Brain metastases at the time of presentation of non-small cell lung cancer: a multi-centric AERIO* analysis of prognostic factors

W Jacot1, X Quantin1, J-M Boher2, F Andre3, L Moreau3, M Gainet5, A Depierre5, E Quoix4, T Le Chevalier3 and J-L Pujol1,2

Department of Chest Diseases, Hôpital Universitaire Arnaud de Villeneuve, 34295 Montpellier Cedex 5, France; 2Department of Statistics and Epidemiology, University Institute for Clinical Research, Hôpital Universitaire Arnaud de Villeneuve; 3Cancer institute. Institute Gustave Roussy, Villejuif, France; 4Department of Chest Diseases, Hôpital Universitaire de Strasbourg, France; 5Department of Chest Diseases, Hôpital Universitaire de Besançon, France

Summary A multi-centre retrospective study involving 4 French university institutions has been conducted in order to identify routine pre-therapeutic prognostic factors of survival in patients with previously untreated non-small cell lung cancer and brain metastases at the time of presentation. A total of 231 patients were recorded regarding their clinical, radiological and biological characteristics at presentation. The accrual period was January 1991 to December 1998. Prognosis was analysed using both univariate and multivariate (Cox model) statistics. The median survival of the whole population was 28 weeks. Univariate analysis (log-rank), showed that patients affected by one of the following characteristics proved to have a shorter survival in comparison with the opposite status of each variable: male gender, age over 63 years, poor performance status, neurological symptoms, serum neuron-specific enolase (NSE) level higher than 12.5 ng ml⁻¹, high serum alkaline phosphatase level, high serum LDH level and serum sodium level below 132 mmol l⁻¹. In the Cox’s model, the following variables were independent determinants of a poor outcome: male gender: hazard ratio (95% confidence interval): 2.29 (1.26–4.16), poor performance status: 1.73 (1.15–2.62), age: 1.02 (1.003–1.043), a high serum NSE level: 1.72 (1.11–2.68), neurological symptoms: 1.63 (1.05–2.54), and a low serum sodium level: 2.99 (1.17–7.62). Apart from 4 prognostic factors shared in common with other stage IV NSCLC patients, whatever the metastatic site (namely sex, age, gender, performance status and serum sodium level) this study discloses 2 determinants specifically resulting from brain metastasis: i.e. the presence of neurological symptoms and a high serum NSE level. The latter factor could be in relationship with the extent of normal brain tissue damage caused by the tumour as has been demonstrated after strokes. Additionally, the observation of a high NSE level as a prognostic determinant in NSCLC might reflect tumour heterogeneity and understimated neuroendocrine differentiation. © 2001 Cancer Research Campaign http://www.bjcancer.com

Keywords: brain metastases; non-small cell lung cancer; neuron-specific enolase; prognosis

Patients with lung cancer frequently suffer from brain metastases at the time of presentation. This condition affects approximately 10% of non-small cell lung cancer (NSCLC) patients (Newman and Hansen, 1974; Sorensen et al, 1988). Surgery is feasible only for a small proportion of these patients. Whole brain radiotherapy has been, hitherto, the generally recommended treatment in inoperable patients. The survival of NSCLC patients with brain metastases is poor, reported to be between 3 to 6 months in patients treated with medical therapies, either radiotherapy or chemotherapy (compared to 6–10 months in other advanced NSCLC (Paesmans et al, 1995; Shepherd, 1999)). Furthermore, brain metastases at the time of presentation of lung cancer seems to be a worse prognosis (Sorensen et al, 1988) than metachronous brain metastases.

New therapeutic strategies are needed to improve the outcome of these patients. The knowledge of prognostic determinants might be important in both clinical trials and routine practice (Komaki et al, 1993; Charloux et al, 1997; Paesmans et al, 1997; Merrill et al, 1999). In the former setting, prognostic co-variables must be taken into account in survival analyses; by way of illustration, in a given randomized trial, the statement that a difference in survival is related to the effects of the treatment must be supported by a proportional hazards model demonstrating that this effect does not depend on well-known prognostic determinants (Depierre et al, 1999; Furuse et al, 1999). In the second setting, a therapeutic decision might be influenced by the state of prognostic variables (Komaki et al, 1993).

