Detailed Physiologic Characterization Reveals Diverse Mechanisms for Novel Genetic Loci Regulating Glucose and Insulin Metabolism in Humans

Erik Ingelsson,1,2 Claudia Langenberg,3 Marie-France Hivert,4 Inga Prokopenko,5,6 Valeriya Lyssenko,7 Josée Dupuis,8 Reedik Mägi,5,6 Stephen Sharp,3 Anne U. Jackson,9 Themistocles L. Assimes,10 Peter Shadrer,11 Joshua W. Knowles,10 Björn Zethelius,2 Fahim A. Abbasi,10 Richard N. Bergman,12 Antje Bergmann,13 Christian Berne,1 Michael Boehnke,9 Lori L. Bonnycastle,15 Stefan R. Bornstein,16 Thomas A. Buchanan,12,17 Suzannah J. Bumpstead,18 Yvonne Böttcher,19 Peter Chines,15 Francis S. Collins,17 Cyrus C. Cooper,20 Elaine M. Dennison,20 Michael R. Erdos,15 Ele Ferrannini,21 Caroline S. Fox,22,23 Jürgen Graessler,16 Ke Hao,24 Bo Isomaa,25,26 Karen A. Jameson,20 Peter Kovacs,27 Johanna Kuusisto,28 Markku Laakso,28 Michael R. Erdos,15 Ele Ferrannini,21 Caroline S. Fox,22,23 Jürgen Graessler,16 Ke Hao,24 Bo Isomaa,25,26 Karen A. Jameson,20 Peter Kovacs,27 Johanna Kuusisto,28 Markku Laakso,28 Claes Ladenvall,7 Karen L. Mohlke,29 Mario A. Morken,15 Narisu Narisu,15 David M. Nathan,30 Laura Pascoe,31 Felicity Payne,32 John R. Petrie,33 Avan A. Sayer,20 Peter E. H. Schwarz,16 Laura J. Scott,9 Heather M. Stringham,9 Michael Stumvoll,9 Amy J. Swift,15 Ann-Christine Syvänen,14 Tiinamaija Tuomi,25,34 Jaakko Tuomilehto,35,36 Anke Tönjes,19,37 Timo T. Valle,35 Gordon H. Williams,23 Lars Lind,14 Inès Barroso,38 Thomas Quertermous,10 Mark Walker,31 Nicholas J. Wareham,3 James B. Meigs,11,38 Mark I. McCarthy,5,6,39 Leif Groop,7 Richard M. Watanabe,12,40 and Jose C. Florez,30,38,41,42 on behalf of the MAGIC investigators*

OBJECTIVE—Recent genome-wide association studies have revealed loci associated with glucose and insulin-related traits. We aimed to characterize 19 such loci using detailed measures of insulin processing, secretion, and sensitivity to help elucidate their role in regulation of glucose control, insulin secretion and/or action.

RESEARCH DESIGN AND METHODS—We investigated associations of loci identified by the Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC) with circulating proinsulin, measures of insulin secretion and sensitivity from oral glucose tolerance tests (OGTTs), euglycemic clamps, insulin suppression tests, or frequently sampled intravenous glucose tolerance tests in nondiabetic humans (n = 29,084).

RESULTS—The glucose-raising allele in MADD was associated with abnormal insulin processing (a dramatic effect on higher proinsulin levels, but no association with insulinoergic index) at extremely persuasive levels of statistical significance (P = 2.1 × 10⁻⁷). Defects in insulin processing and insulin secretion were seen in glucose-raising allele carriers at TCF7L2, SLC30A8, GIPR, and C2CD4B. Abnormalities in early insulin secretion were suggested in glucose-raising allele carriers at MTNR1B, GCK, FADS1, DGKB, and PROX1 (lower insulinoergic index; no association with proinsulin or insulin sensitivity). Two loci previously associated with fasting insulin (GCKR and IGF1) were associated with OGTT-derived insulin sensitivity indices in a consistent direction.

CONCLUSIONS—Genetic loci identified through their effect on hyperglycemia and/or hyperinsulinemia demonstrate considerable heterogeneity in associations with measures of insulin processing, secretion, and sensitivity. Our findings emphasize the importance of detailed physiologic characterization of such loci for improved understanding of pathways associated with alterations in glucose homeostasis and eventually type 2 diabetes. Diabetes 59:1266–1275, 2010

A recent meta-analysis of genome-wide association studies of fasting glycemic traits in nondiabetic individuals conducted by the Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC) has reported the discovery of nine new loci associated with fasting glucose (FG) (in or near ADCY5, MADD, ADRA2A, CR2Y, FADS1, PROX1, SLC2A2, GLIS3, and C2CD4B) and one locus associated with fasting insulin levels (IGF1) (1). The same study showed effects on FG for seven previously published glucose and/or type 2 diabetes loci G6PC2, MTNR1B, GCK, DGKB, GCKR, SLC30A8, and TCF7L2. Another recent MAGIC meta-analysis, published back-to-back with the aforementioned study, identified two additional novel loci (GIPR and VPS13C) associated with 2-h glucose after an oral glucose tolerance test (OGTT) (2). In complementary case-control analyses, an increased risk of type 2 diabetes was demonstrated at genome-wide significance for carriers of the glucose-raising risk alleles in or near the new glycomic loci ADCY5, PROX1, GCK, DGKB, GCKR, as well as the known type 2 diabetes loci MTNR1B, SLC30A8, and TCF7L2 (1). This is a powerful demonstration of how analyses of continuous metabolic traits in healthy individuals can lead to the discovery of previously unsuspected type 2 diabetes susceptibility genes. Detailed
physiological characterization of each locus may help elucidate their role in regulation of glucose levels, insulin secretion and/or action, and identify potential pathways involved in type 2 diabetes pathogenesis.

The insulin-processing pathway follows several canonical steps in the synthesis and secretion of peptide hormones. Proinsulin is produced in the endoplasmic reticulum and packaged into secretory vesicles in the Golgi apparatus. Several proteases cleave proinsulin into mature insulin and C-peptide. In normoglycemic individuals, higher intact proinsulin levels are associated with elevated glucose levels (3,4), increased insulin secretion, and insulin resistance. In prospective studies, higher intact proinsulin has been positively associated with an increased risk of type 2 diabetes (5). Circulating proinsulin can thus be considered as a measure of β-cell mass or function, insulin processing, insulin secretion, or a combination of these.

