Ocena elastosonograficzna z wyznaczeniem stosunku ściśliwości symetrycznych obszarów gruczołu krokowego w celu diagnozy klinicznie istotnego raka stercza

Sonoelastographic evaluation with the determination of compressibility ratio for symmetrical prostatic regions in the diagnosis of clinically significant prostate cancer

Artur Przewor¹, Rafał Z. Słapa², Wiesław S. Jakubowski², Bartosz Migda², Tadeusz Dmowski¹

¹ Oddział Urologiczny Mazowieckiego Szpitala Wojewódzkiego w Siedlcach, Siedlce, Polska
² Zakład Diagnostyki Obrazowej, II WL Warszawskiego Uniwersytetu Medycznego, Warszawa, Polska
Correspondence: Artur Przewor, Oddział Urologiczny Mazowieckiego Szpitala Wojewódzkiego w Siedlcach, ul. Poniatowskiego 26, 08-110 Siedlce, e-mail: artur.przewor@wp.pl, tel.: +48 609 151 121, faks: +48 256 403 298

Streszczenie

Cel pracy: Elastosonografia jest techniką oceniającą twardość/ściśliwość tkanek. Badano użyteczność i czułość tej metody w diagnostyce raka stercza w porównaniu z obecnie obowiązującym złożonym standardem w diagnostyce raka gruczołu krokowego – biopsją systematyczną.

Material i metoda: Badaniu poddano 84 chorych z podejrzeniem raka stercza na podstawie podwyższonego poziomu PSA lub nieprawdziwości w badaniu per rectum. Ocenę gruczołu krokowego wykonywano przy pomocy elastosonografii. W przypadku miejsc o twardości przekraczającej ponad dwukrotnie twardość symetrycznego obszaru prostaty (stosunek odkształcenia >2) stosowano biopsję celowaną; następnie u każdego chorego przeprowadzano pod kontrolą USG biopsję systematyczną 8- lub 10-rdzeniową (niezależnie od wskazań elastosonografii), jako punkt odniesienia.

 Wyniki: Średni wiek chorych wynosił 69 lat. Poziom PSA w surowicy krwi mieścił się w zakresie 1,02–885 ng/dl. Średnia objętość gruczołu krokowego wynosiła 62 ml (19–149 ml). Pośród 84 badanych raka prostaty ujawniono u 39 osób. Wykazano statystycznie istotne różnice wartości stosunku odkształcenia między rakami i zmiannami lagodnymi. Biopsja pod kontrolą elastosonografii ujawniła 30 zmian – czułość (overall sensitivity) 77% (sensitivity of the method – 81%). Czułość elastosonografii wzrastała w zależności od stopnia zaawansowania w skali Gleasona: 6–60%, 7–75%, 8–83%, 9/10–100%. Czułość biopsji systematycznej oszacowano na 92%.

Wnioski: Elastosonografia ma wyższą czułość w diagnostyce raka stercza niż konwencjonalnie używane techniki obrazowania, tj.: TRUS w skali szarości, USG dopplerowskie. Pozwala zredukować liczbę pobieranych rdzeni tkankowych, a co za tym idzie – zmniejszyć liczbę powikłań i ograniczyć koszty. Elastosonografia z oznaczeniem stosunku ściśliwości symetrycznych obszarów stercza może być pomocna w wykryciu klinicznie istotnego raka gruczołu krokowego.
Sonoelastographic evaluation with the determination of compressibility ratio for symmetrical prostatic regions in the diagnosis of clinically significant prostate cancer

Abstract

Aim: Sonoelastography is a technique that assesses tissue hardness/compressibility. Utility and sensitivity of the method in prostate cancer diagnostics were assessed compared to the current gold standard in prostate cancer diagnostics i.e. systematic biopsy. **Material and methods:** The study involved 84 patients suspected of prostate cancer based on elevated PSA levels or abnormal per rectal examination findings. Sonoelastography was used to evaluate the prostate gland. In the case of regions with hardness two-fold greater than that of symmetric prostate area (strain ratio >2), targeted biopsy was used; which was followed by an ultrasound-guided 8- or 10-core systematic biopsy (regardless of sonoelastography-indicated sites) as a reference point. **Results:** The mean age of patients was 69 years. PSA serum levels ranged between 1.02 and 885 ng/dL. The mean prostate volume was 62 ml (19–149 ml). Prostate cancer was found in 39 out of 84 individuals. Statistically significant differences in strain ratios between cancers and benign lesions were shown. Sonoelastography guided biopsy revealed 30 lesions – overall sensitivity 77% (sensitivity of the method – 81%). Sonoelastographic sensitivity increased depending on cancer stage according to the Gleason grading system: 6–60%, 7–75%, 8–83%, 9/10–100%. The estimated sensitivity of systematic biopsy was 92%. **Conclusions:** Sonoelastography shows higher diagnostic sensitivity in prostate cancer diagnostics compared to conventional imaging techniques, i.e. grey-scale TRUS, Doppler ultrasound. It allows to reduce the number of collected tissue cores, and thus limit the incidence of complications as well as the costs involved. Sonoelastography using the determination of compressibility ratio for symmetrical prostatic regions may prove useful in the detection of clinically significant prostate cancer.

Key words
prostate cancer, core needle biopsy, sonoelastography

Introduction

Prostate cancer is the most frequently diagnosed solid tumor in men, exceeding the number of diagnosed lung and colon cancers. Considering its detectability at 214 per 1000 cases, it is the second most common cause of death among male Western Europeans, and thus presents one of the largest medical issues in Western countries(1).

Early-stage prostate cancer is usually asymptomatic and in most cases located in the peripheral prostate. Imaging techniques play a crucial role in cancer detection, localization as well as the assessment of its progression. TRUS (transrectal ultrasonography) guided systematic biopsy is the current standard diagnostic procedure in patients suspected of prostate cancer based on elevated PSA levels (prostate-specific antigen) and/or abnormal DRE (digital rectal examination) findings. Between 8 and 10 specimens are collected from the peripheral part of the prostate gland, from the most posterior and extreme lateral zone.

