Synthetic brominated furanone F202 prevents biofilm formation by potentially human pathogenic Escherichia coli O103:H2 and Salmonella ser. Agona on abiotic surfaces

L.K. Vestby¹, K.C.S. Johannesen¹, I.L. Witsø², O. Habimana³*, A.A. Scheie², A.M. Urdahl⁴, T. Benneche⁵, S. Langsrud³ and L.L. Nesse¹

1 Norwegian Veterinary Institute, Department of Laboratory Services, Section for Bacteriology- aquatic and terrestrial, Oslo, Norway
2 Faculty of Dentistry, Department of Oral Biology, University of Oslo, Oslo, Norway
3 Nofima, Aas, Norway
4 Norwegian Veterinary Institute, Department of Health Surveillance, Section for Veterinary Public Health, Oslo, Norway
5 Faculty of Mathematics and Natural Sciences, Department of Chemistry, University of Oslo, Oslo, Norway

Keywords
biofilms, E. coli (all potentially pathogenic types), food safety, Salmonella.

Abstract
Aims: Investigate the use of a synthetic brominated furanone (F202) against the establishment of biofilm by Salmonella ser. Agona and E. coli O103:H2 under temperature conditions relevant for the food and feed industry as well as under temperature conditions optimum for growth.

Methods and Results: Effect of F202 on biofilm formation by Salmonella ser. Agona and E. coli O103:H2 was evaluated using a microtiter plate assay and confocal microscopy. Effect of F202 on bacterial motility was investigated using swimming and swarming assays. Influence on flagellar synthesis by F202 was examined by flagellar staining. Results showed that F202 inhibited biofilm formation without being bactericidal. F202 was found to affect both swimming and swarming motility without, however, affecting the expression of flagella.

Conclusions: F202 showed its potential as a biofilm inhibitor of Salmonella ser. Agona and E. coli O103:H2 under temperature conditions relevant for the feed and food industry as well as temperatures optimum for growth. One potential mode of action of F202 was found to be by targeting flagellar function.

Significance and Impact of the Study: The present study gives valuable new knowledge to the potential use of furanones as a tool in biofilm management in the food and feed industry.

Introduction
Preparation and processing of food is considered as an important route for cross-contamination with pathogenic bacteria. This may subsequently cause human illness through contaminated food products (Reij and Den Aantrekker 2004; Moretro and Langsrud 2011). Many Escherichia coli pathotypes and Salmonella enterica subspecies enterica serovars are known as potential foodborne pathogens (Krogvold et al. 2011; Campioni et al. 2012; King et al. 2012; Raguenaut et al. 2012).

Escherichia coli is a complex group of bacteria that are abundant inhabitants of the intestinal tract of all warm-blooded animals including humans (Nataro 2006). Several E. coli, including Enteropathogenic E. coli (EPEC), are associated with foodborne infection with common symptoms like diarrhoea, vomiting and low-grade fever (Nataro and Kaper 1998). EPEC are defined as E. coli isolates positive for the intimine gene (eae) but lacking verotoxin genes and are divided into two subgroups: typical EPEC and atypical EPEC (aEPEC). Typical EPEC have only been isolated from humans as aEPEC have been isolated from both humans and animals (Trabulsi et al. 2002; Carneiro et al. 2006). aEPEC isolated from animals have been shown to be potentially pathogenic to humans as they possess virulence genes...
necessary to cause illness (Monaghan et al. 2013). *Salmonella enterica* subspecies *enterica* consists of more than 1500 serovars and includes most of the serovars responsible for disease in mammals (Popoff and Le Minor 2005; Threlfall 2005). Even though less studied than *Salmonella* ser. Typhimurium, *Salmonella* ser. Agona is known to be capable of causing food poisoning disease and has in 2011 e.g. been linked to a large multistate outbreak of salmonellosis in the US caused by the ingestion of contaminated papaya (http://www.cdc.gov/salmonella/agona-papayas/ Accessed on 17.10.2013). Symptoms of salmonellosis is often acute gastroenteritis with self-limiting symptoms like diarrhoea, headache, stomach-ache and fever (www.cdc.gov, 12.06.2012; www.fhi.no, 12.06.2012).

Salmonella are frequently found in the feed industry and are known to be a costly problem for this industry (Veldman et al. 1995; Alvarez et al. 2003; Lunestad et al. 2007). In Norway, *Salmonella* ser. Agona is one of the most important serovars for this industry as specific clones have been shown to persist in some feed and fish meal factories for several years (Nesse et al. 2003).

Persistence and survival of pathogens in food and feed processing environments has been linked to biofilm formation (Lunden et al. 2000; Borucki et al. 2003; Mørsetrø and Langsrud 2004; Vestby et al. 2009b). Biofilms are defined as matrix-enclosed bacterial populations that are attached to a surface, an interface and/or to each other (Costerton et al. 1995, 1999). It is well known that biofilm enhances the tolerance of bacteria, including pathogenic *E. coli* and *Salmonella*, to antibacterial solutions and antibiotics (Costerton 1999; Scher et al. 2005; Moretro et al. 2009; Wang et al. 2012). The increased resistance to antibacterial treatments of bacteria in biofilms is attributed to several factors including reduced diffusion through the matrix, physiological changes, reduced growth rates and production of enzyme degrading antimicrobial agents (Kumar and Anand 1998).

Halogenated furanones were first discovered to inhibit bacterial colonization of the red algae *Delisea pulcra* (Kjelleberg and Steinberg 2001). Synthetic brominated furanones have since then been shown to be promising in the use against biofilm formation by different bacterial species in nonbactericidal concentrations (Ren et al. 2001; Hentzer et al. 2002; Rice et al. 2005; de Nys et al. 2006; Lonn-Stensrud et al. 2007; Han et al. 2008; Lianhua et al. 2013) and to potentiate the effect of antibiotics and disinfectants against bacteria in biofilm (Janssens et al. 2008; Vestby et al. 2010). The mode of action for furanones is not yet fully understood, but has e.g. been suggested to be by interference with the AI-2 quorum sensing system in oral streptococci and *Staphylococcus epidermidis* (Lonn-Stensrud et al. 2007, 2009; Benneche et al. 2008) and interference with flagellar synthesis in *Salmonella* ser. Typhimurium (Janssens et al. 2008).

