肝疾患でのオートファジーの意義

原田 大
産業医科大学 医学部 第3内科学

要 旨：オートファジーは、細胞内の蛋白や細胞内小器官の分解を行う機構である。オートファジーは、蛋白、糖ならびに脂質の代謝のみでなく発生や分化、抗原提示、微生物に対する細胞の防御、異常な蛋白の除去や障害された細胞内小器官の排除にも重要な機能である。近年、オートファジーと各種肝疾患との関連が明らかにされてつつある。本稿ではこれまで明らかにされてきたオートファジーと肝疾患の関連を概説する。

キーワード：オートファジー、小胞体ストレス、Mallory-Denk体

はじめに

細胞にはユビキチン・プロテアソーム系（ubiquitin proteasome system, UPS）とライソソームの関与するオートファジーの2つの蛋白分解系が存在する。UPSは主に寿命の短い蛋白やunfolded蛋白の分解に重要な役割を演じている。遺伝子変異やストレスにより生じたunfolded蛋白にはユビキチンが付かれ、それを標識としてプロテアソームがそれらの蛋白を分解する[1]。オートファジー（autophagy）はギリシャ語の自己を意味するautoと食べるを意味するphagyを組み合わせた言葉である。隔離膜もしくはphagophoreと呼ばれるおそらく小胞体に由来する特殊な二重膜がミトコンドリアなどの細胞内小器官を含めた細胞質を包み込み、autophagosomeを形成する[2,3]。この際microtubule-associated protein 1 light chain 3（LC3）という蛋白が脂質の修飾によりLC3-IからLC3-IIへと変化しautophagosome膜に付着し、これはオートファジーの活性の指標として利用されている[2,3]。Autophagosomeはライソソームと融合してautolysosomeとなりライソソームの酵素によって内容物が分解される。これによりアミノ酸、糖ならびに脂質が再利用される（Fig.1）。オートファジーは、迅速な細胞の対応でありautophagosomeの半減期は約10分である[4]。細胞の飢餓状態や成長因子の不足した状態でオートファジーは活性化されるが、飢餓でなくともオートファジーは起こっており（basal autophagy）、様々な役割を演じていることが近年明らかになってきている。これらには発生・分化、抗原提示、微生物への防御、発癌抑制、異常な蛋白質の除去や障害された細胞内小器官の排除などが含まれる[2,3]。これらの中核には30以上のオートファジー関連遺伝子であるautophagy-related genes（ATGs）の産物が関与している。通常オートファジーと言えばこのmacroautophagyを示す。その他に
microautophagyとchaperone-mediated autophagy(CMA)と称される状態も存在する。本稿では肝臓でのmacroautophagyについて記し、以下にオートファジーと記す。

Fig. 1. Macroautophagy (autophagy). 隔離膜もしくはphagophoreと呼ばれる二重膜がミトコンドリアなどの細胞内小器官を含めた細胞質を包み込み、autophagosomeを形成する。この際microtubule-associated protein 1 light chain 3 (LC3) (autophagy-related gene, Atg8 homologue)が脂質の修飾によりLC3-IからLC3-IIへと変化しautophagosome膜に付着する。Autophagosomeはライソゾームと融合してautolysosomeとなり、ライソゾームの酵素によってその内容物は分解される。

オートファジーのもっともよく知られた働きは、細胞への応答である。アミノ酸などの栄養素の不足、細胞由来因子の不足や低酸素によりオートファジーは誘導され、細胞質成分を分解してアミノ酸を生じる(Table 1)。アミノ酸は新規の蛋白合成、糖新生やそのまままエネルギーとして使用されると考えられる。グリコーゲンも同時に分解され、糖代謝にもこの機能は関与している[2, 3]。これらの調節にはtarget of rapamycin(TOR)が重要な役割を演じている。また近年、細胞内の脂肪滴の分解にもオートファジーが関与していることが証明されlipophagyと称されている[5]。

