DEFINABLE CLOSURE IN RANDOMIZATIONS

URI ANDREWS, ISAAC GOLDBRING, AND H. JEROME KEISLER

Abstract. The randomization of a complete first order theory T is the complete continuous theory T^R with two sorts, a sort for random elements of models of T, and a sort for events in an underlying probability space. We give necessary and sufficient conditions for an element to be definable over a set of parameters in a model of T^R.

1. Introduction

A randomization of a first order structure M, as introduced by Keisler [Kei1] and formalized as a metric structure by Ben Yaacov and Keisler [BK], is a continuous structure N with two sorts, a sort for random elements of M, and a sort for events in an underlying atomless probability space. Given a complete first order theory T, the theory T^R of randomizations of models of T forms a complete theory in continuous logic, which is called the randomization of T. In a model N of T^R, for each n-tuple \vec{a} of random elements and each first order formula $\varphi(\vec{v})$, the set of points in the underlying probability space where $\varphi(\vec{a})$ is true is an event denoted by $\llbracket \varphi(\vec{a}) \rrbracket$.

In a first order structure M, an element b is definable over a set A of elements of M (called parameters) if there is a tuple \vec{a} in A and a formula $\varphi(u, \vec{a})$ such that

$$M \models (\forall u)(\varphi(u, \vec{a}) \leftrightarrow u = b).$$

In a general metric structure N, an element b is said to be definable over a set of parameters A if there is a sequence of tuples \vec{a}_n in A and continuous formulas $\Phi_n(x, \vec{a}_n)$ whose truth values converge uniformly to the distance from x to b. In this paper we give necessary and sufficient conditions for definability in a model of the randomization theory T^R. These conditions can be stated in terms of sequences of first order formulas. The results in this paper will be applied in a forthcoming paper about independence relations in randomizations.

In Theorem 3.1.2, we show that an event E is definable over a set A of parameters if and only if it is the limit of a sequence of events of the form $\llbracket \varphi_n(\vec{a}_n) \rrbracket$, where each φ_n is a first order formula and each \vec{a}_n is a tuple from A.

In Theorem 3.3.6, we show that a random element b is definable over a set A of parameters if and only if b is the limit of a sequence of random elements.

2010 Mathematics Subject Classification. Primary 03C40. Secondary 03B48, 03B50, 03C35.
such that for each \(n \),
\[
\llbracket (\forall u)(\varphi_n(u, \vec{a}_n) \leftrightarrow u = b_n) \rrbracket
\]
has probability one for some first order formula \(\varphi_n(u, \vec{v}) \) and a tuple \(\vec{a}_n \) from \(A \). In Section 4 we give some consequences in the special case that the underlying first order theory \(T \) is \(\aleph_0 \)-categorical.

Continuous model theory in its current form is developed in the papers [BBHU] and [BU]. The papers [Go1], [Go2], [Go3] deal with definability questions in metric structures. Randomizations of models are treated in [AK], [Be], [BK], [EG], [GL], [Ke1], and [Ke2].

2. Preliminaries

We refer to [BBHU] and [BU] for background in continuous model theory, and follow the notation of [BK]. We assume familiarity with the basic notions about continuous model theory as developed in [BBHU], including the notions of a theory, structure, pre-structure, model of a theory, elementary extension, isomorphism, and \(\kappa \)-saturated structure. In particular, the universe of a pre-structure is a pseudo-metric space, the universe of a structure is a complete metric space, and every pre-structure has a unique completion.

In continuous logic, formulas have truth values in the unit interval \([0,1]\) with 0 meaning true, the connectives are continuous functions from \([0,1]\) into \([0,1]\), and the quantifiers are sup and inf. A tuple is a finite sequence, and \(A^{< \aleph_0} \) is the set of all tuples of elements of \(A \).

2.1. The theory \(T^R \). We assume throughout that \(L \) is a finite or countable first order signature, and that \(T \) is a complete theory for \(L \) whose models have at least two elements.

The randomization signature \(L^R \) is the two-sorted continuous signature with sorts \(K \) (for random elements) and \(B \) (for events), an \(n \)-ary function symbol \(\llbracket \varphi(\cdot) \rrbracket \) of sort \(K^n \to B \) for each first order formula \(\varphi \) of \(L \) with \(n \) free variables, a \([0,1]\)-valued unary predicate symbol \(\mu \) of sort \(B \) for probability, and the Boolean operations \(\top, \bot, \land, \lor, \neg \) of sort \(B \). The signature \(L^R \) also has distance predicates \(d_B \) of sort \(B \) and \(d_K \) of sort \(K \). In \(L^R \), we use \(B, C, \ldots \) for variables or parameters of sort \(B \). \(B \models C \) means \(d_B(B, C) = 0 \), and \(B \subseteq C \) means \(B = B \cap C \).

A pre-structure for \(T^R \) will be a pair \(\mathcal{P} = (\mathcal{K}, \mathcal{B}) \) where \(\mathcal{K} \) is the part of sort \(K \) and \(\mathcal{B} \) is the part of sort \(B \). The reduction of \(\mathcal{P} \) is the pre-structure \(\mathcal{N} = (\hat{\mathcal{K}}, \hat{\mathcal{B}}) \) obtained from \(\mathcal{P} \) by identifying elements at distance zero, and the associated mapping from \(\mathcal{P} \) onto \(\mathcal{N} \) is called the reduction map. The completion of \(\mathcal{P} \) is the structure obtained by completing the metrics in the reduction of \(\mathcal{P} \). A pre-structure \(\mathcal{P} \) is called pre-complete if the reduction of \(\mathcal{P} \) is already the completion of \(\mathcal{P} \).

In [BK], the randomization theory \(T^R \) is defined by listing a set of axioms. We will not repeat these axioms here, because it is simpler to give the following model-theoretic characterization of \(T^R \).
Definition 2.1.1. Given a model M of T, a nice randomization of M is a pre-complete structure (K, B) for L^R equipped with an atomless probability space (Ω, B, μ) such that:

1. B is a σ-algebra with $\top, \bot, \cap, \cup, \neg$ interpreted by $\Omega, \emptyset, \cap, \cup, \setminus$.
2. K is a set of functions $a : \Omega \to M$.
3. For each formula $\psi(\vec{x})$ of L and tuple \vec{a} in K, we have
 $$[\psi(\vec{a})] = \{\omega \in \Omega : M \models \psi(\vec{a}(\omega))\} \in B.$$
4. B is equal to the set of all events $[\psi(\vec{a})]$ where $\psi(\vec{v})$ is a formula of L and \vec{a} is a tuple in K.
5. For each formula $\theta(u, \vec{v})$ of L and tuple \vec{b} in K, there exists $a \in K$ such that
 $$[\theta(a, \vec{b})] = [(\exists u \theta)(\vec{b})].$$
6. On K, the distance predicate d_K defines the pseudo-metric
 $$d_K(a, b) = \mu([a \neq b]).$$
7. On B, the distance predicate d_B defines the pseudo-metric
 $$d_B(B, C) = \mu(B \triangle C).$$

Definition 2.1.2. For each first order theory T, the randomization theory T^R is the set of sentences that are true in all nice randomizations of models of T.

It follows that for each first order sentence φ, if $T \models \varphi$ then $T^R \models [\varphi] = \top$. The following basic facts are from [BK], Theorem 2.1 and Proposition 2.2, Example 3.4 (ii), Proposition 2.7, and Theorem 2.9.

Fact 2.1.3. For every complete first order theory T, the randomization theory T^R is complete.

Fact 2.1.4. Every model M of T has nice randomizations.

Fact 2.1.5. (Fullness) Every pre-complete model $P = (K, B)$ of T^R has perfect witnesses, i.e.,

1. For each first order formula $\theta(u, \vec{v})$ and each \vec{b} in K^n there exists $a \in K$ such that
 $$[\theta(a, \vec{b})] = [(\exists u \theta)(\vec{b})];$$
2. For each $B \in B$ there exist $a, b \in K$ such that
 $$B = [a = b].$$

Corollary 2.1.6. Every model N of T^R has a pair of elements c, d such that
$$[c \neq d] = \top.$$

Proof. Every model of T has at least two elements, so $T \models (\exists u)(\exists v)u \neq v$. The result follows by applying Fullness twice. \qed

Fact 2.1.7. (Strong quantifier elimination) Every formula Φ in the continuous language L^R is T^R-equivalent to a formula with the same free variables and no quantifiers of sort K or B.

Lemma 2.1.8. Let $\mathcal{P} = (\mathcal{K}, \mathcal{B})$ be a pre-complete model of T^R and let $a, b \in \mathcal{K}$ and $\mathcal{B} \in \mathcal{B}$. Then there is an element $c \in \mathcal{K}$ that agrees with a on \mathcal{B} and agrees with b on $-\mathcal{B}$, that is, $\mathcal{B} \subseteq [c = a]$ and $(-\mathcal{B}) \subseteq [c = b]$.

Definition 2.1.9. In Lemma 2.1.8 we will call c a characteristic function of \mathcal{B} with respect to a, b.

Note that the distance between any two characteristic functions of an event \mathcal{B} with respect to elements a, b is zero. In particular, in a model of T^R, the characteristic function is unique.

Proof of Lemma 2.1.8. By Fact 2.1.3 (2), there exist $d, e \in \mathcal{K}$ such that $\mathcal{B} \vdash [d = e]$. The first order sentence

$$(\forall u)(\forall v)(\forall x)(\forall y)(\exists z)[(x = y \rightarrow z = u) \land (x \neq y \rightarrow z = v)]$$

is logically valid, so we must have

$\llbracket (\exists z)[(d = e \rightarrow z = a) \land (d \neq e \rightarrow z = b)] \rrbracket \vdash \top$.

