Insulin storage and glucose homeostasis in mice null for the granule zinc transporter ZnT8 and studies of the type 2 diabetes-associated variants.

Tamara J. Nicolson1*, Elisa A. Bellomo1*, Nadeeja Wijesekara2*, Merewyn K. Loder1*, Jocelyn M. Baldwin3*, Armen V. Gyulkhandanyan2, Vasiliy Koshkin2, Andrei I. Tarasov1, Raffaella Carzaniga4, Katrin Kronenberger4, Tarvinder K. Taneja1, Gabriela da Silva Xavier1, Sarah Libert5, Philippe Froguel6,7, Raphael Scharffmann8, Volodymir Stetsiuk8, Philippe Ravassard9, Helen Parker10, Fiona M. Gribble10, Frank Reimann10, Robert Sladek11, Stephen J. Hughes12, Paul R.V. Johnson12, Myriam Masseboeuf13, Remy Burcelin13, Stephen A. Baldwin3, Ming Liu14, Roberto Lara-Lemus14, Peter Arvan14, Frans C. Schuit15, Michael B. Wheeler3, Fabrice Chimienti6 and Guy A. Rutter1†

1Section of Cell Biology, Division of Medicine, Imperial College London, UK, 2Department of Physiology, University of Toronto, Canada, 3Institute of Membrane and Systems Biology, University of Leeds, UK, 4Electron Microscopy Centre, Imperial College London, UK, 5Mellitech, Grenoble, France, 6Section of Genomic Medicine, Division of Medicine, Imperial College London, UK, 7Centre National de la Recherche Scientifique Unit Mixte de Recherche 8090-Institute of Biology, Lille, France. 8INSERM U845, University Paris Descartes, France, 9Centre National de la Recherche Scientifique and Université Pierre et Marie Curie, LGN UMR 7091, Paris, France, 10Cambridge Institute for Medical Research, University of Cambridge, UK, 11Department of Human Genetics, McGill University, Montreal, Canada, 12Nuffield Department of Surgery, University of Oxford, 13Institut de Medecine Moleculaire de Rangueil (I2MR), INSERM U858, IFR31, Toulouse III University, CHU Rangueil, BP84225, 31432 Toulouse Cedex 4, France, 14Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, 15Gene Expression Unit, Department of Molecular Cell Biology, Katholieke Universiteit Leuven, Belgium, *These authors contributed equally to this work

†Correspondence and requests for materials should be addressed to G.A.R.
g.rutter@imperial.ac.uk

Submitted 15 April 2009 and accepted 2 June 2009

Additional information for this article can be found in an online appendix at http://diabetes.diabetesjournals.org

This is an uncopiedited electronic version of an article accepted for publication in Diabetes. The American Diabetes Association, publisher of Diabetes, is not responsible for any errors or omissions in this version of the manuscript or any version derived from it by third parties. The definitive publisher-authenticated version will be available in a future issue of Diabetes in print and online at http://diabetes.diabetesjournals.org.
Objective. Zinc ions are essential for the formation of hexameric insulin and hormone crystallisation. Correspondingly, a non-synonymous single nucleotide polymorphism rs13266634 in the *SLC30A8* gene, encoding the secretory granule zinc transporter ZnT8, is associated with type 2 diabetes. Here, we describe the effects of deleting the ZnT8 gene in mice and explore the action of the at-risk allele.

Research Design and Methods. *Slc30a8* null mice were generated and backcrossed at least twice onto a C57BL/6J background. Glucose and insulin tolerance were measured by intraperitoneal injection, or euglycemic clamp, respectively. Insulin secretion, electrophysiology, imaging, and the generation of adenoviruses encoding the low- (W325) or elevated- (R325) risk ZnT8 alleles, were undertaken using standard protocols.

Results. ZnT8**−/−** mice displayed age, sex and diet-dependent abnormalities in glucose tolerance, insulin secretion and body weight. Islets isolated from null mice had reduced granule zinc content, and showed age-dependent changes in granule morphology, with markedly fewer dense cores but more rod-like crystals. Glucose-stimulated insulin secretion, granule fusion and insulin crystal dissolution, as assessed by total internal reflection fluorescence microscopy, were unchanged or enhanced in ZnT8**−/−** islets. Insulin processing was normal. Molecular modelling revealed that residue-325 was located at the interface between ZnT8 monomers. Correspondingly, the R325 variant displayed lower apparent Zn**2+** transport activity than W325 ZnT8 by fluorescence-based assay.

Discussion and conclusions. ZnT8 is required for normal insulin crystallisation and insulin release *in vivo* but not, remarkably, *in vitro*. Defects in the former processes in carriers of the R allele may increase type 2 diabetes risk.
Glucose and other secretagogues stimulate the release of insulin, co-stored in secretory granules with Zn\(^{2+}\) ions, from pancreatic islet \(\beta\)-cells (1;2). The presence of two Zn\(^{2+}\) ions, located at the centre of the insulin hexamer and coordinated via HisB10 and GluB13 (3), is thought to be essential for both the normal processing and crystallisation of insulin. Moreover, zinc co-released with insulin (4) may play an important paracrine role in the control of glucagon secretion in some (5;6) if not all (7) mammalian species.

ZnT8 is a member of a family of ten zinc transporters (ZnT1-10; encoded by SLC30A1-10) thought to catalyse the extrusion of Zn\(^{2+}\) from the cell cytosol into the extracellular space or intracellular organelles (8;9). Whereas ZnT1 is ubiquitously expressed and present at the cell surface (10) the remaining family members are located on intracellular organelles: notably late endosomes (ZnT2) (11), Golgi (ZnT5-7) (12), lysosomes (10), and synaptic vesicles (13). The roles of ZnT9 and ZnT10 (14) remain to be established. Zinc uptake, on the other hand, is mediated by members of the ZiP family (8).

With the exceptions of ZnT8 and ZnT3 (present in specialised glutaminergic neurons) (15) most ZnT family members are expressed in the majority of mammalian tissues. By contrast, ZnT8 (SLC30A8) mRNA levels are 2-3 orders of magnitude higher in the islet than in all other tissues examined so far (16-18), with low levels being detected in thyroid and adrenal cortex (18). Consistent with this restricted expression pattern, ZnT8 has recently been shown to be a major autoantigen in type 1 diabetes (19). Moreover, recent genome-wide studies (20;21) have shown that a non-synonymous single nucleotide polymorphism rs13266634 in the SLC30A8 gene, resulting in the replacement of tryptophan-325 with arginine, increases the risk of type 2 diabetes (OR 1.58) possibly by decreasing insulin secretion and/or proinsulin processing (22;23).

Despite its clear role in both major forms of diabetes mellitus, the molecular and cellular mechanisms through which ZnT8 controls \(\beta\)-cell function remain undefined. Furthermore, although ZnT8 over-expression stimulates insulin release from INS-1 \(\beta\)-cells (17), the importance of the endogenous transporter has so far not been examined by silencing or genetic ablation. We show here that ZnT8 mediates zinc uptake into insulin granules and influences insulin storage and glucose homeostasis in vivo.

RESEARCH DESIGN AND METHODS.

Generation of ZnT8\(^{-/-}\) mice. The strategy used is summarized in Fig. 2A. Slic30a8 knock-out (ZnT8\(^{-/-}\)) mice were generated by GenOway (Lyon, France). This involved the insertion of a LoxP site together with an FRT flanked neomycin selection cassette within intron 1, and a single distal LoxP within the upstream exon 1 containing the translation initiation codon.

