Supporting Information:

Strongly Enhanced Antibacterial Action of Copper Oxide Nanoparticles with Boronic Acid Surface Functionality

Ahmed F. Halbus, Tommy S. Horozov, Vesselin N. Paunov*

a Department of Chemistry and Biochemistry, University of Hull, Hull, HU6 7RX, UK. b Department of Chemistry, College of Science, University of Babylon, Hilla, IRAQ.
* Corresponding author contact details: Phone: +44(0)1482 465660, Fax: +44(0) 1482 466410; Email: v.n.paunov@hull.ac.uk

(ACS Applied Materials and Interfaces 2019)
CONTENTS

The Schematic of the Synthesis Method of CuONPs...3
Fourier Transform Infrared Spectroscopy (FTIR) Analysis of CuONPs Calcined at Various Temperatures..4
XRD Pattern of CuONPs Annealed at Different Temperatures......................................5
Effect of the Annealing Temperature on the Particles Size and Zeta Potential of the CuONPs...6
EDX Diagram of E.coli Cells with bare CuONPs...8
Stability of the Zeta-potential of Bare and Functionalized CuONPs.............................9
Colony Forming Units assessment of the viability of E. Coli and R. rhodochrous after treatment with bare and functionalized CuONPs...10
Antimicrobial efficiency of the bare and HPBA-functionalized CuONPs.....................13
SEM images of HaCaT cells treated with bare- and HPBA-functionalized CuONPs...15
EDX diagrams of the outer surface of E. coli treated with bare- and HPBA-functionalized CuONPs..16
The Schematic of the Synthesis Method of CuONPs.

Figure S1. The schematic of the synthesis method of CuONPs.
Fourier Transform Infrared Spectroscopy (FTIR) Analysis of CuONPs Calcined at Various Temperatures.

Figure S2 presented the FTIR spectra of CuONPs annealed at 100°C, 200°C, 300°C, 400°C, 500°C and 600°C. The broad absorption peak at about 3445.89 cm$^{-1}$ was caused by the adsorbed water molecules. Because of the nano crystalline materials possess a high surface to volume ratio, they can absorb moisture. Similar peak at 3434 cm$^{-1}$ in the FTIR spectra of CuONPs are described.34,35 The peaks at 1632.77 might be for the Cu-O symmetrical stretching.34,36 The two infrared absorption peaks observed the vibrational modes of CuONPs in the range of 500 - 700 cm$^{-1}$. These peaks were detected at 533.33 cm$^{-1}$ and 585.41 cm$^{-1}$, respectively. The peak at 533.33 cm$^{-1}$ could be because of stretching of Cu-O.37 The two peaks at 533.33 cm$^{-1}$ and 585.41 cm$^{-1}$ showed the creation of the CuONPs. These two peaks provision the existence of monoclinic phase. No other IR active modes are detected in the range of 500- 700 cm$^{-1}$, which completely rules out the presence of Cu$_2$O. Two peaks at 525 cm$^{-1}$ and 580 cm$^{-1}$ in the FTIR spectra described for CuONPs which closely matches with our results.38 Thus, the metal-oxygen frequencies observed for CuONPs are in near agreement with that of literature values.34

![Figure S2. FTIR spectra of prepared CuONPs at different calcination temperatures (A) Cu(OH)$_2$ without calcinated, (B) 100°C, (C) 200°C, (D) 300°C, (E) 400°C, (F) 500°C and (G) 600°C in the range of 500–4000 cm$^{-1}$.](image-url)
XRD Pattern of CuONPs Annealed at Different Temperatures

Figure S3. XRD pattern of CuONPs annealed at (A) 100 °C, (B) 200 °C, (C) 300 °C, (D) 400 °C, (E) 500 °C and (F) 600 °C with different crystallite size. The largest peak in the XRD results was applied to measure the crystallite size.
Effect of the Annealing Temperature on the Particles Size and Zeta Potential of the CuONPs

The particle size and zeta potential of CuONPs were examined at different calcination temperature as appeared in Figure S4 and Figure S5. From Figure S4, it is clear that the hydrodynamic diameter is increasing with increasing of the annealing temperature. Therefore, it was found that CuONPs with same crystal type but various particle size could be obtained by changing the calcination temperature and also these results were in agreement with the previous studies. These results may be explained that at higher calcination temperatures, the agglomeration of CuONPs begin to occur and hence the particle size increased. In addition to that, the zeta potential was tested for every calcined sample of CuONPs, and it can be seen from the Figure S5 that at 100°C, the zeta potential was +37 mV which means it was a highly stable while, at 600°C, the zeta potential was -4 mV.

