New Limit on Axion-Dark-Matter using Cold Neutrons

Ivo Schultess,1,‡ Estelle Chanel,1 Anastasio Fratangelo,1 Alexander Gottstein,1 Andreas Gsponer,1 Zachary Hodge,1 Ciro Pistillo,1 Dieter Rries,1 Torsten Soldner,2 Jacob Thorne,1 and Florian M. Piegsa†,§

1Laboratory for High Energy Physics and Albert Einstein Center for Fundamental Physics, University of Bern, 3012 Bern, Switzerland
2Institut Laue-Langevin, CS 20156, 38042 Grenoble Cedex 9, France
(Dated: April 5, 2022)

We report on a search for axion-like dark matter using a Ramsey-type apparatus for cold neutrons. A hypothetical axion-gluon-coupling would manifest in a neutron electric dipole moment signal oscillating in time. Twenty-four hours of data have been analyzed in a frequency range from 23 μHz to 1 kHz, and no significant oscillating signal has been found. The usage of present axion and dark-matter models allowed excluding the coupling of axions to gluons in the mass range from 1.5 × 10−20 to 6.6 × 10−13 eV with a best sensitivity of \(C_G/f_a m_a = (3.1 ± 0.2) \times 10^{12} \text{ GeV}^{-2} \) (95% C.L.).

Dark matter makes up roughly 27% of our universe’s total energy content. So far, no dark-matter model has been experimentally verified, but one promising candidate remains the so-called axion. It was initially suggested to solve the strong CP problem of quantum chromodynamics (QCD) [2–5]. The solution is an additional U(1) symmetry to the Standard Model of particle physics. The spontaneous and explicit breaking of this symmetry results in a massive but ultra-light spin-0 particle, the axion. Since this pseudo-scalar particle must satisfy the Klein-Gordon equation, it results in an oscillating field that could explain the dark-matter content in our universe. Most experiments, such as CAST, IAXO, or ADMX search for the axion via its coupling to photons [6–7]. Various models suggest interactions with other particles such as standard model fermions (DFSZ models [8–9]) or a new exotic heavy quark (KSVZ models [10–11]). The coupling of axions to gluons via its effective potential is a common feature in all axion models [12]. One possible consequence of the latter coupling is that an oscillating axion field can induce an equally oscillating electric dipole moment (EDM) of the neutron [13].

\[
d_n(t) \approx +2.4 \times 10^{-16} \frac{C_G}{f_a} a_0 \cos(m_a t) \ e \cdot \text{cm} , \quad (1)
\]

where \(C_G \) is a model-dependent dimensionless parameter, \(f_a \) the axion decay constant, \(a_0 \) the axion oscillation amplitude, \(m_a \) the axion mass, and \(e \) the elementary charge. The parameter space of the axion-gluon-coupling is defined by the mass of the axion \(m_a \) and the coupling strength \(C_G/f_a \). It is restricted by various astrophysical and cosmological constraints, as well as scrutinized in three recent laboratory searches. The CASPEr experiment is dedicated to searching for an axion-gluon-coupling using nuclear magnetic resonance techniques. The collaboration recently published an upper limit in a narrow frequency band around 39 MHz [14]. Two other experiments search for a permanent EDM of the electron, using trapped molecular ions, and the neutron, using ultra-cold neutrons in a storage experiment. Both experiments analyzed their data for oscillating signals. However, no significant signal from the nHz-regime up to 0.4 Hz was found [15–16]. Here, we present the results of a complementary neutron EDM experiment, named Beam EDM [17–18]. It employs a continuous cold neutron beam with intrinsic sub-ms time resolution. Thus, the accessible frequency range is extended to 1 kHz. This allowed to probe for axion masses more than three orders of magnitude heavier than tested by previous laboratory experiments. Since no significant signal was found, a new constraint on the possible existence of such ultra-light axions has been deduced.

