VOLUME RIGIDITY ON LIMIT SPACES WITH RICCI CURVATURE BOUNDED FROM BELOW

NAN LI AND FENG WANG

INTRODUCTION

Let $M(n,\kappa,v)$ be the collection of n-dimensional Riemannian manifolds M with Ricci curvature bounded from below by $-(n-1)\kappa$ and $\text{vol}(B_1(p)) \geq v$ for all $p \in M$. By Cheeger-Gromov Compactness Theorem, $M(n,\kappa,v)$ is pre-compact in the pointed Gromov-Hausdorff topology. Let $M_\infty(n,\kappa,v)$ be the closure of $M(n,\kappa,v)$.

We let “vol” denote the n-dimensional Hausdorff measure. It has been proved in [9] and [4] that $\text{vol} \cdot$ is a continuous function over balls respect to their Hausdorff distance. T. Colding [8] proved that an n-dimensional Riemannian manifold with $\text{Ricci} \geq (n-1)\kappa$ is Hausdorff close to the unit sphere S^n if and only if its volume is close to the volume of S^n. In this paper, we prove a geometric rigidity theorem respect to the volume and the existence of a 1-Lipschitz function.

Theorem A (Volume Rigidity). Let $X,Y \in M_\infty(n,\kappa,v)$. Suppose that there is a 1-Lipschitz map $f:X \to Y$. If $\text{vol}(X) = \text{vol}(f(X))$, then f is an isometry respect to the intrinsic metrics of X and $f(X)$. In particular, if f is also onto, then Y is isometric to X.

Together with the theorem of volume continuity, we get the following.

Corollary 0.1. Let $Y \in M_\infty(n,\kappa,v)$. For any $\epsilon > 0$, there is $\delta = \delta(Y) > 0$ such that for any $X \in M_\infty(n,\kappa,v)$, if

1. $|\text{vol}(X) - \text{vol}(Y)| < \delta$,
2. there is a map $\phi:X \to Y$ such that $Y \subset B_\delta(f(X))$ and for all $x,y \in X$,

$$|\phi(x)\phi(y)|_Y \leq |xy|_X + \delta,$$

then ϕ is an ϵ-Gromov-Hausdorff approximation. In particular, $d_{GH}(X,Y) < 3\epsilon$.

Theorem A fails for general length metric spaces, partially because a lemma of dimension control (Lemma 1.6) fails in these cases. For example, Y can be the quotient space of X with any lower dimensional subset identified as one point. See [10] for more examples. A special case of Theorem A was proved by Bessières, Besson, Courtois, and Gallot in [2]. Similar results in Alexandrov Geometry [1] have been proved in [10].

Conventions and notations

- $d_{GH}(X,Y)$: the Gromov-Hausdorff distance between X and Y.
- $\dim_H(X)$: the Hausdorff dimension of X.
- $B^n_r(0)$: the n-dimensional Euclidean ball with radius r.
• $\mathcal{R}(X)$: the regular set in X, see [4].
• $\mathcal{S}(X)$: the singular set in X, see [4].
• $[ab]_X$: a length minimizing geodesic connecting a and b in X.
• $|ab|_X$: the distance of a and b respect to the intrinsic metric of X.
• $\psi(\epsilon)$: a function (could be different even in the same context) depending only on n, κ, v, ϵ that satisfies $\lim_{\epsilon \to 0} \psi(\epsilon) = 0$.

1. Volume Rigidity Theorem

Not losing generality, we assume that f is onto and $\text{diam}(Y) \leq \text{diam}(X) \leq D$, since our proof only relies on the local structures. For simplicity, we only consider $X \in \mathcal{M}_{\infty}(n, -1, v)$. By the assumption, it’s not hard to see that for any subset $A \subset Y$, $\text{vol}(A) = \text{vol}(f^{-1}(A))$. One of the key step in our proof is showing that f is injective (Lemma 1.7). We first prove this with f restricted to the regular part. Let $\mathcal{R}_{\epsilon, \delta}(X) = \{p \in X : d_{GH}(B_r(p), B_r^n(0)) < \epsilon r \text{ for all } 0 < r < \delta\}$ and $\mathcal{R}_\epsilon(X) = \bigcup_{\delta} \mathcal{R}_{\epsilon, \delta}(X)$ be the ϵ-regular set. By the volume continuity, we know that for any $x \in \mathcal{R}_{\epsilon, \delta}$ and $r < \delta$,

$$(1 + \psi(\epsilon)) \cdot \text{vol}(B_r(x)) = \text{vol}(B_r^n(0)) = \text{vol}(S_{1}^{n-1}) \int_{0}^{\delta} t^{n-1} \, dt$$

$$= 2r \cdot \text{vol}(B_r^{n-1}(0)) \int_{0}^{\frac{\theta}{2}} \sin^n(t) \, dt.$$

