Serum cortisol as a predictor for posttraumatic stress disorder symptoms in post-myocardial infarction patients

Schaffter, Nadja; Ledermann, Katharina; Pazhenkottil, Aju P; Barth, Jürgen; Schnyder, Ulrich; Znoj, Hansjörg; Schmid, Jean-Paul; Meister-Langraf, Rebecca E; von Känel, Roland; Princip, Mary

Abstract: Background: After an acute myocardial infarction (MI), patients may develop posttraumatic stress disorder (PTSD). There is evidence for alterations in the hypothalamic–pituitary–adrenal axis in PTSD. An association between patients’ cortisol level after experiencing an MI and subsequent PTSD symptoms has not been investigated yet. Therefore, the aim of this study was to examine whether serum cortisol measured in patients admitted to hospital for acute coronary care after MI is predictive of PTSD symptoms at three and 12 months post-MI, respectively. Methods: Patients (N=106) with a verified MI and high risk for the development of MI-induced PTSD symptoms were included in the study within 48 hours of hospital admission for acute coronary intervention. Serum cortisol was measured from fasting venous blood samples the next morning. Hierarchical regression analysis was used to test for an independent contribution of cortisol levels from admission to the Clinician-Administered PTSD Scale sum score three and 12 months after discharge from the coronary care unit. Result: Hierarchical regression analysis showed that lower serum cortisol levels were significantly associated with more severe PTSD symptoms three months (B=-0.002, p=0.042) and 12 months (B=-0.002, p=0.043) post-MI. Limitations: The generalizability of the findings is limited to patients with high acute peri-traumatic distress and without an acute severe depressive episode. The study does not provide any information about the diurnal cortisol pattern. Conclusion: Lower serum cortisol measured during MI hospitalization may predict more severe MI induced PTSD symptoms three and 12 months after hospital discharge.

DOI: https://doi.org/10.1016/j.jad.2021.05.065
Serum cortisol as a predictor for posttraumatic stress disorder symptoms in post-myocardial infarction patients

Nadja Schaffter, Katharina Ledermann, Aju P. Pazhenkottil, Jürgen Barth, Ulrich Schnyder, Hansjörg Znoj, Jean-Paul Schmid, Rebecca E. Meister-Langraf, Roland von Känel, Mary Princip

PII: S0165-0327(21)00509-7
DOI: https://doi.org/10.1016/j.jad.2021.05.065
Reference: JAD 13380

To appear in: Journal of Affective Disorders

Received date: 26 November 2020
Revised date: 3 April 2021
Accepted date: 30 May 2021

Please cite this article as: Nadja Schaffter, Katharina Ledermann, Aju P. Pazhenkottil, Jürgen Barth, Ulrich Schnyder, Hansjörg Znoj, Jean-Paul Schmid, Rebecca E. Meister-Langraf, Roland von Känel, Mary Princip, Serum cortisol as a predictor for posttraumatic stress disorder symptoms in post-myocardial infarction patients, Journal of Affective Disorders (2021), doi: https://doi.org/10.1016/j.jad.2021.05.065

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2021 Published by Elsevier B.V.
Serum cortisol as a predictor for posttraumatic stress disorder symptoms in post-myocardial infarction patients

Nadja Schaffter a, Katharina Ledermann ab, Aju P. Pazhenkottil acd, Jürgen Barth e, Ulrich Schnyder a, Hansjörg Znoj f, Jean-Paul Schmid g, Rebecca E. Meister-Langraf ah, Roland von Känel a*, Mary Princip a*

a Department of Consultation-Liaison Psychiatry and Psychosomatic Medicine, University Hospital Zurich, and University of Zurich, Zurich, Switzerland
b Department of Clinical and Health Psychology, University of Fribourg, Fribourg, Switzerland
c Department of Cardiology, University Hospital Zurich, and University of Zurich, Zurich, Switzerland
d Cardiac Imaging, Department of Nuclear Medicine, University Hospital Zurich, and University of Zurich, Zurich, Switzerland
e Complementary and Integrative Medicine, University Hospital Zurich, and University of Zurich, Zurich, Switzerland
f Department of Clinical Psychology and Psychotherapy, University of Bern, Bern, Switzerland
g Department of Cardiology, Clinic Barmelweid, Barmelweid, Switzerland
h Clenia Schlössli AG, Oetwil am See, Zurich, Switzerland
* These authors contributed equally to this work.

Correspondence to: Nadja Schaffter, Department of Consultation-Liaison Psychiatry and Psychosomatic Medicine, University Hospital Zurich, Culmannstrasse 8, CH-8091 Zurich, Switzerland
E-mail: nadja.schaffter@gmx.ch
Telephone number: +41 44 255 52 80
Fax number: +41 44 255 44 08

Highlights

- Cortisol was measured from patients hospitalized due to myocardial infarction (MI)
- MI-induced posttraumatic stress disorder (PTSD) symptoms were assessed at follow-up
- Lower serum cortisol was associated with more PTSD symptoms at 3-month follow-up
- Lower serum cortisol was associated with more PTSD symptoms at 12-month follow-up

Abstract

Background
After an acute myocardial infarction (MI1), patients may develop posttraumatic stress disorder (PTSD2). There is evidence for alterations in the hypothalamic–pituitary–adrenal axis in PTSD. An association between patients’ cortisol level after experiencing an MI and subsequent PTSD symptoms has not been investigated yet. Therefore, the aim of this study was to examine whether serum cortisol measured in patients admitted to hospital for acute coronary care after MI is predictive of PTSD symptoms at three and 12 months post-MI, respectively.

Methods
Patients (N=106) with a verified MI and high risk for the development of MI-induced PTSD symptoms were included in the study within 48 hours of hospital admission for acute coronary intervention. Serum cortisol was measured from fasting venous blood samples the next morning. Hierarchical regression analysis was used to test for an independent contribution of cortisol levels from admission to the Clinician-Administered PTSD Scale sum score three and 12 months after discharge from the coronary care unit.

Results
Hierarchical regression analysis showed that lower serum cortisol levels were significantly associated with more severe PTSD symptoms three months (B=-0.002, p=0.042) and 12 months (B=-0.002, p=0.043) post-MI.

Limitations
The generalizability of the findings is limited to patients with high acute peri-traumatic distress and without an acute severe depressive episode. The study does not provide any information about the diurnal cortisol pattern.

