Clonal evolution and antigen recognition of anti-nuclear antibodies in acute systemic lupus erythematosus

Shuhei Sakakibara1, Takao Arimori2, Kazuo Yamashita3, Hideyuki Jinzai4, Daisuke Motooka5, Shotaro Nakamura5, Songling Li3, Kazuya Takeda1,4, Jun Katayama1,4, Marwa Ali El Hussien1,4, Masashi Narazaki6,7, Toshio Tanaka6,7,8, Daron M. Standley3,9, Junichi Takeo2 & Hitoshi Kikutani1

The evolutional process of disease-associated autoantibodies in systemic lupus erythematosus (SLE) remains to be established. Here we show intraclonal diversification and affinity maturation of anti-nuclear antibody (ANA)-producing B cells in SLE. We identified a panel of monoclonal ANAs recognizing nuclear antigens, such as double-stranded DNA (dsDNA) and ribonucleoproteins (RNP) from acute SLE subjects. These ANAs had relatively few, but nonetheless critical mutations. High-throughput immunoglobulin sequencing of blood lymphocytes disclosed the existence of sizable ANA lineages shearing critical mutations intraclonally. We further focused on anti-DNA antibodies, which are capable to bind to both single-stranded (ss) and dsDNA at high affinity. Crystal structure and biochemical analysis confirmed a direct role of the mutations in the acquisition of DNA reactivity and also revealed that these anti-DNA antibodies recognized an unpaired region within DNA duplex. Our study unveils the unique properties of high-affinity anti-DNA antibodies that are generated through antigen-driven affinity maturation in acute phase of SLE.

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease affecting skin, kidneys and other organs1,2. The sera of SLE patients contain high titers of anti-nuclear antibodies (ANAs), which are reactive to nuclear components such as DNA, histones, and heterogeneous nuclear ribonucleoproteins/Smith antigen (RNP/Sm)3. The generation process of ANAs has been studied using SLE mouse models4–7. A number of studies on monoclonal antibodies (mAbs) from these mice have revealed several characteristics of autoantibodies including a crucial role of somatic hypermutation (SHM)6–7. On the other hand, studies of monoclonal ANAs derived from SLE patients are limited. Several human ANAs have been shown to react with nuclear antigens in a SHM-dependent manner4–10 as reported for mouse ANAs. However, some reports have shown that ANAs can be generated without somatic mutation and rigorous affinity maturation11–13. Thus, it still remains unclear how much antigen-driven affinity maturation contribute to the generation of ANAs in human SLE patients. This is largely due to a limited number of bona fide human ANA clones and a lack of detailed phylogenetic analysis of disease-associated ANA clones.

1Laboratory of Immune Regulation, Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan. 2Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan. 3Laboratory of Systems Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan. 4Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan. 5Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan. 6Department of Immunopathology, Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan. 7Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan. 8Department of Clinical Application of Biologics, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan. 9Laboratory of Integated Biological Information, Institute for Virus Research, Kyoto University, Kyoto, Kyoto, 606-8507, Japan. Correspondence and requests for materials should be addressed to S.S. (email: sakakibara@ifrec.osaka-u.ac.jp) or H.K. (email: kikutani@biken.osaka-u.ac.jp)
Among various ANAs, anti-double-stranded DNA (dsDNA) antibodies are a reliable diagnostic marker for SLE. Previous genetic analysis of murine monoclonal anti-dsDNA antibodies revealed a high frequency of basic amino acids in the complementarity-determining regions (CDRs), inferring that they contribute to electrostatic interactions with the DNA backbone\(^5\). A hypothetical structural model of anti-dsDNA antibody has demonstrated that the tips of the heavy chain CDR1 and 2 (HCDR1 and 2) extend into the major groove of the dsDNA allowing HCDR3 to make contact with the phosphate backbone\(^5\). A similar model for human anti-dsDNA antibody has also been reported\(^14\). Yet, these models have not been validated by crystallographic analysis.

In the current study, we characterized disease-associated ANAs isolated from SLE patients in the acute phase. High-throughput sequencing (HTS) analysis was performed to understand the evolutionary process of the ANAs. Furthermore, we performed in silico docking and x-ray crystallography on a representative anti-dsDNA antibody, which revealed a novel structural basis of antigen recognition by anti-DNA antibodies.

