Scale-free networks as preasymptotic regimes of superlinear preferential attachment

Paul Krapivsky1 and Dmitri Krioukov2

1Department of Physics, Boston University, Boston, MA 02215, USA
2Cooperative Association for Internet Data Analysis (CAIDA), University of California, San Diego (UCSD), La Jolla, CA 92093, USA

We study the following paradox associated with networks growing according to superlinear preferential attachment: superlinear preference cannot produce scale-free networks in the thermodynamic limit, but there are superlinearly growing network models that perfectly match the structure of some real scale-free networks, such as the Internet. We obtain an analytic solution, supported by extensive simulations, for the degree distribution in superlinearly growing networks with arbitrary average degree, and confirm that in the true thermodynamic limit, these networks are indeed degenerate, i.e., almost all nodes have low degrees. We then show that superlinear growth has vast preasymptotic regimes whose depths depend both on the average degree in the network and on how superlinear the preference kernel is. We demonstrate that a superlinearly growing network model can reproduce, in its preasymptotic regime, the structure of a real network, if the model captures some sufficiently strong structural constraints — rich-club connectivity, for example. These findings suggest that real scale-free networks of finite size may exist in preasymptotic regimes of network evolution processes that lead to degenerate network formations in the thermodynamic limit.

PACS numbers: 89.75.Fb, 89.75.Hc, 05.65.+b

I. INTRODUCTION

Models of complex networks can be roughly split into two classes: static and growth models. Static models, such as classical random graphs [1] and their generalizations [2,3,4], generate a whole network at once, trying to directly reproduce some properties observed in real network snapshots. Growth models, e.g., preferential attachment [5], construct networks by adding a node at a time, attempting to provide some insight into the laws governing network evolution. Compared to static models, it is generally more difficult to closely match observed network properties with growth models, because in this case one usually has less direct control over the properties of modeled networks.

The first growth model that matched the observed Internet topology surprisingly well, across a wide spectrum of network properties, was the positive-feedback preference (PFP) model by Zhou and Mondragón [6]. In the model, at each time step, one node is added to the network, and connected to the existing nodes by two or three links, choosing different link placement options with different probabilities. The most important property of the model is that the probability to connect a new node to the existing nodes of degree k is a superlinear function of k. Although there are many other models of the Internet evolution, e.g., [7,8,9], the PFP model stands apart as it gives rise to the following unresolved paradox. On the one hand the model matches perfectly the observed Internet, while on the other hand, since it is explicitly based on preferential attachment with a superlinear preference kernel, it cannot produce, in the thermodynamic limit, any scale-free networks [10], including the Internet.

Here we resolve this paradox by showing that superlinear preferential attachment can have vast preasymptotic regimes. Specifically, we first find an analytic asymptotic solution for superlinearly growing networks with arbitrary average degree, confirming that the asymptotic regime is indeed degenerate — regardless of the average degree, only a finite number of nodes have high degrees (Section II). However, in Section III, we show that if the preference kernel is not too superlinear and if the average degree is not too low, then this asymptotic regime becomes noticeable only at network sizes that are orders of magnitudes larger than the size of any real network, including the Internet. We thus half-resolve the paradox by showing that the PFP model can, in fact, match the Internet. Section IV resolves the other half, by explaining why the model does so: its design implicitly reproduces the degree correlations in the Internet, which are known to define almost all important topological properties, except clustering [3,4]. We conclude in Section V with an outline of our findings and their implications.

II. ASYMPTOTIC DEGREE DISTRIBUTION

In this section we derive the analytic solution for the degree distribution of superlinearly growing networks (SLGNs) in the thermodynamic limit. We begin by recalling what is known for networks grown by adding a single link per node (the average degree $k = 2$), and then generalize to the case with multiple links.

A. Single link per node

The case when a new node attaches to exactly one existing target (or host) node is well-studied [10,11,12]. Let the probability that the new node selects a host node

$$P(k) \approx k^2,$$
of degree k be

$$k^\delta / \sum_{j=1}^{N} (k_j)^\delta,$$ \hspace{1cm} (1)

where the summation is over all N existing nodes and k_j’s are their degrees. Then the asymptotic degree distribution is a stretched exponential for sub-linearly growing networks ($\delta < 1$) and a power law for linearly growing networks ($\delta = 1$). Superlinearly growing networks with $\delta > 1$ are asymptotically star graphs.

Specifically, if $\delta > 2$, then the number of nodes with degrees $k > 1$ remains finite in the thermodynamic limit $N \to \infty$, meaning that almost all nodes have degree 1, $N_1(N) \approx N$. If $3/2 < \delta < 2$, then the number $N_2(N)$ of nodes with degree 2 (degree-2 nodes) grows as $N^{2-\delta}$, while the number of nodes with degrees $k > 2$ remains finite. If $4/3 < \delta < 3/2$, then $N_3(N) \sim N^{3-2\delta}$, and the number of nodes with degrees $k > 3$ is finite. In other words, there is an infinite series of “phase transitions” at critical values $\delta_p = 1 + 1/p$, where $p = 1, 2, 3, \ldots$, and the degree distribution in SLGNs with δ lying between these critical values, $\delta_p < \delta < \delta_{p-1}$ ($\delta_0 \equiv \infty$), is given by

$$N_k / N \sim \begin{cases} N^{(k-1)(1-\delta)} & \text{if } 1 \leq k \leq p; \\ 1/N & \text{otherwise.} \end{cases}$$ \hspace{1cm} (2)

In what follows we also consider the extremal growth rule, which formally corresponds to the $\delta \to \infty$ limit, and specifies that a new node attaches to the existing node with the maximum degree. If there are several nodes with the same maximum degree, then the host node is randomly selected among them. SLGNs grown according to this rule stay stars throughout their evolution, assuming they are stars at the beginning. If an SLGN is not initially a star, then extremal growth evolves it to almost a star, with all new nodes attaching to a maximum-degree node in the initial graph.

