Isolation and characterization of novel acidophilic microalgae from abandoned mining site area for carbohydrate biosynthesis and its kinetic growth study in photobioreactor

K M Tan*, M A Kassim*, Z J Ng* and J Lalung

1Bioprocess Technology Division, School of Industrial Technology, University Sains Malaysia, 11800 Penang, Malaysia.

*Email: km_tan10@hotmail.com; asyrafkassim@usm.my

Abstract. Microalgae have gained attention as an alternative feedstock for biofuel production due to its potential to accumulate carbohydrate, protein and lipid. However, current microalgae culture technology has been impeded by low biomass production, carbohydrate accumulation and contamination issue. In order to overcome this limitation, this study involves the isolation, screening and identification of acidophilic microalgae from Frog Hill. Then, the effect of different initial pH on growth and carbohydrate productivity was studied toward the selected microalgae. Further cultivation was done in indoor and outdoor using 15L fabricated PBR under optimize pH condition. At the end of experiment, the growth kinetic and carbohydrate productivity for both conditions were evaluated. Total of 4 native acidophilic microalgae were successfully isolated and was identified using 18s RNA. The *Scenedesmus parvus* was exhibited highest biomass production and carbohydrate productivity up to 1.2640 ± 0.001 g L⁻¹ and 15.47 ± 0.048 mg L⁻¹ d⁻¹ under highly acidic condition. It also showed a better performance under outdoor cultivation up to 9.54% compared to indoor cultivation. Hence, this research paper showed that the potential of novel acidophilic microalgae survives under extremely condition with high carbohydrate biosynthesis, which could be useful for industrial application.

1. Introduction

The rapid growing of world population required continuously increase the global demand and fuel energy. Some of the researchers also predicted that world fossil oil reserves will be exhausted in less than 50 years due to high consumption rate or demand by mankind [1]. Therefore, the renewable energy resource plays an important role to replace the exhausted fossil fuel. Microalgae becomes a promising feedstock for biofuel production due to the number of advantages, including shorter life cycle compared to terrestrial plant, carbon dioxide (CO₂) bio-sequestration capability, not competing for arable lands, and accumulate chemical metabolites such as lipid, protein and carbohydrate [2]. Microalg-carbohydrate is one of the dominant compound in microalgae biomass. It can act as the valuable chemical platform to be converted into biofuel, bioethanol, and biopolymer through biotechnological application using sustainable manner [3]. Previous study showed that *Chlorococum sp.* microalgae biomass can be used as feedstock for bioethanol production up to 3.83 g L⁻¹ fermented using *Saccharomyces bayanus* under optimum condition [4].

However, the industrial production of microalgae-based products are not yet economically feasible
and not cost-effective. This situation normally due the low microalgae biomass production. One of these factors was contributed by serious contamination by unwanted microorganism which can impede the microalgae growth. Hsu and Wu [5] proved that using large scale cultivation could be resulting in lower yield due to many unknown environmental factors that can directly affect the microalgae cultivation process. Besides that, Hirooka et al. [6] study also shows that mass cultivation using open pond system was easily contaminated by undesired microorganism in which suppressing the microalgae growth and resulting in the low productivity. Then, this problem has led to increase in total cost of cultivation and resulting in difficulties of downstream purification process.

Hence, an innovation idea of large scale cultivation of microalgae using closed photobioreactor system under controlled conditions have been suggested by previous studies in which could increase the biomass productivity to ensure the feasibility of product formation [7]. Similar study also be conducted by Sánchez Mirón et al. [8] who demonstrate that Phaeodactylum tricornutum microalgae was achieved biomass concentration up to 4 kg m\(^{-3}\) cultivated using 60 L of bubble column, split-cylinder airlift device and concentric draft-tube sparged airlift vessel respectively. This would be beneficial for additional product value such as omega-3 polyunsaturated fatty acids production. Besides that, Schenk et al. [9] have suggested that cultivating extremophile microalgae that can tolerate at particular condition that is hostile for other contaminants, at the meanwhile could enhance the biomass production.

