Pairwise meta-analysis of aggregate data using metaan in Stata

Evangelos Kontopantelis
National Institute for Health Research
School for Primary Care Research
Faculty of Biology, Medicine and Health
University of Manchester
Manchester, UK
e.kontopantelis@manchester.ac.uk

David Reeves
Division of Population Health, Health Services Research and Primary Care
Faculty of Biology, Medicine and Health
University of Manchester
Manchester, UK
david.reeves@manchester.ac.uk

Abstract. A few years ago, we developed metaan, a package to perform fixed- or random-effects meta-analysis. In terms of random-effects meta-analysis, it offered a wide choice of models, including maximum likelihood, profile likelihood, or restricted maximum-likelihood, in addition to the established DerSimonian–Laird method available in metan or Cochrane’s RevMan software. Other unique features included a wide range of reported heterogeneity measures and a plot of the maximum likelihood function. Since then, metaan has been continuously updated to offer improved graphics, more options, and more meta-analysis models. In this necessary update, we describe these additions and discuss the new models and the evidence behind them.

Keywords: st0201, metaan, meta-analysis, random effects, fixed effect, effect sizes, DerSimonian–Laird, maximum likelihood, profile likelihood, restricted maximum likelihood, Peto, Mantel–Haenszel, permutation(s) method, bootstrap
DerSimonian–Laird, proportions, forest plot

1 Introduction

Meta-analysis is a statistical methodology that combines the results of several independent studies, clinical trials or observational, that are considered appropriate to combine (Huque 1988). Traditionally, the term “meta-analysis” refers to pairwise meta-analysis of aggregate data. Pairwise implies a two-arm comparison, usually an intervention and a control arm, as opposed to the more recently developed network meta-analysis methods (Lumley 2002; Salanti, Ades, and Ioannidis 2011). Aggregate implies pooling reported results, usually in research articles, and involves extracting data on effects (or associations) and their variability, as opposed to the more challenging but also more promising individual patient data meta-analysis (Riley, Lambert, and Abo-Zaid 2010). Meta-analysis of aggregate data methodology focuses on the second step of a two-step process, the “pooling” of the extracted summary statistics into a weighted average, with the metaan and metan packages in Stata, dealing with pairwise analyses (Harris et al. 2008; Kontopantelis and Reeves 2010). A new set of commands, meta, is also available in Stata 16, offering a comprehensive approach with advanced meta-analysis methods. In R (R Core Team 2018), the metafor package offers a comprehensive suite of meta-
analysis methods, including numerous random-effects approaches (Viechtbauer 2010), while meta is a user-friendly package that includes everything a meta-analyst would need as standard (Schwarzer 2007). Meta-analyses can also be conducted in SAS, but the process can be more challenging (Arthur, Bennett, and Huffcutt 2001). Specialist free software also exists, like RevMan, which is widely used in Cochrane reviews (Nordic Cochrane Centre 2007), but also easy-to-use Microsoft Excel add-ons like MIX (Bax et al. 2006) and MetaEasy (Kontopantelis and Reeves 2009b), which offer access to advanced meta-analysis methods through a widely available software platform. Specialist commercial software is also available, like CMA (Borenstein, Rothstein, and Cohen 2005).

Older comparisons and overviews of available software exist, but this is a fast-moving field (Bax et al. 2007; Sterne, Egger, and Sutton 2001).

Arguably the biggest threats to meta-analysis, particularly meta-analysis of aggregate data, are publication bias and heterogeneity. Publication bias is extremely difficult to identify and address convincingly, with methods to identify it being underpowered in small meta-analyses (Sterne, Gavaghan, and Egger 2000) and methods to account for it requiring strong assumptions, thus making them contentious. For example, the intuitive and widely used trim-and-fill method (Duval and Tweedie 2000) fails to account for funnel-plot asymmetry that could be due to heterogeneity and thus can be too conservative (Peters et al. 2007). Heterogeneity, or between-study variance, is also difficult to reliably identify and stems from differences in populations, interventions, outcomes, follow-up times (clinical heterogeneity), or differences in trial design and quality (methodological heterogeneity) (Higgins and Thompson 2002; Thompson 1994). The difficulty in quantifying heterogeneity, as with publication bias, primarily relates to the small size of a typical meta-analysis and the fact that the underlying methods are asymptotic and work well with large study numbers.

How to appropriately address heterogeneity is another key validity issue. Fixed-effects models will not account for identified heterogeneity, assuming a single “true” effect, and thus limit the generalizability of the findings to the pooled studies. Random-effects models will incorporate identified heterogeneity by assuming multiple “true” effects (some will assume they are normally distributed as well) and are typically more conservative and allow generalization. Considering that in the presence of heterogeneity, the performance of a fixed-effects approach deteriorates rapidly (Brockwell and Gordon 2001) and that random-effects models are robust even when the “true” effects deviate from normality (Kontopantelis and Reeves 2012a,b), we think that heterogeneity should always be modeled for the results to be generalizable—at any level and not only when above a certain arbitrary threshold (for example, $I^2 > 50\%$ as is sometimes the case). Although methods to model heterogeneity are robust, the underlying problem is how to accurately estimate existing heterogeneity. Although homogeneity has been found to be the exception rather than the rule and some degree of “true” effect variability between studies is to be expected (Thompson and Pocock 1991), unobserved heterogeneity is a real problem, especially for meta-analyses of a few studies that tend to be the norm (Kontopantelis, Springate, and Reeves 2013).

To estimate heterogeneity, the standard approach is the method proposed by DerSimonian and Laird (1986), which has been widely implemented and is the default random-
effects approach in generic and specialist meta-analysis statistical software. However, the between-study variance component can be estimated using alternative approaches, including iterative or nonparametric methods. These include maximum likelihood, profile likelihood, restricted maximum likelihood (REML) (Hardy and Thompson 1996; Thompson and Sharp 1999), and the nonparametric “permutations” method proposed by Follmann and Proschan (1999). A nonparametric bootstrap of the DerSimonian–Laird (DL) estimator was also shown to be a better performer, especially in small meta-analyses that were falsely assumed to be homogeneous under the standard DL model (Kontopantelis, Springate, and Reeves 2013), and that was recently verified in a more complete and independent simulation comparison (Petropoulou and Mavridis 2017). Because of the difficulty in detecting underlying heterogeneity in small meta-analyses and inaccurate estimates, sensitivity analyses using a range of heterogeneity levels have also been recommended (Kontopantelis, Springate, and Reeves 2013). Small meta-analyses are also more likely to end up with a sample of studies that is not representative, which can result in incorrect estimates of true heterogeneity.

