Cross Domain Iterative Detection for Orthogonal Time Frequency Space Modulation

Shuangyang Li, Graduate Student Member, IEEE, Weijie Yuan, Member, IEEE, Zhiqiang Wei, Member, IEEE, and Jinhong Yuan, Fellow, IEEE

Abstract—Recently proposed orthogonal time frequency space (OTFS) modulation has been considered as a promising candidate for accommodating various emerging communication and sensing applications in high-mobility environments. In this paper, we propose a novel cross domain iterative detection algorithm to enhance the error performance of OTFS modulation. Different from conventional OTFS detection methods, the proposed algorithm applies basic estimation/detection approaches to both the time domain and delay-Doppler (DD) domain and iteratively updates the extrinsic information from two domains with the unitary transformation. In doing so, the proposed algorithm exploits the time domain channel sparsity and the DD domain symbol constellation constraints. We evaluate the estimation/detection error variance in each domain for each iteration and derive the state evolution to investigate the detection error performance. We show that the performance gain due to iterations comes from the non-Gaussian constellation constraint in the DD domain. More importantly, we prove that the proposed algorithm can indeed converge and, in the convergence, the proposed algorithm can achieve almost the same error performance as the maximum-likelihood sequence detection even in the presence of fractional Doppler shifts. Furthermore, the computational complexity associated with the domain transformation is low, thanks to the structure of the discrete Fourier transform (DFT) kernel. Simulation results are consistent with our analysis and demonstrate a significant performance improvement compared to conventional OTFS detection methods.

Index Terms—Orthogonal time frequency space, reduced-complexity detection, cross domain detection, state evolution, performance analysis.

I. INTRODUCTION

ORTHOGONAL time frequency space (OTFS) modulation [1] has attracted substantial attention recently, due to its robust performance over the high-mobility environments. In particular, beyond the fifth-generation (5G) wireless communication systems are required to accommodate various emerging applications in high-mobility environments, such as mobile communications on board aircraft (MCA), low-earth-orbit (LEO) satellites, high speed trains, and unmanned aerial vehicles (UAVs) [2], [3]. In those cases, the performance of currently deployed orthogonal frequency division multiplexing (OFDM) modulation may degrade because the significant Doppler spread induced by the high-mobility can severely undermine the orthogonality between subcarriers. Therefore, OTFS modulation has been recognized as a potential solution to supporting heterogeneous requirements of 5G wireless systems in high-mobility scenarios [1].

Different from the conventional OFDM modulation, OTFS modulation considers the delay-Doppler (DD) domain signal representation instead of the time-frequency (TF) domain, where the channel responses are relatively sparse and robust [1]. The DD domain channel property gives rise to the symbol placement in the DD domain which allows the information symbols directly interact with the DD domain channel response, resulting in a much simpler input-output relationship compared to that of the OFDM modulation in high-mobility channels [4]. The simple input-output relationship in the DD domain enables low-complexity channel estimation methods for OTFS transmissions with a small signaling overhead [5], [6]. Furthermore, thanks to the possible sparsity in the DD domain, approximate message passing (AMP)-based methods were applied to efficiently estimate the DD domain channel [7], [8]. Besides, by invoking the two-dimensional (2D) inverse symplectic finite Fourier transform (ISFFT), each DD domain symbol spreads onto the whole TF domain and thus principally experiences the whole fluctuations of the TF channel over an OTFS frame. Therefore, OTFS modulation offers the potential of achieving the full channel diversity in a high-mobility environment [4], [9].

Although OTFS modulation shows many advantages over the conventional OFDM modulation, it requires complex detection algorithms in order to achieve the potential full channel diversity. With the help of cyclic prefix (CP), a single-tap frequency domain equalization is usually sufficient for OFDM modulation, where the intersymbol interference (ISI) due to the multipath effect can be largely mitigated at a cost of the signaling overhead [10]. In contrast, the DD domain channel property enables a reduced CP frame structure for OTFS modulation, where the interference due to the channel
impairments has to be equalized via advanced algorithms [11]. Many existing studies focused on the low-complexity detection for OTFS modulation. In [12], the authors developed an iterative receiver based on the classic message passing algorithm (MPA), where the interference from other information symbols is treated as a Gaussian variable to reduce the detection complexity. However, due to the short cycles on probabilistic graphical model, MPA may fail to converge and results in performance degradation. To solve this issue, the authors of [13] proposed a convergence guaranteed receiver based on the variational Bayes framework. An OTFS detection approach based on AMP with a unitary transformation (UAMP) developed in [14], which not only enjoys a strong resilience to the error propagation due to the short cycles on probabilistic graphical model but also enables an efficient implementation. Two DD domain low-complexity linear equalizers for OTFS modulations were studied in [15], where the authors proposed simplified implementation of linear minimum mean squared error (L-MMSE) and zero-forcing (ZF) detections with only a logarithmic complexity by exploiting the DD domain channel properties. We notice that most of the existing works on the OTFS detection take advantage of the DD domain channel sparsity to reduce the detection complexity. However, when an OTFS frame duration is not sufficiently long, the resultant DD domain effective channel can be dense due to the insufficient resolution of the Doppler frequency, i.e., fractional Doppler [12]. In such a case, conventional detection methods may experience a very high detection complexity since the channel sparsity no longer holds. This fact motivates us to consider the OTFS detection based on different domains.

In this paper, we propose a novel cross domain iterative detection algorithm for OTFS modulation, where the extrinsic information is passed between the time domain and DD domain via the corresponding unitary transformations. This special detection structure is motivated by the connection between the orthogonality and message passing based on the view from the orthogonal AMP (OAMP) algorithm [16] and UAMP [17]–[19]. In particular, the rationale behind our work is that the unitary transformation between the time domain and DD domain allows the detection/estimation errors in one domain to be principally orthogonal to the detection/estimation errors in the other domain, which can suppress the correlation between the input errors and the output errors for each domain detection/estimation [16], [20]. Therefore, the detection/estimation instability due to the positive feedback effect, which usually caused by the correlation between the input and output errors for the iterative receivers, can be greatly reduced during iterations, and this stability in return improves the error performance [16], [20]. In specific, we apply conventional L-MMSE estimator for equalization in the time domain, while adopt a simple symbol-by-symbol detection algorithm in the DD domain. Interestingly, by combining such two basic methods, the proposed algorithm shows promising error performance even in very severe and complex fractional Doppler cases. Note that conventional iterative receiver improves the error performance by iteratively exchanging the extrinsic information between two disjoint components, such as the detector and decoder, via interleaving/de-interleaving. In contrast, our proposed iterative algorithm exchanges the extrinsic information within the same component (detector) but between two orthogonal domains via unitary transformation. In other words, we separate the OTFS detection problem into two parts, corresponding to the time domain (performing de-correlation) and the DD domain (performing de-noising) and iteratively exchange the extrinsic information via unitary transformation. In particular, we provide a detailed proof that explains the advantage of the proposed algorithm and briefly discuss its detection complexity. The main contributions of this paper are summarized as follows.

- Based on the time domain sparsity, we propose a cross domain iterative detection algorithm that works in both the time domain and DD domain. Furthermore, according to the unitary property of the domain transformation, the details of cross domain message passing are discussed. We also prove that the symbol-by-symbol DD domain detection cannot provide any extrinsic information itself and therefore the extrinsic information need to be calculated in the time domain.
- We provide theoretical analysis for the MSE performance of the proposed algorithm based on the state evolution [20]. In particular, we derive the average MSE per iteration and prove that the proposed algorithm can converge after a few iterations. Furthermore, we show that the average MSE for both the time domain and the DD domain share the same value in the convergence and the error performance improvement brought by the cross domain message passing is originated from the non-Gaussian distribution of practical DD domain signal constellations.
- We investigate the effective DD domain signal-to-noise ratio (SNR) in order to study the error performance in the convergence. We prove that the corresponding effective SNR can approach the maximum receiver SNR for a given fading channel, i.e., almost all the energy from different paths are collected and coherently combined, which indicates that the proposed algorithm can theoretically approach the error performance of the optimal maximum-likelihood sequence estimation (MLSE) detection. On the other hand, we show that the computational complexity of the proposed algorithm is much lower compared to that of the MLSE detection thanks to the efficient implementation based on the discrete Fourier transform (DFT) kernel for cross domain message passing between the time domain and DD domain. We also show that the overall detection complexity of the proposed algorithm does not increase in the presence of fractional Doppler.
- The error performance of the proposed algorithm is evaluated by numerical simulations. Simulation results agree with our theoretical analysis and demonstrate a significant performance improvement compared to conventional OTFS detection methods.

It should be noted that although the proposed algorithm builds upon the core idea of OAMP and UAMP, and has a similar structure as that in [20], it has important contributions
compared to [20] making it suitable for solving the unique challenges of OTFS detection.

- As OAMP, UAMP, and the work [20] are specifically designed for compressed sensing issues, they cannot be directly extended to the considered OTFS detection. Compared to [20], the proposed algorithm applies ML-based DD domain detection with respect to the DD domain constellation and is able to produce both hard-decision outputs and high quality soft information, which is more suitable for practical communications, especially for coded systems.

- The work [20] requires the transmitted symbols are Bernoulli-Gaussian distributed with a sufficient number of zeros (sparsity constraint), which is often unrealistic for practical communication systems. Compared to [20], the proposed algorithm does not have this requirement. As a matter of fact, we prove that the performance improvement of the cross domain message passing actually comes from the practical non-Gaussian DD domain constellation constraint.

- The algorithm in [20] only works with a partial DFT matrix. Instead of intentionally introducing a partial DFT matrix, the proposed algorithm takes advantages of the unitary transformation associated with the OTFS modulation for message passing. By doing so, the proposed algorithm exploits the channel characteristics from both the time domain and DD domain and is thus robust for various channel conditions.

Notations: The blackboard bold letter \mathbb{A} denotes an energy normalized constellation set, whose size is $X'(\mathbb{A})$; The blackboard bold letter \mathbb{C} denotes the complex number field; Bold-face capitals and lower-case letters are used to define a matrix and a vector, respectively; The blackboard bold letter \mathbb{F}_N and \mathbb{I}_M denote the normalized discrete Fourier transform (DFT) matrix of size $N \times N$ and the identity matrix of size $M \times M$, respectively; “\bigotimes” denotes the Kronecker product operator; vec(\cdot) denote the vectorization operation; Tr(\cdot) denotes the trace operation; Pr(\cdot) denotes the probability of an event; \propto represents both sides of the equation are multiplicatively connected to a constant; $f(x)$ denotes a function of x and its second-order derivative with respect to x is denoted by $f''(x)$; The big-O notation $O(\cdot)$ asymptotically describes the order of computational complexity.

