Review

Age-related risk factors and severity of SARS-CoV-2 infection: a systematic review and meta-analysis

MOHAMMAD MESHBAHUR RAHMAN1, BADHAN BHATTACHARJEE2, ZAKI FARHANA3, MOHAMMAD HAMIDUZZAMAN4, MUHAMMAD ABDUL BAKER CHOWDHURY5, MOHAMMAD SOROW AR HOSSAIN1, MAHBUBUL H. SIDDIQUE3, MD. ZIAUL ISLAM4, ENAYETUR RAHEEM1, MD. JAMAL UDDIN2

1 Biomedical Research Foundation, Dhaka, Bangladesh; 2 Department of Biotechnology, BRAC University, Dhaka, Bangladesh; 3 Department of Community Medicine, National Institute of Preventive and Social Medicine, Mohakhali, Dhaka, Bangladesh; 4 College of Health, Medicine & Wellbeing, University of Newcastle, New South Wales, Australia; 5 Department of Emergency Medicine, University of Florida College of Medicine, USA; 6 Department of Statistics (Biostatistics and Epidemiology), Shahjalal University of Science & Technology, Sylhet, Bangladesh

Keywords
COVID-19 pandemic • Symptoms and comorbidities • Systematic review • Age-related risk factors • Correlation analysis

Objectives. We aimed to estimate the prevalence of reported symptoms and comorbidities, and investigate the factors associated with age of the SARS-CoV-2 infected patients.

Methods. We performed a systematic review with meta-analysis (PROSPERO registration: CRD42020182677) where the databases (PubMed, SCOPUS, EMBASE, WHO, Semantic Scholar, and COVID-19 Primer) were searched for clinical studies published from January to April, 2020. Initially, the pooled prevalence of symptoms and comorbidity of COVID-19 patients were estimated using random effect model and the age-related factors were identified performing multivariate analysis [factor analysis].

Results. Twenty-nine articles with 4,884 COVID-19 patients were included in this study. Altogether, we found 33 symptoms and 44 comorbidities where the most frequent 19 symptoms and 11 comorbidities were included in the meta-analysis. The fever (84%), cough/dry cough (61%), and fatigue/weakness (42%) were found more prevalent while acute respiratory distress syndrome, hypertension and diabetes were the most prevalent comorbid condition. The factor analysis showed positive association between a cluster of symptoms and comorbidities with patients’ age. The symptoms comprising fever, dyspnea/shortness of breath, nausea, vomiting, abdominal pain, dizziness, anorexia and pharyngalgia; and the comorbidities including diabetes, hypertension, coronary heart disease, COPD/lung disease and ARDS were the factors positively associated with COVID-19 patient’s age.

Conclusion. As an unique effort, this study found a group of symptoms (fever, dyspnea/shortness of breath, nausea, vomiting, abdominal pain, dizziness, anorexia and pharyngalgia) and comorbidities (diabetes, hypertension, coronary heart disease, COPD/lung disease and ARDS), associated with the age of COVID-19 infected patients.

Introduction

The COVID-19 pandemic caused by Severe Acute Respiratory Virus 2 (SARS-CoV-2) is a serious public health crisis in the history of humanity. Originated in Wuhan, China, SARS-CoV-2 has spread to every corner of the world within a few months. As of March 22, 2021, over 123 million confirmed cases and 2.72 million deaths have been reported from over 219 countries [1]. As the virus is moving fast, various clinical spectrum and differential clinical outcomes are unfolding across different geographic locations. Several symptoms have been reported which includes fever, cough, myalgia, sputum production, headache, hemoptysis, diarrhea, and dyspnea [2]. The severity of COVID-19 has been reported to be linked with various host factors including diabetes, hypertension, cardiovascular disease, chronic obstructive pulmonary disease (COPD), malignancy, and chronic liver disease [2]. While susceptibility to COVID-19 covers all age groups, people with compromised immune systems or having comorbidity are at a higher risk [3, 4]. A few review studies investigated symptoms and comorbidities of the COVID-19 infected patients with a shorter time-frame [3, 5-8]. The mortality rate is high in older COVID-19 patients with organ dysfunctions comprising shock, acute respiratory distress syndrome (ARDS), acute cardiac injury, and acute kidney injury [9]. However, there is a scarce information regarding the relationship between symptoms, comorbidities, and age of the COVID-19 patients. The objective of this study was to estimate the prevalence of all reported symptoms and comorbidities, and then identified the risk factors associated with age of COVID-19 infected patients.

Methods

The PRISMA-P-2009 guidelines was followed in our systematic review and meta-analysis (PROSPERO registration: CRD42020182677) [10].

DATA SOURCES AND SEARCH STRATEGY
The major databases, such as PubMed, SCOPUS, EMBASE, WHO, Semantic Scholar, and COVID-19
M.M. RAHMAN ET AL.

The quality of each study was assessed by ZF using Joanna Briggs Institute (JBI) guidelines [12]. A set of eight questions was used for the quality assessment. Random effect model was used to estimate the prevalence of all reported symptoms and comorbidities in the COVID-19 patients. Heterogeneity was assessed using the Cochran Q and the I² statistic [13, 14]. We performed Egger test (p < 0.001) to examine the presence of publication bias and small-study effects. Multivariate analysis [multivariable factor analysis (MFA)] was performed to examine the correlation/association among symptoms and comorbidities with the patients’ age [15, 16]. All statistical analyses were conducted by Stata version 15 (Stata Corp, College Station, TX) using the metaprop, metabias; and R-programming language using the FactoMineR package. Supplementary Table S1 have provided in the supplementary file. Please see supplementary file.

Results

A total of 799 articles (databases: 791, other sources: 8) were retrieved. Of them, 403 articles were removed due to duplication and irrelevance. Furthermore, 303 review articles, editorials, case reports, and irrelevant study populations were excluded. Fifty-three articles were excluded as they failed to meet all inclusion criteria. Finally, eleven articles were excluded due to not peer-reviewed and small sample sizes, resulting in the selection of 29 articles for our review. The PRISMA flow diagram visualizes the screening process of selected studies (Fig. 1). Supplementary Table S1 summarizes the characteristics of the selected studies and 83% of selected studies for this meta-analysis were reported from China. Five studies were conducted in the USA, India, Spain, and South Korea. The overall sample size was 4,884 COVID-19 patients, with an age range of 10 to 92 years. Among the patients, 2,675 (55%) were male, and 2,208 (45%) were female. The sample size ranged from 12 to 1,099 patients, where most studies (79%) had a retrospective research design. Altogether, 33 symptoms and 43 comorbidities were found. Almost all the studies reported fever (proportion of
patients ranging from 25 to 100%), cough/dry cough (22-92%) and myalgia or muscle ache (3-63%) as common symptoms of COVID-19. Other reported symptoms were: headache (3-66%); diarrhea (3-48%); fatigue/weakness (9-85%); dyspnea/shortness of breath (1-88%); sputum production or expectoration (4-42%); vomiting (1-19%); nausea (4-27%); chest tightness (7-55%); and sore throat (5-32%). For the comorbidities, about 93% and 86% of studies reported two comorbidities: diabetes (2 to 35%) and hypertension (8-50%). Other prevalent comorbidities were chronic obstructive pulmonary disease (COPD)/lung infection (0.2-38%); cardiovascular disease (5-23%); chronic liver disease (1-29%); malignancy (1-7%); coronary heart disease (1-33%); cerebrovascular disease (1-19%); chronic renal disease (1-8%); chronic kidney disease (1-29%); and Acute respiratory distress syndrome (ARDS) (17-100%). The less reported symptoms and comorbidities were presented in Supplementary Table S1.

Meta-analysis of symptoms and comorbidities

We meta-analysed 19 symptoms and 11 comorbidities, using random effect models that were reported in at least five selected articles (Tab. II and Supplementary Figs S2-S31). Meta-analysis showed a higher prevalence of fever (pooled prevalence: 84, 95% confidence interval (CI): 80-88%) and cough/dry cough (61, 95% CI: 55-67%); followed by fatigue/weakness (42, 95% CI: 34-51%); dyspnea/shortness of breath (39, 95% CI: 27-51%); headache and diarrhea (12, 95% CI: 8-17%); sore throat (15, 95% CI: 11-20%); myalgia/muscle ache and sputum production/expectoration (24, 95% CI: 18-30%); rhinorrhea (13, 95% CI: 4-26%); chest tightness (25, 95% CI: 15-35%).
CI: 15-31%); and anorexia (26, 95% CI: 16-38%). The less prevalent symptoms were: chest pain (3%), nausea (8%), vomiting (6%), abdominal pain (4%), dizziness (5%), pharyngalgia (7%), and hemoptysis (2%).

The most prevalent comorbidities were ARDS (61, 95% CI: 15-97%), hypertension (23, 95% CI: 18-28%), and diabetes (12, 95% CI: 9-15%), followed by cardiovascular disease (10, 95% CI: 7-13%); coronary heart disease (7, 95% CI: 3-12%); cerebrovascular disease (6, 95% CI: 2-08%); COPD/lung disease (3, 95% CI: 02-50%); chronic liver disease (05, 95% CI: 03-07%); chronic Renal disease (0.01, 95% CI: 00%-03%); chronic Kidney disease (05, 95% CI: 02-10%); and malignancy (03, 95% CI: 02-04%).

There was a high heterogeneity (I² ranged from 85 to 97%, Cochran Q-statistic p < 0.001) in all the prevalence of symptoms, except chest pain (I² = 0%, Cochran Q-statistic p < 0.95); abdominal pain (I² = 22.89%, Cochran Q-statistic p < 0.26); dizziness (I² = 64.21%, Cochran Q-statistic p < 0.002); and haemoptysis (I² = 63.48%, Cochran Q-statistic p < 0.01). In the case of comorbidities, the heterogeneity was found higher in almost all the comorbidities (I² ranged from 68.06 to 98.01%, Cochran Q-statistic p < 0.001) (Tab. II).

Symptoms and comorbidity factors associated with age of COVID-19 infected Patients

Nineteen symptoms and 11 comorbidities were categorized into: symptom group and comorbidity group to determine the association between symptoms/comorbidities and age of the COVID-19 patients (Fig. 2). In factor analysis, the correlation circle represented between/within-group integration with the patients’ age. The longer vectors indicated more influential than others, and the vectors that were close to each other with the same direction indicated a highly positive association. Vectors that were the opposite direction showed a negative association, and the vectors with an almost 90-degree angle demonstrated no association. The first principal component showed 31.59% variation and the second one showed 20.45% variation in the dataset.

Tab. II. Overall prevalence summary for clinical symptoms and comorbidities of the COVID-19 patients.

Clinical characteristics (symptoms)	No. reports	No. patients	Pooled prevalence	Test for Heterogeneity	Egger’s test
				I² (2%)	P-value
Fever	29 (100%)	4,115	0.84 (0.80-0.88)	90.670 < 0.001	< 0.001
Cough/dry cough	29 (100%)	3,039	0.61 (0.55-0.67)	93.400 < 0.001	0.382
Fatigue/Weakness	21 (72.41%)	1,627	0.42 (0.34-0.51)	96.320 < 0.001	0.107
Dyspnoea/shortness of breath	18 (62.06%)	920	0.39 (0.27-0.51)	97.370 < 0.001	< 0.001
Headache	22 (72.86%)	448	0.12 (0.09-0.16)	89.980 < 0.001	0.109
Diarrhoea	22 (72.86%)	474	0.12 (0.08-0.17)	95.720 < 0.001	0.004
Sore throat	9 (31.03%)	348	0.15 (0.11-0.20)	84.990 < 0.001	0.266
Myalgia/muscle ache	25 (86.20%)	925	0.24 (0.18-0.30)	95.000 < 0.001	< 0.001
Rhinorrhoea	5 (17.24%)	48	0.15 (0.04-0.26)	88.010 < 0.001	0.088
Sputum production/expectoration	15 (51.72%)	1,066	0.24 (0.19-0.30)	92.310 < 0.001	0.956
Chest tightness	11 (37.93%)	462	0.25 (0.15-0.31)	88.440 < 0.001	0.527
Chest pain	5 (17.24%)	15	0.03 (0.01-0.04)	0.000 < 0.95	0.878
Nausea	12 (41.37%)	238	0.08 (0.04-0.12)	91.780 < 0.001	0.023
Vomiting	14 (48.27%)	209	0.06 (0.03-0.09)	88.330 < 0.001	0.096
Abdominal pain	6 (20.68%)	42	0.04 (0.03-0.06)	22.890 < 0.26	0.431
Dizziness	6 (20.68%)	71	0.05 (0.03-0.08)	64.21 < 0.002	0.632
Anorexia	7 (24.13%)	539	0.26 (0.16-0.38)	94.470 < 0.001	< 0.001
Pharyngalgia	6 (20.68%)	86	0.07 (0.04-0.13)	88.050 < 0.001	0.017
Haemoptysis	7 (24.13%)	47	0.02 (0.01-0.04)	63.480 < 0.01	0.005

