Immunological effects of chemotherapy in spontaneous breast cancers

Guido Kroemer1,2,3,4,5,*, Lorenzo Galluzzi1,2,6, and Laurence Zitvogel6,7,8,9

1Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France; 2Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers; Paris, France; 3INSERM, U848; Villejuif, France; 4Metabolomics and Cell Biology Platforms; Gustave Roussy; Villejuif, France; 5Pôle de Biologie; Hôpital Européen Georges Pompidou; AP-HP; Paris, France; 6Gustave Roussy Cancer Campus; Villejuif, France; 7INSERM, U1015; Villejuif, France; 8Université Paris-Saclay; Faculté de Médecine; Le Kremlin Bicêtre, France; 9Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 507; Villejuif, France

Keywords: HER2, CD8+ T lymphocytes, MMTV-NeuT mice, oncogene addiction, p53, trastuzumab

In 2012, the research group lead by Karin de Visser at the Netherlands Cancer Institute reported that chemotherapeutic regimens based on cisplatin, oxaliplatin or doxorubicin are equally efficient against breast cancer developing in normal, immunocompetent mice and in mice lacking recombination activating gene 2 (Rag2), which codes for a recombinase required for the generation of B and T lymphocytes.1 In this setting, de Visser and collaborators characterized 2 rather distinct models of breast cancer: (1) the MMTV-NeuT model, in which mammary carcinogenesis is driven by the (over)expression of the rat oncogene Neu (the ortholog of human v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2, ERBB2, best known as HER2) under the control of the mammalian mammary tumor virus (MMTV) promoter, in BALB/c mice; and (2) the K14cre; Cdh1lox/lox; Trp53lox/lox model, relying on the epithelial cell-specific, Cre recombinase-dependent knockout of the oncosuppressor genes cadherin 1 (Cdh1) and transformation-related protein 53 (Trp53, best known as p53), in FVB/N mice. In both these experimental paradigms, the presence or absence of Rag2 (and hence the functionality of B and T lymphocytes) had no impact on the incidence of spontaneous breast carcinomas,2 and failed to affect the lifespan-extending effects of repeated cycles of chemotherapy.1 These findings were used to argue against our hypothesis that the efficacy of anticancer therapy often, if not always, relies on the (re)instatement of immunosurveillance.3-11 In essence, the results published by de Visser and colleagues seemingly corroborated the idea that conventional chemotherapeutics mediate optimal antineoplastic effects in the absence of any sizeable contribution from the immune system. One of the recurrent arguments used by the de Visser’s team in support of their findings was to say that transplantable tumor models, which we have been using for most of our studies, would be inappropriate to reflect the human system, and that de novo carcinoma models (such as those that they extensively employed) would be more relevant from a clinical perspective.

Where do we stand now, at the beginning of 2014, with regard to anticancer immune responses induced by chemotherapy against breast cancers spontaneously developing in mice and humans? First of all, a careful examination of the literature on the MMTV-NeuT model supports the notion that immunosurveillance controls breast carcinogenesis and contributes to the efficacy of anticancer chemotherapy in this setting. As early as in 2005, George Prendergast and colleagues (from the The Lankenau Institute for Medical Research) demonstrated that the combination of paclitaxel and 1-methyl-DL-tryptophan (an inhibitor of the immunosuppressive enzyme indoleamine 2,3-dioxygenase) exerts synergistic anticancer effects that are lost upon the depletion of CD4+ T cells with a specific monoclonal antibody.12 In line with this notion, the concomitant depletion of CD4+ and CD8+ T cells appears to accelerate oncogenesis in MMTV-NeuT mice, while the blockade of interleukin-13, an immunosuppressive cytokine, retards the oncogenic process in this model.13 It is difficult to understand why the pharmacological depletion of T lymphocytes (achieved by the injection of antibodies specific for CD4 and CD8) would promote Neu-driven oncogenesis,13 while the lack of mature T and B cells (resulting from the absence of Rag2) would fail to do so.1 One possibility is that the absence of B lymphocytes, which accelerate oncogenesis in some models,14 might have neutralized the impact of T-cell depletion. Alternatively, animal facility-dependent differences in the murine microbiome (and hence in the general tone of the immune system) may have affected the efficacy of anticancer immunosurveillance. In another model of transgene-driven breast cancer (MMTV-rta; TetO-PyMT; IRES-Luc), which relies on the tetracycline-inducible expression of the polyoma middle T (PyMT) oncogene, the depletion of regulatory T cells results in a significant inhibition of tumor growth and metastatic dissemination,15 supporting the relevance of immunosurveillance in mammary carcinogenesis.