Results

Circulating CD138\(^+\) cells represent serological anti-nuclear reactivity in the acute phase of SLE. To isolate disease-associated autoantibodies, we generated 199, 74, and 150 mAb clones from blood CD19\(^-\)CD138\(^+\) plasmablasts (PBs) of untreated acute SLE patients, patients in remission, and healthy volunteers, respectively (Supplementary Fig. 1 and Supplementary Table 1), and tested for their reactivity against representative SLE self-antigens, dsDNA and cardiolipin (CL) in ELISA. We observed no difference in the frequencies of autoantibodies against dsDNA or CL among the three groups (Fig. 1A). Most of such autoantibodies were polyreactive, even reactive to insulin which is unrelated to SLE. Thus, unexpectedly high frequencies of self-reactive and polyreactive clones were comparably observed in PBs of healthy donors, SLE patients in remission and patients in the acute phase (Fig. 1B). In indirect immunofluorescent staining assay (IFA), 14 out of 239 clones from 6 acute subjects showed strong nuclear reactivity at concentrations lower than 2 \(\mu\)g/ml (Table 1 and Supplementary Table 2). The isolated ANA clones represented ~6% of the PB-derived mAbs isolated from acute patients, but not from patients in remission or healthy donors (Fig. 1C), which was consistent with serum ANA titers of our subjects (Supplementary Fig. 1). Furthermore, these ANAs showed...
Reactivity of the ANA clones isolated from acute SLE patients. *Sp: speckled, Nucl: nucleolar, Ho: Homogenous. **The lowest reactive concentration in IFA (µg/ml). ++++ positive at <0.0313 µg/ml, ++++ positive at 0.0313–0.0625 µg/ml, + positive at 0.0625–0.25 µg/ml, − negative at 0.25 µg/ml.

Table 1. Reactivity of the ANA clones isolated from acute SLE patients. *Sp: speckled, Nucl: nucleolar, Ho: Homogenous. **The lowest reactive concentration in IFA (µg/ml). ++++ positive at <0.0313 µg/ml, ++++ positive at 0.0313–0.0625 µg/ml, + positive at 0.0625–0.25 µg/ml, − negative at 0.25 µg/ml.

Clone ID	Patient ID	IFA (Hep2)	ELISA*									
		Pattern†	Conc.†	RNP/Sm	SS-A/Ro	SS-B/La	dsDNA	ssDNA	Histone	CL	Insulin	LPS
51B12	SLE5	Sp	2	++++	−	−	−	−	−	−	−	−
51C5	SLE5	Sp	2	++++	−	−	−	−	−	−	−	−
51F1	SLE5	Sp	0.67	++++	−	−	−	−	−	−	−	−
91E12	SLE9	Sp	0.67	++++	−	−	−	−	−	−	−	−
113F3	SLE11	Sp	0.67	++++	−	−	−	−	−	−	−	−
71G1	SLE7	Nucl	2	−	−	−	−	+	+	−	−	+
71F12	SLE7	Ho	≤0.2	−	−	+	+++	−	−	−	−	+
72H11	SLE7	Ho	≤0.2	+	−	+	++	+	+	−	−	+
74F4	SLE7	Ho	≤0.2	−	−	−	+	−	−	−	−	−
74G9	SLE7	Ho	≤0.2	−	−	−	+	−	−	−	−	−
74H4	SLE7	Ho	≤0.2	−	−	−	+	−	−	−	−	−
10C3	SLE10	Ho	≤0.2	−	−	−	−	−	−	−	−	−
10C6	SLE10	Ho	2	+	−	−	+	+	+	+	+	+
12I9	SLE12	Ho	≤0.2	−	−	−	−	−	−	−	−	+

Somatic mutation contributes highly to the self-reactivity of ANAs. The immunoglobulin (Ig) variable sequences from acute SLE patient-derived antibodies contained significantly fewer somatic mutations (Fig. 2A; SLE-A: mean VH and VL nucleotide [nt] mutations/gene were 8.78 and 8.51, respectively) than those from SLE patients in remission (SLE-R VH: 16.6 and VL: 11.72) and healthy donors (HD VH: 15.9 and VL: 11.4). The rate of V mutations was also lower in the identified ANA clones (Fig. 2A; ANA VH: 7.79 [min. = 0; max. = 17] and VL: 5.79 [min. = 0; max. = 14]), and one clone (74H4) had no somatic mutation. Because unmutated germline (GL) antibodies of selected ANA clones showed no reactivity or reduced self-reactivity in ELISA and anti-nuclear reactivity in IFA (Fig. 2B), the self-reactivity of most ANAs was dependent on somatically mutated residues, although the numbers of VH and VL mutations of these clones were lower than those of mAbs derived from patients in remission and healthy donors. The only exception appeared to be 74H4, which had no mutation, but showed strong anti-nuclear reactivity.

Clonal size and selection signature of ANAs in SLE. To gain insight into the distribution and evolution of ANA clonal lineages in SLE, by using HTS, we analyzed the Ig heavy chain repertoire of one of the patients, SLE7 before (day 0) and during treatment (at days 154 and 473). We amplified and sequenced transcripts of the VH3 and VH4 families from total blood lymphocytes, which would cover a majority of human Ig repertoires including several isolated ANA clones of this patient. This approach enables us to quantify the sizes and intraclassal diversification of ANA clone lineages at transcript level, which reflects their contribution to the serum polyreactivity. Albeit 74F4, 74G9 and 10C3 showed typical homogenous nuclear staining even at low concentrations, it did not react with any tested nuclear antigens in ELISA.
Figure 2. A low frequency of somatic mutations largely contributes to self-reactivity of the isolated ANAs. (A) V mutations (nt) of the mAbs from healthy donors (HD, 3 donors, n = 69), SLE remission (SLE-R, 3 donors, n = 72), and acute patients (SLE-A, 5 donors, n = 145), and the ANA clones (n = 14). Mann-Whitney test (*P ≤ 0.05, **P ≤ 0.005). (B, C) Reversion assay in ELISA (B) and IFA (C). The reactivity of patient-derived mutated (black: SHM [+]) or reverted (red: SHM [−]) antibodies in ELISA for the respective self-antigens are shown.
In contrast to the ANA lineages, only 3 out of 7 non-ANA polyreactive lineages encoded by VH3 or VH4 were found in the HTS data (Fig. 3B). Detected polyreactive lineages were smaller than the ANA lineages: 71B6, 71D10 (835th and 15,216th in the VH3 lineages, respectively) and 71E6 (278th in the VH4 lineages) (Fig. 3B, and
Supplementary Table 3). Therefore, ANA clones appear to have a greater ability to expand compared to polyreactive clones in the acute phase of SLE.

