POSSIBLE INDICES FOR THE GALOIS IMAGE OF ELLIPTIC CURVES
OVER \(\mathbb{Q} \)

DAVID ZYWINA

Abstract. For a non-CM elliptic curve \(E/\mathbb{Q} \), the Galois action on its torsion points can be expressed in terms of a Galois representation \(\rho_E: \text{Gal}_\mathbb{Q} \to \text{GL}_2(\hat{\mathbb{Z}}) \). A well-known theorem of Serre says that the image of \(\rho_E \) is open and hence has finite index in \(\text{GL}_2(\mathbb{Z}) \). We will study what indices are possible assuming that we are willing to exclude a finite number of possible \(j \)-invariants from consideration. For example, we will show that there is a finite set \(J \) of rational numbers such that if \(E/\mathbb{Q} \) is a non-CM elliptic curve with \(j \)-invariant not in \(J \) and with surjective mod \(\ell \) representations for all \(\ell > 37 \) (which conjecturally always holds), then the index \([\text{GL}_2(\hat{\mathbb{Z}}): \rho_E(\text{Gal}_\mathbb{Q})]\) lies in the set
\[
I = \{ 2, 4, 6, 8, 10, 12, 16, 20, 24, 30, 32, 36, 40, 48, 54, 60, 72, 84, 108, 112, 120, 144, 192, 220, 240, 288, 336, 360, 384, 504, 576, 768, 864, 1152, 1200, 1296, 1536 \}.
\]
Moreover, \(I \) is the minimal set with this property.

1. Introduction

1.1. Main results. Let \(E \) be an elliptic curve defined over \(\mathbb{Q} \). For each integer \(N > 1 \), let \(E[N] \) be the \(N \)-torsion subgroup of \(E(\overline{\mathbb{Q}}) \). The group \(E[N] \) is a free \(\mathbb{Z}/N\mathbb{Z} \)-module of rank 2 and has natural action of the absolute Galois group \(\text{Gal}_\mathbb{Q} := \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \). This Galois action on \(E[N] \) may be expressed in terms of a Galois representation
\[
\rho_{E,N}: \text{Gal}_\mathbb{Q} \to \text{Aut}_{\mathbb{Z}/N\mathbb{Z}}(E[N]) \cong \text{GL}_2(\mathbb{Z}/N\mathbb{Z});
\]
it is uniquely determined up to conjugacy by an element of \(\text{GL}_2(\mathbb{Z}/N\mathbb{Z}) \). By choosing bases compatibly for all \(N \), we may combine the representations \(\rho_{E,N} \) to obtain a single Galois representation
\[
\rho_E: \text{Gal}_\mathbb{Q} \to \text{GL}_2(\hat{\mathbb{Z}})
\]
that describes the Galois action on all the torsion points of \(E \), where \(\hat{\mathbb{Z}} \) is the profinite completion of \(\mathbb{Z} \). If \(E \) is non-CM, then the following theorem of Serre [Ser72] says that the image is, up to finite index, as large as possible.

Theorem 1.1 (Serre). If \(E/\mathbb{Q} \) is a non-CM elliptic curve, then \(\rho_E(\text{Gal}_\mathbb{Q}) \) has finite index in \(\text{GL}_2(\hat{\mathbb{Z}}) \).

Serre’s theorem is qualitative, and it natural to ask what the possible values for the index \([\text{GL}_2(\hat{\mathbb{Z}}): \rho_E(\text{Gal}_\mathbb{Q})]\) are. Our theorems address this question assuming that we are willing to exclude a finite number of exceptional \(j \)-invariants from consideration; we will see later that the index \([\text{GL}_2(\hat{\mathbb{Z}}): \rho_E(\text{Gal}_\mathbb{Q})]\) depends only on the \(j \)-invariant \(j_E \) of \(E \).

The most difficult part of Serre’s proof of Theorem 1.1 is to show that there is an integer \(c_E \) such that \(\rho_{E,\ell}(\text{Gal}_\mathbb{Q}) = \text{GL}_2(\mathbb{Z}/\ell\mathbb{Z}) \) for all \(\ell > c_E \). In [Ser72, §4.3], Serre asks whether one can choose \(c_E \) independent of the elliptic curve (moreover, he asked whether this holds with \(c_E = 37 \) [Ser81, p. 399]). We formulate this as a conjecture.

2020 Mathematics Subject Classification. Primary 11G05; Secondary 11F80.
Conjecture 1.2. There is an absolute constant \(c \) such that for every non-CM elliptic curve \(E \) over \(\mathbb{Q} \), we have \(\rho_{E,\ell}(\text{Gal}_{\mathbb{Q}}) = \text{GL}_2(\mathbb{Z}/\ell\mathbb{Z}) \) for all \(\ell > c \).

Define the set
\[
I := \left\{ 2, 4, 6, 8, 10, 12, 16, 20, 24, 30, 32, 36, 40, 48, 54, 60, 72, 84, 96, 108, 112, 120, 144, \right. \\
\left. 192, 220, 240, 288, 336, 360, 384, 504, 576, 768, 864, 1152, 1200, 1296, 1536 \right\}.
\]

Theorem 1.3. Fix an integer \(c \). There is a finite set \(J \), depending only on \(c \), such that if \(E/\mathbb{Q} \) is an elliptic curve with \(j_E \notin J \) and \(\rho_{E,\ell} \) surjective for all primes \(\ell > c \), then \([\text{GL}_2(\hat{\mathbb{Z}}) : \rho_{E}(\text{Gal}_{\mathbb{Q}})] \) is an element of \(I \).

Assuming Conjecture 1.2, we can describe all possible indices \([\text{GL}_2(\hat{\mathbb{Z}}) : \rho_{E}(\text{Gal}_{\mathbb{Q}})] \) after first excluding elliptic curves with a finite number of exceptional \(j \)-invariants.

Theorem 1.4. Conjecture 1.2 holds if and only if there exists a finite set \(J \subseteq \mathbb{Q} \) such that
\[
[\text{GL}_2(\hat{\mathbb{Z}}) : \rho_{E}(\text{Gal}_{\mathbb{Q}})] \in I
\]
for every elliptic curve \(E \) over \(\mathbb{Q} \) with \(j_E \notin J \).

For each integer \(n \geq 1 \), let \(J_n \) be the set of \(j \in \mathbb{Q} \) that occur as the \(j \)-invariant of some elliptic curve \(E \) over \(\mathbb{Q} \) with \([\text{GL}_2(\hat{\mathbb{Z}}) : \rho_{E}(\text{Gal}_{\mathbb{Q}})] = n \). The following theorem shows that in Theorems 1.3 and 1.4, we cannot replace \(I \) by a smaller set.

Theorem 1.5. For any integer \(n \geq 1 \), the set \(J_n \) is infinite if and only if \(n \in I \).

Remark 1.6.

(i) Assuming Conjecture 1.2, Theorem 1.4 and Serre’s theorem implies that there is an absolute constant \(C \) such that \([\text{GL}_2(\hat{\mathbb{Z}}) : \rho_{E}(\text{Gal}_{\mathbb{Q}})] \leq C \) for all non-CM elliptic curves \(E \) over \(\mathbb{Q} \).

(ii) The set \(J \) in Theorem 1.4 contains more than the thirteen \(j \)-invariants coming from those elliptic curves over \(\mathbb{Q} \) with complex multiplication. For example, the set \(J \) contains \(-7 \cdot 11^3\) and \(-7 \cdot 17^3 \cdot 2083^3\) which arise from the two non-cuspidal rational points of \(X_0(37) \), see [Vél74]. If \(E/\mathbb{Q} \) is an elliptic curve with \(j \)-invariant \(-7 \cdot 11^3\) or \(-7 \cdot 17^3 \cdot 2083^3\), then one can show that \([\text{GL}_2(\hat{\mathbb{Z}}) : \rho_{E}(\text{Gal}_{\mathbb{Q}})] \geq 2736 \).

(iii) In our proofs of Theorems 1.3 and 1.4, the finite set \(J \) that arises is ineffective. The ineffectiveness arises from an application of Faltings’ theorem to a finite number of modular curves of genus at least 2.

1.2. Overview. In §2, we show that the index of \(\rho_{E}(\text{Gal}_{\mathbb{Q}}) \) in \(\text{GL}_2(\hat{\mathbb{Z}}) \) depends only on its commutator subgroup. In §3, we give some background on modular curves; for a fixed group \(G \) of \(\text{GL}_2(\mathbb{Z}/N\mathbb{Z}) \) containing \(-I\), its rational points will describe the elliptic curves \(E/\mathbb{Q} \) with \(j_E \notin \{0,1728\} \) for which \(\rho_{E,N}(\text{Gal}_{\mathbb{Q}}) \) is conjugate to a subgroup of \(G \).

In §4, we prove a version of Theorem 1.3 with \(I \) replaced by another finite set \(\mathcal{I} \) that is defined in terms of the congruence subgroups of \(\text{SL}_2(\mathbb{Z}) \) with genus 0 or 1. Here we use Faltings’ theorem to deal with rational points of several modular curves with genus at least 2.

In §5, we describe how to compute the set \(\mathcal{I} \); it agrees with our set \(I \). Here, and throughout the paper, we avoid computing models for modular curves. For a genus 0 modular curve, we use the Hasse principle to determine whether it is isomorphic to \(\mathbb{P}^1_{\mathbb{Q}} \). We compute the Jacobian of genus 1 modular curves, up to isogeny, by counting their \(\mathbb{F}_l \)-points via the moduli interpretation. We also make use of the classification of genus 0 and 1 congruence subgroups due to Cummin and Pauli.

Finally, in §6 we complete the proofs of Theorems 1.3, 1.4 and 1.5.
1.3. Notation. Fix a positive integer m. Let \mathbb{Z}_m be the ring that is the inverse limit of the rings $\mathbb{Z}/m^i\mathbb{Z}$ with respect to the reduction maps; equivalently, the inverse limit of \mathbb{Z}/NZ, where N divides some power of m. We will make frequent use of the identifications $\mathbb{Z}_m = \prod_{p|m} \mathbb{Z}_p$ and $\hat{\mathbb{Z}} = \prod \mathbb{Z}_\ell$, where ℓ denotes a prime. In particular, \mathbb{Z}_m depends only on the primes dividing m.

For a subgroup G of $\text{GL}_2(\mathbb{Z}/m\mathbb{Z})$, $\text{GL}_2(\mathbb{Z}_m)$ or $\text{GL}_2(\hat{\mathbb{Z}})$ and an integer N dividing m, we denote by $G(N)$ the image of the group G in $\text{GL}_2(\mathbb{Z}/N\mathbb{Z})$ under reduction modulo N.

All profinite groups will be considered with their profinite topologies. The *commutator subgroup* of a profinite group G is the closed subgroup G' generated by its commutators.

For each prime p, let $v_p: \mathbb{Q}^\times \to \mathbb{Z}$ be the p-adic valuation.

Acknowledgments. Thanks to Andrew Sutherland and David Zureick-Brown. We have made use of some of the *Magma* code from [Sut15].

The computations in §5 were performed using the *Magma* computer algebra system [BCP97]; code can be found at https://github.com/davidzywina/PossibleIndices.

2. The commutator subgroup of the image of Galois

Let E be a non-CM elliptic curve defined over \mathbb{Q}. Using the Weil pairing on the groups $E[N]$, one can show that the homomorphism $\text{det}_p: \text{Gal}_Q \to \hat{\mathbb{Z}}^\times$ is equal to the cyclotomic character χ. Recall that $\chi: \text{Gal}_Q \to \hat{\mathbb{Z}}^\times$ satisfies $\sigma(\zeta) = \chi(\sigma) \mod n$ for any integer $n \geq 1$, where $\zeta \in \overline{\mathbb{Q}}$ is an n-th root of unity and $\sigma \in \text{Gal}_Q$.

We first show that index of $\rho_E(\text{Gal}_Q)$ in $\text{GL}_2(\hat{\mathbb{Z}})$ is determined by its commutator subgroup.

Proposition 2.1. We have $[\text{GL}_2(\hat{\mathbb{Z}}): \rho_E(\text{Gal}_Q)] = [\text{SL}_2(\hat{\mathbb{Z}}): \rho_E(\text{Gal}_Q)']$.

Proof. The character χ is surjective, so $\text{det}(\rho_E(\text{Gal}_Q)) = \hat{\mathbb{Z}}^\times$ and hence $\rho_E(\text{Gal}_Q) \cap \text{SL}_2(\hat{\mathbb{Z}}) = \rho_E(\text{Gal}_Q)_{\text{cyc}}$, where \mathbb{Q}^{cyc} is the cyclotomic extension of \mathbb{Q}. We thus have

$$[\text{GL}_2(\hat{\mathbb{Z}}): \rho_E(\text{Gal}_Q)] = [\text{SL}_2(\hat{\mathbb{Z}}): \rho_E(\text{Gal}_Q) \cap \text{SL}_2(\hat{\mathbb{Z}})] = [\text{SL}_2(\hat{\mathbb{Z}}): \rho_E(\text{Gal}_Q^{\text{cyc}})].$$

It thus suffices to show that $\rho_E(\text{Gal}_Q^{\text{cyc}})$ equals $\rho_E(\text{Gal}_Q^{\text{ab}}) = \rho_E(\text{Gal}_Q)^{\prime}$, where $\mathbb{Q}^{\text{ab}} \subseteq \overline{\mathbb{Q}}$ is the maximal abelian extension of \mathbb{Q}. This follows from the Kronecker-Weber theorem which says that $\mathbb{Q}^{\text{cyc}} = \mathbb{Q}^{\text{ab}}$. \(\square \)

Remark 2.2.

(i) One can show that there are infinitely many different groups of the form $\rho_E(\text{Gal}_Q)$ as E varies over non-CM elliptic curves over \mathbb{Q}; moreover, there are infinitely many such groups with index 2 in $\text{GL}_2(\hat{\mathbb{Z}})$. One consequence of Proposition 2.1 is that to compute the index $[\text{GL}_2(\hat{\mathbb{Z}}): \rho_E(\text{Gal}_Q)]$ one does not need to know the full group $\rho_E(\text{Gal}_Q)$, only $\rho_E(\text{Gal}_Q)^{\prime}$.

Conjecturally, there are only a finite number of subgroups of $\text{SL}_2(\hat{\mathbb{Z}})$ of the form $\rho_E(\text{Gal}_Q)^{\prime}$ with a non-CM E/\mathbb{Q}. Indeed, suppose that Conjecture 1.2 holds. Remark 1.6(i) and Proposition 2.1 implies that the index of $[\text{SL}_2(\hat{\mathbb{Z}}): \rho_E(\text{Gal}_Q)^{\prime}]$ is uniformly bounded for non-CM E/\mathbb{Q}. The finite number of possible groups of the form $\rho_E(\text{Gal}_Q)^{\prime}$ follows from their only being finitely many open subgroup of $\text{SL}_2(\hat{\mathbb{Z}})$ of a given index.

(ii) For a non-CM elliptic curve E over a number field K, a similar argument shows that

$$[\text{GL}_2(\hat{\mathbb{Z}}): \rho_E(\text{Gal}_K)] \leq [\hat{\mathbb{Z}}^\times: \chi(\text{Gal}_K)] \cdot [\text{SL}_2(\hat{\mathbb{Z}}): \rho_E(\text{Gal}_K)^{\prime}].$$

The inequality may be strict if $K \neq \mathbb{Q}$ (the cyclotomic extension of K does not agree with the maximal abelian extension of K).
The following corollary show that for an elliptic curve E/\mathbb{Q}, the index of $\rho_E(\text{Gal}_\mathbb{Q})$ in $\text{GL}_2(\mathbb{Z})$ depends only on the \mathbb{Q}-isomorphism class of E. In particular, the j-invariant is the correct notion to use in Theorems 1.4 and 1.5.

Corollary 2.3. For an elliptic curve E over \mathbb{Q}, the index $[\text{GL}_2(\mathbb{Z}) : \rho_E(\text{Gal}_\mathbb{Q})]$ depends only on the j-invariant of E.

