WSES consensus conference guidelines: monitoring and management of severe adult traumatic brain injury patients with polytrauma in the first 24 hours

Edoardo Picetti 1*, Sandra Rossi 1, Fikri M. Abu-Zidan 2, Luca Ansaloni 3, Gian Luca Baiocchi 5, Miklosh Bala 6, Zsolt J. Balogh 7, Maurizio Berardino 8, Walter L. Biffl 9, Pierre Bouzat 10, Andras Buki 11,12, Marco Ceresoli 13,14, Randall M. Chesnut 15, Osvaldo Chiara 16, Giuseppe Citerio 14,17, Federico Coccolini 3, Raul Coimbra 18, Salomone Di Saverio 19, Gustavo P. Fraga 20, Deepak Gupta 21, Raimund Helbok 22, Peter J. Hutchinson 23,24, Andrew W. Kirkpatrick 25, Takahiro Kinoshita 26, Yoram Kluger 27, Ari Leppaniemi 28, Andras I. R. Maas 29, Ronald V. Maier 30, Francesco Minardi 1, Ernest E. Moore 31, John A. Myburgh 32, David O. Okonkwo 33, Yasuhiro Otomo 34, Sandro Rizoli 13,35, Andres M. Rubiano 36,37, Juan Sahquillo 38, Massimo Sartelli 39, Thomas M. Scalea 40, Franco Servadei 41, Philip F. Stahel 42, Nino Stocchetti 43,44, Fabio S. Taccone 45, Tommaso Tonetti 1, George Velmahos 46, Dieter Weber 47 and Fausto Catena 48

Abstract

The acute phase management of patients with severe traumatic brain injury (TBI) and polytrauma represents a major challenge. Guidelines for the care of these complex patients are lacking, and worldwide variability in clinical practice has been documented in recent studies. Consequently, the World Society of Emergency Surgery (WSES) decided to organize an international consensus conference regarding the monitoring and management of severe adult TBI polytrauma patients during the first 24 hours after injury. A modified Delphi approach was adopted, with an agreement cut-off of 70%. Forty experts in this field (emergency surgeons, neurosurgeons, and intensivists) participated in the online consensus process. Sixteen recommendations were generated, with the aim of promoting rational care in this difficult setting.

Keywords: Traumatic brain injury, Polytrauma, Bleeding, Hemorrhage, Monitoring, Management

Introduction

Traumatic brain injury (TBI), both isolated and in combination with extra-cranial lesions, is a global health problem associated with high mortality and disability [1, 2]. In addition, post-traumatic bleeding is a leading cause of preventable death among injured patients [3–5]. A multicenter observational study, involving 1536 trauma patients, identified exsanguination as the most frequent cause of early death [5]. The same study, however, found TBI as the most common cause of delayed mortality and disability [5]. Therefore, the combination of brain damage and extra-cranial injuries, causing bleeding, shock, and arterial hypotension, is especially challenging. On the one hand, bleeding can be rapidly life-threatening and has to be corrected promptly; in this regard, various strategies, often including “permissive arterial hypotension”, have been proposed [6–10]. On the other hand, arterial hypotension may exacerbate cerebral secondary damage and is associated with further worsening of the outcome [11].

A recent international survey revealed great variability in clinical practice during the acute phase management of polytrauma patients with TBI [12]. Moreover, guidelines regarding optimal monitoring and management strategies in this setting are lacking [10, 13]. Considering
the above, the World Society of Emergency Surgery (WSES) promoted an international consensus conference on monitoring and management of severe adult TBI polytrauma patients during the first 24 hours after injury.

