Manticore

A 4096-core RISC-V Chiplet Architecture for Ultra-efficient Floating-point Computing

Florian Zaruba*, zarubaf@iis.ee.ethz.ch
Fabian Schuiki*, fschuiki@iis.ee.ethz.ch
Luca Benini†, lbenini@iis.ee.ethz.ch

* Integrated Systems Laboratory, ETH Zurich
† University of Bologna
Introduction

- Ever growing demand for floating-point operations:
 - data-analytics, machine learning, scientific computing
- Tight energy-efficiency constraints
 - Node shrink: Increasing power density
 - Thermal design power limits the amount of active compute units
- Precision still counts (≥ fp32):
 - Stencils, linear differential equations
- Domain-specific architectures are hard to adjust to algorithmic changes
- Most of the energy spent on control:
 - Instruction cache, out-of-order execution
 - Von-Neumann bottleneck

Application-class processor (Ariane):
22nm FDX, 0.8V, 1 GHz, DGEMM

Instruction	Cache	Data Cache	FPU	Reg Files	Rect	Energy (pJ)
fld	15	37	2	5	13	72
fmadd.d	15	28	6	16		75
addi/bne	15	28	6	16		49

Energy spent on computation
A Taste of Where Supercomputing is Heading

Fujitsu A64FX
- TSMC 7nm, CoWoS, ~8.7bn transistors
- Armv8-A SVE
- Many-core architecture
- Wide per-core SIMD data path (better FPU/Control power ratio)

NVIDIA A100
- TSMC 7nm, CoWoS, ~54bn transistors
- AMPERE architecture
- SIMT data path
- Per-thread program counter; finer-grained threads
- Larger data-path (tensor cores)

Maximize computation data path with respect to control!

“Fujitsu High Performance CPU for the Post-K Computer”, HotChips 30
https://journal.jp.fujitsu.com/en/2016/11/28/01/

https://www.forbes.com/sites/janakiramswv/2020/05/17/nvidia-announces-amperethe-most-exciting-gpu-architecture-for-modern-ai
The Manticore Multi-Chiplet Concept

- Four chiplets:
 - 222mm2 (14.9 x 14.9mm)
 - Estimated in a 22nm process
 ➢ Yield and cost improvements

- Three die-to-die links:
 - Each die has short-range, multi-channel, die-to-die links to each sibling
 ➢ Efficient inter-die synchronization
 ➢ D2D non-uniform memory access

- Private 8GB HBM2 per die
 ➢ SoA BW and efficiency

- 16x PCIe Endpoint
 ➢ Flexible host communication
 ➢ Industry standard
Chiplet Architecture

- **Methodology:**
 - Quadrants/L2/Ariane placed and routed
 - HBM2, PCIe estimated and scaled to tech

- **Four quadrants of 32 clusters**
 - 8 Snitch cores per cluster
 - 16 DP and 32 SP flops per cycle
 - 1 GHz operating frequency
 - Peak > 4 Tdpflop/s per chiplet

- **Four Ariane “manager” cores**
 - Run Linux
 - Management and offloading

- **27 MB L2 Memory**
 - Balance thermal budget
 - Utilize die area
Quadrant Subdivision

- System subdivided hierarchically into multi-level quadrants (as a tree)
 - High aggregate bandwidth of up to 64 TB/s among quadrants at lower levels
 - Thinned to sustainable HBM bandwidth of 1 TB/s at higher levels
- Low diameter and high BW
- 4x clusters share instruction cache and uplink to L1 quadrant
- 4x L1 quadrants share instruction cache and uplink to L2
- 2x L2 quadrants share uplink to L3
- 4x HBM connected to 16x L3 quadrants
Compute Cluster

- **8x RV32G Snitch cores**
 - Optional w/ 16 GPRs
 - Single-stage
 - Area-efficient: 9-22 kGE

- **8x Large FPU**
 - Decoupled and heavily pipelined
 - Multi-format FPU (+SIMD) (half-precision, bfloat, custom fp8)
 - Source of useful compute!