We have implemented all these methods in metaan, offering numerous alternatives to the DL random-effects model. Since the first appearance of metaan, we have been continuously updating it, and the latest version offers improved graphics, dichotomous outcomes analyses, and more meta-analysis models. Besides the standard fixed-effects model, we have also implemented the Mantel–Haenszel and Peto methods for dichotomous outcomes (Greenland and Robins 1985; Yusuf et al. 1985), which have been shown to perform well for rare and very rare events, respectively (Bradburn et al. 2007). The command requires the study-specific estimates and standard errors, or arm-specific event and nonevent counts, for each study to be meta-analyzed. A complementing command, metaeff (Kontopantelis and Reeves 2009a), can be used to calculate the effect size and its standard error from the input parameters supplied by the user for each study, using one of the methods described in the Cochrane Handbook for Systematic Reviews of Interventions (Higgins and Green 2011; Kontopantelis and Reeves 2009b). The metaan command can also perform stratified meta-analysis and meta-analysis of proportions with the Freeman–Tukey arcsine transformation as well as provide elaborate forest plots using the dispgby package and likelihood plots for estimates obtained from the maximum likelihood models. Numerous measures of heterogeneity and their confidence intervals are also reported, including I^2 (0 to 100% range), H^2 (≥ 1), and the between-study variance estimate $\hat{\tau}^2$ (Higgins and Thompson 2002; Mittlböck and Heinzl 2006). In the following sections, we describe these additions through several examples.

2 The metaan command

2.1 Updates to metaan

Since metaan first appeared in 2010, we have added numerous features. We felt that these additions necessitated this article to serve as a more comprehensive guide for users, compared with the command’s help file. Major additions included the following:
• February 25, 2013: new meta-analysis models, bootstrap DL, and sensitivity analysis using preset values for I^2.

• August 14, 2014: dealing with proportions with the Freeman–Tukey transformation.

• September 5, 2014: support for α level other than 5%; reporting confidence intervals for heterogeneity measures.

• September 18, 2014: support for back-transforming effects to odds ratios (ORs) for binary outcomes.

• June 20, 2015: major update for forest plot to use program `dipgby` by Ross Harris and Mike Bradburn (same program used by `metan`).

• April 11, 2016: by option added for subgroup analyses.

• July 25, 2018: added support for binary data with all commonly used methods (Mantel–Haenszel, Peto, or inverse variance), with a new four-variable syntax.

• September 10, 2018: added back-transformation for meta-analyses of log-transformed effects.

Details on all these additions, along with the original capabilities and options for the command are described in detail below.

2.2 Description

The `metaan` command performs a meta-analysis on a set of studies and estimates the overall effect μ and its confidence interval. The command also displays various heterogeneity measures: Cochran’s Q, I^2 (in the $[0, 100\%]$ range with larger scores indicating higher levels of heterogeneity), H^2 (equals 1 in the case of homogeneity), and the between-study variance (τ^2) estimate. Cochran’s Q is the same across all methods, but the between-study variance estimate (and hence I^2 and H^2) can vary between the DL (dl) and maximum likelihood (ml) methods. Only one method option must be selected, with the exception of the four methods for event data: Mantel–Haenszel OR (`mhor`), Mantel–Haenszel risk ratio (`mhrr`), Mantel–Haenszel risk difference (`mhrd`), and Peto OR (`por`). Each one of these four approaches for binary data can be combined with the other models for different weighting and random-effects options. For calculating the effects and variance of the effects for a group of studies from various statistical parameters, please see the package `metaeff`. The command will automatically detect the alpha level in the environment and use it (edit by typing `set level 99`, for example).

The command requires the user to first specify either two or four variable names. When only two are specified, `metaan` assumes these refer to study effects and standard errors; when four are specified, the command assumes they represent study-group specific event and nonevent counts for a binary outcome. When the study effects and standard errors are specified, `metaan` uses the standard fixed-effects model or one of
many inverse-variance weighting methods to account for heterogeneity. Binary and continuous outcomes can be implemented using this syntax, provided the effect and its variability are available. In this case, the command expects as input the log() of the measure (OR, risk ratio, or hazard ratio [HR]) in `varname1` and its standard error in `varname2` (see appendix tables in Kontopantelis and Reeves [2009b] regarding relevant methods, which are available in `metaeff`). The default output is then the overall log() of the measure unless the user specifies the `exp` option, which returns the exponentiated results (to ORs, risk ratios, HRs, etc.). The name of the measure can be input with the forest plot option `effect()`, the default being OR.

When group-specific event and nonevent counts are specified, `metaan` calls Mantel–Haenszel and Peto fixed-effects meta-analysis methods for binary outcomes. These methods necessarily ignore heterogeneity but have been shown to work well in rare (Mantel–Haenszel) and very rare (Peto) event settings—where heterogeneity is difficult to measure anyway. Three Mantel–Haenszel approaches are provided, in terms of the effect calculation: OR, risk ratio, and risk difference. The Peto “OR” is not really an OR, but it has come to be known as that. For the Mantel–Haenszel approaches, zero-cell corrections are applied. Corrections are not needed for Peto because of the way the effects are calculated. Weightings with these approaches differ from standard inverse-variance weighting and are closer, but not the same, to fixed-effects weighting, where the size of the study is the primary determinant (Peto uses an inverse-variance approach but different weights and a different estimand). Each of these four methods can be combined with any of the inverse-variance models or the fixed-effects approach. In that case, the effect and its variance are calculated using the respective method for event data (one of `mhor`, `mhrr`, `mhrd`, or `por`), which is then meta-analyzed. This approach allows for modeling heterogeneity, but the weighting can be different, as previously mentioned (these “hybrid” methods are provided in Cochrane’s RevMan). The command always meta-analyzes the ORs and risk ratios on the log() scale and, by default, returns results on that scale. Users can specify the `exp` option to obtain exponentiated results of these (note that risk difference is not a ratio and the log() scale and the `exp` option do not apply).

For meta-analyses of time-to-event outcomes, the use of adjusted HRs is advised with the two-variable syntax. A reasonable alternative is the calculation of the log HR from a log-rank analysis. The log HR is estimated by \((O - E)/V\), which has standard error \(1/\sqrt{V}\), where \(O\) is the observed number of events on the intervention, \(E\) is the log-rank expected number of events on the intervention, \(O - E\) is the log-rank statistic, and \(V\) is the variance of the log-rank statistic. The Peto method can also be used in this context, because it is \(O - E\) based, to pool HRs (or ORs) with option `poe`, which is equivalent to a fixed-effects approach. Dichotomous data approaches (`mhor`, `mhrr`, `mhrd`, or `por`) are not advised here even if the follow-up times are identical across studies, because these methods cannot account for censored data.
2.3 Syntax

```
metaan varname1 varname2 [varname3 varname4] [if] [in] [ , fe dl bdl ml
   reml pl pe sa poe mhor mhrr mhrd por grpby(varname) label(varlist) varc
   prp exp backt(varlist) pscl reps(#) seed(#) sens(#) plplot(string)
   forest ]
```

Two syntaxes are possible. In the first, the user is expected to provide `varname1` and `varname2` only, which include information on study-effect sizes and study-effect variation (the default being standard error/deviation), respectively. If the `prp` option is selected for meta-analysis of proportions, `varname1` and `varname2` should hold numerators and denominators, respectively. The second syntax is used for binary outcomes with event data, and four variables are expected, with `varname1` being the number of events in group 1, `varname2` the number of nonevents in group 1, `varname3` the number of events in group 2, and `varname4` the number of nonevents in group 2.