Up to date, there was still scarce of information regarding the acidophilic microalgae cultivated under extreme condition for carbohydrate polymer biosynthesis. Thus, the main objective of this study was to isolate the most tolerant acidophilic microalgae and determine the carbohydrate polymer biosynthesis cultivated under acidic condition. At the end of the experiment, the suitable kinetic model was chosen based on isolated microalgae growth rate cultivated in large scale of fabricated tubular photobioreactor.

2. Materials and Methods

2.1 Sample collection and isolation of acidophilic microalgae

The small portion of soil containing green microalgae was collected from the abandoned mining site area, Frog Hill (5.4354° N, 100.4847° E). Then, the sample containing microalgae were enriched in autoclaved acidic bold basal medium, BBM (pH 3.0) in 250mL conical flask, sparging using 15% (v v\(^{-1}\)) CO\(_2\) concentration. The chemical composition of BBM as followed: NaNO\(_3\) 25 g L\(^{-1}\), MgSO\(_4\).7H\(_2\)O 7.5 g L\(^{-1}\), NaCl 2.5g L\(^{-1}\), K\(_3\)HPO\(_4\) 7.5 g L\(^{-1}\), KH\(_2\)PO\(_4\) 17.5 g L\(^{-1}\), CaCl\(_2\).2H\(_2\)O 2.5 g L\(^{-1}\), ZnSO\(_4\).7H\(_2\)O 8.82 g L\(^{-1}\), MnCl\(_2\).4H\(_2\)O 1.44 g L\(^{-1}\), MoO\(_3\) 0.71 g L\(^{-1}\), CuSO\(_4\).5H\(_2\)O 1.57 g L\(^{-1}\), Co(NO\(_3\))\(_2\).6H\(_2\)O 0.49 g L\(^{-1}\), H\(_2\)BO\(_3\) 11.42 g L\(^{-1}\), EDTA 50 g L\(^{-1}\), KOH 31 g L\(^{-1}\), FeSO\(_4\).7H\(_2\)O 4.98 g L\(^{-1}\) and H\(_2\)SO\(_4\) 1 mL.

Next, the sample was isolated by combination method between dilution with agar streaking technique for obtaining the axenic culture. Then the single colony was inoculated into BBM medium under controlled culture room at 30 ± 2°C, illuminated light with photon intensity of 20.99 µmol m\(^{-2}\) s\(^{-1}\) provided by cool daylight tube with photoperiod cycle of 12 h: 12 h (light: dark).

2.2 Experimental set up

A total volume of 70 mL with OD 1.00 (10% v v\(^{-1}\)) microalgae cell was inoculated into 630 mL BBM medium similar with above conditions. Then, the cell growth rate was measured in daily basis from day 0 until days 15 and the triplicate readings were taken. The microalgal cells were recovered by centrifugation and dried using oven at 60 °C. The dried microalgal pellet was subjected for further analysis. The selected strain that possess highest growth rate with carbohydrate productivity will be subjected to different pH values medium ranging from pH 3.00 to pH 11.00 in order to study the kinetic behavior and carbohydrate accumulation. The specific growth rate (d\(^{-1}\)) and carbohydrate productivity (mg L\(^{-1}\) d\(^{-1}\)) were calculated according to the following equation (1) and (2):

\[
k = \frac{\ln N_t - \ln N_i}{t_2 - t_1}
\]

where k (d\(^{-1}\)) is the specific growth rate, N\(_i\) and N\(_t\) are the biomass concentration at day t\(_1\) and t\(_2\).
where CP is carbohydrate productivity (mg L\(^{-1}\) d\(^{-1}\)), CW (%) is carbohydrate content (w w\(^{-1}\)) based on dry weight.