Proof. Suppose that E_1 and E_2 are elliptic curves over \mathbb{Q} with the same j-invariant (and hence isomorphic over $\overline{\mathbb{Q}}$). If E_1 (and hence E_2) has complex multiplication, then both indices are infinite. We may thus assume that E_1 and E_2 are non-CM. Since they have the same j-invariant, E_1 and E_2 are isomorphic over a quadratic extension L of \mathbb{Q}. Fixing such an isomorphism, we can identify the representations $\rho_{E_1}|_{\text{Gal}_L}$ and $\rho_{E_2}|_{\text{Gal}_L}$. We have $L \subseteq \mathbb{Q}^{ab}$, so the groups $\rho_{E_1}(\text{Gal}_{\mathbb{Q}^{ab}}) = \rho_{E_1}(\text{Gal}_\mathbb{Q})'$ and $\rho_{E_2}(\text{Gal}_{\mathbb{Q}^{ab}}) = \rho_{E_2}(\text{Gal}_\mathbb{Q})'$ are equal under this identification. The corollary then follows immediately from Proposition 2.1.

\[\square \]

3. Modular curves

Fix a positive integer N and a subgroup G of $\text{GL}_2(\mathbb{Z}/N\mathbb{Z})$ containing $-I$ that satisfies $\det(G) = (\mathbb{Z}/N\mathbb{Z})^\times$. Denote by Y_G and X_G, the $\mathbb{Z}[1/N]$-schemes that are the coarse space of the algebraic stacks $\mathscr{M}_G[1/N]$ and $\mathscr{M}_G[1/N]$, respectively, from [DR73, IV §3]. We refer to [DR73, IV] for further details.

The $\mathbb{Z}[1/N]$-scheme X_G is smooth and proper and Y_G is an open subscheme of X_G. The complement of Y_G in X_G, which we denote by X_G^∞, is a finite étale scheme over $\mathbb{Z}[1/N]$, see [DR73, IV §5.2]. The fibers of X_G are geometrically irreducible, see [DR73, IV Corollaire 5.6]; this uses our assumption that $\det(G) = (\mathbb{Z}/N\mathbb{Z})^\times$.

In later sections, we will mostly work with the generic fiber of X_G, which we will also denote by X_G, which is a smooth, projective and geometrically irreducible curve over \mathbb{Q} (similarly, we will work with the generic fiber of Y_G which will be a non-empty open subvariety of X_G).

Fix a field k whose characteristic does not divide N; for simplicity, we will also assume that k is perfect. Choose an algebraic closure \overline{k} of k and set $\text{Gal}_k := \text{Gal}(\overline{k}/k)$.

In §3.1, we use the moduli property of $\mathscr{M}_G[1/N]$ to give a description of the sets $Y_G(k)$ and $Y_G(\overline{k})$. In §3.2, we describe the natural morphism from Y_G to the j-line. In §3.3, we give a way to compute the cardinality of the finite set $X_G^\infty(k)$ of cusps of X_G that are defined over k. In §3.4, we determine when the set $Y_G(\mathbb{R})$ is non-empty. In §3.5, we will observe that $Y_G(\mathbb{C})$ as a Riemann surface is isomorphic to the quotient of the upper-half plane by the congruence subgroup Γ_G consisting of $A \in \text{SL}_2(\mathbb{Z})$ for which A modulo N lies G. Finally in §3.6, we explain how to compute the cardinality of $X_G(\mathbb{F}_p)$ for primes $p \nmid 6N$.

3.1. **Points of Y_G.** For an elliptic curve E over \overline{k}, let $E[N]$ be the N-torsion subgroup of $E(\overline{k})$. A G-level structure for E is an equivalence class $[\alpha]_G$ of group isomorphisms $\alpha : E[N] \xrightarrow{\sim} (\mathbb{Z}/N\mathbb{Z})^2$, where we say that α and α' are equivalent if $\alpha = g \circ \alpha'$ for some $g \in G$. We say that two pairs $(E, [\alpha]_G)$ and $(E', [\alpha']_G)$, both consisting of an elliptic curve over \overline{k} and a G-level structure, are **isomorphic** if there is an isomorphism $\phi : E \rightarrow E'$ of elliptic curves such that $[\alpha]_G = [\alpha' \circ \phi]_G$, where we also denote by ϕ the isomorphism $E[N] \rightarrow E'[N]$, $P \mapsto \phi(P)$.

From [DR73, IV Definition 3.2], $\mathscr{M}_G[1/N](\overline{k})$ is the category with objects $(E, [\alpha]_G)$, i.e., elliptic curves over \overline{k} with a G-level structure, and morphisms being the isomorphisms between such pairs. Since Y_G is the coarse space of $\mathscr{M}_G[1/N]$, we find that $Y_G(\overline{k})$ is the set of isomorphisms classes in $\mathscr{M}_G[1/N](\overline{k})$.

4
The functoriality of \(\mathcal{M}_\mathbb{Z}[1/N] \), gives an action of the group \(\text{Gal}_k \) on \(Y_G(\bar{k}) \). Take any \(\sigma \in \text{Gal}_k \). Let \(E^\sigma \) be the base extension of \(E/\bar{k} \) by the morphism \(\text{Spec} \bar{k} \to \text{Spec} \bar{k} \) coming from \(\sigma \). The natural morphism \(E^\sigma \to E \) of schemes induces a group isomorphism \(E^\sigma[N] \to E[N] \) which, by abuse of notation, we will denote by \(\sigma \). More explicitly, if \(E \) is given by a Weierstrass equation \(y^2 + a_1xy + a_3y = x^3 + a_2x + a_6 \) with \(a_i \in \bar{k} \), we may take \(E^\sigma \) to be the curve defined by \(y^2 + \sigma(a_1)xy + \sigma(a_3)y = x^3 + \sigma(a_2)x + \sigma(a_6) \); the isomorphism \(E^\sigma[N] \to E[N] \) is then given by \((x, y) \mapsto (\sigma^{-1}(x), \sigma^{-1}(y)) \). For a point \(P \in Y_G(\bar{k}) \) represented by a pair \((E, [\alpha]_G) \), the point \(\sigma(P) \in Y_G(\bar{k}) \) is represented by \((E^\sigma, [\alpha \circ \sigma^{-1}]_G) \).

Since \(k \) is perfect, \(Y_G(k) \) is the subset of \(Y_G(\bar{k}) \) stable under the action of \(\text{Gal}_k \). The following lemma describes \(Y_G(k) \). For an elliptic curve \(E \) over \(k \), let \(E[N] \) be the \(N \)-torsion subgroup of \(E(\bar{k}) \). Each \(\sigma \in \text{Gal}_k \) gives an isomorphism \(E[N] \cong (\mathbb{Z}/N\mathbb{Z})^2 \) for some \(\phi \in \text{Aut}(E) \) and \(g \in G \).

Lemma 3.1.

(i) Every point \(P \in Y_G(k) \) is represented by a pair \((E, [\alpha]_G) \) with \(E \) defined over \(k \).

(ii) Let \(P \in Y_G(\bar{k}) \) be a point represented by a pair \((E, [\alpha]_G) \) with \(E \) defined over \(k \). Then \(P \) is an element of \(Y_G(k) \) if and only if for all \(\sigma \in \text{Gal}_k \), we have an equality

\[
\alpha \circ \sigma^{-1} = g \circ \alpha \circ \phi
\]

of isomorphisms \(E[N] \cong (\mathbb{Z}/N\mathbb{Z})^2 \) for some \(\phi \in \text{Aut}(E) \) and \(g \in G \).

Proof. First suppose that \((E, [\alpha]_G) \) represents a point \(P \in Y_G(k) \). To prove (i) it suffices to show that \(E \) is isomorphic over \(\bar{k} \) to an elliptic curve defined over \(k \). So we need only show that \(j_E \) is an element of \(k \). For any \(\sigma \in \text{Gal}_k \), the point \(P = \sigma(P) \) is also represented by \((E^\sigma, [\alpha \circ \sigma^{-1}]_G) \). This implies that \(E \) and \(E^\sigma \) are isomorphic and hence \(\sigma(j_E) = j_E \). We thus have \(j_E \in k \) since \(k \) is perfect.

We now prove (ii). Let \(P \in Y_G(\bar{k}) \) be a point represented by a pair \((E, [\alpha]_G) \) with \(E \) defined over \(k \). Take any \(\sigma \in \text{Gal}_k \). The point \(\sigma(P) \) is represented by \((E^\sigma, [\alpha \circ \sigma^{-1}]_G) \); we can make the identification \(E = E^\sigma \) since \(E \) is defined over \(k \). We have \(\sigma(P) = P \) if and only if there is an automorphism \(\phi \in \text{Aut}(E) \) such that \([\alpha \circ \sigma^{-1}]_G = [\alpha \circ \phi]_G \). Since \(k \) is perfect, we have \(P \in Y_G(k) \) if and only if for all \(\sigma \in \text{Gal}_k \), we have \([\alpha \circ \sigma^{-1}]_G = [\alpha \circ \phi]_G \) for some \(\phi \in \text{Aut}(E) \); this is a reformulation of part (ii). \(\square \)

3.2. **Morphism to the \(j \)-line.** If \(G = \text{GL}_2(\mathbb{Z}/N\mathbb{Z}) \), then there is only a single \(G \)-level structure for each elliptic curve. There is an isomorphism \(Y_{\text{GL}_2(\mathbb{Z}/N\mathbb{Z})} = \mathbb{A}^1_{\mathbb{Z}[1/N]} \) on \(\bar{k} \)-points, it takes a point represented by a pair \((E, [\alpha]_G) \) to the \(j \)-invariant \(j_E \in \bar{k} \).

If \(G' \) is a subgroup of \(\text{GL}_2(\mathbb{Z}/N\mathbb{Z}) \) containing \(G \), then there is a natural morphism \(Y_G \to Y_{G'} \). In particular, \(G' = \text{GL}_2(\mathbb{Z}/N\mathbb{Z}) \) gives a morphism

\[
\pi_G : Y_G \to \mathbb{A}^1_{\mathbb{Z}[1/N]}
\]

that maps a \(\bar{k} \)-point represented by a pair \((E, [\alpha]_G) \) to the \(j \)-invariant of \(E \).

Fix an elliptic curve \(E \) over \(k \). By choosing a basis for \(E[N] \) as a \(\mathbb{Z}/N\mathbb{Z} \)-module, the Galois action on \(E[N] \) can be expressed in terms of a representation \(\rho_{E,N} : \text{Gal}_k \to \text{GL}_2(\mathbb{Z}/N\mathbb{Z}) \); this is the same as the earlier definition with \(k = \mathbb{Q} \). The representation \(\rho_{E,N} \) is uniquely determined up to conjugation by an element of \(\text{GL}_2(\mathbb{Z}/N\mathbb{Z}) \).

Proposition 3.2. Let \(E \) be an elliptic curve over \(k \) with \(j_E \notin \{0, 1728\} \). The group \(\rho_{E,N}(\text{Gal}_k) \) is conjugate in \(\text{GL}_2(\mathbb{Z}/N\mathbb{Z}) \) to a subgroup of \(G \) if and only if \(j_E \) is an element of \(\pi_G(Y_G(k)) \).
Proof. First suppose that $\rho_{E,N}(\text{Gal}_k)$ is conjugate to a subgroup of G. There is thus an isomorphism $\alpha: E[N] \xrightarrow{\sim} (\mathbb{Z}/N\mathbb{Z})^2$ such that $\alpha \circ \sigma \circ \alpha^{-1} \in G$ for all $\sigma \in \text{Gal}_k$. By Lemma 3.1(ii), with $\phi = 1$, the pair $(E,[\alpha]_G)$ represents a point $P \in Y_G(k)$. Therefore, $j_E = \pi_G(P)$ is an element of $\pi_G(Y_G(k))$.

Now suppose that $j_E = \pi_G(P)$ for some point $P \in Y_G(k)$. Lemma 3.1 implies that P is represented by a pair $(E,[\alpha]_G)$, where for all $\sigma \in \text{Gal}_k$, we have $\alpha \circ \sigma^{-1} \circ \phi \circ \alpha^{-1} \in G$ for some automorphism ϕ of E. The assumption $j_E \notin \{0,1728\}$ implies that $\text{Aut}(E \bar{F}_k) = \{\pm 1\}$. In particular, every automorphism of $E \bar{F}_k$ acts on $E[N]$ as $\pm I$. Since G contains $-I$, we deduce that $\alpha \circ \sigma^{-1} \circ \alpha^{-1} \in G$ for all $\sigma \in \text{Gal}_k$. We may choose $\rho_{E,N}$ so that $\rho_{E,N}(\sigma) = \alpha \circ \sigma \circ \alpha^{-1}$ for all $\sigma \in \text{Gal}_k$, and hence $\rho_{E,N}(\text{Gal}_k)$ is a subgroup of G. \hfill \Box

Take any $j \in k$ and fix an elliptic curve E over k with $j_E = j$. Let M be the group of isomorphisms $E[N] \xrightarrow{\sim} (\mathbb{Z}/N\mathbb{Z})^2$. Composition gives an action of the groups G and $\text{Aut}(E \bar{F}_k)$ on M; they are left and right actions, respectively. The map $\alpha \in M \mapsto (E,[\alpha]_G)$ induces a bijection

$$G \backslash M / \text{Aut}(E \bar{F}_k) \xrightarrow{\sim} \{P \in Y_G(k) : \pi_G(P) = j\}.$$

The group Gal_k acts on M by the map $\text{Gal}_k \times M \rightarrow M$, $(\sigma,\alpha) \mapsto \alpha \circ \sigma^{-1}$, from the description of the Galois action in §3.1, we find that the bijection (3.1) respects the Gal_k-actions. The following lemma is now immediate (again we are using that k is perfect).

Lemma 3.3. The set $\{P \in Y_G(k) : \pi_G(P) = j\}$ has the same cardinality as the subset of $G \backslash M / \text{Aut}(E \bar{F}_k)$ fixed by the Gal_k-action.

3.3. Cusps. In this section, we state an analogue of Lemma 3.3 for $X_G^\infty(k)$. Let M be the group of isomorphisms $\mu_N \times \mathbb{Z}/N\mathbb{Z} \xrightarrow{\sim} (\mathbb{Z}/N\mathbb{Z})^2$, where μ_N is the group of N-th roots of unity in \mathbb{F}. The group Gal_k acts on M by the map $\text{Gal}_k \times M \rightarrow M$, $(\sigma,\alpha) \mapsto \alpha \circ \sigma^{-1}$, where σ^{-1} acts on μ_N as usual and trivially on $\mathbb{Z}/N\mathbb{Z}$. Let U be the subgroup of $\text{Aut}(\mu_N \times \mathbb{Z}/N\mathbb{Z})$ given by the matrices $\pm \left(\begin{smallmatrix} u & 1 \\ 0 & 1 \end{smallmatrix} \right)$ with $u \in \text{Hom}(\mathbb{Z}/N\mathbb{Z},\mu_N)$. Composition gives an action of the groups G and U on M; they are left and right actions, respectively. Construction 5.3 of [DR73, VI] shows that there is a bijection

$$X_G^\infty(\mathbb{F}) \xrightarrow{\sim} G \backslash M / U$$

that respects the actions of Gal_k. We thus have a bijection between $X_G^\infty(k)$ and the subset of $G \backslash M / U$ fixed by the action of Gal_k.

Observe that the cardinality of $X_G^\infty(k)$ depends only on G and the image of the character $\chi_N: \text{Gal}_k \rightarrow (\mathbb{Z}/N\mathbb{Z})^\times$ describing the Galois action on μ_N, i.e., $\sigma(\zeta) = \zeta^{\chi_N(\sigma)}$ for all $\sigma \in \text{Gal}_k$ and all $\zeta \in \mu_N$. Let B be the subgroup of $\text{GL}_2(\mathbb{Z}/N\mathbb{Z})$ consisting of matrices of the form $\left(\begin{smallmatrix} b & 0 \\ 0 & 1 \end{smallmatrix} \right)$ with $b \in \chi_N(\text{Gal}_k)$. Let U be the subgroup of $\text{GL}_2(\mathbb{Z}/N\mathbb{Z})$ generated by $-I$ and $\left(\begin{smallmatrix} 0 & 1 \\ 1 & 0 \end{smallmatrix} \right)$. The group B normalizes U and hence right multiplication gives a well-defined action of B on $X_G^\infty(\mathbb{F})$. The following lemma is now immediate.

Lemma 3.4. The set $X_G^\infty(k)$ has the same cardinality as the subset of $G \backslash \text{GL}_2(\mathbb{Z}/N\mathbb{Z}) / U$ fixed by right multiplication by B.

