Riemann–Roch coefficients for Kleinian orbisurfaces

Bronson Lim 1 · Franco Rota 2

Received: 18 October 2022 / Accepted: 8 March 2023 / Published online: 20 March 2023
© The Author(s) 2023

Abstract
Suppose \(S \) is a smooth, proper, and tame Deligne–Mumford stack. Toën’s Grothendieck–Riemann–Roch theorem requires correction terms, involving components of the inertia stack, to the standard formula for schemes. We give a brief overview of Toën’s Grothendieck–Riemann–Roch theorem, and explicitly compute the correction terms in the case of an orbifold surface with stabilizers of types ADE.

Keywords Orbifold Riemann Roch theorem · Kleinian singularity · Stacky surfaces

Mathematics Subject Classification 14C40

1 Introduction

Let \(S \) be a Kleinian orbisurface over an algebraically closed field \(k \). That is, \(S \) is a smooth, proper, and tame Deligne–Mumford surface with isolated stacky locus, ADE stabilizers, and projective coarse moduli. The classical Riemann–Roch theorem fails for orbisurfaces as it fails to capture contributions from the stacky locus. The Toën–Hirzebruch–Riemann–Roch theorem provides corrections terms to the classical formula for \(S \) coming from the inertia stack [16]. These correction terms arise by pulling back to the inertia stack to determine the contributions from the twisted sectors.

The purpose of this paper is to determine the correction terms for \(S \). This has already been accomplished when \(S \) has a stacky point of type \(A \) [13, Section 3.3]. In [4, Appendix A], the authors compute the correction term for the sheaf \(\mathcal{O}_S \) in all ADE cases. Moreover, they relate the correction term to the exceptional divisor of the minimal resolution of the coarse moduli \(S \) of \(S \). This is a manifestation of the famous Bridgeland–King–Reid theorem asserting a derived equivalence between the derived categories of \(S \) and \(S \) [2].
The remaining cases are the binary tetrahedral (E_6), binary octahedral (E_7), binary icosa-
hedral (E_8), and the binary dihedral groups (D). In Sect. 2, we give an overview of Toën’s
Riemann–Roch theorem for stacks. Section 3 introduces Kleinian orbisurfaces and spells out
the Riemann–Roch theorem for this case. In Proposition 3.6, we recall a formula for the cor-
rection terms for a general ADE singularity, which relies on coefficients determined solely
by the character table. In Sect. 4, we compute explicitly these Riemann–Roch coefficients in
each of the ADE cases. In a different language, similar correction terms have been computed
in [12, Sec. 5]; however, the present formulation is more natural when studying orbisurfaces
from the stacky point of view.

Notation and conventions

For a smooth quasi-projective scheme X over \mathbb{C}, we denote by $K(X)$ the Grothendieck
group of coherent sheaves on X, and by $H^\bullet(X)$ the singular cohomology with rational coefficients of
its associated analytic space. We assume all algebraic stacks to be Deligne–Mumford, which
implies that stabilizers are finite groups. We use Vistoli’s definition of Chern and Todd classes
for Deligne–Mumford stacks [18], and denote by $K(X)$ and $H^\bullet(X)$ the Grothendieck group
and the (rational) singular homology of a smooth Deligne–Mumford stack \mathcal{X} as described in
[1].

**2 Toën’s Grothendieck–Riemann–Roch theorem for Deligne–Mumford
stacks**

In this section, we give an overview of Toën’s Riemann–Roch theorem for stacks [16]. The
theorem holds in arbitrary characteristic, but for ease of exposition we work over the field
of complex numbers.¹ We direct the interested reader to other accounts of this result such as
[3, Appendix A], [17, Appendix A], and to Edidin’s equivariant Riemann–Roch formulation
[7].

Our first step is to recall the statements for schemes (see for example [9, Chapter 15]). Let
X be a smooth projective scheme, and E a perfect complex of sheaves on X. Denote by $K(X)$
the Grothendieck group of coherent sheaves of X, and by $H^\bullet(X)$ its singular cohomology.
Then there is a linear map ²

$$
\tau_X: K(X) \longrightarrow H^\bullet(X) \quad E \longmapsto \text{ch}(E) \cdot \text{Td}(X),
$$

where ch denotes the Chern character and Td denotes the Todd class. The Grothendieck–
Riemann–Roch theorem states that τ is functorial with respect to proper push forwards,
i.e. if $f: X \rightarrow Y$ is a proper map of smooth quasi-projective schemes, and E is a perfect
complex of sheaves on X, then $\tau_Y(f_*(E)) = f_*(\tau_X(E))$. The special case of $Y = \text{pt}$ yields
the Hirzebruch–Riemann–Roch theorem, which asserts

