INTRODUCTION

Induction of labour is defined as intervention intended to artificially initiate uterine contractions resulting in the progressive effacement and dilatation of the cervix. Induction of labour is one of the commonly performed obstetric intervention. Induction rate varies greatly between different countries from 4 to 40%. Approximately half of all women undergoing labour induction will have an unfavourable cervix, or low Bishop score, which will require ripening. This can be achieved with pharmacological and mechanical techniques. The search for an ideal agent, timing and dosage interval to convert an unfavourable cervix to one receptive to delivery is an ongoing process. The ideal induction agent would be one that is efficient, cost effective, easy to store, non-invasive, without side effects, and whose effects on mother and fetus can be readily monitored. Prostaglandins are often used for pharmacological cervical ripening. One of the benefits of prostaglandins over mechanical methods is that prostaglandins work not only to ripen the cervix, but also to stimulate myometrium contractility. Misoprostol is a synthetic 15 deoxy 16 hydroxy, 16 methyl analogue of the naturally occurring prostaglandin E1 that was originally manufactured for prevention and treatment of
peptic ulcers diseases. Several studies have found that misoprostol is effective as an agent for cervical ripening and induction of labour. It is inexpensive, easy to store, and stable at room temperature. Despite many widely reported trials on misoprostol, several practical aspects of its administration are still yet to be well established and these include: the appropriate dosage, the dosing interval, and route of administration, with doses ranging from 25 μg to 100 μg. The currently observed practice is that some obstetricians use 50 μg of misoprostol for induction of labor in nulliparous women and 25 μg in multiparous women, while others adhere to the ACOG recommendation of using 25 μg irrespective of parity.

Minor maternal side effects include diarrhea, nausea, vomiting, abdominal pain, chills, shiver-ing and hyperthermia which are dose dependent. Uterine hyper stimulation and meconium stained amniotic fluid are also reported with higher dosage. This comparison was studied with the objective to whether by reducing the dosage, the side effects can be reduced and to study effectiveness. It focused on comparison of two dosing regimen (25 μg versus 50 μg) of misoprostol for prelabour cervical ripening and induction of labour.

METHODS

A prospective study was carried out in the department of Obstetrics and Gynecology, Sri Guru Ram Das Medical College, Amritsar from January 2017 to August 2017. Women with singleton pregnancy ≥37 weeks gestation with vertex presentation; intact membrane and reactive CTG were included after informed consent. Those with favorable cervix (modified bishop score ≥6), previous cesarean section or any other uterine surgery, gravida ≥5, any contraindication for vaginal delivery, any contraindication to the use of prostaglandins i.e. women with history of asthma, glaucoma, cardiac disease or any hypersensitivity to the use of prostaglandins. Total number of 100 cases meeting inclusion criteria were divided into Group A (25μg) and Group B (50μg). A complete history including maternal age, parity, gestational age and indication for induction of labor were noted. Abdominal examination was done to know the presentation, uterine tone and the fetal heart rate. Per vaginal examination was done to know the modified Bishop score and to rule out cephalopelvicdisproportion. Cardiotocograph (CTG) and Obstetric scan were done to all the patients to ascertain the fetal abnormalities, Apgar score, neonatal resuscitation and NICU admission were recorded. All the results were analyzed by appropriate statistical test.

RESULTS

A total of 100 Patient populations was divided into two groups; group A received 25 μg misoprostol per vaginally and group B received 50 μg after assessing for eligibility.

Above shows maternal demographic profile of the women included in the study. Both groups were comparable with respect to maternal age, parity, mean gestational age at the time of induction and Bishop’s score at commencement of cervical ripening and labor induction. The mean age of patients in the 25 μg group was 25.28 ± 4.71, while the mean age in the 50 μ 25.39 ± 4.00, P=0.94; Nulliparity (40.0% vs.44.0%, P=0.685) and multiparity (60.0% vs. 56.0%) respectively for 25 μg and 50 μg were not statistically different. The mean gestational age (39.54 ± 1.92 vs. 39.27 ± 4.50, P=0.32); and initial Bishop’s scores (3.14 ± 0.97 vs. 3.12 ± 1.06, P=0.12) were similar respectively for 25 μg and 50 μg groups (Table 1).

Table 1: Maternal characteristics of the study groups.

