Expression of leptin and leptin receptors in colorectal cancer - an immunohistochemical study

Saad M Al-Shibli, Norra Harun, Abdelkader E Ashour, Mohd Hanif B Mohd Kasmuri, Shaikh Mizan

1 Department of Basic Medical Sciences, International Islamic University, Kuantan, Pahang, Malaysia
2 Pathology Department, Hospital Tengku Ampuan Afzan, Kuantan, Pahang, Malaysia
3 Department of Pathology & Laboratory Medicine, International Islamic University, Kuantan, Pahang, Malaysia

Corresponding Author: Shaikh Mizan
Email address: shaikhmizan2015@gmail.com

Obesity is demonstrated to be a risk factor in the development of cancers of various organs, such as colon, prostate, pancreas and so on. Leptine (LEP) is the most renowned of the adipokines. As a hormone, it mediates its effect through leptin receptor (LEPR), which is widely expressed in various tissues including colon mucosa. In this study, we have investigated the degree of expression of LEP and LEPR in colorectal cancer (CRC). We collected 44 surgically resected colon cancer tissues along with normal adjacent colon tissue (NACT) from a sample of CRC patients from Malaysian population and looked for leptin and leptin receptor using immunohistochemistry (IHC). All the samples showed low presence of both LEP and LEPR in NACT. While both LEP and LEPR were present at high intensity in the cancerous tissues with 100% and 97.7% prevalence respectively. Both were sparsed in the cytoplasm and were concentrated beneath the cell membrane. However, we did not find any significant correlation between their expression and pathological parameters like grade, tumor size, and lymph node involvement. Our study further emphasizes the possible causal role of LEP and LEPR with CRC, and also the prospect of using LEPR as a possible therapeutic target.
Expression of leptin and leptin receptors in colorectal cancer - an immunohistochemical study

Saad M. Al-Shibli¹, Norra Harun², Abdelkader E. Ashour¹, Mohd Hanif bin Mohd Kasmuri³, Shaikh Mizan¹

¹ Department of Basic Medical Sciences, Faculty of Medicine, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia.
² Pathology Department, Jalan Tanah Putih Kuantan, 25100 Pahang Darul Makmur, Malaysia
³ Department of Pathology & Laboratory Medicine, Faculty of Medicine, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia.

Corresponding Author:
Shaikh Mizan¹
House 34, Lorong Seri Kuantan 63, Kuantan, Pahang, 25250, Malaysia
Email address: shaikhmizan2015@gmail.com

Abstract

Obesity is demonstrated to be a risk factor in the development of cancers of various organs, such as colon, prostate, pancreas and so on. Leptin (LEP) is the most renowned of the adipokines. As a hormone, it mediates its effect through leptin receptor (LEPR), which is widely expressed in various tissues including colon mucosa. In this study, we have investigated the degree of expression of LEP and LEPR in colorectal cancer (CRC). We collected 44 surgically resected...
colon cancer tissues along with normal adjacent colon tissue (NACT) from a sample of CRC patients from Malaysian population and looked for leptin and leptin receptor using immunohistochemistry (IHC). All the samples showed low presence of both LEP and LEPR in NACT. While both LEP and LEPR were present at high intensity in the cancerous tissues with 100% and 97.7% prevalence respectively. Both were sparsed in the cytoplasm and were concentrated beneath the cell membrane. However, we did not find any significant correlation between their expression and pathological parameters like grade, tumor size, and lymph node involvement. Our study further emphasizes the possible causal role of LEP and LEPR with CRC, and also the prospect of using LEPR as a possible therapeutic target.

Introduction

Adiposity is considered a major health problem of pandemic dimension and involves both developed and developing countries (1–3). Much surpassing its physical and mechanical burden, it comes out as a significant metabolic player in various endocrine and cardiovascular disorders, and has also been demonstrated to be a risk factor in the development of cancers of various organs, such as colon, esophagus, gall bladder, pancreas, kidney, thyroid, prostate, uterus and breast (1,4,5).

Colorectal cancer (CRC) is one of the most common causes of cancer-related death worldwide (6). The epidemiological evidence shows a clear link between colon cancer and obesity (7–9). The two are associated with a sedentary lifestyle, high-energy diets, and limited consumption of vegetables, fruits, and fibers (7–9). The relationship between the two, if any, needs to be studied through deeper investigations.
Adipose tissue synthesizes and secretes a number of hormones and cytokines, also called adipokines, such as leptin (LEP), adiponectin, resistin, apelin, omentin, tumor necrosis factor-a, IL-6, etc. (10–12) The tissue acts upon other organs through the adipokines. The most widely researched and most significant obesity-related adipokine is leptin (LEP) (13–17).

It is established that LEP mediates its action through its receptor (LEPR) (18–20). Therefore, LEPR also has become an important target of research as part of the LEP-LEPR system for humoral control of organs and their functions.

A baffling feature of LEP is that although its most abundant source is white adipose tissue (WAT), it is also secreted by many other tissues; for example, placenta (21,22), stomach (23), mammary gland (24), brain and pituitary, (25), colon (26), ovaries (27), bone and cartilage cells (28), testicles (29), skeletal muscle (30), and so on.

Likewise, the leptin receptor (LEPR) is found in many tissues other than its canonical target organ - the hypothalamus. The receptor is expressed in placenta (31,32), gastric mucosa (33–35), lung (36), endometrium (37), immune cells (38), liver (39), and pancreas (40). Adipose tissue and gastric mucosa also produce forms of LEPR that are soluble in plasma and tissue fluids and remain bound to circulating leptin increasing its half-life (41).

Consistent with the wide occurrence of LEP and LEPR, the system besides its canonical function of balancing food intake and body mass (13,14,16–20,42,43) is found to regulate a plethora of processes and pathways, including growth of and secretion from gastric epithelial cells(33),
secretion of mucin from colonic goblet cells (44); reproduction, bone remodeling, insulin signaling, neuroendocrine function (45) inflammatory response (46,47), regulation of blood pressure, thyroid hormone release, immune factors and cells (23,48,49), pancreatic beta cells, regulation of fat and glucose metabolism, insulin sensitivity, and so on (43).

The most important action of the LEP-LEPR system in relation to tumorigenesis is its growth effects. It has been found to be required as a growth factor for mammary gland (50–52), fetal and neonatal growth (22,53), lung (36), hepatic cells (54), pancreatic \(\beta \) cell growth and function (55), colonic epithelial cells (26), and so on. Bone growth and bone mass are severely reduced in LEP deficient (ob/ob) animals, but it can be restored with the administration of LEP (56). More significantly, the system can interact with a number of other hormonal mediators including insulin, glucagon, the insulin-like growth factors, estrogen, progesterone, growth hormone and glucocorticoids (57). Notably, to execute its growth effects, it has been demonstrated that the system promotes cell proliferation, angiogenesis, mesenchymal transformation, and exerts anti-apoptotic effect (17,58–63), which also are essential requirements of tumorigenesis (14,62,64).

