The intra-mitochondrial O-GlcNAcylation system acutely regulates OXPHOS capacity and ROS dynamics in the heart

Justine Dontaine
Asma Bouali
Frederic Daussin
Laurent Bultot
 https://orcid.org/0000-0002-5088-0101

Didier Vertommen
Manon Martin
Rahulan Rathagirishnan
Alexanne Cuillerier
 University of Ottawa

Sandrine Hormlan
Christophe Beauloye
 Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique

Laurent Gatto
 UCLouvain https://orcid.org/0000-0002-1520-2268

Benjamin Lauzier
Luc Bertrand
 https://orcid.org/0000-0003-0655-7099

Yan Burelle (✉️ yburell2@uottawa.ca)
 University of Ottawa https://orcid.org/0000-0001-9379-146X

Article

Keywords: O-GlcNAcylation, OXPHOS capacity, cellular regulatory mechanism

DOI: https://doi.org/10.21203/rs.3.rs-690671/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
THE INTRA-MITOCHONDRIAL O-GLCNACYLATION SYSTEM ACUTELY REGULATES OXPHOS CAPACITY AND ROS DYNAMICS IN THE HEART.

Justine Dontaine, A. Bouali, F. Daussin, L. Bultot, D. Vertommen, M. Martin, R. Rathagirishnan, A. Cuillerier, S. Horman, C. Beauloye, L. Gatto, B. Lauzier, L. Bertrand, Y. Burelle

1 Pole of cardiovascular research (CARD), Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
2 Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
3 Univ. Lille, Univ. Artois, Univ. Littoral Côte d’Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France.
4 Pole of Protein phosphorylation (PHOS), de Duve Institute (DDUV), UCLouvain, Brussels, Belgium
5 Pole of Computational biology and bioinformatics (CBIO), de Duve Institute (DDUV), UCLouvain, Brussels, Belgium
6 Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
7 Division of Cardiology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
8 Institute of Thorax, INSERM, CNRS, University of Nantes, Nantes, France
9 WELBIO, Walloon Excellence in Life Sciences and BIOtechnology, Belgium
*

Co-senior authors

Corresponding author:

Yan Burelle, Ph.D.
Professor
University Research Chair in Integrative Mitochondrial Biology
Interdisciplinary School of Health Sciences, Faculty of Health Sciences
University of Ottawa
RGN building,
451 Smyth Road, Ottawa Ontario
K1N 8M5
Email: yburell2@uottawa.ca

Word count: 4156

References: 36
ABSTRACT

Protein O-GlcNAcylation is increasingly recognized as an important cellular regulatory mechanism, in multiple organs including the heart. However, the mechanisms leading to O-GlcNAcylation in mitochondria and the consequences on their function remain poorly understood. In this study, we used an in vitro reconstitution assay to characterize the intra-mitochondrial O-GlcNAc system without potential cytoplasmic confounding effects. We compared the O-GlcNAcylome of isolated cardiac mitochondria with that of mitochondria acutely exposed to NButGT, a specific O-GlcNAcylation inducer. Amongst the 409 O-GlcNAcylated mitochondrial proteins identified, 191 displayed increased O-GlcNAcylation in response to NButGT. This was associated with enhanced Complex I (CI) activity, increased maximal respiration in presence of CI substrates, and a striking reduction of mitochondrial ROS release, which could be related to O-GlcNAcylation of subunits within the NADH dehydrogenase module of CI. In conclusion, our work underlines the existence of a dynamic mitochondrial O-GlcNAcylation system capable of rapidly modifying mitochondrial function.

WORD COUNT: 149

DATA ACCESSIBILITY TO THE REVIEWERS:
The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the following dataset identifier.

Reviewer Account Details:
Website: http://www.ebi.ac.uk/pride
Username: reviewer_pxd026495@ebi.ac.uk
Password: MSf4tVMi
1. INTRODUCTION

O-linked N-acetylglucosamination (O-GlcNAcylation) is a dynamic post-translational modification of proteins characterized by the addition of a single acetylated hexosamine moiety to certain Ser/Thr residues through O-linkage on their hydroxyl (Bond 2015, Mailleux 2016). Protein O-GlcNAcylation requires uridine disphosphate N-acetylglucosamine (UDP-GlcNAc) as substrate, which is mainly derived from glucose through the hexosamine biosynthesis pathway (HBP), driven by its rate limiting enzyme the glutamine:fructose-6-phosphate amidotransferase (GFAT). O-GlcNAcylation is regulated by the uridine diphospho-N-acetylglucosamine transferase (OGT), and the O-GlcNAcase (OGA), which respectively add and remove O-GlcNAc moieties (Bond 2015, Mailleux 2016). These highly conserved and ubiquitously expressed enzymes are present in various cellular locations where they regulate several protein properties such as their activation state, localization, stability and/or degradation (Joiner 2019). Over the past several years, protein O-GlcNAcylation has emerged as both pathogenic factor (Nie 2019) and important mechanism involved in physiological processes such as development and protection against cellular stress (Ong 2018, Jensen 2019). Such dual action can be found in the heart. Indeed, chronic elevation of protein O-GlcNAcylation is believed to participate in the development of metabolic and contractile dysfunctions associated with diabetes (Ma 2016) and cardiac hypertrophy (Maireux 2016, Gelinas 2018). Conversely, acute hyper O-GlcNAcylatation is known to confer protection against ischemic damage (Jensen 2019) and sepsis-induced contractile dysfunction (Ferron 2019, Silva 2019), which has contributed to position protein O-GlcNAcylation as a potential therapeutic target for the management of both chronic and acute cardiovascular conditions.

While OGT and OGA are mainly localized to the nuclear and cytosolic compartments, several studies have shown that mitochondria are major targets for O-GlcNAcylatation (Bond 2015, Zhao 2016). Furthermore, growing evidence suggest that mitochondrial protein O-GlcNAcylation in fact
plays a role not only in the development of diabetic cardiomyopathy (Hu 2009, Banerjee 2015), but also in the cardio-protective effect of acute hyper O-GlcNAcylation (Ngoh 2011, Jensen 2019). This notion has been recently reinforced by results showing the presence of an UDP-GlcNAc carrier along with OGA and a 103 kDa isoform of OGT (mOGT) in the mitochondrial compartment (Hanover 2003, Love 2003, Banerjee 2015). Some controversies nevertheless exist regarding the presence of these enzymes in the mitochondrial compartment (Trapannone 2016). More importantly, since mitochondrial O-GlcNAcylation has mainly been investigated in cell culture models or in vivo, the direct effects of the putative mitochondrial O-GlcNAc cycling system have been difficult to distinguish from the indirect effects mediated by the nucleocytoplasmic O-GlcNAcylation system.

In this study, we therefore took advantage of an in vitro reconstitution assay to characterize the intra-mitochondrial O-GlcNAcylation system in isolated cardiac mitochondria. Our results confirm the presence of a fully functional and dynamic O-GlcNAc cycling system in these organelles. Using comparative O-GlcNAc proteomics (O-GlcNAcytomics), we provide evidence that the local mitochondrial O-GlcNAcylation system can trigger broad and rapid changes in protein O-GlcNAcylation, which are highly reminiscent of the mitochondrial O-GlcNAcylation profile observed in vivo. Importantly, we also reveal that acute hyper-O-GlcNAcylation increases maximal respiratory capacity, and drastically reduces ROS release through a complex-I mediated mechanism, illustrating the capacity of this system to rapidly modify mitochondrial function.
2. RESULTS

2.1. In vitro reconstitution assay allows to target the intra-mitochondrial O-GlcNAcylation system.

In order to characterize the mitochondrial O-GlcNAcylation system without the potential confounding effects of the O-GlcNAcylation in other cellular compartments, we devised an in vitro reconstitution assay in which isolated cardiac mitochondria were acutely exposed (i.e. 30 min) to the OGT substrate UDP-GlcNAc in presence or absence of the OGA inhibitor NButGT, with the goal of inducing rapid changes in protein O-GlcNAcylation levels.

As some controversy exists regarding the expression of the mOGT isoform in murine tissues (Trapannone 2016), and the presence of sufficient OGA in the mitochondrial compartment (Banerjee 2015), the presence of these enzymes was first verified by immunoblotting in whole lysates from crude and Percoll-purified mitochondria (Fig 1A). Specific protein markers were firstly assessed to confirm the purity of the different purified fractions (Fig 1B). As expected, the mitochondrial marker TOM20 was highly enriched in the crude and Percoll-purified mitochondrial fractions, while histone H3 and alpha tubulin were mostly recovered in the nuclear and cytosolic fractions, respectively. Small amounts of histone H3 and alpha-tubulin remained present in the crude mitochondrial preparation, but were largely removed by the Percoll purification step. As represented in the Fig 1A, immunoblotting of crude mitochondrial fractions with anti-OGT antibody revealed a predominant band at 103 kDa, which corresponds to the expected molecular weight of the mitochondrial isoform mOGT (Hanover 2003). A band was also observed at 116 kDa, consistent with the presence of the nucleocytoplasmic isoform (ncOGT). However, this band was absent in Percoll-purified mitochondria, indicating that mOGT is the predominant, if not the sole, isoform present in mitochondria. For OGA, a single band, running at 75 kDa was observed in the mitochondrial fraction, which corresponds to the expected molecular weight of the short OGA
isoform (sOGA), also expressed in the nucleus (Comtesse 2001). Conversely, the full length OGA (fOGA) running at 130 kDa was absent from the mitochondrial fraction. (Fig 1A).

Figure 1: Characterization of the in vitro reconstitution assay used to investigate the mitochondrial O-GlcNAcylation cycling system. a) Representative western-blot of OGA and OGT protein content measured in the whole heart homogenate, nuclear, cytosolic, crude and Percoll-purified mitochondrial fractions (Pure Mito). Note that the image shown for the pure mitochondrial fraction is derived from a separate blot. b) Representative western-blot of the relative expression of mitochondrial (TOM20), nuclear (Histone H3), and cytosolic (Tubulin) marker proteins in the various cellular fractions. c) Overview of the in vitro reconstitution assay used to induce and detect mitochondrial protein O-GlcNAcylation in isolated mitochondria. Crude cardiac mitochondrial fractions isolated from rat hearts were incubated at room temperature in presence of UDP-GlcNAc in the absence or presence of the OGA inhibitor NButGT. After 30 min, proteins were denatured and O-GlcNA-modified proteins were incubated with UDP-GalNAz in presence of the enzyme Y289L GalT. The GalNAz adducts obtained were functionalized with TAMRA, and O-GlcNAc-modified proteins were recovered by immunoprecipitation using an anti-TAMRA antibody. Immunoprecipitates were resolved by electrophoresis and revealed by fluorescence at the wavelength of TAMRA (570 nm). Following densitometric quantification of band intensity (shown in red and blue), gels were cut in 7 pieces of equal size and further processed for proteomics analysis.

