A new model of the universe based on the transition along a straight line

Hassan fallah
Melli Bank employee of Iran
Corresponding Author: Hassan fallah
Email: he8622@gmail.com

Abstract

Cosmological observations show that the cosmos has almost flat space geometry and is located in a spatial expansion phase. The accelerated expansion of the cosmos has been proven by the observable data. In the framework of standard cosmology, such expansion requires the presence of an unknown dominant energy component called dark energy. Dark energy is responsible for the accelerated expansion of the cosmos and has anti-graphetic effects. The discovery of the nature of dark energy in modern cosmology and the physical theory in the past decade has been a major challenge. Despite the theoretical problems in recognizing dark energy, there are many very strong and independent observational reasons for its presence. In view of the existence of a parallel universe, infinity is bounded infinitely to the infinite direction of the sphere. In general, it can be concluded that the factor of momentum is the momentum moving in the dimension of space. Another result of the existence of parallel universes is the equivalence of the three dimensions of space, and not only from the far side, we can imagine a three dimensional object two dimensional, or even one-dimensional, or even a point, but in reality it is the same. A new model of the universe that justifies the transition of the entire cosmos along a straight line. This transition movement has begun since the start of the Big Bang and has continued along with the expansionary and infinite expansion of the universe. The straight line is the height of a cone to the inside of the x-axis and to move this transition inside this cone from the x-axis to its base.

Keywords: Big Bang, Modern cosmology theory, Inflation, Transition.

I. Introduction

Our universe is both ancient and vast, and expanding out farther and faster every day. This accelerating universe, the dark energy that seems to be behind it, and other puzzles like the exact nature of the Big Bang and the early evolution of the universe are among the great puzzles of cosmology [I,II]. Cosmic inflation is a theory of exponential expansion of space in the early universe. The inflationary epoch lasted from 10^{-36} seconds after the conjectured Big Bang singularity to some times between 10^{-33} and 10^{-32} seconds after the singularity. The universe is generally understood to have begun with the Big Bang, followed almost instantaneously by cosmic inflation; an expansion of space from which the universe is thought to have emerged 13.799 ±
0.021 billion years ago [III]. Alexander Friedman in 1922 suggested that the universe was expanding, Albert Einstein was sure that he was wrong [IV]. Einstein published the model of a fixed cosmos, and still believed that this model was correct. In an unusually high-frequency error, Einstein reinforced his baseless beliefs with an incorrect calculation, suggesting that Friedman's theory violates the energy conservation law. Einstein admitted to his mistake and wrote a letter to recapture his former opinion: General relativity equals the permission of an expanding cosmos. The Big Bang theory, which began with Friedman's calculations in 1922, is a conventional and accepted theory by cosmologists [V]. The expansion of the universe was first observed in the early 1920s by Vosto Melvin Slifer and was developed by Edwin Hubble in 1929 in the form of Hubble's law: on the average, galaxies are moving away from us at a rate close to their distance [I]. In 1965, Arnaud Penyazs and Robert Wilson saw the microwave radiation obscuring the field, which goes all the way to the earth - this radiation, then, is the first of a fiery and dense ball. Based on data collected by the COBE satellite, we know that the spectrum of this field radiation is closely matched to the predicted temperature range of the young hot cosmic rays [4, 5]. Also, Nucleosynthesis calculations in the early universe show that the Big Bang theory provides a detailed description of the distribution and amount of light atomic nuclei in the cosmos [VI].

A transition movement has begun since the beginning of the Big Bang and has continued along with the expansion of the cosmos. Here, a straight line is the height of a cone to the inner x-angle and in order to move this transition inside this cone, from the x-axis to its base, the cone itself is a part of the sphere with an infinite radius ∞, with the center of the sphere and the point. The top of the cone is aligned. This new model of the universe answers all questions logically and can be completely flawed. So that it cannot be considered a theory. And the real model of the universe can be that it explains all the rules of the system of nature and beyond of nature and everything about before and after the great explosion. The emergence of gravity and the creation of black holes are one of the issues that are being considered. The next issue is how to overcome the force of gravity of the earth, except the technology of the science of the age. On this basis, it is possible to travel in space and time, or to bend the space, as well as justify and present a model of parallel universes based on this logic of the model of the transitional movement of the universe. We can justify the transitional motion of the entire cosmos of the celestial mass also, compare the celestial objects with each other in terms of alignment.

