ABSTRACT
Among air pollution control strategies, air cleaning with Advanced Oxidation Processes (AOPs) has been drawing more and more attention because of the restraints in the production of secondary pollution. AOPs have a wide range of applications such as air (odour elimination, purification), soil (remediation) and water decontamination. Ideally, the photo catalyst, titanium dioxide, is introduced in the top layer of the concrete pavement for best results. In addition, the combination of TiO\textsubscript{2} with cement-based products offers some synergistic advantages, as the reaction products can be adsorbed at the surface and subsequently be washed away by rain. The main aim of this research work is to measure the effect of titanium dioxide as photo catalyst in purifying nitrogen oxide (NO\textsubscript{x}) and Carbon Oxides (CO\textsubscript{x}) on pavement surface and outdoor environment condition. For that, TiO\textsubscript{2} is replaced for cement at different proportions of 5%, 10% & 15% in terms of weight in the cement concrete moulds of 10 mm uniform thickness and curing is done for seven days, then same were exposed to the sunlight at Ijoor circle sampling point Rama Nagar Town for 21 days of observation. From the Energy Dispersive Spectroscopy (EDS) analysis, result it is observed that atom percentage increased maximum of 59.05 for carbon atoms for 10% proportion specimen. Then, check the amount of percentage for carbon atoms adsorbed by 10% proportion specimen at
police/Kandaya Bhavan circle and Railway station circle sampling points of Rama Nagar Town for 21 days of observations and the results show that, carbon atom percentage increased maximum of 42.99 and 58.69 for carbon atoms respectively at above sampling points. From this work, it is conclude that the Carbon atoms and Nitrogen atoms present in the atmosphere will be reduce up to some level when replace 10% of Titanium dioxide with cement in the concrete moulds of 10 mm thickness by Photo catalytic activity.

Keywords: Advanced Oxidation Processes (AOPs); titanium dioxide; photo catalyst; atmosphere; carbon oxides; Energy Dispersive Spectroscopy (EDS).

1. INTRODUCTION

“Quality of life” is becoming a main issue in modern urban environments. Comfort, mobility, energy resources and respect for the environment are key points of interest in future developments. Behind the rapid development of the society due to urbanization and industrialization all over the world including in the past decades, many environmental problems have arisen, especially the air pollution caused by different kinds of chemical generally produced from human activities [1].

Even if humans stop combusting fossil fuels and discharging CO₂ into the atmosphere, the average global temperature of the Earth will continue to increase for the rest of the century for several reasons. Firstly, the long lifetime of CO₂ (estimated in the 100 - 300 year range) means that the excess atmospheric stocks (515 Gt Carbon) would continue to drive radiative forcing and global warming for many decades [2]. The main emissions caused by motor traffic are nitrogen oxides (NOₓ), hydrocarbons (HC), sulphur dioxide (SO₂) and carbon monoxide (CO).

Air pollution control, the techniques employed to reduce or eliminate the emission into the atmosphere of substances that can harm the environment or human health. Air is considered to be polluted when it contains certain substances in concentrations high enough and for durations long enough to cause harm or undesirable effects. The atmosphere is susceptible to pollution from natural sources as well as from anthropogenic activities.

There have been many attempts to reduce emissions. However, there are still emissions polluting the air to a significant level. A method of removing these pollutants at the street level once they are emitted to the atmosphere is an attractive air quality management [3]. A solution for the air pollution by traffic can be found in the treatment of the pollutants as close to the source as possible [4].

Many technologies have been developed for air pollutants removal and continue to be developed. Photocatalysis, as a promising technology developed, is defined as the process by which various environmental pollutants are degraded on the surface of a semiconductor photo-catalyst when exposed to a sufficiently energetic irradiation source, and is an important group of AOPs. AOPs rely on in-situ production of highly reactive hydroxyl radicals (·OH). Hydroxyl radicals are produced with the help of one or more primary oxidants (e.g. ozone, hydrogen peroxide, oxygen) and/or energy sources (e.g. ultraviolet light) or catalysts (e.g. titanium dioxide). Because, this method is easier to implement than common ones, less costly, fast reaction at ambient operating conditions and can achieve high yields. In addition, photocatalytic oxidation systems can be cleaned without the requirement of extra chemicals. When all these properties are taken into consideration, the photocatalytic oxidation process is the most reasonable method that can be preferred for air pollutant removal [5].