2.4 Options

Meta-analysis model

`fe` fits a fixed-effects model that assumes there is no heterogeneity between the studies. The model assumes that within-study variances may differ but that there is homogeneity of effect size across all studies. Often, the homogeneity assumption is unlikely, and variation in the true effect across studies is to be expected. Therefore, caution is required when using this model. Reported heterogeneity measures are estimated using the inverse-variance weighting and the DL model.

`dl` fits a DL random-effects model, which is the most commonly used model. The model assumes heterogeneity between the studies; that is, assumes that the true effect can be different for each study. The method assumes that the individual-study true effects are distributed with a variance τ^2 around an overall true effect but makes no assumptions about the form of the distribution of either the within-study or the between-study effects. Inverse-variance weighting is used as opposed to fixed-effects weighting, which is based on study size, and small studies may be given disproportionately large weights. Reported heterogeneity measures are estimated using the DL model.

`bdl` fits a bootstrap DL model, which is similar to DL but better performing, especially for small meta-analyses. It uses a nonparametric bootstrap to estimate the between-study variance and other heterogeneity parameters. Reported heterogeneity measures are estimated using the bootstrap DL model.

`ml` fits a maximum-likelihood random-effects model. This model makes the additional assumption (necessary to derive the log-likelihood function and also true for `reml` and `pl` below) that both the within-study and the between-study effects are normally
distributed. It solves the log-likelihood function iteratively to produce an estimate of the between-study variance. However, the method does not always converge: in some cases, the between-study variance estimate is negative and set to zero, in which case the model is reduced to the \texttt{fe} specification. Estimates are reported as missing in the event of nonconvergence. Reported heterogeneity measures are estimated using the maximum likelihood model.

\texttt{reml} fits an REML random-effects model. This model is similar to \texttt{ml} and uses the same assumptions. The log-likelihood function is maximized iteratively to provide estimates as in \texttt{ml}. However, under \texttt{reml}, only the part of the likelihood function that is location invariant is maximized (that is, maximizing the portion of the likelihood that does not involve μ if estimating τ^2, and vice versa). The method does not always converge; in some cases, the between-study variance estimate is negative and set to zero, in which case the model is reduced to the \texttt{fe} specification. Estimates are reported as missing in the event of nonconvergence. Reported heterogeneity measures are estimated using the REML model.

\texttt{pl} fits a profile-likelihood random-effects model. This model uses the same likelihood function as \texttt{ml} but accounts for the uncertainty associated with the between-study variance estimate when calculating an overall effect, which is done using nested iterations to converge to a maximum. The confidence intervals provided by the method are asymmetric and hence so is the diamond in the forest plot. However, the method does not always converge. Values that were not computed are reported as missing. Reported heterogeneity measures are estimated using the maximum likelihood model (the effect μ and τ^2 estimates are the same; only the confidence intervals are reestimated) but also provide a confidence interval for the between-study variance estimate.

\texttt{pe} fits a permutations random-effects model. This is a nonparametric random-effects method, which can be described in three steps. First, in line with a null hypothesis that all true study effects are zero and observed effects are due to random variation, a dataset of all possible combinations of observed study outcomes is created by permuting the sign of each observed effect. Then, the DL method is used to compute an overall effect for each combination. Finally, the resulting distribution of overall effect sizes is used to derive a confidence interval for the observed overall effect. The confidence interval provided by the method is asymmetric and hence so is the diamond in the forest plot. Study weights and heterogeneity measures are estimated using the DL model.

\texttt{sa} fits a sensitivity analysis model. This allows sensitivity analyses to be performed by varying the level of heterogeneity, with I^2 taking values in the $[0, 100)$ range. Undetected heterogeneity is the norm rather than the exception, and we encourage users to test the sensitivity of their results in the presence of moderate (50%) and high (80–90%) levels of heterogeneity (please see Kontopantelis, Springate, and Reeves [2013]). Reported heterogeneity measures are based on the preset I^2 level.

\texttt{poe} fits a Peto fixed-effects approach for time-to-event $O - E$ (observed minus expected) data. By default, the log() of HRs is assumed to be provided for meta-analysis, which
E. Kontopantelis and D. Reeves

Binary outcome data with group-specific event and nonevent counts

mhor fits a Mantel–Haenszel fixed-effects model with effect calculation based on OR. It can be combined with inverse-variance models to account for heterogeneity or a fixed-effects model, for different weighting approaches. If a random-effects or fixed-effects approach is used in combination with the **mhor** option, weighting follows the random-effects or fixed-effects approach used, and Mantel–Haenszel is relevant only in the way the effect is calculated within each study from events and nonevents. The **exp** option needs to be used to report effects as ORs and not on the log() scale.

mhrr fits a Mantel–Haenszel fixed-effects model with effect calculation based on risk ratio (RR). It can be combined with inverse-variance models to account for heterogeneity or a fixed-effects model for different weighting approaches. If a random-effects or fixed-effects approach is used in combination with the **mhrr** option, weighting follows the random-effects or fixed-effects approach used, and Mantel–Haenszel is relevant only in the way the effect is calculated within each study from events and nonevents. The **exp** option needs to be used to report effects as RRs and not on the log() scale.

mhrd fits a Mantel–Haenszel fixed-effects model with effect calculation based on risk-difference. It can be combined with inverse-variance models to account for heterogeneity or a fixed-effects model for different weighting approaches. If a random-effects or fixed-effects approach is used in combination with the **mhrd** option, weighting follows the random-effects or fixed-effects approach used, and Mantel–Haenszel is relevant only in the way the effect is calculated within each study from events and nonevents.

por fits a Peto OR fixed-effects model. It can be combined with inverse-variance models to account for heterogeneity or a fixed-effects model for different weighting approaches. In that case, the **por** option is relevant only to the effect calculation (which is technically not an OR, but the name has stuck). The **exp** option needs to be used to report effects as ORs and not on the log() scale.

