Exchange Relations for the q-vertex operators of $U_q(\widehat{sl}_2)$

HIDETOSHI AWATA

Dept. of Physics Hokkaido University, Sapporo 060, Japan

Abstract

We consider the q-deformed Knizhnik-Zamolodchikov equation for the two point function of q-deformed vertex operators of $U_q(\widehat{sl}_2)$. We give explicitly the fundamental solutions, the connection matrices and the exchange relations for the q-vertex operators of spin $1/2$ and $j \in \frac{1}{2}\mathbb{Z}_{\geq 0}$. Consequently, we confirm that the connection matrices are equivalent to the elliptic Boltzman weights of IRF type obtained by the fusion procedure from ABF models.

hep-th/9211087

1 E-mail address : hawa@theory.kek.jp
1. Introduction

Recently, the q-deformed Knizhnik-Zamolodchikov equation (q-KZ eq.), more generally holonomic q-difference equation, has been analyzed \cite{1,2,3,4,5,6} and the remarkable relation between the connection matrices of its solutions and the elliptic Boltzman weights was investigated \cite{17}.

To study the q-KZ equation \cite{2}, an important and useful concept is the q-vertex operators, which are q-analogue of the vertex operators in Ref. \cite{10}. First, the solutions of the q-KZ equation can be constructed as the correlation functions of the q-vertex operators \cite{3,4}. Moreover, we can understand naturally the IRF type Yang-Baxter relation satisfied by the connection matrices of q-KZ solutions as the exchange relation for the q-vertex operators \cite{11}. So far, explicit calculation of the exchange relation for the q-vertex operators has been done in Ref. \cite{4} for the first nontrivial examples and they conjectured that the connection matrices are generally equivalent to the Boltzman weights in Ref. \cite{12,13}. The exchange relations of the q-vertex operators of spin $1/2$ or $k/2$ (of level k) were calculated and applied to the vertex models in Ref. \cite{8,9}.

The aim of this paper is to generalize these results to arbitrary spins. We consider the q-KZ equation for the two point function of the q-vertex operators of spin $1/2$ and $j \in \frac{1}{2} \mathbb{Z}_{\geq 0}$ and we give the fundamental solutions and the connection matrices explicitly.

2. Quantum affine algebra $U_q(\widehat{sl_2})$

\S 2.1. First we fix some notation. The algebra $U_q(\widehat{sl_2})$ is generated by e_i, f_i, invertible k_i ($i = 0, 1$) and d with relations

$$k_i e_j k_i^{-1} = q^{a_{ij}} e_j,$$

$$k_i f_j k_i^{-1} = q^{-a_{ij}} f_j,$$

$$e_i f_j - f_j e_i = \delta_{ij} \frac{k_i - k_i^{-1}}{q - q^{-1}},$$

$$\sum_{n=0}^{3} (-1)^n \left[3 \atop n \right] e_i^{3-n} e_j e_i^n = 0,$$

$$[d, e_i] = \delta_{i,0} e_i,$$

$$\sum_{n=0}^{3} (-1)^n \left[3 \atop n \right] f_i^{3-n} f_j f_i^n = 0,$$

$$[d, f_i] = -\delta_{i,0} f_i.$$ (2.1)

2 The q-KZ equation has been applied to the Thirring model in Ref. \cite{3} and to the XXZ model or the vertex model in Ref. \cite{8}.
and \(k_0 k_1 = q^k\) with a level \(k \in \mathbb{C}\), where \(q \in \mathbb{C}\), \(a_{11} = a_{00} = -a_{10} = -a_{01} = 2\) and

\[
\begin{bmatrix} n \\ m \end{bmatrix} = \frac{[n]!}{[n-m]![m]!}, \quad \begin{bmatrix} n \\ 2 \end{bmatrix} = \frac{q^n - q^{-n}}{q - q^{-1}}.
\]

(2.2)

The algebra \(U_q(\widehat{sl}_2)\) is a Hopf algebra with the comultiplication \(\Delta\), the antipode \(S\) and the co-unit \(\epsilon\)

\[
\begin{align*}
\Delta(e_i) &= e_i \otimes k_i + 1 \otimes e_i, & S(e_i) &= -e_i k_i^{-1}, & \epsilon(e_i) &= 0, \\
\Delta(k_i) &= k_i \otimes k_i, & S(k_i) &= k_i^{-1}, & \epsilon(k_i) &= 1, \\
\Delta(f_i) &= f_i \otimes 1 + k_i^{-1} \otimes f_i, & S(f_i) &= -k_i f_i, & \epsilon(f_i) &= 0, \\
\Delta(d) &= d \otimes 1 + 1 \otimes d, & S(d) &= -d, & \epsilon(d) &= 0.
\end{align*}
\]

(2.3)

§ 2.2. Let \(V_j\) be the Verma module over \(U_q(\widehat{sl}_2)\), generated by the highest weight vector \(|j\rangle\), such that \(e_i |j\rangle = 0, k_1 |j\rangle = q^{2j} |j\rangle\) and \(d |j\rangle = -h_j |j\rangle\) with \(h_j = j(j+1)/\kappa, \kappa = k + 2\). The dual module \(V_j^*\) is generated by \(|j\rangle\) which satisfies \(|j\rangle e_i = 0, \langle j|k_1 = q^{2j} \langle j|\) and \(|j\rangle d = -h_j \langle j|\). The bilinear form \(V_j^* \otimes V_j \to \mathbb{C}\) is uniquely defined by \(|j\rangle \langle j| = 1\) and \(\langle u|a|v\rangle = \langle u|(a|v)\rangle\) for any \(|u\rangle \in V_j^*, |v\rangle \in V_j\) and \(a \in U_q(\widehat{sl}_2)\).

A null vector \(|\chi\rangle \in V_j\) (of grade \(N\) and charge \(Q\)) is defined by \(e_i |\chi\rangle = 0, k_1 |\chi\rangle = q^{2(j+Q)} |\chi\rangle\) and \(d |\chi\rangle = -(h_j + N) |\chi\rangle\). A null vector \(|\chi\rangle \in V_j^*\) is defined in a similar manner.

For \(2j \in \mathbb{Z}_{\geq 0}\), we have a \(2j + 1\) dimensional centerless irreducible representation of \(U_q(\widehat{sl}_2)\), \(V_j(z) = \oplus_{m=0}^{2j} \mathbb{C}(q,z)|j,m\rangle\), which is defined by

\[
\begin{align*}
e_1 |j,m\rangle &= [2j - m + 1] |j,m-1\rangle, & e_0 |j,m\rangle &= z[m+1] |j,m+1\rangle, \\
k_1 |j,m\rangle &= q^{2(j-m)} |j,m\rangle, & k_0 |j,m\rangle &= q^{-2(j-m)} |j,m\rangle, \\
f_1 |j,m\rangle &= [m+1] |j,m+1\rangle, & f_0 |j,m\rangle &= z^{-1}[2j - m + 1] |j,m-1\rangle,
\end{align*}
\]

(2.4)

and \(d\) acts as \(d = -h_j + z \frac{d}{dz}\).

