DIS3 shapes the RNA polymerase II transcriptome in humans by degrading a variety of unwanted transcripts

Teresa Szczepińska,1,2 Katarzyna Kalisiak,1,2,4 Rafal Tomecki,1,2,4 Anna Labno,1,2,4 Lukasz S. Borowski,1,2 Tomasz M. Kulinski,1,2 Dorota Adamska,1,2 Joanna Kosinska,3 and Andrzej Dziembowski1,2

1Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland; 2Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland; 3Department of Medical Genetics, Center for Biostructure Research, Medical University of Warsaw, 02-106 Warsaw, Poland

Human DIS3, the nuclear catalytic subunit of the exosome complex, contains exonucleolytic and endonucleolytic active domains. To identify DIS3 targets genome-wide, we combined comprehensive transcriptomic analyses of engineered HEK293 cells that expressed mutant DIS3, with Photoactivatable Ribonucleoside-Enhanced Cross-Linking and Immunoprecipitation (PAR-CLIP) experiments. In cells expressing DIS3 with both catalytic sites mutated, RNAs originating from unannotated genomic regions increased ∼2.5-fold, covering ∼70% of the genome and allowing for thousands of novel transcripts to be discovered. Previously described pervasive transcription products, such as Promoter Upstream Transcripts (PROMPTs), accumulated robustly upon DIS3 dysfunction, representing a significant fraction of PAR-CLIP reads. We have also detected relatively long putative premature RNA polymerase II termination products of protein-coding genes whose levels in DIS3 mutant cells can exceed the mature mRNAs, indicating that production of such truncated RNA is a common phenomenon. In addition, we found DIS3 to be involved in controlling the formation of paraspeckles, nuclear bodies that are organized around NEAT1 IncRNA, whose short form was overexpressed in cells with mutated DIS3. Moreover, the DIS3 mutations resulted in misregulation of expression of ∼50% of transcribed protein-coding genes, probably as a secondary effect of accumulation of various noncoding RNA species. Finally, cells expressing mutant DIS3 accumulated snoRNA precursors, which correlated with a strong PAR-CLIP signal, indicating that DIS3 is the main snoRNA-processing enzyme. EXOSC10 (RRP6) instead controls the levels of the mature snoRNAs. Overall, we show that DIS3 has a major nucleoplasmic function in shaping the human RNA polymerase II transcriptome.

[Supplemental material is available for this article.]
The RNA targets of human DIS3

To identify nucleoplasmic exosome substrates, we conducted RNA-seq analysis of HEK293 cells with DIS3 dysfunction. These analyses were supplemented by the direct identification of DIS3 targets using Photoactivatable Ribonucleoside-Enhanced Cross-Linking and Immunoprecipitation (PAR-CLIP) assays (Hafner et al. 2010). RNA-seq experiments were performed using HEK293 cell lines, which upon tetracycline-mediated induction simultaneously express sh-miRNAs that silence endogenous DIS3 and one of the following sh-miRNA-insensitive endogenous DIS3 variants: DIS3WT (WT), PIN domain catalytic mutant DIS3PIN (PIN), RNB catalytic mutant DIS3RNB (RNB), or PIN and RNB domain double mutant DIS3PIN+RNB (PIN RNB) (Tomkei et al. 2014). The transgenic exogenous DIS3 is overexpressed fivefold with regard to the endogenous protein in the analyzed cell lines (Tomkei et al. 2014). Experiments were carried out in triplicate; RNA was isolated three days after induction and rRNA-depleted before strand-specific total RNA libraries were prepared and sequenced in a paired-end protocol.

In parallel, PAR-CLIP experiments were performed. The in vivo cross-linking and immunoprecipitation efficiency of the RNA was first examined in HEK293 cells that stably expressed C-terminal eGFP-tagged WT or RNB mutant DIS3 proteins, as well as in parental, nontransfected control cells. Initial experiments showed that the DIS3 RNB mutant produced a much stronger PAR-CLIP signal (Supplemental Fig. 1) than did DIS3 WT. Therefore, further analyses were conducted using cells that synthesized a DIS3 RNB mutant allele. The entire immunoprecipitation procedure was performed using high-salt conditions in which DIS3 could no longer interact with the remainder of exosome core (Tomkei et al. 2010). Thiouridine-enhanced cross-linking often results in thymidine to cytidine transitions; and in our case, nearly 30% of the reads contained such changes (27.34% in data set 1, 32.54% in data set 2), pointing to high specificity of the experiments because this value is well above the typical background level (Hafner et al. 2010). Since DIS3 protein is an exoribonuclease, degrading the transcript throughout its length without any strong sequence preferences, we have not identified any specific motives in PAR-CLIP data sets; therefore, to allow for higher coverage, we have not narrowed down our further analysis to reads containing the T-C transitions.

In CLIP experiments performed for yeast Dis3, a substantial fraction of sequencing reads contained untemplated adenosines at their 3′-ends (Schneider et al. 2012), so we checked whether this was also the case for human DIS3. Surprisingly, untemplated poly(A) sequences (from two to nine in a row) represented only 3.98% of all partially untemplated mapped reads in one replicate, and 6.31% in the second one, which represents 0.25% and 0.39% of all mapped reads, respectively. This strongly suggests that oligoadenylation is not a main targeting signal for human DIS3; therefore, it was not analyzed further.

