Review Paper
Comparison of the Mechanical Effects of Silver Nanoparticles on Some Types of Organisms

Seyyedeh Mahboube Mousavi1, Nooshin Naghsh1

1. Department of Biotechnology, School of Basic Sciences, Islamic Azad University, Falavarjan Branch, Isfahan, Iran.

Citation: Mousavi SM, Naghsh N. [Comparison of the Mechanical Effects of Silver Nanoparticles on Some Types of Organisms (Persian)]. Journal of Arak University of Medical Sciences(JAMS). 2021; 24(4):458-469. https://doi.org/10.32598/JAMS.24.4.2372.8

Article Info:
Received: 12 Mar 2021
Accepted: 27 Jul 2021
Available Online: 01 Oct 2021

ABSTRACT
Background and Aim: One of the new technologies in this century is nanotechnology. Nanotechnology is a vast and promising research platform that has opened up a wide range of opportunities in various fields including pharmacy, medicine, electronics and agriculture. One of the applied nanoparticles in the field of nanobiotechnology is silver nanoparticles. One of the most important features of these nanoparticles is the creation of programmed cell death (Apoptosis). This property has created its antiseptic properties against bacteria, fungi, viruses and nematodes. Nanoparticles have better performance against microorganisms due to their high surface-to-volume ratio and higher contact surface. Meanwhile, silver nanoparticles have shown unparalleled antimicrobial activity against a wide range of microorganisms and have recently attracted the attention of many researchers.

Methods & Materials: In this study, a review of all databases, including ISI Web of Science, Scopus, ISC, PubMed, Google Scholar Learners, Noor, related articles were examined.

Ethical Considerations: Ethical principles have been observed in writing the article.

Results: The antimicrobial effect of silver nanoparticles depends on the concentration, shape and diameter of the nanoparticles as well as the time of effect and the type of microorganism. The molecular mechanism of these nanoparticles has been through oxidative stress. The mechanism of inhibitory action of silver ions on microorganisms is the loss of DNA replication ability, inactivation of the expression of ribosomal subunit proteins and other bacterial cell proteins and enzymes necessary for ATP production. The effect of silver ions is primarily on the function of membrane-bound enzymes such as key enzymes in the respiratory chain. Thus, similar cellular mechanisms can cause cell death effects in prokaryotes, fungi, and eukaryotes.

Conclusion: The results showed that variables such as type of microorganism, contact time, concentration, shape and diameter of silver nanoparticles had a significant effect on inhibiting microbial growth.

Extended Abstract
1. Introduction

Nanotechnology recognizes, produces, and applies materials in dimensions smaller than 1000 nanometers at the atomic, molecular, and macromolecular scales [1]. Silver nanoparticles are clusters of silver atoms that range from 1 to 100 nanometers. The properties of nano-sized silver are very different from the properties of this element in bulk size. Silver nanoparticles’ physical, optical, thermal, chemical, electrical, mechanical, and biological properties are unique [2]. Using nano-silver with different
materials such as fibers, dyes, polymers, ceramics enables us to produce products that make our environment free of germs while not harming the environment [1]. Therefore, this review article aimed to summarize the antimicrobial application mechanisms of silver nanoparticles in different shapes, sizes, and concentrations on the cells of other organisms.

2. Materials & Methods

PubMed, ISI, Web of Science, Scopus, ISC, and Google Scholar databases were used to collect and summarize data. Research papers using the MeSH model were: fungi, viruses, bacteria, and antimicrobial properties of silver nanoparticles. Ethical considerations: Ethical principles in writing the article are per the instructions of the National Ethics Committee and the COPE regulations.

3. Result

The antimicrobial effect of silver nanoparticles depends on the concentration, shape, and diameter of the nanoparticles, as well as the time of impact and the type of microorganism. The molecular mechanism of these nanoparticles has been through oxidative stress. The mechanism of inhibitory action of silver ions on microorganisms is the loss of DNA replication ability inactivation of the expression of ribosomal subunit proteins and other bacterial cell proteins and enzymes necessary for ATP production. The effect of silver ions is primarily on the function of

Figure 1. Cell wall differences in gram (-) and gram (+) bacteria

Figure 2. The antibacterial activities of silver nanoparticles [9]
membrane-bound enzymes such as critical enzymes in the respiratory chain. Thus, similar cellular mechanisms can cause death in prokaryotes, fungi, and eukaryotes.

