METRIC EXTENSION OPERATORS, VERTEX SPARSIFIERS AND LIPSCHITZ EXTENDABILITY*

BY

KONSTANTIN MAKARYCHEV
Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA
e-mail: Komakary@microsoft.com

AND

YURY MAKARYCHEV
Toyota Technological Institute at Chicago, 6045 S. Kenwood Ave. Chicago IL, USA
e-mail: yury@ttic.edu

ABSTRACT

We study vertex cut and flow sparsifiers that were recently introduced by Moitra (2009), and Leighton and Moitra (2010). We improve and generalize their results. We give a new polynomial-time algorithm for constructing $O(\log k / \log \log k)$ cut and flow sparsifiers, matching the best known existential upper bound on the quality of a sparsifier, and improving the previous algorithmic upper bound of $O(\log^2 k / \log \log k)$. We show that flow sparsifiers can be obtained from linear operators approximating minimum metric extensions. We introduce the notion of (linear) metric extension operators, prove that they exist, and give an exact polynomial-time algorithm for finding optimal operators.

We then establish a direct connection between flow and cut sparsifiers and Lipschitz extendability of maps in Banach spaces, a notion studied in functional analysis since 1930s. Using this connection, we obtain a lower bound of $\Omega(\sqrt{\log k / \log \log k})$ for flow sparsifiers and a lower bound of $\Omega(\sqrt{\log k / \log \log k})$ for cut sparsifiers. We show that if a certain open question posed by Ball in 1992 has a positive answer, then there exist $O(\sqrt{\log k})$ cut sparsifiers. On the other hand, any lower bound on cut sparsifiers better than $\Omega(\sqrt{\log k})$ would imply a negative answer to this question.

* The conference version of this paper appeared at FOCS 2010.

Received April 2, 2014 and in revised form March 24, 2015
1. Introduction

In this paper, we study vertex cut and flow sparsifiers that were recently introduced by Moitra [23], and Leighton and Moitra [19]. A weighted graph $H = (U, \beta)$ is a Q-quality vertex cut sparsifier of a weighted graph $G = (V, \alpha)$ (here α_{ij} and β_{pq} are sets of weights on edges of G and H) if $U \subset V$ and the size of every cut $(S, U \setminus S)$ in H approximates the size of the minimum cut separating sets S and $U \setminus S$ in G within a factor of Q. Moitra [23] presented several important applications of cut sparsifiers to the theory of approximation algorithms. Consider a simple example. Suppose we want to find the minimum cut in a graph $G = (V, \alpha)$ that splits a given subset of vertices (terminals) $U \subset V$ into two approximately equal parts. We construct Q-quality sparsifier $H = (U, \beta)$ of G, and then find a balanced cut $(S, U \setminus S)$ in H using the algorithm of Arora, Rao, and Vazirani [2]. The desired cut is the minimum cut in G separating sets S and $U \setminus S$. The approximation ratio we get is $O(Q \times \sqrt{\log |U|})$: we lose a factor of Q by using cut sparsifiers, and another factor of $O(\sqrt{\log |U|})$ by using the approximation algorithm for the balanced cut problem. If we applied the approximation algorithm for the balanced, or, perhaps, the sparsest cut problem directly we would lose a factor of $O(\sqrt{\log |V|})$. This factor depends on the number of vertices in the graph G, which may be much larger than the number of vertices in the graph H. Note that we gave the example above just to illustrate the method. A detailed overview of applications of cut and flow sparsifiers is presented in the papers of Moitra [23] and Leighton and Moitra [19]. However, even this simple example shows that we would like to construct sparsifiers with Q as small as possible. Moitra [23] proved that for every graph $G = (V, \alpha)$ and every k-vertex subset $U \subset V$, there exists a $O(\log k / \log \log k)$-quality sparsifier $H = (U, \beta)$. However, the best known polynomial-time algorithm proposed by Leighton and Moitra [19] finds only $O(\log^2 k / \log \log k)$-quality sparsifiers. In this paper, we close this gap: we give a polynomial-time algorithm for constructing $O(\log k / \log \log k)$-cut sparsifiers matching the best known existential upper bound. In fact, our algorithm constructs $O(\log k / \log \log k)$-flow sparsifiers. This type of sparsifiers was introduced by Leighton and Moitra [19]; and it generalizes the notion of cut-sparsifiers. Our bound matches the existential upper bound of Leighton and Moitra [19] and improves their algorithmic upper bound of $O(\log^2 k / \log \log k)$. If G is a graph with an excluded minor $K_{r,r}$, then our algorithm finds a $O(r^2)$-quality flow sparsifier, again matching the best
existential upper bound of Leighton and Moitra [19] (their algorithmic upper bound has an additional $\log k$ factor). Similarly, we get $O(\log g)$-quality flow sparsifiers for genus g graphs.

In the second part of the paper (Section 5), we establish a direct connection between flow and cut sparsifiers and Lipschitz extendability of maps in Banach spaces. Let Q_k^{cut} (respectively, Q_k^{metric}) be the infimum over all Q such that there exists a Q-quality cut (respectively, flow) sparsifier for every graph $G = (V, \alpha)$ and every subset $U \subset V$ of size k. We show that $Q_k^{\text{cut}} = e_k(\ell_1, \ell_1)$ and $Q_k^{\text{metric}} = e_k(\infty, \ell_\infty \oplus_1 \cdots \oplus_1 \ell_\infty)$, where $e_k(\ell_1, \ell_1)$ and $e_k(\infty, \ell_\infty \oplus_1 \cdots \oplus_1 \ell_\infty)$ are the Lipschitz extendability constants (see Section 5 for the definitions). That is, there always exist cut and flow sparsifiers of quality $e_k(\ell_1, \ell_1)$ and $e_k(\infty, \ell_\infty \oplus_1 \cdots \oplus_1 \ell_\infty)$, respectively; and these bounds cannot be improved.

We then prove lower bounds on Lipschitz extendability constants and obtain a lower bound of $\Omega(\sqrt{\log k / \log \log k})$ on the quality of flow sparsifiers and a lower bound of $\Omega(\sqrt[4]{\log k / \log \log k})$ on the quality of cut sparsifiers (improving upon previously known lower bound of $\Omega(\log \log k)$ and $\Omega(1)$ respectively). To this end, we employ the connection between Lipschitz extendability constants and relative projection constants that was discovered by Johnson and Lindenstrauss [13]. Our bound on $e_k(\infty, \ell_\infty \oplus_1 \cdots \oplus_1 \ell_\infty)$ immediately follows from the bound of Grünbaum [11] on the projection constant $\lambda(\ell_1^d, \ell_\infty)$. To get the bound of $\Omega(\sqrt[4]{\log k / \log \log k})$ on $e_k(\ell_1, \ell_1)$, we prove a lower bound on the projection constant $\lambda(L, \ell_1)$ for a carefully chosen subspace L of ℓ_1. After a preliminary version of our paper appeared as a preprint, Johnson and Schechtman notified us that a lower bound of $\Omega(\sqrt{\log k / \log \log k})$ on $e_k(\ell_1, \ell_1)$ follows from their joint work with Figiel [10]. With their permission, we present the proof of the lower bound in Section D of the Appendix, which gives a lower bound of $\Omega(\sqrt{\log k / \log \log k})$ on the quality of cut sparsifiers.

In Section 5.3, we note that we can use the connection between vertex sparsifiers and extendability constants not only to prove lower bounds, but also to get positive results. We show that, surprisingly, if a certain open question in functional analysis posed by Ball [3] has a positive answer, then there exist $\tilde{O}(\sqrt{\log k})$-quality cut sparsifiers. This is both an indication that the current upper bound of $O(\log k / \log \log k)$ might not be optimal and that improving lower bounds beyond of $\tilde{O}(\sqrt{\log k})$ will require solving a longstanding open problem (negatively).
Related work. Independently and concurrently to our work, Charikar, Leighton, Li and Moitra [6], and independently Englert, Gupta, Krauthgamer, Räcke, Talgam-Cohen and Talwar [7] obtained results that overlap with our results. Both papers gave a polynomial-time algorithm that finds flow sparsifiers of quality $O(\log k / \log \log k)$. Charikar, Leighton, Li and Moitra [6] proved a lower bound of $\Omega(\log^1 k)$ on the quality of vertex cut sparsifiers. There are several other very interesting results in both papers that are not directly comparable to our results.

Overview of the algorithm. The main technical ingredient of our algorithm is a procedure for finding linear approximations to metric extensions. Consider a finite set of points X and a k-point subset $Y \subset X$. Let \mathcal{D}_X be the cone of all metrics on X, and \mathcal{D}_Y be the cone of all metrics on Y. For a given set of weights α_{ij} on pairs $(i, j) \in X \times X$, the minimum extension of a metric d_Y from Y to X is a metric d_X on X that coincides with d_Y on Y and minimizes the linear functional

$$\alpha(d_X) \equiv \sum_{i,j \in X} \alpha_{ij} d_X(i, j).$$

We denote the minimum above by $\text{min-ext}_{Y \to X}(d_Y, \alpha)$. We show that the map between d_Y and its minimum extension, the metric d_X, can be well approximated by a linear operator. Namely, for every set of nonnegative weights α_{ij} on pairs $(i, j) \in X \times X$, there exists a linear operator $\phi : \mathcal{D}_Y \to \mathcal{D}_X$ of the form

$$\phi(d_Y)(i, j) = \sum_{p, q \in Y} \phi_{ipjq} d_Y(p, q)$$

that maps every metric d_Y to an extension of the metric d_Y to the set X such that

$$\alpha(\phi(d_Y)) \leq O\left(\frac{\log k}{\log \log k}\right) \text{min-ext}_{Y \to X}(d_Y, \alpha).$$

As a corollary, the linear functional $\beta : \mathcal{D}_X \to \mathbb{R}$ defined as

$$\beta(d_Y) = \sum_{i,j \in X} \alpha_{ij} \phi(d_Y)(i, j)$$

approximates the minimum extension of d_Y up to $O(\log k / \log \log k)$ factor. We then give a polynomial-time algorithm for finding ϕ and β. (The algorithm finds the optimal ϕ.) To see the connection with cut and flow sparsifiers write
the linear operator $\beta(d_Y)$ as $\beta(d_Y) = \sum_{p,q \in Y} \beta_{pq} d_Y(p,q)$; then

\[
(2) \quad \min_{Y \to X}(d_Y, \alpha) \leq \sum_{p,q \in Y} \beta_{pq} d_Y(p,q) \leq O\left(\frac{\log k}{\log \log k}\right) \min_{Y \to X}(d_Y, \alpha).
\]

Note that the minimum extension of a cut metric\(^1\) is a cut metric (since the minimum cut LP is integral). Now, if d_Y is a cut metric on Y corresponding to the cut $(S, Y \setminus S)$, then $\sum_{p,q \in Y} \beta_{pq} d_Y(p,q)$ is the size of the cut in Y with respect to the weights β_{pq}; and $\min_{Y \to X}(d_Y, \alpha)$ is the size of the minimum cut in X separating S and $Y \setminus S$. Thus, (Y, β) is a $O((\log k/\log \log k))$-quality cut sparsifier for (X, α).

Definition 1.1 (Cut sparsifier [23]): Let $G = (V, \alpha)$ be a weighted undirected graph with weights α_{ij}; and let $U \subset V$ be a subset of vertices. We say that a weighted undirected graph $H = (U, \beta)$ on U is a Q-quality cut sparsifier, if for every $S \subset U$, the size of the cut $(S, U \setminus S)$ in H approximates the size of the minimum cut separating S and $U \setminus S$ in G within a factor of Q, i.e.,

\[
\min_{T \subset V: S = T \cap U} \sum_{i \in T} \sum_{j \in V \setminus T} \alpha_{ij} \leq \sum_{p \in S} \sum_{q \in U \setminus S} \beta_{pq} \leq Q \times \min_{T \subset V: S = T \cap U} \sum_{i \in T} \sum_{j \in V \setminus T} \alpha_{ij}.
\]

2. Preliminaries

In this section, we remind the reader of some basic definitions.

2.1. Multi-commodity flows and flow-sparsifiers.

Definition 2.1: Let $G = (V, \alpha)$ be a weighted graph with nonnegative capacities α_{ij} between vertices $i, j \in V$, and let $\{(s_r, t_r, dem_r)\}$ be a set of flow demands ($s_r, t_r \in V$ are terminals of the graph, $dem_r \in \mathbb{R}$ are demands between s_r and t_r; all demands are nonnegative). We say that a weighted collection of paths \mathcal{P} with nonnegative weights w_p ($p \in \mathcal{P}$) is a fractional multi-commodity flow concurrently satisfying a λ fraction of all demands, if the following two conditions hold.

- **Capacity constraints.** For every pair $(i, j) \in V \times V$,

\[
(3) \quad \sum_{p \in \mathcal{P}: (i, j) \in p} w_p \leq \alpha_{ij}.
\]

\(^{1}\) A metric (X, d) is a cut metric if there exists a set $S \subset X$ such that $d(i, j) = d(j, i) = 1$ if $(i, j) \in S \times (X \setminus S)$; $d(i, j) = 0$ if $(i, j) \in S \times S$ or $(i, j) \in (X \setminus S) \times (X \setminus S)$.

• Demand constraints. For every demand \((s_r, t_r, \text{dem}_r)\),
\[
\sum_{p \in P: p \text{ goes from } s_r \text{ to } t_r} w_p \geq \lambda \text{dem}_r.
\]
We denote the maximum fraction of all satisfied demands by
\[
\text{max-flow}(G, \{(s_r, t_r, \text{dem}_r)\}).
\]

For a detailed overview of multi-commodity flows, we refer the reader to the book of Schrijver [28].

Definition 2.2 (Leighton and Moitra [19]): Let \(G = (V, \alpha)\) be a weighted graph and let \(U \subset V\) be a subset of vertices. We say that a graph \(H = (U, \beta)\) on \(U\) is a \(Q\)-quality flow sparsifier of \(G\) if for every set of demands \(\{(s_r, t_r, \text{dem}_r)\}\) between terminals in \(U\),
\[
\text{max-flow}(G, \{(s_r, t_r, \text{dem}_r)\}) \leq \text{max-flow}(H, \{(s_r, t_r, \text{dem}_r)\}) \leq Q \times \text{max-flow}(G, \{(s_r, t_r, \text{dem}_r)\}).
\]
Leighton and Moitra [19] showed that every flow sparsifier is a cut sparsifier.

Theorem 2.3 (Leighton and Moitra [19]): If \(H = (U, \beta)\) is a \(Q\)-quality flow sparsifier for \(G = (V, \alpha)\), then \(H = (U, \beta)\) is also a \(Q\)-quality cut sparsifier for \(G = (V, \alpha)\).

2.2. Metric spaces and metric extensions. Recall that a function \(d_X: X \times X \to \mathbb{R}\) is a metric if for all \(i, j, k \in X\) the following three conditions hold: \(d_X(i, j) \geq 0\), \(d_X(i, j) = d_X(j, i)\), \(d_X(i, j) + d_X(j, k) \geq d_X(i, k)\). Usually, the definition of a metric requires that \(d_X(i, j) \neq 0\) for distinct \(i\) and \(j\) but we drop this requirement for convenience (such metrics are often called semimetrics). We denote the set of all metrics on a set \(X\) by \(D_X\). Note that \(D_X\) is a convex closed cone. Moreover, \(D_X\) is defined by polynomially many (in \(|X|\)) linear constraints (namely, by the three inequalities above for all \(i, j, k \in X\)).

A map \(f\) from a metric space \((X, d_X)\) to a metric space \((Z, d_Z)\) is \(C\)-Lipschitz, if \(d_Z(f(i), f(j)) \leq C d_X(i, j)\) for all \(i, j \in X\). The Lipschitz norm of a Lipschitz map \(f\) equals
\[
\|f\|_{\text{Lip}} = \sup \left\{ \frac{d_Z(f(i), f(j))}{d_X(i, j)} : i, j \in X; d_X(i, j) > 0 \right\}.
\]
Definition 2.4 (Metric extension and metric restriction): Let X be an arbitrary set, $Y \subset X$, and d_Y be a metric on Y. We say that d_X is a metric extension of d_Y to X if $d_X(p,q) = d_Y(p,q)$ for all $p,q \in Y$. If d_X is an extension of d_Y, then d_Y is the restriction of d_X to Y. We denote the restriction of d_X to Y by $d_X|_Y$ (clearly, $d_X|_Y$ is uniquely defined by d_X).

Definition 2.5 (Minimum extension): Let X be an arbitrary set, $Y \subset X$, and d_Y be a metric on Y. The minimum (cost) extension of d_Y to X with respect to a set of nonnegative weights α_{ij} on pairs $(i,j) \in X \times X$ is a metric extension d_X of d_Y that minimizes the linear functional $\alpha(d_X)$:

$$\alpha(d_X) \equiv \sum_{i,j \in X} \alpha_{ij} d_X(i,j).$$

We denote $\alpha(d_X)$ by $\text{min-ext}_{Y \to X}(d_Y, \alpha)$.

Lemma 2.6: Let X be an arbitrary set, $Y \subset X$, and α_{ij} be a set of nonnegative weights on pairs $(i,j) \in X \times X$. Then the function $\text{min-ext}_{Y \to X}(d_Y, \alpha)$ is a convex function of the first variable.