DIS3 dysfunction causes the global accumulation of RNAs from unannotated parts of the genome, allowing for the identification of thousands of novel transcripts

To provide a general overview of the DIS3 RNA-seq and PAR-CLIP data, the sequencing reads were mapped to the reference human genome and divided into different categories of transcripts (Table 1). Importantly, in the case of PAR-CLIP, distribution of reads mapped to the genome between RNA classes was essentially the same for all reads and the ones containing T-C transitions (Supplemental Table 1), suggesting that reads without transitions are also specific. Several molecular phenotypes of DIS3 dysfunction were immediately visible.

The well-known exosome substrates accumulated robustly in DIS3 RNB and PIN RNB double mutants, but not in the PIN domain single-mutants (Table 1; Supplemental File 1). The accumulation of such RNAs usually correlated with a strong PAR-CLIP signal. Reads that mapped to the PROMPTs class of lncRNAs grew from 0.16% in control (WT) cells to 0.88% of all mapped reads in PIN RNB mutants. Moreover, PROMPT\textsubscript{1} was represented as much as 8.29% of PAR-CLIP reads.

One of the prominent effects of DIS3 dysfunction was the accumulation of reads that mapped to regions of the human genome that lack any known annotation, increasing from ∼4% in wild-type controls to ∼9% in DIS3 double mutants. They also represented as much as 8% of all PAR-CLIP reads. Because the reads from unannotated parts of the genome were rather dispersed, to assemble these reads into novel transcripts, we increased the depth of sequencing of the RNA libraries prepared from HEK293 cells that expressed WT DIS3 and DIS3 PIN RNB double mutants. We...
Identification of RNAs

identified hundreds of thousands of novel transcripts that did not overlap with any known transcripts (Supplemental File 2), some of which were validated using quantitative PCR (qPCR) (Fig. 1A,B; Supplemental Fig. 2). These transcripts cover as much as 25.2% of the genome, have median length of 1334 bp (80% have length between 649 bp and 3656 bp), and 92% of them are intronless.

Finally, we calculated the percentage of nucleotides in the genome that were covered by at least one read in deeply sequenced libraries (Fig. 1C). The fraction of the genome covered increased from 43% (SD 1.99%) in WT to 74% (SD 2.52%) in the DIS3 double mutants (68% in deeply sequenced libraries) (Fig. 1C; Supplemental Fig. 2). These transcripts cover as much as 25.2% of the genome, have median length of 1334 bp (80% have length between 649 bp and 3656 bp), and 92% of them are intronless.

Impact of DIS3 functions leads to global accumulation of PROMPTs and enhancer RNAs

The levels of several PROMPTs increased >50-fold in DIS3 mutant cells compared with WT cells (Supplemental Files 1, 3). We detected the accumulation of 66% of previously detected PROMPTs in DIS3 PIN RNB double mutants (68% in deeply sequenced libraries). Generally, the effect was not strongly enhanced in comparison to RNB domain single mutants, in which 60% of previously detected PROMPTs accumulated (Fig. 1D; Supplemental Figs. 2, 3). Interestingly, although PROMPTs accumulated robustly, there was no indication of their direct involvement in the regulation of the expression of neighboring genes because we observed no negative or positive correlation between the accumulation of PROMPTs and sense mRNA (Spearman correlation coefficient = 0.0431, P-value = 0.144) (Fig. 1E).

The exosome plays a prominent role in the decay of enhancer RNA (eRNA) molecules (Andersson et al. 2014). Unfortunately, the expression levels of eRNAs from a list of 35,265 possible enhancers were low in our system. We could detect statistically significant changes in the expression level of only 85 enhancers from that list in our deeply sequenced libraries (Fig. 1F; Supplemental Fig. 3), which probably reflects high cell-type specificity of enhancer RNA expression since Andersson and colleagues (Andersson et al. 2014) did not analyze HEK293 cells. In all cases, respective eRNAs accumulated in DIS3 double mutants compared with WT enhancers (Supplemental File 4; Andersson et al. 2014). The increase in the expression of those enhancers did not entail changes in the expression of the genes located in close proximity because 80% of neighboring genes showed no or very little expression. We observed increased or decreased expression for only 3.5% and 16.5% such genes, respectively. When the analysis was extended up to the end of chromatin domains marked by CTCF in case of six enhancers (7.06%), there was at least one gene with increased expression; whereas for 18 eRNAs (21.18%), at least one gene with decreased expression was identified. Three enhancers (3.53%) were linked to genes, which were either up-regulated or down-regulated.

DIS3 dysfunction results in the accumulation of NEAT1 IncRNA and paraspeckles

No evidence for the general accumulation of IncRNAs was observed, and only a few IncRNAs accumulated robustly (Supplemental Files 1, 3). One of the most interesting examples was NEAT1. There are two forms of this RNA species in human cells: a
shorter one (NEAT1.1 of 3.7 kb) and a longer one (NEAT1.2 of ∼23 kb) (Naganuma et al. 2012). The latter transcript has a triple helix and the tRNA-like structures at the 3′-end, which are essential for its stability and processing respectively (Wilusz et al. 2008, 2012). We noted up to ∼eightfold accumulation of NEAT1.1 transcripts in the DIS3 mutants, whereas the steady state level of NEAT1.2 did not change significantly (Fig. 2A; Supplemental File 3). A prominent PAR-CLIP signal covering NEAT1.1 indicated that DIS3 is directly involved in promoting its degradation.

