Corrections to finite–size scaling in the φ^4 model on square lattices

J. Kaupužs1,2, R. V. N. Melnik3, J. Rimšāns1,2,3

1Institute of Mathematics and Computer Science, University of Latvia
29 Raiņa Boulevard, LV–1459 Riga, Latvia
2Institute of Mathematical Sciences and Information Technologies,
University of Liepaja, 14 Liela Street, Liepaja LV–3401, Latvia
3The MS2 Discovery Interdisciplinary Research Institute,
Wilfrid Laurier University, Waterloo, Ontario, Canada, N2L 3C5

July 1, 2014

Abstract

Corrections to scaling in the two–dimensional scalar φ^4 model are studied based on non–perturbative analytical arguments and Monte Carlo (MC) simulation data for different lattice sizes L ($4 \leq L \leq 1536$) and different values of the φ^4 coupling constant λ, i. e., $\lambda = 0.1, 1, 10$. According to our analysis, amplitudes of the nontrivial correction terms with the correction–to–scaling exponents $\omega_\ell < 1$ become small when approaching the Ising limit ($\lambda \to \infty$), but such corrections generally exist in the 2D φ^4 model. Analytical arguments show the existence of corrections with the exponent $3/4$. The numerical analysis, supported by arguments of the conformal field theory, suggests that there exists also a correction with the exponent $1/2$, which is detectable at $\lambda = 0.1$. We have tested the consistency of susceptibility data with corrections, represented by an expansion in powers of $L^{-1/4}$. We conclude that a correction with exponent $\omega = 1/4$, probably, also exists.

Keywords: φ^4 model, corrections to scaling, Monte Carlo simulation

1 Introduction

The φ^4 model is one of the most extensively used tools in analytical studies of critical phenomena – see, e. g., [1,2]. These studies have risen also a significant interest in numerical testing of the theoretical results for this model. Recently, some challenging non–perturbative analytical results for the corrections to scaling in the φ^4 model have been obtained [3], which could be relatively easily verified numerically in the two–dimensional case. Therefore, we will further focus just on this case. Although the analytical studies are based on the continuous φ^4 model, its lattice version is more convenient for Monte Carlo (MC) simulations. Earlier MC studies of the 2D lattice model go back to the work by Milchev, Heermann and Binder [4]. The continuous version has been simulated, e. g., in [10]. In [8], effective critical exponents $\nu \approx 0.8$ for correlation length and $\gamma \approx 1.25$
for susceptibility have been obtained, based on the simulation data for lattices sizes up to \(L = 20 \). The considered there a scalar 2D \(\varphi^4 \) model should belong to the 2D Ising universality class with the exponents \(\nu = 1 \) and \(\gamma = 7/4 \), so that these effective exponents point to the presence of remarkable corrections to scaling. A later MC study \([11]\) of larger lattices, up to \(L = 128 \), has supported the idea that this model belongs to the 2D Ising universality class, stating that the asymptotic scaling is achieved for \(L \gtrsim 32 \). Apparently, numerical studies cause no doubts that the leading scaling exponents for the two–dimensional scalar \(\varphi^4 \) model and the 2D Ising model are the same. However, it is still important to refine further corrections to scaling. Indeed, the 2D \(\varphi^4 \) model can contain nontrivial correction terms, which do not show up or cancel in the 2D Ising model. We will focus on this issue in the following sections.

2 Analytical arguments

Here we will review the important non–perturbative analytical arguments of \([8]\) in the context of some other known results. These arguments are based on the continuous \(\varphi^4 \) model in the thermodynamic limit with the Hamiltonian \(\mathcal{H} \) given by

\[
\frac{\mathcal{H}}{k_B T} = \int \left(r_0 \varphi^2(x) + c(\nabla \varphi(x))^2 + w \varphi^4(x) \right) dx, \tag{1}
\]

where the order parameter \(\varphi(x) \) is an \(n \)-component vector with components \(\varphi_i(x) \), depending on the coordinate \(x \), \(T \) is the temperature, and \(k_B \) is the Boltzmann constant. It is assumed that the order-parameter field \(\varphi_i(x) \) does not contain the Fourier components \(\varphi_i(k) \) with \(k > \Lambda \), i. e., there exists the upper cut-off parameter \(\Lambda \). Here \(r_0 \) is the only \(T \)-dependent parameter in the right hand side of \((1)\), the dependence being linear. Assuming the power–law singularity of the correlation length, \(\xi \sim t^{-\nu} \) at small reduced temperature \(t \to 0 \), the leading singular part of specific heat \(C_V^{\text{sing}} \) can be expressed as \([8]\)

\[
C_V^{\text{sing}} \propto \xi^{1/\nu} \left(\int_{k<\Lambda'} \left(G(k) - G^*(k) \right) dk \right)^{\text{sing}}, \tag{2}
\]

where \(G(k) \) is the Fourier–transformed two–point correlation function, and \(G^*(k) \) is its value at the critical point. The superscript “\(\text{sing} \)” implies the leading singular contribution, \(\xi \) is the correlation length, and \(\Lambda' \) is a constant. This expression is valid for any positive \(\Lambda' < \Lambda \), since the leading singularity is provided by small wave vectors with the magnitude \(k = | k | \to 0 \), so that the contribution of finite wave vectors \(\Lambda' \leq k \leq \Lambda \) is irrelevant. In other words, \(C_V^{\text{sing}} \) is independent of the constant \(\Lambda' \).