3. The \(q\)-vertex operators and their two point functions

§ 3.1. The \(q\)-vertex operator, \(\Phi_{j_2}(z) : V_{j_1} \to V_{j_3}\), of spin \(j_2 \in \mathbb{C}\) is defined by the transformation property under the adjoint action [4,3,14], or equivalently as an intertwiner (see Appendix A).
Definition. For $2j_2 \in \mathbb{Z}_{\geq 0}$, the q-vertex operator \(\Phi_{j_2, m_2}(z) \) : \(V_{j_1} \to V_{j_3} \) with \(j_3 = j_1 + j_2 - \alpha_2 \) and \(0 \leq m_2 \leq 2j_2 \), is defined explicitly as follows:

\[
e_1 \Phi_{j, m}(z) = [2j - m + 1] \Phi_{j, m-1}(z) k_1 + \Phi_{j, m}(z) e_1,
\]

\[
k_1 \Phi_{j, m}(z) = q^{2(j-m)} \Phi_{j, m}(z) k_1,
\]

\[
f_1 \Phi_{j, m}(z) = [m + 1] \Phi_{j, m+1}(z) + q^{-2(j-m)} \Phi_{j, m}(z) f_1,
\]

\[
e_0 \Phi_{j, m}(z) = z[m + 1] \Phi_{j, m+1}(z) k_0 + \Phi_{j, m}(z) e_0,
\]

\[
k_0 \Phi_{j, m}(z) = q^{-2(j-m)} \Phi_{j, m}(z) k_0,
\]

\[
f_0 \Phi_{j, m}(z) = z^{-1}[2j - m + 1] \Phi_{j, m-1}(z) + q^{2(j-m)} \Phi_{j, m}(z) f_0,
\]

and

\[
d \Phi_{j, m}(z) = -z \frac{d}{dz} \Phi_{j, m}(z) + \Phi_{j, m}(z) d.
\]

(3.1)

The existence conditions for the q-vertex operator \(\Phi_{j, m}(z) \) with a general spin \(j \in \mathbb{C} \) were analyzed in Ref. [15], and we will review them in Appendix A. In the case that \(q \) is not a root of unity, the existence conditions are essentially the same as those of \(q = 1 \) [16]. For integrable representations of general quantum affine algebras, the complete results on existence and uniqueness were given in Ref. [11].

From the \(k_1 \) and \(d \) commutation relations, the ground state matrix element of the q-vertex operator can be determined up to normalization, and we normalize it as

\[
\langle j_3 | \Phi_{j_2, m_2}^{\alpha_2}(z) | j_1 \rangle = \delta^{j_3-j_1}_{j_2-m_2} \delta^{j_3-j_1}_{j_2-\alpha_2} z^{h_3-h_1},
\]

(3.3)

Our q-vertex operators correspond to the type-II vertex operators in Ref. [11, §4]. The relation between our q-vertex operator \(\Phi_{j_2, m_2}^{j_1+j_2-j_3}(z) : V_{j_1} \to V_{j_3} \) and their one \(\Phi_{j_2, j_1}(z) : V_{j_2}(z) \otimes V_{j_1} \to V_{j_3} \) is

\[
\Phi_{j_2, m_2}^{j_1+j_2-j_3}(z) = \Phi_{j_2, j_1}(z) \left(|j_2, m_2 \rangle, * \right).
\]

The \(\Phi_{j_2, j_1}(z) \) has the intertwining property, \(a \Phi_{j_2, j_1}(z) = \Phi_{j_2, j_1}(z) \Delta(a) \), for all \(a \in U_q(\widehat{sl_2}) \). Note that the coproduct is also slightly different.

\(^3\) Our q-vertex operators correspond to the type-II vertex operators in Ref. [11, §4]. The relation between our q-vertex operator \(\Phi_{j_2, m_2}^{j_1+j_2-j_3}(z) : V_{j_1} \to V_{j_3} \) and their one \(\Phi_{j_2, j_1}(z) : V_{j_2}(z) \otimes V_{j_1} \to V_{j_3} \) is

\[
\Phi_{j_2, m_2}^{j_1+j_2-j_3}(z) = \Phi_{j_2, j_1}(z) \left(|j_2, m_2 \rangle, * \right).
\]

The \(\Phi_{j_2, j_1}(z) \) has the intertwining property, \(a \Phi_{j_2, j_1}(z) = \Phi_{j_2, j_1}(z) \Delta(a) \), for all \(a \in U_q(\widehat{sl_2}) \). Note that the coproduct is also slightly different.

\(^4\) The upper index \(\alpha \), which specify the modules on which the q-vertex operator acts, will be sometimes suppressed.

\(^5\) The sign difference of \(d \) in §2.2 and §3.1 comes from the difference in meaning of \(z \). In §2.2, \(z \) is a generator such that \([d, z] = 1 \), on the other hand \(z \) is just a variable i.e. \([d, z] = 0 \), in §3.1.
where \(h_n = h_{j_n} \). The other matrix elements for the descendant fields can be uniquely determined.

We can in principle derive the arbitrary \(N \) point functions by using this one point function and the \(q \)-operator product expansion (\(q \)-OPE). In Appendix B, we will present the \(q \)-OPE of a spin 1/2 \(q \)-vertex operator and the two point functions \(\langle j_1 | \Phi_{j_2, m_2} (z_2) \Phi_{j_2, m_3} (z_3) | j_1 \rangle \) and \(\langle j_1 | \Phi_{j_2, m_2} (z_2) \Phi_{j_2, m_3} (z_3) | j_1 \rangle \).

§ 3.2. As we will discuss in Appendix B, the above two point functions have a complicated form, for example each coefficient of \(z^n \) cannot be factorised. But they can be simplified by dividing by a function

\[
g(x) = (1 - q^{k+2} \frac{[2j]}{[2][k+2]} x + O(x^2)), \quad x = z_2 / z_3.
\]

Here we list the leading terms

\[
\langle j_4 | \Phi_{j_2, 0} (z_3) \Phi_{j_2, M} (z_2) | j_1 \rangle = z_3^{h_4 - h_1} z_2^{h_1 - h_1} \\
\times \{1 + p^{-m_1 - m_2} x \frac{[2m + m_1 + m_2 + 1]_p [2m_1]_p}{[2m + m_1 - m_2 + 1]_p} + O(x^2) \} g(x),
\]

\[
\langle j_4 | \Phi_{j_2, 0} (z_3) \Phi_{j_2, M-1} (z_2) | j_1 \rangle = -z_3^{h_4 - h_1} z_2^{h_1 - h_1} x p^{-m_2} \frac{[2m_1]_p}{[2m + m_1 - m_2 + 1]_p} \\
\times \{1 + p^{-m_1 - m_2} x \frac{[2m + m_1 + m_2 + 1]_p [2m_1 + 1]_p}{[2m + m_1 - m_2 + 2]_p} + O(x^2) \} g(x),
\]

(3.5)

\[
\langle j_4 | \Phi_{j_2, 0} (z_3) \Phi_{j_2, M-1} (z_2) | j_1 \rangle = -z_3^{h_4 - h_1} z_2^{h_1 - h_1} p^{-m_1} \frac{[2m_2]_p}{[2m + m_1 + m_2]_p} \\
\times \{1 + p^{-m_1 - m_2} x \frac{-2m + m_1 + m_2 + 1]_p [2m_2]_p}{[-2m - m_1 + m_2 + 1]_p} + O(x^2) \} g(x),
\]

(3.6)
and

\[
\langle j_4 | \Phi_{j_2, M}(z_2) \Phi_{\frac{1}{2}, 0}(z_3) | j_1 \rangle = z_2^{j_4 - h_1^+ - h_1} \zeta_3^{h_1^+ - h_1} \\
\times \{1 + p^{-m_1 - m_2} x^{-1} \frac{[-2m + m_1 + m_2]_p[2m_1]_p}{[-2m + m_1 - m_2]_p} + O(x^{-2}) \} g(x^{-1}),
\]

