Determination of radiation attenuation coefficients of BaSO$_4$/PVC and BaSO$_4$/PS for X-ray shielding

S Jaiyen1,2,*, A Phunpueok1,2 and V Thongpool1,2

1Division of Physics, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathumthani, 12110, Thailand
2Materials Physics and Instrumentation Research Unit, Rajamangala University of Technology Thanyaburi, Pathumthani, 12110, Thailand

*E-mail: sarawut@rmutt.ac.th

Abstract. The X-ray radiation shielding properties of PVC and PS containing BaSO$_4$ at different concentrations were investigated using the beam transmission method for X-ray tube with a CdTe detector. The mass attenuation coefficients (μ_m) of these shielding materials were calculated. It was found that the μ_m increased with the increasing of BaSO$_4$ content up to a value of 60% by weight. The highest value of mass attenuation coefficients at 50 kV tube voltage was 5.985 cm2/g for the BaSO$_4$/PVC sheet and 3.991 cm2/g for the BaSO$_4$/PS sheet. The μ_m values were compared between BaSO$_4$/PVC and BaSO$_4$/PS. The results showed that BaSO$_4$/PVC had better X-ray shielding performance than that for BaSO$_4$/PS.

1. Introduction

Recently, the development of techniques using X-ray has prompted increasing interest. X-rays with energies in the range of keV are often used in diagnostic radiography and elemental analysis using the X-ray fluorescence (XRF) technique. In order to avoid unwanted radiation, a variety of shielding materials are used to attenuate or absorb the radiation. Lead (Pb, Z = 82) and other high-Z elements are widely used for radiation shielding because of their high density and significant energy of the K absorption edge. On the other hand, the heaviness and toxicity of lead is a major concern. Many studies have been conducted to find alternatives for shielding materials. A lead-free composite, lightweight material with the ability to attenuate radiation has attracted great interest in many areas. Barium sulphate (BaSO$_4$) is one of the alternative materials that have low toxicity and good radiation absorbency. Over the past several decades, researchers have reported on shielding materials containing BaSO$_4$, such as BaSO$_4$/PVA composites [1], rubber containing barite [2], epoxy/barite and polyester/barite composites [3], and cement paste containing barite [4]. The polymer-based composites are especially interesting for radiation shielding materials [5-6]. To develop a lead-free, lightweight and easily workable radiation shielding sheet, polyvinyl chloride (PVC) and polystyrene (PS) containing BaSO$_4$ were prepared. X-ray shielding ability was studied as well. The PVC and PS containing 0% to 60% by weight of BaSO$_4$ were prepared and exposed to X-ray of various tube voltages.
2. Materials and methods

2.1. Sample preparation
In order to prepare the shielding materials, PVC and PS were mixed using different concentrations of BaSO₄ powder. A PVC solution was prepared by mixing 4 ml of tetrahydrofuran solvent with 1 g of PVC. When the PVC was completely dissolved, the BaSO₄ powder was added and the mixed phase was prepared with BaSO₄ at weight percentages of 0 % (control), 10 %, 20 %, 30 %, 40 %, 50 % and 60 %. The BaSO₄/PVC mixture was left to stir with a rotation speed of 300 rpm for 1 h and then placed in an ultrasonic stirrer for 15 min to ensure good dispersion of BaSO₄ powder throughout the host PVC. Further, the BaSO₄/PVC mixture was poured onto a 10 mm circular glass Petri dish and allowed to dry for 24 h. Similarly, the BaSO₄/PS mixture was prepared by the same method as BaSO₄/PVC. The density of the BaSO₄/PVC and BaSO₄/PS sheets was measured by the Archimedes principle using a microbalance with water as the immersion liquid, while the thickness of the sample sheets was measured by a micrometre.

2.2. X-ray spectra measurements
To investigate the X-ray radiation shielding properties, radiation attenuation experiments were performed using the beam transmission method. The X-ray beams were generated by a silver target X-ray tube (Mini-X, Amptek). The X-ray spectra were measured using a CdTe diode X-ray detector (XR-100T, Amptek). The primary X-ray spectra with 30, 40 and 50 kVp tube voltage were measured using the CdTe detector, as shown in figure 1. X-ray attenuation measurements were performed by positioning each sample sheet between the X-ray tube and detector, where the distance between the X-ray tube and detector was 80 cm. Alignment between the focal spot of the X-ray tube and the CdTe detector was performed using a laser device. The energy calibration of the X-ray detector was carried out using the measured spectra of fluorescence X-ray emitted by Cu, Sn and Pb standard materials.

![Figure 1](image-url)
Figure 1. The primary X-ray spectra with 30, 40 and 50 kVp tube voltage measured by CdTe detector.

3. Results and discussion
Table 1 shows the dependence of density for the sample sheets at different concentrations of BaSO₄ powder. Figure 2 shows the relation between the density and concentration of BaSO₄ of BaSO₄/PVC and BaSO₄/PS sheets. It can be observed that the density of the sample sheets increased with increasing BaSO₄ content. However, the density of the BaSO₄/PVC was much higher than that for the BaSO₄/PS at every concentration of BaSO₄.
Table 1. The density of the prepared sample.

Concentrations of BaSO$_4$ (% by weight)	Density of BaSO$_4$/PVC (g/cm3)	Density of BaSO$_4$/PS (g/cm3)
0	1.460 ± 0.016	1.038 ± 0.005
10	1.500 ± 0.048	1.121 ± 0.013
20	1.628 ± 0.014	1.213 ± 0.007
30	1.779 ± 0.018	1.294 ± 0.005
40	1.860 ± 0.013	1.458 ± 0.009
50	2.092 ± 0.004	1.629 ± 0.017
60	2.364 ± 0.002	1.681 ± 0.003

Figure 2. Effect of BaSO$_4$ concentration addition by weight to density of the sample sheets.

