STABILITY OF A NATURAL SHEAF OVER THE CARTESIAN SQUARE
OF THE HILBERT SCHEME OF POINTS ON A $K3$ SURFACE

EYAL MARKMAN

ABSTRACT. Let S be a $K3$ surface and $S^{[n]}$ the Hilbert scheme of length n subschemes of S. Over the cartesian square $S^{[n]} \times S^{[n]}$ there exists a natural reflexive rank $2n - 2$ coherent sheaf E, which is locally free away from the diagonal. The fiber of E over the point (I_{Z_1}, I_{Z_2}), corresponding to ideal sheaves of distinct subschemes $Z_1 \neq Z_2$, is $\text{Ext}^1_S(I_{Z_1}, I_{Z_2})$. We prove that E is slope stable if the rank of the Picard group of S is ≤ 19. The Chern classes of $\text{End}(E)$ are known to be monodromy invariant. Consequently, the sheaf $\text{End}(E)$ is polystable-hyperholomorphic.

CONTENTS

1. Introduction
2. Density
3. A canonical subsheaf
4. Blow-up of the diagonal and restriction to the exceptional divisor
5. Proof of Proposition 4.3

References

1. Introduction

Let S be a $K3$ surface, not necessarily projective, and n an integer ≥ 2. Denote by $S^{[n]}$ the Hilbert scheme, or Douady space, of length n zero-dimensional subschemes of S. Let U be the ideal sheaf of the universal subscheme of $S \times S^{[n]}$. Let π_{ij} be the projection from $S^{[n]} \times S \times S^{[n]}$ onto the product of the i-th and j-th factors. The relative extension sheaf

\begin{equation}
E := \text{Ext}^1_{\pi_{13}}(\pi_{12}^*U, \pi_{23}^*U)
\end{equation}

is a rank $2n - 2$ reflexive sheaf over $S^{[n]} \times S^{[n]}$. The sheaf E is infinitesimally rigid, i.e., $\text{Ext}^1(E, E)$ vanishes, by [MM2 Prop. 4.1]. We prove in this note the following statement.

Theorem 1.1.

1. When $\text{Pic}(S)$ is trivial the sheaf E is slope-stable with respect to every Kähler class.
2. If $0 < \text{rank}(\text{Pic}(S)) \leq 19$, then E is $\omega \boxplus \omega$-slope-stable with respect to some Kähler class ω on $S^{[n]}$.

The Kähler class $\omega \boxplus \omega$ above is the sum of the pullbacks of ω via the two projections. The theorem is proven in Section 4. The class $c_2(\text{End}(E))$ remains of Hodge type $(2, 2)$ on $X \times X$.

Date: May 9, 2017.
for all Kähler manifolds X deformation equivalent to $S^{[n]}$, by [M] Lemma 3.2 and Prop. 3.4. Such a manifold X is called of $K3^{[n]}$-type. The slope stability result of the above theorem implies that $\mathcal{E}nd(E)$ deforms to a reflexive sheaf A of Azumaya algebras over $X \times X$, for all manifolds X of $K3^{[n]}$-type, by a theorem of Verbitsky [Ve1, Theorem 3.19] (see also [M, Cor. 6.11 and Prop. 6.16]). Slope stability was proven earlier in [M, Theorem 7.4] for the analogue of the sheaf E over the cartesian square $M \times M$ of a moduli space M of stable coherent sheaves of rank $2n - 2$ on a projective $K3$ surface S. There M was chosen so that the sheaf E is twisted by a Brauer class of maximal order equal to the rank 2 of $\mathcal{E}nd(E)$, with respect to every Kähler class [M, Prop. 6.5].

Theorem 1.1 plays an important role in two joint works with S. Mehrotra [MM1, MM2]. There we need the stability of E in Theorem 1.1 (rather than over a moduli space M of higher rank sheaves), since only when the moduli space is a Hilbert scheme we could prove that the integral transform using the universal sheaf from the derived category of the $K3$ surface to that of the moduli space is a \mathbb{P}^n-functor [MM2, Theorem 1.1] (see also [Ad]). Theorem 1.1 is used in the construction of a 21-dimensional moduli space \mathcal{M} of isomorphism classes of triples (X, η, A), where X is a manifold of $K3^{[n]}$-type, $\eta : H^2(X, \mathbb{Z}) \to \Lambda_n$ is an isometry with a fixed lattice Λ_n, and A is a slope stable reflexive sheaf of Azumaya algebras over $X \times X$ [MM1]. We prove a Torelli theorem for the pairs (X, A) deformation equivalent to $(S^{[n]}, \mathcal{E}nd(E))$, stating that if (X', A') is another such pair, and A and A' are both $\mathcal{E}nd$-slope-stable, with respect to the same Kähler class ω on X, then $A' \cong \mathcal{E}nd_A(A \cap \mathcal{E}nd_A) \cap \mathcal{E}nd_A(A \cap \mathcal{E}nd_A)$ (the latter is the same sheaf as A, but with the dual multiplication) [MM1, Theorem 1.11]. In [MM2] we associate to a triple (X, η, A) in \mathcal{M} a pre-triangulated $K3$-category, resulting in a global generalized (non-commutative and gerby) deformation of the derived categories of coherent sheaves on $K3$ surfaces (which are associated to the triples $(S^{[n]}, \eta, \mathcal{E}nd(E))$ by the construction).

