SPAK-Knockout Mice Manifest Gitelman Syndrome and Impaired Vasoconstriction

Sung-Sen Yang,*†‡ Yi-Fen Lo,‡ Chin-Chen Wu,§ Shu-Wha Lin,‖ Chien-Ju Yeh,* Pauling Chu,*‡ Huey-Kang Sytwu,‡ Shinichi Uchida,¶ Sei Sasaki,¶ and Shih-Hua Lin*‡

*Division of Nephrology, Department of Medicine, Tri-Service General Hospital, and †Graduate Institute of Physiology, ‡Graduate Institute of Life Science, and §Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan; ‖Graduate Institute of Medical Technology, National Taiwan University, Taipei, Taiwan; and ¶Department of Nephrology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan

ABSTRACT
Polymorphisms in the gene encoding sterile 20/SPS1-related proline/alanine-rich kinase (SPAK) associate with hypertension susceptibility in humans. SPAK interacts with WNK kinases to regulate the Na⁺-K⁺-2Cl⁻ and Na⁺-Cl⁻ co-transporters [collectively, N(K)CC]. Mutations in WNK1/4 and N(K)CC can cause changes in BP and dyskalemia in humans, but the physiologic role of SPAK in vivo is unknown. We generated and analyzed SPAK-null mice by targeting disruption of exons 9 and 10 of SPAK. Compared with SPAK⁺/⁻⁺ mice, SPAK⁺/⁻ mice exhibited hypotension without significant electrolyte abnormalities, and SPAK⁻/⁻ mice not only exhibited hypotension but also recapitulated Gitelman syndrome with hypokalemia, hypomagnesemia, and hypocalciuria. In the kidney tissues of SPAK⁻/⁻ mice, the expression of total and phosphorylated (p-)NCC was markedly decreased, but that of p-OSR1, total NKCC2, and p-NKCC2 was significantly increased. We observed a blunted response to thiazide but normal response to furosemide in SPAK⁻/⁻ mice. In aortic tissues, total NKCC1 expression was increased but p-NKCC1 was decreased in SPAK-deficient mice. Both SPAK⁺/⁻ and SPAK⁻/⁻ mice had impaired responses to the selective α₁-adrenergic agonist phenylephrine and the NKCC1 inhibitor bumetanide, suggesting that impaired aortic contractility may contribute to the hypotension of SPAK-null mice. In summary, SPAK-null mice have defects of NCC in the kidneys and NKCC1 in the blood vessels, leading to hypotension through renal salt wasting and vasodilation. SPAK may be a promising target for antihypertensive therapy.

J Am Soc Nephrol 21: 1868–1877, 2010. doi: 10.1681/ASN.2009121295

Sterile 20/SPS1-related proline/alanine-rich kinase (SPAK)¹² and oxidative stress-responsive kinase 1 (OSR1)³ are serine/threonine kinases that share high homology in both their N-terminal catalytic and C-terminal regulatory domains and are widely distributed in the brain, pancreas, heart and kidney.²–⁵ SPAK and OSR1 are downstream substrates of WNK [With-No-Lysine (K)] 1 and 4 kinases and upstream regulators of the cation-chloride co-transporters (Na⁺-K⁺-2Cl⁻ co-transporter [NKCC] 1 and 2 and Na⁺-Cl⁻ co-transporter [NCC]).⁶–⁹ Specifically, phosphorylation and activation of SPAK and OSR1 by WNK1/4 can turn phosphorylate and activate NCC/NKCC1.¹⁰,¹¹ Gene mutations of the NCC in the distal convoluted tubules (DCTs) and NKCC2 in the thick ascending limb of the loop of Henle (TAL) cause autosomal recessive Gitelman syndrome (GS)¹² and Bartter syndrome (BS),¹³ respectively. These congenital renal tubular disorders are characterized by

Received December 24, 2009. Accepted June 21, 2010.
Published online ahead of print. Publication date available at www.jasn.org.
Correspondence: Dr. Shih-Hua Lin, No. 325, Cheng-Kung Road Section 2, Neihu 114, Taipei, Taiwan. Phone: +886-2-8792-7213; Fax: +886-2-8792-7134; E-mail: IS21116@ndmctsgh.edu.tw
Copyright © 2010 by the American Society of Nephrology
renal salt-losing hypotension, secondary hyperreninemia and hyperaldosteronism, and hypokalemic metabolic alkalosis; however, mutations in the WNK1 and WNK4 genes cause autosomal dominant pseudohypoaldosteronism type II (PHAII) featuring the mirror image of GS, with salt-sensitive hypertension, low plasma renin activity and inappropriately high plasma aldosterone level, and hyperkalemic metabolic acidosis. A recent human study also showed that genetic variations in the intron regions of STK39, the gene encoding SPAK, could enhance its expression and increase susceptibility to hypertension. These findings suggest that SPAK and OSR1 play important roles in BP and renal tubular electrolyte regulation.

We previously found that phosphor (p-) but not total SPAK and OSR1 were increased along with increased total and p-NCC expression in kidneys of WNK4^{D561A/+} knock-in mice, recapitulating human PHAII. Conversely, a WNK4 hypomorphic mouse (by targeting disruption of exon 7 whereby the PHAII-causing mutations are clustered) clearly showed hypertension and decreased expression of p-SPAK/OSR1 and p-NCC. These and other previous findings further reiterate the importance of the WNK4-SPAK/OSR1-NCC pathway in the pathogenesis of PHAII.