After homologous recombination in SV129-derived ES cells at the slic30a8/ZnT8 locus, and injection into C57BL/6J blastocyes, the resulting flox'd mice were mated with CMV-Cre-expressing C57BL/6J mice. These were back-crossed three times (Toronto) or twice (London, Grenoble) onto a C57BL6 background. Separate colonies were maintained on normal chow with the fat/protein/fibre following contents: London, Grenoble, 2.7/14.4/4.7%; Toronto, 5.0/18.0/5.0%. Animals were continuously interbred to provide all three genotypes. ZnT8\(^{-/-}\) mice were viable and obtained with the expected Mendelian frequency. Comparisons were made between sex-matched littermates unless otherwise indicated.
Histology and immunohistochemistry. Mouse pancreata were extracted and fixed in 10% neutral balanced formalin (Sigma) at 4°C for 18h prior to dehydration and wax embedding and processing to obtain 5 µm slices (Carleton’s Histological Technique, Drury and Wallington). Nuclei and cytoplasm were stained with haematoxylin and eosin, respectively. Sections were labelled with anti insulin (1:300 dilution, Secondary-Alexa 488 1:1000) and anti-glucagon (1:200 dilution, secondary-Alexa 568 1:1000) and sealed using Vector Shield Antifade Hard Set reagent (Vector Laboratories).

Brightfield and combined fluorescence and darkfield images were captured using a Zeiss Axiovert 200 inverted microscope with 2.5x air objective, and a 1300x1000 pixel digital camera. Single islets within the slices were analysed by confocal microscopy using a Zeiss Axiovert-200 microscope with an Improvision/Nokigawa spinning disc system running Vovocity 4.0 (Improvision, Coventry, UK) software (24).

Human pancreata, fixed in 10% (v/v) formalin, was embedded in paraffin and sectioned. Sections (4µm thick) were processed for immunohistochemistry (25) and labelled using mouse anti-insulin (Sigma, 1:2000), and mouse anti-glucagon (Sigma, 1:2000) and rabbit anti-ZnT8 (Mellitech, 1:200) and revealed with fluorescein anti-rabbit and Texas-red anti-mouse secondary antibodies (Jackson Immunoresearch, 1:200). Images were captured using a fluorescence microscope (Leitz DMRB, Leica) and digitized using cooled a CCD (C7780, Hamamatsu).

Human islet isolation. Islets were isolated from cadaveric donors according to (26).

Gene expression analysis. Islet cell populations. α- and β-cells populations were extracted from transgenic mice expressing the yellow fluorescent protein derivative Venus as described (27)(see Supplemental Methods).

Microarray analysis was performed as described in Supplemental Methods. Quantitative RT-PCR (qPCR) for ZnT and ZiP isoforms was performed using SYBR® Green on a 7900HT RealTime PCR system (Applied Biosystems), using three separate cell preparations (28).

ZnT8−/− mice. Total islet RNA was isolated using TRIzol Reagent (Invitrogen, CA) and treated with rDNase I (Ambion, USA). Isolated RNA (1µg) was reverse-transcribed using Moloney murine leukemia virus reverse transcriptase (Invitrogen, CA). Details of qPCR primer design and reactions are given in Supplemental Methods. Data were normalized to mouse β actin mRNA.

Intraperitoneal glucose tolerance test (IPGTT). Glucose tolerance was assessed by intraperitoneal glucose injection. Mice were fasted for 5-15h, weighed and glucose (1.5g/kg unless otherwise stated) administered via intraperitoneal injection. Glucose in tail vein blood was measured using a Glucometer (Accu-Check).

Euglycaemic clamp. Mice were anesthetized with isoflurane (Abbott) and an indwelling catheter installed into the femoral vein (29). Insulin sensitivity was assessed four days after surgery (30;31).

Plasmid generation. cDNAs encoding human R325- or W325-ZnT8 were sub-cloned using primers bearing c-myc-tags from hZnT8 and hZnT8-R325W EGFP fusion protein constructs (16) into plasmid pIRES2-EGFP (Clontech) or pIRES2-dsRed2 (Invitrogen). cDNA encoding a CD38-EGFP chimaera was generated as described under Supplemental Methods.

Expression was analysed in INS-1(832/13) β-cells transfected using Lipofectamine2000™ (Invitrogen) according to the manufacturers’ instructions. Cells were visualised on a Leica SP5 laser-scanning confocal microscope.
Adenovirus construction. ZnT8-c-myc tagged-EGFP constructs were ligated into pAdtrack-CMV at KpnI and EcoRV sites. Adenoviruses were produced as described (32).

Islet isolation and measurement of hormone secretion and processing. Islets were aseptically isolated by collagenase digestion of mouse pancreas (7) and insulin (24) and glucagon (7) secretion measured in batch incubations. Insulin processing was assessed by pulse-chase labelling with 35S-methionine (33).

Electrophysiology. Plasma membrane potential (V_m) and whole cell K_{ATP} channel conductance (G_{KATP}) of β-cells were recorded in perforated patch configuration (34). Electrical capacitance (C_m) and Ca$^{2+}$ current (I_{Ca}) through the plasma membrane of β-cells were recorded in standard whole-cell configuration (24). See Supplemental Methods for further details.

Total Internal Reflection Fluorescence (TIRF) Microscopy. Isolated mouse islets were dispersed and infected with adenovirus expressing neuropeptide Y (NPY)-Venus (100 MOI) (35) prior to imaging (24). Release was stimulated using 50mM KCl, 1µM forskolin and 25µM isobutyl-methylxanthine. Fusion events were detected by eye, and the release kinetics, defined by measuring changes in fluorescence within a 5 pixel diameter circle, analysed using Microsoft Excel and fitted where appropriate to a first order decay curve using Origin 7.5 software (OriginLab USA).

Measurements of intracellular free Ca$^{2+}$. Intracellular free Ca$^{2+}$ concentration ([Ca$^{2+}$]$_i$) was measured at 37°C using Fura-Red (Invitrogen) as previously described (7;24).

Transmission electron microscopy. Isolated islets were fixed and analysed as previously described (24).

RNA interference and measurement of intracellular free Zn$^{2+}$. MIN6 cells were transfected using Lipofectamine 2000™ (Invitrogen) with scrambled siRNA or siRNA against ZnT8 (5’-CCGUCAUGAUCUUAAAAGAtt-3’) (Ambion), or co-transfected with mCherry subcloned into pcDNA3.1 plasmid (Invitrogen, a gift from Dr. H. Gaisano, Toronto) and ZnT8-R325 or –W325 p-IRES constructs. After 24-48 h, cells were processed by immunocytochemistry (see Legend to Fig. 8A) or loaded with 3µM FluoZin-3 AM or Zinquin for 50 min. at 37°C, then incubated for 10 min. without dye, in perifusion buffer containing (mM) 130 NaCl, 5 KCl, 2 CaCl$_2$, 1 MgCl$_2$, 5 NaHCO$_3$, 1 glucose, 10 HEPES, pH 7.4 equilibrated with 5% CO$_2$-95% O$_2$. Coverslips were then transferred to an open chamber and continuously perfused with 5 µM ZnSO$_4$ in the presence of 1 mM glucose at 37°C. Membrane-permeable zinc ionophore pyrithione (pyr) and zinc chelator TPEN were used as controls. Cells were imaged with/without continuous perifusion at 36-37°C using an Olympus BX51W1 fluorescent microscope controlled with Image Master3 software (PTI) with a high speed monochromator (PTI, Lawrenceville, NJ). FluoZin-3 emission was monitored using 485nm excitation, 505nm beam-splitter and 525nm band-pass filter. Zinquin emission was monitored using 365nm excitation, 375nm beam-splitter and 385 nm long-pass filter.

