OrMKK3 Influences Morphology and Grain Size in Rice

Ying Hua Pan\(^1\) · Li Jun Gao\(^2\) · Yun Tao Liang\(^1\) · Yan Zhao\(^3\) · Hai Fu Liang\(^1\) · Wei Wei Chen\(^1\) · Xing Hai Yang\(^1\) · Dong Jin Qing\(^2\) · Ju Gao\(^2\) · Hao Wu\(^2\) · Juan Huang\(^2\) · Wei Yong Zhou\(^2\) · Cheng Cui Huang\(^1\) · Gao Xing Dai\(^1\) · Guo Fu Deng\(^2\)

Received: 2 July 2020 / Revised: 15 November 2020 / Accepted: 18 November 2020 / Published online: 4 January 2021
© Korean Society of Plant Biologist 2021

Abstract

Although morphology and grain size are important to rice growth and yield, the identity of abundant natural allelic variations that determine agronomically important differences in crops is unknown. Here, we characterized the function of mitogen-activated protein kinase 3 from *Oryza officinalis* Wall. ex Watt encoded by *OrMKK3*. Different alternative splicing variants occurred in *OrMKK3*. Green fluorescent protein (GFP)–*OrMKK3* fusion proteins localized to the cell membrane and nuclei of rice protoplasts. Overexpression of *OrMKK3* influenced the expression levels of the grain size-related genes *SMG1*, *GW8*, *GL3*, *GW2*, and *DEP3*. Phylogenetic analysis showed that *OrMKK3* is well conserved in plants while showing large amounts of variation between *indica*, *japonica*, and wild rice. In addition, *OrMKK3* slightly influenced brassinosteroid (BR) responses and the expression levels of BR-related genes. Our findings thus identify a new gene, *OrMKK3*, influencing morphology and grain size and that represents a possible link between mitogen-activated protein kinase and BR response pathways in grain growth.

Keywords *Oryza officinalis* Wall. ex Watt · *OrMKK3* · Morphology · Grain size

Abbreviation

GFP Green fluorescent protein

Introduction

Rice is the main cereal crop of over 3.5 billion people (Cheng et al. 2013). *Oryza officinalis* Wall. ex Watt (CC, \(2n = 2x = 24\)), an important and special wild-rice species, represents a significant source of genes influencing important characteristics such as grain size and strong resistance to abiotic and biotic stresses (Zhang et al. 2019). Recent studies have isolated and characterized several genes for disease resistance from *O. officinalis* Wall. ex Watt (Jiang et al. 2019), however, the identities of genes for grain size and plant architecture are unknown.

Plant height and tiller number are two major agronomic traits influencing cereal crop architecture and grain yield (Wang et al. 2018a, b) and are always inversely related in rice (Liao et al. 2019), with increased tillers and decreasing plant height of many mutant and transgenic plants (Chen et al. 2012; Choi et al. 2012; Xu et al. 2012; Zhou et al. 2013). While the specific identities of many trait-influencing genes in rice are unknown, many studies have revealed potential genetic influences on trait regulation. For example, *Grain number, plant height, and heading date? (Ghd7)*, which encodes a CCT-domain-containing transcription factor and has been reported to have major effects on the...
number of grains per panicle, plant height, and flowering time (Gao et al. 2014). In addition, the QTL DTH8 (QTL for days to heading on chromosome 8) encoding a putative HAP3 subunit of a CCAAT-box-binding transcription factor was shown to be downregulated in heading, plant height, and the number of grains per panicle (Wei et al. 2010). A semi-dwarf and late-flowering mutation altering the function of the WRKY transcription factor Dlf1 caused downregulation of Ehd2/RID1/OsId1 in a signaling pathway and influenced height in rice (Wang et al. 2019). OsGA3ox2 encodes a gibberellin (GA) 3β-hydroxylase that catalyzes the conversion of GA20 to GA1. Loss-of-function mutants of OsGA3ox2 show severe dwarfism due to altered GA processing (Itoh et al. 2002). Overall, these studies indicate that multiple pathways influence rice height.

Tiller number is another critical trait of rice that describes the level of grain yield. A comprehensive understanding of the genetic controls of tiller number will enhance knowledge of basic plant development and improve agriculture. Mutations in one gene, This1 that encodes a class-III lipase are associated with high tillering, reduced height, and infertile spikelets (Liu et al. 2013). OsAAP5, an amino acid permease, regulates tiller, and grain yield by affecting the cytokinin levels (Wang et al. 2019). Dwarf27 (D27) is an iron-containing protein involved in the MORE AXILLARY GROWTH 4 (MAX4)/RAMOSUS 1 (RMS1)/DWARF10 (D10) pathway and participates in strigolactone biosynthesis (Lin et al. 2009). OsNPF7.2, a low-affinity nitrate transporter, plays an important role in the control of tiller bud growth and tillering regulation by coordinating the cytokinin and strigolactone pathways (Wang et al. 2018a, b). Tiller number is also reported to be inhibited by gibberellin (Duan et al. 2014). Although many studies have been conducted attempting to identify genes that control the tiller development and plant height, only few genes expressed by O. officinalis have been identified.

Rice yield depends on three major factors: grain weight, grain number per panicle, and panicle number per plant. Grain weight is related to grain length, width, and thickness (Duan et al. 2014). The QTL grain length and weight on chromosome 7 (qGLW7) contains a gene encoding a plant-specific transcription factor that positively regulates cell size in the grain hull, resulting in enhanced rice grain length and yield (Si et al. 2016). In addition, GSN1 encodes a mitogen-activated protein kinase phosphatase (OsMPK1) that directly interacts with and inactivates a mitogen-activated protein kinase (OsMPK6) that coordinates the trade-off between grain number and grain size (Tao et al. 2018). Expression levels of GRAIN WIDTH8 (GW8) influence grain, shape, and quality (Wang et al. 2012). Another major QTL regulating grain length in rice, qGL3, suppresses BR signaling (Gao et al. 2019) while DWARF2 suppresses grain height and size by regulating gibberellin biosynthesis (Chen et al. 2019). Small grain 11 (SMG11) controls grain size by promoting cell expansion in grain hulls by regulating BR biosynthesis (Fang et al. 2016). Overexpression of constitutively active versions of OsMKK10 and OsMKK4 causes production of large and heavy grains, since the OsMKK10-OsMKK4-OsMitogen-Activated Protein Kinase 6 (MAPK6) cascade controls grain size and weight in rice (Xu et al. 2018). SMG1, encoding MKK4, affects BR responses and thus influences grain size (Duan et al. 2014). Thus, considerable research has revealed that multiple pathways control grain size in rice.