$$
\chi(E) = \int_X \text{ch}(E) \cdot \text{Td}(X).
$$

¹ The main technical subtlety when working in positive characteristic is to make sure that the Chern character
takes values in an appropriate cohomology theory. In [16], this is étale cohomology of an algebraic stack.
² Here and from now on we use the same notation for E and its class in the Grothendieck group, unless
confusion can arise.
For \mathcal{X} a Deligne–Mumford stack, the analogous of the operator $\tau_{\mathcal{X}}$ is a map $\tau_{\mathcal{X}}$ valued in a suitable extension of scalars of the cohomology of the inertia stack $I_{\mathcal{X}}$ of \mathcal{X}. Recall the definition of the inertia stack:

Definition 2.1 ([15, 8.1.17]) Let \mathcal{X} be an algebraic stack. The inertia stack $I_{\mathcal{X}}$ is the fibered product of the diagram

$$
\mathcal{X} \xrightarrow{\Delta} \mathcal{X} \times \mathcal{X},
$$

where Δ is the diagonal embedding.

Remark 2.2 More explicitly, the objects of $I_{\mathcal{X}}$ are pairs (x, g) where x is an object of \mathcal{X} lying above a scheme T, and g is an automorphism of x in $\mathcal{X}(T)$.

Suppose $\mathcal{X} = [Z/H]$ where H is a finite group acting on a variety Z. Sections of \mathcal{X} are H-torsors equipped with an equivariant map to Z. Then, $I_{\mathcal{X}}$ can be canonically identified with $[\hat{Z}/H]$, where $\hat{Z} = \{(z, h) \in Z \times H \mid h \cdot z = z\}$. Therefore we have

$$
I_{\mathcal{X}} \simeq \coprod_{(h) \in c(H)} [Z^h/C_G(h)],
$$

where $c(H)$ is the set of conjugacy classes of H, and $C_G(h)$ denotes the centralizer of a conjugacy class (h).

We denote by μ_∞ the subgroup of \mathbb{C}^* containing all roots of unity, and define $\Delta := \mathbb{Q}(\mu_\infty)$ to be the rational numbers adjoined μ_∞. As usual, for every \mathbb{Z}-module A we denote by A_Λ the tensor product $A \otimes_\mathbb{Z} \Lambda$. Define a map

$$
\rho : K(I_{\mathcal{X}}) \rightarrow K(I_{\mathcal{X}})_\Lambda
$$

as follows. A vector bundle E over $I_{\mathcal{X}}$ decomposes as a sum of eigenbundles $\bigoplus_{\zeta \in \mu_\infty} E^{(\zeta)}$ as in the proof of [16, Théorème 3.15]. Then, let

$$
\rho(E) := \sum_{\zeta \in \mu_\infty} \zeta E^{(\zeta)}.
$$

Definition 2.3 Let \mathcal{X} be a tame smooth Deligne–Mumford stack with quasi-projective coarse moduli space. Define the weighted Chern character, $\tilde{c}h : K(\mathcal{X}) \rightarrow H^*(I_{\mathcal{X}})_\Lambda$, as the composition

$$
K(\mathcal{X}) \xrightarrow{\sigma^*} K(I_{\mathcal{X}}) \xrightarrow{\rho} K(I_{\mathcal{X}})_\Lambda \xrightarrow{\tilde{c}h} H^*(I_{\mathcal{X}})_\Lambda
$$

where $\sigma : I_{\mathcal{X}} \rightarrow \mathcal{X}$ is the projection (onto either factor) and $\tilde{c}h$ is the usual Chern character.

3 The decomposition, roughly, works as follows. A section $f \in I_{\mathcal{X}}(T)$ for some scheme T is the datum of a section $x \in \mathcal{X}(T)$ with an automorphism a of x. Then, the bundle f^*E on T is equipped with an action of $<a>$, which is diagonalizable by the tameness assumption. For $\zeta \in \mu_\infty$, one shows that the ζ-eigenbundle of f^*E can be written as $f^*E^{(\zeta)}$, for some vector bundle $E^{(\zeta)}$ on $I_{\mathcal{X}}$.

