Some Results on δ-Semiperfect Rings and δ-Supplemented Modules

Cihat Abdioğlu*
Department of Mathematics, Karamanoğlu Mehmetbey University, Yunus Emre Campus, Karaman, Turkey
e-mail: cabdioglu@kmu.edu.tr

Serap Şahinkaya
Department of Mathematics, Gebze Institute of Technology, ÇayyaroVa Campus, 41400, Gebze- Kocaeli, Turkey
e-mail: ssahinkaya@gyte.edu.tr

Abstract. In [9], the author extends the definition of lifting and supplemented modules to δ-lifting and δ-supplemented by replacing “small submodule” with “δ-small submodule” introduced by Zhou in [13]. The aim of this paper is to show new properties of δ-lifting and δ-supplemented modules. Especially, we show that any finite direct sum of δ-hollow modules is δ-supplemented. On the other hand, the notion of amply δ-supplemented modules is studied as a generalization of amply supplemented modules and several properties of these modules are given. We also prove that a module M is Artinian if and only if M is amply δ-supplemented and satisfies Descending Chain Condition (DCC) on δ-supplemented modules and on δ-small submodules. Finally, we obtain the following result: a ring R is right Artinian if and only if R is a δ-semiperfect ring which satisfies DCC on δ-small right ideals of R.

1. Introduction

Throughout this paper, we will assume that R is an associative ring with unity and all modules are unital right R-modules.

We recall some basic notions related to our topic. A submodule N of a module M is called small in M, written $N \ll M$, if, whenever $M = L + N$ for any...
submodule L of M, we have $L = M$. A module M is called *lifting* if, for every submodule N of M, there exists a decomposition $M = A \oplus B$ such that $A \leq N$ and $N \cap B \ll M$ ([11]). In [13], the author defined the notion of δ-small submodules as follows. A submodule N of a module M is called a *δ-small submodule*, written as $N \ll \delta M$, if, whenever $M = N + X$ with M/X is singular, we have $M = X$. Following Koşan [9], a module M is called *δ-lifting* if, for every submodule $N \leq M$, there exists a decomposition $M = A \oplus B$ such that $A \leq N$ and $N \cap B$ is δ-small in M. It is obvious that every lifting module is δ-lifting and every singular δ-lifting module is lifting.

Lemma 1.1. ([9, Lemma 2.9]) Assume that N and L are two submodules of the module M. Then the following conditions are equivalent:

1. $M = N + L$ and $N \cap L$ is δ-small in L.

2. $M = N + L$ and for any proper submodule K of L with L/K singular, $M \neq N + K$.

A submodule L of M is called a *δ-supplement* of N in M if N and L satisfy the conditions in Lemma 1.1. A module M is called *δ-supplemented* if every submodule of M has a δ-supplement in M (see [9]). It is clear that every supplemented module is δ-supplemented and every singular δ-supplemented module is supplemented.

In Section 2, we give some properties of δ-supplements. We prove that any factor module of a δ-supplemented module is δ-supplemented and that any finite sum of δ-supplemented modules is δ-supplemented.

In Section 3, we give some results of decompositions and direct sums of δ-lifting modules. In particular, the main result in the third section shows that if $M = M_1 \oplus M_2$ is a direct sum of δ-lifting modules M_1 and M_2 such that M_i is M_j-projective ($i=1,2$), then M is a δ-lifting module.

In Section 4, we study the notion of amply δ-supplemented modules as a generalization of amply supplemented modules. Recall that a submodule N of M has *amply supplements in M* if, for every $L \subset M$ with $N + L = M$, there is a supplement L' of N with $L' \subset L$. Recall also that a module M is called *amply supplemented* if all submodules have amply supplements in M. We call a module M *amply δ-supplemented* if for any submodules N and K of M with $M = N + K$, K contains a δ-supplement of N in M. It is clear that every amply supplemented module is amply δ-supplemented and every singular amply δ-supplemented module is amply supplemented. It is proved in this section that if M is an amply δ-supplemented module such that every δ-supplement submodule of M is a direct summand, then M is δ-lifting. Recall that a ring R is δ-semiperfect if the module R_R is δ-supplemented (see [9, Theorem 3.3]). We also characterize δ-semiperfect rings in terms of amply δ-supplemented modules.

2. *Some Properties of δ-Supplemented Submodules*

We start with some general results on δ-small submodules which are taken from
[13, Lemmas 1.2 and 1.3].

Lemma 2.1. Let M be an R-module.

1. If $N \leq M$ and $M = X + N$, then $M = X \oplus Y$ for a projective semisimple submodule Y with $Y \subseteq N$.

2. If $K \leq M$ and $f : M \to N$ is a homomorphism, then $f(K) \leq N$. In particular, if $K \leq M \leq N$, then $K \leq N$.