To assess whether protein O-GlcNAcylation was increased in our reconstitution assay, crude mitochondrial fractions were lysed after exposure to UDP-GlcNAc in absence or presence of the O-GlcNAc inducer NButGT. Following denaturation, O-GlcNAc-modified proteins were stabilized and labeled with the fluorescence probe TAMRA using Click-iT chemistry (Fig 1C).
Following TAMRA-mediated O-GlcNAc specific immunoprecipitation, proteins were separated by gel electrophoresis and visualized by fluorescence. Multiple bands were observed in immunoprecipitates from control mitochondria indicating a baseline level of protein O-GlcNAcylation (Fig 1C). Importantly, staining intensity was consistently increased in NButGT-treated mitochondria indicating a broad and rapid rise in protein O-GlcNAcylation levels.

2.2. Acute stimulation of O-GlcNAcylation triggers rapid changes in the mitochondrial O-GlcNA cylome.

To gain knowledge on the repertoire of proteins modified by the mitochondrial O-GlcNAcylation system, gels were cut in seven bands of equal size and processed for tandem mass spectrometry (MS/MS) analysis. To maximize stringency, only proteins reliably detected in all experimental replicates from control and NButGT-treated mitochondria were considered. Using this selection criteria, a total of 842 proteins were identified (Fig 2A). Of these, 50% (409) had a known (339) or predicted (70) mitochondrial status in the Mitominer database (Smith 2016), while the remaining were non-mitochondrial (322), or had an unspecified status (111), which can be expected given that crude mitochondrial fractions were used for this analysis. Since these likely contained residual amounts of ncOGT and fOGA outside mitochondria, we sought to determine whether the impact of NButGT on protein O-GlcNAcylation varied according to the localization of these proteins. As shown in Fig 2B, treatment with NButGT predominantly increased O-GlcNAcylation of mitochondrial proteins (i.e. known + predicted mitochondrial status) compared to non-mitochondrial proteins, indicating that the reconstitution assay was effective at targeting the intra-mitochondrial O-GlcNAcylation system. Consistent with this notion, treatment with NButGT significantly increased O-GlcNAcylation of 191 (q<0.05) to 246 (q<0.1) mitochondrial proteins (Fig 2C), while none of the non-mitochondrial proteins were significantly affected (Fig S1).
Because mOGT was reported as preferentially associated with the mitochondrial inner membrane (Banerjee 2015), we looked at the sublocalization of mitochondrial proteins. This analysis indicated that a large proportion of the 409 O-GlcNAcylated mitochondrial proteins originated from the matrix (126) and inner-membrane (124), with only a minor proportion coming from the intermembrane space or outer membrane (Fig 2D). However, the effect of NButGT on O-GlcNAcylation level did not differ significantly across sub mitochondrial compartments (Fig 2E).
Figure 2: Impact of NButGT treatment on protein O-GlcNAcylation accordingly to their subcellular localization. a) Relative distribution of proteins detected by MS/MS according to their status on the MitoMiner database. Only proteins reliably detected in all experimental replicates from control and NButGT-treated mitochondria were considered. b) Fold change in the abundance of mitochondrial and non-mitochondrial O-GlcNAc-modified proteins between control and NButGT-treated mitochondria. c) Volcano plot analysis showing the impact of NButGT O-GlcNAcylation for proteins with a mitochondrial status on the Mitominer database. Red (q<0.05) and orange (q<0.1) dots represent proteins that were significantly affected in response to NButGT. Number of significantly affected proteins are indicated along with the adjusted p value (q) threshold. Statistical analysis was assessed using a linear regression model (empirical Bayes methods) followed by the Benjamini-Hochberg FDR procedure. d) Fold change in the abundance of O-GlcNAc-modified proteins between control and NButGT-treated mitochondria according to their sub-mitochondrial localization. e) Relative distribution of mitochondrial proteins (known + predicted) according to their sub-mitochondrial localization. Proteins were ascribed to a particular sub-mitochondrial compartment based on annotations available in the Uniprot and GO databases. For panel b and e, individual values for each protein identified as well as mean ± sem (n=3-4 biological replicates) are shown.
Based on these results, the mitochondrial processes targeted by acute mitochondrial O-\text{GlcNAcylation} were examined. Pathway enrichment analysis and protein network clustering revealed that proteins related to oxidative phosphorylation, tricarboxylic acid (TCA) cycle and pyruvate and fatty acid metabolism were the top enriched pathways (Fig 3A-B). Among the multi-proteins complexes of the oxidative phosphorylation machinery, complex I (23 subunits, 60%), V (8 subunits, 50%), III (6 subunits, 75%), and II (3 subunits, 75%), were predominantly affected with 50-75% of their subunits being significantly more O-GlcNAcylated in response to NButGT compared to only 25% (4 subunits) for complex IV (Fig 4). TCA cycle enzymes and pyruvate metabolism proteins displaying increased O-GlcNAcylation levels included isocitrate dehydrogenase (IDH2, IDH3A, IDH3B, IDH3G), aconitase (ACO2), succinyl-CoA ligase (SUCLG1, SUCLG2, SUCLA2), several subunits of the pyruvate dehydrogenase complex (PDHB, PDHX, PDHA1L1, DLAT, DLD) pyruvate carboxylase (PC), and both isoforms of the mitochondrial pyruvate carrier (MPC1-2). Besides, increased O-GlcNAcylated proteins of fatty acid metabolism included the carnitine-palmitoyl transferases and carnitine transporter (CPT1-2, SLC25A20), multiple β-oxidation enzymes (ACSL1, ACADS, ACADM, ACADL, ACADVL, DECR, ECHS1, EC11, HADHA), and electron transferring flavoproteins (ETFA, ETFB).
Figure 3: Characterization of the pathways over-enriched in response to NBuTGT in isolated mitochondria. Functional enrichment analysis of over-represented KEGG (a) and REACTOME (b) pathways in NBuTGT-treated vs control mitochondria performed using g:Profiler. Proteins were input in g:Profiler in order of decreasing q value with a threshold set at q<0.1 (Ordered Query). Maximum size of functional categories was set at 250 to filter out large annotations that provide limited interpretative value. The g:SCS algorithm was used for multiple hypothesis testing corrections using a default alpha threshold of 0.05 for significance. Enrichment is expressed as a rich factor, which represents the ratio of the number of proteins observed for a given pathway term to the total number of proteins for this term. Circle size reflects the number of proteins per pathway, while color indicates the level of significance.

Beyond energy metabolism, smaller clusters of proteins related to several other mitochondrial functions displayed increased O-GlcNAcylation levels in response to NBuTGT (Fig 4). This included proteins related to: i) mitochondrial protein translation, such as proteins associated with the mitochondrial ribosomes (MRPS11, MRPS22, MRPS23, MRPS25, MRPL22, MRPL38), ii) protein processing such as proteases (CLPP, TRAP1), chaperones (HSPA9), and protein import channel subunits (TIMM21, TIMM44, SAMM50), iii) proteins involved in the regulation of...
mitochondrial permeability transition such as cyclophilin-D (PPIF), voltage gated anion channel, and ATP/ADP exchanger isoforms (DAC1-2, SLC25A5, SLC25A31) and iv) ROS detoxifying systems including superoxide dismutase (SOD1-2), peroxiredoxins (PRX3, PRX5), thioredoxin (TXN1) and thioredoxin reductase (TXNRD2).

Figure 4: Characterization of the mitochondrial proteins displaying increased O-GlcNAcylation in response to NButGT in isolated mitochondria. High confidence (interaction score > 0.7 based on default active interaction sources) STRING network of mitochondrial proteins displaying increased O-GlcNAcylation in response to NButGT. Clustering was performed with the Markov Cluster (MCL) algorithm using a granular parameter set at 4. The Auto-annotate function of Cytoscape was used to identify pathways/processes corresponding to these clusters based on Stringdb description and GO annotations. Proteins were color coded according to the q values smaller than 0.05 (blue) or 0.1 (red).
2.3. The in vitro protein O-GlcNAcylation profile is reminiscent of protein O-GlcNAcylation observed following in vivo treatment with OGA inhibitors.

To gain insights on the contribution of the intra-mitochondrial O-GlcNAcylatation system to protein O-GlcNAcylatation in the heart, we sought to compare these results with a methodologically comparable (i.e. identical Click-iT labelling, IP and MS/MS protocol) cardiac O-GlcNAcylomic dataset derived from mice that were subjected to NButGT or vehicle treatment 6 hours prior to sacrifice (Fig 5A). Of the 409 mitochondrial proteins detected in the in vitro reconstitution assay, 85% were also identified as being O-GlcNAcylated in vivo, and among them 122 displayed enhanced O-GlcNAcylatation in the two data sets (FC >1.2, Table S1).

Comparison was also made with data from a previous study performed by Ma and colleagues in which O-GlcNAc sites on isolated cardiac mitochondria were mapped 12h after in vivo administration of the OGA inhibitor Thiamet G using a BEMAD labelling method (Ma 2015). Of the 88 O-GlcNAc-modified proteins identified by Ma and colleagues, 62 were found to display increased O-GlcNAcylatation in our in vitro reconstitution assay, representing a highly significant over-enrichment (Fig 5B). The majority of shared proteins across the two datasets were components of the oxidative phosphorylation system, TCA cycle, and fatty acid oxidation pathway (Fig 5C), with a few noticeable proteins related to ROS metabolism (SOD2, PRX3) and permeability transition pore (mPTP)/apoptosis (VDAC1, SLC25A4, ENDOG). Within the OXPHOS system, overlap between the two datasets was observed for subunits located in the NADH dehydrogenase (N) and ubiquinone reductase (Q) modules of complex I (NDUFS1, NDUFAA7, NDUFA9), the F1 sector of complex V (ATP5O, ATP5B, ATP5A1), the hydrophilic head of complex II protruding in the matrix (SDHA, SDHB) and UQCRC2, a matrix facing subunit of complex III (Fig 5D and S2).
Figure 5: Comparison of mitochondrial protein O-GlcNAcylation profile following *in vitro* or *in vivo* OGA inhibition.

a) The dataset obtained following *in vitro* exposure of isolated mitochondria to NButGT (#1) was compared to a methodologically comparable (i.e. same Click-iT labeling, IP and MS/MS workflow) cardiac O-glcNAcylomic dataset derived from mice that were treated with NButGT or vehicle 6 h prior to sacrifice (#2). The *in vitro* reconstitution dataset and the *in vivo* dataset contained 409 and 350 mitochondrial proteins, respectively. The circular chart indicates the proportion or proteins that were shared or unique to a dataset. Hatched bar indicates shared proteins displaying sensitivity to NButGT.

