POLARIZED SCATTERING WITH PASCHEN-BACK EFFECT, HYPERFINE STRUCTURE, AND PARTIAL FREQUENCY REDISTRIBUTION IN MAGNETIZED STELLAR ATMOSPHERES

K. Sowmya1, K. N. Nagendra1, J. O. Stenflo2,3, and M. Sampoorna1

1 Indian Institute of Astrophysics, Koramangala, Bengaluru, India; ksowmya@iiap.res.in, kmn@iiap.res.in, sampoorna@iiap.res.in
2 Institute of Astronomy, ETH Zurich, CH-8093 Zurich, Switzerland; stenflo@astro.phys.ethz.ch
3 Istituto Ricerche Solari Locarno, Via Patocchi, 6605 Locarno-Monti, Switzerland

Received 2013 November 6; accepted 2014 March 14; published 2014 April 25

ABSTRACT

F-state interference significantly modifies the polarization produced by scattering processes in the solar atmosphere. Its signature in the emergent Stokes spectrum in the absence of magnetic fields is depolarization in the line core. In the present paper, we derive the partial frequency redistribution (PRD) matrix that includes interference between the upper hyperfine structure states of a two-level atom in the presence of magnetic fields of arbitrary strengths. The theory is applied to the Na i D2 line that is produced by the transition between the lower J = 1/2 and upper J = 3/2 states which split into F states because of the coupling with the nuclear spin I = 3/2. The properties of the PRD matrix for the single-scattering case is explored, in particular, the effects of the magnetic field in the Paschen–Back regime and their usefulness as a tool for the diagnostics of solar magnetic fields.

Key words: atomic processes – line: formation – magnetic fields – polarization – scattering – Sun: atmosphere

1. INTRODUCTION

The atomic energy levels are split into magnetic substates in the presence of a magnetic field. When the magnetic splitting is much smaller than the separation between the hyperfine structure states, then we are in the Zeeman regime. In this regime, the energy shift produced by the magnetic field varies linearly with the field strength. On the other hand, if the magnetic splitting is comparable to or larger than the energy difference between the hyperfine structure states, then the magnetic field effects are described by the Paschen–Back effect (PBE) in which the magnetic splitting varies nonlinearly with the magnetic field strength, leading to level-crossing interference effects. The Hanle effect represents a modification of the resonance scattering polarization by the magnetic field. In the present paper, we are concerned with the Hanle effect involving hyperfine structure states. This leads to several interesting phenomena related to level-crossing interferences.

Hyperfine structure splitting (HFS) is generally much smaller when compared to fine structure splitting. Therefore, for those field strengths for which we are still in the Zeeman regime in the case of fine structure states, we may already be in the regime where PBE is operating on hyperfine structure states. PBE becomes important in studies of lines showing hyperfine structure when they are formed in the magnetic regions on the Sun.

PBE in molecular lines have been extensively studied both in the context of solar and stellar physics. Molecular PBE gives signatures in the Stokes profiles, which serve as a promising tool for diagnosis of solar and stellar magnetic fields (see, e.g., Berdyugina et al. 2005, 2006a, 2006b; Shapiro et al. 2006, 2007; Asensio Ramos 2006). As in the case of molecular lines, PBE also occurs in atomic lines. The influence of PBE on emergent profiles of atomic lines such as the He i 10380 Å multiplet, Fe II multiplet, Si ii, Si iii, etc., have been studied (see, e.g., Bommier 1980; Sasso et al. 2006; Stift et al. 2008; Stift & Leone 2008; Khalack & Landstreet 2012).

Landi Degl’Innocenti (1975) formulated the transfer equation for a line with hyperfine structure in the presence of a magnetic field, both in LTE and NLTE. He also presented expressions for strengths and shifts of the magnetic components of the lines formed due to transitions between hyperfine structure states. A Fortran program to compute these strengths and magnetic shifts was made available in a later paper by the same author (see Landi Degl’Innocenti 1978). We use this computer program to calculate the eigenvalues and expansion coefficients discussed in Section 3. Lopez Ariste et al. (2002) discussed the net circular polarization induced by the hyperfine structure and its usefulness as a tool for the diagnosis of solar magnetic fields in the quiet photosphere and plages.

