Abstract: The aim of the study was to investigate the effect of parathyroid hormone (PTH) on primary stability of dental implants in a bone-reduced model. Ten female New Zealand white rabbits underwent ovariectomy and were administered glucocorticoid to induce osteoporosis. One group was administered PTH intermittently by subcutaneous injection for 4 weeks (PTH-group) and the other group was given injections of saline for 4 weeks (Osteoporosis; OP-group). After the administration period, implants were inserted into the distal femoral epiphyses of each animal. At implant placement, insertion torque (IT) and implant stability quotient (ISQ) were measured. Histological examination revealed newly formed trabecular bone around the implant socket in the PTH-group but not in the OP-group. The trabecular bone structures in the PTH-group appeared thicker than those in the OP-group. In the PTH-group, the mean IT value was significantly greater than that in the OP-group (29.8 ± 6.2 Ncm and 10.0 ± 2.1 Ncm, respectively; P < 0.05). The ISQ value in the PTH-group was significantly higher than that in the OP-group (74.7 ± 11.2 and 55.9 ± 13.5, respectively; P < 0.05). Intermittent PTH administration could be an effective treatment for achieving favorable primary stability of dental implants in patients with osteoporosis. (J Oral Sci 58, 241-246, 2016)

Keywords: parathyroid hormone; primary stability; osteoporosis; rabbit.

Introduction
Successful implant treatment depends on the achievement of favorable primary stability, which in turn depends on sufficient bone quantity and quality (1). Osteoporosis is a skeletal disease that causes systematic loss of bone density and bone quantity (2). It has been reported that primary stability is decreased at sites of low bone density, for example those in patients with osteoporosis, and this may be a risk factor for implant failure (3). Thus, bone density at the implant placement site appears to be a crucial factor that is correlated with failure rate and primary stability (4,5). In fact, osteoporosis patients who undergo implant treatment have a less favorable outcome than patients with healthy bone (6). The most common secondary form of osteoporosis is that induced by glucocorticoid treatment for a great variety of inflammatory and allergic diseases. Glucocorticoid affects bone quality mainly by decreasing bone formation through a reduction of osteoblastogenesis and an increase of osteoblast and osteocyte apoptosis. Osteoporosis and osteoporotic fracture may be caused by cortical and trabecular bone loss (7). For these reasons, glucocorticoid-induced osteoporosis might be disadvantageous for achieving favorable primary stability.

Currently, intermittent administration of parathyroid
hormone (PTH) is clinically approved for enhancing bone formation and improving bone quantity as an anabolic pharmacological agent for patients with osteoporosis. PTH exerts clear anabolic effects on cancellous bone remodeling by increasing the number and activity of osteoblasts and decreasing their apoptosis (8,9). Moreover, PTH increases bone thickness not only in trabecular but also cortical bone (10,11). PTH therapy is applied to severe osteoporosis cases such as that induced by glucocorticoid, and it is expected to improve low bone density at implant placement sites and achieve favorable primary stability in such cases. Implant stability can be measured by clinical assessments such as insertion torque (IT) and resonance frequency analysis (RFA). Intermittent administration of PTH may improve primary stability evaluated by IT and RFA at sites of low bone density. However, studies of PTH have been limited mainly to those employing small animals such as mice or rats, for which application of dental implants is difficult. Therefore, few studies have evaluated the primary stability of implants using IT and RFA in osteoporosis models.

Recently, an osteoporosis model using rabbits was established by combining the effects of both ovariectomy and glucocorticoid administration (12,13). This model is easy to induce and highly reproducible. The bone-reduced rabbit model allows investigation of implant stability by evaluation of IT and RFA. The aim of the present study was to investigate the effect of PTH on the primary stability of implants in a rabbit bone-reduced model.

Materials and Methods

Ethics

The animal research protocol we employed was in accordance with the current version of the Japan Law on the Protection of Animals. This study was approved by the Research Facilities Committee for Laboratory Animal Science at Hiroshima University School of Medicine, Hiroshima, Japan (A-11-5-5). All surgery was performed under general anesthesia, and all efforts were made to minimize suffering during the experimental period.

Study design and animals

The study design is shown in Fig. 1. Ten female New Zealand White rabbits (age, 17 weeks; body weight, 3.0-3.5 kg) were used. The animals underwent ovariectomy and, 2 weeks later, received intramuscular injections of methylprednisolone acetate (Depo-Medrol, 0.5 mg/kg/day) for 4 consecutive weeks to prepare the bone-reduced animal models (12). Seven weeks after ovariectomy, the animals were divided in two groups: five rabbits that were injected with saline vehicle solution (Osteoporosis; OP group), and another five that received subcutaneous injections of PTH [1-34] (40 µg/day, 5 days weekly, Forteo, Pfizer, New York, NY, USA) (PTH group) for 4 weeks.