Proof. Consider arbitrary metrics d_Y^\ast and $d_Y^{\ast\ast}$ in D_Y. Let d_X^\ast and $d_X^{\ast\ast}$ be their minimal extensions to X. For every $\lambda \in [0,1]$, the metric $\lambda d_X^\ast + (1-\lambda)d_X^{\ast\ast}$ is an extension (but not necessarily the minimum extension) of $\lambda d_Y^\ast + (1-\lambda)d_Y^{\ast\ast}$ to X,

$$\text{min-ext}_{Y \to X}(\lambda d_Y^\ast + (1-\lambda)d_Y^{\ast\ast}, \alpha) \leq \sum_{i,j \in X} \alpha_{ij} ((\lambda d_Y^\ast(i,j) + (1-\lambda)d_Y^{\ast\ast}(i,j)))$$

$$= \lambda \sum_{i,j \in X} \alpha_{ij} d_X^\ast(i,j) + (1-\lambda) \sum_{i,j \in X} \alpha_{ij} d_X^{\ast\ast}(i,j)$$

$$= \lambda \text{min-ext}_{Y \to X}(d_Y^\ast, \alpha) + (1-\lambda) \text{min-ext}_{Y \to X}(d_Y^{\ast\ast}, \alpha).$$

Later, we shall need the following theorem of Fakcharoenphol, Harrelson, Rao and Talwar [8].

Theorem 2.7 (FHRT 0-extension Theorem): Let X be a set of points, Y be a k-point subset of X, and $d_Y \in D_Y$ be a metric on Y. Then for every set of nonnegative weights α_{ij} on $X \times X$, there exists a map (0-extension) $f : X \to Y$ such that $f(p) = p$ for every $p \in Y$ and

$$\sum_{i,j \in X} \alpha_{ij} \cdot d_Y(f(i), f(j)) \leq O(\log k / \log \log k) \times \text{min-ext}_{Y \to X}(d_Y, \alpha).$$
The notion of 0-extension was introduced by Karzanov [14]. A slightly weaker version of this theorem (with a guarantee of \(O(\log k)\)) was proved earlier by Calinescu, Karloff and Rabani [5].

3. Metric extension operators

In this section, we introduce the definitions of “metric extension operators” and “metric vertex sparsifiers” and then establish a connection between them and flow sparsifiers. Specifically, we show that each \(Q\)-quality metric sparsifier is a \(Q\)-quality flow sparsifier and vice versa (Lemma 3.5, Lemma A.1). In the next section, we prove that there exist metric extension operators with distortion \(O(\log k / \log \log k)\) and give an algorithm that finds the optimal extension operator.

Definition 3.1 (Metric extension operator): Let \(X\) be a set of points, and \(Y\) be a \(k\)-point subset of \(X\). We say that a linear operator \(\phi : \mathcal{D}_Y \to \mathcal{D}_X\) defined as

\[
\phi(d_Y)(i,j) = \sum_{p,q \in Y} \phi_{ipjq} d_Y(p,q)
\]

is a \(Q\)-distortion metric extension operator with respect to a set of non-negative weights \(\alpha_{ij}\), if

- for every metric \(d_Y \in \mathcal{D}_Y\), metric \(\phi(d_Y)\) is a metric extension of \(d_Y\);
- for every metric \(d_Y \in \mathcal{D}_Y\),

\[
\alpha(\phi(d_Y)) \equiv \sum_{i,j \in X} \alpha_{ij} \phi(d_Y)(i,j) \leq Q \times \min_{Y \to X} \text{ext}(d_Y, \alpha).
\]

Remark: As we show in Lemma 3.3, a stronger bound always holds:

\[
\min_{Y \to X} \text{ext}(d_Y, \alpha) \leq \alpha(\phi(d_Y)) \leq Q \times \min_{Y \to X} \text{ext}(d_Y, \alpha);
\]

- for all \(i, j \in X\), and \(p, q \in Y\),

\[
\phi_{ipjq} \geq 0.
\]

We shall always identify the operator \(\phi\) with its matrix \(\phi_{ipjq}\).

Definition 3.2 (Metric vertex sparsifier): Let \(X\) be a set of points, and \(Y\) be a \(k\)-point subset of \(X\). We say that a linear functional \(\beta : \mathcal{D}_Y \to \mathbb{R}\) defined as

\[
\beta(d_Y) = \sum_{p,q \in Y} \beta_{pq} d_Y(p,q)
\]
is a Q-quality metric vertex sparsifier with respect to a set of nonnegative weights α_{ij}, if for every metric $d_Y \in \mathcal{D}_Y$,

$$\min_{Y \to X}(d_Y, \alpha) \leq \beta(d_Y) \leq Q \times \min_{Y \to X}(d_Y, \alpha);$$

and all coefficients β_{pq} are nonnegative.

The definition of the metric vertex sparsifier is equivalent to the definition of the flow vertex sparsifier. We prove this fact in Lemma 3.5 and Lemma A.1 using duality. However, we shall use the term “metric vertex sparsifier”, because the new definition is more convenient for us. Also, the notion of metric sparsifiers makes sense when we restrict d_X and d_Y to be in special families of metrics. For example, (ℓ_1, ℓ_1) metric sparsifiers are equivalent to cut sparsifiers.

Remark 3.1: The constraints that all ϕ_{ipjq} and β_{pq} are nonnegative, though seemingly unnatural, are required for the application of vertex sparsifiers. We note that there exist linear operators $\phi : \mathcal{D}_Y \to \mathcal{D}_X$ and linear functionals $\beta : \mathcal{D}_Y \to \mathbb{R}$ that satisfy all constraints above except for the nonnegativity constraints. However, even if we drop the nonnegativity constraints, then there will always exist an optimal metric sparsifier with nonnegative coefficients (the optimal metric sparsifier is not necessarily unique). Surprisingly, the same is not true for metric extension operators: if we drop the nonnegativity constraints, then, in certain cases, the optimal metric extension operator will necessarily have some negative coefficients. This remark is not essential for the further exposition. For completeness, we prove the statements above in Section E of the Appendix.

Lemma 3.3: Let X be a set of points, $Y \subset X$, and α_{ij} be a nonnegative set of weights on pairs $(i, j) \in X \times X$. Suppose that $\phi : \mathcal{D}_Y \to \mathcal{D}_X$ is a Q-distortion metric extension operator. Then

$$\min_{Y \to X}(d_Y, \alpha) \leq \alpha(\phi(d_Y)).$$

Proof. The lower bound

$$\min_{Y \to X}(d_Y, \alpha) \leq \alpha(d_X)$$

holds for every extension d_X (just by the definition of the minimum metric extension), and particularly for $d_X = \phi(d_Y)$. ■
We now show that given an extension operator with distortion Q, it is easy to obtain Q-quality metric sparsifier.

Lemma 3.4: Let X be a set of points, $Y \subset X$, and α_{ij} be a nonnegative set of weights on pairs $(i, j) \in X \times X$. Suppose that $\phi : D_Y \to D_X$ is a Q-distortion metric extension operator. Then there exists a Q-quality metric sparsifier $\beta : D_Y \to \mathbb{R}$. Moreover, given the operator ϕ, the sparsifier β can be found in polynomial time.

Remark 3.2: Note that the converse statement does not hold. There exist sets $X, Y \subset X$ and weights α such that the distortion of the best metric extension operator is strictly larger than the quality of the best metric vertex sparsifier.

Proof. Let

$$
\beta(d_Y) = \sum_{i,j \in X} \alpha_{ij} \phi(d_Y)(i, j).
$$

Then by the definition of Q-distortion extension operator, and by Lemma 3.3,

$$
\min_{Y \to X}(d_Y, \alpha) \leq \beta(d_Y) \equiv \alpha(\phi(d_Y)) \leq Q \times \min_{Y \to X}(d_Y, \alpha).
$$

That is, β is a Q-quality metric sparsifier. If ϕ is given in the form (1), then β_{pq} can be computed using the formula

$$
\beta_{pq} = \sum_{i,j \in X} \alpha_{ij} \phi_{ipjq}.
$$

We now prove that every Q-quality metric sparsifier is a Q-quality flow sparsifier. We prove that every Q-quality flow sparsifier is a Q-quality metric sparsifier in the Appendix.

Lemma 3.5: Let $G = (V, \alpha)$ be a weighted graph and let $U \subset V$ be a subset of vertices. Suppose that a linear functional $\beta : D_U \to \mathbb{R}$, defined as

$$
\beta(d_U) = \sum_{p,q \in U} \beta_{pq} d_U(p, q),
$$

is a Q-quality metric sparsifier. Then the graph $H = (U, \beta)$ is a Q-quality flow sparsifier of G.

Proof. Fix a set of demands $\{(s_r, t_r, \text{dem}_r)\}$. We need to show that

$$
\max\text{-flow}(G, \{(s_r, t_r, \text{dem}_r)\}) \leq \max\text{-flow}(H, \{(s_r, t_r, \text{dem}_r)\}) \leq Q \times \max\text{-flow}(G, \{(s_r, t_r, \text{dem}_r)\}).
$$
The fraction of concurrently satisfied demands by the maximum multi-commodity flow in G equals the maximum of the following standard linear program (LP) for the problem: the LP has a variable w_p for every path between terminals that equals the weight of the path (or, in other words, the amount of flow routed along the path) and a variable λ that equals the fraction of satisfied demands. The objective is to maximize λ. The constraints are the capacity constraints (3) and demand constraints (4). The maximum of the LP equals the minimum of the (standard) dual LP (in other words, it equals the value of the fractional sparsest cut with non-uniform demands).

\[
\begin{align*}
\text{minimize:} & \quad \sum_{i,j \in V} \alpha_{ij} d_V(i, j) \\
\text{subject to:} & \quad \sum_r d_V(s_r, t_r) \times \text{dem}_r \geq 1 \quad \forall d_V \in \mathcal{D}_V \quad \text{i.e., } d_V \text{ is a metric on } V
\end{align*}
\]

The variables of the dual LP are $d_V(i, j)$, where $i, j \in V$. Similarly, the maximum concurrent flow in H equals the minimum of the following dual LP.

\[
\begin{align*}
\text{minimize:} & \quad \sum_{p,q \in U} \beta_{pq} d_U(p, q) \\
\text{subject to:} & \quad \sum_r d_U(s_r, t_r) \times \text{dem}_r \geq 1 \quad \forall d_U \in \mathcal{D}_U \quad \text{i.e., } d_U \text{ is a metric on } U
\end{align*}
\]

Consider the optimal solution d^*_U of the dual LP for H. Let d^*_V be the minimum extension of d^*_U. Since d^*_V is a metric, and $d^*_V(s_r, t_r) = d^*_U(s_r, t_r)$ for
each \(r \), \(d^*_V \) is a feasible solution of the dual LP for \(G \). By the definition of the metric sparsifier

\[
\beta(d^*_U) \equiv \sum_{p,q \in U} \beta_{pq} d^*_U(p, q) \geq \min_{Y \rightarrow X} \text{ext}(d^*_U, \alpha) \equiv \sum_{i,j \in V} \alpha_{ij} d^*_V(i, j).
\]

Hence

\[
\max_{Y \rightarrow X}(H, \{(s_r, t_r, \text{dem}_r)\}) \geq \max_{Y \rightarrow X}(G, \{(s_r, t_r, \text{dem}_r)\}).
\]

Now, consider the optimal solution \(d^*_V \) of the dual LP for \(G \). Let \(d^*_U \) be the restriction of \(d^*_V \) to the set \(U \). Since \(d^*_U \) is a metric, and

\[
d^*_U(s_r, t_r) = d^*_V(s_r, t_r)
\]

for each \(r \), \(d^*_U \) is a feasible solution of the dual LP for \(H \). By the definition of the metric sparsifier (keep in mind that \(d^*_V \) is an extension of \(d^*_U \)),

\[
\beta(d^*_U) \equiv \sum_{p,q \in U} \beta_{pq} d^*_U(p, q) \leq Q \times \min_{Y \rightarrow X} \text{ext}(d^*_U, \alpha) \leq Q \times \sum_{i,j \in V} \alpha_{ij} d^*_V(i, j).
\]

Hence

\[
\max_{Y \rightarrow X}(H, \{(s_r, t_r, \text{dem}_r)\}) \leq Q \times \max_{Y \rightarrow X}(G, \{(s_r, t_r, \text{dem}_r)\}).
\]

We are now ready to state the following result. Its proof is based on Theorems 4.3 and 4.5, which we will prove in Section 4.

Theorem 3.6: There exists a polynomial-time algorithm that, given a weighted graph \(G = (V, \alpha) \) and a \(k \)-vertex subset \(U \subset V \), finds a \(O(\log k / \log \log k) \)-quality flow sparsifier \(H = (U, \beta) \).

Proof. Using the algorithm given in Theorem 4.5, we find the metric extension operator \(\phi : D_Y \rightarrow D_X \) with the smallest possible distortion. We output the coefficients of the linear functional \(\beta(d_Y) = \alpha(\phi(d_Y)) \) (see Lemma 3.4). Hence, by Theorem 4.3, the distortion of \(\phi \) is at most \(O(\log k / \log \log k) \). By Lemma 3.4, \(\beta \) is an \(O(\log k / \log \log k) \)-quality metric sparsifier. Finally, by Lemma 3.5, \(\beta \) is a \(O(\log k / \log \log k) \)-quality flow sparsifier (and, thus, a \(O(\log k / \log \log k) \)-quality cut sparsifier).

4. Algorithms

In this section, we prove our main algorithmic results: Theorem 4.3 and Theorem 4.5. Theorem 4.3 asserts that metric extension operators with distortion
$O(\log k / \log \log k)$ exist. The proof of Theorem 4.3 closely follows the lines of the proof of Theorem 3.3 in Moitra [23] (see also Räcke [26] for a similar argument). Theorem 4.5 asserts that the optimal metric extension operator can be found in polynomial time.

Let $\Phi_{Y \to X}$ be the set of all metric extension operators (with arbitrary distortion). That is, $\Phi_{Y \to X}$ is the set of linear operators $\phi : \mathcal{D}_Y \to \mathcal{D}_X$ with nonnegative coefficients ϕ_{ipjq} (see (1)) that map every metric d_Y on \mathcal{D}_Y to an extension of d_Y to X. We show that $\Phi_{Y \to X}$ is closed and convex, and that there exists a separation oracle for the set $\Phi_{Y \to X}$.

Corollary 4.1 (Corollary of Lemma 4.2 (see below)):

1. The set of linear operators $\Phi_{Y \to X}$ is closed and convex.
2. There exists a polynomial-time separation oracle for $\Phi_{Y \to X}$.

Lemma 4.2 (see below) shows that there exists a separation oracle for the set of linear operators $\phi : \mathcal{D}_Y \to \mathcal{D}_X$. To verify that $\phi \in \Phi_{Y \to X}$, we additionally need to check that all coefficients ϕ_{ipjq} are nonnegative. We also need to check that ϕ is the identity map restricted to d_Y. That is, $\phi_{ipjq} = 1$ for $i = p$ and $j = q$; $\phi_{ipjq} = 0$ for $i, j \in Y$ such that $i \neq p$ or $j \neq q$.

Lemma 4.2: Let $A \subset \mathbb{R}^m$ and $B \subset \mathbb{R}^n$ be two polytopes defined by polynomially many linear inequalities (polynomially many in m and n). Let $\Phi_{A \to B}$ be the set of all linear operators $\phi : \mathbb{R}^m \to \mathbb{R}^n$, defined as

$$\phi(a)_i = \sum_p \phi_{ip}a_p,$$

that map the set A into a subset of B.

1. Then $\Phi_{A \to B}$ is a closed convex set.
2. There exists a polynomial-time separation oracle for $\Phi_{A \to B}$. That is, there exists a polynomial-time algorithm (not depending on A, B and $\Phi_{A \to B}$) that, given linear constraints for the sets A, B and the $n \times m$ matrix ϕ^*_{ip} of a linear operator $\phi^* : \mathbb{R}^m \to \mathbb{R}^n$,

 - accepts the input, if $\phi^* \in \Phi_{A \to B}$;
 - rejects the input, and returns a separating hyperplane, otherwise; i.e., if $\phi^* \notin \Phi_{A \to B}$, then the oracle returns a linear constraint ξ such that $\xi(\phi^*) > 0$, but for every $\phi \in \Phi_{A \to B}$, $\xi(\phi) \leq 0$.

Proof. 1. If $\phi^*, \phi^{**} \in \Phi_{A \to B}$ and $\lambda \in [0, 1]$, then for every $a \in A$, $\phi^*(a) \in B$ and $\phi^{**}(a) \in B$. Since B is convex, $\lambda \phi^*(a) + (1 - \lambda) \phi^{**}(a) \in B$. Hence,
Thus, $\Phi_{A \to B}$ is closed.

2. Let \mathcal{L}_B be the set of linear constraints defining B:

$$B = \{ b \in \mathbb{R}^n : l(b) \equiv \sum_i l_i b_i + l_0 \leq 0 \text{ for all } l \in \mathcal{L}_B \}.$$

Our goal is to find “witnesses” $a \in A$ and $l \in \mathcal{L}_B$ such that $l(\phi^*(a)) > 0$.