By Fact 2.1.3 (1) there exists $c \in \mathcal{K}$ such that

$\llbracket d = e \rightarrow c = a \rrbracket \vdash \top$, $\llbracket d \neq e \rightarrow c = b \rrbracket \vdash \top$, so $\llbracket d = e \rrbracket \subseteq [c = a]$ and $\llbracket d \neq e \rrbracket \subseteq [c = b]$.

We will need the following result, which is a consequence of Theorem 3.11 of [Be]. Since the setting in [Be] is quite different from the present paper, we give a direct proof here.

Proposition 2.1.10. Every model of T^R is isomorphic to the reduction of a nice randomization of a model of T.

Proof. Let $\mathcal{N} = (\hat{\mathcal{K}}, \hat{\mathcal{B}})$ be a model of T^R of cardinality κ. Let Ω be the Stone space of the Boolean algebra $\hat{\mathcal{B}} = (\hat{\mathcal{B}}, \top, \bot, \cap, \cup, \neg)$. Thus Ω is a compact topological space, the points of Ω are ultrafilters, we may identify $\hat{\mathcal{B}}$ with the Boolean algebra of clopen sets of Ω, and $\mu^\mathcal{N}$ is a finitely additive probability measure on $\hat{\mathcal{B}}$.

We next show that μ is σ-additive on $\hat{\mathcal{B}}$. To do this, we assume that $A_0 \supseteq A_1 \supseteq \cdots$ in $\hat{\mathcal{B}}$ and $C = \bigcap_{n \in \mathbb{N}} A_n \in \hat{\mathcal{B}}$, and prove that $\mu(C) = \lim_{n \to \infty} \mu(A_n)$. Indeed, the family $\{C \cup (\Omega \setminus A_n) : n \in \mathbb{N}\}$ is an open covering of Ω, so by the topological compactness of Ω, we have $\Omega = \bigcup_{k=0}^{m} (C \cup (\Omega \setminus A_k))$ for some $n \in \mathbb{N}$. Then $C = A_n$, so $\mu(C) = \mu(A_n) = \lim_{n \to \infty} \mu(A_n)$.

By the Caratheodory theorem, there is a complete probability space $(\Omega, \mathcal{B}, \mu)$ such that $\mathcal{B} \supseteq \hat{\mathcal{B}}$, μ agrees with $\mu^\mathcal{N}$ on $\hat{\mathcal{B}}$, and for each $\mathcal{B} \in \mathcal{B}$ and $m > 0$ there is a countable sequence $A_{m0} \subseteq A_{m1} \subseteq \cdots$ in $\hat{\mathcal{B}}$ such that

$$B \subseteq \bigcup_{n} A_{mn} \text{ and } \mu\left(\bigcup_{n} A_{mn}\right) \leq \mu(B) + 1/m.$$
Note that since the probability space \((\Omega, \mathcal{B}, \mu)\) is complete, every subset of \(\Omega\) that contains a set in \(\mathcal{B}\) of measure one also belongs to \(\mathcal{B}\) and has measure one.

We claim that for each \(\mathcal{B} \in \mathcal{B}\) there is a unique event \(f(\mathcal{B}) \in \hat{\mathcal{B}}\) such that \(\mu(f(\mathcal{B}) \triangle \mathcal{B}) = 0\). The uniqueness of \(f(\mathcal{B})\) follows from the fact that the distance function \(d_\mathcal{B}(C, D) = \mu(C \triangle D)\) is a metric on \(\hat{\mathcal{B}}\). To show the existence of \(f(\mathcal{B})\), for each \(m > 0\) let \(A_{m0} \subseteq A_{m1} \subseteq \cdots\) be as in [211]. Note that \((A_{m0}, A_{m1}, \ldots)\) is a Cauchy sequence of events in the model \(\mathcal{N}\), so there is an event \(C_m \in \hat{\mathcal{B}}\) such that \(C_m = \lim_{n \to \infty} A_{mn}\). Hence \(\lim_{n \to \infty} \mu(A_{mn} \triangle C_m) = 0\), so \(\mu((\bigcup_n A_{mn}) \triangle C_m) = 0\). Then \((C_1, C_2, \ldots)\) is a Cauchy sequence, so there is an event \(f(\mathcal{B}) = \lim_{m \to \infty} C_m\) in \(\hat{\mathcal{B}}\) with \(\mu(f(\mathcal{B}) \triangle \mathcal{B}) = 0\).

We make some observations about the mapping \(f: \mathcal{B} \to \hat{\mathcal{B}}\). If \(\mathcal{B}, \mathcal{C} \in \mathcal{B}\) and \(d_\mathcal{B}(\mathcal{B}, \mathcal{C}) = 0\), then \(f(\mathcal{B}) = f(\mathcal{C})\). For each \(\mathcal{B}, \mathcal{C} \in \mathcal{B}\), we have
\[
f(\mathcal{B} \cup \mathcal{C}) = f(\mathcal{B}) \cup f(\mathcal{C}), \quad f(\mathcal{B} \cap \mathcal{C}) = f(\mathcal{B}) \cap f(\mathcal{C}),
\]
\[
\Omega \setminus f(\mathcal{B}) = f(\Omega \setminus \mathcal{B}), \quad \mu(\mathcal{B}) = \mu(f(\mathcal{B})).
\]
Moreover, the mapping \(f\) sends \(\mathcal{B}\) onto \(\hat{\mathcal{B}}\), because if \(\mathcal{C} \in \hat{\mathcal{B}}\) then \(\mathcal{C} \in \mathcal{B}\) and \(f(\mathcal{C}) = \mathcal{C}\). Therefore the mapping \(\hat{f}\) that sends the equivalence class of each \(\mathcal{B} \in \mathcal{B}\) under \(d_\mathcal{B}\) to \(f(\mathcal{B})\) is well defined and is an isomorphism from the reduction of the pre-structure \((\hat{\mathcal{B}}, \bigcup, \bigcap, \neg, \top, \bot, \mu)\) onto the measured algebra \((\hat{\mathcal{B}}, \bigcup, \bigcap, \neg, \top, \bot, \mu)\).

A model \(\mathcal{M}\) of \(T\) is \(\kappa^+\)-universal if every model of \(T\) of cardinality \(\leq \kappa\) is elementarily embeddable in \(\mathcal{M}\). By Theorem 5.1.12 in [CK], every \(\kappa\)-saturated model of \(T\) is \(\kappa^+\)-universal, so \(\kappa^+\)-universal models of \(T\) exist. We now assume that \(\mathcal{M}\) is a \(\kappa^+\)-universal model of \(T\), and prove that \(\mathcal{N}\) is isomorphic to the reduction of a nice randomization of \(\mathcal{M}\) with the underlying probability space \((\Omega, \mathcal{B}, \mu)\).

In the following paragraphs, we will use boldface letters \(\mathbf{b}, \mathbf{d}, \ldots\) for elements of \(\hat{\mathcal{K}}\). Let \(L_{\hat{\mathcal{K}}}\) be the first order signature formed by adding a constant symbol for each element \(\mathbf{b} \in \hat{\mathcal{K}}\). For each \(\omega \in \Omega\), the set of \(L_{\hat{\mathcal{K}}^{-}}\)-sentences
\[
U(\omega) = \{ \psi(\mathbf{b}) : \omega \in [\psi(\mathbf{b})] \}
\]
is consistent with \(T\) and has cardinality \(\leq \kappa\). By the Compactness and Löwenheim-Skolem theorems, each \(U(\omega)\) has a model \((\mathcal{M}_\omega, \mathbf{b}_\omega)_{\mathbf{b} \in \hat{\mathcal{K}}}\) of cardinality \(\leq \kappa\). Since \(\mathcal{M}\) is \(\kappa^+\)-universal, for each \(\omega \in \Omega\) we may choose an elementary embedding \(h_\omega: \mathcal{M}_\omega \prec \mathcal{M}\). Then \((\mathcal{M}, h_\omega(\mathbf{b}_\omega))_{\mathbf{b} \in \hat{\mathcal{K}}} \models U(\omega)\) for every \(\omega \in \Omega\). It follows that for each formula \(\psi(\mathbf{v})\) of \(L\) and each tuple \(\mathbf{b} \in \hat{\mathcal{K}}^{<\mathbb{N}}\),
\[
[\psi(\mathbf{b})] = \{ \omega \in \Omega : \mathcal{M}_\omega \models \psi(\mathbf{b}_\omega) \} = \{ \omega \in \Omega : \mathcal{M} \models \psi(h_\omega(\mathbf{b}_\omega)) \} \in \hat{\mathcal{B}}.
\]
For each formula \(\psi(\mathbf{v})\) of \(L\) and tuple \(\mathbf{c}\) of functions in \(M^\Omega\), define
\[
[\psi(\mathbf{c})] := \{ \omega \in \Omega : \mathcal{M} \models \psi(\mathbf{c}(\omega)) \}.
\]
Let \mathcal{K} be the set of all functions $a : \Omega \to M$ such that for some element $b \in \widehat{\mathcal{K}}$, we have
\[
\mu(\{\omega \in \Omega : a(\omega) = h_\omega(b_\omega)\}) = 1.
\]
We claim that for each $a \in \mathcal{K}$ there is a unique element $f(a) \in \widehat{\mathcal{K}}$ such that
\[
\mu(\{\omega \in \Omega : a(\omega) = h_\omega(f(a)_\omega)\}) = 1.
\]
The existence of $f(a)$ is guaranteed by the definition of \mathcal{K}. To prove uniqueness, suppose $b, d \in \widehat{\mathcal{K}}$ and
\[
\mu(\{\omega \in \Omega : a(\omega) = h_\omega(b_\omega)\}) = \mu(\{\omega \in \Omega : a(\omega) = h_\omega(d_\omega)\}) = 1.
\]
Then
\[
\mu(\{\omega \in \Omega : h_\omega(b_\omega) = h_\omega(d_\omega)\}) = 1,
\]
so
\[
\mu([b = d]) = \mu(\{\omega \in \Omega : b_\omega = d_\omega\}) = 1,
\]
and hence $d_\mathcal{K}(b, d) = 0$. Since $d_\mathcal{K}$ is a metric on $\widehat{\mathcal{K}}$, it follows that $b = d$.