b) Venn diagram showing the overlap between the in vitro reconstitution assay, and data from the Ma et al. (Ma et al., 2015) study in which O-GlcNAc sites on isolated cardiac mitochondria were mapped 12 hours after in vivo administration of the OGA inhibitor Thiamet G. Fold enrichment in the actual vs expected number of shared hyper-O-GlcNAcylated proteins between both datasets is shown along with the hypergeometric p value. For this test, the number of shared hyper-GlcNAcylated protein was compared to the total number of mitochondrial proteins identified in both datasets.

c) Number of shared proteins belonging to specific mitochondrial pathways/processes.

d) Overview of OXPHOS and TCA cycle proteins found to be hyper O-GlcNAcylated in the *in vitro* reconstitution assay and the Ma *et al.* dataset.
To validate our O-GlcNAcytomic data, immunoprecipitation of O-GlcNAcylated proteins was performed on lysates from control and NButGT-treated mitochondria using an anti-O-GlcNAc antibody, and the resulting immunoprecipitates were probed with antibodies directed against several identified proteins including NDUFS1, ATP5A1, UQRCRC2, MTCO1, and SDHB. As shown in Fig 6A, exposure to NButGT induced a strong increase in global mitochondrial O-GlcNAcylation, still conserved after immunoprecipitation. Furthermore, probing with the NDUFS1 antibody revealed a drastic increase in immunoreactivity following exposure to NButGT, without any changes in protein abundance (Fig 6B). Similarly, O-GlcNAc staining of ATP5A1, UQRC2, MTCO1, and SDHB (using the antibody mix OXPHOS) was increased following immunoprecipitation with the anti-O-GlcNAc antibody. Similar results were obtained using cardiac lysates from mice injected with NButGT or vehicle 6 hours prior to sacrifice (Fig 6 A-B).

Figure 6: Validation of mitochondrial protein O-GlcNAcylation following in vitro or in vivo OGA inhibition. Mitochondrial and whole heart lysates used for experiment #1 and #2 depicted in Fig 5.A were submitted to immunoprecipitation using an anti-O-GlcNAc antibody. a) Immunoprecipitations were confirmed using an anti-O-GlcNAc antibody. b) Immunoprecipitate were then immunoblotted with anti-NDUFS1 or anti-OXPHOS set of antibodies.
2.4. Acute stimulation of O-GlcNAcylation enhances maximal electron flux through a complex I-driven mechanism.

To determine whether such acute stimulation of O-GlcNAcylation had a functional impact, mitochondria were pre-incubated with NButGT or vehicle during 30 min before monitoring basal, ADP stimulated and CCCP-uncoupled respiration (for the reader’s convenience, the different substrates and inhibitors with action sites is represented in Fig 7A). As shown in Fig 7B-D, exposure to NButGT increased maximal ADP-stimulated respiration in presence of substrates feeding complex I (pyruvate – malate). A similar effect was observed when phosphorylation was uncoupled from respiration using CCCP (Fig 7E-G), which indicated that activation of the electron transport chain (ETC), rather than stimulation of the ATP synthase was responsible for the rise in maximal respiration observed with NButGT. Interestingly, NButGT had no significant effect on ADP-stimulated respiration when mitochondria were energized with complex II substrate (succinate in presence of rotenone), suggesting that the stimulatory effect of NButGT was linked to complex I (Fig 7H). This was directly confirmed by measuring the activity of respiratory chain complexes in mitochondrial lysates. Following exposure to NButGT, the activity of complex I was increased by ~ 50%, while those of complex II, complex IV and the TCA cycle enzyme citrate synthase were unchanged (Fig 7I-J). Of note, respirometry experiments were also performed in presence of the other O-GlcNAc inducer Thiamet G (also an OGA inhibitor), and yielded comparable results (Fig S3). Altogether, these data provided evidence that O-GlcNAcylation increases maximal electron flux through complex I. Furthermore, since the complex I assay measures electron transport from NADH to ubiquinone via the FMN and Fe-S redox centers (Rodenburg 2016), these results provided evidence that the putative O-GlcNAcylation sites underlying this stimulatory effect were located in the N module of complex I.
Figure 7: Impact of acute stimulation of mitochondrial O-GlcNAcylation on respiratory function.

a) Schematic illustration of the different substrates and inhibitors with their action sites. Following pre-incubation with UDP-GlcNAc in absence or presence of NButGT, mitochondria were transferred to respirometry chambers for the recording of baseline state 2 (St. 2), maximal ADP-stimulated (ADP), and CCCP uncoupled respiration in presence of complex I (Pyruvate-Malate [Pyr-Mal]) or complex II (Succinate in presence of the complex I inhibitor rotenone [Succ-Rot]) substrates. For all experiments, control and NButGT-treated mitochondria were tested in parallel, allowing pairwise comparisons. Panels b and e show representative respirometry tracings. Panels c, f and h show the calculated means ± sem for each respiratory state in the two experimental groups. Panels d and g illustrate the effect of NBuGT on ADP stimulated (D) or CCCP uncoupled respiration (G) for each of the paired incubations (3 biological replicates with 2-3 technical replicates per group). i) Enzyme activity of complex I, II, IV (CI, CII, and CIV) and citrate synthase (CS) measured in spectrophotometrically in whole mitochondrial lysates. Data is represented as means ± sem (3 biological replicates, 2 technical replicates). j) Effect of NBuGT on complex I activity for each of the paired incubations performed. Statistical comparisons were made using paired two-sided t tests. *: p<0.05, **p<0.01.
2.5. *Acute stimulation of O-GlcNAcylation attenuates mitochondrial ROS release*

To determine whether this had an impact on ROS release, H$_2$O$_2$ production was determined in mitochondria that were pre-incubated with NButGT, Thiamet G or vehicle. H$_2$O$_2$ release was first measured at baseline in presence of pyruvate and malate. As represented in Fig 8A, under this condition electron flux through the ETC is in the forward direction, and ROS mainly originate from the N module of complex I (*i.e.* the FMN and Fe-S clusters of complex I (IF site); for extensive review see (Brand 2010)). H$_2$O$_2$ release under this condition was decreased by more than 40-50% in NButGT (Fig 8B-C) or Thiamet G-treated (Fig S4) mitochondria compared to controls.

The complex II substrate succinate was next added to elicit a dual influx of electron in the ETC, and to stimulate reverse electron transport (RET) from complex II to complex I. Under this condition, a large proportion of ROS originates from the Q module of complex I (IQ) as a result of RET (Fig 8A) (Brand 2010). To a lesser extent, ROS release through the IF site within the N module can also contribute, as RET in presence of pyruvate-malate increases the reduction state of FMN clusters and promotes electron leakage (Goncalves 2015). Interestingly, no difference in H$_2$O$_2$ release was observed between control and NButGT (Fig 8B-C) or Thiamet G-treated (Fig S4) mitochondria under this condition, which altogether suggested that the stimulation of O-GlcNAcylation attenuates ROS release mainly at the IF site but has limited effects on the IQ site.

To test this further, mitochondria were progressively depolarized with the uncoupler CCCP since RET, and therefore ROS release by the IQ site, is exquisitely sensitive to the electrochemical gradient (Goncalves 2015). As expected, abolishing RET through uncoupling caused a drastic reduction of H$_2$O$_2$ release from the IQ site, and restored the 40-50% difference in H$_2$O$_2$ release observed between control and NButGT- or Thiamet G-treated mitochondria in absence of RET (*i.e.* when pyruvate-malate drive ROS release at the IF site) (Fig 8B-C and S3).
Figure 8: Impact of acute stimulation of mitochondrial O-GlcNAcylation on ROS release and sensitivity to Ca\(^{2+}\)-induced permeability transition. a) Schematic illustration of the different substrates and inhibitors with the electron flux. Following pre-incubation with UDP-GlcNAc in absence or presence of NButGT, mitochondrial H\(_2\)O\(_2\) release was measured following sequential addition of the complex I substrates pyruvate-malate (Pyr-Mal), the complex II substrate succinate (Succ), the uncoupler CCCP, and the complex III inhibitor Antimycin-A (Ant-A). For all experiments, control and NButGT-treated mitochondria were tested in parallel, allowing pairwise comparisons b) Representative Amplex Red fluorescence tracing of control and NButGT treated mitochondria. c) Rate of H\(_2\)O\(_2\) emission calculated under the various respiratory states in two experimental groups. Data are represented as means ± sem (4 biological replicates with 2 technical replicates per group). d) Sensitivity to Ca\(^{2+}\)-induced permeability transition pore opening was measured by measured swelling at 540 nm. A t=0 sec CaCl\(_2\) (150 µM) was added to mitochondria energized with pyruvate and malate and absorbance changes were monitored during 60 min. Data is represented as means ± sem (3 biological replicate with 2-3 experimental replicates per experimental group). Multiple t-tests were used to establish statistical significance. *: p<0.05, corresponding to q value of <0.1.
The electron-transferring flavoprotein ubiquinone reductase (ETFQOR) site within complex III represents another major site of ROS production in the ETC. In isolated mitochondria, this site produces superoxides at high rates only when electron transfer is blocked with complex III inhibitors (Fig 8A) (Goncalves 2015). For this reason, antimycin-A was next added to fully uncoupled mitochondria in order to assess the impact of NBuGT on ROS release from complex III. As expected, addition of antimycin-A caused a drastic rise in H_2O_2 release reflecting superoxide release from complex III in all groups (Fig 8B-C). In NBuGT-treated mitochondria, H_2O_2 release was reduced by 30% compared to controls suggesting reduced release of ROS from the ETFQOR site (Fig 8B-C). However, this effect was not observed in presence of Thiamet G (Fig S4), which suggests that the main site of action of acute hyper O-GlcNAcylation on ROS production remains complex I.

Of note, previous studies reported that increased cellular O-GlcNAcylation protects from mitochondrial permeability transition pore (mPTP) opening (Ngoh 2011, Ma 2015). Mitochondrial swelling assays were therefore performed to determine whether sensitivity to Ca^{2+}-induced mPTP opening was altered following acute exposure to NBuGT. As shown in Fig 8D, although proteins associated with the regulation of the mPTP were found to be O-GlcNAcylated (see Fig. 8D), acute inhibition of mitochondrial OGA had not effect on the sensitivity to permeability transition.

