Double-neutron capture reaction and natural abundance of 183W, 195Pt and 199Hg isotopes

Karamian S. A., Aksenov N. V. and Bozhikov G. A.

Joint Institute for Nuclear Research, Dubna, 141980, Moscow region, Russia

e-mail: karamian@jinr.ru

Abstract. There are much data on neutron cross sections over the chart of nuclides for stable isotopes and not as much for the radioactive ones. Double neutron capture experiments could be fruitful to provide more data. Time-integrated mean flux of slow neutrons reaches the value of 2.3·1012 n/cm2 s at the irradiation port near the active zone of the IBR-2 pulsed reactor of JINR. This is enough to detect the double neutron capture products by the activation method. A high capture cross section is obtained in the present experiment for intermediate radioactive 182Ta and 194Ir target nuclides. Together with the known data for 199Au, these values may prove an essential role of double neutron capture process for nucleosynthesis of 183W, 195Pt and 199Hg isotopes at stellar conditions.

Keywords: neutron flux, radioactive products, double capture, isotope abundance

1. Introduction

In a double neutron capture process the relatively short-lived 194Ir (19.28 h) is present as an intermediate target nucleus. The 195Pt could be found among the final products of activation due to the following process: 194Ir (n, γ)195mIr β^- 195Pt (13/2$^+)$). The latter nuclide is convenient for detection being 4.01 d–lived and the main channel (40%) in the decay of 3.67 h–lived 195mIr (11/2$^-$) isomer. The ground state of 195Ir (3/2$^-$) (2.29 h) is produced with a large yield in the reaction, but it decays directly to the ground state of the stable 195Pt, and not to the isomer [1]. Such properties provide an advantageous option for production of 195mPt through the double neutron capture reaction. In the case of 182Ta target, the consequent two-neutron capture leads to 185Ta ($T_{1/2} = 5.1$ d) via the intermediate 114.4 d–lived 182Ta isotope. In the present work the 195mPt and 185Ta activities were detected by the γ-spectroscopy method after irradiation of 194Ir (98.5% enriched) and 182Ta targets at the IBR-2 reactor. The method of 195mPt production by double neutron capture reaction was stressed in [2] as useful for clinical applications.

In fact, there are recommended neutron cross section values given in [3 – 6]. However, there are not enough data available to describe the formation of 195mPt, which puts the most significant restriction on calculation of the yield. Only two of six important values are known for thermal cross section plus one value for the resonance integral. It would be impossible to evaluate the yield of 195mPt from such initial data, even in the case when the well-developed computer program is available. The results of [2] were obviously obtained using theoretically estimated cross sections, though it is known that the cross sections, the resonance integral values and isomer-to-ground state ratios cannot not be predicted in theory. One may hope for fast progress in neutron data, but the experiment on observation of 195mPt in neutron irradiations seems more direct and fruitful. The flux supplied by the IBR-2 reactor is enough to detect the activation of double neutron capture products.

Initially, a test experiment [7] has been performed using relatively low neutron flux generated by the MT-25 electron accelerator at FLNR, JINR. The flux about 108 n/cm2 s was not enough to observe the products of double neutron capture, but major products of Ir isotopes activation were successfully detected and the corresponding Q_n and J_f values were measured. The results are given in Table 1. One of the important conclusions is that the most efficient way to obtain 195mPt is through the process 194Ir (n, γ)195mIr β^- 195Pt. The alternative branch with the population of 194mIr (171 d) at the first step of neutron capture is inefficient because of the low cross section measured for this high-spin product (see Table 1). A large spin-difference $\Delta I \approx 9$ between the initial 193Ir (3/2$^+$) and the final 194Ir (10 or 11) nuclides suppresses the yield of the product in agreement with the systematics [8] and the results obtained for the Hf isomers [9]. At the second step of neutron capture, the...
^{195}Ir product has a twice-lower spin $11/2^-$ and may be successfully populated in (n, γ) reaction, it then decays in 40% events to ^{195}Pt. Unfortunately, the ground state of ^{195}Ir decays only to the ground state of ^{195}Pt and there is no branch to the ^{195}mPt isomer. Therefore, the only efficient sequence of processes leading to the ^{195}mPt isomer is obvious.

Table 1. Measured cross sections for the slow-neutron capture reactions by Ir isotopes. Comparison to the data of [3 – 6] is given in [7].