II. System Model

Without loss of generality, the considered OTFS system diagram is given in Fig. 1. Let N be the number of time slots and M be the number of sub-carriers for each OTFS frame, respectively. Let \mathbf{u} be the information bit sequence that is modulated into the DD domain transmitted symbol vector \mathbf{x}, where \mathbf{x} is of length MN, i.e., $\mathbf{x} \in \mathbb{A}^{MN}$. In specific, the DD domain transmitted symbol vector \mathbf{x} can be arranged as a two-dimensional (2D) matrix $X \in \mathbb{A}^{M \times N}$, i.e., $\mathbf{x} \triangleq \text{vec}(X)$ and the (l,k)-th element $x[l,k]$ of X is the DD domain transmitted symbol in the l-th delay and k-th Doppler grid [1], for $0 \leq l \leq M - 1$ and $0 \leq k \leq N - 1$. Then, we can obtain the TF domain transmitted symbol $X[m,n], 0 \leq m \leq M - 1,$ and $0 \leq n \leq N - 1$, according to X via the ISFFT [1], i.e.,

$$X[m, n] = \frac{1}{\sqrt{NM}} \sum_{k=0}^{N-1} \sum_{l=0}^{M-1} x[l, k] e^{j2\pi \left(\frac{l m}{N} - \frac{n l}{M} \right)}. \quad (1)$$

With the TF domain transmitted symbols, the OTFS signal $s(t)$ can be produced by the conventional OFDM modulator, such as

$$s(t) = \sum_{m=0}^{N-1} \sum_{n=0}^{M-1} X[m,n] g_{tx}(t-nT) e^{j2\pi m \Delta f (t-nT)}, \quad (2)$$

where Δf is the frequency spacing between adjacent sub-carriers and $g_{tx}(t)$ is the transmitter shaping pulse.

We consider the OTFS signal transmitting over a time-varying channel, whose response is fully characterized by its DD domain representation [1], i.e.,

$$h(\tau, \nu) = \sum_{i=1}^{P} h_i \delta(\tau - \tau_i) \delta(\nu - \nu_i). \quad (3)$$

In (3), P is the number of paths, h_i, τ_i, and ν_i are the path gain, delay and Doppler shift corresponding to the i-th path, respectively. Specifically, we denote by l_i and k_i the indices of delay and Doppler, respectively, where we have

$$\tau_i = \frac{l_i}{M \Delta f} \quad \text{and} \quad \nu_i = \frac{k_i + \kappa_i}{NT}. \quad (4)$$

Note that the term $-1/2 \leq \kappa_i \leq 1/2$ denotes the fractional Doppler which corresponds to the fractional shift from the nearest Doppler grid [12]. On the other hand, since the typical value of the sampling time $1/M \Delta f$ in the delay domain is usually sufficiently small, the impact of fractional delays in typical wide-band systems can be neglected [21].

Let us turn our attention to the receiver side. Let $w(t)$ be the additive white Gaussian noise (AWGN) process with one-sided power spectral density (PSD) N_0. The received signal can then be written as

$$r(t) = \int \int h(\tau, \nu) s(t-\tau) e^{j2\pi \nu(t-\tau)} d\tau d\nu + w(t). \quad (5)$$

Let $g_{rx}(t)$ be the filter adopted at the receiver side. The received symbols $Y[m,n]$ in the TF domain are then obtained by

$$Y[m,n] = \int r(t) g_{rx}^*(t-nT) e^{-j2\pi m \Delta f(t-nT)} dt. \quad (6)$$
By performing SFFT to $Y[m,n]$, we can obtain the DD domain received symbols as

$$y[l,k] = \frac{1}{\sqrt{NM}} \sum_{n=0}^{N-1} \sum_{m=0}^{M-1} Y[m,n] e^{-j2\pi \left(\frac{m}{M} + \frac{n}{N} \right)} + \tilde{w}[l,k], \quad (7)$$

where $\tilde{w}[l,k]$ denotes the equivalent AWGN samples in the DD domain.

For the ease of derivation, we are interested in the vector form representation of the input-output relationship of the OTFS system in the corresponding domains. We use $X \in \mathbb{K}^{M \times N}$ and $Y \in \mathbb{C}^{M \times N}$ to denote the DD domain transmitted symbol matrix and received symbol matrix, respectively. Furthermore, we use the $X_{TF} \in \mathbb{C}^{M \times N}$ and $Y_{TF} \in \mathbb{C}^{M \times N}$ to denote the TF domain transmitted symbol matrix and received symbol matrix, respectively. Similarly, the time domain transmitted symbol matrix and received symbol matrix are respectively denoted by $Z \in \mathbb{C}^{M \times N}$ and $R \in \mathbb{C}^{M \times N}$.

According to [22], two normalized DFT matrices F_M and F_N of size $M \times M$ and $N \times N$ can be used to characterize the SFFT in (1). Thus, we have

$$X_{TF} = F_M X F_N^H. \quad (8)$$

Then, by considering the rectangular pulse for the transmitter shaping pulse, the time domain transmitted symbol matrix can be obtained by [22]

$$Z = I_M F_M^H X_{TF} = X F_N^H. \quad (9)$$

According to (8) and (9), we can obtain the corresponding vector form of the transmitted symbols in the DD, TF, and time domains respectively, i.e.,

$$X \triangleq \text{vec}(X), \quad (10)$$

$$X_{TF} \triangleq \text{vec}(X_{TF}) = (F_N^H \otimes F_M) X, \quad (11)$$

$$Z \triangleq \text{vec}(Z) = (F_N^H \otimes I_M) X, \quad (12)$$

respectively. In particular, corresponding to the time domain transmitted symbol vector z, the time domain effective channel H_{eff} with a reduced CP frame format can be given by [22]

$$H_{eff} = \sum_{i=1}^{P} h_i \Pi^{i} \Delta^{k_i+\kappa_i}, \quad (13)$$

where Π is the permutation matrix (forward cyclic shift), i.e.,

$$\Pi = \begin{bmatrix} 0 & \cdots & 0 & 1 \\ 1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 1 & 0 \end{bmatrix}_{MN \times MN} \quad (14)$$

and $\Delta = \text{diag}\{\alpha^0, \alpha^1, \ldots, \alpha^{MN-1}\}$ is a diagonal matrix with $\alpha \triangleq e^{j2\pi \alpha}$ [22]. Thus, the received time domain symbol vector r is given by

$$r = H_{eff} z + w, \quad (15)$$

where w is the corresponding AWGN sample vectors in the time domain. Specifically, r can be rearranged into the 2D time domain received symbol matrix R. By applying the rectangular pulse as the receiver filtering pulse, we can obtain the corresponding TF domain and DD domain received symbol matrices as

$$Y_{TF} = F_M I_M R = F_M R,$$

$$Y = F_M^H Y_{TF} F_N = RF_N. \quad (16)$$

Therefore, we can derive the corresponding vector form of the received symbols in the TF domain and DD domain by

$$y_{TF} \triangleq \text{vec}(Y_{TF}) = (I_N \otimes F_M) r, \quad (17)$$

$$y \triangleq \text{vec}(Y) = (F_N \otimes I_M) r. \quad (18)$$

Based on the previous analysis, we are ready to demonstrate the input-output relationship of OTFS modulation with respect to different domains. Let us denote the effective channel matrices in TF domain and DD domain by H_{TF}^{eff} and H_{DD}^{eff}, respectively. In specific, based on (11), (13), and (17), we have

$$H_{TF}^{eff} = \sum_{i=1}^{P} h_i (I_N \otimes F_M) \Pi^{i} \Delta^{k_i+\kappa_i} (I_N \otimes F_M^H). \quad (19)$$

Similarly, based on (10), (13), and (18), we have

$$H_{DD}^{eff} = \sum_{i=1}^{P} h_i (F_N \otimes I_M) \Pi^{i} \Delta^{k_i+\kappa_i} (F_N^H \otimes I_M). \quad (20)$$

It can be shown that with the fractional Doppler shifts, the DD domain effective channel matrix H_{DD}^{eff} in (20) can be very dense due to the power leakage, and therefore, the detection based on H_{DD}^{eff} may require a high complexity. It should be noted that the effect of fractional Doppler can be effectively mitigated by adding TF domain windows [23]. However, adding TF domain windows can potentially reduce the received SNR [23]. Therefore, it is desirable for practical systems to have a detection algorithm that can collect all the leaky power from the fractional Doppler shifts. We notice that the time domain effective channel matrix H_{TF}^{eff} in (13) remains to be sparse and banded even in the presence of fractional Doppler shifts. Specifically, there are only at most P non-zero entries in each row and column of H_{TF}^{eff}. For a better illustration, we show an example of H_{TF}^{eff} and H_{DD}^{eff} in the presence of the fractional Doppler in Fig. 2, where the properties of H_{DD}^{eff} and H_{TF}^{eff} are clearly illustrated.

Based on the properties of the effective channel matrices, we are motivated to consider the detection based on the effective time domain channel H_{TF}^{eff} as given by (15), instead of H_{TF}^{eff} and H_{DD}^{eff} in the presence of fractional Doppler. For notational brevity, we henceforth use $z[k]$ to denote the k-th entry in z, where $0 \leq k \leq MN - 1$. Our proposed detection method will be presented in next section.

III. CROSS DOMAIN ITERATIVE DETECTION FOR OTFS MODULATION

Notice that information symbols are multiplexed on the DD domain while the channel sparsity holds in the time domain. Therefore, we propose an iterative detector which performs de-correlation in the time domain to eliminate the
(a) DD domain effective channel matrix H_{DD}^{eff}.

(b) Time domain effective channel matrix H_{T}^{eff}.

Fig. 2. Equivalent channel matrices for DD domain and time domain, where $P = 5$ and the channel coefficients, delay indices and Doppler indices are $[0.28 + 0.45i, -0.36 + 0.10i, -0.34 - 0.23i, -0.27 - 0.43i, -0.93 - 0.54i]$, $[0, 1, 14, 15, 11]$, and $[7.33, 6.92, -3.07, 4.42, -9.35]$, respectively. The lines in the figures indicate the magnitudes of the corresponding matrix elements.

