Identification of prothymosin alpha (PTMA) as a biomarker for esophageal squamous cell carcinoma (ESCC) by label-free quantitative proteomics and Quantitative Dot Blot (QDB)

Yanping Zhu1†, Xiaoying Qi1†, Cuicui Yu2†, Shoujun Yu3, Chao Zhang1, Yuan Zhang1, Xiuxiu Liu1, Yuxue Xu1, Chunhua Yang1, Wenguojiang1, Geng Tian1, Xuri Li4, Jonas Bergquist1,5, Jiandi Zhang1,6, Lei Wang1* and Jia Mi1*

Abstract

Background: Esophageal cancer (EC) is one of the malignant tumors with a poor prognosis. The early stage of EC is asymptomatic, so identification of cancer biomarkers is important for early detection and clinical practice.

Methods: In this study, we compared the protein expression profiles in esophageal squamous cell carcinoma (ESCC) tissues and adjacent normal esophageal tissues from five patients through high-resolution label-free mass spectrometry. Through bioinformatics analysis, we found the differentially expressed proteins of ESCC. To perform the rapid identification of biomarkers, we adopted a high-throughput protein identification technique of Quantitative Dot Blot (QDB). Meanwhile, the QDB results were verified by classical immunohistochemistry.

Results: In total 2297 proteins were identified, out of which 308 proteins were differentially expressed between ESCC tissues and normal tissues. By bioinformatics analysis, the four up-regulated proteins (PTMA, PAK2, PPP1CA, HMGB2) and the five down-regulated proteins (Caveolin, Integrin beta-1, Collagen alpha-2(VI), Leiomodin-1 and Vinculin) were selected and validated in ESCC by Western Blot. Furthermore, we performed the QDB and IHC analysis in 64 patients and 117 patients, respectively. The PTMA expression was up-regulated gradually along the progression of ESCC, and the PTMA expression ratio between tumor and adjacent normal tissue was significantly increased along with the progression. Therefore, we suggest that PTMA might be a potential candidate biomarker for ESCC.

Conclusion: In this study, label-free quantitative proteomics combined with QDB revealed that PTMA expression was up-regulated in ESCC tissues, and PTMA might be a potential candidate for ESCC. Since Western Blot cannot achieve rapid and high-throughput screening of mass spectrometry results, the emergence of QDB meets this demand and provides an effective method for the identification of biomarkers.

Keywords: Esophageal squamous cell carcinoma (ESCC), Label-free quantitative proteomics, Prothymosin alpha (PTMA), Quantitative Dot Blot (QDB)
Introduction

Esophageal cancer (EC) is one of the malignant tumors with a 5-year survival incidence of 20.9% [1, 2]. EC is ranked as the eighth most common malignant tumor with the sixth highest mortality rate worldwide. There are two histological subtypes of EC: esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC). ESCC often occurs in the top or middle of the esophagus, and starts in the flat thin cells that make up the lining of the esophagus. Meanwhile, EAC is most common in the lower portion of the esophagus, and starts in the glandular cells that are responsible for the production of fluids such as mucus. China is a high-risk area for EC, and more than 90% of cases are esophageal squamous cell carcinoma (ESCC) [3–5]. Moreover, most of the patients exhibit locally advanced or metastatic EC at the time of being diagnosed [6, 7]. Therefore, it is urgent to discover biomarkers for early clinical diagnosis to improve survival.

Esophageal cancer biomarkers have been found in saliva, blood, and urine. Sedighi et al. showed that the serum level of Matric metalloproteinase (MMP)-13 in ESCC patients were significantly higher than in the control group, and suggested that the MMP-13 was associated with increasing ESCC invasion, lymph node involvement and decreased survival rates [8]. In saliva, the miRNAs (miR-10b*, miR-144 and miR-451) were identified up-regulated expression in EC, which possessed discriminatory ability of detecting EC [9]. Although these biomarkers contribute to the early diagnosis and prognosis of EC, the EC biomarker is still in the stage of exploration and verification, with limitations of specificity and low sensitivity.

Proteomic technologies have been applied to understand tumor pathogenesis, and to discover novel targets for cancer therapy or prognosis. Combining MS-based proteomic data with integrative bioinformatics can predict protein signal network and identify more clinical relevant molecules [10–12]. To date, quantitative proteomic methods have been applied in the study of various cancer, such as breast cancer, lung cancer, pancreatic cancer and gastric cancer [13]. Mass spectrometric identification of differentially expressed proteins has been a highly successful approach for finding novel cancer-specific biomarkers [14]. For more than a decade, attempts have been made to uncover valid biomarkers for the diagnosis of EC. Currently, various molecules have been identified as closely correlated with ESCC, such as transgelin (TAGLN) and proteasome activator 28-beta subunit (PA28β) [15], pituitary tumor transforming gene (PTTG) [6], transglutaminase 3 (TGM) by proteomics [2]. However, the number of proteins identified was limited in these studies and they did not provide validation of the suggested biomarkers. Therefore, it is still necessary to perform further in-depth proteomics to explore novel candidate biomarkers for EC, and to validate the findings with orthogonal techniques.

Differential proteins obtained from mass spectrometry are commonly identified by Western Blot. However, it couldn’t meet the requirements for high-throughput analysis, due to the complicated processing steps and the requirements for large amount of total protein. Recently, Quantitative Dot Blot (QDB) technology developed by our team achieves high-throughput quantitative detection with the same principle of traditional Western Blot. In addition, QDB technology has the advantages of less sample consumption, short time consumption and low cost [16]. The experiment has been successfully applied to the detection of biomarker of papillary thyroid carcinoma. With its accuracy and reliability, the QDB is a very effective method for protein detection.

The aim of this study was to investigate the protein expression profiles in ESCC tissues and adjacent normal esophageal tissues with a label-free quantitative proteomics approach through nano-liquid chromatography coupled with tandem mass spectrometry (Nano-LC–MS/MS). The differentially expressed proteins were selected and their expression trends were validated in ESCC by Western Blot, then high-throughput protein screening was achieved by QDB, and the results of QDB were verified by classical IHC experiment. This research provides a new methodological strategy for validation and identification ESCC biomarkers by combining quantitative proteomic with QDB.

Materials and methods

Tissue samples

The five patients for LC/MS analysis were all male, with the average age of 61. Samples of ESCC tissues and adjacent normal esophageal tissues were taken for mass spectrometry analysis. The 64 pairs of matched ESCC and adjacent normal tissue samples for QDB were based on a clear pathological diagnosis, which included 35 men and 29 women, with an age range of 46–73 years (mean 61 years). The above samples were obtained at the Affiliated Yantai Hospital of Binzhou Medical University. All data were obtained from patient medical records. All specimens were quickly rinsed and then frozen immediately in liquid nitrogen and then stored at -80°C until further processing. The tissue microarrays (TMA) (ES701 and ES1922) for immunohistochemistry analysis were purchased from the alenabio company, the total sample size reached 117 pairs after removing duplicates in two arrays ($n=14$). This study was approved by the Human Research Ethics Committee of Binzhou Medical University.
Reagents

Rabbit anti-PPP1CA (CSB-PA030161) and rabbit anti-PAK2 (CSB-PA622641DSR1HU) were purchased from CUSABIO (Wuhan, China). Rabbit anti-HMGB-2 (YT2187) and rabbit anti-PTMA (YN2871) were purchased from ImmunoWay Biotechnology Company (USA). The antibody of Caveolin (AF0126), Integrin beta-1 (AF5379), Collagen alpha-2(VI) (DF3552), Leiomodin-1 (DF12160) and Vinculin (AF5122) were purchased from Affinity Biosciences (USA). Mouse anti-GAPDH monoclonal antibody (sc-32233) was purchased from Santa Cruz Biotechnology (Dallas, TX, USA). Goat anti-rabbit (127,760) and goat anti-mouse (124,227) secondary antibodies were purchased from ZSGB-BIO (Beijing, China).