As evidence to the above hypothesis, LEP and LEPR have been demonstrated in unusually high concentration in various cancerous tissues by many authors (65). They are found in high concentration in breast carcinoma (66–68), leukemia (69), as well as prostate (70), esophagus (71), gastric (72), lung (73), adenocarcinomas, etc.

Many authors have reported high presence of LEP in colorectal cancerous cells (74–79). Recently, a study in Saudi Arabia on colorectal tumors has found LEP in a very high percentage (93%) of the samples on immunostaining (80). Nevertheless, some authors reported that in
advanced cancers LEP expression diminishes (72) (74), suggesting silencing of LEP expression in an advanced stage, which indicates the anti-tumorigenic role of the LEP. Again Aparicio et al. have reported that LEP acts as an in vitro growth factor for colon cancer cells, but does not promote tumor growth in vivo (81). Such conflicting reports make the case of LEP in CRC all the more interesting.

Many studies have also demonstrated over-expression of LEPR in colon cancer (26,81–85). Altered patterns of LEPR expression have been reported by a number of authors (46,86–88) It has been proposed that phenotypic variation of LEPR expression may give variants with better prognosis (46,87). Some other authors have reported that in CRC patients, tissue LEP and LEPR are related significantly to the grade of tumor differentiation, depth of bowel wall invasion, and distant metastasis (89). The confounding complexity of LEP-LEPR system in human colon cancer patients obviously demands wider studies.

In this paper, we report an investigation of the degree of expression/presence of both LEP and LEPR using immunohistochemistry in colorectal mucosa in surgically resected CRC specimens from a sample of the Malaysian population.

Materials & Methods

Tissue samples:

A total of 44 paraffin blocks of colorectal cancer (CRC) were taken from the histopathology laboratory in Hospital Tengku Ampuan Afzan (HTAA), Kuantan, Pahang, Malaysia. Colon samples were taken from resected tumors along with the adjacent normal tissue, which was used
as controls. Selection of patients and clinical diagnosis were done in collaboration with the Department of Histopathology at HTAA from January 2017 to May 2018.

The age distribution of the patients were as such: 4(9.1%), 5(11.4%), 8(18.2%), 19(43.2%), 6(13.6%) and 2(4.5%) were in their 30s, 40s, 50s, 60s, 70s, and 80s respectively. Most of the samples were from males 26(59.1%). Most 40(91%) were moderately differentiated, only 2(4.5%) of samples were well differentiated and only 2(4.5%) undifferentiated. Age, sex and tumor grade distribution of the patients are shown in three short Tables 1-3 below.

Tissue collection and preparation

The study protocol will include studying of histopathological samples from 44 patients with colorectal cancer. From the patients' forty-four pairs of histopathological samples, each pair consisting of a sample from the cancer tissue and another from adjacent normal colon tissue (ANCT) were obtained by the histopathological laboratory (HTAA). The tissue samples taken from ANCT of the same patient were considered as controls. All tissue samples were subjected to histopathological examination using immunohistochemistry procedure detailed below.

A rotatory microtome machine was used for sectioning.Trimming and sectioning were done with about 4-5μm thick. All slides were stained with H&E and stored until the histopathological examination was achieved.

All histopathological procedures were conducted at the research laboratories in the Department of Basic Medical Sciences, Faculty of Medicine, International Islamic University Malaysia.
(IIUM), Kuantan, Pahang, Malaysia in collaboration with the Department of Pathology at HTAA.

Immunohistochemistry (IHC)

IHC for Leptin and Leptin receptors were done using Dako Autostainer (Denmark), utilizing the REAL™ EnVision™ Detection System, Peroxidase/Dab+, Rabbit protocols from Dako, Denmark. Tissue sections were made on saline coated glass slides for IHC staining. AB9749 Abcam Rabbit polyclonal to Leptin and AB104403 Abcam Rabbit polyclonal to Leptin Receptor were used.

Anti-leptin antibody and anti-leptin receptor antibody were diluted to 1:1000 and 1:100 respectively by adding the appropriate amount of Dako antibody diluent.

IHC staining was performed using Dako Autostainer according to the manufacturer’s protocol. The IHC-stained tissue sections were counterstained in hematoxylin solution for 15 seconds and were rinsed in running tap water for 5 minutes before differentiating in 1% acid alcohol for 2 dips. The sections were then rinsed in running tap water for 5 minutes. The tissue sections were dehydrated in 70% alcohol for 3 minutes, followed by 80%, 90% and absolute alcohol 2 and 1.5 minutes respectively. Then, the tissue sections were dried in an oven for 10 minutes at 37°C, followed by clearing in xylene twice for 2 minutes. The slides were finally cover-slipped with DPX mounting medium.
IHC stained slides were examined under low and high power magnification using an Olympus BX15 (Tokyo, Japan) light microscope. The result was then analyzed for the expression of leptin and Leptin receptors.

In our study, the immunoreactivity of Leptin and leptin receptor has been examined, by two pathologists, for staining intensity and positively stained cells percentage. The frequency of positive cells was evaluated by applying a semiquantitative method. Staining intensity has been given scores 0, 1, 2, and 3 demonstrating negative, faint, moderate, and strong staining respectively. For simplification of analysis, scores of staining intensity have been grouped as negative, low (1+) and high (2+ and 3+), as was reported previously (74,80)

Statistical analysis

SPSS software (version 22.0) was used for all statistical calculations. Spearman's rho coefficient was used to determine correlations between the variables.

Ethical approvals

The full research protocol was approved by the International Islamic University Malaysia Research Ethical Committee (IREC). The approval reference number is IIUM/ 305/20/4/1/7. Since already recorded data and stored surgical tissue samples were issued no consent was thought necessary or feasible.
Results

Presence of leptin (LEP) and leptin receptor (LEPR) in the cancerous and the normal adjacent colon tissue samples:

We selected 44 out of 56 CRC tissue samples as qualitatively acceptable for the purpose of our study. Among the 44 CRC samples, moderately differentiated (M) tumors were significantly higher compared to well differentiated (W) and undifferentiated (U) samples, 40, 2 and 2 respectively (P<0.01, Chi-square value = 61.714). Among the cancerous tissues, all of the 44 (100%) samples stained strongly (2+ or 3+) for LEP and all but one or 43(97.7%) samples stained strongly for LEPR with the IHC technique. In contrast, all of the 44 normal adjacent colon tissue (NACT) took low stain for both LEP and LEPR. The result is tabulated in Table 4.

Results of the statistical analysis

The difference in the expressions of LEP and LEPR between the cancerous and NACT were very significant (P<0.01, Wilcoxon signed rank test). The statistical values are summarized in Table 5.

However, we did not find any significant correlation between their expression and pathological parameters like grade, tumor size, and lymph node involvement (Table 5).

