Integrated 1st and 2nd generation sugarcane bio-refinery for jet fuel production in Brazil
Techno-economic and greenhouse gas emissions assessment

Neves Ferreira Dos Santos, Catarina; de Magalhaes Cornélio da Silva, M.C.; Mussatto, Solange I.; Osseweijer, Patricia; van der Wielen, Luuk A.M.; Posada, John A.

DOI
10.1016/j.renene.2017.05.011

Publication date
2017

Document Version
Final published version

Published in
Renewable Energy

Citation (APA)
Neves Ferreira Dos Santos, C., de Magalhaes Cornélio da Silva, M. C., Mussatto, S. I., Osseweijer, P., van der Wielen, L. A. M., & Posada, J. A. (2017). Integrated 1st and 2nd generation sugarcane bio-refinery for jet fuel production in Brazil: Techno-economic and greenhouse gas emissions assessment. Renewable Energy, 129(Pl. B). https://doi.org/10.1016/j.renene.2017.05.011

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.
Integrated 1st and 2nd generation sugarcane bio-refinery for jet fuel production in Brazil: Techno-economic and greenhouse gas emissions assessment

Catarina I. Santos a, Constança C. Silva a, Solange I. Mussatto b, Patricia Osseweijer a, Luuk A.M. van der Wielen a, John A. Posada a,⁎

a Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ Delft, The Netherlands
b Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800, Kongens Lyngby, Denmark

Abstract

This study presents a techno-economic analysis and an environmental assessment, of the whole production chain (biomass production, sugar extraction, biomass pretreatment, sugars fermentation, and products recovery and purification), of a fully autarkic sugarcane-based biofuel for jet fuel production. All scenarios considered correspond to 1st/2nd generation integrated biorefineries (i.e. simultaneous use of sugarcane juice stream and lignocellulosic fractions) with a production scale of 208 kton (biojet fuel) yr⁻¹. In this paper, we compared multiple options for the most relevant processing steps of the biorefinery: eight biomass pretreatment technologies (i.e. dilute acid, dilute acid + alkaline treatment, steam explosion, steam explosion + alkaline treatment, organosolv, alkaline wet oxidation, liquid hot water and liquid hot water + alkaline treatment); two biojet fuel production routes from sugars (i.e. ethanol to jet and direct fermentation); one biojet fuel production route from biomass (i.e. fast pyrolysis); two biojet fuel production routes from lignin obtained after biomass pretreatment (i.e. fast pyrolysis and gasification Fischer- Tropsch); and one alternative use for lignin (i.e. co-generation). From the combination of these key features, 81 scenarios are selected and compared. Furthermore, three potential technological improvements were analysed for selected scenarios: i) recovery of acetic acid and furfural (for cases with bagasse pretreatment); ii) production of succinic acid from a fraction of concentrated juice; iii) increase of operation time (from 200 to 320 days yr⁻¹) by using sweet sorghum as cumulative feedstock. The different scenarios are compared first based on the minimum jet fuel selling price (MJSP) and then based on their environmental performance (i.e. greenhouse gas (GHG) emissions and non-renewable energy use (NREU)). Among the scenarios considering biomass pretreatment, the lower MJSP are obtained when 1G/2G sugars are upgraded via ethanol fermentation (ETJ) (i.e. SO₂ steam explosion: 3409 US $ton⁻¹, and wet oxidation: 3230 US $ton⁻¹). Additional technological improvements may help to further reduce the MJSP either marginally (2%, by using 1G sugars for succinic acid production) or significantly (30%, by increasing the operation time). Thus, the lowest MJSP here calculated is 1725 US $ton⁻¹ (with 1G sugars to biojet fuel via ethanol, and bagasse to biojet fuel via fast pyrolysis). Finally, for all scenarios considered, the GHG emissions and NREU were found to be lower than 42.5 kg CO₂eq.GJ⁻¹ and 700 MJ GJ⁻¹ respectively (except for scenarios with fast pyrolysis of bagasse where those figures were further reduced by 50% and 80% respectively). Although, the MJSP calculated for all scenarios are higher than those of the fossil jet fuel reference, the significant potential for environmental impacts reduction (in terms of GHG emissions and primary energy use) are encouraging for further research in costs reduction and technology development.

© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The share in global anthropogenic greenhouse gas emissions (GHG) from the aviation sector will raise above the present 2–3%
[1] as a consequence of passenger numbers duplication from 2016 to 2035 [2]. Thus, aviation companies are actively supporting projects that develop a sustainable and economically competitive crude oil jet fuel substitute. The target is to neutralize carbon emissions by 2030 and to reduce them in 50% by 2050. The alternative jet fuel must be “drop-in” like, allowing blending with crude oil jet with no technical changes to aircrafts [3].

Brazil will establish itself as the third largest domestic flights market and it is also a country with a long trajectory on the biofuels sector (i.e. bioethanol) supported by a mature sugarcane (SC) industry [4]. These combination of advantageous conditions, from both the feedstock supply side and the jet fuel demand end, puts Brazil in a highly potentially competitive situation for early development and implementation of biojet fuel production at commercial scale. Therefore, this paper explores the technical possibilities to align the well-established sugarcane industry with the new market opportunities within the Brazilian growing aviation sector given the sector’s commitment to reduce its overall carbon footprint.

Recently, a few techno-economic studies have been published comparing alternative technologies and/or feedstocks for renewable jet fuel (RJF) production [5–8]. However, those studies focus solely on the RJF production technologies (so-called ASM approved or soon to be approved). In this paper, we broaden the scope of the research to cover the complete supply chain considering Brazil as case-study; it includes: logistic aspects (i.e. transportation costs depending on specific locations for feedstock fields, mills, bio-refineries and airports to be supplied) and valorisation of all input streams (from a cradle-to-gate + combustion approach) to enhance economic performance (i.e. lower the minimum jet selling price (MJSP)) and reduce environmental impacts (greenhouse gas (GHG) emissions and non-renewable energy use (NREU)).

The MJSP determined in this project is comparatively more realistic for four main reasons: i) consideration of maximal capacity of technologies and auxiliary sections (i.e. wastewater treatment, H₂ steam methane reforming, and co-generation units); ii) use of geographical and temporal specific factors for prices of equipment and raw materials; iii) coverage of the entire supply chain for mass balances, utilities requirements, and mass/heat integration; and iv) detailed Aspen simulation, equipment design and heat/water integration for selected scenarios. Thus, in this paper we perform a techno-economic analysis of an autarkic green energy supply chains, their battery limits and related techno-economic and greenhouse gas emissions assessment, Renewable Energy (2017), http://dx.doi.org/10.1016/j.renene.2017.05.011

The aim of the project was to cover 10% of jet fuel demand of Guarulhos (São Paulo) and Galeão (Rio de Janeiro) airports in the short term, i.e. 2020. Considering that a 50% blend with fossil jet fuel is acceptable, independently of the technology considered [9,10], the production capacity would be 208.9 kton biojet yr⁻¹ [11–13].

Two fractions of sugarcane were considered: stalk, containing juice and bagasse; and straw, containing tops and leaves. The former is transported to mills and further processed while the latter (about 140 kg ton⁻¹ SC) is considered to be partially left in the fields and up to 82 kg ton⁻¹ SC can be used in the biorefinery cogeneration section [14].

SC based biorefineries are limited by the seasonality of its harvesting period to 200 days yr⁻¹, however this period can be extended up to 320 days yr⁻¹ considering that sweet sorghum (SS) is a plant with many physicochemical similarities to SC and that its harvesting season is between two cane cycles [15,16]. The detailed composition of stalks and bagasse after milling, field productivity and harvesting season for both feedstocks is summarized in Section A of the Supporting Information (SI).

Since sugarcane and extracted juice are susceptible to contamination, their storability is limited to less than 48 h, and therefore mills and biorefineries must be located nearby the sugarcane fields [13,17]. Thus, Campinas was the location selected for SC mills and biorefineries due to the high density of sugarcane mills in the area of São Paulo state and its proximity to the Guarulhos airport. To reduce logistics related costs, each mill was coupled with a biorefinery (pretreatment, fermentation, thermochemical upgrade) and both installations were integrated with auxiliary sections. Jet fuel is then transported 150 km to Guarulhos airport (São Paulo) and 570 km to Galeão airport (Rio de Janeiro).