Methods
A modified Delphi approach was adopted. Three subsequent online questionnaires were administered between January and May 2019. The agreed cut-off for the consensus was defined as 70% of experts in agreement, in keeping with recent initiatives in this field [14, 15]. Forty experts (emergency surgeons, neurosurgeons, and intensivists) in the management of severe TBI patients with polytrauma [Abbreviated Injury Score (AIS) ≥ 3 at least in 2 body regions] participated in the consensus process (see Appendix 1 in Additional file 1). Consensus statements were developed by 3 authors (EP, NS, and FC) based on a non-systematic literature search and evaluated by the expert panel through an electronic consultation. Sixteen recommendations related to monitoring and management of adult severe TBI patients with polytrauma in the acute phase (first 24 hours) were generated. Once a consensus (> 70% agreement) for each statement was achieved, a summary guideline, together with a corresponding algorithm, was circulated to all participants for the final acceptance. A summary of the data was presented and discussed at the 6th International WSES meeting held in Nijmegen (The Netherlands) from 26 to 28 June 2019. The present paper was drafted after the meeting and distributed to all participants for review and final approval before submission.

Notes on the use of the current consensus
The aim of this consensus is to support clinician’s decision-making in the management of bleeding TBI polytrauma patients in the first 24 hours after injury. The included statements are created to assist the physician’s clinical judgment, which is necessary to provide appropriate (personalized) therapy. Advanced neuromonitoring and specific management strategies that can be indicated in a later stage are not addressed. Considering the lack of high-quality studies in this setting, we adopted a modified Delphi approach involving experts from different countries worldwide; this approach is probably less rigorous than evidence-based guidelines [13]. However, we think that our methodology can provide useful recommendations in this challenging clinical scenario.

The practice guidelines promulgated in this work do not represent a standard of practice. They are suggested plans of care, based on best available evidence and the consensus of experts, but they do not exclude other approaches as being within the standard of practice. However, responsibility for the results of treatment rests with those who are directly engaged therein, and not with the consensus group.

Results
Agreement was reached on sixteen recommendations (Table 1); they are listed below with the percentage of agreement and associated comments. Figure 1 shows the consensus algorithm.

Recommendation 1
All exsanguinating patients (life-threatening hemorrhage) require immediate intervention (surgery and/or interventional radiology) for bleeding control.
Agreement: 100%.

Recommendation 2
Patients without life-threatening hemorrhage or follow-up measures to obtain bleeding control (in case of life-threatening hemorrhage) require urgent neurological evaluation [pupils + Glasgow Coma Scale (GCS) motor score (if feasible), and brain computed tomography (CT) scan] to determine the severity of brain damage (life-threatening or not).
Agreement: 100%.

Recommendation 3
After control of life-threatening hemorrhage is established, all salvageable patients with life-threatening brain lesions require urgent neurosurgical consultation and intervention.
Agreement: 100%.

Recommendation 4
Patients (without or after control of life-threatening hemorrhage) at risk for intracranial hypertension (IH)* (without a life-threatening intracranial mass lesion or after emergency neurosurgery) require intracranial pressure (ICP) monitoring regardless of the need of emergency extra-cranial surgery (EES) [16, 17].
* = patients in coma with radiological signs of IH.
Agreement: 97.5%.

Recommendation 5
We recommend maintaining systolic blood pressure (SBP) > 100 mmHg or mean arterial pressure (MAP) > 80 mmHg during interventions for life-threatening hemorrhage or emergency neurosurgery. In cases of difficult intraoperative bleeding control, lower values may be tolerated for the shortest possible time.
Agreement: 82.5%.
We recommend red blood cell (RBC) transfusion for hemoglobin (Hb) level < 7 g/dl during interventions for life-threatening hemorrhage or emergency neurosurgery. Higher threshold for RBC transfusions may be used in patients “at risk” (i.e., the elderly and/or patients with limited cardiovascular reserve due to pre-existing heart disease). Agreement: 97.5 %.
Recommendation 7
We recommend maintaining an arterial partial pressure of oxygen (PaO2) level between 60 and 100 mmHg during interventions for life-threatening hemorrhage or emergency neurosurgery.