Here we especially take a look at the prognostic significance of 2 specific serum markers, CYFRA 21-1 and neuron-specific enolase (NSE). The prognostic value of CYFRA 21-1 (a fragment of cytokeratin subunit 19) in this disease has been suggested (Pujol et al, 1993; Wieskopf et al, 1995; Brechot et al, 1997). NSE, the γ-subunit of enolase, has been widely investigated as a marker of small cell lung cancer (SCLC; Jorgensen et al, 1989). Although only a small proportion of NSCLC presented with a high NSE level, this marker might indirectly reflect: i) a neuroendocrine component of the disease in favour of tumour heterogeneity; ii) a
marker of brain damage. In order to evaluate prognostic variables in NSCLC patients with brain metastases at the time of presentation, we conducted a retrospective study.

PATIENTS AND METHODS

Patient selection
This is a multi-centre retrospective study involving 4 French university institutions (Montpellier university hospital, Institut Gustave Roussey, Strasbourg university hospital and Besançon university hospital). In the past, these institutions were involved in numerous cancer trials and therefore they possess comprehensive patient databases. Case reports extracted from these databases were selected on the following criteria: histologically proven NSCLC, brain metastasis at the time of presentation as demonstrated either by computed tomography (CT) or magnetic resonance imaging (MRI), no prior anti-cancer therapy. The accrual period was January 1991 to December 1998. Histological sub-classification was done according to the WHO classification (World Health Organization, 1982). Staging was carried out by exhaustive procedures according to the 4th edition of the Union Internationale Contre le Cancer (UICC) tumour node metastases (TNM) classification (Sobin et al, 1987) and the American Thoracic Society map of regional pulmonary nodes (Tisi et al, 1982). By definition, all patients belonged to stage IV of the new Mountain’s stage grouping (Mountain, 1997).

Data collection
For each patient, the following pre-treatment characteristics were recorded: age, sex, performance status (estimated according to the Eastern Cooperative Oncology Group (Zubrod et al, 1960)), percentage of weight loss during the previous 4 months, tumour and nodal status, histology, clinical symptoms belonging to brain metastases (i.e. intra-cranial hypertension, seizure, focal neurological symptoms), other metastatic sites involved (i.e. liver, adrenal glands, bone metastases), serum CYFRA 21-1 level (upper limit of normal values: 3.6 ng ml⁻¹), serum NSE level (upper limit of normal values: 12.5 ng ml⁻¹), serum alkaline phosphatase and lactate dehydrogenase (LDH) levels (either normal or elevated, normal values: 3.6 ng ml⁻¹ for CYFRA 21-1 (Pujol et al, 1993). The threshold values for serum NSE levels to be used in clinical studies have been defined from publications describing this neuroendocrine marker (Cooper and Splinter, 1987; Jorgensen et al, 1989). The treatment modality was not tested as a prognostic variable inasmuch as treatment was decided according to each institution’s procedure and was based upon the different pre-treatment variables.

Multivariate regression was done with the Cox model (Cox, 1972; Andersen, 1991). The forward selection of variable procedure has been used. The selection of variables to be tested in the Cox model was made using the results of univariate analysis i.e. variables reaching at least a P level less than 15%. This model was written after a binary coding of the significant variables (except for age which was analysed as a continuous variable): categorical variables (such as performance status) were transformed into binary variables (0: negative or 1: positive). The number of levels of a categorical variable needed to describe a predictive factor is one less than the categories of that factor inasmuch as its baseline level is defined by setting the value of each of the categorical variables at zero. The significance of the effect of a given factor was assessed by determining whether or not the coefficient assigned to one or more of its categories was sufficiently different from zero. The proportional hazard assumption for each of the selected variables retained in the final model was originally checked by plotting the log cumulative baseline hazard ratio. A P level of less than 0.05 was considered significant. SAS software package was used.

According to the above-mentioned procedure, 14 variables were selected as putative prognostic determinants to be tested in the Cox regression hazard model. They represented less than 10% of the total of observed events (207 deaths) and therefore complied with the current recommendation (Harrell et al, 1985).

