Transcatheter arterial embolization treatment in patients with hepatocellular carcinoma and risk of pulmonary metastasis

Shee-Chan Lin, Shou-Chuan Shih, Chin-Roa Kao, Sun-Yen Chou

Shee-Chan Lin, Shou-Chuan Shih, Chin-Roa Kao, Sun-Yen Chou, Division of Gastroenterology, Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan, China

Correspondence to: Dr. Shee-Chan Lin, Chief of Division of Gastroenterology, Department of Internal Medicine, Mackay Memorial Hospital, 92, Sec. 2, Chung San North Road, Taipei, Taiwan, China. sheechan@ms2.mmh.org.tw

METHODS: A total of 287 patients with HCC followed up for more than 1 week were included. 102 patients underwent transcatheter arterial embolization (TAE group) and 185 received conservative treatment (control group). The patients’ chest x-rays and chest CT scans were examined for pulmonary metastasis.

RESULTS: Patients with TAE had a median survival of 19.3 months while that of the control group was only 10.0 months (P<0.05). Pulmonary metastasis occurred in 14 (13.7 %) patients in the TAE group and 14 (7.6 %) patients in the control group, there was no significant difference (P>0.05). The 1-year, 2-year and 5-year cumulative incidence of pulmonary metastasis was 11.8 %, 17.6 % and 24.0 % in the TAE group and 7.0 %, 13.0 % and 21.7 % in the control group, respectively (P>0.05). On the univariate analysis, tumor size, abnormal serum alanine aminotransferase levels, and heterogeneity on sonography were significantly associated with pulmonary metastasis. However, on the multivariate analysis, only tumor size was significantly predictive of pulmonary metastasis.

CONCLUSION: TAE is effective on prolonging survival of patients with HCC. It does not significantly increase the risk of pulmonary metastasis. Tumor size is the only significant predictive factor associated with lung metastasis.

INTRODUCTION

Hepatocellular carcinoma (HCC) is the most common cancer in Taiwan and certain other parts of the world where hepatitis B virus infection is hyperendemic[1]. HCC has a dismal overall prognosis, with 94 % of affected individuals dying of the disease[2]. Treatment leading to long-term survival generally includes resection or ablative therapy for small or localized hepatic tumors[3-6]. Unfortunately, patients with HCC are usually diagnosed at a late stage when few can be treated with surgical resection. Factors indicating unresectability are (1) large or multicentric liver tumors, (2) the presence of metastatic disease, and (3) insufficient functional hepatic reserve[7]. Therapies other than surgical resection include systemic or infusional chemotherapy, hepatic artery ligation or embolization, and radiolabeled antibodies[7]. Transcatheter arterial embolization (TAE) has been performed for the treatment of unresectable HCC[8,9] and has been shown to be able to prolong survival[10-12]. One study found survival of post-TAE to be comparable to that of post-hepatectomy[12].

However, it has been suggested that TAE-induced necrosis might result in hematogenous dissemination from the primary tumor[13]. The lung is the most common site of extrahepatic metastasis in HCC[14]. A higher incidence of pulmonary metastasis following TAE in patients with HCC has been reported. However, the subjects who developed lung metastasis in that series were followed for a longer period than those without metastasis[15]. We designed this case control study to evaluate the risk of pulmonary metastasis in patients with HCC following TAE, taking into account duration of follow up.

MATERIALS AND METHODS

Patients

Patients with HCC diagnosed from January 1996 to December 1999 at our hospital were included in this study. Diagnosis of HCC was based on high serum alpha-fetoprotein (AFP) values, ultrasonography, computed tomography (CT), and angiographic findings with or without needle biopsy or aspiration cytological examination. Patients who had pulmonary metastasis before or within 1 week after admission or who died within 1 week after admission were excluded, as were those eligible for surgical resection or percutaneous ethanol injection. There were 102 patients receiving TAE treatment during the study period. We selected another 185 patients with HCC who had refused either TAE or chemotherapy as a control group.

Methods

TAE was performed with lipiodol mixed with gelatin particles at an interval of 12 to 16 weeks. All patients were followed until death or December 31, 2000. Chest x-rays were taken at each admission or every 3 months in the outpatient clinic. Multiple nodules in the lung fields on chest x-ray and chest CT scans were diagnosed as pulmonary metastasis. Liver ultrasonography was performed every 3 months. Tumor size and sonographic patterns were recorded. Tumors with both hyper-echoic and hypo-echoic patterns were classified as heterogeneous. The presence of portal vein thrombosis was evaluated with a combination of ultrasonography, angiography and CT. Tumor stage was assessed according to the staging system described by Okuda et al[16].

