Bacterial Community Selection of *Russula griseocarnosa* Mycosphere Soil

Fei Yu, Jun-Feng Liang*, Jie Song, Sheng-Kun Wang and Jun-Kun Lu

Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China

Russula griseocarnosa is a wild, ectomycorrhizal, edible, and medicinal fungus with high economic value in southern China. *R. griseocarnosa* fruiting bodies cannot be artificially cultivated. To better understand the effects of abiotic and biotic factors on *R. griseocarnosa* growth, the physicochemical properties of *R. griseocarnosa* and its associated bacterial communities were investigated in two soil types (mycosphere and bulk soil) from Fujian, Guangdong, and Guangxi Provinces. The results revealed that the diversity, community structure, and functional characteristics of the dominant mycosphere bacteria in all geographical locations were similar. Soil pH and available nitrogen (AN) are the major factors influencing the mycosphere–soil bacterial communities’ structure. The diversity of soil bacteria is decreased in *R. griseocarnosa* mycosphere when compared with the bulk soil. *Burkholderia-Paraburkholderia*, *Mycobacterium*, *Roseiarcus*, *Sorangium*, *Acidobacterium*, and *Singulisphaera* may also be mycorrhiza helper bacteria (MHB) of *R. griseocarnosa*. The functional traits related to the two-component system, bacterial secretion system, tyrosine metabolism, biosynthesis of unsaturated fatty acids, and metabolism of cofactors and vitamins were more abundant in *R. griseocarnosa* mycosphere soil. The mycosphere soil bacteria of *R. griseocarnosa* play a key role in *R. griseocarnosa* growth. Application of management strategies, such as N fertilizer and microbial fertilizer containing MHB, may promote the conservation, propagation promotion, and sustainable utilization of *R. griseocarnosa*.

Keywords: *Russula griseocarnosa*, mycosphere, functional diversity, MiSeq sequencing, soil bacterial community

INTRODUCTION

Soil is a dynamic biological matrix and an essential part of the terrestrial ecosystem. Soil microbes can participate in crucial processes such as biogeochemical cycles and play a role in different environmental conditions (Cao et al., 2016). Soil bacteria play an influential role in the nitrogen cycle, such as N fixation (Lladó et al., 2017), which is associated with the richness of ectomycorrhizal fungi (Allison et al., 2007; Mediavilla et al., 2019). Soil bacteria, especially mycorrhiza helper bacteria (MHB), can improve the ability of plant roots to form mycorrhiza (Aspray et al., 2006), promote the growth of fungi on soil or root surface, and trigger the germination of fungi in soil (Frey-Klett et al., 2007, 2011). Bacteria may have a variety of symbiotic functions in mushrooms, including inhibiting pathogens and antagonists, improving spore distribution, provisioning of the growth regulators and vitamins (Riedlinger et al., 2006), and increasing mushroom production.
Russula griseocarnosa is a wild, edible, medicinal, and ectomycorrhizal symbiont fungi distributed broadly in southern China (Yu et al., 2020). The fruiting bodies of R. griseocarnosa cannot be artificially cultivated (Chen et al., 2010; Ming et al., 2014). R. griseocarnosa has high economic value; its flesh has high nutritional value (Chen et al., 2010; Ming et al., 2014). R. griseocarnosa has been proved to have beneficial effects on dispelling or preventing heart disease and softening brain veins (Chen et al., 2010) when used as a functional food (Chen et al., 2010). R. griseocarnosa polysaccharides have antioxidant activities (Ming et al., 2014) and inhibit the proliferation of cervical cancer cells (Yuan et al., 2017; Liu et al., 2018). Based on the location and the quality of R. griseocarnosa, the fruiting bodies of R. griseocarnosa can sell for $35–$45/kg, while dried of R. griseocarnosa are sold for $140–$180/kg (Ming et al., 2014), with prices increasing. R. griseocarnosa hyphae aggregate densely with the soil around ectomycorrhizal host trees such as Betula platyphylla, Castanopsis carlesii, Pinus massoniana, and Psychotria asiatica. In the symbiotic relationship between fungi and host trees, the fungus can absorb essential elements, especially phosphorus (Hall et al., 2003), to promote the growth of trees, and the trees can provide carbohydrates to the fungus (Giomaro et al., 2005). The fruit body formation of ectomycorrhizal mushrooms must have a symbiotic relationship with plants under certain conditions, and the process is hard to achieve artificially for most of the edible ectomycorrhizal fungi (Hall et al., 2003; Giomaro et al., 2005), such as R. griseocarnosa. There is evidence that several bacteria are selected in the mycosphere of the ectomycorrhizal Laccaria proxima (Warmink et al., 2009). Pseudomonas and Burkholderia are the main bacterial communities in the fruit bodies and in the soil environment of Russula decolorans (Pent et al., 2017). The Pseudomonas communities are significantly increased in the L. proxima mycospheres compared with the corresponding bulk soil (Warmink et al., 2009). Further evidence reveals that bacteria can trigger (Noble et al., 2009) or inhibit (Munsch et al., 2002; Yun et al., 2013) fruiting bodies’ formation of mushrooms. The composition of bacteria within fruiting bodies can be affected directly or indirectly by soil bacterial communities (Antony-Babu et al., 2013), suggesting that R. griseocarnosa may also have helper bacteria to grow and maintain mycelium in the soil.

Soil physicochemical properties, fungi, and other factors may affect the community structure of soil microbial communities (Garbeva et al., 2004). Singh et al. (2008) showed that plant species affect rhizosphere fungi but not rhizosphere bacteria. Soil microbial community and related environmental parameters drive rhizosphere bacterial community structure more than plant genotypes or species (Bulgarelli et al., 2012; Vandenkoonhuyse et al., 2015). The soil contains a variety of bacterial communities shaped by environmental forces (Rousk et al., 2010). These environmental forces may indirectly affect the structure of the bacterial communities in the mycelium and the fruiting bodies of fungi (Warmink et al., 2009; Pent et al., 2017). The effects of bacteria on ectomycorrhizal fungi can vary according to soil factors such as pH and carbon availability (Brulé et al., 2001; Pent et al., 2017; Oh and Lim, 2018). The bacteria in the surrounding soil are filtered by the conditions created by the fruiting bodies, and some bacteria are still retained in the fruiting bodies (Antony-Babu et al., 2013; Pent et al., 2017). MHB are not plant-specific but selective for fungal species (Pivato et al., 2009). This selectivity has been found in fungi that select the soil bacterial communities based on fungal (Halsey et al., 2016) and specific soil properties, such as pH and soil organic carbon (SOC) content (Pent et al., 2017). The non-random selection may depend on their symbiotic functions or habitat requirements (Pent et al., 2017). This selectivity is more conducive to the development of fruiting bodies. Fruiting body formation of L. proxima can be triggered by Pseudomonas communities (Warmink et al., 2009). Bacterial metabolites, nutrients, or stimuli can have a positive or negative effect on fungal growth or spore germination (Oh and Lim, 2018). Leyval and Berthelin (1991) speculated that bacteria could dissolve soil nutrients and cooperate with ectomycorrhizal fungi to increase the diffusion of host roots.

