of DNA-based methods for detection of Eperythrozoon suis. Vet Microbiol 2010, 142(3–4):276–284.

36. Willi B, Boretti FS, Baumgartner C, Tasker S, Wenger B, Cattori V, Melli ML, Reusch CE, Lutz H, Hofmann-Lehmann R: Prevalence, risk factor analysis, and follow-up of infections caused by three feline hemoplasma species in cats in Switzerland. J Clin Microbiol 2008, 46(3):961–969.

Cite this article as: Mascarelli et al.: Hemotropic mycoplasmas in little brown bats (Myotis lucifugus). Parasites & Vectors 2014 7:117.

doI:10.1186/1756-3305-7-117

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or figure size charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit