Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Access to and demand for online school education during the COVID-19 pandemic in Japan

Hideo Akabayashi a,1,*, Shimpei Taguchi b,2, Mirka Zvedelikova b,3

a Faculty of Economics, Keio University, 2-15-45, Mita, Minato-ku, Tokyo 108-8345, Japan
b Graduate School of Economics, Keio University, 2-15-45, Mita, Minato-ku, Tokyo 108-8345, Japan

Abstract

The COVID-19 pandemic resulted in school closures worldwide, including in Japan, where remote education at schools is underdeveloped. Using a unique panel dataset collected in May and December 2020, we examine the determinants of access to online education at and outside schools and parents’ preference towards at-school online education. We observe that children from more privileged family backgrounds received more at-school as well as outside-school online education. We also find that household income and parent’s educational level are associated with higher demand for at-school online education, while mothers working full-time and fathers in non-regular contracts decreased this demand temporarily.

1. Introduction

With the outbreak of the COVID-19 pandemic, schools worldwide were forced to close leaving out 800 million school-aged children from receiving education as of early 2021 (UNESCO, 2021). As the impact of COVID-19 persists and prolongs school closures, the educational opportunity divide between children with and without access to some form of online education becomes apparent. Japan, where school education has been provided with relatively high equity regardless of family background (OECD, 2012), is not an exception. With the first wave of COVID-19, Japanese schools nationwide were ordered to close and children were deprived of face-to-face education. Only 5% of Japanese children had access to interactive online education during the period of school closure. Before the pandemic, Japan ranked the lowest in computer usage for schoolwork outside school in the developed world (OECD, 2020). Despite its importance, not much research has been conducted on Japanese children’s access to online education, related parental views and their heterogeneity during the COVID-19 crisis based on a representative sample.

The literature documenting children’s learning experience during the pandemic can be divided into two main streams. The first, which is typically utilized for developing countries, examines the overall access to remote education. Cappelle et al. (2021) showed that access to technology, along with family and social backgrounds, affected the use of remote learning modalities in India. Likewise, Hossain (2021), analyzing data from Ethiopia, India, Peru, and Vietnam, demonstrated that access to remote schooling was positively correlated with household wealth and Internet access. The second approach investigates children’s online learning activity gap using time surveys, typically using data from developed countries. Grewening et al. (2020) used a

We thank the Cabinet Office of the Japanese Government for providing us the data from “Survey on Lifestyle Attitudes and Behavioral Changes during the COVID-19 Pandemic.” We also thank Soichi Ohta, and the participants at the graduate labor seminar at Keio University for their comments. This work was supported by KAKENHI Grant Number 21H04982, 16H06323 from the Japan Society for the Promotion of Science, Mitsubishi Foundation, and Keio Gijuku Academic Development Funds. The authors declare that they have no relevant or material financial interests that relate to the research described in this paper.

* Corresponding author.
E-mail addresses: hakab@econ.keio.ac.jp (H. Akabayashi), shimpei.taguchi@keio.jp (S. Taguchi), zvedmi@g.s.econ.keio.ac.jp (M. Zvedelikova).

1. https://orcid.org/0000-0002-6347-2895
2. https://orcid.org/0000-0003-3922-9948
3. https://orcid.org/0000-0002-3085-7502
4. “Survey of Study and Instruction (Gakushu Shidou Torikumi Chousa)” conducted on all boards of education, which operate public schools, by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) on April 16, 2020.

https://doi.org/10.1016/j.ijedudev.2022.102687
Received 27 February 2022; Received in revised form 13 September 2022; Accepted 15 October 2022
Available online 24 October 2022
0738-0593/© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
time-use survey of school-aged children in Germany to investigate students’ learning time and reported that high achievers engaged in school online learning activities more frequently than low achievers. Andrew et al. (2020) used the United Kingdom Time Use Survey to investigate how the lockdown impacted the time use and learning of children between ages 4 and 15 and suggested that educational gaps between children from poorer and better-off families are likely to have been reinforced. Using data of children who used services of an online learning company, Ikeda and Yamaguchi (2020) investigated the online study time of junior and high school students in Japan before and during COVID-19-related school closures and observed a positive association between online education quality and children’s study time. However, despite Japan’s status as a developed country, only a small percentage of Japanese children experienced interactive online education during school closures. Therefore, to fully understand the extent of the impact of COVID-19 on children’s learning in Japan, it is important to also cover questions from the first category and examine why some children and not others had access to online education, considering the complex influence of family background, parental preferences, and work conditions in a broad context.

In this paper, we contribute to the current literature by comprehensively evaluating children’s online educational access during the pandemic and the impact of COVID-19 on this access as well as documenting the determinants of parental support of school online education in Japan using nationally representative data. Specifically, we aim to answer the following research questions: (a) Which children had access to online education at school and outside school during the pandemic in Japan based on their family backgrounds? (b) What impact did the spread of COVID-19 have on children’s access to online education? (c) How were the parental preferences towards at-school online education during the pandemic associated with family backgrounds and parents’ work styles? To address these questions, we use unique governmental survey data collected at two points during the pandemic from the same households—in May 2020, immediately after school closures ended, and then half a year later, in December 2020, during the third wave. No other existing data would allow us to examine both the rapid response and the long-term changes in the online educational experience brought about by the pandemic.

First, using probit model we analyze the online educational experience of children in elementary, junior high and high schools, both at school and outside school, based on the following family backgrounds: type of school (public or private) attended, household income and parent’s educational level. Second, we use the difference-in-difference and triple difference estimation methods to further highlight the potential inequality in access to online education by family backgrounds triggered by an increase in COVID-19 cases. Third, we examine the parental preferences towards at-school online education, how they are shaped by the experience of online education and factors such as household income, parental education and parents’ employment status and work styles, using ordered logit model. For these analyses, we utilize the longitudinal nature of our dataset to investigate the situation at both survey time points separately as well as over time.

The contribution of this study is two-fold. First, this is the first study to examine the impact of the COVID-19 pandemic on online educational practices in Japan as experienced by children at school and outside school. Outside-school education is a long-standing topic of interest in Asia, however its impact on learning inequality has lately been gaining attention worldwide. Fifth, to fully understand the ramifications of this pandemic, in addition to at-school education, it is important to examine outside-school learning, such as private tutoring, prep schools, or many different types of programs typically offered after regular school hours. These learning opportunities have the potential to influence children’s academic performance and equity in education. Outside-school educational options are abundant in Japan and are not a substitute to at-school education as they are attended on top of school, typically to get ahead of ones’ peers to gain access to prestigious institutions of higher learning. Ignoring potential heterogeneity in access to online education outside school may lead to an underestimation of the extent of inequality in online learning opportunity among children.

Second, adopting a broader perspective than previous studies, using data from a nationally representative survey we simultaneously analyze both children’s actual experience and parental preferences towards online education, and how they differed based on socioeconomic backgrounds. Parental preferences can potentially influence children’s access to online learning through the support of at-home learning and purchases of outside-school educational services or appropriate Internet-connected devices. We extend our analysis of parental preferences beyond the typical measures of family background to also examine the role of employment and changing work styles, two major factors influencing the day-to-day support of children’s learning, especially when children are suddenly forced to study at home. Examining the determinants of parental preferences, both more permanent aspects such as parental education and more transient ones such as work styles can help policymakers identify the key factors needed to create the home environment necessary to enable children equitable access to online learning. These two contributions make our study unique while providing the first evidence on online educational access gap during the COVID-19 pandemic in Japan. To the best of our knowledge, no previous studies have presented an overall picture of the determinants of children’s access to and parental demand for online education as comprehensively as our paper.

Our main findings are that children in private schools and those from high-income households received more online education at school, while children from high-income households and those with a highly educated parent experienced more online education outside school. Next, we find that a greater spread of COVID-19 between May and December 2020 was associated with increased access to online education outside school for children in private schools and children with a highly educated parent, however, we do not observe this trend in at-school online education. Ignoring the socioeconomic differences in the access to online education outside school would thus lead to a substantial bias in the estimates of the online learning volume gap. Further, our analysis revealed that parents of children who had an experience of online education at school tended to have higher preference for at-school online education. We also observe more positive views on online education in highly educated parents and high-income families, factors associated with better outside-school online educational access. Moreover, we observe that mothers employed in regular contracts and fathers in non-regular contracts tended to hold negative views of at-school online education.

