Supporting Information

Site-Selective, Remote sp\(^3\) C–H Carboxylation Enabled by the Merger of Photoredox and Nickel Catalysis

Basudev Sahoo\(^+\), Peter Bellotti\(^+\), Francisco Juliá-Hernández\(^*\), Qing-Yuan Meng\(^*\), Stefano Crespi\(^*\), Burkhard König\(^*\) and Ruben Martin\(^*\)

chem_201902095_sm_misellaneous_information.pdf
Supporting Information

1 General information S3
2 Synthesis of homobenzylic bromides S6
3 Synthesis of secondary alkyl bromides S9
4 Synthesis of nitrogen-donor ligands S12
5 Synthesis of (L)NiBr$_2$ complexes S14
6 Synthesis of additional reagents S17
7 Optimizations of reaction conditions
 7.1 General procedure for the photocarboxylation of 1a with CO$_2$ S18
 7.2 General procedure for the photocarboxylation of 3a with CO$_2$ S19
8 Photocarboxylation of alkyl bromides with CO$_2$
 8.1 Photocarboxylation reactions en route to aryl acetic acids S21
 8.1.1 General procedure S21
 8.1.2 Characterization data S22
 8.1.3 Scale up photocarboxylation reaction of 1a S31
 8.1.4 Additional examples S32
 8.2 Photocarboxylation reactions en route to primary carboxylic acids S34
 8.2.1 General procedure S34
 8.2.2 Characterization data S35
 8.2.3 Regioconvergent photocarboxylation of n-heptane S42
 8.2.4 Regioconvergent photocarboxylation of bromoheptanes S43
9 Mechanistic Investigation
 9.1 Photocarboxylation of homobenzylic bromides S44
 9.1.1 Kinetic profile of the model reaction S44
 9.1.2 Intermittent illumination experiment S45
 9.1.3 Deuterium labelling experiments S46
 9.1.4 Radical inhibition experiment S50
 9.1.5 Cyclic voltammetric (CV) measurements of (L1)NiBr$_2$ S51
 9.1.6 Time-resolved UV-Vis experiments S53
 9.2 Photocarboxylation of unactivated secondary alkyl bromides S57
 9.2.1 Deuterium labelling experiment S57
 9.2.2 Radical inhibition experiment S58
9.2.3 Cyclic voltammetric (CV) measurements of (L7)NiBr₂ S58
9.2.4 Time-resolved UV-Vis experiments S61
9.3 DFT calculations S64
 9.3.1 Calculated intermediates and transition states for (L7)NiBr₂ S65
 9.3.2 Calculated intermediates and transition states for (L1)NiBr₂ S67
 9.3.3 Uncatalyzed chain-walking process of homobenzylic radical S68
 9.3.4 Cartesian coordinates S70
10 References S157
11 NMR Spectra S160
1 General Information

Analytic Methods: All NMR spectra were recorded at 294 K using Bruker 300, Bruker 400, and Bruker 500 MHz and DEU 400 NMR tubes from Deutero GmbH. The following deuterated solvent, purchased from Deutero GmbH or Sigma-Aldrich (minimal deuteration in brackets), were used: CDCl$_3$ (99.8%), acetone-d_6 (99.8%), DMSO-d_6 (99.8%), D$_2$O (99.9%). All chemical shifts (δ) are reported in parts per million (ppm) down field of tetramethylsilane (TMS). The coupling constant (J) is reported in Hertz (Hz). For 1H and 13C spectra, the residual solvent peak was used as internal reference (CDCl$_3$: $\delta$$_H = 7.26$ ppm, $\delta$$_C = 77.16$ ppm; Acetone-d_6: $\delta$$_H = 2.05$ ppm, $\delta$$_C = 29.84$ ppm; DMSO-d_6: $\delta$$_H = 2.50$ ppm, $\delta$$_C = 39.52$ ppm; D$_2$O: $\delta$$_H = 4.79$ ppm), while for 19F spectra the absolute referencing to the 1H spectrum was used, as suggested by the IUPAC. The following abbreviations are used for signal multiplicity: bs = broad signal, s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, dt = doublet of triplets, dq = doublet of quartets, tt = triplet of triplets, m = multiplet. Melting points were measured using open glass capillaries in a Büchi B540 apparatus. Infrared spectra (FT-IR) measurements were carried out on a Bruker Optics FT-IR Alpha spectrometer equipped with a DTGS detector, KBr beamsplitter at 4 cm$^{-1}$ resolution using a one bounce ATR accessory with diamond windows (ICIQ) or on an Agilent Cary-630 benchtop spectrometer (Universität Regensburg). Mass spectra were recorded on a Waters LCT Premier spectrometer or in a MicroTOF Focus, Bruker Daltonics spectrometer at ICIQ and Jeol AccuTOF GCX, Agilent Q-TOF 6540 UHD, Finnigan MAT SSQ 710 A and ThermoQuest Finnigan TSQ 7000 at the Faculty of Chemistry and Pharmacy, Universität Regensburg. Elemental analysis measurements were obtained from the central analytic elemental analysis facilities (Vario MICRO Cube from Elementar Analysensysteme GmbH) of the Faculty of Chemistry and Pharmacy, Universität Regensburg. UV-VIS measurements were performed with an Agilent Cary 100 spectrometer using Hellma Analytics QS-High Precision Cell (Quartz glass, light-path: 10 mm). GC-FID measurements were performed using a Supelco 44176-01-C. equipped with a Nukol capillary column (44176-01-C, 15 m \times 320 μm \times 0.25 μm film) using helium as carrier gas (1 ml·min$^{-1}$ flow. The data acquisition and evaluation were carried out using Agilent ChemStation Rev.B.02.01-SR2 [260]. Parameters: split ratio: 20:1, injection volume: 0.2 μl, inlet temperature: 280°C. Temperature ramp: hold 80°C for 1 minutes, gradient 15 °C·min$^{-1}$ until 200 °C, hold for 3 minutes.
Reagents and methods: The chemicals were purchased from ACROS Organics, Sigma-Aldrich, Merck, TCI chemicals, ACR, Alfa Aesar, Fluka and Fluorochem and used as received, unless otherwise stated. CO₂ was provided by Linde and dried by passing it through a Drierite® (CaSO₄) column. Reaction temperatures are referred to the temperature of the heating medium, unless otherwise stated. Technical grade solvents were purified as following: ethyl acetate, petroleum ether 40-60, dichloromethane, diethyl ether were purified by distillation. The following dry solvents were stored under molecular sieves with septa under nitrogen atmosphere and withdrawn using a syringe under positive nitrogen pressure: THF (from ACROS Organics), N,N-DMF (from ACROS Organics). Dry toluene (from Fischer scientific, analytical grade), diethyl ether (Aldrich) and MeCN (Carl ROTH) were prepared as following: 4 Å molecular sieves (20 % w/w) or 3 Å molecular sieves (for MeCN) were dried by heating at 250°C under approx. 10⁻² mbar of pressure for at least one hour, then the analytical grade solvent was added and the flask was sealed under nitrogen atmosphere.

Flash chromatographic purifications were carried with the following stationary phases: MP alumina B – Super I (basic alumina) and MB alumina N – Super I (neutral alumina) from MP Biochemicals, Silica Gel 60M (Macherey-Nagel, 40-63 µm, 230-400 mesh) (using a Biotage® Isolera™ Spektra One automated system) or EM Science silica gel 60 (230-400 mesh). Reactions were monitored by TLC using Macherey-Nagel ALUGRAM® Xtra SIL G/UV254 aluminum plates, under UV visualization (254 or 366 nm), potassium permanganate or bromocresol green staining.

Benzylic photocarboxylation reactions were performed with 455 nm LEDs (OSRAM Oslon® SSL 80 royal- blue LEDs), which were installed at the bottom of a custom-made 6 vials holder (the distance between the flat-bottom of the vial and the light source was measured to be ~7 mm), equipped with a liquid cooling system (the thermostat was set @ 25°C) and a magnetic stirrer (~ 250 rpm). Primary carboxylation reactions were performed with 451 nm LEDs (OSRAM Oslon® SSL 80 royal- blue LEDs), which were installed at the bottom of a custom-made 8 flat-bottom Schlenk tubes holder (the distance between the flat-bottom Schlenk tube and the light source was measured to be ~7 mm), equipped with a liquid cooling system (the thermostat was set @ 10°C) and a magnetic stirrer (~ 500 rpm).
2 Synthesis of homobenzylic bromides

The homobenzylic bromide substrates 1b,[1] 1c,[2] 1d,[3] 1e,[4] 1f,[5] 1i,[6] 1j,[7] 1l,[8] 1m,[9] 1n,[10] and 1o,[11] were synthesized according to the cited literature reports.

General procedure for the bromination of alcohols (GP1)

\[
\begin{align*}
R\text{-}&\text{OH} & \xrightarrow{\text{CBr}_4 (1.25 \text{ equiv.}), PPh_3 (1.50 \text{ equiv.})} & R\text{-}\text{Br} \\
\text{CH}_2\text{Cl}_2, 0 \, ^\circ\text{C} - \text{rt} & \quad & \quad & 1
\end{align*}
\]

Following a procedure reported by Wills et al.,[12] in a round-bottom flask equipped with a teflon-coated stirring bar, the homobenzylic alcohol (1 equiv.) was dissolved in DCM (0.6 M) or DCM/MeCN (3/2, 0.6 M) or DCM/Et$_2$O (1/1, 0.6 M) and CBr$_4$ (1.25 equiv.) was added to the solution at 0 °C. Then PPh$_3$ (1.5 equiv.) was added to the solution over 10 minutes. After stirring for 30 min at 0 °C, the solution was warmed up to room temperature and continued stirring until disappearance of starting material (monitored by TLC). The reaction mixture was concentrated under reduced pressure and then the residue was stirred in diethyl ether for 10 min. The resulting precipitate was removed by filtration and the filtrate was concentrated under reduced pressure. The crude mixture was purified by flash column chromatography through silica (eluent = petroleum ether/ethyl acetate) to afford homobenzylic bromide (1).

General procedure for the bromination of alcohols (GP2)

\[
\begin{align*}
R\text{-}&\text{OH} & \xrightarrow{\text{Br}_2 (3.0 \text{ equiv.}), PPh_3 (3.1 \text{ equiv.})} & R\text{-}\text{Br} \\
1H\text{-Imidazole (3.1 equiv.)} & \text{Et}_2\text{O/MeCN (3/1), rt} & \quad & 1
\end{align*}
\]

In a round-bottom flask equipped with a teflon-coated stirring bar, the homobenzylic alcohol (1.0 equiv.) was dissolved in dry Et$_2$O/MeCN (3/1, 0.1 M) under nitrogen atmosphere and then PPh$_3$ (3.1 equiv.) followed by 1H-imidazole (3.1 equiv.) was added to the solution. Then bromine (3.0 equiv.) was added to the reaction mixture dropwise over 10 minutes and then the resulting mixture was allowed to stir at rt until the disappearance of the starting material. The reaction mixture was filtered and rinsed with Et$_2$O. The organic layers were washed once with brine, dried over magnesium sulfate and the solvents were removed under reduced pressure. The crude mixture was purified by
flash column chromatography through silica (eluent = petroleum ether/ethyl acetate) to afford homobenzylic bromide (1).

4- (2- bromoethyl)phenol (1g)

\[
\text{Following } \text{GP1, from 4-(2-hydroxyethyl)phenol (553 mg, 4.00 mmol), the homobenzyl bromide (1g) was obtained as white solid (588 mg, 2.92 mmol, 73\% yield). [note: DCM/Et}_2\text{O (1/1, 0.6 M) was used as solvent for the reaction.]}\]

\[\begin{align*}
\text{1H NMR (300 MHz, CDCl}_3\text{) } &\delta (\text{ppm}) = 7.13 - 7.04 (m, 2H), 6.84 - 6.73 (m, 2H), 4.75 (br, 1H), 3.52 (dd, J = 8.0, 7.3 Hz, 2H), 3.09 (t, J = 7.6 Hz, 2H). \\
\text{13C NMR (75 MHz, CDCl}_3\text{) } &\delta (\text{ppm}) = 154.5, 131.4, 130.0, 115.6, 38.7, 33.6.
\end{align*}\]

The experimental data are in agreement with the literature report.[13]

N- [4- (2- bromoethyl)phenyl]acetamide (1h)

\[
\text{Following } \text{GP1, from N- [4- (2- hydroxyethyl)phenyl]acetamide (448 mg, 2.50 mmol), the homobenzyl bromide (1h) was obtained as white solid (551 mg, 2.28 mmol, 91\% yield). [note: DCM/MeCN (3/2, 0.6 M) was used as solvent for the reaction]. The product was purified by two times flash column chromatography (silica, CH}_2\text{Cl}_2\text{:MeOH = 100:0 to 95:5; silica, petroleum ether:ethyl acetate = 50:50).}\]

\[\begin{align*}
\text{1H NMR (400 MHz, CDCl}_3\text{) } &\delta (\text{ppm}) = 7.45 (d, J = 8.5 Hz, 2H), 7.24 (br, 1H), 7.16 (d, J = 8.4 Hz, 2H), 3.53 (t, J = 7.6 Hz, 2H), 3.12 (t, J = 7.6 Hz, 2H), 2.17 (s, 3H). \\
\text{13C NMR (101 MHz, CDCl}_3\text{) } &\delta (\text{ppm}) = 168.4, 136.8, 135.0, 129.4, 120.3, 38.9, 33.1, 24.7.
\end{align*}\]

\text{IR (ATR): } \nu = 3295, 2922, 2855, 1662, 1599, 1510, 1409, 1368, 1316, 1211, 1129, 1010, 962, 828, 719 \text{ cm}^{-1}.

\text{HRMS (ESI): } m/z \text{ calc. for (C}_10\text{H}_13\text{BrNO}^+) [M+H]^+: 242.0181; \text{ found: 242.0180.}
Methyl 4- (2- bromoethyl)benzoate (1k)

![Methyl 4- (2- bromoethyl)benzoate (1k)](image)

Following GP2, from methyl 4-(2-hydroxyethyl)benzoate (505 mg, 2.80 mmol), the homobenzyl bromide (1k) was obtained as light-orange colored oil (653 mg, 2.69 mmol, 96% yield).

1H NMR (300 MHz, CDCl$_3$) δ (ppm) = 8.08 – 7.90 (m, 2H), 7.31 – 7.24 (m, 2H), 3.90 (s, 3H), 3.57 (t, $J = 7.4$ Hz, 2H), 3.21 (t, $J = 7.4$ Hz, 2H).

13C NMR (75 MHz, CDCl$_3$) δ (ppm) = 167.0, 144.1, 130.0, 128.9, 128.8, 52.2, 39.2, 32.3.

The experimental data are in agreement with the literature report.[14]

1- [2- Bromo(1,1)-d$_2$-ethyl]- 4- methoxybenzene (1e-d$_2$)

![1- [2- Bromo(1,1)-d$_2$-ethyl]- 4- methoxybenzene (1e-d$_2$)](image)

Following GP1, from 2-(4-methoxyphenyl)ethan-2,2-d$_2$-1-ol (synthesized according to the literature report by Kang et al.)[15] (489 mg, 3.17 mmol), the homobenzyl bromide (1e-d$_2$) was obtained as light-orange oil (627 mg, 2.89 mmol, 91% yield).

1H NMR (300 MHz, CDCl$_3$) δ (ppm) = 7.17 – 7.09 (m, 2H), 6.90 – 6.82 (m, 2H), 3.80 (s, 3H), 3.51 (s, 2H).

13C NMR (75 MHz, CDCl$_3$) δ (ppm) = 158.7, 131.1, 129.8, 114.1, 55.4, 33.4.

IR (ATR): $\nu = 2960, 2837, 1610, 1513, 1461, 1297, 1245, 1177, 1111, 1033, 954, 805, 745 \text{ cm}^{-1}.$

HRMS (ESI): m/z calc. for (C$_9$H$_9$D$_2$O79OBr$^+$) [M]$^+$: 216.0113; found: 216.0112; calc. for (C$_9$H$_9$D$_2$O81Br$^+$) [M]$^+$: 218.0193; found: 218.0095.
3 Synthesis of secondary alkyl bromides

The secondary alkyl bromide substrates 3c,[16] 3d,[17] 3e,[18] 3g,[19] and 1j[18] were synthesized according to the cited literature reports.

Synthesis of 6-Bromo-2,2-dimethylheptanenitrile (3f)

Diisopropylamine (2.02 g, 20 mmol) was dissolved in dry THF (35 mL) and cooled down to 0 °C. n-BuLi (5.6 mL, 2.5M, 14 mmol) was added dropwise and the solution was cooled down to -78°C. Isobutyronitrile (0.691 g, 10.0 mmol) was added dropwise and stirred for 1 hour. This solution was then transferred dropwise to a solution of 1,4-dibromopentane (4.60 g, 20 mmol) in THF (5 mL) at -78 ºC and stirred at -78 ºC for 2 h. Then, the reaction mixture was warmed up to rt and stirred overnight. The reaction was quenched with water and extracted with DCM. The combined organic layers were dried over MgSO₄ and concentrated under reduced pressure. The crude mixture was purified by flash column chromatography through silica gel (eluent: hexane/ethyl acetate = 9/1) to afford the pure product 3f (1.62 g, 7.43 mmol, 74%) as a pale-yellow oil.

\[
\begin{align*}
\text{Me} & \text{Me} + \text{Br} & \text{Me} & \text{Me} \\
1.0 \text{ equiv.} & 2.0 \text{ equiv.} & 1. \text{ nBuLi (1.4 equiv.), DIPA (2.0 equiv.)} & \\
\text{THF, -78 ºC, 1 h} & \\
\text{2. CH}_2\text{Cl}_2, -78 ºC-rt, 15 h} & \text{Me} & \text{Me} & \text{Br} \\
3f, 74% &
\end{align*}
\]

\(^1\text{H NMR (300 MHz, CDCl}_3\):} \delta (ppm) = 4.18 – 4.07 (m, 1H), 1.88 – 1.49 (m, 6H), 1.72 (d, \(J = 6.7\) Hz, 3H), 1.35 (s, 6H).

\(^{13}\text{C NMR (75 MHz, CDCl}_3\):} \delta (ppm) = 125.1, 50.9, 40.9, 40.4, 32.4, 26.8, 26.7, 26.6, 23.7.

\text{IR (ATR):} \nu = 2976, 2946, 2871, 2234, 1471, 1458, 1379, 1242, 1204, 1166 \text{ cm}^{-1}.

\text{HRMS (ESI):} \text{m/z calc. for (C}_9\text{H}_{17}\text{BrN}^+) [M+H]^+:} 218.0539; \text{found:} 218.0539.
Synthesis of 2-(3-bromobutyl)-6-methoxynaphthalene (3h)

In an oven-dried Schlenk flash containing a magnetic stir bar under inert atmosphere, sodium borohydride (568 mg, 15.0 mmol, 1.5 equiv.) was added dropwise to the solution of Nabumetone (2.28 g, 10.0 mmol, 1.0 equiv.) in EtOH (28 mL) at 0 °C. Once the addition is completed, the reaction mixture was allowed to warm up to rt and stirred for 3 h. The solvent was removed under the reduced pressure. The residue was dissolved in dichloromethane, washed with water, dried over MgSO₄ and concentrated under reduced pressure to get the pure alcohol (2.12 g, 9.18 mmol, 92%). The obtained alcohol was directly used in next step. In an oven-dried Schlenk flash containing a magnetic stir bar, triphenylphosphine (3.13 g, 11.94 mmol, 1.3 equiv.) was dissolved in dichloromethane (0.33M based on alcohol). After cooling the solution to 0 °C, bromine (1.91 g, 11.94 mmol, 1.3 equiv.) was added dropwise and allowed to stir for 10 min to obtain a suspension. Then imidazole (813 mg, 11.94 mmol, 1.3 equiv.) followed by the alcohol substrate (2.12 g, 9.18 mmol, 1.0 equiv.) dissolved in dichloromethane (0.5M) was added to the suspension. The reaction mixture was allowed to warm up to rt and stirred overnight. The resulting reaction mixture was quenched with aq. 1M NaHCO₃ and extracted with dichloromethane (3 times). The combined organic phase was washed with brine solution, dried over MgSO₄ and concentrated under reduced pressure. The crude mixture was purified by flash column chromatography through silica gel (eluent: hexane/ethyl acetate = 100/0-99/1) to afford the pure product 3h (1.42 g, 4.86 mmol, 49%, two steps) as white solid.

1H NMR (300 MHz, CDCl₃): δ (ppm) = 7.68 (d, J = 8.3 Hz, 2H), 7.58 (s, 1H), 7.31 (dd, J = 8.4, 1.6 Hz, 1H), 7.16 – 7.12 (m, 1H), 7.12 (s, 1H), 4.16 – 4.05 (m, 1H), 3.92 (s, 3H), 3.05 – 2.83 (m, 2H), 2.28 – 2.06 (m, 2H), 1.75 (d, J = 6.7 Hz, 3H).

13C NMR (75 MHz, CDCl₃): δ (ppm) = 157.4, 136.2, 133.2, 129.2, 129.1, 127.8, 127.1, 126.7, 119.0, 105.8, 55.4, 51.1, 42.8, 34.0, 26.7.

IR (ATR): ν = 2961, 2937, 2921, 1633, 1604, 1504, 1481, 1461, 1448, 1391, 1375, 1265, 1238, 1224, 1174, 1154, 1119, 1027, 848, 813, 614 cm⁻¹.
HRMS (ESI): m/z calc. for (C\textsubscript{15}H\textsubscript{18}BrO+) [M+H]+: 293.0536; found: 293.0540.

Melting Point: 58-60 °C

Synthesis of N-(4-((4-bromopentyl)oxy)phenyl)acetamide (3i)

In a round-bottom flask containing a magnetic stir bar, paracetamol (756 mg, 5.0 mmol, 1.0 equiv.) and K\textsubscript{2}CO\textsubscript{3} (830 mg, 6.0 mmol, 1.2 equiv.) in DMF (8.0 mL) was stirred at rt for 1 h. Then 1,4-dibromopentane (1.36 mL, 10 mmol, 2.0 equiv.) was added to the reaction mixture and stirred for overnight. The reaction mixture was diluted with water and extracted with dichloromethane. The combined organic layers were washed 2% NaOH aq. solution (2×20 mL) followed by water (2×20 mL), dried over MgSO\textsubscript{4} and concentrated under reduced pressure. The crude mixture was purified by flash column chromatography through silica gel (eluent: hexane/ethyl acetate = 3/1) to afford the pure product 3i (714 mg, 2.38 mmol, 48%) as white solid.

\begin{align*}
\text{1H NMR (400 MHz, CDCl\textsubscript{3})}: \delta (ppm) = 7.37 (d, \ J = 9.0 \ Hz, 2H), 7.27 (bs, 1H), 6.83 (d, \ J = 9.0 \ Hz, 2H), 4.23 – 4.15 (m, 1H), 4.00 – 3.91 (m, 2H), 7.14 (s, 3H), 2.04 – 1.85 (m, 4H), 1.74 (d, \ J = 6.7 \ Hz, 3H). \\
\text{13C NMR (101 MHz, CDCl\textsubscript{3})}: \delta (ppm) = 168.4, 155.9, 131.2, 122.1, 114.9, 67.5, 51.4, 37.8, 27.8, 26.7, 24.5. \\
\text{IR (ATR)}: \nu = 3296, 3258, 3198, 3140, 3095, 2954, 2901, 2855, 1660, 1604, 1548, 1506, 1474, 1411, 1233, 1214, 1173, 1031, 828, 754 \text{ cm}^{-1}. \\
\text{HRMS (ESI)}: m/z calc. for (C\textsubscript{13}H\textsubscript{19}BrNO\textsubscript{2}+) [M+H]+: 300.0594; found: 300.0586.
\end{align*}
4 Synthesis of nitrogen-donor ligands

The ligand L1 and L7 were commercially available. The following ligands L2, L3, L4, L6, and L9 were synthesized according to the cited literature reports.

Synthesis of 4,7- bis(4- fluorophenyl)- 2,9- dimethyl- 1,10- phenanthroline (L5)

In a Schlenk tube equipped with a teflon-coated stirring bar, a suspension of 4,7-dibromo- 2,9- dimethyl- 1,10- phenanthroline (136 mg, 0.37 mmol, 1.0 equiv.), 4-fluorophenylboronic acid (156 mg, 1.1 mmol, 3.0 equiv.) and K_2CO_3 (462 mg, 3.34 mmol, 9.0 equiv.) in dioxane:H$_2$O (4/1) (5 ml) was degassed by bubbling nitrogen for 5 min. Then $\text{Pd(PPh}_3\text{)}_4$ (46 mg, 37 μmol, 10 mol%) was added and the reaction mixture was stirred at 100°C for overnight under nitrogen atmosphere. The reaction was cooled down to room temperature. The reaction was purified by flash column chromatography through silica (eluent: petroleum ether:ethyl acetate 50:50 to 0:100) affording pure compound L5 as a light-yellow solid (126 mg, 0.32 mmol, 86% yield).

$^1\text{H NMR (300 MHz, CDCl}_3$) δ (ppm) = 7.72 (s, 2H), 7.49 (m, 4H), 7.43 (s, 2H), 7.26 – 7.16 (m, 4H), 7.26 – 7.16 (m, 4H), 3.00 (s, 6H).

$^{13}\text{C NMR (101 MHz, CDCl}_3$) δ (ppm) = 163.0 (d, $^1\text{J}^{(19}\text{F,13}\text{C}) = 248.6$ Hz), 159.0, 147.9, 145.6, 134.1 (d, $^4\text{J}^{(19}\text{F,13}\text{C}) = 3.4$ Hz), 131.5 (d, $^3\text{J}^{(19}\text{F,13}\text{C}) = 8.1$ Hz), 124.8, 124.3, 123.0, 115.8 (d, $^2\text{J}^{(19}\text{F,13}\text{C}) = 21.5$ Hz), 25.9.

$^{19}\text{F NMR (282 MHz, CDCl}_3$) δ (ppm) = -113.23.

HRMS (ESI): m/z calc. for (C$_{26}$H$_{19}$N$_2$F$_2$)$^+$ [M+H]$^+$: 397.1511; found: 397.1514.

Synthesis of 4,4'-di-tert-butyl-6,6'-dimethyl-2,2'-bipyridine (L8)
To a solution of 4,4'-di-tert-butyl-2,2'-bipyridine (4.0 g, 15 mmol, 1.0 equiv.) in THF, MeLi (1.6 M) in diethyl ether (47 mL, 75 mmol, 5.0 equiv.) was dropwise added at 0 ºC. The resulting reaction mixture was heated at 60 ºC for overnight. The reaction mixture was cooled at rt and quenched with aq. NH4Cl solution. The organic layers were extracted with DCM, washed with brine, dried with MgSO4 and solvents were evaporated under reduced pressure. To the solution of compound in dichloromethane (0.3 M), activated MnO2 (13.0 g, 150 mmol, 10.0 equiv.) was added and stirred at rt for 5 h. The reaction mixture was filtrated through celite and silica. The filtrate was concentrated and the crude was purified through silica gel (eluent: hexane/ethyl acetate = 4/1 – 1/1) to afford desired compound L8 (2.58 g, 8.7 mmol, 58 %) as white solid.

1H NMR (400 MHz, CDCl3): δ (ppm) = 8.13 (d, J = 1.5 Hz, 2H), 7.14 (d, J = 1.6 Hz, 2H), 2.63 (s, 6H), 1.37 (s, 18H).

13C NMR (101 MHz, CDCl3): δ (ppm) = 161.0, 157.8, 156.6, 120.2, 115.7, 35.0, 30.8, 25.0.

IR (ATR): ν = 2959, 2905, 2870, 1591, 1557, 1477, 1390, 1360, 1290, 1222, 917, 862, 719, 619 cm⁻¹.

HRMS (ESI): m/z calc. for (C20H29N2⁺) [M+H]⁺: 297.2325; found: 297.2325.

Melting Point: 190-192 ºC
5 Synthesis of (L)NiBr₂ complex

The following metal complexes (L1)NiBr₂, (L4)NiBr₂ and (L7)NiBr₂ were synthesized according to the cited literature reports.

General procedure for the synthesis of LNiBr₂ complex (GP3)

Following a modified procedure reported by Budnikova et al., in a round-bottom flask equipped with a teflon-coated stirring bar, NiBr₂ · 3H₂O (1.0 equiv.) was dissolved in absolute ethanol (0.17 M) under nitrogen atmosphere and then a solution of the ligand (1.0 equiv.) in absolute ethanol (0.17 M) was added dropwise over 10 minutes. The reaction mixture was stirred at rt – 80 °C for 24 hours. The precipitate was filtered off, washed with absolute ethanol, diethyl ether and dried under high vacuum.

(2,4,7,9-tetramethyl-1,10-phenanthroline)nickel (II) dibromide [(L2)NiBr₂]

Following GP3, pink-violet solid (49.5 mg, 20% yield) with L2 was obtained.

HRMS (Q-TOF, ESI): m/z calc. for (C₁₆H₁₇N₂Ni⁺) [M-2Br+H]⁺: 295.0740; found: 295.0739. Elemental Analysis: Anal. calc. for C₁₆H₁₆Br₂N₂Ni: C, 42.25; H, 3.55; N, 6.16. Found: C, 41.86; H, 3.55; N, 5.89.
(4,7-dimethoxy-2,9-dimethyl-1,10-phenanthroline)nickel (II) dibromide [(L3)NiBr2]

Following GP3, pink-violet solid (203 mg, 75% yield) with L3 was obtained.

HRMS (Q-TOF, ESI): m/z calc. for \((C_{16}H_{16}^{35}ClN_2NiO_2^+) \) [M-2Br+37Cl]\(^+\): 361.0248; found: 361.0249; m/z calc. for \((C_{16}H_{16}^{37}ClN_2NiO_2^+) \) [M-2Br+37Cl]\(^+\): 363.0213; found: 363.0213. **Elemental Analysis:** Anal. calc. for \(C_{16}H_{16}Br_2N_2NiO_2 \): C, 39.48; H, 3.31; N, 5.75. found: C, 39.61; H, 3.24; N, 5.59.

(4,7- bis(4- fluorophenyl)- 2,9- dimethyl- 1,10- phenanthroline)nickel (II) dibromide [(L5)NiBr2]

Following GP3, blush pink solid (128 mg, 66% yield) with L5 was obtained.

HRMS (Q-TOF, ESI): m/z calc. for \((C_{27}H_{19}F_2N_2O_2Ni^+) \) [M-2Br+HCO2]\(^+\): 499.0763; found: 499.0765. **Elemental Analysis:** Anal. calc. for \(C_{26}H_{18}F_2Br_2N_2Ni \): C, 50.78; H, 2.95; N, 4.56. Found: C, 50.72; H, 2.97; N, 4.48.
(2,9-diethyl-1,10-phenanthroline)nickel (II) dibromide [(L6)NiBr₂]

Following GP3, violet solid (430 mg, 68% yield) with L₆ was obtained.

HRMS (Q-TOF, ESI): \(m/z \) calc. for \((C_{17}H_{17}N₂NiO₂)^+\) [M-2Br+HCO₂]⁺: 339.0638; found: 339.0639. **Elemental Analysis:** Anal. calc. for C₁₆H₁₆Br₂N₂Ni: C, 42.25; H, 3.55; N, 6.16. Found: C, 42.26; H, 3.61; N, 6.14.
6 Synthesis of additional reagents

3,5- diethyl 2,6- dimethyl- 1,4- dihydropyridine- 3,5- dicarboxylate (Hantzsch ester, HEH) was synthesized according to the procedure reported by Christmann et al.[29]

2,4,5,6-Tetra(9H-carbazol-9-yl)isophthalonitrile (4CzIPN) was synthesized according to the procedure reported by Zhang et al.[30]
7 Optimizations of reaction conditions

7.1 General procedure for the photocarboxylation of 1a with CO₂

In an oven-dried flat-bottom vial equipped with a teflon-coated stirring bar, Hantzsch ester (1.0-2.0 equiv), 4-CzIPN (0.01 equiv), Ni-catalyst (0.05 equiv), base (1.0 equiv) and 4Å MS (50 mg) or additives were added and the vial was sealed with a PTFE septum. The vial was evacuated and back-filled under CO₂ flow at least three times. The solvent (2 ml) was added under CO₂ flow and then the system was degassed by applying vacuum for 3 min. Then the solution was saturated with CO₂ by bubbling the gas through the solvent for 3 min. Substrate 1a (27.5 µl, 0.2 mmol, 1.0 equiv.) was added, then a CO₂ balloon was connected to the reaction vessel using a hypodermic needle and the reaction was irradiated under blue light (λ = 455 nm) for the indicated time. The reaction was quenched by the addition of HCl 2M (1 ml), then diluted with AcOEt (4 ml) and water (3 ml). The layers were separated, and the aqueous layer was extracted twice with AcOEt (4 ml each time). The combined organic layers were washed once again with water (2 ml), then with brine (2 ml) and the solvent removed under reduced pressure. The internal standard 1,3,5-trimethoxybenzene (approx. 15 mg) was added to the crude mixture and yield was determined by ¹H NMR analysis.
Table S1: Optimization of the reaction conditions: 1a (0.20 mmol), (L1)NiBr2 (5 mol%), 4-CzIPN (1 mol%), HEH (1.5 equiv), K2CO3 (1.0 equiv), H2O (5.0 equiv), CO2 (1 bar), Blue-LEDs in DMF (0.1 M) at 25 °C for 5 h. [a] Yields determined by NMR using 1,3,5-trimethoxybenzene as standard. [b] Isolated yield, average of two independent runs. [c] HEH (2.0 equiv) was used. DMF = dimethylformamide; Cz = carbazole; HEH = diethyl 1,4-dihydro-2,6-dimethyl-3,5-pyridinedicarboxylate.

7.2 General procedure for the photocarboxylation of 3a with CO2

An oven-dried Schlenk tube containing a magnetic stir bar was charged with LNiBr2 (0.05-0.10 equiv.) or NiBr2·glyme (0.10 equiv.) and ligand (L, 0.10 equiv), 4CzIPN (0.005-0.01 equiv.), Hantzsch ester (HEH, 2.00 equiv.) and the alkyl bromide (0.25 mmol, 1.00 equiv). The Schlenk tube was then taken inside a glovebox, where base (2.00 equiv.) was added. The tube was then taken out of the glovebox and connected to a vacuum line where it was evacuated and back-filled under CO2 flow at least three times. Solvent (0.08M) was added under CO2 flow. Once all the components were added, the Schlenk tube was closed at the atmospheric pressure of CO2 (1 bar) and placed at a
temperature-controlled photo-reactor maintained at 10 °C and stirred for 20 h in the presence of continuous light irradiation from blue LEDs (λ = 451 nm). The reaction mixture was quenched with 2M HCl aq. solution to release free acid by hydrolysis of carboxylate salt and diluted with ethyl acetate. The combined organic layers were extracted with ethyl acetate (at least three times), washed with water followed by brine solution. Anisole (27 µL) as internal standard was added to the solution and filtered through short pad of silica gel. The yield was determined by GC-FID analysis.

![Reaction Scheme](image)

Entry	Deviation from standard conditions	Yield(%)^[a,b] 4a:4a'	4a	4a'
1	none	49 (48) 83:17		
2	NiBr₂.glyme (10%) & L7(10%)	38 85:15		
3	NiBr₂.glyme (10%) & L8(10%)	15 83:17		
4	NiBr₂.glyme (10%) & L1(10%)	26 89:11		
5	NiBr₂.glyme (10%) & L9(10%)	24 74:26		
6	using TBAI (1.0 equiv.) as additive	44 (42) 99:1		
7	adding extra L7(10%)	38 83:17		
8	(L7)NiBr₂ (5%) & 4-CzIPN (0.5%)	27 78:22		
9	K₂CO₃ instead of Rb₂CO₃	34 82:18		
10	no Rb₂CO₃	0 —		
11	DMA instead of DMF	34 76:24		
12	no (L7)NiBr₂, no 4-CzIPN, no light	0 —		

Table S2. Optimization of the reaction conditions. 3a (0.25 mmol), (L7)NiBr₂ (10 mol%), 4-CzIPN (1 mol%), HEH (2.0 equiv), Rb₂CO₃ (2.0 equiv), CO₂ (1 bar), Blue-LEDs in DMF (0.08 M) at 10 °C for 20 h.

^[a] Yields determined by GC using anisole as standard.

^[b] Isolated yield, average of two independent runs.
8 Photocarboxylation of alkyl bromides with CO₂

8.1 Photocarboxylation reactions en route to aryl acetic acids

8.1.1 General procedure (GP4)

In an oven-dried flat-bottom vial equipped with a teflon-coated stirring bar, 4-CzIPN (0.01 equiv), (L1)NiBr₂ (0.05 equiv), K₂CO₃ (1.0 equiv) and Hantzsch ester (HEH, 1.5 equiv) were weighted and the vial was sealed with a PTFE septum. The vial was evacuated and back-filled under CO₂ flow at least three times. The solvent DMF (2 ml) was added under CO₂ flow and then the system was degassed by applying vacuum for 3 min. Then the solution was saturated with CO₂ by bubbling the gas through it for 3 min. Substrate 1a-o (0.2 mmol, 1.0 equiv.) was added, then a CO₂ balloon was connected to the reaction vessel using a hypodermic needle and the reaction was irradiated under blue light (λ = 455 nm) for the indicated time. The reaction was quenched by the addition of HCl 2M (1 ml) and then diluted with ethyl acetate (4 ml) and water (3 ml). The layers were separated and the aqueous layer was extracted twice with ethyl acetate (4 ml each time). The combined organic layers were washed once again with water (2 ml) followed by brine (2 ml) and the solvent removed under reduced pressure. The residue was dissolved in diethyl ether (5 ml), which was extracted three times with aq. 1M NaOH (5 ml each time) and the combined water layers were washed twice with diethyl ether (5 ml each time), which was discarded. The water layer was acidified to pH = 2 with concentrated HCl, then extracted three times with ethyl acetate (10 ml each time). The combined organic layers were dried over sodium sulfate and the solvent was removed under reduced pressure affording a mixture of the branched and linear carboxylic acid (2a-o).
8.1.2 Characterization data

2-Phenylpropanoic acid (2a)/3-phenylpropanoic acid (2a’)

Following GP4, an inseparable mixture (90:10) of 2a/2a’ from 1a (0.2 mmol) was obtained as a colorless oil (17.0 mg, 0.11 mmol, 56% yield).

Following GP5, an inseparable mixture (23:77) of 2a/2a’ from 1a (0.25 mmol) was obtained as a colorless oil (22.0 mg, 0.15 mmol, 59% yield).

Branched acid 2a: 1H NMR (300 MHz, CDCl3) δ (ppm) = 7.40-7.18 (s, 5H), 3.75 (q, \(J = 7.2\) Hz, 1H), 1.52 (d, \(J = 7.2\) Hz, 3H). 13C NMR (75 MHz, CDCl3) δ (ppm) = 180.9, 139.9, 128.8, 127.7, 127.5, 45.5, 18.2.

Linear acid 2a’: 1H NMR (300 MHz, CDCl3) δ (ppm) = 7.40-7.18 (s, 5H), 2.95 (t, \(J = 7.8\) Hz, 2H), 2.68 (t, \(J = 7.8\) Hz, 2H). 13C NMR (75 MHz, CDCl3) δ (ppm) = 179.3, 140.3, 128.7, 127.8, 126.5, 35.7, 30.7.

MS (ESI): m/z calc. for (C9H11O2+)[M+H]+: 151.08; found: 151.08.

Spectroscopic data for 2a/2a’ match those previously reported in literature.\[31\]

2-(2-Methylphenyl)propanoic acid (2b)/3-(2-methylphenyl)propanoic acid (2b’)

Following GP4, an inseparable mixture (90:10) of 2b/2b’ from 1b (0.2 mmol) was obtained as a light-yellow solid (17.0 mg, 0.10 mmol, 51% yield).

Branched acid 2b: 1H NMR (400 MHz, CDCl3) δ (ppm) = 7.42 – 7.18 (m, 5H), 4.07 (q, \(J = 7.1\) Hz, 1H), 2.47 (s, 3H), 1.58 (d, \(J = 7.1\) Hz, 3H). 13C NMR (101 MHz, CDCl3) δ (ppm) = 180.5, 138.5, 136.0, 130.7, 127.3, 126.7, 126.6, 41.2, 19.8, 17.7.

Linear acid 2b’: 1H NMR (400 MHz, CDCl3) δ (ppm) = 7.41 – 7.19 (m, 5H) [overlapped with the major isomer], 3.03 (dd, \(J = 8.9, 6.9\) Hz, 2H), 2.72 (dd, \(J = 8.9, 7.1\) Hz, 2H), 2.40
(s, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 178.8, 138.4, 136.1, 130.5, 128.6, 126.7, 126.3, 34.4, 28.1, 19.4.

HRMS (ESI): m/z calc. for (C$_{10}$H$_{11}$O$_2$) [M-H]$^-$ 163.0765; found: 163.0767.

Spectroscopic data for 2b/2b' match those previously reported in literature.$^{[32],[33]}$

2-(3-Methoxyphenyl)propanoic acid (2c') / 3-(3-methoxyphenyl)propanoic acid (2c')

Following GP4, an inseparable mixture (85:15) of 2c/2c' from 1c (0.2 mmol) was obtained as a light-yellow gum (19.2 mg, 0.11 mmol, 52% yield).

Branched acid 2c: 1H NMR (300 MHz, CDCl$_3$) δ (ppm) = 7.25 (t, $J = 8.1$ Hz, 1H), 6.94 – 6.89 (m, 1H), 6.88 (t, $J = 2.1$ Hz, 1H), 6.82 (ddd, $J = 8.2$, 2.6, 1.0 Hz, 1H), 3.81 (s, 3H), 3.72 (q, $J = 7.2$ Hz, 1H), 1.51 (d, $J = 7.2$ Hz, 3H). 13C NMR (75 MHz, CDCl$_3$) δ (ppm) = 180.5, 159.9, 141.4, 129.8, 120.1, 113.6, 112.8, 55.4, 45.5, 18.2.

Linear acid 2c': 1H NMR (300 MHz, CDCl$_3$) δ (ppm) = 7.24 – 7.17 (m, 1H) [overlapped with the major isomer], 6.79 – 6.73 (m, 3H), 3.79 (s, 3H), 2.93 (t, $J = 7.8$ Hz, 2H), 2.72 – 2.61 (m, 2H). 13C NMR (75 MHz, CDCl$_3$) δ (ppm) = 179.0, 159.8, 141.9, 129.7, 120.7, 114.2, 111.8, 55.3, 35.6, 30.7.

HRMS (ESI): m/z calc. for (C$_{13}$H$_{11}$O$_3$) [M-H]$^-$: 179.0714; found: 179.0718.

Spectroscopic data for 2c/2c' match those previously reported in literature.$^{[31]}$

2-(4-Methylphenyl)propanoic acid (2d)/ 3-(4-methylphenyl)propanoic acid (2d')

Following GP4, an inseparable mixture (93:7) of 2d/2d' from 1d (0.2 mmol) was obtained as an off-white solid (16.1 mg, 0.10 mmol, 48% yield).
Branched acid 2d: \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) (ppm) = 7.28 – 7.19 (m, 2H), 7.18 – 7.09 (m, 2H), 3.71 (q, \(J = 7.1\) Hz, 1H), 2.34 (s, 3H), 1.50 (d, \(J = 7.2\) Hz, 3H). \(^{13}\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\) (ppm) = 180.7, 137.2, 137.0, 129.5, 127.6, 45.0, 21.2, 18.2.

Linear acid 2d’: \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) (ppm) = 7.29 – 7.18 (m, 2H) [overlaps with the major isomer], 7.18 – 7.08 (m, 2H) [overlaps with the major isomer], 2.91 (t, \(J = 7.7\) Hz, 2H), 2.65 (t, \(J = 7.8\) Hz, 2H), 2.33 (s, 3H). \(^{13}\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\) 136.0, 129.3, 128.3, 35.8, 30.3, 21.1. [Note: Some signals are overlapped with the major isomer]

HRMS (ESI): m/z calc. for (C\(_{10}\)H\(_{11}\)O\(_2\)-) [M-H]: 163.0765; found: 163.0767.

Spectroscopic data for 2d/2d’ match those previously reported in literature.\([31],[34]\)

2-(4-Methoxyphenyl)propanoic acid (2e) / 3-(4-methoxyphenyl)propanoic acid (2e’)

Following GP4, an inseparable mixture (90:10) of 2e/2e’ from 1e (0.2 mmol) was obtained as a light yellow solid (20.6 mg, 0.11 mmol, 57% yield).

Branched acid 2e: \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) (ppm) = 7.29 – 7.21 (m, 2H), 6.91 – 6.85 (m, 2H), 3.80 (s, 3H), 3.69 (q, \(J = 7.2\) Hz, 2H), 1.49 (d, \(J = 7.2\) Hz, 3H). \(^{13}\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\) (ppm) = 181.1, 159.0, 132.0, 128.7, 114.2, 55.4, 44.6, 18.3.

Linear acid 2e’: \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) (ppm) = 7.16 – 7.08 (m, 2H), 6.85 – 6.80 (m, 2H), 3.79 (s, 3H), 2.89 (t, \(J = 7.7\) Hz, 2H), 2.65 (t, \(J = 7.7\) Hz, 2H). \(^{13}\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\) (ppm) = 179.3, 158.21, 132.3, 129.4, 114.1, 36.0, 29.8. [Note: One signal is overlapped with the other isomer.]

MS (ESI): m/z calc. for (C\(_{10}\)H\(_{13}\)O\(_3\)+) [M+H]: 181.09; found: 181.09.

Spectroscopic data for 2e/2e’ match those previously reported in literature.\([31],[33]\)
2-[[1,1'-Biphenyl]-4-yl]propanoic acid (2f) / 3-[[1,1'-biphenyl]-4-yl]propanoic acid (2f')

Following GP4, an inseparable mixture (90:10) of 2f/2f' from 1f (0.2 mmol) was obtained as a white solid (20.5 mg, 0.09 mmol, 45% yield).

Branched acid 2f: ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.62 – 7.54 (m, 4H), 7.49 – 7.32 (m, 5H), 3.81 (q, J = 7.2 Hz, 1H), 1.58 (d, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) = 180.8, 140.8, 140.5, 138.9, 128.9, 128.2, 127.6, 127.4, 127.2, 45.2, 18.3.

Linear acid 2f': ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.62 – 7.52 (m, 4H), 7.48 – 7.28 (m, 5H), 3.01 (t, J = 7.9 Hz, 2H), 2.73 (t, J = 7.9 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) = 179.2, 141.0, 139.5, 139.3, 128.9, 128.8, 127.4, 127.3, 127.1, 35.6, 30.3.

MS (ESI): m/z: calc. for (C₁₅H₁₅O₂⁺) [M+H]⁺: 227.10; found: 227.10 (100%), 228.11 (16.2%), 229.11 (1.7%).

Spectroscopic data for 2f/2f’ match those previously reported in literature.[31],[35]

2-(4-Hydroxyphenyl)propanoic acid (2g) / 3-(4-hydroxyphenyl)propanoic acid (2g')

Following GP4, an inseparable mixture (85:15) of 2g/2g’ from 1g (0.2 mmol) was obtained as a light crystalline solid (23.1 mg, 0.14 mmol, 70% yield).

Branched acid 2g: ¹H NMR (400 MHz, Acetone-d₆) δ (ppm) = 8.22 (br, 1H), 7.19 – 7.13 (m, 2H), 6.83 – 6.77 (m, 2H), 3.65 (q, J = 7.1 Hz, 1H), 1.39 (d, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Acetone-d₆) δ (ppm) = 176.0, 157.2, 133.0, 129.3, 116.1, 44.9, 19.2.
Linear acid 2g’: 1H NMR (400 MHz, Acetone-d_6) δ (ppm) = 8.08 (br, 1H), 7.07 (m, 2H), 6.76 – 6.73 (m, 2H), 2.81 (d, $J = 7.5$ Hz, 2H), 2.55 (d, $J = 7.8$ Hz, 2H). 13C NMR (101 MHz, Acetone-d_6) δ (ppm) = 174.1, 138.4, 132.6, 130.1, 115.4, 36.4, 30.8.

HRMS (ESI): m/z: calc. for (C$_9$H$_{10}$O$_3$)$^-$ [M-H]$^-$: 165.0557; found: 165.0559.

Spectroscopic data for 2g/2g’ match those previously reported in literature.$^{[31],[36]}$

2- (4- Acetamidophenyl)propanoic acid (2h) / 3- (4- acetamidophenyl)propanoic acid (2h’)

Following GP4, an inseparable mixture (90:10) of 2h/2h’ from 1h (0.2 mmol) was obtained as an off-white solid (27.0 mg, 0.13 mmol, 65% yield).

Branched acid 2h: 1H NMR (400 MHz, Acetone-d_6) δ (ppm) = 9.13 (br, 1H), 7.59 (d, $J = 8.6$ Hz, 2H), 7.25 (d, $J = 8.6$ Hz, 2H), 3.70 (q, $J = 7.1$ Hz, 1H), 2.06 (s, 3H), 1.41 (d, $J = 7.1$ Hz, 3H). 13C NMR (101 MHz, Acetone-d_6) δ (ppm) = 175.8, 139.4, 137.0, 128.6, 120.1, 45.3, 24.3, 19.2.

