Impact of Balance Training and Co-ordination Exercises in Post-Operative Left Cerebellopontine Angle Tumor: A Case Report

Aditi Akhuj *#, Snehal Samal †*, Rakesh Krishna Kovela ‡, Ragini Dagal ‡* and Rebecca Thimoty ‡*

*Ravi Nair Physiotherapy College, Datta Meghe Institute of Medical Sciences, Wardha, Maharashtra, India.

Department of Neuro Physiotherapy, Ravi Nair Physiotherapy College, Datta Meghe Institute of Medical Sciences, Wardha, Maharashtra, India.

Department of Neuro Physiotherapy, Ravi Nair Physiotherapy College, Datta Meghe Institute of Medical Sciences, Sawangi, Meghe, Wardha, Maharashtra, India.

Authors’ contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JPRI/2021/v33i57A34014

Open Peer Review History:
This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/76695

Received 15 September 2021
Accepted 23 November 2021
Published 14 December 2021

ABSTRACT

Introduction: Acoustic neuromas are most common tumors of CP angle, accounting more than 90% of all such tumors. Meningioma, primary cholesteratoma and facial nerve schwannoma are the different type of tumors. Acoustic neuroma is a benign tumor situates in CP angle which has a fibrous growth and originates from the division of vestibulochchlear nerve.

Aim: Impact of Balance Training and Co-ordination Exercises in Post-Operative Left Cerebellopontine Angle Tumor

Case Presentation: A 40 year old male with right hand dominance was referred to physiotherapy department. On examination he presented mild impairment in balance and co-ordination, assisted walking.

*Corresponding author: E-mail: snehalsamal11@rediffmail.com;
Discussion: This case report is an important to the published literature on rehabilitation of a patient with a CPA tumor, as it presents the sequential management in the patients post CPA tumor.

Conclusion: Acoustic neuroma is most common CPA tumor. Management of CPA tumor is important to improve quality of life. As per the reference articles and the exercises planned can progressively improve balance and co-ordination of patients.

Keywords: CP angle tumor; sensorineural hearing loss; tinnitus; physiotherapy; case report.

1. INTRODUCTION

The cerebellopontine (CP) angle is formed anterolateral by the posterior aspect of the petrous temporal bone, posteromedial by the cerebellum and pons [1]. Various types of CP angle tumors include epidermoids, meningiomas, metastases, acoustic neuroma and neurinomas of the jugular foramen [2]. The bulk of these tumors (about 80%) are acoustic neurinomas [2].

A benign tumor of eighth cranial nerve is known as an acoustic neuroma (AN) (VIII). Vestibular schwannoma, or more precisely vestibulocochlear schwannoma, is a benign tumor of the inner ear [3]. Physicians are conscious of the fact that lesions of the cerebello-pontine angle, particularly in acoustic neuromas, can cause a rapid loss of hearing [4]. Hearing loss caused by a CPA mass is thought to be caused by one or more of the following theories: 1. Pressure on the 8th nerve; 2. Inner ear vascular compromise; 3. Biochemical changes [4]. Tinnitus is termed as an auditory perception of sound though it is absent or the surrounding is quiet [5,6]. Thus, this may be lead to hearing loss [5,7]. It is a rather common condition, with prevalence ranging from 7 to 20% [8]. Acoustic neuroma should be suspected if you have unilateral hearing loss and tinnitus [9].

2. PATIENT INFORMATION

A 40-year-old right-handed man, presented with complaint of weakness of left upper and lower extremity for 2-3 months; difficulty in swallowing; reduced hearing since October 2018 (since 3 yrs) from left ear, unable to hear whispers gradually progressive in nature; left ear ringing sensation since 3 yrs low pitched, on and off in nature; giddiness since 3 yrs on and off in nature, lasting for 10 minutes, not associated with positional changes. Patient had initially visited local practitioners and was managed conservatively then visited a private hospital and was advised surgical management. Patient was admitted to AVBRH on 28 September 2021. On 10th October 2021 patient underwent under app under a temporary transorrhaphy of left eye performed under local anesthesia in supine position. Patient had a history of alcohol intake since 17 yrs, last intake 7 months ago and khara chewing since 15 yrs. No family history.

3. CLINICAL FINDINGS

The patient was examined after taking the consent. Patient was conscious, oriented to time, place, and person, was cooperative and could follow commands. On examination he presented mild impairment in balance and co-ordination, and walked with support. Motor examination showed normal muscle tone, intact sensations, and normal ROM. His score on MMSE was 26.

His deep tendon reflexes were exaggerated.

Cranial nerves	Findings
Optic nerve	Loss of vision on left side
Facial nerve	No facial expressions on left side
	No frowning because of clips attached to left eye
	Mouth deviation to right side
Vestibulocochlear nerve	Hearing loss on left side

4. THERAPEUTIC INTERVENTIONS

The physiotherapy interventions focused on cerebellar impairments and a limitation of activity [10]

The most frequently used physiotherapy interventions are Proprioceptive Neuromuscular facilitation exercises, Frenkel’s exercises, the equilibrium exercises for balance and exercises for improving static and dynamic balance in standing [10].
Conservative physiotherapy exercise programme 3 days each week over a period of four weeks [10].