We aimed to explore the characteristics of soil bacteria related to the growth of R. griseocarnosa by comparing the diversity, community structure, and functional profiles of bacteria in the mycosphere and bulk soil. We used Miseq sequencing to expand the research scope and improve the accuracy by comparing soil types in different geographical locations. Also, PICRUSt was used to predict and compare the functional spectrum of bacteria in the mycosphere soil of R. griseocarnosa. We expect this study will not only help us to understand the interaction between R. griseocarnosa and soil bacteria but also provide a theoretical basis for the conservation and propagation of R. griseocarnosa.

MATERIALS AND METHODS

Sample Collection

Eighty soil samples from 10 R. griseocarnosa growth sites were collected. Growth sites were distributed in three provinces of China within the longitudinal ranges from 110°38' to 117°35' during July 2017 (Table 1). The environment of each site is composed of forest lands with different and distinct vegetation (Table 1). All regions encompass altitude ranges from 38 to 708 m above sea level and a fruiting air temperature range from 21 to 38°C. Geographic distance range from 6.50 to 763.48 km (Supplementary Table S1).

The geographic location and vegetative characteristics are listed in Table 1. At each site, the five R. griseocarnosa fruiting bodies were excavated at a depth of 10 cm using a sterile hand trowel; mycosphere soil was then transferred into a sterile polythene bag (Warmink and van Elsas, 2008; Oh et al., 2016). Samples were collected in the no-fruiting-bodies area with a lateral distance of 40 cm from the R. griseocarnosa and will herein...
TABLE 1 | Site information used for this study.

Sample	Location	Replicate	Vegetation	Longitude (E)	Latitude (N)	Altitude (m)	pH	SOC (g/kg)	AN (mg/kg)	AP (mg/kg)	AK (mg/kg)
DT	Datian Co., Fujian Prov.	5	Castanopsis carlesii	117°35'44.70"	25°49'20.17"	708	4.09	394.13	6.52	160.76	
DTCK	Datian Co., Fujian Prov.	3	Dendropanax dentigerus	117°35'44.70"	25°49'20.17"	708	4.09	77.28	321.54	4.19	121.84
YA	Yongan Co., Fujian Prov.	5	Schima superba	117°21'54.19"	25°56'30.97"	183	4.14	134.17	3.73	152.03	
YAOK	Yongan Co., Fujian Prov.	3	Dalbergia hancei	117°21'54.19"	25°56'30.97"	183	3.97	89.19	2.24	129.93	
ZP	Zhangping Co., Fujian Prov.	5	Toona ciliata	117°25'11.99"	25°17'24.66"	168	4.20	369.88	19.60	318.03	
ZPK	Zhangping Co., Fujian Prov.	3	Toona ciliata	117°25'11.99"	25°17'24.66"	168	3.88	139.07	6.31	154.93	
FS	Fengshun Co., Guangdong Prov.	5	Choerospondias axillaris	116°16'57.73"	24°5'25.06"	147	4.39	214.18	4.80	231.93	
FSCK	Fengshun Co., Guangdong Prov.	3	Choerospondias axillaris	116°16'57.73"	24°5'25.06"	147	4.46	132.48	2.44	112.14	
JL	Jiaoling Co., Guangdong Prov.	5	Castanopsis chinensis	116°13'55.14"	24°35'14.50"	338	3.99	643.08	10.15	241.31	
JLOK	Jiaoling Co., Guangdong Prov.	3	Castanopsis chinensis	116°13'55.14"	24°35'14.50"	338	6.43	102.12	80.04	79.25	
HTC	Huangtianchong, Guangxi Prov.	5	Castanopsis chinensis	110°41'59.24"	23°10'33.92"	149	4.55	251.71	4.98	95.75	
HTCK	Huangtianchong, Guangxi Prov.	3	Castanopsis chinensis	110°41'59.24"	23°10'33.92"	149	4.50	179.40	1.67	71.70	
JJ	Jinh Co., Guangxi Prov.	5	Psychotria asiatica	110°49'18.61"	23°13'36.54"	38	4.17	224.94	9.40	153.32	
JJCK	Jinh Co., Guangxi Prov.	3	Psychotria asiatica	110°49'18.61"	23°13'36.54"	38	4.30	172.50	3.65	89.49	
LJ	Lingjing Co., Guangxi Prov.	5	Camellia reticulata	110°38'52.25"	23°8'32.83"	69	4.30	231.01	3.77	130.68	
LJK	Lingjing Co., Guangxi Prov.	3	Camellia reticulata	110°38'52.25"	23°8'32.83"	69	4.65	133.40	5.30	181.14	
THL	Tianhongling, Guangxi Prov.	5	Psychotria asiatica	111°15'48.89"	23°41'47.33"	328	4.21	321.82	4.10	111.60	
THLOK	Tianhongling, Guangxi Prov.	3	Psychotria asiatica	111°15'48.89"	23°41'47.33"	328	4.06	252.54	3.26	85.72	
YY	Youyi, Cangwu Co., Guangxi Prov.	5	Ardisia quinquegona	111°33'35.09"	23°41'30.84"	43	4.11	275.45	5.19	295.65	
YYCK	Youyi, Cangwu Co., Guangxi Prov.	3	Ardisia quinquegona	111°33'35.09"	23°41'30.84"	43	4.22	246.56	3.63	123.46	

SOC, AN, AP, and AK represent soil organic carbon, available nitrogen, available phosphorus, and available potassium, respectively.
be referred to as “bulk soil” (Warmink and van Elsas, 2008). One fraction of the samples was frozen using liquid nitrogen and stored at −70°C for DNA extraction. The remaining fraction was air-dried and sieved using a 2 mm mesh and then used for physicochemical analysis.

Air-dried samples were used to determine soil pH using a 2 mm mesh with a 1:2.5 (w/v) soil-to-water ratio suspension (Wu et al., 2000). SOC was measured by dichromate oxidation (Nelson and Sommers, 1996). Available phosphorus (AP) was measured using the sodium hydrogen carbonate solution-Mo-Sb anti spectrophotometric (Retamal-Salgado et al., 2017). Soil available potassium (AK) was measured by flame photometry (Zhao et al., 2014). Available nitrogen (AN) was determined by potassium persulfate oxidation (Liu et al., 2015).