Conclusion
Lower serum cortisol measured during MI hospitalization may predict more severe MI-induced PTSD symptoms three and 12 months after hospital discharge.

Key words
Cortisol, posttraumatic stress disorder, myocardial infarction, predictor

Introduction
In 2015, an estimated 7.28 million acute myocardial infarctions (MI) occurred globally (Roth et al., 2017). MI is a life-threatening event, and patients may therefore experience high distress and fear of dying (Whitehead et al., 2005). In the aftermath of MI, patients may develop substantial psychological symptoms, including posttraumatic stress disorder (PTSD)

1 MI: myocardial infarction
2 PTSD: posttraumatic stress disorder
(Vilchinsky et al., 2017). After experiencing an acute coronary syndrome (ACS), approximately 12% of patients show clinically significant PTSD symptoms and around 4% are diagnosed with PTSD (Edmondson et al., 2012). Patients with MI-induced PTSD symptoms may re-experience the event in the form of intermittent distressing thoughts or nightmares. They may avoid reminders of the MI such as certain places or activities and may also have problems in concentrating or sleeping because of elevated arousal. In addition to impairing patients’ mental health and daily functioning, MI-triggered PTSD symptoms have also been associated with an increased risk of hospital readmission due to cardiovascular disease events (Edmondson et al., 2011; Shemesh et al., 2004; Tsutsui et al., 2017; von Känel et al., 2011) and all-cause mortality (Edmondson et al., 2011; Tsutsui et al., 2017).

Cortisol is a hormone secreted by the adrenals with an important role in stress response. Several studies have investigated possible alterations in the hypothalamic–pituitary–adrenal (HPA) axis in PTSD, but findings regarding cortisol levels are inconsistent as reported by several meta-analyses. For example, morning salivary cortisol levels were lower in patients with PTSD compared to non-trauma-exposed (NE) controls and mentally healthy trauma-exposed patients (TE) (Pan et al., 2018). Another meta-analysis found lower morning cortisol and lower 24 hours cortisol in patients with PTSD compared to controls consisting of NE, TE and patients with unknown trauma-exposure (Schumacher et al., 2019). In contrast, there was no difference in cortisol levels between TE and PTSD patients with adulthood trauma, and furthermore no difference was found between TE and NE (Klaassens et al., 2012). In another study, cortisol levels were found to be lower in PTSD patients than in NE, but there was no difference between PTSD patients and TE (Meewisse et al., 2007). Inclusion of patients with ACS-induced PTSD symptoms was not reported in any of these meta-analyses (Klaassens et al., 2012; Meewisse et al., 2007; Pan et al., 2018; Schumacher et al., 2019). One previous
study showed an inverse correlation between plasma cortisol and PTSD symptoms 18-44 months after MI, after adjusting for depressive symptoms (von Känel et al., 2010).

In addition to studies on cortisol levels in patients with diagnosed PTSD, there are also studies on the prognostic value of cortisol levels measured shortly after the traumatic event (Bonne et al., 2003; Delahanty et al., 2000; Ehring et al., 2008; McFarlane et al., 2011; Mouthaan et al., 2014; Shalev et al., 2008). Some of these studies suggest that a lower cortisol level, measured in the close aftermath of a traumatic event, might be associated with the development of PTSD and PTSD symptoms (Delahanty et al., 2000; Ehring et al., 2008; McFarlane et al., 2011; Mouthaan et al., 2014). For example, lowered plasma cortisol levels measured in the trauma resuscitation room were predictive of acute and chronic PTSD symptoms (Mouthaan et al., 2014). This is in line with other studies showing an association between lower cortisol levels measured shortly after the experience of a traumatic event and subsequent PTSD symptoms (Ehring et al., 2008; McFarlane et al., 2011) and PTSD diagnosis (Delahanty et al., 2000). Yet, there are also studies which reported a lack of association between the initial cortisol level and PTSD symptoms at follow-up (Bonne et al., 2003) and PTSD diagnosis in civilian trauma victims (Shalev et al., 2008).

Decreased cortisol may play a role in the development of PTSD symptoms (Yehuda, 2002a), further evidenced by studies showing that hydrocortisone given shortly after experiencing a traumatic event might prevent the development of PTSD (Schelling et al., 2001) and PTSD symptoms (Delahanty et al., 2013).

Whether cortisol levels measured shortly after MI are predictive of subsequent MI-triggered PTSD symptoms has not been investigated yet. A predictive laboratory marker would be valuable because it might allow the early identification of patients at an increased risk of developing post-MI PTSD symptoms. Based on this knowledge early preventive strategies could potentially be implemented. Therefore, the aim of this study was to investigate whether
serum cortisol levels at hospitalization for MI are predictive of 1) PTSD symptoms three months and 2) 12 months after hospitalization for acute coronary intervention for MI.

Methods

Participants

Participants in the current study were from the Myocardial Infarction – Stress Prevention Intervention (MI-SPRINT) trial that took place between January 8, 2013 and December 15, 2015 at the Bern University Hospital (Meister et al., 2013; von Känel et al., 2018). The aim of this randomized, controlled trial (RCT) was to investigate whether an early psychological trauma-focused counselling session had a preventive effect on the development of PTSD following acute MI in a high-risk population (Meister et al., 2013; von Känel et al., 2018). The ethics committee of the State of Bern approved the research protocol (KEK No. 170/12). Written informed consent to participate in the study was obtained from all patients included in this RCT.

Participants of this study were patients aged 18 years or older with either an acute ST elevation myocardial infarction (STEMI) or a non-STEMI, stable circulatory conditions, and a high risk for the development of an MI-triggered PTSD, admitted to the coronary care unit (CCU) of the Cardiology Department at the Bern University Hospital. Risk for MI-induced PTSD was evaluated with three questions assessing acute peri-traumatic distress on a numeric rating scale from 0-10: a) chest pain while suffering MI, b) fear of dying until being admitted to the CCU and c) feeling of helplessness when confronted with the diagnosis of MI. In order to be classified as a high-risk patient, the extent of chest pain had to have a score of at least 5 together with a score of at least 5 for fear of dying and/or feeling of helplessness.

Exclusion criteria were insufficient language proficiency in German, participation in another RCT, emergency coronary artery bypass graft surgery, a current severe depressive episode or another comorbid disease with an estimated life expectancy under one year in patient’s
medical history, suicidal ideation in the last two weeks, and lack of orientation with regard to situation, place and person.