3. DISCUSSION

O-GlcNAcylation of mitochondrial proteins was previously shown to be responsive to inhibition of O-GlcNAc cycling enzymes (OGT/OGA) (Banerjee 2015, Tan 2017) as well as to altered intracellular UDP-GlcNAc levels (Zhao 2014). However, controversy existed regarding the precise mechanism leading to mitochondrial protein O-GlcNAcylation. Moreover, the repertoire of proteins affected as well as the functional impact remained ill-defined. Taking advantage of our
in vitro reconstitution assay, which allows to isolate mitochondria from non-mitochondrial O-GlcNAc cycling systems, our study shows that O-GlcNAc cycling enzymes are present in functionally relevant amounts in the mitochondrial compartment and can trigger broad and rapid changes in protein O-GlcNAcylation which are highly reminiscent of the mitochondrial O-GlcNAcylation profile observed in vivo. Our proteomic workflow confirms previously reported O-GlcNAc-modified proteins, and identifies several novel targets related to energy metabolism, and multiple other facets of mitochondrial biology. Importantly, we show that acute hyper-O-GlcNAcylation increases maximal respiratory capacity, and drastically reduces ROS likely through a complex I-mediated mechanism.

The OGT gene encodes three splice variants whose products vary only in the number of N-terminal tetratricopeptide repeat (TPR) domains known to be involved in protein-protein interaction (Bond 2015). The longest splice variant encodes the 116 kDa nucleocytoplasmic ncOGT isoform which is the most abundantly expressed, while the shortest 78 kDa isoform is curiously derived from a longer transcript. In addition, Hanover’s group identified a unique start site in the fourth intron of the OGT gene that generates a 103 kDa isoform which was found to be enriched in the mitochondrial fraction of Hela cells (Hanover 2003, Love 2003) and rat heart (Banerjee 2015). However, the existence of this mitochondrial isoform in mammalian tissues has been recently questioned (Trapannone 2016). In this study, endogenous mOGT was reported to be undetectable in several human cell lines and mouse tissues, including heart. Genomic sequence alignments also suggested that the predicted start site for mOGT was likely lacking in most species analyzed except some primates. Based on these data, the authors concluded that the small amounts of ncOGT detected in the crude mitochondrial fraction was likely sufficient for O-GlcNAcylation of mitochondrial proteins. These results are however in contrast with our data and previous studies from Hanover’s group. Our data clearly indicate that the 103 kDa mOGT is the main isoform found
in Percoll-purified cardiac mitochondria. Comparison between crude and Percoll-purified
mitochondrial preparations in fact suggests that the small amount of ncOGT found in the crude
fraction is an extra-mitochondrial contaminant. Beside mOGT, our results also establish that the
nuclear-predicted sOGA isoform (Comtesse 2001) is the sole OGA isoform present in
mitochondria. The fact that inhibition of OGA with NButGT specifically increased O-
GlcNAcylation of mitochondrial proteins, without affecting non-mitochondrial proteins remaining
in the reconstitution assay, provides further support for the mitochondrial localization of sOGA.

Isolated mitochondrial preparations have been used previously to study UDP-GlcNAc uptake
kinetics, which has led to the identification of the pyrimidine nucleotide carrier (SLC25A33) as the
main transporter for UDP-GlcNAc (Banerjee 2015). However, the functional coupling between the
uptake of UDP-GlcNAc and the intramitochondrial O-GlcNAc cycling enzymes has never been
examined. Our data suggest that UDP-GlcNAc is transported in mitochondria in sufficient amounts
to allow changes in protein O-GlcNAcylation level by NButGT treatment. Using our reconstitution
assay, we were able to map a large proportion of previously identified O-GlcNAcylated proteins
(Ma 2015) involved in energy metabolism. Collectively these results confirm that proteins of the
OXPHOS machinery, TCA cycle, and fatty acid metabolism pathways are prominent targets for
O-GlcNAcylation. In addition, we identified several other proteins, including proteins involved in
mitochondrial protein translation, protein import/chaperoning, and ROS/Redox homeostasis.
Future studies may reveal a role for these proteins in the cardioprotective effect of hyper-O-
GlcNAcylation in the context of ischemic injury (Jensen 2019) and sepsis (Ferron 2019, Silva
2019).

Although O-GlcNAcylation of mitochondrial proteins has been associated with changes in
function such as respiration, ROS release, and Ca\(^{2+}\)-induced permeability transition (Zhao 2016),
the relationship between these changes and O-GlcNAcylation of specific proteins remains elusive.
By combining *in vitro* functional assays and O-GlcNAcylomic studies, we have obtained evidence that O-GlcNAcylation of the N module in the peripheral arm of complex I may play an important regulatory role. This module consists of several core catalytic subunits containing the FMN prosthetic groups, the iron–sulfur clusters, as well as several accessory subunits which altogether oxidize NADH and transfer electrons to the Q and P modules to support proton pumping. Our O-GlcNAcylomic data revealed that subunits within this module displayed greater increases in O-GlcNAcylation compared to other complex I subunits. Similarly, in the Ma *et al.* *(Ma 2015)* dataset, subunits displaying the highest fold change following *in vivo* treatment, with Thiamet G were located in the N module and two in particular were common to our dataset, namely NDUFS1 and NDUFA7. It is interesting to note that NDUFS1 harbors an NADH-ubiquinone oxidoreductase domain and Fe-S clusters, in addition to containing a number of phosphorylation and acetylation sites, which makes it a potentially important candidate for post-translational regulation of complex I activity. As for NDUFA7, recent data indicate that its ablation in the heart increases mitochondrial ROS release, and triggers pathological cardiac hypertrophy *(Shi 2020)*, although it is still unclear whether this is linked to failed assembly of complex I or to altered activity. It should also be noted that phosphorylation of four other subunits within the N module *(NDUFS4, NDUFV1, NFUFV3 and NDUFA12)*, including two that displayed sensitivity to NButGT, were previously shown to regulate complex I activity and ROS release *(Papa 2001, Lund 2008, Wang 2014)*. Further studies will clearly be required to fully elucidate the mechanisms by which acute O-GlcNAcylation stimulates complex I.

Although *in vitro* reconstitution assays are well suited for mechanistic studies, they pose obvious limitations as they do not fully mimic the complex conditions encountered *in vivo*. To tackle this issue, we also compared our *in vitro* data with a methodologically comparable cardiac O-GlcNAcylomic dataset derived from mice injected with NButGT for 6 h before cardiac isolation.
Our results reveal a strikingly high degree of overlap (85%) in the O-GlcNAc modified mitochondrial protein identified in the two datasets. Importantly, 122 of these proteins also displayed sensitivity to NButGT. Besides, highlighting the relevance of our reconstitution assay for mechanistic studies, these results highly suggest that the intra-mitochondria O-GlcNAc cycling system is the main mechanism through which mitochondrial proteins become O-GlcNAcylated in vivo.

4. METHODS

4.1. Animal care

For in vitro studies, all experiments on animals were approved by the University of Ottawa Institutional Animal Care Committee and conducted according to the directives of the Canadian Council on Animal Care. Rats were euthanized by thoracotomy following ketamine-xylazine anesthesia. For in vivo dataset, experiments were approved by the Animal Research Committee of the Université catholique de Louvain and conformed to the American Heart Association Guidelines for Use of Animal in Research. All animals, housed with a 12 h/12 h light/dark cycle, had free access to water and standard chow.

4.2. Preparation of isolated cardiac mitochondria

Heart mitochondria were prepared as described previously (Marcil 2006). Hearts were rapidly excised and immersed into ice-cold isolation medium (buffer A, in mM: 300 sucrose, 10 Tris–HCl, 1 EGTA, pH 7.3) and weighed. Ventricular tissue was minced with scissors in 5 ml of buffer A supplemented with 0.2% fatty acid free bovine serum albumin (BSA) and homogenized using a Polytron tissue tearer (~ 3 s at a setting of 3). The homogenate was then incubated with the protease Nagarse (1.5 mg/g) for 5 min and further homogenized at the same settings. The homogenate
volume was completed to 30 ml with Buffer A + 0.2% BSA and centrifuged at 800×g for 10 min. The pellet was discarded and the supernatant was decanted and centrifuged at 10 000×g for 10 min. The pellet obtained was re-suspended in buffer B (in mM: 300 sucrose, 0.05 EGTA, 10 Tris–HCl, pH 7.3) and centrifuged at 10,000×g for 10 min. After repeating this washing step twice, the final mitochondrial pellet was re-suspended in 0.3 ml of buffer B to a protein concentration of ~ 20 mg/ml. All procedures were carried out at 4°C. Protein determinations were performed using the bicinchonic acid method (Pierce, Rockford, IL, USA), with bovine serum albumin as a standard.

4.3. In vitro reconstitution assay

Mitochondria (2 mg/mL) were incubated at room temperature during 30 min in buffer C (in mM: 250 sucrose, 10 MOPS, 0.005 EGTA, 2 KH₂PO₄, 0.2 MgCl₂, pH 7.2) containing UDP-GlcNAC (2 mM) in absence or presence of the OGA inhibitor NButGT (10 μM). In some experiments NButGT was replaced by Thiamet G (5 μM). After 30 min, mitochondrial suspensions were used for functional analyses. Alternately, samples were centrifuged at 10,000×g for 10 min. 20 μL of supernatant was left and concentrated mitochondrial pellets were immediately frozen in liquid nitrogen for MS/MS analysis.

4.4. Respirometry

Mitochondria (0.5 mg of protein) were incubated at room temperature in 1 ml of buffer C. After recording baseline state oxygen consumption, ADP-restricted state 2 respiration was measured in presence of substrates for complex I (Pyruvate-Malate 5: 2.5 mM) or complex II (Succinate + Rotenone 5 mM: 1μM). ADP (1mM) or CCCP (0.2 and 1 μM) was added to elicit maximal ADP-stimulated or uncoupled respiration respectively (Marcil 2006).
4.5. Mitochondrial H$_2$O$_2$ release

Net H$_2$O$_2$ release by respiring mitochondria was measured fluorimetrically using the H$_2$O$_2$ sensitive probe Amplex red (excitation-emmission: 563-887 nm) as previously described (Ascah 2011). Mitochondria (0.5 mg/mL) were incubated in 600 µL of buffer Z at 37°C (in mM: 110 K-Mes, 35 KCl, 1 EGTA, 5 K$_2$HPO$_4$, 3 MgCl$_2$6H$_2$O and 0.5 mg mL$^{-1}$ BSA, pH 7.3 at 4°C) containing KH$_2$PO$_4$ (2 mM), MgCl$_2$ (0.2 mM), HRP (1.2 U/mL), Amplex Red (5 µM). Baseline fluorescence readings were taken in the absence of any exogenous respiratory substrates. The following additions were then made sequentially: Pyruvate-malate (5:2.5 mM), succinate (5 mM), CCCP (0.2, 0.4, 0.6, 0.8, 1.0 µM) and Antimycin-A (8 µM). Rates of H$_2$O$_2$ release were calculated by measured the slopes of change in Amplex red fluorescence and reported in arbitrary fluorescence units.

