NOTE ON THE BIJECTIVITY OF THE PAK-STANLEY LABELLING

RUI DUARTE AND ANTÓNIO GUEDES DE OLIVEIRA

1. Introduction

This article has the sole purpose of presenting a simple, self-contained and direct proof of the fact that the Pak-Stanley labeling is a bijection. The construction behind the proof is subsumed in a forthcoming paper [1], but an actual self-contained proof is not explicitly included in that paper.

Let \(n \) be a natural number and consider the Shi arrangement of order \(n \), the union \(\mathcal{S}_n \) of the hyperplanes of \(\mathbb{R}^n \) defined, for every \(1 \leq i < j \leq n \), either by equation \(x_i - x_j = 0 \) or by equation \(x_i - x_j = 1 \). The regions of the arrangement are the connected components of the complement of \(\mathcal{S}_n \) in \(\mathbb{R}^n \). Jian Yi Shi [5] introduced in literature this arrangement of hyperplanes and showed that the number of regions is \((n+1)^{n-1} \).

On the other hand, \((n+1)^{n-1} \) is also the number of parking functions of size \(n \), which were defined (and counted) by Alan Konheim and Benjamin Weiss [3]. These are the functions \(f : [n] \to [n] \) such that

\[\forall i \in [n], \ |f^{-1}(\{i\})| \geq i \]

or, equivalently, such that, for some \(\pi \in \mathfrak{S}_n \), \(f(i) \leq \pi(i) \) for every \(i \in [n] \) (as usual, \([n] := \{1, \ldots, n\} \) and \(\mathfrak{S}_n \) is the set of permutations of \([n] \)).

The Pak-Stanley labeling [7] consists of a function \(\lambda \) from the set of regions of \(\mathcal{S}_n \) to the set of parking functions of size \(n \).

We define [0] := \(\emptyset \) and, for \(i, j \in \mathbb{N}, [i, j] := [j] \setminus [i-1] \), so that \([i, j] = \{i, i+1, \ldots, j\}\) if \(i \leq j \) and \([i, j] = \emptyset\) otherwise. Finally, \([i] = [1, i]\) for every integer \(i \geq 0 \) as stated before.

Let \(A \subseteq [n] \), say \(A =: \{a_1, \ldots, a_m\} \) with \(a_1 < \cdots < a_m \) and let \(W_A \) be the set of words of form \(w = a_{\alpha_1} \cdots a_{\alpha_m} \) for some permutation \(\alpha \in \mathfrak{S}_m \). If \(1 \leq i < j \leq m \), we distinguish the subword \(w(i : j) := a_{\alpha_i} \cdots a_{\alpha_j} \) from the set \(w([i, j]) := \{a_{\alpha_i}, \ldots, a_{\alpha_j}\} \).

Similarly, we define \(w^{-1} : A \to [m] \) through \(w^{-1}(w) = i \) for every \(i \in [m] \).

Definition 1.1. Given a word \(w = w_1 \cdots w_k \in W_A \) and a set \(I = \{[o_1, c_1], \ldots, [o_k, c_k]\} \) with \(1 \leq o_i < c_i \leq m \) for every \(i \in [k] \) and \(o_1 < o_2 < \cdots < o_k \), we say that the pair \(P = (w, I) \) is a valid pair if

- \(w_{o_i} > w_{c_i} \) for every \(i \in [k] \);
- \(c_1 < c_2 < \cdots < c_k \).

An \(A \)-parking function is a function \(f : A \to [m] \) for which

\[
\forall j \in [m], \ |f^{-1}([j])| \geq j.
\]
We denote by PF_A the set of A-parking functions. Of course, for $f: A \to [m]$, $f \in \text{PF}_A$ if and only if $f \circ \iota_A$ is a parking function, where $\iota_A: [m] \to A$ is such that $\iota_A(i) = a_i$. A particular case occurs when

$$\forall j \in [m], \ f(a_j) \leq j.$$

In this case, we say that f is A-central. We denote by CF_A the set of A-central parking functions. We call contraction of intervals w, the valid pair (I, w) in this way to a (unique) region of S_n.

