Mass Spectrometry Based Glycoproteomics—From a Proteomics Perspective*

Sheng Pan‡||, Ru Chen§, Ruedi Aebersold¶, and Teresa A. Brentnall§

Glycosylation is one of the most important and common forms of protein post-translational modification that is involved in many physiological functions and biological pathways. Altered glycosylation has been associated with a variety of diseases, including cancer, inflammatory and degenerative diseases. Glycoproteins are becoming important targets for the development of biomarkers for disease diagnosis, prognosis, and therapeutic response to drugs. The emerging technology of glycoproteomics, which focuses on glycoproteome analysis, is increasingly becoming an important tool for biomarker discovery. An in-depth, comprehensive identification of aberrant glycoproteins, and further, quantitative detection of specific glycosylation abnormalities in a complex environment require a concerted approach drawing from a variety of techniques. This report provides an overview of the recent advances in mass spectrometry based glycoproteomic methods and technology, in the context of biomarker discovery and clinical application. Molecular & Cellular Proteomics 10: 10.1074/mcp.R110.003251, 1–14, 2011.

With recent advances in proteomics, analytical and computational technologies, glycoproteomics—the global analysis of glycoproteins—is rapidly emerging as a subfield of proteomics with high biological and clinical relevance. Glycoproteomics integrates glycoprotein enrichment and proteomics technologies to support the systematic identification and quantification of glycoproteins in a complex sample. The recent development of these techniques has stimulated great interest in applying the technology in clinical translational studies, in particular, protein biomarker research.

While glycomics is the study of glycome (repertoire of glycans), glycoproteomics focuses on studying the profile of glycosylated proteins, i.e. the glycoproteome, in a biological system. Considerable work has been done to characterize the sequences and primary structure of the glycan moieties attached to proteins (1–3), and their structural alterations related to cancer (4–6). Recent reports have provided a comprehensive overview of the concept of glycomics and its prospective in biomarker research (7–10). In contrast, this review is focused on recent developments in glycoproteomic techniques and their unique application and technical challenge to biomarker discovery.

Glycoproteomics in Biomarker Discovery and Clinical Study—Most secretory and membrane-bound proteins produced by mammalian cells contain covalently linked glycans with diverse structures (2). The glycosylation form of a glycoprotein is highly specific at each glycosylation site and generally stable for a given cell type and physiological state. However, the glycosylation form of a protein can be altered significantly because of changes in cellular pathways and processes resulting from diseases, such as cancer, inflammation, and neurodegeneration. Such disease-associated alterations in glycoproteins can happen in one or both of two ways: 1) protein glycosylation sites are either hypo, hyper, or newly glycosylated and/or; 2) the glycosylation form of the attached carbohydrate moiety is altered. In fact, altered glycosylation patterns have long been recognized as hallmarks in cancer progression, in which tumor-specific glycoproteins are actively involved in neoplastic progression and metastasis (5, 6, 11, 12). Sensitive detection of such disease-associated glycosylation changes and abnormalities can provide a unique avenue to develop glycoprotein biomarkers for diagnosis and prognosis. In addition, intervention in the glycosylation and carbohydrate-dependent cellular pathways represent a potential new modality for cancer therapies (6, 11, 13). Table I lists some of the FDA approved cancer biomarkers (14, 15) that are glycosylated proteins or protein complexes.

Protein biomarker development is a complex and challenging task. The criteria and approach applied for developing each individual biomarker can vary, depending on the purpose of the biomarker and the performance requirement for its clinical application (16, 17). In general, it has been suggested that the preclinical exploratory phase of protein biomarker development can be technically defined into four stages (18), including initial discovery of differential proteins; testing and selection of qualified candidates; verification of a subset of candidates; assay development and pre-clinical validation of potential biomarkers. Thanks to recent technological advances, mass spectrometry based glycoproteomics is now playing a major role in the initial phase of discovering
Glycoproteomics Methods

A comprehensive analysis of glycoproteins in a complex biological sample requires a concerted approach. Although the specific methods for sample preparation can be different for different types of samples (e.g. plasma, serum, tissue, and cell lysate), a glycoproteomics pipeline typically consists of glycoprotein or glycopeptide enrichment, multidimensional protein or peptide separation, tandem mass spectrometric analysis, and bioinformatic data interpretation. For glycoprotein-based enrichment methods, proteolytic digestion can be performed before or after glycan cleavage, depending on the specific workflow and enrichment methods used. For glycopeptide enrichment, proteolytic digestion is typically performed before the isolation step so that glycopeptides, instead of glycoproteins, can be captured. For quantitative glycoproteomics profiling, additional steps, such as differential stable isotope labeling of the sample and controls, are required. Fig. 1 illustrates the general strategy for an integrated glycoproteomics analysis.

Glycoproteins or glycopeptides can be effectively enriched using a variety of techniques (see below). Following the enrichment step, the workflow then splits into two directions: glycan analysis and glycoprotein analysis. The strategies for glycan analysis have been discussed in several reviews and will not be covered in this report. For glycoprotein analysis, bottom-up workflows (“shotgun proteomics”—peptide based proteomics analysis) (23) are still most common, providing not only detailed information of a glycoprotein profile, but also the specific mapping of glycosylation sites. It is notable that the reliable analysis of mass spectrometric data in glycoproteomic studies largely relies on bioinformatic tools and glycan-related databases that are available. An increasing number of algorithms and databases for glycan analysis have been developed and well documented in several recent reviews (24–26). For glycoprotein and glycopeptide sequence analysis, a large number of well-characterized and annotated glycoproteins are available. For glycoprotein and glycopeptide sequence analysis, a large number of well-characterized and annotated glycoproteins are available.

Listing of some of the US Food and Drug Administration (FDA) approved cancer biomarkers

Protein target	Glycosylation	Detection	Source	Disease	Clinical biomarker
α-Fetoprotein	Yes	Glycoprotein	Serum	Nonseminomatous testicular cancer	Diagnosis
Human chorionic gonadotropin-β	Yes	Glycoprotein	Serum	Testicular cancer	Diagnosis
CA15–3	Yes	Carbohydrate	Serum	Pancreatic cancer	Monitoring
CA125	Yes	Glycoprotein	Serum	Ovarian cancer	Monitoring
CEA (carcinoembryonic antigen)	Yes	Protein	Serum	Colon cancer	Monitoring
Epidermal growth factor receptor KIT	Yes	Protein	Tissue	Colon cancer	Therapy selection
Thyroglobulin	Yes	Protein	Serum	Thyroid cancer	Monitoring
PSA-prostate-specific antigen (Kallikrein 3)	Yes	Protein	Serum	Prostate cancer	Monitoring
CA127–29	Yes	Glycoprotein	Serum	Breast cancer	Monitoring
HER2/NEU	Yes	Protein (IHC), Protein	Tissue, Serum	Breast cancer	Prognosis/Therapy selection/ Monitoring
Fibrin/FDP-fibrin degradation protein	Yes	Protein	Urine	Bladder cancer	Monitoring
BTA-bladder tumour-associated antigen (Complement factor H related protein)	Yes	Protein	Urine	Bladder cancer	Monitoring
CEA and mucin (high molecular weight)	Yes	Protein (Immunofluorescence)	Urine	Bladder cancer	Monitoring

Glycoproteomics Approaches

Glycoproteomic analysis is complicated not only by the variety of carbohydrates, but also by the complex linkage of the glycan to the protein. Glycosylation can occur at several different amino acid residues in the protein sequence. The most common and widely studied forms are N-linked and O-linked glycosylation. O-linked glycans are linked to the hydroxyl group on serine or threonine residues. N-linked glycans are attached to the amide group of asparagine residues in a consensus Asn-X-Ser/Thr sequence (X can be any amino acid except proline) (19). Other known, but less well studied forms of glycosylation include glycosylphosphatidylinositol anchors attached to protein carboxyl terminus, C-glycosylation that occurs on tryptophan residues (20), and S-linked glycosylation through a sulfur atom on cysteine or methionine (21, 22). Our following discussion is focused on glycoproteomic analysis of the most common N-linked and O-linked glycoproteins.

A comprehensive analysis of glycoproteins in a complex biological sample requires a concerted approach. Although the...
Proteins can be found in the UniProt Knowledgebase. In addition, many glycopeptide mass spectra are now available in the continually expanding PeptideAtlas library (27), which stores millions of high-resolution peptide fragment ion mass spectra acquired from a variety of biological and clinical samples for peptide and protein identification. Ultimately, all the data obtained from different aspects of the workflow need to be merged and interpreted in an integrated fashion so that the full extent of glycosylation changes associated with a particular biological state can be better revealed. To the best of our knowledge, the complete glycoform analysis of any glycoprotein in a specific cell type under any specific condition has not yet been accomplished for any glycoprotein with multiple glycosylation sites. Current technology can define the glycan compliment and profile the glycoproteins, but is not capable of putting them together to define the molecular species present. To date, such integrated studies still remain highly challenging, even with advanced tandem mass spectrometry technologies and growing bioinformatic resources (26, 28–31).

Enrichment of the Glycoproteome—Characterization of the glycoproteome in a complex biological sample such as plasma, serum, or tissue, is analytically challenging because of the enormous complexity of protein and glycan constituents and the vast dynamic range of protein concentration in the sample. The selective enrichment of the glycoproteome is one of the most efficient ways to simplify the enormous complexity of a biological sample to achieve an in-depth glycoprotein analysis. Two approaches for glycoprotein enrichment have been widely applied: lectin affinity based enrichment methods (31–36) and hydrazide chemistry-based solid phase extraction methods (37–42). Recent studies have demonstrated that the two methods are complementary and a very effective means for the enrichment of glycoproteins or glycopeptides from human plasma and other bodily fluids (38, 39, 43). In addition, glycoprotein and glycopeptide enrichment using boronic acid (44, 45), size-exclusion chromatography (46), hydrophilic interaction (47) and a graphite powder micro-column (48) have been reported.

