EXPANDED VERY LARGE ARRAY OBSERVATIONS OF THE BARNARD 5 STAR-FORMING CORE: EMBEDDED FILAMENTS REVEALED

JAIME E. PINEDA1,2, ALYSSA A. GOODMAN3, HÉCTOR G. ARCE4, PAOLA CASELLI5, STEVEN LONGMORE1, AND STUARTT CORDER6,7

1 ESO, Karl Schwarzschild Street 2, 85748 Garching bei Munchen, Germany; jaime.pineda@manchester.ac.uk
2 UK ALMA Regional Centre Node, Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Manchester, M13 9PL, UK
3 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA
4 Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520-8101, USA
5 School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
6 North American ALMA Science Center, 520 Edgemont Road, Charlottesville, VA 22903, USA
7 National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903, USA

Received 2011 March 29; accepted 2011 June 27; published 2011 August 29

ABSTRACT

We present ~6/5 × 8′ Expanded Very Large Array (EVLA) mosaic observations of the NH3 (1,1) emission in the Barnard 5 region in Perseus, with an angular resolution of 6″. This map covers the coherent region, where the dense gas presents subsonic non-thermal motions (as seen from single dish observations with the Green Bank Telescope, GBT). The combined EVLA and GBT observations reveal, for the first time, a striking filamentary structure (20″ wide or 5000 AU at the distance of Perseus) in this low-mass star-forming region. The integrated intensity profile of this structure is consistent with models of an isothermal filament in hydrostatic equilibrium. The observed separation between the B5–IRS1 young stellar object (YSO), in the central region of the core, and the northern starless condensation matches the Jeans length of the dense gas. This suggests that the dense gas in the coherent region is fragmenting. The observed region displays a narrow velocity dispersion, where most of the gas shows evidence for subsonic turbulence and where little spatial variations are present. It is only close to the YSO where an increase in the velocity dispersion is found, but still displaying subsonic non-thermal motions.

Key words: ISM: clouds – ISM: individual objects (B5, Perseus Molecular Complex) – ISM: molecules – stars: formation

1. INTRODUCTION

Molecular clouds (MCs) observed using low-density tracers display velocity dispersions much larger than the thermal value (e.g., Zuckerman & Evans 1974; Larson 1981; Myers 1983). These supersonic motions are usually attributed to “turbulence,” and a variety of recent numerical models of turbulence can reproduce qualitatively realistic clouds. Measurements of MCs’ energy budgets show that turbulence must be dissipated in order for dense cores (where individual or small groups of stars form) to collapse and form stars.

Dense cores have been studied using NH3 (1,1) maps, which trace material with densities of a few 104 cm−3. It has been found that dense cores show an almost constant level of non-thermal motions, within a certain “coherence” radius (Goodman et al. 1998). The term “coherent core” is used to describe the dense gas where non-thermal motions are roughly constant, and typically smaller than the thermal motions, independent of scale (see also Caselli et al. 2002).

Recent observations carried out with the 100 m Robert F. Byrd Green Bank Telescope (GBT) have allowed us to create large-scale maps of NH3 (1,1) toward four star-forming regions in the Perseus MCs: B5, IC348–SW, L1448, and L1451 (Pineda et al. 2010; J. E. Pineda et al. 2011, in preparation). One of the main results of Pineda et al. (2010) is the clear observation (for the first time) of the sharp transition (at 30″ resolution) between the coherent section of the B5 dense core and the more turbulent dense gas outside it (see also J. E. Pineda et al. 2011, in preparation for results on the other regions surveyed). However, the angular resolution of these observations did not allow us to study in great detail the spatial variations of the velocity dispersion or column density.

In this Letter, we present new NH3 (1,1) observations of B5 obtained with the Expanded Very Large Array (EVLA) through the Open Shared Risk Observing (OSRO) program, see Perley et al. (2011) for a description of the EVLA project. These data are combined with previous observations from the GBT to study the dense gas traced by NH3 at high angular and spectral resolution. Here, we present results from the combined EVLA and GBT observations that enable us to analyze the kinematic properties of the dense gas traced by NH3 (1,1) and also to study the radial profile of new filamentary structure found within this core.

