Surface-Enhanced Raman Spectroscopy Assisted by Radical Capturer for Tracking of Plasmon-Driven Redox Reaction

Xuefeng Yan, Lingzhi Wang, Xianjun Tan, Baozhu Tian & Jinlong Zhang

The deep understanding about the photocatalytic reaction induced by the surface plasmon resonance (SPR) effect is desirable but remains a considerable challenge due to the ultrafast relaxation of hole-electron exciton from SPR process and a lack of an efficient monitoring system. Here, using the p-aminothiophenol (PATP) oxidation SPR-catalyzed by Ag nanoparticle as a model reaction, a radical-capturer-assisted surface-enhanced Raman spectroscopy (SERS) has been used as an in-situ tracking technique to explore the primary active species determining the reaction path. Hole is revealed to be directly responsible for the oxidation of PATP to p, p′-dimercaptoazobenzene (4, 4′-DMAB) and O₂ functions as an electron capturer to form isolated hole. The oxidation degree of PATP can be further enhanced through a joint utilization of electron capturers of AgNO₃ and atmospheric O₂, producing p-nitrothiophenol (PNTP) within 10 s due to the improved hole-electron separation efficiency.

Decay of surface plasmon to hot carriers has found wide applications in energy conversion, photocatalysis and photodetection. Among them, surface plasmonic resonance (SPR)-catalysed reactions have attracted increasing attention due to their green and convenient process. Moreover, compared with the thermocatalysis, the SPR-catalysis often results in a unique selectivity. However, due to the rapid relaxation process of hot carriers (hole and electron) on a short timescale ranging from femtosecond to picosecond, it is still hard to flexibly control the path/degree of SPR-catalysed reactions.

Deep and accurate understanding about the mechanism of SPR-catalysed reaction is highly essential for designing an efficient reaction system, which requires a sensitive and in-situ analysis strategy. Thanks for the same origin of SPR-catalysed reaction and surface-enhanced Raman spectroscopy (SERS) with an ultrahigh sensitivity up to single-molecule level, SERS is allowed to in-situ monitor the SPR-catalysed reaction process through providing fingerprint spectra of surface species. Some theoretical and indirect experiment proofs from SERS have assumed the oscillated hot electrons and molecular O₂ are responsible for the SPR-catalysed redox reactions. However, the active species determining the primary reaction step have still not been determined due to a lack of direct experimental proof.

Here, in-situ SERS technique aided with radical capturers for hot hole, electron and secondary radicals, generated from the plasmon decay of Ag nanoparticles (NPs), has unprecedentedly been used to determine the active species by adopting the oxidation of p-aminothiophenol (PATP) as a model reaction. Hole is revealed to be directly responsible for the oxidation of PATP to p, p′-dimercaptoazobenzene (4, 4′-DMAB). Chu prepared Ag/TiO₂ system to investigate this reaction. The result shows that hot electrons generating from plasmonic decay would transfer to the conduction band of TiO₂, which enables the holes to trigger the immediate conversion. The role of O₂ is determined as an electron capturer to produce isolated holes. PATP can be further oxidized to p-nitrothiophenol (PNTP) within 10 s through a joint utilization of electron capturers of AgNO₃ and atmospheric O₂. To the best of our knowledge, this is the first time to unambiguously reveal the active species for the SPR-catalysed redox reaction through the in-situ SERS technique.
Result and Discussion