Adding one link per node results in growing trees, which are not good models of real complex networks that all have strong clustering. But even if we are not concerned with the models’ realism, there is another reason to consider SLGNs with multiple links added per new node.

While for sub-linearly growing networks, adding more than one link should not qualitatively change the degree distribution, this modification may have a more prominent effect on the degree distributions in superlinearly growing networks. Indeed, the more links per node we add in SLGNs with a finite δ, the stronger the deviations from stars we obviously expect to observe. In view of the PFP model paradox, one might even start suspecting that multiple links may resurrect power laws. We thus have to exercise more care dealing with multiple-link SLGNs. In what follows, we first consider them under the extremal growth rule, and then remove this restriction.

B. Multiple links per node. Extremal growth.

We denote by m the number of links added per new node. The PFP model uses a superposition of the $m = 2$ and $m = 3$ cases, and a combination of the following two link placement options: place a link either between the new and host nodes, or between the host and another existing node, called the peer node. Links are always placed such that the subgraph induced by the new links is connected and contains the new node, so that the network stays connected at each time step. For concreteness, we shall assume that m is a fixed positive integer, and consider cases with different m separately. Another important restriction is that we construct simple graphs, i.e., self-loops and multiple links between the same two nodes are not allowed.

We first focus on the case with $m = 2$. In this case we have only two options to place two links (see Fig. 1): place both links between the new and host nodes, or place one link between the new and host nodes, and place another link between the host and peer nodes. The both options, or any their superposition, produce the same result. Let the initial network be two disconnected nodes. Adding the third node according to the extremal growth rule creates the star graph with three nodes. We shall represent our graphs by their degree sequences (k_1, \ldots, k_N). The degree sequence representation turns out to define, up to an isomorphism, the graphs grown according to our extremal growth rule. The star graph after the first step is $(2, 1, 1)$ in this representation. Applying the extremal growth rule to add the fourth node, we obtain $(3, 2, 2, 1)$, and then $(4, 3, 2, 2, 1)$, $(5, 4, 2, 2, 2, 1)$, and generally

$$(N - 1, N - 2, 2, \ldots, 2, 1)$$ \hspace{1cm} (3)

We prove (3) by induction. We already checked its validity for small N. Assuming that (3) holds for some $N > 4$, we establish it for $N + 1$. If we place the two links according to the first option, shown in Fig. 1(a), then the new node attaches to the nodes with degrees $N - 1$ and $N - 2$. Thus degree $N - 1 \mapsto N$ and $N - 2 \mapsto N - 1$, the new node acquires degree 2, other degrees do not change, and the new graph has indeed the same structure (3). If we use the other link placement option shown in

![Figure 1: Link placement options for two links.](image-url)
Fig. 1(b), we must choose the node of degree \(N - 2 \) as the host node. We cannot attach the new node to the node of degree \(N - 1 \) because this latter node is already connected to all other nodes, and therefore we cannot add the second link between this hub node and any peer node. Selecting the node of degree \(N - 2 \) as the host, we notice that it is connected to all other nodes, except the degree-1 node. Therefore this latter node is the only choice for the peer node. Hence \(N - 2 \rightarrow N \) and \(1 \rightarrow 2 \), the new node acquires degree 1, and other degrees do not change. Thus the new graph has the same structure (3).

We shall call the graphs series (3) the open 2-books. The justification for this name is as follows. The link between the two nodes of highest degrees, denoted by \(A \) and \(B \), is the binding of an open book. Each degree-2 node is connected to \(A \) and \(B \), and the resulting triangle is a page. Thus, an open 2-book contains \(N - 3 \) triangular pages. Finally, the link between the highest-degree node \(A \) and the dangling degree-1 node is a built-in bookmark. The open 2-book graph with \(N = 9 \) nodes is shown in Fig. 2.

Note that we can call a star an open 1-book. It does not have bookmarks, its binding is the hub node, and its \(N - 1 \) pages are all the links.

We now move to the case with three links added per new node, \(m = 3 \). Generalizing the link placement options for two links, there are four options for placing three links, shown in Fig. 3. Choosing the first option with three host nodes (Fig. 3(a)), the application of the extremal growth rule to the initial graph \((0,0,0)\) yields the graph series \((3,1,1,1), (4,3,2,2,1), (5,4,3,3,2,1), (6,5,4,3,3,2,1) \), and generally

\[
(N - 1, N - 2, N - 3, \ldots, 3, 2, 1) \quad (N-5)
\]

Using the same logic as in the \(m = 2 \) case, one can prove that the extremal growth indeed produces (4). The link placement option in Fig. 3(c) results in exactly the same graph series. Placing links as in Fig. 3(d) we obtain almost the same graph series, except that the first graph is \((2,2,1,1)\). The option in Fig. 3(b) leads to a different graph series, but almost all nodes still have degree 3.

We call the graph series (4) open 3-books. The binding is the triangle \(ABC \) connecting the three nodes \(A, B \), and \(C \) of highest degrees \(N - 1, N - 2 \), and \(N - 3 \). Each page is a tetrahedron \(ABCD \), where \(D \) is one of the \(N - 5 \) degree-3 nodes. Thus, an open 3-book has \(N - 5 \) tetrahedral pages. It also has two bookmarks: triangle \(ABE \) and link \(AF \), where \(E \) and \(F \) are the nodes of degrees 2 and 1.