(3.7)

\[
\langle j_4 | \Phi_{j_2, M-1}(z_2) \Phi_{\frac{1}{2}, 0}(z_3) | j_1 \rangle = -z_2^{j_4 - h_1^+} \zeta_3^{h_1^+ - h_1} \times \frac{[2m_1]_p}{[-2m + m_1 - m_2]_p} \\
\times \{1 + p^{-m_1 - m_2} x^{-1} \frac{[2m - m_1 + m_2 + 1]_p}{[2m - m_1 + m_2 + 2]_p} + O(x^{-2}) \} g(x^{-1}),
\]

(3.8)

\[
\langle j_4 | \Phi_{j_2, M-1}(z_2) \Phi_{\frac{1}{2}, 1}(z_3) | j_1 \rangle = z_2^{j_4 - h_1^+} \zeta_3^{h_1^+ - h_1} \\
\times \{1 + p^{-m_1 - m_2} x^{-1} \frac{[2m + m_1 + m_2 + 1]_p[2m_2]_p}{[2m - m_1 + m_2 + 1]_p} + O(x^{-2}) \} g(x^{-1}),
\]

here and below we use the following notations, \([n]_p = (p^n - 1)/(p - 1)\), \(p = q^{-2\kappa}\), \(m = -(j_1 + j_4 + 1)/2\kappa\), \(m_1 = (j_1 + j_2 - j_4 + 1/2)/2\kappa = M/2\kappa\), \(m_2 = (-j_1 + j_2 + j_4 + 1/2)/2\kappa = \overline{M}/2\kappa\) and \(h_n^\pm = h_{j_n \pm 1/2}\).

More complete expressions for the two point functions will be given in §5.1 by solving the q-KZ equation.

4. The solutions and their connection formula for the q-KZ equation

§4.1. Arbitrary \(N\) point functions of \(q\)-vertex operators satisfy the q-KZ equation [4]. For the two point function of the \(q\)-vertex operators of spin \(1/2\) and \(j\), \(\langle j_4 | \Phi_{\frac{1}{2}, M}(z_2) \Phi_{j_2, M_2}(z_2) | j_1 \rangle\), the q-KZ equation is written as a \(2 \times 2\) block diagonal \(R\) matrix \(R(z_2/z_3) : V_{j_2}(z_2) \otimes V_{\frac{1}{2}}(z_3) \rightarrow V_{j_2}(z_2) \otimes V_{\frac{1}{2}}(z_3)\), defined by \(R(z_2/z_3) \Delta'_{z_2, z_3} = \Delta_{z_2, z_3} R(z_2/z_3)\) (Appendix C).

Let \(M = M_2 + M_3\), \(M + \overline{M} = 2j_2 + 1\) and \(x = z_2/z_3\).
Up to normalization, this q-KZ equation is

$$
\begin{pmatrix}
p^{-m} \tilde{\Psi}_0(px) \\
p^m \tilde{\Psi}_1(px)
\end{pmatrix} = \tilde{R}(x) \begin{pmatrix}
\tilde{\Psi}_0(x) \\
\tilde{\Psi}_1(x)
\end{pmatrix},
$$

$$
\tilde{R}(x) = \begin{pmatrix}
\tilde{R}_0^0(x) & \tilde{R}_0^1(x) \\
\tilde{R}_1^0(x) & \tilde{R}_1^1(x)
\end{pmatrix} = \frac{1}{1-x p^{m_1+m_2}} \begin{pmatrix}
p^{m_1} - x p^{m_2} & p^{m_2} (p^{-m_2} - p^{m_2}) \\
x p^{m_1} (p^{-m_1} - p^{m_1}) & p^{m_2} - x p^{m_1}
\end{pmatrix},
$$

where p, m and m_i are the same as in §3.2.

The equation (4.1) can be solved easily, and the solutions are given by the q-hypergeometric function

$$
F_p(a, b, c; x) = \sum_{n=0}^{\infty} \frac{(a)_n (b)_n}{(c)_n (1)_n} x^n,
$$

where $(a)_n = [a]_p [a + 1]_p \cdots [a + n - 1]_p$.

Two fundamental solutions $\tilde{\Psi}^0_{(+i)}(x)$ and $\tilde{\Psi}^1_{(+i)}(x)$ in the region $x \ll 1$ are

$$
\begin{align*}
\tilde{\Psi}^0_{(+0)}(x) &= -F(-2m + m_1 + m_2, 2m_2 + 1, -2m - m_1 + m_2 + 1; p^{-m_1-m_2} x) \\
&\quad \times p^{-m_1} \frac{[2m_2]_p}{[-2m - m_1 + m_2]_p} x^{m_2-m}, \\
\tilde{\Psi}^0_{(+1)}(x) &= F(-2m + m_1 + m_2, 2m_2, -2m - m_1 + m_2; p^{-m_1-m_2} x) x^{m_2-m}, \\
\tilde{\Psi}^1_{(+0)}(x) &= F(2m + m_1 + m_2 + 1, 2m_1, 2m + m_1 - m_2 + 1; p^{-m_1-m_2} x) x^{m_1+m_1}, \\
\tilde{\Psi}^1_{(+1)}(x) &= -F(2m + m_1 + m_2 + 1, 2m_1 + 1, 2m + m_1 - m_2 + 2; p^{-m_1-m_2} x) \\
&\quad \times p^{-m_2} \frac{[2m_1]_p}{[2m + m_1 - m_2 + 1]_p} x^{m_1+m_1+1}.
\end{align*}
$$

And the other two fundamental solutions $\tilde{\Psi}^0_{(-i)}(x)$ and $\tilde{\Psi}^1_{(-i)}(x)$ in the region $x \gg 1$ are

$$
\begin{align*}
\tilde{\Psi}^0_{(-0)}(x) &= -F(2m + m_1 + m_2 + 1, 2m_2 + 1, 2m - m_1 + m_2 + 2; p^{-m_1-m_2+1} x^{-1}) \\
&\quad \times p^{2m-m_1+1} \frac{[2m_2]_p}{[2m - m_1 + m_2 + 1]_p} x^{-m+m_2-1}, \\
\tilde{\Psi}^0_{(-1)}(x) &= F(2m + m_1 + m_2 + 1, 2m_2, 2m - m_1 + m_2 + 1; p^{-m_1-m_2+1} x^{-1}) x^{-m+m_2}, \\
\tilde{\Psi}^1_{(-0)}(x) &= F(-2m + m_1 + m_2, 2m_1, -2m + m_1 - m_2; p^{-m_1-m_2+1} x^{-1}) x^{-m+m_1}, \\
\tilde{\Psi}^1_{(-1)}(x) &= -F(-2m + m_1 + m_2, 2m_1 + 1, -2m + m_1 - m_2 + 1; p^{-m_1-m_2+1} x^{-1}) \\
&\quad \times p^{-2m-m_2} \frac{[2m_1]_p}{[-2m + m_1 - m_2]_p} x^{-m+m_2}. \tag{4.4}
\end{align*}
$$
§ 4.2. The complete q-KZ equation with the correct normalization is

$$\begin{pmatrix} p^{-m}\Psi_0(px) \\ p^m\Psi_1(px) \end{pmatrix} = R(x) \begin{pmatrix} \Psi_0(x) \\ \Psi_1(x) \end{pmatrix}, \quad (4.5)$$

where $R(x)$ is the image of the universal R-matrix which satisfies the crossing relation (see Appendix C). This $R(x)$ is given by

$$R(x) = f(x)\tilde{R}(x), \quad f(x) = \prod_{n \geq 0} \frac{(1 - xq^{2j_2+3+4n})(1 - xq^{-2j_2+1+4n})}{(1 - xq^{2j_2+1+4n})(1 - xq^{-2j_2+3+4n})}, \quad (4.6)$$

in the region $x \ll 1$.

