Research Article

Ni-Doped Protonated Layered Titanate/TiO₂ Composite with Efficient Photocatalytic Activity for NOₓ Decomposition Reactions

Kanji Saito (1,2), Shota Orikasa,3 Yusuke Asakura,4 Yusuke Ide,5 Yoshiyuki Sugahara,6 Masataka Ogasawara,1 Shu Yin,4 and Sumio Kato1

1Department of Materials Science, Graduate School of Engineering Science, Akita University, 1-1 Tegatagakuen-machi, Akita-shi, Akita 010-8502, Japan
2Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku-ku, Tokyo 169-0054, Japan
3Faculty of Engineering Science, Akita University, 1-1 Tegatagakuen-machi, Akita-shi, Akita 010-8502, Japan
4Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
5International Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
6Department of Applied Chemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan

Correspondence should be addressed to Kanji Saito; saitok@gipc.akita-u.ac.jp

Received 11 September 2020; Accepted 7 January 2021; Published 28 January 2021

Academic Editor: Elamparuthi Ramasamy

Copyright © 2021 Kanji Saito et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A unique structural transformation of a lepidocrocite-type layered titanate, K₅₈Ti₁₇ₓL₀₂₇₋ₓO₄, into a rutile-type TiO₂ has recently been realized via dilute HCl treatment and subsequent drying at room temperature for producing rutile-nanoparticle-decorated protonated layered titanate exhibiting highly efficient photocatalytic activity. Herein, the authors report synthesis of a lepidocrocite-type layered cesium titanate with nominal compositions of Cs₀.₇Ti₁.₈₂₅₋ₓNiₓ□₀.₁₇₅₋ₓO₄ (x = 0, 0.05, 0.1, and 0.35) through solid-state reactions of Cs₂CO₃, TiO₂, and Ni(CH₃COO)₂·4H₂O at different temperatures (600 or 800°C), followed by treatment with dilute HCl and subsequent drying to produce a Ni-doped protonated layered titanate/TiO₂ composite. Cs₀.₇Ti₁.₈₂₅₋ₓNiₓ□₀.₁₇₅₋ₓO₄ with an optimized Ni content obtained at a lower temperature was converted into a Ni-doped protonated layered titanate/TiO₂ composite to exhibit high photocatalytic activity for NOₓ decomposition reactions.

1. Introduction

Fuel production, environmental purification, and fine chemical synthesis using a semiconductor photocatalyst with solar light have attracted tremendous attention for developing sustainable photoenergy conversion processes [1–5]. Efforts have thus been made to modify conventional semiconductor photocatalysts as well as to synthesize new state-of-the-art versions, in terms of improved charge-separation efficiency, photoabsorption properties, and specific surface area. Layered transition metal oxides have been used to design highly efficient photocatalysts, due to their ability to provide expandable 2D nanospaces to accommodate reactants and such functional species as cocatalysts and sensitizers [6–8]. The interlayer structures have been controlled to induce unique photocatalytic reactions, moreover, such as substrates or product-selective reactions [9, 10].

Among layered transition metal oxides, lepidocrocite-type layered titanates are characterized by swelling properties as well as compositional versatility [11]. These make them extremely promising candidates for designing highly efficient functional hybrid photocatalysts. The general formula for lepidocrocite-type layered titanate is AₓTi₂₋ₓMₓO₄ (A: interlayer alkali metal ion; M: metal ion or vacancy). Alkali metal
ions are located in the interlayer spaces between titanate sheets to compensate for the negative charge of the layers, which arises from isomorphous substitution of Ti with low-valent metal species or vacancies. We recently reported that a lepidocrocite-type layered titanate with a composition of K_{0.8}Ti_{1.73}Li_{0.27}O_{4}, referred to as “KTLO”, exhibited a unique transformation into rutile with dilute HCl treatment and subsequent drying at room temperature (even at 60°C to accelerate the transformation) [12, 13]. Rutile nanoparticles of Cs_2CO_3 with/without Ni(CH_3COO)_2 were obtained from FUJIFILM Wako Pure Chemical Corporation. Cesium carbonate was observed for Cs_2CO_3 with/without Ni(CH_3COO)_2 under the same experimental conditions as those for KTLO, possibly due to a stronger electrostatic interaction between metal ions with higher valences and oxide anions [20]. In the present study, we selected Ni-doped lepidocrocite-type layered cesium titanates with different Ni contents as starting materials, and the effects of the Ni-doping on the photocatalytic activity of the layered cesium titanate after dilute HCl treatment and subsequent drying for NO_x decomposition reactions was investigated.