Comorbidity					
Diabetes	27 (93.10%)	539	0.12 (0.09-0.15)	83.09 < 0.001	0.009
Hypertension	25 (86.20%)	1,096	0.25 (0.18-0.28)	93.24 < 0.001	0.149
Cardiovascular disease	15 (51.72%)	212	0.1 (0.07-0.13)	73.96 < 0.001	0.031
Coronary heart disease	10 (34.48)	141	0.07 (0.03-0.12)	92.21 < 0.001	0.007
Cerebrovascular disease	10 (34.48)	100	0.06 (0.02-0.08)	90.77 < 0.001	0.004
COPD/lung disease	21 (72.41%)	136	0.03 (0.02-0.05)	86.67 < 0.001	< 0.001
Chronic liver disease	15 (51.72%)	96	0.03 (0.02-0.05)	86.67 < 0.001	< 0.001
Chronic renal disease	9 (31.03%)	32	0.01 (0.00-0.03)	54.65 < 0.001	0.005
Chronic kidney disease	6 (20.68%)	41	0.05 (0.02-0.10)	86.69 < 0.001	0.056
Malignancy	15 (51.72%)	82	0.03 (0.02-0.04)	68.06 < 0.001	< 0.001
ARDS**	4 (15.79%)	111	0.61 (0.15-0.97)	98.01 < 0.001	0.301

** ARDS reported in four studies and we include this study into our analysis because it showed higher prevalence rate.
In symptom group, fever, dyspnea/shortness of breath, nausea, vomiting, abdominal pain, dizziness, anorexia, and pharyngalgia were found positively associated with the COVID-19 patients’ age. In contrast, sore throat, headache, rhinorrhea, myalgia/muscle ache, fatigue, and hemoptysis were negatively associated with age. Similarly, in the comorbidity group, diabetes, hypertension, coronary heart disease, COPD/lung disease, and ARDS were in the same direction and positively associated with the age of the COVID-19 infected patients. The symptoms like chest tightness/pain and the comorbidities, including chronic liver and kidney diseases, showed no association with the patients’ age.

Considering group integration, the fever, dyspnea/shortness of breath, dizziness, pharyngalgia, and anorexia in the symptom group were positively associated with diabetes, ARDS, and kidney, cardiovascular, and liver diseases in comorbidity group. The symptoms like diarrhea, nausea, vomiting, and abdominal pain were positively associated with hypertension, coronary heart disease, and COPD/lung disease. The symptoms of sore throat, headache, rhinorrhea, myalgia/muscle ache, fatigue, and hemoptysis were positively associated with cerebrovascular disease (Fig. 2).

Table III summarizes the quality assessment of the selected studies. In 16 (55%) studies, participant recruitment method was appropriate, while the method was unclear in 45% studies. Thirteen (45%) studies had a sample size of more than 100, and about 96% of studies reported the subjects and design in detail. Validated methods were used in all studies, where the measurement was reliable, and the response rate was 100% (Tab. III).

The Egger test of symptoms – fever, dyspnea/shortness of breath, diarrhea, myalgia/muscle ache, nausea, anorexia, pharyngalgia, and hemoptysis – were found significant (p < 0.05), which suggested the presence of small-study effects. The comorbidities – diabetes, cardiovascular disease, cerebrovascular disease, COPD/lung disease, chronic liver disease, chronic renal disease, chronic kidney disease, and malignancy were found significant (p < 0.05) by the Egger’s test, that recommended the presence of small-study effects.

Discussion

We aimed to estimate the prevalence of all reported symptoms and comorbidities, and investigate the factors associated with age of patients tested positive in COVID-19. In our selected 29 studies, the ratio
Tab. III. Quality assessment of the selected studies.

Authors	Were study participants sampled in an appropriate way?	Was the sample size adequate?	Were the study subjects and the setting described in detail?	Were the data analysis conducted with sufficient coverage of the identified sample?	Were valid methods used for the identification of the condition?	Were the condition measured in a standard, reliable way for all participants?	Was there appropriate statistical analysis?	Was there an appropriate response rate, and if not, was the low response rate managed appropriately?
Wan et al. [17]	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Zhang et al. [18]	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Xu et al. [19]	Not Clear	No	Yes	Yes	Yes	Yes	Yes	Yes
Zhu et al. [20]	Not Clear	No	Yes	Yes	Yes	Yes	Yes	Yes
Chen et al. [21]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes
Liu et al. [22]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes
Chen et al. [23]	Not Clear	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Mo et al. [24]	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Liu et al. [25]	Not Clear	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Jin et al. [26]	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Wang et al. [27]	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Yuan et al. [28]	Not Clear	No	Yes	Yes	Yes	Yes	Yes	Yes
Guan et al. [29]	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Liu et al. [30]	Not Clear	No	Yes	Yes	Yes	Yes	Yes	Yes
Zhou et al. [31]	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Huang et al. [32]	Not Clear	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Chen et al. [33]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes
Du et al. [34]	Not clear	No	Yes	Yes	Yes	Yes	Yes	Yes
Xu et al. [35]	Yes	No	Yes	Yes	Yes	Yes	Yes	Not Clear
Goyal et al. [36]	Not Clear	Yes	Yes	Yes	Yes	Yes	Not Clear	Yes
Barrasa et al. [37]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes
Yan et al. [38]	Yes	No	Not Clear	Yes	Yes	Yes	Yes	Yes
Gupta et al. [39]	Not Clear	No	Yes	Yes	Yes	Yes	No	Yes
Yang et al. [40]	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Han et al. [41]	Not Clear	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Kim et al. [42]	Yes	No	Yes	Yes	Yes	Yes	No	Yes
Wang et al. [43]	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes
Shi et al. [44]	Not Clear	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Yang et al. [45]	Not Clear	No	Yes	Yes	Yes	Yes	Yes	Yes
of infection was reported higher in males than in females (100:82.5), and this result is consistent with previous studies [2, 5, 27, 45]. It is generally assumed that males are more likely to be infected by bacteria and viruses than females, because of the women’s robust innate and adaptive immune responses [3, 46]. Moreover, males are more vulnerable to infectious disease because of different patterns of occupation, social communication, and lifestyle than females. Furthermore, in many developing countries, women are housewives who stay at home and have little contact with others [47].

We found 33 symptoms and 43 comorbidities in the studies, and our meta-analysis included most reported 19 symptoms and 11 comorbidities. Fever, cough/dry cough, fatigue, dyspnea, anorexia, chest tightness, myalgia, sore throat, rhinorrhea, headache, and diarrhea were highly prevalent symptoms where the others symptoms were found rarely. All studies reported fever (84%) and cough/dry cough (61%) as symptoms consistent with relevant studies across the countries [19, 23, 25, 48]. Previous studies reported hypertension as the most common comorbidity [3, 6, 7], but our study suggests three major comorbidities – acute respiratory distress syndrome (61%), hypertension (23%), and diabetes (12%). Acute respiratory distress syndrome was found a higher prevalence rate (61%) as reported in three studies in China and one in outside China [28, 32, 36, 44]. We observed that the symptoms like anorexia (26%), chest tightness (25%) and rhinorrhea (13%), and one comorbidity, i.e., acute respiratory distress syndrome (61%) were examined with significant prevalence, but they were under-reported in the published systematic reviews [5, 6, 49, 50].

Human aging is associated with declines in adaptive and innate immunity, and it loses the body’s ability to protect against infections [51-53]. Virologists and clinicians agree that the older adults are more vulnerable to COVID-19, and the patient’s age can strongly be associated with symptoms and comorbidities [30, 54-57]. Our multivariate analysis revealed that a cluster of symptoms, including fever, dyspnea/shortness of breath, nausea, vomiting, abdominal pain, dizziness, anorexia, and pharyngalgia, as well as a cluster of comorbidities, including diabetes, hypertension, coronary heart disease, COPD/lung disease, and ARDS, were positively associated with the age of COVID-19 infected patients. The Centers for Disease Control and Prevention (CDC) suggested that the older adults are more likely to be asymptomatic and they are at greater risk of requiring hospitalization or dying if they are diagnosed with COVID-19 [58]. The comorbid conditions (e.g. hypertension, heart problems, diabetes) and disease symptoms were more severe in the elderly age than any other age groups [59-63]. In a study, Wu Z and the authors reported that the COVID-19 infected elderly aged above 80 years had a higher case fatality rate (14.8 vs 8.0%) than 70-80 years aged peoples [64]. The World Health Organization (WHO) reported that older people with pre-existing medical conditions including asthma, diabetes, and heart disease appear to be more vulnerable to becoming severely ill with the virus and this findings supports to many other studies [65-68].

During literature search, we were limited to only in English texts within the time frame January to April, 2020. The majority of the studies were found in China, and only five from other countries. More studies outside of China could add value in prevalence estimation. We found no data for <10 years children and thus, more studies are warranted in the child COVID-19 patients. Lastly, a few studies were found low sample size.

Conclusions

This review study is the unique effort of its kind that estimated all frequent symptoms and comorbidities, and determines the age related risk factors of the COVID-19 patients. We found a cluster of symptoms and comorbidities that were the age associated risk factors of patients infected in COVID-19. Thus, in very early stages of SARS-CoV-2 infection, if a patient exhibits any of the symptoms within the cluster, this patient should be isolated and the necessary actions should be taken. Our findings also suggest a prioritize vaccination by age groups and older people with underlying conditions. Finally, policymakers should develop a comprehensive mass media campaign to educate the general population about these symptoms and comorbidities.

Data availability statement

The full list of data and the data entries for all included studies is provided in the manuscript as a supplementary file. No additional supporting data is available.

Acknowledgements

Funding sources: this research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. We acknowledge the authors of the selected research articles. We also acknowledge Mr. Saiful Islam (public health assistant) who supported and provided computer and necessary software during the data analysis.

Conflict of interest statement

The authors declare no conflict of interest.

Authors’ contributions

MMR contributed to conceptualization, design and supervision of the study. MMR, BB and ZF
contributed to the screening of studies for inclusion and data extraction. MMR, BB, MJU and MABC searched the databases. MMR and ZF contributed to the analysis and interpretation of the data. MMR, BB and MH contributed to drafting and formatting of the manuscript. MMR, MH, MABC, MSH, MHS, MZI, ER and MJU contributed to supervision, editing and checking of the manuscript. All authors contributed to the reviewing for important intellectual context and approved of the manuscript to be submitted.

References

[1] WHO. Coronavirus disease 2019. https://www.who.int/emergencies/diseases-novel-coronavirus-2019?gclid=CjwKCAjwq_eBq3BRAVEiwAvwqv6tGm1uwP4fJfJaz_BZ-IQDXXWd-cvlyGc-k53oqC8BrxZv4SyfahoC697QqAvd_BwE (accessed June 18, 2020).

[2] Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie Y, Xin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B. Clinical features of patients with infected coronavirus in Wuhan, China. Lancet 2020;395:497-506. https://doi.org/10.1016/S0140-6736(20)30183-5

[3] Yang J, Zheng Y, Gou X, Pu K, Chen Z, Guo Q, Ji R, Wang H, Wang Y, Zhou Y. Prevalence of comorbidities and its effects in patients infected with SARS-Cov-2: a systematic review and meta-analysis. Int J Infect Dis 2020;94:91-5. https://doi.org/10.1016/j.ijid.2020.03.017

[4] Emami A, Javanmardi F, Pirbonyeh N, Akbari A. Prevalence of underlying diseases in hospitalized patients with COVID-19: a systematic review and meta-analysis. Arch Acad Emerg Med 2020;8:e35. https://doi.org/10.22037/aeam.v8i1.600

[5] Qian K, Deng Y, Tai Y, Peng J, Peng H, Jiang L. Clinical characteristics of 2019 novel infected coronavirus pneumonia. A systematic review and meta-analysis. medRxiv 2020;2020.02.14.20021535. https://doi.org/10.1101/2020.02.14.20021535

[6] Jain V, Yuan J-M. Systematic review and meta-analysis of predictive symptoms and comorbidities for severe COVID-19 infection. medRxiv 2020;2020.03.15.20035360. https://doi.org/10.1101/2020.03.15.20035360

[7] Baradaran A, EbrahimiHaleh MH, Baradaran A, Kachooei AR. Prevalence of comorbidities in COVID-19 patients: a systematic review and meta-analysis. Arch Bone Jt Surg 2020; 2020. https://doi.org/10.22037/abjs.2020.47754.2346

[8] Fu L, Wang B, Yuan T, Chen X, Ao Y, Fitzpatrick T, Li P, Zhou Y, Lin YF, Duan Q, Luo G, Fan S, Lu Y, Feng A, Zhan Y, Liang B, Cai W, Zhang L, Du X, Li L, Shu Y, Zou H. Clinical characteristics of coronavirus disease 2019 (COVID-19) in China: A systematic review and meta-analysis. J Infect 2020;80:656-65. https://doi.org/10.1016/j.jinf.2020.03.041