II. The horizon problem

But despite these successes, Hotbang theory cannot answer a few basic questions; first, why the cosmos is so homogeneous and homogeneous in large scale? By looking at the cosmic background radiation, it can be seen that the different points of the sky, with a high degree of accuracy (from one to one hundred thousand), in all respects have the same characteristics. Typically, in order for the two objects to be similar, they must be in contact with each other so as to achieve the thermal equilibrium [I-IV]. For example, when you place a hot cup of tea in the room, they will be cooled out to a certain degree in the heat. But two points in front of each other in the sky, whose light comes from the period of reflection of light and matter, cannot
be in contact with each other, since each of them has been on the road since then only to the point where we are going to reach [VII, VIII].

While at least as much time has needed to interact with the other point. Of course, by doing the calculations, it can be shown that even two points at an angle of about two degrees in the sky did not have enough time to reach the thermal equilibrium, because two points must have reached the thermal equilibrium before the period of reflection. The period of discontinuity is said to be due to the expansion of space and, consequently, to the reduction of the temperature of the universe, the photon energy has decreased to a great extent, since then, photons no longer interact with atomic nuclei and have been freely published in space (see Fig. 1.). Until then, photons were unable to travel long distances due to the large dispersion of nuclei. Therefore, since for the interaction of two points with each other, the light must cross their distance, than the normal state after this period, more time is needed to reach the thermal equilibrium. The question of why the radiation spectrum of the cosmic background is almost the same in all directions is known as the horizon problem [VI-VIII].

Flat universe

According to observational observations, especially cosmic background radiation, the world is almost flat. In fact, geometry of space time is described by the familiar geometry of Euclidean or, in other words, Minkowski metric. According to Einstein's theory of general relativity, spacetime can be curvature depending on the distribution of the density of matter (or energy) within it. If the density of matter in the world is less than a certain value known as critical density, the curvature is negative and the universe is open; in fact, the universe will continue to expand forever. If the density of the whole material is greater than the critical density, then the curvature is positive, so the world is closed; in other words, the expansion of the universe ceases after some time and begins to collapse to reach the singularity point [IX].
In the case where the density of matter in the universe is equal to the critical density, we face a flat universe whose curvature is zero (see Fig. 2.). It is also called the density parameter relative to the density of the entire universe with its critical density at any time. According to the above, it is easy to get, if this parameter is equal to one, the universe is flat, and if it is larger or smaller than one, then the space-time curvature will be positive and negative, respectively. According to the latest observation data, the density parameter is now very close to one and the universe is accurately half a percent flat. By solving the equations, it can be shown that over time, the deviation from the flat increases, so that the smallest deviation from the flat in the early days of the universe, very soon leads to a world with non-zero curvature\[X, XI\]. So, given the current value of the density parameter, the more we go backwards, the closer to this parameter and the world becomes closer to the flat. For example, at the time of the rejection, the difference in the density parameter of the number 1 is from the order of one to one hundred thousand. In the nucleation period (one second after the big bang), this value was at a level of one billion billion, and in the energy scales of the electrospray (one billionth of a second after the big bang), the cosmos was flat at one billionth billion bucks. As if the cosmos has a fine adjustment. Any slight difference from this initial value could have led to a huge difference and brought the universe a different way [XII].

Inflation model

Although the characteristics of a large explosion are very specific, we now know that the laws of physics provide a mechanism that achieves precisely this kind of explosion. The main characteristic of the physical laws that make inflation possible is the existence of a state of matter with a very high energy density, so that this density cannot be reduced rapidly. In such a case, it is called "vacuum cleaner". The vacuum represents the lowest possible energy density, and the coherence indicates that this mode is temporary. For a time on which the initial cosmic scale can be considered high, the vacuum is treated as if the energy density cannot be lowered, because the
energy reduction process is slow and time-consuming. The rapid expansion of the universe during the period of inflation caused the particles to be diluted; thus, their amount in contemporary cosmos would be negligible. Also, the two points that are currently far away from each other, were able to interact with each other during the pre-inflationary period, because the inflation caused them to fall apart much faster than the speed of light [I-V]. Therefore, two points seemingly unrelated to each other at the present time, before the inflation in the heat balance. In the case of bedding, it can also be argued that due to the large amount of cosmos in this period, any initial curvature of space time has led to a world that is very close to the planet's world, to the extent that today the cosmos is almost flat. Only in the distant future, once again, the density parameter will be spaced from one (see Fig.3).