The interference between hyperfine structure states (called the F-state interference phenomenon) plays a significant role in modifying the shapes of the emergent Stokes profiles. Stenflo (1997) developed a scattering theory of quantum interference phenomena which explains the effect of F-state interference on coherently scattered lines. Landi Degl’Innocenti & Landolfi (2004, hereafter LL04) have developed a QED theory to handle F-state interference phenomenon in the PB regime for scattering on a multi-level atom under the approximation of complete frequency redistribution (CRD). Casini & Manso Sainz (2005) discuss the same problem but for scattering on a multi-term atom that includes both J-state and F-state interference phenomena again under the approximation of CRD. Using the theory of LL04, Belluzzi et al. (2007) and Belluzzi (2009) investigated the effects of magnetic field on lines resulting from transitions between hyperfine structure states of odd isotope of Ba and Sc ii, respectively.

A scattering theory of F-state interference based on a metalevel approach was developed by Landi Degl’Innocenti et al. (1997). This theory takes into account PRD in the collisionless regime. In Smitha et al. (2012), we presented the PRD matrix for the F-state interference phenomenon in the absence of magnetic fields and in the collisionless regime. This PRD theory was applied in Smitha et al. (2013) to illustrate the importance of PRD, HFS, isotopic shifts, and radiative transfer in modeling the observed non-magnetic linear polarization profiles of Ba ii D2 4554 Å line. In the present paper, we derive the PRD matrix for a two-level atom with HFS in the presence of a magnetic field of arbitrary strength. A straightforward extension of the J-state redistribution matrix (RM) presented in...
Smitha et al. (2011) to the case of F-state interference in the PB regime is not possible because the RM derived in that paper is valid only in the linear Zeeman regime. Therefore, in the present paper, we formulate the theory of F-state interference in the PB regime and derive an expression for the RM including PRD in the absence of collisions. We assume the lower levels to be infinitely sharp and unpolarized. For the sake of clarity, in Section 2 we describe the atomic system on which the magnetic field acts. The atom-radiation interaction in the presence of a magnetic field of arbitrary strength is discussed quantitatively in Section 3. In Section 4, we present the characteristics of the RM derived in Section 3. Concluding remarks are presented in Section 5.

2. THE ATOMIC SYSTEM

The atomic system that we consider has two J states (where J is the total electronic angular momentum) belonging to two different terms. The lower state is labeled J_0 ($= J_f$, the final state), and the upper state J_i. When the atomic nucleus possesses a spin I, the coupling between J and I results in hyperfine structure states F so that $F = J + I$. The F states are given by the vector addition formula $F = |J - I|, \ldots, J + I$. The number of F states into which a given J state splits is given by $\min(2J + 1, 2I + 1)$. For electric dipole transitions between the F states the selection rules are $\Delta J = 0, \pm 1$, $\Delta F = 0, \pm 1$, and $\Delta \mu = 0, \pm 1$ in the Zeeman regime and $\Delta J = 0, \pm 1$ and $\Delta \mu = 0, \pm 1$ in the PB regime. Here, μ denotes the magnetic substates of the hyperfine structure states. The electric dipole nature of the interaction does not permit transitions among F states of a given J state.

The hyperfine structure of an element has dominant contributions from magnetic dipole and electric quadrupole interactions (see Corney 1977; Woodgate 1992). The Hamiltonian \mathcal{H}_D describing the interaction of the nuclear magnetic moment with the magnetic field produced at the nucleus by the valence electrons can be written as

$$\mathcal{H}_D = A_J \mathbf{I}_s \cdot \mathbf{J},$$

where A_J is the magnetic dipole hyperfine structure constant and is mostly determined from experiments. The Hamiltonian \mathcal{H}_Q for the electric quadrupole interaction between the protons and electrons due to the finite extent of the nuclear charge distribution is given by

$$\mathcal{H}_Q = \frac{B_J}{2I_s(2I_s - 1)J(2J - 1)} \times \left\{ 3(\mathbf{I}_s \cdot \mathbf{J})^2 - \frac{3}{2}(\mathbf{I}_s \cdot \mathbf{J}) - I_s(I_s + 1)J(J + 1) \right\},$$

where B_J is the electric quadrupole hyperfine structure constant which is also in most cases determined by experimental measurements.