Characteristic	25μg Misoprostol	50μg Misoprostol	P-value
Age (years) (Mean±SD)	25.28±4.71	25.39±4.00	0.94
Parity			
Nulliparous	20(40)	22(44)	0.685
Multiparous	30(60)	28(56)	
Gestational age (weeks) (Mean±SD)	39.54±1.92	39.27±4.5	0.32
Initial bishop score (Mean±SD)	3.14±0.97	3.12 ±1.06	0.12

*Student’s t-test, *Chi square

The indication for induction was similarly distributed in the both groups. The Postdatism was single most common indication in both the groups accounting for more than 50 percent as shown (Table 2).

Majority of women in both groups delivered vaginally (80.0% in 25μg group and 82% in the 50 μg group). The 25 μg misoprostol group had a lower delivery rate with a single dose compared with the 50 μg group (38% and 42% respectively). However, 25 μg group had more deliveries than 50 μg group with increasing number of misoprostol doses (36% vs. 38%, and 20% vs.16% for 2
doses and 3 doses respectively). The need for oxytocin augmentation among participants was higher in the 25 μg group (20%) than in 50 μg group (16%). This was however not statistically significant (P=0.603).

Table 2: Indications for Induction.

Labour Induction	25μg Misoprostol	50 μg Misoprostol	P-value
Post date	n=50 (%)		
30 (60)	28 (56)	0.685	
Hypertensive disorder of pregnancy	10 (20)	12 (24)	0.629
IUFD	3 (6)	2 (4)	0.646
IUGR	3 (6)	2 (4)	0.646
GDM	2 (4)	2 (4)	1.0
Others	2 (4)	4 (8)	0.40

b Chi square

There was no difference between the two groups with regard to the proportion of patients who had a successful induction. Eighty percent of patients allocated to 25 μg group and 80.1% of those in 50 μg group had vaginal delivery while 4% of participants had instrumental vaginal delivery in both groups.

Table 3: Intrapartum variables.

Variables	25μg Misoprostol	50 μg Misoprostol	P-value	
Number of Misoprostol doses	n=50 (%)			
1	19 (38)	21 (42)	0.68	
2	18 (36)	19 (38)	0.836	
3	10 (20)	8 (16)	0.683	
4	3 (6)	2 (4)	0.646	
Mean Induction vaginal delivery interval	13.8±5.9	14.0±5.7	0.9	
<12hours (n, %)	15 (30)	18 (36)	0.523	
12-24hours (n, %)	20 (40)	22 (44)	0.723	
≥24 hours (n, %)	15 (30)	10 (20)	0.248	
Oxytocin augmentation	10 (20)	8 (16)	0.603	
Delivery	Vaginal	40 (80)	41 (82)	0.799
2 (4)	1 (2)	1.0		
Cesarean Section	8 (16)	7 (14)	0.779	
s*student t test; *Chi square test

The incidence of caesarean section was similar in the two groups, eight women (16.0%) in the 25 μg group and 7 women (14%) in the 50 μg required emergency caesarean delivery for one reason or the other (P=0.779). No differences were noted in the overall incidence of caesarean section (Table 3).

Above table shows that at lesser initial bishop score, with 50μg misoprostol less doses are needed as compared to 25 μg and hence induction delivery interval decreases. The mean interval between first dose of misoprostol and vaginal delivery is shorter in the 50 μg group (874 ± 345 minutes) than in the 25 μg group (985±545 minutes). If initial Bishop score is good, then both doses are equally effective to achieve further cervical ripening (Table 4).

Table 4: Intrapartum variables.

Bishop Score	Doses of Misoprostol	Induction delivery Interval
25 μg	50 μg	24hour
4 (8)	2 (4)	6-12hour
3 (6)	2 (4)	6-12hour
2 (4)	1 (2)	6-12hour
1 (2)	1 (2)	6-12hour
0.646	0.5	0.32
0.723	0.90	0.90
0.248	0.90	0.90
0.603	0.5	0.5
0.5	0.32	0.32
0.90	0.90	0.90
0.799	1.0	1.0
1.0	1.0	1.0
1.0	1.0	1.0
0.32	0.5	0.5
0.90	0.90	0.90
1.0	1.0	1.0
1.0	1.0	1.0
0.32	0.5	0.5
0.90	0.90	0.90
1.0	1.0	1.0
0.603	0.5	0.5
0.723	0.90	0.90
0.248	0.90	0.90
0.603	0.5	0.5
0.723	0.90	0.90
0.248	0.90	0.90

As highlighted in above table there was no significant difference in the secondary outcomes variable such as neonatal outcomes and intrapartum complications. With regards to potential adverse effects, no patient in any group had nausea, vomiting, diarrhoea and fever in the study population. No case of hypertonus was recorded while a case of uterine tachysystole was seen in 50 μg group.