2. Background

One of the early major measures to prevent the spread of the COVID-19 pandemic in Japan was to close schools about 2 weeks before the 2-week-long spring break. On Thursday, February 27, 2020, the government requested all elementary, junior high, and high schools to temporarily close from the following Monday, March 2, 2020, until the beginning of the new school year on April 1, 2020. Survey by the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) found that 33% of all elementary and junior high schools and 35% of high schools reopened at the beginning of the school year, with...
schools in the most impacted urban areas\textsuperscript{6} staying closed (MEXT, 2020a).

On April 7, 2020, a state of emergency was declared for 7 out of the 47 Japanese prefectures, which on April 16 was extended nationwide, leading to reopened schools closing again. As of April 22, 95 % of elementary and junior high schools and 97 % of high schools were closed (MEXT, 2020b). The state of emergency was partially lifted on May 14 and fully lifted on May 25. By June 1, 99 % of elementary and junior high schools and 96 % of high schools were open (MEXT, 2020c). Based on the data collected by MEXT from boards of education about public schools nationwide, in the period from April 1 to June 23, on average, public elementary schools were closed for 24.6 school days; public junior high schools, for 24.5 school days; and public high schools, for 26.7 school days.\textsuperscript{7}

As of the time of drafting this paper in February 2022, the central government had not requested schools to close again, however, they might have closed for short periods of time independently of the central government to contain local outbreaks. Fig. 1 shows the timeline of the COVID-19 spread in Japan, the state of emergency and the data collection points, from January 16 to December 31, 2020.

3. Data

We use data from the first and the second round of “Survey on Lifestyle Attitudes and Behavioral Changes during the COVID-19 Pandemic” collected by the Cabinet Office of the Japanese government. Both rounds were implemented online targeting a national representative sample of respondents, stratified by age and region, over the age of 15 across Japan. The first round was conducted between May 25 and June 5, 2020, which we call “May survey,” following the end of the state of emergency on May 25, and collected data from 10,128 respondents. The second round, which we call “December survey,” took place between December 11 and December 17, 2020, with 10,128 respondents of which 5212 also participated in the first round. Both rounds of this survey included questions about the respondent’s background, work styles, family and social life, personal well-being, and the youngest school-aged child’s education.\textsuperscript{8} The survey also asked about plans and wishes for the future.

To observe and understand the impact of the pandemic on children’s education more precisely, we limited our sample to respondents who participated in both rounds of the survey, have children with their youngest child in elementary, junior high, or high school, and have provided consistent answers about their child’s and their own level of schooling in both rounds of the survey, arriving at a sample of 566 respondents. To examine the impact of the pandemic on a local level, we then excluded respondents who moved between prefectures between the survey rounds and those who did not produce a definitive answer about the type of education their child had been receiving (answer “do not know”) in either wave to finalize our sample at 528 respondents.

Question regarding the type of school the child attends, public or private, a variable of interest in our analysis, was included only in the second survey round. Despite a relatively modest sample size, the structure of the data and the uniqueness of the information contained therein is extremely valuable and thus makes this data set suitable to our research objective.

In the final sample, 46 % of respondents were female, 62 % of respondents had a child in elementary school, 21 % in junior high school, and 17 % in high school. Of all children, 11 % attended private schools. By school level, 2 % of elementary, 12 % of junior high, and 39 % of high school students in the sample attended private schools, with these numbers in the general population for the academic year 2020 standing at 1 %, 8 %, and 33 %, respectively (School Basic Survey, MEXT). On average, our sample is more educated than the general population, with 75 % of respondents having attained a post-secondary education. The data on the educational attainment of respondent’s spouse were not available. Based on the 2010 national census, 44 % of those in the 25–49-year age category, which is most likely to be represented in our sample, attained post-secondary education. The sample is also composed of respondents who are relatively well-off; 58 % of the respondents live in households with annual household income over 6 million yen, which is the highest income bracket common to both rounds of the survey. In 2018, the average annual household income stood at 5.52 million yen for all households and at 7.46 million yen for households with children under the age of 18 years according to the governmental statistics (MHLW, 2020). Other properties of the sample are described in Table 1. Ages of both parents and children were collected in the survey but not disclosed.

The questionnaires of our survey in May and December enquire about the type of online education the youngest school-aged child experienced at school and outside school. The responding parent chose all applicable answers from a given selection of “online classes,” “online instruction,” and “online materials” both at school and outside school (cram school, after-school activities), “other,” and “no online education received.” As these types of online education are often complementary, the separation between them is not clear, and their respective prevalence in the sample is small, we do not distinguish between them. Creating at-school and outside-school online education composite variables also allows us to implement a more detailed analysis.

In May, 34 % of children in our sample received some type of online education at school, defined as at least one of “online classes,” “online instructions,” and “online materials,” with this number dropping to 13 % in December. In May, 51 % of parents responded that their child had received no online education whatsoever and in December this percentage increased to 76 %. As May data cover the period of mandated school closures, it is possible that during the closures, two thirds of school children received little to no education.

Figs. 2 and 3 descriptively show the type of online education experienced by level and type of school the child attended. In both May and December, the higher the level of school attended, the more online education the child received at school. The opposite trend can be seen for outside-school online education, defined as at least one of “online classes,” “online instruction,” and “online materials” outside school. Furthermore, children attending private schools had at both time points received more at-school online education than children in public schools, and more outside-school online education in December.

The questionnaire also asks parents about their preferred future school format as it relates to at-school online education, but not outside-school online education. The respondents selected a single answer from the options “100 % in person,” “in principle in person,” “over 50 % in person,” “over 50 % online” and “do not know.” The phrasing of this question is identical in both rounds of the survey. As our goal was to examine the determinants of parents’ preferences for online education, we excluded the response “do not know” in either wave from our sample and for the purposes of this analysis, worked with a limited sample of 419 respondents. The descriptive statistics for this limited sample are

\textsuperscript{6} Chiba, Fukuoka, Hyogo, Kanagawa, Osaka, Saitama prefectures, and Tokyo metropolis.

\textsuperscript{7} “Survey of School Instructions (Gakushuu Shidou ni Kansuru Joukyou Chousa).” This survey did not cover private schools; however, the guidelines regarding school closures and reopening applied to both public and private schools.

\textsuperscript{8} A limitation of the survey design is that the age distribution of our sample is likely to be biased towards younger children. However, the empirical literature of female labor supply has typically focused on the effect of young children. Therefore, we consider the focus on the youngest school-aged children acceptable for our purpose of analyzing the effect of employment conditions on the demand for school online education.
Figs. 4 and 5 show the distribution of parental preferences towards school education in May and December broken down by level and type of school in the limited sample. Comparing parents’ stated preferences in May and December, parents’ views shifted in the direction of in-person learning. In May, 11% of parents wanted school to be held mainly online and 69% of parents wanted education to return to in-person schooling in principle or completely. In December, these proportions shifted to 5% and 86%, respectively. One interpretation of these facts is that compared to May, when the national state of emergency was in effect and the nature of the COVID-19 virus was not clearly understood, in December, without the national emergency measure, parents generally preferred having their children receive face-to-face education at school. Generally, in both surveys the younger the child, the more the parent preferred in-person learning. Moreover, parents with children in public schools preferred in-person learning over parents of children in private schools.

To assess the impact of COVID-19 pandemic in Japan, we utilize the officially published data summarized by the COVID-19 Japan Anti-Coronavirus Dashboard (https://www.stopcovid19.jp/) as they can be accessed through the software Stata. The Japanese government announces the number of newly confirmed cases on a prefectural basis. Some municipalities independently share their numbers; however, these do not cover all our sample, and therefore, we used the prefecture-based data. Measures against the pandemic, such as the state of emergency or school closures, are generally taken at a prefectural or nationwide level; and thus, we consider prefecture-based COVID-19 numbers as appropriate for our study. We construct two measures of the COVID-19 spread: one covering the period of 30 days prior to the beginning of each survey round, the other covering 7 days. Both were adjusted to show the number of newly confirmed cases per 1000 inhabitants in the given prefecture during the given time frame.

