Orthogonal polynomials on the disk in the absence of finite moments

Peter C. Gibson

December 24, 2014

Abstract

We introduce a new family of orthogonal polynomials on the disk that has emerged in the context of wave propagation in layered media. Unlike known examples, the polynomials are orthogonal with respect to a measure all of whose even moments are infinite.

1 Introduction

For each $\alpha > -1$ there is a corresponding family of disk polynomials that are orthogonal with respect to the measure $(1-x^2-y^2)^\alpha dx\,dy$ on the unit disk \mathbb{D}; these are sometimes referred to as generalized Zernike polynomials, named for the case $\alpha = 0$ introduced in [8]. The well-established theory of disk polynomials is detailed in [4, 6, 1]. The constraint $\alpha > -1$ stems from the requirement that the measure $(1-x^2-y^2)^\alpha dx\,dy$ have finite moments, which is necessary for meaningful evaluation of the corresponding scalar product

$$\langle p, q \rangle_\alpha = \int_\mathbb{D} p(x, y)q(x, y)(1-x^2-y^2)^\alpha dx\,dy \quad (1.1)$$

on arbitrary polynomials p and q. Recent work on the propagation of waves in layered media [2, 3] has brought to light a family of polynomials orthogonal with respect to $(1-x^2-y^2)^{-1}dx\,dy$. Since

$$\int_\mathbb{D} x^{2m}y^{2n}(1-x^2-y^2)^{-1}dx\,dy = \infty \quad (1.2)$$

for every pair of nonnegative integers m and n, the scalar product (1.1) is not defined for arbitrary polynomials in the case $\alpha = -1$. Nevertheless, polynomials—which we term scattering polynomials—comprise an orthogonal basis for $L^2(\mathbb{D}, dx\,dy/(1-x^2-y^2))$. The purpose of the present paper is to present the details of this result.

2 Definition and properties of scattering polynomials

Referring to the notation $z = x + iy$ for points in the unit disk \mathbb{D}, one has the option of working with euclidean x, y-coordinates, or with complex coordinates z and \bar{z}. As far as orthogonal polynomials are concerned these are essentially equivalent, as elaborated in [7]; the present paper uses whichever coordinates are most convenient for the task at hand.

We define scattering polynomials by a Rodrigues type formula, as follows. For every $(p, q) \in \mathbb{Z}^2$ with $\min\{p, q\} \geq 1$, set

$$\varphi^{(p,q)}(z) = \frac{(-1)^p}{q(p + q - 1)!}(1-z\bar{z})^{p+q} \frac{\partial^{p+q}}{\partial z^p \partial \bar{z}^q}(1-z\bar{z})^{p+q-1} \quad (2.1)$$

Dept. of Mathematics & Statistics, York University, 4700 Keele St., Toronto, Ontario, Canada, M3J 1P3, pcgibson@yorku.ca
The chosen normalization simplifies the formulation of the boundary Green’s function for scattering in layered media (see [3]) and so is physically natural, although not important for present considerations.

Note that disk polynomials satisfy a Rodrigues formula similar to that of scattering polynomials, but there is a qualitative difference: it follows directly from (2.1) that \(\varphi^{(p,q)}(z) = 0 \) for every \(z \) on the unit circle \(T \), whereas all disk polynomials have constant non-zero modulus on \(T \), cf. [4]. Our main result concerns completeness of scattering polynomials, as follows.

Theorem 1 Scattering polynomials \(\varphi^{(p,q)} \) defined by (2.1), where \(p, q \in \mathbb{Z}^2 \) and \(\min\{p,q\} \geq 1 \), comprise an orthogonal basis for \(L^2(D, dxdy/(1 - x^2 - y^2)) \).

In §2.1 and §2.2 below we show that scattering polynomials are eigenfunctions of a second order differential operator and may be expressed in terms of Jacobi polynomials; these results contribute to a proof of Theorem 1 completed in §2.3.

