Universal relation for kinetic energy of quantum systems at equilibrium

Jerzy Łuczka

Institute of Physics, University of Silesia, 41-500 Chorzów, Poland
Institute of Physics, University of Augsburg, 86135 Augsburg, Germany

It is shown that the recently proposed quantum analogue of classical energy equipartition theorem for a free Brownian particle and a dissipative harmonic oscillator also holds true for all quantum systems composed of an arbitrary number of interacting particles, subjected to any confining potential and coupled to thermostat of arbitrary strength.

In classical statistical physics, the theorem on equipartition of kinetic energy is one of the most universal relation [1, 2]. It states that for a system in thermodynamic equilibrium of temperature T, the mean kinetic energy E_k per one degree of freedom is equal to $E_k = k_B T/2$, where k_B is the Boltzmann constant [3, 4]. It does not depend on a number of particles in the system, the form of the potential force which acts on them, the form of interaction between particles and strength of coupling between the system and thermostat. It depends only on the thermostat temperature T. On the contrary, for quantum systems, the mean kinetic energy is not equally shared among all degrees of freedom and the theorem fails. The question arises whether one can formulate a similar and universal relation for the mean kinetic energy of quantum systems at a thermodynamic equilibrium state. Recently, in a series of papers [5, 6, 7], the authors have proposed quantum analogue of the energy equipartition theorem. For a system of one degree of freedom this quantum counterpart, which is called the energy partition theorem, has the appealing form:

$$E_k = \int_0^\infty \mathcal{E}_k(\omega) \mathbb{P}(\omega) \, d\omega,$$

(1)

where

$$\mathcal{E}_k(\omega) = \frac{\hbar \omega}{4} \coth \left(\frac{\hbar \omega}{2 k_B T} \right)$$

(2)

has the same form as the average kinetic energy of the harmonic oscillator with the frequency ω weakly coupled to thermostat [8] and $\mathbb{P}(\omega)$ is a probability density on a positive half-line of real numbers meaning that

$$\mathbb{P}(\omega) \geq 0,$$

(3)

$$\int_0^\infty \mathbb{P}(\omega) \, d\omega = 1.$$

(4)

The explicit form of $\mathbb{P}(\omega)$ has been derived for two exactly solved quantum systems: a free Brownian particle [5] and a dissipative harmonic oscillator [6]. In these papers, thermostat is composed of quantum harmonic oscillators (à la Caldeira-Leggett [9]) and the above interpretation of $\mathcal{E}_k(\omega)$ is fully justified. Because $\mathbb{P}(\omega)$ is a probability density, Eq. (1) can be rewritten in the form

$$E_k = \langle \mathcal{E}_k \rangle,$$

(5)

where $\langle \mathcal{E}_k \rangle$ is a mean value of the function $\mathcal{E}_k(\xi)$ of some random variable ξ distributed according to the probability density \mathbb{P}. In the Caldeira-Leggett model, ξ can be interpreted as a random frequency of harmonic oscillators forming the thermostat.

Here, we want to prove a relation similar to (1) for a class of quantum systems for which the concept of kinetic energy has sense (e.g spin systems are outside of this class). More precisely, we study a quantum system S coupled to thermostat (heat bath, environment) E. The composite system $S+E$ is in a Gibbs equilibrium state of temperature T defined by the density operator

$$\rho = Z^{-1} e^{-H/k_B T}, \quad Z = \text{Tr} \left[e^{-H/k_B T} \right]$$

(6)

and

$$H = H_S + H_{int} + H_E$$

(7)

is the Hamiltonian of the composite system $S+E$. Next,

$$H_S = \sum_j \frac{p_j^2}{2M_j} + \sum_j U_S(x_j) + \sum_{j,k} V_S(x_j, x_k)$$

(8)
is the Hamiltonian of the system S and
\[H_{\text{int}} = \sum_{j,n} \lambda_{jn} V(x_j, X_n) \] (9)
is the Hamiltonian of interaction of the system S with the thermostat E. Finally, H_E is the Hamiltonian of thermostat E. Its explicit form is now not relevant. The set of parameters $\{\lambda_{jn}\}$ characterizes the coupling strength. The coordinates now are not relevant. The set of parameters $\{\lambda_{jn}\}$ characterizes the coupling strength. The coordinate and momentum operators obey canonical equal-time commutation relations. We assume that all components of the Hamiltonian (7) fulfill required conditions to ensure a well defined thermodynamic equilibrium state of the composite system $S + E$.