SC plantation in Brazil follows a ratooning practice (sugarcane regrows from shoots of previous cycles, up to 6 years), hence it was assumed that SS fields were located around SC fields [18]. As a consequence, SC is transported for 10 km, which is the radius occupied by a sugarcane field with a daily productivity of 12000 ton day⁻¹ (maximum SC milling capacity) and SS is transported for 22 km.

2.2. System boundaries and scenarios definition

Fig. 1 depicts the processing sections included in the techno-economic analysis and environmental assessment. In the latter, feedstock growth and harvesting activities were considered, while in the former such activities were assumed to be already included in the feedstock price.

Reference scenarios are defined by two major features: i) use of 1G sugars (i.e. full use for biojet fuel production or partially sold for valorisation into value-added products, succinic acid in this case); and ii) use of bagasse (i.e. direct conversion into biojet fuel via fast pyrolysis (FP) or pretreatment for 2G sugars recovery). Furthermore, for biojet fuel production from 1G sugars two alternative technologies are considered, i.e. direct fermentation (DF) via farnesene and ethanol to jetfuel (ETJ). In the case of bagasse pretreatment for 2G sugars recovery, eight technologies are assessed (i.e. dilute acid (DA), dilute acid + alkaline treatment (DA-A), steam explosion (SE), steam explosion + alkaline treatment (SE-A), organosolv (O), wet oxidation (WO), liquid hot water (LHW) and liquid hot water + alkaline treatment (LHW-A)). Furthermore, among the scenarios considering bagasse pretreatment, an extra
section for recovery of acetic acid and furfural is considered as an additional technological possibility to improve the economic performance of the overall biorefinery. After pretreatment, the resulting streams undergo to detoxification and enzymatic hydrolysis prior to fermentation as shown in Fig. 1. In case of the lignin fraction, four possibilities are considered, i.e. co-generation, biojet fuel production via fast pyrolysis (FPJ), biojet fuel production via gasification Fischer–Tropsch (GFT), or selling a high purity lignin stream to polyurethane (PU) manufacturers.

Auxiliary sections (i.e. wastewater treatment (WWT), H2 steam methane reforming (H2 SMR) and co-generation) are specifically designed for each scenario since the wastewater streams, flue gas flow, process water, H2 production, electricity consumption, steam requirements, solid waste streams, lignin production and non-hydrolysed biomass flow are different for each scenario.

In all cases, transportation costs of feedstocks, SC trash, sugar-cane juice and biojet fuel, as well as the selling prices of the energy and material co-products were included in the economic analysis. To do so, the products specifications and the used prices are listed Sections B and C of the SI.

2.3. Technologies description and processing conditions

2.3.1. Milling

Milling includes SC cleaning and crushing, raw juice liming, settling, filtration and concentration of juice in multi-effect evaporators [19,20] with consumption of H3PO4, CaO, flocculant polymer and water, respectively, of 0.2, 1, 0.0025, 1.18 kg ton⁻¹ SC. Then, 95% [19,20] and 92% [21] of sugars in the juice of SC and SS are recovered, respectively. Juice is then concentrated up to 65 wt.% when sold for external production of SA. For ETJ and DFJ fermentations the maximal product concentration allowed (EtOH and farnesene) are <10 wt.% [22] and 12.4 wt.% [23] respectively. Furthermore, the concentration of the fermentation and cellulase inhibitors must remain below limiting concentration, i.e. soluble lignin and acetic acid ≤5 g L⁻¹ [24], and furans (furfural and 5-HMF) ≤ 0.3 g L⁻¹ [25–27].

2.3.2. Bagasse pretreatment technologies

Several technologies have been reported in literature for bagasse pretreatment. The text below describes key aspects of the most relevant technologies while Section D.1. of the SI compares their technical advantages/disadvantages, operational conditions and CAPEX/OPEX (capital and operation expenses), including also the detoxification methods. Yields of pretreatment and enzymatic hydrolysis of each pretreatment considered are summarized in Table 1.

Diluted acid (DA), steam explosion (SE) and liquid hot water (LHW) produce two streams after pretreatment: hemicellulose hydrolysate and cellulolignin. The former undergoes detoxification while the latter is washed and re-filtered and both are then sent to enzymatic hydrolysis, after pH correction to 5 [28]. The difference is the catalyst used, respectively, H2SO4, SO2 and biomass hydrolysed acetic acid [29], and on the solids loading. When alkaline (A) pretreatment is added, cellulolignin is fractionated in two streams: cellulose and black liquor. The latter contains solubilized lignin that is then precipitated via lignoboost process [30]. Lignoboost hydrolysate stream is then detoxified along with hemicellulose hydrolysate. In the Organosolv (O) coupled with acid catalysis, solubilisation of lignin is guaranteed by the addition of acetone to the pretreatment [31] which, however, increases capital and operational costs due the addition of distillation for solvent recovery (99.5% assumed) [32]. Wet oxidation (WO) with Na2CO3 also allows lignin solubilisation but required extra capital investment due to an air separation unit (ASU) for O2 production where a post-hydrolysis step is required [32]. Both O and WO include lignin precipitation via lignoboost [30]. The cases of WO and LHW are here designed and simulated in detail due to the lack of

Please cite this article in press as: C.I. Santos, et al., Integrated 1st and 2nd generation sugarcane bio-refinery for jet fuel production in Brazil: Techno-economic and greenhouse gas emissions assessment, Renewable Energy (2017), http://dx.doi.org/10.1016/j.renene.2017.05.011
scientific literature to compare against the other pretreatment alternatives. For detailed design and simulation of WO and LHW, the reaction yields from Table 1 are kept, but the equipment recovery yields are more conservative. Water and energy use are optimized and an acetic acid and furfural recovery section is also included. In WO, hemicellulose detoxification is also included. Detailed process conditions of both pretreatments are resumed in Section E.1 of SI.

Granulated activated carbon (GAC) adsorption is selected as the hemicellulose detoxification due to its reduced CAPEX and high removal efficiencies, except for organic acids [33]. To tackle this problem, a multi-effect evaporator is added to pretreatments before the GAC column (see Table 1).

As part of the detailed simulation, enzymatic hydrolysis was considered to be 5% less efficient due to high concentration of lignin from LHW and WO (2.5 g L\(^{-1}\) and 5 g L\(^{-1}\), respectively) [34].

2.3.3. Fermentation and intermediate products upgrade to biojet

Two major fermentative pathways are considered for RJF manufacturing: alcohol to jet (AJJ) and direct fermentation via farnesane (DFJ) [6] (see Table 2). In ETJ, C5 and C6 sugars are fermented to ethanol, which is then recovered via distillation. Next, ethanol is dehydrated to ethylene, then condensed to butylene [57] and later oligomerized [10]. Hydrogenation [5] and distillation [19] allow the recovery of RJF and other side fuels.

DFJ fermented sugar to a C15 alkene – farnesane [23,58], in a biphasic reactor (aqueous and organic phase). To achieve a 50% blend with fossil jet, farnesane must be hydrocracked [59,60] and then distilled [7].

Table 1
Summary of process conditions and yields of pretreatments and enzymatic hydrolysis.

