Comparison of genetic susceptibility to lung adenocarcinoma and squamous cell carcinoma in Japanese patients using a novel panel for cancer-related drug-metabolizing enzyme genes

Sumiko Ohnami¹, Akane Naruoka², Mitsuhiro Isaka⁷, Maki Mizuguchi³, Sou Nakatani³, Fukumi Kamada³, Yuji Shimoda³, Ai Sakaí¹,³, Keiichi Ohshima³, Keiichi Hatakeyama⁴, Kouji Maruyama⁵, Yasuhisa Ohde⁶, Hirotugu Kenmotsu⁶, Toshiaki Takahashi⁶, Yasuto Akiyama⁶, Takeshi Nagashima¹,³, Kenichi Urakami¹, Shumpei Ohnami¹,³ & Ken Yamaguchi¹⁰

The differences in genetic susceptibility to lung adenocarcinoma and squamous cell carcinoma remain unclear. We developed a customized, targeted gene sequencing panel for efficient and sensitive identification of germline variants, including whole-gene deletion types for cancer-related drug-metabolizing enzyme genes in lung adenocarcinoma and squamous cell carcinoma. The minor allele frequencies of the variants, confirmed as clinically significant in the Japanese population, did not differ significantly from those of normal participants listed in the public database. Genotype analysis comparing lung adenocarcinoma (n = 559) and squamous cell carcinoma (n = 151) indicated that the variants of DPYD (rs190771411, Fisher’s exact test, \(P = 0.045 \); rs200562975, \(P = 0.045 \)) and ALDH2 (rs568781254, \(P = 0.032 \)) were associated with an increased risk of squamous cell carcinoma compared to adenocarcinoma. Conversely, whole-gene deletion of CYP2A6 was associated with adenocarcinoma but not squamous cell carcinoma. Notably, whole-gene deletion of CYP2A6 was confirmed in 22 patients with lung adenocarcinoma but not in any patients with squamous cell carcinoma. Most patients with whole-gene deletion of CYP2A6 were female non-smokers. The discovery of a whole-gene deletion of CYP2A6 in patients with lung adenocarcinoma may have an important role in clinical practice and advance our understanding of CYP2A6 germline variants and their association with carcinogenesis or their susceptibility to lung adenocarcinoma.

¹Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, 1007 Shimonagakubo, Nagaiizumi-Cho, Shizuoka, Japan. ²Drug Discovery and Development Division, Shizuoka Cancer Center Research Institute, Nagaiizumi, Shizuoka, Japan. ³Medical Genetics Division, Shizuoka Cancer Center Research Institute, Nagaiizumi, Shizuoka, Japan. ⁴Cancer Multiomics Division, Shizuoka Cancer Center Research Institute, Nagaiizumi, Shizuoka, Japan. ⁵Experimental Animal Facility, Shizuoka Cancer Center Research Institute, Nagaiizumi, Shizuoka, Japan. ⁶Immunotherapy Division, Shizuoka Cancer Center Research Institute, Nagaiizumi, Shizuoka, Japan. ⁷Division of Thoracic Surgery, Shizuoka Cancer Center Hospital, Nagaiizumi, Shizuoka, Japan. ⁸Division of Thoracic Oncology, Shizuoka Cancer Center Hospital, Nagaiizumi, Shizuoka, Japan. ⁹SRL, Inc, Tokyo, Japan. ¹⁰Shizuoka Cancer Center, Nagaiizumi, Shizuoka, Japan. ¹¹email: s.onami@scchr.jp
Individual and racial differences exist in the occurrence of adverse effects of therapeutic drugs, including anticancer drugs. Therefore, detecting variants of genes encoding drug-metabolizing enzymes is vital for understanding the variations in drug response and individual risks of adverse effects. Additionally, various genetic damages induced by endogenous compounds and exogenous hazards, such as environmental chemicals, may contribute to the etiology of cancer. Approximately 30% of drug-metabolizing enzyme substrates can be metabolically enhanced. Some genetic variants of drug-metabolizing enzymes correlate with cancer risk. However, contradictory findings have also been reported. Phase I drug-metabolizing enzymes such as cytochrome P450 (CYPs), encoded by P450 genes, metabolize pro-carcinogens into genotoxic electrophilic intermediates. Phase II drug-metabolizing enzymes bind intermediates to water-soluble derivatives to complete the detoxification cycle. Therefore, the activity and expression of genes encoding phase I and phase II drug-metabolizing enzymes are important factors in defining the toxicity or carcinogenicity of environmental chemicals, including cancer susceptibility and smoking effects.

