STUDY OF CELL DEATH AND STAGES OF LEUKOCYTES APOPTOSIS IN PULMONARY TUBERCULOSIS PATIENTS WITH DIFFERENT ANTIMYCOBACTERIAL TREATMENTS

Olga S. SHEVCHENKO1, Oksana A. NAKONECHNA1, Liliia D. TODORIKO2, Olena V. PIDVERBETSKA2, Olga O. HOVARDOVSKA1, Olga O. POHORIELOVA2, Sergey B. VOLF3, Iryna Ya. MAKOYDA4, Victor I. SLYVKA2

1 Kharkiv National Medical University, Kharkiv, Ukraine
2 Higher State Educational Establishment „Bukovinian State Medical University“, Chernivtsi, Ukraine
3 Educational Establishment „Grodno State Medical University“, Grodno, Republic of Belarus
4 Ivano-Frankivsk National Medical University, Ivano-Frankivsk, Ukraine

Received 09 Oct 2019, Accepted 07 Nov 2019
https://doi.org/10.31688/ABMU.2019.54.4.11

Address for correspondence: Liliia D. TODORIKO
Higher State Educational Establishment „Bukovinian State Medical University“, Chernivtsi, Ukraine
Address: 2, Theatralna sq., Chernivtsi – 58002, Ukraine
Email: pulmonology@bsmu.edu.ua; Phone /fax +38 0372-55-37-54

ABSTRACT

The aim of the study was to evaluate the condition of cytoplasmic membranes of leukocytes and to study their viability, to determine the varieties and stages of cell death of leukocytes in patients with pulmonary tuberculosis treated by different schemes of antimycobacterial treatment.

Materials and methods. The study was performed on 30 patients with pulmonary tuberculosis: the 1st group – 12 patients treated by standard regimen with 1st line drugs; the 2nd group treated by individual regimen with 1st and 2nd line drugs.

Results. The analysis of cytoplasmic membranes of leukocytes in the blood of patients from the 1st and the 2nd group showed that the proportion of live intact cells was 71.05±3.66%, that is lower by 20.75 % from the results of control group. In the 2nd group, the proportion of alive cells was lower by 12.9% than in the 1st group (p<0.05). In the same time, the proportion of leukocytes on the late of apoptosis/necrosis, that have

RÉSUMÉ

L’étude des types de la mort cellulaire et les stades de l’apoptose des leucocytes chez les patients atteints de la tuberculose pulmonaire aux différents programmes de traitement antimycobactérien

L’objectif. D’évaluer l’état des membranes cytoplasmiques des leucocytes et étudier leur viabilité, déterminer les variétés et les stades de la mort cellulaire des leucocytes chez des patients avec tuberculose pulmonaire traités par différents schémas de traitement antimycobactérien.

Matériaux et méthodes. L’étude a été réalisée sur 30 patients atteints de tuberculose pulmonaire: le 1er groupe – 12 patients traités par un schéma thérapeutique standard avec des médicaments en ligne; le 2ème groupe: patients traités individuellement avec les médicaments de la gamme I et II. Le groupe témoin comprenait 12 donneurs en bonne santé. L’étude a été réalisée par la cytométrie en flux sur un cytomètre en
INTRODUCTION

When bacterial and viral pathogens infect human organism, they cause plurality of reactions and form specific system «host-organism» – «pathogen-organism»1,2. The main reactions of macro-organism are: inflammation, immune response, proliferation or cell death. All these processes have a defense nature3-5.

Cell death inducted by infection agents depends on the type of cell and its physiological state, stage of infection, infected dose and virulence factors of pathogens6,7. It is known that apoptosis – programmed cell death – is a normal physiological immune, modulated and genetically regulated process, activated as a response to cell stress or metabolic disorders6,8. In the system «host-organism» – «organism-pathogen», apoptosis has three pathogenic roles: apoptosis as a mechanism of elimination of «host's» cells; apoptosis as an inducer of inflammation process; apoptosis as mechanism of protection of «host-organism»8. Depending on the efficacy of realization of these roles, cell death has an influence on immunity, the result of the infection process, course and outcome of the treatment.

