Clarithromycin resistance in *Helicobacter pylori* and its clinical relevance

Xia¹ Harry Hua-Xiang, FAN Xue-Gong and Talley² Nicholas J.

Subject headings Helicobacter pylori; Helicobacter infections; clarithromycin resistance

INTRODUCTION

The macrolide clarithromycin has emerged as the most important antibiotic in combined therapy for eradication of *H. pylori* infection¹². However, concerns about increasing clarithromycin resistance in *H. pylori* and its impact on the efficacy of eradication therapy have been raised since its widespread acceptance in 1985. Here, we sought to review the geographic prevalence of clarithromycin resistance in *H. pylori* and its molecular mechanisms, and assess the clinical relevance of clarithromycin resistance.

Geographic prevalence of clarithromycin resistant *H. pylori*

The worldwide, prevalence of primary (pre-treatment) clarithromycin resistance to *H. pylori* ranges from 0.8% to 18% (Figure 1)⁵⁻²⁹. The reported prevalence in China is between 4.8% and 7.5%, while the rate in Australia ranges from 6.1% to 7.8%⁵,⁶,¹¹,¹².

Molecular mechanisms of clarithromycin resistance

Versalovic *et al* were the first to identify an A→G transition mutation within a conserved loop of 23S rRNA of *H. pylori*, and its association with clarithromycin-resistance⁰. The mutation occurs commonly at two gene positions cognate with positions 2058 and 2059 of *Escherichia coli*-23S rRNA, which were re-named 2143 and 2144, and now revised as 2142 and 2143, respectively. Point mutations may occasionally occur at other positions, and can be a transition (A→G) or a transversion (A→C), but the transition is far more frequent⁴,³¹. Moreover, Versalovic *et al* also observed that the A2142G mutation was associated with a high level of resistance (MIC>64 mg/L) than the A2143G mutation. These observations are supported by others studies³³,³⁶. It has been reported that macrolide-resistance was not stable in some strains of *H. pylori* in vitro¹⁷. This phenomenon was also observed in vivo: i.e., strains developed resistance post-treatment and then reverted to being susceptible after a period of follow-up³⁰. Versalovic *et al* cultured five genotypically identical isolates subsequentially from one patient before and after treatment with clarithromycin alone. They observed that the first two post-treatment isolates with a low-level clarithromycin resistance had an A2143G mutation, which was not present in the susceptible pretreatment isolate or in the last two post-treatment isolates with reverted susceptibility³⁰. This suggests that the mutation may be unstable³⁵. However, Hulten *et al* reported that clarithromycin resistance was stable after 50 subcultures in vitro⁰, which is consistent with other studies³⁷.

Cross-resistance between macrolides in *H. pylori* has been observed¹²,¹⁷,³⁰. Generally, *H. pylori* strains resistant to clarithromycin are also resistant to erythromycin, azithromycin and roxithromycin or vice versa. These observations have been confirmed at the molecular level³⁶.

Detection of clarithromycin resistance in *H. pylori*

The methods currently used for susceptibility testing of *H. pylori* to clarithromycin include agar dilution method, broth dilution method, disc diffusion test and the Epsilometer test (E-test)¹⁷,³⁸. The agar dilution method determines the minimal inhibitory concentrations (MICs) of antibiotics against bacteria. This method is time consuming and not feasible for routine use. However, it is a reliable technique which is usually carried out as a reference method for other techniques¹⁷,³⁸,³⁹. Broth dilution method is rarely used because of the difficulty in growing *H. pylori* in broth. The disc diffusion test is the easiest and cheapest way of testing susceptibility. However, this test requires strict standardization before it can be used. The E-test, developed in 1988, provides the MIC of a strain directly by using a diffusion-like method⁴⁰. A plastic-coated strip contains a preformed antimicrobial gradient on one side and a scale on the other. The reading is taken at the point where the...
ellipse of growth inhibition intersects the strip. Standardization and correlation with the agar dilution method are also required prior to application. This method is now widely used by many investigators[12,13,15,16,18,22-28]. At present, no “gold standard” method has been proposed for testing \textit{H. pylori} susceptibility to antibiotics including clarithromycin and metronidazole, as there is still a need for standardization regarding the appropriate medium, the supplementation, the size of the inoculum, the incubation atmosphere, the appropriate time to read the plates and the breakpoint differentiating resistance and susceptibility[38]. Since cross-resistance exists between macrolides, erythromycin susceptibility testing may be useful in predicting (determining) clarithromycin resistant \textit{H. pylori} strains[12,17]. Erythromycin susceptibility testing is well established in many microbiological laboratories, and it is much cheaper than clarithromycin susceptibility testing at present.