Consider, for a point $x = (x_1, \ldots, x_n) \in \mathbb{R}^n \setminus \mathcal{S}_n$, the (unique) permutation $w \in \mathcal{S}_n$ such that $x_{w_1} < \cdots < x_{w_n}$, and consider the set $\mathcal{I} = \{[o_1, c_1], \ldots, [o_m, c_m]\}$ of all maximal intervals $I_i = [o_i, c_i]$ with $o_i < c_i$ for $i = 1, \ldots, k$, such that

- $w_{o_i} > w_{c_i}$;
- for every $\ell, m \in I_i$ with $\ell < m$ and $w_{\ell} > w_m$, $0 < x_{w_m} - x_{w_{\ell}} < 1$.

Then, clearly (w, \mathcal{I}) is a valid pair that does not depend on the particular point x that we have chosen. More precisely, if a similar construction is based on a different point $y \in \mathbb{R}^n \setminus \mathcal{S}_n$ then at the end we obtain the same valid pair if and only if x and y are in the same region of \mathcal{S}_n. Finally, it is not difficult to see that every valid pair corresponds in this way to a (unique) region of \mathcal{S}_n.

Example 2.1 (example p. 484, ad.). Let $w = 843967125$ and $\mathcal{I} = \{[1, 6], [3, 8], [6, 9]\}$. The valid pair (w, \mathcal{I}) corresponds to the region

$$\left\{ (x_1, \ldots, x_9) \in \mathbb{R}^9 \mid x_8 < x_4 < x_3 < x_9 < x_6 < x_7 < x_1 < x_2 < x_5, \right.$$

$$x_8 + 1 > x_7, x_3 + 1 > x_2, x_7 + 1 > x_5, \right.$$

$$x_4 + 1 < x_1, x_6 + 1 < x_5 \right\}$$

where also $x_8 + 1 > x_6$ (since $x_7 > x_6$) and $x_8 + 1 < x_1$ (since $x_8 < x_4$), for example.

Let R_0 be the region corresponding to the valid pair (w, \mathcal{I}) where $w = n(n - 1) \cdots 2 1$ and $\mathcal{I} = \{[1, n]\}$, so that $(x_1, \ldots, x_n) \in R_0$ if and only if $0 < x_i - x_j < 1$ for every $0 \leq i < j < n$.

In the Pak-Stanley labeling λ, the label of R_0 is, using the one-line notation, $\lambda(R_0) = 11 \cdots 1$. Furthermore,

(1) Note that the order is reversed relatively to Stanley’s paper [7].

(2) The fact that $0 < x_{w_m} - x_{w_\ell}$ already follows from the fact that $w_{\ell} > w_m$.

2. The Pak-Stanley labeling

Igor Pak and Richard Stanley [7] created a (bijective) labeling of the regions of the Shi arrangement with parking functions that may be defined as follows.

In the Pak-Stanley labeling λ, we say that λ is the region corresponding to the valid pair (\mathcal{I}, λ) and

$$\hat{w}(a) := w^{-1}(a) - \left\{ b \in A \mid b > a, w^{-1}(b) < w^{-1}(a) \right\}.$$

Note that indeed $\hat{w} \in \text{CF}_A$, since $\hat{w}(a) = |w([w^{-1}(a)]) \cap [a]|$.

For example, $843967 = 346789$. In fact, $843967(3) = 1$ since $w^{-1}(3) = 3$ and $w([3]) \cap [3] = \{8, 4, 3\} \cap [3] = \{3\}$, but, for instance, $843967(6) = 3$ since $w^{-1}(6) = 5$ and $w([5]) \cap [6] = \{3, 4, 6\}$.

When $A = [n]$, the A-central parking functions are simply central parking functions.
• if the only hyperplane that separates two regions, R and R', has equation $x_i = x_j$ ($i < j$) and R_0 and R lie in the same side of this plane, then $\lambda(R') = \lambda(R) + \varepsilon_j$ (as usual, the i-th coordinate of ε_j is either 1, if $i = j$, or 0, otherwise);

• if the only hyperplane that separates two regions, R and R', has equation $x_i = x_j + 1$ ($i < j$) and R_0 and R lie in the same side of this plane, then $\lambda(R') = \lambda(R) + \varepsilon_i$.