For the present discussion, however, it is more important to note that Wolfgang Doppler and collaborators (from the University of Innsbruck) have recently reported that the treatment of MMTV-NeuT mice with doxorubicin or lapatinib
(a non-specific inhibitor of HER2 currently approved for use in patients with HER2+ breast carcinoma), alone or in combination, mediates antitumor effects that disappear upon the depletion of CD8+ (but not CD4+) T lymphocytes. At first glance, these results are at odds with those reported by the group of Karin de Visser. However, it remains possible that this discrepancy originates from the fact that Doppler and colleagues treated tumor-bearing MMTV-NeuT mice with one dose of doxorubicin, while de Visser et al. employed at least three cycles of chemotherapy, which might have induced a severe state of immunosuppression. Interestingly, the knockout of signal transducer and activator of transcription 1 (Stat1) abolished not only the therapeutic effects of doxorubicin and lapatinib against Neu-driven breast carcinomas, but also the chemotherapy-induced infiltration of neoplastic lesions by T lymphocytes. Thus, the pharmacological inhibition of Neu by lapatinib in MMTV-NeuT mice mediated therapeutic effects that relied upon the immune system, confirming previous results obtained with HER2-targeting antibodies.

The immune system appears to play a critical role in the response to other targeted anticancer agents. For instance, by employing two distinct murine models of resistance to trastuzumab (an HER2-specific antibody currently approved for use in HER2+ breast cancer patients) induced by the loss of phosphatase and tensin homolog (Pten), the research team lead by Dihua Yu at the MD Anderson Cancer Center has recently demonstrated that the combination of a HER2-specific antibody other than trastuzumab and the AKT1 inhibitor triciribine effectively inhibits tumor growth in a T-cell-dependent manner. Indeed, besides blocking phosphoinsistide-3-kinase (PI3K)/AKT1 and mitogen-activated protein kinase (MAPK) signaling, this combinatorial regimen turned out to promote the recruitment of CD4+ and CD8+ T cells to the tumor microenvironment, resulting in the elicitation of a T1 immune response against malignant cells. In line with this notion, interferon γ (IFNγ)-neutralizing antibodies compromised the synergistic antitumor effects mediated by HER2-targeting antibodies plus triciribine. Moreover, this immunochemotherapeutic regimen increased the expression of cytotoxic T lymphocyte-associated protein 4 (CTLA4, also known as CD152), a T-cell receptor that antagonizes the co-stimulatory activity of CD28, and blocking CTLA4 (with a specific monoclonal antibody) further boosted the therapeutic potential of HER2-inhibiting antibodies combined with triciribine.

An ideological debate on the preferability of transplantable vs. spontaneous mouse tumor models is sterile. Rather, the discussion should focus on what kind of model would reflect most accurately the pathophysiology and pharmacology of human (breast) carcinoma. Accumulating evidence indicates that the density, composition and function of the T-cell infiltrate has a major impact on the prognosis and therapeutic response of human breast cancers of different subtypes. Based on these findings, it should be an obligation to use mouse models of breast cancer in which components of the immune system, in particular CD8+ T lymphocytes, play a positive and decisive role.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