Among infectious diseases, tuberculosis (TB) has a leading position in the main epidemiological indicators – morbidity, mortality, prevalence11. Some recent studies focused on the importance of better

Conclusions. A significant difference between the groups of patients in the proportion of absolutely alive leukocytes and cells on the late stage of apoptosis/necrosis can be a proof of higher activation of apoptosis process by individual treatment regimen that included 1st and 2nd line-drugs, compared with standard 1st line regimen. The obtained data allow us to recommend the study of influence of different anti-tuberculous drugs and regimens on apoptosis process of immune-competent cells, to evaluate the efficacy of pulmonary tuberculosis treatment.

Keywords: tuberculosis, apoptosis, Annexin V, flow cytometry.

List of abbreviations
AMBT – antimycobacterial treatment
CD – Cluster of Differentiation /CD antigens
DNA – deoxyribonucleic acid
EDTA – ethylene diamine tetraacetic acid
IP – intensive phase
MTB – Mycobacterium tuberculosis
PS – phosphatidylerne
TB – tuberculosis
7AAD – 7-aminoactinomycin

Résultats. L’analyse de l’état des membranes cytoplasmiques des leucocytes dans le sang des patients atteints de tuberculose pulmonaire des groupes 1 et 2 a montré que la proportion de cellules vivantes intactes était de 71,05 ± 3,66%, ce qui est inférieur de 20,75% aux résultats du groupe témoin. L’analyse comparative des résultats entre les groupes 1 et 2 a montré une différence significative entre la quantité de cellules vivantes non impliquée dans le processus d’apoptose. Dans le 2-ème groupes, la proportion de cellules vivantes était inférieure de 12,9% à celle dans le 1er groupe (≤ <0,05). Dans le même temps, la proportion de leucocytes à la fin de l’apoptose /nécrose, qui ont des dommages profonds à la structure cellulaire, était supérieure de plus de 10% à celle du groupe 1 (≤ <0,05). Les différences entre les proportions de leucocytes dans les autres stades de l’apoptose n’étaient pas significatives (≥ 0,05).

Conclusion. Nos résultats suggèrent que le traitement de la tuberculose pulmonaire s’accompagne d’une externalisation de la phosphatidylsérine dans la foliole phospholipidique de la membrane plasmique des leucocytes CD-45 +. Une différence significative entre les groupes de patients dans la proportion de leucocytes et de cellules absolument vivants au dernier stade de l’apoptose /nécrose peut être une preuve de l’activation plus élevée du processus d’apoptose par les schémas thérapeutiques individuels incluant les médicaments de 1ère et de 2ème lignes, par rapport au schéma thérapeutique standard 1. Les données obtenues nous permettent de recommander l’étude de l’influence de différents médicaments antituberculeux et de schémas thérapeutiques sur le processus d’apoptose des cellules immunocompétentes afin d’évaluer l’efficacité du traitement de la tuberculose pulmonaire.

Mots clés: la tuberculose, l’apoptose, Annexine V, cytométrie en flux.

INTRODUCTION

When bacterial and viral pathogens infect human organism, they cause plurality of reactions and form specific system «host-organism» – «pathogen-organism»1,2. The main reactions of macro-organism are: inflammation, immune response, proliferation or cell death. All these processes have a defense nature3-5.

Cell death inducted by infection agents depends on the type of cell and its physiological state, stage of infection, infected dose and virulence factors of pathogens6,7. It is known that apoptosis – programmed cell death – is a normal physiological immune, modulated and genetically regulated process, activated as a response to cell stress or metabolic disorders6,8. In the system «host-organism» – «organism-pathogen», apoptosis has three pathogenic roles: apoptosis as a mechanism of elimination of «host's» cells; apoptosis as an inducer of inflammation process; apoptosis as mechanism of protection of «host-organism»8. Depending on the efficacy of realization of these roles, cell death has an influence on immunity, the result of the infection process, course and outcome of the treatment.