The relation of the $\Psi(x)$'s and the previous $\tilde{\Psi}(x)$'s is

$$\Psi_i(x) = g(x)\tilde{\Psi}_i(x), \quad g(xp) = f(x)g(x). \quad (4.7)$$

The factor $g(x)$ in the regions $x \ll 1$ and $x \gg 1$ are

$$g_+(x) = \prod_{n,m \geq 0} \frac{(1 - xq^{2j_2+1+4n}p^m)(1 - xq^{-2j_2+3+4n}p^m)}{(1 - xq^{2j_2+3+4n}p^m)(1 - xq^{-2j_2+1+4n}p^m)},$$

$$g_-(x) = \prod_{n,m \geq 0} \frac{(1 - x^{-1}q^{-2j_2-3-4n}p^{m+1})(1 - x^{-1}q^{2j_2-1-4n}p^{m+1})}{(1 - x^{-1}q^{2j_2-1-4n}p^{m+1})(1 - x^{-1}q^{-2j_2-3-4n}p^{m+1})}, \quad (4.8)$$

respectively.

§ 4.3. The connection formula for the q-hypergeometric function $F_p(a, b, c; x)$ is

$$F_p(a, b, c; x) = \frac{\Gamma_p(c)\Gamma_p(b-a)\Theta(p^a x, p)}{\Gamma_p(b)\Gamma_p(c-a)\Theta(x, p)} F_p(a, a - c + 1, a - b + 1, p^{c+1-a-b}x^{-1})$$

$$+ \frac{\Gamma_p(c)\Gamma_p(b)\Theta(p^b x, p)}{\Gamma_p(a)\Gamma_p(c-b)\Theta(x, p)} F_p(b, b + 1, a - b + 1, p^{c+1-a-b}x^{-1}), \quad (4.9)$$

where

$$\Gamma_p(a) = (1 - p)^{1-a} \prod_{n \geq 0} \frac{(1 - p^{n+1})}{(1 - p^{n+a})},$$

$$\Theta(x, p) = \prod_{n \geq 0} (1 - p^{n+1})(1 - xp^n)(1 - x^{-1}p^{n+1}). \quad (4.10)$$

6 For the proof of this formula, see Ref. 2 for example.
Using this formula, we have

Proposition I. The connection formulas for the solutions of the q-KZ equation (4.1) and for the normalization factor $g(x)$ are

$$
\tilde{\Psi}_{(+)}^{\alpha}(x) = \sum_{\beta} \tilde{\Psi}_{(-)}^{\beta}(x) C_{\beta}^{\alpha}(x),
$$

\begin{align}
C_{0}^{0}(x) &= \frac{\Gamma_{p}(2m + m + 1 - m_2 + 1) \Gamma_{p}(2m - m + m + 1 + 1)}{\Gamma_{p}(2m + m + 1 + 1) \Gamma_{p}(2m + m + 1 + 1)} \frac{\Theta(p^{m_1-m_2})}{\Theta(p^{m_1-m_2})} x^{2m_1},
C_{1}^{0}(x) &= -\frac{\Gamma_{p}(-2m + m + 1 - m_2) \Gamma_{p}(2m + m + 1 + 1)}{\Gamma_{p}(-2m + m + 1 + 1) \Gamma_{p}(2m + m + 1 + 1)} \frac{\Theta(p^{m_1+m_2})}{\Theta(p^{m_1-m_2})} p^{-m_2} x^{2m_1},
C_{0}^{1}(x) &= -\frac{\Gamma_{p}(-2m + m + 1 + m_2) \Gamma_{p}(2m + m + 1 + 1)}{\Gamma_{p}(-2m + m + 1 + 1) \Gamma_{p}(2m + m + 1 + 1)} \frac{\Theta(p^{m_1-m_2})}{\Theta(p^{m_1-m_2})} p^{-m_2} x^{2m_2},
C_{1}^{1}(x) &= \frac{\Gamma_{p}(-2m + m + 1 + m_2) \Gamma_{p}(-2m + m + 1 + m_2)}{\Gamma_{p}(-2m + m + 1 + 1) \Gamma_{p}(-2m + m + 1 + 1)} \frac{\Theta(p^{m_1-m_2})}{\Theta(p^{m_1-m_2})} x^{2m_2},
\end{align}

and

$$
g_{+}(x) = g_{-}(x) C_{g}(x), \quad C_{g}(x) = \prod_{n \geq 0} \frac{\Theta(x q^{2j_2+1+4n}) \Theta(x q^{-2j_2+3+4n})}{\Theta(x q^{2j_2+3+4n}) \Theta(x q^{-2j_2+1+4n})}.
$$

Note that $C_{\alpha}^{\alpha}(x)$ and $C_{g}(x)$ are the pseudo-constant, e.g. $C_{g}(px) = C_{g}(x)$.

5. Exchange relation for the q-vertex operators

§5.1. Comparing the two point function in §3.2 and $\tilde{\Phi}(x)$ in §4.1, we have

Proposition II. The relations between the solutions of the reduced q-KZ equation in §4.1 with the two point functions in §3.2 are

\begin{align}
\left(\begin{array}{c}
\langle j_4 | \Phi_{\frac{M}{z},0}(z_3) \Phi_{j_2,M}(z_2) | j_1 \rangle \\
\langle j_4 | \Phi_{\frac{1}{z},0}(z_3) \Phi_{j_2,M-1}(z_2) | j_1 \rangle
\end{array} \right)
= x^{-j_2/2k} z_2^{-h_2-h_1} g_{+}(x) \left(\begin{array}{c}
\tilde{\Psi}_{(+)}^{0}(x) \\
\tilde{\Psi}_{(+)}^{1}(x)
\end{array} \right),
\end{align}

\begin{align}
\left(\begin{array}{c}
\langle j_4 | \Phi_{j_2,M}(z_2) \Phi_{\frac{1}{z},0}(z_3) | j_1 \rangle \\
\langle j_4 | \Phi_{j_2,M-1}(z_2) \Phi_{\frac{1}{z},1}(z_3) | j_1 \rangle
\end{array} \right)
= x^{j_2/2k} z_2^{-h_2+h_1} g_{-}(px) \left(\begin{array}{c}
p^{-m_1+m_2} \tilde{\Psi}_{(-)}^{0}(px) \\
p^{-m_1+m_2} \tilde{\Psi}_{(-)}^{1}(px)
\end{array} \right).
\end{align}
Proof. Both sides of the above equations satisfy the same q-KZ equations. So we need only to compare the leading terms. From $g_+(x) = g(x) + O(x^2)$ and $g_-(px) = g(x^{-1}) + O(x^{-2})$, we obtain the required relation.

Q.E.D.