The total Hamiltonian for the atomic system in the presence of an external magnetic field is written as

$$\mathcal{H} = \mathcal{H}_0 + \mathcal{H}_{\text{hfs}} + \mathcal{H}_B,$$

where \mathcal{H}_0 is the Hamiltonian describing the atomic structure excluding hyperfine structure and \mathcal{H}_{hfs} is the Hamiltonian for the hyperfine structure interaction, which is the sum of \mathcal{H}_D and \mathcal{H}_Q.

In the absence of an external magnetic field, the hyperfine interaction energy E_{hfs} is given by

$$E_{\text{hfs}} = \frac{1}{2} A_J \mathbf{K} + \frac{B_J}{8I_s(2I_s - 1)J(2J - 1)} \times \left\{ 3(K(K + 1) - 4J(J + 1)I_s(I_s + 1) \right\} \times \left\{ 3(K(K + 1) - 4J(J + 1)I_s(I_s + 1) \right\} \times \left\{ 3(K(K + 1) - 4J(J + 1)I_s(I_s + 1) \right\},$$

where $K = F(F + 1) - J(J + 1) - I_s(I_s + 1)$. In the limit of $B_J \ll A_J$, the spacing between the F states is given by the so-called hyperfine structure interval rule

$$\Delta E = E_F - E_{F - 1} = A_J F.$$

In cases where B_J is finite, an additional energy shift is produced.

The magnetic Hamiltonian \mathcal{H}_B in Equation (3) has the form

$$\mathcal{H}_B = \mu_0 (L + 2S) \cdot \mathbf{B} = \mu_0 B(J_z + S_z),$$

where μ_0 is the Bohr magneton. The z axis of the coordinate system is assumed to be along the magnetic field direction. In the PB regime, the magnetic field produces a splitting comparable with the separation between the F states. In such cases, the magnetic substates of a given F state can superpose on the magnetic substates of another F state. This leads to a mixing of F states. Such a mixing of states can occur even for very small values of field strengths. The purpose of this paper is to derive an expression for the PRD matrix representing the F-state interference process in the PB regime.

3. REDISTRIBUTION MATRIX

In the scattering theory approach, the physics of atom radiation interaction is described through the so-called RM in the astrophysical literature. It describes the correlations between the incident and scattered photon frequencies, angles, and polarizations.

3.1. PB Regime

The PB regime is reached when the Zeeman splitting of the magnetic substates μ belonging to a given F state becomes comparable to the energy separations between the F states themselves. This is generally referred to as the incomplete PB effect. In such a situation, the magnetic field can no longer be treated as a perturbation to the atom-radiation interaction, and one has to carry out a simultaneous diagonalization of the hyperfine interaction and magnetic Hamiltonians.

The Kramer–Heisenberg formula, which gives the complex probability amplitudes for scattering from an initial magnetic state a to a final state f through intermediate states b, is written as

$$w_{a'b} \sim \sum_b \frac{(f| \mathbf{r} \cdot \mathbf{e}_b | b) (b| \mathbf{r} \cdot \mathbf{e}_a | a)}{\omega_{bf} - \omega - i\gamma/2}.$$

Here, $\omega = 2\pi \xi$ is the circular frequency of the scattered radiation, $\hbar \omega_{bf}$ is the energy difference between the excited and final levels, and γ is the damping constant.

The coherency matrix for this scattering process $a \rightarrow b \rightarrow f$ is given by

$$W = \sum_a \sum_f w \otimes w^*.$$
The incoherent summation is taken over the initial and final levels (see Stenflo 1998). Here, \(\psi \) is the Jones matrix, and its elements are given by Equation (7).