In the first part of the analysis, examining differences in access to online education, we use the 30-day measure which corresponds with the period the questionnaire asks about in December. Then, to analyze parents’ preferences, we turn to the 7-day measure, which we deem more relevant to personal views. Over the 30 days prior to the May survey, the number of newly confirmed COVID-19 cases increased in 38 out of 47 prefectures of Japan and was 0 in the rest. For the weekly measure, the number of newly confirmed cases per capita stood at 0 for 31 prefectures and increased in 16. In December, all prefectures saw an increase during both periods.

To check the consistency of the two samples utilised as it relates to our variables of interest, we run a probit regression of whether a respondent declared a preference about future school format. We find that respondents with a child who had received online education at school and respondents whose child attended private school tended to express a specific preference. Respondents from high income households as well as single mothers—defined as mothers not living with a spouse—were also more likely to state a preference. On the contrary, respondents living in multigenerational households (with respondent’s or respondent’s spouse’s parents or grandparents) were more likely to answer “do not know” in December and thus, to be omitted from our sample. The regression results for the consistency check can be found in Appendix Table A5.

9 To check the consistency of the two samples utilised as it relates to our variables of interest, we run a probit regression of whether a respondent declared a preference about future school format. We find that respondents with a child who had received online education at school and respondents whose child attended private school tended to express a specific preference. Respondents from high income households as well as single mothers—defined as mothers not living with a spouse—were also more likely to state a preference. On the contrary, respondents living in multigenerational households (with respondent’s or respondent’s spouse’s parents or grandparents) were more likely to answer “do not know” in December and thus, to be omitted from our sample. The regression results for the consistency check can be found in Appendix Table A5.

10 In the May survey, the period in question is not specified besides “during the pandemic.” We understand this as the period since the beginning of the new school year on April 1. Therefore, we assume that parents described the online learning experience at the type of school stated on the day of the survey. In the December survey, the same question was asked again, this time specifying the period of the previous 30 days.
4. Empirical strategy

4.1. Access to online education

We first examine the online education experiences at the two data points, May and December, by the type of school attended and family backgrounds. We estimate the following probit model to measure the likelihood of a child experiencing online education at and outside school by their background:

\[ \Pr(\text{OnlineEducationAccess}_{t=1,2} = 1) = \Phi(\beta_0 + \beta_1 \times \text{School} + \beta_2 \times \text{Family}_{t=1,2} + \beta_3 \times \text{Covid}_{t=1,2}) \]  

(1)

where OnlineEducationAccess is a dummy variable taking two forms, one for at-school online education and the other for outside-school online education. As for at-school online experience, OnlineEducationAccess is equal to 1 in case the child had received at least one of the three types of online education, “online classes,” “online instructions,” or “online materials,” from school, and takes 0 otherwise. For outside-school online education, OnlineEducationAccess takes 1 if the child had received at least one of the same three types of online education outside school, such as at an after-school program or private tutoring and takes 0, otherwise.

\[ \text{School} \]

Elementary school - public 528 0.602 0.490 0 1 528 0.602 0.490 0 1
Elementary school - private 528 0.015 0.122 0 1 528 0.015 0.122 0 1
Junior high school - public 528 0.184 0.388 0 1 528 0.184 0.388 0 1
Junior high school - private 528 0.025 0.155 0 1 528 0.025 0.155 0 1
High school - public 528 0.106 0.308 0 1 528 0.106 0.308 0 1
High school - private 528 0.068 0.252 0 1 528 0.068 0.252 0 1

\[ \text{Online learning experience in past month (multiple answer)} \]

At school
Online classes 528 0.335 0.473 0 1 528 0.131 0.337 0 1
Online instruction 528 0.138 0.345 0 1 528 0.059 0.235 0 1
Online materials 528 0.155 0.363 0 1 528 0.057 0.232 0 1

Outside school
Online classes 528 0.229 0.421 0 1 528 0.119 0.324 0 1
Online instruction 528 0.059 0.235 0 1 528 0.038 0.191 0 1
Online materials 528 0.089 0.285 0 1 528 0.036 0.186 0 1
Other online education 528 0.053 0.224 0 1 528 0.028 0.166 0 1
No online education 528 0.506 0.500 0 1 528 0.758 0.429 0 1

\[ \text{Preferred school format} \]

Over 50 % online 528 0.102 0.303 0 1 528 0.040 0.196 0 1
Over 50 % in person 528 0.165 0.371 0 1 528 0.074 0.262 0 1
In principle in person 528 0.333 0.472 0 1 528 0.290 0.454 0 1
100 % in person 528 0.280 0.450 0 1 528 0.477 0.500 0 1
Do not know 528 0.119 0.324 0 1 528 0.119 0.324 0 1

Note: This table shows the descriptive statistics for the sample used in the analyses in Tables 2–4. The descriptive statistics for the analyses in Tables 5 and 6 is in Appendix Table A1.
School is a vector of the dummy variables identifying the level of school that the child attends (elementary, junior high, or high school) and Family is a vector of the dummy variables describing the family background: the type of school attended (public or private), household income, and responding parent’s educational attainment. A child is considered to come from a high-income family for an annual household income greater than 6 million yen. Parental education is taken as high if the responding parent has attained post-secondary education. Covid measures newly confirmed COVID-19 cases per 1000 inhabitants in the prefecture of residence over the 30-day period prior to the survey. Errors (as $\epsilon$ below) are for all models clustered at a prefectural level, to allow for potential within-prefecture correlation associated with differences in the timing of the declaration and lifting of the state of emergency and the implementation of educational policies between prefectures.

We also estimate the changes in online educational experience from May to December survey using the following value-added probit model to see, given the online education experience in May, how the access in December was influenced by observed school and family factors.\footnote{The value-added model has been extensively used in the literature of the education production function. In this paper, we opt for a widely used model that includes a lagged outcome variable as an independent variable since the literature is not conclusive as to the specification leading to the least biased estimation results (Hanushek and Rivkin 2012; Koedel et al., 2015). Moreover, with two waves of panel data, there is little room for additional controls of measurement error or endogeneity bias.}
Next, to examine whether a faster increase of regional COVID-19 cases was associated with changes in online educational experiences, we combine May and December data and estimate the following difference-in-difference (DID) linear probability model treating rapid increase in COVID-19 cases as an unexpected exogenous shock:

\[
Pr(\text{OnlineEducationAccess}_{it} = 1) = \Phi(\beta_0 + \beta_1 \cdot \text{School}_{it} + \beta_2 \cdot \text{Family}_{it} + \beta_3 \cdot \text{Covid} + \beta_4 \cdot \text{OnlineEducationAccess}_{it}) 
\]

(2)

where the definition of OnlineEducationAccess is identical to that in Eqs. (1) and (2). \(D_{\text{Covid}}\) in Eq. (3) is a dummy variable equal to 1 in case respondent’s prefecture of residence saw an increase in new COVID-19 cases above sample average, based on the difference between Covid and Covid_{it}.\(^{12}\) For our data, the average difference is 0.48 cases per 1000 inhabitants. December is a dummy variable identifying December survey.\(^{13}\)

To further evaluate the effect of the faster increase of COVID-19 cases and the role of family background factors, we extend the difference-in-difference estimation to a triple difference linear probability model. We estimate the following model:

\[
\text{OnlineEducationAccess} = \beta_0 + \beta_1 \cdot \text{D}_{\text{Covid}} \cdot \text{December} + \beta_2 \cdot \text{D}_{\text{Covid}} \cdot \text{December} + \beta_3 \cdot \text{December} + \epsilon
\]

(3)

\[
\text{OnlineEducationAccess} = \beta_0 + \beta_1 \cdot \text{D}_{\text{Covid}} \cdot \text{December} + \beta_2 \cdot \text{D}_{\text{Covid}} \cdot \text{December} + \beta_3 \cdot \text{December} + \epsilon
\]

(4)

where \(D_{\text{background}}\) is a dummy variable which identifies children’s family background along 3 dimensions: household income, responding parent’s education and the type of school attended (public or private) defined above. With this model, we expect to evaluate how an exogenous increase of COVID-19 cases had heterogeneous impacts on children’s online learning experiences both at and outside school by family background and school types.

