Antioxidants in dermatology

Varadraj V. Pai, Pankaj Shukla, Naveen Narayanshetty Kikkeri

ABSTRACT

Antioxidants neutralize free radicals produced by various environmental insults such as ultraviolet radiation, cigarette smoke and air pollutants, thereby preventing cellular damage. The role of oxidative stress and antioxidants is known in diseases like obesity, atherosclerosis, and Alzheimer’s disease. Herein we discuss the effects of oxidative stress on the skin and role of antioxidants in dermatology.

Key words: Antioxidants, free radicals, oxidative stress

INTRODUCTION

Aging is a process of progressive decrease in the functioning and reserve capacity of all organs in the body, including the skin (intrinsic or chronological aging). This naturally occurring functional decline in the skin is often compounded and accelerated by chronic environmental insults such as ultraviolet radiation, pollutants, smoking etc., (extrinsic aging).

THEORY OF AGING AND FREE RADICALS

One of the important theories for aging is the free radical theory, which was proposed by Denham Harman in the 1950s, wherein the generation of free radicals results in damage to biomolecules including DNA. This idea was later extended in the 1970s to implicate mitochondrial production of reactive oxygen species (ROS).

Later this theory was expanded to include other diseases such as malignancies, vitiligo, Alzheimer’s disease, atherosclerosis etc.

Free radicals are compounds formed when oxygen molecule combines with other molecules yielding an odd number of electrons. The molecules which are oxygen-centred are ROS and those which have nitrogen are reactive nitrogen species (RNS). These free radicals with an unpaired electron seek and seize electrons from vital components such as DNA, cytoskeleton, cellular proteins and cell membranes, resulting in cellular damage [Figure 1].

The important ROS are superoxide anion (O2-), peroxide, hydroxyl radical (OH), hydroxyl ion, and singlet oxygen (O2). Nitric oxide (NO) and peroxynitrite (ONOO-) are the major RNS in biological systems.

Exogenous sources of ROS are air pollutants, ozone, radiation, chemicals, smoking, toxins, and pathogenic microorganisms. Endogenous source of ROS includes leaks in electron transport chain found in mitochondria during oxidation of food stuﬀs or inflammatory cells. These produce free radicals by a process of respiratory burst during phagocytosis or enzymes, which indirectly produce free radicals.

SKIN AND FREE RADICALS

In the healthy skin, practically all types of skin cells produce reactive oxygen (ROS) and reactive nitrogen (RNS) species. These free radicals are indispensable effectors in the homeostatic pathways leading to cell proliferation, differentiation, senescence, and death. An elaborate network of endogenous antioxidants maintain homeostasis by neutralizing these free radicals from causing damage to cells. When this ﬁne balance between free radicals and endogenous antioxidants is lost, it results in a phenomenon called oxidative stress. Chronic oxidative stress has been suggested as being the cause or consequence of many acute and chronic human diseases e.g. obesity, cardiovascular diseases, cancer, acute lung injury, retinal degeneration, Alzheimer’s disease, Parkinson disease and multiple sclerosis.

Oxidative stress also play a role in various
dermatological disorders like aging of skin e.g., solar elastosis, deep wrinkles, coarse texture, telangiectasia and pigmentation, psoriasis, allergic contact dermatitis, atopic dermatitis, vitiligo, acne vulgaris, pemphigus vulgaris (PV), lichen planus, alopecia areata, and melanomas.[7,9,11,12]

Various pathogenic mechanisms are responsible for these lesions such as induction of transcription factors that includes Activator protein (AP-1) and Nuclear factor κB (NF-κB) which are responsible for inflammatory changes, metalloproteinase (MMP) like collagenase which causes decreased collagen production, increased collagen breakdown, and increased elastin accumulation resulting in features of aging and lastly mitogenic activated protein kinase (MAPK), which is one of the factor responsible for skin cancers.[6]

ANTIOXIDANTS

Antioxidants are those molecules which are capable of inhibiting the oxidation of other molecules.[5] Oxidation is a process where there is loss of electrons or an increase in oxidation state by a molecule, atom or ion.

\[
\text{Reductant} \quad \overset{\text{oxidation}}{\longrightarrow} \quad \text{product + e-}
\]

As the number of molecules having antioxidant properties is increasing with each passing day, it is difficult to keep abreast with all of them. Commonly used antioxidants in dermatology are classified as endogenous and exogenous [Table 1].[6,9,13]