[9] Zhang G, Hu C, Luo L, Fang F, Chen Y, Li J, Peng Z, Pan H. Clinical features and short-term outcomes of 221 patients with COVID-19 in Wuhan, China. J Clin Virol 2020;127:104364. https://doi.org/10.1016/j.jcv.2020.104364

[10] Shamseer L, Moher D, Clarke M, Ghersi D, Liberati A, Petticrew M, Shekelle P, Stewart LA; PRISMA-P Group. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ 2015;350:g6746. https://doi.org/10.1136/bmj.g6746

[11] Hasan MN, Haider N, Sigler FL, Khan RA, McCoy D, Zumla A, Kock RA, Uddin MJ. The Global Case-Fatality Rate of COVID-19 Has Been Declining Since May 2020. Am J Trop Med Hyg 2021;104:2176-84. https://doi.org/10.4269/ajtmh.20-1496

[12] Munn Z, Moola S, Lisy K, Riitano D, Tufanaru C. Methodological guidance for systematic reviews of observational epi-
AGE-RELATED RISK FACTORS AND SEVERITY OF SARS-COV-2 INFECTION

Gupta N, Agrawal S, Ish P, Mishra S, Gaind R, Usha G, Singh B, Sen MK, Covid Working Group SH. Clinical and epidemiologic profile of the initial COVID-19 patients at a tertiary care centre in India. Monaldi Arch Chest Dis 2020;90(1). https://doi.org/10.4081/monaldi.2020.1294

Yang W, Cao Q, Qin L, Wang X, Cheng Z, Pan A, Dai J, Sun Q, Zhao F, Qiu J, Yan F. Clinical characteristics and imaging manifestations of the 2019 novel coronavirus disease (COVID-19): A multi-center study in Wenzhou city, Zhejiang, China. J Infect. 2020;80:388-93. https://doi.org/10.1016/j.jinf.2020.02.016

Han C, Duan C, Zhang S, Spiegel B, Shi H, Wang W, Zhang L, Lin R, Liu J, Ding Z, Hou X. Digestive Symptoms in COVID-19 Patients with Mild Disease Severity: Clinical Presentation, Stool Viral RNA Testing, and Outcomes. Am J Gastroenterol. 2020;115:916-23. https://doi.org/10.14309/ajg.0000000000000664

Kim ES, Chin BS, Kang CK, Kim NJ, Kang YM, Choi JP, Oh DH, Kim JH, Koh B, Kim SE, Yun NR, Lee JH, Kim JY, Kim Y, Bang BH, Song KH, Kim HB, Chung KH, Oh MD; Korea National Committee for Clinical Management of COVID-19. Clinical Course and Outcomes of Patients with Severe Acute Respiratory Syndrome Coronavirus 2 Infection: a Preliminary Report of the First 28 Patients from the Korean Cohort Study on COVID-19. J Korean Med Sci 2020;35:e142. https://doi.org/10.3346/jkms.2020.35.e142

Wang L, He W, Yu X, Hu D, Lao M, Liu H, Zhou J, Jiang H. Coronavirus disease 2019 (COVID-19) in elderly patients: Characteristics and prognostic factors based on 4-week follow-up. J Infect 2020;80:639-45. https://doi.org/10.1016/j.jinf.2020.03.019

Shi H, Han X, Jiang N, Cao Y, Alwaldi O, Gu J, Fan Y, Zheng C. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect Dis 2020;20:425-34. https://doi.org/10.1016/S1473-3099(20)30066-4

Yang X, Yu Y, Xiu J, Shu H, Xia J, Liu H, Wu Y, Zhang L, Yu Z, Fang M, Yu T, Wang Y, Pan S, Zou X, Yuan S, Shang Y. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med 2020;8:475-81. https://doi.org/10.1016/S2213-2600(20)30079-5

Yinxia Liu, Fengming Huang, Jun Xu, Penghui Yang, Yuhao Qun, Mengli Cao, Xiaohui Li, Shaoqing Zhu, Lu Ye, Jingjun Lv, Ji Wei, Tuxia Xie, Hong Gao, Kai-Feng Xu, Fusheng Wang, Lei Liu, Chengyu Jiang, Anti-hypertensive Angiotensin II receptor blockers associated to mitigation of disease severity in elderly COVID-19 patients. medRxiv 2020:2020.03.20.20039586. https://doi.org/10.1101/2020.03.20.20039586

Jaillon S, Berthenet K, Garlanda C. Sex-specific influence of SARS-CoV-2 mediated gender bias in susceptibility to infection in the elderly. J. Immunol. 2020;204:2469-2477. https://doi.org/10.4049/jimmunol.2000921

Yale University. More women stay at home than men. Yale-Glocal Online. https://yaleglobal.yale.edu/content/more-women-stay-home-men(accessed March 23, 2021).

Fu L, Wang B, Yuan T, Chen X, Ao Y, Fitzpatrick T, Li P, Zhou Y, Lin YF, Duan Q, Luo G, Fan S, Liu Y, Feng A, Zhan Y, Liang B, Cai W, Zhang L, Du X, Li L, Shu Y, Zou H. Clinical characteristics of coronavirus disease 2019 (COVID-19) in elderly patients. medRxiv 2020:2020.03.20.20039586. https://doi.org/10.1101/2020.03.20.20039586

Kim ES, Chin BS, Kang CK, Kim NJ, Kang YM, Choi JP, Oh DH, Kim JH, Koh B, Kim SE, Yun NR, Lee JH, Kim JY, Kim Y, Bang BH, Song KH, Kim HB, Chung KH, Oh MD; Korea National Committee for Clinical Management of COVID-19. Clinical Course and Outcomes of Patients with Severe Acute Respiratory Syndrome Coronavirus 2 Infection: a Preliminary Report of the First 28 Patients from the Korean Cohort Study on COVID-19. J Korean Med Sci 2020;35:e142. https://doi.org/10.3346/jkms.2020.35.e142

Wang L, He W, Yu X, Hu D, Lao M, Liu H, Zhou J, Jiang H. Coronavirus disease 2019 (COVID-19) in elderly patients: Characteristics and prognostic factors based on 4-week follow-up. J Infect 2020;80:639-45. https://doi.org/10.1016/j.jinf.2020.03.019

Shi H, Han X, Jiang N, Cao Y, Alwaldi O, Gu J, Fan Y, Zheng C. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect Dis 2020;20:425-34. https://doi.org/10.1016/S1473-3099(20)30066-4

Yang X, Yu Y, Xiu J, Shu H, Xia J, Liu H, Wu Y, Zhang L, Yu Z, Fang M, Yu T, Wang Y, Pan S, Zou X, Yuan S, Shang Y. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med 2020;8:475-81. https://doi.org/10.1016/S2213-2600(20)30079-5

Yinxia Liu, Fengming Huang, Jun Xu, Penghui Yang, Yuhao Qun, Mengli Cao, Xiaohui Li, Shaoqing Zhu, Lu Ye, Jingjun Lv, Ji Wei, Tuxia Xie, Hong Gao, Kai-Feng Xu, Fusheng Wang, Lei Liu, Chengyu Jiang, Anti-hypertensive Angiotensin II receptor blockers associated to mitigation of disease severity in elderly COVID-19 patients. medRxiv 2020:2020.03.20.20039586. https://doi.org/10.1101/2020.03.20.20039586

Jaillon S, Berthenet K, Garlanda C. Sexual dimorphism in innate immunity. Clin Rev Allergy Immunol 2019;56:308-21. https://doi.org/10.1007/s12016-017-8648-x

Yale University. More women stay at home than men. Yale-Glocal Online. https://yaleglobal.yale.edu/content/more-women-stay-home-men(accessed March 23, 2021).

Fu L, Wang B, Yuan T, Chen X, Ao Y, Fitzpatrick T, Li P, Zhou Y, Lin YF, Duan Q, Luo G, Fan S, Liu Y, Feng A, Zhan Y, Liang B, Cai W, Zhang L, Du X, Li L, Shu Y, Zou H. Clinical characteristics of coronavirus disease 2019 (COVID-19) in elderly patients. medRxiv 2020:2020.03.20.20039586. https://doi.org/10.1101/2020.03.20.20039586

Rodriguez-Moreno AJ, Cardona-Ospina JA, Gutiérrez-Ocampo E, Villamizar-Peña R, Holguín-Rivera Y, Escalera-Antezana JP, Alvarado-Arnez LE, Bonilla-Aldana DK, Franco-Paredes C, Heneao Martínez AE, Paniz-Mondolfi A, Lagos-Grisales GJ, Ramírez-Velarde E, Suárez JA, Zambrano LI, Villamil-Gómez WE, Balbin-Ramon GJ, Rabaan AA, Harapan A, Hdana K, Nishiura H, Kataoka H, Ahmad T, Sah R; Latin American Network of Coronavirus Disease 2019-2020 (LANCID-2019). Electronic address; https://www.lancid.org. Clinical, laboratory and imaging features of COVID-19: A systematic review and meta-analysis. Travel Med Infect Dis 2020;34:101623. https://doi.org/10.1016/j.tmaid.2020.101623

Gupta N, Agrawal S, Ish P, Mishra S, Gaind R, Usha G, Singh B, Sen MK, Covid Working Group SH. Clinical and epidemiologic profile of the initial COVID-19 patients at a tertiary care centre in India. Monaldi Arch Chest Dis 2020;90(1). https://doi.org/10.4081/monaldi.2020.1294
Cao Y, Liu X, Xiong L, Cai K. Imaging and clinical features of patients with 2019 novel coronavirus SARS-CoV-2: A systematic review and meta-analysis. J Med Virol 2020;92:1449-59. https://doi.org/10.1002/jmv.25822

Rahman MM, Hamiduzzaman M, Akter MS, Farhana Z, Hossain MK, Hasan MN, Islam MN. Frailty indexed classification of Bangladeshi older adults’ physio-psychosocial health and associated risk factors- a cross-sectional survey study. BMC Geriatr 2021;21:3. https://doi.org/10.1186/s12877-020-01970-5

Fuentes E, Fuentes M, Alarcón M, Palomo I. Immune system dysfunction in the elderly. An Acad Bras Cienc 2017;89:285-99. https://doi.org/10.1590/0001-3765201720160487

Weyand CM, Goronzy JJ. Aging of the immune system: mechanisms and therapeutic targets. Ann Am Thorac Soc 2016;13:S422-8. https://doi.org/10.1513/AnnalsATS.201602-054AW

CDC UC for DC and P. Symptoms of Coronavirus. https://www.cdc.gov/coronavirus/2019-ncov/symptoms-testing/symptoms.html (accessed March 25, 2020).

CNN. Seniors with Covid-19 show unusual symptoms, doctors say. https://edition.cnn.com/2020/04/23/health/seniors-elderly-coronavirus-symptoms-wellness-partner/index.html (accessed March 25, 2020).

WHO. Coronavirus disease (COVID-19) outbreak - Statement - Older people are at highest risk from COVID-19, but all must act to prevent community spread. http://www.euro.who.int/en/health-topics/health-emergencies/coronavirus-covid-19/statements/statement-older-people-are-at-highest-risk-from-covid-19-but-all-must-act-to-prevent-community-spread (accessed March 24, 2021).

Financial Express. Coronavirus pandemic: elderly more vulnerable to the disease; here’s what doctors have to say. https://www.financialexpress.com/lifestyle/health/coronavirus-pandemic-elderly-more-vulnerable-to-the-disease-heres-what-doctors-have-to-say/1938699 (accessed March 24, 2021).

CDC UC for DC and P. Older adults and COVID-19. https://www.cdc.gov/coronavirus/2019-ncov/need-extra-precautions/older-adults.html (accessed March 23, 2021).

Paul GK, Rahman MM, Hamiduzzaman M, Farhana Z, Mondal SK, Akter S, Naznin S, Islam MN. Hypertension and its physio-psychosocial risks factors in elderly people: a cross-sectional study in north-eastern region of Bangladesh. J Geriatr Cardiol 2021;18:75-82. https://doi.org/10.11909/j.issn.1671-5411.2021.01.011

Rahman MM, Begum MR, Rahman MM, Uddin MT. Factors affecting health status of urban aged population: evidence from Sylhet, Bangladesh. Indian J Gerontol 2018;32:103-18.

Yashin AI, Stallard E, Land KC. Biodemography of aging: determinants of healthy life span and longevity. Springer 2016.

Rahman MM, Begum MR, Rahman MM, Uddin MT. Health status and modeling of urban aged population of Sylhet District in Bangladesh. In: Bioinformatics and Biostatistics for Agriculture, Health and Environment 2010:2-1-6.

Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, Seeman T, Tracy R, Kop WJ, Burke G, McBurnie MA; Cardiovascular Health Study Collaborative Research Group. Frailty in older adults: evidence for a phenotype. J Gerontology A Biol Sci Med Sci 2001;56:M146-56. https://doi.org/10.1093/gerona/56.3.m146.

Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72,314 cases from the Chinese Center for Disease Control and Prevention. JAMA 2020;323:1239-42. https://doi.org/10.1001/jama.2020.2648

WHO. Coronavirus disease (COVID-19) advice for the public: Mythbusters. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advise-for-public/myth-busters (accessed March 23, 2021).