Co-Immunoprecipitation. HeLa cells transfected with hZnT8-V5 and ZnT8-EGFP were lysed 48 h post-transfection and immunoprecipitation was performed with Dynabeads® Protein G (Invitrogen) coated with anti-V5 (Clontech) or anti-EGFP (Invitrogen) antibodies.

Homology Modelling. The W325 form of ZnT8 was modelled on the crystal structure of the E. coli zinc transporter YiiP (PDB accession 2QFI; resolution 3.8Å) (36) using Modeller version 8.2 (37). Alignment of the ZnT8 and YiiP sequences, which exhibit...
only ~19% sequence identity, was aided by comparison of the patterns of residue conservation in closer mammalian and bacterial homologues of these proteins respectively, using the program ConSeq (38;39). One hundred models were generated, and the five of lowest energy were further analysed using MolProbity (40). Of these, that shown in Fig. 6C had 93% of residues in the allowed regions of the Ramachandran plot (the corresponding figure for 2QFI was 80%). The R325 variant of ZnT8 was generated from the model in silico using PyMOL (DeLano, W.L. The PyMOL Molecular Graphics System, 2002) (www.pymol.org), which was also used to create the images shown in Fig. 6C.

Data analysis and statistics. Data were analysed using Clampfit (Axon Instruments), Cell^R (Olympus) and Excel (Microsoft) software. Statistical significance was estimated using Student’s t-test with appropriate Bonferroni correction. Pearson Correlation statistics were analysed with Simple PCI.

RESULTS.

Expression of ZnT8 in the endocrine pancreas. ZnT8 immunoreactivity was localised to both β- and non-β-cells in isolated human pancreatic slices (Fig. 1A) and dispersed human islets (Fig. 1B) consistent with recent findings in rat pancreas (18). ZnT8 immunoreactivity was absent from neighbouring acinar cells (Fig. 1A), in line with expression profiling (17;18). ZnT8 mRNA was absent in pancreata from neurogenin3-deleted (ngn3^-/-) mice, which lack an endocrine compartment, confirming restriction to the latter pancreatic cell types (Supp. Fig. 1 and see (41)). At the mRNA level, ZnT8 was the predominant ZnT family member in both FACS-purified α- and β-cells (Fig. 1C)(27), as assessed by microarray (Affymetrix) analysis or quantitative PCR. Notably, in both purified β- and α-cells, ZnT8 mRNA levels exceeded by >10-fold the level of any other ZnT/slc30a family member (Fig. 1C).

Generation and histological examination of ZnT8^-/- mice. To explore the potential in vivo role of ZnT8 we generated mice lacking the slc30a8 gene. Deletion of exon 1 (Fig. 2A,B) led to essentially complete ablation of ZnT8 mRNA and protein expression (Fig. 2C,D) in isolated islets. No significant alterations were observed in the expression of other ZnT family members or the most abundant β-cell ZiPs (Supp. Fig. 2), ZiP6 or -7 (Fig. 2D). Examined at 12 weeks, β-cell mass was not significantly different between +/- and -/- mice (Toronto colony: 3.1±0.3 and 3.2±0.2 islets/arbitrary area unit respectively; London colony: 0.51±0.05 and 0.68±0.03% total pancreatic surface; Fig. 3A). Moreover, the proportions of β- and α-cells did not differ between genotypes in either colony (Toronto: not shown; London, Fig. 3B). Surprisingly, normal insulin crystallisation was not required to maintain unaltered insulin content in the absence of ZnT8 (for isolated size-matched 50-100µm islets from London mice: 21.4±5.8, 18.5±5.7, 13.7±3 ng/islet, for +/-, +/-, -/-, respectively, n=5 mice/genotype). Whereas zinc content measured with FluoZin-3 (mainly cytosolic; see below, Fig. 8B), was not reduced in ZnT8^-/- mice (Fig. 3C), the zinc content of secretory granules, and other organelles, estimated using zincin (Fig. 3C)(42) or dithizone (Fig. 3D)(43) (Lemaire et al, submitted), was considerably (>70%) lowered in ZnT8^-/- islets from either colony.

Examined by transmission electron microscopy, ZnT8^-/- β-cells displayed a significantly larger number of granules lacking a detectable dense core, and an increase in granules containing atypical, rod-shaped cores (Fig. 3E, Supp. Figs 5-7), suggesting altered insulin crystal condensation (2). No difference in the number of granules morphologically-docked at the
plasma membrane was observed (Supp. Fig.s 5F,6F). The loss of dense-core granules became more marked with age in Toronto mice (six vs 12 weeks; Fig. 3E; Supp. Figs.5C,6C). Proinsulin processing to split proinsulins and the mature hormone were unaltered in ZnT8−/− mice (London; Fig. 3F).

Glucose homeostasis and insulin secretion. Male ZnT8−/− mice maintained on normal chow displayed unaltered changes in body weight with respect to control mice (London and Toronto colonies; not shown). In the Toronto colony, elevated fasting glucose levels, and glucose intolerance during IPGTT, were apparent in male ZnT8−/− mice at six but not 12 weeks (Fig. 4). Female ZnT8−/− mice in this colony displayed normal fasting glucose but were glucose intolerant at both ages (Supp. Fig. 4). Male null mice in the London colony were also glucose intolerant at both ages (Supp. Fig.8) whilst normal glucose tolerance was seen in female null mice at 12 weeks (Supp. Fig. 8).

Whereas normal insulin sensitivity was observed in ZnT8−/− mice (Toronto, not shown; London, Supp. Fig. 9), **in vivo** insulin release under IPGTT was significantly reduced (Fig. 4A(b)). At twelve weeks, glucose-induced insulin secretion was significantly enhanced in ZnT8−/− mouse islets (Toronto; Fig. 4A(c), B(b)), whilst glucose-inhibited glucagon secretion was unaffected (Fig. 4A(d)). In islets from the London colony, examined at 12 weeks, basal insulin release was significantly enhanced (ZnT8−/− vs wild-type) but glucose- or KCl-induced secretion did not differ between genotypes (Supp. Fig. 8(c)).

Examined in the Toronto colony, a high fat diet led unexpectedly to a greater gain in body weight in ZnT8−/− than wild-type mice (Supp. Fig 3A,C). Under this regime, null mice displayed elevated fasting blood glucose (Supp. Fig. 3D) and insulin (Supp. Fig. 3F) levels. Tendencies towards abnormal glucose tolerance, elevated glucagon levels and decreased insulin sensitivity were also apparent (Supp. Fig.s 3B,E and G, respectively).

Effects of ZnT8 deletion on β-cell metabolism and exocytosis. Examined in single β-cells from 12 week-old male ZnT8−/− mice (London), no significant loss of glucose- or sulphonylurea-induced membrane depolarisation (Fig. 5A) or ATP-sensitive K+ (K_Atp) currents (not shown) were apparent, indicative of normal glucose metabolism. Similarly, depolarisation-induced whole β-cell capacitance changes (Fig. 5B) and Ca^{2+} currents (Fig. 5C) remained unchanged, consistent with preserved exocytosis.

