Development of Alkali Activated Solid and Hollow Geopolymer Masonry Blocks

Venugopal K¹, Radhakrishna², Vinod Sasalatti³

¹Research Scholar, Dept. of Civil Engg, Jain University, Bengaluru, Karnataka, India.
²Associate Professor, Dept of Civil Engg, RV College of Engg, Affiliated to V.T.U, Bengaluru, Karnataka, India.
³Research Scholar, Dept of Civil Engg, RV College of Engg, Bengaluru, India.

Email: venugopalk82@yahoo.co.in, radhakrishna@rvce.edu.in

Abstract: Cement masonry units are not considered as sustainable since their production involves consumption of fuel, cement and natural resources and therefore it is essential to find alternatives. This paper reports on making of geopolymer solid & hollow blocks and masonry prisms using non conventional materials like fly ash, ground granulated blast furnace slag (GGBFS) and manufactured sand and curing at ambient temperature. They were tested for water absorption, initial rate of water absorption, dry density, dimensionality, compressive, flexural and bond-strength which were tested for bond strength with and without lateral confinement, modulus of elasticity, alternative drying & wetting and masonry efficiency. The properties of geopolymer blocks were found superior to traditional masonry blocks and the masonry efficiency was found to increase with decrease in thickness of cement mortar joints. There was marginal difference in strength between rendered and unrendered geopolymer masonry blocks. The percentage weight gain after 7 cycles was less than 6% and the percentage reduction in strength of geopolymer solid blocks and hollow blocks were 26% and 28% respectively. Since the properties of geopolymer blocks are comparatively better than the traditional masonry they can be strongly recommended for structural masonry.

Keywords: Fly ash, GGBFS, M-Sand, Masonry units and Strength.

Introduction

Masonry construction is one of the oldest methods of construction on the earth where masonry units are joined together with mortar to make structural masonry. The most popular masonry units are burnt bricks and concrete blocks. Conventional masonry blocks are not considered as sustainable due to consumption of cement, fossil fuels and top fertile soil. Cement is the primary ingredient in the manufacture of concrete blocks. Production of one tonne of cement liberates approximately same amount of carbon-di-oxide to the atmosphere and cement industries are responsible for 5% of total CO₂ emissions and subsequently responsible for 4% of manmade global warming [1]. Sarangapani et al, found that the modulus of burnt brick in the range of 5 to 10% of the modulus of 1: 6 cement mortars results to the masonry where mortar joints develop lateral tension while brick develops...
lateral tension[2-3]. The compression characteristics of solid brick-pure lime mortar masonry prisms exhibited 10 times more strength than the mortar [4]. It is reported that the modulus of elasticity of burnt bricks manufactured in India ranges from 330 MPa to 8900 MPa and the compressive strength ranges from 3 to 19 MPa [5].

There is some literature reported on use of non-traditional materials in making structural masonry. The binder used was geopolymer, one of the new alternative materials among others, where complete elimination of cement is achieved without compromising on the strength and other parameters. The term, Geopolymer was coined by Professor Joseph Davidovits for the family of high alkali binders formed in a reaction called as geopolymerization [16]. Geopolymers are the family of binders formed by using alkaline solutions and alumino silicates like fly ash, Ground granulated blast furnace slag (GGBFS), resulting in three dimensional aluminosilicate polymeric gel which are environmental friendly since are made by use of industrial by-products and eliminate use of conventional cement. Vijaysankar et al, investigated that the compressive strength of ambient-cured fly ash based geopolymer blocks achieve good compressive strength of about 3.83N/mm² and percentage water absorption is less when M-Sand is used as compared to regular cement solid blocks [6-7]. Radhakrishna et al, have reported that, it is possible to manufacture geopolymer masonry units using class F fly ash which is abundantly available throughout the world. It is also reported that phenomenological models can be developed to re-proportion the materials [8-12]. Khater et al, investigated that use of nano clay materials leads to enhancement in geopolymer microstructures affecting compressive strength increase up to 1% and better mechanical properties [13-14]. Susan et al developed a good understanding of chemistry of activated binders when exposed to aggressive environments and the existing correlation with their microscopic properties [15]. Some of researchers concluded that the geopolymer concrete specimens cured at 60°C exhibited better compressive strength than those cured in room temperature. Increase in strength with age of ambient cured specimens was higher than those of heat cured specimens [17-18]. Researchers reported that compressive strength of geopolymer concrete increased with concentration of sodium hydroxide and molarity of alkaline fluid used and stated that higher the ratio of sodium silicate to sodium hydroxide, higher the compressive strength of flyash based geopolymer concrete [19-20]. Though there is considerable research reported on brick and block masonry, the production of these masonry units are not sustainable.