Lung cancer is one of the cancers most strongly associated with exposure to environmental factors, such as smoking and inhalation of exhaust fumes. The overall landscape of genomic abnormalities in somatic cells of lung adenocarcinoma and squamous cell lung carcinoma, the most common subtypes of lung cancer, has been largely revealed. The mutations in lung cancer cells of smokers mainly consist of cytosine to adenine (C > A) nucleotide transversions, which arise due to the mutagenic effect of tobacco. In contrast, non-smokers usually present a predominant transition from cytosine to thymine (C > T). Moreover, they have fewer somatic mutations and genomic breakpoints, and a smaller fraction of the genome with chromosomal instability than smokers. Smoking is more strongly associated with squamous cell carcinoma than adenocarcinoma. However, in terms of genetic predisposition, the difference between lung adenocarcinoma and squamous cell carcinoma in germline variants of drug-metabolizing enzymes remains unclear.

Widespread use of next-generation sequencing has enabled comprehensive investigation of genetic variants, such as drug-metabolizing enzymes, using whole-genome sequencing (WGS) and whole-exome sequencing (WES). However, genes with high homologies, such as CYP genes, still have unanalyzable genetic variants. Therefore, we constructed a unique genetic variant panel that mainly covers the exon regions of 20 genes, including both lifestyle- and cancer-related genes, focusing on drug-metabolizing enzyme-coding genes that influence the therapeutic and adverse effects of anticancer drugs. Here, we compared the differences in genetic susceptibility to lung adenocarcinoma and squamous cell carcinoma in the germline of Japanese patients using a novel panel (DME panel) and next-generation sequencing.

Results
The total number of variants of the 20 target genes detected using the DME panel was 433 (Supplementary Fig. S1). The mean depth of coverage of the target regions was 455-fold that of the DME panel. All previously described to affect drug responses in Japanese populations were detectable among these genetic variants. The minor allele frequencies (MAFs) of the variants did not differ significantly from those of normal participants listed in the public database, suggesting that the DME panel is useful for comprehensively detecting germline mutations (Table 1).

The characteristics of patients with adenocarcinoma and squamous cell carcinoma of the lungs are shown in Table 2. The number of patients with squamous cell carcinoma who smoked was significantly higher (P < 0.001) than that of patients with adenocarcinoma. The proportion of patients with squamous cell carcinoma (73.5%, 111/151) who consumed alcohol was also significantly higher (P < 0.001) than that of patients with adenocarcinoma (55.4%, 309/558).

The association analysis results of individual variants of squamous cell carcinoma and adenocarcinoma of the lungs are shown in Supplementary Table S1. Two variants of DPYD (rs190771411 and rs200562975) and a variant of ALDH2 (rs568781254) were associated with an increased risk of squamous cell carcinoma compared to adenocarcinoma in the dominant model (P < 0.05) (Table 3). The characteristics of all 7 squamous cell carcinoma patients with significant variants in DPYD and ALDH2 are shown in Table 4. No distinctive items were noted. Notably, a whole-gene deletion of CYP2A6 was detected in 22 patients with adenocarcinoma but in no patient with squamous cell carcinoma (Table 5, Supplementary Fig. S2). In addition, 63.6% (14/22) of patients with a CYP2A6 whole-gene deletion were non-smokers, and 72.7% (16/22) were women. To assess its clinical effect, we analyzed the effect of the CYP2A6 whole-gene deletion in lung adenocarcinoma on overall survival (OS) using the Kaplan–Meier method. Patients with the CYP2A6 whole-gene deletion-type showed no significant difference in terms of OS compared to those with the CYP2A6 gene retain-type. Lung adenocarcinoma patients with the CYP2A6 gene retain-type had significantly (p = 0.0099) better OS compared with squamous cell carcinoma patients with the CYP2A6 gene retain-type (Fig. 1). The characteristics of all 22 adenocarcinoma patients with deletion-type of CYP2A6 gene are shown in Table 6. These patients with CYP2A6 whole-gene deletion-type on survivals showed no relationship between surgical procedure and TNM stage.