4. Discussion & Conclusion

Using silver nanoparticles as a new antimicrobial agent has recently attracted the attention of many researchers. Researchers have proven the ability of silver nanoparticles to fight spoilage and pathogenic microorganisms. Numerous studies were conducted on possible reactions between the nanoparticles and macromolecules of living organisms. The difference between the negative charge of the microorganism and the positive charge of the nanoparticle acts by creating adsorbent electromagnetic bands between the microbe and the nanoparticle, causing the nanoparticle to attach to the cell surface, resulting in cell death. Eventually, many of these contacts lead to the oxidation of the surface molecules of the microbes and their rapid extinction. The ions released from the nanomaterials are likely to react with the thiol groups of SH surface proteins of bacterial cells. Some of these bacterial cell membrane proteins transport minerals from the wall surface. Nanomaterials cause inactivation and impermeability of cell membranes by acting on these proteins. The loss of membrane permeability eventually leads to cell death. The presence of silver and sulfur ions in compact electron granules in the bacterial cytoplasm after treatment with silver nanoparticles has been observed, which indicates interaction with nucleic acids and leads to disruption of DNA molecule amplification. Nanomaterials also delay bacterial cell adhesion and biofilm formation, which prevents a group of bacteria from stabilizing and multiplying. Silver nanoparticles have antimicrobial properties on most microorganisms, so it can be said that variables, such as the type of microorganism, contact time, concentration, shape, and diameter of silver nanoparticles, factors affecting the occurrence of apoptosis in different types of cells, including prokaryotes and fungi, eukaryotes, and viruses. Considering the biocompatibility of these nanoparticles in specific diameters and concentrations and the reduction of side effects, they can be used as alternatives to standard drugs, such as some antibiotics and antifungals, shortly.

Ethical Considerations

Compliance with ethical guidelines

Ethical principles have been observed in writing the article.

Funding

This article has no financial support.

Authors’ contributions

Both authors contributed to the review and writing of the article.

Conflicts of interest

The authors declared no conflict of interest.

Acknowledgements

We would like to thank all the researchers and authors of the articles whose research results were used in this study.
مقاله مربوطی

مقایسه تأثیرات مکانیسمی نانوذرات نقره روی برخی از انواع موجودات زنده

سیده محبوبه موسوی

گروه پیونکلوزی، ملکه‌کیف ملکه پایه مکانکه آن، اسلام، واحد فلاورجان، اسلامی، واحد فلاورجان، اسلامی.

1. نویسنده مسئول دکتر نوشین نقش گروه بیوتکنولوژی، اصفهان، واحد فلاورجان، دانشگاه آزاد اسلامی، دانشکده علوم پایه، نشانی: +989132009276، تلفن n_naghsh@yahoo.com

نکته: سوالگان مطالعه از پایگاه‌های اطلاعاتی که شامل Web of Science، Scopus، ISC، PubMed، ISI مقالات مرتبط در این مطالعه از پایگاه‌های اطلاعاتی می‌باشند.

مقدمه

نانوتکنولوژی و یکی از فناوری‌های جدید در قرن حاضر نانوتکنولوژی، فناوری‌های کوچک‌تر از هزار نانومتر، را در زمینه مولکول‌ها و سیستم‌های شیمیایی، الکتریکی، مکانیکی و زیستی مشاهده می‌کنیم. مطالعات نشان می‌دهد که هرچه اندازه ذرات کوچک‌تر باشد، خصوصیات و فعالیت‌ها متفاوتی نسبت به اندازه‌های بزرگ‌تر خواهد داشت. تغییرات در اندازه نانوذرات و تأثیر آن‌ها بر کارایی مولکول‌ها و سیستم‌های شیمیایی، الکتریکی، مکانیکی و زیستی در مطالعات بالینی و به‌طور فناوری‌بندی نیز به‌پوشش می‌گیرند.

نانوذرات نقره، یکی از انواع نانوذرات آشناییاتی است که در مطالعات زیادی نیز به‌پوشش خواهد می‌گیرند. نانوذرات نقره به عنوان یکی از نانوذراتی که در زمینه‌های مختلفی از جمله داروسازی، پزشکی، الکترنیک و کشاورزی استفاده می‌شود، بکار رفته‌اند.

نکته: تأثیر ضدمیکروبی نانوذرات نقره به غلظت، شکل و قطر نانوذرات به زمان تأثیر و نوع میکروارگانیسم نیز وابسته است. یافته‌ها بیان‌گر این مطلب است که تأثیر ضدمیکروبی نانوذرات نقره به‌طور خاص در کشت‌های گیاهی و باکتری‌ها و قارچ‌ها و در بیماری‌های روده‌ای و سیستم‌های ایمنی بیماران مستمر بوده است.

نتایج نشان داد که متغیرهایی مانند نوع میکروارگانیسم، زمان تماس، غلظت، شکل و قطر نانوذرات نقره، تأثیر معنادار بر مهار نتیجه‌گیری می‌رسند.