Lemma 1.1. $f(\mathcal{R}_{\epsilon, \delta}(X)) \subset \mathcal{R}_{\psi(\epsilon), \delta/10}(Y)$. Consequently, $f(\mathcal{R}_\epsilon(X)) \subset \mathcal{R}_{\psi(\epsilon)}(Y)$ and $f(\mathcal{R}(X)) \subset \mathcal{R}(Y)$.

Proof. Let $x \in \mathcal{R}_{\epsilon, \delta}(X)$ and $y = f(x)$. Apply the volume formula for $B_{\delta/10}(x)$. Because f is volume preserving and $f^{-1}((B_{\delta/10}(y)) \supset B_{\delta/10}(x)$, we have the following volume comparison:

$$\text{vol}(B_{\delta/10}(y)) = \text{vol}(f^{-1}(B_{\delta/10}(y)))$$

$$\geq \text{vol}(B_{\delta/10}(x)) = (1 + \psi(\epsilon)) \cdot \text{vol}(B_{\delta/10}^{n}(0)).$$

By the almost maximum volume theorem [7], $y \in R_{\psi(\epsilon), \delta/10}(Y)$. \hfill \square

Let $G_Y = \{y \in Y : f^{-1}(y) \text{ has a cardinality of more than 1}\}$ and $G_X = f^{-1}(G_Y) \subset X$.

Lemma 1.2. There is an $\epsilon = \epsilon(n, v) > 0$ such that $\mathcal{R}_{\epsilon}(X) \cap G_X = \emptyset$.

Proof. Argue by contradiction. Assume $x_1 \in R_{\epsilon, \delta_0}(X)$, $x_2 \in X$ and $f(x_1) = f(x_2) = y$. By Lemma 1.1 $y \in R_{\psi(\epsilon), \delta_0/10}(Y)$. Let $0 < \delta < \delta_0/10$ be small such that $B_\delta(x_1) \cap B_\delta(x_2) = \emptyset$. By the volume continuity, Bishop-Gromov Relative Volume Comparison holds on X and Y. Thus
we have

\[
1 = \frac{\text{vol} \left(f^{-1}(B_\delta(y)) \right)}{\text{vol}(B_\delta(y))} \geq \frac{\text{vol}(B_\delta(x_1)) + \text{vol}(B_\delta(x_2))}{\text{vol}(B_\delta(y))} \\
\geq \frac{\text{vol}(B_\delta(x_1)) + v \cdot \int_0^\delta \sinh^{n-1}(t) \, dt}{\text{vol}(B_\delta(y))} \\
\geq \frac{(1 + \psi(\epsilon)) \cdot \text{vol} \left(S_1^{n-1} \right) \cdot \int_0^\delta t^{n-1} \, dt + v \cdot \int_0^\delta \sinh^{n-1}(t) \, dt}{(1 + \psi(\epsilon)) \cdot \text{vol} \left(S_1^{n-1} \right)}.
\]

Let \(\delta \to 0 \), we get

\[
1 \geq \frac{(1 + \psi(\epsilon)) \cdot \text{vol} \left(S_1^{n-1} \right) + \int_0^\delta t^{n-1} \, dt}{(1 + \psi(\epsilon)) \cdot \text{vol} \left(S_1^{n-1} \right)}.
\]

This is a contradiction for \(\epsilon > 0 \) sufficiently small. \(\square \)

In the next step, we prove that \(f \) is almost isometry when restricted to the regular part. We need a volume formula for the union of two balls, which follows by the volume continuity and direct computations in Euclidean space.

Lemma 1.3. For any \(x_1, x_2 \in \mathcal{R}_{\epsilon, \delta} \) with \(|x_1 x_2| \leq 2r < \delta/5 \),

\[
(1 + \psi(\epsilon)) \cdot \text{vol}(B_r(x_1) \cup B_r(x_2)) = \text{vol}(B_r^n(0)) + 2r \cdot \text{vol}(B_r^{n-1}(0)) \int_0^{\theta} \sin^n(t) \, dt,
\]

where \(\theta = \cos^{-1} \left(\frac{|x_1 x_2|}{2r} \right) \).