4.6. Enzyme activities

Activities of complex I (NADH-CoQ reductase), complex II (succinate dehydrogenase), complex IV (cytochrome oxidase), and citrate synthase were measured spectrophotometrically in a plate reader using standard coupled enzyme assays adapted from (Marcil 2006). Activities were expressed in mU.min$^{-1}$.mg mitochondrial prot$^{-1}$.

4.7. In vivo NButGT treatment

Twelve week-old mice (C57BL/6 N, male) from Janvier Labs were treated with NButGT (50 mg/kg) by intraperitoneal injection 6 hours before sacrifice. Mice were anesthetized with an intraperitoneal injection of a mixture of ketamine (150 mg/kg) and xylazine (10 mg/kg) and hearts were washed in PBS before being freeze-clamped in liquid nitrogen and stored at -80°C.
4.8. O-GlcNAc immunoprecipitation & immunoblotting

Lysate supernatants (20 µg of heart homogenate, nuclear fraction, cytosolic fraction and crude mitochondria; 40 µg of purified mitochondria) were loaded on SDS-PAGE gel and transferred onto polyvinylidenedifluoride (PVDF) membrane. After blocking in BSA 5% TBS-Tween 20 0.1%, membranes were then probed with appropriate antibodies to assess total protein level. The appropriate secondary antibody conjugated to HRP and the BM chemiluminescence blotting system (Roche Molecular Systems, Bale, Switzerland) were used for detection. Antibodies used for these experiments are as follows: OGT (Cell Signaling Technology Inc. Danvers, Massachusetts, United States), OGA (Santa Cruz Biotechnology, Dallas, Texas, United States), Alpha tubulin (ThermoFisher Scientific Inc., Waltham, Massachusetts, United States), TOM20 (ThermoFisher), Histone 3 (Cell Signaling), OXPHOS (Abcam), NDUFS1 (Proteintech, Rosemont, Illinois, United States) and O-GlcNAc-HRP (Abcam). The uncropped version of all the blots presented in main figures can be found in Supplementary Figs S5-6.

For the immunoblotting of specific mitochondrial proteins after O-GlcNAc immunoprecipitation, 250 µg (isolated mitochondria) or 500 µg (total heart homogenate) of protein samples were immunoprecipitated with anti-O-GlcNAc RL2 antibody (1 µg, Abcam) overnight at 4°C following pre-clearing of the lysate with pre-washed protein G Sepharose beads. After three washing with TBS (50 mM Tris-Cl, 150 mM NaCl at pH 7.6), immunoprecipitated O-GlcNAc proteins were eluted with Laemmli buffer and boiled 10 min at 100°C. Protein separation was performed by SDS-PAGE and immunoblotting was realised as mentioned above with NDUFS1 or OXPHOS antibodies.
4.9. **Mass spectrometry and protein identification**

Preparation of proteins – Isolated mitochondria pellets or 20 mg of freeze-clamped hearts were homogenized in 200 µL of RIPA lysis buffer (25 mM Tris HCl, 150 mM NaCl, 1% NP-40, 1% sodium deoxycholate, 0.1% SDS at pH 7.6) supplemented with a protease/phosphatase inhibitor cocktail (ThermoFisher) and 1 µM of O-GlcNAc cycling enzyme inhibitors (Sigma-Aldrich, Saint-Louis, Missouri, United-States). 250 µg of proteins from the lysate were then precipitated using chloroform/methanol (MeOH) precipitation method as follows. 600 µL of MeOH were added to the 200 µL sample, followed by 150 µL of chloroform and 400 µL of 18 megaOhm water. Samples were then vortexed briefly and centrifuged for 5 min at 13,000×g. The upper aqueous phase was carefully removed and discarded. Additional 450 µL MeOH were added to pellet the protein after brief vortex and centrifugation for 5 min at 13,000×g. The supernatant was then removed, and the pellet air dried for 5 min. Finally, proteins were resuspended in 40 µL of 1% SDS in 20 mM HEPES pH 7.9 and heated 5-10 min at 90°C to assure completely resuspension of proteins.

Enzymatic labelling and purification of O-GlcNAcylated proteins – O-GlcNAc groups from proteins were labelled with tetramethylrhodamine azide (TAMRA) using the Click-iT® O-GlcNAc enzymatic labelling system kit (C33368) followed by the Click-iT® protein analysis detection kit (C33370) from Invitrogen according to the manufacturer's instructions. SDS was then quenched with NEFTD buffer (100 mM NaCl, 50 mMTris-HCl, 5 mM EDTA, 6% NP-40 at pH 7.4). Before immunoprecipitation of TAMRA labelled proteins, lysate was precleared with washed protein G sepharose beads to avoid non-specific binding of proteins on the beads. Afterwards, supernatant was incubated with pre-washed protein G sepharose beads (10 µL) coupled with anti-TAMRA antibody (10 µg, A6397, Invitrogen) for 1.5 h at 4°C. Following centrifugation (500×g, 1 min), the beads were washed once with NEFTD buffer (100 mM NaCl, 50 mM Tris-HCl pH 7.4, 5 mM
EDTA, 6% NP-40) and three times with NEFT buffer (NEFTD without NP-40). The beads were then boiled 5 min in Laemmli buffer (2 mM EDTA, 4% SDS, 20% Glycerol, 0.004% bromophenol blue, 50 mM DTT and 100 mM Tris at pH 6.8) to elute O-GlcNAc proteins. Proteins were then separated on 1 mm on SDS-PAGE gel and stained with Coomassie blue (Sigma-Aldrich).

In-Gel Digestion and identification of captured O-GlcNAc Proteins – Gels were cut in seven bands of equal size and in-gel digested with trypsin. Peptides separation was performed using a C18 reversed-phase analytical column (Thermo Scientific) on an Ultimate 3000-nLC RSLC system. The peptides were subjected to Nano-Spray-Ionization source followed by tandem MS/MS in a tribrid Fusion Lumos Orbitap analyser coupled online to the nano-LC. Spectra were acquired by a data dependent scan routine with ion precursor detection in the Orbitrap and daughter ions in the Iontrap. The resulting MS/MS data were processed using Sequest HT search engine within Proteome Discoverer 2.4 against a rat protein database obtained from Uniprot (29 953 entries). Trypsin was specified as cleavage enzyme allowing up to 2 missed cleavages, 4 modifications per peptide and up to 5 charges. Mass error was set to 10 ppm for precursor ions and 0.1 Da for fragment ions. Oxidation on methionine, carbamidomethyl on cysteine were considered as variable modifications. False discovery rate (FDR) was assessed using Percolator and thresholds for protein, peptide and modification site were specified at 1%. The filtered Sequest HT output files for each peptide were grouped according to the protein from which they were derived and abundance was evaluated by label-free quantification within Proteome Discoverer from area under the curve of MS1 intensities. Following such procedure, we were able to identify 2534 putative O-GlcNAcylated proteins.

LC-MS/MS analysis – The analysis was conducted in R (R Core Team, 2020). The expression values were log2 transformed but not subjected to normalization given the data acquisition technique involving an enrichment of O-GlcNAc proteins prior to MS analysis. To maximize
stringency, only proteins reliably detected in all experimental replicates (n=4) from control and NButGT-treated mitochondria were considered. Of the 842 proteins identified, mitochondrial proteins (409) were selected according to their mitochondrial status from the Mitominer database. Prior to differential expression analysis and based on exploratory analyses, NButGT-treated replicate n°3 was removed as it did not respond to treatment (assessed by O-GlcNAc immunoblotting). The differential expression between control and NButGT-treated groups was statistically assessed through linear models using empirical Bayes methods for variance modelling, as implemented in the R/Bioconductor limma package (Ritchie et al., 2015; Phipson et al., 2016) where the group effect was the only one included in the models. P-values for the group effect were adjusted for multiple testing with the Benjamini-Hochberg FDR procedure (Benjamini & Hochberg, 1995). Proteins having a group effect with an adjusted p-value (q) < 0.1 and q < 0.05 were arbitrary considered differentially expressed between control and NButGT-treated mitochondria with either high or very high confidence score, respectively.

4.10. Pathway analysis and bioinformatics

To identify the pathway annotations of the mitochondrial O-GlcNAcylome, the list of proteins displaying significantly increased O-GlcNAcylation was ranked according to q values and uploaded into the g:Profiler (Reimand 2007) platform, and an ordered query was performed using the Rattus norvegicus database. KEEG and REACTOME pathway terms annotating 350 proteins or less were considered in order to filter out large annotations that provide limited interpretative value (Reimand 2019). The g:SCS (shortest common superstring) algorithm was used for multiple hypothesis testing corrections using a default alpha threshold of 0.05 (Reimand 2007). The ggplot2 R package was used to generate bubble plots in which pathway enrichments were expressed as Rich Factors, which represents the ratio of the number of proteins observed for a given pathway.
term to the total number of proteins for this term. The Cytoscape (version 3.8.0) stringApp plugin was used to import protein-protein interaction data from STRING (Doncheva 2019). For this analysis, an interaction score of 0.7 (high confidence based on default active interaction sources) was set as minimum. Clustering of the STRING network was performed with the Markov Cluster (MCL) algorithm with a granular parameter set at 4. The Auto-annotate plugin (Kucera 2016) of Cytoscape was used to identify pathways/processes corresponding to these protein clusters based on Stringdb description and GO annotations. To compare overlap between distinct O-GlcNAcylic datasets, Venn diagrams were generated using the Eulerr R Package. Hypergeometric tests were used to determine the statistical significance of the actual vs expected number of shared hyper-O-GlcNAcylated proteins between datasets.

4.11. Statistics and reproducibility

For functional analyses, values are reported as mean ± sem for a minimum of 3 biological replicates, with 2-3 experimental replicates per experimental groups. Data are graphically represented as histograms. Paired two-sided t tests (GraphPad Prism 8.4.3) were used to determine statistical difference when two means were compared, with a significance threshold set at p < 0.05.

For proteomics, values reported were obtained from 3-4 biological replicates. Data are depicted as volcano plots or histograms of mean Log2 FC ± sem with values for individual proteins represented by dots. Difference in the abundance of individual proteins between groups was determined by linear models using empirical Bayes methods for variance modelling. For each p-value obtained, a corresponding FDR was calculated according to the Benjamini and Hochberg method. Proteins having an adjusted p-value (q) < 0.1 and q < 0.05 were arbitrary considered differentially expressed between control and NButGT-treated mitochondria with either high or very high confidence score, respectively (Supplemental table 1).
5. **FUNDING**

In Canada, this work was supported by grants from the Canadian Institutes of Health Research (MOP 136999), and the Natural Sciences and Engineering Council of Canada (RGPIN 2016-09932). In Belgium, this work was supported by grants from the Fundamental Research of excellence in Strategic areas – Walloon Excellence in Life Sciences and Biotechnology FRFS-WELBIO (Belgium), the Fonds National de la Recherche Scientifique FNRS (Belgium), Action de Recherche Concertée from Wallonia-Brussels Federation and thanks to the mobility partnership between France and the Wallonia-Brussels Federation of Belgium Hubert Curien Partnership Tournesol (PHC Tournesol). JD is FRIA (Fund for Research Training in Industry and Agriculture, Belgium) grantee. SH is senior research associate at the FNRS.