We now make some observations about the mapping $f : \mathcal{K} \to \widehat{\mathcal{K}}$. This mapping sends \mathcal{K} onto $\widehat{\mathcal{K}}$, because for each $b \in \widehat{\mathcal{K}}$, we have $f(a) = b$ where a is the element of \mathcal{K} such that $a(\omega) = h_\omega(b_\omega)$ for all $\omega \in \Omega$. Suppose $\bar{c} \in \mathcal{K}^{< \mathbb{N}}$ and $\bar{d} = f(\bar{c})$. We have $\bar{d} \in \widehat{\mathcal{K}}^{< \mathbb{N}}$ and
\[
[\psi(\bar{d})] = \{\omega \in \Omega : \mathcal{M} \models \psi(h_\omega(\bar{d}_\omega))\} = \{\omega \in \Omega : \mathcal{M} \models \psi(\bar{c}(\omega))\} = [\psi(\bar{c})].
\]
Since the probability space $(\Omega, \mathcal{B}, \mu)$ is complete, $[\psi(\bar{d})] \in \bar{\mathcal{B}} \subseteq \mathcal{B}$, and $[\psi(\bar{d})] = [\psi(\bar{c})]$, we have $[\psi(\bar{c})] \in \mathcal{B}$ and $[\psi(\bar{d})] = f([\psi(\bar{c})])$. Therefore, if $a, c \in \mathcal{K}$ and $d_\mathcal{K}(a, c) = 0$, then $d_\mathcal{K}(f(a), f(c)) = 0$, and hence $f(a) = f(c)$. This shows that $\mathcal{P} = (\mathcal{K}, \mathcal{B})$ is a well-defined pre-complete structure for $L^\mathcal{K}$, and that the mapping f that sends the equivalence class of each $\mathcal{B} \in \mathcal{B}$ to $f(\mathcal{B})$, and the equivalence class of each $a \in \mathcal{K}$ to $f(a)$, is an isomorphism from the reduction of \mathcal{P} to \mathcal{N}.

It remains to show that \mathcal{P} is a nice randomization of \mathcal{M}. It is clear that \mathcal{P} satisfies conditions (1)-(3) in Definition 2.1.1.

Proof of (4): We have already shown that $[\psi(\bar{c})] \in \mathcal{B}$ for each formula $\psi(\bar{v})$ of L and each tuple $\bar{c} \in \mathcal{K}$. For the other direction, let $\mathcal{B} \in \mathcal{B}$. By Corollary 2.1.6 there exist $a, e \in \mathcal{K}$ such that $[a \neq e] \equiv \Omega$. We may choose a function $b \in M^\Omega$ such that $b(\omega) = e(\omega)$ whenever $a(\omega) \neq e(\omega)$, and $b(\omega) \neq a(\omega)$ for all $\omega \in \Omega$. Then $b \in \mathcal{K}$ and $[a \neq b] \equiv \Omega$. By Lemma 2.1.8 there exists $e \in \mathcal{K}$ which is a characteristic function of \mathcal{B} with respect to a, b. Then $[e = a] \equiv \mathcal{B}$. Let $d \in M^\Omega$ be the function such that $d(\omega) = a(\omega)$ for $\omega \in \mathcal{B}$, and $d(\omega) = b(\omega)$ for $\omega \in \neg \mathcal{B}$. Then $\mu([e = d]) = 1$, so $d \in \mathcal{K}$, and $[a = d] = \mathcal{B}$. Thus (4) holds with ψ being the sentence $a = d$.

Proof of (5): Consider a formula $\theta(u, \bar{v})$ of L and a tuple $\bar{b} \in \mathcal{K}$. By Fullness, there exists $c \in \mathcal{K}$ such that
\[
[\theta(c, \bar{b})] \equiv [\exists u \theta(u, \bar{b})].
\]
We may choose a function \(a \in M^\Omega \) such that for all \(\omega \in \Omega \),
\[
\mathcal{M} \models [\theta(c(\omega), \vec{b}(\omega)) \leftrightarrow (\exists u)\theta(u, \vec{b})] \text{ implies } a(\omega) = c(\omega),
\]
and
\[
\mathcal{M} \models [(\exists u)\theta(u, \vec{b}(\omega)) \rightarrow \theta(a(\omega), \vec{b}(\omega))].
\]
Then \(\mu([a = c]) = 1 \), so \(a \in \mathcal{K} \) and
\[
[\theta(a, \vec{b})] = [(\exists u)\theta(u, \vec{b})],
\]
as required.

Proof of (6) and (7): By Fact 2.1.4, the properties
\[
(\forall x)(\forall y)d_\mathbb{R}(x, y) = \mu(\llbracket x \neq y \rrbracket), \quad (\forall U)(\forall V)d_\mathbb{R}(U, V) = \mu(U \triangle V)
\]
hold in some model of \(T^R \). By Fact 2.1.3, these properties hold in all models of \(T^R \), and thus in \(\mathcal{N} \). Therefore (6) and (7) hold for \(\mathcal{P} \). \(\square \)

2.2. Types and Definability. For a first order structure \(\mathcal{M} \) and a set \(A \) of elements of \(\mathcal{M} \), \(\mathcal{M}_A \) denotes the structure formed by adding a new constant symbol to \(\mathcal{M} \) for each \(a \in A \). The type realized by a tuple \(\vec{b} \) over the parameter set \(A \) in \(\mathcal{M} \) is the set \(\text{tp}^\mathcal{M}(\vec{b}/A) \) of formulas \(\varphi(\vec{u}, \vec{a}) \) with \(\vec{a} \in A^{<\mathbb{N}} \) satisfied by \(\vec{b} \) in \(\mathcal{M}_A \). We call \(\text{tp}^\mathcal{M}(\vec{b}/A) \) an \(n \)-type if \(n = |\vec{b}| \).

In the following, let \(\mathcal{N} \) be a continuous structure and let \(A \) be a set of elements of \(\mathcal{N} \). \(\mathcal{N}_A \) denotes the structure formed by adding a new constant symbol to \(\mathcal{N} \) for each \(a \in A \). The type \(\text{tp}^\mathcal{N}(\vec{b}/A) \) realized by \(\vec{b} \) over the parameter set \(A \) in \(\mathcal{N} \) is the function \(p \) from formulas to \([0, 1]\) such that for each formula \(\Phi(\vec{x}, \vec{a}) \) with \(\vec{a} \in A^{<\mathbb{N}} \), we have \(\Phi(\vec{x}, \vec{a})^p = \Phi(\vec{b}, \vec{a})^\mathcal{N} \).

We now call the notions of definable element and algebraic element from [BBHU]. An element \(b \) is definable over \(A \) in \(\mathcal{N} \), in symbols \(b \in \text{dcl}^\mathcal{N}(A) \), if there is a sequence of formulas \(\langle \Phi_k(x, \vec{a}_k) \rangle \) with \(\vec{a}_k \in A^{<\mathbb{N}} \) such that the sequence of functions \(\langle \Phi_k(x, \vec{a}_k)^\mathcal{N} \rangle \) converges uniformly in \(x \) to the distance function \(d(x, b)^\mathcal{N} \) of the corresponding sort. \(b \) is algebraic over \(A \) in \(\mathcal{N} \), in symbols \(b \in \text{acl}^\mathcal{N}(A) \), if there is a compact set \(C \) and a sequence of formulas \(\langle \Phi_k(x, \vec{a}_k) \rangle \) with \(\vec{a}_k \in A^{<\mathbb{N}} \) such that \(b \in C \) and the sequence of functions \(\langle \Phi_k(x, \vec{a}_k)^\mathcal{N} \rangle \) converges uniformly in \(x \) to the distance function \(d(x, C)^\mathcal{N} \) of the corresponding sort.

If the structure \(\mathcal{N} \) is clear from the context, we will sometimes drop the superscript and write \(\text{tp}, \text{dcl}, \text{acl} \) instead of \(\text{tp}^\mathcal{N}, \text{dcl}^\mathcal{N}, \text{acl}^\mathcal{N} \).

Fact 2.2.1. ([BBHU], Exercises 10.7 and 10.10) For each element \(b \) of \(\mathcal{N} \), the following are equivalent, where \(p = \text{tp}^\mathcal{N}(b/A) \):

(1) \(b \) is definable over \(A \) in \(\mathcal{N} \);
(2) in each model \(\mathcal{N}' \succ \mathcal{N} \), \(b \) is the a unique element that realizes \(p \) over \(A \);
(3) \(b \) is definable over some countable subset of \(A \) in \(\mathcal{N} \).

Fact 2.2.2. ([BBHU], Exercise 10.8 and 10.11) For each element \(b \) of \(\mathcal{N} \), the following are equivalent, where \(p = \text{tp}^\mathcal{N}(b/A) \):

...
(1) \(b \) is algebraic over \(A \) in \(\mathcal{N} \);
(2) in each model \(\mathcal{N}' \supset \mathcal{N} \), the set of elements \(b \) that realize \(p \) over \(A \) in \(\mathcal{N}' \) is compact.
(3) \(b \) is algebraic over some countable subset of \(A \) in \(\mathcal{N} \).