Assembled Ag nanoparticle layer spin-coated from 50 nm of Ag NPs on a glass slide is used as plasmon-active substrate both for SERS analysis and catalysis reaction, which shows a wide plasmon resonance absorption band centred at 450 nm (Figures S1–S4). For assembled Ag nanoparticle layer adsorbed with PATP (Ag-PATP), Ag NPs and PATP are premixed before spin-coating. As shown in Fig. 1a, the SERS signal is collected under the irradiation of a 532 nm laser within 10 s. Compared with the Raman signal of PATP on the glass slide, three new peaks (blue line) assigned to the bend vibration of CH ($\beta(CH)$) at 1145 cm$^{-1}$ and the stretching vibration of N=N ($\nu(N=N)$) at 1390 and 1437 cm$^{-1}$ are observed, implying PATP is oxidized to 4, 4$'$-DMAB as driven by the SPR effect of Ag nanoparticle layer$^{28-34}$. All the three strongly enhanced peaks of DMAB represent symmetric ag vibrational modes, strongly indicating the formation of DMAB from PATP through the N=N bond. These peaks are assigned to the a_{g12}, a_{g16}, and a_{g17} symmetric vibrational modes, respectively35,36. However, it is found that when ammonium oxalate (AO), a commonly used hole capturer is present, the reaction from PATP to 4, 4$'$-DMAB is completely quenched since no signal from 4, 4$'$-DMAB is observed. This result indicates the capturer-assisted strategy actually allows SERS to in-situ explore the reaction process in spite of the ultrafast relaxation process of hot carriers. Since both hole and its secondary radical •OH are strong oxidants, it still cannot be distinguished that PATP is oxidized by hole or •OH. Therefore, t-butanol (TBA) as the capturer for •OH is further adopted to understand its influence on the reaction37. However, strong peaks attributed to 4, 4$'$-DMAB is still observed with preserved intensity, suggesting the reaction from PATP to 4, 4$'$-DMAB is not altered by •OH (Fig. 1b). Therefore, it is undoubted that the oxidation of PATP is directly related to the hole decayed from the surface plasmon resonance of Ag nanoparticle layer. To get the original spectrum of PATP, it also can be detected on the Ag substrate by the irradiation of 785 nm on lower laser powers such as 0.50 μW and 0.25 mW (Figure S5).

The above results seem to be inconsistent with the current reports, where the hot electron together with oxygen is generally considered to be responsible for the plasmon-driven oxidation reaction38,39. To reveal the real role of oxygen and electron during the oxidation of PATP, the reaction was further carried out in N$_2$ atmosphere (Fig. 2a), which is significantly prohibited, suggesting O$_2$ indeed contributes to the oxidation of PATP. It is highly possible that O$_2$ may be reduced by hot electron to •O$_2^{-}$ with strong oxidation capacity, which further cause the oxidation of PATP. To check this conjecture, a typical •O$_2^{-}$ capturer, p-benzoquinone (BQ), is further applied in the SERS analysis. However, the synthesis conducted in the atmospheric environment in the presence of BQ does not cause any variation of 4, 4$'$-DMAB signals (Fig. 2b), excluding the possible effect of •O$_2^{-}$ on the oxidation of PATP. Intriguingly, when AgNO$_3$ is adopted as an electron capturer in N$_2$ atmosphere, the oxidation of PATP to 4, 4$'$-DMAB occurs even in the absence of oxygen. A similar experiment was conducted in the water solution$^{40-43}$.

Figure 1. (a) Raman signal of PATP solid (black line), SERS signals of PATP on Ag nanoparticle layer in the absence and presence of AO; (b) SERS signal of PATP on assembly Ag nanoparticle layer in the presence of TBA; (c) Schematic diagram of plasmonic reactions on Ag layer in the presence of AO or TBA. Laser wavelength, 532 nm; Power, 2.5 mW; Integration time, 10 s.
and the result confirm our suppose (Figure S6). As figure shows, in the water solution, the hole sacrificial agent AO is useful to prohibit the generation of DMAB. And the signal intensity of detected molecule seems weaker for the poor plasmon in the solution.

Electron spin resonance (ESR) is then further adopted to analyse the function of AgNO₃ in the oxidation of PATP by using 5, 5-dimethyl-1-pyrroline N-oxide (DMPO) as the indicator of •O₂⁻. It is obvious that the intense signal appears on Ag nanoparticle layer under the laser irradiation, but the presence of AgNO₃ causes the decreased peak intensity of DMPO-•O₂⁻ (Fig. 2c), which thus proves two facts as follows. First, O₂ adsorbed on the surface of Ag nanoparticle layer can actually be reduced by SPR-derived electron. However, the presence of superoxide radical has no effect on the oxidation of PATP; Second, hot electrons can be indeed captured by AgNO₃ according to the retarded formation of •O₂⁻. Based on these two facts, the oxidation of PATP in the absence of O₂ should be attributed to the improved concentration of holes due to the capture of electron by AgNO₃ (eqs 1–3, SI).