The association between point mutations on the 23S rRNA gene and macrolide resistance in \textit{H. pylori} potentially provides a new approach for diagnosing macrolide resistant \textit{H. pylori} strains. Although cycle DNA sequencing of the 23S rRNA gene amplicons is regarded as the reference method, simpler techniques have been developed[38]. These include polymerase chain reaction based restriction fragment length polymorphism (PCR-RFLP), an oligonucleotide ligation assay (PCR-OLA), a DNA enzyme immunoassay (PCR-DEIA), a reverse hybridisation line probe assay (PCR-LiPA), and a preferential homoduplex formation assay (PCR-PHFA)[30,31,33,41-43]. The PCR-based molecular techniques are quicker than microbiological susceptibility testing, and more importantly, they can be performed directly on gastric biopsies and gastric juice[10,44,45]. The PCR method is now widely used by many investigators[12,13,15,16,18,22-28].

Clinical relevance of clarithromycin resistance in \textit{H. pylori}

Studies have shown that clarithromycin resistance in \textit{H. pylori} substantially affects the success rate of eradication regimens containing clarithromycin (Table 1). Generally, dual therapy with an antisecretory agent (e.g., \textit{H}2 antagonist or proton pump inhibitor) and clarithromycin achieves eradication rates of 60% to 80% for susceptible strains, but less than 40% for resistance strains (Table 1). Triple therapy with an antisecretory agent, clarithromycin and another antibiotic (i.e., amoxicillin or metronidazole) increases the eradication rates to 80%-95% for susceptible strains, but the rates remain under 40% for resistant ones (Table 1). A preliminary study reported that a combination of ranitidine bismuth citrate and clarithromycin eradicated \textit{H. pylori} at a rate of 98% and 92%, respectively, for both susceptible and resistant strains, but remains to be confirmed[29]

Current anti \textit{H. pylori} treatment regimens consisting of clarithromycin do not achieve an eradication rate of 100%. Emergence of clarithromycin-resistant strains during ineffective treatment has also been observed; the prevalence of clarithromycin-resistant strains cultured after treatment ranges between 40% and 100% (Table 1). This implies a likelihood of potential spread of clarithromycin-resistant strains in the population. Thus, the prevalence of clarithromycin resistance in \textit{H. pylori} may exhibit a similar trend to the prevalence of metronidazole resistance in \textit{H. pylori}. In Ireland, the prevalence of metronidazole-resistant strains was 7% in 1989, 34% in 1992 and 38% in 1996[17]. In Australia, the prevalence of metronidazole resistance was 17% in 1988, but increased to 40% in 1995 and over 60% in 1998[11,47]. It is most likely that this increase is due to the use of metronidazole as a key agent in classic triple therapy (consisting of bismuth, metronidazole and tetracycline or amoxicillin), or increased use of this drug for other infections. Similarly, the current prevalence of clarithromycin-resistant strains of 6%-8% in Australia is much higher than the rate of 1.9% reported four years ago in this country[11,12,48]. This increase in the prevalence of clarithromycin resistance has been also reported in Europe and the United States[14,20,27,49]. It is assumed that prescriptions of macrolides, especially the new members such as spiramycin, roxithromycin, azithromycin and clarithromycin have been increased over the past years for the treatment of respiratory infection, sexually transmitted diseases and other infectious diseases. Thus, patients treated with any member of macrolides alone may select macrolide resistant \textit{H. pylori} organisms (if infected), as cross-resistance exists between macrolides. Overall, \textit{H. pylori} resistance to clarithromycin is of less clinical relevance as compared with resistance to metronidazole, mainly because of the low prevalence and the possible reversibility of resistance in some strains. Susceptibility testing is not routinely required before treatment because of the low prevalence of clarithromycin resistance (Figure 1). However, \textit{H. pylori} should be cultured and tested for clarithromycin susceptibility in patients who have failed therapy containing clarithromycin (Table 1). Moreover, any previous use of macrolides not aimed at anti-\textit{H. pylori} infection should be also taken into account when clarithromycin is chosen for eradication of \textit{H. pylori}.