In addition to the above, we now know that the inflation model plays an important role in describing the origin of structures in the universe and the existence of anisotropy in the cosmic background radiation spectrum [XII]. As already mentioned, the spectrum of the radiation of the cosmic background is not completely homogeneous, but rather insignificant temperature fluctuations from one to one hundred thousand, it is observed. Probably these gains were amplified by gravity and therefore regions of greater and greater density were created that formed the first nuclei for the first stars, and later led to the construction of larger structures such as galaxies, galaxy clusters and eventually superclusters in the cosmos.

Fig. 3: The generalization of the Big Bang theory is based on the inflation model

Inflation and a special explosion

Consider the horizon problem - the same difficulty of understanding the large-scale homogeneity of the cosmic universe that was raised in the traditional big bang theory. Suppose we can examine the background of the visible universe, a cosmic radiant current of nearly 10 billion light years. Until the end of inflation, inflation theory will not be the same as the classic big bang theory. But in the theory of inflation, the cosmic universe experiences a very intense expansion during the inflationary period. Before the swelling, the visible space was so incredibly small. Since this range is very small, it has enough time to achieve a temperature equilibrium, just like a glass of hot coffee, which cools the room temperature in sufficient time. So, in the theory of inflation, a temperature equilibrium is obtained before inflation occurs [XIII, XIV]. Then the inflation process was expanded to such an extent that the whole cosmos
would be visible to us. Therefore, equilibrium and homogeneity are maintained by this type of expansion, since we assume that the laws of physics are the same everywhere. In the period of inflation, the specific nature of vacuum creates significant changes in the equations describing the universe evolution. In this period, gravity acts to accelerate the expansion, not to slow it down. During the inflation period, the universe is rapidly and severely driven to a massive critical mass. This effect is understandable in terms of accepting the relationship between critical mass density and geometric flatness of space in general relativity. The high expansion coefficient of the swirl moves the cosmos to flat, as the planet looks flat, while it is really round. One part of the space, if enlarged enough, looks flat [XV]. It can be said that even now mass density should be very close to critical density. As a result, measuring the mass density of the cosmos can be an important test for inflation theory. Unfortunately, estimating the mass density of the cosmos is very difficult because most of the cosmic matter is "dark", which can only be detected by the gravitational pull of the visible material.

Transitional movement of the universe

There can be a relationship between the speed of light and the angle of the inner cone of the cone in which the movement of the cosmic movement flows. There is also a relation between the conic and the total volume of the sphere in which the cone is, which is proportional to the amount of matter and dark energy. A cone inside the sphere thus occurs: Each cone consists of infinite circular and two-dimensional plates that stick together. The diameter of these circles is increasing from the apex of the cone to the base, as well as the angle of the inner cone, which varies from zero to 180 degrees [XVI].

In Fig. 4, as long as a piece of vertical radius has an infinite extension of two dimensional planes, we will have a sphere other than the center, the surface area. Dimensions of the two-dimensional side panel will be infinite. The axis is formed from the center of the sphere at the smallest angle of the interior, and for each rule there is a hypothetical sphere with volume and area, all of which are first-order limitless subsets of the sphere and are formed only in our opinion, and here are three spheres. Each arc in this sphere is boundless and in any direction of height, matches one of the infinite radii. This radius is cut off where it is near the surface of the globes. As a result of their comparison, the higher the cone angle, the distance extends to its maximum, the closest distance to the center of the sphere. But it never conforms to the center, because then it becomes the hemisphere.
Relation between the speed and the angle of the vertex of a cone:

The number 1.618 is a golden number that makes the most beautiful geometric shapes in nature and can be found in all the creatures of God. For example: there is an infinite two-dimensional shape of a rectangle, whose length-to-width ratio is any number, among which, the closer it is to the 1.618, the rectangle looks prettier. In the three-dimensional shapes, the same as the ratio of length, width, and height, to this golden number, the shape looks prettier. Since each cone is composed of infinitely circular, two-dimensional and interlocked plates. Suppose there is an indicator on all of these circles. There are movables on these indicators that can circulate the desired circle around the height of the cone and in one direction. The speed and direction of the movement of all movers must be assumed to be the same. If we consider the velocity of 300,000 km/s and the direction of the circles for clockwise, this speed and direction on all plane of a cone are the same. In this way, it appears that the number of plane is smaller, more, while the speed of the moves is the same. We can conclude that the lower the angle of the cone, the faster the motion of the moves, the less the pivot point of the cone, the faster the movement of the moves will be. And follow a particular law or particular relation, while you can, at your discretion, increase the speed of motion of the moves in a cone with a small angle, or in reverse and do not follow this ratio.