To determine whether the kinetics of granule cargo discharge may be affected by abnormal insulin crystallisation, TIRF analysis of release events was performed in single islet cells infected with adenovirus encoding neuropeptide-Y fused to the enhanced and red-shifted variant of green fluorescent protein, Venus (NPY-Venus) (Fig. 5D-F)(35). Exocytosis was stimulated by KCl in the presence of the cAMP-raising agents forskolin and isobutyl-methylxanthine. This protocol maximised the number of detectable events and ensured rapid fusion pore dilation, previously shown to lead to “full” events in which the entire granule cargo was released (44). In this way, crystal dissolution was expected to be rate limiting for the dispersal of the fluorescence after fusion. No differences were obtained in the rate of NPY-Venus diffusion (t_{1/2} = 0.17±0.02 s (+/+ vs 0.17±0.03 s (-/-)) suggesting that crystal dissolution was not affected by the absence of ZnT8 (Fig. 5E,F). Moreover, there was no difference in the number of “full” events, leading to complete or near complete loss of granule fluorescence (Fig. 5E,F), or “partial” release events in which granule fluorescence remained after the transient increase during fusion (Fig. 5F)(35).

Impact of type 2 diabetes polymorphisms on ZnT8 function. To
assess the potential impact of replacement of the lower risk (W) with the higher risk (R) residue at position-325, we undertook homology modelling studies based on the bacterial zinc transporter and ZnT homologue, YiiP. A member of the cation diffusion facilitator (CDF) transporter family (38), YiiP reportedly functions as a dimer (36). Confirming similar behaviour for mammalian ZnT8 from β-cell lines migrated on SDS-PAGE as bands with apparent molecular masses of ~40 and ~90 kDa, indicating the presence of monomers and possibly an SDS-resistant dimer (Fig. 6A)(18). In order to confirm the existence of dimers in living cells we co-expressed EGFP- or V5-tagged ZnT8 in epithelial HeLa cells and performed immunoprecipitation experiments. Efficient co-precipitation indicated the existence of the transporter as dimers (Fig. 6B). Based on the structure of YiiP (36), the probable locations of Zn\(^{2+}\) ion binding sites in both the cytoplasmic and transmembrane domains of the ZnT8 model, the latter accessible from extracellular/intragranular side of the membrane, were inferred from the bacterial protein structure (Fig. 6C). Residue-325, at the cytoplasmic “tip” of each monomer in the homology model, forms part of the dimer interface and in different mammalian species is occupied by W or R (H. sapiens), Q (rat and mouse) or R (macaque) (Supp. Fig. 10). The impact of replacing W with R was assessed by in silico mutagenesis and revealed minimal distortion in overall folding (Fig. 6C). Although confirmation of the precise arrangement of this region of the protein awaits determination of the crystal structure, alignment of the ZnT8 sequence with the template structure in this region of the homology model was supported by analysis of the pattern of residue conservation (see Research Design and Methods).

To identify potential physiological differences between β-cells expressing either the low risk (W) or increased risk (R) variants of ZnT8 we used plasmid-based transfection or adenovirus-mediated infection to introduce either form of the protein into β-cell lines. Each isoform displayed a similar expression level as evidenced by western (immuno-) blotting (Fig. 6D) and immunocytochemical analysis of single cells transfected with pIRES2-based plasmids (Fig. 6E). Moreover, close subcellular colocalisation with insulin-containing granules, as apparent for endogenous ZnT8 in human β-cells (Fig. 1B)(17), was also apparent for each of the over-expressed c-myc-tagged variants (Pearson correlation coefficient 0.77±0.01 and 0.78±0.02 for R and W mutants respectively; Fig. 6E).

We next examined the effects of each ZnT8 allele on the regulation of insulin release. No significant differences in glucose-stimulated insulin secretion were apparent in INS-1(832/13) cells (Fig. 7A) or MIN6 β-cells (not shown) between cells over-expressing either the R or the W variant.

Measured in the whole-cell perforated-patch configuration, resting membrane potential (\(V_m\)) was identical in MIN6 cells over-expressing either vector alone, R325-ZnT8 or W325-ZnT8 (Fig. 7B) and the resting conductance of ATP-sensitive K\(^+\) channels (\(G_{KATP}\)) was also of the same order in each case (Fig. 7B). Correspondingly, no differences in glucose- or KCl-induced increases in apparent intracellular free Ca\(^{2+}\) ([Ca\(^{2+}\)]\(_i\)) were apparent between cells over-expressing R- or W325-ZnT8 (Fig. 7C). However, over-expression of either ZnT8 isoform significantly potentiated [Ca\(^{2+}\)]\(_i\) increases in response to elevated glucose concentrations (Fig. 7D), suggestive of an effect of ZnT8 over-expression on either Ca\(^{2+}\) channel numbers or via changes in intracellular cation handling.

The effects of over-expression of either isoform on intracellular free Zn\(^{2+}\) concentrations ([Zn\(^{2+}\)]\(_i\)), were next explored
using trappable intracellular Zn2+-selective dyes: FluoZin-3, Zinquin ethyl-ester, or RhodZin3-AM (45). Whereas FluoZin-3 (Fig. 8B) and RhodZin-3 (not shown) were localised largely to the cytosol and nuclear compartments, Zinquin displayed marked punctate staining (Fig. 8B)(46), consistent with accumulation into secretory granules (47). We monitored zinc uptake by incubation in the presence of a supraphysiological concentration (5-10\textmu M) of zinc ions. Suggesting that ZnT8 may mediate uptake of Zn2+ into the cytosol, as well as the secretory granules, rates of uptake monitored with FluoZin-3 were diminished when the endogenous transporter was silenced (Fig. 8A). Correspondingly, initial rates of Zn2+ uptake were markedly elevated after over-expression of the W- but not the R325-ZnT8 variant as chimaeras with mCherry (Fig. 8B) consistent with a higher Zn2+ transporting activity of the former. In contrast to the c-myc-tagged chimaera (Fig. 6E), over-expression of either variant interestingly led to detectable labelling of the plasma membrane as well as granules (Fig. 8C), suggesting that ZnT8 was able to mediate zinc transport across both membranes. Importantly, zinc accumulation into granules, as assessed using zinquin (Fig. 8B), was significantly higher for over-expressed W- vs R-ZnT8.

DISCUSSION

Impact of ZnT8 deletion on insulin release. We show here that ZnT8 is required for the normal accumulation of zinc by \(\beta\)-cell granules, for normal insulin crystallisation and glucose tolerance. However, the impact of ZnT8 deletion appeared to depend subtly upon variations in genetic background, as well as age, sex and diet. Unexpectedly, and for reasons which remain to be elucidated, we also show that ZnT8 is required for normal body weight homeostasis under metabolic (high fat diet) stress. Whether human carriers of the at-risk R-allele are similarly affected is presently unknown.

Studied in male ZnT8-/- mice on a substantially C57BL6 background (Toronto colony; see Research Design and Methods), glucose tolerance improved with age (from six weeks to 12). Interestingly, this change was associated with a decrease (from 35 to 16\%) in the number of dysmorphic, “rod-like” granules, but an increase (from 24 to 36\%) in electron-lucent (“empty”) granules (Fig. 3E), whilst glucose tolerance normalised over the same period (Fig. 4). By contrast, in the London colony, rod-like still predominated over electron-lucent granules in ZnT8-/- mouse \(\beta\)-cells at 12 weeks: glucose-stimulated insulin secretion was not enhanced with respect to wild-type controls, and the mice remained glucose intolerant (Supp. Fig. 8). Such observations may suggest that a preponderance of atypical crystals, rather than their total absence, contributes to abnormalities in insulin release and hence glucose intolerance.

