Renal Data from Asia – Africa

A Comparison of Socioeconomic Level among Hemodialysis Patients and Normal Controls in the Fars Province, Iran

Leila Malekmakan¹, Maryam Pakfetrat², Arghavan Daneshian³, Mehrab Sayadi⁴

Departments of ¹Community Medicine and ²Internal Medicine, Shiraz Nephro-Urology Research Center, ³Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, ⁴Social Determinants of Health Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

ABSTRACT. Chronic kidney disease (CKD) is a public health problem and it is suggested that low socioeconomic status (SES) may increase the risk of renal failure. The aim of this study was to report and compare the SES of hemodialysis patients (HD) and normal population in Shiraz, Iran. In this cross-sectional study, we evaluated 519 HD patients and 900 normal controls. We asked about SES using a questionnaire. The participants were categorized into three groups according to their SES as low, medium, and high SES. Of the 1419 participants, 454 (31.7%), 581 (40.6%), and 395 (27.6%) were grouped in low, medium, and high SES, respectively. Most of our normal controls (43.5%) were in the medium SES group and most of the HD patients (61.3%) were in the low SES group. HD patients had a significantly lower SES score than the normal population (P <0.001). A pattern of decrease in the child number and increase in the marital age was seen associated with a rise in SES status among the two groups. In contrast with the control population, a pattern of increasing age was seen in the HD patients with a higher SES status (P = 0.038). In conclusion, SES was significantly lower in HD patients than the normal population. People with CKD and limited education or lower income should be targeted for early intervention.

Introduction

Chronic kidney disease (CKD) is a major public health problem leading to end-stage renal disease (ESRD), associated with a rapid increase in its global incidence and prevalence particularly in developing countries such as Iran.¹,²

Recently, a paradigm shift has occurred with an emphasis on the effect of socioeconomic status (SES) on the development of this disease.³ SES is often measured as a combination of education, income, and occupation. It is commonly conceptualized as the social standing or class of an individual or group. Furthermore, an examination of SES reveals inequities in the access to and distribution of
resources. The existence of health inequities provides unique opportunities for understanding health-care system factors that can lead to improved clinical outcomes.4,5 Socioeconomic disparities are associated with the prevalence of disability in the general population,6 one of which is ESRD.

Recent studies have reported an inverse relationship between the incidence of ESRD and some parameters of SES.7-9 Low SES may affect health through various mechanisms, including inadequate access to health services and such preventive medical care as screening and early detection of diseases.10-12 Poor and uninsured individuals are at increased risk for substandard and delayed care.13,14 Furthermore, low SES may result in inadequate control of major risk factors of CKD such as hypertension (HTN) and diabetes mellitus (DM).15-17

Risk factors associated with SES and kidney disease early in life include birth weight and infant mortality. Risk factors associated with individual SES later in life include DM, HTN, smoking, occupational and environmental exposures, and access to healthcare. SES may modify the effect of well-established risk factors on the development of kidney disease.3 Analysis in several countries suggests a higher incidence of renal disease in patients with low SES, defined differently in various studies.5,18,19

Hemodialysis (HD) is the most common modality of renal replacement therapy and it is state-sponsored in Iran. Unfortunately, no significant data concerning SES of HD patients are available, particularly in our center. Thus, the aim of this study was to compare and report the SES of HD patients and normal population in Shiraz, Fars Province, Iran.

Methods

This cross-sectional and population-based study was conducted in Shiraz Nephro-Urology Research Center in 2014. The study was approved by the ethics committees of Shiraz University of Medical Sciences. The inclusion criteria were age 18 years or older, giving informed consent to participate in the study, and for HD groups, being on HD treatment for at least three months.

In this study, we evaluated 519 ESRD patients who were referred to all HD centers attached to the Shiraz University of Medical Sciences, Shiraz, Iran between September 2013 and September 2014. Furthermore, 900 normal controls were randomly selected from two major health centers (Engelhab and Valfajr) in the city of Shiraz, Iran as a control group.

All participants filled out a questionnaire by face-to-face interviews including demographic data and history of medical conditions as age, sex, education (father, mother, and his/her own education), occupation (father, mother, and his/her own occupation), family income, residential place, marital status, chronic medical problem, time of renal failure, and the cause of renal failure.

SES was determined by these components; education (father, mother, and his/her own education), occupation (father, mother, and his/her own occupation), family income, home status (ownership or rental), and number of family member and children. Each component was assessed by a score of 1 to 7 points for generation of a total score with a minimum of 3 and maximum of 21 points. This score has been previously used in SES studies in Germany.18,20

Patients were classified into three groups according to their SES scores. Scores lower than eight were assumed as low SES group (Group-1), scores between 9 and 11 were named as medium SES group (Group-2), and scores higher than 12 were categorized as high SES group (Group-3).