Parameter	DA [28]	SE [35]	O\(^{\text{L}}\) [32,36]	WO\(^{\text{AD}}\) [37]	WO detail \(^{\text{LHV/LHE}}\) [38,39]	LW/H \(^{\text{LHV}}\) [29]	LW detail \(^{\text{LHV}}\) [29]	A\(^{\text{C}}\) [35]
Pretreatment \(^{\text{a}}\)	190/11/15	13/190/15	15/175/60	13/195/25	12/185	12/200/15	13.7/195	100/11/60
P (bar) / T / C (RT (min))	20 (40)	20 (40)	20	20	20	20	12	10 (40)
Solid loading (%)	H\(_2\)SO\(_4\)/1.5	SO\(_2\)/1.1	H\(_2\)SO\(_4\)/1.25	Na\(_2\)CO\(_3\)/3	CH\(_2\)COOH	Na\(_2\)CO\(_3\)/3	Na\(_2\)CO\(_3\)/3	77%
Catalyst/concentration (%)	11.1	9.8	9.5	7.9	9.3	3.9	93.0	84
Hydrolysis yields (%)	12	5	5	4%	4%	4%	4%	72.5
Cellulose	90.8	92.6	79 (42)	93.0	93.0	84	84	84
Hemicellulose	82.6	83	51.5	51.5	51.5	51.5	51.5	91.0
Lignin	0	0	8.0	8.0	8.0	8.0	8.0	8.0
Sugar dehydration	0	0	0	0	0	0	0	0
Xylose/Glucose	100	100	100	100	100	100	100	100
Organosolv also solubilized 99.7% of the ash [41].								
Water and energy use were optimized and an acetic acid and furfural recovery section is also included. In the detailed WO, 100% of non-reacted O\(_2\) was recovered in the ASU (air separation unit) and recycled to the reaction.								
In WO, hemicellulose detoxification is also included. Detailed process conditions of both pretreatments are resumed in Section E.1 of SI.								
Enzymatic hydrolysis yields (%)	70	70	70	70	70	70	70	70
Cellulose	70	70	70	70	70	70	70	70
Hemicellulose	70	70	70	70	70	70	70	70
a Continuous operation mode, solid/liquid filtrations with 100% efficiency, washing water/filter inlet of 0.3, or 0.47 [32] when cellulolignin is recovered, or 0.125 [30] when lignin boost is recovered, were assumed in all pretreatments.								
b In hemicellulose detoxification, the three multi-effects was assumed to evaporate 63% water, 39% of acetic acid and 77% of furfural from the inlet and to precipitate 60% of the soluble lignin [32]. Binding efficiencies of GAC (adsorbed compound/inlet compound) considered were: soluble lignin, furans, organic acids (assumed undisociated as pH is below their pKa) sugars/sugar oligomers, respectively, 88, 94, 24, 42 [47].								
c In WO, cellulose and hemicellulose hydrolysis yields led to glucose and C5 oligomers, respectively. Sugar oligomers hydrolysis occurred with these yields: glucose 30.0%, xylose 13.0%; xylose oligomer 30.0%, farnesene 13.0% [23,58].								
Enzyme loading was - 0.042 g cellulase g \(^{-1}\) cellulose [40]. Stoichiometry from Ref. [40].								
d Acetate \&(AA) and furfural (FF) recovery occurred via L/L extraction with MTBE (100% recycled) and distillation. 25% of AA was recovered with 0.048 ton CO\(_2\) ton \(^{-1}\) lignin following the procedure in Ref. [53].								
pH correction during lignoboost was 0.25 kg CO\(_2\) kg \(^{-1}\) lignin [53]. 80% of the soluble lignin, entering lignoboost was recovered with a moisture of 7% [53].								
e O\(_2\) reacted was 5.13% of the O\(_2\) inlet, estimated considering COD (chemical oxygen demand) variation from inlet/outlet in Martin et al., [37]. In the detailed WO, 100% of non-reacted O\(_2\) was recovered in the ASU (air separation unit) and recycled to the process.								

Please cite this article in press as: C.I. Santos et al., Integrated 1st and 2nd generation sugarcane bio-refinery for jet fuel production in Brazil: Techno-economic and greenhouse gas emissions assessment, Renewable Energy (2017), http://dx.doi.org/10.1016/j.renene.2017.05.011
3.2.4. Thermochemical upgrade of lignin and bagasse to biojet

The main thermochemical processes for lignin and bagasse conversion and upgrading into biojet fuel are fast pyrolysis (FP), gasification Fischer-Tropsch (GFT), and Hydrothermal liquefaction (HTL). The most relevant advantages/disadvantages, process conditions and relative CAPEX are summarized in Section D.2 of SI [68–70]. FP and GFT are selected as the technologies for further analysis, where three types of lignin and two sources of bagasse are considered (see Table 3 and Table 4).

FP includes biomass conditioning and fast pyrolysis with gaseous phase recycling, from where bio-oil is recovered after quenching [71]. Bio-oil is then hydrotreated and deoxygenated, and the different biofuels are then recovered through distillation [70,71]. The heavy oil fraction is hydrocracked and again distilled to increase the biojet fuel yield (see Section E.2 of SI) [75,59].

GFT includes biomass conditioning, gasification (syngas with H2/CO ratio above 2.1), syngas cleaning, H2 SMR to reduce CH4 in the outlet to 1.5%, and water gas shift (WGS) to adjust the H2/CO ratio to >2.2 [76], which favours waxes production in the Fischer-Tropsch reactor. Here, 70% of syngas is considered to be converted to a range of waxes which are then sent to hydropyrolyzing [76,77].

2.3.5. Auxiliary sections

The wastewater treatment section includes anaerobic treatment, where biogas is produced and then sent to H2 SMR and aerobic treatment [41] (see Table 5). The sludge of both treatments is used for co-generation, after a concentration step. The supernatant undergoes reverse osmosis, which allows water recycling. H2 SMR inlets included all of the off-gas streams of biorefinery that contain CH4 and/or H2, and biogas from WWWT and; if necessary due to unfilled energy requirements, natural gas is purchased. The H2 SMR section includes desulfurization, SMR, pre-reforming, reforming and WGS [59]. Lower heating value (LHV) of each inlet stream, utilities properties and energy balance calculations of cogeneration are summarized in Section E.3 of SI. The co-gen section includes conditioning of inlet streams and boiler, from where the high pressure (HP) steam produced is directly sent to the main processes or entered into the condensing extraction steam turbine (CST) for medium pressure (MP), low pressure (LP) and electricity production. Flue gas leaving the boiler is used to pre-heat the inlet,

Table 2
Summary of process conditions of fermentation and their energy products (EP) upgrade to renewable jet fuel.