Generally, the SPR-derived hole-electron exciton from Ag nanoparticle layer resides in the Fermi energy level, which is harder to be separated than that formed from semiconductor. Since the hole has been revealed as the exclusively active species for the oxidation of PATP instead of O-containing oxidants, the retarded oxidation from PATP to 4, 4’-DMAB in the absence of O₂ should be attributed to the inefficient separation of hole from electron. As such, molecular O₂ should actually function as an electron capturer, which consumes electrons and produce enough holes to initiate the oxidation of PATP (eq 4, SI). Moreover, it is noted the plasmonic absorption of Ag nanoparticle layer in the presence of AgNO₃ (Ag-AgNO₃) is enhanced under UV-light irradiation (500 W Xe light, Fig. 2d), implying a possible reduction of AgNO₃ to Ag during the SERS analysis. To understand the influence of enhanced plasmon resonance intensity on the reaction, the SERS of PATP on the pre-irradiated Ag-AgNO₃ assembled nanoparticle layer has been further investigated in N₂ atmosphere. The signal intensity attributed to 4, 4’-DMAB seems too low to be detected (Figure S7), thus excluding the contribution from improved plasmon resonance intensity to the conversion efficiency.

Furthermore, it is found that when both of AgNO₃ and atmospheric O₂ are present, PATP is unprecedentedly transformed into a mixture of PNTP and 4, 4’-DMAB within 10 s as characterized by the appearance of ν(NO₂) peak at ca. 1330 cm⁻¹ (Fig. 3a), demonstrating the oxidation efficiency can be enhanced by improving the separation degree of hole-electron exciton. Both of AgNO₃ and O₂ should be involved in the oxidation of 4, 4’-DMAB to PNTP since no PNTP can be produced when either of them is absent. The influence of AgNO₃ density (ρAg) on the conversion efficiency was further investigated. It is found from Fig. 3a that 4, 4’-DMAB is the dominant product at a laser power of 0.5 mW and ρAg of 2.3*10⁻⁴ g/cm², as evidenced by the strong peaks at 1440, 1380 and
1140 cm$^{-1}$ from 4, 4′-DMAB and a weak peak at 1330 cm$^{-1}$ due to the ν(NO$_2$) of PNTP. The peaks of 4, 4′-DMAB decreases when the laser power and $\rho$$_{Ag}$ increase to 2.5 mW and 2.3\times10$^{-5}$ g/cm2, along with an increasing intensity of ν(NO$_2$) peak. The intensity ratio between peaks at 1330 and 1390 cm$^{-1}$ ($I_{1330}\nu$(NO$_2$)/$I_{1390}\nu$(N=N)) was plotted to more clearly demonstrate the co-effect of AgNO$_3$ and laser power (Fig. 3a, red line). The ratio of $I_{1330}\nu$(NO$_2$)/$I_{1140}\beta$(CH) was also plotted and used as a reference (Fig. 3b, black line). The $I_{1330}\nu$(NO$_2$)/$I_{1140}\beta$(CH) obtained at 2.5 mW are almost doubled compared with those formed at 0.5 mW when $\rho$$_{Ag}$ is 2.3\times10$^{-5}$ g/cm2. A higher $\rho$$_{Ag}$ leads to the decreased intensity of both 4, 4′-DMAB and PNTP (not shown), implying the shielding of Ag nanoparticle layer by overmuch addition of AgNO$_3$. The actual composition of PNTP should be higher as valued from the peak intensity ratio between the a_1 and a_g modes since the intensities of the a_g modes of 4, 4′-DMAB are significantly stronger than those of the a_1 modes of PNTP50, where a small amount of 4, 4′-DMAB may already produce observable signal in SERS spectra. What’s more, to investigate the role of laser power and exposure time51, Ag-AgNO$_3$ substrate was taken to detect PATP under 0.5 and 0.25 mW with different exposure times as Figure S8. The laser is both used for the light source of the SPR reaction and SERS analysis. The decreasing of the laser power decreases the reaction efficiency and so does the SERS sensitivity. We further investigated the reaction under 0.25 mW irradiation, where the Raman intensity is decreased without obvious variation of the reaction efficiency. The variation of the irradiation time to 5 s or 3 min does not obviously cause the change of the reaction process. However, when the exposure time extends to 10 min, the sample seems to be destroyed by the strong laser power, weakening the signal of the PNTP and DMAB on the substrate.

