Operando Monitoring of the Solution-Mediated Discharge and Charge Processes in a Na–O 2 Battery Using Liquid-Electrochemical Transmission Electron Microscopy

Lukas Lutz, Walid Dachraoui, Arnaud Demortière, Lee Johnson, Peter Bruce, Alexis Grimaud, Jean-Marie Tarascon

To cite this version:
Lukas Lutz, Walid Dachraoui, Arnaud Demortière, Lee Johnson, Peter Bruce, et al.. Operando Monitoring of the Solution-Mediated Discharge and Charge Processes in a Na–O 2 Battery Using Liquid-Electrochemical Transmission Electron Microscopy. Nano Letters, American Chemical Society, 2018, 18 (2), pp.1280-1289. 10.1021/acs.nanolett.7b04937. hal-02388367

HAL Id: hal-02388367
https://hal.archives-ouvertes.fr/hal-02388367
Submitted on 1 Dec 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Operando monitoring of the solution-mediated discharge and charge processes in a Na-O\textsubscript{2} battery using liquid-electrochemical TEM

Lukas Lutz1,3,4, Walid Dachraoui2,3, Arnaud Demortière2,3,*, Lee R. Johnson4, Peter G. Bruce4, Alexis Grimaud1,3,*, and Jean-Marie Tarascon1,3

1 Collège de France, 11 Place Marcelin Berthelot, 75231 Paris, France
2 Laboratoire de Réactivité et Chimie des Solides (LRCS), CNRS UMR 7314, 80009 Amiens, France
3 Réseau sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS 3459, France
4 Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, UK

Corresponding authors: Alexis Grimaud <alexis.grimaud@college-de-france.fr>, Arnaud Demortière <arnaud.demortiere@energie-rs2e.com>
Abstract

Despite the fact that in sodium-oxygen (Na-O2) batteries show promise as high-energy storage systems, this technology is still the subject of intense fundamental research, owing to the complex reaction by which it operates. To understand the formation mechanism of the discharge product, sodium superoxide (NaO2), advanced experimental tools must be developed. Here we present for the first time the use of a Na-O2 micro-battery using a liquid aprotic electrolyte coupled with fast imaging transmission electron microscopy to visualize, in real time, the mechanism of NaO2 nucleation/growth. We observe that the formation of NaO2 cubes during reduction occurs by a solution-mediated nucleation process. Furthermore, we unambiguously demonstrate that the subsequent oxidation of NaO2, of which little is known, also proceeds via a solution mechanism. We also provide insight into the cell electrochemistry via the visualization of an outer shell of parasitic reaction product, formed through chemical reaction at the interface between the growing NaO2 cubes and the electrolyte, and suggest that this process is responsible for the poor cyclability of Na-O2 batteries. The assessment of the discharge-charge mechanistic in Na-O2 batteries through operando electrochemical TEM visualization should facilitate the development of this battery technology.

Keywords: Na-O2 battery, solution-mediated mechanism, discharge and charge processes, Operando TEM, Parasitic product formation
Introduction

Compared to Li/Na-ion batteries, in which reversible energy storage relies on the use of redox active transition metal oxides as positive electrodes, the metal-O\textsubscript{2} battery systems would theoretically offer greater energy density owing to the use of redox of gaseous oxygen using conductive and light carbon electrodes.1, 2 The aprotic lithium-oxygen (Li-O\textsubscript{2}) system has been widely studied since the early demonstration of reversibility by K.M. Abraham.3 Nevertheless, recent developments clearly pointed out towards drastic limitations in terms of round trip efficiency as well as coulombic efficiency due to copious parasitic reactions of the discharge product lithium peroxide (Li\textsubscript{2}O\textsubscript{2}) with both the conductive electrode and the electrolyte.4-6 Following this conclusion, the sodium-oxygen (Na-O\textsubscript{2}) system was then proposed as a viable alternative due to its theoretical energy density of 1100 Wh/kg combined with a better round trip efficiency and presumably limited parasitic reactions.7 The Na-O\textsubscript{2} system is still, however, in its infancy, owing to several unresolved challenges, such as limited capacities and low cyclability.8, 9 Hence, the initial excitement was quickly counterpoised by the recent discoveries highlighting the unstable nature of the superoxide discharge product sodium superoxide (NaO\textsubscript{2}) that reacts with glyme-ethers solvent commonly used in these systems. Despite these evident limitations, this system has been seen as an interesting case study to better understand the complex redox reaction of oxygen in aprotic solvent that involves a gas to solid phase transformation. Only mastering these complex transformations will eventually trigger the development of rechargeable metal-O\textsubscript{2} batteries and deliver the initial promises offered by the large energy density for these systems.