Process variable	ETJ \[^{1,2}\]	DFJ \[^{3}\]
T (°C) \[^{2}\]	331/85 \[^{[61]}\]	301/not considered
Operation mode of fermentation	Fed-batch anaerobic \[^{[62–64]}\]	Continuous aerobic \[^{[19,23]}\]
EP final concentration (wt\%) \[^{2}\]	10 \[^{[22]}\]	12.4 \[^{[23]}\]
Yields of fermentation (kg product kg\(^{-1}\) sugar inlet)		
Ethanol \[^{a}\]	0.460 \[^{[65]}\]	0.235 \[^{[41]}\]
Biomass \[^{a}\]	0.031	0.023
Glycerol \[^{b}\]	0.016 \[^{[66]}\]	0.012 \[^{[66]}\]
Xylool \[^{b}\]	0.013 \[^{[61]}\]	0.012 \[^{[41]}\]
Succinic acid \[^{c}\]	0.008 \[^{[41]}\]	0.012 \[^{[41]}\]
Lactic acid \[^{c}\]	0.030 \[^{[41]}\]	0.030 \[^{[41]}\]
Farnesene \[^{d}\]		
Downstream EP recovery efficiency (%) and purity (wt\%)		
H2 input (% H2 kg\(^{-1}\) EP) & fraction reacted (%)		
Ethanol \[^{e}\]	0.1 & 50 \[^{[67]}\]	0.069 & 50 \[^{[19]}\]
LPG	0.033	0.480
Naphtha	0.018	0.584
Jet	0.523	0.434
Diesel	0.064	0.070
Water	0.155	0.259
* Scenarios with WO and LH in designed in detail had final ethanol concentration, respectively, at 6.5 wt\% and 7.6 wt\% to guarantee lignin below inhibitory concentration.		
\[^{a}\] In scenarios with SS bagasse, these concentration are 1 wt\% lower. For the same reason scenarios with alkaline, WO and LH pretreatments had final farnesene concentration at \(\approx 9.5\%\) or 7.8% for LH-W.		
\[^{b}\] \(\text{C}_2\text{H}_5\text{OH} \rightarrow 2\text{C}_2\text{H}_2\text{O} + 2\text{CO}_2 + 90\%\) of glucose, \(\text{C}_3\text{H}_6\text{O}_2 \rightarrow 1.67\text{C}_2\text{H}_2\text{O} + 1.67\text{CO}_2 = 85\%\) of xylose.		
\[^{c}\] \(\text{C}_2\text{H}_5\text{OH} + 1.14\text{NH}_3 \rightarrow 5.71\text{CH}_4 + 0.29\text{CO}_2 + 2.57\text{H}_2\text{O} + 1.14\text{H}_2\text{N}^+ \quad 4\%\) of glucose, \(\text{C}_3\text{H}_6\text{O}_2 + 0.95\text{NH}_3 \rightarrow 4.76\text{CH}_4 + 0.85\text{CO}_2 + 2.14\text{H}_2\text{O} + 0.95\text{H}_2\text{N}^+ \text{ of xylose}.		
\[^{d}\] H2O extra reactant and \(\text{O}_2\) side product \[^{[66]}\] = 1.57% glucose and 1.18% xylose consumed.		
\[^{e}\] H2O extra reactant and \(\text{O}_2\) side product = 4.6% of xylose consumed \[^{[41]}\].		
\[^{f}\] CO2 extra reactant and \(\text{O}_2\) side product = 0.6% of glucose and 0.09% xylose consumed.		
\[^{g}\] No extra reagent or side product = 3% of glucose and xylose consumed.		
\[^{h}\] Enthalpy of overall reactions \(\Delta H^r\) = 677.8 kJ kg\(^{-1}\) sugars \[^{[61]}\].		
\[^{i}\] Biomass inoculum was at 10 wt% broth, NH4OH was nitrogen source \[^{[63]}\], and dispersant and antifoam were also considered, respectively, at 0.2 and 0.78 g L\(^{-1}\) [61].		
\[^{j}\] Methanol pathway has lower \(\text{FAME}\) than MER/MDOX one, respectively, 0.25–0.38 g g\(^{-1}\), but was the one considered, as Amyris uses it \[^{[58]}\].		
\[^{k}\] \(\text{C}_2\text{H}_5\text{ONH} + 0.90\text{NH}_3 \rightarrow 0.91\text{O}_2 \rightarrow 0.22\text{C}_5\text{H}_2\text{O} + 0.44\text{C}_1\text{H}_8\text{O}_3\text{N}_2 + 2.27\text{CO}_2 + 3.06\text{H}_2\text{O} + 0.097\text{H}^+\) and \(\Delta H = -2971.8\) kJ/kg glucose. 5% of \(\text{C}_3\text{H}_8\text{H}_4\) was considered a side-product.		
\[^{l}\] \(\text{C}_2\text{H}_5\text{ONH} + 0.07\text{NH}_3 \rightarrow 0.76\text{O}_2 \rightarrow 0.18\text{C}_5\text{H}_2\text{O} + 0.37\text{C}_1\text{H}_8\text{O}_3\text{N}_2 + 1.89\text{CO}_2 + 2.55\text{H}_2\text{O} + 0.07\text{H}^+\) and \(\Delta H = -2942.9\) kJ/kg xylose. 5% of \(\text{C}_3\text{H}_8\text{H}_4\) was considered a side-product.		
\[^{m}\] ETJ downstream included water scrubber \[^{[32]}\] to recover \(\text{EtOH}\) from fermenters vent \[^{[41]}\], biomass centrifugation, sterilization with 0.0126 kg H2SO4.k g \[^{-1}\] biomass and recycling \[^{[61]}\] and distillation \[^{[32]}\].		
\[^{n}\] DFJ downstream included three sequential centrifugations, a de-emulsification step, natural gas is purchased. The H2 from WVT, and; if necessary due to unfilled energy requirements, natural gas is purchased. The H2 SMR section includes desulfurization, SMR, pre-reforming, reforming and WGS \[^{[59]}\]. Lower heating value (LHV) of each inlet stream, utilities properties and energy balance calculations of cogeneration are summarized in Section E.3 of SI. The co-gen section includes conditioning of inlet streams and boiler, from where the high pressure (HP) steam produced is directly sent to the main processes or entered into the condensing extraction steam turbine (CST) for medium pressure (MP), low pressure (LP) and electricity production. Flue gas leaving the boiler is used to pre-heat the inlet,		
50% of C12 to C16, 100% C on estimations from previous publications (see Table 7). Followed from the elemental composition of each lignin, respectively, S and N and tar was estimated to close mass balances.

Table 3
Summary of process conditions of lignin and bagasse upgrade to biojet fuel via gasification.

Feedstock source	Biomass type	Lignin enzymatic hydrolysis	Alkaline lignin	High grade lignin	SC bagasse	SS bagasse
DA, SE, LHW	[72,73]	A	Adapted from Ref. [72]	O, WO	Mills	Mills
Fast pyrolysis conditions [71]	T = 500 °C; T of sand = 605 °C; P = 1.5 bar; RT = 2 s; inlet moist. = 9%; sand/biomass = 14.5 kg kg⁻¹; fluidization gas/biomass = 3 kg kg⁻¹; fast pyrolysis quenching = 1.445 kg chilled water kg⁻¹ gaseous stream; flue gas recycled after quenching = 95%	53.0	46.8	52.0	64.0	69.4
Bio-oil composition (kg kg⁻¹ biomass (9% moist., %) adapted from Refs. [72,73]	phenolic 28.2	0.014	0.015	0.022	0.026	
light ends 0.9	CO 6.4	0.045	0.046	0.069	0.079	
water 21.9	CO₂ 5.9	0.078	0.084	0.124	0.144	
Non-condensable gas frac. 13.0	CH₄ 0.7	0.171	0.252	0.132	0.123	
CH₄ 34.0	Char frac. 38.3	33.7	17.0	11.4		
H₂ input (kg H₂ kg⁻¹ bio-oil) & fraction reacted (%) 0.107 & 32% hydrotreating and 0.098 & 18% hydrocracking [59]	Hydrocracking & hydroprocessing yields (wet kg, dry kg⁻¹ biomass)²	LPG 0.015	0.014	0.015	0.022	0.026
Naphtha 0.046	Jet 0.103	0.097	0.105	0.156	0.180	
Diesel 0.083	Water 0.265	0.171	0.252	0.132	0.123	

B Bold numbers represent the total mass yield (in %) to the different fractions.

² Enzymatic hydrolysis lignin is attached to cellulose and hemicellulose which leads to higher bio-oil yield, but with higher water content; alkaline lignin is more recalci-

rant, thus char yield is higher, however, phenolic content in bio-oil is higher [73].

Furthermore, TPEC of liquid hot water and wet oxidation pre-
treatment technologies were based on the detailed designs and sim-
ulations. Adjustments of the equipment costs by capacity was based on the scaling up/down factors, while maximum allowed capacities and installation factors were retrieved from literature (see Table 7). Capital expenditure (CAPEX) of each scenario was

Table 4
Summary of process conditions of lignin upgrade to biojet fuel via gasification Fischer-Tropsch.

Biomass type	Lignin enzymatic hydrolysis	Alkaline lignin	High grade lignin		
Source	DA, SE, LHW	A	O, WO		
Gasification conditions [76]	T = 870 °C; P = 25 bar; inlet moist. = 9%; HP (high pressure) steam/biomass = 0.17 kg kg⁻¹; O₂/biomass = 0.26 kg kg⁻¹	Syngas yields (kg kg⁻¹ biomass (9% moist., %))⁴	[79]	[80]	[46]
Syngas	58.6	52.8	47.4		
H₂	39.2	33.0	41.0		
CO	33.0	25.0	34.0		
CO₂	12.1	36.0	10.0		
CH₄	11.9	5.0	12.5		
Other (C2-C4)	3.8	1.0	2.5		
Solids [79]	29.6	29.6	29.6		
Fischer Tropsch conditions [76]	T = 200 °C; P = 25 bar;	H₂ input (kg H₂ kg⁻¹ hydrocarbons) & fraction reacted (%) [76]	0.06 & 100%		
Hydrocracking & hydroprocessing yields (wet kg, dry kg⁻¹ biomass)⁵	Sulphur³	Naphtha 0.0004	0.018	0.0004	
Naphtha	0.051	0.023	0.075		
Jet	0.052	0.028	0.080		
Diesel	0.047	0.038	0.086		
Water	0.268	0.129	0.459		

³ Syngas and solids yields and composition were taken from literature, but liquid fraction was estimated: in all gasification, respectively, S and N and tar was estimated to close mass balances.