- **128 kB TCDM**
 - Scratchpad for predictable memory accesses

- **DMA w/ 512 bit data interface**
 - Efficient data movement

- **Custom ISA extensions**
 - Xssr and Xfrep
Focus on Compute

- **Goal:** Maximize compute/control ratio
- **Small cores with large FPUs**
 - SSRs/FREP allow for small cores with high compute utilization
- **Multi-banked scratchpad memories (TCDM):**
 - High sustainable, element-wise, BW
 - Similar to a register file in a VPU/GPU
 - Efficient access with SSRs
 - Fine-grained inter-cluster synchronization
- **Async. data movement with DMA**
 - Efficient bulk data transfer
Taming the Beast
Stream Semantic Registers (Xssr)

- Turn register read/writes into **implicit** memory loads/stores
- Elides many **explicit** load/store instructions
 - Increases FPU/ALU utilization by ~3x
 - Towards **100%** in many cases
 - ```
 loop:
 fld r0, %[a]
 fld r1, %[b]
 fmadd r2, r0, r1
 scfg 0, %[a], ldA
 scfg 1, %[b], ldB
 fmadd r2, ssr0, ssr1
    ```
- Extension around the core’s register file
  - Subset of registers have stream semantics
  - Accesses routed out of the core
- Address generation hardware
  - Assigns affine addresses to accesses
  - Up to 4 nesting levels
- SSRs ≠ memory operands
  - Perfect prefetching, highly latency-tolerant
Floating-Point Repetition (Xfrep)

- Programmable micro-loop buffer
- Allows offloading of inner loop bodies

- Custom instruction indicates start of hardware loop block
- Sequencer steps through the buffer, issues instructions to the FPU

- Integer core operates in parallel: **Pseudo-dual Issue**
- Synchronization on FPU ⇢ INT ops
- RISC-V floating-point ISA makes this easy
Typical SSR/FREP Execution

- SSRs enable float-only hardware loops
- FREP marks loop
- Example: Reduction Operation
  - E.g. matmul, stencils, convolution
  - Unrolled four-fold