Fig. 3. The diagram of the proposed OTFS detector.

Figures

- **Fig. 2**: Equivalent channel matrices for DD domain and time domain.
- **Fig. 3**: Diagram of the proposed OTFS detector.

Effects of Fading, Multi-path, and Doppler

In practical OTFS systems, where N is sufficiently large, the time domain OTFS signal behaves like a Gaussian variable according to the central limit theorem. We assume that the entries in z are independent and identically distributed (i.i.d.) Gaussian variables with a unit variance according to (21). We consider a detection structure that consists of two individual modules corresponding to the time domain and the DD domain, namely, module A and module B, as shown in Fig. 3. In specific, module A aims to estimate the time domain OTFS signal z and passes the estimates to module B for the detection of DD domain OTFS symbols x. On the other hand, module B carries out a simple symbol-by-symbol detection for the DD domain transmitted symbol vector x according to the estimates of time domain OTFS signal z. In Fig. 3, “Ext” denotes the calculation of extrinsic information, while “$F_N \otimes I_M$” and “$F_N^H \otimes I_M$” denote the corresponding unitary transformation from the time domain to the DD domain and from the DD domain to the time domain, respectively. For notational brevity, we use several notations denoting the *a priori*, *a posteriori*, and extrinsic information of the means (denoted by m) and covariance...
matrices (denoted by C) for the time domain OTFS signal vector z and DD domain symbol vector x, respectively, as shown in Table I.

Before we introduce the details, we note that the proposed algorithm is based on the idea of iteratively updating the extrinsic information based on a unitary transformation, where the multiplication of a diagonal covariance matrix of the interested variables and the underlying unitary matrix is usually performed for each iteration. However, an observation for this type of algorithms is that the diagonal covariance matrix usually becomes a non-diagonal matrix after the multiplication, even if the corresponding variables are independently distributed. This is because the diagonal entries of the covariance matrix may not be of the same value due to the channel conditions, such as distortion and noise. A common solution for this issue is to simply discard the non-diagonal entries (treated as zeros) [20], [24], according to the fact that unitary transformation does not affect independency between variables. In the proposed algorithm, we will adopt this approach and will also use a different approach (as will be discussed in Section III-C and Appendix A) for the related unitary transformations.

A. Module A: L-MMSE Estimator for Time Domain OTFS Signal

To estimate the time domain OTFS signal z, we apply the conventional L-MMSE estimator in module A. In specific, the estimation is based on the time domain received symbol vector r and the time domain effective channel H_T^{eff} with the aid of the a priori information, $m_x^{a,T}$ and $C_z^{a,T}$, that is fed back from module B. It should be noted that $C_z^{a,T}$ is a diagonal matrix due to the i.i.d. assumption and it is initialized as I_{MN} for the first iteration. Therefore, it is straightforward to obtain the L-MMSE estimation matrix W_{MMSE} as [25]

$$W_{\text{MMSE}} = C_z^{a,T} (H_T^{\text{eff}}) (H_T^{\text{eff}} C_z^{a,T} (H_T^{\text{eff}})^H + N_0 I_{MN})^{-1}. \quad (22)$$

Furthermore, it can be shown that the a posteriori estimation output $m_z^{p,T}$ of z is given by

$$m_z^{p,T} = m_z^{a,T} + W_{\text{MMSE}} (r - H_T^{\text{eff}} m_z^{a,T})$$
$$= m_z^{a,T} + C_z^{a,T} (H_T^{\text{eff}}) (H_T^{\text{eff}} C_z^{a,T} (H_T^{\text{eff}})^H + N_0 I_{MN})^{-1}$$
$$\times (r - H_T^{\text{eff}} m_z^{a,T}). \quad (23)$$

and the a posteriori covariance matrix $C_z^{p,T}$ associated with z is given by

$$C_z^{p,T} = C_z^{a,T} - C_z^{a,T} (H_T^{\text{eff}})^H (H_T^{\text{eff}} C_z^{a,T} (H_T^{\text{eff}})^H + N_0 I_{MN})^{-1} H_T^{\text{eff}} C_z^{a,T}. \quad (24)$$

It should be noted that the diagonal entries of $C_z^{p,T}$ are the a posteriori MSEs of the estimates of z after the L-MMSE estimation, while the non-diagonal entries can be discarded (treated as zeros), because only the diagonal entries are of interest according to the i.i.d. assumption [20]. The details of the L-MMSE estimation are summarized in Algorithm 1.

Algorithm 1 L-MMSE Estimation for Time Domain OTFS Signal z

Input: r, H_T^{eff}, $m_x^{a,T}$ and $C_z^{a,T}$

Steps:
1. Compute the L-MMSE estimator matrix W_{MMSE} by (22).
2. Calculate the estimation output $m_z^{p,T}$ by (23).
3. Calculate the MSE matrix $C_z^{p,T}$ by (24).
4. Return $m_z^{p,T}$ and $C_z^{p,T}$.

B. Cross Domain Message Passing: From Time Domain to DD Domain

Based on the time domain L-MMSE estimation, we can obtain the a posteriori information of time domain OTFS signal vector z. However, in order to perform the iterative detection, it is important to pass the extrinsic information rather than the a posteriori information between two the modules. Let us define $m_x^{a,T}$ and $C_z^{a,T}$ as the extrinsic mean and covariance matrix from the L-MMSE estimation. Then, according to the concise formulas in [24], we have

$$C_z^{a,T} = \left((C_z^{a,T})^{-1} - (C_z^{a,T})^{-1} \right)^{-1}, \quad (25)$$
$$m_x^{a,T} = C_z^{a,T} (C_z^{a,T})^{-1} m_z^{p,T} - (C_z^{a,T})^{-1} m_z^{a,T}. \quad (26)$$

According to our DD domain detection formulation as will be discussed in the coming subsection, we need to obtain the DD domain a priori mean of x, i.e., $m_x^{a,DD}$, and DD domain a priori covariance matrix of z, i.e., $C_z^{a,DD}$. In specific, based on the time domain extrinsic mean of x, we can obtain the time domain extrinsic mean of z, which will then be forwarded to module B as the a priori information, i.e.,

$$m_x^{a,DD} = m_x^{a,T} = (F_N \otimes I_M) m_x^{a,T}. \quad (27)$$

On the other hand, the extrinsic covariance matrix $C_z^{a,T}$ will be directly passed to module B as a priori information as well.
We have $C_{z, DD} = C_{z}$. With $m_{z, DD}$ and $C_{z, DD}$ in hand, the DD domain detection is now ready to perform.

C. Module B: Symbol-by-Symbol Detection for DD Domain Symbols

By considering the relationship between the time domain OTFS signals z and DD domain OTFS symbols x in (12), we can formulate the DD domain detection problem by

$$m_{z}^{e, T} = (F_{N}^{H} \otimes I_{M}) x + \hat{w},$$

where \hat{w} are white Gaussian noise samples with zero mean and the variance of the k-th entry in \hat{w} is $C_{z,DD}[k, k]$. The justification of (28) is necessary and it is discussed in Appendix A. According to the ML detection rule, the detection output \hat{x} should satisfy

$$\hat{x} = \arg \max_{x} \Pr (m_{z}^{e, T} | x),$$

where

$$\Pr (m_{z}^{e, T} | x) \propto \exp \left(- (m_{z}^{e, T} - (F_{N}^{H} \otimes I_{M}) x)^{H} \times \left(C_{z, DD}^{-1} \right)^{-1} (m_{z}^{e, T} - (F_{N}^{H} \otimes I_{M}) x) \right).$$

In particular, the probability factorization based on the form of (30) is referred to as the Forney observation model, which was firstly introduced by Forney in [26]. The MLSE detection complexity of the Forney observation model based on (30) is exponential to the number of non-zero entries in each row of the matrix $(F_{N}^{H} \otimes I_{M})$. However, as the DFT matrix F_{N} is a dense matrix, the detection complexity of the Forney observation model can be very high. Therefore, we consider a different probability factorization that is equivalent to (30) but only requires a linear detection complexity by taking advantage of the unitary property of the matrix $F_{N}^{H} \otimes I_{M}$.

Let us separate the ISFFT kernel $F_{ISFFT} \triangleq (F_{N}^{H} \otimes I_{M})$ into row vectors, i.e.,

$$F_{ISFFT} = [(F_{ISFFT}[0])^{T}, (F_{ISFFT}[1])^{T}, \ldots, (F_{ISFFT}[MN - 1])^{T}]^{T}.$$

Noticing that $C_{z, DD}$ is a diagonal matrix according to its definition and $m_{x, DD} = (F_{N} \otimes I_{M}) m_{z}^{e, T}$, (30) can be equivalently expressed by (32), shown at the bottom of the page, where

$$\Pr (m_{z}^{e, T} | x) \propto \exp \left(- \sum_{k=0}^{MN-1} \frac{1}{C_{z, DD}[k, k]} \left| F_{ISFFT}[k] m_{x, DD}^{a} - F_{ISFFT}[k] x \right|^{2} \right) \times \prod_{k=0}^{MN-1} \Pr (m_{z}^{e, T} | x[k])$$

$$\propto \exp \left(- \sum_{k=0}^{MN-1} \frac{1}{C_{z, DD}[k, k]} \left(- | F_{ISFFT}[k] m_{x, DD}^{a} |^{2} + 2 Re \{ x^{*} | m_{x, DD}^{a} | - | x[k] |^{2} \} \right) \right).$$

In particular, the probability factorization in the form of (32) and (33) is referred to as the Ungerboeck observation model, which was firstly introduced by Ungerboeck in [27]. Both Forney and Ungerboeck observation models have been widely used for data detection [28]–[30], and the OTFS detection based on Forney and Ungerboeck observation models has also been considered in the previous works [12], [31]. It can be observed from (33) that, the optimal MLSE detection for DD domain symbols can be carried out in a simple symbol-by-symbol form, and the corresponding inputs for detection are the DD domain symbol estimates $m_{x, DD}$ and the covariance matrix $C_{z, DD}$ of the time domain OTFS signal z.

With the i.i.d. assumption of $x[k]$, the a posteriori probability $\Pr (x[k] | m_{z, DD}^{a})$ is essentially the same as that of $\Pr (m_{z}^{e, T} | x[k])$, i.e., $\Pr (x[k] \mid m_{z, DD}^{a}) \propto \Pr (m_{z}^{e, T} \mid x[k])$.