Impaired insulin secretion and hepatic and peripheral insulin resistance contribute to the pathogenesis of type 2 diabetes (6). Glucose-stimulated insulin secretion can be assessed using the insulinogenic index, which is derived from an OGTT and is strongly correlated with more sophisticated measures of insulin secretion (7). The euglycemic-hyperinsulinemic clamp technique, the insulin suppression test, and the frequently sampled intravenous glucose tolerance test (FSIGT) provide accurate measures of insulin sensitivity but are difficult to implement in the context of large-scale epidemiological studies. Several indices derived from multiple-point OGTT data correlate well with clamp-assessed sensitivity and have been suggested as more practical surrogate measures (8–11).

Genetic loci associated with glycemic traits have modest effect sizes (1,2), suggesting that individual studies are likely to be underpowered to detect associations with detailed physiologic characteristics. We therefore established a consortium of 14 studies with detailed measures of circulating proinsulin (9 studies), glucose and insulin at a minimum of three time points during a standard 75-g OGTT (9 studies), FSIGT (1 study), insulin suppression test (1 study), and/or euglycemic-hyperinsulinemic clamps (2 studies). We sought to investigate systematically the effects of single nucleotide polymorphisms (SNPs) previously associated with FG, fasting insulin, and/or 2-h glucose meta-analyses (1,2). Alternative proxy SNPs (showing maximal linkage disequilibrium [LD] with the index SNP in the European CEU HapMap sample) were selected for each locus to allow for differences in genotyping capacities of various platforms (supplementary Table 2). In samples where initial genotyping of an index SNP failed, a proxy SNP in strong LD with the original SNP was genotyped whenever possible. Markers that failed Hardy-Weinberg equilibrium (exact P value <1×10^-6 or 1×10^-8 in studies with GWAMA and zinc-thione meta-analyses, <0.01 in direct genotyping studies) were excluded from analyses (supplementary Table 1). Call rates for directly genotyped SNPs exceeded 90%; information content r² >0.3 for MACH-imputed (16) or proper-info >0.4 for IMPUTE-inferred (17) SNPs were required for SNP inclusion in analysis. In samples where more than one SNP was genotyped within the same region and the index SNP was not available, the proxy SNP with the higher call rate and stronger LD was selected.

In addition to diabetes or nonwhite ethnicity, some studies applied additional exclusion criteria as detailed in supplementary Table 1. In each cohort, we used natural log-transformed trait values for fasting proinsulin, insulinogenic index, Stumvoll, Matsuda, Belfiore, and Gutt insulin sensitivity indices, fasting split proinsulin and C-peptide, and Z score transformed values for M1, S1, and SSPG as the dependent variables in linear regression models that included terms for age, sex, study site (if applicable), geographical covariates (if applicable), and age squared (Framingham only) to assess the association of additively coded genotypes with trait values. Analyses were performed with and without adjustment for BMI. Analyses of proinsulin and split proinsulin were additionally adjusted for natural log-transformed fasting insulin (nmol/L).

Data were available from 14 independent studies, including 3 with directly genotyped and imputed genome-wide data and 11 with de novo genotyping data. Association testing was performed using STATA 10.1 (Stata, College Station, TX) or SAS 9 (SAS Institute, Cary, NC) software for directly genotyped SNPs and using SNPTEST (17) or MERLIN (18) software that takes linkage disequilibrium functions from the R kinship package (R Foundation for Statistical Computing, Vienna, Austria, 2007) to account for familial correlation. We performed inverse variance fixed-effects meta-analyses using METAL (http://www.sph.umich.edu/csg/abecasis/Meta/index.html) and GWAMA (http://www.well.ox.ac.uk/gwama/index.shtml) software. Heterogeneity was assessed using the Q statistic.

We report nominal P values without adjustment for multiple testing given the high prior probabilities for associations with the examined phenotypes (all loci have already been associated with at least one glycemic phenotype at genome-wide levels of statistical significance [P < 5×10^-8]). However, we have focused specifically on the results with P values <1×10^-4.

RESULTS

Based on the results observed for the different traits, we organized loci displaying similar patterns into groups based on the presumed mechanism of action in Table 1 (age- and sex-adjusted) and supplementary Table 5 (addi-
TABLE 1
Associations of 19 SNPs previously associated with fasting glucose, fasting insulin, and/or 2-h glucose on detailed physiologic measures of insulin processing, secretion, and sensitivity

SNP	Nearest gene	Loci implicated in abnormal insulin processing	Loci associated with higher proinsulin and lower insulin secretion	Loci associated with abnormalities in early insulin secretion	Loci associated with reduced insulin sensitivity
rs7944584	MADD	rs7944584 A/T	rs17271305 G/A	rs903146 TCF7L2 T/C	rs8709063 MTN1B G/C
rs17271305	VPS13C	rs17271305 G/A	rs1326634 SLC30A8 C/T	rs10423928 A/T	rs4607517 GCK A/G
rs1083063	CD24b	rs1083063 C/T	rs1083063 C/T	rs1083063 C/T	rs1083063 C/T
rs10423928	GIPR	rs10423928 A/T	rs10423928 A/T	rs10423928 A/T	rs10423928 A/T
rs11071657	C2CD4B	rs11071657 A/G	rs11071657 A/G	rs11071657 A/G	rs11071657 A/G
rs4607517	GCK	rs4607517 G/A	rs4607517 G/A	rs4607517 G/A	rs4607517 G/A
rs174550	FADS1	rs174550 C/T	rs174550 C/T	rs174550 C/T	rs174550 C/T
rs560887	G6PC2	rs560887 C/T	rs560887 C/T	rs560887 C/T	rs560887 C/T

Alleles
- **A**: allele associated with higher proinsulin and lower insulin secretion
- **T**: allele associated with abnormalities in early insulin secretion
- **G**: allele associated with reduced insulin sensitivity

Proinsulin
- Proinsulin is a measure of proinsulin levels in the blood.

Insulinogenic index
- The insulinogenic index is a measure of insulin response to oral glucose tolerance test (OGTT).

Insulin sensitivity
- Insulin sensitivity measures the ability of the body to utilize insulin.

Insulin sensitivity measures‡
- Stumvoll§
- Matsuda§
- Belfiore§
- Gutt§

Allele Frequencies
- **n**: number of individuals
- **P**: p-value

Association of SNPs withphysiologic measures
- **Beta (SE)**: coefficient and standard error of the association between SNP and physiologic measure
- **P_abg**: p-value for the association between SNP and physiologic measure

Note:
- Intravenous insulin measures are not included in the table due to space limitations.
Continued

No obvious effects on insulin processing, secretion, or sensitivity

The influence of BMI adjustment on genetic associations was generally minor and specifically noted when relevant.