3. Let $K_1 \leq M_1 \leq M$, $K_2 \leq M_2 \leq M$ and $M = M_1 \oplus M_2$. Then $K_1 \oplus K_2 \leq M_1 \oplus M_2$ if and only if $K_1 \leq M_1$ and $K_2 \leq M_2$.

Lemma 2.2. Let A, B and C be submodules of an R-module M. If $M = A + B$, $B \leq C$, and $C/B \leq M/B$, then $(A \cap C)/(A \cap B) \leq M/(A \cap B)$.

Proof. Let X be a submodule of M such that $A \cap B \leq X$, M/X is singular and $M/(A \cap B) = (A \cap C)/(A \cap B) + X/(A \cap B)$. Then $M = (A \cap C) + X = C + (A \cap X)$ by [1, Lemma 1.24]. Therefore $M/B = C/B + ((A \cap X) + B)/B$. Note that

\[
\frac{(M/B)/[(A \cap X) + B]/B}{(A \cap X) + B}/B = \frac{((A \cap C) + B + (A \cap X))}{B + (A \cap X)} = \frac{(A \cap C)/(A \cap C \cap (B + (A \cap X)))}{(A \cap C) + X} = \frac{(A \cap C) + X}{X} = M/X.
\]

Since M/X is singular, it follows that $M = (A \cap X) + B$. Now, since $M = A + X$ we get $M = X + (A \cap B) = X$. Hence, $(A \cap C)/(A \cap B) \leq M/(A \cap B)$. \qed

Proposition 2.3. Let M be an R-module.

1. Suppose that K and L are submodules of M such that $K \leq L$.

 a. If L is a δ-supplement in M, then L/K is a δ-supplement in M/K.

 b. If L has a δ-supplement H in M, then $(H + K)/K$ is a δ-supplement of L/K in M/K.

2. Let $B \leq C \leq M$ be submodules of M. If C/B is a δ-supplement in M/B and B is a δ-supplement in M, then C is a δ-supplement submodule of M.

3. Assume that $M = M_1 \oplus M_2$. If A is a δ-supplement of A' in M_1 and B is a δ-supplement of B' in M_2, then $A \oplus B$ is a δ-supplement of $A' \oplus B'$ in M.

Proof. (1)(a) Let N be a submodule of M such that $L + N = M$ and $L \cap N \leq L$. Therefore $L/K + (N + K)/K = M/K$ and $(L \cap (N + K))/K = [(L \cap N) + K]/K \leq M/K$ by Lemma 2.1(2).

(b) This can be proved by following the same method as in (a).

(2) Assume that C/B is a δ-supplement of X/B in M/B and B is a δ-supplement of Y in M. Then $M/B = (C/B) + (X/B)$ and $(C/B) \cap (X/B) \leq C/B$. Moreover,
By hypothesis, we have
\[C = C \cap (B + Y) = B + (C \cap Y). \]
Since \((C \cap X)/B \ll_D C/B\), it follows from Lemma 2.2 that \((C \cap X)/Y)/(B \cap Y) \ll_D C/(B \cap Y)\).

As \(B \cap Y \ll_D C\) we have \((C \cap X \cap Y) \ll_D C\). Since \(X = X \cap (B + Y) = B + (X \cap Y)\), we see that \(M = C + X = C + (X \cap Y)\). Therefore \(C\) is a \(\delta\)-supplement of \(X \cap Y\) in \(M\).

(3) By assumption, we have \(M_1 = A + A'\) and \(A \cap A' \ll_D A\). Moreover, \(M_2 = B + B'\) and \(B \cap B' \ll_D B\). Then \(M = (A \oplus B) + (A' \oplus B')\). By Lemma 2.1(3), \((A \cap A') \oplus (B \cap B') \ll_D A \oplus B\). Since \((A \oplus B) \cap (A' \oplus B') = (A \cap A') \oplus (B \cap B')\), it follows that \(A \oplus B\) is a \(\delta\)-supplement of \(A' \oplus B'\) in \(M\).

Corollary 2.4. Every factor module of a \(\delta\)-supplemented module is \(\delta\)-supplemented.

Lemma 2.5. Let \(M_1\) and \(M_2\) be submodules of \(M\) such that \(M_1\) is \(\delta\)-supplemented and \(M_1 + M_2\) has a \(\delta\)-supplement in \(M\). Then \(M_2\) has a \(\delta\)-supplement in \(M\).