DNA Isolation and PCR Amplification

Soil DNA was extracted from 0.30 g soil using the Ezup Column Soil DNA kit (Sangon Biotech, Shanghai) according to the manufacturer instructions (Griffiths et al., 2000). Samples were placed into 1.5 ml centrifuge tubes with 500 mg of glass beads. 400 µl of Buffer SCL at 65°C was added to the samples, followed by incubation at 65°C in a water bath for 5 min. Samples were then centrifuged for 3 min, and the supernatant was collected. An equal volume Buffer SP was added to the supernatant and incubated on ice for 10 min. Following incubation, 200 µl of β-Mercaptoethanol was added, and samples were further centrifuged for 3 min. The supernatant was collected, and 1.5 volumes of Buffer SB were added. Samples were washed twice with 700 and 300 µl Wash Solution, respectively. Finally, 80 µl TE Buffer was added to the center of the adsorption membrane, and the DNA solution was obtained by centrifugation at 12,000 rpm for 3 min. DNA concentration and purity were measured using the sodium hydrogen carbonate solution-Mo-(Nelson and Sommers, 1996). Available phosphorus (AP) was measured using the sodium hydrogen carbonate solution-Mo-Sb anti spectrophotometric (Retamal-Salgado et al., 2017). Soil available potassium (AK) was measured by flame photometry (Zhao et al., 2014). Available nitrogen (AN) was determined by potassium persulfate oxidation (Liu et al., 2015).

DNA Isolation and PCR Amplification

Soil DNA was extracted from 0.30 g soil using the Ezup Column Soil DNA kit (Sangon Biotech, Shanghai) according to the manufacturer instructions (Griffiths et al., 2000). Samples were placed into 1.5 ml centrifuge tubes with 500 mg of glass beads. 400 µl of Buffer SCL at 65°C was added to the samples, followed by incubation at 65°C in a water bath for 5 min. Samples were then centrifuged for 3 min, and the supernatant was collected. An equal volume Buffer SP was added to the supernatant and incubated on ice for 10 min. Following incubation, 200 µl of β-Mercaptoethanol was added, and samples were further centrifuged for 3 min. The supernatant was collected, and 1.5 volumes of Buffer SB were added. Samples were washed twice with 700 and 300 µl Wash Solution, respectively. Finally, 80 µl TE Buffer was added to the center of the adsorption membrane, and the DNA solution was obtained by centrifugation at 12,000 rpm for 3 min. DNA concentration and purity were measured using the sodium hydrogen carbonate solution-Mo-(Nelson and Sommers, 1996). Available phosphorus (AP) was measured using the sodium hydrogen carbonate solution-Mo-Sb anti spectrophotometric (Retamal-Salgado et al., 2017). Soil available potassium (AK) was measured by flame photometry (Zhao et al., 2014). Available nitrogen (AN) was determined by potassium persulfate oxidation (Liu et al., 2015).

Bioinformatic Analysis of the 16SrRNA Amplicons

Raw fastq were demultiplexed, quality-filtered, and merged using the following standards: (1) truncate the 300 bp reads where the average quality score <20 over a 50 bp; the truncated read codes less than 50 bp were discarded; (2) precise barcode matching sequences were included, and two nucleotide mismatch in primer matching or reads containing ambiguous characters were deleted; (3) only assemble overlapped sequences exceeding 10 bp according to overlapped sequences; and (4) unassembled readings were discarded.

Operational taxonomic units (OTUs) were clustered at 97% similarity cutoff value, and chimeric sequences were identified and removed using USEARCH1 (version 7.0). The 16S rRNA gene sequence was analyzed by SILVA (SSU123) database using a confidence threshold of 70% (Cole et al., 2013; Quast et al., 2013). The subsampling was based on the minimum sample sequence with equal sequencing depth (16,175 sequences per followed by clustering) (Ye et al., 2017). Diversity metrics, that is, richness (observed species), Chao richness index, Shannon diversity index, and coverage and phylogenetic diversity were calculated based on OTU tables using mother (v.1.30.1). The indexes describe the structure of bacterial communities.

Statistical Analysis

The statistical analysis was conducted using the online platform of Majorbio I-Sanger Cloud Platform2. The results of the two groups of data were consistent with the normal distribution, and the variance of the two groups was not equal. Therefore, the results were expressed as mean values and two-group statistical analyses using Welch’s t-test (Delacre et al., 2017). The bar of diversity index represents the mean ± standard error. Significant correlations are expressed as: * 0.01 < p ≤ 0.05; ** 0.001 < p ≤ 0.01; *** p ≤ 0.001.

LEfSe was used to identify taxa that differed consistently using the default parameters (LDA Score >2, p < 0.05). LEfSe was applied in the identification of mycosphere and bulk soil biomarkers of microbiomes at the genus levels. The biomarkers were classified according to their statistical significance. The results were visualized by using bar charts and cladograms (Segata et al., 2011).

Mantel Tests (1967) with 999 permutations were used to test the Bray–Curtis correlation between soil/site properties and bacterial community structure by QIIME (Caporaso et al., 2010). ANOSIM analysis of the relationship of sites was performed using R’s Vegan package (version 3.3.3) (Oksanen et al., 2017). To analyze the relationship between taxa and the soil/site properties, variation portioning analysis (VPA) was done using R’s Vegan package (Oksanen et al., 2017). The OTUs and soil/site properties were used in the analysis. Detrended correspondence analysis (DCA) was done based on OTUs. Principle component analysis (PCA) plot was drawn by R’s Vegan package (Oksanen et al., 2017).

1http://drive5.com/uparse/
2www.i-sanger.com

Miseq Sequencing

Purified products were assembled in an equal volume and sequenced (2 × 300 bp) using Illumina's Miseq platform in Majorbio Bio-Pharm Technology Co., Ltd., Shanghai, China. The raw reads were deposited into the NCBI Sequence Read Archive (SRA) database (Accession Number: PRJNA553654).
Spearman’s correlation coefficients among the top 30 mycosphere’s bacterial genera and soil properties were calculated and displayed as a heat map using R’s heatmap package (Kolde, 2019). The Spearman’s correlation analysis of soil properties and the diversity indexes were calculated by SPSS21.0.

16S rRNA Functional Predictions
The microbial function was predicted by PICRUSt (Langille et al., 2013; Oh et al., 2016). OTUs was assigned with QIME’s command “pick_closed_otus” with 97% similarity in Greengenes13.5 database. Then, the predicted functions were blasted to the KEGG (Kyoto Encyclopedia of Genes and Genomes) database, and statistical differences among groups were compared by STAMP software (Parks and Beiko, 2010). Welch’s t-test and Storey False Discovery Rate (FDR, \(p < 0.05 \)) were performed for two groups (Storey, 2007).

RESULTS
Site Sampling of Mycosphere and Bulk Soil
Soil organic carbon at the collection sites ranged from 12.88 to 139.07 g/kg (Table 1). Soil pH was between 3.88 and 6.43 at the collection sites. The soil contents of available nitrogen (AN, 102.12–643.08 mg/kg), available phosphorus (AP, 1.67–80.04 mg/kg), and available potassium (AK, 71.70–318.03 mg/kg) showed rich changes in collection sites (Table 1). The geographical distance ranges from 6.50 to 763.48 km.