From the difference equation for $g(x)$ and $\tilde{\Phi}(x)$ and from the Proposition-I,-II, we have

Theorem. The exchange relation for the q-vertex operators of spin $1/2$ and arbitrary spin $j_2 \in \frac{1}{2}\mathbb{Z}_{\geq 0}$ is as follows

$$
\tilde{R}^{kl}_{ij}(\frac{z}{w}) \Phi_{\frac{1}{2}, k}(w) \Phi_{j_2, l}(z) = \Phi_{j_2, i}(z) \Phi_{\frac{1}{2}, j}(w) \tilde{C}^{\alpha\beta}_{\gamma\delta}(\frac{z}{w}, \lambda),
$$

(5.2)

with

$$
\left(\begin{array}{cc} \tilde{R}^0_{M,0}(x) & R^1_{M,0}(x) \\ R^0_{M-1,1}(x) & \tilde{R}^1_{M-1,1}(x) \end{array} \right) = \frac{f(x)}{x - q^{M+1}} \left(\begin{array}{cc} (xq^M - q^M) & q^M(q^{-M} - q^M) \\ xq^M(q^{-M} - q^M) & (xq^M - q^M) \end{array} \right),
$$

(5.3)

$$
\left(\begin{array}{cc} C^0_{M,0}(x, \lambda) & C^1_{M,0}(x, \lambda) \\ C^0_{M-1,1}(x, \lambda) & \tilde{C}^1_{M-1,1}(x, \lambda) \end{array} \right) = x^{-j_2/\kappa} C_g(x) \left(\begin{array}{cc} p^{-m_1}C_{1}^{0}(x) & p^{-m_1}C_{1}^{1}(x) \\ p^{-m_2}C_{1}^{0}(x) & p^{-m_2}C_{1}^{1}(x) \end{array} \right),
$$

(5.4)

where $M = \alpha + \beta = \gamma + \delta = i + j = k + l$, $\lambda = 2j_4 + 1$ and $f(x)$, $C_\alpha(x)$ and $C_g(x)$ are as given in (1.6), (4.11), and (4.13) respectively.

Proof. From the intertwining property of the R-matrix, it is obvious that the Theorem holds not only for the lowest state $|j_4| \in V^*_j$ and the highest state $|j_1\rangle \in V_{j_1}$ but also for arbitrary states in V^*_j and V_{j_1}.

Q.E.D.

§ 5.2. If we denote the q-vertex operator and the connection matrix as

$$
\Phi \left[\begin{array}{c} j_2 \\ j_3 \\ j_1 \end{array} \right]_{m_2}(z) = \Phi_{j_2, m_2}(z) : V_{j_1} \rightarrow V_{j_3},
$$

(5.5)

$$
C_{j_2} \left[\begin{array}{c} j_4 \\ j_1 \end{array} \right]_{j_1}(\frac{z}{w}) = \tilde{C}_{j_2}(z, \lambda),
$$

then the exchange relation (5.2) can be written as

$$
\tilde{R}^{kl}_{ij}(\frac{z}{w}) \Phi \left[\begin{array}{c} 1 \\ j_4 \\ j \end{array} \right]_k(w) \Phi \left[\begin{array}{c} j_2 \\ j_4 \\ j_1 \end{array} \right]_l(z) = \Phi \left[\begin{array}{c} j_2 \\ j_4 \\ j \end{array} \right]_i(z) \Phi \left[\begin{array}{c} 1 \\ j_4 \\ j_1 \end{array} \right]_j(w) C_{j_2} \left[\begin{array}{c} j_4 \\ j \end{array} \right]_j(\frac{z}{w}).
$$

(5.6)
From the fact that the R-matrix $\tilde{R}_{ij}^{kl}(z,w)$ satisfies the Yang-Baxter equation, the connection matrix $C_{j'j}^{\frac{1}{2},1} j' j_1 (z,w)$ obeys the IRF type Yang-Baxter relation \cite{4,11}. Moreover if we denote $[n]_\vartheta = p^{-n/2\kappa} \Theta(p^n/\kappa)$, $x = q^{2j+1-2u}$, then

$$\left(\begin{array}{c} \tilde{C}_0^{M,0}(x,\lambda) \\ \tilde{C}_1^{M,1}(x,\lambda) \\ \tilde{C}_M^{1,-}(x,\lambda) \end{array} \right) = \frac{C_g(x)x^{-j_2/\kappa}}{[\lambda + M - M]_\vartheta [u - M - \lambda]_\vartheta} \times \left(\begin{array}{c} \tilde{\alpha}_1 \\ \tilde{\alpha}_2 \end{array} \right) \left(\begin{array}{c} [\lambda - M]_\vartheta [u - M]_\vartheta \\ [M]_\vartheta [u - M - \lambda]_\vartheta \end{array} \right) \left(\begin{array}{c} \alpha_1 \\ \alpha_2 \end{array} \right)^{-1},$$

where

$$C_g(x) = \prod_{n \geq 0} \frac{[u - M - M - 2n]_\vartheta [u - 2 - 2n]_\vartheta}{[u - M - M - 1 - 2n]_\vartheta [u - 1 - 2n]_\vartheta},$$

$$\alpha_1 = \frac{\Gamma_p(2m_1) \Gamma_p(2m - m_1 - m_2 + 1)}{\Gamma_p(2m + m_1 - m_2 + 1)} x^{-m-m_1},$$

$$\alpha_2 = \frac{\Gamma_p(2m_2) \Gamma_p(-2m - m_1 - m_2)}{\Gamma_p(-2m - m_1 + m_2)} x^{m-m_2} p^{m_2},$$

$$\tilde{\alpha}_1 = \frac{\Gamma_p(2m_1) \Gamma_p(-2m - m_1 - m_2)}{\Gamma_p(-2m + m_1 - m_2)} x^{-m+m_1} p^{m_1},$$

$$\tilde{\alpha}_2 = \frac{\Gamma_p(2m_2) \Gamma_p(2m - m_1 - m_2 + 1)}{\Gamma_p(2m - m_1 + m_2 + 1)} x^{m+m_2},$$

this connection matrix is equivalent to the elliptic Boltzmann weight of IRF type obtained by the fusion procedure in Ref. \cite{13}.

6. Conclusion

We have given explicitly the two point functions and the exchange relations for the q-vertex operators whose spins are $1/2$ and arbitrary $j \in \frac{1}{2}\mathbb{Z}_{\geq 0}$. We also confirmed that the connection matrix is equivalent to the elliptic Boltzmann weight of IRF type obtained by the fusion procedure in Ref. \cite{13}.

We expect that the exchange relation for the two arbitrary spin q-vertex operators will be given by an analogous fusion procedure. Our method essentially relies on the connection formula of q-hypergeometric function and it is applicable only to the case when the number
of intermediate channels is at most two. A more promising approach to the connection problem is to use the integral formula.

Recently, a free field realization for $U_q(\widehat{sl}_2)$ was constructed \cite{*[17,18,19]}\{. The free field realization will give a powerful tool \cite{20} to calculate the integral formulas \cite{1,2,5,6} for the q-KZ solution and to solve their connection problem.

Acknowledgment.

This work has been carried out in collaboration with Y. Yamada. I am grateful to him for help in many ways. I would like to thank M. Jimbo, J. Shiraiishi and the members of KEK theory group for valuable discussions. I would also like to thank to N. A. McDougall for a careful reading of the manuscript.

Appendix A. The existence condition for the q-vertex operator of arbitrary spin

§A.1. Here we briefly review the result of our previous paper \cite{13}. For an arbitrary spin $j \in \mathbb{C}$, the q-vertex operator $\Phi_{j_2}(z) : V_{j_1} \rightarrow V_{j_3}$ is defined by the transformation property under the adjoint action of $U_q(\widehat{sl}_2)$ \cite{*[13,14]}, such that \(\text{ad}(a) \Phi(z) \equiv \sum_k a^1_k \Phi(z) S(a^2_k)\) with \(\Delta(a) = \sum_k a^1_k \otimes a^2_k\).