Generalizing to an arbitrary \(m \), we notice that there are combinatorially many possibilities to place \(m \) links. In general, they lead to different graph series. For concreteness, in the rest of this paper we focus on the simplest option with no peer nodes and \(m \) hosts, i.e., the generalization of Figs. 1(a), 3(a). In this case, if \(N \) is sufficiently large, i.e., \(N > 2m \), then the resulting graphs are

\[
(N - 1, \ldots, N - m, m, \ldots, m, m - 1, \ldots, 1) \quad (N-2m+1)
\]

These graphs are open \(m \)-books. If we imagine them placed in an \(m + 1 \)-dimensional ambient space, then they contain:

- one 2-codimensional binding, i.e., the \(m - 1 \)-simplex \(A_1 \ldots A_m \) composed of the \(m \) highest-degree nodes;
- \(N - 2m + 1 \) 1-codimensional pages, i.e., \(m \)-simplices \(A_1 \ldots A_m D \), where \(D \) is one of the \(N - 2m + 1 \) degree-\(m \) nodes;
- \(m - 1 \) bookmarks of codimensions 2, 3, \ldots, \(m \), i.e., \(m - 1 \)-, \(m - 2 \)-, \ldots, and 1-simplices (one simplex of each dimension), composed of links interconnecting highest-degree nodes and nodes of degrees \(k < m \).

The notion of an open book appears in mathematics [13], where it finds various applications, e.g., as a
tool to establish connections between contact geometry and topology. In its simplest definition, an open book is a fibration of a manifold by a collection of 1-codimensional submanifolds (pages), joined along a 2-codimensional submanifold (binding). Open books with bookmarks (formal definitions are obvious) seem natural, and perhaps they will find applications, too.

C. Removing the extremal growth restriction

In this section we outline the logic behind removing the extremal growth condition. (A more detailed exposition is presented in the Appendix.) We assume that is a finite value. First, we estimate the probability that an SLGN remains an open book. We then characterize the deviations from the open book structure. For clarity, we consider the simplest case with and the first link placement option in Fig. 1(a).

Consider a network of large size , so that and , and suppose that it is an open 2-book [4]. Avoiding multiple links between the same pair of nodes, the probability that after adding one node the network preserves its open book structure is approximately

\[P_{j-j+1} \approx \frac{j^\delta + j^\delta}{j^\delta + j^\delta + j \cdot 2^\delta} \cdot \frac{j^\delta}{j^\delta + j \cdot 2^\delta}. \] (6)

Indeed, the first factor is the probability that one of the two nodes of degree is selected as the first host, while the second factor is the probability that the other such node is selected as the second host, in which case the network preserves its approximate open book structure. Using (6), we estimate the probability that upon reaching size the network is still an open 2-book

\[P_N \approx \prod_{j=2}^{N} \frac{1}{1 + \left(\frac{2}{j}\right)^{\delta-1}} \frac{1}{1 + 2 \left(\frac{2}{j}\right)^{\delta-1}} \]

\[\sim \begin{cases} N^{-6} e^{-a N^{2-\delta}}, & \text{if } \delta = 2; \\ \text{finite in the limit } N \to \infty, & \text{if } \delta > 2; \end{cases} \] (7)

We thus see that if is sufficiently large, viz. , then there is a finite probability that the network preserves its open 2-book structure throughout the entire evolution. This observation implies that even if it is not an open book, the distortion of the open book structure is finite, e.g., a finite number of nodes have degree , degrees of nodes and in Fig. 2 are respectively lower, etc.

However, if , the network is not an open book with high probability. But even though the exact open book structure is almost surely destroyed, the distortion is still asymptotically small and admits analytic estimates. Indeed, let us first estimate the number of degree- nodes in an -sized SLGN with and . This number grows if instead of connecting to the highest-degree node with probability in Eq. 6, the new node selects the other option and connects to a degree-2 node with probability . Therefore

\[\frac{dN_3}{dN} \approx 1 - P_{N \to N+1} \approx 3 \left(\frac{2}{N}\right)^{\delta-1}, \] (8)

where we have neglected loss terms describing the decrease of the number of degree- nodes due to new nodes connecting to them and changing their degrees to 4 or 5. These loss terms, as well as corrections to the approximate expression for in (9), are sub-leading, as we show in Appendix. The integration of Eq. (8) gives

\[N_3(N) \approx \begin{cases} 6 \ln N \quad & \text{if } \delta = 2; \\ a N^{2-\delta} \quad & \text{if } \delta < 2, \end{cases} \] (9)

which we juxtapose against simulations in Section III. We thus see that the number of degree- nodes grows sublinearly with , and consequently their proportion in the thermodynamic limit is infinitesimal. We also note that the solution in Eq. 9 allows us to compactly rewrite Eq. 7 as

\[P_N \sim e^{-N_3(N)}. \] (10)

The obvious generalization of (8) for higher degrees is

\[\frac{dN_k}{dN} \sim \frac{N_{k-1}}{N^p}, \] (11)

Solving recursively yields the connectivity transitions quite similar to those in the case [2]

\[N_k/N \sim \begin{cases} N^{(k-2)(1-\delta)}, & \text{if } 2 \leq k \leq p + 1; \\ 1/N, & \text{otherwise}, \end{cases} \] (12)

for any such that , where and . The only difference between the degree distributions for the and cases (Eqs. 2 and 12) is that the latter is the former shifted along the -axis to the right by 1 (Eq. 12 is Eq. 2 with).