Of all sites, the soil pH of YA (\(p = 0.014 \)) and ZP (\(p = 0.001 \)) was significantly higher in the mycosphere soil, while soil pH of LJ (\(p < 0.001 \)), JL (\(p < 0.001 \)) and JJ (\(p = 0.032 \)) were significantly lower in the mycosphere soil. The SOC of LJ (\(p = 0.016 \)), HTC (\(p = 0.022 \)), and JL (\(p = 0.010 \)) was significantly higher in the mycosphere soil, while the SOC of YA (\(p = 0.027 \)) and ZP (\(p = 0.001 \)) was significantly lower in the mycosphere soil. The AN of LJ (\(p = 0.041 \)), DT (\(p = 0.006 \)), JL (\(p = 0.018 \)), and ZP (\(p < 0.001 \)) was significantly higher in the mycosphere soil. The AP of YA (\(p = 0.004 \)) and ZP (\(p = 0.044 \)) was significantly higher in the mycosphere soil. The AK of JJ (\(p = 0.020 \)), YA (\(p = 0.028 \)), and ZP (\(p < 0.001 \)) was significantly higher in the mycosphere soil. In most sites with mycorrhiza soil, the content of AN, AK, and AP was significantly higher than those of bulk soil. The results showed that mycosphere soils were more nutrient-rich compared with bulk soils (Supplementary Table S2).

Bacteria Communities and Structure in Mycosphere and Bulk Soil
Diversity of Bacterial Community
Each sample had 16,175 bacterial sequences for further analysis (Figure 1). A total of 6,014 OTUs were delineated at a 97% similarity level. We investigated the distinctiveness between mycosphere and bulk bacterial communities with samples from ten different sites. Chao and Shannon indexes of mycosphere samples from JL, LJ, and THL were significantly lower than in bulk soil (Figure 2). The Chao index of HTC site (\(p = 0.010 \)) and ZP site (\(p = 0.010 \)) was significantly lower than that of bulk soil, while the Shannon index showed no significant difference in bulk soil. Only four sites reported no significant difference between the Chao and Shannon indexes in regard to mycosphere and bulk soil. The bacterial community structure clustered significantly with soil compartments in ten sites (ANOSIM; bacteria: \(R = 0.74 \), \(p = 0.001 \)).

Keystone Species in Mycosphere and Bulk Soils
There was a total of 6,014 bacterial OTUs obtained from the ten sites, clustered into 38 phyla. Proteobacteria, Acidobacteria, Actinobacteria, and Chloroflexi were the dominant phyla present in soil samples (Figure 3A), accounting for 86.99 and 86.53% of the total species in mycosphere and bulk soil samples, respectively (Figure 3B). Cyanobacteria, Saccharibacteria, Gemmatimonadetes, and Nitrospirae phyla were also present in all samples examined but at a lower species richness. Proteobacteria (\(p = 0.023 \)), Planctomycetes (\(p = 0.012 \)), and Verrucomicrobia (\(p = 0.034 \)) were significantly higher in mycosphere soil, while Chloroflexi (\(p = 0.006 \)), Firmicutes (\(p = 0.040 \)), Cyanoacteria (\(p = 0.033 \)), Saccharibacteria (\(p = 0.002 \)), and Gemmatimonadetes (\(p = 0.006 \)) were significantly lower in mycosphere soil (Figure 3C).

At the phylum level, the relative abundances of Acidobacteria (\(p = 0.022 \)) and Planctomycetes (\(p = 0.016 \)) were significantly enriched in YA mycosphere soil, while Actinobacteria (\(p = 0.015 \)), Saccharibacteria (\(p = 0.013 \)), and Gemmatimonadetes (\(p = 0.030 \)) were significantly higher in the YA bulk soil (Supplementary Table S3). The relative abundances of Proteobacteria (\(p = 0.004 \)), Acidobacteria (\(p = 0.005 \)), Planctomycetes (\(p = 0.030 \)), and Verrucomicrobia (\(p = 0.017 \)) were significantly higher in FS mycosphere soil, while Chloroflexi (\(p < 0.001 \)), Actinobacteria (\(p = 0.011 \)), Firmicutes (\(p = 0.008 \)), and Cyanoacteria (\(p < 0.001 \)) were significantly higher in FS bulk soil (Supplementary Table S3). At the phylum level, the relative abundances of Acidobacteria (\(p = 0.015 \)) and Planctomycetes (\(p = 0.019 \)) were significantly higher in JL mycosphere soil, while Bacteroidetes (\(p = 0.013 \),
Saccharibacteria \((p = 0.022) \), Gemmatimonadetes \((p < 0.001) \), and Nitrospirae \((p = 0.012) \) were significantly lower (Supplementary Table S3). The relative abundances of Proteobacteria \((p = 0.006) \) were significantly higher in LJ mycosphere soil, while Chloroflexi \((p < 0.001) \), Cyanobacteria \((p = 0.017) \), and Bacteroidetes \((p = 0.018) \) were significantly higher in LJ bulk soil (Supplementary Table S3). The relative abundances of Gemmatimonadetes \((p = 0.001) \) were significantly higher in the HTC bulk soil (Supplementary Table S3). The relative abundances of Acidobacteria \((p = 0.046) \) were significantly higher in the THL bulk soil. These results show that Proteobacteria, Acidobacteria, Planctomycetes, and Verrucomicrobia were significant higher in mycosphere soil, which was consistent with the overall analysis (Supplementary Table S3).

Over 700 genera were found in the sequencing data. The relative abundance of 92 bacterial genera was over 1%. In top 30 genera, the norank_f__DA111 \((p = 0.039) \), Burkholderia-Paraburkholderia \((p = 0.045) \), Mycobacterium \((p = 0.025) \), Roseicoccus \((p < 0.001) \), Candidatus_Xiphinematobacter \((p = 0.032) \), Sorangium \((p = 0.019) \), Acidobacterium \((p = 0.020) \), and Singulisphaera \((p = 0.008) \) were significantly higher in mycosphere soil samples (Figure 4 and Supplementary Table S4), while the norank_c__JG37-AG-4 \((p = 0.015) \) and norank_f__Anaerolineaceae \((p = 0.003) \) were significantly higher in bulk soil (Figure 4). For all genera, mycosphere and bulk soil groups were represented by cladograms, and the LDA scores of two were proved by LEfSe (Figure 5).