Acknowledgments: This work was partially supported by NSA grant H98230-13-1-0239. I would like to thank the referee for his comments, which helped improve the exposition.

2. Density

Let Λ be the $K3$ lattice, namely the unique even unimodular lattice of rank 22 and signature $(3, 19)$. A marked $K3$ surface (S, η) consists of a $K3$ surface S and an isometry $\eta : H^2(S, \mathbb{Z}) \to \Lambda$. Choose one of the two connected components of the moduli space of isomorphism classes of marked $K3$ surfaces, not necessarily projective, and denote it by \mathcal{M}_{K3}. Let Ω_{K3} be the corresponding period domain, and let $P : \mathcal{M}_{K3} \to \Omega_{K3}$ be the period map [LP]. The map P is a local homeomorphism.

The signed isometry group $O^+(\Lambda)$ acts on \mathcal{M}_{K3}, by $g(S, \eta) = (S, g\eta)$, and on Ω_{K3}, and the period map is $O^+(\Lambda)$-equivariant. Over \mathcal{M}_{K3} we have a universal family of $K3$ surfaces $S \to \mathcal{M}_{K3}$, since the automorphism group of a $K3$ surface acts faithfully on its degree 2 cohomology. We get over \mathcal{M}_{K3} a universal Douady space $S^{[n]} \to \mathcal{M}_{K3}$, as well as the fiber square of the latter $S^{[n]} \times_{\mathcal{M}_{K3}} S^{[n]} \to \mathcal{M}_{K3}$. Let \mathcal{U} be the ideal sheaf of the universal subscheme of $S \times_{\mathcal{M}_{K3}} S^{[n]}$ and let π_{ij} be the projection from $S^{[n]} \times_{\mathcal{M}_{K3}} S \times_{\mathcal{M}_{K3}} S^{[n]}$ onto the fiber product of the i-th and j-th factors. The universal version \mathcal{E} over $S^{[n]} \times_{\mathcal{M}_{K3}} S^{[n]}$ of the rank $2n - 2$ sheaf E is the relative extension sheaf

$$E = \mathcal{E}xt^1_{\pi_{13}^*\mathcal{U}, \pi_{23}^*\mathcal{U}}.$$

(2.1)
The universal family $\mathcal{S} \to \mathfrak{M}_{K3}$ is $O^+(\Lambda)$-equivariant, by the universal property of the universal family. Hence, so are the universal Douady space and the universal subscheme. The sheaves \mathcal{U} and \mathcal{E} are thus $O^+(\Lambda)$-equivariant as well. The following is a consequence of a density theorem of Verbitsky.

Lemma 2.1. Let $W \subset \mathfrak{M}_{K3}$ be a non-empty open $O^+(\Lambda)$-invariant subset. Then W contains every marked pair (S, η) such that the rank of the Picard group of S is ≤ 19.

Proof. The image $P(W)$ is an open $O^+(\Lambda)$-invariant subset of Ω_{K3}. The stabilizer of $P(S, \eta)$ in $O^+(\Lambda)$ acts transitively on the fiber of P over $P(S, \eta)$, by the Global Torelli Theorem [BR] (see also [LP] Lemma 10.4). Hence, $W = P^{-1}(P(W))$. If the rank of $\text{Pic}(S)$ is less than or equal to 19, then the $O^+(\Lambda)$-orbit of $P(S, \eta)$ is dense in Ω_{K3}, by [Ve2], so it intersects $P(W)$ and is thus contained in $P(W)$. Hence, the $O^+(\Lambda)$-orbit of (S, η) is contained in W.

3. A canonical subsheaf

A coherent sheaf F on a complex manifold of dimension d is said to be pure of codimension c if the support of every subsheaf of F has codimension c.