Hence there is need to develop alternative masonry units, one of which can be geopolymer unit. This paper addresses the technology of making solid and hollow geopolymer units and prisms. The main objectives of the research are as follows: -

A. To evaluate properties of masonry units like water absorption & initial rate of water absorption, dry density, dimensionality test, compression strength, flexural strength, bond-strength with and without lateral confinement, stress-strain values and alternative drying and wetting method.

B. To determine properties of masonry prisms like compressive strength and masonry efficiency of masonry prisms.

Methodology

Following materials were used to prepare geopolymer masonry blocks: -

(i) Class F Fly ash and Ground granulated blast furnace slag (GGBFS).
(ii) Sodium hydroxide and Sodium silicate
(iii) Manufactured sand.
Recycled water.

Low calcium Class-F fly ash (Fly ash) and Ground granulated blast furnace slag (GGBFS) were used as binders in the research. The specific gravity of fly ash and GGBFS were found to be 2.40 and 2.90 respectively. Manufactured sand (M-sand) (zone II) having specific gravity of 2.61 was used as fine aggregate. The fineness modulus of M-sand was found to be 3.45. 8 molarity (8 M) alkaline solutions were prepared with sodium hydroxide to sodium silicate ratio of 1:1.5. The ratio of solution and binder was maintained at 0.2. Fly ash, GGBFS and M-sand were mixed thoroughly in dry condition. Alkaline solution was added to the dry mix to get fresh geopolymer mortar. The aggregate to binder mix ratio was 1:1 and percentage of fly ash to GGBFS was maintained at the ratio of 80:20. Block making compression machine was used to cast the geopolymer blocks. The percentage hollowness for the hollow blocks was 35% and details of solid and hollow geopolymer blocks are shown in Fig.1. The geopolymer blocks were cured in open air condition and the blocks were tested for water absorption, initial rate of water absorption, dry density, dimensionality, compression strength, flexural strength, and bond-strength with & without lateral confinement, modulus of elasticity, alternative drying and wetting test and masonry efficiency. Some of the geopolymer prisms were rendered with cement mortar.

Results and Discussion

Water absorption and density of blocks were determined as per IS 2185:2005 and are shown in Table 1. It was found that the water absorption of geopolymer solid blocks (GPSB) and geopolymer hollow blocks (GPHB) were 8.25% and 9.1% respectively, which are considerably less compared to the traditional cement blocks. The density of geopolymer blocks ranges from 1800 to 2000 kg/m3 which is same as traditional units. Initial rate of absorption [IRA] of geopolymer blocks at 28 days was found to be less than 3% which indicates that the masonry mortar will have good water retentivity. These properties are much less than the values specified in IS 2185:2005 [8].

Series ID	Water Absorption [%]	Initial Rate of water absorption IRA [Kg/m2/min]	Average Dry Density [kg/m3]
GPSB	8.25	2.70	1810
GPHB	9.1	2.5	1750
IS 2185:2005	< 20	< 5.0	1800 to 2000
The results of dimensionality test of masonry units are shown in Table 2. It was found that there is not much of variation in dimensions of the blocks and variation of the blocks are within the permissible limits [9].

Table 2. Dimensionality tests of Blocks

ID'S	Dimensio ns along	Size of the block (mm)	Dimensio ns (mm)	Average Dimensions (mm)	Variation in dimension (mm)	IS 1077:1992
GPSB	Length	230	4615	230.75	+0.75	+5
	Breadth	150	3012	150.60	+0.60	+3
	Height	85	1724.4	86.24	+1.24	+3
GPHB	Length	304	6103	305.15	+1.15	+5
	Breadth	150	3015	150.75	+0.75	+3
	Height	110	2221	111.05	+0.05	+3

Compressive strength of the masonry blocks was determined as per IS 2185:2008 and the variation of compressive strength of the geopolymer masonry units with age is shown in Fig. 2. It was noticed that the compressive strength of geopolymer masonry units at the age of 3 days is more than 5 MPa. This range of strength is sufficient to handle the masonry units for various purposes. The geopolymer masonry blocks also satisfy the requirement of IS 2185:2008 according to which the minimum compressive strength is 3.5 MPa. The strength of masonry units increases with age ranging from 5-25 MPa. It can be recommended to use these geopolymer blocks in-filled applications [10].
The flexural strength test on geopolymer blocks was conducted as per IS 4860:1968 as shown in Fig. 3. It was found that, flexural strength of the geopolymer solid blocks and hollow blocks are 1.55 and 1.79 MPa respectively, which are considerably higher compared to the traditional cement blocks due to good bonding between fluid binders and aggregates [12].