Mitogen-activated protein kinase (Kishi-Kaboshi et al. 2010) cascades transmit exogenous or developmental signals to target molecules through sequential phosphorylation and orchestrate multiple processes related to plant growth, development, and defense response (Andreasson et al. 2010; Pitzschke. 2015; Xu et al. 2015). Mitogen-activated protein kinase 3 (MKK3) mediates resistance to Nilaparvata lugens via phytohormone dynamics (Zhou et al. 2019). MKK3 phosphorylates a basic helix-loop-helix transcription factor, activating the MKK3-mitogen-activated protein kinase 6 (MPK6)-Myelocytomatosis module involved in light signal transduction pathways in Arabidopsis thaliana (Sethi et al. 2014). In addition, mitogen-activated protein kinase (MKKK62)-MKK3-MAPK7/MAPK14 regulates the transcription of OsMFT in rice to mediate seed dormancy (Mao et al. 2019), with MKK3 also regulating seed dormancy in barley (Nakamura et al. 2016).

We previously have identified genes that affect plant height, tillering, and grain growth in O. officinalis Wall. ex Watt. Here, we first describe isolation a gene encoding mitogen-activated protein kinase 3 (OrMKK3) in O. officinalis Wall. ex Watt by homology-based cloning and its subsequent characterization. OrMKK3 is an ortholog of OsMKK3 and appears to influence plant height, tiller, and grain size. Additional results show that OrMKK3 affects BR responses and the expression levels of BR-related genes. Our findings thus indicate that OrMKK3 is a factor influencing plant height, tiller, and grain size in O. officinalis Wall. ex Watt and indicate a possible connection between the MAPK cascades and BRs in grain growth.

Results

OrMKK3 Cloning and Sequence Analysis

Two pairs of primers (Table S1) were designed based on other available Nipponbare MKK3 nucleotide sequences (Genbank accessions: Os06g0473200) to amplify the OrMKK3 open reading frame from the Y003 line of O. officinalis in Guangxi Province. Five sequences, OrMKK3.1–3.5, were obtained (supplementary materials). Comparisons
of nucleotide sequences and gene structures revealed that OrMKK3.2–3.5 were alternative splicing variants of OrMKK3.1. The OrMKK3 alternative splicing events were classified into four categories: alternative exon 5′-ends (5′-AE), exon skipping (Hamel et al. 2006), mutually exclusive exons, and alternative exon 3′-ends (3′-AE). OrMKK3.1 and OrMKK3.5 differed by the presence of a 3′-AE in the 3′-untranslated region (3′-UTR) (Fig. 1a). OrMKK3.2 possessed a 3′-AE and lacked half of exon 8 (Fig. 1a). OrMKK3.3 and OrMKK3.5 both also lacked half of exon 8, with OrMKK3.3 lacking the first half and OrMKK3.5 lacking the latter half (Fig. 1a). Multiple exon skip (ES) and AE events distinguish OrMKK3.4 from OrMKK3.1–3.3 and OrMKK3.5. OrMKK3.4 has a frameshift mutation in the sixth exon away from the 3′ end of the coding sequence (Fig. 1a). In addition, OrMKK3.3 and OrMKK3.5 differed by the presence of a 3′-AE in the 3′-UTR; however, this difference did not cause the production of different proteins. Compared to OrMKK3.1, however, OrMKK3.2, OrMKK3.3, OrMKK3.4, and OrMKK3.5 exhibit a frameshift mutation that is predicted to cause truncated protein production (Fig. 1a).

From NCBI (https://www.ncbi.nlm.nih.gov/), we found five Nipponbare MKK3 genes named XM_015788456.2, XM_015788457.2, XM_015788458.2, XM_015788459.2, and XM_015788460.2. XM_015788458.2 contained 11 exons, as did OrMKK3.1. XM_015788458.2 and OrMKK3.1 differed by 28 single-nucleotide polymorphisms (SNP) in their open reading frames, although 17 of these SNPs did not affect the encoded proteins while 9 of these SNPs altered the encoded protein sequences. In addition, XM_015788456.2, XM_015788457.2, XM_015788459.2, and XM_015788460.2 each contained the 17 SNPs described above. XM_015788456.2 contained an additional exon beyond exon 8 of OrMKK3.1. XM_015788457.2 contained an additional exon beyond exon 8 and additional 3′-AE events compared to OrMKK3.1. XM_015788459.2 contained two additional exons following exons corresponding to exon 1 and exon 8 of OrMKK3.1. XM_015788459.2 contained an additional exon following exon 1 compared to OrMKK3.1 (Fig. 1b).

OrMKK3 Regulates Height and Tillering

Several experiments were conducted to determine whether the differences in the coding sequences determined OrMKK3 function. First, four overexpression constructs containing OrMKK3.1, OrMKK3.2, OrMKK3.3, and OrMKK3.4 from Y003 driven by the 35S promoter from tobacco cauliflower mosaic virus (CaMV35S) were separately introduced into Nipponbare and Y003 in OrMKK3 CDS. c Complementation vector: OrMKK3a (with CDS of OrMKK3.1), OrMKK3b (with CDS of OrMKK3.2), OrMKK3c (with CDS of OrMKK3.3), and OrMKK3d (with CDS of OrMKK3.4) overexpression vector.
the Nipponbare cultivar (Fig. 1c). Quantitative real-time polymerase chain reaction (qRT-PCR) results indicated that independent T0 transgenic lines have different expression levels of OrM KK3.1, OrMKK3.2, OrMKK3.3, and OrMKK3.4, with expression levels of these genes also determined in T3 lines using qRT-PCR. T3 generations of three overexpression transgenic lines (OE-lines) of each OrMKK3 splice variant, OE-OrMKK3a, OE-OrMKK3b, OE-OrMKK3c, and OE-OrMKK3d, were used for further analysis (Fig. 2a). At the maturation stage, OE-OrMKK3a, OE-OrMKK3b, OE-OrMKK3c, and OE-OrMKK3d lines were significantly shorter than wild-type plants (Fig. 2a, c). We performed histocytological analysis of the internal structure of internodes using paraffin sections (Fig. 2d) to reveal the cause of OE-line dwarfism (Fig. 2a, c). Results showed that cell sizes were significantly reduced in OE-line internodes, suggesting that cell size was restrained in the OE-lines. These observations also imply that that OrMKK3 may negatively affect cell length, thereby limiting rice plant height.

OE-OrMKK3a, OE-OrMKK3b, OE-OrMKK3c, and OE-OrMKK3d plants had more tillers than wild-type plants at the full flowering stage (Fig. 2b, c). Tiller number in the OE-lines was significantly more than that in Nipponbare (Fig. 2b, c). In contrast, no significant difference was found between tiller numbers of OE-OrMKK3d and Nipponbare lines (Fig. 2b, c). The overexpression of OrMKK3 thus significantly increased rice tiller number, and the upregulation of OrMKK3 positively influenced tiller shaping.