Abiotic and Biotic Factors in \textit{R. griseocarnosa} Mycosphere and Bulk Soils

Soil pH, SOC, AN, AP, and AK produce the highest variability in bacterial community structures for both mycosphere and bulk soil, as demonstrated by the Mantel test (Table 2). To quantify the effects of the soil properties and the altitude on mycosphere bacterial communities, a variance partitioning analysis (VPA) was performed. A matrix of the soil properties’ relationship with the soil bacterial community was constructed using RDA analysis. Correlation analysis showed that there was a significant correlation between the soil parameters and the soil bacterial community structure. These variables explain the changes in bacterial community structure in the mycosphere (24.30%) and bulk soil (39.69%) (Figure 6). Soil parameters constituted 20.56%, altitude constituted 3.71%, and interactions between the soil parameters and altitude explained 0.03% of the variations in the mycosphere bacterial communities (Figure 6A). Meanwhile, for bulk soil, soil parameters explained 33.86%, altitude explained 5.68%, and interactions between the soil parameters and altitude explained the 0.15% of the variations in bacterial communities (Figure 6B). The soil pH and AN were identified as the main contributing factors to the soil parameter and explained the
bacterial communities’ variety in the mycosphere at 3.87 and 4.37%, respectively (Figure 6).

To explore the effect of host plants on soil bacterial, we analyzed the mycosphere bacterial communities of R. griseocarnosa under different host plants by PCA. The first two axes of the PCA explained 20.96 and 13.24% of the variance in the OTU data, respectively. PCA showed that the samples were dispersed among different host plants (Figure 7). It indicates that the host plant had little effect on soil mycosphere bacteria. There were no significant differences in the bacterial diversity index among the five replicates in each square (data not shown), which indicates that the host plant individual has a minimal effect on bacterial diversity.

Environmental Factors Influence the Mycosphere’s Soil Bacteria Communities

The diversity index was significantly correlated with soil and site properties (Table 3). The OTUs and phylogenetic diversity had a positive correlation with geological location altitude, SOC, and AN (Table 3). The Shannon index was significantly and positively correlated with SOC ($p = 0.012$) and AN ($p = 0.006$), while negatively correlated with pH ($p = 0.012$) (Table 3). Collection mycosphere sites had an acidic soil with sample pH values ranging from 3.99 to 4.55.

The relative abundance of the top 30 genera and soil/site properties was examined by Spearman correlation analysis (Figure 8). The heatmap showed that AP and AK clustered together and altitude, SOC, and AN clustered together, while pH was further apart on the ordination (Figure 8). Varibacter showed a significant positive correlation with pH ($p < 0.001$) and a significant negative correlation with altitude ($p = 0.002$), SOC ($p = 0.029$), and AN ($p = 0.003$). Acidibacter showed a negative correlation with altitude ($p < 0.001$) and AN ($p = 0.021$). Burkholderia-Paraburkholderia showed a significant positive correlation with pH ($p = 0.005$) and a significant negative correlation with SOC ($p = 0.018$). Candidatus_Xiphinematobacter presented a negative correlation with AP ($p = 0.005$), SOC ($p = 0.004$), and AN ($p = 0.021$). Acidothermus showed a significant positive correlation with AP ($p < 0.001$), AK ($p = 0.015$), SOC ($p < 0.001$), and AN ($p = 0.002$) and a significant correlation with the relative abundance of each site (Figure 8).
negative correlation with pH \((p = 0.042)\). *Rhizomicrobium* showed positive correlation with AP \((p < 0.001)\), AK \((p < 0.001)\), and AN \((p = 0.010)\). *Roseiarcus* showed a positive correlation with AP \((p = 0.001)\) and AK \((p = 0.049)\). *Candidatus_Koribacter* showed a significant positive correlation with AP \((p = 0.043)\). *Bradyrhizobium* showed a significant positive correlation with pH \((p = 0.0093)\). *Singulisphaera* showed a significant negative correlation with pH \((p = 0.017)\) (Figure 8).

Functional Predicted in Mycosphere and Bulk Soil

Using the Kyoto Encyclopedia of Genes and Genomes ortholog pathways (Oh et al., 2016), the KEGG functions of the identified bacteria were determined to be significantly \((p < 0.05)\) affected by the mycosphere and bulk soil (Figure 9). The results showed that some functional traits, such as two-component system, bacterial chemotaxis, bacterial secretion system, tyrosine metabolism, biosynthesis of unsaturated fatty acids, ascorbate and aldarate metabolism, and metabolism of cofactors and vitamins, were significantly increase in mycosphere soil \((p < 0.05)\) (Figure 9). When compared with bulk soil, valine, leucine, and isoleucine biosynthesis, ribosome biogenesis, homologous recombination, glycolysis/glucoseoneogenesis, and lysine biosynthesis were significantly \((p < 0.05)\) lower in mycosphere soil (Figure 9).

DISCUSSION

Keystone Species and Ecological Functions

A considerable proportion (\(\sim 96\%\)) of the coverage sequences is annotated to bacterial members (Figure 1), indicating that sequencing can be used to analyze the changes of the bacterial community structure in soil samples. Consistent with most of the earlier fungi research (Gryndler et al., 2000; Warmink and van Elsas, 2008; Oh et al., 2016), we found that, for most sites, bacterial diversity in the mycosphere soil was significantly lower than that in bulk soil. As seen in the *R. griseocarnosa* mycosphere soil (Figure 2), low bacterial diversity may be a common feature of the environment in which mycelium dominates (Gryndler et al., 2000). Compared to the bulk soil, *Laccaria* mycosphere bacterial diversity was significantly \((p < 0.05)\) reduced on R2A agar analyses (Warmink and van Elsas, 2008). The bacterial diversity of *Tricholoma matsutake* dominant soil was significantly \((p < 0.05)\) lower than *T. matsutake* minor soil (Oh et al., 2016). Olsson et al. (1996) demonstrated that ectomycorrhizal hyphae decreased the activity of bacteria in the soil. Therefore, it suggests that the variation of bacterial diversity might reflect the change of *R. griseocarnosa* population.

Proteobacteria, *Acidobacteria*, *Actinobacteria*, and *Chloroflexi* were the dominant bacterial communities in the soil (Figure 3), with an overall relative abundance higher than 86%. *Proteobacteria*, *Planctomycetes*, and *Verrucomicroia* were significantly higher in the mycosphere soil, while *Chloroflexi*, *Firmicutes*, *Cyanobacteria*, *Saccharibacteria*, and *Gemmatimonadetes* were significantly lower. In some soil samples, the content of *Acidobacteria* in mycosphere soil was significantly \((p < 0.05)\) higher than that in bulk soil (Supplementary Table S3).

Proteobacteria are naturally abundant in soil environments; thus, the increased richness found in the mycosphere soil could be the result of a positive effect of *R. griseocarnosa* because of its fast growth rate and its ability to use the major of root carbon substrates (Lauber et al., 2009). *Proteobacteria* increased richness might be stimulated by the higher nutritional status of soil in the mycosphere (Torsvik and Øvreås, 2002). Moreover, the dominance of *Proteobacteria* in hyphae (Cho et al., 2003), fruit bodies (Barbieri et al., 2010; Pent et al., 2017), and mycorrhizal
FIGURE 5 | LDA scores showed all the significant genus differences between mycosphere and bulk soil.

TABLE 2 | The Mantel test analysis in soil properties.

