Collapse of an Instanton

P. Bizoń Yu N. Ovchinnikov I.M. Sigal
Jagellonian University L.D. Landau Institute University of Toronto
Kraków Moscow Toronto

Abstract

We construct a two parameter family of collapsing solutions to the 4+1 Yang-Mills equations and derive the dynamical law of the collapse. Our arguments indicate that this family of solutions is stable. The latter fact is also supported by numerical simulations.

1. Introduction

Blow up problems for nonlinear Schrödinger, wave and heat equations have been a subject of active research in the last 15 years (see [1,2,3] for reviews and [4,5] for recent papers on the subject). A further surge of interest in blow-up for nonlinear wave equations has been recently motivated by their role in attempting to understand the problem of singularity formation in General Relativity (see [6] for a recent review). In this paper we describe the asymptotic dynamics of blowup for radial solutions of the semilinear wave equation

\[\ddot{u} = \Delta u + \frac{1}{r^2} f(u), \quad (1.1) \]

in \(\mathbb{R}^2 \), where \(u = u(t, r) \), \(r \) is the radial variable and

\[f(u) = 2u(1 - u^2). \quad (1.2) \]

Our analysis is applicable to a wider class of “double-well” type of nonlinearities \(f(u) \) producing kink-type solutions, though some of such nonlinearities, e.g. wave maps nonlinearity \(f(u) = -\frac{1}{2} \sin(2u) \), lead to certain subtleties and will be considered elsewhere.

Before stating the results we show how the equation (1.1) arises and put the problem in a broader context. We consider Yang-Mills (YM) fields in \(d + 1 \) dimensional Minkowski spacetime (in the following Latin and Greek indices take the values 1, 2, \ldots, \(d \) and 0, 1, 2, \ldots, \(d \) respectively). The gauge potential \(A_\alpha \) is a one-form with values in the Lie algebra \(g \) of a compact Lie group \(G \). In terms of the curvature \(F_{\alpha \beta} = \partial_\alpha A_\beta - \partial_\beta A_\alpha + [A_\alpha, A_\beta] \) the YM equations take the form

\[\partial_\alpha F^{\alpha \beta} + [A_\alpha, F^{\alpha \beta}] = 0, \quad (1.3) \]
where \([,]\) is the Lie bracket on \(G\). For simplicity, we take here \(G = SO(d)\) so the elements of \(g = so(d)\) can be considered as skew-symmetric \(d \times d\) matrices and the Lie bracket is the usual commutator. Assuming the spherically symmetric ansatz [7]

\[
A^{ij}_\mu(x) = (\delta^i_\mu x^j - \delta^j_\mu x^i) \frac{1 - u(t, r)}{r^2},
\]

equations (1.3) reduce to the scalar semilinear wave equation for the magnetic potential \(u(t, r)\)

\[
\ddot{u} = \Delta_{(d-2)} u + \frac{d-2}{r^2} u(1-u^2),
\]

where \(\Delta_{(d-2)} = \partial_r^2 + \frac{d-3}{r} \partial_r\) is the radial Laplacian in \(d-2\) dimensions.

The central question for equation (1.5) is: can solutions starting from smooth initial data

\[
u(0, r) = f(r), \quad \dot{u}(0, r) = g(r)
\]

become singular in future? An answer to this question depends critically on the dimension \(d\). To see why we recall two basic facts. The first fact is the conservation of (positive definite) energy

\[
E = \int_0^\infty \left(u^2 + u_r^2 + \frac{d-2}{2r^2} (1-u^2)^2 \right) r^{d-3} dr.
\]

The second fact is scale invariance of the YM equations: if \(A_\alpha(x)\) is a solution of (1.3), so is \(\tilde{A}_\alpha(x) = \lambda^{-1} A_\alpha(x/\lambda)\), or equivalently, if \(u(t, r)\) is a solution of (1.5), so is \(\tilde{u}(t, r) = u(t/\lambda, r/\lambda)\). Under this scaling the energy scales as \(\tilde{E} = \lambda^{d-4} E\), hence the YM equations are subcritical for \(d \leq 3\), critical for \(d = 4\), and supercritical for \(d \geq 5\). In the subcritical case, shrinking of solutions to arbitrarily small scales costs infinite amount of energy, so it is forbidden by energy conservation. This is a heuristic explanation of global regularity of the YM equations in the physical dimension which was proved in [8] and [9]. In contrast, in the supercritical case shrinking of solutions might be energetically favorable and consequently singularities are anticipated. In fact, for \(d \geq 5\) equation (1.5) admits self-similar solutions which are explicit examples of singularities [10,11] and numerical simulations indicate that the stable self-similar solution determines the universal asymptotics of blowup for large initial data [12].

In the critical dimension \(d = 4\) the problem of singularity formation is more subtle because the scaling argument is inconclusive. In this case there are no smooth self-similar solutions, however there is a family of static solutions \(\chi(r/\lambda)\), where \(\lambda > 0\) and

\[
\chi(r) = \frac{1 - r^2}{1 + r^2}.
\]
Using physicists’ terminology we shall refer to this solution as the instanton. Numerical simulations indicate that the existence of the scale-free instanton plays a key role in the dynamics of blowup, namely the blowup has the universal profile of the instanton which shrinks adiabatically to zero size [12]. More precisely, it was conjectured in [12] that near the blowup time t_* the solution has the form

$$u(t, r) \approx \chi\left(\frac{r}{\lambda(t)}\right),$$

(1.9)

where the scaling parameter $\lambda(t)$ tends to zero as $t \to t_*$. A natural question is: what determines the evolution of the scaling parameter; in particular, what is the asymptotic behaviour of $\lambda(t)$ for $t \to t_*$? In this paper we address this question and show that for some initial conditions that are close to the instanton

$$\lambda(t) \sim \sqrt{\frac{2}{3}} \frac{t_* - t}{\sqrt{-\ln(t_* - t)}},$$

(1.10)

as $t \to t_*$. The logarithmic correction to the self-similar behaviour is characteristic for the blow-up in critical equations - it implies that the speed of blow-up goes asymptotically to zero and consequently no kinetic energy concentrates at the singularity (for a different approach see [13]).

2. Results

Thus we consider the initial value problem (1.1), (1.2) and (1.6). Since we consider radial solutions only the full Laplacian Δ can be replaced by the radial Laplacian $\Delta_r = \frac{1}{r} \partial_r r \partial_r$.

Our main result states that if initial conditions (1.6) are sufficiently close to

$$\left(\chi\left(\frac{r}{\lambda_0}\right), -\frac{\lambda_0}{\lambda_0^2} r \chi'\left(\frac{r}{\lambda_0}\right)\right),$$

where $\lambda_0 > 0$ and $\dot{\lambda}_0 < 0$, then the resulting solution is of the form

$$u(r, t) = \chi\left(\frac{r}{\lambda}\right) + O(\dot{\lambda}^2),$$

(2.1)

where the scaling parameter $\lambda = \lambda(t)$ satisfies the following equation

$$\lambda \ddot{\lambda} = \frac{3}{4} \dot{\lambda}^4,$$

(2.2)

with the initial conditions λ_0 and $\dot{\lambda}_0$. In fact, our procedure allows us to find the solution $u(x, t)$ to any order in $\dot{\lambda}^2$ with the term of order $\dot{\lambda}^2$ given explicitly.

Note that solutions of Eqn (2.2) with the initial conditions such that $\dot{\lambda}_0 < 0$, decrease to zero as $t \to t_*$ for some t_* with $|\dot{\lambda}|$ decreasing so that our approximation improves as $t \to t_*$. This and Eqn (2.1) imply that the instanton collapses as $t \to t_*$.

3
To demonstrate the property of Eqn (2.2) mentioned above we note that Eqn (2.2) can be integrated explicitly. Indeed, rewrite (2.2) as \(\dot{\lambda}^{-3} \ddot{\lambda} = \frac{3}{4} \lambda^{-1} \dot{\lambda} \) and integrate the resulting equation to obtain

\[-\frac{1}{2} \dot{\lambda}^{-2} = \frac{3}{4} (\ln \lambda + \ln c), \quad (2.3) \]

where \(c > 0 \). The latter equation can be rewritten as

\[\dot{\lambda}^{2} \ln \left(\frac{1}{c\lambda} \right) = \frac{2}{3}. \quad (2.4) \]

This relation shows that we must have

\[c\lambda < 1. \]

Using Eqn (2.4) we obtain the equation for \(c \) in terms of \(\lambda_{0} \)

\[\ln \left(\frac{1}{c\lambda_{0}} \right) = \frac{2}{3} \dot{\lambda}_{0}^{-2}. \quad (2.5) \]

We have two cases.

a. \(\dot{\lambda}_{0} > 0 \). Then \(c\lambda \uparrow 1 \) and \(\dot{\lambda} \uparrow \infty \) as \(t \) approaches some \(t_{\ast} > 0 \). Moreover, \(c\lambda = 1 - \left(\frac{3}{2} c^{2} \right)^{1/3} \left(t_{\ast} - t \right)^{2/3} \) as \(t \to t_{\ast} \).

b. \(\dot{\lambda}_{0} < 0 \). Then \(\dot{\lambda} < 0 \) for \(t > 0 \) and there is \(t_{\ast} > 0 \) s.t. \(\lambda \to 0 \) as \(t \uparrow t_{\ast} \). The value \(t_{\ast} \) can be found from (2.4):

\[t_{\ast} = \sqrt{\frac{3}{2}} \int_{0}^{\lambda_{0}} d\lambda \ln^{1/2} \left(\frac{1}{c\lambda} \right). \quad (2.6) \]

Taking into account (2.5) this gives

\[t_{\ast} \approx \lambda_{0} |\dot{\lambda}_{0}|^{-1}. \quad (2.7) \]

The time \(t_{\ast} \) is the point of collapse.

Note that in this case the function \(|\dot{\lambda}| \) decreases as \(t \to t_{\ast} \) as \(\left[\ln \left(\frac{1}{c\lambda} \right) \right]^{-1/2} \) and therefore our approximation improves as \(t \to t_{\ast} \).

Solutions of Eqn (2.2) with \(\dot{\lambda}_{0} < 0 \) and \(\lambda_{0} > 0 \) have the following asymptotics as \(t \to t_{\ast} \)

\[\lambda = \sqrt{\frac{2}{3}} \frac{t_{\ast} - t}{\sqrt{-\ln(t_{\ast} - t)}}. \quad (2.8) \]

In conclusion we observe that Eqn (2.2) is invariant under the transformation

\[\lambda(t) \to \mu^{-1} \lambda(\mu t) \]

inherited from the invariance of parent Eqn (1.1) under the scaling transformation

\[u(r, t) \to u(\mu r, \mu t). \]
3. Scaling transform and zero mode

A key role in our derivation is played by the fact that Eqn (1.1) is scale covariant under the transformation

\[u(r, t) \rightarrow u(r/\lambda, t/\lambda), \]

(3.1)
i.e. if \(u(r, t) \) is a solution to (1.1), then so is \(u(r/\lambda, t/\lambda) \). In particular, if \(v(r) \) is a stationary solution, then so is \(v(r/\lambda), \lambda > 0 \). The infinitesimal change of the instanton \(\chi \) under this transformation is

\[\chi \rightarrow \chi + \delta \lambda \zeta, \]

(3.2)
where the function \(\zeta \) is defined by

\[\zeta(r) := \partial_\lambda|_{\lambda=1} \chi(r/\lambda) = -r \partial_r \chi(r). \]

(3.3)
Explicitly

\[\zeta(r) = \frac{4r^2}{(1+r^2)^2}. \]

(3.4)

Of course, \(\zeta \) is the zero mode,

\[L\zeta = 0, \]

(3.5)
of the linearization of the r.h.s. of (1.1) on \(\chi \), i.e. of the operator (recall, \(\Delta_r = \frac{1}{r} \partial_r r \partial_r \))

\[L := -\Delta_r - \frac{1}{r^2} f'(\chi(r)). \]

(3.6)
(This operator is the variational or Fréchet derivative, \(L = \partial \phi(\chi) \), of the map \(\phi(u) = -\Delta u - \frac{1}{r} f(u) \) at the instanton \(\chi \).)

The following properties of the operator \(L \) will be important for us:

- \(L = L^* \geq 0 \)
- \(L \) has a simple eigenvalue at 0 with the eigenfunction \(\zeta \)
- the continuous spectrum of \(L \) fills \([0, \infty)\).

The first and third properties are obvious and the second property follows from the equation \(L\zeta = 0 \) and the fact that \(\zeta > 0 \) by the Perron-Frobenius Theory (see [14,15]).

Consider solutions of Eqn (1.1) of the form \(u(r, t) := v(r/\lambda, t) \), where \(\lambda > 0 \) depends on \(t \). Plugging the function \(u(r, t) = v(r/\lambda, t) \) into Eqn (1.1), we obtain the following equation for \(v \) and \(\lambda \):

\[\Delta_\gamma v + y^{-2} f(v) = -\lambda^2 B_1 v - \lambda \lambda B_2 v + \lambda^2 \partial_t^2 v - 2 \lambda \lambda B_2 \partial_t v, \]

(3.7)
where

\[B_1 = -y\partial_y - (y\partial_y)^2 \quad \text{and} \quad B_2 = y\partial_y. \]

(3.8)

4. **Orthogonal decomposition**

We look for a solution of Eqn (1.1) of the form

\[u(r, t) \equiv v(r/\lambda, t) = \chi(r/\lambda) + w(r/\lambda, t) \]

(4.1)

with \(\lambda = \lambda(t) \) and

\[w(y, t) \quad \text{small for all times}. \]

(4.2)

Moreover, to fix the splitting between the dynamics of \(\lambda \) and of \(w \) we require that \(w \) is orthogonal to the zero mode \(\zeta \):

\[\int_0^\infty \zeta(y)w(y, t)ydy = 0. \]

(4.3)

The last two conditions will give us the dynamic law for \(\lambda \).

Now we plug the decomposition \(v(y, t) = \chi(y) + w(y, t) \) into Eqn (3.7) and use that the function \(\chi \) satisfies the equation

\[\Delta_y\chi + y^{-2}f(\chi) = 0, \]

(4.4)

to obtain the equation for \(w \):

\[(L + \lambda^2\partial_t^2)w = F(w, \lambda), \]

(4.5)

where, recall, \(L = L_\chi \) is the linearized operator around \(\chi \)

\[L := -\Delta_y - y^{-2}f'(\chi) \]

(4.6)

and

\[F(w, \lambda) := \lambda^2 B_1(\chi + w) + \lambda\lambda B_2(\chi + w) \]
\[+ y^{-2}N(w) + 2\lambda\lambda B_2\partial_t w \]

(4.7)

with the nonlinearity \(N(w) \) defined by

\[N(w) := f(\chi + w) - f(\chi) - f'(\chi)w, \]

(4.8)
which in the case \(f(u) = 2(1 - u^2)u \) gives
\[
N(w) = -6\chi w^2 - 2w^3. \tag{4.9}
\]

5. Perturbative analysis. Outline

We explain the main idea of our approach by proceeding formally and ignoring infrared divergences arising in an attempt to justify our analysis. In the next section we present a full perturbation theory. We look for a solution to Eqn (4.5) in the form
\[
w(y, t) = \sum_{j \geq 1} \lambda^{2j} \xi_j(y). \tag{5.1}
\]
Plugging this expansion into Eqn(4.5) we arrive at a series of equations
\[
L\xi_j = F_j(\xi_0, \ldots, \xi_{j-1}), \tag{5.2}
\]
\(j \geq 1 \), where \(\xi_0 = \chi \).

We demonstrate our approach by analyzing the cases \(j = 1 \) and \(2 \) in detail. We begin with \(j = 1 \). It is clear from (4.5)–(4.7) that
\[
F_1(\xi_0) = B_1\chi. \tag{5.3}
\]
Thus \(\xi_1 \) satisfies the equation
\[
L\xi_1 = B_1\chi. \tag{5.4}
\]
Since, as we show in Appendix 1,
\[
\int \zeta B_1 \chi = 0, \tag{5.5}
\]
Eqn (5.4) has a solution. The general solution of this equation is
\[
\xi_1(y) = \xi_{10}(y) + \alpha_1 \zeta(y) \tag{5.6}
\]
for any \(\alpha_1 \in \mathbb{R} \). Here
\[
\xi_{10}(y) = -\frac{y^4}{(1 + y^2)^2} \tag{5.7}
\]
Now plugging \(w = \lambda^2 \xi_1 + O(\lambda^4) \) into (4.3), and using (5.5) and \(B_2 \chi = -\zeta \), we obtain
\[
\int \zeta \left(\lambda^4 B_1 \xi_1 - \lambda \lambda \zeta - \lambda^4 6y^{-2} \chi \xi_1^2 \right) = O(\lambda^6) + O(\lambda \lambda^2). \tag{5.8}
\]
It will be shown in Appendix 1 that the coefficients in front of α_1 and α_1^2 (remember (5.6)) vanish:

$$\int \zeta B_1 \zeta - 12 \int \zeta y^{-2} \chi \xi_{10} \zeta = 0$$

(5.9)

and

$$\int \zeta y^{-2} \chi \zeta^2 = 0$$

(5.10)

Therefore relation (5.8) becomes

$$\ddot{\lambda} \lambda - \gamma \dot{\lambda}^4 = O(\dot{\lambda}^6),$$

(5.11)

where

$$\gamma = \int \zeta \left(B_1 \xi_{10} - 6y^{-2} \chi \xi_{10}^2 \right) \left(\int \zeta^2 \right)^{-1}.$$

(5.12)

We show in Appendix 1 that $\gamma = 3/4$ which, in the leading order, brings us to Eqn(2.8):

$$\lambda \ddot{\lambda} = \frac{3}{4} \dot{\lambda}^4.$$

(5.13)

As (5.11) shows, this equation is valid modulo the correction $O(\dot{\lambda}^6)$.

Now we proceed to the second term in (5.1) and derive a correction to Eqn(5.11) (or(5.13)). Remember that ξ_2 is defined by (5.2) with $j = 2$. Keeping in mind Eqn(5.13) we have

$$F_2(\xi_0, \xi_1) = B_1 \xi_1 + \gamma B_2 \chi - 6y^{-2} \chi \xi_1^2.$$

(5.14)

By (5.8) we have that

$$\int \zeta F_2(\xi_0, \xi_1) = 0$$

(5.15)

so that the equation $L \xi_2 = F_2(\xi_0, \xi_1)$ is solvable. Now plugging

$$w = \dot{\lambda}^2 \xi_1 + \dot{\lambda}^4 \xi_2 + O(\dot{\lambda}^6)$$

(5.16)

into (4.3), we obtain the equation for λ

$$\lambda \ddot{\lambda} - \gamma \dot{\lambda}^4 + \delta \dot{\lambda}^6 + \varepsilon \dot{\lambda}^2 \lambda \ddot{\lambda} + O(\dot{\lambda}^8) = 0$$

(5.17)

with δ and ε given in terms of integrals of ξ_1 and ξ_2 which can be explicitly computed. Observe that Eqn(5.17) is equivalent to the equation

$$\lambda \ddot{\lambda} - \gamma \dot{\lambda}^4 + (\delta - \gamma \varepsilon) \dot{\lambda}^6 + O(\dot{\lambda}^8) = 0.$$

(5.18)
We can continue in the same manner to find the equation for \(\lambda \) to an arbitrary order in \(\dot{\lambda}^2 \).

Though the perturbation theory outlined above leads (as we will see in the next section) to correct—in the leading order—equations for the dilation parameter \(\lambda \), it is, in fact, inconsistent. The leading correction, \(\xi_1 \), does not vanish at infinity and consequently the resulting solution has infinite energy. Worse, higher-order corrections grow at infinity. Moreover, orthogonality condition (4.3) is not applicable (and as a result the parameter \(\alpha_1 \) in (5.6) cannot be determined). The reason for this inconsistency is that the term \(-\lambda^2 \partial_t^2 w \) cannot be treated as a perturbation at large distances. A correct perturbation theory taking into account the leading contribution of this term at infinity is presented in the next section.

6. Perturbative analysis

In this section we justify formal analysis of Section 5. We look for a solution, \(w \), of Eqn (4.5) in the form

\[
w(y, t) = \sum_{j \geq 1} \dot{\lambda}^{2j} \xi_j(y) \varphi_j(\dot{\lambda}^4 y^2, t) .
\] (6.1)

We fix the functions \(\xi_j \) and \(\varphi_j \) by requiring that (a) \(\xi_j \) and \(\varphi_j \) are of the order \(O(1) \), (b) the functions \(\varphi_j \) satisfy the relations

\[
\varphi_j(z, t) = 1 \quad \text{for} \quad z \ll 1
\] (6.2)

and

\[
\varphi_j(z, t) = \varphi_j(z) + O(\dot{\lambda}^2),
\] (6.3)

(c) the following equations are satisfied

\[
(L + \lambda^2 \partial_t^2)(\dot{\lambda}^{2j} \xi_j \varphi_j) = \dot{\lambda}^{2j} F_j,
\] (6.4)

where the functions \(F_j \) are \(O(1) \) and depend only on \(\xi_0 \varphi_0, \ldots, \xi_{j-1} \varphi_{j-1} \) with \(\xi_0 = \chi \) and \(\varphi_0 \equiv 1 \):

\[
F_j \equiv F_j(\xi_0 \varphi_0, \ldots, \xi_{j-1} \varphi_{j-1})
\] (6.5)

and (d) the functions \(\xi_j(y) \) satisfy the equations

\[
L \xi_j = F_j(\xi_0, \ldots, \xi_{j-1}).
\] (6.6)

As will be shown below these requirements will define the functions \(\xi_j \) and \(\varphi_j \) uniquely, at least in the leading order.
We demonstrate our approach by analyzing the cases $j = 1$ and 2 in detail. We begin with $j = 1$. It is clear from (4.5)–(4.7) that

$$ F_1(\xi_0 \varphi_0) = B_1 \chi. \quad (6.7) $$

Thus ξ_1 satisfies the equation (5.4). Recall that due to (5.5) the latter equation is solvable and its general solution is given by (5.6). The constant α_1 in (5.6) is determined from the condition

$$ \int \zeta \cdot \xi_1 \varphi_1 = 0. \quad (6.8) $$

Since it plays no role in what follows we do not compute it here (see, however, (6.23) below).

Now plugging $w = \dot{\lambda}^2 \xi_1 \varphi_1 + O(\dot{\lambda}^4)$ into (4.3), omitting φ_1 (justification for this will be provided later) and using (5.5) and $B_2 \chi = -\zeta$, we obtain (5.8) which as shown in Section 5 leads to (5.11) with $\gamma = 3/4$.

Now we return to expansion (6.1) and find the equation for φ_1. Recall that φ_1 is defined through equations (6.2)–(6.6) with $j = 1$. We derive from these equations the equation for $\varphi_1(z, t)$ in the leading order in $\dot{\lambda}^2$ and in the domain $y \gg 1$. To this end we use Eqn (5.13) to estimate the order of higher derivatives of λ. In the leading order we can ignore the dependence of $\varphi_1(z, t)$ on t. Using Eqns (6.4) with $j = 1$ and Eqn (6.7) and using that for $y \gg 1$

$$ \xi_1 = -1 + O \left(\frac{1}{y^2} \right), \quad y \partial_y \xi_1 = -\frac{4}{y^2} + O\left(\frac{1}{y^4} \right), \quad B_1 \chi = -\frac{4}{y^2} + O\left(\frac{1}{y^4} \right), \quad (6.9) $$

we obtain after lengthy but elementary computations that φ_1 satisfies the equation

$$ z^2 \partial_z^2 \varphi_1 + (z + \gamma z^2) \partial_z \varphi_1 - \left(1 - \frac{1}{2} \gamma z \right) \varphi_1 = -1. \quad (6.10) $$

To this we add the boundary conditions

$$ \varphi_1(0) = 1. \quad (6.11) $$

The second boundary condition, $\varphi'_1(0)$, or, alternatively, an arbitrary constant in the general solution to (6.10)–(6.11), is found by matching the solution to (6.10)–(6.11) in the region $z \ll 1$ with solution to (6.4) with $j = 1$ and (6.7) in the region $y \gg 1$. This is done in Appendix 2 where it is also shown that

$$ \varphi_1(z) = \begin{cases} 1 - \frac{\gamma z}{4} \left(\ln \frac{z}{\lambda^4} - \frac{7}{3} \right) & \text{for } z \ll 1 \\ \frac{c}{\sqrt{z}} + \frac{2}{\gamma z} + \frac{c}{\sqrt{z}} e^{-\gamma z} & \text{for } z \gg 1 \end{cases} \quad (6.12) $$
for some constants c and \bar{c}. Thus we have
\[\dot{\lambda}^2 \xi_1(y) \varphi_1(\dot{\lambda}^4 y^2) = O(y^{-1}) \quad \text{for} \quad \dot{\lambda}^2 y \gg 1. \quad (6.13) \]

This implies, in particular, that the integral in (6.8) converges and it gives
\[\alpha_1 = O\left(\ln \frac{1}{\dot{\lambda}^2} \right). \quad (6.14) \]

Now we proceed to the second term in (6.1) and derive a correction to Eqn(5.11) (or(5.13)). Remember that ξ_2 is defined by (6.6) with $j = 2$. Keeping in mind Eqn(5.13) we choose
\[F_2(\xi_0 \varphi_0, \xi_1 \varphi_1) = B_1(\xi_1 \varphi_1) + \gamma B_2 \chi - 6y^{-2} \chi (\xi_1 \varphi_1)^2. \quad (6.15) \]

By (5.8) we have that
\[\int \zeta F_2(\xi_0, \xi_1) = 0 \quad (6.16) \]
so that the equation $L \xi_2 = F_2(\xi_0, \xi_1)$ is solvable. Eqns(6.2)–(6.6) with $j = 2$ imply an equation for φ_2 which is analyzed in a similar way as the equation for φ_1. Now plugging
\[w = \dot{\lambda}^2 \xi_1 \varphi_1 + \dot{\lambda}^4 \xi_2 \varphi_2 + O(\dot{\lambda}^6) \quad (6.17) \]
into (4.3) and setting φ_1 and φ_2 to 1, we obtain the equation (5.17) (or (5.18)) for λ. We can continue in the same manner to find the equation for λ to an arbitrary order in $\dot{\lambda}^2$.

Conclusion

We found, perturbatively, a two parameter family of collapsing solutions (parametrized as λ_0 and $\dot{\lambda}_0$) to the nonlinear wave equation (1.1)–(1.2) arising from the Yang-Mills equation in 4+1 dimensions. We also found the corresponding dynamics of collapse. The perturbation theory developed suggests that this family is (asymptotically) stable. This conclusion is supported by numerical simulations we performed (some of the results of these simulations are given in the figure below).

Acknowledgements

Research on this paper was supported by KBN under grant 2P03B00623, by a RFFI grant and by NSERC under grant N7901. Two of the authors (P.B. and I.M.S) are grateful to the ESI, Vienna, for hospitality in July 2001 when the work on this paper started.

Appendix 1 Computation of various integrals

In this appendix we show (5.9), (5.14a), (5.14b) and $\gamma = 3/4$ (see Eqn (5.17)).
1. (5.9). Recall $\zeta = -y\partial_y\chi(y)$ and $B_1 = -y\partial_y - (y\partial_y)^2$. Hence $B_1\chi = (1 + y\partial_y)\zeta$ and

$$\int \zeta B_1\chi = \int \zeta (\zeta + y\zeta') = \int y\zeta(y\zeta')dy.$$

Integrating by parts we get

$$\int_0^\infty y\zeta(y\zeta')dy = \frac{1}{2}(y\zeta)^2\bigg|_0^\infty,$$

and since the boundary term vanishes, we get $\int \zeta B_1\chi = 0$. Nota bene, this shows that the orthogonality condition for $j = 1$ is basically equivalent to the square integrability of ζ.

In what follows we use the following relation $(m \leq n - 2)$

$$\int_0^\infty \frac{x^m}{(1 + x)^n} dx = \frac{m(m - 1) \cdots 1}{(n - 1)(n - 2) \cdots (n - m - 1)}.$$

2. (5.14a). Show that

$$\int \zeta B_1\zeta - 12 \int \zeta y^{-2}\chi w_1\zeta = 0.$$

Compute

$$\int \zeta B_1\zeta = -\int_0^\infty (\zeta\zeta' y^2 + \zeta\partial_y(y\zeta')y^2)dy$$

$$= \int_0^\infty (\zeta\zeta' y^2 + \zeta r^2 y^3)dy$$

$$= \int_0^\infty (-\zeta^2 y + \zeta r^2 y^3)dy.$$

This gives

$$\frac{1}{8} \int \zeta B_1\zeta = 2 \int_0^\infty \left(\frac{-y^4}{(1 + y^2)^4} + \frac{4y^4(1 - y^2)^2}{(1 + y^2)^6} \right) ydy$$

$$= \int_0^\infty \left(\frac{-x^2}{(1 + x)^4} + \frac{4x^2(1 - x)^2}{(1 + x)^6} \right) dx$$

$$= -\frac{2 \cdot 1}{3 \cdot 2 \cdot 1} + \frac{4 \cdot 2 \cdot 1}{5 \cdot 4 \cdot 3} - \frac{8 \cdot 3 \cdot 2 \cdot 1}{5 \cdot 4 \cdot 3 \cdot 2} + \frac{4 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1} = \frac{1}{5}.$$
\[
\frac{1}{8} \int \zeta^2 y^{-2} \chi w_1 = -2 \int_0^\infty \frac{y^4 \cdot y^{-2} \cdot 1 - y^2}{(1 + y^2)^4} \frac{y^4}{1 + y^2 (1 + y^2)^2} y dy
\]
\[
= - \int_0^\infty \frac{x^3 (1 - x)}{(1 + x)^7} dx
\]
\[
= - \frac{3 \cdot 2 \cdot 1}{6 \cdot 5 \cdot 4 \cdot 3} + \frac{4 \cdot 3 \cdot 2 \cdot 1}{6 \cdot 5 \cdot 4 \cdot 3} = \frac{1}{60}.
\]

Hence \[
\int \zeta B_1 \zeta - 12 \int \zeta y^{-2} \chi w_1 \zeta = 8 \left(\frac{1}{5} - \frac{12}{60} \right) = 0.
\]

3. (5.14b). Compute
\[
\frac{2}{4^3} \int \zeta^3 y^{-2} \chi = 2 \int_0^\infty \frac{y^4}{(1 + y^2)^6} \frac{1 - y^2}{1 + y^2} y dy
\]
\[
= \int_0^\infty \frac{x^2 (1 - x)}{(1 + x)^7} dx
\]
\[
= \frac{2 \cdot 1}{6 \cdot 5 \cdot 4} - \frac{3 \cdot 2 \cdot 1}{6 \cdot 5 \cdot 4 \cdot 3} = 0.
\]

4. \(\gamma = 3/4 \). Compute
\[
\frac{1}{8} \int \zeta^2 = 2 \int_0^\infty \frac{y^4}{(1 + y^2)^4} y dy
\]
\[
= \int_0^\infty \frac{x^2 dx}{(1 + x)^4}
\]
\[
= \frac{2 \cdot 1}{3 \cdot 2 \cdot 1} = \frac{1}{3}.
\]

Compute
\[
\int \zeta B_1 w_1 - 6 \int \zeta y^{-2} \chi w_1^2 = 2,
\]
so \(\gamma = \frac{3}{4} \).

Appendix 2 Solution \(\varphi_1 \)

In this appendix we find the solution to ‘initial’ value problem (5.19)–(5.20) matching the solution to (5.4) with \(j = 1 \) in the region \(1 \ll y \ll \lambda^{-2} \). In the region \(\{ z \ll 1 \} \) Eqns (5.19)–(5.20) have the general solution
\[
\varphi_1 = 1 - \frac{\gamma}{4} \ln z (z + \ldots) + c' \frac{\gamma}{4} z (1 + \ldots) \quad (A2.1)
\]
with an arbitrary constant \(c' \).
For \(z \gg 1 \) Eqn (5.19) has the general solution
\[
\varphi_1 = \frac{2}{\gamma z} + c + e^{-\gamma z} \quad (A2.2)
\]
with arbitrary constants \(c \) and \(\bar{c} \). Here \(\frac{1}{\sqrt{z}} \) and \(e^{-\gamma z} \sqrt{z} \) are solutions of the corresponding homogeneous equation in the region \(z \gg 1 \).

It remains to find the constant \(c' \) in (A2.1). To this end we match \(\varphi_1(\dot{\lambda}^4 y^2) \) (in the leading order) to the solution of the equation
\[
\left(L + \dot{\lambda}^2 \frac{\partial^2}{\partial t^2} \right) w = \ddot{\lambda}^2 B_1 \chi \quad (A2.3)
\]
in the region \(1 \ll y \ll \dot{\lambda}^{-2} \). We find the solution of the latter in the leading order in \(\dot{\lambda}^2 \) by a perturbation theory:
\[
w = \dot{\lambda}^2 w_1 + \dot{\lambda}^6 w_2 + \ldots , \quad (A2.4)
\]
where \(w_1 = \xi_1 \) (see Eqn(5.6)). This implies the equation for \(w_2 \):
\[
Lw_2 = 2\gamma \xi_{10} . \quad (A2.5)
\]
Two solutions of the corresponding homogeneous equation are (see (3.5))
\[
\eta_1 = \frac{y^2}{(1 + y^2)^2} \quad \text{and} \quad \eta_2 = \frac{y^2}{4} + \frac{3}{2} - \frac{13}{4(y^2 + 1)} - \frac{1}{4y^2(y^2 + 1)} + \frac{3y^2 \ln y^2}{(y^2 + 1)^2} . \quad (A2.6)
\]
By the method of variation of constants we obtain
\[
w_2 = c_1 \eta_1 + c_2 \eta_2 \quad (A2.7)
\]
where the functions \(c_1 \) and \(c_2 \) are given by
\[
c_1 = -\gamma \left\{ \frac{y^4}{8} + y^2 - \frac{4}{y^2 + 1} + \frac{1}{(y^2 + 1)^2} - \frac{y^6 \ln y^2}{(y^2 + 1)^3} \right. \\
- \left. \frac{3y^4 \ln y^2}{2(y^2 + 1)^2} - \frac{3y^2 \ln y^2}{y^2 + 1} + 3 \int_0^y \frac{ds \ln s}{s + 1} + 4 \right\} \quad (A2.8)
\]
and
\[
c_2 = \gamma \left\{ \ln(y^2 + 1) + \frac{3}{y^2 + 1} - \frac{3}{2(y^2 + 1)} + \frac{1}{3(y^2 + 1)^3} - \frac{11}{6} \right\} . \quad (A2.9)
\]
Eqns (A2.7)–(A2.9) for $y \gg 1$ yield

$$w_2 = -\frac{\gamma}{8} y^2 + \frac{\gamma y^2}{4} \ln(1 + y^2) + \ldots$$

$$= \frac{\gamma}{4} y^2 \ln y^2 + \ldots \tag{A2.10}$$

Since on the other hand $w_1 = -1 + O(y^2)$, we find in $y \gg 1$ that

$$w = -\dot{\lambda}^2 \left[1 - \frac{\gamma}{4} z \ln z + \ldots \right] \tag{A2.11}$$

where $z = \dot{\lambda}^4 y^2$. Comparing (A2.11) with (A2.1) we find

$$c' = \ln y^2 - \ln(\dot{\lambda}^4 y^2) = \ln \dot{\lambda}^{-4} \tag{A2.12}$$

and therefore

$$\varphi_1(z) = 1 - \frac{\gamma}{4} z \ln \frac{z}{\dot{\lambda}^4} + \ldots \quad \text{for} \quad z \ll 1. \tag{A2.13}$$
Comparison of the numerically computed scaling parameter divided by $t^* - t$ with the analytic formula $\frac{\lambda(t)}{t^* - t} = \sqrt{\frac{2}{3}} (-\ln(t^* - t))^{-1/2}$. Note that there are no free parameters to be fitted. We believe that the apparent discrepancy (which is of the order of 10% at $\ln(t^* - t) = -60$) can be accounted for by including higher order corrections to the formula (1.10).
REFERENCES

[1] Singularities in Fluids, Plasmas and Optics, vol. 404 of Nato Advances Study Institute, Series C: Mathematical and Physical Sciences, R.E. Calfish and G.C. Papanicolaou, eds, Kluwer Academic Publishers, 1993

[2] L. Bergé, Wave collapse in physics: principles and applications of to light and plasma waves, *Physics Reports* 303 (1998) 259-370.

[3] C. Sulem and P.-L. Sulem, Nonlinear Schrödinger equation: self-focusing and wave collapse, *Springer*, 2000.

[4] M.P. Brenner, P. Constantin, L.P. Kadanoff, A. Schenkel and S.C.Venkataramani, Diffusion, attraction and collapse, *Nonlinearity* 12 (1999) 1071-1098.

[5] Yu. N. Ovchinnikov and I.M. Sigal, Multiparameter family of collapsing solutions for a critical nonlinear Schrödinger equation, *Preprint*, 2002.

[6] Alan D. Rendall, Applications of the theory of evolution equations to general relativity, in Proceedings of GR16, (Eds.) N. T. Bishop and S. D. Maharaj, *World Scientific*, 2002.

[7] O. Dumitrascu, *Stud. Cerc. Mat.* 34(4), 329 (1982).

[8] D. Eardley and V. Moncrief, *Commun. Math. Phys.* 83, 171 (1982).

[9] S. Klainerman and M. Machedon, *Ann. Math.* 142, 39 (1995).

[10] T. Cazenave, J. Shatah, and A. Shadi Tahvildar-Zadeh, *Ann. Inst. Henri Poincare* 68, 315 (1998).

[11] P. Bizoń, *Acta Phys. Polon.* B33, 1893 (2002).

[12] P. Bizoń and Z. Tabor, *Phys. Rev.* D64, 121701 (2001).

[13] J. M. Linhart and L. A. Sadun, *Nonlinearity* 15, 219 (2002).

[14] Yu.N. Ovchinnikov and I.M. Sigal, Ginzburg-Landau equation I. Static Vortices, *CRM Proceeding and Lecture Notes*, Vol. 12, 199-219 (1997)

[15] I.M. Sigal, Perron Frobenius Theory and Symmetry of solutions to nonlinear PDE’s, *Letters in Math. Phys.* 53, 313-320 (2000).