The phylogenetic analysis of the ANA lineages delineated the evolution of self-reactive B cells in SLE. In the anti-DNA 71F12 lineage, a majority of the diverse sequences shared three amino acid mutations, one in HCDR1 (Y33F) and two in the framework regions (P14S and D72H) (Fig. 3C). Three sequences found in the subject at day 154 were divergent from the 71F12 sequence, but still shared these three mutations (Fig. 3C; colored in green).

Similarly, the ANA 74G9, 74F4 and 71G1-related sequences earned a range of somatic mutations, some of which were conserved well in each lineage (Fig. 3D and Supplementary Fig. 1). These results indicated that the ANA clones underwent clonal diversification and selection in the acute SLE patient.

High-affinity anti-DNA antibodies isolated from acute SLE subjects are capable to bind to both ds- and ssDNA. Among the ANAs we isolated, clones 71F12 and 121G9 were highly reactive to both ds and ssDNA. The surface plasmon resonance (SPR) binding experiments revealed that they bind to oligo dsDNA with nanomolar dissociation constants (Fig. 4A), which were much smaller than the values of polyreactive 72H11 (equilibrium dissociation constant $K_d = \sim0.4 \text{nM}$) (Fig. 4A). This type of anti-DNA antibodies may represent IgG antibodies with anti-ds and ssDNA reactivity, which is shown to be eluted from the kidneys of the disease model mouse and SLE patients5,16. In addition, both 71F12 and 121G9 facilitated interferon α (IFNα) production of peripheral blood mononuclear cells (PBMCs) in the presence of low concentration of plasmid DNA (pDNA) (Fig. 4B), as previously reported for SLE sera with anti-DNA reactivity5, suggesting their pathogenic potency. It should be noted that 71F12 has base specificity, as this clone exclusively bound to the thymine-containing ssDNA and dsDNA (Fig. 4C,D). Flexible docking of 5-mer ssDNA to a homology model of 71F12 in silico suggested that the ssDNA tended to be situated close to the antibody at positions 33 and 72 (Fig. 4E).

Structural basis of antigen recognition by the anti-DNA clone 71F12 supports antigen-dependent selection of the ANA lineage. To clarify the structural basis underlying the DNA recognition by the 71F12 antibody, the crystal structure of the 71F12 fragment antigen binding (Fab)-ssDNA ($5'$-TTTTT-3') complex was solved (Table 2). Clear electron density attributable to the bound DNA was visible at the antigen-binding cleft of the Fab molecules (Fig. 5A), which is consistent with the docked models (Fig. 4E). The DNA was mostly recognized by the heavy chain at three anchor points (sites 1–3) each utilizing the thymine base projected toward the antibody (Fig. 5A). In addition, 71F12 and 121G9 facilitated interferon α (IFNα) production of peripheral blood mononuclear cells (PBMCs) in the presence of low concentration of plasmid DNA (pDNA) (Fig. 4B), as previously reported for SLE sera with anti-DNA reactivity5, suggesting their pathogenic potency. It should be noted that 71F12 has base specificity, as this clone exclusively bound to the thymine-containing ssDNA and dsDNA (Fig. 4C,D). Flexible docking of 5-mer ssDNA to a homology model of 71F12 in silico suggested that the ssDNA tended to be situated close to the antibody at positions 33 and 72 (Fig. 4E).

The thymine base at site 1 (designated as T$_0$) is deeply inserted into a pocket formed by F33, Y50, H98, N100 and W101 of the heavy chain and Y97 and Y99 of the light chain, and is specifically held via numerous hydrogen bonds and stacking interaction with W101 (Fig. 5C). The structure is only compatible with pyrimidine bases at the T$_0$ position, which is consistent with the docked models (Fig. 4E). The DNA was mostly recognized by the light chain at three anchor points (sites 1–3) each utilizing the thymine base projected toward the antibody (Fig. 5A). Electron density was only visible for a trinucleotide segment, which became weaker toward the 5’ direction (Fig. 5A).

Therefore, we speculated that the poly-thymine segment could dock onto the 71F12 antibody with different registers (Table 2). Clear electron density attributable to the bound DNA was visible at the antigen-binding cleft of the Fab molecules (Fig. 5A), which was consistent with the docked models (Fig. 4E). The DNA was mostly recognized by the heavy chain at three anchor points (sites 1–3) each utilizing the thymine base projected toward the antibody (Fig. 5A). Electron density was only visible for a trinucleotide segment, which became weaker toward the 5’ direction (Fig. 5A).

