Diagnostic and Therapeutic Uses of the Microbiome in the Field of Oncology

Manasa Anipindi 1, Daniel Bitetto 1

1. Internal Medicine, Einstein Medical Center Philadelphia, East Norriton, USA

Corresponding author: Manasa Anipindi, manasaanipindi@gmail.com

Abstract

Cancer is a leading cause of death worldwide and it can affect almost every part of the human body. Effective screening and early diagnosis of cancers is extremely difficult due to the multifactorial etiology of the disease and delayed presentation of the patients. The available treatments are usually not specific to the affected organ system, leading to intolerable systemic side effects and early withdrawal from therapies. In vivo and in vitro studies have revealed an association of specific microbiome signatures with individual cancers. The cancer-related human microbiome has also been shown to affect the response of tissues to chemotherapy, immunotherapy, and radiation. This is an excellent opportunity for us to design specific screening markers using the microbiome to prevent cancers and diagnose them early. We can also develop precise treatments that can target cancer-affected specific organ systems and probably use a lesser dose of chemotherapy or radiation for the same effect. This prevents adverse effects and early cessation of treatments. However, we need further studies to exactly clarify and characterize these associations. In this review article, we focus on the association of the microbiome with individual cancers and highlight its future role in cancer screenings, diagnosis, prognosis, and treatments.

Introduction And Background

Cancers take a major toll on life globally. There were 10 million deaths from cancer worldwide in 2020 [1]. There has always been a search for the cause and new treatments. The causes of cancers are multifactorial processes involving genetic and environmental factors, most of which are unmanageable. There have been numerous reports of the relationship between microbial dysbiosis and cancer through chronic inflammation. This association between inflammation and cancer was first described as early as 1863 by Virchow [2]. Roux and Kidd postulated for the first time that cancers originate from subthreshold neoplastic states caused by somatic mutations induced by viral and chemical carcinogens [3]. The DNA alterations in the initiation state can be persistent, leading to a second stimulation called the promotion state. The link between microbial chronic inflammation and malignancy is well studied in colorectal cancer associated with inflammatory bowel diseases [4].

The human body has about 40 trillion cells and 22,000 human genes. We also are a host of 100 trillion microbial cells together called microbiota. There are about two million microbial genes in the microbiota, together called the metagenome [5]. The collection of genomes of all the microorganisms is named the microbiome. Microbial gene count surpasses the human genome gene count by approximately 100 times [6]. Microbiomes in human hosts live in close relationships and benefit the host in many ways. Commensal microbiota in the human body is particularly important in several functions. For example, in the gastrointestinal system, the microbiome helps in the absorption of nutrients. They protect against pathologic bacteria and play a key role in the regulation of the host immune system [7]. This intricate relationship can sometimes lead to disease development, especially when there are changes in homeostasis. Microbiome changes are linked to allergic diseases [8], diabetes [9], obesity [10], atherosclerosis [11], inflammatory bowel diseases [12], inflammatory disorders [13], and cancers. The variations in the microbiome are due to several external environmental and internal factors. For example, the salivary microbiome is usually affected by oral health, denture use, smoking, coffee, and tea consumption [14].

Direct link of infection with cancer

In 2018, 2.2 million new cancer cases were due to infections, accounting for about 13% of the global cancer burden [15]. Many viruses directly cause cancers. Examples include lymphomas caused by Epstein-Barr virus; liver cancer caused by hepatitis B virus; adult T cell leukemia caused by human T lymphotropic virus-1; cervical, vulvar, vaginal, penile, and anal cancers caused by human papillomavirus (HPV); hepatitis C virus causing liver cancer, non-Hodgkin's Lymphoma, cancer of bile ducts, pancreatic, and head and neck cancers [16]. The bacterial species directly associated with cancers include Salmonella typhi (S. typhi) with gall bladder cancer [17,18], Streptococcus bovis with colon cancer [19,20], Chlamydia pneumoniae with lung cancer [21,22], and Helicobacter pylori (H. pylori) with gastric cancer [25,24]. There is increasing evidence to show that cancers are not only caused by a single pathogen but are also related to changes in our
microbiome. Infection with bacteria or viruses leads to chronic inflammation, microbial dysbiosis, and cancers. Microbial dysbiosis has been associated with various cancers including esophageal, gastric, colon, pancreatic, breast, gall bladder, and others. Even though microbes are commonly seen as an etiology of cancer, several microbes have immune-stimulatory properties, especially gut microbiota [6].

The human microbiome

The human microbiota includes bacteria, viruses, fungi, and protozoa. Of the entire microbial mass in the human body, about 99% is in the gastrointestinal tract and it has both local and distant effects. Even though there are specific small microbiomes, the gastrointestinal microbiome is the most investigated one in our entire body given its overall size [25]. It has the highest effect on our overall health as the gut microbiome is separated from all major organs by a very thin epithelial layer. Hence, the host immune system is especially important in maintaining homeostasis in the gut, and dysbiosis can lead to chronic inflammation throughout the body [26]. Dysbiosis in the oral and gut microbiome is associated with carcinogenesis in many organs. There are differences in the density of the microbiome within each organ, which might be indirectly related to the rate of cancer in that area. For example, compared to the small intestine, the large intestine has a higher density of microbiome, which indirectly correlates with the high rates of cancer seen in the large intestine [27]. Even though organs like the liver do not have any specific microbiome, these cells are exposed to the gut microbiome, specifically microorganism-associated molecular patterns (MAMPs) and other bacterial metabolites [28,29].

The human microbiome plays a vital role in human health and diseases by its unique effect on immunity, inflammation, and metabolism [30]. Animal studies have shown that killing bacteria in the gut using antibiotics also leads to the development of cancers in the liver and colon. Similarly, there has been evidence showing the relationship between microbiota and the development of cancers in organs like skin, breasts, and lungs. The microbiome regulates primary and secondary lymphoid tissue activities through antigentic mimicry, cytokine signaling, and other metabolic effects, showing powerful antitumor effects by acting as toll-like receptor and NOD-like receptor agonists [31,32]. Microbial metabolites have been shown to affect tumor somatic mutations and immune checkpoint inhibitor efficacy [6]. Several ongoing preclinical trials are evaluating the role of microbiota in cancer treatment [6].

Review

The association of the human microbiome with individual cancers

Head and Neck Cancers

Head and neck squamous cell cancers are the cancers of the mucosal lining of the oral cavity, pharynx, and larynx. It was responsible for 450,000 deaths worldwide in 2018 [33]. Even though tobacco consumption, alcohol abuse, and infection with HPV remain the major risk factors, there has been increasing evidence to suggest that people who are not exposed to these risk factors are also affected. Our oral microbiome has 750 distinct species of organisms that not only include bacteria but also viruses, fungi, archaea, and protozoa. Dysbiosis in this microbiome leads to a chronic inflammatory state, suppresses the anti-tumor immunity, and leads to the creation of novel mutagens. One of the examples supporting this evidence is periodontitis, which is associated with an increased risk for cancer and poor survival in many studies [34].

Oral Cancers

American Cancer Society estimates that there were about 54,000 new cases of oral cancer, leading to 11,230 deaths, in the United States in the year 2022 [35]. Oral squamous cell carcinoma is the most common oral cancer, accounting for 2% of all cancers and with a higher recurrence rate even with treatment [36]. In animal studies, Porphyromonas gingivalis and Fusobacterium nucleatum were associated with the development of oral cancers [37]. Infection with HPV increases the risk of oral squamous cell cancers and esophageal cancer [38,39]. Periodontitis is associated with oropharyngeal and esophageal cancers [40,41]. The bacteria that are shown to be increased in oral squamous cell carcinoma include Streptococcus, Fusobacterium, Capnocytophaga, Prevotella, and others [42-45]. Changes in microbiota were noted in throat cancer patients as well [46].