4 The singular homology of a Deligne–Mumford stack coincides rationally with that of its coarse moduli space. Then, we can regard the Chern character as landing in the Chen–Ruan orbifold cohomology of \mathcal{X}, defined in [5] as the singular homology of the coarse moduli space $\overline{I_{\mathcal{X}}}$ of $I_{\mathcal{X}}$.
Next, we define the weighted Todd class of \mathcal{X}. This is a modification of the usual Todd class of $I_{\mathcal{X}}$. Let N denote the normal bundle of the local immersion $\sigma : I_{\mathcal{X}} \to \mathcal{X}$, and define
\[
\lambda_{-1}(N^\vee) := \sum_i (-1)^i \bigwedge_i N^\vee \in K(I_{\mathcal{X}}).
\]
The element $\rho(\lambda_{-1}(N^\vee))$ is invertible in $K(I_{\mathcal{X}})_\Lambda$ by [16, Lemme 4.6]. Define the weighted Todd class of \mathcal{X} as
\[
\tilde{Td}(\mathcal{X}) := \frac{Td(I_{\mathcal{X}})}{\text{ch}(\rho(\lambda_{-1}(N^\vee)))}
\]
and the Toën map $\tau_{\mathcal{X}} : K(\mathcal{X}) \to H^*(I_{\mathcal{X}})_\Lambda$ as
\[
\tau_{\mathcal{X}}(E) := \tilde{c}h(E) \cdot \tilde{Td}(\mathcal{X}).
\]

Toën’s Riemann–Roch theorem for stacks asserts that $\tau_{\mathcal{X}}$ behaves functorially with respect to proper push forwards:

Theorem 2.4 ([16, Théorème 4.10]) Let $f : \mathcal{X} \to \mathcal{Y}$ be a proper morphism of smooth Deligne–Mumford stacks with quasi-projective coarse moduli spaces. Then for all $E \in K(\mathcal{X})$ we have
\[
f_*(\tau_{\mathcal{X}}(E)) = \tau_{\mathcal{Y}}(f_*E).
\]
Moreover, if $f : \mathcal{X} \to \text{pt}$, we obtain
\[
\chi(E) = \int_{I_{\mathcal{X}}} \tau_{\mathcal{X}}(E).
\]
Expanding the expression (3) we have
\[
\chi(E) = \int_{I_{\mathcal{X}}} \tilde{c}h(E) \cdot \tilde{Td}(\mathcal{X}) = \int_{\mathcal{X}} \tilde{c}h(E) \cdot \tilde{Td}(\mathcal{X}) + \delta(E),
\]
with $\delta(E) := \int_{I_{\mathcal{X}} \setminus I_{\mathcal{Y}}} \tilde{c}h(E) \cdot \tilde{Td}(\mathcal{X}) \in \mathbb{Q}$ the correction term.

3 Riemann–Roch for kleinian orbisurfaces

3.1 Kleinian orbisurfaces

Our object of study is the stacky resolution of singularities of ADE type (also known as Kleinian singularities).

Definition 3.1 An orbisurface is a smooth, proper, and tame Deligne–Mumford surface S over an algebraically closed field k with projective coarse moduli and isolated stacky locus.

For any orbisurface S, the stacky locus is a finite union of residual gerbes corresponding to finitely many k-points $p_i \in S(k)$, i.e.
\[
\text{Stack}(S) = \coprod_{i=1}^r BG_i
\]
where $G_i = \text{stab}(p_i)$ is a finite subgroup of GL_2.

\[Springer\]
Definition 3.2 An orbisurface is *Kleinian* if each G_i is a subgroup of SL_2.

Example 3.3 Let S be a surface with tame Kleinian singularities. Then there exists a Kleinian orbisurface S^{can} and a map $\pi: S^{can} \to S$ such that:

- the restriction $\pi^{-1}(\text{Sing}(S)) \to S \setminus \text{Sing}(S)$ is an isomorphism;
- π is universal among all dominant, codimension preserving maps to S.

The stack S^{can} is called the *canonical stack* associated with the surface S, see [8].

We will compute a formula for the correction term $\delta(E)$ appearing in (4) in the case of a Kleinian orbisurface. Since $\delta(E)$ is computed at each residual gerbe independently, we may and will assume that S has a single stacky point, p, with residual gerbe $\iota: BG \to S$. We will see that the correction terms involve coefficients determined solely by the natural action of G on the tangent space $T_p S$. For any subgroup G of GL_2, we denote by $V \simeq \mathbb{A}^2$ the natural representation.

3.2 The weighted Todd class

Let S be a Kleinian orbisurface with a single stacky point p with stabilizer G. Arguing as in Remark 2.2, we see that the inertia stack of S is $I_S = S \sqcup (I_{BG} \setminus BG)$.