Figure S4. The hydrodynamic diameter of CuONPs annealed at various temperatures.
Figure S5. The zeta potential of CuONPs annealed at different temperatures.
Figure S6. EDX diagram of *E.coli* cells with CuONPs at 20 µg mL\(^{-1}\); (A) *E.coli* inside membrane and (B) *E.coli* edge membrane areas and (C) *E.coli* outside membrane areas. The result shows the existence of CuONPs on the inner and outer part of the cell membrane.
Figure S7. The zeta potential of (A) bare CuONPs and (B) CuONPs functionalized with GLYMO and 4-HPBA at different concentrations (5, 15 and 25 µg mL\(^{-1}\)) after exposure to UV light for 0 day, 1 day, 2 days and 3 days.
Colony Forming Units assessment of the viability of *E. coli* and *R. rhodochrous* after treatment with bare and functionalized CuONPs

Figure S8. Colony forming unit (CFU) count of *E. coli* following up to 6 hours of exposure to increasing concentrations of the bare CuONPs (A), and surface functionalized of CuONPs with GLYMO (B) and (C) 4-HPBA/GLYMO, values are shown as mean ±SD.

Figure S9. Colony forming unit (CFU) count of *R. rhodochrous* following up to 6 hours of exposure to increasing concentrations of the bare CuONPs (A), and surface functionalized of CuONPs with GLYMO (B) and (C) 4-HPBA/GLYMO, values are shown as mean ±SD.

We present the numeric data for CFU/mL in Figures S8 and S9 in table format in Tables S1 and S2 below.
Table S1. Experimental data for the CFU/mL for *E.coli* after treatment with various concentrations of CuONPs, CuONPs/GLYMO and CuONPs/GLYMO/HPBA (0, 5, 10, 15, 20, 25 mg L\(^{-1}\)) in dark conditions for 10 min, 1 h and 6 h, respectively. CFU mL\(^{-1}\) were calculated as (no. of colonies per plate × dilution factor) / volume of culture plate (mL). The dilution factor is 10000 and the volume of culture plate 0.100 mL.