Lectin affinity enrichment is based on the specific binding interaction between a lectin and a distinct glycan structure attached on a glycoprotein (49, 50). There are a variety of lectin species that can selectively bind to different oligosaccharide epitopes. For instance, concanavalin A (ConA) binds to mannosyl and glucosyl residues of glycoproteins (51); wheat germ agglutinin (WGA) binds to \(N \)-acetyl-glucosamine and sialic acid (52); and jacalin (JAC) specifically recognizes galactosyl (\(\beta\)-1,3\(N \)acetylgalactosamine and O-linked glycoproteins (53). Lectin affinity enrichment has been designed to enrich glycoproteins with specific glycan attachment from plasma, serum, tissue, and other biological samples through affinity chromatography and other methods. Multiple lectin species can also be combined to isolate multiple types of glycoproteins in complex biological samples (54–59). Concanavalin A and wheat germ agglutinin, as well as jacalin are often used together to achieve a more extensive glycoproteome characterization (31, 34, 57, 59, 60). Several reports have demonstrated a multilectin column approach to achieve a global enrichment of glycoproteins with various glycan at-
tachments from serum and plasma (31, 34, 59, 61, 62). A recent study has developed a “filter aided sample preparation (FASP)” based method, which allows highly efficient enrichment of glycopeptides using multiple lectins (63). To date, most of the work using lectin affinity for targeted glycoprotein enrichment has focused on N-glycosylation because the binding specificity of lectin for O-glycosylation is less satisfactory. To overcome such caveat, efforts have been made using serial lectin columns of concanavalin A and jacel in tandem to isolate O-glycopeptides from human serum (35).

A hydrazide chemistry-based method has been applied to isolate glycoproteins and glycopeptides through the formation of covalent bonding between the glycans and the hydrazide groups (37). The carbohydrates on glycoproteins are first oxidized to form aldehyde groups, which sequentially react with hydrazide groups that are immobilized on a solid surface. The chemical reaction conjugates the glycoproteins to the solid phase by forming the covalent hydrazone bond. Although, conceptually, the majority of the glycoproteins in a biological sample can be captured using this method, the further analysis of the captured glycoproteins is practically limited by the method that can cleave glycoproteins or glycopeptides from the solid phase. Because there is a lack of efficient enzymes or chemicals that can specifically deglycosylate and/or release O-linked glycoproteins or glycopeptides from the solid phase, most of the studies have applied this method solely for N-linked glycoprotein analysis. PNGase F is the enzyme that can specifically release an N-glycosylated protein or glycopeptide (except those carrying α1-3 linked core fucose (38)) from its corresponding oligosaccharide groups. The hydrazide chemistry method is not only highly efficient in enriching N-linked glycoproteins or glycopeptides from a complex environment, but also allows great flexibility in its applications, such as capturing extracellular N-glycoproteins on live cells to monitor their abundant changes because of cell activation, differentiation, or other cellular activities (64). This method can be readily automated for analyzing a large quantity of samples.

Recent studies have compared glycoprotein isolation methods. One study assessed lectin-based protocols and hydrophilic interaction chromatography for their performance in enriching glycoproteins and glycopeptides from serum (65). Other studies compared lectin affinity and hydrazide chemistry methods for their efficiency in isolating glycoproteins and glycopeptides from a complex biological sample (39, 66, 67). The methods are complementary in enriching glycoproteins because of their different mechanisms of glycoprotein capturing. When both methods were applied, it significantly improves the coverage of the glycoproteome, resulting in an increased number of glycoproteins identified. The lectin affinity method can be tailored to target glycoproteins with specific glycan structure(s) for isolation using different lectins, thus, affording flexibility for its application in glycoproteomic studies. The application of hydrazide chemistry method has been widely used for N-linked glycosylation study. The hydrazide chemistry essentially reacts with all the proteins with carbonyl groups, which may include glycoproteins with oxidized glycans (37, 40) and other oxidized proteins that carry carbonyl groups (68–70). The high specificity of this method may mainly result from the specificity of PNGase F, the enzyme cleaving N-glycosidic bonds to release N-glycoproteins and peptides from the solid phase. This method affords high efficiency and specificity in enriching N-linked glycoproteins or glycopeptides from a complex sample, and can be easily incorporated into a proteomics workflow for integrated analysis. In addition to the lectin and hydrazide chemistry-based methods, it has been suggested that boronic acid-based solid phase extraction may also be useful for an overall glycoproteome enrichment (44, 45), on the basis of the evidence that boronic acid can form diester bonds with most glycans, including both N-linked and O-linked glycosylation (71).

Mass Spectrometric Analysis of Glycoproteome—Mass spectrometry, because of its high sensitivity and selectivity, has been one of the most versatile and powerful tools in glycoprotein analysis, to identify the glycoproteins, evaluate glycosylation sites, and elucidate the oligosaccharide structures (56, 72, 73). The utility of a top-down approach (intact protein based proteomics analysis) (74) for glycoprotein characterization in a complex sample is still technically challenging with the current technology. The most versatile and widely used current glycoproteomics methods are based on characterizing glycopeptides generated by the digestion of glycoproteins, analyzing either deglycosylated glycopeptides or intact glycopeptides with glycan attachment, as illustrated in Fig. 1.

The direct analysis of intact glycopeptides with carbohydrate attachments is complicated by the mixed information obtained from the fragment ion spectra, which may include fragment ions from the peptide backbone, the carbohydrate group and the combinations of both. Although it is technically challenging to comprehensively analyze intact glycopeptides in a global scale for a complex biological sample, complementary information regarding peptide backbone and glycan structure can likely be obtained in a single measurement. Early work using collision-induced dissociation (CID) has identified a few key features that are characteristics of the fragmentation of glycopeptides, providing the basis for intact glycopeptide identification (75–79). The analysis of intact glycopeptides has been carried out using a variety of different instruments, including electrospray ionization (ESI)-based ion trap (IT) (80–84), quadrupole ion trap (QIT) (85–87), Fourier transform ion cyclotron resonance (FTICR) (31, 57, 88, 89), ion trap/time-of-flight (IT/TOF) (90, 91), and quadrupole/time-of-flight (Q/TOF) (92–97); matrix-assisted laser desorption/ionization (MALDI) based Q/TOF (98–100),

1 The abbreviations used are: CID, collision-induced dissociation; Q, quadrupole.
quadrupole ion trap/time-of-flight (QIT/TOF) (86, 101, 102), and tandem time-of-flight (TOF/TOF) (81, 82, 101, 103–105) mass spectrometers. In general, the CID generated MS/MS spectrum of a glycopeptide is dominated by B- and Y-type glycosidic cleavage ions (carbohydrate fragments) (106), and b- and y-type peptide fragments from the peptide backbone. However, the MS/MS fragmentation data obtained from different instruments can have pronounced difference in providing structure information on glycan and peptide backbone, depending on the experimental setting and instrumentation used for mass analysis, including ionization methods, collision techniques and mass analyzers. Low energy CID with electrospray ionization-based ion trap, Fourier transform-ion cyclotron resonance, and Q/TOF instrument predominantly generates fragments of glycosidic bonds. The increase of collision energy using Fourier transform-ion cyclotron resonance, and Q/TOF instruments result in the more efficient fragmentation of b- and y- ions from the peptide backbone. MALDI ionization generates predominantly singly charged precursor ions, which are more stable and usually fragmented using higher energies via CID or post-source decay (PSD), generating fragments from both the peptide backbone and the glycan (98–100, 103, 107–110). Although Q/TOF instruments have been widely used for intact glycopeptide characterization, one unique feature of the ion trap instrument is that it allows repeated ion isolation/CID fragmentation cycles, which can provide a wealth of complementary information to interpret the structure of a glycan moiety and peptide backbone (56, 86, 111). Recently, fragmentation techniques using different mechanisms from CID have been introduced and applied for glycopeptide analysis, including infrared multiphoton dissociation (IRMPD) (112–115), electron-capture dissociation (ECD) (112–120) and electron-transfer disassociation (ETD) (85, 121–123). The application of infrared multiphoton dissociation and electron-capture disassociation is largely performed with Fourier transform-ion cyclotron resonance instruments. Complementary to CID fragmentation, electron-capture dissociation and electron-transfer disassociation tend to cleave the peptide backbone with no loss of the glycan moiety, providing specific information on localizing the glycosidic modification. More details regarding mass spectrometric analysis of intact glycopeptides can be found in recent reviews (56, 124). Although great efforts have been made to apply a variety of mass spectrometry techniques to study both N-linked (32, 56, 86, 87, 112–114, 125–130) and O-linked (90, 116, 119, 120, 130–140) glycopeptides, the interpretation of the fragment spectrum of an intact glycopeptide still requires intensive manual assignment and evaluation. A recent study has demonstrated the feasibility to develop an automated workflow for analyzing intact glycopeptides in mixtures (141). In general, however, a high throughput, large scale profiling of intact glycopeptides in a complex sample still remains a challenge with current technology.

The analysis of deglycosylated peptides requires the removal of glycan attachments from glycopeptides. Fortunately, for N-linked glycopeptides, the N-glycosidic bond can be specifically cleaved using the enzyme PNGase F, providing deglycosylated peptides, which can then be analyzed directly using shotgun proteomics. The PNGase F-catalyzed deglycosylation results in the conversion of asparagine to aspartic acid in the glycopeptide sequence, which introduces a mass difference of 0.9840 Da. Such distinct mass differences can be used to precisely map the N-linked glycosylation sites using high resolution mass spectrometers. Stable isotope labeling introduced by enzymatic cleavage of glycans in H₂¹⁸O has also been used to enhance the precise identification of N-glycosylation sites (33, 142, 143). The removal of O-linked glycans is less straightforward, most assays rely on chemical deglycosylation methods, such as trifluoromethanesulfonic acid (144), hydrazinolysis (145), β-elimination (146), and periodate oxidation (35, 147). The application of these methods suffers from a variety of limitations, such as low specificity for O-linked glycosylation, degradation of the peptide backbone, and modifications of the amino acid residues—all of which can complicate or compromise O-linked glycoproteomics analysis in a complex sample. Most of the large scale glycoproteomics studies using the deglycosylation approach have been focused on N-glycoproteins, which are prevalent in blood and a rich source for biomarker discovery. O-glycosylation lacks a common core, consensus sequence, and universal enzyme that can specifically remove the glycans from the peptide backbone, thus, is more challenging to analyze for large scale profiling.