Therefore, we speculated that the poly-thymine segment could dock onto the 71F12 antibody with different registers (Table 2). Clear electron density attributable to the bound DNA was visible at the antigen-binding cleft of the Fab molecules (Fig. 5A), which was consistent with the docked models (Fig. 4E). The DNA was mostly recognized by the heavy chain at three anchor points (sites 1–3) each utilizing the thymine base projected toward the antibody (Fig. 5A). Electron density was only visible for a trinucleotide segment, which became weaker toward the 5’ direction (Fig. 5A).

Similarly, the ANA 74G9, 74F4 and 71G1-related sequences earned a range of somatic mutations, some of which were conserved well in each lineage (Fig. 3D and Supplementary Fig. 1). These results indicated that the ANA clones underwent clonal diversification and selection in the acute SLE patient.

Structural analysis above unraveled a striking fact that most of the antibody residues involved in the DNA recognition are not mutated from the GL sequence, except for the F33 in HCDR1 (Fig. 5E,G). The 71F12 GL antibody could bind to 5'-TTTTT-3' at ~50-fold lower affinity compared to 71F12 in SPR (Fig. 5H). The conservative mutation Y33F in the heavy chain is critical for higher affinity because the hydroxyl group would be half exposed, but still makes extensive contacts with the antibody via F33 (H), S56 (H), S58 (H) and Y97 (L) (Fig. 5C). The interaction mediated by site 3 seems to provide minor contributions to the affinity and base specificity, because the T$_3$ base merely stacks onto the convex ridge formed by S54 (H) and S56 (H) at the periphery of the antigen binding site (Fig. 5B,C). Y52 (H) contributes to the interaction by contacting T$_0$ and T$_1$ ribose moieties. From the nature of the binding interface described above, we predict that a DNA antigen should contain a sequence of 5'-NTT-3' to be recognized by 71F12 with the optimal affinity, although a substitution at the second nucleotide position would be tolerated, with a modest reduction in affinity. In fact, the triple mutant antibody (71F12GL-SFH), which has essentially the same binding property as 71F12, recognized a 9-mer oligonucleotide containing one thymine at the 3’ end (5'-GGGGGGGGT-3'), albeit with an about 150-fold reduced affinity than that toward an oligonucleotide containing three thymines at the end (5'-GGGGGGTTT-3') (Fig. 5I).

The structural analysis above unraveled a striking fact that most of the antibody residues involved in the DNA recognition are not mutated from the GL sequence, except for the F33 in HCDR1 (Fig. 5E,G). The 71F12 GL antibody could bind to 5'-TTTTT-3' at ~50-fold lower affinity compared to 71F12 in SPR (Fig. 5H). The conservative mutation Y33F in the heavy chain is critical for higher affinity because the hydroxyl group would cause steric impedence with the DNA backbone (Fig. 5D,E). The decisive role of this residue was experimentally confirmed by introducing the single Y33F mutation into the GL antibody, which resulted in the affinity gain toward 5'-TTTTT-3' (Fig. 5H).

Among the four 71F12 heavy chain residues that underwent somatic mutation, three (P14S, Y33F and D72H) were highly prevalent within the lineage (Fig. 5F). Although the selection of Y33F mutation can be rationalized as above, the reasons for the other two mutations found in the framework region are still unclear. When we modeled the structure of the GL antibody, D72 was in close proximity with K75 forming an intra-molecular salt bridge to neutralize the surface charge and the charge-reversing D72H mutation would create a positively charged long-range electrostatic interactions between the negatively charged phosphate backbone of the DNA and the H72-K75 basic diad (Supplementary Fig. 2). As shown in Fig. 5H, the GL antibody with two mutations P14S and Y33F (71F12GL-SF) showed similar affinity toward 5'-TTTTT-3' with 71F12GL-SFH, indicating that the D72H mutation has no impact on the binding of 5-mer DNA. When we used 9-mer oligonucleotides, however, the effect of the D72H mutation became evident; the affinity of the antibody 71F12GL-SF to 5'-GGGGGGGTTT-3' was no...
Figure 4. High-affinity anti-DNA antibodies bind to both ds and ssDNA, and sensitize PBMC to dsDNA for IFNα production. (A) SPR analysis of 71F12 and 121G9, and polyreactive clone, 72H11. Biotinylated dsDNA (5′-TAATACGACTCACTATAGGG-3′) was immobilized on the chip. (B) Enhanced IFNα production of PBMC by 71F12 and 121G9. Freshly isolated PBMCs (5 × 10^5) were cultured with different amounts of pDNA (100, 300, or 1,000 ng/ml) and 5 μg/ml of anti-DNA antibodies, or control human IgG1 (Ct). IFNα concentration was determined by ELISA. (C and D) 71F12 preferentially binds to thymine-containing DNA. 71F12 (100 nM, unless otherwise indicated) was loaded onto the sensor chip immobilized with ss (C), or dsDNA (D). The mean values of K_D ± s.e.m. from three experiments are shown. (E) Flexible docking of ssDNA to 71F12 antibody. Two 5-mer ssDNA binding sites are indicated by backbone traces of the top-100 solutions within the top two clusters. The sites predicted to have high DNA binding propensity are indicated by warmer colors mapped onto the molecular surface of the antibody. Two of the mutations from the germline ancestor (Y33F and D72H) are indicated.
longer detectable, and the affinity toward 5′-GGGGGGTTT-3′ decreased by ~30 fold (Fig. 5I). Therefore, both Y33F and D72H somatic mutations contribute significantly to the acquisition of high affinity toward a stretch of DNA containing at least one thymine.