References

1. Ciampicotti M, Hau CS, Doornebal CW, Jonkers J, de Visser KE. Chemotherapy response of spontaneous mammary tumors is independent of the adaptive immune system. Nat Med 2012; 18:344-6, author reply 346; PMID:22395693; http://dx.doi.org/10.1038/nm.2652
2. Ciampicotti M, Vrijland K, Hau CS, Pemovska T, Doornebal CW, Spekunjider EN, Wartha K, Jonkers J, de Visser KE. Development of metastatic HER2+ breast cancer is independent of the adaptive immune system. J Pathol 2012; 227:56-66; PMID:22580290; http://dx.doi.org/10.1002/path.2837
3. Vacchelli E, Senvolla L, Eggermont A, Fridman WH, Galon J, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Chemotherapy with immunogenic cell death inducers. Oncoimmunology 2013; 2:e25510; PMID:23687621; http://dx.doi.org/10.4161/onci.23510
4. Kroemer G, Galluzzi L, Kepp O, Zitvogel L. Immunogenic cell death in cancer therapy. Annu Rev Immunol 2013; 31:51-72; PMID:23157439; http://dx.doi.org/10.1146/annurev-immunol-032712-100008
5. Zitvogel L, Galluzzi L, Smyth MJ, Kroemer G. Mechanism of action of convoluted and targeted anticancer therapies: restarting immunosurveillance. Immunity 2013; 39:74-88; PMID:23890065; http://dx.doi.org/10.1016/j.immuni.2013.06.014
6. Ma Y, Adjemian S, Mattarollo SR, Yamazaki T, Aymeric L, Yang H, Portela CataniJP, Hannani D, Duret H, Steegh K, et al. Anticancer chemotherapy-induced intratumoral recruitment and differentiation of antigen-presenting cells. Immunity 2013; 38:729-41; PMID:23562161; http://dx.doi.org/10.1016/j.immuni.2013.03.003
7. Senovilla L, Viral E, Martins I, Tailler M, Pailleret C, Michaud M, Galluzzi L, Adjemian S, Kepp O, Niso-Santano M, et al. An immunosurveillance mechanism controls cancer cell plywood. Science 2012; 337:1678-84; PMID:23019633; http://dx.doi.org/10.1126/science.1224922
8. Michaud M, Martini I, Sukkurwala AQ, Adjemian S, Ma Y, Pellegatti P, Shen S, Kepp O, Scoazec M, Mignoz G, et al. Autoaggressive mechanisms control cancer cell plywood. Science 2011; 334:1573-7; PMID:22174255; http://dx.doi.org/10.1126/science.1208347
9. Zitvogel L, Kepp O, Kroemer G. Immune parameters affecting the efficacy of chemotherapeutic regimens. Nat Rev Clin Oncol 2011; 8:151-60; PMID:21364688; http://dx.doi.org/10.1038/nrclinonc.2010.223
10. Galluzzi L, Senovilla L, Zitvogel L, Kroemer G. The secret ally: immunostimulation by anticancer drugs. Nat Rev Drug Discov 2012; 11:215-22; PMID:22307098; http://dx.doi.org/10.1038/nrd3626
11. Zitvogel L, Apetoh L, Ghiringhelli F, André F, Tesniere A, Kroemer G. The anticancer immune response: indispensable for therapeutic success? J Clin Invest 2008; 118:1991-2001; PMID:18523649; http://dx.doi.org/10.1172/JCI31580
12. Muller AJ, DuHadaway JB, Donover PS, Sutanto-Ward E, Prendergast GC. Inhibition of indoleamine 2,3-dioxygenase, an immunoregulatory target of the cancer suppression gene Bin1, potentiates cancer chemotherapy. Nat Med 2005; 11:312-9; PMID:15711557; http://dx.doi.org/10.1038/nm1196
13. Park JM, Terabe M, Donaldson DD, Forni G, Berzofsky JA. Natural immunosurveillance against spontaneous, autochthonous breast cancers revealed and enhanced by blockade of IL-13-mediated negative regulation. Cancer Immunol Immunother 2008; 57:907-12; PMID:18004566; http://dx.doi.org/10.1007/s00262-007-0414-0
14. Ammirante M, Luo JL, Grivennikov S, Nedospasov S, Karin M. B-cell-derived lymphotxin promotes castration-resistant prostate cancer. Nature 2010; 464:302-5; PMID:20220849; http://dx.doi.org/10.1038/nature08782
15. Bos PD, Pitis G, Rudra D, Lee SY, Rudensky AY. Transient regulatory T cell ablation deters oncogene-driven breast cancer and enhances radiotherapy. J Exp Med 2013; 210:2435-66; PMID:24127486; http://dx.doi.org/10.1084/jem.20130762
16. Hannesdottir L, Tymoszuk P, Parajuli N, Wasmer MH, Philipp S, Dauchil N, Datta S, Koller J, Tripp CH, Stotzner P, et al. Laptinib and doxorubicin enhance the Stat1-dependent antitumor immune response. Eur J Immunol 2013; 43:2718-29; PMID:23840324; http://dx.doi.org/10.1002/eji.201242505
17. Park S, Jiang Z, Mortenson ED, Deng L, Radkevich-Brown O, Yang X, Sattar H, Wang Y, Brown NK, Greene M, et al. The therapeutic effect of anti-HER2/neu antibody depends on both innate and adaptive immunity. Cancer Cell 2010; 18:160-70; PMID:20708157; http://dx.doi.org/10.1016/j.ccr.2010.06.014