Lemma 3.1. [H Cor. 1.5] Let $0 \to F' \to F \to Q \to 0$ be an exact sequence of coherent sheaves on a complex manifold.

1. Assume that F is reflexive. Then F' is reflexive, if and only if either the torsion subsheaf of Q is pure of codimension 1 or Q is torsion free.
2. If F is torsion free and F' is reflexive, then either Q is torsion free, or the torsion subsheaf of Q is pure of codimension 1.

Proof. Part [H] is proven in [H Cor. 1.5]. Part (2): The torsion subsheaf of F''/F' either vanishes, or is pure of codimension 1, by Part [H], and the composition $Q \cong F/F' \to F''/F'$ is injective.

Let $\iota : Z \to S \times S^{[n]}$ be the inclusion of the universal subscheme and let I_Z be its ideal sheaf. Let q_i be the projection from $S \times S^{[n]}$ to the i-th factor, $i = 1, 2$. We get the split short exact sequence of locally free sheaves

$$0 \to \mathcal{O}_{S^{[n]}} \xrightarrow{\iota} q_2^* \mathcal{O}_Z \to A_0 \to 0.$$

We have $c_1(A_0) = c_1(q_2^* \mathcal{O}_Z) = -\delta$, where $2\delta \in H^2(S^{[n]}, \mathbb{Z})$ is the class of the divisor of non-reduced subschemes [ELG] Sec. 5]. Let $\mathcal{I} \subset S^{[n]} \times S^{[n]}$ be the incidence subvariety consisting of pairs (Z_1, Z_2) of length n subschemes, which are not disjoint, $Z_1 \cap Z_2 \neq \emptyset$. Let p_i be the projection from $S^{[n]} \times S^{[n]}$ to the i-th factor, $i = 1, 2$.

Proposition 3.2. The sheaf E, given in [1.7], fits in the left exact sequence

$$0 \to p_2^* A_0 \xrightarrow{b} E \xrightarrow{j} p_1^* A_0^*$$

and the co-kernel of j is supported, set theoretically, on \mathcal{I}.

Proof. Set $\mathcal{O} := \mathcal{O}_{S^{[n]} \times S \times S^{[n]}}$. Apply the functor $R\text{Hom}(\pi_{12}^* I_Z, \bullet)$ to the short exact sequence

$$0 \to \pi_{23}^* I_Z \to \mathcal{O} \to \pi_{23}^* \mathcal{O}_Z \to 0$$

to get the exact triangle

$$R\text{Hom}(\pi_{12}^* I_Z, \pi_{23}^* I_Z) \to R\text{Hom}(\pi_{12}^* I_Z, \mathcal{O}) \to R\text{Hom}(\pi_{12}^* I_Z, \pi_{23}^* \mathcal{O}_Z).$$
Note the isomorphism $\mathcal{H}om(\pi^*_1 I_Z, \mathcal{O}) \cong \mathcal{O}$. Applying the functor $R\pi_{13,*}$ and taking sheaf cohomology of the resulting exact triangle we get the long exact sequence

$$
0 \to \mathcal{O}_{S[n_xS[n]} \to \pi_{13,*}\mathcal{H}om(\pi^*_1 I_Z, \pi^*_2 I_* O_Z) \to E \to \mathcal{E}xt^1_{\pi_{13}}(\pi^*_1 I_Z, \mathcal{O}) \to \ldots
$$

Away from \mathcal{I} the natural homomorphism

$$
\pi_{13,*}\mathcal{H}om(\mathcal{O}, \pi^*_2 I_* O_Z) \to \pi_{13,*}\mathcal{H}om(\pi^*_1 I_Z, \pi^*_2 I_* O_Z)
$$
is an isomorphism, and the left hand sheaf is naturally isomorphic to $p^*_2 q^*_2, I_* O_Z$. Composing the above displayed homomorphism with \tilde{h} we get the injective homomorphism \tilde{h} in Equation (3.2). The exactness of the sequence (3.3) implies that the image of \tilde{h} is saturated, away from \mathcal{I}. The image of \tilde{h} must be a saturated subsheaf of E everywhere, by Lemma 3.1 (1), since the image is locally free and the codimension of \mathcal{I} is 2.