⁴ In WO and O there were two streams of lignin processed. First is like enzymatic hydrolysis lignin (fraction not solubilized in pretreatment) and the second is the high end grade lignin, to which syngas yields are presented. Different proportion between the two explain biofuel yields for O = 20% lower than for WO (the ones presented).

⁵ Anderson-Schulz-Flory distribution of hydrocarbons considered for FT reactor: 2n + 1 H₂ + n CO > CH₄ (2n + 2) + n H₂O, where Cₙ = e⁻ⁿ⁺¹(1 − n) is the molar yield of a given carbon number n, is the probability of chain growth and followed from Martin et al. [81]. a should be > 0.87 to maximize kerosene fraction.

² Sulphur was produced from H₂S of syngas chelation in a Lo-Cat column [76].

Please cite this article in press as: C.I. Santos, et al., Integrated 1st and 2nd generation sugarcane bio-refinery for jet fuel production in Brazil: Techno-economic and greenhouse gas emissions assessment, Renewable Energy (2017), http://dx.doi.org/10.1016/j.renene.2017.05.011
Table 5
Summary of process conditions of auxiliary sections: wastewater treatment (WWT), H2 steam methane reforming (SMR) and co-generation (co-gen).

WWT	Anaerobic^a ^{^b} [40]	Aerobic^c ^{^d} [40]	Sludge concentration [41]	Reverse osmosis [83]
	→0.21 CO2	→0.48 CO2	Decanter and belt filter. 100% of sludge recovered at 32 wtt	75% of water recovered with 5 wt% of salts
	+0.25 CH4	+0.3 biomass		
	+0.06 biomass	+0.22 H2O		
H2 SMR	PSA units in main sections	Desulfurization	Reforming [59]	Water Gas shift^e [59]
	Non-reacted H2 streams are recycled with 85% efficiency and 100% purity [60]	LO-CAT unit that allows 100% removal of NH3 and H2S (assumed)	Pre-reformer: 3.5 mol steam mol^{−1} CH4	H2/CO correction to 101 mol mol^{−1}
Co-gen	Inlet streams concentration [22]	Boiler	Condensing extraction steam turbine (CEST) [84]	Flue gas cleaning^f
	Filtration and drying until water < 45 wt	0.691 kg air MJ^{−1} LHV of the inlet; 87% efficiency [32]; boiler feed water vaporized to high pressure (HP) steam	Electricity produced with 90% efficiency; vacuum steam (TVS) turbine used to maximize electricity production	2.45 kg of lime and 9.81 kg of water are used per ton of flue gas [41]

^a Mass coefficients (kg kg^{−1} of chemical oxygen demand (COD) [85]) with 90% conversion [40].
^b Biogas stream contains 98%, 0.5% and 100%, respectively, of CO₂, water and CH₄ [86].
^c Non-digested waste and 75% of water at 2 wt% followed to decanter.
^d Off-gas contained 98% and 0.17% of CO₂ and H₂O formed.
^e After WGS, 98.7% of the water was condensed in a flash drum and 90% of the H₂ is recovered in a PSA unit.
^f Solid waste produced from flue gas cleaning is transported, with associated cost (see Table 5 of SI), to landfill.

Table 6
Factors used for the economic analysis.

Value
Plant lifetime (years)
Depreciation period (years)
Cost of capital (%)
Taxes in Brazil (%)
Equity (%)
Plant type
Plant capacity

Estimated using Guthrie’s method [87].

Variable costs included raw materials and utilities (cooling water, chilled water, natural gas, sugarcane trash, and steam/electricity). Other operational costs, including fixed ones, were considered to estimate the operational expenditure of each scenario, following methodology of Asselbergs [87]. The Minimum jet fuel selling price (MJSP), which is the price at which biojet fuel must be produced to cover operational and capital expenses, was chosen for scenarios comparison since it allowed a direct comparison among scenarios and also to the fossil jet fuel prices.

Engineering Plant Cost Index (CEPCI) [90]. Adjustments on capacity were done considering the six-tenth rule when specific scale factors were not available for a particular equipment (see Table 21 (in Section 4.4) of SI). However, capacity limits were considered for most of the processes (see Table 7), meaning that a certain process might require multiple plants (rational to determine number of plants is in section 4.4 of SI).

Installation costs were also dependent on the technology considered (Table 7). CAPEX calculations were based on Guthrie’s method which considers a Lang factor of 3.5 (advisable for mixed fluids and solids plants). Direct costs, which are 63% of the fixed capital investment (FCI), included TPEC, installation and other costs (e.g. land, buildings and structural buildings). Indirect costs, 37% of the FCI, included engineering, contractors fee and contingency. FCI was then corrected for location (a 10% factor) since most of the equipment indicators were from U.S. CAPEX included then FCI, working capital, which was 20% of sales revenue and start-up costs, which were 3% of the FCI.

Capital charge was the fraction of CAPEX considered for minimum jet fuel selling price estimation. It was calculated as follows:

\[
\text{Capital Charge} = \beta \cdot \text{TCI} \quad \text{where} \quad \beta = \frac{i}{1 - (1 + i)^n} \quad \text{is the capital charge factor,} \quad i \text{ is interest rate – } 12\% \quad \text{and} \quad n \text{ is project life – time.} \quad (1)
\]

2.4.1. Economic factors

Factors used for the economic analysis were kept equal for all scenarios, as shown in Table 6. Greenfield integration level was considered, thus all scenarios consider stand-alone facilities, including auxiliary sections. An Nth plant system was considered, even though technologies included had different levels of maturity, and no additional development cost factors were considered [6]. On the other hand, a contingency factor, i.e. 13% of fixed capital investment, contemplated part of the risk from such innovative processes.

2.4.2. Total purchase equipment cost and capital expenditure

To estimate the TPEC of each scenario, reference data was taken from literature, adjusted to the year 2015 based on the Chemical Engineering Plant Cost Index (CEPCI) [90].
production costs were about 50% of OPEX and included variable costs, labour costs (which change with type of process [94]), maintenance (equivalent to 5% of TPEC) and installation costs. Fixed costs, which are about 48% of OPEX, included local taxes, insurance and depreciation costs. About 2% of OPEX corresponded to general expenses (i.e. R&D and administration).

2.4.4. Minimum jet fuel selling price
To determine MJSP, it was necessary to calculate the OPEX (including the capital charge) and the sales revenue (including

Table 7

Limiting capacity, total purchased equipment cost (TPEC) and bare module installation costs (ISBL).

Section	Limiting capacity	Units	TPEC (M US$2015)	ISBL (M US$2015)	Reference
Mills*	12,000	Wet SC ton day⁻¹	31.09	54.40	[20]
DA	3360	Wet bagasse ton day⁻¹	48.57	90.32	[22,40,41]
DA-A			71.96	135.85	[40,41]
SE			43.14	71.43	[22,41]
SE-A			67.74	119.38	[40,41]
ORG			83.87	166.09	[22,32,41]
WO⁵			54.05	99.06	[22,30,40,41,91]
WO detail			70.32	115.32	[32,41,92]
LHW			47.52	88.55	[22,40,41]
LHW-A			73.63	139.73	[40,41]
LHW detail			57.36	93.63	[41,92]
ETJ⁵	872	dry ton ETOH day⁻¹	32.73	57.16	[32]
ETJ-U⁵	2410	dry ton farnesene day⁻¹	73.26	180.95	[93]
DFJ	368	dry ton farnesene day⁻¹	31.18	39.37	[23]
DFJ-U⁵	3790	dry ton farnesene day⁻¹	114.68	189.23	[7]
FPI	2000	dry ton lignin or bagasse day⁻¹	79.27	212.73	[71]
GFT	2000	dry ton lignin or bagasse day⁻¹	129.95	320.35	[91]
WWTh⁶	41,233.1	ton wastewater day⁻¹	38.35	42.53	[40]
H₂ SMR			26.75	51.35	[59]
Co-generation⁷	687.67	MW energy inlet of boiler	94.63	132.49	[22]
	125	MW electricity generated	43.71	73.87	[22]

* It was assumed that 25% of TPEC in Dis et al. ethanol biorefinery corresponded to milling [20].