Proof. By assumption, there exists a submodule \(N\) of \(M\) such that \(M_1 + M_2 + N = M\) and \((M_1 + M_2) \cap N \ll_D N\). Moreover, since \(M_1\) is \(\delta\)-supplemented, \((M_2 + N) \cap M_1\) has a \(\delta\)-supplement in \(M_1\). Then there exists \(L \leq M_1\) such that \(M_1 = (M_2 + N) \cap M_1 + L\) and \((M_2 + N) \cap L \ll_D L\). Then we have \(M = M_1 + M_2 + N = (M_2 + N) \cap M_1 + L\). Moreover, we have \(M_2 \cap (L + N) \leq [(M_2 + L) \cap N] + [(M_2 + N) \cap L] \leq [(M_2 + M_1) \cap N] + [(M_2 + N) \cap L]\). Now, it follows that \(M_2 \cap (L + N) \ll_D (L + N)\). Hence, \(L + N\) is a \(\delta\)-supplement of \(M_2\) in \(M\).

Proposition 2.6. Any finite sum of \(\delta\)-supplemented modules is \(\delta\)-supplemented.

Proof. We prove it for two modules; the finite case can be proved similarly. Let \(M_1\) and \(M_2\) be two submodules of a module \(M\) such that \(M = M_1 + M_2\) and \(M_1\) and \(M_2\) are \(\delta\)-supplemented. It is easily seen that for every submodule \(N\) of \(M\), \(M_1 + (M_2 + N)\) has a \(\delta\)-supplement in \(M\). Hence by Lemma 2.5, \(M_2 + N\) has a \(\delta\)-supplement in \(M\). Applying Lemma 2.5 again we conclude that \(N\) has a \(\delta\)-supplement in \(M\).

Corollary 2.7. Let \(M\) be a \(\delta\)-supplemented module. Then every finitely \(M\)-generated module is \(\delta\)-supplemented.

Proof. By Corollary 2.4 and Proposition 2.6.

Recall that an \(R\)-module \(M\) is said to be **hollow** (respectively **\(\delta\)**-hollow) if every proper submodule of \(M\) is small (respectively \(\delta\)**-small) in \(M\). It is clear that every hollow module is \(\delta\)**-hollow. In [3], the author called a module \(M\) **\(\delta\)**-local if, \(\delta(M) \ll_D M\) and \(\delta(M)\) is a maximal submodule of \(M\). Moreover, the author also shows in [3] that a local module needs not to be \(\delta\)**-local in general.

Proposition 2.8. Let \(M\) be a \(\delta\)**-hollow module. Then \(\delta(M) = M\) or \(M\) is a local and a \(\delta\)**-local module.

Proof. Suppose that \(\delta(M) \neq M\). Then \(\delta(M) \ll_D M\) and \(\text{Rad}(M) \neq M\) since \(\text{Rad}(M) \leq \delta(M)\) (see [13, Lemma 1.5(1)]). Let \(N\) be a maximal submodule of \(M\).

By hypothesis, we have \(N \ll_D M\). Therefore \(N \leq \delta(M)\). It follows that \(\delta(M) = N\). Then \(\text{Rad}(M) = \delta(M)\) is the only maximal submodule of \(M\). Consequently, \(M\) is a
δ-local module. On the other hand, it is easy to see that δ(M) is small in M. This implies that M is a local module.

The proof of the following two results are clear.

Proposition 2.9. Let K be a δ-hollow submodule of the module M. Then K is a δ-supplement of each proper submodule L of M such that K + L = M.

Proposition 2.10. Every δ-hollow module is δ-supplemented.

Corollary 2.11. Any finite sum of δ-hollow modules is δ-supplemented.

Proof. It can be obtained by using Propositions 2.6 and 2.10.

Recall that a module M is called cofinitely δ-supplemented if every submodule N of M such that M/N is finitely generated has a δ-supplement in M.

Also recall that a module is called coatomic if every proper submodule is contained in a maximal one.

Proposition 2.12. Let M be a coatomic module. Then the following are equivalent:

(i) M is cofinitely δ-supplemented.

(ii) Every maximal submodule of M has a δ-supplement.

(iii) \[M = \sum_{i \in I} H_i \] where each \(H_i \) is either simple or δ-local.

Proof. The equivalences clearly hold if M is semisimple. So, assume that M is not semisimple.

(i)⇒(ii) Clear.

(ii)⇒(iii) Let K be the sum of all δ-supplement submodules of maximal submodules L of M with \(\text{Soc}(M) \leq L \). By [3, Lemma 3.4], K is a sum of δ-local submodules of M. Suppose that \(M \neq \text{Soc}(M) + K \). Then there is a maximal submodule N of M such that \(\text{Soc}(M) + K \leq N \). By hypothesis, N has a δ-supplement H in M. Thus \(H \leq K \leq N \) and \(N = M \), a contradiction. It follows that \(M = \text{Soc}(M) + K \), and the proof is complete.

