Simulation Studies of Numerical Relationship of Sewage Energy Dissipation Chamber Efficiency

I Stolbikhin and A Semenov

Saint Petersburg State University of Architecture and Civil Engineering, 2nd Krasnoarmeyskaya st., 4, 190005, Saint-Petersburg, Russia

E-mail: sw.semenov@gmail.com

Abstract. The paper introduces a computer model to simulate design of an energy dissipation chamber (EDC). This model allows expressing the air flow rate through the system as a function of the incoming effluent rate. A method is developed to proceed with statistical analysis of simulation results. A set of plots of air flow rate is developed for effluent rates under different parameters of energy dissipation chamber. The approximating function and coefficients allowing obtaining the air consumption under certain conditions (geometrical parameters of the energy dissipation chamber and the effluent rate) are represented. The graphs are obtained in the form of three-dimensional surfaces reflecting a dependence of the ejected air flow rate on the incoming sewage liquid rate for at various values of the stand pipe embedment relative to the liquid level. The developed graphs show that the highest air flow rate is achieved at the maximum water flow rate and at the minimum embedment. Thus, the numerical dependences of the ejected air flow rates were obtained for the energy dissipation chamber as functions of the water flow rate. The embedment of the stand pipe at the level of the overflow wall and the zero inlet radius are shown to be the most effective parameters of energy dissipation chamber design.

1. Introduction

The design of sewage systems often provides for areas featuring merging pump and gravitational flow streams. These areas are known as energy dissipation chamber (EDC) and usually they are designed underground. Professor V. M. Vasiliev (DSc in Engineering) and I. V. Stolbikhin (PhD in Engineering) [1, 2] developed a new design of EDC having a significant advantage over known designs. The advantage deals with air ejecting pipe delivering air to the falling sewage liquid flow. This design solution allows saturating the effluent with air oxygen which mitigates microbiological corrosion — the most aggressive factor in sewage systems [3–5]. The main elements of the energy dissipation chamber structural design are shown in figure 1.

This design allows preventing corrosion and dissipating the energy of the falling liquid. In previous papers [2] it was found that embedment of the stand pipe to a certain level (rather than free water flow rate on the liquid surface in the stilling reservoir) ensured air influx into the bend-stand pipe system due to developing jet separation (see figure 1). This area reduces pressure and the atmospheric air enters the system from the daylight surface. The higher the air flow rate, the better mitigation of microbiological corrosion process is [2, 6]. Therefore, studying this issue is interesting from the practical standpoint.

In this paper, we simulated the throughput of ejected air in the energy dissipation chamber against water flow rate which enabled us finding the most effective EDC design parameters.
2. Materials and methods
In order to solve this problem, the computer model of the energy dissipation chamber was developed using ANSYS CFX software package [7]. The general structure of the computer model showing boundary conditions (b. c.) is shown in figure 2.
Figure 2. Computer model of the energy dissipation chamber developed using ANSYS CFX.

ANSYS CFX package is based on the mathematical model using Reynolds-averaged system of Navier–Stokes equations to simulate behavior of liquid. This approach is used to examine a series of similar applied problems [8].

It should be noted that the system of Navier–Stokes equations also involves standard $k - \varepsilon$ turbulence model.

In simulations, the size of mesh was set at $8.7 \cdot 10^{-4}$ m. We selected the multiphase model of homogeneous type to improve convergence. Parameter ‘specified blend factor’ was set at 0.75. The time scale was set as automatic specifying the length of the fluid particle path inside the pool as equal to 3 m. The problem was solved through 500 iterations which is recommended as sufficient by the software developers [7].

3. Numerical results

In accordance with the above described computer model, we simulated a series of certain realizations of the problems. The following parameters were taken: the embedment value for the level of liquid Δ, the incoming liquid flow rate Q_w. Depending on the flow rate, the diameter of the stand pipe d_0 was estimated.

Shown below is an example of the first group of experiments in which the mathematical processing of the simulation data was conducted. This process can be described as a series of the following steps:

1) Populating the table with the data obtained as a result of computer simulation (table 1).
2) The following graph was developed using the data obtained (figure 3).
3) Microsoft Excel package was used to plot the trend lines and obtain the approximation equations using quadratic polynomial functions (table 2).
4) This was followed by compiling a table of coefficients of approximating function A, B and C for each value of embedment Δ, mm (table 3). The coefficients had accuracy of 10 decimal points which allows obtaining a reliable overall function. Decreasing the accuracy of coefficients to 2 decimal points results in the inaccuracy exceeding 10%.

Table 1. Values of the ejected air flow rate $Q_{ej} \cdot 10^3$ l/s at various values of water flow rate Q_w and embedment Δ.

