Modelling of high-speed railway traction power supply systems based on subspace identification

D Y Wu¹, L Ma¹ and S K Cheng¹
¹School of Electrical Engineering, Southwest Jiaotong University, Chengdu, 611756, China
malei@swjtu.edu.cn

Abstract. In this paper, reduced mathematical models for high-speed railway traction power systems based on subspace identification method (SIM) are proposed. SIM applies reliable algebra tools to estimate state variables, and then provides an analytic representation for the identified systems, especially those of large dimension. Accuracy for identification results of different orders is discussed, under both normal operation and fault cases. With appropriate accuracy-simplicity trade-off, a uniform order decision is deduced. Reduced models derived from identification could be used for further studies of network-side impact on train-network coupling problems.

1. Introduction
Thanks to the remarkable improvement of power electronic technology, high-speed trains with AC-DC-AC power drive system have become prevailing in rail transit arena, which largely promotes railway transportation capacity. Meanwhile, many train-network coupling problems have emerged, endangering the safety of railway operation. Typical phenomena include low-frequency oscillation (LFO), harmonic resonance and harmonic instability.¹ Many scholars attribute these problems to AC-DC rectifiers in high-speed trains and focus coupling problem analysis on them. Traction network, a large distributed-parameter system with multiple lines in parallel, is usually simplified as a single invariant resistance.²⁻³ However, the simplification does not consider the different states on the network side. A state-space model of traction power supply system based upon system topology has been proposed, but high-order structures add to computational and analytical complexity.⁴ This paper analyses the limitation of two mechanism-based traction network models. Considering the advantage of system identification, reduced mathematical models of traction network are constructed by subspace identification method (SIM). A uniform order decision for identification under normal operation and fault cases is reached. With variation of network models seen as uncertainty to trains, robustness of corresponding control designs for rectifiers can be improved.

2. Mechanism-based models of traction network
The all-parallel autotransformer-fed traction power supply system is a symmetrical linear multi-port network, shown in figure 1. It contains up to 14 lines: up track and down track messenger wires, contact wires, feeders, steel rails, protection wires and earth wires. Some of these conductors are parallel-connected continuously, thus electrically equivalent to one conductor line.¹⁻³ Commonly used patterns include 6-conductor, 8-conductor and 10-conductor models.
Two approaches for the traction network modelling have been widely used: simulation model and state-space model based on topology. Both of them derive from electrical connections and structures of traction power supply systems.

2.1 Simulation model

The simulation model represents distributed-parameter characteristics of traction network by dividing long wires into small segments. For each segment, a π-equivalent circuit is obtained from phase-modal conversion. Thus the entire traction network is equal to a repetitive combination of π-equivalent circuits with impedance and admittance matrices, shown in figure 2.

The simulation model can show the transient responses and different states of train-network system. It can’t be used for further intrinsic mechanism analysis as simulation components are packaged.

2.2 State-space model

[4] introduces a state-space model of the traction power supply system based on topology. Multiple lines of traction network are split into small segments, and impedances and mutual inductances of segments are seen respectively as series components and parallel elements joint at slicing points. Hence lines of traction network are split into small segments, and impedances and mutual inductances of equivalent circuits with impedance and admittance matrices, shown in figure 2.

The state-space model based on topology. Both of them derive from electrical connections and structures of traction power supply systems.

Acknowledgments

This work was supported by the National Basic Research Program of China (2014CB046803) and the National Natural Science Foundation of China (61473019). References

The typical 8-conductor network combines the earth wires and protection wires as the synthetized protection wires (PW1, PW2)

The simulation model of the traction network is equal to a chain circuit, with equivalent circuits of segments packaged as subsystems.
topology of the traction network changes, with new sections created. New state-space models, reproduced by adjusting its corresponding equation in system matrices and state variables, are usually of different orders.

![Modularized diagram of traction network system](image.png)

Figure 3. Modularized diagram of traction network system

3. **Identification method**

3.1 Identification modelling

In practical application, some analytic models based on systems’ physical laws seem too complicated, especially when studies focus on system’s external features. In train-network coupling system, we mainly concern about the electrical variables at the joint point of train and network, so other state variables can actually be omitted.