Definition. The q-vertex operator $\Phi_{j_2}(z) : V_{j_1} \rightarrow V_{j_3}$ is defined as

\[
\text{ad}(a) \Phi(z) = \rho(a) \Phi(z),
\]

for $\forall a \in U_q(\widehat{sl}_2)$, where ρ is a certain representation of $U_q(\widehat{sl}_2)$.

The following intertwining property is equivalent to above definition;

\[
a \Phi(z) = \sum_k \rho(a^1_k) \Phi(z) a^2_k.
\]

For ρ, if we take the contravariant difference representation defined by

\[
\rho(e_1) = x[2j - x \frac{d}{dx}], \quad \rho(e_0) = \frac{z}{x}[x \frac{d}{dx}], \\
\rho(k_1) = q^{2(j-x \frac{d}{dx})}, \quad \rho(k_0) = q^{-2(j-x \frac{d}{dx})}, \quad \rho(d) = -z \frac{d}{dz},
\]

\[
\rho(f_1) = \frac{1}{x}[x \frac{d}{dx}], \quad \rho(f_0) = \frac{x}{z}[2j - x \frac{d}{dx}],
\]

\begin{align}
\text{A.1} & \quad \text{for } \forall a \in U_q(\widehat{sl}_2), \text{ where } \rho \text{ is a certain representation of } U_q(\widehat{sl}_2). \\
\text{A.2} & \quad \text{The following intertwining property is equivalent to above definition;} \\
\text{A.3} & \quad \text{For } \rho, \text{ if we take the contravariant difference representation defined by}
\end{align}
then the q-vertex operator $\Phi_j(z, x)$ of spin j can be defined explicitly as follows [15]

$$e_i \Phi_j(z, x) = \rho(e_i) \Phi_j(z, x) k_i + \Phi_j(z, x) e_i,$$

$$k_i \Phi_j(z, x) = \rho(k_i) \Phi_j(z, x) k_i,$$

$$f_i \Phi_j(z, x) = \rho(f_i) \Phi_j(z, x) + \rho(k_i^{-1}) \Phi_j(z, x) f_i,$$

and

$$d \Phi_j(z, x) = \rho(d) \Phi_j(z, x) + \Phi_j(z, x) d.$$ \(\text{(A.4)}\)

Here $[n]$ denotes the q integer $[n] = (q^n - q^{-n})/(q - q^{-1})$, so the $\rho(J)$'s are the difference operators, e.g. $q^x \frac{d}{dx} f(x) = f(qx)$ for any function $f(x)$.

And we normalize the ground state matrix element of the q-vertex operator as

$$\langle j_3 | \Phi_{j_2}(z, x) | j_1 \rangle = z^{h_3 - h_1} x^{j_1 + j_2 - j_3}. \quad \text{(A.6)}$$

For $2j + 1 \in \mathbb{Z}_{>0}$, if we set $\Phi_j(z, x) = \sum_{m=0}^{2j} \Phi_{j,m}(z) x^m$, then we have the previous definition for the q-vertex operators $\Phi_{j,m}(z)$ in §3.1.

§ A.2. The q-vertex operator $\Phi_{j,2}(z, x) : V_{j_1} \to V_{j_3}$ exists if and only if

$$\langle j_3 | \Phi_{j,2}(z, x) | \chi_1 \rangle = \langle \chi_3 | \Phi_{j,2}(z, x) | j_1 \rangle = 0,$$ \(\text{(A.7)}\)

for all the null vectors $|\chi_1\rangle \in V_{j_1}$ and $\langle \chi_3| \in V_{j_3}^*$.

For $r, s \in \mathbb{Z}$ and $j_n \in \mathbb{C}$, let

$$f_{r,s}(j_1, j_2, j_3) = \prod_{n=0}^{r-1} \prod_{m=0}^{s} [j_1 + j_2 - j_3 - n + mk] \prod_{n=1}^{r} \prod_{m=1}^{s} [-j_1 + j_2 + j_3 + n - mk],$$

$$f_{r,s}(j_1, j_2, j_3) = \prod_{n=0}^{r-1} \prod_{m=0}^{s} [-j_1 + j_2 + j_3 - n + mk] \prod_{n=1}^{r} \prod_{m=1}^{s} [j_1 + j_2 - j_3 + n - mk].$$ \(\text{(A.8)}\)

for the case (i) $r > 0$ and $s \geq 0$ or (ii) $r < 0$ and $s < 0$, respectively. Then we have

Theorem. [15] *The existence conditions for the q-vertex operators $\Phi_{j,2}(z, x) : V_{j_1} \to V_{j_3}$ are given as follows.*
(I). For the rational level \(\kappa = p/q \), with the coprime integers \(p \) and \(q \), and \(2j_n + 1 = r_n - s_n\kappa \) with \(0 < r_n < p \) and \(0 \leq s_n < q \), \((n = 1, 2, 3)\), the \(q \)-vertex operator exists if and only if

\[
f_{r_1,s_1}(j_1,j_2,j_3) = f_{r_1-p,s_1-q}(j_1,j_2,j_3) = 0, \tag{A.9}
\]

(II). For the generic level, the \(q \)-vertex operator exists if and only if

\[
\sum_{r_1,s_1 \in \mathbb{Z}} f_{r_1,s_1}(j_1,j_2,j_3)\delta_{r_1-s_1\kappa}^{2j_1+1} = \sum_{r_3,s_3 \in \mathbb{Z}} f_{r_3,s_3}(j_3,j_2,j_1)\delta_{r_3-s_3\kappa}^{2j_3+1} = 0. \tag{A.10}
\]

Proof is given by using the following Lemma-I and Lemma-II.

Lemma I \[21\] For \(\kappa = k + 2 \in \mathbb{C} \setminus \{0\} \) and the highest weight \(j \), parametrized as \(2j_{r,s} + 1 = r - s\kappa \) with \(r,s \in \mathbb{Z} \), such that (i) \(r > 0 \) and \(s \geq 0 \) or (ii) \(r < 0 \) and \(s < 0 \), there exists a unique null vector \(|\chi_{r,s}\rangle \in V_j \) of grade \(N = rs \) and charge \(Q = -r \). And the null vector in \(V_{j_{r,s}} \) is as follows,

\[
|\chi_{r,s}\rangle = (f_1)^{r+s\kappa}(f_0)^{r+(s-1)\kappa} \cdots (f_0)^{r-(s-1)\kappa}(f_1)^{r-s\kappa}|j_{r,s}\rangle,
\]

\[
|\chi_{r,s}\rangle = (f_0)^{-r-(s+1)\kappa}(f_1)^{-r-(s+2)\kappa} \cdots (f_1)^{-r+(s+2)\kappa}(f_0)^{-r+(s+1)\kappa}|j_{r,s}\rangle, \tag{A.11}
\]

for the cases (i) and (ii) respectively.

Lemma II. For the null vectors \(|\chi_{r,s}\rangle \in V_j \) and \(\langle \chi_{r,s}| \in V_j^* \), we have

\[
\langle j_3|\Phi_{j_2}(z,x)|\chi_{r,s}\rangle = f_{r,s}(j_1,j_2,j_3)z^{h_3-h_1-rs}x^{j_1+j_2-j_3-r},
\]

\[
\langle \chi_{r,s}|\Phi_{j_2}(z,x)|j_1\rangle = f_{r,s}(j_3,j_2,j_1)z^{h_3-h_1+rs}x^{j_1+j_2-j_3+r}, \tag{A.12}
\]

up to some non-zero multiple factors.

