A CRYSTAL EMBEDDING INTO LUSZTIG DATA OF TYPE A

JAE-HOON KWON

Abstract. Let i be a reduced expression of the longest element in the Weyl group of type A, which is adapted to a Dynkin quiver with a single sink. We present a simple description of the crystal embedding of Young tableaux of arbitrary shape into i-Lusztig data, which also gives an algorithm for the transition matrix between Lusztig data associated to reduced expressions adapted to quivers with a single sink.

1. Introduction

Let $U_q(g)$ be the quantized enveloping algebra associated to a symmetrizable Kac-Moody algebra g. The negative part of $U_q(g)$ has a basis called a canonical basis [16] or lower global crystal basis [7], which has many fundamental properties. The canonical basis forms a colored oriented graph $B(\infty)$, called a crystal, with respect to Kashiwara operators. The crystal $B(\infty)$ plays an important role in the study of combinatorial aspects of $U_q(g)$-modules together with its subgraph $B(\lambda)$ associated to any integrable highest weight module $V(\lambda)$ with highest weight λ.

Suppose that g is a finite-dimensional semisimple Lie algebra with the index set I of simple roots. Let $i = (i_1, \ldots, i_N)$ be a sequence of indices in I corresponding to a reduced expression of the longest element in the Weyl group of g. A PBW basis associated to i is a basis of the negative part of $U_q(g)$ [17], which is parametrized by the set B_i of N-tuple of non-negative integers. One can identify $B(\infty)$ with B_i since the associated PBW basis coincides with the canonical basis at $q = 0$ [20]. We call an element in B_i an i-Lusztig datum or Lusztig parametrization associated to i.

Consider the map

\[
\psi^i_\lambda : B(\lambda) \otimes T_{-\lambda} \rightarrow B_i,
\]

given by the i-Lusztig datum of $b \in B(\lambda)$ under the embedding of $B(\lambda) \otimes T_{-\lambda}$ into $B(\infty)$, where $T_{-\lambda} = \{ t_{-\lambda} \}$ is an abstract crystal with $\text{wt}(t_{-\lambda}) = -\lambda$ and $\varphi_i(t_{-\lambda}) = -\infty$ for $i \in I$. In this paper, we give a simple combinatorial description of (1.1) when

\[2010 \text{ Mathematics Subject Classification.} \quad 17B37, \ 22E46, \ 05E10. \]

\[\text{Key words and phrases.} \quad \text{quantum groups, crystal graphs.} \]

\[\text{This work was supported by Samsung Science and Technology Foundation under Project Number SSTF-BA1501-01.} \]
\(g = \mathfrak{g}l_n \) and \(i \) is a reduced expression adapted to a Dynkin quiver of type \(A_{n-1} \) with a single sink (Theorem 5.4). It is well-known that when \(i \) is adapted to a quiver with one direction, for example \(i = i_0 = (1,2,1,3,2,1,\ldots,n-1,\ldots,1) \), the \(i_0 \)-Lusztig datum of a Young tableaux is simply given by counting the number of occurrences of each entry in each row. But the \(i \)-Lusztig datum for arbitrary \(i \) is not easy to describe in general, and one may apply a sequence of Lusztig’s transformations \([17]\) or the formula for a transition map \(R^i_{i_0} : B_{i_0} \to B_i \) by Berenstein-Fomin-Zelevinsky \([2]\). We remark that our algorithm for computing \(\psi^i_{\lambda} \) is completely different from the known methods, and hence provides an alternative description of \(R^i_{i_0} \).

Let us explain the basic ideas in our description of \(\psi^i_{\lambda} \). Suppose that \(\Omega \) is a quiver of type \(A_{n-1} \) with a single sink and \(i \) is adapted to \(\Omega \). Let \(J \subset I \) be a maximal subset such that each connected component of the corresponding quiver \(\Omega J \subset \Omega \) has only one direction. Let \(g_J \) be the maximal Levi subalgebra and \(u_J \) the nilradical associated to \(J \), respectively.

The first step is to prove a tensor product decomposition \(B_i \cong B^J(\infty) \otimes B_J(\infty) \), as a crystal, where \(B_J(\infty) \) is the crystal of the negative part of \(U_q(g_J) \) and \(B^J(\infty) \) is the crystal of the quantum nilpotent subalgebra \(U_q(u_J) \). The isomorphism is just given by restricting the Lusztig datum to each part, and it is a special case of the bijection introduced in \([1, 20]\) using crystal reflections. Here we show that it is indeed a morphism of crystals by using Reineke’s description of \(B(\infty) \) in terms of representations of \(\Omega \) \([19]\). We refer the reader to a recent work by Salibury-Schultze-Tingley \([23]\) on \(i \)-Lusztig data, which also implies the combinatorial description of Kashiwara operators on \(B(\infty) \) used in this paper.

The next step is to construct an embedding of \(B(\lambda) \otimes T_{-\lambda} \) into \(B^J(\infty) \otimes B_J(\infty) \) using a crystal theoretic interpretation of Sagan and Stanley’s skew RSK algorithm \([22]\), which was observed in the author’s previous work \([12]\) (see also \([13, 14]\)), and using the embedding \([11] \) in case of \(i \) adapted to a quiver with one direction. Hence we obtain an \(i \)-Lusztig datum of a Young tableau for any \(i \) adapted to \(\Omega \). One may consider the image of the embedding by using a combinatorial description of \(*\)-crystal structure on \(B_i \) in \([19]\), but we do not discuss it here.

Our description of the embedding \(\psi^i_{\lambda} \) also provides an algorithm for a transition map \(R^i_{i_0} : B_{i_0} \to B_i \) together with its inverse \(R^i_{i_0} \) since \(\psi^i_{\lambda} \) naturally extends to an isomorphism from another realization of \(B(\infty) \) given by the set of large tableaux \([3, 5]\). Therefore we obtain an algorithm for a transition map \(R^i_{i'} = R^i_{i_0} \circ R^i_{i_0} \) for any \(i \) and \(i' \) which are adapted to quivers with a single sink. Roughly speaking, \(R^i_{i'} \) is given by a composition of skew RSK and its inverse algorithms with respect to various maximal Levi subalgebras depending on \(i \) and \(i' \).
The paper is organized as follows: In Sections 2 and 3, we review necessary background on crystals and related materials. In Section 4, we give an explicit description of the crystal B_i when i is adapted to a Dynkin quiver of type A_{n-1} with a single sink, and then prove the decomposition of B_i as a tensor product of two subcrystals. Finally in Section 5, we construct an embedding of the crystal of Young tableaux of arbitrary shape λ into B_i.

Acknowledgement The author would like to thank Myungho Kim for valuable discussion and kind explanation on representations of quivers.

2. Review on crystals

2.1. Let us give a brief review on crystals (see [1, 7, 9] for more details). We denote by Z_+ the set of non-negative integers. Fix a positive integer n greater than 1. Throughout the paper, \mathfrak{g} denotes the general linear Lie algebra $\mathfrak{gl}_n(\mathbb{C})$ which is spanned by the elementary matrices e_{ij} for $1 \leq i, j \leq n$. Let $P^\vee = \bigoplus_{i=1}^{n} \mathbb{Z}e_{ii}$ be the dual weight lattice and $P = \text{Hom}_{\mathbb{Z}}(P^\vee, \mathbb{Z}) = \bigoplus_{i=1}^{n} \mathbb{Z}e_i$ be the weight lattice of \mathfrak{g} with $(e_i, e_{jj}) = \delta_{ij}$ for i, j. Define a symmetric bilinear form $(\cdot | \cdot)$ on P such that $(e_i | e_j) = \delta_{ij}$ for i, j. Set $I = \{1, \ldots, n-1\}$. Then $\{ \alpha_i := e_i - e_{i+1} \mid i \in I \}$ is the set of simple roots and $\{ h_i := e_{ii} - e_{i+1i+1} \mid i \in I \}$ is the set of simple coroots of \mathfrak{g}. Let $\Phi^+ = \{ \epsilon_i - \epsilon_j \mid 1 \leq i < j \leq n \}$ denote the set of positive roots of \mathfrak{g}.

Let $W \cong S_n$ be the Weyl group of \mathfrak{g}, which is generated by simple reflections s_i for $i \in I$. Let w_0 be the longest element in W, which is of length $N := n(n-1)/2$, and let $R(w_0) = \{ (i_1, \ldots, i_N) \mid w_0 = s_{i_1} \ldots s_{i_N} \}$ be the set of reduced expressions of w_0.

For $J \subset I$, let \mathfrak{g}_J be the subalgebra of \mathfrak{g} generated by e_{ii} for $1 \leq i \leq n$ and the root vectors associated to $\pm \alpha_j$ for $j \in J$. Let Φ^+_J be the set of positive roots of \mathfrak{g}_J and $\Phi^+_J(J) = \Phi^+ \setminus \Phi^+_J$.

A \mathfrak{g}-crystal is a set B together with the maps $\text{wt} : B \to P$, $\varepsilon_i, \varphi_i : B \to \mathbb{Z} \cup \{-\infty\}$ and $\tilde{e}_i, \tilde{f}_i : B \to \mathbb{Z} \cup \{0\}$ for $i \in I$ satisfying the following conditions: for $b \in B$ and $i \in I$,

1. $\varphi_i(b) = \langle \text{wt}(b), h_i \rangle + \varepsilon_i(b)$,
2. $\varepsilon_i(\tilde{e}_i b) = \varepsilon_i(b) - 1$, $\varphi_i(\tilde{e}_i b) = \varphi_i(b) + 1$, $\text{wt}(\tilde{e}_i b) = \text{wt}(b) + \alpha_i$ if $\tilde{e}_i b \in B$,
3. $\varepsilon_i(\tilde{f}_i b) = \varepsilon_i(b) + 1$, $\varphi_i(\tilde{f}_i b) = \varphi_i(b) - 1$, $\text{wt}(\tilde{f}_i b) = \text{wt}(b) - \alpha_i$ if $\tilde{f}_i b \in B$,
4. $\tilde{f}_i b = b'$ if and only if $b = \tilde{e}_i b'$ for $b' \in B$,
5. $\tilde{e}_i b = \tilde{f}_i b = 0$ when $\varphi_i(b) = -\infty$.

