Bone Morphogenetic Protein for the Healing of Tibial Fracture: A Meta-Analysis of Randomized Controlled Trials

Jiezhi Dai*, Li Li*, Chaoyin Jiang, Chunyang Wang, Hua Chen, Yimin Chai*

Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China

These authors contributed equally to this work.
* chaiyimin@gmail.com

Abstract

Purpose
To review the evidence from RCTs on clinical outcomes and benefit of acute tibial fracture and nonunion treated with and without BMPs.

Material
We searched multiple databases (MEDLINE, EMBASE, BIOSIS and Cochrane central) as well as reference lists of articles and contacted authors. Evaluated outcomes included union rate, revision rate, hardware failure and infection. The weighted and standard mean difference (WMD and SMD) or the relative risk (RR) was calculated for continuous or dichotomous data respectively. The quality of the trial was assessed, and meta-analyses were performed with the Cochrane Collaboration's REVMAN 5.0 software.

Results
Eight RCTs involving 1113 patients were included. For acute tibial fracture, BMP group was associated with a higher rate of union (RR, 1.16; 95% CI, 1.04 to 1.30) and a lower rate of revision (RR, 0.68; 95% CI, 0.54 to 0.85) compared with control group. No significant differences were found in rate of hardware failure and infection. The pooled RR for achieving union for tibial fracture nonunion was 0.98 (95% CI, 0.86 to 1.13). There was no significant difference between the two groups in the rate of revision (RR, 0.48; 95% CI, 0.13 to 1.85) and infection (RR, 0.61; 95% CI, 0.37 to 1.02).

Conclusion
Study on acute tibial fractures suggests that BMP is more effective than controls, for bone union and for decreasing the rate of surgical revision to achieve union. For the treatment of tibial fracture nonunion, BMP leads to similar results to autogenous bone grafting. Finally, well-designed RCTs of BMP for tibial fracture treatment are also needed.
Introduction

Fractures of the tibial are mostly caused by high-energy trauma, such as motor vehicle accidents[1]. They can be either open or closed, and are associated with high prevalence of delayed union and nonunion. The management of acute tibial fractures and delayed or nonunion remains challenging by high rates of treatment failure and significant patient disability and dissatisfaction[2]. In the United States the total cost for non-union management is about 14.6 million dollars per year[3], with patients typically submitting to frequent hospital admissions and a number of interventions.

Traditional treatments of fracture fixation such as intramedullary nails and plate have been combined with biologically active substances such as autograft or bone substitutes in an effort to improve healing potential both for acute fractures and nonunions. Bone morphogenetic proteins (BMPs), discovered by Urist et al. in 1965[4], are members of the transforming growth factor beta (TGF-beta) super-family and playing a critical role in bone formation and repair. In vivo studies, multiple BMPs are expressed in fracture healing[5]. In acute fractures, BMPs act to accelerate bone union and reduce the rate of revision, while in nonunions, they are used to stimulate healing where it has not previously been successful[6].

Previous systematic reviews and meta-analyses on this problem have been discussed. According to the two meta-analyses of Wei PD[7] and Wei S[8], BMP has certain advantages in treating open tibial fractures. However, both were limited by small sample sizes with poor quality. Garrison[9] suggested that BMP may be more effective than controls for acute tibial fracture healing, however, the use of BMP for treating nonunion remains unclear. The included studies involved patients with varying diagnoses, including acute tibial fractures, tibial nonunions, critically sized defects and radial malunion. Hagen[10] discussed BMP, CaP cements and bone marrow-based bone substitute materials for the treatment of traumatic fractures of the extremities. Only three studies using BMP for fracture healing were eligible for analysis and it concluded BMP-2 was a viable alternative for treatment of open fractures. Another systematic review by Garrison 2007[11] studied clinical effectiveness and cost-effectiveness of BMPs in the non-healing of fractures and spinal fusion. Tibial fractures, scaphoid non-union and spinal fusion were reviewed and all trials were completed before 2007. Despite the high relevance of the topic, a systematic review of BMPs for the healing of tibial fracture on the basis of high quality studies is still lacking. Besides evidence for the use of BMPs in other clinical situation, the incremental effectiveness of BMPs for specific tibial fracture treatment is worth considering and a strong analysis is required using large, randomized trials to overcome these limitations.