Therefore, we can obtain the a posteriori mean $m_{x, DD}^{p} | [k]$ of $x[k]$ by

$$m_{x, DD}^{p} | [k] = \mathbb{E} \left[x[k] \mid m_{z, DD}^{a} \right]$$

$$= \sum_{i=1}^{N} \Pr (x[k] = a[i] \mid m_{z, DD}^{a}) \times a[i],$$

where $a[i]$ is the i-th DD domain constellation point. Meanwhile, the a posteriori covariance matrix $C_{x, DD}^{p}$ of x is a diagonal matrix due to the i.i.d. assumption, whose k-th diagonal entry is the a posteriori variance of $x[k]$ and is given by

$$C_{x, DD}^{p} | [k, k] = \mathbb{E} \left[| x[k] - \mathbb{E} [x[k] \mid m_{z, DD}^{a}] |^{2} \right]$$

$$= \sum_{i=1}^{N} \Pr (x[k] = a[i] \mid m_{z, DD}^{a}) \times | a[i] |^{2} - | m_{x, DD}^{p} | [k] |^{2}.$$
extrinsic information. The following Proposition clarifies this problem.

Proposition 1 (Extrinsic Information From the DD Domain Detection): The DD domain detection with (33) is a component-wise operation and thus it cannot provide any extrinsic information.

Proof: The proof is given in Appendix B.

According to Proposition 1, we know that directly computing the extrinsic information based on the DD domain detection is not a good choice. Therefore, we firstly convert the *a posteriori* probability of the DD domain symbols x to the *a posteriori* probability of time domain signals z and then compute the extrinsic information. In specific, the *a posteriori* mean $m_{x}^{p,DD}$ and covariance matrix $C_{x}^{p,DD}$ will be served as the outputs of module B. The details of how to compute the extrinsic information based on the outputs of module B will be discussed in the coming subsection. With the above discussion, we summarize the symbol-by-symbol detection for DD domain symbols in Algorithm 2.

Algorithm 2 Symbol-by-Symbol Detection for DD Domain Symbols

Input: $m_{x}^{a,DD}$, $C_{z}^{a,T}$, and A

Steps:

1. **for** k from 0 to $MN-1$ **do**
 2. Calculate the *a posteriori* probability of x_k by (33).
 3. Make hard decision on x_k, which is denoted as $\hat{x}[k]$.
 4. Compute the *a posteriori* mean $m_{x}^{p,DD}[k]$ of x_k by (34).
 5. Compute the *a posteriori* variance of x_k by (35).
2. **end for**
3. Compute $m_{x}^{p,DD}$ of x, based on $m_{x}^{p,DD}[k]$, $0 \leq k \leq MN-1$.
4. Compute $C_{x}^{p,DD}$ of x, based on $C_{x}^{p,DD}[k,k]$, $0 \leq k \leq MN-1$.
5. **return** $m_{x}^{p,DD}$, $C_{x}^{p,DD}$, and \hat{x}.

D. Cross Domain Message Passing: From DD Domain to Time Domain

Based on the description in the previous subsection, we will discuss the message passing from DD domain to time domain. According to (12), $m_{x}^{a,DD}$ and $C_{x}^{a,DD}$ are converted to the *a posteriori* mean $m_{x}^{p,DD}$ and covariance matrix $C_{x}^{p,DD}$ of the time domain OTFS signal z by

\[
m_{x}^{p,DD} = (F_{N}^{H} \otimes I_{M}) m_{x}^{p,DD}, \quad (36)
\]

\[
C_{x}^{p,DD} = (F_{N}^{H} \otimes I_{M}) C_{x}^{p,DD} (F_{N} \otimes I_{M}). \quad (37)
\]

Again, we note that $C_{x}^{p,DD}$ can be a dense matrix if the diagonal entries of $C_{x}^{p,DD}$ are not of the same value. In this case, we can discard the non-diagonal entries (treated as zeros), according to the i.i.d. assumption [20]. Similar to (25) and (26), we can compute the extrinsic information of z in terms of the mean and covariance matrix, which are given by

\[
C_{z}^{DD} = ((C_{z}^{DD})^{-1} - (C_{z}^{p,DD})^{-1})^{-1},
\]

\[
m_{z}^{DD} = C_{z}^{p,DD} ((C_{z}^{DD})^{-1} m_{z}^{p,DD} - (C_{z}^{DD})^{-1} m_{z}^{c,T}).
\]

Finally, the extrinsic information of z is fed back to module A as the *a priori* mean and covariance matrix for the next iteration, i.e., $m_{z}^{a,T} = m_{z}^{c,DD}$ and $C_{z}^{a,T} = C_{z}^{c,DD}$.

Algorithm 3 Cross Domain Iterative Detection for OTFS Modulation

Input: r, H_{T}^{eff}, L_{max}, and A

Initialization: Set $m_{z}^{a,T}[k] = 0$, for $0 \leq k \leq MN-1$ and $C_{z}^{a,T} = I_{MN}$.

Steps:

1. **for** l from 1 to L_{max} **do**
 2. Perform the L-MMSE estimation for time domain OTFS signal according to Algorithm 1.
 3. Compute $C_{z}^{a,DD}$ based on (25) and $m_{x}^{a,DD}$ based on (26).
 4. Perform symbol-by-symbol detection for DD domain symbols according to Algorithm 2.
 5. Compute $m_{x}^{p,DD}$ and $C_{x}^{p,DD}$ based on (36) and (37).
 6. Compute $C_{z}^{a,T}$ and $m_{z}^{a,T}$ based on (38) to (39).
2. **end for**
3. **return** \hat{x}.

Based on the above discussion, we summarize the proposed OTFS detection in Algorithm 3, where the term L_{max} is referred to as the maximum number of iterations. For notational brevity, we drop the iteration index l of the corresponding matrices in Algorithm 3. So far, we have introduced the proposed cross domain iterative detection. In the following section, we will investigate its error performance and the computation complexity.

IV. PERFORMANCE ANALYSIS

In this section, we will investigate the asymptotical error performance of the proposed detection algorithm with $MN \to \infty$ and its detection complexity. Since the proposed algorithm involves several iterations between two modules, we characterize the error performance by the recursion of two states corresponding to each module. Meanwhile, we will also discuss the detection complexity corresponding to each module.

A. M.S.E Performance Analysis via State Evolution

Without loss of generality, we first investigate the MSE performance with a given time domain effective channel H_{T}^{eff} and the convergence behaviour of the proposed algorithm. To this end, we can investigate the average *a priori* variance of the inputs to module A and module B during each iteration. In particular, by noticing the i.i.d. assumption of both the DD domain OTFS symbols and the time domain OTFS signal, we define the two states for module A and module B at the l-th iteration by

\[
r_{z}^{a,T} (l) \sim \mathbb{E} [C_{z}^{c,DD} [k,k]] = \lim_{MN \to \infty} \frac{1}{MN} \text{Tr} (C_{z}^{c,DD}), \quad (40)
\]

\[
r_{z}^{c,T} (l) \sim \mathbb{E} [C_{z}^{c,T} [k,k]] = \lim_{MN \to \infty} \frac{1}{MN} \text{Tr} (C_{z}^{c,T}), \quad (41)
\]
where the expectation is with respect to the index \(k \). In specific, these two states can be viewed as the average MSEs of the inputs to module A and module B at the \(l \)-th iteration, respectively. For notational brevity, we further define the ratios between the OTFS signal energy and the average \textit{a priori} variance of the inputs to each module, i.e., the effective SNRs for the time domain and DD domain, by

\[
\eta_{\text{T}} (l) \triangleq \frac{1}{v^{a,\text{T}}_{z} (l)}, \quad \eta_{\text{DD}} (l) \triangleq \frac{1}{v^{a,\text{DD}}_{z} (l)}. \tag{42}
\]

Now, we focus on the evolution between the two states \(v^{a,\text{T}}_{z} (l) \) and \(v^{a,\text{DD}}_{z} (l) \). We will investigate the corresponding average variance of the inputs and outputs for each module. In particular, we consider the following assumption.

\textbf{Assumption 1:} For the \(l \)-th iteration, the main diagonal entries of \textit{a priori} covariance matrices \(C^{a,\text{T}}_{z} \) and \(C^{a,\text{DD}}_{z} \) are of the same value as \(v^{a,\text{T}}_{z} (l) \) and \(v^{a,\text{DD}}_{z} (l) \), respectively.

It should be noted that the above assumption is reasonable with a sufficiently large number of \(MN \), due to the law of large numbers. With this assumption, we will discuss the connection between the two states based on Algorithm 3. In specific, we can first derive the \textit{a posteriori} covariance matrix \(C^{p,\text{T}}_{z} \) according to (24) and further derive the extrinsic covariance matrix \(C^{e,\text{T}}_{z} \) according to (25), i.e.,

\[
v^{p,\text{DD}}_{z} (l) = \frac{1}{v^{p,\text{DD}}_{z} (l)} - \frac{1}{v^{p,\text{T}}_{z} (l)}, \tag{44}
\]

where

\[
v^{p,\text{T}}_{z} (l) = v^{a,\text{T}}_{z} (l) - \left(v^{a,\text{T}}_{z} (l) \right)^{2} MN \\
\times \text{Tr} \left(\left(H^{\text{eff}}_{\text{T}} \right)^{H} \left(v^{a,\text{T}}_{z} (l) H^{\text{eff}}_{\text{T}} \left(H^{\text{eff}}_{\text{T}} \right)^{H} + N_{0} I_{MN} \right)^{-1} H^{\text{eff}}_{\text{T}} \right). \tag{45}
\]