Here 0 is a formal symbol and $-\infty$ is the smallest element in $\mathbb{Z} \cup \{-\infty\}$ such that $-\infty + n = -\infty$ for all $n \in \mathbb{Z}$. Unless otherwise specified, a crystal means a \mathfrak{g}-crystal throughout the paper for simplicity.
Let B_1 and B_2 be crystals. A tensor product $B_1 \otimes B_2$ is a crystal, which is defined to be $B_1 \times B_2$ as a set with elements denoted by $b_1 \otimes b_2$, where

$$wt(b_1 \otimes b_2) = wt(b_1) + wt(b_2),$$
$$\varepsilon_i(b_1 \otimes b_2) = \max\{\varepsilon_i(b_1), \varepsilon_i(b_2) - \langle wt(b_1), h_i \rangle\},$$
$$\varphi_i(b_1 \otimes b_2) = \max\{\varphi_i(b_1) + \langle wt(b_2), h_i \rangle, \varphi_i(b_2)\},$$

where $i \in I$. Here we assume that $0 \otimes b_2 = b_1 \otimes 0 = 0$.

A morphism $\psi : B_1 \to B_2$ is a map from $B_1 \cup \{0\}$ to $B_2 \cup \{0\}$ such that

1. $\psi(0) = 0$,
2. $wt(\psi(b)) = wt(b)$, $\varepsilon_i(\psi(b)) = \varepsilon_i(b)$, and $\varphi_i(\psi(b)) = \varphi_i(b)$ when $\psi(b) \neq 0$,
3. $\psi(\overline{e}_ib) = \overline{e}_i\psi(b)$ when $\psi(b) \neq 0$ and $\psi(\overline{e}_ib) \neq 0$,
4. $\psi(\overline{f}_ib) = \overline{f}_i\psi(b)$ when $\psi(b) \neq 0$ and $\psi(\overline{f}_ib) \neq 0$,

for $b \in B_1$ and $i \in I$. We call ψ an embedding and B_1 a subcrystal of B_2 when ψ is injective.

The dual crystal B^\vee of a crystal B is defined to be the set $\{b^\vee | b \in B\}$ with $wt(b^\vee) = -wt(b)$, $\varepsilon_i(b^\vee) = \varphi_i(b)$, $\varphi_i(b^\vee) = \varepsilon_i(b)$, $\overline{e}_i(b^\vee) = \overline{f}_i(b)^\vee$, and $\overline{f}_i(b^\vee) = \overline{e}_i(b)^\vee$ for $b \in B$ and $i \in I$. We assume that $0^\vee = 0$.

For $\mu \in P$, let $T_\mu = \{t_\mu\}$ be a crystal, where $wt(t_\mu) = \mu$, $\overline{e}_it_\mu = \overline{f}_i t_\mu = 0$, and $\varepsilon_i(t_\mu) = \varphi_i(t_\mu) = -\infty$ for all $i \in I$.

2.2. Let q be an indeterminate. Let $U = U_q(\mathfrak{g})$ be the quantized enveloping algebra of \mathfrak{g}, which is an associative $\mathbb{Q}(q)$-algebra with 1 generated by e_i, f_i, and q^h for $i \in I$ and $h \in P^\vee$. Let $U^\minus{} = U_q^\minus{}(\mathfrak{g})$ be the negative part of U, the subalgebra generated by f_i for $i \in I$. We put $[m] = \frac{q^m - q^{-m}}{q - q^{-1}}$ and $[m]! = [1][2] \cdots [m]$ for $m \in \mathbb{N}$. Let $t_i = q^{h_i}$, $e_i^{(m)} = e_i^m/[m]!$, and $f_i^{(m)} = f_i^m/[m]!$ for $m \in \mathbb{N}$ and $i \in I$. Let A_0 denote the subring of $\mathbb{Q}(q)$ consisting of rational functions regular at $q = 0$.

For $i \in I$, let T_i be the $\mathbb{Q}(q)$-algebra automorphism of U given by

$$T_i(t_j) = t_j t_i^{-a_{ij}},$$
$$T_i(e_j) = \begin{cases} -f_i t_i, & \text{if } j = i, \\ \sum_{k+l = -a_{ij}} (-1)^k q^{-l} e_i^{(k)} e_j e_i^{(l)}, & \text{if } j \neq i, \end{cases}$$
\[T_i(f_j) = \begin{cases} -t_i^{-1}e_i, & \text{if } j = i, \\ \sum_{k+l=-a_{ij}}(-1)^k q^k f_i^{(k)} f_j f_i^{(l)}, & \text{if } j \neq i, \end{cases} \]

for \(j \in I \), where \(a_{ij} = \langle \alpha_j, h_i \rangle \). Note that \(T_i \) is denoted by \(T_i^{\nu} \) in [17] (see also [20]).

For \(i = (i_1, \ldots, i_N) \in R(w_0) \) and \(c = (c_1, \ldots, c_N) \in \mathbb{Z}_+^N \), consider the vectors of the following form:

\[(2.2) \quad b_i(c) = f_i^{(c_1)} T_i T_{i_2} \cdots T_{i_{N-1}} f_i^{(c_N)}. \]

The set \(B_i := \{ b_i(c) \mid c \in \mathbb{Z}_+^N \} \) is a \(\mathbb{Q}(q) \)-basis of \(U^- \), which is often referred to as a PBW basis [17].

The \(A_0 \)-lattice of \(U^- \) generated by \(B_i \) is independent of the choice of \(i \), which we denote by \(L(\infty) \). If \(\pi : L(\infty) \to L(\infty)/qL(\infty) \) is the canonical projection, then \(\pi(B_i) \) is a \(\mathbb{Q} \)-basis of \(L(\infty)/qL(\infty) \) and also independent of the choice of \(i \), which we denote by \(B(\infty) \). Indeed the pair \((L(\infty), B(\infty)) \) coincides with the Kashiwara’s crystal base of \(U^- \) [7], that is, \(L(\infty) \) is invariant under \(\tilde{e}_i, \tilde{f}_i \), and \(\tilde{e}_i B(\infty) \subset B(\infty) \cup \{0\} \), \(\tilde{f}_i B(\infty) \subset B(\infty) \cup \{0\} \) for \(i \in I \), where \(\tilde{e}_i \) and \(\tilde{f}_i \) denote the modified Kashiwara operators on \(U^- \) given by

\[\tilde{e}_i x = \sum_{k \geq 1} f_i^{(k-1)} x_k, \quad \tilde{f}_i x = \sum_{k \geq 0} f_i^{(k+1)} x_k, \]

for \(x = \sum_{k \geq 0} f_i^{(k)} x_k \in U^- \), where \(x_k \in T_i(U^-) \cap U^- \) for \(k \geq 0 \) (see [18, 20]). The set \(B(\infty) \) equipped with the induced operators \(\tilde{e}_i \) and \(\tilde{f}_i \) becomes a crystal, where \(\varepsilon_i(b) = \max\{ k \mid \tilde{e}_i^k b \neq 0 \} \) for \(i \in I \) and \(b \in B(\infty) \).

Let \(P^+ = \{ \lambda \in P \mid \langle \lambda, h_i \rangle \geq 0 \text{ for } i \in I \} \) be the set of dominant integral weights. For \(\lambda \in P^+ \), let \(V(\lambda) \) be the irreducible highest weight \(U^- \)-module with highest weight \(\lambda \), which is given by \(U^-/\sum_{i \in I} U^- f_i^{(\langle \lambda, h_i \rangle + 1)} \cdot 1 \) as a left \(U^- \)-module. If \(\pi_\lambda : U^- \to V(\lambda) \) is the canonical projection, then \(L(\lambda) := \pi_\lambda(L(\infty)) \) is an \(A_0 \)-lattice of \(V(\lambda) \) and \(B(\lambda) := \pi_\lambda(B(\infty)) \setminus \{0\} \) is a \(\mathbb{Q} \)-basis of \(L(\lambda)/qL(\lambda) \). The pair \((L(\lambda), B(\lambda)) \) is called the crystal base of \(V(\lambda) \). The set \(B(\lambda) \) becomes a crystal with respect to \(\tilde{e}_i \) and \(\tilde{f}_i \) induced from those on \(B(\infty) \), where \(\varepsilon_i(b) = \max\{ k \mid \tilde{e}_i^k b \neq 0 \} \) and \(\varphi_i(b) = \max\{ k \mid \tilde{f}_i^k b \neq 0 \} \) for \(i \in I \) and \(b \in B(\lambda) \) [7].

3. Crystal of Young tableaux

3.1. Let us recall some necessary background on semistandard tableaux and related combinatorics following [3]. Let \(\mathcal{P} \) be the set of partitions. We identify \(\lambda = (\lambda_i)_{i \geq 1} \in \mathcal{P} \) with a Young diagram. Let \(\lambda/\mu \) denote a skew Young diagram associated to \(\lambda, \mu \in \mathcal{P} \) with \(\lambda \supset \mu \), and let \((\lambda/\mu)^\circ \) denote the skew Young diagram obtained by \(180^\circ \)-rotation of \(\lambda/\mu \).
Let \(\Lambda \) be a linearly ordered set. For a skew Young diagram \(\lambda/\mu \), let \(\text{SST}_\Lambda(\lambda/\mu) \) be the set of all semistandard tableaux of shape \(\lambda/\mu \) with entries in \(\Lambda \). Let \(\mathcal{W}_\Lambda \) be the set of finite words in \(\Lambda \). For \(T \in \text{SST}_\Lambda(\lambda/\mu) \), let \(\text{sh}(T) \) denote the shape of \(T \), and let \(w(T) \) be a word in \(\mathcal{W}_\Lambda \) obtained by reading the entries of \(T \) row by row from top to bottom, and from right to left in each row.