Mueller AL, McNamara MS, Sinclair DA. Why does COVID-19 disproportionately affect older people? Aging (Albany NY) 2020;12:9959-81. https://doi.org/10.18632/aging.103344

Sanyaolu A, Okorie C, Marinkovic A, Patidar R, Younis K, Desai P, Hosein Z, Padia I, Mangat J, Altal F. Comorbidity and its Impact on Patients with COVID-19. SN Compr Clin Med 2020:1-8. https://doi.org/10.1007/s42399-020-00363-4

D’Ascanio M, Innammorato M, Pasquariello L, Pizzirusso D, Guerrieri G, Castelli S, Pezzuto A, De Vitis C, Anibaldi P, Marcolongo A, Mancini R, Ricci A, Sciaccitano S. Age is not the only risk factor in COVID-19: the role of comorbidities and of long staying in residential care homes. BMC Geriatr 2021;21:63. https://doi.org/10.1186/s12877-021-02013-3

Correspondence: Mohammad Meshbahur Rahman, Biomedical Research Foundation, Dhaka-1230, Bangladesh - Tel.: +8801751509801 - E-mail: meshbahur.rahman@brfbd.org

How to cite this article: Rahman MM, Bhattacharjee B, Farhana FZ, Hamiduzzaman M, Chowdhury MAB, Hossain MS, Siddiquee MH, Islam Z, Raheem E, Uddin J. Age-related risk factors and severity of SARS-CoV-2 infection: a systematic review and meta-analysis. J Prev Med Hyg 2021;62:E334-E338. https://doi.org/10.15167/2421-4248/jpmh2021.62.2.1946

© Copyright by Pacini Editore Srl, Pisa, Italy

This is an open access article distributed in accordance with the CC-BY-NC-ND (Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International) license. The article can be used by giving appropriate credit and mentioning the license, but only for non-commercial purposes and only in the original version. For further information: https://creativecommons.org/licenses/by-nc-nd/4.0/id/eu
Supplementary Material

S1. Characteristics of studies that evaluated the age related risk factors of COVID-19 patients.

Authors	Publication Date	Country & Location	Study Design	Mean/ Median Age	Patient No. (n)	Male (n)	Female (n)	Gender	Fever	Cough / Dry cough	Fatigue	Dyspnoea/ Shortness of breath	Headache	Diarrhoea
Wang et al.	21.02.2020	Chongqing, China	N/M	47	138	72	63	Both	0.69	0.77	0.33	0.13	0.33	0.13
Zhang et al.	18.2.2020	Wuhan, China	N/M	57	140	71	69	Both	0.79	0.64	0.64	0.31	N/M	0.13
Xu et al.	19.2.2020	Zhejiang, China	Retrospective	41	62	35	27	Both	0.77	0.81	0.52	N/M	0.34	0.08
Zhu et al.	13.3.2020	Anhui, China	Retrospective	46	32	15	17	Both	0.84	0.66	0.16	N/M	0.05	0.03
Chen et al.	16.02.2020	Wuhan, China	Retrospective	56	21	17	4	Both	0.99	0.80	0.85	0.52	0.10	0.20
Liu et al.	9.02.2020	Shenzhen, China	N/M	60	12	8	4	Both	0.83	0.92	N/M	N/M	N/M	N/M
Chen et al.	26.03.2020	Wuhan, China	Retrospective	62	274	171	103	Both	0.91	0.68	0.50	0.44	0.11	0.28
Mo et al.	16.3.2020	Wuhan, China	Retrospective, single center	54	155	86	69	Both	0.81	0.63	0.73	0.32	0.32	0.10
Liu et al.	07.02.2020	Hubei, China	Retrospective	57	137	61	76	Both	0.82	0.48	0.32	0.19	0.10	0.08
Jin et al.	24.03.2020	Zhejiang, China	Retrospective	46	651	351	320	Both	0.84	0.67	0.18	N/M	0.10	0.50
Wang et al.	17.03.2020	Wuhan, China	Retrospective, single center	56	138	75	63	Both	0.99	0.59	0.70	0.31	0.07	0.10
Yuan et al.	19.03.2020	Hubei, China	Retrospective	60	27	12	15	Both	0.78	0.59	N/M	0.41	N/M	N/M
Guan et al.	28.02.2020	China (50 provinces)	Cohort	47	1099	639	460	Both	0.89	0.68	0.38	N/M	0.14	0.04
Liu et al.	27.03.2020	Hainan, China	Retrospective	68	56	31	25	Both	0.76	0.56	0.09	N/M	N/M	N/M
Zhou et al.	12.03.2020	Wuhan, China	N/M	51	254	115	139	Both	0.84	0.39	0.52	0.04	0.11	0.04
Huang et al.	24.01.2019	Wuhan, China	Cohort	49	41	30	11	Both	0.98	0.76	0.44	0.53	0.08	0.03
Chen et al.	29.01.2019	Wuhan, China	Retrospective, single center	55.5	99	67	32	Both	0.83	0.82	N/M	N/M	0.08	0.02
Du et al.	3.04.2020	Wuhan, China	Retrospective	66	85	62	23	Both	0.92	0.22	0.59	0.71	0.05	0.19
Xu et al.	28.02.2020	Guangzhou, China	N/M	50	90	39	51	Both	0.78	0.63	0.21	N/M	0.04	0.06
Goyal et al.	17.04.2020	New York, USA	Retrospective	62	393	258	155	Both	0.77	0.79	N/M	0.57	N/M	0.24
Burreau et al.	1.04.2020	Vitoria, Spain	N/M	63	48	27	21	Both	1.00	0.73	N/M	0.88	N/M	N/M
Yan et al.	12.4.2020	USA	Cross sectional	48.5	59	29	29	Both	0.70	0.66	0.81	0.54	0.66	0.48
Gupta et al.	6.04.2020	New Delhi, India	Retrospective, Observational	40	21	14	7	Both	0.43	0.43	N/M	N/M	0.14	0.14
Yang et al.	21.02.2020	Wenzhou, China	Retrospective cohort	45	149	81	68	Both	0.77	0.58	N/M	0.01	0.09	0.07
Han et al.	15.04.2020	Wuhan, China	Retrospective	62.5	206	91	115	Both	0.67	0.26	0.45	N/M	N/M	0.33
Kim et al.	6.04.2020	South Korea	Cohort	40	28	15	13	Both	0.25	0.29	0.11	N/M	0.25	0.11
Wang et al.	15.03.2020	Wuhan, China	Retrospective, single-centre	69	339	166	173	Both	0.92	0.53	0.40	0.41	0.04	0.13
Shi et al.	24.02.2020	Wuhan, China	Retrospective	49.5	81	42	39	Both	0.73	0.59	0.09	0.42	0.06	0.04
Yang et al.	21.02.2020	Wuhan, China	Retrospective, single-centre, Observational	60	52	35	17	Both	0.98	0.77	N/M	0.64	0.06	N/M

N/M: Not Mentioned
S1 (Continued). Characteristics of studies that evaluated the age related risk factors of COVID-19 patients.

Authors	Sore Throat	Myalgia	Muscle Ache	Cough	Rhinorrhea	Sputum Production	Chest tightness	Chest pain	Nausea	Vomiting	Abdominal Pain	Diarrhea	Anorexia	Pharyngitis	Hemoptysis	Others	No. of Symptoms
Wan et al.	N/M 0.33	N/M 0.09	N/M	N/M	N/M	N/M	N/M 0.18	N/M 0.03	Loss of appetite-4.4%, Palpitation-3.7%, Retching-3.7%								
Zhang et al.	N/M N/M	N/M N/M	N/M 0.31	N/M 0.17	N/M 0.06	N/M 0.17	N/M N/M	N/M	N/M 0.03	N/M 8							
Xu et al.	N/M 0.52	N/M 0.16	N/M	N/M 0.09	N/M N/M	N/M N/M	N/M	N/M	N/M 0.03	N/M 8							
Zhu et al.	N/M 0.16	N/M 0.55	N/M	N/M	N/M	N/M	N/M 0.26	N/M 0.38	N/M 0.09	N/M 0.24	N/M 0.04	N/M 0.03	15				
Chen et al.	N/M 0.40	N/M 0.30	N/M	N/M 0.09	N/M	N/M	N/M 0.04	N/M 0.32	N/M 0.04	N/M 0.02	N/M 0.05	Heart palpitation-7%					
Liu et al.	N/M 0.33	N/M 0.17	N/M	N/M	N/M 0.17	N/M N/M	N/M	N/M 0.09	N/M 0.40	N/M 0.17	N/M						
Chen et al.	N/M 0.22	N/M 0.39	N/M	N/M 0.04	N/M	N/M	N/M 0.04	N/M 0.32	N/M 0.05	N/M 0.40	N/M 0.17	N/M 0.34	N/M				
Mo et al.	N/M 0.61	N/M 0.30	N/M	N/M 0.09	N/M	N/M	N/M 0.04	N/M 0.32	N/M 0.04	N/M 0.02	N/M 0.05	14					
Liu et al.	N/M 0.32	N/M 0.10	N/M	N/M 0.04	N/M	N/M	N/M 0.04	N/M 0.32	N/M 0.04	N/M 0.02	N/M 0.05	Nasal obstruction-6%					
Jin et al.	N/M 0.15	N/M 0.10	N/M	N/M 0.10	N/M 0.04	N/M 0.09	N/M 0.04	N/M 0.32	N/M 0.04	N/M 0.02	N/M 0.05	Conjunctival congestion-1%, Nasal congestion-5%, Chills-11.5%, Throat congestion-2%, Throat swelling-2%, Rash-0.2%					
Wang et al.	N/M 0.35	N/M 0.34	N/M	N/M 0.05	N/M 0.05	N/M	N/M 0.04	N/M 0.32	N/M 0.04	N/M 0.02	N/M 0.05	Conjunctival congestion-1%, Nasal congestion-5%, Chills-11.5%, Throat congestion-2%, Throat swelling-2%, Rash-0.2%					
Yuan et al.	N/M 0.40	N/M 0.34	N/M	N/M 0.05	N/M 0.05	N/M	N/M 0.04	N/M 0.32	N/M 0.04	N/M 0.02	N/M 0.05	Conjunctival congestion-1%, Nasal congestion-5%, Chills-11.5%, Throat congestion-2%, Throat swelling-2%, Rash-0.2%					
Guan et al.	N/M 0.14	N/M 0.15	N/M	N/M 0.05	N/M 0.05	N/M	N/M 0.04	N/M 0.32	N/M 0.04	N/M 0.02	N/M 0.05	Conjunctival congestion-1%, Nasal congestion-5%, Chills-11.5%, Throat congestion-2%, Throat swelling-2%, Rash-0.2%					
Liu et al.	N/M N/M	N/M 0.07	N/M	N/M	N/M 0.17	N/M N/M	N/M	N/M 0.05	N/M 0.05	N/M 0.04	N/M 0.02	N/M 0.05	N/M 0.04	N/M 0.02	N/M 0.05	N/M 0.04	
Zhou et al.	N/M 0.06	N/M 0.34	N/M 0.26	N/M	N/M	N/M 0.07	N/M	N/M 0.05	N/M 0.04	N/M 0.02	N/M 0.05	Nasal congestion-5%					
Huang et al.	N/M 0.44	N/M 0.28	N/M	N/M	N/M	N/M	N/M 0.05	N/M 0.05	N/M 0.04	N/M 0.02	N/M 0.05	Nasal congestion-5%					
Chen et al.	N/M 0.05	N/M 0.11	N/M	N/M	N/M	N/M	N/M 0.09	N/M 0.04	N/M 0.02	N/M 0.05	N/M 0.04	Nasal congestion-5%					
Du et al.	N/M 0.17	N/M 0.04	N/M	N/M	N/M	N/M	N/M 0.06	N/M 0.04	N/M 0.02	N/M 0.05	N/M 0.04	Nasal congestion-5%					
Xu et al.	N/M 0.26	N/M 0.04	N/M	N/M	N/M	N/M	N/M 0.06	N/M 0.04	N/M 0.02	N/M 0.05	N/M 0.04	Nasal congestion-5%					
Goyal et al.	N/M 0.19	N/M 0.19	N/M	N/M	N/M	N/M	N/M 0.06	N/M 0.04	N/M 0.02	N/M 0.05	N/M 0.04	Nasal congestion-5%					
Barua et al.	N/M 0.04	N/M 0.04	N/M	N/M	N/M	N/M	N/M 0.06	N/M 0.04	N/M 0.02	N/M 0.05	N/M 0.04	Nasal congestion-5%					
Yan et al.	N/M 0.32	N/M 0.31	N/M	N/M	N/M	N/M	N/M 0.06	N/M 0.04	N/M 0.02	N/M 0.05	N/M 0.04	Nasal congestion-5%					
Gupta et al.	N/M 0.24	N/M 0.03	N/M	N/M	N/M	N/M	N/M 0.06	N/M 0.04	N/M 0.02	N/M 0.05	N/M 0.04	Nasal congestion-5%					
Yang et al.	N/M 0.14	N/M 0.03	N/M	N/M	N/M	N/M	N/M 0.04	N/M 0.02	N/M 0.05	N/M 0.04	N/M 0.04	Nasal congestion-5%					
Han et al.	N/M 0.21	N/M 0.24	N/M	N/M	N/M	N/M	N/M 0.06	N/M 0.04	N/M 0.02	N/M 0.05	N/M 0.04	Nasal congestion-5%					
Kim et al.	N/M 0.29	N/M 0.25	N/M	N/M	N/M	N/M	N/M 0.06	N/M 0.04	N/M 0.02	N/M 0.05	N/M 0.04	Nasal congestion-5%					
Wang et al.	N/M 0.05	N/M 0.04	N/M	N/M	N/M	N/M	N/M 0.06	N/M 0.04	N/M 0.02	N/M 0.05	N/M 0.04	Nasal congestion-5%					
Shi et al.	N/M N/M	N/M 0.26	N/M	N/M	N/M	N/M	N/M 0.06	N/M 0.04	N/M 0.02	N/M 0.05	N/M 0.04	Nasal congestion-5%					
Yang et al.	N/M 0.12	N/M 0.06	N/M	N/M	N/M	N/M	N/M 0.06	N/M 0.04	N/M 0.02	N/M 0.05	N/M 0.04	Nasal congestion-5%					

N/M: Not Mentioned
S1 (Continued). Characteristics of studies that evaluated the age related risk factors of COVID-19 patients.