Discussion

Definite association of obesity with various types of tumors readily drew attention towards its flag bearer hormone leptin (LEP), as it is the humoral mediator through which adipose tissue could exert a direct effect on other organs and processes. As an indispensable part of LEP action
is its receptor (LEPR). In this study we graded staining as 'negative,' 'low,' and 'high' (as elaborated in methodology) and observed presence of both LEP and LEPR in colorectal cancer (CRC) tissue samples in high intensity with high prevalence, 100% and 97.7% respectively (p<0.01) (Table 4). However, adjacent normal colon tissue (ANCT) were weakly and invariably immunostained for both LEP and LEPR (100%). In contrast to the previous report by Koda et al. (74) the distribution of stain in the ANCT was comparatively uniform too (Figure 1).

We do not know of any other report so far that has found such a high occurrence of LEP and LEPR in colonic or any other types of tumors. Numerically nearest prevalence of LEP (not LEPR) has been reported by Al-Maghrabi et al. (80), where LEP has been observed to be present in 93.5% of the CRC cases in the Western Province of Saudi Arabia, but moderate to strong staining in only 22.75% of the cases. While findings of Al-Maghrabi et al. (80) match with those of Jeong et al (79); previous reports by Koda et al. (74) from Europe, Paik et al. (75) from Korea, Liu et al (76) and Wang et al (77) from China showed further lower values (LEP was just present only in 51.2%, 73.5%, 72.1, and 71.3%, respectively). Although the presence of both LEP and LEPR in CRC tissues in this Malaysian sample of the population is strikingly high and interesting, yet it would be premature to draw any conclusion about whether the differences are due to regional, temporal or racial factors, before further independent studies.

Koda et al. (74) have reported that LEP is overexpressed in human CRCs relative to normal colorectal mucosa. While in normal mucosa it is low or undetectable, its level is higher in tissues adjacent to CRCs. But LEP concentration is the highest in moderately differentiated (G2) cancers compared to poorly differentiated (G3) cancers. Similarly, Al-Maghrabi et al. (80)
reported that larger size tumors gave a significantly higher proportion of negative immunostaining. Lower LEP occurrence has also been reported with less differentiated gastric adenocarcinomas, and the authors suggested silencing of LEP/LEPR expression in advanced stages of cancers (72). It is possible that in advanced stages of cancer strong oncogenes takes over the processes and the LEP system is overwhelmed at least in some cases. However, we did not find any negative correlation of LEP with advanced CRC. We had only two undifferentiated cases out of 44, but both the undifferentiated samples immunostained strongly for LEP. However, the number of cases of undifferentiated CRCs are statistically inadequate in our study to draw any conclusion. We did not find any significant correlation of LEP or LEPR staining with tumor grade. Our samples also failed to show any significant correlation either with lymph node involvement or invasion (Table 5). These findings match with those of Al-Maghrabi et al. (80) and Jeong et al. (79), however, they contrast with Koda et al. (74) and Liu et al (76).

Concomitant occurrence of high concentration LEP and LEPR in various cancerous cells are so far explained by co-expression of both in the same cell (67,90,91). However, an alternative explanation might be that overexpression of only LEPR is followed by binding and trapping of the equivalent amount of LEP from circulation. Such a situation would result in overstaining of both in the respective cells. This hypothesis is supported by the findings of Stachowicz et al. (88), who did not find mRNA for LEP in human CRC tissue samples. Interestingly, Erkasap et al. (84) reported over-expression of LEPR mRNA in human metastatic CRCs, but not in CRCs of local origin. On the other hand, some authors reported expression of LEP mRNA in normal colonic cells (92). These controversies demand much more detailed study of the expression of LEP and LEPR through mRNA studies instead of protein staining.
The very high presence of LEPR, as is found in our study, must be very significant as it is the receptor of LEP. Presence of only high level of circulating LEP cannot be sufficient to produce excessive growth promotion leading to cancer, it must need the receptor. The over-expression of LEPR, as we found in one of our previous studies with breast cancer (68), and by many authors with various cancers (46,67,85–87,90,93–95) must be significant in the carcinogenic influence of obesity or LEP. However, the claims by various authors about the effect of LEP-LEPR system in colon cancer are confounding, and maybe even contradictory (82,86,96–101). Some authors reported increased LEP levels in male but not in female CRC patients (96,97). Others showed that LEP expression in cancer tissue rises as carcinogenesis progresses (74,75) and that LEP expression in cancer tissue may be positively correlated with survival of colorectal cancer patients (75) or LEPR over-expression is associated with anti-tumor response and better prognosis (46); while some claim that serum LEP values are lower in patients with colon cancer (98,99), serum LEP levels decreases with the progress and aggressiveness of tumor (100); while others even fails to determine any significant difference in serum LEP between colon cancer patients and controls (86). An explanation to such contradictory report might lie in the fact that LEPR shows polymorphism and phenotypic variants (46,85–87) and it is very much possible that different variants respond differently to LEP stimulation - one variant might over-stimulate cells towards carcinogenesis, while another might be less sensitive to circulating LEP concentration or even act against the progress of the tumor.
Conclusions

Over-expression of both LEP and LEPR in CRC, along with similar findings in our previous studies with breast carcinoma and related works of other authors, as mentioned above, suggest strong association of LEP/LEPR system with carcinogenesis. Given the already established role of LEP/LEPR system in growth promotion, it may be assumed to be causally related to carcinogenesis, where its growth effect may go out of control resulting in tumorous growths or its hyperactivity helping the tumor to grow faster.

Since LEP/LEPR is over-expressed in so many processes, they could not be generally used as cancer markers; however, if specific phenotypic variants of LEPR are involved with cancers, which is yet to be studied, then such phenotypes could be used as cancer markers. Apparent contradictions about the role of LEPR may be due to phenotypic variants of LEPR, which may respond differently to LEP stimulation. It seems, while LEPR pathway has much potential to be a target for anti-cancer drug therapy, drugs might better be targeted to particular variants of LEPR. Therefore, elaborate characterizations of phenotypic variants of LEPR are essential for various reasons.

Acknowledgments

Our thankfulness would be directed to all the faculties, friends and staffs in the Department Basic Medical Sciences, Faculty of Medicine, International Islamic University Malaysia; and to the Department of Pathology, Hospital Tengku Ampuan Afzan, Kuantan, Pahang, Malaysia for their extraordinary assistance.
References

1. WHO. Obesity and Overweight [Internet]. Media Centre. 2016 [cited 2016 Sep 19]. Available from: http://www.who.int/mediacentre/factsheets/fs311/en/

2. Popkin BM, Adair LS, Ng SW. Global nutrition transition and the pandemic of obesity in developing countries. Nutrition Reviews [Internet]. 2012 Jan [cited 2016 Sep 19];70(1):3–21. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22221213

3. Misra A, Khurana L. Obesity-related non-communicable diseases: South Asians vs White Caucasians. International Journal of Obesity (Lond) [Internet]. 2011 Feb [cited 2016 Sep 19];35(2):167–87. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20644557

4. Bhaskaran K, Douglas I, Forbes H, dos-Santos-Silva I, Leon DA, Smeeth L. Body-mass index and risk of 22 specific cancers: a population-based cohort study of 5·24 million UK adults. Lancet. 2014;384(9945):755–65.