Following deglycosylation, the glycopeptides can be treated and analyzed as stripped peptides using a shotgun proteomics pipeline. MS/MS fragment spectra with b-ions and y-ions generated from CID are searched against protein databases using search algorithms, such as SEQUEST (148), MASCOT (149), and X!tandem (150), and subsequently validated via statistical analysis (151–154), to provide peptide and protein identifications with known false discovery rate. The N-glycosylation sites can be precisely mapped using the consensus sequence of Asn-X-Ser/Thr, in which asparagine is converted to aspartic acid following enzyme cleavage introducing a mass difference of 0.9840 Dalton. A variety of mass spectrometers have been used to analyze glycoproteins, in particular N-linked glycoproteins, in complex biological and clinical samples using the deglycosylation approach. These studies include electrospray ionization-based ion trap (37–39, 41, 67, 155–157), Orbitrap (158), Q/TOF (33, 35, 142, 155), triple quadrupole (159), Fourier transform-ion cyclotron resonance (64, 160); and MALDI based TOF/TOF (41, 161) and Q/TOF (37). Recently, an attempt was made to apply ion mobility-mass spectrometry (IM-MS) to characterize deglycosylated glycopeptides and the corresponding carbohydrates simultaneously (162) in a single measurement. The approach of analyzing deglycosylated glycopeptides makes it possible
to utilize available proteomics technology for large-scale glycoproteome profiling, especially N-linked glycoproteins, in a high-throughput fashion.

Glycoproteomics Analysis in Blood and Other Bodily Fluids—An important target for blood-based diagnostic assays involves the detection and quantification of glycosylated proteins. Glycosylated proteins, especially N-linked glycoproteins, are ubiquitous among the proteins destined for extracellular environments (163), such as plasma or serum. A systematic and in-depth global profiling of the blood glycoproteome can provide fundamental knowledge for blood biomarker development, and is now possible with the development of glycoproteomics technologies. In the past few years, several large scale proteomics studies on profiling the glycoproteome of human plasma and serum have been reported (34, 35, 37, 38, 43, 61, 65, 164–166), adding significant numbers of glycoproteins into the blood glycoproteome database. In one study (38), immunoaffinity subtraction and hydrazide chemistry were applied to enrich N-glycoproteins from human plasma. The captured plasma glycoproteins were subjected to two-dimensional liquid chromatography separation followed by tandem mass spectrometric analysis. A total of 2053 different N-glycopeptides were identified, covering 303 non-redundant glycoproteins, including many glycoproteins with low abundance in blood (38). In a different study, hydrazide chemistry-based solid phase extraction method was applied to enhance the detection of tissue-derived proteins in human plasma (167). Other studies have applied lectin affinity-based approaches to characterize the serum and plasma glycoproteome (34, 43, 166). These studies provide detailed identification regarding the individual N-glycosylation sites using high-resolution mass spectrometry. The efforts made in global profiling of glycoproteins in plasma and serum have not only greatly enhanced our understanding of the blood glycoproteome, but also have facilitated the development of new technologies that can be used for glycoprotein biomarker discovery. A variety of experimental designs and strategies for blood glycoprotein profiling have been applied for clinical disease studies, including prostate cancer (168), hepatocellular carcinoma (164, 168–170), lung adenocarcinoma (61, 171), breast cancer (58, 165, 172), atopic dermatitis (169), ovarian cancer (173, 174), congenital disorders of glycosylation (175), and pancreatic cancer (156, 176). Most of these studies focused on the early stages of glycoprotein biomarker discovery and many of them exploited multilectin affinity techniques to isolate glycoproteins from serum or plasma.

Glycoproteomics techniques have also been applied to study the glycoproteome of other bodily fluids. The complementary application of hydrazide chemistry-based solid phase extraction and lectin affinity method have led to the identification of 216 glycoproteins in human cerebrospinal fluid (CSF), including many low abundant ones (39). A hydrazide chemistry based study on human saliva has characterized 84 N-glycosylated peptides in 45 glycoproteins (177). The study on tear fluid identified 43 N-linked glycoproteins, including 19 proteins that have not been discovered in tear fluid previously (178). Other glycoproteomics studies on bodily fluids include N-glycoprotein profiling of lung adenocarcinoma pleural effusions (179), urine glycoprotein profiling (180), and urine glycoprotein signature identification for bladder cancer (181). In the urine glycoprotein profiling study, 150 annotated glycoproteins in addition to 43 predicted glycoproteins were identified (180). In our own study, 48 glycoproteins have so far been identified in pancreatic juice (unpublished data), adding complementary information to the pancreatic juice protein database (182–184).

Glycoproteomics Analysis of Tissue and Cell Lysates—Protein glycosylation has been increasingly recognized as one of the prominent alterations involved in tumorigenesis, inflammation, and other disease states. The study of glycoproteins in cell and tissue carries great promise for defining biomarkers for diagnostic and therapeutic targets. The glycoproteomics studies in liver tissue (185, 186) and cell lines (187) have provided a fundamental understanding of the liver glycoproteome and identified protein candidates that are associated with highly metastatic liver cancer cells. In one of the studies, hydrazide chemistry and multiple enzyme digestion provided a complementary identification of 939 N-glycosylation sites covering 523 non-redundant glycoproteins in human liver tissue (185). Studies on ovarian cancer have focused on discovering putative glycoprotein biomarkers for improving diagnosis (173, 174) and therapeutic treatment (188). Glycoproteomics studies have also been carried out to study hepatocellular carcinoma. Magnetic nanoparticle immobilized Concanavalin A was used to selectively enrich N-glycoproteins in a hepatocellular carcinoma cell line leading to the identification of 184 glycosylation sites corresponding to 101 glycoproteins (189). In a different study, complementary methods of hydrophilic affinity and hydrazide chemistry were applied to investigate the secreted glycoproteins from a hepatocellular carcinoma cell line, in which 300 different glycosylation sites within 194 glycoproteins were identified (190). While many of these studies focused on N-glycoproteins, mucin-type O-linked glycoproteins are the predominant forms of O-linked glycosylation and are difficult to analyze. A metabolic labeling method was developed to facilitate their identification in complex cell lysates using proteomic strategies (191).

Cell surface and membrane proteins are particularly appealing for biomarker discovery, and many of them are glycosylated proteins. Both hydrazide chemistry- and lectin affinity-based approaches have been applied to specifically study cell surface and membrane N-glycoproteins that are associated with diseases, including colon carcinoma (192), breast cancer (158), and thyroid cancer (157). One study applied hydrazide chemistry to covalently label extracellular glycan moieties on live cells, providing highly specific and...
selective identification of cell surface N-glycoproteins (64). A complementary application of hydrazide chemistry and lectin affinity methods was demonstrated to profile cell membrane glycoproteins, significantly enhancing the glycoprotein identification (67).

Quantitative Glycoprotein Profiling—One of the major goals of clinical proteomics is to effectively identify dysregulated proteins that are specifically associated with a biological state, such as a disease. In the past decade, different quantitative proteomics techniques have been introduced and applied to study a wide variety of disease settings. These techniques are based on different mechanisms to facilitate mass spectrometric-based quantitative analysis, including stable isotopic or isobaric labeling using chemical reactions (e.g., ICAT and iTRAQ) (193–195), metabolic incorporation (e.g., SILAC) (196) and enzymatic reactions (e.g., 18O labeling) (197, 198); as well as less quantitatively accurate label-free approaches (199, 200). The overview and comparison of these quantitative techniques can be found in several reports in the literature and are not discussed in this review. Most of these isotopic labeling techniques can be adapted and utilized for glycoproteomics analysis to quantitatively compare the glycoproteome of a diseased sample to a control, thus revealing the glycosylation occupancy of individual glycosylation sites that may be involved in a disease. In addition to the well-established labeling methods cited above, several more experimental labeling strategies have been described in the field of glycoproteomics. One study demonstrated the feasibility of using stable isotope labeled succinimide anhydride for quantitative analysis of glycoproteins isolated from serum via hydrazide chemistry (37). In a different report, the heavy and light version of N-acetoxy-succinimide combining with lectin affinity selection was used to quantitatively profile serum glycopeptides in canine lymphoma and transitional cell carcinoma (201). Stable isotope labeled 2-nitrobenzenesulfenyl was also used for chemical labeling in a quantitative glycoprotein profiling study on the sera from patients with lung adenocarcinoma (202). O-Linked N-acetylgalcosamine (O-GlcNAc) is an intracellular, reversible form of glycosylation that shares many features with phosphorylation (203). Studies have suggested that O-GlcNAc may play an important role in many biological processes (204). A quantitative study on O-GlcNAc glycosylation has been reported, in which a method termed quantitative isotopic and chemoenzymatic tagging (QUIC-Tag) was described using a biotin-avidin affinity strategy for O-GlcNAc glycopeptide enrichment and stable isotope-labeled formaldehyde for mass spectrometric quantification (205). Recently, the isobaric tag for relative and absolute quantitation (iTRAQ) technique, combined with different glycoprotein enrichment approaches, has been utilized in several quantitative glycoproteomics studies. In the study of hepatocellular carcinoma, N-linked glycoproteins were enriched from hepatocellular carcinoma patients and controls using multillectin column and then quantitatively compared using iTRAQ to reveal the differential proteins associated with hepatocellular carcinoma (206). In a different study, the approach of using narrow selectivity lectin affinity chromatography followed by iTRAQ labeling was demonstrated to selectively identify differential glycoproteins in plasma samples from breast cancer patients (165). Another study utilized hydrazide chemistry-based solid phase extraction and iTRAQ to investigate the tear fluid of patients with climatic droplet keratopathy in comparison of normal controls, identifying multiple N-glycosylation sites with differential occupancy associated with climatic droplet keratopathy (178).