In each cone and at any rate of moves, the indexes are placed along a straight line after a variety of time periods; the logic, geometric, and mathematical ratio can be compared by comparing the time between the formations of these straight lines. The formation of spring lines by these indicators can also help to solve this problem. According to the rational ratio obtained, there is and cannot be denied for the speed of light of a certain vertex and a cone with the same conditions. This ratio creates the relationship between the two physical quantities (unit of speed and length unit). In Fig. 1, each panel or any rule of cone that we consider to represent a sphere from our view that has the radius and the distance between the intersections of the base with
the surface area of the sphere, which we had previously named. The value of this interval is proportional to the velocity of the moves and the angle of the vertex due to the new ratio, and its size is not the same for each of the cone plates or bases.

There are basically two kinds of transitions for each mass: Move in straight line and Move in an indirect line. In the case of moving in a straight line, it can be said that on a large cosmic scale, this motion itself is an indirect movement, but in any case, the mass can be proved by accelerating at the correct velocity of light $E = mc^2$ and Slow down the movement of time in the mass range. But in the case of indirect and very small and circular motions, the mass eventually returns to its original location [XVII,XVIII].

The mass without moving motion, and only by moving motion, can maintain its initial state and curvature created in the invisible space and slow down the movement of time without moving motion, which means rotation around its center of gravity at a very high speed in one second. In the case of slowing down the time when we are placed in a curved and close-density mass, we must say that the only thing that slow down the movement of time is the approach to the center of mass density, which creates the greatest curvature in the invisible space, such as Standing up and down the peak that passes slowly down the peak of the peak and accelerates faster.

In the formula $E = mc^2$, the velocity is only an auxiliary factor in reaching the mass at a speed close to the light, and does not do any other action, and it is only just in the curvature range that slow down the movement of time and to this day is mistaken. It would slow down the time.

Parallel universe theory

The string theory was introduced at all to explain the theory of quantum fields and describe the existence and functioning of bosons (force carriers), and in particular Hadron. The base of this theory is based on the belief that the substance in its smallest form is not a particle-electron, protons, neutrons, etc.-but from the one-dimensional strands that, by virtue of any particular frequency that vibrates in the form of fundamental particles in comes. In fact, the believers of this theory see the existence as a string orchestra, with which each note has a particle. Superfusion theory is an endeavor by string theory experts to integrate all fundamental particles in nature into the theory of string. As we know, string theory was proposed for bosons or force carriers, but there were no fermions in it. In the supercell, the fermions or the material came into the realm of cords and considered part of the vibration of the strings to make them [XIX, XX].

The length of the strings is equal to Planck's length, or 10^{-38} meters, and there are two types of open strings and closed strings. The beginning of string theory was the beginning of complexity, and the number of dimensions went up and up to explain the existence and operation of the strings, too, in rejecting the 11th dimension in super lattice theory. Initially, it was thought that this is one of the most powerful theories for quantum gravity, which describes everything in the form of a theory. The name of the string is taken from the string theory super symmetry. It was therefore named as the supersymmetry of string theory, which contained the superconductor by the supermarmion of the fermions. The question may be asked to you why scientists are trying to have a single theory; each quantum of relativity and mechanics does...
their work? In response, it should be said that these two revolutionary theories, while both in place and correct, are contradictory at each other, so they must unite to explain our world correctly. In fact, with the development of quantum fields, one can extend the subject for strong and weak electromagnetic forces, but not for gravity, because it finds another meaning in gravity. The main success of the string theory, which led it to be the candidate for quantum gravity theory, was to transform the Feynman graphs into two-dimensional form, in which black solved the infinity of the integral for it, because it no longer reflected the zeroes. Therefore, the string theory rejected one of the crises in this case, which could have become so significant. The theory of super-string in the theory of M, which we later explain this theory. We said that in superconducting theory, the number of known dimensions reaches eleven dimensions. Now, for people who even have information about physics, the image of the eleven dimension is dizzying. As we come from three well-known dimensions of latitude, longitude, and height to the fourth dimension that is time, the idea of a single coordinate device that assumes these four dimensions is daunting and confusing. Honestly, if we did not understand the time passed through our years of life and the wristwatches, even our understanding of this was a problem for us. The super circle theory of gravity and the standard quantum field model, which coordinated three other forces of nature (weak and strong atomic and electromagnetic forces) with gravitons and photons, was presented after the theory of the string of theory M, which was also known as the theory of everything. It is said that so far no one has been able to understand it properly!