Thus, given a region R of S_n with associated valid pair $P = (w, \{[o_1, c_1], \ldots, [o_m, c_m]\})$, if $f = \lambda(R)$ and $i = w_j$, then, counting the planes of equation $x_{w_k} - x_i = 0$ or $x_i - x_{w_k} = 1$ that separate R and R_0, respectively, we obtain (cf. [7])

$$f_i = 1 + \left| \{ k < j \mid w_k < i \} \right| + \left| \{ k < j \mid w_k > i, \ no \ \ell \in [m] \ satisfies \ j, k \in [o_\ell, c_\ell] \} \right| .$$

(2.3)

Hence, if $j \notin [o_1, c_1], \ldots, [o_m, c_m]$, (2.4) $f_i = j$;

in this case, let $o_p(i) = o_p(w_j) := j$. Otherwise, if $k \leq m$ is the least integer for which $j \in [o_k, c_k]$, (2.5) $f_i = o_k - 1 + w(o_k : c_k)(i) .$

and we define $o_p(i) := o_k$.

In Figure 1, we represent S_3 with each region R labeled with $\lambda(R)$.

By requiring the validity of equations (2.4) and (2.5) under the same conditions, we extend λ to every valid pair $P = (w, J)$, where $w \in W_4$ for some $A \subseteq [n]$. Note that in this way we still obtain an A-parking function $f = \lambda(w, J)$.

Moreover, if $1 \leq k < \ell \leq |A|$ then $o_p(w_k) \leq o_p(w_\ell)$. If, in addition, $w_k > w_\ell$, then (2.6) $f(w_k) \leq f(w_\ell)$.

In fact, $f(w_\ell) = \ell - \left| \{ o_p(w_\ell) \leq \ell \mid w_\ell > w_\ell \} \right| \geq k - \left| \{ o_p(w_k) \leq j \leq k \mid w_\ell > w_\ell \} \right| = f(w_k)$, since the size of the set $\{ o_p(w_\ell) \leq j \leq \ell \mid w_\ell > w_\ell \} \setminus \{ o_p(w_k) \leq j \leq k \mid w_\ell > w_\ell \}$, which is equal to $\{ k \leq j \leq \ell \mid w_k > w_\ell \}$, is clearly less than or equal to $\ell - k$.

Example 2.7 (continued). Let again R be the region of S_3 associated with the valid pair $(843967125, \{[1, 6], [3, 8], [6, 9]\})$. Writing with a variant of Cauchy’s two-line notation, we have, corresponding to the intervals $[1, 6]$, $[3, 8]$ and $[6, 9]$, respectively, $w(1: 6) = 843967$ and $f_1 = 843967 = 113414$, $f_2 = 396712 = 121232$, $f_3 = 7125 = 1131$ and, finally, $f = \lambda(R) = 341183414$, which we also write 843967125 (3) (cf. Figure 1).

Similarly, for $A = [9] \setminus \{8, 4\}$, we may consider $f = \lambda(3967125, \{[1, 6], [4, 7]\})$, the A-parking function $\underline{3967125} = 1216232$.

3. Injectivity of λ

The proof of the injectivity of λ is based on the following lemma, where a particular case is considered. Beforehand, we introduce a new concept.

(3) Note that, for example, the central parking function $1132 = \underline{2413}$ corresponds to 2413.

Definition 3.1. Let \(w \in W_A \) for a subset \(A \) of \([n]\), consider the poset of inversions of \(w \), \(\text{inv}(w) := \{(i,j) \mid i < j, w_i > w_j\} \), ordered so that \((i,j) \leq (k,\ell)\) if and only if \([i,j] \subseteq [k,\ell]\). Then, define \(\text{maxinv}(w) \) as the set of maximal elements of \(\text{inv}(w) \).

Lemma 3.2. Let \(A \subseteq [n], v,w \in W_A \), and suppose that \(P = (v,\mathcal{I}) \) is a valid pair. If \(\lambda(v,\mathcal{I}) = \hat{w} \), then \(v = w \) and \(\mathcal{I} = \text{maxinv}(v) \).

Proof. We first prove that \(v = w \). Let \(A = \{a_1,\ldots,a_m\} \) with \(a_1 < \cdots < a_m \), and suppose that, for \(\pi,\rho \in \mathfrak{S}_m \), \(v = a_{\pi_1}a_{\pi_2}\cdots a_{\pi_m} \) and \(w = a_{\rho_1}a_{\rho_2}\cdots a_{\rho_m} \), and that, for some \(1 \leq \ell \leq n \), \(\pi_i = \rho_i \) whenever \(1 \leq i < \ell \) but, contrary to our assumption, \(\pi_\ell \neq \rho_\ell \).