2.3 Measurement and quantification of total carbohydrate and sugar component

The total carbohydrate content was determined using phenol-sulfuric acid method following the method by Nielsen [10]. Dextrorotatory (D) (+) glucose was used as a standard for this carbohydrate analysis. The microalgae that contain highest carbohydrate productivity will be selected for the subsequent experiment.

2.4 Morphological identification of microalgae

Identification of the microalgae species was done through conventional method and molecular approach. Isolated strains were preliminary identified using standard morphological features. Subsequently, the total genomic DNA from the cultured sample was extracted using GF-1 plant DNA extraction kit (Vivantis Technologies, Malaysia) according to the manufacturer instruction. For PCR amplification, the extracted DNA was used to amplify the 18S rRNA with two general primers, forward primer (EUF) and reverse primer (EUR). The PCR analysis was performed by Mastercycler EP384 Thermal Cycler (Eppendorf, US) with the conditions described by Nübel et al. [11].

EUF: 5’-GTCAGAGGTGAAATTCTTGGATTTA-3’
EUR: 5’-AGGGCAGGGACGTAATCAACG-3’

The PCR product was further analysed by 18S rRNA gene sequencing at Centre for Chemical Biology, CCB Penang using EUF and EUR primers. All sequences obtained here were blasted through NCBI GeneBank database and performed phylogenetic tree analysis.

2.5 Phylogenetic analysis

A search of NCBI GenBank with BLAST was used to identify the isolated microalgae species with rRNA gene sequences downloaded from the database. The sequences containing fewer than 200 nucleotides or in excess of 1000 nucleotides were removed, and sequences not belonging under microalgae species also be excluded from this study. Subsequently, all the downloaded sequences were aligned accordingly using the ClusterX 2.1 software for restricting the multiple sequences alignment within the minimum common region. The phylogenetic tree was constructed using the neighbor-joining (NJ) method and Kimura’s two-parameter model implemented within Mega-X software.

2.6 Kinetic growth in photobioreactor

A 10% (v/v) of selected microalgae strain was further up-scaled into 15L of fabricated tubular PBR with optimum pH condition cultivated under indoor and outdoor environment. The cell growth and carbohydrate productivity were also evaluated under both cultivation condition. The basic Logistic equation and Gompertz equation from Sigmaplot version 12.5 as in equation (3) and (4) were adopted in this research to predict the kinetic behavior of microalgal growth cultivated under PBR system. Choosing a suitable model with \(R^2 > 0.95\) showed that the kinetic growth of microalgae fitted well with the suggested model.

Logistic model:

\[
C(t) = C_o e^{\mu t} \times \left[1 - \left(\frac{C_o}{C_m}\right) (1 - e^{\mu t})\right]^{-1}
\] (3)

Gompertz model:

\[
C(t) = C_0 \times e^{-e \left(\mu e^{1/C_0}\right)} \times (C_m - t) + 1
\] (4)
where C_0 is the initial microalgae biomass (g L$^{-1}$); C_m is the maximum biomass (g L$^{-1}$); μ is the specific growth rate (day$^{-1}$) and t is the cultivation time (day).

2.7 Statistical analysis
All results were expressed in triplicate to calculate the mean ± standard error. A value of $P<0.05$ was performed by using Minitab 16 software in order to consider the results were statistically significant.

3. Results and Discussions
3.1 Selection and identification of the most promising strain among the candidate strains
A total number of 4 microalgae strains namely USM$_S$1, USM$_S$2, USM$_S$3 and USM$_S$4 were successfully isolated from the soil sample. Further screening on microalgae capability to exhibit high growth rate and carbohydrate productivity under extreme conditions (low pH and high CO$_2$ concentration) were carried out and the result was tabulated in Table 1.