Sample preparation

The 5 pairs of clinical samples were homogenized and broken with lysis buffer containing 9 M Urea, 20 mM HEPES, and protease inhibitor cocktail. The samples were centrifuged at 12,000×g for 10 min at 4 °C and supernatants retained. Then 20 μg of total protein were digested using the way of in-solution digestion. Firstly, the samples were reduced with 50 mM dithiothreitol (DTT) at 50 °C for 15 min, then alkylated with 50 mM iodoacetamide (IAA) for 15 min in darkness, and then diluted 4 times with digestion buffer (50 mM NH₄HCO₃, pH 8.0). The proteins were digested by Trypsin with a final concentration of 5% (w/w), then incubated at 37 °C overnight. The reaction was stopped by diluting the sample 1:1 with trifluoroacetic acid (TFA) in acetonitrile (ACN) and Milli-Q water (1/5/94 v/v). Finally, peptides were desalted using Pierce C18 Spin Columns and dried completely in a vacuum centrifuge.

LC–MS/MS

The peptides were dissolved in 20 μL 0.5% TFA in 5% ACN and analyzed using QExactive Plus Orbitrap™ mass spectrometer (Thermo Fisher Scientific, Bremen, Germany) coupled with the liquid chromatography system (EASY-nLC 1000, Thermo Fisher Scientific, Bremen, Germany). A 85-min LC gradient was applied, with a
binary mobile phase system of buffer A (0.1% formic acid) and buffer B (80% acetonitrile with 0.1% formic acid) at a flow rate of 250 nL/min. In MS analysis, peptides were loaded onto the 2 cm EASY-column precolumn (1D 100 μm, 5 μm, C18, Thermo Fisher Scientific), and eluted at a 10 cm EASY-column analytical column (1D 75 μm, 3 μm, C18, Thermo Fisher Scientific). For information data dependent analysis (DDA), full scan MS spectra were executed in the m/z range 150–2000 at a resolution of 70,000. The peptides elution was performed with a linear gradient from 4 to 100% ACN at the speed 250 nL/min in 90 min. Then the top 10 precursors were dissociated into fragmentation spectra by high collision dissociation (HCD) in positive ion mode.

Proteomic data processing
The acquired data were analyzed by using Maxquant (version 1.5.0.1) against the UniProt Homo sapiens database. The searching parameters were set as maximum 10 and 5 ppm error tolerance for the survey scan and MS/MS analysis, respectively. The enzyme was trypsin, and two missed cuts were allowed. The max number of modifications per peptide is 5. Using the Label-free quantification (LFQ), the LFQ minimum ratio count was set to 2. The FDR (false discovery rate) was set to 1% for the peptide spectrum matches (PSMs) and protein quantitation. Gene ontology and protein class analysis were performed with the PANTHER system (http://pantherdb.org/). Meanwhile, the heat map of significantly different proteins was screened by using Morpheus (https://software.broadinstitute.org/morpheus). The protein–protein interaction analysis of the differently expressed proteins was performed by STRING (https://string-db.org/).

Western blot (WB)
Tissues lysates were prepared by using highly efficient RIPA lysis buffer including PMSF (Phenylmethanesulfonyl fluoride). The total proteins were quantified by BCA assay kit and then separated by sodium dodecyl sulphate–polyacrylamide gel electrophoresis (SDS-PAGE). Equal amounts of protein were separated by 6%, 15% and 12% SDS-PAGE, respectively. Subsequently,
Table 3 List of 155 proteins that were overexpressed in ESCC tissues

IDs	Log ratio	P value	Protein names
P60842	7.814	0.000	Eukaryotic initiation factor 4A-1
P23396	6.277	0.000	40S ribosomal protein S3
P552272	7.623	0.000	Heterogeneous nuclear ribonucleoprotein M
P43686	10.195	0.000	26S protease regulatory subunit 6B
P14866	8.871	0.000	Heterogeneous nuclear ribonucleoprotein L
P53675	5.484	0.001	Clathrin heavy chain;Clathrin heavy chain 1
P84090	11.171	0.001	Enhancer of rudimentary homolog
P22392	12.881	0.001	Nucleoside diphosphate kinase
Q01105	7.330	0.001	Protein SET;Protein SETSIP
P22626	6.638	0.001	Heterogeneous nuclear ribonucleoprotein A2
P30101	6.086	0.005	Protein disulphide-isomerase
P25786	8.420	0.005	Proteasome subunit alpha type-1
P11940	12.404	0.006	Polyadenylate-binding protein
P16401	4.877	0.007	Histone H1.S
P01143	7.439	0.007	Protein disulphide-isomerase
P11940	12.404	0.006	Histone H2A type 2-C;Histone H2A type 2-A
Q15233	6.189	0.007	Heat shock protein 90-alpha
Q01518	2.076	0.001	Adenyl cyclase-associated protein
Q15233	22.489	0.001	Non-POU domain-containing octamer-binding protein
P51149	7.249	0.001	Ras-related protein Rab-7a
Q05CK9	9.797	0.001	Heterogeneous nuclear ribonucleoprotein Q
P10809	9.235	0.001	60 kDa heat shock protein, mitochondrial
P68371	1.935	0.001	Tubulin beta-4B chain
P37802	3.333	0.001	Transgelin-2
P62826	6.962	0.002	GTP-binding nuclear protein Ran
P25398	4.816	0.002	40S ribosomal protein S12
P57723	4.611	0.002	Poly(rC)-binding protein 1
Q12906	28.577	0.002	Interleukin enhancer-binding factor 3
P08865	5.309	0.002	40S ribosomal protein SA
P63244	6.237	0.002	Guanine nucleotide-binding protein subunit beta-2
P14314	14.510	0.002	Glucosidase 2 subunit beta
P60900	9.105	0.002	Proteasome subunit alpha type
P06748	12.711	0.002	Nucleophosmin
P05388	8.012	0.002	60S acidic ribosomal protein P0
P46940	3.595	0.003	Ras GTPase-activating-like protein IQGAP1
P61978	10.444	0.003	Heterogeneous nuclear ribonucleoprotein K
P05141	2.807	0.003	ADP/ATP translocase 2
Q66K53	9.606	0.003	HNRPA3 protein
P01143	7.439	0.003	Heterogeneous nuclear ribonucleoprotein A2
P22314	3.758	0.003	Ubiquitin-like modifier-activating enzyme 1
P30085	3.180	0.004	UMP-CMP kinase
P23246	5.026	0.004	Splicing factor, proline- and glutamine-rich
P29692	13.726	0.006	Elongation factor 1-delta
proteins were transferred to a PVDF membrane and then blocked with TBS (pH 7.4) containing 0.05% Tween 20 and 5% nonfat milk. Next, the membranes were incubated with rabbit anti-PTMA (1:1000), rabbit anti-HMGB-2 (1:500), rabbit anti-PPP1CA (1:1000), rabbit anti-PAK2 (1:1000), and mouse anti-GAPDH (1:1000) antibodies at 4°C overnight, respectively. The other five antibodies (Caveolin, Integrin beta-1, Collagen alpha-2(VI), Leiomodin-1 and Vinculin) were diluted in a ratio of 1:200. After washing, membranes were incubated with goat anti-rabbit (1:2000) and goat anti-mouse (1:2000) secondary antibodies at room temperature for 1 h. The ECL system was used to detect protein expression.

