Role and Advantageousness of Ketamine in Obese and Non-Obese Patients: Peri-Interventional Considerations

Amit U and Weinbroum AA*

Department of Research and Development, Tel Aviv Sourasky Medical Center, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel

*correspondence: Avi A. Weinbroum, Department of Research & Development, Tel Aviv Sourasky Medical Center, 6 Weizman Street, Tel Aviv 6423906, Israel, Tel: +972-3-5440904; E-mail: draviw@tasmc.health.gov.il

Received date: August 21, 2018; Accepted date: September 15, 2018; Published date: October 10, 2018

Abstract

Obese and morbidly obese patients are a growing group of individuals that generates medical, social and economic problems worldwide. They undergo various interventions that require anesthesia and/or analgesia. Despite their healthy look, these individuals are graded at high ASA physical status, mainly because of their impaired respiratory and cardiovascular conditions, and the metabolic changes their body undergoes. Opioids are the default drugs for perioperative analgesia. Nevertheless, their use has reached a frightening epidemic-like condition worldwide. Multimodal analgesia regimens have been recommended as a perioperative standard of care, particularly useful in the obese. These regimens employ combinations of opioids and non-opioid compounds that reciprocate each analgesic potencies, thus providing superior pain relief at rest, movement, or on effort, while reducing opioid consumption and their concerned adverse effects. The most important perioperative IV adjuvant currently employed is ketamine that sees resurgence among physicians from diverse medical specialties. After summarizing obese patients’ perioperative drawbacks, this review will illustrate ketamine’s neuropharmacology, and will describe its therapeutic usefulness as an analgesic adjuvant. Since data regarding the use of the drug in obese patients is scarce, brief exemplifications of its benefits in non-obese cohorts will be portrayed as well.

Keywords: Obesity, Analgesia, Perioperative, Opioids, Adjuvants, Ketamine

Introduction

Peri-incisional pain is among the main concerns and complaints of patients; analgesia is estimated to be insufficient in ~50% of surgical procedures [1]. Inappropriate treatment of acute pain induces central neural hyperexcitability and persistence [2][3], the build-up of opioid-induced tolerance (OIT), and hyperalgesia (OIH) [4], as well as prolonged recovery [5].

Multimodal analgesia represents an approach to treating perioperative pain, where the patient is given a combination of opioids and non-opioid analgesics that act at specific sites within the central (CNS) and peripheral nervous systems [6]. This leads to minimization of pain, opioid needs, and subsequently, to a decrease in opioid-associated adverse events (AEs), such as nausea, vomiting, sedation, respiratory depression, urinary retention, constipation, and pruritus. Furthermore, reduction of perioperative opioid use limits the risk of the development of chronic pain and opioid dependency [4][7][8].

Obese and morbidly obese patients grow in their numbers worldwide: one-third of USA adults are obese. Painful interventions, especially sleeve, Roux-en-Y gastric
bypass (RYGB), or other weight reduction operations, even if applied laparoscopically, cause both psychological and physical offsets. Pain complaints are common among obese individuals; they tolerate it to much lower degrees than the average population [9][10]. Besides surgery itself, stress and pain also deteriorate patients' respiratory, cardiovascular, gastrointestinal, metabolic, and renal functions. Opioids, which are the cornerstone of acute pain management, improve the conditions of all patients, but interfere with cognition and behavioral attitudes, and limit physical performances [11][12]. A retrospective analysis of trauma adults of BMI > 40 (16,390 patients) unveiled their being at a higher risk for longer hospital and intensive care unit (ICU) stays, and for mortality rate, than normal-weight individuals [13]. A > 200 patients study of total knee replacement (TKR) reported a twofold increase in procedure-related cost in those with increased preoperative BMI [14].

Uncontrolled pain may initiate changes both in the periphery and the CNS, leading to its amplification and persistence. Peripheral and central sensitizations contribute to the postoperative hypersensitivity state that is responsible for the decrease in pain threshold and for the establishment of aberrant excitatory conditions at the site of injury (primary hyperalgesia) and in its surrounding, uninjured areas (secondary hyperalgesia) [4][15]. Opioid-induced hyperalgesia (OIH) also represents a major trigger for acute pain being transformed into the chronic phase, both consequences of the dark side of perioperative excessive opioid therapy [16][17]. These phenomena are further enhanced among obese and morbid obese patients, mainly due to their physical and mental diminished tolerability to nociception [9][18]. Blockade of these sensitizations is obtainable either via preemptive analgesia (treatment applied before the onset of pain) or effective preventive analgesia (analgesics administration immediately after pain has been induced) [19][20]. Either regimen results in reduced postoperative pain, lower incidence or severity of persistent post-surgical pain, and amelioration in postoperative psychological and physical conditions.

Ketamine was proven to be best control postoperative- or opioid-induced tolerance and hyperalgesia (POH, OIT, OIH), while producing an acceptable level of anti nociception, either if used alone or in association with morphine equivalents (MOEs) [4][16][21][22]. Preemptive ketamine analgesia (IV 0.5 mg/kg bolus, followed by 0.25 mg/kg/h), has proved to reduce pain and analgesics consumption, or both, even beyond the clinical duration of action of the drug [23].

The present review discusses some of the physio-neuro-metabolic changes occurring in obese patients, and their relationships with anesthesia and analgesia. The pharmacological efficacy of sub-anesthetic doses of ketamine, as a sole drug, or in combination with other analgesics, and its benefits in non-obese patients, vis-à-vis obesity, will also be illustrated.

**Physiology and Pharmacology in the Obese**

**Medical changes in the obese and morbidly obese patient**

This review refers to all categories of patients with excessive weight as “obese”, unless specifically stated.

More than 1.9 billion adults worldwide were reported overweight, of whom > 600 millions are obese and 41 million children < 5 yoa were informed overweight or obese, in 2014. Normal weight ranges between 18.5 and 25 kg/m² of the body mass index (BMI). Overweight is defined as a BMI ranging between 25-29.9 kg/m²; obesity is defined as BMI ≥ 30 kg/m²; morbid obesity is defined as a BMI ≥ 40 kg/m² (or ≥ 35 kg/m² in the presence of comorbidities).

Most obese individuals depict abdominal (central) obesity, and suffer from metabolic syndrome or type 2 diabetes mellitus [24][25]. There exist respiratory and cardiovascular diseases, kidney dysfunction or diabetic and retinal neuropathy, all of enormous world economic burden. Worth mentioning are also stroke, abdominal or orthopedic disturbances, cancer, liver disease, obstructive sleep apnea (OSA), and deep venous thrombosis (DVT), or mental illnesses, such as clinical depression or anxiety, generalized body pain, and difficulty with physical functioning [26]. All these influence perioperative outcome [27][28].

**Pediatric obesity**

Pediatric obesity represents one of the most problematic public health issues worldwide. In a recent National Health and Nutrition survey, it was suggested that 17% of the children and adolescents in the USA are obese [29]. The WHO defines pediatric overweight and obesity according to standard deviations (BMI Z-scores) from the mean adult BMI values [30][31]. Comparatively, the American definition of childhood obesity describes a BMI ≥ 85th percentile as overweight, and a BMI ≥ 95th percentile as obesity [32]. Pediatric obesity is a special
challenge to the anesthetist (see below) [33]. In fact, most excessive fat is found in the central areas, and less is observed in the legs [34]. Recent clinical trials that include a wider range of BMIs, have suggested pediatric liver volume and function for obesity rather than BMI [35].

**Drug pharmacology in the obese**

The overall influence of obesity on drug metabolism (liver function) and elimination (glomerular filtration rate [GFR]) are determining factors, although with large variability. Obesity affects the pharmacokinetics of many (but not all) anesthetic drugs; newer generations of inhalational anesthetics are affected only slightly. Target-controlled infusion (TCI) models, originally established for propofol, remifentanil and sufentanil, comprise data (age, gender, weight, and height) that are formula-covariates, thus allowing for safer dose adjustments in obese patients [36][37][38]. In the absence of a TCI device, anesthesia induction should be slow titrating the drugs to the desired clinical effect (regardless of the weight scale). Actually, a drug-by-drug dose decision is necessary for obese and morbidly obese populations. This is since a higher metabolic rate, prevailing in the obese population, would probably lead to a higher rate of toxicity following weight-based dosing, in contrast to body surface area (BSA)-based dosing. At the same time, hepatic metabolism could be a major determinant of drug behavior; this yet unsettled knowledge affects drug distribution, metabolism and excretion, and more data are still needed, including drug bioavailability and clearance in children [39]. While obese children require less propofol than normal-weight children, unlike adults there is limited information about the dosing of other anesthetics or opioids in children [40]. Subanesthetic dosing of ketamine is advantageous in these cohorts, especially when administered continuously, because of its low toxic results [41]. Very recent data support the assertions [42] that most anesthetics’ dosages would better be based on lean body weight (LBW).

**Pain in the obese patient**

Complaints of general and specific musculoskeletal pain are commoner findings among obese than in non-obese individuals [43]. A trivial fall, inducing an immediate, severe pain that may require lengthy check-up and limited ambulation, is exacerbated by overweight [44]. Obesity itself affects pain via several ways, such as the mechanical loading, inflammation, lower pain threshold (through several mechanisms), and psychological status [45], thus being a frequent and continuous complaint in this cohort. These contribute to deterioration in physical ability, quality of life, and functional and psychological capabilities [18].

Morbid obesity adversely affects acute and chronic pain conditions via mechanical and structural factors, excessive release of chemical mediators, depression, and sleep deprivation. However, the nature of the relationship among these factors is apparently indirect [9]. The extent of pain interference and the need for medications among obese (BMI ≥ 30 kg/m²) was compared with normal weight (BMI ≤ 25 kg/m²) patients, before hip or knee replacement surgery [10]. The former suffered from more intense acute pain, pain-associated impediment of walking distance, and sleep disturbances than the latter. Anxiety and depression scales were similar, but the obese used more frequently strong opioids and NSAIDs. Thus, pain relief was more difficult to obtain, and consequently led to later lower quality of life in the obese. A large retrospective study concluded that among spine patients presenting to tertiary European centers, obesity as indicated by BMI was associated with greater back and leg pain than non-obesity [46].

Although not limited to the obese cohorts, pain catastrophizing, a negative cognitive-emotional response to actual or anticipated pain, which includes rumination about pain, magnification, and feelings of hopelessness about pain, are noteworthy [47]. This may be a primary predictor of the development of acute pain [48], or persistence of postoperative pain, and therefore warrants preoperative prevention. Finally, a systematic review (7 studies, 380 participants) that evaluated differences in pain thresholds in obese and non-obese subjects [49] revealed a tendency towards a lower pain threshold in the obese compared to non-obese subjects. Nevertheless, since excessive body weight loss did not change pain thresholds in the former, other factors probably converge towards producing such findings.

**Opioid use in the obese patient**

Appropriate drug selection and dosages are important in the obese patients. Besides the problematic increase in opioid abuse worldwide, opioid- and sedative-induced respiratory depression mandate cautious dosing. Unlike remifentanil, fentanyl’s pharmacokinetics has a non-linear relationship to TBW, so that its dosing (mg/kg) decreases as TBW increases [50]. Besides attentive and judicious titration, opioid-induced complications can be further reduced by using multimodal analgesic regimens.
Pre-induction use of ketamine (or clonidine, an $a_2$ agonist) in morbidly obese patients undergoing bariatric surgery was shown to reduce the total doses of intraoperative fentanyl and sevoflurane, time to extubation, postoperative tramadol requests, and pain scores [51][52]. Opioids also affect considerably the formers' mood, as well as other vital functions [53]. TCIA.-fine-tuned-administration of remifentanil (as during bariatric procedures) may limit opioid AEs' occurrence, shorten time to extubation and quicken the return to spontaneous respiration vs. other opioids. However, remifentanil may induce OIH and PONV in the immediate recovery period, compared to fentanyl [4].

Ketamine

Essentials of neuropharmacology of ketamine

Ketamine is a derivative of phencyclidine hydrochloride (PCP); after a long clinical disuse it has now undergone revival [54]. It maintains stable respiration and blood pressure, analgesia, and affords antidepressant potentials. Ketamine is classified as a Schedule III controlled substance in the USA (i.e., a potential drug for abuse that may lead to moderate-low physical dependence or high psychological dependence, although less than Schedule II and I drugs). Compounding material of ketamine has recently become accessible for non-systemic use [55].

Ketamine is a chiral molecule available in a 1:1 mixture of two pharmacological forms: the racemic presentation (R-ketamine) and esketamine (S-(+)-ketamine). The latter (brand name: Ketanest S) is the (S)-enantiomer of ketamine, which is 3-4 times more receptor-active than the dual mixed/racemic (R/S) compound. S(+)-ketamine is of a higher potency, of faster elimination rate, and its plasma concentrations are accurately measurable compared to the racemate [56]. Nevertheless, the racemic form is the most prepared and distributed preparation worldwide, and is the most cited in the literature, as it is in this review. The drug's detailed pharmacology and metabolism are discussed in the following reviews [4][57][58].

Ketamine is highly bioavailable after IV or IM injections, or rectal deposition [59]: oral ketamine undergoes extensive hepatic first-pass metabolism [60]. Like PCP, it interacts with the N-methyl D-aspartate receptor (NMDAR) channels [61], the $\alpha$-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), the gamma-aminobutyric acid (GABA) receptors, as well as with muscarinic, nicotinic, cholinergic, and opioid receptors. Ketamine has also been found to inhibit the neuronal uptake of norepinephrine, dopamine, and serotonin [62], and it antagonizes the HCN1, potassium, calcium, and sodium channels, all of which affecting pain as well.

Parenteral absorption of ketamine is rapid; mean $C_{\text{max}}$ is 0.75 mg/mL, and $T_{\text{max}}$ is 1h. Ketamine undergoes N-dealkylation, hydroxylation of the cyclohexane ring conjugation with glucuronic acid, and dehydration of the hydroxylated metabolites to form the cyclohexene derivative [60]. The beta phase (elimination half-life) of ketamine is ~180 min. Approximately 91% of the metabolites are excreted in the urine and 3% in the feces. The onset effect of IV ketamine is within 30 sec, and 2-4 min for IM administration; the duration of (different) effects ranges between 5-8 min (IV) and 12-20 min (after IM injection). Ketamine can be diluted in all physiological solutions, except for lactated ringer.

Ketamine is extensively metabolized to norketamine and dehydrokertamine, with norketamine being the most active metabolite [63]. These two main metabolites are active compounds, allowing analgesia to persist even after the patient has awaken from the sedative effect of the drug [64]. Upon termination of a constant-rate infusion, ketamine concentrations decrease rapidly but norketamine concentrations remain elevated, above ketamine ones, for hours. This feature promotes ketamine as a clinically effective drug, especially when used in the currently applied subanesthetic doses instead of the mega doses used in the past. The metabolism of ketamine minimally blocks hepatic enzymes [65]; indeed, long-term, low-dose infusions of ketamine in patients with acute kidney dysfunction were not associated with drug accumulation, drug-drug inhibition, or enhanced activity [66], even in hemodialysis-dependent individuals [67]. Ketamine's effects on chronic pain and on depression far outlast the actual drug levels, which are probably due to a secondary structural synaptic connectivity that is mediated by neuronal response to the ketamine-induced glutamatergic blockade. Since ketamine implicates diverse layers of regulation within the CNS (e.g., glial activity, mAChRs, glutamate, or $a_2$ receptors that are associated with desensitization), and key players in pain pathogenesis (e.g., substance P), its application is highly advantageous over other sedative and analgesic options. It also induces only minimal tolerance compared to other analgesics. Finally, it was suggested that ketamine enables 'rebooting' aberrant pronociceptive activity in the CNS, and prevents 'wind-up' (sensitization) of exogenous fear,
pain of both peripheral and central origins, and stress-induced endogenous opioid activity [68]. Furthermore, the recent acknowledgement of NMDA system being involved in psychiatric disorders, and ketamine’s capability of attenuating them, could support ketamine’s multi-task usage, so that besides expressing its analgesic properties, it would also improve uncontrolled fears in obese and pain-averse patients [69].

Due to ketamine’s age-related pharmacokinetics, children would require higher infusion rates to maintain steady-state sedo-analgesic blood concentrations (~3 mg/L), whereas post infusion half-time effect is shorter than in adults. At the same time, lower target concentration of ketamine, when incorporated in multimodal anesthesia or analgesia regimen, would still provide identical effects [70].