We use Ramsey’s method of separated oscillatory fields applied to neutrons to search for an axion-dark-matter signal [19–20]. In this technique, neutrons act as a spin clock at their Larmor precession frequency which allows to precisely detect magnetic or pseudo-magnetic field changes. In our experiment, the measured quantity is the phase of the a neutron spin acquires due to its magnetic field changes \(\Delta B(t) \) and an electric field \(E \)

\[
\varphi = \int_0^{T_{\text{int}}} \left(\gamma_n \Delta B(t) + \frac{2d_n(t)}{\hbar} E \right) \, dt \quad (2)
\]

where \(\gamma_n \) is the gyromagnetic ratio of the neutron, \(d_n(t) \) its electric dipole moment, \(\hbar \) the reduced Planck constant, and \(T_{\text{int}} \) the interaction time which depends on the neutron velocity. Figure 1 shows a schematic of the experimental setup installed at the fundamental physics beamline PF1b at the Institut Laue-Langevin in Grenoble, France [21]. A beam of polarized cold neutrons with a Maxwell-Boltzmann-like velocity distribution, peaking at about 1000 m/s, enters a constant and homogeneous vertical magnetic field \(B_0 = 220 \mu \text{T} \). The field is adjusted and stabilized to the sub-nT level using fluxgate field sensors and a 3D coil system. A two-layer passive magnetic mu-metal shield surrounds the experimental setup. Two radiofrequency (RF) spin-flip coils, one before and one
Figure 1. (Color online) Schematic of the experimental setup where a polarized neutron beam enters from the left. It shows the mu-metal shield around the interaction region and the two RF spin-flip coils for the $\pi/2$-flip in green. The electrodes and the electric field direction are shown in red and the magnetic field direction is indicated in blue. The spin analyzer (purple) reflects one spin state and transmits the other. The neutrons are detected using a 2D pixel detector with a sensitive area of $10 \times 10 \text{ cm}^2$. The vacuum beam pipe surrounding the electrodes is not shown for clarity.

after the interaction region, induce resonant $\pi/2$-flips of the neutron spin. The interaction region with a length of 3 m is inside a vacuum beam pipe between the spin-flip coils. It consists of three sets of one-meter-long electrode stacks with a high-voltage electrode in the center and two ground electrodes on top and bottom. The electrode separation is 1 cm. This setup allows for two partial neutron beams passing between the electrodes, simultaneously sensing the electric field direction parallel and anti-parallel to the magnetic field. This double beam arrangement provides the possibility to compensate for global field drifts and common-mode noise. Downstream of the setup, a neutron spin analyzer spatially separates the two spin states of each partial beam before they are registered in a 2D neutron pixel detector [22]. The neutron rate integrated over the entire sensitive area of the detector was approximately 10 MHz. The statistical count error of the detector was calibrated. It was found that the Poisson error is overestimating the measured standard deviation by approximately 10% for the given neutron rate and settings of data acquisition due to event pile-up. The potential of the high-voltage electrode was set to $\pm 35 \text{ kV}$, and the resulting electric field was directly measured with neutrons using the relativistic $\vec{v} \times \vec{E}$-effect [23]. The measured electric field amplitude agrees with the nominal value within 4%. The reason for the small deviation is the slight vertical displacement of the central high-voltage electrode due to gravity. With this apparatus, the oscillating neutron EDM caused by a hypothetical axion field would manifest in an oscillation of the population in each spin state. This would lead to a corresponding oscillation of the neutron asymmetry for each partial beam, defined as

$$A = \frac{N_\uparrow - N_\downarrow}{N_\uparrow + N_\downarrow},$$

(3)

where N_\uparrow and N_\downarrow are the neutron counts in the spin up and down state, respectively. To be most sensitive to changes in the asymmetry, the frequency and relative phase of the RF spin-flip signals are adjusted such that $A \approx 0$, i.e., $N_\uparrow \approx N_\downarrow$. This corresponds to the point of steepest slope in a Ramsey resonance pattern.

To connect the signal amplitude of the neutron asymmetry of Eq. (3) to the axion-gluon-coupling in Eq. (1), multiple calibration measurements were conducted. In these measurements, we created artificial axion signals by applying homogeneous sinusoidally oscillating magnetic fields of various frequencies and amplitudes B_a parallel to B_0 over the entire interaction region using an additional rectangular Helmholtz-type coil. Note, such a field can be interpreted as a corresponding false EDM signal using Eq. (2)

$$d_n = \frac{\hbar \gamma_n B_a}{2E}.$$

(4)

First, we conducted an offline calibration measurement where we correlated the magnetic field amplitude B_a to the applied oscillating electric current in the auxiliary coil. The field was determined at 47 positions over a distance of 5.3 m along the neutron beam path with five fluxgates mounted in a cross-shaped arrangement on a magnetic field mapper. The magnetic field was measured with a sampling rate of 10 kHz for two seconds at each position and a sinusoidal function was fitted to the data. The amplitude was averaged over the interaction region and all five fluxgates. The calibration parameter was measured to $S_B = (12.13 \pm 0.02) \mu \text{T A}^{-1}$.

