Abstract. Aim: The aim of this study was to evaluate the dose-volume histogram parameters for late hematuria and rectal hemorrhage in patients receiving radiotherapy after radical prostatectomy. Patients and Methods: Data of 86 patients treated between January 2006 and June 2019 were retrospectively evaluated. The median radiation dose was 64 Gy in 32 fractions. Receiver operating characteristic (ROC) curves were used to identify optimal cut-off values for late adverse events. Results: Eleven patients experienced hematuria, and the 5-year cumulative rate was 18%. Four patients experienced rectal hemorrhage, and the 5-year cumulative rate was 7%. ROC curve analysis demonstrated the following significant cut-off values: bladder V50 Gy: 43% (p=0.02) and V40 Gy: 50% (p=0.03) for hematuria, and rectum V60 Gy: 13% (p=0.04) and V50 Gy: 33% (p=0.03) for rectal hemorrhage. Conclusion: This is the first study to identify dose constraints that may reduce hematuria and rectal hemorrhage in patients receiving radiotherapy in the postoperative setting.

Prostate cancer is the most common malignancy in men worldwide (1). Surgery is the mainstay of curative treatment for prostate cancer (2). In recent years, robotic-assisted radical prostatectomy (RARP), which offers minimally invasive treatment, has rapidly gained global popularity (3-5). However, positive surgical margins have been reported in 14-33%, with 5-year prostate-specific antigen (PSA) failure rates of 13-37% after surgery (4-8). Postoperative radiotherapy has been reported to improve overall and biochemical progression-free survival in patients with positive surgical margins and seminal vesicle invasion (9, 10). In addition, salvage radiotherapy has been found to improve prostate cancer-specific survival compared with observation in patients with PSA recurrence after radical prostatectomy (11). Therefore, radiotherapy plays a major role as adjuvant therapy in prostate cancer.

Radiotherapy is generally considered to be less invasive than surgery. The recent development of high precision radiotherapy for prostate cancer has improved dose conformity to the target (12-14). However, preventing adverse events remains a challenge, as the base of the prostate is located in close proximity to the organs at risk, which include the bladder and rectum. Late hematuria and rectal hemorrhage are particularly considered to be refractory and chronic conditions that decrease patient quality of life. Establishing appropriate dose constraints for minimizing these adverse events is therefore of particular necessity. The dose constrains for several organs, including the rectum, bladder, penile bulb, and femoral head have been reported from cases of prostate cancer treated with radical radiotherapy (15-18). However, reports regarding the association between dose-volume histogram (DVH) parameters and late hematuria and rectal bleeding in the postoperative setting are scarce (19).

Therefore, we evaluated the DVH parameters and clinical factors associated with late hematuria and rectal hemorrhage in patients treated with adjuvant radiotherapy.
Patients and Methods

A total of 94 consecutive postoperative patients with prostate cancer received radiotherapy at our institution between January 2006 and June 2019. This study was reviewed and approved by our Institutional Review Board (S18-081) and was performed in accordance with the Declaration of Helsinki; all patients provided informed consent. Eight patients, for whom the bladder or rectum were not included in the computed tomography (CT) simulation images used for treatment planning, were excluded; the remaining 86 patients were retrospectively evaluated. The clinical characteristics of the cohort are shown in Table I. The median patient age during radiotherapy was 67 years (range=50-79). Pretreatment evaluation to exclude lymph node and distant metastases included CT, magnetic resonance imaging, and bone scintigraphy.

Overall, 64 and 22 patients underwent open radical prostatectomy and RARP, respectively. Surgical margin positivity and pathological T3b stage was noted in 61 (71%) and 20 (23%) cases, respectively. Fifteen patients received postoperative radiotherapy and 71 received salvage radiotherapy for PSA failure after surgery. The median interval between surgery and radiotherapy was 12 months (range=14-119). All patients provided informed consent prior to radiotherapy.

Overall, 24 (28%) patients received neo-adjuvant or concurrent androgen-deprivation treatment (ADT). All DVH analyses were performed using the Monaco® (version: 5.11.02.) radiotherapy treatment planning system (Elekta AB, Stockholm, Sweden).