2. Experimental

2.1. Materials. Potassium carbonate (K_2CO_3, 99.95%) was purchased from Kanto Chemical Co., Ltd. Cesium carbonate (Cs_2CO_3, 95.0-102%) and nickel acetate tetrahydrate (Ni(CH_3COO)_2·4H_2O, 98.0%) were obtained from FUJIFILM Wako Pure Chemical Corporation. Titanium dioxide (P25 TiO_2, >99.5%) was kindly donated by Nippon Aerosil Co., Ltd. Anatase-type TiO_2 (JRC-TIO-1) and rutile-type TiO_2 (JRC-TIO-16) were supplied by the Catalysis Society of Japan. Hydrochloric acid (HCl, 35.0-37.0%) was purchased from Nacalai Tesque, Inc.

2.2. Sample Preparation. A layered cesium titanate with nominal compositions of Cs_{0.7}Ti_{2.25}Ni_{0.25}O_4 (x = 0, 0.05, 0.1, and 0.35) was synthesized by solid-state reactions with stoichiometric ratios of Cs_2CO_3, TiO_2, and Ni(CH_3COO)_2·4H_2O. TiO_2 was suspended in an aqueous solution of Cs_2CO_3 with/without Ni(CH_3COO)_2·4H_2O by ultrasonication for 5 min, and the suspension was stirred at 100°C to evaporate the water. The powder mixture was collected and then calcined at 600°C for 30 min in air. After cooling to room temperature, the sample was mixed again with acetone using a planetary ball mill (Planet M2-3, Gokin Planetaring Inc.) after evaporation of the acetone at room temperature, the samples were calcined at 600°C or 800°C for 20 h in air. The samples obtained by the solid-state reactions were referred to as CTNO (x)_T, where T represents the calcination temperature. CTNO (x)_T was suspended in dilute HCl (0.5 M), and the suspension was stirred at room temperature for 3 days. After centrifugation, the solid phase was collected and dried at 60°C overnight without washing with water, resulting in retention of HCl on the outer particle surface. The samples prepared by dilute HCl treatment and subsequent drying of CTNO (x)_T were referred to as HTNO (x)_T.

2.3. Characterization. X-ray powder diffraction (XRD) patterns of the samples were recorded with a Rigaku Ultima IV diffractometer operated at 40 mA and 40 kV with monochromatic CuKα radiation. UV–vis diffuse reflectance (UV–vis DR) spectra of the samples were obtained with a Jasco V-750 spectrophotometer equipped with an integrating sphere (ISV-722 attachment). X-ray photoelectron spectroscopy (XPS) analyses were performed with an ULVAC-PHI PHI5600. Raman spectra were recorded with a Renishaw in Via reflex spectrometer using a 532 nm laser. Inductively coupled plasma atomic emission spectroscopy (ICP-AES) measurement was performed with an SPS 5510 (SII Nano-Technology, Inc.). The extraction rate (%) of Ti and Ni from the samples during the dilute HCl treatment was determined by the following equation:

Extraction rate (%) = \frac{\text{Amount of element extracted}}{\text{Amount of element in the sample}} \times 100

2.4. Photocatalytic Reaction. The photocatalytic activity of the samples was evaluated by a NO_x decomposition reaction in the gas phase under light irradiation (λ > 290 nm) at room temperature using a continuous flow-type reactor. A high-pressure mercury lamp (Usio 450 W) was used as a light source. The initial concentration of NO was set to 1 ppm with compressed air, and the NO_x concentration after photocatalytic decomposition was estimated using an NO analyzer (Yanaco, ECL-88A). Note that NO_x formed by photocatalytic oxidation of NO is also counted as an NO_x species. The NO conversion ratio was calculated using the measured NO_x concentration.