Now we can prove that \(f|_{\mathcal{R}_{\epsilon, \delta}} \) is locally almost isometry and the proof is similar as in [10]. We include it here for the convenience to the readers.

Lemma 1.4. There are \(\epsilon, \delta > 0 \) sufficiently small so that if \(y_1, y_2 \in f(\mathcal{R}_{\epsilon, \delta}(X)) \) with \(|y_1 y_2| < \delta/20 \), then

\[
|f^{-1}(y_1)f^{-1}(y_2)|_X < (1 + \psi(\epsilon)) \cdot |y_1 y_2|_Y.
\]

Proof. Let \(|f^{-1}(y_1)f^{-1}(y_2)|_X = \lambda \cdot |y_1 y_2|_Y \). Consider the metric balls \(B_r(y_1) \) and \(B_r(y_2) \). Take \(r = \frac{1}{2} \lambda \cdot |y_1 y_2|_Y \) and assume that \(r < \delta/10 \). By the volume formula in Lemma 1.3,

\[
(1 + \psi(\epsilon)) \cdot \text{vol}(B_r(y_1) \cup B_r(y_2)) = \text{vol}(B_r^n(0)) + 2r \cdot \text{vol}(B_r^{n-1}(0)) \int_0^{\pi/2} \sin^n(t) \, dt = 2r \cdot \text{vol}(B_r^{n-1}(0)) \int_0^{\pi/2} \sin^n(t) \, dt + 2r \cdot \text{vol}(B_r^{n-1}(0)) \int_0^{\pi/2} \sin^n(t) \, dt,
\]
where $\theta = \cos^{-1}\left(\frac{|y_1y_2|}{2r}\right) = \cos^{-1}(1/\lambda)$. Note that $B_r(f^{-1}(y_1)) \cap B_r(f^{-1}(y_2)) = \emptyset$. We have

$$(1 + \psi(\epsilon)) \cdot \text{vol} \left(B_r(f^{-1}(y_1)) \cup B_r(f^{-1}(y_2)) \right) = 2 \text{vol} (B^n_r(0)) = 4r \cdot \text{vol} \left(B^{n-1}_r(0) \right) \int_0^{\pi/2} \sin^n(t) \, dt.$$

Because f is 1-Lipschitz, we have $f^{-1}(B_r(y_1) \cup B_r(y_2)) \supseteq B_r(f^{-1}(y_1)) \cup B_r(f^{-1}(y_2))$. Together with that f is volume preserving, we get

$$1 = \frac{\text{vol} \left(f^{-1}(B_r(y_1) \cup B_r(y_2)) \right)}{\text{vol} (B_r(y_1) \cup B_r(y_2))} \geq \frac{\text{vol} \left(B_r(f^{-1}(y_1)) \cup B_r(f^{-1}(y_2)) \right)}{\text{vol} (B_r(y_1) \cup B_r(y_2))}$$

$$(1.1) \quad = (1 - \psi(\epsilon)) \frac{2 \int_0^{\pi/2} \sin^n(t) \, dt}{\int_0^{\pi/2} \sin^n(t) \, dt + \int_0^{\pi/2} \sin^n(t) \, dt}. $$

We claim that $\lambda \leq 2$. If this is not true, we repeat the above calculation with $r = |y_1y_2|$. In this case $\theta = \frac{\pi}{4}$, which yields a contraction when ϵ is small. Once the claim is proved, the assumption $r < \delta/10$ automatically holds and then inequality (1.1) holds for all $|y_1y_2| < \delta/20$. This implies that $0 < \theta < \psi(\epsilon)$ and thus $\lambda = \frac{1}{\cos \theta} < 1 + \psi(\epsilon)$. \hfill \Box

To prove that f almost preserves the length of path for any curve $\gamma \subset R_\epsilon(X)$, we need the existence of $\delta_0 > 0$ so that $\gamma \subset R_{\epsilon,\delta_0}(X)$. Note that $R_{\epsilon,\delta}(X)$ may not be open, but by the continuity of volume and the rigidity of almost maximal volume, we get that for any $\epsilon, \delta > 0$ small, there is $\epsilon_1 = \psi(\epsilon_1) < \epsilon$ so that $R_{\epsilon,\delta}(X) \subset \overset{\circ}{R}_{\epsilon_1,\delta/2}(X)$. Thus

$$R_{\epsilon}(X) = \cup_\delta R_{\epsilon,\delta}(X) \subset \cup_\delta \overset{\circ}{R}_{\epsilon_1,\delta/2}(X).$$

If a compact set $A \subset R_\epsilon(X)$, then there is $\delta_0 > 0$ such that $A \subset \overset{\circ}{R}_{\psi(\epsilon),\delta_0}(X)$. The following are direct consequences of Lemma 1.1–1.4

Lemma 1.5 (Almost Isometry over $R_\epsilon(X)$). There is $\epsilon > 0$ small so that the following holds.