Agreement: 95%.
Recommendation 8
We recommend maintaining an arterial partial pressure of carbon dioxide (PaCO2) level between 35 and 40 mmHg during interventions for life-threatening hemorrhage or emergency neurosurgery.
Agreement: 97.5%.

Recommendation 9
In cases of cerebral herniation, awaiting or during emergency neurosurgery, we recommend the use of osmotherapy and/or hypocapnia (temporarily).
Agreement: 90%.

Recommendation 10
In cases requiring intervention for life-threatening systemic hemorrhage, we recommend, at a minimum, the maintenance of a platelet (PLT) count > 50,000/mm³. In cases requiring emergency neurosurgery (including ICP probe insertion), a higher value is advisable.
Agreement: 100%.

Recommendation 11
We recommend maintaining a prothrombin time (PT)/ activated partial thromboplastin time (aPTT) value of < 1.5 normal control during interventions for life-threatening hemorrhage or emergency neurosurgery (including ICP probe insertion).
Agreement: 92.5%.

Recommendation 12
We recommend, if available, that point-of-care (POC) tests [e.g., thromboelastography (TEG) and rotational thromboelastometry ROTEM] be utilized to assess and optimize coagulation function during interventions for life-threatening hemorrhage or emergency neurosurgery (including ICP probe insertion).
Agreement: 90%.

Recommendation 13
During massive transfusion protocol initiation, we recommend the transfusion of RBCs/Plasma/PLTs at a ratio of 1/1/1. Afterwards, this ratio may be modified according to laboratory values.
Agreement: 92.5%.

Recommendation 14
We recommend maintaining a cerebral perfusion pressure (CPP) ≥ 60 mmHg when ICP monitoring becomes available. This value should be adjusted (individualized) based on neuromonitoring data and the cerebral autoregulation status of the individual patient.
Agreement: 95%.

Recommendation 15
In the absence of possibilities to target the underlying pathophysiologic mechanism of IH, we recommend a stepwise approach [18], where the level of therapy, in patients with elevated ICP, is increased step by step, reserving more aggressive interventions, which are generally associated with greater risks/adverse effects, for situations when no response is observed.
Agreement: 97.5%.

Recommendation 16
We recommend the development of protocols, in conjunction with local resources and practices, to encourage the implementation of a simultaneous multisystem surgery (SMS) [including radiologic interventional procedures] in patients requiring both intervention for life-threatening hemorrhage and emergency neurosurgery for life-threatening brain damage.
Agreement: 100%.

Discussion
Critical clinical decisions regarding hemorrhage control in TBI polytrauma patients
Life-threatening hemorrhage is one of the major preventable causes of early death after trauma [3–5]. Therefore, precise and early control of hemorrhage, with associated restoration of circulating blood volume, remains a priority [9, 19, 20]. It is well accepted that hemorrhage can be controlled by damage control surgery and/or interventional radiology [8, 21]. Typically, a basic clinical neurological evaluation (GCS motor score + pupils) with a brain CT scan is necessary both to determine the patient’s salvage-ability and to address the possible need for additional monitoring and urgent neurological intervention [13, 19, 22]. Often, uncontrolled hemorrhage in TBI polytrauma patients may require simultaneous multisystem surgery [23–25]. The main objective should be the control of bleeding and the avoidance/minimization of secondary brain insults. This approach, frequently adopted in the war trauma setting, but rarely in the civilian one, requires established protocols and a strict collaboration between different surgical teams (including interventional radiologists) [23]. Kinoshita et al. performed a retrospective study to evaluate the efficacy of a hybrid emergency room (capable of deploying SMS) on functional outcomes in TBI polytrauma patients [24]. This system was significantly associated with both shorter times to initiate CT scanning/emergency surgery and fewer unfavorable outcomes at 6 months post-injury. The results of a recent survey [12] showed that, although few centers are currently equipped to perform SMS for hemorrhage in TBI polytrauma patients, the majority of the responding centers considered the ability to perform SMS as important, very important, or even mandatory. Although this consensus reinforces the
The presence of hypoxia, historically and pathophysiologically defined as a peripheral oxygen saturation (SpO2) < 90% (corresponding near to a PaO2 of 60 mmHg), has been associated with poor outcomes in TBI patients both in the pre-hospital and in-hospital setting [27, 33, 34]. A retrospective study, enrolling 3420 severe TBI patients, showed that both a PaO2 < 110 mmHg and a PaO2 > 487 mmHg were associated with increased mortality and worsened neurological outcomes [35]. Another retrospective study, involving 1547 severe TBI patients, reported (1) an association between early (within 24 hours from admission) hyperoxia (defined as a PaO2 > 200 mmHg) and mortality/short-term functional outcomes (lower GCS discharge scores), and (2) an association between a PaO2 < 100 mmHg and mortality [36]. The authors suggest that the negative effects of hyperoxia may have been related to hyperoxia-induced oxygen-free radical toxicity. However, a transient hyperoxia, achieved by increasing the oxygen content and delivery, may be potentially beneficial in trauma patients with severe anemia [37]. Hypocapnia, induced by hyperventilation, is also known to be associated with the risk of development of cerebral ischemia [38] and worsened neurological outcome after TBI [39]. Moreover, in cases of hypovolemia, an increase in airway pressure (sometimes associated with hyperventilation) can reduce venous return, thereby inducing or exacerbating arterial hypotension [40].

