Nucleosynthesis in early supernova winds III:
No significant contribution from neutron-rich pockets

R. D. Hoffman, J. Pruet & J. L. Fisker
Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94550
hoffman21@llnl.gov, pruet1@llnl.gov, fisker1@llnl.gov

H.-T. Janka & R. Burras
Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Strasse 1, 85741 Garching, Germany

S. E. Woosley
Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064

ABSTRACT

Recent nucleosynthesis calculations of Type II supernovae using advanced neutrino transport
determine that the early neutrino winds are proton-rich. However, a fraction of the ejecta emitted
at the same time is composed of neutron-rich pockets. In this paper we calculate the nucleosyn-
thesis contribution from the neutron-rich pockets in the hot convective bubbles of a core-collapse
supernova and show that they do not contribute significantly to the total nucleosynthesis.

Subject headings: nuclear reactions, nucleosynthesis, abundances — stars: supernovae

1. Introduction

During a delayed Type II supernova explo-
sion, the collapsing core emits neutrinos and anti-
neutrinos. These cool the shrinking proto-neutron
star and heat the infalling matter which expands
outwards, reverses the in-going accretion shock,
and hypothetically causes the supernova to ex-
plode. The heating is sufficiently rapid to estab-
lish and maintain a convective region between the
infalling matter and the proto-neutron star. The
matter — originally part of the progenitor’s sil-
icon burning shell — in this convective region com-
prise electrons, positrons, and completely photo-
disintegrated nuclei (protons with a mass fraction,
Y_e, neutrons with mass fraction $1 - Y_e$). The neu-
trinos irradiate the convectively overturning bub-
bles, so this matter is not simply “adiabatically
expanding” nor is it subject to a uniform history
of neutrino irradiation. This is important because the neutrino-luminosities drive the matter proton-rich
due to the lighter proton mass (Pruet et al. 2005;
Fröhlich et al. 2006a,b) given approximately equal
neutrino luminosities of the neutrinos and anti-
neutrinos (Liebendorfer et al. 2003). Thus dif-
ferent pockets in the bubbles will have different
compositions and different Y_e, some of which are
neutron-rich.

The contribution to the nucleosynthesis of the neutron-rich bubbles was investigated by
Pruet et al. (2005) and the contribution to the nucleosynthesis of the proton-rich winds was inves-
tigated by Pruet et al. (2006). Both calculations
were based on the Lagrangian (ρ, T)-histories of
tracer particles in the 2D model of Janka et al.
(2003). However, some bubbles also contained
neutron-rich pockets which whose nucleosynthe-
sis was not explored in those papers. This is the
subject of this paper.

We have extracted tracer particle trajectories
for these neutron-rich pockets and investigate
their nucleosynthesis contribution to the overall ejecta. In the following, \[2\] describes the supernova model and the \(Y_e\)-distribution of matter in more detail. The nucleosynthesis results are given in \[3\] followed by a conclusion in \[4\].

2. Supernova model

Our calculations of the nucleosynthesis contribution of neutron-rich pockets use the same supernova model as \[\text{Pruet et al. (2005, 2006)}\] but here we consider the \((\rho, T, Y_e)\)-trajectories with \(Y_e < 0.5\) thus complementing our earlier calculations.

The model is described in \[\text{Janka et al. (2003)}\] (see \[\text{Rampp & Janka (2002)}\] for specific code details and \[\text{Pruet et al. (2003)}\] for more details). In this model, the progenitor is based on a non-rotating \(15\, M_{\odot}\) model \((\text{S15A)}\) of \[\text{Woosley & Weaver (1995)}\] which is transferred to a 2D polar grid \((400\) non-equidistant radial zones and 32 poloidal zones\) using random velocity perturbations of the order of \(10^{-3}\) to seed the convection and an artificial 20–30% enhancement of the neutrino flux to ensure the supernova explosion.

The simulation commences at \(t_i = -175\) ms prior to the core bounce and uses embedded tracer particles to provide a history of \((\rho, T, Y_e)\) for a range of electron abundances until \(t_f = 470\) ms after the core bounce at which time the 2D simulation was stopped due to CPU-constraints.

At \(t_f\), the temperature is still several billion K so the nucleosynthesis is still in partial statistical equilibrium and not yet frozen out. To continue the nucleosynthesis calculation, the density and the temperature was mapped from the 2D model to a 1D grid and extrapolated by assuming a homologous expansion with a constant electron abundance and a constant entropy. These assumptions are acceptable for calculating the \((T, \rho)\)-response to the subsequent expansion since the nuclear decays are too slow to change \(Y_e\) over the expansion timescale. Also the rate of expansion is so large that the “\(r^{-2}\)”-dependent neutrino-luminosity quickly becomes irrelevant \[\text{Pruet et al. (2005)}\].

Fig. 1 shows 4 representative trajectories of \(\rho\) and \(T_9(=10^9\) K\) out of the 40 neutron-rich trajectories that were tracked during the simulation and subsequently extrapolated to lower temperatures. The transition to the extrapolation from the 2D simulation happens around \(T_9 = 4–5\). The entropy is approximately \(15k_B/\text{nucleon}\).