Table 3 (continued)

IDs	Log ratio	P value	Protein names
P59665	4.537	0.029	Neutrophil defensin 1
P09960	5.492	0.030	Leukotriene A-4 hydrolase
P63220	4.048	0.030	40S ribosomal protein S21
Q16658	114.974	0.031	Fascin
P07954	5.399	0.032	Fumarate hydratase, mitochondrial
P54819	4.652	0.034	Adenylate kinase 2, mitochondrial
P07737	1.223	0.034	Profilin-1
P63313	5.261	0.034	Thymosin beta-10
P21796	3.716	0.034	Voltage-dependent anion-selective
			channel protein 1
P61247	12.449	0.035	40S ribosomal protein S3a
P14618	1.508	0.035	Pyruvate kinase
P61626	4.029	0.036	Lysozyme, Lysozyme C
Q15181	8.459	0.037	Inorganic pyrophosphatase
P27348	3.220	0.037	14-3-3 protein theta
P49411	14.069	0.037	Elongation factor Tu, mitochondrial
P05164	10.019	0.037	Myeloperoxidase
P61160	5.976	0.038	Actin-related protein 2
P04917	4.768	0.039	14-3-3 protein eta
P62805	1.761	0.039	Histone H4
P26373	3.700	0.040	60S ribosomal protein L13
Q14204	2.799	0.041	Cytoplasmic dynein 1 heavy chain 1
P56537	7.504	0.041	Eukaryotic translation initiation
			factor 6
P08708	10.144	0.042	40S ribosomal protein S17
P15153	2.613	0.042	Ras-related C3 botulinum toxin
			substrate 2
P31949	2.100	0.045	Protein S100
P36952	6.679	0.046	Serpin B5
Q15149	4.694	0.047	Plectin
P46779	6.182	0.048	60S ribosomal protein L28
Q59FH0	5.442	0.048	Histone H2A
P62937	1.778	0.049	Peptidyl-prolyl cis–trans isomerase
P07741	5.077	0.049	Adenine phosphoribosyltransferase
P62269	3.688	0.050	40S ribosomal protein S18
The total proteins were quantified by BCA protein assay kit and then validated by Quantitative Dot Blot (QDB). Firstly, we determined the linear range of PTMA of the QDB analysis, through the testing of series of concentrations including 0, 0.25, 0.5, 1, 2 and 4 μg/μL. After that, equal amounts of protein were loaded. The sample was incubated at 37 °C for 15 min or until the membrane was completely dried. To block the plate, the QDB plate was dipped in 20% methanol. The plate was then washed with TBST, followed by 5% fat-free milk under constant shaking at room temperature for 1 h. After washing with TBST, the QDB plate was placed in a 96 well plate and 100 μL of primary antibodies was separately added to each individual well and shaken overnight at 4 °C. After washing the QDB plate, 100 μL of the secondary antibody was added to each well and incubated for 1 h at room temperature with shaking. Samples were washed with TBST and detected with the ECL substrate using a Tecan Infiniti 200 pro microplate reader. For each sample, a triplicate measurement was performed, and the average value was obtained. The relative quantitation of each PTMA protein in the lysates was then calculated.

Immunohistochemistry (IHC)

The PTMA expression was detected by IHC in tissue microarrays (TMA) (ES701, ES1922). Firstly, the tissue microarrays were heated at 60 °C for 30 min, then deparaffinized and hydrated with xylol and gradient alcohol, respectively. Next, the antigen retrieval was accomplished by boiling the TMAs for 10 min in citrate buffer (0.01 M, pH 6.0). After cooling at room temperature, the microarrays were treated with 3% hydrogen peroxide for 30 min at 37 °C. The samples were blocked with bovine serum albumin for 30 min at 37 °C, then the PTMA antibody (YN2871, ImmunoWay; dilution 1:50) were incubated overnight at 4 °C in a moist chamber. After using the Histostain-SP (Streptavidin–Peroxidase) kit following the recommendation from the manufacture, operation manual, the samples were washed with PBS (0.01 M, pH 7.2–7.4). Finally, the

Table 4 (continued)
IDs
P52943
P08294
P56539
O15061
Q9NR12

Table 4 List of 40 proteins that were low-expressed in ESCC tissues

IDs	**Log ratio**	**P value**	**Protein names**
P55268	0.078	0.001	Laminin subunit beta-2
Q13361	0.000	0.001	Microfibrillar-associated protein 5
O95682	0.000	0.001	Tenasin-X
P12277	0.024	0.001	Creatine kinase B-type
P20774	0.018	0.002	Mimecan
P06396	0.501	0.002	Gelsolin
O75106	0.000	0.002	Membrane primary amine oxidase
P60660	0.260	0.002	Myosin light polypeptide 6
P51884	0.118	0.003	Lumican
P35555	0.183	0.003	Fibrillin-1
Q5UDD2	0.081	0.004	Transgelin
P35749	0.029	0.004	Myosin-11
P51888	0.032	0.004	Prolargin
P24844	0.033	0.005	Myosin regulatory light polypeptide 9
P17661	0.063	0.005	Desmin
P98160	0.213	0.006	Basement membrane-specific heparan sulfate proteoglycan core protein
P12109	0.299	0.006	Collagen alpha-1(VI) chain
Q07507	0.084	0.006	Dermatopontin
P11047	0.209	0.006	Laminin subunit gamma-1
Q6ZN40	0.114	0.006	CDNA FLJ16459 fs
P18206	0.259	0.008	Vinculin
Q14112	0.065	0.010	Nidogen-2
P21291	0.086	0.011	Cysteine and glycine-rich protein 1
P68032	0.312	0.011	Actin, alpha cardiac muscle 1
Q9NZN4	0.000	0.012	EH domain-containing protein 2
P07585	0.087	0.012	Decorin
Q15746	0.021	0.014	Myosin light chain kinase, smooth muscle
Q9Y490	0.318	0.015	Talin-1
P12110	0.223	0.016	Collagen alpha-2(VI) chain
P21810	0.235	0.020	Biglycan
Q93052	0.048	0.021	Lipoma-preferred partner
P30086	0.507	0.021	Phosphatidylethanolamine-binding protein 1
P62736	0.043	0.022	Actin, aortic smooth muscle
Q96AC1	0.029	0.023	Fermitin family homolog 2
Q6NZI2	0.213	0.025	Polymerase I and transcript release factor
Q59F18	0.000	0.027	Smoothelin isoform b variant
Q14558	0.000	0.027	Heat shock protein beta-6
Q13642	0.004	0.028	Four and a half LIM domains protein 1
P12111	0.321	0.031	Collagen alpha-3(VI) chain
P29536	0.000	0.032	Leiomodin-1
P05556	0.416	0.033	Integrin beta-1
Q15124	0.000	0.033	Phosphoglucomutase-like protein 5
P21333	0.213	0.033	Filamin-A
Q53GG5	0.013	0.036	PDZ and LIM domain protein 3
P01009	0.429	0.037	Alpha-1-antitrypsin;Short peptide from AAT
P43121	0.000	0.038	Cell surface glycoprotein MUC18
Fig. 1 Classification of identified proteins by gene ontology based on their a molecular function, b biological process and c cellular component. The analysis of proteins were performed via the PANTHER (http://pantherdb.org/)
immunoreactivity was detected by DAB Horseradish Peroxidase Color Development Kit.

