FBS 0107-082: A SYMBIOTIC BINARY IN A RARE PROLONGED OUTBURST?

R. K. HONEYCUTT 1 AND S. KAFKA 2

1 Astronomy Department, Indiana University, Swain Hall West, Bloomington, IN 47405, USA
2 Department of Terrestrial Magnetism, Carnegie Institute of Washington, 5241 Broad Branch Road NW, Washington, DC 20015, USA

Received 2010 March 5; accepted 2010 April 26; published 2010 May 13

ABSTRACT

FBS 0107-082 is an emission line object previously classified as a nova-like cataclysmic variable star. New optical spectroscopy shows very strong hydrogen Balmer lines, along with a nebular forbidden line spectrum and absorption features from an early-F photosphere. When combined with other IR and optical data from the literature, these data point to the object being a symbiotic nova seen in a prolonged outburst. Photometry on timescales of minutes, days, and years shows only very weak variability.

Key words: binaries: symbiotic – stars: individual (FBS 0107-082)

1. INTRODUCTION

FBS 0107-082 (also known as Cet 7, and designated FBS0107 in this paper) was found in the First Byurakan Survey (FBS) for objects with UV excesses. Based on spectra obtained with the 6 m telescope at the Special Astronomical Observatory, Kopylov et al. (1988) provided a preliminary classification as a nova-like (NL) cataclysmic variable (CV). FBS0107 was subsequently listed as a CV in SIMBAD and in the Downes et al. (1997) CV catalog, but has received very little attention since the initial discovery paper. We obtained spectra of FBS0107 in 2005 as part of a survey for winds in NL CVs, finding that the spectrum resembles that of a symbiotic star or planetary nebulae (PNs). We have complemented these initial spectra with multi-epoch photometry and with an analysis of archival ESO spectra.

In this paper, we report on our spectroscopic and photometric findings and discuss the most likely kinds of objects that fit these findings. The star appears to be an unusual symbiotic binary. Symbiotic stars (Kenyon 1986) have evidence for a hot component in the near-UV plus a cool component in the near-IR. In most cases, the hot component is judged to be a white dwarf or evolved subdwarf, and the companion to be an M giant with a strong wind. Nebular emission lines are produced by the action of the radiation field of the hot component on the surrounding plasma from the wind. Symbiotic stars are not a particularly homogeneous group and the evolutionary state of the hot component (e.g., subdwarf or white dwarf) is often uncertain. Our observations are not a perfect fit to the symbiotic classification, but this identification seems to best match the properties of FBS0107.

2. DATA ACQUISITION AND REDUCTION

2.1. Photometry

V-band photometry was obtained over a 1.5 month interval in 2005 on the 0.8 m telescope of Tenagra Observatory. 3 There were typically 1–4 exposures on most clear nights, but on two nights we obtained nearly continuous coverage for several hours. These data were reduced using a custom pipeline consisting of IRAF 4 routines for detector calibrations, followed by the application of SExtractor. 5 The light curves were then generated using the incomplete ensemble photometry technique contained in Astrovor. 6 FBS0107 was also placed on the long-term monitoring program of the Indiana University (IU) 1.25 m autonomous telescope 7 for ~16 months in 2007/2008. The useable data are comprised of 122 exposures on ~113 different nights. The 1.25 m data were also reduced using the IRAF/SExtractor/Astrovar pipeline. Table 1 is a log of our photometric data. Column 1 assigns a number to identify each data set, Column 2 gives the UT dates, Column 3 the telescope used, Column 4 the exposure time in s, Column 5 the number of useable exposures, Column 6 the duration of the sequence, and Column 7 the typical spacing of the exposures.

Both the Tenagra exposures and the IU 1.25 m exposures were compromised by various circumstances, and did not reach the desired (and expected) level of precision. The Tenagra calibration data are acquired automatically, with no user control of the process. In our case the twilight flats, acquired on most evenings, were very underexposed; we ended up using a median combination of all the twilight flats over the ~1.5 months of the FBS0107 Tenagra exposures. Furthermore, the Tenagra bias levels were unstable, sometimes leading to negative sky counts. The IU 1.25 m data and calibrations were also acquired in unattended fashion, during commissioning of the telescope and detector systems. Few twilight flats were acquired, and the nightly dome flats gave poor results. Therefore, we used median sky flats constructed from all the exposures on a given (or adjacent) night. Also, we had significant dark current from the thermoelectrically cooled system that was in service on the IU 1.25 m at this time, which further degraded the signal-to-noise ratio (S/N). Fortunately, Astrovor has sufficient tools to evaluate errors that might result from these difficulties (such as nonlinearity or field errors), and Astrovor also robustly estimates external errors based on the repeatability of all constant stars in the field.