Linear acid 2h’: 1H NMR (400 MHz, Acetone-d_6) δ (ppm) = 9.13 (br, 1H) [overlapped with the major isomer], 7.54 (d, $J = 8.5$ Hz, 2H), 7.17 (d, $J = 8.5$ Hz, 2H), 2.86 (t, $J = 7.4$ Hz, 2H), 2.58 (t, $J = 8.0$ Hz, 2H), 2.06 (s, 3H) [overlapped with the major isomer]. 13C NMR (101 MHz, Acetone-d_6) δ (ppm) = 168.9, 139.3, 137.0 [overlapped with the major isomer], 129.4, 120.0, 36.1, 24.3, 20.6.

HRMS (ESI): m/z calc. for (C$_{11}$H$_{14}$NO$_3$)$^+$ [M+H]$^+$ 208.0968 ; found: 208.0970.

IR (ATR): ν = 3321, 2926, 2859, 1692, 1644, 1595, 1536, 1454, 1405, 1316, 1256, 1211, 1182, 1118, 1074, 969, 839, 798, 745, 690 cm$^{-1}$.
2- (Naphthalen-2-yl)propanoic acid (2i)/ 3- (naphthalen-2-yl)propanoic acid (2i')

Following GP4, an inseparable mixture (93:7) of 2i/2i' from 1i (0.2 mmol) was obtained as a white solid (20.0 mg, 0.10 mmol, 49% yield).

Branched acid 2i: ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.86 – 7.78 (m, 3H), 7.77 (s, 1H), 7.53 – 7.40 (m, 3H), 3.92 (q, J = 7.1 Hz, 1H), 1.62 (d, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) = 180.7, 137.3, 133.5, 132.8, 128.5, 128.0, 127.8, 126.5, 126.4, 126.1, 125.8, 45.6, 18.3.

Linear acid 2i': ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.89 – 7.70 (m, 4H), 7.47 (m, 3H), 3.12 (t, J = 7.8 Hz, 2H), 2.78 (t, J = 7.8 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) = 179.1, 137.7, 133.7, 132.3, 128.3, 127.0, 126.2, 125.6, 35.6, 30.8. [Note: Some peaks are overlapped with the major isomer.]

HRMS (ESI): m/z calc. for (C₁₃H₁₁O₂⁻) [M-H]⁻: 199.0765; found: 199.0766.

Spectroscopic data for 2i/2i' match those previously reported in literature.[32]

2- (4- Acetylphenyl)propanoic acid (2j)/ 3- (4- acetylphenyl)propanoic acid (2j')

Following GP4, an inseparable mixture (85:15) of 2j/2j' from 1j (0.2 mmol) was obtained as a light-yellow gum (20.4 mg, 0.11 mmol, 53% yield).

Branched acid 2j: ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.92 (d, J = 8.3 Hz, 2H), 7.41 (d, J = 8.3 Hz, 2H), 3.81 (q, J = 7.2 Hz, 1H), 2.59 (s, 3H), 1.54 (d, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) = 198.0, 179.5, 145.2, 136.4, 128.9, 128.1, 45.5, 26.7, 18.1.

Linear acid 2j': ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.88 (dd, J = 8.1Hz, 2H), 7.29 (d, J = 8.1 Hz, 2H), 3.00 (t, J = 7.6 Hz, 2H), 2.70 (t, J = 7.6 Hz, 2H), 2.58 (s, 3H). ¹³C
NMR (101 MHz, CDCl₃) δ (ppm) = 198.1, 178.3, 146.0, 135.6, 128.9, 128.7, 35.1, 30.6, 26.7.

MS (ESI): m/z calc. for (C₁₂H₁₁O₂⁺) [M+H]⁺: 193.08; found: 193.09 (100%), 194.09 (10.8%), 195.09 (1.1%).

Spectroscopic data for 2j/2j' match those previously reported in literature.[31],[35]
Methyl 2- [4- (methoxycarbonyl)phenyl]propanoate (2k-Me)

The product was obtained following GP5, then the crude carboxylic acid was converted into the corresponding methyl ester by treatment with a 2 M solution of TMSCH$_2$N$_2$ (in Et$_2$O) and purified by column chromatography, obtaining a colourless gum (21.0 mg, 0.09 mmol, 48% yield).

1H NMR (300 MHz, CDCl$_3$) δ (ppm) = 8.03 – 7.96 (m, 2H), 7.40 – 7.33 (m, 2H), 3.91 (s, 3H), 3.78 (q, $J = 6.9$ Hz, 1H), 3.67 (s, 3H), 1.52 (d, $J = 7.2$ Hz, 3H). 13C NMR (101 MHz, CDCl$_3$) δ (ppm) = 174.3, 166.8, 145.6, 130.0, 129.1, 127.6, 52.2, 52.1, 45.5, 18.4.

Spectroscopic data for 2k-Me match those previously reported in literature.[37]

2- (1H- Indol- 3- yl)propanoic acid (2m) / 3- (1H- indol- 3- yl)propanoic acid (2m’)

Following GP4, an inseparable mixture (80:20) of 2l/2l’ from 1l (0.2 mmol) was obtained as a light-orange gum (14.3 mg, 0.08 mmol, 38% yield).

Branched acid 2l: 1H NMR (400 MHz, CDCl$_3$) δ (ppm) = 8.09 (br, 1H), 7.70 (d, $J = 7.9$ Hz, 1H), 7.38 – 7.34 (m, 1H), 7.23-7.18 (m, 1H), 7.17 – 7.11 (m, 2H), 4.05 (q, $J = 7.2$ Hz, 1H), 1.63 (d, $J = 7.2$ Hz, 3H). 13C NMR (101 MHz, CDCl$_3$) δ (ppm) = 180.8, 136.3, 126.5, 122.5, 121.9, 119.9, 119.4, 115.0, 111.4, 37.0, 17.6.

Linear acid 2l’: 1H NMR (400 MHz, CDCl$_3$) δ (ppm) = 7.94 (s, 1H), 7.59 (d, $J = 7.8$ Hz, 1H), 7.35 (d, $J = 8.0$ Hz, 1H), 7.22 – 7.17 (m, 1H), 7.17 – 7.10 (m, 2H), 3.10 (d, $J = 7.7$ Hz, 2H), 2.76 (t, $J = 7.7$ Hz, 2H). 13C NMR (101 MHz, CDCl$_3$) δ (ppm) = 179.3, 136.4, 127.2, 122.2, 121.6, 119.5, 118.7, 114.7, 111.3, 34.7, 20.5. [Note: Some peaks are overlapped with the major isomer.]

HRMS (ESI): m/z: calc. for (C$_{11}$H$_{11}$N$_2$O$_2$)$^+$ [M+H]$^+$: 190.0863; found: 190.0863.
Spectroscopic data for 2l/ 2l’ match those previously reported in literature.[38],[39]

2- (4- Methoxyphenyl)butanoic acid (2m)

Following GP4, an 2m from 1m (0.2 mmol) was obtained as a light tan solid (5.1 mg, 22% yield).

1H NMR (400 MHz, CDCl$_3$) δ (ppm) = 7.25 – 7.21 (m, 2H), 6.88 – 6.83 (m, 2H), 3.79 (s, 3H), 3.41 (t, J = 7.7 Hz, 1H), 2.14-2.00 (m, 1H), 1.85 – 1.70 (m, 1H), 0.90 (t, J = 7.4 Hz, 3H). 13C NMR (101 MHz, CDCl$_3$) δ (ppm) =179.7, 159.1, 130.6, 129.2, 114.2, 55.4, 52.5, 26.5, 12.2.

Spectroscopic data for 2m match those previously reported in literature.[40]
8.1.3 Scale up reaction for the photocarboxylation of 1a

In a 100 ml Schlenk flask equipped with a teflon-coated stirring bar, a rubber septum and a CO₂ inlet, Hantzsch ester (1.39 g, 5.5 mmol, 1.5 equiv.), 4-CzIPN (29 mg, 36 µmol, 0.01 equiv.), (L1)NiBr₂ (78 mg, 183 µmol, 0.05 equiv.) and K₂CO₃ (506 mg, 3.7 mmol, 1.0 equiv.) were added and then the system was purged-refilled three times with CO₂. DMF (36 ml) and water (330 µl) were added, then vacuum was applied under stirring for 3 min followed by CO₂ bubbling for 5 min using a metal needle. Phenylethyl bromide 1a (500 µl, 3.7 mmol, 1.0 equiv.) was added via a syringe, then the reaction was placed in a custom-made photoreactor and irradiated with 450 nm 12 LEDs array while CO₂ was constantly bubbled-through the solution. A cooling fan allowed to maintain the temperature of the reaction below 30°C. After 9 hours the bubbling was stopped and the CO₂ atmosphere was maintained for additional 15 h. After completion of the reaction, most of the solvent was removed under reduced pressure. The residue was partitioned between ethyl acetate (40 ml) and 2M HCl (20 ml), then the water layer was extracted twice more with ethyl acetate (40 ml each time). The combined organic layers were dried over magnesium sulfate, then the solvent was removed under reduced pressure. The residue was suspended in diethyl ether (40 ml), then extracted three times with 1M NaOH solution (40 ml each time) and the combined aqueous layers were washed twice with Et₂O (40 ml each time). The water layer was acidified up to pH = 2 by the careful addition of concentrated HCl and then it was extracted three times with ethyl acetate (75 ml each time). The combined organic layers were dried over magnesium sulfate, then the solvent was removed under reduced pressure to afford hydratropic acid 2a as a light-yellow viscous oil (265 mg, 48% yield).

Figure S1: Experimental set-up for the millimolar scale carboxylation.
8.1.4 Additional examples

2- (4- fluorophenyl)propanoic acid (2n) / 3- (4- fluorophenyl)propanoic acid (2n')

Following GP4, an inseparable mixture (85:15) of 2n/2n' from 1n (0.2 mmol) was obtained as a light-yellow gum (13.1 mg, 0.08 mmol, 39% yield).

Branched acid 2n: 1H NMR (400 MHz, CDCl$_3$) δ (ppm) = 7.29 (m, 2H), 7.06 – 6.99 (m, 2H), 3.73 (q, $J = 7.2$ Hz, 1H), 1.51 (d, $J = 7.2$ Hz, 3H). 13C NMR (101 MHz, CDCl$_3$) δ (ppm) = 180.5, 162.3 (d, $^1J^{(19F-13C)} = 245.8$ Hz), 135.5 (d, $^4J^{(19F-13C)} = 3.3$ Hz), 129.3 (d, $^3J^{(19F-13C)} = 8.2$ Hz), 115.7 (d, $^2J^{(19F-13C)} = 21.4$ Hz), 44.7, 18.4. 19F NMR (376 MHz, CDCl$_3$) δ (ppm) = -115.3.

Linear acid 2n': 1H NMR (400 MHz, CDCl$_3$) δ (ppm) = 7.19 – 7.12 (m, 2H), 7.00 (m, 2H), 2.92 (t, $J = 7.6$ Hz, 2H), 2.65 (t, $J = 7.6$Hz, 2H). 13C NMR (101 MHz, CDCl$_3$) δ (ppm) = 178.9, 161.5 (d, $^1J^{(19F-13C)} = 241.7$ Hz), 135.9 (d, $^4J^{(19F-13C)} = 3.1$ Hz), 129.9 (d, $^3J^{(19F-13C)} = 8.0$ Hz), 115.4 [overlapped multiplet with the other isomer], 35.8, 29.9. 19F NMR (376 MHz, CDCl$_3$) δ (ppm) = -116.9.

MS (ESI): m/z calc. for (C$_9$H$_{10}$O$_2$F$^+$) [M+H$^+$] $^+$ 169.06; found: 169.07 (100%), 170.07 (9.1), 171.07 (0.8).

Spectroscopic data for 2n/2n' match those previously reported in literature.$^{[31]}$

2- (2- Methoxyphenyl)propanoic acid (2o) / 3- (2- methoxyphenyl)propanoic acid (2o')

Following GP4, an inseparable mixture (90:10) of 2o/2o' from 1o (0.2 mmol) was obtained as a white solid (12.2 mg, 0.07 mmol, 34% yield).

Branch acid 2o: 1H NMR (300 MHz, CDCl$_3$) δ (ppm) = 7.31 – 7.22 (m, 2H), 6.96 (td, $J = 7.5$, 1.1 Hz, 1H), 6.89 (dd, $J = 8.6$, 1.1 Hz, 1H), 4.09 (q, $J = 7.2$ Hz, 1H), 3.83 (s, 3H),
1.49 (d, J = 7.2 Hz, 2H). 13C NMR (75 MHz, CDCl$_3$) δ (ppm) = 180.8, 156.8, 128.8, 128.5, 128.1, 120.9, 110.9, 55.6, 39.2, 17.0.

Linear acid 2o': 1H NMR (300 MHz, CDCl$_3$) δ (ppm) = 7.22 – 7.11 (m, 2H), 6.87 (m, 2H), 3.82 (s, 3H), 2.94 (t, J = 7.7 Hz, 2H), 2.71 – 2.62 (m, 2H). 13C NMR (75 MHz, CDCl$_3$) δ (ppm) = δ 130.1, 128.6, 127.8, 120.5, 110.3, 55.3, 34.0, 26.0. [Note: Some signals are below the detection limit or overlap with the major isomer.]

HRMS (ESI): m/z calc. for (C$_{10}$H$_{11}$O$_3$) [M-H]$^-$: 179.0714; found: 179.0716.

Spectroscopic data for 2o/2o' match those previously reported in literature.[41],[42]

2- (3- methylphenyl)propanoic acid / 3- (3- methylphenyl)propanoic acid (2c)

Following GP4, an inseparable mixture (90:10) of 2p/2p' from 1p (0.2 mmol) was obtained as a light-yellow gum (14.0 mg, 0.09 mmol, 43% yield).

**Branch acid 2p: 1H NMR (300 MHz, CDCl$_3$) δ (ppm) = 7.26 – 7.19 (m, 1H), 7.16 – 6.95 (m, 3H), 3.71 (q, J = 7.2 Hz, 1H), 2.35 (s, 3H), 1.50 (d, J = 7.2 Hz, 3H). 13C NMR (75 MHz, CDCl$_3$) δ (ppm) = 180.7, 139.8, 138.5, 128.7, 128.4, 128.3, 124.7, 45.4, 21.6, 18.2.

**Linear acid 2p': 1H NMR (300 MHz, CDCl$_3$) δ (ppm) = 7.26 – 7.17 (m, 1H), 7.17 – 6.89 (m, 4H), 2.91 (t, J = 7.8 Hz, 1H), 2.67 (d, J = 7.8 Hz, 1H), 2.33 (s, 2H). 13C NMR (75 MHz, CDCl$_3$) δ (ppm) = 179.1, 140.2, 138.3, 129.2, 128.6, 127.2, 125.4, 45.4, 35.7, 30.5. [Note: Some signals are overlapped with the major isomer.]

HRMS (ESI): m/z calc. for (C$_{10}$H$_{12}$O$_2$Na$^+$) [M+Na]$^+$: 187.0730; found: 187.0728.

Spectroscopic data for 2p/2p' match those previously reported in literature.[41],[31]
8.2 Photocarboxylation reactions en route to primary carboxylic acids

8.2.1 General procedure (GP5)

An oven-dried Schlenk tube containing a magnetic stir bar was charged with (L7)NiBr₂ (0.10 equiv.), 4-CzIPN (0.01 equiv.), Hantzsch ester (HEH, 2.00 equiv.), tetra-n-butylammonium iodide (TBAI, 1.00 equiv., if it is necessary) and the alkyl bromide (1.00 equiv., if it is solid). The Schlenk tube was then taken inside a glovebox, where Rb₂CO₃ (2.00 equiv) was added. The tube was then taken out of the glovebox and connected to a vacuum line where it was evacuated and back-filled under CO₂ flow at least three times. The alkyl bromide (1.0 equiv, if it is liquid) and DMF (0.08M) were added under CO₂ flow. Once all the components were added, the Schlenk tube was closed at the atmospheric pressure of CO₂ (1 bar) and placed at a temperature-controlled photo-reactor maintained at 10 ºC and stirred for 20 h in the presence of continuous light irradiation from blue LEDs (λ = 451 nm). The reaction mixture was quenched with 2 M HCl aq. solution to release free acid by hydrolysis of carboxylate salt and diluted with ethyl acetate. The combined organic layers were extracted with ethyl acetate (at least three times), washed with water followed by brine solution, dried over MgSO₄ and concentrated under reduced pressure. Then the crude mixture was dissolved in diethyl ether and the organic phase was three times extracted with aq. 1M NaOH solution. The combined aqueous phase was washed once again with diethyl ether and neutralized to pH = 2 using 2 M HCl aqueous solution. Finally, the acidic aqueous phase was three times extracted with ethyl acetate. The removal of solvent under reduced pressure delivered the pure carboxylic acid.
8.2.2 Characterization data

1-Octanoic acid (4a).

Following GP5 starting from 2-Bromoheptane (3a, 44.8 mg, 0.25 mmol) afforded the title compound 4a as a colorless oil (17.30 mg, 0.12 mmol, 48%) in 83:17 rr.

Following GP5 starting from 2-Bromoheptane (3a, 44.8 mg, 0.25 mmol) in the presence of TBAI (92.6 mg, 0.25 mmol, 1.0 equiv.) as additive afforded the title compound 4a as a colorless oil (17.30 mg, 0.12 mmol, 48%) in 99:1 rr.

Following GP5 starting from 3-Bromoheptane (3a, 44.8 mg, 0.25 mmol) in the presence of TBAI (92.6 mg, 0.25 mmol, 1.0 equiv.) as additive afforded the title compound 4a as a colorless oil (15.3 mg, 0.106 mmol, 42%) in 99:1 rr.

1H NMR (400 MHz, CDCl3): δ (ppm) = 2.35 (t, J = 7.5 Hz, 2H), 1.67 – 1.60 (m, 2H), 1.35 – 1.25 (m, 8H), 0.88 (t, J = 6.9 Hz, 3H).

13C NMR (101 MHz, CDCl3): δ (ppm) = 180.2, 34.3, 31.8, 29.2, 29.1, 24.9, 22.7, 14.2. Spectroscopic data for 4a match those previously reported in literature.[18]

6-Methylheptanoic acid (4b).

Following GP5 starting from 2-Bromo-5-methylhexane (3b, 44.5 mg, 0.25 mmol) in the presence of TBAI (92.6 mg, 0.25 mmol, 1.0 equiv.) as additive afforded the title compound 4b as a light-yellow oil (16.0 mg, 0.111 mmol, 44%) in 99:1 rr.

1H NMR (400 MHz, CDCl3): δ (ppm) = 2.35 (t, J = 7.5 Hz, 2H), 1.62 (p, J = 7.5 Hz, 2H), 1.57 – 1.49 (m, 1H), 1.38 – 1.30 (m, 2H), 1.21 – 1.16 (m, 2H), 0.87 (d, J = 6.6 Hz, 6H).
13C NMR (101 MHz, CDCl$_3$): δ (ppm) = 179.7, 38.7, 34.1, 28.0, 27.0, 25.1, 22.7.

Spectroscopic data for 4b match those previously reported in literature.$^{[43]}$

6-Phenylhexanoic acid (4c).

Following GP5 starting from (4-bromopentyl)benzene (3c, 56.8 mg, 0.25 mmol) afforded the title compound 4c as a light-yellow oil (25.0 mg, 0.13 mmol, 52 %) in 99:1 rr.

Following GP4, the title compound 4c from (4-bromopentyl)benzene (3c, 56.8 mg, 0.25 mmol) was obtained as a light-yellow oil (3.0 mg, 0.02 mmol, 6%). No benzylic carboxylation product was detected.

1H NMR (300 MHz, CDCl$_3$): δ (ppm) = 7.35 – 7.27 (m, 2H), 7.20 – 7.16 (m, 3H), 2.36 (t, J = 7.6 Hz, 2H), 2.36 (t, J = 7.5 Hz, 2H), 1.73 – 1.60 (m, 4H), 1.45 – 1.34 (m, 2H).

13C NMR (75 MHz, CDCl$_3$): δ (ppm) = 180.2, 142.6, 128.5, 128.4, 125.8, 35.8, 34.1, 31.2, 28.8, 24.7.

Spectroscopic data for 4c match those previously reported in literature.$^{[44]}$

Heptanedioic acid (4d).

Following GP5 starting from Methyl 5-bromohexanoate (3d, 52.3 mg, 0.25 mmol) afforded the title compound 4d as a light-yellow viscous liquid (16.0 mg, 0.10 mmol, 40 %) in 99:1 rr upon hydrolysis of ester during work-up.

1H NMR (300 MHz, DMSO-d_6): δ (ppm) = 12.00 (s, 2H), 2.19 (t, J = 7.3 Hz, 4H), 1.53 – 1.43 (m, 4H), 1.33 – 1.21 (m, 2H).
13C NMR (75 MHz, DMSO-d_6): δ (ppm) = 174.4, 33.5, 28.1, 24.2.

Spectroscopic data for 4d match those previously reported in literature.$^{[45]}$

10-Chlorodecanoic acid (4e).

Following GP5 starting from 8-Bromo-1-chlorononane (3e, 60.4 mg, 0.25 mmol) afforded the title compound 4e as a colorless oil (29.0 mg, 0.14 mmol, 56%) in 80:20 rr.

Following GP-5 starting from 8-Bromo-1-chlorononane (3e, 60.4 mg, 0.25 mmol) in the presence of TBAI (92.6 mg, 0.25 mmol, 1.0 equiv.) as additive afforded the title compound 4e as colorless oil (24.0 mg, 0.116 mmol, 46%) in 99:1 rr.

1H NMR (300 MHz, CDCl$_3$): δ (ppm) = 3.53 (t, J = 6.7 Hz, 2H), 3.53 (t, J = 6.7 Hz, 2H), 1.81 – 1.71 (m, 2H), 1.68 – 1.58 (m, 2H), 1.47 – 1.39 (m, 2H), 1.36 – 1.25 (m, 8H).

13C NMR (101 MHz, CDCl$_3$): δ (ppm) = 180.1, 45.3, 34.2, 32.8, 29.4, 29.3, 29.1, 28.9, 27.0, 24.8.

Spectroscopic data for 4e match those previously reported in literature.$^{[18]}$

7-Cyano-7-methyloctanoic acid (4f).

Following GP5 starting from 6-Bromo-2,2-dimethylheptanenitrile (3f, 54.5 mg, 0.25 mmol) afforded the title compound 4f as a colorless oil (23.0 mg, 0.126 mmol, 50%) in 99:1 rr.

1H NMR (300 MHz, CDCl$_3$): δ (ppm) = 2.37 (t, J = 7.4 Hz, 2H), 1.67 (quin, J = 7.4 Hz, 2H), 1.54 – 1.46 (m, 4H), 1.43 – 1.36 (m, 2H), 1.33 (s, 6H).
13C NMR (75 MHz, CDCl$_3$): δ (ppm) = 180.0, 125.2, 40.9, 34.0, 32.5, 29.1, 26.8, 25.1, 24.5.

IR (ATR): ν = 2975, 2954, 2234, 1709, 1470, 1425, 1301, 1255, 1203, 945 cm$^{-1}$.

HRMS (ESI): m/z calc. for (C$_{10}$H$_{17}$NO$_2$ $^-$) [M-H]$^-$: 182.1187; found: 182.1183.
6-(1H-Indol-1-yl)hexanoic acid (4g).

Following GP5 starting from 1-(4-bromopentyl)-1H-indole (3g, 66.6 mg, 0.25 mmol) in the presence of TBAI (92.6 mg, 0.25 mmol, 1.0 equiv.) as additive afforded the title compound 4g as light-yellow oil (27.0 mg, 0.117 mmol, 46 %) in 94:6 rr.

\[
1^H\text{ NMR (400 MHz, CDCl_3): } \delta (\text{ppm}) = 7.66 (\text{dt, } J = 7.8, 1.0 \text{ Hz, 1H}), 7.35 (\text{dd, } J = 8.3, 0.9 \text{ Hz, 1H}), 7.23 (\text{ddd, } J = 8.2, 7.0, 1.2 \text{ Hz, 1H}), 7.15 - 7.08 (\text{m, 2H}), 6.51 (\text{dd, } J = 3.1, 0.9 \text{ Hz, 1H}), 4.14 (\text{t, } J = 7.1 \text{ Hz, 2H}), 2.35 (\text{t, } J = 7.4 \text{ Hz, 2H}), 1.93 - 1.84 (\text{m, 2H}), 1.72 - 1.64 (\text{m, 2H}), 1.44 - 1.35 (\text{m, 2H}).
\]

\[
1^3C\text{ NMR (101 MHz, CDCl_3): } \delta (\text{ppm}) = 179.9, 136.0, 128.7, 127.9, 121.5, 121.1, 119.4, 109.4, 101.2, 46.2, 33.9, 30.0, 26.5, 24.4.
\]

Spectroscopic data for 4g match those previously reported in literature.[18]

5-(6-Methoxynaphthalen-2-yl)pentanoic acid (4h).

Following GP5 starting from 2-(3-bromobutyl)-6-methoxynaphthalene (3h, 73.3 mg, 0.25 mmol) in the presence of TBAI (92.6 mg, 0.25 mmol, 1.0 equiv.) afforded the title compound 4h as a white solid (32.0 mg, 0.124 mmol, 50 %) in 99:1 rr.

Following GP4, the title compound 4h from 2-(3-bromobutyl)-6-methoxynaphthalene (3h, 73.3 mg, 0.25 mmol) was obtained as a white solid (3.0 mg, 0.01 mmol, <5%). No benzylic carboxylation product was detected.
1H NMR (300 MHz, CDCl3): δ (ppm) = 7.67 (d, J = 8.2 Hz, 2H), 7.54 (s, 1H), 7.29 (dd, J = 8.4, 1.6 Hz, 1H), 7.15 – 7.11 (m, 1H), 7.11 (s, 1H), 3.91 (s, 3H), 2.77 (t, J = 7.0 Hz, 2H), 2.40 (t, J = 6.9 Hz, 2H), 1.76 – 1.70 (m, 2H).

13C NMR (75 MHz, CDCl3): δ (ppm) = 179.8, 157.3, 137.3, 133.1, 129.2, 129.0, 127.9, 126.9, 126.4, 118.8, 105.8, 55.4, 35.6, 34.0, 30.9, 24.4.

Melting Point: 110-115 ºC

Spectroscopic data for 4h match those previously reported in literature.[46]

6-(4-Acetamidophenoxy)hexanoic acid (4i).

Following GP5 starting from N-(4-((4-bromopentyl)oxy)phenyl)acetamide (3i, 75.0 mg, 0.25 mmol) afforded the title compound 4i as a white solid (35.0 mg, 0.132 mmol, 53 %) in 99:1 rr.

1H NMR (300 MHz, DMSO-d6): δ (ppm) = 12.01 (s, 1H), 9.75 (s, 1H), 7.45 (d, J = 9.0 Hz, 2H), 6.84 (d, J = 9.0 Hz, 2H), 3.89 (t, J = 6.4 Hz, 2H), 2.22 (t, J = 7.2 Hz, 2H), 1.99 (s, 3H), 2.73 – 2.64 (m, 2H), 1.49 – 1.60 (m, 2H), 1.45 – 1.35 (m, 2H).

13C NMR (75 MHz, DMSO-d6): δ (ppm) = 174.5, 167.7, 154.4, 132.5, 120.5, 114.4, 67.4, 33.6, 28.5, 25.2, 24.3, 23.8.

IR (ATR): ν = 3305, 3046, 2950, 2872, 1690, 1660, 1600, 1532, 1512, 1474, 1410, 1301, 1243, 1203, 1110, 1045, 1025, 1010, 828 cm⁻¹.

HRMS (ESI): m/z calc. for (C₁₄H₁₈NO₄) [M-H]⁻: 264.1241; found: 264.1251.

Melting Point: 116-118 ºC
6-(2-Benzoylphenoxy)hexanoic acid (4j).

Following GP5 starting from (2-((4-bromopentyl)oxy)phenyl)(phenyl)methanone (3j, 86.6 mg, 0.25 mmol) afforded the title compound 4j as a colorless oil (40.0 mg, 0.128 mmol, 51 %) in 99:1 rr. Note: After acid-base extraction, the compound was further purified by flash column chromatography (elucent: hexane:ethyl acetate = 9:1 to 1:1).

\[\begin{align*}
1^H \text{NMR} & \ (400 \text{ MHz, CDCl}_3): \ \delta \ (\text{ppm}) = 7.77 \ (\text{dd, } J = 8.3, 1.3 \text{ Hz, } 2H), 7.56 – 7.51 \ (\text{m, } 1H), 7.47 – 7.39 \ (\text{m, } 4H), 7.04 \ (\text{td, } J = 7.5, 0.9 \text{ Hz, } 1H), 6.93 \ (\text{d, } J = 8.2 \text{ Hz, } 1H), 3.87 \ (\text{t, } J = 6.1 \text{ Hz, } 2H), 2.18 \ (\text{t, } J = 7.6 \text{ Hz, } 2H), 1.48 – 1.41 \ (\text{m, } 4H), 1.07 – 1.00 \ (\text{m, } 2H). \\
13^C \text{NMR} & \ (101 \text{ MHz, CDCl}_3): \ \delta \ (\text{ppm}) = 197.1, 179.4, 157.0, 138.6, 132.8, 132.2, 129.9, 129.6, 129.2, 128.3, 120.8, 112.2, 67.9, 33.8, 28.7, 25.3, 24.3.
\end{align*} \]

Spectroscopic data for 4j match those previously reported in literature.[18]
8.2.3 Regioconvergent photocarboxylation of n-heptane

Bromination step: According to the literature report,[18] n-heptane (1.25 mL), MnO₂ (44.0 mg, 0.50 mmol, 2.0 equiv) and Br₂ (13 µL, 0.25 mmol, 1.0 equiv) were added to a Schlenk tube and heated at 60 °C for 4 h. The reaction was filtered through a plug of Celite, washing with n-pentane (5 mL). The filtrate was washed once with water (5 mL). The organic layer was then dried over anhydrous MgSO₄ and filtrate. Finally, the n-pentane was carefully evaporated in a rotatory evaporator. The crude mixture of isomeric bromoheptanes and the excess of n-heptane were directly used for the carboxylation step without any purification.

Carboxylation step. An oven-dried Schlenk tube containing a magnetic stir bar was charged with (L7)NiBr₂ (10.1 mg, 0.025 mmol, 0.1 equiv), 4-CzIPN (1.9 mg, 0.0025 mmol, 0.01 equiv), Hantzsch ester (HEH, 127 mg, 0.50 mmol, 2.00 equiv). The Schlenk tube was then taken inside a glovebox, where Rb₂CO₃ (115 mg, 0.50 mmol, 2.00 equiv) was added. The tube was then taken out of the glovebox and connected to a vacuum line where it was evacuated and back-filled under CO₂ flow at least three times. The crude statistical mixture of bromoheptanes and DMF (3 mL) were added under CO₂ flow. Once all the components were added, the Schlenk tube was closed at the atmospheric pressure of CO₂ (1 bar) and placed at a temperature-controlled photo-reactor maintained at 10 °C and stirred for 20 h in the presence of continuous light irradiation from blue LEDs (λ = 451 nm). The reaction mixture was quenched with 2M HCl aq. solution to release free acid by hydrolysis of carboxylate salt and diluted with ethyl acetate. The combined organic layers were extracted with ethyl acetate (at least three times), washed with water followed by brine solution, dried over MgSO₄ and concentrated under reduced pressure. Then the crude mixture was dissolved in diethyl ether and the organic phase was three times extracted with aq. 1M NaOH solution. The combined aqueous phase was washed once again with diethyl ether and neutralized to pH = 2 using 2M HCl aqueous solution. Finally, the acidic aqueous phase was three times extracted with ethyl acetate. The removal of solvent under reduced pressure delivered the pure carboxylic acid (11 mg, 0.08 mmol, 31%).
8.2.4 Regioconvergent photocarboxylation of statistical mixture of bromoheptanes

![Reaction Scheme](image)

An oven-dried Schlenk tube containing a magnetic stir bar was charged with \((L7)\text{NiBr}_2\) (10.1 mg, 0.025 mmol, 0.1 equiv), 4-CzIPN (1.9 mg, 0.0025 mmol, 0.01 equiv), Hantzsch ester (HEH, 127 mg, 0.50 mmol, 2.00 equiv). The Schlenk tube was then taken inside a glovebox, where Rb\(_2\)CO\(_3\) (115 mg, 0.50 mmol, 2.00 equiv) was added. The tube was then taken out of the glovebox and connected to a vacuum line where it was evacuated and back-filled under CO\(_2\) flow at least three times. The 1:1:1:1 mixture of bromoheptanes (10 \(\mu\)L 1-bromoheptane, 10 \(\mu\)L 2-bromoheptane, 10 \(\mu\)L 3-bromoheptane and 10 \(\mu\)L 4-bromoheptane, 0.25 mmol, 1.0 equiv) and DMF (3 mL) were added under CO\(_2\) flow. Once all the components were added, the Schlenk tube was closed at the atmospheric pressure of CO\(_2\) (1 bar) and placed at a temperature-controlled photo-reactor maintained at 10 ºC and stirred for 20 h in the presence of continuous light irradiation from blue LEDs \((\lambda = 451 \text{ nm})\). The reaction mixture was quenched with 2M HCl aq. solution to release free acid by hydrolysis of carboxylate salt and diluted with ethyl acetate. The combined organic layers were extracted with ethyl acetate (at least three times), washed with water followed by brine solution, dried over MgSO\(_4\) and concentrated under reduced pressure. Then the crude mixture was dissolved in diethyl ether and the organic phase was three times extracted with aq. 1M NaOH solution. The combined aqueous phase was washed once again with diethyl ether and neutralized to pH = 2 using 2M HCl aqueous solution. Finally, the acidic aqueous phase was three times extracted with ethyl acetate. The removal of solvent under reduced pressure delivered the pure carboxylic acid (17 mg, 0.12 mmol, 47%).
9 Mechanistic Investigation

9.1 Photocarboxylation of homobenzylic bromides

9.1.1 Kinetic profile of the model reaction

In kinetic analysis, the consumption of homobenzylic bromide (1a) and the formation of the putative intermediate styrene 6 and the byproduct ethylbenzene 7 was detected at different time interval by GC-FID. The formation of acids 2a/2a’ at different time interval was followed by 1H NMR using 1,3,5-trimethoxy benzene as internal reference.

![Chemical Reaction Diagram]

The photocarboxylation of model substrate 1a was conducted for 120 min following GP4. After appropriate time interval, an aliquot of the reaction solution was collected using a Hamilton syringe, which was previously purged three times under CO₂ atmosphere, and added to the stock solution of ethyl acetate containing 1,3,5-trimethoxybenzene as internal standard. The obtained solution was filtered through a Macherey-Nagel CHROMAFIL® O-20/15 MS PTFE filter and analyzed by GC-FID to calculate the amount of remaining starting material (1a), styrene-intermediate 6 and the byproduct ethylbenzene (7) at different time interval. To follow the acid formation, several reactions (one for each desired time) were set up according to the GP4 and then the reaction was quenched with 2M HCl after the desired time and extracted three times with ethyl acetate. To the combined organic layer the internal standard 1,3,5-trimethoxybenzene was added, then an aliquot of the solution was dried under reduced pressure followed by high vacuum to remove most of the residual DMF. The crude mixture was analyzed by 1H NMR to calculate the amount of acids 2a/2a’ formed.

In Figure S2, the kinetic plot reveals that the starting material (1a) was fully consumed within one hour and the desired product can be obtained. Interestingly, a small and almost constant amount of styrene 6 was detected during the reaction, but its amount decayed to zero when the reaction completed. This observation suggests that the styrene 6 could be potential intermediate in this process. However, the formation of byproduct ethylbenzene (7) continued over the time.
9.1.2 Intermittent illumination experiment

In order to verify if the continuous illumination was required for the reaction, the intermittent illumination of the reaction was performed. The reaction was set-up according to GP4 and the illumination was alternatively switched on or off (0-10 min: ON; 10-20 min: OFF; 20-35 min: ON; 35-60 min: OFF). The following sampling protocol was used: a 50 µl aliquot of the reaction solution was collected using a Hamilton syringe, which was previously purged three times under CO₂ atmosphere, then dissolved in an ethyl acetate stock solution containing internal standard. The obtained solution was filtered through a Macherey-Nagel CHROMAFIL® O-20/15 MS PTFE filter and analyzed using GC-FID.

In Figure S3, the plot demonstrates that the reaction can only proceed in the presence of LED illumination (white zones). No significant conversion was observed when the illumination was switched off (dark regions).
Table S3: Kinetic profile of the consumption of 1a upon intermittent irradiation.

Min.	5	10	15	20	25	35	50
[1a]/ M×10⁻²	8.5	7.0	7.1	6.8	5.7	3.2	3.0

Figure S3: Kinetic profile of the photocarboxylation of substrate (1a) under intermittent illumination.

9.1.3 Deuterium labelling experiments

Photocarboxylation of (non)deuterated substrate 1e and 1e-d₂
Following GP4, the photocarboxylation of non-deuterated substrate 1e and deuterated substrate 1e-d2 were independently performed. Both the substrates 1e and 1e-d2 delivered corresponding acids 2e/2e' and 2e-d2/2e'-d2 in 68% yields. However, the selectivity was different such as 2e/2e' were obtained in 9:1 ratio, while 2e-d2/2e'-d2 were delivered in 2.1:1. As described by the LC-MS spectra (Figure S4), the acids 2e-d2/2e'-d2 contain almost all the deuterium within the molecules, thus dictating no H/D exchange with other reagents.

![Figure S4: LC-MS spectra (negative mode) of 2e-d2/2e'-d2.](image)

Intermolecular competition experiment between 1e and 1e-d2

To measure the kinetic isotope effect, the intermolecular competition experiment was performed with the equimolar mixture of 1e and 1e-d2 following the procedure GP4. The
sampling was performed after 10 and 20 min. After 10 min, 100 µl aliquot of the reaction mixture was collected using a Hamilton syringe, which was previously purged three times under CO₂ atmosphere and then dissolved in 1 mL ethyl acetate and the obtained solution was filtered through a Macherey-Nagel CHROMAFIL® O-20/15 MS PTFE filter and analyzed by high-resolution mass spectroscopy. The sampling procedure was repeated after 20 min. The isotopic pattern of the peak associated with the branched product 2e/2e-d₂ was analyzed by the comparison with the expected natural abundance pattern and the relative amounts of 2e and 2e-d₂ were determined (Figure S5). The obtained kinetic isotope effect (KIE) value is as follow:

KIE (10 min): 1.00 KIE (20 min): 0.98 KIE (average): 0.99±0.01

In summary, by analyzing the initial rates of the reaction, no kinetic isotope effect was observed, therefore suggesting that the β-elimination step is not rate determining.

Figure S5: Isotope pattern of products 2e and 2e-d₂ after 10 min and 20 min.

Scrambling between deuterated substrate (1e-d₂) & non-deuterated substrate (1h)

In order to assess the scrambling of hydrogen atoms during the reaction, the photocarboxylation of non-deuterated 1h was performed in the presence of 1.0 equivalent of deuterium substrate 1e-d₂ following GP4. The analysis of the reaction mixture by mass spectroscopy revealed that no deuterium scrambling with 1h occurred under the reaction conditions (for 2h, M-H: 100%, M-H+1: 12.5, M-H+2: 1.3%). This result suggests that
the migratory insertion that follows the elimination step is fast and no H/D scrambling occurs.

Figure S6: LC-MS spectra of the product 2h and 2h'.

Photocarboxylation of substrate 1a in the presence of D₂O instead of H₂O

In order to elucidate whether the additive H₂O is able to scramble protons with the putative intermediates of the catalytic cycle, we performed the photocarboxylation reaction of substrate 1a in the presence of D₂O instead of H₂O, according to GP4. The ¹H NMR revealed no deuterium incorporation at α- or β-positions of the acid 2a. Furthermore, the high-resolution mass analysis of so-formed acid 2a indicated that if any incorporation of deuterium from D₂O occurs during the process, it is very little amount (≈ 4%) (Table S4).
Ion	M+H (150)	M+H+1 (151)
counts	11697	1652
found abundance	100%	14.1%
expected abundance	100%	10.0%

Figure S7: MS spectra of the product 2a in the presence of D2O.

9.1.4 Radical inhibition experiment

Following GP4, the photocarboxylation of substrate 1a was performed in the presence of 1.0 equivalent of the radical scavenger BHT (dibutylhydroxytoluene). The product 2a/2a’ was obtained in 60% yield, thus suggesting no radical inhibition of the reaction.
9.1.5 Cyclic Voltammetric (CV) measurements of (L1)NiBr₂

The reduction potentials of (L1)NiBr₂ were measured using cyclic voltammetry in MeCN (analytical grade), using ferrocene (E₁/₀ (Fe⁺/Fe) = +0.380 V vs. SCE)⁴⁷ as internal reference. The measurement was carried out using a Metrohm Autolab PGSTAT302N device using a glassy carbon working electrode, a platinum wire counter-electrode and a silver wire as pseudo-reference electrode. Tetrabutylammonium tetrafluoroborate (0.1 M, Fluka) was used as supporting electrolyte. Prior to the measurement, the solvent was degassed by purging with argon. All the measurements were performed under argon atmosphere.

The combined UV-vis and cyclic voltammetry experiments was carried out using a Metrohm Autolab PGSTAT302N device and an Agilent 8453 spectrometer, using an OTTLE (Optically Transparent Thin-Layer Electrochemical) cell from Frantisek Hartl (path length: 0.02 cm)⁴⁸ equipped with two platinum minigrids as working electrode and counter-electrode. A silver wire was used as pseudo-reference electrode. Tetrabutylammonium tetrafluoroborate (0.1 M, Fluka) was used as supporting electrolyte. Prior to the measurement the solvent was degassed by purging argon. All the measurements were performed under argon atmosphere.

Figure S8: Cyclic Voltammetry of (L1)NiBr₂ in the presence of ferrocene (peak 8, 9). Silver wire was used as pseudo-reference electrode.
Index	Potential (V)	Index	Potential (V)
1	-0.43304	6	-0.36758
2	-0.75531	7	-0.1561
3	-1.284	8	0.91141
4	-1.7372	9	1.1128
5	-0.66467	10	0.79559

The following values were obtained from the cyclic voltammetry experiment:

\[E_{1/2} (\text{Ni}^{2+/\text{Ni}^+}) = -0.88 \text{ vs. SCE} \quad E_{1/2} (\text{Ni}^{3+/\text{Ni}^0}) = -1.18 \text{ vs. SCE} \]

Figure S9: Combined cyclic voltammogram and UV-Vis spectra of (L1)NiBr₂.
Figure S10: UV-Vis spectra of the Ni(I) species ($\lambda_{\text{max}} = \sim 630 \text{ nm}$) (left) and Ni(0) species ($\lambda_{\text{max}} = \sim 900 \text{ nm}$) (right) at variable potential applied. Silver wire was used as pseudo-reference electrode.

By combining cyclic voltammetry and UV-vis spectroscopy Figure S9, the UV-Vis spectra of the Ni(I) and Ni(0) species from the reduction of (L1)NiBr$_2$ precatalyst was obtained. As shown in Figure S10, the low-valent nickel species generated from the electrochemical reduction of (L1)NiBr$_2$ precatalyst show a very different UV-vis spectrum. The Ni(I) species is characterized by an intense absorption maximum at ~ 630 nm, while the corresponding Ni(0) species has an absorption peak centered at ~ 900 nm.

9.1.6 Time-resolved UV-Vis experiments

Experimental set-up: The UV-Vis measurement where performed using an Agilent 8453 spectrometer using a temperature-controlled (20.0 °C) fluorescence cuvette (1 cm optical pathway, both faces can transmit light) equipped with a bullet-shaped Teflon-coated stirring bar (length: 6 mm, ~ 250 rpm). A single blue LED OSRAM Oslon® SSL 80 royal-blue LEDs ($\lambda_{\text{max}} = 455$ nm (± 15 nm), 3.5 V, 700 mA), equipped with a metallic passive cooling element, was placed approx. 5 mm away from one transmitting side of the cuvette, at 90° from the measuring beam. Unless otherwise stated, the spectra were recorded every second.

Preparation of a stock-solution of (L1)NiBr$_2$ and 4-CzIPN. (Solution A): In a vial equipped with a teflon-coated stirring bar, (L1)NiBr$_2$ ($5 \cdot 10^{-3}$ M) and 4-CzIPN (10^{-3} M) were added, then the corresponding amount of DMF (Fischer scientific, analytical grade) was added and the solution was stirred for 5 minutes.
Preparation of the solution of Hantzsch ester. (Solution B): In a vial equipped with a teflon-coated stirring bar, Hantzsch ester (approx. 500 mg) was added to DMF (approx. 10 ml, Fischer scientific, analytical grade). The suspension was stirred for 30 minutes to obtain a saturated solution.

Preparation of the solution C for UV-Vis spectroscopy: In the fluorescence cuvette, solution A (300 µl) followed by solution B (100 µl) were added to DMF (2 ml). The mixture was degassed by bubbling argon using a needle for 100 seconds, then sealed using a PTFE stopper.

Preparation of the solution D for UV-Visible spectroscopy: In the fluorescence cuvette, solution A (300 µl), solution B (100 µl) and phenylethylbromide (1a) (30 µl) were sequentially added to DMF (2 ml). The mixture was degassed by bubbling argon using a needle for 100 seconds, then sealed using a PTFE stopper.

UV-Vis analysis upon illumination of solution C

Figure S11: UV-Vis spectrum of solution C over time (left). Evolution of the absorption at 630 and 900 nm over time (normalized) (right).

Upon illuminating the solution, the fast formation of Ni(I) species (~ 630 nm) could be detected. The formation of Ni(0) species could also be seen at higher wavelengths (~ 900 nm).
nm. Despite the partial overlap with the Ni(I) absorption tail, it was possible to detect the presence of Ni(0) species by comparing the change of the intensity at 630 and 900 nm over time (Figure S11). Moreover, as exhibited in Figure S11, the build-up of Ni(0) species occurred later than the initial formation of Ni(I) species. After reaching a maximum, both species decrease, probably due to the competitive oxidative decomposition.

When the same experiment was repeated in the absence of either light, Hantzsch ester or 4-CzIPN, no reduction could be detected, thus confirming that all these components are necessary to form the catalytically competent species.

UV-Vis analysis upon illumination of solution D

Upon starting the illumination, the formation of the Ni(I) and Ni(0) species could be detected, while the intensity of the absorption maxima was strongly reduced (Figure S12). In addition, the kinetic profile appeared to be much slower than the case, where substrate 1a is absent. This behavior is consistent with the fact that 1a could react with the low-valent nickel species, as postulated by the proposed catalytic cycle.

![Figure S12: UV-Vis spectra of solution D over time.](image)

UV-Vis analysis upon illumination of solution C, followed by the addition of 1a.

During the first irradiation period, the UV-Vis pattern was consistent with the previous observation, while upon the addition of substrate 1a, an extremely fast consumption of
both Ni(I) and Ni(0) species was observed. This behavior is consistent with the fact that substrate 1a could react with the low-valent nickel species, as postulated by the proposed catalytic cycle (Figure S13).

Figure S13: UV-Vis of solution C before and after the addition of substrate 1a. The injection spike is clearly visible at $t = \sim 40$ s.
9.2 Photocarboxylation of unactivated secondary alkyl bromides

9.2.1 Deuterium labelling experiment

Following GP5, the photocarboxylation of deuterated 2-bromoheptane (3a-d₃, 0.25 mmol) was performed. The desired product 4a-d₃ (15 mg, 0.102 mmol, 41%) was obtained as colorless oil. The ²H NMR spectra revealed the scrambling of deuterium isotope throughout the hydrocarbon chain via β-hydride elimination/reinsertion.

²H NMR (77 MHz, CHCl₃): δ (ppm) = 2.32 (s, 0.96D), 1.62 (s, 0.52D), 1.15 (s, 0.92D), 0.86 (s, 0.61D).

Spectroscopic data for 4a-d₃ match those previously reported in literature.¹⁸

KIE determination:

Following GP5, the photocarboxylation of deuterated 2-bromoheptane (3a-d₃, 0.25 mmol) was performed (a set of four reactions for each substrate). The reactions for both 3a and 3a-d₃ were stopped after 30 min, 60 min, 90 min and 120 min. The reactions were quenched with 2M HCl and diluted with ethyl acetate. The anisole (1.0 equiv.) as internal standard was added to the solution and filtered through short pad of silica gel. The yield was determined by GC-FID analysis. The obtained yields in the form of concentration were plotted against time (Figure S14).

The determined KIE = (K₅/K₇) = 1.12 ± 0.01

Figure S14: Determination of the initial rates of 4a and 4a-d₃ formation.
9.2.2 Radical inhibition experiment

Following the general procedure GP5, the photocarboxylation of substrate 3a was performed in the presence of 1.0 equivalent of the radical scavenger BHT (dibutylhydroxytoluene). The product 4a was obtained in 47% yield, thus suggesting no radical inhibition of the reaction.