RESULTS

Patient’s characteristics are summarized in Table 1. Most of the main characteristics of NSCLC were retrieved particularly a median age of 59 years (range, 32–85 years). 85 patients (37%) did not have symptoms related to the brain metastases and the disease was disclosed by a pre-treatment staging procedure including CT scan. 134 patients suffered from neurological symptoms, consisting of intra-cranial hypertension symptoms (33 patients), seizure, epilepsy or muscle weakness (101 patients) or an association of these different symptoms. There were 6 deaths related neither to the disease nor to the treatment. These observations have been censored. At the time of analysis, 207 deaths had been reported and 24 (10%) patients were still alive. In the whole patient population, median survival was 28 weeks (95% confidence interval [CI], 24 to 34 weeks). The 1- and 2-year survival rates were 25% (95% CI, 19–31%) and 8% (95% CI, 4–11%), respectively (Figure 1).

Univariate analysis

Univariate analysis (Table 2) showed that patients affected by one of the following characteristics proved to have a shorter survival in
comparison with the opposite status of each variable: male gender, age over 63 years, performance status equal to or worse than 2, neurological symptoms (Figure 2), serum NSE level higher than 12.5 ng ml⁻¹ (Figure 3), high serum alkaline phosphatase level, high serum LDH level and serum sodium level lower than 132 mmol l⁻¹.

Table 1 Patients’ characteristics

Variables	No. of patients (%)
Total	231
Age (years)	Median ± SD
< 40	13 (6)
40–49	49 (21)
50–59	60 (26)
60–69	70 (30)
70 and over	34 (15)
Male gender	Male
	194 (84)
ECOG performance status	0
	44 (19)
	1
	92 (40)
	2
	60 (26)
	3
	26 (11)
	4
	9 (4)
Tumour status	1–2
	107 (47)
	3–4
	122 (53)
Nodal status	0–1
	64 (28)
	2–3
	165 (71)
Histology	Squamous cell carcinoma
	95 (41)
	Adenocarcinoma
	86 (37)
	Large cell carcinoma
	50 (22)
Weight loss (%)	< 5% / ≥ 5%
	119 (52)/88 (38)
	Unknown
	24 (10)
Serum Cyfra 21–1 level	< 3.6 / ≥ 3.6
	58 (25)/98 (38)
	Unknown
	85 (37)
Serum NSE level	≤ 12.5 / > 12.5
	142 (61)/57 (25)
	Unknown
	32 (14)
Serum albumin level	<32 g l⁻¹ / ≥ 32 g l⁻¹
	159 (69)/27 (12)
	Unknown
	45 (19)
Serum sodium level	<132 mmol l⁻¹ / ≥ 132 mmol l⁻¹
	219 (95)/10 (4)
	Unknown
	2 (1)
Alkaline phosphatase	Normal/elevated
	180 (78)/41 (18)
	Unknown
	10 (4)
Lactate dehydrogenase level	Normal/elevated
	133 (58)/78 (34)
	Unknown
	20 (9)
Blood leucocyte count	≤ 10 000 µ l⁻¹ / > 10 000 µ l
	108 (47)/120 (52)
	Unknown
	3 (1)
Adrenal gland metastases	Yes/No
	34 (15)/197 (85)
Bone metastases	Yes/No
	47 (20)/184 (80)
Liver metastases	Yes/No
	24 (10)/207 (90)
No. of brain metastases	Unique/Multiples
	89 (39)/125 (54)
	Unknown
	17 (7)
Site of brain metastases	Supra/Infra-tentorial
	144 (62)/19 (8)
	Mixed
	49 (21)
	Unknown
	19 (8)
Neurologic symptoms	No/Yes
	85 (37)/134 (58)
Treatment modalities	Best Supportive Care
	19 (8%)
	Radiotherapy
	13 (6%)
	Chemotherapy
	41 (18%)
	Surgery
	0
	Surgery + Chemotherapy
	2 (1%)
	Surgery + Radiotherapy
	2 (1%)
	Surgery + Chemo. + Radio.
	3 (1%)
	Radiotherapy + Chemotherapy
	150 (65%)
Brain response to treatment	Yes/No
	93 (40)/107 (46)
	Unknown
	31 (13)
isomer of the ubiquitous enzyme enolase referred to as Kaplan–Meier estimation of overall survival in the whole population of non-small cell lung cancer patients suffering from brain metastases at the time of presentation.