In the end, the average error for stars with brightness similar to FBS0107 was ~0.02 mag for the Tenagra data and ~0.025 mag for the IU 1.25 m data. These errors are for

3 http://www.tenagraobservatories.com/
4 IRAF is distributed by the National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation.
5 SExtractor is a source detection and photometry package described by Bertin & Arnouts (1996).
6 Astrovor is a custom Indiana University package based on the technique described in Honeycutt (1992), but with the addition of a graphical user interface.
7 This facility is located 20 km north of Bloomington, IN, in the Morgan-Monroe State Forest.
Table 1
Photometry Log

Set	UT Range	Tel	Exp Time (s)	No. of Exposures	Dur	Spacing
1	2005 Nov 17	Tenagra	95	96	6.0 hr	140 s
2	2005 Nov 21	Tenagra	95	202	5.1 hr	140 s
3	2005 Nov 5 to	Tenagra	95	37	45 d	1–2 d
	2005 Dec 22					
4	2007 Aug 8 to	IN 1.25 m	240	122	514 d	2–4 d
	2009 Jan 2					

Table 2
Spectroscopy Log

UT Date	Tel	Range (Å)	Exp Time (s)	No. of Exposures
2004 Aug 27	ESO 3.6 m	3450–5240	600	5
2004 Aug 27	ESO 3.6 m	4700–6700	600	18
2005 Oct 25	WIYN 3.5 m	5300–8200	600	5
2006 Jan 03	KPNO 4 m	5600–7900	600	1

differential magnitudes with respect to the ensemble. There are no secondary standards available for this field (although the AAVSO is in the process of establishing such standards) so we used USNO-B1 magnitudes to establish a somewhat crude, but nevertheless realistic, zero point. The average of the B_2 and R_2 USNO-B1.0 magnitudes for several stars near FBS0107 were compared to the Astrovar differential V magnitudes of those same stars, separately for the Tenagra and for the IU 1.25 m data, to find the correction from Astrovar magnitude to V. This process has a formal uncertainty of 0.06 (sdm) mag, but the zero-point error could be as large as 0.15 mag considering possible systematic errors in USNO-B1.0, plus errors introduced by our averaging of B and R to estimate the V magnitude.

2.2. Spectroscopy

Five spectra over \sim1 hr were obtained in 2005 using MOS/Hydra multiple object spectrograph on the WIYN telescope. Grating 600 was used in the first order, providing coverage of \sim5300–8200 Å. The “red” 2′′ fiber bundle was employed, yielding \sim3 Å resolution; numerous other fibers were used for sky subtraction. Also, a single spectrum was obtained in 2006 using the RC slit spectrograph on the Kitt Peak 4 m telescope. Grating KPC-007 was used in the first order, providing coverage \sim5600–7900 Å at \sim3 Å resolution. Finally, the archives of the ESO Observatory were found to contain spectra of FBS0107 acquired during a single night in 2004 using the EFOSC-2 spectrograph on the 3.6 m telescope at La Silla. Eighteen spectra were available using grism 18, covering \sim4700–6700 Å along with five spectra using grism 7, with useable coverage of 3700–5240 Å. A 1″ slit was used, and the instrument manual gives a resolution of 7.4 Å for these setups. However, we find that the narrowest emission lines in the FBS0107 spectra have

FWHM \sim 5–6 Å. For detector calibrations we used standard IRAF procedures, and for spectral extractions and wavelength calibrations we used IRAF’s onedspec/twodspec packages. No spectrophotometric calibrations were applied for any of the spectra, and the continua in the reduced WIYN and Mayall spectra were normalized to unity. Also, no corrections were made for telluric spectral features in the near-IR. Table 2 is a log of the spectrographic observations.