Intervention

Psychological counselling sessions carried out as part of the MI-SPRINT trial are described in detail elsewhere (Meister et al., 2013; von Känel et al., 2018). In brief, counselling was given by study therapists (i.e., doctoral students in psychology or medicine) within 48 hours after admission to the CCU. The verum group was given trauma-focused counselling consisting of extensive information about the development, symptomatology and treatment of PTSD and the concept of an MI as a traumatic experience. The control group was given information on the general role of psychological stress in cardiovascular disease and psychological stress management tools. The duration of each counselling session was 45 minutes. In both groups, participants received an information booklet illustrating the content of the respective counselling session.

Measurements

Measurements were carried out at three different time points (Figure 1): 1. within 48 hours of hospitalization, when patients had reached stable circulatory condition, with one single blood sample the next morning after the counselling session took place (admission); 2. three months after discharge from the CCU (three-month follow-up) and 3. 12 months after discharge from the CCU (12-month follow-up).

Posttraumatic stress

According to the 5th edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) (American Psychiatric Association, 2013), PTSD is characterized by four different symptom clusters (i.e., intrusion, avoidance, negative alterations in cognitions and mood and alterations in arousal and reactivity) which may occur after experiencing a traumatic event.
For a diagnosis of PTSD to be made, the duration of symptoms must be at least one month and there must be clinically relevant distress or impaired daily functioning (American Psychiatric Association, 2013).

To evaluate posttraumatic stress, we used the validated German version (Schnyder and Moergeli, 2002) of the Clinician-Administered PTSD Scale (CAPS) (Blake et al., 1995). CAPS refers to the PTSD criteria of DSM-IV (American Psychiatric Association, 1994) since the MI-SPRINT trial was planned before the introduction of DSM-5.

Seventeen possible symptoms of PTSD are looked for which belong to one of the three symptom clusters of re-experiencing, avoidance/numbing or hyperarousal. For each symptom, frequency and intensity between 0 (=never) and 4 (=almost always) were assessed. For a symptom to be present, the frequency needs to have at least a value of 1 and the intensity a value of at least 2. CAPS sum score can range from 0 to 136. In this study, the CAPS sum scores recorded at three-month and 12-month follow-up were included as outcome variables in the hierarchical regression analysis. In this sample, Cronbach’s α for the CAPS sum score was 0.81 at three-month follow-up and 0.71 at 12 months, indicating good and acceptable internal consistency, respectively.

Cortisol

Cortisol (nmol/L) was measured in fasting venous blood samples taken at 6 am, the morning after the counselling session had taken place. For reasons of logistics or patient care, there were deviations in the measuring time in certain cases (n=36). Specific collection times were between midnight and 6 am (n=19), at 6 am (n=68), between 6 am and 8 am (n=6) and between 11 am and 6 pm (n=10). For the same reasons as mentioned above, non-fasting blood samples were taken from six participants. The serum cortisol samples were analyzed by an electro-chemiluminescence immunoassay on a Cobas analyzer (Roche Diagnostics,
Switzerland). All measurements were carried out by an accredited laboratory (Institute of Clinical Chemistry, Bern University Hospital).

Covariates
Covariates were selected a priori based on a literature search and theoretical considerations.

Sociodemographic factors
Information on age and gender was obtained from patients’ hospital charts. Patients were asked about their highest level of education by the study therapist at admission. A distinction was made between four different levels of education: 1: lower than apprenticeship or vocational school; 2: apprenticeship or vocational school; 3: high school graduation; 4: university graduation, including applied sciences (Bopp et al., 2003).

Medical history
At admission, patients were asked whether they had ever suffered from depression in the past. To assess previous posttraumatic experiences in patients’ lives with possible PTSD symptoms in the last three months before the MI-hospitalization, three questions from the Structured Clinical Interview for DSM-IV-PTSD (Wittchen and Fydrich, 1997) were asked at admission. Information was obtained from patients on experience of traumatic events before being admitted to hospital for acute coronary treatment for MI and if any, whether there had been moments of re-experiencing such events in nightmares, flashbacks or thoughts and if these moments had occurred in the last three months before hospitalization for MI. It has been shown that three “yes” answers to these questions correctly diagnosed 97% of PTSD cases (Franklin et al., 2002).

The German version of the four-item Jenkins Sleep Questionnaire (Jenkins et al., 1988) was used to evaluate the subjective sleep quality in four weeks prior to hospitalization for MI. Participants were asked about a) difficulties falling asleep; b) waking up at night; c) waking up at night with troubles falling asleep again and d) feeling tired after an usual amount of
sleep. Response options were: 0: not at all; 1: 1–3 days; 2: 4–7 days; 3: 8–14 days; 4: 15–21 days and 5: 22–28 days. For the analysis, the mean score of the four items (between 0 and 5) was calculated.

Objective indices of the MI severity

For evaluating the severity of MI, the Global Registry of Acute Coronary Event (GRACE) risk score was used (Fox et al., 2006). The GRACE risk score predicts the risk of death or MI within six months after admission for an ACS (Fox et al., 2006). The score includes the following variables: age, heart rate, systolic blood pressure, serum creatinine, elevated cardiac enzymes, Killip class, cardiac arrest and ST-segment deviation at admission (Fox et al., 2006). Another variable used to objectify the severity of the MI was the need for resuscitation at hospitalization (by cardioversion or mechanical).

Intervention

Since the MI-SPRINT trial aimed to investigate whether a trauma-focused counselling session prevents the development of an MI-induced PTSD, the type of intervention was also taken into account.

Statistical analysis

For the statistical analysis, IBM SPSS Statistics for Windows, Version 25.0 (IBM Corp., Armonk, NY) was used. The significance level was set at p<0.05 (two-tailed). Due to a number of missing values for the 12-month follow-up, we analyzed only the data of participants who completed the CAPS after 12 months (N=106) (Figure 2). The CAPS sum score at the three-month follow-up was not assessed in two of these 106 subjects. Cortisol values at admission were missing in three cases. Information about the highest level of education, history of depression and about sleep quality were missing in one case each. The GRACE risk score was not calculated for five patients. In eight participants, there was no
information about PTSD in the past. All these missing values were replaced by the expectation maximization algorithm (EM).