(iii)⇒(i) It follows from [1, Proposition 2.5] and [3, Lemma 3.3].

Corollary 2.13. If M is a coatomic δ-supplemented module, then \(M = \sum_{i \in I} H_i \) where each \(H_i \) is either simple or δ-local.

Proof. This is clear by Proposition 2.12.

3. Decompositions and Direct Sums of δ-Lifting Modules

Following [13], a projective module P is called a projective δ-cover of a module M if there exists an epimorphism \(f : P \rightarrow M \) with \(\text{Ker}(f) \ll_\delta P \), and a ring R is called δ-semiperfect if every simple R-module has a projective δ-cover. In [9], it is proved that a ring R is δ-semiperfect if and only if the R-module \(R_R \) is δ-supplemented. The following example shows that a δ-lifting module need not be lifting.
Example 3.1. Let F be a field, $I = \left(\begin{array}{cc} F & F \\ 0 & F \end{array} \right)$ and $R = \{(x_1, x_2, \ldots, x_n, x, x, \ldots)| n \in \mathbb{N}, x_i \in \mathbb{M}_2(F), x \in I\}$. By [13, Example 4.3], the ring R is δ-semiperfect and $\delta(R) = \{(x_1, x_2, \ldots, x_n, x, x, \ldots)| n \in \mathbb{N}, x_i \in \mathbb{M}_2(F), x \in J\}$ where $J = \left(\begin{array}{cc} 0 & F \\ 0 & 0 \end{array} \right)$. Therefore the module R_R is δ-lifting by [13, Lemma 2.4 and Theorem 3.6]. On the other hand, by [13, Example 4.3], R is not semiregular. Hence R_R is not supplemented. Thus R_R is not lifting.

Lemma 3.2. (See [9, Lemma 2.3])

(1) The following conditions are equivalent for a module M:
 (a) M is δ-lifting.
 (b) For every $N \leq M$, there exists a decomposition $N = A \oplus B$ such that A is a direct summand of M and $B \ll \delta M$.

(2) If M is δ-lifting, then any direct summand of M is δ-lifting.

Proposition 3.3. Let M be an indecomposable module. Then M is δ-lifting if and only if M is δ-hollow.

Proof. Let M be a δ-lifting indecomposable module. Let N be a proper submodule of M. Since M is δ-lifting, we have a decomposition $M = A \oplus B$ such that $A \leq N$ and $N \cap B$ is δ-small in B for some submodules A and B of M. Since M is indecomposable and $N \neq M$, we have $A = 0$, and so $M = B$. Therefore $N \ll \delta M$. Hence, M is δ-hollow. The converse is clear.

Proposition 3.4.

(1) If M is a δ-lifting module, then $M/\delta(M)$ is a semisimple module.

(2) If M is a δ-lifting module, then any submodule N of M with $N \cap \delta(M) = 0$ is semisimple.

(3) If the module R_R is δ-lifting, then $M/\delta(M)$ is a semisimple module for every R-module M.

Proof. (1) See [9, Lemma 2.12].

(2) Since $N \cong (N \oplus \delta(M))/\delta(M) \leq M/\delta(M)$ is semisimple by (1), then N is semisimple.

(3) Let M be an R-module. By hypothesis and (1), $R/\delta(R)$ is a semisimple ring. But, on the other hand $M\delta(R) = \delta(M)$ by [13, Theorem 1.8]. Thus, $M/\delta(M)$ is a semisimple module.

In [9, Example 2.4], it is proved that if $R = \mathbb{Z}_8$, then the R-module $M = R \oplus (2R/4R)$ is not δ-lifting, although the R-modules R_R and $(2R/4R)_R$ are δ-lifting. The following result deals with a special case of a direct sum of two δ-lifting modules.
The following theorem may be seen in the literature but we want to give it here for the readers.

Theorem 3.5. Let $M = M_1 \oplus M_2$. If M_1 and M_2 are δ-lifting modules such that M_i is M_j-projective $(i=1,2)$, then M is a δ-lifting module.