It was suggested that after ketamine’s injection into the epidural or caudal space, it gains rapid access to the systemic circulation with high bioavailability (level III evidence) [71][72][73]. While this could explain its prompt (within mins) activity, other researchers assert that the spinal cord-associated pharmacological augmentation is related primarily to its activity at its receptorial sites, as occurring with other drugs [74]. Interestingly, IV ketamine was reported to counteract hypotension occurring following spinal anesthesia [75].

The effective dosage of ketamine, especially in an acute treatment phase, directly reflects its bioavailability. With oral administration, the bioavailability is 17–24%, because of the extensive first-pass metabolism [76]. A study by Brunette et al., in children, showed high bioavailability (45%) [77], whereas Yanagihara et al. found a bioavailability of 20% in adults [78]. In this latter report, the bioavailability of nasal spray was established of approximately 45%. The difference in bioavailability may relate to the higher dose needed in children. Other factors affecting the variability after oral dosing may include the formulation (tablet vs. solution, ketamine concentration), state of the stomach, dietary enzymes induction, entero-enteric grade of circulation, and individual differences in cytochrome phenotype; the latter inter-individual pharmacokinetic variability is common among various oral drugs. Intranasal and sublingual ketamine administrations have been reported to yield 45% and 30% bioavailability, respectively [78], and inter-individual variability has been described for these routes as well [79] [80]. Ketamine absorption after intramuscular injection has been described as more rapid, with a bioavailability of 93% [81].

**Adverse effects of ketamine**

Analgesic effects follow low doses of ketamine, while high doses are amnestic and hypnottic. The most common side effects of IV ketamine are psychotomimetic and dissociative phenomena [82], which correlate with high initial plasma levels. Past reports of out-of-body experiences, visual hallucinations, and lack of coordination, or reflex sympathetic activation (brain stem stimulation, which may inhibit noradrenaline reuptake) that may manifest as hypertension, tachycardia and palpitations, are presently very rare even in patients undergoing CABG or OPCAB, since the current usage of ketamine consists of subanesthetic dosings [83]. Respiration may be somewhat affected by the drug, dose dependently; several pediatric studies showed that mild airway and respiratory disturbances occur in 1.4% -6.6% of the patients, and laryngospasm may be detected in < 0. 4% of adolescents [84][85]. Hypersalivation may occur more frequently in children than in adults [85]. In a large cohort (> 8000) pediatric review, comprising ~50% orthopedic cases [86] high IV ketamine doses (> 2.5 mg/kg bolus, or > 5.0 mg/kg total dose) led to increased incidence of respiratory AEs, including brief but harmless episodes of apnea. Lower loading doses (~1.5 mg/kg) did not induce these AEs, and were as effective as the larger doses when evaluating intra-procedural satisfaction. A high rate of AEs was also related to patients’ age (> 2 <14 yoa). Another review, of > 4,000 patients sedated with ketamine in the emergency departments (ED), demonstrated that the odds of severe AEs was > 2-fold higher when ketamine was administered intramuscularly (IM), and the risk of laryngospasm was > 5-folds vs. IV titrated doses [87]. It was concluded [88] that risks for airway and respiratory AEs, including apnea or laryngospasm, are IM administration, IV abnormally high doses, and ages < 2 and ≥ 13 yoa (peak 12 yrs.). Importantly, abnormally high pulmonary vascular resistance may contraindicate the use of ketamine in pediatric patients [89]. Interestingly, although ketamine is a sympathomimetic drug, by inhibiting reuptake of catecholamines, ketamine-induced paradoxical hypotension (vasodilation) may take place in children with previously depleted catecholamine stores [90].

While still unconscious and amnesic, minimal catatonic advents may typically occur. Patients’ eyes usually remain open and exhibit nystagmus, and they may later tell of inexplicable dreams they had while under the effects of ketamine. It is wise to advise the staff and family members...
that these are normal CNS effects, and that the patient is amnesic and unaware of these occurrences.

Children on long-term ketamine may display sedation, anorexia, urinary retention, and myoclonic movements. A review that summarized 11 RCTs recommended limiting ketamine infusion dosages to 0.05-0.5 mg/kg/h (IV or SC), while the oral advocated dosages are 0.2-0.5 mg/kg/dose bid or tid, up to 50 mg/dose tid [91].

Clinical Applications of Ketamine

The literature documents dramatic pain relief that obviates the desire to stop ketamine even when rare psychotomimetic effects do occur. The currently used “subanesthetic doses”, i.e., 0.2-0.3 mg/kg IV loading dose, and/or infusion rate of <0.5 mg/kg/h or 2-2.5 µg/kg/min [4][92], are optimal and effective analgesic doses. They effectively control OIH; sedation (lasting < 2 min) may, however, occur immediately after drug injection, without psychomimetic events [16][83]. Very low doses (100-250 µg/kg), when given by the London's air ambulance, after unsatisfactory opioid administrations, were demonstrated effective improving or enhancing analgesia [93], as also proven both during and following orthopedic and general surgery interventions [16][94][95][96][97][98]. Potentiation of opioid-induced analgesia by ketamine is associated with their reduced requirements [83][97][99][100] by 20-45%. Our group has documented that even when given alone, ketamine modulated pain intensity [22]. Laskowski et al. have reviewed studies encompassing > 2,650 ketamine patients. They found that 37.5% of the studies demonstrated decrease in early pain (30 min - 4 h), and 25% of late pain (24-72 h), while usage of opioids was reduced. Overall, 78% of the cohorts experienced less pain than placebos, implying improved quality of pain control in addition to decreased opioid consumption [101]. Significant efficacy of ketamine was ascertained in patients undergoing thoracic, upper abdominal, or major orthopedic surgery. However, debate still exists regarding ketamine’s efficacy in controlling pain persistence, interruption of long-term pain [16][102][103], or in blocking acute-to-chronic pain transition [104].

Patients should be assessed while treated, with an earlier secured venous line and monitoring of heart rate and blood saturation. Ketamine should be injected IV slowly (over ~60 sec), since rapid administration may result in brief respiratory depression and possible enhanced sympathomimetic response. A stomach and airways suctioning device should be at hand and a sedative available in rare cases of agitation. The patient's airways need to be safeguarded despite the drug's safety, while oxygen is used as needed. Because of the rapid – though brief – state of hypnosis that may follow an IV bolus, the patient should be in a supported position during the injection. Ketamine is physically compatible in solutions containing morphine, propofol or barbiturates (Weinbroum AA, unpublished data). The current use of subanesthetic doses of ketamine makes antisialogogue agent usage unnecessary. Interestingly, a recently presented abstract [105] has claimed that ketamine’s efficacy and safety are devoid of adverse effects that require continuous hemodynamic monitoring. This is further supported by the recent frequent home use of oral ketamine for attenuation of persistent chronic pain or resistant depressive states, where hospitalization is impractical [106]. Nevertheless, at the authors' opinion, the first among such a serial administration should be undertaken under a reliable medical surveillance.

The peripheral neural system is an increasingly appealing target for the use of ketamine. Low dose (0.3%) ketamine combined with bupivacaine (0.5%), when infiltrated locally for inguinal wound repair, proved to prolong the effects of bupivacaine alone [107]. Central and peripheral blocks are potentiated by ketamine as well, as when deposited intrathecally [108][109][110] and peripherally [111][112]. Similarly, regional IV block [113], topical, or subcutaneous infusion [114], and bolus injections at the site of surgery [107], all benefit from anti nociception produced by ketamine.

Intra-articular ketamine was proven to attenuate local nociception as well [115][116]. Furthermore, ketamine orally, sublingually, rectally, or topically, also acts at a similar pharmacological pattern, enabling efficacious patient-tailored local pain control [55]. The presence of NMDARs on sensory afferent nerve endings allows for ketamine’s application at somatic cutaneous neural distribution [107] in forms of gel, cream [55], and more recently, as mouthwashes, gargles, swabs, or local oral injections [112]. These latter applications produce oral/throat analgesia in various clinical settings [117]. When given peripherally, ketamine (within an appropriate carrier) can achieve higher local tissue concentrations than when given systemically, producing its pharmacological activity both directly on neurons, as well as on other cell types (keratinocytes, immune cells) [118]. Topical ketamine is at times coadjuvated with different drugs, e.g., amitriptyline, baclofen, lidocaine, ketoprofen, clonidine, gabapentin [55][119]. However,
dose levels and appropriate drug ratios are not yet fully established. The mentioned oral or topical applications would suit specific subpopulations, such as obese adults and adolescents scheduled to undergo dental procedures, as appreciated by non-obese [120], or in preparation for painful maneuvers, since sedation by opioids or other sedatives are better avoided in obese patients. Nevertheless, while IV subanesthetic ketamine doses, administered pre-operatively, and possibly for 48-72 h postoperatively, were proven to reduce MO requirements by ~35% [87][95][96][97], and allowed for faster postoperative rehabilitation, as after TKR [121] [122], the effects of local ketamine infiltration in a burn/inflammation model, or intra-articularly, remain inconsistent, being these conditioned by its total dose, time of administration, multimodal drug ratios, the type of operation, and the physiognomy of the obese patient [116][123]. The recent descriptions by Zur et al. [55] and by others [112] support the efficacy of topical ketamine in many areas and pathologies in the body.

A recent meta-analysis of various postoperative effects of different ketamine regimens combined with 48 h IV-PCA-MO (> 1,300 adults and > 100 children) for orthopedic, lumbar, abdominal, bone tumor, or gynecological interventions, undertaken under GA (general anesthesia) or RA (regional anesthesia), is worth mentioning [124]. This review validated ketamine's 24h-analgesia efficacy at rest by 32%, the 24h-MO sparing effect by 28%, and the lowered PONV incidence by 44%.

Ketamine efficacy for perioperative pain under any protocol in children and infants was also reviewed, encompassing IV treatment (985 patients), topical (n = 225 patients, undergoing tonsillectomy), and ketamine + MO or ketamine + LA (local anesthetics) deposited caudally (n = 714) [125]. The systemic approach of ketamine was efficient during a 2h-PACU stay in reducing postoperative pain scores and analgesics consumption. Ketamine was associated with minimal psychomimetic or PONV rates. The local application during tonsillectomy was associated with 6-24 h decreased postoperative analgesics requirements. The caudal use led to an increase in the duration of the sensory block and improved pain relief at emergence from anesthesia, but not during PACU stay. It can be reliably concluded that ketamine, when administered by any route, ameliorates most pain-related parameters, with minimal undesired emergence events, and spares other analgesic requests. Psychopharmacological events during recovery from ketamine are rarer in adults than among children [84].

**Stratification of ketamine administration by sites and time courses**

**Pre-hospital and emergency department sites:** The pre-hospital use of ketamine is growingly applied worldwide [126]. Pain relief is essential during early handling of traumatized individuals [127], where ~80% of all cohorts still suffer from moderate-severe pain after their conditions have been stabilized [128]. IV ketamine is a safe and effective drug during pre-hospital treatment of patients with bone fractures [128][129][130] [131], burns [132], even where acute head concussion is suspected or intubation is requested [133]. As a sole analgesic, ketamine equals MO effects in out-of-hospital trauma individuals [134][135], while, if added to MO, the analgesic effects of both drugs result superior to MO-only achievement [136]. Several studies have illustrated the usefulness of intranasal (IN) ketamine, alone or with midazolam, or fentanyl, either in pre-hospital or in the ED settings [137][138]. The need for close patient monitoring and nursing during such scenarios, because of rare, but potential, post-injection agitation or hallucinations, or elevations in heart rate or blood pressure [134][135], is still disputed [138].

Trauma-site first-aid slow IV administration of MO (0.08-0.1 mg/kg LBM), plus ketamine (0.2 mg/kg) top-ups, resulted in ~50% lower pain scores and MO sparing effects that were still appreciated upon arrival to the ED, as compared to the much short-lived effects of a two-fold MO-only dose [139]. In these patients, and more so if obese, ketamine advantageously avoids potential decrease in blood pressure and respiratory depression. In the absence of an IV access [93][140][141][142], IN S-ketamine (0.2 mg/kg), or rectal (PR) application, were advocated for initial treatment [143]. Finally, ketamine is probably the best drug for rapid sequence induction (RSI) on the field and elsewhere, mainly if hemodynamics and ventilation are unstable [144].

Trauma patients frequently cause concern regarding their neurological conditions. In a review encompassing 10 studies (953 patients), 8 studies reported small reductions or no changes in intracranial pressure (ICP) within 10 min of IV ketamine administration. None reported differences in cerebral perfusion pressure, worsening of neurologic outcomes, ICU (intensive care unit) length of stay (LOS), or mortality. However, the drug should be withheld upon suspicion or the presence of hydrocephalus [145]. When these precautions are kept, no mishaps would occur; rather, ketamine affects ICP similarly to common doses of fentanyl or sufentanil.
Especially noteworthy are recent data, originating from combat or rural areas, regarding injured individuals arriving at the ED, where the usefulness of low dose ketamine was recorded, without depicting significant AEs [134][135][147]. Finally, it was concluded [148] that although obese patients sustain fewer head injuries than non-obese, they stay longer in the hospital, and requires prolonged mechanical ventilation. Advantageousness of early and continuous ketamine analgesic regimens in the latter cohort still awaits RCTs’ confirmation.

Ketamine’s benefits in the ED were recently demonstrated in an extensive and detailed study [134], where low-dose IV ketamine (0.3 mg/kg) alone resulted as good as MO (IV 0.1 mg/kg), given to adults with acute abdominal, flank, low back, or extremity pain. Rapid reduction (50%) in pain scores was achieved in the ketamine group over time vs. a slow, although steady, pain reduction in the MO group. Brief SBP (systolic blood pressure) changes followed ketamine administrations, but no meaningful changes in DBP (diastolic blood pressure), HR (heart rate), RR, or SpO2 occurred. One-tenth of the ketamine patients suffered from nausea and hallucinations. The authors highlighted, however, the staff’s high satisfaction scores with ketamine’s use. Noteworthy, the IV is just one of the routes of ketamine applicability in these settings: ketamine sublingual (SL, 25 mg) or IN (7 mg), helps to calm agitated patients upon their arrival to the ED [149], as well as uncooperative individuals; the drug’s few AEs never evolved into critical situations [93].

The combination of ketamine and propofol has become a useful protocol administered in the ED. An appropriate dose combination produces synergistic pain relief, and reduces the frequency and the severity of adverse respiratory events compared to propofol alone, even in children [150], while also minimizing the need for additive opioids or regional anesthesia. The latter may prolong the time to full achievement of analgesia, accomplishment of an intervention, and discharge [151]. Nevertheless, prolongation in the time to full awakening from ketamine-propofol combination was noted [130].

Further optimal efficacy of ketamine in children was reported when delivered by TCI (target plasma concentration equals 3 mg/L), or by manual administration (loading dose 1 mg/kg, maintenance infusion rate of 0.1 mg/kg/h that is re-adjustable by 0.2 mg boluses, and its availability as a rescue drug of 1-2 mg/kg), together with MO [70]. It is noteworthy that any patient treated or examined under sedation needs to be escorted at discharge (AA Weinbroum, unpublished data) [152].

A 9-ya (30 kg body weight) distressed obese child was reportedly found outdoors suffering from severe pain, shivering, and with estimated 3% body surface area burns, but with no visible or palpable peripheral veins [153]. Racemic ketamine 15 mg (=0.5 mg/kg)/0.2 mL was deposited within his nasal mucosa; within 3 min, the patient described resolution of pain and appeared relaxed, alert, and was treated as required. The authors of an ED study [154] sustained that ketamine IN (mean ~1 mg/kg), as a single agent, is effective in providing appreciable pain relief (> 20 mm VAS reduction) in 56% of the investigated adults with severe pain of various origins. Interestingly, those who do not respond to an initial IN dose of ketamine (0.7 or 1 mg/kg), would not benefit from further top-ups (0.5 mg/kg).

The “battlefield analgesia” models are of interest to the military medical community; it also includes ketamine. The USA Pain Task Force has established clinical guidelines to ensure provision of adequate analgesia to wounded soldiers on the battlefield [155]. Among other adjuncts, IN ketamine has been utilized safely and successfully, providing rapid and controllable analgesia as early in the course of injury as possible. It also obviates the need for IV access. Judiciously and timely applied ketamine was effective [156] using either ‘low-dose’ (80-300 μg/kg/h) or ‘high-dose’ (> 300 μg/kg/h) infusions during deployment in severely wounded soldiers. Casualties capable of operating a PCA (patient-controlled analgesia) benefited from ketamine-PCA alone at a rate of 10-20 mg/h plus 5-10 mg bolus/20 min lockout time. Concern about abuse potentials and hallucinatory side effects in high-stressed and traumatized individuals as occurring in the battlefield still lack confirmatory data.