Naturally occurring antioxidants work in synergy with each other i.e. if an antioxidant disarms a free radical by eliminating the odd number of electrons it will no longer be able to function as an antioxidant unless it is replenished. This is done by another antioxidant and its synergy is called network antioxidation. The participating antioxidants are referred to as network antioxidants.[8,14]

Table 1: General classification of antioxidants[6,9,13]

Endogenous antioxidants	Exogenous antioxidants
Enzymatic - Glutathione peroxidase, glutathione reductase, Superoxide dismutase, Catalase	Fat soluble - Lycopene, Curcumin
Non enzymatic	Water soluble - Green tea, Coffee Arabica, Silymarin, Polypodium leucotomus, Resveratrol, Grape seed extract, Pomegranate
Water soluble antioxidants - ascorbic acid (Vitamin C), glutathione, ubiquinone, uric acid, flavonoids, melanin	Others — Pycnogenol, Soy isoflavones
Fat soluble antioxidants -alpha tocopherols (vitamin E), carotenoids, Coenzyme Q10.	
Both fat soluble and water soluble -alpha lipoic acid	
Others – Melatonin, Selenium	

DISTRIBUTION OF ANTIOXIDANTS IN SKIN

Skin is endowed with natural antioxidants as it is exposed to numerous environmental insults. Vitamin E, catalase, superoxide dismutases, glutathione peroxidases are abundantly present in the viable layer of the epidermis. The extracellular space of skin epidermis and dermis, contains large amounts of antioxidants such as ascorbic acid, uric acid, and glutathione. The outer most layer, the cornified envelope of normal human skin contains antioxidants such as glutathione, vitamin C, uric acid, α-tocopherol, squalene, and coenzyme Q10, distributed in a gradient with the highest concentration on the deepest cornified envelope layers.[7]

Summary of important antioxidants is given in Table 2.[6,9,15]

Antioxidant activity

The antioxidant activity of various antioxidants is studied using four parameters - Trolox equivalent antioxidant capacity (TEAC), oxygen radical absorbing capacity (ORAC), ferric reducing antioxidant capacity (FRAP), free radical scavenging properties by diphenyl-1-picrylhydrazyl radical (DPPH).

The antioxidant potency composite index, is based on \([(\text{sample score/ best score}) \times 100]\) that is averaged for all the parameters for each beverage. It was found that pomegranate has the highest antioxidant activity. Following is the list of beverages and their potency index [Table 3].[16]

Since most antioxidants are dietary supplements, their side effects are supposed to be negligible such as presence of irritation with topical vitamin E or retinoids, and occurrence of peripheral vasodilatation or cutaneous flushing with oral niacin.[15]
Table 2: Summary of important antioxidants[^6,^9,^13]