Because SPAK and OSR1 share high homology in both their catalytic and regulatory domains and their expression in tissues often overlaps, it is crucial to tease apart the role of each kinase. The generation and analysis of individual SPAK- or OSR1-deficient mice may provide better platforms to study this issue. For this purpose, we generated SPAK- and OSR1-deficient mice to investigate its role in the kidneys and blood vessels.

Results to be reported indicate that SPAK^{−/−} mice exhibited not only hypotension but the phenotype of GS.

RESULTS

Generation of SPAK-Null Mice

To generate SPAK-null mice, we designed a vector to delete exons 9 and 10 of Stk39 gene (Figure 1A) and 20 homologous recombination embryonic stem (ES) cells were confirmed by Southern blotting (Figure 1B). The neo cassette was excised by transfecting the Flp-expression plasmid into the selected targeted ES cells. We obtained three chimeric mice from two different SPAK^{lox/lox} clones and crossed them with C57BL/6 mice to produce SPAK^{lox/lox} progeny (Figure 1A). The SPAK^{lox/lox 9,10/+} mice were then generated by crossing SPAK^{lox/lox} with CAG-Cre recombinase transgenic mice. SPAK^{lox/lox 9,10/lox 9,10} mice were generated by mating SPAK^{lox 9,10/+} littermates with each other, and the genotype of the offspring was verified by PCR amplification (Figure 1C). We did not find full-length or estimated hypomorphic (approximately 60 kD) SPAK proteins in either kidneys (Figures 1D and 2A) or aortic tissue, confirming that the SPAK protein was not expressed in SPAK^{lox 9,10/lox 9,10} mice. Hereafter, SPAK^{+/−} and SPAK^{−/−} are used to represent heterozygous (He) and homozygous (Ho) disrupted exons 9 and 10 of Stk39 gene (SPAK-null) mice, respectively. Because there was no difference in gross appearance and phenotype between D7 and D10 SPAK-null mice strains, the D7 mice were adopted in this study. SPAK^{+/−} and SPAK^{−/−} mice grew normally and were indistinguishable from wild-type (WT) control littermates in appearance, behavior, and fertility.

Phenotype of SPAK-Null Mice

First, we focused on BP and electrolyte homeostasis in the SPAK-null mice. As shown in Table 1, SPAK^{−/−} mice had relative hypotension (<i>P</i> < 0.05) and secondary hyperaldosteronism (<i>P</i> < 0.05). SPAK^{−/−} mice also exhibited a significant
decrease in plasma K⁺ concentration (P < 0.05) with increased fractional excretion of K⁺ (FEK⁺; P < 0.05), hypomagnesemia (P < 0.01) with increased fractional excretion of Mg²⁺ (FEMg²⁺; P < 0.05), and hypocalciuria [Ca²⁺/creatinine 0.12 ± 0.02 versus 0.19 ± 0.03 mg/mg (n = 10; P < 0.01)]. The failure to develop quite hypokalemia (approximately 3.6 mmol/L) in SPAK−/− mice may be due to their high K⁺ intake per kilogram of body mass (Table 1).

Conversely, SPAK−/− mice exhibited only relative hypotension (P < 0.05) without significant differences in serum and urine electrolytes, compared with WT controls (Table 1).

Distribution and Expression of SPAK and OSR1 in Renal Tubules

It has been reported that SPAK is distributed in the TAL and DCT; however, SPAK−/− mice displayed a GS phenotype corresponding to a DCT lesion with hypercalciuria rather than BS physiology (a TAL lesion with normal-hypercalciuria), suggesting predominant distribution and expression of SPAK in DCT. By immunofluorescence (IF) stain in the kidney tissue of WT mice, SPAK was expressed in both the cortex dominantly with co-localization with NCC-positive segment (DCT; Supplemental Figure S1A) and medulla overlapped with NKCC2-positive segment (TAL; Supplemental Figure S1B). OSR1 was widely distributed in the cortex and medulla, including DCT and TAL segments (Supplemental Figure S1C).

Expression of SPAK, OSR1, NKCC2, and NCC in Kidney Tissues

To examine the effect of SPAK deletion on NCC expression, we measured the relative levels of total and p-SPAK and NCC in the kidney tissues by semiquantitative immunoblotting. The lack of total SPAK and p-SPAK (Figure 2A) with markedly reduced total NCC (42 ± 6%; P < 0.01) and p-NCC (T53 [50 ± 10%], T58 [24 ± 4%], and S71 [37 ± 8%]; P < 0.01) was observed in SPAK−/− mice (Figure 2C). To determine whether the expression of total OSR1 and p-OSR1 was affected in SPAK−/− mice, we also looked at total OSR1, p-OSR1, total NKCC2, and p-NKCC2 (T96; another possible SPAK/OSR1 phosphoacceptor site).

