Ethanol diverts early neuronal differentiation trajectory of embryonic stem cells by disrupting the balance of lineage specifiers.

Rosa Sánchez-Alvarez
Thomas Jefferson University

Saurabh Gayen
Thomas Jefferson University

Rajanikanth Vadigepalli
Thomas Jefferson University

Helen Anni
Thomas Jefferson University

Follow this and additional works at: https://jdc.jefferson.edu/pacbfp

Part of the Medical Pathology Commons

Let us know how access to this document benefits you

Recommended Citation

Sánchez-Alvarez, Rosa; Gayen, Saurabh; Vadigepalli, Rajanikanth; and Anni, Helen, "Ethanol diverts early neuronal differentiation trajectory of embryonic stem cells by disrupting the balance of lineage specifiers." (2013). *Department of Pathology, Anatomy, and Cell Biology Faculty Papers*. Paper 121.

https://jdc.jefferson.edu/pacbfp/121
Introduction

Gestational exposure to alcohol can cause developmental abnormalities on the fetus, with up to 1% of all children born in the United States with Fetal Alcohol Spectrum Disorders (FASD), the most severe form of Fetal Alcohol Spectrum Disorders (FASD) [1]. Specific craniofacial malformations, prenatal onset of growth deficiency and central nervous system defects are characteristics of FAS [2], which is a leading cause of birth defects and mental retardation. Commonly encountered symptoms are abnormalities of neuronal migration, hydrocephaly, absence of corpus callosum, and cerebellum anomalies [3]. Of the animal models employed for prenatal ethanol exposure (from zebrafish, chicks, guinea pigs, sheep, rodents, to non-human primates), mice have been most useful in defining the vulnerable embryonic stages for teratogenesis [4].

Susceptibility of cells to ethanol during embryogenesis has been addressed in recent years with the use of embryonic stem (ES) cells and their differentiated derivatives. Directed differentiation of human ES cells to neural progenitors, neurons and astrocytes in the presence of ethanol provided insights into the time-course of dysregulation of different neurogenesis-associated genes [5]. In our earlier study, we focused on the early stages of mouse ES cell spontaneous differentiation to embryoid bodies (EBs), corresponding to the period from blastocyst to gastrula, and found that ethanol inhibited asymmetrical the downregulation of Oct4 (also known as Pou5f1), Sox2 and Nanog expression at the protein level [6]. These transcription factors maintain ES cell pluripotency by mutual competition of lineage promoting actions, and in response to intrinsic and extrinsic cues specify the primary germ layers [7]. Therefore, ethanol-induced changes in the level of Oct4, Sox2 and Nanog in EBs indicated potential cell lineage redistribution. In a recent study of retinoic acid (RA)-directed differentiation of ES cells to neuroectoderm (NE) lineage, we demonstrated by flow cytometry-based correlated protein expression in single cells, that ethanol changed in a dose- and time-dependent manner the stoichiometry of Oct4 to Sox2 in distinct cell subpopulations, favoring excess of Oct4 relative to Sox2 [8]. In an elegant work, it was shown that the dosage of Oct4 and Sox2 in early differentiation was critical for lineage specification [9]. Specifically, it was demonstrated that an increased Oct4/Sox2 ratio was responsible for ES cell differentiation to mesendoderm (ME).
lineage, while a higher Sox2/Oct4 ratio promoted NE formation by suppression of the opposing Sox2 or Oct4 signal, respectively. In view of this lineage specifying mechanism of Oct4 and Sox2, our single cell protein data suggested that ethanol misguided cells from NE to ME fate in early stages of differentiation. These transcription factors regulate large number of genes, and ethanol-induced changes in the expression of Oct4 and Sox2 will be therefore amplified at the cellular level and may lead to the neurodevelopmental deficits featured in FASD. Therefore, the motivation of the present study was to uncover the gene signature of the ethanol response and dynamics of gene expression that regulate differentiation trajectories.

Here, we assessed the transcriptional profile of 73 pluripotency, differentiation and signaling genes, including 13 reference gene candidates, during early stages of mouse ES cell differentiation to NE (0, 2, 4, 6 days) in the presence of ethanol (100 mM). The rationale for the choice of differentiation model, ethanol dose and sampling time points was based in our earlier data [8]. Differentiation of ES cells to a single lineage fate facilitated the systematic analysis of regulatory transcription factors and the role of ethanol. Differentiation was driven by RA, an established driver of NE fate, which was employed at a concentration (10 nM), within the physiological in vivo range. Under these conditions, an ethanol concentration of 100 mM was found to result in a twofold higher Oct4 protein expression in 3-day differentiated cells [8]. Although lower ethanol doses (25, 50 mM) were found to be efficient in converting the Sox2-Oct4-Nanog positive cells towards the corresponding negative cells, 100 mM ethanol was required for the complete reversal of these subpopulations. Therefore, 100 mM ethanol was employed in the current study. This ethanol concentration mimics binge drinking which has been associated with higher FAS incidence [1]. The progression of differentiation was followed for a period of 0–6 days, which corresponds to E3.5–E9.5 and covers the early germ layer specification processes, and early neurulation. Sampling times were dictated by our earlier findings [8] that showed an ethanol dose-dependent asymmetric modulation of Oct4 and Sox2 expression, as early as after 2 days of exposure, and appearance of fewer neuron-associated Class III β-tubulin isotype (hereafter refer to as βIII-tubulin) immunoreactive cells by 4 days.