Functional flagella have been shown to be important in initial attachment and in biofilm development for both *E. coli* and *Salmonella* (Janssens et al. 2008; Mika and Hengge 2013; Vikram et al. 2013).

The aim of this study was to investigate the use of a synthetic brominated furanone against the establishment of biofilm by aEPEC and non-aEPEC strains of *E. coli O103:H2* along with *Salmonella* ser. Agona under temperature conditions relevant for the food and feed industry as well as temperature optimum for growth. Basic mode of action studies were performed.

Materials and methods

Bacterial strains and culture conditions

A total of 15 strains were used in this assay. This includes eight strains of *E. coli O103:H2*, and seven strains of *Salmonella enterica* subspecies *enterica* serovar *Agona* (Table 1). All isolations were carried out at different private or official laboratories and verified at the National Reference Laboratory for nonhuman isolates of *Salmonella* and Shiga-toxin producing *E. coli* at the Norwegian Veterinary Institute.

The strains were stored at −80°C in Brain Heart Infusion broth (BHI; Difco, BD, Franklin Lakes, NJ, USA) supplemented with 15% glycerine (Merck KGaA, Darmstadt, Germany) and recovered on blood agar at 37 ± 1°C overnight. The bacterial cultures were then transferred into Luria Bertani broth (LB; Merck) and incubated statically overnight (18–24 h) at 37 ± 1°C to obtain an overnight working culture.

Furanone preparation

The brominated furanone tested, F202 (Fig. 1) was synthesized at the University of Oslo, Department of Chemistry, as previously described (Benneche et al. 2006). The furanone was dissolved in absolute ethanol (Kemetyl Norge AS, Vestby, Norway) to a concentration of 1 mol l⁻¹ and further diluted to working solution 10 000 µmol l⁻¹ in DEPC water (Invitrogen, Carlsbad, CA, USA). The furanone working solutions were stored at −20°C and thawed immediately before use.

Bactericidal determination of furanone F202 on pure cultures

Determination of furanone F202 bactericidal action on pure cultures was determined for *Salmonella* ser. Agona and *E. coli O103:H2* according to a method described by Janssens et al. (2008) with slight modifications (Janssens...
Furanone and food/feed industry

L.K. Vestby et al.

Table 1 Bacterial strains used in this study

Strain ID number	Genus	Characteristics	Origin	Biofilm OD₅₉₅ Values
2000-01-2168-10 (2168-10)	Salmonella ser. Agona		Feed factory	1.530 1.510 0.049 Vestby et al. (2010)
2002-01-71-3 (71-3)	Salmonella ser. Agona		Feed factory	0.856 0.986 0.025 Moretro et al. (2009); Vestby et al. (2009b)
2002-01-2147-7 (2147-7)	Salmonella ser. Agona		Feed factory	1.479 1.576 0.061 Vestby et al. (2009b)
2006-01-2021-3 (2021-3)	Salmonella ser. Agona		Feed factory	0.967 1.283 n.d. Vestby et al. (2009b)
2000-01-2168-4 (2168-4)	Salmonella ser. Agona		Human (clinical)	1.205 1.497 0.029 Vestby et al. (2009a)
2000-01-2168-3 (2168-3)	Salmonella ser. Agona		Human (clinical)	0.993 1.802 0.024 Vestby et al. (2009a)
2000-01-2168-7 (2168-7)	Salmonella ser. Agona		Human (clinical)	1.347 1.779 0.031 Vestby et al. (2009a)
2006-22-1153 (1153)	E. coli O103:H2	eae*, lacking stx	Sheep survey	1.330 1.726 0.009 Sekse et al. (2013)
2007-60-10651 (10651)	E. coli O103:H2	eae*, lacking stx	Sheep survey	1.179 2.130 0.677 Sekse et al. (2013)
2007-60-10709 (10709)	E. coli O103:H2	eae*, lacking stx	Sheep survey	1.362 1.843 0.071 Sekse et al. (2013)
2006-22-1242 (1242)	E. coli O103:H2	Lacking stx and eae	Sheep survey	2.175 1.863 1.038 Sekse et al. (2013)
2006-22-1246 (1246)	E. coli O103:H2	Lacking stx and eae	Sheep survey	1.159 1.634 0.816 Sekse et al. (2013)
2007-60-10568 (10568)	E. coli O103:H2	eae*, lacking stx	Sheep survey	1.047 1.434 0.811 Sekse et al. (2013)
2006-22-1271 (1271)	E. coli O103:H2	Lacking stx and eae	Sheep survey	1.724 1.930 2.084 Sekse et al. (2013)
2007-60-10705 (10705)	E. coli O103:H2	Lacking stx and eae	Sheep survey	1.394 1.848 0.204 Sekse et al. (2013)

n.d., Not done.

Figure 1 Chemical structure of furanone F202: (2)-5bromomethylene-2(5H)-furanone.

Studies on anti-biofilm potential by furanone F202

Microtiter plate assay

The effect of the furanone on biofilm formation by Salmonella ser. Agona and E. coli O103:H2 was measured as previously described (Vestby et al. 2010) with slight modifications. In brief, the furanone was diluted to a final concentration of 12.5, 25 or 50 μmol l^{−1} in polystyrene microtiter plates (NUNC, Nuncen, Roskilde, Denmark) using LB without NaCl (LB ^{we}/NaCl; bacto-tryptone 10 g l^{−1}, yeast extract 5 g l^{−1}). In each well, an aliquot of 30 μl overnight bacterial culture was added to 100 μl LB without NaCl. The same volume of sterile distilled water was added to the negative controls. The plates were incubated at 12 ± 1°C for 168 h and at 20 ± 1°C and 37 ± 1°C for 48 h, and biofilm recorded by optical density measurements (OD₅₉₅). Triplicates of each sample were used and three independent experiments were performed for all strains using freshly prepared solutions. The results are given as amount biofilm formed with furanone (OD₅₉₅ values)/amount biofilm formed without furanone (OD₅₉₅ values) * 100.