Q_w, l/s	0	100	200	300	400	500	600	700	800
30	13.12236	10.12658	8.531646	6.421941	6.244726	5.443882	4.896203	4.150211	
45	14.36287	11.55274	10.91139	9.400844	8.455696	7.548523	7.262447	6.437975	6.206751
60	14.39662	12.86076	11.72996	10.40506	9.755274	9.021097	8.265823	7.967089	7.327426
75	15.38397	13.64557	13.39241	11.93249	11.18143	11.1308	10.44726	10.07595	9.780591
90	16.16034	15.35865	14.98734	14.01020	13.32489	12.98734	12.55696	12.12658	10.58228
105	17.02954	16.43882	16.62447	16.02031	15.78059	14.93671	13.83966	11.34177	14.65823

Figure 3. Results of simulation; the ejected air consumption rate Q_{ej} plotted as a function of water flow rate Q_w for the first group of experiments.
Table 2. Quadratic polynomial approximation equations obtained for the first group of experiments.

Δ , mm	Approximation equation \(Q_{ej} = A \cdot Q_w^2 + B \cdot Q_w + C \)
0	\(Q_{ej} = 0.0884066707 \cdot Q_w^2 + 37.4281695801 \cdot Q_w + 12 \, 088.7281494877 \)
100	\(Q_{ej} = -0.0087067176 \cdot Q_w^2 + 84.5348635576 \cdot Q_w + 7669.8010849909 \)
200	\(Q_{ej} = -0.0482218204 \cdot Q_w^2 + 110.0421940928 \cdot Q_w + 5519.7106690777 \)
300	\(Q_{ej} = -0.0509008104 \cdot Q_w^2 + 127.2814948764 \cdot Q_w + 3033.8758288125 \)
400	\(Q_{ej} = 0.6335811399 \cdot Q_w^2 + 29.3791440627 \cdot Q_w + 5617.6009644364 \)
500	\(Q_{ej} = 0.3780724667 \cdot Q_w^2 + 66.8384569017 \cdot Q_w + 3829.2344786016 \)
600	\(Q_{ej} = 0.1385707588 \cdot Q_w^2 + 95.6622463331 \cdot Q_w + 2456.5039180228 \)
700	\(Q_{ej} = -0.7576853526 \cdot Q_w^2 + 200.1971066908 \cdot Q_w - 756.2748643761 \)
800	\(Q_{ej} = 0.7000870672 \cdot Q_w^2 + 35.2403054049 \cdot Q_w + 2756.3230861964 \)

Table 3. Coefficients \(A, B, C \) of the approximating polynomial obtained for each value of \(\Delta \).

Δ , mm	\(A \)	\(B \)	\(C \)
0	0.0884066707	37.4281695801	12 088.7281494877
100	0.0087067176	84.5348635576	7669.8010849909
200	-0.0482218204	110.0421940928	5519.7106690777
300	-0.0509008104	127.2814948764	3033.8758288125
400	0.6335811399	29.3791440627	5617.6009644364
500	0.3780724667	66.8384569017	3829.2344786016
600	0.1385707588	95.6622463331	2456.5039180228
700	-0.7576853526	200.1971066908	-756.2748643761
800	0.7000870672	35.2403054049	2756.3230861964

Based on the above data, the corresponding graphic dependences were plotted (figure 4). The trend lines were obtained for these dependences as well and they were quadratic polynomials. Thus, here we assign index ‘\(A \)’ to the first curve (\(A \)), the second (\(B \)) curve has index ‘\(B \)’, and the third (\(C \)) curve has index ‘\(C \)’.

As is seen from figure 4, increasing the embedment value \(\Delta \) results in growing the value of coefficient ‘\(A \)’ in front of the quadratic term indicating the growing dominance of nonlinear behavior.
Figure 4. Values of coefficients A, B, C plotted as functions of the embedment parameter Δ.

In general terms, the equation describing Q_{aj} as a function of Q_w and Δ can be written as follows:

$$Q_{aj} = (A_A \cdot \Delta^2 + B_A \cdot \Delta + C_A)Q_w^2 + (A_B \cdot \Delta^2 + B_B \cdot \Delta + C_B)Q_w + (A_C \cdot \Delta^2 + B_C \cdot \Delta + C_C)$$

(1)

here coefficients $A_A - C_C$ depend on parameters of the pool and they are obtained through approximation described above.

When the coefficients obtained as well as values Q_w and Δ are substituted into equation (1) we obtain a set of data (table 4).

4. Results and discussion

According to the data shown in Table 4, a three-dimensional surface can be developed (see figure 5).
Table 4. Values of the ejected air flow rate $Q_{ej} \cdot 10^3$ l/s at various values of water flow rate Q_w and embedment Δ (processed data).

Q_w, l/s	Δ, mm					
0	30	45	60	75	90	105
100	12.64393	13.51129	14.39205	15.2862	16.19375	17.11468
200	9.047492	10.403	11.80004	13.23862	14.71874	16.69007
300	7.651999	9.170064	10.74046	12.36319	14.03825	16.24039
400	6.524991	8.151276	9.838503	11.58667	13.9578	15.76565
500	5.666468	7.346633	9.094163	10.90906	12.79132	15.26583
600	5.07643	6.756134	8.507443	10.33036	12.22487	14.74095
700	4.754875	6.379779	8.078341	9.850562	11.69644	13.61598
800	4.701806	6.217569	7.806859	9.469676	11.20602	13.01589

Figure 5. Values of the ejected air flow rate Q_{ej} at various values of water flow rate Q_w and embedment Δ obtained for group of experiments No. 1.