Loci implicated in abnormal insulin processing. Failing β-cells are expected to show diminished insulin secretion, while compensatory increases in circulating proinsulin denote the β-cell’s attempt to maintain euglycemia (19). Therefore, genetic differences in fasting proinsulin levels (adjusted for fasting insulin) without a concomitant effect on insulinogenic index suggest abnormal insulin processing. The most striking association occurred between the FG-raising allele at MADD rs7944584 and higher fasting proinsulin levels ($P = 2.1 \times 10^{-7}$); its lack of association with the insulinogenic index suggests an effect of this locus on insulin processing (supplementary Figs. 1 and 2). Less significant effects of this allele on lower OGTT-derived insulin sensitivity measures ($P = 0.01 - 0.03$) were also observed. Consistent with the above, MADD rs7944584 was strongly associated with higher fasting split proinsulin (supplementary Table 6), but not with fasting C-peptide (supplementary Table 7). The 2-h glucose-raising allele at VPS13C rs17271305 was modestly associated with lower fasting proinsulin levels ($P = 0.02$), but not associated with measures of insulin secretion or action.

Loci associated with higher proinsulin and lower insulin secretion. Several genetic variants were associated with indices of β-cell dysfunction, i.e., higher fasting proinsulin levels and a lower insulinogenic index, including the glucose-raising alleles at TCF7L2 rs7903146 ($P = 4.1 \times 10^{-12}$ and 2.0×10^{-7} respectively), SLC30A8 rs13266634 ($P = 2.7 \times 10^{-6}$ and 0.0012) and GIPR rs10423928 ($P = 6.2 \times 10^{-7}$ and 2.1×10^{-13}). A trend was also seen for the FG-raising allele at C2CD4B rs11071657 associating with higher fasting proinsulin levels ($P = 0.004$) and lower insulinogenic index ($P = 0.06$). At these loci the relationship between the insulinogenic index and fasting proinsulin levels was linear for carriers of the protective allele, whereas carriers of the risk alleles failed to demonstrate an increase in insulinogenic index in proportion to rising proinsulin levels (Fig. 1A-D). Except for an association between the GIPR rs10423928 and higher insulin sensitivity as assessed by the Belfiore ($P = 1.0 \times 10^{-3}$), Matsuda ($P = 0.0008$), and Stumvoll ($P = 0.003$) indices, the other associations of these SNPs with measures of insulin sensitivity were very modest ($P < 10^{-3}$) and/or inconsistent. TCF7L2 rs7903146 was the only locus in this group associated with lower C-peptide levels (supplementary Table 7). We note that although the VPS13C and C2CD4B loci are physically close to each other (101 kb apart), LD between the two index SNPs is relatively weak ($r^2 = 0.28$ based on CEU HapMap).

Loci associated with abnormalities in early insulin secretion. A subset of other variants showed association between FG-raising alleles and lower insulinogenic index without an association with fasting proinsulin levels: MTNR1B rs10830963 ($P = 2.3 \times 10^{-16}$), GCK rs4607517 ($P = 2.2 \times 10^{-4}$), FADS1 rs174550 ($P = 0.001$), DGKB rs2191349 ($P = 0.006$), and PROX1 rs340874 ($P = 0.02$). The FG-raising alleles at GCK ($P = 8.1 \times 10^{-3}$) and MTNR1B ($P = 0.006$) were also associated with a lower Gutt index, but not with any of the other insulin sensitivity measures.

The FG-raising allele at G6PC2 rs560887 was associated with a higher insulinogenic index ($P = 5.0 \times 10^{-5}$), a
finding previously reported by others (20). It was also
weakly associated with lower insulin sensitivity measured
by intravenous techniques in BMI-adjusted analyses (P =
0.02) (supplementary Table 5).

Loci associated with reduced insulin sensitivity. The
glucose-raising allele at GCKR rs780094 was associated with
lower insulin sensitivity by the Stumvoll (P =
0.001), Matsuda (P = 2.9 × 10−3), and Belfiore (P = 0.003)
indices, whereas the fasting insulin–raising allele at IGF1
rs55767 was associated with lower insulin sensitivity by the
Matsuda (P = 0.01), Belfiore (P = 0.02), and Gutt (P =
0.002) indices. GCKR rs780094 was also associated with
increased C-peptide levels (supplementary Table 7).

**Loci without obvious effects on insulin processing,
secretion, or sensitivity.** Five of the examined loci—
ADCY5 rs11708067, ADRA2A rs10885122, CRY2 rs11605924,
SLC2A2 rs11920090, and GLIS3 rs7034200—did not show
any apparent associations with any of the examined
phenotypes (Table 1). We note that the ADRA2A SNP
rs10885122, previously associated with fasting glucose (1)
and assayed here, is 202 kb away from and uncorrelated
with rs553668 (r² = 0.003 in CEU HapMap). The A allele at
rs553668 has been recently associated with type 2 diabetes
and reduced insulin secretion in a Scandinavian popula-
tion (21). In our MAGIC meta-analysis of ~14,000 individ-
uals, the A allele at rs553668 is nominally associated with
higher β-cell function by homeostasis model assessment
(P = 0.003) and higher fasting insulin (P = 0.02), but
shows no association with fasting glucose (P = 0.21).

DISCUSSION
In this report we investigated the effects of 19 SNPs
previously associated with FG, fasting insulin, and/or 2-h
glucose on multiple physiologic measures of insulin pro-
cessing, secretion, and sensitivity in 14 cohorts with over
29,000 unique participants. For at least 12 of these SNPs,
this is the first report to study their associations with such
comprehensive physiologic measures of insulin and glu-
cose metabolism. Our results demonstrate that these ge-
netic loci influence glycemic regulation by diverse
pathways (supplementary Fig. 3).