Fact 2.2.3. (Definable Closure, Exercises 10.10 and 10.11 in [BBHU])

1. If \(A \subseteq \mathcal{N} \) then \(\text{dcl}(A) = \text{dcl}(\text{dcl}(A)) \) and \(\text{acl}(A) = \text{acl}(\text{acl}(A)) \).
2. If \(A \) is a dense subset of \(B \) and \(B \subseteq \mathcal{N} \), then \(\text{dcl}(A) = \text{dcl}(B) \) and \(\text{acl}(A) = \text{acl}(B) \).

It follows that for any \(A \subseteq \mathcal{N} \), \(\text{dcl}(A) \) and \(\text{acl}(A) \) are closed with respect to the metric in \(\mathcal{N} \).

We now turn to the case where \(\mathcal{N} \) is a model of \(T^R \). In that case, a set of elements of \(\mathcal{N} \) may contain elements of both sorts \(K, B \). But as we will now explain, we need only consider definability over sets of parameters of sort \(K \).

Remark 2.2.4. Let \(\mathcal{N} = (\hat{\mathcal{K}}, \hat{\mathcal{B}}) \) be a model of \(T^R \). Since every model of \(T \) has at least two elements, \(\mathcal{N} \) has a pair of elements \(a, b \) of sort \(K \) such that \(\mathcal{N} \models [a = b] = \perp \). For each event \(D \in \hat{B} \), let \(1_D \) be the characteristic function of \(D \) with respect to \(a, b \). Then in the model \(\mathcal{N} \), \(D \) is definable over \(\{a, b, 1_D\} \), and \(1_D \) is definable over \(\{a, b, D\} \).

Proof. By Fact 2.2.1.

In view of Remark 2.2.4 and Fact 2.2.3, if \(C \) is a set of parameters in \(\mathcal{N} \) of both sorts, and there are elements \(a, b \in C \) such that \(\mathcal{N} \models [a = b] = \perp \), then an element of either sort is definable over \(C \) if and only if it is definable over the set of parameters of sort \(K \) obtained by replacing each element of \(C \) of sort \(B \) by its characteristic function with respect to \(a, b \). For this reason, in a model \(\mathcal{N} \) of \(T^R \) we will only consider definability over sets of parameters of sort \(K \). We write \(\text{dcl}_K(A) \) for the set of elements of sort \(B \) that are definable over \(A \) in \(\mathcal{N} \), and write \(\text{dcl}(A) \) for the set of elements of sort \(K \) that are definable over \(A \) in \(\mathcal{N} \). Similarly for \(\text{acl}_B(A) \) and \(\text{acl}(A) \).

2.3. Conventions and Notation

We will assume hereafter that \(\mathcal{N} = (\hat{\mathcal{K}}, \hat{\mathcal{B}}) \) is a model of \(T^R \), \(\mathcal{P} = (\mathcal{K}, \mathcal{B}) \) is a nice randomization of a model \(\mathcal{M} \models T \) with probability space \((\Omega, \mathcal{B}, \mu) \), and \(\mathcal{N} \) is the reduction of \(\mathcal{P} \). The existence of \(\mathcal{P} \) is guaranteed by Proposition 2.1.10.

We will use boldfaced letters \(\mathbf{a}, \mathbf{b}, \ldots \) for elements of \(\hat{\mathcal{K}} \). For each element \(\mathbf{a} \in \hat{\mathcal{K}} \), we will choose once and for all an element \(a \in \mathcal{K} \) such that the image of \(a \) under the reduction map is \(\mathbf{a} \). It follows that for each first order formula \(\varphi(\vec{v}) \), \([\varphi(\vec{a})] \) is the image of \([\varphi(\vec{a})] \) under the reduction map. For any countable set \(A \subseteq \hat{\mathcal{K}} \) and each \(\omega \in \Omega \), we define

\[
A(\omega) = \{a(\omega) : \mathbf{a} \in A\}.
\]

When \(A \subseteq \hat{\mathcal{K}} \), \(\text{cl}(A) \) denotes the closure of \(A \) in the metric \(d_{\mathcal{K}} \). When \(B \subseteq \hat{\mathcal{B}} \), \(\text{cl}(B) \) denotes the closure of \(B \) in the metric \(d_{\mathcal{B}} \), and \(\sigma(B) \) denotes the smallest \(\sigma \)-subalgebra of \(\hat{\mathcal{B}} \) containing \(B \).
3. Randomizations of Arbitrary Theories

3.1. Definability in Sort \(\mathbb{B} \). We characterize the set of elements of \(\hat{B} \) that are definable in \(\mathcal{N} \) over a set of parameters \(A \subseteq \hat{K} \).

Definition 3.1.1. For each \(A \subseteq \hat{K} \), we say that an event \(E \) is first order definable over \(A \), in symbols \(E \in \text{fdcl}_B(A) \), if \(E = \llbracket \varphi(\bar{a}) \rrbracket \) for some first order formula \(\varphi(\bar{v}) \) and tuple \(\bar{a} \) in \(A^{<\mathbb{N}} \).

Theorem 3.1.2. For each \(A \subseteq \hat{K} \), dcl\(_B\)(\(A \)) = cl(fdcl\(_B\)(\(A \))) = \sigma(fdcl\(_B\)(\(A \))).

Proof. By quantifier elimination (Fact 2.1.7), in any elementary extension \(\mathcal{N}' \succ \mathcal{N} \), two events have the same type over \(A \) if and only if they have the same type over fdcl\(_B\)(\(A \)). Then by Fact 2.2.1, dcl\(_B\)(\(A \)) = dcl\(_B\)(fdcl\(_B\)(\(A \))). Moreover, fdcl\(_B\)(fdcl\(_B\)(\(A \))) is equal to the definable closure of fdcl\(_B\)(\(A \)) in the pure measured algebra \((\hat{B}, \mu) \). By Observation 16.7 in [BBHU], the definable closure of fdcl\(_B\)(\(A \)) in \((\hat{B}, \mu) \) is equal to \(\sigma(fdcl\(_B\)(\(A \))) \), so dcl\(_B\)(\(A \)) = \(\sigma(fdcl\(_B\)(\(A \))) \). Since fdcl\(_B\)(\(A \)) is a Boolean subalgebra of \(\hat{B} \), cl(fdcl\(_B\)(\(A \))) is a Boolean subalgebra of \(\hat{B} \). By metric completeness, cl(fdcl\(_B\)(\(A \))) is a \(\sigma \)-algebra and \(\sigma(fdcl\(_B\)(\(A \))) \) is closed, so cl(fdcl\(_B\)(\(A \))) = \(\sigma(fdcl\(_B\)(\(A \))) \). □

Corollary 3.1.3. The only events that are definable without parameters in \(\mathcal{N} \) are \(\top \) and \(\bot \).

Proof. For every first order sentence \(\varphi \), either \(T \models \varphi \) and \(T^R \models \llbracket \varphi \rrbracket = \top \), or \(T \models \neg \varphi \) and \(T^R \models \llbracket \varphi \rrbracket = \bot \). So fdcl\(_B\)(\(\emptyset \)) = \{ \top, \bot \}. □

3.2. First Order and Pointwise Definability. To prepare the way for a characterization of the definable elements of sort \(\hat{K} \), we introduce two auxiliary notions, one that is stronger than definability in sort \(K \) and one that is weaker than definability in sort \(K \). We will work in the nice randomization \(\mathcal{P} = (\mathcal{K}, \mathcal{B}) \) of \(\mathcal{M} \), and let \(A \) be a subset of \(\hat{K} \) and \(b \) be an element of \(\hat{K} \).

Definition 3.2.1. A first order formula \(\varphi(u, \bar{v}) \) is functional if

\[T \models (\forall \bar{v})(\exists^{\leq 1} u) \varphi(u, \bar{v}). \]

We say that \(b \) is first order definable on \(E \) over \(A \) if there is a functional formula \(\varphi(u, \bar{v}) \) and a tuple \(\bar{a} \in A^{<\mathbb{N}} \) such that \(E = \llbracket \varphi(b, \bar{a}) \rrbracket \).

We say that \(b \) is first order definable over \(A \), in symbols \(b \in \text{fdcl}(A) \), if \(b \) is first order definable on \(\top \) over \(A \).

Remarks 3.2.2. \(b \) is first order definable over \(A \) if and only if there is a first order formula \(\varphi(u, \bar{v}) \) and a tuple \(\bar{a} \) from \(A \) such that

\[\mu(\llbracket (\forall u)(\varphi(u, \bar{a}) \leftrightarrow u = b) \rrbracket) = 1. \]

First order definability has finite character, that is, \(b \) is first order definable over \(A \) if and only if \(b \) is first order definable over some finite subset of \(A \).

If \(b \) is first order definable on \(E \) over \(A \), then \(E \) is first order definable over \(A \cup \{ b \} \).
If \(b \) is first order definable on \(D \) over \(A \), and \(E \) is first order definable over \(A \cup \{ b \} \), then \(b \) is first order definable on \(D \cap E \) over \(A \).

Lemma 3.2.3. If \(b \) is first order definable over \(A \) then \(b \) is definable over \(A \) in \(N \). Thus \(\text{fdcl}(A) \subseteq \text{dcl}(A) \).

Proof. Let \(N' > N \) and suppose that \(\text{tp}^{N'}(b) = \text{tp}^{N'}(d) \). Then
\[
[\varphi(b, \bar{a})] = [\varphi(d, \bar{a})] = \top.
\]
Since \(\varphi \) is functional,
\[
[(\forall t)(\forall u)(\varphi(t, \bar{a}) \land \varphi(u, \bar{a}) \rightarrow t = u)] = \top.
\]
Then \([b = d] = \top\), so \(b = d \), and by Fact 2.2.1, \(b \in \text{dcl}(A) \). \(\square \)

Definition 3.2.4. When \(A \) is countable, we define
\[
[b \in \text{dcl}^M(A)] := \{ \omega \in \Omega : b(\omega) \in \text{dcl}^M(A(\omega)) \}.
\]

Lemma 3.2.5. If \(A \) is countable, then
\[
[b \in \text{dcl}^M(A)] = \bigcup\{ [\theta(b, \bar{a})] : \theta(u, v) \text{ functional, } \bar{a} \in A^{<\omega} \},
\]
and \([b \in \text{dcl}^M(A)] \in \mathcal{B} \).