Let \(T \in \text{SST}_\Lambda(\lambda^\pi) \) be given for \(\lambda \in \mathcal{P} \). For \(a \in \Lambda \), we define \(T \leftarrow a \) to be the tableau obtained by applying the Schensted's column insertion of \(a \) into \(T \) in a reverse way starting from the rightmost column of \(T \) so that \(\text{sh}(T \leftarrow a) = \mu^\pi \) for some \(\mu \supset \lambda \) obtained by adding a box in a corner of \(\lambda \). We also denote by \(T^\pi \) the unique tableau in \(\text{SST}_\Lambda(\lambda) \), which is Knuth equivalent to \(T \). Note that the map \(T \mapsto T^\pi \) gives a bijection from \(\text{SST}_\Lambda(\lambda^\pi) \) to \(\text{SST}_\Lambda(\lambda) \), where the inverse map is given by \((\cdots (a_r \leftarrow a_{r-1}) \leftarrow \cdots) \leftarrow a_1\) for \(S \in \text{SST}_\Lambda(\lambda) \) with \(w(S) = a_1 \cdots a_r \).

Let \(B \) be another linearly ordered set, and let

\[
\mathcal{M}_{\Lambda \times B} = \left\{ M = (m_{ab})_{a \in \Lambda, b \in B} \left| m_{ab} \in \mathbb{Z}_+, \sum_{a,b} m_{ab} < \infty \right. \right\}.
\]

Let \(J_{\Lambda \times B} \) be the set of biwords \((a, b) \in \mathcal{W}_\Lambda \times \mathcal{W}_B\) such that (1) \(a = a_1 \cdots a_r \) and \(b = b_1 \cdots b_r \) for some \(r \geq 0 \), (2) \((a_1, b_1) \leq \cdots \leq (a_r, b_r)\), where for \((a, b)\) and \((c, d)\) \(a < d \) implies \((a, b) < (c, d)\). There is a bijection

\[
\begin{align*}
J_{\Lambda \times B} & \rightarrow \mathcal{M}_{\Lambda \times B} \\
(a, b) & \mapsto M(a, b)
\end{align*}
\]

where \(M(a, b) = (m_{ab}) \) with \(m_{ab} = |\{k \mid (a_k, b_k) = (a, b)\}| \) and the pair of empty words \((\emptyset, \emptyset)\) corresponds to the zero matrix \(O \).

For \((a, b) \in J_{\Lambda \times B}\), we write \(M[b, a] = M(a, b)^t \in \mathcal{M}_{B \times \Lambda} \), where \(M^t \) denotes the transpose of \(M \in \mathcal{M}_{B \times \Lambda} \). For \((a, b) \in J_{\Lambda \times B}\), there exist unique \(a^r \in \mathcal{W}_\Lambda \) and \(b^r \in \mathcal{W}_B \), which are rearrangements of \(a \) and \(b \), respectively, satisfying \(M(b^r, a^r) = M(a, b)^t \in \mathcal{M}_{B \times \Lambda} \) with \((b^r, a^r) \in J_{B \times \Lambda}\), or equivalently

\[
M[a^r, b^r] = M(a, b) \in \mathcal{M}_{\Lambda \times B}.
\]

Fix \(\lambda \in \mathcal{P} \). Let \(T \in \text{SST}_\Lambda(\lambda^\pi) \) and \(M \in \mathcal{M}_{\Lambda \times B} \) be given, where \(M = M(a, b) \) for some \((a, b) \in J_{\Lambda \times B}\). Suppose that \(a^r = a_1^r \cdots a_r^r \) and \(b^r = b_1^r \cdots b_r^r \). We define the pair of tableaux \(P(T \leftarrow M) \) and \(Q(T \leftarrow M) \) inductively as follows: For \(1 \leq i \leq r \), put \(P^{(i)} = (P^{(i-1)} \leftarrow a_{r-i+1}^r) \), and \(\lambda^{(i)} = \text{sh}(P^{(i)})^\pi \) with \(P^{(0)} = T \) and \(\lambda^{(0)} = \lambda \). Define \(P(T \leftarrow M) = P^r \) and \(\mu = \text{sh}(P^r)^\pi \), and define \(Q(T \leftarrow M) \) to be the tableau of shape \((\mu/\lambda)^\pi\), where \((\lambda^{(i)}/\lambda^{(i-1)})^\pi\) is filled with \(b_{r-i+1}^r \) for \(1 \leq i \leq r \).
Then the map

\[
\kappa : \text{SST}_k(\lambda^\pi) \times \mathcal{M}_{\lambda \times \lambda} \to \bigcup_{\mu \supset \lambda} \text{SST}_k(\mu^\pi) \times \text{SST}_\mu((\mu/\lambda)^\pi)
\]

is a bijection, which is a skew analogue of the usual RSK correspondence \cite{22}.

3.2. Let \([n] = \{1 < \cdots < n\}\) and \([\overline{n}] = \{\overline{n} < \cdots < \overline{1}\}\) be linearly ordered sets. We regard \([n]\) as a crystal \(B(\epsilon_1)\), where \(\text{wt}(k) = \epsilon_k\) for \(k \in [n]\), and \([\overline{n}]\) as the dual crystal \([n]^\vee\), where \(\overline{k} = k^\vee\) for \(k \in [n]\). Then \(\mathcal{W}_n\) and \(\mathcal{W}_{\overline{n}}\) are crystals, where we identify \(w = w_1 \cdots w_r\) with \(w_1 \otimes \cdots \otimes w_r\). The crystal structure on \(\mathcal{W}_n\) is easily described by so-called signature rule (cf. \cite{10} Section 2.1).

Let \(\mathcal{P}_n\) be the set of partitions \(\lambda = (\lambda_1, \ldots, \lambda_n)\) of length less than or equal to \(n\). For \(\lambda \in \mathcal{P}_n\), \(\text{SST}_{[n]}(\lambda)\) is a crystal under the identification of \(T\) with \(w(T) \in \mathcal{W}_n\), and it is isomorphic to \(B(\lambda)\), where we regard \(\lambda\) as \(\sum_{i=1}^n \lambda_i \epsilon_i \in P^+\) \cite{10}, while \(\text{SST}_{[\overline{n}]}(\lambda)\) is isomorphic to \(B(-w_0 \lambda)\). One can define a crystal structure on \(\text{SST}_{[n]}(\mu/\nu)\) for a skew Young diagram \(\mu/\nu\) in a similar way. Note that \(\text{SST}_{[n]}(\lambda)^\vee \cong \text{SST}_{[\overline{n}]}(\lambda^\pi)\), where the isomorphism is given by taking the 180°-rotation and replacing the entry \(i\) with \(n - i + 1\) for \(i \in [n]\).

For \(0 \leq t \leq n\), let \(\sigma^{-1} : \text{SST}_{[n]}(1^t) \to \text{SST}_{[\overline{n}]}(1^{n-t})\) be a bijection, where \(\sigma^{-1}(T)\) is the tableau with entries \([\overline{n}] \setminus \{\overline{k_1}, \ldots, \overline{k_t}\}\) for \(T\) with entries \(k_1 < \cdots < k_t\). For \(d \geq \lambda_1\), define

\[
\sigma^{-d} : \text{SST}_{[n]}(\lambda) \to \text{SST}_{[\overline{n}]}(\sigma^{-d}(\lambda)), \tag{3.4}
\]

where \(\sigma^{-d}(\lambda) = (d^n)/\lambda\), and the \(i\)th column of \(\sigma^{-d}(T)\) from the left is obtained by applying \(\sigma^{-1}\) to the \(i\)th column of \(T \in \text{SST}_{[n]}(\lambda)\) (which is assumed to be empty if \(i > \lambda_1\)). Then \(\sigma^{-d}\) commutes with \(\tilde{e}_i\) and \(\tilde{f}_i\) for \(i \in I\), where \(\text{wt}(\sigma^{-d}(T)) = \text{wt}(T) - d(\epsilon_1 + \cdots + \epsilon_n)\). We have an isomorphism of crystals

\[
\text{SST}_{[n]}(\lambda) \otimes T_\xi \to \text{SST}_{[\overline{n}]}(\sigma^{-d}(\lambda)), \tag{3.5}
\]

where \(\xi = -d(\epsilon_1 + \cdots + \epsilon_n)\). Also (3.4) and (3.5) hold when \([n]\) and \([\overline{n}]\) are exchanged (assuming that \(\overline{k} = k\) for \(k \in [n]\)).

4. Crystal of Lusztig data

4.1. Let \(i = (i_1, \ldots, i_N) \in R(w_0)\) be given. We have

\[
\Phi^+ = \{ \beta_1 := \alpha_{i_1}, \beta_2 := s_{i_1}(\alpha_{i_2}), \ldots, \beta_N := s_{i_1} \cdots s_{i_{N-1}}(\alpha_{i_N}) \}.
\]
Since \(\pi(B_1) = B(\infty) \) and \(b_1 : \mathbb{Z}_+^N \to B_1 \) is a bijection by (2.2), one can define a crystal structure on \(\mathbb{Z}_+^N \) by

\[
\tilde{f}_i c = c' \quad \text{if and only if} \quad \tilde{f}_i b_1(c) \equiv b_1(c') \pmod{qL(\infty)} \quad \text{for} \quad c, c' \in \mathbb{Z}_+^N \quad \text{and} \quad i \in I,
\]

with \(\text{wt}(c) = -(c_1\beta_1 + \cdots + c_N\beta_N) \), for \(c = (c_k) \in \mathbb{Z}_+^N \). We call the crystal \(\mathbb{Z}_+^N \) the crystal of \(i \)-Lusztig data, and denote it by \(B_i \). Recall that (4.1)

\[
\tilde{f}_i c = (c_1 + 1, c_2, \ldots, c_N), \quad \text{for} \quad c = (c_k) \in B_i.
\]

Let \(\Omega \) be a Dynkin quiver of type \(A_{n-1} \). We call a vertex \(i \in I \) a sink (resp. source) of \(\Omega \) if there is no arrow going out of \(i \) (resp. coming into \(i \)). For \(i \in I \), let \(s_i \Omega \) be the quiver given by reversing the arrows which end or start at \(i \). We say that \(i = (i_1, \ldots, i_N) \in R(w_0) \) is adapted to \(\Omega \) if \(i_1 \) is a sink of \(\Omega \), and \(i_k \) is a sink of \(s_{i_{k-1}} \cdots s_{i_1} \Omega \) for \(2 \leq k \leq N \).