Proof. Let $N \leq M$. Since M_1 is δ-lifting, there exist submodules K and K' of M_1 such that $M_1 = K \oplus L$, $K \leq M_1 \cap (N + M_2)$ and $L \cap (N + M_2) \ll_{\delta} M_1$. Therefore $M_1 = K \oplus L \oplus M_2 = N + (L \oplus M_2)$. On the other hand, since M_2 is δ-lifting, there exist submodules X and Y of M_2 such that $M_2 = X \oplus Y$, $X \leq M_2 \cap (N + L)$ and $Y \cap (N + L) \ll_{\delta} M_2$. Hence $M = (X \oplus K) \oplus (L \oplus Y)$ and $M = N + (L \oplus Y)$. Since M_1 is M_2-projective, $X \oplus K$ is $(L \oplus Y)$-projective by [11, Propositions 4.32 and 4.33]. Then there exists a submodule N_1 of N such that $M = N_1 \oplus (L \oplus Y)$. Then we have $N \cap (L \oplus Y) \leq Y \cap (N + L) + L \cap (N + Y)$. But $Y \cap (N + L) \ll_{\delta} M_2$ and $L \cap (N + M_2) \ll_{\delta} M_1$. Thus, $N \cap (L \oplus Y) \ll_{\delta} M$ by Lemma 2.1. \hfill \qedsymbol

Corollary 3.6. Let $M = M_1 \oplus M_2$. If M_1 and M_2 are δ-lifting projective modules, then M is δ-lifting.

Proof. This is clear by Theorem 3.5. \hfill \qedsymbol

Corollary 3.7. Let R be a δ-semiperfect ring. Then every free module of finite rank is δ-lifting.

Proof. This is clear by Corollary 2.6. \hfill \qedsymbol

Theorem 3.8. (i) If M is a δ-lifting module, then M has a decomposition $M = M_1 \oplus M_2$ such that M_1 is semisimple, M_2 is δ-lifting and $\delta(M_2)$ is an essential submodule of M_2.

(ii) If M is a δ-lifting module, then M has a decomposition $M = M_1 \oplus M_2$ such that M_1 and M_2 are δ-lifting modules, $\delta(M_1) = M_1$ and $\delta(M_2) \ll_{\delta} M_2$.

Proof. (i) This is by [9, Proposition 2.13] and Lemma 3.2(2).

(ii) Since M is δ-lifting, there exists a decomposition $M = M_1 \oplus M_2$ such that $M_1 \leq \delta(M)$ and $\delta(M) \cap M_2 \ll_{\delta} M_2$. Now, $\delta(M) = \delta(M_1) \oplus \delta(M_2)$ implies that $\delta(M) \cap M_2 = \delta(M_2) \oplus (M_2 \cap \delta(M_1)) = \delta(M_2) \ll_{\delta} M_2$. On the other hand, $\delta(M) \cap M_1 = \delta(M_1) \oplus (M_1 \cap \delta(M_2)) = \delta(M_1)$. Moreover, M_1 and M_2 are δ-lifting by Lemma 3.2(2). \hfill \qedsymbol

Proposition 3.9. If M is a δ-lifting module such that $\delta(M)$ has a supplement in M, then we have a decomposition $M = M_1 \oplus M_2$ such that M_1 is a lifting module and M_2 is δ-lifting with $\delta(M_2) = M_2$.

Proof. Assume that M is δ-lifting and let A be a supplement of $\delta(M)$ in M. Then we have a decomposition $M = M_1 \oplus M_2$ such that $A = M_1 \oplus (M_2 \cap A)$ and $M_2 \cap A \ll_{\delta} M_2$. Let N be a submodule of M_1. Since M_1 is a δ-lifting module by Lemma 3.2(2), we have a decomposition $M_1 = X \oplus Y$ such that $N = X \oplus (Y \cap N)$ and $Y \cap N \ll_{\delta} Y$. Since $A \cap \delta(M) \ll A$ and $Y \cap N \leq \delta(M) \cap A$, we obtain that $Y \cap N \ll A$. Hence $Y \cap N \ll Y$ by [11, Lemma 4.2(2)]. Therefore M_1 is a lifting module. Moreover, we have $M = \delta(M_2) + \delta(M_1) + M_1 = \delta(M_2) \oplus M_1$. This gives
\[\delta(M_2) = M_2. \]

4. Amply \(\delta \)-Supplemented Modules

In this section we study the notion of amply \(\delta \)-supplemented modules. Several properties of this type of modules are proved. Recall that a module \(M \) is amply \(\delta \)-supplemented if for any submodules \(N \) and \(K \) of \(M \) with \(M = N + K \), \(K \) contains a \(\delta \)-supplement of \(N \) in \(M \). It is clear that every amply \(\delta \)-supplemented module is \(\delta \)-supplemented.

Lemma 4.1. Let \(M \) be an \(R \)-module. If every submodule of \(M \) is \(\delta \)-supplemented, then \(M \) is amply \(\delta \)-supplemented.