The relative extension sheaves $\mathcal{E}xt^1_{\pi_{13,*}}(\mathcal{O}, \mathcal{O})$ and $\mathcal{E}xt^2_{\pi_{13,*}}(\pi^*_1 I_Z, \mathcal{O})$ both vanish. Hence, we get the short exact sequence

$$
0 \to \mathcal{E}xt^1_{\pi_{13}}(\pi^*_1 I_Z, \mathcal{O}) \to \mathcal{E}xt^2_{\pi_{13}}(\pi^*_2 I_* O_Z, \mathcal{O}) \to \mathcal{E}xt^2_{\pi_{13}}(\pi^*_1 I_Z, \mathcal{O}) \to 0.
$$

Grothendieck-Verdier Duality, combined with the triviality of the relative canonical line bundle $\omega_{\pi_{13}}$, identifies the pullback $p^*_1(u^*)$ of the dual of the homomorphism u in Equation (3.1) with the of the homomorphism \tilde{u}^* above. Hence, $\mathcal{E}xt^1_{\pi_{13}}(\pi^*_1 I_Z, \mathcal{O})$ is isomorphic to the kernel $p^*_1 A^0$ of $p^*_1(u^*)$. Using the latter isomorphism we obtain the homomorphism j in Equation (3.2) from the homomorphism j in the long exact sequence (3.3). The co-kernel of j is equal to the kernel of k in (3.3) from the sheaf $\mathcal{E}xt^1_{\pi_{13}}(\pi^*_1 I_Z, \pi^*_2 I_* O_Z)$ to $\mathcal{E}xt^2_{\pi_{13}}(\pi^*_1 I_Z, \pi^*_2 I_* O_Z)$. The former is isomorphic to $\mathcal{E}xt^2_{\pi_{13}}(\pi^*_2 I_* O_Z, \pi^*_2 I_* O_Z)$ and is thus supported set theoretically on \mathcal{I} and the latter is supported on the diagonal. Hence, the co-kernel of j is supported on \mathcal{I}.

4. Blow-up of the diagonal and restriction to the exceptional divisor

We recall one more crucial property of the relative extension sheaf E given in (1.1). Let $\beta : Y \to S[n] \times S[n]$ be the blow-up of $S[n] \times S[n]$ along the diagonal Δ. Denote by $\tilde{\Delta}$ the exceptional divisor in Y. Note that $\tilde{\Delta}$ is naturally isomorphic to $\mathbb{P}(T^*\Delta)$. Set

$$
V := \beta^* E(\tilde{\Delta})/\text{torsion}.
$$

Let $\pi : \tilde{\Delta} \to \Delta$ be the restriction of β. Let $\ell \subset \pi^* T^* \Delta$ be the tautological line sub-bundle. The restriction of $\mathcal{O}_{\tilde{\Delta}}(\tilde{\Delta})$ to $\tilde{\Delta}$ is isomorphic to ℓ. Let ℓ^\perp be the sub-bundle of $\pi^* T^* \Delta$ symplectic-orthogonal to ℓ. Note that the symplectic structure on $T^* \Delta$ induces one on ℓ^\perp/ℓ.

Lemma 4.1. The vector space $\text{End}(\ell^\perp/\ell)$ is one-dimensional.

Proof. The restriction of ℓ^\perp/ℓ to each fiber of π is simple, by [MM1, Lemma 7.3 (2)]. Hence, the sheaf $\pi_* \mathcal{E}nd(\ell^\perp/\ell)$ is the trivial line-bundle over $S[n]$. The statement follows from the isomorphism $H^0(\tilde{\Delta}, \mathcal{E}nd(\ell^\perp/\ell)) = H^0(S[n], \pi_* \mathcal{E}nd(\ell^\perp/\ell))$. \hfill \square

Proposition 4.2. V is locally free. The restriction of V to $\tilde{\Delta}$ is isomorphic to ℓ^\perp/ℓ.

Proof. When the $K3$ surface S is projective, the statement is precisely [M, Prop. 4.1 parts (3) and (6)]. The proof provided there uses a global complex over $S[n] \times S[n]$ of locally free sheaves, representing the object $R\pi_{13}(R\mathcal{H}om(\pi^*_1 U, \pi^*_2 U))$. However, the argument provided there is
local and goes through when such a complex of locally free sheaves is given only in a complex analytic neighborhood of a point of the diagonal in $S[n] \times S[n]$. Hence, the statement that V is locally free holds without the assumption that S is projective. It remains to be proved that the restriction of V to $	ilde{\Delta}$ is isomorphic to ℓ^\perp/ℓ even when S is non-projective.