Using high-throughput qRT-PCR microfluidic arrays, we identified 33 ethanol-responsive genes with 1.5–20.4 fold ($p<0.05$) modulation of expression. The ethanol-modified transcriptional program was dominated by 19 downregulated pluripotency genes (e.g., Pou5f1, Sox2, Nanog, Klf4, Sall4, Zip42, Gdf3, and Foxd3) and 14 upregulated differentiation genes (e.g., Cxcl12, Zic1 and Meis1). Additional uncovered ethanol targets involved signaling molecules of the BMP/GDF/FGF4 and STAT3 pathways, known to control fetal development. Importantly, Minimum Spanning Tree-based gene clustering illustrated that ethanol-exposed cells followed a different trajectory than NE during differentiation. Immunocytochemical analysis reconfirmed that fewer ethanol-exposed cells expressed βIII-tubulin of an immature neural progenitor phenotype, and a disorganized actin filaments stress fiber network, linking thus molecular and morphological changes.

Results

Ethanol Modifies the Gene Expression Pattern of Transcription Factors and Signaling Molecules Regulating Early ES Cell Differentiation

We carried out multiplex gene expression studies on transcription factors regulating ES cell pluripotency and differentiation, their targets, lineage markers and signaling molecules during NE-directed differentiation of cells exposed to ethanol (100 mM) in a time series (0, 2, 4 and 6 days). ES cells expressed transcripts of the core transcription factors Pou5f1, Sox2 and Nanog, but devoid of markers of neural stem cells like Nes (nestin) and Pax6, other than background nestin levels (Fig. 1A). Pluripotent ES cells grew in tightly packed colonies with rounded appearance and stained (deep red color) uniformly for alkaline phosphatase (AP), an early marker of undifferentiated cells (Fig. 1B). The number of AP-positive colonies and staining intensity progressively decreased during differentiation, and differentiated cells acquired a flattened shape (Fig. 1C, upper panel). However, cells exposed to ethanol were enlarged and residual AP-positive colonies were present (Fig. 1C, lower panel). Arrows point to the differential ethanol effect on the number and size of AP-stained colonies during differentiation. Overall, morphology analysis indicated that ethanol did not inhibit exit of cells from pluripotency, though the differentiated phenotype was changed.

We simultaneously measured the expression of 73 genes across 7 sample groups, and 6 biological replicates using high-throughput qRT-PCR BioMark microfluidic arrays [10–11]. The performance of the platform across technical replicates, dilution series and primers is shown in Figure S1; gene annotation and primers presented in Table S1. The interrogated set was compiled from 60 high-priority genes involved in critical functions in mouse ES cells and their differentiated derivatives [12–22], representing mainly transcription factors and their regulators [23], and 13 candidate reference genes. Heat maps in Figure 2A depict the expression of 67 select genes with reproducible data across 5–6 biological replicates, distinguishing the ethanol-responsive genes (Cluster I, 19 upregulated genes; Cluster II, 12 downregulated genes) from ethanol-nonresponsive genes (Clusters III–IV). The normalized gene expression profile data are presented in Table S2.

Among the 13 candidate reference genes in Cluster IV, Gapdh and Tubal1 were found to be ethanol-regulated (Figure S2). The expression of another conventional housekeeping gene Actb, was dependent on differentiation state (Figure S2, A). In order to find an appropriate set of reference genes for normalization of gene expression data, 200 candidate reference genes were selected from FunGenES database [12] which was derived from 42 microarrays representing samples obtained at different times of neurogenic differentiation of mouse ES cells. We ranked the top 20 genes according to stability values using geNorm [24] and NormFinder [25] algorithms. Thirteen genes from this list were tested in our sample panel (Figure S2, B) and Rpl35, Rp55, Rpl41, Uba52 and Rps16 were chosen as optimal reference genes. The temporal profile of the ethanol response provided a 33 gene signature (with >50% change in expression, $p<0.05$), and an estimated false positive rate of 11% (0.05*73)/33, as illustrated in Figure 2B. Ethanol modulated the expression of 14 genes early in differentiation (Fig. 2B, top panel), with most genes being decreased by ethanol (10 genes). Of the 23 genes modulated by ethanol during later differentiation, 18 new genes were detected in the window between 2 and 4 days (Fig. 2B, middle panel). The majority of genes in this group had increased expression with ethanol, and the effect was more pronounced than in earlier differentiation (1.6–20.4 fold, 16 genes). Among 16 ethanol-targeted genes on 6 days of differentiation, a late lineage gene Ascl2 was the only new addition (Fig. 2B, lower panel).

Figure 2C displays the expression profiles in the course of differentiation of 15 ethanol-upregulated and downregulated genes from various groups. The gene expression of the triad of core transcription factors Pou5f1, Sox2 and Nanog followed the same
pattern during differentiation (Fig. 2C, column 1), with an initial decline that leveled off by day 2 in cells exposed to ethanol, in contrast to a further decrease till day 4 in control. The expression of Pou5f1, Sox2 and Nanog was thus elevated in ethanol compared to control on days 4–6 of differentiation (3.3, 2.0 and 1.7 fold, respectively). Gdf3, a gene coregulated with Nanog [26]...
was elevated 2.9–3.3 fold in cells exposed to ethanol (Fig. 2C, column 2). Gdf3 is a bone morphogenetic protein (BMP) inhibitor that modulates BMP/SMAD signaling [27]. Taken together, the findings on the downregulation of core transcription factors and Gdf3, indicated that ethanol did not prevent the exit of cells from pluripotency, in agreement with morphology analysis (in Fig. 1C).