** TPEC information for wet oxidation in literature only includes reactor pretreatment [49]. Therefore, combination of TPEC from other pretreatments was considered, including an ASU [91].

* Pretreatment limiting capacity is 2000 dry ton day⁻¹ [22,41], but limitation used was assumed considering the bagasse yield obtained per each sugarcane mill.

* Ethanol fermentation capacity limitation - 174.4 kton dry EOH yr⁻¹ - was taken from Humbird et al., [41]. The maximum fermenter volume is 3900 m³ [40].

* Ethanol upgrade capacity limitation - 482 kton yr⁻¹ - was taken from Atsonios [5].

* Farnesene fermentation capacity limitation - 73.51 dry kton yr⁻¹ - was taken from Basto [23] which corresponds to fermenter volume of 600 m³.

* Limitation for farnesene upgrade was assumed similar to bio-oil hydroprocessing described in Jones et al. [59].

* No capacity limitation was considered for WWT. Capacity presented is the highest one obtained in one of the individual biorefinery scenarios.

† The heat/power ratio changes with each scenario, so TPEC of boiler and of extractive turbines have different reference capacities.

Table 8

Utilities requirements of each process section.

Section²⁺	Electricity (kWh kg⁻¹ x)	Steam (kg kg⁻¹ x)	Cooling water (kg kg⁻¹ x)	Chilled water (kg kg⁻¹ x)	Natural gas (kg kg⁻¹ x)
	LP	MP	HP		
Mills⁴	0.012	0.181 ± 0.056	–	–	–
DA [40]	0.038 [41]	0.677	0.039	23.5	–
SE [40]	0.038 [41]	0.516	0.053	17.2	–
O [32]	0.069	0.376	0.350	55.2	33.4
WO [32]	0.077 [49]	0.376	0.026	0.552	18.6
WO detail	0.006	–	0.055	0.159	59.9
LHW [40]	0.028 [41]	0.540	0.040	27.1	–
LHW detail	0.003	0.051	0.359	0.189	125.1
ETJ [59]	0.113 [41]	2.470	–	80.3	1.82
ETJ-U [59]	0.143	0.154	0.100	197.5⁵	–
DFJ	0.149	–	0.007	0.177	18.2
DFJ-U	0.046	–	0.254	0.072	0.015
FPI [59]	0.158 [95]	–	–	0.001	
GFT [76]	0.265	–	0.007	18.2	–
WWT	0.5	–	–	0.043	
H₂ SMR	0.047	–	–	–	

* x is kg wet feedstock for milling, kg wet bagasse for pretreatments, dry ethanol or farnesene for fermentation and upgrade sections, kg of dry lignin or bagasse for direct upgrade to jet, kg of COD inlet for WWT, kg of H₂ in the outlet of H₂ SMR.

* Pretreatments: 14% of the electricity in a bioethanol plant is consumed in pretreatment [41]; 20% of LP steam, 40% of HP steam and 20% of cooling water used in bioethanol production are consumed in pretreatment [40]. It was also included 10% of the total steam required in multi-effect evaporator, after heat integration assumed.

* It was assumed that alkaline treatment of bagasse does not increase utilities.

* DP steam spent in mills depended on the final concentration of the juice stream, which varies with each scenario. Result presented is an average with standard deviation and assuming that due to heat integration only 17% of the steam necessary was consumed.

* Results presented are after heat integration, which caused the following energetic saving: LP — 100%; MP — 89%; HP — 71%; CW — 33%; ChW — 77%.

* Results presented are after heat integration which caused the following energetic saving: LP — 82%; MP — 88%; HP — 80.5%; CW — 18%; ChW — 46%.

* Estimation based on the enthalpy of reaction and assuming that 90% reduction was possible.

Please cite this article in press as: C.I. Santos, et al., Integrated 1st and 2nd generation sugarcane bio-refinery for jet fuel production in Brazil: Techno-economic and greenhouse gas emissions assessment, Renewable Energy (2017), http://dx.doi.org/10.1016/j.renene.2017.05.011
those from selling all side products, i.e. other fuels, juice, lignin, acetic acid and furfural).

2.4.5. Sensitivity analysis

MJSP results had an uncertainty which is a consequence of the wide combination of references and also of a few assumptions. A list of parameters with large influence on the economic performance is selected for all scenarios to analyse their effect on the MJSP, they are: feedstocks and SC trash price; TPEC of auxiliary sections (i.e. WWT and co-gen); TPEC of thermochemical technologies (i.e. ETJ-U and FPJ); jet fuel overall yield from both SS and SC, and crude oil price. In all cases, optimistic and pessimistic conditions are identified with respect to the reference values. For the case of crude oil price, pessimistic conditions refer to low selling prices for all side products (as defined by the crude oil price) while the optimistic conditions refer to higher selling prices for all side products (allowing a lower MJSP) at a level such that the selling price of all products (biojet fuel and side products) are just competitive with the crude based counterpart.

2.5. Environmental assessment

The environmental analysis includes calculations for greenhouse gas (GHG) emissions and for non-renewable energy use (NREU) in a cradle-to-gate + combustion system boundaries. However, emissions from valorisation processes of both juice (to succinic acid) and lignin (to polyurethane) were not included. Furthermore, the system expansion approach was considered for electricity production, with the Brazilian electricity mix used as reference. Since the SC RJF biorefinery is a multiproduct system, three allocation methodologies were compared: mass, energy and economy. The total GHG emissions and primary energy use impacts were then accordingly allocated to each product by their mass flowrate, lower heating value (LHV) or price.

3. Results and discussion

3.1. Process design and economic assessment of reference scenarios

In the mills, 280 kg of bagasse and 145 kg of juice were obtained per ton of SC. These results are in line those previously published by other authors [65]. The performance of different pretreatments, fermentation and lignin upgrade is compared in Table 27 (Section F.1) of SI. Fermentable sugars (glucose and xylose) yield obtained was higher for alkaline pretreatments, especially when lignin is used in co-generation (see Table 9). Non-hydrolysed biomass stream recovered after enzymatic hydrolysis was sent to lignin

Table 9

Overall jet fuel yield (kg jet kg⁻¹ feedstock - %) for reference scenarios.

Fermentation	Lignin dest.	Bagasse dest.						
	DA	SE	O	WO	LHW	LHW-A	FPJ	
ETJ	FPJ	5.46, 5.50	5.47	5.48	5.53	5.58	5.30	5.39
	GFT	5.25, 5.35	5.26	5.34	5.44	5.48	5.09	5.24
	Co-gen	5.03, 5.29	5.07	5.28	5.22	5.17	4.87	5.18
		2.46, 2.34	2.44	2.32	2.41	2.49	2.39	2.29
		2.24, 2.19	2.23	2.18	2.32	2.39	2.18	2.14
DFJ	FPJ	2.02, 2.13	2.04	2.13	2.10	2.08	1.96	2.08

Please cite this article in press as: C.I. Santos, et al., Integrated 1st and 2nd generation sugarcane bio-refinery for jet fuel production in Brazil: Techno-economic and greenhouse gas emissions assessment, Renewable Energy (2017), http://dx.doi.org/10.1016/j.renene.2017.05.011
thermochemical upgrade only when its dry lignin content is above 50%, otherwise it followed co-generation. Ethanol yield slightly differs with the pretreatment from which sugars 2G were obtained, as consequence of different proportion between C6 and C5 sugars and the fact that ethanol yield is lower for C5 [41]. Both farnesene fermentation and upgrade yields were significantly lower when compared to ETJ which causes an overall jet fuel yield half of the one obtained with ethanol. FPJ of bagasse led to a jet fuel yield ~50% higher compared to the one obtained with lignin FPJ. Organosolv, wet oxidation and bagasse FPJ led to the highest overall jet fuel yields (see Table 9).

