Union-closed families with small average overlap densities

David Ellis
School of Mathematics
University of Bristol
Bristol, U.K.
david.ellis@bristol.ac.uk

Submitted: Dec 24, 2020; Accepted: Oct 17, 2021; Published: Jan 28, 2022
© The authors. Released under the CC BY-ND license (International 4.0).

Abstract

In this very short paper, we show that the average overlap density of a union-closed family \(F \) of subsets of \(\{1,2,\ldots,n\} \) may be as small as

\[
\Theta((\log_2 \log_2 |F|)/(\log_2 |F|)),
\]

for infinitely many positive integers \(n \).

Mathematics Subject Classifications: 05D05

1 Introduction

If \(X \) is a set, a family \(F \) of subsets of \(X \) is said to be union-closed if the union of any two sets in \(F \) is also in \(F \). The celebrated Union-Closed Conjecture (a conjecture of Frankl [2]) states that if \(X \) is a finite set and \(F \) is a union-closed family of subsets of \(X \) (with \(F \neq \{\emptyset\} \)), then there exists an element \(x \in X \) such that \(x \) is contained in at least half of the sets in \(F \). Despite the efforts of many researchers over the last forty-five years, and a recent Polymath project [5] aimed at resolving it, this conjecture remains wide open. It has only been proved under very strong constraints on the ground-set \(X \) or the family \(F \); for example, Balla, Bollobás and Eccles [1] proved it in the case where \(|F| \geq \frac{1}{2}2^{|X|} \); more recently, Karpas [3] proved it in the case where \(|F| \geq (\frac{1}{2} - c)2^{|X|} \) for a small absolute constant \(c > 0 \); and it is also known to hold whenever \(|X| \leq 12 \) or \(|F| \leq 50 \), from work of Vučković and Živković [8] and of Roberts and Simpson [7].

In 2016, a Polymath project [5] was convened to tackle the Union-Closed Conjecture. While it did not result in a proof of the conjecture, several interesting related conjectures were posed. Among them was the ‘average overlap density conjecture’.

THE ELECTRONIC JOURNAL OF COMBINATORICS 29(1) (2022), #P1.11
https://doi.org/10.37236/10121
If X is a finite set and $\mathcal{F} \subset \mathcal{P}(X)$ with $\mathcal{F} \neq \emptyset$, we define the \textit{abundance} of x (with respect to \mathcal{F}) by $\gamma_x = |\{A \in \mathcal{F} : x \in A\}|/|\mathcal{F}|$, i.e., γ_x is the probability that a uniformly random member of \mathcal{F} contains x. A natural first quantity to consider, in trying to prove the Union-Closed Conjecture, is the average abundance of a uniformly random element of the ground set, i.e., $\mathbb{E}_{x \in X} [\gamma_x]$; if this quantity were always at least $1/2$, the Union-Closed Conjecture would immediately follow. A moment’s thought shows that this is false, however, e.g. by considering the union-closed family $\{\emptyset, \{1\}, \{1, 2, \ldots, \lfloor \sqrt{n} \rfloor\} \subset \mathcal{P}(\{1, 2, \ldots, n\})$, which has average abundance $4/9$. Similarly, for any $n \in \mathbb{N}$, the union-closed family $\mathcal{F} = \{\emptyset, \{1\}, \{1, 2\}, \ldots, \{1, 2, \ldots, \lfloor \sqrt{n} \rfloor\}, \{1, 2, 3, \ldots, n\} \subset \mathcal{P}(\{1, 2, \ldots, n\})$ has average abundance $\Theta(1/\sqrt{n}) = \Theta(1/|\mathcal{F}|)$.

It is natural to consider the expected abundance of a random element of the ground-set X chosen according to other (non-uniform) distributions on X. The following was considered in the Polymath project [5]. We define the \textit{average overlap density} $\text{AOD}(\mathcal{F})$ of \mathcal{F} to be the expected value of γ_x, where x is a uniformly random element of a uniformly random nonempty member of \mathcal{F}:

$$\text{AOD}(\mathcal{F}) := \frac{1}{|\mathcal{F} \setminus \{\emptyset\}|} \sum_{A \in \mathcal{F} \setminus \{\emptyset\}} \frac{1}{|A|} \sum_{x \in A} \gamma_x = \frac{1}{|\mathcal{F} \setminus \{\emptyset\}|} \sum_{A \in \mathcal{F} \setminus \{\emptyset\}} \frac{1}{|A|} \sum_{x \in A} \left|\{B \in \mathcal{F} : x \in B\}\right|/|\mathcal{F}| = \frac{1}{|\mathcal{F} \setminus \{\emptyset\}|} \sum_{A \in \mathcal{F} \setminus \{\emptyset\}} \left(1 - \frac{1}{|\mathcal{F}|} \sum_{B \in \mathcal{F}} \frac{|A \cap B|}{|A|}\right) = \mathbb{E}_{A \in \mathcal{F} \setminus \{\emptyset\}} \mathbb{E}_{B \in \mathcal{F}} \left[\frac{|A \cap B|}{|A|}\right]. \tag{1}$$