Target	Product	$T_{1/2}$	$\sigma_{\text{fs, barn}}$	$I_\gamma \text{, barn}$
$^{191}\text{Ir}(3/2^-)$	$^{192}\text{Ir}(4^-)$	73.83 d	550±65	3560±150
	$^{192}\text{mIr}(1^-)$	1.5 min	-	-
	$^{193}\text{mIr}(11^-)$	241 y	-	-
$^{191}\text{Ir}(3/2^-)$	$^{194}\text{Ir}(1^-)$	19.28 h	98±12	1550±90
	$^{194}\text{mIr}(4^-)$	32 ms	-	-
	$^{194}\text{mIr}(10 \text{ or } 11)$	171 d (1.0±2.8) 10^{-3}	0.15±0.05	

2. The ^{195}mPt yield due to double neutron capture (experiment)

The numbers of radioactive atoms accumulated after irradiation time t as a result of single and double neutron capture N_1 and N_2, respectively may be obtained by the solution of linear differential equations taking into account the accumulation and exponential decay law. The following notations are used below: the decay constants λ_1 and λ_2 for the products with mass numbers $(A_t + 1)$ and $(A_t + 2)$, where $\lambda = \ln2/T_{1/2}$, A_t is the mass number of the stable target. Obviously, the yield of products is proportional to the number of target atoms N_0 and is determined by the flux F of neutrons per cm2.s. Let us assume that only thermal neutrons are involved and their cross sections are σ_1 and σ_2. At moderate neutron flux we may neglect the target material exhausting as well as burning-up of the $(A_t + 2)$ product due to the capture of the third neutron.

If necessary (at high fluxes), a factor of burning-up for the $(A_t + 1)$ product may be introduced replacing λ_1 with $(\lambda_1 + \sigma_2 F)$. The resonance neutron contribution is described by similar equations substituting the resonance integral I_γ instead of σ. However, the resonance neutron flux F_r and the Westcott parameter for the activation product must be specified.

As mentioned above, the accumulation of ^{195}mPt (4.01 d) proceeds through the radioactive β^- decay of 3.67 h-lived ^{195}mIr. This means that the longer-lived product is formed after the decay of the short-lived predecessor. The half-life 3.67 h of ^{195}Ir is much shorter than a typical irradiation time comparable to the half-life of a product. Therefore, it is logical to assume that ^{195}mIr is transformed to ^{195}mPt with no time delay and the parameter λ_2 corresponds to the decay of ^{195}mPt (4.01 d). Definitely, the population efficiency $k = 0.40$ for the final product must also be introduced into Eq. (2) as a reducing factor. The cross section of ^{195}mIr activation at the first step is known, but the branch leading to the 195mIr isomer at the second step remained uncertain until now. In the present experiment, the corresponding cross section and the resonance integral were successfully determined at IBR-2 using the fluxes about $2.3\cdot10^{12}$ and $2.0\cdot10^{13}$ n/cm2s for thermal and resonance neutrons, respectively.
The method of Cd-difference was applied when two enriched 193Ir(98.5%) targets of 20 mg weight each were exposed at the vertical channel of the IBR-2 reactor, FLNP, JINR. The targets with and without Cd shielding were irradiated during the 17–d reactor run. Metal foils of Ta served as spectators. The Ir samples were dissolved by electrochemical method for consequent isolation of the Pt fraction applying the chromatography. Gamma spectroscopy with HP Ge detector was used for the activity measurements. The dissolving yield was calibrated by the 192Ir activity (present due to the 191Ir admixture), while the Pt isolation method was tested elsewhere. Finally, the gamma lines of $^{195}_{\text{m}}$Pt decay were measured with a good statistical accuracy, and the production process $^{194}\text{Ir} (n, \gamma) \rightarrow ^{195}_{\text{m}}\text{Ir}$ is characterized by the following values: $\sigma_\text{th} = 5150 \text{ b}$ and $I_\gamma = 295 \text{ b}$ including the reduction factor due to the β– decay branch.

The cross sections determined now are enough to evaluate the activity yield at the high neutron flux about $2.5 \times 10^{15} \text{ n/cm}^2\text{s}$, as at the Oak Ridge reactor. In calculations one must take into account that the N_1 intermediate product is partially exhausted due to the second neutron capture. Then, the equilibrium activity of $^{195}_{\text{m}}\text{Pt}$ may reach 1.0 Ci per mg of the 193Ir target material (more details are given below). This value of activity satisfies the requirements for production of great specific-activity solutions necessary for radiotherapy applications. Of course, proper technical tools and methods must be developed for the chemical processing of intense β,γ-ray sources.