We first identify the basis vectors \(|a\), \(|b\), and \(|f\) in the PB regime as

\[
|a\rangle = |J_a I_a, i_a \mu_a\rangle,
\]

with similar forms for \(|b\) and \(|f\). We then expand these PB regime basis vectors in terms of basis vectors \(|J I, F \mu\rangle\) of the Zeeman regime as

\[
|J_a I_a, i_a \mu_a\rangle = \sum_{F_a} C_{F_a}^i (J_a I_a, \mu_a) |J_a I_a, F_a \mu_a\rangle,
\]

with similar expansions carried out for intermediate and final state vectors. The \(C \) coefficients appearing in the above equation are given by

\[
C_{F}^i (J I, \mu) = \langle J I, F \mu | J I, i \mu \rangle,
\]

which can be assumed to be real because the total Hamiltonian is real.

Using Equation (10) in the Kramer–Heisenberg formula and noting that \(J_f = J_a \), the dipole matrix elements can be expanded using the Wigner–Eckart theorem (see Equations (2.96) and (2.108) of LL04) to obtain

\[
w_{\alpha \beta} \sim \sum_{i \beta i a} \sum_{F_a F_f F_f'} \sum_{q q'} (-1)^{q-q'} \times C_{F_f}^i (J_a I_a, \mu_f) C_{F_f'}^a (J_a I_a, \mu_a) \\
\times C_{F_f}^i (J_b I_b, \mu_b) C_{F_f'}^a (J_b I_b, \mu_b) (2J_a + 1) \\
\times \sqrt{2(F_a + 1)(2F_f + 1)(2F_{f'} + 1)} \\
\times \left\{ \frac{F_{f'}^a}{F_{f'}} \right\}_1 \left\{ \frac{F_{f'}}{F_{f'}} \right\}_1 \left\{ \frac{F_{f'}}{F_{f'}} \right\}_i \\
\times e^{i \epsilon_{\gamma} \rho_{\gamma} \Phi_{\gamma}^{\alpha \beta} (\psi_{i \beta i a} | i \mu, i \mu | - \xi)}.
\]

Equation (16) represents the PRD matrix for hyperfine interaction in the PB regime. This equation, when written in the atomic rest frame, can be directly obtained from Equation (12) of Landi Degl’Innocenti et al. (1997) by introducing the spherical tensors and by assuming that the lower levels are unpolarized. The PRD matrix derived in this section satisfies the symmetry relations described in detail in Bommier (1997). In the above expression,
the so-called Hanle angle β_{J_L,J_F} is given by
\[\tan \beta_{J_L,J_F} = \frac{v_{J_L,J_F} - v_{J_L,J_F}}{\gamma/2\pi}. \] (17)

The auxiliary functions h^Π and f^Π appearing in Equation (16) have the forms
\[(h^\Pi_{J_L,J_F})_{J_L,J_F} = \frac{1}{2} \left[R^\Pi_{J_L,J_F} + R^\Pi_{J_L,J_F} \right] \] (18)
and
\[(f^\Pi_{J_L,J_F})_{J_L,J_F} = \frac{1}{2} \left[R^\Pi_{J_L,J_F} - R^\Pi_{J_L,J_F} \right], \] (19)
where the magnetic redistribution functions of type II are defined as
\[R^\Pi_{J_L,J_F}(x_{ba}, x_{ba}', \Theta) = \frac{1}{\pi \sin \Theta} \times \exp \left\{ - \left[\frac{x_{ba} - x_{ba}' + x_{J_L,J_F}}{2 \sin (\Theta/2)} \right]^2 \right\} \times H \left(\frac{a}{\cos (\Theta/2)}, \frac{x_{ba} + x_{ba}' + x_{J_L,J_F}}{2 \cos (\Theta/2)} \right). \] (20)

and
\[R^\Pi_{J_L,J_F}(x_{ba}, x_{ba}', \Theta) = \frac{1}{\pi \sin \Theta} \times \exp \left\{ - \left[\frac{x_{ba} - x_{ba}' + x_{J_L,J_F}}{2 \sin (\Theta/2)} \right]^2 \right\} \times 2F \left(\frac{a}{\cos (\Theta/2)}, \frac{x_{ba} + x_{ba}' + x_{J_L,J_F}}{2 \cos (\Theta/2)} \right). \] (21)

Here, Θ is the scattering angle; the functions H and F are the Voigt and Faraday–Voigt functions (see Equation (18) of Smitha et al. 2011). The quantities appearing in the expressions for the type II redistribution functions have the following definitions:
\[x_{ba} = \frac{v_{ba} - v}{\Delta v_D}; \quad x_{ba}' = \frac{v_{ba} - v'}{\Delta v_D}, \]
\[x_{J_L,J_F} = \frac{v_{J_L,J_F}}{\Delta v_D}; \quad a = \gamma/4\pi \Delta v_D. \] (22)

where v_{ba} is the emission frequency, a is the damping parameter, and Δv_D is the Doppler width.