If $\phi^* \in \Phi$, then for every $a \in A$, $\phi^*(a) \in B$, and hence $l(\phi^*(a)) \leq 0$ for all $l \in \mathcal{L}_B$. On the other hand, if $\phi^* \notin \Phi$, then for some $a^* \in A$, $\phi^*(a^*) \notin B$, and hence $l^*(a^*) > 0$ for some $l^* \in \mathcal{L}_B$. Our goal is to find such a^* and l^*. To do so, we write a linear program for each $l \in \mathcal{L}_B$. The variables of the program are a_p, where $a \in \mathbb{R}^m$. The LP has two constraints on a: $l(\phi^*(a)) > 0$ and $a \in A$.

Note that the first constraint is a linear constraint, because the function $l(\phi^*(a))$ is the composition of the linear functional l and linear operator ϕ. The second constraint $a \in A$ is specified by polynomially many linear inequalities. Thus, this LP is solvable in polynomial time. If the LP is feasible for some l^*, then the oracle finds a^* such that $l^*(\phi^*(a^*)) > 0$ and returns the constraint

$$\xi(\phi) = l^*(\phi(a^*)) \leq 0.$$

This is a linear constraint on ϕ. It is violated for ϕ^*, but is satisfied for every $\phi \in \Phi_{A \to B}$.

If the LP is not feasible, then the oracle accepts ϕ^*. Indeed, in this case, $l(\phi^*(a)) \leq 0$ for all $l \in \mathcal{L}_B$ and $a \in \mathbb{R}^m$, hence $\phi^* \in \Phi_{A \to B}$.

Theorem 4.3: Let X be a set of points, and Y be a k-point subset of X. For every set of nonnegative weights α_{ij} on $X \times X$, there exists a metric extension operator $\phi : \mathcal{D}_Y \to \mathcal{D}_X$ with distortion $O(\log k / \log \log k)$.

Proof. Fix a set of weights α_{ij}. Without loss of generality, assume that edges in the support of α form a connected graph. Otherwise, we consider each connected component separately. Let $\tilde{\mathcal{D}}_Y = \{ d_Y \in \mathcal{D} : \text{min-ext}_{Y \to X}(d_Y, \alpha) \leq 1 \}$. We shall show that there exists $\phi \in \Phi_{Y \to X}$, such that for every $d_Y \in \tilde{\mathcal{D}}_Y$

$$\alpha(\phi(d_Y)) \leq O\left(\frac{\log k}{\log \log k}\right);$$

then by the linearity of ϕ, for every $d_Y \in \mathcal{D}_Y$

$$\alpha(\phi(d_Y)) \leq O\left(\frac{\log k}{\log \log k}\right) \text{min-ext}(d_Y, \alpha).$$

(5)
The set \tilde{D}_Y is convex and closed since the function $\min\text{-}\text{ext}_{Y\to X}(d_Y, \alpha)$ is a convex continuous function of the first variable. The set \tilde{D}_Y is bounded, since for every $d \in \tilde{D}_Y$, $d(i, j) \leq 1/\alpha_{ij}$ if $\alpha_{ij} > 0$, and, by the triangle inequality, $d(i, j) \leq (n - 1)/\alpha_{\min}$, where $\alpha_{\min} = \min\{\alpha_{ij} : \alpha_{ij} > 0\}$. The set $\Phi_{Y\to X}$ is convex and closed. Hence, by the von Neumann [25] minimax theorem,

$$\min_{\phi \in \Phi_{Y\to X}} \max_{d_Y \in \tilde{D}_Y} \sum_{i,j \in X} \alpha_{ij} \cdot \phi(d_Y)(i, j) = \max_{d_Y \in \tilde{D}_Y} \min_{\phi \in \Phi_{Y\to X}} \sum_{i,j \in X} \alpha_{ij} \cdot \phi(d_Y)(i, j).$$

We will show that the right hand side is bounded by $O(\log k/\log \log k)$, and therefore there exists $\phi \in \Phi_{Y\to X}$ satisfying (5). Consider $d_Y^* \in \tilde{D}_Y$ for which the maximum above is attained. By Theorem 2.7 (FHRT 0-extension Theorem), there exists a 0-extension $f : X \to Y$ such that $f(p) = p$ for every $p \in Y$, and

$$\sum_{i,j \in X} \alpha_{ij} \cdot d_Y^*(f(i), f(j)) \leq O\left(\frac{\log k}{\log \log k}\right) \min\text{-}\text{ext}_{Y\to X}(d_Y^*, \alpha) \leq O\left(\frac{\log k}{\log \log k}\right).$$

Define $\phi^*(d_Y)(i, j) = d_Y(f(i), f(j))$. Verify that $\phi^*(d_Y)$ is a metric for every $d_Y \in D_Y$:

- $\phi^*(d_Y)(i, j) = d_Y(f(i), f(j)) \geq 0$;
- $\phi^*(d_Y)(i, j) + \phi^*(d_Y)(j, k) - \phi^*(d_Y)(i, k) = d_Y(f(i), f(j)) + d_Y(f(j), f(k)) - d_Y(f(i), f(k)) \geq 0$

Then, for $p, q \in Y$, $\phi^*(d_Y)(p, q) = d_Y(f(p), f(q)) = d_Y(p, q)$, hence $\phi^*(d_Y)$ is an extension of d_Y. All coefficients ϕ_{ijpq}^* of ϕ^* (in the matrix representation (1)) equal 0 or 1. Thus, $\phi^* \in \Phi_{Y\to X}$. Now,

$$\sum_{i,j \in X} \alpha_{ij} \cdot \phi^*(d_Y^*)(i, j) = \sum_{i,j \in X} \alpha_{ij} \cdot d_Y^*(f(i), f(j)) \leq O\left(\frac{\log k}{\log \log k}\right).$$

This finishes the proof that there exists $\phi \in \Phi_{Y\to X}$ satisfying the upper bound (5).

Theorem 4.4: Let X, Y, k, and α be as in Theorem 4.3. Assume further that for the given α and every metric $d_Y \in D_Y$, there exists a 0-extension $f : X \to Y$ such that

$$\sum_{i,j \in X} \alpha_{ij} \cdot d_Y(f(i), f(j)) \leq Q \times \min\text{-}\text{ext}_{Y\to X}(d_Y, \alpha).$$

Then there exists a metric extension operator with distortion Q. Particularly, if the support of the weights α_{ij} is a graph with an excluded minor $K_{r,r}$, then $Q = O(r^2)$. If the graph G has genus g, then $Q = O(\log g)$.
The proof of this theorem is exactly the same as the proof of Theorem 4.3. For graphs with an excluded minor we use a result of Calinescu, Karloff and Rabani [5] (with improvements by Fakcharoenphol and Talwar [9]). For graphs of genus \(g \), we use a result of Lee and Sidiropoulos [18].

Theorem 4.5: There exists a polynomial time algorithm that, given a set of points \(X \), a \(k \)-point subset \(Y \subset X \) and a set of positive weights \(\alpha_{ij} \), finds a metric extension operator \(\phi : D_Y \to D_X \) with the smallest possible distortion \(Q \).

Proof. In the algorithm, we represent the linear operator \(\phi \) as a matrix \(\phi_{ipjq} \) (see (1)). To find optimal \(\phi \), we write a convex program with variables \(Q \) and \(\phi_{ipjq} \):

\[
\text{minimize: } Q \\
\text{subject to:}
\]
\[
(6) \quad \alpha(\phi(d_Y)) \leq Q \times \min_{Y \to X} \text{ext}(d_Y, \alpha), \quad \text{for all } d_Y \in D_Y \\
(7) \quad \phi \in \Phi_{Y \to X}
\]

The convex problem exactly captures the definition of the extension operator. Thus the solution of the program corresponds to the optimal \(Q \)-distortion extension operator. However, a priori, it is not clear if this convex program can be solved in polynomial time. It has exponentially many linear constraints of type (6) and one convex non-linear constraint (7). We already know (see Corollary 4.1) that there exists a separation oracle for \(\phi \in \Phi_{Y \to X} \). We now give a separation oracle for constraints (6).

Separation Oracle for (6). The goal of the oracle is: given a linear operator \(\phi^* : d_Y \mapsto \sum_{p,q} \phi^*_{ipjq}d_Y(p,q) \) and a real number \(Q^* \), find a metric \(d_Y^* \in D_Y \) such that the constraint

\[
(8) \quad \alpha(\phi^*(d_Y^*)) \leq Q^* \times \min_{Y \to X} \text{ext}(d_Y^*, \alpha)
\]

is violated. We write a linear program on \(d_Y \). However, instead of looking for a metric \(d_Y \in D_Y \) such that constraint (8) is violated, we shall look for a metric
\(d_X \in D_X\), an arbitrary metric extension of \(d_Y\) to \(X\), such that
\[
\alpha(\phi^*(d_Y)) \equiv \sum_{i,j \in X} \alpha_{ij} \cdot \phi^*(d_Y)(i,j) > Q^* \times \sum_{i,j \in X} \alpha_{ij} d_X(i,j).
\]

The linear program for finding \(d_X\) is given below.

\[
\begin{align*}
\text{maximize:} & \quad \sum_{i,j \in X} \sum_{p,q \in Y} \alpha_{ij} \cdot \phi_{ipjq}^* d_X(p,q) - Q^* \times \sum_{i,j \in X} \alpha_{ij} d_X(i,j) \\
\text{subject to:} & \quad d_X \in D_X
\end{align*}
\]

If the maximum is greater than 0 for some \(d^*_X\), then for \(d^*_Y = d^*_X|_Y\) (the restriction of \(d^*_X\) to \(Y\)) we have
\[
\alpha(\phi^*(d^*_Y)) = \sum_{i,j \in X} \sum_{p,q \in Y} \alpha_{ij} \cdot \phi_{ipjq}^* d_X(p,q) > Q^* \times \alpha(d^*_X).
\]

The right-hand side is lower bounded by \(Q^* \times \min-\text{ext}_{Y \to X}(d^*_Y, \alpha)\), since \(d^*_X\) is an extension of \(d^*_Y\). Thus
\[
\alpha(\phi^*(d^*_Y)) > Q^* \times \alpha(d^*_X) \geq Q^* \times \min-\text{ext}_{Y \to X}(d^*_Y, \alpha).
\]

That is, constraint (8) is violated for \(d^*_Y\).

If the maximum is 0 or negative, then constraint (8) is satisfied for all \(d^*_Y\), because
\[
\min-\text{ext}_{Y \to X}(d^*_Y, \alpha) = \alpha(d^*_X)
\]
for some extension \(d^*_X\) of \(d^*_Y\) and
\[
\alpha(\phi(d^*_Y)) = \sum_{i,j \in X} \sum_{p,q \in Y} \alpha_{ij} \cdot \phi_{ipjq}^* d_X(p,q) \leq Q^* \times \alpha(d_X),
\]
for every extension \(d_X\) of \(d^*_Y\) and, particularly, for \(d_X = d^*_X\).

5. Lipschitz extendability

In this section, we present exact bounds on the quality of cut and metric sparsifiers in terms of \textbf{Lipschitz extendability constants}. We show that there exist cut sparsifiers of quality \(e_k(\ell_1, \ell_1)\) and metric sparsifiers of quality \(e_k(\infty, \ell_\infty \oplus_1 \cdots \oplus_1 \ell_\infty)\), where \(e_k(\ell_1, \ell_1)\) and \(e_k(\infty, \ell_\infty \oplus_1 \cdots \oplus_1 \ell_\infty)\) are the
Lipschitz extendability constants (see below for the definitions). We prove that these bounds are tight. Then we obtain a lower bound of $\Omega(\sqrt{\log k / \log \log k})$ for the quality of the metric sparsifiers by proving a lower bound on $e_k(\infty, \ell_\infty \oplus \cdots \oplus \ell_\infty)$. In the first preprint of our paper, we also proved the bound of $\Omega(\sqrt{\log k / \log \log k})$ on $e_k(\ell_1, \ell_1)$ (see Theorem 5.8). After the preprint appeared on arXiv.org, Johnson and Schechtman notified us that a lower bound of $\Omega(\sqrt{\log k / \log \log k})$ on $e_k(\ell_1, \ell_1)$ follows from their joint work with Figiel [10]. With their permission, we present the proof of this lower bound in Section D of the Appendix. This result implies a lower bound of $\Omega(\sqrt{\log k / \log \log k})$ on the quality of cut sparsifiers.

On the positive side, we show that if a certain open problem in functional analysis posed by Ball [3] (see also Lee and Naor [17], and Randrianantoanina [27]) has a positive answer, then $e_k(\ell_1, \ell_1) \leq \tilde{O}(\sqrt{\log k})$; and therefore there exist $\tilde{O}(\sqrt{\log k})$-quality cut sparsifiers. This is both an indication that the current upper bound of $O(\log k / \log \log k)$ might not be optimal and that improving lower bounds beyond of $\tilde{O}(\sqrt{\log k})$ will require solving a longstanding open problem (negatively).

Question 1 (Ball [3]; see also Lee and Naor [17] and Randrianantoanina [27]): Is it true that $e_k(\ell_2, \ell_1)$ is bounded by a constant that does not depend on k?

Given two metric spaces (X, d_X) and (Y, d_Y), the Lipschitz extendability constant $e_k(X, Y)$ is the infimum over all constants K such that for every k point subset Z of X, every Lipschitz map $f : Z \to Y$ can be extended to a map $\tilde{f} : X \to Y$ with $\|\tilde{f}\|_{\text{Lip}} \leq K \|f\|_{\text{Lip}}$. We denote the supremum of $e_k(X, Y)$ over all metric spaces X by $e_k(\infty, Y)$. We refer the reader to Lee and Naor [17] for a background on the Lipschitz extension problem (see also Kirszbraun [16], McShane [21], Marcus and Pisier [20], Johnson and Lindenstrauss [13], Ball [3], Mendel and Naor [22], Naor, Peres, Schramm and Sheffield [24]). Throughout this section, ℓ_1, ℓ_2 and ℓ_∞ denote finite-dimensional spaces of arbitrarily large dimension. When necessary, we will denote the d-dimensional ℓ_p-space by ℓ_p^d, we will denote the standard ℓ_p-space of infinite sequences by ℓ_p^∞.

In Section 5.1, we establish the connection between the quality of vertex sparsifiers and extendability constants. In Section 5.2, we prove lower bounds on extendability constants $e_k(\infty, \ell_1)$ and $e_k(\ell_1, \ell_1)$, which imply lower bounds on the quality of metric and cut sparsifiers respectively. Finally, in Section 5.3,
we show that if Question 1 (the open problem of Ball) has a positive answer, then there exist $\tilde{O}(\sqrt{\log k})$-quality cut sparsifiers.

5.1. Quality of sparsifiers and extendability constants. Let Q^cut_k be the minimum over all Q such that there exists a Q-quality cut sparsifier for every graph $G = (V, \alpha)$ and every subset $U \subset V$ of size k. Similarly, let Q^metric_k be the minimum over all Q such that there exists a Q-quality metric sparsifier for every graph $G = (V, \alpha)$ and every subset $U \subset V$ of size k.

Theorem 5.1: There exist cut sparsifiers of quality $e_k(\ell_1, \ell_1)$ for subsets of size k. Moreover, this bound is tight. That is, $Q^\text{cut}_k = e_k(\ell_1, \ell_1)$.

More precisely, for every k and every $M, N > \binom{k}{2} + 2$, we have $Q^\text{cut}_k = e_k(\ell_1^M, \ell_1^N)$.

We first prove that $Q^\text{cut}_k \leq e_k(\ell_1, \ell_1)$ in Lemma 5.2. That is, we prove the existence of $e_k(\ell_1, \ell_1)$-quality cut sparsifiers. Then we prove that $Q^\text{cut}_k \geq e_k(\ell_1, \ell_1)$ in Lemma 5.3.

Lemma 5.2: $Q^\text{cut}_k \leq e_k(\ell_1, \ell_1)$.

