Predictions for masses of Ξ_b baryons

Marek Karlinera, Boaz Keren-Zura, Harry J. Lipkina,b,c, and Jonathan L. Rosnerd

a School of Physics and Astronomy
Raymond and Beverly Sackler Faculty of Exact Sciences
Tel Aviv University, Tel Aviv 69978, Israel

b Department of Particle Physics
Weizmann Institute of Science, Rehovoth 76100, Israel

c High Energy Physics Division, Argonne National Laboratory
Argonne, IL 60439-4815, USA

d Enrico Fermi Institute and Department of Physics
University of Chicago, 5640 S. Ellis Avenue, Chicago, IL 60637, USA

ABSTRACT

The recent observation by CDF of Σ^\pm_b (uub and ddb) baryons within 2 MeV of the predicted $\Sigma_b - \Lambda_b$ splitting has provided strong confirmation for the theoretical approach based on modeling the color hyperfine interaction. We now apply this approach to predict the masses of the Ξ_b family of baryons with quark content usb and dsb — the ground state Ξ_b at 5790 to 5800 MeV, and the excited states Ξ_b' and Ξ_b^{*}. The main source of uncertainty is the method used to estimate the mass difference $m_b - m_c$ from known hadrons. We verify that corrections due to the details of the interquark potential and to $\Xi_b - \Xi_b'$ mixing are small.

PACS codes: 14.20.Mr, 12.40.Yx, 12.39.Jh, 11.30.Hw
1 Introduction

For many years the only confirmed baryon with a b quark was the isospin-zero Λ_b. A recent measurement of its mass by the CDF Collaboration is $M(\Lambda_b) = 5619.7 \pm 1.2 \pm 1.2$ MeV [1]. It has the quark content $\Lambda_b = bud$, where the ud pair has spin and isospin $S(ud) = I(ud) = 0$. Now CDF has reported the observation of candidates for the Σ^+_b and Σ'^+_b [2] with masses consistent with quark model predictions [3, 4, 5, 6, 7],

$$M(\Sigma^+_b) - M(\Lambda_b) = 195.5^{+1.0}_{-1.0} \text{ (stat.) MeV}$$

$$M(\Sigma'^+_b) - M(\Lambda_b) = 188.0^{+2.0}_{-2.3} \text{ (stat.) MeV}$$

with isospin-averaged mass difference $M(\Sigma_b) - M(\Lambda_b) = 192$ MeV, to be compared with the prediction [5, 8] $M_{\Sigma_b} - M_{\Lambda_b} = 194$ MeV.

The Σ^\pm_b states consist of a light quark pair uu or dd with $S = I = 1$ coupled with the b quark to $J = 1/2$, while in the Σ'^\pm_b states the light quark pair and the b quark are coupled to $J = 3/2$. The CDF sensitivity appears adequate to detect further heavy baryons, such as those with quark content bsu or bsd. The S-wave levels of these quarks consist of the $J = 1/2$ states $\Xi^{0, -}_b$ and $\Xi'^{(0, -)}_b$ and the $J = 3/2$ states $\Xi'^{(0, -)}_b$. In this paper we predict the masses of these states and estimate the dependence of the predictions on the form of the interquark potential. This exercise has been applied previously to hyperfine splittings of known heavy hadrons [9].

We discuss the predictions for $M(\Xi_b)$ in Section 2, starting with an extrapolation from $M(\Xi_c)$ without correction for hyperfine (HF) interaction and then estimating this correction. In the Ξ_b the light quarks are approximately in a state with $S = 0$, while another heavier state Ξ'^*_b is expected in which the light quarks mainly have $S = 1$. There is also a state Ξ'^*_b expected with light-quark spin 1 and total $J = 3/2$. Predictions for Ξ'^*_b and Ξ'^*_b masses are discussed in Section 3. We estimate the effect of mixing between light-quark spins $S = 0$ and 1 in Section 4, while Section 5 summarizes.