5. NCI. Obesity and Cancer Risk [Internet]. National Cancer Institute NIH USA. 2016 [cited 2016 Sep 18]. Available from: https://www.cancer.gov/about-cancer/causes-prevention/risk/obesity/obesity-fact-sheet

6. Yu K, Yang J, Jiang Y, Song R, Lu Q. Vitamin D receptor BsmI polymorphism and colorectal cancer risk: an updated analysis. Asian Pacific Journal of Cancer Prevention [Internet]. 2014 [cited 2019 Mar 27];15(12):4801–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24998544

7. Robsahm TE, Aagnes B, Hjartåker A, Langseth H, Bray Fl, Larsen IK. Body mass index, physical activity, and colorectal cancer by anatomical subsites. European Journal of Cancer Prevention [Internet]. 2013 Nov [cited 2019 Mar 27];22(6):492–505. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23591454

8. Harriss DJ, Atkinson G, George K, Tim Cable N, Reilly T, Haboubi N, Zwahlen M, Egger M, Renehan AG; C-CLEAR group. Lifestyle factors and colorectal cancer risk (1): systematic review and meta-analysis of associations with body mass index. Colorectal Disease [Internet]. 2009 Jul [cited 2019 Mar 27];11(6):547–63. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19207714

9. Potter JD. Colorectal cancer: molecules and populations. Journal of the National Cancer Institute[Internet]. 1999 Jun 2 [cited 2019 Mar 27];91(11):916–32. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10359544

10. Kuryzsko J, Sławuta P, Sapikowski G. Secretory function of adipose tissue. Polish Journal of Veterinary Sciences [Internet]. 2016 [cited 2016 Sep 19];19(2):441–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27487522
11. Booth A, Magnuson A, Fouts J, Foster MT. Adipose tissue: an endocrine organ playing a role in metabolic regulation. Hormone Molecular Biology and Clinical Investigation [Internet]. 2016 Apr 1 [cited 2016 Sep 19];26(1):25–42. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26910750

12. Goodwin PJ, Stambolic V. Impact of the obesity epidemic on cancer. Annual Review of Medicine [Internet]. 2015 [cited 2016 Aug 22];66:281–96. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25423596

13. Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals. Nature [Internet]. 1998 Oct 22 [cited 2016 Aug 14];395(6704):763–70. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9796811

14. Guo S, Liu M, Wang G, Torroella-Kouri M, Gonzalez-Perez RR. Oncogenic role and therapeutic target of leptin signaling in breast cancer and cancer stem cells. Biochimica et Biophysica Acta [Internet]. 2012 Apr [cited 2016 Aug 22];1825(2):207–22. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22289780

15. Friedman J. Leptin and the Regulation of Food Intake and Body Weight. Journal of Nutritional Science and Vitaminology (Tokyo) [Internet]. 2015 [cited 2016 Aug 14];61 Suppl:S202. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26598860

16. Friedman JM, Mantzoros CS. 20 years of leptin: from the discovery of the leptin gene to leptin in our therapeutic armamentarium. Metabolism [Internet]. 2015 Jan [cited 2016 Aug 14];64(1):1–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25497341

17. Lipsey CC, Harbuzariu A, Daley-Brown D, Gonzalez-Perez RR. Oncogenic role of leptin and Notch interleukin-1 leptin crosstalk outcome in cancer. World Journal of Methodology [Internet]. 2016 Mar 26 [cited 2016 Aug 22];6(1):43–55. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27019796

18. Schwartz MW, Woods SC, Porte D, Seeley RJ, Baskin DG. Central nervous system control of food intake. Nature [Internet]. 2000 Apr 6 [cited 2016 Sep 20];404(6778):661–71. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10766253

19. Ha S, Baver S, Huo L, Gata A, Hairston J, Huntoon N, Li W, Zhang T, Benecchi EJ, Ericsson M, Hentges ST, Bjørbaek C. Somato-dendritic localization and signaling by leptin receptors in hypothalamic POMC and AgRP neurons. PLoS One [Internet]. 2013;8(10):e77622. Available from: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0077622

20. Allison MB, Myers MG. 20 years of leptin: connecting leptin signaling to biological...
21. Hoggard N, Hunter L, Duncan JS, Williams LM, Trayhurn P, Mercer JG. Leptin and leptin receptor mRNA and protein expression in the murine fetus and placenta. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 1997 Sep 30 [cited 2016 Aug 14];94(20):11073–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9380761

22. Masuzaki H, Ogawa Y, Sagawa N, Hosoda K, Matsumoto T, Mise H, Nishimura H, Yoshimasa Y, Tanaka I, Mori T, Nakao K. Nonadipose tissue production of leptin: leptin as a novel placenta-derived hormone in humans. Nature Medicine [Internet]. 1997 Sep [cited 2016 Aug 13];3(9):1029–33. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9288733

23. Bado A, Levassuer S, Attoub S, Kermorgant S, Laigneau JP, Bortoluzzi MN, Moizo L, Lehy T, Guerre-Millo M, Le Marchand-Brustel Y, Lewin MJ. The stomach is a source of leptin. Nature [Internet]. 1998 Aug 20 [cited 2016 Aug 14];394(6695):790–3. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9723619

24. Smith-Kirwin SM, O’Connor DM, De Johnston J, Lancey ED, Hassink SG, Funanage VL. Leptin expression in human mammary epithelial cells and breast milk. Journal of Clinical Endocrinology and Metabolism [Internet]. 1998 May [cited 2016 Aug 14];83(5):1810–3. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9589698

25. Morash B, Li A, Murphy PR, Wilkinson M, Ur E. Leptin gene expression in the brain and pituitary gland. Endocrinology [Internet]. 1999 Dec [cited 2016 Sep 20];140(12):5995–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10579368

26. Hardwick JC, Van Den Brink GR, Offerhaus GJ, Van Deventer SJ, Peppelenbosch MP. Leptin is a growth factor for colonic epithelial cells. Gastroenterology [Internet]. 2001 Jul [cited 2016 Aug 14];121(1):79–90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11438496

27. Löffler S, Aust G, Köhler U, Spanel-Borowski K. Evidence of leptin expression in normal and polycystic human ovaries. Molecular Human Reproduction [Internet]. 2001 Dec [cited 2016 Aug 13];7(12):1143–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11719591

28. Morroni M, De Matteis R, Palumbo C, Ferretti M, Villa I, Rubinacci A, Cinti S, Marotti G. In vivo leptin expression in cartilage and bone cells of growing rats and adult humans. Journal of Anatomy [Internet]. 2004 Oct [cited 2016 Aug 13];205(4):291–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15447688