Although total OSR1 expression was not changed, p-OSR1 (193 ± 22%; P < 0.01; Figure 2B), total NKCC2 (230 ± 26%; P < 0.01), and p-NKCC2 (T96; 460 ± 37%; P < 0.01; Figure 2D) expression were significantly increased. In the SPAK−/− mice, the expression of SPAK, p-SPAK (Figure 2A), total NCC (80 ± 9%; P < 0.05), and p-NCC (T53 [69 ± 18%], T58 [65 ± 14%], and S71 [65 ± 16%]; P < 0.01; Figure 2C) were significantly reduced, but the expression of p-OSR1 (188 ± 28%; P < 0.01; Figure 2B), NKCC2 (132 ± 14%; P < 0.01), and p-NKCC2 (T96; 221 ± 45%; P < 0.01; Figure 2D) was significantly increased, compared with WT controls. We also examined the cellular localization and ex-
pression of SPAK, NCC, and NKCC2 in the kidney tissue of SPAK-null mice. The results of IF were consistent with those observed by immunoblotting. As expected, SPAK expression was absent in NCC-positive segment (DCT) in SPAK−/− mice (Supplemental Figure S1A; Figure 3, top right). The cellular distribution of p-NCC (T58) was still luminally condensed but significantly less in both SPAK+/− and SPAK−/− mice (Figure 3, bottom). Nevertheless, the cellular localization of total NKCC2 and p-NKCC2 (T96) in the TAL was luminally condensed in SPAK+/− and SPAK−/− mice (Supplemental Figure S2).

Diuretic Response to Hydrochlorothiazide and Furosemide In Vivo

We administered hydrochlorothiazide (HCTZ; NCC inhibitor) and furosemide (NKCC2 inhibitor) to determine the NCC and NKCC2 function in these SPAK-null mice. The resulting urine output and Na+, K+, and Cl− excretion rates were used as an index of NCC and NKCC2 function in response to their inhibitors. Like WT controls, urine amount, FE_{Na}, FE_{K}, and FE_{Cl} were markedly increased after a single dose of HCTZ treatment in SPAK+/− mice, suggesting that NCC function was still preserved in SPAK+/− mice. Compared with WT and SPAK+/− mice, SPAK−/− mice had a significant decrease in urine amount, FE_{Na}, and FE_{Cl}, supporting that their NCC function was severely diminished (Figure 4A). For NKCC2 function, urine output, FE_{Na}, FE_{K}, and FE_{Cl} after a single dose of furosemide administration were significantly increased to a similar extent among WT, SPAK+/−, and SPAK−/− mice (Figure 4B), suggesting that NKCC2 function was still intact in SPAK+/− and SPAK−/− mice.

Expression of SPAK and NKCC1 in Aortic Tissues

Because SPAK and NKCC1 are coexpressed in vascular smooth muscle and NKCC1 activity is known to play an important role in regulation of aortic contractility and BP,24,25 we examined whether this pathway could be involved in the hypotension of SPAK-null mice. The relative protein expression of total and p-SPAK/NKCC1 in the aortic tissues of SPAK-null mice were examined. Total SPAK and p-SPAK expression were absent in aortic tissues, akin to the kidneys (Figure 5A). Of interest, we found increased, rather than decreased, total NKCC1 expression in aortic tissues. Nevertheless, the functional p-NKCC1 (T206) was significantly decreased in SPAK−/− mice, compared with WT controls (Figure 5B).

Aortic Contractility

To investigate whether the decreased p-NKCC1 (T206) contributed to vasodilation, we evaluated aortic contractility in the SPAK-null mice. The concentration-force relationships for aortic rings of WT controls, SPAK+/− mice, and SPAK−/− mice after stimulation with phenylephrine (PE; a selective α1-adrenergic agonist) either in absence or presence of 10 μM bumetanide (an NKCC1 inhibitor) were examined.24 Without bumetanide, both SPAK+/− and SPAK−/− mice were significantly less responsive to PE stimulation compared with WT control (PE concentration 10−6 to 10−4 M; Figure 6A). In the presence of bumetanide, aortic contraction in WT mice was significantly reduced to approximately 50% of maximal contraction (EC50; PE concentration 10−6 to 10−4 M; Figure 6B), similar to SPAK−/− and SPAK+/− mice without bumetanide treatment; however, the aortic contractility after bumetanide treatment was significantly reduced only in SPAK+/− but not SPAK−/− mice at PE concentration 10−4 M (Figure 6, C and D). These findings suggested that impaired NKCC1-mediated aortic contractility may be involved in the hypotension of SPAK-null mice.

DISCUSSION

SPAK-null mice created by targeting disruption of exons 9 and 10 of SPAK (Stk39) exhibited low BP and prominent defects in the DCT with GS phenotype, including salt wasting, hypokalemia with renal K+ wasting, hypomagnesemia, and hypocalciuria.12,21 In the kidneys of SPAK−/− mice, the expression of total and p-NCC in the DCT was markedly decreased but total and p-NKCC2 in the TAL was significantly increased. The aortic tissues in these mice also exhibited a blunted response to PE stimulation and impaired response to bumetanide inhibition, accompanied by decreased p-NKCC1 expression. These results indicate that SPAK is crucial in the regulation of vasoconstriction and renal tubular salt reabsorption.
It has been shown that SPAK is expressed in both TAL and DCT of kidney tissues and can activate both NKCC2 and NCC by enhancing their phosphorylation in vitro studies.8,11,26 It was unclear whether SPAK controlled NKCC2 and/or NCC function in vivo. In this study, we found that SPAK was predominantly expressed in the cortex, especially in the DCT; therefore NCC but not NKCC2 would be its major substrate in renal tissues. The expression of total and p-NCC (T53, T58, and S71) but not total and p-NKCC2 (T96) were markedly decreased in SPAK−/− mice, further indicating that NCC is the main target regulated by SPAK. The markedly attenuated NCC phenotype in SPAK-null mice was also observed. Furthermore, p-NKCC1 expression in SPAK−/− mice expressed with GS were heterozygous or have no detectable NCC mutation.21 Given the phenotype of GS in SPAK−/− mice, SPAK, as an upstream regulator of NCC, may be a possible candidate gene for these patients who have GS with only one heterozygous or no detectable NCC mutation. Decreased phosphorylation and abundance of NCC in SPAK-null mice also suggest that the SPAK-NCC signaling cascade may be involved in the sorting or retrieval mechanism of NCC besides affecting NCC phosphorylation and activity found in heterologous expression systems.8,26,27