Here

$$I_{BG} \setminus BG = \bigsqcup_{(g) \neq (1)} BC_G(g),$$

where the union is taken over all conjugacy classes (g) of non-trivial elements $g \in G$. Fix one of the components $BC_G(g)$. Its normal bundle in S is identified with $T_p S = V^\vee$. Then the class $\lambda^{-1}(N^\vee)$ restricted to $BC_G(g)$ is

$$\lambda^{-1}(N^\vee)|_{BC_G(g)} = [1] - [V] + [\wedge^2 V] = 2[1] - [V]$$

in $K(BC_G(g))$ (which is free, abelian, and generated by irreducible representations of $C_G(g)$). The element g acts diagonally on V, with eigenvalues some roots of unity ξ_g and ξ_g^{-1}. Thus,

$$\text{ch}(\rho(\lambda^{-1}(N^\vee)|_{BC_G(g)})) = 2 - \xi_g - \xi_g^{-1} = 2 - \chi_V(g) \in \mathbb{Q}(\mu_\infty),$$

where $\chi_V(g) = \xi_g + \xi_g^{-1}$ is the character of V evaluated at g, i.e. the trace of g acting through the representation V. Using (2) we obtain:

$$\int_{BC_G(g)} \widetilde{Td}_S = \int_{BC_G(g)} \frac{1}{2 - \chi_V(g)} = \frac{1}{|C_G(g)|} \cdot \frac{1}{2 - \chi_V(g)}.$$

Integrating over the twisted sector:

$$\delta(O_S) = \int_{I_{BG} \setminus BG} \widetilde{Td}_S = \sum_{(g) \neq (1)} \frac{1}{|C_G(g)|} \cdot \frac{1}{2 - \chi_V(g)}$$

5 The ADE classification holds in characteristic $p > 0$ as well, as long as the orders of the stabilizers is coprime with p. In this setting, quotients of \mathbb{A}^2 by finite subgroups of SL_2 classify F-rational Gorenstein surface singularities [10, §3].
Remark 3.4 If $S \to S$ is the projection to the coarse moduli space, then S has an ADE singularity at the image of the stacky point. The integral (5) is computed in [4] to be

$$\delta(\mathcal{O}_S) = \frac{1}{12} \left(\chi_{\text{top}}(C_{\text{red}}) - \frac{1}{|G|} \right),$$

where C is the fundamental cycle of the minimal resolution of the singularity.

3.3 Riemann–Roch coefficients

In this section, we write an expression of the term $\delta(E)$ appearing in (4) in terms of the weighted Chern character of E and of the character table of the stabilizer group G.

The Grothendieck group of BG is free, Abelian and generated by the irreducible representations of $G \{ \rho_i \mid i = 0, \ldots, M \}$. For any perfect complex of sheaves E on S, its derived fiber is a formal linear combination

$$[L^*E] = \sum_{i=0}^M a_i \rho_i \in K(BG).$$

On the component $BC_G(g)$, the element g acts on ρ_i with eigenvalues denoted $\zeta_i^{(l)}$, to which correspond eigenspaces $\rho_i^{(l)}$ (the action is diagonalizable by the tameness assumption). Therefore, L^*E decomposes on $BC_G(g)$ into weighted eigenbundles as

$$\sum_{i=0}^M \sum_{l=1}^{\dim \rho_i} a_i \zeta_i^{(l)} \rho_i^{(l)}.$$

Denote by $\chi_i := \chi_{\rho_i} = \text{Tr} \circ \rho_i$ the character of the representation ρ_i.

Definition 3.5 For each $i = 0, \ldots, M$ set

$$T_i := \sum_{(g) \neq (1)} \frac{\chi_i(g)}{|C_G(g)|(2 - \chi_V(g))}.$$

We call the T_i the Riemann–Roch coefficients of G.

Proposition 3.6 The correction term for a complex of sheaves E on S can be written as

$$\delta(E) = \sum_{i=0}^M a_i T_i.$$

In particular, it only depends on the ranks of eigenbundles of L^*E and the coefficients T_i. The latter only depend on the character table of G.

Proof The weighted Chern character of $L^*E|_{BC_G(g)}$ is given by

$$\tilde{\text{ch}}(L^*E|_{BC_G(g)}) = \sum_{i=0}^M \sum_{l=1}^{\dim \rho_i} a_i \zeta_i^{(l)} = \sum_{i=0}^M a_i \chi_i(g).$$

Thus we have

$$\delta(E) = \int_{I_S \setminus S} \tilde{\text{ch}}(E). \tilde{T}dS = \sum_{(g) \neq (1)} \frac{1}{|C_G(g)|} \cdot \sum_{i=0}^M a_i \chi_i(g) \frac{2 - \chi_V(g)}{2} = \sum_{i=0}^M a_i T_i.$$
with

\[T_i := \sum_{(g) \neq (1)} \frac{\chi_i(g)}{|C_G(g)|(2 - \chi_V(g))}. \]

\[\square \]

4 Computation of Riemann–Roch coefficients

Now we obtain formulae for the correction term (7), by explicitly computing the corresponding Riemann–Roch coefficients \(T_i \) for all Kleinian singularities. This extends the computation done in [13] for singularities of type \(A \), and completes the one started in [4], where the authors only compute \(\delta(\mathcal{O}_S) \). The computations do not depend on the characteristic of the base field, and neither do the results.