A potential problem of the difference-in-difference framework is that it may confound the treatment effects with preexisting differences in time trends across treatment groups and untreated groups, in our case the prefectures that experienced a rapid increase in COVID-19 cases and those that did not. Unfortunately, to our knowledge, the variables of interest in our dataset are not available for the pre-pandemic period, preventing us from testing the parallel trends assumption directly. We, therefore, construct a set of variables we consider strong predictors of the access to online education and its family-backgrounds related heterogeneity and test whether the trends between the two groups are statistically different. Specifically, we use the prefectoral level data for the per capita GDP, educational expenditure per household, college enrollment rate, private school enrollment rate, public school expenditure per child, the ratio of students needing financial assistance for school materials, and the ratio of students attending cram schools, covering up to five years prior to the pandemic. We did not find any significant preexisting differences in trends between the two groups. Moreover, we examined differences in the family characteristics in the May survey. We did not find a difference in the percentage of children attending private schools (\(p = 0.895\)) and parental educational attainment (\(p = 0.963\)) between prefectures experiencing and not experiencing a rapid increase in COVID-19 infection in December but found that children in the former prefectures were 20.4 % more likely to come from high-income families than children in the latter (\(p = 0.0118\)). However, the direction and magnitude of the difference in income in May is consistent with the difference observed in the parallel trend in prefectoral GDP, and there is no sign that our sample shows a violation of this parallel trend.\(^{14}\) Although the possibility of unobserved strong determinants of online education access with different trends between the two groups remains, the results of these auxiliary tests strengthen the interpretation of our results, which, based on our strategy, are likely to be causal.

4.2. Parental demand for online education

To examine parental preferences towards at-school online education both in May and in December, we estimate the following ordered logit model separately for both surveys:

Outcome variable OnlineEducationDemand_{it-1.2} shows parental pref-

\(^{12}\) Prefectures for which \(D_{\text{Covid}}\) dummy variable is equal to 1: Aichi, Hokkaido, Hyogo, Kanagawa, Nara, Okinawa, Osaka, Saitama prefectures and Tokyo metropolis.

\(^{13}\) For robustness check, we estimated Eqs. (3) and (4) using a probit model and confirmed that the estimated results did not change qualitatively. We also ran Eqs. (3) and (4) including individual fixed effects, confirming that the results remained fundamentally unchanged. This is consistent with theoretical predictions, as we use balanced panel data and do not include any time-varying covariates. See Lechner et al. (2016) for a similar argument.

\(^{14}\) We calculated the gap in the preexisting trends of average per capita prefectural GDP weighted by the population of school age children in each prefecture and found that in the “treated” prefectures, it was 23.7 % higher than in the “control” prefectures. Although the two numbers are not directly comparable, these additional results suggest that the initial (im)balance of the income level between the two groups in the May survey sample is consistent with the preexisting imbalance of per capita GDP between the two groups.
hence towards at-school online education over in-person education measured on a four-point scale, with greater numbers indicating stronger preference for online education. OnlineEducationAccessSchool is a dummy variable equal to 1 if respondent’s child had received some form of online education at school lately,15 and 0, otherwise. School and Family are vectors of school characteristics and family backgrounds, respectively. In addition to household income and parental education, to get insights into potential constraints on the demand side of online school education, Family variables include parents’ work status or changes in parents’ work styles due to the pandemic. Covid is a control for the number of newly confirmed COVID-19 cases per 1000 inhabitants in respondent’s prefecture of residence over 7 days prior to the beginning of the respective survey.

Next, to analyze how parents’ preferences changed from May to December, we employ the following value-added model:

\[
Pr(OnlineEducationDemand_{t,12} = k) = F(\beta_0 + \beta_1 \ast OnlineEducationAccessSchool_{t,12} + \beta_2 \ast School + \beta_3 \ast Family_{t,12} + \beta_4 \ast Covid_{t,12}), \quad k = 1, 2, 3, 4
\]

private schools further widened even after schools reopened.

Second, in Columns (4) to (6) in Table 2, we examine the factors associated with access to online education outside school. Results from the May survey in Column (4) indicate that children from high-income households and those with a responding parent with a post-secondary education had a higher likelihood of experiencing online education outside school during the first wave of the pandemic by 16%. A similar trend was observed in the December survey in Column (5), where, in addition to household income and parent’s educational level, the positive effect of a child attending a private school becomes significant. Further, a value-added model in Column (6) shows significant and positive coefficients on all three variables, high-income household, highly educated responding parent and private school. This evidence collectively suggests that there is a clear association between children’s family backgrounds and their likelihood of receiving outside-school online education, and that the gap in access to outside-school online education increased over the course of the pandemic.

\[
Pr(OnlineEducationDemand_{t,12} = k) = F(\beta_0 + \beta_1 \ast OnlineEducationAccessSchool_{t,12} + \beta_2 \ast School + \beta_3 \ast Family_{t,12} + \beta_4 \ast Covid_{t,12} + \gamma \ast OnlineEducationDemand_{t-1}), \quad k = 1, 2, 3, 4
\]

15 The period in question is from April 1 to the survey date for the May survey, and previous 30 days for the December survey. We do not include outside-school online education access variable in the model, as child’s after-school activities are related to family background and thus, likely to be endogenous.

16 All estimations were conducted using Stata version 17.
5.2. Heterogeneity of impact of COVID-19 on online education

To assess whether a greater impact of COVID-19 was associated with higher likelihood of online educational experience, we employ a difference-in-difference model treating a rapid increase in COVID-19 cases as an unexpected exogenous shock to education in each region. The results are shown in Table 4. “COVID-19 rapid increase” variable corresponds to $D_{\text{Covid}}$ in Eq. (3) and identifies prefectures that saw above sample average increase in newly confirmed cases from May to December.

We do not find a statistically significant effect of the interaction term of “COVID-19 rapid increase” and “December” for either at-school or outside-school online education. Therefore, we further estimate triple difference models, as described in Eq. (4), to examine the heterogeneous impact of COVID-19 on online educational access by various measures of family backgrounds.

First, we analyze the effect of a greater impact of COVID-19 on online educational experience by household income level and report our findings in Columns (1) and (4) of Table 5. Coefficients of the interaction term “COVID-19 rapid increase,” “December” and “High income household” in either column are not statistically significant. These results indicate that a greater impact of COVID-19 does not create heterogeneous effect on access to online education, both at school and outside school, by household income.

Next, we investigate the heterogenous effect of COVID-19 by parent’s educational level, presenting the results in Columns (2) and (5) of Table 5. The coefficient of the interaction term of “COVID-19 rapid increase,” “December,” and “highly educated parent” is positive and significant at a 5% level for outside-school online educational experience in Column (5). This result suggests that, with a greater impact of COVID-

![Fig. 3. Online education experience by the type of school.](image-url)
children with a highly educated parent had a 12% higher likelihood of experiencing online education outside school than children with a parent without post-secondary education.

Finally, we examine the effect of a greater impact of COVID-19 by the type of school attended, public or private, and report the results in Columns (3) and (6) of Table 5. The coefficient of the interaction term of “COVID-19 rapid increase,” “December,” and “Private school” is not statistically significant for at-school online education experience in Column (3), but it is significant at a 5% level and positive for outside-school online educational experience in Column (6). This result indicates that as almost all schools had resumed face-to-face education in December 2020, the more pronounced impact of COVID-19 was not associated with difference in access to at-school online education in both public and private schools. However, in prefectures that saw a greater impact of COVID-19, children attending private schools had a 17% higher likelihood of receiving online education outside school than children attending public schools.

In sum, the heterogeneous impact of COVID-19 on children’s online educational experience is only observed outside school by children’s school type and parental education, but not by household income. These results imply that the greater impact of COVID-19 did not create differences in online educational experience at school, but it did outside school, where parents have discretion over what education their children receive. Parents who do not necessarily have higher income but are highly educated or willing to send their children to private schools, might have higher expectations for their children’s educational achievement. The stronger influence of COVID-19 might have promoted these parents who were more highly concerned about their children’s learning during the COVID-19 pandemic to access more online education outside school, which might have otherwise been attended in-person.
5.3. Parental demand for at-school online education

5.3.1. Effect of family background

Turning our attention to parental demand for online education, we investigate parents’ views regarding the type of education that they want their children to receive at school, with a focus on the effects of family background. Estimates from an ordered logit regression of parental preference for online education are reported in Table 6 (1), with cross-sectional results (Eq. (5)) from the May and December surveys in Columns (1) and (2), respectively. Column (3) shows results of the December survey from a value-added model (Eq. (6)), revealing changes from May to December.

