FIRST ACETIC ACID SURVEY WITH CARMA IN HOT MOLECULAR CORES

Y.-S. Jerry Shiao\textsuperscript{1,2}, Leslie W. Looney\textsuperscript{1}, Anthony J. Remijan\textsuperscript{3,4}, Lewis E. Snyder\textsuperscript{1}, and Douglas N. Friedel\textsuperscript{1}

\textsuperscript{1} Department of Astronomy, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
\textsuperscript{2} Physics Department, National Taiwan University, Taipei 10617, Taiwan; jshiao@phys.ntu.edu.tw
\textsuperscript{3} National Radio Astronomy Observatory, Charlottesville, VA 22903, USA; aremijan@nrao.edu
\textsuperscript{4} Center for Chemistry of the Universe, Department of Chemistry, University of Virginia, McCormack Rd., P.O. Box 400319, Charlottesville, VA 22904-4319, USA

Received 2009 December 2; accepted 2010 April 18; published 2010 May 17

ABSTRACT

Acetic acid (CH\textsubscript{3}COOH) has been detected mainly in hot molecular cores where the distribution between oxygen (O) and nitrogen (N) containing molecular species is cospatial within the telescope beam. Previous work has presumed that similar cores with cospatial O and N species may be an indicator for detecting acetic acid. However, does this presumption hold as higher spatial resolution observations of large O- and N-containing molecules become available? As the number of detected acetic acid sources is still low, more observations are needed to support this postulate. In this paper, we report the first acetic acid survey conducted with the Combined Array for Research in Millimeter-wave Astronomy at 3 mm wavelengths toward G19.61−0.23, G29.96−0.02, and IRAS 16293−2422. We have successfully detected CH\textsubscript{3}COOH via two transitions toward G19.61−0.23 and tentatively confirmed the detection toward IRAS 16293−2422 A. The determined column density of CH\textsubscript{3}COOH is 2.0(1.0) × 10\textsuperscript{16} cm\textsuperscript{-2} and the abundance ratio of CH\textsubscript{3}COOH to methyl formate (HCOOCH\textsubscript{3}) is 2.2(0.1) × 10\textsuperscript{-1} toward G19.61−0.23. Toward IRAS 16293 A, the determined column density of CH\textsubscript{3}COOH is \sim 1.6 × 10\textsuperscript{15} cm\textsuperscript{-2} and the abundance ratio of CH\textsubscript{3}COOH to methyl formate (HCOOCH\textsubscript{3}) is \sim 1.0 × 10\textsuperscript{-3}, both of which are consistent with abundance ratios determined toward other hot cores. Finally, we model all known line emission in our passband to determine physical conditions in the regions and introduce a new metric to better reveal weak spectral features that are blended with stronger lines or that may be near the 1σ−2σ detection limit.

Key words: ISM: abundances – ISM: clouds – ISM: individual objects (G19.61−0.23, G29.96−0.02, IRAS 16293-2422) – ISM: molecules

Online-only material: color figures

1. INTRODUCTION

With high-resolution observations, Sgr B2 has been resolved into many regions of compact molecular/continuum emission (Gaume et al. 1995). One of these regions, Sgr B2(N-LMH) (i.e., the “Large Molecule Heimat”; Snyder et al. 1994; Miao et al. 1995), is a molecule-rich hot core that has historically been the best place to search for large and complex molecules. Interstellar acetic acid (CH\textsubscript{3}COOH) was first detected in the hot molecular core (HMC) of Sgr B2(N-LMH) with the Berkeley–Illinois–Maryland Association (BIMA) and Owens Valley Radio Observatory millimeter-wave arrays by Mehringer et al. (1997). The compactness of the CH\textsubscript{3}COOH emission in Sgr B2(N-LMH) (<3″; e.g., Remijan et al. 2002) highlights the importance of interferometers. To clearly detect the compact emission features from CH\textsubscript{3}COOH and other large molecules toward hot cores embedded in regions of more extended molecular emission, high-resolution interferometric observations are necessary. Thus, following the first CH\textsubscript{3}COOH detections in Sgr B2(N-LMH) and using the BIMA array, Remijan et al. (2002) confirmed CH\textsubscript{3}COOH in Sgr B2(N-LMH) and discovered the second CH\textsubscript{3}COOH source, the hot core toward W51e2.

Remijan et al. (2003) launched an extensive CH\textsubscript{3}COOH survey of 12 galactic HMCs, including high-mass (>10 M\textsubscript{☉}), and low-mass (<10 M\textsubscript{☉}) sources, and they found the third CH\textsubscript{3}COOH source toward the high-mass HMC G34.3+0.15. Using the IRAM 30 m telescope, Cazaux et al. (2003) reported the first detection of CH\textsubscript{3}COOH in IRAS 16293-2422 via the 9\textsubscript{1,9} − 8\textsubscript{8,8} E line at 100.855 GHz. This is the first low-mass star-forming region with detected CH\textsubscript{3}COOH to date, making only a total of four known interstellar sources of CH\textsubscript{3}COOH. At the conclusion of the search for new sources of CH\textsubscript{3}COOH, it was found that the three high-mass regions containing CH\textsubscript{3}COOH emission share certain chemical properties. For example, the abundances of CH\textsubscript{3}COOH and its isomer methyl formate (HCOOCH\textsubscript{3}) are very different; in Sgr B2(N-LMH), the abundance of HCOOCH\textsubscript{3} is 26 times higher than that of CH\textsubscript{3}COOH (Snyder 2006) assuming that the emission from CH\textsubscript{3}COOH and HCOOCH\textsubscript{3} are cospatial within the telescope beam. In addition, it has been suggested by Remijan et al. (2004) that there is a relationship between the CH\textsubscript{3}COOH sources and the spatial separation of complex oxygen (O) (e.g., HCOOCH\textsubscript{3} and CH\textsubscript{3}COCH\textsubscript{3}) and nitrogen (N) containing species (e.g., CH\textsubscript{3}CH\textsubscript{2}CN and NH\textsubscript{2}CH\textsubscript{2}CN). At the limit of the current observational resolution of these surveys, CH\textsubscript{3}COOH emission is only detected where the emission from O- and N-containing species is cospatial. In contrast, there have not been any CH\textsubscript{3}COOH detections in HMCs with reported spatial separation of complex O- and N-containing species, e.g., Orion KL (e.g., Sutton et al. 1995) and W3(OH) (e.g., Wyrowski et al. 1999), even though the observed separation is very dependent on source distance.

Gas phase and grain surface chemistry may both play critical roles in the formation of CH\textsubscript{3}COOH and other large molecules in the interstellar medium (Hasegawa et al. 1992; Garrod & Herbst 2006; Garrod et al. 2008). However, the exact pathways of CH\textsubscript{3}COOH formation in gas phase or on grain surfaces in astronomical environments are still not clear. The apparent spatial coincidence of the emission of complex O- and N-containing species with the CH\textsubscript{3}COOH emission may suggest
a strong correlation with CH$_3$COOH formation (e.g., Remijan et al. 2004). Another possibility is that CH$_3$COOH and large N-bearing species share approximately the same time scale to form in hot cores. Nevertheless, it is important to investigate the spatial relationship between CH$_3$COOH and the distribution of other complex molecular species. Thus, we also observed methyl formate (HCOOCH$_3$) and ethyl cyanide (CH$_3$CH$_2$CN) as proxies to determine the spatial distribution of O- and N-bearing species toward our sources in this survey.

To search for regions of CH$_3$COOH emission and continue to determine its spatial relationship with the distribution of other complex molecular species, we have used the high sensitivity of the Combined Array for Research in Millimeter-wave Astronomy (CARMA) to carry out a CH$_3$COOH survey toward three more hot cores. The observed sources are G19.61−0.23, G29.96−0.02, and IRAS 16293−2422 and are described in more detail in Section 2. A complete description of the CARMA observations is described in Section 3; the results are presented in Section 4; and in Section 5 we describe the analysis routine and discuss the implication of these observations with future surveys and chemical formation models.