In addition to using chemical reactions to incorporate stable isotope tag for quantitative mass spectrometric analysis, 18O can be introduced into N-glycopeptides during enzymatic reactions, such as tryptic digestion (incorporation of two 18O into the peptide carboxyl-terminal) and PNGase F mediated hydrolysis (incorporation of one 18O into the asparagine of N-glycosylation sites (33)). Attempts have been made to apply this approach to identify differentially expressed N-glycosylation associated with ovarian cancer in serum (207). In a different approach, the SILAC technique allows incorporation of stable isotope-labeled amino acids into proteins during cell cultivating process (196), and was applied to investigate the difference in cell surface N-glycoproteins among different cell types (64). A label-free approach has also been used for glycoproteomics profiling, including a method developed to profile intact glycopeptides in a complex sample (208) and a study that compares the plasma glycoproteome between psoriasis patients and healthy controls (209).

Targeted Glycoproteomics Analysis—Mass spectrometry based targeted proteomics has recently emerged as a multiplexed quantitative technique that affords highly specific and candidate-based detection of targeted peptides and proteins in a complex biological sample (18, 210–214). The technique is based on the concept of stable isotope dilution utilizing stable isotope-labeled synthetic reference peptides, which precisely mimic their endogenous counterparts, to achieve targeted quantification (214). Such techniques can be applied to target specific glycoproteins or glycopeptides, to precisely quantify the status of candidate glycosylation sites and assess the glycosylation occupancy at the molecular level. However, it is technically impractical to use synthetic peptides to precisely mimic a large number of natural glycopeptides with intact a glycan moiety as internal standards because of the structure complexity and variation of the sugar chain. To overcome these technical obstacles, an alternative approach was proposed for targeted analysis of N-glycosylation occupancy, in which stable isotope-labeled peptides were synthesized to mimic the deglycosylated form of candidate glycopeptides as internal references (161). It is known that the deglycosylation step using PNGase F results in a conversion of asparagine to aspartic acid in the peptide sequence, introducing a mass difference of 0.9840 Da. This phenomenon was utilized to design a synthetic peptide to mimic the en-
stable isotope standards and capture by antipeptide antibodies (216) using a tandem enrichment strategy, combing with colorectal cancer, in the sera of colorectal cancer patients (215). The targeted glycoproteomics analysis has also been demonstrated using a triple Q/linear ion trap instrument with the selected reaction monitoring (also referred to as multiple reaction monitoring) technique for highly sensitive absolute quantification of the glycoprotein targets in a complex biological sample, allowing high throughput and detailed analysis on individual glycosylation sites. Although glycoproteomics is quickly emerging as an important technique for clinical proteomics study and biomarker discovery, a comprehensive, quantitative glycoproteomics analysis in a complex biological sample still remains challenging. It is anticipated that with the continued evolution in mass spectrometry, separation technology, and bioinformatics many of the technical limitations associated with current glycoproteomics may be transient. There is no doubt that glycoproteomics is playing an increasingly important role in biomarker discovery and clinical study.

The targeted glycoproteomics technique was first demonstrated to analyze N-glycopeptides that were extracted from human serum using an integrated pipeline combining a hydrazide chemistry-based solid phase extraction method and a data-driven liquid chromatography MALDI TOF/TOF mass spectrometric analysis to quantify 21 N-glycopeptides in human serum (161). A similar mass spectrometric platform was then applied in a different study to assess a subset of glycoprotein biomarker candidates in the sera from prostate cancer patients (215). The targeted glycoproteomics analysis has also been demonstrated using a triple Q/linear ion trap instrument with the selected reaction monitoring (also referred to as multiple reaction monitoring) technique for highly sensitive targeted detection of N-glycoproteins in plasma (159). The technique was applied to detect tissue inhibitor of metalloproteinase 1 (TIMP1), an aberrant glycoprotein associated with colorectal cancer, in the sera of colorectal cancer patients (216) using a tandem enrichment strategy, combing lectin glycoprotein enrichment followed by the method of stable isotope standards and capture by antipeptide antibodies (SISCAPA), to enhance the detection of tissue inhibitor of metalloproteinase 1 (216). These studies demonstrate an integrated pipeline for candidate-based glycoproteomics analysis with precise mapping of targeted N-linked motifs and absolute quantification of the glycoprotein targets in a complex biological sample. Such targeted glycoproteomics can reach a detection sensitivity at the nanogram per milliliter level for serum and plasma detection (159, 214–216).

Concluding Remarks—The major challenge for a comprehensive glycoproteomics analysis arises not only from the enormous complexity and nonlinear dynamic range in protein constituent in a clinical sample, but also the profound biological intricacy within the molecule of a glycoprotein, involving the flexibility in glycan structures and the complex linkage with the corresponding protein. In the past decade, significant efforts have been made to structurally or quantitatively characterize the glycoproteome of a variety of biological samples, and to investigate the significant glycoproteins in a wide assortment of diseases. Shotgun proteomics-based techniques are still the most effective and versatile approach in glycoproteomics analysis, allowing high throughput and detailed analysis on individual glycosylation sites. Although glycoproteomics is quickly emerging as an important technique for clinical proteomics study and biomarker discovery, a comprehensive, quantitative glycoproteomics analysis in a complex biological sample still remains challenging. It is anticipated that with the continued evolution in mass spectrometry, separation technology, and bioinformatics many of the technical limitations associated with current glycoproteomics may be transient. There is no doubt that glycoproteomics is playing an increasingly important role in biomarker discovery and clinical study.

REFERENCES

1. Cooper, C. A., Harrison, M. J., Wilkins, M. R., and Packer, N. H. (2001) GlycoSuiteDB: a new curated relational database of glycoprotein glycan structures and their biological sources. Nucleic Acids Res. 29, 332–335

2. Rudd, P. M., and Dwek, R. A. (1997) Glycosylation: heterogeneity and the 3D structure of proteins. Crit. Rev. Biochem. Mol. Biol. 32, 1–100

3. Rudd, P. M., Guile, G. R., Küster, B., Harvey, D. J., Odenakker, G., and Dwek, R. A. (1997) Oligosaccharide sequencing technology. Nature 388, 205–207

4. Brooks, S. A., Carter, T. M., Royle, L., Harvey, D. J., Fry, S. A., Kinch, C., Dwek, R. A., and Rudd, P. M. (2008) Altered glycosylation of proteins in cancer: what is the potential for new anti-tumour strategies. Anticancer Agents Med. Chem. 8, 2–21

5. Kobata, A. (1989) Altered glycosylation of surface glycoproteins in tumor cells and its clinical application. Pigment Cell Res. 2, 304–308

6. Kobata, A., and Amano, J. (2005) Altered glycosylation of proteins produced by malignant cells, and application for the diagnosis and immunotherapy of tumours. Immunol. Cell Biol. 83, 429–439
Taniguchi, N. (2008) Toward cancer biomarker discovery using the glycomic approach. *Mol. Cell Proteomics* 7, 1791–1798.

Dennis, J. W., Granovsky, M., and Warren, C. E. (1999) Glycoprotein glycosylation and cancer progression. *Biochim. Biophys. Acta* 1473, 21–34.

Ono, M., and Hakomori, S. (2004) Glycosylation defining cancer cell markers. *Am. J. Cancer biomarkers: a systems approach. Nat. Biotechnol.* 24, 905–908.

Pepe, M. S., Etzioni, R., Feng, Z., Potter, J. D., Thompson, M. L., Thom-quist, M., Winget, M., and Yatsu, Y. (2001) Phases of biomarker development for early detection of cancer. *J. Natl. Cancer Inst.* 93, 1054–1061.

Rifai, N., Gillette, M. A., and Carr, S. A. (2006) Protein biomarker discovery and validation: the long and uncertain path to clinical utility. *Nat. Biotechnol.* 24, 971–983.

Bause, E. (1983) Structural requirements of N-glycosylation of proteins. Studies with proline peptides as conformational probes. *Biochem. J.* 209, 331–336.

Wei, X., and Li, L. (2009) Comparative glycoproteomics: approaches and applications. *Brief. Funct. Genomic. Proteomic* 8, 104–113.

Feng, Z., Vijayanishvan, B., Kooper, J. R., and Davis, B. G. (2009) Thy1 glycosylation of olfactory proteins: S-linked glycosylation and synthesis. *Angew. Chem. Int. Ed. Engl.* 48, 7798–7802.

Lote, C. J., and Weiss, J. B. (1971) Identification in urine of a low-molecular-weight highly polar glycopeptide containing cysteinyl-galacto- tose. *Biochem. J.* 123, 25P.

Aebersold, R., and Mann, M. (2003) Mass spectrometry-based proteomics. *Science* 290, 1074–1079.

Aoki-Kinoshita, K. F. (2008) An introduction to bioinformatics for glyco-omics research. *PLoS Comput. Biol.* 4, e1000075.

von der Lieth, C. W., Lütteke, T., and Frank, M. (2006) The role of informatics in glycobiology research with special emphasis on automatic interpretation of MS spectra. *Biochim. Biophys. Acta* 1760, 568–577.

North, S. J., Hitchen, P. G., Haslam, S. M., and Dell, A. (2009) Mass spectrometry in the analysis of N-linked and O-linked glycans. *Curr. Opin. Struct. Biol.* 19, 498–506.

Deutsch, E. W., Lam, H., and Aebersold, R. (2008) PeptideAtlas: a resource for target selection for emerging targeted proteomics workflows. *EMBO Rep.* 9, 429–434.

