MicroRNA-296-5p is differentially expressed in individuals with and without HIV-1 infection

Jhonathan Cárdenas-Bedoya\textsuperscript{1,2,4}, Jazmin Marquez-Pedroza\textsuperscript{1,3}, María Cristina Morán-Moguel\textsuperscript{2,4}, Martha Escoto-Delgadillo\textsuperscript{1,3}, Eduardo Vázquez-Valls\textsuperscript{6}, Gracia Viviana González-Enríquez\textsuperscript{4}, Alma Minerva Pérez-Ríos\textsuperscript{7} and Blanca Miriam Torres-Mendoza\textsuperscript{1,4}

\textsuperscript{1}Instituto Mexicano del Seguro Social, Centro de Investigación Biomédica de Occidente, Laboratorio de Inmunodeficiencias y Retrovirus Humanos, Guadalajara, Jalisco, Mexico.
\textsuperscript{2}Universidad de Guadalajara, Departamento de Biología Molecular y Genómica, Guadalajara, Jalisco, Mexico.
\textsuperscript{3}Universidad de Guadalajara, Departamento de Fisiología, Guadalajara, Jalisco, Mexico.
\textsuperscript{4}Universidad de Guadalajara, Centro Universitario de Ciencias de la Salud, Departamento de Disciplinas Filosófico, Metodológicas e Instrumentales, Guadalajara, Jalisco, Mexico.
\textsuperscript{5}Universidad de Guadalajara, Centro Universitario de Ciencias Biológicas y Agropecuarias, Guadalajara, Jalisco, Mexico.
\textsuperscript{6}Secretaría de Salud, Dirección de Generación de Recursos Profesionales, Investigación y Desarrollo, Jalisco, Mexico.
\textsuperscript{7}Instituto Mexicano del Seguro Social, Hospital Regional 110, Guadalajara, Jalisco, Mexico.

Abstract

MicroRNAs are considered as potential biomarkers, agents, or therapeutic targets; few studies have addressed the expression of miRNAs in treatment-naïve patients infected with HIV-1. The aim of this study was to assess plasma relative circulating miRNA expression profiles in treatment-naïve Mexican patients with HIV/AIDS and healthy individuals using a commercial array. A low CD4+ T cell count and high viral load were found in all patients. Decreased relative miRNA-296-5p expression was observed in patients; moreover, this was the only miRNA that showed differences between the two groups. Thus, we measured the absolute expression of miR-296-5p by qPCR, confirming the result with statistically significant differences (P < 0.05). There is evidence that miR-296-5p regulates the expression of the PIN1 gene, which encodes the peptidylprolyl Cis/Trans isomerase NIMA-Interacting-1, that is involved in different stages of the biological cycle of HIV-1, this relationship is corroborated by bioinformatics analysis and ELISA assay was used to measure plasma levels of PIN1. The decreased expression of miR-296-5p found in naïve patients with HIV infection suggests a regulatory activity of this miRNA on virus replication, making it a potential therapeutic agent against HIV. Finally, miR-296-5p could be inhibiting the virus transcription by regulating genes different than PIN1.

Keywords: miR-296-5p, HIV-1, naïve, PIN1.
Thirteen male individuals were divided into two groups, as follows. Group 1: 10 treatment-naïve HIV-1-positive patients who were being followed at the Laboratorio de Inmunodeficiencias y Retrovirus Humanos, Centro Médico Nacional de Occidente of the Instituto Mexicano del Seguro Social; and Group 2 (control): three voluntary individuals without HIV-1 infection. Subsequently, for the absolute expression, 10 new volunteers without HIV infection were selected (Group 3).

Because of the small sample size, the standardization criteria were strictly fulfilled by increasing the internal validity through the homogenization of the groups, using strict internal controls, and applying normalization processes.

Individuals with hepatitis B or C, influenza, tuberculosis, diabetes, cardiovascular disease, or cancer were excluded from the study. All participants were male because it has been shown that the hormonal changes that occur in women can modify miRNA expression (Klinge, 2015; Chen et al., 2016; Rao et al., 2016).

Clinical and demographic data were collected for HIV-1-positive patients, CD4+ and CD8+ cells were quantified by flow cytometry (Cytomics FC500, Beckman Coulter), and viral load was determined using an Arthus® HI Virus QS-RGQ kit on a QIAsymphony® SP/AS sample extraction and preparation apparatus, and a Rotor-Gene Q® real-time PCR machine.