1. If $[pq]_Y \subset f(R_\epsilon(X))$, then $\gamma = f^{-1}([ab]_Y)$, parameterized by arc length, is a Lipschitz curve with

$$L(\gamma_{|t_1,t_2}) < (1 + \psi(\epsilon)) \cdot |\gamma(t_1)\gamma(t_2)|_{R_\epsilon(X)}.$$

2. $f|_{R_\epsilon(X)}$ is $(1 + \psi(\epsilon))$-Lipschitz. In particular, if geodesic $[f(a)f(b)]_Y \subset f(R_\epsilon(X))$, then

$$1 \leq \frac{|ab|_X}{|f(a)f(b)|_Y} < 1 + \psi(\epsilon).$$

3. $f(R_\epsilon(X)) \subset Y^{\psi(\epsilon)}$ is open and dense in Y.

Now we can prove that f is injective with the following Dimension Control Lemma (compare to [10] for the Alexandrov case), which is a direct consequence of volume convergence and Lemma 3.1 in [5], which substantially relies on the volume comparison.

Lemma 1.6 (Dimension Control). Let $\Omega_0 \subset X \in M_\infty(n,\kappa,v)$ be a subset with $\text{vol}(\Omega_0) > 0$ and $p \in X$ be a fixed point. For each point $x \in \Omega_0$, select one point \bar{x} on a geodesic $[px]_X$. Let Ω be the collection of the \bar{x}s for all $x \in \Omega_0$. If $d(p,\Omega) > 0$, then

$$\dim_H(\Omega) \geq n - 1.$$
Lemma 1.7. \(f : X \rightarrow Y \) is injective.

Proof. Assume \(G_X \neq \emptyset \). Let \(p, q \in G_X \) such that \(f(p) = f(q) = a \in G_Y \). We will show that there exists \(\epsilon > 0 \) such that \(\dim_H(f(X \setminus R_\epsilon(X))) \geq n - 1 \). Then

\[
\dim_H(S(X)) \geq \dim_H(X \setminus R_\epsilon(X)) \geq \dim_H(f(X \setminus R_\epsilon(X))) \geq n - 1,
\]

This contradicts to the fact that \(\dim_H(S(X)) \leq n - 2 \) proved in [4].

By Lemma 1.2, let \(\epsilon > 0 \) be such that \(C(\epsilon) \): For any \(\eta > 0 \), there exists \(\epsilon > 0 \) such that \(\dim_H(f(X \setminus R_\epsilon(X))) \geq n - 1 \). Clearly \(\Omega \) is volume preserving, we will show that

\(\dim_H(Y \setminus f(R_\epsilon(X))) \geq n - 1 \).

For any \(\eta > 0 \) small, there is \(q_1 \in R(X) \) with \(|q_1|_X < \eta \). Let \(\Omega_0 = f(B_{\eta}(p) \cap R(X)) \). By Theorem A.1.5 in [4], \(d(a_1, \Omega_0) \geq c(\epsilon) > 0 \). Together with (1.3) and Lemma 1.6, we get that

\(\dim_H(Y \setminus f(R_\epsilon(X))) \geq \dim_H(\Omega) \geq n - 1. \)

\(\square \)

Proof of Theorem A. We first show that for any \(a \in f(R_\epsilon(X)) \), \(y \in Y \) and any \(r > 0 \), there is \(y' \in B_r(y) \) such that \([ay']_Y \subset f(R_{2r}(X)) \). If this is not true, then \([ay']_Y \setminus f(R_{2r}(X)) \neq \emptyset \) for any \(y' \in B_r(y) \). Let \(y \in [ay']_Y \setminus f(R_{2r}(X)) \) and \(\Omega \) be the collection of these \(y \)'s for all \(y' \in B_r(y) \). Clearly \(\Omega \subset Y \setminus f(R_\epsilon(X)) \) and \(\dim_H(\Omega) \leq n - 2 \). By the volume convergence of small Euclidean balls, we see that there is a constant \(c = c(\epsilon) \) such that \(|ay| \geq c(\epsilon) \). By Lemma 1.6, we get \(\dim_H(\Omega) \geq n - 1 \), a contradiction.