Multivariate analysis

According to the above-mentioned procedure, 14 variables were selected as putative prognostic determinants to be tested in the Cox regression hazard model (sex, age, performance status, histology, serum NSE level, serum CYFRA 21-1 level, serum albumin, alkaline phosphatases, LDH, serum sodium, blood leucocyte count, presence of bone metastases, presence of liver metastases, neurological symptoms). They represented less than 10% of the total observed events (207 deaths) and therefore complied with the current recommendation (Harrell et al, 1985).

The following variables were independent determinants of a poor outcome: male gender: hazard ratio (95% confidence interval): 2.29 (1.26–4.16), poor performance status: 1.73 (1.15–2.62), age: 1.02 (1.003–1.043), a high serum NSE level: 1.72 (1.11–2.68), neurological symptoms: 1.63 (1.05–2.54), and a low serum sodium level: 2.99 (1.17–7.62) (Table 3).

Finally, patients have been coded according to the presence or absence of a major metastatic site (i.e. presence of at least one of the following metastatic sites: liver or adrenal or bone). This variable did not modify the results of the Cox model.

DISCUSSION

Brain metastases at the time of presentation of NSCLC are a frequent clinical problem. Classically, treatment consists of whole brain radiotherapy. Surgery is usually proposed to the small subset of patients presenting with a single brain metastasis and for whom primary site can be controlled. The role of chemotherapy in the management of NSCLC with brain involvement remains controversial. Short life expectancy is generally considered as a deterrent to curative intent. However, recent studies indicate that chemotherapy is active on brain metastases of NSCLC (Ellis et al, 1998; Kelly and Bunn, 1998; Postmus and Smit, 1999). In addition, new therapies such as radiosurgery and combined chemotherapy-radiotherapy are being developed for these patients. Therefore, the appraisal of the prognostic factor is mandatory.

We report herein a survival analysis of a homogeneous population of NSCLC patients with brain metastases at the time of presentation. 4 prognostic factors elicited from this study are classical survival determinants reported to be shared in common by all NSCLC whatever the metastatic site (Zimm et al, 1981; Diener-West et al, 1989; Komarnicky et al, 1991; Lonjon et al, 1994; Ryan et al, 1995; Ando et al, 1996; Auckther et al, 1996; Gaspar et al, 1997; Hsiung et al, 1998; Agboola et al, 1998; Lagerwaard et al, 2000), or by brain metastases whatever the primary tumour (Zimm et al, 1981; Diener-West et al, 1989; Komarnicky et al, 1991; Lonjon et al, 1994; Auckther et al, 1996; Gaspar et al, 1997; Agboola et al, 1998; Lagerwaard et al, 1999). These factors are gender, performance status, age and serum sodium level.

Apart from the above-mentioned factors, our study disclosed 2 determinants which might result from brain metastases: the presence of neurological symptoms and a high serum NSE level. Clinical symptoms related to the brain metastases were the only site-specific factor independently affecting survival. Neither the number nor the location of brain metastases were statistically significant determinants of prognosis. This finding contrasts with some other studies also aimed at prognosticating the outcome of patients suffering from brain metastases (Zimm et al, 1981; Swift et al, 1993; Nussbaum et al, 1996; Sen et al, 1998). However, one can mention that these determinants vary from one study to another (Zimm et al, 1981; Swift et al, 1993; Ando et al, 1996; Nussbaum et al, 1996; Hsiung et al, 1998; Nguyen et al, 1998; Sen et al, 1998). This discrepancy could be in relationship with a possible underestimation of the number of metastases and the tumour burden shown by means of CT scan. Therefore, the case of anatomic characteristics of brain metastases seems of less prognostic importance than the presence of symptoms by themselves. This statement does not minimize the paramount consequence of anatomic characterization of brain disease in treatment decision.

The γγ isomer of the ubiquitous enzyme enolase referred to as NSE is the most widely used neuroendocrine serum marker in SCLC clinical management (Cooper and Splinter, 1987; Jorgensen et al, 1989). In the NSCLC histology, the evaluation of this neuroendocrine marker might seem unexpected. However, the common endodermal origin of all histological types of lung cancer makes it possible to include SCLC and NSCLC in a unique spectrum of differentiation with frequent overlaps (Yesner and Carter, 1982). Early studies using histology (Yesner and Carter, 1982) or electronic microscopy (Gould et al, 1983) have demonstrated that mixed SCLC-NSCLC may be observed in a low proportion of all lung cancers. Patients with mixed SCLC-large cell carcinoma proved to have a shorter survival than those with pure histological...
SCLC suggesting that this heterogeneity has clinical relevance (Radice et al, 1982). Therefore, we decided to evaluate this marker in the particular setting of brain metastasis of NSCLC.