6. **CONFLICTS OF INTEREST/COMPETING INTERESTS**

The authors declare no competing interests.

7. **AVAILABILITY OF DATA AND MATERIAL**

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier reviewer_pxd026495@ebi.ac.uk. Requests for access to other data should be addressed to senior authors: Yan Burelle (yburell2@uottawa.ca) and Luc Bertrand (luc.bertrand@uclouvain.be). All requests will need to specify how the data will be used and will require approval by co-investigators.

8. **AUTHORS’ CONTRIBUTIONS**

YB and LB had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the analyses; Concept and design: LuB, LB, YB; Acquisition, analysis,
or interpretation of data: JD, LBu, DV, AB, FD, AC, RR; Drafting of the manuscript: JD, LBu, LB, YB; Critical revision of the manuscript for important intellectual content: SH, CB, BL, LG, DV; Statistical analysis: AB, FD, RR, JD, MM, LG; Obtained funding: SH, CB, BL, LB, YB. All the authors have read the manuscript and approved its submission.

9. BIBLIOGRAPHY

Ascah, A., et al. (2011). "Stress-induced opening of the permeability transition pore in the dystrophin-deficient heart is attenuated by acute treatment with sildenafil." Am J Physiol Heart Circ Physiol 300(1): H144-153.

Banerjee, P. S., et al. (2015). "Diabetes-associated dysregulation of O-GlcNAcylation in rat cardiac mitochondria." Proc Natl Acad Sci U S A 112(19): 6050-6055.

Bond, M. R. and J. A. Hanover (2015). "A little sugar goes a long way: the cell biology of O-GlcNAc." J Cell Biol 208(7): 869-880.

Brand, M. D. (2010). "The sites and topology of mitochondrial superoxide production." Exp Gerontol 45(7-8): 466-472.

Comtesse, N., et al. (2001). "Identification of a nuclear variant of MGEA5, a cytoplasmic hyaluronidase and a beta-N-acetylglucosaminidase." Biochem Biophys Res Commun 283(3): 634-640.

Doncheva, N. T., et al. (2019). "Cytoscape StringApp: Network Analysis and Visualization of Proteomics Data." J Proteome Res 18(2): 623-632.

Ferron, M., et al. (2019). "O-GlcNAc stimulation: A new metabolic approach to treat septic shock." Sci Rep 9(1): 18751.

Gelinas, R., et al. (2018). "AMPK activation counteracts cardiac hypertrophy by reducing O-GlcNAcylation." Nat Commun 9(1): 374.

Goncalves, R. L., et al. (2015). "Sites of superoxide and hydrogen peroxide production by muscle mitochondria assessed ex vivo under conditions mimicking rest and exercise." J Biol Chem 290(1): 209-227.

Gowthami, N., et al. (2019). "Mapping the protein phosphorylation sites in human mitochondrial complex I (NADH: Ubiquinone oxidoreductase): A bioinformatics study with implications for brain aging and neurodegeneration." J Chem Neuroanat 95: 13-28.

Hanover, J. A., et al. (2003). "Mitochondrial and nucleocyttoplasmic isoforms of O-linked GlcNAc transferase encoded by a single mammalian gene." Arch Biochem Biophys 409(2): 287-297.

Hu, Y., et al. (2009). "Increased enzymatic O-GlcNAcylation of mitochondrial proteins impairs mitochondrial function in cardiac myocytes exposed to high glucose." J Biol Chem 284(1): 547-555.
Jensen, R. V., et al. (2019). "The Role of O-GlcNAcylation for Protection against Ischemia-Reperfusion Injury." Int J Mol Sci 20(2).

Joiner, C. M., et al. (2019). "Structural characterization of the O-GlcNAc cycling enzymes: insights into substrate recognition and catalytic mechanisms." Curr Opin Struct Biol 56: 97-106.

Kucera, M., et al. (2016). "AutoAnnotate: A Cytoscape app for summarizing networks with semantic annotations." F1000Res 5: 1717.

Love, D. C., et al. (2003). "Mitochondrial and nucleocytoplasmic targeting of O-linked GlcNAc transferase." J Cell Sci 116(Pt 4): 647-654.

Lund, K. C. and K. B. Wallace (2008). "Adenosine 3',5'-cyclic monophosphate (cAMP)-dependent phosphoregulation of mitochondrial complex I is inhibited by nucleoside reverse transcriptase inhibitors." Toxicol Appl Pharmacol 226(1): 94-106.

Ma, J., et al. (2016). "Comparative Proteomics Reveals Dysregulated Mitochondrial O-GlcNAcylation in Diabetic Hearts." J Proteome Res 15(7): 2254-2264.

Ma, J., et al. (2015). "O-GlcNAcomic Profiling Identifies Widespread O-Linked beta-N-Acetylglucosamine Modification (O-GlcNAcylation) in Oxidative Phosphorylation System Regulating Cardiac Mitochondrial Function." J Biol Chem 290(49): 29141-29153.

Mailleux, F., et al. (2016). "O-GlcNAcylation, enemy or ally during cardiac hypertrophy development?" Biochim Biophys Acta 1862(12): 2232-2243.

Marcil, M., et al. (2006). "Compensated volume overload increases the vulnerability of heart mitochondria without affecting their functions in the absence of stress." J Mol Cell Cardiol 41(6): 998-1009.

Ngoh, G. A., et al. (2011). "Augmented O-GlcNAc signaling attenuates oxidative stress and calcium overload in cardiomyocytes." Amino Acids 40(3): 895-911.

Nie, H. and W. Yi (2019). "O-GlcNAcylation, a sweet link to the pathology of diseases." J Zhejiang Univ Sci B 20(5): 437-448.

Ong, Q., et al. (2018). "O-GlcNAc as an Integrator of Signaling Pathways." Front Endocrinol (Lausanne) 9: 599.

Papa, S., et al. (2001). "Mutation in the NDUFS4 gene of complex I abolishes cAMP-dependent activation of the complex in a child with fatal neurological syndrome." FEBS Lett 489(2-3): 259-262.

Reimand, J., et al. (2019). "Pathway enrichment analysis and visualization of omics data using g:Profiler, GSEA, Cytoscape and EnrichmentMap." Nat Protoc 14(2): 482-517.

Reimand, J., et al. (2007). "g:Profiler--a web-based toolset for functional profiling of gene lists from large-scale experiments." Nucleic Acids Res 35(Web Server issue): W193-200.

Rodenburg, R. J. (2016). "Mitochondrial complex I-linked disease." Biochim Biophys Acta 1857(7): 938-945.
Shi, X., et al. (2020). "ndufa7 plays a critical role in cardiac hypertrophy." J Cell Mol Med 24(22): 13151-13162.

Silva, J. F., et al. (2019). "Acute Increase in O-GlcNAc Improves Survival in Mice With LPS-Induced Systemic Inflammatory Response Syndrome." Front Physiol 10: 1614.

Smith, A. C. and A. J. Robinson (2016). "MitoMiner v3.1, an update on the mitochondrial proteomics database." Nucleic Acids Res 44(D1): D1258-1261.

Tan, E. P., et al. (2017). "Sustained O-GlcNAcylation reprograms mitochondrial function to regulate energy metabolism." J Biol Chem 292(36): 14940-14962.

Trapannone, R., et al. (2016). "Nucleocytoplasmic human O-GlcNAc transferase is sufficient for O-GlcNAcylation of mitochondrial proteins." Biochem J 473(12): 1693-1702.

Wang, Z., et al. (2014). "Cyclin B1/Cdk1 coordinates mitochondrial respiration for cell-cycle G2/M progression." Dev Cell 29(2): 217-232.

Zhao, L., et al. (2016). "The regulatory roles of O-GlcNAcylation in mitochondrial homeostasis and metabolic syndrome." Free Radic Res 50(10): 1080-1088.

Zhao, L., et al. (2014). "Aging leads to elevation of O-GlcNAcylation and disruption of mitochondrial homeostasis in retina." Oxid Med Cell Longev 2014: 425705.

10. SUPPLEMENTALS FIGURES

Figure S1: Investigation of non-mitochondrial protein O-GlcNAcylation following OGA inhibition. Volcano plot analysis showing the impact of NBuGT O-GlcNAcylation for proteins with a non-mitochondrial status on the Mitominer database. Statistical analysis was assessed using a linear regression model (empirical Bayes methods) followed by the Benjamini-Hochberg FDR procedure.
Figure S2: Investigation of mitochondrial protein O-GlcNAcylation following OGA inhibition.

a) Fold change in the abundance of O-GlcNAc-modified proteins between control and NButGT-treated mitochondria according to their localization in the different nodules of the Complex I.

b) STRING network of mitochondrial proteins displaying increased O-GlcNAcylation in response to NButGT in the present study and in the study by Ma et al (Ma et al., 2015). Clustering was performed with the Markov Cluster (MCL) algorithm with a granular parameter set at 4. The Auto-annotate function of Cytoscape was used to identify pathways/processes corresponding to these clusters based on Stringdb description and GO annotations. Nodes were color coded according to the q values observed in the present study, while borders were color coded assorting to FC in O-GlcNAcylation observed in the Ma et al. study.
Figure S3: Impact of Thiamet G-induced mitochondrial O-GlcNAcylation on respiratory function.