Let \(\gamma_X : [0,1] \rightarrow X \) be a Lipschitz curve and \(\gamma_Y = f(\gamma_X) \). It's sufficient to show that \(L(\gamma_Y) \geq L(\gamma_X) \). Let \(\{y_i\}_{i=1}^N \) be a partition of \(\gamma_Y \) with \(\max_i \{ |y_i, y_{i+1}| \} \rightarrow 0 \) as \(N \rightarrow \infty \). For any \(\epsilon > 0 \), let \(\epsilon_1 = \psi(\epsilon) > 0 \) be selected as in Lemma 1.5. Take \(y_0' / B_{\eta_0}(\epsilon/N) \setminus \Omega \) to be \(\emptyset \). Select \(y_i' \in B_{\eta_1}(\epsilon/N) \) recursively such that \([y_i, y_{i+1}'] \subset f(R_{\epsilon_1/2^{N-i+1}}(X)) \) for \(i = 1, 2, \ldots, N-1 \).
Let $x_i = f^{-1}(y'_i)$, $i = 0, 1, \ldots, N$. Applying Lemma 1.5 to $[y'_i y'_{i+1}]Y \subset f(R_{\epsilon/2N-i+1}(X)) \subseteq f(R_{\epsilon}(X))$ we get

$$L(\gamma_Y) \geq \sum_{i=0}^{N-1} |y_i y_{i+1}]Y \geq \sum_{i=0}^{N-1} \left(|y'_i y'_{i+1}]Y - \frac{2\epsilon}{N} \right) \geq \sum_{i=0}^{N-1} |y'_i y'_{i+1}]Y - 2\epsilon$$

$$\geq (1 - \psi(\epsilon)) \sum_{i=0}^{N-1} |x_i x_{i+1}]X - 2\epsilon.$$

Let $N \to \infty$ with that $\cup_i [y_i y_{i+1}]Y$ converges to γ_Y, because f is injective, $\cup_i [x_i x_{i+1}]X$ converges to γ_X. Thus taking $N \to \infty$ and $\epsilon \to 0$, we get

$$L(\gamma_Y) \geq \liminf_{N \to \infty} \sum_{\epsilon \to 0}^{N-1} |x_i x_{i+1}]X \geq L(\gamma_X).$$

□

References

[1] Y. Burago, M. Gromov, Perel’dman, A.D. Alexandrov spaces with curvature bounded below, Uspekhi Mat. Nauk, 47:2 (1992), 3-51; translation in Russian Math. Surveys, 47:2 (1992), 1-58.

[2] L. Bessières, G. Besson, G. Courtois, and S. Gallot, Differentiable rigidity under Ricci curvature lower bound, Duke Math. J. 161 (2012), no.1, 29-67.

[3] Jeff Cheeger, Tobias Colding, Lower Bounds on Ricci Curvature and the Almost Rigidity of Warped Products, Ann. Math., 144 (1996), 189-237.

[4] Jeff Cheeger, Tobias Colding, On the structure of spaces with Ricci curvature bounded below I, JDG, 45 (1997), 406-480.

[5] Jeff Cheeger, Tobias Colding, On the structure of spaces with Ricci curvature bounded below II, JDG, 54 (2000), 12-35.

[6] Jeff Cheeger, Tobias Colding, On the structure of spaces with Ricci curvature bounded below III, JDG, 54 (2000), 37-74.

[7] Tobias Colding, Shape of manifolds with positive Ricci curvature, Invent. math., 124 (1996), 175-191.

[8] Tobias Colding, Large manifolds with positive Ricci curvature, Invent. math., 124 (1996), 193-214.

[9] Tobias Colding, Ricci curvature and volume convergence, Ann. Math., 145 (1997), 477-501.

[10] N. Li, Volume and gluing rigidity in Alexandrov geometry, submitted, arXiv: http://arxiv.org/pdf/1110.5498v5.pdf.

[11] N. Li, X. Rong, Relatively maximum volume rigidity in Alexandrov geometry, Pacific J. of Mathematics, 259 (2012), 387-420.

Department of Mathematics, The Penn State University, University Park, PA 16802
E-mail address: null12@psu.edu, lilinanan@gmail.com
URL: https://sites.google.com/site/mathnanli/

Department of Mathematics, School of Mathematical Science of Peking University, China
E-mail address: fengwang232@gmail.com