4.1 Singularities of type \(A \)

In this case, the coefficients \(T_j \) are computed by Lieblich in [13, Sec. 3.3.2], who gives an explicit formula for \(\delta(F) \). We recall his result here. We’ll make use of the following Lemma:

Lemma 4.1 ([13, Lemma 3.3.2.1]) Let \(\zeta \) be a primitive \(P \)-th root of unity and \(j \leq P \) a non-negative integer. Then

\[\sum_{k=1}^{P-1} \frac{\zeta^{kj}}{2 - \zeta^k - \zeta^{-k}} = \frac{j(j - P)}{2} + \frac{P^2 - 1}{12}. \]

The \(K \)-theory of \(B_{\mu_N} \) is free Abelian of rank \(N \) with \(\{ \chi^j \mid j = 0, \ldots, N - 1 \} \) as a basis. For any perfect complex of sheaves \(\mathcal{F} \) on \(S \), we have

\[[L^a \mathcal{F}] = \sum_{j=0}^{N-1} a_j \chi^j. \]

Define a function \(f : \mathbb{Z}/N\mathbb{Z} \to \mathbb{Q} \) by the formula

\[f(x) = \frac{x(x - N)}{2} + \frac{N^2 - 1}{12}. \]

Let \(\zeta \in G \) be a primitive \(N \)-th root of unity. It acts on \(\chi^j \) with multiplication by \(\zeta^j \). Then, equation (6) reads

\[T_j = \frac{1}{N} \sum_{k=1}^{N-1} \frac{\zeta^{kj}}{2 - \zeta^k - \zeta^{-k}} = \frac{1}{N} f(j) \]

as a consequence of Lemma 4.1.
4.2 Singularities of type D: binary dihedral groups

In this case, the group acting is the binary dihedral group $G = \text{Dic}_n$, it has order $4n$ and it gives rise to a singularity of type D_{n+2} with $n \geq 2$. We can present it as

$$\text{Dic}_n = \langle a, x \mid a^{2n} = I, x^2 = a^n, x^{-1}ax = a^{-1} \rangle.$$

The center of G is cyclic of order 2, generated by $x^2 = a^n$. The quotient of G by its center is the dihedral group Dih_n with $2n$ elements.

For the representation theory of Dic_n, we point the reader to [11, §13] or to [6, §7.1]. The group G has $n + 3$ conjugacy classes, grouped by cardinality as:

$$\{ I \}, \{-I = x^2 = a^n\}$$

$$\{ a, a^{-1} \}, \{ a^2, a^{-2} \}, \ldots, \{ a^{n-1}, a^{n+1} \},$$

$$\{ xa, xa^3, \ldots, xa^{2n-2} \}, \{ x, xa^2, \ldots, xa^{2n-1} \}.$$

The corresponding centralizers have cardinality $4n$, $2n$ and 4.

There are 4 one-dimensional representations. There are several two-dimensional representations, called dihedral, induced by $G \to \text{Dih}_n$ there are $\frac{n+1}{2}$ of these if n is odd, and $\frac{n-2}{2}$ if n is even. The l-th dihedral representation is given by the assignment

$$a \mapsto \begin{pmatrix} e^{\frac{2\pi \text{i} l}{n}} & 0 \\ 0 & e^{-\frac{2\pi \text{i} l}{n}} \end{pmatrix}; \quad x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

The remaining representations are called of quaternionic type since they are induced by an inclusion $G \subset \text{SL}(2, \mathbb{C})$. They are also two-dimensional, there are $\frac{n-1}{2}$ if n is odd, or $\frac{n}{2}$ if n is even. The l-th quaternionic representation is given by

$$a \mapsto \begin{pmatrix} e^{\frac{\text{i} \pi l}{n}} & 0 \\ 0 & e^{-\frac{\text{i} \pi l}{n}} \end{pmatrix}; \quad x = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

We assume that G acts on \mathbb{C}^2 via the first ($l = 1$) quaternionic representation, and denote by V this representation.