Among infectious diseases, tuberculosis (TB) has a leading position in the main epidemiological indicators – morbidity, mortality, prevalence6. Some recent studies focused on the importance of better
understanding of cell death in TB patients, as a chance to improve safety and efficacy of antimycobacterial treatment (AMBT)1,2,14. The creation of host-directed treatment regimen is gaining considerable interest, because of the emergence of drug-resistant strains of MTB as response to the standard therapy.

The effect of AMBT on the functional activity of «host-organism» cells, by the disorganization of their membrane structures, is well-known4. One study showed that destruction of regulation of apoptosis is a risk factor for development or progression of TB disease5. The role of immunocompetent cell’s apoptosis in TB is favorable for organism, because it eliminates Mycobacterium tuberculosis (MTB) located inside cell and activates native and adapted immune response of «host-organism». In the same time, necrosis has a destructive effect and allows to spread MTB and increase MTB-population15-17.

Anti-TB immunity differs from immunity to other infections. Immune response depends on the phagocytosis by blood cells, formation of specific antibodies and delayed-type hypersensitivity; all these processes are performed or depend on leukocytes. Thus, study of apoptosis process in TB patients has high practical and theoretical interest.

The aim of the study was to evaluate the condition of cytoplasmic membranes of leukocytes and to study their viability, to determine the varieties and stages of cell death of leukocytes in patients with pulmonary tuberculosis treated by different schemes of antimycobacterial treatment.

Materials and methods

The study was performed on 30 patients with diagnosis of pulmonary TB, who were treated at the Regional Tuberculosis Hospital No 1 (Kharkiv, Ukraine). All diagnosis and treatment were prescribed according to the order of the Ministry of Health of Ukraine No. 620 of 14. 09. 2014. Patients were divided into groups depending on the profile of resistance of MTB detected in sputum assay and regimen of AMBT that was prescribed according to the order of the Ministry of Health of Ukraine. All diagnosis and treatment were prescribed according to the order of the Ministry of Health of Ukraine. All diagnosis and treatment were prescribed according to the order of the Ministry of Health of Ukraine. All diagnosis and treatment were prescribed according to the order of the Ministry of Health of Ukraine. All diagnosis and treatment were prescribed according to the order of the Ministry of Health of Ukraine. All diagnosis and treatment were prescribed according to the order of the Ministry of Health of Ukraine. All diagnosis and treatment were prescribed according to the order of the Ministry of Health of Ukraine. All diagnosis and treatment were prescribed according to the order of the Ministry of Health of Ukraine.

The biomaterial for the study was blood collected from the peripheral vein in the morning, in a volume of 10 ml and placed in an EDTA tube. Biomaterials were collected at the end of IP of AMBT. The study of viability of blood leukocytes, as well as varieties and stages of cell death were performed by flow cytometry using a FACS Calibur flow cytometer. The assessment of the stages of cell death was performed by adding the markers CD45 +, AnnexinV FITC detection KIT I, 7AAD (Becton Dickinson, USA)6. A marker of late-stage apoptosis and/or necrosis is 7-aminoactinomycin (7AAD), a vital DNA-dye that penetrates the cell in violation of cell membrane integrity. AnnexinV FITC is a marker of early-stage apoptosis, which is a Ca2+-dependent phospholipid binding protein. AnnexinV connects with cells that have PS. Assessment of cells death stages was performed by adding markers CD45+, AnnexinV FITC detection KIT I, 7AAD. Four stages of cells were determined by this method: 1- live cells (AnnexinV-, 7AAD-), 2- apoptotic cells in initial stage (AnnexinV-, 7AAD+), 3- apoptotic/necrotic cells in late stage (AnnexinV-, 7AAD+), 4- dead necrotic cells (AnnexinV-, 7AAD+). The results of flow cytometry were assessed by using the program CELL Quest Pro (Becton Dickinson, USA)«WinMDIVersion 2.9».