Tajiri, M., Yoshida, S., and Wada, Y. (2005) Differential analysis of site-specific glycan changes in plasma and cell surface oncosparins: application of a hydrophilic affinity method for glycopeptide enrichment. *Glyobiology* 15, 1332–1340.

Uematsu, R., Fukukawa, J., Nakagawa, H., Shinohara, Y., Deguchi, K., Monde, K., and Nishimura, S. (2005) High throughput quantitative glyco-omics and glycoform-focused proteomics of murine dermis and epidermis. *Mol. Cell Proteomics* 4, 1977–1989.

Wada, Y., Tajiri, M., and Yoshida, S. (2004) Hydrophilic affinity isolation and MALDI-multiple-stage tandem mass spectrometry of glycopeptides for glycoproteomics. *Anal. Chem.* 76, 6560–6565.

Wang, Y., Wu, S. L., and Hancock, W. S. (2006) Approaches to the study of N-linked glycoproteins in human plasma using lectin affinity chromatography and nano-HPLC coupled to electrospray linear ion trap–Fourier transform mass spectrometry. *Glycobiology* 16, 514–523.

Geng, M., Zhang, X., Bina, M., and Regnier, F. (2001) Proteomics of glycoproteins based on affinity selection of glycopeptides from trypsin digests. *J. Chromatogr. B Biomed. Sci. Appl.* 752, 293–306.

Kaji, H., Saito, H., Yamauchi, Y., Shinkawa, T., Taoka, M., Hirabayashi, K., Kasai, K., Takahashi, N., and Isobe, T. (2003) Lectin affinity capture, isotope-coded tagging and mass spectrometry to identify N-linked glycoproteins. *Nat. Biotechnol.* 21, 667–672.

Yang, L., and Hancock, W. S. (2004) Approach to the comprehensive analysis of glycoproteins isolated from human serum using a multi-lectin affinity column. *J. Chromatogr. A* 1053, 79–88.

Durham, M., and Regnier, F. E. (2006) Targeted glycoproteomics: serial lectin affinity chromatography in the selection of O-glycosylation sites on proteins from the human blood proteome. *J. Chromatogr. A* 1132, 165–173.

Qi, F., and Regnier, F. E. (2005) Use of multidimensional lectin affinity chromatography in differential glycoproteomics. *Anal. Chem.* 77, 2802–2809.

Zhang, H., Li, X. J., Martin, D. B., and Aebersold, R. (2003) Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. *Nat. Biotechnol.* 21, 660–666.

Liu, T., Qian, W. J., Gritsenko, M. A., Camp, D. G., Monroe, M. E., Moore, R. J., and Smith, R. D. (2005) Human plasma N-glycoproteome analysis by immunoadfinity subtraction, hydrazide chemistry, and mass spec- trometry. *J. Proteome Res.* 4, 2070–2080.

Pan, S., Wang, Y., Quinn, J. F., Peskind, E. R., Waichunas, D., Wimbberger, J. T., Jin, J., Li, J. G., Zhu, D., Pan, C., and Zhang, J. (2006) Identification of glycoproteins in human cerebral fluid with a complementary proteome approach. *J. Proteome Res.* 5, 2276–2279.

Zhang, H., and Aebersold, R. (2006) Isolation of glycoproteins and identif- ication of their N-linked glycosylation sites. *Methods Mol. Biol.* 328, 177–185.

Sun, B., Ranish, J. A., Utley, A. G., White, J. T., Yan, X., Lin, B., and Hood, L. (2007) Shotgun glycopeptide capture approach coupled with mass spectrometry for comprehensive glycoproteomics. *Mol. Cell Proteo- mics* 6, 141–149.

Zhang, X., Aebersold, R., and Zhang, H. (2007) Isolation of N-linked glyco- peptides from plasma. *Anal. Chem.* 79, 5826–5837.

Yang, Z., Hancock, W. S., Chew, T. R., and Bonilla, L. (2005) A study of glycoproteins in human serum and plasma reference standards (HUPO) using multillectin affinity chromatography coupled with RPLC-MS/MS. *Proteomics* 5, 3353–3366.

Sparbier, K., Koch, S., Kessler, I., Wenzel, T., and Kostrzewa, M. (2005) Selective isolation of Glycoproteins and glycopeptides for MALDI-TOF MS detection supported by magnetic particles. *J. Biomed. Tech.* 16, 407–413.

Sparbier, K., Wenzel, T., and Kostrzewa, M. (2005) Exploring the binding profiles of ConA, boronic acid and WGA by MALDI-TOF/TOF MS and magnetic particles. *J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.* 840, 29–36.

Alvarez-Manilla, G., Atwood, J. 3rd, Guo, Y., Warren, N. L., Orlando, R., and Pierce, M. (2006) Tools for glycopeptide analysis: size exclusion chromatography facilitates identification of trypptic glycopeptides with N-linked glycosylation sites. *J. Proteome Res.* 5, 701–708.

Hägglund, P., Bunkenborg, J., Elortza, F., Jensen, O. N., and Roepstorff, P. (2004) A new strategy for identification of N-glycosylated proteins and unambiguous assignment of their glycosylation sites using HILIC enrichment and partial deglycosylation. *J. Proteome Res.* 3, 556–566.

Lascelles, M. R., Hujrup, P., and Roepstorff, P. (2005) Characterization of gel-separated glycoproteins using two-step proteolytic digestion com- bined with sequential microcolumns and mass spectrometry. *Mol. Cell Proteomics* 4, 107–119.

Endo, T. (1975) The covalent and three-dimensional structure of concanavalin A. Structure of the monomer and its interactions with metals and saccharides. *J. Biol. Chem.* 250, 1513–1524.
Glycoproteomics Methods

52. Bakry, N., Kamata, Y., and Simpson, L. L. (1991) Lectins from Triticum vulgare and Limax flavus are universal antagonists of botulinum neurotoxin and tetanus toxin. J. Pharmacol. Exp. Ther. 256, 830–836

53. Saulsbury, F. T. (1997) Alterations in the O-linked glycosylation of IgA1 in children with Henoch-Schönlein purpura. J. Rheumatol. 24, 2246–2249

54. Cummings, R. D., and Kornfeld, S. (1982) Fractionation of asparagine-linked oligosaccharides by serial lectin-Agarose affinity chromatography. A rapid, sensitive, and specific technique. J. Biol. Chem. 257, 11235–11240

55. Qiu, R., and Regnier, F. E. (2005) Comparative glycoproteomics of N-linked complex-type glycoforms containing sialic acid in human serum. Anal. Chem. 77, 7225–7231

56. Wohrer, M., Catalina, M. I., Deelder, A. M., and Hokke, C. H. (2007) Glycoproteomics based on tandem mass spectrometry of glycopeptides. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 849, 115–128

57. Wang, Y., Wu, S. L., and Hancock, W. S. (2006) Monitoring of glycoprotein products in cell culture lysates using lectin affinity chromatography and capillary HPLC coupled to electrospray linear ion trap-Fourier transform mass spectrometry (LTQ/FTMS). Biotechnol. Prog. 22, 873–880

58. Yang, Z., Harris, L. E., Palmer-Toy, D. E., and Hancock, W. S. (2006) Multiclectin affinity chromatography for characterization of multiple glycoprotein biomarker candidates in serum from breast cancer patients. Clin. Chem. 52, 1897–1905

59. Kulloli, M., Hancock, W. S., and Hincapie, M. (2008) Preparation of a high-performance multi-lectin affinity chromatography (HP-M-LAC) adsorbent for the analysis of human plasma glycoproteins. J. Sep. Sci. 31, 2733–2739

60. Bunkelnburg, J., Pilch, B. J., Podtelezhnikov, A. V., and Wniewskeiw, J. R. (2006) Screening for N-glycosylated proteins by liquid chromatography mass spectrometry. Proteomics 4, 454–465

61. Heo, S. H., Lee, S. J., Ryoo, H. M., Park, J. Y., and Cho, J. Y. (2007) Identification of putative serum glycoprotein biomarkers for human lung adenocarcinoma by multisite lectin affinity chromatography and LC/MS/MS Proteomics 7, 4292–4302

62. Yang, Z., and Hancock, W. S. (2005) Monitoring glycosylation pattern changes of glycoproteins using multi-lectin affinity chromatography. J. Chromatogr. A 1070, 57–64

63. Zielinska, D. F., Gnadm, F., Wniewskeiw, J. R., and Mann, M. (2010) Precision mapping of an in vivo N-glycopeptide reveals rigid topological and sequence constraints. Cell 141, 897–907

64. Wollscheid, B., Bausch-Fluck, D., Henderson, C., Obrien, R., Bibel, M., Schiess, R., Aebersold, R., and Watts, J. D. (2009) Mass-spectrometric determination of protein carbonyl groups and for the detection of fragmented and cross-linked proteins in yeast. Proteome Res. 8, 770–781

65. McDaid, C. A., Yang, J. Y., Marathe, V., Yen, T. Y., and Macher, B. A. (2009) Combining results from lectin affinity chromatography and glyecopeptide approaches substantially improves the coverage of the glycoproteome. Mol. Cell Proteomics 8, 287–301

66. Ann, B., Rhee, S. G., and Stadtman, E. R. (1987) Use of fluorescein hydrazide and fluorescein thiosemicarbazide reagents for the fluorometric determination of protein carbonyl groups and for the detection of oxidized protein on polyacrylamide gels. Anal. Biochem. 161, 245–257

67. Meany, D. L., Xie, H., Thompson, L. V., Arriaga, E. A., and Griffin, T. J. (2007) Identification of carboxylated proteins from enriched rat skeletal muscle mitochondria using affinity chromatography-stable isotope labeling and tandem mass spectrometry. Proteomics 7, 1150–1163

68. Mirzaei, H., and Regnier, F. (2007) Identification of yeast oxidized proteins: chromatographic top-down approach for identification of carboxylated, fragmented and cross-linked proteins in yeast. J. Chromatogr. A 1141, 22–31