Normal distribution was tested with the Kolmogorov-Smirnov test. Group differences in cortisol levels were calculated using Student’s t-test and analysis of variance (ANOVA).

To approximate a normal distribution, CAPS sum scores from the three- and 12-month follow-up were square root transformed for the hierarchical regression analysis. Hierarchical regression analysis with the stepwise method was used to test for an independent contribution of cortisol levels at admission to the CAPS sum score of the three- and 12-month follow-up.

We defined the CAPS sum score of the three-month follow-up and of the 12-month follow-up as the dependent variable in two separate regression models. We added the variables to the model in three blocks. In a first step, we entered demographic variables (age and sex), the highest level of education and the variable intervention (i.e., trauma-focused or stress-focused counselling session). The second block consisted of objective indices of severity of MI (i.e., GRACE risk score and need of resuscitation), variables of the medical history (i.e., history of depression and history of PTSD) and sleep quality. Cortisol levels measured at admission were entered in the third step. Linearity and homoscedasticity were approved by means of scatter plots. Exclusion of autocorrelation was done by interpreting Durbin Watson statistics. We used variance inflation factor to check for the absence of multicollinearity. Cook’s distance gave no concern of influential outliers.

Results

Patient characteristics

Patient characteristics are summarized in Table 1. All patients were of Caucasian ethnicity.

Patients were predominantly male (83%), had a STEMI (69.8%) and had mid-to-high educational level; 25.5% had a history of depression.

Cortisol
Mean cortisol was 492.52 nmol/L (SD: 181.85). Cortisol was normal distributed (p=0.096).
Neither specific collection time (all p-values>0.05) nor fasting state (p=0.90) were associated
with serum cortisol levels. Likewise, the intake of glucocorticoids (n=3) was not associated
with cortisol levels (p=0.62).

Hierarchical regression analysis for CAPS sum score at three-month follow-up

Table 2 shows the results for the hierarchical regression analysis with the three models (1a-c).
In model 1a, none of the entered variables was significantly associated with the CAPS sum
score. In model 1b, the variable sleep quality (i.e., the mean score of the Jenkins Sleep
Questionnaire) significantly contributed to the outcome (B=0.392, p=0.004). In model 1c, age
(B=-0.043, p=0.040), level of education (B=-0.393, p=0.037) and again sleep quality
(B=0.418, p=0.002) were significantly related to the outcome. Additionally, cortisol levels
were significantly and inversely associated with the CAPS sum score (B=-0.002, p=0.042).
Cortisol explained 3.5% of the total variance after taking all covariates into account. The
model explained 14.8% of the variance in the CAPS sum score.

Hierarchical regression analysis for CAPS sum score at 12-month follow-up

Table 3 summarizes the results of the hierarchical regression analysis with the three models
(1a-c). Only gender was significantly associated with the outcome variable in model 1a.
Women scored significantly higher on the CAPS sum score than men (B=0.780, p=0.040). In
model 1b, the variable intervention (B=-0.688, p=0.018), history of depression (B=0.883,
p=0.009) and sleep quality (B=0.232, p=0.049) significantly contributed to the CAPS sum
score of 12-months follow-up. Participants from the verum group (i.e., those with a trauma-
focused counselling session) showed significantly higher posttraumatic stress symptoms at 12
months after MI than those in the control group. Patients who had a history of depression had
significantly higher CAPS sum scores than those without a history of depression. In the final
model (1c) age (B=-0.040, p=0.029), intervention (B=-0.713, p=0.013), history of depression
(B=0.980, p=0.004) and sleep quality (B=0.255, p=0.029) were significantly related with the outcome. Again, participants in the verum group and those with a history of depression showed a higher CAPS sum score. Cortisol was an independent predictor for the CAPS sum score in the final model 1c (B=-0.002, p=0.043), explaining 3.2% of the total variance of the CAPS sum score from 12-month follow-up after taking all covariates into account. The final model explained 20% of the variance in the CAPS sum score at 12 months.

Discussion

We found that serum cortisol levels measured in the close aftermath of MI were inversely and significantly associated with MI-induced PTSD symptoms measured three and 12 months later in patients at high-risk to develop PTSD. The total variance of the CAPS sum score explained by the final model in both hierarchical regression analyses was rather modest; furthermore, the independent contribution of cortisol to the CAPS sum scores three- and 12-months post-MI was also small. Nevertheless, this finding is a novelty in patients with ACS-induced PTSD symptoms and it concurs with observations in non-ACS populations.

Lower plasma cortisol in patients exposed to trauma at initial medical examination was predictive of PTSD symptoms six weeks and six months later, controlling for age, gender, injury, admission to intensive care unit, time of blood collection and trauma history (Mouthaan et al., 2014). Another study found lower salivary cortisol measured in the emergency room being predictive of higher PTSD symptom severity in motor vehicle accident survivors (Ehring et al., 2008). Similarly, salivary morning cortisol measured two days after hospital admission correlated inversely with PTSD symptoms six months later in patients with a traumatic accident (McFarlane et al., 2011).

A possible explanation of why decreased cortisol levels may facilitate the development of PTSD symptoms is through a reduced down-regulation of the sympathetic nervous system (SNS) (Yehuda, 2002b; Yehuda and LeDoux, 2007), which is known to have a regulatory
role in memory consolidation (McGaugh and Roozendaal, 2002). The reduced SNS containment due to decreased cortisol might lead to a stronger memory consolidation of the traumatic event resulting in intense distress feelings; these feelings might alter the perception of the trauma and therefore may delay further recovery (Yehuda, 2002b). Another theory of the memory-regulating role of glucocorticoids is that they may enhance memory consolidation of emotionally arousing experiences but later on also reduce memory retrieval after initial consolidation (de Quervain et al., 2009).

Moreover, there is evidence that hydrocortisone given after a traumatic event reduces the risk for the development of PTSD in patients with septic shock (Schelling et al., 2001) and of PTSD symptoms in patients with traumatic injury (Delahanty et al., 2013) or cardiac surgery (Schelling et al., 2004; Weis et al., 2006). Furthermore, a meta-analysis found hydrocortisone as being potentially effective in the prevention of PTSD development in adults with severe physical illness or injury (Astill Wright et al., 2019). Whether this is also a preventive option in the case of MI-induced PTSD has, to the best of our knowledge, not been investigated yet.

