Ab initio construction and evolutionary analysis of protein-coding gene families with partial homologous relationships:
The closely related Drosophila genomes as a case study

Supplementary Data
Table S1. Reconstructed architecture scenarios (RAS) of ACC.

	Number of ACC	Number of Wu's ACC
Total	4,173	4,107
With RAS	4,018	3,882
Without RAS	155	225
Consistent with Wu's	3,882	-
Consistent with Wu's & with RAS	3,708	-
Need to be reconstructed	465	-
Successfully reconstructed	310	-

With RAS: an ACC with reconstructed architecture scenario.
Without RAS: an ACC without reconstructed architecture scenario.
Consistent with Wu's: an ACC consistent with the ACC constructed by Wu.
Consistent with Wu's & with RAS: the ACC consistent with Wu's ACC and also with a reconstructed architecture scenario (inferred by Wu).
Need to be reconstructed: the remaining ACC we need to reconstruct its architecture scenario.
Successfully reconstructed: the remaining ACC we had reconstructed its architecture scenario.
Notions

T: the rooted binary species tree, with nodes $N(T)$ and leave nodes $L(T)$.

$g \in G$: an architecture connected component (ACC) belong to the set of ACCs which have reconstructed architecture scenarios.

A: architectures with single-module A^{sm} or multi-modules A^{mm}.

$m \in A$: the modules of an architecture.

M^*: a set of novel modules with generation events.

Pseudocode

Supplementary algorithm: RASfam pseudocode.

Input: T, $g \in G$, set of A at $n \in N(T)$, M^*

Output: A set of gene families F.

/* Initialization

O = empty ancestors/origins

F = empty families

/* Recursion

for $g \in G$ do

 // Determine the ancestors of modules

 flag = 0

 for $n \in N(T)$ (pre-order traversal) and $n \notin L(T)$ do

 // Determine the most ancient architecture/architectures

 if flag == 0 \&\& A(n) exist then

 flag = 1

 for $A_i \in A(n)$ do

 for $m_i \in m(A_i)$ do

 $O[m_i] \leftarrow A_i$

 end

 end

 end

 end

 // Determine the novel architecture/architectures generated in internal branch

 if flag == 1 \&\& $m_i(n) \in M^*$ then

 if $m_i \in A_i^{mm}$ then

 $O[m_i] \leftarrow m_i$

 else

 if $m_i \in A_i^{mm}$ \&\& all other modules of A_i^{mm} are in M^* then

 $O[m_i] = A_i^{mm}$

 $O[each\ of\ other\ modules] = A_i^{mm}$

 else if $m_i \in A_i^{mm}$ \&\& there is a $m_j \in A_i^{mm}$ not in M^* then

 $O[m_i] = O[m_j]$

 end

 end

 // Assignment extant architectures

 for $A_i \in A(g)$ do

 for $m_i \in m(A_i)$ do

 $F[O[m_i]] \leftarrow A_i$

 end

 end

end
Table S2. Constructed homologous gene family.

	Number of gene families	Number of ACC
Total	15222	-
Derived from AST	10145	-
Derived from ACC	5077	4035
Derived from ACC which is without RAS	17	17
Derived from ACC which is with RAS	5060	4018
Share partial homologs with other families	1832	790

Derived from ACC which is without RAS: A gene family derived from an ACC which is strongly connected although without RAS.

Table S3. The assignment of MMA within comparable ACCs.

Method	Comparable ACCs	MMA solely divided	MMA partially divided	MMA partially and solely divided
OrthoFinder	468	464	1	3
CompositeSearch	201	161	7	33

Comparable ACCs: ACCs which derive families that can share common proteins with others, and their corresponding protein set is consistent with the protein set of one or several orthogroups or compositefamilies.

MMA solely divided: proteins with an MMA are assigned into a unique family.

MMA partially divided: proteins with an MMA are assigned into different families.