Almost 80% of the world is with materials that are not seen with the armed eye. These materials, which are not visible under any circumstances and do not release any energy or light, are known as dark matter. It is said that dark matter should be in the form of filamentous structures of a galactic bond. Even the scientists at Waterloo University have been able to capture one of these dark materials for the first time.

Dark matter

The dark matter is strangely expanding, and it is expected that the future of the galaxy will be in the hands of this material and that world day will reach absolute darkness. There is a hypothesis that the life of the world is for thirty-five billion years, about fourteen billion years from the age of the world, and only twenty one billion years remaining until the end of the world. After that the world will be destroyed and will be dark. In fact, the future of the world depends on the battle of dark energy with dark matter. The birth of the hypothesis of dark matter does not have much life. In fact, in the fourth decade of the 19th century, whispers of the existence of this material were raised by Fritz Zweiki. He stated that there is an unknown mystery in the galaxies that are not within our range of sight. This puzzle can be a factor in galactic stability [III-VII]. Until the late 19th century, with the development of astronomy cameras and telescopes, new and high quality images of space were recorded. These images represent empty spaces in the galaxies. These empty spaces could be the answer to the mysterious mystery posed by Fritz Zweiki. He stated that there is an unknown mystery in the galaxies that are not within our range of sight. This puzzle can be a factor in galactic stability [III-VII]. Until the late 19th century, with the development of astronomy cameras and telescopes, new and high quality images of space were recorded. These images represent empty spaces in the galaxies. These empty spaces could be the answer to the mysterious mystery posed by Fritz Zweiki. He stated that there is an unknown mystery in the galaxies that are not within our range of sight. This puzzle can be a factor in galactic stability [III-VII]. Until the late 19th century, with the development of astronomy cameras and telescopes, new and high quality images of space were recorded. These images represent empty spaces in the galaxies. These empty spaces could be the answer to the mysterious mystery posed by Fritz Zweiki. He stated that there is an unknown mystery in the galaxies that are not within our range of sight. This puzzle can be a factor in galactic stability [III-VII]. Until the late 19th century, with the development of astronomy cameras and telescopes, new and high quality images of space were recorded. These images represent empty spaces in the galaxies. These empty spaces could be the answer to the mysterious mystery posed by Fritz Zweiki. He stated that there is an unknown mystery in the galaxies that are not within our range of sight. This puzzle can be a factor in galactic stability [III-VII]. Until the late 19th century, with the development of astronomy cameras and telescopes, new and high quality images of space were recorded. These images represent empty spaces in the galaxies. These empty spaces could be the answer to the mysterious mystery posed by Fritz Zweiki. He stated that there is an unknown mystery in the galaxies that are not within our range of sight. This puzzle can be a factor in galactic stability [III-VII]. Until the late 19th century, with the development of astronomy cameras and telescopes, new and high quality images of space were recorded. These images represent empty spaces in the galaxies. These empty spaces could be the answer to the mysterious mystery posed by Fritz Zweiki. He stated that there is an unknown mystery in the galaxies that are not within our range of sight. This puzzle can be a factor in galactic stability [III-VII]. Until the late 19th century, with the development of astronomy cameras and telescopes, new and high quality images of space were recorded. These images represent empty spaces in the galaxies. These empty spaces could be the answer to the mysterious mystery posed by Fritz Zweiki. He stated that there is an unknown mystery in the galaxies that are not within our range of sight. This puzzle can be a factor in galactic stability [III-VII]. Until the late 19th century, with the development of astronomy cameras and telescopes, new and high quality images of space were recorded. These images represent empty spaces in the galaxies. These empty spaces could be the answer to the mysterious mystery posed by Fritz Zweiki. He stated that there is an unknown mystery in the galaxies that are not within our range of sight. This puzzle can be a factor in galactic stability [III-VII]. Until the late 19th century, with the development of astronomy cameras and telescopes, new and high quality images of space were recorded. These images represent empty spaces in the galaxies. These empty spaces could be the answer to the mysterious mystery posed by Fritz Zweiki. He stated that there is an unknown mystery in the galaxies that are not within our range of sight. This puzzle can be a factor in galactic stability [III-VII]. Until the late 19th century, with the development of astronomy cameras and telescopes, new and high quality images of space were recorded. These images represent empty spaces in the galaxies. These empty