SLE-derived high affinity anti-dsDNA mAbs induce destabilization of the DNA duplex. Recognition of dsDNA has long been thought of as a characteristic of lupus-associated autoantibodies. As a segment of dsDNA duplex can undergo spontaneous dissociation under physiological condition19,20, 71F12 may selectively bind temporarily formed single stranded segments. To test this hypothesis, microbeads were conjugated with a thymine-containing oligonucleotide, annealed with fluorescent-labeled complementary DNA, and incubated with control antibody or 71F12 (Fig. 6A). As clearly shown in Fig. 6B and C, the fluorescence of the beads-bound complementary DNA was diminished along with the binding of 71F12, indicating that the antibody binding promotes the dissociation of DNA. The same result was obtained when we used another high affinity anti-dsDNA antibody 121G9 (Fig. 6B,D), strongly suggesting that the anti-DNA ANAs in SLE patients that had been considered to be reactive with dsDNA do not necessarily recognize duplexed dsDNA, but can target temporarily exposed single-stranded segments within dsDNA, which may consecutively proceed denaturation and expose more epitopes.

Discussion

The characteristics and origin of pathogenic autoantibodies in human SLE have not been well defined. This might be attributed to ambiguous definitions of SLE self-reactivity. Self-reactivity and polyreactivity of SLE patients are indistinguishable from those of healthy controls as previously reported for memory B cells10 and shown here for blood PBs. On the other hand, we identified a panel of ANAs by IFA appearing only in acute SLE subjects. The isolated ANAs appear to be disease-associated autoantibodies, as they recapitulated nuclear staining patterns by respective patients’ sera at low concentrations. About two thirds of these ANAs were non-polyreactive and highly specific to defined or unidentified nuclear antigens, although the rest showed anti-nuclear reactivity with weak polyreactivity or stickiness in ELISA, which is seen even in some antibodies reactive to certain pathogens21–23. Notably, the anti-DNA antibodies we isolated exhibited nanomolar-dissociation constant in SPR, indicating that these clones may represent anti-DNA reactivity in SLE sera. Reversion of mutations in the ANAs to GL residues abolished or significantly reduced their reactivity to respective nuclear antigens and anti-nuclear reactivity, demonstrating a critical role of SHM in SLE self-reactivity.

It has been reported that B cells expressing inherently self-reactive VH4-34 are frequently observed in SLE13,24–26. None of our ANAs here were encoded by VH4-34. Although we do not have a clear explanation for this discrepancy,
it is possible that this may be due to ethnic or genetic variation, or differences of the disease subtypes. As previously reported, the over-representation of VH4-34 B cells may not be necessarily observed in all SLE patients. Our HTS analysis used Ig repertoires amplified from PBMC-derived cDNA, which allowed us to seek the ANA lineages from a limited amount of blood. The phylogenetic analysis revealed that in the acute phase of SLE the ANA lineages undergo extensive intraclonal diversification, in which several common mutations were found in each ANA lineage. Taken together with the strict SHM-dependency on self-reactivity of most ANAs, our findings indicate that ANA-producing cells are generated through antigen-driven selection from non-reactive or weakly reactive pre-cursors rather than accidental acquisition of self-reactivity in polyclonal B cell activation. Such ANA clones might be derived through germinal center (GC) reactions in early immune responses, much like in the case of primary response against foreign antigens or pathogens. It is noteworthy that the ANA clone 74H4, which was exceptionally unmutated, was barely detected by the HTS analysis unlike other ANAs carrying critical mutations. This antibody might have been generated by PBs, which underwent an extrafollicular reaction without massive expansion.

In this study, we solved the structure of a high affinity human ANA, which was confirmed to recognize both ss- and dsDNA. To our surprise, the structure revealed that this antibody recognizes thymine-containing oligonucleotides in a manner that is only compatible with ssDNA unlike previously proposed models. This apparent
The discrepancy was reconciled by subsequent experiments showing that the antibody binding induces concomitant release of a DNA strand, indicating that it can bind to a temporarily formed unpaired segment within a dsDNA and further destabilized a DNA duplex. As another anti-DNA antibody, 121G9 also accelerated the dsDNA dissociation, we speculate that most if not all high affinity anti-dsDNA antibodies reported to represent disease-associated antibodies in SLE patients may be targeted at “loosened” single-stranded segments, which may be present in a released dsDNA upon cell death. Reported co-crystal structures of mouse anti-DNA antibodies with their ligands invariably showed direct recognition of exposed nucleobases by antibodies27–29. Both 71F12 and 121G9 anti-DNA antibodies were capable to enhance IFNα production of human PBMCs in the presence of dsDNA. Anti-DNA antibodies may facilitate incorporation of DNA molecules into cells via Fc receptors37. The interaction between endogenous DNA and Toll-like receptor 9 (TLR9) has been shown to