MMA partially and solely divided: some MMAs in an ACC are assigned into a unique family and some MMAs are partially divided into different families.
Table S5. The expanded families with annotated functions identical to previous study.

Expanded Species	Family annotation	Family ID
dmel	structural constituent of cytoskeleton	AST.5643
dmel	Sdic/Cdic	ACC-derived.3540
dyak	centrosome	ACC-derived.30
dyak	chromosome segregation	ACC-derived.615
dyak	defense response	ACC-derived.1942
dyak	proteolysis	ACC-derived.2443
dere	nucleus	ACC-derived.1341;
dere	oxidoreductase activity	ACC-derived.1422
dana	oxidoreductase activity	ACC-derived.1438
dana	proteolysis	ACC-derived.249
dana	serine-type endopeptidase activity	ACC-derived.3799
dpse	protein serine/threonine kinase activity	ACC-derived.966
dwil	glucuronosyltransferase activity	ACC-derived.790
dwil	juvenile-hormone esterase activity	ACC-derived.845
dwil	membrane	AST.8728
dwil	proteolysis	ACC-derived.126
dmoj	oxidoreductase activity	ACC-derived.904
dgri	hydrolase activity, acting on ester bonds	ACC-derived.1810
dgri	odorant binding	ACC-derived.112; ACC-derived.4179; ACC-derived.4260; AST.4133
dgri	olfactory receptor activity	ACC-derived.112; ACC-derived.4260
Table S6. Branch numbers of architecture change patterns in 38,491 branches.

foldchange	novel	duplicated	lost	number of branches	n1 / 38,491 * 100(%)	n1 / n2 * 100(%)	n1 / n3 * 100(%)
<1	-	✓	✓	35	0.090	2.728	0.541
	✓	-	✓	1,244	3.195	96.960	19.221
	✓	✓	✓	4	0.010	0.312	0.062
	-	-	✓	5,189	13.325	100.000	80.176
1	-	✓	✓	117	0.300	2.802	0.388
	✓	-	✓	4,053	10.408	97.078	13.433
	✓	✓	✓	5	0.013	0.120	0.017
	-	-	-	25,998	66.763	100.000	86.163
>1	-	✓	✓	25	0.064	4.039	1.094
	✓	-	✓	565	1.451	91.276	24.716
	✓	✓	✓	29	0.074	4.685	1.269
	-	✓	-	443	1.138	26.575	19.379
	✓	-	-	1,150	2.953	68.986	50.306
	✓	✓	-	74	0.190	4.439	3.237
	-	✓	-	10	0.026	100.000	100.000
Figure S1. Ratio of expanded ACC-derived families in species-specific expanded families.
Figure S2. The reconstructed architecture scenario of Sdic family. The expansion lineage is marked with red frame. Different modules are indicated by different colored blocks with module ID. Protein ID and number are show next to the respective module architectures.

Figure S3. The reconstructed architecture scenario of Cyp6a21-PA/Cyp6a9-PA family.
Figure S4. The reconstructed architecture scenario of Ugt37c1-PA/Ugt36Ba-PA family.

Figure S5. The reconstructed architecture scenario of Cyp6a4-PA family.
Figure S6. The reconstructed architecture scenario of Obp58b-PA family and Or42a-PA.
Figure S7. Distribution of foldchanges in all ACC-derived families. Color denotes the respective species.
Figure S8. The summarized enriched GO terms of gene families unchanged only in (A) *Drosophila* genus, (B) *Drosophila* subgenus and (C) *Sophophora* subgenus. GO enrichment analysis was done by R package clusterprofile. The enriched GO terms and the corresponding Benjamini & Hochberg (B & H) corrected *p* values were used by REVIGO method to summarize by removing redundant GO terms, and visualize semantic clusters of the top scoring GO terms.
Figure S9. Distribution of gene families with different evolutionary details in each species. ‘duplicated’ and ‘novel’ denote the duplicated and the novel genes respectively. Families unchanged or only with loss event in corresponding species are not shown.