Photo catalysts, when activated by light are capable of supporting chemical reactions which can degrade certain atmospheric pollutants, e.g. NOₓ and volatile organic compounds (VOCs), as well as non-volatile compounds degrade into organic residues. This latter property is associated with the easy removal of dirt and gives the familiar “self-cleaning”, or more correctly “easy-cleaning” property.

The photocatalytic degradation of NOₓ and COₓ from field studies has been measured by two techniques:(i) by measuring the reduction of the ambient air pollution, which is difficult to estimate when, in the reference site the NOₓ and COₓ concentration is highly variable; or (ii) by measuring the by-products created by the
degradation process on the photo-catalyst surface [2]

This study attempts to find out the amount of NO\textsubscript{X} and CO\textsubscript{X} absorbed by measuring the by-products created by the degradation process on the photo-catalyst concrete pavement surface having different proportion of TiO\textsubscript{2} at high traffic density areas.

2. TITANIUM DIOXIDE (TiO\textsubscript{2})

Titanium dioxide is one of the basic materials in everyday life. It has been widely used as white pigment in paints, cosmetics and food stuffs. There are indeed good reasons for favouring TiO\textsubscript{2} nano materials as the semiconductor of our choice in this document, due to its superior characteristics, such as ability to be coated as a thin film on a substrate. Studies conducted to identify the effect of substrate on NO\textsubscript{X} degradation via heterogeneous photocatalysis suggest that titanium dioxide films are greatly affected by the substrate material and it is concluded that the mortar substrate exhibited high efficiency when compare to any other substrate [6]. Oxidation eliminates, like (TiO\textsubscript{2}) photo catalyst has received significant interest in recent years due to its fascinating properties, such as electronic, optical, and UV absorption. Recently, photocatalytic oxidation has been shown to be a promising and effective technology for pollution control [7]. The definition of photocatalysis is: “Change in the rate of a chemical reaction or its initiation under the action of ultra-violet, visible, or infrared radiation in the presence of a substance the photo-catalyst that absorb slight and is involved in the chemical trans-formation of the reaction partners.” [2]. TiO\textsubscript{2} is the most commonly used photo-catalysts with a band gap of 3.2 eV(wavelength \(\lambda < 388 \) nm).

Photocatalysis, a process that occurs at the surface of a semi-conductor exposed to light. When a photon with energy equal to or larger than the band gap of the semiconductor is absorbed, an electron (e-) from the valence band is promoted to the conduction band. It results in the presence of a “hole” in the valence band \((h^+) \). The \(h^+ \) and e- are strong oxidizing and reducing agents, respectively. The electron -hole pair may react with electron donors or acceptors adsorbed on the semi-conductor surface. If reaction does not occur, the electron-hole pair recombines and the energy is dissipated as heat. Oxygen and water, adsorbed at the semi-conductor surface, are catalyzed to form reactive species, superoxide anion \((O_2^-) \) and hydroxyl radical \((OH^+) \):

\[
h^+ + H_2O \rightarrow OH^+ + H
\]

\[
e^- + O_2 \rightarrow O_2^-
\]

Hydroxyl radicals and superoxide anions are strong oxidizing and reducing agents, respectively. They can react with pollutant molecules adsorbed to the photocatalytic surface, such as NO\textsubscript{X} or hydrocarbons, to form Nitric Acid, carboxylic acids, or carbon dioxide [3].

![Image 1. Photocatalysis Source [8]](image-url)
3. MATERIALS AND METHODS

The materials used in this study are highlighted as follows.