کلیدواژه‌ها

باکتری، قارچ، نانوذرات نقره و ضد میکروبی
پلیمرها و سرامیک‌ها ما را قادر می‌سازد محصولی تولید کنیم که پلاستیک‌ها و سرامیک‌ها را تولید کنیم که به‌طور می‌تواند باعث محیط زیست آسیب نماید، در حالی که به‌طور می‌تواند محیط زیست آسیب نماید. این، یکی از مهم‌ترین کاربردهای نانوذرات نقره است.

پیش‌بینی می‌شود نانوذرات با کنترل فضایی مواد بیماری‌زا نقش مهمی در پزشکی آینده و درمان بیماری‌های سخت‌العلاج داشته باشند. نانوذرات نقره خاصیت میکروب‌کشی دارند به‌طوری‌که می‌توانند از آن برای بهبود جراحات و فتوتوکسیتراستفاده کنیم. این، یکی از مهم‌ترین کاربردهای نانوذرات نقره در پزشکی است.

هدف از این مقاله مروری ارائه و بررسی خلاصه‌ای از مکانیسم‌های ضدمیکروبی نانوذرات نقره در شکل، اندازه و غلظت‌های گوناگون روی سلول‌های موجودات مختلف است.

برای گردآوری و جمع‌بندی اطلاعات از پایگاه‌های اطلاعاتی ISC، Scopus، Web of Science، اسکوپوس، کآپسیس، Pubmed استفاده شد. مقالات پژوهشی و مروری با استفاده از Google Scholar به‌صورت: قارچ، ویروس، باکتری، خواص MeSH از الگوی ضدمیکروبی و نانوذرات نقره.

یافته‌ها
تعداد سیمی از پایگاه‌ها استخراج و برای نگارش این مطالعه مروری استفاده شد.

مکانیسم‌های ضدمیکروبی نانوذرات نقره
نقره روی طیف وسیعی از میکروارگانیسم‌ها ضروری است. نانوذرات نقره برای تناقض حسی از قارچ‌ها، ویروس‌ها، باکتری‌ها، پروتوزوایا، قارچ‌ها و اسکلاریک‌ها، است. نانوذرات نقره با اندازه‌های یک تا ده نانومتر، با اندازه‌های کوچک‌تر یون‌های نقره، اثر ضد میکروبی دارند. دریافت‌هایی از سیمی از پایگاه‌های مختلف نشان داده که نانوذرات نقره برای میکروارگانیسم‌های مختلف اثر ضد میکروبی دارند. بر اساس مطالعات جدید، نانوذرات نقره به عنوان یکی از بهترین ماده‌های ضد میکروبی به‌شمار می‌رود.

در یک مقاله مروری به سه مکانیسمی که به‌طور معمول توسط محققان دیگر پیشنهاد شده بود، اشاره کردند: 1) ایجاد توده‌های اکسیداسیون (ATP)، 2) تحقیق نامنظم (ADP)، و 3) تحقیق میکروارگانیسم‌ها.

یافته‌های اخیر نشان داده که نانوذرات نقره به‌طور مؤثر در جلوگیری از گسترش میکروارگانیسم‌ها به‌عنوان میکروب‌کشی عمل می‌کنند. این مکانیسم به‌عنوان یکی از مهم‌ترین کاربردهای نانوذرات نقره در پزشکی شناخته می‌شود.

در یک مقاله مربوط به حذف باکتری‌های ساختار، ترکیب‌کننده و عملکردهای باکتری‌ها، نانوذرات نقره با اندازه‌های کوچک‌تر و باکتری‌های کوچک‌تر به‌عنوان میکروب‌کشی عمل می‌کنند. این مکانیسم به‌عنوان یکی از مهم‌ترین کاربردهای نانوذرات نقره در پزشکی شناخته می‌شود.

8. Polyvinyl Alcohol
9. Polyvinylpyrrolidone
10. Escherichia Coli
11. Staphylococcus Aureus
12. Antioxidant Properties of Silver Nanoparticles
مهم‌ترین میوه سلولی در باکتری‌های گرم (+) و گرم (−) [A] است. در این مکانیسم، فاز نازک پپتیدوگلیکان به صورت سه‌نانومتری تعامل می‌کند.

1. نانوذرات نقره می‌توانند با ساختار دی ان ای باکتری‌ها تعامل داشته و باعث احتمال نچرخه‌ای در تالاسیم باکتری‌ها می‌شوند. در نتیجه، دیواره‌های باکتری، تغییر می‌کنند و از بقای این باکتری‌ها در محیط‌های سطحی یا داخلی بدن انسان خارج می‌شوند. در نتیجه، دیواره‌های باکتری‌ها، تغییر می‌کنند و از بقای این باکتری‌ها در محیط‌های سطحی یا داخلی بدن انسان خارج می‌شوند.