Antioxidant	Properties	Functions as an antioxidant	Dietary source	Clinical benefits studied
Vitamin C	1. Cofactor for critical enzymes in collagen synthesis	1. Increases collagen synthesis	Citrus fruits, black currants, leafy green vegetables, and red pepper	Photodermatoses
	2. Recycling photoxidized α-tocopherol, thereby regenerating vitamin E.	2. Reduces MMP (collagenase) expression		Post laser-erythema
		3. Inhibits activation of the transcription factor NFκB		Melasma
		4. Inhibits tyrosinase		Stretch marks
		5. Decreases sunburn cells by 40% to 60%		Antiinflammatory
	Four pair of stereo isomers of which α-tocopherol has the highest activity	Protects the cell membranes from oxidative stress.	Vegetable oil, seeds, nuts, meats	Photoaging
				Antiinflammatory
Vitamin A	Two forms	Carotenoids scavenge O₂ and quench lipid peroxidation.	Found in red fruits and vegetables like carrot, sweet potatoes, pink grape fruit, tomatoes.	Antiageing
	Retinoids	Retinoids bind to the nuclear receptors, retinoic acid receptors, thereby inhibiting AP-1 and MAPK expression.		Antiinflammatory
	Carotenoids (β carotene and lycopene)			Antiinflammatory
Coenzyme Q10 (ubiquinone)	Fat soluble compound present in all cells as a part of energy transfer chain	Scavenge ROS	Fish, shell fish	Antiageing
Synthetic analog is Idebenone				Antiinflammatory
Green tea extract	High level of polyphenols like gallocafechin-gallate, epicatechin-3-gallate, epigallocatechin, and epigallocatechin-3-gallate (EGCG). EGCG is the most active ingredient	Scavenges ROS Stabilises glutathione peroxidase, glutathione, catalase Inhibits AP-1 and MAPK expression	Isolated form from camellia sinensis (tea) plant	Antiinflammatory
				Anticarcinogenic
				Photoprotective
Silymarin	Naturally occurring polyphenolic flavonoids.	Scavenge ROS	Milk thistle plant	Antiinflammatory
	It has 3 flavonoids, silybin, silydianin and silychristin. Silybin has the highest biologic potency	Prevents lipoprotein oxidation.	Silyburn marianum	Anti carcinogenic
Coffee arabica propriety name Coffee berry	Contains polyphenols like chlorogenic acid, proanthocyanidins, Quinic acid, Ferulic acid, caffeic acid	Suppresses UVB radiation-induced IL-10 and MAPK expression	Coffee beans and fruit of the plant	Antiinflammatory
Resveratrol	Polyphenolic phytoalexin compound	Inhibits UV-B activation of NFκB and MAPK pathway	Skin and seeds of grapes, red wine, berries	Antiinflammatory
Polypodium leucotomos	Contains polyphenols like dihydrobenzoic acid, Ferulic acid, caffeic acid, vanillic acid, caffeic acid	Scavenges ROS	Extract from the fern plant Polypodium leucotomos	Antiinflammatory
Grape seed extract (Vitis vinifera)	Rich in polyphenol like proanthocyanidans	Inhibits UVB induced lipid peroxidation, protein oxidation and DNA damage	Extract from grape seed	Antiageing
Pomegranate (Punica granatum)	Native fruit of Indian subcontinent. Contains two polyphenolic compounds: anthocyanins and tannins	Potent antioxidant	Extract from peel, juice and seed of the fruit	Antiageing
		Inhibits UV-B activation of NFκB and MAPK pathway		Photoprotective
				Antiinflammatory

[^6]: Pai, et al.: Antioxidant in dermatology
Though there is a lot of interest about the role of antioxidants available for the treatment of various dermatoses, it is important to know that most of the studies have demonstrated an in vitro role of these molecules as antioxidants. There is paucity of clinical trials regarding their role to prevent aging of skin. Also, there are certain problems in combining these molecules with creams such as sunscreens as it is found that many of these molecules are unstable and if stabilized, they tend to have lesser antioxidant capacity to neutralize the free radicals. On the positive side, few recent studies have also shown that combining various antioxidants can have a synergistic action.

Table 2: Contd

Antioxidant	Properties	Functions as an antioxidant	Dietary source	Clinical benefits studied
Alpha lipoic acid	It is an octanoic acid, an essential cofactor in mitochondrial dehydrogenases.	Metal chelation, Scavenge ROS Regenerate endogenous antioxidants Repairs oxidative damage	Endogenously produced, also found in red meat and Brewer’s yeast	Antiageing, Post laser erythema
Curcumin (Curcuma Longa, turmeric root, haldi)	Consists of water soluble component turmerin and lipid soluble curcumin	Scavenge ROS Downregulate IL-1 and TNF α Inhibits activation of NF-κB and AP-1 pathway	Tuber of tropical turmeric plant	Antinflammatory, Anticarcinogenic, Wound healing
Selenium	Essential element for GSH peroxidase activity, cofactor for vitamin E regeneration.	Inhibits UV induced photodamage Scavenge ROS	Walnut, shellfish, fish	Photoprotective, Antinflammatory, Anticarcinogenic, Acts on P. ovale
Pycnogenol (Pine bark extract from pinus pinaster)	Rich in polyphenol like proanthocyanidins	Inhibits UVB induced lipid peroxidation, protein oxidation and DNA damage	Also found in grape seed, cranberry, black currant	Antiageing, Antinflammatory, Antiaging
L-carnosine/ caranine	Dipeptide of aminoacid B alanine and histidine	Inhibit UV induced lipid peroxidation	Fish and meat	Antiinflammatory
Soy isoflavones	Contain isoflavones like genistein and diadzein	Scavenge ROS	Soya beans, ginko biloba	Antiinflammatory, Anticarcinogenic