Outcome after corticosteroid therapy in MI patients is worth investigating further. According to a systematic meta-analysis, treatment of MI patients with corticosteroids is not harmful (Giugliano et al., 2003).

As MI-related PTSD symptoms are known to be associated with poorer cardiovascular outcome (Edmondson et al., 2011; Shemesh et al., 2004; Tsutsui et al., 2017; von Känel et al., 2011), it is highly desirable to have a preventive strategy at hand. Any reduction in MI-related PTSD would contribute not only to improved mental health, but also to a better cardiovascular outcome. As yet, this is only a theoretical assumption and further studies on serum cortisol levels in post-MI patients with PTSD symptoms are needed. It would also be useful to have a defined cortisol cut-off value that indicate a higher risk of developing PTSD, a task for future research.
Limitations

There are several limitations to this study. This study is a secondary data analysis of the MI-SPRINT RCT. The RCT was primarily designed to test a different hypothesis than the one tested in this study. It should be kept in mind that all participants got counselling. The generalizability of our findings is limited as the MI-SPRINT RCT included patients with high acute peri-traumatic distress and without an acute severe depressive episode. Furthermore, we sampled serum cortisol only once and collected no serial measurements with short intervals which would have yielded more reliable cortisol values given the pulsatile release of cortisol. Additionally, our study does not provide any information about the diurnal cortisol pattern, including awakening response and slope.

Moreover, a receiver operating characteristic curve would have been interesting to define a cortisol cut-off value that is associated with the development of a subsequent PTSD. However, this analysis was not possible in our study population as there was only one patient who fulfilled the criteria for a DSM-IV diagnosis of PTSD.

Finally, our study did not consider depressive and anxiety symptoms. It is known that post-MI patients are at high risk of depressive or anxiety disorders (Feng et al., 2016). Possible changes in the HPA-axis activity in patients with depression (Malhi and Mann, 2018) or anxiety disorder (Vreeburg et al., 2010) have been reported, so future studies should take this into account.

Conclusion

Taken together, the findings of this study suggest that lower serum cortisol levels measured during MI hospitalization are associated with more severe PTSD symptoms in post-MI patients three and 12 months after discharge from the CCU. These results may have implications for early identification of patients suffering from MI who are at risk for the
development of MI-induced PTSD symptoms. Cortisol levels can easily be measured in the clinical setting and therefore, further investigation of cortisol levels in patients with MI-induced PTSD symptoms seems worthwhile. Future studies need to identify a cortisol cut-off value defining patients at high risk for MI-induced PTSD symptoms. In addition, the findings of the present study suggest that investigation of patients’ cortisol levels as a possible target for intervention to prevent ACS-induced PTSD is warranted.

Conflict of Interest

The Authors declare that there is no conflict of interest.

Author Statement

Author contribution

Authors RvK, JPS, US, HZ and JB designed the MI-SPRINT trial and wrote the protocol. NS and MP designed the concept for the secondary data analysis for this study. REML and MP contributed to the acquisition of the data. Author NS managed the literature searches and analyses. Author NS undertook the statistical analysis, and author NS wrote the first draft of the manuscript. All authors contributed to and have approved the final manuscript.

Acknowledgements

The authors wish to thank for the financial support for the MI-SPRINT trial from the Swiss National Science Foundation and from the Teaching and Research Directorate, Bern University Hospital, Switzerland.

Funding

The MI-SPRINT trial was financially supported from the Swiss National Science Foundation to RvK (PI), JPS, US, HZ and JB (grant number 140960). Additional funding came from the Teaching and Research Directorate, Bern University Hospital, Switzerland.
References

American Psychiatric Association, 1994. Diagnostic and statistical manual of mental disorders: DSM-IV, 4th ed. American Psychiatric Association, Washington, DC.
American Psychiatric Association, 2013. Diagnostic and statistical manual of mental disorders: DSM-5, 5th ed. American Psychiatric Publishing, Arlington, VA.
Astill Wright, L., Sijbrandij, M., Sinnerton, R., Lewis, C., Roberts, N.P., Bisson, J.I., 2019. Pharmacological prevention and early treatment of post-traumatic stress disorder and acute stress disorder: a systematic review and meta-analysis. Transl Psychiatry 9, 334.
Blake, D.D., Weathers, F.W., Nagy, L.M., Kaloupek, D.G., Gusman, F.D., Charney, D.S., Keane, T.M., 1995. The development of a Clinician-Administered PTSD Scale. J Trauma Stress 8, 75-90.
Bonne, O., Brandes, D., Segman, R., Pitman, R.K., Yehuda, R., Shalev, A.Y., 2003. Prospective evaluation of plasma cortisol in recent trauma survivors with posttraumatic stress disorder. Psychiatry Res 119, 171-175.
Bopp, M., Minder, C.E., Cohort, S.N., 2003. Mortality by education in German speaking Switzerland, 1990-1997: results from the Swiss National Cohort. Int J Epidemiol 32, 346-354.
de Quervain, D.J., Aerni, A., Schelling, G., Roozendaal, B., 2009. Glucocorticoids and the regulation of memory in health and disease. Front Neuroendocrinol 30, 358-370.
Delahanty, D.L., Raimonde, A.J., Spoonster, E., 2000. Initial posttraumatic urinary cortisol levels predict subsequent PTSD symptoms in motor vehicle accident victims. Biol Psychiatry 48, 940-947.
Delahanty, D.L., Gabert-Quillen, C., Ostrowski, S.A., Nugent, N.R., Fischer, B., Morris, A., Pitman, R.K., Bon, J., Fallon, W., 2013. The efficacy of initial hydrocortisone administration at preventing posttraumatic distress in adult trauma patients: a randomized trial. CNS Spectr 18, 103-111.
Edmondson, D., Rieckmann, N., Shaffer, J.A., Schwartz, J.E., Burg, M.M., Davidson, K.W., Clemow, L., Shimbo, D., Kronish, I.M., 2011. Posttraumatic stress due to an acute coronary syndrome increases risk of 42-month major adverse cardiac events and all-cause mortality. J Psychiatr Res 45, 1621-1626.
Edmondson, D., Richardson, S., Falzon, L., Davidson, K.W., Mills, M.A., Neria, Y., 2012. Posttraumatic stress disorder prevalence and risk of recurrence in acute coronary syndrome patients: a meta-analytic review. PLoS One 7, e38915.
Ehring, T., Ehlers, A., Cleare, A.J., Glucksman, E., 2008. Do acute psychological and psychobiological responses to trauma predict subsequent symptom severities of PTSD and depression? Psychiatry Res 161, 67-75.
Feng, H.P., Chien, W.C., Cheng, W.T., Chung, C.H., Cheng, S.M., Tzeng, W.C., 2016. Risk of anxiety and depressive disorders in patients with myocardial infarction: A nationwide population-based cohort study. Medicine (Baltimore) 95, e4464.
Fox, K.A., Dabbous, O.H., Goldberg, R.J., Pieper, K.S., Eagle, K.A., Van de Werf, F., Avezum, A., Goodman, S.G., Flather, M.D., Anderson, F.A., Granger, C.B., 2006. Prediction of risk of death and myocardial infarction in the six months after presentation with acute coronary syndrome: prospective multinational observational study (GRACE). BMJ 333, 1091.
Franklin, C.L., Sheeran, T., Zimmerman, M., 2002. Screening for trauma histories, posttraumatic stress disorder (PTSD), and subthreshold PTSD in psychiatric outpatients. Psychol Assess 14, 467-471.