3. ANALYSIS

3.1. Photometry

Figure 1 plots the results from the two nights of nearly continuous monitoring (sets 1 and 2 in Table 1). The top plot appears to contain a small outburst of amplitude \sim0.07 mag, while the bottom plot shows a decline of \sim0.04 mag over 5 hr. The Astrovar light curves of several field stars of similar brightness to FBS0107 were examined and did not show such features. The features are therefore probably real, but since they barely exceed the errors in the light curves we are reluctant to draw any conclusions from them. The variability over a night is smaller than expected from CV-like flickering from accretion.

Figure 2 shows the longer-term light curve of FBS0107. The top panel contains all the data in sets 1, 2, and 3 of Table 1, while the middle and lower panels contain the data for the
table 1. photometry of FBS0107 over one season in 2008, which is also part of data set 4 in Table 1. Lower panel: photometry of FBS0107 over one season in 2008, which is also part of data set 4 in Table 1.

Figure 2. Top panel: photometry of FBS0107 over 1.5 months in 2005. These are plots of data sets 1, 2, and 3 in Table 1. Middle panel: photometry of FBS0107 over one season in 2007, which is part of data set 4 in Table 1. Lower panel: photometry of FBS0107 over one season in 2008, which is also part of data set 4 in Table 1.

Figure 3. Like Figure 2 except that points with errors exceeding 0.035 mag have been deleted, and the single-night sequences (data sets 1 and 2 in Table 1) have been replaced by single mean points. The remaining points show more clearly a number of systematic changes in brightness that occur over intervals of a few weeks.

3.2. Spectroscopy

No exposure-to-exposure changes were apparent in the line strengths of the reduced spectra from any given night. Furthermore, we did not detect any radial velocity variations during these sequences, to within \(\sim \pm 10 \text{ km s}^{-1} \) for five WIYN spectra, and to within \(\sim \pm 15 \text{ km s}^{-1} \) for the ESO spectral sequences. Therefore, we median-combined the five WIYN spectra, the 18 ESO red spectra, and the five ESO blue spectra, for further analysis.

First, we compare the WIYN and KPNO 4 m spectra. These are separated by two months but have similar resolutions and wavelength ranges. Figure 4 shows the average of the five WIYN spectra of FBS0107 along with an inset plot of the \(\text{H} \alpha \) line on an expanded scale, while Figure 5 is a similar plot for the KPNO 4 m spectrum. In each case \(\text{H} \alpha \) dominates the spectrum, seen at a rather spectacular \(\gtrsim 50 \times \) the continuum level, at this resolution. The \(\text{H} \alpha \) line is steeper on the red side, with this asymmetry being more pronounced in the KPNO 4 m spectrum. The weaker lines are shown in Figures 6 and 7 (separated by two months) appear identical. Most of the lines are due to He I and O I. There is one absorption feature near 7772 Å which we assign to O I.

Figure 8 shows the median-combined ESO spectra (both red and blue). The identifications of the strongest lines are given in Table 3, where the equivalent width measures (EW) have a typical error of \(\sim \pm 0.5 \text{ Å} \). The lines are mostly emission lines of hydrogen and He I, plus forbidden emission lines of oxygen and iron. We also see weak absorption features at Ca H/K and Na D. The inset shows the Balmer discontinuity in strong absorption. In order to preserve information about the Balmer discontinuity, the continua of the ESO spectra have not been normalized to unity as was done for the WIYN and KPNO spectra. A broad emission feature near 6160–6170 Å in Figures 6

two observing seasons in set 4. It seems clear from Figure 2 that there is no systematic long-term trend over these 4 years. Nevertheless, the scatter generally exceeds the individual error bars by three to four times, at least for the points having smaller errors. To further illustrate this effect, Figure 3 is like Figure 2 except that data points having errors \(>0.035 \text{ mag} \) are excluded (these were obtained under partly cloudy conditions). Also, the two sequences over single nights have been averaged to one data point each for Figure 3. One can find in Figure 3 a number of instances of systematic drifts in both directions amounting to \(\sim 0.1 \text{ mag} \) over 15–20 days.