Let \(B_{\Omega} \) be the crystal \(B_i \) for \(i \in R(w_0) \) which is adapted to \(\Omega \). Note that \(B_{\Omega} \) is independent of the choice of \(i \) [15]. For \(c = (c_k) \in B_i \), we write \(c_{ij} = c_k \) if \(\beta_k = \epsilon_i - \epsilon_j \) for \(1 \leq i < j \leq N \). For \(c = (c_{ij}) \) and \(c' = (c'_{ij}) \in B_{\Omega} \), put \(c \pm c' = (c_{ij} \pm c'_{ij}) \). For \(1 \leq k < l \leq n \), let \(1_{kl} = (c_{ij}^{kl}) \in B_{\Omega} \) be such that \(c_{ij}^{kl} = \delta_{ik}\delta_{jl} \).

In the next subsections, we consider some special cases of \(\Omega \), which give simple descriptions of the crystal \(B_{\Omega} \).}

4.2. We first consider the quiver \(\Omega \) where all the arrows are of the same direction. Suppose that \(\Omega = \Omega^+ \), where

\[
\Omega^+ : \quad \bullet \quad \cdots \quad \bullet \\
1 \quad 2 \quad \cdots \quad n-1
\]

For example, \(i = (1, 2, 1, 3, 2, 1, \ldots, n - 1, n - 2, \ldots, 2, 1) \) is adapted to \(\Omega^+ \). We assume that \(A = B = [n] \) and define an injective map

\[
(4.3) \quad B_{\Omega^+} \hookrightarrow M_{A \times B}, \quad c \quad \mapsto \quad M^+(c)
\]

where \(M^+(c) = (m_{ij}^+) \) is a strictly upper triangular matrix given by \(m_{ij}^+ = c_{ij} \) when \(1 \leq i < j \leq n \) and \(0 \) otherwise, for \(c = (c_{ij}) \in B_{\Omega^+} \). For \(M \in M_{A \times B} \), let \(M^+ = (m_{ij}^+) \) be the projection of \(M = (m_{ij}) \) onto the image of \(B_{\Omega^+} \) under (4.3), that is, \(m_{ij}^+ = m_{ij} \) for \(1 \leq i < j \leq n \), and \(0 \) otherwise.

Let us define \(\tilde{f}_i \) and \(\tilde{e}_i \) for \(i \in I \) on the image of \(B_{\Omega^+} \) in \(M_{A \times B} \) under (4.3). Given \(c \in B_{\Omega^+} \), suppose that \(M^+(c) = M(a, b) \) for some \((a, b) \in J_{A \times B} \) under (3.1). Recall
that b is an element in a crystal $W_{[n]}$. For $i \in I$, we define

$$
\bar{e}_iM^+(c) = \begin{cases}
M(a, \bar{e}_ib)^+, & \text{if } \bar{e}_ib \neq 0, \\
0, & \text{if } \bar{e}_ib = 0,
\end{cases}
$$

$$
(4.4)
$$

$$
\bar{f}_iM^+(c) = \begin{cases}
M(a, \bar{f}_ib), & \text{if } \bar{f}_ib \neq 0, \\
M(a, b) + E_{i+1}, & \text{if } \bar{f}_ib = 0,
\end{cases}
$$

where E_{i+1} is an elementary matrix in $M_{A \times B}$. Note that 0 is a formal symbol, not the zero matrix O.

Next suppose that $\Omega = \Omega^-$, where

$$
\begin{array}{c}
\Omega^- : \\
1 & 2 & \cdots & n-1
\end{array}
$$

In this case, we assume that $A = [n]$ and $B = [m]$, and define an injective map

$$
(4.5)
$$

$$
\begin{array}{c}
\mathcal{B}_{\Omega^-} & \hookrightarrow & M_{A \times B} \\
c & \mapsto & M^-(c)
\end{array}
$$

where $M^-(c) = (m^-_{ab})$ is a strictly upper triangular matrix given by $m^-_{n-j+1,i} = c_{ij}$ when $1 \leq i < j \leq n$, and 0 otherwise, for $c = (c_{ij}) \in \mathcal{B}_{\Omega^-}$. For $M = (m_{ij}) \in M_{A \times B}$, let $M^-(c)$ be the projection of M onto the image of \mathcal{B}_{Ω^-} under (4.5), that is, $m^-_{ij} = m_{ij}$ for $i + j \leq n$, and 0 otherwise.

Let us define \bar{e}_i and \bar{f}_i for $i \in I$ on the image of \mathcal{B}_{Ω^-} in $M_{A \times B}$ under (4.5). Given $c = (c_{ij}) \in \mathcal{B}_{\Omega^-}$, suppose that $M^-(c) = M(a, b)$ for some $(a, b) \in J_{A \times B}$. For $i \in I$, we define

$$
\bar{e}_iM^-(c) = \begin{cases}
M(a, \bar{e}_ib)^-, & \text{if } \bar{e}_ib \neq 0, \\
0, & \text{if } \bar{e}_ib = 0,
\end{cases}
$$

$$
(4.6)
$$

$$
\bar{f}_iM^-(c) = \begin{cases}
M(a, \bar{f}_ib), & \text{if } \bar{f}_ib \neq 0, \\
M(a, b) + E_{n-i}, & \text{if } \bar{f}_ib = 0,
\end{cases}
$$

where E_{n-i} is an elementary matrix in $M_{A \times B}$.

Proposition 4.1. Suppose that Ω is either Ω^+ or Ω^-. The operators \bar{e}_i and \bar{f}_i for $i \in I$ on \mathcal{B}_{Ω} induced from (4.4) and (4.6) coincide with those in (1.1), that is,

$$
\bar{e}_iM^\pm(c) = M^\pm(\bar{e}_ic), \quad \bar{f}_iM^\pm(c) = M^\pm(\bar{f}_ic),
$$

for $i \in I$ and $c \in \mathcal{B}_{\Omega}$. Here we assume that $M^\pm(0) = 0$.
Proof. We will consider only the case when $\Omega = \Omega^+$, since the proof for the case when $\Omega = \Omega^-$ is similar. Let us first recall the description of (4.1) on B_Ω in [19, Theorem 7.1] (see also [21, Section 4.1]). Let $c = (c_{ij}) \in B_\Omega$ be given. For $i \in I$, put

$$c_k^{(i)} = \sum_{s=1}^{k} (c_{si+1} - c_{s-1,i}) \quad (1 \leq k \leq i),$$

$$c^{(i)} = \max\{c_k^{(i)} | 1 \leq k \leq i\},$$

$$k_0 = \min\{1 \leq k \leq i | c_k^{(i)} = c^{(i)}\},$$

$$k_1 = \max\{1 \leq k \leq i | c_k^{(i)} = c^{(i)}\},$$

where we assume that $c_0 = 0$. Then one can compute from [19, Theorem 7.1]

$$\bar{e}_i c = \begin{cases} c + 1_{k_0} - 1_{k_0 + 1}, & \text{if } c^{(i)} > 0 \text{ and } k_0 < i, \\ c - 1_{i+1}, & \text{if } c^{(i)} > 0 \text{ and } k_0 = i, \\ 0, & \text{if } c^{(i)} = 0, \end{cases}$$

(4.7)

$$\bar{f}_i c = \begin{cases} c - 1_{k_1} + 1_{k_1 + 1}, & \text{if } k_1 < i, \\ c + 1_{i+1}, & \text{if } k_1 = i. \end{cases}$$

On the other hand, suppose that $M^+(c) = M(a, b)$ for some $(a, b) \in J_{\mathbb{A} \times \mathbb{B}}$ under (3.1), where $b = b_1 \ldots b_r$. By definition of (a, b), the subword of b consisting of i and $i + 1$ is

$$\overbrace{i + 1 \ldots i + 1}^{c_{1i+1}} \underbrace{i \ldots i}_{c_1} \overbrace{i + 1 \ldots i + 1}^{c_{2i+1}} \underbrace{i \ldots i}_{c_2} \ldots \overbrace{i + 1 \ldots i + 1}^{c_{ki+1}} \underbrace{i \ldots i}_{c_k}.$$

By the tensor product rule of crystals [21] (cf. [10, Proposition 2.1.1]), it is straightforward to see that $c^{(i)} > 0$ if and only if $\varepsilon_i(b) > 0$ and $\bar{e}_i b = b_1 \cdots (\bar{e}_i b_s) \cdots b_r$ for some $1 \leq s \leq r$ with $b_s = i + 1$, where b_s is the leftmost $i + 1$ in $i + 1 \cdots i + 1$. This implies that $\bar{e}_i M^+(c) = M^+(\bar{e}_i c)$. Similarly, we see that

1. $k_1 < i$ if and only if $\varphi_i(b) > 0$ and $\bar{f}_i b = b_1 \cdots (\bar{f}_i b_s) \cdots b_r$ with $b_s = i$ for some $1 \leq s \leq r$, where b_s is the rightmost i in $i \cdots i$.