Confocal microscopy

Confocal microscopy was used for visualizing the effect of furanone F202 on biofilm formation by Salmonella ser. Agona and E. coli O103:H2. Overnight cultures were inoculated (10 μl) in sterile centrifuge tubes (Greiner bio-one GmbH, Frickenhausen, Germany) containing 10 ml LB broth ^{we}/NaCl with 50 μmol l^{−1} furanone or equal volume of sterile distilled water (control). An autoclaved stainless steel coupon (AISI 304, 2B, 7 by 2 by 1 cm pieces) was partially submerged into the liquid and incubated for 48 h at 20 ± 1°C. After incubation, the biofilms were stained with FilmTracerTM LIVE/DEAD[®] Biofilm Viability Kit (Invitrogen, Molecular probes Inc, Eugene, OR, USA). The kit reagent was diluted 1 : 1000 in sterile distilled water. Secure seals imagine spacers (Sigma-Aldrich, St Louis, MO,
USA) were used in combination with coverslides (Gerhard Menzel GmbH, Braunschweig, Germany) to protect the biofilm. Stained biofilms were immediately placed in petri dishes containing a piece of paper towel saturated with sterile distilled water to avoid dehydration of the sample. The petri dishes were covered in aluminium foil. Horizontal plane images of biofilms were acquired using an inverted Zeiss LSM 710 laser scanning confocal microscope (Carl Zeiss AS, Oslo, Norway). The set excitation/emission wavelengths used were 480/500 nm for Syto9 and 535/617 nm for PI. Images were collected through a 10× Plan-APOCHROMAT objective lens with a z-step of 1 μm. The structural quantifications of biofilms (biovolume, roughness and thickness) were estimated using PHILP Matlab program (http://phlip.sourceforge.net/phlip-ml). PHILP image analysis enables analysis of multi-channel CLSM data. For each CLSM stack, a height projection transformation of the image analysis of multi-channel CLSM data. For each CLSM sourceforge.net/phlip-ml). PHLIP image analysis enables estimated using PHILP Matlab program (http://phlip. set excitation/emission wavelengths used were 480/500 nm for Syto9 and 535/617 nm for PI. Images were collected through a 10× Plan-APOCHROMAT objective lens with a z-step of 1 μm. The structural quantifications of biofilms (biovolume, roughness and thickness) were estimated using PHILP Matlab program (http://phlip. sourceforge.net/phlip-ml). PHILP image analysis enables analysis of multi-channel CLSM data. For each CLSM stack, a height projection transformation of the image stack was created where for every point in the xy plane, the maximal height h of the corresponding foreground pixels in z direction was stored. The mean thickness was then calculated as the average of the resulting distribution of pixel height h (Xavier et al. 2003). The roughness coefficient was obtained by first calculating the standard deviation of the distribution and divided this value by the mean thickness (Heydorn et al. 2000).

Studies on effect on bacterial motility by furanone F202 under biofilm conditions

Swimming assay
The method used was adapted from Janssens et al. (2008) with modifications. Swimming assay medium was prepared using LB w/o/NaCl with 0.3% agar. The medium was freshly prepared and kept in a waterbath at 55°C until used. The furanone was added to the medium to a final concentration of 50 μmol l⁻¹ or the same amount of sterile distilled water in the control. An amount of 3 ml swimming assay medium was pipetted into sterile 6-wells microtiter plates (NUNC, Nunclon, Surface cell culture plates) subsequently let to dry overnight in room temperature. Overnight cultures were spot inoculated (1 μl) on the plates and the plates were incubated at 37 ± 1°C for 10 h. The swimming diameter was measured using a conventional ruler. Each experiment was performed at least twice.

Detection of flagella
Staining of flagella was performed as previously described (Janssens et al. 2008) with slight modifications. In short, overnight cultures were diluted 1 : 50 in LB broth w/o/NaCl in the presence of 50 μmol l⁻¹ furanone or the same amount of sterile distilled water. The samples were incubated statically at 20 ± 1°C for 17 h before staining. The dye was prepared by mixing 10 parts of mordant solution (2 g tannic acid, 10 ml 5% aqueous phenol and 10 ml saturated aqueous AlK08S2·12H2O) with one part stain (12% crystal violet in ethanol). An aliquot of 3 μl sample was applied to a microscope slide (76 × 26 mm, Gerhard Menzel GmbH) and covered with a coverslip (18 × 18 mm, Gerhard Menzel GmbH). The slide was placed horizontally on the bench and 1.5 μl of dye was applied to the edge of the coverslip to stain the sample by capillary action. Samples were observed with 100× magnification using Olympus BX50 light microscope (Olympus Europa Holding GmbH, Hamburg, Germany). Pictures were taken using Samsung Pixon 12, M8910 (Samsung, Ridgefield Park, NJ, USA). The experiment was performed twice.

Statistical analysis
When testing the effect of furanone F202 on bactericidal activity and biofilm formation, corresponding 95% confidence intervals (CI) was calculated using ‘CONFIDENCE’ function in Excel® 2010 (Microsoft®, Redmond, WA, USA). Means with CI’s not including 100% were considered statistical significant. When testing the effect of furanone F202 on the structural quantifications of biofilms (biovolume, roughness and thickness) as found by the confocal microscope experiments, the ANOVA test in Minitab v15.1 (Minitab Inc. State College, PA, USA) was used. The association between the use of the furanone F202 and an effect on bacterial motility in biofilms, as found by the swimming and swimming assays, were analyzed using two-tailed t-test using ‘T-TEST’ function in Excel® 2010. The level of significance was set to P < 0.05 in all experiments.
Results

Effect of the furanone on bacterial growth and biofilm formation

Bactericidal effect of F202 was determined for two randomly chosen strains for each species, i.e. Salmonella 2168-10, Salmonella 71-3, E. coli 1242 and E. coli 1153. Reduced or eliminated bacterial growth as determined by visual inspection was not observed at any of the concentrations tested. A slight inhibitory effect of the furanone was seen as a reduction in the OD595 measurements at the highest concentration, i.e. 100 μmol l⁻¹ [mean 85 ± 14% (95% CI)] and 50 μmol l⁻¹ was therefore the highest concentration used in further experiments.