Discussion
This study presented an efficient and sensitive analysis of genetic variants, including whole-gene deletion types for drug-metabolizing enzymes and environmental- or lifestyle-related factors. Multiplex long-range PCR amplification with locus-specific primers and next-generation sequencing was also adopted for library products unique in the DME panel because of their high sequence identities to other CYPs. For example, the sequences of CYP2A6 and CYP2D6 are > 90% identical to those of CYP2A7 and CYP2D7, respectively. Although there are reports that genetic variants of CYP2A6, including whole-gene deletions, are associated with lung cancer risk, differences in the risk for adenocarcinoma and squamous cell carcinoma of the lungs remain poorly understood. Notably, the CYP2A6 whole-gene deletion was confirmed in 22 patients with lung adenocarcinoma but in no patients having
Table 1. List of the genetic variants recognized as clinically significant genes in the Japanese population. *MAF (minor allele frequency) is information from a Japanese database (HGVD or jMorp).

Gene symbol	NCBI SNP ID (rs number)	Reference (major)/variant (minor) allele	Amino acid residue change	Nucleotide exchange	MAF in Japanese*	MAF in this panel
ABCG2	rs2231142	C/A	Gin141lys	421C>A	0.2967	0.3042
ABCG2	rs72552713	C/T	Gin126end	576C>T	0.0227	0.0212
CYP1A2	rs72547517	G/A	Arg456His	1367G>A	0.0062	0.0050
CYP2A6	rs8192720	C/T	L18L	22C>T	0.2490	0.2441
CYP2B6	rs3745274	G/T	Gly172His	523G>T	0.1685	0.1901
CYP2B6	rs8192709	C/T	Arg22Cys	64C>T	0.0572	0.0562
CYP2C9	rs1057910	A/C	Ile359Leu	1100A>C	0.0242	0.0243
CYP2C19	rs14986893	G/A	Trp212Cys	661G>A	0.1295	0.1266
CYP2C19	rs4244285	G/A	Pro227Pro	681G>A	0.2944	0.2943
CYP2D6	rs3892097	C/T	splicing			
CYP2E1	rs2515641	T/C	Phe421Phe	1263T>C	0.8358	0.8273
CYP3A4	rs12721627	C/G	Thr185Ser	554C>G	0.0210	0.0218
CYP3A5	rs28365085	T/C	Ile488Thr	1463C>T	0.0124	0.0126
CDA	rs60369023	G/A	Ala207Thr	208G>A	0.0415	0.0388
CDA	rs2072671	A/C	Lys27Gln	79A>C	0.1968	0.1903
COMT	rs4680	G/A	Val158Met	721G>A	0.3125	0.3145
DPDY	rs188052243	A/G	Asn893Ser	2678A>G	0.0023	0.0028
DPDY	rs2297595	A/G	Met166Val	496A>G	0.0218	0.0152
NAT2	rs1801280	T/C	Ile114Thr	341T>C	0.0134	0.0150
NAT2	rs1799931	G/A	Gly286Glu	964G>A	0.0877	0.0977
TPMT	rs1142345	A/G	Tyr240Cys	896A>G	0.0096	0.0096
UGT1A1	rs4148323	G/A	Gly71Arg	226G>A	0.1740	0.1790
ADH1B	rs1229984	A/C	His48Pro	143A>C	0.2378	0.2254
ALDH2	rs671	G/A	Glu504Lys	1510G>A	0.2386	0.2637
MTHFR	rs1801131	A/C	Gln470Ala	1409A>C	0.1996	0.1874
MTRR	rs1801394	A/G	Ile22Met	66A>G	0.3019	0.3143

squamous cell carcinoma. In addition, patients with whole-gene deletions were primarily female non-smokers. Our results suggest that in lung adenocarcinoma, this finding may be associated with the mechanisms of carcinogens different than those activated by CYP2A6. Aiyoshi et al. demonstrated that the CYP2A6 whole-gene deletion was not found in male smokers among Japanese patients with squamous cell carcinoma (0 of 105)14, which is consistent with our results.

CYP2A6 is an enzyme responsible for metabolizing of nicotine- and tobacco-specific carcinogens. Genetic variants of CYP2A6 are associated with changes in the activity of the CYP2A6 enzyme, which influences smoking effects and the rate at which some tobacco-specific carcinogens are metabolized, which subsequently determines the incidence of lung cancer. In smokers with lower CYP2A6 activity, tobacco-specific nitrosamines are activated at lower levels, decreasing their exposure to these activated lung carcinogens15. Considering that the whole-gene deletion of CYP2A6 is found only in lung adenocarcinoma, the potential role of CYP2A6 germline variants in lung carcinogenesis is intriguing. Its role may be explained by the following. Individuals with CYP2A6 whole-gene deletions may be less susceptible to smoking effects. Therefore, some patients may have developed lung adenocarcinomas through a pathway unrelated to the function of CYP2A6, regardless of smoking. Conversely, squamous cell carcinoma that develops in squamous epithelial cells may be directly affected by smoking in a dose-dependent manner while maintaining the function of the CYP2A6 variants.