We remark that the PRD matrix in the PB regime presented in this section can also be obtained by an alternative approach (see Shapiro et al. 2007) that avoids the use of statistical tensors T^K_Q.

3.2. Special Cases

The PB theory and the relevant RM derived in Section 3.1 gives the exact PRD matrix for the problem at hand. However, it is possible, under limiting cases, to derive simple expressions for practical applications. One example of this is the so-called Zeeman regime. In this regime, the magnetic field is so weak that it produces a splitting which is much smaller than the energy differences between the F states. In such a case, the magnetic Hamiltonian can be diagonalized analytically using the perturbation theory.

In the Zeeman regime where the basis vector is $|J,F,J_F\rangle$ in which F is a good quantum number, the RM in Equation (16) takes the form
\[R^\Pi_{J_F,J_F}(x, n, n', B) = \frac{3(2J_b + 1)}{2L_b + 1} \times \sum_{KQ} \kappa K' Q q q' q'' q''' q'''' q''' q'' Q q q Q \times \cos \left(\frac{\sqrt{K + 1}}{2} (2K + 1) \right) \times \left[(h^\Pi_{F_b,F_b})_{F_b,F_b} + i (f^\Pi_{F_b,F_b})_{F_b,F_b} \right] \times (2F_a + 1)(2F_f + 1)(2F_b + 1)(2F_{b'} + 1) \times \sqrt{(2K + 1)(2K' + 1)} \] (23)

The Hanle angle $\beta_{F_b,F_{b'}}$ is given by
\[\tan \beta_{F_b,F_{b'}} = \frac{\omega_{F_b,F_{b'}} + (g_{F_b,F_{b'}} - g_{F_{b'},F_b}) \omega_{L}}{\gamma}, \] (24)
where ω_{L} is the Larmor frequency associated with the applied magnetic field. The Landé factors g_f appearing in the above equation are defined as
\[g_f = \frac{g_f}{2} \left(F(F + 1) + J(J + 1) - I(I + 1) \right) \] (25)

For $F \neq 0$. Here, g_J is the L–S coupling Landé factor given by
\[g_J = 1 + \frac{1}{2} J(J + 1) - L(L + 1) + S(S + 1) \] (26)

Equation (23) has a formal resemblance to Equation (25) derived in Smitha et al. (2011) for the case of J-state interference. Indeed, the F-state interference RM in the Zeeman regime can be obtained from the corresponding J-state interference RM through the replacement of (J, L, S) by (F, J, I) in the latter RM. When the magnetic field is set to zero in Equation (23), it takes the same form as Equation (2) of Smitha et al. (2012).

4. Single-Scattering Redistribution

To study the behavior of the F-state RM derived for arbitrary field strengths, we consider the atomic line with the following configuration, namely, the Na$^+$ D$_2$ line resulting from the transition between $J_a = 1/2$ and $J_b = 3/2$. The wavelength in air corresponding to this transition is $\lambda_0 = 5899.95095$ Å. The nuclear spin $I_L = 3/2$. The $J - I_L$ coupling results in the hyperfine structure states $F_b = 0, 1, 2, 3$ for the upper state J_b and $F_a = 1, 2$ for the lower state J_a. The energies of these
F states are taken from Steck (2003). When the degeneracy of the magnetic substates of the F states is lifted by the magnetic field, 68 allowed transitions take place between them in the PB regime. The hyperfine structure constants have the values $A_{1/2} = 885.81$ MHz, $B_{1/2} = 0$, $A_{3/2} = 18.534$ MHz, and $B_{3/2} = 2.724$ MHz (see Steck 2003). The Einstein A coefficient for the $J_b = 3/2$ state is taken to be 6.3×10^7 s$^{-1}$. The Doppler width $\Delta \lambda_D = 25$ mÅ and the damping parameter $a = 0.00227$ (a value obtained after using $\gamma = 6.3 \times 10^7$ s$^{-1}$ in Equation (22), where a is defined) for all the components. The system that we have considered obeys the spacing rule described in Section 2. We study the results of a single 90° scattering event in which the unpolarized incident beam is scattered by this atomic system in a direction perpendicular to the incident beam.