To assess the incremental effectiveness of BMPs on fracture healing in acute fractures and nonunions compared with standards of care, we have performed this study. Furthermore, we also attempted to illuminate the limitations of current studies and to provide suggestions for further studies to evaluate these therapeutic options for the treatment of tibial fractures with BMPs.

Materials and Methods
Study selection

The electronic databases MEDLINE, EMABSE, BIOSIS and Cochrane central, last updated on January 31, 2014, were searched. We also searched Google Scholar and reference lists of articles. No language restrictions were applied. The search terms with BMP and tibial were retrieved in the titles, abstracts, and Medical Subject Headings. Trials were independently assessed for inclusion by three reviewers (D.J.Z., L.L., and J.C.Y.). In cases of disagreement, a senior reviewer (C.Y.M) was consulted and a decision was made by discussion.
Inclusion and exclusion criteria

Inclusion criteria included (1) Randomized controlled trials (RCTs) comparing use of BMP for the healing of tibial fracture with one or more current standard treatments; (2) skeletally mature patients, aged 18 and older with tibial fractures, either acute or nonunion; (3) patient treated with BMP versus surgery, BMP versus surgery with or without autograft, or BMP and bone substitutes versus surgery and bone substitutes; (4) outcomes including union rate, revision rate, hardware failure and infection; (5) >10 patients in each group; and (6) at least six-months follow-up. Exclusion criteria included (1) retrospective or nonrandomized control trials; (2) animal models and children.

Data extraction

Data on the outcomes listed above were extracted by two reviewers (D.J.Z. and L.L.). Differences were resolved by discussion. Effective data included trial methods, populations, interventions and outcomes. Where necessary, detail was sought from the authors of the primary studies.

Statistical analysis

The data from trials were pooled together and analyzed using the Cochrane Collaboration’s REVAMAN 5.0 software. For each study, relative risks (RR) and 95% confidence intervals (CIs) were calculated for dichotomous outcomes, and weighted mean differences (WMD) and 95% confidence intervals (CIs) were calculated for continuous outcomes. Heterogeneity of effect size across trials was tested by using I² statistic. Because the test for heterogeneity had low statistical power, the presence of heterogeneity was assumed a priori, and the random effects model was used in all the analyses.

Assessment of methodological quality and publication bias

The methodological quality of these trials was evaluated with the Cochrane Collaboration’s tool. Assessments of five main fields included sequence generation, allocation concealment, blinding, incomplete outcome data and selective outcome reporting. It was judged by answering a question, with “yes” indicating low risk of bias, “no” indicating high risk of bias, and “unclear” indicating unclear or unknown risk of bias.

We planned to draw funnel plots of primary outcomes to assess the potential publication bias. However, the small number of included studies precluded this form of analysis.

Result

126 articles were identified with use of our search strategy and the process of study selection was shown in Fig 1. After we evaluated all retrieved titles and abstracts, 11 studies remained. We excluded several studies because of the case-control or cross-sectional design or a lack of data, resulting in a total of 8 studies being included in the meta-analysis.

Details on the eight randomized, controlled trials that were included in the review are documented in Tables 1 and 2. A total of 1113 patients were included. Four trials involved 868 patients with acute tibial fractures, of which three trials include patients with open tibial fractures [12–14], and one with both open and closed tibial fracture [15]. Four trials included 245 patients with tibial fracture nonunion [16–19]. All trials were written in English, except Chen 2000 (in Chinese).

Four trials [14, 17–19] used BMP-7. Three trials[12, 13, 15] used BMP-2 and one[16] with BMP and natural non-organic bone (NNB). Aro 2011 and Jones 2006 reported the treatment
with a 1.5 mg/ml dose of BMP-2 (total dose of 12 mg), while Govender 2002 used BMP-2 with
dose of 1.5 mg/ml (total dose of 12 mg) or 0.75 mg/ml (total dose of 6 mg). Friedlaender 2001
reported a 3.5mg dose of BMP-7 in a type 1 collagen carrier. Five trials [15–19] compared treat-
ment with BMP with autograft and three trials [12–14] compared BMP with SC treatment
(intramedullary nail fixation and routine soft-tissue management).
Methodological quality of the included trials was detailed in Table 3.
All trials reported a definition of successful fracture union and the union rate. Secondary
outcomes included rate of surgical revision, infection and hardware failure. RCTs were grouped
as either acute or nonunion of tibial fracture for meta-analysis.
Treatment with acute tibial fractures