Proof. Denote $Q = e_k(\ell_1, \ell_1)$ (formally, $Q = e_k(\ell_1^M, \ell_1^N)$). We consider a graph $G = (V, \alpha)$ and a subset $U \subset V$ of size k. Without loss of generality, we assume that G is a connected graph (otherwise, we separately find a sparsifier for each connected component of G). Recall that for every cut $(S, U \setminus S)$ of U, the cost of the minimum cut extending $(S, U \setminus S)$ to V is $\text{min-ext}_{U \setminus V}(\delta_S, \alpha)$, where δ_S is the cut metric corresponding to the cut $(S, U \setminus S)$. Let

$$C = \{(\delta_S, \text{min-ext}_{U \setminus V}(\delta_S, \alpha)) \in \mathcal{D}_U \times \mathbb{R} : \delta_S \text{ is a cut metric}\}$$

be the graph of the function $\delta_S \mapsto \text{min-ext}_{U \setminus V}(\delta_S, \alpha)$; and C be the convex cone generated by C (i.e., let C be the cone over the convex closure of C). Our goal is to construct a linear form β (a cut sparsifier) with nonnegative coefficients such that $x \leq \beta(d_U) \leq Qx$ for every $(d_U, x) \in C$ and, in particular, for every $(d_U, x) \in C$. First we prove that for every $(d_1, x_1), (d_2, x_2) \in C$ there exists β (with nonnegative coefficients) such that $x_1 = \beta(d_1)$ and $\beta(d_2) \leq Qx_2$. The statement is trivial if either d_1 or d_2 is identically equal to 0. Otherwise, $x_1 > 0$ and $x_2 > 0$ (we use that G is connected). Since these two inequalities
are homogeneous, we may assume by rescaling \((d_2, x_2)\) that \(Qx_2 = x_1\). We are going to show that for some \(p\) and \(q\) in \(U\), \(d_2(p, q) \leq d_1(p, q)\) and \(d_1(p, q) \neq 0\). Then the linear form
\[
\beta(d_U) = \frac{x_1}{d_1(p, q)}d_U(p, q)
\]
satisfies the required conditions:
\[
\beta(d_1) = x_1; \quad \beta(d_2) = x_1d_2(p, q)/d_1(p, q) \leq x_1 = Qx_2.
\]

Assume to the contrary that for every \(p\) and \(q\),
\[
d_1(p, q) < d_2(p, q) \quad \text{or} \quad d_1(p, q) = d_2(p, q) = 0.
\]

Since \((d_t(p, q), x_t) \in \mathcal{C}\) for \(t \in \{1, 2\}\), by Carathéodory’s theorem \((d_t(p, q), x_t)\) is a convex combination of at most \(\dim \mathcal{C} + 1 = \binom{k}{2} + 2\) points lying on the extreme rays of \(\mathcal{C}\). That is, there exists a set of \(m_t \leq \binom{k}{2} + 2\) positive weights \(\mu_i^S\) such that \(d_t = \sum_S \mu_i^S d_S\), where \(d_S \in \mathcal{D}_U\) is the cut metric corresponding to the cut \((S, U \setminus S)\), and \(x_t = \sum_S \mu_i^S \min\text{-ext}_{U \to V} (d_S, \alpha)\). We now define two maps \(f_1 : U \to \ell_1^{m_1}\) and \(f_2 : V \to \ell_1^{m_2}\). Let \(f_1(p) \in \ell_1^{m_1}\) be a vector with one component \(f_1^S(p)\) for each cut \((S, U \setminus S)\) such that \(\mu_1^S > 0\). Define \(f_1^S(p) = \mu_1^S\) if \(p \in S\); \(f_1^S(p) = 0\), otherwise. Similarly, let \(f_2(i) \in \ell_1^{m_2}\) be a vector with one component \(f_2^S(i)\) for each cut \((S, U \setminus S)\) such that \(\mu_2^S > 0\). Let \((S^*, V \setminus S^*)\) be the minimum cut separating \(S\) and \(U \setminus S\) in \(G\). Define \(f_2^S(i)\) as follows:
\[
f_2^S(i) = \mu_2^S \quad \text{if} \ i \in S^*; \ f_2^S(i) = 0, \quad \text{otherwise}.
\]

Note that \(\|f_1(p) - f_1(q)\|_1 = d_1(p, q)\) and \(\|f_2(p) - f_2(q)\|_1 = d_2(p, q)\) for every \(p, q \in U\).

\[
\begin{array}{ccc}
(U, d_1) & \xleftarrow{\text{id}} & (U, d_2) \\
\text{iso} & & \text{iso} \\
\ell_1^{m_1} \ni f_1(U) & \xleftarrow{\text{contraction}} & (V, d_2) \\
\xrightarrow{g} & \text{iso} & \\
& (V, d_2) \\
\end{array}
\]

Consider a map \(g = f_1f_2^{-1}\) from \(f_2(U)\) to \(f_1(U)\) (note that if \(f_2(p) = f_2(q)\), then \(d_2(p, q) = 0\), therefore \(d_1(p, q) = 0\) and \(f_1(p) = f_2(q)\); hence \(g\) is well-defined). For every \(p\) and \(q\) with \(d_2(p, q) \neq 0\),
\[
\|g(f_2(p)) - g(f_2(q))\|_1 = \|f_1(p) - f_1(q)\|_1 = d_1(p, q) < d_2(p, q) = \|f_2(p) - f_2(q)\|_1.
\]
That is, \(g \) is a strictly contracting map from a subset of \(\ell^m_2 \) to \(\ell^m_1 \). Therefore, there exists an extension of \(g \) to a map \(\tilde{g} : f_2(V) \to \ell^m_1 \) such that

\[
\| \tilde{g}(f_2(i)) - \tilde{g}(f_2(j)) \|_1 < e_k(\ell^m_2, \ell^m_1) \| f_2(i) - f_2(j) \|_1 \leq Qd_2(i, j).
\]

Here, we used that \(e_k(\ell^m_2, \ell^m_1) \leq Q \) (since \(\ell^m_2 \) is a subset of \(\ell^M_1 \) and \(\ell^m_1 \) is a 1-Lipschitz retract of \(\ell^N_1 \)). Denote the coordinate of \(\tilde{g}(f_2(i)) \) corresponding to the cut \((S, U \setminus S) \) by \(\tilde{g}^S(f_2(i)) \). Note that \(\tilde{g}^S(f_2(p))/\mu^S_1 = f^S_1(p)/\mu^S_1 \) equals 1 when \(p \in S \) and 0 when \(p \in U \setminus S \). Therefore, the metric

\[
\delta^*_S(i, j) \equiv \| \tilde{g}^S(f_2(i)) - \tilde{g}^S(f_2(j)) \|/\mu^S_1
\]

is an extension of the metric \(\delta_S(i, j) \) to \(V \). Hence

\[
\sum_{i, j \in V} \alpha_{ij} \delta^*_S(i, j) \geq \min_{U \to V} \text{ext}(\delta_S, \alpha).
\]

We have

\[
x_1 = \sum_{S} \mu^S_1 \min_{U \to V} \text{ext}(\delta_S, \alpha)
\]

\[
\leq \sum_{S} \mu^S_1 \sum_{i, j \in V} \alpha_{ij} \delta^*_S(i, j)
\]

\[
= \sum_{S} \sum_{i, j \in V} \alpha_{ij} | \tilde{g}^S(f_2(i)) - \tilde{g}^S(f_2(j)) |
\]

\[
= \sum_{i, j \in V} \alpha_{ij} \| \tilde{g}(f_2(i)) - \tilde{g}(f_2(j)) \|_1 < \sum_{i, j \in V} Q \alpha_{ij} d_2(i, j) = Q x_2.
\]

We get a contradiction. We proved that for every \((d_1, x_1), (d_2, x_2) \in C\) there exists \(\beta \) such that \(x_1 = \beta(d_1) \) and \(\beta(d_2) \leq Q x_2 \).

Now we fix a point \((d_1, x_1) \in C\) and consider the set \(B \) of all linear functionals \(\beta \) with nonnegative coefficients such that \(x_1 = \beta(d_1) \) and \(\beta_{pq} = 0 \) if \(d_1(p, q) = 0 \). This is a convex compact set. We just proved that for every \((d_2, x_2) \in C\) there exists \(\beta \in B \) such that \(Q x_2 - \beta(d_2) \geq 0 \). Therefore, by the von Neumann [25] minimax theorem, there exist \(\beta \in B \) such that for every \((d_2, x_2) \in C\), \(Q x_2 - \beta(d_2) \geq 0 \). Now we consider the set \(B' \) of all linear functionals \(\beta \) with nonnegative coefficients such that \(Q x_2 - \beta(d_2) \geq 0 \) for every \((d_2, x_2) \in C\). Again, \(C \) is a convex compact set. For every \((d_1, x_1) \in C\) there exists \(\beta \in B' \) such that \(\beta(d_1) - x_1 \geq 0 \); therefore, by the minimax theorem there exists \(\beta \) such that \(x \leq \beta(d) \leq Q x \) for every \((d, x) \in C\). We proved that there exists a \(Q \)-quality cut sparsifier for \(G \).
Lemma 5.3: $Q_k^{\text{cut}} \geq e_k(\ell_1, \ell_1)$.

Proof. Suppose that for some $Q > 1$ and for every graph $G = (V, \alpha)$ and a subset $U \subset V$ of size k there exists a cut sparsifier of quality Q. We prove that then $e_k(\ell_1^M, \ell_1^N) \leq Q$. Let $U \subset \ell_1$ be a set of points of size k and $f : U \rightarrow \ell_1$ be a 1-Lipschitz map. By a standard compactness argument (Theorem B.1), it suffices to show how to extend f to a Q-Lipschitz map $\tilde{f} : V \rightarrow \ell_1^N$ for every finite set V: $U \subset V \subset \ell_1^M$. First, we assume that f maps U to the vertices of a rectangular box $\{0, a_1\} \times \{0, a_2\} \times \cdots \times \{0, a_N\}$. We consider a graph $G = (V, \alpha)$ on V with nonnegative edge weights α_{ij}. Let (U, β) be the optimal cut sparsifier of G. Denote $d_1(p, q) = \|p - q\|_1$ and $d_2(p, q) = \|f(p) - f(q)\|_1$ for $p, q \in U$. Thus f is 1-Lipschitz, $d_1(p, q) \geq d_2(p, q)$.

Let $S_i = \{p \in U : f_i(p) = 0\}$ (for $1 \leq i \leq N$). Let S_i^* be the minimum cut separating S_i and $U \setminus S_i$ in G. By the definition of the cut sparsifier, the cost of this cut is at most $\beta(\delta_{S_i})$. Define an extension \tilde{f} of f by $\tilde{f}_i(v) = 0$ if $v \in S_i^*$ and $\tilde{f}_i(v) = a_i$ otherwise. Clearly, \tilde{f} is an extension of f. We compute the “cost” of \tilde{f}:

$$\sum_{u, v \in V} \alpha_{uv}\|\tilde{f}(u) - \tilde{f}(v)\|_1 = \sum_{i=1}^N \sum_{u, v \in V} \alpha_{uv}|\tilde{f}_i(u) - \tilde{f}_i(v)| \leq \sum_{i=1}^N \beta(a_i \delta_{S_i}) = \beta(d_2) \leq \beta(d_1)$$

(in the last inequality we use that $d_1(p, q) \geq d_2(p, q)$ for $p, q \in U$ and that coefficients of β are nonnegative). On the other hand, the metric $\|u - v\|_1$ on V is an extention of d_1, and thus we have

$$\sum_{u, v \in V} \alpha_{uv}\|u - v\|_1 \geq \min_{U \rightarrow V} \text{ext}(d_1, \alpha) \geq \beta(d_1)/Q.$$

We therefore showed that for every set of nonnegative weights α there exists an extension \tilde{f} of f such that

$$\sum_{u, v \in V} \alpha_{uv}\|\tilde{f}(u) - \tilde{f}(v)\|_1 \leq Q \sum_{u, v \in V} \alpha_{uv}\|u - v\|_1.$$

Note that the set of all extensions of f is a closed convex set; and $\|f(u) - f(v)\|_1$ is a convex function of f:

$$\|(f_1 + f_2)(u) - (f_1 + f_2)(v)\|_1 \leq \|f_1(u) - f_1(v)\|_1 + \|f_2(u) - f_2(v)\|_1.$$
Therefore, by the Sion [29] minimax theorem there exists an extension \(\tilde{f} \) such that inequality (10) holds for every nonnegative \(\alpha_{ij} \). In particular, when \(\alpha_{uv} = 1 \) and all other \(\alpha_{u'v'} = 0 \), we get

\[
\|\tilde{f}(u) - \tilde{f}(v)\|_1 \leq Q\|u - v\|_1.
\]

That is, \(\tilde{f} \) is \(Q \)-Lipschitz.

Finally, we consider the general case when the image of \(f \) is not necessarily a subset of \(\{0, a_1\} \times \{0, a_2\} \times \cdots \times \{0, a_N\} \). Informally, we are going to replace \(f \) with an “equivalent map” \(g \) that maps \(U \) to vertices of a rectangular box, then apply our result to \(g \), obtain a \(Q \)-Lipschitz extension \(\tilde{g} \) of \(f \), and finally replace \(\tilde{g} \) with an extension \(\tilde{f} \) of \(f \).

Let \(f_i(p) \) be the \(i \)-th coordinate of \(f(p) \). Let \(b_1, \ldots, b_{s_i} \) be the set of values of \(f_i(p) \) (for \(p \in U \)). Define map \(\psi_i : \{b_1, \ldots, b_{s_i}\} \to \ell_1^{s_i} \) as

\[
\psi_i(b_j) = (b_1, b_2 - b_1, \ldots, b_j - b_{j-1}, 0, \ldots, 0).
\]

The map \(\psi_i \) is an isometric embedding of \(\{b_j\} \) into \(\ell_1^{s_i} \). Define map \(\phi_i \) from \(\ell_1^{s_i} \) to \(\mathbb{R} \) as \(\phi_i(x) = \sum_{t=1}^{s_i} x_t \). Then \(\phi_i \) is 1-Lipschitz and \(\phi_i(\psi_i(b_j)) = b_j \). Now let

\[
g(p) = \psi_1(f_1(p)) \oplus \psi_2(f_2(p)) \oplus \cdots \oplus \psi_N(f_N(p)) \in \bigoplus_{i=1}^{N} \ell_1^{s_i},
\]

\[
\phi(y_1 \oplus \cdots \oplus y_N) = \phi_1(y_1) \oplus \phi_2(y_2) \oplus \cdots \oplus \phi_N(y_N) \in \ell_1^{N}
\]

Since maps \(\psi_i \) are isometries and \(f \) is 1-Lipschitz, \(g \) is 1-Lipschitz as well. Moreover, the image of \(g \) is a subset of vertices of a box. Therefore, we can apply our extension result to it. We obtain a \(Q \)-Lipschitz map \(\tilde{g} : V \to \bigoplus_{i=1}^{N} \ell_1^{s_i} \).

Note also that \(\phi \) is 1-Lipschitz and \(\phi(g(p)) = f(p) \). Finally, we define

\[
\tilde{f}(u) = \phi(\tilde{g}(u)).
\]

We have \(\|\tilde{f}\|_{\text{Lip}} \leq \|\tilde{g}\|_{\text{Lip}}\|\phi\|_{\text{Lip}} \leq Q \). This concludes the proof. \(\blacksquare \)
Theorem 5.4: There exist metric sparsifiers of quality $e_k(\infty, \ell_\infty \oplus_1 \cdots \oplus_1 \ell_\infty)$ for subsets of size k and this bound is tight. Since ℓ_1 is a 1-Lipschitz retract of $\ell_\infty \oplus_1 \cdots \oplus_1 \ell_\infty$ (the retraction projects each summand $L_i = \ell_\infty$ to the first coordinate of L_i), $e_k(\infty, \ell_\infty \oplus_1 \cdots \oplus_1 \ell_\infty) \geq e_k(\infty, \ell_1)$. Therefore, the quality of metric sparsifiers is at least $e_k(\infty, \ell_1)$ for some graphs. In other words,

$$Q^\text{metric}_k = e_k(\infty, \ell_\infty \oplus_1 \cdots \oplus_1 \ell_\infty) \geq e_k(\infty, \ell_1).$$

More precisely, for every k, and every $M \geq k-1$ and $N \geq \left(\frac{k}{2}\right) + 2$, we have

$$Q^\text{metric}_k = e_k(\infty, \ell_\infty \oplus_1 \cdots \oplus_1 \ell_\infty)_N \geq e_k(\infty, \ell_1^N).$$

We first prove in Lemma 5.5 that $Q^\text{metric}_k \leq e_k(\infty, \ell_\infty \oplus_1 \cdots \oplus_1 \ell_\infty)$, that is, there is a metric sparsifier of quality $e_k(\infty, \ell_\infty \oplus_1 \cdots \oplus_1 \ell_\infty)$. Then we prove in Lemma 5.6 that $Q^\text{metric}_k \geq e_k(\infty, \ell_\infty \oplus_1 \cdots \oplus_1 \ell_\infty)$.

Lemma 5.5: $Q^\text{metric}_k \leq e_k(\infty, \ell_\infty \oplus_1 \cdots \oplus_1 \ell_\infty)$.

Proof. Let $Q = e_k(\infty, \ell_\infty \oplus_1 \cdots \oplus_1 \ell_\infty)$. We denote the norm of a vector $v \in \ell_\infty \oplus_1 \cdots \oplus_1 \ell_\infty$ by $\|v\| \equiv \|v\|_{\ell_\infty \oplus_1 \cdots \oplus_1 \ell_\infty}$. First, we construct a Q-quality metric sparsifier for a given graph $G = (V, \alpha)$ and $U \subset V$ of size k.

Let $C = \{(d_U, \min\text{-ext}_{U \to V}(d_U, \alpha)) : d_U \in D_U\}$ and C be the convex hull of C. We construct a linear form β (a metric sparsifier) with nonnegative coefficients such that $x \leq \beta(d_U) \leq Qx$ for every $(d_U, x) \in C$.