3.4. Real points. The following proposition tells us when $Y_G(\mathbb{R})$ is non-empty.

Proposition 3.5. The set $Y_G(\mathbb{R})$ is non-empty if and only if G contains an element that is conjugate in $\text{GL}_2(\mathbb{Z}/N\mathbb{Z})$ to $\left(\begin{smallmatrix} 0 & 0 \\ 1 & -1 \end{smallmatrix} \right)$ or $\left(\begin{smallmatrix} 1 & 1 \\ 0 & -1 \end{smallmatrix} \right)$.

Proof. Let E be any elliptic curve over \mathbb{R}. As a topological group, the identity component of $E(\mathbb{R})$ is isomorphic to \mathbb{R}/\mathbb{Z}. So there is a point $P_1 \in E(\mathbb{R})$ of order N. Choose a second point $P_2 \in E(\mathbb{C})$ so that $\{P_1,P_2\}$ is a basis of $E[N]$ as a $\mathbb{Z}/N\mathbb{Z}$-module. Define $\rho_{E,N}$ with respect to this basis.

Let $\sigma \in \text{Aut}(\mathbb{C}/\mathbb{R})$ be the complex conjugation automorphism. We have $\sigma(P_1) = P_1$ and $\sigma(P_2) = bP_1 + dP_2$ for some $b,d \in \mathbb{Z}/N\mathbb{Z}$, i.e., $\rho_{E,N}(\sigma) := \left(\begin{smallmatrix} b & 0 \\ d & 1 \end{smallmatrix} \right) \in \text{GL}_2(\mathbb{Z}/N\mathbb{Z})$. Using the Weil pairing, we find that $\det(\rho_{E,N}(\sigma))$ describes how σ acts on the N-th roots of unity. Since complex conjugation
contains an element that is conjugate in \(GL \)
inverts roots of unity, we have \(\det(\rho_{E,N}(\sigma)) = -1 \) and hence \(d = -1 \). For a fixed \(m \in \mathbb{Z}/\mathbb{N} \), define points \(P'_1 := P_1 \) and \(P'_2 := P_2 + mP_1 \). The points \(\{P'_1, P'_2\} \) are a basis for \(E[\mathbb{N}] \), and we have
\[
\sigma(P'_1) = \sigma(P'_2) = (bP_1 - P_2) + mP_1 = -(P_2 + mP_1) + (b + 2m)P_1 = -P'_2 + (b + 2m)P'_1.
\]

We can choose \(m \) so that \(b + 2m \) is congruent to 0 or 1 modulo \(N \); with such an \(m \) and the choice of basis \(\{P'_1, P'_2\} \), the matrix \(\rho_{E,N}(\sigma) \) will be \(\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \) or \(\begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix} \).

We claim that both of the matrices \(\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \) and \(\begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix} \) are conjugate to \(\rho_{E,N}(\sigma) \) for some \(E/\mathbb{R} \) with \(j_E \not\in \{0,1728\} \). This is clear if \(N \) is odd since the two matrices are then conjugate (we could have solved for \(m \) in either of the congruences above). If \(N \) is even, then it suffices to show that both possibilities occur when \(N = 2 \); this is easy (if \(E/\mathbb{Q} \) is given by a Weierstrass equation \(y^2 = x^3 + ax + b \), the two possibilities are distinguished by the number of real roots that \(x^3 + ax + b \) has).

Using Proposition 3.2, we deduce that \(\pi_G(Y_G(\mathbb{R})) - \{0,1728\} \) is non-empty if and only if \(G \) contains an element that is conjugate in \(GL_2(\mathbb{Z}/\mathbb{N} \mathbb{Z}) \) to \(\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \) or \(\begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix} \). To complete the proof of the proposition, we need to show that if \(\pi_G(Y_G(\mathbb{R})) \subseteq \{0,1728\} \), then \(\pi_G(Y_G(\mathbb{R})) \) is empty. So suppose that \(\pi_G(Y_G(\mathbb{R})) \subseteq \{0,1728\} \) and hence \(Y_G(\mathbb{R}) \) is finite. However, since \(Y_G \) over \(\mathbb{Q} \) is a smooth, geometrically irreducible curve, the set \(Y_G(\mathbb{R}) \) is either empty or infinite. \(\square \)

3.5. Complex points. The complex points \(Y_G(\mathbb{C}) \) form a Riemann surface. In this section, we describe it as a familiar quotient of the upper half plane by a congruence subgroup.

Let \(\mathfrak{H} \) be the complex upper half plane. For \(z \in \mathfrak{H} \) and \(\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}) \), set \(\gamma(z) := (az + b)/(cz + d) \). We let \(SL_2(\mathbb{Z}) \) act on the right of \(\mathfrak{H} \) by \(SL_2(\mathbb{Z}) \to \mathfrak{H}, (z, \gamma) \mapsto \gamma z \), where \(\gamma^t \) is the transpose of \(\gamma \). For a congruence subgroup \(\Gamma \), the quotient \(\mathcal{H}/\Gamma \) is a smooth Riemann surface.

We define the genus of a congruence subgroup \(\Gamma \) to be the genus of the Riemann surface \(\mathcal{H}/\Gamma \).

Remark 3.6. One could also consider the quotient \(\Gamma \backslash \mathfrak{H} \) of \(\mathfrak{H} \) under the left action given by \((\gamma, z) \mapsto \gamma z \); it is isomorphic to the Riemann surface \(\mathcal{H}/\Gamma \) (use that \(\gamma^t = B \gamma^{-1} B^{-1} \) for all \(\gamma \in \Gamma \), where \(B = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \)). In particular, the genus of \(\Gamma \backslash \mathfrak{H} \) agrees with the genus of \(\Gamma \).

Let \(\Gamma_G \) be the congruence subgroup consisting of matrices \(\gamma \in SL_2(\mathbb{Z}) \) whose image modulo \(N \) lies in \(G \). The image of \(\Gamma_G \) modulo \(N \) is \(G \cap SL_2(\mathbb{Z}/\mathbb{N} \mathbb{Z}) \) since the reduction map \(SL_2(\mathbb{Z}) \to SL_2(\mathbb{Z}/\mathbb{N} \mathbb{Z}) \) is surjective. In particular, \(\Gamma_G \) depends only on the group \(G \cap SL_2(\mathbb{Z}/\mathbb{N} \mathbb{Z}) \) and we have
\[
[SL_2(\mathbb{Z}) : \Gamma_G] = [SL_2(\mathbb{Z}/\mathbb{N} \mathbb{Z}) : G \cap SL_2(\mathbb{Z}/\mathbb{N} \mathbb{Z})].
\]

Proposition 3.7. The Riemann surfaces \(Y_G(\mathbb{C}) \) and \(\mathcal{H}/\Gamma_G \) are isomorphic. In particular, the genus of \(Y_G \) is equal to the genus of \(\mathcal{H}/\Gamma_G \).

Proof. Set \(X^\pm := \mathbb{C} - \mathbb{R} \); we let \(GL_2(\mathbb{Z}) \) act on the right in the same manner \(SL_2(\mathbb{Z}) \) acts on \(\mathfrak{H} \). We also let \(GL_2(\mathbb{Z}) \) act on the right of \(G \backslash GL_2(\mathbb{Z}/\mathbb{N} \mathbb{Z}) \) by right multiplication. From [DR73, IV §5.3], we have an isomorphism
\[
Y_G(\mathbb{C}) \cong (X^\pm \times (G \backslash GL_2(\mathbb{Z}/\mathbb{N} \mathbb{Z}))) / GL_2(\mathbb{Z}).
\]

Using that \(\det(G) = (\mathbb{Z}/\mathbb{N} \mathbb{Z})^\times \) and setting \(H := G \cap SL_2(\mathbb{Z}/\mathbb{N} \mathbb{Z}) \), we find that the natural maps
\[
(\mathcal{H} \times (G \backslash GL_2(\mathbb{Z}/\mathbb{N} \mathbb{Z}))) / SL_2(\mathbb{Z}) \to (X^\pm \times (G \backslash GL_2(\mathbb{Z}/\mathbb{N} \mathbb{Z}))) / GL_2(\mathbb{Z})
\]
and
\[
(\mathcal{H} \times (H \backslash SL_2(\mathbb{Z}/\mathbb{N} \mathbb{Z}))) / SL_2(\mathbb{Z}) \to (\mathcal{H} \times (G \backslash GL_2(\mathbb{Z}/\mathbb{N} \mathbb{Z}))) / SL_2(\mathbb{Z})
\]
are isomorphisms of Riemann surfaces. It thus suffices to show that \(\mathcal{H}/\Gamma_G \) and \((\mathcal{H} \times (H \backslash SL_2(\mathbb{Z}/\mathbb{N} \mathbb{Z}))) / SL_2(\mathbb{Z}) \) are isomorphic. Define the map
\[
\varphi : \mathcal{H}/\Gamma_G \to (\mathcal{H} \times (H \backslash SL_2(\mathbb{Z}/\mathbb{N} \mathbb{Z}))) / SL_2(\mathbb{Z})
\]
that takes a class containing \(z \) to the class represented by \((z, H \cdot I) \). For \(\gamma \in \text{SL}_2(\mathbb{Z}) \), the pairs \((z, H \cdot I) \) and \((\gamma'(z), H \cdot \gamma^{-1}) \) lies in the same class of \((\mathfrak{g} \times (\text{SL}_2(\mathbb{Z})/\mathbb{N}\mathbb{Z}))/\text{SL}_2(\mathbb{Z}) \); from this one readily deduced that \(\varphi \) is well-defined and injective. It is straightforward to check that \(\varphi \) is an isomorphism of Riemann surfaces. \(\square \)

3.6. \(\mathbb{F}_p \)-points. Fix a prime \(p \nmid 6N \) and an algebraic closure \(\overline{\mathbb{F}}_p \) of \(\mathbb{F}_p \). The Galois group \(\text{Gal}(\overline{\mathbb{F}}_p/\mathbb{F}_p) \) is topologically generated by the automorphism \(\text{Frob}_p \colon x \mapsto x^p \). In this section, we will describe how to compute \(|X_G(\mathbb{F}_p)| \).

For an imaginary quadratic order \(\mathcal{O} \) of discriminant \(D \), the \(j \)-invariant of the complex elliptic curve \(\mathbb{C}/\mathcal{O} \) is an algebraic integer; its minimal polynomial \(P_D(x) \in \mathbb{Z}[x] \) is the Hilbert class polynomial of \(\mathcal{O} \). For an integer \(D < 0 \) which is not the discriminant of a quadratic order, we set \(P_D(x) = 1 \).

Fix an elliptic curve \(E \) over \(\mathbb{F}_p \) with \(j_E \notin \{0, 1728\} \). Let \(a_E \) be the integer \(p + 1 - |E(\mathbb{F}_p)| \). Set \(\Delta_E := a_E^2 - 4p \); we have \(\Delta_E \neq 0 \) by the Hasse inequality. Let \(b_E \) be the largest integer \(b \geq 1 \) such that \(b^2|\Delta_E \) and \(P_{\Delta_E/b^2}(j_E) = 0 \); this is well-defined since we will always have \(P_{\Delta_E}(j_E) = 0 \). Define the matrix
\[
\Phi_E := \begin{pmatrix} (a_E - \Delta_E/b_E)/2 & \Delta_E/b_E \cdot (1 - \Delta_E/b_E^2)/4 \\ b_E & (a_E + \Delta_E/b_E)/2 \end{pmatrix};
\]
it has integer entries since \(\Delta_E/b_E^2 \) is an integer congruent to 0 or 1 modulo 4 (it is the discriminant of a quadratic order) and \(\Delta_E \equiv a_E \pmod{2} \). One can check that \(\Phi_E \) has trace \(a_E \) and determinant \(p \). In practice, \(\Phi_E \) is straightforward to compute; there are many good algorithms to compute \(a_E \) and \(P_D(x) \).

The following proposition shows that \(\Phi_E \) describes \(\rho_{E,N}(\text{Frob}_p) \), and hence also \(\rho_{E,N} \), up to conjugacy.

Proposition 3.8. With notation as above, the reduction of \(\Phi_E \) modulo \(N \) is conjugate in \(\text{GL}_2(\mathbb{Z}/N\mathbb{Z}) \) to \(\rho_{E,N}(\text{Frob}_p) \).

Proof. It suffices to prove the proposition when \(N \) is a prime power. For \(N \) a prime power, it is then a consequence of Theorem 2 in [Cen16]. \(\square \)

We now explain how to compute \(|X_G(\mathbb{F}_p)| \). We can compute \(|X_G^\mathbb{F}_p(\mathbb{F}_p)| \) using Lemma 3.4 (with \(k = \mathbb{F}_p \), the subgroup \(\chi_N(\text{Gal}_{\mathbb{F}_p}) \) of \((\mathbb{Z}/N\mathbb{Z})^\times \) is generated by \(p \) modulo \(N \)). So we need only describe how to compute \(|Y_G(\mathbb{F}_p)| \); it thus suffices to compute each term in the sum
\[
|Y_G(\mathbb{F}_p)| = \sum_{j \in \mathbb{F}_p} |\{P \in Y_G(\mathbb{F}_p) : \pi_G(P) = j\}|.
\]
Take any \(j \in \mathbb{F}_p \) and fix an elliptic curve \(E \) over \(\mathbb{F}_p \) with \(j_E = j \).

First suppose that \(j \notin \{0, 1728\} \). We have \(\text{Aut}(E_{\mathbb{F}_p}) = \{\pm I\} \) and hence each automorphism acts on \(E[N] \) by \(I \) or \(-I \). Let \(M \) be the group of isomorphisms \(E[N] \stackrel{\sim}{\to} (\mathbb{Z}/N\mathbb{Z})^2 \). Since \(-I \in G \), we have \(G/M/\text{Aut}(E_{\mathbb{F}_p}) = G \setminus M \). Lemma 3.3 implies that \(|\{P \in Y_G(\mathbb{F}_p) : \pi_G(P) = j\}| \) is equal to cardinality of the subset of \(G \setminus M \) fixed by the action of \(\text{Frob}_p \). By Proposition 3.8 and choosing an appropriate basis of \(E[N] \), we deduce that \(|\{P \in Y_G(\mathbb{F}_p) : \pi_G(P) = j\}| \) is equal to the cardinality of the subset of \(G \setminus \text{GL}_2(\mathbb{Z}/N\mathbb{Z}) \) fixed by right multiplication by \(\Phi_E \). In particular, note that we can compute \(|\{P \in Y_G(\mathbb{F}_p) : \pi_G(P) = j\}| \) without having to compute \(E[N] \).

Now suppose that \(j \in \{0, 1728\} \) and recall that \(p \nmid 6 \). When \(j = 0 \), we take \(E/\mathbb{F}_p \) to be the curve defined by \(y^2 = x^3 - 1 \); the group \(\text{Aut}(E_{\mathbb{F}_p}) \) is cyclic of order 6 and generated by \((x, y) \mapsto (\zeta x, -y) \),
where $\zeta \in \mathbb{F}_p$ is a cube root of unity. When $j = 1728$, we take E/\mathbb{F}_p to be the curve defined by $y^2 = x^3 - x$; the group $\text{Aut}(E/\mathbb{F}_p)$ is cyclic of order 6 and generated by $(x, y) \mapsto (-x, \zeta y)$, where $\zeta \in \mathbb{F}_p$ is a fourth root of unity.

One can compute an explicit basis of $E[N]$. With respect to this basis, the action of $\text{Aut}(E/\mathbb{F}_p)$ on $E[N]$ corresponds to a subgroup \mathcal{A} of $GL_2(\mathbb{Z}/N\mathbb{Z})$ and the action of Frobenius on $E[N]$ corresponds to a matrix $\Phi_{E,N} \in GL_2(\mathbb{Z}/N\mathbb{Z})$. Lemma 3.3 implies that $|\{P \in Y_G(\mathbb{F}_p) : \pi_G(P) = j\}|$ equals the number of elements in $G \setminus GL_2(\mathbb{Z}/N\mathbb{Z})/\mathcal{A}$ that are fixed by right multiplication by $\Phi_{E,N}$.