When all strains were tested in the microtiter plate assay, both Salmonella ser. Agona and E. coli O103:H2 strains were capable of forming biofilm on polystyrene microtiter plates at 12 and 20°C (Fig. 2). E. coli O103:H2 also formed biofilm on polystyrene microtiter plates at 37°C, whereas Salmonella ser. Agona formed very little biofilm at this temperature (Fig. 2). For this reason, the effect of furanone on biofilm formation by Salmonella ser. Agona was not investigated at 37°C. Likewise, three of the E. coli O103:H2 strains which also displayed low OD595 at 37°C were not included in the testing of furanone effect at this temperature. The effect of the various concentrations (12.5, 25 and 50 μmol l⁻¹) of furanone F202 on biofilm by Salmonella ser. Agona and E. coli O103:H2 are shown in Figs 3 and 4, respectively. A reduction in biofilm build-up by Salmonella ser. Agona was found for all three concentrations of the furanone F202 at 20°C (P < 0.05), but not at 12°C (Fig. 3). For E. coli O103:H2, a similar reduction in biofilm build-up for all three concentrations of furanone F202 was shown at 37°C (P < 0.05), and a reduction in biofilm build-up was shown for 25 and 50 μmol l⁻¹ of furanone F202 at 20°C (P < 0.05). At 12°C, a reduction in biofilm build-up by E. coli O103:H2 was only shown for 50 μmol l⁻¹ of the furanone F202 (P < 0.05) (Fig. 4).

Effect of the furanone on biofilm formation as visualized by confocal laser scanning microscopy

Salmonella 2168-10 and E. coli 1242 were used when visualizing the effect of furanone F202 on biofilm by CLSM. A reduction was shown on biovolume, substrate coverage, mean thickness and roughness of the biofilm grown by E. coli 1242 on stainless-steel coupons (P < 0.05, Table 2, Fig. 5) in the presence of 50 μmol l⁻¹ F202. For biofilm by Salmonella 2168-10, only the biovolume and the
diameter was shown for E. coli significantly associated (P = 0.05). The swimming zone diameter was the swimming and swarming assays. Both swimming and E. coli 2147-7 and 2168-7, Salmonella randomly chosen strains of each species (Salmonella ser. Typhimurium, ser. Agona and E. coli O103:H2 on two abiotic surfaces (polystyrene and stainless steel), without being bactericidal. The brominated furanone effectively reduced the biofilm build-up by E. coli and Salmonella on polystyrene at temperatures relevant for food and feed production and a similar effect of the furanone was shown on stainless-steel as visualized by confocal microscopy. Thus this compound may have a potential as a tool against the establishment of biofilm in food and feed production environments.

Due to the increased understanding of the ubiquitousness of biofilms and the protective means a biofilm offers to micro-organisms, various studies on so-called ‘antibiofilm’ compounds have been reported. These compounds have been shown to selectively block virulence, quorum sensing and/or biofilm formation at concentrations not affecting planktonic growth of the bacteria (Rasmussen and Givskov 2006; Jagusztyn-Krynica and Wyszynska 2008; Steenackers et al. 2010). Halogenated furanones were one of the first groups of such antibiofilm compounds to be discovered (Kjelleberg and Steinberg 2001; de Nys et al. 2006). Our results are in accordance with previous studies showing reduction in biofilm formation at a nonbactericidal concentration of two other furanones on Salmonella ser. Typhimurium (Janssens et al. 2008) and E. coli (Ren et al. 2001). On the contrary, a furanone not structurally identical to F202 has been reported to enhance staphylococcal biofilm production at low concentrations (between 1-25 and 20 μmol l\(^{-1}\)) (Kuehl et al. 2009). However, a similar effect was not observed with F202 in this study.

Effect of furanone on motility

Salmonella 2168-10 and E. coli 1242 and two additional randomly chosen strains of each species (*Salmonella* 2147-7 and 2168-7, *E. coli* 1153 and 10705) were used in the swimming and swarming assays. Both swimming and swarming motility were affected by furanone F202 as shown in Table 4. The swimming zone diameter was reduced for both *Salmonella* ser. Agona and E. coli O103:H2 at 20°C and 37°C in the presence of furanone F202 (P < 0.05). At 12°C, a reduction in swimming zone diameter was shown for *E. coli* O103:H2 (P < 0.05), but the observed reduction on *Salmonella* ser. Agona was not significantly associated (P = 0.08). The swimming zone

Table 2 Different parameters of biofilm formed by *E. coli* O103:H2 strain 1242 in the presence or absence of 50 μmol l\(^{-1}\) of furanone F202 as studied by Confocal Laser Scanning Microscopy

Parameter	0 μmol l\(^{-1}\) F202	Standard error of mean	50 μmol l\(^{-1}\) F202	P-value
Biovolume (μm\(^3\))	5.5 × 10\(^6\)	611341	3.5 × 10\(^6\)	<0.05
Substrate coverage (%)	28.1	3.25	3.5	<0.05
Mean thickness (μm)	75.4	3.12	31.4	<0.05
Roughness	0.4	0.0094	0.2	<0.05

substrate coverage were shown to be reduced (P < 0.05) by furanone F202. A slight reduction in mean thickness and roughness was also observed, but this reduction was not significantly associated (Table 3, Fig. 5).

Discussion

In this study, it was shown that a synthetic brominated furanone inhibited the formation of biofilm by *Salmonella* ser. Agona and *E. coli* O103:H2 on two abiotic surfaces (polystyrene and stainless steel), without being bactericidal.

Visual inspection of *Salmonella* 2168-10 and *E. coli* 1242 in the presence and absence of the furanone showed no effect on flagellar production for either *Salmonella* 2168-10 nor *E. coli* 1242 (Fig. 6).