For acute tibial fracture, four trials reported the outcome of bone union. The I² statistic was 14% and the 95% confidence interval ranged from 0% (no heterogeneity) to 82% (high heterogeneity). The risk ratio for attaining union was 1.16 (95% CI 1.04 to 1.30) with applying the random-effects model. Results gave a pooled rate of 65.0% (329 of 506) in the BMP group and of 58.8% (213 of 362) in the control group. In this study, the dose of 0.75 mg/ml and 1.5 mg/ml of BMP-2 were each compared to half of the control group in the Govender 2002. Apart from Jones 2006 treated with autograft, a subgroup analysis compared BMP with SC treatment.

Table 1. Characteristics of the included trials.

Studies	Fracture type	Intervention	No. of patients	Age	Sex ratio (M %)	Follow-up	Drop-out					
			BMP	Control	BMP	Control	BMP	Control	BMP	Control	BMP	Control
McKee 2002	Acute/Open	BMP-7	62	62	NR	NR	6m	0				
Govender 2002	Acute/Open	BMP-2: 0.75mg/mL SC	145	147	37	37	12m	3.6%				
			145	33	36	38						
			145	33	36	38						
Jones 2006	Acute/Open and close	BMP-2: 1.5mg/mL IM	15	15	36	38	12m	20%				
Aro 2011	Acute/Open	BMP-2: 1.5mg/mL SC	139	138	39.5	37.5	12m	16.2%				
Perry 1997	Nonunion	BMP-7: IM + Autograft	20	21	NR	NR	12m	0				
Cook 1999	Nonunion	BMP-7: IM + Autograft	14	16	NR	NR	9m	0				
Chen 2000	Nonunion	BMP+NNB: IM + Autograft	20	30	35	35	19m	0				
Friedlaender 2001	BMP-7: 3.5mg IM + Autograft	63	61	38	34	24m	0					

BMP: Bone morphogenetic protein; SC: Intramedullary nail fixation and routine soft-tissue management; IM: Intramedullary nail fixation; NNB: Non-organic bone; NR: Not reported.
doi:10.1371/journal.pone.0141670.t001

Table 2. Clinical outcomes of the included trials.

Studies	Union	Revision	Hardware failure	Infection						
	BMP	Control								
McKee 2002	54	45	8	17	NR	NR	NR	NR	NR	NR
Govender 2002	BMP: 0.75mg/mL	75	66	51	66	25	32	31	39	
	BMP: 1.5mg/mL	92	37	2	5	0	2	3	1	
Jones 2006	13	10	2	5	0	2	3	1		
Aro 2011	95	92	16	17	24	21	27	15		
Perry 1997	19	17	NR	NR	NR	NR	NR	NR		
Cook 1999	12	15	NR	NR	NR	NR	0	1		
Chen 2000	20	30	NR	NR	NR	NR	NR	NR		
Friedlaender 2001	BMP-7: 3.5mg IM + Autograft	39	45	3	6	NR	NR	16	25	

BMP: Bone morphogenetic protein; NR: Not reported.
doi:10.1371/journal.pone.0141670.t002
pooled rate of union was 64.4% (316 of 491) in BMP group and 58.5% (203 of 347) in SC group (RR, 1.16; 95% CI, 1.02 to 1.32). Similar results showed the union rate in the BMP group was significantly higher than in the SC/autograft group for acute tibial fracture (Fig 2).

Patients underwent surgical revision according to four trials was reported. The I² statistic was 5% and the 95% confidence interval ranged from 0% (no heterogeneity) to 80% (high heterogeneity). Pooled results showed that the rate in the control group was significantly higher than in the BMP group (23.0% vs. 29.4%, respectively; RR, 0.68; 95% CI, 0.54 to 0.85) (Fig 3).

Three trials reported patients developing hardware failures. The I² statistic was 32% and the 95% confidence interval ranged from 0% (no heterogeneity) to 76% (high heterogeneity). There was no significant difference in the BMP groups between the control group (RR, 0.77; 95% CI, 0.50 to 1.18) (Fig 4), but a trend favoring control group was observed.

Table 3. Assessments of risk of bias of the randomized, controlled trials.