3. Results and Discussions

Figure 1 shows XRD patterns of CTNO (0)_800, CTNO (0.05)_800, HTNO (0)_800, and HTNO (0.05)_800. Note that the layered cesium titanate with a composition of Cs_{0.7}Ti_{2.25}Ni_{0.175}O_4, which is equivalent to the nominal composition of CTNO (0)_800, has previously been prepared by a solid-state reaction of Cs_2CO_3 and TiO_2 at above 700°C.
Both the XRD patterns of CTNO (0)_800 and CTNO (0.05)_800 (Figures 1(a) and 1(b)) were assignable to that of Cs$_{0.7}$Ti$_{1.825}$O$_{4}$ [21], indicating that layered cesium titanate with/without Ni was successfully obtained. The visible-light absorption at a wavelength shorter than 500 nm by Ni addition (Figure 2) supports successful Ni-doping into the titanate sheet framework, since transition metals including Ni can develop visible-light absorption by formation of localized energy states in the band gap of TiO$_2$ [14] and since Ni can develop visible-light absorption by formation of localized energy states in the band gap of TiO$_2$ [14] and since the local structure of lepidocrocite-type layered titanates is similar to that of TiO$_2$ [22]. The tail of the visible-light absorption was located at a position closely similar to that observed for Ni-doped TiO$_2$ in previous reports [23, 24]. In the XRD pattern of HTNO (0)_800 (Figure 1(c)), peaks attributable to rutile were observed at 2θ = 27.4°, 36.1°, and 41.2°, while peaks in other positions were assignable to H$_{0.7}$Ti$_{1.825}$O$_{4}$ [21], the protonated form of Cs$_{0.7}$Ti$_{1.825}$O$_{4}$, revealing that the partial transformation of titanate sheets to rutile observed for KTLO in the previous report also occurred in CTNO (0)_800. On the other hand, no rutile formation was observed in HTNO (0.05)_800 (Figure 1(d)), indicating that doping with a small Ni content suppressed the transformation of the titanate sheets into rutile.

Figure 3(a) shows XRD patterns of CTNO (x)_600. Although a very weak XRD peak ascribable to anatase was observed at 2θ = 25.4°, the XRD pattern of CTNO (0)_600 was almost identical to that of Cs$_{0.7}$Ti$_{1.825}$O$_{4}$ [21]. This indicates that Cs$_{0.7}$Ti$_{1.825}$O$_{4}$ was obtained even at 600°C, while it has been prepared by solid-state reactions only at above 700°C [21, 25-28]. Weak peaks at 2θ = 25.4° ascribable to anatase were observed in the cases of CTNO (0.05)_600 and CTNO (0.1)_600, while an unknown weak peak was observed at 2θ = 29.7° in the case of CTNO (0.35)_600. It should be noted, however, that all the peaks at other positions were assignable to Cs$_{0.7}$Ti$_{1.825}$O$_{4}$ [21], indicating that the desired layered cesium titanate phase was obtained as the main phase in every case. Although we anticipated that the XRD peaks would shift to smaller 2θ values due to doping in the octahedral site with Ni$^{2+}$ with a larger ion radius (0.0690 nm) than that of Ti$^{4+}$ (0.0605 nm) [29], no such shift was observed. As shown in Figure 4, the lattice constants of the Ni-doped samples were almost identical to that of CTNO (0)_600. This indicates that Ni-doping did not affect the crystal structure of CTNO (0)_600.

Figure 3(b) shows XRD patterns of HTNO (x)_600. XRD peaks assignable to H$_{0.7}$Ti$_{1.825}$O$_{4}$ and rutile were observed in all the samples, while that assignable to anatase was additionally observed in the case of x = 0 to 0.1. Given that no transformation occurred in CTNO (0.05)_800 after dilute HCl treatment and subsequent drying, it was apparent that a structural transformation of the Ni-doped layered cesium titanate into rutile as well as anatase was promoted by posttreatment when a sample prepared at a lower temperature was used as the starting material. The intensity of the peak at 2θ = 10.2° attributable to the (020) plane of H$_{0.7}$Ti$_{1.825}$O$_{4}$ increased with increases in the Ni content, while the intensity of the peak at 2θ = 27.6° attributable to the (110) plane of rutile decreased remarkably when the x value increased from 0.1 to 0.35. These results further confirm that the transformation of titanate sheets into rutile was suppressed by Ni-doping. The counter anion of the acids has been reported to affect the crystal phase of TiO$_2$ obtained from KTLO [22], and the structural transformation of KTLO into rutile by dilute HCl treatment and subsequent drying was explained by the effect of the chloride ion in the previous study [12]. In the present study, on the other hand, formation of anatase in addition to rutile was observed after posttreatment of CTNO (x)_600, except for the x value of 0.35. The composition of the starting material is likely to affect the TiO$_2$ phase transformed from titanate sheets, although the mechanism remains unclear.