Theorem: The mean kinetic energy per one degree of freedom of the system S can be presented in a universal form as
\[E_k^{(j)} = \frac{p_j^2}{2M_j} = \text{Tr} \left[\frac{p_j^2}{2M_j} \rho \right] = \int_0^\infty \mathcal{E}_k(\omega) \mathbb{P}_j(\omega) \, d\omega, \] (10)
where $\mathcal{E}_k(\omega)$ is given by Eq. (2) and $\mathbb{P}_j(\omega)$ is a probability density which obeys conditions (3) and (4).

To prove the relation (10), we apply the fluctuation-dissipation relation of the Callen-Welton type [10, 11]. One can exploit the results derived e.g. in the Landau-Lifshitz book [12] [see Eq. (124.10)] or in the Zubarev book [13] [see Eq. (17.19g)] for the momentum operator p_j of the system S. Without loss of generality we assume that the average momentum $\langle p_j \rangle = 0$ at the equilibrium state and then one obtains
\[\langle p_j^2 \rangle = \frac{\hbar}{\pi} \int_0^\infty \coth \left(\frac{\hbar \omega}{2k_B T} \right) \chi''_{jj}(\omega) \, d\omega \] (11)
where the odd function $\chi''_{jj}(\omega)$ is the imaginary part of the generalized susceptibility,
\[\chi_{jj}(\omega) = \chi'_{jj}(\omega) + i\chi''_{jj}(\omega). \] (12)
In turn, the generalized susceptibility $\chi_{jj}(\omega)$ is the Fourier transform
\[\chi_{jj}(\omega) = \int_{-\infty}^{\infty} e^{i\omega t} G_{jj}(t) \, dt \] (13)
of the response function $G_{jj}(t)$ which in fact is the retarded thermodynamic Green function [13]:
\[G_{jj}(t) = \frac{i}{\hbar} \theta(t) \langle [p_j(t), p_j(0)] \rangle \] (14)
where $\theta(t)$ is the Heaviside step function and
\[p_j(t) = \exp(iHt/\hbar)p_j(0)\exp(-iHt/\hbar) \] (15)
is the Heisenberg representation of the momentum $p_j(0)$. The averaging in Eq. (14) is over the Gibbs canonical statistical operator (6).

Now, we compare Eqs. (10) and (11), and obtain the expression for $\mathbb{P}_j(\omega)$ in the form
\[\mathbb{P}_j(\omega) = \frac{2}{\pi M_j} \frac{\chi''_{jj}(\omega)}{\omega}. \] (16)
The question is whether this function can be interpreted as a probability density. Its positivity follows from the spectral representation of $\chi''_{jj}(\omega)$, see the equation just above Eq. (124.9) in the Landau-Lifshitz book [12]. See also the text below Eq. (123.11) therein. The problem is to prove the normalization of (16):
\[\int_0^\infty \mathbb{P}_j(\omega) \, d\omega = \frac{1}{M_j} \frac{2}{\pi} \int_0^\infty \frac{\chi''_{jj}(\omega)}{\omega} \, d\omega. \] (17)
To this aim, we can apply Eq. (123.19) in the Landau-Lifshitz book [12] which reads
\[\chi_{jj}(i\omega) = \frac{2}{\pi} \int_0^\infty \frac{u \chi''_{jj}(u)}{u^2 + \omega^2} \, du \] (18)
(alternatively, one can apply the Kramers-Kronig dispersion relation). For $\omega = 0$ it takes the form
\[\chi_{jj}(0) = \frac{2}{\pi} \int_0^\infty \frac{\chi''_{jj}(u)}{u} \, du. \] (19)
On the other hand, from Eqs. (13) and (14) it follows that
\[\chi_{jj}(0) = \int_{-\infty}^{\infty} G_{jj}(t) \, dt = \frac{i}{\hbar} \int_0^\infty \langle [p_j(t), p_j(0)] \rangle \, dt. \] (20)
We notice that now the problem of normalization of $\mathbb{P}_j(\omega)$ in Eq. (16) is converted to the problem whether the equality
\[\chi_{jj}(0) = M_j \] (21)
holds true for the Hamiltonian (7)-(9). This may seem surprising at first glance since $\chi_{jj}(0)$ does not depend on the form of the potential, interaction, temperature and parameters of the Hamiltonian, but it depends only on mass M_j.