Proof. Let \(A \) and \(B \) be submodules of \(M \) such that \(M = A + B \). Since \(A \) is \(\delta \)-supplemented and \(A \cap B \leq A \), there is a submodule \(C \leq A \) such that \(A \cap B + C = A \) and \(A \cap B \cap C \leq \delta C \). Therefore \(C + B = M \). Since \(C \cap B = C \cap B \cap A \leq \delta C \), \(C \) is a \(\delta \)-supplement of \(B \) in \(M \). It follows that \(M \) is amply \(\delta \)-supplemented. \(\square \)

Proposition 4.2. If \(M \) is an amply \(\delta \)-supplemented module such that every \(\delta \)-supplement submodule of \(M \) is a direct summand, then \(M \) is a \(\delta \)-lifting module.

Proof. Let \(N \) be a submodule of \(M \). By assumption, \(N \) has a \(\delta \)-supplement \(K \) and \(K \) has a \(\delta \)-supplement \(L \) such that \(L \leq N \) and \(L \) is a direct summand of \(M \). Then \(M = L \oplus T = L + K \) for some submodule \(T \) of \(M \). Note that \(N = L \oplus (N \cap T) = L + (N \cap K) \). Let \(\pi \) denote the canonical projection \(\pi : L \oplus T \to T \). Then \(\pi(N) = \pi(N \cap K) = N \cap T \). Since \(K \) is a \(\delta \)-supplement of \(N \), we have \(N \cap K \leq \delta K \). Hence \(\pi(N \cap K) = N \cap T \leq \delta T \) by Lemma 2.1(2). Consequently, \(M \) is a \(\delta \)-lifting module by Lemma 3.2. \(\square \)

Proposition 4.3. Any epimorphic image of an amply \(\delta \)-supplemented module is again amply \(\delta \)-supplemented.

Proof. Let \(M \) be an amply \(\delta \)-supplemented module and let \(f : M \to N \) be an epimorphism, where \(N \) is an \(R \)-module. Let \(N = A + B \). Then \(f^{-1}(N) = M = f^{-1}(A) + f^{-1}(B) \). Since \(M \) is an amply \(\delta \)-supplemented module, there is a submodule \(X \leq f^{-1}(B) \) such that \(M = f^{-1}(A) \oplus X \) and \(f^{-1}(A) \cap X \leq \delta X \). Hence \(N = f(M) = A + f(X) \) and \(A \cap f(X) = f(f^{-1}(A) \cap X) \leq \delta f(X) \) by Lemma 2.1(2). This implies that \(f(X) \) is a \(\delta \)-supplement of \(A \) in \(M \). Moreover, we have \(f(X) \leq B \). Therefore \(N \) is amply \(\delta \)-supplemented. \(\square \)

Recall that a module \(M \) is called \(\pi \)-projective if for every two submodules \(N \) and \(L \) of \(M \) with \(M = N + L \), there exists an endomorphism \(\alpha \) of \(M \) such that \(\alpha(M) \leq N \) and \((1 - \alpha)(M) \leq L \). It is well known that \(\pi \)-projective supplemented modules are amply supplemented. Next we prove an analogue for this result.

Theorem 4.4. Let \(M \) be a \(\pi \)-projective module. If \(M \) is \(\delta \)-supplemented, then \(M \) is amply \(\delta \)-supplemented.

Proof. Let \(M = N + K \). Then there exists \(\alpha \in \text{End}(M) \) such that \(\alpha(M) \leq N \) and
(1 − α)(M) ∈ K. Since M is δ-supplemented, there exists a submodule L ≤ M such that M = N + L and N ∩ L ≪δ L. Clearly, (1 − α)(L) ≤ K and M = N + (1 − α)(L). Since N ∩ L ≪δ L, then N ∩ (1 − α)(L) = (1 − α)(N ∩ L) ≪δ (1 − α)(L). So M is amply δ-supplemented.

Corollary 4.5. Let M₁, M₂, ..., Mₖ be submodules of a projective module M such that M = ⊕ᵢ=₁^k Mᵢ. The following are equivalent:

(i) M is amply δ-supplemented.

(ii) For every i (1 ≤ i ≤ k), Mᵢ is amply δ-supplemented.

Proof. (i)⇒(ii) By Proposition 4.3.

(ii)⇒(i) Since for every 1 ≤ i ≤ k, Mᵢ is amply δ-supplemented, it follows from Proposition 2.6 that M = ⊕ᵢ=₁^k Mᵢ is δ-supplemented. By Theorem 4.4, M is amply δ-supplemented.

Proposition 4.6. Let M be an amply δ-supplemented module. Assume that for every submodule K of M such that K = K₁ ∩ K₂ where K₁ and K₂ are δ-supplement submodules in M with M = K₁ + K₂, every homomorphism β : M → M/K can be lifted to a homomorphism γ : M → M. Then M is π-projective.