There is an indication of much longer timescale variability from the magnitudes in USNO-B1.0. The average of the \(B \) and \(R \) magnitudes in USNO-B1.0 for FBS0107 is 14.72 (epoch 1951–1954). This is 0.33 mag brighter than our average magnitude of 15.05 in 2005–2008. One might question this result because of the uncertain effect of averaging \(B \) and \(R \) to estimate \(V \). However, the exercise is robust in the following sense: the magnitude differences between our Astrovar instrumental magnitudes and the \(B, R \) average for our secondary standards are consistent to within 0.1 mag (s.d.o.), whereas the similar magnitude difference of FBS0107 is off by 0.33 mag from the mean of the other field stars. In other words, if one tries to treat FBS0107 as a secondary standard, it deviates from the field stars mean of the other field stars. In other words, if one tries to treat magnitude difference of FBS0107 is off by 0.33 mag from the}

\[-0.5 \text{ Å}. \] The lines are mostly emission lines of hydrogen and He I, plus forbidden emission lines of oxygen and iron. We also see weak absorption features at Ca H/K and Na D. The inset shows the Balmer discontinuity in strong absorption. In order to preserve information about the Balmer discontinuity, the continua of the ESO spectra have not been normalized to unity as was done for the WIYN and KPNO spectra. A broad emission feature near 6160–6170 Å in Figures 6
Figure 4. Average of five WIYN exposures of FBS 0107-082 on 2005 October 25 UT. There has been no correction for telluric absorption features. Also the correction for sky emission lines is incomplete. This has left some residual OH emission features redward of 7700 Å and some unknown contribution of night sky \([\text{O} \text{i}] 5577\) to the \([\text{He} \text{i}] 5582\) line. The continuum is normalized to unity, and the inset shows H\(\alpha\) on an expanded scale.

Figure 5. Spectrum of FBS 0107-082 on 2006 January 3 UT using the KPNO 4 m. There has been no correction for telluric absorption features. The continuum is normalized to unity, and the inset shows H\(\alpha\) on an expanded scale.

Figure 6. Blue portions of the data in Figures 4 and 5, plotted for the wavelengths in common and using an expanded intensity scale to emphasize the weaker features. The apparent emission line near 6650 Å in the 4 m spectrum is an artifact.

Figure 7. Red portions of the data in Figures 4 and 5, plotted for the wavelengths in common and using an expanded intensity scale to emphasize the weaker features. Broad telluric absorption is seen near 7190 and 7620 Å.

and 8 is assigned to \(\text{Fe} \text{i} 6164\), likely blended with an unidentified contributor which increases the breadth.

4. DISCUSSION

The 1984 spectrum of FBS0107 in Kopylov et al. (1988) covers the range 3240–5040 Å at a resolution of 4.5 Å. It shows narrow Balmer emission lines with a steep decrement. \(\text{He} \text{II} \lambda 4686\) is weak, but \(\text{[O} \text{III}] \lambda \lambda 5959, 5007\), and \(\text{[Fe} \text{II}]\) are strong. The Balmer discontinuity is not apparent in the Kopylov et al. spectrum. Their detector response is apparently weak below 3650 Å but a Balmer discontinuity in emission can be ruled out. Overall, the 1984 spectrum appears very similar to the ESO 2004 spectrum, indicating little variability in the spectrum of the star over those 20 years.
Below we discuss a number of emission line objects as candidates for the nature of FBS0107, noting the similarities and differences to the currently known properties of FBS0107. We begin with symbiotic stars.