Figure 5 shows that the embedment significantly affects the flow rate of ejected air. The minimum embedment corresponds to the maximum point at the maximum water intake.

Figures 6–11 depict the surfaces obtained as a result of the same mathematical processing of the rest of the simulation data. These surfaces correspond to the groups of experiments having parameters shown in table 5. These results indicate that in all cases the minimum flow rate of ejected air corresponds to the maximum embedment.
Figure 6. Values of the ejected air flow rate Q_{ej} at various values of water flow rate Q_w and embedment Δ for groups of experiments No. 2.

Figure 7. Values of the ejected air flow rate Q_{ej} at various values of water flow rate Q_w and embedment Δ for groups of experiments No. 3.
Figure 8. Values of the ejected air flow rate Q_{ej} at various values of water flow rate Q_w and embedment Δ for groups of experiments No. 4.

Figure 9. Values of the ejected air flow rate Q_{ej} at various values of water flow rate Q_w and embedment Δ for groups of experiments No. 5.
Figure 10. Values of the ejected air flow rate Q_{ej} at various values of water flow rate Q_w and embedment Δ for groups of experiments No. 6.

Figure 11. Values of the ejected air flow rate Q_{ej} at various values of water flow rate Q_w and embedment Δ for groups of experiments No. 7.

Note. Three options of inlet radius R_m were considered: $R_m = 0d_0$ (connection of a horizontal pipeline to the stand pipe at the right angle), as well as $R_m = 0.5d_0$ and $R_m = 0.75d_0$ to model steel stand pipes manufactured by vendors.

The data presented show that the embedment of the stand pipe at the level of the overflow wall ($\Delta = 0$) has better efficiency if compared to the maximum embedment ($\Delta = 800$ mm) by a factor of 10.
Based on the obtained results, we can conclude that the most effective parameters of the energy dissipation chamber are associated with embedment of the stand pipe at the level of the overflow wall as well as with the zero inlet radius ($R_{in} = 0d_0$).

Table 5. Groups of experiments to estimate the ejected air flow rate as a function of Δ and Q_w at different geometrical parameter of the pool.

Experimental series number	Diameter of the stand pipe, d_0, mm	Diameter of the ejecting pipe, d_{ej}, mm	Range of water flow rate, Q_w, l/s	Range of embeddings of the stand pipe, Δ, mm	Radius of inlet R_{in}, mm	$L - \Delta$, mm
1	200	75	30 − 105	0 − 800	0.75d_0	500
2	300	75	75 − 200	0 − 800	0.75d_0	500
3	400	75	125 − 275	0 − 800	0d_0	500
4	500	75	200 − 575	0 − 800	0.5d_0	1000
5	500	75	200 − 575	0 − 800	0d_0	1000
6	600	75	300 − 800	0 − 800	0d_0	1000
7	800	200	500 − 1500	0 − 800	0d_0	1000

5. Conclusions

As a result of mathematical processing of computer simulation data, the authors obtained graphs in the form of three-dimensional surfaces reflecting a dependence of the ejected air flow rate on the incoming sewage liquid rate for at various values of the stand pipe embedment relative to the liquid level. The graphs developed show that the highest air flow rate is achieved at the maximum water flow rate and at the minimum embedment. The data obtained formed the basis to generate the methods to calculate the energy dissipation chamber design geometry parameters.

Thus, the numerical dependences of the ejected air flow rates were obtained for the energy dissipation chamber as functions of the water flow rate. The embedment of the stand pipe at the level of the overflow wall as well as the zero inlet radius are shown to be the most effective parameters of energy dissipation chamber design.

References

[1] Vasiliev V M, Stolbikhin I V 2012 *Water and Ecology* 2/3(50/51) pp 48–61
[2] Stolbikhin I V 2015 *Bulletin of Civil Engineers* 3(50) pp 202–210
[3] Vasiljev V, Lapsev N, Stolbichin J 2013 *World Applied Sciences Journal* 23 pp 184–190
[4] Wells P A, Melchers R E 2009 *Corrosion and Prevention 2009: The Management of Infrastructure Deterioration* pp 15–18
[5] Zhang L, De Schryver P, De Gusseme B et al. 2008 *Water Research* 42 pp 1–12 doi: 10.1016/j.watres.2007.07.013
[6] Tanaka N, Hvittved-Jacobsen T, Ochi T, Sato N 2000 *Water Environ* 72 pp 665–674 doi: 10.2307/25045440
[7] ANSYS CFX-Solver 2009 *Theory Guide* ANSYS Inc.
[8] Gavrilov A A, Rudyak V Y 2014 *Journal of Siberian Federal University Mathematics & Physics*, 7(1) pp 46–57