Statistical processing of the obtained results was carried out by Microsoft Excel 2016 (license No 0201-10554-16848-AA351) and Stat soft Statistica 8.0. (license STA862DI75437Q). Significant differences were considered to be at a p value <0.05.

The work was performed according to the requirements of the Statute of Ukrainian Association...
for Bioethics and the GCP norms (1992), requirements and norms of ICH GLP (2002), typical ethics provisions of the Ministry of Public Health of Ukraine 66 dated February 13, 2006.

Results

The analysis of cytoplasmic membranes of leukocytes in the blood of pulmonary TB patients of the 1st and 2nd groups showed that the proportion of live intact cells was 71.05±3.66%, that is lower by 20.75% from the results of the control group. The proportion of apoptotic cells that reacted with Annexin V was significantly higher (p<0.05) in the groups of TB patients than in the control group and the average value for TB patients was 27.1±1.9%. The increasing of quantity of apoptotic cells in the blood of TB patients was defined in both apoptosis stages. In the early stage, it was higher by 3.8 times, in the late stage by 5.3 times, compared with control group. The proportion of dead necrotic cells in the blood of TB patients was decreased by 1.8 times. All detected parameters were significantly (p<0.05) different from the control group. The results are presented in Table 1.

The comparative analysis of the results of flow cytometry, with assessment of state leukocyte’s cytoplasmic membranes between the 1st and 2nd groups, showed a significant difference between the amounts of alive cells not involved in the apoptosis process. In the 2nd group, the proportion of alive cells was lower by 12.9% than in the 1st group (p<0.05). In the same time, the proportion of leukocytes on the late of apoptosis/necrosis, that have deep damages of cell structure, was higher by more than 10% than in the 1st group (p<0.05). The differences between the proportion of leukocytes in other stages of apoptosis were not significant (p≥0.05). The results are presented in Table 2.

Discussion

The surface of healthy cells is composed of lipids that are asymmetrically distributed on the inner and outer leaflet of the plasma membrane. Phosphatidylserine (PS) is one of these lipids that is normally restricted to the inner leaflet of the plasma membrane, therefore only exposed to the cell cytoplasm. However, during apoptosis, lipid asymmetry is lost and PS becomes exposed on the outer leaflet of Table 1. Quantity of CD-45+ cells in different stages of cell death in the blood of tuberculosis patients and healthy donors

States of leukocytes	TB patients	Healthy donors
Alive cells (AnnexinV⁻/7AAD⁻) (%)	71.05±3.66*	91.8±0.1
Initial stage of apoptosis (AnnexinV⁺/7AAD⁻) (%)	14.77±1.47*	3.85±0.16
Late stage of apoptosis/necrosis (AnnexinV⁺/7AAD⁺) (%)	12.35±2.36*	3.08±0.3
Dead necrotic cells (AnnexinV⁺/7AAD⁺) (%)	0.95±0.07*	1.78±0.32

*significantly differ when comparing with control group (p<0.05)

Table 2. Quantity of CD-45+ cells in different stages of cell death in the blood of tuberculosis patients with different treatment schemes of antimycobacterial treatment

States of leukocytes	1st group	2nd group	Control group
Alive cells (AnnexinV⁻/7AAD⁻) (%)	74.59±3.88*#	61.63±6.57*#	91.8±0.1
Initial stage of apoptosis (AnnexinV⁺/7AAD⁻) (%)	13.71±1.82*	17.6±1.72*	3.8±0.16
Late stage of apoptosis/necrosis (AnnexinV⁺/7AAD⁺) (%)	9.56±2.04*#	19.8±5.04*#	3.1±0.3
Dead necrotic cells (AnnexinV⁺/7AAD⁺) (%)	0.9±0.1*	1.07±0.03	1.8±0.31