The proof follows the lines of Lemma 5.2. The only piece of the proof that we need to modify slightly is the proof that the following is impossible: for some (d_1, x_1) and (d_2, x_2) in C, $x_1 = Qx_2$ and for all $p, q \in U$ either $d_1(p, q) < d_2(p, q)$ or $d_1(p, q) = d_2(p, q) = 0$. Assume the contrary. We represent (d_1, x) as a convex combination of points (d^i, x^i) in C (by Carathéodory’s theorem). Let f_i be an isometric embedding of the metric space (U, d_i) into ℓ_M. Then $f \equiv \bigoplus f_i$ is an isometric embedding of (U, d_1) into $\ell_\infty \oplus_1 \cdots \oplus_1 \ell_\infty^M$. Let d_2^M be the minimum extension of d_2 to V. Note that f is a strictly contracting map from (U, d_2) to $\ell_\infty \oplus_1 \cdots \oplus_1 \ell_\infty^M$.

$$\|f(p) - f(q)\|_\infty = \sum_i \|f_i(p) - f_i(q)\|_\infty = \sum_i d^i_1(p, q) = d_1(p, q) < d_2(p, q),$$

for all $p, q \in U$ such that $d_2(p, q) > 0$. Therefore, there exists a Lipschitz extension of $f : (U, d_2) \to \ell_\infty \oplus_1 \cdots \oplus_1 \ell_\infty^M$ to $\tilde{f} : (V, d_2^M) \to \ell_\infty \oplus_1 \cdots \oplus_1 \ell_\infty^M$ with $\|\tilde{f}\|_{\text{Lip}} \leq Q\|f\|_{\text{Lip}} < Q$. Let $\tilde{f}_i : V \to \ell_\infty^M$ be the projection of \tilde{f} to the i-th
summand. Let \(\tilde{d}_1^i(x, y) = \| \tilde{f}_i(x) - \tilde{f}_i(y) \|_\infty \) be the metric induced by \(\tilde{f}_i \) on \(G \). Define the pullback metric \(\tilde{d}_1 \) on \(V \):
\[
\tilde{d}_1(x, y) = \| \tilde{f}(x) - \tilde{f}(y) \|_\infty = \sum_i \| \tilde{f}_i(x) - \tilde{f}_i(y) \|_\infty = \sum_i \tilde{d}_1^i(x, y).
\]
Since \(\tilde{f}_i(p) = f_i(p) \) for all \(p \in U \), metric \(\tilde{d}_1 \) is an extension of \(d_1 \) to \(V \). Thus \(\alpha(\tilde{d}_1) \geq \min\text{-ext}_{U \to V}(d_1^i, \alpha) = x_1^i \). Therefore, \(\alpha(\tilde{d}_1) = \alpha(\sum \tilde{d}_1^i) \geq \sum_i x_1^i = x_1 \).
Since \(\| \tilde{f} \|_{\text{Lip}} < Q \), \(\tilde{d}_1(x, y) = \| \tilde{f}(x) - \tilde{f}(y) \|_\infty < Q d_2^\infty(x, y) \) (for every \(x, y \in V \) such that \(d_2^\infty(x, y) > 0 \)). We have
\[
\alpha(\tilde{d}_1) < \alpha(Q d_2^\infty) = Q \min\text{-ext}_{U \to V}(d_2, \alpha) \leq Q x_1 = x_1.
\]
We get a contradiction. □

Lemma 5.6: \(Q_k^{\text{metric}} \geq e_k(\infty, \ell_\infty \oplus_1 \cdots \oplus_1 \ell_\infty) \).

Proof. Now we prove that if for every graph \(G = (V, \alpha) \) and a subset \(U \subset V \) of size \(k \) there exists a metric sparsifier of size \(Q \) (for some \(Q \)), then
\[
e_k(\infty, \ell_\infty \oplus_1 \cdots \oplus_1 \ell_\infty) \leq Q.
\]
Let \((V, d_V) \) be an arbitrary metric space; and \(U \subset V \) be a subset of size \(k \). Let \(f : (U, d_V|_U) \to \ell_\infty \oplus_1 \cdots \oplus_1 \ell_\infty \) be a 1-Lipschitz map. We will show how to extend \(f \) to a \(Q \)-Lipschitz map \(\tilde{f} : (V, d_V) \to \ell_\infty \oplus_1 \cdots \oplus_1 \ell_\infty \). We consider graph \(G = (V, \alpha) \) with nonnegative edge weights and a \(Q \)-quality metric sparsifier \(\beta \).

Let \(f_i : U \to \ell_\infty \) be the projection of \(f \) onto its \(i \)-th summand. Map \(f_i \) induces metric \(d^i(p, q) = \| f_i(p) - f_i(q) \| \) on \(U \). Let \(\tilde{d}^i \) be the minimum metric extension of \(d^i \) to \(V \); let \(\tilde{d}_\ast(x, y) = \sum_i \tilde{d}^i(x, y) \). Note that since \(f \) is 1-Lipschitz
\[
\tilde{d}_\ast(p, q) = \sum_i \tilde{d}^i(p, q) = \sum_i \| f_i(p) - f_i(q) \| = \| f(p) - f(q) \| \leq d_V(p, q)
\]
for \(p, q \in U \). Therefore
\[
\alpha(\tilde{d}_\ast) = \sum_i \alpha(\tilde{d}^i) \leq \sum_i \beta(d^i) = \beta(\tilde{d}_\ast|_U) \leq \beta(d_V|_U) \leq Q \alpha(d_V)
\]
(we use that all coefficients of \(\beta \) are nonnegative).

Each map \(f_i \) is an isometric embedding of \((U, d^i) \) to \(\ell_\infty \) (by the definition of \(d^i \)). Using the McShane extension theorem\(^2\) (McShane [21]), we extend each \(f_i \) to a 1-Lipschitz map \(\tilde{f}_i \) from \((V, \tilde{d}^i) \) to \(\ell_\infty \). Finally, we let \(\tilde{f} = \bigoplus_i \tilde{f}_i \). Since

\(^2\) The McShane extension theorem states that \(e_k(M, \ell_\infty) = 1 \) for every metric space \(M \).
each \tilde{f}_i is an extension of f_i, \tilde{f} is an extension of f. For every $x, y \in V$, we have

$$\|\tilde{f}(x) - \tilde{f}(y)\| = \sum_i \|\tilde{f}_i(x) - \tilde{f}_i(y)\| = \tilde{d}_*(x, y).$$

Therefore

$$\sum_{x, y \in V} \alpha_{xy} \|\tilde{f}(x) - \tilde{f}(y)\| = \alpha(\tilde{d}_*) \leq Q\alpha(d_V) = Q \times \sum_{x, y \in V} \alpha_{xy}d_V(x, y).$$

We showed that for every set of nonnegative weights α there exists an extension f such that the inequality above holds. Therefore, by the minimax theorem there exists an extension \tilde{f} such that this inequality holds for every nonnegative α_{xy}. In particular, when $\alpha_{xy} = 1$ and all other $\alpha_{x'y'} = 0$, we get

$$\|\tilde{f}(x) - \tilde{f}(y)\| \leq Qd_V(x, y).$$

That is, \tilde{f} is Q-Lipschitz.

Remark 5.1: We proved in Theorem 5.1 that

$$Q^\text{cut}_k = e_k(\ell_1^M, \ell_1^N)$$

for $\binom{k}{2} + 2 \leq M, N < \infty$; by a simple compactness argument the equality also holds when either one or both of M and N are equal to infinity. Similarly, we proved in Theorem 5.4 that

$$Q^\text{metric}_k = e_k(\infty, \ell_1^M \oplus_{\ell_1^1} \cdots \oplus_{\ell_1^1} \ell_1^M)$$

for $k - 1 \leq M < \infty$ and $\binom{k}{2} + 2 \leq N < \infty$; this equality also holds when either one or both of M and N are equal to infinity. (We will not use this observation.)

5.2. LOWER BOUNDS AND PROJECTION CONSTANTS. We now prove lower bounds on the quality of metric and cut sparsifiers. We will need several definitions from analysis. The operator norm of a linear operator T from a normed space U to a normed space V is $\|T\| \equiv \|T\|_{U \to V} = \sup_{u \neq 0} \|Tu\|_V / \|u\|_U$. The Banach–Mazur distance between two normed spaces U and V is

$$d_{BM}(U, V) = \inf \{\|T\|_{U \to V} \|T^{-1}\|_{V \to U} : T \text{ is a linear operator from } U \text{ to } V\}.$$

We say that two Banach spaces are C-isomorphic if the Banach–Mazur distance between them is at most C; two Banach spaces are isomorphic if the Banach–Mazur distance between them is finite. A linear operator P from a Banach space V to a subspace $L \subset V$ is a projection if the restriction of P to L is the identity operator on L (i.e., $P|_L = I_L$).
Given a Banach space V and subspace $L \subset V$, we define the relative projection constant $\lambda(L, V)$ as
\[
\lambda(L, V) = \inf\{\|P\| : P \text{ is a linear projection from } V \text{ to } L\}.
\]

Theorem 5.7:
\[
Q^\text{metric}_k = \Omega(\sqrt{\log k / \log \log k}).
\]

Proof. To establish the theorem, we prove lower bounds for $e_k(\infty, \ell_1)$. Our proof is a modification of the proof of Johnson and Lindenstrauss [13] that $e_k(\ell_1, \ell_2) = \Omega(\sqrt{\log k / \log \log k})$. Johnson and Lindenstrauss showed that for every space V and subspace $L \subset V$ of dimension $d = \lfloor c \log k / \log \log k \rfloor$, $e_k(V, L) = \Omega(\lambda(L, V))$ (Johnson and Lindenstrauss [13], see Appendix C, Theorem C.1, for a sketch of the proof).

Our result follows from the lower bound of Grünbaum [11]: for a certain isometric embedding of ℓ_1^d into ℓ_1^N, $\lambda(\ell_1^d, \ell_1^N) = \Theta(\sqrt{d})$ (for large enough N). Therefore, $e_k(\ell_1^N, \ell_1^d) = \Omega(\sqrt{\log k / \log \log k})$. \qed

We now prove a lower bound on Q^cut_k. Note that the argument from Theorem 5.7 shows that $Q^\text{cut}_k = e_k(\ell_1^d, \ell_1^N) = \Omega(\lambda(L, \ell_1^N))$, where L is a subspace of ℓ_1^d C-isomorphic to ℓ_1^d (where constant C does not depend on N). Bourgain [4] proved that there is a non-complemented subspace isomorphic to ℓ_1^∞ in L_1. This implies that $\lambda(L, \ell_1^N)$ (for some L) and, therefore, Q^cut_k are unbounded. However, quantitatively Bourgain’s result gives a very weak bound of (roughly) $\log \log \log k$. It is not known how to improve Bourgain’s bound. So instead we present an explicit family of non-ℓ_1 subspaces $\{L\}$ of ℓ_1 with $\lambda(L, \ell_1) = \Theta(\sqrt{\dim L})$ and $d_{BM}(L, \ell_1^\dim L) = O(\sqrt{\dim L})$.

Theorem 5.8:
\[
Q^\text{cut}_k \geq \Omega(\sqrt[4]{\log k / \log \log k}).
\]

We shall construct a d-dimensional subspace L of ℓ_1^N, with the projection constant $\lambda(L, \ell_1) \geq \Omega(\sqrt{d})$ and with Banach–Mazur distance $d(L, \ell_1^d) \leq O(\sqrt{d})$. By Theorem C.1 (as in Theorem 5.7), $e_k(\ell_1, L) \geq \Omega(\sqrt{d})$ for $d = \lfloor c \log k / \log \log k \rfloor$. The following lemma then implies that $e_k(\ell_1, \ell_1^d) \geq \Omega(\sqrt{d})$.
Lemma 5.9: For every metric space X and finite-dimensional normed spaces U and V,

$$e_k(X, U) \leq e_k(X, V) d_{BM}(U, V).$$

Proof. Let $T : U \to V$ be a linear operator with $\|T\|\|T^{-1}\| = d_{BM}(U, V)$. Consider a k-point subset $Z \subset X$ and a Lipschitz map $f : Z \to U$. Then $g = Tf$ is a Lipschitz map from Z to V. Let \tilde{g} be an extension of g to X with $\|\tilde{g}\|_{\text{Lip}} \leq e_k(X, V) \|g\|_{\text{Lip}}$. Then $\tilde{f} = T^{-1}\tilde{g}$ is an extension of f and

$$\|	ilde{f}\|_{\text{Lip}} \leq \|T^{-1}\| \cdot \|\tilde{g}\|_{\text{Lip}} \leq \|T^{-1}\| \cdot e_k(X, V) \cdot \|\tilde{g}\|_{\text{Lip}} \leq \|T^{-1}\| \cdot e_k(X, V) \cdot \|T\| \cdot \|f\|_{\text{Lip}} \leq e_k(X, V) d_{BM}(U, V) \|f\|_{\text{Lip}}.$$ \hfill \blacksquare

Proof of Theorem 5.8. Fix numbers $m > 0$ and $d = m^2$. Let $S \subset \mathbb{R}^d$ be the set of all vectors in $\{-1, 0, 1\}^d$ having exactly m nonzero coordinates. Let f_1, \ldots, f_d be functions from S to \mathbb{R} defined as $f_i(S) = S_i$ (S_i is the i-th coordinate of S). These functions belong to the space $V = L_1(S, \mu)$ (where μ is the counting measure on S). The space V is equipped with the L_1 norm

$$\|f\|_1 = \sum_{S \in S} |f(S)|;$$

and the inner product

$$\langle f, g \rangle = \sum_{S \in S} f(S)g(S).$$

The set of indicator functions $\{e_S\}_{S \in S}$,

$$e_S(A) = \begin{cases} 1, & \text{if } A = S, \\ 0, & \text{otherwise,} \end{cases}$$

is the standard basis in V.

Let $L \subset V$ be the subspace spanned by f_1, \ldots, f_d. We prove that the norm of the orthogonal projection operator $P^\perp : V \to L$ is at least $\Omega(\sqrt{d})$ and then, using symmetrization, show that P^\perp has the smallest norm among all linear projections. This approach is analogous to the approach of Grünbaum [11].

All functions f_i are orthogonal and $\|f_i\|_2^2 = |S|/m$ (since for a random $S \in S$, $\Pr(f_i(S) \in \{\pm 1\}) = 1/m$). We find the projection of an arbitrary basis vector
a_A (where A \in S) on L,
\[
P^\perp(a_A) = \sum_{i=1}^{d} \frac{\langle a_A, f_i \rangle}{\|f_i\|^2} f_i = \sum_{i=1}^{d} \sum_{B \in S} \frac{\langle a_A, f_i \rangle}{\|f_i\|^2} \langle f_i, e_B \rangle e_B
\]
\[
= \frac{m}{|S|} \sum_{B \in S} \left(\sum_{i=1}^{d} \langle a_A, f_i \rangle \langle f_i, e_B \rangle \right) e_B.
\]
Hence
\[
\|P^\perp(a_A)\|_1 = \frac{m}{|S|} \sum_{B \in S} \left| \sum_{i=1}^{d} \langle a_A, f_i \rangle \langle f_i, e_B \rangle \right|.
\]
Notice that
\[
\sum_{i=1}^{d} \langle a_A, f_i \rangle \langle f_i, e_B \rangle = \sum_{i=1}^{d} A_i B_i = \langle A, B \rangle.
\]
For a fixed A \in S and a random (uniformly distributed) B \in S the probability that A and B overlap by exactly one nonzero coordinate (and thus |\langle A, B \rangle| = 1) is at least 1/e. Therefore (from (11)),
\[
\|P^\perp(a_A)\|_1 \geq \Omega(m) = \Omega(\sqrt{d}),
\]
and \|P^\perp\| \geq \|P^\perp(a_A)\|_1/\|a_A\|_1 \geq \Omega(\sqrt{d}).