Total RNA was isolated from plasma using a miRNeasy Serum/Plasma kit (QIAGEN, Hilden, Germany), according to the manufacturer’s instructions. The miRNA isolation efficiency was controlled based on the recovered amount of the Caenorhabditis elegans miR-39 added during the extraction. The RNA concentration was evaluated by spectrophotometry using NanoDrop 2000/2000c (Thermo Fisher Scientific, Waltham, MA, USA); the purity of the RNA was obtained based on the A260/A280 ratio. RNA integrity was evaluated by electrophoresis on 1.5% agarose gels with formaldehyde, and RNA samples were stored at −80°C until use.

A miScript II RT kit was used for cDNA synthesis and miScript miRNA PCR Array and miScript SYBR® Green PCR kits (QIAGEN) were used to analyze the relative expression of the 84 miRNAs that were most relevant to pathophysiological conditions and were detectable and differentially expressed in serum, plasma, and other bodily fluids. Quantitative real-time PCR (qPCR) conditions were as per the manufacturer’s instructions and a Rotor-Gene Q® instrument was used to perform this experiment.

The expression of miRNAs was analyzed using the miScript miRNA PCR Array Data Analysis Tool (QIAGEN) (http://pcrdataanalysis.sabiosciences.com/mirna/arrayanalysis.php). The relative miRNA expression levels were calculated using the Cq comparative method. Changes in the expression levels of miRNAs were calculated using the 2−ΔΔCq equation (Fold Change). Mann-Whitney U-test (two-tailed P values) was used to examine the differential expression of miRNAs between groups. Significance was set at P < 0.05. Expression data were presented as means ± standard error of the mean (SEM).

The expression levels were normalized using the stable miRNAs identified in the array (miR-200b-3p, miR-92a-3p, miR-193a-5p, and miR-103a-3p). The analysis was performed by combining the GenEx version 6 (http://www.biomcc.com/genex-software.html) and RefFinder (http://leonxie.esy.es/RefFinder/) algorithms which evaluate the relative expression to identify the best internal references (Vandesompele et al., 2002; Marabita et al., 2016).

The clinical and demographic data were as follows. Group 1: age, 30.7 ± 8.4 years; CD4+ Cells, 181.4 ± 157.3 and CD8+, 947.63 ± 690.8 cells in blood (numbers of cells per microliter); viral load, 1,703,873 ± 3,330,887 copies of HIV per milliliter; Group 2: age, 36.3 ± 9.3 years. The time elapsed since diagnosis was 0–5 months in nine patients and 8 years in one patient. Four of ten patients in Group 1 were classified as stage 2 and six of them as stage 3, according to the Centers for Disease Control and Prevention guidelines (CDC, 2018).

Of the 84 miRNAs evaluated in the array, only miR-296-5p was significantly underexpressed in group 1 (0.093 ± 0.033; P = 0.0225) compared with the group 2 (control group healthy) (1.00 ± 0.298) (Figure 1). Therefore, the absolute expression of miR-296-5p was analyzed by qPCR in all individuals in group 1 and 3. The assays were performed in duplicate for each sample using a standard curve, in which a serial dilution of enriched synthetic miR-296-5p (10^8–10^3 copies) was performed. Group 1 exhibited 2.28 ± 3.16 × 10^10 copies of miR-296-5p, and the Group 3 had 2.62 ± 1.34 × 10^11 copies of miR-296-5p (P < 0.05).

For the identification of the miR-296-5p target genes, the public database miRTarBase was accessed because it gathers functional studies of miRNA–target interactions, which are validated experimentally (http://miRTarBase.cuhk.edu.cn/) (Chou et al., 2018; Huang et al., 2020); at least 10 genes showed strong evidence of interaction with miR-296-5p, of which peptidylprolil cis / trans isomerase, the gene that interacts with NIMA 1 (PIN1), is the only one involved in three different points of the biological cycle of the virus (disassembly or denaturation of the viral capsid, the reverse transcription of the viral RNA and the integration of the HIV-1 cDNA into the host genome). The program miRanda-mirSVR

**Figure 1** - MicroRNA-296-5p relative expression in plasma from healthy individuals and treatment-naïve HIV-1-positive patients. The expression was normalized with miR-200b-3p, miR-92a-3p, miR-193a-5p, and miR-103a-3p. * Indicates statistically significant differences (P < 0.05) by Mann-Whitney U-test.
mirSVR score (*<-0.1). And PhastCons score (>=0).

*Restricted analysis “View targets sites of conserved miRNAs with good method (MyBioSource); the findings resulted without any was performed in triplicated in both groups using ELISA transcriptional level, the quantification of the PIN1 protein infected showed a lower expression levels of miR-296-5p towards the group of without infection individuals. However, it has not been determined which is the target of regulation of this miRNA in HIV.

Due to the regulatory activity associated to miR-296-5p over PIN1 (Lee et al., 2014), this is the first study that confirms the subexpression of miR-296-5p in treatment-naïve HIV-positive patients compared with healthy individuals, suggesting a regulatory activity of this miRNA on virus replication, making it a potential therapeutic agent against HIV. In addition, the discordance on the expression of the PIN1 protein among evaluated groups, proposes that miR-296-5p could be inhibiting the viral transcription by the regulation of other genes different to PIN1.