Hematological Cancers

Microbiome changes in the oral cavity and gut play a key role in the prognosis and treatment of cancers including lymphomas, leukemias, and multiple myeloma [47]. The small molecules produced by the gut microbiota play a vital role in modulating the immune system. Patients with periodontal disease have a higher incidence of hematopoietic and lymphatic cancers [48]. Pretreatment gut microbiome is much different in composition and less diverse in diffuse large B cell lymphoma patients compared to controls. This microbiome also played a role in predicting treatment outcomes [49]. H. pylori-associated gastric mucosa-associated lymphoid tissue lymphomas (MALT lymphomas) are usually treated with just antibiotics leading to clinical remission [50,51]. Changes in the composition of microbiota are associated with T-cell lymphoma, cutaneous B-cell lymphoma, MALT, and Hodgkin’s lymphomas [52,53]. Gut microbiota also
influences chemotherapy toxicity. Bacteria can affect the response to anticancer drugs positively or negatively. Reports are showing increased cytotoxicity to one group of chemotherapeutic agents and decreased side effects of others [54]. The diversity of the microbiome influences prognosis after allogeneic stem cell transplantation, which is a potentially curative strategy for high-risk hematological malignancies [55,56]. The gut microbiome influences the treatment of multiple myeloma [57] and acute myeloid leukemia [58]. Differences in the composition of gut microbiota have been shown to lead to changes in the rates of development of graft versus host disease (GVHD) [59,60]. Increased abundance of gut commensal Blautia has been associated with reduced GVHD-induced mortality [61].

Cancers of the Respiratory Tract

Laryngeal Cancers

Laryngeal cancer accounts for about 1% of all new cancer cases and deaths globally [62]. The throat microbiome composition was different in patients with laryngeal cancer compared to controls [63]. In laryngeal cancer, tumor tissues showed higher alpha diversity and microbiota profiles compared to controls [64].

Lung Cancers

Lung cancer is the leading cause of cancer death with an estimated 1.8 million deaths worldwide [1]. The five-year survival rate is less than 20%. Even though lung tissue was once considered a sterile environment, with recent next-generation sequencing technology, it has been found that microbes play a vital role in maintaining the ecological balance in the lung [65]. The lung microbiota is a combination of bacteria, viruses, and fungi inhaled from the upper airways [66]. Bacteroides, Firmicutes, and Proteobacteria along with Streptococcus, Pseudomonas, Veillonella, and Prevotella are the most common organisms found in the lung. Destruction of the host mucosal balance can lead to microbial dysbiosis, which in turn leads to increased susceptibility to cancer through chronic inflammation [66,67]. Studies also demonstrated changes in the microbiome of gut and saliva in lung cancer patients compared to controls [68,69]. Preclinical studies show that germ-free mice and antibiotic-treated mice are less susceptible to lung cancer development induced by KRAS mutation and p53 loss [70].

Thyroid Cancer

Thyroid cancer is the ninth leading cause of death worldwide with an incidence of 586,000 cases and 44,000 deaths in 2020 [1]. Clinical studies are being conducted on the relationship between thyroid carcinoma and the human microbiome [71]. Increased abundance of Clostridiaceae, Neisseria, and Streptococcus was noted in stool samples of thyroid cancer patients compared to matched healthy controls. Elevated TSH and free T3 were correlated with the bacteria Porphyromonas and Streptococcus respectively [72]. Stool samples of thyroid carcinoma patients had increased levels of Proteobacteria compared to healthy controls; however, they had reduced diversity of gut microbiota [73]. In a study conducted on papillary thyroid tumors (PTC) tissues, the intratumor microbiome was significantly different compared to the adjacent normal tissue, once again proving the importance of microbes in modulating immune responses in cancer [74]. PTC tumor samples in T3/T4 stages have shown higher bacterial diversity compared to T1/T2 stages PTC tumor samples. The presence of bacterial species, Pseudomonas, Rhodomonas, and Sphingomonas in the PTC tumor samples was highly predictive of tumor invasion status, showing the role of microbiota in determining tumor behavior and prognosis [75]. Another study has revealed the importance of gut microbiome composition in determining radioiodine treatment effectiveness in PTC, but further studies are needed in this direction to validate this [76].

Gastrointestinal Cancers

The human gut is colonized by trillions of microbes, which include bacteria, viruses, fungi, and protists. Esophageal cancer is associated with Enterobacteriaceae. Gastric cancer is associated with H. pylori and other non-H. pylori organisms including Porphyromonas, Neisseria, Prevotella, Streptococcus, and Klebsiella. Colorectal cancer (CRC) is associated with increased sulfate-reducing bacteria and intestinal microbial fermentation. CRC is also associated with Fusobacterium. Liver cancer is associated with H. pylori, E. coli, and other bacteria. Pancreatic cancer is associated with H. pylori, Pseudomonas, and Fusobacterium species. H. pylori and S. typhi are associated with hiliary cancer. Gastric adenocarcinoma is one of the best examples of cancers due to bacteria, especially H. pylori. Infection with H. pylori leads to gastritis, gastric ulcer, atrophy, and finally gastric cancer. The pathogenesis of most of these cancers is due to chronic inflammation; however, H. pylori can directly alter the cellular signaling pathways that affect the proliferation of gastric mucosal cells [77]. Due to this property, H. pylori is classified as a class I carcinogen by WHO [24]. H. pylori also causes MALT lymphoma.

These links are not only with single pathogens, there are several studies noting that gut dysbiosis is also associated with cancers. Gastrointestinal and non-gastrointestinal cancers are associated with gut dysbiosis secondary to repeated courses of antibiotics [78]. Dysbiosis causes cancers by inducing a chronic
inflammatory state, breakdown of the normal mucosal barrier, production of secondary bile acids, or causing DNA damage. Certain bacterial species cause increased production of proinflammatory toxins, and reactive oxygen species, change signaling pathways, and can prevent antitumor immunity [79,80]. Gut microbiota is also being studied extensively for its role in cancer therapy, and antitumor immunity. The microbiome also has a role in determining the response to immune checkpoint inhibitor therapy [81] and chemotherapy [82,83]. The specific gut microbiome protects from immunotherapy-induced colitis [84,85]. Changes in the composition of gut microbiota due to radiation and chemotherapy are implicated in increased rates of radiation-induced colitis [86] and chemotheraphy-induced toxicity [87]. Modulating gut microbiota, fecal microbiota therapy and probiotic organisms are being studied extensively as cancer therapies in many clinical trials [9]. Better response to PD-L-1 immunotherapy in epithelial tumors was noted with increased microbial abundance and diversity in the gut microbiome [82]. A gut microbiome with higher alpha diversity and bacteria from the Ruminococcaceae family provided specific antitumor immunity in programmed cell death protein-1 immunotherapy responders. Fecal microbial transplant to germ-free mice from the responders also led to a good response to immunotherapy [88]. Transplantation of intestinal microbiota alleviates radiation-induced toxicity as per some studies in mice [89]. Pelvic radiotherapy has demonstrated dysbiosis in involved segments of the gut, and post-radiation analysis using bacterial-epithelial co-cultures has shown increased expression of colonic tumor necrosis factor (TNF-α), IL-1β, and IL-6 in irradiated mice compared to naïve mice [90]. Administration of IL-1 beta receptor antagonist to irradiated mice has been shown to decrease dysbiosis-induced radiation damage.

Esophageal Cancer

Esophageal carcinoma is the seventh most common cancer worldwide, causing 544,000 deaths worldwide. It is responsible for one in every 18 deaths due to cancer in 2020, making it the sixth-highest in cancer-related mortality [1]. The microbiome in the oral cavity and gastrointestinal tract plays an important role in esophageal cancer etiology. Fusobacterium nucleatum in the oral cavity through the activation of chemokines is an important factor in esophageal carcinogenesis and prognosis [91,92]. A shift in the equilibrium from gram-positive to lipopolysaccharide-producing gram-negative organisms was found in reflux esophagitis and Barrett’s esophagus [93]. Campylobacter increased the expression of IL-18 in colonized tissues, leading to the progression of esophageal adenocarcinoma [94,95]. E. coli colonization is associated with the upregulation of toll-like receptors in esophageal adenocarcinoma rat models [96]. Altered microbiota in the saliva is linked to risk for esophageal squamous carcinoma. Porphyromonas gingivalis seen only in esophageal squamous cell carcinoma patients was associated with increased severity of the disease and poor outcomes [97].