Figure 5 displays Raman spectra of standard TiO$_2$ samples (anatase and rutile), HTNO (0.1)_600, and HTNO (0.35)_600. The Raman bands at 143, 394, 513, and 634 cm$^{-1}$ of anatase were ascribable to the E_g, A_{1g}, B_{1g}, and E_g modes,
respectively, while those at 432 and 600 cm$^{-1}$ of rutile were assigned to the E_g and A_{1g} modes, respectively [30]. In the case of HTNO (0.1)$_{600}$, the peaks at 136 cm$^{-1}$ and 595 cm$^{-1}$ were attributable to anatase and rutile, respectively, while the position of the band at 440 cm$^{-1}$ was similar to that of the typical Raman band of HTNO (0.1)$_{600}$ is a mixed phase of protonated layered titanate, anatase, and rutile. On the other hand, in the case of HTNO (0.35)$_{600}$, the Raman bands at 268, 435, and 710 cm$^{-1}$ were attributable to HTNO (0.35)$_{600}$, while that at 594 cm$^{-1}$ was attributable to rutile. The fact that no Raman bands attributable to anatase were observed correlates well with the results of the XRD analysis.

Figure 6(a) shows UV-vis DR spectra of CTNO (x)$_{600}$. The light absorption edge at a wavelength of 350 nm observed for CTNO (0)$_{600}$ shifted to longer wavelengths with increases in the Ni content. As shown in Table 1, the band gap energy of CTNO (0)$_{600}$ calculated by the Tauc plot [32] (Figure 6(b)) was 3.52 eV, which is slightly smaller than the value previously reported for layered cesium titanate (3.62 eV) whose composition (Cs$_{0.68}$Ti$_{1.825}$O$_{4}$) is similar to that of CTNO (0)$_{600}$ (Cs$_{0.7}$Ti$_{1.825}$O$_{4}$) [33]. The band gap energy decreased with increases in the Ni content. On the other hand, visible-light absorption at wavelengths shorter than 500 nm was introduced by Ni-doping, and the absorption increased with increases in the Ni content. The visible-light absorption changes are ascribable to the
introduction of localized energy states into the band gap by Ni-doping as mentioned above. As shown in Figure 7(a), the visible-light absorption attributable to the Ni-doping was observed in the samples even after dilute HCl treatment and subsequent drying, although the absorption intensity decreased, indicating that doped Ni was retained in the titanate sheets, whereas the majority of the doped Ni was extracted during dilute HCl treatment, as revealed by ICP-AES measurement (details to be presented later). As shown in the XPS spectrum of the Ni 2p region of HTNO (0.35)_600 (Figure 8), two peaks at 856.3 and 874.0 eV were observed, confirming the retention of Ni as a divalent form [34]. As shown in Table 1, the band gap energy of HTNO (0.05)_600 (3.28 eV) was smaller than that of CTNO (0.05)_600 (3.52 eV). A decreased band gap energy of a layered cesium titanate via interlayer protonation has previously been observed for Cs_{0.68}Ti_{1.83}Cl_{0.17}O_4 (3.62 to 3.47 eV) using dilute HCl treatment [33]. On the other hand, in the case of the Ni-doped samples, the band gap energy increased after dilute HCl treatment and subsequent drying. This correlates well with the blue shift of the light absorption edge of Cs_{0.7}Ti_{1.65}Ni_{0.35}O_4 after dilute HCl treatment in the previous report [20].

Sample	Band gap energy (eV)
CTNO (0)_600	3.52
CTNO (0.05)_600	2.88
CTNO (0.1)_600	2.83
CTNO (0.35)_600	2.73
HTNO (0)_600	3.28
HTNO (0.05)_600	3.08
HTNO (0.1)_600	2.95
HTNO (0.35)_600	2.81

Table 2 shows the extraction rates of Ti and Ni from CTNO (x)_600 during dilute HCl treatment and the residual Ni/Ti ratios in the samples after dilute HCl treatment. While the Ni extraction rates were almost constant at 80-90%, those of Ti increased from 13.4 to 57.6% with increases in the Ni content. Accordingly, the residual Ni/Ti ratio in CTNO (x)_600 after dilute HCl treatment increased with increases in Ni content. The larger extraction rate for Ni compared with that reported for Cs_{0.7}Ti_{1.65}Ni_{0.35}O_4 under the same experimental conditions (0.5 M and 3 days for the HCl concentration and reaction time period, respectively) [20] was likely attributable to the smaller particle size of the sample in this study. This is because the preparation temperature of CTNO (x)_600 (600°C) in this study is lower than that of Cs_{0.7}Ti_{1.65}Ni_{0.35}O_4 in the previous report (800°C).