Authors	Diabetes	Hypertension	Cardiovascular Disease	Coronary heart disease	Cerebrovascular disease	COPD / Lung disease	Chronic liver disease	Chronic Renal disease	Chronic Kidney disease	Malignancy	ARDS	Others	No. of Comorbidities		
Wua et al.	0.09	0.10	0.05	N/M	N/M	0.007	0.02	N/M	N/M	0.03	N/M	N/M	N/M	6	
Zhang et al.	0.12	0.30	N/M	0.05	N/M	0.014	0.06	0.01	N/M	N/M	N/M	N/M	12		
Xu et al.	0.02	0.08	N/M	N/M	0.02	0.20	0.11	0.02	N/M	N/M	N/M	N/M	6		
Zhu et al.	0.13	0.22	N/M	0.06	0.03	0.06	0.06	0.03	N/M	N/M	N/M	N/M	9		
Chen et al.	0.14	0.24	N/M	N/M	0.33	N/M	0.08	0.08	N/M	N/M	N/M	N/M	2		
Liu et al.	0.08	0.25	N/M	N/M	0.07	N/M	0.01	0.07	N/M	N/M	N/M	N/M	7		
Chen et al.	0.17	0.34	0.08	N/M	0.01	0.07	N/M	0.01	0.03	N/M	N/M	N/M	11		
Mo et al.	0.10	0.24	0.10	N/M	0.05	0.05	0.05	0.04	N/M	N/M	0.05	N/M	Tuberculosis-2%, HIV-1%	10	
Liu et al.	0.10	0.10	0.07	N/M	N/M	0.015	N/M	N/M	N/M	0.02	N/M	N/M	N/M	5	
Jin et al.	0.07	0.15	N/M	0.01	N/M	0.002	0.04	0.01	N/M	N/M	0.01	N/M	N/M	8	
Wang et al.	0.10	0.31	0.15	N/M	0.05	0.03	0.03	0.03	N/M	0.03	0.07	N/M	N/M	9	
Yuan et al.	0.22	0.19	0.11	N/M	0.41	N/M	9								
Guan et al.	0.07	0.15	N/M	0.03	0.01	0.01	0.01	N/M	N/M	0.01	N/M	N/M	N/M	9	
Liu et al.	0.07	0.17	N/M	0.11	N/M	N/M	0.06	N/M	N/M	0.03	N/M	N/M	N/M	6	
Zhou et al.	0.10	0.25	0.05	0.07	N/M	0.02	0.01	N/M	N/M	0.01	N/M	N/M	N/M	8	
Huang et al.	0.20	0.15	0.15	N/M	0.02	0.02	N/M	N/M	N/M	0.02	N/M	N/M	N/M	6	
Chen et al.	N/M	0.17	N/M	5											
Du et al.	0.22	0.38	0.08	0.12	N/M	0.02	0.06	N/M	N/M	0.04	0.07	N/M	N/M	8	
Xu et al.	0.06	0.19	0.03	N/M	N/M	0.01	N/M	N/M	N/M	0.02	N/M	N/M	N/M	6	
Goyal et al.	0.25	0.50	N/M	0.14	N/M	0.05	N/M	6							
Barrasa et al.	0.19	0.44	N/M	0.10	N/M	0.38	N/M	N/M	N/M	1.00	N/M	N/M	N/M	7	
Yang et al.	0.09	0.14	0.05	N/M	N/M	0.05	N/M	N/M	N/M	0.04	N/M	N/M	N/M	7	
Gupta et al.	0.14	0.24	N/M	6											
Yang et al.	N/M	N/M	0.19	N/M	0.19	N/M	Obstructive sleep apnea-5%, Respiratory system disease-0.67%, Digestive system disease-5%, Endocrine disease-6%	5							
Han et al.	0.10	0.27	N/M	N/M	0.08	0.04	N/M	4							
Kim et al.	0.07	0.27	N/M	N/M	0.04	N/M	5								
Wang et al.	0.16	0.41	0.16	N/M	0.06	0.06	0.01	N/M	N/M	0.04	0.04	N/M	N/M	N/M	9
Shi et al.	0.12	0.15	0.10	N/M	0.07	0.11	0.09	0.04	N/M	N/M	0.05	N/M	N/M	N/M	8
Yang et al.	0.35	0.23	N/M	N/M	0.29	N/M	0.29	N/M	N/M	0.67	N/M	N/M	N/M	N/M	7

N/M: Not Mentioned
POOLED ESTIMATION OF THE SYMPTOMS AND COMORBIDITIES

SYMPTOMS

Fever

Meta-analysis of the prevalence of clinical symptom (Fever) in COVID-19 infected patients

Study	ES (95% CI)
Wang et al. (N=135) (Chongqing, China)	0.89 (0.82, 0.93)
Zhang et al. (N=140) (Wuhan, China)	0.79 (0.71, 0.85)
Xu et al. (N=62) (Zhejiang, China)	0.77 (0.66, 0.86)
Zhu et al. (N=32) (Anhui, China)	0.84 (0.68, 0.93)
Chen et al. (N=21) (Wuhan, China)	1.00 (0.85, 1.00)
Liu et al. (N=12) (Shenzhen, China)	0.83 (0.56, 0.95)
Chen et al. (N=274) (Wuhan, China)	0.91 (0.87, 0.94)
Mo et al. (N=155) (Wuhan, China)	0.81 (0.74, 0.87)
Liu et al. (N=137) (Hubei, China)	0.82 (0.74, 0.87)
Jin et al. (N=651) (Zhejiang, China)	0.84 (0.81, 0.87)
Wang et al. (N=138) (Wuhan, China)	0.99 (0.96, 1.00)
Yuan et al. (N=27) (Hubei, China)	0.78 (0.59, 0.89)
Guan et al. (N=1099) (30 provinces, China)	0.89 (0.87, 0.91)
Liu et al. (N=56) (Hainan, China)	0.77 (0.64, 0.86)
Zhou et al. (N=254) (Wuhan, China)	0.84 (0.79, 0.88)
Huang et al. (N=41) (Wuhan, China)	0.98 (0.87, 1.00)
Chen et al. (N=96) (Wuhan, China)	0.83 (0.74, 0.89)
Du et al. (N=85) (Wuhan, China)	0.92 (0.84, 0.96)
Xu et al. (N=90) (Guangzhou, China)	0.78 (0.68, 0.85)
Goyal et al. (N=393) (New York, USA)	0.77 (0.73, 0.81)
Barrasa et al. (N=48) (Vitoria, Spain)	1.00 (0.93, 1.00)
Yan et al. (N=59) (USA)	0.69 (0.57, 0.80)
Gupta et al. (N=21) (New Delhi, India)	0.43 (0.24, 0.63)
Yang et al. (N=149) (Wenzhou, China)	0.77 (0.70, 0.83)
Han et al. (N=206) (Wuhan, China)	0.67 (0.60, 0.73)
Kim et al. (N=28) (South Korea)	0.25 (0.13, 0.43)
Wang et al. (N=339) (Wuhan, China)	0.92 (0.89, 0.94)
Shi et al. (N=81) (Wuhan, China)	0.73 (0.62, 0.81)
Yang et al. (N=52) (Wuhan, China)	0.98 (0.90, 1.00)
Overall (I^2 = 90.67%, p = 0.00)	0.84 (0.80, 0.88)
53. Cough / Dry Cough

Meta-analysis of the prevalence of clinical symptom (Cough) in COVID-19 infected patients

Study	ES (95% CI)
Wan et al. (N=135) (Chongqing, China)	0.76 (0.68, 0.83)
Zhang et al. (N=140) (Wuhan, China)	0.64 (0.56, 0.72)
Xu et al. (N=62) (Zhejiang, China)	0.81 (0.69, 0.89)
Zhu et al. (N=32) (Anhui, China)	0.66 (0.48, 0.80)
Chen et al. (N=21) (Wuhan, China)	0.81 (0.60, 0.92)
Liu et al. (N=12) (Shenzhen, China)	0.92 (0.65, 0.99)
Chen et al. (N=274) (Wuhan, China)	0.68 (0.62, 0.73)
Mo et al. (N=155) (Wuhan, China)	0.63 (0.55, 0.70)
Liu et al. (N=137) (Hubei, China)	0.48 (0.40, 0.56)
Jin et al. (N=651) (Zhejiang, China)	0.67 (0.63, 0.70)
Wang et al. (N=138) (Wuhan, China)	0.59 (0.51, 0.67)
Yuan et al. (N=27) (Hubei, China)	0.59 (0.41, 0.75)
Guan et al. (N=1099) (30 provinces, China)	0.68 (0.65, 0.71)
Liu et al. (N=56) (Hainan, China)	0.36 (0.24, 0.49)
Zhou et al. (N=254) (Wuhan, China)	0.39 (0.33, 0.45)
Huang et al. (N=41) (Hainan, China)	0.76 (0.61, 0.86)
Chen et al. (N=99) (Wuhan, China)	0.82 (0.73, 0.88)
Du et al. (N=85) (Wuhan, China)	0.22 (0.15, 0.32)
Xu et al. (N=90) (Guangzhou, China)	0.63 (0.53, 0.73)
Goyal et al. (N=393) (New York, USA)	0.79 (0.75, 0.83)
Barrasa et al. (N=48) (Vitoria, Spain)	0.73 (0.59, 0.83)
Yan et al. (N=59) (USA)	0.66 (0.53, 0.77)
Gupta et al. (N=21) (New Delhi, India)	0.43 (0.24, 0.63)
Yang et al. (N=149) (Wenzhou, China)	0.58 (0.50, 0.65)
Han et al. (N=206) (Wuhan, China)	0.26 (0.21, 0.33)
Kim et al. (N=28) (South Korea)	0.29 (0.15, 0.47)
Wang et al. (N=539) (Wuhan, China)	0.53 (0.48, 0.58)
Shi et al. (N=81) (Wuhan, China)	0.59 (0.48, 0.69)
Yang et al. (N=52) (Wuhan, China)	0.77 (0.64, 0.86)
Overall (*2 = 93.40%, p = 0.00)	0.61 (0.55, 0.67)
S4. Fatigue/Weakness

Meta-analysis of the prevalence of clinical symptom (Fatigue) in COVID-19 infected patients

Study	ES (95% CI)
Wan et al. (N=135) (Chongqing, China)	0.33 (0.26, 0.42)
Zhang et al. (N=140) (Wuhan, China)	0.64 (0.56, 0.72)
Xu et al. (N=62) (Zhejiang, China)	0.52 (0.39, 0.64)
Zhu et al. (N=32) (Anhui, China)	0.18 (0.07, 0.32)
Chen et al. (N=21) (Wuhan, China)	0.86 (0.65, 0.95)
Chen et al. (N=274) (Wuhan, China)	0.50 (0.44, 0.56)
Mo et al. (N=155) (Wuhan, China)	0.73 (0.65, 0.79)
Liu et al. (N=137) (Hubei, China)	0.32 (0.25, 0.40)
Jin et al. (N=651) (Zhejiang, China)	0.18 (0.15, 0.21)
Wang et al. (N=138) (Wuhan, China)	0.70 (0.62, 0.77)
Guan et al. (N=1099) (30 provinices, China)	0.38 (0.36, 0.41)
Liu et al. (N=56) (Hainan, China)	0.09 (0.04, 0.19)
Zhou et al. (N=254) (Wuhan, China)	0.52 (0.46, 0.58)
Huang et al. (N=41) (Wuhan, China)	0.44 (0.30, 0.59)
Du et al. (N=85) (Wuhan, China)	0.59 (0.48, 0.69)
Xu et al. (N=90) (Guangzhou, China)	0.21 (0.14, 0.31)
Yan et al. (N=59) (USA)	0.81 (0.70, 0.89)
Han et al. (N=206) (Wuhan, China)	0.43 (0.39, 0.52)
Kim et al. (N=289) (South korea)	0.11 (0.04, 0.27)
Wang et al. (N=339) (Wuhan, China)	0.40 (0.35, 0.45)
Shi et al. (N=81) (Wuhan, China)	0.09 (0.04, 0.17)
Overall (I^2 = 96.32%, p = 0.00)	0.42 (0.34, 0.51)
55. Dyspnea/Shortness of breath