OrMKK3 Determines Grain Size and Influences 1000 Seed Weight

We found that OrMKK3 regulates grain length and width. Grain length and width were reduced in OrMKK3 overexpression transgenic plants (T3 generation; Fig. 3a, d, e), indicating that altered OrMKK3 function results in reduced grain length and width. The spikelet hulls of Y003 plants before fertilization were shorter than those of Nipponbare plants. OE-line plants, in which the OrMKK3 coding sequences were constitutively overexpressed, formed grains that were significantly shorter than those formed by the Nipponbare plants (Fig. 3a, d). We also investigated the 1000-grain weight of Nipponbare and OE-lines. The 1000-grain weight was lower for OE-lines than for Nipponbare lines (Fig. 3c). In addition, histocytological analyses of outer surfaces of husk from OE-lines and Nipponbare revealed that OrMKK3 likely regulates grain size.
by altering cell numbers. Cell length in either the palea or lemma had little impact on grain size, while total cell numbers of outer and inner epidermal cells in the longitudinal direction in the OE-lines were greater than in Nipponbare (Fig. 3f). These observations suggest that \textit{OrMKK3} may inhibit longitudinal growth by increasing cell proliferation. These results indicate that \textit{OrMKK3} plays a significant role during the full flowering stage by influencing genes regulating grain size and affecting grain production.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{image}
\caption{a Grain length of Nipponbare and OE-OrMKK3-lines. b Grain width of Nipponbare and OE-OrMKK3-lines. c Two hundred seeds of Nipponbare and OE-OrMKK3-lines. d Grain length of ten seeds of Nipponbare and OE-OrMKK3-lines. e Grain width of ten seeds of Nipponbare and OE-OrMKK3-lines. f Scanning electron microscope images of lemmas of Nipponbare and OE-OrMKK3-line}
\end{figure}

\textbf{OrMKK3 Expression Pattern and Subcellular Localization}

\textit{OrMKK3} transcripts were detected in various tissues using qRT-PCR with wild-type Y003 plants to determine the spatial expression profile of \textit{OrMKK3}. qRT-PCR analysis showed that \textit{OrMKK3} was expressed ubiquitously in all examined tissues and organs, including the roots, leaves, stems, internodes, and different developmental
Fig. 4

(a) *OrMKK3* expression in different tissues as analysis by qRT-PCR in Y003 line of *O. officinalis* in Guangxi Province. The *OrMKK3* expression in leaf as 1.

(b) Subcellular localization of the *OrMKK3* Protein. Pro35S::GFP as control. Scale bar, 20 mm.

(c) Co-localization of 35S: *OrMKK3.1*-GFP with the plasma lemma marker at the plasma membrane. Scale bar, 20 mm.
stages of panicles (primarily in the rachillae), lemmas, paleae, lodicules, stamens, and pistils (Fig. 4a). Results also revealed that *OrMKK3* expression is greater in leaves and young panicles than those in other tissues or organs, with *OrMKK3* expression levels gradually increasing during panicle formation.

Since *OrMKK3* contains a kinase domain, we speculated that *OrMKK3* is localized to the plasma membrane. We expressed an *OrMKK3.1-GFP* fusion protein under the control of the 35S promoter in rice leaf protoplasts to determine the subcellular localization of *OrMKK3*. As shown in Fig. 4b, GFP fluorescence from expression of the 35S:*OrMKK3.1-GFP* transgene in rice protoplasts was observed exclusively at the cell membrane and nuclei of rice protoplasts (Fig. 4b) and GFP signal was detected at the cell membrane in tobacco epidermal cells (Fig. 4c). These results indicate that *OrMKK3* encodes a both membrane-localized and nuclear protein.

OrMKK3 Expression Decreases Cell Proliferation

Cell proliferation and expansion significantly influence for organ size (Horiguchi et al. 2006), thus to understand how *OrMKK3* affects grains during panicle growth and height development, we examined cell number and size. Histocytological analysis of stem slices and husks were performed with *OrMKK3* overexpression and Nipponbare lines. The average length of inner stem cells and outer husk cells of the OE-lines and Nipponbare plants were indistinguishable. This result indicates that *OrMKK3* influences cell proliferation rather than cell expansion. Furthermore, we investigated the expression levels of *GL3*, *GRAIN WIDTH2 (GW2)*, *GRAIN WIDTH8 (GW8)*, *SMALL GRAIN 1 (SMG1)*, and DENSE AND ERECT PANICLE 3 (*DEP3*), which influences grain size by affecting cell proliferation in young panicles (Table S2) (Yan et al. 2011; Qiao et al. 2011; Wang et al. 2012; Chen et al. 2019; Gao et al. 2019). As shown in Fig. 5d, *SMG1* expression was not markedly affected by overexpression of *OrMKK3* (Fig. 5a). Compared to Nipponbare plants, expression levels of *GL3* and *DEP3* in 5–10-cm panicles were lower in OE-lines (Fig. 5c, e). Expression levels of *GW2* in OE-lines were initially upregulated in 5–10-cm panicles then decreased in 10–15-cm panicles (Fig. 5d). In young panicles, the expression levels of *GW8* were significantly reduced in OE-lines and Nipponbare in 10-cm panicles than in 5-cm panicles. These decreases in *GL3* and *DEP3* expression levels are probably due to the physiological and biochemical activities involved in rice husk shortening. These results indicate that overexpression of *OrMKK3* likely inhibits the development of plant cells.

OrMKK3 Phylogenetic Analysis

OrMKK3 encodes mitogen-activated protein kinase kinase 3, with *OrMKK3a* resulting in production of a mutant protein while *OrMKK3b*, *OrMKK3c*, and *OrMKK3d* each contain frameshift mutations. These results thus indicate that *OrMKK3.2*, *OrMKK3.3* and *OrMKK3.4* are loss-of-function alleles. We performed phylogenetic analyses using protein sequences of *OrMKK3* homologs to examine evolutionary relationships. These homolog sequences were obtained in species including *Phoenix dactylifera*, *Elaeis guineensis*, *Ananas comosus*, *Corchorus olitorius*, *Musa acuminate* subsp. *malaccensis*, *Corchorus capsularis*, *Gossypium*, and *Hibiscus syriacus*. The 73 protein homologs were divided into 9 clades. In protein phylogenetic trees, homologs from *O. officinalis*, *O. indica*, *O. japonica*, *Aegilops tauschii*, *Brachypodium distachyon*, *O. brachyantha*, and *O. meyeriana* var. granulata were clustered together with *Triticum aestivum* and *Hordeum vulgare* (Fig. 6a). This indicates a high level of conserved synteny of *MKK3* among multiple plant species. Moreover, these phylogenetic relationships of *MKK3* homologs were based on 446 SNPs from wild rice (*O. rufipogon*) and involved 777 varieties from the world rice core collection. These results indicate that *MKK3* sequences are diverse across the range of *indica*, *japonica*, and wild-rice varieties. Our phylogenetic trees were divided into five clades. OR-I arose from wild-rice varieties in Guangxi, Yunnan, and Guizhou Provinces while both OR-I and OR-II were widely distributed in east and southeast Asia (Fig. 6b).