Let $\beta : \mathcal{Y} \to S[n] \times \mathcal{M}_{K3}$ be the blow-up of the diagonal and $D \subset \mathcal{Y}$ the exceptional divisor. The sheaf $\mathcal{V} := (\beta^*\mathcal{E})(D)/\text{torsion}$ is locally free, by the above argument. Let $\phi : D \to \mathcal{M}_{K3}$ and $\psi : S[n] \to \mathcal{M}_{K3}$ be the natural morphisms. \mathcal{D} is naturally isomorphic to $\mathbb{P}(T_{\phi})$. Let \mathcal{L} be the tautological subbundle of $\phi^*\mathcal{T}_{\phi}$ over \mathcal{D}. The sheaf $\psi_*\Omega^2_\psi$ is a line-bundle over \mathcal{M}_{K3}. We have a natural injective homomorphism $\psi^*\psi_*\Omega^2_\psi \to \Omega^2_\psi$. We get a well defined symplectic-orthogonal subbundle $\mathcal{L}^\perp \subset \phi^*\mathcal{T}_{\phi}$ as well as the quotient $\mathcal{L}^\perp/\mathcal{L}$.

The fiber of the sheaf $R^{4n-1}\phi_*\left(\left((\mathcal{L}^\perp/\mathcal{L})^* \otimes \mathcal{V}_{1}\right) \otimes \omega_{\phi}\right)$ at every marked pair (S, η) maps isomorphically onto the vector space $\text{Ext}^{4n-1}(\ell^\perp/\ell, \mathcal{V}_{1}\otimes \omega_{\tilde{\Delta}})$, by the Base-Change Theorem. The latter vector space is isomorphic to $\text{Hom}(\mathcal{V}_{1}\otimes \ell^\perp/\ell^*, \mathcal{L}^\perp)$ and is thus one-dimensional whenever S is projective, by [M Prop. 4.1 parts (3) and (6)] and Lemma 4.1. The locus of projective $K3$ surfaces is dense in \mathcal{M}_{K3}. Hence, $\text{Hom}(\mathcal{V}_{1}\otimes \ell^\perp/\ell)$ is one-dimensional over a non-empty Zariski open subset of \mathcal{M}_{K3}, by the semi-continuity theorem.

Considering the sheaf $R^{4n-1}\phi_*\left(\mathcal{V}_{1}\otimes \mathcal{L}^\perp/\mathcal{L} \otimes \omega_{\phi}\right)$ we conclude similarly that $\text{Hom}(\ell^\perp/\ell, \mathcal{V}_{1}\otimes \omega_{\tilde{\Delta}})$ is one-dimensional over a non-empty Zariski open subset of \mathcal{M}_{K3}. Hence, the sheaves

$$L_1 := \phi_\ast \text{Hom}(\mathcal{L}^\perp/\mathcal{L}, \mathcal{V}_{1})$$

and

$$L_2 := \phi_\ast \text{Hom}(\mathcal{V}_{1}, \mathcal{L}^\perp/\mathcal{L})$$

are both locally free of rank 1 over a non-empty Zariski open subset U' of \mathcal{M}_{K3}. The fiber of L_i, $i = 1, 2$, is spanned by an isomorphism over every projective marked $K3$ surface. Hence, the composition maps $L_1 \otimes L_2 \to \phi_\ast \text{End}(\mathcal{L}^\perp/\mathcal{L})$ and $L_1 \otimes L_2 \to \phi_\ast \text{End}(\mathcal{V}_{1})$ are isomorphisms over a non-empty Zariski open subset U of U'. We conclude that $\mathcal{V}_{1}\otimes \omega_{\tilde{\Delta}}$ is isomorphic to ℓ^\perp/ℓ for every marked pair (S, η) in U. The set U is $O^*(\Lambda)$-invariant and thus contains every marked pair (S, η) with Picard rank ≤ 19, by Lemma 2.1. Such is the Picard rank of every non-projective $K3$ surface.

Proposition 4.3. When Pic(S) is trivial the vector bundle ℓ^\perp/ℓ has a unique non trivial subsheaf C of rank less than $2n - 2$. The rank of C is $n - 1$.

Proposition 4.3 will be proven in Section 5.

Proof of Theorem 4.1 We prove first that every non-trivial proper subsheaf of V has rank $n - 1$. Let F be a non-trivial subsheaf of V of lower rank. We may assume that F is saturated in V. Then F is a subsheaf of V away from the locus where V/F is not locally free. That locus has codimension at least 2, since V/F is torsion free. Thus, F restricts to a subsheaf of the restriction of V to $\tilde{\Delta}$ of the same rank as F. The restriction of V to $\tilde{\Delta}$ is isomorphic to ℓ^\perp/ℓ, by Proposition 4.2. We conclude that rank$(F) = n - 1$, by Proposition 4.3.