Fig. 2 shows the MJSP of all reference scenarios. The ones with farnesene fermentation had an MJSP almost twice higher than those of ethanol fermentation as consequence of the lower overall jet fuel yield of DFJ compared to ETJ (i.e. 24 and 54 kg jet ton⁻¹ SC, respectively). The lower RIF yield led to higher feedstock and raw materials expenses and consequently higher capital investment (see Table 28 (Section F.1) of SI for MJSP contributions). This relation of MJSP with the fermentation pathways has been previously reported [6,8,97].

Bagasse FPJ led to the lowest MJSP among all studied scenarios as consequence of: i) reduction of raw materials expenses and capital investment costs (i.e. 75% and 15% respectively); and ii) an increase of 50% in revenues from side fuels sales – compared to ETJ scenarios with pretreatment-. Thermochemo-chemical conversion of lignin to jet via FPJ reduced the MJSP by 2% for alkaline lignin, and by 7% for lignin from other pretreatments due to: increased overall jet fuel yield, increased sales revenues and lower external demand of utilities. In contrast, GFT upgrade of lignin caused an increase in the MJSP due to its extra capital investment. Dependency of MJSP for different pretreatments is maintained in either DFJ or ETJ scenarios. In both fermentation scenarios, lower MJSP was achieved for DA and SE followed by WO and LHW. Alkaline pretreatment caused an increase in capital investment and a dilution of waste streams which resulted in higher WWTP capital investments. As consequence, such scenarios had higher MJSP even though they also had higher overall jet fuel yield. In the case of organosolv, the higher operational costs (i.e. solvent purchase) and capital investment explain the increased in the MJSP.

Since none of the scenarios reported a MJSP close to the price of fossil jet fuel, three process improvements are considered to enhance the economic performance of the scenarios. A list of the new scenarios is shown in Table 10 (and Figure 5 (Section F.2.) of SI). In this new list of scenarios, the non-hydrolysed biomass was used only in the co-generation system since its upgrade to jet via FPJ added complexity to the biorefinery without much benefits for the MJSP. In the WO scenario, lignin was considered to be sold to polyurethane manufacturing. The juice sold in group B (see Table 10) was such that it covers 5% of the global biosuccinic acid (bSA) demand in 2020, i.e. 42.3 bSA kton yr⁻¹ [98–100]. During the SS use period, group C no SC trash is available, thus, energy from provided by the co-generation system was covered by natural gas.

3.2. Process design and economic assessment of groups A, B and C

Overall, jet fuel yield in group A was about 2% higher than the corresponding reference scenarios as consequence of the increased sugars 2G yield (see Table 30 (Section F.2) of SI). SS bagasse pretreatments and FPJ yields were higher than the corresponding ones for SC. Nevertheless, the overall jet fuel yield when SS is used was 15% lower than that for SC since juice extracted in SS milling was lower by 23% (see Table 11). Overall, jet fuel yield of group B scenarios was the same as the reference scenarios or as those from group A; however, there is extra feedstock requirements (~3.5%) to cover the same jet fuel demand (see Table 31 (Section F.2) in SI). Scenarios with pretreatment had the highest feedstock requirements, approximately 4400 kton yr⁻¹ of SC or 1680 kton yr⁻¹ of SS meaning that 1.3% of total SC produced in São Paulo state or 22.4% of current SS produced in Brazil would be necessary (see Table 1 of SI).

Fig. 3 shows the different contributions to MJSP for the reference scenarios with the best economic performance, and also includes the MJSP contributions for scenarios of groups A, B and C. All improvement options led to reduced MJSP, however none of the
scenarios reached biojet fuel prices that are comparable to those of the fossil jet fuel or acceptable for a biobased fuel [101]. In most cases, capital charge was responsible for approximately 50% of biojet fuel selling price, which is the reason why the best scenarios in terms of CAPEX (see Table 32 (Section F.2) of SI) were also the best in terms of MJSP. Increasing the operation time to 320 days per year reduced the daily capacity, and in consequence the CAPEX, leading to the scenarios of group C to have the lowest MJSP. In this group C, the MSJP was reduced by \(z 15\% \) and \(z 30\% \) for scenarios with bagasse pretreatment or direct upgrade to jet, respectively. The larger reduction of MJSP for scenarios with bagasse FPJ was due to a combination of smaller daily capacity with higher overall jet fuel yield that reduced number of plants required. Such plants operate at capacities closer to their maximum, and therefore, they benefit from the economy of scale effect. Moreover, the yield of the other biofuels co-produced was higher in scenarios with bagasse pretreatment or direct upgrade to jet, respectively.

3.2.1. Sensitivity analysis

This section analyses the effects of the parameters with the largest contributions to MJSP on the economic performance of key scenarios. For example, CAPEX is responsible for around 50% of MJSP (see Fig. 3) where auxiliary sections (i.e. WWT and co-gen) are the major contributors followed by the thermochemical technologies (i.e. ETJ-U and FPJ). Feedstocks and SC trash prices are, on the other hand, the largest shares of OPEX. Two additional parameters with large influence on the MJSP and economic competitiveness of biojet fuel are the overall yield on feedstocks (i.e. SS and SC) and the reference price for crude oil. Table 12 shows the variability of the MJSP with respect to these parameters above mentioned.

Results show that the largest reductions to the MJSP are achieved when higher selling prices are possible for all side products. This situation may be possible under two different cases: i) high crude oil prices (resulting in competitive higher selling prices for the biobased side products); and ii) premium selling prices applicable to all side products from the biojet fuel production biorefinery system. In the latter case, the price gap (between the fossil based and the biobased products) could be reduced by different policies such as carbon fees, subsidies or tax exemption. All the other parameters, i.e. technological (overall biojet fuel yield from SS/SC) and economic ones (feedstocks and SC trash price, TPEC of auxiliary sections, and TPEC of thermochemical technologies), showed to have relatively minor effects on the potential reduction of the MJSP. It is worth to notice that the three alternatives options defined for the reference scenarios (i.e. recovery of by-products, valorisation of sugars and lignin streams, and increase of operation time by using a cumulative feedstock) have larger effects on the reduction of the MJSP (see Table 12). Thus, when all appropriate conditions are
3.3. Environmental assessment

Fig. 4 shows the GHG emissions and NREU considering the three allocation methods, i.e. mass, energy, and economy, for the most relevant cases of the reference scenarios and of the improved scenarios (groups A, B and C). Different allocation methods led to, for each scenario and environmental impact category, comparable results. The main contributions to GHGs and NREU, for scenarios with pretreatment were from pretreatment (40 and 65%, respectively), co-generation (35 and 15%) and feedstock growth/combined (see bagasse FPJ in a SC/SS biorefinery scenario in Table 12), the resulting MJSP is only 1.6× above the current fuel price (605 US$.ton⁻¹).

3.3. Environmental assessment

Table 12
Sensitivity analysis of most promising cases to produce jet fuel.