Loci implicated in abnormal insulin processing. The
glucose-raising allele at MADD rs7903146 was associated with
increased fasting proinsulin (adjusted for fasting insulin), but
not with insulin secretion. The dramatic effect size on
fasting proinsulin levels (two- to 10-fold that of other loci) seems out of proportion with its modest elevation of FG and an otherwise unremarkable impact on other glycemic measures, suggesting that this locus is associated with an isolated insulin processing defect without a major impairment of insulin secretory capacity. It is therefore not surprising that despite the effects of this locus on FG and fasting proinsulin levels, it has a negligible influence on type 2 diabetes risk (1). MADD encodes a death domain–containing adaptor protein, which interacts with the death domain of tumor necrosis factor-α receptor 1 and propagates apoptotic signals (22); however, if functional variants in MADD were involved in mechanisms leading to β-cell damage, one would expect to have seen a concomitant deterioration of β-cell function. The isolated proinsulin association raises the possibility that other genes in the region may contain a causal variant (in LD with rs7944584), which is functionally responsible for the observed insulin processing defect. Nearby genes include PACSIN3, which encodes a protein involved in vesicle formation, transport, and endocytosis whose transcript is relatively abundant in the human pancreas (23); ARFGAP2, which has been implicated in vesicular trafficking between the Golgi and the endoplasmic reticulum (24); and SLC39A13, which encodes a zinc transporter (25).

Loci associated with higher proinsulin and lower insulin secretion. The glucose-raising variants at TCF7L2, SLC30A8, GIPR, and C2CD4B were all associated with increased fasting proinsulin levels and decreased insulinogenic index. The relationship between the insulinogenic index and fasting proinsulin was linear for carriers of the protective allele at TCF7L2 and SLC30A8, whereas carriers of the risk alleles failed to demonstrate an increase in insulinogenic index in proportion to rising proinsulin levels, indicating an active secretion of insulin precursors in lieu of mature insulin. This has several potential explanations: 1) reduced β-cell mass through either diminished proliferation or enhanced apoptosis resulting in increased β-cell stress in the face of increased insulin demand; 2) an impairment in the molecular processing from proinsulin to insulin; or 3) defective vesicle trafficking. In sum, all these possibilities could manifest themselves by the exocytosis of more preprotein products and lower secretion of insulin in response to glucose. TCF7L2 encodes a nuclear receptor for β-catenin involved in the Wnt signaling pathway; the association of SNP rs7903146 in this gene with type 2 diabetes is now well established as the strongest common genetic determinant of type 2 diabetes yet described. Here we confirm the previously reported associations of this variant with measures of impaired insulin secretion and with fasting proinsulin levels (rev. in 26). Current evidence suggests that TCF7L2 causes an impairment in insulin secretion by affecting insulin granule exocytosis and β-cell responsiveness to incretins (perhaps by downregulation of glucagon-like peptide 1 receptors); incretin resistance may in turn diminish β-cell mass. Our data support any of the above mechanisms.

GIPR encodes the receptor for glucose-dependent insulinotropic polypeptide (GIP, also known as gastric inhibitory polypeptide), another incretin hormone. Interaction of GIP with its receptor on the β-cells increases cAMP levels and intracellular calcium, which enhances exocytosis of insulin-containing granules, mostly during the later response to oral glucose (20–120 min) (27). Individuals with type 2 diabetes and their relatives have an impaired insulinotropic effect of GIP (28), perhaps due to defective or reduced number of GIP receptors in β-cells (29). A common variant in GIPR was associated with 2-h glucose in a prior MAGIC meta-analysis (2), as well as a lower insulinogenic index and a lower ratio of insulin to glucose area under the curve during an OGTT; in this study we have replicated the insulinogenic index result and shown an association of the same allele with higher fasting proinsulin levels. The effect of this variant on reducing both early and late insulin secretion may explain the perceived improvement in insulin sensitivity by OGTT-derived measures, which is driven by lower insulin levels throughout the OGTT. These observations are fully consistent with the known mechanisms described above.

SLC30A8 encodes the zinc transporter, ZnT8, which co-localizes with insulin in the β-cell and is important in the storage and maturation of insulin within cytoplasmic granules (30). ZnT8-null mice have impaired glucose tolerance and decreased insulin secretion in vivo (31). Furthermore, mice carrying a SLC30A8 exon three deletion had lower plasma insulin levels, and islets from these mice showed decreased zinc content and lower glucose–stimulated insulin secretion (32). Here we confirm previous reports that carriers of the risk genotype at SLC30A8 exhibit abnormalities in insulin secretion (33) and increased circulating proinsulin (34). Thus, variants in both TCF7L2 and SLC30A8 affect FG, proinsulin levels, and insulin secretion and, in doing so, increase type 2 diabetes risk.

We provided biologic mechanisms to explain the associations we observed between variation in these loci and abnormal insulin processing or elevated proinsulin levels. However, many different biologic conditions can result in abnormal insulin processing and regulation of proinsulin levels. Therefore, in the absence of experiments to directly test these mechanisms, we view these associations as hypothesis-generating for future studies to formally test these mechanisms.

Loci associated with abnormalities in early insulin secretion. Genetic defects in pathways primarily involved in insulin secretion are expected to cause higher glucose levels. Of all examined loci, the glucose-raising alleles of SNPs at MTN1R1B, FADS1 and DGKB, and GCK showed an association with lower insulinogenic index, but no significant association with fasting proinsulin or insulin sensitivity. Thus, these loci seem to influence insulin secretory capacity without affecting insulin processing or inducing significant β-cell stress, which would result in higher circulating proinsulin.

Our results confirm that the glucose-raising allele in MTN1R1B (encoding the melatonin receptor 1B) is associated with lower insulin secretion after oral or intravenous glucose challenge (35–37). We did not see a significant association of MTN1R1B with fasting proinsulin levels, which is in line with the observation in the Tübingen Family Study (37) but in contrast with the Helsinki Birth Cohort results (36). MTN1R1B is expressed in human islets and co-localizes with insulin; melatonin inhibits insulin secretion by rat insulinoma cells (36,37). It is therefore possible that genetic variation in MTN1R1B enhances β-cell responsiveness to melatonin. Fatty acid metabolism may also play a role in early insulin secretion. FADS1 encodes fatty acid desaturase 1, a key enzyme in the metabolism of unsaturated (ω-3 and ω-6) fatty acids. These lipid moieties play a major role in the stability of cellular membranes, but fatty acid desatu-
rases can also convert polyunsaturated fatty acids into cell signaling metabolites. Polymorphisms in FADS1 that are strongly correlated with the FG-associated SNP have been associated with FADS1 mRNA expression levels in the liver (1) and differences in cell membrane or circulating fatty acid profiles (38,39). The type of fatty acids influences glucose-stimulated insulin secretion in incubated pancreatic islet (40) and in perfused pancreas (41). Insulin secretion differs in response to oral challenges varying in their fatty acid composition (42,43). Thus, a plausible mechanism by which insulin secretion function is reduced without the need to postulate reduced β-cell mass or survival can also be envisioned for this locus.