As a further check for the feasibility of radical-capture strategy to the in-situ SERS analysis of other SPR catalytic reactions, the SPR-catalysed reduction of PNTP, another typical reaction model has been further adopted here31. The results shown in Fig. 4a indicate the reduction of PNTP is retarded when AgNO$_3$ is present, accordant with the commonly-accepted understanding about the function of electrons in the SPR-catalysed reduction reaction3,4. On the contrary, the reduction can be promoted by conducting the reaction in N$_2$ atmosphere (Fig. 4b), which should be attributed to the eliminated consumption of electron by molecular O$_2$. Even more, a higher
reduction degree of PNTP is achieved when AO is adopted to improve the electron concentration through consuming more holes (Fig. 4b).

Conclusions
In summary, we have explored the mechanism of SPR-catalysed reaction by a capturer-assisted SERS strategy using the oxidation of PATP on Ag nanoparticle layer as the model reaction. The adoption of AO and AgNO₃ as the capturers for hole and electron effectively leads to the separation of SPR-derived hot holes and electrons. The hot hole is directly responsible for the oxidation of PATP to 4, 4′-DMAB. The oxidation of PATP is prohibited in N₂ atmosphere but occurs when AgNO₃ is further present. O₂ plays the role as an electron capturer in promoting the separation of hole-electron. The oxidation of PATP to PNTP has been unprecedentedly achieved in the atmospheric environment when the reaction is assisted by AgNO₃. This study provides a novel way to deeply understand the mechanism of plasmon-related photocatalysis and photochemical reactions, which is expected to substantially push the development of SPR-induced green synthesis forward through rational and scientific design.

Method
Experimental Section. Preparation of Ag Nanoparticles with Diameter of ca. 50 nm. The preparation of Ag nanoparticles is adopted from a previously reported method. In a typical synthesis, 85.0 mg of PVP was dispersed into 20.0 mL of water under magnetic stirring. After the complete dissolution of PVP, 85.0 mg of AgNO₃ and 200 μL of 5.0 M NaCl were successively added under rapid stirring. The mixture was kept stirring in the dark for 15 min to form AgCl colloid. The freshly prepared AgCl colloid was then used as the precursor for Ag nanoparticles to achieve a size-controlled synthesis. First, 20.0 mL of 50.0 mM ascorbic acid was added to 2.5 mL of 0.5 M NaOH under magnetic stirring, and 2.5 mL of freshly prepared AgCl colloid is also added. The mixture was then stirred for 2 h in the dark. The products are collected by centrifugation and washed with water and kept in an ethanol solution.

Preparation of assembled Ag nanoparticle layer. Assembled Ag nanoparticle layer was spin-coated from the ethanol solution of Ag nanoparticles (1.0 mL, 0.05 M) and used for SEM, AFM and UV-Vis diffuse reflectance analyses. PNTP or PATP (200 μL, 10⁻² M) was dispersed on Ag nanoparticle layer by premixing the molecules with the Ag ethanol solution and the mixture was spin-coated using the above procedure. For the study in the presence of capturing agent, 200 μL ethanol solution of AgNO₃, AO, CH₃OH and BQ (10⁻³–10⁻² M) was mixed with 200 μL PNTP or PATP solution (10⁻² M) before the spin-coating process.

Characterization. Scanning electron microscopy (SEM) analysis was performed using a TESCAN nova III scanning electron microscope. Transmission electron microscopy (TEM) analysis was performed using a JEOL 2100 LaB₆ TEM, at a 200 kV accelerating voltage. Raman spectra were recorded on a Renishaw inVia-Reflex scanning electron microscope. Transmission electron microscopy (TEM) analysis was performed using a JEOL Preparative Talos F200X transmission electron microscope and a JEOL JEM-2100 transmission electron microscope. Preparation of assembled Ag nanoparticle layer. Assembled Ag nanoparticle layer was spin-coated from the ethanol solution of Ag nanoparticles (1.0 mL, 0.05 M) and used for SEM, AFM and UV-Vis diffuse reflectance analyses. PNTP or PATP (200 μL, 10⁻² M) was dispersed on Ag nanoparticle layer by premixing the molecules with the Ag ethanol solution and the mixture was spin-coated using the above procedure. For the study in the presence of capturing agent, 200 μL ethanol solution of AgNO₃, AO, CH₃OH and BQ (10⁻³–10⁻² M) was mixed with 200 μL PNTP or PATP solution (10⁻² M) before the spin-coating process.