To prove the relation (21), we start from the Heisenberg equations of motion for coordinate operators of the system S, namely,
\[\frac{dx_j(t)}{dt} = \frac{i}{\hbar} [H, x_j(t)] = \frac{p_j(t)}{M_j}. \] (22)
We insert it into Eq. (20) and obtain
\[
\chi_{jj}(0) = \frac{iM_j}{\hbar} \lim_{\epsilon \to 0^+} \int_0^\infty \frac{e^{-\epsilon t}}{d t} \langle [x_j(t), p_j(0)] \rangle dt
= \frac{iM_j}{\hbar} \lim_{\epsilon \to 0^+} e^{-\epsilon t} \langle [x_j(t), p_j(0)] \rangle |_0^\infty
+ \frac{iM_j}{\hbar} \lim_{\epsilon \to 0^+} \epsilon \int_0^\infty e^{-\epsilon t} \langle [x_j(t), p_j(0)] \rangle dt
\]
where we use a well-known limiting procedure with the \(\epsilon\)-term to ensure convergence of the integral \([14]\). The integral in the last line is finite in imaginary time \([14, 15]\). The integral in the last line is finite and therefore the expression in the last line tends to zero as \(\epsilon \to 0\). In the middle line, for the upper limit \(t \to \infty\) the expression tends to zero. For the lower limit, \(\langle [x_j(0), p_j(0)] \rangle = i\hbar\). Thus it finishes the proof of the relation (21).

REMARKS:

1. The formula (10) is a generalization of the energy equipartition theorem. Indeed, in the high temperature limit
\[
\text{coth} \left[\frac{\hbar \omega}{2k_BT} \right] \approx \frac{2k_BT}{\hbar \omega}, \quad \mathcal{E}_k(\omega) \approx k_BT/2
\]
and Eq. (10) reduces to its classical counterpart
\[
\mathcal{E}^{(j)}_k = \frac{1}{2} \bar{k}_BT \int_0^\infty \mathcal{P}_j(\omega) d\omega = \frac{1}{2} \bar{k}_BT
\]
because of normalization of \(\mathcal{P}_j(\omega)\). We want to notice that Callen and Welton in their ‘historical’ paper \([10]\) missed the normalization: see Eq. (4.11) therein.

2. It has to be stressed that the formula (10) is universal, however, the mean kinetic energy \(\mathcal{E}_k^{(j)}\) depends not only on temperature of the system (as in the classical case) but also, via the probability density \(\mathcal{P}_j(\omega)\), on a number of particles in the system, the form of the potential which acts on them, the form of interaction between particles and strength of coupling between the system and thermostat.

3. If \(H\) is the Hamiltonian of the composite system \(S + E\) then all regimes, from weak to strong coupling with thermostat, can be analyzed. However, if \(H = HS\) (there is no explicit interaction with thermostat) then it means that only the weak coupling limit can be considered because averaging is over the Gibbs canonical density operator \(\rho_S \propto \exp(-HS/k_BT)\) valid for the weak coupling limit.

4. There are no specific assumptions regarding thermostat \(E\): It should be infinitely extended and satisfying the Kubo-Martin-Schwinger conditions expressing periodicity of Green’s functions in imaginary time \([14, 15]\).

5. The factor \(\mathcal{E}_k(\omega)\) in Eq. (10) is the same as mean kinetic energy of a quantum harmonic oscillator in the Gibbs state \(\rho_O \propto \exp(-H_O/k_BT)\), where \(H_O\) is the Hamiltonian of the harmonic oscillator \([8]\),
\[
\mathcal{E}_k(\omega) = \frac{1}{2m} \langle p^2 \rangle = \frac{\hbar \omega}{4} \coth \left(\frac{\hbar \omega}{2k_BT} \right).
\]
It depends on the frequency \(\omega\) of the harmonic oscillator but not upon its mass \(m\). However, in the considered model \((7)-(9)\), a harmonic oscillator does not occur at all. It is a consequence of the above point 4 and the linear response theory \([16]\).