Further efforts are thus required to understand and master the formation and decomposition processes of the micron-sized cubic NaO\textsubscript{2} product, which is at the core of the Na-O\textsubscript{2} electrochemistry and still under heavy debate. Contradictory results discussing either a solution-mediated discharge and charge reaction, the need for phase transfer catalysts (e.g.:
(H₂O) that increases the solubility of NaO₂, or an electrode-surface directed mechanism, leave
the question for the fundamental reaction path unanswered.\(^5, 10-17\) One reason for that is surely
the high sensitivity of the NaO₂ product and its reactivity towards moisture\(^18, 19\), CO₂\(^20, 21\) and
other electrolyte impurities, which makes any analysis by \textit{ex situ} methods extremely difficult.
This also explains the absence of a common consensus regarding the parameters controlling
the formation of NaO₂ as well as the underpinning mechanism for NaO₂ decomposition.\(^5, 10-17\)

Another challenge of the Na-O₂ system is associated to its unsatisfactory cyclability, where
recent papers have demonstrated that the fast death of the battery, after only few cycles, is
associated to the low stability of the NaO₂ discharge product.\(^8, 22\) Others further identified the
detrimental ability of NaO₂ to trigger parasitic reactions, where the origin of the parasitic
reactions includes the oxidation of the electrolyte and the carbon electrode, consequently
forming side products such as carbonates, carboxylates, formates and acetates.\(^8, 23-25\) However,
such results were obtained \textit{ex situ}, hence leaving questions concerning the underpinning
mechanism or the effect of post-mortem sample handling, open.

Altogether, these studies clearly demonstrate the complexity of the Na-O₂ system, which have
slowed down its development. Thus, there is a need to move away from the conventional
analytical \textit{ex situ} characterization methods and develop \textit{operando} techniques to pin-down
fundamental mechanisms in real-time.\(^26\) The recent development of liquid cell for
transmission electron microscopy\(^27\) enables an exciting opportunity to explore\(^28, 29\) and even
quantify\(^30-32\) complex electrochemical reactions occurring inside batteries during operation. In
the present study, we monitor for the first time the discharge and charge reactions occurring in
a liquid aprotic Na-O₂ battery by using an \textit{operando} electrochemical (scanning) transmission
electron microscopy (STEM and TEM) Na-O₂ micro battery setup coupled with fast imaging.
This setup enables us to unambiguously prove that not only does the growth occur by a
solution-mediated processes in glyme-ether electrolytes, but so does the oxidation of NaO₂
cubes. Further, we visualize the formation of side products leading to the formation of parasitic shell at the interface between NaO$_2$ crystals and the electrolyte, which remains as solid residues on the electrode after charge.

Benchmarking the Na-O$_2$ micro-battery setup

Figure 1 shows a schematic of the micro-battery based on the electrochemical TEM cell configuration (a-d) used throughout this work for the *operando* imaging of sub-micrometric features during redox reactions at the positive carbon electrode (e). The *operando* cell was assembled using an oxygen-saturated electrolyte made of 0.5M NaPF$_6$ dissolved into monoglyme (DME), which contains $<$ 20 ppm of water as determined by Karl-Fischer titration. To establish its electrochemical performance, the *operando* cell was charged and discharged in a cyclic-voltammetry mode, using a sweep rate of 10 mV/s between and Pt as counter and pseudo-reference electrodes (Supplementary Figure S1). Such conditions were used due to the extremely small size of the cell setup, restricting the volume of the electrolyte as well as the available amount of dissolved O$_2$. We first verified that these conditions provide similar results as classical Swagelok cells, with namely the formation of discharge products consisting of plentiful cubes (Figure 2a and 2b), which were identified as NaO$_2$ by combining energy dispersive X-ray spectroscopy (EDX) and selected area electron diffraction (SAED) as discussed later in greater detail.
Figure 1: Schematic description of the Poseidon 510 TEM holder for *operando* electrochemical measurements: exploded view showing the holder tip with precision slot for loading liquid cell (a), where the top e-chip containing a printed reference (platinum), counter (platinum) and working electrode (glassy carbon) (b, c) is mounted on top of the bottom e-chip containing an electron beam transparent Si₃N₄ membrane, O-rings gasket is used to get a good vacuum-sealing. Cross-sectional illustration of the *operando* electrochemical TEM cell with the pathway of the electron beam and thin conductive glassy carbon electrode (d). Schematic of the electrochemically induced discharge and charge processes, taking place at the positive electrode surface (e).

Equally, the inhomogeneous dispersion in size and morphology for the cubes obtained on the glassy carbon electrode (GC) in the *operando* cell (loaded with liquid electrolyte) Figure 2d - f, compares well with NaO₂ cubes found in Swagelok-cells on carbon fibers (Figure 2a and 2f). Nevertheless, smaller NaO₂ cubes are formed with the *operando* TEM cell (0.5 - 1 µm) that is explained by the geometry of the cell, *i.e.* the reduced distance between the two
Si$_3$N$_4$ windows, which limits the amount of electrolyte and thus O$_2$, as well as the short discharge period during CV.

Figure 2: Comparison of Na-O$_2$ morphology obtained in regular Na-O$_2$ Swagelok cells on carbon fibers (Freudenberg gas diffusion layer electrodes) (a-b) and the GC electrodes used in the Na-O$_2$ TEM micro-battery setup (c-f), (images a-d, taken after removal of the electrolyte). The SEM overview image of the carbon fibers shows the dense coverage by NaO$_2$ discharge product (a) and the high magnification SEM image depicts the micrometer-sized cubic morphology found in Swagelok cells (b). Low magnification TEM image of the GC working electrode used in the *in situ* Na-O$_2$ micro-battery cell (c). TEM and HAADF-STEM overview images in presence of liquid electrolyte showing, similar to Swagelok cells, NaO$_2$ cubes.
covering the GC electrode after discharge (anodic CV scan, 10 mV/s) (d, e). The enlarged HAADF-STEM images illustrate the inhomogeneous NaO₂ cubes morphology (f and insert); where the thick layer of liquid electrolyte about 1 µm between the electrode surface and the bottom silicon nitride window impacts the image quality even in HAADF-STEM mode.