OrMKK3 OE-Lines Show Altered Responses to BR

OE-lines and Nipponbare plants were treated with homobrassinolide (homo-BL) to identify potential other BR-related *OrMKK3* functions. In germination assays, when treated with 1 µM of homo-BL (a bioactive BR compound), the OE-lines showed larger leaf lamina joint inclination than Nipponbare, indicating enhanced BR sensitivity. In ½ MS medium lacking homo-BL, the OE-line and Nipponbare did not show large leaf lamina joints (Fig. 7a, b). Using qRT-PCR, we compared the expression levels of BR signaling genes including *BRASSINOSTEROID INSENSITIVE1 (OsBRI1)*, *glycogen synthase kinase 2 (OsGSK2)*, *BRASSINAZOLE-RESISTANT1 (OsBZR1)*, *BRASSINOSTEROID UPREGULATED1 (BUI)*, and *DWARF AND LOW-TILLERING (DLT)* (Yamamuro et al. 2000; Bai et al. 2007; Tanaka et al. 2009; Zhang et al. 2009; Tong et al. 2009). Expression levels of *OsBZR1* and *BUI* that positively regulate BR signaling were downregulated in OE-lines compared to in Nipponbare (Fig. 7c). These results supported the hypothesis that *OrMKK3* regulates BR biosynthetic genes in rice.
Discussion

Oryza officinalis Wall. ex Watt is an agriculturally important but seriously endangered species of wild rice. In addition, wild-rice varieties contain abundant genetic diversity and carry many desirable traits, which have proven to be natural genetic reservoirs for the improvement of rice quality and yield. However, comprehensive genetic backgrounds of different *Oryza* species have been a challenge to work with for rice breeders. Fortunately, this has begun to change, and a series of studies utilizing molecular technology have focused on exploiting important genes.

A transformation-competent artificial chromosome clone harboring a NAM-ATAF1/2-CUC (NAC)-positive genomic fragment was selected based on the presence of a conserved sequences of plant stress-related NAC transcription factors...
from *O. officinalis* and integrated into the genome of HJX74 (an indica rice variety). The resulting transgenic lines exhibited high tolerance to drought stress (Liu et al. 2015). In addition, generation-sequencing methods have been used on *O. officinalis* Wall. ex Watt. A previous study analyzed the leaf transcriptome of *O. officinalis* using RNA-Seq and de novo assembly of 68,132 unigenes on the basis of approximately 23 million transcriptome reads and identified a total of 476 unigenes related to disease resistance were identified in *O. officinalis* (Bao et al. 2015). In this study, we report that OrMKK3 in *O. officinalis* Wall. exhibits alternative splicing. OrMKK3 showed multiple types of alternative splicing and amino acid changes compared to Nipponbare.

Height, tiller, and grain size in crops are important agronomic traits. Several factors that influence height and tiller have been described, including small grain and *dwarf 2* (Chen et al. 2019), *DTH8* (Wei et al. 2010), and *DTH7* (Gao et al. 2014). Several genes that affect grain size have been identified, including *GS3*, *GL3*, *GS5*, *GW2*, *GW8*, and *SMG1* (Fan et al. 2006; Song et al. 2007; Mao et al. 2010; Li et al. 2011; Wang et al. 2012; Qi et al. 2012; Duan et al. 2014). Expression levels of *SMG1*, *GW8*, *GL3*, *GW2*, and *DEP3* were significantly between OE-lines and Nipponbare, suggesting that the effect of *OrMKK3* on grain size may require *SMG1*, *GW8*, *GL3*, *GW2*, and *DEP3*. Xu et al. found that the OsMKK10-OsMKK4-OsMAPK6 signaling pathway positively regulates grain size and weight in rice (Xu et al. 2018). Sequential phosphorylation activates OsMAPK6 to promote cell proliferation in spikelet hulls, with OsMAPK6 potentially also phosphorylating transcription factors thereby regulating grain size. Knock-out mutants confirmed that MKK3-MAPK6 activates blue light responses in Arabidopsis (Sethi et al. 2014). OsSPL16 (*GW8*) encodes an SBP-domain transcription factor that binds directly to the *GW7* promoter then suppresses *GW7* expression to regulate grain width in rice (Hong et al. 2005; Morinaka et al. 2006; Zhang et al. 2012; Fang et al. 2016; Wu et al. 2016; Gao et al. 2019). It will be important to identify and understand relationships between *OrMKK3* and transcription factors in rice and evaluate their effects on grain characteristics. However, few such underlying genes from *O. officinalis* Wall. ex Watt have been identified, and the molecular mechanisms that influence height, tiller, and grain size, including the function of *OrMKK3*, are still unknown in rice.

Like other MAPKs, MKK3 is involved in various plant physiological–biological activities. Most MKK3 homologs contain a protein kinase domain and NUCLEAR TRANSPORT FACTOR2-like domain in their C-terminal regions (Colcombet et al. 2016). In *A. thaliana*, an MKK3-based MAPK module acts upstream of reactive oxygen species production (Itoh et al. 2002) and signaling (Takahashi et al. 2011). In addition, *MKK3* has been reported to close in response to abscisic acid, ABA activation of MPK7 is blocked in mkk3-1 which expressing a constitutively active version of MKK3 (Huang et al. 2012). Moreover, MKK3 acts in negative regulation in darkness and in light-induced MAPK activation during dark–light transition using knock-out mutants (Lee 2015). MKK3-MPK6 is activated by jasmonic acid and plays a key role in the negative regulation of ATMYC2/JIN1 expression (Takahashi et al. 2007).
MKK3 also plays an important role in the ABA-induced MAPK pathway in plant stress signaling (Danquah et al. 2015). MKK3 interacts with MAP kinase kinase kinase 20 (MKKK20) in two non-complementary signaling cascades involved in root cortical microtubule activities (Matton et al. 2018). Studies of wounding, brown planthopper (N. lugens; BPH) infestation (Zhou et al. 2019), and methyl jasmonate or salicylic acid signaling pathways and the expression of MAPK and MAP kinase 3 (MKK3) revealed that OsMKK3-mediated positive regulation of rice resistance to BPH occurs through the phytohormone system (Zhou et al. 2019).