The leading singularity of specific heat in the form of \(C_V^{\text{sing}} \propto (\ln \xi) \lambda \xi^{\alpha/\nu} \) and the two–point correlation function in the asymptotic form of \(G(k) = \sum_{\ell \geq 0} \xi^{(\gamma - \theta_i)/\nu} g_\ell(k \xi) \) have been considered in \([8]\). The latter two expressions represent the conventional scaling hypothesis, where \(\theta_0 = 0 \), \(\theta_\ell \) with \(\ell \geq 1 \) are the correction–to–scaling exponents, and \(g_\ell(k \xi) \) are the scaling functions. One has to note that, according to the self–consistent scaling theory of logarithmic correction exponents in \([12]\), logarithmic corrections can generally appear also in \(\xi \) as function of \(t \), as well as in \(G(k) \). Nevertheless, the consideration in \([8]\) covers the usual case of \(\lambda = 0 \), where no logarithmic corrections are present, as well as the important particular case of \(\alpha = 0 \) and \(\lambda = 1 \), where the logarithmic correction appears only in specific heat, as in the 2D Ising model \([12]\). The considered
in \(\phi^4 \) scaling forms appear to be general enough for our analysis of the \(\phi^4 \) model below the upper critical dimension \(d < 4 \), where \(\xi \) and \(G(k) \) have no logarithmic corrections according to the known results, except only for the case of the Kosterlitz–Thouless phase transition at \(n = 2 \) and \(d = 2 \).

A theorem has been proven in [8], stating that the two–point correlation function of the considered here \(\phi^4 \) model necessarily contains a correction with the exponent \(\theta_\ell = \gamma + 1 - \alpha - d\nu \), if \(C_{\text{sing}}^{(k)} \) can be calculated from (2), applying the considered here scaling forms, if the result is \(\Lambda' \)–independent, and if the condition \(\gamma + 1 - \alpha - d\nu > 0 \) is satisfied for the critical exponents. According to the known hyperscaling hypothesis \(\alpha + d\nu = 2 \), it yields \(\theta_\ell = \gamma - 1 \) for \(\gamma > 1 \). Apparently, all the listed here conditions of the theorem are satisfied for \(d = 3 \) and \(n \geq 1 \), as well as for \(d = 2 \) and \(n = 1 \). Indeed, the condition of \(\Lambda' \)–independence is generally meaningful, since the critical singularities are provided by long–wave fluctuations, whereas the assumed here scaling forms and the relations \(\alpha + d\nu = 2 \), \(\gamma > 1 \) and, consequently, \(\gamma + 1 - \alpha - d\nu > 0 \) hold in these cases, according to the current knowledge about the critical phenomena.

The consequences of the theorem have been discussed in detail in [8]. Here we only note that the existence of a correction with exponent \(\theta_\ell = 3/4 \) in the scalar \(n = 1 \) 2D \(\phi^4 \) model follows from this theorem, if \(\gamma = 7/4 \) and \(\nu = 1 \) hold here, as in the 2D Ising model. It corresponds to a correction exponent \(\omega_\ell = \theta_\ell/\nu = 3/4 \) in the critical two–point correlation function, as well as in the finite–size scaling. Since this exponent not necessarily describes the leading correction term, the prediction is \(\omega \leq 3/4 \) for the leading correction–to–scaling exponent \(\omega \). An evidence for a nontrivial correction with non–integer exponent (which might be, e. g., \(1/4 \)) in the finite–size scaling of the critical real–space two–point correlation function of the 2D Ising model has been provided in [13], based on an exact enumeration by a transfer matrix algorithm. This correction, however, has a very small amplitude and is hardly detectable. Moreover, such a correction has not been detected in susceptibility. Usually, the scaling in the 2D Ising model is representable by trivial, i. e., integer, correction–to–scaling exponents when analytical background terms (e. g., a constant contribution to susceptibility) are separated – see, e. g., [14, 16] and references therein. The discussions have been focused on the existence of irrelevant variables [17, 18]. In particular, the high–precision calculations in [18] have shown that the conjecture by Aharony and Fisher about the absence of such variables [19, 20] fails.