Visualizing the growth process of NaO₂ during discharge

The growth of NaO₂ cubes during discharge was followed by means of fast TEM imagining and high angle annular dark field STEM (HAADF-STEM) using the same cycling conditions as previously mentioned (Figure 3, sequence a and e, Supplementary Video S1). Comparing the electrochemical response in Figure 3 c with the image sequence in Figure 3 a shows that the cube growth follows a solution-precipitation mechanism. Indeed, after an initial step where the electrolyte is saturated by the electrochemically produced NaO₂ soluble species (image at 5 s, cathodic current in CV of Figure S1), a point of super saturation is then reached as characterized by the formation of small NaO₂ nuclei on the electrode surface (image at 10 s). This initial incubation period, where cathodic current corresponding to the electrochemical formation of soluble NaO₂ is measured but no product is formed on the electrode, is characteristic of a crystal growth following a solution-precipitation mechanism and therefore rules out a surface-directed growth of NaO₂ cubes, for which NaO₂ would grow as a solid following the cathodic current. Such nuclei subsequently grow in an isotropic manner (images at 15 - 60 s), by deposition of solvated NaO₂ on the surface of cubes. This growth ultimately leads to the formation of NaO₂ cubes with a size of approx. 500 nm (image at 60 s). Hence, three stages for the solution-mediated cube-growth precipitation process, similar to the first description given by Janek and coworkers, could be spotted. First, soluble NaO₂ is electrochemically formed and quickly saturate the electrolyte (owing from the low solubility
of NaO₂ in organic solvents15, 34. Once supersaturation of the electrolyte is reached, small aggregates of solvated (NaO₂)\textsubscript{n} species precipitate in the form of small NaO₂ nuclei on the carbon electrode. Finally, upon discharge, soluble NaO₂ species are consistently produced and deposit on the high surface energy nuclei, which ultimately grow into larger NaO₂ cubes. We would like to emphasize here is that the electrode surface in Figure 3 sequence a and e, is hard to visualize owing to the thick layer of electrolyte between the electrode and the Si\textsubscript{3}N\textsubscript{4} window. Hence, to facilitate its identification, a thin white line is used, as a guide to the reader, to indicate the electrode border in TEM image in Figure 3 b.

Further exploiting the capability of the TEM setup, we visualize the sequential size evolution of several cubes (Figure 3 b, supplementary Video S2). As NaO₂ is an insulator15, 16 and cannot grow by electrodeposition, it is evident that the gradual growth occurs by deposition of NaO₂ from the solution at the outer crystal surface. For better quantification, the particle size evolution during discharge as a function of the growth time was plotted, which revealed the non-linear intermittent growth rate (Figure 3 c). Initially, the electrolyte is being saturated with electrochemically generated NaO₂ and no significant deposit can be observed. Once the saturation limit is reached, a rapid increase of the cube size is observed, which could be associated with the large concentration of NaO₂(solv) in solution at the point of super saturation. This initial burst is then followed by step-wise regime associated with domains of low and high growth rates, dependent on the local concentration of NaO₂ in solution. Lastly, a steady-state regime is reached towards the end of discharge where the growth rate diminishes due to depletion of O₂ in the electrolyte, causing the limited current density as recorded by CV (Figure 3 c). By analyzing several cubes, we could demonstrate that the overall mechanism is similar for every cube, verifying the ubiquitous nature of this process with, however, different intermittent growth rates for each cube, thus further pointing out the
important role played by the mass transport, owing to the different local environment (i.e. the density of neighboring cubes) (Figure 3 c). To the best of our knowledge, this is the first acquisition of such insights regarding the solution-mediated growth of NaO$_2$. These results, combined with the previously demonstrated solubility of NaO$_2$15, 34 unambiguously establish that the insulating NaO$_2$ phase15, 16 formed during discharge of a Na-O$_2$ battery is the consequence of a solution-mediated precipitation process.

Figure 3: The time-resolved and animated operando TEM images illustrate the morphological evolution of the NaO$_2$ product during discharge (a and e), featuring a nucleation event (10 s) and the subsequent growth of NaO$_2$ cubes, following a solution-mediated growth-process (11-60 s). TEM image extracted from the growth study of several cubes (pink, blue, green, red and black circles in b) forming during discharge. The size-evolution analysis of these cubes reveals a non-linear growth with intermittent plateaus demonstrating the NaO$_2$(solv) diffusion dependency of this process (c). The black line indicates
the anodic current response obtained during discharge. Enlarged TEM image of a cube obtained at the end of discharge, surrounded by parasitic shell. (d) High-resolution TEM image of NaO₂ cube, obtained on the GC electrode at the end of discharge.