Figure S10. Distribution of evolutionary events along each branch.
Table S7. Distribution of evolutionary events along each branch.

Branch	Gene level	Subgene (module) level					
	Duplication	Loss	Duplication	Loss	Merge	Split	Generation
Dmel	67	2,991	155	1,047	435	237	0
The MRCA of dmel and dyak	2,777	479	421	230	497	327	452
Dere	61	2,861	134	875	224	366	0
The MRCA of dere and dyak	10	107	27	352	249	169	149
Dyak	348	2,839	576	914	256	674	0
The MRCA of dmel and dana	115	865	95	187	315	166	287
Dana	104	686	347	1,131	311	544	0
The MRCA of dmel and dpse	269	402	88	195	287	143	359
Dpse	237	1,426	485	1,150	354	554	0
The MRCA of dmel and dwil	884	163	65	2	196	85	291
Dwil	245	1,514	500	1,177	303	556	0
Dmoj	130	1,969	247	999	286	571	0
The MRCA of dmoj and dvir	27	246	86	264	274	161	184
Dvir	96	1,898	208	834	292	429	0
The MRCA of dmoj and dgri	1,713	218	297	5	285	207	351
Dgri	360	2,195	842	1,054	267	774	0
Terminal branch	1,648	18,379	3,494	9,181	2,728	4,705	0
	20,027	20,108					
Internal branch	5,795	2,480	1,079	1,235	2,103	1,258	2,073
	8,275	7,748					
Total	7,443	20,859	4,573	10,416	4,831	5,963	2,073
	28,302	27,856					
Table S8. Distribution of module rearrangement events for gene families expanded along the corresponding branch.

species	S-L	S-L-D	D-M	S-D	S-L-M	S-D-M	S-M	S-D-L-M	S	D	total
Multi-modules architectures formation											
dmel	0	0	1	0	1	0	0	6	8		281
dere	0	0	1	0	3	0	0	1	0	6	11
dyak	1	1	2	9	0	1	0	0	0	40	54
dana	0	1	1	4	4	1	0	1	16	29	
dpse	0	1	2	4	0	1	0	0	25	33	
dwil	0	2	2	10	0	2	0	1	27	45	
dmoj	1	0	0	2	0	0	0	3	10	16	
dvir	0	0	2	0	1	3	0	0	16	22	
dgri	0	1	0	20	0	2	0	1	39	63	
Both of single-module and multi-modules architectures formation											
dmel	1	0	1	3	0	3	0	0	0	8	237
dere	2	0	0	4	1	1	0	0	2	0	10
dyak	2	4	0	12	1	4	0	1	12	28	
dana	4	1	0	9	0	4	3	0	4	25	
dpse	7	2	0	9	1	1	1	0	8	1	30
dwil	2	6	1	13	0	1	1	0	3	28	
dmoj	2	2	0	9	1	0	0	13	0	28	
dvir	8	3	0	5	0	1	3	0	7	28	
dgri	2	8	0	21	0	1	3	1	6	42	
Single-module architectures formation											
dmel	0	0	0	27	0	0	0	8	3	38	1180
dere	7	0	0	27	0	0	0	10	2	46	
dyak	16	13	0	146	0	0	0	15	11	201	
dana	12	4	0	67	0	0	0	13	9	105	
dpse	14	4	0	101	0	0	0	22	22	163	
dwil	8	5	0	82	0	0	0	10	15	120	
dmoj	17	3	0	55	0	0	0	27	8	110	
dvir	17	0	0	39	0	0	0	17	5	78	
dgri	7	9	0	258	0	0	0	19	26	319	

Gene family expansions are identified when foldchanges larger than 1 along the corresponding branch. Based on whether the formed architecture is single-module or multi-modules, the expansions are classified into three categories, including single-module architectures formed only (1,180, 69.49%), multi-modules architectures formed only (281, 16.55%), and both of them formed (237, 13.96%). Module rearrangement types which did not occur among all three categories are not shown.