Figure 9 shows the photocatalytic NO conversion ratios over CTNO (x)_600 and HTNO (x)_600. Because the Ni-doped samples showed negligible photocatalytic activity under visible-light (λ > 420 nm) irradiation in spite of their visible-light absorption properties, the photocatalytic performance of the samples was evaluated under irradiation by light with a wavelength longer than 290 nm. In the presence of water and oxygen, photooxidation was dominant for the mechanism of the NO decomposition reaction. The hydroxyl radical, OH, produced by photooxidation of H_2O, and the hydroperoxyl radical, OO{H}, generated by the reaction between H^+ and photoreduced oxygen (OOH^-) were involved in the oxidation of NO to form HNO_3 [35-37]. Considering that water and oxygen were contained in the compressed air in the present study, NO was likely to have been decomposed by the photooxidation process. All the CTNO (x)_600 samples showed a NO conversion ratio approximately 1.8 times higher than P25, which is often used as a benchmark TiO_2 photocatalyst [38, 39]. The NO conversion ratio at CTNO (x)_600 was almost constant for all the Ni contents, indicating that the photocatalytic activity of CTNO (x)_600 was not dependent on the amount of doped Ni. After
dilute HCl treatment and subsequent drying, the NO conversion ratio over CTNO (x)_600 decreased, except for the x value of 0.1, resulting in the highest NO conversion rate over HTNO (0.1)_600 among the HTNO (x)_600 samples. The photocatalytic NO conversion rate over HTNO (0.1)_600 was twice as higher as that of P25. It should be noted that the design of a semiconductor photocatalyst for a NO decomposition reaction superior to that of P25 remains challenging [35] and that the activity of HTNO (0.1)_600 was comparable to that of a smart TiO2-based composite photocatalyst with excellent photocatalytic performance reported previously [40]. The best photocatalytic activity of HTNO (0.1)_600 among the HTNO (x)_600 samples was probably caused by a suitable ratio of protonated layered titanate and TiO2, because the interparticle charge transfer followed by enhanced photocatalytic activity depended largely on the phase composition of the TiO2-based composites [41–44]. As deduced from the XRD analyses, a layered titanate with low Ni content is likely to be transformed easily into TiO2 (both anatase and rutile) to decrease the residual layered titanate phase. In light of the fact that the high photocatalytic

Table 2: Extraction rates of Ti and Ni and the corresponding residual Ni/Ti ratios in the CTNO (x)_600 samples after dilute HCl treatment.

Sample	Extraction rate Ni (%)	Extraction rate Ti (%)	Residual Ni/Ti ratio
CTNO (0)_600	N. D.	13.4	0
CTNO (0.05)_600	84.1	24.9	5.9 x 10^{-3}
CTNO (0.1)_600	89.5	55.3	13.2 x 10^{-3}
CTNO (0.35)_600	80.5	57.6	97.6 x 10^{-3}
performance of the protonated layered titanate/rutile composite in the previous report was attributable to an electron transfer between two components [12], excess conversion of titanate sheets into TiO$_2$ to reduce the protonated layered titanate-TiO$_2$ interfaces is considered to be detrimental to photocatalytic performance. Accordingly, the photocatalytic activities of CTNO (0)\textsubscript{600} and CTNO (0.05)\textsubscript{600} decreased remarkably after dilute HCl treatment and subsequent drying. On the other hand, in the case of CTNO (0.35)\textsubscript{600}, a relatively small decrease in the NO conversion ratio via dilute HCl treatment and the subsequent drying was attributable to the fact that the transformation of titanate sheets into TiO$_2$ was suppressed by Ni-doping, as mentioned above, and thus, almost no charge transfer occurred between the components. The mechanism of the improved photocatalytic activity of CTNO (0.1)\textsubscript{600} via posttreatment is possibly explained by the fact that the Ni-doped protonated layered titanate/TiO$_2$ ratio was optimized to induce an efficient interparticle charge transfer and improve the charge separation efficiency. Also, doping with Ni can be effective for decreasing the number of Ti defect sites in layered titanate, which can induce charge recombination [45].