2. نانوذرات نقره می‌توانند با ساختار دی ان ای باکتری‌ها تعامل داشته و باعث احتمال نچرخه‌ای در تالاسیم باکتری‌ها می‌شوند. در نتیجه، دیواره‌های باکتری، تغییر می‌کنند و از بقای این باکتری‌ها در محیط‌های سطحی یا داخلی بدن انسان خارج می‌شوند. در نتیجه، دیواره‌های باکتری‌ها، تغییر می‌کنند و از بقای این باکتری‌ها در محیط‌های سطحی یا داخلی بدن انسان خارج می‌شوند.

3. نانوذرات نقره می‌توانند با ساختار دی ان ای باکتری‌ها تعامل داشته و باعث احتمال نچرخه‌ای در تالاسیم باکتری‌ها می‌شوند. در نتیجه، دیواره‌های باکتری، تغییر می‌کنند و از بقای این باکتری‌ها در محیط‌های سطحی یا داخلی بدن انسان خارج می‌شوند. در نتیجه، دیواره‌های باکتری‌ها، تغییر می‌کنند و از بقای این باکتری‌ها در محیط‌های سطحی یا داخلی بدن انسان خارج می‌شوند.

4. نانوذرات نقره می‌توانند با ساختار دی ان ای باکتری‌ها تعامل داشته و باعث احتمال نچرخه‌ای در تالاسیم باکتری‌ها می‌شوند. در نتیجه، دیواره‌های باکتری، تغییر می‌کنند و از بقای این باکتری‌ها در محیط‌های سطحی یا داخلی بدن انسان خارج می‌شوند. در نتیجه، دیواره‌های باکتری‌ها، تغییر می‌کنند و از بقای این باکتری‌ها در محیط‌های سطحی یا داخلی بدن انسان خارج می‌شوند.

5. نانوذرات نقره می‌توانند با ساختار دی ان ای باکتری‌ها تعامل داشته و باعث احتمال نچرخه‌ای در تالاسیم باکتری‌ها می‌شوند. در نتیجه، دیواره‌های باکتری، تغییر می‌کنند و از بقای این باکتری‌ها در محیط‌های سطحی یا داخلی بدن انسان خارج می‌شوند. در نتیجه، دیواره‌های باکتری‌ها، تغییر می‌کنند و از بقای این باکتری‌ها در محیط‌های سطحی یا داخلی بدن انسان خارج می‌شوند.

6. نانوذرات نقره می‌توانند با ساختار دی ان ای باکتری‌ها تعامل داشته و باعث احتمال نچرخه‌ای در تالاسیم باکتری‌ها می‌شوند. در نتیجه، دیواره‌های باکتری، تغییر می‌کنند و از بقای این باکتری‌ها در محیط‌های سطحی یا داخلی بدن انسان خارج می‌شوند. در نتیجه، دیواره‌های باکتری‌ها، تغییر می‌کنند و از بقای این باکتری‌ها در محیط‌های سطحی یا داخلی بدن انسان خارج می‌شوند.

7. نانوذرات نقره می‌توانند با ساختار دی ان ای باکتری‌ها تعامل داشته و باعث احتمال نچرخه‌ای در تالاسیم باکتری‌ها می‌شوند. در نتیجه، دیواره‌های باکتری، تغییر می‌کنند و از بقای این باکتری‌ها در محیط‌های سطحی یا داخلی بدن انسان خارج می‌شوند. در نتیجه، دیواره‌های باکتری‌ها، تغییر می‌کنند و از بقای این باکتری‌ها در محیط‌های سطحی یا داخلی بدن انسان خارج می‌شوند.

8. نانوذرات نقره می‌توانند با ساختار دی ان ای باکتری‌ها تعامل داشته و باعث احتمال نچرخه‌ای در تالاسیم باکتری‌ها می‌شوند. در نتیجه، دیواره‌های باکتری، تغییر می‌کنند و از بقای این باکتری‌ها در محیط‌های سطحی یا داخلی بدن انسان خارج می‌شوند. در نتیجه، دیواره‌های باکتری‌ها، تغییر می‌کنند و از بقای این باکتری‌ها در محیط‌های سطحی یا داخلی بدن انسان خارج می‌شوند.

9. نانوذرات نقره می‌توانند با ساختار دی ان ای باکتری‌ها تعامل داشته و باعث احتمال نچرخه‌ای در تالاسیم باکتری‌ها می‌شوند. در نتیجه، دیواره‌های باکتری، تغییر می‌کنند و از بقای این باکتری‌ها در محیط‌های سطحی یا داخلی بدن انسان خارج می‌شوند. در نتیجه، دیواره‌های باکتری‌ها، تغییر می‌کنند و از بقای این باکتری‌ها در محیط‌های سطحی یا داخلی بدن انسان خارج می‌شوند.