9.2.3 Cyclic Voltammetric (CV) measurements of (L7)NiBr₂

The reduction potentials of (L7)NiBr₂ were measured using cyclic voltammetry in MeCN (analytical grade), using ferrocene (E₁/₂ (Fe⁺/Fe) = +0.380 V vs. SCE)[47] as internal reference. The measurement was carried out using a Metrohm Autolab PGSTAT302N device using a glassy carbon working electrode, a platinum wire counter-electrode and a silver wire as pseudo-reference electrode. Tetrabutylammonium tetrafluoroborate (0.1 M, Fluka) was used as supporting electrolyte. Prior the measurement the solvent was degassed by bubbling argon through a hypodermic needle. All the measurements were performed under argon atmosphere.

The combined UV-Vis and cyclic voltammetry experiments was carried out using a Metrohm Autolab PGSTAT302N device and an Agilent 8453 spectrometer, using an OTTLE (Optically Transparent Thin-Layer Electrochemical) cell from Frantishek Hartl (path length: 0.02 cm)[48] equipped with two platinum minigrids as working electrode and counter-electrode. A silver wire was used as pseudo-reference electrode. Tetrabutylammonium tetrafluoroborate (0.1 M, Fluka) was used as supporting electrolyte. Prior the measurement the solvent was degassed by bubbling argon through a hypodermic needle. All the measurements were performed under argon atmosphere.
Figure S15: Cyclic Voltammetry of (L7)NiBr$_2$ in the presence of ferrocene (peak 5, 6). Silver wire was used as pseudo-reference electrode.

Index	Potential (V)
1	-0.19135
2	-0.3273
3	-0.87112
4	-1.848
5	+0.91644
6	+0.83588

The following values were obtained from the cyclic voltammetry experiment:

$E_{1/2} (\text{Ni}^{2+}/\text{Ni}^+)$ = -0.78 vs SCE
$E_{1/2} (\text{Ni}^+/\text{Ni}^0)$ = -1.33 vs SCE
Figure S16: Combined cyclic voltammogram and UV-Vis spectra of (L7)NiBr$_2$. Silver wire was used as pseudo-reference electrode.

Figure S17: UV-Vis spectra of the Ni(I) species ($\lambda_{\text{max}} \approx 772$ nm) (left) and Ni(0) species ($\lambda_{\text{max}} \approx 910$ nm) (right) at variable potential applied. Silver wire was used as pseudo-reference electrode.

By combining cyclic voltammetry and UV-vis spectroscopy of Figure S16, the UV-Vis spectra of the Ni(I) and Ni(0) species from the reduction of (L7)NiBr$_2$ precatalyst was obtained. As shown in Figure S17, the low-valent nickel species generated from the electrochemical reduction of (L7)NiBr$_2$ precatalyst show a very different UV-vis
spectrum. The Ni(I) species is characterized by an intense absorption maximum at ~ 772 nm, while the corresponding Ni(0) species has an absorption peak centered at ~ 910 nm. The Ni(0) species has a more pronounced absorption around 600 nm, however in this region multiple species intensely absorbs under working conditions. Hence, we decided to follow the peak with maximum at 910 nm as a fingerprint for the formation of the low-valent Ni(0) species.

9.2.4 Time-resolved UV-Vis experiments

Experimental set-up: The UV-Vis measurement was performed using an Agilent 8453 spectrometer using a temperature-controlled (20.0 °C) fluorescence cuvette (1 cm optical pathway, both faces can transmit light) equipped with a bullet-shaped Teflon-coated stirring bar (length: 6 mm, ~ 250 rpm). A single blue LED OSRAM Oslon® SSL 80 royal-blue LEDs (λ max= 455 nm (± 15 nm), 3.5 V, 700 mA), equipped with a metallic passive cooling element, was placed approx. 5 mm away from one transmitting side of the cuvette, at 90° from the measuring beam. Unless otherwise stated, the spectra were recorded every second.

Preparation of a stock-solution of (L7)NiBr2 and 4-CzIPN. (Solution A): In a vial equipped with a teflon-coated stirring bar, (L7)NiBr2 (5·10⁻³ M) and 4-CzIPN (10⁻³ M) were added and then the corresponding amount of DMF was added and the solution was stirred for 5 min.

Preparation of the solution of Hantzsch ester. (Solution B): In a vial equipped with a teflon-coated stirring bar, Hantzsch ester (approx. 500 mg) was added to DMF (approx.10 mL). The suspension was stirred for 30 minutes to obtain a saturated solution.

Preparation of the solution C for UV-Vis spectroscopy: In the fluorescence cuvette, solution A (500 µl) followed by solution B (100 µl) were added to DMF (1 ml). The mixture was degassed by bubbling argon using a needle for 100 seconds, then sealed using a PTFE stopper.

Preparation of the solution D for UV-Vis spectroscopy: In the fluorescence cuvette, solution A (500 µl), solution B (100 µl) and phenylethylbromide (1a) (30 µl) were
sequentially added to DMF (1 ml). The mixture was degassed by bubbling argon using a needle for 100 seconds, then sealed using a PTFE stopper.

UV-Vis analysis upon illumination of solution C

![Figure S18: UV-Vis spectrum of solution C over time (left). Evolution of the absorption at 772 and 910 nm over time (normalized) (right).](image)

Upon illuminating the solution, the fast formation of Ni(I) species (~ 772 nm) could be detected. The formation of Ni(0) species could also be seen at higher wavelengths (~ 910 nm). Despite the partial overlap with the Ni(I) absorption tail, it was possible to detect the presence of Ni(0) species by comparing the change of the intensity at 772 and 910 nm over time (Figure S18). Moreover, as shown in Figure S, the build-up of Ni(0) species occurred later than the initial formation of Ni(I) species. After reaching a maximum, both species decrease, probably due to the competitive oxidative decomposition.

When the same experiment was repeated in the absence of either light, Hantzsch ester or 4-CzIPN, no reduction could be detected, thus confirming that all these components are necessary to form the catalytically competent species.

UV-Vis analysis upon illumination of solution D

Upon starting the illumination, the formation of the Ni(I) and Ni(0) species could be detected and a negligible quenching of the intensity was observed (Figure S19). This behavior is consistent with the fact that 3a most likely undergoes oxidative addition much slower than its counterpart 1a, which benefits from the assistance of the aromatic ring.
UV-Vis analysis upon illumination of solution C, followed by the addition of 3a.

Both during the first irradiation period and after the addition of the alkyl bromide 3a, the behavior of the system was consistent with the previous observations. This supports the fact that the oxidative addition of 3a occurs at a relative low rate compared to the competitive oxidative pathways, therefore little quenching of the intensity could be observed. (Figure S20).

Figure S20 UV-vis of solution C before and after addition of 3a. The injection spike is clearly visible at $t = \sim 100$ s.
9.3 DFT calculations

Calculations were performed using Gaussian 09, Revision E.01[49] at the Universität Regensburg HPC-cluster “Athene”. All the optimizations were performed using spin-unrestricted broken-symmetry DFT using UωB97X-D/6-31g(d) in the gas phase at 298 K.[50] The identity of the stationary points was confirmed by frequency analysis: intermediates had zero imaginary frequency, while transition states had one imaginary frequency. The intermediates and the corresponding transition states were verified by the animation of the imaginary frequency; the thermochemistry was calculated at the same level of theory, summing the contribution of CO\textsubscript{2} when not explicitly present as reactant or carboxy compound.

The solvent corrections were taken into account via incorporation of the electronic energy obtained in N,N-DMF at 298 K using the SMD solvation model,[51] using UωB97X-D/6-31g(d) and UωB97X-D/def2-TZVP (the energies in the potential energy diagram diagrams are reported according to the latter level of theory).[52,53] The bromide loss from the oxidative insertion product was estimated considering the following reaction (Scheme S1):

![Scheme S1 Reaction used for solvent correction purposes.](image)

To have a better precision in our analysis, all the molecules in this transformation were optimized in solvent at the SMD(DMF)-BS-UωB97X-D/6-31g(d).

All the distances and coordinates are given in Ångstrom (Å), energies are given in Hartree (1 Ha = 627.509474 kcal·mol-1). Rendered structures were obtained using CYLview 1.0b[54] and ChemCraft 1.8.[55] The following color-code was used in visual representations: carbon = gray, nitrogen = blue, hydrogen = white, nickel = green, oxygen = red, bromide = dark red, potassium = purple.
9.3.1 Calculated intermediates and transition states for (L7)NiBr₂

Scheme S2 Proposed mechanism for the sp^3 C-H carboxylation of unactivated alkyl halides at the SMD(DMF)-BS-UWB97X-D/def2-TZVP//BS-UWB97X-D/6-31G(d) level of theory.

The DFT-calculated catalytic cycle (Scheme S2) starts from the coordinatively unsaturated Ni(0)/L₇ species A, which is used together with the model substrate 3ₐ as the energetic reference. This species can coordinate the substrate 3ₐ via the initial interaction of the metal center with the bromine atom, to give the associated complex A₁. The oxidative addition to form the Ni(II) complex A₂ is thermodynamically favorable ($\Delta G_{A₁-A₂} \approx -52$ kcal·mol⁻¹) and could be followed by bromide de-coordination towards B, stabilized by agostic interaction. The first isomerization step occurs via a β-hydride elimination ($\Delta G_{B-C}^\ddagger \approx 13.5$ kcal·mol⁻¹) and provides the alkenyl-Ni(II) complex C, which re-inserts through an almost barrierless process ($\Delta G_{C-D}^\ddagger \approx 2$ kcal·mol⁻¹). By comparing intermediates B and D, a slight destabilization of the terminal Ni(II) complex D compared to the branched Ni(II) homologue B, could be observed ($\Delta G_{B-D} \approx +1$ kcal·mol⁻¹). Indeed, such small energetic difference allegedly causes the system to be in equilibrium between complexes B, C and D. Interestingly, while the effect of TBAI could not be included explicitly on the calculation, its contribution to increase the selectivity of carboxylation reactions is known from previous literature (see Ref. 3c in the main text). In both cases, the SET from the reduced photocatalyst 4-CzIPN⁻ likely forms the corresponding alkyl-
Ni(I) complex \(E \). While the energetic barrier of the electron-transfer process cannot be computed, we can expect this process to be the product-determining step of the catalytic cycle (see mechanistic evidences and explanation later in the paragraph). The intermediate \(E \) coordinates CO\(_2\) via an \(\eta^2\)(C-O) coordination followed by the migratory insertion step (\(\text{TS}_{E_1-F} \)). The carboxylate-Ni(I) complex \(F \) can liberate the conjugate base of product \(4a \) (\(4a-I \)) by a single-electron reduction sequence and forms the catalytically competent species \(A \). The same considerations can be derived for the branched product obtained by direct reduction of intermediate \(B \) to \(E' \), that ultimately leads to the byproduct \(4a'-I \). It is interesting to notice that the highest barrier in the process is represented by \(\text{TS}_{B-C} \). The absence of a Kinetic Isotope Effect (see the previous section on the Mechanistic Investigation) advocates for a rate determining step which occurs after the chain-walking process. As already mentioned, the SET from the Ni(II) (\(D/D' \)) to the Ni(I) species \(E/E' \) is most likely dictating the observed selectivity.
9.3.2 Calculated intermediates and transition states for (L1)NiBr2

Scheme S3 Proposed mechanism for the sp3 C-H carboxylation of homobenzylic alkyl halides halides at the SMD(DMF)-BS-UwB97X-D/def2-TZVP//BS-UwB97X-D/6-31G(d) level of theory. In the box, the filled orbital that is involved in the agnostic interaction is reported.

The DFT-calculated catalytic cycle (Scheme S3) starts from the coordinatively unsaturated Ni(0) species G, which is used as the energetic reference. This species can coordinate the substrate $1a$ via the π-system, in particular via an η^2 interaction to give H. The subsequent interaction of the Ni-center with the bromide could be established at a small energetic expense ($\Delta G_{H-I} = 4.3$ kcal\cdotmol$^{-1}$), forming a distorted tetrahedral I complex, which undergoes oxidative addition to J. Notably, the intermediate J was found to be stabilized by an additional shifted face-to-face $\pi-\pi$ interaction between the substrate and the neocuproine ligand. The aforementioned labile ligand could be extruded to give the distorted square-planar K, in which an agostic interaction could be observed (see molecular orbitals in picture). Notably, the interaction weakens the C-H bond, thus permitting the facile β-H elimination through $T_{S_{K-L}}$ ($\Delta G_{\beta} \approx 14$ kcal\cdotmol$^{-1}$). The intermediate complex L could undergo a barrierless migratory insertion through $T_{S_{L-M}}$ to form M, which was also found to be stabilized by a β-agostic interaction. Both the branched M and linear K Ni(II) complexes can be reduced to give N and N', respectively. They both retain the β-agostic interactions, but the former is approximately 8 kcal\cdotmol$^{-1}$ lower in energy. Both complexes can coordinate CO$_2$ in an η^2(C,O) fashion: in the case of O (branched complex) an additional shifted face-to-face $\pi-\pi$ interaction was observed,
while absent in O'. The two Ni(I)-alkyl complexes undergo the migratory insertion (TSO, TSO', P, TSO', P'), which was relatively low in activation barrier (ΔG‡ ≈ 3 and 6 kcal·mol⁻¹, respectively) to yield the Ni(I)-carboxylate complexes P and P'. A second SET regenerates the catalytically-active Ni(0) complex G and liberates the product 2a-I (and 2a-I from G'). Another hint regarding the mechanism is represented by the different product distribution obtained with the deuterated compounds. In the case of the d-labelled reagent, TSK-L would rise due to the presence of the heavier isotope. Even though this transformation does not become the rate-determining one, the diminished selectivity towards the benzylic product can be explained by considering that the equilibrium between K and M is influenced by the variation of the kinetic barriers. With the d-labelled compound, a greater amount of K will be present in solution, if compared to the corresponding protium-substituted reagent. Hence, the reduction from K to N' that forms ultimately 2a'-I is more likely to occur with the deuterated 1a.

In this case, the K-M equilibrium responsible for the selectivity of the reaction is pushed towards the population of M not only by kinetic effects but also by thermodynamics.

9.3.3 Uncatalyzed chain-walking of the homobenzylic radical

As the isomerization of the homobenzylic radical Q, which could be generated under light-irradiation, to the benzyl radical R could not be excluded a priori, we decided to evaluate the potential isomerization pathway towards the more stable R in the absence of nickel catalyst (Scheme S4).
Scheme S4 Upper: plausible isomerization mechanism in the absence of nickel catalysis calculated at the at the SMD(DMF)-BS-UwB97X-D/def2-TZVP//BS-UwB97X-D/6-31G(d) level of theory; lower: comparison of the uncatalyzed and nickel-catalyzed energetic profile (left: compound Q was set as reference; right: intermediate K was set as reference).