However, higher expression of core transcription factors in cells exposed to ethanol reflected a phenotype resistant to RA differentiation. Importantly, the imbalance in the expression of Pou5f1 relative to Sox2 and Nanog reconfirmed our earlier protein data [8], and pointed out to diversion from NE lineage [9]. Based on the Gdf3 data the SMAD signaling pathway was brought about defective signaling for NE formation.

Several pluripotency-related genes and targets of core transcription factors had significantly increased expression with ethanol. The expression profile of the zinc finger transcription factors, Klf4 and Sall4, during differentiation was similar to that of core transcription factors, with 3–4 fold higher on days 4–6 of differentiation in cells exposed to ethanol (Fig. 2C, column 2). Remarkably, ethanol abrogated the downregulation of Zipf42 throughout differentiation, resulting in a 3–20 fold higher expression in cells exposed to ethanol than control (Fig. 2C, column 3). However, the lingering of Zipf42, a pluripotency marker, in cells exposed to ethanol during differentiation, suggested that cells were primed retaining ES cell markers and diminished levels of transcription factors. An important target of core transcription factors, Foxd3 had a bimodal temporal expression pattern which was maintained in cells exposed to ethanol during differentiation, though 3.2 fold elevated (Fig. 2C, column 3). Foxd3 is a transcription factor that suppresses endoderm formation in ES cells [13], while it is a marker of primitive ectoderm (PE) [18]. We interpreted Foxd3 expression profile as indicating that in the presence of ethanol ES cells exit pluripotency and differentiate to PE, though higher Foxd3 expression likely reflected ethanol’s opposition to cell differentiation.

Ethanol inhibited the downregulation during differentiation of several genes that control DNA replication/repair, cell cycle and cell proliferation, such as E2f1, Esrb, Gadd45a, Salh1, Tcfcp21L (Fig. 2A, Cluster I; Fig. 2C, column 3), but accelerated that of Myc and Mycn (Fig. 2A, Cluster II; Fig. 2C, column 5). We note that Esrb, Salh1, and Tcfcp21L are major Oct4-interacting proteins [28]. Gadd45a functions in growth arrest and DNA demethylation, and detected first in mouse embryos in the primitive streak and mesoderm at E6.5–E7.5; its expression increased with progression to neurulation [29]. The reciprocal regulation of Gadd45a and Myc observed in cells exposed to ethanol has been established in different cell types [30], and may reflect a stress response. The overall response of cell proliferation-related genes to ethanol prompted us to evaluate cell proliferation and apoptosis induction at the protein level (see below Fig. 5). Like Myc, the level of Stat3 was also decreased by ethanol in early differentiation (Fig. 2A, Cluster II). The onset of ethanol modulation of the expression of Stat3 and its target Myc [31,32] in early differentiation (2 days) preceded that of core transcription factors (4 days). These findings suggest that ethanol interfered with STAT3 signaling upstream of core transcription factors.

The induced expression of differentiation-related genes (e.g., Cxcl12, Zic1, Mef2c, Meis1, BMP8b, Dmr1, Sox1) was suppressed by ethanol. There was a strong attenuation (4.9–7.9 fold) by ethanol of Cxcl12 expression on days 4–6 of differentiation (Fig. 2C, column 4). Cxcl12 gene encodes for a chemokine secreted by differentiating ES cells [33], which is important for the development of the nervous system. The significantly diminished steady state level of Cxcl12 with ethanol implied that few cells may advance to NE lineage. In the same vein, the expression of Zic1, a Sox2 target gene [17] which is enriched in neural stem cells [34], increased linearly during differentiation, and decreased 2–5.5 fold by ethanol from day 4 of differentiation onwards (Fig. 2C, Column 4). It is known that Zic1 expression is regulated by BMP/FGF signals [35]. The suppression of Zic1 expression by ethanol is corroborated by a 2.6 fold Fgf9 elevation of transcript detected on day 4 of differentiation (Fig. 2A, Cluster I). Taken together with the ethanol-mediated abrogation of BMP signaling by Gdf3, the Fgf9-Zic4 expression changes reinforce the notion that ethanol brought about defective signaling for NE formation.

In a dual capacity, Mef2c is a transcription factor highly expressed in myocytes and shown to be also an effector of neurogenesis [36]. Data showed a 2 fold decrease of its expression by ethanol (Fig. 2A, Cluster II), which may have implications in ectoderm and mesoderm fate selection. Another pleiotropic transcription factor involved in many developmental processes depending on the cellular context, Meis1 is an early granule cell progenitor marker [34], that was inhibited by ethanol, remaining 1.7–2.8 fold lower than control in later differentiation stages (Fig. 2C, Column 4). Furthermore, ethanol interfered with the expression of germ cell-specific genes BMP9b and Dmr1. Ethanol abrogated BMP9b upregulation in differentiating ES cells (Fig. 2C, column 5). BMPs, including BMP9b are secreted from the extraembryonic ectoderm starting on E6 in mice and induce activation of transcription factors via SMAD1/5 in primordial germ cells of the extraembryonic mesoderm appearing on E7.25 [37]. This finding manifested that ethanol disrupted proper signaling at the ectoderm/ mesoderm interface. Likewise, Dmr1 was found to be downregulated by ethanol (Fig. 2A, Cluster II). Dmr1 is a transcription factor able to convert mouse fibroblasts into embryonic Sertoli-like cells, when combined with Nr5a1, Wt1, Gata4 and Sox9 [38]. Overall, our data on differentiation-related genes pointed out to a reduced potential of cells exposed to ethanol to proper differentiation into neuronal progenitors.