4. Conclusions

The lepidocrocite-type layered cesium titanate with nominal compositions of Cs$_{x}$Ti$_{175-x/2}$Ni$_{x}$O$_{4}$ (x = 0, 0.05, 0.1, and 0.35) was synthesized by solid-state reactions of Cs$_2$CO$_3$, TiO$_2$, and Ni(CH$_3$COO)$_2$·4H$_2$O at different temperatures (600 or 800°C). The layered cesium titanate obtained by the solid-state reactions was treated with dilute HCl and subsequently dried to induce partial transformation into anatase- and rutile-type TiO$_2$. When the solid-state reaction was conducted at 800°C, no structural transformation into TiO$_2$ was observed for the Ni-doped sample after posttreatment, while the sample obtained at 600°C was transformed into anatase and/or rutile for all the composition. The photocatalytic activity for the NO$_2$ decomposition reaction of the samples obtained by the solid-state reaction at 600°C was not dependent on the doped Ni content. On the other hand, the layered cesium titanate with an x value of 0.1 after dilute HCl treatment and subsequent drying showed the highest photocatalytic activity among the samples, and the activity was twice as higher as that of P25, a benchmark photocatalyst for the reaction. This was likely attributable to the optimized Ni-doped protonated layered titanate/TiO$_2$ phase ratio in the composite to induce an efficient interparticle electron transfer between these two components. Careful selection of the composition of the starting lepidocrocite-type layered titanate seems to be effective for designing layered titanate-based composite photocatalysts with improved photocatalytic performance.

Data Availability

The data used to support the findings of this paper are available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was performed under the Cooperative Research Program of “Network Joint Research Center for Materials and Devices.”