Formation of parasitic shell

Quite interestingly, the use of *operando* TEM also enables identification of a shell surrounding the NaO₂ cubes, which becomes predominant towards the end of discharge (> 60s) (Figure 4 a, image 65 s – 85s, green and orange pixels). We further exploited the capabilities of operando TEM by visualizing the evolution of this shell surrounding the cubic NaO₂ crystal (Supplementary Video S3), shell which is initially appears as a thin film prior to develop into a thick spherical shell (approx. 200 nm) around the cube. Hence, several questions arise from this observation: what is the nature of this shell and what is its consequence for the performance of the Na-O₂ battery?

Figure 4: The fast and animated *operando* TEM images showing the evolution of the parasitic shell at the cube-electrolyte interface, illustrated by the orange/green pixels (a). Shell thickness evolution, extracted from the numerical treatment of image stack after contrast filtering, indicated in pink, insert (b). TEM image of finally obtained NaO₂ cubes (strong
contrast), surrounded by the parasitic shell (light contrast) (c). Note that cubes are growing on the surface of the glassy carbon electrode, the extremity of which is represented by the white line.

Analyzing the discharge products

By moving to ex situ TEM, EDX and SAED analysis, we could provide further insights in both the chemical composition and the morphology of this shell (Figure 5). Note that this shell, which is separated from crystalline NaO₂ cube by a darker line (in the HAADF-STEM mode), can be found on the surface of every cube (Figure 5 a). Furthermore, the use of TEM reveals the presence of three different morphologies and chemical compositions from the bulk to the surface of a cube (Figure 5 b). First, the bulk crystal (green/blue area) was identified to have the composition of Na:O₂ by means of EDX and to crystallize in the fluorite structure of NaO₂ (S.G. Fm-3m) as deduced by SAED (Figure 5 c, e). Moving towards the surface, TEM reveals a first shell growing on the bulk NaO₂ crystal (pink area), which consists of an agglomeration of nano-cubes with crystallite size of about 20 nm. The SAED pattern of the nano-cubes (Figure 5 f) shows rings of modulated intensity confirming the visual observation of numerous randomly oriented crystallites, having a cubic unit cell parameter close to that measured for the SAED pattern of NaO₂. Although the absolute values for the lattice parameters cannot be precisely measured from SAED patterns, their ratio can be estimated with much higher precision. This estimate gives the $a_{\text{nano-cubes}}/a_{\text{NaO}_2} \approx 1.015$ value. Both, the fluorite-type NaO₂ and antifluorite-type Na₂O both possess the face-centered cubic unit cell with the cell parameter ratio $a_{\text{Na}_2\text{O}}/a_{\text{NaO}_2} = 5.56\text{Å}/5.512\text{Å} = 1.009$ that is reminiscent to the experimentally measured ratio. Thus, one can tentatively identify the nano-cubes as defective NaO₂, with an increased Na:O atomic ratio (note that Na₂O₂ would adopt an hexagonal...
symmetry while Na$_2$O$_2$.2H$_2$O would adopt a monoclinic symmetry). These high surface area cubes may further favor the chemical reactivity towards electrolyte decomposition as seen by the formation of the third shell, an amorphous layer at the outer surface, i.e. at the interface between the cubes and the electrolyte, with reduced Na content as deduced by the small sodium peak observed by EDX analysis (Figure 5 d, blue line). To shine further light on this amorphous outer layer, GDL electrodes were discharged using classical Swagelok cells. The electrodes, which contain large amounts of discharge product, were then analyzed in greater details.

Figure 5: Ex situ analysis (dry condition) of the discharge product. HAADF-STEM overview image of the widely distributed cubes on the GC electrode, surrounded by the parasitic shell.
(a). TEM image illustrating the interior of the shell around the NaO$_2$ cubes; bulk crystalline NaO$_2$ (green), NaO$_x$ nanocrystalites (pink) and the outer organic layer (blue) (b). EDX spectra of the NaO$_2$ bulk (c) and the organic layer (d). SAED patterns showing the high crystallinity of inner NaO$_2$ bulk (e) and poly-dispersed NaO$_x$ nanocrystallites for the second layer (f).

First, HAADF-STEM analysis of discharged GDL electrodes revealed the presence of a shell for NaO$_2$ cubes grown in classical Swagelok cells, similarly to what was observed using the in situ TEM setup (Supplementary Figure S6). This validates the observations made by the operando-cell and further exclude beam damage as the sole origin for the formation of this shell.

To gain deeper understanding about this shell, XPS spectra of discharged GDL electrodes were collected at various stages of discharge (Supplementary Figure S2). The C1s spectra reveal the constant evolution of a parasitic carbonate-like species during discharge. To quantify the amount of these carbonates generated upon discharge, we relied on the method first described by Thotiyl et al.35 that consist in the use of acid (H$_3$PO$_4$) and Fentons’s reagent are used to decompose inorganic and organic carbonates, with the CO$_2$ generated through their decomposition being subsequently sampled by a mass spectrometer.