4.1. Polarization Diagram

The scattering geometry used for the calculation of the polarization diagrams (plots of Q/I vs. U/I) in the present section is shown in Figure 1. This geometry is identical to the one considered in Figure 5.11 of LL04. To explore the effects of the magnetic field in the PB regime on the linear polarization, we present in Figure 2 polarization diagrams computed at different distances from the line center. To construct these diagrams, we first compute the elements of the RM for a given value of B and integrate the first column of the RM over incident wavelengths.

The solid curve for $\beta = 0^\circ$ (magnetic field parallel to the scattered beam) matches closely with the Hanle diagram shown in Figure 10.30 of LL04. As discussed in LL04, the loops seen in the polarization diagram arise due to the level crossings that occur in the PB regime. For the atomic system considered here, the level-crossing diagram is identical to that in Figure 3.11 of LL04. The magnetic field strengths (in G) for which the level crossings occur are given in Table 1. For the geometry considered, level crossings take place only between magnetic substates with $|\Delta \mu| = 2$. The magnetic field values for which these crossings occur are highlighted in boldface in Table 1. The coherence between the overlapping substates increases around these values of field strengths. This leads to an increase in the scattering polarization toward its non-magnetic value, resulting in the formation of loops.

We see from the figure an overall increase in Q/I and U/I as we move away from the line center when $\beta = 0^\circ$. Furthermore, the upper loop (near 8 G) seen in the solid line case disappears for wavelengths away from the line center. On the other hand, the lower loop (near 20 G) becomes bigger in size. In the far wings of the line, the polarization diagram becomes a point corresponding to the Rayleigh case at $Q/I = 0.428$ and $U/I = 0$.

In Figure 2, we also present the case of $\beta = 90^\circ$ (magnetic field perpendicular to the scattering plane). In this case, the Hanle effect in a two-level atom with HFS shows an interesting phenomenon (see the vertical solid line) called anti–level crossing. The symbols on the other curves mark the same values of B as indicated for the solid curve for $\beta = 0^\circ$. The zero field point is the same for the two cases represented by solid lines.

Table 1

$F_b \setminus F_{b'}$	$\mu_b \setminus \mu_{b'}$	2	3	3	3
1	0	12.7	31.3		
1	+1	15	36		
2	−1		25.1		
2	0	16.3	22	52	
2	+1	14	20	44.5	
2	+2	13.3	18	37.8	

Notes. For instance, the crossing between $\mu_b = 0$ of $F_b = 1$ and $\mu_{b'} = −2$ of $F_{b'} = 2$ occurs at $B \sim 12.7$ G. The numbers highlighted in boldface correspond to the field strength values for which level crossings occur when one considers the geometry given in Figure 1, i.e., the level crossings corresponding to $\Delta \mu = ±2$.
0.0847 for $B = 8 \text{ G}$. With further increase in B, the Q/I starts increasing and exceeds its value at $B = 0$. Thus, we see that

$$\left(\frac{Q}{I} \right)_{B=0}^{I \neq 0} < \left(\frac{Q}{I} \right)_{B=\infty}^{I \neq 0}. \quad (27)$$

This occurs due to the basis transformation of the energy eigenstates in the complete PB regime. The basis transformation takes place when the field strength increases from incomplete PB regime to the complete PB regime. In the incomplete PB regime, the energy eigenstates are given by $|J\mu_\ell I_\mu_\ell\rangle$, whereas in the complete PB regime they are given by $|J\mu_\ell I_\mu_\ell\rangle$. Anti–level crossing is also known as avoided crossing, in which, due to the strong coupling of the J and I_ℓ to the magnetic field, the magnetic substates instead of crossing, repel each other. Due to the geometry of the problem, U/I is zero.