Consequently, identification is applied to give a close description of complicated systems. With certain experiments, the system model can be conducted from collected input-output data and predefined hypotheses (like user-specified parametrization). For given inputs, the identification result is supposed to provide outputs very close to collected data from original system. The uncertainty from accuracy impairment compared to mechanism-based mathematical models is allowed as long as the robustness of the overall system is ensured. In cases of controller designs for complex systems, system identification proves particularly meaningful because it simplifies the control object to a large extend.

3.2 Subspace identification method (SIM)

SIM incorporates system theory, linear algebra and statistics. It estimates states from input-output data using linear algebra tools (QR factorization and SVD). Once these states are known, identification becomes a linear least square problem and system matrices are easily determined. SIM provides a low-order model directly from input-output data, without having to compute the high-order model, which is useful for multivariable systems of large dimension in industry. Besides, procedures of SIM are simple, and include no iterative optimization, hence, no convergence issue. The only user-specified parameter is the order of the model, which can be determined by SVD.

4. **Subspace identification method**

4.1 Notation

4.1.1 System related Matrices. The extended observability matrix Γ_i and extended controllability matrix Δ_i^d are used to determine the system matrices, and are respectively defined as:

$$\Gamma_i = \left(\begin{array}{cccc} C & CA & CA^2 & \cdots & CA^{i-1} \end{array} \right)^T \in \mathbb{R}^{l_{obs}}$$

$$\Delta_i^d = \left(\begin{array}{cccc} A^{i-1}B & A^{i-2}B & \cdots & AB \end{array} \right) \in \mathbb{R}^{l_{ctrl}}$$

The lower block triangular Toeplitz matrix H_i^d from the iteration of state equations, is defined as:
4.1.2 Block Hankel Matrices

The input block Hankel matrix is constructed by past inputs U_p and future inputs U_f. i is user-defined and should be at least larger than the maximum order of the system to be identified. j is typically equal to $s - 2i + 1$ for given data of length s. The output block Hankel matrix $Y_{0j-1} = \begin{bmatrix} Y_p | Y_f \end{bmatrix}^T$ is obtained from outputs similarly.

\[
\begin{bmatrix}
 u_0 & u_1 & \cdots & u_{j-1} \\
 u_1 & u_2 & \cdots & u_j \\
 \vdots & \vdots & \ddots & \vdots \\
 u_{i-1} & u_i & \cdots & u_{i+j-2} \\
 u_i & u_{i+1} & \cdots & u_{i+j-1} \\
 \vdots & \vdots & \ddots & \vdots \\
 u_{2i-1} & u_{2i} & \cdots & u_{2j-1}
\end{bmatrix}
\]

\[
U_{0j-1} = \begin{bmatrix} U_{0j-1} \\ U_{0(2j-1)} \end{bmatrix}
\]

\[
U_{fj} = \begin{bmatrix} U_f \\ U_{f(2j-1)} \end{bmatrix}
\]

\[
Y_{0j-1} = \Gamma_j X_0 + H_j U_{0j-1}
\]

\[
Y_{0(2j-1)} = \Gamma_j X_0 + H_j U_{0(2j-1)}
\]

\[
\Gamma_j X_0 + H_j U_{0j-1} = A X_0 + \Delta U_{0j-1} = A (-\Gamma_j H_j U_{0j-1} + \Gamma_j Y_{0j-1}) + \Delta U_{0j-1} = \begin{bmatrix} \Delta X \end{bmatrix} + \begin{bmatrix} A \end{bmatrix} \begin{bmatrix} \Gamma_j \end{bmatrix} + \begin{bmatrix} \Delta U \end{bmatrix}
\]

\[
\begin{bmatrix} U_{0j-1} \\ U_{0j} \end{bmatrix} = L_p W_p
\]

\[
O_j = Y_j / U_j W_p = (Y_{0j-1} / U_{0j-1})(W_p / U_p) = \Gamma_j L_p W_p = \Gamma_j W_j
\]

\[
O_j = U S V^T = [U_1 \quad U_2] \begin{bmatrix} \Sigma_1 & 0 \\ 0 & \Sigma_2 \end{bmatrix} V^T = U_1 \Sigma_1 V_1^T
\]

\[
X_j = \Gamma_j \cdot O_j = \Gamma_j \cdot Y_j / U_{0j-1} W_p
\]