Finally, define \(j, k > \ell \) such that \(\rho_\ell = \pi_j \) and \(\pi_\ell = \rho_k \) and \(x := a_{\pi_\ell}, y := a_{\rho_\ell} \). Graphically, we have

\[
\begin{align*}
v &= w_1 \cdots w_{\ell-1} x = v_\ell v_{\ell+1} \cdots y = v_j \cdots v_m \\
w &= w_1 \cdots w_{\ell-1} y = w_\ell w_{\ell+1} \cdots x = w_k \cdots w_m
\end{align*}
\]

Then, for \(a = o_P(y) < j \),

\[
\hat{w}(y) = \ell - \left| \{1 \leq i < \ell \mid w_i > y\} \right| \\
= j - \left| \{a \leq i < j \mid v_i > y\} \right|
\]

and hence

\[
j - \ell = \left| \{\ell \leq i < j \mid v_i > y\} \right| - \left| \{1 \leq a < \ell \mid w_i > y\} \right|.
\]
This means that, for every \(i \) with \(\ell \leq i < j \), \(w_i > y \) (and, in particular, \(x > y \)) and that, for every \(i \) with \(1 \leq i < a \), \(w_i \leq y \). On the other hand, for \(b = o_P(x) \leq \ell \),
\[
\hat{w}(x) = k - \left| \left\{ 1 \leq i < k \mid w_i > x \right\} \right| = \ell - \left| \left\{ b = i \leq \ell \mid w_i > x \right\} \right|
\]
and
\[
k - \ell = \left| \left\{ \ell \leq i < k \mid w_i > x \right\} \right| + \left| \left\{ 1 \leq i < b \mid w_i > x \right\} \right|
\]
Note that \(b \leq a \) since \(\ell < j \) and \(P \) is a valid pair. Then, \(\left\{ 1 \leq i < b \mid w_i > x \right\} = \emptyset \) and \(w_i > x \) for every \(i \) with \(\ell \leq i < j \). In particular, \(y > x \), which is absurd. We now leave it to the reader to prove that \(\mathcal{I} = \maxinv(v) \).

Corollary 3.3. Let \(A \subseteq [n] \). The function \(\mathcal{C}_A : \mathcal{W}_A \rightarrow \mathcal{CF}_A \) : \(w \mapsto \hat{w} \) is a bijection.

Proof. Since \(|\mathcal{W}_A| = |\mathcal{CF}_A| = |A|! \), the result follows from the last lemma, since \(\mathcal{C}_A \) is injective.

Definition 3.4.

- We denote the inverse of \(\mathcal{C}_A \) by \(\varphi_A : \mathcal{CF}_A \rightarrow \mathcal{W}_A \).
- Given an \(A \)-parking function \(f : A \rightarrow [n] \), the center of \(f \), \(Z(f) \), is the (unique\(^{(4)}\)) maximal subset \(Z \) of \(A \) such that the restriction of \(f \) to \(Z \) is \(Z \)-central. Let \(\zeta := |Z| \) and note that \(\zeta \neq 0 \) since \(f^{-1}(1) \subseteq Z \) and \(|f^{-1}(1)| \geq 1 \). Finally, let \(f_Z : Z \rightarrow [n] \) be the restriction of \(f \) to its center.

Lemma 3.5. Let \(f = \lambda(w, \mathcal{I}) \) for a valid pair \(P = (w, \mathcal{I}) \), where \(w \in \mathcal{W}_A \) for \(A \subseteq [n] \) with \(m = |A| \).

3.5.1. Let, for some \(p \geq 0 \), \(\mathcal{I} = \{ [o_1, c_1], \ldots, [o_p, c_p] \} \) with \(o_1 < \cdots < o_p \). Then,
\[
f_Z = w(1; \zeta)
\]
and, in particular, \(w([\zeta]) = Z \). Moreover, \(\maxinv(w(1; \zeta)) = \{ [o_1, c_1], \ldots, [o_j, c_j] \} \) for some \(0 \leq j \leq p \).