6. As an example, we demonstrate how the above theory works for a free Brownian particle coupled to thermostat which is a collection of harmonic oscillators \([5]\). What we need is the explicit form of the momentum operator \(p(t)\) which has been calculated e.g. in Ref. \([5]\), see Eq. (7) therein. It reads
\[
p(t) = R(t)p(0) - \int_0^t R(t-u)\gamma(u) du x(0)
+ \int_0^t R(t-u)\eta(u) du
\]
where \(R(t)\) and \(\gamma(t)\) are the response function and the memory kernel of the generalized Langevin equation. The operator \(\eta(t)\) models quantum thermal noise and is expressed by thermostat operators which commute with the system operators. In Eq. (14), only the second term in r.h.s. of Eq. (27) contributes to the commutator yielding the Green function
\[
G(t) = \theta(t) \int_0^t R(t-u)\gamma(u) du.
\]
The susceptibility \(\chi(\omega)\) is a Fourier transform of the Green function \(G_r(t)\) which is a convolution in \((28)\) of two scalar functions \(R(t)\) and \(\gamma(t)\). Therefore as a result we obtain
\[
\chi(\omega) = \hat{R}_L(-i\omega)\hat{\gamma}_L(-i\omega),
\]
i.e., it is expressed by a product of two Laplace transforms \(\hat{R}_L(z)\) and \(\hat{\gamma}_L(z)\) of the functions \(R(t)\)
and \(\gamma(t)\), respectively. For the free Brownian particle of mass \(M\) the Laplace transforms of \(R(t)\) reads [5]

\[
\hat{R}_L(z) = \frac{M}{Mz + \hat{\gamma}_L(z)}
\]

(30)

and the generalized susceptibility takes the form

\[
\chi(\omega) = \frac{M\hat{\gamma}_L(-i\omega)}{-i\omega M + \hat{\gamma}_L(-i\omega)}.
\]

(31)

It is seen that for any form of the memory function \(\gamma(t)\) the value of susceptibility at zero frequency is the particle mass, \(\chi(0) = M\).

In conclusion, applying the fluctuation-dissipation relation we demonstrate that Eq. (10) is valid for arbitrary quantum systems described by the Hamiltonian (7)-(9) and being at the thermodynamic equilibrium state. The probability distribution is of the form (16), where the susceptibility \(\chi_{jj}(\omega)\) is the Fourier transform of the retarded thermodynamic Green function (14). The formula (10) can be called the energy partition theorem for quantum systems because: (i) it is universal; (ii) it is an extension of the formula for classical systems; (iii) it reduces to the energy equipartition theorem for high temperatures.

Acknowledgement – The author would like to thank P. Hänggi and G.-L. Ingold for insightful discussions on various aspects of this work and P. Talkner for suggestions regarding the proof of normalization. The work supported by the Grant NCN 2015/19/B/ST2/02856.

References

[1] K. Huang, Statistical mechanics, Wiley, New York (1987)

[2] Y. P. Terletskií, Statistical Physics, North-Holland: Amsterdam, The Netherlands, (1971).

[3] J. J. Waterston, Proc. R. Soc. Lond. 5, 604 (1846).

[4] L. Boltzmann, Wiener Berichte 74, 553 (1876).

[5] J. Spiechowicz, P. Bialas and J. Łuczka, Phys. Rev. A 98, 052107 (2018).

[6] P. Bialas, J. Spiechowicz, J. Łuczka, Sci. Rep. 8, 16080 (2018).

[7] P. Bialas, J. Spiechowicz and J. Łuczka, J. Phys. A: Math. Theor. 52, 15LT01 (2019).

[8] R. P. Feynman, Statistical Mechanics, Westview Press: Reading, PA, USA, (1972).

[9] A. O. Caldeira and A. J. Leggett, Ann. Phys. (N.Y.) 149, 374 (1983); Ann. Phys. (N.Y.) 153, 445 (1984).

[10] H. B. Callen and T. A. Welton, Phys. Rev. 83, 34 (1951).

[11] R. Kubo, Rep. Prog. Phys. 29, 255 (1966).

[12] Landau L D and Lifshitz E M 1980 Statistical Physics, Part I (Pergamon: Oxford)

[13] Zubarev D N 1974 Nonequilibrium statistical thermodynamics (New York, Consultants Bureau)

[14] R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957).

[15] P. C. Martin and J. Schwinger, Phys. Rev. 115, 1342 (1959).

[16] G. W. Ford, Contemporary Physics 58, 244 (2017).