*significantly differ when comparing with control group (p<0.05)

#--significantly when comparing the two groups (p<0.05)
the plasma membrane18. The modern method of flow cytometry gives the ability to detect externalization of PS to cell cytoplasmic membrane, that is a sign of early apoptosis10. PS, located on the outer leaflet of the plasma membrane of apoptotic cells, connects with Annexin-V. The relations of apoptosis and TB infection/disease are actively discussed in contemporary publications that present the results of experimental and clinical studies. However, data do not allow to clarify the role of apoptosis in the development, progression and outcome of TB.

The study of proapoptotic factor – expression of CD-95+ on the lymphocytes of blood in patients with abdominal TB showed the increasing of CD-95+ by 1.8 times, that demonstrated the association of chronic inflammation with elevated readiness of cells to apoptosis19. Other study of the content of CD-95+ cells in the blood of patients with drug-resistant TB and TB with saved sensitivity to anti-TB drugs before the start of specific treatment did not differ from the results of healthy donors. It was found that in patients with drug-resistant TB the number of apoptotic Annexin V+ cells was higher than in patients without resistance20. Usually, the authors consider that TB caused by drug-resistant strains of MTB is accompanied by deeper impaired immune defense mechanisms, including the ability of cells to activate. This trend is confirmed by the results of our study. Because the study was conducted during AMBT, other reasons for indicated differences can be the progression of the disease or the utilization of different therapeutic regimens.

Information about the influence of anti-TB drugs on apoptosis of immune-competent cells is already known. For example, an experimental study of INH effect on cell death determined that INH

Figure 1. Flow cytometric pattern with visualization of states of leukocytes in the blood of healthy donor (2a) and TB patient of the 2nd group (2b)
that included 1st and 2nd line drugs, compared with of apoptosis process by individual treatment regimen apoptosis/necrosis can be a proof of higher activation absolutely alive leukocytes and cells on the late stage of between the groups of patients in the proportion of ab-

Our results suggest that treatment of pulmonary tuberculosis is accompanied by the externalization of phosphatidylserine in the phospholipid leaflet of the plasma membrane of CD-45+ leukocytes. We can sup-
pose that anti-tuberculosis drugs can be inducers of leukocytes apoptosis, because the proportion of ab-

Compliance with Ethics Requirements

The clinical study determined that TB is accom-
panied by an alteration of the functional activity and restructuring of membranes of mononuclear of peripheral blood. The membrane destructive effect of AMBT on mononuclear of peripheral blood results in disorganization of their membranes, manifesting in accumulation of lysophospholipids, with simultaneous decreasing of the content of phosphatidylserine and phosphatidylcholine. The toxic effect of AMBT has no effect on the number of monocytes in peripheral blood. Disorganization of the membrane structures of these cells and the possible suppression of their functional activity occur.

CONCLUSIONS

The study was performed according to the require-
ments of the Statute of Ukrainian Association for Bioethics and the GCP norms (1992), requirements and norms of ICH GLP (2002), ethical standards in the Helsinki Declaration of 1975, as revised in 2008, typical ethics pro-
visions of the Ministry of Public Health of Ukraine dated February 13, 2006. The work was approved by Ethical Commission of Kharkiv National Medical University, Ukraine (Protocol No 2 of 03.02.2016; chairmen – MD, professor Ospanova T.S. (+ 38 050 9988242))

The authors declare no conflict of interest regarding this article

"Informed consent was obtained from all the patients included in the study"