2. OBSERVED SOURCES

2.1. G19.61−0.23 and G29.96−0.02

G19.61−0.23 (hereafter G19) is a molecule-rich ultracompact H ii region, which includes a high-mass HMC. Numerous molecules have been detected in this region, including OH (Matthews et al. 1977; Garay et al. 1985), H$_2$O (Genzel & Downes 1977), CH$_3$OH (Kalenskii et al. 1994; Larionov et al. 1999), NH$_3$ (Garay et al. 1998), CS (Shirley et al. 2003; Wu & Evans 2003; Larionov et al. 1999), HCN (Wu & Evans 2003), and CO (Hofner et al. 2000). G29.96−0.02 (hereafter G29) is another high-mass ultracompact region that also has been observed in many molecular species including CH$_3$CN, C$^{18}$O, CH$_3$OH, CH$_3$CH$_2$CN, C$^{34}$S, CH$_3$OCH$_3$, HCOOCH$_3$, $^{34}$SO$_2$, SO$_2$, HC$_3$N, H$_2$CS, C$_2$H$_5$OH, and SiO (see, e.g., Cesaroni et al. 1998; Olmi et al. 2003; Beuther et al. 2007, and references therein). One of the more recent surveys toward both sources was conducted by Fontani et al. (2007) with the Institute de Radioastronomie Millimétrique 30 m (IRAM) telescope. These observations targeted several emission features between 1 and 3 mm wavelengths of CH$_3$CH$_2$CN, vinyl cyanide (CH$_2$CHCN), and dimethyl ether (CH$_3$OCH$_3$). Specifically, the observations by Fontani et al. (2007) were conducted to further investigate whether the so-called chemical differentiation seen toward Orion and W3 is a general characteristic of high-mass HMCs. However, no “chemical differentiation” was observed within the spatial limits defined by the size of the synthesized beam of their observations.

Toward G19, from the observations of a series of CH$_3$CH$_2$CN transitions, Fontani et al. (2007) determined a rotational temperature of $T_{rot} = 116(12) \text{ K}$, and from that a source-averaged column density of $N_3 = 2.2(0.3) \times 10^{16} \text{ cm}^{-2}$. From a series of CH$_3$OCH$_3$ transitions that would be used to represent the excitation and distribution of other O-bearing molecules like HCOOCH$_3$, Fontani et al. (2007) determined a $T_{rot} = 158(17) \text{ K}$ and $N_3 = 2.0(0.2) \times 10^{15} \text{ cm}^{-2}$. Note that the half-power beam width (HPBW) of the IRAM 30 m telescope ranged in these 1–3 mm observations from $\sim$12′′ to $\sim$22′′, respectively. In contrast, using archival data from the Submillimeter Array (SMA), Wu et al. (2009) found a much higher temperature for the hot core regions. Using methyl cyanide (CH$_3$CN) at a spatial resolution of 2′′6 × 2′′1, they found $T_{rot} \sim 552 \text{ K}$ and the beam-averaged column density, $N_3 \sim 3.4 \times 10^{16} \text{ cm}^{-2}$, without optical depth corrections.

In a dedicated CH$_3$COOH survey of high-mass HMCs by Remijan et al. (2004), HCOOCH$_3$ (methyl formate), CH$_3$CH$_2$CN (ethyl cyanide), CH$_3$OH (methanol), and HCOOH (formic acid) were all detected at a spatial resolution of $\sim$5″ toward G19. There was also an indication of weak CH$_3$COOH emission at 111.507 GHz, at the 1σ detection limit of the BIMA array. Based on the detected CH$_3$COOH sources and the upper limits from the non-detections, the abundance ratio of CH$_3$COOH to HCOOCH$_3$ seems universal in high-mass HMCs. If G19 indeed contains CH$_3$COOH, the HCOOCH$_3$ detection indicated that the CH$_3$COOH transitions were just slightly lower than the BIMA sensitivity. To clearly detect the CH$_3$COOH transition lines, we needed a higher sensitivity by a factor of 4, which is provided by CARMA in this survey.

Toward G29, the observations by Fontani et al. (2007) of CH$_3$CH$_2$CN transitions yielded a $T_{rot} = 121(17) \text{ K}$, and from that an $N_3 = 1.5(0.3) \times 10^{16} \text{ cm}^{-2}$. Similarly, observations of CH$_3$OCH$_3$ transitions yielded a $T_{rot} = 141(26) \text{ K}$ and $N_3 = 6.2(1.0) \times 10^{15} \text{ cm}^{-2}$. Another recent campaign toward G29 was performed by Beuther et al. (2007) who mapped the spatial distribution of several complex molecules with the SMA at a spatial resolution of $\sim$0′′4 × 0′′3. However, no temperature or column density determinations were made from the emission features of these complex molecules. The only reported temperature of the compact emission regions was made from observations of CH$_3$OH in its vibrationally excited $v_i = 1$ state. From the relative intensities of the detected emission features, Beuther et al. (2007) reported an excitation temperature of $T_{ex} \sim 340 \text{ K}$ with a lower limit of 220 K. In addition, this mapping campaign showed that the distributions of CH$_3$OH, CH$_3$CH$_2$CN, CH$_3$OCH$_3$, and HCOOCH$_3$ were cospatial suggesting that G29 may be another source of CH$_3$COOH and that an excitation temperature as high as 220 K may be used in the determination of the column density of these complex molecules (see Section 3).

2.2. IRAS 16293−2422

IRAS 16293−2422 is one of the most well-studied and observed low-mass star-forming region (e.g., Looney et al. 2000). It consists of two clumps denoted as component A and B (hereafter I16293A and B). The structure of I16293A is much more complex than I16293B (e.g., Chandler et al. 2005). I16293A contains two centimeter sources A1 and A2 (Wootten 1989) and two submillimeter sources Aa and Ab (Chandler et al. 2005). Moreover, I16293A2 may actually be a bipolar ejection with two components (Loinard et al. 2007). Despite their low masses, both component A and B have been suggested to be as molecule-rich as high-mass HMCs (e.g., Schöier et al. 2002; Cazaux et al. 2003).

Large O-bearing species, including HCOOCH$_3$ and HCOOH, and N-bearing species, including CH$_3$CN (methyl cyanide), CH$_2$CHCN (vinyl cyanide), and CH$_3$CH$_2$CN, have been detected toward this region (Cazaux et al. 2003; Bottinelli et al. 2004; Kuan et al. 2004; Remijan & Hollis 2006). With the IRAM 30 m telescope, Cazaux et al. (2003) reported the first detection of CH$_3$COOH in this low mass region via the 9$^2$E line at 100.855 GHz. This makes IRAS 16293−2422 the only low-mass CH$_3$COOH source to date. However, Cazaux et al. (2003) did not detect the counterpart, 9$^2$S $- 8^2$S A line, and the 9$^2$S $- 8^2$E line is known to be blended (e.g., Cazaux
et al. 2003). Comparing the IRAM single dish of a 28″ beam to an estimated source size of 5″ for the CH$_3$COOH emission, beam dilution would severely hinder the detection of other weak CH$_3$COOH lines and may even pick up the extended emission from more distributed molecular species. To further investigate the CH$_3$COOH distribution toward IRAS 16293—2422, we observed two more CH$_3$COOH transitions in this survey with the high resolution of CARMA, which is better coupled to the assumed source size and is insensitive to extended emission.

3. OBSERVATIONS

The CH$_3$COOH survey was carried out with the CARMA λ = 3 mm receivers from Spring 2006 to Spring 2008 in the B and C configurations. The individual angular resolutions are about 1″ and 2″, respectively. Table 1 summarizes the properties of the observed sources, which includes the source positions, flux calibrators, gain calibrators, distances, masses, and LSR velocities. The six windows in the CARMA correlator were configured as two wide-band and four narrowband windows. Each wide-band window has 500 MHz bandwidth and 15 channels while each narrowband window has 31 MHz bandwidth and 63 channels. The narrowband high spectral resolution is 0.49 MHz per channel, which provides sufficient sensitivity to resolve the observed transitions and lower the line confusion effect to detect the compact emission from large molecules. The amplitude and phase calibrations were accomplished by observing the gain and flux calibrators. The overall flux calibration uncertainty is 10%–15%. The CARMA flux uncertainty discussed in the text is the statistical uncertainty and does not account for any amplitude calibration error. In this paper, we will use the style of showing 1σ statistical uncertainties in parentheses after the derived values. During data reduction, pointing and system temperatures were checked to monitor data quality.

We observed the $10_{a,10} - 9_{a,9} E$ and $A$ CH$_3$COOH lines at 111.507270(20) and 111.548533(20) GHz (Ilyushin et al. 2008) in two narrowband windows. Based on previous observations (Remijan et al. 2002, 2003), they are unblended and have similar line strengths. In addition to CH$_3$COOH, we included two HCOOCH$_3$ and three CH$_3$CH$_2$CN lines in the other narrowband transitions. All spectral line data were taken from the Spectral Line Atlas of Interstellar Molecules (F. J. Lovas 2009, private communication), the Cologne Database for Molecular Spectroscopy (Müller et al. 2005), and the appropriate laboratory references listed therein.

4. RESULTS

The observational data were reduced with the MIRIAD package (Sault et al. 1995). The final data presented in the figures were Hanning-smoothed over three channels and continuum-subtracted. The observations in B and C configurations were combined using natural weighting to obtain the best sensitivity and synthesized beams of ∼2″. We present the observations of each source as both maps of the molecular emission and the spectra at the peak of the emission (Figures 1 through 7). The continuum emission maps shown were made from channels

---

Table 1

| Source         | $\alpha$ (J2000.0) | $\delta$ (J2000.0) | Flux Calibrator | Gain Calibrator | Distance (kpc) | Mass ($M_\odot$) | $v_{LSR}$ (km s$^{-1}$) |
|----------------|-------------------|-------------------|----------------|-----------------|----------------|-----------------|------------------------|
| G19.61—0.23$^a$ | 18 27 38.1        | −11 56 39.0       | Neptune        | 1911—201        | 3.50           | 450             | 40.0                   |
| G29.96—0.02$^b$ | 18 46 04.0        | −02 39 21.5       | Neptune        | 1751+096        | 6.0            | 1100            | 98.8                   |
| IRAS 16293—2422$^{c,d}$ | 16 32 22.8 | −24 28 33.0 | MWC349 | 1625—254 | 0.16 | 5.4 | 3.9 |

Notes.

$^a$ Furuya et al. (2005)
$^b$ Olmi et al. (2003)
$^c$ Schöier et al. (2002)
$^d$ Di Francesco et al. (2001)

Table 2

| Species          | Rotational Partition Function | Transition | Frequency (MHz) | $E_a$ (K) | $(S_{J,J} \mu^2)$ (debye$^2$) |
|------------------|-------------------------------|------------|-----------------|----------|-------------------------------|
| CH$_3$COOH$^a$   | $Q_r = 14.17T_r^{3/2}$       | $10_{a,10} - 9_{a,9} E$ | 111,507.270(20) | 30.5     | 54.8                          |
|                  |                               | $10_{a,10} - 9_{a,9} A$ | 111,548.533(20) | 30.5     | 54.8                          |
| HCOOCH$_3$$^b$   | $Q_r = 12.45T_r^{3/2}$       | $9_{a,8} - 8_{a,7} E$  | 107,537.189(25) | 28.8     | 22.8                          |
|                  |                               | $9_{a,8} - 8_{a,7} A$  | 107,543.746(25) | 28.8     | 22.8                          |
| CH$_3$CH$_2$CN$^c$ | $Q_r = 7.17T_r^{3/2}$       | $12_{a,11,2} - 11_{a,1,1}$ | 107,539.854(3) | 167.8    | 28.4                          |
|                  |                               | $12_{a,1,1} - 11_{a,1,0}$ | 107,539.854(3) | 167.8    | 28.4                          |
|                  |                               | $12_{a,9} - 11_{a,4,8}$ | 107,543.918(3) | 51.4     | 158.1                         |
|                  |                               | $12_{a,8} - 11_{a,4,7}$ | 107,547.593(3) | 51.4     | 158.1                         |
|                  |                               | $12_{a,10} - 11_{a,3,9}$ | 107,594.040(3) | 43.6     | 166.8                         |

Notes. The 1σ uncertainty of the frequencies is in units of kHz. Each of the CH$_3$COOH lines consists of two a-type and two b-type transitions. This is represented by an asterisk substituted for the K$_q$ quantum numbers.

$^a$ Ilyushin et al. (2008)
$^b$ Oesterling et al. (1999)
$^c$ Fukuyama et al. (1996) and Remijan et al. (2007)
Figure 1. G19 maps. (a) CH$_3$COOH contours overlaid on the gray continuum map. The continuum emission maps shown were made from channels contained in the wideband windows which were free from line emission. The contour levels are $-3, 3, 4, 5 \times \sigma = 24~\text{mJy beam}^{-1}$. The gray-scale unit is Jy beam$^{-1}$. The synthesized beam size is $1''65 \times 1''42$ (P.A. = 46.3), shown in the bottom left corner. The continuum beam size is $1''58 \times 1''45$ (P.A. = 36.4). In the continuum map, there are two main components, A and C. The CH$_3$COOH emission is mainly overlaid on component C. (b) HCOOCH$_3$ contours overlaid on the gray continuum map. The contour levels averaged over three channels are $3, 6, 9, 12, 15, 18, 21, 24, 27, 30 \times \sigma = 20~\text{mJy beam}^{-1}$. The synthesized beam size is $2''16 \times 1''67$ (P.A. = 59.6). (c) CH$_3$CH$_2$CN contours overlaid on the gray continuum map. The contour levels averaged over six channels, are $3, 9, 15, 21, 27, 33, 39, 45, 51, 57, 63 \times \sigma = 18~\text{mJy beam}^{-1}$. The synthesized beam size is $2''16 \times 1''67$ (P.A. = 60.3).

One of the most relevant discoveries in this paper is the new detection of CH$_3$COOH toward G19 that highlights the importance of interferometric observations in the detection of weak spectral signatures confined in compact emission regions. To illustrate the distribution of the CH$_3$COOH emission toward G19, we have summed the intensity of the CH$_3$COOH lines to produce a combined CH$_3$COOH contour map which is overlaid on the continuum map in gray scale in Figure 1(a). Both the 10$_5$$-$10$_9$ A and 10$_5$$-$10$_9$ E lines were detected in the two CH$_3$COOH spectral windows (Figures 2(c) and (d)) at the canonical $v_{\text{LSR}}$ of 40 km s$^{-1}$ for G19. While some weak unidentified lines may appear in the windows after Hanning smoothing, the relative line strengths of the two CH$_3$COOH transitions are roughly equal as predicted by rotational spectroscopy. G19 consists of several high-density components of continuum emission between 2 cm and 3 mm wavelengths (Furuya et al. 2005). In this case, the CH$_3$COOH emission is located near the center of component C and the CH$_3$COOH emission region has an effective scale size of 2$''$.

In addition to CH$_3$COOH, we have observed transitions of HCOOCH$_3$ and CH$_3$CH$_2$CN. Two transitions of HCOOCH$_3$, 9$_{2,8}$$-$8$_{2,7}$ A/E, and three transitions of CH$_3$CH$_2$CN, 12$_{4,9}$$-$11$_{4,7}$, 12$_{4,8}$$-$11$_{4,7}$, and 12$_{3,10}$$-$11$_{3,9}$, are shown in Figures 2(a) and (b). All transitions are at a $v_{\text{LSR}} = 40$ km s$^{-1}$. The statistical significance of three possible unidentified lines will be discussed in Section 5.5. The HCOOCH$_3$ map (Figure 1(b)) and CH$_3$CH$_2$CN map (Figure 1(c)) show emission that peaks primarily near component C, like the CH$_3$COOH emission, yet with a southward projection toward component A that was not contained in the wideband windows which were free from line emission. All of the spectra from each source are shown in rows and columns. In each spectral figure, column (a) displays window 2 (rest frequency = 107.54375 GHz); column (b) window 3 (rest frequency = 107.59404 GHz); column (c) window 6 (rest frequency = 111.50727 GHz); and column (d) window 5 (rest frequency = 111.54853 GHz). In row 1, the observed spectra (Hanning smoothed over three channels) are overlaid on the modeled spectral line data represented by Gaussians (red trace). In row 2, the modeled spectral line data from row 1 are convolved with the spectral resolution of the original observational data and co-added with 24 mJy beam$^{-1}$ random noise. Finally, row 3 presents the residuals from the modeled data subtracted from the observational data (i.e., row 1 minus row 2). The maps and spectra are discussed below.

4.1. G19.61$-$0.23

One of the most relevant discoveries in this paper is the new detection of CH$_3$COOH toward G19 that highlights the importance of interferometric observations in the detection of weak spectral signatures confined in compact emission regions. To illustrate the distribution of the CH$_3$COOH emission toward G19, we have summed the intensity of the CH$_3$COOH lines to produce a combined CH$_3$COOH contour map which is overlaid on the continuum map in gray scale in Figure 1(a). Both the 10$_5$$-$10$_9$ E and 10$_5$$-$10$_9$ A lines were detected in the two CH$_3$COOH spectral windows (Figures 2(c) and (d)) at the canonical $v_{\text{LSR}}$ of 40 km s$^{-1}$ for G19. While some weak unidentified lines may appear in the windows after Hanning smoothing, the relative line strengths of the two CH$_3$COOH transitions are roughly equal as predicted by rotational spectroscopy. G19 consists of several high-density components of continuum emission between 2 cm and 3 mm wavelengths (Furuya et al. 2005). In this case, the CH$_3$COOH emission is located near the center of component C and the CH$_3$COOH emission region has an effective scale size of 2$''$. In addition to CH$_3$COOH, we have observed transitions of HCOOCH$_3$ and CH$_3$CH$_2$CN. Two transitions of HCOOCH$_3$, 9$_{2,8}$$-$8$_{2,7}$ A/E, and three transitions of CH$_3$CH$_2$CN, 12$_{4,9}$$-$11$_{4,7}$, 12$_{4,8}$$-$11$_{4,7}$, and 12$_{3,10}$$-$11$_{3,9}$, are shown in Figures 2(a) and (b). All transitions are at a $v_{\text{LSR}} = 40$ km s$^{-1}$. The statistical significance of three possible unidentified lines will be discussed in Section 5.5. The HCOOCH$_3$ map (Figure 1(b)) and CH$_3$CH$_2$CN map (Figure 1(c)) show emission that peaks primarily near component C, like the CH$_3$COOH emission, yet with a southward projection toward component A that was not
seen in the lower resolution BIMA observations (Remijan et al. 2004). Table 3 summarizes the fitting results of the detected transitions toward G19. In our fitting routine, we assume that the rest frequencies of each molecular transition are fixed to the transitions toward G19. In our fitting routine, we assume that the rest frequencies of each molecular transition are fixed to the transitions toward G19. In our fitting routine, we assume that the rest frequencies of each molecular transition are fixed to the transitions toward G19. In our fitting routine, we assume that the rest frequencies of each molecular transition are fixed to the transitions toward G19.

4.2. G29.96−0.02

We have detected HCOOCH3 and CH3CH2CN toward G29. Figures 3(a) and (b) show the distribution of HCOOCH3 and CH3CH2CN emission toward the G29 region, respectively. In Figure 4, we clearly detected the two blended pairs of transitions of HCOOCH3 92,8 − 82,7 E/A and CH3CH2CN 124,9 − 114,8 and 124,8 − 114,7. The spectrum is very similar to that of G19 (Figure 2(a)). The CH3CH2CN 123,10 − 113,9 transition and possible U lines in Figure 4(b) also have similar profiles to those in Figure 2(b).

G29 consists of two main continuum peaks at 1.2 cm, which trace the UC H II region, and at 862 μm, which trace the cloud core (Beuther et al. 2007). The cloud core is the location of the molecular emission; however, the emission is not bright enough to contribute significantly at 3 mm wavelengths. In Figure 3, the continuum emission is dominated by the UC H II region.

Figures 4(c) and (d) show the two CH3COOH spectral windows toward G29. Unlike the data from G19, there are no statistically significant features at the CH3COOH rest frequencies. There is a 1σ feature that may be due to the 10,10 − 9,9 E transition of CH3COOH, but the corresponding 10,10 − 9,9 A transition is noticeably absent. In the discussion, we will investigate these passbands more closely with respect to the modeled data. Table 4 summarizes the fitting results of the detected transitions toward G29. The fitting criteria and model predictions are presented in the same manner as in Table 3.

4.3. IRAS 16293−2422

Unlike the spectra from Cazaux et al. (2003), we resolved IRAS 16293−2422 into I16293A and B with our 3′′ × 1′′ beam (see Figure 5). Therefore, beam dilution in this observation is minimized. Figures 6 and 7 show the two CH3COOH spectral windows toward I16293A and I16293B, respectively. Toward I16293A, we detect weak emission features that may be due to CH3COOH. Toward I16293B, as in G29, there are no statistically significant features at the CH3COOH rest frequencies. There are 1σ features that may be due to the 10,10 − 9,9 A/E transitions in these Hanning-smoothed data, but nothing convincing beyond that level. In Section 5.5, we evaluate whether the features toward I16293A may be due to CH3COOH.

We have also observed two new transitions of HCOOCH3. The line profiles of HCOOCH3 shown in Figure 6 toward I16293A are wider and may be suffering from self absorption (Remijan & Hollis 2006) more than the line profiles shown in Figure 7 toward I16293B, which are much more narrow. This suggests that I16293A and I16293B may have distinguishable features.
Table 3
Detected Molecules and Transitions Toward G19.61−0.23

| Species   | Transition | \( \Delta I \) (Jy beam\(^{-1}\)) | \( \Delta \nu \) (km s\(^{-1}\)) | Fitted data | Model data |
|-----------|------------|-----------------------------------|-------------------------------|-------------|------------|
| CH\(_3\)COOH | 10\(_{0,10} - 9_{+9}\), E | 0.07 ± 0.01 | 6.4 ± 0.9 | 0.10 | 6.4 |
|           | 10\(_{0,10} - 9_{+9}\), A | 0.09 ± 0.02 | 6.4 ± 0.9 | 0.12 | 6.4 |
| HCOOCH\(_3\) | 9\(_{2,8} - 8_{+7}\), E | 0.20 ± 0.02 | 6.4 ± 0.9 | 0.18 | 6.4 |
|           | 9\(_{2,8} - 8_{+7}\), A | 0.20 ± 0.02 | 6.4 ± 0.9 | 0.18 | 6.4 |
| CH\(_3\)CH\(_2\)CN | 12\(_{1,11} - 11_{+10}\), E | 0.18 ± 0.02 | 12.9 ± 0.4 | 0.13 | 12.9 |
|           | 12\(_{1,11} - 11_{+10}\), A | 0.18 ± 0.02 | 12.9 ± 0.4 | 0.13 | 12.9 |
|           | 12\(_{1,10} - 11_{+9}\), E | 0.59 ± 0.02 | 12.9 ± 0.4 | 0.66 | 12.9 |
|           | 12\(_{1,10} - 11_{+9}\), A | 0.59 ± 0.02 | 12.9 ± 0.4 | 0.66 | 12.9 |
|           | 107.588 GHz | 0.16 ± 0.04 | 5.6 ± 1.6 | 0.16 | 5.6 |
|           | 107.590 GHz | 0.27 ± 0.03 | 7.8 ± 1.2 | 0.27 | 7.8 |
|           | 107.597 GHz | 0.31 ± 0.03 | 12.5 ± 1.2 | 0.31 | 12.5 |
|           | 107.604 GHz | 0.23 ± 0.03 | 11.1 ± 1.5 | 0.23 | 11.1 |
|           | 111.506 GHz | 0.06 ± 0.02 | 5.2 ± 1.7 | 0.06 | 5.2 |
|           | 111.509 GHz | 0.07 ± 0.01 | 17.2 ± 4.5 | 0.07 | 17.2 |
|           | 111.546 GHz | 0.07 ± 0.01 | 8.7 ± 2.0 | 0.07 | 8.7 |

**Notes.** The HCOOCH\(_3\) lines were fit assuming the same line width. The same line width fitting criteria applies for the CH\(_3\)CH\(_2\)CN and CH\(_3\)COOH lines. For simplicity, the two CH\(_3\)CH\(_2\)CN lines listed in Table 2 are now represented as follows: one by an asterisk substituted for the \( K_\ell \) quantum numbers while the other three CH\(_3\)CH\(_2\)CN lines remain unchanged.

Table 4
Detected Molecules and Transitions Toward G29.96−0.02

| Species   | Transition | \( \Delta I \) (Jy beam\(^{-1}\)) | \( \Delta \nu \) (km s\(^{-1}\)) | Fitted data | Model data |
|-----------|------------|-----------------------------------|-------------------------------|-------------|------------|
| CH\(_3\)COOH | 10\(_{0,10} - 9_{+9}\), E | ~0.04 | 7.8 ± 1.1 | 0.09 | 7.8 |
|           | 10\(_{0,10} - 9_{+9}\), A | <0.03 | 7.8 ± 1.1 | 0.09 | 7.8 |
| HCOOCH\(_3\) | 9\(_{2,8} - 8_{+7}\), E | 0.08 ± 0.01 | 10.8 ± 0.4 | 0.03 | 10.8 |
|           | 9\(_{2,8} - 8_{+7}\), A | 0.08 ± 0.01 | 10.8 ± 0.4 | 0.03 | 10.8 |
| CH\(_3\)CH\(_2\)CN | 12\(_{1,11} - 11_{+10}\), E | 0.07 ± 0.01 | 10.8 ± 0.4 | 0.03 | 10.8 |
|           | 12\(_{1,11} - 11_{+10}\), A | 0.07 ± 0.01 | 10.8 ± 0.4 | 0.03 | 10.8 |
|           | 12\(_{1,10} - 11_{+9}\), E | 0.27 ± 0.01 | 10.8 ± 0.4 | 0.26 | 10.8 |
|           | 12\(_{1,10} - 11_{+9}\), A | 0.27 ± 0.01 | 10.8 ± 0.4 | 0.26 | 10.8 |
|           | 107.591 GHz | 0.11 ± 0.01 | 8.5 ± 0.9 | 0.11 | 8.5 |
|           | 107.597 GHz | 0.08 ± 0.01 | 10.8 ± 1.2 | 0.08 | 10.8 |
|           | 107.604 GHz | 0.10 ± 0.01 | 12.2 ± 1.3 | 0.10 | 12.2 |
|           | 111.541 GHz | 0.07 ± 0.01 | 12.7 ± 2.0 | 0.07 | 12.7 |

**Note.** Table comments are the same as in Table 3.

molecular dynamics. Figures 5(a) and (b) show the distribution of HCOOCH\(_3\) emission with respect to the 3 mm continuum emission toward the I16293A and B regions, respectively. Table 5 summarizes the fitting results of the detected transitions toward IRAS 16293−2422. The fitting criteria and model predictions are presented in the same manner as in Table 3.

5. ANALYSIS AND DISCUSSION

5.1. Molecular Column Densities

Molecular column density is one essential physical parameter needed to constrain chemical models (see, e.g., Garrod et al. 2008 and references therein). In order to determine the column densities of each molecular species of interest, we assume that each region has uniform physical conditions, that the populations of the energy levels can be characterized by a Boltzmann distribution, and finally, that the emission is optically thin. Assuming that the molecular species is in local thermodynamic equilibrium (LTE) and low optical depth, the total beam-averaged column density is

\[
N_T (\text{cm}^{-2}) = 2.04 \times 10^{20} \frac{\int I (\text{Jy beam}^{-1}) d\nu (\text{km s}^{-1}) Q_r e^{E_r(K)/T_r}}{\Omega_b (\text{arcsec}^2) \nu^3 (\text{GHz}^3) (S\mu^2) (\text{debye}^2)} \tag{1}
\]

where \( \Omega_b \) is the solid angle of the beam, \( \int I d\nu \) is the integral of the line intensity over velocity, \( v \) is the spectral line frequency, \( (S\mu^2) \) is the line strength parameter, \( Q_r \) is the rotational partition function, \( T_r \) is the rotational temperature, and \( E_r \) is the upper level energy of the transition (Miao et al. 1995). In each case, we assume that the source emission fills the synthesized beam of the observations. All of the line parameters used for the analysis are given in Table 2.

A least-square fitting routine with Gaussian functions was used to determine the line widths (\( \Delta \nu \)), peak intensities (\( \Delta I \)), and \( \int I d\nu \) of each observed spectral line toward each source. All least-square fitting was done using the standard packages contained in the Mathematica software package. Using the spectroscopic parameters from Table 2 and by varying the temperature and column density over a wide range of values
The rotational temperature $T_r$ generally represents the physical kinetic temperature in regions where the spatial density is larger than the critical density of the molecule in question. The assumption in this work is that the densities of the HMCs investigated are expected to be high enough for this to be true for these molecules. The rotational temperature is often found by observing several different transitions of a molecular species over a range of $E_u$ values. However, given the limited bandwidth and a low number of transitions observed in our data, it was often difficult to accurately constrain the temperature and column density of our three observed molecules toward these regions (e.g., Snyder et al. 2005). Therefore, when the least squares fit failed to give a reasonable temperature for a given molecular species, we adopted a rotational temperature from previous observations by other investigators toward these sources at similar spatial resolution and were then able to fit for the total beam-averaged column densities or associated upper limits if no transitions were detected beyond the statistically significant 1σ limit. It was also the case that if the fitting procedure was given too many free parameters, a constraint was needed on one or more or else it would not converge (see the G29 discussion below). To properly constrain the temperature of these regions over a variety of molecular species, observations of additional transitions are necessary and complete spectral line surveys may be required (see, e.g., Fontani et al. 2007; Friedel et al. 2004, and references therein).

For the G19 region, the least square fitting routine determined a rotational temperature of CH$_3$CH$_2$CN of $T_{rot} = 161(58)$ K and a beam-averaged column density of $N_T = 6(3) \times 10^{16}$ cm$^{-2}$. The errors on all fits are 1σ. The routine could not find a reasonable fit for the temperature and column density for either HCOOCH$_3$ or CH$_3$COOH presumably because the detected transitions were too close in energy. Therefore, because the emission regions of each molecular species around G19 are nearly cospatial (Figure 1), we adopted the same rotational temperature for HCOOCH$_3$ and CH$_3$COOH as found from the CH$_3$CH$_2$CN fit. Assuming a $T_{rot} = 161$ K for HCOOCH$_3$, we find a best fit to the column density of $N_T = 9(2) \times 10^{16}$ cm$^{-2}$ and for CH$_3$COOH, we find a best fit to the column density of $N_T = 2(1) \times 10^{16}$ cm$^{-2}$. Given the minimum and maximum values of the measured column density, we determine an abundance ratio range of $N_{HCOOCH_3}/N_{CH_3COOH} = 3–11$. Table 3 gives the fitted intensities of each of the detected spectral features compared to the predicted intensities determined from Equation (1) for G19.

For the G29 region, the least square fitting routine determined a rotational temperature of CH$_3$CH$_2$CN of $T_{rot} = 107(49)$ K and a beam-averaged column density of $N_T = 1.1(7) \times 10^{16}$ cm$^{-2}$ only if we adopted a rotational temperature of 150 K, determined from Olmi et al. (2003) and supported by the observations of Fontani et al. (2007) and Beuther et al. (2007), for the transitions of HCOOCH$_3$. This temperature was also set to determine the upper limit for the column density of CH$_3$COOH. Assuming a $T_{rot} = 150$ K for HCOOCH$_3$, we find a best fit to the column density of $N_T = 4(1) \times 10^{16}$ cm$^{-2}$ and for CH$_3$COOH, we find an upper limit to the column density of $N_T < 9 \times 10^{14}$ cm$^{-2}$ for a relative abundance ratio upper limit of $N_{HCOOCH_3}/N_{CH_3COOH} > 50$. Table 4 gives the fitted intensities of each of the detected spectral features compared to the predicted intensities determined from Equation (1) for G29. We also note the detection of another feature shown in Figure 2 near 107.540 GHz that is most likely due to two high energy (>110 K) spectral lines of CH$_3$CH$_2$CN. The discussion of weak spectral features near the 1σ noise level will be given in Section 5.5.

![Figure 3. G29 maps. (a) HCOOCH$_3$ contours overlaid on the gray continuum map. The contour levels averaged over three channels are $-3, 3, 5, 7, 9, 11, 13, ...$](https://example.com/figure3.png)

(e.g., the temperature range investigated was from 10–500 K and the column density range was from $10^{12}–10^{18}$ cm$^{-2}$ for each molecular species), Equation (1) gave a predicted integrated line intensity for each spectral line observed in our data. These predictions of integrated line intensity were then compared to the measured values and, using a least-squares fitting routine, a best fit temperature and column density was found for each molecule toward each source. However, there were some sources where an independent fit of the temperature did not converge. These sources are described in more detail in the following sections. Columns 3 and 4 of Tables 3, 4, and 5 give the fitted line parameters of the observed peak intensity and line width. Columns 5 and 6 give the modeled peak intensity based on the least square fitting routine and the fitted line width from the observed data, respectively. Once all the relevant line parameters have been determined, a model spectrum with the appropriate amount of random noise added and convolved with the spectral resolution of the observation can then be produced and be directly compared with the observed data set (see Section 5.5).
A recent observation of the G19 and G29 regions with the IRAM 30 m telescope (Fontani et al. 2007) covered our two acetic acid line frequencies (Figure 8). However, with a 28″ beam, the lines detected are under the noise level of 26 mK. These lines are brighter than those observed by Cazaux et al. (2003), but the beam dilution is severe. The high-resolution capability of CARMA is indeed critical for searching for acetic acid and large molecule research.

Finally, toward IRAS 16293–2422, the least square fitting routine could not determine a rotational temperature for the detected transitions of HCOOCH₃ presumably for the same reason as described toward G19. Thus, we adopted a rotational temperature of 62 K determined from Bottinelli et al. (2004). In this case, we find a best fit to the column density of HCOOCH₃ of $N_T = 1.5(3) \times 10^{16}$ cm$^{-2}$ toward region A and $6(1) \times 10^{15}$ cm$^{-2}$ toward region B. Since there was no clear detection of CH₃CH₂CN beyond the 1σ detection limit toward either region A or B, based on the noise level in each of the passbands containing those lines, we determined an upper limit to the total beam-averaged column density of CH₃CH₂CN to be $<6 \times 10^{13}$ cm$^{-2}$ for region A and $<3 \times 10^{14}$ cm$^{-2}$ toward region B. For CH₃COOH, the 2σ detection toward region A gives a total beam-averaged column density of $\sim 1.6 \times 10^{15}$ cm$^{-2}$ and for region B, we determine and upper limit of $<6 \times 10^{14}$ cm$^{-2}$.

Table 5 summarizes the fitting results of the HCOOCH₃ transitions compared to the model intensities determined from Equation (1). Finally, Table 6 summarizes the column densities of the observed molecules toward these sources.

5.2. A Proxy for the Detection of CH₃COOH Sources

We have successfully detected CH₃COOH toward G19, following Sgr B2(N-LMH), W51e2, and G34.3+0.15.
Table 6

| Species (cm⁻²) | G19.61−0.23 | G29.96−0.02 | I16293A | I16293B |
|---------------|-------------|-------------|---------|---------|
| CH₃COOH      | (2.0 ± 1.0) × 10¹⁶ | <9 × 10¹⁴  | ~1.6 × 10¹⁵ | <6 × 10¹⁴ |
| HCOOCH₃      | (9.0 ± 2.0) × 10¹⁶ | (4.0 ± 1.0) × 10¹⁶ | (1.5 ± 0.3) × 10¹⁶ | (6.0 ± 1.0) × 10¹⁵ |
| CH₃CH₂CN     | (6.0 ± 3.0) × 10¹⁶ | (1.1 ± 0.7) × 10¹⁶ | <6 × 10¹³  | <3 × 10¹⁴ |

Note. The column densities are in units of cm⁻².

Figure 5. HCOOCH₃ contour maps are made individually for I16293A and B (denoted as A and B on the maps) due to the different line widths. The contours are overlaid on the gray continuum map of IRAS 16293−2422. (a) The contours located at I16293A are made with the 9₂8 − 8₂7 E line averaged over six channels. The contour levels are −2, 2, 3, 4, and 5 × σ = 21 mJy beam⁻¹. (b) The contours located at I16293B are made with one channel of the 9₂8 − 8₂7 E line. The contour levels are −2, 2, 3, 4, and 5 × σ = 25 mJy beam⁻¹.

G19.61−0.23 is the fourth high-mass hot core that is a source of CH₃COOH. We compare the CH₃COOH column densities and the abundance ratios to HCOOCH₃ of all detected CH₃COOH hot cores in Table 7. The values are generally consistent. Therefore, the column densities and ratios can be used to constrain hot core chemical models assuming the cospatial dependence of HCOOCH₃ and CH₃COOH remains. This has yet to be tested at extremely high spatial resolution. In addition, a consistency can be found between all the sources containing CH₃COOH emission by comparing the relative line strengths between the detected transitions of HCOOCH₃ and CH₃CH₂CN to the CH₃COOH emission. Taking a ratio between the measured or predicted intensities of the 107.594 GHz line of CH₃CH₂CN and the 111.507 GHz line of CH₃COOH, we find that this ratio is between 5.5 and 6 for those sources where CH₃COOH is detected. Therefore, given the line intensity of 0.21 Jy beam⁻¹ for the 107.594 GHz line of CH₃CH₂CN toward G29.96−0.02, the expected line intensity for the 111.507 GHz line of CH₃COOH is ≤0.04 Jy beam⁻¹. This intensity is right at the 1σ detection limit of the current CARMA observations. Therefore, in addition to the criteria for the detection of CH₃COOH outlined in Remijan et al. (2003), we now have a good proxy for the detectability of the 111 GHz CH₃COOH transitions relative to the detected line strengths of the HCOOCH₃ and CH₃CH₂CN transitions near 107 GHz. Further observations of new sources of HCOOCH₃ and CH₃CH₂CN that fit the criteria set by Remijan et al. (2003) and higher S/N observations of sources like G29 are necessary to validate this hypothesis.

5.3. CH₃COOH in IRAS 16293−2422

High spatial resolution maps and spectra of IRAS 16293−2422 clearly reveal that the morphologies of the emission of complex molecules are clearly not cospatial and that there is no simple separation of O- and N-bearing “chemical differentiation” (Guélin et al. 2008). Blake et al. (1987) and Rodgers & Charnley (2001) have suggested that the difference in the morphologies of the emission of complex molecules in these regions reflects the timescales of chemical evolution. Predominantly N-bearing species (e.g., CH₃CH₂CN) represent the later stage of chemical evolution while predominantly O-bearing species (e.g., HCOOCH₃) represent the earlier stage. Their models can estimate the ages of hot cores by comparing these differences between the O and N morphology of emission. However, to date, no direct observation can accurately measure hot core ages, so the uncertainty of these estimates is large.

IRAS 16293−2422 also shows clear distinctions in the morphology of molecular emission (Chandler et al. 2005; Remijan & Hollis 2006). In fact, the relative distributions of molecular species will undoubtedly give insight into their formation chemistry. It may also turn out that the relative abundances of molecular species and the overall population of energy levels of the detected transitions of a given molecule may be determined more by the formation chemistry and not on the local thermodynamic environment. To test this hypothesis will require high spectral and spatial resolution observations of a group of species that may form via a common formation pathway.

IRAS 16293−2422 has been reported as the first low-mass CH₃COOH source by Cazaux et al. (2003) using the IRAM 30 m telescope, but the one detected line was likely blended. While IRAS 16293−2422 is not resolved in their work (beam size of 28′′), we have resolved it into I16293A and B with a separation of less than 5′. Even though their observation used different transitions, we should detect our CH₃COOH lines in
Figure 6. Observed spectra of I16293A. The arrangement of frequency and windows is the same as Figure 2. The column v\textsubscript{LSR} ranges are 44.6 to 129, 56.2 to 140.6, 68.8 to 150.2, and 55.7 to 137.1 km s\textsuperscript{-1}, respectively.

(A color version of this figure is available in the online journal.)

Figure 7. Observed spectra of I16293B. The arrangement of frequency and windows is the same as Figure 6. The column v\textsubscript{LSR} ranges are −54.4 to 30, −42.7 to 41.6, −24.8 to 56.6, and −36.8 to 44.6 km s\textsuperscript{-1}, respectively.

(A color version of this figure is available in the online journal.)

our synthesized beam of 3′1 × 1′9 using their flux estimates. Although at a lower flux than expected from their results, we do detect two CH\textsubscript{3}COOH transitions toward region A but only at the 2σ limit. We estimate a column density of ∼1.6 × 10\textsuperscript{15} cm\textsuperscript{-2} and Cazaux et al. (2003) estimated an upper limit of 2.5 × 10\textsuperscript{15} cm\textsuperscript{-2}, which is similar.

Furthermore, there is no evidence beyond the 1σ levels of any emission of CH\textsubscript{3}COOH toward region B. In addition, while we have observed HCOOCH\textsubscript{3} in I16293A and B, we did not detect the corresponding CH\textsubscript{3}CH\textsubscript{2}CN emission features. The detection of CH\textsubscript{3}COOH toward G19 (and possibly toward I16293A) and the other hot cores have demonstrated that a diversity of
abundant large O- and N-bearing species are strongly correlated with CH$_3$COOH. One possibility is that the mix of O- and N-bearing species may serve as an efficient chemical network for CH$_3$COOH and other large molecules. Thus, they need to wait for large N-bearing molecules to form first before they can be efficiently produced. Another possibility is that the formation of large O- and N-bearing species is simply time dependent, and the gas-phase CH$_3$COOH concentration just by coincidence starts to increase along with large N-bearing species. Given the criteria set above, it is intriguing that CH$_3$COOH is detected toward I16293A given there was no clear evidence of any emission from CH$_3$CH$_2$CN. Further higher sensitivity observations are once again necessary to confirm this detection and determine the evolutionary stage of the I16293A and B cores.

5.4. CH$_3$COOH Formation

Both gas phase and grain surface chemistry undoubtedly play important roles in hot cores (e.g., Hasegawa et al. 1992; Garrod & Herbst 2006; Garrod et al. 2008). Large molecule abundances can be enhanced enormously by grain surface chemistry while current models of gas phase chemistry alone are not sufficient to match observations. Garrod & Herbst (2006) have demonstrated that radicals in the icy mantles on grain surfaces can move around as the temperature gradually increases from 10 to 200 K in star-forming regions. Grain surfaces become efficient environments for large molecules to form. However, the details of CH$_3$COOH formation in hot cores still remain unclear. The correlation between CH$_3$COOH and large N-bearing molecules may suggest that some N-bearing molecules act as catalysts to the CH$_3$COOH formation. The chemical and physical evolution timescales of star formation lack direct observational evidence to confirm chemical models. Without the support of observation, it is difficult to establish solid chemical models. Garrod et al. (2008) have reported their new chemical model for CH$_3$COOH in hot cores. Grain surface reactions have been enhanced to match observations. They show that the timescales of hot cores warming up affect the abundances of the secondary radical CH$_3$CO, which can react with OH to form CH$_3$COOH. This effect can also cause the dissimilar abundances of structural isomers, which is consistent with our survey.

5.5. Identifying Weak Spectral Features Using Model Spectra

When CH$_3$COOH was first detected (Mehringer et al. 1997), it emphasized the importance of interferometry for the study of astrochemistry in hot cores. Star-forming regions generally contain many regions of compact molecular emission. Although G19 has a complex structure, including extended and compact components (see Furuya et al. 2005), the CH$_3$COOH detection toward G19 was conducted with a high-resolution beam, $1''$9 x $1''$6, which is the smallest used in a CH$_3$COOH survey to date. The three observed molecules in G19, CH$_3$COOH, HCOOCH$_3$, and CH$_3$CH$_2$CN, are mainly located at the same component, which agrees with the CH$_3$CH$_2$CN observation by Furuya et al. (2005). As we continue extending CH$_3$COOH surveys
to smaller hot cores, the required resolution of observations will be higher.

Higher resolution observations also have the advantage of reducing the effect of line confusion present in a spectrum. Also, if the source size of the emitting region is well coupled to the synthesized beam of the array, weak spectral features that are lost due to beam dilution effects from single dish observations can be significantly resolved out of the noise. Thus, many new molecule detections over the last several years have used both a combination of single dish and array observations to confirm the detection (e.g., Belloche et al. 2008, 2009). In addition, these detections routinely use model spectra based on the laboratory and calculated rotational spectroscopy of energy levels and line strengths for molecular transitions, the physical conditions of the emitting regions including temperature and density, and finally the characteristics of the telescope including forward beam efficiency and field of view (i.e., beam size). Given the model spectra, the weak transitions of molecular species appear statistically significant in the observed spectrum. However, the model data have near infinite spectral resolution compared to the observed data and do not include an estimate of the noise level in the passband. These types of models are shown in the spectral line data presented in this work (red Gaussian traces in the first row of spectra in Figures 2, 4, 6, and 7).

In order to correctly ascertain whether a weak feature in the observed spectrum is due to a calculated line of a molecular species, we advocate taking the model data and convolving it with the spectral resolution of the instrument and adding the appropriate amount of random noise to the resultant spectrum to give a more accurate representation of the data collected by the telescope. The noise level is based on the measured noise of line free channels in the observed data. These modeled data are then subtracted from the observed data to form a residual spectrum. From these residuals, with the caveat of an accurate model of the physical conditions of the source, one can identify the remaining weak spectral features and determine if features close to the $1\sigma–2\sigma$ level are in fact statistically significant spectral line features.

Based on the residual passbands shown in the last row of Figures 2, 4, 6, and 7, we include in Tables 3, 4, and 5 the possibility of unidentified lines (i.e., U lines) in the data toward G19, G29, and IRAS 16293–2422. In addition, given the spectral line fit (red Gaussian traces) toward IRAS 16293–2422, there is a suggestion that the weak emission features shown toward I16293B may in fact be due to CH$_3$COOH. However, when this model spectrum is convolved with the noise level in the passband, these weak features completely disappear and there are definitely no statistically significant feature seen in the residual passbands. As a result, while we claim that the emission features that are coincident with the CH$_3$COOH transitions toward I16293A are in fact from CH$_3$COOH; these features are only barely above the noise level so further high sensitivity observations are needed for a definitive detection.

It is our recommendation that if model spectra are going to be the new proxy for identifying weak spectral features in observational data, the model data should be first convolved to the spectral resolution of the telescope and the appropriate amount of noise be added to the model in order to make an accurate representation as possible to the observed data.

6. SUMMARY

We have conducted a high-resolution acetic acid (CH$_3$COOH) survey at 3 mm wavelengths for the first time with CARMA toward two high-mass hot cores, G19.61–0.23 and G29.96–0.02, and a low-mass embedded protostar system, IRAS 16293–2422. We have detected CH$_3$COOH emission in G19.61–0.23, via the two CH$_3$COOH rotational transitions, $10_{a,10}–9_{a,9} E$ and $A$. While G19.61–0.23 consists of several clumps, high-resolution mapping reveals that the CH$_3$COOH emission is extremely compact (~2”) toward component C. Methyl formate (HCOOCH$_3$) and ethyl cyanide (CH$_3$CH$_2$CN) were also detected. The emission from these two molecules is more extended than the CH$_3$COOH emission but the peaks of all three emission spectra are toward component C. The CH$_3$COOH column density and abundance ratio with respect to methyl formate (HCOOCH$_3$) are $2(1.0) \times 10^{16}$ cm$^{-2}$ and $2.2(0.1) \times 10^{-1}$, respectively, which is higher but comparable to the other high-mass CH$_3$COOH sources given the current level of detection. Although acetic acid is not detected toward G29.96–0.02, we have detected HCOOCH$_3$ and CH$_3$CH$_2$CN. The HCOOCH$_3$ and CH$_3$CH$_2$CN emission features of G29.96–0.02 are weaker than G19.61–0.23 by a factor of 3. While we detect CH$_3$COOH in G19.61–0.23, the non-detection of CH$_3$COOH in G29.96–0.02 may be due to the limited sensitivity. Finally, we have detected two new transitions of HCOOCH$_3$, $9_{2,8}–8_{2,7} E$ and $A$ toward IRAS 16293–2422 and weak emission features at the $2\sigma$ level of CH$_3$COOH toward I16293A. This is the first observation of new spectral features of CH$_3$COOH since the reported detection by Cazaux et al. (2003). The HCOOCH$_3$ spectrum toward I16293B shows narrower and more distinguishable line profiles than the spectrum toward I16293A, which may be suffering from self-absorption. However, we did not detect CH$_3$CH$_2$CN in IRAS 16293–2422 at the $1\sigma$ detection limit.

The new CH$_3$COOH detection demonstrates the strong correlation between large O- and N-bearing species and CH$_3$COOH in hot cores. The timescale of hot cores may also play a role in O/N chemical differentiation and hence CH$_3$COOH formation. However, we need more CH$_3$COOH detections to confirm these suggestions. The compactness of the emission from large molecules stresses the need of interferometers for hot core chemistry observations. Our high-resolution survey has provided critical information about the chemical and physical properties of hot cores, which can be used to constrain the hot core chemical models. Higher resolution observations are still required to precisely determine temperature and the density distribution of large O- and N-bearing species for physical-parameter sensitive chemical models. Through well-improved chemical models, we can better understand the distinctive hot core chemistry.

We especially thank Francesco Fontani, Paolo Caselli, and Friedrich Wyrowski for providing the IRAM 30 m data presented in Figure 8. It is with this type of collaboration that we can truly make advances in understanding the formation of complex molecules in astronomical environments. We also thank an anonymous referee for some very useful comments that undoubtedly strengthen the manuscript. We acknowledge support from the Laboratory for Astronomical Imaging at the University of Illinois and NSF grant AST-0540459. Support for CARMA construction was derived from the Gordon and Betty Moore Foundation, the Kenneth T. and Eileen L. Norris Foundation, the Associates of the California Institute of Technology, the states of California, Illinois, and Maryland, and the National Science Foundation. Ongoing CARMA development and operations are supported by the National Science Foundation under a cooperative agreement and by the CARMA partner universities.
This work was also supported in part by the NSF Centers for Chemical Innovation through award CHE-0847919.

REFERENCES

Belloche, A., Garrod, R. T., Müller, H. S. P., Menten, K. M., Comito, C., & Schilke, P. 2009, A&A, 499, 215
Belloche, A., Menten, K. M., Comito, C., Müller, H. S. P., Schilke, P., Ott, J., Thorwirth, S., & Hie	rett, C. 2008, A&A, 492, 769
Beuther, H., Zhang, Q., Bergin, E. A., Sridharan, T. K., Hunter, T. R., & Leurini, S. 2007, A&A, 468, 1045
Blake, G. A., Sutton, E. C., Masson, C. R., & Phillips, T. G. 1987, ApJ, 315, 621
Bottinelli, S., et al. 2004, ApJ, 617, L69
Cazaux, S., Tielens, A. G. G. M., Ceccarelli, C., Castets, A., Wakelam, V., Caux, E., Parise, B., & Teyssier, D. 2003, ApJ, 593, L51
Cesaroni, R., Hofner, P., Walmsley, C. M., & Churchwell, E. 1998, A&A, 311, 709
Chandler, C. J., Brogan, C. L., Shirley, Y. L., & Loinard, L. 2005, ApJ, 632, 371
Di Francesco, J., Myers, P. C., Wilner, D. J., Ohashi, N., & Mardones, D. 2001, ApJ, 562, 770
Fontani, F., Pascucci, I., Caselli, P., Wyrowski, F., Cesaroni, R., & Walmsley, C. M. 2007, A&A, 470, 639
Friedel, D. N., Snyder, L. E., Turner, B. E., & Remijan, A. 2004, ApJ, 600, 234
Fukuyama, Y., Odashima, H., Takagi, K., & Tsunekawa, S. 1996, ApJS, 104, 329
Furuya, R. S., Cesaroni, R., Takahashi, S., Momose, M., Testi, L., Shinmaga, H., & Codella, C. 2005, ApJ, 624, 827
Garay, G., Moran, J. M., Rodríguez, L. F., & Reid, M. J. 1998, ApJ, 492, 635
Garay, G., Reid, M. J., & Moran, J. M. 1985, ApJ, 289, 681
Garrod, R. T., & Herbst, E. 2006, A&A, 457, 927
Garrod, R. T., Weaver, S. L. W., & Herbst, E. 2008, ApJ, 682, 283
Gaume, R. A., Claussen, M. J., de Pree, C. G., Goss, W. M., & Mehringer, D. M. 1995, ApJ, 449, 663
Genzel, R., & Downes, D. 1997, A&AS, 30, 145
Guélin, M., Brouillet, N., Cernicharo, J., Combes, F., & Wooten, A. 2008, Ap&SS, 313, 45
Hasegawa, T. I., Herbst, E., & Leung, C. M. 1992, ApJS, 82, 167
Hofner, P., Wyrowski, F., Walmsley, C. M., & Churchwell, E. 2000, ApJ, 536, 393
Ilyushin, V., Kleiner, I., & Lovas, F. J. 2008, J. Phys. Chem. Ref. Data, 37, 97
Kalenskii, S. V., Berulis, I. I., Val’ts, I. E., Dzura, A. M., Slysh, V. I., & Vasil’kov, V. I. 1994, Astron. Zh., 71, 51
Kuan, Y.-J., et al. 2004, ApJ, 616, L27
Larionov, G. M., Val’ts, I. E., Winnberg, A., Johansson, L. E. B., Booth, R. S., & Golubev, V. V. 1999, A&AS, 139, 257
Loinard, L., Chandler, C. J., Rodríguez, L. F., D’Alessio, P., Brogan, C. L., Wilner, D. J., & Ho, P. T. P. 2007, ApJ, 670, 1353
Looney, L. W., Mundy, L. G., & Welch, W. J. 2000, ApJ, 529, 477
Matthews, H. E., Goss, W. M., Winnberg, A., & Habing, H. J. 1977, A&A, 61, 261
Mehringer, D. M., Snyder, L. E., Miao, Y., & Lovas, F. J. 1997, ApJ, 480, L71
Miao, Y., Mehringer, D. M., Kuan, Y.-J., & Snyder, L. E. 1995, ApJ, 445, L59
Müller, H. S. P., Schlodter, F., Stutzki, J., & Winnewisser, G. 2005, J. Mol. Spectrosc., 274, 215
Oesterling, L. C., Albert, S., De Lucia, F. C., Sastry, K. V. L. N., & Herbst, E. 1999, ApJ, 521, 255
Olmi, L., Cesaroni, R., Hofner, P., Kurtz, S., Churchwell, E., & Walmsley, C. M. 2003, A&A, 407, 225
Remijan, A., Shiao, Y.-S., Friedel, D. N., Meier, D. S., & Snyder, L. E. 2004, ApJ, 617, 384
Remijan, A., Snyder, L. E., Friedel, D. N., Liu, S.-Y., & Shah, R. Y. 2003, ApJ, 590, 314
Remijan, A., Snyder, L. E., Liu, S.-Y., Mehringer, D., & Kuan, Y.-J. 2002, ApJ, 576, 264
Remijan, A. J., & Hollis, J. M. 2006, ApJ, 640, 842
Remijan, A. J., & Markwick-Kemper, A., & ALMA Working Group on Spectral Line Frequencies. 2007, BAAS, 38, 963
Rodgers, S. D., & Charnley, S. B. 2001, ApJ, 546, 324
Sault, R. J., Teuben, P. J., & Wright, M. C. H. 1995, in ASP Conf. Ser. 77, Astronomical Data Analysis Software and Systems IV, ed. R. A. Shaw, H. E. Payne, & J. E. Hayes (San Francisco, CA: ASP), 433
Schieffer, F. L., Jørgensen, J. K., van Dishoeck, E. F., & Blake, G. A. 2002, A&A, 390, 1001
Shirley, Y. L., Evans, N. J., II, Young, K. E., Knez, C., & Jaffe, D. T. 2003, ApJS, 149, 375
Snyder, L. E. 2006, Proc. Natl. Acad. Sci., 103, 12243
Snyder, L. E., Kuan, Y., & Miao, Y. 1994, in Lecture Notes in Physics, Vol. 439, The Structure and Content of Molecular Clouds, ed. T. L. Wilson & K. J. Johnston (Berlin: Springer), 187
Snyder, L. E., et al. 2005, ApJ, 619, 914
Sutton, E. C., Peng, R., Danchi, W. C., Jaminet, P. A., Sandell, G., & Russell, A. P. G. 1995, ApJS, 97, 455
Wooten, A. 1989, ApJ, 337, 858
Wu, J., & Evans, N. J., II 2003, ApJ, 592, L79
Wu, Y., Qin, S., Guan, X., Xue, R., Ren, Z., Liu, T., Huang, M., & Chen, S. 2009, ApJ, 697, L116
Wyrowski, F., Schilke, P., Walmsley, C. M., & Menten, K. M. 1999, ApJ, 514, L43