Proof. Note that for every first order formula \(\theta(u, v) \), the formula
\[
\theta(u, v) \land (\exists^{\leq 1} u) \theta(u, v)
\]
is functional. Therefore \(\omega \in [b \in \text{dcl}^M(A)] \) if and only if \(b(\omega) \in \text{dcl}^M(A(\omega)) \), and this holds if and only if there is a functional formula \(\theta(u, v) \) and a tuple \(\bar{a} \in A^{<\omega} \) such that \(M \models \theta(b(\omega), \bar{a}(\omega)) \). Since \(A \) and \(L \) are countable, \([b \in \text{dcl}^M(A)] \) is the union of countably many events in \(\mathcal{B} \), and thus belongs to \(\mathcal{B} \). \(\square \)

Definition 3.2.6. When \(A \) is countable, we say that \(b \) is pointwise definable over \(A \) if
\[
\mu([b \in \text{dcl}^M(A)]) = 1.
\]

Corollary 3.2.7. If \(A \) is countable, then \(b \) is pointwise definable over \(A \) if and only if there is a function \(f \) on \(\Omega \) such that:

1. For each \(\omega \in \Omega \), \(f(\omega) \) is a pair \((\theta_\omega(u, v), \bar{a}_\omega) \) where \(\theta_\omega(u, v) \) is functional and \(\bar{a}_\omega \in A^{[\omega]} \);
2. \(f \) is \(\sigma(\text{fdcl}_B(A)) \)-measurable (i.e., the inverse image of each point belongs to \(\sigma(\text{fdcl}_B(A)) \));
3. \(M \models \theta_\omega(b(\omega), \bar{a}_\omega(\omega)) \) for almost every \(\omega \in \Omega \).

Proof. If \(\omega \in [b \in \text{dcl}^M(A)] \), let \(f(\omega) \) be the first pair \((\theta_\omega, \bar{a}_\omega) \) such that \(\theta_\omega(u, v) \) is functional, \(\bar{a}_\omega \in A^{[\omega]} \), and \(M \models \theta_\omega(b(\omega), \bar{a}_\omega(\omega)) \). Otherwise let \(f(\omega) = (\bot, \emptyset) \). The result then follows from Lemma 3.2.6. \(\square \)

Lemma 3.2.8. If \(b \) is definable over \(A \) in \(N \), then \(b \) is pointwise definable over some countable subset of \(A \).
Proof. By Fact 2.2.1 (3), we may assume that A is countable. By Lemma 3.2.8 the measure $r := \mu(\{b \in \text{dcl}(A)\})$ exists. Suppose b is not pointwise definable over A. Then $r < 1$. For each finite collection $\chi_1(u, v), \ldots, \chi_n(u, v)$ of first order formulas, each tuple $\vec{a} \in A^{\infty \mathbb{N}}$, and each $\omega \in \Omega \setminus [b \in \text{dcl}(A)]$, the sentence

$$(\exists u)[u \neq b(\omega) \land \bigwedge_{i=1}^{n} [\chi_i(b(\omega), \vec{a}(\omega)) \leftrightarrow \chi_i(u, \vec{a}(\omega))]$$

holds in \mathcal{M}, because $b(\omega)$ is not definable over $A(\omega)$. Therefore in \mathcal{P} we have

$$\mu([\exists u][u \neq b(\omega) \land \bigwedge_{i=1}^{n} [\chi_i(b, \vec{a}) \leftrightarrow \chi_i(u, \vec{a})]]) \geq 1 - r.$$

By condition 2.1.1 (5), there is an element $d \in \hat{\mathcal{K}}$ such that

$$\mu([d \neq b \land \bigwedge_{i=1}^{n} [\chi_i(b, \vec{a}) \leftrightarrow \chi_i(d, \vec{a})]]) \geq 1 - r.$$

It follows that $\mu([d \neq b]) \geq 1 - r$, and $[\chi_i(b, \vec{a})] \models [\chi_i(d, \vec{a})]$ for each $i \leq n$. By compactness, in some elementary extension of \mathcal{N} there is an element d such that $\mu([d \neq b]) \geq 1 - r$, and $[\chi(b, \vec{a})] = [\chi(d, \vec{a})]$ for each first order formula $\chi(u, v)$. Then $d \neq b$, and by quantifier elimination, $\text{tp}(d/A) = \text{tp}(b/A)$. Hence by Fact 2.2.1 (2), $b \notin \text{dcl}(A)$. \hfill \square

The following example shows that the converse of Lemma 3.2.8 fails badly.

Example 3.2.9. Let \mathcal{M} be a finite structure with a constant symbol for every element. Then every element of \mathcal{K} is pointwise definable without parameters, but the only elements of $\hat{\mathcal{K}}$ that are definable without parameters are the equivalence classes of constant functions $b: \Omega \to \mathcal{M}$.

3.3. Definability in Sort \mathbb{K}. We will now give necessary and sufficient conditions for an element of $b \in \hat{\mathcal{K}}$ to be definable over a parameter set $A \subseteq \hat{\mathcal{K}}$ in \mathcal{N}.

Theorem 3.3.1. b is definable over A if and only if there exist pairwise disjoint events $\{E_n: n \in \mathbb{N}\}$ such that $\sum_{n \in \mathbb{N}} \mu(E_n) = 1$, and for each n, E_n is definable over A, and b is first order definable on E_n over A.

Proof. (\Rightarrow): Suppose $b \in \text{dcl}(A)$. By Lemma 3.2.8 b is pointwise definable over some countable subset A_0 of A. The set of all events C such that b is first order definable on C over A_0 is countable, and may be arranged in a list $\{C_n: n \in \mathbb{N}\}$. Let $E_0 = C_0$, and

$$E_{n+1} = C_{n+1} \cap \neg(C_0 \cup \cdots \cup C_n).$$

The events E_n are pairwise disjoint, and for each n we have

$$E_0 \cup \cdots \cup E_n = C_0 \cup \cdots \cup C_n.$$
By Remarks 3.2.2 for each n, b is first order definable on E_n over A. By Lemma 3.2.3 and pointwise definability,
\[\sum_{n \in \mathbb{N}} \mu(E_n) = \lim_{n \to \infty} \mu(C_0 \sqcup \cdots \sqcup C_n) = \mu(\operatorname{dcl}^{\forall \exists}(A_0)) = 1. \]

By Remarks 3.2.2 E_n is definable over $A \cup \{b\}$, and since b is definable over A, E_n is definable over A by Fact 2.2.3.

(\Leftarrow): Let E_n be as in the theorem. For each n, we have $E_n = [\theta_n(b, \bar{a}_n)]$ for some functional formula θ_n and tuple $\bar{a}_n \in A^{<\mathbb{N}}$. Since E_n is definable over A, by Theorem 3.1.2 there is a sequence of formulas $\psi_k(\bar{v})$ and tuples $\bar{a}_k \in A^{<\mathbb{N}}$ such that
\[\lim_{k \to \infty} d_{\mathbb{B}}([\psi_k(\bar{a}_k)], [\theta_n(b, \bar{a})]) = 0. \]

Suppose d has the same type over A as b in some elementary extension N' of \mathcal{N}. Then
\[\lim_{k \to \infty} d_{\mathbb{B}}([\psi_k(\bar{a}_k)], [\theta_n(d, \bar{a})]) = 0. \]

Hence
\[[\theta_n(d, \bar{a}_n)] = [\theta_n(b, \bar{a}_n)] = E_n \]
in N'. Since $\theta_n(u, \bar{v})$ is functional, we have $[\theta_n(b, \bar{a})] \sqsubseteq [d = b]$ for each n. Then
\[\mu([d = b]) \geq \sum_{n \in \mathbb{N}} \mu(E_n) = 1, \]
so $d = b$. Then by Fact 2.2.1 $b \in \operatorname{dcl}(A)$.

\[\square \]

Corollary 3.3.2. An element $b \in \widehat{K}$ is definable without parameters if and only if b is first order definable without parameters. Thus $\operatorname{dcl}(\emptyset) = \operatorname{fdcl}(\emptyset)$.

Proof. (\Rightarrow): Suppose $b \in \operatorname{dcl}(\emptyset)$. By Theorem 3.3.1 there is an event E such that $\mu(E) > 0$, E is definable without parameters, and b is first order definable on E without parameters. By Corollary 3.1.3 we have $E = \top$, so b is first order definable without parameters.

(\Leftarrow): By Lemma 3.2.3.

\[\square \]

Corollary 3.3.3. If $\operatorname{fdcl}_{\mathbb{B}}(A)$ is finite, then $\operatorname{dcl}_{\mathbb{B}}(A) = \operatorname{fdcl}_{\mathbb{B}}(A)$ and $\operatorname{dcl}(A) = \operatorname{fdcl}(A)$.

Proof. $\operatorname{dcl}_{\mathbb{B}}(A) = \operatorname{fdcl}_{\mathbb{B}}(A)$ follows from Theorem 3.1.2. Lemma 3.2.3 gives $\operatorname{dcl}(A) \supseteq \operatorname{fdcl}(A)$. For the other inclusion, suppose $b \in \operatorname{dcl}(A)$. By Theorem 3.3.1 there is a finite partition E_0, \ldots, E_k of \top, a tuple $\bar{a} \in A^{<\mathbb{N}}$, and first order formulas $\psi_i(\bar{v})$ such that $E_i = [\psi_i(\bar{a})]$ and b is first order definable on E_i. Then there are functional formulas $\varphi_i(u, \bar{v})$ such that $E_i = [\varphi_i(b, \bar{a})]$.