肝細胞では、ライソゾーム内の酸性リバーゼが中性脂肪の分解に重要であり脂質代謝にもオートファジーが関係している。

細胞内の蛋白質ならびに小器官の品質管理

蛋白質は転写、翻訳の後に正しい3次元構造(native fold)を獲得する。これを手助けする一連の蛋白質をシャペロン蛋白と呼ぶ。正常でも正しい構造を作れない蛋白(unfolded protein = defective ribosomal product)が合成されるが、遺伝子変異(ハンチントン舞踏病、脊髄小脳変性症、囊胞性線維症、ウイルソン病やDubin-Johnson症候群など)、異常蛋白の処理に関与する蛋白の障害(一部のParkinson病、熟や酸化ストレスなどのストレスや加齢などで細胞内に異常蛋白が蓄積する[6, 7])。Unfolded蛋白が小胞体内に蓄積すると小胞体(ER)ストレスと称される状態が生じる。それに対して細胞はunfolded protein response(UPR)と呼ばれる反応で対応する。それに重要な役割を演じているのが、inositol-requiring protein-1 (IRE1), activating transcription factor-6 (ATF6)とprotein kinase RNA(PKR)-like ER kinase (PERK)である。これらにより細胞は小胞体の過剰な負荷を感知し、蛋白のfoldingを促進させるシャペロン蛋白の産生を亢進し、転写を低下させ蛋白の合成を抑制、新規の蛋白合成を抑制する活動を開始する。
白合成を減らして小胞体の負荷を軽減し、さらに異常蛋白のプロテアソームでの分解を行う[8]。しかし、異常蛋白の産生が分解を上回ると異常蛋白の小凝集体（small aggregate）が形成され、さらに顕微鏡で可視化される封入体（inclusion）が形成される。様々な疾患で封入体は観察され、代表的なのはParkinson病でのLevy体や各種肝疾患でのMallory-Denk body（MDB）である[7]。MDBは、アルコール性肝障害、非アルコール性脂肪肝、原発性胆汁性肝硬変などの慢性の肝症状、ウイルス性肝炎や肝細胞癌で観察される[7]。ある程度凝集した蛋白はその大きさからプロテアソームの中に入ることが出来ないためオートファジーでしか分解出来ない。実際にAtg7ノックアウトマウスでは肝細胞にユビキチン陽性の封入体が形成される[9]。マウスを使ったMDBモデルでは、肝臓でのオートファジーは亢進しており、autophagic vacuoleの中にMDBの構成成分と考えられるケラチンとユビキチンを含む線維性構造物などが免疫電顯にて観察される（Table 1）[10, 11]。オートファジーによるユビキチン化蛋白の選択的な分解にはユビキチン、p62とLC3の関与が考えられる[12, 13]。ERストレスに関わるオートファジーの亢進にはIRE1ならびにc-Jun N-terminal kinase（JNK）が関与している[14]。かつては封入体が細胞毒性を有すると考えられたこともあったが、様々な封入体形成を阻害する実験において細胞障害性が増したことをよし、現在では封入体を形成する前のsmall aggregateが細胞毒性も有すると考えられるようになったつつある[15]。封入体形成はこの毒性を軽減する細胞の反応を考えられる[10]。これらの細胞の反応でもうまく対処出来ない場合には細胞は細胞死（apoptosis）に至る。ある意味では封入体形成もひとつのUPRと考えることが出来るかもしれない。

また蛋白のみならず細胞内の傷ついた小器官の分解にもオートファジーは関与している。肝オキシソーム（pepxophagy）、ミトコンドリア（mitophagy）や小胞体などもオートファジーによって分解を受ける[3]。特にミトコンドリアの障害は活性酸素やcaspaseの細胞質への漏出にも関連するため、この障害されたミトコンドリアのオートファジーによる処理は極めて重要である。

ウイルス性肝炎

オートファジーは微生物の感染とも関わりがある。細菌、ウイルスや寄生虫がオートファジーにより処理されることもあるが、逆にオートファジーを利用して増殖する微生物も存在する。例えばB型肝炎ウイルスはオートファジーを利用して増殖している。これには特にHBx蛋白によるオートファジーの亢進が関与している[16, 17]。HBx蛋白がATG6にあたる