2.1 Eigenfunctions of \(- (1 - x^2 - y^2)\Delta / 4 \)**

Let \(\tilde{\Delta} \) denote the modified laplacian

\[
\tilde{\Delta} = (1 - z\bar{z}) \frac{\partial^2}{\partial z \partial \bar{z}} = \frac{1 - x^2 - y^2}{4} \Delta,
\]

where \(\Delta \) is the usual (euclidean) laplacian. Direct computation using (2.1) shows that for all integers \(p, q \geq 1 \),

\[
- \tilde{\Delta} \varphi^{(p,q)} = pq \varphi^{(p,q)}.
\]

Letting \(\sigma_0 : \mathbb{Z}_+ \to \mathbb{Z}_+ \) denote the divisor function, there is thus a family of \(\sigma_0(k) \) eigenfunctions of \(- \tilde{\Delta} \) of the form \(\varphi^{(p,q)} \) corresponding to each positive integer eigenvalue \(k \). We show in the next section that these eigenfunctions are linearly independent.

2.2 Representation in terms of Jacobi polynomials

Like disk polynomials, scattering polynomials have a representation in terms of Jacobi polynomials, but again, there is a qualitative difference. The disk polynomials corresponding to parameter \(\alpha > -1 \) can be expressed in terms of Jacobi polynomials \(P_n^{(\alpha,\beta)} \) for nonnegative integer values of \(\beta \). Since there is no Jacobi polynomial corresponding to \(\alpha = -1 \), the same cannot be true for scattering polynomials. Indeed it turns out that scattering polynomials can be formulated in terms of \(P_n^{(1,\beta)} \), where \(\beta \) is a nonnegative integer, as follows.

Expanding the binomial \((1 - z\bar{z})^{p+q-1}\) in the formula (2.1), and then applying the derivative \(\partial^{p+q}/\partial z^p \partial \bar{z}^q \), yields

\[
\varphi^{(p,q)}(z) = \frac{(-1)^{q+\nu+1}}{q} (1 - z\bar{z})^m z^{m+\nu-p+1} \bar{z}^{m+\nu-q+1} \sum_{j=0}^{\nu} (-1)^j \frac{(j + \nu + m + 1)!}{j!(j + m)!(\nu - j)!} (z\bar{z})^j,
\]

where \(m = |p - q| \) and \(\nu = \min\{p, q\} - 1 \); the latter notation will be used in the remainder of this section. Switching to polar form \(z = re^{i\theta} \), it follows from (2.1) that

\[
\varphi^{(p,q)}(re^{i\theta}) = e^{i(q-p)\theta} f^{(p,q)}(r),
\]
where
\[f^{(p,q)}(r) = (-1)^{q+\nu+1} \frac{\nu!}{q} (1 - r^2)^m \sum_{j=0}^{\nu} (-1)^j \frac{(j + \nu + m + 1)!}{j!(j + m)!((\nu - j))!} r^{2j}. \]

(2.6)

The radial functions \(f^{(p,q)} \) were first discovered in [2], as was the following connection to Jacobi polynomials, valid for \(\nu \geq 0 \):

\[f^{(p,q)}(r) = \frac{(-1)^{q+m+\nu+1}(m + \nu + 1)}{q} (1 - r^2)^m P^{(1,m)}(2r^2 - 1). \]

(2.7)

Combined with (2.5) this yields the representation

\[\varphi^{(p,q)}(re^{i\theta}) = \frac{(-1)^{q+\max\{p,q\}} \max\{p,q\}}{q} (1 - r^2)^{\nu} P^{(1,|p-q|)}_{\min\{p,q\}-1} (2r^2 - 1) e^{i(q-p)\theta}. \]

(2.8)

Note that the angular part of \(\varphi^{(p,q)}(re^{i\theta}) \), namely \(e^{i(q-p)\theta} \), is a pure frequency. Therefore if \(q - p \neq q' - p' \), then \(\varphi^{(p,q)} \) and \(\varphi^{(p',q')} \) are orthogonal in

\[L^2\left(D, \frac{dx dy}{1 - x^2 - y^2} \right) = L^2\left(D, \frac{dr d\theta}{1 - r^2} \right). \]

In particular, if \(pq = p'q' \) and \((p,q) \neq (p',q') \), then \(\varphi^{(p,q)} \) and \(\varphi^{(p',q')} \) are orthogonal, so the set of scattering polynomials corresponding to any fixed eigenvalue of \(-\Delta\) is linearly independent.