Proof. Let A and B be submodules of M with M = A + B. Since M is an amply δ-supplemented module, there exist two submodules B' ≤ B and A' ≤ A such that M = A + B' = A' + B', A ∩ B' ≪δ B' and A' ∩ B' ≪δ A'. Now, we consider the homomorphism β : M → M/(A' ∩ B') defined by β(a' + b') = b' + A' ∩ B', where a' ∈ A' and b' ∈ B'. By hypothesis, β can be lifted to a homomorphism α : M → M. Moreover, we have α(M) ≤ B' and (1 − α)(M) ≤ A'. Hence M is π-projective.

Let M be a module and B ≤ A ≤ M. If A/B ≪ M/B then B is called a coessential submodule of A in M. If A has no proper coessential submodule in M, then A is called coclosed in M (see [8]).

If A/B ≪δ M/B and A/B is singular, then B will be called a δ-coessential submodule of A. If A has no proper δ-coessential submodule in M, then A is called δ-coclosed in M (see [3]). Clearly, every δ-coclosed submodule is coclosed.

Note that every δ-supplement submodule of a module M is δ-coclosed by [3, Corollary 2.6].

Let K ≤ N ≤ M. The submodule K is said to be a δ-coclosure of N in M if K is a δ-coessential submodule of N and K is δ-coclosed in M.

Proposition 4.7. Let M be a δ-lifting module. Then every singular δ-coclosed submodule of M is a direct summand.

Proof. Let N be a singular δ-coclosed submodule of M. Since M is δ-lifting, there exist submodules M₁ and M₂ of M such that M = M₁ ⊕ M₂, M₁ ≤ N and
Every finitely generated projective M. Therefore $N = M_1 \oplus (N \cap M_2)$ and $N \cap M_2 \ll_\delta N$ by [3, Corollary 2.6]. It follows that $N = M_1$ since N/M_1 is singular. □

Lemma 4.8. Let M be an amply δ-supplemented module. Then every submodule N of M has a δ-coclosure in M.

Proof. The proof is clear.

A module M is called *weakly δ-supplemented* if for every submodule $N \leq M$, there exists a submodule $K \leq M$ such that $M = N + K$ and $N \cap K \ll_\delta M$. It is clear that every δ-supplemented module is weakly δ-supplemented. □

Proposition 4.9. A module M is amply δ-supplemented if and only if M is weakly δ-supplemented and every submodule of M has a δ-coclosure in M.

Proof. (\Rightarrow) This is clear by Lemma 4.8.

(\Leftarrow) Suppose that M is weakly δ-supplemented and every submodule of M has a δ-coclosure in M. Let A and B be two submodules of M such that $M = A + B$. Since M is weakly δ-supplemented, there exists a submodule C of M such that $(A \cap B) + C = M$ and $(A \cap B) \cap C \ll_\delta M$. Then $(A \cap B) + (C \cap B) = B$. Thus $A + (C \cap B) = M$ by [4, Lemma 1.24]. Let N be a δ-coclosure of $C \cap B$ in M. Then $(C \cap B)/N$ is singular, N is δ-coclosed in M and $(C \cap B)/N \ll_\delta M/N$. On the other hand, we have $[(A + N)/N] + (C \cap B)/N = M/N$ and $M/(A + N) \cong (C \cap B)/[(C \cap B) \cap (A + N)]$. Hence $M/(A + N) \cong (C \cap B)/[N + (A \cap B) \cap C]$ is a factor module of $(C \cap B)/N$. So $M/(A + N)$ is singular. It follows that $M = A + N$. Since $A \cap N \leq (A \cap B) \cap C \ll_\delta M$, we get $A \cap N \ll_\delta N$ by [3, Corollary 2.6]. Consequently, N is a δ-supplement of A in M with $N \leq B$. Therefore M is amply δ-supplemented. □

The next result gives a characterization of δ-semiperfect rings in terms of δ-supplemented modules. It is taken from [13, Theorem 3.6] and [9, Theorem 3.3].

Lemma 4.10. The following are equivalent for a ring R:

1. R is a δ-semiperfect ring.
2. $R/\delta(R)$ is a semisimple ring and idempotents lift modulo $\delta(R)$.
3. There exists a complete orthogonal set of idempotents e_1, \ldots, e_n such that, for each i, either $e_i R$ is a simple R-module or $e_i R$ has a unique essential maximal submodule.
4. Every finitely generated R-module is δ-supplemented.
5. Every finitely generated projective R-module is δ-lifting.
6. Every finitely generated projective R-module is δ-supplemented.
7. R_R is δ-supplemented.
It is well-known that a ring R is semiperfect if and only if R_R is supplemented if and only if R_R is amply supplemented.