In this regard, the U. S. Critical Care Air Transport Teams (CCATTs) have recently summarized a 5-year period of evacuations in combat settings of non-intubated critically ill patients with acute pain [157]. Of 18 (out of 381 cases analyzed) subjects receiving ketamine during evacuation flights, 14 received it in conjunction with IV opioids, and two received an IV combination of ketamine + opioids + LA. Two subjects were administered with ketamine alone. All in-flight ketamine subjects survived.

Violent and agitated patients pose a serious challenge to the emergency medical services (EMS) personnel as well as to themselves [158]; rapid physical control is vital...
to pre-hospital evaluation as well. While narcotics are unsafe in uncontrollable individuals, especially if obese, BZD are slow to control aberrant behavior and may cause loss of airway control and respiratory depression. Ketamine is the ideal medication, having predictable action and rapid onset. It does not adversely affect airway control, breathing, HR, or BP. A single IM (< 4 mg/kg) ketamine injection has thus become part of the specific protocol devised by the EMS during similar circumstances [159]. An IN application, as mentioned above, could be an equally appreciated mode to sedate obese uncontrollable individuals.

Operating Room (OR) and perioperative use

Preoperative or preemptive analgesia: While opiates are meant to preempt analgesia [160][161], they may also evoke preemptive hyperalgesia [4][162]. N-methyl D aspartate receptor antagonists (NMDAR-Ars) prevent, or minimize, the development of pain sensitization, especially if opiate-induced. It is obtainable by small doses (boluses) of ketamine via diverse routes: IV (< 1 mg/kg or ≤ 20 µg/kg/min) [163], epidurally, intrathecally (IT, spinally), IN [153] or IM [22]. They all provide or potentiate analgesia both intra- and post-incisionally, spare opioid usage, and allow for optimal awakening from anesthesia.

Intraoperative or preventive analgesia: Ample data reiterate ketamine’s currently accepted therapeutic regimens consisting on pre-incisional boluses followed by intraoperative infusions (e.g., 0.15 mg/kg plus 2 mg/kg/min) [23][57][164]. Most reports found a 33% median reduction in acute postoperative opioid consumption, and 20-25% attenuation in pain intensity during the first 48 h after surgery [57][83][96][97][165]. Ketamine loading dose of 0.5 mg/kg pre-incisionally, intraoperative maintenance infusion rate of 5 µg/kg/min, followed by 2 µg/kg/min/48h postoperatively, all adjusted to target plasma concentrations of 250 ng/mL intraoperatively, and 100 ng/mL postoperatively [166]. Such protocols efficaciously counteract POH, reduce secondary allodynia, and lessen MO requirements, while evoking minimal AEs [167][168]. These proven efficacies are of special therapeutic values in cases of thoracotomy by any technique, which is associated with both early and/or persisting pain. This description is more concrete in obese patients due to their body structure and greater technical difficulties. Respiratory recovery and prevention of complications are also of utmost importance in this cohort that would frequently use higher opioid doses or their equivalents, especially during physiotherapy, compared to non-obese [83][96]. Ketamine + MO regimens indeed allowed for a 45% reduction in total MO consumptions, while reaching 35% better pain scores compared to those registered among the MO-alone patients, both at 4 h and 72 h after surgery.

Overweight patients (BMI <30) were reportedly given PCEA (patient-controlled epidural analgesia) infusion of S(+) -ketamine alone or combined with fentanyl-based GA, for muscle-sparing thoracotomy [169]. Intraoperative cumulative fentanyl consumption was lower (~18%) in the ketamine group, while postoperative timed median pain VAS (visual analog scale) scores were also better, and the use of rescue analgesics was lower vs. those in a ropivacaine group. None complain of psychotomimetic events.

Similar results were documented after cardiac surgery, annulling past fear of meaningful sympathomimetic effects [83][96], while, when using S(+)-ketamine (75 µg/kg bolus followed by 1.25 µg/kg/min/48 h) [170], ketamine satisfactorily provided a 20% reduction in postoperative oxycodone (IV-PCA) use, and a 25% longer time until its first use.

McNicol et al. [171] analyzed >1000 patients undergoing various types of surgical procedures known to induce persistent post-surgical pain (PPSP) (in addition to pre-existing pain). Perioperative ketamine, given by variate IV or epidural regimens, either by bolus, multiple doses, and/or infusions, pre-, intra- and/or post-operatively, either in combination with opioids (IV-PCA/PCEA) or non-opioids, enabled a 16% postoperative reduction of developing PPSP at 3, 6 and 12 mos. Even adults with end-stage kidney dysfunction (ESKD), scheduled for laparoscopic implantation of a peritoneal dialysis catheter, benefitted from ketamine (0.6 mg/kg IV or SC) vs. standardized GA [172]. Interestingly, the SC regimen was of a more stable effect than IV; patients were more cooperative during surgery and experienced uneventful recoveries, whereas 5/20 IV patients reported hallucinations.

Postoperative or preventive analgesia: Postoperative ketamine administration is habitually applied by IV infusion, combined with PCEA-LA or with IV-PCA-opioid; many protocols are the extension of pre-incisional and/or intraoperative regimens [16][57][83][95][96][97][173]. All studies showed consistent benefits of IV-PCA-MO plus ketamine, or LAs after cardiac, thoracic, abdominal surgery, or orthopedic oncological interventions, for up to 72 h. The use of ketamine
following general surgery or hip fracture repair [174] under epidural block [175], or IT, intensified preventive analgesia, prolonged LA's duration of both sensory and motor blockades, and spared opiates requirements [16][23][95][176].

**Post-delivery analgesia:** Pregnancy further challenges the anesthetist since obesity inherently develops in all parturients. Higher than normal incidence of hypotension occurs when performing epidural or spinal anesthesia in this cohort. Difficulty to place intravenous access or endotracheal intubation (ETT), together with eventual aspiration of the gastric content during GA, all are dangerous reality when undergoing C/S (cesarian section) [177][178]. Ketamine allows for safer airway control in obese patients, also counteracting intra-procedural hypotension [75][179]. Postoperative multimodal drug regimen including ketamine (0.17 mg/ kg/h) lowers level of sedation and spares IV-PCA-MO usage (~16 mg/patient). The risk of hallucinations was found minimal among parturients [180][181]. Furthermore: besides the maternal dysfunction, postoperative discomfort, or pain, the newborn may be exposed to detrimental effects of analgesics as well. Analgesics may interfere with the mother-child relationship and breastfeeding. S-Ketamine (0.5 mg/kg IM bolus 10 min after giving birth, followed by IV 2 µg/kg/min/12 h) proved to reduce MO consumption by 31% within 24 h, suggesting it induces an anti-hyperalgesic action [182]. Subsequent normal ambulation, global wellbeing, and unchanged breastfeeding duration, further underline the safety qualities of ketamine regarding the mother and the newborn. Noteworthy, ketamine crosses the placenta; post C/S newborns may therefore be partially sedated and should be cared for accordingly [183].

**Procedures out of the OR (ED excluded), mostly in children**

The usefulness of ketamine outside the OR merits special mentioning as well. Larger volumes of interventions now take place in clinical suites or on external wards; obese patients, particularly adolescents, are thereby treated for minimal dermal, esthetic, or dental interventions. Out of the OR locations and advanced sedo-analgesia modalities attenuate fear and intimidation, making case handling easier. Indeed, the literature progressively becomes ample with reports of ketamine – alone or as part of multidrug regimens – being used in these settings [184][185].

**Wound care procedures (WCP):** These are short though painful procedures (e.g., post burn dressing), requiring quick reliably safe and profound analgesia, and timely recovery. In an example of ketamine applicability [100], 11 patients, necessitating WCP, were given either IV 0.1 mg/kg MO (≤8 mg in total), or 0.05 mg/kg MO (≤4 mg) plus ketamine 0.25 mg/kg, in a crossover manner before each scheduled WCP. Pain intensity after the procedures halved in those receiving ketamine, but 15% reported strange sensations, hallucinations, blurred vision, or developed increased DBP. The combination of ketamine with low opioid (MO, fentanyl) doses, or propofol, are applicable in all age populations and for various interventions (Weinbroum AA, unpublished data). Thus, IV ketamine doses (50 µg/kg top-ups every 4-5 min) following the first 250 µg/kg bolus plus propofol 10-20 mg/70 kg boluses, are suitable in these cases. Vital signs monitoring includes HR and SpO₂; post-procedural monitoring and nursing surveillance are necessary, in order to tackle potential respiratory, hemodynamic, or cognition changes [138], until full coherence is regained [186]. The present authors detected no remarkable AEs in >6000 out of OR ketamine-administered cases.

**MRI and sedo-analgesia:** These settings would highly benefit from ketamine, especially in children. Intranasal instilled ketamine (even up to 7 mg/kg/dose) was reported safe and effective in inducing fast moderate conscious sedation [187]. Ketamine bolus is best administered in patients who need to be sedated for <15 min and where interventional pain is expectedly intense but brief, while spontaneous respiration and stable hemodynamics are desired.

**Dentistry:** Premedication with nebulized ketamine (2 mg/kg) in healthy small (3-6-yr) children undergoing dental surgery under GA [120], which is another area of interest that has grown recently, reportedly resulted in 30 min pre-incisional sedation tolerance to mask induction, augmented post-interventional analgesia, and shortened recovery and discharge times (all compared to dexmedetomidine 2 µg/kg). A low ketamine-dose protocol also enhanced the effects of LA solutions in adult dentistry [188].

Ketamine also proved beneficial for uncooperative and unmanageable children (by conventional drug therapy) requiring dentary interventions [189]. Ketamine IN (5 mg/kg) enabled stable HR and SBP maintenance compared to dexmedetomidine (1 or 1.5 µg/kg), allowing for optimal operational success rate of 67%. This
and other data would support the safe usefulness of ketamine in obese populations during ambulatory and clinical suites dentistry interventions. Indeed, a recently published [190] large scale (> 22,000 children, including obese ones, 0-21 yoa) review described the medical personnel's satisfactory judgment following ketamine's use for procedural sedation or in radiology units. Usage via various routes: IV (n = 8725, mean mg/kg 1.6), IM (n = 766, 3.5), PO (n = 102, 5.2), IN (n = 5, 2.1), at a total average dose of 1.8 ± 1.6 mg/kg ketamine, was proven optimal. The overall AEs rate was 7.26%, of which severe events amounted at 1.77%; three children underwent successful cardiac resuscitation following laryngospasm.

Other various sites and procedures of ketamine usage: Ketamine was proven highly useful in both adults and children who require deep sedation in specific sites [187][191]:

- MRI and similar diagnostic sites;
- Anti depressant electroconvulsive therapy (ECT) [192][193];
- Anti convulsive therapy for status epilepticus [194];
- Office-based routine procedure period [195].

Cardiac laboratory, where catheterization, interventional cardiology, implantable cardioverter defibrillator (ICD), and radiofrequency ablation (RFA) are performed under sedation, mostly in children [196][197]. In the latter occasions, ketamine was used IV (0.25 mg/kg, up to totals of 50-100 mg) at induction, then infused continuously, to maintain stable sedo-analgesia conditions, with special attention during the electrical bursts.

Either alone, or when combined with other drugs, ketamine, e.g., by IN deposition (inducing minimal discomfort in children), has led to anesthetists' satisfaction rates of > 90%, vs. 21.3% in the not-ketamine sedated population. The ketamine-treated individuals awoke and were discharged home earlier than the non-treated ones [191].

Proven Usefulness of Ketamine in Obese Patients

Ketamine has an appealing safety profile in obese patients, primarily because they easily develop postoperative respiratory obstruction, hypoxia, and deep sedation, especially when treated with opioids. All these are ketamine preventable [198]. The pharmacological effects of ketamine in sparing opioid consumption, as during and after bariatric surgery, are most known (grade B proof); nevertheless, note that dosing scalars of ketamine in obese children still need considerations [199] and pharmacologic elaborations [51][181]. Opioid-free anesthesia and analgesia regimens, which include ketamine, were recently discussed and worth consulting [200].

Obese patients undergo open or laparoscopic interventions, apparently more frequently than non-obese individuals, probably consequent to their background pathologies [204][205]. At the same time, OSA is a safety concern in obese and morbidly obese patients, especially when using opioid liberally, independently of the technique. The application of total IV anesthesia (TIVAn) coadjuvated with ketamine, as during bariatric surgery, is an appropriate choice. The effects of opioid- free +ketamine anesthesia (0.5 mg/kg/h IBW), rather than fentanyl infusion-based GA (0.025-0.25 µg/kg/min IBW), in morbidly obese patients [206], proved effective, safe, and provided lower pain scores compared to the latter. Hofer et al. [207] reported of a super-obese (433 kg) patient, undergoing bariatric surgery, where opioids were omitted intraoperatively and ketamine was used instead. Awake fiber optic intubation was achieved under the effects of midazolam and ketamine, with the aid of dexametomidine. Thus, as in non-obese, a quick, reliable and safe sedo-analgesia is obtainable by ketamine in obese patients, while stable respiratory and cardiovascular conditions are also guaranteed.

Despite the scarce data regarding the question which is the best multimodal opioid-limited regimen to be used in obese, various protocols that include NSAIDs, or LAs, consistently comprise ketamine that has shown to potentiate their former postoperative analgesia, as reported following laparoscopic Roux-en-Y gastric bypass (LRYGB) surgery [204]. Hasanein et al. [208] detailed the use of propofol-remifentanil infusion-based GA, when coadjuvated with ketamine (1 µg/kg/min), and followed later by IV-PCA-MO for postoperative analgesia.
Reduced intraoperative requirements for remifentanil and propofol, improved PACU pain scores, and the 24h reduced PCA-MO requirements, were all characteristic of the ketamine-added group. No confusion or hallucinations were recorded in these obese patients.

An exceptional case report described endotracheal intubation under ketamine (plus lidocaine oral spray and dexametomidine IV) in a morbidly obese patient (29 yrs, 150 kg, BMI 51.9), while in the prone position, scheduled for discectomy [209]. Dexametomidine-ketamine-remifentanil infusion was used for GA maintenance. The patient awoke painless and clear-minded, and the ETT was removed safely in the same prone position. This report highlights the efficacy of multimodal ketamine regimens in enabling awake, spontaneously breathing, ETT insertion (that recalls emergency cases), and its removal upon awakening, without provoking airway problems. While the combination of ketamine with a2 drugs seems to have benefited the maneuver, drug doses were neither reported in the English-language abstract, nor were they forwarded at this author’s request.

Postoperative poorly-controlled pain, as after THR, TKR, or after a fall, may transform into POH. Heavy opioid analgesia can also delay postoperative mobility, induce venous thromboembolism, impair rehabilitation, and prolong patient’s LOS and medical costs. Obese patients are more prone to develop all the above, with undesired late consequences [210][211]. Tukker et al. studied health problems of the lower extremities due to obesity [203]; they concluded that obese individuals who have undergone blunt traumatic injury complete rehabilitation less successfully, associated with in hospital complications [13]. Adhikary et al. [202] reported data of 77,785 primary TKR and 49,475 primary THA subjects under various anesthesia regimens. Patients were separated into 7 BMI subgroups (18.5-24.9 kg/m2, 25.0-29.9, 30.0-34.9, 35.0-39.9, 40.0-44.9, 45.0-49.9, and > 50.0 kg/m2). The authors found that the odds ratio for 4/5 composite complications increased exponentially at BMI ≥ 45.0 kg/m2 among the TKA and in the THA patients. This positive correlation indicated that obese patients develop postoperative pain persistence, which leads to chronic pain conditions that affect negatively their later quality of life [212][213]. Implementation of appropriate, patient-tailored, pre- and postoperative analgesia, minimize these outcomes [214]. Ketamine prevents most of these mishaps in non-obese patients after several orthopedic interventions, e. g., knee arthroscopy [98], anterior cruciate ligament repair [94,116], knee arthroplasty [121], oncologic orthopedic limb-sparing surgery [22][97][215], lumbar disk surgery [216], and cervical spine surgery [217]. Indeed, pain control and rehabilitation after TKR improved after the injection of as low as a bolus dose of ketamine as 0.2 mg/kg, followed by 120 µg/kg/h intraoperatively, and continued at 60 µg/kg/h for 2 PODs. IV MO consumption, pain intensity at rest and on mobilization, were all reduced by ketamine vs. nefopam, for example; ketamine provided improved knee flexion on POD 3, and decreased the time to 90-degree optimal flexion of the knee [121]. A single bolus (0.15 mg/kg IV) of ketamine, administered pre-incisionally, in addition to standardized IV GA, plus bupivacaine + MO intra-articularly at the end of knee arthroscopy, also proved to diminish postoperative IV-PCA-MO by 50%, and intra- and out-of-hospital oral NSAIDs usages. It also lessened postoperative pain at rest and during mobilization (POD 0-2), and lengthened the periods of walking on POD1 [98]. Ketamine also improved functional scores, and long-term survival of the implanted joints were lower in obese, where morbidity and mortality are also higher than in normal BMI patients [218].