Surprisingly, we observed no abnormalities in insulin processing either in ZnT8-/- islets from the London colony, nor in islets from mice where dense cores were essentially eliminated (Lemaire \textit{et al}, submitted) questioning the requirement of insulin crystallisation for this process. Likewise, the kinetics of insulin release as assessed by TIRF microscopy were unchanged under conditions favouring the formation of large fusion pores (35). However, basal insulin release from ZnT8-/- islets was enhanced (Supp. Fig. 8(c)) perhaps indicative of more efficient release of non-crystalline (mono/dimeric) insulin when fusion pores are small (35).

ZnT8 is expressed in \(\alpha\)-cells. We show here that ZnT8 is expressed in the majority of \(\alpha\)-cells in both humans and rodent islets. Nonetheless, no differences in the morphology of \(\alpha\)-cell granules in ZnT8-/- mice were apparent (not shown). Moreover, we
observed no alterations in the regulation by glucose of glucagon secretion from ZnT8−/− islets (Fig. 4A(d)), questioning the importance of zinc release from β-cells in the control of the latter process (7).

Activities of polymorphic variants of ZnT8. Whilst polymorphisms in the ZnT8/SLC30A8 gene which alter the risk of type 2 diabetes (20;48) are likely to have a milder effect on glucose homeostasis than that of whole body inactivation of slc30a8 in mice as described here, it seems likely they may alter β-cell Zn^{2+} content, and hence the normal storage of insulin. We also confirm that this transporter is likely to be important for the uptake of Zn^{2+} into granules. However, the assay for ZnT8 transporter activity we have developed here unexpectedly revealed that the transporter may operate in the “reverse” direction, whereby low levels of ZnT8 on the plasma membrane also permit influx into the cell in the face of high Zn^{2+} concentrations. Similar bidirectional zinc transport has also been described for ZnT5 (49).

Importantly, we show here that the at-risk R-form of ZnT8 is less active as a zinc transporter. We also demonstrate by molecular modelling that R325 resides at the monomer interface, a site important for the transport activity of YiiP and other bacterial CDF transporters (36;50). The resultant introduction of positive charge into this region of ZnT8, close to the predicted sites of bound, structurally important Zn^{2+} ions, may be expected to affect the kinetics of Zn^{2+} transport and possibly the recruitment of zinc-metallochaperones (50). Carriers of this allele may therefore accumulate zinc, and thus package insulin, less efficiently into β-cell granules. Future studies, possibly using appropriately engineered mice expressing either allelic form of the transporter, will be needed to test this hypothesis.

Conclusion. The present report demonstrates that ZnT8 modulates glucose homeostasis in mice, and shows that a “high risk” allele for type 2 diabetes displays decreased activity. Small molecules activators that target ZnT8 may thus represent an interesting new means to treat insulin secretory deficiency in this disease.

ACKNOWLEDGEMENTS

We thank M.T. Gage-Soufflot for assistance with immunocytochemistry, Mr Gao Sun, Mrs Nasret Harun and Ms Sahar Vakshouri for able technical assistance. G.A.R. thanks the Wellcome Trust (Programme grant 081958/Z/07/Z), MRC (G0401641), National Institutes of Health (ROI DKO71962-01), and the European Union FP6 (SaveBeta) for grant support. F.M.G. and F.R. received Clinical and Basic Science Senior Fellowships respectively from the Wellcome Trust. E.A.B. and T.J.N. received Divisional Studentships from Imperial College. We thank Sabrina Mosaheb for preliminary electron microscopy experiments. We are thankful to Dr M. Nonnenmacher for technical expertise in co-immunoprecipitation experiments. S.A.B. thanks the Biotechnology and Biological Sciences Research Council (grant number BBS/B/14418) and the University of Leeds for support. F.C.S. was supported by GOA 2004/11(K.U.Leuven, EURODIA LSHM-CT-2006-518153 (European Community), and JDRF grant 1-2006-182. Work in the R.S. lab was supported by INSERM and the Association Française des Diabetiques (AFD). M.B.W. was funded by an operating grant from the Canadian Institutes of Heath Research (CIHR, MOP-49521) and NW by a CIHR doctoral award. We thank Drs Christian Leibig and Martin Spitaler of the Facility for Live Cell Imaging and Microscopy (Sir Alexander Fleming Building, Imperial College London) and Ms Larraine Lawrence (NHLI) for valuable assistance with imaging and histology, respectively, and Dr Sebastian
Barg for advice on capacitance measurements. Duality Statement: FC and SL are employed by Mellitech.
Fig. 1. Expression of ZnT8 in human pancreatic slices (A) and dissociated islet cells (B) and in purified wild-type mouse β- and α-cells (C). (A) Pancreatic slices stained for ZnT8. Scale bar, 50 µm. Cells in which clear colocalisation to non-β-cells was apparent are highlighted with arrows. Essentially identical data were obtained with isolated human islets (not shown). (B) Human islets were isolated as per (26) and dissociated with trypsin to allow the staining of single cells. Scale bar, 5 µm. (C,D) Mouse pancreatic α- and β-cells collected by flow cytometry from transgenic mice expressing the variant yellow fluorescent protein Venus under the control of the preproglucagon promoter (see Supplementary Methods). Three separate preparations of α and β-cells were analysed by either (C) microarray analysis or (D) qPCR. In (D) expression is presented relative to that of β-actin measured in the same sample. Primer and probe sequences are available on request. *p<0.05 β- vs α-cell normalised mRNA levels. NS, not significant.

Fig. 2. Generation and genotyping of ZnT8−/− mice. (A) See Research Design and Methods for further details. (B) Determination of genotype was performed on DNA tail biopsies by PCR amplification of genomic DNA using the following primers: L2: 5’CTACTTCCATTTGTACGTCCTGCACG-3’; F4: 5’-TGAAACGGTGGAGAACTTGAGG-3’. The band migrating at ~4000 (4295bp) corresponds to the endogenous locus (highlighted in red in the +/- case), the band at ~2500 (2593 bp) corresponds to the Cre-mediated excised locus. (C) Western (immuno-) blotting and immunocytochemical analysis of mice with the indicated phenotypes. (D). qPCR analysis of ZnT8 mRNA levels in islets from 8-12 week old control and ZnT8−/− and +/− mice.

Fig. 3. Pancreatic histology, zinc accumulation and insulin processing. (A) Consecutive 5 µm pancreatic slices from 12 week old wild-type or ZnT8−/− mice (London) stained by H&E (magnification x2.5); islets are circled in red. (B) Confocal images of pancreatic slices stained for insulin and glucagon (see Research Design and Methods). Scale bars represent 50 µm. (C) Intracellular zinc concentrations were estimated in isolated islets (Toronto) using FluoZin-3 (largely cytosolic; see Fig. 8B) or zinquin (granules; Fig. 8B). Fluorescence intensity per unit area was normalized by subtraction of the background average intensity in an area free of cells on the same coverslip. n = 4-6 islets per condition. (D) Isolated islets (London) stained with 0.13mM dithizone for 5 min. before imaging with a 5x objective on a Zeiss Axiovert 40 microscope. Scale bar, 50 µm. (E) Electron micrographs of isolated islets from ZnT8−/− animals and wild type littermate controls at the indicated ages. (a) Toronto (b) London colonies. Scale bar, 1 µm. (F) Proinsulin conversion to insulin in the β-cells of islets isolated from ZnT8−/− or littermate control mice (12 weeks, London).