4. Preliminary work

Take any congruence subgroup Γ of $SL_2(\mathbb{Z})$ and denote its level by N_0. Let $\pm \Gamma$ be the congruence subgroup generated by Γ and $-I$. Let N be the integer N_0, $4N_0$ or $2N_0$ when $v_2(N_0)$ is 0, 1 or at least 2, respectively.

Definition 4.1. We define $\mathcal{I}(\Gamma)$ to be the set of integers

$$[SL_2(\mathbb{Z}/N) : G'] \cdot 2/\gcd(2, N),$$

where G varies over the open subgroups of $GL_2(\mathbb{Z}/N)$ that are the inverse image by the reduction map $GL_2(\mathbb{Z}/N) \to GL_2(\mathbb{Z}/N \mathbb{Z})$ of a subgroup $G(N) \subseteq GL_2(\mathbb{Z}/N \mathbb{Z})$ which satisfies the following conditions:

(a) $G(N) \cap SL_2(\mathbb{Z}/N \mathbb{Z})$ is equal to $\pm \Gamma$ modulo N,

(b) $G(N) \supseteq (\mathbb{Z}/N \mathbb{Z})^\times \cdot I$,

(c) $\det(G(N)) = (\mathbb{Z}/N \mathbb{Z})^\times$,

(d) $G(N)$ contains a matrix that is conjugate to $(1 0^{-1})$ or $(1 1^{-1})$ in $GL_2(\mathbb{Z}/N \mathbb{Z})$,

(e) the set $X_{G(N)}(\mathbb{Q})$ is infinite.

The set $\mathcal{I}(\Gamma)$ is finite since there are only finitely many possible $G(N)$ for a fixed N. In the special case $N = 1$, we view $GL_2(\mathbb{Z}/1)$ and $SL_2(\mathbb{Z}/1)$ as trivial groups and hence we find that $\mathcal{I}(SL_2(\mathbb{Z})) = \{2\}$. Define the set of integers

$$\mathcal{I} := \bigcup_{\Gamma} \mathcal{I}(\Gamma),$$

where the union is over the congruence subgroups of $SL_2(\mathbb{Z})$ that have genus 0 or 1. The set \mathcal{I} is finite since there are only finitely many congruence subgroups of genus 0 or 1, see [CP03].

The goal of this section is to prove the following theorem.

Theorem 4.2. Fix an integer c. There is a finite set J, depending only on c, such that if E/\mathbb{Q} is an elliptic curve with $j_E \notin J$ and $\rho_{E,\ell}$ surjective for all primes $\ell > c$, then $[GL_2(\mathbb{Z}) : \rho_E(\text{Gal}_{\mathbb{Q}})]$ is an element of \mathcal{I}.

In §5, we will compute \mathcal{I} and show that it is equal to the set \mathcal{I} from §1; this will prove Theorem 1.3.

4.1. The congruence subgroup Γ_E. Fix a non-CM elliptic curve E over \mathbb{Q}. Define the subgroup

$$G := \hat{\mathbb{Z}}^\times \cdot \rho_E(\text{Gal}_{\mathbb{Q}})$$

of $GL_2(\mathbb{Z})$. For each positive integer n, let G_n be the image of G under the projection map $GL_2(\mathbb{Z}) \to GL_2(\mathbb{Z}/n)$. By Serre’s theorem, G is an open subgroup of $GL_2(\mathbb{Z})$. We have an equality $G' = \rho_E(\text{Gal}_{\mathbb{Q}})'$ of commutator subgroups and hence

$$[GL_2(\mathbb{Z}) : \rho_E(\text{Gal}_{\mathbb{Q}})] = [SL_2(\mathbb{Z}) : G']$$

(4.1)
Proposition 4.3. The subgroup $\Gamma = \Gamma_0$ of $\text{SL}_2(\mathbb{Z})$ obtained by Proposition 2.1. There is no harm in working with the larger group G since we are only concerned about the index $[\text{GL}_2(\mathbb{Z}) : \rho_E(\text{Gal}_\mathbb{Q})]$.

Let m be the product of the primes ℓ for which $\ell \leq 5$ or for which $\rho_{E,\ell}$ is not surjective. The group $G_m \cap \text{SL}_2(\mathbb{Z}_m)$ is open in $\text{SL}_2(\mathbb{Z}_m)$. Let $N_0 \geq 1$ be the smallest positive integer dividing some power of m for which

$$G_m \cap \text{SL}_2(\mathbb{Z}_m) \supseteq \{ A \in \text{SL}_2(\mathbb{Z}_m) : A \equiv I \pmod{N_0} \}. \tag{4.2}$$

Let N be the integer N_0, $4N_0$ or $2N_0$ when $v_2(N_0)$ is 0, 1 or at least 2, respectively.

Define $\Gamma_E := \Gamma_{G(N)}$; it is the congruence subgroup consisting of matrices in $\text{SL}_2(\mathbb{Z})$ whose image modulo N lies in $G(N)$. Note that the congruence subgroup Γ_E has level N_0 and contains $-I$.

Proposition 4.3. The subgroup $G(N)$ of $\text{GL}_2(\mathbb{Z}/N\mathbb{Z})$ satisfies conditions (a), (b), (c) and (d) of Definition 4.1 with $\Gamma = \Gamma_E$.

Proof. Our congruence subgroup Γ_E contains $-I$ and was chosen so that Γ_E modulo N equals $G(N) \cap \text{SL}_2(\mathbb{Z}/N\mathbb{Z})$. We have $G \supseteq \hat{\mathbb{Z}}^\times \cdot I$, so $G(N) \supseteq (\mathbb{Z}/N\mathbb{Z})^\times \cdot I$. We have $\det(\rho_E(\text{Gal}_\mathbb{Q})) = \hat{\mathbb{Z}}^\times$, so $\det(G(N)) = (\mathbb{Z}/N\mathbb{Z})^\times$.

It remains to show that condition (d) holds. Since E/\mathbb{Q} is non-CM and $\rho_{E,N}(\text{Gal}_\mathbb{Q})$ is a subgroup of $G(N)$, we have $Y_{G(N)}(\mathbb{Q}) \not\equiv 0$ by Proposition 3.2. In particular, $Y_{G(N)}(\mathbb{R}) \not\equiv 0$. Proposition 3.5 implies that G contains an element that is conjugate in $\text{GL}_2(\mathbb{Z}/N\mathbb{Z})$ to $\left(\begin{smallmatrix} 1 & 0 \\ 0 & -1 \end{smallmatrix} \right)$ or $\left(\begin{smallmatrix} 1 & 1 \\ 0 & -1 \end{smallmatrix} \right)$. \hfill \square

The following lemma shows that G_N is determined by $G(N)$.

Lemma 4.4. The group G_N is the inverse image of $G(N)$ under the reduction modulo N map $\text{GL}_2(\mathbb{Z}_N) \to \text{GL}_2(\mathbb{Z}/N\mathbb{Z})$.

Proof. Take any $A \in \text{GL}_2(\mathbb{Z}_N)$ satisfying $A \equiv I \pmod{N}$; we need only verify that A is an element of G_N. Our integer N has the property that $(1 + N_0\mathbb{Z}_N)^2 = 1 + N\mathbb{Z}_N$. Since $\det(A) \equiv 1 \pmod{N}$, we have $\det(A) = \lambda^2$ for some $\lambda \in 1 + N_0\mathbb{Z}_N$. Define $B := \lambda^{-1}A$; it is an element of $\text{SL}_2(\mathbb{Z}_N)$ that is congruent to I modulo N_0. Using (4.2), we deduce that B is an element of G_N. From the definition of G, it is clear that G_N contains the scalar matrix λI. Therefore, $A = \lambda I \cdot B$ is an element of G_N. \hfill \square

The following group theoretical lemma will be proved in §4.4.

Lemma 4.5. We have

$$[\text{SL}_2(\mathbb{Z}_N) : G'] = [\text{SL}_2(\mathbb{Z}_m) : G'_m] = [\text{SL}_2(\mathbb{Z}_N) : G_N'] \cdot 2 / \gcd(2, N).$$

Moreover, $G' = G'_m \times \prod_{\ell | m} \text{SL}_2(\mathbb{Z}_\ell)$.

The following lemma motivates our definition of \mathcal{I}.

Lemma 4.6. If $X_{G(N)}(\mathbb{Q})$ is infinite, then $[\text{GL}_2(\mathbb{Z}) : \rho_E(\text{Gal}_\mathbb{Q})]$ is an element of \mathcal{I}.

Proof. By Lemma 4.5 and (4.1), we have $[\text{GL}_2(\mathbb{Z}) : \rho_E(\text{Gal}_\mathbb{Q})] = [\text{SL}_2(\mathbb{Z}_N) : G_N'] \cdot 2 / \gcd(2, N)$.

The group $G(N)$ satisfies conditions (a), (b), (c) and (d) of Definition 4.1 with $\Gamma = \Gamma_E$ by Lemma 4.4. The group $G(N)$ satisfies (e) by assumption. Using Lemma 4.4, we deduce that $[\text{SL}_2(\mathbb{Z}_N) : G_N'] \cdot 2 / \gcd(2, N)$ is an element of $\mathcal{I}(\Gamma_E)$.

To complete the proof of the lemma, we need to show that Γ_E has genus 0 or 1 since then $\mathcal{I}(\Gamma_E) \subseteq \mathcal{I}$. The genus of Γ_E is equal to the genus of $X_{G(N)}$ by Proposition 3.7. Since $X_{G(N)}$ has infinitely many rational point, it must have genus 0 or 1 by Faltings’ theorem. \hfill \square
4.2. Exceptional rational points on modular curves. Let S be the set of pairs (N, G) with $N \geq 1$ an integer not divisible by any prime $\ell > 13$ and with G a subgroup of $\text{GL}_2(\mathbb{Z}/N\mathbb{Z})$ satisfying the following conditions:

- $\det(G) = (\mathbb{Z}/N\mathbb{Z})^\times$ and $-I \in G$,
- X_G has genus at least 2 or $X_G(\mathbb{Q})$ is finite.

Define the set

$$J : = \bigcup_{(N, G) \in S} \pi_G(Y_G(\mathbb{Q})).$$

We will prove that J is finite. We will need the following lemma.

Lemma 4.7. Fix an integer $m \geq 2$. An open subgroup H of $\text{GL}_2(\mathbb{Z}_m)$ has only a finite number of closed maximal subgroups and they are all open.

Proof. The lemma follows from the proposition in [Ser97, §10.6] which gives a condition for the Frattini subgroup of H to be open; note that H contains a normal subgroup of the form $I + m^e M_2(\mathbb{Z}_m)$ for some $e \geq 1$ and that $I + m^e M_2(\mathbb{Z}_m)$ is the product of pro-ℓ groups with $\ell | m$. □

Proposition 4.8. The set J is finite.

Proof. Fix pairs $(N, G), (N', G') \in S$ such that N is a divisor of N' and such that reduction modulo N gives a well-defined map $G' \to G$. This gives rise to a morphism $\varphi : Y_{G'} \to Y_G$ of curves over \mathbb{Q} such that $\pi_G \circ \varphi = \pi_{G'}$. In particular, $\pi_{G'}(Y_{G'}(\mathbb{Q})) \subseteq \pi_G(Y_G(\mathbb{Q}))$. Therefore,

$$J = \bigcup_{(N, G) \in S'} \pi_G(Y_G(\mathbb{Q})),
$$

where S' is the set of pairs $(N, G) \in S$ for which there is no pair $(N', G') \in S - \{(N, G)\}$ with N' a divisor of N so that the reduction modulo N' defines a map $G \to G'$. For each pair $(N, G) \in S'$, the set $Y_G(\mathbb{Q})$, and hence also $\pi_G(Y_G(\mathbb{Q}))$, is finite. The finiteness is immediate from the definition of S when Y_G has genus 0 or 1. If Y_G has genus at least 2, then $Y_G(\mathbb{Q})$ is finite by Faltings’ theorem. So to prove that J is finite, it suffices to show that S' is finite.

Let m be the product of primes $\ell \leq 13$. For each pair $(N, G) \in S'$, let \bar{G} be the open subgroup of $\text{GL}_2(\mathbb{Z}_m)$ that is the inverse image of G under the reduction map $\text{GL}_2(\mathbb{Z}_m) \to \text{GL}_2(\mathbb{Z}/N\mathbb{Z})$. Note that we can recover the pair (N, G) from $\bar{G}; N \geq 1$ is the smallest integer (not divisible by primes $\ell > 13$) such that \bar{G} contains $\{A \in \text{GL}_2(\mathbb{Z}_m) : A \equiv I \mod{N}\}$ and G is the image of \bar{G} in $\text{GL}_2(\mathbb{Z}/N\mathbb{Z})$. Define the set

$$G := \{\bar{G} : (N, G) \in S'\}.$$

We have $|G| = |S'|$, so it suffices to show that the set G is finite.

Suppose that G is infinite. We now recursively define a sequence $\{M_i\}_{i \geq 0}$ of open subgroups of $\text{GL}_2(\mathbb{Z}_m)$ such that

$$M_0 \supseteq M_1 \supseteq M_2 \supseteq M_3 \supseteq \ldots$$

and such that each M_i has infinitely many subgroups in G. Set $M_0 := \text{GL}_2(\mathbb{Z}_m)$. Take an $i \geq 0$ for which M_i has been defined and has infinitely many subgroups in G. Since M_i has only finite many open maximal subgroups by Lemma 4.7, one of the them contains infinitely many subgroups in G; denote such a maximal subgroup by M_{i+1}.

Take any $i \geq 0$. Since there are elements of G that are proper subgroups of M_i, we deduce that $M_i \supseteq \bar{G}$ for some pair $(N, G) \in S'$. The group $G = \bar{G}(N)$ is thus a proper subgroup of $M_i(N) \subseteq \text{GL}_2(\mathbb{Z}/N\mathbb{Z})$. We have $\det(M_i(N)) = (\mathbb{Z}/N\mathbb{Z})^\times$ and $-I \in M_i(N)$ since G has these properties. We have $(N, M_i(N)) \notin S$ since otherwise (N, G) would not be an element of S'. Therefore, the modular curve $X_{M_i(N)}$ has genus 0 or 1. By Proposition 3.7, the congruence subgroup
\[\Gamma_i := \Gamma_{M_i(N)} \] (which consists of \(A \in \text{SL}_2(\mathbb{Z}) \) with \(A \) modulo \(N \) in \(M_i(N) \)) has genus 0 or 1. We have

\[[\text{SL}_2(\mathbb{Z}) : \Gamma_i] = [\text{SL}_2(\mathbb{Z}/N\mathbb{Z}) : M_i(N) \cap \text{SL}_2(\mathbb{Z}/N\mathbb{Z})] = [\text{GL}_2(\mathbb{Z}/N\mathbb{Z}) : M_i(N)] = [\text{GL}_2(\mathbb{Z}_m) : M_i], \]

so \([\text{SL}_2(\mathbb{Z}) : \Gamma_i] \to \infty \) as \(i \to \infty \) by the proper inclusions (4.3). In particular, there are infinitely many congruence subgroup of genus 0 or 1. However, there are only finitely many congruence subgroups of \(\text{SL}_2(\mathbb{Z}) \) of genus 0 and 1; moreover, the level of such congruence subgroups is at most \(52 \) by [CP03]. This contradiction implies that \(\mathcal{G} \), and hence \(\mathcal{G}' \), is finite. \(\square \)

For each prime \(\ell \), let \(\mathcal{J}_\ell \) be the set of \(j \)-invariants of elliptic curves \(E/\mathbb{Q} \) for which \(\rho_{E,\ell} \) is not surjective.

Proposition 4.9. The set \(\mathcal{J}_\ell \) is finite for all primes \(\ell > 13 \).

Proof. Fix a prime \(\ell > 13 \). By Proposition 3.2, it suffices to show that \(X_G(\mathbb{Q}) \) is finite for each of the maximal subgroups \(G \) of \(\text{GL}_2(\mathbb{Z}/\ell\mathbb{Z}) \) that satisfy \(\text{det}(G) = (\mathbb{Z}/\ell\mathbb{Z})^\times \). Fix such a group \(G \) and let \(\Gamma = \text{G} \) be the congruence subgroup consisting of \(A \in \text{SL}_2(\mathbb{Z}) \) for which \(A \) modulo \(N \) lies in \(G \). The curve \(X_G \) has the same genus as \(\Gamma \) by Proposition 3.7. If \(\Gamma \) has genus at least 2, then \(X_G(\mathbb{Q}) \) is finite by Faltings’ theorem.