Therefore, the same infinite series of connectivity transitions appear for any , and the asymptotic degree distribution is given by

\[N_k/N \sim \begin{cases} N^{(k-m)(1-\delta)}, & \text{if } m \leq k \leq p + m - 1; \\ 1/N, & \text{otherwise}, \end{cases} \] (13)

III. PREASYMPTOTIC REGIME

We have shown that all SLGNs are asymptotically open books, while Zhou and Mondragón [4] showed that a specific SLGN of a finite size exhibited clean power laws. Another apparent disagreement is that according to our analysis, , while the PFP
model simulations show that $N_k \sim N$ for all k. The explanation of these paradoxes lies in the fact that the PFP model has a vast preasymptotic regime, and both the Internet size and sizes achievable in simulations lie deep within this regime. In this section, we describe two main factors that render this regime extremely vast for the PFP-modeled Internet.

The first factor is that δ in the PFP model exceeds 1 only slightly (specifically, $\delta \approx 1.15$ in \cite{11}). For clarity, let us focus on the following concrete example. The proportion of degree-3 nodes N_3/N in the $m = 2$ case scales as $N^{1-\delta}$, so that if δ is close enough to 1, then the deviation of $N_3(N)$ from the linear growth may be hard to observe for insufficiently large N. Indeed, $N = 10^4$ (the order of the Internet size) and $\delta = 1.15$ substituted in Eq. (9) yield $N_3/N \approx 0.98$, contradicting the assumption made to derive Eq. (2) that the network is almost an open 2-book and hence $N_3/N \ll 1$. This contradiction means that we are very far from the asymptotic regime. Even if we choose $N = 10^{10}$ (almost two autonomous systems per person!), the ratio N_3/N goes down only to 12%, so it is still far from negligible. To get it down to 1%, we would need $N = 10^{17}$, non-achievable in simulations.

The second factor deepening the preasymptotic regime is $m > 1$. The larger the m, the slower the decay of N_k/N as $N^{(k-m)/(1-\delta)}$ for $k > m$, the deeper the preasymptotic regime. For example, using the results from \cite{11} for $N_3(N)$ in the $m = 1$ case, we find that the Internet size $N = 10^4$ and $\delta = 1.15$ yield $N_3/N \approx 0.24$, and to get it down to 1%, we would need only $N = 10^8$, while $N = 10^{10}$ makes it 0.4%—all the numbers are substantially lower than in the $m = 2$ case.

We juxtapose these analytic estimates with simulations in Figs. 4 and 5 showing the proportion of degree-3 nodes N_3/N and the overall degree distribution $\sum_{k \geq 3} N_k/N$ in SLGNs of different size N, grown with different δ and m. For each combination of (N, δ, m) we average the results over a number of graph instances ranging from 3 for the largest size $N = 10^5$ to 100 for smaller N. We select the values of $\delta = (\delta_p + \delta_{p-1})/2$, $\delta_p = 1 + 1/p$, $p = 1, \ldots, 7$ ($\delta = 3$ for $p = 1$), so that the selected δ-values lie within the connectivity transition intervals discussed above. For $p = 7$, $\delta = 1.15$, i.e., the δ-value used in \cite{11}.

In Fig. 4 the cases with $m = 1$ and $m = 2$ confirm the expected: the larger δ, the more quickly the proportion N_3/N approaches our analytic prediction of its asymptotic scaling. Comparing $m = 1$ and $m = 2$, we see that in the former case, only for $\delta = 1.15$ does N_3/N stay constant for all graph sizes N achieved in our simulations, while in the latter case ($m = 2$), this ratio is constant for higher δ-values ($\delta = 1.23$) as well. We see that for small δ’s, the scalings of N_3/N are much further from their asymptotes in the $m = 2$ case than in the $m = 1$ case. The $m = 3$ plot confirms that N_3/N quickly saturates to a dependent constant that increases with δ, while for $m = 6$, N_3/N decays as expected, $\sim 1/N$, with the stronger fluctuations, the smaller δ.

Two factors contribute to the discrepancies between the analytic predictions and simulations in Fig. 4. First, we neglected loss terms in Eq. (9). Taking those into account would yield, for $m = 2$, the asymptotic expansion

$$N_3(N) = a N^{2-\delta} - b N^{3-2\delta} + c N^{4-3\delta} + \ldots,$$

where b and c are some constants that depend on δ. For $\delta = 1.15$ this expansion turns into

$$N_3(N) = a N^{0.85} - b N^{0.7} + c N^{0.55} + \ldots$$

explaining why keeping only the leading term in the asymptotic result may lead to huge errors for small δ and N.

The second discrepancy factor is that all the $N_k(N)$ analytic estimates above are actually the average values of the corresponding random quantities. Nothing is known about fluctuations of the degree distribution, the analysis of which is difficult even in the simpler case of linear preferential attachment \cite{14}.

Fig. 4 provides a more global view of the dependency of the degree distribution on δ and m. The higher δ, the more skewed the degree distribution and hence the more star-like the graphs. For $N = 10^5$, $\delta = 3$, and $m = 1$, all the graph instances in our simulations are stars. The larger m, the closer the degree distribution curves corresponding to different N are to each other (neglecting the size-dependent cut-offs exhibited by all graphs), the straighter these lines, and thus the weaker the dependency of the degree distribution shape on the network size, and the deeper the preasymptotic regime.
We have shown in the previous section that the power laws empirically observed in the PFP model do not contradict the asymptotic open book structure of SLGNs, since typical network sizes considered in simulations are preasymptotically small. However, this argument does not explain why the PFP model almost exactly reproduces not only the power-law degree distribution observed in the real Internet, but also a long list of other important network properties. Since the preasymptotic regime is not amenable to straightforward analytic treatment, in this section we approach the problem from a different angle, and provide a simple explanation based mostly on previous empirical work.

We first notice that the fact that the PFP model exhibits preasymptotic power-law behavior is not so much surprising, because for $\delta = 1$ the model produces asymptotic power laws, and this asymptote is quickly achieved for small N. The results of the previous section indicate that if $\delta \gtrsim 1$ and $m > 1$, then this power-law asymptotic behavior unnoticeably changes to preasymptotic, slowly transforming into the new asymptotic behavior only for very large N.