We may take the formulas $\psi_i(\bar{v})$ to be pairwise inconsistent and such that
3.2.3) and the set \(d \) and that \(D \) assume that disjoint. We have \(E \).

By (2), \(n \).

Proof. (\(\Rightarrow \)): Suppose \(b \in \text{dcl}(A) \). Then (1) holds by Lemma \(3.2.8 \). \(\lbrack \varphi(b, \bar{a}) \rbrack \) is obviously definable over \(A \cup \{ b \} \), so \(\lbrack \varphi(b, \bar{a}) \rbrack \) is definable over \(A \) by Fact 2.2.3 and thus (2) holds.

(\(\Leftarrow \)): Assume conditions (1) and (2). By (1) and Lemma \(3.2.5 \) there is a sequence of functional formulas \(\theta_n(u, \bar{v}) \) and tuples \(\bar{a}_n \in A^{<\mathbb{N}} \) such that

\[
\lbrack [b \in \text{dcl}^{\mathbb{M}}(A)] \rbrack = \bigcup_{n \in \mathbb{N}} \lbrack \theta_n(b, \bar{a}_n) \rbrack = \Omega.
\]

Let \(E_n = [\theta_n(b, \bar{a}_n)] \), so \(b \) is first order definable on \(E_n \) over \(A \). By Remark 3.2.2 we may take the \(E_n \) to be pairwise disjoint, and thus \(\sum_{n \in \mathbb{N}} \mu(E_n) = 1 \). By (2), \(E_n \) is definable over \(A \) for each \(n \). Then by Theorem 3.3.1 \(b \in \text{dcl}(A) \).

Corollary 3.3.5. \(b \) is definable over \(A \) if and only if:

(1) \(b \) is pointwise definable over some countable subset of \(A \);

(2) for each functional formula \(\varphi(u, \bar{v}) \) and tuple \(\bar{a} \in A^{<\mathbb{N}} \), \(\lbrack \varphi(b, \bar{a}) \rbrack \) is definable over \(A \).

Theorem 3.3.6. \(b \) is definable over \(A \) if and only if \(b = \lim_{m \to \infty} b_m \), where each \(b_m \) is first-order definable over \(A \). Thus \(\text{dcl}(A) = \text{cl}(\text{fdcl}(A)) \).

Proof. (\(\Rightarrow \)): Suppose that \(b \in \text{dcl}(A) \). If \(A \) is empty, then \(b \) is already first order definable from \(A \) by Corollary 3.3.2. Assume \(A \) is not empty and let \(c \in A \). Let \(\{ E_n : n \in \mathbb{N} \} \) be as in Theorem 3.3.1 and fix an \(\varepsilon > 0 \). Then for some \(n \), \(\sum_{k=0}^{n} \mu(E_k) > 1 - \varepsilon \). For each \(k \), \(E_k \) is definable over \(A \), so by Theorem 3.1.2 there is an event \(D_k \in \text{fdcl}(A) \) such that \(\mu(D_k \triangle E_k) < \varepsilon/n \). Since the events \(E_k \) are pairwise disjoint, we may also take the events \(D_k \) to be pairwise disjoint. We have \(E_k = [\theta_k(b, \bar{a}_k)] \) for some functional \(\theta_k(u, \bar{v}) \), so we may assume that \(D_k \) has the additional properties that \(D_k \subseteq \lbrack (\exists u) \theta_k(u, \bar{a}_k) \rbrack \), and that \(D_k = [\psi_k(\bar{a}_k)] \) for some formula \(\psi_k(\bar{v}) \). Then there is a unique element \(d \in \hat{K} \) such that

\[
\begin{align*}
\{ M \models \theta_k(d(\omega), \bar{a}_k(\omega)) \} & \quad \text{if } k \leq n \text{ and } \omega \in [\psi_k(\bar{a}_k)], \\
\{ d(\omega) = c(\omega) \} & \quad \text{if } \omega \in \Omega \setminus \bigcup_{k=0}^{n} [\psi_k(\bar{a}_k)].
\end{align*}
\]

Then \(d \) is first order definable over \(A \), and \(d \notin b \).

(\(\Leftarrow \)): This follows because first order definability implies definability (Lemma 3.2.3) and the set \(\text{dcl}(A) \) is metrically closed (Fact 2.2.3 (2)).
The following result was proved in [Be] by an indirect argument using Lascar types. We give a simple direct proof here.

Proposition 3.3.7. For any model $\mathcal{N} = (\hat{\mathcal{K}}, \hat{\mathcal{B}})$ of \mathcal{T}^R and set $A \subseteq \hat{\mathcal{K}}$, $\text{acl}_{\mathcal{B}}(A) = \text{dcl}_{\mathcal{B}}(A)$ and $\text{acl}(A) = \text{dcl}(A)$.

Proof. By Facts 2.2.1 and 2.2.2, we may assume \mathcal{N} is \mathcal{N}_1-saturated and A is countable. Suppose an event $E \in \hat{\mathcal{B}}$ is not definable over A. By Fact 2.2.1 and \mathcal{N}_1-saturation there exists $D \in \hat{\mathcal{B}}$ such that $\text{tp}(D/A) = \text{tp}(E/A)$ but $d_{\mathcal{B}}(D, E) > 0$. By \mathcal{N}_1-saturation again, there is a countable sequence of events $\langle F_n : n \in \mathbb{N} \rangle$ in $\hat{\mathcal{B}}$ such that

$$\mu(C \cap F_n) = \mu(C \setminus F_n) = \frac{\mu(C)}{2}$$

for each n and each event C in the Boolean algebra generated by $\text{fdcl}_{\mathcal{B}}(A) \cup \{D, E\} \cup \{F_k : k < n\}$.

For each n, let

$$D_n = (D \cap F_n) \cup (E \setminus F_n).$$

Then for each $C \in \text{fdcl}_{\mathcal{B}}(A)$ and $n \in \mathbb{N}$, we have

$$\mu(D_n \cap C) = \mu(D \cap C)/2 + \mu(E \cap C)/2 = \mu(E \cap C).$$

By quantifier elimination, $\text{tp}(D_n/A) = \text{tp}(E/A)$ for each $n \in \mathbb{N}$. Moreover, whenever $k < n$ we have

$$D_n \setminus D_k = ((D \setminus D_k) \cap F_n) \cup ((E \setminus D_k) \setminus F_n),$$

so

$$\mu(D_n \setminus D_k) = \mu(D \setminus D_k)/2 + \mu(E \setminus D_k)/2.$$

Note that whenever $\text{tp}(D'/A) = \text{tp}(D''/A)$, we have $\mu(D') = \mu(D'')$, and hence

$$\mu(D' \setminus D'') = \mu(D'' \setminus D') = d_{\mathcal{B}}(D', D'')/2.$$

Therefore

$$d_{\mathcal{B}}(D_n, D_k) = d_{\mathcal{B}}(D, D_k)/2 + d_{\mathcal{B}}(E, D_k)/2 \geq d_{\mathcal{B}}(D, E)/2.$$

It follows that the set of realizations of $\text{tp}(E/A)$ is not compact, and E is not algebraic over A. This shows that $\text{acl}_{\mathcal{B}}(A) = \text{dcl}_{\mathcal{B}}(A)$.

Now suppose $b \in \text{acl}(A) \setminus \text{dcl}(A)$. There is an element $c \in \hat{\mathcal{K}}$ such that $\text{tp}(b/A) = \text{tp}(c/A)$ but $d_{\mathcal{K}}(b, c) > 0$. For each first order formula $\psi(u, \vec{v})$ and $\vec{a} \in A^{<\mathbb{N}}$, $[\psi(b, \vec{a})] \subseteq \text{acl}_{\mathcal{K}}(\{b\} \cup A) \subseteq \text{acl}_{\mathcal{B}}(\text{acl}(A))$. By Fact 2.2.3, $[\psi(b, \vec{a})] \subseteq \text{acl}_{\mathcal{B}}(A)$. By the preceding paragraph, $[\psi(b, \vec{a})] \subseteq \text{acl}_{\mathcal{B}}(A)$.

Since $\text{tp}(b/A) = \text{tp}(c/A)$, we have $\text{tp}(\psi(b, \vec{a})/A) = \text{tp}(\psi(c, \vec{a})/A)$. By Fact 2.2.1 it follows that $[\psi(b, \vec{a})] = [\psi(c, \vec{a})]$ for every first order formula $\psi(u, \vec{v})$. Then $\text{tp}(b(\omega)/A(\omega)) = \text{tp}(c(\omega)/A(\omega))$ for μ-almost all ω. By \mathcal{N}_1-saturation, there are countably many independent events $D_n \in \hat{\mathcal{B}}$ such that $D_n \subseteq [b \neq c]$ and $\mu(D_n) = d_{\mathcal{K}}(b, c)/2$. Let c_n agree with c on D_n and agree with b elsewhere. We have $\text{tp}(c_n/A) = \text{tp}(b/A)$ for every $n \in \mathbb{N}$, and
$d_{\mathfrak{K}}(c_i, c_k) = d_{\mathfrak{K}}(b, c)/2$ whenever $k < n$. Thus the set of realizations of $\text{tp}(b/A)$ is not compact, contradicting the fact that $b \in \text{acl}(A)$.

\[\square\]

4. A Special Case: \aleph_0-categorical theories

4.1. Definability and \aleph_0-Categoricity. We use our preceding results to characterize \aleph_0-categorical theories in terms of definability in randomizations.