BRs are steroid hormones that regulate fundamental processes of plant growth and development in plants. In rice, BR-deficient mutants (brd2) have small seeds (Hong et al. 2005). This study demonstrated that OE-OrMKK3 lines have larger leaf lamina joint inclination than Nipponbare after BL treatment. In addition, the expression levels of genes related to BR signaling were reduced significantly in OE-OrMKK3 lines compared to Nipponbare. These results thus indicate a possible link between MAPK cascades and BR signaling. In Arabidopsis, BR inhibits stomatal development by suppressing glycolgen synthase kinase 3-like kinase BR-insensitive 2 (BIN2) activity and phosphorylating YDA to inhibit phosphorylation of the YDA substrate MKK4 that mediates MAPK kinase kinase (MAPKKK) signaling (Kim et al. 2012). In addition, SMG1 may link MAPK pathways and BRs in grain growth, with OsMKK4/SMG1 influencing BR responses and the expression levels of BR-related genes (Duan et al. 2014). In addition, the receptor-like cytoplasmic kinase BRASSINOSTEROID-SIGNALING KINASE1 interacts with and phosphorylates MAPK kinase kinase5 (MAPKKK5); however, MKK3 and MAPKKK5 were not able to form a protein complex in Arabidopsis based on detection using an anti-Cluc antibody test (Yan et al. 2018). GL3.3 encodes OsPPKL that is similar to Arabidopsis BSU1, which acts in BR signal transduction to promote cell elongation and cell division (Zhang et al. 2012). Gao revealed that qGL3 improves OsGSK3 via dephosphorylation, and that OsGSK3 regulates OsBZR1 phosphorylation and subcellular distribution (Gao et al. 2019). In addition, in rice, 14–3–3 proteins were shown to interact with OsBZR1 using a yeast two-hybrid screen (Bai et al. 2007). These results suggest that BR regulates grain size by promoting seed growth (Morinaka et al. 2006; Wu et al. 2016). In addition, in mice, protein serine/threonine kinase 38-mediated dissociation of 14–3–3 from the ASK1-14–3–3 complex and the increase of interaction between ASK1 and its substrate MKK3 (Ha et al. 2008). EmMKK2 from the fox tapeworm Echinococcus multilocularis closely resembles members of the MKK3/6- and the MEK1/2-MAPKK sub-families that interact with 14–3–3 protein family members within the fox tapeworm (Gelmedin et al. 2010). Collectively, these findings suggest that OrMKK3 regulates plant height, tiller, grain size, 1000-grain weight, and BR responses, representing a possible link between the MAPK cascades and BRs in cell growth. However, further studies are needed to identify the different roles of OrMKK3 in BR signaling and seed size control in rice.

Materials and methods

Plant materials, growth conditions, and phenotyping

Wild-type rice plants (O. officinalis Wall. ex Watt and O. sativa L. spp. japonica) and four OrMKK3 overexpression lines (OE-OrMKK3a, OE-OrMKK3b, OE-OrMKK3c, and OE-OrMKK3d) were used in this study. Different tissues, including mature leaves, stems, and roots of O. officinalis Wall. ex Watt Y003 and O. japonica, were collected and planted in the National Germplasm Nanning Wild Rice Nursery of China. Transgenic lines selected by hygromycin resistance and qRT-PCR after two generations of propagation were cultivated in greenhouses under 16-h light/8-h dark. Three individual overexpression transgenic lines (OE-lines) of OE-OrMKK3a, OE-OrMKK3b, OE-OrMKK3c, and OE-OrMKK3d genotypes at the T3 stage were used for further analysis. The overexpression transgenic lines are different transformed cases with ten plants of OE-OrMKK3a, OE-OrMKK3b, OE-OrMKK3c, and OE-OrMKK3d.

RNA Extraction and qRT-PCR

Total RNA from the above listed tissues were extracted using a Takara minibest plant RNA extraction kit according to the user’s manual (Takara, Catalog no. 9769). Total RNA (2.0 µg) was used for cDNA synthesis with a primeScript™ RT reagent kit with gDNA Eraser (Perfect Real-Time, Takara, Catalog no. RR047B). We performed qRT-PCR using TB Green® Premix Ex Taq™ II and a CFX96 Real-Time system (Bio-RAD, Hercules, CA, USA) following the manufacturer’s instructions. qRT-PCR was performed using 10-µL mixtures: 5 µL of 2 × Green qPCR MasterMix, 1 µL of cDNA, 0.25 µL of each primer (10 µM), and 3.5-µL ddH2O. Amplification steps were 95 °C for 30 s, 40 cycles of 95 °C for 5 s, and 60 °C for 30 s. 65 °C for 5 s, 95 °C for 15 s, 60 °C for 30 s, and 95 °C for 15 s. Each experiment
was repeated at least three times. The qRT-PCR analysis was performed using the ΔΔCt method. Details on primers used for detecting the OrMKK3 and OsUbiquitin genes (LOC_Os03g13170) (Chen et al. 2019) and probes are provided in Table S1 (*P < 0.05; **P < 0.01; Student’s t test).

Plasmid Construction and Plant Transformation

OrMKK3.1, OrMKK3.2, OrMKK3.3, OrMKK3.4, and OrMKK3.5 cDNA sequences from O. officinalis Wall. ex Watt Y003 were amplified using primers OrMKK3-F and OrMKK3-R (Table S1) and products were subcloned into the pEASY®-Blunt Zero cloning vector (Transgen, Catalog no. CB501-01). Next, this cDNA fragment (OrMKK3.1–OrMKK3.4) was cloned into the plant binary vector PMDC32 containing the CaMV 35S promoter. Subsequently, the OrMKK3.1 cDNA fragment was subcloned into the Gateway binary vector PMDC83 containing the CaMV 35S promoter and GFP and digested with PacI-AscI to generate a 35S::OrMKK3.1 construct. All constructs were confirmed by sequencing. 35S::OrMKK3.1, 35S::OrMKK3.2, 35S::OrMKK3.3, and 35S::OrMKK3.4 plasmids were introduced into Agrobacterium tumefaciens strain EHA105 by transformation, and the plasmids transformed into Nipponbare in accordance with a previously published protocol (Hiei et al. 1994).