The test set up for shear bond strength test on geopolymer block is shown in Fig. 4. The results of the tests are shown in Table 3. These properties are considerably high due to the bonding between geopolymer masonry units and mortar compared to the traditional cement blocks. It was found that the shear bond strength was higher for the 1:2 mortar compared to 1:4 mortars as expected and also bond strength reduces for prisms without lateral confinement due to zero lateral load on prisms [2, 3].
Table 3. Bond Strength of Blocks

ID’S	Mortar Ratio	Bond Strength with lateral confinement (MPa)	Bond Strength without lateral confinement (MPa)	Reduction in shear strength (%)
GPSB	1:2	0.3826	0.2976	28.57
	1:3	0.3061	0.2211	38.46
	1:4	0.1700	0.1275	33.33
GPHB	1:2	0.4169	0.3411	22.22
	1:3	0.2653	0.2085	27.27
	1:4	0.1895	0.1327	42.86

The variation of stress and strain for geopolymer blocks is indicated in Fig. 5. The modulus of elasticity of geopolymer masonry blocks was found to be 9394 MPa at the age of 28 days. This is superior compared to traditional burnt block units [5].

Figure 5. Normalized stress strain curve for the blocks.
The compressive strength was determined after completion of 7 cycles for alternative drying and wetting test. The typical variation in the weight of geopolymer solid blocks and hollow blocks are represented in Fig. 6 and 7.

It was found that percentage weight gain after 7 cycles for the geopolymer solid blocks and hollow blocks are 5.05% and 5.75% respectively and the percentage reduction in strength are 26.1% and 28.27% respectively. These properties are comparatively better than the traditional masonry [3].

Figure 6. Alternate wetting and drying test on geopolymer solid block

Figure 7. Alternate wetting and drying tests on geopolymer Hollow blocks

The masonry efficiency was determined for the rendered and unrendered geopolymer prisms and cement mortar joints, the test setup of which is shown in Fig. 8. The variations of the strength and efficiency for the rendered and unrendered geopolymer block prisms are shown in Figs. 9, 10, 11 and 12 respectively [3]. It is observed that the efficiency of masonry increases with decrease in thickness of cement mortar joint. Whereas the difference in masonry efficiency of rendered and unrendered
block prisms is nominal the modulus of elasticity increases with decrease in thickness of mortar joints.

It was observed that the vertical cracks developed from one third of the prism from left hand side and cracks increased up to 3 mm and also bottom most prisms were crushed to a considerable extent.

Fig 8. (a) Test Setup Fig 8. (b) After Test
Figure 8. Stack Bonded Geopolymer block prisms

Figure 9. Rendered Geopolymer Solid Block Prisms.
Figure 10. Unrendered Geopolymer Solid Block Prisms.

Figure 11. Rendered Geopolymer Hollow Block Prisms.
The modulus of elasticity for the rendered and unrendered geopolymer solid blocks and hollow blocks prisms are shown in Table. 4. It was observed that the moduli of elasticity for the lesser joint thickness for rendered blocks are more compared to unrendered geopolymer block and it was noticed that there is not much difference between the rendered and unrendered geopolymer solid and hollow blocks. Since the solid and hollow geopolymer masonry blocks satisfy all the requirements, they can be recommended for structural masonry.

![Graph showing modulus of elasticity](image)

Figure 12. Unrendered Geopolymer Hollow Block Prisms.

IDs	Mortar joint thick (mm)	Modulus of elasticity of the Blocks (MPa)	Rendered	Unrendered
GPSB	7.5	8999	8471	
	10	7473	6313	
	12.5	7037	5831	
GPHB	7.5	8683	7942	
	10	7811	7296	
	12.5	7536	6682	

Table 4. Modulus of elasticity for rendered and unrendered geopolymer block prisms

Conclusions

Following are the broad conclusions based on the limited study on geopolymer masonry blocks.

- The compressive strength of geopolymer hollow blocks at the age of 3 days was more than 5MPa. This facilitates the user to handle blocks without any difficulties.

- The water absorption, initial rate of water absorption, density, dimensionality modulus of elasticity of masonry units were found suitable for their use in field.

- Flexural bond strength of the geopolymer hollow blocks is more than that of solid blocks.
Masonry efficiency of geopolymer blocks increases with decrease in height/thickness ratios.

Acknowledgment

The authors would like to thank the authorities of Jain University-Bangalore for their continuous support and encouragement.