Table 1. Activity of autophagy in the liver

Conditions	Activity of autophagy in hepatocytes
Starvation	†
Accumulation of abnormal proteins	†
Hepatitis B virus infection	†
Hepatitis C virus infection	†
Nonalcoholic fatty liver disease	↓
Alcoholic liver disease	↓
Hepatocellular carcinoma	↓
beclin 1 の発現を亢進させてオートファジーを亢進させウイルスの増殖に関与しているようである（Table 1）[16, 17]。C型肝炎ウイルスもまたオートファジーを利用しているようである[18–20]。またC型肝炎ウイルス感染を含むウイルス感染ではウイルス蛋白産生のため細胞にERストレスがかかりともオートファジー誘導の原因になると思われる（Table 1）[21, 22]。C型肝炎ウイルス感染細胞ではオートファジーは亢進しているが、完全に内容物が分解されず不完全な細胞質成分の分解となっている[18, 19, 23]。人の肝生検組織を用いた検討でも同様の結果である[24]。いずれにしてもB型肝炎ウイルスとC型肝炎ウイルスはウイルス自身の増殖に宿主細胞のオートファジーを利用しているようである。

非アルコール性脂肪性肝疾患

近年、脂質代謝にもオートファジーが関与していることが明らかとなった[5]。これは脂肪滴（lipid droplet）を二重膜が包み込んでライソゾームのlysosomal acid lipaseにて分解する機構である。実際に培養細胞やマウスにおいてオートファジーを阻害すると細胞に脂質が蓄積し脂肪肝を生ずる[5]。脂肪滴は中心に中性脂肪とコレステロールエステルを周囲にリン脂質とlipid droplet associated proteinを有している。細胞毒性を有する遊離脂肪酸を中性脂肪として脂肪滴に蓄え、必要に応じて脂肪滴から遊離脂肪酸としてミトコンドリアでのβ酸化へと供給する。先に述べたように肝細胞は脂肪細胞と異なり細胞質のlipaseが少ないため脂肪滴の分解にオートファジーを介したライソゾームのlipaseによる脂質の分解が重要な役割を演じている[5]。実際にArg7ノックアウトマウスでは脂肪肝を呈する。脂肪滴やインスリン抵抗性の状態では肝細胞のオートファジーは抑制されており、これが肝細胞への脂質の沈着に関与していると考えられる（Table 1）[25, 26]。オートファジーの抑制はさらにERストレスを引き起こし、UPRを介してJNKの活性化を起こしインスリン抵抗性をさらに増悪させると考えられる。また実際の症例での検討では非アルコール性脂肪性肝疾患患者ではストレスに対して不完全なUPRで対応しているようである[27]。

アルコール性肝障害

慢性のアルコール消費は脂肪肝、肝硬変やアルコール性肝炎を引き起こす。いくつかの報告によるとアルコール消費は肝細胞のオートファジーを抑制する（Table 1）[23]。エタノールはadenosine monophosphate-activated protein kinase（AMPK）の活性を低下させ、TORの活性を上げることによりオートファジーを阻害する[28]。またオートファゴソームとエンドゾームのfusionには微小管が重要であるが、エタノールの代謝産物であるアセトアルデヒドによりチュブリンによる微小管の重合が阻害され、細胞内の膜輸送が障害されることもオートファジーの機能低下の一因と考えられている[23]。またエタノール投与は肝細胞内のアミノ酸レベルを変化させることも報告されている。エタノール投与によりロシシングが増加することによりオートファジーが抑制される[4]。さらにエタノール投与によりライソゾーム内の酵素の減少やライソゾームの酸性化（acidification）の低下によるライソゾームの機能低下も報告されている[4]。一方で培養細胞とマウスを使った検討においてエタノールの急性投与がオートファジーを促進するとの報告も存在する[29]。慢性のエタノール摂取はプロテアソームの機能を抑制し、細胞体ストレスを誘導しかつJNKを活性化する[14]。これらはすべてオートファジーを活性化する誘因となる、そのためアルコール性肝障害におけるオートファジーの関与は複雑である。
肝細胞癌