2. $k_1 = i$ if and only if $\varphi_i(b) = 0$ or $\bar{f}_i b = 0$,

which implies that $\bar{f}_i M^+(c) = M^+(\bar{f}_i c)$. \qed

4.3. Now we suppose that Ω is a quiver with a single sink, that is,

$$\bullet \cdots \bullet \bullet \cdots \bullet,$$

1 r $n - 1
for some $r \in I$. Note that we have $\Omega = \Omega^+$ if $r = 1$ and $\Omega = \Omega^-$ when $r = n - 1$. So we assume that $r \in I \setminus \{1, n - 1\}$. Put
\[
J = I \setminus \{r\}, \quad J_1 = \{ j \in J \mid j < r \}, \quad J_2 = \{ j \in J \mid j > r \},
\]
where $J = J_1 \cup J_2$. Then we have $\Phi^+ = \Phi^+(J) \cup \Phi^+_{J_1} \cup \Phi^+_{J_2}$ where
\[
\Phi^+_{J_1} = \{ \epsilon_i - \epsilon_j \mid 1 \leq i < j \leq r \},
\]
\[
\Phi^+_{J_2} = \{ \epsilon_i - \epsilon_j \mid r < i < j \leq n \},
\]
\[
\Phi^+(J) = \{ \epsilon_i - \epsilon_j \mid 1 \leq i \leq r < j \leq n \}.
\]
We set
\[
\mathcal{B}^J_\Omega = \{ c = (c_{ij}) \in \mathcal{B}_\Omega \mid c_{ij} = 0 \text{ unless } \epsilon_i - \epsilon_j \in \Phi^+(J) \},
\]
which is a subcrystal of \mathcal{B}_Ω. Note that we have $f_i c = 0$ on \mathcal{B}^J_Ω if $f_i c \not\in \mathcal{B}^J_\Omega$ for $i \in I$ and $c \in \mathcal{B}^J_\Omega$. Let Ω_{J_k} be the quiver corresponding to the vertices J_k ($k = 1, 2$) in Ω. Then $\mathcal{B}_{\Omega_{J_k}}$ is the crystal of the negative part of the quantum group $U_q(\mathfrak{g}_{J_k})$, whose crystal structure is described in (4.3) and (4.6), respectively. We identify $\mathcal{B}_{\Omega_{J_k}}$ with the subset of \mathcal{B}_Ω consisting of $c = (c_{ij})$ with $c_{ij} = 0$ for $\epsilon_i - \epsilon_j \not\in \Phi^+_{J_k}$, and then regard it as a subcrystal of \mathcal{B}_Ω where $\tilde{e}_i c = f_i c = 0$ with $\varphi_i(c) = \varphi_i(c) = -\infty$ for $i \in J \setminus J_k$.

We define a bijection
(4.8) \[
\begin{array}{ccc}
\mathcal{B}^J_\Omega & \longrightarrow & M_{[r] \times [n] \setminus \{r\}} \\
c & \longmapsto & M(c)
\end{array}
\]
where $M(c) = (m_{ab})$ is given by $m_{r+j} = c_{ij}$ for $c = (c_{ij}) \in \mathcal{B}^J_\Omega$ ($1 \leq i \leq r < j \leq n$).

Given $c \in \mathcal{B}^J_\Omega$, suppose that $M(c) = M(a, b) = M[\bar{a}^r, \bar{b}^r] = (m_{ab})$ for some $(a, b) \in \mathcal{J}_k \times \mathcal{B}$ (see (3.2)). For $i \in I$, we define
\[
\tilde{e}_i M(c) = \begin{cases}
M[\bar{e}_i \bar{a}^r, \bar{b}^r], & \text{if } i \in J_1 \text{ and } \bar{e}_i \bar{a}^r \neq 0, \\
M(a, \bar{e}_i b), & \text{if } i \in J_2 \text{ and } \bar{e}_i b \neq 0, \\
M(a, b) - E_{\tau_{r+1}}, & \text{if } i = r \text{ and } m_{\tau_{r+1}} > 0, \\
0, & \text{otherwise},
\end{cases}
\]
(4.9) \[
\begin{cases}
M \left[\bar{f}_i \bar{a}^r, \bar{b}^r \right], & \text{if } i \in J_1 \text{ and } \bar{f}_i \bar{a}^r \neq 0, \\
M \left(a, \bar{f}_i b \right), & \text{if } i \in J_2 \text{ and } \bar{f}_i b \neq 0, \\
M(a, b) + E_{\tau_{r+1}}, & \text{if } i = r, \\
0, & \text{otherwise}.
\end{cases}
\]
For \(c \in \mathcal{B}_{\Omega} \), let \(c^I \) and \(c_{J_k} \) be the restrictions of \(c \) to \(\mathcal{B}^I_{\Omega} \) and \(\mathcal{B}_{\Omega_{J_k}} \) \((k = 1, 2)\), respectively. Then we have the following decomposition of \(\mathcal{B}_{\Omega} \) as a tensor product of its subcrystals.

Theorem 4.2. The map

\[
\begin{array}{c}
\mathcal{B}_{\Omega} \\
\xrightarrow{c}
\end{array} \mathcal{B}^I_{\Omega} \otimes \mathcal{B}_{\Omega_{J_1}} \otimes \mathcal{B}_{\Omega_{J_2}}
\]

is an isomorphism of crystals. Moreover, for \(i \in I \) and \(c \in \mathcal{B}^I_{\Omega} \) such that \(\bar{e}_i c \in \mathcal{B}^I_{\Omega} \) and \(\bar{f}_i c \in \mathcal{B}^I_{\Omega} \), the operators \(\bar{e}_i \) and \(\bar{f}_i \) on \(\mathcal{B}^I_{\Omega} \) induced from (4.9) coincide with those in (4.11) respectively, that is,

\[
\bar{e}_i M (c) = M (\bar{e}_i c), \quad \bar{f}_i M (c) = M (\bar{f}_i c).
\]

Proof. As in Proposition 4.1, it is done by comparing with the description of (4.11) on \(\mathcal{B}_{\Omega} \) using [19] Theorem 7.1.

For \(c \in \mathcal{B}_{\Omega} \), let \(\psi(c) = c'^I \otimes c_{J_1} \otimes c_{J_2} \). It is clear that \(\psi \) is a bijection. So it remains to show that \(\psi \) commutes with \(\bar{e}_i \) and \(\bar{f}_i \) for \(i \in I \).

Suppose that \(c = (c_{ij}) \in \mathcal{B}_{\Omega} \) is given. First, we have by (4.2)

\[
\bar{e}_r c = \begin{cases}
 c - 1_{r+1}, & \text{if } c_{r+1} > 0, \\
 0, & \text{if } c_{r+1} = 0,
\end{cases} \quad \bar{f}_r c = c + 1_{r+1},
\]

which immediately implies that

\[
\bar{e}_r M (c') = M (\bar{e}_r c'), \quad \bar{f}_r M (c') = M (\bar{f}_r c'),
\]

assuming that \(M(0) = 0 \), and hence \(\psi \) commutes with \(\bar{e}_r \) and \(\bar{f}_r \).

Next, we fix \(i \in J_1 \). Let

\[
c_k^{(i)} = \begin{cases}
 c_{i+1}, & \text{if } k = 1, \\
 c_{i+1} + \sum_{s=2}^{k} (c_{i+s} - c_{i+1+s-1}), & \text{if } 2 \leq k \leq n - r, \\
 c_{i+s} + (c_{i+s} - c_{i+1+s-1}), & \text{if } k = n - r + 1, \\
 c_{n-r+1} + \sum_{s=1}^{k-n+r-1} (c_{i-r-s} - c_{i+1-r-s+1}), & \text{if } n - r + 2 \leq k \leq n - i,
\end{cases}
\]

and

\[
c^{(i)} = \max \{ c_k^{(i)} \mid 1 \leq k \leq n - i \},
\]

\[
k_0 = \min \{ 1 \leq k \leq n - i \mid c_k^{(i)} = c^{(i)} \},
\]

and

\[
k_1 = \max \{ 1 \leq k \leq n - i \mid c_k^{(i)} = c^{(i)} \}.
\]

(4.10)
Note that if $c^{(i)} > 0$, then we have $c_{i+k_0+r} > 0$ when $k_0 \leq n - r$, and $c_{i+n-k_0+1} > 0$ when $k > n - r$. Also if $k_0 > n - r$, then we necessarily have $c^{(i)} > 0$. By Theorem 7.1, one can compute directly that

$\tilde{e}_i c = \begin{cases} c - 1_i k_{0+r} + 1_{i+1 k_{0+r}}, & \text{if } c^{(i)} > 0 \text{ and } k_0 \leq n - r, \\ c - 1_i n-k_0+1 + 1_{i+1 n-k_0+1}, & \text{if } n - r + 1 \leq k_0 \leq n - i - 1, \\ c - 1_{i+1}, & \text{if } k_0 = n - i, \\ 0, & \text{if } c^{(i)} = 0, \end{cases}$

(4.11)

$\tilde{f}_i c = \begin{cases} c + 1_i k_{1+r} - 1_{i+1 k_{1+r}}, & \text{if } k_1 \leq n - r, \\ c + 1_i n-k_1+1 - 1_{i+1 n-k_1+1}, & \text{if } n - r + 1 \leq k_1 \leq n - i - 1, \\ c + 1_{i+1}, & \text{if } k_1 = n - i, \end{cases}$

(see for example, the Auslander-Reiten quiver in Example 5.6, which might be helpful to see which c_{ij}'s are involved for \tilde{e}_i and \tilde{f}_i, and how they are arranged).

Case 1. Suppose that $c = c^J \in B_{1j}^J$, that is, $c_{ij} = 0$ unless $c_i - c_j \in \Phi^+(J)$. We have

$c^{(i)}_{n-r} \geq c^{(i)}_{n-r+1} = \cdots = c^{(i)}_{n-i},$

which implies that $k_0 \leq n - r$. Note that if $k_1 > n - r$, then we have $c_{i+1 n} = 0$ and hence $k_1 = n - i$.