Consistent with the role of Sox2 in neural differentiation, other Sox genes were also found to be modulated by ethanol. The gene expression of Sox1 sharply increased early in differentiation and was upregulated transiently 1.8 fold on day 2 of differentiation in cells exposed to ethanol (Fig. 2C, Column 5). Sox1 is a marker of PE, and as the regulation of Foxd3 indicated, ethanol promoted
switching of ES cells into PE lineage. The elevated Sox1–Sox2 expression during differentiation of cells exposed to ethanol likely disturbed the cooperation with other transcription factors required for coordinated lineage selection and progression to neurogenesis [39].

Ethanol Inhibits with Formation of Neuronal Cells and Disorganizes the Actin Filaments Network

We assessed the consequences of ethanol-mediated aberrant gene regulation on neuronal differentiation through in situ protein expression (Fig. 3). The expression of core transcription factors Oct4, Sox2 and Nanog was restricted to ES cell colonies, and markedly downregulated as differentiation proceeded for 4 days and the number of colonies decreased, becoming undetectable after 6 days of differentiation (data not shown). More residual core transcription factor staining was observed in cells exposed to ethanol compared to control, as indicated by arrows. The expression of the classical surface pluripotency marker stage-specific embryonic antigen-1 (SSEA-1, also known as Lewis X or CD15) carbohydrate antigenic epitope [40] was similarly retained after 6 days of differentiation (data not shown). More residual core transcription factor staining was observed in cells exposed to ethanol compared to control, as indicated by arrows. The expression of the classical surface pluripotency marker stage-specific embryonic antigen-1 (SSEA-1, also known as Lewis X or CD15) carbohydrate antigenic epitope [40] was similarly retained after 6 days of differentiation (data not shown).

Ethanol-induced apoptosis signals reported in other differentiation platforms were not detectable in our β-mercaptoethanol protected from oxidative stress culture environment. We reported earlier that apoptosis measured by Annexin V-propidium iodide increased 6 fold upon ES cell differentiation, but differences were not detected between control and ethanol-exposed differentiated cells after 4 days of differentiation [8]. Removal of β-mercaptoethanol from differentiation media increased significantly apoptosis [50] that was synergized by ethanol [unpublished data]. By the same token, ethanol increased apoptosis during EB differentiation in antioxidiant-free environment [6].

Discussion

Transcriptional regulation is central to pluripotency and differentiation of ES cells. It is known that the core transcription factors Oct4, Sox2 and Nanog in ES cells interact combinatorially to regulate gene expression [51]. We have previously studied the interference of ethanol with this transcriptional network during early differentiation of mouse ES cells [6,8]. Our findings demonstrated that ethanol delayed to different extent the decline of Oct4, Sox2 and Nanog protein level in two differentiation systems; spontaneously formed EBs, representing the three primary germ layers [6], and RA-induced differentiated NE cells [8]. Moreover, an excess of Oct4 relative to Sox2 in ethanol-exposed cells suggested induction of a divergent ME cell fate in mouse ES cells under RA-directed differentiation conditions. We therefore investigated here how the imbalance of Oct4 and Sox2 in ethanol-exposed cells differentiated towards NE fate with RA, affected their differentiation trajectory.

Ethanol Gene Signature of Early Cell Differentiation

Out of 73 key genes measured by multiplex qRT-PCR, the expression of 33 genes was altered by ethanol, in at least one or more differentiation times (Figs. 2A, 2B). Cells exposed to ethanol
during differentiation were capable of initially downregulating the gene expression of Pou5f1, Sox2 and Nanog, albeit in an asymmetric manner, while maintaining a significantly higher transcript level than control (Fig. 2C). These results were consistent with changes at the in situ protein level (Fig. 3), as well as with earlier flow cytometry-based measurements [8]. We interpret these changes as an apparent resistance of ethanol-exposed cells to RA-directed differentiation. This notion was reinforced by the elevated expression of pluripotency markers AP (Fig. 1C) and SSEA-1 (Fig. 3). The protein expression of SSEA-1 was also significantly higher in ethanol-exposed EBs [6]. Overall, cells exposed to ethanol during differentiation presented a phenotype similar to ES cells overexpressing Nanog [13].

Targets of core transcription factors. The gene expression of several targets of core transcription factors was higher than control during differentiation of ethanol-exposed cells. The list included Klf4, Dppa5a, Nr0b1 (targeted by Oct4); Esrrb, Sall4, Zfp42, Gdf3, Fgf4 (targeted by Oct4, Nanog) and Foxd3 (targeted

Figure 3. Ethanol inhibited the downregulation of core transcription factors Oct4, Sox2, Nanog, and pluripotency marker SSEA-1 in 4-day differentiated cells. (A–B): Fixed cells were stained with antibodies labeled with either Alexa Fluor 488 (Oct4, SSEA-1) or Alexa Fluor 546 (Sox2, Nanog), and nuclei were visualized with DAPI. Merged images showed nuclear localization of core transcription factors Oct4, Sox2 and Nanog, and SSEA-1 on the cell membrane. Arrows indicate decreased expression of these proteins during differentiation, but higher expression in ethanol-exposed cells. Representative photomicrographs from n = 3. Scale bar 100 μm.
doi:10.1371/journal.pone.0063794.g003