69. Rawin, J. D., and Lienhard, G. E. (1974) The binding of boronic acids to chymotrypsin. Biochemistry 13, 3124–3130

70. Burlingame, A. L. (1996) Characterization of protein glycosylation by mass spectrometry. Curr. Opin. Biotechnol. 7, 4–10

71. Harvey, D. J. (2005) Proteinic analysis of glycosylation: structural determination of N- and O-linked glycans by mass spectrometry. Expert. Rev. Proteomics. 2, 87–101

72. Kellerer, N. L. (2004) Top-down proteomics. Anal. Chem. 76, 197A–203A

73. Carr, S. A., Huddleston, M. J., and Bean, M. F. (1993) Selective identification and differentiation of N- and O-linked oligosaccharides in glycoproteins by liquid chromatography-mass spectrometry. Protein Sci. 2, 183–196

74. Huddleston, M. J., Bean, M. F., and Carr, S. A. (1993) Collisional fragmentation of glycopeptides by electrospray ionization LC/MS and LC/MS/MS methods for selective detection of glycopeptides in protein digests. Anal. Chem. 65, 877–884

75. Kielszweinsky, M. J., O’Neill, M., Leykam, J., and Orlando, R. (1995) tandem mass spectrometry. J. Pharm. Exp. Ther. 272, 849–856

76. Medzihradszky, K. F., Gillece-Castro, B. L., Settineri, C. A., Townsend, R. R., Masair, F. R., and Burlingame, A. L. (1990) Structure determination of O-linked glycopeptides by tandem mass spectrometry. Biomed. Environ. Mass Spectrom. 19, 777–781

77. Settineri, C. A., Medzhitov, R. R., Masair, F. R., Burlingame, A. L., Chu, et al. (1990) Characterization of O-glycosylation in recombinant B-chain of platelet-derived growth factor expressed in yeast using liquid secondary ion mass spectrometry, tandem mass spectrometry and Edman sequence analysis. Biomed. Environ. Mass Spectrom. 19, 665–676

78. Odani, H., Yamamoto, K., Iwayama, S., Inagaki, H., Takasaki, A., Takahashi, K., Fujita, Y., Sugiyama, S., and Hiki, Y. (2010) Evaluation of the specific structures of IgA1 hinge glycopeptide in 3 IgA nephropathy patients by mass spectrometry. J. Nephrol. 23, 70–76

79. Wohrer, M., Koellemann, C. A., and Deelder, A. M. (2009) Hexose rearrangements upon fragmentation of N-glycopeptides and reductively aminated N-glycans. Anal. Chem. 81, 4422–4432

80. Zhang, L., and Reilly, J. P. (2009) Extracting both peptide sequence and glycan structural information by tandem mass spectrometry: Methods for selective detection of glycopeptides on ion trap mass spectrometers. Anal. Chem. 81, 735–736

81. Sullivan, B., Addona, T. A., and Carr, S. A. (2004) Selective detection of glycopeptides on ion trap mass spectrometers. Anal. Chem. 76, 3112–3118

82. Catalina, M. I., Koellemann, C. A., and Wohrer, M. (2007) Electron transfer dissociation of N-glycopeptides: Loss of the entire N-glycosylated asparagine side chain. Rapid Commun. Mass Spectrom. 21, 1053–1061

83. Demelbauer, U. M., Zehl, M., Plamatin, A., Allmaier, G., and Rizzi, A. (2004) Determination of glycopeptide structures by multistage mass spectrometry with low-energy collision-induced dissociation: comparison of electrospray ionization quadrupole ion trap and matrix-assisted laser desorption/ionization quadrupole ion trap reflection time-of-flight approaches. Rapid Commun. Mass Spectrom. 18, 1575–1582

84. Sandra, K., Devreeb, B., Van Beemen, J., Stals, I., and Claeyssens, M. (2004) The O-Trap mass spectrometer, a novel tool in the study of protein glycosylation. J. Am. Soc. Mass Spectrom. 15, 419–423

85. Hashi, N., Kawasaki, Y., Ishi, S., Nakajima, Y., Harazono, A., Kawahashi, T., and Yamaguichi, T. (2009) Identification of glycoproteins carrying a target glycan-motif by liquid chromatography/multiple-stage mass spectrometry: identification of Lewis x-conjugated glycoproteins in mouse kidney. J. Proteome Res. 8, 3415–3429

86. Peterman, S. M., and Mulholland, J. J. (2006) A novel approach for identification and characterization of glycoproteins using a hybrid linear ion trap/FT-ICR mass spectrometer. J. Am. Soc. Mass Spectrom. 17, 168–179

87. Deguchi, K., Ito, H., Baba, T., Hirabayashi, A., Nakagawa, H., Fumoto, M., Hinou, H., and Nishimura, S. (2007) Structural analysis of O-glycopeptides employing negative- and positive-ion multi-stage mass spectra obtained by collision-induced and electron-capture dissociations in linear ion trap time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 21, 813–822
91. Ito, H., Takegawa, Y., Deguchi, K., Nagai, S., Nakagawa, H., and Shino-
haru, Y., Nishimura, S. (2006) Direct structural assignment of neutral
and sialylated N-glycans of glycopeptides using collision-induced dissocia-

tion MSn spectral matching. Rapid Commun. Mass Spectrom. 20, 3557–3565

92. Satomi, Y., Shimonishi, Y., Hase, T., and Takao, T. (2004) Site-specific
carbohydrate profiling of human transferrin by nano-flow liquid chromo-
tography/electrospray ionization mass spectrometry. Rapid Commun.
Mass Spectrom. 18, 2983–2988

93. Satomi, Y., Shimonishi, Y., and Takao, T. (2004) N-glycosylation at
Asn(491) in the Asn-Xaa-Cys motif of human transferrin. FEBBS Lett. 576,
51–58

94. Krokhin, O. V., Ens, W., and Standing, K. G. (2005) MALDI QqTOF MS
and MALDI QqTOF/TOF analysis of human alpha-1-acid glycoprotein (AGP) by
capillary liquid chromatography-electrospray mass spectrometry. J. Mass Spectrom. 40,
1472–1483

95. Harazono, A., Kawasaki, N., Itoh, S., Hashii, N., Ishii-Watabe, A., Kawan-
ishi, T., and Hayakawa, T. (2006) Site-specific N-glycosylation analysis of
tissue protein ceruloplasmin using liquid chromatography with electron-
transfer dissociation ionization tandem mass spectrometry. Anal. Biochem. 348,
259–268

96. Nemeth, J. F., Hochgesang, G. P., Jr., Marnett, L. J., Caprioli, R. M.,
and Hochgensang, G. P., Jr. (2001) Characterization of the glycosylation sites
in cycloxygenase-2 using mass spectrometry. Biochemistry 40, 3109–3116

97. Henriksson, H., Denman, S. E., Campuzano, I. D., Ademark, P., Master,
E. R., Teeri, T. T., and Brumer, H., 3rd (2003) N-linked glycosylation of
E. coli, 345, 1093–1103

98. Kurogochi, M., Matsushita, T., and Nishimura, S. (2004) Post-translational
glycosylation from two-dimensional polyacrylamide gels. Electrophore-
sis 27, 1394–1406

99. Wuhrer, M., Balog, C. I., Koelman, C. A., Deelder, A. M., and Hokke, C. H.
(2005) New features of site-specific asporadized peroxidase (HRP) gly-
cosylation uncovered by nano-LC-MS with repeated ion-isolation/frag-
mentation cycles. Biochim. Biophys. Acta 1723, 229–239

100. Adamson, J. T., and Håkansson, K. (2006) Infrared multiphoton dissocia-
tion and electron capture dissociation of high-mannose type glycopep-
tides. J. Proteome Res. 5, 493–501

101. Håkansson, K., Cooper, H. J., Emmert, M. R., Costello, C. E., Marshall,
A. G., and Nilsson, C. L. (2001) Electron capture dissociation and
infrared multiphoton dissociation MS/MS of an N-glycosylated tryptic
peptide to yield complementary sequence information. Anal. Chem. 73,
4530–4536

102. Håkansson, K., Chalmers, M. J., Quinn, J. P., McFarland, M. A., Hendrick-
son, C. L., and Marshall, A. G. (2003) Combined electron capture and
infrared multiphoton dissociation for multistage MS/MS in a Fourier
transform ion cyclotron resonance mass spectrometer. Anal. Chem. 75,
3256–3262

103. Seipt, R. R., Dodds, E. D., Clowers, B. H., Beeceft, S. M., Germain, J. B.,
and Lebrilla, G. B. (2008) Factors that influence fragment behavior of
N-linked glycopeptides. Anal. Chem. 80, 3684–3692

104. Haselmann, K. F., Budnik, B. A., Olsen, J. V., Nielsen, M. L., Reis, C. A.,
Clauser, H., Johnsen, A. H., and Zubarev, R. A. (2001) Advantages of
external accumulation for electron capture dissociation in Fourier trans-
form mass spectrometry. Anal. Chem. 73, 2998–3005

105. Kjeldsen, F., Haselmann, K. F., Budnik, B. A., Sorensen, E. S.,
and Zubarev, R. A. (2003) Complete characterization of posttranslational
mobification sites in the bovine milk protein β3P by tandem mass spectrometry with electron capture dissociation as the last stage. Anal.
Chem. 75, 2355–2361

106. Mirgorodskaya, E., Roepstorff, P., and Zubarev, R. A. (1999) Localization
of O-glycosylation sites in peptides by electron capture dissociation in a
Fourier transform mass spectrometer. Anal. Chem. 71, 4431–4436

107. Mormann, M., Paulsen, H., and Peter-Katalinic, J. (2005) Electron capture
dissociation of O-glycosylated peptides: radical site-induced fragmen-
tation of glycosidic bonds. Eur. J. Mass Spectrom. (Chichester, Engl) 11,
497–511