Let $(a, b) \in J_{[I]} \times ([I] \setminus [J])$ be such that $M(c) = [a^\tau, b^\tau]$. Note that the subword of a^τ consisting of i and $i+1$ is

$\begin{array}{cccccccc}
\underbrace{i \cdots i} & \underbrace{i+1 \cdots i+1} & \cdots & \underbrace{i \cdots i} & \underbrace{i+1 \cdots i+1} \\
\tilde{e}_{i+r+1} & \tilde{e}_{i+1 r+1} & & \tilde{e}_n & \tilde{e}_{i+1 n}
\end{array}$

By the tensor product rule (2.1), we have $\varepsilon_i (a^\tau) = c^{(i)}$ and

$M(\tilde{e}_i c) = M(\tilde{e}_i a^\tau, b^\tau) = \tilde{e}_i M(c),$

If $k_1 \leq n - r$, then $\tilde{f}_i a^\tau \neq 0$ and

$M \left(\tilde{f}_i c \right) = M(\tilde{f}_i a^\tau, b^\tau) = \tilde{f}_i M(c).$

If $k_1 > n - r$, then $\tilde{f}_i a^\tau = 0$ and $\tilde{f}_i c \notin B_{1j}^J$, which implies that $\tilde{f}_i M(c) = 0$ and $\tilde{f}_i c = 0$ in B_{1j}^J, respectively. We have $\tilde{f}_i M(c) = M(\tilde{f}_i c) = 0$.

Case 2. Suppose that $c \in B_{\Omega}$ is arbitrary. We assume that

$M_1 := M(c^J) = [a^\tau, b^\tau], \quad M_2 := M^-(c_{J_1}) = [a', b'],$

for some $(a, b) \in J_{[I]} \times ([I] \setminus [J])$ and $(a', b') \in J_{[I]} \times [J]$. By Proposition 4.1 and the arguments in Case 1, we see that

$\varepsilon_i (M_1) = \varepsilon_i (a^\tau), \quad \varepsilon_i (M_2) = \varepsilon_i (b').$

(4.12)
Since \(\langle \text{wt}(M_1), h_i \rangle = \langle \text{wt}(a^\tau), h_i \rangle \) and \(\langle \text{wt}(M_2), h_i \rangle = \langle \text{wt}(b^\tau), h_i \rangle \), we also have
\[
\varphi_i(M_1) = \varphi_i(a^\tau), \quad \varphi_i(M_2) = \varphi_i(b^\tau).
\]
By (4.10) and (4.11), we have
\[
\psi(\bar{e}_i c) = \left(\bar{e}_i e_i \right) \otimes c_{J_1} \otimes c_{J_2} \iff k_0 \leq n - r
\]
\[
\iff \bar{e}_i(a^\tau \otimes b') = (\bar{e}_i a^\tau) \otimes b'
\]
\[
\iff \varphi_i(a^\tau) \geq \varepsilon_i(b'),
\]
\[
\psi(\bar{e}_i c) = c^J \otimes (\bar{e}_i c_{J_1}) \otimes c_{J_2} \iff k_0 > n - r
\]
\[
\iff \bar{e}_i(a^\tau \otimes b') = a^\tau \otimes (\bar{e}_i b')
\]
\[
\iff \varphi_i(a^\tau) < \varepsilon_i(b').
\]
Therefore, we have by (4.12) and (4.13)
\[
\psi(\bar{e}_i c) = \begin{cases}
(\bar{e}_i c^J) \otimes c_{J_1} \otimes c_{J_2}, & \text{if } \varphi_i(M_1) \geq \varepsilon_i(M_2), \\
c^J \otimes (\bar{e}_i c_{J_1}) \otimes c_{J_2}, & \text{if } \varphi_i(M_1) < \varepsilon_i(M_2).
\end{cases}
\]
Similarly, we have
\[
\psi(\bar{f}_i c) = \begin{cases}
(\bar{f}_i c^J) \otimes c_{J_1} \otimes c_{J_2}, & \text{if } \varphi_i(M_1) > \varepsilon_i(M_2), \\
c^J \otimes (\bar{f}_i c_{J_1}) \otimes c_{J_2}, & \text{if } \varphi_i(M_1) \leq \varepsilon_i(M_2).
\end{cases}
\]
It follows that \(\psi \) commutes with \(\bar{e}_i \) and \(\bar{f}_i \) for \(i \in J_1 \).

By the same arguments, we can show that \(\psi \) commutes with \(\bar{e}_i \) and \(\bar{f}_i \) for \(i \in J_2 \).

This completes the proof. \(\square \)

Let \(B_J(\infty) \) denote the \(\mathfrak{g}_J \)-crystal of the negative part of \(U_q(\mathfrak{g}_J) \), and extend it to a \(\mathfrak{g} \)-crystal with \(\bar{e}_i b = \bar{f}_i b = 0 \) and \(\varepsilon_i(b) = \varphi_i(b) = -\infty \) for \(i \in I \setminus J \) and \(b \in B_J(\infty) \).

Let \(W_J \) be the Weyl group of \(\mathfrak{g}_J \) generated by \(s_j \) for \(j \in J \), and let \(w^J \) be the longest element in the set of coset representatives of minimal length in \(W/W_J \).

Consider \(i \in R(w_0) \) corresponding to \(w_0 = w^J w_J \), where \(w_J \) is the longest element in \(W_J \). Let \(U^-(J) \) be the \(\mathbb{Q}(q) \)-subspace of \(U^- \) spanned by \(b_1(c) \in B_1 \) for \(c \in \mathbb{Z}_+^N \) such that \(c = c^J \). Then \(U^-(J) \) is independent of the choice of \(i \), and forms a subalgebra of \(U^- \) called the \textit{quantum nilpotent subalgebra} associated to \(w^J \) \footnote{For more details and its generalization to the case of a symmetrizable Kac-Moody algebra.}. By using a PBW basis, we see that the multiplication in \(U^- \) gives an isomorphism of a \(\mathbb{Q}(q) \)-vector space
\[
U^- \cong U^-(J) \otimes U^-_J
\]
(see \footnote{For more details and its generalization to the case of a symmetrizable Kac-Moody algebra.}) for more details and its generalization to the case of a symmetrizable Kac-Moody algebra). The image of a PBW basis of \(U^-(J) \) under the canonical projection \(\pi \) forms a subcrystal of \(\pi(B_1) = B(\infty) \) in \(L(\infty)/qL(\infty) \), which we denote
by $B^J(\infty)$. Then we have the following tensor product decomposition of $B(\infty)$, which is a crystal version of (1.14).

Corollary 4.3. As a \mathfrak{g}-crystal, we have

$$B(\infty) \cong B^J(\infty) \otimes B_J(\infty).$$

Proof. We have $B_J(\infty) \cong B_{J_1}(\infty) \otimes B_{J_2}(\infty) \cong B_{\Omega J_1} \otimes B_{\Omega J_2}$ and $B^J(\infty) \cong B^J_{\Omega}$. Hence it follows from Theorem 4.2. □

Remark 4.4. The isomorphism in Theorem 4.2 is a special case of the bijection Ω_w for $w \in W$ in [1, Proposition 5.25] when $w = w^d$ (see also [11, Proposition 3.14]). We should remark that Ω_w is not in general a crystal isomorphism for arbitrary $w \in W$. For example, suppose that $n = 3$ and $i = (1, 2, 1)$, that is, $\beta_1 = \alpha_1$, $\beta_2 = \alpha_1 + \alpha_2$, $\beta_3 = \alpha_2$. If $w = s_1$, then Ω_w is given by sending c to $(c_{\leq w}, c_{> w})$ where $c_{\leq w} = (c_1, 0, 0)$ and $c_{> w} = (0, c_2, c_3)$ for $c = (c_1, c_2, c_3)$. But the mapping $c \mapsto c_{\leq w} \otimes c_{> w}$ does not define a morphism of crystals in this case (see Proposition 4.1). It would be interesting to characterize $w \in W$ such that the map $\Omega_w : c \mapsto c_{\leq w} \otimes c_{> w}$ is an isomorphism of crystals by using the result in [23], where a connection between crystal structure of Lusztig data and signature rule in tensor product is studied.

5. **Crystal embedding of Young tableaux into Lusztig data**

5.1. Let $\lambda \in \mathcal{P}_n$ be given. For $S \in \text{SST}_{[n]}(\lambda)$, we define

$$c^+(S) = (c_{ij}) \in \mathcal{B}_{\Omega^+},$$

where c_{ij} is given by the number of j's appearing in the ith row of S for $1 \leq i < j \leq n$. Then we have the following, which is already well-known to experts in this area and which the author learned from Y. Saito.

Proposition 5.1. For $\lambda \in \mathcal{P}_n$, the map

$$\text{SST}_{[n]}(\lambda) \otimes T_{-\lambda} \longrightarrow \mathcal{B}_{\Omega^+},$$

$$S \otimes t_{-\lambda} \longmapsto c^+(S)$$

is an embedding of crystals.

Proof. It follows immediately from comparing the crystal structures on $\text{SST}_{[n]}(\lambda)$ and \mathcal{B}_{Ω^+} described in Proposition 4.1. □

We also have an embedding into \mathcal{B}_{Ω^-}. For $T \in \text{SST}_{[\lambda]}(\lambda)$, we define

$$c^-(T) = (c_{ij}) \in \mathcal{B}_{\Omega^-},$$

(5.2)
where \(c_{ij} \) is given by the number of \(i \)'s appearing in the \((n - j + 1)\)th row of \(T \) for \(1 \leq i < j \leq n \). Similarly, for \(S \in SST_{[n]}(\lambda) \), we define
\[
(5.3) \quad c_-(S) = c^-(\sigma^{-d}(S)) \in \mathcal{B}_\Omega^-,
\]
for some \(d \geq \lambda_1 \). Note that \(c_-(S) \) does not depend on the choice of \(d \).