Table 1 - miR-296-5p/PIN1 Alignment.

| 31’ | ggaucc UmccUUmcmccuMcU | 5’ | kou=miR-296-5p |
| 1295’ | cU/mUmcmccUUmUmccU | 3’ | Pin1 |
| 31’ | guccUUmcmccuMcU | 5’ | kou=miR-296-5p |
| 1465’ | cU/mUmcmccUUmUmccU | 3’ | Pin1 |
| 31’ | guccUUmcmccuMcU | 5’ | kou=miR-296-5p |
| 1125’ | cU/mUmcmccUUmUmccU | 3’ | Pin1 |

*Restricted analysis “View targets sites of conserved miRNAs with good mirSVR score” (< -0.1). And PhastCons score (>=0).

Acknowledgments

We are grateful to the Fondo de Investigación en Salud (FIS) of the Instituto Mexicano del Seguro Social (FIS/IMSS/PROT/MD15/1491) for financial support throughout this research and for a scholarship from the Consejo Nacional de Ciencia y Tecnología (CONACYT).
Conflict of Interest

The authors declare this article content has no conflict of interest.

Authors Contributions

BMTM and MCMM designed the study, managed and conducted the experience, analyzed the data and read the manuscript, JCB contributed and validated experiments, performed bioinformatic analysis, prepared and analyzed the data, wrote and edited the manuscript, JMP contributed in experiments and participated in the data conversion, MED GVGE supervised the planning and execution of the research, participated in the validation of the data, EVV and AMPR involved in sample collect, collected for all clinical data and classifying patients. All authors read and approved the final version.

References

Allantaz F, Cheng DT, Bergauer T, Ravindran P, Rossier MF, Ebeling M, Badi L, Reis B, Bitter H, D’Asaro M et al. (2012) Expression profiling of human immune cell subsets identifies miRNA-mRNA regulatory relationships correlated with cell type specific expression. PLoS One 7:e2997.

Bignami F, Pilotti E, Bertoncelli L, Ronzi P, Gulli M, Marmiroli N, Magnani G, Pinti M, Lopalco L, Mussini C et al. (2012) Stable changes in CD4+ T lymphocyte miRNA expression after exposure to HIV-1. Blood 119:6259-6267.

Chen L, Zhang BY, Feng GD, Xiang W, Ma YX, Chen H, Chu MX and Wang PQ (2016) The mechanism of miRNA-mediated PGR signaling pathway in regulating female reproduction. Yi Chuan 38:40-51.

Chou CH, Shrestha S, Yang CD, Chang NW, Lin YL, Liao KW, Huang WC, Sun TH, Tu SJ, Lee WH et al. (2018) miRTarBase update 2018: A resource for experimentally validated microRNA-target interactions. Nucleic Acids Res 46:D296-D302.

Gao J, Gao L, Li R, Lai Z, Zhang Z and Fan X (2019) Integrated analysis of microRNA-mRNA expression in A549 cells infected with influenza A viruses (IAVs) from different host species. Virus Res 265:9-14.

Hou H, Wang JZ, Liu BG and Zhang T (2015) PiN1 inhibits the human immunodeficiency virus type-1 (HIV-1): Must we stop it? Gene 565:9-14.

Huang HY, Lin YC, Li J, Huang KY, Shrestha S, Hong HC, Tang Y, Chen YG, Jin CN, Yu Y et al. (2020) miRTarBase 2020: Updates to the experimentally validated microRNA-target interaction database. Nucleic Acids Res 48:D148-D154.

Klinge CM (2015) Estrogen action: Receptors, transcripts, cell signaling, and non-coding RNAs in normal physiology and disease. Mol Cell Endocrinol 418:191-192.

Lee KH, Lin FC, Hsu TL, Lin JT, Guo JH, Tsai CH, Lee YC, Lee YC, Chen CL, Hsiaio M et al. (2014) MicroRNA-296-5p (miR-296-5p) functions as a tumor suppressor in prostate cancer by directly targeting Pin1. Biochim Biophys Acta 1843:2055-2066.

Leong KW, Cheng CW, Wong CM, Ng IO, Kwong YL and Tse E (2017) miR-874-3p is down-regulated in hepatocellular carcinoma and negatively regulates PIN1 expression. Oncotarget 8:11343-11355.

Liao Q, Wang J, Pei Z, Xu J and Zhang X (2017) Identification of miRNA-mRNA crosstalk in CD4(+) T cells during HIV-1 infection by integrating transcriptome analyses. J Transl Med 15:41.