Heterozygous or homozygous CYP2A6 deletions may be associated with a decreased occurrence of gastric cancer in females and decreased total cancer, including lung, colon, and gastric cancers in female non-smokers16. Adenocarcinoma is the most common subtype of primary lung cancer in women and is considered to be due to the later adoption of smoking by women17. Additionally, estrogen and its receptors have been identified as factors that increase the risk of lung adenocarcinoma18,19. The biological significance of CYP2A6 whole-gene deletions in lung adenocarcinoma may be the modulation of the cancer phenotype, which requires further investigation and may enhance our understanding of the oncogenic mechanism of lung adenocarcinoma. However, it remains unclear how CYP2A6 whole-gene deletions are involved in the development of lung adenocarcinoma and their interaction with xenobiotic organisms. Therefore, verifying its function using cell lines with downregulated or without CYP2A6 expression is necessary. This is currently being investigated in our laboratory. A limitation of the present study is that the absence of the CYP2A6 whole-gene deletion in patients with squamous cell carcinoma is debatable because our results were derived from a small hospital-based sample. Therefore, it will be necessary to verify the results using a larger sample.
Total number	Lung cancer	
710	AD^a	SCC^b
	559	151

Gender

	Male	Female
	294	131
	265	20

Age

	≤50	51–60	61–70	≥71
	17	1	69	8
	206	62		
	267	80		

Smoking status

	Nonsmokers	Smokers
	232	327

Pack-years^d

	Light smokers (0 < to < 20)	Heavy smokers (> 20)	Smokers but pack-years unknown
	77	248	2
	6	145	0

Drinking status

	Nondrinkers	Drinkers	Unknown
	249	309	1
	40	111	0

TNM stage (UICC TNM 7th)

	IIA	IIB	IIIC	IV
	55	43	1	12
	24	23	2	2

Surgical procedure

	Lobectomy	Sublobar resection
	500	59

Histologic patterns (subtypes) of adenocarcinoma

	Acinar	Mucinous	Lepidic	Papillary	Solid	Others^e	Unknown
	230	41	116	82	63	19	8

Adjuvant therapy

	Chemotherapy	Radiotherapy	Chemoradiotherapy
	112	8	2

Family history of cancer

	Yes	No	Unknown
	390	108	61

Table 2. Characteristics of the patients with lung cancer.
^aAD; Adenocarcinoma,
^bSCC; Squamous cell carcinoma,
^cP value by Fisher’s exact test,
^dPack-years; defined as the number of packs of cigarettes smoked per day times of years of smoking,
^eOthers were as follows: minimally invasive (n = 15), moderately differentiated (n = 2), and pulmonary (n = 1).
In the present study, the $ALDH2$ (rs568781254) or $DPYD$ variants (rs190771411 and rs200562975) were associated with an increased risk of squamous cell carcinoma patients compared to adenocarcinoma. However, due to the low frequency of the minor allele of the variants (MAF of 0.0029 for $ALDH2$ and MAF of 0.0014 for $DPYD$), these were not large enough to detect an association with squamous cell carcinoma. Previous Japanese studies noted that genetic variants in $ALDH2$ are involved in ethanol metabolism, specifically associated with the risk of esophageal cancers. The carcinogenic metabolite acetaldehyde, an ingredient in tobacco smoke and/or alcohol, is detoxified by $ALDH2$. Matsuo et al. reported that the $ALDH2$ variant interacted with cigarette

Table 3

The genetic variants of $DPYD$ and $ALDH2$ show significantly different frequencies between adenocarcinoma and squamous cell carcinoma in patients with lung cancer. aAD adenocarcinoma, bSCC squamous cell carcinoma, cP value by Fisher’s exact test.