108. Renfrow, M. B., Cooper, H. J., Tomana, M., Kulhavy, R., Hiki, Y., Toma,
K., Emmett, M. R., Mestecky, J., Marshall, A. G., and Novak, J. (2005)
Determination of aberrant O-glycosylation in the IgA1 hinge region by
electron capture dissociation fourier transform-ion cyclotron resonance mass spectrometry. J. Biol. Chem. 280, 19136–19145

109. Snovida, S. I., Bodnar, E. D., Viner, R., Saba, J., and Perreault, H. (2010)
a simple cellulose column procedure for selective enrichment of glyco-
peptides and characterization by nano LC coupled with electron-trans-
fer and high-energy collisional-dissociation tandem mass spectrometry.
Carbohydr. Res. 345, 792–801

110. Darula, Z., and Medzihradszky, K. F. (2009) Affinity enrichment and char-
acterization of mucin core-1 type glycopeptides from bovine serum. Mol. Cell Proteomics 8, 2515–2526

111. Alley, W. R., Jr., Mchehley, M., and Novotny, M. V. (2009) Characterization of
glycopeptides by combining collision-induced dissociation and electron-
transfer dissociation mass spectrometry data. Rapid Commun. Mass Spectrom. 23, 161–170

112. Dalpathado, D. S., and Desaire, H. (2008) Glycopeptide analysis by mass spectrometry. Analyst 133, 731–738

113. Jiang, H., Desaire, H., Butnev, V. Y., and Bousfield, G. R. (2004) Glyco-
peptide detection.
Glycoproteomics Methods

protein profiling by electrospray mass spectrometry. J. Am. Soc. Mass Spectrom. 15, 750–758

126. Liu, T., Li, J. D., Zeng, R., Shao, X. X., Wang, K. Y., and Xia, Q. C. (2001) Capillary electrophoresis-electrospray mass spectrometry for the characterization of high-mannose-type N-glycosylation and differential oxidation in glycoproteins by charge reversal and protease/glycosidase digestion. Anal. Chem. 73, 5875–5885

127. Wang, F., Nakouzi, A., Angeletti, R. H., and Casadevall, A. (2003) Site-specific characterization of the N-linked oligosaccharides of a murine immunoglobulin M by high-performance liquid chromatography/electrospray mass spectrometry. Anal. Biochem. 314, 266–280

128. Dalpathado, D. S., Irungu, J., Go, E. P., Butnev, V. Y., Norton, K., Bousfield, G. R., and Desaire, H. (2008) Comparative glycomics of the glycoprotein follicle-stimulating hormone: glycopeptide analysis of isolates from two mammalian species. Biochemistry 45, 8665–8673

129. Irungu, J., Dalpathado, D. S., Go, E. P., Jiang, H., Ha, H. V., Bousfield, G. R., and Desaire, H. (2006) Method for characterizing sulfated glycoproteins in a glycosylation site-specific fashion, using ion pairing and tandem mass spectrometry. Anal. Chem. 78, 1118–1190

130. Kjeldsen, F., Haselmann, K. F., Budnik, B. A., Sørensen, E. S., and Chalkley, R. J., and Burlingame, A. L. (2001) Identification of GlcNAcylated glycoproteins as potential tumor markers by Capillary electrophoresis-electrospray mass spectrometry for the characterization of high-mannose-type N-glycosylation and differential oxidation in glycoproteins by charge reversal and protease/glycosidase digestion. J. Am. Soc. Mass Spectrom. 15, 750–758

131. Hanisch, F. G., Green, B. N., Bateman, R., and Peter-Katalinic, J. (1998) Localization of O-glycosylation sites on glycopeptide fragments from lactation-associated MUC1. All putative sites within the tandem repeat are glycosylation targets in vivo. J. Biol. Chem. 272, 24780–24793

132. Müller, S., Alving, K., Peter-Katalinic, J., Zachara, N., Gooley, A. A., and Hanisch, F. G. (1999) High density O-glycosylation on tandem repeat peptide from secretory MUC1 of T47D breast cancer cells. J. Biol. Chem. 274, 18165–18172

133. Vosseller, K., Trinidad, J. C., Chalkley, R. J., Specht, C. G., Thalhammer, G. R., and Desaire, H. (2006) Comparative serum glycoproteomics using lectin selected sialic acid: elucidation of molecular structure and function. Biotechnol. Bioeng. 95, 381–390

134. Perroy, J. M., Pichon, J. C., Mariotti, C., and Muxfeldt, D. (2007) O-linked N-acetylgalactosamine proteomics of Trypanosoma cruzi trypomastigotes using subcellular fractionation, lectin affinity, and stable isotope labeling. J. Proteome Res. 6, 3376–3384

135. Edge, A. S. (2003) Deglycosylation of glycoproteins with trifluoromethanesulfonic acid: elucidation of molecular structure and function. Arch. Biochem. Biophys. 376 (Pt 2), 339–350

136. Edge, A. S. (2003) Deglycosylation of glycoproteins with trifluoromethanesulfonic acid: elucidation of molecular structure and function. Biochem. J. 376 (Pt 2), 339–350

137. Gerken, T. A., Gupta, R., and Jentoft, N. (1992) A novel approach for chemically deglycosylating O-linked glycoproteins. The deglycosylation of submaxillary and respiratory mucins. Biochemistry 31, 639–648

138. Greis, K. D., Hayes, B. K., Corner, F. I., Kirk, M., Barnes, S., Lowary, T. L., and Hurt, G. W. (1996) Selective detection and site-analysis of O-GlcNAc-modified glycopeptides by beta-elimination and tandem electrospray mass spectrometry. Anal. Biochem. 234, 38–49

139. Hong, J. C., and Kim, Y. S. (2000) Alkaliphilic beta-elimination of peridode-oxidized glycans: a novel method of chemical deglycosylation of mucin gene products in paraffin embedded sections. Glycoconj. J. 17, 691–703

140. Eng, J., McCormack, A. L., and Yates, J. R., 3rd (1994) An approach to comprehensive mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom. 5, 976–989

141. Perkins, D. N., Pappin, D. J., Creasy, D. M., and Cottrell, J. S. (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 3551–3567

142. Craig, R., and Beavis, R. C. (2004) TANDEm: matching proteins with tandem mass spectra. Bioinformatics. 20, 144–155

143. Nesvizhskii, A. I., and Aebersold, R. (2004) Analysis, statistical validation and dissemination of large-scale proteomics datasets generated by tandem MS. Drug Discov. Today 9, 173–181

144. Nesvizhskii, A. I., Vitek, O., and Aebersold, R. (2003) Analysis and validation of proteomic data generated by tandem mass spectrometry. Nat. Methods 4, 787–797

145. Nesvizhskii, A. I. (2007) Protein identification by tandem mass spectrometry and sequence database searching. Methods Mol. Biol. 367, 87–119

146. Zhang, H., Yi, E. C., Li, X. J., Mallick, P., Kelly-Spratt, K. S., Masselon, C. D., Camp, D. G., Smith, R. D., Kemp, C. J., and Aebersold, R. (2005) High throughput quantitative analysis of serum proteins using glycopeptide capture and liquid chromatography mass spectrometry. Mol. Cell Proteomics 4, 144–155

147. Zhao, J., Simeone, D. M., Heidt, D., Anderson, M. A., and Lubman, D. M. (2006) Comparative serum glycoproteomics using lectin selected sialic acid glycoproteins with mass spectrometric analysis: application to pancreatic cancer serum. J. Proteome Res. 5, 1792–1802

148. Arcinas, A., Yen, T. Y., Kebebew, E., and Macher, B. A. (2008) Cell surface and secreted protein profiles of human thyroid cancer cell lines reveal distinct glycoprotein patterns. J. Proteome Res. 8, 3958–3968

149. Whelan, S. A., Lu, M., He, J., Yan, W., Saxton, R. E., Faull, K. F., Whitelegge, J. P., and Chang, H. R. (2009) Mass spectrometry (LC-MS/MS) site-mapping of N-glycosylated membrane proteins for breast cancer biomarkers. J. Proteome Res. 8, 4151–4160

150. Stahl-Zeng, J., Lange, V., Ossola, R., Eckhardt, K., Krek, W., Aebersold, R., and Domon, B. (2007) High sensitivity detection of plasma proteins by triple reaction monitoring of N-glycosites. Mol. Cell Proteomics 6, 1809–1817

151. Schulz, B. L., and Aebi, M. (2009) Analysis of glycosylation site occupancy reveals a role for Ost3p and Ost6p in site-specific N-glycosylation efficiency. Mol. Cell Proteomics 8, 357–364

152. Pan, S., Zhang, H., Rush, J., Eng, J., Zhang, N., Patterson, D., Comb, M. J., and Aebersold, R. H. (2005) High-throughput proteome-screening technology for biomarker detection. Mol. Cell Proteomics 4, 182–190

153. Fenn, L. S., and McLean, J. A. (2009) Simultaneous glycoproteomics on the basis of structure using ion mobility-mass spectrometry. Mol. Biochem. Syst. 5, 1298–1302

154. Roth, J. (2002) Protein N-glycosylation along the secretory pathway: relationship to organelle topography and function, protein quality control, and cell interactions. Chem. Rev. 102, 285–303
Molecular & Cellular Proteomics 10.1

164. Jia, W., Lu, Z., Fu, Y., Wang, H. P., Wang, L. H., Chi, H., Yuan, Z. F., Zheng, Z. B., Song, L. N., Han, H. H., Liang, Y. M., Wang, J. L., Cai, Y., Zhang, Y. K., Deng, Y. L., Ying, W. T., He, S. M., and Qian, X. H. (2009) A strategy for precise and large scale identification of core fucosylated glycoproteins. Mol. Cell Proteomics 8, 913–923

165. Jung, K., Cho, W., and Regnier, F. E. (2009) Glycoproteomics of plasma based on narrow selectivity lectin affinity chromatography. J. Proteome Res. 8, 643–650