2. DATA

Observations were carried out with the EVLA of the National Radio Astronomy Observatory on 2010 May 16 (project 10A-181). We used the high-frequency K-band receiver and configured the WIDAR correlator to observe a 1 MHz window around the NH3 (1,1) rest frequency (23.6944950787 GHz). The correlator generated 256 channels across the window, giving a 3.90625 kHz channel separation, equivalent to 0.049 km s−1 at the observed frequency. This configuration covers the main hyperfine component and also one of the inner pair of satellite lines for NH3 (1,1). At this frequency the primary beam of the array is about 1″. The array was in the compact (D) configuration, which covers baselines from 35 m up to 1 km, and included 26 antennas. The observations covered the entire region of interest using 27 pointings. The observations were carried out under fair weather (τ22 GHz = 0.0689 nepers) for 7 hr.

The bandpass and absolute flux calibrator was the quasar 3C 48, while the phase and amplitude calibrator, quasar J0336+3218, was observed every 15 minutes. The X-band
reference pointing checks were performed every 60 minutes using the quasar J0336+3218.

The raw data were reduced using CASA image processing software. The signal from each baseline was inspected, and baselines showing spurious data were removed prior to imaging. Each channel was cleaned separately according to the spatial distribution of the emission. The clean map was imaged using a 6" circular beam and corrected by the primary beam. The images were created using multi-scale clean (with scales of 4 and 12 arcsec and small-scale bias = 0.2) with a robust parameter of 0.5.

Imaging of the EVLA data only produced a resulting data cube where strong negative bowls were found. These negative bowls are generated by the large-scale NH$_3$ (1,1) emission which arises from angular scales not sampled by the interferometer. We included the NH$_3$ (1,1) single dish data obtained with the GBT (Pineda et al. 2010) as a prior (or model) during the imaging process to recover the large-scale emission. The final noise achieved is 14 mJy beam$^{-1}$ per channel.

The integrated intensity map (see Figure 1) shows a few regions with negative emission, which would suggest the presence of imaging artifacts. However, careful inspection of the data confirms that the spectra toward those positions do not show any clear negative bowl associated with imaging artifacts, in fact, these regions are about the -5σ level still consistent with the map noise.

3. RESULTS

Left panel of Figure 1 shows the integrated intensity map obtained using the GBT at 30" resolution. Gray contours in Figure 1 show the extent of NH$_3$ (1,1) emission. The orange contours show the regions in the GBT data within which the non-thermal velocity dispersion is subsonic. The resulting NH$_3$ (1,1) integrated intensity map for B5 is shown in the right panel of Figure 1, and it covers a region of size 6.5 × 8.

The new high resolution integrated intensity map (right panel of Figure 1) reveals that within the region of subsonic non-thermal motions found in the single dish data (orange contour) filamentary structures appear. These filaments are narrow, with widths of ≈20" or 5000 AU at the distance of Perseus (250 pc; Hirota et al. 2008).

An important feature of molecular line observations is the ability to probe the kinematics of the gas. Here we fit simultaneously all hyperfine components of the NH$_3$ (1,1) line using a forward model previously presented by Rosolowsky et al. (2008), see also Pineda et al. (2010). This method describes the emission at every position with a centroid velocity (v_{LSR}), velocity dispersion (σ_v), kinetic temperature (T_k), excitation temperature (T_{ex}), and opacity (τ_1), while also including the response of the frequency channel using a sinc profile. Since the kinetic temperature is only used to predict the NH$_3$ (2,2) line (not observed due to the constraints in the OSRO program), it does not have any effect on the remaining parameters. We use a fixed value of the kinetic temperature of 10 K for the entire region, which is consistent with the results obtained by J. E. Pineda et al. (2011, in preparation) using the single dish data. If the resulting fit does not provide an accurate velocity dispersion, $\sigma_v < 0.05$ km s$^{-1}$ (velocity dispersion narrower than the expected thermal velocity for gas at 6 K) or $\sigma_v > 0.2 \sigma_v$ (signal-to-noise ratio for the velocity dispersion less than 5), the fit is repeated but with a fixed value of 5 K for excitation temperature. The centroid velocity and velocity dispersion maps are shown in Figure 2.

The centroid velocity map shows little variation (≈0.6 km s$^{-1}$) across the entire region, see Figure 2(a). The region close to the young stellar object (YSO) displays a velocity gradient at a position angle that is close to the outflow (shown by the arrows) but in the opposite direction. The velocity dispersion map, see Figure 2(b), shows vast regions where small and uniform...
velocity dispersions are found. It is only toward positions close to the YSO where slightly broader lines are found.