ROS: Reactive oxygen species, UBV: Ultraviolet B, DNA: Deoxyribose nucleic acid, GSH: Glutathione, UV: Ultraviolet, MAPK: Mitogenic activated protein kinase, EGCG: Epigallocatechin-3-gallate

Table 3: Beverages and antioxidant composite index

Beverage	Antioxidant composite index
Pomegranate juice	95.8
Red wine	68.3
Grape juice	61.7
Blueberry juice	50.9
Black cherry juice	46.5
Cranberry juice	38.0
Green tea	24.2
Orange juice	19.1
Apple juice	14.6
Black tea	12.2

CONCLUSION

Free radicals can damage the DNA, lipid membrane, collagen structures, and also play a role in photo aging and skin cancer. Oral and topical antioxidants have the ability to provide benefits from free radical damage, but long term studies are necessary to validate these findings.

REFERENCES

1. Yaar M, Gilchrest BA. Aging of skin. In: Wolff K, Goldsmith LA, Katz SI, Gilchrest BA, Paller AS, Leffell DJ, editors. Dermatology in General Medicine. 7th ed. New York: McGraw-Hill; 2008. p. 963-70.
2. Harman D. Aging: A theory based on free radical and radiation chemistry. J Gerontol 1956;11:298-300.
3. Harman D. A biologic clock: The mitochondria? J Am Geriatr Soc 1972;20:145-7.
4. Halliwell B, Gutteridge JMC. Antioxidant defences: Endogenous and diet derived. Free Radicals in Biology and Medicine. 4th ed. Oxford: Oxford University Press; 2007. p. 79-186.
5. Gomes EC, Silva AN, De Oliveira MR. Oxidants, antioxidants, and the beneficial roles of exercise-induced production of reactive species. Oxid Med Cell Longev 2012;2012:756132. 1-12.
6. Baumann L, Alemann IB. Antioxidants. In: Baumann L, Saghari S, Weisberg E, editors. Cosmetic Dermatology: Principles and Practice. 2nd ed. New York: McGraw-Hill; 2009. p. 292-311.
7. Pastore S, Korkina L. Redox imbalance in T Cell-mediated skin diseases. Mediators Inflamm 2010;2010:861949.
8. Greenstock CL. Free Radicals. In: Alan R, editor. Aging and degenerative diseases. New York: Liss Inc; 1986.
9. Chen L, Hu JY, Wang SQ. The role of antioxidants in photoprotection:
A critical review. J Am Acad Dermatol 2012;67:1013-24.

10. Pendyala G, Thomas B, Kumari S. The challenge of antioxidants to free radicals in periodontitis. J Indian Soc Periodontol 2008;12:79-83.

11. Yildirim M, Baysal V, Inaloz HS, Can M. The role of oxidants and antioxidants in generalized vitiligo at tissue level. J Eur Acad Dermatol Venereol 2004;18:683-6.

12. Yousefi M, Rahimi H, Barikbin B, Toossi P, Lotfi S, Hedayati M, et al. Uric acid: A new antioxidant in patients with pemphigus vulgaris. Indian J Dermatol 2011;56:278-81.

13. Shindo Y, Witt E, Han D, Epstein W, Packer L. Enzymic and non-enzymic antioxidants in epidermis and dermis of human skin. J Invest Dermatol 1994;102:122-4.

14. Packer L, Coleman C. The Antioxidant Miracle. New York: John Wiley and Sons, 1999:9.

15. Zusmann J, Ahdout J, Kim J. Vitamins and photoaging: Do scientific data support their use? J Am Acad Dermatol 2010;63:507-25.

16. Seeram NP, Aviram M, Zang Y, Henning SM, Feng L, Dreher M, et al. Comparison of antioxidant potency of commonly consumed polyphenol-rich beverages in the United States. J Agric Food Chem 2008;56:1415-22.

17. Cho HS, Lee MH, Lee JW, No KO, Park SK, Lee HS, et al. Anti-wrinkling effects of the mixture of vitamin C, vitamin E, pycnogenol and evening primrose oil, and molecular mechanisms on hairless mouse skin caused by chronic ultraviolet B irradiation. Photodermatol Photoimmunol Photomed 2007;23:155-62.

Cite this article as: Pai VV, Shukla P, Kikkeri NN. Antioxidants in dermatology. Indian Dermatol Online J 2014;5:210-4.

Source of Support: Nil, Conflict of Interest: None declared.