NEAT1.1 and NEAT1.2 form nuclear substructures termed paraspeckles (Fox and Lamond 2010). To analyze the influence of NEAT1 overexpression in DIS3 mutant cells on paraspeckle formation, we visualized these structures in cells by transfections with a construct expressing mCherry-labeled paraspeckle component, NONO (Fig. 2B). Indeed, both the number and volume of paraspeckles increased ∼twofold upon DIS3 dysfunction (Fig. 2C, D). The cellular role of paraspeckles remains to be well defined, but there are indications of their involvement in the regulation
of gene expression through the sequestration of positive or negative transcription regulators. The enhanced formation of paraspeckles leads to the sequestration of SFPQ protein, which negatively regulates \textit{CXCL8} (formerly known as \textit{IL8}) mRNA, resulting in its increased expression (Imamura et al. 2014). Interestingly, \textit{CXCL8} mRNA was overexpressed up to eightfold in our HEK293 mutant cells (Fig. 2E; Supplemental File 3). We performed chromatin immunoprecipitation (ChIP) combined with massively parallel DNA sequencing experiments in WT and \textit{DIS3} PIN RNB double mutants cells, followed by analysis of signal distribution over the \textit{CXCL8} gene. This analysis revealed that the Pol II levels are 2.14 higher (P-value = 1.9×10^{-12}) in the \textit{DIS3} mutant (Fig. 2E), strongly suggesting that \textit{CXCL8} up-regulation is a result of increased transcription.

\textit{DIS3} mutations abolishing its nucleolytic activity lead to global dysregulation of the expression of protein-coding genes

The \textit{DIS3} double mutant exhibited general deregulation of mRNA levels: 53.35% of protein-coding transcripts were down-regulated and 4.09% were up-regulated; and in deeply sequenced libraries, these values increased to 61.47% and 5.59%, respectively (Fig. 3A; Supplemental Files 1, 3). Such general down-regulation of mRNA levels in \textit{DIS3} double mutants might be considered as an artifact of normalization, resulting from the general up-regulation of unstable RNAs, because the data were normalized to all mapped reads. If normalization was performed to consider reads that mapped exclusively to annotated genes, the fractions of down-regulated and up-regulated genes were comparable (29.65% and 25.28%, respectively) but still represented ~50% of protein-coding genes expressed. Notably, individual catalytic mutations within the RNB or PIN domains led to less pronounced changes in expression (16.43% or 6.44%, respectively). For the majority of up-regulated or down-regulated genes in \textit{DIS3} mutant cells, the expression level changed less than two- to fourfold, but there are examples, like \textit{TNFRSF9} (Fig. 3B,C) or \textit{CXCL8}, which are highly overexpressed. Importantly, very little correlation between the up-regulation of mRNAs and the corresponding \textit{DIS3} PAR-CLIP signal (Spearman correlation coefficient = 0.291, P-value = 1.110×10^{-83}) suggests that the observed effects were secondary.

Premature termination of protein-coding genes is a widespread phenomenon

An analysis of reads that mapped to known introns of protein-coding genes that did not contain snoRNA or any other genomic
feature (e.g., an exon of another transcript) showed that there was no general trend for intron accumulation, indicating that DIS3 (and probably the exosome) is not a major intron-degrading enzyme (Table 1). However, a more careful inspection of intronic reads showed that in multiple cases, there was an overrepresentation of reads that mapped to the first intron of a gene (but not to a second intron) in DIS3 mutants (Fig. 4A; Supplemental Fig. 4). For each deeply sequenced library, we counted reads that overlapped exon1/intron1 junction and intron1/exon2 junction in protein-coding transcripts, and then the fold changes between those counts were calculated. For 11.88% of transcripts, this fold change was larger in DIS3 double mutants than in wild-type cells, whereas only 1.54% cases showed a change in the opposite direction. For the remaining 86.58% of transcripts, there was no statistically significant difference between the two cell lines (t-test, Benjamini–Hochberg corrected P-value <0.05) (Fig. 4B; Benjamini and Hochberg 1995). These results suggest that such accumulation of the first intron represents unprocessed transcripts that most likely arise from premature transcription termination events within the gene body. Such transcripts accumulated in DIS3 double mutants in ∼12% of transcripts that contained at least two exons. We analyzed whether the intron length has an effect on premature termination frequency. Indeed, we observed that the incidence of this phenomenon was slightly more pronounced for longer first introns, nevertheless the effect was relatively mild. Namely, for 5% of the longest first introns, the ∼17% were increased in comparison to ∼11.5% for the remaining ones. It is possible that the premature termination reported herein is not restricted to introns and may also take place within the intronless protein-coding genes; but due to high background of reads originating from mature mRNAs, such cases were more difficult to detect.

Next, we performed qPCR validation for several selected examples, which showed that the unspliced, prematurely terminated RNAs indeed accumulated in cells that expressed DIS3 mutant variants (Fig. 4C; Supplemental Fig. 4). Finally, we looked at the Pol II ChIP signal over relevant genes with a high level of putative premature termination. The most significant ChIP peaks corresponded to the promotor regions, but the drop of polymerase occupancy was visible in the regions of putative premature termination, where the RNA-seq signal decreases in DIS3 mutant cells (Fig. 4A; Supplemental Fig. 4). There was basically no difference in the ChIP signal from WT and mutant cells, indicating that indeed RNA species observed by us arise from premature termination. Nevertheless, there was no apparent correlation between the accumulation of putative premature termination products and the expression levels of the mature mRNAs (Fig. 4D).

Figure 3. Global deregulation of the expression of protein-coding genes caused by DIS3 inactivation. (A) A volcano plot showing a large number of up-regulated and down-regulated transcripts. (B) A genome browser screenshot of TNFRSF9 mRNA transcripts, which are up-regulated in a cell line expressing the DIS3 PIN RNB double mutant. The RNA-seq signal was not supported by the PAR-CLIP signal. The uniquely mapped reads are shown for the minus strand. (C) Quantitative PCR validation of TNFRSF9 up-regulation in double mutants. Bars represent the standard deviation of three biological replicates.