29. Soyupek S, Armağan A, Serel TA, Hoşcan MB, Perk H, Karaöz E, Candir O. Leptin expression in the
testicular tissue of fertile and infertile men. Archives of Andrology [Internet]. 2005 [cited 2016 Aug 13];51(3):239–46. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16025864

30. Solberg R, Aas V, Thoresen GH, Kase ET, Drevon CA, Rustan AC, Reseland JE. Leptin expression in human primary skeletal muscle cells is reduced during differentiation. Journal of Cellular Biochemistry [Internet]. 2005 Sep 1 [cited 2016 Aug 14];96(1):89–96. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16052473

31. Amico JA, Thomas A, Crowley RS, Burmeister LA. Concentrations of leptin in the serum of pregnant, lactating, and cycling rats and of leptin messenger ribonucleic acid in rat placental tissue. Life Sciences [Internet]. 1998 [cited 2016 Aug 21];63(16):1387–95. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9952284

32. Ebenbichler CF, Kaser S, Laimer M, Wolf HJ, Patsch JR, Illsley NP. Polar expression and phosphorylation of human leptin receptor isoforms in paired, syncytiotrophoblastic, microvillous and basal membranes from human term placenta. Placenta [Internet]. 2002 Jul [cited 2016 Sep 14];23(6):516–21. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12137750

33. Mix H, Widjaja A, Jandl O, Cornberg M, Kaul A, Göke M, Beil W, Kuske M, Brabant G, Manns MP, Wagner S. Expression of leptin and leptin receptor isoforms in the human stomach. Gut [Internet]. 2000 Oct [cited 2016 Aug 14];47(4):481–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10986207

34. Sobhani I, Bado A, Vissuzaine C, Buyse M, Kermorgant S, Laigneau JP, Attoub S, Lehy T, Henin D, Mignon M, Lewin MJ. Leptin secretion and leptin receptor in the human stomach. Gut [Internet]. 2000 Aug [cited 2016 Aug 14];47(2):178–83. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10896907

35. Breidert M, Miehlke S, Glasow A, Orban Z, Stolte M, Ehninger G, Bayerdörffer E, Nettesheim O, Halm U, Haidan A, Bornstein SR. Leptin and its receptor in normal human gastric mucosa and in Helicobacter pylori-associated gastritis. Scandinavian Journal of Gastroenterology [Internet]. 1999 Oct [cited 2016 Aug 14];34(10):954–61. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10563663

36. Tsuchiya T, Shimizu H, Horie T, Mori M. Expression of leptin receptor in lung: leptin as a growth factor. European Journal of Pharmacology [Internet]. 1999 Jan 22 [cited 2016 Aug 14];365(2–3):273–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9988112

37. Kitawaki J, Koshiba H, Ishihara H, Kusuki I, Tsukamoto K, Honjo H. Expression of leptin receptor in human endometrium and fluctuation during the menstrual cycle. Journal of Clinical
38. Caldefie-Chezet F, Poulin A, Tridon A, Sion B, Vasson MP. Leptin: a potential regulator of polymorphonuclear neutrophil bactericidal action? Journal of Leukocyte Biology [Internet]. 2001 Mar [cited 2016 Sep 14];69(3):414–8. Available from:
http://www.ncbi.nlm.nih.gov/pubmed/11261788

39. Otte C, Otte J-M, Strodthoff D, Bornstein SR, Fölsch UR, Möning H, Kloehn S. Expression of leptin and leptin receptor during the development of liver fibrosis and cirrhosis. Experimental and Clinical Endocrinology & Diabetes [Internet]. 2004 Jan [cited 2016 Aug 14];112(1):10–7. Available from:
http://www.ncbi.nlm.nih.gov/pubmed/14758566

40. Tudurí E, Bruin JE, Denroche HC, Fox JK, Johnson JD, Kieffer TJ. Impaired Ca(2+) signaling in β-cells lacking leptin receptors by Cre-loxP recombination. PLoS One [Internet]. 2013 [cited 2016 Aug 21];8(8):e71075. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23936486

41. Cammisotto PG, Bendayan M. Leptin secretion by white adipose tissue and gastric mucosa. Histology and Histopathology. 2007;22(1–3):199–210.

42. Ahima RS. Revisiting leptin’s role in obesity and weight loss. Journal of Clinical Investigation [Internet]. 2008 Jul [cited 2016 Aug 14];118(7):2380–3. Available from:
http://www.ncbi.nlm.nih.gov/pubmed/18568083

43. Bjørbaek C, Kahn BB. Leptin signaling in the central nervous system and the periphery. Recent Progress in Hormone Research [Internet]. 2004 [cited 2016 Aug 22];59:305–31. Available from:
http://www.ncbi.nlm.nih.gov/pubmed/14749508

44. Plaisancie P, Ducroc R, Homsi M El, Tsocas A, Guilmeau S, Zoghibi S, Thibaudeau O, Bado A. Luminal leptin activates mucin-secreting goblet cells in the large bowel. American Journal of Physiology-Gastrointestinal and Liver Physiology [Internet]. 2006 Apr [cited 2019 Mar 27];290(4):G805–12. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16455789

45. Slattery ML, Wolff RK, Herrick J, Caan BJ, Potter JD. Leptin and leptin receptor genotypes and colon cancer: gene-gene and gene-lifestyle interactions. International Journal of Cancer [Internet]. 2008 Apr 1 [cited 2019 Mar 26];122(7):1611–7. Available from:
http://doi.wiley.com/10.1002/ijc.23135

46. Aloulou N, Bastuji-Garin S, Le Gouvello S, Abolhassani M, Chaumette MT, Charachon A, Leroy K, Sobhani I. Involvement of the leptin receptor in the immune response in intestinal cancer. Cancer Research [Internet]. 2008 Nov 15 [cited 2019 Mar 27];68(22):9413–22. Available from:
47. Shamsuzzaman ASM, Winnicki M, Wolk R, Svatikova A, Phillips BG, Davison DE, Berger PB, Somers VK. Independent Association Between Plasma Leptin and C-Reactive Protein in Healthy Humans. Circulation [Internet]. 2004 May 11 [cited 2019 Apr 2];109(18):2181–5. Available from: https://www.ahajournals.org/doi/10.1161/01.CIR.0000127960.28627.75

48. Barrachina MD, Martínez V, Wang L, Wei JY, Taché Y. Synergistic interaction between leptin and cholecystokinin to reduce short-term food intake in lean mice. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 1997 Sep 16 [cited 2019 Mar 27];94(19):10455–60. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9294232

49. Adeyemi EO, Bastaki SA, Chandranath IS, Hasan MY, Fahim M, Adem A. Mechanisms of action of leptin in preventing gastric ulcer. World Journal of Gastroenterology [Internet]. 2005 Jul 21 [cited 2019 Mar 27];11(27):4154–60. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16015682

50. Hu X, Juneja SC, Maihle NJ, Cleary MP. Leptin--a growth factor in normal and malignant breast cells and for normal mammary gland development. Journal of the National Cancer Institute [Internet]. 2002 Nov 20 [cited 2016 Aug 14];94(22):1704–11. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12441326