Yet this argument does not explain why the PFP model reproduces so many other network properties observed in the Internet. Previous work [3, 4, 12, 16, 17] shows
that the degree distribution alone does not fully define all other Internet’s properties, i.e., the Internet is not 1K-random in the terminology of [3], but is almost 2K-random — its structure is very close to the structure of maximally random graphs constrained by its 2-point degree correlations, or the joint degree distribution (JDD) defined by the total number $N_{kk'}$ of links between degree-k and degree-k' nodes. In other words, the Internet’s JDD narrowly defines almost all its other important properties, except clustering [3,4].

Although the PFP model is not concerned with the JDD per se, it reproduces precisely the observed rich club connectivity (RCC) $\varphi(r/N)$ defined as the ratio of the number of links in the subgraph induced by the r highest degree nodes to the maximal number of such links $\binom{r}{2}$. The values of $\varphi(r/N)$ observed in the Internet for small r are substantially higher than in networks grown according to linear preferential attachment. Superlinear preference increases the connectivity density among high-degree nodes, which explains why the PFP model successfully captures the observed RCC.

In the rest of this section we analyze the relationship between the JDD and RCC. Specifically, the JDD almost fully defines RCC: any two graphs with the same JDD have almost the same RCC. While the converse is generally not true, a given form of RCC introduces certain constraints to the JDD. Given the JDD’s definitive role for the Internet topology, we conclude that reproducing RCC constrains JDD. Given the JDD’s definitive role and its success in capturing all other properties of the Internet topology, we conclude that reproducing the JDD narrowly defines almost all its other important properties.

To illustrate how the RCC constrains JDD, we choose to consider a common projection of the JDD, the average degree of the nearest neighbors of degree-k nodes $\bar{k}_{nn}(k)$. We first look at the maximum and minimum possible value of $\bar{k}_{nn}(k)$ for a class of graphs with some fixed degree distribution with minimum and maximum degrees of 1 and k_{max}. We then suppose that φ_k is also given as a constraint, and we quantify how this constraint narrows down the spectrum of possible values of $\bar{k}_{nn}(k)$.

It is easy to see that the minimum and maximum values of $\bar{k}_{nn}(k)$ without the φ_k constraints are simply 1 and k_{max}, if we neglect any structural constraints that a given form of the degree distribution imposes on possible JDDs. For example, if $N_1 > k_{\text{max}}N_{nn}$, then $\bar{k}_{nn}(1)$ cannot be k_{max}; it is necessarily less than k_{max}. Scale-free networks with $\gamma < 3$ have these constraints for links connecting nodes of degrees k and k' such that $kk' > kN$ [21]. To formally see that without such constraints the minimum and maximum of $\bar{k}_{nn}(k)$ is 1 and k_{max}, let $\mu_{kk'} = 1 + \delta_{kk'}$ be the factor taking care of links between nodes of the same degree in $M_{kk'} = \mu_{kk'}N_{kk'}$, so that the total number M_k of “edge ends” (stubs) attached to degree-k nodes is $M_k = kN_k = \sum_{k'} M_{kk'}$. We then have, by definition,

$$\bar{k}_{nn}(k) = \frac{1}{M_k} \sum_{k'} k'M_{kk'}.$$

(17)

(The more common definition for the normalized distributions $P(k) = N_k/N$ and $P(k,k') = M_{kk'}/(kN)$ such that $\sum_k P(k) = \sum_{k'} P(k,k') = 1$ is $\bar{k}_{nn}(k) = \sum_{k'} k'P(k|k') = \bar{k}/P(k)$.) The minimum (maximum) values of $\bar{k}_{nn}(k)$ are achieved when all degree-k nodes are attached only to the nodes with the minimum (maximum) degrees,

$$\bar{k}_{\text{nn}}^{\text{min}}(k) = \frac{1}{M_k} \min \left(\sum_{k'} k'M_{kk'} \right) = 1,$n

$$\bar{k}_{\text{nn}}^{\text{max}}(k) = \frac{1}{M_k} \max \left(\sum_{k'} k'M_{kk'} \right) = k_{\text{max}},$$

where the minimum (maximum) is taken over all possible JDD matrices $M_{kk'}$ yielding the given degree distribution M_k. We thus see that the maximum difference between possible values of $\bar{k}_{nn}(k)$ is

$$\Delta(k) = \bar{k}_{\text{nn}}^{\text{max}}(k) - \bar{k}_{\text{nn}}^{\text{min}}(k) = k_{\text{max}} - 1. \quad (18)$$

In the Internet the maximum node degree is large (it scales as $k_{\text{max}} \sim N^{1/3}$ [21]), and hence $\Delta(k) \approx k_{\text{max}}$.

Suppose now that $\phi_k = \sum_{k'=k}^{k_{\text{max}}} M_{kk'} = \varphi_k + N_{kk}$ is given as a constraint. Note that ϕ_k is not precisely equal to φ_k, but we neglect this extra N_{kk} term here as well, partly because in the Internet, N_{kk} is relatively small for almost all k. Introducing ratio $\alpha_k = \phi_k/M_k$, which is approximately the ratio of the number of links connecting degree-k nodes and nodes of higher degrees to the number of all links attached to degree-k nodes, we write the new minimum value of $\bar{k}_{nn}(k)$ as
\[
\bar{k}_{nn}^{\text{min}}(k|\alpha_k) = \frac{1}{M_k} \left\{ \min \left(k' \sum_{k''=1}^{k'} M_{kk'} | \sum_{k''=1}^{k'} M_{kk''} = M_k - \phi_k \right) + \min \left(k_{\text{max}} \sum_{k''=k}^{k_{\text{max}}} M_{kk''} | \sum_{k''=k}^{k_{\text{max}}} M_{kk''} = \phi_k \right) \right\} \\
= \frac{1}{M_k} \left\{ (k - 1) \cdot (M_k - \phi_k) + k \cdot \phi_k \right\} = (k - 1)\alpha_k + 1, \quad (19)
\]