Gastric Cancer

There were one million new cases of gastric cancer in 2020 with an estimated 769,000 deaths, making it the fourth leading cause of death worldwide [1]. The risk factors for gastric cancer include infection with H. pylori, dietary changes, and social habits, but changes in the microbiome are also an important factor in causing gastric cancer [98,99]. Infection with H. pylori is associated with changes in organisms residing in the stomach, leading to an increased risk for gastric cancer [100]. In a study done in China, it was noted that the incidence of gastric carcinoma is not decreased in patients who received H. pylori eradication therapy, proving the contribution of non-H. pylori factors in gastric cancer [101]. Fusobacterium, Bacteroidetes, and Patescibacteria were found in signet ring carcinoma, and Proteobacteria and Acidobacteria were noted in adenocarcinoma as per one study [102]. Numerous bacteria of the oral microbiome including Peptostreptococcus, Slackia, and Dialister were seen in gastric cancer tissue samples [103]. Gastric cancer patients also showed increased counts of Lactobacillus compared to those with intestinal metaplasia and gastritis [104]. Probiotic supplementation is found to be effective in eliminating H. pylori infection and reducing inflammation in gastric cancer patients [105,106]. Stomach bacteria also have anticancer properties with cytotoxic activity against stomach cancer cell lines [107]. The property of disrupting tumor cell membrane by H. pylori ribosomal protein-A1 can be used for cancer drug delivery [108].

Colorectal Cancer

Colorectal is the third most diagnosed cancer and the second leading cause of death with an estimated 955,000 deaths and 1.3 million new cases in 2020 [1]. There is emerging evidence of the changes in the composition of microbiota in colorectal cancers compared to normal healthy mucosa [109,110]. In these studies, it was shown that there was an overrepresentation of certain bacteria including Lactococcus and Fusobacterium while Pseudomonas and Escherichia were underrepresented [111]. Transplantation of stool samples from patients with colorectal cancer to healthy mice led to an increased number of polypos and intestinal dysplasia compared to the mice that received stool samples from healthy individuals [112]. Certain bacteria like Fusobacterium nucleatum were detected in frozen specimens from patients with colon cancer (Table 2). These bacteria were not only detected in primary tumors but also in liver metastases from colon cancer [113,114]. Gut microbiome-derived extracellular vesicles (EVs) were significantly different in colorectal cancer patients compared to control subjects. These microbiota-derived EVs can be used for predicting cancer prognosis and for treatment [115,116]. Treatment with conventional drugs including 5-fluorouracil, irinotecan, and oxaliplatin in mice led to changes in gut microbiota. Germ-free mice tolerated chemotherapy better and had fewer side effects. Inhibiting certain enzymes also prevents intestinal toxicity.
from chemotherapy. These effects are also observed with other treatments including radiotherapy and immunotherapy [117]. Identifying the pattern of dysbiosis can aid in designing microbiome biomarker screening tests [118,119].

Primary Liver Cancer

Primary liver carcinoma was the third leading cause of cancer-related deaths worldwide in 2020, with approximately 906,000 new cases and 850,000 deaths [1]. The liver is situated near the gut microbiome and the gut-liver axis plays a prominent role in liver carcinogenesis. Gut dysbiosis has been associated with hepatocellular carcinoma (HCC) [120]. Bacterial metabolites from the gut can reach the liver through the portal venous system, leading to hepatotoxicity. Gut microbes can change primary bile acids to secondary bile acids, leading to DNA damage, depletion in tumor-suppressing micro-DNA, alteration in numbers of NK T cells, and carcinogenesis [121-123]. Obesity resulting in nonalcoholic steatohepatitis (NASH) is also indirectly associated with gut dysbiosis leading to HCC [124].

Gallbladder Cancer

Gallbladder cancer is rare and has a poor prognosis [125]. Salmonella species were directly associated with gallbladder cancer, especially in countries with a high incidence of these organisms [17,18]. Chronic typhoid carriers are more likely to die of hepatobiliary cancers [126,127]. Certain bacteria like Helicobacter are associated with this cancer in recent years [113]. In studies, metagenome analysis from the blood samples of biliary cancer patients showed an altered microbiome compared to control groups. Further studies with matching controls are needed to further confirm these results [128]. Studies have also shown the role of bile microbial dysbiosis in gall bladder cancers [129].

Pancreatic Cancers

Pancreatic cancer is the seventh leading cause of cancer-related deaths worldwide and the third leading cause of death in the United States [130]. It has a very poor prognosis and deaths from it are equal to the number of cases due to a lack of screening techniques leading to delayed presentation [1]. The pancreas was once thought to be a sterile organ; however, recent gene sequencing techniques have identified bacteria not only in normal pancreatic tissues but also in pancreatic ductal adenocarcinoma, showing the potential role of the microbiome in homeostasis [131,132]. Lipopolysaccharide (LPS) from oral microorganism Porphyromonas gingivalis triggers an innate immune response and leads to inflammation by the release of proinflammatory cytokines. The immune response involves the recognition of toll-like receptor 4 (TLR 4). These TLRs are highly expressed in human pancreatic cancer leading to inflammation [133,134]. Oral microorganisms including Porphyromonas and Fusobacterium are found to be linked to pancreatic cancers [135,136]. It was shown that bacteria from the gut migrate to the pancreas. Ablation of gut bacteria with antibiotics in mice was protective against pancreatic ductal carcinoma progression and it also upregulated PD-1 expression [132]. In one study, it was shown that the presence of certain bacteria in pancreatic ductal adenocarcinoma led to resistance to a chemotherapeutic drug, Gemcitabine, proving the role of the microbiome in the treatment of cancers [137]. In addition to intratumor and oral dysbiosis, gut dysbiosis also plays a prominent role in pancreatic cancers. The composition of gut microbiota is much different in pancreatic ductal adenocarcinoma patients compared to healthy controls [130].

Breast Cancer

Breast cancer remains the most diagnosed cancer in women worldwide with 2.3 million cases leading to 685,000 deaths [1]. The microbiome has been identified as one of the risk factors for breast cancer in recent studies. Fresh frozen breast tissue samples showed distinct microbiome composition compared to controls [139,140]. Fusobacterium species in breast cancer increased cell proliferation and protected tumors from the immune system. Gut dysbiosis is associated with breast cancer by its effect on estrogen metabolism [141-143]. Further studies are needed to prove this association. Oral dysbiosis in the form of periodontal disease has also been shown to be associated with breast cancer [144]. Nucleic acid signatures of many viruses including polyoma, papilloma, and herpes viruses were noted in different breast cancer subtypes. Several specific fungi and parasitic signatures were also noted in these samples [145].

Genitourinary System Cancers

Genital Cancers

Cervical cancer is still a leading cause of death worldwide, especially in low-income group countries [1]. With widespread vaccination and routine screening, the incidence and mortality have decreased in developed nations. Cervical cancer is caused by HPV infection, and changes in the cervical microbiome were also noted in women with cervical cancer [146,147]. Studies reveal the association of changes in the vaginal microbiome with persistent HPV infection leading to high-grade dysplasia and cervical cancer. Endometrial cancer is a common gynecological cancer that is usually diagnosed in post-menopausal women. It is divided into two types based on the relationship with estrogen. The endometrial microbiota is responsible for
maintaining homeostasis and proper functioning of the uterine environment. Differences in the composition of endometrial microbiota in endometrial cancer patients compared to controls were noted in several studies [148]. Studies proved the role of lipopolysaccharides, secondary bile acids, and short-chain fatty acids in ovarian cancer [149].

Prostate Cancer

Prostate cancer is affected by both estrogen and androgen levels. The Global Cancer Observatory (GLOBOCAN) estimated about 375,000 deaths worldwide in 2020 due to prostate cancer [1]. Inflammation is a risk factor for the development of prostate cancer. Prostatic fluid is antimicrobial, and no specific prostate microbiota have been identified so far. There have been recent studies showing the importance of the urinary microbiome in prostate inflammation and cancer [150]. They reported changes in the microbiome of urine and seminal fluid in patients with chronic prostatitis, which is a risk factor for cancer. Changes in the microbiome in the gastrointestinal tract and oral cavity were also noted in prostate cancer patients [151-153].