Implant procedure and evaluation of primary stability

All procedures were performed under anesthesia with sodium pentobarbital (10 mg/kg, i.v.; Somnopentyl, Kyoritsu Seiyaku Corporation, Tokyo, Japan). All implant sockets in the distal epiphysis of the knee joint of both femurs were prepared according to the Brånemark protocol in the manufacturer’s instructions. Briefly after the knee joint was exposed, an implant surgical system (Fig. 2a) (iChiropro, Bien-air, Bienne, Switzerland) with a rotary speed not exceeding 800 rpm was used for consecutive application of a 2.0-mm round drill, 2.0-mm twist drill, 3.0-mm pilot drill, 3.0-mm twist drill, and countersink drill. After implant socket preparation, the implants (3.75-mm diameter, 7.0-mm length, Brånemark System MKIII, Nobel Biocare, Gothenburg, Sweden) was inserted until the color indicator was level with the bone ridge and the maximum IT during the insertion was recorded (Fig. 2b). After implant insertion, RFA was performed using an Osstell (Osstell AB, Gothenburg, Sweden) to measure the implant stability quotient (ISQ) (Fig. 3a). Measurements were performed three times from two different directions, and the values obtained for each implant were averaged. The ISQ measurements were carried out in accordance with a previous study (Fig. 3b) (14-16).
Histological observation and histomorphometric analyses
After the rabbits had been sacrificed, the femurs were harvested and further fixed in 10% neutral formalin for 2 weeks. After implant removal, tissue blocks were cut and decalcified with hydrochloride solution (KC-X, FALMA, Tokyo, Japan) for 5 days, dehydrated through a graded ethanol series, cleared with xylene, and embedded in paraffin. Sections 5 μm thick were obtained from each block and stained with hematoxylin and eosin. Histological observation was performed by light microscopy (BZ-9000, Keyence, Osaka, Japan).

Histological images were digitized and histomorphometrically analyzed using NIH ImageJ (National Institutes of Health, Bethesda, MD, USA), and bone formation area was measured as the total ratio of cortical to trabecular bone area. The regions of interest for calculation of the ratio of bone formation area were those in the area surrounding the implant socket 1.5 mm lateral to it and 3.0 mm vertical from the top of the cortical bone. The measurement area was limited to the cortical bone section.

Statistical analysis
The data obtained, i.e. IT, ISQ and bone formation area, were presented as mean ± standard deviation. Statistical analysis of the data was performed using the Mann-Whitney U test. Statistically significant differences were defined as $P < 0.05$.

Results
Primary stability evaluation
Figure 4 shows the IT results obtained using the implant surgical system as an automatic recording assessment tool. The IT value was significantly higher in the PTH group than in the OP group (29.8 ± 6.2 Ncm and 10.0 ± 2.1 Ncm, respectively; $P < 0.05$).

Figure 5 shows the ISQ results obtained using the Osstell system for RFA. The ISQ value was significantly higher in the PTH group than in the OP group (74.7 ± 11.2 and 55.9 ± 13.5, respectively; $P < 0.05$).

Histological observation and histomorphometric analyses
Trabecular bone formation around the implant socket was detected in the PTH group but not in the OP group. The trabecular bone structures in the PTH group appeared to
be thicker than those in the OP group (Fig. 6ab). Increased trabecular and cortical thickness was also observed in the PTH specimens. In the OP specimens, marrow fibrosis and tunneling resorption were seen (Fig. 7ab). Improved trabecular connectivity as well as increased cortical thickness after PTH treatment was detected in both sections.

The ratio of bone formation was significantly higher in the PTH group (48.3 ± 3.6\% \text{ (SD)}) than in the OP group (36.1 ± 9.5\% \text{ (SD)}) ($P < 0.05$) (Table 1).