A second calibration measurement was performed with neutrons to correlate the amplitude of the oscillating neutron asymmetry in Eq. (3) to the same coil currents applied in the first calibration measurement. Here, we acquired the neutron asymmetry for 60 seconds at a sampling rate of 4 kHz and performed again a sinusoidal fit to the data. This resulted in a value of...
We performed several continuous measurements of the neutron EDM for the dedicated axion search with various duration and high-voltage settings. The presented analysis uses a total of 24 hours of data, taken with a sampling rate of 4 kHz, i.e., we obtained a value for the neutron asymmetry and, hence, the neutron EDM every 0.25 ms. The potential of the central high-voltage electrode was set to +35 kV. The data was taken on September 13/14, 2020 and is publicly available [25]. A 5 second-long snippet of the recorded data is presented in Fig. [3]. The entire data is split into two halves of 12 hours each. The first half acts as the analysis set and the second as the control set. We performed the spectral analysis on the neutron data using an adapted version of the generalized Lomb-Scargle algorithm [26–29]. This algorithm was chosen because it can handle non-uniform or gaped data, is based on the fast Fourier transform with a calculation time scaling of $O(n \log n)$, and returns the amplitude of the best-fit sinusoidal signal and its uncertainty. The basic concept of the algorithm is to perform a χ^2 minimization of the fit function $f(t) = a \sin(\omega t) + b \cos(\omega t) + c$, where a, b, and c are the parameters to be minimized for each frequency ω. Instead of minimizing directly, the problem is solved analytically for the three parameters. The resulting sums are Fourier series that can be calculated using fast algorithms. The signal amplitude $\sqrt{a^2 + b^2}$ is Rayleigh distributed assuming only white noise. An oscillating signal is considered significant if it appears in the spectral analysis of both data sets, at least on the 5-sigma level.

We subtracted the signals of both neutron beams, i.e., opposite electric field directions, from each other. Figure 3b shows how this eliminates the eminent 50 Hz signal coming from electronic noise. The peak is visible in the spectra of both beams separately but not in the spectrum of their difference signal. The overall spectrum shows three groups of significant signals of different origins that are not axions. The first group appears for frequencies below 10 mHz. They can be explained by long-term magnetic gradient field drifts due to temperature changes. They happen on the time scale of hours and result in a rise in signal amplitude. The second group is located in the frequency range between 10 mHz and 2 Hz. They are caused by the data structure itself and a sub-range is presented in Fig. 3c. Our sequence of data taking is divided into runs of 62.5 s duration. Each run consists of 57.5 s of measurement time and 5 s of downtime to save the data. This time structure leads to peaks at the inverse run time of 16 mHz and higher orders. Additionally, the 5 s gap leads to an envelop hump structure with a period of 200 mHz. For frequencies higher than 2 Hz, these peaks are too small to be detected. The third group of significant signals has a statistical origin. Since the amplitudes of the signal follow a Rayleigh distribution, the pull/significance is also distributed accordingly. We found $113 \pm 11_{\text{stat}} \pm 9_{\text{sys}}$ and $132 \pm 11_{\text{stat}} \pm 13_{\text{sys}}$ events.

Figure 2. (Color online) Calibration factor of Eq. (5) as a function of frequency. The measured data is shown as dots, whereas the red dashed line is a least-squares fit of a Butterworth-filter function [24]. For instance, typical neutron asymmetry signals of the order 10^{-5} result in a corresponding pseudo-magnetic field of 10 pT for frequencies smaller than 5 Hz.

\[S_A = (11.5 \pm 0.5) \text{ A}^{-1} \] for frequencies below 5 Hz. Together, the two calibration measurements are used to translate the amplitude of an oscillating neutron asymmetry into a corresponding (pseudo-)magnetic field amplitude via

\[B_A = \frac{4.2 S_B}{3 S_A} A. \quad (5) \]

The factor of 4.2/3 comes from the fact that the magnetic and electric interaction length are different as shown in Fig. [1].