Giugliano, G.R., Giugliano, R.P., Gibson, C.M., Kuntz, R.E., 2003. Meta-analysis of corticosteroid treatment in acute myocardial infarction. Am J Cardiol 91, 1055-1059.

Jenkins, C.D., Stanton, B.A., Niemcryk, S.J., Rose, R.M., 1988. A scale for the estimation of sleep problems in clinical research. J Clin Epidemiol 41, 313-321.

Klaassens, E.R., Giltay, E.J., Cuijpers, P., van Veen, T., Zitman, F.G., 2012. Adulthood trauma and HPA-axis functioning in healthy subjects and PTSD patients: a meta-analysis. Psychoneuroendocrinology 37, 317-331.

Malhi, G.S., Mann, J.J., 2018. Depression. Lancet 392, 2299-2312.

McFarlane, A.C., Barton, C.A., Yehuda, R., Wittert, G., 2011. Cortisol response to acute trauma and risk of posttraumatic stress disorder. Psychoneuroendocrinology 36, 720-727.

McGaugh, J.L., Roozenendaal, B., 2002. Role of adrenal stress hormones in forming lasting memories in the brain. Curr Opin Neurobiol 12, 205-210.

Meewisse, M.L., Reitsma, J.B., de Vries, G.J., Gersons, B.P., Olff, M., 2007. Cortisol and post-traumatic stress disorder in adults: systematic review and meta-analysis. Br J Psychiatry 191, 387-392.

Meister, R., Princip, M., Schmid, J.P., Schnyder, U., Barth, J., Znoj, H., Herbert, C., von Känel, R., 2013. Myocardial Infarction - Stress PRevention INTervention (MI-SPRINT) to reduce the incidence of posttraumatic stress after acute myocardial infarction through trauma-focused psychological counseling: study protocol for a randomized controlled trial. Trials 14, 329.

Mouthaan, J., Sijbrandij, M., Luitse, J.S., Goslings, J.C., Gersons, B.P., Olff, M., 2014. The role of acute cortisol and DHEAS in predicting acute and chronic PTSD symptoms. Psychoneuroendocrinology 45, 179-186.

Pan, X., Wang, Z., Wu, X., Wen, S.W., Liu, A., 2018. Salivary cortisol in post-traumatic stress disorder: a systematic review and meta-analysis. BMC Psychiatry 18, 324.

Roth, G.A., Johnson, C., Abajobir, A., Abd-Allah, F., Ahera, S.F., Abyu, G., Ahmed, M., Aksut, B., Alam, T., Alam, K., Alli, F., Alvis-Guzman, N., Amrock, S., Ansari, H., Ärnlöv, J., Asayesh, H., Atey, T.M., Avila-Burgos, L., Awasthi, A., Banerjee, A., Barac, A., Bärnighausen, T., Barroga, L., Bedi, N., Belay Ketema, E., Bennett, D., Berhe, G., Bhutta, Z., Bitew, S., Carapeti, J., Carrero, J.J., Malta, D.C., Castañeda-Orjuela, C.A., Castillo-Rivas, J., Catalá-López, F., Choi, J.Y., Christensen, H., Cirillo, M., Cooper, L., Criqui, M., Cundiff, D., Damasceno, A., Dandon, L., Dandon, R., Davletov, K., Dharmaratne, S., Dorairaj, P., Dubey, M., Ehrenkranz, R., El Sayed Zaki, M., Faraon, E.J.A., Esteghamati, A., Farid, T., Farvid, M., Feigin, V., Ding, E.L., Fowkes, G., Gebrehiwot, T., Gillum, R., Gold, A., Gona, P., Gupta, R., Habtewold, T.D., Hafezi-Nejad, N., Hailu, T., Hailu, G.B., Hankey, G., Hassen, H.Y., Abate, K.H., Haverkolder, R., Hay, S.I., Horino, M., Hotez, P.J., Jacobsen, K., James, S., Javanbakht, M., Jeemon, P., John, D., Jonas, J., Kalkonde, Y., Karimkhani, C., Kasaeian, A., Khader, Y., Khan, A., Khang, Y.H., Khera, S., Khoja, A.T., Khubchandani, J., Kim, D., Kolte, D., Kosen, S., Krohn, K.J., Kumar, G.A., Kwan, G.F., Lal, D.K., Larsson, A., Linn, S., Lopez, A., Lotufo, P.A., El Razek, H.M.A., Malekzadeh, R., Mazidi, M., Meier, T., Meles, K.G., Mensah, G., Meretoja, A., Mezgebe, H., Miller, T., Mirrakhimov, E., Mohammed, S., Moran, A.E., Musa, K.I., Narula, J., Neal, B., Ngalesoni, F., Nguyen, G., Obermeyer, C.M., Owolabi, M., Patton, G., Pedro, J., Qato, D., Qorbani, M., Rahimi, K., Rai, R.K., Rawaf, S., Ribeiro, A., Safiri, S., Salomon, J.A., Santos, I., Santric Milicevic, M., Sartorius, B., Schutte, A., Sepanlou, S., Shaikh, M.A., Shin, M.J., Shishehbor, M., Shore, H., Silva, D.A.S., Sobngwi, E., Stranges, S., Swaminathan, S., Tabarakés-Seisdedos, R., Tadele Atnafu, N., Tesfay, F., Thakur, J.S., Thrift, A., Topor-Madry, R., Truelsen, T., Tyrovolas, S.,...
Ukwaja, K.N., Uthman, O., Vasankari, T., Vlassov, V., Vollset, S.E., Wakayo, T., Watkins, D., Weintraub, R., Werdecker, A., Westerman, R., Wiysonge, C.S., Wolfe, C., Workicho, A., Xu, G., Yano, Y., Yip, P., Yonemoto, N., Younis, M., Yu, C., Vos, T., Naghavi, M., Murray, C., 2017. Global, Regional, and National Burden of Cardiovascular Diseases for 10 Causes, 1990 to 2015. J Am Coll Cardiol 70, 1-25.