The above mentioned theorem predicts the existence of nontrivial correction–to–scaling exponents in the 2D \(\phi^4 \) model. It can be expected that the nontrivial correction terms of the \(\phi^4 \) model usually do not show up or cancel in the 2D Ising model. This idea is not new. Based on the standard field–theoretical treatments of the \(\phi^4 \) model, \(\omega = 4/3 \) has been conjectured for the leading nontrivial scaling corrections at \(n = 1 \) and \(d = 2 \) in [2, 21]. However, it contradicts our theorem, which yields \(\omega \leq 3/4 \). This discrepancy is interpreted as a failure of the standard perturbative methods — see [7] and the discussions in [8]. One has to note that the alternative perturbative approach of [6], predicting \(\omega_\ell = \ell\eta \) (where \(\ell \geq 1 \) is an integer) with \(\eta = 2 - \gamma/\nu = 1/4 \) for \(n = 1 \) and \(d = 2 \), is consistent with this theorem.
3 Monte Carlo simulation of the lattice φ^4 model

We have performed MC simulations of the scalar 2D φ^4 model on square lattice with periodic boundary conditions. The Hamiltonian \mathcal{H} is given by

$$\frac{\mathcal{H}}{k_B T} = -\beta \sum_{\langle ij \rangle} \varphi_i \varphi_j + \sum_i \left(\varphi_i^2 + \lambda \left(\varphi_i^2 - 1 \right)^2 \right),$$

where $-\infty < \varphi_i < \infty$ is a continuous scalar order parameter at the i-th lattice site, and $\langle ij \rangle$ denotes the set of all nearest neighbors. This notation is related to the one of 22 via $\beta = 2\kappa$ and $\varphi = \phi$. We have denoted the coupling constant at $\varphi_i \varphi_j$ by β to outline the similarity with the Ising model.

Swendsen-Wang and Wolff cluster algorithms are known to be very efficient for MC simulations of the Ising model in vicinity of the critical point 22. However, these algorithms update only the spin orientation, and therefore are not ergodic for the φ^4 model. The problem is solved using the hybrid algorithm, where a cluster algorithm is combined with Metropolis sweeps. This method has been applied to the 3D φ^4 model in 22. In our simulations, we have applied one Metropolis sweep after each N_W Wolff single cluster algorithm steps. Following 22, the order parameter is updated as $\varphi'_i = \varphi_i + s(r - 1/2)$ in one Metropolis step, where s is a constant and r is a random number from a set of uniformly distributed random numbers within $[0, 1]$. Here N_W and s are considered as optimization parameters, allowing to reach the smallest statistical error in a given simulation time. We have chosen N_W such that $N_W \langle c \rangle / L^2$ is about $2/3$ or 0.6, where $\langle c \rangle$ is the mean cluster size. The optimal choice of s depends on the Hamiltonian parameters. Our simulations have been performed at $\lambda = 0.1$, $\lambda = 1$, $\lambda = 10$ and at such values of β, which correspond to $U = \langle m^4 \rangle / \langle m^2 \rangle^2 = 1.17$ and $U = 2$, m being the magnetization per spin. At $U = 1.17$, we have chosen $s = 4$ for $\lambda = 0.1$, $s = 4$ for $\lambda = 1$ and $s = 3$ for $\lambda = 10$. At $U = 2$, the corresponding values are $s = 3.5$, $s = 3$ and $s = 2$. For comparison, $s = 3$ has been used in 22.

We have used the iterative method of 24 to find β, corresponding to certain value of U, as well as a set of statistical averaged quantities at this β, called the pseudo-critical coupling $\tilde{\beta}_c(L)$. We have performed high statistics simulations for evaluation of the derivative $\partial U / \partial \beta$ and the susceptibility $\chi = N \langle m^2 \rangle$, where $N = L^2$ is the total number of spins. For each lattice size L, these quantities have been estimated from 100 iterations (simulation bins) in vicinity of $\beta = \tilde{\beta}_c(L)$, collected from one or several simulation runs, discarding first 10 iterations of each run for equilibration. One iteration included 10^6 steps of the hybrid algorithm, each consisting of one Metropolis sweep and N_W Wolff algorithm steps, as explained before. To test the accuracy of our iterative method, we have performed some simulations (for $U = 2$ and $\lambda = 0.1$) with 2.5×10^5 hybrid algorithm steps in one iteration, and have verified that the results well agree with those for 10^6 steps. Moreover, we have used two different pseudo-random number generators, the same ones as in 25, to verify that the results agree within the statistical error bars.

Note that the quantity U is related to the Binder cumulant $B = 1 - U / 3$ 29. In the thermodynamic limit, we have $B = 0$ ($U = 3$) above the critical point, i.e., at $T > T_c$ or $\beta < \beta_c$, and $B = 2/3$ ($U = 1$) at $T < T_c$ or $\beta > \beta_c$. Thus, the pseudo-critical coupling $\tilde{\beta}_c(L)$, corresponding to a given U in the range of $1 < U < 3$, tends to the true critical coupling β_c at $L \to \infty$. We have chosen one U value, $U = 2$ in the middle of the interval and the other one, $U = 1.17$, close to the critical value U^* at $\beta = \beta_c$ and $L \to \infty$.
Table 1: The values of $\tilde{\beta}_c$, as well as $\chi/L^{7/4}$, and $-(\partial U/\partial \beta)/L$ at $\beta = \tilde{\beta}_c$ for $\lambda = 0.1$ and $U = 2$ depending on the lattice size L.