Let T_ρ be the Riemann–Roch coefficient corresponding to a representation ρ. For $G = \text{Dic}_n$, we have

$$T_\rho = \frac{\chi_\rho(-I)}{16n} + \frac{1}{8}(\chi_\rho(x) + \chi_\rho(xa)) + \frac{1}{2n} \sum_{k=1}^{n-1} \frac{\chi_\rho(a^k)}{2 - \chi_V(a^k)}.$$

First, we compute coefficients for the 4 one-dimensional representations. Let ρ_x be the representation where x acts by -1 and a acts trivially, similarly for ρ_a, and write $\rho_{x,a} = \rho_x \otimes \rho_a$. Let $\xi := e^{-\frac{\pi \text{i}}{n}}$. By applying Lemma 4.1 we obtain

$$T_{\rho_0} = \frac{1}{16n} + \frac{1}{4} + \frac{n^2 - 1}{12n}; \quad T_{\rho_x} = \frac{1}{16n} - \frac{1}{4} + \frac{n^2 - 1}{12n}. \quad (8)$$

The remaining coefficient is

$$T_{\rho_a} = T_{\rho_{x,a}} = \frac{1}{16n} + \frac{1}{2n} \sum_{k=1}^{n-1} \frac{(-1)^k}{2 - \chi_V(a^k)} = -\frac{1}{16n} + \frac{1}{2n} \sum_{k=1}^{n-1} \frac{\xi^{nk}}{2 - \xi^k - \xi^{-k}}. \quad (10)$$
Now we compute the the sum in (10): substituting \(h = 2n - k \) we have
\[
\sum_{k=1}^{n-1} \frac{\zeta^{-kl}}{(2 - \zeta^k - \zeta^{-k})} = \sum_{h=n+1}^{2n-1} \frac{\zeta^{(h-2n)l}}{(2 - \zeta^{2n-h} - \zeta^{h-2n})} = \sum_{h=n+1}^{2n-1} \frac{\zeta^{hl}}{(2 - \zeta^{-h} - \zeta^h)}. \tag{11}
\]

Using the (11) with \(l = n \), write
\[
\sum_{k=1}^{2n-1} \frac{\zeta^{nk}}{(2 - \zeta^k - \zeta^{-k})} = \sum_{k=1}^{n-1} \frac{\zeta^{nk}}{(2 - \zeta^k - \zeta^{-k})} + \frac{(-1)^n}{4} + \sum_{k=1}^{n-1} \frac{\zeta^{-nk}}{(2 - \zeta^k - \zeta^{-k})}.
\]

whence, applying Lemma 4.1 with \(P = 2n \) and \(j = n \),
\[
\sum_{k=1}^{n-1} \frac{\zeta^{nk}}{(2 - \zeta^k - \zeta^{-k})} = \frac{1}{2} \left[\sum_{k=1}^{2n-1} \frac{\zeta^{nk}}{(2 - \zeta^k - \zeta^{-k})} - \frac{(-1)^n}{4} \right] = \frac{1}{2} \left[-\frac{n^2}{2} + \frac{4n^2 - 1}{12} - \frac{(-1)^n}{4} \right].
\]

If \(\sigma \) is the \(l \)-th quaternionic representation, we have
\[
T_\sigma = -\frac{1}{8n} + \frac{1}{2n} \sum_{k=1}^{n-1} \frac{(\zeta^{kl} + \zeta^{-kl})}{(2 - \zeta^k - \zeta^{-k})}. \tag{12}
\]

Using once again the substitution (11), we obtain:
\[
\sum_{k=1}^{n-1} \frac{(\zeta^{kl} + \zeta^{-kl})}{(2 - \zeta^k - \zeta^{-k})} = \sum_{k=1}^{n-1} \frac{\zeta^{kl}}{(2 - \zeta^k - \zeta^{-k})} + \sum_{k=1}^{n-1} \frac{\zeta^{-kl}}{(2 - \zeta^k - \zeta^{-k})} = \sum_{k=1}^{n-1} \frac{\zeta^{kl}}{(2 - \zeta^k - \zeta^{-k})} + \sum_{h=n+1}^{2n-1} \frac{\zeta^{hl}}{(2 - \zeta^{-h} - \zeta^h)} = \sum_{k=1}^{n-1} \frac{\zeta^{kl}}{(2 - \zeta^k - \zeta^{-k})} - \frac{(-1)^l}{4}.
\]

Applying Lemma 4.1 with \(P = 2n \) and \(j = l \) then yields
\[
\sum_{k=1}^{n-1} \frac{(\zeta^{kl} + \zeta^{-kl})}{(2 - \zeta^k - \zeta^{-k})} = \frac{l(l - 2n)}{2} + \frac{(2n)^2 - 1}{12} - \frac{(-1)^l}{4},
\]

and finally
\[
T_\sigma = -\frac{1}{8n} + \frac{1}{2n} \left(-\frac{(-1)^l}{4} + \frac{l(l - 2n)}{2} + \frac{(2n)^2 - 1}{12} \right). \tag{13}
\]