Platelets are known to play a key role in hemostasis after trauma [41]. A reduction in PLT count is associated with an increase in mortality and the progression of post-traumatic intracranial bleeding [42–44]. Recent guidelines recommend the maintenance of a PLT count > 50,000/mm³ (grade 1 C) in polytrauma patients and further recommend a more stringent cut-off (> 100,000/mm³) in case of ongoing bleeding and/or TBI (grade 2 C) [44]. Furthermore, coagulopathy is frequently observed after trauma and is often associated with increased mortality [41, 45]. In TBI polytrauma patients, coagulopathy is associated with intracranial bleeding progression and unfavorable neurological outcomes [46, 47].

Massive transfusion is frequently utilized in trauma patients [19, 20]. The Pragmatic Randomized Optimal Platelet and Plasma Ratios (PROPPR) study, involving 680 trauma patients with major bleeding, was performed to determine the safety and the effectiveness of a transfusion strategy involving plasma, PLTs, and RBCs in a 1:1:1 ratio compared with a 1:1:2 ratio. This study showed that none of the strategies resulted in significant differences in mortality. However, more patients in the 1:1:1 group achieved hemostasis and fewer experienced death due to exsanguination within the first 24 hours [47]. Given the negative effects of coagulopathy on TBI (42–44, 46–47), we recommend the initiation of a transfusion protocol of RBCs/plasma/PLTs at a ratio of 1:1:1. This ratio may be modified afterwards according to laboratory values.
Point-of-care tests (i.e., TEG, ROTEM, etc.) are increasingly used in the evaluation of coagulation function in trauma patients with hemorrhagic complications [10, 20, 41]. These tests can be utilized to obtain a rapid assessment of hemorrhage and to assist in clinical decision-making; they can further provide critical information about specific coagulation deficiencies [10, 41, 49]. Moreover, they can be particularly useful in patients taking novel oral anticoagulants (NOACs) and in the evaluation of PLT dysfunction induced by trauma and/or drugs [10]. In light of the above, these tests may be useful in TBI polytrauma patients [50].

Conclusions
Future studies are needed and should be encouraged to improve clinical outcomes in this challenging setting. In the absence of more compelling data, the present practical consensus conference was intended to establish and provide a shared, multidisciplinary approach to deliver the best possible care during the very early stages of management of TBI polytrauma patients.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.1186/s13017-019-0270-1.

Additional file 1. Appendix 1. List of participants.