Statistics analysis

The WB data was analyzed by means and standard deviation for four independent experiments. The other data was compared between esophageal cancer tissues and adjacent normal esophageal tissues using the two-tailed paired Student’s *t* test. All statistical analyses were performed by using the statistical software SPSS v20.0 (Chicago, Illinois, USA). *P* < 0.05 was considered statistically significant.
Results
Identification of differently expressed proteins
The clinical information of the five patients was summarized in Table 1. The five pairs of cancer tissues and adjacent normal tissues were analyzed by label-free mass spectrometry. Total 2297 proteins were identified and 308 proteins with significant differences were selected. Among these proteins, 102 proteins were expressed only in ESCC tissues (Table 2), 155 proteins were significantly up-regulated (Table 3) and 40 proteins were down-regulated in ESCC tissues (Table 4) ($P<0.05$). Using the PANTHER classification system, we analyzed the biological significance of these proteins including the cellular component, molecular function and biological process (Fig. 1). The majority of proteins belonged to cell part proteins (37.3%) and organelle proteins (30.1%), possessed the ability of binding (41.8%) and catalytic activity (25.8%), and involved in the cellular process (29.6%), metabolic process (20.2%), cellular component organization or biogenesis (16.3%).
Bioinformatics analysis of differentially expressed proteins

A volcano plot was generated based on the differential expression ratio and P value (Fig. 2a). Moreover, the heat map of significantly different proteins was shown in Fig. 2b by using Morpheus (https://software.broadinstitute.org/morpheus). Further protein–protein interaction analysis of the differently expressed proteins was performed by STRING, the result was shown in Fig. 3. Out of the four proteins selected for next analysis, the PPI network analysis revealed that PTMA was a valid target of c-myc transcriptional activation, while PPP1CA was involved in down-regulation of TGF-beta receptor signaling. PAK2 plays a role in apoptosis and activation of Rac, while HMGB2 is participating in chromatin regulation and retinoblastoma in cancer. Above mentioned, all these four proteins were associated with the occurrence and development of cancer. Bioinformatics analysis of the four genes from TCGA database revealed that the four genes up-regulated in gene level in EC tissue (Fig. 4). Whether these four genes can be used as biomarkers of esophageal cancer remains to be further studied.

Validation of differentially expressed proteins by Western Blot

To further validate the LC–MS/MS results, we evaluated the four up-regulated proteins (PTMA, PAK2, PPP1CA, HMGB2) and the five down-regulated proteins [Caveolin, Integrin beta-1, Collagen alpha-2(VI), Leiomodin-1 and Vinculin] with Western Blot on the same samples. Compared with adjacent normal tissues, the protein expression of PTMA, PAK2, PPP1CA, HMGB2 were up-regulated (Fig. 5a, b), and the protein expression of Caveolin, Integrin beta-1, Collagen alpha-2(VI), Leiomodin-1, Vinculin were down-regulated in ESCC tissues from four pairs of samples (Fig. 5c, d). The results showed that the trends expression of these proteins were consistent with the LC–MS results.

Validation of PTMA involved in ESCC by QDB and IHC

In order to validate the proteins identified by mass spectrometric, the QDB technique was applied in a larger set of samples. We collected the samples of 64 patients, and the relevant clinical information was summarized in
Table 5. In the analysis of 64 patient samples, we found that 53 out of 64 esophageal cancer tissues showed higher PTMA expression than in the normal tissues ($P<0.001$) (Fig. 6). This trend was in accordance with the previous data. To further validate the QDB results, we performed the tissue microarray analysis by IHC. The results showed that among 117 pairs of tissues, the high expression rate of PTMA in tumor tissues was 98% (115/117). A significant overexpression of PTMA was found in tumor tissues in contrast to adjacent normal tissues ($P<0.01$) (Fig. 7). The sample information in the chip is summarized in Tables 6 and 7. We further evaluated the expression pattern of PTMA in tumor tissues in contrast to adjacent normal tissues ($P<0.01$) (Fig. 7). The sample information in the chip is summarized in Tables 6 and 7. We further evaluated the expression pattern of PTMA with the progression, and analyzed the PTMA expression trend in the different tumor Grades. The results revealed that the PTMA expression was up-regulated gradually along the progression of ESCC (Fig. 8). The PTMA expression ratio between tumor and adjacent normal tissue was significantly increased along with the progression ($P<0.05$). So we can suspect that PTMA might be participating in the development of esophageal cancer.

Discussions
At present, most patients with esophageal cancer are diagnosed at the late and advanced stages [17]. It is thus urgent to reveal biomarkers related to the progression of esophageal cancer for early diagnosis. Recently, several biomarkers were identified in EC detection, diagnosis, treatment and prognosis. For example, the epidermal growth factor receptor (EGFR), vascular endothelial growth factor (VEGF) and estrogen receptor (ER) were important detection factors for immunohistochemistry in EC [18–20]. In blood, the serum p53 antibody had a potential diagnostic value for EC, however, the detection was limited by its low sensitivity [21]. Therefore, we need to discover and verify more biomarker candidates for the prediction, diagnosis, treatment and prognosis of esophageal cancer.

Mass spectrometry is an effective method for finding distinct molecular regulators, between normal tissues and cancer tissues [22]. In current study, we proposed a significant proteomics profiling difference including 308 proteins. However, compare to previous tissue-based
ESCC proteomics study, a poor overlap of proteome profiling was noticed. There are several potential reasons. First, like many other cancers, ESCC is a heterogeneous cancer with different gene expression profiles from different populations [23]. Recently, the whole-genome sequencing revealed the diverse models of structural variations in ESCC, which indicated the biological differences among patients [24]. Therefore, the proteome variation may be a consequence of distinct molecular signatures that exist in ESCC. Another reason could be related to the different experiment design, some of studies pooled several individual samples into a sample pooling, which would also lead to potential difference compare to our individual analysis [25]. The difference of data analysis method would be another reason too, most of the labeled-based MS approach selected the expression fold change as the major criteria. In our study, with a label-free approach, we proposed paired Student’s \(t \)-test significance as the main criteria. Such difference could lead to a different proteome profiling. The poor overlap indicated the importance of large-scale validation of biomarker. Thus we suggest in future studies, the proposed novel biomarker should be validated in a larger population no less than 100 samples. Besides TMA, our group recently developed QDB as a novel fast and accurate validation approach, which can easily validate biomarkers up to thousand samples [16].