\[
\begin{bmatrix} X_{j+1} \\ Y_{0j} \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} X_j \\ U_{0j} \end{bmatrix}
\]

\[
H_j^i \in \mathbb{R}^{i\times j}
\]
5. Identification of traction network

5.1. Design of experiment
A 10-conductor traction network structure of 30km is built on MATLAB/Simulink as the real system to identify. Segments of every 5km are represented by equivalent π-circuits. Input signals are the same for all experiments and is zero-mean Gaussian white noise sequence with variance of 1. Because studies for the traction power supply system generally consider up to the 50th harmonics of 2500 Hz, we choose 0.00004s as sampling period. The length of collected data is 10000.

5.2. Identification results
As there are families of models depending on order decision, we adopt a commonly used performance indicator, mean related variance (MVAF), defined as

\[
MVAF(\%) = \frac{1}{l} \sum_{j=1}^{l} \left(1 - \frac{\text{var}(y - \hat{y})}{\text{var}(y)} \right)
\]

where \(y\) is the real output and \(\hat{y}\) is the output estimated by the obtained model.

5.2.1 Normal operation. First we suppose the train is on the up track, 30 km from the substation and introduce the Gaussian signals at the primary-side of substation as inputs. Considering the singular value spectrum from SVD of oblique projection in figure 4, high orders represented by very small eigenvalues tend to have minor influence on the response of system, therefore, can be ignored with acceptable accuracy level. Thus we assume that a reduced model of 4-order, or even 2-order can reflect majority of the system’s response to given inputs.

![Figure 4](image)

Figure 4. Obvious large gaps appear between the second and the third singular values, but from the fourth, all the rest singular value spectrum decreases more continuously. So a 4-order or 2-order model may well contain the majority of system’s characteristics.

With the order of system chosen as 2, the identification result of system matrices is

\[
A = \begin{bmatrix} 0.9216 & 0.3884 \\ -0.3802 & 0.9218 \end{bmatrix}, \quad B = \begin{bmatrix} -0.0145 \\ -0.0078 \end{bmatrix}, \quad C = \begin{bmatrix} -2.3957 & 1.9604 \end{bmatrix}, \quad D = 8.7228 \times 10^{-4}
\] (14)

With the order of system chosen as 4, the identification result of system matrices is

\[
A = \begin{bmatrix} 0.9216 & 0.3884 & 0.0074 & -0.0032 \\ -0.3802 & 0.9218 & -0.0043 & -9.1749 \times 10^4 \\ -0.0010 & -0.0017 & -0.0902 & 0.9953 \\ 0.0015 & 6.3553 \times 10^4 & -0.9922 & -0.0879 \end{bmatrix}, \quad B = \begin{bmatrix} -0.0145 & -0.0078 & -0.0057 & 0.0022 \end{bmatrix}^T, \quad C = \begin{bmatrix} -2.3957 & 1.9604 & 1.1139 & -0.2144 \end{bmatrix}, \quad D = 0.0010
\] (15)

Figure 5 shows that outputs from the 2-order and 4-order identified systems correspond well to those of simulation model. 4-order model restores the intensive, slight variance more accurately compared to 2-order model as it captures more system’s information. With the same inputs, MVAF of 2-order model is 97.8057%. Likewise for other higher orders, the accuracy is higher than 99% and increases very slightly with orders, as shown in table 1. In the frequency domain, we mainly focus on the
characteristics between 1Hz and 2500 Hz, in which train-network coupling problems appear. Figure 6 shows that 2-order and 4-order models can replicate the behaviour of real system to a large extent.

Table 1. Accuracy of identification results of different orders.

Order	MVAF(%)
2-order	97.8057
3-order	97.8238
4-order	99.4169
5-order	99.4097
6-order	99.6090
7-order	99.6808
8-order	99.9550
9-order	99.9549
10-order	99.9330

We then set the sinusoid voltage for real-life operating system as inputs. The two identification models can both give very close sinusoidal voltages at train’s position compared to the original system. For peak values in figure 7, the bias is 1.84% for the 2-order system, and 0.26% for the 4-order system. We consider the small deviation negligible for depicting the performance of traction network in operation.