Since the early 90s of last century, sonoelastography (SE) has been used as an alternative imaging technique for prostate gland evaluation based on the compressibility of prostate tissues. The method, originally described by Ophir(2), was for the first time used in the diagnostics of prostate cancer in 2002(3). Konig(4) and Pallwein(5) research teams reported on the diagnostic sensitivity of this technique, which was estimated at 84% and 80%, respectively. Miyanaga et al.(6) assessed the sensitivity of sonoelastography in detecting untreated prostate cancer as 93%.

In light of the above-mentioned studies as well as due to an insufficiency of other ultrasound techniques used in prostate cancer diagnostics, such as grey-scale TRUS with 40% sensitivity further improved by 16%(7) in Doppler
w diagnostyce raka stercza, takich jak TRUS w skali szarości, z czułością około 40%, opcje dopplerowskie, poprawiające czułość o kolejne 16%[13]. ES wydaje się cennym narzędziem diagnostycznym w wykrywaniu, lokalizacji i ocenie stopnia zaawansowania raka stercza. W prezentowanym badaniu zestawiono wyniki biopsji celowanych gruczołu krokowego uzyskanych z wykorzystaniem techniki elastasonografii oraz powszechnie akceptowanych obecnie biopsji systematycznych 8–10-rdzeniowych, pod kontrolą TRUS w skali szarości.

Material i metoda

Pacjenci

Badanie zostało zatwierdzone przez właściwą komisję bioetyczną. Pacjenci wyrazili pisemnie świadomą zgodę na udział w badaniu. Obserwacji poddano 84 osoby (tab. 1) z podejrzeniem raka stercza na podstawie: podwyższonego poziomu PSA w dwóch kolejnych badaniach w odstępie co najmniej miesięcznym (po wykluczeniu chorób zapalnych gruczołu krokowego) lub nieprawidłowości stwierdzonych w badaniu per rectum (np. palpacyjnych guzowatych zmian w obrębie gruczołu krokowego) bądź chorych po przeszłości tej biopsji systemowej, u których utrzymywał się albo narażał przekraczający normę poziom PSA. Biopsje prostaty przeprowadzone zostały pomiędzy 14 maja 2011 a 2 lutego 2013 roku w Oddziale Urologicznym Mazowieckiego Szpitala Wojewódzkiego w Siedlcach. Analizowano wyniki badań histopatologicznych uzyskane z wykorzystaniem biopsji rdzeniowych celowanych na podstawie oceny elastasonograficznej i biopsji systematycznych pod kontrolą TRUS.

Procedura badania

W pierwszym etapie ocenę ultrasonograficzną i elastasonograficzną przeprowadzono przy pomocy ultrasonografu Aplio XG (Toshiba, produkcji japońskiej) z użyciem sondy transrektalnej „end-fire”, micro-convex, 6 MHz. Oceniano ścieśnioność/twardość gruczołu krokowego na trzech poziomach: w okolicy podstawy stercza tuż poniżej pęcherza moczowego, w połowie wysokości stercza, a w przypadkach, w których objętość gruczołu przekraczała 60 ml lub jego największy wymiar był większy od 6 cm, wykonywano dodatkowe przekroje.

Table 1. Characteristic of patients
Wiek chorego
Age
58–84 lata (średnio 69 lat)
58–84 years (mean 69 years)
PSA
1.02–885 ng/dl (średnio 15.4 ng/dl)
1.02–885 ng/dl (mean 15.4 ng/dl)
DRE
35 chorych z nieprawidłowociami w badaniu per rectum (DRE) na 84 (41%)
35 patients with abnormal digital rectal examination (DRE) out of 84 (41%) patients
Objętość gruczołu krokowego
Prostate gland volume
19–149 ml (średnio 61.8 ml)
19–149 ml (mean 61.8 ml)

The study was approved by the appropriate Bioethical Committee. Patients gave their written informed consent to participate in the study. The observation included 84 patients (tab. 1) suspected of prostate cancer based on: elevated PSA levels confirmed in two subsequent tests at least one month apart (following the exclusion of prostate inflammatory conditions) or abnormal per rectal examination findings (e.g. palpable nodular lesions within the prostate gland) or patients who have undergone systemic biopsy with persistent or increasing PSA levels above the norm. Prostate biopsies were performed between May 14th 2011 and February 2nd 2013 in the Department of Urology of the Mazovia Regional Hospital in Siedlce. Histopathology results were obtained using core needle sonoelastography-targeted biopsies and TRUS-guided systematic biopsies.

Procedure

In the first stage, ultrasonography and sonoelastography assessments were performed with Aplio XG (Toshiba, Japan) using an end-fire transrectal probe, micro-convex, 6 MHz.

Prostate compressibility/hardness was assessed at three levels: around the base of the prostate just below the bladder, at mid-height of the prostate and around the top of the prostate, while additional cross-sections were performed in the cases of gland volume of more than 60 ml or gland largest size of more than 6 cm. Compression performed using mechanical pressure with transrectal probe allowed to obtain images of color encoded deformations, as in accordance with the following scheme: the highest tissue compressibility (soft) – red, the lowest tissue...
Sonoelastographic evaluation with the determination of compressibility ratio for symmetrical prostatic regions in the diagnosis of clinically significant prostate cancer

Kompresję wywierano przez mechaniczny ucisk głowicą transrektalną, uzyskując obrazy odkształcenia kodowane kolorem według schematu: tkanka o największej ściśliwości (miękką) – kolorem czerwonym, o najmniejszej ściśliwości (twarda) – niebieskim, o twardości pośredniej – zielonym. Do analizy wybierano cykl rozprężenia z optymalnym zapi- sem sinusoidalnym na kontrolnym wykresie prędkości. W niektórych przypadkach optymalizowano skalę koloru, regulując jejrozdzieszczość, co pozwoliło lepiej uwidocznić ewentualne różnice odkształcenia w symetrycznych obszarach stercza. Obszary zakodowane jako ciemnoniebieskie, a więc o małej ściśliwości, kwalifikowano jako pola podejrzane o przemianę nowotworową. Następnie w skali szaro- ści wyznaczano obszar stercza precyzyjnie symetryczny do podejrzanego i wyliczano stosunek odkształceń (strain ratio). Tak więc oceny ściśliwości tkanków dokonywano nie w wartoścach bezwzględnych, lecz porównując symetryczne obszary stercza i wyznaczając względne różnice twardości. W przypadku strain ratio ≥2 (zakres 2–27) miejsce to kwalifikowano do biopsji rdzeniowej, jak pokazano na ryc. 1.