51. Esper RM, Dame M, McClintock S, Holt PR, Dannenberg AJ, Wicha MS, Brenner DE. Leptin and Adiponectin Modulate the Self-renewal of Normal Human Breast Epithelial Stem Cells. Cancer prevention research (Philadelphia, Pa.) [Internet]. 2015 Dec [cited 2016 Aug 14];8(12):1174–83. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26487401

52. Cleary MP, Juneja SC, Phillips FC, Hu X, Grande JP, Maihle NJ. Leptin receptor-deficient MMTV-TGF-alpha/Lepr(db)Lepr(db) female mice do not develop oncogene-induced mammary tumors. Experimental Biology and Medicine (Maywood, N.J.) [Internet]. 2004 Feb [cited 2016 Sep 15];229(2):182–93. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14734797

53. Heiman ML, Ahima RS, Craft LS, Schoner B, Stephens TW, Flier JS. Leptin Inhibition of the Hypothalamic-Pituitary-Adrenal Axis in Response to Stress \(^1\). Endocrinology [Internet]. 1997 Sep [cited 2017 May 25];138(9):3859–63. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9275075

54. Chen C, Chang Y-C, Liu C-L, Liu T-P, Chang K-J, Guo I-C. Leptin induces proliferation and anti-apoptosis in human hepatocarcinoma cells by up-regulating cyclin D1 and down-regulating Bax via a Janus kinase 2-linked pathway. Endocrine Related Cancer [Internet]. 2007 Jun [cited 2016 Aug 14];14(2):513–29. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17639064
Morioka T, Asilmaz E, Hu J, Dishinger JF, Kurpad AJ, Elias CF, Li H, Elmquist JK, Kennedy RT, Kulkarni RN. Disruption of leptin receptor expression in the pancreas directly affects beta cell growth and function in mice. Journal of Clinical Investigation [Internet]. 2007 Oct [cited 2016 Sep 29];117(10):2860–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17909627

Steppan CM, Crawford DT, Chidsey-Frink KL, Ke H, Swick AG. Leptin is a potent stimulator of bone growth in ob/ob mice. Regulatory Peptides [Internet]. 2000 Aug 25 [cited 2016 Sep 29];92(1–3):73–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11024568

Margetic S, Gazzola C, Pegg GG, Hill RA. Leptin: a review of its peripheral actions and interactions. International journal of obesity and related metabolic disorders [Internet]. 2002 Nov [cited 2016 Aug 23];26(11):1407–33. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12439643

Russo VC, Metaxas S, Kobayashi K, Harris M, Werther GA. Antiapoptotic effects of leptin in human neuroblastoma cells. Endocrinology [Internet]. 2004 Sep [cited 2016 Sep 20];145(9):4103–12. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15166121

Endo H, Hosono K, Uchiyama T, Sakai E, Sugiyama M, Takahashi H, Nakajima N, Wada K, Takeda K, Nakagama H, Nakajima A. Leptin acts as a growth factor for colorectal tumours at stages subsequent to tumour initiation in murine colon carcinogenesis. Gut [Internet]. 2011 Oct 1 [cited 2019 Apr 1];60(10):1363–71. Available from: http://gut.bmj.com/cgi/doi/10.1136/gut.2010.235754

Mencarelli A, Distretti E, Renga B, D’Amore C, Cipriani S, Palladino G, Donini A, Ricci P, Fiorucci S. Probiotics modulate intestinal expression of nuclear receptor and provide counter-regulatory signals to inflammation-driven adipose tissue activation. Bonecchi R, editor. PLoS One [Internet]. 2011 Jul 29 [cited 2019 Apr 2];6(7):e22978. Available from: https://dx.plos.org/10.1371/journal.pone.0022978

Guo S, Liu M, Gonzalez-Perez RR. Role of Notch and its oncogenic signaling crosstalk in breast cancer. Biochimica et Biophysica Acta [Internet]. 2011 Apr [cited 2016 Aug 22];1815(2):197–213. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21193018

Mullen M, Gonzalez-Perez R. Leptin-Induced JAK/STAT Signaling and Cancer Growth. Vaccines [Internet]. 2016;4(3):26. Available from: http://www.mdpi.com/2076-393X/4/3/26

Ghasemi A, Saeidi J, Azimi-Nejad M, Hashemy SI. Leptin-induced signaling pathways in cancer cell migration and invasion. Cellular oncology [Internet]. 2019 Mar 15 [cited 2019 Mar 26]; Available from: http://www.ncbi.nlm.nih.gov/pubmed/30877623

Surmacz E. Leptin and adiponectin: emerging therapeutic targets in breast cancer. Journal of
65. Koda M, Sulkowska M, Kanczuga-Koda L, Cascio S, Colucci G, Russo A, Surmacz E, Sulkowski S. Expression of the obesity hormone leptin and its receptor correlates with hypoxia-inducible factor-1α in human colorectal cancer. Annals of Oncology 2007;18(SUPPL. 6):116–9.

66. O’Brien SN, Welter BH, Price TM. Presence of leptin in breast cell lines and breast tumors. Biochemical and Biophysical Research Communications [Internet]. 1999 Jun 16 [cited 2016 Aug 14];259(3):695–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10364481

67. Ishikawa M, Kitayama J, Nagawa H. Enhanced expression of leptin and leptin receptor (OB-R) in human breast cancer. Clinical Cancer Research [Internet]. 2004 Jul 1 [cited 2016 Aug 14];10(13):4325–31. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15240518

68. Al-Shibli SM, Amjad NM, Al-Kubaisi MK, Mizan S. Subcellular localization of leptin and leptin receptor in breast cancer detected in an electron microscopic study. Biochemical and Biophysical Research Communications [Internet]. 2017 Jan 22 [cited 2018 Mar 16];482(4):1102–6. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0006291X16320393

69. Konopleva M, Mikhail A, Estrov Z, Zhao S, Harris D, Sanchez-Williams G, Kornblau SM, Dong J, Kliche KO, Jiang S, Snodgrass HR, Estey EH, Andreeff M. Expression and function of leptin receptor isoforms in myeloid leukemia and myelodysplastic syndromes: proliferative and anti-apoptotic activities. Blood [Internet]. 1999 Mar 1 [cited 2016 Aug 14];93(5):1668–76. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10029596

70. Saglam K, Aydur E, Yilmaz M, Göktaş S. Leptin influences cellular differentiation and progression in prostate cancer. Journal of Urology [Internet]. 2003 Apr [cited 2016 Sep 14];169(4):1308–11. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12629349

71. Somasundar P, Riggs D, Jackson B, Vona-Davis L, McFadden DW. Leptin stimulates esophageal adenocarcinoma growth by nonapoptotic mechanisms. American Journal of Surgery [Internet]. 2003 Nov [cited 2016 Aug 14];186(5):575–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14599628