Statistical analysis

Statistical analysis was performed using the χ^2 test to compare...
differences between groups. Results were given as the mean ± standard deviation. Comparisons between group means were performed using Student’s t test. Survival time was calculated from the time of cancer diagnosis until death or December 31, 2000. The time from the date of the diagnosis of cancer to the date of pulmonary metastasis or December 31, 2000 was calculated for analysis of cumulative incidence of pulmonary metastasis. The cumulative probability of survival and the cumulative incidence of pulmonary metastasis were calculated using the Kaplan-Meier method, and the difference between groups was compared using the log-rank test[16]. Univariate and multivariate analyses using Cox proportional hazard models were performed to evaluate clinical parameters associated with pulmonary metastasis and calculate odds ratios (OR). The parameters included in the analysis were age, sex, serum albumin levels, bilirubin levels, AST and ALT values, AFP value, presence of cirrhosis, presence of ascites, presence of encephalopathy, Child scores, tumor size, sonographic pattern, uni- or multifocal tumor, presence of tumor halo, presence of portal vein thrombosis, stage of the disease, and TAE therapy. Significant parameters in the univariate analyses were analyzed with multivariate analysis. The level of significance was set at P<0.05.

RESULTS

Demographic and clinical characteristics, liver function tests, and tumor characteristics did not differ significantly between the TAE and control groups (Table 1). Patients who had received TAE had a median survival time of 19.3 months compared with only 10.0 months for controls. The 6 month, one-year and two-year survival rate was 83 %, 59.1 % and 47.5 % respectively, in the TAE group, and 66.8 %, 43.7 % and 25.7 %, respectively, in the control group (P<0.001, Figure 1). Pulmonary metastasis developed in 14 (13.7 %) patients in the TAE group and 14 (7.6 %) patients in the control group (P>0.05). There was no significant difference in the cumulative incidence of pulmonary metastasis between these two groups. The 1-year, 2-year, 3-year, and 5-year cumulative incidence of pulmonary metastasis was 11.8 %, 17.6 %, 17.6 % and 24 % in the TAE group, 7 %, 13 %, 21.7 % and 21.7 % in the control group, respectively (P>0.05, Figure 2).

Table 1 Clinical characteristics of patients with hepatocellular carcinoma

Parameters	TAE group (n=102)	Control group (n=185)	P
Male (%)	75 (74.3 %)	148 (80 %)	NS
Age (years)*	56.7±10.5	56.8±13.7	NS
Albumin (g/dl)*	3.51±0.57	3.46±0.61	NS
Bilirubin (mg/dl)*	2.02±1.77	1.30±1.25	NS
ALT (IU/ml)*	68.4±63.6	63.0±57.1	NS
Prolonged Prothrombin time*	1.38±1.25	1.48±1.11	NS
Encephalopathy (%)	6 (5.9 %)	14 (7.6 %)	NS
Cirrhosis (%)	76 (74.5 %)	121 (65.4 %)	NS
Ascites (%)	14 (13.7 %)	32 (17.3 %)	NS
Multicentric tumors (%)	19 (18.6 %)	39 (21.1 %)	NS
Heterogeneous echopattern (%)	34 (33.4 %)	72 (39.1 %)	NS
Encapsulated tumors (%)	49 (48.0 %)	76 (41.1 %)	NS
PV thrombosis (%)	23 (22.5 %)	58 (31.4 %)	NS
Large tumor size (%)	56 (54.9 %)	103 (55.7 %)	NS

Data expressed as means ± standard deviation, comparison with unpaired Student’s t test. NS=not significant.

DISCUSSION

It is believed that manipulation of tumor with TAE will increase the risk of hematogenous metastasis due to an increase in activity of serum type IV collagen-degrading enzyme[17], or a decrease in activity of the tumor invasion-inhibiting factor[18]. The disruption of tissue architecture resulting from ischemic necrosis after the TAE treatment may facilitate the dissemination of neoplastic cells[19]. The incidence of extrabiliary recurrence of HCC is increased in patients who receive preoperative TAE treatment compared to those who undergo surgery alone[20]. However, in our study, the incidence of pulmonary metastasis after the TAE therapy was not significantly increased. TAE patients also experienced longer survival and were followed longer than untreated controls (Figure 1). The 1-year, 2-year, 3-year and 5-year cumulative incidence of lung metastasis did not differ between the two groups.