2.3 Completeness in \(L^2\left(D, \frac{dr d\theta}{1 - r^2} \right) \)

In general, given a measure \(\mu \) on a locally compact metric space \(X \) and a positive measurable weight function \(w : X \to \mathbb{R}_+ \),

\[L^2(X, w d\mu) = \frac{1}{\sqrt{w}} L^2(X, d\mu), \]

(2.9)

and a sequence \(\{b_\nu\}_{\nu=0}^\infty \) is an orthogonal basis for \(L^2(X, w d\mu) \) if and only if the corresponding sequence \(\{\sqrt{w} b_\nu\}_{\nu=0}^\infty \) is an orthogonal basis for \(L^2(X, d\mu) \). In particular, setting \(d\mu = rdr d\theta/(1-r^2) \),

\[L^2(D, d\mu) = \sqrt{1 - r^2} L^2(D, rdr d\theta). \]

(2.10)

Also, since for any nonnegative integer \(m \), \(\{P^{(1,m)}_\nu(u)\}_{\nu=0}^\infty \) is an orthogonal basis for

\[L^2([-1,1], (1-u)(1+u)^m du), \]

it follows that the quasipolynomials

\[Q^{(1,m)}_\nu(u) = \left(\frac{1 - u}{2} \right)^{\frac{1}{2}} \left(\frac{1 + u}{2} \right)^{\frac{m}{2}} P^{(1,m)}_\nu(u) \]

(2.11)

comprise an orthogonal basis for \(L^2([-1,1], du) \); see [5].

In order to show that

\[B = \{ \varphi^{(p,q)} \mid (p,q) \in \mathbb{Z}^2 \& \ \min\{p,q\} \geq 1 \} \]

(2.12)
is an orthogonal basis of $L^2(\mathbb{D}, r dr d\theta/(1-r^2))$, we first argue that the functions $\varphi^{(p, q)}$ are orthogonal, and then that the span of \mathcal{B} is dense. It was proven in \cite{22} that $\varphi^{(p, q)}$ and $\varphi^{(p', q')}$ are orthogonal if $pq = p'q'$ and $(p, q) \neq (p', q')$. On the other hand, if $pq \neq p'q'$, then orthogonality of $\varphi^{(p, q)}$ and $\varphi^{(p', q')}$ follows from the fact that they are eigenfunctions, corresponding to distinct eigenvalues, of the self-adjoint operator $-\Delta$; self-adjointness of $-\Delta$ follows from that of $-\Delta$ by \cite{22}

It remains to show that span \mathcal{B} is dense in $L^2(\mathbb{D}, r dr d\theta/(1-r^2))$. Toward this end, suppose that $h \in L^2(\mathbb{D}, r dr d\theta/(1-r^2))$ is orthogonal to every member of \mathcal{B}. By \eqref{2.10} there exists $g \in L^2(\mathbb{D}, r dr d\theta)$ such that

$$h(r, \theta) = \sqrt{1-r^2} g(r, \theta).$$

\label{2.13}

Let $\alpha_{p, q} = (-1)^{q+\max\{p, q\}} \max\{p, q\}/q$ denote the coefficient occurring on the right-hand side of \eqref{2.8}. Then for each fixed $n = q - p \in \mathbb{Z}$, for every $\nu = \min\{p, q\} - 1 \geq 0$,

$$0 = \int_{\mathbb{D}} h(r, \theta) \varphi^{(p, q)}(r, \theta) \frac{r dr d\theta}{1-r^2}$$

$$= \alpha_{p, q} \int_{0}^{1} \left(\int_{0}^{2\pi} h(r, \theta) e^{-in\theta} d\theta \right) \left(1 - r^2 \right) r^n |P_{\nu}^{(1, |n|)}(2r^2 - 1) \frac{rdr}{1-r^2} \quad (\text{by \eqref{2.7}})$$

$$= \alpha_{p, q} \int_{0}^{1} \left(\int_{0}^{2\pi} g(r, \theta) e^{-in\theta} d\theta \right) \sqrt{1-r^2} r^n |P_{\nu}^{(1, |n|)}(2r^2 - 1) rdr \quad (\text{by \eqref{2.13}})$$

$$= \frac{\alpha_{p, q}}{4} \int_{-1}^{1} \left(\int_{0}^{2\pi} g \left(\sqrt{\frac{1+u}{2}}, \theta \right) e^{-in\theta} d\theta \right) \sqrt{\frac{1-u}{2}} \sqrt{\frac{1+u}{2}} |P_{\nu}^{(1, |n|)}(u) du \quad (u = 2r^2 - 1)$$

$$= \frac{\alpha_{p, q}}{4} \int_{-1}^{1} \left(\int_{0}^{2\pi} g \left(\sqrt{\frac{1+u}{2}}, \theta \right) e^{-in\theta} d\theta \right) Q_{\nu}^{(1, |n|)}(u) du \quad (\text{as in \eqref{2.11}}).$$