Physical therapy exercises started with individual leg movements in the sitting position, progressed to static and dynamic standing balancing activity, as well as assisted walking with minimal support [11-13].

All the above mentioned exercises are done with task oriented exercises for 35-45 minutes along with ergonomic exercises [14].

5. FOLLOW-UP AND OUTCOMES

There was an improvement in the Berg balance scale score, DGI Score, and the WHO-QOL post-rehabilitation.

6. RESULTS

Early rehabilitation for patients with operated case of CP angle tumor proves beneficial in improving balance and co-ordination. He is under regular follow-up and rehabilitation in our department.

7. DISCUSSION

CPA tumours accounts for 5-10% of all intracranial tumours. The majority of CPA tumours are benign, with vestibular schwannomas accounting for over 80% of all tumours [15]. After diagnosing of CP angle tumour early treatment should be started as delayed treatment can result in poor outcome [16]. In the study researchers found that there were slightly more male dominance and a mean age of 56 years [17]. Early rehabilitation in CPA tumours includes balance and coordination training. This review showed some evidence that physiotherapy can help persons with cerebellar impairment improve their gait, and activity limitations. Many researchers have shown that central vestibular disorders prove improvement in balance [10]. In this patient we gave balance exercises, gait training, and Frenkle’s exercises which proved to be beneficial.

8. CONCLUSION

Acoustic neuroma is most common CPA tumor. Management of CPA tumor is important to improve quality of life. As per reference articles and the exercises planned can progressively improve balance and co-ordination of patient. Physiotherapy plays important role in managing balance training in CPA tumor patients.

CONSENT

A proper informed consent was taken from the patient prior.

ETHICAL APPROVAL

As per international standard or university standard written ethical approval has been collected and preserved by the author(s).

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Zamani AA. Cerebellopontine angle tumors: Role of magnetic resonance imaging. Top Magn Reson Imaging. 2000 Apr;11(2):98–107.
2. Vellutini EAS, Cruz OLM, Velasco OP, Miniti A, Almeida GM. Reversible hearing loss from cerebellopontine angle tumors. Neurosurgery. 1991 Feb 1;28(2):310–3.
3. Roos DE, Patel SG, Potter AE, Zacest AC. When is an acoustic neuroma not an acoustic neuroma? Pitfalls for radiosurgeons. J Med Imaging Radiat Oncol. 2015 Aug;59(4):474–9.
4. Pensak ML, Glasscock ME, Josey AF, Jackson CG, Gulya AJ. Sudden hearing loss and cerebellopontine angle tumors: The Laryngoscope. 1985 Oct;95(10):1188–1193.
5. Gal TJ, Shinn J, Huang B. Current epidemiology and management trends in acoustic neuroma. Otolaryngol Neck Surg. 2010;142(5):677–81.
6. Ho SY, Kveton JF. Acoustic neuroma: assessment and management. Otolaryngol Clin North Am. 2002;35(2):393–404.
7. Hanabuska K, Morikawa A, Murata T, Taki W. Acoustic neuroma with malignant transformation: Case report. J Neurosurg. 2001;95(3):518–21.
8. Boyen K, de Kleine E, van Dijk P, Langers DRM. Tinnitus-related dissociation between cortical and subcortical neural activity in humans with mild to moderate
sensorineural hearing loss. Hear Res. 2014 Jun 1;312:48–59.

9. Crummer RW, Hassan G. Diagnostic approach to tinnitus. Am Fam Physician. 2004 Jan 1;69(1):120–6.

10. Physiotherapy Approaches in the Treatment of Ataxic Multiple Sclerosis: A pilot study - Kadriye Armutlu, Rana Karabudak, Gülay Nurlu, 2001 [Internet]. [cited 2021 Oct 22]. Available: https://journals.sagepub.com/doi/abs/10.1177/154596830101500308

11. Tallan EM, Harner SG, Beatty CW, Scheithauer BW, Parisi JE. Does the distribution of Schwann cells correlate with the observed occurrence of acoustic neuromas? Am J Otol. 1993;14(2):131–4.

12. Martin CL, Tan D, Bragge P, Bialocerkowski A. Effectiveness of physiotherapy for adults with cerebellar dysfunction: a systematic review. Clin Rehabil. 2009;23(1):15–26.

13. Leong MS. Clinical review: Acoustic neuroma.

14. Gill-Body KM, Popat RA, Parker SW, Krebs DE. Rehabilitation of balance in two patients with cerebellar dysfunction. Phys Ther. 1997 May 1;77(5):534–52.

15. Patibandla MR, Panigrahi MK, Gurram PL, Thotakura AK, Kulkarni D. Morphometric analysis of posterior fossa in Indian CP angle acoustic schwannoma patients. Asian J Neurosurg. 2016;11(3):255–60.

16. Lak AM, Khan YS. Cerebellopontine angle cancer. StatPearls Internet; 2021.

17. Woodruff JM, Selig AM, Crowley K, Allen PW. Schwannoma (neurilemoma) with malignant transformation. A rare, distinctive peripheral nerve tumor. Am J Surg Pathol. 1994;18(9):882–95.

© 2021 Akhuj et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
https://www.sdiarticle5.com/review-history/76695