Finally, as shown above, the use of ketamine is still scarce among various obese subpopulations. This is despite data showing that postoperative pain and daily functional disturbances are more significant in obese patients than in non-obese ones. Indeed, more NSAIDs and opioids are used in the former, in order to attain satisfactory levels of pain relief [10]. Based on its neuropharmacological potentials, ketamine could benefit obese patients as shown for non-obese ones, and minimize their undesired episodes. These, however await future clinical confirmations.

Routes of Administration of Ketamine

Optimal pain control, sedation and anesthesia, are achievable by diverse approaches, including systemic, enteral, or regional, either peripherally, centrally, or locally. These modalities have been tested for ketamine and proven most efficacious when used solely or where coadjuvated with opioids or non-opioid drugs. These regimens are seldom applied for other analgesics, making ketamine a unique pertinent drug.

Systemic Routes of Administration

Systemic administration of ketamine is the most frequently used technique. Besides the IV route that is not always achievable in children or in obese patients, the IM route allows for safe and reasonably predictable
effects, but is painful, of slower onset and longer recovery times, and induces a higher rate of AEs, compared to IV [219]. Ketamine application may benefit from the recently improved intraosseous access technique (bolus dose 0.5-1 mg/kg) that is as efficient as the IV one [220].

The SC route is another modality that circumvents lack or inability to establish an IV line [169][170]. This route pertains obese cohorts [114], mainly adults. Interventional regimens reported the use of ketamine 50 mg bolus + 300-500 mg/24 h.

Non-Systemic Routes of Administration

The use of ketamine orally, intranasally, transdermally, as well as rectally, topically, and even epidurally or intrathecally, has proven efficient and safe. Most of these routes suit children and those who fear pain in general and needle puncture in particular [221][222]. Since ketamine has been approved by the FDA for the IV and IM administrations only, all other routes are, officially, “off label”.

Follow synoptic descriptions of non-IV and non-IM ketamine administrations.

Inhalational ketamine: Ketamine by inhalation allows for rapid drug delivery. In a rare report [223], 0.35, 0.5, or 0.7 mg/kg of preservative-free S(+)-ketamine solutions were inhaled for the duration of 20-40 min. Inhalations were tolerable and easily reached completion of treatment. None presented oropharyngeal irritation, hypersalivation, stridor, laryngospasm, cough, dry mouth, hoarseness, dyspnea, tachypnea, aspiration, cardiac dysrhythmia, or blood desaturation, both during and after ketamine administrations. Rare ketamine-related AEs (mild hypertension, nausea, vomiting, and psychedelic effects) were noted. All doses produced the active S-ketamine plasma concentration (> 100 ng/mL), making inhalation a valid alternative to other administration routes.

Oral/oropharyngeal/sublingual ketamine use: Ketamine has recently been marketed as mouthwash, gargle, in form of swab [117], and injectable local oral solution [112]. Orally dissolved ketamine has produced significant postoperative oral/throat analgesia in controlled trials [117]. Intraroral topical applications suit specific subpopulations, such as obese adolescents undergoing dental procedures, as for non-obese ones [120], aiming at avoiding opioids or sedative drugs. Pain relief after tonsillectomy [224] was of better effect after ketamine (20 mg/10 mL artificial saliva or 20 mg/5mL mixed with in 0.004% MO/5mL artificial saliva) than placebo, and as efficacious as MO 4% (20 mg/5mL) (grade II evidence). The solutions were deposited in the tonsillar fossae for 5 min. Similarly, local peritonsillar infiltration (2 mg/kg), rectal (0.5 mg/kg), or IV (0.5 mg/kg) ketamine employed in children (5-15 yoa, n = 120) [225], when compared to IV tramadol (2 mg/kg) for postoperative pain relief and sedation after adenotonsillectomy, were of similar efficacies. Ketamine IV provided, however, superior analgesia at 6- and 24-postoperative h. Ketamine oral rinse (gargle) applied at the tonsillar fossae (40 mg/30 mL NS) was also found useful to prevent postoperative sore throat (POST) after endotracheal intubation [226].

A recent analysis reviewed sedation modalities for dental procedures [227] applied in 12 different cohorts. Ketamine (0.25 mg/kg, 5, 6, 10, or 50 mg/kg) was used in combination with other drugs, IN (drops or spray) in 4 studies, IV in 2, orally in 5 (of which 1 patient was given ketamine-laced lollipop), and IM in 1 study. The drug provided highly effective sedation in all these studies, at any dose range; submucosal and aerosol mouth spray also provide analgesia [228].

In order to compare among oral dosing regimens across studies, Schoevers et al. [229] computed the daily oral racemate equivalent dose, in mg/kg/day, as follows:

- The IV racemate dose was multiplied by 5, to correct for the lower average oral bioavailability.
- The S(+)-ketamine dose was multiplied by 2, to correct for the double potency relative to racemate.
- For IN regimens, the daily oral racemate equivalent dose was multiplied by 2.25 to correct for the lower oral bioavailability.
- For IM dosing, the daily oral racemate equivalent dose was multiplied by 4.65 to correct for the lower oral bioavailability.
- The sublingual dose is to be multiplied by 1.5 to obtain their daily oral racemate equivalent dose.

Intranal (IN) ketamine: Ketamine has been used IN extensively, as a premedicant, sedative, or pre-incisional analgesic drug, especially where an IV line was unavailable and the IM route was refused. Ketamine was compared to, or co-administered with, dexmedetomidine, or opioids, in several studies [187][189][191][230]. The presence of ketamine provided obvious superior peri-interventional effects [186], as judged by ratings by both treatees and care givers. From the neuropharmacological
and clinical aspects, ketamine is a better choice than dexametomidine, mainly since it provides stable hemodynamic conditions.

The sedo-analgesic effectiveness of IN ketamine was also proven optimal when compared with fentanyl in conjunction with moderate-severe painful pediatric (3-13 yoa, < 50 kg body weight) procedures undertaken in the ED, following isolated musculoskeletal limb injuries (lacerations). The subanesthetic IN dose of ketamine (1 mg/kg) was of similar analgesic effects as was fentanyl (1.5 µg/kg), but with fewer AEs [230]. Given the clinical problems associated with fentanyl in obese pediatric cohorts (sedation, hypoventilation), IN ketamine presents a safer analgesic choice over fentanyl in this cohort.

**Rectal ketamine:** In a single-blinded study [231], 70 children, undergoing elective tonsillectomy, received either rectal ketamine (2 mg/kg) or rectal acetaminophen (20 mg/kg) at the end of surgery. The ketamine group displayed lower pain scores up to 120 min after surgery; dreams or hallucinations were not reported. Systolic blood pressure was slightly higher in the former and 14% displayed nystagmus. A lower ketamine dose (0.5 mg/kg) was still efficient in controlling postoperative pain after the same intervention in a similar cohort [225]. These data prove that ketamine PR optimally substitutes acetaminophen. Importantly, rectally deposited drugs bypass the entero-enteric circulation, thus boosting their efficacy and potency.

**Topical (external) use of ketamine:** The dermal application of ketamine (common concentration 50 mg/mL) is popular, providing reduction of mechanical and secondary hyperalgesia. However, distinction between the local antinociceptive and the systemic effects is yet unestablished [232]. Ketamine is usually combined with gabapentin, clonidine and baclofen, using either transdermal Lipoderm or Lipoderm ActiveMax. This technique can personalize treatment thus embettering focal pain control [233]. Also, topical ketamine cream, compounded in combination with other drugs (amitriptyline, baclofen, lidocaine, ketoprofen, clonidine, gabapentin, pregabalin), was reported by this group with excellent pain control in patients suffering from peripheral neuropathic pain [55]. Similarly, 13 patients had been prescribed topical amitriptyline 1-2% plus ketamine 0.5% for genital, rectal, or perineal pain, which resulted effective. Only 2/13 showed no response. None reported local or systemic AEs, except for local irritation in one patient [234].

Finally, postoperative transdermal ketamine (release rate 25 mg/24 h, i.e., 1.25 mg/h until the 4th h, decaying to ~0.5 mg/h at 5-8 h, then ~0.4 mg/h) was applied at the end of minor abdominal gynecological surgery undertaken under 25 mL 2% lidocaine epidural anesthesia [235]. The time to first request for a rescue analgesic proved > two-times longer among the ketamine users compared to placebos. None of the patients complained of any adverse effect such as nightmare, hallucination, or difficulty in concentrating or answering simple questions (Level II evidence).

**Central (neuraxial) and Peripheral (nerve blockade) Ketamine Analgesia**

Ketamine has been tested, and more presently applied, solely or in addition to LAs, for central and peripheral nerve blocks, and in IV regional blocks, both intra- and postoperatively. Several studies are worth mentioning, describing such use in trauma, ED and orthopedic cases [108][109][236][237].

**Ketamine for central blocks:** Epidural block with deposited ketamine (30 mg) alone was shown to ameliorate postoperative analgesia in females undergoing hysterectomy under GA [238]. Ketamine prolonged the time to first rescue analgesia request, and reduced postoperative PCEA(bupivacaine + fentanyl) consumption. These benefits appeared both when ketamine was administered pre-incisionally (preemptively) and 20 min after skin incision (preventively). The same results were reported after lumbar epidural anesthesia (ropivacaine {10 mg/mL, 10-20 mL} plus S(+)-ketamine{0.25 mg/kg}) was applied 10 min before surgical incision [110]. This regimen resulted in better (time and potency) postoperative analgesia compared to the effects of the LA alone.

In 90 parturients, undergoing C/S, S(+)-ketamine (0.05 mg/kg) or fentanyl (25 µg) were added to 10 mg plain bupivacaine 0.5% IT [239]. Ketamine's combination was associated with faster onset of sensory and motor blocks, and with a higher maximal dermatomal level of the sensory block; both regimens induced a longer blockade than bupivacaine alone did. The quality of the analgesia was excellent in 93% of fentanyl vs. 90% of the ketamine's, compared to only 77% in the LA-alone group. More minor AEs were recorded among the ketamine vs. the fentanyl patients; no psychological event was reported. Neonatal Apgar scores, after 1- and 5 min, were similar among the experimental groups. Importantly, the ideal dose or concentration of the IT's S(+) ketamine that
would induce satisfactory analgesia and longer duration of action during C/S has not yet been established. Most studies base their protocols on Kathirvel's and colleagues' study [240], who indicated the 25 mg of IT S(+)-ketamine as efficacious to spare the effects of bupivacaine, while > 1 mg/kg would induce AEs.

The benefits of ketamine were further highlighted in a review [241] that analyzed 13 RCTs (n = 584 ambulatory children) where ketamine (0.25-0.5 mg/ kg) was coadministered with caudal-based single dose (bupivacaine or ropivacaine) blocks. The combined-drug regimen improved analgesic efficacy, and prolonged the postoperative analgesia time compared to the LAs alone (mean difference 5.6 h), also reducing the need for rescue doses; no worrisome AEs were reported.

Peripheral nerve root blocks and ketamine: Ketamine addition to peripheral blocks not only hastens the onset of sensory and the motor blockades, but it potentiates them as well. Continuous peripheral nerve block (CPNB) has gained popularity in recent years, especially where US (ultrasound) guidance is available. Peripheral blocks are recommended for many grounds, especially for respiratory reasons in obese individuals. Ketamine was reportedly adjuvated to lignocaine and bupivacaine boluses for stellate ganglion block (STGB) in patients suffering from peripheral vascular disease (PVD) of the upper limbs [242]. The addition of ketamine (0.5 mg/kg) provided a 14 h-longer pain relief compared to the LA alone, and 12-mos duration of no pain after the procedure, together with complete healing of gangrenous fingers in 17/19 patients.

The combination of ketamine with lidocaine for perioperative intravenous regional anesthesia (IVRA) for hand or forearm surgery’s also worth mentioning [243], mainly because it may take the place of GA in obese trauma patients. Lidocaine (3 mg/kg/40 mL) alone allowed for the completion of interventions as did the same when coadjuvated with ketamine (50 mg). Nevertheless, the latter technique provided less tourniquet postoperative pain, 4-time-prolongation of the time to first request for postoperative rescue analgesics, and their 62% lower consumption than the former. Postoperative pain scores were also lower whereas AEs rates were similar.

Conclusions

Pain is one of the main perioperative issues that need prompt assessment and adequate control, especially since persistent acute pain may stimulate hyperalgesia and transform acute into chronic pain. Obese patients suffer from pain more than non-obese individuals, and handle it worse. Opioids are disadvantageous in obese individuals, due to their negative effects on vital functions, and more so when previous pathologies and chronic pain are involved. Opioids occasionally become pro-nociceptive as well. The application of drugs that induce safe and predictable analgesia is thus essential, and ketamine is such a drug. Its neuropharmacological potentials and ease of application, starting from the trauma site, throughout the ED, and OR, as well as outside it, have improved pain control in almost all occasions, at all population ages, and interventions. The pharmacokinetics of the drug and its dose-scalars are still to be accurately established in the obese pediatric subgroup. Nevertheless, adhering to the current subanesthetic dose regimens and adjusting them to the patient’s LBW, ketamine best provides obese individuals with optimal and sustained analgesia via all existing routes of administration (oral, intranasal, inhalational, topical, rectal, and regional in addition to the systemic ones). Due to its ability to spare opioids’ needs, reduce their AEs, and induce limited untoward respiratory and cardiovascular effects of its own, ketamine would benefit obese patients, as shown for non-obese ones, and minimize complications in obese patients who are in pain.

Acknowledgements

The author wishes to thank Ms. Esther Eshkol for proof editing the manuscript, and Mr. Eitan Noyman for technical assistance.

Conflicts of Interest

The authors declare no conflicts of interests.

References

1. Gottschalk A, Smith DS. New concepts in acute pain therapy: preemptive analgesia. Am Fam Physician. 2001; 63: 1979-1984. PMID: https://www.ncbi.nlm.nih.gov/pubmed/11388713

2. Wall PD. The prevention of postoperative pain. Pain. 1988; 33: 289-290. DOI: http://dx.doi.org/10.1016/0304-3959(88)90286-2

3. Lavand’homme P. The progression from acute to chronic pain. Curr Opin Anaesthesiol. 2011; 24: 545-550. DOI: http://dx.doi.org/10.1097/aco.0b013e3283a4af74

4. Weinbroum AA. Postoperative hyperalgesia. A clinically applicable narrative review. Pharmacol Res 2017; 120: 188-205. DOI: http://dx.doi.org/10.1016/j.201
5. Zeigerman A, Ezri T, Weinbroum AA. Recalling postoperative discomfort - a neglected feature of the PACU experience in adult post general anesthesia patients. J Clin Monit Comput. 2008; 22: 279-284. DOI: http://dx.doi.org/10.1007/s10877-008-9130-3

6. White PF. Multimodal analgesia: its role in preventing postoperative pain. Curr Opin Investig Drugs. 2008; 9: 76-82 PMID: https://www.ncbi.nlm.nih.gov/pubmed/18183534

7. Mao J. Opioid-induced abnormal pain sensitivity: implications in clinical opioid therapy. Pain 2002; 100: 213-217. DOI: http://dx.doi.org/10.1016/s0304-3959(02)00422-0

8. Alvarez A, Singh PM, Sinha AC. Postoperative analgesia in morbid obesity. Obes Surg. 2014; 24: 652-659. DOI: http://dx.doi.org/10.1007/s11695-014-1185-2

9. Okifuji A, Hare BD. The association between chronic pain and obesity. J Pain Res. 2015; 8: 399-408. DOI: http://dx.doi.org/10.2147/jpr.s55598

10. Thomazeau J, Perin J, Nizard R et al. Pain management and pain characteristics in obese and normal weight patients before joint replacement. J Eval Clin Pract. 2014; 20: 611-616. DOI: http://dx.doi.org/10.1111/jep.12176

11. Atwood BK, Kupferschmidt DA, Lovinger DM. Opioids induce dissociable forms of long-term depression of excitatory inputs to the dorsal striatum. Nat Neurosci. 2014; 17: 540-548. DOI: http://dx.doi.org/10.1038/nn.3652

12. Schiltenwolf M, Akbar M, Hug A et al. Evidence of specific cognitive deficits in patients with chronic low back pain under long-term substitution treatment of opioids. Pain Physician. 2014; 17: 9-20. PMID: 24452649