Let F be a non-trivial proper saturated subsheaf of E. Then F is reflexive, being saturated in the reflexive sheaf E, and rank$(F) = n - 1$. In particular, the image F_0 of the homomorphism h in the sequence (3.2) does not have any non-trivial subsheaf of lower rank. Furthermore, either $F = F_0$, or $F \cap F_0 = 0$.

Assume that $F \cap F_0 = 0$. Composing the inclusion $F \to E$ with the homomorphism j in the sequence (3.2) we get the injective homomorphism $g : F \to p_1^*A^*_0$. The sheaf F is reflexive, $p_1^*A^*_0$
is locally free, and the rank of both is \(n - 1 \). Hence, every irreducible component of the support of the co-kernel of \(g \) must be of codimension 1, by Lemma 5.1. The co-kernel of \(g \) surjects onto the co-kernel of the homomorphism \(j \), and the latter is supported, set theoretically, on the codimension two subvariety \(\mathcal{I} \), by Proposition 3.2. Hence, \(\mathcal{I} \) is contained in some effective divisor of \(S^{[n]} \times S^{[n]} \). But such a divisor does not exists, since the only effective divisors on \(S^{[n]} \) are multiples of the divisor of non-reduced subschemes. A contradiction. Hence, \(F = F_0 \).

We have the equalities \(c_1(F_0) = -p_2^*c_1(A_0) \), \(c_1(E/F_0) = p_2^*c_1(A_0^*), \) and \(c_1(A_0) = -\delta \), where \(2\delta \) is an effective divisor, as noted in Section 3. Hence, the unique non-trivial subsheaf \(F_0 \) of \(E \) does not slope-destabilize \(E \) with respect to any Kähler class on \(S^{[n]} \times S^{[n]} \).

(2) Let \(W \subset \mathcal{M}_{K3} \) be the subset consisting of pairs \((S, \eta)\) for which the sheaf \(\mathcal{E} \), given in (2.1), restricts to \(S^{[n]} \times S^{[n]} \) as an \(\omega \oplus \omega \)-slope-stable sheaf with respect to some Kähler class \(\omega \) on \(S^{[n]} \). \(W \) is an open subset, since every Kähler class extends to a section of Kähler classes for the universal Douady space over an open subset of \(\mathcal{M}_{K3} \) (see [Vo1, Th. 9.3.3]) and since slope-stability is an open condition. \(W \) is clearly \(O^+(\Lambda) \)-invariant. Hence, \(W \) contains every marked pair \((S, \eta)\) in \(\mathcal{M}_{K3} \), with rank\((\text{Pic}(S)) \leq 19 \), by Lemma 2.1.

5. Proof of Proposition 4.3

Let \(S \) be a K3 surface with a trivial Picard group.

Lemma 5.1.
1. \(H^0(S^n, \text{Sym}^k(T^*S^n)) = 0 \), for all \(n > 0 \) and \(k > 0 \).
2. \(\mathbb{P}(T^*S^n) \) does not contain any effective divisors.

Proof. 1. The vector bundles \(\text{Sym}^d(T^*S) \) are stable, as the holonomy of \(T^*S \) is \(Sp(2) \cong SL(2) \) and the \(d \)-th symmetric power of the standard rank 2 representation of \(SL(2) \) is irreducible, for all \(d \geq 0 \). The spaces \(H^0(S, \text{Sym}^d(T^*S)) \) thus vanish for \(d > 0 \), since \(c_1(\text{Sym}^d(T^*S)) = 0 \). Now \(H^0(S^n, \text{Sym}^k(T^*S^n)) \) is the direct sum, over all ordered partitions \(k = d_1 + \cdots + d_n \), of the tensor product \(\otimes_{i=1}^n H^0(S, \text{Sym}^{d_i}(T^*S)) \). The latter tensor product vanishes if \(k > 0 \), since at least one \(d_i \) is positive.

2. Any line bundle is a tensor power of the tautological line bundle \(\mathcal{O}_{\mathbb{P}(T^*S^n)}(1) \). The statement follows immediately from part 1.

Lemma 5.2. Let \(X \) be a compact complex manifold, which does not have any effective divisors, and \(L \) a line bundle on \(X \). Let \(V \) be a finite dimensional vector space. Then every saturated subsheaf of \(V \otimes_C L \) is of the form \(W \otimes_C L \), for some subspace \(W \) of \(V \).