![Figure 4](image_url) The effect of different concentrations (12.5, 25 and 50 μmol l\(^{-1}\)) of furanone F202 on biofilm by *E. coli* O103:H2 on microtiter plates at 12°C and 20°C (all strains), and at 37°C (all strains except three which did not display enough biofilm formation). Results are given as percentage of biofilm formed in the absence of furanone, and 95% confidence intervals are shown. Means with confidence intervals not including 100% are considered statistically significant. (a) 12.5 μmol l\(^{-1}\), (b) 25 μmol l\(^{-1}\) and (c) 50 μmol l\(^{-1}\).
Previous studies have, however, showed that this is probably not the mode of action for *Salmonella* (Janssens *et al.* 2008; Vestby *et al.* 2010). Janssens *et al.* (2008) concluded that the most likely mode of action of furanones on *Salmonella* ser. Typhimurium was by interference with flagellar biosynthesis. In addition, it has been shown that furanones inhibit the expression of flagellar biosynthesis genes in *E. coli* (Ren *et al.* 2004). For *E. coli* it has been reported that surface attachment depends on flagellar action (Pratt and Kolter 1998), and it was suggested that motility was important for both initial interaction with the surface and for movement along the surface. The role of flagella in biofilm development by *Salmonella* is less clear, but flagellar genes have been shown to be upregulated in biofilm of *Salmonella* ser. Typhimurium (Kim and Wei 2009; Crawford *et al.* 2010). For this reason, this study focused on the effect of physical motility properties of *Salmonella* ser. Agona and *E. coli* O103:H2 caused by the furanone. Both swimming and swarming motility were shown to be affected by the furanone F202 (Table 4) without, however, affecting

Figure 5 Confocal Laser Scanning Microscopy images of biofilm by *E. coli* strain 1242 and *Salmonella* ser. Agona strain 2168-10 in the presence or absence of 50 µmol l⁻¹ furanone. (a) *E. coli* O103:H2 without F202. (b) *E. coli* O103:H2 in the presence of 50 µmol l⁻¹ F202. (c) *Salmonella* ser. Agona without F202. (d) *Salmonella* ser. Agona in the presence of 50 µmol l⁻¹ F202.

Journal of Applied Microbiology 116, 258–268 © 2013 The Authors. Published by Wiley & Sons Ltd on behalf of Society for Applied Microbiology.
the expression of flagella (Fig. 6). This may indicate that the working action of our furanone F202 affected the function of the flagella rather than their synthesis. This seems to be in contrast to the study by Janssens et al. (2008) that found that their furanones affected the expression of flagellar genes. However, the furanones used in the studies by Janssens et al. and Ren et al. have a different structure than the furanone used in this study and this might explain the differences in the results (Ren et al. 2001, 2004; Janssens et al. 2008) as differences in structural elements of furanones have previously been found important for E. coli biofilm formation and toxicity (Han et al. 2008). This may indicate that structurally different furanones may have different modes of action although the biofilm inhibitory potential might be similar.

Swarming motility describes a rapid multicellular bacterial movement across a surface powered by rotating flagella. Swimming motility is also a bacterial movement powered by rotating flagella, but unlike swarming, swimming takes place as individual cells moving in a liquid medium (Kearns 2010). Furanone F202 seemed to affect the function of flagella in both Salmonella ser. Agona and E. coli O103:H2 as visualized in both swimming and swarming assays in this study although these two modes of motility are controlled by different mechanisms. As only swarming is an example of multicellular behaviour which requires quorum sensing (Kohler et al. 2000) and swimming seems to be controlled at the individual cell level, our results indicate that one possible mode of action by the furanone F202 could be by targeting flagella function directly or indirectly rather than by bacterial quorum sensing.

Temperature serves as a cue to regulate gene expression and biofilm in many different bacteria, and for instance low temperatures have been shown to increase expression of biofilm genes in E. coli. (White-Ziegler

Table 3 Different parameters of biofilm formed by Salmonella ser. Agona strain 2186-10 in the presence or absence of 50 \(\mu \text{mol l}^{-1} \) of furanone F202 as studied by Confocal Laser Scanning Microscopy

	0 \(\mu \text{mol l}^{-1} \) F202	50 \(\mu \text{mol l}^{-1} \) F202	P-value
Biovolume (\(\mu \text{m}^3 \))	3:1 \(\times 10^6 \)	1:6 \(\times 10^6 \)	\(< 0:05 \)
Substrate coverage (%)	73.9	54.2	\(< 0:05 \)
Mean thickness (\(\mu \text{m} \))	29.9	22.7	\(P = 0:21 \)
Roughness	0.5	0.4	\(P = 0:20 \)

Table 4 Motility of E. coli O103:H2 (3 strains) and Salmonella ser. Agona (three strains) in the presence or absence of 50 \(\mu \text{mol l}^{-1} \) furanone F202. Swimming zone diameter (mm) was measured after 168 h of incubation at 12\(^\circ \text{C} \), 24 h of incubation at 20\(^\circ \text{C} \) and 5 h of incubation at 37\(^\circ \text{C} \). The swarming zone diameter (mm) was measured after 10 h at 37\(^\circ \text{C} \)

	Swimming 12\(^\circ \text{C} \)	Swimming 20\(^\circ \text{C} \)	Swimming 37\(^\circ \text{C} \)	Swarming 37\(^\circ \text{C} \)
Salmonella ser. Agona				
0 \(\mu \text{mol l}^{-1} \) F202	11:0 \(\pm 2:0 \)	29:0 \(\pm 1:8 \)	16:8 \(\pm 3:7 \)	29:1 \(\pm 1:9 \)
Salmonella ser. Agona				
50 \(\mu \text{mol l}^{-1} \) F202	7:0 \(\pm 3:0 \)	7:0 \(\pm 0:6 \)	8:9 \(\pm 3:1 \)	16:1 \(\pm 2:1 \)
E. coli O103:H2				
0 \(\mu \text{mol l}^{-1} \) F202	33:0 \(\pm 2:7 \)	35:0 \(\pm 2:7 \)	12:6 \(\pm 2:8 \)	33:9 \(\pm 0:9 \)
E. coli O103:H2				
50 \(\mu \text{mol l}^{-1} \) F202	6:0 \(\pm 2:0 \)	7:0 \(\pm 2:0 \)	8:9 \(\pm 1:7 \)	15:6 \(\pm 3:2 \)