Proposition 5.2. For \(\lambda \in \mathcal{P}_n \), the maps
\[
SST_{[n]}(\lambda) \otimes T_{w_0\lambda} \rightarrow \mathcal{B}_\Omega^- \quad \text{and} \quad \mathcal{B}_\Omega^- \rightarrow \mathcal{B}_\Omega^-,
\]
are embeddings of crystals.

Proof. It follows from (3.4) and Proposition 4.1. \(\square \)

Example 5.3. Suppose that \(n = 6 \) and let
\[
S = \begin{pmatrix}
1 & 1 & 1 & 2 & 2 & 3 \\
2 & 3 & 3 & 5 & 6 \\
4 & 4 & 4 \\
5 & 5 & 6 \\
6 & 6
\end{pmatrix} \in SST_{[6]}(6, 5, 3, 3, 2).
\]

Then we have by (5.1)
\[
c^+(S) = \begin{bmatrix}
c_{12} & c_{13} & c_{14} & c_{15} & c_{16} \\
c_{23} & c_{24} & c_{25} & c_{26} \\
c_{34} & c_{35} & c_{36} \\
c_{45} & c_{46} \\
c_{56}
\end{bmatrix} = \begin{bmatrix}
2 & 1 & 0 & 0 & 0 \\
2 & 0 & 1 & 1 \\
3 & 0 & 0 \\
2 & 1 \\
2
\end{bmatrix} \in \mathcal{B}_\Omega^+.
\]

On the other hand,
\[
\sigma^{-6}(S) = \begin{pmatrix}
6 \\
5 \\
4 \\
3 \\
2 \\
1 \\
0
\end{pmatrix}, \quad \sigma^{-6}(S)^\wedge = \begin{pmatrix}
6 & 6 & 5 & 4 & 1 & 1 & 1 & 1 \\
5 & 4 & 4 & 3 & 2 \\
4 & 3 & 2 & 1 & 1 \\
3 & 2 & 2 & 1 & 1 \\
2 & 2 & 2 & 2 & 1 \\
1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}.
\]

Hence by (5.3), we have
\[
c_-(S) = \begin{bmatrix}
c_{56} & c_{46} & c_{36} & c_{26} & c_{16} \\
c_{45} & c_{35} & c_{25} & c_{15} \\
c_{34} & c_{24} & c_{14} \\
c_{23} & c_{13} \\
c_{12}
\end{bmatrix} = \begin{bmatrix}
1 & 1 & 0 & 0 & 2 \\
1 & 0 & 1 & 0 \\
2 & 0 & 0 \\
1 & 1 \\
0
\end{bmatrix} \in \mathcal{B}_\Omega^-.
5.2. Let Ω be a quiver with a single sink

$$
\bullet \rightarrow \bullet \rightarrow \cdots \rightarrow \bullet \leftarrow \bullet \leftarrow \cdots
$$

for some $r \in I \setminus \{1, n - 1\}$. We keep the notations in Section 4.3.

Let $\lambda = (\lambda_1, \ldots, \lambda_n) \in \mathcal{P}_n$ be given. Choose $d \geq \lambda_1$ and put

$$
\eta = (d - \lambda_r, \ldots, d - \lambda_1) \in \mathcal{P}_r, \quad \zeta = (\lambda_{r+1}, \ldots, \lambda_n) \in \mathcal{P}_{n-r}.
$$

We define a map

$$
(5.5) \quad \text{SST}_{[n]}(\lambda) \rightarrow \text{SST}_{[n][\setminus r]}(\zeta) \times \text{SST}_{[r]}(\eta) \times \mathcal{M}_{[r] \times ([n] \setminus [r])}
$$

where (S^+, S^-, M) is determined by the following steps:

(i) let $S^+ \in \text{SST}_{[n][\setminus r]}(\zeta)$ be given by removing the first r rows in S,

(ii) let $S \setminus S^+$ denote the subtableau of S obtained by removing S^+, and put

$$
P' = \text{the subtableau of } S \setminus S^+ \text{ with entries in } [r],
$$

$$
Q = \text{the subtableau of } S \setminus S^+ \text{ with entries in } [n] \setminus [r],
$$

(iii) putting $P = \sigma^{-d}(P')$ (see (3.4)), we have for some $\nu \in \mathcal{P}_r$ with $\eta \subset \nu$

$$
(P, Q) \in \text{SST}_{[r]}(\nu^\pi) \times \text{SST}_{[n][\setminus r]}((\nu/\eta)^\pi),
$$

(iv) applying κ^{-1} in (3.3), we get

$$
(T, M) = \kappa^{-1}(P, Q) \in \text{SST}_{[r]}(\eta^\pi) \times \mathcal{M}_{[r] \times ([n] \setminus [r])},
$$

(v) let $S^- = T^\wedge \in \text{SST}_{[r]}(\eta)$.

It can be summarized as follows:

$$
(5.6) \quad S \xrightarrow{(\ i\)} (S^+, S \setminus S^+) \xrightarrow{(\ ii\)} (S^+, P', Q) \xrightarrow{(\ iii\)} (S^+, S^-, M) \xrightarrow{(\ iv\)} (S^+, T, M) \xrightarrow{(\ v\)} (S^+, P, Q)
$$

Note that the step (i) is injective, and the other steps (ii), (iii), (iv), (v) are bijective by definition. Hence the map (5.5) is injective, where

$$
\text{wt}(S^+) + \text{wt}(S^-) + \text{wt}(M) = \text{wt}(S) - d(\epsilon_1 + \cdots + \epsilon_r).
$$

Now for $S \in \text{SST}_{[n]}(\lambda)$ which is mapped to (S^+, S^-, M) under (5.5), we define

$$
(5.7) \quad c(S) \in \mathcal{B}_\Omega,
$$
to be the unique \(c \in \mathcal{B}_\Omega \) such that
\[
(1) \quad M(c^{l}) = M \quad \text{under (4.8)},
\]
\[
(2) \quad c_{J_1} = c^{-}(S^-) \quad \text{and} \quad c_{J_2} = c^{+}(S^+) \quad \text{under (5.2) and (5.1)},
\]
Note that \(S^- \) depends on \(d \), but \(c^{-}(S^-) \) does not. Then we have the following, which is the main result in this paper.

Theorem 5.4. For \(\lambda \in \mathcal{P}_n \), the map
\[
\begin{align*}
SST[n](\lambda) \otimes T_{-\lambda} & \longrightarrow \mathcal{B}_\Omega \\
S \otimes t_{-\lambda} & \longrightarrow c(S)
\end{align*}
\]
is an embedding of crystals, where \(c(S) \) is given in (5.7).

Proof. Put \(M = M_{[\pi \times [(n)\backslash [r]]]} \). Note that \(M_{[\pi \times [(n)\backslash [r]]]} \) has a crystal structure isomorphic to \(\mathcal{B}_{\Omega}^J \) induced from the bijection (4.8), which can be described as in (4.9) by Theorem 4.2.

Choose \(d \geq \lambda_1 \) and let \(\eta \) and \(\zeta \) be as in (5.4). Define a \(\mathfrak{g} \)-crystal
\[
M_{\lambda} = M \otimes SST[\pi](\eta) \otimes SST[n][r](\zeta),
\]
where we extend a \(\mathfrak{g}_{J_1} \)-crystal \(SST[\pi](\eta) \) and a \(\mathfrak{g}_{J_2} \)-crystal \(SST[n][r](\zeta) \) to \(\mathfrak{g} \)-crystals in a trivial way. Put \(\xi = -d(\epsilon_1 + \cdots + \epsilon_r) \).

By (4.9), we see that the crystal structure on \(M_{\lambda} \) coincides with the one given in [12, Section 4.2]. Moreover, if we put \(H_{\lambda} = O \otimes b_1 \otimes b_2 \) where \(O \) is the zero matrix, \(b_1 \) (resp. \(b_2 \)) is the highest weight element in \(SST[\pi](\eta) \) (resp. \(SST[n][r](\zeta) \)) with weight \(-\eta_r \epsilon_1 - \cdots - \eta_1 \epsilon_r \) (resp. \(\zeta_1 \epsilon_{r+1} + \cdots + \zeta_{n-r} \epsilon_n \)), then \(H_{\lambda} \) is the highest weight element with weight \(\lambda + \xi \) and
\[
M_{\lambda} = \{ \tilde{f}_{i_1} \cdots \tilde{f}_{i_r} H_{\lambda} \mid r \geq 0, i_1, \ldots, i_r \in I \},
\]
[12, Proposition 4.5]. By [12, Proposition 4.6], the map
\[
(5.8) \quad \begin{align*}
SST[n](\lambda) \otimes T_\xi & \longrightarrow M_{\lambda} \\
S \otimes t_\xi & \longrightarrow M \otimes S^- \otimes S^+
\end{align*}
\]
is an embedding of \(\mathfrak{g} \)-crystals, where \((S^+, S^-, M)\) is the triple associated to \(S \) in (5.5). Taking tensor product by \(T_{-\lambda-\xi} \) and then applying (4.8), Propositions 5.1 and 5.2, we have an embedding
\[
(5.9) \quad \begin{align*}
M_{\lambda} \otimes T_{-\xi-\lambda} & \longrightarrow \mathcal{B}_\Omega^J \otimes \mathcal{B}_{\Omega_{J_1}} \otimes \mathcal{B}_{\Omega_{J_2}} \\
M \otimes S^- \otimes S^+ \otimes t_{-\xi-\lambda} & \longrightarrow c^J \otimes c_{J_1} \otimes c_{J_2}
\end{align*}
\]
where \(c = c(S) \) is given in (5.7). Finally composing (5.8), (5.9), and then the inverse of the map in Theorem 4.2, we obtain the required embedding. \qed
Remark 5.5. Suppose that Ω is a quiver with a single source. Let B^*_Ω be the set B_Ω with the $*$-crystal structure [8]. By similar methods as in Theorem 5.4, we can construct an embedding of $SST_{[n]}(\lambda)$ into B^*_Ω for $\lambda \in \mathcal{P}_n$.