Statistical Analysis

Data are presented as mean ± standard deviation for continuous variables or number and percentage for categorical variables; they were then analyzed using Chi-square, one-way ANOVA, and t-tests. For data analysis, we used Statistical Package for Social Sciences (SPSS) version 19.0 (SPSS Inc., Chicago, IL, USA) and $P < 0.05$ was considered statistically significant.
Results

Among the 1419 participants in this study, 635 cases (44.8%) were males and 784 (55.2%) were females. The mean age of the participants was 54.7 ± 21.5 years. According to the groups of SES, 454 (31.7%), 581 (40.6%), and 395 (27.6%) were categorized into Group-1 (SES score ≤8), Group-2 (SES score 9–11), and Group-3 (SES score ≥12), respectively.

The study population included 900 normal cases (63.4%) and 519 HD patients (36.6%). The demographic and socioeconomic characteristics of the studied population (normal and HD patients) are shown in Table 1. There was no significant difference between the two groups in age (P = 0.069) and marital age (P = 0.066). A significant difference was seen between the two groups according to sex, marital status and number of children (P <0.001, Table 1). Being a woman, divorced, and having children were higher among HD patients.

Data of 900 normal control population are shown in Table 2; most of them were in Group-2 SES. Age, sex, marital status, marital age, and also the number of children were significantly different in the three groups (P <0.05). For example, marital age in the highest SES group was higher than in other groups (P <0.001), and the number of children in the lowest SES group was more than the others (P <0.001).

Table 3 indicates the data of 519 patients on HD according to their SES groups. HD patients were categorized into three groups according to their SES score; most of the HD patients were in Group-1 indicating the lowest SES score. In contrast with the normal population, an increasing pattern of age was seen with a rise in the SES status (P = 0.038). In addition, a pattern of decreasing number of children and increase of marital age was seen with a rise in the SES status. A significant difference in the SES score was seen between the normal population and HD patients; the HD

Table 1. The characteristics of the total studied population among normal population and hemodialysis patient groups.

Variable	Normal population (n=900)	Hemodialysis patients (n=519)	P
Age (year), (Mean, SD)	53.67±20.19	55.83±21.70	0.069
Marital age (year), (Mean, SD)	22.68±4.33	23.38±8.38	0.066
Sex (Female/male), (n, %)	467 (51.90)	317 (61.10)	<0.001
Material status (n, %)			<0.001
Single	225 (25.00)	61 (11.50)	
Married	598 (66.40)	324 (61.20)	
Widow	46 (5.10)	144 (27.20)	
Divorce	31 (3.40)	0 (0.00)	
Number of children (Mean, SD)	2.33±1.30	5.39±2.79	<0.001
Socio economic score (Mean, SD)	10.78±2.35	7.27±2.20	<0.001

Table 2. Data of normal control group according to groups of socioeconomic status.

Socioeconomic status	≤8 (n=130)	9–11 (n=392)	≥12 (n=378)	P
Socio economic score (Mean, SD)	7.24±0.78 (3–8)	9.82±0.84	12.98±1.46 (12–21)	-
Age (year), (Mean, SD)	55.72±12.10	53.66±12.00	52.93±9.85	0.020
Marital age (year), (Mean, SD)	20.11±3.56	22.10±4.14	24.35±4.17	<0.001
Sex (Female/male), (n, %)	109 (83.80)	190 (48.50)	168 (44.40)	<0.001
Material status (n, %)	21 (16.20)	95 (24.20)	109 (28.80)	<0.001
Single	87 (66.80)	262 (66.80)	249 (65.90)	
Married	14 (10.80)	24 (6.10)	8 (2.10)	
Widow	8 (6.20)	11 (2.80)	12 (3.20)	
Divorce	2.60±1.43	2.44±1.38	2.07±1.08	<0.001
patients had significantly lower SES score than normal population ($P < 0.001$). The percentage of patients with higher SES (Group-3) was lower than the normal population ($P < 0.001$). This means that most of HD patients had a significantly lower SES ($P < 0.001$).

Discussion

CKD is a major public health problem in Iran; however, no significant data concerning socioeconomic characteristics of HD patients in comparison with normal population are available in Iran. In our study, SES was determined by education, occupation, monthly income, and the house status.