General modeling options

grpby(varname) specifies the grouping variable for subgroup analyses. An integer numeric variable is expected, ideally with appropriate value labels; see [d label]. The groups will be ordered according to the variable provided, and headers for the results and the forest plot (if requested) will be obtained from the variable’s value labels (if no labels are present, the relevant numbers will be used). All analyses are repeated for each group category and overall. Results are presented as separate analyses in the Results window but are all aggregated into a single forest plot (if one is requested).
label(varlist) selects labels for the studies. One or two variables can be selected and converted to strings. If two variables are selected, they will be separated by a comma. Usually, the author names and the year of study are selected as labels. The final string is truncated to 20 characters.

varc specifies that the study-effect variation variable, varname2, holds variance values. If this option is omitted, metaan assumes the variable contains standard-error values (the default).

prp specifies that numerators (varname1) and denominators (varname2) are provided and a meta-analysis of proportions will be executed. The Freeman–Tukey arcsine transformation is used, variance is calculated as $1/(\text{varname2} + 1)$, and effects and confidence intervals (study and overall) are back-transformed using $(\sin(x/2))^2$.

exp specifies that the results will be exponentiated for dichotomous outcomes. For dichotomous outcomes, the log() of the measure (OR, RR, or HR) and its standard error are expected as input and the overall log() of the measure is returned by default unless this option is specified. If it is, the input is still expected to be the log() of the measure in varname1, but results are exponentiated.

backt(varlist) specifies the back-transformation to percentages, from simple or empirical logit (Stevens et al. 2016). One or two variables can be selected. The first holds the study “anchor” percentages, which are essential for the back-transformation to take place. The second holds the relevant denominators. If only percentages are provided, they need to be in the $(0, 1)$ range for back-transformation from simple empirical logit. However, if any zeros or ones are present in the percentages variable, the empirical logit will need to be used, and in this case the denominators are needed as well. The overall effect is back-transformed using the mean percentage across all studies as the “anchor”. If denominators are provided, then the mean percentage is weighted on denominators; if not, it is unweighted.

pscl scales to [0%–100%] when using the prp or backt() option. The default display for percentages in the output and forest plot is in the [0, 1] range.

Bootstrap DerSimonian–Laird options

reps(#) specifies the integer number of repetitions for the bootstrap DL method. Fewer than 100 repetitions are not permitted.

seed(#) specifies the random-number seed to be used in the bootstrap DL method.

Sensitivity analysis options

sens(#) specifies the preset heterogeneity level, with I^2 taking values in the $[0, 100]$ range. The default is sens(80).
Graphs

Only one graph output is allowed in each execution.

`plplot(string)` requests a plot of the likelihood function for the μ or τ^2 estimates of the `ml`, `pl`, or `reml` model. The `plplot(mu)` option fixes μ to its model estimate in the likelihood function and creates a two-way plot of τ^2 versus the likelihood function. The `plplot(tsq)` option fixes τ^2 to its model estimate in the likelihood function and creates a two-way plot of μ versus the likelihood function.

`forest` requests a forest plot. The weights from the specified analysis are used for plotting symbol sizes. Since version 2.0 of the command, we use the `_dispgby` program by Ross Harris and Mike Bradburn, which is integrated with other popular meta-analysis commands (for example, `metan`). We allow all relevant options (see below).

Forest plot options

Various graph options can be used to specify overall graph options that would appear at the end of a `twoway` command. This allows the addition of titles, subtitles, captions, etc.; it also allows control of margins, plot regions, graph size, aspect ratio, and the use of schemes. Specific options are listed below.

- `dp(#)`: specifies the decimal points for the reported effects. The default is `dp(2)`.
- `effect(string)`: allows the graph to name the summary statistic used [for example, OR, RR, standardized mean difference (SMD)].
- `favours(string # string)`: applies a label saying something about the treatment effect to either side of the graph (strings are separated by the `#` symbol).
- `null(#)`: displays the null line at a user-defined value rather than 0 or 1.
- `nulloff`: removes the null hypothesis line from the graph.
- `noverall`: prevents display of overall effect size on the graph (automatically enforces the `nowt` option).
- `nowt`: prevents display of study weights on the graph.
- `nostats`: prevents display of study statistics on the graph.
- `nowarning`: switches off the default display of a note warning that studies are weighted from random-effects analyses.
- `nohet`: prevents display of heterogeneity statistics in the graph.
- `nobox`: prevents a weighted box from being drawn for each study, and only markers for point estimates are shown.
boxsca(#) controls box scaling. The default is boxsca(100) (as in a percentage) and may be increased or decreased as such (for example, 80 or 120 for 20% smaller or larger, respectively).

xlabel(numlist) defines x-axis labels. Any number of points may be defined, and the range can be enforced with the use of the force option. Points must be comma separated.

xtick(numlist) adds tick marks to the x axis. Points must be comma separated.

force forces the x-axis scale to be in the range specified by xlabel().

textsize(#) specifies font size for the text display on the graph. The default is textsize(100) (as in a percentage) and may be increased or decreased as such (for example, 80 or 120 for 20% smaller or larger, respectively).

astext(#) specifies the percentage of the graph to be taken up by text. The default is astext(50), and the percentage must be in the range [10,90].

summaryonly shows only summary estimates in the graph.

classic specifies that solid black boxes without point estimate markers are used as in previous versions.

lcols(varlist) and rcols(varlist) define columns of additional data to the left or right of the graph. The first two columns on the right are automatically set to effect size and weight unless suppressed using the options nostats and nowt. textsize() can be used to fine-tune the size of the text to achieve a satisfactory appearance. The columns are labeled with the variable label or the variable name if the label is not defined. The first variable specified in lcols() is assumed to be the study identifier, and this is used in the table output.

double allows variables specified in lcols() and rcols() to run over two lines in the plot. This may be of use if long strings are to be used.

boxopt(options), diamopt(options), pointopt(options), ciopt(options), and olineopt(options) specify options for the graph routines within the program, allowing the user to alter the appearance of the graph. Any options associated with a particular graph command may be used except some that would cause incorrect graph appearance.
2.5 Stored results

`metaan` stores the following in `r()`:

Scalars

- `r(eff)` overall effect size
- `r(effvar)` variance of the overall effect
- `r(efflo)` lower confidence interval for the overall effect
- `r(effup)` upper confidence interval for the overall effect
- `r(Q)` Cochrane’s Q statistic
- `r(df)` degrees of freedom
- `r(Qpval)` p-value for Cochrane’s Q statistic
- `r(Isq)` I² statistic
- `r(Isq_lo)` lower confidence interval for I² statistic
- `r(Isq_upper)` upper confidence interval for I² statistic
- `r(Hsq)` H² statistic
- `r(Hsq_lo)` lower confidence interval for H² statistic
- `r(Hsq_upper)` upper confidence interval for H² statistic
- `r(tausq_dl)` between-study variance estimated using the DL model
- `r(tausq_bdl)` between-study variance estimated with bootstrap DL
- `r(tausq_ml)` between-study variance estimated with maximum likelihood
- `r(conv_ml)` convergence of the maximum likelihood model
- `r(tausq_reml)` between-study variance estimate (\(\hat{\tau}^2 \)) using REML model
- `r(conv_reml)` convergence of the REML model
- `r(tausq_pl)` lower confidence interval for \(\hat{\tau}^2 \) using the profile likelihood
- `r(tausqup_pl)` upper confidence interval for \(\hat{\tau}^2 \) with profile likelihood
- `r(cloeff_pl)` convergence for lower confidence interval of overall effect using the profile likelihood model
- `r(cupeff_pl)` convergence for upper confidence interval of overall effect using the profile likelihood model
- `r(ctausqlo_pl)` convergence for lower confidence interval of \(\hat{\tau}^2 \) with profile likelihood
- `r(ctausqup_pl)` convergence for upper confidence interval of \(\hat{\tau}^2 \) with profile likelihood
- `r(exec_pe)` permutations method successfully executed
- `r(tausq_sa)` assumed \(\tau^2 \) using a sensitivity analysis

3 Examples

We provide a few examples with the two- and four-variable syntaxes to give users a better understanding of the required data and the analysis options.

3.1 Meta-analysis based on effects and their standard errors

Let us assume an artificial dataset of 11 studies with information on a particular intervention, for example, a specific psychological intervention to reduce depression levels in populations diagnosed with severe depression in primary care. Let us also assume that various scales to quantify depression levels have been used across these studies and we have collected data on the mean difference in depression levels between the
intervention and control group, six months following the intervention. In other words, for study \(i \), we have the mean difference \(MD_i = MNa_{6A_i} - MNa_{6B_i} \), where \(MNa_{6A_i} \) and \(MNa_{6B_i} \) are the mean depression levels in study \(i \), six months postintervention, for the intervention (A) and control (B) groups, respectively. Assuming the studies are randomized controlled trials, as they often are, available preintervention data points are not used because the groups should be well balanced. If there is no balance in the outcome preintervention, as in many observational studies, then the last available preintervention time point needs to be accounted for. For example, the mean difference would be \(MD_i = (MNa_{6A_i} - MnB_{0A_i}) - (MNa_{6B_i} - MnB_{0B_i}) \), where \(MnB_{0A_i} \) and \(MnB_{0B_i} \) are the mean depression levels in study \(i \), just before the administering of the intervention, for the intervention (A) and control (B) groups, respectively. However, severely unbalanced group comparisons can be problematic for the validity of such analyses. Getting back to our example, we assume good preintervention group balance, but the outcome is measured across numerous scales (for example, BDI, CES-D, or PHQ-9). Therefore, we would need to calculate and meta-analyze the SMD for each study as \(SMD_i = (MNa_{6A_i} - MNa_{6B_i})/\sqrt{SDa_{6A_i}^2 + SDa_{6B_i}^2} \). We use the pooled variance in the postintervention time point that is the focus of our analysis (in this case, six months), with \(SDa_{6D_{Ai}} \) and \(SDa_{6D_{Bi}} \) denoting the standard deviation (SD) in study \(i \), six months postintervention, for the intervention (A) and control (B) groups, respectively. In our example dataset below, variable \(eff \) is assumed to hold the SMD values, and variable \(SEeff \) the pooled SD values, or \(\sqrt{SDa_{6A_i}^2 + SDa_{6B_i}^2} \).

```
. use example_2var
. describe
Contains data from example_2var.dta
obs: 11
vars: 5 8 Aug 2018 16:38

storage display value variable name type format label variable label

id byte %8.0g Study ID
year int %9.0g Year
author str8 %9s Author
eff float %9.0g Effect sizes
SEeff float %9.0g SE of the effect sizes

Sorted by: id
```

```
. list, noobs clean
 id year author eff  SEeff
 1 2017 Ederson .3489423 .1224745
 2 2017 Walker 1.133935 .1558387
 3 2016 Stones .1528689 .1732051
 4 2008 Kompany .036336 .2357023
 5 2017 Mendy .78965 .152636
 6 2009 Foden -.0655122 .0459468
 7 2017 Silva B. -.984251 .1655212
 8 2010 Silva D. -1.535016 .0365148
 9 2016 Sané .0465508 .2134213
10 2015 Sterling .5727136 .1546985
11 2011 Aguero .6205372 .1027402
```
First, we meta-analyze studies using a random-effects model and bootstrap DL estimator, with 1,000 repetitions.

```
.metaan eff SEeff, bdl reps(1000) seed(16) label(author year) forest
```

Study	Effect	95% Conf. Interval	% Weight
Ederson, 2017	0.349	0.190 - 0.589	9.15
Walker, 2017	1.134	0.828 - 1.439	9.08
Stones, 2016	0.153	-0.187 - 0.492	9.04
Kompany, 2008	0.036	-0.426 - 0.498	8.86
Mendy, 2017	0.790	0.490 - 1.089	9.09
Foden, 2009	-0.066	-0.156 - 0.025	9.25
Silva B., 2017	-0.984	-1.309 - 0.660	9.06
Silva D., 2010	-1.535	-1.607 - 1.463	9.26
Sané, 2016	0.047	-0.372 - 0.465	8.93
Sterling, 2015	0.573	0.270 - 0.876	9.09
Aguero, 2011	0.621	0.419 - 0.822	9.19

Overall effect (bdl) | 0.100 | -0.551 - 0.750 | 100.00 |

bootstrap of 1000 repetitions

Heterogeneity Measures	value	df	p-value
Cochrane Q	1303.38	10	0.000

	value	95% Conf. Interval
I² (%)	99.07	98.84 - 99.25
H²	107.22	86.18 - 133.40
tau² (bdl)	1.189	

High levels of heterogeneity were observed and modeled. The overall effect is not statistically different from zero. Therefore, the conclusion would be that the overall effect of this hypothesized specific psychological intervention for severe depression is not statistically different from zero, although there was great variability in its effectiveness across included studies. Figure 1 shows the requested forest plot.
Next, we meta-analyze studies using the profile-likelihood random-effects model and request a likelihood plot for the overall effect estimate $\hat{\mu}$.

```
.metaan eff SEeff, pl label(author year) plot(tsq)
```