Bladder Cancer

Bladder cancer is the 10th most common cause of cancer and led to 213,000 deaths worldwide as per GLOBOCAN 2020 statistics [1]. The risk factors for bladder cancer include tobacco smoking and exposure to harmful chemicals. It is common in areas with a high prevalence of Schistosoma haematobium [154]. The urinary microbiome is considerably different in various disease states including diabetes mellitus, neuropathic bladder, urinary incontinence, and others [155-157]. A microbiome study conducted on urine samples of urothelial carcinoma patients showed increased Streptococcus, Pseudomonas, and Anaerococcus compared to controls [158]. Another study conducted on the urinary microbiome in urothelial carcinoma patients did not show a significant difference in microbiota composition but identified an overrepresentation of several operational taxonomic units (OTUs) [159]. Further studies are needed to exactly characterize the urinary microbiome in bladder cancer patients.

Skin Cancers

According to GLOBOCAN statistics, about one million new non-melanoma skin cancer cases were recorded in the year 2020, leading to 64,000 deaths [1]. Microbial dysbiosis was noted in skin swabs of squamous cell carcinoma patients who were on immunosuppressants after an organ transplant [160]. Staphylococcus aureus and Cutibacterium were associated with squamous cell carcinomas of the skin [161,162]. Some studies have also found an association between HPV and non-melanoma skin cancers [163]. In vitro studies have revealed that changes in gut and skin microbiome were associated with the progression of melanomas [164].

Overall, dysbiosis with increased bacteria is associated with various cancers including oral, esophageal, breast, lung, liver, intestinal, and others (Table 1). The mechanisms by which specific bacteria cause cancers are well studied in the gastrointestinal microbiome, especially the colon microbiome (Table 2).

Type of cancer	Cancer microbiome
Esophagus	Campylobacter spp. [90,97], Escherichia coli [98]
Breast	Streptococcus, Propionibacterium, Escherichia coli, Staphylococcus epidermidis [142,143]
Oral	Porphyromonas gingivalis, Fusobacterium nucleatum [165,166]
Lung	Granulicatella, Streptococcus, Abiotrophia [167]
Liver	Enterococcus, Ruminoococcus, Bacteroides, Phascolarctobacterium, and Oscillospira [168]
Colon	Fusobacterium nucleatum, Escherichia coli, Bacteroides fragilis, Porphyromonas [169-172]
Gall bladder	Fusobacterium nucleatum, Escherichia coli, and Enetobacter spp. [173]
Prostate	Anaerococcus lactolyticus, Vanibaculum cambriense, and Propionimicrobium lymphophilium [174]
Pancreas	Proteobacteria, Bacteroidetes, and Firmicutes [175-177]

TABLE 1: Examples of specific organisms associated with dysbiosis and cancers
### Organism	Mechanism of action
Enterococcus fecalis | DNA damage from increased production of hydroxyl radicals [178]
Peptostreptococcus anaerobius | Increases reactive oxygen species and cell proliferation [179]
Salmonella | Activation of STAT3 and the Wnt signaling pathway [180]
Fusobacterium nucleatum | Forms protein complex with beta-catenin and modulates its expression affecting the Wnt pathway [181]
Campylobacter species | Produces genotoxins leading to DNA damage [182]
Escherichia coli | Produces colibactin leading to DNA double-strand breaks and activation of DNA damage checkpoint pathway [183]
Bacteroides fragilis | Produces Bacteroides fragilis toxin [184]
Helicobacter pylori | Due to cytotoxin-associated gene, reactive oxygen species [185,186]
Clostridium septicum | A hypoxic and acidic tumor environment favors its growth and plays a role indirectly [187]

TABLE 2: Mechanisms by which some bacteria cause colorectal cancers

Conclusions

Cancer affects at least one person in every family and the effect it leaves on any family is significant. In 2020, 19.3 million new cases of cancer were detected as per GLOBOCAN statistics, and the incidence has been increasing over the past few decades. GLOBOCAN estimates that 28.4 million new cases of cancer will be diagnosed by 2040 worldwide. Cancers can be cured if diagnosed and treated early. However, the problem is that we lack effective screening strategies to diagnose cancers at an initial asymptomatic stage and most cancers are typically diagnosed at an advanced stage, leading to increased mortality. The association of the microbiome with different cancers can help us devise better screening strategies and develop new treatments. Targeting our genome with chemotherapy or immunotherapy is associated with significant side effects leading to early cessation of cancer treatment. The human genome is 99.9% identical within the species, but we are almost 80-90% different from each other in terms of the gut and other microbiomes. This presents a wonderful opportunity for targeting the microbiome instead of our genome for designing new screening techniques and cancer drugs.

Changes in microbiota composition with probiotics, antibiotics, and other treatments can be used to develop specific microbial signatures. Studies showing specific microbial signatures in cancers may help us develop specific markers correlating disease severity and prognosis. We can use these signatures to treat cancers with specific organisms that are proved to have anti-cancer or anti-inflammatory properties. With the current advances in technology, we can identify microbiota changes associated with different cancers, but significantly more research is needed to develop microbial biomarkers, which can further revolutionize the prevention and help us with early diagnosis of the cancers. Studies in mice have shown that fecal microbial transplantation with specific bacteria reduces radiation-induced damage, so the identification of these microbes can help identify the radiosensitivity of the patient’s cancer. We can use these microbes in the treatment for reducing damage in dysbiosis patients. It was also noted that post-radiation mice had specific microbial signatures, and this can help us identify microbes hypersensitive to radiotherapy and prevent radiation-induced side effects such as proctitis.

Immunotherapy has improved the prognosis of many advanced cancers and changed the perspective of cancer treatment in many ways. Studies have proven that the effectiveness of PD-L-1 immunotherapy decreases in patients treated with antibiotics, and oral probiotics have shown improved response to immunotherapy. We can use this property and make the treatment more effective by supplementing good bacteria. Gut microbiota can also modulate the efficacy and toxicity of chemotherapy. Even though studies show the association of microbiome with cancer development and susceptibility to treatments, the complex mechanisms are still unknown and in-depth research is further needed. Fungi and viral microbiome are yet to be explored. Finally, microbiome patterns may be used as a marker for cancer diagnosis, a prognostic marker for cancer survival, and a predictive marker for treatment response. Microbes can probably be used for preventing cancer, increasing the effectiveness of treatment in already diagnosed cancer, or as an add-on treatment, especially as probiotics. Modified EVs from the microbiome can have applications in cancer drug delivery in the future, which can precisely focus on the organ or tissue, thereby providing high-quality organ-specific treatment leading to lesser side effects. In conclusion, a better understanding of the cancer microbiome and its response to different treatments can provide great opportunities for curing the cancer pandemic.

Additional Information

2022 Anipindi et al. Cureus 14(5): e24890. DOI 10.7759/cureus.24890
Disclosures

Conflicts of Interest: In compliance with the ICMJE uniform disclosure form, all authors declare the following: Payment/services info: All authors have declared that no financial support was received from any organization for the submitted work. Financial relationships: All authors have declared that they have no financial relationships at present or within the previous three years with any organizations that might have an interest in the submitted work. Other relationships: All authors have declared that there are no other relationships or activities that could appear to have influenced the submitted work.

References

1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F: Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021, 71:209-49. 10.3322/caac.21660

2. Balkwill F, Mantovani A: Inflammation and cancer: back to Virchow?. Lancet. 2001, 357:539-45. 10.1016/S0140-6736(00)04046-0

3. Rous P, Kidd IG: Conditional neoplasms and subthreshold neoplastic states: a study of the tar tumors of rabbits. J Exp Med. 1941, 75:565-90. 10.1084/jem.75.3.565

4. Yang Y, John C: Novel insights into microbiome in colitis and colorectal cancer. Curr Opin Gastroenterol. 2017, 33:422-7. 10.1097/MOG.0000000000000599

5. Ravel J, Blaser MJ, Braun J, et al.: Human microbiome science: vision for the future, Bethesda, MD, July 24 to 26, 2015. Microbiome. 2014, 2:16. 10.1186/2049-2618-2-16

6. Sepich-Poore GD, Zitvogel L, Straussman R, Hasty J, Wargo JA, Knight R: The microbiome and human cancer. Science. 2021, 371:4552. 10.1126/science.abc4552

7. Gebrayel P, Nicco C, Al Khodor S, et al.: Microbiota medicine: towards clinical revolution. J Transl Med. 2022, 20:111. 10.1186/s12976-022-03296-9

8. Pascal M, Perez-Gordo M, Caballero T, et al.: Microbial and allergic diseases. Front Immunol. 2018, 9:1584. 10.3389/fimmun.2018.01584