Abbreviations
AIS: Abbreviated Injury Score; aPTT: Activated partial thromboplastin time; BTF: Brain Trauma Foundation; CPP: Cerebral perfusion pressure; CT: Computed tomography; EES: Emergency extra-cranial surgery; GCS: Glasgow Coma Scale; Hb: Hemoglobin; ICP: Intracranial pressure; IH: Intracranial hypertension; MAP: Mean arterial pressure; NOACs: Novel oral anticoagulants; PaCO2: Arterial partial pressure of carbon dioxide; PaO2: Arterial partial pressure of oxygen; PLT: Platelet; POC: Point-of-care; PROPPR: Pragmatic Randomized Optimal Platelet and Plasma Ratios; PT: Prothrombin time; RBC: Red blood cell; ROTEM: Rotational thromboelastometry; SBP: Systolic blood pressure; SMS: Simultaneous multisystem surgery; SpO2: Peripheral oxygen saturation; TBI: Traumatic brain injury; TEG: Thromboelastography; TRICC: Transfusion Requirements in Critical Care; WSES: World Society of Emergency Surgery

Acknowledgements
None.

Authors’ contributions
EP, SR, NS, and FC have designed the study. EP has performed acquisition of data. EP has done the analysis and interpretation of data. EP, SR, NS, and FC have drafted the article. All authors have revised it critically for important intellectual content. All authors have given final approval of the version to be submitted.

Funding
The authors have not received any funding for this work.

Availability of data and materials
The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
AWK has consulted for the Innovative Trauma Care and Acetyl Corporations. PFS is the co-inventor of the US patent no. 11.441.828 entitled: “Inhibition of the alternative complement pathway for treatment of traumatic brain injury, spinal cord injury, and related conditions.” All other authors declare that they have no competing interests.

Author details
1Department of Anesthesia and Intensive Care, Parma University Hospital, Via Gramsci 14, 43100 Parma, Italy. 2Department of Surgery, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates. 3Department of General and Emergency Surgery, Bufalini Hospital, Cesena, Italy. 4Department of Neurosurgery, Georgetown University School of Medicine, Washington, DC, USA. 5Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy. 6Trauma and Acute Care Surgery Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel. 7Department of Traumatology, John Hunter Hospital, University of Newcastle, Newcastle, NSW, Australia. 8Department of Anesthesiology, CTO Hospital, Turin, Italy. 9Division of Trauma and Acute Care Surgery, Scripps Memorial Hospital, La Jolla, CA, USA. 10Department of Anaesthesiology and Critical Care, Grenoble Alps Trauma Center, University Hospital of Grenoble-Alpes, Grenoble Cedex, France. 11Department of Neurosurgery, Medical School, University of Pecs, Pecs, Hungary. 12János Szentágothai Research Centre, University of Pécs, Pecs, Hungary. 13Department of General and Emergency Surgery, ASST, San Gerardo Hospital, Monza, Italy. 14School of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy. 15Department of Neurological Surgery, University of Washington, Harborview Medical Center, Seattle, WA, USA. 16General Surgery and Trauma Team, University of Milano, ASST Niguarda Milano, Milan, Italy. 17Neuro-Intensive Care, Department of Emergency and Intensive Care, ASST, San Gerardo Hospital, Monza, Italy. 18Riverside University Health System Medical Center, Loma Linda University School of Medicine, Moreno Valley, CA, USA. 19Colorectal Unit, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK. 20Division of Trauma Surgery, Hospital de Clincas, School of Medical Sciences, University of Campinas, Campinas, Brazil. 21Department of Neurosurgery, All India Institute of Medical Sciences and associated Jai Prakash Narain Apex Trauma Centre, New Delhi, India. 22Department of Neurology, Neurocritical Care Unit, Medical University of Innsbruck, Innsbruck, Austria. 23Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke’s Hospital and University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK. 24NIHR Global Health Research Group on Neurotrauma, University of Cambridge, Cambridge, UK. 25Departments of General Acute Care, Abdominal Wall Reconstruction and Trauma Surgery, Foothills Medical Centre, Calgary, AB, Canada. 26Division of Trauma and Surgical Critical Care, Osaka General Medical Center, Osaka, Japan. 27Department of General Surgery, Rambam Health Campus, Haifa, Israel. 28Abdominal Center, Helsinki University Hospital Meilahti, Helsinki, Finland. 29Department of Neurosurgery, Antwerp University Hospital and University of Antwerp, Edegem, Belgium. 30Department of Surgery, Harborview Medical Centre, University of Washington School of Medicine, Seattle, WA, USA. 31Department of Trauma Surgery, Denver Health, Denver, CO, USA. 32Department of Intensive Care Medicine, St. George Clinical School, University of New South Wales and The George Institute for Global Health, Sydney, Australia. 33Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA. 34Trauma and Acute Critical Care Centre, Medical Hospital, Tokyo Medical and Dental University, Tokyo, Japan. 35Department of Surgery, Trauma Surgery, Hamad General Hospital, Doha, Qatar. 36INUB/MEDITECH Research Group, El Bosque University, Bogotá, Colombia. 37MEDITECH Foundation, Clinical Research, Cali, Colombia. 38Neurosurgery Department, Vall d’Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain. 39General Surgery, Macerata Hospital, Macerata, Italy. 40R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD, USA. 41Department of Neurosurgery, Humanitas University and Research Hospital, Milan, Italy. 42College of Osteopathic Medicine, Rocky Vista University, Parker, CO, USA. 43Neuro ICU Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico, Milan, Italy. 44Department of Physiotherapy and Transplantation, Milan University, Milan, Italy. 45Department of Intensive Care, Erasme Hospital, Belgium.
References