Figure 4. Ethanol decreased the formation of early neural progenitors and caused disorganization of the cytoskeleton during differentiation. (A): Staining of neuronal βIII-tubulin using an Alexa Fluor 488 labeled monoclonal antibody showed appearance of early neural progenitors at 4 days of differentiation. Nuclei were visualized with DAPI. The number of neural progenitors increased significantly at later stages of differentiation. Ethanol exposure markedly decreased the overall number of βIII-tubulin-immunoreactive cells, as highlighted by arrows in comparison to control (B): Staining of actin filaments with rhodamine-conjugated phalloidin. Nuclei were visualized with DAPI. The structural arrangement and cellular organization of the actin filament network was modified during differentiation of cells exposed to ethanol, producing an elongated pattern in the cytoskeleton stress-fibers. (A–B): Representative photomicrographs from n = 3. Scale bar 100 μm.
doi:10.1371/journal.pone.0063794.g004
Klf4 is a zinc finger transcription factor and major pluripotency gene that in a cocktail with Oct4, Sox2 and Myc was able to reprogram mouse embryonic fibroblasts into induced pluripotent stem (iPS) cells [52]. It can be replaced by Esrrb, an interacting partner of Oct4 that regulates the expression of Nanog [28], in converting mouse embryonic fibroblasts into iPS cells in combination with Oct4 and Sox2 [53]. Sall4 is also a zinc finger transcription factor, which associates with Oct4 and Nanog [28,54], and stabilizes the undifferentiated ES cell state [55]. Increased expression of Klf4, Esrrb and Sall4 in ethanol-exposed cells reflected a phenotype resistant to differentiation.

In contrast to the trend observed with other core transcription factors targets, Zfp42 was not downregulated, and Foxd3 had a bimodal pattern during differentiation of ethanol-exposed cells. Foxd3 encodes a transcriptional suppressor of differentiation, which is important for the maintenance of the inner cell mass, ES and epiblast cells. Overexpression of Zfp42 or Foxd3 (via Nanog) was reported to attenuate RA-induced ES cell differentiation [13,56].

Several Nanog-interacting proteins, like Gdf3, Nr0b1 and Zfp281 [54] had elevated transcripts in ethanol-exposed cells during differentiation. Higher Gdf3 expression in ethanol-exposed cells was correlated with Nanog overexpression, since both genes are in a cluster regulated by Oct4 [26]. Gdf3 is a ligand of the transforming growth factor-beta (TGFβ) family, classified in the BMP/growth differentiation factor (GDF) branch that functions as a BMP inhibitor [27]. Therefore, ethanol-exposed cells with an increased Gdf3 likely have aberrant BMP/SMAD signaling. A disruption of the TGFβ pathway was recently reported in a

Figure 5. Proliferation and apoptosis were not affected by ethanol during ES cell differentiation. (A–B): Cells were stained with an anti-Ki-67 antibody and nuclei counterstained with hematoxylin (blue color). The percentage of Ki-67 positive proliferating cells (dark brown color) decreased as differentiation progressed from 4 to 6 days, but exposure to ethanol did not affect the proliferation rate. (C–D): Cells were stained with an anti-cleaved PARP antibody and nuclei counterstained with hematoxylin. Number of PARP-positive apoptotic cells (dark brown color) increased during differentiation, but ethanol did not significantly change the rate of apoptosis. A minimum of 15 fields were counted from two separated plates per condition (B, D). Data are expressed as mean ± SEM.

doi:10.1371/journal.pone.0063794.g005
focused transcriptomic study of human neural stem cells treated with ethanol [57]. In vivo, Gdf3 is present within the inner cell mass of the blastocyst and the ectoderm during mouse gastrulation stage, where it establishes a BMP gradient essential for the formation of primitive streak [58]. Importantly, Gdf3 mutations are associated with Klippel-Feil syndrome of skeletal abnormalities and alcohol drinking during pregnancy [http://ghr.nlm.nih.gov/condition/klippel-feil-syndrome].

Differential genes. Ethanol inhibited the expression of several differentiation-induced genes, such as Zic1, Cxcl12, Meis1, Mef2c and Sox1 (Figs. 2B–C). Zic1 is a transcription factor of the Zic family [59] that potentiates (with Ascl1, Pou3f2, Myt11, Pou5f4, Olig2) the conversion of mouse fibroblasts to neurons [60].

The Zic1 transcript was first detected at E7.0 mice preferentially in prospective NE cells [61]. The decreased Zic1 expression by ethanol may result from defective BMP (via Gdf3) and Fgf4 signaling. Additional disrupted signaling to NE by ethanol was indicated by the limited expression of Cxcl12 transcripts of α, β, γ isoforms (detected by our primer) [62]. In embryogenesis CXCL12 and its unique receptor CXCR4 are expressed during gastrulation in the E7.5 ectoderm/mesoderm border to guide appropriate cell migration and the development of the nervous system [63].