Assessment of adverse events, physical examination, and PSA measurement were performed every 3 months after radiotherapy. Late hematuria and rectal hemorrhage were evaluated by the Common Terminology Criteria for Adverse Events (version 5.0). In cases with symptoms, the bleeding and inflamed areas of the bladder and rectum were evaluated by cystoscopy or proctoscopy.

Overall survival, biological progression-free survival, and cumulative rates of adverse events were calculated from the initiation of radiotherapy to individual events using the Kaplan-Meier method. Receiver operating characteristic (ROC) curves were used to identify optimal cut-off values for late adverse events. The chi-square test was used to compare the differences between two groups. A p-value of <0.05 was considered statistically significant. Analyses were performed using the SPSS software (version 25.0; SPSS Inc., Chicago, IL, USA).

Results

The median follow-up period after radiotherapy was 49 months (range=2-157). No local recurrences were observed at the prostate floor. No deaths related to prostate cancer were observed during follow-up; 1 patient died at 75 months after radiotherapy owing to pancreatic cancer. The 5- and 10-year overall survival rates were 100% and 96%, respectively (Figure 1A); 29 patients experienced PSA recurrence during follow-up. The 5- and 10-year biological progression-free survival rates were 59% and 41%, respectively (Figure 1B). None of the cases of hematuria or rectal hemorrhage were related to cancers of the bladder or rectum.

Overall, 11 patients experienced hematuria (grade 1: n=5; grade 2: n=6), and the 5-year cumulative rates of grades ≥1 and ≥2 were 18% (95% CI=7-29%) and 12% (95% CI=3-21%), respectively (Figure 2A). Four patients experienced rectal hemorrhage (grade 1: n=3; grade 2: n=1), and the 5-year cumulative rates of grades ≥1 and ≥2 were 7% (95% CI=0-14%) and 2% (95% CI=0-5%), respectively (Figure 2B). No late adverse events of grade 3 or higher were observed.

ROC curve analysis for hematuria revealed the following significant cut-off values (Table II): bladder V50 Gy: 43%
and V40 Gy: 50% \((p=0.03) \). The 5-year cumulative hematuria rates for bladder V50 Gy ≥43% and <43% groups were 20% and 0%, respectively \((p=0.37, HR=22.6) \) (Figure 3A). On ROC curve analysis, rectum V60 Gy: 13% \((p=0.04) \) and V50 Gy: 33% \((p=0.03) \) were significant cut-off values for rectal hemorrhage (Table III). The 5-year cumulative rectal hemorrhage rates for rectum V50 Gy ≥33% and <33% groups were 11% and 0%, respectively \((p=0.12, HR=43.2) \) (Figure 3B). The other characteristics were not associated with late adverse events (Table IV).

Discussion

In this study, we analyzed the DVH parameters and clinical factors associated with hematuria and rectal hemorrhage in 86 patients receiving radiotherapy after radical prostatectomy. The treatment was safe, and the 5-year cumulative rates of hematuria and rectal hemorrhage of grade ≥2 were 12% and 2%, respectively. Previous studies have demonstrated that the rates of late genitourinary and gastrointestinal toxicities of grade ≥2 are 9-17% and 0-12%, respectively \((p=0.02) \) and V40 Gy: 50% \((p=0.03) \). The 5-year cumulative hematuria rates for bladder V50 Gy ≥43% and <43% groups were 20% and 0%, respectively \((p=0.37, HR=22.6) \) (Figure 3A). On ROC curve analysis, rectum V60 Gy: 13% \((p=0.04) \) and V50 Gy: 33% \((p=0.03) \) were significant cut-off values for rectal hemorrhage (Table III). The 5-year cumulative rectal hemorrhage rates for rectum V50 Gy ≥33% and <33% groups were 11% and 0%, respectively \((p=0.12, HR=43.2) \) (Figure 3B). The other characteristics were not associated with late adverse events (Table IV).
hemorrhage of grade 1 in patients with prostate cancer receiving postoperative radiotherapy.