Figure 3 presents the distribution of the derived velocity dispersion toward B5. Two histograms are shown in Figure 3 depending on the proximity to the YSO in B5: (1) positions close to the YSO (separated by two beams or less, <12″) in red and (2) all other pixels in black. For points far from the YSO the velocity dispersions are small and the velocity dispersion distribution (black histogram in Figure 3) is narrow, almost every pixel at a distance larger than two beams (12″) from the central YSO displays subsonic non-thermal motions. The velocity dispersion distribution of pixels far from the YSO, black histogram in Figure 3, peaks at a value lower than what is expected if the non-thermal component, σ_{NT}, is equal to half the thermal velocity dispersion, $0.5 \sigma_{cs,ave}$. The velocity dispersion of points close to the YSO, red histogram in Figure 3, presents lines broader than the rest of the core, but they still display velocity dispersions with a subsonic non-thermal component. This increase in the velocity dispersion might be the effect of the radiation from the embedded YSO or due to the interaction between the outflow or stellar wind and the dense gas.

Herschel observations of the IC 5146 star-forming region (Arzoumanian et al. 2011) revealed filamentary structure seen in the column density maps (see also André et al. 2010). Arzoumanian et al. (2011) fitted the column density profile of filaments with a cylindrical filament model,

$$\Sigma(r) = A_{\rho} \rho_c \frac{R_{flat}}{(1 + (r/R_{flat})^{2})^{(p-1)/2}},$$

where ρ_c is the filament’s central density, r is the cylindrical radius, p is the power-law density exponent at large radii, R_{flat} is the radius of the density profile inner flat section, and A_{ρ} is a constant. This equation is used to model the column density profile of filaments.
finite constant factor dependent on p and the filament inclination angle. They find filaments which are fit well with a density exponent in the range $p = 1.5–2.5$ (see also Lada et al. 1999). These exponents do not agree with the predicted values of an isothermal filament in hydrostatic equilibrium where a steeper exponent, $p = 4$, is expected (Ostriker 1964).

Here we focus our attention toward the filament shown in Figure 1 by the yellow box. Since this filament is almost perfectly aligned in the north–south direction we perform a series of horizontal cuts and define the radius as the distance from the peak at a given cut. The average velocity dispersion and integrated intensity emission profiles along the filament are shown in panels (a) and (b) of Figure 4, respectively, where the spread in the distribution is shown by the yellow area. Figure 4(a) shows that the velocity dispersion does not change across the filament, and it is consistent with subsonic non-thermal velocity dispersions (delimited by the dotted line). Figure 4(b) shows the integrated intensity profile, which is much wider than the beam of the combined EVLA and GBT data (shown by the blue dash line). Since we do not observe the NH$_3$ (2,2) with the EVLA we cannot provide a column density profile, but we use NH$_3$ (1,1) integrated intensity as a proxy for the total column density (Rosolowsky et al. 2008; Friesen et al. 2009; Foster et al. 2009; J. E. Pineda et al. 2011, in preparation). The integrated intensity profile is fitted with a model which follows Equation (1), and the best-fit results for $p = 2$ and $p = 4$ are shown in Figure 4. The figure shows that this filament in B5, in opposition to what is found by Arzoumanian et al. (2011) on larger filaments, is fit better by an isothermal hydrostatic filament model (see also Hacar et al., submitted, or Bourke et al., submitted, for other examples of objects with similar column density profiles).

4. DISCUSSION AND CONCLUSION

The observations presented here show that subsonic non-thermal velocity dispersions display little variations across the region of coherence, and even across a filament. Also, the coherent region is far from presenting an uniform column density (as traced by the NH$_3$ (1,1) integrated intensity), as filamentary substructures are revealed. But the presence of substructures within the region of coherence should not be surprising, the lack of turbulent support might allow external forces or Jeans-like instabilities to generate overdensities without much difficulties.

Filaments have received special attention recently. They appear as a natural outcome from turbulent simulations of MCs (e.g., Klessen et al. 2004), and also from the fragmentation of a modulated layer (Myers 2009). Recent *Herschel* observations have shown that filaments are commonly found in star-forming regions (André et al. 2010; Arzoumanian et al. 2011). However, these filaments present different properties than those presented here: (1) they are bigger structures, with a characteristic width of ~0.1 pc and (2) they are not fitted well by a hydrostatic and isothermal cylindrical model. The filamentary structures revealed by our observations appear to have different properties than filaments previously studied. The filaments in B5 are embedded in a dense region with subsonic turbulence, and the filament shown in Figure 4 is better fitted with the hydrostatic isothermal filament model. The differences between the filaments identified using *Herschel* and EVLA are due to physical differences between the structures. The *Herschel* identified filaments are found at low column densities and have a characteristic size of ~0.1 pc, which is similar to the size of the coherent structures found in single dish observations (Pineda et al. 2010; Goodman et al. 1998), but much smaller than the largest scales detected (~1 deg). While the filaments revealed by the EVLA observations are substructures within the coherent region which are also at higher column densities than the structures found in *Herschel*. Also, since the filament width (see Figure 4(b)) is smaller than the EVLA primary beam and the single dish data are used to recover the extended emission the radial profile is little affected by the spatial filtering of interferometric observations.