L	$\tilde{\beta}_c$	$\chi/L^{7/4}$	$-(\partial U/\partial \beta)/L$
4	0.549398(42)	0.60791(23)	2.4344(16)
6	0.562326(28)	0.50107(21)	2.5045(17)
8	0.570550(19)	0.44694(19)	2.5492(21)
12	0.580455(14)	0.39460(21)	2.5900(22)
16	0.5861408(94)	0.36991(17)	2.6112(26)
24	0.5924039(62)	0.34936(16)	2.6459(26)
32	0.5957584(45)	0.34116(15)	2.6663(30)
48	0.5992406(34)	0.33538(14)	2.6881(27)
64	0.6010332(23)	0.33412(13)	2.7129(31)
96	0.6028383(15)	0.33359(14)	2.7273(36)
128	0.6037470(11)	0.33396(14)	2.7351(40)
192	0.60465804(69)	0.33486(14)	2.7592(37)
256	0.6051333(60)	0.33537(12)	2.7614(38)
384	0.60556996(40)	0.33648(12)	2.7745(38)
512	0.60579773(41)	0.33701(11)	2.7780(40)
768	0.60602518(20)	0.337618(99)	2.7836(37)
1024	0.60613849(13)	0.33780(13)	2.7827(44)
1536	0.606252278(88)	0.33825(11)	2.7890(40)

In most of the cases, MC simulations have been performed for lattice sizes $4 \leq L \leq 128$. At $\lambda = 0.1$ and $U = 2$, the simulations have been extended up to $L = 1536$ for a refined analysis. A parallel algorithm, similar to that one used in [24], helped us to speed up the simulations for the largest lattice size $L = 1536$. The Wolff algorithm has been parallelized in this way, whereas the usual ideas of splitting the lattice in slices [23] have been applied to parallelize the Metropolis algorithm. In the current application, the parallel code showed a quite good scalability (for Wolff, as well as Metropolis, algorithms) up to 8 processors available on one node of the cluster. The simulation results are collected in Tabs. 1 to 6.

4 Monte Carlo analysis

4.1 Critical parameters

According to the finite–size scaling theory, U behaves asymptotically as $U = F((\beta - \beta_c)L^{1/\nu})$ (see, e. g., the references in [22]) for large lattice sizes in vicinity of the critical point, where $F(z)$ is a smooth function of z. Hence, the pseudo-critical coupling $\tilde{\beta}_c$ behaves as

$$\tilde{\beta}_c = \beta_c + aL^{-1/\nu}$$

at large L, where the coefficient a depends on U and λ. Since $\nu = 1$ holds in this model, it is meaningful to plot $\tilde{\beta}_c$ vs $1/L$ as it is done in Fig. 1.

At the critical U value, $U = U^*$, the coefficient a vanishes and the asymptotic convergence of $\tilde{\beta}_c$ to the critical coupling β_c is faster than $\sim 1/L$. As one can judge from Fig. 1, it
Table 2: The same quantities as in Tab. 1 for $\lambda = 0.1$ and $U = 1.17$.

L	$\tilde{\beta}_c$	$\chi/L^{7/4}$	$-(\partial U/\partial \beta)/L$
4	0.656921(33)	2.33502(44)	0.81724(54)
8	0.620328(19)	1.69631(38)	0.93296(66)
16	0.609627(11)	1.38710(31)	1.04487(80)
32	0.6070815(45)	1.25571(21)	1.12318(88)
64	0.6065724(20)	1.20542(20)	1.16541(95)
128	0.6064868(11)	1.18770(18)	1.1846(12)

Table 3: The same quantities as in Tab. 1 for $\lambda = 1$ and $U = 2$.

L	$\tilde{\beta}_c$	$\chi/L^{7/4}$	$-(\partial U/\partial \beta)/L$
4	0.512944(44)	0.315623(68)	1.27395(46)
8	0.590002(23)	0.270748(70)	1.26492(60)
16	0.633498(12)	0.251359(59)	1.25682(77)
32	0.6567123(57)	0.244758(59)	1.25660(94)
64	0.6686081(32)	0.243132(52)	1.26232(87)
128	0.6745993(15)	0.242899(53)	1.2624(10)

Table 4: The same quantities as in Tab. 1 for $\lambda = 1$ and $U = 1.17$.

L	$\tilde{\beta}_c$	$\chi/L^{7/4}$	$-(\partial U/\partial \beta)/L$
4	0.721485(47)	1.03765(11)	0.43568(14)
8	0.689059(25)	0.92831(10)	0.49442(21)
16	0.682119(12)	0.878352(92)	0.52170(23)
32	0.6808084(54)	0.858362(86)	0.53468(29)
64	0.6805951(29)	0.850860(92)	0.53955(35)
128	0.6805810(14)	0.848395(83)	0.54185(35)

Table 5: The same quantities as in Tab. 1 for $\lambda = 10$ and $U = 2$.