References

[1] “Climate change and the cement industry” GCL’s Cement Trends-2002, GCL-Environmental special issue, Conference and forum, London, Monday 27 May (2002).

[2] G. Sarangapani, B. V. Venkatarama Reddy and K. S. Jagadish, (2002) “Structural characteristics of bricks, mortars and masonry” Journal of Structural Engineering. No.29-11, pp. 101-107.

[3] G. Sarangapani, B. V. Venkatarama Reddy and K. S. Jagadish, (2005) “Brick-Mortar Bond and Masonry Compressive Strength” Journal of Materials in Civil Engineering. Vol. 17, No. 2, pp. 229–237.

[4] Anastasios Drougkas, Pere Roka, Clement Molins, “Compressive strength and elasticity of pure lime mortar masonry”, Journal of materials and structures, 2015.

[5] Nanjunda Rao.K.S, “Structural masonry: properties and behavior”, department of civil engineering, IIsc, Bangalore, 1986

[6] Ali Nazari, “Compressive strength of geopolymers produced by ordinary Portland cement: Application of genetic programming for design”, Materials and Design, 2013, 43, pp. 356–366.

[7] P.M. Vijaysankar, R. Anuradha, V. Sreevidya, Dr. R. Venkatasubramani “Durability Studies of Geopolymer Concrete Solid Blocks”. International journal of Advanced Scientific and Technical Research, ISSN 2249-9954, Issue 3 Volume 2, march-April 2013.

[8] Radhakrishna, Shashishankar A., Udayashankar.B.C and Renuka Devi. M.V., “Compressive Strength Assessment of Geopolymer Composites by a Phenomenological Model”, Journal of Reinforced Plastics and Composites, 4 Vol. 29, No. 6/2010 pp 840-852.

[9] Radhakrishna, “A Phenomenological Model To Re-Proportion Geopolymer Compressed Blocks”, Concrete Technology Today, Oct, 2008, vol 7 No. 3 pp. 46-48.

[10] Radhakrishna, Renuka Devi. M.V. and Udayashankar. B.C., “Use of fly ash in Construction Industry for sustainable development” Journal of Environmental Research and Development, volume 03, 2009, pp1211-1221.

[11] Radhakrishna, Shashishankar A. and Udayashankar.B.C “Analysis and Assessment of Strength Development in Class F Fly Ash Based Compressed Geopolymer Blocks” Indian Concrete Journal, Aug 2008, Vol 82, No.8 pp.31-37.

[12] Radhakrishna, Manjunath GS., C Giridhar and Mahesh Jadav “ Strength Development in Geopolymer pastes and Mortars”, International Journal of Earth Sciences, ISSN 0974-5904, Volume 04, No 06 SPL, October 2011, pp. 830-834.

[13] Sergio Tamburini, Monica Favaro, Andrea Magro, Enrico Garbin, Matteo Panizza, Fabiola Nardon, Maria Rosa Valluzzi. “Geopolymers as Strengthening materials for Built Heritage”, Built Heritage 2013 Monitoring Conservation Management.

[14] H.M. Khater, B.A. El-Sabbagh, M. Fanny, M.Ezzat, M. Lottfy and A.M. El Nagar “Effects of Nano-Clay on Alkali Activated Water-cooled Slag Geopolymer” British Journal of Science & Technology, 3(4): 764-776, 2013.

[15] Susan A. Bernal, ruby Mejia de Gutierrez, Erich D. Rodriguez, “Alkali-activated materials: Cementing a sustainable future” Materials Engineering volume 15 no-2, p-211-223 (2013).

[16] Joseph Davidovits, “Properties of geopolymer cements”, Proceedings of Kiev state technical university conference, Ukraine, 1994, pp 131-149.

[17] KVijai, R.Kumutha, B.G.Vishnuram, “Effect of types of curing on strength of geopolymer concrete”, International journal of physical sciences, 5(9), 2010, pp 1419-1423.

[18] Pattanapong Topark-Ngarm, Prinya Chindaprasirt, Vanchai Sata, “Setting time, strength and bond of high calcium flyash geopolymer concrete”, Journal of materials in civil engineering, ISSN 0899-1561/04014198(7), 2014.
[19] Ammar Motorwala, Vineet Shah, Ravishankar Kammula, Praveena Nannapaneni, Raijiwala.D.B., “Alkali activated flyash based geopolymer concrete”, International journal of emerging technology and advanced engineering, 3(1), 2013, pp 50-65.
[20] Vaidya.S, Diaz.E.I, Allouche.E.N, “Experimental evaluation of self-cure geopolymer concrete for mass pour applications”, World of coal ash (WOCA) conference, Denver, Colorado, May 2011.