2 Ξ_b mass prediction

In our model the mass of a hadron is given by the sum of the constituent quark masses plus the color-hyperfine (HF) interactions:

$$V_{ij}^{HF} = v \frac{\sigma_i \cdot \sigma_j}{m_i m_j} \langle \delta(r_{ij}) \rangle$$

where the m_i is the mass of the i'th constituent quark, σ_i its spin, r_{ij} the distance between the quarks and v is the interaction strength. We shall neglect the mass differences between u and d constituent quarks, writing v to stand for either u or d. All the hadron masses (the ones used and the predictions) are for isospin-averaged baryons and are given in MeV.
The s and u quarks in Ξ_q (q standing for c or b) are assumed to be in relative spin 0 and the total mass is given by the expression:

$$\Xi_q = m_q + m_s + m_u - \frac{3v\langle \delta(r_{us}) \rangle}{m_q m_s}$$ \hspace{1cm} (3)

The Ξ_b mass can thus be predicted using the known Ξ_c baryon mass as a starting point and adding the corrections due to mass differences and HF interactions:

$$\Xi_b = \Xi_c + (m_b - m_c) - \frac{3v}{m_u m_s} \left(\langle \delta(r_{us}) \rangle_{\Xi_b} - \langle \delta(r_{us}) \rangle_{\Xi_c} \right)$$ \hspace{1cm} (4)

The experimentally determined masses for the charmed-strange baryons Ξ_c, Ξ'_c, and Ξ^*_c are [10]:

$$\Xi_c = 2469.5 \pm 0.5 \text{ MeV} \hspace{1cm} \Xi'_c = 2577 \pm 4 \text{ MeV} \hspace{1cm} \Xi^*_c = 2646.3 \pm 1.8 \text{ MeV} .$$ \hspace{1cm} (5)

2.1 Constituent quark mass difference

The mass difference $(m_b - m_c)$ can be obtained from experimental data using one of the following expressions:

- We can simply take the difference of the masses of the Λ_q baryons, ignoring the differences in the HF interaction:
 $$m_b - m_c = \Lambda_b - \Lambda_c = 3333.2 \pm 1.2 .$$ \hspace{1cm} (6)

- We can use the spin averaged masses of the Λ_q and Σ_q baryons:
 $$m_b - m_c = \left(\frac{2\Sigma^*_q + \Sigma_b + \Lambda_b}{4} - \frac{2\Sigma^*_c + \Sigma_c + \Lambda_c}{4} \right) = 3330.4 \pm 1.8 .$$ \hspace{1cm} (7)

- Since the Ξ_q baryon has strangeness 1, it might be better to use masses of mesons with $S = 1$:
 $$m_b - m_c = \left(\frac{3B^*_s + B_s}{4} - \frac{3D^*_s + D_s}{4} \right) = 3324.6 \pm 1.4 .$$ \hspace{1cm} (8)

2.2 HF interaction correction

The HF interaction correction can also be based on Ξ_c baryon experimental data:

$$\frac{v}{m_u m_s} \left(\langle \delta(r_{us}) \rangle_{\Xi_b} - \langle \delta(r_{us}) \rangle_{\Xi_c} \right) = \frac{v\langle \delta(r_{us}) \rangle_{\Xi_c}}{m_u m_s} \left(\frac{\langle \delta(r_{us}) \rangle_{\Xi_b}}{\langle \delta(r_{us}) \rangle_{\Xi_c}} - 1 \right)$$ \hspace{1cm} (9)

$$= \frac{2\Xi^*_c + \Xi'_c - 3\Xi_c}{12} \left(\frac{\langle \delta(r_{us}) \rangle_{\Xi_b}}{\langle \delta(r_{us}) \rangle_{\Xi_c}} - 1 \right)$$

$$= \left(\frac{\langle \delta(r_{us}) \rangle_{\Xi_b}}{\langle \delta(r_{us}) \rangle_{\Xi_c}} - 1 \right) \left(38.4 \pm 0.5 \right) \text{ MeV}$$
However, this expression requires the calculation of the δ function expectation values. These were calculated using 3-body wavefunctions obtained by a variational method as described in [9]. The only input required for these calculations is the shape of confining potential, because the coupling constants cancel out when taking the ratio of the δ function expectation values. The potentials considered in this work are the linear, Coulomb and Cornell (Coulomb + linear) potentials. We also wrote down the results obtained without the HF corrections. Note that in the case of the Cornell potential we have an additional parameter, which determines the ratio between the strengths of the linear and Coulombic parts of the potential. In these calculations we used the parameters extracted in [11] from analysis of quarkonium spectra (or $K = 0.45$ when using the parameterization described in [9]).