L	$\tilde{\beta}_c$	$\chi/L^{7/4}$	$-(\partial U/\partial \beta)/L$
4	0.287517(24)	0.367807(43)	1.53677(43)
8	0.374876(16)	0.332360(53)	1.35076(57)
16	0.4217519(94)	0.314668(54)	1.27009(55)
32	0.4461113(40)	0.305725(47)	1.23283(56)
64	0.4585487(24)	0.301387(50)	1.21446(69)
128	0.4648281(11)	0.299070(47)	1.20451(70)
Table 6: The same quantities as in Tab. [1] for $\lambda = 10$ and $U = 1.17$.

L	$\tilde{\beta}_c$	$\chi L^{7/4}$	$-(\partial U / \partial \beta) / L$
4	0.464345(24)	1.002728(36)	0.538993(70)
8	0.469597(15)	1.021750(44)	0.52244(11)
16	0.470713(3)	1.028566(61)	0.51525(16)
32	0.4710035(44)	1.031059(73)	0.51305(20)
64	0.4710872(17)	1.031578(60)	0.51236(19)
128	0.4711247(12)	1.031885(70)	0.51233(25)

Figure 1: The pseudo-critical coupling $\tilde{\beta}_c$ vs $1/L$ for $\lambda = 0.1$ (left), $\lambda = 1$ (middle) and $\lambda = 10$ (right). The upper plots (squares) and the lower plots (circles) refer to the cases $U = 1.17$ and $U = 2$, respectively. Statistical errors are much smaller than the symbol size.
occurs at U about 1.17 for all λ. In this sense U^* is universal. Our techniques allow us to recalculate the data for slightly different U, such as $U = 1.16$ and $U = 1.18$, by using the Taylor series expansion. In this way, we have verified that 1.17 is likely to be the correct rounded value of U^*. It agrees with the known MC estimate of the critical Binder cumulant $B^* = 1 - U^*/3 \approx 0.61$ referred in $[9]$. The fact that $U^* \approx 1.17$ is the correct rounded value is confirmed by an accurate estimation in $[17]$, yielding $U^* = 1.1679229 \pm 0.0000047$ for the 2D Ising model, corresponding to $\lambda \to \infty$.

Comparing different fits of β_c, we have estimated the critical coupling as $\beta_c = 0.606479 \pm 0.000004$ at $\lambda = 0.1$, $\beta_c = 0.68059 \pm 0.00003$ at $\lambda = 1$ and $\beta_c = 0.47116 \pm 0.00006$ at $\lambda = 10$. According to $[11]$, the fluctuations of φ_i^2 are suppressed at $\lambda \to \infty$ in such a way that $\varphi_i^2 \to 1$ holds for relevant spin configurations with finite values of $H/(k_B T)$ per spin. It means that the actual φ^4 model becomes equivalent to the Ising model, where $\varphi_i = \pm 1$, in the limit $\lambda \to \infty$, further called the Ising limit. Thus, it is not surprising that β_c approaches the known exact value $\frac{1}{4} \ln (1 + \sqrt{2}) = 0.44068679 \ldots$ of the 2D Ising model $[20]$ when λ becomes large.

It is somewhat unexpected that β_c appears to be a non-monotonous function of λ. It can be explained by two competing effects. On the one hand, fluctuations increase with decreasing of λ, and therefore β_c tends to increase. Indeed, β_c at $\lambda = 1$ is remarkably larger than that at $\lambda = 10$. On the other hand, an effective interaction between spins becomes stronger for small λ because $\langle | \varphi_i | \rangle$ and therefore also $\langle \varphi_i \varphi_j \rangle$ for neighboring spins increases in this case. It can explain the fact that β_c at $\lambda = 0.1$ is slightly smaller than that at $\lambda = 1$.

4.2 Analysis of corrections to scaling

According to the idea that the actual φ^4 model is described by the same critical exponents $\gamma = 7/4$ and $\nu = 1$ as the 2D Ising model, it is expected that $\chi/L^{7/4}$ and $(\partial U/\partial \beta)/L$ at $\beta = \tilde{\beta}_c(L)$ tend to some nonzero constants at $L \to \infty$. The data in Tabs. $[1]$ to $[3]$ are consistent with this idea. The L–dependence of $\chi/L^{7/4}$ and $(\partial U/\partial \beta)/L$ is caused by corrections to scaling. Thus, we have

\begin{equation}
\frac{\chi}{L^{7/4}} = a_0 + \sum_{k \geq 1} a_k L^{-\omega_k},
\end{equation}

\begin{equation}
\frac{1}{L} \frac{\partial U}{\partial \beta} = b_0 + \sum_{k \geq 1} b_k L^{-\omega_k}
\end{equation}

for large L at $\beta = \tilde{\beta}_c(L)$, where a_k and b_k are expansion coefficients and ω_k are correction–to-scaling exponents. The existence of trivial corrections to scaling with integer ω_k is expected, since such corrections appear in the 2D Ising model. Hence, if nontrivial corrections with $\omega_k < 1$ do not exist, then the convergence of $\chi/L^{7/4}$ and $(\partial U/\partial \beta)/L$ to the asymptotic values a_0 and b_0 is expected to be linear in $1/L$. The $\chi/L^{7/4}$ vs $1/L$ and $(\partial U/\partial \beta)/L$ vs $1/L$ plots are shown in Figs. $[2]$ and $[3]$ respectively.