where the minimum is now taken over all JDDs \(M_{kk'} \) satisfying the RCC constraints. Similarly, for the maximum possible value, we have

\[
\bar{k}_{nn}^{\text{max}}(k|\alpha_k) = \frac{1}{M_k} \left\{ (k - 1) \cdot (M_k - \phi_k) + k_{\text{max}} \cdot \phi_k \right\} = (k_{\text{max}} - k + 1)\alpha_k + k - 1, \quad (20)
\]

and the maximum possible difference is

\[
\Delta(k|\alpha_k) = \bar{k}_{nn}^{\text{max}}(k|\alpha_k) - \bar{k}_{nn}^{\text{min}}(k|\alpha_k) = (k_{\text{max}} - 2k + 2)\alpha_k + k - 2. \quad (21)
\]

Compared to the unconstrained case, the relative decrease of the range of possible values of \(\bar{k}_{nn}(k) \), assuming large \(k_{\text{max}} \), is

\[
\frac{\Delta(k) - \Delta(k|\alpha_k)}{\Delta(k)} \approx \left(1 - \frac{k}{k_{\text{max}}} \right) - \left(1 - \frac{k}{k_{\text{max}}} \right) \alpha_k \\
\approx \left\{ \begin{array}{ll}
1 - \frac{k}{k_{\text{max}}} & \text{if } \alpha_k \approx 0; \\
\frac{1}{2} \frac{k}{k_{\text{max}}} & \text{if } \alpha_k \approx 1.
\end{array} \right. \quad (22)
\]

In disassortative networks, such as the Internet [17], most links incident to medium- and high-degree nodes lead to low-degree nodes, meaning that \(\alpha_k \approx 0 \) except for \(k/k_{\text{max}} \ll 1 \). Given (22), we conclude that the RCC introduces significant constraints to the JDD, reflected even in a JDD’s simple summary statistic \(\bar{k}_{nn}(k) \), except for lowest degrees \(k \approx 0 \), and perhaps highest degrees \(k \approx k_{\text{max}} \), for which our analysis may be not very accurate since we neglected the structural constraints that are relevant in the high-degree zone. We confirm this conclusion in Fig. 6 where we use the RCC in the measured Internet topology to compute the RCC-induced relative decrease \(1 - \Delta(k|\alpha_k)/\Delta(k) \) of the range of possible values of \(\bar{k}_{nn}(k) \). In the medium-degree zone this decrease reaches 80%.

\[\text{FIG. 6: Relative decrease of the range of possible values of } \bar{k}_{nn}(k) \text{ imposed by the Internet’s RCC. The Internet map from } \text{[17]} \text{ is used to compute } \Delta(k) \text{ and } \Delta(k|\alpha_k) \text{ given by Eqs. (18,21).} \]

V. CONCLUSION

Preferential attachment is a robust mechanism that may be responsible for the emergence of the power-law degree distributions in some complex networks [8]. However, power laws emerge only if the preference kernel is a linear function of node degree [10, 11]. If one believes that preferential attachment is a driving force, explicit or implicit, behind the evolution of complex networks, then the natural question one has to face is why this kernel must be exactly linear in so many so different complex systems.

In this paper we argue that even if the preference kernel is not linear but slightly superlinear, preferential attachment may still produce scale-free networks, except that it does so not in the asymptotic but in a vast preasymptotic regime. Two key factors contribute to the depth of this regime: 1) how close the preference kernel is to being linear, and 2) how many links are added per new node. These factors allow us to say, informally, that multiple links added under slightly superlinear preferential attachment resurrect power laws, although only by means of deepening the preasymptotic regime.

The asymptotic regime is still degenerate: adding \(m \) links leads to the asymptotic degree distribution \(P(k) \to \delta_{k,m} \). More precisely, the asymptotic network structure is a distorted (or “torn”) open \(m \)-book — a generalization of the known object in topology [13]. The level of distortion depends on how close the preference kernel is to a linear function. Similar to the \(m = 1 \) case (the open 1-book is a star), we find an infinite series of connectivity transitions characterizing the degree of damage to the open book structure, as the kernel approaches a linear function.

To explain the success of one particular superlinear model — the positive-feedback preference model [6] — in capturing not only the degree distribution but also many
other important properties of one particular complex network, the Internet, we analyze the both-way relationship between the joint degree distribution (2-point degree correlations) and rich-club connectivity. The former defines the latter, while the latter constrains the former. These constraints, captured by the model, suffice to reproduce many other important Internet’s properties, since it has been shown that most of them, except clustering, depend only on the joint degree distribution \[2, 4 \].

Given that the depth of the preasymptotic regime increases with the number \(m \) of links added per node, and that the average degrees \(\bar{k} \approx 2m \) of some complex networks including the Internet have been reported to grow with network size \[22, 24, 24 \], our findings, taken altogether, imply that some complex networks may exist in vast preasymptotic regimes of evolution processes that have degenerate network formations as their asymptotes. We contrast this implication with the observation that the vast majority of the existing network evolution models are designed with the goal to yield asymptotic power-law distributions, quickly achievable at small network sizes.

An interesting open question is whether the dynamics of the world economy supports our findings. Specifically, does the superlinear growth of wealth contribute to such effects as the “shrinking middle class” \[22, 24 \] and growing wealth inequality \[27, 28 \]? More succinctly, is the Pareto distribution preasymptotic \[23, 29 \]?