Phylogenetic Analysis

The DNA or deduced amino acid sequences of OrMKK3 homologs were BLAST searched against the NCBI database (http://blast.ncbi.nlm.nih.gov/Blast.cgi). The phylogenetic tree was constructed using MEGA6 using the neighbor-joining method (Tamura et al. 2013). An alignment of rice MKK3 sequences was constructed using DNAMAN (LynnonBiosoft, V7.0). The SNPs of 777 cultivated rice accessions from 32 countries and 446 wild-rice accessions with publicly available sequencing data from the rice 3 K project (RFGB, http://www.rmbreeding.cn/Index/s) and OryzaGenome (http://viewer.shigen.info/oryzaGenome/) were used for phylogenetic analysis (Huang et al. 2012).

BR Treatment

Seeds were surface sterilized by incubation in 20% NaClO for 20 min, washed five times with sterilized water, then germinated in ½ MS medium (hopebio, HB8469-12, China) with 1-μM homo-BL (Sigma-Aldrich Co. LLC., St. Louis, MO, USA) for 10 days in a growth cabinet. Ten-day-old seedlings were used to measure leaf lamina joint inclination.

Subcellular Localization of OrMKK3

The plasmids CaMV35S::GFP and CaMV35S::OrMKK3-GFP were transformed into rice leaf protoplasts as previously described (Bart et al. 2006). After overnight incubation at 25 °C for 24 h in the dark, GFP was detected using a confocal laser-scanning microscope with excitation at 488 nm (Nikon C2-ER). Excitation of the plasma membrane co-localization red fluorescent protein marker mCherry was done at 580 nm and emission light was collected at 610 nm.

Conclusions

OrMKK3 is a negative regulator of plant height and grain shape, a positive regulator of tiller number, and a possible part of the BR signaling pathways. These findings provide information about a new gene and the crucial role of MAPKs in plant growth.

Acknowledgements

We thank Dr. Zichao Li (China Agricultural University, China) for the constructive suggestions.

Funding

This study was funded by “Key Project of Guangxi Natural Science Foundation [2018GXNSFDA281053, 2018GXNSFBA281022, 2017GXNSFAA198266], Open Project of Guangxi Key Laboratory of Rice Genetics and Breeding and Guangxi Major Scientific and Technological Innovation base [2018-05-06-KF08], National Natural Science Foundation of China [NSFC 31960059, NSFC31960401, NSFC32060476], National Natural Science Foundation of China (CN) [NSFC32060452].”

Data Availability Statement

Relevant data are within the paper including CDS of OrMKK3.

Compliance with Ethical Standards

Conflict of Interest

The authors declare no conflict of interest.

References

Andreasson E, Ellis B (2010) Convergence and specificity in the Arabidopsis MAPK nexus. Trends Plant Sci 15(2):106–113
Bai MY, Zhang LY, Gampala SS, Zhu SW, Song WY, Chong K, Wang ZY (2007) Functions of OsBZR1 and 14-3-3 proteins in brassinosteroid signaling in rice. Proc Natl Acad Sci 104(34):13839–13844
Bao Y, Xu S, Jing X, Meng L, Qin ZY (2015) De Novo assembly and characterization of Oryza officinalis leaf transcriptome by using RNA-Seq. Biomed Res Int 982065:9
Bart R, Chern M, Park CJ, Bartley L, Ronald PC (2006) A novel system for gene silencing using siRNAs in rice leaf and stem-derived protoplasts. Plant Methods 2:13
Benhamman R, Bai FW, Drory SB, Loubert-Hudon A, Ellis B, Matton DP (2018) The Arabidopsis Mitogen-Activated Protein

 Springer
Kinase Kinase Kinase 20 (MKKK20) C-terminal domain interacts with MKK3 and harbors a typical DEF mammalian MAP kinase docking site. Front Plant Sci 8:13352

Cai YH, Chen XJ, Xie K, Xing QK, Wu YW, Li J, Du CH, Sun ZX, Guo ZJ (2014) DiJ1, a WRKY transcription factor, is involved in the control of flowering time and plant height in rice. PLoS ONE 9:e102529

Chen WW, Cheng ZJ, Liu LL, Wang M, You XM, Wang J, Zhang F, Zhou CL, Zhang Z, Zhang H, You SM, Wang YP, Luo S, Zhang JH, Wang JL, Wang J, Zhao ZC, Guo XP, Lei CL, Zhang X, Lin QB, Ren YL, Zhu SS, Wan JM (2019) Small Grain and Dwarf 2, encoding an HD-Zip II family transcription factor, regulates plant development by modulating gibberellin biosynthesis in rice. Plant Sci 288:110208

Chen YN, Fan XR, Song WJ, Zhang YL, Xu GH (2012) Over-expression of OsPIN2 leads to increased tiller numbers, angle and shorter plant height through suppression of OsLASY1. Plant Biotechnol J 10:139–149

Cheng XY, Zhu LL, He GC (2013) Towards understanding of molecular interactions between rice and the brown planthopper. Mol Plant 6(3):621–634

Choi MS, Woo MO, Koh EB, Lee JH, Ham TH, Seo HS, Koh HJ (2012) Teosinte Branched 1 modulates tillering in rice plants. Plant Cell Rep 31:57–65

Colcombet J, Sözen C, Hirt H (2016) Convergence of multiple MAP3Ks on MKK3 identifies a set of novel stress MAPK modules. Front Plant Sci 7:1941

Danquah A, Zelicourt AD, Boudsocq M, Neubauer J, Frey NFD, Leonardt M, Pateyron S, Gwinner F, Philippe Tamy JP, Ortiz-Masia D, Marcote MJ, Colcombet J (2015) Identification and characterization of an AB1-activated MAP kinase cascade in Arabidopsis thaliana. Plant J 82(2):232–244

Duan PG, Rao Y, Zeng DL, Yang YL, Xu R, Zhang BL, Dong GJ, Qian Q, Li YH (2014) SMALL GRAIN 1, which encodes a mitogen-activated protein kinase kinase 3, influences grain size in rice. Plant J 77:547–557

Fan CC, Xing YZ, Mao HL, Lu TT, Han B, Xu CG, Li XH, Zhang QF (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 112:1164–1171

Fang N, Xu R, Huang LJ, Zhang BL, Duan PG, Li N, Luo YH, Li YH (2016) SMALL GRAIN 11 controls grain size, grain number and grain yield in rice. Rice 9:64

Gao H, Jin MN, Zheng XM, Chen J, Yuan DY, Xin YY, Wang MQ, Huang DY, Zhang Z, Zhou KN, Shen PK, Ma J, Ma WW, Deng HF, Jiang LL, Liu SJ, Wang HY, Wu CY, Yuan LP, Wan JM (2014) Days to heading 7, a major quantitative locus determining photoperiod sensitivity and regional adaptation in rice. Proc Natl Acad Sci USA 111(46):16337–16342