18. Stagg J, Loi S, Divisekera U, Ngiow SF, Duret H, Yagita H, Teng MW, Smyth MJ. Anti-ErbB-2 mAb therapy requires type I and II interferons and synergizes with anti-PD-1 or anti-CD137 mAb therapy. Proc Natl Acad Sci U S A 2011; 108:7142-7; PMID:21482773; http://dx.doi.org/10.1073/pnas.1016569108

19. Mavilio D, Galluzzi L, Lugli E. Novel multifunctional antibody approved for the treatment of breast cancer. Oncoimmunology 2013; 2:e24567; PMID:23802090; http://dx.doi.org/10.4161/onci.24567

20. Vacchelli E, Eggermont A, Galon J, Sautès-Fridman C, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Monoclonal antibodies in cancer therapy. Oncoimmunology 2013; 2:e25396; PMID:23894726; http://dx.doi.org/10.4161/onci.25396

21. Galluzzi L, Vacchelli E, Fridman WH, Galon J, Sautès-Fridman C, Tartour E, Zucman-Rossi J, Zitvogel L, Kroemer G. Trial Watch: Monoclonal antibodies in cancer therapy. Oncoimmunology 2012; 1:28-37; PMID:22720209; http://dx.doi.org/10.4161/onci.1.1.17958

22. Wang Q, Li SH, Wang H, Xiao Y, Sahin O, Brady SW, Li P, Ge H, Jaffee EM, Muller WJ, et al. Concomitant targeting of tumor cells and induction of T-cell response synergizes to effectively inhibit trastuzumab-resistant breast cancer. Cancer Res 2012; 72:4417-28; PMID:22773664; http://dx.doi.org/10.1158/0008-5472.CAN-12-1339-T

23. Vacchelli E, Prada N, Kepp O, Galluzzi L. Current trends of anticancer immunochemotherapy. Oncoimmunology 2013; 2:e25396; PMID:23894726; http://dx.doi.org/10.4161/onci.25396

24. Walker LS, Sansom DM. The emerging role of CTLA4 as a cell-extrinsic regulator of T cell responses. Nat Rev Immunol 2011; 11:852-63; PMID:2216087; http://dx.doi.org/10.1038/nri3108

25. DeNardo DG, Brennan DJ, Rexhepaj E, Ruffell B, Shiao S, Madden SF, Gallagher WM, Wadhwani N, Keil SD, Junaid SA, et al. Lymphocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov 2011; 1:54-67; PMID:22039576; http://dx.doi.org/10.1158/2159-8274.CD-10-0028

26. Denkert C, Loibl S, Noske A, Roller M, Muller BM, Komor M, Budczies J, Darb-Esfahani S, Kronenwett R, Hanusch C, et al. Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. J Clin Oncol 2010; 28:1005-13; PMID:19917669; http://dx.doi.org/10.1200/JCO.2009.23.7570

27. Loi S. Tumor-infiltrating lymphocytes, breast cancer subtypes and therapeutic efficacy. Oncoimmunology 2013; 2:e24728; PMID:24073565; http://dx.doi.org/10.4161/onci.24728

28. Loi S, Sirtaine N, Piette F, Salgado R, Viale G, Van Eenoo F, Rouas G, Francis P, Crown JP, Hitre E, et al. Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase III randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 02-98. J Clin Oncol 2013; 31:860-7; PMID:23341518; http://dx.doi.org/10.1200/JCO.2011.41.0902

29. Senovilla L, Vacchelli E, Galon J, Adjemian S, Eggermont A, Fridman WH, Sautès-Fridman C, Ma Y, Tartour E, Zitvogel L, et al. Trial watch: Prognostic and predictive value of the immune infiltrate in cancer. Oncoimmunology 2012; 1:1523-43; PMID:23243596; http://dx.doi.org/10.4161/onci.22009