Group	pH	SOC	AN	AP	AK	Altitude
Mycosphere	0.238	0.183	0.023	0.215	0.137	0.0915
	(0.009)	(0.025)	(0.019)	(0.013)	(0.043)	(0.134)
Bulk	0.754	0.384	0.523	0.518	0.091	0.0767
	(0.001)	(0.001)	(0.002)	(0.001)	(0.301)	(0.397)

SOC, AN, AP, and AK represent soil organic carbon, available nitrogen, available phosphorus, and available potassium, respectively.

roots (Poole et al., 2001; Frey-Klett et al., 2007) may be a result of the increased carbon content of these fungal-growing soils. Burke et al. (2006) described Acidobacterium as a MHB. Studies have shown that these Proteobacteria and Acidobacteria are physiologically and ecologically close, and both favor similar ecological niches in the rhizosphere soil (Singh et al., 2007; Kielak et al., 2016). Planctomycetes and Verrucomicrobia were significantly higher in plant rhizosphere soil (Stafford et al., 2005; Zul et al., 2007; Nunes da Rocha et al., 2009), and they seem to have a strong rhizospheric capacity functionally, but their role in the rhizospheric process remains to be proven.

Bacterial communities displayed distinct structures in the mycosphere and bulk soils (Figure 4 and Supplementary Table S4). Burkholderia-Paraburkholderia, Mycobacterium, Roseicoccus, Candidatus_Xiphinematobacter, Sorangium, Acidobacterium, and Singulisphaera were more abundant in
Yu et al.

FIGURE 6 | Variation partition analysis (VPA) of soil/site properties on the bacterial community. (A) Mycosphere soil. (B) Bulk soil.

FIGURE 7 | Principle component analysis (PCA) plot of the host plant and soil bacterial communities' richness. The values of PC1 and PC2, explaining 20.96 and 13.24% of the variance.

the mycosphere soil than in the bulk soil samples (Figure 4 and Supplementary Table S4). The Proteobacteria genera Bradyrhizobium, Burkholderia-Paraburkholderia, and Roseiarcus are found in fungi-associated bacterial communities (Pent et al., 2017). For example, Burkholderia (Nguyen and Bruns, 2015) is known to be a mycorrhiza helper bacterium that promotes the growth and colonization of mycorrhizae. Kataoka et al. (2008) demonstrated that Burkholderia spp. and Bradyrhizobium spp. from ectomycorrhizal short roots with Russula and Suillus. Burkholderia spp. are well known as nitrogen-fixing bacteria (Timonen and Hurek, 2006). In recent years, many Burkholderia were reclassified as Paraburkholderia or Caballeronia (Sawana et al., 2014). For example, Burkholderia phenazinium and Burkholderia sordidicola were moved to the genus Paraburkholderia (Sawana et al., 2014), which are found in the mycorrhizosphere of Pinus muricata (Nguyen and Bruns, 2015). There is evidence that Burkholderia preferentially associates with mycorrhizal and that its strains can spread to the root tip (Poole et al., 2001). The members of the genus Burkholderia occur simultaneously with fungal taxa (Stopnisek et al., 2015), and the co-occurring might be due to Burkholderia's ability to migrate with the growing hyphae (Nazir et al., 2012). Mycobacterium has nitrogen fixation functions (Rilling et al., 2018) and can provide nitrogen for the growth of R. griseocarnosa. Sorangium has rich xylan-degrading enzymes that can degrade biological macromolecules, cellulose, hemicellulose, and xylan (Tamaru et al., 2010), which is beneficial for increased mushroom productivity (Zhou et al., 2017). Singulisphaera, as an acidophilus, is also found in the rhizosphere soil of Boletus edulis (Mediavilla et al., 2019). Acidobacterium
The Spearman correlation matrix between soil/site properties and diversity indexes.

	Altitude	pH	SOC	AN	AP	AK	OTU	Chao	Shannon	Coverage
pH		r	p							
		-0.327^*	0.02							
SOC		r	p							
		0.622^*	-0.343^*							
AN		r	p							
		0.701^*	0.015							
AP		r	p							
		0.082	0.57							
AK		r	p							
		-0.067	0.646							
OTU		r	p							
		0.298^*	0.036							
Chao		r	p							
		0.186	0.195							
Shannon		r	p							
		0.259	0.069							
Coverage		r	p							
		-0.059	0.685							
PD		r	p							
		0.399	0.004							

r represents the Spearman’s correlation coefficient. SOC, AN, AP, and AK represent soil organic carbon, available nitrogen, available phosphorus, and available potassium, respectively. PD represents phylogenetic diversity. Significant differences by $^*p < 0.05$ and $^{**}p < 0.01$.

was significantly higher in plant rhizosphere soil (Oh et al., 2012; Yang et al., 2012), but their role remains to be proven in the rhizospheric process. It is indicated that *Burkholderia-Paraburkholderia*, *Mycobacterium*, *Rosearcus*, *Acidobacterium*, *Sorangium*, and *Singulisphaera* were MHB of *R. griseocarnosa*. Although the functions of *Candidatus Xiphinematobacter* are unknown, it is possible that *Candidatus Xiphinematobacter* may be a MHB of *R. griseocarnosa*. These bacteria may play important roles in the growth of *R. griseocarnosa*.

Determinants of Bacterial Communities in Soil

The growth environment of the mycelium (ectomycorrhizal and mycosphere) affects both biological and abiotic factors in the soil ecosystem (Boersma et al., 2010; Kluber et al., 2010; Trappe et al., 2012). Through the study of fungi and bacteria in the mycosphere soil of *T. matsutake*, the results showed that the microbial diversity, community structure, and bacterial function in different geographical locations were similar (Oh et al., 2016). The diversity and community structure of mycosphere soil bacteria of *Agaricus sinodeliciosus* were different in different regions, but they all contained several main taxa (Zhou et al., 2017). *R. griseocarnosa* can co-exist with host tree species such as *Betulaceae*, *Fagaceae*, *Pinaceae*, and *Tiliaceae* to form ectomycorrhiza (Yu et al., 2020), but the symbiosis mechanism is still unclear (Yu et al., 2020), so we mainly studied the relationship between *R. griseocarnosa* and soil bacteria. There is growing evidence that root secretions regulate the relationship between mushrooms and soil microorganisms (Poole et al., 2001; Oh et al., 2016; Pent et al., 2017).