References
1. Fuku, K. et al. The synthesis of size- and color-controlled silver nanoparticles by using microwave heating and their enhanced catalytic activity by localized surface plasmon resonance. Angewandte Chemie 52, 7446–7450 (2013).
2. Brongersma, M. L., Halas, N. J. & Nordlander, P. Plasmon-induced hot carrier science and technology. Nat Nanotechnol 10, 25–34 (2015).
3. Wang, J., Ando, R. A. & Camargo, P. H. Controlling the selectivity of the surface plasmon resonance mediated oxidation of p-aminophenol on Ag nanoparticles by charge transfer from UV-excited TiO₂. Angewandte Chemie 54, 6909–6912 (2015).
4. Zhao, L.-B. et al. Theoretical study of plasmon-enhanced surface catalytic coupling reactions of aromatic amines and nitro compounds. J. Phys. Chem. B 120, 7002–7007 (2016).
5. Lang, X., Chen, X. & Zhao, J. Heterogenous visible light photocatalysis for selective organic transformations. Chemical Society reviews 43, 473–486 (2014).
6. Naya, S., Inoue, A. & Tada, H. Self-assembled heterosupramolecular visible light photocatalyst consisting of gold nanoparticle-loaded titanium(VI) dioxide and surfactant. J. Am. Chem. Soc. 132, 6292–6293 (2010).
7. Kubacka, A., Fernandez-Garcia, M. & Colon, C. Advanced nanoarchitectures for solar photocatalytic applications. Chem. Rev. 112, 1555–1614 (2012).
8. Mulbawo, S. et al. An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nat Nanotechnol 8, 247–251 (2013).
9. Kubo, A., Pontius, N. & Petek, H. Femtosecond microscopy of surface plasmon polariton wave packet evolution at the silver/vacuum interface. Nano Lett. 7, 470–475 (2007).
10. Kubo, A. et al. Femtosecond imaging of surface plasmon dynamics in a nanotextured silver film. Nano Letters 5, 1123–1127 (2005).
11. Qian, X., Li, J. & Nie, S. Stimuli-responsive SERS nanoparticles: conformational control of plasmonic coupling and surface Raman enhancement. J. Am. Chem. Soc. 131, 7540–7541 (2009).
12. Qi, D., Lu, L., Wang, L. & Zhang, J. Improved SERS sensitivity on plasmon-free TiO₂ photonic microcavity by enhancing light-matter coupling. Journal of the American Chemical Society (2014).
13. Huang, J. et al. Site-specific growth of Au-Pd alloy horns on Au nanorods: a platform for highly sensitive monitoring of catalytic reactions by surface enhancement Raman spectroscopy. *J Am Chem Soc* **135**, 8552–8561 (2013).

14. Yan, X. et al. Sensitive and easily recyclable plasmonic SERS substrate based on Ag nanowires in mesoporous silica. *RSC Adv.* **4**, 57743–57748 (2014).

15. Chen, C., Ma, W. & Zhao, J. Semiconductor-mediated photodegradation of pollutants under visible-light irradiation. *Chemical Society reviews* **39**, 4206–4219 (2010).

16. Ingram, D. B., Christopher, P., Bauer, J. L. & Linic, S. Predictive model for the design of plasmonic metal/semiconductor composite photocatalysts. *ACS Catalysis* **1**, 1441–1447 (2011).

17. Zhao, L.-B., Chen, J.-L., Zhang, M., Wu, D.-Y. & Tian, Z.-Q. Theoretical study on electroreduction of p-nitrothiophenol on silver and gold electrode surfaces. *The Journal of Physical Chemistry C* **119**, 4949–4958 (2015).

18. Xu, P. et al. Mechanistic understanding of surface plasmon assisted catalysis on a single particle: cyclic redox of 4-aminothiophenol. *Scientific reports* **3**, 2997 (2013).

19. Lin, W.-C., Yang, W.-D., Huang, I. L., Wu, T.-S. & Chung, Z.-J. Hydrogen production from methanol/water photocatalytic decomposition using Pt/TiO₂ *N*, Catalyst. *Energy & Fuels* **23**, 2192–2196 (2009).