The resulting calibration curve as a function of frequency is presented in Fig. 2. The value is constant for low frequencies up to approximately 5 Hz. The primary reason for its subsequent rise is the frequency-dependent RF shielding of the aluminum parts of the setup, i.e., the construction frame, vacuum beam pipe, and electrodes. Another reason is an effect that depends on the neutron velocity: as shown in Eq. (2), the acquired neutron spin phase has to be integrated over the interaction time. In the case of an oscillating field, this integral becomes zero if the period of the oscillation matches the interaction time. This effect is suppressed for a beam with a broad velocity distribution but results in a decrease in sensitivity at higher frequencies. Calculations, simulations, and further test measurements that are not included in this paper for brevity suggest that the actual decrease in sensitivity would be smaller for real axions. Additionally, the RF shielding of the aluminum does not exist in the case of a real axion. However, since the effects cannot be simply decorrelated, we use the presented curve. This results in a conservative upper limit at high frequencies if no axion was found.
above the 5-sigma threshold in the analysis and the control data set, respectively. The systematic error originates from the uncertainty of the detector count-error calibration. These values are slightly below the 162 statistically expected events for a data set with 43.6 million analyzed frequencies. With the use of Eq. (5), the neutron asymmetry amplitude shown in Fig. 3(b) and Fig. 3(c) can be translated into the pseudo-magnetic field amplitude. The full spectrum with a reduced spectral resolution is shown in Fig. 3(d). The most sensitive region of a few pT is in the central flat region.

Besides having a significant amplitude over the background noise level, an actual oscillating axion signal must disappear if no electric field is applied. This way, noise signals or signals from external sources can be further excluded. For this, we performed an additional measurement with no electric field applied. Moreover, the amplitude of a real signal must be identical for both electric field directions but must exhibit a phase-shift of π. Overall, no significant axion signal was found at the same frequency in both partial data sets. Thus, an upper limit on the axion-gluon coupling strength can be derived. Using Eq. (1) and (4) as well as the calibration shown in Fig. 2, the coupling can be calculated with

$$\frac{C_G}{f_a} = \frac{\gamma_n \hbar B_a}{a_0 E \times 4.8 \times 10^{-16} e \cdot \text{cm}}. \tag{6}$$

The axion oscillation amplitude relates to the local dark-matter density via $a_0 = \sqrt{2 \rho_{DM}/m_a}$, assuming all dark matter consists of axions. Recently, Foster et al. published the possible effects of the dark-matter substructure to the upper limits set by axion experiments [30]. Depending on the ratio of the measurement time over the coherence time of the dark-matter field T/τ_c, the line shape of the field could change. The coherence time of the dark-matter field is 10^6 periods of the oscillating signal [31] and our measurement time 12 hours. For $T \gg \tau_c$, the field is deterministic and the local dark-matter density averages to $\rho_{DM} = 0.2 - 0.7 \text{ GeV/cm}^3$ [32]. To be consistent with the measurement of the nEDM collaboration [15], we chose a value of $\rho_{DM} = 0.4 \text{ GeV/cm}^3$ [33]. On the other hand, if $T \ll \tau_c$, the field is stochastic and the ampli-
and frequency. The most stringent constraint of gluon-coupling as a function of the axion mass in agreement with the calculations of the CASPER collaboration [34].

In conclusion, we performed a dedicated axion measurement but did not find a significant oscillating signal. Nevertheless, with only 24 hours of data, we could exclude an axion-gluon-coupling in a mass region covering almost eight orders of magnitude. Together with the results of two other laboratory experiments, a broad range of axion-dark-matter could be excluded, and future EDM searches may extend this even further.

We gratefully acknowledge the excellent technical support by R. Hänni, J. Christen, L. Meier, and D. Berruyer. We thank O. Zimmer for lending us the 35 kV bipolar power supply, which was essential for data-taking. This work was supported via the European Research Council under the ERC Grant Agreement no. 715031 (BEAM-EDM) and via the Swiss National Science Foundation under grants no. PP00P2-163663 and 200021-181996.

![Figure 4](image)

Figure 4. (Color online) Limits on the axion-gluon-coupling are shown as a function of the axion mass/frequency. The shaded areas are exclusion regions from cosmology and astrophysical observations (blue: Galaxies [35], BBN [36, 37], SN1987A [38, 39] and laboratory experiments (orange: CASPER [14], nEDM [15], HHI [16]). The black outlines with the pink area mark the exclusion region of this publication (labeled Beam EDM). The solid and dotted lines correspond to the deterministic and stochastic dark-matter models, respectively. The green line shows the canonical QCD axion.

The upper limit at a given frequency is calculated by integrating the normalized distribution of the coupling C_G / f_a up to the confidence level of 95%. Hence, the upper integration constant corresponds to the upper limit of the axion-gluon-coupling. In the case of deterministic dark matter, the coupling follows a Rayleigh distribution. However, in the case of stochastic dark matter, the coupling corresponds to the ratio of two Rayleigh distributions. In this case, the distribution of the coupling has a much longer tail, resulting in a higher amplitude. Since our measurement time and frequency range cover both cases, we display both limits in the exclusion plot of Fig. 4. The upper limit at a given frequency is calculated by integrating the normalized distribution of the coupling C_G / f_a up to the confidence level of 95%.