Table 1 Effect of primary clarithromycin resistance on the efficacy of eradication therapy for Helicobacter pylori infection

Authors	Treatment regimens	Eradication rate (%)	Prevalence of resistant strains post-treatment (%)
Liu et al., 1996	LFC or BFC	98(45/46)	00(0/4)
Suzuki et al., 1998	LAC	94(66/70)	00(0/1)
Miyaji et al., 1997	OC or LC	64(9/14)	00(0/5)
Maeda et al., 1998	LAC	85(29/34)	00(0/5)
Megraud et al., 1997	OC	70(33/47)	00(0/5)
Debets-Ossenkopp et al., 1996	RC	81(58/72)	00(0/1)
Tompkins et al., 1997	OC	80(101/127)	00(0/4)
Moayyedi et al., 1998	OCT	91(104/114)	00(0/1)
Schutze et al., 1996	RC	75(21/28)	00(0/1)
Laine et al., 1998	AC	35(73/208)	00(0/1)
Youssi et al., 1996	LAC	85(71/84)	00(0/1)
Buckley et al., 1994	OMC	85(71/84)	00(0/1)

O, omeprazole; C, clarithromycin; A, amoxycillin; Ran, ranitidine; M, metronidaz ole; Rbc, ranitidine bismuth citrate; L, lansoprazole; Rox, Roxithromycin; B, co lloidal bismuth subcitrate (CBS).

*The number of resistant strains post treatment was greater than the number of resistant strains before treatment in all the studies, suggesting acquisition of clarithromycin resistance during the unsuccessful treatment.

O. Clarithromycin resistance in Helicobacter pylori infection.

Conclusions

The prevalence of clarithromycin resistant H. pylori is low, but appears to be increasing. Point mutations in the 23S rRNA gene, mainly at the positions 2142 and 2143 with a transition of A→G, are responsible for the resistance. Although current triple therapies containing clarithromycin are able to eradicate up to 90% of susceptible strains, the eradication rates may be significantly reduced for resistant strains. Moreover, unsuccessful treatment with regimens containing clarithromycin can be associated with acquisition of resistance to the drug, which may explain the increasing rate of clarithromycin resistance.
than omeprazole with clarithromycin. *Gut*, 1997;41(Suppl 1): A92

14 De Koster E, Cozzoli A, Jonas C, Ntonda R, Butzler JP, Deltenre M. Six years resistance of Helicobacter pylori to macrolides and imidazoles. *Gut*, 1996;38(Suppl 2): A5

15 Van Zwart AA, de Boer WA, Schneeberger PM, Weel J, Jansz AR, Thijjs JC. Prevalence of primary Helicobacter pylori resistance to metronidazole and clarithromycin in the Netherlands. *Eur J Clin Microbiol Infect Dis*, 1996;15:861-864