Human prothymosin-α (PTMA) is a 109 amino acid protein belonged to the α-thymosin family, which is ubiquitously distributed in mammalian blood, tissues and especially abundant in lymphoid cells. However, its role still remains elusive. The growing evidences suggested that PTMA being an important immune mediator as well

Table 5 The clinical features of ESCC patients for QDB analysis

No.	Gender	Age	Organ/anatomic site	Grade	TNM
1	Male	69	esophagus	II	T1N0M0
2	Male	61	esophagus	I	T0N0M0
3	Male	59	esophagus	II	T3N0M0
4	Female	65	esophagus	I	T0N0M0
5	Male	52	esophagus	II–III	T3N0M0
6	Female	73	esophagus	I–II	T1N0M0
7	Male	46	esophagus	I	T0N0M0
8	Male	64	Lower segment of esophagus	II	T3N2M0
9	Male	57	Mid-thoracic esophagus	II	T3N0M0
10	Male	54	Mid-thoracic esophagus	II–III	T3N0M0
11	Male	72	Mid-thoracic esophagus	II	T3N3M0
12	Male	66	Mid-thoracic esophagus	II	T3N3M0
13	Male	62	Middle-lower esophagus	II	T1N0M0
14	Male	60	esophagus	II	T3N0M0
15	Female	60	esophagus	II	T3N0M0
16	Male	64	esophagus	II	T3N0M0
17	Female	58	Lower thoracic esophagus	III	T3N0M0
18	Male	53	esophagus	II	T3N0M0
19	Male	65	Lower thoracic esophagus	II–III	T3N0M0
20	Female	60	Mid-thoracic esophagus	I–III	T3N0M0
21	Male	69	Middle-lower esophagus	II	T3N3M0
22	Female	66	esophagus	II–III	T3N2M0
23	Female	67	Lower segment of esophagus	II–III	T3N3M1
24	Male	67	Mid-thoracic esophagus	III	T3N1M0
25	Female	55	Mid-thoracic esophagus	II	T2N1M0
26	Female	61	Mid-thoracic esophagus	I–II	T1N2M0
27	Male	68	esophagus	II–III	T3N2M0
28	Female	48	Mid-thoracic esophagus	I–II	T3N0M0
29	Female	63	Mid-thoracic esophagus	II	T1N1M0
30	Male	70	Lower segment of esophagus	II	T2N1M0
31	Female	59	Mid-thoracic esophagus	III	T3N1M0
32	Female	48	Mid-thoracic esophagus	II	T3N0M0
33	Female	53	Mid-thoracic esophagus	II	T3N2M1
34	Female	58	Lower thoracic esophagus	I–II	T2N0M0
35	Male	62	Mid-thoracic esophagus	II	T2N0M0
36	Female	59	esophagus	I	T3N1M0
37	Female	57	esophagus	I	T3N0M0
38	Female	57	Lower thoracic esophagus	II	T3N1M1
39	Female	62	Mid-thoracic esophagus	I–II	T3N0M0
40	Female	69	Mid-thoracic esophagus	II–III	T3N1M0
41	Female	61	Mid-thoracic esophagus	II	T3N2M1
42	Female	67	Mid-thoracic esophagus	I	T2N0M0
43	Female	47	Mid-thoracic esophagus	I	T2N0M0
44	Female	69	Lower thoracic esophagus	III	T2N2M1
45	Male	66	esophagus	I	T3N0M0
46	Male	72	Mid-thoracic esophagus	I	T3N0M0
47	Female	69	Mid-thoracic esophagus	II–III	T3N0M0
48	Female	73	Mid-thoracic esophagus	I	T1N0M0
49	Male	62	esophagus	II	T3N0M0

Table 5 (continued)

No.	Gender	Age	Organ/anatomic site	Grade	TNM
50	Male	58	esophagus	II	T2N0M0
51	Male	56	Lower segment of esophagus	II	T1N0M0
52	Male	56	Middle-lower esophagus	II	T3N0M0
53	Male	56	Middle-lower esophagus	II	T3N0M0
54	Male	55	esophagus	I–II	T3N0M0
55	Female	61	esophagus	I–II	T3N0M0
56	Female	71	Middle-lower esophagus	I–II	T1N0M0
57	Male	61	esophagus	II–III	T3N3M1
58	Male	62	Upper thoracic esophagus	III	T3N0M0
59	Male	67	Mid-thoracic esophagus	I	T1N0M0
60	Male	65	esophagus	I	T3N0M0
61	Male	58	esophagus	II–III	T2N1M1
62	Male	49	Lower segment of esophagus	I	T1N0M0
63	Female	66	esophagus	III	T3N1M1
64	Male	70	esophagus	I	T1N0M0
Fig. 6 The relative PTMA expression was tested by QDB in ESCC and adjacent normal tissues from 64 esophageal cancer patients. **a** The differential expression of PTMA was shown in each pair of tissues. **b** The PTMA expression was up-regulated in esophageal cancer tissues from the average of 64 pairs of tissues.

Fig. 7 The relative PTMA expression was tested by IHC in ESCC and adjacent normal tissues among 117 pairs of tissues (× 200). **a** The expression of PTMA in adjacent normal tissues were presented. **b** The expression of PTMA in esophageal cancer were up-regulated. **c** The gray-scale analysis of immunohistochemical results ($P < 0.001$).
as a biomarker might eventually become a new therapeutic target or diagnostic method in several diseases such as cancer and inflammation [26]. So we focused on the possibility of PTMA as a biomarker of ESCC.

The proteomic studies show that PTMA exerts multifunction in nuclear and cytoplasmic. In proliferating cells, PTMA mainly locates in nuclear depending on the C-terminus signal sequence, but this protein can be transferred from the nucleus into the cytoplasmic during the cell extraction process [27, 28]. PTMA may mediate the chromatin activity by participated the nuclear-protein complex. In cytoplasmic, the function of PTMA is related to the state of phosphorylation, for example, the Thr7 is the only residue phosphorylated in carcinogenic lymphocytes while the Thr12 or Thr13 phosphorylated in normal lymphocytes [29, 30]. The co-immunoprecipitation experiments shows that PTMA interact with SET, ANP32A and ANP32B to form the complex, which is related to the cell proliferation, membrane trafficking, proteolytic processing and so on [31–33].

PTMA is known to play an important role in cell growth, proliferation, apoptosis and so on [34, 35]. Recent studies have confirmed that overexpression of PTMA is involved in the development of various malignancies, including colorectal, bladder, lung, and liver cancer [36–38]. In vivo tumorigenesis, the PTMA expression promotes the transplant tumor growth in mice and speeds