The released CO$_2$ concentration at various stages of discharge (Figure 6) indirectly, demonstrates the significant amount of inorganic Na$_2$CO$_3$ and organic carboxylates formed on the surface of carbon electrodes. Upon discharge, the concentration of inorganic carbonates significantly increases (Figure 6 b), and this is in agreement with the growth of the shell observed in Figure 4a. Moreover, when comparing the concentration of Na$_2$CO$_3$ at the end of discharge with the results obtained at the end of charge, a limited increase is found for GDL electrodes, demonstrating that the parasitic products cannot be reoxidized and remain on the
electrode surface at the end of charge (Figure 6b). This result highlights the importance of mastering this interface for decreasing the rate of parasitic product formation.

Figure 6: Discharge−charge profiles for GDL electrode at a rate of 25 μA/cm² (a). Amount of CO₂ evolved from the GDL electrode when removed from the cells at different states of discharge and charge and treated with acid and Fenton’s reagent to decompose Na₂CO₃ and organic carboxylates (b). CO₂ evolution originating from the instability of electrode and electrolyte as deduced from the discharge of ¹³C-carbon electrodes at various discharge rates between 25 – 250 uA/cm² (c). ¹²CO₂ evolution indicates the electrolyte degradation leading to inorganic carbonates (black) and organic carboxylates (red) whereas ¹³CO₂ detection results from the direct decomposition of the carbon electrodes.

Finally, to clarify the origin of the carbonate side product formation, which can result from the electrolyte and/or from the electrode decomposition, discharge experiments using ¹³C-labeled electrodes with the released CO₂ isotopes being detected by mass Spectrometry analysis. These isotopic experiments revealed the presence of both ¹³CO₂ and ¹²CO₂ at the end of discharge, which can only be explained by the decomposition of both the electrode surface and the electrolyte, respectively (Figure 6c). However, the observed ¹²C fraction was much larger than the ¹³C one, demonstrating that the majority of parasitic carbonates originates from...
the instability of the glyme-electrolyte in contact with the highly oxidizing NaO$_2$ discharge product. Again, this result corroborates the shell formation we observed in Figure 4. Additionally, we observed that upon elevated discharge currents, the amount of products originating from the decomposition reactions increases, with a prominent contribution from the electrode decomposition (Figure 6c), hence implying that an electrochemically-driven-electrode decomposition is also at play during discharge of Na-O$_2$ batteries.

Altogether, these experiments reveal the high reactivity of NaO$_2$ and further disproves, together with previous literature reports, the initial claim of improved stability for Na-O$_2$ batteries when compared to Li-O$_2$ ones.5

Overall, the combination of the time-resolved TEM as well as ex situ observations reveal that parasitic reactions in glyme-ether based Na-O$_2$ batteries constantly occur during discharge, demonstrating the strong reactivity of NaO$_2$ towards the electrolyte and potentially residual impurities such as e.g.: H$_2$O or CO$_2$ or even the generation of singlet O$_2$ species, as recently reported for Li-O$_2$ and Na-O$_2$ batteries.$^{36-38}$ At this stage, it is worth noting that the carbonates are certainly not the only one kind of parasitic products formed when cycling Na-O$_2$ batteries. Indeed, several very recent reports demonstrated the high reactivity of NaO$_2$ towards the electrode, as well as towards the solvent,$^8, 23, 24$ where sodium carbonate and carboxylate were identified to be the main parasitic products, with a variety of other side products, such as formats and acetates also being found.

Overall, we believe that preventing the formation of this complex organic/inorganic shell will be of prime importance to mitigate the drastic capacity loss observed upon cycling with todays’ Na-O$_2$ cells, which will be discussed in greater details below.
Resolving the mechanism in charge – the dissolution of NaO$_2$

Encouraged by the mechanistic insight provided by *operando* TEM during the discharge of Na-O$_2$ battery, we decided to explore the oxidation process following the same methodology. From a sequence of images collected by HAADF-STEM (Supplementary Video S4), the gradual dissolution of NaO$_2$ cubes during oxidation can be observed (Figure 7). More importantly, this visualization shows that cubes dissolve concentrically from the outside inwards. In detail, the 3D visualization of the processes at play during charge illustrate that the dissolution of the cubes initially proceeds from the top surface, *i.e.* at the interface between the cube and the electrolyte, leading to a steady decrease in size of the cube (Figure 7 a-d). This is in contrast to the previously reported electrode directed charge-transfer, *i.e.* the direct oxidation of the cubes at the interface with the electrode.12 To gain deeper insight into this dissolution process, the height-profile evolution was followed for one cube throughout the complete oxidation (Figure 7 e-h). From this profile, it can be observed that cubes, despite being covered by the parasitic shell, start to dissolve from the top, *i.e.* the face exposed to the electrolyte, hence demonstrating the porous nature of the organic shell. Upon further charging, the overall height profile continuously decreases from the top of the cube, further suggesting a collapse of the parasitic shell during charge. Ultimately, parts of the shell remain at the end of charge spread on the surface of the electrode, visualized in Figure 7 i as a patchwork and by the “walls” at 50 and 300 nm in the linear profile in Figure 7 h. This is in good agreement with our *ex situ* observations where parasitic residues (organic and inorganic) are found on the GDL carbon fibers after charge (Figure 6), as well as with previous reports.8 Altogether, these new information shine light on a so-far poorly explained phenomenon, namely the constant columbic losses measured upon cycling. Subsequent cycling will indeed generate additional parasitic products that will accumulate at the electrode surface, ultimately causing a rapid capacity loss and a drastic self-discharge.
In light of the solvation-desolvation equilibrium discussed above, our operando electron microscopy measurements provide the definitive demonstration that the oxidation process in Na-O_2_ batteries follows a solution-mediated mechanism, as previously proposed based on the significant solubility of NaO_2_, its low dissolution energy as well as its insulating nature that would prohibit direct oxidation at the electrode. During charge, solvated NaO_2(solv) is oxidized at the electrode surface into Na\(^+\) and O_2(g), hence displacing the equilibrium NaO_2(solid) = NaO_2(solv) to the right and forcing the dissolution of the cubes. Through this process, the bottom edges of the non-conducting cubes, in direct contact with the electrode surface, remain throughout the charge as evidenced by TEM. This clearly contrasts with the previously proposed mechanism for which a direct charge transfer between the solid and the electrode/current collector was a requirement.