As a test case we compared the values obtained from experimental data and variational calculations for the ratio of contact probabilities in Ξ and Ξ_c.

$$\frac{2\Xi^* + \Xi'_c - 3\Xi_c}{2(\Xi^* - \Xi)} = \frac{6v\langle\delta(r_{us})\rangle_{\Xi_c}}{m_u m_s} = \frac{\langle\delta(r_{us})\rangle_{\Xi_c}}{\langle\delta(r_{us})\rangle_{\Xi}}$$

The results given in Table 1 show good agreement between data and theoretical predictions using the Cornell potential.

	$\langle\delta(r_{us})\rangle_{\Xi_c}/\langle\delta(r_{us})\rangle_{\Xi}$
Experimental data [10]	1.071 ± 0.069
Linear	1.022 ± 0.072
Coulomb	1.487 ± 0.002
Cornell	1.063 ± 0.047

Table 1: Comparison between experimental data and predictions of the ratio of u and s contact probabilities in Ξ and Ξ_c (Eq. (10)).

The final predictions for the Ξ_b mass with the different assumptions regarding the constituent quark mass differences and the confinement potentials are given in Table 2. From previous experience we know that the predictions of the Coulomb potential model show a very strong dependence on the quark masses which is not observed in the data, hence one should probably give these predictions less weight. Ignoring the Coulomb potential, one gets a prediction for the Ξ_b mass in the range of 5790 - 5800 MeV.
\[
m_b - m_c = \Lambda_b - \Lambda_c \quad \Sigma_b - \Sigma_c \quad B_s - D_s
\]

\[
\text{Eq. (6) \quad Eq. (7) \quad eq. (8)}
\]

No HF correction	5803 ± 2	5800 ± 2	5794 ± 2
Linear	5801 ± 11	5798 ± 11	5792 ± 11
Coulomb	5778 ± 2	5776 ± 2	5770 ± 2
Cornell	5799 ± 7	5796 ± 7	5790 ± 7

Table 2: Predictions for the \(\Xi_b \) mass with various confining potentials and methods of obtaining the quark mass difference \(m_b - m_c \).

3 \(\bar{\Xi}^*_b, \bar{\Xi}'_b \) mass prediction

3.1 Spin averaged mass \((2 \bar{\Xi}^*_b + \bar{\Xi}'_b)/3\)

The \(s \) and \(u \) quarks of the \(\Xi^*_q \) and \(\Xi'_q \) baryons are assumed to be in a state of relative spin 1. We then find

\[
\bar{\Xi}^*_q = m_q + m_s + m_u + v \left(\frac{\langle \delta(r_{qs}) \rangle}{m_q m_s} + \frac{\langle \delta(r_{qu}) \rangle}{m_q m_u} + \frac{\langle \delta(r_{us}) \rangle}{m_u m_s} \right)
\]

\[
\bar{\Xi}'_q = m_q + m_s + m_u + v \left(-2 \frac{\langle \delta(r_{qs}) \rangle}{m_q m_s} + \frac{\langle \delta(r_{qu}) \rangle}{m_q m_u} + \frac{\langle \delta(r_{us}) \rangle}{m_u m_s} \right)
\]

The spin-averaged mass of these two states can be expressed as

\[
\frac{2 \bar{\Xi}^*_q + \bar{\Xi}'_q}{3} = m_q + m_s + m_u + v \frac{\langle \delta(r_{us}) \rangle}{m_u m_s},
\]

and as for the \(\Xi_b \) case, the following prediction can be given:

\[
\frac{2 \Xi^*_b + \Xi'_b}{3} = \frac{2 \Xi^*_c + \Xi'_c}{3} + (m_b - m_c) + \frac{2 \Xi^*_c + \Xi'_c}{12} - 3 \Xi_c \left(\frac{\langle \delta(r_{us}) \rangle \Xi_b}{\langle \delta(r_{us}) \rangle \Xi_c} - 1 \right).
\]

The predictions obtained using the same methods described above are given in Table 3. In this case it is clear that the effect of the HF correction is negligible. Thus the difference between the spin averaged mass \((2 \bar{\Xi}^*_b + \bar{\Xi}'_b)/3\) and \(\Xi_b \) is roughly \(150 - 160 \) MeV.