16 Debets Ossenkopp YJ, Sparrius M, Kusters JG, Kolkman JJ, Vandenbroucke-Grauls CJME. Mechanism of clarithromycin resistance in clinical isolates of Helicobacter pylori. *FEMS Microbiol Let*, 1996;142:37-42

17 Xia H, Buckley M, Keane CT, O’Morain CA. Clarithromycin resistance in Helicobacter pylori: prevalence in untreated dyspeptic patients and stability in vitro. *J Antimicrob Chemother*, 1996;37:473-481

18 Tompkins DS, Perkin J, Smith C. Failed treatment of Helicobacter pylori infection associated with resistance to clarithromycin. *Helicobacter*, 1997;2:185-187

19 Moayyedi P, Ragunathan PL, Mapstone N, Axon ATR, Tompkins DS. Relevance of antibiotic sensitivities in predicting failure of omeprazole, clarithromycin, and tinidazole to eradicate Helicobacter pylori. *J Gastroenterol*, 1998;33(Suppl X):62-65

20 Morton D, Mutter D, Bardhan D. A six-year assessment of clarithromycin, metronidazole, tinidazole and amoxicillin resistance in Helicobacter pylori: clinical isolates: a rising tide of antibiotic resistance. *Gastroenterology*, 1998;114:A907

21 Adamakis R, Suerbaum S, Pfaffenbach B, Opferkuch W. Primary and acquired Helicobacter pylori resistance to clarithromycin, metronidazole, and amoxicillin influence on treatment outcome. *Am J Gastroenterol*, 1998;93:386-389

22 Wolle K, Nilius M, Leodolter A, Muller WA, Malfertheiner P, Konig W. Prevalence of Helicobacter pylori resistance to several antimicrobial agents in a region of Germany. *Eur J Clin Microbiol Infect Dis*, 1998;17:519-521

23 Piccolomini R, Di Bonaventura G, Catamo G, Carbone F, Neri M. Comparative evaluation of the E test, agar dilution, and broth microdilution for testing susceptibility of Helicobacter pylori strains to 20 antimicrobial agents. *J Clin Microbiol*, 1997;35:1842-1846

24 Schatz K, Hentschel E, Hirsch AM. Clarithromycin or amoxicillin plus high dose ranitidine in the treatment of Helicobacter pylori-positive functional dyspepsia. *J Eur Gastroenterol Hepatol*, 1996;8:41-46

25 Laine L, Suchower L, Frantz J, Connors A, Neil G. Low rate of emergence of clarithromycin resistant Helicobacter pylori with amoxicillin co therapy. *Aliment Pharmacol Ther*, 1998;12:887-892

26 Yousfi MM, El Zimaty HMT, Cole RA, Genta RM, Graham DY. Metronidazole, ranitidine and clarithromycin combination for treatment of Helicobacter pylori infection (modified Bazzoli’s triple therapy). *Aliment Pharmacol Ther*, 1998;10:119-122

27 Vakil N, Halm BL, McSorley D. Clarithromycin-resistant Helicobacter pylori in patients with duodenal ulcer in the United States. *Am J Gastroenterol*, 1998;93:1432-1435

28 Best LM, Haldane DJM, Bezzanona GS, Veldhuyzen van Zanten SJO. Helicobacter pylori: primary susceptibility to clarithromycin in vitro in Nova Scotia. *Can J Gastroenterol*, 1997;11:298-300

29 Loo VG, Fallone CA, De Souza E, Lavallee J, Barkun AN. In vitro susceptibility of Helicobacter pylori to amoxicillin, clarithromycin, metronidazole and ofloxacin. *J Antimicrob Chemother*, 1997;40:881-883

30 Versalovic J, Shortridge D, Kibler K, Griffsy MV, Beyer J, Flamm RK. Mutation in 23S rRNA is associated with clarithromycin resistance in Helicobacter pylori. *Antimicrob Agents Chemother*, 1996;40:477-480