悪性腫瘍はオートファジーの異常と関連している疾患のひとつである（Table 1）[2]。癌で通常活性化されている蛋白（class 1 PI3K, TOR, Beclin-2など）はオートファジーを抑制することが多い。また癌で不活化される多くの癌抑制遺伝子産物（p53, PTEN, TSC1/TSC2など）はオートファジーを亢進させる[2]。乳癌、卵巣癌や前立腺癌においてATG6であるBeclin 1の遺伝子異常が指摘されている[2, 30]。Beclin 1に白マウスにはリンパ腫や肝細胞癌が高率に発生する[31]。また実際の患者においても肝癌の組織でBeclin 1の発現は低下しており、Beclin 1の発現は予後とも関連していた[32]。その反面でオートファジーは腫瘍細胞の生存に関与している事実もある[2, 30, 33]。オートファジーが細胞の保護に働くか、死を誘導するかはその時の細胞の状態により存している[33]。またオートファジーはautophagic cell deathのみならずapoptosisにも関与している[33]。

おわりに

肝臓での様々な疾患においてオートファジーとプロテアソームによる蛋白分解系の異常が関与している。これらの機構は未だ明確ではないが、今後これらの詳細が明らかとなれば、これらの蛋白分解系の調節が様々な肝疾患の治療に応用されることが期待される。

謝辞

本研究の一部は日本学術振興会科学研究費補助金（20590798, 23591000）ならびに産業医科大学高度研究（H22-1）による。

引用文献

1. Reinstein E & Ciechanover A (2006): Narrative review: protein degradation and human diseases: the ubiquitin connection. Ann Intern Med 145: 676–684
2. Mizushima N, Levine B, Cuervo AM & Klionsky DJ (2008): Autophagy fights disease through cellular self-digestion. Nature 451: 1069–1075
3. Levine B & Kroemer G (2008): Autophagy in the pathogenesis of disease. Cell 132: 27–42
4. Donohue TM (2009): Autophagy and ethanol-induced liver injury. World J Gastroenterol 15: 1178–1185
5. Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, Tanaka K, Cuervo AM & Czaja MJ (2009): Autophagy regulates lipid metabolism. Nature 458: 1131–1135
6. Harada M, Sakisaka S, Terada K et al (2001): A mutation of the Wilson disease protein, ATP7B, is degraded in the proteasomes and forms protein aggregates. Gastroenterology 120: 967–974
7. Zatloukal K, French SW, Stumptner C, Strnad P, Harada M, Toivola DM, Cadrin M & Omary MB (2007): From Mallory to Mallory-Denk bodies: What, how and why? Exp Cell Res 313: 2033–2049
8. Ron D & Walter P (2007): Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8: 519–529
9. Komatsu M, Waguri S, Ueno T et al (2005): Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol 169: 425–434
10. Harada M, Hanada S, Toivola DM, Ghori N & Omary MB (2008): Autophagy activation by rapamycin eliminates mouse Mallory-Denk bodies and blocks their proteasome inhibitor-mediated formation.
Hepatology 47: 2026–2035
11. Harada M (2010): Autophagy is involved in the elimination of intracellular inclusions, Mallory-Denk bodies, in hepatocytes. Med Mol Morphol 43: 13–18
12. Komatsu M, Waguri S, Koike M et al (2007): Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 131: 1149–1163
13. Pankiv S, Lamark T, Bruun JA, Øvervatn A, Bjørkøy G & Johansen T (2010): Nucleocytoplasmic shuttling of p62/SQSTM1 and its role in recruitment of nuclear polyubiquitinated proteins to promyelocytic leukemia bodies. J Biol Chem 285: 5941–5953
14. Ding WX, Manley S & Ni HM (2011): The emerging role of autophagy in alcoholic liver disease. Exp Biol Med 236: 546–556
15. Tyedmers J, Mogk A & Bukau B (2010): Cellular strategies for controlling protein aggregation. Nat Rev Mol Cell Biol 11: 777–788
16. Tang H, Da L, Mao Y et al (2009): Hepatitis B virus X protein sensitizes cells to starvation-induced autophagy via up-regulation of beclin 1 expression. Hepatology 49: 60–71
17. Sir D, Tian Y, Chen WL, Ann DK, Yen TS & Ou JH (2010): The early autophagic pathway is activated by hepatitis B virus and required for viral DNA replication. Proc Natl Acad Sci USA 107: 4383–4388
18. Sir D, Chen WL, Choi J, Wàkita T, Yen TS & Ou JH (2008): Induction of incomplete autophagic response by hepatitis C virus via the unfolded protein response. Hepatology 48: 1054–1061
19. Ait-Goughoultie M, Kanda T, Meyer K, Ryerse JS, Ray RB & Ray R (2008): Hepatitis C virus genotype 1a growth and induction of autophagy. J Virol 82: 2241–2249
20. Dreux M, Gastaminza P, Wieland SF & Chisari FV (2009): The autophagy machinery is required to initiate hepatitis C virus replication. Proc Natl Acad Sci USA 106: 14046–14051
21. Tardif KD, Waris G & Siddiqui A (2005): Hepatitis C virus, ER stress, and oxidative stress. Trends Microbiol 13: 159–163
22. Benali-Furet NL, Chami M, Houel L et al (2005): Hepatitis C virus core triggers apoptosis in liver cells by inducing ER stress and ER calcium depletion. Oncogene 24: 4921–4933
23. Rautou PE, Mansouri A, Lebrec D, Durand F, Valla D & Moreau R (2010): Autophagy in liver diseases. J Hepatol 53: 1123–1134
24. Rautou PE, Cazals-Hatem D, Feldmann G et al (2011): Changes in autophagic response in patients with chronic hepatitis C virus infection. Am J Pathol 178: 2708–2715
25. Liu HY, Han J, Cao SY, Hong T, Zhuo D, Shi J, Liu Z & Cao W (2009): Hepatic autophagy is suppressed in the presence of insulin resistance and hyperinsulinemia: inhibition of FoxO1-dependent expression of key autophagy genes by insulin. J Biol Chem 284: 31484–31492
26. Yang L, Li P, Fu S, Calay ES & Hotamisligil GS (2010): Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab 11: 467–478
27. Puri P, Mirshahi F, Cheung O, Natarajan R, Maher JW, Kellum JM & Sanyal AJ (2008): Activation and dysregulation of the unfolded protein response in nonalcoholic fatty liver disease. Gastroenterology 134: 568–576
28. You M, Matsumoto M, Pacold CM, Cho WK & Crabb DW (2004): The role of AMP-activated protein kinase in the action of ethanol in the liver. Gastroenterology 127: 1798–1808
29. Ding WX, Li M, Chen X, Ni HM, Lin CW, Gao W, Lu B, Stolz DB, Clemens DL & Yin XM (2010):
Autophagy reduces acute ethanol-induced hepatotoxicity and steatosis in mice. Gastroenterology 139: 1740–1752