Figure 6 Flagellation of E. coli strain 1242. (a) in the absence of furanone. (b) in the presence of 50 \(\mu \text{mol l}^{-1} \) F202.
E. coli is a mesophilic bacterium that is able to grow well in the temperature range of 21°C, optimum growth temperature at about 37°C, is gradually impaired at temperatures below 20°C, and the minimum for measurable growth is around 7°C (Strocchi et al. 2006). This study shows that both Salmonella ser. Agona and E. coli O103:H2 are able to form biofilm at temperatures which are relevant for the food and feed industry, and they should therefore be considered a potential risk of establishing in these environments. Even at 12°C, the measured OD595 in the microtiter assay seems to be due to biofilm rather than just attached cells, since the OD595 increased with increasing incubation length (results not shown) and reached similar magnitudes as observed at 20°C. The ability of potential foodborne pathogenic bacteria, like Salmonella ser. Agona and E. coli O103:H2, to establish and form biofilm at temperatures used in the food industry is of great concern. As bacteria in a biofilm are protected and less sensitive to antibacterial agents (Costerton 1999; Scher et al. 2005; Moretro et al. 2009), eradication of suchlike bacteria is very difficult. This is a matter of concern that should be taken into considerations when disinfection strategies are selected.

In conclusion, the furanone tested in this study showed potential as inhibitor of biofilm on abiotic surfaces by Salmonella ser. Agona and E. coli O103:H2. The inhibition was shown at conditions relevant for the food and feed industry, and the compound thereby may have a potential as a tool against the establishment of biofilm in these environments. In addition, the furanone F202 showed potential as a biofilm inhibitor for E. coli O103:H2 at optimum growth temperature. Furanes with different structures may have different modes of action and the results indicate that one of the working actions is by targeting the function of the flagella.

Acknowledgements

The project was funded by the Norwegian Research Council grant numbers 178161/110 and 192402, Norgesfôr AS, Felleskjøpet Fôrøutvîlding BA, Norwegian Seafood Federation Fish-meal and –feed, Denofa AS and The Federation of Norwegian Food, Agriculture and Forestry Enterprises. Kristin Berg is greatly acknowledged for her technical assistance.

Conflict of interest

No conflict of interest declared.

References

Alvarez, J., Porwollik, S., Laconcha, I., Gisakis, V., Vivanco, A.B., Gonzalez, L., Echenagusia, S., Zabala, N. et al. (2003) Detection of a Salmonella enterica serovar California strain spreading in Spanish feed mills and genetic characterization with DNA microarrays. Appl Environ Microbiol 69, 7531–7534.

Benneche, T., Lonn, J. and Scheie, A.A. (2006) Synthesis of (E)- and (Z)-5-(bromomethylene)furan-2(5H)-one by bromodecarboxylation of (E)-2-(5-oxofuran-2(5H)-ylidene)acetic acid. Synth Commun 36, 1401–1404.

Benneche, T., Hussain, Z., Scheie, A.A. and Lonn-Stensrud, J. (2008) Synthesis of 5-(bromomethylene)furan-2(5H)-ones and 3-(bromomethylene)isobenzofuran-1(3H)-ones as inhibitors of microbial quorum sensing. New J Chem 32, 1567–1572.

Borucki, M.K., Peppin, J.D., White, D., Loge, F. and Call, D.R. (2003) Variation in biofilm formation among strains of Listeria monocytogenes. Appl Environ Microbiol 69, 7336–7342.

Campioni, F., Moratto Bergamini, A.M. and Falcao, J.P. (2012) Genetic diversity, virulence genes and antimicrobial resistance of Salmonella Enteritidis isolated from food and humans over a 24-year period in Brazil. Food Microbiol 32, 254–264.

Carneiro, L.A., Lins, M.C., Garcia, F.R., Silva, A.P., Mauller, P.M., Alves, G.B., Rosa, A.C., Andrade, J.R. et al. (2006) Phenotypic and genotypic characterisation of Escherichia coli strains serogrouped as enteropathogenic E. coli (EPEC) isolated from pasteurised milk. Int J Food Microbiol 108, 15–21.

Costerton, J.W. (1999) Introduction to biofilm. Int J Antimicrob Agents 11, 217–221.

Costerton, J.W., Lewandowski, Z., Caldwell, D.E., Korber, D.R. and Lappin-Scott, H.M. (1995) Microbial biofilms. Annu Rev Microbiol 49, 711–745.