DIS3, but not EXOSC10, is involved in snoRNA processing

Most snoRNA in human cells are encoded within introns of abundant mRNAs. In the RNA-seq analysis of DIS3 mutant cells, there was an accumulation of snoRNA precursors (2.12% of reads in double mutant versus 1.18% in WT controls) (Table 1), and they represented a significant fraction of the PAR-CLIP signal (∼2%) (Fig. 5A). Although the levels of mature snoRNAs in cells are orders of magnitude higher than for the precursors, they represented a much smaller fraction of the PAR-CLIP reads (0.17% and 0.29% in the first and the second replicate, respectively), which indicates that DIS3 is involved in snoRNA processing rather than decay. Indeed, by Northern blot analyses, we observed a significant accumulation of snoRNA precursors in DIS3 mutant cells (Fig. 5B). In contrast to PROMPTs, the accumulation of snoRNA precursors increased significantly from DIS3 single to double mutants (from 1.33% in RNB mutant and 1.34% in PIN mutants to 2.12% in PIN RNB double mutants), indicating that endonucleolytic DIS3 activity plays a role in snoRNA processing (Fig. 5B). In yeast, in addition to Dis3, Rrp6 also plays a prominent role in snoRNA processing (Allmang et al. 1999). To assess the relative contributions of human EXOSC10 and DIS3 to this process, we generated HEK293 cell lines with silenced endogenous EXOSC10 and exogenously produced EXOSC10 WT or catalytic mutant, similarly to the DIS3 model cell lines. This experimental system worked efficiently, because endogenous protein expression was reduced by 80% (data not shown), and we were able to note the accumulation of 21S precursors of 18S rRNA in cells that synthesized the mutant variant of this protein, which is a typical phenotype for EXOSC10 dysfunction (Supplemental Fig. 5; Preti et al. 2013; Sloan et al. 2013). We
compared the effects of EXOSC10 and DIS3 mutations on snoRNA processing (Fig. 5B). Interestingly, unlike in the case of DIS3, we were unable to observe the accumulation of snoRNA precursors upon EXOSC10 inactivation (Fig. 5B). The only effect that we could observe was a slight increase in the levels of mature transcripts.

Discussion

Our analysis of the effects of DIS3 dysfunction showed a generally high level of transcription in non-protein-coding regions of the human genome and revealed the robustness of the exosome-mediated nuclear quality control pathways. Moreover, the accumulation of dispersed RNA fragments strongly suggests that pervasively occurring transcriptional initiation is a common phenomenon in human cells, which was previously questioned (van Bakel et al. 2010; Clark et al. 2011).

The putative premature termination products of protein-coding genes and PROMPTs represent the most prominent targets of DIS3 (Fig. 6), indicating that there are basically no alternative pathways for their decay. The absence of a direct correlation between
the accumulation of noncoding RNA species that originate from bidirectional transcription in the direction opposite to protein-coding transcripts with levels of respective mRNAs strongly suggests that the majority of PROMPTs lack a general regulatory role. Likewise, the accumulation of products of widespread premature termination for protein-coding genes, which we detected in this present study, does not have a large influence on mRNA accumulation. All these data suggest that in the majority of cases, such unwanted transcripts do not act in cis to regulate gene expression.

In case of enhancer RNAs, for which we also did not observe a strong effect on neighboring gene expression, it is possible that transcription itself, rather than the resulting RNA products, has an impact on gene activation; but due to the relatively low number of enhancer RNA analyzed in this study, we cannot exclude that in specific cases such RNAs play a regulatory role, as was suggested previously (Melo et al. 2013; Schaukowitch et al. 2014).

The global deregulation of gene expression in DIS3 mutant cells most likely represents a secondary effect that results from the accumulation of nuclear RNAs, which might sequester factors that are involved in mRNA biogenesis, like NEAT1 lncRNA and CXCL8 mRNA. Such a regulatory mechanism might be more common, however difficult to identify, because of the complexity of the molecular phenotypes in DIS3 mutant cells.

DIS3 targets snoRNA precursors; however, the fact that the level of mature snoRNA is not decreased in DIS3 mutant cells suggests that there are also other nucleases that participate in snoRNA processing. In contrast to DIS3, nucleolus-enriched EXOSC10 appears to degrade mature snoRNA. In some cases, the level of mature snoRNA in DIS3 mutants is also slightly increased (Fig. S5B), suggesting that DIS3 could be involved in the degradation of mature species, but very low DIS3 PAR-CLIP signal over mature snoRNAs argues against such a possibility. The different roles of DIS3 and EXOSC10 in snoRNA metabolism underscore the strong functional specialization between different catalytic subunits of the human nuclear exosome, which appears to be less prevalent in yeast.

RNA polymerase I and III products represent more than half of DIS3 substrates in yeast; whereas in humans, they are a minority of DIS3 targets (Table 1; Gudipati et al. 2012; Schneider et al. 2012). However, there are exceptions, such as 5.8S rRNA 3′-extended precursors that are processed by DIS3 proteins both in humans and yeast (Dziembowski et al. 2007; Tomecki et al. 2010, 2014). Interestingly, although the precursors are transcribed by RNA polymerase I as a part of 47S pre-rRNAs, they are processed by DIS3 rather than EXOSC10, most likely because this late rRNA processing step also occurs in the nucleoplasm rather than in the nucleolus (Thomson and Tollervey 2010). Our PAR-CLIP data also suggest that—in contrast to yeast in which Dis3 controls tRNA levels—tRNAs are not the major targets of human DIS3. Again, this finding might reflect differences in localization patterns because in yeast, Dis3 is present in the cytoplasm where the turnover of tRNAs occurs.