Meis1 protein is expressed in interaction with other transcription factors in several organs during mouse embryogenesis. At the gastrulation stage, Meis is expressed in the primitive streak (as is the case for Gdf3). Meis has been identified recently as a mesodermal gene and target of Brachury in EBs [64]. Finally, Mef2c is a transcription factor capable of converting precursor cells into myocytes, but also shown to promote formation of neuronal progenitor cells [36]. Taken together, the inadequate expression of NE differentiation-related genes in ethanol-exposed cells indicated that fewer NE cells were likely formed. Importantly, immunocytochemical staining for early neuronal marker βIII-tubulin established that there were fewer immature neuronal cells under ethanol-exposed conditions (Fig. 4A).

Ethanol-induced Cell Lineage Divergent Trajectory in Early Differentiation

We visualized the progression of the gene expression dynamics through ES cell differentiation (Fig. 2), using a Minimum Spanning Tree based clustering approach (Fig. 6). In this scheme all samples were included (i.e., ‘spanning’) in a connected single-linkage dendrogram (i.e., ‘tree’), while total dissimilarity was minimized (i.e., ‘minimum’). As a result, samples closely related are connected and reveal hierarchical relationships as evidence of non-random structure. Accordingly, the overall gene expression profile of cells exposed to ethanol for 2 days of differentiation is closer to ES cells than control. However, ethanol-exposed cells followed a different trajectory than control during later stages of differentiation, days 4 to 6. These trajectories demonstrated that cells exposed to ethanol were not merely ‘falling behind’ in terms of differentiation, but rather ethanol led to an altered transcriptional program and a system state that is not entirely intermediate to ES and RA-directed NE differentiation. Earlier work at single cell level has shown that aberrant expression of Oct4 relative to Sox2 in ethanol-exposed cells is critical to the selection of lineage fate [8]. Additional ethanol entry points uncovered in this study involve signaling via the BMP/GDF/FGF4 and STAT3 pathways which control fetal development.

In conclusion, cells exposed to ethanol in early stages of differentiation exhibited a modified gene expression pattern. Ethanol caused a 3–20 fold differential expression of core transcription factors and several genes belonging to the groups of major pluripotency genes, cell lineage markers, proliferation genes, and signaling molecules (cited in increasing order of differential expression: Esrrb, Klf4, Gdf3, Sox18, Myc, E2f1, Nr2f1, Fgf4, Pou5f1, Ntb01, Zip281, Sall4, Gadd45a, Bmpbl6a, Ascl2, Dppa5a, Zic1, Cebpβ, Cxcl12 and Zfp42). The gene expression dynamics of cells exposed to ethanol uncovered a derailing of the RA-directed NE fate in early differentiation. An ethanol-induced divergence of cell fate to ME was supported by the asymmetric change in the transcriptional and protein expression of the core transcription factors Oct4 and Sox2, which favored an excess of Oct4. Several Oct4 and Sox2 targets affected by ethanol exposure were identified in our screening that reconfirmed an altered transcriptional network. Moreover, BMP/GDF/FGF4 and STAT3 signaling pathways were disrupted, indicating ethanol entry points into the transcriptional network.

Methods

Maintenance and Differentiation of ES Cells

Mouse ES cells (E14Tg2A) were cultured in adherent monolayer, as described previously [8]. To induce ES cell differentiation, cells were plated at low density, and medium was supplemented with 10 nM all-trans RA 24 hours after seeding in ES cell medium, according to [8]. Ethanol (100 mM) was added to culture medium at the onset of differentiation for 2, 4 or 6 days. Ethanol concentration and differentiation sampling times were selected based on earlier dose-response and time-course studies [8].

Alkaline Phosphatase Staining

Cells were stained with alkaline phosphatase (AP) as per manufacturer’s protocol (Millipore, Billerica, MA). Images of cells were obtained with a bright field Olympus IX2-ULS microscope equipped with a Q color 3 digital camera and processed with cellSens program.

Immunocytochemistry

Cells were fixed and permeabilized with standard techniques. The primary antibodies used were: mouse monoclonal anti-SSEA-1 (sc-21702, 1:250), mouse monoclonal anti-Oct3/4 (sc-5279, 1:250), rabbit polyclonal anti-Nanog (sc-3760, 1:250), and goat polyclonal anti-Pax6 (1:50), all from Santa Cruz Biotechnology (Dallas, TX), and mouse monoclonal anti-βIII-tubulin (TuJ1) (ab7751, 1:200) from Abcam (Cambridge, MA). To visualize actin filaments cells were incubated with rhodamine-conjugated phalloidin (Invitrogen, 1:500). Conjugated secondary antibodies were: Alexa Fluor-488 chicken anti-mouse, Alexa Fluor-546 donkey anti-goat, Alexa Fluor-546 goat anti-rabbit (1:250; Invitrogen). Cells were mounted with fluorescent mounting medium and DAPI to visualize nuclei (Vectorshiedl, Vector Laboratories, Burlingame, CA). Fluorescence photomicrographs were acquired with a CKX-41 digital video camera connected to an Olympus inverted fluorescent microscope.

Cell Proliferation and Apoptosis

Fixed cells were incubated with rabbit polyclonal anti-Ki-67 (1:50) or rabbit monoclonal anti-cleaved poly (ADP-ribose) polymerase (PARP) (1:250) (Abcam) and stained as per avidin-biotin immunoperoxidase kit instructions (ABC, Vector Laboratories). Nuclei were counterstained with hematoxylin. Each experiment was carried out in two plates per condition, and at
least 15 fields were counted per plate. Images were processed with ImageJ (http://rsb.info.nih.gov/ij).