Acknowledgments

We thank Marián Boguñá, M. Ángeles Serrano, and kc claffy for very useful discussions and suggestions. This work was supported in part by NSF CNS-0434996 and CNS-0722070, by DHS N66001-08-C-2029, and by Cisco Systems.

APPENDIX: NONEXTREMAL GROWTH

The network remains an open book throughout its evolution with probability

\[
P_{\infty} = \prod_{j=2}^{\infty} P_{j \rightarrow j+1} \quad (A.1)
\]

where \(P_{j \rightarrow j+1} \) is the probability of attaching the new node to the two nodes of highest degree

\[
P_{j \rightarrow j+1} = \frac{(j-1)^\delta \cdot (j-2)^\delta}{(j-1)^\delta + (j-2)^\delta + (j-3)^\delta \cdot 2^\delta + 1} Q_j
\]

and we used the shorthand notation

\[
Q_j = \frac{1}{(j-2)^\delta + (j-3) \cdot 2^\delta + 1} + \frac{1}{(j-1)^\delta + (j-3) \cdot 2^\delta + 1}
\]

When \(\delta > 2 \), the probability to remain an open book is finite, although it vanishes very rapidly when \(\delta \) approaches to 2 from above:

\[
P_{\infty} \sim \exp\left[-\frac{6}{\delta - 2}\right] \quad (A.2)
\]

When \(\delta \leq 2 \), the exact open book structure will be certainly destroyed at some moment. A sufficiently large network is thus not an open book exactly, yet the deviation from this structure is rather small. Consider for concreteness the range \(3/2 < \delta < 2 \) where the number of degree-3 nodes keeps growing while the number of nodes of degrees \(\geq 4 \) remains finite. The degree sequence reads

\[
(k_1, k_2, 3, \ldots, 3, 2, \ldots, 2) \quad (A.3)
\]

where \(k_1 \) and \(k_2 \) are the highest degrees, and where we have not displayed a finite number of other nodes whose degrees are different from 2 and 3. The two highest degrees \(k_1 \) and \(k_2 \) are slightly smaller than \(N \). To determine \(k_1 \) and \(k_2 \) we first recall that the sum of all degrees is twice the total number of links,

\[
\sum_{j=1}^{N} k_j = 2L \quad (A.4)
\]

Since \(L = 2N - 4 \) when \(m = 2 \) and the initial sequence is \((2, 1, 1) \), we use \((A.3) \) and re-write \((A.4) \) as

\[
k_1 + k_2 + 3N_3 + 2(N - N_3) = 4N + O(1) \quad (A.5)
\]

from which \(k_1 + k_2 = 2N - N_3 + O(1) \). Combining this relation with inequalities \(k_1 < N \) and \(k_2 < N \), we obtain

\[
k_1 = N - pN_3, \quad k_2 = N - (1 - p)N_3 \quad (A.6)
\]

We now argue that \(p = 1/2 \). Indeed, in the leading order the difference \(k_1 - k_2 \) evolves according to the rate equation

\[
\frac{d}{dN} (k_1 - k_2) = \frac{k_1^\delta - k_2^\delta}{2 \cdot N^\delta} N \cdot 2^\delta N^\delta = \frac{\delta \cdot 2^{\delta - 1}}{N^\delta} (k_1 - k_2) \quad (A.7)
\]

This suggests that \(k_1 - k_2 \) remains finite and therefore supports \((A.6) \) with \(p = 1/2 \). While the latter assertion is correct, equation \((A.7) \) just shows that bias in favor of the node of the highest degree \(k_1 \) over the second highest degree \(k_2 \) is too small. However, there remain pure stochastic fluctuations, and the difference \(k_1 - k_2 \) is therefore a random variable of the order of \(\sqrt{N_3} \). Thus

\[
k_1 = N - \frac{1}{2} N_3, \quad k_1 - k_2 = O(\sqrt{N_3}) \quad (A.8)
\]

Let us now compute \(N_3 \). In the leading order we have

\[
\frac{dN_3}{dN} = 1 - P_{N \rightarrow N+1} \quad (A.9)
\]
where for \(P_{N \to N+1} \) we should ignore \(O(N^3) \) corrections,

\[
P_{N \to N+1} = \frac{N^3 + N^4}{N^3 + 2^4 N^4 + N^2} . \frac{N^3}{N^3 + 2^4 N^4} \quad \text{(A.10)}
\]

Plugging (A.10) into (A.9) and keeping only the leading contribution we get

\[
dN_3 dN = 3 \left(\frac{2}{N} \right)^{\delta - 1} \quad \text{(A.11)}
\]

which leads to \(N_3 = a N^{2-\delta} \) from (9).

To extract the sub-leading term, both (A.9) and (A.10) should be modified. To modify \(P_{N \to N+1} \) we use (A.3) and (A.8) and get a more accurate formula for

\[
P_{N \to N+1} = \frac{2 \cdot (N - N_3/2)^{\delta}}{2 \cdot (N - N_3/2)^{\delta} + (N - N_3) \cdot 2^{\delta} + N_3 \cdot 3^{\delta}} \times \frac{(N - N_3/2)^{\delta}}{(N - N_3/2)^{\delta} + (N - N_3) \cdot 2^{\delta} + N_3 \cdot 3^{\delta}}
\]

The modification of (A.9) is

\[
dN_3 dN = 1 - P_{N \to N+1} - 3 \frac{N_3 \cdot 3^{\delta}}{N^3} \quad \text{(A.12)}
\]

where the last term on the right-hand side assures that whenever the new node links to a node of degree 3, we have a loss rather than gain. After lengthy calculations one gets

\[
N_3(N) \approx \begin{cases}
 a N^{2-\delta} + O(1) & \text{if } 3/2 < \delta < 2 \\
 a N^{2-\delta} - bN^{3-2\delta} & \text{if } \delta < 3/2
\end{cases} \quad \text{(A.13)}
\]

Strictly speaking, in writing \(P_{N \to N+1} \) we assumed that \(\delta > 3/2 \). However, a more detailed analysis shows that the nodes of degree 4 do not influence the sub-leading correction \(bN^{3-2\delta} \).