The above equations demonstrate the connection between the state \(v^{a,\text{T}}_{z} (l) \) and \(v^{a,\text{DD}}_{z} (l) \) at the \(l \)-th iteration. In the following, we will consider the update of the state \(v^{a,\text{T}}_{z} (l + 1) \) based on the state \(v^{a,\text{DD}}_{z} (l) \). Let us define the MSE of the DD domain symbol detection, given an AWGN observation with an SNR \(\eta \) by [20]

\[
MSE (\eta) = E \left[\left| x - \mathbb{E} [x|x + \xi] \right|^{2} \right], \tag{46}
\]

where \(x \) is an arbitrary DD OTFS symbol and \(\xi \) is an AWGN sample with zero mean and variance \(1/\eta \). It should be noted that the DD domain detection for (28) is derived from the MLSE rule based on the Ungerboeck observation model. When all the noise terms in (28) share the same variance, the MLSE detections based on the Ungerboeck observation model and the Forney observation model will share the same error performance [27]. Therefore, according to Assumption 1, the MSE performance for the applied DD domain detection is the same as the MLSE detection based on the Forney observation model, which is given by [20]

\[
v^{p,\text{DD}}_{z} (l) \triangleq E \left[C^{p,\text{DD}}_{z} [k,k] \right] = \lim_{MN \to \infty} \frac{1}{MN} \text{Tr} \left(C^{p,\text{DD}}_{x} \right) \\
= MSE (\eta_{\text{DD}} (l)). \tag{47}
\]

Since the extrinsic information is calculated in the time domain, we need to convert the DD domain \textit{a posteriori} covariance matrix \(C^{p,\text{DD}}_{z} \) to the time domain \textit{a posteriori} covariance matrix \(C^{p,\text{T}}_{z} \), according to (37). Denote by \(v^{p,\text{DD}}_{z} (l) \) the average of the main diagonal entries of \(C^{p,\text{DD}}_{z} \). According to the law of large numbers, we can show that \(v^{p,\text{DD}}_{z} (l) = v^{p,\text{T}}_{z} (l) \), due to the unitary transformation between the DD domain and the time domain. Thus, according to (38), we have

\[
v^{a,\text{T}}_{z} (l + 1) = \frac{1}{v^{p,\text{T}}_{z} (l) - v^{p,\text{DD}}_{z} (l)}. \tag{48}
\]

Based on (48), the state evolution from the state \(v^{a,\text{DD}}_{z} (l) \) to the state \(v^{a,\text{T}}_{z} (l + 1) \) is now explicit.

We notice the above state evolution requires the calculation of MSE (46). In order to calculate the MSE, we need to compute the \textit{a posteriori} mean of \(x \). However, the calculation of the \textit{a posteriori} mean is in general a nonlinear function of the observation \(x + \xi \) with respect to the specific constellation shape, unless \(x \) is Gaussian distributed [32]. Therefore, in order to obtain some general conclusions regarding the MSE characteristics, we consider a Monte Carlo approach to calculate the MSE. In particular, by considering a sufficiently large value of \(MN \), we produce \(m^{a}_{x} \) using the Monte Carlo approach with a given constellation set \(\Lambda \) according to (28), where the variance of \(\tilde{w} \) is set to be \(1/\eta_{\text{DD}} (l) \) due to the law of large numbers. Therefore, based on the generated \(m^{a}_{x} \), we can obtain the MSE value based on (46).

According to the above analysis, we notice that there exists a fixed point in the state evolution given a sufficiently high SNR, where the overall MSE performance of the proposed algorithm does not change anymore with the increase of number of iterations \(l \), i.e., the algorithm is converged. In particular, we consider the converged MSE performance and denote the corresponding average \textit{a posteriori} variance with respect to the time domain estimates and to the DD domain detection outputs by \(v^{p,\text{T}}_{z} \) and \(v^{p,\text{DD}}_{z} \). Then, we have the following theorem.

\textbf{Theorem 1 (Fixed Point of State Evolution):} There exists a fixed point in the state evolution given a sufficiently high SNR, where the algorithm is converged. Furthermore, in the convergence, the average \textit{a posteriori} variance with respect to the time domain estimates and the DD domain detection outputs share the same value, i.e.,

\[
v^{p,\text{T}}_{z} = v^{p,\text{DD}}_{z}. \tag{49}
\]

\textbf{Proof:} Note that the values of the states \(v^{a,\text{T}}_{z} (l) \) and \(v^{a,\text{DD}}_{z} (l) \) will not change with the increase of the iteration number when the algorithm is converged. Therefore, we combine (44) and (48) and drop the iteration index \(l \), yielding

\[
\frac{1}{v^{a,\text{T}}_{z} - v^{a,\text{DD}}_{z}} = \frac{1}{v^{p,\text{T}}_{z} - v^{p,\text{DD}}_{z}}. \tag{50}
\]
After some straightforward manipulations, we can obtain (49). Let us denote by \(f (v_z^a; \eta) \) the function of \(v_z^a \) in the form of (45). Then, by combining (45), (47), and (49), it can be shown that the following equation must hold, when the algorithm is converged,

\[
f \left(\frac{1}{MSE(\eta_{DD}) - \eta_{DD}} \right) = MSE(\eta_{DD}). \tag{51}
\]

According to the definition of \(\eta_{DD} \), it is not hard to notice that \(0 < \eta_{DD} < \frac{1}{MSE(\eta_{DD})} \) holds. After some mathematical derivations regarding the second order derivatives with respect to \(\eta_{DD} \), it can be shown that with a sufficiently high SNR, i.e., \(N_0 \) is sufficiently small, there exists only one solution of \(\eta_{DD} \) satisfying (51) with \(0 < \eta_{DD} < \frac{1}{MSE(\eta_{DD})} \). Thus, the convergence is guaranteed. Unfortunately, due to the space limitation, we omit the detailed mathematical derivations for the above discussions. This completes the proof of Theorem 1.

Theorem 1 indicates that the proposed algorithm can converge and in the convergence, both time domain estimation and DD domain detection can provide the same accuracy regarding the data recovery. Other than the convergence behavior of the proposed algorithm, it is also important to derive the corresponding error performance, when the proposed algorithm is converged. According to Theorem 1, we can evaluate this in either time domain or DD domain, when the proposed algorithm is converged. This issue will be discussed in detail in the coming subsection. In the following, we investigate a special case where the DD domain symbols are assumed to be Gaussian distributed. We note that such a case is not practically important but it can provide some interesting insights for the analysis of the proposed algorithm. In particular, we have the following Proposition.

Proposition 2 (Detection Performance With Gaussian Constellation in DD Domain): For the case where the DD domain symbols are Gaussian distributed, the DD domain detection cannot provide any error performance improvement, i.e., \(v_z^{DD}(l) \) is not \(\eta_{DD} \).

Proof: With the Gaussian assumption, we have

\[
v_z^{DD}(l) = MSE(\eta) = \mathbb{E} \left[|x - \mathbb{E} |x + \xi|^2 \right] = \mathbb{E} \left[|\xi|^2 \right] = \frac{1}{\eta} = v_z^{DD}(l). \tag{52}
\]

The completes the proof of Proposition 2.

Proposition 2 suggests that, if the DD domain constellation is Gaussian distributed, iteratively updating the extrinsic information between the time domain and DD domain will not introduce any error performance gain. In other words, the error performance improvement is due to the non-Gaussian constellation constraint in the DD domain. Intuitively speaking, the DD domain detection can be viewed as a de-noising operation. If the constellation is Gaussian distributed, the ML detection will give the detection output as \(x + \xi \) because \(\mathbb{E} |x| x + \xi \) always holds, thus it cannot correct any error induced by the noise. On the other hand, when the DD domain constellation is not Gaussian distributed, applying iterations across time and DD domain can potentially improve the error performance. This is because the time domain estimation in module A assumes that the \(\mathbb{E} \) is a Gaussian vector due to the spreading effect of ISFFT, which does not take advantage of the DD domain constellation constraint. Therefore, by performing DD domain symbol detection, the DD domain constellation constraint is exploited by the proposed algorithm, which can lead to a potential error performance improvement.

Fig. 4 shows the time domain MSE performance of the proposed algorithm, where \(N = 32 \) and \(M = 64 \), respectively. Without loss of generality, the time domain effective channel \(\mathbf{H}_T^{\text{eff}} \) is generated according to (13), where \(P = 4 \) and the channel coefficients are \([-0.27 + 0.35i, 0.17 + 0.01i, 0.56 - 0.33i, 0.31 - 0.56i]\), the delay indices are \([0, 9, 4, 7]\), and the Doppler indices are \([4.70, -2.26, 1.23, -3.46]\), respectively. In specific, we consider two constellation mappings at different SNRs, including the quadrature phase shift keying (QPSK) at \(E_b/N_0 = 12 \) dB and 16-quadrature amplitude modulation (16-QAM) at \(E_b/N_0 = 17 \) dB and show state \(v_z^{DD}(l) \) and the corresponding MSE values in Fig. 4. As observed from the figure, with an increased number of iterations, the MSE performance of the proposed algorithm first decreases and then saturates at MSEs around \(1.3 \times 10^{-4} \) for the QPSK case and around \(1.6 \times 10^{-3} \) for the 16-QAM case. Meanwhile, the derived state evolution shows a close match to the actual MSE performance. This observation indicates that the derived state evolution is consistent with the simulation results.

B. Analysis of Effective DD Domain SNR

In this subsection, we will investigate the converged error performance. In particular, we are interested in the effective DD domain SNR \(\eta_{DD}(l) \), because the DD domain detection is a simple component-wise operation, where \(\eta_{DD}(l) \) determines the BER performance for a given constellation. Let us define the second-order time domain OTFS channel matrix \(\mathbf{G}_T^{\text{eff}} \triangleq \mathbf{H}_T^{\text{eff}} (\mathbf{H}_T^{\text{eff}})^H \). Noticing that \(\mathbf{G}_T^{\text{eff}} \) is a Hermitian
matrix by its definition, there exists a unitary matrix U such that $G_{\text{eff}}^{T} = U \Lambda U^{H}$, where Λ is a diagonal matrix whose (k, k)-th entry is the k-th eigenvalue λ_k of G_{eff}^{T}. Thus, we can rewrite the after-priori variance $v_{z}^{\text{a},T}(l)$ in (45) according to the eigenvalues λ_k as shown in the following Lemma.

Lemma 1 (Time Domain a Posteriori Variance): The time domain a posteriori variance $v_{z}^{\text{a},T}(l)$ in (45) can be simplified by

$$v_{z}^{\text{a},T}(l) = v_{z}^{a,T}(l) - \frac{v_{z}^{a,T}(l)}{MN} \sum_{k=1}^{MN} \frac{v_{z}^{a,T}(l) \lambda_k}{v_{z}^{a,T}(l) \lambda_k + N_0}.$$ \hspace{1cm} (53)

Proof: The proof is given in Appendix C.

In order to obtain some important insights of the effective DD domain SNR $\eta_{\text{DD}}(l)$, we need to investigate the property of the eigenvalues λ_k. For the ease of further derivation, let us consider the following assumption.