DGKB encodes for diacylglycerol kinase β, which is a member of a family of intracellular lipid kinases that phosphorylate diacylglycerols. Within the β-cell, diacylglycerols are implicated in the intracellular pathways of parasympathetic stimulation of insulin secretion, which is activated by meal intake through the vagus nerve (44). If a DGKB variant influences the β-cell response to neural stimulation via a second messenger pathway, it can also do so without affecting β-cell integrity and thus show no association with fasting proinsulin levels.

GCK encodes glucokinase, which phosphorylates glucose to glucose-6-phosphate and is thus the rate-limiting enzyme for glucose sensing in β-cells. Loss-of-function mutations in GCK are responsible for maturity-onset diabetes of the young (MODY) 2, a syndrome characterized by mild fasting hyperglycemia and glucose intolerance due to reduced sensitivity of insulin secretion to changes in glycemia, resulting in an impaired secretory response (45). Non-MODY GCK variants have been associated with FG levels in multiple cohorts (46), an association that reached genome-wide significance in MAGIC (35).

The G6PC2 FG-raising allele was associated with a higher insulinogenic index. This is consistent with observations in obese children, where another SNP in the same locus was associated with both increased FG and higher insulinogenic index (47), and in Mexican Americans, where the FG-raising allele was also associated with increased FG and OGTT 30-min insulin change (48). G6PC2 encodes glucose-6-phosphatase, catalytic 2, which catalyzes glucose-6-phosphate dephosphorylation, thereby opposing the action of GCK in the β-cell. The observation that risk allele carriers have a higher FG and yet a higher insulinogenic index is in contrast with the results obtained for GCK and may explain why this variant shows a flat-to-slightly protective effect on type 2 diabetes (1).

Thus, a simple elevation of the glucostatic set point does not provide a fully satisfactory explanation. An alternative is that balance between GCK and G6PC2 activities may be affected by genetic variation resulting in changes in pulsatile insulin secretion, which could interfere with normal insulin signaling between the pancreas and insulin-sensitive tissues. This hypothesis is supported by two lines of evidence. First, GCK and G6PC2 regulate the rate-limiting step of glycolysis, and oscillations in glycolysis have been shown to be correlated with oscillations in insulin secretion in vitro (49,50). Second, recent animal studies showing that disruption of pulsatile insulin secretion results in a loss of efficiency in insulin action at the liver, leading to modest hepatic insulin resistance and increased hepatic glucose output (51). These changes would then cause the observed compensatory rise in insulin secretion.

Loci associated with insulin resistance. FG-raising alleles at GCKR and IGF1 have previously been shown to be associated with insulin resistance by homeostasis model assessment (1). In the present study, we confirm this observation using dynamic indices not restricted to glucose and insulin measured in the fasting state. Both GCKR and IGF1 are strongly expressed in the liver, and could thus contribute to development of hepatic insulin resistance. GCKR encodes glucokinase regulatory protein, which inhibits glucokinase in the liver; the index SNP in strong LD with the missense variant P446L, whose FG-raising allele inhibits glucokinase activity in the presence of physiological concentrations of fructose-6 phosphate (52), thus leading to increased hepatic glucose production. IGF1 encodes the insulin-like growth factor I (IGF-I), which has significant structural homology with insulin. Circulating IGF-I can bind to insulin receptors and stimulate glucose transport in fat and muscle while decreasing hepatic glucose output, thus lowering blood glucose while suppressing insulin secretion (53). However the role of IGF-I, and especially polymorphisms in or near IGF1, in glucose homeostasis and insulin sensitivity is not well understood.

Despite state-of-the-art methods and the large sample size to date, we found little evidence of the examined SNPs being convincingly associated with insulin sensitivity. This could reflect a smaller sample size for the intravenous insulin sensitivity analyses (n = 3,195) than for the analyses of insulin secretion, and hence lower statistical power. It is well established that measures of β-cell function show stronger heritability than measures of insulin action, the latter being subject to large day-to-day variation. And while insulin sensitivity measures are correlated, differences among them do exist that increase heterogeneity and reduce power (54). Although the correlation between intravenous and OGTT-derived measures of insulin resistance is high (supplementary Table 4), the discrepancy in results among these measures may reflect differences in the genetic contribution to the correlation (55). In addition, biological reasons may explain the lack of associations with insulin sensitivity, including trait heterogeneity (i.e., constructed by multiple components with presumably different genetic determinants, such as hepatic glucose output and peripheral glucose uptake) or the SNP selection since these SNPs were chosen from analyses of FG, fasting insulin, and 2-h glucose, traits that might be more strongly associated with insulin processing and secretion than with peripheral insulin sensitivity. Regardless, these results suggest that care must be exerted when comparing association results that use differing measures of insulin sensitivity and highlight that their underlying genetic physiology requires further study.

Limitations. Because our studies are conducted in free-living humans, our mechanistic inferences are limited by the measures derived from human subjects in vivo and the assumptions contained therein. In the absence of appropriate cellular or animal models, we cannot offer conclusive proof of mechanism at the molecular level. Furthermore, a strong association with one specific measure does not preclude a weaker association with a different measure, and therefore a complex interplay between various processes involved in insulin secretion and action may be operational. Glucose itself (even in the nondiabetic range studied here) may affect the variables under consideration; however, because these variants were discovered by their association with glucose levels, it did not seem advisable to remove the contribution of glucose to the traits under study by statistical adjustment.
Finally, we emphasize that the SNPs genotyped here are simply associated with the traits under consideration and thus may be correlated with but not represent the causal variants, nor lie in the biologically relevant genes.

Conclusion. We have undertaken a detailed physiologic characterization of 19 genetic loci recently identified through associations with FG or insulin and/or 2-h glucose and demonstrate considerable heterogeneity in the associations of these loci with measures of insulin processing, secretion, and sensitivity. Our findings emphasize the importance of detailed physiological characterization of such loci for improved understanding of mechanisms by which newly discovered loci might influence glucose physiology and type 2 diabetes risk.

ACKNOWLEDGMENTS

This study was presented at The Genomics of Common Diseases 2009, Hinxton, Cambridge, U.K., 23–26 September 2009 and at the 59th Annual Meeting of the American Society of Human Genetics, Honolulu, Hawaii, 20–24 October 2009.