Obrazy elastograficzne i odpowiadające im obrazy w prezentacji B-mode archiwizowano w postaci cine-loops oraz obrazów statycznych do wykorzystania na komputerze PC w drugim etapie.

W drugim etapie, przy zastosowaniu aparatu ultrasonogra- ficznego BK Medical Pro Focus (produkcji duńskiej) z dwuplaszczyznową głowicą transrektalną 5–10 MHz, wyposażoną w kanał roboczy do rdzeniowej biopsji stercza, wykonywano biopsję każdego miejsca wskazanego jako „podejrzone” w badaniu ES, a następnie biopsję systematyczną, podczas której pobierano osiem lub dziesięć rdzeni tkankowych niezależnie od wskazań elastosonogra- ficznych. Biopsję przeprowadzano z użyciem igły Tru-Cut 18 G. Tak uzyskane wycinki tkankowe, opatrzono protokołem, zabezpieczano w oddzielnym kasetkach i przesyłano do badania histopatologicznego.

In the second stage, biopsy of each site indicated by SE as “suspicious” was performed with BK Medical Pro Focus Ultrasound (Denmark) using a biplane 5–10 MHz transrectal probe equipped with a probe channel for prostate core needle biopsy, followed by systematic biopsy, during which eight or ten tissue cores were collected regardless of sonoelastography indicated regions. The biopsy was performed using Tru-Cut 18 G needle. The obtained tissue samples provided with a protocol were secured in separate cassettes and sent for histopathological examination.

Once the diagnostic process was completed, patients with indications for surgical treatment were qualified for open or laparoscopic radical prostatectomy and provided with a therapy. In these cases, elastography and B-mode images were additionally correlated with

Ryc. 1. Chory lat 76; PSA = 31,4; w badaniu histopatologicznym tego wycinka stwierdzono raka stercza ocenionego na 8 (4 + 4) w skali Gleasona. A. Elastosonograficzny obraz stercza w ROI 1 (żółty) wskazuje podejrzaną miejscę (stosunek ściśliwości symetrycznych obszarów – strain ratio = 4,7); B. Analogiczny obraz w prezentacji B-mode z oznaczeniami miejsc użytych do wyróżnienia stoenográficznych obszarów i wskazania miejsce do biopsji celowanej (ES)

Fig. 1. Patient aged 76 years; PSA – 31.4; histopathological examination of this specimen revealed prostate cancer with Gleason score of 8 (4 + 4). A. Sonoelastography image of prostate gland in the ROI 1 (yellow) shows a suspected area (compressibility ratio of symmetrical areas – strain ratio = 4.7); B. An analogous B-mode image with marked areas used to determine the compressibility ratio and to select sites for targeted biopsy (SE)
Po zakończeniu procesu diagnostycznego chorych ze wskaźnikami do leczenia operacyjnego zakwalifikowano do prostatektomii radykalnej metodą otwartą lub laparoskopową i poddano terapii. W tych przypadkach dodatkowo korelowano obrazy elastograficzne oraz obrazy B-mode z preparatami histopatologicznymi uzyskany w toku leczenia operacyjnego – jak przedstawiono na ryc. 2.

Wyniki

Badaniu poddano 84 pacjentów, u których podejrzewano raka stercza, z poziomem PSA w przedziale od 1,2 ng/dl do 885 ng/dl. Ostatecznie na podstawie łącznej biopsji celowańych i systematycznych zdiagnozowano 42 zmiany nowotworowe, w 39 przypadkach rozpoznano gruczolakoraki (adenocarcinoma), zaś w 3 – PIN (prostatic intraepithelial neoplasia). Podczas biopsji systematycznych pobrano 782 rdzenie tkankowe, co pozwoliło na ujawnienie 36 gruczolakoraków i jednej zmiany PIN. Biopsje celowane na miejsca wskazane podczas elastosonografii jako zmiany o małej ścisłości, tj. twardy, wykryły 30 gruczolakoraków i 3 zmiany o charakterze PIN – w tym celu pobrano 185 rdzeni tkankowych. Na ryc. 3 przedstawiono jedno z miejsc wskazanych w elastosonografii jako podejrzane, twardze (strain ratio – 9.8), w którym wycinku tkankowym ujawniono nowotwór.

Biopsja celowana na miejsca wskazane w ocenie elastosonograficznej nie ujawniła dziewięciu przypadków gruczolakoraka stercza (23%):

- Cztery przypadki to raki nisko zaawansowane, ocenione w skali Gleasona na 6 (3 + 3); dwa z tych przypadków histopathological specimens obtained during surgical treatment, as shown in fig. 2.

Results

The study involved 84 patients suspected of prostate cancer, who showed elevated PSA levels ranging between 1.2 ng/dl and 885 ng/dl. In total 42 cases of neoplastic lesions, including 39 adenocarcinomas and 3 cases of prostatic intraepithelial neoplasia (PIN), were diagnosed based on targeted and systematic biopsies.

A total of 782 tissue cores were sampled during systematic biopsies, which allowed to identify 36 adenocarcinomas and one PIN lesion. Targeted biopsies of areas indicated during sonoelastography as low compressibility lesions, i.e. hard, identified 30 adenocarcinomas and 3 PIN-like lesions – a total of 185 tissue cores were sampled for this purpose. Fig. 3 shows one of the areas indicated by sonoelastography as suspected, hard (strain ratio of 9.8), the tissue of which proved cancerous.

Targeted biopsy of areas indicated in sonoelastography evaluation failed to identify 9 cases of prostate adenocarcinoma (23%):

- Four cases involve low-stage cancers having a Gleason score of 6 (3 + 3); two of these cases were initially diagnosed as atypical small acinar proliferation (ASAP) during histopathological examination and the diagnosis of adenocarcinoma was possible only due to additional histopathological examination.
w pierwszym badaniu histopatologicznym rozpoznano jako atypowy rozrost drobnozreźbiący (atypical small acinar proliferation, ASAP) i dopiero dodatkowe badania histopatologiczne pozwoliły na postawienie diagnozy – adenocarcinoma.

- Dwa nierozpoznane przypadki wynikały z błędu operatora – niewłaściwie określono strony gruczołu krokowego.