In all instances, the strongest determinant of favorable views of at-school online education is the recent experience of at-school online education. Estimating the impact of the type and level of school the child attended on the responding parent’s preferences, we do not find any consistently significant effect in either May or December. While the results discussed in Section 5.1 reveal that children in private schools had, at both time points, greater access to at-school online education, there is no difference in parents’ views based on the type of school attended when the actual experience of at-school online education is controlled for. However, seen as a change from May, parents of

---

Fig. 5. Parental preferences towards at school education by the type of school.

The full results of Table 6 (1), with and without family background controls, are available in Appendix Table A4. In the December survey, parents of high schoolers were more likely to be open to online education in comparison to the baseline of parents of elementary school students; however, the significance of the effect disappeared with the inclusion of family background covariates in Columns (4) and (6). Parents’ views on the type of education their child receives, therefore, do not seem to be related to child’s age.
children attending private schools were at a 10% level of significance more likely to prefer face-to-face classes than parents of children in public schools. Private schools, on top of charging tuition, typically offer a wide array of extra curricular activities and campus environment not available at public schools, increasing the attractiveness of attending classes in person.

Focusing on family backgrounds, we find that highly educated parents or parents who send their children to private schools are more likely to prefer face-to-face classes than parents without post-secondary education in the May survey. Other controls are Private school, Rural area, Respondent’s gender, COVID-19 spread in the prefecture of residence over past month. Columns (3) and (6) include lagged dependent variable from May survey. Full results are available in the Appendix Table A2. Robust standard errors clustered at prefectural level are shown in parentheses. Levels of significance: * * * p < 0.01, * * p < 0.05, * p < 0.1.

Table 2
Determinants of access to online education at school and outside school.

| Dependent variable | Access to Online Education: | At school | Outside school |
|--------------------|-----------------------------|-----------|---------------|
|                    | May                          | December  | December (with lag) | May | December | December (with lag) |
|                    | (1)                          | (2)       | (3)            | (4) | (5)       | (6)               |
| Private school     | 0.230 ***                    | 0.109 *** | 0.078 **       | 0.004 | 0.102 *  | 0.095 **          |
|                    | (0.061)                      | (0.038)   | (0.038)        | (0.081) | (0.055)  | (0.040)           |
| Junior high school | 0.057                        | -0.007    | -0.018         | 0.052  | 0.013    | 0.005             |
|                    | (0.040)                      | (0.028)   | (0.027)        | (0.043) | (0.030)  | (0.031)           |
| High school        | 0.237 ***                    | 0.995 **  | 0.060          | -0.115 ** | -0.106 ** | -0.079 **         |
|                    | (0.054)                      | (0.041)   | (0.039)        | (0.050) | (0.047)  | (0.042)           |
| High-income household | 0.171 ***                  | 0.043 *   | 0.015          | 0.156 *** | 0.101 *** | 0.068 **          |
|                    | (0.044)                      | (0.021)   | (0.018)        | (0.037) | (0.031)  | (0.028)           |
| Highly educated parent | 0.027                    | 0.027     | 0.021          | 0.058   | 0.097 *** | 0.081 **          |
|                    | (0.038)                      | (0.030)   | (0.027)        | (0.031) | (0.034)  | (0.032)           |
| COVID-19 spread (1 month, per 1000 inhabitants) | 0.459     | 0.051     | 0.043          | 1.162 *** | 0.055 **  | 0.040             |
|                    | (0.477)                      | (0.042)   | (0.040)        | (0.308) | (0.024)  | (0.026)           |
| Pseudo R²           | 0.125                        | 0.081     | 0.119          | 0.057  | 0.077    | 0.182             |
| Observations        | 528                          | 528       | 528            | 528    | 528      | 528               |

Notes: Average marginal effect estimates from probit model regression. The dependent variable is a dummy variable indicating whether the youngest school-aged child had experienced any form of online education at school (Columns (1) to (3)) or outside school (Columns (4) to (6)) since the beginning of the school year in April (May) or in the past month (December). Private school, Junior high school, High school (with Elementary school as a baseline), High-income household (household annual income over 6 million yen), Highly educated parent (responding parent attained post-secondary education) are dummy variables. COVID-19 spread variable shows newly confirmed COVID-19 cases over 1 month prior to the survey starting date per 1000 inhabitants in the prefecture of residence. Other controls are Private school, Rural area, Respondent’s gender. Columns (3) and (6) include lagged dependent variable from May survey. Full results are available in the Appendix Table A2. Robust standard errors clustered at prefectural level are shown in parentheses. Levels of significance: * * * p < 0.01, * * p < 0.05, * p < 0.1.

Table 3
Heterogeneity in determinants of access to online education at school and outside school.

| Dependent variable | Access to Online Education: | At school | Outside school |
|--------------------|-----------------------------|-----------|---------------|
|                    | May                          | December  | December (with lag) | May | December | December (with lag) |
|                    | (1)                          | (2)       | (3)            | (4) | (5)       | (6)               |
| Junior high school | -0.040                       | 0.130 *   | 0.144 **       | -0.051 | -0.038  | -0.007           |
|                    | (0.099)                      | (0.070)   | (0.070)        | (0.096) | (0.063)  | (0.064)          |
| High school        | 0.070                        | 0.027     | 0.023          | -0.142 | -1.476 *** | -1.381 ***       |
|                    | (0.108)                      | (0.085)   | (0.084)        | (0.137) | (0.130)  | (0.116)          |
| High-income household | 0.155 ***                  | 0.061 *   | 0.041          | 0.186 *** | 0.096 **  | 0.063 *          |
|                    | (0.050)                      | (0.034)   | (0.029)        | (0.039) | (0.038)  | (0.037)          |
| Junior high school * High-income household | 0.036                     | -0.098    | -0.112 *       | -0.138 * | -0.028   | -0.024           |
|                    | (0.085)                      | (0.067)   | (0.068)        | (0.082) | (0.070)  | (0.068)          |
| High school * High-income household | 0.037                      | -0.036    | -0.035         | -0.018 | 0.706 *** | 0.692 ***        |
|                    | (0.108)                      | (0.070)   | (0.065)        | (0.107) | (0.072)  | (0.077)          |
| Highly educated parent | -0.044                     | 0.034     | 0.043          | -0.018 | 0.056   | 0.059            |
|                    | (0.055)                      | (0.041)   | (0.039)        | (0.047) | (0.047)  | (0.046)          |
| Junior high school * Highly educated parent | 0.098                     | -0.127    | -0.151 *       | 0.258 *** | 0.087   | 0.035           |
|                    | (0.135)                      | (0.089)   | (0.080)        | (0.099) | (0.089)  | (0.095)          |
| High school * Highly educated parent | 0.202 *                    | 0.113     | 0.071          | 0.044  | 0.703 *** | 0.644 ***        |
|                    | (0.108)                      | (0.091)   | (0.091)        | (0.137) | (0.082)  | (0.078)          |
| Pseudo R²           | 0.130                        | 0.103     | 0.143          | 0.071  | 0.090    | 0.192            |
| Observations        | 528                          | 528       | 528            | 528    | 528      | 528              |

Notes: Average marginal effect estimates from probit model regression. The dependent variable is a dummy variable indicating whether the youngest school-aged child had experienced any form of online education at school (Columns (1) to (3)) or outside school (Columns (4) to (6)) since the beginning of the school year in April (May) or in the past month (December). Private school, Junior high school, High school (with Elementary school as a baseline), High-income household (household annual income over 6 million yen), Highly educated parent (responding parent attained post-secondary education) are dummy variables. Other controls are Private school, Rural area, Respondent’s gender, COVID-19 spread in the prefecture of residence over past month. Columns (3) and (6) include lagged dependent variable from May survey. Full results are available in the Appendix Table A3. Robust standard errors clustered at prefectural level are shown in parentheses. Levels of significance: * * * p < 0.01, * * p < 0.05, * p < 0.1.
private schools in Japan do not necessarily prefer online education to face-to-face education at school; however, they seek additional online education outside school as a supplement especially when the concerns regarding the pandemic increase.