In our study patients with a pre-treatment high serum NSE level proved to have a poor outcome. Two hypotheses could explain this finding and they are not mutually exclusive. First, this high NSE level might reflect a neuroendocrine differentiation. This heterotropic antigen expression could be regarded as a consequence of a phenotypic heterogeneity, a unique characteristic of human malignancy thought to be in relationship with genotypic instability and tumour progression (Nicolson, 1987). Alternatively, high serum NSE levels may reflect the extent of the neuronal damage. One piece of evidence which can support this hypothesis is the relationship between the degree of neuronal damage and the serum NSE level following a cerebral stroke (Cunningham et al, 1991, 1996; DeGiorgio et al, 1995, 1999; Fogel et al, 1997; Martens et al, 1998; Wunderlich et al, 1999) or other neuronal brain damage (DeGiorgio et al, 1995, 1999; Fogel et al, 1997; Martens et al,

Table 2 Univariate analysis

Variable	Median survival (weeks)	P (Log-rank)
Age (year)		
≤ 63	33.7	0.0363
> 63	21.4	
Gender		
Female	50.7	0.0004
Male	26.3	
ECOG performance status		
< 2	35.3	0.0003
≥ 2	20.9	
Tumour status (T)		
1–2	30.6	0.2923
3–4	26.9	
Nodal status (N)		
0–1	27.3	0.2247
2–3	29.6	
Histology		
Squamous-cell carcinoma	26.3	0.1075
Adenocarcinoma	32.7	
Large cell carcinoma	28.4	
Weight loss		
< 5%	28.4	0.4312
≥ 5%	27.3	
Serum Cyfra 21–1 level		
≤ 3.6	33.6	0.1314
> 3.6	24.6	
Serum NSE level		
≤ 12.5	34.4	0.0015
> 12.5	24.3	
Serum albumin level		
≤ 32 g l⁻¹	20.1	0.1293
> 32 g l⁻¹	31.4	
Serum sodium level		
< 132	15.4	0.0141
≥ 132	30.1	
Serum alkaline phosphatase level		
Normal	32.3	0.0080
Elevated	20.6	
Serum lactate		
Normal	33.6	0.0358
Elevated	23.6	
Blood leukocyte count		
≤ 10.10¹⁰ l⁻¹	33.6	0.1005
> 10.10¹⁰ l⁻¹	27	
Adrenal gland metastases		
Yes	24.3	0.4637
No	29.6	
Bone metastases		
Yes	23.9	0.0663
No	30.3	
Liver metastases		
Yes	24.1	0.1414
No	28.4	
No. of brain metastases		
Unique	30.6	0.1675
Multiples	28	
Site of brain metastases		
Supra-tentorial	32.3	0.7317
Infra-tentorial	27.3	
Mixed	26.9	
Neurologic symptoms		
No symptoms	38.7	0.0019
Neurologic symptoms	24.3	

Table 3 Estimated hazard ratio for significant variables

Variables	Hazard ratio	95% CI	P
Male gender	2.29	1.26–4.16	0.006
Poor performance status (2–4)	1.73	1.15–2.62	0.009
Age	1.02	1.003–1.043	0.021
High serum NSE level	1.72	1.11–2.68	0.016
Presence of neurological symptoms	1.63	1.05–2.54	0.028
Low serum sodium level	2.99	1.17–7.62	0.022

© 2001 Cancer Research Campaign
British Journal of Cancer (2001) 84(7), 903–909
levels are site-specific predictors of outcome to be taken into account in new therapeutic approaches in this setting.

ACKNOWLEDGEMENTS

The authors wish to thank Mrs Jo Baïssus for help in preparing the manuscript.