Result showed that the USM$_S$1 has a great deal in their ability to produce highest cell dry weight, biomass productivity and specific growth rate which were 1.2640 ± 0.001 g L$^{-1}$, 0.078 ± 0.004 g L$^{-1}$d$^{-1}$ and 0.1691 ± 0.001 d$^{-1}$ respectively under extreme condition. This result was obviously showed that strain 1 grew profusely compared to other isolates under favorable condition. Similar trend was observed by Vaquero et al. [12] who shows that *Coccomyxa onubensis* exhibits highest specific growth rate under acidic and high CO$_2$ condition. This result was further agreed by the previous study who demonstrated that every microalgae species could exhibit different growth rate under certain environment condition [1]. Interestingly, this USM$_S$1 also accumulates a moderately high amount of carbohydrate up to $37.19 \pm 0.160\%$ with highest in carbohydrate productivity 15.47 ± 0.048 mg L$^{-1}$d$^{-1}$ under the same cultivation condition (Table 1). Hence, it can be concluded that this specific strain of microalgae was a good candidate to be served as carbohydrate-based feedstock for biofuel and chemicals production. The strain that possess the highest growth rate and carbohydrate productivity (USM$_S$1) was further subjected for molecular identification and large scale mass cultivation.

Table 1. Kinetic growth rate and carbohydrate productivity of microalgae cultivated under acidic condition (pH 3.00 and 15% CO$_2$ concentration)

Microalgae	Maximum cell dry weight (g L$^{-1}$)	Biomass Productivity (g L$^{-1}$d$^{-1}$)	Specific growth rate, μ (d$^{-1}$)	Carbohydrate content (%) (w/w)	Carbohydrate productivity (mg L$^{-1}$d$^{-1}$)
USM$_S$1	1.2640 ± 0.001	0.078 ± 0.004	0.1691 ± 0.001	37.19 ± 0.160	15.47 ± 0.048
USM$_S$2	0.5623 ± 0.001	0.036 ± 0.001	0.1110 ± 0.001	22.17 ± 1.036	7.98 ± 0.037
USM$_S$3	0.1792 ± 0.001	0.007 ± 0.001	0.0190 ± 0.001	13.12 ± 0.618	0.92 ± 0.004
USM$_S$4	0.4902 ± 0.001	0.028 ± 0.001	0.1042 ± 0.001	22.91 ± 0.186	6.42 ± 0.005

The identification of the selected microalgae strain (USM$_S$1) was projected through morphological features and 18S rRNA sequence with the help of universal primer (EUF and EUF). Figure 1 (a) shows the morphology features of USM$_S$1 under 100x oil immersion microscopic examination. Based on the figure, it shows that USM$_S$1 was unicellular microorganism and appeared in form colonies. The structure of the cells was ovoid cylindrical with the dimension of 3 µm broad and 4 µm long. This preliminary result showed that USM$_S$1 was closely related to *S. parvus* as described by Reddy and Chaturvedi [13].

Further identification work was carried out through the 18S rRNA sequence analysis. The NCBI BLAST search was performed using the sequence as a query showed that it is most closely related to FR865718.1 *S. parvus* with 99% similarity. This strain was further confirmed through the multiple sequence alignment and phylogenetic tree analysis. The result appeared was coincided with the previous result, which was *S. parvus* (Figure 1(b)).
3.2 Effect of different initial pH on S. parvus growth and carbohydrate productivity

The isolated microalgae was further tested in different pH cultivation medium ranging from 3.00 to pH 11.00 in order to study the extent of pH effect on S. parvus growth. Based on Figure 2 (a), it shows that S. parvus obtained highest biomass production up to 1.339 ± 0.001 g L\(^{-1}\) under acidic condition (pH 3.00) compared to alkaline condition (pH 11.00) which showed the lowest cell dry weight 0.5178 ± 0.007 g L\(^{-1}\) over 15 days of cultivation time. Different result has been observed by Ren et al.[14], who displayed a lower growth rate of Scenedesmus sp. strain R-16 when cultivated under acidic condition, pH 3.0. Whereas, Cortés et al. [15] shows that wild-type Dictyosphaerium chlorelloides exhibited a maximum growth rate under alkaline condition, pH 9.0 This clearly indicated that the capability of microalgae to tolerate with different pH was species-specific. Varying the initial pH of the cultivation medium also could directly affect the metabolic process in microalgae cells [16].