Assumption 2: The delay index associated to each resolvable path is different to each other, i.e., $l_i \neq l_j, \forall i \neq j$, $1 \leq i, j \leq P$.

It should be noted that the value of the delay index depends on the specific reflectors corresponding to each resolvable path. Furthermore, in the case where the maximum delay index l_{max} is much larger than P, it is unlikely to have a channel realization where different paths share the same delay index. However, later we will show that even without the above assumption, our following derivation can still provide an accurate estimate for the effective DD domain SNR $\eta_{\text{DD}}(l)$.

With Assumption 2 in hand, we can derive the following Lemma for G_{eff}^{T}.

Lemma 2 (Main Diagonal Entries of G_{eff}^{T}): Under Assumption 2, the main diagonal entries of G_{eff}^{T} are of the same value $\|h\|^2$, where $h = [h_1, h_2, \ldots, h_P]^{T}$ is the path gain vector.

Proof: The Lemma can be derived by noticing that $\Pi^l_i \Delta_{\kappa_i + \kappa_i} \Delta^{-k_i - \kappa_i} \Pi^{-l_i} = I_{MN}$. ■

According to Lemma 1 and Lemma 2, we can now derive the lower-bound of the DD domain a priori variance $v_{z}^{a,\text{DD}}(l)$. The corresponding results are summarized in the following theorem.

Theorem 2 (Lower-Bound of $v_{z}^{a,\text{DD}}(l)$): Under Assumption 2, the DD domain a priori variance $v_{z}^{a,\text{DD}}(l)$ is lower-bounded by $\frac{N_0}{\|h\|^2}$, where the lower bound becomes tighter if the time domain a priori variance $v_{z}^{a,T}(l)$ tends to zero and the lower bound is achieved when $v_{z}^{a,T}(l) = 0$.

Proof: The proof is given in Appendix D. ■

Immediately, we can derive the upper-bound of $\eta_{\text{DD}}(l)$ based on Theorem 2.

Corollary 1 (Upper-Bound of $\eta_{\text{DD}}(l)$): Under Assumption 2, the DD domain effective SNR $\eta_{\text{DD}}(l)$ is upper-bounded by $\frac{\|h\|^2}{N_0}$, and the upper-bound becomes tighter with more iterations.

Proof: The proof can be derived from (43) and Theorem 2. ■

It is interesting to see from Theorem 2 and Corollary 1 that the effective DD domain SNR of the proposed algorithm can theoretically approach the maximum receiver SNR for a given fading channel [21], with a sufficient number of iterations. Equivalently, this observation indicates that the proposed algorithm can approach the error performance of MLSE theoretically given a sufficient number of iterations. This is because the applied DD domain detection in (32) is derived from the ML detection rule, which is optimal in the sense of minimizing the symbol error rate given the effective DD domain SNR. Therefore, as the effective DD domain SNR approaches its maximum with an increased number of iterations, the proposed algorithm gradually approaches the MLSE performance given the channel conditions. It should be noted that the MLSE can provide the optimal ML error performance, but usually requires a prohibitively high complexity [21]. Therefore, the proposed algorithm can be viewed as a type of reduced-complexity detection algorithm that can potentially approach the optimal error performance. On the other hand, we note that the above analysis is based on Assumption 2. For the case where different resolvable paths share the same delay index, we will demonstrate that the effective DD domain SNR also follows Corollary 1 by numerical simulations.

Fig. 5 shows the effective DD domain SNRs with respect to the number of iterations. Without loss of generality, the time domain effective channel H_{eff} is generated according to (13), where $P = 4$ and the channel coefficients are $[-0.04 - 0.31i, 0.40 - 0.11i, -0.43 + 0.18i, 0.59 + 0.21i]$, the delay indices are $[0, 5, 2, 8]$, and the Doppler indices are $[-3.08, 3.45, -3.94, -0.72]$, respectively. Similarly, we consider both QPSK and 16-QAM constellations with $E_s/N_0 = 14$ dB and $E_s/N_0 = 17$ dB, respectively. Meanwhile, we also plot the SNR derived based on the state evolution and the corresponding SNR upper bound, i.e., $\frac{\|h\|^2}{N_0}$. As observed from the figure, with an increased number of iterations, the effective DD domain SNR increases. In specific, the derived SNR based on the state evolution shows a close match to the actual SNR performance based on the simulation. More importantly, the derived SNR upper bound agrees with the simulation results and state evolution, and the bound becomes tighter as the number of iteration increases, which is consistent with the above analysis.
the delay indices are of order of the matrix inversion is O matrix inverse in (22). Generally, the computation complexity is due to the algorithm proposed in [34].

C. Analysis of Detection Complexity

To have a fair comparison, we show the effective DD domain SNRs with respect to the number of iterations with a specific channel realization in Fig. 6, where different resolvable paths share the same delay index. In specific, the channel contains $P = 4$ paths and the first two paths share the same delay index.

![Effective DD domain SNRs for OTFS modulation with different number of iterations, where the frame contains 2048 DD domain QPSK or 16-QAM symbols. In specific, the SNR for the QPSK case is $E_s/N_0 = 14$ dB, while that for the 16-QAM case is $E_s/N_0 = 17$ dB. The considered wireless channel contains $P = 4$ paths and the first two paths share the same delay index.](image)

To have a fair comparison, we show the effective DD domain SNRs with respect to the number of iterations with a specific channel realization in Fig. 6, where different resolvable paths share the same delay index. In specific, the channel contains $P = 4$ paths and the channel coefficients are $[-0.21 + 0.27i, 0.17 + 0.01i, 0.22 - 0.66i, 0.31 - 0.46i]$, the delay indices are $[0, 4, 7]$, and the Doppler indices are $[-3.28, 4.45, -1.94, -0.23]$, respectively. We observe that both QPSK case and 16-QAM case have similar SNR performance to the previous figure. This observation indicates that the above analysis is also valid when different resolvable paths share the same delay index.

V. Numerical Results

In this section, we will evaluate the BER performance of the proposed algorithm. We consider the average BER performance with a sufficient number of realizations of the channel. Specifically, the corresponding channel matrix is generated according to (13). The channel coefficients are randomly generated based on a uniform power delay profile, and the delay and Doppler indices are randomly generated within the range of $[0, l_{\text{max}}]$ and $[-k_{\text{max}}, k_{\text{max}}]$, where $l_{\text{max}} = 10$ and $k_{\text{max}} = 5$, unless otherwise specified. We note that, as mentioned before, the delay index can only be an integer number, while the Doppler index can be a fractional number [12]. Without loss of generality, we consider the QPSK modulated OTFS system with different number of paths, where $M = 64$ and $N = 32$, respectively, unless otherwise specified. We also provide other detection methods for comparison that include the MMSE detection based on the DD domain effective channel H_{DD}^eff, DD domain detection based on the sum-product algorithm (SPA) [35], and the DD domain message passing algorithm in [12].

![Effective DD domain SNRs for OTFS modulation with different number of iterations, where the frame contains 2048 DD domain QPSK or 16-QAM symbols. In specific, the SNR for the QPSK case is $E_s/N_0 = 14$ dB, while that for the 16-QAM case is $E_s/N_0 = 17$ dB. The considered wireless channel contains $P = 4$ paths and the first two paths share the same delay index.](image)

The considered SPA detection is derived based on the graphical model corresponding to the DD domain effective channel, whose computational complexity can be $O(\log N)$ in the case of complex fractional Doppler shifts [35]. In particular, the considered SPA detection can theoretically approach the error performance of the optimal MLSE detection and achieve the same performance when the graphical model does not contain any cycle [35]. However, since the DD domain SPA detection requires a very high detection complexity in the fractional Doppler case, we only consider the integer Doppler case for simplicity.

![Effective DD domain SNRs for OTFS modulation with different number of iterations, where the frame contains 2048 DD domain QPSK or 16-QAM symbols. In specific, the SNR for the QPSK case is $E_s/N_0 = 14$ dB, while that for the 16-QAM case is $E_s/N_0 = 17$ dB. The considered wireless channel contains $P = 4$ paths and the first two paths share the same delay index.](image)

Fig. 7 shows the BER performance with $P = 4$. As observed from the figure, the error performance of the proposed algorithm with one iteration is almost the same as that with the MMSE detection. This observation indicates that applying the same detection method for OTFS modulation over different domains can result in the similar error performance. Furthermore, with the increased number of iterations, the proposed algorithm outperforms the MMSE detection and almost achieves the performance of SPA detection with only integer Doppler indices. In specific, with BER below 1×10^{-4}, the proposed algorithm with 5 iterations has only a marginal performance gap (around 0.2 dB) compared to the SPA.
Fig. 7. BER performance for OTFS modulation with $P = 4$, where the error performance of the proposed algorithm is compared with that of DD domain MMSE detection and SPA detection with integer Doppler shifts.

Fig. 8. BER performance for OTFS modulation with fractional Doppler shifts, where $P = 10$.

Fig. 9. SNR gains vs. number of iterations, where both QPSK and 16-QAM signals are considered with $P = 4$ and $P = 6$.

VI. Conclusion

In this paper, we proposed a novel cross domain iterative detection for OTFS modulation. We derived the state evolution for the proposed algorithm and investigated its detection performance including both the MMSE performance and the DD domain effective SNR. In particular, we show that the proposed algorithm can approach the error performance of MLSE detection even in the presence of complex fractional Doppler shifts, but only requires a much lower detection complexity. Our analytical results are explicitly verified by simulation results, where a significant performance improvement can be observed compared to the conventional detection algorithms for channels with fractional Doppler shifts. The cross domain signal processing may be a new research direction for OTFS modulation and general multicarrier modulation schemes. Our future work will focus on the extension of the proposed detection. This observation clearly substantiates our theoretical analysis in the previous section.

Fig. 8 shows the BER performance with $P = 10$. Under such a complex channel condition, the DD domain effective channel H_{DD}^{eff} can be very dense and conventional detection methods based on H_{DD}^{eff} may not have a good error performance. As shown in the figure, the proposed algorithm with one iteration performs almost the same with the DD domain MMSE detection, which is consistent with the observation in the previous figure. Meanwhile, the DD domain message passing algorithm [12] also shows a similar error performance to both the DD domain MMSE detection and the proposed algorithm with one iteration. However, with the increased number of iterations, the proposed algorithm significantly outperforms the MMSE detection and message passing algorithm. Specifically, at $BER \approx 1 \times 10^{-3}$, with only 2 iterations, the error performance of the proposed algorithm shows an around 3.2 dB gain compared to that of the MMSE detection and the gain to the message passing algorithm is even more.