Fig. 4. Blood glucose homeostasis and insulin secretion in ZnT8−/− mice (Toronto) in (A) six and (B) twelve week-old mice. (A) (a) After a 5 h fast, glucose (1.5 g/kg) tolerance was assessed in six week old male littermates. ** p<0.05 for the difference between wild type and ZnT8−/− mice. (b) Insulin levels were measured during IPGTT and the area under the curve (AUC) determined for each genotype. Secretion of insulin (c) and glucagon (d) from freshly isolated islets. Islets were from 3-12 separate mice per genotype; *p < 0.05. (B) (a) Glucose tolerance (1.5 g/kg) assessed in 12 week old mice as in A(a). NS, no significant difference in AUC for +/- or +/- vs -/- mice. (b) Glucose stimulated insulin secretion assessed as in (A (c)). ***,*** p< 0.05, 0.01,0.001 for the indicated effects.
Fig. 5. Electrophysiological changes and TIRF imaging of exocytosis in single β cells. (A) Membrane potential, (B) depolarization-induced capacitance changes, and (C) Ca\(^{2+}\) currents recorded in pancreatic islet cells: ZnT8\(^{+/+}\) (black, \(n=17\)), ZnT8\(^{+-/}\) (green, \(n=16\)) and ZnT8\(^{-/-}\) (red, \(n=26\)) animals (London, 12 weeks). (A) Mean values of the whole cell capacitance change vs time are given; data were reduced to show 200 points for clarity. The stimulation protocol is given schematically above the graph. (D) TIRF images of β-cells before and after stimulation, scale bar, 5 µm. Release events are indicated by an arrow. Snapshots of a single release event. a,b,c mark the points seen on the graph in (E) Kinetics of NPY Venus release. Data are normalized to exclude expression artifacts. Data expressed as the average of 38 vs 43 events (6 vs 12 separate cells for \(+/-\) vs \(-/-\); three separate preparations per genotype). (F) Proportion of ‘Full’ and ‘Incomplete’ release events.

Fig. 6. Effect of R325W polymorphism rs13266634 on the predicted molecular structure of ZnT8 and on subcellular localisation and stability. (A) Western (Immuno-) blotting of ZnT8 in mouse islets (MI) and clonal MIN6 β cells. Total lysates were separated by 10% SDS-PAGE and immunoblotted with anti-rat/mouse ZnT8 polyclonal antibodies (Mellitech, France) or anti-β-actin polyclonal antibody (43 kDa; Sigma, USA). (B) Dimer formation. Human ZnT8-V5 and ZnT8-EGFP were transfected into HeLa cells. 48 h post-transfection, cells were lysed and subjected to immunoprecipitation with antibodies against EGFP- (upper panel) or V5- (lower panel) tags. After washing the beads, bound proteins were eluted and subjected to immunoblotting, probing with anti-V5 (upper; predicted molecular mass for ZnT8-V5, 46.4 kDa) or anti-EGFP (lower; predicted molecular mass for ZnT8-EGFP, 68.2 kDa) antibodies. “NS” denotes a non specific band, likely derived from IgG lost from the sepharose beads. (C) Modelling of ZnT8 structure based on YiiP. The human transporter was modelled using the structure of the Escherichia coli transporter YiiP (PDB accession 2QFI) as a template. (a) and (b) provide views of the W325 variant from the plane of the membrane and the cytoplasmic side of the membrane respectively; (c) view of R325 variant from cytoplasmic side of the membrane. The likely locations of zinc ions are shown as red spheres in (a), and residues at position 325 are shown in spacefilling representation in all panels. (D) Western (immuno-) blotting analysis of over-expressed ZnT8 isoforms in MIN6 cells. (E) Subcellular distribution of over-expressed ZnT8 isoforms in INS-1(832/13) cells. Scale bar, 5 µm.

Fig. 7. Effects of R325W polymorphism of ZnT8 on insulin secretion and processing, and on glucose signalling. (A) INS-1(832/13) cells were infected with adenovirus encoding either EGFP only or the indicated ZnT8 isoform. 48 h later, cells were incubated for 30 min. at the indicated glucose concentrations (\(n=6\) separate cultures from two independent experiments). (B) Membrane potential and K\(_{\text{ATP}}\) channel conductance in MIN6 cells over-expressing the indicated ZnT8 isoform (\(n=6\) in each case) in pIRES2. (C) Typical traces describing changes in intracellular free Ca\(^{2+}\) ([Ca\(^{2+}\)]\(_i\)) in individual MIN6 cells over-expressing the indicated ZnT8 isoform from plasmid pIRES2, or empty vector, and stimulated with the indicated concentrations of glucose or KCl (50mM). (D) Combined data from responding cells in (C). The graphs describe the increase in cytosolic [Ca\(^{2+}\)] as AUC after stimulation with 30 mM glucose (upper panel, CTRL \(n=13\), R325 and W325, \(n=8\) cells) or 50mM KCl (lower panel, CTRL \(n=46\), R325 \(n=45\), W325 \(n=42\)). *p<0.05, **p<0.01 for the indicated effects.
Fig. 8. Role of ZnT8 in cellular Zn$^{2+}$ transport and effects of the R325W polymorphism. (A) ZnT8 expression was reduced by RNAi as assessed by immunocytochemical analysis of cells fixed in 4% (v/v) paraformaldehyde and incubated with rabbit anti-mouse ZnT8 antibody (Mellitech, 1:3000) and anti-rabbit-conjugated secondary antibody (1:500) plus Hoechst dye (5 µg/ml) prior to imaging on a Zeiss Axiovert inverted optics microscope. Zn$^{2+}$ uptake into single MIN6 cells was assessed by monitoring changes in FluoZin-3 fluorescence (Research Design and Methods). Under the conditions used in these experiments the FluoZin-3 fluorescence increase gives an almost linear readout during the perfusion with ZnSO$_4$. The relative rates of Zn$^{2+}$ accumulation were calculated from the slopes of the corresponding fluorescence changes. *p<0.05 vs siCon, n=5 independent experiments, 108-117 cells per condition. Calibrated resting free [Zn$^{2+}$]$_i$ was 600-700 pM (NS, R vs W). (B) R325 or W325 ZnT8 were over-expressed in MIN6 cells and transfected cells were identified by fluorescence of co-transfected mCherry-expressing vector before measurements of the initial rate of apparent Zn$^{2+}$ uptake as in (A). *p<0.05 vs. control or ZnT8-R, n = 5 independent experiments, 67-115 cells per condition. Zinc accumulation into granules was assessed using zinquin after incubation for 4 h in the presence of 10 µM ZnSO$_4$. Insets show the localisation in single cells of FluoZin-3 and zinquin, as monitored by confocal microscopy. Note the punctuate distribution of zinquin, consistent with accumulation of the dye into secretory granules. Scale bar, 5 µm. (D) Localisation of over-expressed ZnT8-mCherry chimaeras at the plasma membrane, identified using CD38-EGFP. Note the presence of plasma membrane-associated ZnT8-mCherry fluorescence (red), coincident with CD38-EGFP (green) in the line plots (vertical arrows).
REFERENCES