![Figure 2](image.png)

Figure 2. (a) Cell dry weight and (b) carbohydrate productivity of S. parvus growth over 15 days of cultivation under acidic condition (pH 3.00).

The Figure 2 (b) showed the highest carbohydrate productivity was found 42.76 mg L\(^{-1}\) d\(^{-1}\) at day when the cultivation medium was shifted to acidic condition (pH 3.00). This was due to the stress condition applied and causing the changing in metabolism of microalgae and subsequently enhance the carbohydrate productivity [2]. Al-Safaar et al.[17] also demonstrates that increased in carbohydrate content of Chlorella vulgaris and Chroococcus minor when applied under acidic condition. Hence, it
was clearly illustrated that by adjusting the pH cultivation medium could directly affect the microalgal growth rate and carbohydrate productivity.

3.3 The biomass production and carbohydrate productivity of *S. parvus* cultivated under indoor and outdoor condition using 15 L PBR

In order to ensure the economic feasibility of the biofuel production, therefore, selection of fast-growing microalgal strain with high carbohydrate accumulation is necessary to develop in pilot-scale cultivation to achieve and maintain the year-round harvesting capability [18]. Hence, this context has involved in identification of the selected strain to achieved in maximum cell growth rate and carbohydrate productivity by applying large scale microalgal cultivation up to 15 L closed system PBR.

S. parvus (Strain 1) was selected due to the highest cell density and carbohydrate productivity cultivated under highly acidic condition (Table 1). Further up-scaled cultivation was done of *S. parvus* towards two different cultivation conditions including indoor and outdoor in order to study the kinetic behavior of this selected strain. Figure 3 (a) showed that outdoor cultivation of *S. parvus* displayed a better growth result up to 0.9326 ± 0.083 g L\(^{-1}\) compared to indoor cultivation which only exhibited 0.8514 ± 0.074 g L\(^{-1}\) at days 9 of cultivation. The difference in cultivation growth result was due to the cultivation conditions which including temperature and light intensity. During the outdoor cultivation, higher temperature (33.3 ± 1.74 °C) and light intensity (20648.33 ± 20025.90 lux) was achieved by *S. parvus* over the cultivation period (result not shown). These would favor microalgae photosynthesis rate and subsequently resulting in higher growth rate [19].

Different result has been obtained by Ritcharoen et al. [20] who showed that indoor cultivation of *Chaetoceros gracilis* was performed better compared to outdoor cultivation using flat-panel airlift photobioreactor. This phenomenon was due to the uneven light availability received during outdoor cultivation and resulting in low microalgal growth rate. Nonetheless, the feasibility of outdoor cultivation was further been agreed by previous study, Wen et al. [21] who showed the outdoor cultivation using pilot-scale raceway have a nice adaptability for *Graesiella sp*. WBG-1 compared to indoor experiment. Similar result has been observed by previous study who showed the biomass productivity of *Skeletonema costatum* microalgae was also higher up to 28.0 ± 0.16 mg L\(^{-1}\) d\(^{-1}\) compared to indoor cultivation [22]. Although outdoor cultivation of microalgae has encountered strong fluctuation of natural solar irradiance and temperature, however, these specific microalgae still able to perform well under harsh condition. Hence, this showed that *S. parvus* is one of the most tolerance strain that could sustain in wide range of temperature and light intensity, which could be applied for outdoor pilot-scale cultivation.