No funding for this study

Acknowledgements

No acknowledgements

REFERENCES

1. Chernushenko EF, Protsyuk RG. Anti-tuberculosis immu-
nity (Part 1). Ukrainian Pulmonology Journal. 2010; (4):53-58.
2. Chernushenko EF, Protsyuk RG. Anti-tuberculosis immu-
nity (Part 2). Ukrainian Pulmonology Journal. 2011; (2):29-32
3. Garib FYu, Rizopulu AP. Interactions of pathogenic bacteria with innate immune reactions of host. Infektsiya i immunitet. 2012; 2(3):581-590.
4. Iftimie G, Bratu OG, Socea B, et al. Pulmonary involvement in rheumatoid arthritis – another face of the coin. Arch Balk Med Union 2018;53(1):89-95.
5. Paraschiv B, Dediu G, Iancu A, Bratu O, Diaconu C. Superior vena cava syndrome – review. Arch Balk Med Union 2017;52(1):39-43.
6. Ryasensky DS, Aseev AV, Elgali AI. The state of membranes of mononuclear leukocytes in patients with tuberculosis of lungs. Klin Lab Diagn. 2018; 63(5):301-305.
7. Diaconu C, Balaceanu A, Morosan E. Sepsis biomarkers: past, present and future. Farmacia 2015;63(6):811-815
8. Somova LM, Besednova NN, Plekhova NG. Apoptosis and infectious diseases. Infection and immunity (Ukr). 2014; 4(4):303-318
9. Koopman G, Reutelingsperger CP, Kuijten GA, et al. Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood. 1994; 84(5):1415-1420
10. Mohareer K, Asalla S, Banerjee S. Cell death at the cross-

roads of host-pathogen interaction in Mycobacterium tuber-
culosus infection. Tuberculosis (Edinb). 2018;113:99-121
11. WHO Global tuberculosis report 2018 Geneva: World Health Organization; 2018.
12. Elliott TO, Owolabi O, Donkor S, et al. Dysregulation of apoptosis is a risk factor for tuberculosis disease progression. J Infect Dis. 2015; 212(9):1469-1479
13. Liu CH, Liu H, Ge B. Innate immunity in tuberculo-
sis: host defense vs pathogen evasion. Cell Mol Immunol. 2017;14(12):963-975
14. Pahari S, Negi S, Aqdas M, Arnett E, Schlesinger LS, Agrewala JN. Induction of autophagy through CLEC4E in

Compliance with Ethics Requirements

"The study was performed according to the require-
ments of the Statute of Ukrainian Association for Bioethics and the GCP norms (1992), requirements and norms of ICH GLP (2002), ethical standards in the Helsinki Declaration of 1975, as revised in 2008, typical ethics pro-
visions of the Ministry of Public Health of Ukraine dat-
ed February 13, 2006. The work was approved by Ethical Commission of Kharkiv National Medical University, Ukraine (Protocol No 2 of 03.02.2016; chairmen – MD, professor Ospanova T.S. (+ 38 050 9988242))

"The authors declare no conflict of interest regarding this article"

"Informed consent was obtained from all the patients included in the study"

"No funding for this study"

Acknowledgements

No acknowledgements

REFERENCES

1. Chernushenko EF, Protsyuk RG. Anti-tuberculosis immu-
nity (Part 1). Ukrainian Pulmonology Journal. 2010; (4):53-58.
2. Chernushenko EF, Protsyuk RG. Anti-tuberculosis immu-
nity (Part 2). Ukrainian Pulmonology Journal. 2011; (2):29-32
3. Garib FYu, Rizopulu AP. Interactions of pathogenic bacteria with innate immune reactions of host. Infektsiya i immunitet. 2012; 2(3):581-590.
4. Iftimie G, Bratu OG, Socea B, et al. Pulmonary involvement in rheumatoid arthritis – another face of the coin. Arch Balk Med Union 2018;53(1):89-95.
5. Paraschiv B, Dediu G, Iancu A, Bratu O, Diaconu C. Superior vena cava syndrome – review. Arch Balk Med Union 2017;52(1):39-43.
6. Ryasensky DS, Aseev AV, Elgali AI. The state of membranes of mononuclear leukocytes in patients with tuberculosis of lungs. Klin Lab Diagn. 2018; 63(5):301-305.
7. Diaconu C, Balaceanu A, Morosan E. Sepsis biomarkers: past, present and future. Farmacia 2015;63(6):811-815
8. Somova LM, Besednova NN, Plekhova NG. Apoptosis and infectious diseases. Infection and immunity (Ukr). 2014; 4(4):303-318
9. Koopman G, Reutelingsperger CP, Kuijten GA, et al. Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood. 1994; 84(5):1415-1420
10. Mohareer K, Asalla S, Banerjee S. Cell death at the cross-