4.1. Symbiotic Systems

Symbiotic stars (Friedjung & Viotti 1982; Kenyon 1986; Allen 1988; Mikolajewska et al. 2003) are interacting binaries with orbital periods of hundreds of days, consisting of a late-type giant donor star transferring gas (generally via a wind) to a much hotter companion. The hot object appears most often to be a white dwarf or hot subdwarf, but may be a main-sequence star or neutron star in some instances. The hot star photoionizes the wind, giving rise to a nebular spectrum with emission lines due to species such as H, He, H, He, [O III], [Fe II], etc. Symbiotic stars are a rather heterogeneous group, and might better be considered as a common phenomenon rather than a particular configuration and/or evolutionary state. The FBS0107 emission lines seen in Kopylov et al. (1988) and in Figures 4–8 of this paper are generally consistent with those seen in FBS0107. The few absorption features we see in the late-type companion. This is typically an M giant, but can be as early as G5 (Belczyński et al. 2000); no such features are seen in FBS0107. The few absorption features we see in FBS0107 do not belong to a late-type star. Using the plots and tables in Jaschek & Jaschek (1995) for the variations of the EWs of absorption features with spectral type, we find the following constraints on the absorption line spectral class for FBS0107: EW = 0.9 Å for Ca II 3934 is most consistent with A0–A5; EW = ~0.5 Å for NaD is most consistent with A5–G5, and EW = 1.2 Å for O 7772 Å is most consistent with A0–F0 III–I. (This O line is strongly luminosity sensitive, reaching EW ~ 2 Å in supergiants; Parsons 1964.) Overall, the results show that a late-A to early-F photospheric absorption spectrum is present in FBS0107. Also, the Balmer continuum is in absorption in FBS0107. In nearly all other cases in which the Balmer discontinuity is visible in a symbiotic, the jump is part of the nebular spectrum and appears in emission (see the compilations of spectra of symbiotics in Allen 1984 and Munari & Zwitter 2002).

The Barbier & Chalonge system of spectrophotometric classification uses the parameter D to measure the strength of the Balmer jump, where D is the log of the ratio of the fluxes on the red and blue sides of the discontinuity. From the spectrum in Figure 8, we measure $D = 0.30$. A convenient calibration of D with spectral type can be found in Golay (1974). For giants, $D = 0.3$ corresponds to either B5 or F1, and F1 is consistent with our earlier deduction of a late-A to early-F spectrum in FBS0107.

We also note that two emission features at λ6825 and λ7082 are not present in our spectra. These two features are probably due to Raman scattering of O III resonance lines by neutral hydrogen (Schmid 1989) and appear in most high-excitation symbiotics. This distinction may not be compelling, however, because FBS0107 has a quite low-excitation emission line spectrum.

IR photometry can potentially be used to discriminate between symbiotic binaries and other sources such as PNs and CVs, as well as between S-type and D-type symbiotics. Using Two Micron All Sky Survey (2MASS) photometry, Figure 9 is a plot of $J – H$ versus $H – K_S$ for CVs (Hoard et al. 2002), symbiotics (Phillips 2007), and PNs (Ramos-Larios & Phillips 2005). We see that the location of FBS0107 falls firmly among the

![Figure 8](image-url)
PNs, not the symbiotics, mostly because the $J - H$ color is bluer than for most symbiotics. Most symbiotics contain an M giant, which contributes to making the $J - H$ color redder. If FBS0107 is a symbiotic, then either the M star is heavily dust-obscured in the optical, or the M star is otherwise hidden.

Proga et al. (1994) found that the ratio of the strengths of the H\textsc{i} emission lines $\lambda 6678/\lambda 5876$ fall in the range 0.15–0.3 for D-type (dusty) symbiotics, and 0.3–2.0 for S-type, which is attributed to a systematic difference in densities for the line-forming regions in the two types. This ratio is ~ 0.5 in FBS0107 (see Table 3). This value is an upper limit because there has been no correction for differential extinction between the wavelengths of the two lines. If FBS0107 is a symbiotic star, it appears that this ratio is consistent with either D- or S-type.

The variability properties of FBS0107 seem consistent with FBS0107 being a symbiotic star, but offer no particular evidence in favor. The lack of detectable radial velocity variations is not surprising given the long orbital periods and relatively small amplitudes of the radial velocities in symbiotic binaries. The variability in the H\textalpha{} profile seen in FBS0107 is also common in symbiotic binaries, but not uniformly present. Likewise flickering (not seen in FBS0107) is common (Belczyński et al. 2000) but has not been reported for all symbiotics.

Finally, symbiotic stars are often associated with a resolved nebula. The raw long-slit KPNO 4 m spectra were carefully examined for any extension of the emission lines along the slit, with negative results. The forbidden lines in FBS0107 indicate that a nebular emission line emission region is present in FBS0107, but the angular size of the nebula must be quite small.

The emission line species seen in FBS0107 require photons with energies ~ 35 eV for ionization, which in turn requires temperatures of $\gtrsim 10^5$ K. The early-F star seen in the spectrum cannot be the source of this ionizing radiation, instead requiring the presence of a white dwarf or hot subdwarf. In principle, the F star could be the mass donor and supplier of the nebular gas (via a wind), but this would require considerable extension of the definitions and mechanisms of symbiotic binaries.