Finally, we explored the consequences of the formation of parasitic products at the electrode surface on subsequent cycles and NaO_2_ formation. This revealed that NaO_2_ nuclei were exclusively formed during the second discharge on the uncovered, pristine electrode surface (Supplementary Video S5). Hence, the parasitic products not only hamper the O_2(g) redox reaction but also hinder NaO_2_ nucleation on the carbon surface. In short, this study shows that the formation of parasitic products has its origin in the high chemical reactivity of the NaO_2_ cube surface, initially suspected to be less reactive than Li_2O_2. This highlights the need for a new class of electrolytes that are stable against attack from NaO_2.
Figure 7: HAADF-STEM imaging of the charge process. Animated images at different depth of charge depict the dissolution of the cubes via solution, starting at cube-electrolyte interface and proceeding downwards to the electrode surface (a-d). High profile evolution of a single cube during charge (specified by white bar in a-d) (e-h) further supporting the solution-mediated charge, where the two bumps at 50 and 300 nm in image h indicate the parasitic shell remaining on the electrode surface at the end of the charge. HAADF-STEM image of the GC electrode surface after discharge showing the patchwork of the residual parasitic shells, blocking subsequent O\textsubscript{2} redox and NaO\textsubscript{2} nucleation (i).

Conclusion

Herein we have reported that fast imagining TEM and HAADF-STEM are powerful analytical tools to understand the mechanistic pertaining to the charge/discharge processes in DME based Na-O\textsubscript{2} batteries. We visualized the solution-mediated growth of NaO\textsubscript{2} in real-time and identified that the 3D growth process is governed by the equilibrium between NaO\textsubscript{2(solv)} \rightleftharpoons NaO\textsubscript{2(solid)} and the mass transport of soluble product. By imaging the charge...
process, we provide conclusive evidence that the same solvation-desolvation equilibrium is responsible for the dissolution of the NaO$_2$ discharge product, which consumes the NaO$_2$ cubes from the NaO$_2$-electrolyte interface towards the electrode and not from the cube-electrode interface. Therefore, we rule out the direct charge-transfer reaction as the major oxidation path for NaO$_2$ cubes and clarify the mechanism of this widely discussed reaction. Finally, we provide fundamental insights into the parasitic reactions occurring during cycling of a Na-O$_2$ battery where time-resolved visualization revealed the chemical reactivity of NaO$_2$ at the interface with the electrolyte. As a result, parasitic products continuously accumulate on the cube surface to form a thick shell surrounding the NaO$_2$ cubes, which passivates the electrode surface as it cannot be reoxidized. This information is vital for optimization of the battery, since this parasitic shell is responsible for the low efficiency during charge, as well as for its poor cyclability by preventing crucial O$_2$ redox and further nucleation of NaO$_2$. It must therefore be recognized that the NaO$_2$ growth is solvent dependent, providing the possibility of mediating the deposition process by controlling the solvation/desolvation event. Hence, caution must be exercised prior to generalizing this finding. Through this first visualization of the redox processes governing the Na-O$_2$ system, we further confirm the importance of finding how the various components of the batteries locally interact with each other. We hope these results will help in the development of new strategies to optimize cell components, such as the electrolyte, in order to achieve high performing Na-O$_2$ batteries, and also serve to motivate the development of *operando* electrochemical TEM cells.

Methods

Electrolyte preparation:

1,2-Dimethoxyethane (DME, 99.9%) was purchased from Sigma Aldrich and (NaPF$_6$ 99.9 %) was bought from Stella Chemifa. Solvents were dried by means of molecular sieves for 5 days
to remove excess water and Sodium salts were dried under vacuum at 80°C for 24 hours. The
0.5 M electrolyte solutions were prepared in an argon-filled glove box (0.1 ppm O2/0.1 ppm
H2O). The water content of the electrolyte solutions was analyzed by Karl Fischer titration
and was found to be below 20 ppm. The electrolyte was saturated with ultrapure O2, prior to
use in the in situ TEM cell.