1. Maas AIR, Menon DK, Adelson PD, Andelic N, Bell MJ, Belli A, et al. InTBIr Participants and Investigators. Traumatic brain injury: integrated approaches to improve prevention, clinical care, and research. Lancet Neurol. 2017; 16(12):1087–1094.

2. Dewan MC, Rattani A, Gupta S, Baticulan RE, Hung YC, Punchak M, et al. Estimating the global incidence of traumatic brain injury. J Neurosurg. 2019; 130(10):80–97.

3. Telveita PG, Inaba K, Hadjizacharia P, Brown C, Salim A, Rhee P, et al. Preventable or potentially preventable mortality at a mature trauma center. J Trauma. 2007;63(6):1338–46.

4. Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2095–2128.

5. Callcut RA, Kombith L2, Conroy AS, Robles AJ, Meizoso JP, Namias N, et al. Western Trauma Association Multicenter Study Group. The why and how our trauma patients die: a prospective Multicenter Western Trauma Association study. J Trauma Acute Care Surg. 2019;86(5):864–70.

6. Dutton RP, Mackenzie CF, Scalea TM. Hypotensive resuscitation during active hemorrhage: impact on in-hospital morbidity. J Trauma. 2002;52(6):1141–6.

7. Jansen JD, Thomas R, Loudon MA, Brooks A. Damage control resuscitation for patients with major trauma. BMJ. 2009;338:b1778.

8. Gruen RL, Brohi K, Schreiber M, Balogh ZJ, Pitt V, Narayan M, et al. Haemorrhage control in severely injured patients. Lancet. 2012;380(9847):1099–108.

9. Langan NR, Eckert M, Martin MJ. Changing patterns of in-hospital deaths following implementation of damage control resuscitation practices in US forward military treatment facilities. JAMA Surg. 2014;149(9):904–12.

10. Spahn DR, Bouillon B, Cerny V, Duranteau J, Filipescu D, Hunt BJ, et al. The American College of Surgeons. Advanced Trauma Life Support® Student Manual. 9th Edition. Chicago: American College of Surgeons; 2014.