time	NPs conc. (µg mL\(^{-1}\))	CuONPs	Log(Average (CFU mL\(^{-1}\)))	CuONPs/GLYMO	Log(Average (CFU mL\(^{-1}\)))	CuONPs/GLYMO/4-HPBA	Log(Average (CFU mL\(^{-1}\)))
		Average (CFU mL\(^{-1}\))		Average (CFU mL\(^{-1}\))		Average (CFU mL\(^{-1}\))	
10 min	0	66 ± 5 \times 10^5	6.823	66 ± 5 \times 10^5	6.823	66 ± 5 \times 10^5	6.823
	5	58 ± 2 \times 10^5	6.765	66 ± 3 \times 10^5	6.821	40 ± 4 \times 10^5	6.605
	10	53 ± 3 \times 10^5	6.729	64 ± 2 \times 10^5	6.806	28 ± 2 \times 10^5	6.452
	15	52 ± 4 \times 10^5	6.721	64 ± 5 \times 10^5	6.808	23 ± 4 \times 10^5	6.367
	20	43 ± 3 \times 10^5	6.640	66 ± 8 \times 10^5	6.819	22 ± 2 \times 10^5	6.348
	25	43 ± 2 \times 10^5	6.633	58 ± 4 \times 10^5	6.768	15 ± 2 \times 10^5	6.176
1 hour	0	72 ± 2 \times 10^5	6.857	72 ± 2 \times 10^5	6.857	72 ± 2 \times 10^4	6.857
	5	49 ± 6 \times 10^5	6.693	59 ± 3 \times 10^5	6.773	15 ± 3 \times 10^5	6.185
	10	35 ± 2 \times 10^5	6.544	56 ± 2 \times 10^5	6.753	8 ± 2 \times 10^5	5.937
	15	27 ± 2 \times 10^5	6.431	55 ± 7 \times 10^5	6.740	6 ± 1 \times 10^5	5.801
	20	23 ± 2 \times 10^5	6.361	50 ± 4 \times 10^5	6.698	5 ± 3 \times 10^5	5.753
	25	19 ± 3 \times 10^5	6.293	44 ± 3 \times 10^5	6.646	3 ± 2 \times 10^5	5.477
6 hours	0	80 ± 2 \times 10^5	6.903	80 ± 2 \times 10^5	6.903	80 ± 2 \times 10^5	6.903
	5	21 ± 3 \times 10^5	6.329	47 ± 7 \times 10^5	6.672	7 ± 5 \times 10^5	5.845
	10	14 ± 2 \times 10^5	6.146	47 ± 3 \times 10^5	6.675	3 ± 2 \times 10^5	5.477
	15	11 ± 3 \times 10^5	6.054	40 ± 5 \times 10^5	6.602	0	0
	20	2 ± 2 \times 10^5	5.301	37 ± 5 \times 10^5	6.575	0	0
	25	0	0	37 ± 2 \times 10^5	0	0	0
Table S2. Experimental data for the CFU/mL for *R.*rhodochrous after treatment with various concentrations of CuONPs, CuONPs/GLYMO and CuONPs/GLYMO/HPBA (0, 5, 10, 15, 20, 25 mg L^-1) in dark conditions for 10 min, 1 h and 6 h, respectively. CFU mL^-1 were calculated as (no. of colonies per plate × dilution factor) / volume of culture plate (mL). The dilution factor is 10000 and the volume of culture plate 0.1 mL.

R. rhodochrous	CuONPs	CuONPs/GLYMO	CuONPs/GLYMO/4-HPBA				
time (min)	Average (CFU mL^{-1})	Log (CFU mL^{-1})	Average (CFU mL^{-1})	Log (CFU mL^{-1})	Average (CFU mL^{-1})	Log (CFU mL^{-1})	
10 min	0	51 ± 3 × 10^5	6.713	51 ± 3 × 10^5	6.713	51 ± 3 × 10^5	6.713
	5	50 ± 5 × 10^5	6.701	49 ± 3 × 10^5	6.693	47 ± 4 × 10^5	6.675
	10	50 ± 2 × 10^5	6.701	49 ± 6 × 10^5	6.693	44 ± 2 × 10^5	6.643
	15	50 ± 5 × 10^5	6.698	50 ± 2 × 10^5	6.698	47 ± 2 × 10^5	6.678
	20	48 ± 4 × 10^5	6.687	45 ± 3 × 10^5	6.659	45 ± 3 × 10^5	6.653
	25	44 ± 2 × 10^5	6.649	50 ± 2 × 10^5	6.698	44 ± 3 × 10^5	6.646
	250	39 ± 3 × 10^5	6.598	48 ± 2 × 10^5	6.681	30 ± 5 × 10^5	6.486
1 hour	0	52 ± 2 × 10^5	6.716	52 ± 2 × 10^5	6.716	52 ± 2 × 10^5	6.716
	5	44 ± 3 × 10^5	6.649	50 ± 2 × 10^5	6.698	25 ± 2 × 10^5	6.397
	10	39 ± 8 × 10^5	6.591	48 ± 2 × 10^5	6.681	17 ± 3 × 10^5	6.247
	15	34 ± 4 × 10^5	6.539	46 ± 4 × 10^5	6.662	11 ± 2 × 10^5	6.041
	20	31 ± 2 × 10^5	6.491	45 ± 2 × 10^5	6.656	7 ± 5 × 10^5	5.845
	25	26 ± 5 × 10^5	6.420	47 ± 2 × 10^5	6.675	0	0
	250	16 ± 6 × 10^5	6.213	37 ± 5 × 10^5	6.572	0	0
6 hours	0	53 ± 5 × 10^5	6.724	53 ± 5 × 10^5	6.724	53 ± 5 × 10^5	6.724
	5	30 ± 1 × 10^5	6.486	45 ± 2 × 10^5	6.653	14 ± 2 × 10^5	6.156
	10	29 ± 4 × 10^5	6.467	43 ± 3 × 10^5	6.640	3 ± 2 × 10^5	5.522
	15	23 ± 3 × 10^5	6.374	36 ± 4 × 10^5	6.564	0	0
	20	19 ± 5 × 10^5	6.278	31 ± 4 × 10^5	6.491	0	0
	25	10 ± 3 × 10^5	6.028	27 ± 1 × 10^5	6.436	0	0
	250	0.3±5 × 10^5	4.522	27 ± 3 × 10^5	6.441	0	0
Antimicrobial efficiency of the bare and HPBA-functionalized CuONPs