4.2. Stokes Profiles in the PB Regime

In this section, we present the Stokes profiles computed with PRD. Sections 4.2.1, 4.2.2, and 4.2.3 show the Stokes profiles obtained for various magnetic field configurations. The magnetic field orientations are discussed in the text and strengths are indicated in the figures. The incident radiation is shifted by the magnetic field. We see that the intensity decreases monotonically with field strength. For fields of the order of 100 G and larger, we see three lobed profiles in Q/I due to transverse Zeeman effect. Once again, U/I is zero due to the geometry.

4.2.1. Vertical Magnetic Field Perpendicular to the Line of Sight

In Figure 3, the left panels show the Stokes profiles obtained for different strengths of a vertical magnetic field ($\theta_B = 0^\circ$ and $\chi_B = 90^\circ$). We see that the intensity increases slightly with increasing field strength. Q/I profiles show a decrease in amplitude up to 8 G (see short dashed line). For stronger fields (greater than 8 G), the Q/I amplitude increases (see also Figure 2). This is the signature of anti-level-crossing effect which occurs because of the repulsion between the magnetic substates. As discussed earlier, as a result of this effect, the Q/I line core value, when considered as a function of field strength, initially decreases and then increases beyond its non-magnetic value. Transverse Zeeman effect signatures show up prominently for fields stronger than 100 G. Because of the geometry considered, U/I is zero.

4.2.2. Horizontal Magnetic Field Perpendicular to the Line of Sight

The case of a horizontal field perpendicular to the line of sight ($\theta_B = 90^\circ$ and $\chi_B = 0^\circ$) is shown in the right panels of Figure 3. We see that the intensity decreases monotonically with field strength. Q/I profiles show an increase in amplitude from their Rayleigh scattered values with an increase in the field strength. For fields of the order of 100 G and larger, we see three lobed profiles in Q/I due to transverse Zeeman effect. Once again, U/I is zero due to the geometry.

4.2.3. Horizontal Magnetic Field Parallel to the Line of Sight

For this geometry of the magnetic field ($\theta_B = 90^\circ$ and $\chi_B = 90^\circ$), the intensity profiles behave in the same way as in the case of a horizontal field perpendicular to the line of sight (see Figure 4). The depolarization in the line core due to the Hanle effect is clearly visible in the Q/I panel. The U/I signal is now generated because of Hanle rotation. There is an increase in U/I amplitude for weaker fields and then a decrease for stronger fields, which is a typical signature of the Hanle effect. We notice that the V/I profiles are asymmetric in the incomplete PB regime (for fields up to 200 G) while it is perfectly anti-symmetric in the complete PB regime (for fields greater than 200 G). This is because incomplete PBE shifts the magnetic components asymmetrically about the line center and causes differential strengths for these components. Because of this asymmetry, the net circular polarization (NCP), defined as $\int V d\lambda$ (where the integration is done over the full line profile), is non-zero (the NCP would be zero if the splitting produced by the magnetic field is symmetric). For the atomic line under consideration, NCP remains non-zero up to 200 G.
5. CONCLUSIONS

LL04 incorporated the PBE on the hyperfine structure states in the polarization studies under the assumption of CRD. They assume that the incident radiation is independent of frequency in an interval larger than the frequency shifts and inverse lifetimes of the hyperfine structure substates involved in the transitions (flat-spectrum approximation). In the present paper, we have considered the same problem, but for the case of PRD. This allows us to handle the frequency dependence of the incident radiation field (relaxation of flat-spectrum approximation). In this way, the Stokes profile shapes can be properly calculated by including the effects of PRD. We have derived the PRD matrix for the F-state interference process, in the collisionless regime, in the presence of magnetic fields of arbitrary strengths.

Through the polarization diagrams computed at different scattered wavelengths, we have shown the dependence on wavelength of the loops which are characteristics of level crossings that occur in the PB regime. With the help of the Stokes profiles computed for the case of a vertical magnetic field, we have also demonstrated the anti-level-crossing effect, which was discussed for the case of CRD by Bommier (1980) and LL04. Based on the formulation described in the present paper, it is possible to use the diagnostic potential of PBE with PRD, in a complementary way with the Zeeman effect, to determine the strengths and geometry of the magnetic fields in the solar atmosphere.