1. Rutter, GA, Parton, LE: The beta-cell in type 2 diabetes and in obesity. *Front Horm Res* 36:118-134, 2008
2. Dodson, G, Steiner, D: The role of assembly in insulin's biosynthesis. *Curr Opin Struct Biol* 8:189-194, 1998
3. Baker, EN, Blundell, TL, Cutfield, JF, Cutfield, SM, Dodson, EJ, Dodson, GG, Hodgkin, DM, Hubbard, RE, Isaacs, NW, Reynolds, CD, : The structure of 2Zn pig insulin crystals at 1.5 A resolution. *Philos Trans R Soc Lond B Biol Sci* 319:369-456, 1988
4. Michael, DJ, Ritzel, RA, Haataja, L, Chow, RH: Pancreatic {beta}-Cells Secrete Insulin in Fast- and Slow-Release Forms. *Diabetes* 55:600-607, 2006
5. Ishihara, H, Maechler, P, Gjinovci, A, Herrera, PL, Wollheim, CB: Islet beta-cell secretion determines glucagon release from neighbouring alpha-cells. *Nat Cell Biol* 5:330-335, 2003
6. Zhou, H, Zhang, T, Harmon, JS, Bryan, J, Robertson, RP: Zinc, not insulin, regulates the rat alpha-cell response to hypoglycemia in vivo. *Diabetes* 56:1107-1112, 2007
7. Que, EL, Domaille, DW, Chang, CJ: Metals in neurobiology: probing their chemistry and biology with molecular imaging. *Chem Rev* 108:1517-1549, 2008
8. Cole, TB, Wenzel, HJ, Kafer, KE, Schwartzkroin, PA, Palmiter, RD: Elimination of zinc from synaptic vesicles in the intact mouse brain by disruption of the ZnT3 gene. *Proc Natl Acad Sci U S A* 96:1716-1721, 1999
9. Seve, M, Chimienti, F, Devergnas, S, Favier, A: In silico identification and expression of SLC30 family genes: an expressed sequence tag data mining strategy for the characterization of zinc transporters' tissue expression. *BMC Genomics* 5:32, 2004
10. Wang, Z, Li, JY, Dahlstrom, A, Danscher, G: Zinc-enriched GABAergic terminals in mouse spinal cord. *Brain Res* 921:165-172, 2001
11. Chimienti, F, Devergnas, S, Favier, A, Seve, M: Identification and cloning of a beta-cell-specific zinc transporter, ZnT-8, localized into insulin secretory granules. *Diabetes* 53:2330-7, 2004
12. Chimienti, F, Devergnas, S, Pattou, F, Schuit, F, Garcia-Cuenca, R, Vandewalle, B, Kerr-Conte, J, Van, LL, Grunwald, D, Favier, A, Seve, M: In vivo expression and functional characterization of the zinc transporter ZnT8 in glucose-induced insulin secretion. *J Cell Sci* 119:4199-4206, 2006
18. Murgia,C, Devirgiliis,C, Mancini,E, Donadel,G, Zalewski,P, Perozzi,G: Diabetes-linked zinc transporter ZnT8 is a homodimeric protein expressed by distinct rodent endocrine cell types in the pancreas and other glands. *Nutr Metab Cardiovasc Dis* 2008

19. Wenzlau,JM, Juhl,K, Yu,L, Moua,O, Sarkar,SA, Gottlieb,P, Rewers,M, Eisenbarth,GS, Jensen,J, Davidson,HW, Hutton,JC: The cation efflux transporter ZnT8 (Slc30A8) is a major autoantigen in human type 1 diabetes. *Proc Natl Acad Sci U S A* 104:17040-17045, 2007

20. Sladek,R, Rocheleau,G, Rung,J, Dina,C, Shen,L, Serre,D, Boutin,P, Vincent,D, Delisle,A, Hadjadj,S, Balkau,B, Heude,B, Charpentier,G, Hundson,TJ, Montpetit,A, Pshezhetsky,AV, Prentki,M, Posner,BI, Balding,DJ, Meyre,D, Polychronakos,C, Froguel,P: A genome-wide association study identifies novel risk loci for type 2 diabetes. *Nature* 445:881-885, 2007

21. Frayling,TM: Genome-wide association studies provide new insights into type 2 diabetes aetiology. *Nat Rev Genet* 8:657-662, 2007

22. Sklavounou,A, Passatempos,G, Koutsoukou,AI, Koutsoukou,AM, Tsakalidou,E, Tzima,S, Toutouzas,P, Papageorgiou,G, Diamandopoulos,A, Tsigos,C, Sachinis,N, Gavras,H, Vagenakis,AG: Tissue distribution of an integrin (α7β1) in human cell lines, fetal and adult tissues. *FASEB J* 22:2227-2237, 2008

23. Kirchhoff,K, Machicao,F, Haupt,A, Schafer,SA, Tscherter,O, Staiger,H, Stefan,N, Haring,HU, Frietsche,A: Polymorphisms in the TCF7L2, CDKAL1 and SLC30A8 genes are associated with impaired proinsulin conversion. *Diabetologia* 51:597-601, 2008

24. da Silva Xavier,G, Loder,MK, McDonald,A, Tarsov,AI, Carzaniga,R, Kronenberger,K, Barg,S, Rutter,GA: TCF7L2 regulates late events in insulin secretion from pancreatic islet beta-cells. *Diabetes* 58:894-905, 2009

25. Castaing,M, Duville,B, Quemeneur,E, Basmaciogullari,A, Scharfmann,R: Ex vivo analysis of acinar and endocrine cell development in the human embryonic pancreas. *Dev Dyn* 234:339-345, 2005

26. Cross,SE, Hughes,SJ, Partridge,CJ, Clark,A, Gray,DW, Johnson,PR: Collagenase penetrates human pancreatic islets following standard intraductal administration. *Transplantation* 86:907-911, 2008

27. Reimann,F, Habib,AM, Tolhurst,G, Parker,HE, Rogers,GJ, Gribble,FM: Glucose-sensing in L-cells: a primary cell study. *Cell Metabolism* 8:532-539, 2008

28. daSilva Xavier,G, Rutter,J, Rutter,GA: Involvement of Per-Arnt-Sim (PAS) kinase in the stimulation of preproinsulin and pancreatic duodenum homeobox 1 gene expression by glucose. *Proc Natl Acad Sci U S A* 101:8319-8324, 2004

29. Burcelin,R, Thorens,B, Glausser,M, Gaillard,RC, Pralong,FP: Gonadotropin-releasing hormone secretion from hypothalamic neurons: stimulation by insulin and potentiation by leptin. *Endocrinology* 144:4484-4491, 2003