Studies	Sequence generation	Allocation concealment	Blinding	Incomplete outcome data	Selective outcome reporting
McKee 2002	Unclear	Unclear	Unclear	Yes	Yes
Govender 2002	Yes	Yes	Yes	Yes	Yes
Jones 2006	Unclear	Unclear	Yes	Unclear	Yes
Aro 2011	Yes	Yes	Unclear	Yes	Yes
Perry 1997	Unclear	Unclear	Unclear	Yes	Yes
Cook 1999	Unclear	Unclear	Unclear	Yes	Yes
Chen 2000	No	No	No	Yes	Yes
Friedlaender 2001	Unclear	Unclear	Yes	Yes	Yes

doi:10.1371/journal.pone.0141670.t003

Fig 2. Forest plot of union rate of acute tibial fracture treated with BMP versus control group. Note: a, b: The dose of 0.75 mg/ml and 1.5 mg/ml of BMP-2 are each compared to half of the control group; SC: Intramedullary nail fixation and routine soft-tissue management.
Infection-risk analysis across three trials showed no significant differences were found when comparing BMP groups with control groups (20.5% vs. 18.3%, respectively; RR, 1.07; 95% CI, 0.66 to 1.74) (Fig 5). The I² statistic was 54% and the 95% confidence interval ranged from 0% (no heterogeneity) to 85% (high heterogeneity).

Treatment with tibial fracture nonunion

For nonunion to tibial fracture, three trials were included in the analysis. There was a significant heterogeneity (I² = 53%) between trials and the 95% confidence interval ranged from 0% (no heterogeneity) to 84% (high heterogeneity). This heterogeneity could lower when removing the trial Friedlaender 2001. The pooled RR for achieving union was 0.98 (95% CI, 0.86 to 1.13) (Fig 6). The pooled data demonstrated no significant difference was found when comparing BMP with autograft for nonunion fracture treatment.

Only one trial in the nonunion group reported the data on surgical revision and two trials reported the rate of infection. The pooled rate of surgical revision was 4.8% (3/63) in the BMP group and 9.8% (6/61) in the control group (RR, 0.48; 95% CI, 0.13 to 1.85). Two trials found no significant difference between the two groups in the rate of infection (RR, 0.61; 95% CI, 0.37 to 1.02); however, most of this evidence was dominated by the result of Friedlaender 2001. The results of these analyses were provided in Figs 7 and 8.

Fig 3. Forest plot of revision rate of acute tibial fracture treated with BMP versus control group. Note: a, b: The dose of 0.75 mg/ml and 1.5 mg/ml of BMP-2 are each compared to half of the control group.

doi:10.1371/journal.pone.0141670.g003

Fig 4. Forest plot of hardware failure rate of acute tibial fracture treated with BMP versus control group. Note: a, b: The dose of 0.75 mg/ml and 1.5 mg/ml of BMP-2 are each compared to half of the control group.

doi:10.1371/journal.pone.0141670.g004
Discussion

Eight randomized controlled trials involving the treatment of tibial fractures fulfilled the inclusion criteria for this meta-analysis. Four trials involved patients with acute tibial fracture, and there was some evidence for improved union rate, without requiring a surgical revision, of BMP comparing with SC/autograft treatment. Four trials included patients with tibial fracture nonunion. No evidence of benefit was found when BMP comparing with bone grafts, for attaining union. The data also showed the BMP group was significantly associated with a lower risk of surgical revision for the acute tibial fracture, while no significant difference was seen in hardware failure and infection rate between groups. For the treatment of tibial fracture nonunion, as a small number of patients involved, no significant difference was found on the rate of surgical revision and infection.

In acute tibial fracture, delayed or nonunion, it was possible to induce bone at the fracture site to support healing [9]. This specialized process normally regenerated bone in a well-orchestrated biological process that regained skeletal integrity. Autograft from the iliac crest was considered the current gold standard for bone repair and reconstruction [20] with both histo-compatible and non-immunogenic. However, harvesting the grafts was associated with donor-site morbidity, particularly chronic pain and dissatisfaction with appearance [21]. BMP was soluble bone matrix glycoprotein that stimulated the steps from stem cell differentiation to osteoblastic mature cells. It seemed to play an important role in the healing process and act as