- W jednym przypadku elastsonografia nie wykazała różnic w twardości obszarów badanej strefy obwodowej symetrycznych miejsc prostaty – biopsja systematyczna 8-rdzeniowa ujawniła zmianę nowotworową w jednym wycinku, ocenioną na 8 (4 + 4) w skali Gleasona.

- U kolejnego pacjenta w dwóch rdzeniach z biopsji celowanej pod kontrolą elastsonografii nie stwierdzono zmiany nowotworowej, podczas gdy biopsja systematyczna u tego samego chorego ujawniła nowotwór w czterech z dwudziestu rdzeni, ocenionych w skali Gleasona na 8 (4 + 4), 7 (4 + 3), 7 (4 + 3) i 6 (3 + 3).

- Ostatni przypadek to pacjent, u którego biopsja celowana pod kontrolą elastsonografii nie ujawniła raka, natomiast biopsja systematyczna wykazała zmiany nowotworowe w dwóch na dziesięć rdzeni, ocenionych w skali Gleasona na 7 (3 + 4) i 7 (3 + 4).

Biopsja systematyczna pod kontrolą TRUS nie ujawniła trzech przypadków nowotworów stercza z całkowitej liczby 39 gruczołakoraków rozpoznanych na podstawie obu zastosowanych metod diagnostycznych (7,7%).

- W jednym przypadku przy ujemnej biopsji systematycznej 10-rdzeniowej biopsja celowana na miejsce wskazane w ocenie elastsonograficznej wykryła nowotwór oceniony w skali Gleasona na 7 (3 + 4); ryc. 4.

- Two undiagnosed cases resulted from operator error – sides of prostate gland were incorrectly specified.

- In one case, sonoelastography failed to detect differences in the hardness of the examined peripheral area of symmetrical prostate regions – 8-core systematic biopsy revealed a neoplastic lesion in one specimen, which had a Gleason score of 8 (4 + 4).

- In another patient, no neoplastic lesions were found in two tissue cores sampled during sonoelastography guided targeted biopsy, whereas a systematic biopsy performed in the same patient revealed tumors in four out of ten tissue cores, which had Gleason scores of 8 (4 + 4), 7 (4 + 3), 7 (4 + 3) and 6 (3 + 3).

- The last case concerns a patient, whose sonoelastography guided targeted biopsy did not reveal cancer, but systematic biopsy showed neoplastic lesions in two out of ten tissue cores, graded 7 (3 + 4) and 7 (3 + 4) according to Gleason system.

TRUS-guided systematic biopsy failed to reveal three prostate cancer cases out of a total of 39 adenocarcinomas identified based on both used diagnostic methods (7.7%).

- In one case, after a negative 10-core systematic biopsy, targeted biopsy of the area indicated during sonoelastography assessment revealed cancer of Gleason score 7 (3 + 4); fig. 4.

- In the second case, after a negative 8-core systematic biopsy, sonoelastography-guided targeted biopsy revealed a tumor of Gleason score 7 (3 + 4).

- In the third case, one of the specimens collected during a biopsy of areas indicated during sonoelastography assessment showed a neoplastic lesion of Gleason score
Podczas analizy wyników badania histopatologicznego wycinków pobranych podczas biopsji pod kontrolą elastosonografii ujawniła nowotwór oceniony w skali Gleasona na 7 (3 + 4).

Trzeci przypadek to chory, u którego jeden z wycinków pobranych podczas biopsji w miejscach wskazanych w ocenie elastosonografii wykazał zmianę nowotworową ocenioną na 6 (3 + 3) w skali Gleasona, natomiast w żadnym z 10 rdzeni tkankowych pobranych podczas biopsji systematycznej nie stwierdzono nowotworu.

Podczas analizy wyników badania histopatologicznego wycinków pobranych podczas biopsji pod kontrolą elastosonografii ujawniła nowotwór oceniony w skali Gleasona a czułością diagnostyczną opisywanej metody obrazowania – jak przedstawiono w tab. 2.

Analiza statystyczna

W analizie statystycznej posłużono się programem STATISTICA 10 (StatSoft Inc., USA). Podano jej trzy grupy zmian wraz z przyporządkowanymi im wartościami – strain ratio, tj.:

- *strain ratio* dla zmian o potwierdzonym charakterze nowotworowym (SR1);
- *strain ratio* dla zmian zapalnych i pooperacyjnych, w których po ocenie histopatologicznej wykluczono przemianę nowotworową (SR2);
- *strain ratio* zmian z ujawnym wynikiem biopsji bez innych patologii gruczołowych – zapalenia lub przebytego leczenia pooperacyjnego w wywdzie (SR3).

Następnie pogrupowano wartości strain ratio według skali Gleasona w stopniach od 6 do 10, przy czym wartości strain ratio dla Skal Gleasona 9 i Gleasona 10 włączono do jednej grupy.

Do oceny rozkładu normalności analizowanych danych użyto testu W Shapiro–Wilk. Rozkłady wszystkich zmien-nych odbiegały od normalnego, dlatego w dalszej analizie wykorzystano nieparametryczny test Mann–Whitneya. Natomiast do analizy wartości strain ratio zmian złożonych w stopniu 6–10 według skali Gleasona zastosowano test Kruskala–Wallisa. Na istotny przyjęto poziom α = 0.05.

Wśród zmian o potwierdzonym charakterze nowotworowym średnie SR wynosiło 7.88 (zakres 2.3–26.5); w przypadku zmian zapalnych i pooperacyjnych – 6.03 (zakres 2.0–27.0), natomiast u pacjentów bez innych zmian – 3.57 (zakres 2.0–17.3). Wyniki przedstawiono w tab. 3.

Nie uzyskano istotnych statystycznie różnic wartości strain ratio pomiędzy zmianami o potwierdzonym charakterze nowotworowym (SR1) a zmianami zapalnymi i pooperacyjnymi (SR2). Natomiast wykazano istotne statystycznie różnice wartości strain ratio pomiędzy chorymi z potwierdzonymi histopatologicznie zmianami o charakterze rozrostowym (SR1) a pacjentami z ujawnymi wynikami 6 (3 + 3), whereas systematic biopsy of 10 tissue cores showed no evidence of tumor.