Histopathologically, late radiation cystitis and proctitis are characterized by significant submucosal and mucosal changes. Vascular abnormalities, such as focal distortion, destruction of small arteries, intimal fibrosis, and fibrin thrombi within vessels are characteristic findings (25–27). These chronic microvascular injuries reduce the vascularity of the bladder and rectal walls, leading to secondary ischemic changes, which include submucosal fibrosis, crypt distortion, and focal mucosal ulceration. Telangiectatic vessels are often observed, causing repeated episodes of bleeding. Severe symptoms result in restrictions in the patient’s lifestyle, and dramatically decrease the quality of life. In clinical practice, corticosteroids, endoscopic approaches, and hyperbaric oxygen have been used to arrest bleeding or reduce inflammation (28–30). However, there is no evidence to support the routine use of these treatments. Radical treatments (e.g., rectal or urinary diversion) are considered in cases that progress despite conservative management. It is therefore essential to prevent radiation induced hematuria and rectal hemorrhage.

The identification of optimal dose constraints for the bladder and rectum is particularly necessary to prevent severe adverse events. Akthar et al. verified the utility of the parameters proposed by the Radiation Therapy Oncology Group (RTOG) 0534 (bladder-CTV V65, 40 Gy: ≤50, 70%, and rectum V65, 40 Gy: ≤35, 55%) and their institutional dose constraints (bladder V70, 65, 40 Gy: ≤30, 60, 80%, and rectum V70, 65, 40 Gy: ≤20, 40, 80%) in postoperative patients (20). However, neither RTOG 0534 nor their institutional dose constraints were significantly associated with late adverse events; therefore, DVH-toxicity relationships in the postoperative setting could not be established. The present study revealed the following significant cut-off values: bladder V50 Gy: 43% and V50 Gy: <43%, and V50 Gy: <33% (n=36) for rectal hemorrhage. The 5-year cumulative rectal hemorrhage rates for the higher and lower dose groups were 11% and 0%, respectively.

Table III. Dose-volume histogram parameters of the rectum for actual rates of rectal hemorrhage.

Characteristics	Cut-off values	Rectal hemorrhage	n=86	p-Value
Rectum V60 Gy	≥13%	8%	4/51	0.04
	<13%	0%	0/35	
Rectum V50 Gy	≥33%	8%	4/50	0.03
	<33%	0%	0/36	
Rectum V40 Gy	≥51%	7%	4/54	0.05
	<51%	0%	0/32	
Rectum mean dose	≥40 Gy	2%	1/41	0.34
	<40 Gy	7%	3/45	

Figure 3. The cumulative curves for hematuria and rectal hemorrhage according to cut-off values of bladder and rectum. (A) The cumulative curves for hematuria according to bladder V50 Gy of ≥43% (n=69) and V50 Gy of <43% (n=17). The 5-year cumulative hematuria rates for the higher and lower dose groups were 20% and 0%, respectively. (B) The cumulative curves for rectal hemorrhage according to rectum V50 Gy of ≥33% (n=50) and V50 Gy of <33% (n=36). The 5-year cumulative rectal hemorrhage rates for the higher and lower dose groups were 11% and 0%, respectively.
2 adverse events for gastrointestinal and genitourinary toxicities to be less than 10% (20); these rates were considerably low for obtaining any statistical association between DVH parameters and events. The relatively higher incidence of grade 1 events may facilitate the analysis of statistical significance of dose constraints for these events. Certain researchers advocate the use of established dose constraints to avoid severe adverse events; however, we also support the avoidance of mild bleeding symptoms as far as practicable, because grade 1 events may potentially increase the incidence of more severe effects.

In our study, cut-off values in the middle range of 40 to 60 Gy demonstrated statistical significance. This may be attributed to the fact that most patients were treated with total doses of 64 Gy, which was not a high dose. Higher doses of ≥70 Gy using intensity-modulated radiotherapy have been recommended in recent years to reduce biological failure in the postoperative setting (31, 32). Further studies are required to verify the utility of our dose constraints in the treatment planning using higher radiation doses.

Hypofractionated radiotherapy, that is the administration of fewer fractions with a higher dose per fraction, is being increasingly used for the definitive treatment of prostate cancer owing to benefits of shorter treatment schedules and patient convenience (33). This has been reported to be safe and effective in the postoperative setting (34). In view of the different dose fraction between hypofractionated and conventional schedules, a different set of dose constraints will need to be established when hypofractionated regimens are employed in the postoperative setting in future.