Reminiscent of the normal BP and absence of GS phenotype in heterozygous NCC knockout mice,28 SPAK+/− mice with >50% total and p-NCC did not have GS phenotype but hypotension. The normal response to HCTZ and furosemide treatment in SPAK+/− mice suggested that their NCC and NKCC2 functions were still conserved. This finding hints that hypotension in SPAK+/− mice may not be primarily caused by reduced NCC function but from other effects. It has been shown that NKCC1, a downstream effector of SPAK/OSR1, can regulate vascular smooth muscle tone. Activation of NKCC1 in blood vessels leads to increased intracellular Cl− concentration, which evokes increased Ca2+ influx through L-type Ca2+ channels and vessel contraction.29–31 Drawing analogy with the reduced BP and vascular tone in NKCC1-null mice,24,35 we examined the aortic contractility of SPAK-null mice by PE stimulation, which has also been shown to stimulate vascular contractility by enhanced NKCC1 phosphorylation and activity,32 in the presence and absence of bumetanide. Aortic contractility in both SPAK+/− and SPAK−/− mice was less responsive to PE stimulation. Moreover, impaired bumetanide inhibition of aortic contractility in SPAK+/− and SPAK−/− mice was also observed. Furthermore, p-NKCC1 expression in the aortic tissues of both SPAK+/− and SPAK−/− mice were significantly decreased despite increased total NKCC1 expression. These results suggest that reduced

Table 1. BP and blood and urine biochemistries in SPAK-null mice

Parameter	WT (n = 10)	He (n = 16)	Ho (n = 10)
BP (mmHg)			
systolic	109.5 ± 4.5	95.6 ± 3.6a	93.2 ± 4.1b
diastolic	76.2 ± 5.6	62.1 ± 4.6a	59.3 ± 6.2b
mean	87.2 ± 5.6	74.0 ± 4.5a	71.2 ± 3.5b
Weight (g)	23.8 ± 2.5	23.6 ± 3.3	22.1 ± 1.8
Food intake (g/day per g body wt)	0.07 ± 0.01	0.06 ± 0.02	0.07 ± 0.02
K⁺ intake (μmol/g per day)	15.1 ± 0.4	14.9 ± 0.6	16.2 ± 0.4

Plasma:

- aldosterone (pg/ml): 570 ± 158, 707 ± 226, 1006 ± 394b
- Na⁺ (mmol/L): 156 ± 3, 158 ± 3, 157 ± 3
- K⁺ (mmol/L): 4.2 ± 0.3, 4.0 ± 0.3, 3.6 ± 0.2b
- Cl⁻ (mmol/L): 114 ± 2, 113 ± 3, 109 ± 2b
- total Ca²⁺ (mg/dl): 9.6 ± 0.2, 9.5 ± 0.4, 9.7 ± 0.3
- Mg²⁺ (mg/dl): 2.5 ± 0.1, 2.3 ± 0.2, 1.9 ± 0.2b
- BUN (mg/dl): 22.6 ± 4.7, 24.2 ± 5.8, 27.7 ± 3.5b
- Cr (mg/dl): 0.11 ± 0.03, 0.12 ± 0.02, 0.10 ± 0.02b

Urine (ml/day):

- Ccr (μl/min per g): 8.4 ± 2.2, 8.1 ± 1.8, 8.6 ± 2.5
- pH: 6.9 ± 0.9, 7.0 ± 0.5, 7.1 ± 0.4
- Na⁺ (μmol/day): 97 ± 21, 85 ± 25, 89 ± 16
- K⁺ (μmol/day): 125 ± 8, 124 ± 25, 142 ± 22
- Cl⁻ (μmol/day): 85 ± 10, 92 ± 11, 89 ± 15
- FENa (%): 0.31 ± 0.13, 0.32 ± 0.12, 0.35 ± 0.15b
- FECr (%) : 22.4 ± 5.3, 24.9 ± 9.6, 36.1 ± 7.4b
- FEK⁺ (%) : 6.9 ± 1.3, 7.3 ± 1.5, 9.8 ± 1.2b
- Ca²⁺/Cr (mg/mg): 0.19 ± 0.03, 0.17 ± 0.05, 0.12 ± 0.02b

BUN, blood urea nitrogen; Ccr, clearance of Cr; Cr, creatinine.

*P < 0.05, He versus WT.