We determined an overall correction factor of 3.2 ± 0.2 compared to the deterministic limit. This is in agreement with the calculations of the CASPer collaboration [34].

Figure 4 shows our exclusion region of the axion-gluon-coupling as a function of the axion mass and frequency. The most stringent constraint of $C_G / f_a m_a = (3.1 \pm 0.2) \times 10^{12}$ GeV$^{-2}$ for deterministic dark matter could be set in the frequency range between 5 mHz and 5 Hz. For frequencies below 5 mHz, the upper limit increases due to magnetic gradient field drifts. For frequencies above 5 Hz, the upper limit increases due to a decrease in sensitivity of the apparatus, as shown in Fig. 4. For reasons of legibility, we smoothed the limits in Fig. 4 with a Savitzky-Golay filter [10]. To provide context, the constraints on 95% C.L. from the other laboratory experiments are also presented. In addition, astrophysical and cosmological constraints arise from galaxy luminosity functions at high red-shifts, big bang nucleosynthesis (BBN) models, and the SN1978A cooling. The QCD-axion line shows the region where an axion would simultaneously solve the strong CP problem and explain all dark matter.

In conclusion, we performed a dedicated axion measurement but did not find a significant oscillating signal. Nevertheless, with only 24 hours of data, we could exclude an axion-gluon-coupling in a mass region covering almost eight orders of magnitude. Together with the results of two other laboratory experiments, a broad range of axion-dark-matter could be excluded, and future EDM searches may extend this even further.

We gratefully acknowledge the excellent technical support by R. Hänni, J. Christen, L. Meier, and D. Berruyer. We thank O. Zimmer for lending us the 35 kV bipolar power supply, which was essential for data-taking. This work was supported via the European Research Council under the ERC Grant Agreement no. 715031 (BEAM-EDM) and via the Swiss National Science Foundation under grants no. PP00P2-163663 and 200021-181996.

References

1. Planck Collaboration, Planck 2018 results: I. Overview and the cosmological legacy of Planck, Astronomy & Astrophysics 641, A1 (2020)

2. R. D. Peccei and H. R. Quinn, CP Conservation in the Presence of Pseudoparticles, Physical Review Letters 38, 1440–1443 (1977)

3. R. D. Peccei and H. R. Quinn, Constraints imposed by CP conservation in the presence of pseudoparticles, Physical Review D 16, 1791–1797 (1977)

4. S. Weinberg, A New Light Boson?, Physical Review Letters 40, 223–226 (1978)

5. F. Wilczek, Problem of Strong P and T Invariance in the Presence of Instantons, Physical Review Letters 40, 279–282 (1978)

6. T. Dafni and F. J. Iguaz on behalf of the CAST and IAXO collaboration, Axion helioscopes update: the status of CAST and IAXO, PoS TIPP2014, 130 (2015)

7. ADMX Collaboration, Extended Search for the Invisible Axion with the Axion Dark Matter Experiment, Physical Review Letters 124, 101303 (2020)