Figure 6. Release of antisense strands of double helices by high-affinity anti-DNA mAbs. (A) dsDNA microbead binding assay. Streptavidin-coated microbeads immobilized with double stranded oligonucleotides (5′ biotinylated sense [5′-TATAGTGAGTC-3′] and 5′ FITC-conjugated complementary antisense) were incubated with control human IgG (B, 2 μg/ml), 71F12 (C), or 121G9 (D). Representative results from three independent experiments are shown.
be involved in the pathogenesis of SLE in human and mouse. Considering that TLR9 binds to ssDNA in the endosomal compartment, this type of high affinity anti-DNA antibodies might further contribute to inflammation in SLE by facilitating TLR9 ligation to an agonist through unwinding dsDNA.

The present crystal structure offers a glimpse of how SHM plays a role in the acquisition of self-reactivity over the course of SLE pathogenesis. Although the 71F12 GL antibody possessed detectable affinity toward DNA containing at least three consecutive thymines in the SPR, it did not show any significant dsDNA reactivity in ELISA or nuclear reactivity in IFA, indicating its low affinity. In turn, this suggests that such low affinity-binding may be enough for the B cells to enter to GC reactions. Strikingly, 71F12 gained high affinity against thymine-containing nucleotides by mutating just two residues, one of which lies outside the core antigen binding site. The D72H mutation appeared not only to enhance the binding affinity to long DNA but also to confer broad sequence specificity by reducing thymine dependency, which may contribute to selection of the 71F12 lineage B cells.

In sum, the current study demonstrated, for the first time, the evolutionary process of a human autoantibody by using HTS, which was firmly corroborated by structural analysis. Our results provided genetic and structural evidence that ANA-producing cells are generated through strict antigen-driven selection from non-reactive or less reactive naïve precursor cells probably in GC-like reactions, the presence of which is predicted from previous observations that circulating follicular helper T cells expand in severe SLE. These findings will be helpful to understand the immunological etiology and may lead to discovery of novel therapeutic targets for treatment of SLE.

Methods

Ethical statement. The consent procedure and the research protocol were approved by Osaka University Research Ethics Committee. All experiments with clinical subjects were conducted in accordance with the approved protocol. All clinical samples were obtained after signed the informed consent at Osaka University Hospital (Osaka, Japan). SLE diagnosis was made based on the American College of Rheumatology (ACR) criteria.

Single PB sorting and mAb cloning. Sorted single PBs (CD19⁺ CD138⁻) were lysed, directly reverse transcribed and then separately amplified by specific PCR for the V regions of IgG, Igκ or Igλ in nested PCR. The products were sub-cloned into mammalian expression vectors, which contain the constant region of human IgG, Igκ or Igλ and the leader sequence derived from mouse Igs, to be transfected into HEK293T cells cultured in serum-free medium (Thermo Fisher Scientific). Obtained immunoglobulins were sequenced and analyzed by IMGT/V-QUEST (www.imgt.org).

IFA and ELISA. For ANA screening, antibody concentration of each culture supernatant was adjusted to 2 μg/ml or less, was tested in indirect immunofluorescent assay with glass slide of Hep2 cells (Orientec). Bound antibodies were detected by anti-human IgG-Alexa Fluor 594 antibody (Thermo Fisher Scientific). Recombinant mAbs are tested for self-reactivity in ELISA as described previously. For dsDNA ELISA, linearized plasmid DNA was used. Bovine insulin, E. coli lipopolysaccharide (LPS), recombinant histidine octamer and CL were purchased from Sigma. To remove contaminated DNA, histone was pretreated with DNase I (Takara) at room temperature for 30 min. For RNP/Sm, Sjogren syndrom antigen A (SS-A/Ro) and SS-B/La, the ANA ELISA kit (Orientec) was used. Serum ANA IgG titer was determined by using ANA Hep-2 kit (Orientec) according to the manufacturer's protocol.

IFNα induction by anti-DNA antibody with plasmid DNA. Human PBMCs were seeded on 96-well plate at 5 × 10⁶/well to be cultured in complete RPMI1640 medium containing recombinant human IFNα (400 U/ml, PeproTech) overnight. On the next day, different concentrations of endotoxin-free plasmid DNA (pcDNA3) with or without purified antibodies (5 μg/ml) were added to the culture. After 48-h cultivation, the supernatant was harvested for IFNα ELISA (Human IFNα pan ELISA kit [Mabtech]).