**P < 0.05, Ho versus WT.
NKCC1 phosphorylation and function in aortic tissues may contribute to the impaired vasoconstriction and hypotension in these SPAK-null mice, especially in SPAK−/− mice. In addition to PE, angiotensin II and aldosterone, the activators of the SPAK-NCC cascade in the kidney, have been shown to stimulate aortic contractility via activation of NKCC1 in vascular smooth muscle. Whether SPAK acts as an intermediate regulator between these vasoconstrictors and NKCC1 in vascular smooth muscle merits further evaluation.

Thiazides, as an NCC inhibitor, have been widely used clinically as first-line therapy for hypertension. Vasorelaxing agents such as α blockers, Ca2+-channel blockers, angiotensin-converting enzyme inhibitors, and angiotensin II receptor blockers are also commonly used alone or in combination with thiazide diuretics. It has been increasingly shown that inhibition of NKCC1 function in smooth muscle, with resulting vasodilation effect, may be an alternative target for treatment of hypertension; however, the high protein binding of current NKCC1/2 inhibitors (bumetanide and furosemide) means the concentrations required to achieve vasodilation through NKCC1 inhibition will be subjugated first by massive diuresis through NKCC2 inhibition. The dual action of SPAK portends the development of SPAK inhibitors, targeting the NCC in the DCT and NKCC1 in vascular smooth muscle, as a novel strategy in antihypertensive therapy.

In conclusion, generation and analysis of SPAK-null mice shed light on the important role of SPAK in the vessels and kidneys. The total and p-NCC in the DCT but not NKCC2 in TAL were markedly decreased in SPAK−/− mice, supporting the notion that NCC is the main target of SPAK and explaining the development of the GS phenotype. Reduced NKCC1 phosphorylation and function in aortic tissues contribute to impaired vasoconstriction and hypotension in these SPAK-null mice (Figure 7). Screening of SPAK gene may be warranted for patients who have GS with only heterozygous or no detectable NCC mutations. SPAK may be a promising target for future antihypertensive therapy.

CONCISE METHODS

Targeted Disruption of SPAK (Stk39) Gene

The experimental protocols used in this study were approved by the Institutional Animal Care and Use Committee of the National Defense Medical Center (Taipei, Taiwan). For generation of SPAK-null mice, the targeting vector was prepared by the gap-repair technique. Mouse Stk39 genomic DNA encoding SPAK was isolated from a 129/Sv genomic DNA BAC library. The targeting vector was then transfected into R1 ES cells (129/SvJ × 129S1) by electroporation. After selection with 240 μg/ml G418 and 2 μM gancyclovir, correctly targeted ES clones were selected by Southern blotting. The neo cassette was excised by transfecting the FLP-expression plasmid into the

Figure 4. SPAK-null mice show blunted response to HCTZ but normal response to furosemide (FURO). FE_{Na}, FE_{K}, and FE_{Cl} represent the fractional excretion of Na⁺, K⁺, and Cl⁻, respectively. (A) Response of urine output, FE_{Na}, FE_{K}, and FE_{Cl} was increased both in WT (●) and SPAK−/− (He, ▲) mice but blunted in SPAK−/− (Ho, ▼) mice after HCTZ treatment. (B) All of the WT, SPAK−/−, and SPAK−/− mice had similar diuretic, FE_{Na}, FE_{K}, and FE_{Cl} response to FURO treatment. *P < 0.05 in WT versus He; ▲P < 0.05, He versus Ho mice (n = 8 per group).
targeted SPAK^floxed/ ES cells. The SPAK^floxed/ ES cells were again selected by Southern blotting and injected into C57BL/6 blastocysts. Chimeric males were bred with C57BL/6 females to produce heterozygous SPAK^floxed/+ mice. SPAK^floxed/ mice were generated by crossing SPAK^floxed/+ with CAG-Cre recombinase transgenic mice. Homozygous SPAK^floxed/- mice were then produced by mating SPAK^floxed/ mice with each other. WT controls and

![Figure 5](image)

Figure 5. SPAK-null mice have reduced total SPAK, p-SPA and p-NKCC1 but increased total NKCC1 expression in aortic tissues. (A and B) Semi-quantitative immunoblotting (top) and densitometry (bottom) of total and p-SPA NKCC1 in aortic tissues from WT, SPAK^+/+ (He), and SPAK^-/- (Ho) mice (n = 4 per group). *P < 0.05 versus WT; **P < 0.05 versus He.

Blood and Urine Analysis and BP Measurement
Blood was drawn from the submandibular venous plexus under light ether anesthesia. Mice were kept in metabolic cages for urine collection. Plasma creatinine concentration was measured by HPLC assay. Other plasma and urine biochemistries and plasma aldosterone were measured as described previously. The BP of restrained conscious mice at steady state was measured with a programmable tail-cuff sphygmomanometer (MK-2000A; Muromach, Tokyo, Japan).

Generation of p-NKCC Antibody
We generated an antibody to recognize specifically p-NKCC2 on Thr-96 by immunizing rabbits with a keyhole limpet hemocyanin-conjugated synthetic phosphopeptide corresponding to residues 91...
through 110 [TYYLQ(pT)FGHN + Cys] of mouse NKCC2. The serum was affinity-purified with phosphopeptide- and non–phosphopeptide-conjugated cellulose (GenScript, Piscataway, NJ; Supplementary Figure S3). Because of high conservation of the antigen, the antibody also recognizes NKCC1 on Thr-206 [TYYLR(pT)FGHN], where R is the only residue that differs between the two sequences provided.