A substantial fraction of symbiotic binaries undergo outbursts lasting weeks to decades, with a brightness increase of 2–7 mag. These are thought to be due to thermonuclear burning of hydrogen in the white dwarf envelope, analogous to the outbursts of ordinary novae, but much slower. Like ordinary novae, these symbiotic novae often display an A–F absorption spectrum during the early outburst stages, due to an optically thick envelope that develops around the erupting star. AG Peg, RT Ser, and RR Tel (see discussions and references in Kenyon 1986) are examples of symbiotic novae with A–F absorption line spectra at maximum. The outbursts can sometimes last for decades, and for more than a century in the case of AG Peg. In each of these three systems, near outburst maximum, the M star spectrum is not seen in the near-IR. Emission lines appear during the decline from maximum, with the emission lines evolving to higher excitation as the decline progresses. (The AG Peg emission lines also showed P Cygni profiles and multiple velocity components, behaviors similar to that of ordinary novae.) Our spectra of FBS0107 are mostly consistent with that of the three symbiotic novae mentioned above, as displayed during the early portion of the decline from maximum. At this stage they have retained some of the absorption lines from near maximum, and have developed a relatively low-excitation emission line spectrum, prior to the development of high-excitation emission lines and the emergence of the spectrum of the M star during late decline. All three of the symbiotic novae mentioned above showed the Raman emission feature at $\lambda 6825$, which is not present in FBS0107; this could be due to FBS0107 having not yet developed a high-excitation emission line spectrum.

The photometry of FBS0107 raises two difficulties with the symbiotic nova interpretation. The first is the almost total lack of variability, at least by symbiotic nova standards. All symbiotic systems (including symbiotic novae) seem to have significant photometric variability on many timescales, with many different origins (e.g., Skopal 2003), while conspicuous variability seems to be missing in FBS0107. The second issue concerns the timescale of the conjectured FBS0107 outburst. The slowest symbiotic nova, AG Peg, has a mean decline of 2.3 mag per century (Kenyon 1986). We cannot rule out the possibility that the 1951–1954 Palomar Schmidt exposures were acquired during a separate earlier outburst. But if FBS0107 has remained bright since 1951–1954, then the decline was only $\lesssim 0.3$ mag over 50 years. If FBS0107 is indeed a symbiotic nova in a prolonged outburst, then this outburst is extremely slow and the photometric stability during outburst is very high.

4.2. Other Possibilities

The optical emission lines in FBS0107 resemble that of high-N_e PNs, as is true for many symbiotics. However, compared to the template PN spectra in Munari & Zwitter (2002), the ratios Balmer/[O\text{iii}] and [O\text{iii}]/[O\text{i}] are each much larger in FBS0107 than in a PN.

Gutiérrez-Moreno et al. (1995) provide a diagnostic diagram to separate PNs from symbiotic stars, using the line ratios $R1 = [O\text{iii}]\lambda 4363/H\text{\ensuremath{\beta}}$ versus $R2 = [O\text{iii}]\lambda 5007/H\text{\beta}$. The [O\text{iii}] line strengths are ratioed to a nearby Balmer line partly to minimize the effects of differential extinction, which varies slowly with wavelength. In our case, it is also important to use such ratios.
because they are nearly independent of the spectrophotometric calibration. This unknown calibration, which is normally critical in using emission line ratios for quantitative purposes, is also slowly varying with wavelength. Therefore, we should still be able to apply R_1 and R_2 to FBS0107. Note that it is not safe for us to use the ratio $R_3 = [\text{O}III] \lambda 5007/(\text{O}III] \lambda 4363$ as described in Gutiérrez-Morenó et al. (1995) because of the larger wavelength separation of the two features.