9. Gurung M, Li Z, You H, Rodrigues R, Jump DB, Morgan A, Shulzhenko N: Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine. 2020, 51:102590. 10.1016/j.ebiom.2019.11.057

10. Aoun A, Darwish F, Hamod N: The influence of gut microbiota on obesity in adults and the role of probiotics, prebiotics, and synbiotics for weight loss. Prev Nutr Food Sci. 2020, 25:15-25. 10.3746/pnfs.2020.25.2.113

11. Jonsson AL, Bäckhed F: Role of gut microbiota in atherosclerosis. Nat Rev Cardiol. 2017, 14:79-87. 10.1038/nrcardio.2016.183

12. Glassner KL, Abraham BF, Quiqley EM: The microbiome and inflammatory bowel disease. J Allergy Clin Immunol. 2020, 145:16-27. 10.1016/j.jaci.2019.11.005

13. Wang J, Chen WD, Wang YD: The relationship between gut microbiota and inflammatory diseases: the role of macrophages. Front Microbiol. 2020, 11:1065. 10.3389/fmicb.2020.01065

14. Murugesan S, Al Ahmad SF, Singh P, Saadaoui M, Kumar M, Al Khodor S: Profiling the salivary microbiome of the Qatari population. J Transl Med. 2020, 18:1217. 10.1186/s12976-020-02291-2

15. de Martel C, Georges D, Bray F et al.: Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis. Lancet Global Health. 2020, 8:1890-900. 10.1016/S2214-109X(19)30488-7

16. Moore PS, Chang Y: Why do viruses cause cancer? Highlights of the first century of human tumour virology. Nat Rev Cancer. 2010, 10:878-9. 10.1038/nrc2961

17. Dutta U, Garg PK, Kumar R, Tandon RK: Typoidal carriers among patients with gallstones are at increased risk for carcinoma of the gallbladder. Am J Gastroenterol. 2000, 95:784-7. 10.1111/j.1572-0241.2000.00860.x

18. Vaishnavi C, Kochhar R, Singh G, Kumar S, Singh K: Epidemiology of typhoid carriers among blood donors and patients with biliary, gastrointestinal and other related diseases. Microbiol Immunol. 2005, 49:107-12. 10.1111/j.1348-0421.2005.tb05709.x

19. Ellmerich S, Schüller M, Duranton B, Gossé F, Galluser M, Klein JP, Raul F: Promotion of intestinal carcinogenesis by Streptococcus bovis. Carcinogenesis. 2000, 21:753-6. 10.1095/carcin/21.4.753

20. Gold JS, Bayar S, Salem RB: Association of Streptococcus bovis bacteremia with colonic neoplasia and extracolonic malignancy. Arch Surg. 2004, 139:760-5. 10.1001/archsurg.139.7.760

21. Anttila T, Koskela P, Leinonen M, et al.: Chlamydia pneumoniae infection and the risk of female early-onset lung cancer. Int J Cancer. 2005, 117:681-2. 10.1002/ijc.13575

22. Hua-Feng X, Yue-Ming W, Hong L, Junyi D: A meta-analysis of the association between Chlamydia pneumoniae infection and lung cancer risk in Indian cancer. J Cancer. 2015, 52:e112-5. 10.4103/0019-509X.172506

23. Amieva M, Peek RM Jr: Pathobiology of Helicobacter pylori-induced gastric cancer. Gastroenterology, 2016, 150:74-82. 10.1053/j.gastro.2015.09.004

24. Wang F, Meng W, Wang B, Qiao L: Helicobacter pylori-induced gastric inflammation and gastric cancer. Cancer Lett. 2014, 345:196-202. 10.1016/j.canlet.2015.08.016

25. Gagnière J, Raisch J, Veziant J, et al.: Gut microbiota imbalance and colorectal cancer. World J Gastroenterol. 2016, 22:501-8. 10.3748/wjg.v22.i2.501

26. MacPherson AJ, Slack E, Geuring MB, McCoy KD: The mucosal firewalls against commensal intestinal microbes. Semin Immunopathol. 2009, 31:145-9. 10.1007/s00281-009-0174-3

27. Proctor LM: The Human Microbiome Project in 2011 and beyond. Cell Host Microbe. 2011, 10:287-91. 10.1016/j.chom.2011.10.001

28. Tao X, Wang N, Qin W: Gut microbiota and hepatocellular carcinoma. Gastrointest Tumors. 2015, 2:33-40. 10.1159/000380895

29. Yu LX, Schweber RF: The gut microbiome and liver cancer: mechanisms and clinical translation. Nat Rev Gastroenterol Hepatol. 2017, 14:527-39. 10.1038/nrgastro.2017.72