Table 1 Ratio of bone formation area

	% (SD)
PTH	48.3 (3.6)*
OP	36.1 (9.5)*

SD; standard deviation

* $P = 0.0275$

Discussion

The results of this study indicate that PTH can increase the primary stability of dental implants as determined by IT and ISQ values. Primary stability is dependent on bone quality and quantity in the implant placement site. At sites with poor bone density, such as in osteoporosis, the primary stability is decreased. The development of low bone density animal models has been essential in studies of osteoporosis (17). The most common method for inducing osteoporosis in rats or mice is ovariectomy. However, commercialized dental implants cannot be applied in such small animals. In contrast, mature rabbits are sufficiently large for insertion of dental implants. Therefore, they have been used to evaluate osseointegration or stability of dental implants (18). However, rabbits are remarkably resistant to conventional strategies for inducing bone loss, and thus ovariectomy alone is seldom successful (12,13). In the present study, an osteoporosis model using rabbits was established by combining the effect of both ovariectomy and glucocorticoid administration. Glucocorticoid affects bone quality by decreasing bone formation through a reduction of osteoblastogenesis and an increase of osteoblast and osteocyte apoptosis. Glucocorticoid reduces runt-related transcription factor 2 (Runx2), which promotes osteoblast differentiation (19). Also, it controls the Wnt signaling pathway in correlation with bone formation, and reduces the proliferation of osteoblasts and accelerated apoptosis (20-23). Through these mechanisms, bone formation is suppressed and bone density is reduced.

Promotion of osteoclast resorption and suppression of bone formation in cortical and trabecular bones due to glucocorticoid administration have been demonstrated in the same experimental osteoporosis rabbit model that was used in the present study (12). Dual-energy X-ray analysis has shown that bone mineral density was significantly decreased in a combined ovariectomy and glucocorticoid administration model in comparison with that in an untreated model (12). Furthermore, in terms of mechanical strength analysis, our previous study showed that the maximum mechanical bone strength in the bone-reduced rabbit model was lower than that in a normal rabbit model. Therefore, the glucocorticoid-induced model showed a greater reduction of bone density and mechanical strength of femoral cortical bone (16). Intermittent PTH administration affects bone quality by promoting preosteoblastic proliferation and osteoblast bone formation. In addition, PTH inhibits the degradation of Runx2 (24,25) and apoptosis of osteoblasts (26). These findings suggest that PTH has an antagonistic

Fig. 6 (a) Histological specimen from the PTH group. (b) Thick trabecular bone structures are evident around the implant socket.

Fig. 7 (a) Histological specimen from the OP group. (b) Few trabecular bone structures are evident around the implant, and tunneling resorption can also be seen, whereas the marrow is mostly present in the outer portion of the implant socket.
effect on the action of glucocorticoids. Almagro et al. reported that implant stability could be improved by PTH administration in osteoporosis models; in that study, PTH administration was performed after implant placement, and implant stability was evaluated in terms of osseointegration (27). However, implant stability as primary stability was not clarified, because in this study it appears that implant stability after placement and the bone condition at implant placement seem to be similar. Our previous study of primary stability demonstrated that the IT and ISQ values were significantly lower in the osteoporosis rabbit model than in the untreated rabbit model. Furthermore, a previous evaluation of tibial bone mechanical strength by the 3-point bending test indicated that bone strength in animals with osteoporosis was significantly lower than that in normal animals (16).

The results of the present study reflected osteoporosis due to a decrease of bone density. Histological assessment demonstrated a thicker and more trabecular bone structure in PTH specimens than in OP specimens. IT and ISQ measurements were used for evaluation of primary stability; however, the techniques used for measuring these parameters differ substantially. IT can be used for evaluation of bone quality and primary stability at the time of implant insertion (28). Normally, IT is strongly correlated with the mechanical strength of cortical bone (29). Therefore, reduced bone density caused by osteoporosis affects the IT value, as was evident in the OP group. It is considered that reduced bone density in the area surrounding the implant socket caused by ovariectomy and glucocorticoid was ameliorated by PTH administration. Therefore, the IT value was significantly higher in the PTH group than in the OP group because of the promotion of bone metabolism. RFA has been performed as an effective and non-invasive method for measuring the stability of implants (30,31). We used the Osstell® system to assess RFA. The resonance frequency measured from the response signal obtained by Smart-Peg was then calculated as the ISQ, which ranged from 1 to 100. The ISQ values of successfully stabilized implants are reported to range from 57 to 82, reflecting the condition of the bone. The ISQ indicates whether an effective amount of bone is surrounding the implant, and the rigidity of the bone-implant interface in cortical and cancellous bone (32,33). We found that the mean ISQ value was over 70 in the PTH group and approximately 56 in the OP group, indicating a more favorable bone condition or primary stability in the PTH group. It is considered that the reduced density of cortical and cancellous bone was ameliorated by PTH. Data in the literature regarding the appropriate dosage of PTH for achieving such an effect are lacking. A low PTH dose of less than 10 µg/kg three times a week is reportedly effective for enhancing bone metabolism (34). High PTH dosages have also been reported to promote metabolism and thus bone formation (35). In this study, the PTH dose rate was set at approximately 15-20 µg/kg 5 times a week, which was considered to be within the range used in numerous in vivo studies (usually 15-60 µg/kg 5 times a week) (27). Intermittent PTH administration improves primary implant stability at sites of low bone density. We plan to conduct further studies for evaluation of osseointegration or under-loading in order to confirm the utility of PTH treatment for osteoporosis.