13. Ditillo M, Pandit V, Rhee P, Aziz H, Hadeed S, Bhattacharya B, et al. Morbid obesity predisposes trauma patients to worse outcomes: A National Trauma Data Bank analysis. J Trauma Acute Care Surg. 2014; 76: 176-179. DOI: http://dx.doi.org/10.1097/ta.0b013e3182ab0d7c

14. Waimann CA, Fernandez-Mazarambroz Rj, Cantor SB, Lopez-Olivo MA, Barbo AG, Landon GC, et al. Effect of body mass index and psychosocial traits on total knee replacement costs in patients with osteoarthritis. J Rheumatol. 2016; 43: 1600-1606. DOI: http://dx.doi.org/10.3899/jrheum.151301

15. Woolf CJ, Salter MW. Neuronal plasticity: Increasing the gain in pain. Science. 2000; 288: 1765-1769. DOI: http://dx.doi.org/10.1126/science.288.5472.1765

16. Weinbroum AA. A single small dose of postoperative ketamine provides rapid and sustained improvement in morphine analgesia in the presence of morphine-resistant pain. Anest Analg. 2003; 96: 789-795. DOI: http://dx.doi.org/10.1213/01.ane.0000048088.17761.b4

17. Lavand’homme P, Thienpont E. Pain after total knee arthroplasty: a narrative review focusing on the stratification of patients at risk for persistent pain. Bone Joint J. 2015; 97-B: 45-48. DOI: http://dx.doi.org/10.1302/0301-620x.97b10.36524

18. Vincent HK, Omli MR, Day T, Hodges M, Vincent KR, George SZ. Fear of movement, quality of life, and self-reported disability in obese patients with chronic lumbar pain. Pain Med. 2011; 12: 154-164. DOI: http://dx.doi.org/10.1111/j.1526-4637.2010.01011.x

19. Visser E. Chronic post surgical pain: epidemiology and clinical implications for acute pain management. Acute Pain. 2006; 8: 73-81. DOI: http://dx.doi.org/10.1016/j.acpain.2006.05.002

20. Kissin I. Preemptive analgesia at the crossroad. Anest Analg, 2005; 100: 754-756. DOI: http://dx.doi.org/10.1213/01.ane.0000144429.39988.9b

21. Choi E, Lee H, Park HS, Lee GY, Kim YJ, BaikHJ. Effect of intraoperative infusion of ketamine on remifentanil-induced hyperalgesia. Korean J Anesthesiol. 2015; 68: 476-480. DOI: http://dx.doi.org/10.1007/kjane.2015.68.5.476

22. Rakhman E, Shmain D, White I, Ekstein MP, Kollender Y, Chazan S, et al. Repeated and escalating preoperative subanesthetic doses of ketamine for postoperative pain control in patients undergoing tumor resection: a randomized, placebo-controlled, double-blind trial. ClinTher. 2011; 33: 863-873. DOI: http://dx.doi.org/10.1016/j.clinthera.2011.05.094

23. McCartney CJ, Sinha A, Katz J. A qualitative systematic review of the role of N-methyl-D-aspartate receptor antagonists in preventative analgesia. Anest Analg. 2004; 98: 1385-1400. DOI: http://dx.doi.org/10.1213/01.ane.000008501.57073.38

24. Alberti KGMM, Zimmet P, Shaw J. Metabolic syndrome - a new world-wide definition. A consensus statement from the International Diabetes Federation. Diabet Med. 2006; 23: 469-480. DOI: http://dx.doi.org/10.1111/j.1464-5491.2006.01858.x

25. Després JP, Lemieux S. Abdominal obesity and metabolic syndrome. Nature. 2006; 444: 881-887.
DOI: http://dx.doi.org/10.1038/nature05488

26. Sahu RK, Prashar D. Current Treatment strategies for obesity including Indian scenario. Asian J Pharm. 2016; 10: S342-S349. Available from: https://pdfs.semanticscholar.org/4d/81e4f3c5d37cdadfd5586f8a3af9229aca475.pdf

27. Grant RW, Meigs JB. Management of the metabolic syndrome. Panminerva Med. 2005; 47: 219-228. PMID: https://www.ncbi.nlm.nih.gov/pubmed/16489321

28. Shuai X, Tao K, Mori M, Kanda T. Bariatric surgery for metabolic syndrome in obesity. Metab Syndr Relat Disord. 2015; 13: 149-160. DOI: http://dx.doi.org/10.1089/met.2014.0115

29. Ogden CL, Carroll MD, Lawman HG et al. Trends in obesity prevalence among children and adolescents in the United States, 1988-1994 through 2013-2014. JAMA. 2016; 315: 2292-2299. DOI: http://dx.doi.org/10.1001/jama.2016.6361

30. The WHO child growth standards. World Health Organization. 2017; Available from: http://www.who.int/childgrowth/standards/en/

31. Growth reference data for 5-19 years. World Health Organization. 2017; Available from: http://www.who.int/growthref/en/

32. KuczmarAK, Ogden CL, Guo SS, Grummer-Strawn LM, Flegal KM, Mei Z, et al. 2000 CDC Growth harts for the United States: methods and development. Vital Health Stat 11 2002; 246: 1-190. PMID: https://www.ncbi.nlm.nih.gov/pubmed/12043359

33. VeyckemansF. Childobesity and anaesthetic morbidity. Curr Opin Anaesthesiol. 2008; 21: 308-312. DOI: http://dx.doi.org/10.1097/aco.0b013e3282f82bbb

34. Wells J, Fewtrell M, Williams J, Haroun. D, Lawson M, Cole T. Body composition in normal weight, overweight and obese children: matched case-control analyses of total and regional tissue masses, and body composition trends in relation to relative weight. Int J Obesity. 2006; 10: 1506-1513. DOI: http://dx.doi.org/10.1038/sj.ijo.0803402

35. Suzuki S, Murayama Y, Sugiyama E, Hirunpanich V, Saito K, SekiyamaM, et al. Estimating pediatric doses of drugs metabolized by cytochrome P450 (CYP) isozymes, based on physiological liver development and scrun protein levels. Yakugaku Zasshi. 2010; 130: 613-620.DOI: http://dx.doi.org/10.1248/yakushi.130.613

36. Poirier P, Giles TD, Bray GA, Hong Y, Stern JS, Pi-Sunyer FX, et al. American heart association, obesity committee of the council on nutrition, physical activity, and metabolism: obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss: an update of the 1997 american heart association scientific statement on obesity and heart disease from the obesity committee of the council on nutrition, physical activity, and metabolism. Circulation. 2006; 113: 898-918. DOI: http://dx.doi.org/10.1161/circulationaha.106.171016

37. De Baerdermaeker LE, Mortier EP, Struys MM. Pharmacokinetics in obese patients. Cont Educat in Anesth Crit Care Pain. 2004; 4: 152-155. DOI: http://dx.doi.org/10.1093/bjaceaccp/mkh042

38. Linder KE, Nolan WC. Dosing medications in obese patients. Conn Med. 2015; 79: 487-492. PMID: https://www.ncbi.nlm.nih.gov/pubmed/26506681

39. Oeser SG, RougeeLR, Collier AC. The effects of obesity on drug metabolism in children. Drug Metab Lett. 2015; 9: 88-98. DOI: http://dx.doi.org/10.1017/18723 1280966615080411612

40. Kendrick JG, Carr RR, Ensom MH. Pediatric Obesity: Pharmacokinetics and implications for drug dosing. Clin Ther. 2015; 37: 1897-1923. DOI: http://dx.doi.org/10.1016/j.clinthera.2015.05.495

41. Budiansky AS, Margarson MP, Eipe N. Acute pain management in morbid obesity-an evidence based clinical update. Surg Obes Relat Dis. 2017; 13: 523-532. DOI: http://dx.doi.org/10.1016/j.soard.2016.09.013

42. Tsui BC, Murtha L, LemmensHj. Practical dosing of propofol in morbidly obese patients. Can J Anaesth. 2017; 64: 449-455. DOI: http://dx.doi.org/10.1007/s12630-017-0853-9

43. Hitt HC, McMillen RC, Thornton-Neaves T, Koch K, Cosby AG. Comorbidity of obesity and pain in a general population: results from the Southern Pain Prevalence Study. J Pain. 2007; 8: 430-436. DOI: http://dx.doi.org/10.1016/j.jpain.2006.12.003

44. Shetty RR, Mostofi SB, Housden PL. Knee dislocation of a morbidly obese patient: a case report. J Orthop Surg (Hong Kong). 2005; 13: 76-78. DOI: http://dx.doi.org/10.1177/23094990501300114

45. Vincent HK, Adams MCB, Vincent KR, Hurley RW. Musculoskeletal pain, fear avoidance behaviors, and functional decline in obesity: potential interventions to manage pain and maintain function. Reg Anesth Pain Med. 2013; 38: 481-491. DOI: http://dx.doi.org/10.1097/aap.0000000000000013

46. Segar AH, Urban JP, Fairbank JC, Judge A, Genodisc Consortium. The association between body mass
index (BMI) and back or leg pain in patients with spinal conditions: results from the genodisc study. *Spine (Phila Pa 1976).* 2016; 41: E1237-E1243. DOI: http://dx.doi.org/10.1097/brs.0000000000001606

47. Sullivan MJL, Bishop SR, Pivik j. The pain catastrophizing scale: development and validation. *Psychol Assess.* 1995; 7: 524-532. DOI: http://dx.doi.org/10.1037/1040-3590.7.4.524

48. Burton AK, Tillotson KM, Main CJ, Hollis S. Psychosocial predictors of outcome in acute and subchronic low back trouble. *Spine.* 1995; 20: 722-728. DOI: http://dx.doi.org/10.1097/00007632-199503150-00014

49. Torensma B, Thomassen I, van Velzen M, In’t Veld BA. Pain experience and perception in the obese subject. Systematic review (Revised Version). *Obes Surg.* 2016; 26: 631-639. DOI: http://dx.doi.org/10.1007/s11695-015-2008-9

50. Shibutani K, Inchiosa MA, Sawada K, Bairamian M. Accuracy of pharmacokinetic models for predicting plasma fentanyl concentrations in lean and obese surgical patients. *Anesthesiology.* 2004; 101: 603-613. PMID: https://www.ncbi.nlm.nih.gov/pubmed/15329584

51. Sollazzi L, Modesti C, Vitale F, Sacco T, Ciocchetti P, Idra AS, et al. Preinductive use of clonidine and ketamine improves recovery and reduces postoperative pain after bariatric surgery. *Surg Obes Relat Dis.* 2008; 5: 67-71. DOI: http://dx.doi.org/10.1016/j.soard.2008.09.018

52. Sinha AC. Some anesthetic aspects of morbid obesity. *Curr Opin Anaesthesiol.* 2009; 22: 442-446. DOI: http://dx.doi.org/10.1097/aco.0b013e32832b6807

53. Price RC, Christou NV, Backman SB, Stone L, Schweinhardt P. Opioid-receptor antagonism increases pain and decreases pleasure in obese and non-obese individuals. *Psychopharmacology (Berl).* 2016; 233: 3869-3879. DOI: http://dx.doi.org/10.1007/s00213-016-4417-4

54. O’Malley PA. Ketamine—a returning option for procedural sedation and analgesia in adults. *Clin Nurse Spec.* 2014; 28: 15-16. DOI: http://dx.doi.org/10.1097/nur.000000000000025

55. Weinbroum AA, Zur E. Patient-tailored combinations of systemic and topical preparations for localized peripheral neuropathic pain: a two-case report. *J Pain Palliat Care Pharmacother.* 2015; 29: 27-33. DOI: http://dx.doi.org/10.3109/15360288.2014.997852

56. Persson J, Hasselström J, Mårset A, Oye I, Svensson JO, Almqvist O, et al. Pharmacokinetics and non-analgesic effects of S- and R-ketamines in healthy volunteers with normal and reduced metabolic capacity. *Eur J Clin Pharmacol.* 2002; 57: 869-875. DOI: http://dx.doi.org/10.1007/s002280100353

57. Weinbroum AA. Non-opioid IV adjuvants in the perioperative period: pharmacological and clinical aspects of ketamine and gabapenticinoids. *Pharmacol Res.* 2012; 65: 411-429. DOI: http://dx.doi.org/10.1016/j.phrs.2012.01.002

58. Quibell R, Fallon M, Mihalyo M, Twycross R, Wilcock A. Ketamine. *J Pain Symptom Manage.* 2015; 50: 268-278. DOI: http://dx.doi.org/10.1016/j.jpainsymman.2015.06.002

59. Wang X, Zhou Zj, Zhang XF, Zheng S. A comparison of two different doses of rectal ketamine added to 0.5 mg x kg (-1) midazolam and 0.02 mg x kg (-1) atropine in infants and young children. *Anaesth Intensive Care.* 2010; 38: 900-904. PMID: https://www.ncbi.nlm.nih.gov/pubmed/20865876

60. Peltoniemi MA, Hagelberg NM, Olkkola KT, Saari Ti. Ketamine: A review of clinical pharmacokinetics and pharmacodynamics in anesthesia and pain therapy. *Clin Pharmacokinet.* 2016; 55: 1059-1077. DOI: http://dx.doi.org/10.1007/s40262-016-0383-6

61. Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner JD, et al. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans: psychometric, perceptual, cognitive, and neuroendocrine responses. *Arch Gen Psychiatry.* 1994; 51: 199-214. DOI: http://dx.doi.org/10.1001/archpsyc.1994.03950030035004

62. Tso MM, Blatchford KL, Callado LF, McLaughlin DP, Stamford JA. Stereoselective effects of ketamine on dopamine, serotonin and noradrenaline release and uptake in rat brain slices. *Neurochem Int.* 2004; 44: 1-7. DOI: http://dx.doi.org/10.1016/s0197-0186(03)00104-9

63. Chen CY, Lee MR, Cheng FC, Wu GJ. Determination of ketamine and metabolites in urine by liquid chromatography-mass spectrometry. *Talanta.* 2007; 72: 1217-1222. DOI: http://dx.doi.org/10.1016/s0039-9140(07)00104-9

64. Camu F, Venlersberge C. Pharmacology of systemic analgesics. *Best Pract Res Clin Anaesthesiol.* 2002; 16: 475-488. DOI: http://dx.doi.org/10.1016/S1071-2926.0262

65. Capponi L, Schmitz A, Thorrmann W, Theurillat R, Mevissen M. In-vitro evaluation of differences in phase 1 metabolism of ketamine and other analgesics.
among humans, horses, and dogs. Am J Vet Res. 2009; 70: 777-786. DOI: http://dx.doi.org/10.2460/ajvr.70.6.777

66. Murphy Ej. Acute pain management pharmacology for the patient with concurrent renal or hepatic disease. Anaessth Intensive Care. 2005; 33: 311-322. PMID: https://www.ncbi.nlm.nih.gov/pubmed/15973913

67. Capel MM, Jenkins R, Jefferson M, Thomas DM. Use of ketamine for ischemic pain in end-stage renal failure. J Pain Symptom Manage. 2008; 35: 232-234. DOI: http://dx.doi.org/10.1016/j.jpainsymman.2007.10.002

68. Le Roy C, Laboureiras E, Gavello-Baudy S, Chateauraynaud J, Laulin JP, Simonnet G. Endogenous opioids released during non-nociceptive environmental stress induce latent pain sensitization via a NMDA dependent process. J Pain. 2011; 12: 1069-1079. DOI: http://dx.doi.org/10.1016/j.jpain.2011.04.011

69. Iacobucci G, Visnjevac O, Pourafkari L, Nader ND. Ketamine: An update on cellular and subcellular mechanisms with implications for clinical practice. Pain Physician. 2017; 20: E285-E301. PMID: https://www.ncbi.nlm.nih.gov/pubmed/28158165

70. Dallimore D, Anderson BJ, Short TG, Herd DW. Ketamine anesthesia in children—exploring infusion regimens. Paediatr Anaesth. 2008; 18: 708-714.DOI: http://dx.doi.org/10.1111/j.1460-9592.2008.02665.x

71. Koinig H, Marhofer P, Krenn CG, Klimscha W, Wildling E, Erlacher W, et al. Analgesic effects of caudal and intramuscular S(+)-ketamine in children. Anesthesiology. 2000; 93: 976-980. DOI: http://dx.doi.org/10.1097/00000542-200010000-00017

72. Martindale SJ, Dixon P, Stoddart PA. Double-blind randomized controlled trial of caudal versus intravenous S(+)-ketamine for supplementation of caudal analgesia in children. Br J Anaesth. 2004; 92: 344-347. DOI: http://dx.doi.org/10.1093/bja/aeh076