3.1 Cement

The 53 grade ordinary Portland cement complying to Indian standards is used throughout the investigation.

3.2 Water

Water free from pollutants and hardness is used for mixing and the curing was done with the same.

3.3 Fine Aggregates

Locally available river sand of specific gravity 2.68 and fineness modulus 4.58 confirming to zone II were used throughout the investigation for all concrete mixes.

3.4 Course Aggregate

Course aggregate having a size of 10 mm to 4.75 mm and specific gravity 2.74 were used throughout the investigation for all concrete mixes.

3.5 Titanium Dioxide

Titanium dioxide, also known as titanium (IV) oxide or titania, is the naturally occurring oxide of titanium, chemical formula TiO$_2$. Titanium oxides may be made into the nanoparticle size (0.2100 nanometers) [9,10]. TiO$_2$ content: 94.5% min. Specification resistance: 8000 ohm meter. pH: 6.0. Whiteness: 96.8%.

Titanium dioxide mixed with concrete at different concentration for preparation of mould and placed at all sampling points. TiO$_2$ is blended with cement at different proportions like 5%, 10%, 15% by weight and it is uniformly coated with a thickness of 10 mm on 300 mm X 200 mm size concrete specimen surface and water curing is done for 7 days. The prepared specimens are exposed to the sunlight in high density traffic area i.e Ijoor circle, Ramanagar for duration of 21 days. Then the specimens were tested by using Energy Dispersive Spectroscopy (EDS) instrument and from that find out the percentage of titanium replaced at different concentration of different elements atom particles on the surface before and after weathering activities.

From the literature, it is observed that maximum amount of pollutants i.e., carbon atoms are absorbed at 10% of titanium dioxide replacement. The optimum percentage of replacement of titanium dioxide specimens are prepared and placed at different high density traffic areas like Railway station circle and Police Bhavana circle, Ramanagar (Fig. 1) for 21 days and once again find out the amount of pollutants atom absorbed.

4. RESULTS AND DISCUSSION

The amount of pollutants absorbed from different percentage of titanium dioxide replacement to cement at Ijoor sampling point are analysed by using EDS and results were tabulated and discuss below.
4.1 Initial EDS Report For 5% of Titanium Dioxide

![Initial EDS report for 5% replacement of titanium dioxide](image)

Table 1. Initial EDS Quantitative result for 5% replacement of titanium dioxide

Element	Weight %	Error	Atom %
C	33.80	± 1.88	59.52
O	4.29S	---	5.67
Al	3.59	± 0.27	2.81
Si	7.84	± 0.51	5.90
Ca	44.06	± 1.32	23.25
Ti	6.42	± 1.01	2.84

4.2 EDS Report For 5% of Titanium Dioxide after 21 Days

![EDS report for 5% replacement of titanium dioxide after 21 days](image)

Table 2. EDS Quantitative result for 5% replacement of titanium dioxide after 21 days

Element	Weight %	Error	Atom %
C	49.78	± 1.88	72.13
O	7.03S	± 3.92	7.64
Na	1.98	± 0.38	1.50
Mg	1.36	± 0.23	0.98
Al	1.22	± 0.22	0.79
Si	4.98	± 0.40	3.09
K	1.39	± 0.22	0.62
Ca	21.74	± 0.99	9.44
Ti	10.52	± 0.65	3.82
4.3 Initial EDS Report For 10% of Titanium Dioxide

![Initial EDS report for 10% replacement of titanium dioxide](image)

Table 3. Initial EDS Quantitative result for 10% replacement of titanium dioxide

Element Line	Weight %	Weight % Error	Atom %
C	7.76	± 1.41	13.44
O	47.43	± 3.22	61.69
Al	1.35	± 0.24	1.04
Si	4.59	± 0.49	3.40
S	1.82	± 0.25	1.18
Ca	37.05	± 1.53	19.24