Schelling, G., Briegel, J., Roozendaal, B., Stoll, C., Rothenhäusler, H.B., Kapfhammer, H.P., 2001. The effect of stress doses of hydrocortisone during septic shock on posttraumatic stress disorder in survivors. Biol Psychiatry 50, 978-985.

Schelling, G., Kilger, E., Roozendaal, B., de Quervain, D.J., Briegel, J., Dagge, A., Rothenhäusler, H.B., Krauseneck, T., Nollert, G., Kapfhammer, H.P., 2004. Stress doses of hydrocortisone, traumatic memories, and symptoms of posttraumatic stress disorder in patients after cardiac surgery: a randomized study. Biol Psychiatry 55, 627-633.

Schnyder, U., Moergeli, H., 2002. German version of Clinician-Administered PTSD Scale. J Trauma Stress 15, 487-492.

Schumacher, S., Niemeyer, H., Engel, S., Cwik, J.C., Laufer, S., Klusmann, H., Knaevelsrud, C., 2019. HPA axis regulation in posttraumatic stress disorder: A meta-analysis focusing on potential moderators. Neurosci Biobehav Rev 100, 35-57.

Shalev, A.Y., Videlock, E.J., Peleg, T., Segman, R., Pitman, R.K., Yehuda, R., 2008. Stress hormones and post-traumatic stress disorder in civilian trauma victims: a longitudinal study. Part I: HPA axis responses. Int J Neuropsychopharmacol 11, 365-372.

Shemesh, E., Yehuda, R., Milo, O., Dinur, I., Rudnick, A., Vered, Z., Cotter, G., 2004. Posttraumatic stress, nonadherence, and adverse outcome in survivors of a myocardial infarction. Psychosom Med 66, 521-526.

Tsuetsui, T., Tanaka, H., Nishida, A., Asukai, N., 2017. Posttraumatic stress symptoms as predictive of prognosis after acute coronary syndrome. Gen Hosp Psychiatry 45, 56-61.

Vilchinsky, N., Ginzburg, K., Fait, K., Foa, E.B., 2017. Cardiac-disease-induced PTSD (CDI-PTSD): A systematic review. Clin Psychol Rev 55, 92-106.

von Känel, R., Schmid, J.P., Abbas, C.C., Gander, M.L., Saner, H., Begré, S., 2010. Stress hormones in patients with posttraumatic stress disorder caused by myocardial infarction and role of comorbid depression. J Affect Disord 121, 73-79.

von Känel, R., Hari, R., Schmid, J.P., Wiedemar, L., Guler, E., Barth, J., Saner, H., Schnyder, U., Begré, S., 2011. Non-fatal cardiovascular outcome in patients with posttraumatic stress symptoms caused by myocardial infarction. J Cardiol 58, 61-68.

von Känel, R., Barth, J., Princip, M., Meister-Langraf, R.E., Schmid, J.P., Znoj, H., Herbert, C., Schnyder, U., 2018. Early Psychological Counseling for the Prevention of Posttraumatic Stress Induced by Acute Coronary Syndrome: The MI-SPRINT Randomized Controlled Trial. Psychother Psychosom 87, 75-84.

Vreeburg, S.A., Zitman, F.G., van Pelt, J., Derijk, R.H., Verhagen, J.C., van Dyck, R., Hoogendijk, W.J., Smit, J.H., Penninx, B.W., 2010. Salivary cortisol levels in persons with and without different anxiety disorders. Psychosom Med 72, 340-347.

Weis, F., Kilger, E., Roozendaal, B., de Quervain, D.J., Lamm, P., Schmidt, M., Schmölz, M., Briegel, J., Schelling, G., 2006. Stress doses of hydrocortisone reduce chronic stress symptoms and improve health-related quality of life in high-risk patients after cardiac surgery: a randomized study. J Thorac Cardiovasc Surg 131, 277-282.

Whitehead, D.L., Strike, P., Perkins-Porras, L., Steptoe, A., 2005. Frequency of distress and fear of dying during acute coronary syndromes and consequences for adaptation. Am J Cardiol 96, 1512-1516.

Wittchen, H.-U., Fydrich, T., 1997. Strukturiertes Klinisches Interview für DSM-IV (SKID-I und SKID-II). Hogrefe Verlag, Göttingen.
Yehuda, R., 2002a. Current status of cortisol findings in post-traumatic stress disorder. Psychiatr Clin North Am 25, 341-368, vii.
Yehuda, R., 2002b. Post-traumatic stress disorder. N Engl J Med 346, 108-114.
Yehuda, R., LeDoux, J., 2007. Response variation following trauma: a translational neuroscience approach to understanding PTSD. Neuron 56, 19-32.