The overall incidence of pulmonary metastasis in our series was 7.2 %, lower than that from an autopsy series of HCC reported in Japan[21]. There may be several reasons for this discrepancy. We excluded patients with obvious pulmonary metastasis within 1 month after the diagnosis of cancer, although we could not exclude the presence of micrometastasis. Our diagnosis of metastatic disease was based on...
multi-nodular lesions on the chest x-ray and confirmed by chest CT. Most of our patients with metastasis had lesions larger than 3 mm on the chest film. Peters reported that pulmonary metastasis larger than 1 cm in size was rare and that, in 55% of cases, lung metastasis was only recognizable microscopically. We would expect the actual incidence of pulmonary metastasis in our series to be more than 10%, but this could not be documented, in part because autopsy is not well accepted in Taiwan. However, as both TAE and control groups initially included patients without clinically detectable metastasis, we believe that our results are still valid, as the subjects were similar at baseline.

It has been reported in an autopsy study that the HCC tumor size and invasion of the portal vein were associated with pulmonary metastasis. In another study of patients with long survival, the same association was found, with the coexistence of pulmonary metastasis, a large tumor size and portal vein invasion being the final event leading to death. In our series, on univariate analysis only large tumor size, a heterogeneous echo pattern, or abnormal alanine aminotransferase levels were associated with an increased incidence of pulmonary metastasis.

When HCC is small, the sonographic pattern is homogeneous and hypo-echoic. Most small hepatomas progress from hypoechoic to heterogeneous hyperechoic patterns when they grow larger. In general, small hepatomas without necrosis are hypoechoic; medium-sized tumors have a hypoechoic periphery and a hyperechoic center. The hypoechoic periphery corresponds to viable tumor tissue and the hyperechoic center to areas of tumor necrosis. Sonographic patterns may change as the primary tumor grows larger, thus the heterogeneous patterns are not increase the incidence of pulmonary metastasis. The larger the tumor, the higher the risk for pulmonary metastasis.