4.4 EDS Report For 10% of Titanium Dioxide After 21 Days

![EDS report for 10% replacement of titanium dioxide after 21 days](image)

Fig. 5. EDS report for 10% replacement of titanium dioxide after 21 days
Table 4. EDS Quantitative result for 10% replacement of titanium dioxide after 21 days

Element	Line	Weight %	Weight % Error	Atom %
C		48.24	± 1.97	72.49
O		3.80S	± 5.02	4.29
Na		2.53	± 0.47	1.99
Mg		2.17	± 0.27	1.61
Si		2.90	± 0.45	1.86
Ca		34.66	± 1.24	15.61
Ti		5.70	± 0.57	2.15

4.5 Initial EDS Report For 15% of Titanium Dioxide

![Initial EDS report for 15% replacement of titanium dioxide](image)

Table 5. Initial EDS Quantitative result for 15% replacement of titanium dioxide

Element	Line	Weight %	Weight % Error	Atom %
C		43.30	± 1.82	68.25
O		4.18S	---	4.94
Mg		1.02	± 0.20	0.79
Al		2.95	± 0.22	2.07
Si		7.36	± 0.44	4.96
Ca		34.95	± 1.04	16.51
Ti		6.25	± 0.47	2.47

4.6 EDS Report For 15% of Titanium Dioxide after 21 Days

![EDS report for 15% replacement of titanium dioxide after 21 days](image)
Table 6. EDS Quantitative result for 15% replacement of titanium dioxide after 21 days

Element Line	Weight %	Weight % Error	Atom %
C	36.75	± 1.85	63.73
O	1.73S	± 5.36	2.25
Mg	3.57	± 0.34	3.06
Al	1.31	± 0.27	1.01
Si	3.22	± 0.29	2.38
K	1.58	± 0.25	0.84
Ca	49.24	± 1.53	25.59
Ti	2.59	± 0.53	1.13

4.7 EDS Report For 10% Of Titanium Dioxide After 21 Days at Kandaya/Police Bhavan Sampling point

Table 7. EDS Quantitative result for 10% replacement of titanium dioxide after 21 days

Element Line	Weight %	Weight % Error	Atom %
C	32.05	± 1.75	56.46
O	7.52S	---	9.95
Al	3.74	± 0.27	2.93
Si	7.59	± 0.51	5.72
Ca	37.82	± 1.14	19.97
Ti	11.26	± 0.66	4.98

4.8 EDS Report For 10% Of Titanium Dioxide After 21 Days at Railway Station Circle Sampling point

Table 8. EDS Quantitative result for 10% replacement of titanium dioxide after 21 days

Element Line	Weight %	Weight % Error	Atom %
C	49.78	± 1.88	72.13
O	7.03S	± 3.92	7.64
Na	1.98	± 0.38	1.50
Mg	1.36	± 0.23	0.98
Al	1.22	± 0.22	0.79
Si	4.98	± 0.40	3.09
K	1.39	± 0.22	0.62
Ca	21.74	± 0.99	9.44
Ti	10.52	± 0.65	3.82
Fig. 9. EDS report for 10% replacement of titanium dioxide after 21 days

Table 9. Percentage of carbon atoms absorb by specimens of 5%, 10% and 15% TiO₂ replacement for cement on concrete pavement surface

Sl No	Description	5	10	15
1	% of TiO₂ replace			
2	Initial Carbon atom present in %	59.52	13.44	68.25
3	Amount of carbon atom present after 21 days in% at Ijoor circle	72.13	72.49	63.73
4	% amount of carbon atom increased/decreased after 21 days at Ijoor Circle	12.61	59.05	4.52
5	Amount of carbon atom present after 21 days in% at Railway station sample	----	72.13	----
6	% of carbon atom increased after 21 days at Railway station sample	----	58.69	----
7	Amount of carbon atom present after 21 days in% at Police Bhavana sample	----	56.46	----
8	% of carbon atom increased after 21 days at Police Bhavana sample	----	42.99	----