In this study, most of the normal controls were in the medium and most of the HD patients were in the lowest SES group. Previous studies have indicated that the incidence of ESRD is related inversely to SES.\(^7\)\(^9\) This finding can be associated with the influence of SES on the incidence of HTN and DM as the risk factors of ESRD.\(^17\)\(^21\)\(^27\) It has been reported that the prevalence of HTN is related inversely to such socioeconomic factors as income, educational level and availability of health insurance.\(^17\)\(^23\) Furthermore, DM is the most commonly attributed cause of ESRD,\(^26\) and the risk for diabetes is inversely associated with SES.\(^24\)\(^25\) Therefore, blood pressure and DM may be the important links between the SES and incidence of ESRD. Some groups have investigated the relationship between survival and SES in the ESRD population.\(^26\)\(^27\) In addition, Port et al\(^27\) showed that higher SES is associated with improved survival in ESRD patients.

These results could be due to the fact that patients with lower SES groups are often uninsured and have restricted access to health facilities.\(^4\)\(^29\) Furthermore, women may exhibit a lower SES score than men because of the likely lower income and more unemployment, an issue that makes independent analysis of gender difficult.

A relationship between ESRD and SES has been described in several preliminary reports. Rostand noted a strong and direct correlation between the number of patients with ESRD and the number of households with low income.\(^30\) In a case–control study, the risk of ESRD was inversely related to annual income and years of schooling.\(^31\) The income measurement was not described but it is important to realize that individual income may decrease because of renal failure.

One limitation of the present study is that the analysis is based on the current data. We believe that a major influence of SES change due to loss of work and/or inability to work after initiating dialysis is unlikely. In addition, changes in the SES status during lifetime could occur and this was not assessed in our study. Our data may have bias as these results could be due to the refusal of people to give honest information concerning household net income or allowance to save these data. In addition, in our study, we did not match basic characteristics such as age or sex but inclusion criteria as the age of 18 years or older was considered in our study.

Socioeconomic status	$<$8 ($n=318$)	9–11 ($n=184$)	\geq12 ($n=17$)	P
Socioeconomic score	5.75±1.18 (3-8)	9.47±0.72 (9-11)	12.14±0.67 (12-21)	-
Age (year)	54.70±21.15	58.20±21.15	62.94±18.80	0.038
Marital age(year)	21.86±8.40	25.61±8.02	26.05±5.82	<0.001
Age (year) at disease	49.68±20.23	53.41±18.16	56.11±16.70	0.067
Sex (Female/male)	153 (48.10)	152 (82.60)	12 (70.60)	<0.001
Material status				
Single	42 (13.00)	19 (10.10)	3 (0.00)	0.404
Married	196 (60.70)	115 (60.80)	13 (76.50)	
Widow	85 (26.30)	55 (29.10)	4 (33.50)	
Number of children	5.55±2.70	5.34±2.92	3.25±1.87	0.005
Conclusion

SES was significantly lower in HD patients than the normal population. In HD patients, a pattern of increasing age, marital age, and disease presentation and also decrease in the number of children was seen with a rise in the SES status. People with CKD and limited education or lower income should be targeted for early intervention to limit disability and further loss of income, both of which could worsen outcomes in CKD.

Acknowledgment

The authors would like to thank Center for Development of Clinical Research of Nemazee Hospital and Dr. Nasrin Shokrpour for editorial assistance and the Shiraz Nephro-Urology Research Center of Shiraz University of Medical for funding this study.

Conflict of interest: None declared.