73. Xie H, Wang X, Liu G, Wang G. Analgesic effects and pharmacokinetics of a low dose of ketamine preoperatively administered epidurally or intravenously. Clin J Pain. 2003; 19: 317-322. DOI: http://dx.doi.org/10.1097/00002508-200309000-00006

74. Eisenach JC, Hood DD, Curry R. Intrathecal, but not intravenous, clonidine reduces experimental thermal or capsaicin-induced pain and hyperalgesia in normal volunteers. Anesth Analg. 1998; 87: 591-596. DOI: http://dx.doi.org/10.1097/00000539-199809000-00018

75. Hemmingsen C, Nielsen JE. Intravenous ketamine for prevention of severe hypotension during spinal anaesthesia. Acta Anaesthesiol Scand. 1991; 35: 755-757. PMID: https://www.ncbi.nlm.nih.gov/pubmed/1763596

76. Chong C, Schug SA, Page-Sharp M, Jenkins B, IlettKF. Development of a sublingual/oral formulation of ketamine for use in neuropathic pain: preliminary findings from a three-way randomized, crossover study. Clin Drug Investig. 2009; 29: 317-324. DOI: http://dx.doi.org/10.2165/00044011-200929050-00004

77. Brunette KE, Anderson BJ, Thomas J, Wiesner L, Herd DW, Schulein S. Exploring the pharmacokinetics of oral ketamine in children undergoing burns procedures. Paediatr Anaesth. 2011; 21: 653-662. DOI: http://dx.doi.org/10.1111/j.1460-9592.2011.03548.x

78. Yanagihara Y, Ohtani M, Kariya S, Uchino K, Hiraishi T, Ashizawa N, et al. Plasma concentration profiles of ketamine and norketamine after administration of various ketamine preparations to healthy Japanese volunteers. Biopharm Drug Dispos. 2003; 24: 37-43. DOI: http://dx.doi.org/10.1002/bdd.336

79. Rolen P, Lim S, Sunderland V, Liu Y, Molnar V. The absolute bioavailability of racemic ketamine from a novel sublingual formulation. Br J Clin Pharmacol. 2014; 77: 1011-1116. PMID: https://www.ncbi.nlm.nih.gov/pubmed/24977293

80. Weber F, Wulf H, Gruber M, Biallas R. S-ketamine and s-norketamine plasma concentrations after nasal and i.v. administration in anesthetized children. Paediatr Anaesth. 2004; 14: 983-898. DOI: http://dx.doi.org/10.1111/j.1460-9592.2004.01358.x

81. Clements JA, NimmoWS, Grant IS. Bioavailability, pharmacokinetics, and analgesic activity of ketamine in humans. J Pharm Sci. 1982; 71: 539-542. DOI: http://dx.doi.org/10.1002/jps.2600710516

82. Morgan CJ, Muetzelfeldt L, Curran HV. Consequences of chronic ketamine self-administration upon neurocognitive function and psychological wellbeing: a 1-year longitudinal study. Addiction. 2010; 105: 121-133. DOI: http://dx.doi.org/10.1111/j.1360-0443.2009.02761.x

83. Nesher N, Ekstein MP, Paz Y, Marouani N, Chazan S, Weinbroum AA. Morphine with adjuvant ketamine vs higher dose of morphine alone for immediate postthoracotomy analgesia. Chest. 2009; 136: 245-252. DOI: http://dx.doi.org/10.1378/chest.08-0246

84. Green SM, Rothrock SG, Lynch EL, Ho M, Harris

J Pharm Sci Therap, 4(1):187-214 (2018)
T, Hestdalen R, et al. Intramuscular ketamine for pediatric sedation in the emergency department: safety profile with 1,022 cases. *Ann Emerg Med.* 1998; 31: 686-697. DOI: http://dx.doi.org/10.1016/s0196-0644(98)70226-4

85. Roback MG, Bajaj L, Wathen JE, Bothner J. Preprocedural fasting and adverse events in procedural sedation and analgesia in a pediatric emergency department: are they related? *Ann Emerg Med.* 2004; 44: 454-459. DOI: http://dx.doi.org/10.1016/j.annemergmed.2004.03.015

86. Green SM, Roback MG, Krauss B, Brown L, McGlone RG, Agrawal D, et al. Predictors of airway and respiratory adverse events with ketamine sedation in the emergency department: An individual patient data meta-analysis of 8,282 children. *Ann Emerg Med.* 2009; 54: 158-168. DOI: http://dx.doi.org/10.1016/j.annemergmed.2008.12.011

87. Melendez E, Bachur R. Serious adverse events during procedural sedation with ketamine. *Pediatr Emerg Care.* 2009; 25: 325-328. DOI: http://dx.doi.org/10.1097/pec.0b013e3181a341e0

88. Green SM, Roback MG, Krauss B, Brown L, McGlone RG, Agrawal D, et al. Emergency department ketamine meta-analysis study group. Predictors of airway and respiratory adverse events with ketamine sedation in the emergency department: an individual-patient data meta-analysis of 8282 children. *Ann Emerg Med.* 2009; 54: 171-180. DOI: http://dx.doi.org/10.3410/f.1162140.622610

89. Dachs RJ, Innes GM. Intravenous ketamine sedation of pediatric patients in the emergency department. *Ann Emerg Med.* 1997; 29: 146-150. DOI: http://dx.doi.org/10.1016/s0196-0644(97)70321-4

90. Green SM, Denmark TK, Cline J, Roghair C, Allah SA, Rothrock SG. Ketamine sedation for pediatric critical care procedures. *Pediatr Emerg Care.* 2001; 17: 244-248. DOI: http://dx.doi.org/10.1097/00006565-200108000-00004

91. Bredlau AL, Thakur R, Korones DN, Dworkin RH. Ketamine for Pain in Adults and Children with Cancer: A Systematic Review and Synthesis of the Literature. *Pain Med.* 2013; 14: 505-1517. DOI: http://dx.doi.org/10.1111/pme.12182

92. Guillou N, Tanguy M, Seguin P, Branger B, Campion JP, Mallédant Y. The effects of small-dose ketamine on morphine consumption in surgical intensive care unit patients after major abdominal surgery. *Anesth Analg.* 2003; 97: 843-847. DOI: http://dx.doi.org/10.1213/01.anene.000075837.67275.36

93. Bredmose PP, Lockey DJ, Grier G, Watts B, Davies G. Pre-hospital use of ketamine for analgesia and procedural sedation. *Emerg Med J.* 2009; 26: 62-64. DOI: http://dx.doi.org/10.1136/emj.2007.052753

94. Menigaux C, Fletcher D, Dupont X, Guignard B, Guirimand F, Chauvin M. The benefits of intraoperative small-dose ketamine on postoperative pain after anterior cruciate ligament repair. *Anesth Analg.* 2000; 90: 129-135. DOI: http://dx.doi.org/10.1097/00000539-200001000-00029

95. Ekstein MP, Weinbroum AA. Immediate postoperative pain in orthopedic patients is more intense and requires more analgesia than in post-laparotomy patients. *Pain Med.* 2011; 12: 308-313. DOI: http://dx.doi.org/10.1111/j.1526-4637.2010.01026.x

96. Nesher N, Serovian I, Marouani N, Chazan S, Weinbroum AA. Ketamine spares morphine consumption after transthoracic lung and heart surgery without adverse hemodynamic effects. *Pharmacol Res.* 2008; 58: 38-44. DOI: http://dx.doi.org/10.1016/j.phrs.2008.06.003

97. Kollender Y, Bickels J, Stocki D, Maruoni N, Chazan S, Nirkin A, et al. Subanaesthetic ketamine spares postoperative morphine and controls pain better than standard morphine does alone in orthopaedic-oncological patients. *Eur J Cancer.* 2008; 44: 954-962. DOI: http://dx.doi.org/10.1016/j.ejca.2008.02.021

98. Menigaux C, Guignard B, Fletcher D, Sessler DI, Dupont X, Chauvin M. Intraoperative small-dose ketamine enhances analgesia after outpatient knee arthroscopy. *Anesth Analg.* 2001; 93: 606-612. DOI: http://dx.doi.org/10.1097/00000539-200109000-00016

99. Carstensen M, Møller AM. Adding ketamine to morphine for intravenous patient-controlled analgesia for acute postoperative pain: a qualitative review of randomized trials. *Br J Anaesth.* 2010; 104: 401-406. DOI: http://dx.doi.org/10.1093/bja/aeq041

100. Arroyo-Novoa CM, Figueroa-Ramos MI, Miaskowski C, Padilla G, Paul SM, Rodriguez-Ortiz P, et al. Efficacy of small doses of ketamine with morphine to decrease procedural pain responses during open wound care. *Clin J Pain.* 2011; 27: 561-566. DOI: http://dx.doi.org/10.1097/AJP.0b013e318211936a

101. Laskowski K, Stirling A, McKay WP, Lim HJ. A systematic review of intravenous ketamine for postoperative analgesia. *Can J Anaesth.* 2011; 58: 911-923. DOI: http://dx.doi.org/10.1007/s12630-
102. Reeves M, Lindholm DE, Myles PS, Fletcher H, Hunt JO. Adding ketamine to morphine for patient-controlled analgesia after major abdominal surgery: a double-blinded, randomized controlled trial. *Anesth Analg.* 2001; 93: 116-120. DOI: http://dx.doi.org/10.1097/00000539-200107000-00025

103. Aveline C, Roux AL, Hetet HL, Gautier JF, Vautier P, Cognet F, et al. Pain and recovery after total knee arthroplasty: a twelve months follow-up after a prospective randomized study evaluating nefopam and ketamine for early rehabilitation. *Clin J Pain.* 2014; 30: 749-754. DOI: http://dx.doi.org/10.1097/ajp.0000000000000033

104. Lavand'homme P, De Kock M, Waterloos H. Intraoperative epidural analgesia combined with ketamine provides effective preventive analgesia in patients undergoing major digestive surgery. *Anesthesiology.* 2005; 103: 813-820. DOI: http://dx.doi.org/10.1097/00000542-200510000-00020

105. New York State Society of Anesthesiologists' Post Graduate Assembly (abstract P-9088).

106. Van Hecke O, Guthrie B. Oral ketamine analgesia in chronic pain and problematic rise in blood pressure. *BMJ Case Rep.* 2014; 2014. DOI: http://dx.doi.org/10.1136/bcr-2014-207836

107. Tverskoy M, Oren M, Vaskovich M, Dashkovsky I, Kissin I. Ketamine enhances local anesthetic and analgesic effects of bupivacaine by peripheral mechanism: a study in postoperative patients. *Neurosci Lett.* 1996; 215: 5-8. DOI: http://dx.doi.org/10.1016/s0304-3940(96)12922-0

108. BionJF. Intrathecal ketamine for war surgery: a preliminary study under field conditions. *Anaesthesia.* 1984; 39: 1023-1028. PMID: https://www.ncbi.nlm.nih.gov/pubmed/6496899

109. Kathirvel S, Sadhasivam S, Saxena A, Kannan TR, Ganjoo P. Effects of intrathecal ketamine added to bupivacaine for spinal anaesthesia. *Anaesthesia.* 2000; 55: 899-904. PMID: https://www.ncbi.nlm.nih.gov/pubmed/10947756

110. Himmelsheer S, Ziegler-Pithamitis D, Argiriadou H, Martin J, Jelen-Esseldorn S, Kochs E. Small-dose S(+)ketamine reduces postoperative pain when applied with ropivacaine in epidural anaesthesia for total knee arthroplasty. *Anesth Analg.* 2001; 92: 1290-1295. DOI: http://dx.doi.org/10.1097/00000539-200105000-00040

111. Sleigh J, Harvey M, Voss L, Denny B. Ketamine J Pharm Sci Therap, 4(1):187-214 (2018)

112. Sawynok J. Topical and Peripheral Ketamine as an Analgesic. *Anesth Analg.* 2014; 119: 170-178. DOI: http://dx.doi.org/10.1213/ane.0000000000000246

113. Arslan M, Cantürk M, Ornek D, Gamli M, Pala Y, Dikmen B, et al. Regional intravenous anesthesia in knee arthroscopy. *Clinics (Sao Paulo).* 2010; 65: 831-835. DOI: http://dx.doi.org/10.1590/S1807-59322010000900003

114. Polizotto MN, Bryan T, Ashby MA, Martin P. Symptomatic management of calciphylaxis: a case series and review of the literature. *J Pain Symptom Manage.* 2006; 32: 186-190. DOI: http://dx.doi.org/10.1016/j.jpainsymman.2006.03.009

115. Kalso E, Tramèr MR, Carroll D, McQuay HJ, Moore RA. Pain relief from intra-articular morphine after knee surgery: a qualitative systematic review. *Pain.* 1997; 71: 127-134. DOI: http://dx.doi.org/10.1016/s0304-3959(97)03344-7

116. Khashan M, Dolkart O, Amar E, Chechik O, Sharfman Z, Mozes G, et al. Effect of preemptive intra-articular morphine and ketamine on pain after arthroscopic rotator cuff repair: a prospective, double-blind, randomized controlled study. *Arch Orthop Trauma Surg.* 2016; 136: 233-239. DOI: http://dx.doi.org/10.1007/s00402-015-2346-z

117. McNulty JP, Hahn K. Compounded oral ketamine. *Int J Pharm Compd.* 2012; 16: 364-368. PMID: https://www.ncbi.nlm.nih.gov/pubmed/23072195

118. Keppel Hesselink JM, Kopsky DJ. Treatment of chronic regional pain syndrome type 1 with palmitoylethanolamide and topical ketamine cream: modulation of nonneuronal cells. *J Pain Res.* 2013; 6: 239-245. DOI: http://dx.doi.org/10.2147/jpr.s42417

119. Slatkin NE, Rhiner M. Topical ketamine in the treatment of mucositis pain. *Pain Med.* 2003; 4: 298-303. DOI: http://dx.doi.org/10.1016/j.1526-4637.2003.03032.x

120. Zanaty OM, El Metainy SA. A comparative evaluation of nebulized dexmedetomidine, nebulized ketamine, and their combination as premedication for outpatient pediatric dental surgery. *Anesth Analg.* 2015; 121: 167-171. DOI: http://dx.doi.org/10.1213/ane.0000000000000728

121. Aveline C, Gautier JF, Vautier P, Cognet F, Hetet HL, Attali JY, et al. Postoperative analgesia and early rehabilitation after total knee replacement:
a comparison of continuous low-dose intravenous ketamine versus nefopam. *Eur J Pain.* 2009; 13: 613-619. DOI: http://dx.doi.org/10.1016/j.ejpain.2008.08.003

122. Adam F, Chauvin M, Du Manoir B, Langlois M, Sessler DI, Fletcher D. Small-dose ketamine infusion improves postoperative analgesia and rehabilitation after total knee arthroplasty. *Anesth Analg.* 2005; 100: 475-480. DOI: http://dx.doi.org/10.1213/01.ane.0000142117.82241.dca

123. Pedersen JL, Galle TS, Kehlet H. Peripheral analgesic effects of ketamine in acute inflammatory pain. *Anesthesiology.* 1998; 89: 58-66. DOI: http://dx.doi.org/10.1097/00000542-199807000-00011

124. Assouline B, Tramèr MR, Kreienbühl L, Elia N. Benefit and harm of adding ketamine to an opioid in a patient-controlled analgesia device for the control of postoperative pain: systematic review and meta-analyses of randomized controlled trials with trial sequential analyses. *Pain.* 2016; 157: 2854-2864. DOI: http://dx.doi.org/10.1097/j.pain.0000000000000705

125. Dahmani S, Michelet D, Abback PS, Wood C, Brasher C, Nivoche Y, et al. Ketamine for perioperative pain management in children: a meta-analysis of published studies. *Paediatr Anaesth.* 2011; 21: 636-652. DOI: http://dx.doi.org/10.1111/j.1460-9592.2011.03566.x

126. Schultz CH. Ketamine for pre-hospital control of agitated delirious patients: promising but not yet ready for prime time. *West J Emerg Med.* 2014; 15: 742-743. DOI: http://dx.doi.org/10.5811/westjem.2014.9.23832

127. Svenson JE, Abernathy MK. Ketamine for prehospital use: new look at an old drug. *Am J Emerg Med.* 2007; 25: 977-980. DOI: http://dx.doi.org/10.1016/j.ajem.2007.02.040

128. McLean S, Sallee D. The feasibility of pain assessment in the prehospital setting. *Prehosp Emerg Care.* 2004; 8: 155-161. DOI: http://dx.doi.org/10.1016/j.prehos.2003.12.006