The plots in Figs. $[2]$ and $[3]$ are rather linear at $\lambda = 10$ and become more nonlinear when λ is decreased. The nonlinearity is most pronounced at $\lambda = 0.1$ and $U = 2$. It is interesting to note that the $\chi/L^{7/4}$ vs $1/L$ plots in Fig. $[2]$ show a very good linearity for small L, as indicated in Fig. $[2]$ by linear fits over $L \leq 12$. At $\lambda = 1$ and, particularly, $\lambda = 0.1$ these plots become more nonlinear for larger lattice sizes. In fact, an opposite behavior would be normally expected if these plots are asymptotically linear at $L \to \infty$.
Figure 2: The $\chi/L^{7/4}$ vs $1/L$ plots for $U = 2$ (left) and $U = 1.17$ (right) at $\lambda = 0.1$ (circles), $\lambda = 1$ (diamonds) and $\lambda = 10$ (squares). Statistical errors are much smaller than the symbol size. The straight lines are the linear fits over $4 \leq L \leq 12$, except the case $\lambda = 10$ and $U = 2$, where all data points are included in the fit.

Figure 3: The $-(\partial U/\partial \beta)/L$ vs $1/L$ plots for $U = 2$ (left) and $U = 1.17$ (right) at $\lambda = 0.1$ (circles), $\lambda = 1$ (diamonds) and $\lambda = 10$ (squares). The plots at $\lambda = 0.1$ are shifted by -0.8 and -0.25 at $U = 2$ and $U = 1.17$, respectively. Statistical errors are within the symbol size.
We have performed a refined analysis in the case of $\lambda = 0.1$ and $U = 2$, where the strongest nonlinearity has been observed, in order to check the possible nontrivial corrections to scaling. We have found that the $(\partial U/\partial \beta)/L$ vs $L^{-1/2}$ plot is approximately linear within the whole range of sizes $4 \leq L \leq 1536$, as it can be seen in Fig. 4. The fit to

$$\frac{1}{L} \frac{\partial U}{\partial \beta} = b_0 + b_1 L^{-\omega}$$

with fixed $\omega = 1/2$ is fairly good within $16 \leq L \leq 1536$. The χ^2 of the fit per degree of freedom, i.e., χ^2/d.o.f. is 1.22 in this case. The fit is shown in Fig. 4 by straight line. Considering ω as a fit parameter, we obtain $\omega = 0.474(26)$ with χ^2/d.o.f. = 1.22. A reasonable explanation of these results is such that (7) contains a term with the exponent 1/2, which is the leading term within $16 \leq L \leq 1536$, at least, for the actual parameters $\lambda = 0.1$ and $U = 2$. From the numerical analysis alone one can judge that this exponent is about 1/2. However, it is likely to be true that its value is exactly 1/2, owing to the arguments of the conformal field theory [27], predicting rational values of the critical exponents for 2D models and quite simple ones for the 2D Ising model.

According to the analytical arguments in Sec. 2 a correction term with exponent 3/4 exists in the two-point correlation function. Thus, it is expected in (5) – (6), as well. As explained in Sec. 2 extra correction terms with smaller exponents are also possible. The current analysis provides an evidence for such a correction with exponent 1/2. According to the predictions of (6), a correction term with exponent 1/4 is also expected. Our analysis of the $(\partial U/\partial \beta)/L$ data does not provide any evidence for such a correction. However, there is no contradiction with this conception, if we assume that the amplitude of the latter correction term is relatively small. In this case the behavior in Fig. 4 should be changed for large enough lattice sizes to the $\sim L^{-1/4}$ asymptotic convergence.

We have analyzed the $\chi/L^{1/4}$ data in Tab. 1 to clarify whether there could exist also a nontrivial correction with the exponent 1/4 in addition to those with correction–to–scaling

Figure 4: The $(\partial U/\partial \beta)/L$ vs $L^{-1/2}$ plot for $\lambda = 0.1$ and $U = 2$. The straight line represents the fit to (7) within $16 \leq L \leq 1536$.

Table 7: The fit parameters \(a_k \) \((k = 0, 1, 2)\) in \([5]\) and the \(\chi^2/\text{d.o.f.}\) of the fit depending on the range of sizes \(L \in [L_{\text{min}}, L_{\text{max}}]\).