spaces could be the answer to the mysterious mystery posed by Fritz Zweiki. He stated that there is an unknown mystery in the galaxies that are not within our range of sight. This puzzle can be a factor in galactic stability [III-VII]. Until the late 19th century, with the development of astronomy cameras and telescopes, new and high quality images of space were recorded. These images represent empty spaces in the galaxies. These empty spaces could be the answer to the mysterious mystery posed by Fritz Zweiki. He stated that there is an unknown mystery in the galaxies that are not within our range of sight. This puzzle can be a factor in galactic stability [III-VII]. Until the late 19th century, with the development of astronomy cameras and telescopes, new and high quality images of space were recorded. These images represent empty spaces in the galaxies. These empty spaces could be the answer to the mysterious mystery posed by Fritz Zweiki. He stated that there is an unknown mystery in the galaxies that are not within our range of sight. This puzzle can be a factor in galactic stability [III-VII]. Until the late 19th century, with the development of astronomy cameras and telescopes, new and high quality images of space were recorded. These images represent empty spaces in the galaxies. These empty spaces could be the answer to the mysterious mystery posed by Fritz Zweiki. He stated that there is an unknown mystery in the galaxies that are not within our range of sight. This puzzle can be a factor in galactic stability [III-VII]. Until the late 19th century, with the development of astronomy cameras and telescopes, new and high quality images of space were recorded. These images represent empty spaces in the galaxies. These empty spaces could be the answer to the mysterious mystery posed by Fritz Zweiki. He stated that there is an unknown mystery in the galaxies that are not within our range of sight. This puzzle can be a factor in galactic stability [III-VII]. Until the late 19th century, with the development of astronomy cameras and telescopes, new and high quality images of space were recorded. These images represent empty spaces in the galaxies. These empty spaces could be the answer to the mysterious mystery posed by Fritz Zweiki. He stated that there is an unknown mystery in the galaxies that are not within our range of sight. This puzzle can be a factor in galactic stability [III-VII]. Until the late 19th century, with the development of astronomy cameras and telescopes, new and high quality images of space were recorded. These images represent empty spaces in the galaxies. These empty spaces could be the answer to the mysterious mystery posed by Fritz Zweiki. He stated that there is an unknown mystery in the galaxies that are not within our range of sight. This puzzle can be a factor in galactic stability [III-VII]. Until the late 19th century, with the development of astronomy cameras and telescopes, new and high quality images of space were recorded. These images represent empty spaces in the galaxies. These empty spaces could be the answer to the mysterious mystery posed by Fritz Zweiki. He stated that there is an unknown mystery in the galaxies that are not within our range of sight. This puzzle can be a factor in galactic stability [III-VII]. Until the late 19th century, with the development of astronomy cameras and telescopes, new and high quality images of space were recorded. These images represent empty spaces in the galaxies. These empty spaces could be the answer to the mysterious mystery posed by Fritz Zweiki. He stated that there is an unknown mystery in the galaxies that are not within our range of sight. This puzzle can be a factor in galactic stability [III-VII]. Until the late 19th century, with the development of astronomy cameras and telescopes, new and high quality images of space were recorded. These images represent empty spaces in the galaxies. These empty spaces could be the answer to the mysterious mystery posed by Fritz Zweiki. He stated that there is an unknown mystery in the galaxies that are not within our range of sight. This puzzle can be a factor in galactic stability [III-VII]. Until the late 19th century, with the development of astronomy cameras and telescopes, new and high quality images of space were recorded. These images represent empty spaces in the galaxies. These empty spaces could be the answer to the mysterious mystery posed by Fritz Zweiki. He stated that there is an unknown mystery in the galaxies that are not within our range of sight. This puzzle can be a factor in galactic stability [III-VII].
of the dark matter is regular sort of matter (atoms) that is too faint for us to detect such as dead burned out stars, planets, brown dwarfs, gas + dust clouds, etc. The rest of the dark matter is made of material that is not made of atoms or their constituent parts. This strange material has a total mass about five times more than the total mass of the ordinary matter. Some evidence for the presence of dark matter has already been presented in the previous chapters. The list below summarizes the evidence for dark matter's existence. Flat rotation curves of spirals even though the amount of the light-producing matter falls off as the distance from the galaxy center increases. Remember the enclosed mass = (orbital speed)$^2 \times$ (orbit size)/G. Fig.5. shows the rotation curve for our Milky Way Galaxy (a typical spiral galaxy).