References

[1] Z. Wang, C. Li, and K. Domen, “Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting,” Chemical Society Reviews, vol. 48, no. 7, pp. 2109–2125, 2019.
[2] T. Ochiai and A. Fujishima, “Photoelectrochemical properties of TiO$_2$ photocatalyst and its applications for environmental purification,” Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol. 13, no. 4, pp. 247–262, 2012.
[3] Y. Shiraishi and T. Hirai, “Selective organic transformations on titanium oxide-based photocatalysts,” Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol. 9, pp. 157–170, 2008.
[4] P. Benjwal and K. K. Kar, “Simultaneous photocatalysis and adsorption based removal of inorganic and organic impurities from water by titania/activated carbon/carbonized epoxy nanocomposite,” Journal of Environmental Chemical Engineering, vol. 3, no. 3, pp. 2076–2083, 2015.
[5] Y. K. Penke, A. K. Yadav, P. Sinha, I. Malik, J. Ramkumar, and K. K. Kar, “Arsenic remediation onto redox and photo-catalytic/electrocatalytic Mn-Al-Fe impregnated rGO: sustainable aspects of sludge as supercapacitor,” Chemical Engineering Journal, vol. 390, article 124000, 2020.
[6] W. J. Youngblood, S.-H. A. Lee, K. Maeda, and T. E. Mallouk, “Visible light water splitting using dye-sensitized oxide semiconductors,” Accounts of Chemical Research, vol. 42, no. 12, pp. 1966–1973, 2009.
[7] J. L. Gunjakar, I. Y. Kim, J. M. Lee, Y. K. Jo, and S. J. Hwang, “Exploration of nanostructured functional materials based on hybridization of inorganic 2D nanosheets,” Journal of Physical Chemistry C: Nanomaterials and Interfaces, vol. 118, no. 8, pp. 3845–3863, 2014.
[8] D. Sangian, Y. Ide, Y. Bando, A. E. Rowan, and Y. Yamauchi, “Materials nanoarchitectonics using 2D layered materials: recent developments in the intercalation process,” Small, vol. 14, no. 33, article 180051, 2018.
[9] Y. Ide, Y. Nakasato, and M. Ogawa, “Molecular recognition photocatalysis driven by the selective adsorption on layered titanates,” Journal of American Chemical Society, vol. 132, no. 10, pp. 3601–3604, 2010.
[10] Y. Ide, M. Matsuoka, and M. Ogawa, “Efficient visible-light-induced photocatalytic activity on gold-nanoparticle-supported layered titanate,” Journal of American Chemical Society, vol. 132, pp. 16762–16764, 2010.
[11] Y. Ide, M. Sadakane, T. Sano, and M. Ogawa, “Functionalization of layered titanates,” Journal of Nanoscience and Nanotechnology, vol. 14, no. 3, pp. 2135–2147, 2014.
[12] K. Saito, S. Tominaka, S. Yoshihara, K. Ohara, Y. Sugahara, and Y. Ide, “Room-temperature rutile TiO$_2$ nanoparticle formation on protonated layered titanate for high-performance
heterojunction creation,” ACS Applied Materials and Interfaces, vol. 9, no. 29, pp. 24538–24544, 2017.
[13] A. K. Yousef, M. Sanad, M. M. Rashad, A. A. El-Sayed, and Y. Ide, “Facile synthesis of layered titanate/rutile heterojunction photocatalysts,” Bulletin of the Chemical Society of Japan, vol. 92, pp. 1801–1806, 2019.
[14] J. Choi, H. Park, and M. R. Hoffmann, “Effects of single metal ion doping on the visible-light photoactivity of TiO2,” Journal of Physical Chemistry C, vol. 114, pp. 783–792, 2009.
[15] L. Sun, J. Zhai, H. Li, Y. Zhao, H. Yang, and H. Yu, “Study of homologous elements: Fe, Co, and Ni dopant effects on the photoactivity of TiO2 nanosheets,” Chem Cat Chem, vol. 6, pp. 339–347, 2014.
[16] S. A. Ansari, M. M. Khan, M. O. Ansari, and M. H. Cho, “Nitrogen-doped titanium dioxide (N-doped TiO2) for visible light photocatalysis,” New Journal of Chemistry, vol. 40, no. 4, pp. 3000–3009, 2016.
[17] P. Benjwal and K. K. Kar, “Removal of methylene blue from wastewater under a low power irradiation source by Zn, Mn co-doped TiO2 photocatalysts,” RSC Advances, vol. 5, pp. 98166–98176, 2015.
[18] P. Benjwal and K. K. Kar, “One-step synthesis of Zn doped titania nanotubes and investigation of their visible photocatalytic activity,” Materials Chemistry and Physics, vol. 160, pp. 279–288, 2015.
[19] P. Benjwal, B. De, and K. K. Kar, “1-D and 2-D morphology of metal cation co-doped (Zn, Mn) TiO2, and investigation of their photocatalytic activity,” Applied Surface Science, vol. 427, pp. 262–272, 2018.
[20] K. Saito, Y. Komiya, M. Soshima, M. Ogasawara, and S. Kato, “A phase separation in a protonated layered nickel titanate to form Ni-doped anatase/rutile TiO2 nanocomposite with efficient visible-light responsive photocatalytic activity,” Journal of Asian Ceramic Societies, vol. 8, no. 3, pp. 915–924, 2020.
[21] T. Sasaki, M. Watanabe, Y. Michiue, Y. Komatsu, F. Izumi, and S. Takenouchi, “Preparation and acid-base properties of a protonated titanate with the lepidocrocite-like layer structure,” Chemistry of Materials, vol. 7, pp. 1001–1007, 1995.
[22] X. Yang, C. Karthik, X. Li et al., “ Oriented nanocrystal arrays of selectable polymorphs by chemical sculpture,” Chemistry of Materials, vol. 21, no. 14, pp. 3197–3201, 2009.