Immunoblotting and IF Stain
Semiquantitative immunoblotting and IF microscopy were carried out as described previously.17 Relative intensities of the resulting immunoblot band densities were determined by laser scanning (flattened scanner, GT-12000, EPSON) followed by densitometry using Image J (National Institutes of Health, Bethesda, MD). Densitometry data were normalized to percentage of lean mean in a double-blinded manner. In addition to our previously generated rabbit anti–p-NCC (T53, T58, and S71),17,33 anti–p-OSR1(S325)/SPAK(S383)8,18 and newly generated rabbit anti–p-NKCC2 (T96), other commercially available primary antibodies used included rabbit anti-SPAK (Cell Signaling),8,16,18 Na-K-2Cl co-transporter 2 (NKCC2; Alpha Diagnostic),42 NCC (Chemicon),17 and mouse anti-OSR1 (Abnova)8,18 and NKCC (T4).43 Alkaline phosphatase–conjugated anti-IgG antibodies (Promega) were used as secondary antibodies for immunoblotting, and Alexa 488 or 546 dye-labeled (Molecular Probes) secondary antibodies were used for IF. IF images were obtained using a LSM510 (Carl Zeiss).

HCTZ and Furosemide Treatment
Intraperitoneal HCTZ (12.5 mg/kg) and furosemide (15 mg/kg) were administered, respectively, to the WT mice and SPAK−/− and SPAK−/− littermates.17,44 Urine samples in the 4 hours after a single-dose treatment were collected for analysis.

Analysis of Aortic Contractility
Mice were killed by sodium pentobarbital (60 mg/kg, intraperitoneally). The thoracic aortas were quickly removed and placed in Krebs’ solution,45 then adhering periadventitial tissues were cleaned and cut into segments 2.5 mm in length. The endothelium-denuded aortic rings were mounted in a 10-ml small vessel myograph (Myo-interface Model 610A; Atlanta, GA) organ bath filled with warmed (37°C) oxygenated (95% O2/5% CO2) Krebs’ solution. The rings were allowed to equilibrate for 1 hour under an optimal resting tension of 1.5 mN. Isometric force was measured with force transducers connected to a PowerLab (AD Instruments, Castle Hill, Australia). After equilibration, PE (1 to 10 nM) concentration-isometric force relationships were generated in the absence and presence of bumetanide (10 μM; 20 minutes of incubation).

Statistical Analysis
All results are expressed as mean ± SD. We used one-way analysis of covariance to compare the differences among the three groups (WT mice and SPAK−/− and SPAK−/− littermates). Paired t test was used to compare mice of the same genotype with or without treatment. The Mann-Whitney U test was used when the variables between two groups were not normally distributed. P < 0.05 was considered to be statistically significant.

ACKNOWLEDGMENTS
This study was supported in part by grants from the National Science Council, Taiwan (NSC 96-2314-B-016-052-MY2; NSC 98-2314-B-016-003-MY3), and by grants from the Research Fund of Tri-Service General Hospital (TSGH-C-98-83 and TSGH-C-99-096), and Japan-Taiwan Joint Research Program, Interchange Association, Japan. We thank the technical services provided by the Transgenic Mouse Model Core Facility of the National Research Program for Genomic

Figure 7. SPAK regulates NKCC1 in vascular smooth muscle and NCC in the kidneys. (A) In renal tubules, phosphorylation of NKCC2 in the TAL and NCC in the DCT are predominantly regulated by OSR1 and SPAK, respectively. In vascular smooth muscle cells (VSMC), SPAK activates the phosphorylation of NKCC1. (B) In SPAK-null mice, reduced phosphorylation and expression of NCC cause defective salt reabsorption in the DCT, leading to GS, with compensatory increased p-OSR1, total NKCC2, and p-NKCC2. Attenuated phosphorylation of NKCC1 results in vasodilation in the VSMC.
Medicine, NSC, and Chen-Tzu Chiu for preparation and analysis of aortic contractility.

DISCLOSURES
None.