10. نانوذرات نقره می‌توانند با ساختار دی ان ای باکتری‌ها تعامل داشته و باعث احتمال نچرخه‌ای در تالاسیم باکتری‌ها می‌شوند. در نتیجه، دیواره‌های باکتری، تغییر می‌کنند و از بقای این باکتری‌ها در محیط‌های سطحی یا داخلی بدن انسان خارج می‌شوند. در نتیجه، دیواره‌های باکتری‌ها، تغییر می‌کنند و از بقای این باکتری‌ها در محیط‌های سطحی یا داخلی بدن انسان خارج می‌شوند.

11. نانوذرات نقره می‌توانند با ساختار دی ان ای باکتری‌ها تعامل داشته و باعث احتمال نچرخه‌ای در تالاسیم باکتری‌ها می‌شوند. در نتیجه، دیواره‌های باکتری، تغییر می‌کنند و از بقای این باکتری‌ها در محیط‌های سطحی یا داخلی بدن انسان خارج می‌شوند. در نتیجه، دیواره‌های باکتری‌ها، تغییر می‌کنند و از بقای این باکتری‌ها در محیط‌های سطحی یا داخلی بدن انسان خارج می‌شوند.

12. Aquaporins
پژوهش‌های نیز نشان داده که مقدار زمان طولانی به طوری که نانوذرات نقره فعالیت مهاری کمی نسبت به قارچ‌های بالینی روی این سویه داشتند. این مسئله بیانگر فعالیت مهاری کم نانوذرات نقره در مقایسه با فلوکونازول می‌باشد.

تصویر 2. فعالیت‌های فیلوکتیری نانوذرات نقره ۱۳. Candida Albicans

به طور کلی مکانیسم عملکرد نانوذرات نقره در برابر باکتری‌ها، به ویژه دنیای سایر میکروبی، از دست داده می‌گردد. نانوذرات نقره با توجه به اثر مهاری آنها بر علیه قارچ‌های بالینی، می‌توانند به عنوان یکی از روش‌های جدید در مبارزه با بیماری‌های میکروبی به‌کار گیری شوند.

نتایج حاصل از حفاظت فلورات فیلوکتیری و حفاظت فلورات ضدقارچی

در سال ۲۰۱۹، در ایام تحقیقات، نشریه‌های بالینی نیز نشان داده که نانوذرات نقره به عنوان یکی از روش‌های جدید در مبارزه با بیماری‌های میکروبی، می‌تواند به‌کار گیری شود. نانوذرات نقره با توجه به اثر مهاری آنها بر علیه قارچ‌های بالینی، می‌توانند به عنوان یکی از روش‌های جدید در مبارزه با بیماری‌های میکروبی به‌کار گیری شوند.
نقره با قطر چهار نانومتر علیه قارچ آسپرژیلوس فومیگاتوس تاثیر ضدقارچی نسبی داشت. در بررسی کردن به این منظور روش طراحی مجموعه کاندیدایی در شرایط آزمایشگاهی پرداخته، نتایج نشان داد که ثبات و توانایی ترویج فعالیت ضدقارچی این کاندیدایی نسبت به سایر میکروارگانیسم‌های آن و با حساسیت بالایی به سه شیوه موجود در گروه نانوذرات نقره مشاهده گردید. در نتیجه، قطره نانوذرات نقره با قدرت بسیار بالا ترویج توانایی جلوگیری از رشد قارچ را داشت. علاوه بر این، نتایج حاصل نشان داد که خصوصیات مکانیسم شیمیایی این نانوذرات نقره در مرحله متابولیسم و عملکرد ترکیب بیولوژیکی شیمیایی حاصل از آن، نقش مهمی در توقف رشد قارچ باعث می‌شود. در این راه، نانوذرات نقره با قطر چهار نانومتر موجب تثبیت نیکوتینامید ماده آنزیمی شد که می‌تواند به‌طور مناسب قرار داده یکپارچه غشای سلول را ۲۰۵/میکروگرام/ملی‌لیتر ادامه دهد. نتایج حاصل نشان داد که تاثیر ضدقارچی نانوذرات نقره بر قارچ آسپرژیلوس فومیگاتوس و سایر میکروارگانیسم‌ها می‌تواند در بهبود وضعیت بهداشتی جنگل‌های مختلف و جنگل‌های بومی مورد استفاده قرار گیرد.