III. Conclusion

The Big Bang model has succeeded in describing the emergence of the universe, but it suffered from the deficiencies that were solved by the inflationary model. Although the inflation model has unanswered questions, these questions need to be answered to provide a final image of the universe. There is also a new model of the universe that justifies the transmission of the entire cosmos along a straight line, which parallels the straight line to the height of a cone, and transfers this transition from the top to the base of the cone.

References

I. Austin Joyce; et al. "Beyond the Cosmological Standard Model". Physics Reports. 568: 1–98, 2015.
II. Carroll, Sean. "The cosmological constant". Living Reviews in Relativity 4. Retrieved 2006-09-28, 2001.
III. Clavin, Whitney. "NASA Technology Views Birth of the Universe". NASA, 2014.

IV. Dicke, Robert H.; P. J. E. Peebles. "The big bang cosmology – enigmas and nostrums". In S. W. Hawking; W. Israel (eds.), General Relativity: an Einstein Centenary Survey. Cambridge University Press, 1979.

V. J. Moffat. "Superluminary Universe: A Possible Solution to the Initial Value Problem in Cosmology". International Journal of Modern Physics D. 2(3): 351–366, 1993.

VI. Jungman, Gerard; Kamionkowski, Marc; Griest, Kim. "Supersymmetric dark matter". Physics Reports. 267 (5–6): 195–373, 1996.

VII. Lemaître, Georges. "The expanding universe". Annales de la Société Scientifique de Bruxelles. 47A: 49., English in Gen. Rel. Grav.29:641–680, 1997.

VIII. Linde, Andrei; Fischler, W. "Prospects of Inflation". Physica Scripta. 117 (T117): 40–48, 2005.

IX. Loeb; Barkana. "In the Beginning: The First Sources of Light and the Reionization of the Universe". Physics Reports. 349 (2): 125–238. 2011.

X. Melia, Fulvio."The Cosmic Horizon". Monthly Notices of the Royal Astronomical Society. 382 (4): 1917–1921, 2008.

XI. Melia, Fulvio; et al. "The Cosmological Spacetime". International Journal of Modern Physics D. 18 (12): 1889–1901, 2009.

XII. Merritt, David. "Cosmology and convention". Studies in History and Philosophy of Science Part B. 57 (2017): 41–52, 2017.

XIII. Misner, Charles W.; Coley, A A; Ellis, G F R; Hancock, M. "The isotropy of the universe". Astrophysical Journal. 151 (2): 431, 1968.

XIV. Overbye, Dennis. "Space Ripples Reveal Big Bang's Smoking Gun". The New York Times, 2004.

XV. Overbye, Dennis. "Ripples From the Big Bang". The New York Times, 2014.

XVI. Peebles, P. J. E. and Ratra, Bharat."The cosmological constant and dark energy". Reviews of Modern Physics 75 (2): 559–606, 2003.

XVII. Steinhardt, Paul J. "The inflation debate: Is the theory at the heart of modern cosmology deeply flawed?" Scientific American. 304 (4): 18–25, 2011.

XVIII. Trimble, V. "Existence and nature of dark matter in the universe". Annual Review of Astronomy and Astrophysics. 25: 425–472, 1987.

XIX. Tyson, Neil de Grasse and Donald Goldsmith. “Origins: Fourteen Billion Years of Cosmic Evolution”, W. W. Norton & Co., 84–95, 2004.

XX. Weinberg, Steven. Gravitation and Cosmology. John Wiley. pp. 740, 815, 1971.