If \(\tau \) is a dihedral representation, then
\[
T_\tau = -\frac{1}{8n} + \frac{1}{2n} \sum_{k=1}^{n-1} \frac{(\zeta^{2kl} + \zeta^{-2kl})}{(2 - \zeta^k - \zeta^{-k})}. \tag{14}
\]

and we may repeat the argument above applying Lemma 4.1 with \(P = 2n \) and \(j = 2l \):
\[
\sum_{k=1}^{n-1} \frac{(\zeta^{2kl} + \zeta^{-2kl})}{(2 - \zeta^k - \zeta^{-k})} = \left(-\frac{1}{4} + 2l(l - n) + \frac{(2n)^2 - 1}{12} \right). \tag{15}
\]
4.2.1 Example: the D_4 singularity

The binary dihedral group $G = \text{Dic}_n$ with $n = 2$ has order $4n = 8$. We present it as the group of matrices generated by

$$a = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \quad x = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

As above, let ρ_0, ρ_a, ρ_x and ρ_{xa} denote the one-dimensional representations. The two-dimensional irreducible representation is denoted V.

For a sheaf F we can write $[L_i^* F] = \sum \rho_a \rho T_\rho$, then the correction term is $\delta(F) = \sum \rho_a \rho T_\rho$ with $T_1 = 13 \overline{3}_2$, $T_\rho_a = T_\rho x = T_\rho xa = -3 \overline{3}_2$ and $T_V = -2 \overline{3}_2$.

As an example, we explicitly check Lemma 2.9 of [14] in a few cases. It states that $\delta(O_p \otimes \rho) = \left\{ \begin{array}{ll} 1 & \text{if } \rho = \rho_0 \\ -\dim \rho & \text{else} \end{array} \right.$.

Let $F = O_p$. Then the equivariant Koszul complex

$$O \otimes \Lambda^2 V \to O \otimes V \to O \to O_p$$

shows $[L_i^* O_p] = 2 \rho_0 - V$. Plugging this in, we get

$$\delta(O_p) = 2 \cdot \frac{13}{32} - \frac{2}{32} = \frac{7}{8}.$$

Now let $F = O_p \otimes V$. Observe that $V \otimes V = \bigoplus_{j=0}^3 \chi^j$, whence $[L_i^* O_p] = 2V - (\sum \chi^j)$, i.e. $a_0 = \cdots = a_3 = -1$ and $a_4 = 2$. The same computation as above yields $\delta(O_p \otimes V) = -\frac{1}{4}$.

4.3 Singularities of type E

The groups giving rise to singularities of type E are the binary tetrahedral (E_6), binary octahedral (E_7) and binary icosahedral group (E_8). We follow the notation of [11, §14-16]. These groups are constructed as follows. Set

$$\sigma = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \quad \tau = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad \mu = \frac{1}{\sqrt{2}} \begin{pmatrix} \varepsilon^7 & \varepsilon^7 \\ \varepsilon^5 & \varepsilon \end{pmatrix}$$

where $\varepsilon = e^{\pi i/4}$. Then the binary tetrahedral group is the group $2T = \langle \sigma, \tau, \mu \rangle$. Additionally, set

$$\kappa = \begin{pmatrix} \varepsilon & 0 \\ 0 & \varepsilon^7 \end{pmatrix}.$$

Then the binary octahedral group is $2O = \langle 2T, \kappa \rangle$.

For the binary icosahedral group $2I$ we set

$$\sigma = -\begin{pmatrix} \varepsilon^3 & 0 \\ 0 & \varepsilon^2 \end{pmatrix}, \quad \tau = \frac{1}{\sqrt{5}} \begin{pmatrix} -\varepsilon - \varepsilon^4 & \varepsilon - \varepsilon^3 \\ \varepsilon - \varepsilon^2 & \varepsilon^2 - \varepsilon^4 \end{pmatrix}$$

where $\varepsilon = e^{2\pi i/5}$. Then $2I = \langle \sigma, \tau \rangle$.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{image.png}
\caption{Example of a diagram related to the text.}
\end{figure}
4.3.1 The E_6 singularity

The binary tetrahedral group $2T$ is of order 24. Its character table is in Table 1, where \(\omega = \frac{-1 + \sqrt{3}i}{2} \).

Here \(\rho_2 \) is the natural representation. The Riemann–Roch coefficients are computed as follows:

\[
T_i = \frac{\chi_i(-1)}{96} + \frac{\chi_i(\tau)}{8} + \frac{\chi_i(\mu)}{6} + \frac{\chi_i(\mu^2)}{18} + \frac{\chi_i(\mu^4)}{18} + \frac{\chi_i(\mu^5)}{6} \quad (16)
\]

From (16) we can compute the Riemann–Roch coefficients which we arrange in Table 2.