Appendix B. Calculation of the two point function by the q-OPE

§B.1. We calculate the image \(\Phi_{j_2,m_2}(z)|j_1\rangle \in V_{j_3} \) of the highest weight vector \(|j_1\rangle \). Let

\[
\Phi_{j_2,m_2}(z)|j_1\rangle = \delta_{m_2,j_1}^{j_2-j_1+1+N}z^{h_3-h_1+Nq^{kN+2j_1}}|N,Q\rangle_{j_3}, \tag{B.1}
\]

\[
\Phi_{j_2,m_2}(z)|j_1\rangle = \delta_{m_2,j_1}^{j_2-j_1+1+N}z^{h_3-h_1+Nq^{kN+2j_1}}|N,Q\rangle_{j_3}, \tag{B.1}
\]
where \(|N, Q\rangle_{j_3}\) is the homogeneous components of grade \(N\) and charge \(-Q\), such that

\[
|N, Q\rangle_{j_3} = \sum_{(\alpha_1, \ldots, \alpha_n)} \beta_{\alpha_1, \ldots, \alpha_n} f_{\alpha_1 \ldots \alpha_n} |j_3\rangle, \tag{B.2}
\]

\(N = \sum_i \bar{\alpha}_i, Q = \sum_i (\alpha_i - \bar{\alpha}_i), \alpha_i = 0, 1, \bar{\alpha} = 1 - \alpha\) and \(f_{\alpha_1 \ldots \alpha_n} = f_{\alpha_1} \cdots f_{\alpha_n}\). From the definition of the \(q\)-vertex operator \((3.1)\), we have the descent equations for \(|N, Q\rangle_{j_3}\) \([15]\)

\[
e_1|N, Q\rangle_{j_3} = [-j_1 + j_2 + j_3 - Q + 1] |N, Q - 1\rangle_{j_3},
\]

\[
e_0|N, Q\rangle_{j_3} = [j_1 + j_2 - j_3 + Q + 1] |N - 1, Q + 1\rangle_{j_3}. \tag{B.3}
\]

From these descent equations, we can calculate the expansion coefficients \(\beta_{\alpha_1, \ldots, \alpha_n}\).

Example. The \(q\)-OPE of spin 1/2 \(q\)-vertex operator is

\[
\Phi_{\frac{1}{2}, 0}^0(z)|j\rangle = z^{h^+ - h}(1 + q^k z(\beta_{01}^+ f_{01} + \beta_{10}^+ f_{10}) + O(z^2))|j + \frac{1}{2}\rangle,
\]

\[
\Phi_{\frac{1}{2}, 1}^0(z)|j\rangle = z^{h^+ - h} q^{2j}(\beta_1^+ f_1 + q^k z(\beta_{011}^+ f_{011} + \beta_{101}^+ f_{101} + \beta_{110}^+ f_{110}) + O(z^2))|j + \frac{1}{2}\rangle,
\]

\[
\Phi_{\frac{1}{2}, 0}^1(z)|j\rangle = z^{h^+ - h}(1 + q^k z(\beta_{10}^- f_{10} + \beta_{01}^- f_{01}) + O(z^2))|j - \frac{1}{2}\rangle,
\]

\[
\Phi_{\frac{1}{2}, 0}^1(z)|j\rangle = z^{1 + h^+ - h} q^{2j}(\beta_0^- f_0 + q^k z(\beta_{100}^- f_{100} + \beta_{010}^- f_{010} + \beta_{001}^- f_{001}) + O(z^2))|j - \frac{1}{2}\rangle, \tag{B.4}
\]

where \(h = h_j, h^\pm = h_j \pm \frac{1}{2}\),

\[
\beta_1^+ = \frac{1}{[2j + 1]}, \quad \beta_0^{+1} = \frac{[2j + 3]}{[2][k + 2][2j + 1]}, \quad \beta_{10}^+ = \frac{-1}{[2][k + 2]}, \quad \beta_{011}^+ = \frac{-[k + 2][2j + 2]}{[k + 2j + 3][2][k + 2][2j + 1]},
\]

\[
\beta_{010}^+ = \frac{-[k + 3]}{[k + 2j + 3][2][k + 2][2j + 1]} \tag{B.5}
\]

and

\[
\beta_{\alpha_1, \ldots, \alpha_n}^- (2j) = \beta_{\bar{\alpha}_1, \ldots, \bar{\alpha}_n}^+(k - 2j). \tag{B.6}
\]

\(\S\) **B.2.** By using the \(q\)-OPE and one point function, we can in principle derive the arbitrary \(N\) point functions.
Example. The two point functions for the spin $\frac{1}{2}$ and arbitrary spin j_2 q-vertex operators are

\[
\langle j_4 | \Phi_{\frac{1}{2},0}(z_3) \Phi_{j_2, M}(z_2) | j_1 \rangle = z_3^{h_4-h_1} z_2^{h_4-h_2} q^{k+2} \times \left\{ 1 + \frac{q^{k+2}x}{[2][k+2][k-2j_4+1]} \left(\frac{[k-2j_4+3][M][2j_2-M+1]}{[k-2j_4+1][M+1][2j_2-M]} \right) + O(x^2) \right\},
\]

(B.7)

\[
\langle j_4 | \Phi_{\frac{1}{2},0}(z_3) \Phi_{j_2, M-1}(z_2) | j_1 \rangle = -z_3^{h_4-h_1} z_2^{h_4-h_2} x q^{k-2j_1+1} \frac{[M]}{[k-2j_4+1]}
\]

\[
\times \left\{ 1 + \frac{q^{k+2}x}{[2][k+2][k-2j_4+3]} \left(\frac{[k+2][k-2j_4+2][M-1][2j_2-M+2]}{[k-2j_4+1][M][2j_2-M+1]} \right) + O(x^2) \right\},
\]

(B.8)

and

\[
\langle j_4 | \Phi_{j_2, M}(z_2) \Phi_{\frac{1}{2},0}(z_3) | j_1 \rangle = z_2^{h_4-h_1} z_3^{h_4-h_2} q^{k+2} \times \left\{ 1 + \frac{q^{k+2}x^{-1}}{[2][k+2][k-2j_1+1]} \left(\frac{[2j_1+3][M][2j_2-M+1]}{[2j_1+1][M+1][2j_2-M]} \right) + O(\frac{1}{x^2}) \right\},
\]

(B.9)
\[\langle j_4 | \Phi_{j_2, M-1}^{1/2} (z_2) \Phi_{j_4, 1}^{1/2} (z_3) | j_1 \rangle = -z_2^{h_4-h_1} z_3^{h_1-h_4} x^{1} q^{k-2j_4+1} [2j_2 - M + 1] / [k - 2j_1 + 1] \]

\[\times \left\{ 1 + \frac{q^{k+2} x^{-1}}{[2][k+2][2k - 2j_1 + 3]} \right\} \left(\begin{array}{cc}
-\left[k + 2 \right] [k - 2j_1 + 2] [2j_2 - M] [M + 1] \\
\left[k - 2j_1 \right] \left[2j_2 - M + 1 \right] [M] \\
\left[k + 3 \right] [k - 2j_1 + 3] [2j_2 - M + 1] [M] \\
\left[k - 2j_1 + 1 \right] [2j_2 - M + 2] [M - 1]
\end{array} \right) + O\left(\frac{1}{x^2} \right), \]

\[\langle j_4 | \Phi_{j_2, M-1}^{1/2} (z_2) \Phi_{j_4, 1}^{1/2} (z_3) | j_1 \rangle = z_2^{h_4-h_1} z_3^{h_1-h_4}
\times \left\{ 1 + \frac{q^{k+2} x^{-1}}{[2][k+2][2k - 2j_1 + 3]} \right\} \left(\begin{array}{cc}
\left[k - 2j_1 + 3 \right] [2j_2 - M + 1] [M] \\
\left[k - 2j_1 + 1 \right] [2j_2 - M + 2] [M - 1]
\end{array} \right) + O\left(\frac{1}{x^2} \right), \]

where \(x = z_2 / z_3 \), \(h_n^\pm = h_{j_n} \pm \frac{1}{2} \) and \(M = j_1 + j_2 - j_4 + \frac{1}{2} \).