DISCLOSURES

J.C.F. has received consulting honoraria from Publicis Healthcare, Merck, bioStrategies, XOMA, and Daiichi-Sankyo, and has been a paid invited speaker at internal scientific seminars hosted by Pfizer and Alnylam Pharmaceuticals. L.G. has been a consultant for and served on advisory boards for sanofi-aventis, GlaxoSmithKline, Novartis, Merck, Tethy Bioscience, and XOMA and has received lecture fees from Lilly and Novartis. I.B. and her husband own stock in GlaxoSmithKline and Incyte. No other potential conflicts of interest relevant to this article were reported.

AUTHOR CONTRIBUTIONS

Writing group: E.I., C.Lan., M-F.H., I.P., V.L., J.D., J.B.M., M.I.M., L.G., R.M.W., J.C.F.

Project design, management and coordination: (Botnia) L.G.; (DIAGEN) S.R.B., P.S.; (Ely) N.J.W.; (ENGAGE) M.I.M.; (Framingham Heart Study) J.B.M.; (FUSION) M.B., L.J.S., R.N.B., F.S.C., K.L.M., J.T., R.M.W.; (Hertfordshire) C.C.C.; (METSIM) J.K., M.L.; (NHANES III) J.B.M.; (Partners/Roche) J.B.M.; (PIVUS) E.I.; (RISC) E.F.; (Sorbs) M.S.; (Stanford IST) T.Q.; (ULSAM) E.I.

Sample collection and phenotyping: (Botnia) B.I., T.T., L.G.; (DIAGEN) A.B., J.G., P.S.; (Ely) N.J.W.; (Framingham Heart Study) J.B.M., C.S.F.; (FUSION) R.N.B., T.A.B., J.T., T.T.V.; (Hertfordshire) C.C.C., E.M.D., K.A.J., A.A.S.; (METSIM) J.K., M.L.; (NHANES III) J.B.M.; (Partners/Roche) D.M.N., G.H.W., J.B.M.; (PIVUS) B.Z., LL.; (RISC) J.R.P., M.W.; (Sorbs) P.K., A.T.; (Stanford IST) F.A.A., T.Q.; (ULSAM) E.I., B.Z., C.B.

Genotyping: (Botnia) V.L.; (DIAGEN) P.C.; A.J.S.; (Ely) C. Lan., S.B., F.P., I.B., N.J.W.; (Framingham Heart Study) J.C.F.; (FUSION) L.L.B., M.R.E.; (Hertfordshire) C.Lan., S.B., F.P., I.B., N.J.W.; (METSIM) M.A.M., N.N.; (NHANES III) J.C.F.; (Partners/Roche) J.C.F.; (PIVUS) E.I., A.C.S., LL.; (RISC) L.P., M.W.; (Sorbs) Y.B., P.K.; (Stanford IST) T.L.A., J.W.K., K.H.; (ULSAM) E.I., B.Z., C.B., A.C.S.

Data analysis: (Botnia) V.L., C.Lad.; (DIAGEN) A.U.J., H.M.S.; (Ely) C.Lan., S.S.; (Framingham Heart Study) M-F.H., J.D.; (FUSION) A.U.J., H.M.S.; (Hertfordshire) C.Lan., S.S.; (METSIM) A.U.J., H.M.S.; (NHANES III) P.S.; (Partners/Roche) P.S.; (PIVUS) E.I.; (RISC) C.L., S.S.; (Sorbs) I.P., R.M.; (Stanford IST) T.L.A., J.W.K., F.A.A., K.H.; (ULSAM) E.I.

NOTE

Additional acknowledgments can be found in the online appendix at http://diabetes.diabetesjournals.org/cgi/content/full/db09-1568/DC1.

APPENDIX

From the 1Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; the 2Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden; the 3Medical Research Council Epidemiology Unit, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, U.K.; the 4Centre de Recherche Medicale de l’Universite de Sherbrooke, Sherbrooke, Quebec, Canada; the 5Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, U.K.; the 6Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, U.K.; the 7Department of Clinical Sciences, Diabetes and Endocrinology, University Hospital Malmö, Lund University, Malmö, Sweden; the 8Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts; the 9Department of Biostatistics, Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, Michigan; the 10Department of Medicine, Stanford University School of Medicine, Stanford, California; the 11General Medicine Division, Massachusetts General Hospital, Boston, Massachusetts; the 12Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, California; the 13Health Care Centre of the Medical Faculty Carl-Gustav-Carus of the Technical University, Dresden, Germany; the 14Department of Medical Sciences, Uppsala University, Uppsala, Sweden; the 15Genome Technology Branch, National Human Genome Research Institute, Bethesda, Maryland; the 16Prevention and Care of Diabetes Division, Department of Medicine III, University of Dresden, Dresden, Germany; the 17Division of Endocrinology and Diabetes, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California; the 18Wellcome Trust Sanger Institute, Hinxton, Cambridge, U.K.; the 19Department of Medicine, University of Leipzig, Leipzig, Germany; the 20Medical Research Council Epidemiology Resource Centre, University of Southampton, Southampton General Hospital, Southampton, U.K.; the 21Department of Internal Medicine, University of Pisa, Pisa, Italy; the 22Framingham Heart Study, National Heart, Lung, and Blood Institute, Framingham, Massachusetts; the 23Division of Endocrinology, Diabetes, and Hypertension, Harvard Medical School, Brigham and Women’s Hospital, Boston, Massachusetts; the 24Rosetta Inpharmatics LLC, a wholly owned subsidiary of Merck & Co., Inc., Seattle, Washington; the 25Folkhalsan Research Centre, Helsinki, Finland; the 26Malmska Municipal Health Care Center and Hospital, Jakobstad, Finland; the 27Interdisciplinary Centre for Clinical Research, University of Leipzig, Leipzig, Germany; the 28Department of Medicine, University of Kuopio and Kuopio University Hospital, Kuopio, Finland; the 29Department of Genetics, University of North Carolina, Chapel Hill, North Carolina; the 30Diabetes Research Center (Diabetes Unit) and Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts; the 31Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, U.K.;
medicated glucose uptake in normal subjects and in subjects with latent diabetes. J Clin Invest 1979;49:2151–2160
16. Li Y, Abecasis GR. Mach 1.0: rapid haplotype reconstruction and missing genotype inference. Am J Hum Genet 2006;79:2230
17. Marchini J, Howie B, Myers S, McVean G, Donnelly P. A new multipoint method for genome-wide association studies by imputation of genotypes. Nat Genet 2007;39:906–913
18. Abecasis GR, Cherny SS, Cookson Wo, Cardon L. Merlin–rapid analysis of dense genotype maps using sparse gene flow trees. Nat Genet 2002;30:97–101
19. Bell GI, Polonsky KS. Diabetes mellitus and genetically programmed defects in beta-cell function. Nature 2001;414:788–791
20. Rose CS, Group N, Krapu NT, Poulsen P, Wegner L, Nielsen T, Banasik K, Faerch K, Andersen G, Allrechtsen A, Borch-Johnsen K, Clausen JO, Jørgensen T, Vaag A, Pedersen O, Hansen T. A variant in the G6PC2–ABCB1 locus is associated with increased fasting plasma glucose, increased basal hepatic glucose production and increased insulin release after oral and intravenous glucose loads. Diabetologia 2005;48:2122–2129
21. Rosengren AH, Jokubka R, Tojnar D, Granhall C, Hansson O, Li DQ, Nargav J, Reinothe M, Tuncel J, Ellission L, Group N, Rorsman P, Salehi A, Lyssenko V, Luthman H, Renstrom E. Overexpression of alpha2A-adrenergic receptors contributes to type 2 diabetes. Science 2007;317:217–220
22. Kurada BR, Li LC, Mulherkarn MR, Subramanian M, Prasad KV, Prabhaekar BS. MADD, a splice variant of IG20, is indispensable for MAPK activation and protection against apoptosis upon tumor necrosis factor-alpha treatment. J Biol Chem 2009;284:13535–13541