![Figure 3](image-url)

Figure 3. (a) Cell dry weight (g L\(^{-1}\)) and (b) Carbohydrate productivity (mg L\(^{-1}\) d\(^{-1}\)) of *S. parvus* in 15 L closed photobioreactor over 10 days of cultivation time under acidic condition (pH 3.00)

Carbohydrate productivity of *S. parvus* under indoor and outdoor cultivation was also evaluated in this study. Based on Figure 3 (b), it showed that highest carbohydrate productivity could be achieved by *S. parvus* up to 44.35 ± 0.1693 mg L\(^{-1}\) d\(^{-1}\) (days 8) under acidic outdoor cultivation. This value was
higher up to 32.74% compared to the indoor cultivation. This was due to the changes in environmental cultivation condition and subsequently affect the carbohydrate accumulation. This result was coinciding with the previous study who figured out the increasing in temperature and irradiance could enhance the carbohydrate productivity up to 111.8 mg L\(^{-1}\) d\(^{-1}\), which was 2.5% higher during sunny environment compared to rainy and cold condition, in Taiwan [23]. This was most probably due to biological processes within microalgae in which can contribute to turnover of enzyme, metabolic activity, growth rate and carbohydrate accumulation with the respect of temperature surrounding [23, 24]. Other study was done by Show et al., [25] who also reported that at low temperature could affects the viscosity of cytoplasm, leading to inefficient of nutrient utilization, or resulting in photo-inhibition. Hence, the photosynthesis mechanism of microalgae would become not effective and subsequently lower the cell growth rate. Therefore, by selecting the robust microalgae was important in this context in order to have capability to tolerate with high temperature range and accumulate the significant amount of carbohydrate.

3.4 Kinetic growth model study of microalgae

The growth kinetic study should be applied to achieve a higher understanding of microalgae growth under different cultivation conditions. For this particular study, two kinetic growth models namely Logistic and Gompertz model were used to compare the suitable models that can fit well with the experimental microalgae growth data. Result shows that cultivation under indoor condition attained a higher \(R^2\) value of 0.9678 in Gompertz model, compared to 0.9677 in Logistic-type model (Table 2). This mean Gompertz model fit well with the experiment growth data. This result was further confirmed by the RMSD result shown in Table 2. A similar result was obtained in which Gompertz model shows lower RMSD compared to Logistic model. RMSD is represented a good fit to extent the correctness and the lower value specifies the finest model agreement [26]. Hence, it shows that Gompertz model is acceptable to represent the growth of \textit{S. parvus} under indoor cultivation due to lower RMSE value and vice versa for the outdoor cultivation.

Table 2. Performance indicates of the nonlinear models of \textit{S. parvus} growth under different types of cultivation

Types of cultivation	Cell growth model			
	Logistic	Gompertz		
	\(R^2\)	RMSD	\(R^2\)	RMSD\(^*\)
Indoor	0.9677	0.0378	0.9678	0.0377
Outdoor	0.9771	0.0390	0.9760	0.0399

\(^*\)RMSD: Root Mean Square Deviation

The suitability of Gompertz growth model was further studied by Praveen et al. [27], who showed that Gompertz model was suitable models (high \(R^2\) and low RMSE values) for describing the growth kinetic of \textit{Chlorella sp.} under photoautotrophic, heterotrophic and photomixotrophic conditions. Other study also indicated that high \(R^2\) value which denoted by the logistic-type model showed that the suitability of this model for microalgae growth under normal condition and nitrogen-depletion condition [28]. Hence, it can be concluded that the suitability of the model was largely contributed by the differences of microalgae strains, growth medium, cultivation conditions and mode of cultivation [29]. By choosing the right model is important for predicting the microalgae growth characteristics and maximum biomass production under specific cultivation condition.

4. Conclusions

This present study revealed that the \textit{S. parvus} able to achieve highest biomass production and carbohydrate productivity under extreme environment which were 1.2640 ± 0.001 g L\(^{-1}\) and 15.47 ± 0.048 mg L\(^{-1}\) d\(^{-1}\) respectively. Then, in order to ensure the economical feasibility of the carbohydrate biosynthesis polymer, the isolated \textit{S. parvus} was further cultivated in large scale production. The results
indicated that isolated acidophilic microalgae were suitable for carbohydrate polymer biosynthesis up to 44.35 ± 0.1693 mg L⁻¹ d⁻¹. This is important to ensure the economic feasibility of next generation biofuel production. Lastly, this study annotates that the model is condition dependent in which different cultivation condition suitable different kinetic model. This information is useful for predicting the microalgae growth characteristics and can act as an essential platform when the cultivation is scaled-up to commercial application.