[23] Y. Wang, L. Zhang, S. Li, and P. Jena, “Polyol-mediated synthesis of ultrafine TiO2 nanocrystals and tailored physicochemical properties by Ni doping,” Journal of Physical Chemistry C, vol. 113, no. 21, pp. 9210–9217, 2009.
[24] Z. Zhou, M. Li, and L. Guo, “A first-principles theoretical simulation on the electronic structures and optical absorption properties for O vacancy and Ni impurity in TiO2 photocatalysts,” Journal of Physical Chemistry Solids, vol. 71, no. 12, pp. 1707–1712, 2010.
[25] T. Sasaki, Y. Komatsu, and Y. Fujiiki, “A new layered hydrous titanium dioxide H4Ti3-x/4O3·xH2O,” Journal of Chemical Society, Chemical Communication, no. 12, pp. 817–818, 1991.
[26] M. Hervieu and B. Raveau, “Structures en feuillets avec sites octaédriques lacunaires: les titanates non stoechiométriques Cs4-xT12-xO4,” Revue de Chimie Minérale, vol. 18, pp. 642–649, 1981.
[27] I. E. Grey, C. Li, I. C. Madsen, and J. A. Watts, “The stability and structure of,” Journal of Solid State Chemistry, vol. 66, no. 1, pp. 7–19, 1987.
[28] M. Ohashi, “Preparation and lithium intercalation of layered structured titanate Cs6Ti2-x/4O4 (x=0.68),” Molecular Crystals and Liquid Crystals Science and Technology Section A Molecular Crystals and Liquid Crystals, vol. 311, pp. 51–56, 2006.
[29] R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallographica, vol. 32, no. 5, pp. 751–767, 1976.
[30] U. Balachandran and N. G. Eror, “Raman spectra of titanium dioxide,” Journal of Solid State Chemistry, vol. 42, no. 3, pp. 276–282, 1982.
[31] T. Gao, H. Fjellvåg, and P. Norby, “Raman scattering properties of a protonic titanate H4Ti3-x/4Clx/4O4 · H2O (G, vacancy; x = 0.7) with lepidocrocite-type layered structure,” The Journal of Physical Chemistry. B, vol. 112, no. 31, pp. 9400–9405, 2008.
[32] J. Tauc, R. Grigorovici, and A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Physica Status Solidus, vol. 15, pp. 627–637, 1966.
[33] G. Liu, L. Wang, C. Sun et al., “Band-to-band visible-light photon excitation and photoactivity induced by homogeneous nitrogen doping in layered titanates,” Chemistry of Materials, vol. 21, pp. 1266–1274, 2009.
[34] K. Fan, H. Chen, Y. Ji et al., “Nickel-vanadium monolayer double hydroxide for efficient electrochemical water oxidation,” Nature communications, vol. 7, no. 1, 2016.
[35] S. Yin, D. I. Maeda, and M. Wu, “Synthesis of HTaWO6/(Pt, TiO2) nanocomposite with high photocatalytic activities for hydrogen evolution and nitrogen monoxide destruction,” Solid State Ionics, vol. 151, no. 1-4, pp. 377–383, 2002.
[36] Y. Asakura, Y. Inaguma, K. Ueda, Y. Masubuchi, and S. Yin, “Synthesis of gallium oxynitride nanoparticles through hydrothermal reaction in the presence of acetylene black and their photocatalytic NOx decomposition,” Nanoscale, vol. 10, no. 4, pp. 1837–1844, 2018.
[37] J. Wang, Y. Asakura, and S. Yin, “Synthesis of zinc germanium oxynitride nanotube as a visible-light driven photocatalyst for NOx decomposition through ordered morphological transformation from Zn2GeO4 nanorod obtained by hydothermal reaction,” Journal of Hazardous Materials, vol. 396, p. 122709, 2020.
[38] R. I. Bickley, T. Gonzalez-Carreno, J. S. Lees, L. Palmisano, and R. J. Tilley, “A structural investigation of titanium dioxide photocatalyst,” Journal of Solid State Chemistry, vol. 92, pp. 178–190, 1991.
[39] T. Ohno, K. Sarukawa, K. Tokieda, and M. Matsumura, “Morphology of a TiO2 photocatalyst (Degussa, P-25) consisting of anatase and rutile crystalline phases,” Journal of Catalysis, vol. 203, no. 1, pp. 82–86, 2001.
[40] P. Hu, J. Huang, J. Wu et al., “Synthesis of hierarchically structured ZnO spheres by facile methods and their photocatalytic deNOx properties,” Journal of Hazardous Materials, vol. 248-249, pp. 202–210, 2013.
[41] J. Zhang, Q. Xu, Z. Feng, M. Li, and C. Li, “Importance of the relationship between surface phases and photocatalytic activity of TiO2,” Angewandte Chemie International Edition, vol. 47, no. 9, pp. 1766–1769, 2008.
[42] H. Xu and L. Zhang, “Controllable one-pot synthesis and enhanced photocatalytic activity of mixed-phase TiO2 nanocrystals with tunable brookite/rutile ratios,” Journal of Physical Chemistry C, vol. 113, no. 5, pp. 1785–1790, 2009.
[43] R. Su, R. Bechstein, L. Sø et al., “How the anatase-to-rutile ratio influences the photoreactivity of TiO₂,” The Journal of Physical Chemistry C, vol. 115, no. 49, pp. 24287–24292, 2011.

[44] L. Cao, D. Chen, W. Li, and R. A. Caruso, “Hierarchically porous titania networks with tunable anatase: rutile ratios and their enhanced photocatalytic activities,” ACS Applied Materials and Interfaces, vol. 6, no. 15, pp. 13129–13137, 2014.

[45] K. Saito, E. Yi, R. M. Laine, and Y. Sugahara, “Preparation of Nb-doped TiO₂ nanopowder by liquid-feed spray pyrolysis followed by ammonia annealing for tunable visible-light absorption and inhibition of photocatalytic activity,” Ceramics International, vol. 46, no. 2, pp. 1314–1322, 2020.