Operando electrochemical (S)TEM experiments:

Operando TEM experiments were performed using a FEI-TECNAI G2 (S)TEM equipped
with a Schottky field-emission gun and an fast camera Oneview-Gatan (30 fps at 4k). For
these experiments the microscope was operated at 200 kV in both conventional TEM and
HAADF-STEM modes. In this study, we checked the effect of the electron beam used to
make the observations in TEM and STEM modes to be sure that the beam does not have any
effect on our results. During the observations, the dose was kept below 10 e⁻⁻⁻/nm²'s in order to
limit beam damage effects. By this way, typical beam effects (bubble and precipitate
formations) due to the degradation of the electrolyte by radiolysis effect are avoided. As
shown in Supplementary Figure S3, the insignificant impact of the electron beam on the
liquid electrolyte was verified with the same dose of electron used during the fast imaging
acquisition, which shows a high stability of NaPF₆/DME/O₂ electrolyte upon electron beam
irradiation for a relatively long period of time: 360s. The TEM holder used is a Protochips
Poseidon 510 owing both a microfluidic flow system and an electrochemical measurement
system with 3 electrodes. The micro-battery cell itself is localized in the holder tip and
consists of two silicon Echips sealed by Viton O-ring gasket: a top Echip (with 2 Pt electrodes
(reference and counter) and 1 glassy carbon electrodes (working), a 500 nm SU-8 polymer
spacer and a 50 nm thick Si₃N₄ window) and bottom Echip (with a 500 nm spacer and a 50
nm thick Si₃N₄ window). Mounted Echips are then compressed onto O-rings using screwed
lid of the holder inducing a good vacuum-sealing. The microfluidic system integrated in the
TEM holder allows to introduce and flow the electrolyte with a rate range from 0.5 to 5
µL/min. using a syringe pump system. The microfluidic system (cell and microtubes) is
flushed by argon gas to discard oxygen presence prior to start operando experiment.

Cyclic voltammetry
CV experiments were conducted using an ultra low current SP-200 Biologic potentiostat, where during battery cycling, the potential was scanned at a rate of 10 mV/s between -1.6V and -3 V using Pt as pseudo-reference electrode and Pt as counter electrode. For sake of clarity, all values were then rescaled versus Na⁺/Na to yield a potential window of 1.5 and 2.9V (vs. Na⁺/Na).

X-ray photoelectron spectroscopy (XPS) analysis:

XPS analysis of the surface of aged sodium samples was performed by a means of SPECS Sage HR 100 spectrometer with a non-monochromatic X-ray source (Aluminum Kα line of 1486.6 eV energy and 300 W). The samples were placed perpendicular to the analyzer axis and calibrated using the 3d₅/₂ line of Ag with a full width at half maximum (FWHM) of 1.1 eV. All samples were transferred by means of a gastight transfer chamber to avoid air contact. All samples were further rinsed with dry DME solution to remove excess salt. In the case of sodium aged in TFSi electrolyte, the surface of the sample and not the precipitate was analyzed.

The selected resolution for the spectra was 10 eV of Pass Energy and 0.15 eV/step. All Measurements were made in an ultra-high vacuum (UHV) chamber at a pressure around 5·10⁻⁸ mbar. An electron flood gun was used to compensate for charging during XPS data acquisition. In the fittings asymmetric and Gaussian-Lorentzian functions were used (after a Shirley background correction) where the FWHM of all the peaks were constrained while the peak positions and areas were set free. For every anion, XPS was performed on the surface of the metallic sodium. For TFSI, the XPS spectrum was collected as well on the surface of the metallic sodium, while the pilled off part wasn’t analyzed.

Mass Spectrometry analysis:

The collected electrodes were first immersed in an aqueous solution containing 2M H₃PO₄, which decomposes Na₂CO₃ into CO₂. Due to the very acidic pH-value, the 2H⁺ + CO₃²⁻ ↔ HCO⁻ + H⁺ ↔ CO₂ + H₂O equilibrium is fully shifted to the right, where CO₂ evolves as gaseous CO₂, which is subsequently sampled by mass spectrometry. In a second step, after the CO₂ evolution has ended and all inorganic Na₂CO₃ was quantify, a second injection with 0.5 ml of a 2M H₃PO₄ solution containing 0.5M FeSO₄ and 40µL of 30% H₂O₂ (Fenton’s
reagent) was added. The presence of the highly reactive OH\(^{-}\) radical (based on the Fenton’s reaction: Fe\(^{2+}\) + H\(_2\)O\(_2\) \rightarrow Fe\(^{3+}\) + OH\(^{-}\) + OH\(^{•}\)) leads to the decomposition of organic species (e.g.: sodium carboxylates) into CO\(_2\), again released as gas due to the acidic environment.

Author contributions

A.G., A.D. and J.-M.T. designed the experiments. L.L., W.D., A.D. and A.G. performed the operando TEM measurements. W.D. and A.D. performed the TEM analysis. L.L., A.G., A.D. and J.-M.T. wrote the manuscript that all the authors edited.

Supporting Information Available:

Supplementary videos of *in situ* (S)TEM experiments, Cyclovoltammogram, XPS analysis, beam damage control experiments, EELS spectra, STEM-HAADF image, HAADF-STEM and EDX-STEM images of NaO\(_2\) cubes grown on GDL electrodes.

Competing interests

The authors declare no competing financial interest.

Acknowledgements

L.Lutz thanks the ALISTORE-ERI for his Ph.D. grant. We would like to thank Dr. Artem Abakumov for fruitful discussions and comments on the manuscript.