Acknowledgments
This study was supported by a Scientific Research Grant (No. 15K11160) from the Japan Society for the Promotion of Science.

Conflict of interest
The authors declare no competing financial interests.

References
1. Johansson B, Bück T, Hirsch JM (2004) Cutting torque measurements in conjunction with implant placement in grafted and nongrafted maxillae as an objective evaluation of bone density: a possible method for identifying early implant failures? Clin Implant Dent Relat Res 6, 9-15.
2. Shibli JA, Aguiar KC, Melo L, d’Avila S, Zenóbio EG, Faveri M et al. (2008) Histological comparison between implants retrieved from patients with and without osteoporosis. Int J Oral Maxillofac Surg 37, 321-327.
3. Roos J, Sennerby L, Albrectsson T (1997) An update on the clinical documentation on currently used bone anchored endosseous oral implants. Dent Update 24, 194-200.
4. Friberg B, Jennt T, Lekholm U (1991) Early failures in 4,641 consecutively placed Brånemark dental implants: a study from stage 1 surgery to the connection of completed prostheses. Int J Oral Maxillofac Implants 6, 142-146.
5. Becker W, HujoeL PP, Becker BE, Willingham H (2000) Osteoporosis and implant failure: an exploratory case-control study. J Periodontol 71, 625-631.
6. Tsolaki IN, Madianos PN, Vrotsos JA (2009) Outcomes of dental implants in osteoporotic patients. A literature review. J Prosthodont 18, 309-323.
7. Gradel B, Sutter B, Flautre B, Viguier E, Lavaste F, Hardouin P (1994) Effects of glucocorticoids on skeletal growth in rabbits evaluated by dual-photon absorptiometry, microscopic connectivity and vertebral compressive strength. Osteoporos Int 4, 204-210.
8. Canalis E, Giustina A, Bilezikian JP (2007) Mechanisms of anabolic therapies for osteoporosis. N Engl J Med 357, 905-916.
9. Kraenzlin ME, Meier C (2011) Parathyroid hormone
analogues in the treatment of osteoporosis. Nat Rev Endocrinol 7, 647-656.

10. Jiang Y, Zhao JJ, Mitlak BH, Wang O, Genant HK, Eriksen EF (2003) Recombinant human parathyroid hormone (1-34) [seriparadite] improves both cortical and cancellous bone structure. J Bone Miner Res 18, 1932-1941.

11. Marx RE (2007) Bone and bone graft healing. Oral Maxillofac Surg Clin North Am 19, 455-466.

12. Castañeda S, Largo R, González-González R, de la Piedra C, Díaz-Curiel M et al. (2008) Characterization of a new experimental model of osteoporosis in rabbits. J Bone Miner Metab 26, 53-59.

13. Doi K, Oue H, Morita K, Kajihara S, Kubo T, Koretake K et al. (2012) Development of implant/interconnected porous hydroxyapatite complex as new concept graft material. PLoS One 7, e49051.

14. Doi K, Oue H, Morita K, Kajihara S, Kubo T, Perrotti V et al. (2012) Influence of fixation in formalin on the measurement of stability of implants using resonance frequency analysis and Periotest M®: a study in a dog. Br J Oral Maxillofac Surg 52, 29-33.

15. Oue H, Doi K, Morita K, Kajihara S, Kubo T, Koretake K et al. (2012) Development of implant/interconnected porous hydroxyapatite complex as new concept graft material. PLoS One 7, e49051.

16. Oue H, Morita K, Kajihara S, Kubo T, Koretake K et al. (2012) Development of implant/interconnected porous hydroxyapatite complex as new concept graft material. PLoS One 7, e49051.

17. Turnier RT, Maran A, Lotuquen S, Hefferan T, Evans GL, Zhang M et al. (2001) Animal models for osteoporosis. Rev Endocr Metab Disord 2, 117-127.