30. Mathew R, Karantza-Wadsworth V & White E (2007): Role of autophagy in cancer. Nat Rev Cancer 7: 961–967

31. Yue Z, Jin S, Yang C, Levine AJ & Heintz N (2003): Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci USA 100: 15077–15082

32. Ding ZB, Shi YH, Zhou J et al (2008): Association of autophagy defect with a malignant phenotype and poor prognosis of hepatocellular carcinoma. Cancer Res 68: 9167–9175

33. Harada M, Strnad P, Toivola DM & Omary MB (2008): Autophagy modulates keratin-containing inclusion formation and apoptosis in cell culture in a context-dependent fashion. Exp Cell Res 314: 1753–1764
Autophagy in Liver Diseases

Masaru HARADA

Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan. Yahatanishi-ku, Kitakyushu 807-8555, Japan

Abstract: Two major degradation systems exist in cells: the lysosome and proteasome. In the lysosome system, extracellular materials are degraded via endocytosis. Intracellular materials are degraded by autophagy, a cellular pathway crucial for various intracellular events. It has recently been demonstrated that autophagy is involved in the pathogenesis of various liver diseases. In hepatitis B or hepatitis C virus infection, autophagy is enhanced in hepatocytes. In hepatic steatosis, hepatocyte autophagy is inhibited. The expression of the autophagy protein is disrupted in hepatocellular carcinoma. I summarize recent advances in the study of the involvement of autophagy in various liver diseases. The regulation of autophagy in the liver may be a useful therapeutic strategy for various liver diseases.

Key words: autophagy, endoplasmic reticulum stress, Mallory-Denk body.

J UOEH 33 (4) : 337 – 344 (2011)