Genotype	AD a	SCC b	P value c	
$DPYD$				
AA	552	148		
rs190771411	AG	0	2	
	GG	0	0	
	AG + GG	0	2	0.045
	Missing	7	1	
$DPYD$				
TT	554	148		
rs200562975	TC	0	2	
	CC	0	0	
	TC + CC	0	2	0.045
	Missing	5	1	
$ALDH2$				
AA	549	145		
rs568781254	AC	1	3	
	CC	0	0	
	AC + CC	1	3	0.032
	Missing	9	3	

Table 4

Characteristics of all patients (n = 7) of lung squamous cell carcinoma with $DPYD$ and $ALDH2$ variants. aVariants; $DPYD$ variant 1, variant2, and $ALDH2$ variant1 indicate rs190771411 (A > G), rs200562975 (T > C), and rs568781254 (A > C), respectively. bSmoking status; Light smokers (0 < to < 20), Heavy smokers (> 20), as shown in Table 2.

Variants a	Case	Gender	Age	Smoking status b	Drinking status	Surgical procedure	pStage	Family history	Survival time (month)
$DPYD$ variant 1	1	Female	59	Heavy	Yes	Lobectomy	IIIA	Yes	74 (death)
$DPYD$ variant 1	2	Male	73	Heavy	No	Lobectomy	IIA	Yes	74 (alive)
$DPYD$ variant 3	3	Male	69	Heavy	Yes	Lobectomy	IB	Yes	57 (alive)
$DPYD$ variant 2	4	Male	60	Heavy	No	Lobectomy	IIA	Yes	46 (alive)
$ALDH2$ variant 1	5	Male	78	Heavy	No	Lobectomy	IIIA	unknown	12 (death)
$ALDH2$ variant 1	6	Male	72	Heavy	Yes	Sublobar resection	IA	Yes	84 (alive)
$ALDH2$ variant 1	7	Male	71	Heavy	Yes	Lobectomy	IA	Yes	66 (alive)

Table 5

Genetic variants of $CYP2A6$ show significantly different frequencies between adenocarcinoma and squamous cell carcinoma in patients with lung cancer. aAD adenocarcinoma, bSCC squamous cell carcinoma, cP value by Fisher’s exact test. dSmoking status of patients with $CYP2A6$ whole-gene deletion; Never = 14, Light = 3, Heavy = 5. eSex of patients with $CYP2A6$ whole-gene deletion; Female = 16, Male = 6.

Genotype	AD a	SCC b	P value c
$CYP2A6$			
Present	537	151	
Whole-gene deletion	22d	0	0.007

In the present study, the $ALDH2$ (rs568781254) or $DPYD$ variants (rs190771411 and rs200562975) were associated with an increased risk of squamous cell carcinoma patients compared to adenocarcinoma. However, due to the low frequency of the minor allele of the variants (MAF of 0.0029 for $ALDH2$ and MAF of 0.0014 for $DPYD$), these were not large enough to detect an association with squamous cell carcinoma. Previous Japanese studies noted that genetic variants in $ALDH2$ are involved in ethanol metabolism, specifically associated with the risk of esophageal cancers. The carcinogenic metabolite acetaldehyde, an ingredient in tobacco smoke and/or alcohol, is detoxified by $ALDH2$. Matsuo et al. reported that the $ALDH2$ variant interacted with cigarette
smoking in the risk of lung cancer in Japanese. Fluoropyrimidines (5-FU and its prodrug capecitabine) are widely used to treat several types of cancer. Several studies have shown a link between reduced DPYD enzyme activity and increasing the risk of severe toxicity. A recent study has reported that the functional alterations of enzyme activities caused by DYPD variants were characterized. The rs200562975 of DPYD identified in the present study reportedly reduced enzymatic activity to less than 70% of wild-type in vitro. However, none of the previous studies examined whether the DYPD variants contribute to the risk of lung cancer. Additionally, there is a lack of studies assessing the functional effect of most variants for DPYD in vivo, and inferring possible

Figure 1. Kaplan–Meier survival curves for patients with or without whole-gene deletion-type of CYP2A6 in lung adenocarcinoma and squamous cell carcinoma with CYP2A6 retain-type.

Table 6. Characteristics of all patients (n = 22) of lung adenocarcinoma with CYP2A6 whole-gene deletion.