Appendix C. The \(R \)-matrix

For the finite dimensional representation \(V_j (z) \) in §2.2, let \(|M_1, M_2\rangle = |1/2, M_1\rangle \otimes |j, M_2\rangle \in V_{1/2}(z) \otimes V_j(w) \). The \(R \)-matrix, \(R(z/w) : V_{1/2}(z) \otimes V_j(w) \rightarrow V_{1/2}(z) \otimes V_j(w) \), defined by \(R(z/w) \Delta_{z,w}' = \Delta_{z,w} R(z/w) \), is a \(2 \times 2 \) block diagonal form in each sector \(C|0, M\rangle \oplus C|1, M-1\rangle \), with \(M \in \{1, \ldots, 2j-1\} \).

The \(R \)-matrix \(\tilde{R}(x) \), which is normalized as \(\tilde{R}(x)|0,0\rangle = |0,0\rangle \), is given explicitly as follows

\[\left(\begin{array}{cc}
\tilde{R}(x)|0, M\rangle \\
\tilde{R}(x)|1, M-1\rangle
\end{array} \right) = \left(\begin{array}{cc}
a_M(x) & b_M(x) \\
c_M(x) & d_M(x)
\end{array} \right) \left(\begin{array}{c}
|0, M\rangle \\
|1, M-1\rangle
\end{array} \right), \] (C.1)

where

\[\left(\begin{array}{cc}
a_M(x) & b_M(x) \\
c_M(x) & d_M(x)
\end{array} \right) = \frac{1}{x - q^{M+M}} \left(\begin{array}{cc}
x q^M - q^M & q^M (q^{-M} - q^M) \\
x q^M (q^{-M} - q^M) & x q^M - q^M
\end{array} \right), \] (C.2)

with \(M = 2j + 1 - M \). They obey the following crossing relation

\[\left((\tilde{R}(x)^{-1} t_1)^{-1} \right)^{t_1} = \left(1 - x q^{-2j+3} \right) \left(1 - x q^{2j+3} \right) K^{-1} \tilde{R}(x q^{-4}) K, \] (C.3)

where \(t_1 \) means a transpose on the first component.
The R-matrix $R(x)$ which is the image of the universal R-matrix can be determined by the crossing relation \[(((R(x)^{-1})^t)^{-1})^t = K^{-1}R(xq^{-4})K. \] (C.4)

The relation between R and \tilde{R} is then given as

\[R(x) = f(x)\tilde{R}(x), \quad f(x) = \frac{(1 - xq^{2j_z+3})(1 - xq^{-2j_z+1})}{(1 - xq^{2j_z+1})(1 - xq^{-2j_z+3})}f(xq^4). \] (C.5)

The solution for $f(x)$ in the region $x \ll 1$ is

\[f(x) = \prod_{n=0}^{\infty} \frac{(1 - xq^{2j_z+3+4n})(1 - xq^{-2j_z+1+4n})}{(1 - xq^{2j_z+1+4n})(1 - xq^{-2j_z+3+4n})}. \] (C.6)

This solution can be analytically continued to the whole $x \in \mathbb{C}$ uniquely.
References

[1] K. Aomoto, “ A note on holonomic q-difference systems ” Algebraic Analysis I, ed. by M. Kashiwara and T. Kawai, Academic Press, San Diego (1988) 25-28.

[2] K. Mimachi, “ Connection problem in holonomic q-difference system associated with a Jackson integral of Jordan-Pochhammer type ” Nagoya Math. Journ., 116 (1989) 149-161.

[3] F.A. Smirnov, “ Dynamical symmetries of massive integrable models ” Int. J. Mod. Phys. A7 Supplement 1 (1992) 813-837;839-818.

[4] I.B. Frenkel and N.Yu. Reshetikhin, “ Quantum affine algebras and holonomic difference equations ” Commun. Math. Phys. 146 (1992) 1-60.

[5] A. Matsuo, “ Jackson integrals of Jordan-Pochhammer type and quantum Knizhnik-Zamolodchikov equations ” preprint (1991); “ Quantum algebra structure of certain Jackson integrals ” preprint (1992).

[6] N. Reshetikhin, “ Jackson-type integrals, Bethe vectors, and solutions to a difference analog of the Knizhnik-Zamolodchikov system ” preprint (1991).

[7] K. Aomoto, Y. Kato and K. Mimachi, “ A solution of Yang-Baxter equation as connection coefficients of a holonomic q-difference system ” Duke Math. Jour. 65 IMRN (1992) 7-15.

[8] B. Davies, O. Foda, M. Jimbo, T. Miwa and A. Nakayashiki, “ Diagonalization of the XXZ hamiltonian by vertex operators ” RIMS preprint (1992).

[9] M. Idzumi, K. Iohara, M. Jimbo, T. Miwa, T. Nakashima and T. Tokihiro, “ Quantum affine symmetry in vertex models ” RIMS preprint (1992).

[10] A. Tsuchiya and Y. Kanie, “ Vertex operators in conformal field theory on P^1 and monodromy representations of braid group ” Advanced Studies in Pure Math. 16 (1988) 297-372, Lett. Math. Phys. 13 (1987) 303.

[11] E. Date, M. Jimbo and M. Okado, “ Crystal base and q-vertex operators ” Osaka Univ. Math. Sci. preprint 1 (1991).

[12] G.E. Andrews, R.J. Baxter and P.J. Forrester, “ Eight-vertex SOS model and generalized Rogers-Ramanujan-type identities ” Jour. Stat. Phys. 35 (1984) 193-266.

[13] E. Date, M. Jimbo, T. Miwa and M. Okado, “ Solvable lattice models ” RIMS Preprint 590 (1987).

[14] G. Felder and A. LeClair, “ Restricted quantum affine symmetry of perturbed minimal conformal models ” Int. J. Mod. Phys. A7 (1992) 239-278.

[15] H. Awata and Y. Yamada, “ Fusion rules for the q-vertex operators of $U_q(sl_2)$ ” Mod. Phys. Lett. A7 (1992) 2235-2243.

[16] H. Awata and Y. Yamada, “ Fusion rules for the fractional level $sl(2)$ algebra ” Mod. Phys. Lett. A7 (1992) 1185-1195.
[17] A. Matsuo, “Free field representation of quantum affine algebra $U_q(\widehat{sl}_2)$” preprint (1992).

[18] A. Abada, A.H. Bougourzi and M.A. El Gradechi, “Deformation of the Wakimoto construction” preprint (1992).

[19] J. Shiraishi, “Free boson representation of $U_q(\widehat{sl}_2)$” preprint UT-617 (1992).

[20] H. Awata, A. Tsuchiya and Y. Yamada, “Integral formulas for the WZNW correlation functions” Nucl. Phys. B365 (1991) 680-696.

[21] F.G. Malikov, “Quantum groups: Singular vectors and BGG resolution” RIMS Preprint 835 (1991).