30. Péter S, Eggersdorfer M, van Aeselt D, et al.: Selected nutrients and their implications for health and disease across the lifespan: a roadmap. Nutrients. 2014, 6:6076-94. 10.3390/nu6126076
Deng Y, Wang M, Zhou L, et al.: host disease
Jenq RR, Taur Y, Devlin SM, et al.: 10.1136/gut.2009.197434
dynamics in a novel murine model of intestinal graft-versus-host disease
Jenq RR, Ubeda C, Taur Y, et al.: 53073-w autologous hematopoietic stem cell transplantation recipients
Pianko MJ, Devlin SM, Littmann ER, et al.: 10.1093/cid/cix699 acute graft vs host disease after hematopoietic cell transplantation
Golob JL, Pergam SA, Srinivasan S, et al.: 554725 allogeneic hematopoietic stem cell transplantation
Taur Y, Jenq RR, Perales MA, et al.: Rep. 2015, 5:14554.
Lehouritis P, Cummins J, Stanton M, et al.: in hematological malignancies: from genesis to cure
Uribe-Herranz M, Klein-González N, Rodríguez-Lobato LG, Juan M, de Larrea CF: high-grade transformed MALT lymphoma
Chen LT, Lin JT, Tai JJ, et al.: primary B-cell gastric lymphoma
Wotherspoon AC, Ortiz-Hidalgo C, Falzon MR, Isaacson PG: 10.1093/bloodadvances.2020003129 periodontitis: a systematic review and meta-analysis
Wu Y, Shi X, Li Y, Shi X, Gu Y, Qian Q, Hong Y: hematologic malignancies
D’Angelo CR, Sudakaran S, Callander NS: cancer
Wang L, Yin G, Guo Y, et al.: 7:11773. Cancer. 2021, 127:679-87. Variations in oral microbiota composition are associated with a risk of throat cancer
10.1177/14795549211024197. Oral Oncol. 2009, 45:687-91. Intestinal Blautia is associated with reduced death from graft-versus-host disease following allogeneic hematopoietic stem cell transplantation. Front Cell Infect Microbiol. 2019, 9:205.
10.1093/carcin/bgaa062 Microbial changes in relation to oral mucosis in autologous hematopoietic stem cell transplantation recipients. Sci Rep. 2019, 9:16929.
10.1038/s41598-019-53073-w Microbial changes in relation to oral mucosis in autologous hematopoietic stem cell transplantation recipients. Sci Rep. 2019, 9:16929.
10.1053/jcid/cx699 Minimal residual disease negativity in multiple myeloma is associated with intestinal microbiota composition. Blood Adv. 2019, 3:2040-4.
10.1371/journal.pone.0069238. Sci Rep. 2013, 8:e69238. 10.1771/journal.pone.0069238
Hardefeldt HA, Cox MR, Edelk GD: Association between human papillomavirus (HPV) and oesophageal squamous cell carcinoma: a meta-analysis. Epidemiol Infect. 2014, 142:1119-37. 10.1017/S0950268814000016
Galvão-Moreira LV, da Cruz MC: Oral microbiome, periodontitis and risk of head and neck cancer. Oral Oncol. 2016, 55:17-9. 10.1016/j.oraloncology.2015.11.015
Karmakar S, Kar A, Thukur S, Rao VC: Periodontitis and oral cancer—a striking link. Oral Oncol. 2020, 104650. 10.1016/j.oraloncology.2020.104650
Mager DL, Halfajee AD, Devlin PM, Norris CM, Posner MR, Goodson JM: The salivary microbiota as a diagnostic indicator of oral cancer: a descriptive, non-randomized study of cancer-free and oral squamous cell carcinoma subjects. J Transl Med. 2005, 3:27. 10.1186/1479-5876-3-27
Su SC, Chang LC, Huang HD, et al.: Oral microbial dysbiosis and its performance in predicting oral cancer. Carcinogenesis. 2021, 42:127-55. 10.1093/carcin/bga460
Peerea M, Al-Hebshi NN, Peerea I, et al.: Inflammatory bacteriome and oral squamous cell carcinoma. J Dent Res. 2018, 97:725-52. 10.1177/22004518761118
Zhao H, Chu M, Huang Z, et al.: Variations in microbiota associated with oral cancer. Sci Rep. 2017, 7:11773. 10.1038/s41598-017-11779-9
Wang L, Yin G, Guo Y, et al.: Variations in oral microbiota composition are associated with a risk of throat cancer. Front Cell Infect Microbiol. 2019, 9:205. 10.3389/fcimb.2019.00205
D’Angelo CR, Sudakaran S, Callander NS: Clinical effects and applications of the gut microbiome in hematologic malignancies. Cancer. 2021, 127:679-87. 10.1002/cncr.35400
Wu Y, Shi X, Li Y, Shi X, Gu Y, Qian Q, Hong Y: Hematopoietic and lymphatic cancers in patients with periodontitis: a systematic review and meta-analysis. Med Oral Patol Oral Cir Bucal. 2020, 25:e21-8. 10.4317/medoral.25166
Dienstbach CS, Peters BA, Li H, et al.: Microbial dysbiosis is associated with aggressive histology and adverse clinical outcome in B-cell non-Hodgkin lymphoma. Blood Adv. 2021, 5:1194-8. 10.1182/bloodadvances.202003129
Wotherspoon AC, Ortiz-Hidalgo C, Falzon MR, Isaacson PG: Helicobacter pylori-associated gastritis and primary B-cell gastric lymphoma. Lancet. 1991, 338:1175-6. 10.1016/0140-6736(91)92035-z
Chen LT, Lin JT, Tai JJ, et al.: Long-term results of anti-Helicobacter pylori therapy in early-stage gastric high-grade transformed MALT lymphoma. J Natl Cancer Inst. 2005, 97:1345-55. 10.1093/jnci/dij277
Shi Z, Zhang M: Emerging roles for the gut microbiome in lymphoid neoplasms . Clin Med Insights Oncol. 2021, 15:11795549211040197. 10.1177/11795549211040197
Uribe-Herranz M, Klein-González N, Rodríguez-Lobato LG, Juan M, de Larrea CF: Gut microbiota influence in hematological malignancies: from genesis to cure. Int J Mol Sci. 2021, 22:1026. 10.3390/ijms22031026
Lehouritis P, Cummins J, Stanton M, et al.: Local bacteria affect the efficacy of chemotherapeutic drugs . Sci Rep. 2015, 5:14554. 10.1038/srep14554
Taur Y, Jenq RR, Perales MA, et al.: The effects of intestinal tract bacterial diversity on mortality following allogeneic hematopoietic stem cell transplantation. Blood. 2014, 124:1174-82. 10.1182/blood-2014-02-554725
Golob JL, Pergam SA, Srinivasan S, et al.: Stool microbiota at neutrophil recovery is predictive for severe acute graft vs host disease after hematopoietic cell transplantation. Clin Infect Dis. 2017, 65:1984-91. 10.1093/cid/cix699
Pianko MJ, Devlin SM, Littmann ER, et al.: Minimal residual disease negativity in multiple myeloma is associated with intestinal microbiota composition. Blood Adv. 2019, 3:2040-4. 10.1182/bloodadvances.2019022176
Labeij AM, Raber-Durlacher JE, Koppelmans RG, et al.: Microbial changes in relation to oral mucositis in autologous hematopoietic stem cell transplantation recipients. Sci Rep. 2019, 9:16929. 10.1038/s41598-019-53073-w
Jenq RR, Ubeda C, Taur Y, et al.: Regulation of intestinal inflammation by microbiota following allogeneic bone marrow transplantation. J Exp Med. 2012, 209:905-11. 10.1084/jem.20112408
Heinemann MM, Nogai A, Berewill S, et al.: MyD88/TLR9 mediated immunopathology and gut microbiota dynamics in a novel murine model of intestinal graft-versus-host disease. Gut. 2010, 59:1079-87. 10.1136/gut.2009.197454
Jenq RR, Taur Y, Devlin SM, et al.: Intestinal Blautia is associated with reduced death from graft-versus-host disease. Biol Blood Marrow Transplant. 2015, 21:1373-83. 10.1016/j.bbmt.2015.04.016
Deng Y, Wang M, Zhou L, et al.: Global burden of larynx cancer, 1990-2017: estimates from the global burden of disease 2017 study. Aging (Albany NY). 2020, 12:2545-83. 10.18632 aging.102762
63. Gong H, Shi Y, Zhou X, et al.: Microbiota in the throat and risk factors for laryngeal carcinoma. Appl Environ Microbiol. 2014, 80:7556-63. 10.1128/AEM.03259-14
64. Gong H, Shi Y, Xiao X, et al.: Alterations of microbiota structure in the larynx relevant to laryngeal carcinoma. Sci Rep. 2017, 7:5507. 10.1038/s41598-017-05576-7
65. Dickson RP, Hughson GB: The lung microbiome: new principles for respiratory bacteriology in health and disease. PLoS Pathog. 2015, 11:e1004925. 10.1371/journal.ppat.1004925
66. Mao Q, Jiang F, Yin R, et al.: Interplay between the lung microbiome and lung cancer. Cancer Lett. 2018, 415:40-8. 10.1016/j.canlet.2017.11.036
67. Yang J, Mu X, Wang Y, et al.: Dysbiosis of the salivary microbiome is associated with non-smoking female lung cancer and correlated with immunocytochemistry markers. Front Oncol. 2018, 8:520. 10.3389/fonc.2018.00520
68. Zheng Y, Fang Z, Xue Y, et al.: Specific gut microbiome signature predicts the early-stage lung cancer. Gut Microbes. 2020, 11:1050-42. 10.1080/194900976.2020.1737487
69. Yan X, Yang M, Liu J, et al.: Discovery and validation of potential bacterial biomarkers for lung cancer. Am J Cancer Res. 2015, 5:5111-22.
70. Greathouse KL, White JR, Vargas AJ, et al.: Interaction between the microbiome and TP53 in human lung cancer. Genome Biol. 2018, 19:125. 10.1186/s13059-018-1501-6
71. Microbiome and papillary thyroid microcarcinoma. (2020). Accessed: May 8, 2022: https://clinicaltrials.gov/ct2/show/NCT04376203.