129. Jennings PA, Cameron P, Bernard S. Ketamine as an analgesic in the pre-hospital setting: A systematic review. *Acta Anaesthesiol Scand.* 2011; 55: 638-643. DOI: http://dx.doi.org/10.1111/j.1399-6576.2011.02446.x

130. Phillips W, Anderson A, Rosengreen M, Johnson J, Halpin J. Propofol versus propofol/ketamine for brief painful procedures in the emergency department: clinical and bispectral index scale comparison. *J Pain Palliat Care Pharmacother.* 2010; 24: 349-355. DOI: http://dx.doi.org/10.3109/15360288.2010.506503

131. Newton A, Fitton L. Intravenous ketamine for adult procedural sedation in the emergency department: a prospective cohort study. *Emerg Med J.* 2008; 25: 498-501. DOI: http://dx.doi.org/10.1136/emj.2007.053421

132. McGuinness SK, Wasiak J, Cleland H, Symons J, Hogan L, Hucker T, et al. A systematic review of ketamine as an analgesic agent in adult burn injuries. *Pain Med (Malden Mass).* 2011; 12: 1551-1558. DOI: http://dx.doi.org/10.1111/j.1526-4637.2011.01220.x

133. Sih K, Campbell SG, Tallon JM, Magee K, Zed PJ. Ketamine in adult emergency medicine: Controversies and recent advances. *Ann Pharmacother.* 2011; 45: 1525-1534. DOI: http://dx.doi.org/10.1345/aph.1q370

134. Miller JP, Schauer SG, GanemVJ, Bebarta VS. Low-dose ketamine vs morphine for acute pain in the ED: A randomized controlled trial. *Am J Emerg Med.* 2015; 33: 402-408. DOI: http://dx.doi.org/10.1016/j.ajem.2014.12.058

135. Tran KP, Nguyen Q, Truong XN, Le V, Le VP, Mai N, et al. A comparison of ketamine and morphine analgesia in prehospital trauma care: A cluster randomized clinical trial in rural Quang Tri province, Vietnam. *Prehosp Emerg Care.* 2014; 18: 257-264. DOI: http://dx.doi.org/10.3109/10903127.2013.851307

136. Jennings PA, Cameron P, Bernard S, Walker T, Jolley D, Fitzgerald M, et al. Morphine and ketamine is superior to morphine alone for out-of-hospital trauma analgesia: A randomized controlled trial. *Ann Emerg Med.* 2012; 59: 497-503. DOI: http://dx.doi.org/10.1016/j.annemergmed.2011.11.012

137. Bahetwar SK, Pandey RK, Saksena AK, Chandra GA. Comparative evaluation of intranasal midazolam, ketamine and their combination for sedation of young uncooperative pediatric dental patients: a triple blind randomized crossover trial. *J Clin Pediatr Dent.* 2011; 35: 415-420. DOI: http://dx.doi.org/10.17796/jcpd.35.4.l43h3354705u2574

138. Sullivan D, Lyons M, Montgomery R, Quinlan-Colwell A. Exploring opioid-sparing multimodal analgesia options in trauma: A nursing perspective. *J Trauma Nurs.* 2016; 23: 361-375. DOI: http://dx.doi.org/10.1097/jtn.0000000000000250
139. Johansson P, Kongstad P, Johansson A. The effect of combined treatment with morphine sulphate and low-dose ketamine in a prehospital setting. *Scand J Trauma Resusc Emerg Med.* 2009; 17: 61-65. DOI: http://dx.doi.org/10.1186/1757-7241-17-61

140. Ricard-Hibon A, Chollet C, Belpomme V, Duchateau FX, Marty J. Epidemiology of adverse effects of prehospital sedation and analgesia. *Am J Emerg Med.* 2003; 21: 461-466. DOI: http://dx.doi.org/10.1016/s0735-6757(03)00095-0

141. Borland ML, Jacobs I, Rogers IR. Options in prehospital analgesia. *Emerg Med.* 2002; 14: 77-84. PMID: https://www.ncbi.nlm.nih.gov/pubmed/11993839

142. Porter K. Ketamine in prehospital care. *Emerg Med J.* 2004; 21: 351-354. DOI: http://dx.doi.org/10.1136/emj.2003.010843

143. Malinovsky JM, Servin F, Cozian A, Lepage JY, Pinaud M. Ketamine and norketamine plasma concentrations after i.v., nasal and rectal administration in children. *Br J Anaesth.* 1996; 77: 203-207. DOI: http://dx.doi.org/10.1093/bja/77.2.203

144. Morris C, Perris A, Klein J, Mahoney P. Anaesthesia in haemodynamically compromised emergency patients: does ketamine represent the best choice of induction agent? *Anaesthesia.* 2009; 64: 532-539. DOI: http://dx.doi.org/10.1111/j.1365-2044.2008.05835.x

145. Green SM, Andolfatto G, Krauss BS. Ketamine and intracranial pressure: No contraindication except hydrocephalus. *Ann Emerg Med.* 2015; 65: 52-54. DOI: http://dx.doi.org/10.1016/j.annemergmed.2014.08.025

146. Loflin R, Koyfman A. When used for sedation, does ketamine increase intracranial pressure more than fentanyl or sufentanil? *Ann Emerg Med.* 2015; 65: 55-56. DOI: http://dx.doi.org/10.1016/j.annemergmed.2014.08.017

147. Polomano RC, Buckenmaier CC 3rd, Kwon KH, Hanlon AL, Rupprecht C, Goldberg C, et al. Effects of low-dose iv ketamine on peripheral and central pain from major limb injuries sustained in combat. *Pain Med.* 2013; 14: 1088-1100. DOI: http://dx.doi.org/10.1111/pme.12094

148. Brown CV, Neville AL, Rhee P, Salim A, Velmahos GC, Demetriades D. The impact of obesity on the outcomes of 1,153 critically injured blunt trauma patients. *J Trauma.* 2005; 59: 1048-1051. DOI: http://dx.doi.org/10.1097/01.ta.0000189047.65630.c5

149. Buonsenso D, Barone G, Valentini P, Pierri F, Riccardi R, Chiaretti A. Utility of intranasal Ketamine and Midazolam to perform gastric aspirates in children: a double-blind, placebo controlled, randomized study. *BMC Pediatr.* 2014; 14: 67. DOI: http://dx.doi.org/10.1186/1471-2431-14-67

150. Yan JW, McLeod SL, Iansavitchene A. Ketamine-propofol versus propofol alone for procedural sedation in the emergency department: A systematic review and meta-analysis. *Acad Emerg Med.* 2015; 22: 1003-1013. DOI: http://dx.doi.org/10.1111/acem.12737

151. Pershad J, Todd K, Waters T. Cost-effectiveness analysis of sedation and analgesia regimens during fracture manipulation in the pediatric emergency department. *Pediatr Emerg Care.* 2006; 22: 729-736. DOI: http://dx.doi.org/10.1097/01.pec.0000220523.01364.ef

152. Uri O, Behrbalk E, Haim A, Kaufman E, Halpern P. Procedural sedation for painful orthopedic manipulations using propofol versus midazolam/ketamine performed by orthopedic residents in the adult Emergency department. *J Bone Joint Surg.* 2011; 93: 2255-2262. DOI: http://dx.doi.org/10.2106/jbjs.j.01307

153. Reid C, Hatton R, Middleton P. Case report: prehospital use of intranasal ketamine for paediatric burn injury. *Emerg Med J.* 2011; 28: 328-329. DOI: http://dx.doi.org/10.1136/emj.2010.092825

154. Yeaman F, Meek R, Egerton-Warburton D, Rosengarten P, Graudins A. Sub-dissociative-dose intranasal ketamine for moderate to severe pain in adult emergency department patients. *Emerg Med Australas.* 2014; 26: 237-242. DOI: http://dx.doi.org/10.1111/1742-6723.12173

155. Plunkett A, Turabi A, Wilkinson I. Battlefield analgesia: a brief review of current trends and concepts in the treatment of pain in US military casualties from the conflicts in Iraq and Afghanistan. *Pain Manag.* 2012; 2: 231-238. DOI: http://dx.doi.org/10.2217/pmt.12.18

156. Nanobashvili J, Kopadze T, Tvaladze M. War injuries of major extremity arteries. *World J Surg.* 2003; 27: 134-139. DOI: https://dx.doi.org/10.1007/s00268-002-6472-8

157. Mora AG, GanemVJ, Ervin AT, MaddyryK, Bebarta VS. En route use of analgesics in nonintubated, critically ill patients transported by U.S. Air Force Critical Care Air Transport Teams. *Mil Med.* 2016; 181:145-151.
158. Scheppke KA, Braghiroli J, Shalaby M, Chait R. Prehospital use of i.m. ketamine for sedation of violent and agitated patients. *West J Emerg Med.* 2014; 15: 736-741. DOI: http://dx.doi.org/10.5811/westjem.2014.9.23229

159. Scaggs TR, Glass DM, Hutchcraft MG, Weir WB. Prehospital ketamine is a safe and effective treatment for excited delirium in a community hospital based EMS system. *Prehosp Disaster Med.* 2016; 31: 563-569. DOI: http://dx.doi.org/10.1017/s1049023x16000662

160. Coderre TJ, Katz J, Vaccarino AL, Melzack R. Contribution of central neuroplasticity to pathological pain: Review of clinical and experimental evidence. *Pain.* 1993; 52: 259-285. DOI: http://dx.doi.org/10.1016/0304-3959(93)90161-h

161. Kissin I. Preemptive analgesia. *Anesthesiology.* 2000; 93: 1138-1143. DOI: http://dx.doi.org/10.1097/00000542-200010000-00040

162. Eisenach JC. Preemptive hyperalgesia, not analgesia? *Anesthesiology.* 2000; 92: 308-309. DOI: http://dx.doi.org/10.1097/00000542-200002000-00009

163. Schmid RL, Sandler AN, Katz J. Use and efficacy of low-dose ketamine in the management of acute postoperative pain: a review of current techniques and outcomes. *Pain.* 1999; 82: 111-125. DOI: http://dx.doi.org/10.1016/s0304-3959(99)00044-5

164. Møiniche S, Kehlet H, Dahl JB. A qualitative and quantitative systematic review of preemptive analgesia for postoperative pain relief: The role of timing of analgesia. *Anesthesiology.* 2002; 96: 725-741. DOI: http://dx.doi.org/10.1097/00000542-200203000-00032

165. Guignard B, Coste C, Costes H, Sessler DI, Lebrault C, Morris W, et al. Supplementing desflurane-remifentanil anesthesia with small-dose ketamine reduces perioperative opioid analgesic requirements. *Anesth Analg.* 2002; 95: 103-108. DOI: http://dx.doi.org/10.1097/00000542-200207000-00018

166. Domino EF, Domino SE, Smith RE, Domino LE, Goulet JR, Domino KE, et al. Ketamine kinetics in unmedicated and diazepam-premedicated subjects. *Clin Pharmacol Ther.* 1984; 36: 645-653. PMID: https://www.ncbi.nlm.nih.gov/pubmed/6488686

167. J Joly V, Richebe P, Guignard B, Fletcher D, Maurette P, Sessler DI, et al. Remifentanil-induced postoperative hyperalgesia and its prevention with small-dose ketamine. *Anesthesiology.* 2005; 103: 147-155. DOI: http://dx.doi.org/10.1097/00000542-200507000-00022

168. Leung A, Wallace MS, Ridgeway B, Yaksh T. Concentration-effect relationship of intravenous alfentanil and ketamine on peripheral neurosensory thresholds, allodynia and hyperalgesia of neuropathic pain. *Pain.* 2001; 91: 177-187. DOI: http://dx.doi.org/10.1016/s0304-3959(00)00433-4

169. Feltracco P, Barbieri S, Rizzi S, Ori C, Groppa F, De Rosa G, et al. Brief report: perioperative analgesic efficacy and plasma concentrations of S+-ketamine in continuous epidural infusion during thoracic surgery. *Anesth Analg.* 2013; 116: 1371-1375. DOI: http://dx.doi.org/10.1213/ane.0b013e31828cbaf0

170. Lahtinen P, Kokki H, Hakala T, Hynynen M. S(+)-Ketamine as an analgesic adjunct reduces opioid consumption after cardiac surgery. *Anesth Analg.* 2004; 99: 1295-1301. DOI: http://dx.doi.org/10.1213/01.ane.0000133913.07342.b9

171. McNicol ED, Schumann R, Haroutounian S. A systematic review and meta-analysis of ketamine for the prevention of persistent post-surgical pain. *Acta Anaesthesiol Scand.* 2014; 58: 1199-1213. DOI: http://dx.doi.org/10.1111/aas.12377

172. Javid MJ, Rahimi M, Keshvari A. Dissociative conscious sedation, an alternative to general anesthesia for laparoscopic peritoneal dialysis catheter implantation: a randomized trial comparing intravenous and subcutaneous ketamine. *Perit Dial Int.* 2011; 31: 308-314. DOI: http://dx.doi.org/10.3747/peri.2010.00110

173. Chazan S, Ekstein MP, Marouani N, Weinbroum AA. Ketamine for acute and subacute pain in opioid-tolerant patients. *J Opioid Manag.* 2008; 4: 173-180. DOI: http://dx.doi.org/10.5055/jom.2008.0023

174. Chin RP, Ho CH, Cheung LP. Scheduled analgesic regimen improves rehabilitation after hip fracture surgery. *Clin Orthop Relat Res.* 2013; 471: 2349-2360. DOI: http://dx.doi.org/10.1007/s11999-013-2927-5

175. Sonawane NB, Balavenkatasubramanian J, Gurumoorthi P, Jadhav PA. Quality of post-operative analgesia after epidural dexmedetomidine and ketamine: A comparative pilot study. *Indian J Anaesth.* 2016; 60: 766-768. DOI: http://dx.doi.org/10.4103/0019-5049.191698

176. Ekstein P, Szold A, Sagie B, Werbin N, Klausner JM, Weinbroum AA. Laparoscopic surgery may be associated with severe pain and high analgesia
requirements in the immediate postoperative period. Ann Surg. 2006; 243: 41-46. DOI: http://dx.doi.org/10.1097/01.sla.0000193806.81428.6f

177. Mace HS, Paech MJ, McDonnell NJ. Obesity and obstetric anaesthesia. Anaesth Intensive Care. 2011; 39: 559-570. PMID: https://www.ncbi.nlm.nih.gov/pubmed/21823371

178. Gaiser R. Anesthetic considerations in the obese parturient. Clinical Obstet Gynecol. 2016; 59: 193-203. DOI: http://dx.doi.org/10.1016/j.cog.2011.06.085

179. Vricella LK, Louis JM, Mercer BM, Bolden N. Impact of morbid obesity on epidural anesthesia complications in labor. Am J Obstet Gynecol. 2011; 205: 370.e1-6. DOI: http://dx.doi.org/10.1016/j.ajog.2011.06.085

180. Elia N, Tramér MR. Ketamine and postoperative pain—a quantitative systematic review of randomised trials. Pain. 2005; 113: 61-70. DOI: http://dx.doi.org/10.1016/j.pain.2004.09.036

181. Feld JM, Laurito CE, Beckerman M, Vincent J, Hoffman WE. Non-opioid analgesia improves pain relief and decreases sedation after gastric bypass surgery. Can J Anaesth. 2003; 50: 336-341. DOI: http://dx.doi.org/10.1007/bf03021029

182. Craven R. Ketamine. Anesthesia. 2007; 62(Suppl 1): 48-53. DOI: http://dx.doi.org/10.1111/j.1365-2044.2007.05298.x

183. Parashchanka A, Schelfout S, Coppens M. Role of novel drugs in sedation outside the operating room: dexmedetomidine, ketamine and remifentanil. Curr Opin Anaesthesiol. 2014; 27: 442-447. DOI: http://dx.doi.org/10.1097/aco.000000000000086

184. Godoy M L, Pino AP, Córdova LG, Carrasco OJA, Castillo MA. Sedation and analgesia in children undergoing invasive procedures. Arch Argent Pediatr. 2013; 111: 22-28. DOI: http://dx.doi.org/10.5546/aap.2013.eng.22

185. Ricard C, Tichit R, Troncin R, Bernard F. Sedation using ketamine for pain procedures in Pediatric Oncology. Bull Cancer. 2009; 96:15-20. DOI: https://dx.doi.org/10.1684/bdc.2009.0890

186. Ibrahim M. A prospective, randomized, double blinded comparison of intranasal dexmedetomidine vs intranasal ketamine in combination with intravenous midazolam for procedural sedation in school aged children undergoing MRI. Anesth Essays Res. 2014; 8: 179-186. DOI: http://dx.doi.org/10.4103/0259-1162.134495