REFERENCES
1. DeAizpuruu HJ, Crum DS, Naselli G, Devereux L, Dorow DS: Expression of mixed lineage kinase-1 in pancreatic beta-cell lines at different stages of maturation and during embryonic pancreas development. J Biol Chem 272: 16364–16373, 1997
2. Johnston AM, Naselli G, Gneozi LJ, Martin RM, Harrison LC, DeAizpuruu HJ: SPAK, a STE20/SPS1-related kinase that activates the p38 pathway. Oncogene 19: 4290–4297, 2000
3. Tamari M, Daigo Y, Nakamura Y: Isolation and characterization of a novel serine threonine kinase gene on chromosome 3p22–21.3. J Hum Genet 44: 116–120, 1999
4. Ushiro H, Tsutsumi T, Suzuki K, Kayahara T, Nakano K: Molecular cloning and characterization of a novel Ste20-related protein kinase enriched in neurons and transporting epithelia. Arch Biochem Biophys 355: 233–240, 1998
5. Pichotta K, Garbarini N, England R, Delpire E: Characterization of the interaction of the stress kinase SPAK with the Na+–K+–2Cl− cotransporter in the nervous system: Evidence for a scaffolding role of the kinase. J Biol Chem 278: 52848–52856, 2003
6. Pichotta K, Lu J, Delpere E: Cation chloride cotransporters interact with the stress-related kinases Ste20-related proline-alanine-rich kinase (SPAK) and oxidative stress response 1 (OSR1). J Biol Chem 277: 50812–50819, 2002
7. Vitari AC, Deak M, Morrice NA, Alessi DR: The WNK1 and WNK4 protein kinases that are mutated in Gordon’s hypertension syndrome phosphorylate and activate SPAK and OSR1 protein kinases. Biochem J 391: 17–24, 2005
8. Moriguchi T, Urushiyama S, Hisamoto N, Iemura S, Uchida S, Natsume T, Matsumoto K, Shibuya H: WNK1 regulates phosphorylation of the STE20-related kinases, increases Na excretion and lowers blood pressure. Hum Mol Genet 18: 3978–3986, 2009
9. Delpere E, Gagnon KB: SPAK and OSR1: STE20 kinases involved in the regulation of ion homeostasis and volume control in mammalian cells. Biochem J 409: 321–331, 2008
10. Ohta A, Rai T, Yui N, Chiga M, Yang SS, Lin SH, Sasaki S, Uchida S, Ishida K, Lin SH, Moriguchi T, Shibuya H, Kondo Y, Sasaki S, Uchida S: Molecular pathogenesis of pseudohypoaldosteronism type II: Generation and analysis of a Wnk4(D561A/+) knockin mouse model. Cell Metab 5: 331–344, 2007
11. Richardson C, Alessi DR: The regulation of salt transport and blood pressure by the WNK4 protein kinases. J Am Soc Nephrol 18: 1107–1112, 2007
12. Simon DB, Karet FE, Hamdan JM, DiPietro A, Sanjad SA, Litton RP: Human hypertension caused by mutations in WNK kinases. Science 293: 1107–1112, 2001
13. Simon DB, Karet FE, Hamdan JM, DiPietro A, Sanjad SA, Litton RP: Human hypertension caused by mutations in WNK kinases. Science 293: 1107–1112, 2001
14. Wang Y, O’Connell JR, McArdle PF, Wade JB, Dorf SE, Shah SJ, Shi X, Pan L, Rampersaud E, Shen H, Kim JD, Subramanyam AR, Steinen NL, Parsa A, Ober CC, Wellings PA, Chakravarti A, Weder AB, Cooper RS, Mitchell BD, Shuldiner AR, Chang YP: From the cover: Whole-genome association study identifies STK39 as a hypertension susceptibility gene. Proc Natl Acad Sci U S A 106: 226–231, 2009
15. Yang SS, Morimoto T, Rai T, Chiga M, Sohara E, Ohno M, Uchida K, Lin SH, Moriguchi T, Shibuya H, Kondo Y, Sasaki S, Uchida S: Molecular pathogenesis of pseudohypoaldosteronism type II: Generation and analysis of a Wnk4(D561A/+) knockin mouse model. Cell Metab 5: 331–344, 2007
16. Ohta A, Rai T, Yui N, Chiga M, Yang SS, Lin SH, Sohara E, Sasaki S, Uchida S: Targeted disruption of the Wnk4 gene decreases phosphorylation of Na–Cl cotransporter, increases Na excretion and lowers blood pressure. Hum Mol Genet 18: 3978–3986, 2009
17. Delpere E, Gagnon KB: SPAK and OSR1: STE20 kinases involved in the regulation of ion homeostasis and volume control in mammalian cells. Biochem J 409: 321–331, 2008
18. Sakai K, Miyazaki J: A transgenic mouse line that retains Cre recombinase activity in mature oocytes irrespective of the cre transgene transmission. Biochem Biophys Res Commun 237: 318–324, 1997
19. Lin SH, Shiang JC, Huang CC, Yang SS, Hsu YJ, Cheng CJ: Phenotype and genotype analysis in Chinese patients with Gitelman’s syndrome. J Clin Endocrinol Metab 90: 2500–2507, 2005
20. Cheng CJ, Shiang JC, Hsu YJ, Yang SS, Lin SH: Hypocalciuria in patients with Gitelman syndrome: Role of blood volume. Am J Kidney Dis 49: 693–700, 2007
21. Rafiqi FH, Zuber AM, Glover M, Richardson C, Fleming S, Jovanovic S, Jovanovic A, O’Shaughnessy KM, Alessi DR: Role of the WNK-activated SPAK kinase in regulating blood pressure. EMBO Mol Med 2: 63–75, 2010
22. Meyer JW, Flagella M, Sutliff RL, Lorenz JN, Nieman ML, Weber CS, Paul RJ, Shull GE: Decreased blood pressure and vascular smooth muscle tone in mice lacking basolateral Na$^{+}$K$^{+}$–2Cl$^{-}$ cotransporter. Am J Physiol Heart Circ Physiol 283: H1846–H1855, 2002
23. Garg P, Martin CF, Elms SC, Gordon JF, Wall SM, Garland CJ, Sutliff RL, O’Neill WC: Effect of the Na-K-Cl cotransporter NKCC1 on systemic blood pressure and smooth muscle tone. Am J Physiol Heart Circ Physiol 292: H2100–H2105, 2007
24. Pacheco-Alvarez D, Cristobal PS, Meade P, Moreno E, Vazquez N, Munoz E, Diaz A, Juarez ME, Gimenez I, Gamba G: The Na$^{+}$–Cl$^{-}$ cotransporter is activated and phosphorylated at the amino-terminal domain upon intracellular chloride depletion. J Biol Chem 281: 28755–28763, 2006
25. Richardson C, Rafiqi FH, Karlsson HK, Moellek N, Vandevelde A, Campbell DG, Morrice NA, Alessi DR: Activation of the thiazide-sensitive Na$^{+}$–Cl$^{-}$ cotransporter by the WNK-regulated kinases SPAK and OSR1. J Cell Sci 121: 675–684, 2008
26. Schultheis PJ, Lorenz JN, Meneton P, Nieman ML, Riddle TM, Flagella M, Garg P, Martin CF, Elms SC, Gordon JF, Wall SM, Garland CJ, Sutliff RL, O’Neill WC: Contractile regulation of the Na$^{+}$-K$^{+}$-2Cl$^{-}$ cotransporter in vascular smooth muscle. Am J Physiol Cell Physiol 281: C579–C584, 2001
27. Anfinogenova YJ, Baskakov MB, Kovalev IV, Kilin AA, Dulin NO, Orlov SN, Melejko N, Baskakov MB, Kovalev IV, Kilin AA, Dulin NO, Orlov SN: Salt-sensing mechanisms in blood pressure regulation and hypertension. Am J Physiol Heart Circ Physiol 293: H2039–H2053, 2007
32. Akar F, Skinner E, Klein JD, Jena M, Paul RJ, O’Neill WC: Vasoconstrictors and nitrovasodilators reciprocally regulate the Na+/K+–2Cl− cotransporter in rat aorta. *Am J Physiol* 276: C1383–C1390, 1999