8. M. Dine, W. Fischer, and M. Srednicki, A simple solution
to the strong CP problem with a harmless axion, Physics Letters B 104, 199–202 (1981)
[9] A. P. Zhitnitskii, Possible suppression of axion-hadron interactions, Sov. J. Nucl. Phys. (Engl. Transl.); (United States) 31:2, 260–263 (1980)
[10] J. E. Kim, Weak-Interaction Singlet and Strong CP Invariance, Physical Review Letters 43, 103–107 (1979)
[11] M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Can confinement ensure natural CP invariance of strong interactions?, Nuclear Physics B 166, 493–506 (1980)
[12] G. G. Raffelt, Stars as Laboratories for Fundamental Physics (University of Chicago Press, 1996).
[13] M. Pospelov and A. Ritz, Theta vacua, QCD sum rules, and the neutron electric dipole moment, Nuclear Physics B 573, 177–200 (2000)
[14] D. Aybas, J. Adam, E. Blumenthal, A. V. Gramolin, D. Johnson, A. Kleyheeg, et al., Search for axion-like dark matter using solid-state nuclear magnetic resonance, Physical Review Letters 126, 141802 (2021).
[15] C. Abel, N. J. Ayres, G. Ban, G. Bodek, V. Bondar, et al., Search for axion-like dark matter through nuclear spin precession in electric and magnetic fields, Physical Review X 7, 041034 (2017).
[16] T. S. Roussy, D. A. Palken, W. B. Cairncross, B. M. Brubaker, D. N. Gresh, M. Grau, et al., Experimental Constraint on Axionlike Particles over Seven Orders of Magnitude in Mass, Physical Review Letters 126, 171301 (2021).
[17] F. M. Piegsa, New Concept for a Neutron Electric Dipole Moment Search using a Pulsed Beam, Physical Review C 88, 045502 (2013)
[18] E. Chanel, Z. Hodge, D. Ries, I. Schulthess, M. Solar, T. Soldner, O. Stalder, J. Thorne, and F. M. Piegsa, The pulsed neutron Beam EDM experiment, EPJ Web of Conferences 219, 02004 (2019).
[19] N. F. Ramsey, A New Molecular Beam Resonance Method, Physical Review 76, 996–996 (1949)
[20] N. F. Ramsey, A Molecular Beam Resonance Method with Separated Oscillating Fields, Physical Review 78, 695–699 (1950).
[21] H. Abele et al., Characterization of a ballistic supermirror neutron guide, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 562, 407–417 (2006).
[22] M. Klein and C. J. Schmidt, CASCADE, neutron detectors for highest count rates in combination with ASIC/FPGA based readout electronics, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 628, 9–18 (2011).
[23] W. B. Dress, P. D. Miller, J. M. Pendlebury, P. Perrin, and N. F. Ramsey, Search for an electric dipole moment of the neutron, Physical Review D 15, 9–21 (1977)
[24] S. Butterworth, On the Theory of Filter Amplifiers, Experimental Wireless and the Wireless Engineer 7, 536–541 (1930)
[25] F. M. Piegsa et al., New Neutron Electric Dipole Moment Search using a Pulsed Beam, Institut Laue-Langevin (ILL) doi:10.5291/ILL-DATA.3.07-393 (2020).
[26] N. R. Lomb, Least-squares frequency analysis of unequally spaced data, Astrophysics and Space Science 39, 447–462 (1976)
[27] M. Zechmeister and M. Kürster, The generalised Lomb-Scargle periodogram: A new formalism for the floating-mean and Keplerian periodograms, Astronomy & Astrophysics 496, 577–584 (2009)
[28] W. H. Press and C. B. Rybicki, Fast algorithm for spectral analysis of unevenly sampled data, The Astrophysical Journal 338, 277 (1989).
[29] J. T. VanderPlas, Understanding the Lomb-Scargle Periodogram, The Astrophysical Journal Supplement Series 236, 16 (2018).
[30] J. W. Foster, N. L. Rodd, and B. R. Safdi, Revealing the Dark Matter Halo with Axion Direct Detection, Physical Review D 97, 123006 (2018).
[31] G. P. Centers et al., Stochastic fluctuations of bosonic dark matter, Nature Communications 12, 7321 (2021).
[32] M. Weber and W. de Boer, Determination of the local dark matter density in our Galaxy, Astronomy & Astrophysics 509, A25 (2010).
[33] R. Catena and P. Ullio, A novel determination of the local dark matter density, Journal of Cosmology and Astroparticle Physics 2010 (08), 004–004.
[34] A. Garcon et al., Constraints on bosonic dark matter from ultralow-field nuclear magnetic resonance, Science Advances 5, eaax4539 (2019).
[35] P. S. Corasaniti, S. Agarwal, D. J. E. Marsh, and S. Das, Constraints on dark matter scenarios from measurements of the galaxy luminosity function at high redshifts, Physical Review D 95, 083512 (2017).
[36] K. Blum, R. T. D’Agnolo, M. Lisanti, and B. R. Safdi, Confinement, darkmatterusingsolid-statenuclearmagneticresonance, Physical Review D 737, 30–33 (2014).
[37] Y. V. Stadnik and V. V. Flambaum, Can Dark Matter Induce Cosmological Evolution of the Fundamental Constants of Nature?, Physical Review Letters 115, 201301 (2015).
[38] G. G. Raffelt, Astrophysical methods to constrain axions and other novel particle phenomena, Physics Reports 198, 1–113 (1990).
[39] P. W. Graham and S. Rajendran, New Observables for Direct Detection of Axion Dark Matter, Physical Review D 88, 035023 (2013).
[40] A. Savitzky and M. J. E. Golay, Smoothing and Differentiation of Data by Simplified Least Squares Procedures, Analytical Chemistry 36, 1627–1639 (1964).