72. Hong S, Kwon K, Kim S, Ko B, Ryu C, Kim Y, Moon JH, Cho JY, Lee JS, Lee MS, Shim CS, Kim BS. Variation in expression of gastric leptin according to differentiation and growth pattern in gastric adenocarcinoma. Cytokine [Internet]. 2006 Jan 21 [cited 2019 Mar 27];33(2):66–71. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16386433
554 from: http://www.ncbi.nlm.nih.gov/pubmed/16434209

73. Ribeiro R, Araújo AP, Coelho A, Catarino R, Pinto D, Araújo A, Calçada C, Lopes C, Medeiros R. A functional polymorphism in the promoter region of leptin gene increases susceptibility for non-small cell lung cancer. European Journal of Cancer [Internet]. 2006 May [cited 2016 Sep 14];42(8):1188–93. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16630717

74. Koda M, Sulkowska M, Kanczuga-Koda L, Surmacz E, Sulkowski S. Overexpression of the obesity hormone leptin in human colorectal cancer. Journal of Clinical Pathology [Internet]. 2007 Aug [cited 2016 Sep 17];60(8):902–6. Available from:
http://www.ncbi.nlm.nih.gov/pubmed/17660334

75. Paik SS, Jang S-M, Jang K-S, Lee KH, Choi D, Jang SJ. Leptin Expression Correlates with Favorable Clinicopathologic Phenotype and Better Prognosis in Colorectal Adenocarcinoma. Annals of Surgical Oncology [Internet]. 2009 Feb 3 [cited 2019 Mar 14];16(2):297–303. Available from:
http://www.ncbi.nlm.nih.gov/pubmed/19050975

76. Liu H1, Wan D, Pan Z, Cao L, Wu X, Lu Z, Kang T. Expression and Biological Significance of Leptin, Leptin Receptor, VEGF, and CD34 in Colorectal Carcinoma. Cell Biochemistry and Biophysics [Internet]. 2011 Jul 16 [cited 2019 Mar 14];60(3):241–4. Available from:
http://www.ncbi.nlm.nih.gov/pubmed/21161731

77. Wang D, Chen J, Chen H, Duan Z, Xu Q, Wei M, Wang L, Zhong M. Leptin regulates proliferation and apoptosis of colorectal carcinoma through PI3K/Akt/mTOR signalling pathway. Journal of Biosciences [Internet]. 2012 Mar [cited 2019 Mar 14];37(1):91–101. Available from:
http://www.ncbi.nlm.nih.gov/pubmed/22357207

78. Yoon KW, Park SY, Kim JY, Lee SM, Park CH, Cho SB, Lee WS, Joo YE, Lee JH, Kim HS, Choi SK, Rew JS. Leptin-induced adhesion and invasion in colorectal cancer cell lines. Oncology Reports [Internet]. 2014 Jun [cited 2019 Mar 14];31(6):2493–8. Available from:
http://www.ncbi.nlm.nih.gov/pubmed/24700392

79. Jeong WK, Baek SK, Kim MK, Kwon SY, Kim HS. Prognostic Significance of Tissue Leptin Expression in Colorectal Cancer Patients. Annals of Coloproctology [Internet]. 2015 Dec [cited 2019 Mar 14];31(6):222. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26817017

80. Al-Maghrabi JA, Qureshi IA, Khabaz MN. Expression of leptin in colorectal adenocarcinoma showed significant different survival patterns associated with tumor size, lymphovascular invasion, distant metastasis, local recurrence, and relapse of disease in the western province of Saudi Arabia. Medicine (Baltimore) [Internet]. 2018 Aug [cited 2019 Mar 14];97(34):e12052.
81. Aparicio T, Kotelevets L, Tsocas A, Laigneau J-P, Sobhani I, Chastre E, Lehy T. Leptin stimulates the proliferation of human colon cancer cells in vitro but does not promote the growth of colon cancer xenografts in nude mice or intestinal tumorigenesis in ApcMin/+ mice. Gut [Internet]. 2005 Aug 1 [cited 2019 Mar 26];54(8):1136–45. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15857934

82. Hoda MR, Keely SJ, Bertelsen LS, Junger WG, Dharmasena D, Barrett KE. Leptin acts as a mitogenic and antiapoptotic factor for colonic cancer cells. British Journal of Surgery [Internet]. 2007 Mar [cited 2016 Aug 14];94(3):346–54. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17212381

83. Drew JE. Molecular mechanisms linking adipokines to obesity-related colon cancer: focus on leptin. Proceedings of the Nutrition Society [Internet]. 2012 Feb 21 [cited 2019 Mar 26];71(1):175–80. Available from: http://www.journals.cambridge.org/abstract_S0029665111003259

84. Erkasap N, Ozkurt M, Erkasap S, Yasar F, Uzuner K, Ihtiyar E, Uslu S, Kara M, Bolluk O. Leptin receptor (Ob-R) mRNA expression and serum leptin concentration in patients with colorectal and metastatic colorectal cancer. Brazilian Journal of Medical and Biological Research = Rev Bras Pesqui médicas e biológicas / Soc Bras Biofísica . [Internet]. 2013 Mar [cited 2016 Aug 25];46(3):306–10. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23558862

85. Mu HJ, Zou J, Xie P, Xu ZQ, Ruan J, Yang SD, Yin Y. Association of leptin receptor Lys109Arg and Gln223Arg polymorphisms with increased risk of clear cell renal cell carcinoma. Asian Pacific Journal of Cancer Prevention [Internet]. 2014 [cited 2019 Apr 2];15(10):4211–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24935373

86. Uchiyama T, Takahashi H, Endo H, Sugiyama M, Sakai E, Hosono K, Nagashima Y, Inayama Y, Wada K, Hippo Y, Nakajima A. Role of the long form leptin receptor and of the STAT3 signaling pathway in colorectal cancer progression. International Journal of Oncology [Internet]. 2011 Oct [cited 2016 Aug 26];39(4):935–40. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21720710

87. Uddin S, P.Bavi P, Hussain AR, Alsbeih G, Al-Sanea N, AbdulJabbar A, Ashari LH, Alhomoud S, Al-Dayel F, Ahmed M, Al-Kuraya KS. Leptin receptor expression in Middle Eastern colorectal cancer and its potential clinical implication. Carcinogenesis [Internet]. 2009 Nov [cited 2019 Mar 27];30(11):1832–40. Available from: https://academic.oup.com/carcin/article-
lookup/doi/10.1093/carcin/bgp145

88. Stachowicz M, Mazurek U, Nowakowska-Zajdel E, Niedworok E, Fatyga E, Muc-Wierzgon M. Leptin and its receptors in obese patients with colorectal cancer. Journal of Biological Regulators & Homeostatic Agents [Internet]. 2010 [cited 2019 Mar 27];24(3):287–95. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20846476

89. Joshi RK, Lee S-A. Obesity related adipokines and colorectal cancer: a review and meta-analysis. Asian Pacific Journal of Cancer Prevention [Internet]. 2014 [cited 2019 May 13];15(1):397–405. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24528064

90. Jardé T, Caldefie-Chézet F, Damez M, Mishellany F, Penault-Llorca F, Guillot J, Vasson MP. Leptin and leptin receptor involvement in cancer development: A study on human primary breast carcinoma. Oncology Reports2008;19(4):905–11.