Costerton, J.W., Stewart, P.S. and Greenberg, E.P. (1999) Bacterial biofilms: a common cause of persistent infections. Science 284, 1318–1322.
Kjelleberg, S. and Steinberg, P. (2001) Surface warfare in the
Costerton, J.W., Montanaro, L. and Arciola, C.R. (2007)
L.K. Vestby et al.
Crawford, R.W., Reeve, K.E. and Gunn, J.S. (2010) Flagellated
but not hyperfimbriated Salmonella enterica serovar
Typhimurium attaches to and forms biofilms on
cholesterol-coated surfaces. J Bacterial 192, 2981–2990.
Davies, D.G., Parsek, M.R., Pearson, J.P., Iglewski, B.H.,
Costerton, J.W. and Greenberg, E.P. (1998) The
involvement of cell-to-cell signals in the development of a
bacterial biofilm. Science 280, 295–298.
Han, Y., Hou, S., Simon, K.A., Ren, D. and Luk, Y.Y. (2008)
Identifying the important structural elements of
brominated furanones for inhibiting biofilm formation by
Escherichia coli. Bioorg Med Chem Lett 18, 1006–1010.
Hentzer, M., Riedel, K., Rasmussen, T.B., Heydorn, A.,
Andersen, J.B., Parsek, M.R., Rice, S.A., Eberl, L. et al.
(2002) Inhibition of quorum sensing in Pseudomonas
aeruginosa biofilm bacteria by a halogenated furanone
compound. Microbiology 148, 87–102.
Heydorn, A., Nielsen, A.T., Hentzer, M., Sternberg, C.,
Givskov, M., Ersboll, B.K. and Molin, S. (2000)
Quantification of biofilm structures by the novel
computer program COMSTAT. Microbiol-UK 146,
2395–2407.
Jaguszyn-Krynicka, E.K. and Wyszynska, A. (2008) The
decline of antibiotic era - new approaches for antibacterial
drug discovery. Pol J Microbiol 57, 91–98.
Janssens, J.C., Steenackers, H., Robijns, S., Gellens, E., Levin,
J., Zhao, H., Hermans, K., De Coster, D. et al.
(2008) Brominated furanones inhibit biofilm formation by
Salmonella enterica serovar Typhimurium. Appl Environ
Microbiol 74, 6639–6648.
Kears, D.B. (2010) A field guide to bacterial swarming
motility. Nat Rev Microbiol 8, 634–644.
Kim, S.H. and Wei, C.I. (2009) Molecular characterization of
biofilm formation and attachment of Salmonella enterica
serovar Typhimurium DT104 on food contact surfaces.
J Food Prot 72, 1841–1847.
King, L.A., Nogareda, F., Weill, F.X., Mariani-Kurkdjian, P.,
Loukiadis, E., Gault, G., Jourdan-DaSilva, N., Bingen, E.
et al. (2012) Outbreak of shiga toxin-producing
Escherichia coli O104:H4 associated with organic fenugreek
sprouts, France, June 2011. Clin Infect Dis 54, 1588–1594.
Kjellberg, S. and Steinberg, P. (2001) Surface warfare in the
sea. Microbiol today 28, 134–135.
Kohler, T., Curty, L.K., Barja, F., van Delken, C. and Pechere,
J.C. (2000) Swarming of Pseudomonas aeruginosa is
dependent on cell-to-cell signaling and requires flagella
and pili. J Bacteriol 182, 5990–5996.
Krogvold, L., Henrichsen, T., Bjerre, A., Brackman, D.,
Dollner, H., Gudmundsdottir, H., Syversen, G., Naess,
P.A. et al. (2011) Clinical aspects of a nationwide
epidemic of severe haemolytic uremic syndrome (HUS) in
children. Scand J Trauma Resusc Emerg Med 19, 44.
Kuehl, R., Al-Bataineh, S., Gordon, O., Lugtenbuehl, R., Otto,
M., Textor, M. and Landmann, R. (2009) Furanone at
subinhibitory concentrations enhances staphylococcal
biofilm formation by luxR repression. J Antimicrob
Chemother 53, 4159–4166.
Kumar, C.G. and Anand, S.K. (1998) Significance of microbial
biofilms in food industry: a review. Int J Food Microbiol
42, 9–27.
Li, J., Attila, C., Wang, L., Wood, T.K., Valdes, J.J. and
Bentley, W.E. (2007) Quorum sensing in Escherichia coli is
signaled by Al-2/LsrR: effects on small RNA and biofilm
architecture. J Bacteriol 189, 6011–6020.
Lianhua, Y., Yunchao, H., Geng, X., Youquang, Z.,
Guangqiang, Z. and Yujie, L. (2013) Effect of brominated
furanones on the formation of biofilm by Escherichia coli
on polyvinyl chloride materials. Cell Biochem Biophys.
doi:10.1007/s12103-013-9578-8. Epub ahead of print.
Lonn-Stensrud, J., Petersen, F.C., Benneche, T. and Scheie, A.A.
(2007) Synthetic bromated furanone inhibits autoinducer-2-mediated communication and biofilm formation in oral
streptococci. Oral Microbiol Immunol 22, 340–346.
Lonn-Stensrud, J., Landin, M.A., Benneche, T., Petersen, F.C.
and Scheie, A.A. (2009) Furanonones, potential agents for
preventing Staphylococcus epidermidis biofilm infections? J
Antimicrob Chemother 63, 309–316.
Lunden, J.M., Miettinen, M.K., Auto, T.J. and Korkeala, H.J.
(2000) Persistent Listeria monocytogenes strains show
enhanced adherence to food contact surface after short
contact times. J Food Prot 63, 1204–1207.
Lunestad, B.T., Nesse, L., Lassen, J., Svihus, B., Nesbakken, T.,
Fossum, K., Rosnes, J.T., Kruse, H. et al. (2007)
Salmonella in fish feed: occurrence and implications for
fish and human health in Norway. Aquaculture 265, 1–8.
Mika, F. and Hengge, R. (2013) Small regulatory RNAs in the
control of motility and biofilm formation in E. coli and
Salmonella. Int J Mol Sci 14, 4560–4579.
Miller, M.B. and Bassler, B.L. (2001) Quorum sensing in
bacteria. Annu Rev Microbiol 55, 165–199.
Monaghan, A., Byrne, B., Fanning, S., Sweeney, T., McDowell,
D. and Bolton, D.J. (2013) Serotypes and virulence
profiles of atypical enteropathogenic Escherichia coli
(EPEC) isolated from bovine farms and abattoirs. J Appl
Microbiol 114, 595–603.
Moretro, T. and Langsrud, S. (2011) Effects of materials
containing antimicrobial compounds on food hygiene. J
Food Prot 74, 1200–1211.
Moretro, T. and Langsrud, S. (2004) Listeria monocytogenes:
biofilm formation and persistence in food-processing
environments. Biofilms 1, 107–121.
Moretro, T., Vestby, L.K., Nesse, L.L., Storheim, S., Kotlarz, K.
and Langsrud, S. (2009) Evaluation of efficacy of
disinfectants against Salmonella from the feed industry.
J Appl Microbiol 106, 1005–1012.
Nataro, J.P. (2006) Atypical enteropathogenic Escherichia coli:
typical pathogens? Emerg Infect Dis 12, 696.
Nataro, J.P. and Kaper, J.B. (1998) Diarrheagenic Escherichia coli. Clin Microbiol Rev 11, 142–201.

Nesse, L.L., Nordby, K., Heir, E., Bergsjo, B., Vardund, T., Nygaard, H. and Holstad, G. (2003) Molecular analyses of Salmonella enterica isolates from fish feed factories and fish feed ingredients. Appl Environ Microbiol 69, 1075–1081.

de Nys, R., Givskov, M., Kumar, N., Kjelleberg, S. and Steinberg, P.D. (2006) Furanones. Prog Mol Subcell Biol 42, 55–86.