The present study has several limitations. It was a retrospective single-center study with a small sample size.

Characteristics	n=86	Hematuria	Rectal hemorrhage		
		Actual rate	p-Value	Actual rate	p-Value
Type of RT					
Salvage RT	71	14%	0.40	6%	0.21
Postoperative RT	15	7%		0%	
RT dose ≥64 Gy	73	14%	0.52	6%	0.25
<64 Gy	13	8%		0%	
ADT					
Yes	24	13%	0.96	0%	0.10
No	62	13%		7%	
Type of surgery					
Open radical prostatectomy	64	16%	0.14	6%	0.12
RARP	22	5%		0%	
Pathological stage					
T2, T3a	66	15%	0.19	6%	0.14
T3b	20	5%		0%	
Age					
≥67 years	43	7%	0.10	2%	0.30
<67 years	43	19%		7%	
Anticoagulant therapy					
Yes	11	18%	0.58	9%	0.50
No	75	12%		4%	

RT: Radiotherapy; ADT: androgen-deprivation treatment; RARP: robotic-assisted radical prostatectomy.

Author (Year) (Reference)	Type of RT	Median RT dose	Study design	Patient number	Genitourinary toxicity	Gastrointestinal toxicity
Akthar (2018) (20)	IMRT	66 Gy	Retrospective	164	- 9% (4-year)	- 9% (4-year)
Berlin (2015) (21)	IMRT	66 Gy	Prospective	68	- 11%	- 12% (3-year)
Hunter (2013) (22)	IMRT	70 Gy	Prospective	104	- 12% (3-year)	- 12% (3-year)
Goenka (2011) (23)	3DCRT+IMRT	-	Retrospective	285	- 17%	- 5%
Nath (2010) (24)	IMRT	68 Gy	Retrospective	50	- 16% (2-year)	- 2% (2-year)
Present study	3DCRT	64 Gy	Retrospective	86	18%	7%

RT: Radiotherapy; 3DCRT: three-dimensional conformal radiotherapy; IMRT: intensity-modulated radiotherapy.
Cumulative evidence on additional cases of bleeding may alter the interpretation of our analysis.

In conclusion, the present study identified the dose constraints that may reduce the incidence of hematuria and rectal hemorrhage in patients receiving radiotherapy after radical prostatectomy. Further large-scale prospective studies are needed to validate the clinical utility of the bladder and rectal dose constraints obtained from the present study.

Conflicts of Interest

The Authors have no conflicts of interest to declare.

Authors’ Contributions

Shirai K, Suzuki M and Akahane K designed and directed the analysis. Takahashi Y, Kawahara M and Yamada E analyzed the data. Ogawa K, Takahashi S, Minato K and Hamamoto K contributed to the analysis of the results and performed the statistical analysis. Saito K, Oshima M, Konishi T, Nakamura Y and Washino S generated a database and performed data collection. Shirai K, Wakatsuki M and Miyagawa T supervised the project.

Acknowledgements

The Authors would like to thank Editage (www.editage.jp) for English language editing.

References

1 Arnold M, Karim-Kos HE, Cоеbergh JW, Byrnes G, Antilla A, Ferlay J, Renehan AG, Forman D and Soerjomataram I: Recent trends in incidence of five common cancers in 26 European countries since 1988: Analysis of the European Cancer Observatory. Eur J Cancer 51(9): 1164-1187, 2015. PMID: 24120180. DOI: 10.1016/j.ejca.2013.09.002

2 Mottet N, Bellmunt J, Bolla M, Briers E, Cumberbatch MG, De Santis M, Fossati N, Gross T, Henry AM, Joniau S, Lam TB, Mason MD, Matveev VB, Moldovan PC, van den Bergh RCN, Van den Broeck T, van der Poel HG, van der Kwast TH, Rouvière O, Schoots IG, Siegel T and Cornford P: EAU-ESTRO-SIOG guidelines on prostate cancer, part I: screening, diagnosis, and local treatment with curative intent. Eur Urol 71(4): 618-629, 2017. PMID: 27568654. DOI: 10.1016/j.eururo.2016.08.003