Cases	Gender	Age	Smoking status	Drinking status	Surgical procedure	pStage	Subtype	Family history	Survival time (month)
1	Female	79	Never	No	Lobectomy IA	IA	Acinar	Yes	96 (alive)
2	Female	57	Never	No	Lobectomy IB	IB	Acinar	Yes	95 (alive)
3	Female	60	Never	No	Lobectomy IB	IB	Mucinous	Yes	92 (alive)
4	Male	86	Heavy	Yes	Lobectomy IB	IB	Minimally	Yes	88 (alive)
5	Female	73	Never	No	Sublobar resection	IA	Papillary	Unknown	85 (alive)
6	Male	67	Light	Yes	Sublobar resection	IA	Lepidic	Yes	84 (alive)
7	Female	81	Heavy	No	Sublobar resection	IB	Acinar	No	49 (death)
8	Female	77	Never	No	Lobectomy IA	IA	Lepidic	Yes	78 (alive)
9	Male	73	Heavy	No	Lobectomy IIIA	IIIA	Acinar	No	77 (alive)
10	Female	68	Heavy	No	Lobectomy IIIA	IIIA	Acinar	Yes	76 (alive)
11	Male	68	Never	No	Lobectomy IB	IB	Acinar	Yes	75 (alive)
12	Female	68	Never	No	Lobectomy IIIA	IIIA	Acinar	Unknown	69 (alive)
13	Female	74	Never	No	Lobectomy IIIA	IIIA	Acinar	Yes	46 (death)
14	Female	66	Light	Yes	Lobectomy IB	IB	Acinar	Yes	40 (death)
15	Female	59	Never	Yes	Lobectomy IA	IA	Acinar	No	57 (alive)
16	Female	67	Never	No	Lobectomy IA	II A	Papillary	Yes	55 (alive)
17	Male	84	Heavy	No	Lobectomy II A	II A	Papillary	Yes	52 (alive)
18	Female	76	Never	No	Lobectomy II A	II A	Acinar	Yes	48 (death)
19	Female	83	Never	Yes	Lobectomy IB	IB	Unknown	Yes	49 (alive)
20	Female	82	Never	No	Lobectomy IB	IB	Acinar	Yes	45 (alive)
21	Female	78	Never	No	Lobectomy II A	II A	Acinar	No	26 (death)
22	Male	69	Light	Yes	Lobectomy IA	IA	Acinar	Yes	41 (alive)
functions based on the variants is difficult. Further studies are needed to confirm our findings and expose the underlying molecular mechanism.

Materials and methods

Participants. This study was conducted using blood samples from Project HOPE initiated at the Shizuoka Cancer Center (SCC; Shizuoka, Japan). The objective of this project was to improve cancer therapy\(^{22}\). Blood samples for germline analysis were obtained from 710 patients with lung cancer (559 adenocarcinomas and 151 squamous cell carcinomas) intraoperatively at SCC Hospital, Shizuoka, Japan, between January 2014 and January 2020. We performed deep sequencing of a custom DME panel using intraoperative blood samples.

The Institutional Review Board of SCC approved all experimental protocols (Authorization No.: 25-33). Written informed consent was obtained from all patients participating in this study. All experiments using clinical samples were performed in accordance with the approved Japanese ethical guidelines\(^{22}\).

Construction of an in-house custom DME panel. We analyzed the genes encoding CYP isoforms (CYP1A2, CYP2A6, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4, and CYP3A5), thiopurine methyltransferase (TPMT), dihydropyrimidine dehydrogenase (DPYD), N-acetyltransferase 2 (NAT2), UDP glucuronosyltransferase family member A1 (UGT1A1), catechol-O-methyltransferase (COMT), ATP binding cassette subfamily G member 2 (ABCG2), cytidine deaminase (CDA), alcohol dehydrogenase 1B (ADH1B), aldehyde dehydrogenase 2 (ALDH2), 5-methyltetrahydrofolate-homocysteine methyltransferase reductase (MTRR), and methylenetetrahydrofolate reductase (MTHFR) in this study because the variants of these genes have been reported to affect drug response in Japanese populations\(^{11,24}\).

The allele frequencies of each gene were compared with those obtained from the following public Japanese population databases: Human Genetic Variation Database (HGVD)\(^{25}\) (http://www.genome.med.kyoto-u.ac.jp) and Japanese Multi Omics Reference Panel (jMorp)\(^{26}\) (https://jmorp.megabank.tohoku.ac.jp/202109/).