Since the quasipolynomials $Q_{\nu}^{(1, |n|)}$ are an orthogonal basis for $L^2([-1, 1], du)$, it follows that for each $n \in \mathbb{Z}$,

$$\int_{0}^{2\pi} g \left(\sqrt{\frac{1+u}{2}}, \theta \right) e^{-in\theta} d\theta = 0 \quad (\text{\eqref{2.14}})$$

for every $u \in [-1, 1]$ outside a set E_n of measure zero. Since $\{e^{in\theta}\}_{n \in \mathbb{Z}}$ is an orthogonal basis of $L^2([0, 2\pi], d\theta)$, it follows in turn that for $u \notin \cup E_n$

$$g \left(\sqrt{\frac{1+u}{2}}, \theta \right) = 0,$$

for almost every $\theta \in [0, 2\pi]$. Thus $g(r, \theta) = 0$ for almost every $(r, \theta) \in \mathbb{D}$ and $g = 0$ as a function in $L^2(\mathbb{D}, r dr d\theta)$, whence $h = 0$ also. This proves that the orthogonal complement of \mathcal{B} in $L^2(\mathbb{D}, r dr d\theta/(1-r^2))$ is empty, and hence that \mathcal{B} is an orthogonal basis.

\section{3 Conclusions}

Since the vector space $L^2(\mathbb{D}, r dr d\theta/(1-r^2)) = \sqrt{1-r^2}L^2(\mathbb{D}, r dr d\theta)$ is dense in

$$L^2(\mathbb{D}, r dr d\theta) = L^2(\mathbb{D}, dx dy),$$

and convergence in the former space implies convergence in the latter, scattering polynomials comprise a (non-orthogonal) basis for $L^2(\mathbb{D}, dx dy)$ consistent with Dirichlet boundary values. From the
perspective of analysis of functions on the disk, this provides an alternative to Zernike polynomials—and their generalizations the disk polynomials—which are non-zero on the boundary circle and so inconsistent with Dirichlet conditions.

More generally, scattering polynomials illustrate that orthogonal polynomials can comprise an orthogonal basis for a function spaces $L^2(X, d\mu)$ in which not all polynomials are integrable. A natural question for further investigation is the existence and extent of other such examples.

References

[1] C. F. Dunkl and Y. Xu. *Orthogonal polynomials of several variables*, volume 81 of *Encyclopedia of Mathematics and its Applications*. Cambridge University Press, Cambridge, 2001.

[2] P. C. Gibson. The combinatorics of scattering in layered media. *SIAM J. Appl. Math.*, 74(4):919–938, 2014.

[3] P. C. Gibson. A smooth global model for scattering in layered media. 28 pages, arXiv:1306.2871 (math-ph), December 2014.

[4] T. Koornwinder. Two-variable analogues of the classical orthogonal polynomials. In *Theory and application of special functions (Proc. Advanced Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1975)*, pages 435–495. Math. Res. Center, Univ. Wisconsin, Publ. No. 35. Academic Press, New York, 1975.

[5] G. Szegö. *Orthogonal polynomials*. American Mathematical Society, Providence, R.I., fourth edition, 1975. American Mathematical Society, Colloquium Publications, Vol. XXIII.

[6] A. Wünsche. Generalized Zernike or disc polynomials. *J. Comput. Appl. Math.*, 174(1):135–163, 2005.

[7] Y. Xu. Complex versus real orthogonal polynomials of two variables. *Integral Transforms Spec. Funct.*, 26(2):134–151, 2015.

[8] F. Zernike. Beugungstheorie des schneidenverfahrens und seiner verbesserten form, der phasenkontrastmethode. *Physica*, 1(712):689 – 704, 1934.