RNA Extraction, cDNA Synthesis and RT-PCR

Total RNA was isolated with TRIzol reagent (Invitrogen), and purified with DNA-free RNA kit (Zymo Research, Irvine, CA) before concentration and integrity were assessed. RNA was reverse transcribed into cDNA using random hexamers and SuperScript III, following manufacturer’s instructions (Invitrogen). For the analysis of select genes PCR reactions were carried out in a thermal cycler (MI Research), using gene-specific primers for Oct4, Sox2, Nanog, Nestin and Pax6 (Roche, Indianapolis, IN), and Green Hot Start Master Mix Polymerase (Promega, Madison, WI). Roche’s Universal Probe Library Assay Design Center (www.universalprobelibrary.com) was used to design intron spanning PCR primers and probes. cDNA samples were selectively preamplified for 14 cycles [10]. Gene expression data were obtained using Fluidigm’s high-throughput qRT-PCR BioMark microfluidic arrays (http://www.fluidigm.com; South San Francisco, CA) as described earlier [11]. Each dynamic 48.48 dynamic array chip measures in parallel 2,304 assays (48 assays in 48 samples).

Selection of Reference Genes

The expression of conventional housekeeping genes Gapdh, Tubal1a and Actb, was dependent on differentiation state and ethanol treatment (Figure S1, A). A total of 200 candidate reference genes with stable expression (signal intensity $\geq 2^8$, coefficient of variance $\leq 0.6\%$) were selected from AVEF-1 dataset [12] for gene expression normalization. After stability ranking of the top 20 genes by both geNorm [24] and NormFinder [25] algorithms, 13 genes were tested in our sample panel (Figure S1, B), and Rpl35, Rps5, Rpl41, Uba52 and Rps16 were chosen as optimal reference genes. The mean expression value of these 5 genes per experimental condition was used to normalize the gene expression data. The average of the cycle threshold (C_t) and $-\Delta C_t$ values were calculated according to [65].

Statistical Analysis

Data analysis was performed in R program (http://www.r-project.org/). We performed initially Student’s t-tests based-comparisons of gene expression data, and two-way ANOVA as appropriate in each statistical comparison (‘aov’ function in R), followed by statistical significance testing of relevant comparisons using Tukey’s ‘Honest Significant Difference’ method based on the Studentized range statistics at a family-wise confidence interval of 95% (‘TukeyHSD’ function in R). A p or post-hoc adjusted p value <0.05 was considered statistically significant. The estimated false positive rate was 11%. Data were obtained from n = 6 biological replicates, and n = 4 BioMark chips.

Minimum Spanning Tree Visualization

Gene expression data were visualized as Minimum Spanning Tree, based on Pearson correlation, in an approach similar to other systems [66,67]. Nodes in the spanning tree represented biological samples. Calculations were carried out using the spantree function in the vegan library in the R platform for statistical analysis (http://www.r-project.org).

Supporting Information

Figure S1 Performance of the 48x48 high-throughput qRT-PCR microfluidic array among biological and technical replicates and different set of primers for various assays. (A): Comparison of C_t curves between 2 technical replicates (pre-amplified samples) for 3 assays of Sox2,
Myc and Actin in ES cells showed similar amplification curves. (B): A typical 6-point standard curve of a primer pair for Nanog using a dilution series of mouse DNA as a template. Calibration curve was constructed with 10x dilutions over five orders of magnitude. (C): Range of ΔCt values of primers for the core transcription factors Pou5f1, Sox2 and Nanog across 5 samples (ES cells, Control Day 2, Ethanol Day 2, Control Day 4, Ethanol Day 4).

Figure S2 Selection of optimal reference genes. (A): Profile plots of Gapdh, Tubα1a and Actb show that expression of conventional housekeeping genes depends on differentiation and/or ethanol exposure. Gene expression (∼ΔCt) was calculated after reference gene normalization, relative to the median expression value of these genes per experimental condition. The top 5 common genes with lowest stability [low variability] are highlighted. The mean expression value of these genes per experimental condition was used to normalize the gene expression data.

Table S1 List of primers and probes used in qRT-PCR.

Table S2 Normalized gene expression values used for the construction of the heatmap in Figure 2A. NA indicates missing data from failed assays.

Acknowledgments

The authors would like to thank Evangelia Malahias for primer design and assistance with cell culture.

Author Contributions

Conceived and designed the experiments: RSA. Analyzed the data: RSA SG RV HA. Wrote the paper: RSA RV HA.
37. Chen W, Jia W, Wang K, Zhou Q, Leng Y, et al. (2012) Retinoic acid regulates germ cell differentiation in mouse embryonic stem cells through a Smad-dependent pathway. Biochem Biophys Res Commun 418: 571-577.

38. Buganim Y, Isokovitch E, Hu YC, Cheng AW, Ganz K, et al. (2012) Direct reprogramming of fibroblasts into embryonic stem cell-like cells by defined factors. Cell Stem Cell 11: 373-386.

39. Berglund M, Ramskold D, Zaatser J, Klim S, Sandberg R, et al. (2011) Sequentially activating Sox transcription factors in neural lineage development. Genes Dev 25: 2453-2464.

40. Solter D, Knowles BB (1978) Monoclonal antibody defining a stage-specific mouse embryonic antigen (SSEA-1). J Cell Biol 75: 5565-5569.