Theorem 4.1.1. The following are equivalent:

1. T is \aleph_0-categorical;
2. $\text{fdcl}_\mathcal{B}(A)$ is finite for every finite A;
3. $\text{dcl}_\mathcal{B}(A)$ is finite for every finite A;
4. $\text{fdcl}_\mathcal{B}(A) = \text{dcl}_\mathcal{B}(A)$ for every finite A;
5. $\text{fdcl}(A)$ is finite for every finite A;
6. $\text{dcl}(A)$ is finite for every finite A;
7. $\text{dcl}(A) = \text{acl}(A)$ for every finite A;

Proof. By the Ryll-Nardzewski Theorem (see [CK], Theorem 2.3.13), (1) is equivalent to

(0) For each n there are only finitely many formulas in n variables up to T-equivalence.

Assume (0) and let $A \subseteq \hat{\mathcal{K}}$ be finite. Then (2) holds. Moreover, there are only finitely many functional formulas in $|A| + 1$ variables, so (5) holds.

Then by Corollary 3.3.3 (3), (4), (6), and (7) hold.

Now assume that (0) fails.

Proof that (2) and (3) fail: For some n there are infinitely many formulas in n variables that are not T-equivalent. Hence there is an n-type p in T without parameters that is not isolated. So there are formulas $\varphi_1(\vec{v}), \varphi_2(\vec{v}), \ldots$ in p such that for each $k > 0$, $T \models \varphi_k \rightarrow \varphi_{k+1}$ but the formula $\theta_k = \varphi_k \land \neg \varphi_{k+1}$ is consistent with T. The formulas θ_k are consistent but pairwise inconsistent. By Fullness, for each $k > 0$ there exists an n-tuple $\vec{b}_k \in \hat{\mathcal{K}}^n$ such that $[\theta_k(\vec{b}_k)] = T$. Since the measured algebra $(\hat{\mathcal{B}}, \mu)$ is atomless, there are pairwise disjoint events E_1, E_2, \ldots in $\hat{\mathcal{B}}$ such that $\mu(E_k) = 2^{-k}$ for each $k > 0$. By applying Lemma 2.1.8 k times, we see that for each $k > 0$ there is an n-tuple $\vec{a}_k \in \hat{\mathcal{K}}^n$ that agrees with \vec{b}_i on E_i whenever $0 < i \leq k$. Whenever $0 < k \leq j$, we have $\mu([\vec{a}_k = \vec{a}_j]) \geq 1 - 2^{-k}$. So $\langle \vec{a}_1, \vec{a}_2, \ldots \rangle$ is a Cauchy sequence, and by metric completeness the limit $\vec{a} = \lim_{k \to \infty} \vec{a}_k$ exists in $\hat{\mathcal{K}}^n$. Let $A = \text{range}(\vec{a})$. For each $k > 0$ we have $E_k = [\vec{a} = \vec{b}_k] = [\theta_k(\vec{a})]$, so $E_k \in \text{fdcl}_\mathcal{B}(A)$. Thus $\text{fdcl}_\mathcal{B}(A)$ is infinite, so (2) fails and (3) fails.

Proof that (4) fails: Let E_k be as in the preceding paragraph. The set $\text{fdcl}_\mathcal{B}(A)$ is countable. But the closure $\text{cl}(\text{fdcl}_\mathcal{B}(A))$ is uncountable, because for each set $S \subseteq \mathbb{N} \setminus \{0\}$, the supremum $\bigcup_{k \in S} E_k$ belongs to $\text{cl}(\text{fdcl}_\mathcal{B}(A))$. Thus by Theorem 3.1.2

$\text{dcl}_\mathcal{B}(A) = \text{cl}(\text{fdcl}_\mathcal{B}(A)) \neq \text{fdcl}_\mathcal{B}(A)$,
and (4) fails.

Proof that (5), (6), and (7) fail: By Corollary 2.1.6 there exist \(c, d \in K \) such that \([c \neq d]\) = \(\top \). Let \(C \) be the finite set \(C = A \cup \{c, d\} \). By Remark 2.2.3 for any event \(D \in \text{fdcl}_B(A) \), the characteristic function \(1_D \) of \(D \) with respect to \(c, d \) is definable over \(C \). Moreover, we always have \(d_\mathbb{K}(1_D, 1_E) = d_\mathbb{E}(D, E) \). It follows that \(\text{fdcl}(C) \) is infinite, so (5) and (6) fail. To show that (7) fails, we take an event \(D \in \text{dcl}(A) \setminus \text{fdcl}_B(A) \). By Theorem 3.1.2 we have \(D \in \text{cl}(\text{fdcl}(A)) \). It follows that \(1_D \in \text{cl}(\text{fdcl}(C)) \), so by Theorem 3.3.6 \(1_D \in \text{dcl}(C) \). Hence \(\text{dcl}(C) \) is uncountable. But \(\text{fdcl}(C) \) is countable, so (7) fails.

By the Ryll-Nardzewski Theorem, if \(T \) is \(\aleph_0 \)-categorical then for each \(n \), \(T \) has finitely many \(n \)-types; so each type \(p \) in the variables \((u, \bar{v}) \) has an isolating formula, that is, a formula \(\varphi(u, \bar{v}) \) such that \(T \models \varphi(u, \bar{v}) \leftrightarrow \bigwedge p \).

We now characterize the definable closure of a finite set \(A \subseteq \hat{K} \) in the case that \(T \) is \(\aleph_0 \)-categorical. Hereafter, when \(A \) is a finite subset of \(\hat{K} \), \(\bar{a} \) will denote a finite tuple whose range is \(A \).

Corollary 4.1.2. Suppose that \(T \) is \(\aleph_0 \)-categorical, \(b \in \hat{K} \), and \(A \) is a finite subset of \(\hat{K} \). Then \(b \in \text{dcl}(A) \) if and only if:

1. \(b \) is pointwise definable over \(A \);
2. for every isolating formula \(\varphi(u, \bar{v}) \), if \(\mu(\llbracket \varphi(b, \bar{a}) \rrbracket) > 0 \) then \(\llbracket \varphi(b, \bar{a}) \rrbracket = \llbracket (\exists u) \varphi(u, \bar{a}) \rrbracket \).

Proof. (\(\Rightarrow \)): Suppose \(b \in \text{dcl}(A) \). (1) holds by Lemma 3.2.8. Suppose \(\varphi(u, \bar{v}) \) is isolating and \(\mu(\llbracket \varphi(b, \bar{a}) \rrbracket) > 0 \). We have \([\varphi(b, \bar{a})] \in \text{fdcl}_B(\{b\} \cup A) \), so by Corollary 3.3.5 \([\varphi(b, \bar{a})] \in \text{dcl}(A) \). By Theorem 4.1.1 \([\varphi(b, \bar{a})] \in \text{fdcl}_B(A) \). We note that \((\exists u) \varphi(u, \bar{v}) \) is an isolating formula, so \([\exists u) \varphi(u, \bar{a}) \rrbracket \) is an atom of \(\text{fdcl}_B(A) \). Therefore (2) holds.

(\(\Leftarrow \)): Assume (1) and (2). By (2), for every isolating formula \(\varphi(u, \bar{v}) \) such that \(\mu(\llbracket \varphi(b, \bar{a}) \rrbracket) > 0 \), we have \(\llbracket \varphi(b, \bar{a}) \rrbracket \in \text{fdcl}_B(A) \).

Every formula \(\Theta(u, \bar{v}) \) in \(T \)-equivalent to a finite disjunction of isolating formulas in the variables \((u, \bar{v}) \). It follows that \(\text{fdcl}_B(A \cup \{b\}) \subseteq \text{fdcl}_B(A) \). Therefore by Corollary 3.3.5 \(b \in \text{dcl}(A) \). □

Corollary 4.1.3. Suppose that \(T \) is \(\aleph_0 \)-categorical, \(b \in \hat{K} \), and \(A \) is a finite subset of \(\hat{K} \). Then \(b \in \text{dcl}(A) \) if and only if for every isolating formula \(\psi(\bar{v}) \) there is a functional formula \(\varphi(u, \bar{v}) \) such that \(\llbracket \psi(\bar{a}) \rrbracket \subseteq \llbracket \varphi(b, \bar{a}) \rrbracket \).

Proof. (\(\Rightarrow \)): Suppose \(b \in \text{dcl}(A) \). By Theorem 4.1.1 \(b \) is first order definable over \(\bar{a} \), so there is a functional formula \(\varphi(u, \bar{v}) \) such that \(\llbracket \varphi(b, \bar{a}) \rrbracket = \top \). Then for every isolating \(\psi(\bar{v}) \) we have \(\llbracket \psi(\bar{a}) \rrbracket \subseteq \llbracket \varphi(b, \bar{a}) \rrbracket \).

(\(\Leftarrow \)): There is a finite set \(\{\psi_0(\bar{v}), \ldots, \psi_k(\bar{v})\} \) that contains exactly one isolating formula for each \(|\bar{a}| \)-type of \(T \). By hypothesis, for each \(i \leq k \) there is a functional formula \(\varphi_i(u, \bar{v}) \) such that \(\llbracket \psi_i(\bar{a}) \rrbracket \subseteq \llbracket \varphi_i(b, \bar{a}) \rrbracket \). Since the
formulas \(\psi_i(\overline{v}) \) are pairwise inconsistent, the formula \(\bigvee_{i=0}^{k} (\psi_i(\overline{v}) \land \varphi_i(\overline{u}, \overline{v})) \) is functional, and
\[
\llbracket \bigvee_{i=0}^{k} (\psi_i(\overline{a}) \land \varphi_i(\overline{b}, \overline{a})) \rrbracket = \top.
\]
Hence \(b \) is first order definable over \(\overline{a} \), so by Lemma \ref{lemma:isolating} we have \(b \in \text{dcl}(A) \). \qed

4.2. The Theory \(\text{DLO}^R \). We will use Corollary \ref{corollary:universal} to give a more natural characterization of the definable closure of a finite parameter set in a model of \(\text{DLO}^R \), where \(\text{DLO} \) is the theory of dense linear order without endpoints.