3 Novara G, Ficarra V, Mocellin S, Ahlering TE, Carroll PR, Graefen M, Guazzoni G, Menon M, Patel VR, Shariat SF, Tewari AK, Van Poppel H, Zattoni F, Montorsi F, Mottrie A, Rosen RC and Wilson TG: Systematic review and meta-analysis of studies reporting oncologic outcome after robot-assisted radical prostatectomy. Eur Urol 62(3): 382-404, 2012. PMID: 22749851. DOI: 10.1016/j.eururo.2012.05.047

4 Ritch CR, You C, May AT, Herrell SD, Clark PE, Penson DF, Chang SS, Cookson MS, Smith JA Jr and Barcos DA: Biochemical recurrence-free survival after robotic-assisted laparoscopic vs open radical prostatectomy for intermediate- and high-risk prostate cancer. Urology 83(6): 1309-1315, 2014. PMID: 24746665. DOI: 10.1016/j.urology.2014.02.023

5 Ploussard G: Robotic surgery in urology: facts and reality. What are the real advantages of robotic approaches for prostate cancer patients? Curr Opin Urol 28(2): 153-158, 2018. PMID: 29232271. DOI: 10.1097/MOU.0000000000000470

6 Sooriakumaran P, Srivastava A, Shariat SF, Stricker PD, Ahlering T, Eden CG,Wiklund PN, Sanchez-Salas R, Mottrie A, Lee D, Neal DE, Ghavamian R, Nyrady P, Nilsson A, Carlsson S, Xylinas E, Lidold W, Seitz C, Schramek P, Roehrborn C, Cathelineau X, Skarecky D, Shaw G, Warren A, Delprado WJ, Haynes AM, Steyerberg E, Roobol MJ and Tewari AK: A multinational, multi-institutional study comparing positive surgical margin rates among 22393 open, laparoscopic, and robot-assisted radical prostatectomy patients. Eur Urol 66(3): 450-456, 2014. PMID: 24290695. DOI: 10.1016/j.eururo.2013.11.018

7 Hu JC, Gandaglia G, Karakiewicz PI, Nguyen PL, Trinh QD, Shih YC, Abdollah F, Channie K, Wright JL, Ganz PA and Sun M: Comparative effectiveness of robot-assisted versus open radical prostatectomy cancer control. Eur Urol 66(4): 666-672, 2014. PMID: 24602934. DOI: 10.1016/j.eururo.2014.02.015

8 Menon M, Bhandari M, Gupta N, Lane Z, Peabody JO, Rogers CG, Sammon J, Siddiqui SA and Diaz M: Biochemical recurrence following robot-assisted radical prostatectomy: analysis of 1384 patients with a median 5-year follow-up. Eur Urol 58(6): 838-846, 2010. PMID: 20869162. DOI: 10.1016/j.eururo.2010.09.010

9 Thompson IM, Taneg CM, Paradello J, Lucia MS, Miller G, Troyer D, Messing E, Forman J, Chin J, Swanson G, Canby-Hagino E and Crawford ED: Adjuvant radiotherapy for pathological T3N0M0 prostate cancer significantly reduces risk of metastases and improves survival: long-term followup of a randomized clinical trial. J Urol 181(3): 956-962, 2009. PMID: 19167731. DOI: 10.1016/j.juro.2008.11.032

10 Bolla M, van Poppel H, Tombal B, Vekmans K, Da Pozzo L, de Reijke TM, Verbeaes A, Bosset JF, van Velthoven R, Colombel M, van de Beek C, Verhagen P, van den Bergh A, Sternberg C, Gasser T, van Tienhoven G, Scalliet P, Haustermans K and Collette L; European Organisation for Research and Treatment of Cancer, Radiation Oncology and Genito-Urinary Groups: Postoperative radiotherapy after radical prostatectomy for high-risk prostate cancer: long-term results of a randomised controlled trial (EORTC trial 22911). Lancet 380(9858): 2018-2027, 2012. PMID: 23084481. DOI: 10.1016/S0140-6736(12)61253-7

11 Trock BJ, Han M, Freedland SJ, Humphreys EB, DeWeese TL, Partin AW and Walsh PC: Prostate cancer-specific survival following salvage radiotherapy vs observation in men with biochemical recurrence after radical prostatectomy. JAMA 299(23): 2760-2769, 2008. PMID: 18560003. DOI: 10.1001/jama.299.23.2760