We now consider an arbitrary linear projection P : L \rightarrow V. We shall prove that
\[
\sum_{A \in S} \|P(a_A)\|_1 - \|P^\perp(a_A)\|_1 \geq 0,
\]
and hence for some a_A, \|P(a_A)\|_1 \geq \|P^\perp(a_A)\|_1 \geq \Omega(\sqrt{d}). Let
\[
\sigma_{AB} = \text{sgn}(\langle P^\perp(a_A), e_B \rangle) = \text{sgn}(\langle A, B \rangle).
\]
Then
\[
\|P^\perp(a_A)\|_1 = \sum_{B \in S} |\langle P^\perp(a_A), e_B \rangle| = \sum_{B \in S} \sigma_{AB} \langle P^\perp(a_A), e_B \rangle,
\]
and, since \sigma_{AB} \in [-1, 1],
\[
\|P(a_A)\|_1 = \sum_{B \in S} |\langle P(a_A), e_B \rangle| \geq \sum_{B \in S} \sigma_{AB} \langle P(a_A), e_B \rangle.
\]
Therefore,
\[
\sum_{A \in S} \|P(a_A)\|_1 - \|P^\perp(a_A)\|_1 \geq \sum_{A \in S} \sum_{B \in S} \sigma_{AB} \langle P(a_A) - P^\perp(a_A), e_B \rangle.
\]
Represent operator P as the sum

$$P(g) = P^\perp(g) + \sum_{i=1}^{d} \psi_i(g)f_i,$$

where ψ_i are linear functionals\(^3\) with $\ker \psi_i \supset L$. We get

$$\sum_{A \in \mathcal{S}} \sum_{B \in \mathcal{S}} \sigma_{AB} \langle P(e_A) - P^\perp(e_A), e_B \rangle = \sum_{A \in \mathcal{S}} \sum_{B \in \mathcal{S}} \sigma_{AB} \left(\sum_{i=1}^{d} \psi_i(e_A)f_i, e_B \right)$$

$$= \sum_{i=1}^{d} \psi_i \left(\sum_{A \in \mathcal{S}} \sum_{B \in \mathcal{S}} \sigma_{AB}(e_B, f_i)e_A \right).$$

We now want to show that each vector

$$g_i = \sum_{A \in \mathcal{S}} \sum_{B \in \mathcal{S}} \sigma_{AB}(e_B, f_i)e_A$$

is collinear with f_i, and thus $g_i \in L \subset \ker \psi_i$ and $\psi_i(g_i) = 0$. We need to compute $g_i(S)$ for every $S \in \mathcal{S}$,

$$g_i(S) = \sum_{A \in \mathcal{S}} \sum_{B \in \mathcal{S}} \sigma_{AB}(e_B, f_i)e_A(S) = \sum_{B \in \mathcal{S}} \sigma_{SB}B_i,$$

we used that $e_A(S) = 1$ if $A = S$, and $e_A(S) = 0$ otherwise. We consider a group $H \cong \mathbb{S}_d \ltimes \mathbb{Z}_2^d$ of symmetries of \mathcal{S}. The elements of H are pairs $h = (\pi, \delta)$, where each $\pi \in \mathbb{S}_d$ is a permutation on $\{1, \ldots, d\}$, and each $\delta \in \{-1, 1\}^d$. The group acts on \mathcal{S} as follows: it first permutes the coordinates of every vector S according to π and then changes the signs of the j-th coordinate if $\delta_j = -1$, i.e.,

$$h : S = (S_1, \ldots, S_d) \mapsto hS = (\delta_1 S_{\pi^{-1}(1)}, \ldots, \delta_d S_{\pi^{-1}(d)}).$$

The action of G preserves the inner product between $A, B \in \mathcal{S}$, i.e.,

$$\langle hA, hB \rangle = \langle A, B \rangle$$

and thus $\sigma_{(hA)(hB)} = \sigma_{AB}$. It is also transitive. Moreover, for every $S, S' \in \mathcal{S}$, if $S_i = S'_i$, then there exists $h \in G$ that maps S to S', but does not change the

\(^3\) The explicit expression for ψ_i is as follows: $\psi_i(g) = \langle P(g) - P^\perp(g), f_i \rangle/\|f_i\|^2$.
i-th coordinate (i.e., $\pi(i) = i$ and $\delta_i = 1$). Hence, if $S_i = S_i'$, then for some h

$$g_i(S') = g_i(hS) = \sum_{B \in S} \sigma_{(hS)B} B_i$$

$$= \sum_{B \in S} \sigma_{(hS)(hB)}(hB)_i = \sum_{B \in S} \sigma_{SB}(hB)_i$$

$$= \sum_{B \in S} \sigma_{SB} B_i = g_i(S).$$

On the other hand, $g_i(S) = -g_i(-S)$. Thus, if $S_i = -S_i'$, then $g_i(S) = -g_i(S')$. Therefore, $g_i(S) = \lambda S_i$ for some λ, and $g_i = \lambda f_i$. This finishes the proof that $\|P\| \geq \Omega(\sqrt{d})$.

We now estimate the Banach–Mazur distance from ℓ^d_1 to L.

Lemma 5.10: We say that a basis f_1, \ldots, f_d of a normed space $(L, \| \cdot \|_L)$ is symmetric if the norm of vectors in L does not depend on the order and signs of coordinates in this basis:

$$\left\| \sum_{i=1}^d c_i f_i \right\|_L = \left\| \sum_{i=1}^d \delta_i c_{\pi(i)} f_i \right\|_L,$$

for every $c_1, \ldots, c_d \in \mathbb{R}$, $\delta_1, \ldots, \delta_d \in \{\pm 1\}$ and $\pi \in \Delta_d$.

Let f_1, \ldots, f_d be a symmetric basis. Then

$$d_{BM}(L, \ell^d_1) \leq \frac{d\|f_1\|_L}{\|f_1 + \cdots + f_d\|_L}.$$

Proof. Denote by η_1, \ldots, η_d the standard basis of ℓ^d_1. Define a linear operator $T : \ell^d_1 \to L$ as $T(\eta_i) = f_i$. Then $d_{BM}(L, \ell^d_1) \leq \|T\| \cdot \|T^{-1}\|$. We have

$$\|T\| = \max_{c \in \ell^d_1 : \|c\|_1 = 1} \|T(c_1 \eta_1 + \cdots + c_d \eta_d)\|_L$$

$$\leq \max_{c \in \ell^d_1 : \|c\|_1 = 1} \left(\|T(c_1 \eta_1)\|_L + \cdots + \|T(c_d \eta_d)\|_L \right)$$

$$= \max_i \|T(\eta_i)\|_L = \max_i \|f_i\|_L = \|f_1\|_L.$$

On the other hand,

$$(\|T^{-1}\|)^{-1} = \min_{c \in \ell^d_1 : \|c\|_1 = 1} \|T^{-1}(c_1 \eta_1 + \cdots + c_d \eta_d)\|_L$$

$$= \min_{c \in \ell^d_1 : \|c\|_1 = 1} \|c_1 f_1 + \cdots + c_d f_d\|_L.$$
Since the basis \(f_1, \ldots, f_d \) is symmetric, we can assume that all \(c_i \geq 0 \). We have
\[
\left\| \sum_{i=1}^{d} c_i f_i \right\|_L = \mathbb{E}_{\pi \in S_d} \left\| \sum_{i=1}^{d} c_{\pi(i)} f_i \right\|_L \\
\geq \left\| \mathbb{E}_{\pi \in S_d} \sum_{i=1}^{d} c_{\pi(i)} f_i \right\|_L \\
= \left\| \frac{1}{d} \sum_{i=1}^{d} f_i \right\|_L.
\]

We apply this lemma to the space \(L \) and basis \(f_1, \ldots, f_d \). Note that
\[
\|f_i\|_1 = |S|/m
\]
and
\[
\|f_1 + \cdots + f_d\|_1 = \sum_{S \in S} \left| \sum_{i=1}^{d} S_i \right|.
\]

Pick a random \(S \in S \). Its \(m \) nonzero coordinates distributed according to the Bernoulli distribution, thus \(\left| \sum_i S_i \right| \) equals in expectation \(\Omega(\sqrt{m}) \) and therefore the Banach–Mazur distance between \(\ell_1^d \) and \(L \) equals
\[
d_{BM}(L, \ell_1^d) = O(d \times \frac{|S|}{m} \times \frac{1}{\sqrt{m|S|}}) = O(\sqrt{d}).
\]

5.3. **Conditional upper bound and open question of Ball.** We show that if Question 1 (see page 930) has a positive answer then there exist \(\tilde{O}(\sqrt{\log k}) \)-quality cut sparsifiers.

Theorem 5.11:
\[
Q_k^{cut} = e_k(\ell_1, \ell_1) \leq O(e(\ell_2, \ell_1) \sqrt{\log k \log \log k}).
\]

Proof. We show how to extend a map \(f \) that maps a \(k \)-point subset \(U \) of \(\ell_1 \) to \(\ell_1 \) to a map \(\tilde{f} : \ell_1 \to \ell_1 \) via factorization through \(\ell_2 \). In our proof, we use a low distortion Fréchet embedding of a subset of \(\ell_1 \) into \(\ell_2 \) constructed by Arora, Lee and Naor [1]:

Theorem 5.12 (Arora, Lee and Naor [1], Theorem 1.1): Let \((U, d) \) be a \(k \)-point subspace of \(\ell_1 \). Then there exists a probability measure \(\mu \) over random non-empty subsets \(A \subset U \) such that for every \(x, y \in U \)
\[
\mathbb{E}_\mu[|d(x, A) - d(y, A)|^2]^{1/2} = \Omega\left(\frac{d(x, y)}{\sqrt{\log k \log \log k}}\right).
\]
We apply this theorem to the set U with $d(x, y) = \|x - y\|_1$. We get a probability distribution μ of sets A. Let g be the map that maps each $x \in \ell_1$ to the random variable $d(x, A)$ in $L_2(\mu)$. Since for every x and y in ℓ_1,

$$\mathbb{E}_\mu[|d(x, A) - d(y, A)|^{1/2}] \leq \mathbb{E}_\mu[\|x - y\|_1^{1/2}] = \|x - y\|_1,$$

the map g is a 1-Lipschitz map from ℓ_1 to $L_2(\mu)$. On the other hand, Theorem 5.12 guarantees that the Lipschitz constant of g^{-1} restricted to $g(U)$ is at most $O(\sqrt{\log k \log \log k})$.

Now we define a map $h : g(U) \to \ell_1$ as $h(y) = f(g^{-1}(y))$. The Lipschitz constant of h is at most $\|f\|_{\text{Lip}}\|g^{-1}\|_{\text{Lip}} = O(\sqrt{\log k \log \log k})$. We extend h to a map $\tilde{h} : L_2(\mu) \to \ell_1$ such that

$$\tilde{h} \leq h\|_{\text{Lip}} \leq O(\sqrt{\log k \log \log k}).$$

We finally define $\tilde{f}(x) = \tilde{h}(g(x))$. For every $p \in U$,

$$\tilde{f}(p) = \tilde{h}(g(p)) = h(g(p)) = f(p);$$

$$\|\tilde{f}\|_{\text{Lip}} \leq \|\tilde{h}\|_{\text{Lip}} \|g\|_{\text{Lip}} = O(\sqrt{\log k \log \log k}).$$

This concludes the proof.

Corollary 5.13: If Question 1 has a positive answer, then there exist $\tilde{O}(\sqrt{\log k})$ cut sparsifiers. On the other hand, any lower bound on cut sparsifiers better than $\tilde{\Omega}(\sqrt{\log k})$ would imply a negative answer to Question 1.

Remark 5.2: There are no pairs of Banach spaces (X, Y) for which $e_k(X, Y)$ is known to be greater than $\omega(\sqrt{\log k})$ (see, e.g., Lee and Naor [17]). If indeed $e_k(X, Y)$ is always $O(\sqrt{\log k})$, then there exist $O(\sqrt{\log k})$-quality metric sparsifiers.
Appendix

A. Flow sparsifiers are metric sparsifiers

We have already established (in Lemma 3.5) that every metric sparsifier is a flow sparsifier. We now prove that, in fact, every flow sparsifier is a metric sparsifier. We shall use the same (standard) dual LP for the concurrent multi-commodity flow as we used in the proof of Lemma 3.5. Denote the sum \(\sum_r d_Y(s_r, t_r) \) by \(\gamma(d_Y) \). Then the definition of flow sparsifiers can be reformulated as follows:

The graph \((Y, \beta)\) is a \(Q\)-quality flow sparsifier for \((X, \alpha)\), if for every linear functional \(\gamma: D_Y \to \mathbb{R}\) with nonnegative coefficients,

\[
\min_{d_X \in D_X: \gamma(d_X|Y) \geq 1} \alpha(d_X) \leq \min_{d_Y \in D_Y: \gamma(d_Y) \geq 1} \beta(d_Y) \leq Q \times \min_{d_X \in D_X: \gamma(d_X|Y) \geq 1} \alpha(d_X).
\]

Lemma A.1: Let \((X, \alpha)\) be a weighted graph and let \(Y \subset X\) be a subset of vertices. Suppose that \((Y, \beta)\) is a \(Q\)-quality flow sparsifier for \((X, \alpha)\), if for every linear functional \(\gamma: D_Y \to \mathbb{R}\) with nonnegative coefficients,

\[
\min_{d_X \in D_X: \gamma(d_X|Y) \geq 1} \alpha(d_X) \leq \min_{d_Y \in D_Y: \gamma(d_Y) \geq 1} \beta(d_Y) \leq Q \times \min_{d_X \in D_X: \gamma(d_X|Y) \geq 1} \alpha(d_X).
\]

Proof. We need to verify that for every \(d_Y \in D_Y\),

\[
\min_{Y \to X} \min\text{-ext}(d_Y, \alpha) \leq \beta(d_Y) \leq Q \times \min_{Y \to X} \min\text{-ext}(d_Y, \alpha).
\]

Verify the first inequality. Suppose that it does not hold for some \(d_Y^* \in D_Y\). Let \(\tilde{D}_Y = \{d_Y \in D_Y : \min\text{-ext}_{Y \to X}(d_Y, \alpha) \leq \beta(d_Y^*)\}\). The set \(\tilde{D}_Y\) is closed (and compact, if the graph is connected) and convex (because \(\min\text{-ext}\) is a convex function of the first variable). Since \(\min\text{-ext}_{Y \to X}(d_Y^*, \alpha) > \beta(d_Y^*)\), \(d_Y^* \notin \tilde{D}_Y\). Hence there exists a linear functional \(\gamma\) separating \(d_Y^*\) from \(\tilde{D}_Y\). That is, \(\gamma(d_Y^*) \geq 1\), but for every \(d_Y \in \tilde{D}_Y\), \(\gamma(d_Y) < 1\). We show in Corollary A.5 that there exists such \(\gamma\) with nonnegative coefficients. Then, by the definition of the flow sparsifier,

\[
\min_{d_X \in D_X: \gamma(d_X|Y) \geq 1} \alpha(d_X) \leq \min_{d_Y \in D_Y: \gamma(d_Y) \geq 1} \beta(d_Y).
\]

But, the left-hand side is

\[
\min_{d_X \in D_X: \gamma(d_X|Y) \geq 1} \alpha(d_X) = \min_{d_Y \in D_Y: \gamma(d_Y) \geq 1} \min\text{-ext}_{Y \to X}(d_Y, \alpha) \geq \min_{d_Y \notin \tilde{D}_Y} \min\text{-ext}_{Y \to X}(d_Y, \alpha) > \beta(d_Y^*);
\]

and the right-hand side is at most \(\beta(d_Y^*)\), since \(\gamma(d_Y^*) \geq 1\). We get a contradiction.
Verify the second inequality. Let \(\gamma(d_Y) = \beta(d_Y)/\beta(d_Y^*) \). By the definition of the flow sparsifier,

\[
\min_{d_Y \in \mathcal{D}_Y : \gamma(d_Y) \geq 1} \beta(d_Y) \leq Q \times \min_{d_X \in \mathcal{D}_X : \gamma(d_X|_Y) \geq 1} \alpha(d_X).
\]

The left-hand side is at least \(\beta(d_Y^*) \) (by the definition of \(\gamma \)). Thus, for every \(d_X \in \mathcal{D}_X \) satisfying \(\gamma(d_X|_Y) \geq 1 \), and particularly for \(d_X \) equal to the minimum extension of \(d_Y \), \(Q \times \alpha(d_X) \geq \beta(d_Y^*) \).

Lemma A.2 (Minimum extension is monotone): Let \(X \) be an arbitrary set, \(Y \subset X \), and \(\alpha_{ij} \) be a nonnegative set of weights on pairs \((i, j) \in X \times X \). Suppose that a metric \(d_Y^* \in \mathcal{D}_Y \) dominates metric \(d_Y^{**} \in \mathcal{D}_Y \), i.e., \(d_Y^*(p, q) \geq d_Y^{**}(p, q) \) for every \(p, q \in Y \). Then

\[
\min_{Y \rightarrow X}(d_Y^*, \alpha) \geq \min_{Y \rightarrow X}(d_Y^{**}, \alpha).
\]

Proof. Let \(d_X^* \) be the minimum extension of \(d_Y^* \). Consider the distance function

\[
d_X^{**}(i, j) = \begin{cases}
 d_Y^*(i, j), & \text{if } i, j \in Y; \\
 d_X^*(i, j), & \text{otherwise.}
\end{cases}
\]

The function \(d_X^{**}(i, j) \) does not necessarily satisfy the triangle inequalities. However, the shortest path metric \(d_X^* \) induced by \(d_X^{**} \) does satisfy the triangle inequalities, and is an extension of \(d_Y^* \). Since, \(d_X^*(i, j) \geq d_X^{**}(i, j) \geq d_X^*(i, j) \) for every \(i, j \in X \),

\[
\min_{Y \rightarrow X}(d_Y^*, \alpha) = \alpha(d_X^*) \geq \alpha(d_X^*) \geq \min_{Y \rightarrow X}(d_Y^{**}, \alpha).
\]

We will need the following variant of the Hyperplane Separation Theorem.

Lemma A.3: Consider two disjoint compact convex bodies \(A \) and \(B \). Let \(\Gamma \) be a convex cone of linear functionals. Suppose that

1. for every \(a \in A \) and \(b \in B \), there exists a \(\gamma \in \Gamma \) such that \(\gamma(b) > \gamma(a) \);
2. for all \(\gamma \), there exists an \(a \in A \) such that \(\gamma(a) \geq 0 \).