We may thus suppose that \(\Gamma \) has genus 0 or 1. From the description of congruence subgroups of genus 0 and 1 in [CP03], we find that \(\ell \in \{17, 19\} \) and that \(\Gamma \) modulo \(\ell \) contains an element of order \(\ell \). Therefore, after replacing \(G \) by a conjugate in \(\text{GL}_2(\mathbb{Z}/\ell\mathbb{Z}) \), we may assume that \(G \) is the subgroup of upper-triangular matrices. So we are left to consider the modular curve \(X_0(\ell) := X_G \) with \(\ell \in \{17, 19\} \). The curve \(X_0(\ell) \), with \(\ell \in \{17, 19\} \), indeed has finitely many points (it has a rational cusp, so it is an elliptic curve of conductor \(\ell \in \{17, 19\} \)); all such elliptic curves have rank 0. \(\square \)

4.3. **Proof of Theorem 4.2.** Let \(\mathcal{J} \) and \(\mathcal{J}_\ell \) (with \(\ell > 13 \)) be the sets from §4.2. Define the set

\[J := \mathcal{J} \cup \bigcup_{13 < \ell \leq c} \mathcal{J}_\ell; \]

it is finite by Propositions 4.8 and 4.9.

Take any elliptic curve \(E/\mathbb{Q} \) with \(j_E \notin J \) for which \(\rho_{E,\ell} \) is surjective for all \(\ell > c \). Since \(j_E \notin \mathcal{J}_\ell \) for \(13 < \ell \leq c \), the representation \(\rho_{E,\ell} \) is surjective for all \(\ell > 13 \).

Let \(\Gamma_E \) be the congruence subgroup from §4.1; denote its level by \(N_0 \) and define \(N \) as in the beginning of the section. Let \(G(N) \) be the subgroup of \(\text{GL}_2(\mathbb{Z}/N\mathbb{Z}) \) from §4.1 associated to \(E/\mathbb{Q} \).

Lemma 4.10. The set \(X_{G(N)}(\mathbb{Q}) \) is infinite.

Proof. Take \(\mathcal{S} \) as in §4.2. The integer \(N \) is not divisible by any prime \(\ell > 13 \) since \(\rho_{E,\ell} \) is surjective for all \(\ell > 13 \). If \((N, G(N)) \in \mathcal{S} \), then \(j_E \in \pi_{G(N)}(Y_{G(N)}(\mathbb{Q})) \subseteq J \subseteq \mathcal{J} \). Since \(j_E \notin J \) by assumption, we have \((N, G(N)) \notin \mathcal{S} \). We have \(\text{det}(G(N)) = (\mathbb{Z}/N\mathbb{Z})^\times \) and \(-I \in G(N) \), so \((N, G(N)) \notin \mathcal{S} \) implies that \(X_{G(N)} \) has genus 0 or 1, and that \(X_{G(N)}(\mathbb{Q}) \) is infinite. \(\square \)

Lemmas 4.6 and 4.10 together imply that \([\text{GL}_2(\mathbb{Z}) : \rho_{E,\text{Gal}(\mathbb{Q})}]\) is an element of \(\mathcal{J} \).

4.4. **Proof of Lemma 4.5.** Let \(d \) be the product of primes that divide \(m \) but not \(N \); it divides \(2 \cdot 3 \cdot 5 \). Since \(G_m \cap \text{SL}_2(\mathbb{Z}_m) \) contains \(\{A \in \text{SL}_2(\mathbb{Z}_m) : A \equiv I \pmod{N_0}\} \), we have

\[G_m \cap \text{SL}_2(\mathbb{Z}_m) = W \times \text{SL}_2(\mathbb{Z}_d). \]

for a subgroup \(W \) of \(\text{SL}_2(\mathbb{Z}_N) \) containing \(\{A \in \text{SL}_2(\mathbb{Z}_N) : A \equiv I \pmod{N_0}\} \). Since \(G_m \cap \text{SL}_2(\mathbb{Z}_m) \) is a normal subgroup of \(G_m \), the group \(W \) is normal in \(G_N \). We have \(G_d = \text{GL}_2(\mathbb{Z}_d) \), since \(G_d \subseteq \text{SL}_2(\mathbb{Z}_d) \) and \(\text{det}(G_d) = \mathbb{Z}_d^\times \) (note that \(\text{det}(\rho_{E,\text{Gal}(\mathbb{Q})}) = \mathbb{Z}_d^\times \)).
Now consider the quotient map
\[\varphi : G_N \times G_d \to G_N/W \times G_d/SL_2(\mathbb{Z}_d). \]

We can view \(G_m \) as an open subgroup of \(G_N \times G_d \); it projects surjectively on both of the factors. The group \(G_m \) contains \(W \times SL_2(\mathbb{Z}_d) \), so there is an open subgroup \(Y \) of \(G_N/W \times G_d/SL_2(\mathbb{Z}_d) \) for which \(G_m = \varphi^{-1}(Y) \).

For part (i) and (ii), see [Zyw10, Lemma A.1]. To verify (iii), it suffices by (ii) to show that the topological group generated by the set \(C \) contains \(SL_2(\mathbb{Z}_p) \) of profinite groups. Similarly, we have

Proof. We proceed by induction on \(n \). The case \(n = 1 \) is trivial, so assume that \(n = 2 \). The kernel of \(p_1|_H \) is a closed subgroup of \(H \) of the form \(\{ I \} \times N_2 \), and similarly the kernel of \(p_2|_H \) is of the form \(N_1 \times \{ I \} \). The group \(N = N_1 \times N_2 \) is a closed normal subgroup of \(H \). Since \(p_1|_H \) is surjective, we find that \(N_1 = p_1(N) \) is a closed normal subgroup of \(B_1 \); this gives an isomorphism \(H/N \cong B_1/N_1 \) of profinite groups. Similarly, we have \(H/N \cong B_2/N_2 \) and thus \(B_1/N_1 \) and \(B_2/N_2 \) are isomorphism.
Since we have assumed that \(B_1 \) and \(B_2 \) have no common finite simple quotients, we deduce that \(B_1 = N_1 \) and \(B_2 = N_2 \). This proves the \(n = 2 \) case since \(H \) contains \(N_1 \times N_2 = B_1 \times B_2 \).

Now fix an \(n \geq 3 \) and assume that the \(n - 1 \) case of the lemma has been proved. Then the image \(\bar{H} \) of \(H \) in \(C := \prod_{i=1}^{n-1} B_i \) is a closed subgroup such that the projection \(\bar{H} \rightarrow B_i \) is surjective for all \(1 \leq i \leq n - 1 \). By our inductive hypothesis, we have \(\bar{H} = C \). So \(H \) is a closed subgroup of \(C \times B_n \) and the projections \(H \rightarrow C \) and \(H \rightarrow B_n \) are surjective. By the \(n = 2 \) case, it suffices to show any finite simple quotient of \(C \) is not a quotient of \(B_n \). Take any open normal subgroup \(U \) of \(C \) such that \(C/U \) is a finite simple group. There is an integer \(1 \leq j \leq n - 1 \) for which the projection \(U \rightarrow B_j \) is not surjective (if not, then we could use our inductive hypothesis to show that \(U = C \)). For simplicity, suppose \(j = 1 \); then \(U \) is of the form \(N_1 \times B_2 \times \cdots \times B_{n-1} \) where \(N_1 \) is an open normal subgroup of \(B_1 \). Since \(C/U \cong B_1/N_1 \), we deduce from the hypothesis on the \(B_i \) that \(C/U \) is not a quotient of \(B_n \).

We claim that \(G'_\ell = \SL_2(\mathbb{Z}_\ell) \) for every prime \(\ell \nmid m \). We have the easy inclusions \(G'_\ell \subseteq \GL_2(\mathbb{Z}_\ell)' \subseteq \SL_2(\mathbb{Z}_\ell) \). By [Ser89, IV Lemma 3] and \(\ell > 5 \) (since \(\ell \nmid m \)), we have \(G'_\ell = \SL_2(\mathbb{Z}_\ell) \) if and only if the image of \(G'_\ell \) in \(\SL_2(\mathbb{Z}/\ell\mathbb{Z}) \) is \(\SL_2(\mathbb{Z}/\ell\mathbb{Z}) \). Thus it suffices to show that \(\rho_{E,\ell}(\text{Gal}_Q)' = \SL_2(\mathbb{Z}/\ell\mathbb{Z}) \). Since \(\ell \nmid m \), we have \(\rho_{E,\ell}(\text{Gal}_Q)' = \SL_2(\mathbb{Z}/\ell\mathbb{Z}) \) and hence \(\rho_{E,\ell}(\text{Gal}_Q)' = \SL_2(\mathbb{Z}/\ell\mathbb{Z}) \) by Lemma 4.11(i); this proves our claim.

We can view \(G' \) as a subgroup of \(G'_m \times \prod_{\ell|m} \SL_2(\mathbb{Z}_\ell) \). The projection of \(G' \) to the the factors \(G'_m \) and \(\SL_2(\mathbb{Z}_\ell) = G'_\ell \) with \(\ell \nmid m \) are all surjective.

Fix a prime \(\ell \geq 5 \). The simple group \(\PSL_2(\mathbb{F}_\ell) \) is a quotient of \(\SL_2(\mathbb{Z}_\ell) \). Since \(\ell \)-groups are solvable and \(\SL_2(\mathbb{Z}_\ell)' = \SL_2(\mathbb{Z}_\ell) \) by Lemma 4.11(i), we find that \(\PSL_2(\mathbb{F}_\ell) \) is the only simple group that is a quotient of \(\SL_2(\mathbb{Z}_\ell) \). Note that the groups \(\PSL_2(\mathbb{F}_\ell) \) are non-isomorphic for different \(\ell \); in fact, they have different cardinalities.

Take any prime \(\ell \nmid m \), and hence \(\ell > 5 \). We claim that the simple group \(\PSL_2(\mathbb{F}_\ell) \) is not isomorphic to a quotient of \(G'_m \). Indeed, any closed subgroup \(H \) of \(\SL_2(\mathbb{Z}_m) \) has no quotients isomorphic to \(\PSL_2(\mathbb{F}_\ell) \) with \(\ell > 5 \) and \(\ell \nmid m \) (this follows from the calculation of the groups \(\text{Occ}(\SL_2(\mathbb{Z}_\ell)) \) in [Ser98, IV-25]). We can now apply Goursat’s lemma (Lemma 4.12) to deduce that

\[
G' = G'_m \times \prod_{\ell|m} \SL_2(\mathbb{Z}_\ell).
\]

Therefore, \([\SL_2(\mathbb{Z}) : G'] = [\SL_2(\mathbb{Z}_m) : G'_m] \). By (4.4), we have

\[
[\SL_2(\mathbb{Z}_m) : G'_m] = [\SL_2(\mathbb{Z}_N) : G'_N] \cdot [\SL_2(\mathbb{Z}_d) : \GL_2(\mathbb{Z}_d)]'.
\]

By Lemma 4.11, \([\SL_2(\mathbb{Z}_d) : \GL_2(\mathbb{Z}_d)]' = \prod_{d|d} [\SL_2(\mathbb{Z}_d) : \GL_2(\mathbb{Z}_d)]' \) is equal to 1 if \(d \) is odd and 2 if \(d \) is even. Since \(N \) and \(d \) have opposite parities, we conclude that \([\SL_2(\mathbb{Z}_m) : G'_m] \) is equal to \([\SL_2(\mathbb{Z}_N) : G'_N] \) if \(N \) is even and \([\SL_2(\mathbb{Z}_N) : G'_N] \cdot 2 \) if \(N \) is odd. The lemma is now immediate.

5. INDEX COMPUTATIONS

In §1.1, we defined the set

\[
I = \{ 2, 4, 6, 8, 10, 12, 16, 20, 24, 30, 32, 36, 40, 48, 54, 60, 72, 84, 96, 108, 112, 120, 144, 192, 220, 240, 288, 336, 360, 384, 504, 576, 768, 864, 1152, 1200, 1296, 1536 \}.
\]

In §4, we defined the set of integers

\[
\mathcal{J} := \bigcup_{\Gamma} \mathcal{J}(\Gamma),
\]

where \(\Gamma \) runs over the congruence subgroups of \(\SL_2(\mathbb{Z}) \) of genus 0 or 1. The goal of this section is to outline the computations needed to verify the following.
Proposition 5.1. We have $\mathcal{I} = \mathcal{I}$.

The computations in this section were performed with Magma [BCP97]; code for the computations can be found at
https://github.com/davidzywina/PossibleIndices

Let S_0 and S_1 be sets of representatives of the congruence subgroups of $\text{SL}_2(\mathbb{Z})$ containing $-I$, up to conjugacy in $\text{GL}_2(\mathbb{Z})$, with genus 0 and 1, respectively. Set $S := S_0 \cup S_1$. Since the set $\mathcal{I}(\Gamma)$ does not change if we replace Γ by $\pm \Gamma$ or by a conjugate subgroup in $\text{GL}_2(\mathbb{Z})$, we have

$$\mathcal{I} = \bigcup_{\Gamma \in S} \mathcal{I}(\Gamma).$$

Cummin and Pauli [CP03] have classified the congruence subgroups of $\text{PSL}_2(\mathbb{Z})$ with genus 0 or 1, up to conjugacy in $\text{PGL}_2(\mathbb{Z})$. We thus have a classification of the congruence subgroups Γ of $\text{SL}_2(\mathbb{Z})$, up to conjugacy in $\text{GL}_2(\mathbb{Z})$, of genus 0 or 1 that contain $-I$. Moreover, they have made available an explicit list1 of such congruence subgroups; each congruence subgroup is given by a level N and set of generators of its image in $\text{SL}_2(\mathbb{Z}/N\mathbb{Z})/\{\pm I\}$. In our computations, we will let S_0 and S_1 consist of congruence subgroups from the explicit list of Cummin and Pauli.

5.1. Computing indices. Fix a congruence subgroup Γ of $\text{SL}_2(\mathbb{Z})$ that contains $-I$ and has level N_0. Let N be the integer N_0, $4N_0$ or $2N_0$ when $v_2(N_0)$ is 0, 1 or at least 2, respectively. For simplicity, we will assume that $N > 1$.

We first explain how we computed the subgroups $G(N)$ of $\text{GL}_2(\mathbb{Z}/N\mathbb{Z})$ that satisfy conditions (a), (b) and (c) of Definition 4.1. Instead of directly looking for subgroups in $\text{GL}_2(\mathbb{Z}/N\mathbb{Z})$, we will search for certain abelian subgroups in a smaller group.

Let H be the the image of $\pm \Gamma = \Gamma$ in $\text{SL}_2(\mathbb{Z}/N\mathbb{Z})$. Define the subgroup $\tilde{H} := (\mathbb{Z}/N\mathbb{Z})^\times \cdot H$ of $\text{GL}_2(\mathbb{Z}/N\mathbb{Z})$. We may assume that $H = \tilde{H} \cap \text{SL}_2(\mathbb{Z}/N\mathbb{Z})$; otherwise, conditions (a) and (b) are incompatible.

Let \mathcal{N} be the normalizer of \tilde{H} (equivalently, of H) in $\text{GL}_2(\mathbb{Z}/N\mathbb{Z})$ and set $\mathcal{C} := \mathcal{N}/\tilde{H}$. Since $\det(\tilde{H}) = ((\mathbb{Z}/N\mathbb{Z})^\times)^2$, the determinant induces a homomorphism

$$\det : \mathcal{C} \to (\mathbb{Z}/N\mathbb{Z})^\times/((\mathbb{Z}/N\mathbb{Z})^\times)^2 =: Q_N.$$

Lemma 5.2. The subgroups $G(N)$ of $\text{GL}_2(\mathbb{Z}/N\mathbb{Z})$ that satisfy conditions (a), (b) and (c) of Definition 4.1 are precisely the groups obtained by taking the inverse image under $\mathcal{N} \to \mathcal{C}$ of the subgroups W of \mathcal{C} for which the determinant induces an isomorphism $W \xrightarrow{\sim} Q_N$.