References

1. Khajehdehi P, Malekmakan L, Pakfetrat M, Roozbeh J, Sayadi M. Prevalence of chronic kidney disease and its contributing risk factors in Southern Iran: A cross-sectional adult population-based study. Iran J Kidney Dis 2014;8:109-15.
2. Malekmakan L, Khajehdehi P, Pakfetrat M, Malekmakan A, Mahdaviazad H, Roozbeh J, et al. Prevalence of chronic kidney disease and its related risk factors in elderly of Southern Iran: A population-based study. ISRN Nephrol 2013;2013:427230.
3. Shoham DA, Vupputuri S, Kshirsagar AV. Chronic kidney disease and life course socioeconomic status: A review. Adv Chronic Kidney Dis 2005;12:56-63.
4. Norris K, Niessenson AR. Race, gender, and socioeconomic disparities in CKD in the United States. J Am Soc Nephrol 2008;19:1261-70.
5. Bruce MA, Beech BM, Crook ED, et al. Association of socioeconomic status and CKD among African Americans: The Jackson Heart Study. Am J Kidney Dis 2010;55:1001-8.
6. Plantinga LC, Johansen KL, Schillinger D, Powe NR. Lower socioeconomic status and disability among US adults with chronic kidney disease, 1999-2008. Prev Chronic Dis 2012;9:E12.
7. Byrne C, Nedelman J, Luke RG. Race, socioeconomic status, and the development of end-stage renal disease. Am J Kidney Dis 1994;23:16-22.
8. Young EW, Mauger EA, Jiang KH, Port FK, Wolfe RA. Socioeconomic status and end-stage renal disease in the United States. Kidney Int 1994;45:907-11.
9. Perne TV, Whelon PK, Klag MJ. Race and end-stage renal disease. Socioeconomic status and access to health care as mediating factors. Arch Intern Med 1995;155:1201-8.
10. Hayward RA, Shapiro MF, Freeman HE, Corey CR. Inequities in health services among insured Americans. Do working-age adults have less access to medical care than the elderly? N Engl J Med 1988;318:1507-12.
11. Blendon RJ, Aiken LH, Freeman HE, Corey CR. Access to medical care for black and white Americans. A matter of continuing concern. JAMA 1989;261:278-81.
12. Friedman EA. Diabetic nephropathy in the inner city. N Y State J Med 1991;91:203-7.
13. Burstin HR, Lipsitz SR, Brennan TA. Socioeconomic status and risk for substandard medical care. JAMA 1992;268:2383-7.
14. Weissman JS, Stern R, Fielding SL, Epstein AM. Delayed access to health care: Risk factors, reasons, and consequences. Ann Intern Med 1991;114:325-31.
15. Brook RH, Ware JE Jr, Rogers WH, et al. Does free care improve adults’ health? Results from a randomized controlled trial. N Engl J Med 1983;309:1426-34.
16. Lurie N, Ward NB, Shapiro MF, Brook RH. Termination from Medi-Cal – Does it affect health? N Engl J Med 1984;311:480-4.
17. Tyroler HA. Socioeconomic status in the epidemiology and treatment of hypertension. Hypertension 1989;13:194-7.
18. Wolf G, Busch M, Müller N, Müller UA. Association between socioeconomic status and renal function in a population of German patients with diabetic nephropathy treated at a tertiary centre. Nephrol Dial Transplant 2011;26:4017-23.
19. Crews DC, Charles RF, Evans MK, Zonderman AB, Powe NR. Poverty, race, and CKD in a racially and socioeconomically diverse urban population. Am J Kidney Dis 2010;55:992-1000.
20. Dulon M, Bardehle D, Blettner M. Assessing
social inequality in microcensus data and German National Health Examination Survey. Gesundheitswesen 2003;65:629-35.
21. Heckman JJ, Willis RJ. Estimation of a stochastic model of reproduction an econometric approach. In: Terleckyj NE, editor. Household Production and Consumption. Cambridge: NBER; 1976. p. 99-146.
22. Kim J, Sung J. Socioeconomic status and number of children among Korean women: The healthy twin study. J Prev Med Public Health 2013;46:50-60.
23. Shea S, Misra D, Ehrlich MH, Field L, Francis CK. Predisposing factors for severe, uncontrolled hypertension in an inner-city minority population. N Engl J Med 1992;327:776-81.
24. Scragg R, Baker J, Metcalf P, Dryson E. Prevalence of diabetes mellitus and impaired glucose tolerance in a New Zealand multiracial workforce. N Z Med J 1991;104:395-7.
25. Robbins JM, Vaccarino V, Zhang H, Kasl SV. Socioeconomic status and type 2 diabetes in African American and non-Hispanic white women and men: Evidence from the Third National Health and Nutrition Examination Survey. Am J Public Health 2001;91:76-83.
26. Eisenstein EL, Sun IL, Anstrom KJ, et al. Do income level and race influence survival in patients receiving hemodialysis? Am J Med 2009;122:170-80.
27. Port FK, Wolfe RA, Levin NW, Guire KE, Ferguson CW. Income and survival in chronic dialysis patients. ASAIO Trans 1990;36:M154-7.
28. Malekmakan L, Haghpanah S, Pakfetrat M, Malekmakan A, Khajehdehi P. Causes of chronic renal failure among Iranian hemodialysis patients. Saudi J Kidney Dis Transpl 2009;20:501-4.
29. Lopes AA. End-stage renal disease due to diabetes in racial/ethnic minorities and disadvantaged populations. Ethn Dis 2009;19:S1-47-51.
30. Rostand SG. US minority groups and end-stage renal disease: A disproportionate share. Am J Kidney Dis 1992;19:411-3.
31. Perneger TV, Klag MJ, Whelton PK. Does socio-economic status explain racial variation in ESRD incidence? J Am Soc Nephrol 1992; 3:288.