Proof. Let \(F \) be a saturated subsheaf of \(V \otimes_C L \) and \(\iota : F \to V \otimes_C L \) the inclusion homomorphism. Choose a generic quotient space \(Q \) of \(V \), such that the composite homomorphism \(h \), given by \(F \to V \otimes_C L \to Q \otimes_C L \), is injective. The sheaf \(F \) is reflexive, being a saturated subsheaf of a locally free sheaf. Thus, the cokernel of \(h \) either vanishes, or it is supported on a codimension 1 subscheme, by Lemma 3.1. The latter case is excluded by the assumption that \(X \) does not have any effective divisors. Hence \(h \) is an isomorphism. Let \(\iota_0 : Q \to V \) be the composition \(Q \cong \text{Hom}(L,F) \to \text{Hom}(L,V \otimes_C L) \cong V \). Then \(F \) is the image of \(\iota_0 \otimes 1 : Q \otimes_C L \to V \otimes_C L \).

Lemma 5.3. Let \(X, L, \) and \(V \) be as in Lemma 5.2. Let \(G \) be a finite group of automorphisms of \(X \). Assume that \(L \) is endowed with a \(G \)-equivariant structure, \(V \) is an irreducible \(G \)-representation, and endow \(V \otimes_C L \) with the associated \(G \)-equivariant structure. Then \(V \otimes_C L \) does not have any non-trivial saturated \(G \)-equivariant subsheaf of lower rank.
Proof. Let $F \subset V \otimes_{\mathbb{C}} L$ be a saturated subsheaf. Then $F = W \otimes_{\mathbb{C}} L$, for some subspace W of V, by Lemma 5.2. G-equivariance of F implies that $\text{Hom}(L, F)$ is a G-subrepresentation of the irreducible representation V. Hence, $W = 0$ or $W = V$. \hfill \Box

Proof of Proposition 4.3. Let S^n be the n-th Cartesian product, $S^{(n)}$ the n-th symmetric product, and $q : S^n \to S^{(n)}$ the quotient morphism. Denote by $U \subset S^{(n)}$ the complement of the diagonal subscheme and set $\tilde{U} := q^{-1}(U)$. Denote by $q : \tilde{U} \to U$ the covering map. We identify U also as an open subset of the Hilbert scheme $S^{[n]}$.

Let $p_n : \mathbb{P}(T^* S^n) \to S^n$ be the projection and denote by $\tilde{\ell}$ the tautological line sub-bundle of $p_n^* T^* S^n$. Denote by \mathfrak{S}_n the symmetric group on n letters. Let σ_n be a \mathfrak{S}_n-invariant symplectic structure on S^n. Note that σ_n is unique, up to a scalar factor. Denote by $\ell_{\tilde{\ell}}$ the sub-bundle of $p_n^* T^* S^n$ symplectic-orthogonal to $\tilde{\ell}$ with respect to σ_n. Both ℓ and $\ell_{\tilde{\ell}}$ are \mathfrak{S}_n-invariant sub-bundles of $p_n^* T^* S^n$. Hence, $\ell_{\tilde{\ell}} / \ell$ is endowed with the structure of an \mathfrak{S}_n-equivariant vector bundle over $\mathbb{P}(T^* S^n)$.

Let $\pi_k : S^n \to S$ be the projection on the k-th factor. Let $\tilde{\pi}_k : \mathbb{P}(T^* S^n) \to S$ be the composition $\pi_k \circ p_n$. Let $\hat{\ell}_i$ be the projection of $\tilde{\ell}$ to $\tilde{\pi}_i^* T^* S$. The projection $\ell_{\hat{\ell}_i}$ is an isomorphism. Let \tilde{C} be the quotient $(\oplus_{i=1}^n \hat{\ell}_i) / \ell$. Then C is an \mathfrak{S}_n-invariant subsheaf of $\tilde{\ell}_{\hat{\ell}} / \ell$ of rank $n - 1$. It thus corresponds to a saturated subsheaf C of $\ell_{\tilde{\ell}} / \ell$ of rank $n - 1$. Set $\tilde{Q} := [\ell_{\tilde{\ell}} / \ell] / \tilde{C}$. We get the short exact sequence

$$0 \to \tilde{C} \to \ell_{\tilde{\ell}} / \ell \to \tilde{Q} \to 0$$

of \mathfrak{S}_n-equivariant coherent sheaves over $\mathbb{P}(T^* S^n)$. \tilde{C} is isomorphic, as a \mathfrak{S}_n-equivariant sheaf, to $\ell \otimes_{\mathbb{C}} W$, where W is the reflection representation of \mathfrak{S}_n. If the torsion subsheaf of \tilde{Q} is non-zero, then its support has codimension ≥ 2. But \tilde{C} is locally free and hence reflexive. Consequently, the sheaf Q is torsion free, by Lemma 3.1 (1). The dual sheaf \tilde{Q}^* is isomorphic to \tilde{C}, since \tilde{C} is a Lagrangian subsheaf with respect to the \mathfrak{S}_n-invariant symplectic structure on $\ell_{\tilde{\ell}} / \ell$. We conclude that neither \tilde{C} nor \tilde{Q} admit any non-trivial saturated \mathfrak{S}_n-equivariant subsheaf of lower rank, by Lemmas 5.1 and 5.3.