Furthermore, a correlation between tumor grade in accordance with the Gleason grading system and the diagnostic sensitivity of the described imaging method, as shown in tab. 2, was found during the analysis of histopathological results for the specimens collected during sonoelastography-guided biopsy.

Statistical analysis

STATISTICA 10 (StatSoft Inc., USA) was used in statistical analysis, which involved three groups of lesions as well as their strain ratio values, i.e.:

- strain ratio for lesions with confirmed neoplastic character (SR1);
- strain ratio for inflammatory and postoperative lesions with excluded neoplastic transformation based on histopathological examination (SR2);
- strain ratio for lesions with negative biopsy findings and showing no other prostate pathologies – inflammation or medical history of postoperative treatment (SR3).

Next, strain ratio values were grouped in accordance with the Gleason grading system as grades 6 to 10, with strain ratio values for Gleason 9 and Gleason 10 included in one group. The Shapiro–Wilk W test was used to assess the analyzed data for normality distribution. Since the variables were not normally distributed, non-parametric Mann–Whitney test was used for further analysis. The Kruskal–Wallis test was used to analyze the strain ratio values of malignant lesions graded 6–10 in accordance with the Gleason grading system. The α-level was set at 0.05. The mean SR was 7.88 (range 2.3–26.5) for lesions with confirmed neoplastic character; 6.03 (range 2.0–27.0) for inflammatory and postoperative lesions; and 3.57 (range 2.0–17.3) in the case of patients with no other lesions. The results are shown in tab. 3.

No statistically significant differences in strain ratio values were found between confirmed neoplastic lesions (SR1) and inflammatory/postoperative lesions (SR2). Statistically significant differences in strain ratio values were found between patients with histopathologically confirmed proliferative lesions (SR1) and patients with negative biopsy findings who showed no other prostate pathologies (SR3); statistically significant differences between group SR2 and SR3 were also distinct. Additionally, proliferative lesions (SR1) were compared with the group of benign lesions, involving SR2 and SR3; the obtained results also showed statistically significant differences (tab. 4, figs. 5–8).

No statistically significant differences were found between strain ratio values in groups graded 6–10 in the Gleason system; \(p = 0.3809 \).
Sonoelastographic evaluation with the determination of compressibility ratio for symmetrical prostatic regions in the diagnosis of clinically significant prostate cancer

Skala Gleasona	Liczba pozytywnych elastografii/ liczba nowotworów (czułość w proc.)
6	6/10 (60%)
7	9/12 (75%)
8	10/12 (83%)
9–10	5/5 (100%)

Tab. 2. Korelace pomiędzy stopniem zaawansowania nowotworu wyróżnionego w skali Gleasona a czułością diagnostyczną elastosonografii

Zmienna Variable	Z	p
SR 01/02	−1,23	0,22
SR 01/03	−4,80	0,000002
SR 02/03	−3,44	0,0006
SR 01/02,03	−3,96	0,00007

Wykaz skrótów: Śr. – wartość średnia, Me – mediana, Min. – wartość minimalna, Maks. – wartość maksymalna, Odch. st. – odchylenie standardowe

Tab. 3. Ocena SR (strain ratio) w badanych grupach chorych

Tab. 4. Wyniki testu U Mann–Whitneya

Zmienna Variable	Z	p
SR 01/02	−1,23	0,22
SR 01/03	−4,80	0,000002
SR 02/03	−3,44	0,0006
SR 01/02,03	−3,96	0,00007

Wykaz skrótów: Z – wartość testu U Manna–Whitneya dla poszczególnych grup; p – wartość p; SR 01/02 – porównanie strain ratio SR1 i SR2, SR 01/03 – porównanie strain ratio SR1 i SR3, SR 02/03 – porównanie strain ratio SR2 i SR3, SR 01/02,03 – porównanie strain ratio SR1 z SR2 i SR3 (jako łączną grupę zmian łagodnych)

Tab. 4. The Mann–Whitney U Test

Wykaz skrótów: Z – The Mann–Whitney U Test value for each group; p – p value; SR 01/02 – SR1 strain ratio vs. SR2 strain ratio, SR 01/03 – SR1 strain ratio vs. SR3 strain ratio, SR 01/02,03 – strain ratio comparison: SR1 vs. SR2 and SR3 (as a total group of benign lesions)

biopsji oraz bez innych patologii gruczołu krokowego (SR3); widoczne były także istotne statystycznie różnice pomiędzy grupami SR2 i SR3.

Pozostałe zmiany o charakterze rozrostowym (SR1) z grupą zmian o charakterze łagodnym, obejmującej zmiany grup SR2 i SR3; uzyskane wyniki również wykazały istotne statystyczne różnicę (tab. 4, ryc. 5–8).

Nie uzyskano istotnie statystycznych różnic pomiędzy wartościami strain ratio w grupach o zakresie 6–10 według skali Gleasona: p = 0,3809.

Wnioski i omówienie

Elastosonografia jest cennym narzędziem diagnostycznym w rozpoznawaniu raka stercza. Możliwość oceny różnic ścieśniości/tańowości w obrębie gruczołu krokowego pozwala wykryć obszary zmienione chorobowo. Dowiedzono, że tkanka zmieniona nowotworowo ze względu na większą gęstość komórkową i zaburzenia architekturki obrazowana jest jako obszar twardszy niż zdrowe ukanie gruczołu krokowego. Oryginalnymi kryteriami diagnostycznymi

Conclusions and discussion

Sonoelastography is a valuable diagnostic tool for prostate cancer detection. The possibility to assess prostate tissue compressibility/hardness allows to detect pathological lesions. It is a proven fact that cancerous tissue, due to an increased cellular density and structural impairment, is depicted as a harder region compared to healthy prostate tissue. The diagnostic criteria originally described by Konig(4) include: lesion hardness, repeatability when changing probe inclination, size of at least 5 mm. These criteria were subsequently modified by Pallwein(7,8), who suggested a three-grade system for prostate lesion assessment in terms of suspected neoplastic transformation (tab. 5).

In a study by Aboumarzouk(9), involving a retrospective metaanalysis of 16 studies on the use of sonoelastography in prostate cancer diagnostics, which included a total of 2278 patients, a sensitivity of 71–82% was obtained for this method.