\(L_{\text{min}}\)	\(L_{\text{max}}\)	\(a_0\)	\(a_1\)	\(a_2\)	\(\chi^2/\text{d.o.f.}\)
192	1536	0.3383(18)	0.019(17)	-0.120(39)	0.93
128	1024	0.3425(19)	-0.020(16)	-0.029(34)	1.70
96	768	0.3477(18)	-0.064(14)	0.062(28)	1.36
64	512	0.3592(18)	-0.154(13)	0.234(24)	2.59
48	384	0.3683(20)	-0.219(13)	0.346(22)	2.76

exponents \(3/4\) and \(1/2\). For this purpose, first we have fit these data to the ansatz

\[
\chi/L^{7/4} = a_0 + a_1 L^{-1/4} + a_2 L^{-1/2}
\]

within certain interval \(L \in [L_{\text{min}}, L_{\text{max}}]\) with different values of \(L_{\text{min}}\) at \(L_{\text{max}}/L_{\text{min}} = 8\). The fit results for the coefficients \(a_k\) together with the values of \(\chi^2/\text{d.o.f.}\) are collected in Tab.7. The variations of \(a_1\) and \(a_2\) are dependent on the fit interval and indicate that the true asymptotic value of the expansion coefficient \(a_2\), very likely, is negative, whereas that of \(a_1\) might be positive. Note that the \(\chi^2/\text{d.o.f.}\) is about unity for moderately good fits and smaller for better fits. The remarkable variations of \(a_1\) and \(a_2\), as well as the values of \(\chi^2/\text{d.o.f.}\) in Tab.7 show that corrections of higher order than those included in \([8]\) are relevant. If the next expansion term is \(\propto L^{-3/4}\), then the \(O\left(L_{\text{min}}^{-1/2}\right)\) variation in \(a_1\) and the \(O\left(L_{\text{min}}^{-1/4}\right)\) variation in \(a_2\) are expected at \(L_{\text{min}} \to \infty\) at a fixed \(L_{\text{max}}/L_{\text{min}}\). It follows from the fact that the corresponding variations in \(a_1 L^{-1/4}\) and \(a_2 L^{-1/2}\) approximately compensate the neglected remainder term of the order \(O\left(L^{-3/4}\right)\) within \(L \in [L_{\text{min}}, L_{\text{max}}]\) to minimize the \(\chi^2\) of the fit.

If the remainder term is, indeed, of the order \(O\left(L^{-3/4}\right)\), then the variations in \(a_1\) and \(a_2\) can be remarkably reduced by adding a term \(a_3 L^{-3/4}\) to \([5]\). Following this idea, we have performed fits to

\[
\chi/L^{7/4} = a_0 + a_1 L^{-1/4} + a_2 L^{-1/2} + a_3 L^{-3/4}
\]

with different fixed values of \(a_3\). The latter coefficient has been fixed, since a consideration of \(a_3\) as an extra fit parameter results in too large statistical errors. We have found that the coefficients \(a_k\) with \(k = 0, 1, 2\) are stabilized and the quality of fits is greatly improved at certain values of \(a_3\) about 1.76. The results for \(a_3 = 1.76\) are shown in Tab.8.

The values of \(a_k\) in Tab.8 almost do not change within the considered range of sizes, and all fits are good. From this we conclude: (i) the actual \(\chi/L^{7/4}\) data are well consistent with the expansion \([9]\) in powers of \(L^{-1/4}\); (ii) if this is the correct expansion, then the true asymptotic expansion coefficients \(a_0, a_1\) and \(a_2\) are expected to be quite similar to those in Tab.8. It provides an evidence for the existence of a \(\propto L^{-1/4}\) correction term in addition to \(\propto L^{-1/2}\) and \(\propto L^{-3/4}\) corrections, supported by our previous arguments.

The overall behavior of the \((\partial U/\partial \beta)/L\) and \(\chi/L^{7/4}\) data can be interpreted in such a way that nontrivial corrections in the form of the expansion in powers of \(L^{-1/4}\) generally exist, although corrections with \(\omega_k < 1\) in \([5]\) and \([6]\) can be well detectable only for
Table 8: The fit parameters a_k ($k = 0, 1, 2$) in (9) and the χ^2/d.o.f. of the fit at a fixed coefficient $a_3 = 1.76$ depending on the range of sizes $L \in [L_{\text{min}}, L_{\text{max}}]$.

L_{min}	L_{max}	a_0	a_1	a_2	χ^2/d.o.f.
192	1536	0.3223(18)	0.253(17)	-1.241(39)	0.72
128	1024	0.3203(19)	0.271(16)	-1.278(34)	0.46
96	768	0.3209(18)	0.266(14)	-1.269(28)	0.35
64	512	0.3223(18)	0.255(13)	-1.248(24)	0.39
48	384	0.3225(20)	0.253(13)	-1.246(22)	0.38

small values of λ, such as $\lambda = 0.1$, since the amplitudes of these correction terms decrease with increasing of λ and approaching the Ising limit $\lambda \to \infty$. At large λ, the expansion coefficients at $1/L$ are relatively large, which explains the fact that the $(\partial U/\partial \beta)/L$ vs $1/L$ and $\chi/L^{7/4}$ vs $1/L$ plots look almost linear at $\lambda = 10$.