Gutiérrez-Morenó et al. (1995) find that in a plot of R_1 versus R_2 (their Figure 1) the region divides into three wedges emanating from the origin. The lower wedge (Region A) contains only PNs, while the upper wedge (Region C) contains only symbiotic stars. The middle wedge (Region B) is lightly populated with young PNs. From Table 3, we find $R_1 = 0.06$ and $R_2 = 0.36$ for FBS0107. This point falls very close to the origin of the diagnostic diagram, in a region where the demarcation wedges are converging and there are very few objects. This is because the Balmer lines in FBS0107 are very strong compared to [OIII], pushing the values of R_1 and R_2 to very small values. It is the normalization process using nearby Balmer lines (which we need to retain) that is causing the difficulty; the ratio of the two [OIII] lines is the important variable, and that ratio is within the range of the plot. Therefore, we characterize the two dividing lines for the three wedges as $R_4 \equiv R_1/R_2 = 0.17$ for the upper line and $R_4 = 0.075$ for the lower line. For FBS0107, $R_4 = 0.17$. This places FBS0107 on the dividing line between symbiotics and young PNs, and quite some distance from the wedge containing PNs.

A major difficulty in associating FBS0107 with PNs is that the photospheric features in FBS0107 are not that of a PN central star (hot subdwarf), but rather of an early-F giant. Furthermore, we detect no nebulosity around FBS0107.

B[e] stars (Zickgraf 1998) are early-type emission line stars with low-excitation permitted and forbidden emission lines, plus the IR signature of hot dust. They have similarities to both symbiotic stars and to compact PNs. As in symbiotics, the group is not homogeneous and may represent more of a common phenomenon than a group having a common physical nature. Unlike symbiotics, they are not required to have a composite spectrum, and may mostly be single stars. The observational similarities between B[e] stars and symbiotic binaries in outburst are strong because the M star in symbiotics is often hidden from view during eruption. It seems likely that there is cross-contamination between lists of symbiotics and B[e] stars, awaiting clarification based on the binary nature of the object.

B[e] stars are mostly B stars, so the late-A/early-F spectrum in FBS0107 is not a good fit to the B[e] grouping. Another distinction may be between the “hot dust” in B[e] stars and the cooler dust in D-type symbiotic stars. The 2MASS colors of FBS0107 is not a good fit to the B[e] grouping. Another another example is that FBS0107 falls just outside the blue edge (in both colors) of the B[e] star grouping, which is an inconclusive result.

Finally, one other object in the Kopylov et al. (1988) list has similarities to FBS0107. This object (FBS 0022-021 = Psc 3) has a blue continuum and numerous emission lines, some being forbidden. Zharkov et al. (2004) suggested that this might be an η Car-type object, partly due to the Fe-rich nature of the spectrum. However, unlike FBS 0022-021, the Fe lines in FBS0107 are not particularly strong or numerous.

5. CONCLUSIONS

Although our conclusion is not as rugged as desired, our opinion is that FBS0107 is most likely a symbiotic nova, seen in prolonged outburst. This judgment is partly due to the shortcomings of various competing identifications, but is mostly based on the presence of the early-F photosphere in the spectrum of FBS0107. The presence of this absorption spectrum is quite secure and is difficult to explain without invoking the outburst phase of a nova event. The fact that FBS0107 deviates somewhat from the properties of most symbiotic stars insofar as IR colors and emission line ratios is tentatively attributed to the fact that FBS0107 is in prolonged outburst, and therefore not representative of the majority of symbiotic binaries which are found in quiescence. A somewhat worrisome implication of our interpretation is that FBS0107 must be an extreme member of the small class of symbiotic novae, having an outburst timescale perhaps as long as that of AG Peg, and changing so slowly at present that photometric variations are barely detectable.

Symbiotic binaries have been considered as progenitors of Type Ia supernovae (SNe Ia; e.g., Munari & Řenzini 1992; Kenyon et al. 1993; Hachisu et al. 1999), especially the subclasses of recurrent novae (Mikołajewska 2008) and symbiotic novae (e.g., Hachisu et al. 2008). Note, however, that there are considered arguments against symbiotic binaries being a significant channel for SN Ia (e.g., Hillebrandt & Niemeyer 2000; Iben & Fujimoto 2008). In any case, this aspect of symbiotic binaries may lend additional motivation to understanding the nature of FBS0107, especially if FBS0107 is able to remain in very protracted thermonuclear outburst, as we are suggesting.