5. References

[1] Abou-Shanab R A, Hwang J H, Cho Y, Min B and Jeon B H 2011 Characterization of microalgal species isolated from fresh water bodies as a potential source for biodiesel production Applied Energy 88 3300-06

[2] Chen C Y, Zhao X Q, Yen H W, Ho S H, Cheng C L, Lee D J, Bai F W and Chang J S 2013 Microalgae-based carbohydrates for biofuel production. Biochemical Engineering Journal 78 1-10

[3] Kassim M A, Rashid M A and Halim R 2017 Towards biorefinery production of microalgal biofuels and bioproducts: production of acetic acid from the fermentation of Chlorella sp. and Tetraselmis suecica hydrolysates. Green and Sustainable Chemistry 7 152-71

[4] Harun R, Danquah M K and Forde G M 2010 Microalgal biomass as a fermentation feedstock for bioethanol production Journal of Chemical Technology & Biotechnology 85 199-203

[5] Hsu Y L and Wu W T 2002 A novel approach for scaling-up a fermentation system. Biochemical Engineering Journal 11 123-30

[6] Hirooka S, Higuchi S, Uzuka A, Nozaki H and Miyagishima S Y 2014 Acidophilic green alga Pseudochlorella sp. YKT1 accumulates high amount of lipid droplets under a nitrogen-depleted condition at a low-pH PloS One 9 e107702 [5] Mallick N, Bagchi S K, Koley S and Singh A K 2016 Progress and challenges in microalgal biodiesel production. Frontiers in Microbiology 7 1019-30

[7] Mallick N, Bagchi S K, Koley S and Singh A K 2016 Progress and challenges in microalgal biodiesel production. Frontiers in Microbiology 7 1019-30

[8] Sánchez Mirón A, Garcia Camacho F, Contreras Gomez A, Grima E M and Chisti Y 2000 Bubble-column and airlift photobioreactors for algal culture AIChE Journal 46 1872-87

[9] Schenk P M, Thomas-Hall S R, Stephens E, Marx U C, Mussgnug J H, Posten C, Kruse O and Hankamer B 2008 Second generation biofuels: high-efficiency microalgae for biodiesel production Bioenergy Research 1 20-43

[10] Nielsen S S 2010 Phenol-sulfuric acid method for total carbohydrates Springer: Food analysis laboratory manual 47-53

[11] Nübel U, Garcia-Pichel F and Muyzer G 1997 PCR primers to amplify 16S rRNA genes from cyanobacteria Appl. Environ. Microbiol. 63 3327-32

[12] Vaquero I, Vázquez M, Ruiz-Domínguez M and Vilchez C 2014 Enhanced production of a lutein-rich acidic environment microalgae Journal of Applied Microbiology 116 839-50

[13] Reddy B M and Chaturvedi A 2015 Scenedesmus and related genera in riverine system of Chandrapur district, Maharashtra, India Phykos 45 19-28

[14] Ren H Y, Liu B F, Ma C, Zhao L and Ren N Q 2013 A new lipid-rich microalga Scenedesmus sp. strain R-16 isolated using Nile red staining: effects of carbon and nitrogen sources and initial pH on the biomass and lipid production Biotechnology for Biofuels 6 143-53

[15] Cortés A A, Sánchez-Fortún S, García M and Bartolomé M C 2018 Effects of pH on the growth rate exhibited of the wild-type and Cd-resistant Dictyosphaerium chlorelloides strains Limnetica 37 229-38
[16] Kosourov S, Seibert M and Ghirardi M L 2003 Effects of extracellular pH on the metabolic pathways in sulfur-deprived, H₂-producing *Chlamydomonas reinhardtii* cultures. *Plant and Cell Physiology* **44** 146-55