3.5.2. For every \(j \in [m] \), \(w_j \in Z(f) \) if and only if
\[
f(w_j) = 1 + \left| \left\{ k < j \mid w_k < w_j \right\} \right|.
\]

Proof.

3.5.1 We start by proving the second statement, namely that \(w([\zeta]) = Z \). Note that \(w_1 \in f^{-1}\{1\} \subseteq Z \) and suppose, contrary to our claim, that, for some \(k < \zeta \) which we consider as small as possible, \(w_k \notin Z \). Again, let \(\ell > k \) be as small as possible with \(w_\ell \in Z \) and define \(v = w(1; k) \).

We now consider the “restriction” \(w^* \) of \(w \) to \(Z \), that is, the subword of \(w \) obtained by deleting all the elements of \([n] \setminus Z \), and let
\[
w' := \varphi_Z(f_Z) \in \mathcal{W}_Z.
\]

\(^{(4)}\)Note that if the restriction of \(f \) to \(X \) is \(X \)-central and the restriction of \(f \) to \(Y \) is \(Y \)-central for two subsets \(X \) and \(Y \) of \(A \), then the restriction of \(f \) to \((X \cup Y) \) is also \((X \cup Y)\)-central.
By Lemma 3.2, \(w^* = w' \) and \(k - f(w_i) \) is the number of integers greater than \(w_i \) that precede it in \(w^* \). This means that \(w_k, \ldots, w_{\ell-1} > w_\ell \) and that \(o(w_\ell) \leq k \). Hence, \(k - f(w_k) \) is also the number of integers greater than \(w_k \) that precede it in \(w \), and so \(\hat{v} \) is the restriction of \(f \) to \(w([k]) \), and \(a \in Z \), a contradiction. Now, the result follows also from Lemma 3.2.

We have proven that the “initial parts” of both \(w \) and \(\mathcal{J} \) are characterized by \(f \). Let \(m = |A| \), consider \(c \in \mathbb{N} \) such that \(1 < c \leq \zeta \), and define \(\hat{w} := w(c:m) \); define also \(\hat{\mathcal{J}} := \emptyset \) if \(j = p \), for \(j, p \) defined as in the statement of Lemma 3.5 and \(\hat{\mathcal{J}} := \{ \hat{I}_1, \ldots, \hat{I}_{p-j} \} \), where

\[
\hat{I}_1 := [1, c_{j+1} - c + 1], \ldots, \hat{I}_{p-j} := [a_p - c + 1, c_p - c + 1],
\]

if \(p > j \). Suppose that, for some such \(c \), \(f \) also determines \(\hat{f} := \lambda(\hat{w}, \hat{\mathcal{J}}) \). This proves our promised result (by induction on \(|A| \)) and shows how to proceed for actually finding \(w \in \mathcal{S}_n \) and \(\mathcal{J} \), given \(f = \lambda(w, \mathcal{J}) \): we find the center \(Z \) of \(f \), build \(\varphi_Z(f_Z) \in W_Z \) and \(\hat{f} \), find the center \(\hat{Z} \) of \(\hat{f} \), build \(\varphi_{\hat{Z}}(f_{\hat{Z}}) \in W_{\hat{Z}} \) and \(\hat{\mathcal{J}} \), etc.

Definition 3.6. Given a parking function \(f \in PF_A \), \(f = \lambda(w, \mathcal{J}) \), \(m := |A| \), \(Z := Z(f) \), and \(\zeta := |Z| < m \),

- let \(b := \min f(A \setminus Z) \) and \(a := \max(f^{-1}(\{b\}) \setminus Z) \);
- if \(b > \zeta \), let \(c := b \);
 - if \(b \leq \zeta \), let \(c \) be the greatest integer \(i \in [\zeta] \) for which

\[
(3.7) \quad i + |w([i, \zeta]) \cap [a - 1]| = b.
\]

- let \(X := w([c - 1]) \) (\(X \subseteq Z \) by Lemma 3.5);
- let \(\tilde{f} : A \setminus X \rightarrow [m - c + 1] \)

\[
x \mapsto \begin{cases} f(x) - |X \cap [x - 1]|, & \text{if } x \in Z; \\ f(x) - c + 1, & \text{otherwise}. \end{cases}
\]

Lemma 3.7. With the definitions above,

- **3.7.1.** \(a = w_{\zeta+1} \) and \(a \in Z(\tilde{f}) \);
- **3.7.2.** \(Z \setminus X \subseteq Z(\tilde{f}) \);
- **3.7.3.** \(c = o_{(\hat{w}, \hat{\mathcal{J}})}(a) \) and
- **3.7.4.** \(\tilde{f} = \lambda(\hat{w}, \hat{\mathcal{J}}) \).