Assume that F is a non-trivial saturated subsheaf of $\ell_{\tilde{\ell}} / \ell$ of rank $< 2n - 2$. Then F restricts to a subsheaf of the restriction of $\ell_{\tilde{\ell}} / \ell$ to $\mathbb{P}(T^* U)$. Now $q^* \mathbb{P}(T^* U)$ is isomorphic to $\mathbb{P}(T^* \tilde{U})$, and $q^* F$ extends to a non-trivial saturated \mathfrak{S}_n-invariant subsheaf \tilde{F} of $\tilde{\ell}_{\hat{\ell}} / \ell$ of rank $\leq 2n - 3$. We may assume that \tilde{F} has rank $\leq n - 1$, possibly after replacing \tilde{F} with its symplectic-orthogonal subsheaf.

If \tilde{F} is not contained in \tilde{C}, then the natural homomorphism $h : \tilde{F} \to \tilde{Q}$ is \mathfrak{S}_n-equivariant and it does not vanish. Its image is an equivariant subsheaf of \tilde{Q} and it thus must have rank $n - 1$. The support of the quotient $\tilde{Q} / h(\tilde{F})$ has codimension ≥ 2, since $\mathbb{P}(T^* S^n)$ does not contain any effective divisor, by Lemma 5.1. The sheaf \tilde{F} is reflexive, being a saturated subsheaf of a locally free sheaf. The quotient $\tilde{Q} / h(\tilde{F})$ must thus vanish, by Lemma 3.1 (2), since \tilde{Q} is torsion free. Hence, h is an isomorphism and the short exact sequence (5.1) splits. But the bundle $\ell_{\tilde{\ell}} / \ell$ restricts to a stable bundle with trivial determinant over every \mathbb{P}^{2n-1} fiber of p_n [MM1, Lemma 7.4]. A contradiction. Hence, \tilde{F} is contained in \tilde{C}. Consequently, $\tilde{F} = \tilde{C}$, since the latter does not have any \mathfrak{S}_n-equivariant subsheaf of lower rank. This completes the proof of Proposition 4.3. \hfill \Box
References

[Ad] Addington, N.: New derived symmetries of some Hyperkähler varieties. Algebr. Geom. 3 (2016), no. 2, 223–260.

[BR] Burns, D., Rapoport, M.: On the Torelli problem for kählerian K3 surfaces. Ann. Sci. École Norm. Sup. (4) 8 (1975), no. 2, 235–273.

[ELG] Ellingsrud, G., Göttsche, L., Lehn, M.: On the cobordism class of the Hilbert scheme of a surface. J. Algebraic Geom. 10 (2001), no. 1, 81–100.

[H] Hartshorne, R.: Stable reflexive sheaves. Math. Ann. 254, 121–176 (1980).

[M] Markman, E.: The Beauville-Bogomolov class as a characteristic class. Electronic preprint arXiv:1105.3223v3.

[MM1] Markman, E., Mehrotra, S.: A global Torelli theorem for rigid hyperholomorphic sheaves. Electronic preprint, arXiv: 1310.5782v1.

[MM2] Markman, E., Mehrotra, S.: Integral transforms and deformations of K3 surfaces. Electronic preprint, arXiv: 1507.03108v1.

[LP] Looijenga, E., Peters, C.: Torelli theorems for Kähler K3 surfaces. Compositio Math. 42 (1980/81), no. 2, 145–186.

[Ve1] Verbitsky, M. Hyperholomorphic sheaves and new examples of hyperkaehler manifolds, [alg-geom/9712012] In the book: Hyperkähler manifolds, by Kaledin, D. and Verbitsky, M., Mathematical Physics (Somerville), 12. International Press, Somerville, MA, 1999.

[Ve2] Verbitsky, M.: Ergodic complex structures on hyperkähler manifolds. Acta Math. 215 (2015), no. 1, 161-182.

[Voi] Voisin, C.: Hodge Theory and Complex Algebraic Geometry I. Cambridge studies in advanced mathematics 76, Cambridge Univ. Press (2002).

Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003, USA

E-mail address: markman@math.umass.edu