3.2 \(\Xi^*_b - \Xi'_b \)

This mass difference is more difficult to predict, but it will be small due to the large mass of the \(b \) quark.

\[
\Xi^*_b - \Xi'_b = 3v \left(\frac{\langle \delta(r_{qs}) \rangle}{m_q m_s} + \frac{\langle \delta(r_{qu}) \rangle}{m_q m_u} \right)
\]
\[m_b - m_c = \Lambda_b - \Lambda_c \quad \Sigma_b - \Sigma_c \quad B_s - D_s \]

Method	Eq. (6)	Eq. (7)	Eq. (8)
No HF correction	5956 ± 3	5954 ± 3	5948 ± 3
Linear	5957 ± 4	5954 ± 4	5948 ± 4
Coulomb	5965 ± 3	5962 ± 3	5956 ± 3
Cornell	5958 ± 3	5955 ± 3	5949 ± 3

Table 3: Predictions for the spin averaged \(\Xi_b^\prime \) and \(\Xi_b^* \) masses with various confining potentials and methods of obtaining the quark mass difference \(m_b - m_c \).

We can once again use the \(\Xi_c \) hadron masses:

\[
\frac{\Xi_b^* - \Xi_b^\prime}{\Xi_c^* - \Xi_c^\prime} = \frac{3v \left(\frac{\langle r_{bs} \rangle}{m_b m_s} + \frac{\langle r_{bu} \rangle}{m_b m_u} \right)}{3v \left(\frac{\langle r_{cs} \rangle}{m_c m_s} + \frac{\langle r_{cu} \rangle}{m_c m_u} \right)} = \frac{m_c}{m_b} \left(\frac{\langle r_{bs} \rangle}{m_b} + \frac{m_u}{m_u} \langle r_{bu} \rangle \Xi_b \right) + \frac{m_u}{m_u} \langle r_{bu} \rangle \Xi_b^\prime \right) \]

This expression is strongly dependent on the confinement model. In the results given in Table 4 we have used \(\frac{m_s}{m_u} = 1.5 \pm 0.1, \frac{m_b}{m_c} = 2.95 \pm 0.2. \)

Method	\(\Xi_b^* - \Xi_b^\prime \)
No HF correction	24 ± 2
Linear	28 ± 6
Coulomb	36 ± 7
Cornell	29 ± 6

Table 4: Predictions for the mass difference between \(\Xi_b^* \) and \(\Xi_b^\prime \) with various confining potentials.

4 Effect of light-quark spin mixing on \(\Xi_b \) and \(\Xi_b^\prime \)

In estimates up to this point we have assumed that the light-quark spins in \(\Xi_b \) and \(\Xi_b^\prime \) are purely \(S = 0 \) and \(S = 1 \), respectively. The differing hyperfine interactions
between the b quark and nonstrange or strange quarks leads to a small admixture of the opposite-S state in each mass eigenstate \cite{12, 13, 14, 15}. The effective hyperfine Hamiltonian may be written \cite{14, 15}

$$H_{\text{eff}} = M_0 + \lambda (\sigma_u \cdot \sigma_s + \alpha \sigma_u \cdot \sigma_b + \beta \sigma_s \cdot \sigma_b),$$

(16)

where M_0 is the sum of spin independent terms, $\lambda \sim 1/(m_u m_s)$, $\alpha = m_s/m_b$, and $\beta = m_u/m_b$. The calculation of $M_{3/2}$ is straightforward, as the expectation value of each $\sigma_i \cdot \sigma_j$ in the $J = 3/2$ state is 1. For the $J = 1/2$ states one has to diagonalize the 2×2 matrix

$$M_{1/2} = \begin{bmatrix} M_0 - 3\lambda & \lambda \sqrt{3}(\beta - \alpha) \\ \lambda \sqrt{3}(\beta - \alpha) & M_0 + \lambda (1 - 2\alpha - 2\beta) \end{bmatrix}.$$

(17)

The eigenvalues of H_{eff} are thus

$$M_{3/2} = M_0 + \lambda (1 + \alpha + \beta),$$

(18)

$$M_{1/2, \pm} = M_0 + \lambda [-1 + (1 + \alpha + \beta) \pm 2\lambda (1 + \alpha^2 + \beta^2 - \alpha - \beta - \alpha\beta)^{1/2}].$$

(19)

In the absence of mixing ($\alpha = \beta$) one would have $M_{3/2} = M_0 + \lambda (1 + 2\alpha)$, $M_{1/2, +} = M_0 + \lambda (1 - 4\alpha)$, and $M_{1/2, -} = M_0 - 3\lambda$.