In the present study, where all sites subjected to a targeted biopsy met grade 3 criterion according to Pollwein, the
Zmienna: SR 01/02
Variable: SR 01/02

Zmienna: SR 01/03
Variable: SR 01/03

Zmienna: SR 02/03
Variable: SR 02/03

Zmienna: SR 01/02/03
Variable: SR 01/02/03

Ryc. 5. Porównanie grupy zmian o potwierdzonym charakterze nowotworowym (SR1) ze zmianami zapalnymi i pooperacyjnymi, bez potwierdzonego nowotworu (SR2)

Fig. 5. A comparison between a group of lesions with confirmed cancerous character (SR1) and inflammatory/postoperative lesions with no confirmed cancerous character (SR2)

Ryc. 6. Porównanie grupy zmian o potwierdzonym charakterze nowotworowym (SR1) ze zmianami bez potwierdzonej patologii w badaniu histopatologicznym (SR3)

Fig. 6. A comparison between a group of lesions with confirmed cancerous character (SR1) and lesions with no confirmed pathology in histopathological examination (SR3)

Ryc. 7. Porównanie grupy – zmiany pozapalne i pooperacyjne (SR2) i grupy – zmiany bez potwierdzonej patologii w obrębie gruczołu krokowego (SR3)

Fig. 7. A comparison: postinflammatory and postoperative lesions (SR2) vs. lesions with no confirmed pathology (SR3)

Ryc. 8. Porównanie grupy – zmiany nowotworowe (SR1) z grupami – zmiany pozapalne i pooperacyjne (SR2) razem ze zmianami bez patologii w obrębie gruczołu krokowego (SR3)

Fig. 8. A comparison: cancerous lesions (SR1) vs. postinflammatory and postoperative lesions (SR2) as well as non-pathological lesions within the prostate gland (SR3)

Przedstawionymi przez Koniga(4) są: twardość zmian, powtarzalność przy zmianie pochylenia głowicy, wymiar co najmniej 5 mm. Kryteria te zostały następnie zmodyfikowane przez Pallweina(7,8), który zasugerował trzustopniowy system oceny zmiany nowotworowej pod kątem podejrzenia o przemianę nowotworową (tab. 5).

W badaniu autorstwa Aboumarzouka(9), polegającym na retrospektywnej metaanalizie 16 badań dotyczących zastosowania elastosonografii w diagnostyce raka stercza, z liczbą 2278 chorych, uzyskano czułość tej metody na poziomie 71–82%.

W przedstawionym badaniu, w którym każde z miejsc podanych biopsji celowej spełniało kryterium 3. stopnia według Pallweina, całkowita czułość biopsji celowej w miejscu wskazane podczas oceny elastosonograficznej wynosiła 77%. Jeżeli zaś z obliczeń wyeliminujemy przypadki wynikające z błędu operatora, czułość tej metody overall sensitivity of biopsy targeted at sonoelastography-indicated regions was 77% and even 81%, following the exclusion of operator error cases. This sensitivity corresponds to the one described above in the “BJU” study.

Operator errors resulted from the necessity to use two devices for the assessment, i.e. Aplio XG (Toshiba, Japan) for sonoelastography and BK Medical Pro Focus (Denmark) for biopsies. Such errors may be readily eliminated and are unlikely to occur provided that the overall transrectal evaluation, including biopsy, is performed using one device for the same examination.

Furthermore, it should be noted that the sensitivity of a 10-core systematic biopsy in the conducted study was, according to the determined scheme, 92% (assuming that cases identified using both methods: systematic biopsy and sonoelastography-guided targeted biopsy account for 100%).
wzrasta do 81%. Jest ona podobna do przedstawionej powyżej w badaniu z „BJU”.

Powstałe w badaniu błędy operatora wynikły z konieczności przeprowadzenia oceny na dwóch aparatach – ocena ES wykonywana była na Aplio XG (Toshiba, produkcji japońskiej), natomiast biopsje odbywały się przy użyciu BK Medical Pro Focus (produkcji duction). Błędy te są łatwe do wyeliminowania i prawdopodobnie nie wystąpią, jeżeli całość oceny transrektalnej, łącznie z biopsją, wykonywana będzie na jednym aparacie podczas tego samego badania.

Należy również zaznaczyć, że w przeprowadzonym badaniu czułość biopsji systematycznej 10-rdzeniowej według wyznaczonego schematu wyniosła 92% (jeżeli za 100% przyjmujemy przypadki ujawnione przy wykorzystaniu łącznego obwodu metod: biopsji systematycznej i biopsji celowej – pod kontrolą elastosonografii).

Stosowana obecnie jako złoty standard w diagnostycie raka stercza biopsja systematyczna 10-rdzeniowa pod kontrolą USG niesie ze sobą ryzyko wystąpienia wielu powikłań; do najczęściej występujących należą: krew w nasieniu – 37,4%; krawawienie z pęcherza mocowego – 14,5%; gorączka – 0,8%; urosepsja – 0,3%; krawawienie z odbytnicy – 2,2%; zatrzymanie moczu – 0,2%; zapalenie stercza – 1%; zapalenie nądrzycz – 0,7%. Niektóre z nich wymagają hospitalizacji, kosztownego leczenia i znacznie pogarszają komfort życia diagnozowanych chorych. W świetle tych faktów nie bez znaczenia pozostaje liczba pobieranych rdzeni tkankowych podczas procedury diagnostycznej. W naszym badaniu w trakcie diagnostyki według tradycyjnego schematu biopsji systematycznej pobrano łącznie 782 rdzenie tkankowe, podczas gdy w celu diagnostyki tej samej liczby chorych przy użyciu biopsji celowanej w miejsca wskazane podczas oceny elastosonograficznej pobrano łącznie 185 rdzeni tkankowych. Zatem liczba inwazyjnych procedur diagnostycznych (biopsja rdzeniowa) z zastosowaniem elastosonografii zmniejszyła się do mniejszej niż 1/4 w porównaniu z obecną stosowanym złotym standardem, co niezwłocznie redukuje ilość powikłań, obniża koszt ich leczenia i poprawia komfort życia diagnozowanych chorych.