The opposite trend can be seen for the role of household income, which was positive but only marginally significant in the May survey. Yet in the December survey, respondents from high income families were at a 1% level of significance more likely to hold positive views of online education. While the survey did not inquire about the number of Internet-connected devices in the household, which are crucial to access online education, if they were the driving factor behind different views based on household income, the effect would likely already be evident in May. It is possible that children from high-income families have access to better schools than less fortunate children. Schools with more resources might direct them towards building knowledge and infrastructure needed to provide high quality online education even after schools reopen which would consequently lead to more favorable parental views in December.

Next, we analyze the role of parents’ work status, setting the baseline to the parent being present at home, as either stay at home parent, unemployed parent looking for work or parent engaging in pay-by-volume work from home. In general, we find that in the May survey, parents who might not be able to adapt to new circumstances easily were more likely to want their children to return to the classroom, while in the December

Table 4
Response to COVID-19 increase in access to online education at school and outside school.

| Dependent variable | Access to Online Education: | At school (1) | Outside school (2) |
|--------------------|----------------------------|--------------|-------------------|
|                    |COVID-19 rapid increase      | 0.072 **     | 0.042             |
|                    |(0.035)                     | (0.031)      |
|                    |December                    | -0.194 **    | -0.121 **         |
|                    |(0.027)                     | (0.021)      |
|                    |COVID-19 rapid increase * December | -0.022     | 0.023             |
|                    |(0.033)                     | (0.033)      |
|                    |Constant                    | 0.300 **     | 0.209 **          |
|                    |(0.029)                     | (0.020)      |
|                    |R²                           | 0.064        | 0.026             |
|Notes: Coefficient estimates from linear probability model regression. The dependent variable is a dummy variable indicating whether the youngest school-aged child had experienced any form of online education at school (Column (1)) or outside school (Column (2)) since the beginning of the school year in April (May) or in the past month (December). COVID-19 rapid increase is a dummy variable equal to 1 in prefectures where the difference in newly confirmed cases per capita over 1 month prior to the survey between December and May is higher than the sample average. December is a dummy variable identifying December survey. Robust standard errors clustered at prefectoral level are shown in parentheses. Levels of significance: * ** p < 0.01, * * p < 0.05, * p < 0.1.

Table 5
Heterogeneous response to COVID-19 increase in access to online education.

| Dependent variable | Access to Online Education: | At school (1) | (2) | (3) | Outside school (4) | (5) | (6) |
|--------------------|----------------------------|--------------|-----|-----|-------------------|-----|-----|
|COVID-19 rapid increase | -0.001                    | -0.052       | 0.051| 0.018| 0.058             | 0.076 ** |
|December           | (0.066)                    | (0.073)      | (0.038)| (0.039)| (0.046)         | (0.034) |
|COVID-19 rapid increase * December | -0.125 ***          | -0.217 ***   | -0.189 ***| -0.102 ***| -0.087 ***         | -0.123 *** |
|December * High-income household | (0.037)                   | (0.047)      | (0.030)| (0.032) | (0.033)         | (0.024) |
|COVID-19 rapid increase * December * High-income household | 0.016               | 0.030        | 0.008| 0.036| 0.069             | 0.004 |
|Heterogeneity in parental income |    | (0.045)      | (0.066)| (0.040)| (0.052)         | (0.056) |
|High-income household | 0.154 **                 | 0.114 **     |       |       |                   |       |
|COVID-19 rapid increase * High-income household | 0.089             |              |       |       |                   |       |
|December * High-income household | (0.091)                  | (0.091)      |       |       |                   |       |
|COVID-19 rapid increase * December * High-income household | -0.130 ***         | -0.026       |       |       |                   |       |
|Heterogeneity in parental education |    | (0.042)      | (0.044)|       |                   |       |
|Highly educated parent | -0.044                  |              |       |       |                   |       |
|COVID-19 rapid increase * Highly educated parent | 0.166 **             |              |       |       |                   |       |
|December * Highly educated parent | (0.079)                | (0.046)      |       |       |                   |       |
|COVID-19 rapid increase * December * Highly educated parent | -0.069            |              |       |       |                   |       |
|Heterogeneity in private-public difference |    | (0.072)      | (0.072)|       |                   |       |
|Private school | 0.320 **                  |              |       |       |                   |       |
|COVID-19 rapid increase * Private school | 0.184            |              |       |       |                   |       |
|December * Private school | (0.111)               | (0.111)      |       |       |                   |       |
|COVID-19 rapid increase * December * Private school | -0.267          |              |       |       |                   |       |
|Heterogeneity in private-public difference |    | (0.161)      | (0.161)|       |                   |       |
|Private school | 0.171 **                  |              |       |       |                   |       |
|COVID-19 rapid increase * Private school | 0.100        |              |       |       |                   |       |
|December * Private school | (0.091)               | (0.091)      |       |       |                   |       |
|COVID-19 rapid increase * December * Private school | 0.320 **          |              |       |       |                   |       |
|Heterogeneity in private-public difference |    | (0.161)      | (0.161)|       |                   |       |
|Private school | 0.320 **                  |              |       |       |                   |       |

Notes: Coefficient estimates from linear probability model regression. The dependent variable is a dummy variable indicating whether the youngest school-aged child had experienced any form of online education at school (Columns (1) to (3)) or outside school (Columns (4) to (6)) since the beginning of the school year in April (May) or in the past month (December). COVID-19 rapid increase is a dummy variable equal to 1 in prefectures where the difference in newly confirmed cases per capita over 1 month prior to survey between December and May is higher than the sample average. December is a dummy variable identifying December survey. High-income household (household annual income over 6 million yen), Highly educated parent (responding parent attained post-secondary education), Private school are dummy variables. Robust standard errors clustered at prefectoral level are shown in parentheses. Levels of significance: * ** p < 0.01, * * p < 0.05, * p < 0.1.
### Determinants of demand for online education at school.

#### (1) Heterogeneity over parents' work status

| Preference for Online Education at School | May (1) | December (2) | December (with lag) (3) |
|-----------------------------------------|---------|--------------|-------------------------|
| Online education at school              | 0.954 ** | 1.357 **     | 1.266 **                |
| Private school                          | 0.657   | 0.071 *      | 0.071 *                 |
| Junior high school                      | 0.343   | 0.043        | 0.043                   |
| High school                             | 0.280   | 0.250        | 0.278                   |
| High-income household                   | 0.365 **| 0.594 **     | 0.486 **                |
| Highly educated parent                  | 0.590 **| 0.292        | 0.172                   |

#### Working mother

| Work status                     | May (1) | December (2) | December (with lag) (3) |
|---------------------------------|---------|--------------|-------------------------|
| Regular employee                | -0.544 *| -0.318       | -0.260                  |
| Non-regular employee            | -0.203  | -0.080       | -0.052                  |
| Executive                       | 1.276   | 0.781        | 0.428                   |
| Self-employed                   | -0.685  | -0.720       | -0.901                  |

#### Working father

| Work status                     | May (1) | December (2) | December (with lag) (3) |
|---------------------------------|---------|--------------|-------------------------|
| Regular employee                | -0.516  | -0.931       | -0.984                  |
| Non-regular employee            | -1.517 *| -1.728       | -1.603                  |
| Executive                       | -0.445  | -0.116       | -0.357                  |
| Self-employed                   | -0.430  | -0.445       | -0.441                  |

#### Lag

| May survey                      |✔ |✔ |✔ |
| Pseudo $R^2$                    |0.058 |0.070 |0.102 |

#### Notes

- Coefficient estimates from ordered logit model regression. The dependent variable is the preference for online education at school ranging from 1 (100% in person) to 4 (over 50% online). Respondents who answered “Do not know” are dropped. The descriptive statistics of this sample is shown in Appendix Table A1. Online education at school, Private school, Junior high school, High school (with Elementary school as a baseline), High-income household (household annual income over 6 million yen), Highly educated parent (responding parent attained post-secondary education), Regular employee, Non-regular employee, Executive, and Self-employed for mother and father are dummy variables. Baseline for working parents is set to the parent being present at home. Other controls are Rural area, Respondent’s gender, Multigenerational household, Single mother household and Single father household dummy variables, Number of children and COVID-19 spread (week prior) variables. Column (3) includes lagged dependent variable from May survey. Full results are available in the Appendix Table A4 (1). Robust standard errors clustered at prefectural level are shown in parentheses. Levels of significance: * * p < 0.01, * p < 0.05, * p < 0.1.