Proof. If \(b > \zeta \), then \(X = Z \) and all the statements follow directly from the definitions. Hence, we consider that \(b \leq \zeta \). We start by seeing that \(c \) is well defined. Define \(h : [\zeta] \rightarrow \mathbb{N} \) by

\[
h(i) = i + |w([i, \zeta]) \cap [a - 1]|.
\]

Then, for every \(i < \zeta \), since \(w([i, \zeta]) = \{w_i\} \cup w([i+1, \zeta]) \), \(h(i+1) \) either equals \(h_i \) or \(h_i + 1 \), depending on whether \(w_i \) is either less than \(a \) or greater than \(a \). Since \(h(\zeta) \geq \zeta \geq b \), by definition, all we have to prove is that \(h(1) < b \), or, equivalently, that \(1 + |Z \cap [a - 1]| < f_a \). But \(f_a \leq 1 + |Z \cap [a - 1]| \) implies that the restriction of \(f \) to \(Z' := Z \cup \{a\} \) is \(Z' \)-central, by Lemma 3.5.2, which, since \(a \not\in Z \), contradicts the maximality of \(Z \). Note that the set of values of \(i \) for which (3.7) holds true is an interval, and that its maximum, \(c \), is the only one that is greater than \(a \). By definition of \(a \) and by Lemma 3.5.1, \(a = w_{\zeta+1} \), for if \(x = w_k \) and \(a = w_\ell \) with \(\ell > k \) and \(x > a \), then \(f(x) \leq b \), by (2.9), and \(x \in Z(\tilde{f}) \).
Now, let \(g = \lambda(\tilde{w}, \tilde{\beta}) \) for \(\tilde{w} \) and \(\tilde{\beta} \) as defined before. If \(x \in A \setminus Z \), by definition of \(\lambda \), viz. \(\text{Proposition } 3.8 \), \(g(x) = f(x) - c + 1 = \tilde{f}(x) \). In particular, \(g(a) = 1 + \lfloor \tilde{w}((\zeta - c + 1) \cap [a - 1]) \rfloor \). Hence, by Lemma \(3.5.2 \), \(a \in Z(g) \). Now, Lemma \(3.5.1 \) implies that \(Z \setminus X \), the set of elements on the left side of \(a \) in \(\tilde{w} \), is a subset of \(Z(g) \), and that \(c = a(w, \tilde{\beta})(a) \). Now, the last result, viz. \(g = \tilde{f} \), follows immediately, since for \(x = w, j \) with \(c \leq j \leq \zeta \), \(f(x) = 1 + \lfloor w([j]) \cap [x - 1] \rfloor \) and \(g(x) = 1 + \lfloor \tilde{w}((j - c + 1) \cap [x - 1]) \rfloor \).

This concludes the proof of our main result.

Proposition 3.8. The Pak-Stanley labeling is injective. \(\square \)

4. Inverse

It is easy to directly prove Corollary \(3.3 \) and even to explicitly define \(\varphi_A \), the inverse of \(C_A \). Nevertheless, we consider here a method that we find very convenient, and particularly well-suited to our purpose, the s-parking. Note that a similar method is given by the depth-first search version of Dhar’s burning algorithm defined by Perkinson, Yang and Yu \([4] \). In fact, it may be proved that \(Z(f) \) is the set of \(\zeta \) visited vertices before the first back-tracking, and that \(w(1; \zeta) \) is given by the order in which the vertices are visited.

Definition 4.1. Let again \(A =: \{a_1, \ldots, a_m\} \) with \(a_1 < \cdots < a_m \) and \(f : A \to \{m\} \). For every \(i \in [m] \), define the set \(A_i := \{a_1, \ldots, a_i\} \), and define recursively the bijection \(w^i : A_i \to [i] \) as follows.