To see the effect of mixing, we rewrite the expression for $M_{1/2, \pm}$,

$$M_{1/2, \pm} = M_0 - \lambda (1 + \alpha + \beta) \pm 2\lambda \left[\left(1 - 2\alpha^2 - \beta^2 - \alpha - \beta - \alpha\beta\right)^{1/2} \right]$$

(20)

The effect of the mixing is seen in the term $\frac{3}{4}(\alpha - \beta)^2$. Expanding $M_{1/2, \pm}$ to second order in small $\alpha - \beta$, we obtain

$$M_{1/2, \pm} \approx (\text{terms without mixing}) \pm \lambda \cdot \frac{\frac{3}{4}(\alpha - \beta)^2}{1 - \frac{\alpha + \beta}{2}}$$

(21)

For $m_u = 363$ MeV, $m_s = 538$ MeV, and $m_b = 4900$ MeV \cite{16}, one has $\alpha \simeq 0.11$, $\beta \simeq 0.07$, while the discussion in the previous section implies $\lambda \simeq 40$ MeV [Eq. (10)]. Hence the effect of mixing on our predictions is negligible, amounting to ± 0.04 MeV.

Since we use the Ξ_c and Ξ'_c masses as input for Ξ_b, it is also important to check the mixing effects on the former. Since $m_b/m_c \sim 3$, this amounts to changing in the expressions above $\alpha \rightarrow 3\alpha$, $\beta \rightarrow 3\beta$. The corresponding effect of mixing on Ξ_c and Ξ'_c is ~ 0.5 MeV, still negligible.
5 Summary

We have shown that predictions for $M(\Xi_b)$ based on the masses of Ξ_c, Ξ'_c, and Ξ^*_c lie in the range of 5790 to 5800 MeV, depending on how the mass difference $m_b - m_c$ is estimated. Wave function differences tend to affect these predictions by only a few MeV. The spin-averaged mass of the states Ξ'_b and Ξ^*_b is predicted to lie around 150 to 160 MeV above $M(\Xi_b)$, while the hyperfine splitting between Ξ'_b and Ξ^*_b is predicted to lie in the rough range of 20 to 30 MeV. We look forward to the verification of these predictions in experiments at the Fermilab Tevatron and the CERN Large Hadron Collider.

Note added: After this work was completed we received notice of the Ξ_b^- observation at the Fermilab Tevatron in the $J/\psi\Xi^-$ decay mode by the D0 Collaboration [17]. After the first version of this paper appeared [18], the CDF Collaboration released their Ξ_b^- results in the same decay channel [19]. The reported masses, Gaussian widths (due to instrumental resolution), and significances of the signal are summarized in Table 5 and in Fig. 1. The CDF Collaboration also observes a significant $\Xi_b^- \rightarrow \Xi^0 \pi^-$ signal with mass consistent with that found in the $J/\psi\Xi^-$ mode. The D0 mass is consistent with all our predictions for the isospin-averaged mass, while that of CDF allows us to rule out the (previously disfavored [2]) prediction based on the Coulomb potential. Both experiments also agree with a prediction in Ref. [4], $M(\Xi_b) = M(\Lambda_b) + (182.7 \pm 5.0) \text{ MeV} = (5802.4 \pm 5.3) \text{ MeV}$, where differences in wave function effects were not discussed and $m_b - m_c$ was taken from baryons only, whereas in our work the optional value of $m_b - m_c$ was obtained from B_s and D_s mesons which contain both heavy and strange quarks, as do Ξ_b and Ξ_c. See also Ref. [6] and Table III therein for a compilation of earlier predictions for the Ξ_b mass. That the value of $m_b - m_c$ obtained from B and D mesons depends upon the flavor of the spectator quark was noted in Ref. [5] where Table I shows that the value is the same for mesons and baryons not containing strange quarks but different when obtained from B_s and D_s mesons. Some reasons for this difference were noted and the issue requires further investigation. Here we have updated the prediction of Ref. [4] using the recent CDF [1] value of $M(\Lambda_b)$.