REFERENCES

Agboola O, Benoıt B, Cross P, Da Silva V, Esche B, Lessik H and Gonsalves C (1998) Prognostic factors derived from recursive partition analysis (RPA) of Radiation Therapy Oncology Group (RTOG) brain metastases trials applied to surgically resected and irradiated brain metastatic cases [see comments]. Int J Radiat Oncol Biol Phys 42: 155–159

Andersen PK (1991) Survival analysis 1982–1991: the second decade of the proportional hazards regression model. Statistics Med 10: 1931–1941

Ando Y, Sugiuira S, Ando M, Minami H, Nomura F, Sakai S and Shimokata K (1996) Acceptability of patients with brain metastases for clinical trials of chemotherapy for metastatic non-small-cell lung cancer. Am J Clin Oncol 19: 478–482

Aschtm R, Lamond JP, Alexandre E, Buatti JM, Chappell R, Friedman WA, Kinsella TJ, Levin AB, Noyes WR, Schultz CJ, Leoffler JS and Mehta MP (1996) A multi-institutional outcome and prognostic factor analysis of radiosurgery for resectable single brain metastasis [see comments]. Int J Radiat Oncol Biol Phys 35: 27–35

Brechot JM, Chevet S, Natali J, Le Gall C, Fretault J, Rochemaure J and Chastang C (1997) Diagnostic and prognostic value of Cyfra 21-1 compared with other tumour markers in patients with non-small cell lung cancer: a prospective study of 116 patients. Eur J Cancer 33: 385–391

Buttner T, Lack B, Jager M, Wunsche W, Kuhn W, Muller T, Prazunkt H and Postert T (1999) Serum levels of neuron-specific enolase and s-100 protein after single tonic-clonic seizures. J Neurol 246: 459–461

Charloux A, Hedelin G, Dieternann A, Houzilude T, Roselin N, Pauli G and Quoix E (1997) Prognostic value of histology in patients with non-small cell lung cancer. Lung Cancer 17: 123–134

Cooper EH and Splinter TAW (1987) Neuron specific enolase (NSE): a useful marker in small cell lung cancer. Lung Cancer 3: 61–66

Cox DR (1972): Regression models and life-tables. J R Stat Soc 34B: 187–220

Cunningham RT, Young IS, Winder J, O’Kane MJ, McKinstry S, Johnston CF, Dolan OM, Hawkins SA and Buchanan KD (1991) Serum neurene specific enolase (NSE) levels as an indicator of neuronal damage in patients with cerebral infarction. Eur J Clin Invest 21: 497–500

Cunningham RT, Watt M, Winder J, McKinstry S, Lawson JT, Johnston CF, Hawkins SA and Buchanan KD (1996) Serum neuron-specific enolase as an indicator of stroke volume. Eur J Clin Investig 26: 298–303

DeGiorgio CM, Corrède JD, Gott PS, Gansburg DL, Brauch KA, Smith T, Boutros R, Loskota WJ and Rabinowicz AL (1995) Serum neuron-specific enolase in human status epilepticus [see comments]. Neurology 45: 1134–1137

DeGiorgio CM, Heck CN, Rabinowicz AL, Gott PS, Smith T and Corrède J (1999) Serum neuron-specific enolase in the major subtypes of status epilepticus. Neurology 52: 746–750

Depierre A, MJB, Moro D, Chevet S, Braun D, Quoix E, Lebecq B, Bronton JL, Lemarié E, Gouva S, Paillet N, Béchet JM, Janicot H, Lebas FX, Terrouix P and Chastang C (1999) Phase II trial of neo-adjuvant chemotherapy in resectable stage I (except T1NO) II, IIIA non-small-cell lung cancer (NSCLC): the French experience. Proc Am Soc Clin Oncol 18: 465a (A1792).

Diener-West M, Dobkins TW, Phillips TL and Nelson DF (1989) Identification of an optimal subgroup for treatment evaluation of patients with brain metastases using RTOG study 7910. Int J Radiat Oncol Biol Phys 16: 669–673

Ellis R, Gregor A (1998) The treatment of brain metastases from lung cancer. Lung Cancer 20: 81–84

Fogel W, Krieger D, Veith M, Adams HP, Hund E, Storoch-Hagenlocher B, Bugg, B Mathias D and Hacke W (1997) Serum neuron-specific enolase as early predictor of outcome after cardiac arrest. Crit Care Med 25: 1133–1138

Furuse K, Fukusaka M, Kawahara M, Nishikawa H, Takada Y, Kadoh S, Katagami N and Aiyoshi Y (1999) Phase III study of concurrent versus sequential thoracic radiotherapy in combination with mitomycin, vindesine, and cisplatin in unresectable stage III non-small-cell lung cancer. J Clin Oncol 17: 2692–2699

In conclusion, our study confirms age, sex and performance status as prognostic factors of NSCLC with brain metastases at the time of presentation suggesting that this subset of patients shares similar determinants of outcome with the general NSCLC population. In addition, both neurological symptoms and serum NSE
Gaspar L, Scott C, Rottman M, Asbell S, Phillips T, Wasserman T, McKenna WG and Byhardt R (1997) Recursive partitioning analysis (RPA) of prognostic factors in three Radiation Therapy Oncology Group (RTOG) brain metastases trials. Int J Radiat Oncol Biol Phys 37: 745–751.