- \(w^1 : a_1 \mapsto 1 \) (necessarily);
- for \(1 < j \leq i \leq m \),
 - \(j < i \), \(w^i(a_j) = \begin{cases} w^{i-1}(a_j), & \text{if } w^{i-1}(a_j) < f(a_i) \\ 1 + w^{i-1}(a_j), & \text{if } w^{i-1}(a_j) \geq f(a_i) \end{cases} \)
 - \(w^i(a_i) = f(a_i) \);

Finally, let \(\psi : [m] \to A \) be the inverse of \(w^m : A \to [m] \). We call \(S(f) := \psi \) (viewed as the word \(\psi(1) \cdots \psi(m) \)) the s-parking of \(f \).

This operation resembles placing books on a bookshelf, where in step \(i \) we want to put book \(a_i \) at position \(f(a_i) \) — and so we must shift right every book already placed in a position greater than or equal to \(f(a_i) \). For example, if \(A = \{3, 4, 6, 7, 8, 9\} \subseteq [9] \) and \(f = 346789 \), then \(S(f) = 843967 \). On the other hand, if \(B = \{1, 2, 3, 6, 7, 9\} \) and \(g = 1231231 \), then \(S(g) = 396712 \). Finally, let \(C = \{1, 2, 5, 7\} \) and \(h = 1231 \), so that \(S(h) = 7125 \). The three constructions are used in the next example. See Figure \(2 \) where a parking function \(f \) is represented on the top rows by orderly stacking in column \(i \) the elements of \(f^{-1}(i) \) (cf. \(2 \)), and row \(j \) below the horizontal line is the inverse of \(w^j \). Note that \((1.1) \) implies that \(w^1 \) is indeed a bijection for \(i = 1, \ldots, m \).

Lemma 4.2. Given \(A \) and \(f \) as in the previous definition, \(f = \overline{S(f)} \). Conversely, given \(A \) and \(w \in W_A \), \(w = S(\overline{w}) \).

Proof. Let \(w = S(f) \) and \(\psi = w^{-1} \) and note that, when we s-park \(f \), each element \(a_i \) of \(A \) is put first at position \(f(a_i) \), and it is shifted one position to the right by an element \(a_j \) if and only if \(j > i \) and \(\pi_j < \pi_i \); it ends at position \(\psi_i \). Hence, \(f = \overline{S(f)} = \overline{\tilde{w}}. \) Then \(S \) is the inverse of \(C_A \), that is, \(S = \varphi_A \). \(\square \)
Example 2.1 (Conclusion). Let us recover the valid pair $P = \lambda^{-1}(f)$ out of $f = 341183414$. In the first column, on the right, the elements of the center of f are written in italic and a is written in boldface. The last column may be obtained by s-parking, as represented in Figure 2.

8	4	9	9
3	6	7	7
3			1
4	3	6	1
4	3	6	7
8	4	3	6
8	4	3	9

$P = (843967125, \{[1, 6], [3, 8], [6, 9]\})$.

References

[1] R. Duarte and A. Guedes de Oliveira, The braid and the Shi arrangements and the Pak-Stanley labeling, Europ. J. Combinatorics, in press.

[2] A. M. Garsia and M. Haiman, A Remarkable q,t-Catalan Sequence and q-Lagrange Inversion, J. Algebr. Comb. 5 (1996) 191–244.

[3] A. Konheim and B. Weiss, An occupancy discipline and applications, SIAM J. Appl. Math. 14 (1966), 1266–1274.

[4] D. Perkinson, Q. Yang and K.Yu, G-parking functions and tree inversions, arXiv:1309.2201 [math.CO], in press.

[5] J. Y. Shi, The Kazhdan-Lusztig Cells in certain Affine Weyl Groups, Lecture Notes in Mathematics 1179 (1986), Springer-Verlag.

[6] R. Stanley, An introduction to hyperplane arrangements, in Geometric Combinatorics (E. Miller, V. Reiner, and B. Sturmfels, eds.), IAS/Park City Mathematics Series, vol.13, A.M.S. (2007), 389–496.

[7] R. Stanley, Hyperplane arrangements, interval orders and trees, Proc. Nat. Acad. Sci. 93 (1996), 2620–2625.

Center for Research and Development in Mathematics and Applications, Department of Mathematics, University of Aveiro

E-mail address: rduarte@ua.pt

CMUP and Department of Mathematics, Faculty of Sciences, University of Porto

E-mail address: agoliv@fc.up.pt