No.	Gender	Age	Organ/anatomic site	Grade	TNM
1	Male	60	Esophagus	II	T3N1M0
2	Male	60	Esophagus	–	–
3	Male	44	Esophagus	I	T3N1M0
4	Male	44	Esophagus	–	–
5	Male	50	Esophagus	I	T3N2M0
6	Male	50	Esophagus	–	–
7	Male	53	Esophagus	I	T3N0M0
8	Male	53	Esophagus	–	–
9	Male	64	Esophagus	I	T3N1M0
10	Male	64	Esophagus	–	–
11	Male	69	Esophagus	I	T3N0M0
12	Male	69	Esophagus	–	–
13	Male	59	Esophagus	I	T3N0M0
14	Male	59	Esophagus	–	–
15	Male	60	Esophagus	I	T3N1M0
16	Male	60	Esophagus	–	–
17	Male	72	Esophagus	I	T3N1M0
18	Male	72	Esophagus	–	–
19	Female	60	Esophagus	I	T3N1M0
20	Female	60	Esophagus	–	–
21	Female	75	Esophagus	III	T3N0M0
22	Female	75	Esophagus	–	–
23	Male	57	Esophagus	I	T3N1M0
24	Male	57	Esophagus	–	–
25	Female	54	Esophagus	II	T3N1M0
26	Female	54	Esophagus	–	–
27	Male	45	Esophagus	III	T3N0M0
28	Male	45	Esophagus	–	–
29	Male	52	Esophagus	II	T3N0M0
30	Male	52	Esophagus	–	–
31	Male	68	Esophagus	–	T3N0M0
32	Male	68	Esophagus	–	–
33	Male	67	Esophagus	I	T3N0M0
34	Male	67	Esophagus	–	–
35	Male	55	Esophagus	I	T3N0M0
36	Male	55	Esophagus	–	–
37	Male	71	Esophagus	I	T3N1M0
38	Male	71	Esophagus	–	–
39	Male	63	Esophagus	III	T3N1M0
40	Male	63	Esophagus	–	–
41	Male	67	Esophagus	III	T3N1M0
42	Male	67	Esophagus	–	–
43	Male	57	Esophagus	III	T3N0M0
44	Male	57	Esophagus	–	–
45	Male	63	Esophagus	III	T3N0M0
46	Male	63	Esophagus	–	–
47	Male	57	Esophagus	III	T3N1M0
48	Male	57	Esophagus	–	–
49	Male	58	Esophagus	III	T3N1M0

Table 6 (continued)

No.	Gender	Age	Organ/anatomic site	Grade	TNM
50	Male	58	Esophagus	–	–
51	Male	53	Esophagus	II	T3N1M0
52	Male	53	Esophagus	–	–
53	Male	49	Esophagus	I	T3N1M0
54	Male	49	Esophagus	–	–
55	Male	68	Esophagus	III	T3N1M0
56	Male	68	Esophagus	–	–
57	Male	48	Esophagus	III	T3N0M0
58	Male	48	Esophagus	–	–
59	Female	58	Esophagus	II	T3N1M0
60	Female	58	Esophagus	–	–
61	Male	44	Esophagus	III	T3N1M0
62	Male	44	Esophagus	–	–
63	Male	63	Esophagus	II	T3N1M0
64	Male	63	Esophagus	–	–
65	Male	68	Esophagus	III	T3N1M0
66	Male	68	Esophagus	–	–
67	Female	68	Esophagus	III	T3N1M0
68	Female	68	Esophagus	–	–
69	Male	62	Esophagus	III	T2M1N1B
70	Male	62	Esophagus	–	–
Table 7 The 96 pairs samples in tissue microarrays (TMA) (ES1922) for immunohistochemistry analysis

No.	Gender	Age	Organ/anatomic site	Grade	TNM
1	Male	58	Esophagus	I	T3N0M0
2	Male	58	Esophagus	–	–
3	Male	68	Esophagus	I	T3N1M0
4	Male	68	Esophagus	–	–
5	Male	52	Esophagus	I	T1N0M0
6	Male	52	Esophagus	–	–
7	Female	66	Esophagus	I	T3N0M0
8	Female	66	Esophagus	–	–
9	Male	72	Esophagus	I	T3N1M0
10	Male	72	Esophagus	–	–
11	Male	67	Esophagus	I	T3N0M0
12	Male	67	Esophagus	–	–
13	Male	66	Esophagus	I	T3N1M0
14	Male	66	Esophagus	–	–
15	Male	55	Esophagus	I	T3N1M0
16	Male	55	Esophagus	–	–
17	Male	67	Esophagus	I	T3N1M0
18	Male	67	Esophagus	–	–
19	Female	71	Esophagus	I	T3N0M0
20	Female	71	Esophagus	–	–
21	Male	69	Esophagus	I	T3N0M0
22	Male	69	Esophagus	–	–
23	Male	68	Esophagus	I	T3N0M0
24	Male	68	Esophagus	–	–
25	Male	44	Esophagus	I	T3N1M0
26	Male	44	Esophagus	–	–
27	Female	63	Esophagus	I	T2N0M0
28	Female	63	Esophagus	–	–
29	Female	54	Esophagus	I	T3N1M0
30	Female	54	Esophagus	–	–
31	Male	60	Esophagus	I	T2N0M0
32	Male	60	Esophagus	–	–
33	Female	68	Esophagus	II	T3N0M0
34	Female	68	Esophagus	–	–
35	Male	49	Esophagus	I	T3N1M0
36	Male	49	Esophagus	–	–
37	Male	61	Esophagus	I	T3N0M0
38	Male	61	Esophagus	–	–
39	Female	69	Esophagus	I	T3N1M0
40	Female	69	Esophagus	–	–
41	Male	49	Esophagus	I	T3N1M0
42	Male	49	Esophagus	–	–
43	Male	68	Esophagus	I	T3N0M0
44	Male	68	Esophagus	–	–
45	Male	66	Esophagus	II	T3N0M0
46	Male	66	Esophagus	–	–
47	Male	53	Esophagus	II	T3N1M0
48	Male	53	Esophagus	–	–
49	Female	58	Esophagus	I	T3N0M0

Table 7 (continued)