Gould VE, Limnolia RI, Memoli VA and Warren WH (1983) Biology of disease: neuroendocrine components of the bronchopulmonary tract: hyperplasias, dysplasias, and neoplasms. Lab Invest 49: 519–537.

Harrell FE, Lee KL, Matchar DB, and Reichert TA (1985). Regression models for prognostic prediction: advantages, problems, and suggested solutions. Cancer Treat Rep 69: 1071–1077.

Hsiung CY, Leung SW, Wang CJ, Lo SK, Chen HC, Sun LM and Fang FM (1998) Serum S-100 and neuron-specific enolase as indicators of disease activity in small cell lung cancer. Eur J Cancer Clin Oncol 25: 123–128.

Kaplan EL and Meier P. (1958). Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc. 53: 457–481.

Kelly K and Bunn PA, Jr (1998) Is it time to reevaluate our approach to the treatment of brain metastases in patients with non-small cell lung cancer? Lung Cancer 20: 85–91.

Komaki R, Pajak TF, Byhardt RW, Emami B, Asbell SO, Roach M, 3rd, Pedersen SE, Mariotto A, Pajak TF and Byhardt RW (1997) Recursive partitioning analysis (RPA) of prognostic factors in lung cancer. Cancer 80: 1747–1754.

Lagerwaard FJ, Evens PJ, Venketesh A, Hansen HH, Nussbaum ES, Djalilian HR, Cho KH and Hall WA (1998) Brain metastases: a review of 1292 patients. Int J Radiat Oncol Biol Phys 43: 795–803.

Lonjon M, Paquis P, Michiels JF, Frenay M, Bensadoun RJ, Chatel C, Roche JL and Reichert TA (1985). Regression models for prognostic prediction: advantages, problems, and suggested solutions. Cancer Treat Rep 69: 1071–1077.

Marti K, Zippelius A, Schmid M, van der Leij M, Peters G, Hainfellner J, Stein M, Melzer C, Kolb H, Lohr U, Roedler M, Pflug T, Balzer K, Konig G, Schubert P, Lengsfeld K, Lackner H and Bermann R (1999) Prognostic factors for brain metastases in patients with non-small cell lung cancer: frequency, risk groups, and prognosis. J Clin Oncol 17: 216–221.

Martens P, Raabe A and Johnson P (1998) Serum S-100 and neuron-specific enolase for prediction of regaining consciousness after global cerebral ischemia. Stroke 29: 2363–2366.

Merrill RM, Henson DE and Barnes M (1999) Conditional survival among patients with carcinoma of the lung [see comments]. Chest 116: 697–703.

Missler U, Wiesmann M, Friedrich C and Kaps M (1994) [Single cerebral metastasis of bronchopulmonary cancers]. Rev Neurol 150: 216–221.

Mountain CF (1997) Revisions in the international stage for staging lung cancer. Chest 111: 1710–1717.

Newman SI and Hansen HH (1974) Prognosis in adenocarcinoma of the lung: frequency, diagnosis, and treatment of brain metastases in 247 consecutive patients with bronchogenic carcinoma. Cancer 33: 492–496.

Nguyen LN, Maor MH and Oswald MJ (1998) Brain metastases as the only manifestation of undetected primary tumor. Cancer 83: 2181–2184.

Nicolson GL (1987) Tumor cell instability, diversification, and progression to the metastatic phenotype: from oncogene to oncofetal expression. Cancer Res 47: 1473–1487.

Nussbaum ES, Djallilian HR, Cho KH and Hall WA (1996) Brain metastases. Histology, multiplicity, surgery, and survival. Cancer 78: 1781–1788.