20. Schneider, I. & Bahnemann, D. W. Undesired role of sacrificial reagents in photocatalysis. *The Journal of Physical Chemistry Letters* **4**, 3479–3483 (2013).

21. Tian, X., Chen, L., Xu, H. & Sun, M. Ascertaining genuine SERS spectra of p-nitrothiophenol. *RSC Advances* **2**, 8289 (2012).

22. Zhang, Z., Xu, P., Yang, X., Liang, W. & Sun, M. Surface plasmon-driven photocatalysis in ambient, aqueous and high-vacuum monitored by SERS and TERS. *Journal of Photochemistry and Photobiology C: Photochemistry Reviews* **10.1016/j.jphotochemrev.2016.04.001** (2016).

23. Lee, M. C. & Choi, W. Solid phase photocatalytic reaction on the sso/TiO₂ interface: the role of migrating OH radicals. *Langmuir: the ACS journal of surfaces and colloids* **25**, 18196–18203 (2010).

24. van Schrojenstein Lantman, E. M., Deckert-Gaudig, T., Mank, A. J., Deckert, V. & Weckhuysen, B. M. Catalytic processes monitored by transient absorption spectroscopy. *The Journal of Physical Chemistry C* **114**, 18263–18269 (2010).

25. Chu, J. et al. Ultrafast surface-plasmon-induced photodimerization of p-aminophenol on Ag/TiO₂ nanoarrays. *ChemCatChem* **8**, 1–7 (2016).

26. van Schrojenstein Lantman, E. M., Deckert-Gaudig, T., Mank, A. J., Deckert, V. & Weckhuysen, B. M. Catalytic processes monitored at the nanoscale with tip-enhanced Raman spectroscopy. *Nat Nanotechnol* **7**, 583–586 (2012).

27. Wu, D.-Y. et al. Surface catalytic coupling reaction of p-mercaptotoluene linking to silver nanostructures responsible for abnormal SERS enhancement: A DFT Study. *The Journal of Physical Chemistry C* **113**, 18212–18222 (2009).

28. Qi, D., Yan, X., Wang, L. & Zhang, J. Plasmon-free SERS self-monitoring of catalysis reaction on Au nanoclusters/TiO₂ photonic microarray. *Chemical communications* **51**, 8813–8816 (2015).

29. Naya, S., Nawa, T., Kume, T. & Tada, H. Visible-light-induced electron transport from small to large nanoparticles in bimodal gold nanoparticle-loaded titanium(IV) oxide. *Angewandte Chemie* **53**, 7305–7309 (2014).

30. Zhu, H., Ke, X., Yang, X., Sarina, S. & Liu, H. Reduction of nitroaromatic compounds on supported gold nanoparticles by visible and ultraviolet light. *Angewandte Chemie* **49**, 9657–9661 (2010).

31. Dong, B., Fang, Y., Chen, X., Xu, H. & Sun, M. Substrate-, wavelength-, and time-dependent plasmon-assisted surface catalysis reaction of 4-nitrobenzenethiol dimerizing to p, p′-dimercaptobenzene on Au, Ag, and Cu films. *Langmuir: the ACS journal of surfaces and colloids* **27**, 10667–10682 (2011).

32. Fang, Y., Li, Y., Xu, H. & Sun, M. Ascertaining p, p′-dimercaptobenzene produced from p-aminophenol by selective catalytic coupling reaction on silver nanoparticles. *Langmuir: the ACS journal of surfaces and colloids* **26**, 7737–7746 (2010).

33. Huang, Y., Fang, Y., Yang, Z. & Sun, M. Can p, p′-dimercaptobenzene be produced from p-aminophenol by surface photochemistry reaction in the junctions of a Ag nanoparticle–molecule–Ag (or Au) film? *The Journal of Physical Chemistry C* **114**, 18263–18269 (2010).

34. Sun, M. & Xu, H. A novel application of plasmonics: plasmon-driven surface-catalyzed reactions. *Small* **8**, 2777–2786 (2012).

35. Zhang, Z., Fang, Y., Yang, W., Chen, L. & Sun, M. Propagating surface plasmon polaritons: towards applications for remote-excitation surface catalytic reactions. *Advanced Science* **3**, 1500215 (2016).