12 Yamazaki H, Nakamura S, Nishimura T, Yoshida K, Yoshioka Y, Kishan AU and King CR: Stereotactic body radiotherapy for low- and intermediate-risk prostate cancer. Semin Radiat Oncol 27(3): 268-278, 2017. PMID: 28577834. DOI: 10.1016/j.semradonc.2017.02.006
14 Podder TK, Fredman ET and Ellis RJ: advances in radiotherapy for prostate cancer treatment. Adv Exp Med Biol 1096: 31-47, 2018. PMID: 30324346. DOI: 10.1007/978-3-319-99286-0_2

15 Harsolia A, Vargas C, Yan D, Brabbins D, Lockman D, Liang J, Gustafson G, Vicini F, Martinez A and Kestin LL: Predictors for chronic urinary toxicity after the treatment of prostate cancer with adaptive three-dimensional conformal radiotherapy: dose-volume analysis of a phase II dose-escalation study. Int J Radiat Oncol Biol Phys 69(4): 1100-1109, 2007. PMID: 17967304. DOI: 10.1016/j.ijrobp.2007.04.076

16 Fiorino C, Fellin G, Rancati T, Vavassori V, Bianchi C, Borca VC, Girelli M, Mapelli M, Menegotti L, Nava S and Valdagni R: Clinical and dosimetric predictors of late rectal syndrome after 3D-CRT for localized prostate cancer: preliminary results of a multicenter prospective study. Int J Radiat Oncol Biol Phys 70(4): 1130-1137, 2008. PMID: 17881142. DOI: 10.1016/j.ijrobp.2007.07.2354

17 Roach M, Winter K, Michalski JM, Cox JD, Purdy JA, Bosch W, Lin X and Shipley WS: Penile bulb dose and impotence after three-dimensional conformal radiotherapy for prostate cancer on RTOG 9406: findings from a prospective, multi-institutional, phase I/II dose-escalation study. Int J Radiat Oncol Biol Phys 60(5): 1351-1356, 2004. PMID: 15590164. DOI: 10.1016/j.ijrobp.2004.05.026

18 Bedford JL, Khoo VS, Webb S and Deanaley DP: Optimization of the coplanar six-field techniques for conformal radiotherapy of the prostate. Int J Radiat Oncol Biol Phys 46(1): 231-238, 2000. PMID: 10656397. DOI: 10.1016/s0360-3016(99)00358-2

19 Cozzarini C, Fiorino C, Ceresoli GL, Cattaneo GM, Bolognesi A, Calandrino R and Villas E: Significant correlation between rectal DVH and late bleeding in patients treated after radical prostatectomy with conformal or conventional radiotherapy (66.6-70.2 Gy). Int J Radiat Oncol Biol Phys 55(3): 688-694, 2003. PMID: 12573756. DOI: 10.1016/s0360-3016(02)04117-2

20 Akhtar AS, Wong AC, Parekh AD, Hubert G, Son CH, Pelizzari CA and Liao SL: Late toxicity after post-prostatectomy intensity modulated radiation therapy: Evaluating normal-tissue sparing guidelines. Adv Radiat Oncol 3(3): 339-345, 2018. PMID: 30208230. DOI: 10.1016/j.adro.2018.04.009

21 Berlin A, Cho E, Kong V, Howell KJ, Lao B, Craig T, Bayley A, Chung P, Gospodarowicz M, Warde P, Catton C, Bristow RG and Ménard C: Phase 2 trial of guideline-based postoperative radiation therapy for localized prostate cancer and post-prostatectomy patients. Pract Radiat Oncol 3(4): 323-328, 2013. PMID: 24674405. DOI: 10.1016/j.prro.2012.08.004

22 Hunter GK, Brockway K, Reddy CA, Rehman S, Sheppard LJ, Stephens KL, Ciezki JP, Xia P and Tentulka RD: Late toxicity after intensity modulated and image guided radiation therapy for localized prostate cancer and post-prostatectomy patients. Pract Radiat Oncol 3(4): 323-328, 2013. PMID: 24674405. DOI: 10.1016/j.prro.2012.08.004