Study or Subgroup	Experimental	Control	Risk Ratio				
	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Govender 2002a	30	145	19	73	32.8%	0.79 [0.48, 1.31]	
Govender 2002b	31	145	20	74	33.4%	0.79 [0.49, 1.29]	
Jones 2006	3	15	1	15	4.6%	3.00 [0.35, 25.68]	
Aro 2011	27	139	15	138	29.1%	1.79 [1.00, 3.21]	
Total (95% CI)	444	300	100.0%		1.07 [0.66, 1.74]		

Fig 5. Forest plot of infection rate of acute tibial fracture treated with BMP versus control group. Note: a, b: The dose of 0.75 mg/ml and 1.5 mg/ml of BMP-2 are each compared to half of the control group.

doi:10.1371/journal.pone.0141670.g005

Study or Subgroup	Experimental	Control	Risk Ratio				
	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Perry 1997	19	20	17	21	20.5%	1.17 [0.93, 1.48]	
Cook 1999	12	14	15	16	18.8%	0.91 [0.71, 1.17]	
Chen 2000	20	20	30	30	41.6%	1.00 [0.92, 1.08]	
Friedlaender 2001	39	63	45	61	19.1%	0.84 [0.66, 1.07]	
Total (95% CI)	117	128	100.0%		0.98 [0.86, 1.13]		

Fig 6. Forest plot of union rate of tibial nonunion treated with BMP versus control group.

doi:10.1371/journal.pone.0141670.g006
autogenous bone graft substitutes. Flierl et al. [22] doubted the indication spectrum of BMP with controversy, particularly regarding its questionable safety and efficiency profile.

Previous clinical studies assessing BMP in fracture and nonunion management were limited. Westerhuis et al. [23] reviewed a larger number of non-randomized studies using different BMPs. Although the results were impressive for bone healing, they were largely anecdotal and generally lack control groups. In 2002, the results of the BESTT multicenter prospective randomized trial showed a significant decrease in surgical revision and a higher union rate in patients with BMP-2 treatment for acute open tibial fracture [13]. Again, as reaming was likely to producing bone ‘dust’, which was a form of bone graft and help healing, this should have been considered in this study protocol.

In 2012, a meta-analysis by Wei et al. [8] reported the use of rhBMP-2 in open tibial shaft fractures. The authors suggested that rhBMP-2 added to intramedullary nail fixation of open tibial fractures could reduce the rate of surgical revisions and total health care costs. Their meta-analysis included four trials, two of which were omitted from the present meta-analysis because of inappropriate data (the data of Swiontkowski was combined and analyzed from Govender 2002 and US study group. Communication from Prof Swiontkowski confirmed that this trial was sponsored by Wyeth and has never been published independently as it was under-powered for the pre-determined endpoints) [24], and insufficient reporting of results (an economic evaluation study and the clinical data collected from Govender 2002) [25]. We included six extra trials that did fulfill our strict inclusion criteria and performed a new meta-analysis to review the clinical data currently available on the use of BMPs in both acute tibial fractures and nonunion. Nevertheless, the results reported by Wei et al. [8] were similar to ours; besides, BMP remained as effective as autograft for nonunion fracture treatment, with similar union rate (RR = 0.98).

Our meta-analysis found no significant difference in union rate for BMP, compared with autograft, for tibial fracture nonunion. It was also confirmed in other studies. In tibial fracture
nonunion, similar and even higher success rates were attained by Calori et al.[26] in 2008, Zimmermann et al. [3] in 2009 and others. It concluded that BMPs may provide a viable alternative to autogenous bone grafting for the treatment of long bone nonunion [27]. There was, however, heterogeneity between these trials. It decreased from 53% to 24% when removing the trial Friedlaender 2001. It was probably due to selection bias when a study group contained greater numbers of nonunion than the control group. This was the case for the largest trial in this group.