Russula griseocarnosa mycosphere has a high AN content in mycosphere soil (Table 1). Increased nitrogen supply can stimulate *Russula* to produce more spores and colonize more oak seedling roots (Avis et al., 2003). Soil pH and AN were significantly higher than most of the mycosphere soil samples (Supplementary Table S2). It was inferred that the main impact factors of *R. griseocarnosa* growth were pH and AN; moreover, previous research has found that pH significantly affects the soil's bacterial community diversity (Fierer and Jackson, 2006; Rousk et al., 2010; Pent et al., 2017). Singh et al. (2008) found that fungal mycorrhizosphere and bacterial assemblage were affected by the soil pH. Here, the selected study locations had an acidic soil with pH values ranging from 3.99 to 4.55. Previous research showed that the changes in soil microbial community structures were closely related to soil chemistry (Cao et al., 2016). Several soil characteristics (e.g., nutrient availability and organic carbon) are directly or indirectly associated with soil pH, which may contribute to changes in the bacterial community structure (Rousk et al., 2010). Studies have found that higher (Singh et al., 2014) and medium (Meng et al., 2012; Siles and Margesin, 2016) elevations increase bacterial diversity, which is consistent with our findings that medium elevations increase bacterial diversity. The host plants and plant individuals have less of an effect on the diversity of soil rhizosphere bacteria, which is consistent with a previous study (Pivato et al., 2009).

Bacterial Function

Our study analyzed whether the bacterial communities of the mycosphere and bulk soils produce distinct functional profiles, thus linking *R. griseocarnosa* to specific functions of
the bacterial soil. Our results indicated that mycospheres and bulk soils were functionally distinct. Mycosphere soils had an increase in the two-component system, bacterial chemotaxis, bacterial secretion system, tyrosine metabolism, biosynthesis of unsaturated fatty acids, ascorbate and aldarate metabolism, and metabolism of cofactors and vitamins \((p < 0.05) \) (Figure 9).
CONCLUSION

In conclusion, we identified a suitable environment for *R. griseocarnosa* growth by comparing the physicochemical properties, bacterial diversity, and community structure of mycosphere and bulk soils. 16S rRNA sequencing showed that the bacterial community composition in the mycosphere was significantly different from that of bulk soils. Further analysis showed that *R. griseocarnosa* growth caused a change in the microbial community structure. Growth of *R. griseocarnosa* reduces the diversity and abundance of soil bacterial communities. Among the soil variables, altitude and pH displayed significant contributions in bacterial community structure and diversity properties in all geographical sites under study. Soil pH and AN were the main factors contributing to *R. griseocarnosa* growth. We identified several dominant bacteria genera, including *Mycobacterium*, *Rosearicuus*, *Candidatus_Xiphinemato bacter*, *Sorangium*, *Acidobacterium*, and *Singulisphaera* in the mycosphere that may improve *R. griseocarnosa* growth. In the functional analysis, we identified functional modules related to bacterial nutrient metabolism in the *R. griseocarnosa* mycosphere soil. The mycosphere soil is a complex environment, and our study shows that multiple symbiotic relationships between microbes and *R. griseocarnosa* might decrease bacterial diversity. Moreover, it suggests that the fruiting body formation of *R. griseocarnosa* may be affected not only by the host plants but also by the bacterial community in the mycosphere soil. Therefore, the application of management measures to improve soil properties, including the use of N fertilizer and microbial fertilizer containing MHB, may promote the conservation, propagation, and sustainable utilization of *R. griseocarnosa*.

DATA AVAILABILITY STATEMENT

The Illumina sequencing raw reads were deposited into the NCBI BioProject: PRJNA553654 within GenBank. The SRA accession of raw reads number is SUB5929895.

AUTHOR CONTRIBUTIONS

FY, J-FL, and JS participated in study design, sample collection, and statistical analyses. J-KL and S-KW conducted molecular biology experiments. FY drafted the manuscript. J-FL improved the manuscript.

FUNDING

This study was supported by the National Non-profit Institute Research Fund of CAF (CAFYBB2017ZB001), the National Natural Science Foundation of China (Nos. 31770657 and 31570544), and the Science and Technology Project of Guangdong Province (2017B020205002).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmicb.2020.00347/full#supplementary-material

REFERENCES

Allison, S. D., Hanson, C. A., and Treseder, K. K. (2007). Nitrogen fertilization reduces diversity and alters community structure of active fungi in boreal ecosystems. *Soil Biol. Biochem.* 39, 1878–1887. doi: 10.1016/j.soilbio.2007.02.001

Antony-Babu, S., Deveau, A., Van Nostrand, J. D., Zhou, J., Le Tacon, F., Robin, C., et al. (2013). Black truffle-associated bacterial communities during the development and maturation of Tuber melanosporum ascocarps and putative functional roles. *Environ. Microbiol.* 16, 2831–2847. doi: 10.1111/1462-2920.12294

Aspray, T. J., Frey-Klett, P., Jones, J. E., Whippers, J. M., Garbaye, J., and Bending, G. D. (2006). Mycorrhizal helper bacteria: a case of specificity for altering ectomycorrhiza architecture but not ectomycorrhiza formation. *Mycorrhiza* 16, 533–541. doi: 10.1007/s00572-006-0068-3

Avis, P. G., McLaughlin, D. J., Dentinger, B. C., and Reich, P. B. (2003). Long-term increase in nitrogen supply alters above- and below-ground ectomycorrhizal communities and increases the dominance of *Russula* spp. in a temperate oak savanna. *New Phytol.* 160, 239–253. doi: 10.1046/j.1469-8137.2003.00865.x

Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S., and Vivanco, J. M. (2006). The role of root exudates in rhizosphere interactions with plants and other organisms.
Cho, Y. S., Kim, J. S., Crowley, D. E., and Cho, B. G. (2003). Growth promotion by fluorescent pseudomonads. *Soil Biol. Biochem.* 35, 1683–1694. doi: 10.1016/S0038-0717(03)00099-6

Brulé, C., Frey-Klett, P., Piaulet, J. C., Courrier, S., Gérard, F., Lemoine, M. C., et al. (2012). Revealing structure and assembly cues for *Arabidopsis* root-inhabiting bacterial microbiota. *Nature* 488, 91–95. doi: 10.1038/nature11336

Burke, D. J., Kretzer, A. M., Rygiewicz, P. T., and Topa, M. A. (2006). Soil phosphorus, climate and distance are the major factors influencing microbial community sequencing data. *Meth. Ecol. Evol.* 7, 335–336. doi: 10.1111/j.1742-496X.2006.0125.x

Chen, S., Qiu, C., Huang, T., Zhou, W., Qi, Y., Gao, Y., et al. (2013). Effect of ectomycorrhizal fungi by in vitro mycorrhizal synthesis, " in Vitro Culture of Forest Trees, Vol. 4, eds S. Declerck, J. A. Fortin, and D. G. Strullu (Berlin, Germany: Springer), 253–271. doi: 10.1007/3-540-27331-x_14

Griffiths, R. I., Whiteley, A. S., O’Donnell, A. G., and Bailey, M. J. (2000). Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. *Appl. Environ. Microb.* 66, 5488–5491. doi: 10.1128/aem.66.12.5488-5491.2000

Yu et al.
The microbiome of *Pinus murrayana* ectomycorrhizae: community assemblies, fungal species effects, and *burkholderia* as important bacteria in multipartnered symbioses.