18. Piattelli M, Scarano A, Paolantonio M, Iezzi G, Petrone G, Piattelli A (2002) Bone response to machined and resorbable blast material titanium implants: an experimental study in rabbits. J Oral Implantol 28, 2-8.

19. Hofbauer LC, Rauner M (2009) Minireview: live and let die: molecular effects of glucocorticoids on bone cells. Mol Endocrinol 23, 1525-1531.

20. Dempster DW (1989) Bone histomorphometry in glucocorticoid-induced osteoporosis. J Bone Miner Res 4, 137-141.

21. Weinstein RS, Jilka RL, Parfitt AM, Manolagas SC (1998) Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. Potential mechanisms of their deleterious effects on bone. J Clin Invest 102, 274-282.

22. Ohnaka K, Tanabe M, Kawaite H, Nawata H, Takayanagi R (2005) Glucocorticoid suppresses the canonical Wnt signal in cultured human osteoblasts. Biochem Biophys Res Commun 329, 177-181.

23. Hayashi K, Yamaguchi T, Yano S, Kanazawa I, Yamauchi M, Yamamoto M et al. (2009) BMP/Wnt antagonists are upregulated by dexamethasone in osteoblasts and reversed by alendronate and PTH: potential therapeutic targets for glucocorticoid-induced osteoporosis. Biochem Biophys Res Commun 379, 261-266.

24. Hofbauer LC, Gori F, Riggs BL, Lacey DL, Dunstan CR, Spelsberg TC et al. (1999) Stimulation of osteoprotegerin ligand and inhibition of osteoprotegerin production by glucocorticoids in human osteoblastic lineage cells: potential paracrine mechanisms of glucocorticoid-induced osteoporosis. Endocrinology 140, 4382-4389.

25. Bellido T, Ali AA, Plotkin LI, Fu Q, Gubrij I, Roberson PK et al. (2003) Proteasomal degradation of Runx2 shortens parathyroid hormone-induced anti-apoptotic signaling in osteoblasts. A putative explanation for why intermittent administration is needed for bone anabolism. J Biol Chem 278, 50259-50272.

26. Weinstein RS, Jilka RL, Almeida M, Roberson PK, Manolagas SC (2010) Intermittent parathyroid hormone administration counteracts the adverse effects of glucocorticoids on osteoblast and osteocyte viability, bone formation, and strength in mice. Endocrinology 151, 2641-2649.

27. Almagro MI, Roman-Blas JA, Bellido M, Castañeda S, Cortez R, Herrero-Beaumont G (2013) PTH[1-34] enhances bone response around titanium implants in a rabbit model of osteoporosis. Clin Oral Implants Res 24, 1027-1034.

28. O’Sullivan D, Sennerby L, Meredith N (2000) Measurements comparing the initial stability of five designs of dental implants: a human cadaver study. Clin Implant Dent Relat Res 2, 85-92.

29. Turkyilmaz I, Sennerby L, Yilmaz B, Bilecenoglu B, Ozbek EN (2009) Influence of defect depth on resonance frequency analysis and insertion torque values for implants placed in fresh extraction sockets: a human cadaver study. Clin Implant Dent Relat Res 11, 52-58.

30. Meredith N, Alleyne D, Cawley P (1996) Quantitative determination of the stability of the implant-tissue interface using resonance frequency analysis. Clin Oral Implants Res 7, 261-267.

31. Friberg B, Sennerby L, Linden B, Gröndahl K, Lekholm U (1999) Stability measurements of one-stage Brånemark implants during healing in mandibles. A clinical resonance frequency analysis study. Int J Oral Maxillofac Surg 28, 266-272.

32. Tawse-Smith A, Perio C, Payne AG, Kumara R, Thomson WM (2001) One-stage operative procedure using two different implant systems: a prospective study on implant overdentures in the edentulous mandible. Clin Implant Dent Relat Res 3, 185-193.

33. Huang HM, Chiu CL, Yeh CY, Lee SY (2003) Factors influencing the resonance frequency of dental implants. J Oral Maxillofac Surg 61, 1184-1188.

34. Corsini MS, Faraco FN, Castro AA, Onuma T, Sendyk WR, Shibli JA (2008) Effect of systemic intermittent administration of human parathyroid hormone (rhPTH[1-34]) on the resistance to reverse torque in rabbit tibiae. J Oral Implantol 34, 298-302.

35. Tsunori K (2015) Effects of parathyroid hormone dosage and schedule on bone regeneration. J Oral Sci 57, 131-136.