Figure 3. X-ray spectra obtained from 50 kVp tube voltage attenuated by (a) PVC and (b) PS containing BaSO$_4$ at different concentrations.
The measured X-ray spectra obtained from the attenuation of PVC and PS at different concentrations of BaSO₄ are shown in figure 3 (a) and figure 3 (b), respectively. The results show that an increase in BaSO₄ concentration leads to a decrease in X-ray intensity. For the BaSO₄/PS sheets, the intensity slightly decreases for the low energy range of X-ray spectra. On the other hand, the intensity greatly decreases when increasing the BaSO₄ content of the BaSO₄/PVC sheets. Moreover, the X-ray intensities of the PVC and PS containing BaSO₄ with a concentration of 60 % by weight were roughly ten times smaller than that for the PVC and PS without BaSO₄ content. These results indicate that BaSO₄/PVC attenuates X-ray better than BaSO₄/PS at low X-ray energy levels. The X-ray shielding properties of BaSO₄/PVC and BaSO₄/PS sheets were presented in terms of the μ_n (cm²/g). The radiation interaction process removes X-ray radiation from the X-ray tube by absorption in the sample sheets. The X-ray was attenuated to an intensity from I₀ in passing through the sample sheets with thickness x (cm) and ρ is the density of sample sheets (g/cm³). The mass attenuation coefficient is written as follows.

$$\mu_n = \frac{\ln(I_0/I)}{\rho x} \quad (1)$$

Table 2 shows the dependence of the mass attenuation coefficient of the PVC and PS with different concentrations of BaSO₄ content. For the 50 keV X-ray energy, the PVC sheet without BaSO₄ content has $\mu_n = 2.433$ cm²/g, while the PVC with BaSO₄ concentration of 60 % by weight has $\mu_n = 5.986$ cm²/g. This result shows that μ_n of the BaSO₄/PVC sheet with BaSO₄ concentration of 60 % by weight was roughly two times higher than that PVC sheet without BaSO₄. On the other hand, the μ_n of BaSO₄/PS sheet with BaSO₄ concentration of 60 % by weight was roughly six times higher than that of the PS sheet without BaSO₄. These results indicate that the BaSO₄ contributed to the X-ray transmission of PS more than PVC.

Concentrations of BaSO₄ (% by weight)	Mass attenuation coefficient of BaSO₄/PVC (cm²/g)	Mass attenuation coefficient of BaSO₄/PS (cm²/g)							
	30 keV	40 keV	50 keV	30 keV	40 keV	50 keV	30 keV	40 keV	50 keV
0	4.516	3.130	2.433	0.686	0.660	0.636			
10	5.053	3.455	3.038	2.846	1.943	1.764			
20	7.453	5.141	4.599	3.757	2.462	2.362			
30	7.823	5.380	4.990	4.923	3.418	3.288			
40	7.871	6.312	5.012	5.706	3.967	3.705			
50	9.202	6.470	5.886	5.883	4.113	3.979			
60	9.727	7.318	5.986	6.601	4.317	3.992			

In figure 4, the ratio between the mass attenuation coefficient of (a) BaSO₄/PVC and (b) BaSO₄/PS is displayed as a function of the concentration of BaSO₄ and X-ray tube voltage. The data shows that the μ_n of the sample sheets increases with increasing BaSO₄ concentration in every voltage of the X-ray tube. The μ_n of BaSO₄/PVC and BaSO₄/PS were compared using the same method mentioned above. This is related to the shielding ability of the sample sheets. The BaSO₄/PVC showed better shielding ability than BaSO₄/PS over all the BaSO₄ concentrations studied in this work. The difference between the μ_n value of BaSO₄/PVC and BaSO₄/PS may be attributed to the absorption effect of each of the element compositions present in the sample sheets. In addition, the μ_n is sensitive to the effective atomic number of the composites as well as to the density.
Figure 4. Effect of BaSO$_4$ concentration addition by weight to mass attenuation coefficient of the (a) BaSO$_4$/PVC and (b) BaSO$_4$/PS sheets.

4. Conclusion
In this study, a radiation shielding sheet was fabricated using polymer (PVC and PS) and BaSO$_4$, which was more economical than existing lead shielding. The mass attenuation coefficients of BaSO$_4$/PVC and BaSO$_4$/PS sheets increased with increasing BaSO$_4$ content. The best shielding ability of the sample sheets reached 60% by weight of the BaSO$_4$ content. The transmission X-ray spectra were measured at X-ray tube voltages of 30, 40 and 50 kVp. A BaSO$_4$/PVC sheet showed better shielding ability than a BaSO$_4$/PS sheet at every tube voltage. Density and BaSO$_4$ concentration play an important role in shielding ability. The results suggest that the shielding materials fabricated in this work could be effectively used for protection in the low X-ray energy range.

Acknowledgement
This research was supported by the Division of Physics, Faculty of Science and Technology and Materials Physics and Instrumentation Research Unit, Rajamangala University of Technology Thanyaburi, Thailand.

References
[1] Thongpool V, Phunpueok A and Jaiyen S 2015 Appl. Mech. Mater. 804 3
[2] Jaiyen S, Phumsuwan A, Thongpool V and Phunpueok A 2017 Appl. Mech. Mater. 866 204
[3] El-Sarraf M A and Abdo A E 2013 Appl. Radiat. Isot. 79 18
[4] Jaiyen S, Phunpueok A and Potong R 2018 Appl. Mech. Mater. 879 156
[5] Kim S, Dong K and Chung W 2012 Ann. Nucl. Energy. 47 1
[6] Shik N A and Gholamzadeh L 2018 Appl. Radiat. Isot. 139 61