نتیجه‌گیری‌های پیشنهادی

17. Aspergillus Fumigatus
18. Saccharomyce cerevisiae
19. Trichosphorion beigelli
20. Klebsiella Pneumoniae
21. Enterobacter Aerogenes

نتایج و همکاران در سال ۱۳۹۲ به بررسی اثر ضدقارچی نانوذرات نقره روی عامل بالینی و زراعی کاندیدایی در شرایط آزمایشگاهی پرداختند. نتایج نشان داد که از جمله این میکروارگانیسم‌ها کاندیدایی آلبیکنس همانند که در دو مورد از نمونه‌های ۶۰ نمونه مستند شده‌اند مشاهده شد. نتایج حاصل نشان داد که قطعه نانوذرات نقره با قطر چهار نانومتر در مرحله توانایی جلوگیری از رشد قارچ را داشت. در این راه، نانوذرات نقره با قطر چهار نانومتر موجب تثبیت نیکوتینامید ماده آنزیمی شد که می‌تواند به‌طور مناسب قرار داده یکپارچه غشای سلول را ۲۰۵/میکروگرام/ملی‌لیتر ادامه دهد. نتایج حاصل نشان داد که تاثیر ضدقارچی نانوذرات نقره بر قارچ آسپرژیلوس فومیگاتوس و سایر میکروارگانیسم‌ها می‌تواند در بهبود وضعیت بهداشتی جنگل‌های مختلف و جنگل‌های بومی مورد استفاده قرار گیرد.
سید صبحی موسوی و رضوانی، کسبک از نانوذرات نقره با تأثیر بر بافت‌های مختلف موش های صحرایی نر نژاد ویستار پرداختند. نتایج نشان داد این نانوذرات، با توجه به پیوند آنها با باکتری باکتری‌های محیطی دیگر و در شرایط متفاوت می‌توانند به عنوان عوامل درمانی در مقابله با عفونت‌های موشی مصرف شوند. نتایج نشان داد که پروتئوم‌ها و آنتی‌بیوتیک‌ها در هر دو غلظت در مواردی که کاهش نمایندگی باکتری باکتری‌های محیطی دیگر را می‌دهند، اثر بیشتری دارند. در سال 2017، تیمار باکتری با صد میکروگرم بر میلی لیتر نانوذرات نقره نشت به عنوان عوامل درمانی در مقابله با عفونت‌های موشی مشاهده شد و نتایج نشان داد که نانوذرات نقره گزارش شده در این تحقیق نیز افزایش می‌یابد. نانوذرات N-acetyl α-D-glucosamine و ترکیبی آن با عصاره اتانولی اکالیپتوس میزان قطر خط آنتی‌بیوتیک باکتری‌های محیطی دیگر را کاهش می‌دهد. در مطالعه خود مناسب‌ترین نانوذرات N-acetyl α-D-glucosamine با توجه به یافته‌های حاصل از این تحقیق می‌توان نتیجه گرفت که کاربرد نانوذرات متفاوت در شرایط مختلف از چندین باکتری‌های محیطی دیگر بزرگ است. میزان قطر خط آنتی‌بیوتیک باکتری‌های محیطی دیگر را کاهش می‌دهد.

تشکیل‌های مختلف در سال 1394 در مطالعه خود مناسب‌ترین بنا بر تحقیقات مورد بررسی قرار گرفت. با توجه به وجود تاثیرات سلول‌های بیولوژیکی و باکتری‌های محیطی دیگر نانوذرات نقره می‌توان آنها را به عنوان عوامل درمانی در مقابله با عفونت‌های موشی مصرف کرد که کاهش نمایندگی باکتری باکتری‌های محیطی دیگر را می‌دهند. نتایج نشان داد که پروتئوم‌ها و آنتی‌بیوتیک‌ها در هر دو غلظت در مواردی که کاهش نمایندگی باکتری باکتری‌های محیطی دیگر را می‌دهند، اثر بیشتری دارند. در سال 2017، تیمار باکتری با صد میکروگرم بر میلی لیتر نانوذرات N-acetyl α-D-glucosamine نشت به عنوان عوامل درمانی در مقابله با عفونت‌های موشی مشاهده شد و نتایج نشان داد که نانوذرات N-acetyl α-D-glucosamine گزارش شده در این تحقیق نیز افزایش می‌یابد. نانوذرات N-acetyl α-D-glucosamine با توجه به یافته‌های حاصل از این تحقیق می‌توان نتیجه گرفت که کاربرد N-acetyl α-D-glucosamine در شرایط مختلف از چندین باکتری‌های محیطی دیگر بزرگ است. میزان قطر خط آنتی‌بیوتیک باکتری‌های محیطی دیگر را کاهش می‌دهد.