Furthermore, with 5 iterations, the SNR gain to the MMSE detection performance is increased to around 4.1 dB. This observation shows the advantage of the proposed algorithm over conventional detection algorithms, which also agrees with our previous theoretical analysis.

In Fig. 9, we provide the simulation results of the SNR gains of the proposed algorithm relative to the MMSE detection in the presence of fractional Doppler shifts, at $BER \approx 10^{-3}$. We set $M = 32$, $N = 16$, $t_{max} = 3$, and $k_{max} = 6$, where both QPSK and 16-QAM signals are considered. As shown in the figure, the SNR gains increase with iterations until saturating at their maximum values. We observe that 5 iterations are usually sufficient for acquiring the maximum SNR gains. We also notice that the SNR gains increase with more paths for both QPSK and 16-QAM. Furthermore, we observe that the proposed algorithm enjoys a larger SNR gain with a larger constellation size, which is consistent with our discussions in Section-IV-B. This is because the error performance gap between the MMSE detection and ML detection increases with an increased size of constellations, and the proposed algorithm can substantially reduce this performance loss with more iterations.
algorithm to general wireless channels. An interesting starting point for the extension could be the application of the eigenvalue decomposition for the underlying channel matrix, where two unitary matrices are comprised by left and right eigenvectors. The details of this extension will be studied in the future.

APPENDIX A
JUSTIFICATION OF PROBLEM FORMULATION (28)

The problem formulation (28) is based on the following relationship between the extrinsic mean of \(z \) and the exact value of \(z \), i.e.,

\[
m_{x}^{e,DD} = z + \hat{w}, \tag{54}
\]

where \(\hat{w} \) is a white Gaussian noise sample vector with zero mean and a diagonal covariance matrix \(C_{x}^{a,DD} = C_{x}^{a,DD} \) standing for the inaccuracies of the MMSE estimation in the time domain. The rational behind (54) is that unitary transformation \(F_{N}^{H} \otimes I_{M} \) can suppress the residual correlations due to the spreading effect of \(F_{N}^{H} \) [20].

We note that the considered problem formulation is not the only way for DD domain detection. A more straightforward way is to first convert the extrinsic information \(m_{x}^{e,DD} \) of the time domain signal \(z \) to DD domain and then compare it with the DD domain symbol constellation. In specific, we can directly apply the transformation \(F_{N}^{H} \otimes I_{M} \) onto (54) and obtain the corresponding DD domain symbol estimates, i.e.,

\[
m_{x}^{a,DD} = (F_{N} \otimes I_{M}) m_{x}^{e,DD} = x + (F_{N} \otimes I_{M}) \hat{w}, \tag{55}
\]

where the term \((F_{N} \otimes I_{M}) \hat{w} \) is the equivalent noise in the DD domain and its covariance matrix is denoted by \(C_{x}^{a,DD} \).

Recalling (12), we have

\[
C_{x}^{a,DD} = (F_{N} \otimes I_{M}) C_{x}^{a,DD} (F_{N}^{H} \otimes I_{M}). \tag{56}
\]

It should be noted that in the asymptotical regime, i.e., \(MN \) tends to infinity, the diagonal entries of the diagonal matrix \(C_{x}^{a,DD} \) tend to be of the same value owing to the law of large numbers, i.e., \(C_{x}^{a,DD} \propto I_{M,N} \). In this case, we have \(C_{x}^{a,DD} = C_{x}^{a,DD} \) and the DD domain symbol detection can be done in a straightforward symbol-by-symbol fashion. However, in practice, the diagonal entries of \(C_{x}^{a,DD} \) may not be of the same value due to the specific noise values. In this case, \(C_{x}^{a,DD} \) can be non-diagonal and dense. As mentioned before, a common approach for this issue is to discard the non-diagonal entries, which is simple but may introduce performance loss. In contrast to the above solution, we can consider the DD domain detection problem formulation in (28). As can be noticed from Section III-C, the proposed DD domain detection algorithm based on (28) bypasses the problem that the diagonal entries of \(C_{z}^{a,DD} \) are of different values and can still be efficiently carried out in a symbol-by-symbol fashion.

APPENDIX B
PROOF OF PROPOSITION 1

According to the definition of extrinsic information, we can derive the extrinsic mean \(m_{x}^{e,DD} \) by excluding the contribution of \(x[k] \) in (34). By noticing that \(m_{x}^{e,DD} \) can be non-diagonal and dense. As mentioned above, the proposed DD domain symbol constellation. In specific, we can directly apply the transformation \(F_{N}^{H} \otimes I_{M} \) onto (54) and obtain the corresponding DD domain symbol estimates, i.e.,

\[
m_{x}^{a,DD} = (F_{N} \otimes I_{M}) m_{x}^{e,DD} = x + (F_{N} \otimes I_{M}) \hat{w}, \tag{55}
\]

where the term \((F_{N} \otimes I_{M}) \hat{w} \) is the equivalent noise in the DD domain and its covariance matrix is denoted by \(C_{x}^{a,DD} \).

Recalling (12), we have

\[
C_{x}^{a,DD} = (F_{N} \otimes I_{M}) C_{x}^{a,DD} (F_{N}^{H} \otimes I_{M}). \tag{56}
\]

It should be noted that in the asymptotical regime, i.e., \(MN \) tends to infinity, the diagonal entries of the diagonal matrix \(C_{x}^{a,DD} \) tend to be of the same value owing to the law of large numbers, i.e., \(C_{x}^{a,DD} \propto I_{M,N} \). In this case, we have \(C_{x}^{a,DD} = C_{x}^{a,DD} \) and the DD domain symbol detection can be done in a straightforward symbol-by-symbol fashion. However, in practice, the diagonal entries of \(C_{x}^{a,DD} \) may not be of the same value due to the specific noise values. In this case, \(C_{x}^{a,DD} \) can be non-diagonal and dense. As mentioned before, a common approach for this issue is to discard the non-diagonal entries, which is simple but may introduce performance loss. In contrast to the above solution, we can consider the DD domain detection problem formulation in (28). As can be noticed from Section III-C, the proposed DD domain detection algorithm based on (28) bypasses the problem that the diagonal entries of \(C_{z}^{a,DD} \) are of different values and can still be efficiently carried out in a symbol-by-symbol fashion.

APPENDIX C
PROOF OF Lemma 2

According to (45), we have

\[
v_{z}^{p,T} (l) = v_{z}^{a,T} (l) - \frac{\langle v_{z}^{a,T} (l) \rangle}{M N} \cdot \text{Tr} \left(\left(H_{T}^{c} \right)^{H} \left(v_{z}^{a,T} (l) H_{T}^{c} \right) + N_{0} I_{M,N} \right)^{-1} H_{T}^{c} \right)
\]

\[
= v_{z}^{a,T} (l) - \frac{\langle v_{z}^{a,T} (l) \rangle}{M N} \cdot \text{Tr} \left(v_{z}^{a,T} (l) \left(G_{T}^{c} + N_{0} I_{M,N} \right)^{-1} G_{T}^{c} \right). \tag{58}
\]

Furthermore, by considering \(G_{T}^{c} = U A U^{H} \), (58) can be further simplified by (59), shown at the bottom of the page. This completes the proof of Lemma 2.

APPENDIX D
PROOF OF Theorem 2

The proof is based on the application of Jensen’s inequality. Let us consider the following function \(f(\lambda) = \frac{v_{\lambda}}{\gamma_{\lambda}^{2} N_{0}} \), whose second-order derivative with respect to \(\lambda \) is of the form \(f''(\lambda) = -\frac{2 \gamma_{\lambda}^{2} N_{0}}{\left(\gamma_{\lambda}^{2} + N_{0}\right)^{2}} \). It can be shown that with \(v_{\lambda} \) and \(N_{0} \) strictly above zero, the above function is a concave

\[
v_{z}^{p,T} (l) = v_{z}^{a,T} (l) - \frac{\langle v_{z}^{a,T} (l) \rangle}{M N} \cdot \text{Tr} \left(v_{z}^{a,T} (l) U A U^{H} + N_{0} I_{M,N} \right)^{-1} U A U^{H} \right)
\]

\[
= v_{z}^{a,T} (l) - \frac{\langle v_{z}^{a,T} (l) \rangle}{M N} \cdot \text{Tr} \left(\left(v_{z}^{a,T} (l) \left(A + N_{0} I_{M,N} \right)^{-1} A \right) \right)
\]

\[
= v_{z}^{a,T} (l) - \frac{\langle v_{z}^{a,T} (l) \rangle}{M N} \cdot \sum_{\lambda = 1}^{L} \langle v_{z}^{a,T} (l) \rangle \lambda_{k} + N_{0}. \tag{59}
\]
function. Furthermore, with \(v \) close to zero, \(f''(\lambda) \) tends to be a zero, which indicates that \(f(\lambda) \) tends to be a linear function. Therefore, according to Jensen’s inequality, it is obvious that

\[
\frac{1}{MN} \sum_{k=1}^{MN} f(\lambda_k) \leq f \left(\frac{1}{MN} \sum_{k=1}^{MN} \lambda_k \right) = \frac{1}{MN} \sum_{k=1}^{MN} \lambda_k + N_0.
\]

where the bound becomes tighter with decreasing \(v \) and the equality is achieved when \(v = 0 \). Therefore, we have

\[
v_{z,T}^v(l) = v_{z,T}^{a,T}(l) - \frac{v_{z,T}^{a,T}(l) MN}{\sum_{k=1}^{MN} \lambda_k + N_0} \sum_{k=1}^{MN} \lambda_k = v_{z,T}^{a,T}(l) - \frac{v_{z,T}^{a,T}(l) MN}{\sum_{k=1}^{MN} \lambda_k + N_0} \sum_{k=1}^{MN} \lambda_k + N_0 \geq v_{z,T}^{a,T}(l) - \frac{v_{z,T}^{a,T}(l) MN}{\sum_{k=1}^{MN} \lambda_k + N_0} \sum_{k=1}^{MN} \lambda_k + N_0,
\]

where the lower bound becomes tighter with the decrease of \(v_{z,T}^{a,T}(l) \) and the equality is achieved when \(v_{z,T}^{a,T}(l) \) becomes zero. Notice that \(\sum_{k=1}^{MN} \lambda_k = \text{Tr} \left(G^H \right) \). Thus, by considering Lemma 2, (61) becomes

\[
v_{z,T}^v(l) \geq v_{z,T}^{a,T}(l) - \frac{\left(v_{z,T}^{a,T}(l) \right)^2 \| h \|^2}{v_{z,T}^{a,T}(l) \| h \|^2 + N_0}.
\]