72. Zhang J, Zhang F, Zhao C, et al.: Dysbiosis of the gut microbiome is associated with thyroid cancer and thyroid nodules and correlated with clinical index of thyroid function. Endocrine. 2019, 64:564-74. 10.1007/s12020-018-1813-x
73. Yu X, Jiang W, Kousik RO, et al.: Gut microbiota changes and its potential relations with thyroid carcinoma. J Adv Res. 2022, 32:61-70. 10.1016/j.jare.2021.04.001
74. Gnanasekara A, Castaneda G, Iyengar A, et al.: The intratumor microbiome predicts prognosis across gender and subtypes in papillary thyroid carcinoma. Comput Struct Biotechnol J. 2021, 19:1986-97. 10.1016/j.csbj.2021.05.032
75. Bao G, Yuan L, Yang P, Chen S, Wei G, Lu J, Hu X, Yang L, He X: Tumor microbiome diversity influence papillary thyroid cancer invasion (PREPRINT). Res Square. 2021, 10.21203/r.s.5.s.499240v1.
76. Samimi H, Haghpanah V: Gut microbiome and radionuclide-refractory papillary thyroid carcinoma pathophysiology. Trends Endocrinol Metab. 2020, 31:627-30. 10.1016/j.tem.2020.05.005
77. Helmink BA, Khan MA, Hermann A, Gopalakrishnan V, Wargo JA: The microbiome, cancer, and cancer therapy. Nat Med. 2019, 25:377-88. 10.1038/s41591-019-0377-7
78. Boursi B, Mantani R, Haynes K, Yang YX: Faecal microbiota transplantation protects against radiation-induced toxicity. Gut. 2018, 67:1-2. 10.1136/gutjnl-2017-313789
79. Dickson RP, Hughson GB: The lung microbiome: new principles for respiratory bacteriology in health and disease. PLoS Pathog. 2015, 11:e1004925. 10.1371/journal.ppat.1004925
80.いくつかの研究では、微生物が呼吸器疾患の発症に関与していることが示されています。特に、喉頭癌のリスクファクターとして関与している微生物の変化が注目されています。Gong H, Shi Y, Zhou X, et al.の研究では、喉頭癌患者における唾液微生物群の多様性とリスク因子との関連が示されています。10.1038/aem.03259-14
81. さらに、肺がんにおける微生物組成の変化も注目されています。Zheng Y, Fang Z, Xue Y, et al.の研究では、早期肺癌患者における腸内微生物の特徴が予後を予測する指標として提示されています。10.1080/194900976.2020.1737487
82. さらに、甲状腺がんにおける微生物組成の変化も注目されています。Yan X, Yang M, Liu J, et al.の研究では、甲状腺がん患者における微生物の動態が予後を予測する指標として提示されています。10.1016/j.csbj.2021.05.032
83. これらの研究から、腸内微生物組成は呼吸器疾患の発症、進展、治療への関与があることが示されています。
disease, Barrett’s and oesophageal carcinoma: association or causality?. Aliment Pharmacol Ther. 2015, 37:1084-92. 10.1111/apt.12517
95. Man SM: The clinical importance of emerging Campylobacter species. Nat Rev Gastroenterol Hepatol. 2011, 8:669-85. 10.1038/nrgastro.2011.191
96. Zaidi AH, Kelly LA, Keef RE, et al.: Associations of microbiota and toll-like receptor signaling pathway in esophageal adenocarcinoma. BMC Cancer. 2016, 16:52. 10.1186/s12885-016-2093-8
97. Gao S, Li S, Ma Z, et al.: Presence of Porphyromonas gingivalis in esophagus and its association with the clinicopathological characteristics and survival in patients with esophageal cancer. Infect Agent Cancer. 2016, 11:5. 10.1186/s13027-016-0049-x
98. Li Y, Eshak EK, Shirai K, Lui K, Dong JY, Ito H, Tamakoshi A: Alcohol consumption and risk of gastric cancer: The Japan Collaborative Cohort Study. J Epidemiol. 2021, 31:50-6. 10.2188/jea.JE20190304
99. Kumar S, Metz DC, Ellenberg S, Kaplan DE, Goldberg DS: Risk factors and incidence of gastric cancer after detection of Helicobacter pylori infection: a large cohort study. Gastroenterology. 2020, 158:527-36. 10.1053/j.gastro.2019.10.019
100. Luan F, Li X, Cheng X, et al.: TNFRSF11B activates Wnt/β-catenin signaling and promotes gastric cancer progression. Int J Biol Sci. 2020, 16:1956-71. 10.7150/ijbs.43650
101. Wong BC, Lam SK, Wong WM, et al.: Helicobacter pylori eradication to prevent gastric cancer in a high-risk region of China: a randomized controlled trial. JAMA. 2004, 291:187-94. 10.1001/jama.291.2.187
102. Ravegini G, Fosso B, Saverio VD, et al.: Gastric adenocarcinomas and signet-ring cell carcinoma: unraveling gastric cancer complexity through microbiome analysis-deepening heterogeneity for a personalized therapy. Int J Mol Sci. 2020, 21:9735. 10.3390/ijms21249735
103. Chen XH, Wang A, Chu AN, Gong YH, Yuan Y: Mucosa-associated microbiota in gastric cancer tissues compared with non-cancer tissues. Front Microbiol. 2019, 10:1261. 10.3389/fmicb.2019.01261
104. Huels YY, Tung SY, Pan HY, et al.: Increased abundance of Clostridium and Fusobacterium in gastric microbiota of patients with gastric cancer in Taiwan. Sci Rep. 2018, 8:158. 10.1038/s41598-017-18596-0
105. Zheng C, Chen T, Wang Y, Gao Y, Kong Y, Liu Z, Deng X: A randomised trial of probiotics to reduce severity of physiological and microbial disorders induced by partial gastrectomy for patients with gastric cancer. J Cancer. 2019, 10:568-76. 10.7150/jca.29072
106. McFarland LV, Huang Y, Wang L, Malfertheiner P: Systematic review and meta-analysis: multi-strain probiotics as adjunct therapy for Helicobacter pylori eradication and prevention of adverse events. United European Gastroenterol J. 2016, 4:546-61. 10.1117/2050640615617358
107. Yang J, Zhou X, Liu X, Ling Z, Ji F: Role of the gastric microbiome in cancer: from carcinogenesis to treatment. Front Microbiol. 2021, 12:61322. 10.3389/fmicb.2021.61322
108. Zhao J, Huang Y, Liu D, Chen Y: Two hits are better than one: synergistic anticancer activity of α-helical peptides and doxorubicin/epirubicin. Oncotarget. 2015, 6:17679-80. 10.18632/oncotarget.27254
109. Nakatsu G, Li X, Zhou H, et al.: Gut mucosal microbiome across stages of colorectal carcinogenesis. Nat Commun. 2015, 6:8727. 10.1038/ncomms9727
110. Lu Y, Chen J, Zheng J, et al.: Mucosal adherent bacterial dysbiosis in patients with colorectal adenoma. Sci Rep. 2016, 6:26337. 10.1038/srep26337
111. Gao Z, Guo B, Gao R, Zhu Q, Qin H: Microbiota disbiosis is associated with colorectal cancer. Front Microbiol. 2015, 6:20. 10.3389/fmicb.2015.00200
112. Wong SH, Zhao L, Zhang X, et al.: Gavage of fecal samples from patients with colorectal cancer promotes intestinal carcinogenesis in germ-free and conventional mice. Gastroenterology, 2017, 153:1621-33. 10.1053/j.gastro.2017.08.022
113. Yu J, Chen Y, Fu X, et al.: Invasive Fusobacterium nucleatum may play a role in the carcinogenesis of proximal colon cancer through the serrated neoplasia pathway. Int J Cancer. 2016, 139:1518-26. 10.1002/ijc.30168
114. Bullmann S, Pedemallo CS, Sicinska E, et al.: Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer. Science. 2017, 358:1445-8. 10.1126/science.aal5240
115. El Andaloussi S, Mäger I, Breakefield XO, Wood MJ: Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov. 2015, 12:547-57. 10.1038/nrd3978
116. Park J, Kim NE, Yoon H, et al.: Fecal microbiota and gut microbe-derived extracellular vesicles in colorectal cancer. Front Oncol. 2021, 11:650026. 10.3389/fonc.2021.650026
117. Silva M, Brunner V, Tschurtschenthaler M: Microbiota and colorectal cancer: from gut to bedside. Front Pharmacol. 2021, 12:760280. 10.3389/fphar.2021.760280
118. Zhou Z, Ge S, Li Y, et al.: Human gut microbiome-based knowledgebase as a biomarker screening tool to improve the predicted probability for colorectal cancer. Front Microbiol. 2020, 11:596027. 10.3389/fmicb.2020.596027
119. Zackular JP, Rogers MA, Ruffin MT 4th, Schloss PD: The human gut microbiome as a screening tool for colorectal cancer. Cancer Prev Res (Phila). 2014, 7:1112-21. 10.1158/1940-6207.CAPR-14-0129
120. Mima K, Nakagawa S, Sawayama H, et al.: The microbiome and hepatobiliary-pancreatic cancers. Cancer Prev Res. 2017, 10:422-9. 10.1158/1940-6207.CAPR-17-0011
121. Yoshimoto S, Loo TM, Atarashi K, et al.: Obesity-induced gut microbial metabolite promotes liver cancer through seneescence secretome. Nature. 2013, 499:97-101. 10.1038/nature12347
122. Ma C, Han M, Heinrich B, et al.: Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science. 2018, 360:5931. 10.1126/science.aan5931
123. Rattan P, Minacapelli CD, Rustgi V: The microbiome and hepatocellular carcinoma. Liver Transpl. 2020, 26:1516-27. 10.1002/hep.29328
124. Moreno-Gonzalez M, Beraza N: The role of the microbiome in liver cancer. Cancers (Basel). 2021, 15:2530. 10.3390/cancers11020250
125. Goetze TO: Gallbladder carcinoma: prognostic factors and therapeutic options. World J Gastroenterol. 2015, 21:12211-7. 10.3748/wjg.v21.i43.12211
126. Kosholj Wozniak A, Cook P, et al.: Salmonella enterica serovar Typhi and gallbladder cancer: a case-control study and meta-analysis. Cancer Med. 2016, 5:3310-255. 10.1002/cam4.915
Nagaraja V, Eslric GD: Systematic review with meta-analysis: the relationship between chronic Salmonella typhi carrier status and gall-bladder cancer. Aliment Pharmacol Ther. 2014, 39:745-50. 10.1111/apt.12655