Profile Likelihood method selected

Study	Effect	[95% Conf. Interval]	% Weight
Ederson, 2017	0.349	0.109 0.589	9.22
Walker, 2017	1.134	0.828 1.439	9.07
Stones, 2016	0.153	-0.187 0.492	8.98
Kompany, 2008	0.036	-0.426 0.498	8.60
Mendy, 2017	0.790	0.490 1.089	9.09
Foden, 2009	-0.066	-0.156 0.025	9.44
Silva B., 2017	-0.994	-1.309 -0.660	9.02
Silva D., 2010	-1.535	-1.607 -1.463	9.46
Sane, 2016	0.047	-0.372 0.465	8.74
Sterling, 2015	0.573	0.270 0.876	9.08
Aguero, 2011	0.621	0.419 0.822	9.30
Overall effect (pl)	0.097	-0.385 0.583	100.00

ML method succesfully converged
PL method succesfully converged for both upper and lower CI limits
The heterogeneity estimates are similar to what we observed with the bootstrap DL model, as is the overall effect. Figure 2 shows the requested likelihood plot for $\hat{\mu}$. The profile likelihood method converged for all estimates and their confidence intervals.
3.2 Meta-analysis using event and nonevent counts

Let us assume that we are interested in treatment for heart attacks, particularly primary percutaneous coronary intervention. We hypothesize that the outcome of interest is five-year postoperative mortality and that there are no censored values (all patients are followed up for five years or until death). Our aim is to evaluate the role of a new blood-thinning medication, so we use a second dataset with events and nonevents for the binary outcome. Variable I_ne is the number of operated cases who were administered the medication and survived, and I_e the number of deaths in that group. Similarly, variable C_ne is the number of operated cases who were not administered the medication and survived, and C_e the number of deaths in that group.

```
. use example_4var, clear
. describe
Contains data from example_4var.dta
obs: 11
vars: 9 28 Jan 2020 09:46

variable name    storage   type  display format label    variable label
id               byte      %8.0g Study ID
author           str11     %11s Author
year             int       %9.0g Year
Ie               byte      %9.0g Intervention group events
Ine              int       %9.0g Intervention group non-events
Itotal           int       %9.0g Intervention group denominator
Ce               byte      %9.0g Control group events
Cne              int       %9.0g Control group non-events
Ctotal           int       %9.0g Control group denominator

Sorted by:
. list, noobs clean
  id    author    year  Ie  Ine  Itotal  Ce  Cne  Ctotal
  1    Bravo     2016   9  111  120   18   132   150
  2    Danilo    2017  17   83  100   11    59    70
  3    Laporte   2018  11   49   60    3    72    75
  4    Otamendi  2015   3   42   45    3    27    30
  5    Gündoğan  2016  46  1454 1500  68  1432  1500
  6    De Bruyne 2015   2   44   46    2    40    42
  7    Diaz     2013   7   71    78    9    81    90
  8    Mahrez    2018  18   162  180   25   175   200
  9    Jesus     2017  15   248  263   40    281   321
```
First, we meta-analyze studies using a Peto OR fixed-effects model. Results are exponentiated, and a forest plot is requested.

\[\text{. metaan le Ine Ce Cne, por exp label(author year) forest} \]

Peto Odds-Ratio (fixed-effect method)

Study	Effect	[95\\% Conf. Interval]	% Weight
Bravo, 2016	0.608	0.273 1.351	5.41
Danilo, 2017	1.097	0.483 2.494	5.12
Laporte, 2018	4.621	1.524 14.013	2.80
Otamendi, 2015	0.640	0.118 3.471	1.21
Delph, 2015	0.948	0.695 1.295	35.58
Fernandinho, 2013	1.347	0.297 6.118	1.51
Gündoğan, 2016	0.670	0.461 0.974	24.62
De Bruyne, 2015	0.910	0.124 6.702	0.86
Diaz, 2013	0.888	0.317 2.488	3.25
Mahrez, 2018	0.780	0.413 1.472	8.56
Jesus, 2017	0.453	0.260 0.792	11.09
Overall effect (peto)	**0.809**	**0.672** 0.975	**100.00**

Effects have been exponentiated

Heterogeneity Measures

	value	df	p-value
Cochrane Q	17.19	10	0.070

\[
\begin{array}{ccc}
\text{value} & \text{df} & \text{p-value} \\
\text{I}^2(\%) & 41.82 & 0.00 & 71.28 \\
\text{H}^2 & 1.72 & 0.85 & 3.48 \\
\text{tau}^2(dl) & 0.082 & & \\
\end{array}
\]

Heterogeneity measures reported under an inverse-variance weighting assumption

We used the Peto fixed-effects approach (with Peto weighting), although heterogeneity was identified (under an inverse-variance approach). Assuming we are analyzing adverse events, the blood-thinning agent appears to have a modest prophylactic effect on five-year survival, which is also statistically significant. Figure 3 shows the requested forest plot.
Figure 3. Peto fixed-effects model

Next, we account for heterogeneity using the bootstrap DL random-effects model with inverse-variance weighting. In the first step, we use the Mantel–Haenszel risk-ratio approach to calculate the effect size and its variance for each study.

```
.metaan le Ine Ce Cne, mhrr exp bdl label(author year)
```

Bootstrapped DerSimonian-Laird random-effects method selected (MH Risk-Ratio)

Study	Effect	[95% Conf. Interval]	% Weight
Bravo, 2016	0.625	0.291 - 1.341	8.60
Danilo, 2017	1.082	0.540 - 2.166	9.75
Laporte, 2018	4.583	1.339 - 15.691	4.12
Otamendi, 2015	0.667	0.144 - 3.085	2.81
Delph, 2015	0.953	0.718 - 1.264	20.83
Fernandinho, 2013	1.333	0.309 - 5.749	3.06
Gündoğan, 2016	0.676	0.469 - 0.977	18.02
De Bruyne, 2015	0.913	0.135 - 6.196	1.87
Diaz, 2013	0.897	0.351 - 2.298	6.37
Mahrez, 2018	0.800	0.462 - 1.417	12.27
Jesus, 2017	0.458	0.259 - 0.810	12.29
Overall effect (bdl)	0.831	0.633 - 1.090	100.00

Effects have been exponentiated bootstrap of 1000 repetitions
When we account for heterogeneity, the overall effect is closer to 1.0 and not statistically significant. This is not surprising considering random-effects models are generally more conservative from incorporating between-study variability. Finally, we wish to examine how results would change if this sample of studies underrepresented actual heterogeneity. For this, we use the sensitivity analysis model with a preset heterogeneity level of 70% (the upper limit of \hat{I}^2 in the previous model, though other values may be chosen).

```
.metaan Ie Ine Ce Cne, mhdr exp sa sens(70) label(author year)
```

Sensitivity analysis selected with preset heterogeneity ($I^2=70\%$) (MH Risk-Ratio)