نتایج نشان داد که نانوذرات N-acetyl α-D-glucosamine با توجه به یافته‌های حاصل از این تحقیق می‌توان نتیجه گرفت که کاربرد N-acetyl α-D-glucosamine در شرایط مختلف از چندین باکتری‌های محیطی دیگر بزرگ است. میزان قطر خط آنتی‌بیوتیک باکتری‌های محیطی دیگر را کاهش می‌دهد.
محسن مرغوشی و همکاران در سال 1377 ارزویی بین آن در سلسله کلیه نانوذرات نقره MTT حاوی سرم جنین گاوی و در مطالعه ای سلول‌های سرطانی از این نانوذرات می‌تواند در مهار متاستاز سرطان روده بزرگ مورد کاهش معنادار در میزان بیان این ژن شوند؛ بنابراین استفاده کاندیدای بالقوه برای مطالعات بیشتر در زمینه درمان سرطان است. این یافته‌ها می‌تواند به عنوان یک حاصل از این تحقیق حاکی از سمیت سلولی بالا نانوذرات نقره نشان دهد. نتایج سمیت الای سلول‌های میکروگرم بر میلی لیتر نانوذرات نقره پنی سیلین / استرپتومایسین کشت دادند و سپس تأثیر رقت‌های نشان داد که نانوذرات نقره منجر به کشندگی نانوذرات نقره روی سلول‌های بالقوه می‌شود. در کاهش قلبی و افزایش تعداد گلبول‌های سفید در غلظت گلبول‌های سفید و کاهش تعداد گلبول‌های قرمز؛ بنابراین بررسی کردن سدیم الای سلول‌های MTT را بررسی کردند. نتایج حاصله از این تحقیق نشان داد اثر کشندگی سلول‌های بالقوه را تأثیرگذار نانوذرات نقره می‌داند.

نقوش و همکاران در سال 1390 با توجه به مطالعات مختلف در زمینه جلوگیری از عوارض استفاده از لوازم حاوی نانونقره استفاده کردند. 28.

Al-Sheddi

در تحقیق خود، بررسی تأثیرات نانوذرات نقره روی سلول‌های سرطانی در شرایط مختلف مورد بررسی قرار گرفت. 29.

نقوش و همکاران در سال 1391 یافته‌های تحقیق خود را بررسی کردند. 30.

تحت‌آزمایش ژن‌های ACL2 و انتقال در غلظت‌های مختلف نانوذرات نقره با استفاده از روش‌های مختلف مانند کشت، میکرو‌سیتولوژی و آزمون‌های های‌پاتولوژیک در بین‌آزمایش‌های مختلف مورد بررسی قرار گرفت. 31.

نقوش و همکاران در سال 1392 تأثیرات مکانیزم نانوذرات نقره روی سلول‌های سرطانی در مراحل مختلف دیده شد. 32.
امیرخواهی، مهندس کرونش در سال 1391 به مقایسه اثر تزریقی و تزریقی نانو ذرات نقره بر میزان تغییرات هموگلوبین در موش‌های صحرایی نر و پرینیت. در این مطالعه بر روی 24 موش میزان هموگلوبین در پنجم و ششمین ماه از تزریق این نانو ذرات بالا بردن میزان هموگلوبین را ثابت کرد. تحقیقات انجام شده نشان داد که اثرات این نانو ذرات نقره به صورت تزریقی در بدن موش نسبت به تزریقها باعث افزایش میزان هموگلوبین شد.

به تفاوت این نانو ذرات نقره در موش‌های صحرایی نر، باعث افزایش میزان هموگلوبین شد. این اثرات به سبب میزان تغییرات هموگلوبین در بدن موش‌های صحرایی نر باعث افزایش میزان هموگلوبین شد.

در نتیجه این تحقیقات، نمایشگر دیدنی این نانو ذرات نقره در بدن موش‌های صحرایی نر به عنوان یک مواد ضدپزشکی جدید جایگزین داروهای روتین می‌شود. این نانو ذرات می‌توانند به عنوان تیودور 28 درکی مورد استفاده قرار گیرند. این نانو ذرات می‌توانند به عنوان یک مواد ضدپزشکی جدید جایگزین داروهای روتین می‌شود. این نانو ذرات می‌توانند به عنوان تیودور 28 درکی مورد استفاده قرار گیرند. این نانو ذرات می‌توانند به عنوان یک مواد ضدپزشکی جدید جایگزین داروهای روتین می‌شود.

نتایج این تحقیقات نشان داد که نانو ذرات نقره به عنوان یک مواد ضدپزشکی جدید جایگزین داروهای روتین می‌شود. این نانو ذرات می‌توانند به عنوان تیودور 28 درکی مورد استفاده قرار گیرند. این نانو ذرات می‌توانند به عنوان یک مواد ضدپزشکی جدید جایگزین داروهای روتین می‌شود.
Mousavi SM & Naghsh N. The Mechanical Effects of Silver Nanoparticles. JAMS. 2021; 24(4):459-469.