Fragmentation in the coherent region should occur at the Jeans length,

$\lambda_J = \frac{44,300 (T / 10^4 \text{K})^{1/2} \langle n \rangle^{1/2} (\mu m_p)^{-1}}{(\mu m_p)^{-1} (\mu m_p)^{-1}} \text{AU}$,

(2)

where T is the temperature of the gas, $\langle n \rangle$ is the average density, and μ is the mean molecular weight. For the average values of density and temperature in B5 from the dense gas ($T = 10$ K and $\langle n \rangle = 10^4$ cm$^{-3}$; J. E. Pineda et al. 2011, in preparation), the Jeans length corresponds to the separation between the B5–IRS1 YSO and the starless condensation in the northern part of the region observed. Fragmentation has been argued to explain the stars’ separation in young star-forming regions (e.g., Hartmann...
and the mass function of cores or condensations (e.g., Testi & Sargent 1998; Motte et al. 1998; André et al. 2007). Here we show evidence for fragmentation occurring within the coherent region, which is not necessarily linked to the filament formation process.

These results support the idea that a coherent region needs to be created to form a low-mass star. It is in this coherent region where the dense gas that has lost its turbulent support accumulates, and then it can easily fragment, create a filament, and/or undergo gravitational collapse to form a star. We expect that future EVLA and ALMA observations of star-forming regions will allow us to produce temperature and velocity dispersion maps which will allow us to perform a much better job of characterizing the physical properties of filaments and of these coherent regions.

We thank Alvaro Hacar for discussions regarding the properties of filaments. The Expanded Very Large Array is operated by the National Radio Astronomy Observatory. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. This material is based upon work supported by the National Science Foundation under Grant AST-0908159 to AAG and AST-0845619 to HGA.

Facilities: EVLA, GBT

REFERENCES

André, P., Belloche, A., Motte, F., & Peretto, N. 2007, A&A, 472, 519
André, P., Men’shchikov, A., Bonne, S., et al. 2010, A&A, 518, L102
Arzoumanian, D., André, P., Didelon, P., et al. 2011, A&A, 529, L6
Caselli, P., Benson, P. J., Myers, P. C., & Tafalla, M. 2002, ApJ, 572, 238
Foster, J. B., Rosolowsky, E. W., Kauffmann, J., et al. 2009, ApJ, 696, 298
Friesen, R. K., Di Francesco, J., Shirley, Y. L., & Myers, P. C. 2009, ApJ, 697, 1457
Goodman, A. A., Barranco, J. A., Wilner, D. J., & Heyer, M. H. 1998, ApJ, 504, 223
Hartmann, L. 2002, ApJ, 578, 914
Hirota, T., Bushimata, T., Choi, Y. K., et al. 2008, PASJ, 60, 37
Klessen, R. S., Ballesteros-Paredes, J., Li, Y., & Mac Low, M. 2004, in ASP Conf. Ser. 322, The Formation and Evolution of Massive Young Star Clusters, ed. H. J. G. L. M. Lamers, L. J. Smith, & A. Nota (San Francisco, CA: ASP), 299
Lada, C. J., Alves, J., & Lada, E. A. 1999, ApJ, 512, 250
Larson, R. B. 1981, MNRAS, 194, 809
Motte, F., André, P., & Neri, R. 1998, A&A, 336, 150
Myers, P. C. 1983, ApJ, 270, 105
Myers, P. C. 2009, ApJ, 700, 1609
Ostriker, J. 1964, ApJ, 140, 1056
Perley, R. A., Chandler, C. J., Butler, B. J., & Wrobel, J. M. 2011, ApJ, 739, L1
Pineda, J. E., Goodman, A. A., Arce, H. G., et al. 2010, ApJ, 712, L116
Rosolowsky, E. W., Pineda, J. E., Foster, J. B., et al. 2008, ApJS, 175, 509
Teixeira, P. S., Lada, C. J., Young, E. T., et al. 2006, ApJ, 636, L45
Teixeira, P. S., Zapata, L. A., & Lada, C. J. 2007, ApJ, 667, L179
Testi, L., & Sargent, A. I. 1998, ApJ, 508, L91
Zuckerman, B., & Evans, N. J. II. 1974, ApJ, 192, L149