Notes: Coefficient estimates from ordered logit model regression. The dependent variable is the preference for online education at school ranging from 1 (100% in person) to 4 (over 50% online). Respondents who answered “Do not know” are dropped. The descriptive statistics of this sample is shown in Appendix Table A1. Online education at school, Private school, Junior high school, High school (with Elementary school as a baseline), High-income household (household annual income over 6 million yen), Highly educated parent (responding parent attained post-secondary education), Regular employee, Non-regular employee, Executive, and Self-employed for mother and father are dummy variables. Baseline for working parents is set to the parent being present at home. Other controls are Rural area, Respondent’s gender, Multigenerational household, Single mother household and Single father household dummy variables, Number of children and COVID-19 spread (week prior) variables. Column (3) includes lagged dependent variable from May survey. Full results are available in the Appendix Table A4 (1). Robust standard errors clustered at prefectural level are shown in parentheses. Levels of significance: * * p < 0.01, * p < 0.05, * p < 0.1.

Notes: Coefficient estimates from ordered logit model regression. The dependent variable is the preference for online education at school ranging from 1 (100% in person) to 4 (over 50% online). Respondents who answered “Do not know” are dropped. The descriptive statistics of this sample is shown in Appendix Table A1. Online education at school, Private school, Junior high school, High school (with Elementary school as a baseline), High-income household (household annual income over 6 million yen), Highly educated parent (responding parent attained post-secondary education), Regular employee, Non-regular employee, Executive, and Self-employed for mother and father are dummy variables. Baseline for working parents is set to the parent being present at home. Other controls are Rural area, Respondent’s gender, Multigenerational household, Single mother household and Single father household dummy variables, Number of children and COVID-19 spread (week prior) variables. Column (3) includes lagged dependent variable from May survey. Full results are available in the Appendix Table A4 (1). Robust standard errors clustered at prefectural level are shown in parentheses. Levels of significance: * * p < 0.01, * p < 0.05, * p < 0.1.
survey, parents likely adjusted to the situation overall and their employment status was no longer statistically significant. Specifically, mothers employed on indefinite full-time contracts (regular employment) and fathers in non-regular employment showed higher preference for in-person education in the May survey. Besides the possible difference in job content between employment contract types, mothers in other than regular contracts might choose these types of jobs for the level of flexibility they provide. On the contrary, fathers who are more likely to be the breadwinners, face lower job security and earnings in non-regular employment than regular employees, which might make it difficult to support a child learning from home.

5.3.2. Effect of parents’ work styles

In this section, we investigate the association between parents’ preferences for online education and changes in their work styles while controlling for other family backgrounds and employment type. We expand the family background variables in the model detailed in Section 5.3.1 to include variables indicating change in work styles. This analysis remains purely observational, as we are unable to confirm whether it is parents’ work styles that impact their views regarding online education or whether parents adjusted their work styles in response to children’s educational experience.

For this analysis, we limit the sample to parents who, in the corresponding survey, were reported as working, either as regular employees, non-regular employees, or were company executives or self-employed. The survey in both its rounds asked respondents how had theirs and their spouses’ work styles changed since the beginning of the pandemic. The questionnaire inquired specifically about the change in total hours worked and about the use of telework and other flexible work styles such as flextime and staggered working hours and days. Respondents were asked to mark all applicable answers. We divide the answers by respondent’s sex to assess the effect of mother and father’s work styles separately.

As seen in Appendix Table A1, in the May survey, 38% of working mothers and 41% of working fathers experienced a decrease in total hours worked, while 8% and 7%, respectively, saw an increase. In December survey, 18% of both mothers and fathers worked fewer hours, and 7% of mothers and 12% of fathers reported more working hours. Regarding teleworking, in the May survey, 17% of mothers and 42% of fathers utilized telework and in the December survey, 12% of mothers and 30% of fathers teleworked. Besides teleworking, the proportion of respondents reporting other flexible work styles was 18% for mothers and 22% for fathers in the May survey and 12% for both mothers and fathers in the December survey.

For this analysis, we first look at working mothers and fathers separately regardless of their spouse’s employment status, and then at households with both parents working, resulting in a different sample size for each estimation. The results of ordered logit regression are presented in Table 6 (2) with Columns (1) to (3) displaying results from the May survey and Columns (4) through (6) results from the December survey. Identical to the preceding analysis on parental preference, models reported in Columns (7) to (9) include a lag of the outcome variable to showcase changes in attitudes between survey rounds. The baseline the results refer to is set to no change in work styles as the survey asked about them.

Overall, we observe limited association between changes in work styles and parental views regarding online education. In the May survey, examining parents’ changes in work styles separately, decrease in mothers’ as well as fathers’ working hours was associated with a higher likelihood of positive views of online education, with the impact of mothers’ work styles being more pronounced. However, neither of these effects were statistically significant in the sample of both parents working. In a sample of households with both parents working, we observe that respondents from households with mothers whose working hours increased, were at a 1% level of significance more likely to prefer in-person education. We do not find any significant effect of fathers’ work style changes. Turning to the December survey, in both the cross-sectional analysis in Columns (4)-(6) and the value-added model in Columns (7)-(9), no difference in parental views is observed based on the change in work styles.

Although the association between work styles and parental preference for online education we identify is weak, it is consistent with the results from Section 5.3.1 regarding parents’ employment status. Our findings suggest that in the short term, parents in less flexible or more demanding work-related circumstances had a more negative stance on online education, while in the long term the difference based on employment type or changes in work styles disappeared. Our results are also in line with Yamamura and Tsustui (2021), who found that it was mainly working mothers who bore the brunt of school closures as mothers tend to be the primary child caregivers in Japan. However, more research is needed into the topic, especially to determine whether parents adjust their employment status or work style to accommodate children’s online learning, which could have vast policy implications.

6. Conclusion

In this study, by utilizing data from two rounds of a government survey carried out in May 2020 and December 2020 to the same households, we analyze the impact of the COVID-19 pandemic on online education in Japan, as experienced by children in public and private elementary, junior high, and high schools at school as well as outside school, and focus on the heterogeneity brought about by family socioeconomic status and regional differences. We also analyze parental preferences towards online education as opposed to in-person learning at school, which is essential for understanding why Japan is lagging other OECD countries in introducing online learning at school, and how these preferences are shaped by the actual experience of online education, family backgrounds and parents’ work styles. Our paper presents not only the first evidence on online educational access at school during the COVID-19 pandemic in Japan, covering both public and private schools, but also provides broad perspectives to understand the status of online education in Japan by including both at-school and outside-school learning experiences and family backgrounds, while also examining the key factor on the demand side for online education, parents’ wishes.

Overall, we find that during the COVID-19 pandemic children from high-income households and children with a highly educated parent had better access to online education, especially outside school. One possible reason for this result is that due to the limited access to at-school online education, parents with high socioeconomic status felt the need to seek online educational opportunities elsewhere, outside schools, which was especially the case for high school students, who spend years preparing for university entrance exams. A rapid growth in COVID-19 cases was associated with increased access to online education outside school, particularly for children in private schools, who already enjoyed more access to online education at school than children in public schools, and
for children with a highly educated parent. We do not observe a difference in access to at-school online education based on regional differences in the spread of the COVID-19 virus. Therefore, it is evident that ignoring the socioeconomic differences in the access to online education outside school would lead to a substantial bias in the estimates of the inequality of the amount of online education children received.

We also show that the parents of children who had an experience of online education at school consistently tended to express more positive views about at-school online education. Further, we find that, in general, highly educated parents and parents in high-income households were more likely to welcome online education at school, even after controlling for the actual experience, which appeared to contribute to the search for additional online learning opportunities outside school. However, parental work status and work styles seemed to be potential factors creating heterogeneity in the preferences for at-school online education. Survey respondents from households with mother in regular employment and those in families with father in non-regular employment, preferred face-to-face education at school in May 2020, immediately after schools reopened after mandated closures, but not in December 2020. These results suggest that parents who initially had conflict in having children at home with their work, adjusted to accommodate the new remote learning style.