11. Galvagno SM Jr, Fox EE, Appana SN, Baraniuk S, Bosarge PL, Bulger EM, et al. Adverse effects of prolonged hyperventilation in patients with severe head trauma. J Neurosurg. 1991;75(5):731–9.

12. Chesnut R, Videtta W, Vespa P, Le Roux P; Participants in the International Multidisciplinary Consensus Conference on Multimodality Monitoring. Intracranial pressure monitoring: fundamental considerations and rationale for monitoring. Neurocrit Care. 2014; 21 Suppl 2: S54–S84.

13. Stocchetti N, Maas AI. Traumatic intracranial hypertension. N Engl J Med. 2014;370(22):2121–30.

14. American College of Surgeons. Advanced Trauma Life Support® Student Manual. 9th Edition. Chicago: American College of Surgeons; 2014.

15. Andrews PJD, Verma V, Healy M, Lavini A, Curtis C, Reddy U, et al. Targeted temperature management in patients with intracranial haemorrhage, subarachnoid haemorrhage, or acute ischaemic stroke: consensus recommendations. Br J Anaesth. 2018;121(4):768–75.

16. Stocchetti N, Picetti E, Berardino M, Buki A, Chesnut RM, Fountas KN, et al. Clinical applications of intracranial pressure monitoring in traumatic brain injury: report of the Milan consensus conference. Acta Neurochir. 2014; 156(8):1615–22.
40. Davis DP. Early ventilation in traumatic brain injury. Resuscitation. 2008;76(3):333–40.
41. Komblih LZ, Moore HB, Cohen MJ. Trauma-induced coagulopathy: The past, present, and future. J Thromb Haemost. 2019;17(6):852–62.
42. Stansbury LG, Hess AS, Thompson K, Kramers R, Scales TM, Hess JR. The clinical significance of platelet counts in the first 24 hours after severe injury. Transfusion. 2013;53(4):783–9.
43. Schnurriger B, Inaba K, Abdelsayed GA, Lustenberger T, Eberle BM, Barmadas G, et al. The impact of platelets on the progression of traumatic intracranial hemorrhage. J Trauma. 2010;68(4):881–5.
44. Joseph B, Pandit V, Meyer D, Butvidas L, Kulvatunyou N, Khalil M, et al. The significance of platelet count in traumatic brain injury patients on antiplatelet therapy. J Trauma Acute Care Surg. 2014;77(3):417–21.
45. MacLeod JB, Lynn M, McKenney MG, Cohn SM, Murtha M. Early coagulopathy predicts mortality in trauma. J Trauma. 2003;55(1):39–44.
46. Allard CB, Scarpelini S, Rhind SG, Baker AJ, Shek PN, Tien H, et al. Abnormal coagulation tests are associated with progression of traumatic intracranial hemorrhage. J Trauma. 2009;67(5):959–67.
47. Yuan Q, Sun YR, Wu X, Yu J, Li ZQ, Du ZY, et al. Coagulopathy in traumatic brain injury and its correlation with progressive hemorrhagic injury: a systematic review and meta-analysis. J Neurotrauma. 2016;33(14):1279–91.
48. Holcomb JB, Tilley BC, Baraniuk S, Fox EE, Wade CE, Podbielski JM, et al. PROPPR Study Group. Transfusion of plasma, platelets, and red blood cells in a 1:1:1 vs a 1:1:2 ratio and mortality in patients with severe trauma: the PROPPR randomized clinical trial. JAMA. 2015;313(5):471–82.
49. Moore EE, Moore HB, Chapman MP, Gonzalez E, Sausa A. Goal-directed hemostatic resuscitation for trauma induced coagulopathy: maintaining homeostasis. J Trauma Acute Care Surg. 2018;84(6 Suppl 1):S33–540.
50. Kvint S, Schuster J, Kumar MA. Neurosurgical applications of viscoelastic hemostatic assays. Neurosurg Focus. 2017;43(5):E9.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.