Meta-analysis of the prevalence of clinical symptom (Dyspnea) in COVID-19 infected patients

Study	ES (95% CI)
Wan et al. (N=135) (Chongqing, China)	0.13 (0.09, 0.20)
Zhang et al. (N=140) (Wuhan, China)	0.31 (0.24, 0.40)
Chen et al. (N=21) (Wuhan, China)	0.52 (0.32, 0.72)
Chen et al. (N=274) (Wuhan, China)	0.44 (0.38, 0.50)
Mo et al. (N=155) (Wuhan, China)	0.32 (0.25, 0.40)
Liu et al. (N=137) (Hubei, China)	0.19 (0.13, 0.26)
Wang et al. (N=138) (Wuhan, China)	0.31 (0.24, 0.39)
Yuan et al. (N=27) (Hubei, China)	0.41 (0.25, 0.59)
Zhou et al. (N=254) (Wuhan, China)	0.04 (0.02, 0.07)
Huang et al. (N=41) (Wuhan, China)	0.56 (0.41, 0.70)
Du et al. (N=85) (Wuhan, China)	0.71 (0.60, 0.79)
Goyal et al. (N=393) (New York, USA)	0.56 (0.52, 0.61)
Barrasa et al. (N=48) (Vitoria, Spain)	0.88 (0.75, 0.94)
Yan et al. (N=59) (USA)	0.54 (0.42, 0.66)
Yang et al. (N=149) (Wenzhou, China)	0.01 (0.00, 0.04)
Wang et al. (N=339) (Wuhan, China)	0.41 (0.36, 0.46)
Shi et al. (N=81) (Wuhan, China)	0.42 (0.32, 0.53)
Yang et al. (N=52) (Wuhan, China)	0.63 (0.50, 0.75)
Overall (*2 = 97.37%, p = 0.00)	0.39 (0.27, 0.51)
6. Headache

Meta-analysis of the prevalence of clinical symptom (Headache) in COVID-19 infected patients

Study	ES (95% CI)
Yan et al. (N=155) (Chongqing, China)	0.33 (0.25, 0.41)
Xu et al. (N=62) (Zhejiang, China)	0.34 (0.23, 0.46)
Zhu et al. (N=132) (Anhui, China)	0.03 (0.01, 0.16)
Chen et al. (N=21) (Wuhan, China)	0.10 (0.03, 0.29)
Chen et al. (N=274) (Wuhan, China)	0.11 (0.08, 0.15)
Mo et al. (N=155) (Wuhan, China)	0.10 (0.06, 0.16)
Liu et al. (N=137) (Hubei, China)	0.09 (0.06, 0.16)
Jin et al. (N=651) (Zhejiang, China)	0.10 (0.08, 0.13)
Wang et al. (N=138) (Wuhan, China)	0.07 (0.03, 0.12)
Guan et al. (N=1099) (30 provinces, China)	0.14 (0.12, 0.16)
Zhou et al. (N=254) (Wuhan, China)	0.11 (0.08, 0.15)
Huang et al. (N=41) (Wuhan, China)	0.07 (0.03, 0.19)
Chen et al. (N=99) (Wuhan, China)	0.08 (0.04, 0.15)
Du et al. (N=85) (Wuhan, China)	0.06 (0.02, 0.11)
Xu et al. (N=90) (Guangzhou, China)	0.04 (0.02, 0.11)
Yan et al. (N=59) (USA)	0.66 (0.53, 0.77)
Gupta et al. (N=21) (New Delhi, India)	0.14 (0.05, 0.35)
Yang et al. (N=149) (Wenzhou, China)	0.09 (0.05, 0.14)
Kim et al. (N=28) (South Korea)	0.26 (0.13, 0.43)
Wang et al. (N=339) (Wuhan, China)	0.04 (0.02, 0.06)
Shi et al. (N=81) (Wuhan, China)	0.06 (0.03, 0.14)
Xiaobo Hong (N=52) (Wuhan, China)	0.06 (0.02, 0.16)
Overall (I² = 89.98%, p = 0.00)	0.12 (0.09, 0.16)
Meta-analysis of the prevalence of clinical symptom (Diarrhea) in COVID-19 infected patients

Study	ES (95% CI)
Wan et al. (N=136) (Chongqing, China)	0.13 (0.09, 0.20)
Zhang et al. (N=140) (Wuhan, China)	0.13 (0.08, 0.19)
Xu et al. (N=62) (Zhejiang, China)	0.08 (0.03, 0.18)
Zhu et al. (N=32) (Anhui, China)	0.03 (0.01, 0.16)
Chen et al. (N=21) (Wuhan, China)	0.19 (0.08, 0.40)
Liu et al. (N=12) (Shenzhen, China)	0.17 (0.05, 0.46)
Chen et al. (N=274) (Wuhan, China)	0.28 (0.23, 0.34)
Mo et al. (N=155) (Wuhan, China)	0.05 (0.02, 0.09)
Liu et al. (N=137) (Hubei, China)	0.08 (0.05, 0.14)
Wang et al. (N=138) (Wuhan, China)	0.10 (0.06, 0.18)
Guan et al. (N=1099) (30 provinces, China)	0.04 (0.03, 0.05)
Huang et al. (N=41) (Wuhan, China)	0.02 (0.00, 0.13)
Chen et al. (N=99) (Wuhan, China)	0.02 (0.01, 0.07)
Du et al. (N=85) (Wuhan, China)	0.19 (0.12, 0.28)
Xu et al. (N=90) (Guangzhou, China)	0.06 (0.02, 0.12)
Goyal et al. (N=393) (New York, USA)	0.24 (0.20, 0.28)
Yan et al. (N=69) (USA)	0.47 (0.35, 0.60)
Yang et al. (N=149) (Wenzhou, China)	0.07 (0.04, 0.12)
Han et al. (N=206) (Wuhan, China)	0.33 (0.26, 0.39)
Kim et al. (N=28) (South Korea)	0.11 (0.04, 0.27)
Wang et al. (N=339) (Wuhan, China)	0.13 (0.10, 0.17)
Shi et al. (N=81) (Wuhan, China)	0.04 (0.01, 0.10)
Overall (I² = 93.72%, p = 0.00)	0.12 (0.08, 0.17)
S8. Sore Throat

Meta-analysis of the prevalence of clinical symptom (Sore Throat) in COVID-19 infected patients

Study	ES (95% CI)
Jin et al. (N=710) (Zhejiang, China)	0.18 (0.13, 0.18)
Gao et al. (N=1031) (36 provinces, China)	0.14 (0.12, 0.16)
Zhou et al. (N=95) (Shanghai, China)	0.08 (0.04, 0.11)
Chen et al. (N=99) (Wuhan, China)	0.29 (0.22, 0.37)
Su et al. (N=48) (Shanghai, China)	0.26 (0.19, 0.30)
Tam et al. (N=32) (Singapore)	0.32 (0.30, 0.34)
Gupta et al. (N=78) (New Delhi, India)	0.24 (0.17, 0.30)
Yang et al. (N=176) (Shenzhen, China)	0.14 (0.09, 0.19)
Wu et al. (N=200) (South Korea)	0.20 (0.16, 0.24)
Overall (70.4% WLL, p < 0.05)	0.18 (0.11, 0.26)
Meta-analysis of the prevalence of clinical symptom (Myalgia) in COVID-19 infected patients

Study	ES (95% CI)
Wan et al. (N=135) (Chongqing, China)	0.33 (0.25, 0.41)
Xu et al. (N=62) (Zhejiang, China)	0.52 (0.39, 0.64)
Zhu et al. (N=32) (Anhui, China)	0.16 (0.07, 0.32)
Chen et al. (N=21) (Wuhan, China)	0.38 (0.21, 0.59)
Liu et al. (N=12) (Shenzhen, China)	0.33 (0.14, 0.51)
Chen et al. (N=274) (Wuhan, China)	0.22 (0.17, 0.27)
Mo et al. (N=155) (Wuhan, China)	0.61 (0.53, 0.69)
Liu et al. (N=137) (Hubei, China)	0.32 (0.25, 0.40)
Jin et al. (N=651) (Zhejiang, China)	0.11 (0.09, 0.14)
Wang et al. (N=138) (Wuhan, China)	0.35 (0.27, 0.43)
Yuan et al. (N=27) (Hubei, China)	0.11 (0.04, 0.28)
Guan et al. (N=1099) (30 provinces, China)	0.15 (0.13, 0.17)
Zhou et al. (N=254) (Wuhan, China)	0.34 (0.28, 0.40)
Huang et al. (N=41) (Wuhan, China)	0.44 (0.30, 0.59)
Chen et al. (N=99) (Wuhan, China)	0.11 (0.06, 0.19)
Du et al. (N=85) (Wuhan, China)	0.16 (0.10, 0.26)
Xu et al. (N=90) (Guangzhou, China)	0.28 (0.20, 0.38)
Goyal et al. (N=303) (New york, USA)	0.19 (0.16, 0.23)
Barrasa et al. (N=48) (Vitoria, Spain)	0.04 (0.01, 0.14)
Yan et al. (N=59) (USA)	0.63 (0.50, 0.74)
Yang et al. (N=149) (Wenzhou, China)	0.03 (0.01, 0.07)
Han et al. (N=200) (Wuhan, China)	0.21 (0.16, 0.27)
Kim et al. (N=28) (South korea)	0.25 (0.13, 0.43)
Wang et al. (N=339) (Wuhan, China)	0.05 (0.03, 0.08)
Yang et al. (N=52) (Wuhan, China)	0.12 (0.05, 0.23)
Overall ($\chi^2 = 95.00\%, \ p = 0.00$)	0.24 (0.18, 0.30)

Overall Proportion: 0.23 (0.18, 0.28)
S10. Rhinorrhea

Meta-analysis of the prevalence of clinical symptom (Rhinorrhea) in COVID-19 infected patients

Study	ES (95% CI)
Chen et al. (2020) (Wuhan, China)	0.04 (0.02, 0.08)
Han et al. (2020) (China)	0.01 (0.00, 0.03)
Kim et al. (2020) (South Korea)	0.02 (0.00, 0.04)
Shi et al. (2020) (Wuhan, China)	0.06 (0.03, 0.08)
Yang et al. (2020) (Wuhan, China)	0.08 (0.05, 0.10)
Overall (I² = 88.01%, p = 0.00)	0.13 (0.04, 0.26)
Meta-analysis of the prevalence of clinical symptom (Sputum Production) in COVID-19 infected patients

Study	ES (95% CI)
Wan et al. (N=135) (Chongqing, China)	0.29 (0.25, 0.33)
Zhu et al. (N=32) (Anhui, China)	0.15 (0.07, 0.32)
Chen et al. (N=274) (Wuhan, China)	0.30 (0.25, 0.36)
Liu et al. (N=137) (Kunbi, China)	0.04 (0.02, 0.06)
Jin et al. (N=651) (Zhejiang, China)	0.35 (0.31, 0.39)
Wang et al. (N=126) (Wuhan, China)	0.27 (0.20, 0.35)
Guan et al. (N=1099) (26 provinces, China)	0.34 (0.31, 0.37)
Zhou et al. (N=256) (Wuhan, China)	0.42 (0.36, 0.48)
Huang et al. (N=41) (Wuhan, China)	0.27 (0.19, 0.35)
Du et al. (N=45) (Wuhan, China)	0.28 (0.20, 0.40)
Xu et al. (N=96) (Guangdong, China)	0.12 (0.07, 0.21)
Yang et al. (N=149) (Wenzhou, China)	0.32 (0.26, 0.45)
Kim et al. (N=28) (South Korea)	0.21 (0.10, 0.40)
Wang et al. (N=339) (Wuhan, China)	0.27 (0.23, 0.32)
Shi et al. (N=85) (Wuhan, China)	0.19 (0.12, 0.28)
Overall (I² = 92.31%, p = 0.02)	0.24 (0.19, 0.30)
Meta-analysis of the prevalence of clinical symptom (Chest Tightness) in COVID-19 infected patients