Rilling, J. I., Acuña, J. J., Sadowsky, M. J., and Jorquera, M. A. (2018). Putative functional-transcriptome analysis of the mycorrhiza helper bacterium *streptomyces strain BS001*, which interacts with fungal surface structures. *J. Bacteriol.* 194, 4480–4481. doi: 10.1128/jb.00725–12

Nelson, D. W., and Sommers, L. E. (1996). Total carbon, organic carbon, and organic matter. *Methods Soil Anal. Part 3 Chem. Methods* 34, 961–1010. doi: 10.2136/ssasbookers5.3.34

Nguyen, N. H., and Bruns, T. D. (2015). The microbiome of *Tricholoma matsutake* (pine mushroom). *Mycorrhiza* 25, 1018–1027. doi: 10.1007/s00572-016-0748-2

Singh, B. K., Munro, S., Potts, J. M., and Millard, P. (2007). Influence of grass species and soil type on rhizosphere microbial community structure in grassland soils. *Appl. Soil Ecol.* 36, 147–155. doi: 10.1016/j.apsoil.2007.01.004

Singh, B. K., Nunan, N., Ridgway, K. P., McNicol, J., Young, J. P. W., Daniell, T. J., et al. (2008). Relationship between assemblages of mycorrhizal fungi and bacteria on grass roots. *Environ. Microbiol.* 10, 534–541. doi: 10.1111/j.1462-2920.2007.01474.x

Singh, D., Lee-Cruz, L., Kim-S.-W., Kerfahi, D., Chun, J. H., and Adams, J. M. (2014). Strong elevational trends in soil bacterial community composition on Mt. Halla, South Korea. *Soil Biol. Biochem.* 68, 140–149. doi: 10.1016/j.soilbio.2013.09.027

Stafford, W. H. L., Baker, G. C., Brown, S. A., Burton, S. G., and Cowan, D. A. (2005). Bacterial diversity in the rhizosphere of *Picea species*. *Environ. Microbiol.* 7, 1755–1768. doi: 10.1111/j.1462-2920.2005.00929.x

Stopnisek, N., Zühlke, D., Carlier, A., Barberán, A., Fierer, N., Becher, D., et al. (2015). Molecular mechanisms underlying the close association between soil *Burkholderia* and fungi. *ISME J.* 10, 253–264. doi: 10.1038/isemj.2015.73

Storey, J. D. (2007). The optimal discovery procedure: a new approach to simultaneous significance testing. *J. R. Stat. Soc. B.* 69, 473–507. doi: 10.1111/j.1467-9868.2007.005592.x

Tamaru, Y., Miyake, H., Kuroda, K., Ueda, M., and Doi, R. H. (2010). Comparative genomics of the mesophilic cellulosome-producing clustридium cellulovorans and its application to biofuel production via consolidated bioprocessing. *Environ. Technol.* 31, 889–903. doi: 10.1080/09593330.2010.490836

Timonen, S., and Hurek, T. (2006). Characterization of culturable bacterial populations associating with *Pinus sylvestris* – Suillus bovinus mycorrhizospheres. *Can. J. Microbiol.* 52, 769–778. doi: 10.1139/w06-016

Toivok, V., and Övreás, I. (2002). Microbial diversity and function in soil from genes to ecosystems. *Curr. Opin. Microbiol.* 5, 240–245. doi: 10.1016/s1369-5267(02)00324-7

Trappe, M. J., Cromack, K., Caldwell, B. A., Griffiths, R. P., and Trappe, J. M. (2012). Diversity of Mat-forming fungi in relation to soil properties, disturbance, and forest ecotype at crater Lake National Park, Oregon, USA. *Diversity* 4, 196–223. doi: 10.3390/d4020196

Vandenkoonrhuyse, P., Quaizer, A., Duhamel, M., Le Van, A., and Dufresne, A. (2015). The importance of the microbiome of the plant holobiont. *New Phytop.* 206, 1196–2006. doi: 10.1111/nph.13312

Warmink, J. A., Nazir, R., and van Elsas, J. D. (2009). Universal and species-specific bacterial “fungiphiles” in the mycorrhizospheres of different basidiomycetous fungi. *Environ. Microbiol.* 11, 300–312. doi: 10.1111/j.1462-2920.2008.01767.x

Warmink, J. A., and van Elsas, J. D. (2008). Selection of bacterial populations in the mycorrhize of *Laccaria proxima*: is type III secretion involved? *ISME J.* 2, 887–900. doi: 10.1038/isemj.2008.41

Wu, J., He, Z. L., Wei, W. X., O’Donnell, A. G., and Syers, J. K. (2000). Quantifying microbial biomass phosphorus in acid soils. *Biol. Fert. Soils* 32, 500–507. doi: 10.1007/s003740000284

Yan, Y., Kuramae, E. E., de Hollander, M., Klinkhamer, P. G. L., and van Veen, J. A. (2017). Functional traits dominate the diversity-related selection of bacterial communities in the rhizosphere. *ISME J.* 11, 56–66. doi: 10.1038/isemj.2016.108
Yu, F., Song, J., Liang, J. F., Wang, S. K., and Lu, J. K. (2020). Whole genome sequencing and genome annotation of the wild edible mushroom, Russula griseocarnosa. Genomics 112, 603–614. doi: 10.1016/j.ygeno.2019.04.012

Yuan, Y., Liu, Y., Liu, M., Chen, Q., Jiao, Y., Liu, Y., et al. (2017). Optimization extraction and bioactivities of polysaccharide from wild Russula griseocarnosa. Saudi Pharm. J. 25, 523–530. doi: 10.1016/j.jsps.2017.04.018

Yun, Y. B., Park, S. W., Cha, J. S., and Kim, Y. K. (2013). Biological characterization of various strains of Pseudomonas tolaasii that causes brown blotch disease. J. Korean Soc. Appl. Biol. Chem. 56, 41–45. doi: 10.1007/s13765-012-2242-y

Zhao, J., Zhang, R., Xue, C., Xun, W., Sun, L., Xu, Y., et al. (2014). Pyrosequencing reveals contrasting soil bacterial diversity and community structure of two main winter wheat cropping systems in China. Microb. Ecol. 67, 443–453. doi: 10.1007/s00248-013-0322-0

Zhou, J., Bai, X., and Zhao, R. (2017). Microbial communities in the native habitats of Agaricus sinodeliciosus from xinjiang province revealed by amplicon sequencing. Sci. Rep. 7:15719. doi: 10.1038/s41598-017-16082-1

Zul, D., Denzel, S., Kotz, A., and Overmann, J. (2007). Effects of plant biomass, plant diversity, and water content on bacterial communities in soil lysimeters: implications for the determinants of bacterial diversity. Appl. Environ. Microb. 73, 6916–6929. doi: 10.1128/aem.01533-07

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Yu, Liang, Song, Wang and Lu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.