In the BESTT study [13], it was inadequately powered to demonstrate a between-group difference in the reamed-nailing subpopulation. A more recent RCT, with the similar design to the BESTT, failed to demonstrate improved fracture-healing when used with reamed-nailing and rhBMP-2 for the treatment of tibial fractures[12]. It suggested that larger randomized trials that involved reamed-nailing and BMPs may confirm the differences observed. Only one trial Govender 2002 compared two dose of BMP-2 and tried to find the effects with dose-dependent. Subsequent studies followed the results with the use of 1.5mg/mL dose. In our meta-analysis, the dose of 0.75 mg/ml and 1.5 mg/ml of BMP-2 were each compared to half of the control group. Although, the results for the higher dose of 1.5mg/mL were more impressive than those for the 0.75mg/mL dose, an interactive test did not find any statistically significant difference. Luginbuehl et al.[28] reported a clear species-specific dose response using rhBMP-2 ranging from 25ug/mL in rodents to 50ug/mL in dogs, 100ug/mL in non-human primates and 800ug/mL in humans. The doses currently used were supra-physiological and we wondered the long-term effects of this would be. One explanation was that supra-physiological concentrations might be required to overcome the effects of natural inhibitors of growth factors[29]. This should be considered for dose stratification in the future study.

No clear answer was found in the study which of the BMPs was the optimal candidate to help bone healing in acute tibial fractures, or nonunion. Vaibhav et al.[30] concluded using BMP-7 in cases of tibial non-union and BMP-2 in cases of acute tibial fractures. Among the included RCTs, McKee 2002 compared open tibial fractures treated with either standard closure or BMP-7. The results suggested that rhBMP-7 to acute open tibial fractures was technically feasible and not associated with any increase in adverse events[14]. Given that only BMP-2 and BMP-7 were approved for clinical application currently, further investigation with more specific BMP subtypes were required.

Conclusion

Study on acute tibial fractures suggests that BMP is more effective that controls, for bone union and for decreasing the rate of surgical revision to achieve union. For the treatment of tibial fracture nonunion, BMP leads to similar results to as autogenous bone grafting. It indicates that BMP is not the ultimate solution in the challenging field of acute tibial fracture and non-union treatment. In other words, the use of BMPs has supplied a biological component to the treatment options available[31]. Finally, well-designed RCTs of BMP for tibial fracture treatment are also needed.

Supporting Information

S1 PRISMA Checklist.
(PDF)

S1 File. Electronic Supplementary.
(DOC)
Author Contributions
Conceived and designed the experiments: JZD LL YMC. Performed the experiments: JZD LL CYJ CYW HC. Analyzed the data: JZD YMC. Contributed reagents/materials/analysis tools: CYW HC. Wrote the paper: JZD.