No.	Gender	Age	Organ/anatomic site	Grade	TNM
50	Female	58	Esophagus	–	–
51	Male	63	Esophagus	I	T3N0M0
52	Male	63	Esophagus	–	–
53	Female	68	Esophagus	I	T2N0M0
54	Female	68	Esophagus	–	–
55	Female	68	Esophagus	I	T3N0M0
56	Female	68	Esophagus	–	–
57	Male	58	Esophagus	I	T3N0M0
58	Male	58	Esophagus	–	–
59	Female	60	Esophagus	I	T3N0M0
60	Female	60	Esophagus	–	–
61	Male	70	Esophagus	II	T2N1M0
62	Male	70	Esophagus	–	–
63	Female	61	Esophagus	I	T3N0M0
64	Female	61	Esophagus	–	–
65	Male	54	Esophagus	II	T3N0M0
66	Male	54	Esophagus	–	–
67	Male	45	Esophagus	II	T3N0M0
68	Male	45	Esophagus	–	–
69	Male	75	Esophagus	III	T3N0M0
70	Male	75	Esophagus	–	–
71	Male	63	Esophagus	I	T3N0M0
72	Male	63	Esophagus	–	–
73	Male	68	Esophagus	I	T3N0M0
74	Male	68	Esophagus	–	–
75	Female	50	Esophagus	II	T3N0M0
76	Female	50	Esophagus	–	–
77	Male	72	Esophagus	III	T3N0M0
78	Male	72	Esophagus	–	–
79	Female	53	Esophagus	III	T3N0M0
80	Female	53	Esophagus	–	–
81	Male	69	Esophagus	II	T3N1M0
82	Male	69	Esophagus	–	–
83	Male	57	Esophagus	I	T3N0M0
84	Male	57	Esophagus	–	–
85	Male	68	Esophagus	III	T3N1M0
86	Male	68	Esophagus	–	–
87	Male	51	Esophagus	III	T3N0M0
88	Male	51	Esophagus	–	–
89	Male	70	Esophagus	I	T3N1M0
90	Male	70	Esophagus	–	–
91	Male	68	Esophagus	II	T3N1M0
92	Male	68	Esophagus	–	–
93	Male	57	Esophagus	III	T3N0M0
94	Male	57	Esophagus	–	–
95	Male	48	Esophagus	II	T3N0M0
96	Male	48	Esophagus	–	–
97	Male	63	Esophagus	III	T3N1M0
98	Male	63	Esophagus	–	–
No.	Gender	Age	Organ/anatomic site	Grade	TNM
-----	--------	-----	---------------------	-------	-------
99	Male	65	Esophagus	II	T3N0M0
100	Male	65	Esophagus	–	–
101	Male	71	Esophagus	III	T3N1M0
102	Male	71	Esophagus	–	–
103	Male	78	Esophagus	III	T3N0M0
104	Male	78	Esophagus	–	–
105	Male	53	Esophagus	II	T3N1M0
106	Male	53	Esophagus	–	–
107	Male	57	Esophagus	II	T3N0M0
108	Male	57	Esophagus	–	–
109	Male	63	Esophagus	II	T3N1M0
110	Male	63	Esophagus	–	–
111	Male	63	Esophagus	III	T3N1M0
112	Male	63	Esophagus	–	–
113	Female	58	Esophagus	I	T3N1M0
114	Female	58	Esophagus	–	–
115	Male	50	Esophagus	II	T2N0M0
116	Male	50	Esophagus	–	–
117	Male	44	Esophagus	I	T3N1M0
118	Male	44	Esophagus	–	–
119	Male	61	Esophagus	I	T3N1M0
120	Male	61	Esophagus	–	–
121	Male	61	Esophagus	I	T3N1M0
122	Male	61	Esophagus	–	–
123	Male	57	Esophagus	II	T3N1M0
124	Male	57	Esophagus	–	–
125	Male	60	Esophagus	I	T3N0M0
126	Male	60	Esophagus	–	–
127	Male	58	Esophagus	II	T3N0M0
128	Male	58	Esophagus	–	–
129	Male	61	Esophagus	II	T3N0M0
130	Male	61	Esophagus	–	–
131	Male	52	Esophagus	I	T3N1M0
132	Male	52	Esophagus	–	–
133	Female	60	Esophagus	II	T3N1M0
134	Female	60	Esophagus	–	–
135	Male	68	Esophagus	II	T3N0M0
136	Male	68	Esophagus	–	–
137	Female	43	Esophagus	III	T3N1M0
138	Female	43	Esophagus	–	–
139	Male	59	Esophagus	III	T3N1M0
140	Male	59	Esophagus	–	–
141	Male	55	Esophagus	III	T3N1M0
142	Male	55	Esophagus	–	–
143	Male	68	Esophagus	III	T3N0M0
144	Male	68	Esophagus	–	–
145	Female	70	Esophagus	III	T3N0M0
146	Female	70	Esophagus	–	–
147	Male	74	Esophagus	III	T2N0M0
up their death. Meanwhile, the PTMA interacts with TRIM21 directly to regulate the Nrf2 expression through p62/Keap1 signaling in human bladder cancer [39]. In the patients with squamous cell carcinoma (SCC), adenosquamous cell carcinoma (ASC) and adenocarcinoma (AC) of the gallbladder, the positive expression of PTMA may be associated with the tumorigenesis, tumor progression and prognosis in gallbladder tumor. In addition, the high expression of PTMA may be as an indicator in the prevention and early diagnosis of gallbladder tumor [40]. In addition to inducing cancer, Wang et al. discovered that PTMA as a new autoantigen regulated oral submucous fibroblast proliferation and extracellular matrix using human proteome microarray analysis. In addition, PTMA knockdown reversed TGFβ1-induced fibrosis process through reducing the protein levels of collagen I, α-SMA and MMP [34]. However, there have been no evidences that PTMA participates in the pathogenesis of esophageal cancer.

Our mass spectrometry results showed that PTMA expression was up-regulated in ESCC tissues, and if the result was universal, it would provide a good biomarker for the diagnosis of ESCC. The traditional Western Blot is tedious, laborious and time-consuming for hundreds and thousands of large samples tests. In order to verify the results of mass spectrometry, we adopted the QDB technology invented recently, which was capable of high-throughput identification of target proteins from the perspective of biological experiments compared with Western Blot. QDB performed an affordable method for high-throughput immunoblot analysis and achieved relative or absolute quantification. In addition, the QDB needs less sample consumption, and the data can be conveniently read by a microplate reader. In HEK293 cells, the QDB successfully compared the levels of relative p65 levels between Luciferase and p65 clones in 71 pairs of samples. We have confirmed the accuracy and reliability of QDB from both cells and tissues [16]. As above mentioned, QDB is a convenient, reliable and affordable method. In our study, we confirmed that 53 out of 64 tested ESCC tissues had higher PTMA expression by the QDB, and the results were identified by classical IHC methods in 117 pairs of samples.

In this study, we included both explore experiment and validation experiment, using early and late stage samples. The results from explore experiment indicated that PTMA was overexpressed in all stages. We further evaluated the expression pattern of PTMA with the progression, and analyzed the PTMA expression trend in the different Grades. The results revealed that the PTMA expression was up-regulated gradually along the progression of ESCC, and the PTMA expression ratio between tumor and adjacent normal tissue was significantly increased along with the progression. As it is almost impossible to obtain the extreme early stage (such as the stage without any symptom, or the stage prior to Grade I), but from the trend between Grade I and III, we can suspect the expression ratio of PTMA would be a potential indicator for the progression, even in the early diagnosis.

Conclusions
In our research, we used label-free quantitative proteomics to detect differentially expressed protein profiles in ESCC tissues compared to control tissues. In total 2297 proteins were identified and 308 proteins with significant differences were selected for study. Based on in-depth bioinformatic analysis, the four up-regulated proteins
[PTMA, PAK2, PPP1CA, HMGB2] and the five down-regulated proteins Caveolin, Integrin beta-1, Collagen alpha-2(VI), Leiomodin-1 and Vinculin] were selected and validated in ESCC by Western Blot. Furthermore, we performed the QDB and IHC analysis in 64 patients and 117 patients, respectively. The PTMA expression was up-regulated gradually along the progression of ESCC, and the PTMA expression ratio between tumor and adjacent normal tissue was significantly increased along with the progression. Therefore, the PTMA is suggested as a candidate biomarker for ESCC. Our research also presents a new methodological strategy for the identification and validation of novel cancer biomarkers by combining quantitative proteomic with QDB.

Authors’ contributions
JM and LW conceived the experiments; YPZ, XYQ, CCY, YZ and XXL performed the experiments; CCY, SJY, YXX and CHY collected the clinical materials; JM and CZ analyzed the protein data; WGI, GT and J JDZ conducted the statistical analysis; XRL and JB modified the paper. All authors read and approved the final manuscript.

Author details
1 Precision Medicine Research Center, Binzhou Medical University, No. 346 Guanhai Rd., Laishan District, Yantai 264003, Shandong Province, People’s Republic of China. 2 Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qing Dao University, No. 20 Yudong Rd., Zifu District, Yantai 264009, Shandong, People’s Republic of China. 3 Department of Ultrasound, Yantai Affiliated Hospital of Binzhou Medical University, No. 717 Jinju Rd., Muping District, Binzhou 264100, Shandong Province, People’s Republic of China. 4 State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, People’s Republic of China. 5 Department of Chemistry, BMC, Uppsala University, PO Box 599, Husargatan 3, 75124 Uppsala, Sweden. 6 Yantai Zestern Biotechnique Co. LTD, 39 Keji Ave. Bioasis, Yantai, People’s Republic of China. 7 Department of Thoracic Surgery, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Nangang District, Harbin 150000, Heilongjiang province, People’s Republic of China.