[17] Al-Safaar A T, Al-Rubiae G H and Salman S K 2016 Effect of pH condition on the growth and lipid content of microalgae *Chlorella vulgaris* & *Chroococcus minor* *Journal of Scientific & Engineering Research* **7** 1138-43

[18] John R P, Anisha G, Nampoothiri K M and Pandey A 2011 Micro and macroalgal biomass: a renewable source for bioethanol *Bioresource Technology* **102** 186-193

[19] Hancke K, Hancke T B, Olsen L M, Johnsen G and Glud R N 2008 Temperature effects on microalgal photosynthesis-light responses measured by O₂ production, pulse-amplitude-modulated fluorescence, and 14C assimilation *Journal of Phycology* **44** 501-514

[20] Rittcharoen W, Sriouam P, Nakseedeep P, Sang P, Powtongsook S, Kungyansaichol K and Puvasant P 2014 Cultivation options for indoor and outdoor growth of *Chaetoceros gracilis* with airlift photobioreactors *Maejo International Journal of Science and Technology* **8** 100-113

[21] Wen X, Du K, Wang Z, Peng X, Luo L, Tao H, Xu Y, Zhang D, Geng Y and Li Y 2016 Effective cultivation of microalgae for biofuel production: a pilot-scale evaluation of a novel oleaginous microalga *Graesiella sp.* WBG-1 *Biotechnology for Biofuels* **9** 123-35.

[22] Pérez L, Salgueiro J L, González J, Parralejo A I, Maceiras R and Cancela Á 2017 Scaled up from indoor to outdoor cultures of *Chaetoceros gracilis* and *Skeletonema costatum* microalgae for biomass and oil production *Biochemical Engineering Journal* **127** 180-187

[23] Ho S H, Chen Y D, Chang C Y, Lai Y Y, Chen C Y, Kondo A, Ren N Q and Chang J S 2017 Feasibility of CO₂ mitigation and carbohydrate production by microalga *Scenedesmus obticus* CNW-N used for bioethanol fermentation under outdoor conditions: effects of seasonal changes *Biotechnology for Biofuels* **10** 27-40

[24] Franco M C, Buffing M F, Janssen M, Lobato C V and Wijffels R H 2012 Performance of *Chlorella sorokiniana* under simulated extreme winter conditions *Journal of Applied Phycology* **24** 693-699

[25] Show P, Tang M, Nagarajan D, Ling T, Ooi C W and Chang J S 2017 A holistic approach to managing microalgae for biofuel applications *Int. J. of Mol. Sci.* **18** 215-49

[26] Nigam S, Rai M P and Sharma R 2011 Effect of nitrogen on growth and lipid content of *Chlorella pyrenoidosa* *Am J Biochem Biotechnol* **7** 124-129

[27] Praveen K, Abinandan S, Natarajan R and Kaviitha M 2018 Biochemical responses from biomass of isolated *Chlorella sp.*, under different cultivation modes: non-linear modelling of growth kinetics *Brazilian Journal of Chemical Engineering* **35** 489-96

[28] Surendhiran D, Vijay M, Sivaprakash B and Sirajunnisa A 2015 Kinetic modeling of microalgal growth and lipid synthesis for biodiesel production *J Biotech* **5** 663-69

[29] Lammers P J *et al.*, 2017. Review of the cultivation program within the National Alliance for Advanced Biofuels and Bioproducts *Algal research* **22** 166-86

Acknowledgements

The authors wish to thank School of Industrial Technology, Universiti Sains Malaysia and the Ministry of Higher Education, Malaysia (USM). The project and manuscript preparation were financially supported by the RUI Grant 1001/PTEKIND/8011043 and USM Fellowship RU(1001/CIPS/AUPE001) from Universiti Sains Malaysia.