Note that in \(\text{DLO} \), every type in \((v_1, \ldots, v_n) \) has an isolating formula of the form \(\bigwedge_{i=1}^{n-1} u_i \alpha_i u_{i+1} \) where \(\{u_1, \ldots, u_n\} = \{v_1, \ldots, v_n\} \) and each \(\alpha_i \in \{<,=\} \).

(This formula linearly orders the equality-equivalence classes).

Corollary 4.2.1. Let \(T = \text{DLO}, b \in \hat{K}, \) and \(A \) be a finite subset of \(\hat{K} \). Then \(b \in \text{dcl}(A) \) if and only if for every isolating formula \(\psi(v_1, \ldots, v_n) \) there is an \(i \in \{1, \ldots, n\} \) such that \(\llbracket \psi(\overline{a}) \rrbracket \subseteq \llbracket b = a \rrbracket \).

Proof. For any \(M \models \text{DLO} \) and parameter set \(A \), we have \(\text{dcl}^M(A) = A \). Therefore for every isolating formula \(\psi(v_1, \ldots, v_n) \) and functional formula \(\varphi(u, v_1, \ldots, v_n) \) there exists \(i \in \{1, \ldots, n\} \) such that
\[
\text{DLO} \models (\psi(v_1, \ldots, v_n) \land \varphi(u, v_1, \ldots, v_n)) \rightarrow u = v_i.
\]
The result now follows from Corollary \ref{corollary:universal} \(\square \).

In the theory \(\text{DLO} \), we define \(\min(u, v) \) and \(\max(u, v) \) in the usual way. For \(a, b \in \hat{K} \), we let \(\min(a, b) \) be the unique element \(e \in \hat{K} \) such that
\[
\llbracket e = \min(a, b) \rrbracket = \top,
\]
and similarly for max. For finite subsets \(A \) of \(\hat{K} \), \(\min(A) \) and \(\max(A) \) are defined by repeating the two-variable functions \(\min \) and \(\max \) in the natural way.

We next show that in \(\text{DLO}^R \), the definable closure of a finite set can be characterized as the closure under a “choosing function” of four variables.

Definition 4.2.2. In the theory \(\text{DLO} \), let \(\ell \) be the function of four variables defined by the condition
\[
\ell(u, v, x, y) = x \text{ if } u < v, \text{ and } \ell(u, v, x, y) = y \text{ if not } u < v.
\]
For \(a, b, c, d \in \hat{K} \), let \(\ell(a, b, c, d) \) be the unique element \(e \in \hat{K} \) such that \(\llbracket e = \ell(a, b, c, d) \rrbracket = \top \). Given a set \(A \subseteq \hat{K} \), let \(\text{lcl}(A) \) be the closure of \(A \) under the function \(\ell \).

Note that in \(\text{DLO} \), the function \(\ell \) is definable without parameters. In both \(\text{DLO} \) and \(\text{DLO}^R \), \(\min(u, v) = \ell(u, v, u, v) \), and \(\max(u, v) = \ell(u, v, v, u) \).

Proposition 4.2.3. Let \(T = \text{DLO} \). Then for every finite subset \(A \) of \(\hat{K} \), \(\text{dcl}(A) = \text{lcl}(A) \).
Proof. It is clear that \(\text{lcl}(A) \subseteq \text{dcl}(A) \).

We prove the other inclusion. If \(A \) is empty, the result is trivial, so we assume \(A \) is non-empty. Let \(0 = \min(A), 1 = \max(A) \). We have \(0, 1 \in \text{lcl}(A) \). Let \(\Omega_0 = [0 < 1] \). Note that \(\Omega \setminus \Omega_0 = [0 = 1] \). If \(\mu(\Omega_0) = 0 \), then \(A \) is a singleton, and we trivially have \(\text{lcl}(A) = \text{dcl}(A) = A \). We may therefore assume that \(\mu(\Omega_0) > 0 \). To simplify notation we will instead assume that \(\Omega_0 = \Omega \); the argument in the general case is similar.

In the following, all characteristic functions are understood to be with respect to \(0, 1 \). Note that \(\ell(\bar{a}, \bar{b}, 0, 1) \) is the characteristic function of the event \([a < b]\). If \(\bar{d} \) is the characteristic function of an event \(D \) and \(\bar{e} \) is the characteristic function of an event \(E \), then \(\ell(\bar{d}, 1, 1, 0) \) is the characteristic function of \(\neg D \), \(\min(\bar{d}, \bar{e}) \) is the characteristic function of \(D \cap E \), and \(\max(\bar{d}, \bar{e}) \) is the characteristic function of \(D \cup E \). It follows that for every quantifier-free first order formula \(\varphi(\bar{v}) \) of DLO with \(|\bar{v}| = |\bar{a}| \), the characteristic function of the event \([\varphi(\bar{a})]\) belongs to \(\text{lcl}(A) \). Since DLO admits quantifier elimination, the characteristic function of every event that is first order definable over \(A \) belongs to \(\text{lcl}(A) \). Hence by Theorem 4.1.1, the characteristic function of every event in \(\text{dcl}_2(A) \) belongs to \(\text{lcl}(A) \). Moreover, for every \(c \in A \) and event \(D \subseteq \text{dcl}_2(A) \) with characteristic function \(\bar{d}, \bar{c} \upharpoonright D := \ell(\bar{d}, 1, 0, c) \) is the element that agrees with \(c \) on \(D \) and agrees with \(0 \) on the complement of \(D \), so \(c \upharpoonright D \) belongs to \(\text{lcl}(A) \). Let \(\{D_1, \ldots, D_n\} \) be the set of atoms of \(\text{dcl}_2(A) \) (which is finite because DLO is \(\aleph_0 \)-categorical). By Corollary 4.2.1, every element of \(\text{dcl}(A) \) has the form

\[
\max(c_1 \upharpoonright D_1, \ldots, c_n \upharpoonright D_n)
\]

for some \(c_1, \ldots, c_n \in A \). Therefore \(\text{dcl}(A) \subseteq \text{lcl}(A) \). \qed

Example 4.2.4. In this example we show that the exchange property fails for DLO\(^R\), even though it holds for DLO. Thus the exchange property is not preserved under randomizations. Let \(T = \text{DLO} \). By Fullness, there exist elements \(a, b \in \hat{\mathcal{K}} \) such that \(\max(a, b) \notin \{a, b\} \). Let \(c = \max(a, b), d = \min(a, b) \). It is easy to check that

\[
\text{dcl}(\{a, b\}) = \{a, b, c, d\}, \quad \text{dcl}(\{a, c\}) = \{a, c\}, \quad \text{dcl}(\{a\}) = \{a\}.
\]

Thus \(c \in \text{dcl}(\{a, b\}) \setminus \text{dcl}(\{a\}) \) but \(b \notin \text{dcl}(\{a, c\}) \).

References

[AK] Uri Andrews and H. Jerome Keisler. Randomizations of Theories with Countably Many Countable Models. To appear. Available online at www.math.wisc.edu/~keisler.

[Be] Itaï Ben Yaacov. On Theories of Random Variables. To appear, Israel J. Math. arXiv:0901.1584v3 (2001).

[BBHU] Itaï Ben Yaacov, Alexander Berenstein, C. Ward Henson and Alexander Usvyatsov. Model Theory for Metric Structures. To appear, Lecture Notes of the London Math. Society.
[BK] Itaï Ben Yaacov and H. Jerome Keisler. Randomizations of Models as Metric Structures. Confluentes Mathematici 1 (2009), pp. 197-223.

[BU] Itaï Ben Yaacov and Alexander Usvyatsov. Continuous first order logic and local stability. Transactions of the American Mathematical Society 362 (2010), no. 10, 5213-5259.

[CK] C.C. Chang and H. Jerome Keisler. Model Theory. Dover 2012.

[EG] Clifton Early and Isaac Goldbring. Thorn-Forking in Continuous Logic. Journal of Symbolic Logic 77 (2012), 63-93.

[Go1] Isaac Goldbring. Definable Functions in Urysohn’s Metric Space. To appear, Illinois Journal of Mathematics.

[Go2] Isaac Goldbring. An Approximate Herbrand’s Theorem and Definable Functions in Metric Structures. Math. Logic Quarterly 50 (2012), 208-216.

[Go3] Isaac Goldbring. Definable Operators on Hilbert Spaces. Notre Dame Journal of Formal Logic 53 (2012), 193-201.

[GL] Isaac Goldbring and Vinicius Lopes. Pseudofinite and Pseudocompact Metric Structures. To appear, Notre Dame Journal of Formal Logic. Available online at www.homepages.math.uic.edu/~isaac.

[Ke1] H. Jerome Keisler. Randomizing a Model. Advances in Math 143 (1999), 124-158.

[Ke2] H. Jerome Keisler. Separable Randomizations of Models. To appear. Available online at www.math.wisc.edu/~Keisler.

University of Wisconsin-Madison, Department of Mathematics, Madison, WI 53706-1388
E-mail address: andrews@math.wisc.edu
URL: www.math.wisc.edu/~andrews
E-mail address: keisler@math.wisc.edu
URL: www.math.wisc.edu/~keisler

University of Illinois at Chicago, Department of Mathematics, Statistics, and Computer Science, Science and Engineering Offices (M/C 249), 851 S. Morgan St., Chicago, IL 60607-7045, USA
E-mail address: isaac@math.uic.edu
URL: www.math.uic.edu/~isaac