An outstanding question that needs to be answered is how DIS3 and the exosome can distinguish between its targets and stable, mature RNAs, because both species have a similar architecture in humans because both PROMPTs and mRNAs contain cap and poly(A) tails (Preker et al. 2011). Premature termination products are also expected to contain poly(A) tails, since they most probably represent molecules that evaded protection by U1 snRNP and are generated by a canonical termination pathway (Kaida et al. 2010; Berg et al. 2012; Almada et al. 2013). In contrast to mRNAs, direct DIS3 RNA targets are generally short intronless molecules, and we hypothesize that this might be one of the main distinctions between stable and unstable RNA polymerase II transcripts in human cells. In the case of mRNA molecules or cytoplasmic lncRNAs, splicing can enhance RNP formation and nuclear RNA export, which would help to evade the DIS3 activity. Notably, however, we could not detect a statistically significant difference in the sensitivity of multie exon or intronless mRNA and IncRNA to DIS3-mediated degradation. This phenomenon might be related to the existence of a stabilization mechanism specific for single-exon short functional

Figure 5. DIS3, but not EXOSC10, is involved in snoRNA processing. (A) A genome browser screenshot of the genomic region encompassing SNORD13 snoRNA with mapped RNA-seq and DIS3 PAR-CLIP reads. The uniquely mapped reads are shown for the plus strand. Note that mature snoRNA are underrepresented in the long read RNA-seq libraries. (B) Northern blot analysis of selected snoRNAs, using cell lines with DIS3 and EXOSC10 mutations. Multiple myeloma-associated mutations are represented by 766 and 780 for DIS3 G766R and DIS3 R780G, respectively (Tomecki et al. 2014).
RNAs, as suggested previously (Andersen et al. 2012). The mechanism of recognition of unstable RNAs in human cells is different from the one in yeast, in which the specific transcription termination mechanism is linked to noncanonical polyadenylation (Vasiljeva et al. 2008; Włotzka et al. 2011; Tudek et al. 2014). A dedicated exosome activation complex, TRAMP, oligoadenylates exosome substrates, thereby promoting their decay (LaCava et al. 2005; Vanáčová et al. 2005; Wyers et al. 2005). A similar complex found in humans is enriched in nucleoli, and thus plays a minor (if any) role in exosome-mediated decay in the nucleoplasm (Lubas et al. 2011). The cofactor of the human nucleoplasmic exosome is the NEXT complex, which is composed of the RNA helicase SKIV2L2 and two RNA-binding proteins, and interacts with newly synthetized RNAs (Lubas et al. 2011). The cofactor of the human nucleoplasmic exosome is NEXT complex (LaCava et al. 2005; Vanáčová et al. 2005; Wyers et al. 2005). A similar complex found in humans is enriched in nucleoli, and thus plays a minor (if any) role in exosome-mediated decay in the nucleoplasm (Lubas et al. 2011). The cofactor of the human nucleoplasmic exosome is the NEXT complex, which is composed of the RNA helicase SKIV2L2 and two RNA-binding proteins, and interacts with newly synthetized RNAs (Lubas et al. 2011, 2015). How this complex distinguishes between stable and unstable RNAs remains to be determined, although there are indications for its cooperation with the cap-binding complex, which suggests that the distance from the RNA 5′-end could play a role in directing exosome-mediated 3′-5′ RNA decay (Andersen et al. 2013; Hallais et al. 2013). It has also been suggested that in humans, nuclear poly(A)-binding protein promotes the hyperadenylation and decay of unstable transcripts, including the short form of NEAT1 (Bresson and Conrad 2013). Whether and how hyperadenylation can induce exosome-mediated decay is also unknown and will require further study.

In conclusion, our present study describes the repertoire of various DIS3-dependent human nucleoplasmic exosome substrates and underscores the importance of efficient quality control mechanisms that ensure that all pervasive transcription products and other unwanted RNA molecules, which were detected at surprisingly high levels, are quickly degraded.

Methods

RNA-seq

HEK293 Flp-In T-REx cell lines were grown, and RNA was isolated as described previously (Tomecki et al. 2014). RNA was ribode-
On average, 69.2% of ChIP reads and 60.9% of mock control reads mapped uniquely, and only those were further analyzed using custom scripts implementing elements of the SAMtools (version 0.1.19 and 1.2.1), BEDTools (version 2.23.0), and RseQC (version 2.6) packages for basic quality control, duplicate read removal, filtering, extending, and counting reads (Li et al. 2009; Quinlan and Hall 2010). The reads mapping within gene bodies were counted and normalized to the total number of reads, and the statistical analysis using the DESeq2 Bioconductor package was performed (Love et al. 2014).

Quantitative PCR (qPCR) validation, Northern blotting, and other standard methods

Standard methods were used for RNA isolation, cDNA preparation, qPCR, and Northern blotting. The vectors and cell lines were produced in similar way as described previously (Tomecki et al. 2014). Refer to Supplemental Data for details.

Paraspeckles analysis

Paraspeckles were visualized by transient transfection with the construct coding for NONO fused with mCherry. Fixed cells were imaged with a FluoView 1000 confocal system (Olympus) using a PLANAPO 60.0 × 1.40 oil objective. Images were 3D rendered and analyzed using Imaris 7.2.3 software (Bitplane). For a more detailed procedure, see Supplemental Data.

Analysis of nontemplated oligoA

In PAR-CLIP data, we counted the number of partially mapped second reads with untemplated A (from two to nine in a row). We calculated the percentage of these reads in all mapped second reads.