We have calculated the percentage reduction in the required CuONPs particle concentration after functionalization with HPBA to achieve the same antibacterial action as with the bare CuONPs (Figure S10 and Figure S11). We have done this by fitting the experimental data for the bacterial cell viability upon treatment with CuONPs/GLYMO/HPBA with a logarithmic law (see below) which allows to evaluate what particle concentration would produce the same CFU/mL as the bare CuONPs of fixed concentration. The calculation steps are presented as follows:

For bare CuONPs

\[y_B = a_1 \ln(x_B) + b_1, \quad (y_B = \text{CFU/mL with bare CuONPs at particle concentration } x_B) \]

For CuONPs/GLYMO/4-HPBA

\[y_F = a_2 \ln(x_F) + b_2, \quad (y_F = \text{CFU/mL with CuONPs/GLYMO/4-HPBA at particle concentration } x_F) \]

The coefficients \(a_2 \) and \(b_2 \) are determined from the fit with the experimental data for CFU/mL with CuONPs/GLYMO/4-HPBA. Hence for any value \(y_B \) at \(x_B \) from the bare CuONPs for the CFU/mL, \(y_2 = a_2 \exp \left(\frac{y_B - b_2}{a_2} \right) \), i.e.

\[x_F = \exp \left(\frac{y_B - b_2}{a_2} \right) \]

Finally, the reduction in the functionalised CuONPs concentration needed to achieve the same antibacterial activity as the bare CuONPs is determined as follows:

\[\% \text{ reduction} = \left(\frac{x_F}{x_B} \right) \times 100 \]
(Percentage reduction of CuONPs which achieves the same antibacterial action).

![Graph showing % reduction in the required CuONPs/GLYMO/HPBA nanoparticle concentration after functionalization to achieve the same antibacterial action on E.coli as with the bare CuONPs. The data are calculated by using direct CFU/ml measurements.](image)

Figure S10. The % reduction in the required CuONPs/GLYMO/HPBA nanoparticle concentration after functionalization to achieve the same antibacterial action on *E.coli* as with the bare CuONPs. The data are calculated by using direct CFU/ml measurements.
Figure S11. The % reduction in the required CuONPs nanoparticle concentration after functionalization to achieve the same antibacterial action on *R. rhodochrous* as with the bare CuONPs. The data illustrate the increased antimicrobial efficiency of the HPBA-functionalised CuONPs compared with the bare CuONPs.
Figure S12. SEM images of HaCaT cells after being incubated for 36 hours with bare CuONPs and CuONPs functionalized with 4-HPBA: (A) HaCaT cell before treatment, (B) HaCaT cells incubated with 25 µg mL\(^{-1}\) CuONPs and (C) HaCaT cells incubated with 25 µg mL\(^{-1}\) CuONPs/GLYMO/4-HPBA and the scale bars are 30 µm.
EDX diagrams of the outer surface of *E. coli* treated with bare- and HPBA-functionalized CuONPs

Figure S13. EDX diagram of *E.coli* outside membrane areas with (A) bare CuONPs and surface functionalized of CuONPs with GLYMO and (B) 4-HPBA at 20 µg mL⁻¹. The result shows the existence of CuONPs on the outer part of the cell membrane.