REFERENCES

1. Beasley RP, Hwang LY, Lin CC, Chien CS. Hepatocellular carcinoma and hepatitis B virus. A prospective study of 22 707 men in Taiwan. Lancet 1981; 2: 1129-1133
2. Rustgi V. Epidemiology of hepato-cellular carcinoma. Ann Intern Med 1988; 108: 390-397
3. Curley SA, Levin B, Rich TA. Liver and bile ducts. In: Aderolf MD, Armitage JO, Lichten A, eds. Clinical Oncology. New York: Churchill Livingstone, Inc, 1995: 1305-1372
4. Nagasue N, Kohno H, Chang YC, Tanaka K, Yamanari A, Uchida M, Kimoto T, Takemoto Y, Nakamura T, Yukaya H. Liver resection for hepato-cellular carcinoma: results of 229 consecutive patients during 11 years. Ann Surg 1993; 217: 375-384
5. Curley SA, Izzo F, Ellis LM, Nicolas Vauthey J, Vollone P. Radiofrequency ablation of hepato-cellular cancer in 110 patients with cirrhosis. Ann Surg 2000; 232: 361-391
6. Livraghi T, Bolondi L, Lazarroni S, Marin G, Morabito A, Rapaccini GL, Salmi A, Torzilli G. Percutaneous ethanol injection in the treatment of hepato-cellular carcinoma in cirrhosis. J Hepatol 1992; 69: 139-146
7. Di Bisceggle AM, Rustgi VK, Hoofnagle JH, Dushkeiko GM, Lotze MT. NIH conference: hepato-cellular carcinoma. Ann Intern Med 1988; 108: 390-401
8. Okuda K, Ohtsuki T, Obata H, Tomimatsu M, Okazaki N, Hasegawa N, Nakajima Y, Oshinski J. Natural history of hepato-cellular carcinoma and prognosis in relation to treatment: study of 850 patients. Cancer 1985; 56: 918-928
9. Yamada R, Sato M, Kawabata M, Nakatsuka H, Nakamura K, Takashima S. Hepatic artery embolization in 120 patients with unresectable hepatoma. Radiology 1993; 148: 397-401
10. Mondazzi L, Bottelli R, Brambilla G, Rampoldi A, Rezakovic I, Zavaglia C, Alberti G, Iodo G, Transcatheter oily chemoembolization for the treatment of hepatocellular carcinoma: a multivariate analysis of prognostic factors. Hepatology 1994; 19: 1115-1123
11. Hisieh MY, Chang CY, Wang LY, Chen SC, Chang WL, Lu SN, Wu DK. Treatment of hepato-cellular carcinoma by transcatheter arterial chemoembolization and analysis of prognostic factors. Cancer Chemotherapy & Pharmacology 1992; 31: S62-S5
12. Yoshimi F, Nagao T, Inoue S, Kawano N, Muto T, Gunji T, Oshinski J, Imawai M. Comparison of hepatectomy and transcatheter arterial chemoembolization for the treatment of hepatocellular carcinoma: necessity for prospective randomized trial. Hepatology 1992; 16: 702-706
13. Boix L, Bustuabd AD, Ruggiero RA, Meiss RP, Pasqualini CD. Tumor necrosis can facilitate the appearance of metastasis. Clin Exp Metastasis 1988; 6: 121-129
14. Lee YT, Geer DA. Primary liver cancer: pattern of metastasis. J Surg Oncol 1986; 37: 26-31
15. Liou TC, Shih SC, Kao CR, Chou SY, Lin SC, Wang HY. Pulmonary metastasis of hepatocellular carcinoma associated with transcatheter chemoembolization. J Hepatol 1990; 23: 563-568
16. Pets P, Pike MC, Armitage P, Breslow NE, Cox DR, Howard SH, Mantel N, McPherson K, Peto J, Smith PG. Design and analysis of randomized clinical trials requiring prolonged observation of each patient: I. Analysis and examples. Br J Cancer 1977; 35: 1-39
17. Hashimoto N, Kobayashi M, Tsuji T. Serum type IV collagen-degrading enzyme in hepatocellular carcinoma with metastasis. Acta Med Okayama 1988; 42: 1-6
18. Isoal A, Giga-Hama Y, Shinkai K, Mukai M, Akedo H, Kumagai H. Tumor invasion-inhibiting factor 2: primary structure and inhibitory effect on invasion in vitro and pulmonary metastasis of tumor cells. Cancer Res 1992; 52: 1422-1426
19. Boix L, Broix J, Castells A. Circulating mRNA for alpha-fetoprotein in patients with hepato-cellular carcinoma. Evidence of tumor dissemination after transcatheter embolization. Hepatology 1996; 24: 349
20. Peters RL. Pathology of hepatocellular carcinoma. Okuda K, Peters, RL, eds. Hepato-cellular carcinoma. New York: John Wiley & Sons Inc, 1976: 107-168
21. Wu CC, Ho YZ, Ho WL, Wu TC, Liu TJ, Peng FK. Preoperative transcatheter arterial chemoembolization for resectable large hepatocellular carcinoma: a reappraisal. Br J Surg 1995; 82: 122-126
22. Sawabe M, Nakamura T, Kanno J, Kasuga T. Analysis of mor-
Phenological factors of hepatocellular carcinoma in 98 autopsy cases with respect to pulmonary metastasis. *Acta Pathol Jpn* 1987; 37: 1389-1404

23 Falkson G, Cnaan A, Schutt AJ, Ryan LM, Falkson HC. Prognostic factors for survival in hepatocellular carcinoma. *Cancer Res* 1988; 48: 7314-7318

24 Sheu JC, Chen DS, Sung JL, Chuang CN, Yang PM, Lin JT, Yang PC. Hepatocellular carcinoma: US evolution in the early stage.

25 Yang R, Kopecky KK, Rescorla FJ, Galliani CA, Grosfeld JL. Changes of hepatoma echo patterns with tumor growth. A study of the microanatomic basis in a rat model. *Invest Radiol* 1993; 28: 507-512

26 Nishizaki T, Matsumata T, Kanematsu T, Yasunaga C, Sugimachi K. Surgical manipulation of VX2 carcinoma in the rabbit liver evokes enhancement of metastasis. *J Surg Res* 1990; 49: 92-97

Edited by Xu XQ