We thank Ms. H. N. Smitha for her help and useful discussions. We also acknowledge the use of HYDRA cluster at the Indian Institute of Astrophysics for computing. We are grateful to the referee for very useful comments and suggestions that helped to improve the paper substantially.

REFERENCES

Asensio Ramos, A. 2006, in ASP Conf. Ser. 358, Solar Polarization 4, ed. R. Casini & B. W. Lites (San Francisco, CA: ASP), 301
Belluzzi, L. 2009, A&A, 508, 933
Belluzzi, L., Trujillo Bueno, J., & Landi Degl’Innocenti, E. 2007, ApJ, 666, 588
Berdyugina, S. V., Braun, P. A., Fluri, D. M., & Solanki, S. K. 2005, A&A, 444, 947
Berdyugina, S. V., Fluri, D. M., Ramelli, R., et al. 2006a, ApJL, 649, L49
Berdyugina, S. V., Fluri, D. M., & Solanki, S. K. 2006b, in ASP Conf. Ser. 358, Solar Polarization 4, ed. R. Casini & B. W. Lites (San Francisco, CA: ASP), 329
Bommier, V. 1980, A&A, 87, 109
Bommier, V. 1997, A&A, 328, 726
Casini, R., & Manso Sainz, R. 2005, ApJ, 624, 1025
Corney, A. 1977, Atomic and Laser Spectroscopy (Oxford: Oxford Univ. Press)
Khalack, V., & Landstreet, J. D. 2012, MNRAS, 427, 569
Landi Degl’Innocenti, E. 1975, A&A, 45, 269
Landi Degl’Innocenti, E. 1978, A&A, 33, 157
Landi Degl’Innocenti, E. 1984, SoPh, 91, 1
Landi Degl’Innocenti, E., Landi Degl’Innocenti, M., & Landolfi, M. 1997, in Proc. Forum THEMIS, Science with THEMIS, ed. N. Mein & S. Sahal Bréchot (Paris: Obs. Paris-Meudon), 59
Landi Degl’Innocenti, E., & Landolfi, M. 2004, Polarization in Spectral Lines (Dordrecht: Kluwer) (LL04)
Lopez Ariste, A., Tomczyk, S., & Casini, R. 2002, ApJ, 580, 519
Sampoorna, M., Nagendra, K. N., & Stenflo, J. O. 2007a, ApJ, 663, 625
Sampoorna, M., Nagendra, K. N., & Stenflo, J. O. 2007b, ApJ, 670, 1485
Sasso, C., Lagg, A., & Solanki, S. K. 2006, A&A, 456, 367
Shapiro, A. I., Fluri, D. M., Berdyugina, S. V., & Stenflo, J. O. 2006, in ASP Conf. Ser. 358, Solar Polarization 4, ed. R. Casini & B. W. Lites (San Francisco, CA: ASP), 311
Shapiro, A. I., Fluri, D. M., Berdyugina, S. V., & Stenflo, J. O. 2007, A&A, 461, 339
Smitha, H. N., Nagendra, K. N., Stenflo, J. O., & Sampoorna, M. 2013, ApJ, 768, 163
Smitha, H. N., Sampoorna, M., Nagendra, K. N., & Stenflo, J. O. 2011, ApJ, 733, 4
Smitha, H. N., Sowmya, K., Nagendra, K. N., Sampoorna, M., & Stenflo, J. O. 2012, ApJ, 758, 112
Steck, D. A. 2003, Sodium D Line Data (Notes available at http://steck.us/alkalidata/)
Stenflo, J. O. 1994, Solar Magnetic Fields: Polarized Radiation Diagnostics (Dordrecht: Kluwer)
Stenflo, J. O. 1997, A&A, 324, 344
Stenflo, J. O. 1998, A&A, 338, 301
Stift, M. J., & Leone, F. 2008, CoSka, 38, 185
Stift, M. J., Leone, F., & Landi Degl’Innocenti, E. 2008, MNRAS, 385, 1813
Woodgate, G. K. 1992, Elementary Atomic Structure (Oxford: Oxford Univ. Press)