Overall, the results indicate an inequality in the access to online education and in preferences for online education at school across socioeconomic status and, to a lesser degree, work status of parents. The limited access to online education at school may create a new learning gap among children due to the differences in access to online education outside school. This, over the course of the pandemic, may develop into a serious socioeconomic inequality as the baseline learning time has become much shorter. Our results also suggest that parents are more open to at-school online education once their children experience it. Parental preferences can likely be modified by school education policies such as active provision of appropriate remote learning devices to be used at home.

The Japanese government was quick to adopt a supplementary budget in June 2020 to provide remote learning devices to all students in public elementary and junior high schools, but the actual execution of budget in June 2020 to provide remote learning devices to all students in used at home. Such as active provision of appropriate remote learning devices to be become much shorter. Our results also suggest that parents are more

Parental preferences can likely be modified by school education policies open to at-school online education once their children experience it. February 2020. These results suggest that parents who initially had conflict in having children at home with their work, adjusted to accommodate the new remote learning style.

Overall, the results indicate an inequality in the access to online education and in preferences for online education at school across socioeconomic status and, to a lesser degree, work status of parents. The limited access to online education at school may create a new learning gap among children due to the differences in access to online education outside school. This, over the course of the pandemic, may develop into a serious socioeconomic inequality as the baseline learning time has become much shorter. Our results also suggest that parents are more open to at-school online education once their children experience it. Parental preferences can likely be modified by school education policies such as active provision of appropriate remote learning devices to be used at home.

The Japanese government was quick to adopt a supplementary budget in June 2020 to provide remote learning devices to all students in public elementary and junior high schools, but the actual execution of this policy was very slow and would have minimal, if any, impact during the period covered by the data used in this study. While supply side policies are important and merit further research, remote learning devices by themselves might be of limited benefit if parents find it difficult to have children learn from home. Clearly, carefully designed policies targeting both demand and supply sides are essential for effectively achieving equity in high quality online education for children.

Overall, our study suggests that, on the demand side, we need to focus on building online learning environment accessible to all children, supporting children whose parents feel difficulties in staying home with them while considering the hidden inequality in the online educational access outside school. However, the current paper primarily focuses on children’s access and parental attitudes towards online education and does not cover their impact on the equity of educational outcomes or the effectiveness of online education compared to classroom instruction. Addressing these issues is an area for future research.

CRediT authorship contribution statement

Hideo Akabayashi: Conceptualization, Formal analysis, Investigation, Methodology, Writing – original draft preparation, Funding acquisition, Resources, Supervision, Project administration. Shimpei Taguchi: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Software, Writing – original draft, Writing – review & editing. Mirka Zvedelikova: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Software, Writing – original draft, Writing – review & editing, Visualization.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.ijedudev.2022.102687.

References

Andrew, A., Cattan, S., Dias, M.C., Paruqharson, C., Kraftman, L., Krutikova, S., Phinister, A., Sevilla, A., 2020. Inequalities in Children’s experiences of home learning during the COVID-19 Lockdown in England. Fisc. Stud. vol. 41 (3), 653–685.

Cappell, P.F., Chopra, V., Ackes, J., Gochyey, P., 2021T. An analysis of the reach and effectiveness of distance learning in India during school closures due to COVID-19. Int. J. Educ. Dev. 85 (September), 102439 https://doi.org/10.1016/j.ijeducdev.2021.102439.

Enrich, S.R., 2020. Worldwide shadow education and social inequality: explaining differences in the socioeconomic gap in access to shadow education across 63 societies. Int. J. Comp. Sociol. 61 (6), 441–475. https://doi.org/10.1177/0266476319878612.

Greweing, E., Lerpetroer, P., Werner, K., Woessmann, L., Zierow, L., 2020. “COVID-19 and Educational Inequality: How School Closures Affect Low- and High-Achieving Students.” IZA - Institute of Labor Economics, IZA Discussion Paper No. 13820.

Hanahueh, E.A., Rivkin, S.G., 2012. The distribution of teacher quality and implications for policy. Annu. Rev. Econ. 4 (1), 131–157. https://doi.org/10.1146/annurev-economics080511-111001.

Hossain, M., 2021. Unequal experience of COVID-induced remote schooling in four developing countries. Int. J. Educ. Dev. 85 (Spring), 102446 https://doi.org/10.1016/j.ijeducdev.2021.102446.

Ikeda, M., Yamaguchi, S., 2020. Online learning during school closure due to COVID-19. Covid Econ. (Issue 58), 85–134.

Koedel, C., Mihalby, K., Rokick, J.R., 2015. Value-added modeling: a review. Econ. Educ. Rev. 47 (August), 180–195. https://doi.org/10.1016/j.econedurev.2015.01.006.

Lechner, M., Rodríguez-Planas, N., Fernández Kranz, D., 2016. Difference-in-difference estimation by FE and OLS when there is panel non-response. J. Appl. Stat. 43 (11), 2044–2052. https://doi.org/10.1080/02664763.2015.1126240.

MEXT (2020c). State of School Reopening under the COVID-19. (Shigata Koronauirusu Kansensho Taisaku ni kansuru Gakko no Shingakki Kaishi Joukyou ni Tsuite). MEXT. Retrieved June 15, 2021, from [https://www.mext.go.jp/content/20200603-mxt_kouhou01-01-400004520_4.pdf].

MEXT (2020b). School Closure Under the COVID-19 (Shigata Koronauirusu Kansensho Taisaku ni kansuru Gakko no Saikai Joukyou ni Tsuite). MEXT. Retrieved June 15, 2021, from [https://www.mext.go.jp/content/20200424-mxt_kouhou01-01-000005905_1.pdf].

MEXT (2020a). State of School Opening under the COVID-19 (Shigata Koronauirusu Kansensho Taisaku ni kansuru Gakko no Shingakki Kaishi Joukyou ni Tsuite). MEXT. Retrieved June 15, 2021, from [https://www.mext.go.jp/content/20200413-mxt_kouhou01-01-00006421_1.pdf].

MIHW (Ministry of Health, Labor and Welfare) , 2020. Overall Results of Comprehensive Survey of Living Conditions 2019 (2019 Nen Kokumin Seikatsu Kiso Chousa no Gaikyo). MIHW. Retrieved June 15, 2021, from [https://www.mihw.go.jp/toukei/saikin-kenkyu/tokei/kenshou01-k-toukei/k-toukei19/dl/14.pdf].

OEC (2020). Strengthening online learning when schools are closed: the role of families and teachers in supporting students during the COVID-19 crisis. OECD. Retrieved June 15, 2021, from [https://www.oecd.org/coronavirus/policy-responses/strengthening-on-line-learning-when-schools-are-closed-the-role-of-families-and-teachers-in-supporting-students-during-the-covid-19-crisis-ec4ebaf8/].

OEC, 2012. Lessons from PISA for Japan, Strong Performers and Successful Reformers in Education. OECD Publishing. https://doi.org/10.1787/9789264118539-en.

Okubo, T., 2020. Spread of COVID-19 and telework: evidence from Japan. Rev. Econ. State of School Opening under the Covid-19 (Shingata Koronauirusu Kansensho Taisaku ni Kansuru Gakko no Saikai Joukyou ni Tsuite). Retrieved June 15, 2021, from [https://www.mext.go.jp/content/20200603-mxt_kouhou01-01-400004520_4.pdf].

Park, H., Buchmann, C., Jaesung, C., Merry, J.J., 2016. Learning beyond the school walls: trends and implications. Annu. Rev. Sociol. 42 (1), 231–252. https://doi.org/10.1146/annurev-soc-081715-074341.

UNESCO, 2021. UNESCO figures show two thirds of an academic year lost on average worldwide due to Covid-19 school closures. UNESCO. Retrieved June 15, 2021, from [https://en.unesco.org/news/unesco-figures-show-two-thirds-academic-year-lost-average-worldwide-due-covid-19-school-closures].

Yamamura, E., Tsutsumi, Y., 2021. The impact of closing schools on working from home during the COVID-19 pandemic: evidence using panel data from Japan. Rev. Econ. Househ. Vol. 19, 41–60. https://doi.org/10.1016/j.s1150-020-09536-5.

18 According to a governmental announcement in March 2021, by the end of November 2020, 11.2 % of municipalities completed purchasing computer devices for remote education for all public elementary and junior high school students.