36. Sun, M., Fang, Y., Zhang, Z. & Xu, H. Activated vibrational modes and Fermi resonance in tip-enhanced Raman spectroscopy. *Physical review. E, Statistical, nonlinear, and soft matter physics* **87**, 020401 (2013).

37. Pan, X. & Xu, Y.-J. Defect-mediated growth of noble-metal (Ag, Pt, and Pd) nanoparticles on TiO₂ with oxygen vacancies for photocatalytic redox reactions under visible light. *The Journal of Physical Chemistry C* **117**, 17996–18005 (2013).

38. Huang, Y. F. et al. Activation of oxygen on gold and silver nanoparticles assisted by surface plasmon resonances. *Angewandte Chemie* **53**, 2353–2357 (2014).

39. Huang, Y. F. et al. When the signal is not from the original molecule to be detected: chemical transformation of para-aminophenol on Ag during the SERS measurement. *J Am Chem Soc* **132**, 9244–9246 (2010).

40. Ding, Q., Chen, M., Li, Y. & Sun, M. Effect of aqueous and ambient atmospheric environments on plasmon-driven selective reduction reactions. *Scientific reports* **5**, 10269 (2015).

41. Cui, L., Wang, P., Li, Y. & Sun, M. Selective plasmon-driven catalysis for para-nitroaniline in aqueous environments. *Scientific reports* **6**, 20458 (2016).

42. Cui, L., Wang, P., Fang, Y., Li, Y. & Sun, M. A plasmon-driven selective surface catalytic reaction revealed by surface-enhanced Raman scattering in an electrochemical environment. *Scientific reports* **5**, 11920 (2015).

43. Cui, L. et al. Plasmon-driven catalysis in aqueous solutions probed by SERS spectroscopy. *Journal of Raman Spectroscopy* doi: 10.1002/jrs.4939 (2016).

44. Linic, S., Christopher, P. & Ingram, D. B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. *Nature materials* **10**, 911–921 (2011).

45. Christopher, P., Xin, H. & Linic, S. Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. *Nature chemistry* **3**, 467–472 (2011).

46. Warren, S. C. & Thiemsen, E. Plasmonic solar water splitting. *Energy Environ. Sci.* **5**, 5133–5146 (2012).

47. Enache, D. I. et al. Solvent-free oxidation of primary alcohols to aldehydes using Au-Pt/TiO₂ catalysts. *Science* **311**, 362–365 (2006).

48. Corma, A. & Serna, P. Chemoselective hydrogenation of nitro compounds with supported gold catalysts. *Science* **313**, 332–334 (2006).

49. Tsukamoto, D. et al. Gold nanoparticles located at the interface of anatase/rutile TiO₂ particles as active plasmonic photocatalysts for aerobic oxidation. *J Am Chem Soc* **134**, 6309–6315 (2012).

50. Futamata, M. Surface-plasmon-polariton-enhanced Raman scattering from self-assembled monolayers of p-nitrothiophenol and p-aminophenol on silver. *The Journal of Physical Chemistry* **99**, 11901–11908 (1995).

51. Sun, M., Zhang, Z., Zheng, H. & Xu, H. In-situ plasmon-driven chemical reactions revealed by high vacuum tip-enhanced Raman spectroscopy. *Scientific reports* **2**, 647 (2012).

52. Chen, B., Jiao, X. & Chen, D. Size-controlled and size-designed synthesis of nano/submicrometer Ag particles. *Crystal Growth & Design* **10**, 3376–3386 (2010).
Acknowledgements
This work has been supported by the National Natural Science Foundation of China (21173077, 21377038 and 21237003, 21203062), the National Basic Research Program of China (973 Program, 2013CB632403), the Research Fund for the Doctoral Program of Higher Education (20120074130001) and the Fundamental Research Funds for the Central Universities.

Author Contributions
X.Y. designed and performed the experiments, prepared the manuscript, drawing and subsequent edit/improvement. X.T. performed the Raman characteristics. L.W., B.T. and J.Z. proposed the research direction and guided the project. All authors discussed the results and commented on the manuscript.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Yan, X. et al. Surface-Enhanced Raman Spectroscopy Assisted by Radical Capturer for Tracking of Plasmon-Driven Redox Reaction. Sci. Rep. 6, 30193; doi: 10.1038/srep30193 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

© The Author(s) 2016