Example 5.6. Suppose that Ω is given by

\[
\begin{array}{c}
\bullet \\
1 \\
\rightarrow \\
2 \\
\rightarrow \\
3 \\
\rightarrow \\
4 \\
\rightarrow \\
5 \\
\end{array}
\]

Recall that the Auslander-Reiten quiver of representations of Ω is

which might be helpful for the reader to see (4.11) from Reineke’s description of $B(\infty)$ [19]. Here the vertex “ij” denotes the indecomposable representation of Ω corresponding to the positive root $\epsilon_i - \epsilon_j \in \Phi^+$ for $1 \leq i < j \leq 6$, the solid arrows denote the morphisms between them, and the dotted arrows denote the Auslander-Reiten translation functor denoted by τ in [19].

Let S be as in Example 5.3. Let us apply the map (5.5) to S following the steps in (5.6). First, we have

\[
S^+ = \begin{pmatrix} 5 & 6 \\ 6 & 6 \end{pmatrix}, \quad S \setminus S^+ = \begin{pmatrix} 1 & 1 & 2 & 2 & 3 \\ 3 & 3 & 5 & 6 \\ 4 & 4 & 4 \end{pmatrix}.
\]

Separating $S \setminus S^+$ into subtableaux with entries in $\{1, 2, 3\}$ and $\{4, 5, 6\}$, we get

\[
P' = \begin{pmatrix} 1 & 1 & 1 & 2 & 2 & 3 \\ 2 & 3 & 3 \\ \ldots \\ \ldots \end{pmatrix}, \quad Q = \begin{pmatrix} \ldots & \ldots & \ldots & 5 & 6 \\ 4 & 4 & 4 \end{pmatrix},
\]

and

\[
P = \sigma^{-6}(P') = \begin{pmatrix} 5 & 3 & 2 \\ 3 & 2 & 2 & 1 & 1 \end{pmatrix}.
\]

Applying κ^{-1} to the pair
\[(P, Q) = \left(\begin{array}{ccc} 3 & 3 & 2 \\ 3 & 2 & 1 \\ 2 & 1 & 1 \end{array}, \quad \begin{array}{ccc} 5 & 0 \\ 4 & 4 \\ \ldots \end{array} \right) \]

where \(\text{sh}(P) = (6, 3)^\pi \) and \(\text{sh}(Q) = ((6, 3)/(3, 1))^\pi \), we have \((T, M)\) where

\[T = \left(\begin{array}{ccc} 3 \\ 2 \\ 2 \end{array} \right) \in \text{SST}_{[3]}((3, 1)^\pi), \quad M = \left[\begin{array}{ccc} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 2 & 0 & 0 \end{array} \right] \in \text{M}_{[3] \times ((6)\setminus[3])}, \]

with

\[S^- = T^\wedge = \left(\begin{array}{ccc} 3 & 2 & 1 \\ 2 & \end{array} \right). \]

Therefore, we have a triple \((S^+, S^-, M)\) associated to \(S\):

\[(S^+, S^-, M) = \left(\begin{array}{ccc} 5 & 5 & 6 \\ 6 & 6 \end{array}, \quad \begin{array}{ccc} 3 & 2 & 1 \\ 2 \end{array}, \quad \left[\begin{array}{ccc} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 2 & 0 & 0 \end{array} \right] \right) \]

Finally, the corresponding \(c(S) = (c^J, c_{J_1}, c_{J_2}) \in \mathcal{B}_\Omega \) in \((5.7)\) is given by

\[c^J = \left[\begin{array}{ccc} c_{34} & c_{35} & c_{36} \\ c_{24} & c_{25} & c_{26} \\ c_{14} & c_{15} & c_{16} \end{array} \right] = \left[\begin{array}{ccc} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 2 & 0 & 0 \end{array} \right], \]

and

\[c_{J_1} = \left[\begin{array}{ccc} c_{23} & c_{13} \\ c_{12} \end{array} \right] = \left[\begin{array}{ccc} 1 & 1 \\ 0 \end{array} \right], \quad c_{J_2} = \left[\begin{array}{ccc} c_{45} & c_{46} \\ c_{56} \end{array} \right] = \left[\begin{array}{ccc} 2 & 1 \\ 2 \end{array} \right]. \]

Remark 5.7. Let \(\Omega'\) be another quiver of type \(A_{n-1}\) with a single sink. Using Theorem 5.4 one can describe the transition map \(R_{\Omega'}^\Omega: \mathcal{B}_\Omega \to \mathcal{B}_{\Omega'}\) as follows.

Let \(c \in \mathcal{B}_\Omega\) be given. There exist a pair of Young tableaux \((S^+, S^-)\) (but not necessarily unique) such that \(c_{J_1} = c^-(S^-)\) and \(c_{J_2} = c^+(S^+)\). We can apply the inverse algorithm of \((5.6)\) to \((S^+, S^-, c^J)\) to obtain \(S \in \text{SST}_{[n]}(\lambda)\) for some \(\lambda \in \mathcal{P}_n\) such that each \(\lambda_i - \lambda_{i+1}\) is sufficiently large. In fact, we obtain a unique (marginally) large tableau (see \([3, 5]\)) corresponding to \(c\). Let \(c'\) be the Lusztig datum of \(S\) with respect to \(\Omega'\), which is also obtained by the algorithm \((5.6)\). Then we have \(c' = R_{\Omega}^{\Omega'}(c)\).

Note that if either one of \(\Omega\) and \(\Omega'\) is \(\Omega^\pm\), then one may apply only Propositions 5.1 and 5.2 to have \(R_{\Omega}^{\Omega'}\). We also refer the reader to [2, Section 4] for a closed-form
formula for R^{Ω}_0, which is a tropicalization of a subtraction-free rational function connecting two parametrizations of a totally positive variety. It would be interesting to compare these two algorithms.

References

[1] P. Baumann, J. Kamnitzer, P. Tingley, Affine Mirković-Vilonen polytopes, Publ. Math. Inst. Hautes Études Sci. 120 (2014) 113–205.
[2] A. Berenstein, S. Fomin, A. Zelevinsky, Parametrization of canonical bases and totally positive matrices, Adv. in Math. 122 (1996) 49–149.
[3] G. Cliff, Crystal bases and Young tableaux, J. Algebra 202 (1998) 10–35.
[4] J. Hong, S.-J. Kang, Introduction to Quantum Groups and Crystal Bases, Graduate Studies in Mathematics 42, Amer. Math. Soc., 2002.
[5] J. Hong, H.-M. Lee, Young tableaux and crystal $B(\infty)$ for finite simple Lie algebras, J. Algebra 320 (2008) 3680–3693.
[6] W. Fulton, Young tableaux, with Application to Representation theory and Geometry, Cambridge Univ. Press, 1997.
[7] M. Kashiwara, On crystal bases of the q-analogue of universal enveloping algebras, Duke Math. J. 63 (1991) 465–516.
[8] M. Kashiwara, The crystal base and Littelmann’s refined Demazure character formula, Duke Math. J. 71 (1993) 839–858.
[9] M. Kashiwara, On crystal bases, Representations of groups, CMS Conf. Proc., 16, Amer. Math. Soc., Providence, RI, (1995) 155–197.
[10] M. Kashiwara, T. Nakashima, Crystal graphs for representations of the q-analogue of classical Lie algebras, J. Algebra 165 (1994) 295–345.
[11] Y. Kimura, Remarks on quantum unipotent subgroup and dual canonical basis, preprint (2015) arXiv:1506.07912.
[12] J.-H. Kwon, Demazure crystals of generalized Verma modules and a flagged RSK correspondence, J. Algebra 322 (2009) 2150–2179.
[13] J.-H. Kwon, RSK correspondence and classically irreducible Kirillov-Reshetikhin crystals, J. Combin. Theory Ser. A 120 (2013) 433–452.
[14] J.-H. Kwon, Crystal bases of q-deformed Kac modules, Int. Math. Res. Not. (2014) 512–550.
[15] G. Lusztig, Canonical bases arising from quantized universal enveloping algebras, J. Amer. Math. Soc. 3 (1990) 447–498.
[16] G. Lusztig, Quivers, perverse sheaves, and quantized enveloping algebras, J. Amer. Math. Soc. 4 (1991) 365–421.
[17] G. Lusztig, Introduction to quantum groups, Progress in Math. 110, Birkhäuser, 1993.
[18] G. Lusztig, Braid group action and canonical bases, Adv. Math. 122 (1996) 237–261.
[19] M. Reineke, On the coloured graph structure of Lusztig’s canonical basis, Math. Ann. 307 (1997) 705–723.
[20] Y. Saito, PBW basis of quantized universal enveloping algebras, Publ. Res. Inst. Math. Sci. 30 (1994) 209–232.
[21] Y. Saito, Mirković-Vilonen polytopes and a quiver construction of crystal basis in type A, Int. Math. Res. Not. IMRN (2012) 3877–3928.
[22] B. E. Sagan, R. Stanley, *Robinson-Schensted algorithms for skew tableaux*, J. Combin. Theory Ser. A 55 (1990) 161–193.

[23] B. Salisbury, A. Schultze, P. Tingley, *Combinatorial descriptions of the crystal structure on certain PBW bases*, preprint (2016) [arXiv:1606.01978v2](https://arxiv.org/abs/1606.01978).

[24] T. Tanisaki, *Modules over quantized coordinate algebras and PBW-bases*, preprint (2014) [arXiv:1409.7973](https://arxiv.org/abs/1409.7973).

Department of Mathematical Sciences, Seoul National University, Seoul 08826, Korea

E-mail address: jaehoonkw@snu.ac.kr