Acknowledgements

J.L.R. wishes to acknowledge the hospitality of Tel Aviv University during the early stages of this work. We thank Dmitry Litvintsev for providing his figure comparing theoretical predictions with measurements of the Ξ_b^- mass. This research was supported in part by a grant from Israel Science Foundation administered by Israel Academy of Science and Humanities. The research of H.J.L. was supported in part by the U.S. Department of Energy, Division of High Energy Physics, Contract DE-AC02-06CH11357. The work of J.L.R. was supported by the U.S. Department of Energy, Division of High Energy Physics, Grant No. DE-FG02-90ER40560.
Table 5: Observations of $\Xi_b^- \rightarrow J/\psi \Xi^-$ at the Fermilab Tevatron. Errors on mass are (statistical, systematic).

	D0 [17]	CDF [19]
Mass (MeV)	$5774 \pm 11 \pm 15$	$5793 \pm 2.4 \pm 1.7$
Width (MeV)	37 ± 8	~ 14
Significance	5.5σ	7.8σ

Fig. 1 (adapted from [19]). Comparison of theoretical predictions and experimental results for the Ξ_b^- mass from D0 [17] and CDF [19]. The theoretical predictions are denoted by the two horizontal bands, corresponding to Refs. [4] and [18], respectively.
References

[1] D. Acosta et al. [CDF Collaboration], Phys. Rev. Lett. 96, 202001 (2006) arXiv:hep-ex/0508022.

[2] J. Pursley, talk presented on behalf of the CDF Collaboration at the 11th International Conference on B-Physics at Hadron Machines (Beauty 2006), 25–29 September 2006, University of Oxford, to be published in Nucl. Phys. B (Proc. Suppl.); I. Gorelov, presented on behalf of the CDF Collaboration at the Second Meeting of the APS Topical Group on Hadron Physics (GHP 2006), 22–24 October 2006, Nashville, TN; CDF Collaboration, public web page http://www-cdf.fnal.gov/physics/new/bottom/060921.blessed-sigmab/.

[3] E. Bagan, M. Chabab, H. G. Dosch and S. Narison, Phys. Lett. B 278, 367 (1992); B 287, 176 (1992); S. Capstick and N. Isgur, Phys. Rev. D 34, 2809 (1986); R. Roncaglia, D. B. Lichtenberg and E. Predazzi, Phys. Rev. D 52, 1722 (1995); N. Mathur, R. Lewis and R. M. Woloshyn, Phys. Rev. D 66, 014502 (2002).

[4] E. Jenkins, Phys. Rev. D 54, 4515 (1996); ibid. 55, 10 (1997).

[5] M. Karliner and H. J. Lipkin, arXiv:hep-ph/0307243 (unpublished).

[6] D. Ebert, R. N. Faustov and V. O. Galkin, Phys. Rev. D 72, 034026 (2005).

[7] J. L. Rosner, Phys. Rev. D 75, 013009 (2007) arXiv:hep-ph/0611207.

[8] M. Karliner and H. J. Lipkin, arXiv:hep-ph/0611306 (unpublished).

[9] B. Keren-Zur, arXiv:hep-ph/0703011 to be published in Annals of Physics.

[10] W.-M. Yao et al., Journal of Physics G 33, 1 (2006).

[11] E. Eichten et al., Phys. Rev. D 21, 203-233 (1980).

[12] K. Maltman and N. Isgur, Phys. Rev. D 22, 1701 (1980).

[13] H. J. Lipkin, unpublished.

[14] J. L. Rosner, Prog. Theor. Phys. 66, 1422 (1981).

[15] J. L. Rosner and M. P. Worah, Phys. Rev. D 46, 1131 (1992).

[16] S. Gasiorowicz and J. L. Rosner, Am. J. Phys. 49, 954 (1981).

[17] V. Abazov et al. [D0 Collaboration], arXiv:0706.1690 [hep-ex], submitted for publication to Phys. Rev. Lett.

[18] M. Karliner, B. Keren-Zur, H.J. Lipkin and J.L. Rosner, hep-ph/0706.2163v1.

[19] D. Litvintsev, on behalf of the CDF Collaboration, seminar at Fermilab, June 15, 2007, http://theory.fnal.gov/jetp/talks/litvintsev.pdf.