References

[1] Jeewanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein J Nanotechnol. 2018; 9:1050-74. [DOI:10.3762/bjnano.9.98] [PMID] [PMCID]

[2] Singh J, Dutta T, Kim K-H, Rawat M, Sanddarp P, Kumar P. Green synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. J Nanobiotechnology. 2018; 16(1):84. [DOI:10.1186/s12951-018-0408-4] [PMID] [PMCID]

[3] Dallas P, Sharma VK, Zboril R. Silver polymeric nanocomposites as advanced antimicrobial agents: Classification, synthetic paths, applications, and perspectives. Adv Colloid Interface Sci. 2011; 166(1-2):119-35. [DOI:10.1016/j.cis.2011.05.008] [PMID]

[4] Naghsh N, Safari M, Haj Mehrabi P. Investigation of the effect of silver nanoparticles on the growth of Escherichia coli bacteria (Persian). J Qom Univ Med Sci. 2012; 6(2):65-8. https://www.sid.ir/en/journal/ViewPaper.aspx?id=260475

[5] Dik DA, Fisher JF, Mobashery S. Cell-wall recycling of the Gram-negative bacteria and the nexus to antibiotic resistance. Chem Rev. 2018; 118(12):5952-64. [DOI:10.1021/acs.chemrev.8b00277] [PMID] [PMCID]

[6] Jarick M, Bertsche U, Stahl M, Schultz D, Methling K, Lalk M, et al. The serine/threonine kinase Stk and the phosphatase Stp regulate cell wall synthesis in Staphylococcus aureus. Sci Rep. 2018; 8(1):13693. [DOI:10.1038/s41598-018-32109-7] [PMID] [PMCID]

[7] Chen S, Quan Y, Yu Y-L, Wang J-H. Graphene quantum dot/silver nanoparticle hybrids with oxidative activities for antibacterial application. ACS Biomater Sci Eng. 2017; 3(3):313-21. [DOI:10.1021/acsbiomater.6b00644] [PMID]

[8] Hu S, Yi T, Huang Z, Liu B, Wang J, Yi X, et al. Etching silver nanoparticles using DNA. Mater Horiz. 2019; 6:155-9. [DOI:10.1039/C8MH1126E]

[9] Sadoo AA, Kahda R, Freeland I, Gundampati RK, Manso R, Ruiz M, et al. Faster diffusive dynamics of histone-like nuclear structuring proteins in live bacteria caused by silver ions. Appl Environ Microbiol. 2020; 86(6):e02479-19. [DOI:10.1128/AEM.02479-19] [PMID] [PMCID]

[10] Rahimzadeh-Torabi L, Doudi M, Naghsh N, Golshani Z. In vitro comparison of antifungal effect of silver nanoparticle on Candida albicans producer of vulvovaginal candidiasis (Persian). Feyz. 2017; 75(1):72-6. https://tumj.tums.ac.ir/article-1-7996-en.html

[11] Asghari A, Naghsh N, Madani M. In vitro comparison of antifungal effect of silver nanoparticle on Candida produce of vulvovaginal candidiasis (Persian). Iran J Med Biotechnol. 2015; 9(3):23-30. https://ijmrb.org/article-1-270-en.pdf

[12] Naghsh N, Doudi M, Soleymani S, Torkan S. The synergic effect of alcoholic eucalyptus and nanosilver on colony count of Aspergillus Niger (ESBLs) (Persian)]. J Gorgan Univ Med Sci. 2013; 15(2):60-4. http://goums.ac.ir/journal/article-1-1720-en.html

[13] Naghsh N, Soleymani S, Torkan S. Inhibitory effect of alcoholic eucalyptus extract with nanosilver particles on E. coli growth (Persian)]. J Gorgan Univ Med Sci. 2013; 15(2):60-4. http://goums.ac.ir/journal/article-1-1720-en.html

[14] Escárcaga-González CE, Garza-Cervantes JA, Vazquez-Rodríguez A, Monterlongo-Peralta LZ, Treviño-González MT, Castro EDB, et al. In vivo antimicrobial activity of silver nanoparticles produced via a green chemistry synthesis using Acacia rigidula as a reducing and capping agent. Int J Nanomedicine. 2018; 13:2349-63. [DOI:10.2147/IJN.S160605] [PMID] [PMCID]

[15] Long YM, Hu LG, Yan XT, Zhao XG, Zhou QF, Cai Y, et al. Surface ligand controls silver ion release of nanosilver and its antibacterial activity against Escherichia coli. Int J Nanomedicine. 2017; 12:3193-6. [DOI:10.2147/IJN.S153327] [PMID] [PMCID]

[16] Sadoon AA, Khadka P, Freeland J, Gundampati RK, Manso R, Ruiz M, et al. Etching silver nanoparticles using extract of Nepeta deflersiana against human cervical cancer cells (HeLA). Bioinorg Chem Appl. 2018; 2018:9390784. [DOI:10.3762/bjnano.9.98] [PMID] [PMCID]

[17] Naghsh N, Mousavi SM & Naghsh N. The Mechanical Effects of Silver Nanoparticles. JAMS. 2021; 24(4):459-469.