Genome Browser visualization tracks

The UCSC Genome Browser was used for visualization of sequencing data (Kent et al. 2002). Numbers in visualization tracks represent the normalized mean read count values from the three repeats of a given track for RNA-seq samples and the values from one repeat for PAR-CLIP samples (the library with ~8 × 10^6 read pairs). When only WT and PIN RNB double mutant tracks of RNA-seq are presented, the data is from deeply sequenced libraries. For the Pol II ChIP experiment, the summarized data from the three replicates was visualized after extending the reads to the expected fragment length and normalizing the signal to total library size of 10 million reads. The mock control signal is overlaid in scale on the same track as the Pol II ChIP signal but in gray color.

Distribution of reads over different classes of transcripts

To calculate this distribution, we uniquely assigned reads to classes using a hierarchical procedure. Reads that mapped to more than one class of transcript annotated in the genome were assigned to a class that was higher in the hierarchy. Reads were assigned ignoring strand specificity. We did not want to overestimate the number of reads mapped to unannotated parts of the genome because of inaccurate strand specificity of the sequencing technique. As defined by us, the hierarchy of transcript classes is included in Supplemental Data. Calculation of the distribution using uniquely versus nonuniquely mapped reads yielded nearly identical results.

Differential expression analysis

We used the DESeq2 R package (Love et al. 2014) for differential expression analysis of annotated transcripts, filtered out transcripts with very low expression, and required at least one count per million mapped reads in at least two probes.

Assembly of new transcripts

We used reads from deeply sequenced libraries from PIN RNB double mutants to assemble new transcripts. We used Cufflinks v2.1.1 (Trapnell et al. 2010) to assemble reads in each from three replicates separately. We applied all default parameters, with the exception of increasing “–max-bundle-length” to 10^4 and “–max-bundle- frags” to 10^4. We used cuffmerge from the Cufflinks package to merge assemblies from the replicates. New transcripts were only counted as those transcripts that did not overlap with any other known transcript from the annotation. The genome coverage by the new transcripts was calculated without introns predicted in those transcripts. Including intronic positions, new transcripts covered 27.1% of the genome. Transcript length was measured from genomic start till genomic end of a transcript.

Genome coverage

Each deeply sequenced library was normalized to 100 × 10^6 read pairs per sample. BEDTools “genomicov” output tracks were scaled based on this normalization. The percentage of nucleotides covered by at least 100, 10, or 1 read was calculated.

eRNA analysis

We defined enhancers as 500 nt from the middle point on the forward strand and 500 nt from the middle point on the reverse strand from the list of 35,265 probable enhancers (Andersson et al. 2014). To exclude from our analysis those enhancers that did not show bidirectional expression, we applied a “directionality” parameter defined by Andersson et al. (2014) and a “strandedness” parameter that was defined by us. Enhancer directionality was calculated as \(\frac{F-R}{F+R} \), where F and R is the sum of the RNA-seq fragments aligned on the forward and reverse strands. Directionality close to –1 or 1 indicates a unidirectional behavior, whereas 0 indicates perfectly balanced bidirectional transcription (Andersson et al. 2014). Enhancer strandedness was defined as \(\frac{S-A}{S+A} \), where S is the sum of fragments mapped to the proper forward and reverse strand of an enhancer (i.e., the region from the middle point to the middle point minus 500 nt on the forward strand, and the region from the middle point to the middle point minus 500 nt on the reverse strand), and A is the sum of fragments mapped to the antisense strand of the enhancer proper forward and reverse (i.e., the region from the middle point to the middle point minus 500 nt on the forward strand, and the region from the middle point to the middle point plus 500 nt on the reverse strand). We counted as proper, expressed enhancers only those regions with an absolute value of directionality less than 0.5 and an absolute value of strandedness greater than 0.5.

We defined genes located in close proximity to the enhancers as (1) neighboring genes—one gene for each enhancer that has closest transcription start; or (2) genes located within chromatin domain marked by CTCF sites. We took CTCF site positions for HEK293 cells from Euskirchen et al. (2007).

Data access

PAR-CLIP, RNA-seq, and Pol II ChIP-seq data from this study have been submitted to the NCBI Gene Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/) (Edgar et al. 2002) under accession number GSE64332.
Acknowledgments

We acknowledge Joanna Kufel and Roman Szczesny for critical reading of this manuscript. The work was supported by the Polish–Swiss Research Programme (PSPB-183/2010), the National Science Centre (NCN Maestro: UMO-2011/02/A/NZI/00001), The National Centre for Research and Development (NCBR LiDIER/35/46/L-3/11/NCBR/2012), and The European Social Fund (373/ES/3S-II/W-POLK/14). Experiments were carried out with the use of CePt infrastructure that was financed by the European Union via the European Regional Development Fund (Innovative economy 2007–13, Agreement POIG.02.02.00-14-024/09).

Author contributions: A.D. conceived and directed the studies. T.S. performed bioinformatics analyses. K.K. performed PAR-CLIP experiments and participated in validation experiments. R.T. generated the model cell lines, analyzed snoRNA processing, and participated in the design of experiments. A.L. established model cell lines for EXOSC10 analysis and performed validation experiments. D.A. prepared RNA-seq libraries. T.M.K. participated in bioinformatics analyses. K.K. performed PAR-CLIP—a method to identify transcriptome-wide the binding sites of RNA binding proteins. J Vis Exp JoVE doi: 10.3791/20344.

Hallais M, Pontvianne F, Andersen PR, Clerici M, Lener D, Benbahouche Nel H, Gostan T, Vandemoere F, Robert M-C, Cusack S, et al. 2013. CRC–ARS2 stimulates 3′-end maturation of multiple RNA families and favors cap-proximal processing. Nat Struct Mol Biol 20: 1358–1366.