References

1. Gallagher, K. G.; Goebel, S.; Greszler, T.; Mathias, M.; Oelerich, W.; Eroglu, D.; Srinivasan, V. *Energy & Environmental Science* **2014**, *7*, 1555-1563.
2. Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. *Nature Materials* **2012**, *11*, 19–29.
3. Abraham, K. M.; Jiang, Z. *J. Electrochem. Soc.* **1996**, *143*, 1-5.
4. Lepoivre, F.; Grimaud, A.; Larcher, D.; Tarascon, J.-M. *J. Electrochem. Soc.* **2016**, *163*, A923-A929.
5. McCloskey, B. D.; Garcia, J. M.; Luntz, A. C. *J. Phys. Chem. Lett.* **2014**, *5*, 1230-1235.
6. Ottakam Thotiyil, M. M.; Freunberger, S. A.; Peng, Z.; Chen, Y.; Liu, Z.; Bruce, P. G. Nat Mater 2013, 12, 1050-1056.
7. Adelhelm, P.; Hartmann, P.; Bender, C. L.; Busche, M.; Eufinger, C.; Janek, J. Beilstein J. Nanotechnol. 2015, 6, 1016-1055.
8. Liu, T.; Kim, G.; Casford, M. T. L.; Grey, C. P. J. Phys. Chem. Lett. 2016, 7, 4841–4846.
9. Bender, C. L.; Hartmann, P.; Vracar, M.; Adelhelm, P.; Janek, J. Adv. Energy Mater. 2014, 4, 1301863.
10. Kim, J.; Park, H.; Lee, B.; Seong, W. M.; Lim, H. D.; Bae, Y.; Kim, H.; Kim, W. K.; Ryu, K. H.; Kang, K. Nat. Commun. 2016, 7, 10670-10679.
11. Knudsen, K. B.; Nichols, J. E.; Vegge, T.; Luntz, A. C.; McCloskey, B. D.; Hjelm, J. J. Phys. Chem. C. 2016, 120, 10799–10805.
12. Morasch, R.; Kwabi, D. G.; Tulodziecki, M.; Risch, M.; Zhang, S.; Shao-Horn, Y. ACS Appl. Mater. Interfaces 2017, 9, 4374-4381.
13. Lee, B.; Kim, J.; Yoon, G.; Lim, H.-D.; Choi, I.-S.; Kang, K. Chem. Mater 2015, 27, 8406–8413.
14. Hartmann, P.; Bender, C. L.; Sann, J.; Duerr, A. K.; Jansen, M.; Janek, J.; Adelhelm, P.; Heiliger, C.; Janek, J. J. Phys. Chem. C. 2015, 119, 22778-22786.
15. Yang, S.; Siegel, D. J. Chem. Mater 2015, 27, 3852-3860.
16. Black, R.; Shyamsunder, A.; Adeli, P.; Kundu, D.; Murphy, G. K.; F., N. L. ChemSusChem 2016, 9, 1795 - 1803.
17. Liang, Z.; Zou, Q.; Wang, Y.; Lu, Y.-C. Small Methods 2017, 1, 1700150.
18. Ross, F. M. Science 2015, 350, aaa9886–aaa9886.
19. Dachraoui, W.; Kurkulina, O.; Hadermann, J.; Demortière, A. Microsc. Microanal. 2016, 22, 24-25.
32. Luo, L.; Liu, B.; Song, S.; Xu, W.; Zhang, J. G.; Wang, C. Nat Nanotechnol. 2017, 12, 535-540.
33. Hartmann, P.; Bender, C. L.; Vracar, M.; Duerr, A. K.; Garsuch, A.; Janek, J.; Adelhelm, P. Nat. Mater 2013, 12, 228-232.
34. Lutz, L.; Yin, W.; Grimaud, A.; Alves Dalla Corte, D.; Tang, M.; Johnson, L.; Azaceta, E.; Sarou-Kanian, V.; Naylor, A. J.; Hamad, S.; Anta, J. A.; Salager, E.; Tena-Zaera, R.; Bruce, P. G.; Tarascon, J. M. J. Phys. Chem. C. 2016, 120, 20068-20076.
35. Ottakam Thothiyil, M. M.; Freunberger, S. A.; Peng, Z.; Bruce, P. G. J. Am. Chem. Soc. 2013, 135, 494-500.
36. Wandt, J.; Jakes, P.; Granwehr, J.; Gasteiger, H. A.; Eichel, R. A. Angew. Chem. 2016, 128, 7006-7009.
37. Mahne, N.; Schafzahl, B.; Leypold, C.; Leypold, M.; Grumm, S.; Leitgeb, A.; Strohmeier, G. A.; Wilkening, M.; Fontaine, O.; Kramer, D.; Slugovc, C.; Borisov, S. M.; Freunberger, S. A. Nat. Energy 2017, 2, 1-9.
38. Schafzahl, L.; Mahne, N.; Schafzahl, B.; Wilkening, M.; Slugovc, C.; Borisov, S. M.; Freunberger, S. A. Angew Chem Int Ed Engl 2017, 56, 15728-15732.

FOR TABLE OF CONTENTS ONLY