4.3.2 The E_7 singularity

The binary octahedral group $2O$ is of order 48. Its character table is in Table 3.
Here ρ_2 is the natural representation. The Riemann–Roch coefficients are computed as follows:

$$T_i = \frac{\chi_i(-1)}{192} + \frac{\chi_i(\mu)}{6} + \frac{\chi_i(\mu^2)}{18} + \frac{\chi_i(\tau)}{16} + \frac{\chi_i(\kappa)}{16 - 8\sqrt{2}} + \frac{\chi_i(\tau\kappa)}{8} + \frac{\chi_i(\kappa^3)}{16 + 8\sqrt{2}}$$

(17)

We arrange them in Table 4.

4.3.3 The E_8 singularity

The binary icosahedral group $2I$ is of order 120. Its character table is in Table 5, where $\mu^\pm = \frac{1 \pm \sqrt{5}}{2}$.

Here ρ_2 is the natural representation. The Riemann–Roch coefficients are computed as follows:

$$T_i = \frac{\chi_i(-1)}{480} + \frac{\chi_i(\sigma)}{20 - 10\mu^+} + \frac{\chi_i(\sigma^2)}{20 + 10\mu^-} + \frac{\chi_i(\sigma^3)}{20 - 10\mu^-} + \frac{\chi_i(\sigma^4)}{20 + 10\mu^+} + \frac{\chi_i(\tau)}{8} + \frac{\chi_i(\sigma^2\tau)}{18} + \frac{\chi_i(\sigma^7\tau)}{6}$$

(18)

We arrange them in Table 6.
Declarations

Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Abramovich, D., Graber, T., Vistoli, A.: Gromov–Witten theory of Deligne–Mumford stacks. Am. J. Math. 130(5), 1337–1398 (2008)
2. Bridgeland, T., King, A., Reid, M.: The McKay correspondence as an equivalence of derived categories. J. Am. Math. Soc. 14(3), 535–554 (2001)
3. Bryan, J., Cadman, C., Young, B.: The orbifold topological vertex. Adv. Math. 229(1), 531–595 (2012)
4. Chen, J.-C., Tseng, H.-H.: On the Bogomolov–Miyaoka–Yau inequality for stacky surfaces. Taiwan. J. Math. (2019) (Advance publication)
5. Chen, W., Ruan, Y.: A new cohomology theory of orbifold. Commun. Math. Phys. 248(1), 1–31 (2004)
6. Coxeter, H.S.M.: Regular Complex Polytopes, p. 0370328. Cambridge University Press, London (1974)
7. Edidin, D.: Riemann–Roch for Deligne–Mumford stacks, A celebration of algebraic geometry, Clay Math. Proc., vol. 18. Amer. Math. Soc., Providence, pp. 241–266 (2013)
8. Fantechi, B., Mann, E., Nironi, F.: Smooth toric Deligne–Mumford stacks. J. Reine Angew. Math. 648, 201–244 (2010)
9. Fulton, W.: Intersection Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 2, p. 732620. Springer, Berlin (1984)
10. Hashimoto, M.: Classification of the linearly reductive finite subgroup schemes of SL_2. Acta Math. Vietnam. 40(3), 527–534 (2015)
11. Ito, Y., Nakamura, I.: Hilbert schemes and simple singularities, New trends in algebraic geometry (Warwick, 1996), London Math. Soc. Lecture Note Ser., vol. 264. Cambridge University Press, Cambridge, pp. 151–233 (1999)
12. Langer, A.: Chern classes of reflexive sheaves on normal surfaces. Math. Z. 235(3), 591–614 (2000)
13. Lieblich, M.: Moduli of twisted orbifold sheaves. Adv. Math. 226(5), 4145–4182 (2011)
14. Lim, B., Rota, F.: Characteristic classes and stability conditions for projective Kleinian orbisurfaces. Math. Z. 300(1), 827–849 (2022)
15. Olsson, M.: Algebraic spaces and stacks, American Mathematical Society Colloquium Publications, vol. 62, p. 3495343. American Mathematical Society, Providence (2016)
16. Toën, B.: Théorèmes de Riemann–Roch pour les champs de Deligne–Mumford. K-Theory 18(1), 33–76 (1999)
17. Tseng, H.-H.: Orbifold quantum Riemann-Roch, Lefschetz and Serre. Geom. Topol. 14(1), 1–81 (2010)
18. Vistoli, A.: Intersection theory on algebraic stacks and on their moduli spaces. Invent. Math. 97(3), 613–670 (1989)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.