Following pre-incubation with UDP-GlcNAc in absence or presence of Thiamet G (5 µM), mitochondria were transferred to respirometry chambers for the recording of baseline state 2, maximal ADP-stimulated (ADP), and CCCP uncoupled respiration in presence of complex I (Pyruvate-Malate [Pyr-Mal]) or complex II (Succinate in presence of the complex I inhibitor rotenone [Succ-Rot]) substrates. For all experiments, control and Thiamet G-treated mitochondria were tested in parallel, allowing pairwise comparisons. Panels a and d show representative respirometry tracings. Panels b, e and g show the calculated means ± sem for each respiratory state in the two experimental groups. Panels c, f and h illustrate the effect of Thiamet G on ADP stimulated (F-H) or CCCP uncoupled respiration (H) for each of the paired incubations (3 biological replicates with 1-3 technical replicates per group).
Figure S4: Impact of acute Thiamet G-induced mitochondrial hyper O-GlcNAcylation on mitochondrial ROS release. Following pre-incubation with UDP-GlcNAc in absence or presence of Thiamet G, mitochondrial H$_2$O$_2$ release was measured following sequential addition of the complex I substrates pyruvate-malate (Pyr-Mal), the complex II substrate succinate (Succ), the uncoupler CCCP, and the complex III inhibitor Antimycin-A (Ant-A). For all experiments, control and Thiamet G-treated mitochondria were tested in parallel, allowing pairwise comparisons. **a**) Representative Amplex Red fluorescence tracing of control and Thiamet G treated mitochondria. **b**) Rate of H$_2$O$_2$ emission calculated under the various respiratory states in two experimental groups. Data are represented as means ± sem (4 biological replicates and 2 technical replicates per group). Multiple t test were used to establish statistical significance. *: p<0.05, corresponding to q value of <0.1.
Figure S5: Unprocessed images of membranes used for immunoblots presented in Fig 1A.
Figure S6: Unprocessed images of membranes used for immunoblots presented in Fig 6A-B.
Table S1: Comparative analysis of O-GlcNAcylated proteins following in vitro or in vivo NButGT treatment. List of O-GlcNAcylated proteins identified obtained following in vitro exposure of isolated mitochondria to NButGT (#1) compared to cardiac O-glcNAcylomic dataset derived from mice treated with NButGT (#2). Dark blue cells highlight proteins with FC>1.5 (Log2FC>0.58); medium FC>1.2 (Log2FC>0.26) and light blue FC>1 (Log2FC>0).

Gene	AdjPval	Log2FC	#1 (in vitro)	Log2FC	#2 (in vivo)	Log2FC
Mlycd	0.036219	5.0542383	-0.22302367			
Mrpl38	0.037828	4.5266909	-0.05239726			
Tst	0.037828	4.4831217	-0.48521952			
Gpx1	0.037828	4.3583643	0.03593602			
Rtn4ip1	0.037828	4.3249218	0.51133591			
Abcb8	0.037828	4.311377	0.01807561			
Nudt8	0.037828	4.195844	-0.29416556			
Ndufa6	0.036219	4.1436254	0.31476548			
Clybl	0.037828	3.9171971	0.00199168			
Vwa8	0.037828	3.9128006	1.11277804			
Mrpl15	0.036219	3.9010537	0.83132887			
Fahd2a	0.036219	3.8808771	NA			
Cyb5r3	0.037828	3.7295167	0.27592267			
Oxa1l	0.037828	3.6279092	0.38995933			
Clpp	0.037828	3.597414	0.14744399			
Kat3	0.037828	3.4817683	NA			
Nirx1	0.037828	3.4501217	0.41551219			
Rpl4	0.077144	3.3302439	-0.13896196			
Higd1a	0.037828	3.3194549	1.06498434			
Tmem65	0.037828	3.316931	0.53950296			
Nit2	0.037828	3.3030395	0.03877761			
Gpelp1	0.037828	3.2851366	0.03618385			
Timm50	0.037828	3.2645057	0.19863208			
Letm1	0.037828	3.2629061	0.59281113			
Aldh7a1	0.037828	3.2553931	NA			
Ndufa8	0.041421	3.2462646	0.31652351			