Paesmans M, Sculier JP, Libert P, Bureau G, Dabouis G, Thiriaux J, Michel J, Van Cutsem O, Sergysels R and Mommen P (1995) Prognostic factors for survival in advanced non-small-cell lung cancer: univariate and multivariate analyses including recursive partitioning and amalgamation algorithms in 1,052 patients. The European Lung Cancer Working Party. J Clin Oncol 13: 1221–1230.

Paesmans M, Sculier JP, Libert P, Bureau G, Dabouis G, Thiriaux J, Michel J, Van Cutsem O, Sergysels R, Mommen P and Kustersky J (1997) Response to chemotherapy has predictive value for further survival of patients with advanced non-small cell lung cancer: 10 years experience of the European Lung Cancer Working Party. Eur J Cancer 33: 2326–2332.

Postmus PE and Smit EF (1999) Chemotherapy for brain metastases of lung cancer: a review. Ann Oncol 10: 753–759.

Pujol JL, Grenier J, Daures JP, Daver A, Pujol H and Michel FB (1993) Serum fragment of cytokeratin subunit 19 measured by CYFRA 21–1 immunoradiometric assay as a marker of lung cancer. Cancer Res 53: 61–66.

Radice PA, Matthews MJ, Ihde DC, Gasdar AF, Carney DN, Bunn PA, Cohen MH, Fossiek EB, Makuch RW and Minna JD (1982) The clinical behavior of “mixed” small cell/large cell bronchogenic carcinoma compared to “pure” small cell subtypes. Cancer 50: 2894–2902.

Ryan GF, Ball DL and Smith GJ (1995) Treatment of brain metastases from primary lung cancer. Int J Radiat Oncol Biol Phys 31: 273–278.

Schoenkuber W, Kitzler H, Sterz F, Behringer W, Holzer M, Frossard M, Spitzauer S and Laggerer AN (1999) Time course of serum neuron-specific enolase. A predictor of neurological outcome in patients resuscitated from cardiac arrest. Stroke 30: 1598–1603.

Sen M, Demiral AS, Cetingoz R, Alanayi H, Akman F, Senturk D and Kinary M (1998) Prognostic factors in lung cancer with brain metastasis. Radiother Oncol 46: 33–38.

Shepherd FA (1999) Chemotherapy for non-small cell lung cancer: have we reached a new plateau? Semin Oncol 26: 3–11.

Simonton R and Altman DG (1994). Statistical aspects of prognostic factor studies in oncology. Br J Cancer 69: 979–985.

Sobin LH, Hermanek P and Hutter RVP (1987) TNM classification of malignant tumours. 4th edition. UICC; Geneva.

Sorensen JB, Hansen HH, Hansen M and Dombernowsky P (1988) Brain metastases in adenoacarcinoma of the lung: frequency, risk groups, and prognosis. J Clin Oncol 6: 1474–1480.

Swift PS, Phillips T, Martz K, Wara W, Mohiuddin M, Chang CH and Asbell SO (1993) CT characteristics of patients with brain metastases treated in RTOG study 79–16. Int J Radiat Oncol Biol Phys 25: 309–314.

Tisi GM, F.P., Peters RM, Pearson G, Carr D, Lee RE and Selawry O (1982) Intracerebral metastases of undetected primary tumor. Cancer 49: 2181–2184.

Tisi GM, Pearson G, Carr D, Lee RE and Selawry O (1982) Intracerebral metastases of undetected primary tumor. Cancer 49: 2181–2184.

Wunderlich MT, Ebert AD, Kratz T, Goertler M, Jost S and Herrmann M (1999) Time course of serum neuron-specific enolase. A predictor of neurological outcome in patients resuscitated from cardiac arrest. Stroke 30: 1598–1603.

Zimm S, Wampler GL, Stablein D, Hazra T and Young HF (1981) Intracerebral metastases of undetected primary tumor. Cancer 49: 2181–2184.

Zimm S, Wampler GL, Stablein D, Hazra T and Young HF (1981) Intracerebral metastases in solid-tumor patients: natural history and results of treatment. Cancer 48: 384–394.

Zubrod CG, Schneiderman M and Frei E Jr (1960) Appraisal of methods for the study of chemotherapy of cancer in man: Comparative therapeutic trial of nitrogen mustard and triethylenephosphoramide. J Chron Dis 11: 7–33.