3. Nuclear and astrophysical consequences

A high cross section is obtained for the double-neutron capture process $^{193}\text{Ir} (n,\gamma)^{194}\text{Ir} (n,\gamma)^{195}_{\text{m}}\text{Ir} (3.67 \text{ h}) \rightarrow ^{195}_{\text{m}}\text{Pt}$. Taking into account the efficiency of the β– decay branch leading to $^{195}_{\text{m}}\text{Pt}$, one immediately deduces the values of $\sigma_\text{th} = 12900 \text{ barns}$ and $I_\gamma = 740 \text{ b}$ characterizing the constituent $^{194}\text{Ir}(n, \gamma)^{195}_{\text{m}}\text{Ir}(11/2^-)$ reaction. The decay branch of low-spin $^{195}_{\text{m}}\text{Ir}(3/2^+)$ to $^{195}_{\text{m}}\text{Pt}(13/2^+)$ was not observed being negligible [1]. In reaction the cross section for the 2.29 h-lived products must exceed by an order of magnitude the observed one for the population of isomeric $^{195}_{\text{m}}\text{Ir}(11/2^-)$ state as follows from the typical isomer-to-ground state ratios depending on the spin for (n, γ) products [9]. Therefore, a total capture cross section for the short-lived $^{194}\text{Ir}(19.28 \text{ h})$ target nuclide must be extremely high (105 barns) unlike the cross section assumed in [10]. This is a surprising result in itself. In addition, a high cross section of 10^5 barns must result in the great effect of exhausting for the intermediate ^{194}Ir nuclide with the suppression of the final $^{195}_{\text{m}}\text{Pt}$ product yield. In particular, for calculation one has to substitute in Eq. (2) the value $0.40\sigma_\gamma$ instead of σ_γ and $(\lambda_1 + \sigma_\gamma F)$ instead of λ, where σ_γ corresponds to the population branch of $^{195}_{\text{m}}\text{Ir}$ after neutron capture and σ_γ to a total cross section of neutron capture by ^{194}Ir. Within the indicated choice of values the yield of $^{195}_{\text{m}}\text{Pt}$ is calculated as a function of the irradiation time t and neutron flux F. From Figure 1 it can be seen that the saturation with time is reached earlier, than in $2T_{1/2}$, and at lower values of N_2. In addition, almost linear dependence of the yield on the flux is observed, instead of the flux square F^2 function predicted assuming a negligible burn-up effect.

![Figure 1](image-url). Calculated number of produced $^{195}_{\text{m}}\text{Pt}$ nuclei as a function of time (a) and neutron flux (b).
Experimentally observed neutron cross sections deduced here for radioactive 194Ir target is comparable to the highest thermal cross sections known over the nuclide chart and it requires an appropriate interpretation, probably, due to a strong compound resonance exactly near the neutron binding energy in 195Ir. Both m and g products of 195Ir reach the 195Pt ground state after decay, and the known abundance of stable 195Pt isotope comprises the production through the double-neutron capture by 195Ir.

In the same experiment the spectator 194Ta targets were also irradiated and the second-step 192Ta(n, γ)193Ta reaction demonstrated values of $\sigma_n = 25300 \, \text{b}$ and $I_\gamma = 16600 \, \text{b}$ substantially exceeding the tabular data [3]. Meanwhile, the cross section 47000 b was reported for 182Ta in the publication [11] not specifying σ_n and I_γ. The numerical values given here (except the estimate $10^5 \, \text{b}$ for 194Ir) were obtained with the standard deviation about 10% including the errors due to the calibration and recalculations. A high value of $\sigma_n = 25100 \, \text{b}$ was obtained in [3] for the neutron capture by radioactive 198Au with production of 199Au and then 199Hg after β^- decay. Measured cross sections for radioactive odd-odd nuclides, such as 182Ta, 194Ir, and 198Au are given in Table 2. The natural abundances of 183W, 195Pt, and 199Hg nuclides are correspondingly 14.3, 33.8, 16.9%, and may include a contribution from the double neutron capture at stellar nucleosynthesis. In general, the double neutron capture way differs from the standard s- and r-processes. The second neutron capture occurs prior the β^- decay of the first capture product (unlike the s-process), while the capture of the third and further neutrons is improbable (unlike the r-process).

Table 2. Parameters of the thermal and resonance-neutron capture reactions measured in the present work for radioactive odd-odd isotopes of 182Ta, 194Ir and the known data [3] for 198Au.