Corollary 4.11. The following are equivalent for a ring R:

1. R is δ-semiperfect.
2. R_R is amply δ-supplemented.
3. Every finitely generated module is amply δ-supplemented.

Proof. (1)\iff(2) is follows from Theorem 4.4 and Lemma 4.10.
(2)\implies(3) By Proposition 4.3 and Corollary 4.5.
(3)\implies(2) Clear. \square

Theorem 4.12. Let M be an R-module. Then M is Artinian if and only if M is amply δ-supplemented and satisfies DCC on δ-supplement submodules and on δ-small submodules.

Proof. The necessity is clear. Conversely, assume that M is amply δ-supplemented module which satisfies DCC on δ-supplement submodules and on δ-small submodules. By [10, Proposition 2.6], $\delta(M)$ is an Artinian module. We next show that $M/\delta(M)$ is an Artinian module. Let $\delta(M) \leq N_1 \leq N_2 \leq \cdots$ be an ascending chain of submodules of M. Since M is amply δ-supplemented, there exists a descending chain of submodules of M such that K_i is a δ-supplement of N_i in M for each $i \geq 1$. By hypothesis, there exists a positive integer n such that $K_n = K_{n+j}$ for each $j \geq 1$. Since $K_i \cap N_i \leq \delta(M)$, we have $M/\delta(M) = N_i/\delta(M)(K_i + \delta(M))/\delta(M)$ for each $i \geq n$. It follows that $N_i = N_n$ for each $i \geq n$. Thus $M/\delta(M)$ is Noetherian, and hence finitely generated. Moreover, $M/\delta(M)$ is a semisimple module by [9, Lemma 2.12]. Then $M/\delta(M)$ is Artinian. Consequently, M is Artinian. \square

Proposition 4.13. Let M be a finitely generated δ-supplemented module. Then M is Artinian if and only if M satisfies DCC on δ-small submodules.

Proof. By [9, Lemma 2.12] and [10, Proposition 2.6]. \square

Corollary 4.14. R is a right Artinian ring if and only if R is a δ-semiperfect ring which satisfies DCC on δ-small right ideals of R.

Proof. By Corollary 4.11 and Proposition 4.13.

Acknowledgements. We would like to express our gratefulness to the referee for his/her valuable suggestions and contributions.

References

[1] K. Al-Takhman, *Cofinitely δ-supplemented abd cofinitely δ-semiperfect modules*, International Journal of Algebra, 1(12)(2007), 601-613.
[2] F. W. Anderson and K. R. Fuller, *Rings and Categories of Modules*, Springer-Verlag, New York, (1974).

[3] E. Büyükaşık and C. Lomp, *When δ-semiperfect rings are semiperfect*, Turkish J. Math., 34(2010), 317-324.

[4] J. Clark, C. Lomp, N. Vanaja and R. Wisbauer, *Lifting modules*, (2006) Birkhauser, Basel.

[5] A. Idelhadj and R. Tribak, *A dual notion of CS-modules generalization*, Algebra and Number Theory (Fez) (M. Boulagouaz and J.P. Tignol, eds.), Lecture Note of Pure and Appl. Math., 208, Marcel Dekker, New York 2000 pp. 149-155.

[6] A. Idelhadj and R. Tribak, *Modules for which every submodule has a supplement that is a direct summand*, Arab. J. Sci. Eng. Sect. C Theme Issues, 25(2)(2000), 179-189.

[7] A. Idelhadj and R. Tribak, *On some properties of ⊕-supplemented modules*, IJMMS 69(2003), 4373-4387.

[8] D. Keskin, *On lifting modules*, Comm. Alg., 28(7)(2000), 3427-3440.

[9] M. T. Koşan, *δ-lifting and δ-supplemented modules*, Alg. Colloq., 14(1)(2007), 53-60.

[10] M. T. Koşan and A. Ç. Özcan, *δ-M-small and δ-Harada modules*, Comm. Alg., 36(2)(2008), 423-433.

[11] S. H. Mohamed and B. J. Müller, *Continuous and discrete modules*, London Math. Soc. LNS 147 Cambridge Univ. Press, Cambridge, 1990.

[12] R. Tribak, *On cofinitely lifting and cofinitely weak lifting modules*, Comm. Alg., 36(12)(2008), 4448-4460.

[13] Y. Zhou, *Generalizations of perfect, semiperfect and semiregular rings*, Alg. Colloq., 7(3)(2000), 305-318.