33. Chiga M, Rai T, Yang SS, Ohta A, Takizawa T, Sasaki S, Uchida S: Dietary salt regulates the phosphorylation of OSR1/SPAK kinases and the sodium chloride cotransporter through aldosterone. *Kidney Int* 74: 1403–1409, 2008

34. San-Cristobal P, Pacheco-Alvarez D, Richardson C, Ring AM, Vazquez N, Rafiqi FH, Chari D, Kahle KT, Leng Q, Bobadilla NA, Hebert SC, Alessi DR, Lifton RP, Gamba G: Angiotensin II signaling increases activity of the renal Na–Cl cotransporter through a WNK4-SPAK-dependent pathway. *Proc Natl Acad Sci U S A* 106: 4384–4389, 2009

35. Talati G, Ohta A, Rai T, Sohara E, Naito S, Vandewalle A, Sasaki S, Uchida S: Effect of angiotensin II on the WNK-OSR1/SPAK-NCC phosphorylation cascade in cultured mpkDCT cells and in vivo mouse kidney. *Biochem Biophys Res Commun* 393: 844–848, 2010

36. Jiang G, Cobbs S, Klein JD, O’Neill WC: Aldosterone regulates the Na-K-2Cl cotransporter in vascular smooth muscle. *Hypertension* 41: 1131–1135, 2003

37. Moawad MA, Hassan W: Update in hypertension: The Seventh Joint National Committee report and beyond. *Ann Saudi Med* 25: 453–458, 2005

38. Orlov SN: NKCC1 as a regulator of vascular tone and a novel target for antihypertensive therapeutics. *Am J Physiol* 292: H2035–H2036, 2007

39. Hannaert P, Alvarez-Guerra M, Pirod D, Nazaret C, Garay RP: Rat NKCC2/NKCC1 cotransporter selectivity for loop diuretic drugs. *Nauyn Schmiedebergs Arch Pharmacol* 365: 193–199, 2002

40. Liu P, Jenkins NA, Copeland NG: A highly efficient recombineering-based method for generating conditional knockout mutations. *Genome Res* 13: 476–484, 2003

41. Keppler A, Gretz N, Schmidt R, Kloetzner HM, Groene HJ, Lelongt B, Meyer M, Sadick M, Pill J: Plasma creatinine determination in mice and rats: an enzymatic method compares favorably with a high-performance liquid chromatography assay. *Kidney Int* 71: 74–78, 2007

42. Yang SS, Hsu YJ, Chiga M, Rai T, Sasaki S, Uchida S, Lin SH: Mechanisms for Hypercalciuria in pseudohypoaldosteronism type II-causing WNK4 knock-in mice. *Endocrinology* 151: 1829–1836, 2010

43. Lytle C, Xu JC, Biemesderfer D, Forbush B 3rd: Distribution and diversity of Na-K-Cl cotransport proteins: A study with monoclonal antibodies. *Am J Physiol* 269: C1496–C1505, 1995

44. Lee CT, Chen HC, Lai LW, Yong KC, Lien YH: Effects of furosemide on renal calcium handling. *Am J Physiol* 293: F1231–F1237, 2007

45. Wu CC, Chen SJ, Garland CJ: NO and KATP channels underlie endothelin-induced smooth muscle hyperpolarization in rat mesenteric resistance arteries. *Br J Pharmacol* 142: 479–484, 2004

See related editorial, “An Emerging Role for SPAK in NCC, NKCC, and Blood Pressure Regulation,” on pages 1812–1814.

Supplemental information for this article is available online at http://www.jasn.org/.