Table 5: Maternal and Fetal complications.

Complication	25μg Misoprostol	50 μg Misoprostol	P-value
Uterine contraction abnormalities	1 (1.1)	2 (4)	0.5
Uterine tachysystole	1 (1.1)	1 (2)	0.32
Uterine hyper stimulation Syndrome	-	1 (2)	1.0
Postpartum hemorrhage	-	2 (4)	0.90
Perineal laceration	-	2 (4)	0.90
Apgar score <7	-	-	-
At 1 min	4 (8)	4 (8)	1.0
At 5 min	2 (4)	1 (2)	0.8
SCBU admission	2 (4)	2 (4)	1.0

a Fisher’s exact test

The 50 μg misoprostol group recorded the highest number of cases with abnormal uterine contractions (4%) compared with misoprostol 25 μg group (1.1%). No significant differences were found in both groups regarding intrapartum stillbirth. Apgar scores of less than 7 at 5 minutes and the number of neonates admitted to the Special Care Baby Unit. Fetal distress requiring surgical intervention occurred in 12 patients.
In each of these patients, management was initially conservative using nasal oxygen, adequate hydration and nursing on the left side. Caesarean sections were done when these measures failed to correct the adverse fetal cardiac activity However, the observations were not significant statistically. Two women in the 50 μg group developed postpartum hemorrhage compared to none in the 25 μg group (P=0.90). No maternal death was recorded in the study. All results tended to be more favorable in 25 μg group but did not reach statistical significance (Table 5).

DISCUSSION

Misoprostol is increasingly being used for cervical ripening and induction of labour more than ever before. This was also observed in this study. The women in the study were homogenous in terms of age, gestational age and parity in both groups. The most common indication for cervical ripening and induction of labour was postdatism, accounting for 60%, followed by pre eclampsia, accounting for 20%. This is similar to that obtained in a prospective study of labour induction.6-7 These trends may be due to the fact that there is more postdated pregnancy now than before, probably due to better dating of gestational age and earlier booking. The results of this study indicate that 25 μg of intravaginal misoprostol every 6 hours was as efficacious as 50 μg for cervical ripening and labor induction. There was no statistical significant difference between the two misoprostol regimens in terms of clinical efficacy.

Although the study found that induction delivery interval was similar among the two groups, other investigators had demonstrated that it was shorter in the 50 μg group. In a meta-analysis comparing 25 μg with 50 μg misoprostol, the induction vaginal delivery interval was nearly five hours shorter in the 50 μg group.6,8 This difference as against me may be due to inclusion of only post-dated pregnancies in Meydanli’s study. Significantly more women delivered vaginally with single dose and within 12 hours of induction in 50 mcg especially in case of lesser initial bishop score as seen in our study. The proportion of women delivering within the first twelve hours and next twelve hours of induction were similar among the groups, which is consistent with the finding by other investigators 9 while Meydanli et al reported more deliveries in 25 μg group which may be due to dose cumulative effect. There was no difference in the overall caesarean section delivery rates like other studies unlike increase in caesarean section rate in the 50 μg group reported by Has et al and Bharathi et al 1,2,3,4,8,9 In this study, there was no significant difference in occurrence of uterine contraction abnormalities among regimens, although some researchers have demonstrated an increase incidence of uterine contraction abnormalities in the 50 μg groups which may be related to dose interval, so 6 hrs. seems to be appropriate interval between next dose.1,4,6 Although not statistically significant, the incidence of hemorrhage due to perineal laceration was more in the 50 μg group in this study. However, El-sherbiny et al reported significantly increased incidence of atonic postpartum hemorrhage in 50 μg group.10 Even though higher dose misoprostol (50 μg) enhance cervical ripening and labor during induction in a more efficient way than lower dose (25 μg), concern persist with respect to intrapartum fetal wellbeing. The price for using a higher misoprostol dosage to achieve higher delivery rate is increased risk of hyper stimulation syndrome, abnormally fetal heart rate, meconium staining liquor and perinatal mortality and morbidity from asphyxia. In this study, though not statistically significant, the 50 μg misoprostol group accounted for a high number of cases with abnormal uterine contraction (1.1% vs.4.0%, Fisher exact test=0.375). However, the caesarean section for suspected fetal distress was not significant for both groups (10% vs.8%, P=0.821). This may be due to early detection of abnormal fetal heart rate and early corrections. The concern about safety of misoprostol is not limited to the fetus alone but extends to the mother. Statistical analysis comparing this effect showed no significant difference. Attempting an explanation for the aforementioned side effects in misoprostol use and taken into account other reports, it appears that the increase in clinically relevant adverse effects may be dose dependent rather than misoprostol related.