187. Kaviani N, Khademi A, Ebtehaj I, Mohammadi Z. The effect of orally administered ketamine on requirement for anesthetics and postoperative pain in mandibular molar teeth with irreversible pulpiteis. J Oral Sci. 2011; 53: 461-465. DOI: http://dx.doi.org/10.2334/josnusd.53.461

188. Surendar MN, Pandey RK, Saksena AK, Kumar R, Chandra G. A comparative evaluation of intranasal dexmedetomidine, midazolam and ketamine for their sedative and analgesic properties: a triple blind randomized study. J Clin Pediatr Dent. 2014; 38: 255-261. DOI: http://dx.doi.org/10.17796/jcpd.38.3.182855807482966

189. Gyanesh P, Haldar R, Srivastava D, Agrawal PM, Tiwari AK, Singh PK. Comparison between intranasal dexmedetomidine and intranasal ketamine as premedication for their sedative and analgesic properties: a double-blind randomized, placebo-controlled trial. J Anesth. 2014; 28: 12-18. DOI: http://dx.doi.org/10.1007/s00540-013-1657-x

190. Guo Zhang XR, Loo CK. Cognitive impairment following electroconvulsive therapy: does the choice of anesthetic agent make a difference? J ECT. 2008; 24: 52-56. DOI: http://dx.doi.org/10.1097/00001889-200801000-00001

191. Bryson EO, Aloysi AS, Farber KG, Kellner CH. Individualized anesthetic management for patients undergoing electroconvulsive therapy: a review of current practice. Anesth Analg. 2017; 124: 1943-1956. DOI: http://dx.doi.org/10.1213/ane.000000000001873

192. Voss LJ, Sleigh JW, Barnard JP, Kirsch HE. The howling cortex: seizures and general anesthetic drugs. Anesth Analg. 2008; 107: 1689-1703. DOI: http://dx.doi.org/10.1213/ane.0b013e3181852595
195. Blake DR. Office-based anesthesia: dispelling common myths. *AesthetSurg J.* 2008; 28: 564-570. DOI: http://dx.doi.org/10.1016/j.asj.2008.07.012

196. Hollinger I, Mittnacht A. Cardiac catheterization laboratory: catheterization, interventional cardiology, and ablation techniques for children. *Int Anesthesiol Clin.* 2009; 47: 63-99. DOI: http://dx.doi.org/10.1097/ain.0b013e31819417d7

197. Camci E, Koltka K, Sungur Z, Karadeniz M, Yavru A, Pembeči K, et al. Implantable cardioverter-defibrillator placement in patients with mild-to-moderate left ventricular dysfunction: hemodynamics and recovery profile with two different anesthetics used during deep sedation. *J Cardiothorac Vasc Anesth.* 2003; 17: 613-616. DOI: http://dx.doi.org/10.1016/s1053-0770(03)00205-2

198. Chau EHL, Lam D, Wong J, Mokhlesi B, Chung F. Obesity hypoventilation syndrome. A review of epidemiology, pathophysiology, and perioperative considerations. *Anesthesiology.* 2012; 117: 188-205. DOI: http://dx.doi.org/10.1097/alan.0b013e31825add60

199. Vaughns JD, Ziesenitz VC, van den Anker JN. Clinical pharmacology of frequently used intravenous drugs during bariatric surgery in adolescents. *Curr Pharm Des.* 2015; 21: 5650-5659. DOI: http://dx.doi.org/10.2174/1381612821666150901105736

200. Bakan M, Umutoglu T, Topuz U, Uysal H, Bayram M, Kadioglu H, et al. Opioid-free total intravenous anesthesia with propofol, dexmedetomidine and lidocaine infusions for laparoscopic cholecystectomy: a prospective, randomized, double-blinded study. *Braz J Anesthesiol.* 2015; 65: 191-199. DOI: http://dx.doi.org/10.1016/j.bjane.2014.05.001

201. Grubor P, Manojlović S, Manojlović N, Grubor M. Endoprosthesis and obesity. *Med Arch.* 2013; 67: 446-449. DOI: http://dx.doi.org/10.5455/medarch.2013.67.446-449

202. Adhikary SD, Liu WM, Memtsoudis SG, Davis CM 3rd, Liu J. Body Mass Index more than 45 kg/m(2) as a cutoff point is associated with dramatically increased postoperative complications in total knee arthroplasty and total hip arthroplasty. *J Arthroplasty.* 2016; 31: 749-753. DOI: http://dx.doi.org/10.1016/j.arth.2015.10.042

203. Tukker A, Visscher TL, Picavet HS. Overweight and health problems of the lower extremities: Osteoarthritis, pain and disability. *Public Health Nutr.* 2009; 12: 359-368. DOI: http://dx.doi.org/10.1017/s1368980008002103

204. Andersen LP, Werner MU, Rosenberg J, Gögenur I. Analgesic treatment in laparoscopic gastric bypass surgery: a systematic review of randomized trials. *Obes Surg.* 2014; 24: 462-470. DOI: http://dx.doi.org/10.1007/s11695-013-1172-z

205. Kamruzzaman M, MamunASMA, Bakar SMA, Saw A, Kamarul T, Islam MN, et al. Multilevel linear regression analysis of factors influencing body mass index among Bangladeshi married non-pregnant women. *J BiosocSci.* 2017; 49: 498-508. DOI: http://dx.doi.org/10.1017/s0021932016000572

206. Mansour MA, Mahmoud AA, Geddawy M. Nonopioid versus opioid based general anesthesia technique for bariatric surgery: A randomized double-blind study. *Saud J Anaesth.* 2013; 7: 387-391. DOI: http://dx.doi.org/10.4103/1658-354x.121045

207. Hofer RE, Sprung J, Sarr MG, Wedel DJ. Anesthesia for a patient with morbid obesity using dexmedetomidine without narcotics. *Can J Anaesth.* 2005; 52: 176-180. DOI: http://dx.doi.org/10.1007/bf03027725

208. Hasanein R, El-Sayed W, Nashwa W. The effect of combined remifentanil and low dose ketamine infusion in patients undergoing laparoscopic gastric bypass. *Egypt J Anaesthesiol.* 2011; 27: 255-260. DOI: http://dx.doi.org/10.1016/j.egjana.2011.07.009

209. Suzuki H, Nakajima W, Aoyagi M, Takahashi M, Kuzuta T, Osaki M. A case of endotracheal intubation in prone position utilizing PENTAX-Airwayscope for morbidly obese patient. *Masui.* 2012; 61: 384-386. PMID: https://www.ncbi.nlm.nih.gov/pubmed/22590940

210. Bozzo AE, Gala RJ, Villasenor MA, Hao J, Mauffrey C. Orthopedic trauma surgery in the morbidly obese patient. *Eur J Orthop Surg Traumatol.* 2014; 24: 421-425. DOI: http://dx.doi.org/10.1007/s00590-013-1220-3

211. Gillespie GN, Porteous AJ. Obesity and knee arthroplasty. *Knee.* 2007; 14: 81-86. DOI: http://dx.doi.org/10.1016/j.knee.2006.11.004

212. Williams O, Fitzpatrick R, Hajat S, Reeves BC, Stimpson A, Morris RW, et al. Mortality, morbidity, and 1-year outcomes of primary elective total hip arthroplasty. *J Arthroplasty.* 2002; 17: 165-171. DOI: http://dx.doi.org/10.1054/arth.2002.29389

213. Nikolajsen L, Brandsborg B, Lucht U, Jensen TS, Kehlet H. Chronic pain following total hip arthroplasty: a nationwide questionnaire study. *Acta J Pharm Sci Therap,* 4(1):187-214 (2018)
214. Fischer HB, Simanski CJ. A procedure-specific systematic review and consensus recommendations for analgesia after total hip replacement. *Anaesthesia*. 2005; 60: 1189-1202. DOI: http://dx.doi.org/10.1111/j.1365-2044.2005.04382.x

215. Meller I, Weinbroum A, Bickels J, Dadia S, Nirkin A, Merimsyky O, et al. Fifteen years of bone tumor cryosurgery: a single-center experience of 440 procedures and long-term follow-up. *Eur J Surg Oncol*. 2008; 34: 921-927. DOI: http://dx.doi.org/10.1016/j.ejso.2007.11.001

216. Aveline C, Hetet HL, Vautier P, Gautier JF, Bonnet F. Peroperative ketamine and morphine for postoperative pain control after lumbar disk surgery. *Eur J Pain*. 2006; 10: 653-658. DOI: http://dx.doi.org/10.1016/j.ejpain.2005.10.005

217. Yamauchi M, Asano M, Watanabe M, Iwasaki S, Furuse S, Namiki A. Continuous low-dose ketamine improves the analgesic effects of fentanyl patient-controlled analgesia after cervical spine surgery. *Anesth Analg*. 2008; 107: 1041-1044. DOI: http://dx.doi.org/10.1213/ane.0b013e31817f1e4a

218. Parratte S, Pesenti S, Argenson JN. Obesity in orthopedics and trauma surgery. *Orthop Traumatol Surg Res*. 2014; 100: S91-S97. DOI: http://dx.doi.org/10.1016/j.otsr.2013.11.003

219. Green SM, Roback MG, Kennedy RM, Krauss B. Clinical practice guideline for emergency department ketamine dissociative sedation: 2011 update. *Ann Emerg Med*. 2011; 57: 449-461. DOI: http://dx.doi.org/10.1016/j.annemergmed.2010.11.030

220. Olausen A, Williams B. Intravenous access in the prehospital setting: Literature review. *Prehosp Disaster Med*. 2012; 27: 468-472. DOI: http://dx.doi.org/10.1017/s1049023x12001124

221. Kronenberg RH. Ketamine as an analgesic: parenteral, oral, rectal, subcutaneous, transdermal and intranasal administration. *J Pain Palliat Care Pharmacother*. 2002; 16: 27-35. DOI: http://dx.doi.org/10.1080/13541603.2002.11813491

222. Niesters M, Martini C, Dahan A. Ketamine for chronic pain: risks and benefits. *Br J Clin Pharmacol*. 2014; 77: 357-367. DOI: http://dx.doi.org/10.1111/bcp.12094

223. Jonkman K, Duma A, Velzen M, Dahan A. Ketamine inhalation. *Br J Anaesth*. 2017; 118: 268-269. DOI: http://dx.doi.org/10.1093/bja/aew457

224. Canbay O, Celebi N, Uzun S, Sahin A, Celiker V, Aypar U. Topical ketamine and morphine for post-tonsillectomy pain. *Eur J Anaesthesiol*. 2008; 25: 287-292. DOI: http://dx.doi.org/10.1017/s026502150700316x

225. Yenigun A, Et T, Aytac S, Olcay B. Comparison of different administration of ketamine and intravenous tramadol hydrochloride for postoperative pain relief and sedation after pediatric tonsillectomy. *J Craniofac Surg*. 2015; 26: e21-e24. DOI: http://dx.doi.org/10.1097/SCS.0000000000001250

226. Canbay O, Celebi N, Sahin A, Celiker V, Ozgen S, Aypar U. Ketamine gargle for attenuating postoperative sore throat. *Br J Anaesth*. 2008; 100: 490-493. DOI: http://dx.doi.org/10.1093/bja/aen023

227. Corcuera-Flores JR, Silvestre-Rangil J, Cutandosoriano A, Lópezméjínez J. Current methods of sedation in dental patients - a systematic review of the literature. *Med Oral Patol Oral Cir Bucal*. 2016; 21: e579-e586. DOI: http://dx.doi.org/10.4317/medoral.20981

228. Bhatnagar S, Mishra S, Gupta M, Srikanti M, Mondol A, Diwedii A. Efficacy and safety of a mixture of ketamine, midazolam and atropine for procedural sedation in paediatric oncology: a randomised study of oral versus intramuscular route. *J Paediatr Child Health*. 2008; 44: 201-204. DOI: http://dx.doi.org/10.1111/j.1440-1754.2007.01233.x

229. Schoevers RA, Chaves TV, Balukova SM, Rot MA, Kortekaas R. Oral ketamine for the treatment of pain and treatment-resistant depression. *Br J Psychiatry*. 2016; 208: 108-113. DOI: http://dx.doi.org/10.1192/bjp.bp.115.165498

230. Graudins A, Meek R, Egerton-Warburton D, Oakley E, Seith R. The PICHFORK (Pain in Children Fentanyl or Ketamine) trial: a randomized controlled trial comparing intranasal ketamine and fentanyl for the relief of moderate to severe pain in children with limb injuries. *Ann Emerg Med*. 2015; 65: 248-254. DOI: http://dx.doi.org/10.1016/j.annemergmed.2014.09.024

231. 230. Heidari SM, MirlohiSZ, HashemiSj. Comparison of the preventive analgesic effect of rectal ketamine and rectal acetaminophen after pediatric tonsillectomy. *Int J Prev Med*. 2012; 3: S150-S155. PMID: https://www.ncbi.nlm.nih.gov/pubmed/22826758

232. Pöyhäri R, Vainio A. Topically administered ketamine reduces capsaicin-evoked mechanical hyperalgesia.
233. Bassani AS, Banov D. Evaluation of the percutaneous absorption of ketamine HCl, gabapentin, clonidine HCl, and baclofen, in compounded transdermal pain formulations, using the Franz Finite Dose Model. *Pain Med*. 2016; 17: 230-238. DOI: http://dx.doi.org/10.1111/pme.12899

234. Poterucha TJ, Murphy SL, Rho RH, Sandroni P, Warndahl RA, Weiss WT, et al. Topical amitriptyline-ketamine for treatment of rectal, genital, and perineal pain and discomfort. *Pain Physician*. 2012; 15: 485-488. PMID: https://www.ncbi.nlm.nih.gov/pubmed/23159965

235. Azevedo VM, Lauretti GR, Pereira NL, Reis MP. Transdermal ketamine as an adjuvant for postoperative analgesia after abdominal gynecological surgery using Lidocaine epidural blockade. *Anesth Analg*. 2000; 91: 1479-1482. DOI: http://dx.doi.org/10.1097/00000539-200012000-00034

236. Gerbhardt B. Pharmacology and clinical results with peridural and intrathecal administration of ketamine. *Anesth Analg*. 1994; 43(Suppl 2): S34-S40. PMID: https://www.ncbi.nlm.nih.gov/pubmed/7840412

237. Bailard NS, Ortiz J, Flores RA. Additives to local anesthetics for peripheral nerve blocks: Evidence, limitations, and recommendations. *Am J Health Syst Pharm*. 2014; 71: 373-385. DOI: http://dx.doi.org/10.2146/ajhp130336

238. Abdel-Ghaffar ME, Abdulatiful M, Al Ghundi A, Mowafi H, Anwar A. Epidural ketamine reduces post-operative epidural PCA consumption of fentanyl/bupivacaine. *Can J Anaesth*. 1998; 45: 103-109. DOI: http://dx.doi.org/10.1007/bf03013246

239. Unlugenc H, Ozalevli M, Gunay Y, Olguner S, Eivrüke C, Ozcengiz D, et al. A double-blind comparison of intrathecal S(+)-ketamine and fentanyl combined with bupivacaine 0.5% for Caesarean delivery. *Eur J Anaesthesiol*. 2006; 23: 1018-1024. DOI: http://dx.doi.org/10.1017/s026502150600950

240. Prathanvanich P, Chand B. The role of capnography during upper endoscopy in morbidly obese patients: a prospective study. *Surg Obes Relat Dis*. 2015; 11: 193-198. DOI: http://dx.doi.org/10.1016/j.soard.2014.05.018

241. Schnabel A, Poepping DM, Kranke P, Zahn PK, Pogatzki-Zahn EM. Efficacy and adverse effects of ketamine as an additive for paediatric caudal anaesthesia: a quantitative systematic review of randomized controlled trials. *Br J Anaesth*. 2011; 107: 601-611. DOI: http://dx.doi.org/10.1093/bja/aer258

242. Kulkarni KR, Kadam AI, Namazi IL. Efficacy of stellate ganglion block with an adjuvant ketamine for peripheral vascular disease of the upper limbs. *Indian J Anaesth*. 2010; 54: 546-551.DOI: http://dx.doi.org/10.4103/0019-5049.72645

243. Abdel-Ghaffar HS, Kalefa MA, Imbaby AS. Efficacy of ketamine as an adjunct to lidocaine in intravenous regional anesthesia. *Reg Anesth Pain Med*. 2014; 39: 418-422. DOI: http://dx.doi.org/10.1097/aap.0000000000000128

Copyright: © Weinbroum et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.