By substituting (62) into (44), after some manipulations, we arrive at

\[
v_{z,T}^{a,DD}(l) = \frac{1}{v_{z,T}^{a,T}(l) - \frac{v_{z,T}^{a,T}(l)}{\| h \|^2 + N_0}} - \frac{1}{v_{z,T}^{a,T}(l)} \leq \frac{1}{v_{z,T}^{a,T}(l)} \frac{\| h \|^2 + N_0}{v_{z,T}^{a,T}(l) \| h \|^2 + N_0} - \frac{1}{v_{z,T}^{a,T}(l)} = \frac{\| h \|^2 + N_0}{v_{z,T}^{a,T}(l) \| h \|^2 + N_0} \| h \|^2.
\]

This completes the proof of Theorem 2. □

REFERENCES

[1] R. Hadani et al., “Orthogonal time frequency space modulation,” in Proc. IEEE Wireless Commun. Netw. Conf., Mar. 2017, pp. 1–6.
[2] G. Meyer and S. Beiker, Road Vehicle Automation. New York, NY, USA: Springer, 2019.
[3] Y. Cai, Z. Wei, R. Li, D. W. K. Ng, and J. Yuan, “Joint trajectory and resource allocation design for energy-efficient secure UAV communication systems,” IEEE Trans. Commun., vol. 68, no. 7, pp. 4536–4553, Jul. 2020.
[4] P. Raviteja, Y. Hong, E. Viterbo, and E. Biglieri, “Effective diversity of OFTS modulation,” IEEE Wireless Commun. Lett., vol. 9, no. 2, pp. 249–253, Feb. 2020.
[5] P. Raviteja, K. T. Phan, and Y. Hong, “Embedded pilot-aided channel estimation for OFTS in delay-Doppler channels,” IEEE Trans. Veh. Technol., vol. 68, no. 5, pp. 4906–4917, May 2019.
[6] W. Yuan, S. Li, Z. Wei, J. Yuan, and D. W. K. Ng, “Data-aided channel estimation for OFTS systems with a superposed pilot and data transmission scheme,” IEEE Wireless Commun. Lett., early access, Jun. 16, 2021, doi: 10.1109/LWC.2021.3088836.
[7] Z. Wei, W. Yuan, S. Li, J. Yuan, and D. Wing Kwan Ng, “Off-grid channel estimation with sparse Bayesian learning for OFTS systems,” 2021, arXiv:2101.05629. [Online]. Available: http://arxiv.org/abs/2101.05629.
[8] F. Liu, Z. Yuan, Q. Guo, Z. Wang, and P. Sun, “Message passing based structured sparse signal recovery for estimation of OFTS channels with fractional Doppler shifts,” 2020, arXiv:2011.14757. [Online]. Available: http://arxiv.org/abs/2011.14757.
[9] Z. Li, J. Yuan, W. Yuan, Z. Wei, B. Bai, and D. W. K. Ng, “Performance analysis of coded OTFS systems over high-mobility channels,” IEEE Trans. Wireless Commun., early access, Apr. 14, 2021, doi: 10.1109/TWC.2021.3071493.
[10] T. Hwang, C. Yang, G. Wu, S. Li, and G. Ye Li, “OFDM and its wireless applications: A survey,” IEEE Trans. Veh. Technol., vol. 58, no. 4, pp. 1673–1694, May 2009.
[11] W. Yuan, Z. Wei, J. Yuan, and D. W. K. Ng, “A simple variational Bayes detector for orthogonal time frequency space modulation,” IEEE Trans. Wireless Commun., vol. 17, no. 10, pp. 6501–6515, Oct. 2018.
[12] Z. Yuan, Z. Wei, J. Yuan, and D. W. K. Ng, “A simple variational Bayes detector for orthogonal time frequency space modulation,” IEEE Trans. Wireless Commun., vol. 17, no. 10, pp. 7976–7980, Jul. 2020.
[13] Z. Yuan, F. Liu, W. Yuan, Q. Guo, Z. Wang, and J. Yuan, “Iterative detection for orthogonal time frequency space modulation with unitary approximate message passing,” IEEE Trans. Wireless Commun., early access, Jul. 21, 2021, doi: 10.1109/TWC.2021.3097173.
[14] N. Surabhi and A. Chockalingam, “Low-complexity linear equalization for OTFS modulation,” IEEE Trans. Commun., vol. 25, no. 2, pp. 330–334, Feb. 2020.
[15] J. Ma and L. Ping, “Orthogonal AMP,” IEEE Access, vol. 5, pp. 2020–2033, 2017.
[16] Q. Guo and J. Xi, “Approximate message passing with unitary transformation,” 2015, arXiv:1504.04799. [Online]. Available: http://arxiv.org/abs/1504.04799.
[17] Z. Yuan, Q. Guo, and M. Luo, “Approximate message passing with unitary transformation for robust binary linear recovery,” IEEE Trans. Signal Process., vol. 69, pp. 617–630, 2021.
[18] M. Luo et al., “Unitary approximate message passing for sparse Bayesian learning,” 2021, arXiv:2101.09954. [Online]. Available: http://arxiv.org/abs/2101.09954.
[19] J. Ma, X. Yuan, and L. Ping, “Turbo compressed sensing with partial DFT sensing matrix,” IEEE Signal Process. Lett., vol. 22, no. 2, pp. 158–161, Feb. 2015.
[20] D. Tse and P. Viswanath, Fundamentals Wireless Communication. Cambridge, U.K.: Cambridge Univ. Press, 2005.
[21] P. Raviteja, Y. Hong, E. Viterbo, and E. Biglieri, “Practical pulse-shaping waveforms for reduced-cyclic-prefix OTFS,” IEEE Trans. Veh. Tech., vol. 68, no. 1, pp. 957–961, Jan. 2019.
[22] Z. Wei, W. Yuan, S. Li, J. Yuan, and D. W. K. Ng, “Transmitter and receiver window designs for orthogonal time-frequency space modulation,” IEEE Trans. Commun., vol. 69, no. 4, pp. 2207–2223, Apr. 2021.
[23] Q. Guo and D. D. Huang, “A concise representation for the soft-in soft-out LMMSE detector,” IEEE Commun. Lett., vol. 15, no. 5, pp. 566–568, May 2011.
[24] S. M. Kay, Fundamentals of Statistical Signal Processing. Upper Saddle River, NJ, USA: Prentice-Hall, 1993.
Shuangyang Li (Graduate Student Member, IEEE) received the B.S. and M.S. degrees from Xidian University, China, in 2013 and 2016, respectively. He is currently pursuing the joint Ph.D. degree with Xidian University and the University of New South Wales. His research interests include signal processing, channel coding, and their applications to communication systems. He also received the student travel grant of IEEE International Conference on Communications (ICC) in 2021.

Weijie Yuan (Member, IEEE) received the Ph.D. degree from Beijing Institute of Technology, China, and the second Ph.D. degree from the University of Technology Sydney, Australia, in 2019. He is currently an Assistant Professor with the Department of Electrical and Electronic Engineering, Southern University of Science and Technology. Prior to that, he was a Research Associate with the School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, Australia. He has served as a Research Assistant with The University of Sydney, a Visiting Associate Fellow with the University of Wollongong, and a Visiting Fellow with the University of Southampton from 2017 to 2019. In 2016, he was a Visiting Ph.D. Student with the Institute of Telecommunications, Vienna University of Technology, Austria. His research interests include statistical signal processing on graphical models and intelligent transportation systems. He serves as the TPC Co-Chair of the IEEE ICC 2021 Workshop on Orthogonal Time Frequency Space (OTFS) and the Co-Organizer of SPAWC 2021 Special Session on Integrated Sensing and Communication.

Zhiaqiang Wei (Member, IEEE) received the B.E. degree in information engineering from Northwestern Polytechnical University (NPU), Xi’an, China, in 2012, and the Ph.D. degree in electrical engineering and telecommunications from the University of New South Wales, Sydney, Australia, in 2019. From 2019 to 2020, he was a Post-Doctoral Research Fellow with the University of New South Wales. He is currently a Humboldt Post-Doctoral Research Fellow with Friedrich-Alexander University Erlangen-Nuremberg. His current research interests include statistic and array signal processing, non-orthogonal multiple access, millimeter wave communications, resource allocation design, and orthogonal time-frequency space modulation. He received the Best Paper Awards at the IEEE International Conference on Communications (ICC) in 2018. He has been serving as the TPC Co-Chair of the IEEE ICC 2021 Workshop on Orthogonal Time Frequency Space (OTFS) and IEEE ICCC 2021 Workshop on OTFS.

Jinhong Yuan (Fellow, IEEE) received the B.E. and Ph.D. degrees in electronics engineering from Beijing Institute of Technology, Beijing, China, in 1991 and 1997, respectively. From 1997 to 1999, he was a Research Fellow with the School of Electrical Engineering, The University of Sydney, Sydney, Australia. In 2000, he joined the School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, where he is currently a Professor and the Head of Telecommunication Engineering Group with the school. He has published two books, five book chapters, over 300 papers in telecommunications journals and conference proceedings, and 50 industrial reports. He is a co-inventor of one patent on MIMO systems and two patents on low-density-parity-check codes. His current research interests include error control coding and information theory, communication theory, and wireless communications. He has co-authored four Best Paper Awards and one Best Poster Award, including the Best Paper Award from the IEEE International Conference on Communications, Kansas City, USA, in 2018, the Best Paper Award from IEEE Wireless Communications and Networking Conference, Cancún, Mexico, in 2011, and the Best Paper Award from the IEEE International Symposium on Wireless Communications Systems, Trondheim, Norway, in 2007. He served as the IEEE NSW Chapter Chair of Joint Communications/Signal Processings/Ocean Engineering Chapter from 2011 to 2014 and served as an Associate Editor for the IEEE TRANSACTIONS ON COMMUNICATIONS from 2012 to 2017. He is currently serving as an Associate Editor for the IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS.