РАЗРАБОТКА ПЕРОРАЛЬНОЙ ЛЕКАРСТВЕННОЙ ФОРМЫ
ГИПОЛИПИДЕМИЧЕСКОГО ДЕЙСТВИЯ НА ОСНОВЕ
СУЛЬФАТИРОВАННОГО АРАБИНОГАЛАКТАНА
В ВИДЕ КАЛИЕВОЙ СОЛИ

Я.А. Костыро1, К.В. Алексеев2

1 Федеральное государственное бюджетное учреждение науки «Иркутский институт химии имени А.Е. Фаворского» Сибирского отделения Российской академии наук, Россия, г. Иркутск, ул. Фаворского, д. 1
2 Федеральное государственное бюджетное учреждение «Научно-исследовательский институт фармакологии им. В.В. Закусова» Сибирского отделения Российской академии наук, Россия, г. Москва, ул. Балтийская, д. 8

Для цитирования: Я.А. Костыро, К.В. Алексеев. Разработка пероральной лекарственной формы гиполипидемического действия на основе сульфатированного арабиногалактана в виде калиевой соли. Фармация и фармакология. 2021;9(6):441-453. DOI: 10.19163/2307-9266-2021-9-6-441-453

В Иркутском институте химии им. А.Е. Фаворского Сибирского отделения Российской академии наук разработан оригинальный гепариноид – сульфатированный арабиногалактан в виде калиевой соли, обладающий антикоагулянтной и гиполипидемической активностями.

Цель. Создание на основе сульфатированного арабиногалактана в виде калиевой соли твердых дозированных лекарственных форм для перорального применения в виде таблеток, покрытых пленочной оболочкой, и капсул для профилактики и лечения атеросклеротического повреждения кровеносных сосудов, которые в дальнейшем будут пригодны для клинического исследования.

Материалы и методы. Для получения твердых дозированных лекарственных форм использовались: сульфатированный арабиногалактан в виде калиевой соли, полученный в Иркутском институте химии им. А.Е. Фаворского СО РАН; Ludipress®; AEROSIL® 200 Pharma; кальция стеарат; Aquacoat ECD. Применялось брикетирование порошковых масс с последующим таблетированием и нанесением готового пленочного покрытия Aquacoat ECD и капсулирование в твердые желатиноевые капсулы.

Результаты. На основе изученных физико-химических и технологических свойств сульфатированного арабиногалактана в виде калиевой соли обоснован состав и технология производства таблеток, покрытых пленочной оболочкой, и капсул. Для разработанных твердых дозированных лекарственных форм определены технологические параметры и показатели качества в соответствии с требованиями Государственной фармакопеи РФ XIV издания.

Заключение. Разработаны оптимальные составы и технологии получения таблеток, покрытых оболочкой, и капсул на основе сульфатированного арабиногалактана в виде калиевой соли для профилактики и лечения атеросклеротического повреждения кровеносных сосудов. Полученные данные положены в основу разработки нормативной документации.

Ключевые слова: сульфатированный арабиногалактан; таблетки, покрытые пленочной оболочкой; капсулы; технология производства.

DEVELOPMENT OF PERORAL HYPOLIPIDEMIC FORMULATION BASED ON SULFATED ARABINOGALACTAN IN THE FORM OF POTASSIUM SALT

Ya.A. Kostyro1, K.V. Alekseev2

1 Federal State Budget Institution for Science “A.E. Favorovsky Irkutsk Institute of Chemistry Siberian Branch of the Russian Academy of Sciences”
1, Favorovsky St., Irkutsk, Russia, 664033
2 Federal State Budgetary Institution “Research Zakusov Institute of pharmacology”
8, Baltyskaya St., Moscow, Russia, 125315

E-mail: yanakos@irioch.irk.ru

Received 24 Oct 2019 After peer review 13 Aug 2021 Accepted 21 Sep 2021

For citation: Ya.A. Kostyro, K.V. Alekseev. Development of peroral hypolipidemic formulation based on sulfated arabinogalactan in the form of potassium salt. Pharmacy & Pharmacology. 2021;9(6):441-453. DOI: 10.19163/2307-9266-2021-9-6-441-453
ВВЕДЕНИЕ

Атеросклеротическое повреждение кровеносных сосудов одни из самых распространенных и серьезных нарушений системы гомеостаза. Применение лекарственных средств с поливалентным механизмом фармакологического действия для профилактики и лечения данной патологии обосновано, а использование в этом качестве гепариноидов − перспективно [1–8].

За рубежом препараты на основе природных и полусинтетических гепариноидов в качестве гиполипидемических средств используются в ограниченном количестве [9–13], в виду своих физико-химических свойств (чрезвычайно легко разрушаются в пищеварительном тракте, вследствие чего нарушается их всасывание и поступление в кровь) [1].

В Российской Федерации (РФ) гепариноиды представлены лекарственными препаратами на основе сулодексида, которые оказывают антигипертензорное, профibriллиционное и антитромботическое действие [2]. Сулодексид − это органопрепарат, получаемый из слизистой оболочки тонкого кишечника свиньи и представляющий собой естественную смесь гликозаминогликанов (80% гепариноподобной фракции с молекулярной массой 8 кДа и 20% дерматансульфатгепараногликанов (80% гепариноподобной фракции с молекулярной массой 8 кДа и 20% дерматансульфатгепараногликана) [14–15]. Клиническими многоцентровыми плацебо-контролируемыми исследованиями была доказана эффективность применения сулодексида в качестве средства для вторичной профилактики коронарного атеросклероза и его осложнений [16–18]. Лекарственные средства на основе сулодексида могут вызывать серьезные побочные эффекты в виду особенности технологии получения органопрепаратов, одним из которых является наличие в их составе следов белка и гистаминоподобных веществ, способных привести к появлению аллергических реакций при применении [1].

Таким образом, поиск гепариноидов, лишенных подобных недостатков, является актуальной проблемой медицинской и фармацевтической науки.

Направленная химическая модификация арабиногалактанов − основного полисахарида лиственницы сибирской, позволила разработать на его основе Иркутским институтом химии им. А.Е. Фаворского СО РАН оригинальное фармакологически активное соединение − сульфатированный арабиногалактан в виде калиевой соли (Агсулар®) [3]. Это полусинтетический гепариноид, проявляющий антигиперагулярную и гиполипидемическую активность, имеющий высокий показатель величины относительной биологической доступности при пероральном применении (54,4%) [19]. Усовершенствованная технология синтеза сульфатированного арабиногалактана в виде калиевой соли позволила получить субстанцию фармацевтической чистоты [20, 21], безопасность и эффективность которой доказана в ходе доклинических исследований, проведенных совместно с Институтом токсикологии Федерального медико-биологического агентства (г. Санкт-Петербург) в 2009–2011 гг. [22, 23].

Таким образом, сульфатированный арабиногалактан в виде калиевой соли является перспективным объектом для разработки на его основе пероральных лекарственных форм. На сегодняшний день

1 Рыжков В.Е., Макаров В.Г., Ремезова О.В., Макарова М.Н. Методические рекомендации по изучению гиполипидемического и антиоксилантного действия лекарственных средств // Руководство по проведению доклинических исследований лекарственных средств. Ч. 1.−М.: Гриф и К, 2012.−С. 445–452.
2 Государственный реестр лекарственных средств Российской Федерации [Электронный ресурс]. – Режим доступа: http://grfis.rosminzdrav.ru/Default.aspx
3 Яковлев В.Б., Золотухин С.И. Органотерапия // Большая медицинская энциклопедия, академик Б.В. Петровский (ред.), 3-е изд.−М.: Советская энциклопедия, 1981.−Т. 17.−С. 392.
4 Иркутский институт химии им. А.Е. Фаворского СО РАН. Свидетельство на товарный знак «Агсулар®» 398618. РФ.−2010.
наиболее востребованы пероральные готовые лекарственные формы (ГЛФ) в виде таблеток и капсул, имеющие широкий спектр возможностей и преимуществ [24–25].

ЦЕЛЬ. Создание на основе сульфатированного арабиногалактанна в виде калиевой соли твердых дозированных лекарственных форм для перорального применения (таблеток, покрытых плоченной оболочкой, и капсул) для профилактики и лечения атеросклеротического повреждения сосудов, которые в дальнейшем будут пригодны для клинического исследования.

МАТЕРИАЛЫ И МЕТОДЫ
Материалы
В работе использованы: сульфатированный арабиногалактан в виде калиевой соли (Агсулар®), полученный согласно разработанной методике [20, 21]; Ludipress® (BASF, Германия); коллоидный диоксид кремния – AEROSIL® 200 Pharma (Evonik Degussa, Германия); кальция стеарат, ч.д.а. (ТУ 2432-061-56856807-04); Aquacoat ECD (FMC, США); вода очищенная (ФС.2.2.0020.18).

Изучение физико-химических свойств
Форму и размер частиц определяли при помощи сканирующей электронной микроскопии, выполненной на сканирующем электронном микроскопе SEM 525-M (Philips, Нидерланды) и методом динамического светорассеяния с использованием анализатора Zetasizer Nano ZS (Malvern Instrument, Великобритания). Измерения проводили на углах 13° и 173° в пластиковых кюветах (1×1 см). Средний гидродинамический диаметр рассчитывали из анализа флуктуаций интенсивности светорассеивания сферических частиц. Результаты обрабатывали с помощью программного обеспечения Dispersion technology Zetasizer family software v7.01.

Средневесовую молекулярную массу определяли методом высокоэффективной эксклюзионной хроматографии на хроматографе Agilent 1260 Infinity (Agilent Technologies, Германия), колонка PL aquagel-OH 408 нм, 300×7,5 мм, детектор – рефрактометр, концентрация пробы 1 мг/мл, объем пробы 20 мл. Элюирование проводили 0,1 М водным раствором нитрата лития (LiNO₃) при 30°С со скоростью элюента 1 мл/мин. для калибровки колонки использовали D-галактозу и декстраны с молекулярными массами 5, 12 и 25 кДа (Sigma, США). Расчеты проводили при помощи программного обеспечения Agilent ChemStation.

Элементный анализ выполнен на автоматическом элементном анализаторе Flash2000 (Thermo Scientific, Италия).

Растворимость определяли по методике, описанной в ОФС.1.2.1.0005.15 «Растворимость».

Среднюю плотность (ρₜ, кг/м³) определяли отношением массы пробы (m≥0,3 кг) ко всему занимаемому ей объему (V) в естественных условиях, включая имеющиеся в ней пустоты и поры (Vₚор), и рассчитывали по формуле:

$$\rho_{\text{уд.}} = \frac{m}{V_{\text{м.п.}} + V_{\text{пор}}}.$$ (1)

где: ρₜ – средняя плотность, кг/м³; m – массы пробы, кг; Vₚор – объем пробы, м³; Vₚор – объем твердой фазы, м³; Vₚор – объем пустот и пор, м³.

Удельную поверхность (Sₚ, м²/кг) определяли как сумму поверхности всех частиц, общая масса которых равна 1 кг и рассчитывали по формуле:

$$S_{\text{пл.}} = \frac{k}{d_{\text{факт.}} \times \rho_{\text{уд.}},}$$ (2)

где: Sₚₜ – удельная поверхность, м²/кг; k – коэффициент формы частиц; dₚₜ – диаметр частиц твердой фазы, м; ρₜ – средняя плотность, кг/м³.

Гигроскопичность (H, %) определяли в экстремальных условиях (в камере с относительной влажностью воздуха 100% в течение 24 часов) [26]. Кинетику влагопоглощения рассчитывали по формуле:

$$H = \frac{m - m_0 \times 100\%}{m}.$$ (3)

где: H – гигроскопичность, %; m₀ – масса порошка до выдерживания в камере со 100% влажностью воздуха, г; m – масса порошка после выдерживания в камере со 100% влажностью воздуха, г.

Изучение технологических свойств
Фракционный (гранулометрический) состав определяли по методике, описанной в ОФС.1.1.0015.15 «Ситовой анализ» на автоматическом рассеивателе WEB (MLW-Labortechnik, Германия).

Сыпучесть (t/c), угол естественного откоса (°) и насыпную плотность (t/ml) определяли по методикам, описанным в ОФС.1.4.2.0016.15 «Степень сыпучести».

Прессуемость (прочность на излом, Н) определяли по следующей методике: навеску (0,3 г) порошка спрессовывали в матрице с диаметром 9 мм на ручном гидравлическом прессе ПГР 400 (Инфраспек, Россия) при давлении 120 МПа. После выталкивания таблетки из матрицы, определяли прочность на сжатие с помощью тестера прочности таблеток и гранул TT-03 (Китай) в кг нагрузки, которую пересчитывали в Н [26].
где: \(\rho_{\text{nас}0} \) – насыпная плотность до уплотнения, кг/м\(^3\); \(\rho_{\text{nас}1} \) – насыпная плотность после уплотнения, кг/м\(^3\) [27].

Индекс Карра (%) рассчитывали по формуле [28]:

\[
\text{Индекс Карра} = \frac{100\% \times (\rho_{\text{nас}0} - \rho_{\text{nас}1})}{\rho_{\text{nас}1}},
\]

где: \(\rho_{\text{nас}0} \) – насыпная плотность до уплотнения, кг/м\(^3\); \(\rho_{\text{nас}1} \) – насыпная плотность после уплотнения, кг/м\(^3\).

Технология получения таблеток
Брикетирование проводили из порошковой смеси действующего и вспомогательных веществ, полученной в «плуговом» миксере PSM (Pharmag, Германия) при скорости 50–250–450 об/мин в течение 30 мин, на ручном гидравлическом прессе ПГР 400 (Инфраспек, Россия). Диаметр матрицы – 25 мм при давлении от 20 МПа.

Брикеты размалывали в сухом грануляторе DG (Pharmag, Германия).

Фракционирование полученных гранул осуществляли на автоматическом рассеивателе WEB (MLW-Labortechnik, Германия), отбирая гранулы размером не менее 1 мм.

Для таблетирования использовали пуансоны к таблеточному прессу СRР-6 (Dott. Bonapace&C s.r.l., Италия), позволяющие получить двояковыпуклые таблетки диаметром 12 мм.

Нанесение 30% водной дисперсии пленочного покрытия Aquacoat ECD выполняли в коатере CP-9 (Pharmag, Германия) при фиксации рабочего угла установки 45°. Покрываемые таблетки подсушивали в инфракрасном свете (150 W).

Технология получения капсул
Для капсулирования использовали готовые полузакрытые желатиновые капсулы Empty Hard Gelatin Capsules (Shaanxi Genex Bio-Tech Co., Ltd, Китай) размерами № 00-1, наполнение которых осуществляли при помощи комплектов ручных машинок МС-1,2 (Multipharma, Италия) соответствующего размера.

Оценка качества ГЛФ
Качество полученных ГЛФ оценивали по стандартным фармакопейным методикам:
1. ОФС.1.4.2.0009.15 «Однородность массы дозированных лекарственных форм» – определение однородности массы содержимого капсул осуществляли, используя весы лабораторные электронные ЛВ 120-А (Сартогосм, Россия);
2. ОФС.1.4.2.0008.15 «Однородность дозирования» – определение равномерности распределения действующего вещества по отдельно взятым единицам дозированных ГЛФ (капсулы и таблетки, покрытые пленочной оболочкой) проводили по способу 2, используя весы лабораторные электронные ЛВ 120-А (Сартогосм, Россия);
3. ОФС.1.4.2.0013.15 «Распадаемость таблеток и капсул» – определение распадаемости проводили в среде воды очищенной, используя лабораторный идентификатор процесса распадаемости 545 АК-00-00 (Фарматех, Украина).
4. ОФС.1.4.2.0014.15 «Растворение для твердых дозированных лекарственных форм» – определение количества действующего вещества, высвобождающегося из ГЛФ за определенных промежуток времени, проводили в среде воды очищенной, используя устройство для определения растворимости 545 АК7-00-00 (Фарматех, Украина) спектрофотометрическим методом на UV/VIS спектрометре Lambda 35 (Perkin Elmer, США).
5. ОФС.1.4.1.0015.15 «Таблетки» – определение количества вспомогательных веществ (аэросил и кальция стеарат) проводили гравиметрическим методом, используя весы лабораторные электронные ЛВ 120-А (Сартогосм, Россия).

Статистическая обработка результатов
Все полученные данные были статистически обработаны (Р=95%) при помощи критерия Стьюдента в соответствии требованиями ОФС.1.1.0013.15.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ
Физико-химические и технологические свойства
Для получения дозированных лекарственных форм наиболее перспективным методом является прямое прессование. Этот способ таблетирования порошковых масс экономически выгоден и технологичен. Однако, несмотря на преимущества этого метода, прямое прессование осуществляется для ограниченного ассортимента фармацевтических субстанций и зависит от их физико-химических и технологических свойств [29].

Сульфатированный арабиногалактан в виде калиевой соли (рис. 1) представляет собой гидрофильный функционализированный биополимер, в котором сульфатные группы находятся при атомах С2 и С4 основной галактановой цепи и при атоме С6 концевых остатков галактозы основной и боковой цепей полисахарида. По данным элементного анализа и характеристик молекулярно-массового распределения значение степени замещения макромолекулы составляет 0,4, т.е. на одну структурную единицу биополимера приходится порядка одной сульфатной группировки [21].
По внешнему виду это белый или белый со слегка кремовым оттенком аморфный порошок со слабым характерным запахом. По данным сканирующей электронной микроскопии (рис. 2А) его частицы имеют сферическую форму и образуют крупные агломераты, размер которых находится в интервале 200–600 нм (рис. 2Б).

Для оценки пригодности сульфатированного арабиногалактана в виде калиевой соли к таблетированию методом прямого прессования были проведены исследования его физико-химических (табл. 1) и технологических свойств (табл. 2).

Результаты проведенных экспериментов показали, что сульфатированный арабиногалактан в виде калиевой соли представляет собой мелкодисперсный аморфный порошок с высокой гигроскопичностью (20,07%), практически однородный по гранулометрическому составу, который не соответствует требованиям, предъявляемым к порошкам для прямого прессования, так как обладает низкими технологическими свойствами.

Технология получения таблетированной ГЛФ

Ранее нами была разработана таблетированная ГЛФ на основе сульфатированного арабиногалактана в виде калиевой соли в дозировке активного компонента 500 мг, в которой в качестве вспомогательных веществ были использованы лактоза безводная, поливинилпирролидон низкомолекулярный и аэросил [34]. Срок хранения таблеток, полученных методом прямого прессования с монокомпонентным составом вспомогательных веществ, составил не более 2,5 лет ввиду высокой гигроскопичности сульфатированного арабиногалактана в виде калиевой соли и отсутствия у таблеток защитной от воздействия атмосферной влаги оболочки.
Рисунок 3 – Фрагмент технологической схемы производства «Агсулар® таблетки, покрытые пленочной оболочкой, 500 мг»
Примечание: Кт, Кх – соответственно технологический и химический контроль

Рисунок 4 – Фрагмент технологической схемы производства «Агсулар® капсулы 500 мг»
Примечание: Кт, Кх – соответственно технологический и химический контроль
Таблица 1 – Физико-химические свойства сульфатированного арабиногалактан в виде калиевой соли

Средневесовая молекулярная масса, кДа	Растворимость, кг/м³	Средняя плотность, кг/м³	Удельная поверхность, м²/кг	Гигроскопичность, %	Найдено Вычислено (%)
27,5	300; H₂O	843,17	13,88	20,07	26,63 25,39 11,01 15,55

C	H	S	K
22,75	300	843,17	13,88

Таблица 2 – Технологические параметры сульфатированного арабиногалактан в виде калиевой соли

Технологическая характеристика	Экспериментальные данные	Референтные значения
Гранулометрический состав	Фракции:	Гранулометрический состав: более 60 % должны составлять фракции с размером частиц 0,5–2 мм; менее 20 % – фракции с размером частиц до 0,2 мм [30].
	< 0,25 мм 19,8%;	
	0,25–0,5 мм 59,5%;	
	0,5–1,0 мм 8,6%;	
	1,0–2,0 мм 10,5%;	
	2,0–3,0 мм 1,4%;	
	> 3,0 мм 0,2%	
Сыпучесть, г/с	1,00±0,05	8,6–12 г/с – отличная;
		6,6–8,5 г/с – хорошая;
		3–6,5 г/с – удовлетворительная;
		2–3 г/с – допустимая;
		1–2 г/с – плохая;
		0,3–1 г/с – очень плохая [31].
Угол естественного откоса, °	43–45	25–30° – очень хорошая степень сыпучести;
		31–35° – хорошая степень сыпучести;
		36–45° – удовлетворительная степень сыпучести;
		46–55° – неудовлетворительная степень сыпучести (требуется дополнительное перемешивание или вибрация;
		56–65° – плохая степень сыпучести;
		> 66° – очень плохая степень сыпучести [31].
Прессуемость (прочность на излом), Н	24,50±1,14	> 70 Н – хорошая
		40–70 Н – средняя
		<40 Н – плохая [26].
Насыпная плотность до уплотнения, г/мл	0,633±0,032	> 2,0 г/мл – весьма тяжёлые;
		от 1,1 до 2,0 г/мл – тяжёлые;
		от 0,6 до 1,1 г/мл – средние;
		< 0,6 г/мл – лёгкие сыпучие материалы [31].
Насыпная плотность после уплотнения, г/мл	0,843±0,042	
Индекс Хауснера	1,33	1,0–1,11 – очень хорошая сжимаемость;
		1,12–1,18 – хорошая сжимаемость;
		1,19–1,25 – средняя сжимаемость;
		1,26–1,34 – удовлетворительная сжимаемость;
		1,35–1,45 – плохая сжимаемость;
		1,46–1,59 – очень плохая сжимаемость;
		> 1,60 – очень, очень плохая сжимаемость [32].
Индекс Карра, %	24,91	10 – очень хорошая сжимаемость;
		11–15 – хорошая сжимаемость;
		16–20 – средняя сжимаемость;
		21–25 – удовлетворительная сжимаемость;
		26–31 – плохая сжимаемость;
		> 38 – очень, очень плохая сжимаемость [33].

[11] Tam же.
Таблица 3 – Состав и технологические характеристики таблеточных смесей на основе сульфатированного арабиногалактана в виде калиевой соли

Компоненты, технологические параметры	Таблеточные смеси, мас.%			
	№ 1	№ 2	№ 3	№ 4
Сульфатированный арабиногалактан в виде калиевой соли	47,15	61,88	73,33	82,92
Лудипресс	47,15	30,94	18,34	13,27
Аэросил	4,70	6,18	7,33	3,31
Кальций стеаринокислый	1,00	1,00	1,00	0,50
Сыпучесть, г/с	5,5±0,2	2,6±0,1	2,0±0,1	1,5±0,1

Технологические параметры смесей после брикетирования

Сыпучесть, г/с	10,7±0,5	6,4±0,3	4,6±0,2	3,1±0,1
Прессуемость (прочность на излом), Н	44,5±2,2	15,0±0,7	11,2±0,5	9,7±0,4
Насыпная плотность до уплотнения, г/мл	1,349±0,067	1,270±0,063	1,215±0,061	0,497±0,025
Насыпная плотность после уплотнения, г/мл	1,448±0,073	1,434±0,072	1,427±0,071	0,646±0,032
Индекс Хауснера	1,07	1,13	1,17	1,30
Индекс Карра, %	6,84	11,44	14,86	23,07

Таблица 4 – Показатели качества таблетированной ГЛФ на основе сульфатированного арабиногалактана в виде калиевой соли

Основные показатели	Методы12	Нормы	Результат	
Описание	Визуальный	Таблетки, покрытые пленочной оболочкой белого или почти белого цвета, круглые, гладкие, двояковыпуклые. На поперечном срезе ядро таблетки от белого до белого со слегка кремовым оттенком цвета.	Соответствует	
Подлинность	1. Полисахаридные фрагменты	При добавлении капли спирта этилового 95% происходит помутнение раствора.	Выполняется	
	2. Реакция метахромазии	При добавлении 0,005% раствора толуидинового голубого наблюдается изменение окраски раствора красителя с синей на сиреневую.	Выполняется	
	3. Ионы калия (реакция Б) (ОФС 1.2.2.0001.15)	При добавлении разведенной уксусной кислоты и раствора натрия кобальтинитрита образуется жёлтый кристаллический осадок.	Выполняется	
Однородность дозирования	Весовой (ОФС 1.4.2.0008.15)	Содержание субстанции сульфатированного арабиногалактана в виде калиевой соли в таблетках, покрытых оболочкой, определяют согласно способа 2. Объем выборки 10. Первый показатель приемлемости AV≤15%.	Выполняется	
Распадаемость	Визуальный (ОФС 1.4.2.0013.15)	Не менее 16 из 18 образцов должны полностью распасться за 30 минут; среда растворения – вода очищенная	25,8 мин	Соответствует
Растворение	Спектрофотометрический (ОФС 1.4.2.0014.15)	Высвобождение (не менее 75%) субстанции сульфатированного арабиногалактана в виде калиевой соли в течение 45 минут; среда растворения – вода очищенная	94,2%	Соответствует
Определение вспомогательных веществ	Гравиметрический (ОФС 1.4.1.0015.15)	Содержание аэросила и кальция стеарата в таблетках, покрытых пленочной оболочкой, должно быть от 0,054 г до 0,066 г (0,06 г ± 10%) и не более 11% от средней массы таблетки (1,082 г) – 0,119 г.	0,059 г	Соответствует
Количествоное определение	Спектрофотометрический	Содержание субстанции сульфатированного арабиногалактана в виде калиевой соли в одной таблетке, покрытой пленочной оболочкой, должно быть от 0,475 г до 0,525 г (0,5 ±5%).	0,496 г	Соответствует

12 Там же.
Таблица 5 – Размер капсул для таблеточных смесей на основе сульфатированного арабиногалктана в виде калиевой соли в зависимости от их технологических свойств

Параметры	Таблеточные смеси		
	№ 1	№ 2	№ 3
Средняя масса содержимого капсул, г	1,061	0,808	0,682
Допустимое отклонение, %	7,5		
Сыпучесть, г/с	10,7±0,5	6,4±0,3	4,6±0,2
Насыпная плотность до уплотнения, г/мл	1,349±0,067	1,270±0,063	1,215±0,061
Диапазон объема, занимаемого гранулятом, мл	0,77–0,81	0,62–0,66	0,55–0,58
Размер твердых желатиновых капсул	00	0	0
Насыпная плотность после уплотнения, г/мл	1,448±0,073	1,434±0,072	1,427±0,071
Диапазон объема, занимаемого гранулятом, мл	0,71–0,75	0,55–0,58	0,47–0,49
Размер твердых желатиновых капсул	00	0	1

Таблица 6 – Показатели качества капсулированной ГЛФ на основе сульфатированного арабиногалктана в виде калиевой соли

Основные показатели	Методы	Нормы	Результат
Описание	Визуальный	Твердые желатиновые капсулы № 1 или 0 или 00 с корпусом белого цвета и крышечкой розового цвета. Содержимое капсул – уплотнённая масса от белого до белого со слегка кремовым оттенком цвета.	Соответствует
Подлинность		1. Полисахаридные фрагменты. При добавлении капли спирта этилового 95% происходит помутнение раствора.	Выполняется
		2. Реакция метахромазии. При добавлении 0,005% раствора толуидинового голубого наблюдается изменение окраски раствора красителя с синей на сиреневую.	Выполняется
		3. Ионы калия (реакция Б) (ОФС 1.2.2.0001.15)	Выполняется
Однородность массы	Весовой (ОФС.1.4.2.0009.15)	Средняя масса содержимого капсул № 00 от 0,981 до 1,141 г (1,061 ± 7,5%). Средняя масса содержимого капсул № 0 от 0,747 до 0,869 г (0,808 ± 7,5%). Не более двух индивидуальных масс могут иметь отклонение от средней массы на величину, превышающую допустимое отклонение. При этом ни одна индивидуальная масса не должна отклоняться от средней массы на величину, в 2 раза превышающую допустимое отклонение.	Капсулы № 00 – 1,084 г; Капсулы № 0 – 0,798 г; Капсулы № 1 – 0,696 г. Соответствует
Однородность дозировки	Весовой (ОФС.1.4.2.0008.15)	Содержание сульфатированного арабиногалктана в виде калиевой соли в капсулах определяют согласно способа 2. Объем выборки 10. Первый показатель приемлемости AV ≤ 15%.	Выполняется
Распадаемость	Визуальный (ОФС.1.4.2.0013.15)	Не менее 16 из 18 образцов должны полностью распасться за 30 минут; среда растворения – вода очищенная	Капсулы № 00 – 27,4 мин; Капсулы № 0 – 26,2 мин; Капсулы № 1 – 26,6 мин; Соответствует
Растворение	Спектрофотометрический (ОФС.1.4.2.0014.15)	Высвобождение (не менее 75%) субстанции сульфатированного арабиногалктана в виде калиевой соли в течение 45 минут; среда растворения – вода очищенная	Капсулы № 00 – 91,8%; Капсулы № 0 – 90,8%; Капсулы № 1 – 91,3%; Соответствует
Определение вспомогательных веществ	Гравиметрический (ОФС.1.4.1.0015.15)	Содержание аэросила и кальция стеарата в капсулах № 00 должно быть от 0,054 г до 0,066 г (0,06 г±10%) и не более 11% от средней массы содержимого капсул № 00, где 0,054 г – нижняя граница количественного определения аэросила, а 0,066 г – верхняя граница количественного определения аэросила.	Капсулы № 00 – 0,058 г; Капсулы № 0 – 0,057 г; Капсулы № 1 – 0,062 г. Соответствует
Количество определения	Спектрофотометрический	Содержание сульфатированного арабиногалктана в виде калиевой соли в одной капсуле должно быть от 0,475 г до 0,525 г (0,5 г±5%).	Капсулы № 00 – 0,501 г; Капсулы № 0 – 0,511 г; Капсулы № 1 – 0,477 г. Соответствует

注: Здесь приводятся качественные характеристики капсулированной продукции на основе сульфатированного арабиногалктана в виде калиевой соли.
Предварительно для повышения стабильности и уменьшения сроков годности таблеток на основе сульфатированного арабиногалактанна в виде калиевой соли были проведены дополнительные экспериментальные исследования сопротивления состава и технологии (подбор современных высокоэффективных комбинированных вспомогательных веществ, улучшающих сыпучесть и прессуемость; выбор влагозащитного пленочного покрытия для таблеток; аморфация широко используемого в фармацевтической технологии способа направленного укрупнения частиц – гранулирования).

Из большого ассортимента современных комбинированных вспомогательных веществ для исследования был выбран лудипресс – Ludipres®, состоящий из комплекса α-лактозы моногидрата (93,4%) с поливинилпирролидоном (Kollidon 30) (3,2%) и полиэтиленгликолем (3,4%) [36].

Лудипресс имеет тот же качественный состав ингредиентов, который применялся нами ранее для получения таблеток на основе сульфатированного арабиногалактана в виде калиевой соли, но отличающийся их оптимальным количественным содержанием. Это позволяет получить достаточно прочные таблетки при низком давлении прессования и улучшать технологические свойства активной субстанции [35].

Поскольку сульфатированный арабиногалактана в виде калиевой соли – гигроскопичное и термостойкое вещество, для улучшения сыпучести таблетируемой массы на ее основе и предотвращения дальнейшего расслаивания был опробован такой технологический прием, как брикетирование (разовывание метода сухого гранулирования) [36–37].

Для экспериментальных исследований были получены модельные составы таблеточных смесей и изучены их основные технологические свойства (табл. 3).

Как видно из представленных данных, технологическим требованиям процесса таблетирования методом прямого прессования соответствует только таблеточная сместь № 1, так как она обладает отличной сыпучестью и средней прессуемостью при очень хорошей сжимаемости [31, 38]. Полученные результаты подтверждают правильность выбора оптимального состава и технологии. Таблеточные смеси № 2 и № 3 могут быть использованы для получения ГЛФ в виде капсул.

С целью защиты сульфатированного арабиногалактана в виде калиевой соли от воздействия атмосферной влаги для таблеток было экспериментально отобрано эффективное пленочное покрытие. Влагозащитными барьерными покрытиями чаще всего служат гидрофобные полимеры или гидрофобные полимеры в комбинации с гидрофильными добавками, либо гидрофильные полимеры в комбинации с гидрофобными добавками [39]. В качестве пленкообразователей были выбраны структурообразующие соединения, способствующие защите таблеток от влаги, в частности не растворимая в воде, но проницаемая для водных растворов этилцеллюлоза [40] и цетиловый спирт; последний, помимо хорошей пленкообразующей способности, обладает эмульгирующими и стабилизирующими свойствами [41].

В современной фармацевтической технологии широко используются готовые пленочные покрытия (ГПК), включающие оптимальных соотношениях пленкообразователь, пластикатор, краситель и растворитель, а также полупродукты (полуфабрикаты) в виде гранул (порошков), из которых пленкообразующий раствор (дисперсию) получают несущественно перед применением с помощью соответствующего растворителя [42-45]. Из всего ассортимента ГПК, содержащих в своем составе этилцеллюлозу и цетиловый спирт, для экспериментальных исследований по защите таблеток, содержащих сульфатированный арабиногалактана в виде калиевой соли, от воздействия атмосферной влаги было выбрано ГПК Aquacoat ECD, используемое в виде 30%-ной водной дисперсии, получаемой несущественно перед применением. Преимущества указанной ГПК – возможность ее применения не только для создания барьерного покрытия (насечение в количестве 1–2% от массы таблетки), но и для поддержания рН-независимого заданного режима высвобождения (насечение в количестве 8–15% от массы таблетки) [35]. Кроме того, ГПК Aquacoat ECD совместимо с большинством спиртов- и пропиленгликольрастворимыми красителями, а также различными типами пластикаторов. В результате получается высокопрочная, стабильная, легко растворимая в желудке оболочка, придающая таблетке приятный внешний вид и обеспечивающая эффективную защиту действующего вещества от атмосферной влаги [46].

Отработку технологии получения ГЛФ в виде таблеток, покрытых пленочной оболочкой, на основе сульфатированного арабиногалактана в виде калиевой соли по прописи таблеточной смеси № 1 осуществляли с помощью оборудования Pharmag и таблеточного пресса с одной станцией прессования CPR-6, используя метод сухой грануляции (брикетирование) согласно предложенной технологической схемы (рис. 3).

В результате были получены двояковыпуклые таблетки диаметром 12 мм высокой прочности (44,5±2,2 Н).
Оценка качества таблетированной ГЛФ
Оценку качества полученных таблеток проводили по следующим показателям: описание, подлинность, однородность дозирования, распадаемость, растворение, определение вспомогательных веществ (аэросил и кальция стеарат) и количественное определение (табл. 4).

Согласно проведенным исследованиям, разработанная твердая дозированная ГЛФ для перорального применения в виде таблеток, покрытых пленочной оболочкой, на основе сульфатированного арабиногалактана в виде калиевой соли выдерживает все испытания и полностью соответствует требованиям ОФС.1.4.1.0015.15 «Таблетки».

Полученные данные положены в основу разработки нормативной документации на производство «Агсулар® таблетки, покрытые пленочной оболочкой, 500 мг».

Технология получения капсулированной ГЛФ
Для производства ГЛФ в виде капсул на основе сульфатированного арабиногалактана в виде калиевой соли гранулят, согласно прописям таблеточных смесей № 1–3, помещали в твердые желатиновые капсулы размером № 00-1 соответственно (табл. 5).

Отработку технологии получения ГЛФ в виде капсул на основе сульфатированного арабиногалактана в виде калиевой соли проводили на оборудовании Pharmag и комплектах ручных машинок для наполнения твердых желатиновых капсул (МС-1,2) соответствующего размера, позволяющих осуществлять принудительную подачу таблеточной смеси в капсулу и дополнительную подпрессовку материала согласно предложенной технологической схемы (рис. 4).

Оценка качества капсулированной ГЛФ
Готовые капсулы были подвергнуты контролю согласно разработанной спецификации (табл. 6). Исследования показали качества: описание, подлинность, однородность массы, однородность дозирования, распадаемость, растворение, определение вспомогательных веществ (аэросил и кальция стеарат), количественное определение.

Согласно проведенным исследованиям, разработанная твердая дозированная ГЛФ для перорального применения в виде капсул на основе сульфатированного арабиногалактана в виде калиевой соли выдерживает все испытания и полностью соответствует требованиям ОФС.1.4.1.0005.15 «Капсулы».

Полученные данные положены в основу разработки нормативной документации (проекта фармацевтической статьи «Агсулар® капсулы 500 мг» и лабораторного регламента на производство ГЛФ).

ЗАКЛЮЧЕНИЕ
Таким образом, в результате экспериментальных исследований были разработаны и апробированы оптимальные составы и технологические способы получения твердых дозированных лекарственных форм для перорального применения на основе сульфатированного арабиногалактана в виде калиевой соли (капсулы и таблетки, покрытые оболочкой) для профилактики и лечения атеросклеротического повреждения кровеносных сосудов. Полученные данные позволяют планировать плацебо-контролируемое клиническое исследование 1-й фазы.

ФИНАНСОВАЯ ПОДДЕРЖКА
Работа выполнена согласно планам НИР (государственное задание) по программе V.48 «Фундаментальные физико-химические исследования механизмов физиологических процессов и создание на их основе фармакологических веществ и лекарственных форм для лечения и профилактики социально значимых заболеваний» (2013–2020). Проект V.48.1.2. Поиск новых биологически активных веществ на основе биомассы хвойных пород Сибири и Дальнего Востока, скрининг биологической активности перспективных соединений. Разработка технологий получения природных субстанций и определение их практической значимости.

КОНФЛИКТ ИНТЕРЕСОВ
Авторы заявляют об отсутствии конфликта интересов.

ВКЛАД АВТОРОВ
Я.А. Костыро – выполнение экспериментальных работ, обработка результатов исследования, написание текста статьи; К.В. Алексеев – разработка концепции и дизайна исследования, руководство проведением экспериментальных работ, редактирование текста статьи.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК
1. Kumar N., Bentolila A., Domb A.J. Structure and biological activity of heparinoid // Mini Reviews in Medicinal Chemistry. – 2005. – Vol. 5, Issue 5. – P. 441–447. DOI: 10.2174/1389557053765538.
2. Borai I.H., Ezz M.K., Rizk M.Z., El-Sherbiny M., Matloub A.A., Aly H.F., Farrag A.R., Fouad G.I. Hypolipidemic and anti-atherogenic effect of sulphated polysaccharides from the green alga Ulva fasciata // Int. J. Pharm. Sci. Rev. Res. – 2015. – Vol. 31, Issue 1. – P. 1–12.
3. Park J., Yeom M., Hahm D-H. Fucoidan improves serum

16 Государственная фармакопея Российской Федерации XIV изд. T. I–IV.
17 Там же.
lipid levels and atherosclerosis through hepatic SREBP-2-mediated regulation // J. Pharmacol. Sci. – 2016. – Vol. 131, Issue 2. – P. 84–92. DOI: 10.1016/j.jphs.2016.03.007.
4. Vick M.Z. The anti-hypercholesterolemic effect of ulvan polysaccharide extracted from the green alga Ulva fasciata on aged hypercholesterolemic rats // Asian J. Pharm. Clin. Res. – 2016. – Vol. 9, Issue 3. – P. 165–176.
5. Yokota T., Nomura K., Nagashima M., Kamimura N. Fucoidan alleviates high-fat diet-induced dyslipidemia and atherosclerosis in ApoE(−/−) mice deficient in apolipoprotein E expression // J. Nutr. Biochem. – 2016. – Vol. 32. – P. 46–54. DOI: 10.1016/j.jnutbio.2016.01.011.
6. Deniaud-Bouét E., Hardouin K., Potin P., Klaoreg B., Hervé C. A review about brown algal cell walls and fucose-containing sulfated polysaccharides: cell wall context, biomedical properties and key research challenges // Carbohydr. Polym. – 2017. – Vol. 175. – P. 395–408. DOI: 10.1016/j.carbpol.2017.07.082.
7. Li W., Wang K., Jiang N., Liu X., Wan M., Chang X., Liu D., Qi H., Liu Sh. Antioxidant and antiatherosclerotic activities of purified polysaccharides from Ulva pertusa // J. Appl. Phycol. – 2018. – Vol. 30. – P. 2619–2627. DOI: 10.1007/s10811-018-1001-2.
8. Yusl Y., Hakim B., Rosidah R. Effect of sodium alginate on prevention of hypercholesterolemia and atherosclerosis in rats // Asian J. Pharm. Clin. Res. – 2018. – Vol. 11, Issue 6. – P. 242–247. DOI: 10.22159/ajpcr.2018.v11i6.24768.
9. Баркган З.С. Гепариноиды, их виды и клиническое применение // Сулодексид. Механизмы действия и применение // Фармация. – 2008. – № 1. – С. 42–56.
10. Masola V., Zaza G., Onisto M., Lupo A., Gamaro G. Glycosaminoglycans, proteoglycans and sulfoxide and the endothelium: biological roles and pharmacological effects // Int. Angiol. – 2014. – Vol. 33, Issue 3. – P. 243–254.
11. Xin M., Ren L., Sun Y., Li H., Guan H.-S., He X.-X., Li Ch.-X. Anticoagulant and antithrombotic activities of low-molecular-weight propylene glycol alginic sodium sulfate (PSS) // Eur. J. Med. Chem. – 2016. – Vol. 114. – P. 33–40. DOI: 10.1016/j.ejmech.2016.02.063.
12. Patil N.P., Le V., Sligar A.D., Meier L., Chavarria L., Yang E.Y. Baker A.B. Algal polysaccharides as therapeutic agents for atherosclerosis // Front. Cardiovasc. Med. – 2018. – Vol. 5. – P. 1–18. DOI: 10.3389/fcvm.
13. Braga W.F., Aguilar E.C., Alvarez-Leite J.A. Fucoidans as a potential nutraceutical in combating atherosclerotic cardiovascular diseases // Biomed. J. Sci. & Tech. Res. – 2019. – Vol. 21, Issue 3. – P. 15953–15958. DOI: 10.26717/BJSTR.2019.21.003616.
14. Coccheri S., Mannello F. Development and use of sulodexide in vascular diseases: implications for treatment // Drug Des. Devel. Ther. – 2014. – Vol. 8. – P. 49–65. DOI: 10.2147/DDDT.S6762.
15. Hoppensteadt D.A., Fareed J. Pharmacological profile of sulodexide // Int. Angiol. – 2014. – Vol. 33, Issue 3. – P. 229–235.
16. Condorelli M., Chiariello M., Dagnanti A., Penco M., Dalla Volta S., Penco V., Schivazappa L., Mattioli G., Mattioli A.V., Brusoni B., Trotta E., Bingamini A. IPO-V2: A prospective, multicenter, randomized, comparative clinical investigation of the effects of sulodexide in preventing cardiovascular accidents in the first year after acute myocardial infarction // J. Am. Coll. Cardiol. – 1994. Vol. 23, Issue 1. – P. 27–34. DOI: 10.1016/0735-1097(94)90498-7.
17. Coccheri S., Scondotto G., Agnelli G., Palazzini E., Zamboni V. Sulodexide in the treatment of intermittent claudication. Results of a randomized, double-blind, multicentre, placebo-controlled study // Eur. Heart J. – 2002. – Vol. 23, Issue 13. – P. 1057–1065. DOI: 10.1053/euhj.2001.3033.
18. Chupin A.V., Katurkin S.E., Katelnitsky I.I., Katelnitskaya O.V., Prostov I.I., Petrikov A.S., Koshevoy A.P., Lyudkova L.F. Sulodexide in the treatment of chronic venous insufficiency: results of the All-Russian multicenter ACVEDUCT program // Adv. Ther. – 2020. – Vol. 37, Issue 5. – P. 2071–2082. DOI: 10.1007/s12325-020-01270-9.
19. Костыро Я.А., Ковальская Г.Н., Силезерева О.А., Ильина О.П. Экспериментальная фармакокинетика сульфатированного арабиногалактана при различных путях введения // Фармация. – 2008. – № 1. – С. 45–46.
20. Пат. 2532915 C08B37/00 Способ получения сульфата ионов арсената // Фармация. – 2014. – № 5. – С. 76–79.
21. Костыро Я.А., Капибасов С.Г. Исследование безопасности субстанции Агсулар® // Эксперим. и клин. фармакол. – 2017. – Т. 80, № 56. – С. 17.
22. Костыро Я.А., Костыро В.В. Исследование фармаколого-биохимической активности субстанции Агсулар® // Эксперим. и клин. фармакол. – 2018. – Т. 81, № 56. – С. 124. DOI: 10.30906/0869-2092-2018-81-5s-1-306.
23. Дениндау-Буэт А., Раков В.К., Шивазаппап Л., Маттиоли Г. Фукоиданы как потенциальные антиоксиданты // Биомедицина. – 2014. – № 3. – С. 17–26.
24. Фукоиданы как потенциальные антиоксиданты // Биомедицина. – 2014. – № 3. – С. 17–26.
25. Меньшутина Н.В., Михани Т.В., Алексеев С.В. Инновационные технологии и оборудование фармацевтического производства. – М.: Изд-во БИНОМ, 2012. – Т. 1. – 328 с.
ковая В.Ф. Таблетированная лекарственная форма препарата AGSK // XV Российский национальный конгресс «Человек и лекарство». – Москва, 2008. – С. 643.

35. Schmidt P.C., Rubensdörfer C.I.W. Evaluation of Ludipress as a “Multipurpose Excipient” for direct compression: Part I: Powder characteristics and tableting properties // Drug Development and Industrial Pharmacy. – 1994. – Vol. 20, Issue 18. – P. 2899–2925. DOI: 10.3109/03639049409042687.

36. Sridevi G., Korangi V., Latha S.M. Review on a novel approach in recent advances of granulation techniques and technologies // Research J. Pharm. And Tech. – 2017. – Vol. 10, Issue 2. – P. 607–617. DOI: 10.5958/0974-360X.2017.00119.6.

37. Patil L.P., Rawal V.P. Review article on granulation process with novel technology: an overview // Indian Journal of Applied Research. – 2017. – Vol. 7, Issue 6. – P. 90–93. DOI: 10.36106/ijar.

38. Aulton M.E. Pharmaceutics: The Science of Dosage Form Design. – Edinburgh: Churchill Livingstone, 2004. – 679 p.

39. Могилюк В. Функциональные пленочные покрытия и практические аспекты их применения // Фармацевтическая отрасль. – 2016. – № 1. – С. 52–65.

40. Wasilewska K., Winnicka K. Ethylcellulose – a pharmaceutical excipient with multidirectional application in drug dosage forms development // Materials. – 2019. – Vol. 12. – P. 1–21. DOI: 10.3390/ma12010386.

41. Sepulveda E., Kildsig D.O., Ghaly E.S. Relationship between internal phase volume and emulsion stability: the cetyl alcohol / stearyl alcohol system // Pharm. Devel. Tech. – 2003. – Vol. 8, Issue 3. – P. 263–275. DOI: 10.1081/PDT-120022155.

42. Porter S.C. Preventing film coating problems through design // Pharmaceutical Technology. – 2016. – Vol. 28, Issue 2. – P. 43–46.

43. Himaja V., Sai K.O., Karthikeyan R., Srinivasa B.P. A comprehensive review on tablet coating // Austin Pharmacol. Pharm. – 2016. – Vol. 1, Issue 1. – P. 1–8.

44. Porter S.C. Preventing film coating problems through design // Pharmaceutical Technology. – 2016. – Vol. 28, Issue 2. – P. 43–46.

45. Wasilewska K., Winnicka K. Polymers in pharmaceutical taste masking applications // Polimery. – 2017. – Vol. 62, No. 6. – P. 419–427. DOI: dx.doi.org/10.14314/polimery.2017.419.