Lee H, Lee HK, Min SK, Lee WH: 16S rDNA microbiome composition pattern analysis as a diagnostic biomarker for biliary tract cancer. World J Surg Oncol. 2020, 18:19. 10.1186/s12957-020-01795-5

Choi SJ, Kim Y, Jeon J, et al.: Association of microbial dysbiosis with gallbladder diseases identified by bile microbiome profiling. J Korean Med Sci. 2021, 36:e189. 10.3346/jkms.2021.36.e189

Rawla P, Sunkara T, Gaduputi V: Epidemiology of pancreatic cancer: global trends, etiology and risk factors. World J Oncol. 2019, 10:10-27. 10.14740/wjon1166

Nejman D, Livyatan I, Fux G, et al.: The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science. 2020, 368:973-80. 10.1126/science.ay9189

Pushalkar S, Hundein M, Daley D, et al.: The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression. Cancer Discov. 2018, 8:405-16. 10.1158/2159-8290.CD-17-1134

Ochi A, Nguyen AH, Bedrosian AS, et al.: MiD88 inhibition amplifies dendritic cell capacity to promote pancreatic carcinogenesis via TH2 cells. J Exp Med. 2012, 209:1671-87. 10.1088/jem.20111706

Bracci PM: Oral health and the oral microbiome in pancreatic cancer: an overview of epidemiological studies. Cancer J. 2017, 23:510-4. 10.1097/JCO.0000000000002957

Michaud DS, Izard J, Wilhelm-Benartzi CS, et al.: Plasma antibodies to oral bacteria and risk of pancreatic cancer in a large European prospective cohort study. Gut. 2015, 62;1764-70. 10.1136/gutjnl-2012-303006

Mitsushita K, Nosho K, Sukawa Y, et al.: Association of Fusobacterium species in pancreatic cancer tissues with molecular features and prognosis. Oncotarget. 2015, 6;7209-20. 10.18632/oncotarget.3109

Riquelme E, Zhang Y, Zhang L, et al.: Tumor microbiome diversity and composition influence pancreatic cancer outcomes. Cell. 2019, 178:795-806. 10.1016/j.cell.2019.07.008

Ren Z, Jiang J, Xie H, et al.: Gut microbial profile analysis by MiSeq sequencing of pancreatic carcinoma patients in China. Oncotarget. 2017, 8;95176-91. 10.18632/oncotarget.18820

Tzeng A, Sangwann N, Jia M, et al.: Human breast microbiome correlates with prognostic features and immunological signatures in breast cancer. Genome Med. 2021, 15:10.60. 10.1186/s13073-021-00874-2

Eslami-S Z, Majidzadeh-A K, Halvari S, Babapirazi F, Esmaili R: Microbiome and breast cancer: new role for an ancient population. Front Oncol. 2020, 10;120. 10.3389/fonc.2020.00120

Garcia-Castillo V, Sanhuerza E, McNerney E, Onate SA, Garcia A: Microbiota dysbiosis: a new piece in the understanding of the carcinogenesis puzzle. J Med Microbiol. 2016, 65:1547-62. 10.1099/jmm.0.005751

Kwa M, Plotte CS, Blaser MJ, Adams S: The intestinal microbiome and estrogen receptor-positive female breast cancer. J Natl Cancer Inst. 2016, 108:106. 10.1095/jnci.jdic029

Shapira I, Sultan K, Lee A, Taoli E: Evolving concepts: how diet and the intestinal microbiome act as modulators of breast malignancy. ISRN Oncol. 2013, 2013:493920. 10.1155/2013/493920

Shi T, Min M, Sun C, Zhang Y, Liang M, Sun Y: Periodontal disease and susceptibility to breast cancer: a meta-analysis of observational studies. J Clin Periodontol. 2018, 45;1025-33. 10.1111/jcpe.12982

Banerjee S, Wei Z, Tian T, et al.: Prognostic correlations with the microbiome of breast cancer subtypes. Cell Death Dis. 2021, 12;851. 10.1038/s41419-021-04092-x

Curty G, de Carvalho PS, Soares MA: The role of the cervicovaginal microbiome on the genesis and as a biomarker of premalignant cervical intraepithelial neoplasia and invasive cervical cancer. Int J Mol Sci. 2019, 21;222. 10.3390/ijms2101222

Klein C, Khareesh C, Mwaaitlage J, West JT, Wood C, Angelletti PC: How the cervical microbiota contributes to cervical cancer risk in sub-Saharan Africa. Front Cell Infect Microbiol. 2020, 10:23. 10.3389/fcimb.2020.00023

Lu W, He F, Lin Z, Liu S, Tang L, Huang Y, Hu Z: Dysbiosis of the endometrial microbiota and its association with inflammatory cytokines in endometrial cancer. Int J Cancer. 2021, 148:1708-16. 10.1002/ijc.33428

Sipos A, Ujfalusi G, Mikó E, et al.: The role of the microbiome in ovarian cancer: mechanistic insights into cellular and bacterial interaction and to bacterial metabolite signaling. Mol Med. 2021, 27;35. 10.1007/s11010-021-00295-2

Garcia-Castillo V, Sanhuerza E, McNerney E, Onate SA, Garcia A: Microbiota dysbiosis: a new piece in the understanding of the carcinogenesis puzzle. J Med Microbiol. 2016, 65:1547-62. 10.1099/jmm.0.005751

Che B, Zhang W, Xu S, et al.: Prostate microbiota and prostate cancer: a new trend in treatment. J Urol Oncol. 2021, 11:805459. 10.3389/fonc.2021.805459

Katongole P, Sando OB, Joloba M, Reynolds SJ, Niyonzima N: The human microbiome and its link in prostate cancer risk and pathogenesis. Infect Agent Cancer. 2020, 15:5. 10.1186/s41391-020-00413-5

Teoh JY, Huang J, Ko WY, et al.: Global trends of bladder cancer incidence and mortality, and their associations with tobacco use and gross domestic product per capita. Eur Urol. 2020, 78:895-906. 10.1016/j.eururo.2020.09.006

Liu F, Ling Z, Xiao Y, et al.: Dysbiosis of urinary microbiota is positively correlated with type 2 diabetes mellitus. Oncotarget. 2017, 8;5798-810. 10.18632/oncotarget.14028

Pearce MM, Zilliox MJ, Rosenfeld AB, et al.: The female urinary microbiome in urgency urinary incontinence. Am J Obstet Gynecol. 2015, 213;547.e1-11. 10.1016/j.ajog.2017.05.009

Fouts DE, Pieper R, Sepakowski S, et al.: Integrated next-generation sequencing of 16S rDNA and metaproteomics differentiate the healthy urine microbiome from asymptomatic bacteriuria in neuropathic bladder associated with spinal cord injury. J Transl Med. 2012, 10:174. 10.1186/1479-5876-10-174

Xu W, Yang L, Lee P, et al.: Mini-review: perspective of the microbiome in the pathogenesis of urothelial carcinoma. Am J Clin Exp Urol. 2014, 2;57-61.

Bušević Popović V, Situm M, Chow CT, Chan LS, Roje B, Terzić J: The urinary microbiome associated with bladder cancer. Sci Rep. 2018, 8;12157. 10.1038/s41598-018-29054-w

Krueger A, Zaugg J, Lachner N, et al.: Changes in the skin microbiome associated with squamous cell carcinoma in transplant recipients. ISME Commun. 2022, 2;1-0. 10.1038/s41788-022-00095-7

Kullandar J, Fordlund O, Dilner J: Staphylococcus aureus and squamous cell carcinoma of the skin. Cancer