Table 1
Characteristics of Study Participants (N=106)

Characteristics	Mean ± Standard Deviation	n (%)
Age, years	59.7±9.9	
Male gender		88 (83)
Intervention		
--------------	------------------	------------------
Verum	59 (55.7)	
Control	47 (44.3)	

Highest level of education	
lower than apprenticeship or vocational school	11 (10.4)
apprenticeship or vocational school	76 (71.7)
high school graduation	3 (2.8)
university graduation, including applied sciences	16 (15.1)

Myocardial infarction	
STEMI	74 (69.8)
Non-STEMI	32 (30.2)

GRACE score	104.2±25.8
Need for resuscitation	7 (6.6)
Cardioversion	7 (6.6)
Mechanical	0 (0)

History of depression	27 (25.5)

History of PTSD	7 (6.6)

Mean score in the Jenkins Sleep Questionnaire	1.49±1.22
CAPS sum score	11.34±11.22
3-month follow-up	9.44±8.67
Cortisol, nmol/L	492.52±181.85

Verum, study group with trauma-focused counselling; Control, study group with psychological stress counselling; STEMI, ST-Elevation Myocardial Infarction; GRACE, Global Registry of Acute Coronary Events; PTSD, posttraumatic stress disorder; CAPS, Clinician-Administered PTSD Scale. Continuous variables are given as mean values with standard deviation.
Table 2
Hierarchical regression analysis with the Clinician-Administered PTSD Scale sum score at three-month follow-up as outcome variable

Statistics of the Entire Model	Entered Variables	B	S.E.	β	p	r^2
Model 1a	Gender	0.169	0.428	0.038	0.695	0.001
(F_{4,101}=1.378, p=0.247, adjusted R^2=0.014)	Age	-0.022	0.016	-0.130	0.183	0.017
	Education level	-0.364	0.197	-0.182	0.068	0.032
	Intervention	-0.283	0.329	-0.085	0.391	0.007
Model 1b	Gender	-0.142	0.453	-0.032	0.744	0.001
(F_{9,96}=2.577, p=0.011, adjusted R^2=0.119)	Age	-0.037	0.021	-0.221	0.078	0.027
	Education level	-0.356	0.188	-0.178	0.061	0.030
	Intervention	-0.409	0.324	-0.123	0.211	0.013
	GRACE score	0.009	0.008	0.141	0.265	0.011
	Need for resuscitation	-0.183	0.636	-0.027	0.774	0.001
	History of depression	0.604	0.378	0.159	0.113	0.021
Table 3

Hierarchical regression analysis with the Clinician-Administered PTSD Scale sum score of 12-month follow-up as outcome variable

Statistics of the Entire Model	Entered Variables	B	S.E.	β	p	r²
Model 1a	Gender	0.780	0.375	0.196	0.040	0.038
(F₄,₁₀₁=3.112, p=0.018,	Age	-0.030	0.014	-0.199	0.036	0.040
adjusted R²=0.074)	Education level	-0.105	0.173	-0.058	0.545	0.003
	Intervention	-0.515	0.288	-0.171	0.077	0.028
Model 1b	Gender	0.435	0.382	0.109	0.258	0.010
(F₉,₉₆=3.357, p=0.001,	Age	-0.035	0.018	-0.231	0.058	0.029
adjusted R²=0.168)	Education level	-0.118	0.165	-0.065	0.478	0.004
	Intervention	-0.688	0.285	-0.228	0.018	0.046
	GRACE score	0.003	0.007	0.052	0.671	0.001
	Need for resuscitation	0.613	0.559	0.102	0.275	0.010
	History of depression	0.883	0.332	0.257	0.009	0.056
	History of PTSD	0.160	0.565	0.026	0.778	0.001
	Sleep quality	0.232	0.116	0.188	0.049	0.032
Model 1c	Gender	0.264	0.385	0.066	0.494	0.004

GRACE, Global Registry of Acute Coronary Events; PTSD, posttraumatic stress disorder.
Data are given as unstandardized coefficient B with Standard Error (S.E.) and β, standardized β coefficient; predictor variables were entered in three blocks (models a-c).
(F_{10, 95}=3.545, p=0.001, adjusted $R^2=0.195$)

Predictor Variable	B	S.E.	β	S.E.
Age	-0.040	0.018	0.029	0.038
Education level	-0.150	0.163	0.026	0.361
Intervention	-0.713	0.281	0.013	0.049
GRACE score	0.005	0.007	0.004	0.004
Need for resuscitation	0.458	0.555	0.015	0.005
History of depression	0.980	0.330	0.004	0.008
History of PTSD	-0.112	0.571	0.019	0.844
Sleep quality	0.255	0.115	0.029	0.038
Cortisol	-0.002	0.001	0.043	0.032

GRACE, Global Registry of Acute Coronary Events; PTSD, posttraumatic stress disorder.

Data are given as unstandardized coefficient B with Standard Error (S.E.) and β, standardized β coefficient; predictor variables were entered in three blocks (models a-c).

Figure 1

Illustration of the different study measuring times
Figure 2

Flow diagram for the included study participants (N=106)
Assessed for eligibility (n=1,758)
 • Immediate transfer / discharge (n=556)
 • Insufficient German knowledge (n=367)
 • Not interested to participate (n=266)
 • Unstable circulatory condition (n=51)
 • Emergency coronary bypass surgery (n=37)
 • Severe comorbid disease (n=31)
 • Current severe depression (n=5)
 • Deceased (n=1)

Excluded (n=1,048)
 • Cognitive impairment / disoriented (n=138)
 • Peritraumatic distress too low (n=59)
 • Acute MI > 48 h ago (n=32)
 • Other reasons (e.g. no glasses, tourist) (n=22)
 • Participation in another trial (n=3)

Provided informed consent (n=444)
 • Excluded (n=254)
 • Cognitive impairment / disoriented (n=138)
 • Peritraumatic distress too low (n=59)
 • Acute MI > 48 h ago (n=32)
 • Other reasons (e.g. no glasses, tourist) (n=22)
 • Participation in another trial (n=3)

Randomized (n=190)

Allocation

Allocated to trauma-focused counseling (n=97)
 • Received allocated intervention (n=97)

Allocated to stress counseling (n=93)
 • Received allocated intervention (n=93)

3-month follow-up

3-month follow-up completed (n=80)
 • Lost to follow-up (n=17)
 • Could not be reached (n=9)
 • Declined to participate (n=5)
 • Deceased (n=3)

3-month follow-up completed (n=74)
 • Lost to follow-up (n=19)
 • Could not be reached (n=8)
 • Declined to participate (n=6)
 • Deceased (n=4)
 • Physical condition too bad (n=1)

12-month follow-up

12-month follow-up completed (n=59)
 • Lost to follow-up (n=22)
 • Not recruited due to low funding (n=17)
 • Could not be reached (n=4)
 • Physical condition too bad (n=1)

12-month follow-up completed (n=47)
 • Lost to follow-up (n=28)
 • Not recruited due to low funding (n=22)
 • Could not be reached (n=4)
 • Declined to participate (n=2)

Analysis

Analyzed (n=59)
 • Completed 12-month follow-up only (n=1)

Analyzed (n=47)
 • Completed 12-month follow-up only (n=1)