Competing interests
All authors declare that they have no competing interests. Jiandi Zhang declares competing interests, and he has filed patent applications. Jiandi Zhang is the founders of Yantai Zestern Biotechnique Co. LTD, a startup company with interest to commercialize the QDB technique and QDB plate.

Availability of data and materials
The data will be made available upon publication.

Consent for publication
Not applicable.

Ethics approval and consent to participate
The study was approved by the Human Research Ethics Committee of Binzhou Medical University (2016-37).

References
1. Pennathur A, et al. Oesophageal carcinoma. Lancet. 2013;381(9864):400–12.
2. Zhang Y. Epidemiology of esophageal cancer. World J Gastroenterol. 2013;19(34):5508–606.
3. Torre LA, et al. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108.
4. Vizziano AP, et al. Time trends incidence of both major histologic types of esophageal carcinomas in selected countries, 1973–1995. Int J Cancer. 2002;99(6):860–8.
5. Tran GD, et al. Prospective study of risk factors for esophageal and gastric cancers in the Linxian general population trial cohort in China. Int J Cancer. 2005;113(3):456–63.
6. Lambert R, Hainaut P. The multidisciplinary management of gastrointesti- nal cancer. Epidemiology of oesophagogastric cancer. Best Pract Res Clin Gastroenterol. 2007;21(6):921–45.
7. McGuire S. World Cancer Report 2014. Geneva, Switzerland: World Health Organization, International Agency for Research on Cancer, WHO Press, 2015. Adv Nutr. 2016;7(2):418–9.
8. Sedighi M, et al. Matrix metalloproteinase-13—a potential biomarker for detection and prognostic assessment of patients with esophageal squamous cell carcinoma. Asian Pac J Cancer Prev. 2016;17(6):2781–5.
9. Xie Z, et al. Salivary microRNAs as promising biomarkers for detection of esophageal cancer. PLoS ONE. 2013;8(4):e57502.
10. Mann M, et al. The coming age of complete, accurate, and ubiquitous proteomes. Mol Cell. 2013;49(4):583–90.
11. Mallick P, Kuster B. Proteomics: a pragmatic perspective. Nat Biotechnol. 2012;30(7):695–709.
12. Liu F, et al. Quantitative proteomic analysis of gastric cancer tissue reveals novel proteins in platelet-derived growth factor b signaling pathway. Oncotarget. 2017;8(13):22059–75.
13. Maurya P, et al. Proteomic approaches for serum biomarker discovery in cancer. Anticancer Res. 2007;27(3A):1247–55.
14. Roessler M, et al. Identification of PSME3 as a novel serum tumor marker for colorectal cancer by combining two-dimensional polyacrylamide gel electrophoresis with a strictly mass spectrometry-based approach for data analysis. Mol Cell Proteomics. 2006;5(11):2092–101.
15. Chen JR, et al. Identification of PA28beta as a potential novel bio- marker in human esophageal squamous cell carcinoma. Tumour Biol. 2017;39(10):1010428317719780.
16. Tian G, et al. Quantitative dot blot analysis (QDB), a versatile high throughput immunoblot method. Oncotarget. 2017;8(35):58553–62.
17. Njei B, McCarty TR, Birk JW. Trends in esophageal cancer survival in United States adults from 1973 to 2009: a SEER database analysis. J Gastroenterol Hepatol. 2016;31(6):1141–6.
18. Tan C, et al. Potential biomarkers for esophageal cancer. Springerplus. 2016;5:467.
19. Bird-Lieberman EL, et al. Population-based study reveals new risk-stratification biomarker panel for Barrett’s esophagus. Gastroenterollog. 2012;43(4):927–35e3.
20. Wang Q, et al. Expression of epidermal growth factor receptor is an independent prognostic factor for esophageal squamous cell carcinoma. World J Surg Oncol. 2013;11:278.
21. Zhang J, et al. Potential diagnostic value of serum p53 antibody for detecting esophageal cancer: a meta-analysis. PLoS ONE. 2012;7(12):e52896.
22. Qi Y, et al. Comparative proteomic analysis of esophageal squamous cell carcinoma. Proteomics. 2005;5(11):2960–71.
23. Xiong T, et al. An esophageal squamous cell carcinoma classification system that reveals potential targets for therapy. Oncotarget. 2017;8(30):49851–60.
24. Cheng C, et al. Whole-genome sequencing reveals diverse models of structural variations in esophageal squamous cell carcinoma. Am J Hum Genet. 2016;98(2):256–74.
25. Hou G, et al. Biomarker discovery and verification of esophageal squamous cell carcinoma using integration of SWATH/MRM. J Proteome Res. 2015;14(9):3795–803.
26. Samara P, et al. Prothymosin alpha: an alarmin and more. Curr Med Chem. 2017;24(17):1747–60.
27. Covelo G, et al. Prothymosin alpha interacts with free core histones in the nucleus of dividing cells. J Biochem. 2006;140(5):627–37.
28. Manrow RE, et al. Nuclear targeting of prothymosin alpha. J Biol Chem. 1991;266(6):3916–24.
29. Perez-Estevez A, et al. A 180-kDa protein kinase seems to be responsible for the phosphorylation of prothymosin alpha observed in proliferating cells. J Biol Chem. 1997;272(16):10506–13.
30. Barcia MG, et al. Prothymosin alpha is phosphorylated in proliferating stimulated cells. J Biol Chem. 1993;268(7):4704–8.
31. Barbeito P, et al. Prothymosin alpha interacts with SET, ANP32A and ANP32B and other cytoplasmic and mitochondrial proteins in proliferating cells. Arch Biochem Biophys. 2017;635:74–86.
32. Karetsoz Z, et al. Prothymosin alpha associates with the oncoprotein SET and is involved in chromatin decondensation. FEBS Lett. 2004;577(3):496–500.
33. Seo SB, et al. Regulation of histone acetylation and transcription by INHAT, a human cellular complex containing the set oncoprotein. Cell. 2001;104(1):119–30.
34. Wang J, et al. PTMA, a new identified autoantigen for oral submucous fibrosis, regulates oral submucous fibroblast proliferation and extracellular matrix. Oncotarget. 2017;8(43):74806–19.
35. Moreira D, et al. The influence of phosphorylation of prothymosin alpha on its nuclear import and antiapoptotic activity. Biochem Cell Biol. 2013;91(4):265–9.
36. Ha SY, et al. Expression of prothymosin alpha predicts early recurrence and poor prognosis of hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int. 2015;14(2):171–7.
37. Zhang M, et al. Increased expression of prothymosin-alpha, independently or combined with TPS3, correlates with poor prognosis in colorectal cancer. Int J Clin Exp Pathol. 2014;7(8):4867–76.
38. Tsai YS, et al. Aberrant prothymosin-alpha expression in human bladder cancer. Urology. 2009;73(1):188–92.
39. Tsai YS, et al. Loss of nuclear prothymosin-alpha expression is associated with disease progression in human superficial bladder cancer. Virchows Arch. 2014;464(6):717–24.
40. Chen K, et al. Prothymosin-alpha and parathymosin expression predicts poor prognosis in squamous and adenousquamous carcinomas of the gallbladder. Oncol Lett. 2018;15(4):4485–94.