Gao XY, Zhang QJ, Zhang XJ, Zhou JS, Jiang ZS, Huang P, Tang ZB, Bao YM, Cheng JP, Tang HJ, Zhang WH, Zhang HS, Huang J (2019) Rice qGSL3/OsPPK11 functions with the GSK3/Shaggy-Like Kinase OsGSK3 to regulate brassinosteroid signaling. Plant Cell 31(35):1077–1093

Gelmedin V, Spiliotis M, Brehm K (2010) Molecular characterisation of MEKI1/2 and MKK3/6-like mitogen-activated protein kinase kinases (MAPKKs) from the fox tapeworm Echinococcus multilocularis. Int J Parasitol 40(5):555–567

Gao T, Chen K, Dong NQ, Shi CL, Ye WW, Gao JP, Shan JX, Lin HX (2018) GRAIN SIZE AND NUMBER1 negatively regulates the OsM KK K10-OsMKK4-OsMKP6 cascade to coordinate the trade-off between grain number per panicle and grain size. Plant Cell 30:871–888

Ha H, Jung H, Seong HA (2008) Murine proteine serine/threonine kinase 38 (MPK38) positively regulates apoptosis signal-regulating kinase 1 in a kinase-dependent manner through physical interaction. FASEB J 22:1

Hamel LP, Nicole MC, Siritubtim S, Morency MJ, Ellis M, Ehlting J, Beaudoin N, Barbazuk B, Klessig D, Lee J, Martin G, Mundy J, Ohashi Y, Scheel D, Sheen J, Xing T, Zhang SQ, Seguin A, Ellis BE (2006) Ancient signals: comparative genomics of plant MAPK and MAPKK gene families. Trends Plant Sci 11(4):192–198

He Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282

Horiguchi G, Ferjani A, Fujikura U, Tsukaya H (2006) Coordination of cell proliferation and cell expansion in the control of leaf size in Arabidopsis thaliana. J. Plant Res 119:37–42

Huang XH, Kurata N, Wei XH, Wang ZX, Wang A, Zhao Q, Zhao Y, Liu KY, Lu HY, Li WJ, Guo YL, Lu YQ, Zhou CC, Fan DL, Weng QJ, Zhu CR, Tao Huang Z, Zhang W, YC, Feng L, Furumii H, Kubo T, Miyabayashi T, Yuan XP, Qun XuQ, Dong GJ, Zhao QL, Li CY, Fujiyama A, Toyoda A, Lu TT, Feng Q, Qian Q, Li FY, Han B (2012) A map of rice genome variation reveals the origin of cultivated rice. Nature 490:497–501

Itoh H, Ueguchi-Tanaka M, Sakamoto T, Kayano T, Tanaka H, Ashikari M, Matsuoka M (2002) Modification of rice plant height by suppressing the height-controlling gene, D18, in rice. Breed Sci 52:215–218

Jiang CM, Xiao SQ, Li DQ, Ling C, Zhang QF, Yin FY, Yu TQ, Ke X, Zhang DY, Fu J, Chen Y, Wang B, Wang LX, Li EX, Zhang Y, Huang XQ, Cheng ZQ (2019) Identification and expression pattern analysis of bacterial blight resistance genes in Oryza officinalis wall ex walt under Xanthomonas oryzae Pv. oryzae stress. Plant Mol Biol Rep 37:436–449

Kim TW, Michniewicz M, Bergmann DC, Wang ZY (2012) Brassinosteroid regulates stomatal development by GSK3-mediated inhibition of a MAPK pathway. Nature 482:419–423

Kishi-Kaboshi M, Okada K, Kurimoto M, Murakami S, Umezawa T, Shibuya N, Yamane H, Miya A, Takatsui H, Takahashi A, Hirochika H (2010) A rice fungal MAMP-responsive MAPK cascade regulates metabolic flow to antimicrobial metabolite synthesis. Plant J 63:599–612

Lee H (2015) Mitogen-Activated Protein Kinase Kinase 3 is required for regulation during dark-light transition. Mol Cells 38:651–656

Li YB, Fan CC, Xing YZ, Jiang YH, Luo LJ, Sun L, Shao D, Xu CJ, Li XH, Xiao JH, He YQ, Zhang QF (2011) Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat Genet 43:1266–1269

Liao ZG, Yu H, Duan J, Yuan K, Yu CJ, Meng XB, Kou LQ, Chen MJ, Jing YH, Liu GF, Smith SM, Li JY (2019) SRL1 inhibits MOC1 degradation to coordinate tiller number and plant height in rice. Nat Commun 10:9

Lin H, Wang RX, Qian Q, Yan MX, Meng XB, Fu YM, Yan CY, Jiang B, Su Z, Li JY, Wang YY (2009) DWARF27, an iron-containing protein required for the biosynthesis of sriroglactones, regulates rice tiller bud outgrowth. Plant cell 21:1512–1525

Liu R, Zhang HH, Chen ZX, Shahid MQ, Xu CJ, Liu XD (2015) Drought-tolerant rice germplasm developed from an Oryza officinalis transformation-competent artificial chromosome clone. Genet Mol Res 14(4):13667–13678

Liu W, Zhang D, Tang MF, Li DY, Zhu YX, Zhu LH, Chen CY (2013) THIS1 is a putative lipase that regulates tillering, plant height, and spikelet fertility in rice. J Exp Bot 64(14):4389–4402

Mao HL, Sun SY, Yao JL, Wang CR, Yu SB, Xu CG, Li XH, Zhang QF (2010) Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. PNAS 107(45):19579–19584