30. Cani,PD, Knauf,C, Iglesias,MA, Drucker,DJ, Delzenne,NM, Burcelin,R: Improvement of glucose tolerance and hepatic insulin sensitivity by oligofructose requires a functional glucagon-like peptide 1 receptor. *Diabetes* 55:1484-1490, 2006
31. Cook, S, Hugli, O, Egli, M, Vollenweider, P, Burcelin, R, Nicod, P, Thorens, B, Scherrer, U: Clustering of cardiovascular risk factors mimicking the human metabolic syndrome X in eNOS null mice. Swiss Med Wkly 133:360-363, 2003
32. He, TC, Zhou, S, da Costa, LT, Yu, J, Kinzler, KW, Vogelstein, B: A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci U S A 95:2509-2514, 1998
33. Liu, M, Li, Y, Cavener, D, Arvan, P: Proinsulin disulfide maturation and misfolding in the endoplasmic reticulum. J Biol Chem 280:13209-13212, 2005
34. Tarasov, AI, Welters, HJ, Senkel, S, Ryffel, GU, Hattersley, AT, Morgan, NG, Ashcroft, FM: A Kir6.2 mutation causing neonatal diabetes impairs electrical activity and insulin secretion from INS-1 beta-cells. Diabetes 55:3075-3082, 2006
35. Tsuboi, T, Rutter, GA: Multiple forms of "kiss-and-run" exocytosis revealed by evanescent wave microscopy. Curr Biol 13:563-567, 2003
36. Lu, M, Fu, D: Structure of the zinc transporter YiiP. Science 317:1746-1748, 2007
37. Fiser, A, Sali, A: Modeller: generation and refinement of homology-based protein structure models. Methods Enzymol 374:461-491, 2003
38. Haney, CJ, Grass, G, Franke, S, Rensing, C: New developments in the understanding of the cation diffusion facilitator family. J Ind Microbiol Biotechnol 32:215-226, 2005
39. Berezin, C, Glaser, F, Rosenberg, J, Paz, I, Pupko, T, Fariselli, P, Casadio, R, Ben-Tal, N: ConSeq: the identification of functionally and structurally important residues in protein sequences. Bioinformatics 20:1322-1324, 2004
40. Davis, JW, Leaver-Fay, A, Chen, VB, Block, JN, Kapral, GJ, Wang, X, Murray, LW, Arendall, WB, III, Snoeyink, J, Richardson, JS, Richardson, DC: MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res 35:W375-W383, 2007
41. Juhl, K, Sarkar, SA, Wong, R, Jensen, J, Hutton, JC: Mouse pancreatic endocrine cell transcriptome defined in the embryonic Ngn3-null mouse. Diabetes 57:2755-2761, 2008
42. Snitsarev, V, Budde, T, Stricker, TP, Cox, JM, Krupa, DJ, Geng, L, Kay, AR: Fluorescent detection of Zn(2+)-rich vesicles with Zinquin: mechanism of action in lipid environments. Biophys J 80:1538-1546, 2001
43. Wolters, GH, Pasma, A, Konijnendijk, W, Boom, G: Calcium, zinc and other elements in islet and exocrine tissue of the rat pancreas as measured by histochemical methods and electron-probe micro-analysis, Effects of fasting and tolbutamide. Histochemistry 62:1-17, 1979
44. Wan, QF, Dong, Y, Yang, H, Lou, X, Ding, J, Xu, T: Protein kinase activation increases insulin secretion by sensitizing the secretory machinery to Ca2+. J Gen Physiol 124:653-662, 2004
45. Gyulkhandanyan, AV, Lee, SC, Bikopoulos, G, Dai, F, Wheeler, MB: The Zn2+-transporting pathways in pancreatic beta-cells: a role for the L-type voltage-gated Ca2+ channel. J Biol Chem 281:9361-9372, 2006
46. Gyulkhandanyan, AV, Lu, H, Lee, SC, Bhattacharjee, A, Wijesekara, N, Manning Fox, JE, MacDonald, PE, Chimienti, F, Dai, FF, Wheeler, MB: Investigation of transport mechanisms and regulation of intracellular Zn2+ in pancreatic alpha -cells. J Biol Chem 283:10184-10197, 2008
47. Ho, LH, Ruffin, RE, Murgia, C, Li, L, Krilis, SA, Zalewski, PD: Labile zinc and zinc transporter ZnT4 in mast cell granules: role in regulation of caspase activation and NF-kappaB translocation. J Immunol 172:7750-7760, 2004
48. Zeggini, E, Weedon, MN, Lindgren, CM, Frayling, TM, Elliott, KS, Lango, H, Timpson, NJ, Perry, JR, Rayner, NW, Freathy, RM, Barrett, JC, Shields, B, Morris, AP, Ellard, S, Groves, CJ, Harries, LW, Marchini, JL, Owen, KR, Knight, B, Cardon, LR, Walker, M, Hitman, GA, Morris, AD, Doney, AS, McCarthy, MI, Hattersley, AT: Replication of Genome-Wide Association Signals in U.K. Samples Reveals Risk Loci for Type 2 Diabetes. *Science* 316:1336-1341, 2007

49. Valentine, RA, Jackson, KA, Christie, GR, Mathers, JC, Taylor, PM, Ford, D: ZnT5 variant B is a bidirectional zinc transporter and mediates zinc uptake in human intestinal Caco-2 cells. *J Biol Chem* 282:14389-14393, 2007

50. Cherezov, V, Hofer, N, Szepenyi, DM, Kolaj, O, Wall, JG, Gillilan, R, Srinivasan, V, Jaroniec, CP, Caffrey, M: Insights into the mode of action of a putative zinc transporter CzrB in Thermus thermophilus. *Structure* 16:1378-1388, 2008

51. Kiekens, R, In, ’V, Mahler, T, Schuit, F, Van de Winkel, M, Pipeleers, D: Differences in glucose recognition by individual rat pancreatic B cells are associated with intercellular differences in glucose-induced biosynthetic activity. *J Clin Invest* 89:117-125, 1992

52. Olofsson, CS, Gopel, SO, Barg, S, Galvanovskis, J, Ma, X, Salehi, A, Rorsman, P, Eliasson, L: Fast insulin secretion reflects exocytosis of docked granules in mouse pancreatic B-cells. *Pflugers Arch* 444:43-51, 2002
Figure 1

A.

B.

C.

Fig. 1
Figure 2

A. ZnT8 endogenous locus

Targeted locus

Cre-mediated excised locus

B.

C.

D.

Fig. 2
Figure 4

A. (a) Six weeks

- Blood glucose (mM) over time (min)
- n=12 for +/- (black), n=8 for +/- (green), n=8 for +/- (red)

(b) Plasma insulin AUC/µL 30 min

(c) Insulin secretion (µg/hg DNA)
- 0 mM glucose (open bars)
- 20 mM glucose (gray bars)

(d) Glucagon secretion (µg/hg DNA)
- 0 mM glucose (open bars)
- 20 mM glucose (gray bars)

B. Twelve weeks

(a) Blood glucose (mM) over time (min)

(b) Insulin secretion (µg/hg DNA)
- 2.8 mM glucose
- 11 mM glucose
- 20 mM glucose

NS indicates no significant difference.

** and *** denote statistical significance.
Figure 6

A. MI MIN6

B. Lysate Co-IP

ZnT8-EGFP ZnT8-V5

- + - + - +

120 86
47 34

IP: α-EGFP
WB: α-V5

ZnT8-EGFP ZnT8-V5

- + + + - +

120 86
47 34

IP: α-V5
WB: α-EGFP

C. (a) (b) (c)

Cytoplasm

D. Q W R NT

B-actin

-70
-35

E. Insulin ZnT8 Merge

W25

R325
Figure 7

A.

B.

C.

D.

Fig. 7
Figure 8

A. siCon vs siZnT8

B. FluoZin-3 and Zinquin fluorescence

C. mCherry and CD38 expression

Overlay and fluorescence profiles