roads of host-pathogen interaction in Mycobacterium tuber-
culosus infection. Tuberculosis (Edinb). 2018;113:99-121
11. WHO Global tuberculosis report 2018 Geneva: World Health Organization; 2018.
12. Elliott TO, Owolabi O, Donkor S, et al. Dysregulation of apoptosis is a risk factor for tuberculosis disease progression. J Infect Dis. 2015; 212(9):1469-1479
13. Liu CH, Liu H, Ge B. Innate immunity in tuberculo-
sis: host defense vs pathogen evasion. Cell Mol Immunol. 2017;14(12):963-975
14. Pahari S, Negi S, Aqdas M, Arnett E, Schlesinger LS, Agrewala JN. Induction of autophagy through CLEC4E in
combination with TLR4: an innovative strategy to restrict the survival of Mycobacterium tuberculosis. Autophagy. 2019;1-23

15. Fratazzi C, Arbeit RD, Carini C, et al. Macrophage apoptosis in mycobacterial infections. J Leukoc Biol. 1999; 66(5):763-764

16. Lam A, Prabhu R, Gross CM, Riesenberg LA, Singh V, Aggarwal S. Role of apoptosis and autophagy in tuberculosis. Am J Physiol Lung Cell Mol Physiol. 2017;313(2):L184-L229.

17. Todoriko LD, Yeremenchuk IV, Davydenko IS. Study of proliferative activity and intensity of bronchial epitheliocytes apoptosis in case of pulmonary multidrug-resistant tuberculosis. Tuberculosis, Lung Diseases, HIV Infection (Ukr). 2015; 4(23):42-47

18. Todoriko LD, Yeremenchuk IV, Fedirtsan MP, Kiril AO, Savchuk OV, Golovachuk OV. Indicators of cytokine regulation and pathogenetic ground for applying of Tivortin in patients with multidrug-resistant pulmonary tuberculosis. Natural and Technical Science. 2017; 13(121):54-56

19. Akimova V.M. CD95 Expression on peripheral blood lymphocytes in acute and chronic abdominal diseases expression on peripheral blood lymphocytes in acute and chronic abdominal diseases. Modern Problems of Science and Education (Rus). 2014;(1):127-135

20. Kononova TYe, Uražova OI, Novitsky VV, Churina YeG, Ignatov MV. Peculiarities of immune reaction in patients with drug-resistant pulmonary tuberculosis. V Bulletin of Siberian Medicine, 2012(4):160-162

21. Tousif S, Singh DK, Ahmad S, et al. Isoniazid induces apoptosis of activated CD4+ T cells: implications for post-therapy tuberculosis reactivation and reinfection. J Biol Chem. 2014;289(44):30190-195

22. Wibawa T, Pangemanan L, Rachmawaty FJ, Rintiswati N, Mustofa, Soesatyo MH. Isoniazid (INH) treatment of INH-resistant Mycobacterium tuberculosis inhibits infected macrophage to produce TNF-alpha. Southeast Asian J Trop Med Public Health. 2014;45(5):1107-1113.

23. Yerramasetti R, Gollapudi S, Gupta S. Rifampicin inhibits CD95-mediated apoptosis of Jurkat T cells via glucocorticoid receptors by modifying the expression of molecules regulating apoptosis. J Clin Immunol. 2002; 22(1):37-47.