W przedstawionej grupie badanych osób wykazano, że biopsja celowana pod kontrolą elastosonografii, po

Stopień	Opis	Odsetek pacjentów z obecnością nowotworu (Cancer patients (%))
1	Równo rozproszona, jednakowa twardość/ściśliwość	2,3–11,9
2	Niejednorodny wzrost twardości/ściśliwości, zmienne czerwone i niebieskie pola, każda barwna kropka o średnicy <5 mm, niezachowana powtarzalność przy zmianie nachylenia głowicy	26,4–28,8
3	Ogniskowy wzrost twardości/ściśliwości – homogenne, asymetryczne ogniskowe zmiany o wymiarze >5 mm, powtarzalne po zmianie nachylenia głowicy	68–82,4

Tab. 5. Elastosonograficzny system oceny – według Pallweina

Tab. 5. Sonoelastographic evaluation system – according to Pallwein

The currently used golden standard for the diagnosis of prostate cancer is a 10-core ultrasound-guided biopsy, which is associated with the risk of a number of complications; and the most common of these include: hematospermia (blood in the ejaculate) – 37.4%; bleeding from the bladder – 14.5%; fever – 0.8%; urosepsis – 0.3%; rectal bleeding – 2.2%; urinary retention – 0.2%; prostatitis – 1%; epididymitis – 0.7%. Some of these require hospitalization, expensive treatment and significantly impair the quality of life of diagnosed patients. In the light of the above, the number of tissue cores sampled during diagnostic procedures is also significant. In our study, a total of 782 tissue cores were sampled during the traditional systematic biopsy, whereas a total of 185 tissue cores were collected in the same number of patients for the diagnostic procedures. Thus, the number of invasive diagnostic procedures (core biopsy) using sonoelastography decreased to less than ¼ compared to the currently used golden standard, which undoubtedly allows to reduce complications and costs of treatment as well as to improve the quality of life of diagnosed patients.

In the study group of patients, it was shown that the sonoelastography-guided targeted biopsy, following the exclusion of cases resulting from operator error, failed to identify eight cases of cancer confirmed by the 10-core systematic biopsy. Tab. 2 shows the influence of the degree of cancer malignancy graded in accordance with the Gleason system on the elastographic sensitivity. It may be concluded from the table that the cancer stage may affect the sensitivity of sonoelastography in prostate cancer detection.

End-fire transrectal probe was used in our study for sonoelastography evaluation of the prostate gland. Prostate gland compression was generated by an operator and involved applying rhythmic probe pressure on the examined object. Compression records in the form of a color sonoelastography scan. In order to overcome this technical problem, color scale was used.
wyłączeniu przypadków wynikających z błędu operatora, nie wykryła siedem przypadków nowotworu potwierdzonego w badaniu przy użyciu biopsji systematycznej 10-rodkowej. W tab. 2 zilustrowano wpływ stopnia złożoności nowotworu ocenionego w skali Gleasona na czułość elastografii. Z zestawienia tego wynika, że stopień zaawansowania nowotworu może mieć wpływ na czułość elastografii w wykrywaniu raka stercza.

W badaniu przeprowadzonym w naszym ośrodku do oceny elastonomicznej gruczołu krokowego użyto sondy transrektalnej typu „end-fire”. Kompresja na gruczoł krokowy generowana była przez operatora poprzez rytmiczny ucisk sondą na badany obiekt. Zapis kompresji obserwowano na monitorze w formie sinusoidy. Taka technika badawcza powoduje, że nacisk generowany jest głównie w osi sondy, a więc na centralną część badanego gruczołu krokowego, natomiast obszary leżące bocznie uciskane są z mniejszą siłą, co wpływa na obraz elastonomiczny, w formie kolorowego skanu. W celu wyeliminowania tego technicznego problemu w naszym badaniu skalę kolorową wykorzystywano jedynie we wstępnjej ocenie, natomiast kwalifikacja miejsc do biopsji nastąpiła poprzez porównanie symetrycznych obszarów stercza i różnic w ich ściśłości. Kierowano się zatem nie bezwzględną twardością podejrzanego obszaru, lecz porównywanie symetryczne obszary stercza (uciskane z jednakową siłą) i wyznaczano względné różnice twardości. Obszary ponad dwukrotnie twardsze niż symetrycznie leżące pole prostaty kwalifikowano jako podejrzane i poddawano biopsji celowanej.

Kolejnymi czynnikami mającymi znaczący wpływ na diagnozykę gruczołu krokowego przy użyciu elastonomicznej są przebyte choroby gruczołu krokowego, poprzednie badania diagnostyczne lub zabiegi operacyjne wykonane na gruczoł krokowym. Wydaje się, że przebyte zapolenie gruczołu krokowego i biopsja diagnostyczna oraz leczenie z powodu gruczołaka stercza, np. TURP, na trwale zmieniają ściśliwość narządu i mogą zaburzać wskazania elastografii. Potwierdza to analiza statystyczna, która wykazała istotne różnice między

\[\text{strain ratio} \]

warków a strain ratio zmian łącznych. Natomiast między grupami pacjentów z nowotworami i pacjentów po wcześniejszych zabiegach na prostatie nie zaobserwowano istotnych statystycznie różnic wartości strain ratio.

Już przed zastosowaniem elastonomicznej w diagnostyce ultrasonograficznej w obrazowaniu B-mode zauważono, że w przypadku nowotworów o dużej objętości zajmujących cały narząd obraz ultrasonograficzny może nie odbiegać od normy – jest to tzw. superscan phenomenon(10). Podobna sytuacja zachodzi w obrazowaniu elastonomicznym – w przypadku guza o dużej objętości zajmującym cały narząd różnicę w ściśliwości są niewielkie lub mogą w ogóle nie występować. U trzech chorych z zaawansowanym rakiem stercza mimo zajęcia całego gruczołu przez nowotwór [dodatknie wszystkie biopsje systematyczne i wszystkie biopsje pod kontrolą elastonomicznie; ocena w skali Gleasona: 8 (4+4)] stosunek twardości symetrycznych obszarów stercza wahał się od 2.0 do 2.7, przy średniej dla zmian nowotworowych 7.88. W takich przypadkach wydaje się, że elastografia oceniająca twardość gruczołu krokowego w jednostkach bezwzględnych (kPa) – share

It seems that a medical history of prostatitis and diagnostic biopsy as well as treatment due to prostatic adenoma, e.g. TURP, irreversibly alter gland compressibility and may impair elastographic evaluation. This is confirmed by statistical analysis, which showed significant differences between strain ratios of cancers and benign lesions, whereas no statistically significant differences regarding strain ratio values were found between cancer patients and patients with previous prostate surgeries.