5 Summary and conclusions

Corrections to scaling in the scalar 2D φ^4 model have been studied based on analytical arguments (Sec. 2) and Monte Carlo analysis (Sec. 4.2). Our analysis supports the finite-size corrections near criticality, representable by an expansion of a correction factor in powers of $L^{-1/4}$. The analytical arguments show the existence of such an expansion term, which is proportional to $L^{-3/4}$, whereas the MC analysis of the $(\partial U/\partial \beta)/L$ data for lattice sizes $4 \leq L \leq 1536$ provides an evidence for a $\propto L^{-1/2}$ correction, taking into account also the arguments of the conformal field theory, suggesting that the exponents should be simple rational numbers in the two-dimensional case. Moreover, the analysis of the $\chi/L^{7/4}$ data shows that a non-vanishing $\propto L^{-1/4}$ term, most probably, also exists if the correct expansion is, indeed, representable by an expansion in powers of $L^{-1/4}$.

However, these nontrivial corrections can be well detectable only at small φ^4 coupling constants λ, such as $\lambda = 0.1$. They become relatively small and the trivial $\propto L^{-1}$ correction dominates at large λ values, or approaching the Ising limit $\lambda \to \infty$.

Apart from corrections to scaling, we have estimated the critical parameters (β_c depending on λ, as well as U^*) in Sec. 4.1 and have discussed an interesting phenomenon that the critical temperature $(1/\beta_c)$ appears to be a non-monotonous function of λ.

Acknowledgments

The authors acknowledge the use of resources provided by the Latvian Grid Infrastructure. For more information, please reference the Latvian Grid website [http://grid.lumii.lv]. R. M. acknowledges the support from the NSERC and CRC program.

References

[1] D. J. Amit, *Field Theory, the Renormalization Group, and Critical Phenomena*, World Scientific, Singapore, 1984.
[2] S. K. Ma, *Modern Theory of Critical Phenomena*, W. A. Benjamin, Inc., New York, 1976.

[3] J. Zinn-Justin, *Quantum Field Theory and Critical Phenomena*, Clarendon Press, Oxford, 1996.

[4] H. Kleinert, V. Schulte-Frohlinde, *Critical Properties of ϕ^4 Theories*, World Scientific, Singapore, 2001.

[5] A. Pelissetto, E. Vicari, Phys. Rep. 368 (2002) 549–727.

[6] J. Kaupužs, Ann. Phys. (Berlin) 10 (2001) 299–331.

[7] J. Kaupužs, Int. J. Mod. Phys. A 27, 1250114 (2012)

[8] J. Kaupužs, Canadian J. Phys. 9, 373 (2012)

[9] A. Milchev, D. W. Heermann, K. Binder, J. Stat. Phys. 44, 749 (1986)

[10] R. Toral, A. Chakrabarti, Phys. Rev. B 42, 2445 (1990)

[11] B. Mehling, B. M. Forrest, Z. Phys. B 89, 89 (1992)

[12] R. Kenna, D. A. Johnston, W. Janke, Phys. Rev. Lett. 97, 155702 (2006); Erratum – ibid 97, 169901 (2006)

[13] J. Kaupužs, Int. J. Mod. Phys. C 17, 1095 (2006)

[14] H. Au-Yang, J. H. H. Perk, Int. J. Mod. Phys. B 16, 2089 (2002)

[15] Y. Chan, A. J. Guttman, B. G. Nickel, J. H. H. Perk, J. Stat. Phys. 145, 549 (2011)

[16] M. Caselle, M. Hasenbusch, A. Pelissetto, E. Vicari, J. Phys. A 35, 4861 (2002)

[17] J. Salas, A. D. Sokal, J. Stat. Phys. 98, 551 (2000)

[18] W.P. Orrick, B. Nickel, A.J. Guttmann and J.H.H. Perk, J. Stat. Phys. 102, 795 (2001)

[19] A. Aharony, M. E. Fisher, Phys. Rev. Lett. 45, 679 (1980)

[20] A. Aharony, M. E. Fisher, Phys. Rev. B 27, 4394 (1983)

[21] M. Barma, M. Fisher, Phys. Rev. Lett. 53, 1935 (1984)

[22] M. Hasenbusch, J. Phys. A: Math. Gen. 32, 4851 (1999)

[23] M. E. J. Newman, G. T. Barkema, Monte Carlo Methods in Statistical Physics, Clarendon Press, Oxford, 1999

[24] J. Kaupužs, J. Rimšāns, R. V. N. Melnik, Phys. Rev. E 81, 026701 (2010).

[25] J. Kaupužs, J. Rimšāns, R. V. N. Melnik, Ukr. J. Phys. 56, 845 (2011)

[26] R. J. Baxter, *Exactly Solved Models in Statistical Mechanics*, Academic Press, London, 1989.

[27] P.D. Francesco, P. Mathieu, D. Sénéchal, *Conformal Field Theory*, Springer, New York, 1997.