Genomic DNA was isolated from the buffy coats of blood samples using a QIAamp DNA Blood Kit (Qiagen, Hilden, Germany). All genetic variants were analyzed using an Illumina sequencer with multiplex long-range PCR assay and Nextera DNA Flex Library Prep kit (Illumina, San Diego, CA, USA). Briefly, 50–100 ng of DNA was amplified using long-range multiplex PCR with locus-specific primers and a GLX DNA polymerase with each primer set (Supplementary Table S2). The amplicon library was prepared using the Nextera DNA Flex Library Prep kit (Illumina), and the library DNA was quantified on TapeStation using the D5000 kit (Agilent Technologies, Santa Clara, CA, USA). The libraries were subsequently used for sequencing (Supplementary Fig. S3). The sequencing data was analyzed using the pipeline described in our previous report\(^{26}\) and the clinical sequencing data analysis integrator (csDAI) (Mizuho-ir.co.jp/solution/research/life/infodata/csdai/index.html). The genetic variants were visualized using the Integrative Genomics Viewer\(^{27}\).

Statistical analyses. Fisher’s exact test, crude odds ratio (OR), and 95% confidence interval (CI) were employed to evaluate statistical differences in genotype distributions and allele frequencies of each variant between adenocarcinoma and squamous cell carcinoma in patients with lung cancer. To compare large biased populations, we performed a Fisher’s exact test. A patient’s survival was analyzed using the Kaplan–Meier method and log-rank test. Statistical significance was defined at \(P < 0.05 \).

Data availability

The genotype data referenced during the current study are available in a public repository that is accessible through the NCBI (https://www.ncbi.nlm.nih.gov/), HGVD (https://www.hgvd.genome.med.kyoto-u.ac.jp/), jMorp (https://jmorp.megabank.tohoku.ac.jp/202109/), and PharmGKB (https://www.pharmgkb.org/) websites. The information on the variants between individual samples is described in Supplementary Table S1. The sequence information of the primer sets used in this study is listed in Supplementary Table S2. Although the somatic data and sample information from patients used in this study were submitted to the National Bioscience Database Center (NBDC) as ‘Controlled-Access Data’ (the accession number, hum0127 https://humanbds.biocencedbc.jp/en/), the germline data analyzed during the current study are not available publicly, but are available from the corresponding author on reasonable request. However, all data and materials generated and/or analyzed during the current study are included in the supplementary information files of this article.

Received: 1 August 2022; Accepted: 20 October 2022
Published online: 26 October 2022

References

1. Ma, Q. & Lu, A. Y. H. Pharmacogenetics, pharmacogenomics, and individualized medicine. Pharmacol. Rev. **63**, 437–459. https://doi.org/10.1124/pr.110.035333 (2011).
2. Zhou, S. F., Liu, J. P. & Chowbay, B. Polymorphism of human cytochrome P450 enzymes and its clinical impact. Drug Metab. Rev. **41**, 89–295. https://doi.org/10.1080/03602530902843483 (2009).
3. Lee, W., Lockhart, A. C., Kim, R. B. & Rothenberg, M. L. Cancer pharmacogenomics: Powerful tools in cancer chemotherapy and drug development. Oncologist **10**, 104–111. https://doi.org/10.1634/theoncologist.10-2-104 (2005).
4. Nebert, D. W. & Dalton, T. P. The role of cytochrome P450 enzymes in endogenous signaling pathways and environmental carcinogenesis. Nat. Rev. Cancer **6**, 947–960. https://doi.org/10.1038/nrc2015 (2006).
5. Nebert, D. W., McKinnon, R. A. & Puga, A. Human drug-metabolizing enzyme polymorphisms: Effects on risk of toxicity and cancer. DNA Cell Biol. **15**, 273–280. https://doi.org/10.1089/dna.1996.15.273 (1996).
6. Sim, S. C., Kacevska, M. & Ingelman-Sundberg, M. Pharmacogenomics of drug-metabolizing enzymes: A recent update on clinical implications and endogenous effects. Pharmacogenomics **13**, 1–11. https://doi.org/10.1080/187152012.45 (2013).
11. Ohnami, S. et al. Whole exome sequencing detects variants of genes that mediate response to anticancer drugs. J. Toxicol. Sci. 42, 137–144. https://doi.org/10.2131/its.42.137 (2017).

12. Yamaguchi-Kabata, Y. et al. jGVDr: An integrative Japanese genome variation database based on whole-genome sequencing. Hum. Genome Var. 2, 1–4. https://doi.org/10.1038/hgv.2015.50.15050 (2015).