Lars2, 0.054815, 3.2389534, 0.28823996
Auh, 0.037828, 3.2363892, 0.62162374
Ppa2, 0.037828, 3.2139048, -0.01256295
Timm44, 0.037828, 3.2081809, 0.0156414
Coq7, 0.037828, 3.1155229, 0.05132324
Gstk1, 0.037828, 3.1023771, -0.13063292
Hsd17b8, 0.037828, 3.0912617, -0.09032497
Pitrm1, 0.037828, 3.0655927, 1.15560495
Sardh, 0.037828, 3.058349, NA
Aldh5a1, 0.038248, 3.0179449, 0.19133749
L2hgdh, 0.037828, 3.009186, 0.17858421
Mrps23, 0.037828, 2.9945447, 0.25893335
Endog, 0.037828, 2.981828, -0.03212739
Mut, 0.037828, 2.976578, NA
Atp5s, 0.037828, 2.966396, NA
Acad8, 0.037828, 2.9357018, -0.1873788
Eci1, 0.037828, 2.9244637, 0.17686736
Fh, 0.037828, 2.9209375, 0.46170735
Sic25a4, 0.037828, 2.911997, 0.27092103
Pdp1, 0.049901, 2.9056392, 0.05172957
Pc, 0.037828, 2.8987469, NA
Iars2, 0.037828, 2.8971452, 0.06725274
Mecr, 0.050603, 2.8961787, -0.13667286
Etfα, 0.037828, 2.8958899, 0.12607806
Hadh, 0.037828, 2.8954573, 0.3014456
Atps5f1, 0.037828, 2.8937595, 0.22458568
Cox20, 0.037828, 2.8880063, -0.47764041
Pdk1, 0.037828, 2.884855, 0.39079188
Gene	Raw Value	Log2 FC	Adj P Value	Raw Value	Log2 FC	Adj P Value																										
Acad9	2.8827262	0.41086873		Surf1	2.6901814	NA																										
Atpaf2	2.8768181	-0.36720423		Hibadh	2.6882363	-0.05041585																										
Mpc1	2.8688056	0.01603131		Txnrd2	2.6870513	-0.2355221																										
Slc25a3	2.8623411	0.63611025		Slc25a5	2.6823906	0.31639927																										
Acadvl	2.854331	0.47709402		Mtif2	2.6815279	-0.21269366																										
Ndufv2	2.8420339	-0.17590218		Sod2	2.6749182	0.00976056																										
Samm50	2.8376604	0.35050203		Bcat2	2.6568079	0.00804277																										
Hagh	2.8347035	0.13422073		Bphl	2.6560808	-0.09641509																										
Acot2	2.8298966	0.23839452		Mrps22	2.6519941	0.32721033																										
Echs1	2.8266167	0.10699377		Nln	2.6501502	-0.16074895																										
Coq6	2.8187113	0.1784542		Mccc1	2.6400616	0.25181383																										
Mtch2	2.808325	0.3175127		Cpt2	2.633844	0.18325402																										
Immt	2.7990808	0.58477071		Aldh6a1	2.6282189	0.32464817																										
Mrps11	2.7918282	NA		Acss1	2.6274513	0.29624419																										
Apoo	2.7886388	0.14772638		Suclg2	2.6255502	0.09860447																										
Ech1	2.7816691	0.10129361		Rhot1	2.6178301	1.13652091																										
Opa1	2.7675834	0.1445723		Ndufs8	2.6154271	-0.18259464																										
Ghitm	2.7654367	-1.60828548		Sfhn1	2.6077182	NA																										
Nnt	2.7628583	0.24674829		Hadha	2.5933258	0.35682994																										
Hibch	2.7505282	0.11236017		Decr1	2.5900095	0.15330168																										
Mpc2	2.7376082	0.6947703		Cpt1b	2.5895803	0.29122348																										
Acsf1	2.7342343	0.38325043		Dbt	2.5887541	0.16063568																										
Coq9	2.7290267	0.45296988		Coq3	2.5883947	0.37208171																										
Etfb	2.7286495	-0.02287712		Idh3a	2.5876519	-0.07228971																										
Bckdhh	2.7274874	0.21908694		Cyb5r1	2.587069	-0.17730635																										
Pdpr	2.7263795	-0.85281616		Hk1	2.5834625	0.21251284																										
Ndufs1	2.7218487	0.89224158		Hsd12	2.5756094	0.3522163																										
Slc25a11	2.7179829	0.52532758		Hspa9	2.5718361	0.40142143																										
Trap1	2.715586	0.45402647		Ak2	2.5661968	-0.11756827																										
Ak3	2.7147469	-0.15852255		Ckmt2	2.5467931	0.18855786																										
Pdhb	2.7054367	0.20862285		Mgst3	2.5442059	0.30337081																										
Bcl2l13	2.6962728	0.33733687		Coq5	2.5427428	-0.02768279																										
Ppif	2.6911446	0.1198819		Slc25a31	2.5333906	0.28761551																										
Gene	0.037828	2.5197744	0.26347057	Idh2	0.041732	2.3187883	0.24986006																									
-------	----------	------------	-------------	------	----------	------------	-------------																									
Cyc1	0.037828	2.5150739	0.66340991	Nduf2	0.037828	2.304323	0.85115054																									
Pcca	0.037828	2.5105962	0.40625412	Girx5	0.041732	2.3038867	NA																									
Gfm1	0.037828	2.5099253	0.83080365	Ndufa5	0.041732	2.301498	0.23481069																									
Mcee	0.041732	2.509225	0.45885963	Ndufa10	0.042443	2.3014062	0.27033212																									
Gcdh	0.037828	2.4974547	0.58959335	Atp5f1a	0.042265	2.2911764	0.4171115																									
Etfdh	0.037828	2.4850375	0.93064635	Did	0.041732	2.28971	0.4167506																									
Aifm1	0.039598	2.4801307	0.2256213	Acads	0.041732	2.2848262	0.16549508																									
Got2	0.041732	2.4676246	-0.13152819	Vdac1	0.040699	2.2845899	0.0024684																									
Atp5h	0.037828	2.46485	NA	Pmpca	0.071467	2.2807939	0.44809247																									
Gatd3a	0.037828	2.4635693	0.051137	Ndufb9	0.038695	2.2803266	0.18187443																									
Mtx2	0.041732	2.4557953	0.49045684	Timm29	0.054815	2.2728878	-0.5523827																									
Pdha	0.037828	2.4543538	0.02139544	Ndufa11	0.041732	2.2639729	0.55154816																									
Sdha	0.041732	2.4460635	0.0697668	Eci2	0.049843	2.2639217	0.3579067																									
Dnaja3	0.04552	2.4389872	0.26036869	Uqcrh	0.081746	2.2626072	NA																									
Mrps25	0.037828	2.4358793	0.1974354	Aldh2	0.041732	2.2595511	0.04998952																									
Uqcr1	0.041104	2.435604	0.1073151	Aco2	0.037828	2.2582696	0.54116387																									
Acads	0.041732	2.4229818	0.23487777	Cox6c	0.054815	2.2562575	0.69232263																									
Sdha	0.038248	2.4148195	0.30119423	Pdha11	0.041104	2.2482125	0.58941599																									
Idh3g	0.044297	2.4077221	-0.15465072	Sdha	0.041732	2.2356737	1.4832926																									
Sdha	0.038248	2.4061614	0.1056513	Atp5j2	0.041623	2.2226005	0.30111375																									
Sdha	0.041732	2.4038714	0.24839054	Mrpl22	0.041732	2.2209564	0.60046664																									
Slc25a12	0.038248	2.4002236	0.29295506	Sd39u1	0.041732	2.2130011	-0.07179587																									
Slc25a20	0.038248	2.3888083	0.07517014	Suclg1	0.044297	2.2122551	0.25203841																									
Mrpl58	0.039598	2.3718849	NA	Slc25a20	0.041732	2.2110913	0.29244073																									
Suclg1	0.041732	2.365532	0.0643007	Atp5me	0.048428	2.2096749	1.03973947																									
Sdha	0.041732	2.3651175	0.14124044	Ndufb10	0.042497	2.2048793	0.10287517																									
Mrpl22	0.041732	2.3631739	0.29052914	Mtn1	0.041932	2.186787	0.90557082																									
Dlat	0.037828	2.3493059	-0.2307647	Mtco2	0.041732	2.1852467	-0.26468431																									
Tomm20	0.04102	2.3486184	0.65501152	Dhrs4	0.056845	2.1707468	-0.00812237																									
Uqcrfs1	0.041732	2.3449079	0.21166798	Vdac2	0.041732	2.1500778	1.08210663																									
Acat1	0.041732	2.3197278	0.12786179	ATP6	0.044297	2.1484145	0.40081305																									
Gene	Value1	Value2	Value3																													
-------	---------	---------	---------																													
Acot13	0.040769	2.13823	0.27044663																													
Tmem256	0.040014	2.1350548	0.24384278																													
Ndufv1	0.053886	2.1339514	-0.24058718																													
Hint2	0.041732	2.1314132	0.80723543																													
Prdx3	0.056845	2.1238232	-0.05107579																													
Tufm	0.061548	2.1150426	0.11488558																													
Ndufs2	0.05463	2.111338	0.21991198																													
C1qbp	0.077144	2.1052803	-0.10425796																													
Ndufs3	0.054815	2.1002756	-0.01965294																													
Acadl	0.049879	2.0994742	0.23963326																													
Nipsnap2	0.048428	2.0838596	-0.08071942																													
Vdac3	0.061548	2.0802621	0.23963326																													
Mtdn5	0.049843	2.0750548	0.27044663																													
Ndufs5	0.042398	2.0700261	0.24384278																													
Ndufa9	0.049706	2.0658188	0.62519793																													
Pyroxd2	0.067373	2.0555037	NA																													
Uqrc2	0.059171	2.047706	0.00274392																													
Hadhb	0.056845	2.041118	-0.01067902																													
Slrpp	0.051908	2.0054882	NA																													
Ndufb11	0.05728	2.0046953	0.43682147																													
Ndufb7	0.054815	1.9999401	1.46251693																													
Acsf3	0.080354	1.9914999	0.47113302																													
Coq10a	0.048428	1.9685649	0.02207303																													
Rrp1	0.062066	1.9527762	-0.12456679																													
Timm21	0.049901	1.9515541	NA																													
Cisd1	0.057276	1.9496498	1.3892039																													
Lrpprc	0.073798	1.9429428	0.25534361																													
Hsd17b10	0.073798	1.9359112	0.04472029																													
Acsf2	0.059171	1.9309549	0.10074094																													
Gene	Comp 1	Comp 2	Comp 3																													
-----------	--------	--------	--------																													
Mrpl21	0.11652	1.520367	0.38833153																													
Dlst	0.123628	1.5160175	0.29093977																													
Mrpl27	0.119674	1.4730678	-0.25705859																													
Atp5f1e	0.153635	1.469482	0.26995404																													
Phb	0.119674	1.4730678	0.37386784																													
Cox5b	0.150076	1.469482	0.26995404																													
Ndufaf3	0.131832	1.4670782	0.64708666																													
Ndufa6	0.141161	1.4670782	0.5347326																													
Aldh9a1	0.208633	1.4617295	0.39107334																													
Cox7a2l	0.153957	1.4270863	NA																													
Ndufa2	0.118982	1.4259832	-0.29656537																													
Me3	0.303356	1.4218338	0.28866087																													
Tbrg4	0.246897	1.4187769	1.07749441																													
Rps14	0.230567	1.414642	NA																													
Glud1	0.204253	1.4061199	1.39987719																													
Ndufs7	0.204253	1.3877684	0.81023037																													
Timm22	0.142482	1.3845505	-0.35411841																													
Atp5l	0.172205	1.3694716	0.42857388																													
Pdf	0.138864	1.3649293	NA																													
Afg3l2	0.1673	1.3466654	0.03696981																													
Cmc1	0.280763	1.3442023	NA																													
Ivd	0.174029	1.3092634	-0.06561046																													
Isca2	0.169449	1.3065557	NA																													
Phb2	0.254371	1.2737454	0.27043876																													
Slc27a1	0.179403	1.2641414	0.83421505																													
Cox5a	0.192714	1.2611296	0.37937444																													
Cs	0.243672	1.1500017	0.13066995																													
Ndufa13	0.281546	1.1097151	0.19672459																													
Tomm40	0.39889	1.0848112	0.09116678																													
Tars2	0.280763	1.0523493	NA																													
Acadsb	0.599893	1.0262952	0.28414242																													
Fdx1	0.280763	1.0248786	NA																													
Sirt4	0.312715	0.9988482	NA																													
D2hgdh	0.495782	0.978324	NA																													
Ndufs4	0.293629	0.9781724	-0.15679461																													
Hspd1	0.330098	0.9400601	0.09673283																													
Mrpl45	0.320231	0.9347227	-0.07607517																													
Fabp3	0.315465	0.9346028	0.45051427																													
Atp5f1d	0.386904	0.905328	0.32742396																													
Ndufa12	0.51557	0.8268013	-0.34724204																													
Trak1	0.521078	0.7772172	0.24176825																													
Rab10	0.669586	0.7478115	0.54054898																													
Cox7a2	0.572851	0.7287986	1.48535044																													
Vars2	0.46779	0.7170921	0.18752902																													
Cat	0.507477	0.7042931	0.06050866																													
Ctsd	0.483149	0.6851963	-0.71921424																													
Ldhd	0.651223	0.6034217	NA																													
Myh6	0.543886	0.6002338	0.65952931																													
Pccb	0.572119	0.5971594	0.46811597																													
Cycs	0.527987	0.5761049	NA																													
Ywhae	0.739618	0.5098574	0.04206988																													
Igdm	0.621741	0.4917554	NA																													
Myom2	0.713452	0.4904926	0.28203171																													
Bdh1	0.651223	0.4593037	-0.44704946																													
Mrpl13	0.625807	0.4443854	-0.10851629																													
Atp5c1	0.669586	0.3927405	5.00E-05																													
Mrps36	0.741422	0.3836084	NA																													
Fis1	0.783607	0.3317174	0.51324202																													
Park7	0.81759	0.3117905	0.00757396																													
Prelid2	0.741422	0.3055199	-0.16274532																													
Lamc1	0.758729	0.2844704	0.5287584																													
Hsp90b1	0.849105	0.223191	NA																													
Shmt2	0.857363	0.1840997	0.75436682																													
Cryab	0.837829	0.1808333	-0.04780059																													
Acot9	0.837829	0.1803713	-0.11838661																													
Tomm22	0.868433	0.1446585	-0.03067709																													
Gene	Hsd1l	Clpx	Cps1	Mavs	Hsp90ab1	Rab1b	Calu	Qdpr	Hspa5	Atic	Lonp1	Rap1b	Mccc2	Ldhb	Cyct	Myl6	Ide	Nom1	Rplp0	Hk2	Cltc	Rpl31	Maoa	Cad	Vim	Mrpl53	P4hb	Arg1	Rab5c	Rpl23	Rpl13	Ywhah
--------	-------	-------	-------	-------	----------	-------	-------	-------	--------	-------	--------	-------	--------	-------	-------	-------	-----	-------	-------	------	------	-------	-------	-------	-------	-------	-------	-------	-------			
	0,938639	0,947706	0,947706	0,950311	0,95949	0,973458	0,958106	0,950311	0,849105	0,906106	0,809575	0,807952	0,740326	0,788729	0,669878	0,768844	0,758278	0,64276	0,741422	0,741422	0,757776	0,669586	0,621741	0,568544	0,543886	0,666482	0,559825	0,618003	0,546491			
	0,1058461	0,0805865	0,0719743	0,0577702	0,0568117	0,0297501	-0,04574	-0,063209	-0,195341	-0,228271	-0,244226	-0,269749	-0,334722	-0,339047	-0,370647	-0,398296	-0,398695	0,64276	-0,436152	-0,455845	-0,511063	-0,520502	-0,522841	-0,541099	-0,552159	-0,555685	-0,560872	-0,578855	-0,587382	-0,638484	-0,662365	
	-0,10596952	-0,13803961	NA	1,78901757	0,65099374	NA	0,78978854	1,28916063	0,2538068	0,582148	0,59322458	NA	0,34839469	-0,00510539	NA	0,89692218	NA	0,1623961	1,06809997	0,1092956	0,424997	0,520502	NA									

Values:
- Positive values indicate upregulation.
- Negative values indicate downregulation.
- NA indicates no data.
| Gene | FC | Adj P | Log2FC |
|----------|------|---------|--------|
| Actn1 | 0.27735 | -1.463038 | 1.33873402 |
| Ppib | 0.232388 | -1.488362 | 0.37587076 |
| Gapdh | 0.2188 | -1.572532 | 0.07458655 |
| Pkm | 0.184539 | -1.607108 | 0.74248285 |
| Dbi | 0.142482 | -1.641836 | NA |
| Rplp2 | 0.120837 | -1.659815 | 0.63175823 |
| Uba1 | 0.309285 | -1.761006 | 0.24042777 |
| Hsp90aa1 | 0.204747 | -1.785144 | 0.73855696 |
| Tuba1a | 0.238373 | -1.802108 | 0.80797706 |
| Rpl34 | 0.24184 | -1.807517 | 0.04139266 |
| Ldha | 0.146727 | -1.81486 | 0.64038507 |
| Fasn | 0.148832 | -1.86767 | 0.68425597 |
| Ucp1 | 0.203742 | -1.913778 | 0.8329657 |
| Rpl7 | 0.202523 | -1.929082 | 0.0272542 |
| Rpl18 | 0.169745 | -1.99812 | 0.09079739 |
| Pdia3 | 0.292054 | -2.051982 | 1.83480565 |
| Rab11b | 0.122126 | -2.149091 | NA |
| Tnx1 | 0.059171 | -2.157831 | 0.2367291 |
| Calm3 | 0.040805 | -2.289742 | NA |
| Sod1 | 0.042717 | -2.320084 | NA |
| Anxa1 | 0.09283 | -2.387749 | -0.62050168 |
| Pgk1 | 0.073798 | -2.512086 | 0.09797089 |
| Ywhaz | 0.049843 | -2.678315 | -0.42179595 |
| Eef1g | 0.056845 | -2.78065 | 0.59717076 |
| Hspb1 | 0.055337 | -2.822628 | 0.04329966 |
| Tubb5 | 0.103418 | -3.087091 | 1.45741391 |
| Bak1 | 0.069571 | -3.247829 | NA |