31 Taylor DE, Ge Z, Purdy D, Lo T, Hiratsuka K. Cloning and sequence analysis of two copies of a 23S rRNA gene from Helicobacter pylori and association of clarithromycin resistance with 23S rRNA mutations. *Antimicrob Agents Chemother*, 1997;41:2621-2628

32 Versalovic J, Osato MS, Spakovksy K, Dore MP, Reddy R, Stone GG. Point mutation in the 23S rRNA gene of Helicobacter pylori associated with different levels of clarithromycin resistance. *J Antimicrob Chemother*, 1997;40:283-286

33 Stone GG, Shortridge D, Versalovic J, Beyer J, Flamm RK, Graham DY. A PCR-oligonucleotide ligation assay to determine the prevalence of 23S rRNA gene mutations in clarithromycin-resistant Helicobacter pylori. *Antimicrob Agents Chemother*, 1997;41:712-714

34 Occhialini A, Urdaci M, Doucet Populaire F, Bebear CM, Lamoilhette H, Megraud F. Macrolide resistance in Helicobacter pylori: rapid detection of point mutations and assays of macrolide binding to ribosomes. *Antimicrob Agents Chemother*, 1997;41:2724-2728

35 Hulten K, Gibreel A, Skold O, Enstrand L. Macrolide resistance in Helicobacter pylori: mechanism and stability in strains from clarithromycin treated patients. *Antimicrob Agents Chemother*, 1997;41:2550-2553

36 Wang G, Taylor DE. Site specific mutations in the 23S rRNA gene of Helicobacter pylori control levofloxacin resistance. *Helicobacter*, 1997;2:146-149

37 Xia HX, Keane CT, Beattie S, O’Morain CA. Clarithromycin-resistant Helicobacter pylori associated virulence and resistance genes associated with clarithromycin resistance using preferential homoduplex formation assay (PCR-PHFA). *Aliment Pharmacol Ther*, 1997;11(Suppl 1):43-44

38 Xia HX, Dawson MA, Keane CT, O’Morain CA. Prevalence of metronidazole resistant Helicobacter pylori in dyspeptic patients. *Irish J Med Sci*, 1993;162:91-94

39 Pina M, Occhialini A, Monteiro L, Doerrmann EP, Megraud F. Detection of point mutation associated with resistance of Helicobacter pylori to clarithromycin by hybridization in liquid phase. *J Clin Microbiol*, 1998;36:3285-3290

40 Xia HX, Dawson MA, Keane CT, O’Morain CA. Prevalence of metronidazole resistant Helicobacter pylori in dyspeptic patients. *J Antimicrob Chemother*, 1994;38:2343-2361

41 Xia HX, Wang G, Taylor DE. Detection of point mutation associated with resistance of Helicobacter pylori to clarithromycin by hybridization in liquid phase. *J Clin Microbiol*, 1998;36:3285-3290

42 Xia HX, Wang G, Taylor DE. Detection of point mutation associated with resistance of Helicobacter pylori to clarithromycin by hybridization in liquid phase. *J Clin Microbiol*, 1998;36:3285-3290

43 Xia HX, Keane CT, Beattie S, O’Morain CA. Standardization of culture test and its clinical significance for susceptibility testing of metronidazole against Helicobacter pylori. *Antimicrob Agents Chemother*, 1994;38:2357-2361

44 Xia HX, Dawson MA, Keane CT, O’Morain CA. Prevalence of metronidazole resistant Helicobacter pylori in dyspeptic patients. *J Antimicrob Chemother*, 1994;38:2357-2361

45 Xia HX, Dawson MA, Keane CT, O’Morain CA. Prevalence of metronidazole resistant Helicobacter pylori in dyspeptic patients. *J Antimicrob Chemother*, 1994;38:2357-2361

46 Xia HX, Keane CT, O’Morain CA. 5-year survey of metronidazole and clarithromycin resistance in clinical isolates of Helicobacter pylori. *Gut*, 1996;39(Suppl 2):A6-7.