Then there exists a \(\gamma^* \in \Gamma \) such that for all \(a \in A \) and \(b \in B \),

\[
\gamma^*(b) > 1 > \gamma^*(a).
\]

Proof. By the von Neumann [25] minimax theorem,

\[
\min_{(a, b) \in A \times B} \max_{\gamma \in \Gamma} \gamma(b) - \gamma(a) = \max_{\gamma \in \Gamma} \min_{(a, b) \in A \times B} \gamma(b) - \gamma(a).
\]
The right-hand side is positive, since by item (1), for every $a \in A$ and $b \in B$, there exists a $\gamma \in \Gamma$ such that $\gamma(b) - \gamma(a) > 0$. Hence the left-hand side is also positive and, consequently, there exists a $\gamma^* \in \Gamma$ such that $\gamma^*(b) - \gamma^*(a) > 0$ for all $a \in A$ and $b \in B$. Thus $\min_{b \in B} \gamma^*(b) > \max_{a \in A} \gamma^*(a)$. We now rescale γ^* by $(\min_{b \in B} \gamma^*(b) + \max_{a \in A} \gamma^*(a))/2$: let $\gamma^{**} = 2\gamma^*/(\min_{b \in B} \gamma^*(b) + \max_{a \in A} \gamma^*(a))$. Note that $\max_{a \in A} \gamma^*(a) \geq 0$, and $(\min_{b \in B} \gamma^*(b) + \max_{a \in A} \gamma^*(a))/2 > 0$. We get $\min_{b \in B} \gamma^{**}(b) > 1 > \max_{a \in A} \gamma^{**}(a).

Lemma A.4: Let $\tilde{D}_Y = \{d_Y \in D_Y : \min_{Y \to X}(d_Y, \alpha) \leq 1\}$, and let $\tilde{\mathcal{E}}_Y \subset D_Y \setminus \tilde{D}_Y$ be a compact convex set disjoint from \tilde{D}_Y. Then there exists a linear functional

$$\gamma(d_Y) = \sum_{p,q \in D_Y} \gamma_{pq}d_Y(p, q),$$

with nonnegative coefficients γ_{pq} such that $\gamma(d_Y) > 1$ for every $d_Y \in \tilde{\mathcal{E}}_Y$, but $\gamma(d_Y) < 1$ for every $d_Y \in \tilde{D}_Y$.

Proof. Let Γ be the set of linear functionals γ with nonnegative coefficients. We need to show that for some $\gamma^* \in \Gamma$, $\gamma^*(d_Y) > 1$ for every $d_Y \in \tilde{\mathcal{E}}_Y$ and $\gamma^*(d_Y) < 1$ for every $d_Y \in \tilde{D}_Y$. By Lemma A.3, it is sufficient to verify that for every $d^*_Y \in \tilde{D}_Y$ and $d^{**}_Y \in \tilde{\mathcal{E}}_Y$, there exists $\gamma \in \Gamma$ such that $\gamma(d^*_Y) < \gamma(d^{**}_Y)$.

By the definition of \tilde{D}_Y, and since $\tilde{\mathcal{E}}_Y \cap \tilde{D}_Y = \emptyset$, we have

$$\min_{Y \to X}(d^*_Y, \alpha) \leq 1 < \min_{Y \to X}(d^{**}_Y, \alpha).$$

By Lemma A.2, there exist $p, q \in Y$ such that $d^{**}_Y(p, q) > d^*_Y(p, q)$ (otherwise, $d^*_Y(p, q)$ would dominate $d^{**}_Y(p, q)$). The desired linear functional is

$$\gamma^*(d_Y) = d_Y(p, q).$$

For the set $\tilde{\mathcal{E}}_Y$ containing a single metric d^*_Y, we get the following corollary.

Corollary A.5: Let $\tilde{D}_Y = \{d_Y \in D_Y : \min_{Y \to X}(d_Y, \alpha) \leq 1\}$, and $d^*_Y \in D_Y \setminus \tilde{D}_Y$. Then there exists a linear functional

$$\gamma(d_Y) = \sum_{p,q \in D_Y} \gamma_{pq}d_Y(p, q),$$

with nonnegative coefficients γ_{pq} separating d^*_Y from \tilde{D}_Y (i.e., $\gamma(d^*_Y) > 1$, but for every $d_Y \in \tilde{D}_Y$, $\gamma(d_Y) < 1$).
Later, we will also use the following immediate corollary of Lemma A.4.

Corollary A.6: Let \(\tilde{D}_Y = \{ d_Y \in D_Y : \min\text{-}\text{ext}_{Y \to X}(d_Y, \alpha) < 1 \} \), and let \(\tilde{E}_Y \subset D_Y \setminus \tilde{D}_Y \) be a compact convex set disjoint from \(\tilde{D}_Y \). Then there exists a linear functional \(\gamma(d_Y) = \sum_{p, q \in D_Y} \gamma_{pq} d_Y(p, q) \), with nonnegative coefficients \(\gamma_{pq} \) such that \(\gamma(d_Y) \geq 1 \) for every \(d_Y \in \tilde{E}_Y \), but \(\gamma(d_Y) \leq 1 \) for every \(d_Y \in \tilde{D}_Y \).

B. Compactness theorem for Lipschitz extendability constants

In this section, we prove a compactness theorem for Lipschitz extendability constants.

Theorem B.1: Let \(X \) be an arbitrary metric space and \(V \) be a finite-dimensional normed space. Assume that for some \(K \) and every \(Z \subset \tilde{Z} \subset X \) with \(|Z| = k, |\tilde{Z}| < \infty \), every map \(f : Z \to V \) can be extended to a map \(\tilde{f} : \tilde{Z} \to V \) so that \(\|\tilde{f}\|_{\text{Lip}} \leq K\|f\|_{\text{Lip}} \). Then \(e_k(X, V) \leq K \).

Proof. Fix a set \(Z \) and a map \(f : Z \to V \). Without loss of generality we may assume that \(\|f\|_{\text{Lip}} = 1 \). We shall construct a \(K \)-Lipschitz extension \(\tilde{f} : X \to V \) of \(f \).

Choose an arbitrary \(z_0 \in Z \). Consider the following topological space of maps from \(X \) to \(V \):

\[
\mathcal{F} = \{ h : X \to V : \forall x \in X \| h(x) - f(z_0) \|_V \leq Kd(z_0, x) \}
\]

\[
\cong \prod_{x \in X} B_V(f(z_0), Kd(z_0, x)),
\]
equipped with the product topology (the topology of pointwise convergence); i.e., a sequence of functions \(f_i \) converges to \(f \) if for every \(x \in X \), \(f_i(x) \to f(x) \). Note that every ball \(B_V(f(z_0), Kd(z_0, x)) \) is a compact set. By Tychonoff’s theorem the product of compact sets is a compact set. Therefore, \(\mathcal{F} \) is also a compact set.

Let \(M \) be the set of maps in \(\mathcal{F} \) that extend \(f \):

\[
M = \{ h \in \mathcal{F} : h(z) = f(z) \text{ for all } z \in Z \}.
\]
Let $C_{x,y}$ (for $x, y \in X$) be the set of functions in \mathcal{F} that increase the distance between points x and y by at most a factor of K:

$$C_{x,y} = \{ h \in \mathcal{F} : \| h(x) - h(y) \|_V \leq Kd(x, y) \}.$$

Note that all sets M and $C_{x,y}$ are closed. We prove that every finite family of sets $C_{x,y}$ has a non-empty intersection with M. Consider a finite family of sets: $C_{x_1,y_1}, \ldots, C_{x_n,y_n}$. Let

$$\tilde{Z} = Z \cup \bigcup_{i=1}^{n} \{ x_i, y_i \}.$$

By the condition of the theorem there exists a K-Lipschitz map $\tilde{f} : \tilde{Z} \to V$ extending f. Then $\tilde{f} \in \bigcap_{i=1}^{n} C_{x_i,y_i} \cap M$. Therefore, $\bigcap_{i=1}^{n} C_{x_i,y_i} \cap M \neq \emptyset$.

Since every finite family of closed sets in \{ $M, C_{x,y}$ \} has a non-empty intersection and \mathcal{F} is compact, all sets M and $C_{x,y}$ have a non-empty intersection. Let $\hat{f} \in M \cap \bigcap_{x,y \in X} C_{x,y}$. Since $\hat{f} \in M$, \hat{f} is an extension of f. Since $\hat{f} \in C_{x,y}$ for every $x,y \in X$, the map \hat{f} is K-Lipschitz.

C. Lipschitz extendability and projection constants

In Section 5.2, we use the theorem of Johnson and Lindenstrauss [13] presented below. However, in their paper, this theorem is stated in a slightly different form (it is stated for specific spaces L, U and V). We sketch here the original proof of Johnson and Lindenstrauss for completeness.

Theorem C.1 (Johnson and Lindenstrauss [13], Theorem 3): Let V be a Banach space, $L \subset V$ be a d-dimensional subspace of V, and U be a finite-dimensional normed space. Then every linear operator $T : L \to U$, with $\|T\|\|T^{-1}\| = O(d)$, can be extended to a linear operator $\tilde{T} : V \to U$ so that $\|\tilde{T}\| = O(e_k(V,U))\|T\|$, where k is such that $d \leq c \log k / \log \log k$ (where c is an absolute constant).

In particular, for $U = L$, the identity operator I_L on L can be extended to a projection $P : V \to L$ with $\|P\| \leq O(e_k(V,L))$. Therefore

$$\lambda(L,V) = O(e_k(V,L)).$$

First, we address a simple case when $e_k(V,U) \geq \sqrt{d}$. By the Kadec–Snobar theorem there exists a projection P_L from V to L with $\|P_L\| \leq \sqrt{d}$. Therefore,
TP_L is an extension of T with the norm bounded by $\sqrt{d}\|T\|$ and we are done. So we assume below that $e_k(V, U) \leq \sqrt{d}$.

We construct the extension \tilde{T} in several steps. Denote $\alpha = \|T\|\|T^{-1}\|$. First, we choose an ε-net A of size at most $k - 1$ on the unit sphere $S(L) = \{v \in L : \|v\|_V = 1\}$ for $\varepsilon \sim 1/(\alpha \log 2k)$ (to be specified later).

Lemma C.2 (Johnson and Lindenstrauss [13], Lemma 3): If L is a d-dimensional normed space and $\varepsilon > 0$, then $S(L)$ admits an ε-net of cardinality at most $(1 + 4/\varepsilon)^d$.

Let T_1 be the restriction of T to $A \cup \{0\}$. Let $S(V) = \{v \in V : \|v\|_V = 1\}$. By the definition of the Lipschitz extendability constant $e_k(V, U)$, there exists an extension $T_2 : S(V) \to U$ of T_1 with

$$\|T_2\|_{\text{Lip}} \leq e_k(V, U)\|T_1\|_{\text{Lip}} \leq e_k(V, U)\|T\|.$$

Now we consider the **positively homogeneous extension** $T_3 : V \to U$ of T_2 defined as

$$T_3(v) = \|v\|_V T_2\left(\frac{v}{\|v\|_V}\right).$$

The following lemma gives a bound on the norm of T_3.

Lemma C.3 (Johnson and Lindenstrauss [13], Lemma 2): Suppose that V and U are normed spaces, and $f : S(V) \cup \{0\} \to U$ is a Lipschitz map with $f(0) = 0$. Then the positively homogeneous extension \tilde{f} of f is Lipschitz and

$$\|\tilde{f}\|_{\text{Lip}} \leq 2\|f\|_{\text{Lip}} + \sup_{v \in S(V)} \|f(v)\|_U.$$

Since $T_2(0) = 0$ and $\|T_2\|_{\text{Lip}} \leq e_k(V, U)\|T\|$,

$$\sup_{v \in S(V)} \|T_2v\|_V \leq \|T_2\|_{\text{Lip}} \leq e_k(V, U)\|T\|.$$

Therefore

$$\|T_3\|_{\text{Lip}} \leq 3e_k(V, U)\|T\|.$$

Now we prove that there exists a Lipschitz map $T_4 : V \to U$, whose restriction to L is very close to T. We apply the following lemma to $F = T_3$ and obtain a map $T_4 = \tilde{F} : V \to U$.

Lemma C.4 (Johnson and Lindenstrauss [13], Lemma 5): Suppose \(L \subset V \) and \(U \) are Banach spaces with \(\dim L = d < \infty \), \(F : V \to U \) is Lipschitz with \(F \) positively homogeneous (i.e., \(F(\lambda v) = \lambda F(v) \) for \(\lambda > 0, v \in V \)) and \(T : L \to V \) is linear. Then there is a positively homogeneous map \(\tilde{F} : V \to U \) which satisfies

- \(\|\tilde{F}|_L - T\|_{\text{Lip}} \leq (8d + 2) \sup_{v \in S(L)} \|F(v) - T(v)\|_V \),
- \(\|\tilde{F}\|_{\text{Lip}} \leq 4\|F\|_{\text{Lip}} \).

Note that for every \(u \in S(L) \) there exists \(v \in A \) with \(\|u - v\|_V \leq \varepsilon \). Therefore

\[
\|T_3u - Tu\|_V \leq \|T_3u - T_3v\|_V + \|T_3v - Tv\|_V + \|Tv - Tu\|_V \\
\leq \|T_3\|_{\text{Lip}} \cdot \varepsilon + \|T\|_\varepsilon \leq (3e_k(V, U) + 1)\|T\|_\varepsilon .
\]

Hence

\[
\|T_4|_L - T\|_{\text{Lip}} \leq (8d + 2)(3e_k(V, U) + 1)\|T\|_\varepsilon \leq 40de_k(V, U)\|T\|_\varepsilon ,
\]

and

\[
\|T_4\|_{\text{Lip}} \leq 12e_k(V, U)\|T\| .
\]

Finally, we approximate \(T_4 \) with a linear bounded map \(T_5 : V \to U \), whose restriction to \(L \) is very close to \(T \).

Lemma C.5 (Johnson and Lindenstrauss [13], Proposition 1): Suppose \(L \subset V \) and \(U \) are Banach spaces, \(U \) is a reflexive space, \(f : V \to L \) is Lipschitz, and \(T : L \to U \) is bounded, linear. Then there is a linear operator \(F : V \to U \) that satisfies \(\|F\| \leq \|f\|_{\text{Lip}} \) and \(\|F|_L - T\|_{L \to U} \leq \|f_L - U\|_{\text{Lip}} \).

Since the space \(U \) is finite-dimensional, it is reflexive. We apply the lemma to \(f = T_4 \) and obtain a linear operator \(T_5 : V \to U \) such that

\[
\|T_5\| \leq 12e_k(V, U)\|T\|
\]

and

\[
\|T_5|_L - T\|_{L \to U} \leq 40de_k(V, U)\|T\|_\varepsilon .
\]

Let \(P : U \to T(L) \) be a projection of \(U \) on \(T(L) \) with \(\|P\| \leq \sqrt{d} \) (such projection exists by the Kadec–Snobar theorem). Consider a linear operator \(\phi = T_5T^{-1}P + (I_U - P) \) from \(U \) to \(U \). Note that for every \(u \in U \),

\[
\|\phi u - u\|_U = \|T_5T^{-1}Pu - Pu\|_U = \|T_5T^{-1}Pu - TT^{-1}Pu\|_U \\
\leq 40de_k(V, U)\|T\|_\varepsilon \cdot \|T^{-1}Pu\|_U \\
\leq 40de_k(V, U)\|T\|_\varepsilon \cdot \sqrt{d}\|T^{-1}\|_U\|u\|_U \leq 40\alpha d^2\varepsilon \|u\|_U
\]
(we used that \(e_k(V, U) \leq \sqrt{d} \) and \(\|P\| \leq \sqrt{d} \)). We choose \(\varepsilon \sim 1/(\alpha \log^2 k) \) so that \(40\alpha d^2 \varepsilon < 1/2 \). Then \(\|\phi - I_U\| \leq 1/2 \). Thus \(\phi \) is invertible:

\[
\phi^{-1} = (I_U - (I_U - \phi))^{-1} = \sum_{i=0}^{\infty} (I_U - \phi)^k,
\]

and

\[
\|\phi^{-1}\| \leq \sum_{i=0}^{\infty} \|I_U - \phi\|^k \leq 2.
\]

Finally, we let \(\tilde{T} = \phi^{-1}T_5 \). Note that for every \(u \in L \), \(\phi Tu = T_5 u = \phi \tilde{T}u \), thus \(\tilde{T} \) is an extension of \(T \). The norm of \(\tilde{T} \) is bounded by \(\|\phi\||T_5| \leq 24e_k(V, U)\|T\| \).

D. Improved lower bound on \(e_k(\ell_1, \ell_1) \)

After a preliminary version of our paper appeared as a preprint, Johnson and Schechtman notified us that our lower bound of \(\Omega(\sqrt{\log k / \log \log k}) \) on \(e_k(\ell_1, \ell_1) \) can be improved to \(\Omega(\sqrt{\log k / \log \log k}) \). This result follows from the paper of Figiel, Johnson and Schechtman [10] that studies factorization of operators to \(L_1 \) through \(L_1 \). With the permission of Johnson and Schechtman, we present this result below.

Before we proceed with the proof, we state the result of Figiel, Johnson and Schechtman [10].

THEOREM D.1 (Corollary 1.5, Figiel, Johnson and Schechtman [10]): Let \(X \) be a \(d \)-dimensional subspace of \(L_1(R, \mu) \) (a set of real valued functions on \(R \) with the \(\| \cdot \|_1 \) norm). Suppose that for every \(f \in X \) and every \(2 \leq r < \infty \), \(\|f\|_r \leq C\sqrt{r}\|f\|_1 \) (where \(C \) is some constant not depending on \(f \) and \(r \)). Let \(w : X \rightarrow \ell_1^n \) and \(u : \ell_1^n \rightarrow L_1(R, \mu) \) be linear operators such that \(uw = I_X \) is the identity operator on \(X \). Then

\[
\text{rank } u \geq 2^{\Delta d} \quad \text{where } \Delta = \frac{1}{(16CdBM(X, \ell_2^d)\|w\|\|u\|)^2}.
\]

COROLLARY D.2: \(e_k(\ell_1, \ell_1) = \Omega(\sqrt{\log k / \log \log k}) \).