From the above Table 8 it was observed that at 5% replacement specimen is having ability to absorbed 12.61 % of carbon atoms from the atmosphere at Ijoor circle sampling point. Similarly 10% and 15% replacement specimens were having ability to absorbed 59.05% and 4.72% of carbon atoms respectively. Therefore, From this analysis it is evident that 10% replacement of cement with titanium dioxide gives better pollution absorption capacity when compare with the 5% and 15% replacement specimens. Hence 10% concentration of titanium dioxide replacement to cement were moulded and placed at top of the pavement surface at Railway station circle and police/kandaya bhavan circle sampling points for 21 days and then analyzed by using EDS and the results shows that, presence of carbon atom percentage increased maximum of 42.99 and 58.69 respectively at above sampling points.

From the Table 8 it is observed that % of carbon atom is increased after 21 days since, Photocatalytic processes will takes place due to the presence of TiO₂ on the pavement surface by that carbon present in the atmosphere is converted into carbon atoms and it is deposited on the specimen that indicates some amount of COₓ pollutants were will absorbed from the atmosphere by the TiO₂.

5. CONCLUSION

The usage of Advanced Oxidation Processes (AOPs) for air pollutants removal is an emerging technique. Photocatalytic oxidation process has
several advantages when it is compared with traditional treatment methods such as cost effective, production of less harmful by-products, ease of operation. On the basis of results obtained in this work, it is concluded that mixing TiO2 with pavements could reduce harmful emissions CO\textsubscript{X} at street level and benefit a cleaner living environment for the public. In this research work the absorbance of NO\textsubscript{X} is not identified in the EDS analysis, since absorbance may be in a trace amount in the study area because the specimen exposure time is only for 21 days.

COMPETING INTERESTS
Authors have declared that no competing interests exist.

REFERENCES
1. Chi Him A. Tsang and et al. Titanium oxide based photocatalytic materials development and their role of in the air pollutants degradation: Overview and forecast." Environment International. 2019;125:200–228.
2. Renaud de Richter, et al. Removal of non-CO\textsubscript{2} green house gases by large-scale atmospheric solar photo catalysis." Journal of Progress in Energy and Combustion Science. 2017;60:68–96.
3. Dijy Davis, Divya CR. Reduction Of Air Pollution From Vehicles Using Titanium Dioxide." International Research Journal of Engineering and Technology. 2015;02(05): 1308–1314.
4. Elia Boonen, Anne Beeldens. Recent Photocatalytic Applications for Air Purification in Belgium. Coatings Journals. 2014;4:553-573.
5. Zeynep Cansu Ayturan, Sukru Dursun. Usage of photocatalytic oxidation for the removal of air pollutants." International Journal of Ecosystems and Ecology Science. 2018;8(4):711-716.
6. Martinez T, Berton, A. Ringot, E. Escadeillas G. "Degradation of NO using photocatalytic coatings applied to different substrates." Building and Environment; 2011.
7. Arafa Awadalla,and et al. Titanium dioxide as photocatalyses to create self cleaning concrete and improve indoor air quality." International Journal of the Physical Sciences. 2011;6(29):6767-6774.
8. Joel K. Sikkema., Graduate Theses and Dissertations. "Photocatalytic degradation of NO\textsubscript{X} by concrete pavement containing." Iowa State University Capstones; 2013.
9. Amirreza Talaiekhozani, Shahabaldin Rezania Ki-HyunKim Reza Sanaye Ali Mohammad Amani. Recent advances in photocatalytic removal of organic and inorganic pollutants in air. Journal of Cleaner Production. 2021;278:123895.
10. Alireza Haghighat Mamaghani, Fariborz Haghighat, Chang-Seo Lee. Effect of titanium dioxide properties and support material on photocatalytic oxidation of indoor air pollutants, Building and Environment. 2021;189:107518.

Peer-review history:
The peer review history for this paper can be accessed here:
https://www.sdiarticle5.com/review-history/77146