Proof. Let $B := G(N)$ be a subgroup of $\text{GL}_2(\mathbb{Z}/N\mathbb{Z})$ that satisfies conditions (a), (b) and (c). The group B contains \tilde{H} by (a) and (b). For any matrix $A \in B$ with $\det(A)$ a square, there is a scalar $\lambda \in (\mathbb{Z}/N\mathbb{Z})^\times$ such that $\det(\lambda A) = 1$. Since $B \cap \text{SL}_2(\mathbb{Z}/N\mathbb{Z}) = H$ by (a), we deduce that \tilde{H} consists precisely of the element of B with square determinant. The determinant thus gives rise to an exact sequence

$$1 \to \tilde{H} \hookrightarrow B \xrightarrow{\det} Q_N \to 1. \tag{5.1}$$

Therefore, \tilde{H} is a normal subgroup of B, and hence $B \subseteq \mathcal{N}$, and the determinant map induces an isomorphism $B/\tilde{H} \xrightarrow{\sim} Q_N$. Let W be the image of the natural injection $B/\tilde{H} \hookrightarrow \mathcal{N}/\tilde{H} = \mathcal{C}$; it satisfies the conditions for W in the statement of the lemma.

Now take any subgroup W of \mathcal{C} for which the determinant gives an isomorphism $W \xrightarrow{\sim} Q_N$. Let B be the inverse image of W under the map $\mathcal{N} \to \mathcal{C}$. The short exact sequence (5.1) holds. Therefore, $B \cap \text{SL}_2(\mathbb{Z}/N\mathbb{Z})$ is equal to $\tilde{H} \cap \text{SL}_2(\mathbb{Z}/N\mathbb{Z}) = H$. We have $B \supseteq (\mathbb{Z}/N\mathbb{Z})^\times \cdot I$ since

\[\text{See http://www.uncg.edu/mat/faculty/pauli/congruence/congruence.html}\]
$B \geq \bar{H}$. So $\det(B) \geq (\mathbb{Z}/N\mathbb{Z})^2$; with $\det(B/\bar{H}) = Q_N$, this implies that $\det(B) = (\mathbb{Z}/N\mathbb{Z})^2$. We have verified that $G(N) := B$ satisfies conditions (a), (b) and (c). \qed

We first compute the subgroups W of \mathcal{C} for which the determinant map $\mathcal{N}/\bar{H} \rightarrow Q_N$ gives an isomorphism $W \sim Q_N$. By Lemma 5.2, the subgroups $G(N)$ of $\text{GL}_2(\mathbb{Z}/\mathbb{N}\mathbb{Z})$ that satisfy the conditions (a), (b) and (c) of Definition 4.1 are precisely the inverse images of the groups W under the quotient map $\mathcal{N} \rightarrow \mathcal{C}$. We can then check condition (d) for each of the groups $G(N)$. We shall now describe how to compute the index $[\text{SL}_2(\mathbb{Z}_N) : G']$; this is needed in order to compute $\mathcal{I} (\Gamma)$. We remark that $G' (M) = G(M)'$. \smallskip

Lemma 5.3. The group G' contains $\{ A \in \text{SL}_2(\mathbb{Z}_N) : A \equiv I \pmod{N^2} \}$. In particular, we have $[\text{SL}_2(\mathbb{Z}_N) : G'] = [\text{SL}_2(\mathbb{Z}/N^2\mathbb{Z}) : G(N^2)' \}$. \smallskip

Proof. Since $G \geq I + NM_2(\mathbb{Z}_N)$, it suffices to prove that $(I + NM_2(\mathbb{Z}_N))' = \text{SL}_2(\mathbb{Z}_N) \cap (I + N^2M_2(\mathbb{Z}_N))$. So it suffices to prove that $(I + qM_2(\mathbb{Z}_q))' = \text{SL}_2(\mathbb{Z}_q) \cap (I + q^2M_2(\mathbb{Z}_q))$ for any prime power $q > 1$; this is Lemma 1 of [LT76, p.163]. \qed

Lemma 5.3 allows us to compute $[\text{SL}_2(\mathbb{Z}_N) : G']$ by computing the finite group $G(N^2)'$. In practice, we will use the following to reduce the computation to finding $G(M)'$ for some, possibly smaller, divisor M of N^2. \smallskip

Lemma 5.4. Let r be the product of the primes dividing N. Let $M > 1$ be an integer having the same prime divisors as N. If $G(rM)'$ contains $\{ A \in \text{SL}_2(\mathbb{Z}/rM\mathbb{Z}) : A \equiv I \pmod{M} \}$, then $[\text{SL}_2(\mathbb{Z}_N) : G'] = [\text{SL}_2(\mathbb{Z}/M\mathbb{Z}) : G(M)']$. \smallskip

Proof. For each positive integer m, define the group $S_m := \{ A \in \text{SL}_2(\mathbb{Z}_m) : A \equiv I \pmod{m} \}$. Let H be a closed subgroup of $\text{SL}_2(\mathbb{Z}_N)$ whose image in $\text{SL}_2(\mathbb{Z}/rM\mathbb{Z})$ contains $\{ A \in \text{SL}_2(\mathbb{Z}/rM\mathbb{Z}) : A \equiv I \pmod{M} \}$. We claim that $H \geq S_M$; the lemma will follow from the claim with $H = G'$. By replacing H with $H \cap S_M$, we may assume that H is a closed subgroup of S_M. Since S_M is a product of the pro-ℓ groups $S_{\ell^e(M)}$ with $\ell | M$, we may further assume that M is a power of a prime ℓ and hence $r = \ell$. \smallskip

So fix a prime power $\ell e > 1$ and let H be a closed subgroup of S_{ℓ^e} for which $H(\ell^{e+1}) = \{ A \in \text{SL}_2(\mathbb{Z}/\ell^{e+1}\mathbb{Z}) : A \equiv I \pmod{\ell^e} \}$; we need to prove that $H = S_{\ell^e}$. For each integer $i \geq 1$, define $H_i := H \cap (I + \ell^iM_2(\mathbb{Z}_\ell))$ and $h_i := H_i/H_{i+1}$. For any $A \in M_2(\mathbb{Z}_\ell)$ with $I + \ell^iA \in \text{SL}_2(\mathbb{Z}_\ell)$, we have $\text{tr}(A) \equiv 0 \pmod{\ell}$. The map $H_i \rightarrow M_2(\mathbb{Z}_\ell)$, $I + \ell^iA \mapsto A$ thus induces a homomorphism $\varphi_i : h_i \hookrightarrow \text{sl}_2(\mathbb{F}_\ell)$, where $\text{sl}_2(\mathbb{F}_\ell)$ is the subgroup of trace 0 matrices in $M_2(\mathbb{F}_\ell)$. Using that H is closed, we deduce that $H = S_{\ell^e}$ if and only if φ_i is surjective for all $i \geq e$. \smallskip

We now show that φ_i is surjective for all $i \geq e$. We proceed by induction on i; the homomorphism φ_e is surjective by our initial assumption on H. Now suppose that φ_i is surjective for a fixed $i \geq e$. Take any matrix B in the set $\mathcal{B} := \{ (0 1, 1 0), (\frac{1}{2} 1, 1 2) \}$. The matrix $I + \ell^iB$ has determinant 1, so the surjectivity of φ_i implies that there is a matrix $A \in M_2(\mathbb{Z}_\ell)$ with $A \equiv B \pmod{\ell}$ such that $h := I + \ell^iA$ is an element of H. \smallskip

16
Working modulo ℓ^{2i+1}, we find that $(\ell^iA)^2 = \ell^{2i}A^2 \equiv \ell^{2i}B^2 = 0$, where the last equality uses \(\ell^{2i} \). In particular, $(\ell^iA)^2 \equiv 0 \pmod{\ell^{i+2}}$. Therefore,
\[
h^\ell \equiv I + (\ell^i) \ell^i A \equiv I + \ell^i A \equiv I + \ell^{i+1}B \pmod{\ell^{i+2}}.
\]
Since $h^\ell \in H$, we find that B modulo ℓ lies in the image of φ_{i+1}. Since $\mathfrak{s}_2(F_\ell)$ is generated by the $B \in B$, we deduce that φ_{i+1} is surjective. \Box

5.2. Genus 0 computations. In this section, we compute the set of integers
\[
I_0 := \bigcup_{\Gamma \in S_0} \mathcal{I}(\Gamma).
\]
Instead of computing $\mathcal{I}(\Gamma)$, we will compute two related quantities. Let $\mathcal{I}'(\Gamma)$ be the set of integers as in Definition 4.1 but with condition (e) excluded. Let $\mathcal{I}''(\Gamma)$ be the set of integers as in Definition 4.1 with condition (e) excluded and satisfying the additional condition that $X^\infty_{G(N)}(\mathbb{Q}_p)$ is empty for at most one prime $p|N$.

Lemma 5.5. For a congruence subgroup Γ of genus 0, we have $\mathcal{I}''(\Gamma) \subseteq \mathcal{I}(\Gamma) \subseteq \mathcal{I}'(\Gamma)$.

Proof. The inclusion $\mathcal{I}(\Gamma) \subseteq \mathcal{I}'(\Gamma)$ is obvious. So assume that $G(N)$ is any group satisfying conditions (a)-(d) of Definition 4.1 and that $X^\infty_{G(N)}(\mathbb{Q}_p)$ is empty for at most one prime $p|N$. To prove the inclusion $\mathcal{I}''(\Gamma) \subseteq \mathcal{I}(\Gamma)$, we need to verify that $X := X_{G(N)}$ has infinitely many \mathbb{Q}-points. Note that the curve $X_{\mathbb{Q}}$ is smooth and projective; it has genus 0 by our assumption on Γ and Proposition 3.7.

We claim that $X(Q_v)$ is non-empty for all places v of \mathbb{Q}; the places corresponds to the primes p or to ∞ where $Q_\infty = \mathbb{R}$. Condition (d) and Proposition 3.5 imply that $X(\mathbb{R})$ is non-empty. Now take any prime $p \nmid N$. As an $\mathbb{Z}[1/N]$-scheme X has good reduction at p and hence the fiber X over \mathbb{F}_p is a smooth and projective curve of genus 0. Therefore, $X(\mathbb{F}_p)$ is non-empty and any of the points can be lifted by Hensel’s lemma to a point in $X(Q_p)$. By our hypothesis on the sets $X^\infty_{G(N)}(\mathbb{Q}_p)$ with $p|N$, we deduce that there is at most one prime p_0 such that $X(Q_{p_0})$ is empty.

So suppose that there is precisely one prime p_0 for which $X(Q_{p_0})$ is empty. The curve $X_{\mathbb{Q}}$ has a model given by a conic of the form $ax^2 + by^2 - z^2 = 0$ with $a, b \in \mathbb{Q}^\times$. The Hilbert symbol $(a, b)_v$ for a place v, is equal to +1 if $X(Q_v) \neq \emptyset$ and −1 otherwise. Therefore, $\prod_v (a, b) = (a, b)_{p_0} = -1$. However, we have $\prod_v (a, b) = 1$ by reciprocity. This contradiction proves our claim that $X(Q_v)$ is non-empty for all places v of \mathbb{Q}.

The curve $X_{\mathbb{Q}}$ has genus 0 so it satisfies the Hasse principle, and hence has a \mathbb{Q}-rational point. The curve $X_{\mathbb{Q}}$ is thus isomorphic to \mathbb{P}_1^1 and has infinitely many \mathbb{Q}-points.

We shall use the explicit set S_0 due to Cummin and Pauli. For each $\Gamma \in S_0$, it is straightforward to compute the set $\mathcal{I}(\Gamma)$ using the method in §5.1.

Using Lemma 3.4 and the discussion in §5.1, we can also compute $\mathcal{I}''(\Gamma)$. Fix a prime p dividing N. Take e so that $p^e \| N$ and set $M = N/p^e$. The image of the character $\chi_N : \text{Gal}_{\mathbb{Q}_p} \to (\mathbb{Z}/N\mathbb{Z})^\times = (\mathbb{Z}/p^e\mathbb{Z})^\times \times (\mathbb{Z}/M\mathbb{Z})^\times$ arising from the Galois action on the N-th roots of unity is $(\mathbb{Z}/p^e\mathbb{Z})^\times \times (p)$.

Our Magma computations show that $\bigcup_{\Gamma \in S_0} \mathcal{I}''(\Gamma) = I_0$ and $\bigcup_{\Gamma \in S_0} \mathcal{I}'(\Gamma) = I_0$, where
\[
I_0 := \{ 2, 4, 6, 8, 10, 12, 16, 20, 24, 30, 32, 36, 40, 48, 54, 60, 72, 84, 96, 108, 112, 120, 144, 192, 288, 336, 384, 576, 768, 864, 1152, 1200, 1296, 1536 \}.
\]
Using the inclusions of Lemma 5.5, we deduce that $\mathcal{I}_0 = I_0$.

Remark 5.6. From our genus 0 computations, we find that S_0 has cardinality 121 which led to 331 total groups $G(N)$ that satisfied (a)-(d) with respect to some $\Gamma \in S_0$. 17
5.3. Genus 1 computations. Now define the set of integers

$$\mathcal{I}_1 := \bigcup_{\Gamma \in \mathcal{S}_1} (\mathcal{I}(\Gamma) - \mathcal{I}_0),$$

where \mathcal{I}_0 is the set from §5.2.

Instead of computing $\mathcal{I}(\Gamma)$, we will compute a related quantity. We define $\mathcal{I}''(\Gamma)$ to be the set of integers as in Definition 4.1 with condition (e) excluded and satisfying the additional condition that the Mordell-Weil group of the Jacobian J of the curve $X_{G(N)}$ over \mathbb{Q} has positive rank. For a congruence subgroup Γ of genus 1, we have an inclusion $\mathcal{I}(\Gamma) \subseteq \mathcal{I}''(\Gamma)$ since a genus 1 curve over \mathbb{Q} that has a \mathbb{Q}-point is isomorphic to its Jacobian. Therefore,

$$\mathcal{I}_1 \subseteq \bigcup_{\Gamma \in \mathcal{S}_1} (\mathcal{I}''(\Gamma) - \mathcal{I}_0).$$

We now explain how to compute $\mathcal{I}''(\Gamma) - \mathcal{I}_0$ for a fixed congruence subgroup Γ of genus 1. As described in §5.1, we can compute the subgroups $G(N)$ satisfying the conditions (a)–(d). For each group $G(N)$, it is described in §5.1 how to compute $[\text{SL}_2(\mathbb{Z}_N) : G']$, where G is the inverse image of $G(N)$ under the reduction map $\text{GL}_2(\mathbb{Z}_N) \to \text{GL}_2(\mathbb{Z}/N\mathbb{Z})$. We may assume that $[\text{SL}_2(\mathbb{Z}_N) : G'] \cdot 2/\gcd(2, N) \notin \mathcal{I}_0$ since otherwise it does not contribute to $\mathcal{I}''(\Gamma) - \mathcal{I}_0$.

Let J be the Jacobian of the curve $X_{G(N)}$ over \mathbb{Q}; it is an elliptic curve since Γ has genus 1. Let us now explain how to compute the rank of $J(\mathbb{Q})$ (and hence finish our method for computing $\mathcal{I}''(\Gamma) - \mathcal{I}_0$) without having to compute a model for $X_{G(N)}$. Moreover, we shall determine the elliptic curve J up to isogeny (defined over \mathbb{Q}); note that the Mordell rank is an isogeny invariant.

The curve J has good reduction at all primes $p \nmid N$ since the $\mathbb{Z}[1/N]$-scheme $X_{G(N)}$ is smooth. If E/\mathbb{Q} is an elliptic curve with good reduction at all primes $p \nmid N$, then its conductor divides $N_{\text{max}} := \prod_{p|N} p^{e_p}$, where $e_2 = 8$, $e_3 = 5$ and $e_p = 2$ otherwise. One can compute a finite list of elliptic curves

$$E_1, \ldots, E_n$$

over \mathbb{Q} that represent the isogeny classes of elliptic curves over \mathbb{Q} with good reduction at $p \nmid N$. In our computations, we will have $N_{\text{max}} \leq 2^8 \cdot 3^5 = 62208$ and hence the representative curves E_i can all be found in Cremona’s database [Cre] of elliptic curves which are included in Magma (it currently contains all elliptic curves over \mathbb{Q} with conductor at most 500000). It remains to determine which curve E_i is isogenous to J.