References
1. Duan X, Al-Qwbani M, Zeng Y, Zhang W, Xiang Z. Intramedullary nailing for tibial shaft fractures in adults. Cochrane Database Syst Rev. 2012; 1:CD008241. Epub 2012/01/20. doi: 10.1002/14651858.CD008241.pub2 PMID: 22258982.
2. Ronga M, Fagetti A, Canton G, Puisasco E, Surace MF, Cherubino P. Clinical applications of growth factors in bone injuries: experience with BMPs. Injury. 2013; 44 Suppl 1:S34–9. Epub 2013/02/13. doi: 10.1016/S0020-1383(13)70008-1 S0020-1383(13)70008-1 [pii]. PMID: 23351868.
3. Zimmermann G, Wagner C, Schmeckenbecher K, Wentzensen A, Moghaddam A. Treatment of tibial shaft non-unions: bone morphogenetic proteins versus autologous bone graft. Injury. 2009; 40 Suppl 3: S50–3. Epub 2010/01/30. doi: 10.1016/S0020-1383(09)70012-9 S0020-1383(09)70012-9 [pii]. PMID: 20082792.
4. Urist MR. Bone: formation by autoinduction. Science. 1965; 150(3698):893–9. Epub 1965/11/12. PMID: 5319761.
5. Samartzis D, Khanna N, Shen FH, An HS. Update on bone morphogenetic proteins and their application in spine surgery. J Am Coll Surg. 2005; 200(2):236–48. Epub 2005/01/25. S1072-7515(04)01350-X [pii] doi:10.1016/j.jamcollsurg.2004.09.046 PMID: 15664100.
6. Termaat MF, Den Boer FC, Bakker FC, Patka P, Haarman HJ. Bone morphogenetic proteins. Development and clinical efficacy in the treatment of fractures and bone defects. J Bone Joint Surg Am. 2005; 87(6):1367–78. Epub 2005/06/03. doi: 10.2106/JBJS.D.02585 PMID: 15930551.
7. Weid PS, Cao LY, Ding MC, Chen ZX. [A meta-analysis of bone morphogenetic protein for the treatment of open tibial fractures]. Zhongguo Gu Shang. 2012; 25(11):946–50. Epub 2013/02/23. PMID: 23427599.
8. Wei S, Cai X, Huang J, Xu F, Liu X, Wang Q. Recombinant human BMP-2 for the treatment of open tibial fractures. Orthopedics. 2012; 35(6):e847–54. Epub 2012/06/14. doi: 10.3928/01477447-20120525-23 PMID: 22691665.
9. Garrison KR, Shemilt I, Donell S, Ryder JJ, Mugford M, Harvey I, et al. Bone morphogenetic protein (BMP) for fracture healing in adults. Cochrane Database Syst Rev. 2010; (6):CD006950. Epub 2010/06/18. doi:10.1002/14651858.CD006950.pub2 PMID: 20556771.
10. Hagen A, Gorenoi V, Schonemark MP. Bone graft substitutes for the treatment of traumatic fractures of the extremities. GMS Health Technol Assess. 2012; 8:Doc04. Epub 2012/09/18. doi: 10.3205/hta000102 hta000102 [pii]. PMID:22984371; PubMed Central PMCID: PMC3434359.
11. Garrison KR, Donell S, Ryder J, Shemilt I, Mugford M, Harvey I, et al. Clinical effectiveness and cost-effectiveness of bone morphogenetic proteins in the non-healing of fractures and spinal fusion: a systematic review. Health Technol Assess. 2007; 11(30):1–150, iii-iv. Epub 2007/08/03. doi: 04/34/02 [pii]. PMID: 17669279.
12. Aro HT, Govender S, Patel AD, Herniou P, Perera de Gregorio A, Popescu GI, et al. Recombinant human bone morphogenetic protein-2: a randomized trial in open tibial fractures treated with reamed nail fixation. J Bone Joint Surg Am. 2011; 93(9):801–8. Epub 2011/04/02. doi: 10.2106/JBJS.L.01763 JBJS.L.01763 [pii]. PMID: 21454742.
13. Govender S, Csimma C, Genant HK, Valentin-Opran A, Amit Y, Arbel R, et al. Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures: a prospective, controlled, randomized study of four hundred and fifty patients. J Bone Joint Surg Am. 2002; 84-A(12):2123–34. Epub 2002/12/11. PMID: 12473698.
14. McKee M, Schemitsch E, Waddell J, Kreder H, Stephen D, Leighton R, et al., editors. The effect of human recombinant bone morphogenic protein (rhBMP-7) on the healing of open tibial shaft fractures: results of a multi-center, prospective, randomized clinical trial. Proceedings of the 18th Annual Meeting of the Orthopaedic Trauma Association; Oct; 2002. Available from www.hwbf.org/ota/am/ota02/otapa/OTA02745.htm.
15. Jones AL, Bucholz RW, Bosse MJ, Mirza SK, Lyon TR, Webb LX, et al. Recombinant human BMP-2 and allograft compared with autogenous bone graft for reconstruction of diaphyseal tibial fractures with cortical defects. A randomized, controlled trial. J Bone Joint Surg Am. 2006; 88(7):1431–41. Epub 2006/07/05. doi: 10.2106/JBJS.E.00381 PMID: 16818967.
16. Chen G, Yang J, Xu H, Wang M. The application of NNB/BMP complex in the treatment of ununited-tibia fracture. Orthop J China (Zhongguo Jiaoxing Waike Zazhi). 2000; 7:758–61. doi: 10.3969/j.issn.1005-8478.2000.08.009

17. Cook SD. Preclinical and clinical evaluation of osteogenic protein-1 (BMP-7) in bony sites. Orthopedics. 1999; 22(7):669–71. Epub 1999/07/27. PMID: 10418861.

18. Friedlaender GE, Perry CR, Cole JD, Cook SD, Cierny G, Muschler GF, et al. Osteogenic protein-1 (bone morphogenetic protein-7) in the treatment of tibial nonunions. J Bone Joint Surg Am. 2001; 83-A Suppl 1(Pt 2):S151–8. Epub 2001/04/21. PMID: 11314793; PubMed Central PMCID: PMC1425155.

19. Perry C, Cole D, Perry M, Cierny G, editors. Osteogenic protein (OP-1) vs autograft in the management of tibial non-unions [poster]. Orthopaedic Trauma Association 1997 Annual Meeting; 1997. Available from www.hwbf.org/ota/am/ota97/otapo/OTP97064.htm.