Study	Effect	[95% Conf. Interval]	% Weight
Bravo, 2016	0.625	0.291 1.341	9.86
Danilo, 2017	1.082	0.540 2.186	10.57
Laporte, 2018	4.583	1.339 15.691	6.08
Otamendi, 2015	0.667	0.144 3.085	4.82
Delph, 2015	0.953	0.718 1.264	14.84
Fernandinho, 2013	1.333	0.309 5.749	4.84
Gundogan, 2016	0.676	0.469 0.977	14.06
De Bruyne, 2015	0.913	0.135 6.196	3.22
Diaz, 2013	0.897	0.351 2.298	8.21
Mahrez, 2018	0.800	0.452 1.417	11.89
Jesus, 2017	0.458	0.259 0.810	11.90
Overall effect (sa)	0.866	0.590 1.272	100.00

Effects have been exponentiated.
Heterogeneity Measures

	value	df	p-value
Cochrane Q	.	10	.

	value	[95% Conf. Interval]
$I^2(\%)$	70.00	44.23 83.86
H^2	3.33	1.79 6.20
tau^2(sa)	0.238	

Cochrane's Q not reported under a sensitivity analysis

Under this higher heterogeneity assumption, the overall effect is even more slightly reduced, though the greater impact is a wider confidence interval. This approach can be useful in evaluating how sensitive analyses are to undetected or underestimated heterogeneity, something rather common in small meta-analyses in particular.

4 Discussion

The \texttt{metaan} package for Stata was first published in 2010. Since then, we have incorporated numerous additions, particularly additional features for conducting random-effects meta-analysis. It is now an extensive meta-analysis package for binary, continuous, or prevalence (proportions) data, allowing numerous options and offering attractive graphical outputs. In this article, we have described and demonstrated many of the package's capabilities and have highlighted the methodological evidence behind the implemented methods. Currently, unique to \texttt{metaan} are some of the best performing random-effects models like the nonparametric bootstrap DL, allowing users to potentially obtain more reliable results. Unique features also include the profile likelihood plot and the back-transformation options, while the heterogeneity sensitivity analysis was first presented in \texttt{metaan} and is now available in the built-in \texttt{meta} command from Stata 16. We need to highlight that \texttt{meta}, Stata's new and comprehensive suite of meta-analysis commands, will be suitable for the needs of most users and includes advanced methods; for example, it does not use the DL estimator for its default random-effects model but instead uses restricted maximum-likelihood. However, \texttt{metaan} includes some unique features that would still make an attractive alternative, like the best-performing nonparametric bootstrap DL (Petropoulou and Mavridis 2017). In addition, it will serve well users of Stata 15 or previous, in which the \texttt{meta} suite of commands is not available. We will continue developing and updating \texttt{metaan} hand in hand with emerging best-practice evidence. The latest version is available from http://www.statanalysis.co.uk/.
Funding

This study was partially funded by the National Institute of Health Research School for Primary Care Research through a personal fellowship for Evangelos Kontopantelis. The study represents independent research by the National Institute of Health Research. The views expressed in this publication are those of the authors.

Acknowledgments

We thank Mike Bradburn and Ross Harris, whose code helped shape the command.

Contributions

Evangelos Kontopantelis designed and developed the command and drafted the article. David Reeves critically commented on both the article and the functionality of the command.

Conflict of interest

Evangelos Kontopantelis and David Reeves declare no conflicts of interest.

5 Programs and supplemental materials

To install a snapshot of the corresponding software files as they existed at the time of publication of this article, type

```
.set sj 20-3
.set install st0201_l (to install program files, if available)
.set get st0201_l (to install ancillary files, if available)
```

The latest version of the command is available from http://www.statanalysis.co.uk/.

Within Stata, type

```
.net from http://statanalysis.co.uk/
.net describe metaan
.net install metaan, replace
```

Alternatively, install from the Statistical Software Components archive, where updates are uploaded with a few days’ lag:

```
.ssc install metaan, replace
```
The data used in the examples are openly available from http://www.statanalysis.co.uk. From within Stata, to download the datasets in the current directory, type

```
. net from http://statanalysis.co.uk/
. net describe metaan
. net get metaan
```

6 References

Arthur, W., Jr., W. Bennett, Jr., and A. I. Huffcutt. 2001. Conducting Meta-Analysis using SAS. New York: Psychology Press.

Bax, L., L.-M. Yu, N. Ikeda, and K. G. M. Moons. 2007. A systematic comparison of software dedicated to meta-analysis of causal studies. BMC Medical Research Methodology 7: 40. https://doi.org/10.1186/1471-2288-7-40.

Bax, L., L.-M. Yu, N. Ikeda, H. Tsuruta, and K. G. M. Moons. 2006. Development and validation of MIX: Comprehensive free software for meta-analysis of causal research data. BMC Medical Research Methodology 6: 50. https://doi.org/10.1186/1471-2288-6-50.

Borenstein, M., D. Rothstein, and J. Cohen. 2005. Comprehensive Meta-Analysis: A Computer Program for Research Synthesis. Englewood, NJ: Biostat.

Bradburn, M. J., J. J. Deeks, J. A. Berlin, and A. R. Localio. 2007. Much ado about nothing: A comparison of the performance of meta-analytical methods with rare events. Statistics in Medicine 26: 53–77. https://doi.org/10.1002/sim.2528.

Brockwell, S. E., and I. R. Gordon. 2001. A comparison of statistical methods for meta-analysis. Statistics in Medicine 20: 825–840. https://doi.org/10.1002/sim.650.

DerSimonian, R., and N. Laird. 1986. Meta-analysis in clinical trials. Controlled Clinical Trials 7: 177–188. https://doi.org/10.1016/0197-2456(86)90046-2.

Duval, S., and R. Tweedie. 2000. Trim and fill: A simple funnel-plot–based method of testing and adjusting for publication bias in meta-analysis. Biometrics 56: 455–463. https://doi.org/10.1111/j.0006-341X.2000.00455.x.

Follmann, D. A., and M. A. Proschan. 1999. Valid inference in random effects meta-analysis. Biometrics 55: 732–737. https://doi.org/10.1111/j.0006-341X.1999.00732.x.

Greenland, S., and J. M. Robins. 1985. Estimation of a common effect parameter from sparse follow-up data. Biometrics 41: 55–68. https://doi.org/10.2307/2530643.

Hardy, R. J., and S. G. Thompson. 1996. A likelihood approach to meta-analysis with random effects. Statistics in Medicine 15: 619–629. https://doi.org/10.1002/(SICI)1097-0258(19960330)15:6<619::AID-SIM188>3.0.CO;2-A.
Harris, R. J., M. J. Bradburn, J. J. Deeks, R. M. Harbord, D. G. Altman, and J. A. C. Sterne. 2008. metan: Fixed- and random-effects meta-analysis. *Stata Journal* 8: 3–28. https://doi.org/10.1177/1536867X0800800102.