Imamura K, Imamachi N, Akiuzuki G, Kumakura M, Kawaguchi A, Nagata K, Kato A, Kawaguchi Y, Sato H, Yoneda M, et al. 2014. Long noncoding RNA NEAT1-dependent SFPQ relocation from promoter region to paraspeckle mediates IL8 expression upon immune stimuli. Mol Cell 53: 393–406.

Jensen TH, Jacquier A, Libri D. 2013. Dealing with pervasive transcription. Mol Cell 52: 473–484.

Kaida D, Berg MG, Younis I, Kasim M, Singh LN, Wan L, Dreyfuss G. 2010. U1 snRNP protects pre-mRNAs from premature cleavage and polyadenylation. Nature 468: 664–668.

Kent WJ, Spegel CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D. 2002. The human genome browser at UCSC. Genome Res 12: 996–1006.

LaCava J, Houseley J, Saveanu C, Petefalski E, Thompson E, Jacquier A, Tollevery D. 2005. RNA degradation by the exosome is promoted by a nuclear polyadenylation complex. Cell 121: 713–724.

Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat Methods 9: 357–359.

Lebreton A, Tomecki R, Dziembowski A, Séraphin B. 2008. Endonucleolytic RNA cleavage by a eukaryotic exosome. Nature 456: 993–996.

Lemay JF, Larochelle M, Marguerat S, Atkinson S, Bähler J, Bachand F. 2014. Lemay JF, Larochelle M, Marguerat S, Atkinson S, Bähler J, Bachand F. 2014. The RNA exosome promotes transcription termination of backtracked RNA polymerase II. Nat Struct Mol Biol 21: 919–926.

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. 1000 Genome Project Data Processing Subgroup. 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25: 2078–2079.

Liu Q, Greimann JC, Lima CD. 2006. Reconstitution, activities, and structure of the human nuclear exosome. RNA 12: 1223–1237.

Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15: 50.

Lubas M, Christensen MS, Kristiansen MS, Domanski M, Falkenby LG, Bresson SM, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat Methods 9: 357–359.

Lubetkin A, Tomecki R, Dziembowski A, Séraphin B. 2008. Endonucleolytic RNA cleavage by a eukaryotic exosome. Nature 456: 993–996.

Lemay JF, Larochelle M, Marguerat S, Atkinson S, Bähler J, Bachand F. 2014. The RNA exosome promotes transcription termination of backtracked RNA polymerase II. Nat Struct Mol Biol 21: 919–926.

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. 1000 Genome Project Data Processing Subgroup. 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25: 2078–2079.

Liu Q, Greimann JC, Lima CD. 2006. Reconstitution, activities, and structure of the human nuclear exosome. RNA 12: 1223–1237.

Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15: 50.

Lubas M, Christensen MS, Kristiansen MS, Domanski M, Falkenby LG, Bresson SM, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat Methods 9: 357–359.

Lubetkin A, Tomecki R, Dziembowski A, Séraphin B. 2008. Endonucleolytic RNA cleavage by a eukaryotic exosome. Nature 456: 993–996.

Lemay JF, Larochelle M, Marguerat S, Atkinson S, Bähler J, Bachand F. 2014. The RNA exosome promotes transcription termination of backtracked RNA polymerase II. Nat Struct Mol Biol 21: 919–926.

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. 1000 Genome Project Data Processing Subgroup. 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25: 2078–2079.

Liu Q, Greimann JC, Lima CD. 2006. Reconstitution, activities, and structure of the human nuclear exosome. RNA 12: 1223–1237.

Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15: 50.

Lubas M, Christensen MS, Kristiansen MS, Domanski M, Falkenby LG, Bresson SM, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat Methods 9: 357–359.

Lubetkin A, Tomecki R, Dziembowski A, Séraphin B. 2008. Endonucleolytic RNA cleavage by a eukaryotic exosome. Nature 456: 993–996.

Lemay JF, Larochelle M, Marguerat S, Atkinson S, Bähler J, Bachand F. 2014. The RNA exosome promotes transcription termination of backtracked RNA polymerase II. Nat Struct Mol Biol 21: 919–926.

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. 1000 Genome Project Data Processing Subgroup. 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25: 2078–2079.

Liu Q, Greimann JC, Lima CD. 2006. Reconstitution, activities, and structure of the human nuclear exosome. RNA 12: 1223–1237.

Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15: 50.

Lubas M, Christensen MS, Kristiansen MS, Domanski M, Falkenby LG, Bresson SM, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat Methods 9: 357–359.

Lubetkin A, Tomecki R, Dziembowski A, Séraphin B. 2008. Endonucleolytic RNA cleavage by a eukaryotic exosome. Nature 456: 993–996.
The RNA targets of human DIS3

Naganuma T, Nakagawa S, Tanigawa A, Sasaki YF, Goshima N, Hirose T. 2012. Alternative 3′-end processing of long noncoding RNA initiates construction of nuclear paraspeckles. *EMBO J* **31**: 4020–4034.

Ntan M, Jervel A, Bornholdt J, Chen Y, Boyd M, Jørgensen M, Andersson R, Hoof J, Schein A, Andersen PR, et al. 2013. Polyaadenylation site-induced decay of upstream transcripts enforces promoter directionality. *Nat Struct Mol Biol* **20**: 923–928.

Pefanis E, Wang J, Rothschild G, Lim J, Chao J, Rabadan R, Economides AN, Basu U. 2014. Noncoding RNA transcription targets ALD to divergently transcribed loci in B cells. *Nature* **514**: 389–393.