20. Szpalski M, Gunzburg R. Recombinant human bone morphogenetic protein-2: a novel osteoinductive alternative to autogenous bone graft? Acta Orthop Belg. 2005; 71(2):133–48. Epub 2005/09/13. PMID: 16152845.

21. Robertson PA, Wray AC. Natural history of posterior iliac crest bone graft donation for spinal surgery: a prospective analysis of morbidity. Spine (Phila Pa 1976). 2001; 26(13):1473–6. Epub 2001/07/18. PMID: 11458153.

22. Flissel MA, Smith WR, Mauffrey C, Irgit K, Williams AE, Ross E, et al. Outcomes and complication rates of different bone grafting modalities in long bone fracture nonunions: a retrospective cohort study in 182 patients. J Orthop Surg Res. 2013; 8:33. Epub 2013/09/11. doi: 10.1186/1749-799X-8-33 1749-799X-8-33 [pii]. PMID: 24016227; PubMed Central PMCID: PMC3847297.

23. Westerhuis RJ, van Bezooyen RL, Kloen P. Use of bone morphogenetic proteins in traumatology. Injury. 2005; 36(12):1405–12. Epub 2005/08/30. doi:10.1016/j.injury.2005.02.047 S0020-1383(05)00684-X [pii]. PMID: 16125704.

24. Swiontkowski MF, Aro HT, Donell S, Esterhai JL, Goulet J, Jones A, et al. Recombinant human bone morphogenetic protein-2 in open tibial fractures. A subgroup analysis of data combined from two prospective randomized studies. J Bone Joint Surg Am. 2006; 88(6):1258–65. Epub 2006/06/08. doi: 88/6/1258 [pii] doi:10.2106/JBJS.E.00499 PMID: 16757759.

25. Alt V, Donell ST, Chhabra A, Bentley A, Eicher A, Schnettler R. A health economic analysis of the use of rhBMP-2 in Gustilo-Anderson grade III open tibial fractures for the UK, Germany, and France. Injury. 2009; 40(12):1269–75. Epub 2009/06/23. doi:10.1016/j.injury.2009.02.007 S0020-1383(09)00151-X [pii]. PMID: 19539926.

26. Calori GM, Tagliabue L, Gala L, d’Imporzano M, Peretti G, Albisetti W. Application of rhBMP-7 and platelet-rich plasma in the treatment of long bone non-unions: a prospective randomised study on 120 patients. Injury. 2008; 39(12):1391–402. Epub 2008/11/26. doi:10.1016/j.injury.2008.08.011 S0020-1383(08)00381-1 [pii]. PMID: 19027898.

27. Tressler MA, Richards JE, Sofianos D, Comrie FK, Kregor PJ, Obremskey WT. Bone morphogenetic protein-2 compared to autologous iliac crest bone graft in the treatment of long bone nonunion. Orthopedics. 2011; 34(12):e877–84. Epub 2011/12/08. doi:10.3928/01477447-20111021-09 PMID: 22146205.

28. Luginbuehl V, Meinel L, Merkle HP, Gander B. Localized delivery of growth factors for bone repair. Eur J Pharm Biopharm. 2004; 58(2):197–208. Epub 2004/08/07. doi:10.1016/j.ejpb.2004.03.004 S0939641104000451 [pii]. PMID: 15299926.

29. Aspenberg P, Jepsen C, Economides AN. The bone morphogenetic proteins antagonist Noggin inhibits membranous ossification. J Bone Miner Res. 2001; 16(3):497–500. Epub 2001/03/30. doi: 10.1359/jbmr.2001.16.3.497 PMID: 11277267.

30. Vaibhav B, Nilesh P, Anshul C. Bone morphogenic protein and its application in trauma cases: a current concept update. Injury. 2007; 38(11):1227–35. Epub 2007/02/20. doi: S0020-1383(06)00684-X [pii] doi:10.1016/j.injury.2006.12.012 PMID: 17307180.

31. Blokhuis TJ, Calori GM, Schmidmaier G. Autograft versus BMPs for the treatment of non-unions: what is the evidence? Injury. 2013; 44 Suppl 1:S40–2. Epub 2013/02/13. doi: 10.1016/S0020-1383(13)70009-3 S0020-1383(13)70009-3 [pii]. PMID: 23351869.