HTS. The VH region sequences were amplified by PCR with 25 cycles from PBL-derived cDNA. Agarose gel-purified 400-bp amplicons were subjected to a library preparation. Paired-end sequencing was performed by MiSeq sequencer with the MiSeq 500 kit v2 (Illumina). In the data analysis, the raw sequences were merged using PEAR 0.9.6 after removal of low quality sequences. For analysis of immunoglobulin genes, productive cDNA sequences of longer than 300 bp and average quality score more than 20 are processed. IgBLAST was utilized for the gene assignment of the HTS data. Blastp was used for the comparison and grouped HCDR3 amino acid sequences if the similarity score calculated by similarity matrix was above the certain threshold. The threshold was set by manual investigation of SHMs appeared in a clone and was proportional to HCDR3 length. Sequences belong to same V gene and HCDR3 are considered to be related. Phylogenetic analysis of unique sequences in representative lineages was performed by Mega6 with the Maximal Likelihood method.

SPR. All SPR data were collected by Biacore T200 (GE) as described elsewhere. The Biacore evaluation software (GE) generated Kₐ values by fitting the data to interaction models.

Docking simulation. For the 71F12-DNA interaction, coarse-grained molecular dynamics (CGMD) was used to flexibly dock DNA molecules to the antibody surface using KOTAI-Dock with the ESPResSo CGMD engine. The DNA-binding propensity at each amino acid position, as described previously for RNA, was used as a contact potential to select realistic DNA binding conformations. For each model, 100 DNA molecules were randomly distributed around the protein to initialize simulations in parallel. The sampling was sufficient to guarantee binding convergence of DNA molecules from different initial conformations.
Crystallization of 71F12 Fab. Crystals of 71F12Fab-dT₅ complex were grown from a drop consisting of equal volumes of the protein solution and the reservoir solution containing 0.1 M Tris-HCl (pH 7.0), 0.2 M NaCl, and 1 M sodium citrate. Diffraction data of both structures were collected at the National Synchrotron Radiation Research Center, Taiwan.

X-ray diffraction experiment, structure determination, and refinement. All data were processed and scaled using the HKL2000 program⁴⁴. Initial phase of 71F12Fab-dT₅ structure was determined as a single crystal by molecular replacement analysis with Phaser⁴⁵ from the CCP4 packages⁴⁶ using four human antibody Fab structures (Protein data bank [PDB] Id: 4QHK, 4YSY, 4DIJ, and 4LLW for V_H, V_L, CH1, and CL, respectively) as search models. The initial phase was improved by density modification⁴⁷, and then automated model building was performed with Buccaneer⁴⁸. The structural models were modified with COOT software⁴⁹ with model refinement cycle with REFMAC⁵⁰. Twin refinement was performed for 71F12Fab-dT₅ structure.

Molecular dynamics simulations. Topology file generation followed by addition of 7-bp ssDNA in the crystal structure was done by the tleap program in AMBERTools¹⁴ with the AMBER ff14SB force field. The topology file was converted to the Gromacs format by acpype⁵². The complex was solvated into a 10 Å transferable potential box. Ions were added to neutralize the system. Gromacs 4.6.5⁵³ was utilized for all calculations described below. The particle Ewald method was used for calculation of the electrostatic potential. The LINCS⁵⁴ algorithm was utilized to constrain the distance between hydrogens and bonded heavy atoms. The Parrinello-Rahman and v-rescale methods were used for pressure and temperature coupling, respectively. During the production runs, we kept positional restraints of 1,000 kJ/mol/Å² to heavy atoms of the antibody so we could observe dynamics of DNA on a given antibody structure.

dsDNA microbead binding assay. Three-molar excess FITC-conjugated oligonucleotides (5′-GACTCTATA-3′ [Thermo Fisher Scientific]) were incubated with complementary ones conjugated with biotin at 5′-end and annealed before immobilized. Streptavidin microspheres (1.0-micrometer [Polyscience]) were incubated with annealed oligonucleotides in PBS with 1% BSA. Washed beads were bound with 0.2 or 2 µg/ml of 71F12, 121G9 or control human IgG for 1 h at 22 °C. After wash in PBS with 1% BSA, bound human IgG was detected by incubation with anti-human IgG antibody conjugated with APC (Thermo Fisher Scientific) at 4 °C. Intensity of FITC-labelled antisense oligonucleotides was measured by flow cytometer.

Statistical analysis. P values were calculated by the Man–Whitney U tests (two-tailed) using Prism 5 software (Graphpad). P values of less than 0.05 were considered statistically significant.

Data availability. The crystallographic datasets generated during the current study are available in the PDB repository (https://www.rcsb.org/) under accession codes, 5GKR and 5GKS for 71F12Fab-dT₅ and 71F12Fab-apo, respectively. The other datasets generated during the current study are available from the corresponding author on reasonable request.