Schneider C, Leung E, Brown J, Tollervey D. 2009. The N-terminal PIN domain of yeast nucleus-localized nuclear RNA exosome complexes is associated with known genes. *Nucletic Acids Res* **37**: 7179–7193.

Schneider C, Tollervey D. 2013. Threading the barrel of the RNA exosome. *Trends Biochem Sci* **38**: 485–493.

Schneider C, Leung E, Brown J, Tollervey D. 2009. The N-terminal PIN domain of the exosome subunit Rp44 harbors endonuclease activity and tethers Rp44 to the yeast core exosome. *Nucleic Acids Res* **37**: 1127–1140.

Schneider C, Kudla G, Wlotzka W, Tollervey D. 2012. Transcriptome-wide analysis of exosome targets. *Mol Cell* **48**: 422–433.

Sloan KE, Mattijssen S, Lebaron S, Tollervey D, Pruijn GJ, Watkins NJ. 2013. Both endonucleolytic and exonucleolytic cleavage mediate ITS1 removal during human ribosomal RNA processing. *J Cell Biol* **200**: 577–588.

Staals RHJ, Bronkhorst AW, Schliers G, Slomovic S, Schuster G, Heck AJR, Rajmakers R, Pruijn GJ. 2010. Dis3-like 1: a novel exoribonuclease associated with the human exosome. *EMBO J* **29**: 2358–2367.

Thomson E, Tollervey D. 2010. The final step in 5.8S rRNA processing is cytoplasmic in Saccharomyces cerevisiae. *Mol Cell Biol* **30**: 976–984.

Tomcicky R, Kristiansen MS, Lykke-Andersen S, Chlebowski A, Larsen KM, Szczesny RJ, Drzakowska K, Pastula A, Andersen JS, Stepien PP, et al. 2010. The human core exosome interacts with differentially localized processing RNAs: hDIS3 and hDIS3L. *EMBO J* **29**: 2342–2357.

Tomczyk R, Drzakowska K, Kucinski I, Stoduk K, Szczesny RJ, Gruchota J, Owczarek E, Faliszewska K, Dziembowski A. 2014. Multiple myeloma-associated hDIS3 mutations cause perturbations in cellular RNA metabolism and suggest hDIS3 PIN domain as a potential drug target. *Nucleic Acids Res* **42**: 1270–1290.

Trappel C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L. 2010. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. *Nat Biotechnol* **28**: 511–515.

Tudek A, Porna O, Kabziński T, Lidschreiber M, Fortova A, Lacroute F, Vanacova C, Cramer P, Steff R, et al. 2014. Molecular basis for coordinating transcription termination with noncoding RNA degradation. *Mol Cell* **55**: 467–481.

Ustianenko D, Hrossová D, Potesil D, Chalupníkova K, Hrzadilová K, Pacherová J, Ceciakova K, Udrišan S, Zdrahal Z, Vanacova S. 2013. Mammalian DIS3L2 exoribonuclease targets the uridylylated precursors of let-7 miRNAs. *RNA* **19**: 1632–1638.

van Bakel H, Nislow C, Blencowe BJ, Hughes TR. 2010. Most “dark matter” transcripts are associated with known genes. *PloS Biol* **8**: e1000371.

Vanacova S, Wolf J, Martin G, Blank D, Dettwiler S, Friedlein A, Langen H, Keith G, Keller W. 2005. A new yeast poly(A) polymerase complex involved in RNA quality control. *PloS Biol* **3**: e189.

Vasiliev A, Kim M, Tzeri N, Soares LM, Buratowski S. 2008. Transcription termination and RNA degradation contribute to silencing of RNA polymerase II transcription within heterochromatin. *Mol Cell* **30**: 313–325.

Walker BA, Wardell CP, Melchor L, Huilkki S, Potter NE, Johnson DC, Fenwick K, Kozarewa I, Gonzalez D, Lord CJ, et al. 2012. Intracranial heterogeneity and distinct molecular mechanisms characterize the development of t(4;14) and t(11;14) myeloma. *Blood* **120**: 1077–1086.

Wasmuth EV, Januszky K, Lima CD. 2014. Structure of an Rrp6 exoribonuclease domain in the yeast RNA exosome. *Nat Biotechnol* **32**: 1851–1854.

Weissbach A, Langer C, Puppe B, Nedeva T, Bach E, Kull M, Bargou R, Einsele H, Rosenwald A, Knop S, et al. 2014. The molecular spectrum and clinical impact of DIS3 mutations in multiple myeloma. *Br J Haematol* **169**: 57–70.

Willus JE, Freier SM, Spector DL. 2008. 3′ end processing of a long nuclear-retained noncoding RNA yields a RNA-like cytoplasmic RNA. *Cell* **135**: 919–932.

Willus JE, JnBaptiste CK, Lu LY, Kuhn CD, Joshua-Tor L, Sharp PA. 2012. A triple helix stabilizes the 3′ ends of long noncoding RNAs that lack poly (A) tails. *Genes Dev* **26**: 2392–2407.

Wlotzka W, Kudla G, Granneman S, Tollervey D. 2011. The nuclear RNA polymerase II surveillance system targets polymerase III transcripts. *EMBO J* **30**: 1790–1803.

Wyers F, Rougemaille M, Badis G, Rousselle JC, Dufour ME, Boulay J, Régnault B, Devaux F, Namane A, Séraphin B, et al. 2005. Cryptic pol II transcripts are degraded by a nuclear quality control pathway involving a new poly(A) polymerase. *Cell* **121**: 725–737.

Received January 16, 2015; accepted in revised form July 16, 2015.