(n, γ) reaction	Neutron number	E^*, MeV	σ_{th}, b	I_γ, b
182Ta\rightarrow^{183}Ta	109\rightarrow110	6.934	25300	16600
194Ir\rightarrow^{195}Ir	117\rightarrow118	7.232	m	12900
			total $\approx 10^5$	$\approx 10^4$
198Au\rightarrow^{199}Au	119\rightarrow120	7.584	25100	

Figure 2. Processes leading to the synthesis of 183W, 195Pt, and 199Hg isotopes through the double neutron capture reaction in addition to the standard s-process way.
Concerning the nucleosynthesis one must realize that the room-temperature conditions differ strongly from the typical ones in the Universe. A great variety of conditions exists in the Universe, but neutrons are generated within dense and hot sites. Produced neutrons are moderated to reach the temperature of the surrounding matter. The temperature value $T \geq 10^6$ K approximately corresponds to the neutron energy $E_n \geq 100$ eV. The room-temperature thermal cross sections determined in the laboratory conditions are not applicable to the evaluation of nucleosynthesis at stellar conditions. Even the resonance integral for heavy nuclei results mostly from the neutron energies (1-10) eV which are lower than the thermal energies in Universe.

Our conclusion about the productive role of the double neutron capture seems doubtful, but this verdict is not absolute. Indeed, the Maxwell distribution for neutron kinetic energies involves the asymptotic $W(E) \sim E^{-1/2}$ at $E \to 0$. At the same time, the neutron absorption cross section in geometrical approximation is expressed with the factor $\sigma \sim E^{-1/2}$. Therefore, the reaction yield in the general case remains almost constant at low energies. The high thermal cross section at laboratory conditions may arise only due to the presence of a strong resonance at the neutron energy about zero. This resonance changes the asymptotics of σ providing a strong enhancement and the significant reaction yield even despite a high temperature of the moderator in stellar conditions. Our measured cross sections for 182Ta and 194Ir together with the known data [3] for 198Au are just the cases of strong enhancement of cross sections by the resonance at $E \to 0$. The possibility of synthesis of 183W, 195Pt, and 199Hg isotopes is illustrated in Figure 2.

4. Summary

Production and chemical isolation of 195mPt isomeric activity is of interest for radiotherapy of patients. The efficiency of double neutron capture reaction for accumulation of 195mPt is now proved by the experiment on irradiation of the 193Ir enriched target at the IBR-2 reactor. A high cross section is obtained for the neutron capture reaction by radioactive 194Ir nuclide. The 194Ir targets were also irradiated over the experiment as spectators and they demonstrated a high cross section for the second neutron capture by radioactive 198Au. The cross sections of neutron capture by the odd-odd radioactive targets, such as 194Ir, 182Ta, and 198Au, exceeding 10^4 b are of importance for understanding within the nuclear reaction theory. On the other hand, the natural isotope abundances are influenced due to the observed high probability of the double-neutron capture process, in particular, for the production of 183W, 195Pt, and 199Hg isotopes.

References
[1] Zhou Chunmei 1999 Nucl. Data Sheets 86 645; Huang Xialong and Kang Mengxiao 2014 Nucl. Data Sheets 121 395
[2] Russ) Knapp F F Jr, Mirzadeh S, Beets A L and M. Du 2005 J. Radioanal. Nucl. Chem. 263 503
[3] Mughabghab S F 2006 Atlas of Neutron Resonances 5th Edition (Brookhaven: NNDC);
Mughabghab S F (2006) Neutron Cross Sections 1 Part B (New York: Academic)
[4] 2012 Evaluated Data Library ENDF/B-VII//BNL-98403-2012-JA (Brookhaven)
[5] Magil J, Pfennig G and Galy G 2006 Karlsruher Nuclidkarte 7th Edition (Karlsruhe)
[6] Horiguchi T, Tachibana T, Koura H, Katakura J 2000 Chart of Nuclides (Ibaraki: Nucl. Data Center)
[7] Karamian S A, Aksenov N V, Albin Y A, Belov A G, Bozhikov G A, Dmitriev S N and Starodub G Y 2014 Bull. Rus. Acad. Sciences. Phys. 78 367
[8] Karamian S A 2013 Phys. Atom. Nucl. 76 1437
[9] Karamian S A and Carroll J J 2006 High Energy Density Phys. 2 48
[10] Calvin G G, Börner H G, Geltenbort P, Hoyler F, Kerr S A, Schrekenbach K and Cizewski J A 1987 Nucl. Phys. A 465 240
[11] Der Mateosian E 1955 Phys. Rev. 97 1023