```
constexpr int N = 48;
for (int i = 0; i < N; i++) {
 double a = 0.0;
 for (int j = 0; j < N; j++) {
 a += A[i][j] * B[i][j];
 }
 C[i] = a;
}
```

- FPU executes 204 ins
- Core fetches/decodes 16 ins
- Bookkeeping ops in integer ALU
  overlaps with FPU operation
The Benefit of SSRs and FREP

- A single-issue core can completely saturate an FPU
- **IPC > 1**, few inst. fetched, many executed
- Reduces the von Neumann bottleneck

- Integer and float pseudo-dual-issue
- Single-cluster energy efficiency of 80 DP-Gflop/s/W, **>5x** speedup
- SSR and FREP are also applicable to less regular problems, such as FFT or sorting

Even mem-bound dot product benefits

**>5x** speedup for matmul

Cluster Execution Time Speed-Up (8 Cores)

Cluster Energy Efficiency (8 Cores)

Significant energy efficiency boost

### Graphs

- Dot Prod, Dot Prod, ReLU, Matmul, Matmul, FFT
- Baseline, SSR, SSR+FREP
- 72% FPU util.
- 85% speedup
- 24%
- 16%
- 23%
- 16%
- 85%

### Comparison

- Baseline
- SSR
- SSR+FREP

**1 GHz, 0.8V, 25°C**
Performance Roofline

- Workloads from a **DNN training step**
  - Convolution-only (compute-bound)
  - Linear/pooling-only (memory-bound)
  - Full mix of kernels (conv.-dominated)

- Estimated based on:
  - Cycle-accurate hardware simulation
  - Architectural model of full system
  - Silicon measurements of prototype system

- >80% of peak bandwidth for memory-bound kernels
- >90% of peak performance for compute-bound kernels

- **Close tracking of the roofline**
Silicon Prototype
Floorplan

- 9 mm² prototype of chiplet architecture
- Manufactured in **22nm**
  - Globalfoundries 22FDX
  - Evaluates different standard cell flavors and threshold voltages
  - Forward Body Biasing
- Testbed for key architecture components
- Number-crunching **Snitch** cores (RV32G)
- Clusters laid out around memory system:
  - Cores arranged in star shape around Tightly Coupled L1 Data Memory
  - Instruction frontends close to L1 I-cache
- Application-class **Ariane** cores (RV64G)
- 1.25 MB of L2 memory
- Serial link tightly coupled to pad frame
Architecture

- **3 Octa-Core Snitch Clusters (RV32G)**
  - 8 kB L1 instruction cache
  - 128 kB L1 data memory (in 32 banks)
  - 8 Snitch cores
  - 8 multi-format FPUs
    - Good multi-core speed-ups
    - Suitable unit for “hardening” as a macro

- **2 Ariane Cores (RV64G)**
  - 16/32 kB L1 instruction/data cache
  - 8 kB local scratchpad memory
    - Linux-capable, controller core

- **1 Snitch Management Core**
- **800 MHz / 2.56 Gbit/s all-digital chip-to-chip link prototype**
  - portable, “easy” to bring-up
- **DMA Unit / Peripherals / 4 FLLs**
Silicon Performance
Silicon Performance / Efficiency

- >90% FPU utilization thanks to Snitch cores with Xfrep/Xssr
- Wide range of operating points
- Choice of performance/efficiency tradeoff
- On prototype up to 54 DP-Gflop/s across 24 cores
- On full Manticore system >27 DP-Tflop/s across 4096 cores
- Both in 22nm (GF 22FDX)

- Compute efficiency up to 188 DP-Gflop/sW
- Compute density up to 20 DP-Gflop/smm²
Silicon Power / Speed

- Silicon supports wide power/frequency envelope
- DVFS based on operational intensity of current workload
- Adjust roofline to match:
  - High-performance mode: >54 DP-Gflop/s
    - 0.9 V supply
    - >1 GHz sustained compute
  - High-efficiency mode: >188 DP-Gflop/sW
    - 0.6 V supply
    - 0.5 GHz sustained compute
Efficiency on fp64

- Industry-leading fp64 efficiency
- Assuming 90% of peak performance sustainable for competing architectures

- In maximum-efficiency mode:
  - 15x more efficient than i9-9900K
  - 9x more efficient than Celerity (RISC-V)
  - 7x more efficient than N1
  - 6x more efficient than V100
  - 5x more efficient than A100

- In maximum-performance mode:
  - Competitive with N1 / V100 / A100

---

1 Preliminary results for Ampere A100 based on whitepaper
Efficiency on fp32

- Competitive fp32 efficiency
- Assuming 90% of peak performance sustainable for competing architectures

- Comparison on DNN Training workload
  - Convolution-only (highly compute-bound)
  - Full layer mix (intermittently memory-bound)

- **Competitive** with V100
- >2x better efficiency than i9-9900K
- >3x better efficiency than N1
- 25% lower than A100\(^1\) (but 22nm vs 7nm)

---

\(^1\) Preliminary results for Ampere A100 based on whitepaper
In Closing

- Small core, large FPU
- SSR/FREP combats von Neumann bottleneck
- Extreme efficiency on fp64
- Competitive on fp32

Next steps:

- “Quad-chiplet” prototype board
- Larger prototype silicon (FinFET)
- Looking for industrial partners for D2D/HBM/DDR PHY integration

Thanks!
Physical Design

- Manufactured in Globalfoundries 22FDX
  - 10-metal ULP SLVT/LVT
- Components laid out as hard macros
- Allows us to mix:
  - Different poly-silicon pitches
  - Different routing grids
  - Different threshold voltages
- Evaluates different standard cell flavors and threshold voltages
  - 7.5T vs. 8T
- Forward Body Biasing
  - Speed improvements
- Evaluated on industry-grade silicon testing equipment at ETH Zurich