(The first and second expectations in (1) are of course over a uniformly random element of $\mathcal{F} \setminus \{\emptyset\}$, and a uniformly random element of \mathcal{F}, respectively.) The last equality justifies the ‘average overlap’ terminology. The average overlap density conjecture stated that if X is a finite set, and \mathcal{F} is a union-closed family of subsets of X with $\mathcal{F} \neq \emptyset$ and $\mathcal{F} \neq \{\emptyset\}$, then the average overlap density of \mathcal{F} is at least $1/2$. Clearly, it would immediately imply the Union-Closed Conjecture.

Unfortunately, the average overlap density conjecture was quickly shown to be false (during the Polymath project [6]); an infinite sequence of union-closed families $\mathcal{F}_n \subset \mathcal{P}(\{1, 2, \ldots, n\})$ was constructed with $\text{AOD}(\mathcal{F}_n) = 7/15 + o(1)$ as $n \to \infty$. However, the following weakening of the average overlap density conjecture remained open.

\textbf{Conjecture 1.} There exists an absolute positive constant $c > 0$ such that the following holds. Let $n \in \mathbb{N}$ and let $\mathcal{F} \subset \mathcal{P}(\{1, 2, \ldots, n\})$ be union-closed with $\mathcal{F} \neq \{\emptyset\}$. Then the average overlap density of \mathcal{F} is at least c.

Conjecture 1 would immediately imply the weakening of the Union-Closed Conjecture where $1/2$ is replaced by the absolute positive constant c. In this very short paper, we prove the following.
Theorem 2. For infinitely many positive integers n, there exists a union-closed family \mathcal{F} of subsets of $\{1, 2, \ldots, n\}$ whose average overlap density is $\Theta((\log_2 \log_2 |\mathcal{F}|) / (\log_2 |\mathcal{F}|))$.

This disproves Conjecture 1 in a strong sense. It follows from an old result of Knill [4] that if $\mathcal{F} \subset \mathcal{P}\{1, 2, \ldots, n\}$ is union-closed, then there exists $x \in \{1, 2, \ldots, n\}$ with abundance $\gamma_x = \Omega(1 / (\log_2 |\mathcal{F}|))$, so the average overlap density can, in the best-case scenario, only be used to improve this lower bound by a factor of $\Theta(\log_2 \log_2 |\mathcal{F}|)$.

2 Proof of Theorem 2

For $n \in \mathbb{N}$, we write $[n] := \{1, 2, \ldots, n\}$ for the standard n-element set, and if $\mathcal{G} \subset \mathcal{P}(X)$, the \textit{union-closed family generated by \mathcal{G}} is defined to be the smallest union-closed family of subsets of X that contains \mathcal{G}.

Let $k, m, s \in \mathbb{N}$ with $s \leq k - 2$ and $m \geq 2$, and let $n = km$. Partition $[n]$ into m sets B_1, \ldots, B_m with $|B_i| = k$ for all i; in what follows, we will refer to the B_i as ‘blocks’. For each $i \in [m]$, choose a subset $T_i \subset B_i$ with $|T_i| = s$, and let $T = \cup_{i=1}^m T_i$. Now let $\mathcal{F} \subset \mathcal{P}([n])$ be the union-closed family generated by $\{B_i \cup \{j\} : i \in [m], j \in T\}$. Note that every set in \mathcal{F} contains at least one block. The number of sets in \mathcal{F} containing exactly one block is $m2^{(m-1)s}$, and in general, for each $j \in [m]$, number N_j of sets in \mathcal{F} containing exactly j blocks is $\binom{m}{j}2^{(m-j)s}$, so

$$N := |\mathcal{F}| = \sum_{j=1}^{m} N_j = 2^{(m-1)s} \sum_{j=1}^{m} \binom{m}{j} 2^{-(j-1)s}.$$

For each $j \in [m]$, define $p_j := N_j / N$; this is of course the probability that a uniformly random member of \mathcal{F} contains exactly j blocks. We note that

$$\frac{p_{j+1}}{p_j} = \frac{N_{j+1}}{N_j} = \frac{m - j}{j + 1} 2^{-s} \leq m2^{-s} \quad \forall j \in [m - 1].$$