References
1. Rahman, A. & Isenberg, D. A. Systemic lupus erythematosus. *N Engl J Med* **358**, 929–939, https://doi.org/10.1056/NEJMra071297 (2008).
2. Tsokos, G. C. Systemic lupus erythematosus. *N Engl J Med* **365**, 2110–2121, https://doi.org/10.1056/NEJMra1100359 (2011).
3. Perry, D., Sang, A., Yin, Y., Zheng, Y. Y. & Morel, L. Murine models of systemic lupus erythematosus. *J Biomed Biotechnol* **2011**, 271694, https://doi.org/10.1155/2011/271694 (2011).
4. Guo, W. et al. Systematic hypermutation as a generator of antinuclear antibodies in a murine model of systemic autoimmunity. *J Exp Med* **207**, 2225–2237, https://doi.org/10.1084/jem.20092712 (2010).
5. Radic, M. Z. & Weigert, M. Genetic and structural evidence for antigen selection of anti-DNA antibodies. *Annu Rev Immunol* **12**, 487–520, https://doi.org/10.1146/annurev.immunol.12.040194.002415 (1994).
6. Shlomchik, M. J., Aucoin, A. H., Pisetsky, D. S. & Weigert, M. G. Structure and function of anti-DNA autoantibodies derived from a single autoimmune mouse. *Proc Natl Acad Sci USA* **84**, 9150–9154 (1987).
7. Shlomchik, M. J. et al. Anti-DNA antibodies from autoimmune mice arise by clonal expansion and somatic mutation. *J Exp Med* **171**, 265–292 (1990).
8. Rahman, A., Giles, I., Haley, J. & Isenberg, D. Systematic analysis of sequences of anti-DNA antibodies—relevance to theories of origin and pathogenicity. *Lupus* **11**, 807–823 (2002).
9. Hellmann, U. et al. The evolution of human anti-double-stranded DNA autoantibodies. *Proc Natl Acad Sci USA* **102**, 9258–9263, https://doi.org/10.1073/pnas.050132102 (2005).
10. Mietzner, B. et al. Autoreactive IgG memory antibodies in patients with systemic lupus erythematosus arise from nonreactive and polyreactive precursors. *Proc Natl Acad Sci USA* **105**, 9727–9732, https://doi.org/10.1073/pnas.0803644105 (2008).
11. Zhang, J. et al. Polyclonal autoreactive systems in systemic lupus erythematosus have pathogenic potential. *J Autoimmun* **33**, 270–274, https://doi.org/10.1016/j.jaut.2009.03.011 (2009).
12. Sanz, I., Dang, H., Takei, M., Talal, N. & Capra, J. D. VH sequence of a human anti-Sm autoantibody. Evidence that autoantibodies can be unmutated copies of germline genes. *J Immunol* **142**, 883–887 (1989).
13. Tipton, C. M. et al. Diversity, cellular origin and autoreactivity of antibody-secreting cell population expansions in acute systemic lupus erythematosus. *Nat Immunol* **16**, 755–765, https://doi.org/10.1038/ni.3175 (2015).
14. Kalsi, J. K. et al. Functional and modelling studies of the binding of human monoclonal anti-DNA antibodies to DNA. *Mol Immunol* **33**, 471–483 (1996).
15. Pavlovic, M. et al. Pathogenic and Epiphenomenal Anti-DNA Antibodies in SLE. *Autoimmune Dis* **2011**, 462841, https://doi.org/10.4061/2010/462841 (2010).
16. Swanson, P. C., Ackroyd, C. & Glick, G. D. Ligand recognition by anti-DNA autoantibodies. Affinity, specificity, and mode of binding. *Biochemistry* **Us** **35**, 1624–1633, https://doi.org/10.1021/bi9516788 (1996).
17. Vallin, H., Perers, A., Alm, G. V. & Ronnbom, L. Anti-double-stranded DNA antibodies and immunostimulatory plasmid DNA in combination mimic the endogenous IFN-alpha inducer in systemic lupus erythematosus. *J Immunol* **163**, 6306–6313 (1999).
We would like to thank Rina Hirai, Chikako Enya, and Nana Iwami for technical assistance; Chao-Yuan Tsai, Takeharu Minamitani, Teruhito Yasui, and Kazuhiro Suzuki for reagents, helpful discussion and comments;
Department of Allergy and Rheumatic Diseases, Osaka University Hospital for collecting clinical samples; and the Core Instrument Facility (RIMD/IFReC) for DNA sequencing and cell sorting. This work was supported by Kishimoto Foundation; the Platform for Drug Discovery, Informatics, and Structural Life Science (no. 2101) from MEXT, Japan; the BIKEN Interdisciplinary Research Grant from the Research Foundation for Microbial Diseases of Osaka University; and JSPS KAKENHI Grant (no. 16K08837).

Author Contributions
S.S. designed study, performed experiments and wrote the manuscript. T.A. performed protein expression, purification, crystallization, data analysis and wrote the manuscript. K.Y. and S.L. performed bioinformatic studies, including immunoglobulin gene assignment, in silico molecular docking and molecular dynamics, and wrote the manuscript. H.J., K.T., J.K. and M.A.E.H. performed antibody cloning, expression and characterization. D.M. and S.N. performed sample preparation, data collection for MiSeq sequencing and data analysis. M.N. and T.T. assisted collecting clinical subjects, and wrote the manuscript. D.M.S. and J.T. reviewed structural analysis, interpreted data and wrote the manuscript. H.K. designed the study, reviewed experiments, interpreted data, and wrote the manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-017-16681-y.

Competing Interests: The authors declare that they have no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2017