REFERENCES
1. Dupuis J, Langenberg C, Prokopenko I, et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet 2010;42:105–116
2. Saxena R, Hivert MF, Langenberg C, et al. Genetic variation in GIP influences the glucose and insulin responses to an oral glucose challenge. Nat Genet 2010;42:142–148
3. Birkeland KI, Torjesen PA, Eriksson J, Vaaler S, Groop L. Hyperproinsulinemia of type II diabetes is not present before the development of hyperglycaemia. Diabetes Care 1994;17:1307–1310
4. Rader MJ, Eriksson J, Hartling SG, Groop L, Binder C. Proportional proinsulin responses in first-degree relatives of patients with type 2 diabetes mellitus. Acta Diabetologica 2000;37:132–137
5. Hanley AJ, D’Agostino R Jr, Wagenknecht LE, Saad MF, Savage PJ, Bergman R, Hafler SM. Insulin Resistance Atherosclerosis Study. Increased proinsulin levels and decreased acute insulin response independently predict the incidence of type 2 diabetes in the insulin resistance atherosclerosis study. Diabetes 2002;51:1269–1270
6. Kahn SE. The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of type 2 diabetes. Diabetesologia 2003;46:3–19
7. Tura A, Kautzky-Willer A, Pacini G. Insulinogenic indices from insulin and C-peptide: comparison of beta-cell function from OGTT and IVGTT. Diabetes Res Clin Pract 2006;72:298–301
8. Steffens-Damrauer M, Metzger B, Pimenta W, Jemmar T, Yki-Jarvinen H, Van Haeften T, Renn W, Gerich J. Use of the oral glucose tolerance test to assess insulin release and insulin sensitivity. Diabetes Care 2000;23:295–301
9. Matsuda M, DeFronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care 1992;15:149–167
10. Belliello F, Iannello S, Volpicelli G. Insulin sensitivity indices calculated from basal and OGTT-induced insulin, glucose, and FFA levels. Mol Genet Metab 1998;63:134–141
11. Gutt M, Davis CL, Spitzer SB, Llabre MM, Kumar M, Czarnecki EM, Birkeland KI, Torjesen PA, Eriksson J, Vaaler S, Groop L. Hyperproinsulinemia of type II diabetes is not present before the development of hyperglycaemia. Diabetes Care 1994;17:1307–1310
12. Byrne CD, Wareham NJ, Brown DC, Clark PM, Cox LJ, Day NE, Palmer CR, Johnson PR, Masseboeuf M, Burcelin R, Baldwin SA, Liu M, Lara-Lemus R, Arvan P, Schutt FC, Wheeler MB, Chaimi B, Rutter GA. Insulin storage and glucose homeostasis in mice null for the zinc transporter ZnT8 in glucose-induced insulin secretion. J Cell Sci 2006;119:419–4206
13. Chaimi M, Barenoo EA, Wissekerke N, Loder M, Baldwin SA, Liu M, Lara-Lemus R, Arvan P, Schutt FC, Wheeler MB, Chaimi B, Rutter GA. Insulin storage and glucose homeostasis in mice null for the zinc transporter ZnT8 and studies of the type 2 diabetes-associated variants. Diabetes 2009;58:2070–2083
14. Pound LD, Sarkar SA, Benninger RK, Wang Y, Sunwaliul A, Shadoan MK, Printz RL, O’Brien EM. Deletion of the mouse Slc30a8 gene encoding zinc transporter ZnT8 results in impaired insulin secretion. Biochem J 2009;421:371–376
15. Steinhardtottir V, Thorleifsson G, Reynisdottir I, Benediktsson R, Jonsdottir T, Walters GB, Styrkarsdottir U, Gretarsdottir S, Emilsson V, Jonsdottir T, Vigny J, Baldursson B, Corbulon R, Baldwin SA, Liu M, Lara-Lemus R, Arvan P, Schutt FC, Wheeler MB, Chaimi B, Rutter GA. Insulin storage and glucose homeostasis in mice null for the zinc transporter ZnT8 and studies of the type 2 diabetes-associated variants. Diabetes 2009;58:2070–2083
16. Belliello F, Iannello S, Volpicelli G. Insulin sensitivity indices calculated from basal and OGTT-induced insulin, glucose, and FFA levels. Mol Genet Metab 1998;63:134–141
17. Gutt M, Davis CL, Spitzer SB, Llabre MM, Kumar M, Czarnecki EM, Schneiderman N, Skyler JS, Marks JB. Validation of the insulin sensitivity index (ISI), a comparison with other measures. Diabetes Res Clin Pract 2000;47:177–184
18. Byrne CD, Wareham NJ, Brown DC, Clark PM, Cox LJ, Day NE, Palmer CR, Wang TW, Williams DR, Haes CN. Hypoglycaemiaed in subjects with normal and abnormal glucose tolerance: relative contributions of insulin secretion, insulin resistance and suppression of plasma non-esterified fatty acids. Diabetologia 1994;37:889–896
19. DeFronzo RA, Tobin JD, Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol 1977;237:E214–E224
20. Bergman RN, Prager R, Volund A, Olefsky JM. Equivalence of the insulin sensitivity index in man derived by the minimal model method and the euglycemic glucose clamp. J Clin Invest 1987;79:790–800
21. Shen SW, Reaven GM, Farquhar J.W. Comparison of impedance to insulin-
36. Lyssenko V, Nagorny CL, Erdos MR, Wierup N, Jonsson A, Spéigel P, Bugiani M, Saxena R, Fex M, Pulizzi N, Isomaa B, Tuomi T, Nilsson P, Kuuusi J, Tuomilehto J, Boenhke M, Alshuler D, Sundler F, Eriksson JG, Jackson AU, Laakso M, Marchetti P, Watanabe RM, Mulder H, Groop L. Common variant in MTNR1B associated with increased risk of type 2 diabetes and impaired early insulin secretion. Nat Genet 2000;24:82–88.