Study	ES (95% CI)
Zhang et al. (N=140) (Wuhan, China)	0.31 (0.24, 0.36)
Zhu et al. (N=32) (Anhui, China)	0.09 (0.03, 0.24)
Chen et al. (N=21) (Wuhan, China)	0.57 (0.37, 0.78)
Chen et al. (N=274) (Wuhan, China)	0.38 (0.30, 0.44)
Mo et al. (N=155) (Wuhan, China)	0.39 (0.31, 0.47)
Liu et al. (N=50) (Hunan, China)	0.07 (0.03, 0.17)
Zhou et al. (N=204) (Wuhan, China)	0.28 (0.21, 0.32)
Yang et al. (N=149) (Wenzhou, China)	0.10 (0.06, 0.16)
Han et al. (N=206) (Wuhan, China)	0.24 (0.18, 0.30)
Wang et al. (N=120) (Wuhan, China)	0.36 (0.22, 0.31)
Shi et al. (N=61) (Wuhan, China)	0.22 (0.15, 0.30)
Overall (I² = 88.44%, p = 0.00)	0.25 (0.19, 0.31)
Meta-analysis of the prevalence of clinical symptom (Chest Pain) in COVID-19 infected patients

Study	ES (95% CI)
Mo et al. (N=155) (Wuhan, China)	0.03 (0.01, 0.04)
Chen et al. (N=99) (Wuhan, China)	0.04 (0.02, 0.08)
Du et al. (N=85) (Wuhan, China)	0.02 (0.01, 0.07)
Yang et al. (N=149) (Wenzhou, China)	0.02 (0.01, 0.08)
Yang et al. (N=52) (Wuhan, China)	0.03 (0.01, 0.07)
Overall (I² = 0.00%, p = 0.95)	0.02 (0.00, 0.10)
Meta-analysis of the prevalence of clinical symptom (Nausea) in COVID-19 infected patients

Study	ES (95% CI)
Zhang et al. (N=140) (Wuhan, China)	0.17 (0.10, 0.24)
Liu et al. (N=12) (Shenzhen, China)	0.17 (0.08, 0.48)
Chen et al. (N=274) (Wuhan, China)	0.06 (0.06, 0.13)
Mo et al. (N=136) (Wuhan, China)	0.04 (0.02, 0.08)
Wang et al. (N=138) (Wuhan, China)	0.10 (0.06, 0.16)
Guan et al. (N=1099) (30 provinces, China)	0.04 (0.03, 0.06)
Chen et al. (N=99) (Wuhan, China)	0.01 (0.06, 0.06)
Xu et al. (N=96) (Wuhan, China)	0.06 (0.06, 0.13)
Goyal et al. (N=393) (New York, USA)	0.19 (0.16, 0.23)
Yan et al. (N=53) (USA)	0.25 (0.17, 0.46)
Yang et al. (N=143) (Shenzhen, China)	0.05 (0.04, 0.06)
Wang et al. (N=138) (Wuhan, China)	0.04 (0.02, 0.07)
Overall (I^2 = 91.78%, p = 0.00)	0.08 (0.04, 0.13)
5.15. Vomiting

Meta-analysis of the prevalence of clinical symptom (Vomiting) in COVID-19 infected patients

Study	ES (95% CI)
Liu et al. (N=12) (Shenzhen, China)	0.17 (0.05, 0.45)
Chen et al. (N=274) (Wuhan, China)	0.05 (0.02, 0.09)
Mo et al. (N=103) (Wuhan, China)	0.04 (0.02, 0.08)
Wang et al. (N=138) (Wuhan, China)	0.04 (0.02, 0.09)
Guan et al. (N=1099) (30 provinces, China)	0.05 (0.04, 0.06)
Liu et al. (N=96) (Hainan, China)	0.18 (0.10, 0.30)
Chen et al. (N=96) (Wuhan, China)	0.01 (0.00, 0.06)
Du et al. (N=63) (Wuhan, China)	0.05 (0.02, 0.11)
Xu et al. (N=96) (Guangzhou, China)	0.02 (0.01, 0.08)
Goyal et al. (N=393) (New york, USA)	0.19 (0.16, 0.23)
Yang et al. (N=149) (Wenzhou, China)	0.01 (0.00, 0.04)
Han et al. (N=959) (Wuhan, China)	0.12 (0.08, 0.17)
Shi et al. (N=181) (Wuhan, China)	0.05 (0.02, 0.12)
Yang et al. (N=72) (Wuhan, China)	0.04 (0.01, 0.13)
Overall (I² = 88.33%, p = 0.00)	0.06 (0.03, 0.09)
Meta-analysis of the prevalence of clinical symptom (Abdominal Pain) in COVID-19 infected patients

Study	ES (95% CI)
Chen et al. (N=274) (Wuhan, China)	0.04 (0.03, 0.06)
Han et al. (N=206) (Wuhan, China)	0.07 (0.04, 0.11)
Zhang et al. (N=140) (Wuhan, China)	0.04 (0.02, 0.07)
Du et al. (N=85) (Wuhan, China)	0.06 (0.03, 0.11)
Mo et al. (N=155) (Wuhan, China)	0.04 (0.01, 0.10)
Kim et al. (N=28) (South Korea)	0.02 (0.01, 0.06)
Overall [I^2 = 22.89%, p = 0.26]	0.04 (0.03, 0.06)
Meta-analysis of the prevalence of clinical symptom (Dizziness) in COVID-19 infected patients

Study	ES (95% CI)
Chen et al. (N=278) (Wuhan, China)	0.06 [0.0, 0.12]
Wu et al. (N=450) (Wuhan, China)	0.08 [0.06, 0.11]
Wang et al. (N=478) (Wuhan, China)	0.08 [0.05, 0.12]
Zhao et al. (N=380) (Wuhan, China)	0.06 [0.03, 0.12]
Goyal et al. (N=331) (Wuhan, China)	0.02 [0.01, 0.05]
Shi et al. (N=67) (Wuhan, China)	0.02 [0.01, 0.04]
Overall (I² = 98.27%, p < 0.001)	0.02 [0.01, 0.04]
Meta-analysis of the prevalence of clinical symptom (Anorexia) in COVID-19 infected patients

Study	ES (95% CI)
Zhang et al. (N=106) (Wuhan, China)	0.17 (0.12, 0.24)
Chen et al. (N=107) (Wuhan, China)	0.24 (0.19, 0.29)
Mo et al. (N=150) (Wuhan, China)	0.32 (0.25, 0.40)
Wang et al. (N=138) (Wuhan, China)	0.26 (0.21, 0.32)
Du et al. (N=96) (Wuhan, China)	0.24 (0.18, 0.30)
Goyal et al. (N=185) (Wuhan, China)	0.28 (0.22, 0.34)
Shi et al. (N=160) (Wuhan, China)	0.21 (0.16, 0.26)
Overall (I² = 94.47%, p = 0.00)	0.26 (0.16, 0.38)
Meta-analysis of the prevalence of clinical symptom (Pharyngalgia) in COVID-19 infected patients

Study	ES (95% CI)
Shen et al. (Shanghai, China)	0.10 (0.09, 0.12)
Chen et al. (Shanghai, China)	0.64 (0.63, 0.65)
Wang et al. (Shanghai, China)	0.77 (0.71, 0.84)
Du et al. (Shanghai, China)	0.69 (0.67, 0.71)
Wan et al. (Shanghai, China)	0.68 (0.63, 0.73)
Wang et al. (Shanghai, China)	0.66 (0.62, 0.67)
Overall (I² = 60.2%, p = 0.01)	0.67 (0.64, 0.71)
Meta-analysis of the prevalence of clinical symptom (Haemoptysis) in COVID-19 infected patients

Study	ES (95% CI)
Huang et al. (N=41) (Wuhan, China)	0.02 (0.01, 0.04)
Guan et al. (N=1099) (30 provinces, China)	0.05 (0.01, 0.16)
Chen et al. (N=274) (Wuhan, China)	0.01 (0.01, 0.02)
Liu et al. (N=137) (Hubei, China)	0.03 (0.01, 0.06)
Jin et al. (N=651) (Zhejiang, China)	0.05 (0.02, 0.10)
Xu et al. (N=62) (Zhejiang, China)	0.02 (0.01, 0.03)
Wan et al. (N=135) (Chongqing, China)	0.03 (0.01, 0.11)
Overall (I^2 = 63.48%, p = 0.01)	0.03 (0.01, 0.07)
Comorbidity

Meta-analysis of the prevalence of clinical comorbidity (Diabetes) in COVID-19 infected patients

Study	ES (95% CI)
Wan et al. (N=135) (Chongqing, China)	0.09 (0.05, 0.15)
Zhang et al. (N=140) (Wuhan, China)	0.12 (0.08, 0.19)
Xu et al. (N=62) (Zhejiang, China)	0.02 (0.00, 0.09)
Zhu et al. (N=32) (Anhui, China)	0.13 (0.05, 0.28)
Chen et al. (N=21) (Wuhan, China)	0.14 (0.05, 0.35)
Liu et al. (N=12) (Shenzhen, China)	0.08 (0.01, 0.35)
Chen et al. (N=274) (Wuhan, China)	0.17 (0.13, 0.22)
Mo et al. (N=155) (Wuhan, China)	0.10 (0.06, 0.16)
Jin et al. (N=651) (Zhejiang, China)	0.07 (0.05, 0.09)
Wang et al. (N=138) (Wuhan, China)	0.10 (0.06, 0.16)
Yuan et al. (N=27) (Hubei, China)	0.22 (0.11, 0.41)
Guan et al. (N=1099) (30 provinces, China)	0.07 (0.06, 0.09)
Liu et al. (N=56) (Hainan, China)	0.07 (0.03, 0.17)
Zhou et al. (N=254) (Wuhan, China)	0.10 (0.07, 0.14)
Huang et al. (N=41) (Wuhan, China)	0.20 (0.10, 0.34)
Du et al. (N=85) (Wuhan, China)	0.22 (0.15, 0.32)
Xu et al. (N=90) (Guangzhou, China)	0.06 (0.02, 0.12)
Goyal et al. (N=393) (New york, USA)	0.25 (0.21, 0.29)
Barrasa et al. (N=48) (Vitoria, Spain)	0.19 (0.15, 0.32)
Yan et al. (N=159) (USA)	0.08 (0.04, 0.18)
Gupta et al. (N=21) (New Delhi, India)	0.14 (0.06, 0.35)
Han et al. (N=206) (Wuhan, China)	0.10 (0.07, 0.15)
Kim et al. (N=28) (South korea)	0.07 (0.02, 0.23)
Wang et al. (N=339) (Wuhan, China)	0.16 (0.12, 0.20)
Shi et al. (N=81) (Wuhan, China)	0.12 (0.07, 0.21)
Yang et al. (N=52) (Wuhan, China)	0.35 (0.23, 0.48)
Overall *(I^2 = 83.99%, p = 0.00)*	0.12 (0.09, 0.15)
Meta-analysis of the prevalence of clinical comorbidity (Hypertension) in COVID-19 infected patients

Study	ES (95% CI)
Wan et al. (N=135) (Chongqing, China)	0.10 (0.06, 0.16)
Zhang et al. (N=140) (Wuhan, China)	0.30 (0.23, 0.38)
Xu et al. (N=62) (Zhejiang, China)	0.08 (0.03, 0.18)
Zhu et al. (N=32) (Anhui, China)	0.22 (0.11, 0.39)
Chen et al. (N=21) (Wuhan, China)	0.24 (0.11, 0.45)
Liu et al. (N=12) (Shenzhen, China)	0.25 (0.09, 0.53)
Chen et al. (N=274) (Wuhan, China)	0.34 (0.29, 0.40)
Mo et al. (N=155) (Wuhan, China)	0.24 (0.18, 0.31)
Liu et al. (N=137) (Hubei, China)	0.09 (0.06, 0.16)
Jin et al. (N=651) (Zhejiang, China)	0.15 (0.13, 0.18)
Wang et al. (N=138) (Wuhan, China)	0.31 (0.24, 0.39)
Yuan et al. (N=27) (Hubei, China)	0.19 (0.08, 0.37)
Guan et al. (N=1099) (30 provincees, China)	0.15 (0.13, 0.17)
Liu et al. (N=56) (Hainan, China)	0.18 (0.10, 0.30)
Zhou et al. (N=254) (Wuhan, China)	0.25 (0.20, 0.31)
Huang et al. (N=41) (Wuhan, China)	0.15 (0.07, 0.28)
Du et al. (N=85) (Wuhan, China)	0.38 (0.28, 0.48)
Xu et al. (N=90) (Guangzhou, China)	0.19 (0.12, 0.28)
Goyal et al. (N=383) (New york, USA)	0.50 (0.45, 0.55)
Barrasa et al. (N=48) (Vitoria, Spain)	0.44 (0.31, 0.58)
Yan et al. (N=56) (USA)	0.14 (0.07, 0.25)
Gupta et al. (N=21) (New Delhi, India)	0.24 (0.11, 0.45)
Han et al. (N=206) (Wuhan, China)	0.27 (0.22, 0.34)
Wang et al. (N=339) (Wuhan, China)	0.41 (0.36, 0.46)
Shi et al. (N=81) (Wuhan, China)	0.15 (0.09, 0.24)
Overall (I^2 = 93.24%, p = 0.00)	0.23 (0.18, 0.28)
Cardiovascular Disease