Since the high-speed train could be running at different places, the same experiments are conducted at different locations along the traction network with wire voltages at train’s location as outputs. MVAF of up track and down track identification results are listed in table 2 and table 3. 4-order can guarantee MVAF higher than 99%, so considering the need of simplicity in mechanism analysis, we assume 4-order as a uniform choice for the reduced model of traction network in normal operation.

Table 2. MVAF(%) with train at different distances from substation on up track.

Distance	2-order	4-order
0km	94.0741	99.3608
5km	94.5991	99.5146
10km	97.3786	99.4546
15km	99.4645	99.7636
20km	99.3250	99.0910
25km	98.3506	99.0820
30km	97.8043	99.4194

Table 3. MVAF(%) with train at different distances from substation on down track.
5.2.2 Fault Cases. Once wire malfunction occurs on up track, including faults like T-R short circuit, F-R short circuit and T-F shunt circuit or any wire break, protective breakers will be consecutively activated to cut off all the wires on up track. Wires in down track can still work with half structure.\[9\] If any AT falls into faulty state, similarly, breakers will cut off its connection with feeder, traction line and rail. The action would not interfere with the rest of traction network. Considering the symmetry of traction network, we assume network models with different numbers of faulty AT. AT1 and AT2 are on up track, respectively at 15 km and 30 km. AT3 and AT4 are on the down track, respectively at 15 km and 30 km. We construct new reduced mathematical models after protection actions. Table 4 shows that 4-order identification results all maintain high accuracy to reflect the performances of real systems in different fault cases.

Table 4. MVAF(\%) of identification results under different fault cases.

AT	AT1, AT3	AT2, AT4	AT1, AT2, AT3, AT4	Wire Faults
2-order	97.2415	96.8815	97.4644	96.6052
4-order	99.6704	99.7713	99.4829	99.0705

With both 4-order mathematical models in normal and fault cases, the variation of network states can be seen as parameter changes of 4-order system matrices. Such unification can be applied to detect the fluctuation range of traction network, and to study its influence on coupling mechanism.

6. Conclusion
In order to solve limitation of the existing modelling methods of traction network in mechanism analysis, this paper applied subspace identification to construct reduced mathematical models. Experiments showed that with acceptable accuracy, a uniform order decision was applicable for the identification of large-scale traction network. The variation of network states, including location variation and faults, could be seen as the parameter deviation of 4-order system matrices without changing orders, which largely facilitates further analyses. (1) Once the low-order mathematical models are obtained, they can be used to predict or analyze the dynamic performance for given certain abnormal inputs, such like perturbation of primary side of traction substation. (2) The simple model of traction network can be combined with the train’s model to conduct more compatible coupling stability criteria under multiple operation states of traction network. (3) In accordance with the idea of robust control, the variances of system matrices for these 4-order models can be concluded as uncertainty of a nominal model. This structure would improve the robustness of corresponding control designs, especially when dealing with fault cases.

7. References
[1] Hu H, Tao H, Wang X, Blaabjerg F, He Z and Gao S 2018 IEEE Trans. on Power Electro. 33 4627-42
[2] Wang H, Wu M and Sun J 2015, IEEE Trans. on Power Electron. 30 5318-5330
[3] Liao Y, Liu Z, Zhang H, and Wen B 2018 IEEE Trans. on Ind. Appli. 54 4999-5011
[4] Lü X and Wang X 2017 Proc. of the CSEE 3 217-229
[5] Song W, Feng X, Ge X, and Cui H 2016 IET Electrical Systems in Transportation 6 88-95
[6] Van Overschee P and De Moor B 1996 Subspace Identification for Linear Systems (US: Springer)
[7] Katayama T 2005 Subspace Method for System Identification (US: Springer)
[8] Zhang G, Liu Z, Yao S, Liao Y and Xiang C 2016 IEEE Trans. on Transpor. Elec. 2 244-255
[9] Tan X 2015 *Protective Relay of Electrical and Traction Power Supply Systems for High-speed Railways* (Chengdu: Southwest Jiaotong University Press)

Acknowledgments

This work was supported by the NSFC (No.61733015). A deep gratitude for our colleagues from Institute of Systems Science and Technology at Southwest Jiaotong University who provided insight and expertise that greatly assisted the research.