Scenario	Parameter	Optimistic	Base	Pessimistic	MJSP variation
Ref1-SE-ETJ	Crude oil price (US$.bbl⁻¹)	151.61	64.5	52.39	
	Feedstock/trash price (US$.ton⁻¹)	-10%	22.28/16.90	+20%	
	TPEC of WWT/co-gen (US M$)	-10%	79.81/112.2	+10	
	TPEC of ETJ-U/FPJ (US M$)	-10%	105.3/0	+10	
	Jet fuel yield (kg jet.ton⁻¹ SC)²	54.0	50.7	47.4	
A3-WO detail-ETJ	Crude oil price (US$.bbl⁻¹)	147.57	64.5	52.39	
	Feedstock/trash price (US$.ton⁻¹)	-10%	22.28/16.90	+20%	
	TPEC of WWT/co-gen (US M$)	-10%	41.1/80.1	+10	
	TPEC of ETJ-U/FPJ (US M$)	-10%	70.7/115.8	+10	
	Jet fuel yield (kg jet.ton⁻¹ SC)²	56.0	52.5	49.0	
Ref5-FPJ-ETJ	Crude oil price (US$.bbl⁻¹)	121.74	64.5	52.39	
	Feedstock/trash price (US$.ton⁻¹)	-10%	22.28/16.90	+20%	
	TPEC of WWT/co-gen (US M$)	-10%	70.0/94.0	+10	
	TPEC of ETJ-U/FPJ (US M$)	-10%	105.3/0	+10	
	Jet fuel yield (kg jet.ton⁻¹ SC)²	57.5	54.8	52.0	
B2-SE-ETJ-OSBL	Crude oil price (US$.bbl⁻¹)	150.65	64.5	52.39	
	Feedstock/trash price (US$.ton⁻¹)	-10%	22.28/16.90	+20%	
	TPEC of WWT/co-gen (US M$)	-10%	80.4/113.9	+10	
	TPEC of ETJ-U/FPJ (US M$)	-10%	105.3/0	+10	
	Jet fuel yield (kg jet.ton⁻¹ SC)²	54.0	50.7	47.4	
B3-WO detail-ETJ	Crude oil price (US$.bbl⁻¹)	146.08	64.5	52.39	
	Feedstock/trash price (US$.ton⁻¹)	-10%	22.28/16.90	+20%	
	TPEC of WWT/co-gen (US M$)	-10%	79.0/94.0	+10	
	TPEC of ETJ-U/FPJ (US M$)	-10%	105.3/0	+10	
	Jet fuel yield (kg jet.ton⁻¹ SC)²	56.0	52.5	49.0	
B5-FPJ-ETJ-OSBL	Crude oil price (US$.bbl⁻¹)	119.91	64.5	52.39	
	Feedstock/trash price (US$.ton⁻¹)	-10%	22.28/16.90	+20%	
	TPEC of WWT/co-gen (US M$)	-10%	40.6/81.0	+10	
	TPEC of ETJ-U/FPJ (US M$)	-10%	69.7/118.4	+10	
	Jet fuel yield (kg jet.ton⁻¹ SC)²	57.5	54.8	52.0	
C2-SE-ETJ-SC/SS	Crude oil price (US$.bbl⁻¹)	134.72	64.5	52.39	
	Feedstock/trash price (US$.ton⁻¹)	-10%	22.28/16.90	+20%	
	TPEC of WWT/co-gen (US M$)	-10%	48.3/68.8	+10	
	TPEC of ETJ-U/FPJ (US M$)	-10%	73.0/0	+10	
	Jet fuel yield (kg jet.ton⁻¹ SC)²	54.0/45.7	50.7/42.7	47.9/39.8	
C3-WO detail-ETJ	Crude oil price (US$.bbl⁻¹)	135.79	64.5	52.39	
	Feedstock/trash price (US$.ton⁻¹)	-10%	22.28/16.90	+20%	
	TPEC of WWT/co-gen (US M$)	-10%	46.5/57.8	+10	
	TPEC of ETJ-U/FPJ (US M$)	-10%	73.0/0	+10	
	Jet fuel yield (kg jet.ton⁻¹ SC)²	56.0/47.7	52.5/44.5	49.0/41.4	
C5-FPJ-ETJ-SC/SS	Crude oil price (US$.bbl⁻¹)	103.29	64.5	52.39	
	Feedstock/trash price (US$.ton⁻¹)	-10%	22.28/16.90	+20%	
	TPEC of WWT/co-gen (US M$)	-10%	46.2/68.7	+10	
	TPEC of ETJ-U/FPJ (US M$)	-10%	46.2/68.7	+10	
	Jet fuel yield (kg jet.ton⁻¹ SC)²	55.8/52.3	54.8/49.9	52.0/47.4	

a Changes in biojet fuel yield are limited to increasing/decreasing in 5% sugar yield in pretreatments or jet fuel yield in ethanol or bagasse thermochemical upgrades.

b Optimistic scenario crude oil price was derived from selling all biofuels produced (LPG, naphtha, jet and diesel) with the same premium fee (as compared to fossil based prices).

combined (see bagasse FPJ in a SC/SS biorefinery scenario in Table 12), the resulting MJSP is only 1.6× above the current fuel price (605 US$.ton⁻¹).
products led to lower emissions due to the higher allocation factor on the sugars stream. Scenarios combining the two feedstocks (SC and SS) had higher emissions since i) the biojet fuel yield from SS is lower (indicating a higher feedstock and raw materials requirement) and ii) additional natural gas was used for heat generation. GHG emissions and NREU for the other biofuels co-produced were calculated to be in the same range as those range of the biojet fuel (see Tables 34 and 35 (Section F.2) of SI for results considering mass allocation).

4. Conclusions

Clear conclusions regarding preferred technologies for biojet fuel production were obtained in this project: i) ethanol fermentation is considerably more economic than the farnesene route; ii) upgrading lignin to biojet increases complexity without major reductions on the MJSP; and iii) bagasse should be upgraded to biojet via fast pyrolysis instead of undergoing the pretreatment pathway. The latter case, i.e. bagasse FPJ, led to the lowest MJSP among all considered scenarios due to a combination of higher overall biojet fuel yield and its related lower capital requirements. Furthermore, the MJSP of the bagasse FPJ and juice ETJ cases can be further reduced by using SS as cumulative feedstock which increases the active period of the facilities and also reduces the processing capacity for a given annual production. In the case of SC bagasse pretreatment routes, the WO and SE pretreatment options are preferred with acetic acid and furfural recovery.

Furthermore, even when premium fees were considered for all biofuels produced in the biorefinery, an integrated 1st and 2nd generation biojet fuel production from sugarcane did not reach a minimum selling price competitive with current fossil jet fuel price. In terms of environmental impacts, most scenarios led to GHG emissions and NREU values that are around the expected 50% reduction as compared to those from fossil based jet fuel. Finally, the best economically performing scenario is SC juice ETJ and bagasse FPJ biorefinery, which also had the lowest environmental impacts.

Acknowledgements

This work was carried out within the BE-Basic R&D Program, which was granted a FES subsidy from the Dutch Ministry of Economic Affairs.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.renene.2017.05.011.

References

[1] IATA, Airlines Expect 31% Rise in Passenger Demand by 2017, 2013, 29-02-2016; Available from: http://www.iata.org/pressroom/pr/pages/2013-12-10-01.aspx.
[2] IATA, IATA Forecasts Passenger Demand to Double over 20 Years, 2016 [cited 2016]; Available from: http://www.iata.org/pressroom/pr/Pages/2016-10-18-02.aspx.
[3] IATA, Fact Sheet: Alternative Fuels, 2015, 29-02-2016]; Available from:
[65] J. Jonker, et al., Outlook for ethanol production costs in Brazil up to 2030, for different biomass crops and industrial technologies, Appl. Energy 147 (2015) 593–610.

[66] J.J. Heijnen, The network biomass reaction, in: T. Delft (Ed.), Fermentation Lectures, 2012.

[67] U. Neuling, M. Kalschmitz, Conversion routes for production of bio-kerosene—status and assessment, Biomass Convers. Biorefin. 5 (4) (2015) 367–385.

[68] H. Wang, et al., Biomass-derived lignin to jet fuel range hydrocarbons via aqueous phase hydrodeoxygenation, Green Chem. 17 (12) (2015), 5131–5135.

[69] A. Demirbas, Competitive liquid biofuels from biomass, Appl. Energy 88 (1) (2011) 17–28.

[70] R.M. Swanson, et al., Techno-economic analysis of biomass-to-liquids production based on gasification, Fuel 89 (2010) 511–519.

[71] S. Jones, et al., Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels: Fast Pyrolysis and Hydrotreating Bio-oil Pathway, National Renewable Energy Laboratory (NREL), Golden, CO, 2013.

[72] X. Lin, et al., Fast pyrolysis of four lignins from different isolation processes using Py-GC/MS, Energies 8 (6) (2015) 5107–5121.

[73] R. Gosselink, et al., Valorisation of lignin

[74] J. Jonker, et al., Outlook for ethanol production costs in Brazil up to 2030, for different biomass crops and industrial technologies, Appl. Energy 147 (2015) 593–610.

[75] C.I. Santos et al. / Renewable Energy xxx (2017) 1–15