Popoff, M.Y. and Le Minor, L.E. (2005) Bergey's Manual of Systematic Bacteriology. Vol. 2, pp. 764–787. New York, NY: Springer Science + Business media Inc.

Pratt, L.A. and Kolter, R. (1998) Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 30, 285–293.

Raguenaud, M., Le Hello, S., Salah, S., Weill, F., Brisabois, A., Delmas, G. and Germonneau, P. (2012) Epidemiological and microbiological investigation of a large outbreak of monophasic Salmonella Typhimurium 4,5,12:i:- in schools associated with imported beef in Poitiers, France in 2010. Eurosurveillance, 17, pii=20289.

Rasmussen, T.B. and Givskov, M. (2006) Quorum-sensing inhibitors as anti-pathogenic drugs. Int J Med Microbiol 296, 149–161.

Reij, M.W. and Den Aantrekker, E.D.; Force, I.E.R.A.i.M.T. (2004) Recontamination as a source of pathogens in processed foods. Int J Food Microbiol 91, 1–11.

Ren, D., Sims, J.J. and Wood, T.K. (2001) Inhibition of biofilm formation and swarming of Escherichia coli by (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone. Environ Microbiol 3, 731–736.

Ren, D.C., Bedzyk, L.A., Ye, R.W., Thomas, S.M. and Wood, T.K. (2004) Differential gene expression shows natural brominated furanones interfere with the autoinducer-2 bacterial signaling system of Escherichia coli. Biotechnol Bioeng 88, 630–642.

Rice, S.A., McDougald, D., Kumar, N. and Kjelleberg, S. (2005) The use of quorum-sensing blockers as therapeutic agents for the control of biofilm-associated infections. Curr Opin Investig Drugs 6, 178–184.

Schauer, S., Shokat, K., Surette, M.G. and Bassler, B.L. (2001) The LuxS family of bacterial autoinducers: biosynthesis of a novel quorum-sensing signal molecule. Mol Microbiol 41, 463–476.

Scher, K., Romling, U. and Yaron, S. (2005) Effect of heat, acidification, and chlorination on Salmonella enterica serovar Typhimurium cells in a biofilm formed at the air-liquid interface. Appl Environ Microbiol 71, 1163–1168.

Schonewille, E., Nesse, L.L., Hauck, R., Windhorst, D., Hafez, H.M. and Vestby, L.K. (2012) Biofilm building capacity of Salmonella enterica strains from the poultry farm environment. FEMS Immunol Med Microbiol 65, 360–365.

Sekse, C., Sunde, M., Hopp, P., Bruheim, T., Cudjoe, K.S., Kvitle, B. and Urdahl, A.M. (2013) Low prevalence of shiga toxin-producing Escherichia coli O103 in Norwegian sheep flocks. Appl Environ Microbiol. doi:10.1128/AEM.01825-13.

Steenackers, H.P., Levin, J., Janssens, J.C., De Weerdt, A., Balzarini, J., Vanderleyden, J., De Vos, D.E. and De Keersmaecker, S.C. (2010) Structure-activity relationship of brominated 3-alkyl-5-methylene-2(5H)-furanones and alkylmaleic anhydrides as inhibitors of Salmonella biofilm formation and quorum sensing regulated bioluminescence in Vibrio harveyi. Bioorg Med Chem 18, 5224–5233.

Strocchi, M., Ferrer, M., Timmis, K.N. and Golyshin, P.N. (2006) Low temperature-induced systems failure in Escherichia coli: Insights from rescue by cold-adapted chaperones. Proteomics 6, 193–206.

Threlfall, E.J. (2005) Topley and Wilson's Microbiology and Microbial Infections. Bacteriology. pp. 1398–1434. London, UK: Hodder Arnold.

Trabusi, L.R., Keller, R. and Tardelli Gomes, T.A. (2002) Typical and atypical enteropathogenic Escherichia coli. Emerg Infect Dis 8, 508–513.

Veldman, A., Vahl, H.A., Borggreve, G.J. and Fuller, D.C. (1995) A survey of the incidence of Salmonella species and Enterobacteriaceae in poultry feeds and feed components. Vet Rec 136, 169–172.

Vestby, L.K., Moretro, T., Ballance, S., Langsrud, S. and Nesse, L.L. (2009a) Survival potential of wild type cellulose deficient Salmonella from the feed industry. BMC Vet Res 5, 43.

Vestby, L.K., Moretro, T., Langsrud, S., Heir, E. and Nesse, L.L. (2009b) Biofilm forming abilities of Salmonella are correlated with persistence in fish meal- and feed factories. BMC Vet Res 5, 20.

Vestby, L.K., Lonn-Stensrud, J., Moretro, T., Langsrud, S., Aamdal-Scheie, A., Benneche, T. and Nesse, L.L. (2010) A synthetic furanone potentiates the effect of disinfectants on Salmonella in biofilm. J Appl Microbiol 108, 771–778.

Vikram, A., Jayaprakash, G.K., Úckoo, R.M. and Patil, B.S. (2013) Inhibition of Escherichia coli O157:H7 motility and biofilm by beta-Sitosterol glucoside. Biochim Biophys Acta 1830, 5219–5228.

Wang, R., Bono, J.L., Kalchayanand, N., Shackelford, S. and Harhay, D.M. (2012) Biofilm formation by shiga toxin-producing Escherichia coli O157:H7 and Non-O157 Strains and their tolerance to sanitizers commonly used in the food processing environment. J Food Protect 75, 1418–1428.

White-Ziegler, C.A., Um, S., Perez, N.M., Berns, A.L., Malhotri, A.J. and Young, S. (2008) Low temperature (23 degrees C) increases expression of biofilm-, cold-shock- and RpoS-dependent genes in Escherichia coli K-12. Microbiology 154, 148–166.

Xavier, J.B., White, D.C. and Almeida, J.S. (2003) Automated biofilm morphology quantification from confocal laser scanning microscopy imaging. Water Sci Technol 47, 31–37.