Even before the application of sonoelastography in ultrasonographic diagnostics it had been noticed in B-mode imaging that in the case of large volume tumors involving the whole organ, the ultrasonographic image may appear as normal – this is a so-called superscan phenomenon(10). A similar situation occurs in sonoelastographic imaging – in the case of large volume tumor involving the whole organ, the differences in compressibility are minor or none. In three patients with advanced prostate cancer involving the whole gland [positive systematic biopsies and sonoelastography-guided biopsies; Gleason grade 8 (4+4)] the hardness ratio of symmetrical prostate areas ranged between 2.0 and 2.7, with the mean of 7.88 for neoplastic lesions. It seems, in such cases, that elastography is considered incompressible in absolute values (kPa) – shear wave elastography – would allow for a correct diagnosis. It should be noted, on the other hand, that these cases are clinically evident (PSA, DRE), which allows to avoid errors in targeted biopsy considering the hardness of symmetrical areas.

Summary

The study assessed the usefulness of sonoelastography in prostate cancer diagnostics. The results of sonoelastography guided targeted biopsy were compared with the results obtained in grey-scale TRUS-guided 8- or 10-core systematic biopsy, which is currently a standard procedure in prostate cancer diagnostics. The overall sensitivity of the method was 77%. It seems that the use of sonoelastography in selecting areas suspected of being cancerous allows to significantly reduce the number of collected tissue cores, and thus limit both the incidence of complications and the costs involved as well as to improve the quality of life of diagnosed patients. The study suggests...
wave elastography – pozwoliły właściwie ustalić rozpoznanie. Z drugiej strony należy zauważyć, że przypadki te są ewidentne klinicznie (PSA, DRE), co pozwala uniknąć błędu w biopsji celowanej przy uwzględnieniu twardości obszarów symetrycznych.

Podsumowanie

W badaniu oceniano przydatność elastasonografii w diagnostyce nowotworów gruczołu krokowego. Porównano wyniki celowanej biopsji prostaty pod kontrolą elastasonografii z wynikami uzyskanymi w drodze biopsji systematycznej 8- lub 10-rdzeniowej pod kontrolą TRUS w skali szarości, badań stanojującego obecnie standardowe postępowanie w diagnostyce nowotworów stercza. Całkowitą czulność metody określono na 77%. Wydaje się, że użycie ES do typowania miejsc podejrzanych o zmiany nowotworowe pozwala znacząco zmniejszyć liczbę pobieranych rdzeni tkankowych, a co za tym idzie – ograniczyć liczbę powikłań, a także poprawić komfort diagnozowanego chorego. Wyniki badań sugerują, że na wskazania elastasonografii może mieć wpływ stopień zaawansowania nowotworu, choć obserwacje te wymagają potwierdzenia w oparciu o większą liczbę przypadków.

Ocena elastograficzna napotyka też na pewne ograniczenia związane z techniką badania, zależną od operatora i stosowanego sprzętu, zwłaszcza przy mechanicznym wywieraniu kompresji na stercz. Na jej wynik mają też wpływ przebyte wcześniej choroby gruczołu krokowego typu zapalnego lub zabiegi diagnostyczne czy operacyjne.

Niewątpliwie potrzebne są dalsze badania mające na celu zweryfikowanie roli elastografii w diagnostyce nowotworów gruczołu krokowego oraz określenie możliwości i przydatności tej metody, ale także jej ograniczeń.

Konflikt interesów

Autorzy nie zgłaszają żadnych finansowych ani osobistych powiązań z innymi osobami lub organizacjami, które mogłyby negatywnie wpłynąć na treść publikacji oraz rościć sobie prawo do tej publikacji.

Piśmiennictwo/References

1. Heidenreich A, Bastian PJ, Bellmunt J, Bolla M, Joniau S, Mason MD et al.: Guidelines on prostate cancer. European Association of Urology 2012.
2. Ophir J, Céspedes I, Ponnekanti H, Yazdi Y, Li X: Elastography: A quantitative method for imaging the elasticity of biological tissues. Ultrasonic Imaging 1991; 13: 111–134.
3. Cochlin DL, Ganatra RH, Grifths DF: Elastography in the detection of prostatic cancer. Clin Radiol 2002; 57: 1014–1020.
4. König K, Scheipers U, Pesavento A, Lorenz A, Ermert H, Senge T: Initial experiences with real-time elastography guided biopsies of the prostate. J Urol 2005; 174: 115–117.
5. Pallwein L, Mitterberger M, Struve P, Pinggera G, Horninger W, Bartsch G et al.: Real-time elastography for detecting prostate cancer: preliminary experience. BJU Int 2007; 100: 42–46.
6. Miyanaga N, Akaza H, Yamakawa M, Oikawa T, Sekido N, Hinotsu S et al.: Tissue elasticity imaging for diagnosis of prostate cancer: preliminary report. Int J Urol 2006; 13: 1514–1518.
7. Pallwein L, Aigner F, Faschingbauer R, Palwein E, Pinggera G, Bartsch G et al.: Is real-time elastography targeted biopsy able to enhance prostate cancer detection? An analysis of detection rate based on an elasticity-scoring system. Eighth International Conference on the Ultrasonic Measurement and Imaging of Tissue Elasticity 2009, Sept. 14–17, Vlissingen, The Netherlands.
8. Pallwein L, Aigner F, Pinggera G, Mitterberger M, Frauscher F, Bartsch G: Is real-time elastography targeted biopsy able to enhance prostate cancer detection? Value of an elasticity-scoring system. American Urological Association Annual Meeting 2008, May 17–22, Orlando, USA.
9. Aboumarzouk OM, Ogston S, Huang Z, Evans A, Melzer A, Stolzenberg JU et al.: Diagnostic accuracy of transrectal elastasonography (TRES) imaging for the diagnosis of prostate cancer: a systematic review and meta-analysis. BJU Int 2012; 110: 1414–1423.
10. Sudol-Szopińska I, Szopiński T (ed.): Diagnostyka ultrasonograficzna w urologii. Roztoczański Szkoła Ultrasonografii, Warszawa–Zamość 2007.