A coupled rearrangement channel analysis of positronium antihydride PsH

Takuma Yamashita1, Yasushi Kino2, Emiko Hiyama1, Svante Jonsson1, and Piotr Froelich§

* Department of Chemistry, Tohoku University, Sendai 980-8578 Japan
† RIKEN Nishina Center, RIKEN, Wako 351-0198, Japan
‡ Department of Physics, Stockholm University, SE-10691 Stockholm, Sweden
§ Department of Chemistry, Uppsala University, Box 518, 751-20 Uppsala, Sweden

Synopsis
Ground and resonance states of PsH are calculated with a coupled rearrangement-channel, four-body calculation. The structures of these states are examined with help of correlation functions and probabilities of finding two-body states in the total wavefunction. Asymptotic configurations of the ground and resonance states are determined from the tail behaviour of the correlation functions.

We report a theoretical investigation of positronium antihydride PsH which consists of an antiproton (¯p), an electron (e−) and two positrons (e+). The PsH is a charge-conjugated system of the positronium hydride PsH. The PsH has only one truly bound state below (1s) + Ps (1s) threshold.

Resonance states of PsH are of interest for the ongoing experiments of GBAR project [1] as intermediate states for rearrangement collisions, Ps + Ps → e− + Ps. Since below the dissociation threshold of e− + Ps there exist several other dissociation thresholds, all possible channels for the rearrangement dissociation should be accounted for the branching ratios for the decay of the resonance state to various states.

To obtain a four-body wavefunction of PsH including all coupled rearrangement channels, a Gaussian expansion method [2] is adapted. The role of the various rearrangement channels in our total wavefunctions provides an insight to the structure of the ground and resonance states.

The structure of PsH is analyzed with help of a correlation function between two particles (‘i’ and ‘j’) defined as \(C(r_{ij}) = \langle \Psi | \delta(r_{ij} - r_{ij}^0) | \Psi \rangle \) [3]. As shown in Fig. 1 (a), the correlation functions \(C(r_{pe}) \) has the same slope as isolated PsH (1s) around the origin, while the middle-long range tail of \(C(r_{pe}) \) shows a large deviation from the PsH (1s). Since the bound state lies only 1 eV below the PsH + Ps threshold, the expected configuration of the ground state may be a molecule-like structure. The asymptotic form of the correlation function between PsH and Ps should be proportional to \(\exp(-kr) \) where \(k = \sqrt{2\mu e} \) (\(\mu \) is a reduced mass and \(e \) is binding energy). This asymptotic slope, however, appears over 20 bohrs and its amplitude is \(\sim 10^{-11} \) which indicates that in the ground state coexistence of atomic/molecular structure is remarkable. The Ps formation is manifested by \(C(r_{e+e−}) \) and \(C(r_{e+e^−}) \) in which the \(C(r_{e+e−}) \) has the same slope as isolated Ps (1s) and the \(C(r_{e+e^−}) \) almost overlaps with \(C(r_{e+e^−}) \), as shown in Fig. 1 (b).

The coexistence of molecular and atomic structures in PsH is an intriguing feature of a quantum few-body system. The analysis of the four-body resonances in terms of the three-body resonant subsystem (Ps+, e− Ps) will also be presented. Since in the energy region of resonances the dissociation thresholds associated with various configurations exist, a hybridization of different configurations and a small asymptotic amplitude of wavefunction can seriously affect the interpretation of the decay.

Figure 1. The correlation functions \(C(r_{pe}) \) defined in text is shown together with that of isolated PsH (1s), PsH (2p), Ps (1s) and an asymptotic behavior \(f = 10^{-8} \) is a scaling constant.

References
[1] P. Perez and Y. Sacquin, 2012 Class. Quantum Grav. 29 184008
[2] E. Hiyama, Y. Kino and M. Kamimura, 2003 Prog. Part. Nucl. Phys. 51 223
[3] J. Usukura, K. Varga, and Y. Suzuki, 1998 Phys. Rev. A 58 1918

1E-mail: t.ymst@dc.tohoku.ac.jp
2E-mail: y.k@mm.tohoku.ac.jp