Proof. Denote \(d = c \log k / \log \log k \), where \(c \) is the constant from Theorem C.1. Consider \(U = \ell_1^d \). By Kashin’s theorem [15], there exists an “almost Euclidean” \(d \)-dimensional subspace \(X' \) in \(U \), that is, a subspace \(X' \) such that

\[
c_1\|x\|_1 \leq \sqrt{d}\|x\|_2 \leq c_2\|x\|_1
\]
for every $x \in X'$ (and some positive absolute constants c_1 and c_2). Let $R = \{\pm1\}^{2d} \subset U$ be a $2d$-dimensional hypercube, μ be the uniform probabilistic measure on R and $V = L_1(R, \mu)$. We consider a natural embedding u' of X' into V: each vector $x \in X'$ is mapped to a function $u'(x) \in V$ defined by $u'(x) : y \mapsto \langle x, y \rangle$. Recall that by the Khintchine inequality,

$$A_p \|x\|_2 \leq \|u'(x)\|_p \leq (\mathbb{E}_{y \in R}[|\langle x, y \rangle|^p])^{1/p} \leq B_p \|x\|_2,$$

where A_p and B_p are some positive constants. In particular, Haagerup [12] proved that the inequality holds for $p = 1$, with $A_1 = \sqrt{1/2}$ and $B_1 = \sqrt{2/\pi}$, and, for $p \geq 2$, with $A_p = 1$ and

$$B_p = 2^{1/2 - 1/p} \left(\frac{\Gamma \left(\frac{p + 1}{2} \right)}{\Gamma \left(\frac{3}{2} \right)} \right)^{1/p} = (1 + o(1)) \sqrt{\frac{p}{e}}$$

(the $o(1)$ term tends to 0 as p tends to infinity). Let $X \subset L(R, \mu)$ be the image of X' under u'. Observe that u' is a $(2c_2/c_1)$-isomorphism between $(X', \| \cdot \|_1)$ and $(V, \| \cdot \|_1)$. Indeed,

$$\|u'(x)\|_1 \leq B_1 \|x\|_2 \leq \sqrt{2} \cdot c_2 \|x\|_1 / \sqrt{\pi d},$$

$$\|u'(x)\|_1 \geq A_1 \|x\|_2 \geq c_1 \|x\|_1 / \sqrt{2d}.$$

Denote $w = (u')^{-1}$. Then

$$\|u'\| \|w\| \leq 2c_2 / (\sqrt{\pi} c_1) < 2c_2 / c_1.$$

By Theorem C.1, there exists a linear extension $u : U \to V$ of u' to U with $\|u\| = O(e_k(\ell_1, \ell_1)) \|u'\|$. We are going to apply Lemma D.1 to maps u and w and get a lower bound on $\|u\|$ and, consequently, on $e_k(\ell_1, \ell_1)$. To do so, we verify that for every $f \in X$, $\|f\|_r = O(\sqrt{r})$. Indeed, if $f = u'(x)$, we have

$$\|f\|_r \leq B_r \|x\|_2 \leq B_r \|f\|_1 / A_1 = \sqrt{\frac{2}{e}} \cdot \sqrt{r} \cdot \|f\|_1(1 + o(1)).$$

Note that $\text{rank } u \leq \dim U = 2d$ and $d_{BM}(X, \ell_2^d) \leq B_1 / A_1 = 2 / \sqrt{\pi}$. By Lemma D.1, we have

$$\Delta \equiv \frac{1}{(16Cd_{BM}(X, \ell_2^d) \|w\| \|u\|)^2} \leq \frac{\log_2 2d}{d}.$$

Therefore,

$$\|u\| \geq \Omega \left(\sqrt{\frac{d}{\log d}} \frac{1}{\|w\|} \right) = \Omega \left(\sqrt{\frac{d}{\log d}} \right) \|u'\|.$$
We conclude that
\[e_k(\ell_1, \ell_1) \geq \Omega(\|u\|/\|u'\|) \geq \Omega\left(\sqrt{\frac{d}{\log d}}\right) = \Omega\left(\frac{\sqrt{\log k}}{\log \log k}\right). \]

E. Negative coefficients in vertex sparsifiers and metric extension operators

In this section, we prove claims given in Remark 3.1. We show that if a linear functional \(\beta : D_Y \to \mathbb{R} \) satisfies all the properties of the metric vertex sparsifier with quality \(Q \) (see Definition 3.2) except that some \(\beta_{pq} \) may be negative, then there exists another linear functional \(\gamma : D_Y \to \mathbb{R} \) satisfying all the properties of the metric vertex sparsifier with quality \(Q \). On the other hand, there exists a linear operator \(\phi : D_Y \to D_X \) satisfying all the properties of the metric extension operator with distortion \(Q \) (see Definition 3.1) except that some coordinates \(\phi_{ipjq} \) are negative such that any metric extension operator (with positive coordinates) has distortion strictly greater than \(Q \).

Claim E.1: Let \(X \) be a set of points, \(Y \) be a \(k \)-point subset of \(X \), and \(\alpha_{ij} \) be a set of nonnegative weights on \(X \times X \). Suppose that a linear functional \(\beta : D_Y \to \mathbb{R} \) satisfies all the properties of the \(Q \)-quality metric vertex sparsifier except that some \(\beta_{pq} \) may be negative, i.e., it satisfies the following inequality:

\[
\min_{Y \to X}(d_Y, \alpha) \leq \beta(d_Y) \leq Q \times \min_{Y \to X}(d_Y, \alpha).
\]

Then there exists a \(Q \)-quality metric vertex sparsifier \(\gamma \) with nonnegative coefficients.

Proof. Let
\[
\tilde{D}_Y = \{ d_Y \in D_Y : \min_{Y \to X}(d_Y, \alpha) < 1 \},
\]

let
\[
\mathcal{E}_Y = \{ d_Y \in D_Y : \min_{Y \to X}(d_Y, \alpha) = Q \},
\]

and let \(\tilde{\mathcal{E}}_Y \) be the convex hull of \(\mathcal{E}_Y \). Observe that \(\tilde{D}_Y \) and \(\mathcal{E}_Y \) are separated by the linear functional \(\beta : \beta(d_Y) < Q \) for every \(d_Y \in \tilde{D}_Y \), and \(\beta(d_Y) \geq Q \) for every \(d_Y \in \mathcal{E}_Y \). Consequently, \(\tilde{D}_Y \) and \(\tilde{\mathcal{E}}_Y \) are also separated by \(\beta \) and, thus, \(\tilde{D}_Y \) and \(\tilde{\mathcal{E}}_Y \) are disjoint. By Corollary A.6, there exists a linear functional \(\gamma \) with positive coefficients such that \(\gamma(d_Y) \leq 1 \) for \(d_y \in \tilde{D}_Y \), and \(\gamma(d_Y) \geq 1 \) for
$d_Y \in \tilde{E}$. Observe that for every $d_Y \in D$ (with nonzero minimum extension), and every $\varepsilon > 0$,

$$(1 - \varepsilon)d_Y / \min\text{-}\text{ext}(d_Y, \alpha) \in \tilde{D}_Y \quad \text{and} \quad Q \times d_Y / \min\text{-}\text{ext}(d_Y, \alpha) \in \tilde{E}_Y.$$

Thus

$$(1 - \varepsilon)\gamma(d_Y / \min\text{-}\text{ext}(d_Y, \alpha)) \leq 1 \quad \text{and} \quad \gamma(Q \times d_Y / \min\text{-}\text{ext}(d_Y, \alpha)) \geq 1.$$

Hence

$$\min\text{-}\text{ext}(d_Y, \alpha) \leq Q\gamma(d_Y) \leq Q \min\text{-}\text{ext}(d_Y, \alpha).$$

Therefore, $Q\gamma$ is a Q-quality metric sparsifier.

Claim E.2: There exists a linear operator $\phi : D_Y \to D_X$ satisfying all the properties of the metric extension operator with distortion Q (see Definition 3.1) except that some coordinates ϕ_{ijpq} are negative such that any metric extension operator ψ (with positive coordinates) has distortion strictly greater than Q.

Proof. Let $X = \{0, 1, 2, 3\}$ and $Y = \{1, 2, 3\}$. We set $\alpha_{01} = \alpha_{02} = \alpha_{03} = 1$ and $\alpha_{12} = \alpha_{13} = \alpha_{12} = 0$. Consider the linear operator $\phi : D_Y \to D_X$ defined as follows: ϕ maps every metric d_Y to the extension d_X defined as

$$d_X(0, 1) = \frac{d_Y(1, 2) + d_Y(1, 3) - d_Y(2, 3)}{2};$$
$$d_X(0, 2) = \frac{d_Y(2, 1) + d_Y(2, 3) - d_Y(1, 3)}{2};$$
$$d_X(0, 3) = \frac{d_Y(3, 1) + d_Y(3, 2) - d_Y(1, 2)}{2}.$$

Note that some coefficients of ϕ are negative. However, by the triangle inequality, all distances $d_X(0, i)$ are nonnegative. It is easy to verify that d_X satisfies all triangle inequalities:

$$d_X(0, 1) + d_X(1, 2) - d_X(0, 2) = d_Y(1, 2) + d_Y(1, 3) - d_Y(2, 3) \geq 0,$$
$$d_X(0, 1) + d_X(0, 2) - d_X(1, 2) = 0.$$

All other triangle inequalities are equivalent to these up to a permutation of points $\{1, 2, 3\}$. The cost of extending a metric d_Y using this operator equals $(d_Y(1, 2) + d_Y(1, 3) + d_Y(2, 3))/2.$

Now consider the optimal metric extension operator ψ with positive coefficients. Since the coefficients α are symmetric with respect to permutations of the points $\{1, 2, 3\}$, we may assume that ψ is also symmetric with respect to
permutations, i.e., ψ maps every metric d_Y to the metric d_X defined as follows (for some $a, b \geq 0$):

\[
\begin{align*}
d_X(0, 1) & = a \cdot d_Y(1, 2) + a \cdot d_Y(1, 3) + b \cdot d_Y(2, 3); \\
d_X(0, 2) & = a \cdot d_Y(2, 1) + a \cdot d_Y(2, 3) + b \cdot d_Y(1, 3); \\
d_X(0, 3) & = a \cdot d_Y(3, 1) + a \cdot d_Y(3, 2) + b \cdot d_Y(1, 2).
\end{align*}
\]

The cost of extending a metric d_Y using ψ is

\[
(2a + b)(d_Y(1, 2) + d_Y(2, 3) + d_Y(1, 3)).
\]

We derive a lower bound for $2a + b$. Write the triangle inequality

\[
d_X(0, 1) + d_X(0, 2) \geq d_X(1, 2)
\]

for the metric $d_Y(1, 3) = d_Y(2, 3) = 1$ and $d_Y(1, 2) = 2$:

\[
d_X(0, 1) + d_X(0, 2) = 6a + 2b \geq d_X(1, 2) = 2.
\]

Since a and b are nonnegative, $(2a + b) \geq (6a + 2b)/3 \geq 2/3$. Hence, for every metric d_Y the cost of the extension $\psi(d_Y)$ is at least

\[
\frac{2}{3}(d_Y(1, 2) + d_Y(2, 3) + d_Y(1, 3)),
\]

which is $4/3$ times the cost of the extension $\phi(d_Y)$. Thus the quality of ψ is at least $4/3$ times the quality of ϕ. ■

Acknowledgement. We are grateful to William Johnson and Gideon Schechtman for notifying us that a lower bound of $\Omega(\sqrt{\log k / \log \log k})$ on $e_k(\ell_1, \ell_1)$ follows from their joint work with Figiel [10] and for giving us permission to present the proof in this paper.

References

[1] S. Arora, J. Lee and A. Naor, Fréchet embeddings of negative type metrics. Discrete & Computational Geometry 38 (2007), 726–739.
[2] S. Arora, S. Rao and U. Vazirani, Expander flows, geometric embeddings, and graph partitionings, in Proceedings of the 36th Annual ACM Symposium on Theory of Computing, ACM, New York, 2004, pp. 222–231.
[3] K. Ball, Markov chains, Riesz transforms and Lipschitz maps, Geometric and Functional Analysis 2 (1992), 137–172.
[4] J. Bourgain, A counterexample to a complementation problem, Compositio Mathematica 43 (1981), 133–144.
[5] G. Calinescu, H. Karloff and Y. Rabani, Approximation algorithms for the 0-extension problem, in Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms (Washington, DC, 2001), SIAM, Philadelphia, PA, 2001, pp. 8–16.

[6] M. Charikar, T. Leighton, S. Li and A. Moitra, Vertex sparsifiers and abstract rounding algorithms, in Proceedings of the 51st Annual IEEE Symposium on Foundations of Computer Science (Las Vegas, NV, 2010), IEEE Computer Society, Los Alamitos, CA, 2010, pp. 265–274.

[7] M. Englert, A. Gupta, R. Krauthgamer, H. Räcke, I. Talgam-Cohen and K. Talwar, Vertex sparsifiers: New results from old techniques, in Approximation, Randomization, and Combinatorial Optimization, Lecture Notes in Computer Science, Vol. 6302, Springer, Berlin, 2010, pp. 152–165.

[8] J. Fakcharoenphol, C. Harrelson, S. Rao and K. Talwar, An improved approximation algorithm for the 0-extension problem, in Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms (Baltimore, MD, 2003), ACM, New York, 2003, pp. 257–265.

[9] J. Fakcharoenphol and K. Talwar, An improved decomposition theorem for graphs excluding a fixed minor, in Approximation, Randomization, and Combinatorial Optimization, Lecture Notes in Computer Science, Vol. 2764, Springer, Berlin, 2003, pp. 36–46.

[10] T. Figiel, W. Johnson and G. Schechtman, Factorizations of natural embeddings of l^n_p into L_r, Studia Mathematica 89 (1988), 79–103.

[11] B. Grünbaum, Projection constants, Transactions of the American Mathematical Society, 95 (1960), 451–465.

[12] U. Haagerup, The best constants in the Khintchine inequality, Studia Mathematica 70 (1981), 231–283.

[13] W. Johnson and J. Lindenstrauss, Extensions of Lipschitz mappings into a Hilbert space, in Conference in Modern Analysis and Probability (New Haven, Conn., 1982), Contemporary Mathematics, Vol. 26, American Mathematical Society, Providence, RI, 1984, pp. 189–206.

[14] A. Karzanov, Minimum 0-extension of graph metrics, European Journal of Combinatorics 19 (1998), 71–101.

[15] B. Kashin, The widths of certain finite-dimensional sets and classes of smooth functions, Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya 41 (1977), 334–351.

[16] M. D. Kirszbraun, Über die zusammenziehenden und Lipschitzchen Transformationen, Fundamenta Mathematicae 22 (1934), 77–108.

[17] J. Lee and A. Naor, Extending Lipschitz functions via random metric partitions, Inventiones Mathematicae 160 (2005), 59–95.

[18] J. Lee and A. Sidiroopoulos, Genus and the geometry of the cut graph, in Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms (Austin, TX, 2010) SIAM, Philadelphia, PA, 2010, pp. 193–201.

[19] T. Leighton and A. Moitra, Extensions and limits to vertex sparsification, in Proceedings of the 2010 ACM International Symposium on Theory of Computing, ACM, New York, 2010, pp. 47–56.
[20] M. B. Marcus and G. Pisier, Characterizations of almost surely continuous p-stable random Fourier series and strongly stationary processes, Acta Mathematica 152 (1984), 245–301.

[21] E. J. McShane, Extension of range of functions, Bulletin of the American Mathematical Society 40 (1934), 837–842.

[22] M. Mendel and A. Naor, Some applications of Ball’s extension theorem, Proceedings of the American Mathematical Society 134 (2006), 2577–2584.

[23] A. Moitra, Approximation algorithms for multicommodity-type problems with guarantees independent of the graph size, in Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer Science (Atlanta, GA, 2009) IEEE Computer Society, Los Alamitos, CA, 2009, pp. 3–12.

[24] A. Naor, Y. Peres, O. Schramm and S. Sheffield, Markov chains in smooth Banach spaces and Gromov-hyperbolic metric spaces, Duke Mathematical Journal 134 (2006), 165–197.

[25] J. von Neumann, Zur Theorie der Gesellschaftsspiele, Mathematische Annalen 100 (1928), 295–320.

[26] H. Räcke, Optimal hierarchical decompositions for congestion minimization in networks, in Proceedings of the 40th Annual ACM Symposium on Theory of Computing (Victoria, BC, 2008), ACM, New York, 2008, pp. 255–264.

[27] B. Randrianantoanina, Extensions of Lipschitz maps, International Conference on Banach Spaces and Operator Spaces, 2007.

[28] A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, Algorithms and Combinatorics, Vol. 24, Springer, Berlin, 2003.

[29] M. Sion, On general minimax theorems, Pacific Journal of Mathematics 8 (1958), 171–176.