When \(4/3 < \delta < 3/2 \), the nodes of degree 4 become visible, and the network degree sequence becomes

\[
(k_1, k_2, 4, \ldots, 4, 3, \ldots, 3, 2, \ldots, 2) \quad \text{(A.14)}
\]

A straightforward generalization of our previous argument gives

\[
k_1 = N - \frac{1}{2} N_3 - N_4, \quad k_1 - k_2 = O(\sqrt{N_3}) \quad \text{(A.15)}
\]

In the leading order, the quantity \(N_4 \) evolves according to

\[
dN_4 dN = \frac{N_3 \cdot 3^\delta}{2 \cdot N^3} + \frac{N_3 \cdot 3^\delta}{N^3} \quad \text{(A.16)}
\]

from which

\[
N_4(N) = a_4 N^{3-2\delta}, \quad a_4 = \frac{3^{\delta+1}}{2} \frac{a}{3 - 2\delta} \quad \text{(A.17)}
\]

Proceeding the same way we obtain for any \(k \geq 2 \)

\[
dN_{k+1} dN = \frac{3 N_{k+1} k^\delta}{2 N^3} \quad \text{(A.18)}
\]

leading to the asymptotic

\[
N_{k+1}(N) = a_{k+1} N^{k - (k-1)\delta} \quad \text{(A.19)}
\]

with amplitudes

\[
a_{k+1} = a \left(\frac{3}{2} \right)^{k-2} \prod_{j=3}^{k} \frac{j^\delta}{j - (j - 1)\delta} \quad \text{(A.20)}
\]

[1] P. Erdős and A. Rényi, Publ Math 6, 290 (1959).
[2] M. Boguñá and R. Pastor-Satorras, Phys Rev E 68, 036112 (2003).
[3] P. Mahadevan, D. Krioukov, K. Fall, and A. Vahdat, ACM SIGCOMM Comput Commun Rev 36, 135 (2006).
[4] M. Ángeles Serrano, D. Krioukov, and M. Boguñá, Phys Rev Lett 100, 078701 (2008).
[5] A.-L. Barabási and R. Albert, Science 286, 509 (1999).
[6] S. Zhou and R. J. Mondragón, Phys Rev E 70, 066108 (2004).
[7] M. Fayed, P. L. Kravisky, J. Byers, M. Crovella, D. Finkel, and S. Redner, Comput Commun Rev 33, 41 (2003).
[8] M. A. Serrano, M. Boguñá, and A. Díaz-Guilera, Phys Rev Lett 94, 038701 (2005).
[9] M. A. Serrano, M. Boguñá, and A. Díaz-Guilera, Eur Phys J B 50, 249 (2006).
[10] P. L. Kravisky, S. Redner, and F. Leyvraz, Phys Rev Lett 85, 4629 (2000).
[11] P. L. Kravisky and S. Redner, Phys Rev E 63, 066123 (2001).
[12] R. Oliveira and J. Spencer, Internet Math 2, 121 (2005).
[13] E. Giroux, Not Am Math Soc 52, 42 (2005).
[14] P. L. Kravisky and S. Redner, J Phys A 35, 9517 (2002).
[15] S. Maslov, K. Sneppen, and A. Zaliznyak, Physica A 333, 529 (2004).
[16] G. Bianconi, G. Caldarelli, and A. Capocci, Phys Rev E 71, 066116 (2005).
[17] P. Mahadevan, D. Krioukov, M. Fomenkov, B. Huffaker, X. Dimitropoulos, k. claffy, and A. Vahdat, Comput Commun Rev 36, 17 (2006).
[18] S. Zhou, Phys Rev E 74, 016124 (2006).
[19] S. Zhou and R. J. Mondragón, New J Phys 9, 173 (2007).
[20] V. Colizza, A. Flammini, M. A. Serrano, and A. Vespignani, Nat Phys 2, 110 (2006).
[21] M. Boguñá, R. Pastor-Satorras, and A. Vespignani, Eur Phys J B 38, 205 (2004).
[22] S. N. Dorogovtsev and J. F. F. Mendes, Phys Rev E 63,
025101 (2001).

[23] S. N. Dorogovtsev and J. F. F. Mendes (Wiley-VCH, Berlin, 2002), chap. Accelerated Growth of Networks.

[24] J. Leskovec, J. Kleinberg, and C. Faloutsos, ACM T Knowl Discov Data 1, 1 (2007).

[25] A. J. Winnick, Toward Two Societies: The Changing Distributions of Income and Wealth in the U.S. Since 1960 (Praeger, New York, 1989).

[26] A. Ornstein, Class Counts: Education, Inequality, and the Shrinking Middle Class (Rowman & Littlefield, Washington, 2007).

[27] J. B. Davies, S. Sandström, A. Shorrocks, and E. N. Wolff, Research Paper 2007/77, World Institute for Development Economics Research (2007).

[28] J. B. Davies, S. Sandström, A. Shorrocks, and E. N. Wolff, Discussion Paper 2008/03, World Institute for Development Economics Research (2008).

[29] Z. Burda, D. Johnston, J. Jurkiewicz, M. Kamiński, M. A. Nowak, G. Papp, and I. Zahed, Phys Rev E 65, 026102 (2002).