Meta-analysis of the prevalence of clinical comorbidity (Cardiovascular Disease) in COVID-19 infected patients

Study	ES (95% CI)
Wan et al. (N=135) (Chongqing, China)	0.05 (0.03, 0.10)
Chen et al. (N=274) (Wuhan, China)	0.08 (0.05, 0.12)
Mo et al. (N=155) (Wuhan, China)	0.10 (0.06, 0.16)
Liu et al. (N=137) (Hubei, China)	0.07 (0.04, 0.13)
Wang et al. (N=138) (Wuhan, China)	0.14 (0.10, 0.21)
Yuan et al. (N=27) (Hubei, China)	0.11 (0.04, 0.28)
Zhou et al. (N=254) (Wuhan, China)	0.05 (0.03, 0.09)
Huang et al. (N=41) (Wuhan, China)	0.15 (0.07, 0.28)
Du et al. (N=85) (Wuhan, China)	0.08 (0.04, 0.16)
Du et al. (N=85) (Guangzhou, China)	0.03 (0.01, 0.09)
Yan et al. (N=59) (USA)	0.05 (0.02, 0.14)
Yang et al. (N=149) (Wenzhou, China)	0.19 (0.13, 0.26)
Wang et al. (N=339) (Wuhan, China)	0.16 (0.12, 0.20)
Shi et al. (N=81) (Wuhan, China)	0.10 (0.05, 0.18)
Yang et al. (N=52) (Wuhan, China)	0.23 (0.14, 0.36)
Overall (I^2 = 73.96%, p = 0.00)	0.10 (0.07, 0.13)
Meta-analysis of the prevalence of clinical comorbidity (Coronary Heart Disease) in COVID-19 infected patients

Study	ES (95% CI)
Zhang et al. (N=140) (Wuhan, China)	0.08 (0.05, 0.11)
Zhou et al. (N=152) (Anhui, China)	0.06 (0.05, 0.20)
Lu et al. (N=112) (Shenzhen, China)	0.33 (0.14, 0.53)
Ji et al. (N=967) (Zhejiang, China)	0.13 (0.01, 0.26)
Guan et al. (N=1099) (30 provinces, China)	0.07 (0.03, 0.09)
Liu et al. (N=698) (Hebei, China)	0.17 (0.06, 0.31)
Zuo et al. (N=944) (Nanjing, China)	0.07 (0.06, 0.11)
Du et al. (N=85) (Nanjing, China)	0.12 (0.07, 0.32)
Goyal et al. (N=393) (New York, USA)	0.14 (0.11, 0.18)
Ronse et al. (N=100) (Catalonia, Spain)	0.19 (0.14, 0.25)
Overall (I² = 92.21%, p = 0.00)	0.10 (0.09, 0.12)
Meta-analysis of the prevalence of clinical comorbidity (Cerebrovascular Disease) in COVID-19 infected patients

Study	ES (95% CI)
Xu et al. (N=142) (Zhujiaojiao, China)	0.02 (0.00, 0.08)
Zhu et al. (N=142) (Wuhan, China)	0.03 (0.01, 0.05)
Chen et al. (N=142) (Wuhan, China)	0.04 (0.02, 0.08)
Wei et al. (N=159) (Wuhan, China)	0.05 (0.03, 0.08)
Wang et al. (N=150) (Wuhan, China)	0.06 (0.03, 0.15)
Guan et al. (N=1099) (30 provinces, China)	0.04 (0.01, 0.07)
Yang et al. (N=128) (Wuhan, China)	0.08 (0.05, 0.12)
Zhao et al. (N=14) (Wuhan, China)	0.10 (0.04, 0.12)
Shi et al. (N=32) (Anhui, China)	0.15 (0.01, 0.16)
Xu et al. (N=62) (Zhejiang, China)	0.19 (0.01, 0.09)

Overall: (I² = 90.77%, p = 0.00)
S26. COPD/Lung disease

Meta-analysis of the prevalence of clinical comorbidity (COPD) in COVID-19 infected patients

Study	ES (95% CI)
Wan et al. (N=135) (Chongqing, China)	0.01 (0.00, 0.04)
Zhang et al. (N=140) (Wuhan, China)	0.01 (0.00, 0.05)
Xu et al. (N=62) (Zhejiang, China)	0.02 (0.00, 0.09)
Zhu et al. (N=32) (Anhui, China)	0.06 (0.02, 0.30)
Liu et al. (N=12) (Shenzhen, China)	0.06 (0.01, 0.35)
Chen et al. (N=274) (Wuhan, China)	0.07 (0.04, 0.11)
Mo et al. (N=155) (Wuhan, China)	0.03 (0.01, 0.07)
Liu et al. (N=137) (Hubei, China)	0.01 (0.00, 0.05)
Jin et al. (N=651) (Zhejiang, China)	0.00 (0.00, 0.01)
Wang et al. (N=138) (Wuhan, China)	0.03 (0.01, 0.07)
Guan et al. (N=1099) (30 provinces, China)	0.01 (0.01, 0.02)
Zhou et al. (N=254) (Wuhan, China)	0.02 (0.01, 0.06)
Huang et al. (N=41) (Wuhan, China)	0.02 (0.00, 0.13)
Du et al. (N=85) (Wuhan, China)	0.02 (0.01, 0.08)
Xu et al. (N=90) (Guangzhou, China)	0.01 (0.00, 0.06)
Goyal et al. (N=303) (New York, USA)	0.05 (0.03, 0.08)
Barrasa et al. (N=48) (Vitoria, Spain)	0.38 (0.25, 0.52)
Yan et al. (N=59) (USA)	0.05 (0.02, 0.14)
Han et al. (N=206) (Wuhan, China)	0.04 (0.02, 0.07)
Wang et al. (N=1339) (Wuhan, China)	0.06 (0.04, 0.09)
Shi et al. (N=81) (Wuhan, China)	0.11 (0.08, 0.20)
Overall (I² = 86.67%, p = 0.00)	0.03 (0.02, 0.05)

Proportion
527. Chronic liver disease

Meta-analysis of the prevalence of clinical comorbidity (Chronic Liver Disease) in COVID-19 infected patients

Study	ES (95% CI)
Wan et al. (N=135) (Chongqing, China)	0.02 (0.01, 0.06)
Zhang et al. (N=140) (Wuhan, China)	0.06 (0.03, 0.11)
Xu et al. (N=62) (Zhejiang, China)	0.09 (0.04, 0.17)
Zhu et al. (N=82) (Anhui, China)	0.29 (0.18, 0.42)
Mo et al. (N=155) (Wuhan, China)	0.05 (0.03, 0.10)
Jin et al. (N=651) (Zhejiang, China)	0.04 (0.03, 0.06)
Wang et al. (N=138) (Wuhan, China)	0.06 (0.03, 0.13)
Liu et al. (N=54) (Hainan, China)	0.06 (0.03, 0.13)
Zhou et al. (N=254) (Wuhan, China)	0.02 (0.00, 0.03)
Huang et al. (N=41) (Wuhan, China)	0.02 (0.00, 0.13)
Du et al. (N=8) (Wuhan, China)	0.06 (0.03, 0.13)
Kim et al. (N=28) (South Korea)	0.04 (0.01, 0.18)
Kim et al. (N=28) (Wuhan, China)	0.01 (0.00, 0.03)
Shi et al. (N=81) (Wuhan, China)	0.09 (0.04, 0.17)
Yang et al. (N=52) (Wuhan, China)	0.29 (0.18, 0.42)
Overall (I² = 78.23%, p = 0.00)	0.05 (0.03, 0.07)
Meta-analysis of the prevalence of clinical comorbidity (Chronic Renal Disease) in COVID-19 infected patients

Study	ES (95% CI)
Zhang et al. (N=140) (Wuhan, China)	0.01 (0.00, 0.03)
Xu et al. (N=482) (Zhejiang, China)	0.02 (0.01, 0.05)
Zhu et al. (N=3) (Anhui, China)	0.03 (0.01, 0.16)
Lu et al. (N=102) (Shanghai, China)	0.02 (0.00, 0.09)
Mao et al. (N=158) (Shanghai, China)	0.04 (0.02, 0.08)
Jin et al. (N=155) (Wuhan, China)	0.02 (0.00, 0.09)
Xu et al. (N=62) (Zhejiang, China)	0.04 (0.01, 0.08)
Shi et al. (N=81) (Wuhan, China)	0.01 (0.00, 0.01)
Guan et al. (N=1099) (30 provinces, China)	0.01 (0.00, 0.02)
Overall (I² = 86.69%, p = 0.00)	0.04 (0.01, 0.10)

Proportion

S28. Chronic Renal Disease
Meta-analysis of the prevalence of clinical comorbidity (Chronic Kidney Disease) in COVID-19 infected patients

Study	ES (95% CI)
Tao et al. (2020) (Wuhan, China)	0.01 (0.00, 0.03)
Guan et al. (2020) (Wuhan, China)	0.01 (0.00, 0.05)
Xue et al. (2020) (Wuhan, China)	0.03 (0.01, 0.16)
Xu et al. (2020) (Shenzhen, China)	0.03 (0.01, 0.09)
Chen et al. (2020) (Wuhan, China)	0.02 (0.00, 0.09)
Mo et al. (2020) (Wuhan, China)	0.04 (0.02, 0.08)
Zhu et al. (2020) (Anhui, China)	0.08 (0.01, 0.35)
Zhang et al. (2020) (Wuhan, China)	0.01 (0.00, 0.01)
Shi et al. (2020) (Wuhan, China)	0.04 (0.01, 0.10)
Jin et al. (2020) (Zhejiang, China)	0.01 (0.01, 0.02)
Guan et al. (2020) (30 provinces, China)	0.01 (0.00, 0.01)
Overall (I^2 = 54.63%, p = 0.02)	0.01 (0.00, 0.03)

Meta-analysis of the prevalence of clinical comorbidity (Chronic Renal Disease) in COVID-19 infected patients

Study	ES (95% CI)
Tao et al. (2020) (Wuhan, China)	0.05 (0.02, 0.10)
Guan et al. (2020) (Wuhan, China)	0.04 (0.01, 0.10)
Xue et al. (2020) (Wuhan, China)	0.03 (0.01, 0.07)
Xu et al. (2020) (Shenzhen, China)	0.04 (0.02, 0.07)
Chen et al. (2020) (Wuhan, China)	0.01 (0.00, 0.03)
Yang et al. (2020) (Wuhan, China)	0.29 (0.18, 0.42)
Kai Liu et al. (2020) (Hainan, China)	0.04 (0.01, 0.12)
Overall (I^2 = 86.69%, p = 0.00)	0.05 (0.02, 0.10)

Proportion
Meta-analysis of the prevalence of clinical comorbidity (Malignancy) in COVID-19 infected patients

Study	ES (95% CI)
Wan et al. (N=130) (Chongqing, China)	0.03 (0.01, 0.07)
Chen et al. (N=274) (Wuhan, China)	0.02 (0.01, 0.06)
Mo et al. (N=155) (Wuhan, China)	0.05 (0.02, 0.09)
Liu et al. (N=137) (Hubei, China)	0.01 (0.00, 0.05)
Jin et al. (N=651) (Zhejiang, China)	0.01 (0.01, 0.02)
Wang et al. (N=138) (Wuhan, China)	0.07 (0.04, 0.13)
Guan et al. (N=1069) (30 provinces, China)	0.01 (0.01, 0.02)
Zhou et al. (N=254) (Wuhan, China)	0.01 (0.00, 0.03)
Huang et al. (N=41) (Wuhan, China)	0.02 (0.00, 0.13)
Du et al. (N=85) (Wuhan, China)	0.07 (0.02, 0.15)
Xu et al. (N=90) (Guangzhou, China)	0.02 (0.01, 0.08)
Yan et al. (N=98) (USA)	0.03 (0.01, 0.12)
Kim et al. (N=38) (South Korea)	0.04 (0.01, 0.18)
Wang et al. (N=339) (Wuhan, China)	0.04 (0.02, 0.07)
Shi et al. (N=81) (Wuhan, China)	0.08 (0.02, 0.15)
Overall (I² = 68.06%, p = 0.00)	0.03 (0.02, 0.04)
Meta-analysis of the prevalence of clinical comorbidity (ARDS) in COVID-19 infected patients

Study	ES (95% CI)
Yuan et al. (N=27) (Hubei, China)	0.44 (0.25, 0.59)
Chen et al. (N=99) (Wuhan, China)	0.17 (0.11, 0.26)
Barrasa et al. (N=48) (Vitoria, Spain)	1.00 (0.93, 1.00)
Yang et al. (N=52) (Wuhan, China)	0.67 (0.54, 0.78)
Overall (I² = 98.07%, p = 0.00)	0.61 (0.15, 0.97)

Proportion