Take any prime $p \nmid N$. Using the methods of §3.6, we can compute the cardinality of $X_{G(N)}(\mathbb{F}_p)$ and hence also the trace of Frobenius

$$a_p(J) = p + 1 - |J(\mathbb{F}_p)| = p + 1 - |X_{G(N)}(\mathbb{F}_p)|.$$

If $a_p(E_i) \neq a_p(J)$, then E_i and J are not isogenous elliptic curves over \mathbb{Q}. By computing $a_p(J)$ for enough primes $p \nmid N$, one can eventually eliminate all but one curve E_{i_0} which then must be isogenous to J. There are then known methods to determine the Mordell rank of E_{i_0}; the rank is also part of Cremona’s database. Therefore, we can compute the rank of $J(\mathbb{Q})$.

Our Magma computations show that

$$\bigcup_{\Gamma \in \mathcal{S}_1} (\mathcal{I}''(\Gamma) - \mathcal{I}_0) = \{220, 240, 360, 504\}.$$

In particular, $\mathcal{I}_1 \subseteq \{220, 240, 360, 504\}$.

We now describe how the values 220, 240, 360 and 504 arise in our computations.

For an odd prime ℓ, let \mathcal{N}_ℓ^{-} be the normalizer in $\text{GL}_2(\mathbb{Z}/\ell\mathbb{Z})$ of a non-split Cartan subgroup and let \mathcal{N}_ℓ^{+} be the normalizer in $\text{GL}_2(\mathbb{Z}/\ell\mathbb{Z})$ of a split Cartan subgroup. Define $G_1 := \mathcal{N}_1^{-}$. We can
identify $\mathcal{N}_3^− \times \mathcal{N}_5^−$ and $\mathcal{N}_3^− \times \mathcal{N}_7^+$ with subgroups G_2 and G_3, respectively, of $\text{GL}_2(\mathbb{Z}/15\mathbb{Z})$. We can identify $\mathcal{N}_7^+ \times \mathcal{N}_7^−$ with a subgroup G_4 of $\text{GL}_2(\mathbb{Z}/21\mathbb{Z})$.

Fix an $n \in \{220, 240, 360, 504\}$. Let $\Gamma \in S_1$ be any congruence subgroup such that $n \in \mathcal{I}(\Gamma)$. Let $G(N)$ be one of the groups such that the following hold:

- it satisfies conditions (a), (b), (c) and (d) of Definition 4.1,
- the Jacobian J of the curve $X_{G(N)}$ over \mathbb{Q} has positive rank,
- we have $[\text{SL}_2(\mathbb{Z}_N) : G'] \cdot 2 / \gcd(2, N) = n$, where G is the inverse image of $G(N)$ under the reduction $\text{GL}_2(\mathbb{Z}_N) \to \text{GL}_2(\mathbb{Z}/N\mathbb{Z})$.

Our computations show that one of the following hold:

- We have $n = 220$, $N = 11$ and $G(N)$ is conjugate in $\text{GL}_2(\mathbb{Z}/11\mathbb{Z})$ to G_1.
- We have $n = 240$, $N = 15$ and $G(N)$ is conjugate in $\text{GL}_2(\mathbb{Z}/15\mathbb{Z})$ to G_2.
- We have $n = 360$, $N = 15$ and $G(N)$ is conjugate in $\text{GL}_2(\mathbb{Z}/15\mathbb{Z})$ to G_3.
- We have $n = 504$, $N = 21$ and $G(N)$ is conjugate in $\text{GL}_2(\mathbb{Z}/21\mathbb{Z})$ to G_4.

For later, we note that the index $[\text{GL}_2(\mathbb{Z}/N\mathbb{Z}) : G_i]$ is 55, 30, 45 or 63 for $i = 1, 2, 3$ or 4, respectively.

Lemma 5.7. We have $\mathcal{I}_1 = \{220, 240, 360, 504\}$.

Proof. We already know the inclusion $\mathcal{I}_1 \subseteq \{220, 240, 360, 504\}$. It thus suffices to show that the set $X_{G_i}(\mathbb{Q})$ is infinite for all $1 \leq i \leq 4$. So for a fixed $i \in \{1, 2, 3, 4\}$, it suffices to show that $X_{G_i}(\mathbb{Q})$ is non-empty, since it then becomes isomorphic to its Jacobian which we know has infinitely many rational points. By Proposition 3.2, it suffices to find a single elliptic curve E/\mathbb{Q} with $j_E \not\in \{0, 1728\}$ for which $\rho_{E, N}(\text{Gal}_\mathbb{Q})$ is conjugate to a subgroup of G_i.

Let E/\mathbb{Q} be a CM elliptic curve. Define $R := \text{End}(E)$; it is an order in the imaginary quadratic field $K := R \otimes \mathbb{Q}$. Take any odd prime ℓ that does not divide the discriminant of R. One can show that $\rho_{E, \ell}(\text{Gal}_\mathbb{Q})$ is contained in the normalizer of a Cartan subgroup $C \subseteq \text{GL}_2(\mathbb{Z}/\ell\mathbb{Z})$ isomorphic to $(\mathbb{Z}/\ell\mathbb{Z})^\times$, cf. [Ser97, Appendix A.5]. The Cartan group C is split if and only if ℓ splits in K.

Consider the CM curve E_1/\mathbb{Q} defined by $y^2 = x^3 - 11x + 14$; R is an order in $\mathbb{Q}(i)$ of discriminant -16. The primes 3, 7 and 11 are inert in $\mathbb{Q}(i)$ and 5 is split in $\mathbb{Q}(i)$. Therefore, $\rho_{E_1, 11}(\text{Gal}_\mathbb{Q})$, $\rho_{E_1, 15}(\text{Gal}_\mathbb{Q})$ and $\rho_{E_1, 21}(\text{Gal}_\mathbb{Q})$ are conjugate to subgroups of G_1, G_3 and G_4, respectively.

Consider the CM curve E_2/\mathbb{Q} defined by $y^2 + xy = x^3 - x^2 - 2x - 1$; R is an order in $\mathbb{Q}(\sqrt{-7})$ of discriminant -7. The primes 3 and 5 are inert in $\mathbb{Q}(\sqrt{-7})$. Therefore, $\rho_{E_2, 15}(\text{Gal}_\mathbb{Q})$ is conjugate to a subgroup of G_2. \qed

Remark 5.8. From our genus 1 computations, we find that S_1 has cardinality 163 which led to 805 total groups $G(N)$ that satisfied (a)–(d) with respect to some $\Gamma \in S_1$. We needed to determine the Jacobian of $X_{G(N)}$, up to isogeny, for 63 of these groups $G(N)$.

5.4. **Proof of Proposition 5.1.** In §5.2, we found that $\bigcup_{\Gamma \in S_0} \mathcal{I}(\Gamma) = \mathcal{I}_0$. By Lemma 5.7, we have

$$\left(\bigcup_{\Gamma \in S_1} \mathcal{I}(\Gamma) \right) \cap \mathcal{I}_0 = \bigcup_{\Gamma \in S_1} (\mathcal{I}(\Gamma) \cap \mathcal{I}_0) = \{220, 240, 360, 504\}.$$

Therefore, \mathcal{I} is equal to $\mathcal{I}_0 \cup \{220, 240, 360, 504\} = \mathcal{I}$.

6. **Proof of main theorems**

6.1. **Proof of Theorem 1.3.** The theorem follows immediately from Theorem 4.2 and Proposition 5.1.
6.2. Proof of Theorem 1.4.

Lemma 6.1. Let E/Q be a non-CM elliptic curve and suppose $\ell > 37$ is a prime for which $\rho_{E,\ell}$ is not surjective. Then $\ell \leq [\text{GL}_2(\hat{\mathbb{Z}}) : \rho_E(\text{Gal}_{\mathbb{Q}})]$.

Proof. From [Ser81, §8.4], we find that $\rho_{E,\ell}(\text{Gal}_{\mathbb{Q}})$ is contained in the normalizer of a Cartan subgroup of $\text{GL}_2(\mathbb{Z}/\ell\mathbb{Z})$. In particular, we have $[\text{GL}_2(\mathbb{Z}/\ell\mathbb{Z}) : \rho_{E,\ell}(\text{Gal}_{\mathbb{Q}})] \geq \ell(\ell - 1)/2 \geq \ell$. Therefore, $\ell \leq [\text{GL}_2(\mathbb{Z}/\ell\mathbb{Z}) : \rho_{E,\ell}(\text{Gal}_{\mathbb{Q}})] \leq [\text{GL}_2(\hat{\mathbb{Z}}) : \rho_E(\text{Gal}_{\mathbb{Q}})]$. \hfill \square

First suppose that there is a finite set J such that if E/Q is an elliptic curve with $j_E \notin J$, then $[\text{GL}_2(\hat{\mathbb{Z}}) : \rho_E(\text{Gal}_{\mathbb{Q}})] \in J$. There is thus an integer $c > 37$ such that for any non-CM E/Q, we have $[\text{GL}_2(\hat{\mathbb{Z}}) : \rho_E(\text{Gal}_{\mathbb{Q}})] \leq c$, this uses Serre’s theorem (and Lemma 2.3) to deal with the finite number of j-invariants of CM elliptic curves over \mathbb{Q}. By Lemma 6.1, we deduce that $\rho_{E,\ell}$ is surjective for all primes $\ell > c$; this gives Conjecture 1.2.

Now suppose that Conjecture 1.2 holds for some constant c. Let J be the finite set from Theorem 1.3 with this constant c. After possibly increasing J, we may assume that it contains the finite number of j-invariants of CM elliptic curves over \mathbb{Q}. Theorem 1.3 then implies that for any elliptic curve E/Q with $j_E \notin J$, we have $[\text{GL}_2(\hat{\mathbb{Z}}) : \rho_E(\text{Gal}_{\mathbb{Q}})] \in J$.

6.3. Proof of Theorem 1.5. First take any $n \geq 1$ so that J_n is infinite. Let E/Q be an elliptic curve with $j_E \in J_n$, equivalently, with $[\text{GL}_2(\hat{\mathbb{Z}}) : \rho_E(\text{Gal}_{\mathbb{Q}})] = n$. Lemma 6.1 implies that $\rho_{E,\ell}$ is surjective for all primes $\ell > \max\{37, n\}$. Let J be the set from Theorem 1.3 with $c := \max\{37, n\}$. Now take any elliptic curve E/Q with $j_E \in J_n - J$; note that $J_n - J$ is non-empty since J_n is infinite and J is finite. The representation $\rho_{E,\ell}$ is surjective for all $\ell > c$ and $j_E \notin J$, so $[\text{GL}_2(\hat{\mathbb{Z}}) : \rho_E(\text{Gal}_{\mathbb{Q}})]$ is an element of J by Theorem 1.3. Therefore, $n \in J$.

Now take any integer $n \in J$. To complete the proof of the theorem, we need to show that J_n is infinite. By Proposition 5.1, we have $n \in \mathcal{I}(\Gamma)$ for some congruence subgroup Γ of $\text{SL}_2(\mathbb{Z})$ of genus 0 or 1. From our computation of \mathcal{I}_0 in §5.2, we may assume that Γ has genus 0 when $n \notin \{220, 240, 360, 504\}$.

Denote the level of Γ by N_0. Let N be the integer $N_0, 4N_0$ or $2N_0$ when $v_2(N_0)$ is 0, 1 or at least 2, respectively. The integer N is not divisible by any prime $\ell > 13$ (if Γ has genus 0, this follows from the classification of genus 0 congruence subgroups in [CP03]; if Γ has genus 1, then we saw in §5.3 that $N \in \{11, 15, 21\}$).

Since $n \in \mathcal{I}(\Gamma)$, there is a subgroup $G(N)$ of $\text{GL}_2(\mathbb{Z}/N\mathbb{Z})$ that satisfies conditions (a), (b), (c), (d) and (e) of Definition 4.1 and also satisfies $n = [\text{SL}_2(\mathbb{Z}/N\mathbb{Z}) : G(N)] = 2/gcd(2, N)$, where $G(N)$ is the inverse image of $G(N)$ under the reduction map $\text{GL}_2(\mathbb{Z}/N\mathbb{Z}) \to \text{GL}_2(\mathbb{Z}/N\mathbb{Z})$. Let G be the inverse image of $G(N)$ under $\text{GL}_2(\hat{\mathbb{Z}}) \to \text{GL}_2(\mathbb{Z}/N\mathbb{Z})$.

Let m be the product of the primes $\ell \leq 13$; note that N divides some power of m. Let G_m be the image of G under the projection map $\text{GL}_2(\hat{\mathbb{Z}}) \to \text{GL}_2(\mathbb{Z}/m\mathbb{Z})$. Lemma 4.7 implies that there is a positive integer M, dividing some power of m, such that if H is an open subgroup of $G_m \subseteq \text{GL}_2(\mathbb{Z}/m\mathbb{Z})$, then H equals G_m if and only if $H(M) = G(M)$.

Take any proper subgroup $B \subseteq G(M)$ for which $\det(B) = (\mathbb{Z}/M\mathbb{Z})^\times$ and $-I \in B$. We have a morphism $\varphi_B : Y_B \to Y_{G(M)} = Y_{G(N)}$ of curves over \mathbb{Q} such that $\pi_B = \pi_{G(N)} \circ \varphi_B$. The morphism φ_B has degree $[G(M) : B] > 1$. Define $W := \bigcup_B \varphi_B(Y_B(\mathbb{Q}))$.

20
where B varies over the proper subgroups of $G(M)$ for which $\det(B) = (\mathbb{Z}/M\mathbb{Z})^\times$ and $-I \in B$. We have $W \subseteq Y_{G(N)}(\mathbb{Q})$.

Lemma 6.2. If E/\mathbb{Q} is a non-CM elliptic curve with $j_E \in \pi_{G(N)}(Y_{G(N)}(\mathbb{Q}) - W)$, then $\pm \rho_{E,M}(\text{Gal}_{\mathbb{Q}})$ is conjugate in $\text{GL}_2(\mathbb{Z}/M\mathbb{Z})$ to $G(M)$.

Proof. Fix a non-CM elliptic curve E/\mathbb{Q} with $j_E \in \pi_{G(N)}(Y_{G(N)}(\mathbb{Q}) - W) = \pi_{G(M)}(Y_{G(M)}(\mathbb{Q}) - W)$. There is a point $P \in Y_{G(Q)} - W$ for which $\pi_{G(M)}(P) = j_E$.

With notation as in §3, there is an isomorphism $\alpha : E[M] \cong (\mathbb{Z}/M\mathbb{Z})^2$ such that the pair $(E, [\alpha]_G)$ represents P. Since $j_E \notin \{0, 1728\}$, the automorphisms of $E_{/\mathbb{Q}}$ act on $E[N]$ by I or $-I$. By Lemma 3.1(ii) and $-I \in G(M)$, we have $\alpha \circ \sigma^{-1} \circ \alpha^{-1} \in G(M)$ for all $\sigma \in \text{Gal}_{\mathbb{Q}}$. We may assume that $\rho_{E,M}$ was chosen so that $\rho_{E,M}(\sigma) = \alpha \circ \sigma \circ \alpha^{-1}$ for all $\sigma \in \text{Gal}_{\mathbb{Q}}$. Since $-I \in G(M)$, we deduce that $B := \pm \rho_{E,M}(\text{Gal}_{\mathbb{Q}})$ is a subgroup of $G(M)$. Note that $\det(B) = (\mathbb{Z}/M\mathbb{Z})^\times$ and $-I \in B$.

Suppose that B is a proper subgroup of $G(M)$. We have $\alpha \circ \sigma^{-1} \circ \alpha^{-1} \in B$ for all $\sigma \in \text{Gal}_{\mathbb{Q}}$, so $(E, [\alpha]_B)$ represents a point $P' \in Y_B(\mathbb{Q})$ by Lemma 3.1(ii). We have $\varphi_B(P') = P$, so $P \in W$. This contradicts $P \in Y_{G(Q)} - W$ and hence $B = G(M)$. □

Lemma 6.3. If E/\mathbb{Q} is an elliptic curve with $j_E \in \pi_{G(N)}(Y_{G(N)}(\mathbb{Q}) - W)$, then

$$[\text{GL}_2(\hat{\mathbb{Z}}) : \rho_E(\text{Gal}_{\mathbb{Q}})] = n$$

or $\rho_{E,\ell}$ is not surjective for some prime $\ell > 13$.