Fortunately, our symbiotic outburst hypothesis has fairly straightforward tests. If FBS0107 is currently in symbiotic outburst, then photographic plate archives may provide a record of the pre-outburst state. Also, narrow-band imaging at high angular resolution may reveal nebulosity. Non-optical observations can further discriminate among the possible candidates for the nature of FBS0107; for example, it would be most interesting to know if FBS0107 is (or has been) a supersoft X-ray source, indicative of steady nuclear burning. Overall, it seems that one of our more definite conclusions is the all-too-common ending to observational papers that “more observations are needed.”

REFERENCES

Allen, D. A. 1984, Proc. A.A.S., 5, 369
Allen, D. A. 1988, in IAU Colloq. 103, The Symbiotic Phenomenon, ed. J. Mikołajewska et al. (Dordrecht: Kluwer), 3
Belczyński, K., Mikołajewska, J., Munari, U., Ivison, R. J., & Friedjung, M. 2000, A&AS, 146, 407
Bertin, E., & Arnouts, S. 1996, A&AS, 117, 393
Carpenter, J. M. 2001, AJ, 121, 2851
Downes, R., Webbink, R. F., & Shara, M. M. 1997, PASP, 109, 345
Friedjung, M., & Viotti, R. 1982, in IAU Colloq. 70, The Nature of Symbiotic Stars (Dordrecht: Reidel), 95
Golay, M. 1974, Introduction to Astronomical Photometry, Astrophysics and Space Library (Dordrecht: Reidel), 41
Gummersbach, C. A., Zickgraf, F-J., & Wolf, B. 1995, A&A, 302, 409
Gutiérrez-Morenó, A., Moreno, H., & Cortes, G. 1995, PASP, 107, 462
Hachisu, I., Kato, M., & Nomoto, K. 1999, ApJ, 522, 487
Hernanz, M., & José, J. 2008, New Astron. Rev., 52, 386
Hillebrandt, W., & Niemeyer, J. C. 2000, ARA&A, 38, 191
Hoard, D. W., Wachter, S., Clark, L. L., & Bowers, T. P. 2002, ApJ, 565, 511
Honeycutt, R. K. 1992, PASP, 104, 435
Iben, I., & Fujimoto, Y. 2008, in Classical Novae, ed. M. F. Bode & A. Evans (Cambridge: Cambridge Univ. Press), 34
Jaschek, C., & Jaschek, M. 1995, The Behavior of Chemical Elements in Stars (Cambridge: Cambridge Univ. Press)
Kenyon, S. J. 1986, The Symbiotic Stars (Cambridge: Cambridge Univ. Press)

Kenyon, S. J., Livio, M., Mikolajewska, J., & Tout, C. A. 1993, ApJ, 407, L81

Kopylov, I. M., Lipovetsky, V. A., Somov, N. N., Somova, T. A., & Stepanian, J. A. 1988, Astrofizika, 28, 287

Mikolajewska, J. 2003, in ASP Conf. Ser. 303, Symbiotic Stars Probing Stellar Evolution, ed. R. L. M. Corradi et al. (San Francisco, CA: ASP), 9

Mikolajewska, J. 2008, in ASP Conf. Ser. 3401, RS Ophiuchi (2006) and the Recurrent Nova Phenomenon, ed. A. Evans et al. (San Francisco, CA: ASP), 42

Munari, U., & Renzini, A. 1992, ApJ, 397, L87

Munari, U., & Zwitter, T. 2002, A&A, 383, 188

Parsons, S. B. 1964, ApJ, 140, 853

Phillips, J. P. 2007, MNRAS, 376, 1120

Proga, D., Mikolajewska, J., & Kenyon, S. J. 1994, MNRAS, 268, 213

Ramos-Larios, G., & Phillips, J. P. 2005, MNRAS, 357, 732

Schmid, H. M. 1989, A&A, 211, L31

Skopal, A. 2003, in ASP Conf. Ser. 303, Symbiotic Stars Probing Stellar Evolution, ed. R. L. M. Corradi et al. (San Francisco, CA: ASP), 92

Zharikov, S., Tovmassian, G., & Costero, R. 2004, RevMexAA Conf. Ser., 20, 44

Zickgraf, F.-J. 1998, in B[e] Stars, ed. A. M. Hubert & C. Jascheck (Dordrecht: Kluwer), 1