Mao XX, Zhang JJ, Liu WG, Yan SJ, Liu Q, Fu H, Zhao JL, Huang WJ, Dong JF, Zhang SH, Yang TF, Yang W, Liu B, Wang F (2019)
The MKKK62-MKK3-MAPK7/14 module negatively regulates seed dormancy in rice. Rice 12:7
Morinaka Y, Sakamoto T, Inukai Y, Agetsuma M, Kitano H, Ashikari M, Matsuoka M (2006) Morphological alteration caused by brassinosteroid insensitivity increases the biomass and grain production of Rice. Plant Physiol 141:924–931
Nakamura S, Pourkheirandish M, Morishige H, Kubo Y, Nakamura M, Ichimura K, Seo S, Kanamori H, Wu J, Ando T, Tensel G, Sameri M, Stein N, Sato K, Matsutomo T, Yano M, Komatsuda T (2016) Mitogen-Activated Protein Kinase Kinase 3 regulates seed dormancy in Barley. Curr Biol 26(6):775–781
Pitzschke A (2015) Modes of MAPK substrate recognition and control. Trends Plant Sci 20(1):49–55
Qi P, Lin YS, Song XJ, Shen HB, Wang W, Shan JX, Zhu MZ, Jiang LW, Gao JP, Lin HX (2012) The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating Cyclin-T1.3. Cell Res 22:1666–1680
Qiao YL, Piao RH, Shi JX, Lee SI, Jiang WZ, Kim BK, Lee J, Han LZ, Ma WB, Koh HJ (2011) Fine mapping and candidate gene analysis of dense and erect panicle 3, DEP3, which confers high grain yield in rice (Oryza sativa L.). Theor Appl Genet 122:1439–1449
Si LZ, Huang XH, Gong H, Luo HJ, Hou QQ, Hou TY, Lu TT, Jingjie JJ, Shangguan CY, Chen EW, Gong CX, Zhao Q, Jing YF, Zhao Y, Li Y, Cui LL, Fan DL, Lu YQ, Weng QJ, Wang YC, Zhan QL, Liu KY, Wei XH, An K, An G, Han B (2016) OsSPL13 controls grain size in cultivated rice. Nat Genet 48:447–456
Song XJ, Huang W, Shi M, Zhu MZ, Lin HX (2007) A QTL for rice grain width and weight encodes a previously unknown K/R5-type E3 ubiquitin ligase. Nat Genet 39:623–630
Takahashi F, Mizoguchi T, Yoshida K, Ichimura K, Shinozaki K (2011) Calmodulin-dependent activation of MAP kinase for ROS homeostasis in Arabidopsis. Mol Cell 41(6):649–660
Takahashi F, Yoshida R, Ichimura K, Mizoguchi T, Seo S, Yonezawa M, Maruyama K, Yamaguchi-Shinozaki K, Shinozaki K (2007) The Mitogen-Activated Protein Kinase Cascade MKK3–MKP6 is an important part of the jasmonate signal transduction pathway in Arabidopsis. Plant Cell 19:805–818
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol Biol Evol 30:2725–2729
Tanaka A, Nakagawa TH, Shimatani ZP, Ohtake M, Nomura T, Jiang CJ, Dubouzet JG, Kikuchi S, Sekimoto H, Yokota T, Asami T, Kamakura T, Mori M (2009) BRASSINOSTEROID UPREGULATED1, encoding a helix–loop–helix protein, is a novel gene involved in brassinosteroid signaling and controls bending of the lamina joint in rice. Plant Physiol 151:669–680
Tong H, Jin Y, Liu W, Li F, Fang J, Yin Y, Qian Q, Zhu L, Chu C (2009) DWARF AND LOW-TILLERING, a new member of the GRAS family, plays positive roles in brassinosteroid signaling in grass. Plant J 58(5):803–816
Vishmita Sethi V, Raghuram B, Sinha AK, Chattopadhyay S (2014) A Mitogen-Activated Protein Kinase Cascade Module, MKK3-MPK6 and MYC2, is involved in blue light-mediated seedling development in Arabidopsis. Plant Cell 26:3343–3357
Wang B, Smith SM, Liu YJ, (2018a) Genetic regulation of shoot architecture. Annu Rev Plant Biol 69:437–468
Wang SK, Wu K, Yuan QB, Liu YX, Liu ZB, Lin XY, Zeng RZ, Zhu HT, Dong GJ, Qian Q, Zhang GQ, Fu XD (2012) Control of grain size, shape and quality by OsSPL16 in rice. Nat Genet 44:950–954
Wang J, Lu K, Nie HP, Zeng QS, Wu BW, Qian JJ, Fang ZM (2018b) Rice nitrate transporter OsNPF7.2 positively regulates tiller number and grain yield. Rice 11:2
Wang J, Wu BW, Lu K, Wei Q, Qian JJ, Chen YP, Fang ZM (2019) The Amino Acid Permease 5 (OsAAP5) Regulates Tiller Number and Grain Yield in Rice. Plant Physiol 180:1031–1045
Wei X, Xu J, Guo H, Jiang L, Chen S, Yu C, Zhou Z, Hu P, Zhai H, Wan J (2010) DTH8 suppresses flowering in rice, influencing plant height and yield potential simultaneously. Plant Physiol 153:1747–1758
Xu C, Wang YH, Yu YC, Duan JB, Liao ZZ, Xiong GS, Meng X, Liu GF, Qian Q, Li JY (2012) Degradation of MONOCULM 1 by APCI-CAT1 directs rice tillering. Nat Commun 3:750
Xu J, Zhang SQ (2015) Mitogen-activated protein kinase cascades in signaling plant growth and development. Trends Plant Sci 20(1):56–64
Xu R, Duan PG, Yu HY, Zhou ZK, Zhang BL, Wang RC, Li J, Zhang GZ, Zhuang SS, Lu Y, Li N, Chai TY, Tian ZY, Yao SG, Li YH (2018) Control of grain size and weight by the OsMKK10–OsMKK4–OsMAPK6 signaling pathway in rice. Mol Plant 11(4):860–873
Yamamuro C, Ibara Y, Wu X, Noguchi T, Fujioka S, Takatsuto S, Ashikari M, Kitano H, Matsuoka M (2000) Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint. Plant Cell 12:1591–1605
Yan JH, Zhao YF, Shi H, Li J, Wang YC, Tang DZ (2018) BRASSINOSTEROID SIGNALING KINASE1 phosphorylates MAPKK5 to regulate immunity in Arabidopsis. Plant Physiol 176:2991–3002
Yan S, Zou GH, Li SJ, Wang H, Liu HQ, Zhai GW, Guo P, Song HM, Yan CJ, Tao YZ (2011) Seed size is determined by the combination of the genes controlling different seed characteristics in rice. Theor Appl Genet 123:1173–1181
Yongsheng Wu YZ, Fu Y, Zhao SX, Gu P, Zhu ZF, Sun CQ, Tan LB (2016) CLUSTERED PRIMARY BRANCH 1, a new allele of DWARF11, controls panicle architecture and seed size in rice. Plant Biotechnol J 14:377–386
Zhang LY, Bai MY, Wu JX, Zhu JY, Wang H, Zhang ZG, Wang WF, Sun Y, Zhao J, Sun XH, Yang HJ, Xu YY, Kim SH, Fujioka S, Lin WH, Chen B, Liu TG, Wang ZY (2009) Antagonistic HLHbHLH transcription factors mediate brassinosteroid regulation of cell elongation and plant development in rice and Arabidopsis. Plant Cell 20(12):3023
Zhang WX, Chen MT, Zhang YB, Gao Q, Noman A, Wang Q, Li H, Chen L, Zhuo Y, Lu J, Lou YG (2019) OsMKK3, a stress-responsive protein kinase, positively regulates rice resistance to Nilapavarta lugens via Phytohormone Dynamics. Int J Mol Sci 20(12):3023

282 Journal of Plant Biology (2023) 66:269–282

Springer