23 Goenka A, Magsacion JM, Pei X, Schechter M, Kollmeier M, Cox B, Scardino PT, Eastham JA and Zelefsky MJ: Improved toxicity profile following high-dose postprostatectomy salvage radiation therapy with intensity-modulated radiation therapy. Eur Urol 60(6): 1142-1148, 2011. PMID: 21855208. DOI: 10.1016/j.euro.2011.08.006

24 Nath SK, Sandhu AP, Rose BS, Simpson DR, Nobiensky PD, Wang JZ, Millard F, Kane CJ, Parsons JK and Mundt AJ: Toxicity analysis of postoperative image-guided intensity-modulated radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys 78(2): 435-441, 2010. PMID: 19939580. DOI: 10.1016/j.ijrobp.2009.08.023

25 Haboubi NY, Schofield PF and Rowland PL: The light and electron microscopic features of early and late phase radiation-induced proctitis. Am J Gastroenterol 83(10): 1140-1144, 1988. PMID: 3421224.

26 Coia LR, Myerson RJ and Tepper JE: Late effects of radiation therapy on the gastrointestinal tract. Int J Radiat Oncol Biol Phys 31(5): 1213-1236, 1995. PMID: 7713784. DOI: 10.1016/0360-3016(94)00419-L

27 Haselton PS, Carr N and Schofield PF: Vascular changes in radiation bowel disease. Histopathology 9(5): 517-534, 1985. PMID: 4007790. DOI: 10.1111/j.1365-2559.1985.tb02833.x

28 Smit SG and Heyns CF: Management of radiation cystitis. Nat Rev Urol 7(4): 206-214, 2010. PMID: 20212517. DOI: 10.1038/nruro.2010.23.

29 Weiner JP, Wong AT, Schwartz D, Martinez M, Aytaman A and Schreiber D: Endoscopic and non-endoscopic approaches for the management of radiation-induced rectal bleeding. World J Gastroenterol 22(31): 6972-6986, 2016. PMID: 27610010. DOI: 10.3748/wjg.v22.i31.6972

30 Oscarsson N, Arnell P, Lodding P, Ricksten SE and Seemann-Lodding H: Hyperbaric oxygen treatment in radiation-induced cystitis and proctitis: a prospective cohort study on patient-perceived quality of recovery. Int J Radiat Oncol Biol Phys 87(4): 670-675, 2013. PMID: 24035333. DOI: 10.1016/j.ijrobp.2013.07.039

31 King CR: The dose-response of salvage radiotherapy following radical prostatectomy: a systematic review and meta-analysis. Radiother Oncol 121(2): 199-203, 2016. PMID: 27863963. DOI: 10.1016/j.radonc.2016.10.026

32 Pisantsky TM, Agrawal S, Hamstra DA, Koontz BF, Liauw SL, Efstathiou JA, Michalski JM, Feng FY, Abramowitz MC, Pollack A, Ansheer MS, Moughanaki D, Den RB, Stephens KL, Zietman AL, Lee WR, Kattan MW, Stephenson AJ and Tendulkar RD: Salvage radiation therapy dose response for biochemical failure of prostate cancer after prostatectomy-a multi-institutional observational study. Int J Radiat Oncol Biol Phys 96(5): 1046-1053, 2016. PMID: 27745980. DOI: 10.1016/j.ijrobp.2016.08.043

33 Morgan SC, Hoffman K, Loblaw DA, Buysoumouski MK, Patton C, Barocas D, Benitez S, Chang M, Efstathiou J, Greaney P, Halvorsen P, Koontz BF, Lawton C, Leyrer CM, Lin D, Ray M and Sandler H: Hypofractionated radiation therapy for localized prostate cancer: an ASTRO, ASCO, and AUA evidence-based guideline. J Clin Oncol 34(36): 3411-3430, 2018. PMID: 30307776. DOI: 10.1200/JCO.18.01097

34 Tandberg DJ, Oeyenkule T, Lee WR, Wu Y, Salama JK and Koontz BF: Postoperative radiation therapy for prostate cancer: comparison of conventional versus hypofractionated radiation regimens. Int J Radiat Oncol Biol Phys 101(2): 396-405, 2018. PMID: 29559284. DOI: 10.1016/j.ijrobp.2018.02.002