![Fig. 1.— This figure shows \(\rho\) vs \(T_9(=10^9\) K\) for some representative \(Y_e\) trajectories. The transition to the extrapolation from the 2D simulation happens around \(T_9 = 4–5\).](image)

3. Neutron-rich nucleosynthesis

In this supernova model, the amount of matter with \(Y_e < 0.47\) is \(\lesssim 10^{-4}\, M_{\odot}\). This prevents an unacceptable overproduction of \(N = 50\) nuclei \[\text{Hoffman et al. (1996)}\].

In the following we consider the nucleosynthesis in the \(0.47 < Y_e < 0.50\) range \((M = 5 	imes 10^{-3}\, M_{\odot})\) using the trajectories described above. Nucleosynthesis calculations commence at \(T_9 = 9.0\) and proceed until freeze-out below \(T_9 \sim 1.\) At \(T_9 = 9.0\), the matter comprises protons with a mass fraction, \(Y_e\), and neutrons with mass fraction \(1 - Y_e\).

Therefore the initial conditions is completely defined by the initial values of \(\rho, T,\) and \(Y_e\). Between \(T_9 \sim 9\) and \(T_9 \sim 6,\) \(^4\text{He}\) quickly recombines which depletes the neutrons and protons equally thus keeping \(Y_e\) constant. At \(T_9 \sim 4–6\), the helium recombines into the iron group elements along the \(N = 28\) isotope and then forms \(Z = 28\) isotopes as the temperature drops to \(T_9 \sim 2–3\). The electron-abundance or neutron to proton ratio determines the subsequent reaction flow.

For \(Y_e\) closer to 0.5, primarily \(^{56,57,58}\text{Ni}\) are formed. The flow from these nuclei leads to \(^{64}\text{Ge}\).
Unlike the νp-process [Fröhlich et al. 2006b], there is not a sufficient amount of protons left at this time for neutrinos to provide a sufficient number of neutrons to capture on 64Ge and thus move beyond this waiting point. As a result, heavier isotopes are not co-produced with the 62Ni and 64Zn. In particular, there is no production of the light p-nuclei for $Y_e \sim 0.5$.

For Y_e closer to 0.47, primarily 58,59,60Ni are formed. This means that the 64Ge waiting point is easily circumvented which leads to overproduction of 74Se, 78Kr, and 92Mo which is co-produced with 64Zn. With increasing Y_e, the 92Mo production falls off [Hoffman et al. 1996].

3.1. Production factors

The total nucleosynthesis contribution is given by the sum of the mass weighted production factors $P(i)$, defined as

$$P(i) = \sum_j \frac{M_j X^i_j}{M_e X^i_{\odot}},$$

where M_j is the mass in the jth bin (trajectory), $M_e = 13.5 M_{\odot}$ is the total mass ejected in the supernova explosion, X^i_j is the mass fraction of the ith isotope in the jth bin and X^i_{\odot} is the solar abundance of the ith isotope taken from Lodders (2003).

The production factors for neutron-rich pocket trajectories are shown in Fig. 2. The most produced isotopes in the neutron-rich parts of the bubble relative to solar abundances are 62Ni and 64Zn which originate in pockets with Y_e closer to 0.5. These are co-produced along with 74Se and 78Kr which originate in the pockets with Y_e closer to 0.47.

The figure also shows the contributions from the proton-rich bubble and the proton-rich winds trajectories (emitted later). We note that the contribution of the neutron-rich pocket outflow is insignificant compared to the total outflow. The neutron-rich pockets add 74Se, 78Kr, and 92Mo to the bubble-outflow, but this contribution is much smaller than the contribution from the proton-rich winds when neutrino interactions are included. The neutron-rich pockets also add 62Ni and 64Zn to the total outflow but only in comparable amounts to the wind and proton-pockets outflows. Here 64Zn production is increased by $\sim 30\%$ while 62Ni production is increased by a factor 1.5.

4. Conclusion

Our results show that the overproduction factors of the neutron-rich pockets folded with the mass-ejecta does not contribute significantly to the nucleosynthesis of the light p-nuclei of compared to the nucleosynthesis of the proton-rich pockets and winds.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344. It was also supported, in part, by the DOE-OS SciDAC program (DC-FC02-01ER41176), the National Science Foundation (AST-02-06111), and NASA (NAG5-12036) and, in Germany, by the Research Center of Astroparticle Physics (SFB 375) and the Transregional Collaborative Research Center for Gravitational Wave Astronomy (SFB-Transregio 7).

REFERENCES

Fröhlich, C., et al. 2006a, Astrophys. J., 637, 415
Fröhlich, et al. 2006b, Phys. Rev. Lett., 96, 142502
Hoffman, R. D., et al. 1996, Astrophys. J., 460, 478
Janka, H.-T., Buras, R., & Rampp, M. 2003, Nucl. Phys., A718, 269
Liebendörfer, M., et al. 2003, Nucl. Phys., A719, 144
Lodders, K. 2003, Astrophys. J., 591, 1220
Pruet, J., et al. 2006, Astrophys. J., 644, 1028
Pruet, J., et al. 2005, Astrophys. J., 623, 325
Rampp, M. & Janka, H.-T. 2002, Astron. Astrophys., 396, 361
Woosley, S. E. & Weaver, T. A. 1995, Astrophys. J. Suppl., 101, 181

This 2-column preprint was prepared with the AAS LaTeX macros v5.2.
Fig. 2.— Production factors of the neutron-rich trajectories of the convective bubble ejecta. The most abundant isotope for a given element is shown with an asterisk. Diamonds indicate that the isotope was made primarily as a radioactive progenitor.