91. Garofalo C, Koda M, Cascio S, Sulkowska M, Kanczuga-Koda L, Golaszewska J, Russo A, Sulkowski S, Surmacz E. Increased expression of leptin and the leptin receptor as a marker of breast cancer progression: possible role of obesity-related stimuli. Clinical Cancer Research [Internet]. 2006 Mar 1 [cited 2016 Aug 14];12(5):1447–53. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16533767

92. Attoub S, Noe V, Pirola L, Bruyneel E, Chastre E, Mareel M, Wymann MP, Gespach C. Leptin promotes invasiveness of kidney and colonic epithelial cells via phosphoinositide 3-kinase-, Rho-, and Rac-dependent signaling pathways. FASEB Journal [Internet]. 2000 Nov [cited 2019 Mar 27];14(14):2329–38. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11053255

93. Miyoshi Y, Funahashi T, Tanaka S, Taguchi T, Tamaki Y, Shimomura I, Noguchi S. High expression of leptin receptor mRNA in breast cancer tissue predicts poor prognosis for patients with high, but not low, serum leptin levels. International Journal of Cancer [Internet]. 2006 Mar 15 [cited 2016 Aug 14];118(6):1414–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16206269

94. Uddin S, Bu R, Ahmed M, Abubaker J, Al-Dayel F, Bavi P, Al-Kuraya KS. Overexpression of leptin receptor predicts an unfavorable outcome in Middle Eastern ovarian cancer. Molecular Cancer [Internet]. 2009 [cited 2016 Sep 20];8:74. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19765303

95. Hoon Kim J, Lee SY, Myung SC, Kim YS, Kim T-H, Kim MK. Clinical significance of the leptin and leptin receptor expressions in prostate tissues. Asian Journal of Andrology [Internet]. 2008 Nov [cited 2016 Sep 20];10(6):923–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18958356
96. Stattin P, Palmqvist R, Söderberg S, Biessy C, Ardnor B, Hallmans G, Kaaks R, Olsson T. Plasma leptin and colorectal cancer risk: a prospective study in Northern Sweden. Oncology Reports [Internet]. 2003 [cited 2019 Mar 14];10(6):2015–21. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14534736

97. Stattin P, Lukanova A, Biessy C, Söderberg S, Palmqvist R, Kaaks R, Olsson T, Jellum E. Obesity and colon cancer: does leptin provide a link? International Journal of Cancer [Internet]. 2004 Mar [cited 2016 Aug 14];109(1):149–52. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14735482

98. Bolukbas FF, Kilic H, Bolukbas C, Gumus M, Horoz M, Turhal NS, Kavakli B. Serum leptin concentration and advanced gastrointestinal cancers: a case controlled study. BMC Cancer [Internet]. 2004 Dec 24 [cited 2019 Mar 14];4(1):29. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15217519

99. Kumor A, Daniel P, Pietruczuk M, Malecka-Panas E. Serum leptin, adiponectin, and resistin concentration in colorectal adenoma and carcinoma (CC) patients. International Journal of Colorectal Disease [Internet]. 2009 Mar 1 [cited 2019 Mar 27];24(3):275–81. Available from: http://link.springer.com/10.1007/s00384-008-0605-y

100. Sălăgeanu A, Tucureanu C, Lerescu L, Caraș I, Pătăra G, Costea R, Neagu S. Serum levels of adipokines resistin and leptin in patients with colon cancer. Journal of medicine and life [Internet]. 2010 [cited 2019 Mar 27];3(4):416–20. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21254741

101. Kosova F, Coskun T, Kaya Y, Kara E, Ari Z. Adipocytokine levels of colon cancer patients before and after treatment. Bratislavské Lekarske Listy [Internet]. 2013 [cited 2019 Mar 27];114(7):394–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23822624
Figure 1

Results from Immunohistochemical (IHC) staining

Figure 1. Immunohistochemical (IHC) staining for LEP (upper panel A-C), and LEPR (lower panel D-F): (A,D) Adjacent Normal Colon Tissue (ANCT) with low staining (intensity 1+), (B,E) Moderately differentiated CRC with high staining (intensity 2+), (C,F) Moderately differentiated CRC with high staining (intensity 3+); (all x200 magnification).
Table 1 (on next page)

Age distribution of patients with colorectal carcinoma.
Table 1: Age distribution of patients with colorectal carcinoma.

Age groups:	30s	40s	50s	60s	70s	80s
(years)						
n=44	4	5	8	19	6	2
(in %)	(9.1)	(11.4)	(18.2)	(43.2)	(13.6)	(4.5)
Table 2 (on next page)

Sex distribution of patients with colorectal carcinoma
Table 2: Sex distribution of patients with colorectal carcinoma.

	Female	Male
n=44	18(40.9%)	26(59.1%)
Table 3 (on next page)

Tumor grade distribution of the patients with colorectal carcinoma.
Table 3: Tumor grade distribution of the patients with colorectal carcinoma.

Tumor Grade	Well Differentiated	Moderately Differentiated	Undifferentiated
n=44	2(4.5%)	40(91%)	2(4.5%)
Table 4 (on next page)

Percentage of positive (low and high) cases of LEP and LEPR in IHC stained of colorectal tissue
Table 4. Percentage of positive (low and high) cases of LEP and LEPR in IHC stained of colorectal tissue

	Immunoreactivity for LEP	Immunoreactivity for LEPR		
	low	high	low	high
Cancer Tissue	0	44 (100%)	1 (2.3%)	43 (97.7%)
N=44				
Adjacent Normal Colon tissue	44 (100%)	0	44 (100%)	0
N=44				
P value*	<0.01	<0.01		

*P values for significant difference in expression of LEP and LEPR between NACT and cancerous colon tissue were calculated by applying Wilcoxon signed rank test. (IHC: immunohistochemistry, LEP: leptin, LEPR: leptin receptor, NACT: normal adjacent colon tissues)
Table 5 (on next page)

Results of the statistical analysis of the correlation of LEP and LEPR with the common pathological parameters
Table 5: Results of the statistical analysis of the correlation of LEP and LEPR with the common pathological parameters.

	Tumor size	Lymph node involvement	Grade (W,M,U)*
LEP correlation coefficient	-0.054, P=0.73	-0.205, P=0.181	-0.000, P=1.00
(Spearman's rho, P value)			
LEPR correlation coefficient	-0.018, P=0.907	-0.206, P=0.179	-0.285, P=0.06
(Spearman's rho, P value)			

*W: Well differentiated cells; M: Moderately differentiated cells; U: Undifferentiated cells.

(LEP: leptin, LEPR: leptin receptor)