Proof. Let E/\mathbb{Q} be an elliptic curve with $j_E \in \pi_{G(N)}(Y_{G(N)}(\mathbb{Q}) - W)$ such that $\rho_{E,\ell}$ is surjective for all $\ell > 13$. We need to show that $[\text{GL}_2(\hat{\mathbb{Z}}) : \rho_E(\text{Gal}_{\mathbb{Q}})] = n$. The curve E is non-CM since $\rho_{E,\ell}$ is surjective for $\ell > 13$. Define the subgroup

$$H := \hat{\mathbb{Z}}^\times \cdot \rho_E(\text{Gal}_{\mathbb{Q}})$$

of $\text{GL}_2(\hat{\mathbb{Z}})$. By Lemma 6.2, we may assume that $\pm \rho_{E,M}(\text{Gal}_{\mathbb{Q}}) = G(M)$. Since $G(M)$ contains the scalar matrices in $\text{GL}_2(\mathbb{Z}/M\mathbb{Z})$, we have $H(M) = G(M)$ and an inclusion $H \subseteq G$. In particular, $H' \subseteq G'$.

Let m_0 be the product of the primes ℓ for which $\ell \leq 5$ or for which $\rho_{E,\ell}$ is not surjective. Let H_m and H'_m be the image of H under the projection to $\text{GL}_2(\mathbb{Z}_m)$ and $\text{GL}_2(\mathbb{Z}_m)$, respectively. The integer m_0 divides m since $\rho_{E,\ell}$ is surjective for all $\ell > 13$.

Lemma 4.5 applied with G and m replaced by H and m_0, respectively, implies that $H' = H'_m \times \prod_{\ell|m_0} \text{SL}_2(\mathbb{Z}_\ell)$. Therefore, we have

$$H' = H'_m \times \prod_{\ell|m} \text{SL}_2(\mathbb{Z}_\ell).$$

Since $H' \subseteq G' \subseteq \text{SL}_2(\hat{\mathbb{Z}})$, we deduce that

$$G' = G'_m \times \prod_{\ell|m} \text{SL}_2(\mathbb{Z}_\ell).$$

We have $H_m \subseteq G_m$ and $H(M) = G(M)$, and thus $H_m = G_m$ by our choice of M. Therefore, $H'_m = G'_m$ and hence $H' = G'$. The groups H and $\rho_E(\text{Gal}_{\mathbb{Q}})$ have the same commutator subgroup, so by Proposition 2.1, we have

$$[\text{GL}_2(\hat{\mathbb{Z}}) : \rho_E(\text{Gal}_{\mathbb{Q}})] = [\text{SL}_2(\hat{\mathbb{Z}}) : H'] = [\text{SL}_2(\hat{\mathbb{Z}}) : G'].$$

It remains to show that $[\text{SL}_2(\hat{\mathbb{Z}}) : G'] = n$. We have $G = G_N \times \prod_{\ell|N} \text{GL}_2(\mathbb{Z}_\ell)$, so $G' = G'_N \times \prod_{\ell|N} \text{GL}_2(\mathbb{Z}_\ell)'$. By Lemma 4.11, the index $[\text{SL}_2(\mathbb{Z}_\ell) : \text{GL}_2(\mathbb{Z}_\ell)]$ is 1 or 2 when $\ell \neq 2$ or $\ell = 2$, and so $[\text{SL}_2(\hat{\mathbb{Z}}) : G'] = n$. □
respectively. Therefore,
\[|\text{SL}_2(\mathbb{Z}) : G'| = |\text{SL}_2(\mathbb{Z}_N) : G'_N| \prod_{\ell \in \mathbb{N}} |\text{SL}_2(\mathbb{Z}_\ell) : \text{GL}_2(\mathbb{Z}_\ell)'| = |\text{SL}_2(\mathbb{Z}_N) : G'_N| \cdot 2/\gcd(2, N) = n. \]

Recall that a subset \(S \) of \(\mathbb{P}^1(\mathbb{Q}) \) has \textit{density} \(\delta \) if
\[\frac{|\{P \in S : h(P) \leq x\}|}{|\{P \in \mathbb{P}^1(\mathbb{Q}) : h(P) \leq x\}|} \to \delta \]
as \(x \to \infty \), where \(h \) is the height function. If \(X_{G(N)} \) has genus 0, then it is isomorphic to \(\mathbb{P}^1(\mathbb{Q}) \) (from our assumptions on \(G(N) \), the curve \(X_{G(N)} \) has infinitely many \(\mathbb{Q} \)-points). Choosing such an isomorphism \(X_{G(N)} \cong \mathbb{P}^1(\mathbb{Q}) \) allows us to define the density of a subset of \(X_{G(N)}(\mathbb{Q}) \); the existence and value of the density does not depend on the choice of isomorphism.

\textbf{Lemma 6.4.} There is an infinite subset \(S \) of \(Y_{G(N)}(\mathbb{Q}) \), with positive density if \(X_{G(N)} \) has genus 0, such that if \(E/\mathbb{Q} \) is an elliptic curve with \(j_E \in \pi_{G(N)}(S) \), then \(\rho_{E, \ell} \) is surjective for all \(\ell > 13 \).

\textit{Proof.} We claim that for any place \(v \) of \(\mathbb{Q} \), the set \(X_{G(N)}(\mathbb{Q}) \) has no isolated points in \(X_{G(N)}(\mathbb{Q}_v) \), i.e., there is no open subset \(U \) of \(X_{G(N)}(\mathbb{Q}_v) \) with respect to the \(v \)-adic topology, for which \(U \cap X_{G(N)}(\mathbb{Q}) \) consists of a single point. If \(X_{G(N)} \) has genus 0, then the claim follows since no point in \(\mathbb{P}^1(\mathbb{Q}) \) is isolated in \(\mathbb{P}^1(\mathbb{Q}_v) \). Now consider the case where \(X_{G(N)} \) has genus 1. If one point of \(X_{G(N)}(\mathbb{Q}) \) was isolated in \(X_{G(N)}(\mathbb{Q}_v) \), then using the group law of \(X_{G(N)}(\mathbb{Q}) \) (by first fixing a rational point), we find that every point is isolated. So suppose that for each \(P \in X_{G(N)}(\mathbb{Q}) \), there is an open subset \(U_P \subseteq X_{G(N)}(\mathbb{Q}_v) \) such that \(U_P \cap X_{G(N)}(\mathbb{Q}) = \{P\} \). The sets \(\{U_P\}_{P \in X_{G(N)}(\mathbb{Q})} \) along with the complement of the closure of \(X_{G(N)}(\mathbb{Q}) \) in \(X_{G(N)}(\mathbb{Q}_v) \) form an open cover of \(X_{G(N)}(\mathbb{Q}_v) \) that has no finite subcover. This contradicts the compactness of \(X_{G(N)}(\mathbb{Q}_v) \) and proves the claim.

Since \(\pi_{G(N)} : Y_{G(N)}(\mathbb{R}) \to \mathbb{R} \) is continuous, the above claim with \(v = \infty \) implies that the set \(\pi_{G(N)}(Y_{G(N)}(\mathbb{Q})) \) is not a subset of \(\mathbb{Z} \). Choose a rational number \(j \in \pi_{G(N)}(Y_{G(N)}(\mathbb{Q})) \) that is \textit{not} an integer.

There is a prime \(p \) such that \(v_p(j) \) is negative; set \(e := -v_p(j) \). Let \(\mathcal{U} \) be the set of points \(P \in Y_{G(N)}(\mathbb{Q}_p) \) for which \(v_{G(N)}(P) \neq 0 \) and \(v_p(\pi_{G(N)}(P)) = -e \); it is an open subset of \(Y_{G(N)}(\mathbb{Q}_p) \). Define \(S := \mathcal{U} \cap Y_{G(N)}(\mathbb{Q}) = \mathcal{U} \cap X_{G(N)}(\mathbb{Q}) \); it is non-empty by our choice of \(e \) (in particular, \(\mathcal{U} \) is non-empty). The set \(S \) is infinite since otherwise there would be an isolated point of \(X_{G(N)}(\mathbb{Q}) \) in \(X_{G(N)}(\mathbb{Q}_v) \). If \(X_{G(N)} \) has genus 0, then \(S \) clearly has positive density.

Now take any elliptic curve \(E/\mathbb{Q} \) with \(j_E \in \pi_{G(N)}(S) \) and any prime \(\ell > \max\{37, e\} \); it is non-CM since its \(j \)-invariant is not an integer. We claim that \(\rho_{E, \ell} \) is surjective. The lemma will follow from the claim after using Proposition 4.9 to remove a finite subset from \(S \) to ensure the surjectivity of \(\rho_{E, \ell} \) for \(13 < \ell \leq \max\{37, e\} \).

Suppose that \(\rho_{E, \ell} \) is not surjective. From Lemmas 16, 17 and 18 in [Ser81], we find that \(\rho_{E, \ell}(\text{Gal}_{\mathbb{Q}}) \) is contained in the normalizer of a Cartan subgroup of \(\text{GL}_2(\mathbb{Z}/\ell\mathbb{Z}) \). In particular, the order of \(\rho_{E, \ell}(\text{Gal}_{\mathbb{Q}}) \) is not divisible by \(\ell \).

We have \(v_p(j_E) = -e < 0 \) since \(j_E \in \pi_{G(N)}(S) \). Let \(E'/\mathbb{Q}_p \) be the Tate curve with \(j \)-invariant \(j_E \); see [Ser98, IV Appendix A.1] for details. From the proposition in [Ser98, IV Appendix A.1.5] and our assumption \(\ell > e \), we find that \(\rho_{E', \ell}(\text{Gal}_{\mathbb{Q}_p}) \) contains an element of order \(\ell \). Since \(E' \) and \(E \) have the same \(j \)-invariant, they become isomorphic over some quadratic extension of \(\mathbb{Q}_p \). Since \(\ell \) is odd, we deduce that \(\rho_{E, \ell}(\text{Gal}_{\mathbb{Q}}) \) contains an element of order \(\ell \). This contradicts that the order of \(\rho_{E, \ell}(\text{Gal}_{\mathbb{Q}}) \) is not divisible by \(\ell \). Therefore, \(\rho_{E, \ell} \) is surjective as claimed.

Let \(W \) and \(S \) be the sets from Lemma 6.3 and Lemma 6.4, respectively. Take any elliptic curve \(E/\mathbb{Q} \) with \(j_E \in \pi_{G(N)}(S - W) \). Lemma 6.4 implies that the representation \(\rho_{E, \ell} \) is surjective for all

22
\(\ell > 13. \) Lemma 6.3 then implies that \([\text{GL}_2(\hat{\mathbb{Z}}) : \rho_E(\text{Gal}_\mathbb{Q})] = n. \) Therefore, \(J_n \supseteq \pi_{G(N)}(S - W). \) So to prove that \(J_n \) is infinite, it suffices to show that the set \(S - W \) is infinite.

First suppose that \(X_{G(N)} \) has genus 0. The set \(W \) is a thin subset of \(X_{G(N)}(\mathbb{Q}) \cong \mathbb{P}^1(\mathbb{Q}) \) in the language of [Ser97, §9.1]; this uses that the union defining \(W \) is finite and that the morphisms \(\varphi_B \) are dominant with degree at least 2. From [Ser97, §9.7], we find that \(W \) has density 0. Since \(S \) has positive density, we deduce that \(S - W \) is infinite.

Finally suppose that \(X_{G(N)} \) has genus 1. Since \(S \) is infinite, it suffices to show that \(W \) is finite. So take any proper subgroup \(B \) of \(G(M) \) satisfying \(\det(B) = (\mathbb{Z}/M\mathbb{Z})^\times \) and \(-I \in B. \) It thus suffices to show that the set \(X_B(\mathbb{Q}) \) is finite. The morphism \(\varphi_B : X_B \to X_{G(N)} \) is dominant, so \(X_B \) has genus at least 1. If \(X_B \) has genus greater than 1, then \(X_B(\mathbb{Q}) \) is finite by Faltings' theorem. We are left to consider the case where \(X_B \) has genus 1. Let \(\Gamma_B \) be the congruence subgroup associated to \(X_B; \) it has genus 1. We have \(\Gamma_B \subseteq \Gamma \) and hence the level of \(\Gamma_B \) is divisible by \(N_0. \) We have \([\text{SL}_2(\mathbb{Z}) : \Gamma_B] = [\text{GL}_2(\mathbb{Z}/M\mathbb{Z}) : B] \) and hence \(b := [\text{GL}_2(\mathbb{Z}/M\mathbb{Z}) : G(M)] = [\text{GL}_2(\mathbb{Z}/N\mathbb{Z}) : G(N)] \) is a proper divisor of \([\text{SL}_2(\mathbb{Z}) : \Gamma_B]. \) From the computations in §5.3, we may assume that \(G(N) \) is equal to one of the groups denoted \(G_1, G_2, G_3 \) or \(G_4. \) In particular, we have \((N_0, b) \in \{(11, 55), (15, 30), (15, 45), (21, 63)\}. \) From the classification in [CP03], we find that there are no genus 1 congruence subgroups of \(\text{SL}_2(\mathbb{Z}) \) containing \(-I \) whose level is divisible by \(N_0 \) and whose index in \(\text{SL}_2(\mathbb{Z}) \) has \(b \) as a proper divisor. So the case where \(X_B \) has genus 1 does not occur and we are done.

References

[BCP97] Web Bosma, John Cannon, and Catherine Playoust, *The Magma algebra system. I. The user language*, J. Symbolic Comput. 24 (1997), no. 3–4, 235–265. Computational algebra and number theory (London, 1993).

[Cen16] Tommaso Giorgio Centeleghe, *Integral Tate modules and splitting of primes in torsion fields of elliptic curves*, Int. J. Number Theory 12 (2016), no. 1, 237–248. MR3455277

[Cre] J. E. Cremona, *Elliptic Curve Data* (webpage). http://johncremona.github.io/ecdata/.

[CP03] C. J. Cummins and S. Pauli, *Congruence subgroups of PSL(2, Z) of genus less than or equal to 24*, Experiment. Math. 12 (2003), no. 2, 243–255. MR2016709

[DR73] P. Deligne and M. Rapoport, *Les schémas de modules de courbes elliptiques*, Inst. Hautes Études Sci. Publ. Math. 24 (1961–63), 143–221. Distribution of Frobenius automorphisms in \(\text{GL}_2 \)-extensions, Lecture Notes in Mathematics, Vol. 504, Springer-Verlag, Berlin, 1976. Distribution of Frobenius automorphisms in \(\text{GL}_2 \)-extensions of the rational numbers. MR0568299 (58 #27900)

[Ser72] Jean-Pierre Serre, *Propriétés galoisiennes des points fini des courbes elliptiques*, Invent. Math. 15 (1972), no. 4, 259–331. MR0387283

[Ser81] ______, *Quelques applications du théorème de densité de Chebotarev*, Inst. Hautes Études Sci. Publ. Math. 54 (1981), 323–401. MR644559

[Ser89] ______, *Abelian l-adic representations and elliptic curves*, Second, Advanced Book Classics, Addison-Wesley Publishing Company Advanced Book Program, Redwood City, CA, 1989. With the collaboration of Willem Kuyk and John Labute. MR1043865

[Ser97] ______, *Lectures on the Mordell-Weil theorem*, Third, Aspects of Mathematics, Friedr. Vieweg & Sohn, Braunschweig, 1997. Translated from the French and edited by Martin Brown from notes by Michel Waldschmidt, With a foreword by Brown and Serre. MR1757192

[Sut15] Andrew Sutherland, *Computing images of Galois representations attached to elliptic curves*, 2015. arXiv:1504.07618 [math.NT].

[Vé74] Jacques Vélu, *Les points rationnels de \(X_0(37) \)*, Journées Arithmétiques (Grenoble, 1973), 1974, pp. 169–179. Bull. Soc. Math. France Mém., 37. MR0366930 (51 #3176)
[Zyw10] David Zywina, *Elliptic curves with maximal Galois action on their torsion points*, Bull. London Math. Soc. 42 (2010), no. 5, 811–826. ↑4.4

Department of Mathematics, Cornell University, Ithaca, NY 14853, USA

Email address: zywina@math.cornell.edu

URL: http://www.math.cornell.edu/~zywina