13. Johani, F. H., Majid, M. S. A., Azme, M. H. & Nawi, A. M. Cytochrome P450 2A6 whole-gene deletion (CYP2A64) polymorphism reduces risk of lung cancer: A meta-analysis. Tob Induc. Dis. 18, 50. https://doi.org/10.18332/tid/122465 (2020).

14. Ariyoshi, N. et al. Genetic polymorphism of CYP2A6 gene and tobacco-induced lung cancer risk in male smokers. Cancer Epidemiol. Biomark. Prev. 11, 890–894 (2002).

15. Tanner, J. A. & Tyndale, R. F. Variation in CYP2A6 activity and personalized medicine. J. Pers. Med. 7, 18. https://doi.org/10.3390/jpm7040018 (2017).

16. Abudushaeter, M. et al. Association of CYP2A6 gene deletion with cancers in Japanese elderly: An autopsy study. BMC Cancer 20, 186. https://doi.org/10.1186/s12885-020-06653-4 (2020).

17. Hutchinson, B. D., Shroff, G. S., Truong, M. T. & Ko, J. P. Spectrum of lung adenocarcinoma. Semin. Ultrasound CT MR 40, 255–264. https://doi.org/10.1053/j.sult.2018.11.009 (2018).

18. Hsu, L. H., Chu, N. M. & Kao, S. H. Estrogen, estrogen receptor and lung cancer. Arch. Med. Res. 35, 407–412. https://doi.org/10.2220/biomedres.35.407 (2014).

19. Rodríguez-Lara, V., Hernandez-Martínez, J. M. & Arrieta, O. Influence of estrogen in non-small cell lung cancer and its clinical implications. J. Thorac. Dis. 10, 482–497. https://doi.org/10.21037/jtd.2017.12.61 (2018).

20. Park, J. Y. et al. Impact of smoking on lung cancer risk is stronger in those with the homozygous aldehyde dehydrogenase 2 null allele in a Japanese population. Carcinogenesis 31, 660–665. https://doi.org/10.1093/carcin/bgo021 (2010).

21. Hishinuma, E. et al. Importance of rare DPDY genetic polymorphisms for 5-fluorouracil therapy in the Japanese population. Front. Pharmacol. 13, 930470. https://doi.org/10.3389/fphar.2022.930470 (2022).

22. Yamaguchi, K. et al. Implementation of individualized medicine for cancer patients by multiomics-based analyses—the Project HOPE—. Biomed. Res. 35, 407–412. https://doi.org/10.2220/biomedres.35.407 (2014).

23. Ministry of Health, Labour and Welfare, Japanese ethical guidelines for human genome/gene analysis research 2017. http://www.mhlw.go.jp/stf/seisakunitsuite/bunya/hokabunya/kenkyuji/gyouki/kenkyu/index.html (2019).

24. Kurose, K., Sugiyama, E. & Saito, Y. Population differences in major functional polymorphisms of pharmacokinetics/pharmacodynamics-related genes in Eastern Asians and Europeans: Implications in the clinical trials for novel drug development. Drug Metab. Pharmacokinet. 27, 9–54. https://doi.org/10.2133/dmnp.DMPK-11-RV-11 (2012).

25. Higasa, K. et al. Human genetic variation database, a reference database of genetic variations in the Japanese population. J. Hum. Genet. 61, 547–553. https://doi.org/10.1038/jhg.2016.12 (2016).

26. Nagashina, T. et al. Japanese version of The Cancer Genome Atlas, JCGA, established using fresh frozen tumors obtained from 5143 cancer patients. Cancer Sci. 111, 687–699. https://doi.org/10.1111/cas.14290 (2020).

27. Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26. https://doi.org/10.1038/nbt.1754 (2011).

Acknowledgements

We thank the members of Shizuoka Cancer Center Hospital and Research Institute for their support and suggestions. This study was supported by the Shizuoka Prefectural Government, Japan. We would like to thank Editage (www.editage.jp) for English language editing.

Author contributions

Principal investigator: Su.O. Planning and design: Su.O., A.N., S.O. M.I. and K.Y. Ascertainment and diagnostic evaluations of subjects for genetic analysis: M.I., M.M., Su.O., Y.O., H.K. and T.T. Genetic analyses and technical assistance: Su.O., A.N., S.N., F.K., Y.S., A.S., K.M., K.H., Y.A., T.N., K.U., S.O. and K.Y. Statistical analyses and database search: Su.O. and T.N. All authors read and approved the final version of the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-022-22914-6.

Correspondence and requests for materials should be addressed to S.O.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