Write $\tau := m2^{-s}$. For any $x \in [n] \setminus T$, we clearly have

$$\gamma_x = \frac{1}{m} \sum_{j=1}^{m} j p_j,$$

since the conditional probability that x is contained in a random member A of \mathcal{F}, given that A contains exactly j blocks, is j/m. We have $p_j \leq \tau^{j-1}p_1$ for all $j \in [m]$, and therefore for any $x \in [n] \setminus T$, we have

$$\frac{1}{m} \leq \gamma_x \leq \frac{1}{m} (1 + 2\tau + 3\tau^2 + \ldots + m\tau^{m-1}) \leq \frac{1}{m} (1 + 4\tau) \leq \frac{2}{m},$$

provided $\tau = m2^{-s} \leq 1/4$. Now, every member A of \mathcal{F} contains at least one block, so for any member A of \mathcal{F}, the probability a uniformly random element of A is in T, is at most.
Crudely, we have $1/2 \leq \gamma_x \leq 1$ for all $x \in T$, since $A \mapsto A \cup \{x\}$ is an injection from $\{A \in F : x \notin A\}$ to $\{A \in F : x \in A\}$, for any $x \in T$. Hence, we have
\[
\frac{1}{m} \leq \text{AOD}(F) \leq \left(1 - \frac{ms}{k}\right) \cdot \frac{2}{m} + \frac{ms}{k} \cdot 1 \leq \frac{2}{m} + \frac{m^2 s}{n},
\]
again provided $\tau = m2^{-s} \leq 1/4$. Now we wish to minimize the right-hand side of (2), subject to the constraint $m2^{-s} \leq 1/4$; clearly the optimal choice is to take $s = \lceil \log_2 m \rceil + 2$, which yields
\[
\frac{1}{m} \leq \text{AOD}(F) \leq \frac{2}{m} + \frac{m^2 \log_2 m}{n} + O(m^2/n).
\]
It is clear that the optimal choice of m to minimize the right-hand side of (3) is
\[
m = \Theta \left(\left(\frac{n}{\log_2 n} \right)^{1/3} \right),
\]
yielding $\text{AOD}(F) = \Theta((\log_2 n/n)^{1/3})$. Since, with these choices, we have
\[
\log_2 |F| = \Theta(n^{1/3}(\log_2 n)^{2/3}),
\]
it follows that
\[
\text{AOD}(F) = \Theta \left(\frac{\log_2 \log_2 |F|}{\log_2 |F|} \right),
\]
proving Theorem 2.

We proceed to note two further properties of the above construction. Firstly, the average abundance of a uniformly random element of $[n]$ (with respect to F) satisfies
\[
\mathbb{E}_{x \in [n]}[\gamma_x] = \Theta \left(\frac{\log_2 \log_2 |F|}{\log_2 |F|} \right).
\]
Secondly, the family F constructed above does not separate the points of $[n]$. (We say a family $F \subset \mathcal{P}([n])$ separates the points of $[n]$ if for any $i \neq j \in [n]$ there exists $A \in F$ such that $|A \cap \{i, j\}| = 1$. It is easy to see that, in attempting to prove the Union-Closed Conjecture, we may assume that the union-closed family in question separates the points of the ground set, and this assumption was adopted for much of the Polymath project [5].) However, it is easy to see that the union-closed family $F \cup \{[n] \setminus \{j\} : j \in [n]\}$ has asymptotically the same average overlap density as F (and asymptotically the same average abundance as F), and does separate the points of $[n]$.

References

[1] I. Balla, B. Bollobás and T. Eccles, Union-closed families of sets. *J. Combin. Theory (Series A)*, 120 (2013), 531–544.

[2] D. Duffus, in: I. Rival (Ed.), *Graphs and Order*. Reidel, Dordrecht, Boston, 1985, p. 525.
[3] I. Karpas, Two Results on Union-Closed Families. Preprint, August 2017. arXiv:1708.01434.
[4] E. Knill, Graph generated union-closed families of sets. Manuscript, September 1994. arXiv:9409215.
[5] Polymath11: Frankl’s Union-Closed Conjecture. 1: Strengthenings, variants, potential counterexamples. https://gowers.wordpress.com/2016/01/29/func1-strengthenings-variants-potential-counterexamples/.
[6] Polymath11: Frankl’s Union-Closed Conjecture. 2: More examples. https://gowers.wordpress.com/2016/02/08/func2-more-examples/.
[7] I. Roberts and J. Simpson, A note on the union-closed sets conjecture. Australas. J. Combin., 47 (2010), 265–267.
[8] B. Vučković and M. Živković, The 12-element case of Frankl’s conjecture. IPSI Transactions on Advanced Research, January 2017, Paper 9.