CONCLUSION

The 25 μg of intravaginal misoprostol administered six-hourly appears to be as effective but safer than 50 μg for induction of labor. The use of 50 μg misoprostol may be recommended when there is a need to expedite vaginal delivery especially in cases of lesser initial bishop score. It may also have appeared safe to suggest that WHO recommendation on the use of low dose 25 μg provided strict selection criteria are upheld. outcomes.

ACKNOWLEDGMENTS

The author would like to thank the staff and the department of Obs. and Gynae. at SGRDIMSR, Amritsar.

Funding: No funding sources
Conflict of interest: None declared
Ethical approval: The study was approved by the Institutional Ethics Committee

REFERENCES

1. Bharathi A, Kumar KA, Ganga AP. A Comparative Study of 25 mcg vs 50 mcg of vaginal Misoprostol for induction of Labour. J South Asian Feder Obst Gynae. 2013;5(3):111-5.
2. McMaster K, Sanchez Ramos L, Kaunitz AM. Balancing the efficacy and safety of misoprostol: a meta-analysis comparing 25 verses 50 micrograms of intravaginal misoprostol for induction of labour. BJOG. 2015;122(4):468-76.
3. Adebayo FO, Onafowokan O, Adewole N. A Comparison of 25 µg with 50 µg Misoprostol for cervical Ripening and Induction of Labor. J Womans Health Care. 2017;6(4):378.

4. Adeniyi AA, Odukogbe AA, Olayemi A, Oladokun O, Adeniji AO, Aimakhu CO, et al Randomisation of two dosing regimes of vaginal misoprostol for cervical ripening and labor induction in a low resource setting. Niger J Clin Pract. 2014;17(3):287-91.

5. Azubuike IJ, Bassey G, Okpani A. Comparison of 25 and 50 microgram of misoprostol for induction of labour in nulliparous women with postdate pregnancy in Port Harcourt. Niger J Clin Pract. 2015;18(2):263-7.

6. Vidyashree, Munikrishna M. Comparative study of 25 µg versus 50 µg of intravaginal misoprostol for induction of labor. J Clin Biomed Sci. 2013;3(3):129-32.

7. Ekele BA, Oyetunji JA. Induction of labour at Usmanu Danfodiyo University Teaching Hospital, Sokoto. Trop J Obstet Gynaecol. 2002;9(2):74-7.

8. Meydanli MM, Caliskan E, Burak F (2003) Labour induction post-term with 25 micrograms vs. 50 micrograms of intravaginal misoprostol. Int J Gynaecol Obstet. 2003;81(3):249-55.

9. Has R, Batukan C, Ermis H. Comparison of 25 and 50 mcg vaginally administered misoprostol for preinduction of cervical ripening and labour induction. Gynaecol Obstet Invest. 2002;53(1):16-21.

10. El-Sherbiny MT, El-Gharieb IH, Gewely HA. Vaginal misoprostol for induction of labour: 25 vs. 50 µg dose regimen. Int J Gynaecol Obstet. 2001;72(1):25-30.

Cite this article as: Aggrawal A, Pahwa S. A comparative study of 25 mcg vs 50 mcg of vaginal misoprostol for induction of labour Int J Reprod Contracept Obstet Gynecol 2018;7:1730-4.