41. Katsetos CD, Legido A, Perentes E, Mork SJ (2003) Class III beta-tubulin isotype: a key cytoskeletal protein at the crossroads of developmental neurobiology and tumour neuropathology. J Child Neurol 18: 851-866.

42. Hassler JA, Moran DJ (1986) The effects of ethanol on embryonic actin: a possible role in teratogenesis. Expert Rev 42: 577-577.

43. Saunders DE, Zajac CS, Wappler NL (1995) Alcohol inhibits neurite extension and increases Nmyc and c-myc proteins. Alcohol 12: 473-483.

44. Romero AM, Esteban-Pretel G, Marin JP, Ponsoda X, Ballestín R, et al. (2010) Chronic ethanol exposure alters the levels, assembly, and cellular organization of the actin cytoskeleton and microtubules in hippocampal neurons in primary culture. Toxicol Sci 118: 602-612.

45. Green ML, Singh AV, Zhang Y, Nemeth KA, Sulik KK, et al. (2007) Reprogramming of genetic networks during initiation of the Fetal Alcohol Syndrome. Dev Dyn 236: 631-631.

46. Duval D, Malaisé M, Reinhardt B, Kreiding C, Bouf I (2004) A p38 inhibitor allows to dissociate differentiation and apoptotic processes triggered upon LIF withdrawal in mouse embryonic stem cells. Cell Death Differ 11: 331-341.

47. Duval D, Trouillas M, Thuault C, Drembelé D, Dieumunsch F, et al. (2006) Apoptosis and differentiation profile revealed need insights by gene profiling studies in mouse embryonic stem cells. Cell Death Differ 13: 364-375.

48. Trouillas M, Saucourt C, Duval D, Gauthereau X, Duval D, et al. (2008) Bcl2, a transcriptional target of p38alpha, is critical for neuronal commitment of mouse embryonic stem cells. Cell Death Differ 15: 1450-1459.

49. Ji AR, Ku SY, Cho MS, Kim YY, Kim YJ, et al. (2010) Reactive oxygen species enhance differentiation of human embryonic stem cells into mesendodermal lineage. Exp Mol Med 42: 175-186.

50. Chae HD, Bronzmeier HE (2011) SIK1 deficiency downregulates PTEN/JNK/FOXO1 pathway to block reactive oxygen species-induced apoptosis in mouse embryonic stem cells. Stem Cells Dev 20: 1277-1285.

51. Göke J, Jung M, Behrens S, Chavez L, O’Keefe S, et al. (2011) Combinatorial binding in human and mouse embryonic stem cells identifies conserved enhancers active in early embryonic development. PLoS Comput Biol 7: e1002304.

52. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126: 663-676.

53. Feng B, Jiang J, Kraus P, Ng JH, Heng JC, et al. (2009) Reprogramming of fibroblasts into induced pluripotent stem cells with orphan nuclear receptor ERRb. Nat Cell Biol 11: 197-203.

54. Nitzche A, Paszkowski-Rogacz M, Matarase F, Jansen-Megens EM, Hubner NG, et al. (2011) RAD21 cooperates with pluripotency transcription factors in the maintenance of embryonic stem cell identity. PLoS One 6: e19470.

55. Yu S, Fujinuma S, Nimura K, Takeda N, Toyosaka Y, et al. (2009) SalH is essential for stabilization, but not for pluripotency, of embryonic stem cells by repressing aberrant trophoderm gene expression. Stem Cells 27: 796-803.

56. Gudas LJ, Wagner JA (2011) Retinooids regulate stem cell differentiation. J Cell Physiol 226: 322-330.

57. Vangipuram SD, Lyman WD (2012) Ethanol affects differentiation-related pathways and suppresses Wnt signaling protein expression in human neural stem cells. Alcohol Clin Exp Res 36: 788-797.

58. Tam PP, Loebel DA (2007) Gene function in mouse embryogenesis: get set for gastrulation. Nat Rev Genet 8: 368-381.

59. Ali RG, Bellchambers HM, Arkell RM (2012) Zinc fingers of the cerebellum (Zic): Transcription factors and co-factors. Int J Biochem Cell Biol 44: 2065-2066.

60. Vierbuchen T, Ostermeier A, Pang ZP, Kobuk Y, Sudhof TC, et al. (2010) Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463: 1035-1041.

61. Nagaï T, Aruga J, Takada S, Giunther T, Spore R, et al. (1997) The expression of the mouse Zic1, Zic2, and Zic3 genes suggests an essential role for Zic genes in body pattern formation. Dev Biol 182: 299-313.

62. Franco D, Rueda P, Lendinez E, Arenzana-Seisdedos F, Caruz A (2009) Developmental expression profile of the CXCL12gamma isoform: insights into its tissue-specific role. Anat Rec (Hoboken) 292: 901-901.

63. McGrath KE, Konishi AD, Mabby KM, McGann JK, Palis J (1999) Embryonic expression and function of the chemokine SDF-1 and its receptor, CXCR4. Dev Biol 213: 442-456.

64. Evans AL, Faial T, Gilchrist MJ, Down T, Valler L, et al. (2012) Genomic targets of Brachyury (T) in differentiating mouse embryonic stem cells. PLoS One 7: e33346.

65. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402-408.

66. Qin P, Gentles AJ, Plevritis SK (2011) Discovering biological progression underlying microarray samples. PLoS Comput Biol 7: e1001123.

67. Bendall SC, Samonds EF, Qin P, Amir el-AD, Krutzik PO, et al. (2011) Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332: 687-696.