166. Madera, M., Mecheff, Y., Klouckova, I., and Novotny, M. V. (2006) Semi-automated high-sensitivity profiling of human blood serum glycoproteins through lectin preconcentration and multidimensional chromatography/tandem mass spectrometry. J. Proteome Res. 5, 2348–2363

167. Zhang, H., Liu, A. Y., Loriaux, P., Wollscheid, B., Zhou, Y., Watts, J. D., and Aebersold, R. (2007) Multiplexed protein detection of tissue proteins in plasma. Mol. Cell Proteomics 6, 84–71

168. Drake, R. R., Schweger, E. E., Malik, G., Diaz, J., Block, T., Mehta, A., and Kim, W. K., Hwang, H. R., Kim, do H., Lee, P. Y., In, Y. J., Ryu, H. Y., Park, Y. L., He, J., Li, C., Benitez, R., Fu, S., Marrero, J., and Lubman, D. M. (2007) N-linked glycosylation profiling of pancreatic cancer serum using capillary liquid chromatography/tandem mass spectrometry. J. Proteome Res. 6, 560–562

169. Abbott, K. L., Lim, J. M., Wells, L., Benigno, B. B., McDonald, J. F., and Lei, Z., Beuerman, R. W., Chew, A. P., Koh, S. K., Cafaro, T. A., Urrets-Zavalia, E. A., Urrets-Zavalia, J. A., Li, S. F., and Serra, H. M. (2009) A metabolic labeling approach toward proteomic analysis of mucin-type O-linked glycosylation. J. Proteome Res. 8, 3499–3504

170. Hang, H. C., Yu, C., Kato, D. L., and Bertozzi, C. R. (2003) A metabolic labeling approach toward proteomic analysis of mucin-type O-linked glycosylation. J. Proteome Res. 2, 725–732

171. Vercoutter-Edouart, A. S., Slomianny, M. C., Dekeyzer-Beseme, O., Haeuw, J. F., and Michalski, J. C. (2008) Glycoproteomics and glycobiology: investigation of membrane N-glycoproteins from human colon cancer cells. Proteomics 8, 7, 596–607

172. Yao, X., Freas, A., Ramirez, J., Demirev, P. A., and Fenselau, C. (2001) 2D gel electrophoresis and MS for the discovery of serum glycoprotein biomarkers. J. Chromatogr. A 949, 63–70

173. Gygi, S. P., Rist, B., Gerber, S. A., Turecek, F., Gelb, M. H., and Aebersold, R. (2001) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 19, 1210–1215

174. Ross, P. L., Huang, Y. Y., Marchese, J. N., Williamson, B., Parker, K., Hattan, S., Khainovski, N., Pillai, S., Dey, S., Daniels, S., Purkayastha, S., Juhasz, P., Martin, S., Bartlet-Jones, M., He, F., Jacobson, A., and Pappin, D. J. (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell Proteomics 3, 1154–1169

175. Ong, S. E., Blagoev, B., Kratchmarova, I., Kristensen, D. B., Steen, H., Zhang, Y. L., Wang, L., Liu, Y., Yang, P., and Yates, J. R., 3rd (2004) A model for random variations of (18)O-labeled internal standards. Mol. Cell Proteomics 3, 576–586

176. Migordokskaya, O. A., Kozmin, Y. P., Titov, M. I., Körner, R., Sönksen, C. P., and Roepstorff, P. (2000) Quantitation of peptides and proteins by matrix-assisted laser desorption/ionization mass spectrometry using (18)O-labeled internal standards. Rapid Commun. Mass. Spectrom. 14, 1226–1232

177. Yao, X., Freas, A., Ramiro, E., Demirev, P. A., and Fenselau, C. (2001) Proteolytic 18O labeling for comparative proteomics: model studies with two serotypes of adenovirus. Anal. Chem. 73, 2836–2842

178. Bondarenko, P. V., Chelius, D., and Shaler, T. A. (2002) Identification and relative quantitation of protein mixtures by enzymatic digestion followed by capillary reversed-phase liquid chromatography-tandem mass spectrometry. Anal. Chem. 74, 4741–4749

179. Liu, H., Sadygov, R. G., and Yates, J. R., 3rd (2004) A model for random variations of (18)O-labeled internal standards. Mol. Cell Proteomics 3, 1154–1169

180. Chen, R., Pan, S., Yi, E. C., Donohoe, S., Bronner, M. P., Potter, J. D., Goodlett, D. R., Aebersold, R., and Brentnall, T. A. (2006) Quantitative glycoproteomic profiling of pancreatic cancer juice. Proteomics 6, 3871–3879

181. Chen, R., Pan, S., Cooke, K., Moyes, K. W., Bronner, M. P., Goodlett, D. R., Aebersold, R., and Brentnall, T. A. (2007) Comparison of pancreas juice proteins from cancer versus pancreatitis using quantitative proteomic analysis. Pancreas 36, 70–79

182. Gronborg, M., Bunkenborg, J., Kristensen, T. Z., Jensen, O. N., Yeoe, C. J., Hruban, R. H., Maina, A., Goggin, M. G., and Pandey, A. (2004) Comprehensive glycoproteomic analysis of human pancreatic juice. J. Proteome Res. 3, 1042–1055
sampling and estimation of relative protein abundance in shotgun proteomics. *Anal. Chem.* **76**, 4193–4201

201. Wilson, C. R., Regnier, F. E., Knapp, D. W., Raskin, R. E., Andrews, D. A., and Hooser, S. B. (2008) Glycoproteomic profiling of serum peptides in canine lymphoma and transitional cell carcinoma. *Vet. Comp Oncol.* **6**, 171–181

202. Ueda, K., Katagiri, T., Shimada, T., Irie, S., Sato, T. A., Nakamura, Y., and Daigo, Y. (2007) Comparative profiling of serum glycoproteome by sequential purification of glycoproteins and 2-nitrobenzensulfonyl (NBS) stable isotope labeling: a new approach for the novel biomarker discovery for cancer. *J. Proteome Res.* **6**, 3475–3483

203. Zeidan, Q., and Hart, G. W. (2010) The intersections between O-GlcNAcylation and phosphorylation: implications for multiple signaling pathways. *J. Cell Sci.* **123** (Pt 1), 13–22

204. Butkinaree, C., Park, K., and Hart, G. W. (2010) O-linked beta-N-acetylglucosamine (O-GlcNAc): Extensive crosstalk with phosphorylation to regulate signaling and transcription in response to nutrients and stress. *Biochim. Biophys. Acta* **1800**, 96–106

205. Khidekel, N., Ficarro, S. B., Clark, P. M., Bryan, M. C., Swaney, D. L., Rexach, J. E., Sun, Y. E., Coon, J. J., Peters, E. C., and Hsieh-Wilson, L. C. (2007) Probing the dynamics of O-GlcNAcylation in the brain using quantitative proteomics. *Nat. Chem. Biol.* **3**, 339–348

206. Lee, H. J., Na, K., Choi, E. Y., Kim, K. S., Kim, H., and Paik, Y. K. (2010) Simple method for quantitative analysis of N-linked glycoproteins in hepatocellular carcinoma specimens. *J. Proteome Res.* **9**, 308–318

207. Liu, Z., Cao, J., He, Y., Qiao, L., Xu, C., Lu, H., and Yang, P. (2010) Tandem 18O stable isotope labeling for quantification of N-glycoproteins. *J. Proteome Res.* **9**, 227–236

208. Rebecchi, K. R., Wenke, J. L., Go, E. P., and Desaire, H. (2009) Label-free quantitation: a new glycoproteomics approach. *J. Am. Soc. Mass Spectrom.* **20**, 1048–1059

209. Plavina, T., Wakshull, E., Hancock, W. S., and Hincapie, M. (2007) Combination of abundant protein depletion and multi-lectin affinity chromatography (M-LAC) for plasma protein biomarker discovery. *J. Proteome Res.* **6**, 662–671

210. Aebersold, R. (2003) Constellations in a cellular universe. *Nature* **422**, 115–116

211. Anderson, N. L., Anderson, N. G., Haines, L. R., Hardie, D. B., Olafson, R. W., and Pearson, T. W. (2004) Mass spectrometric quantitation of peptides and proteins using Stable Isotope Standards and Capture by Anti-Peptide Antibodies (SISCAPA). *J. Proteome Res.* **3**, 235–244

212. Domon, B., and Aebersold, R. (2006) Mass spectrometry and protein analysis. *Science* **312**, 212–217

213. Gerber, S. A., Rush, J., Stemman, O., Kirschner, M. W., and Gygi, S. P. (2003) Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. *Proc. Natl. Acad. Sci. U.S.A.* **100**, 6940–6945

214. Pan, S., Aebersold, R., Chen, R., Rush, J., Goodlett, D. R., McIntosh, M. W., Zhang, J., and Brentnall, T. A. (2009) Mass spectrometry based targeted protein quantification: methods and applications. *J. Proteome Res.* **8**, 787–797

215. Li, Y., Sokoll, L. J., Rush, J., Meany, D., Zou, N., Chan, D. W., and Zhang, H. (2009) Targeted detection of prostate cancer proteins in serum using heavy peptide standards and MALDI-TOF/TOF. *Proteomics Clin. Appl.* **3**, 597–608

216. Ahn, Y. H., Lee, J. Y., Lee, J. Y., Kim, Y. S., Ko, J. H., and Yoo, J. S. (2009) Quantitative analysis of an aberrant glycoform of TIMP1 from colon cancer serum by L-PHA-enrichment and SISCAPA with MRM mass spectrometry. *J. Proteome Res.* **8**, 4216–4224

In order to cite this article properly, please include all of the following information: Pan, S., Chen, R., Aebersold, R., and Brentnall, T. A. (2011) Mass Spectrometry Based Glycoproteomics—From a Proteomics Perspective. *Mol. Cell. Proteomics* **10**(1):R110.003251. DOI: 10.1074/mcp.R110.003251.