37. Staiger H, Machicaco F, Schafer SA, Kirchhoff K, Kantartzis K, Guthoff M, Silbernagel G, Stefan N, Haring HU, Fritsche A. Polymorphisms within the novel type 2 diabetes risk locus MTNR1B determine beta-cell function. PLoS Genet 2008;4:e1000282.

38. Gieger C, Geistlinger L, Altmairer E, Hrabé de Angelis M, Kronenberg F, Meitinger T, Meuwes HW, Wichmann HE, Weinberger KM, Adamkis J, Illig T, Suhre K. Genetics meets metabolomics: a genome-wide association study of metabolite profiles in human serum. PLoS Genet 2008;4:e1000282.

39. Schaeffer L, Gohlke H, Müller M, Heid IM, Palmer LJ, Kompauer I, Demmelmaier H, Illig T, Koletzko B, Heinrich J. Common genetic variants of the FADS1 FADS2 gene cluster and their reconstructed haplotypes are associated with the fatty acid composition in phospholipids. Hum Mol Genet 2006;15:1745–1756.

40. Pareja A, Tinhones FJ, Soriguer FJ, Monzón A, Esteve de Antonio I, García-Arnes J, Oliveira G, Ruíz de Adana MS. Unsaturated fatty acids alter the insulin secretion response of the islets of Langerhans in vitro. Diabetes Res Clin Pract 1997;38:143–149.

41. Stein DT, Stevenson BE, Chester MW, Basit M, Daniels MB, Turley SD, McGarry JD. The insulinotropic potency of fatty acids is influenced profoundly by their chain length and degree of saturation. J Clin Invest 1997;100:380–403.

42. Xiao C, Giacca A, Carpenter A, Lewis GF. Differential effects of monounsaturated, polyunsaturated and saturated fat ingestion on glucose-stimulated insulin secretion, sensitivity and clearance in overweight and obese, non-diabetic humans. Diabetologia 2000;43:1371–1379.

43. Christiansen E, Schneider S, Palmvig B, Tauber-Lassen E, Pedersen O. Intake of a diet high in trans monounsaturated fatty acids or saturated fatty acids. Effects on postprandial insulinemia and glycerina in obese patients with NIDDM. Diabetes Care 1997;20:881–887.

44. Gilon P, Hennquin JC. Mechanisms and physiological significance of the cholinergic control of pancreatic beta-cell function. Endocr Rev 2001;22: 565–694.

45. Velho G, Frooguel P, Clement K, Pueyo ME, Rakotoambahina B, Zouali H, Passa P, Cohen D, Robert JJ. Primary pancreatic beta-cell secretory defect caused by mutations in glucokinase gene in kindreds of maturity onset diabetes of the young. Lancet 1992;340:444–448.

46. Weedon MN, Clark VJ, Qian Y, Ben-Shlomo Y, Timpson N, Ebrahim S, Lawlor DA, Pembrely ME, Ring S, Wilkin TJ, Voss LD, Jeffery AN, Metcalf B, Ferrucci L, Corsi AM, Murray A, Melzer D, Knight B, Shields B, Smith GD, Hattersley AT, De Rienzo A, Frayling TM. A common haplotype of the glucokinase gene alters fasting glucose and birth weight: association in six studies and population-genetics analyses. Am J Hum Genet 2006;78:991–1001.

47. Dos Santos C, Bougnères P, Fradin D. A single-nucleotide polymorphism in a methylatable Foxa2 binding site of the G6PC3 promoter is associated with insulin secretion in vivo and increased promoter activity in vitro. Diabetes 2005;54:489–492.

48. Li X, Shu YH, Xiang AH, Trigo E, Kuusisto J, Hartiala J, Swift AJ, Kawakubo M, Stringham HM, Bonnycastle LL, Lawrence JM, Laakso M, Allayee H, Buchanan TA, Watanabe RM. Additive effects of genetic variation in GCK and G6PC3 on insulin secretion and fasting glucose. Diabetes 2009;58: 2046–2053.

49. Chon HF, Berman N, Ipp E. Oscillations of lactate released from islets of Langerhans--evidence for oscillatory glycolysis in beta-cells. Am J Physiol 1992;262:E800-E805.

50. Deeney JT, Köhler M, Kubik K, Brown G, Schultz V, Tornheim K, Corkey BE, Berggren PO. Glucose-induced metabolic oscillations parallel those of Ca2+ and insulin release in clonal insulin-secreting cells. A multiwell approach to oscillatory cell behavior. J Biol Chem 2001;276:36946–36950.

51. Matveyenko AV, Veldhuis JD, Butler PC. Mechanisms of impaired fasting glucose and glucose intolerance induced by an approximate 50% pancreatic atrophy. Diabetes 2006;55:2347–2356.

52. Beer NL, Tribble ND, McCulloch LJ, Roos C, Johnson PR, Ortho-Melander M, Gloyn AL. The P446L variant in GCKR associated with fasting plasma glucose and triglyceride levels exerts its effect through increased glucokinase activity in liver. Hum Mol Genet 2009;18:4081–4088.

53. Clemmons DR. Role of insulin-like growth factor in maintaining normal glucose homeostasis. Horm Res 2004;62(Suppl. 1):77–82.

54. Bergman RN, Finegood DT, Ader M. Assessment of insulin sensitivity in vivo. Endocr Rev 1985;6:45–86.

55. Bergman RN, Zaccaro DJ, Watanabe RM, Haffner SM, Saad MF, Norris JM, Wagenknecht LE, Hohanson JE, Rotter JI, Rich SS. Minimal model-based insulin sensitivity has greater heritability and a different genetic basis than homeostasis model assessment or fasting insulin. Diabetes 2003;52:2168–2174.