Higgins, J. P. T., and S. Green. 2011. *Cochrane Handbook for Systematic Reviews of Interventions* Version 5.1.0. http://www.cochrane-handbook.org.

Higgins, J. P. T., and S. G. Thompson. 2002. Quantifying heterogeneity in a meta-analysis. *Statistics in Medicine* 21: 1539–1558. https://doi.org/10.1002/sim.1186.

Huque, M. F. 1988. Experiences with meta-analysis in NDA submissions. *Proceedings of the Biopharmaceutical Section of the American Statistical Association* 2: 28–33.

Kontopantelis, E., and D. Reeves. 2009a. metaeff: Stata module to perform effect sizes calculations for meta-analyses. Statistical Software Components S457072, Department of Economics, Boston College. https://ideas.repec.org/c/boc/bocode/s457072.html.

———. 2009b. MetaEasy: A meta-analysis add-in for Microsoft Excel. *Journal of Statistical Software* 30(7): 1–25. https://doi.org/10.18637/jss.v030.i07.

———. 2010. metaan: Random-effects meta-analysis. *Stata Journal* 10: 395–407. https://doi.org/10.1177/1536867X1001000307.

———. 2012a. Performance of statistical methods for meta-analysis when true study effects are non-normally distributed: A comparison between DerSimonian–Laird and restricted maximum likelihood. *Statistical Methods in Medical Research* 21: 657–659. https://doi.org/10.1177/0962280211413451.

———. 2012b. Performance of statistical methods for meta-analysis when true study effects are non-normally distributed: A simulation study. *Statistical Methods in Medical Research* 21: 409–426. https://doi.org/10.1177/0962280210392008.

Kontopantelis, E., D. A. Springate, and D. Reeves. 2013. A re-analysis of the Cochrane Library data: The dangers of unobserved heterogeneity in meta-analyses. *PLOS ONE* 8: e69930. https://doi.org/10.1371/journal.pone.0069930.

Lumley, T. 2002. Network meta-analysis for indirect treatment comparisons. *Statistics in Medicine* 21: 2313–2324. https://doi.org/10.1002/sim.1201.

Mittlböck, M., and H. Heinzl. 2006. A simulation study comparing properties of heterogeneity measures in meta-analyses. *Statistics in Medicine* 25: 4321–4333. https://doi.org/10.1002/sim.2692.

Nordic Cochrane Centre. 2007. *Review Manager (RevMan): Version 5*. Software program. Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration.

Peters, J. L., A. J. Sutton, D. R. Jones, K. R. Abrams, and L. Rushton. 2007. Performance of the trim and fill method in the presence of publication bias and between-study heterogeneity. *Statistics in Medicine* 26: 4544–4562. https://doi.org/10.1002/sim.2889.
Petropoulou, M., and D. Mavridis. 2017. A comparison of 20 heterogeneity variance estimators in statistical synthesis of results from studies: A simulation study. *Statistics in Medicine* 36: 4266–4280. https://doi.org/10.1002/sim.7431.

R Core Team. 2018. *R: A Language and Environment for Statistical Computing*. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org.

Riley, R. D., P. C. Lambert, and G. Abo-Zaid. 2010. Meta-analysis of individual participant data: Rationale, conduct, and reporting. *British Medical Journal* 340: c221. https://doi.org/10.1136/bmj.c221.

Salanti, G., A. E. Ades, and J. P. A. Ioannidis. 2011. Graphical methods and numerical summaries for presenting results from multiple-treatment meta-analysis: An overview and tutorial. *Journal of Clinical Epidemiology* 64: 163–171. https://doi.org/10.1016/j.jclinepi.2010.03.016.

Schwarzer, G. 2007. meta: An R package for meta-analysis. *R News* 7: 40–45.

Sterne, J. A. C., M. Egger, and A. J. Sutton. 2001. Meta-analysis software. In *Systematic Reviews in Health Care: Meta-Analysis in Context*, 2nd edition, ed. M. Egger, G. Davey Smith, and D. G. Altman, 336–346. London: BMJ Books. https://doi.org/10.1002/9780470693926.ch17.

Sterne, J. A. C., D. Gavaghan, and M. Egger. 2000. Publication and related bias in meta-analysis: Power of statistical tests and prevalence in the literature. *Journal of Clinical Epidemiology* 53: 1119–1129. https://doi.org/10.1016/S0895-4356(00)00242-0.

Stevens, S., J. M. Valderas, T. Doran, R. Perera, and E. Kontopantelis. 2016. Analysing indicators of performance, satisfaction, or safety using empirical logit transformation. *British Medical Journal* 352: i1114. https://doi.org/10.1136/bmj.i1114.

Thompson, S. G. 1994. Systematic review: Why sources of heterogeneity in meta-analysis should be investigated. *British Medical Journal* 309: 1351–1355. https://doi.org/10.1136/bmj.309.6965.1351.

Thompson, S. G., and S. J. Pocock. 1991. Can meta-analyses be trusted? *Lancet* 338: 1127–1130. https://doi.org/10.1016/0140-6736(91)91975-Z.

Thompson, S. G., and S. J. Sharp. 1999. Explaining heterogeneity in meta-analysis: A comparison of methods. *Statistics in Medicine* 18: 2693–2708. https://doi.org/10.1002/(SICI)1097-0258(19991030)18:20<2693::AID-SIM235>3.0.CO;2-V.

Viechtbauer, W. 2010. Conducting meta-analyses in R with the metafor Package. *Journal of Statistical Software* 36(3): 1–48. https://doi.org/10.18637/jss.v036.i03.

Yusuf, S., R. Peto, J. Lewis, R. Collins, and P. Sleight. 1985. Beta blockade during and after myocardial infarction: An overview of the randomized trials. *Progress in Cardiovascular Diseases* 27: 335–371. https://doi.org/10.1016/S0033-0620(85)80003-7.
About the authors

Evangelos (Evan) Kontopantelis is a professor in Data Science and Health Services Research in the Faculty of Biology, Medicine, and Health at the University of Manchester, England. He holds degrees in computational statistics (BSc) and machine learning (MSc and PhD) and has a long track record in research using large-scale primary care and other administrative databases to investigate quality of care and mortality, with a focus on the effects of policy changes and the role of socioeconomic and regional disparities. His methodological interests include statistical methods in health sciences with a focus on meta-analysis, longitudinal data modeling, observational studies with electronic health records, machine learning, and quasiexperimental designs.

David Reeves is a professor in statistics in the Division of Population Health, Health Services Research & Primary Care at the University of Manchester, England. He has worked as a statistician in health services research for nearly three decades, mainly in the fields of learning disability and primary care. His methodological research interests include the robustness of statistical methods, the analysis of observational studies, and applications of social network analysis methods to health systems.