The calculated three-centered transition state TS_{Q-R} proved to be too high in energy to be overcome at ordinary temperatures ($\Delta G^\ddagger = 28.0 \text{ kcal} \cdot \text{mol}^{-1}$), thus corroborating the hypothesis that the nickel catalyst is required to allow the chain-migration process to occur (lower right). As already reported in (Scheme S4), the uncatalyzed energy barrier is replaced by two accessible transition states, which correspond to the β-H elimination (TS_{K-L}) and the migratory insertion process (TS_{L-M}).
9.3.4 Cartesian coordinates

$2h+K^++CO_2$

Element	x	y	z
C	2.0186546191	-2.4530405195	-1.5452338193
C	2.9406646866	-1.4383192442	-1.438727498
C	2.5102109263	-0.1328723315	-1.301973309
C	1.1317528627	0.0485790695	-0.9414789975
C	0.6518057908	-2.1862127017	-1.3293504492
C	3.3908525494	0.9929066184	-0.9803990699
C	0.6091280621	1.3537962456	-0.6337096393
C	1.4946022167	2.4356024491	-0.5139505555
C	2.9028117925	2.2223311549	-0.6991366763
C	0.9262647087	3.6892917476	-0.2168062001
H	-0.4356714586	3.7953846372	-0.0823171034
H	-1.2604113274	2.6584307796	-0.2296143898
H	4.456443653	0.839290975	-1.1404680053
C	2.3301791208	-3.4631622604	-1.7875572765
H	3.9980325505	-1.6342063239	-1.5935885609
H	3.5708244077	3.0725615653	-0.5978436208
H	-0.8961195421	4.7525392487	0.1360714188
N	-0.7340193834	1.4631536391	-0.4835050396
N	0.2390118644	-0.961613344	-1.0271489618
C	-2.7507816904	2.717464167	-0.1267435835
H	-3.2119502971	2.5046154462	-1.0823596973
H	-3.1301878501	2.0837604904	0.636005014
H	-3.0467127901	3.7901997217	0.1366767363
C	-0.400547436	-3.2523355683	-1.4030926572
H	-0.7930137625	-3.4585157066	-0.4007603019
H	-1.2365391721	-2.9127846111	-2.0229430117
H	-0.0056462146	-4.1828020654	-1.8169877129
N	-1.6343464042	-0.416181147	-0.4614545394
C	-0.182418124	-0.7050373516	2.034452063
H	0.6162726247	-1.2493921802	1.5167164491
H	-0.1653450343	-1.0166202725	3.0872338077
C	-1.5655209478	-0.9653790744	1.4234788742
H	-1.6895978765	-2.0599162413	1.3488312586
H	0.0886365581	0.3590348577	2.019227332
C	-2.6768453851	-0.449947537	2.2813171463
C	-3.7855892434	-1.2458086164	2.5891840057
C	-2.7171047512	0.8709821535	2.7525101459
C	-4.9088944449	-0.741957728	3.2307256272
C	-3.7809791517	-2.2923961409	2.2815442703
C	-3.8399301468	1.4114479552	3.3659605848
H	-1.8523768402	1.5168965318	2.5905809924
C	-5.0429158927	0.6521293664	3.544000341
H	-5.7594308962	-1.3894438135	3.4437167542
H	-3.8527313631	2.4553471628	3.6741370783
O	-4.5684941431	-0.0184362072	-0.529023223
C	-3.431213934	-0.2327504217	-0.9108359911
O	-2.8765644862	-0.4050048258	-2.0324671236
O	-6.1798620417	1.1893472709	3.7909621571
K	-6.3098688337	0.8401415949	1.1772845847
Energy = -3331.4570448
Zero-point correction = 0.385837 (Hartree/Particle)
Thermal correction to Gibbs Free Energy = 0.326653
Sum of electronic and zero-point Energies = -3331.071207
Sum of electronic and thermal Energies = -3331.043805
Sum of electronic and thermal Enthalpies = -3331.042861
Sum of electronic and thermal Free Energies = -3331.130392
G + ZVPE = -3330.744555
Energy (DMF-6-31G(d)) = -3331.5059117
Energy (DMF-def2-TZVP) = -3332.1924095
CO₂

O	-1.58621682	-2.1508762491	2.6113247187
C	-2.1509774894	-1.1374455653	2.5172885003
O	-2.7155314607	-0.1239134156	2.422909681

Energy = -188.520006
Zero-point correction = 0.010343 (Hartree/Particle)
Thermal correction to Gibbs Free Energy = -0.005710
Sum of electronic and zero-point Energies = -188.509663
Sum of electronic and thermal Energies = -188.506689
Sum of electronic and thermal Enthalpies = -188.505745
Sum of electronic and thermal Free Energies = -188.525716
G + ZVPE = -188.515373
Energy = -2847.4525701
Zero-point correction = 0.211350 (Hartree/Particle)
Thermal correction to Gibbs Free Energy = 0.173812
Sum of electronic and zero-point Energies = -2847.241220
Sum of electronic and thermal Energies = -2847.230623
Sum of electronic and thermal Enthalpies = -2847.229679
Sum of electronic and thermal Free Energies = -2847.278758
G + ZVPE = -2847.067408
Energy (DMF-6-31G(d)) = -2847.4614837
Energy (DMF-def2-TZVP) = -2850.0430538
4a-I

O	-3.7032534258	-0.7288604786	0.8203694526
C	-3.2831455379	0.2920635228	0.2271139654
C	-1.018104015	-0.9684055361	0.0657253105
H	-1.4834861308	-1.5570509538	0.8631809601
H	-1.2424299201	-1.5013010427	-0.8707979022
C	-1.7191189904	0.3867934217	0.0622375398
H	-1.3383305612	0.98884149	0.9044656752
H	-1.5033390817	0.9613955752	-0.846871554
C	0.5009479975	-0.9103502976	0.2561781885
H	0.716332541	-0.4199466514	1.2168984936
H	0.9116826275	-1.9306045408	0.3307036002
C	1.2340234189	-0.1733363141	-0.8682048118
H	0.9106353616	0.8756743187	-0.8843314432
H	0.9183509179	-0.601676006	-1.8299835157
C	2.7624701834	-0.2302144578	-0.7792030644
H	3.0905609996	-1.2808630977	-0.7823961006
H	3.1967409392	0.2288927434	-1.6799224414
C	3.3448130746	0.4679821658	0.4519106592
H	2.9874963904	-0.0298795634	1.3610341425
H	2.9599598233	1.4958260017	0.4948937239
C	4.8728356281	0.4906728952	0.4528320996
H	5.2579659006	1.0189445831	-0.4281106779
H	5.2705447174	0.9909595981	1.3432944723
H	5.2806150551	-0.5274203332	0.4303449265
O	-3.9168955632	1.2684135744	-0.2278630723

Energy = -464.2475363
Zero-point correction = 0.222887 (Hartree/Particle)
Thermal correction to Gibbs Free Energy = 0.182946
Sum of electronic and zero-point Energies = -464.024649
Sum of electronic and thermal Energies = -464.012792
Sum of electronic and thermal Enthalpies = -464.011848
Sum of electronic and thermal Free Energies = -464.064590
G + ZVPE = -463.841703
Energy (DMF-6-31G(d)) = -464.3391565
Energy (DMF-def2-TZVP) = -464.5317523
4a'-I

C	-2.2909724129
C	-1.9562339884
H	-0.3510628572
H	-0.2228600188
H	-0.3054472971
C	-1.743872243
H	-2.478177355
C	0.8059046954
H	0.5644966295
C	0.8755441046
C	2.151398762
H	2.1096843229
H	2.3176384473
C	3.3497618879
H	3.4078415188
H	4.2780851594
C	3.2912970188
H	2.4259766786
H	3.2031699141
C	-1.9364344496
H	-1.6369797116
H	-1.3551682097
H	-2.986426766
H	4.1939751025
O	-1.7087359324

C	1.2236929224
H	0.7738027035
C	-1.0951701788
H	-2.1817421452
H	-0.6278606067
C	-0.7873746037
H	-1.2258398226
C	-0.5697954291
H	0.4554083554
C	-1.1546279995
C	-0.6278547553
H	0.0210759645
H	-1.6488285075
C	-0.2188382195
H	-0.8871168963
H	-0.3726929231
C	1.2319614669
H	1.4031815376
H	1.9191705136
C	-1.3705227368
H	-2.4292128645
H	-0.7865772768
H	-1.2969203281
H	1.5022091563
O	1.3908976733

Energy = -464.2521106
Zero-point correction = 0.222698 (Hartree/Particle)
Thermal correction to Gibbs Free Energy = 0.183043
Sum of electronic and zero-point Energies = -464.029412
Sum of electronic and thermal Energies = -464.017474
Sum of electronic and thermal Enthalpies = -464.016530
Sum of electronic and thermal Free Energies = -464.069068
G + ZVPE = -463.846370
Energy (DMF-6-31G(d)) = -464.3400257
Energy (DMF-def2-TZVP) = -464.5309136
\begin{table}[h]
\centering
\begin{tabular}{cccc}
\hline
 & C & C & C \\
\hline
A_1 & -1.9652111416 & -3.7540185338 & 0.2528966002 \\
& -3.2285986289 & -3.9444686948 & -0.2352624317 \\
& -3.4651855735 & -2.0674848286 & -0.523446924 \\
& -2.4473490434 & -1.126870818 & -0.3305569561 \\
& -3.8304017789 & -2.3225785622 & -0.880169674 \\
& -3.2285986829 & -3.3944468948 & -0.6563410999 \\
& -3.4651855735 & -2.0674848286 & -0.523446924 \\
& -2.4473490434 & -1.126870818 & -0.3305569561 \\
& -3.8304017789 & -2.3225785622 & -0.880169674 \\
& -3.2285986829 & -3.3944468948 & -0.6563410999 \\
& -3.4651855735 & -2.0674848286 & -0.523446924 \\
& -2.4473490434 & -1.126870818 & -0.3305569561 \\
& -3.8304017789 & -2.3225785622 & -0.880169674 \\
& -3.2285986829 & -3.3944468948 & -0.6563410999 \\
& -3.4651855735 & -2.0674848286 & -0.523446924 \\
& -2.4473490434 & -1.126870818 & -0.3305569561 \\
& -3.8304017789 & -2.3225785622 & -0.880169674 \\
& -3.2285986829 & -3.3944468948 & -0.6563410999 \\
& -3.4651855735 & -2.0674848286 & -0.523446924 \\
& -2.4473490434 & -1.126870818 & -0.3305569561 \\
& -3.8304017789 & -2.3225785622 & -0.880169674 \\
& -3.2285986829 & -3.3944468948 & -0.6563410999 \\
& -3.4651855735 & -2.0674848286 & -0.523446924 \\
& -2.4473490434 & -1.126870818 & -0.3305569561 \\
& -3.8304017789 & -2.3225785622 & -0.880169674 \\
& -3.2285986829 & -3.3944468948 & -0.6563410999 \\
& -3.4651855735 & -2.0674848286 & -0.523446924 \\
& -2.4473490434 & -1.126870818 & -0.3305569561 \\
& -3.8304017789 & -2.3225785622 & -0.880169674 \\
& -3.2285986829 & -3.3944468948 & -0.6563410999 \\
& -3.4651855735 & -2.0674848286 & -0.523446924 \\
& -2.4473490434 & -1.126870818 & -0.3305569561 \\
& -3.8304017789 & -2.3225785622 & -0.880169674 \\
& -3.2285986829 & -3.3944468948 & -0.6563410999 \\
& -3.4651855735 & -2.0674848286 & -0.523446924 \\
& -2.4473490434 & -1.126870818 & -0.3305569561 \\
& -3.8304017789 & -2.3225785622 & -0.880169674 \\
& -3.2285986829 & -3.3944468948 & -0.6563410999 \\
& -3.4651855735 & -2.0674848286 & -0.523446924 \\
& -2.4473490434 & -1.126870818 & -0.3305569561 \\
& -3.8304017789 & -2.3225785622 & -0.880169674 \\
& -3.2285986829 & -3.3944468948 & -0.6563410999 \\
& -3.4651855735 & -2.0674848286 & -0.523446924 \\
& -2.4473490434 & -1.126870818 & -0.3305569561 \\
& -3.8304017789 & -2.3225785622 & -0.880169674 \\
& -3.2285986829 & -3.3944468948 & -0.6563410999 \\
& -3.4651855735 & -2.0674848286 & -0.523446924 \\
& -2.4473490434 & -1.126870818 & -0.3305569561 \\
& -3.8304017789 & -2.3225785622 & -0.880169674 \\
& -3.2285986829 & -3.3944468948 & -0.6563410999 \\
\hline
\end{tabular}
\end{table}
Energy = -4929.4246696
Zero-point correction = 0.429855 (Hartree/Particle)
Thermal correction to Gibbs Free Energy = 0.373937
Sum of electronic and zero-point Energies = -4928.994815
Sum of electronic and thermal Energies = -4928.969708
Sum of electronic and thermal Enthalpies = -4928.968764
Sum of electronic and thermal Free Energies = -4929.050733
G + ZVPE = -4928.620878
Energy (DMF-6-31G(d)) = -4929.4482558
Energy (DMF-def2-TZVP) = -4932.4472426
Element	X-coordinate	Y-coordinate	Z-coordinate
C	1.4434201384	-2.8471704339	-1.6003898063
C	2.5893600443	-2.289938585	-1.061786842
C	2.596339553	-0.9300851628	-0.7737563098
C	1.425824229	-0.2135699389	-0.9695264737
C	0.3003522572	-2.0609944524	-1.791322092
C	1.3391414972	1.2463492874	-0.7603667662
C	2.4321472887	2.0972860933	-0.842819469
C	2.2110397244	3.466175513	-0.766748849
C	3.0417999794	4.1613724424	-0.8317684325
C	0.9098862503	3.9295458895	-0.6550172535
C	-0.1479542915	3.0244827558	-0.5662256173
C	1.417812174	-3.8921666994	-1.8909741803
C	3.4749472284	-2.8938354409	-0.8918038518
C	0.6972296947	4.9930592972	-0.639854571
C	0.0823150578	1.696333209	-0.5762713683
C	-1.5649786455	5.0392182949	-0.4718129314
C	-2.2527491675	2.7558340471	-0.8715921106
C	-1.8434761921	3.6825548156	0.5713551075
C	-1.6854101559	4.4408829517	-1.0225253143
C	-0.9063410004	-2.6487131893	-2.4557872841
H	-1.5861119217	-3.079489194	-1.7158822905
H	-1.4655603027	-1.8769122295	2.985602999
H	-0.5985741739	-3.4291291151	-3.1584705643
N	-1.1410128651	0.1538461828	2.453978538
H	-1.8635954178	-0.9794027316	2.4488554572
H	-1.1566343136	0.2664416733	3.4742360471
C	-1.5983221252	0.9394187304	1.4757010684
H	-0.9374312383	1.8043707943	1.654600474
Br	-2.9546403733	-1.083576312	-0.3882469057
C	0.2521763713	-0.7226653427	2.1800567796
H	0.2155628845	-1.3371166333	1.270126797
H	0.9453929236	0.1064823192	1.975067339
C	0.7982825523	-1.5936588167	3.3102275664
H	0.9036166101	-0.9927321582	4.2248836399
H	0.0588951312	-2.3732399164	3.5361408863
C	-3.0230804574	1.3762370129	1.8145109967
C	-3.6977256461	0.5178425654	1.865242306
H	-3.0496920021	1.8890658785	2.7886533749
H	-3.4453420209	2.0572091098	1.068286904
C	2.1381462638	-2.2587357236	2.9763950842
H	2.0298952403	-2.8216672214	2.0387611899
H	2.3819113621	-2.9950147747	3.7525303576
C	3.3005911497	-1.2738689395	2.8456564098
H	3.1096101003	-0.5295556792	2.0650256975
H	3.4607857067	-0.731722781	3.7840713611
H	4.2333129021	-1.7911313725	2.5938859096
H	3.4282351851	1.7011418981	-1.0008373263
H	3.4823296528	-0.4495403446	-0.3771563126
Energy = -4929.5169541
Zero-point correction = 0.431682 (Hartree/Particle)
Thermal correction to Gibbs Free Energy = 0.376510
Sum of electronic and zero-point Energies = -4929.085272
Sum of electronic and thermal Energies = -4929.060493
Sum of electronic and thermal Enthalpies = -4929.059549
Sum of electronic and thermal Free Energies = -4929.140444
\(G + ZVPE = -4928.708762 \)
Energy (DMF-6-31G(d)) = -4929.5444921
Energy (DMF-def2-TZVP) = -4932.5290997
A2-solv

C	1.2275689296	-2.9365456773	-2.0114418212
C	2.3881184725	-2.532072325	-1.3740682994
C	2.4698190338	-1.2312835201	-0.8856953899
C	1.3487311924	-0.4240287347	-0.991205285
C	0.1340983322	-2.0672367713	-2.086410506
C	1.3403148137	1.0133145067	-0.6411114400
C	2.4825726744	1.793055135	-0.3420736507
C	2.3300726086	3.167710896	-0.406905468
C	2.3881184725	1.9031148145	-0.3207430630
H	0.058172885	2.8663526929	-0.450736507
C	1.1546600677	-3.918762474	-2.467089273
H	3.2361311804	-3.2042227699	-1.290488612
H	0.9017999765	4.7801372896	-0.33338824
N	0.0988034855	1.5333968891	-0.522193376
N	0.1740366498	-0.8546177137	-1.512743914
C	-1.4461883241	3.4313865534	-0.4514701815
H	-1.6400857599	2.6874965313	-0.8026309745
H	-1.7407688578	3.7493922346	0.55935122
C	-1.4892165818	4.3086370823	-1.104048787
C	-1.0814576637	-2.463319018	-2.871259659
H	-1.6718479216	-3.2110385918	-2.335144688
H	-1.7198139174	-1.5997104646	-3.0610829204
H	-0.7653092267	-2.8960167213	-3.8267844171
Ni	-1.1729887375	0.1490006052	-0.2632727011
C	-1.1497020482	-0.1118643049	2.5326842348
H	-1.793856642	-0.993146417	2.5821485474
H	-1.2255569316	0.3841800759	3.5171376165
C	-1.6617820322	0.8516415838	1.4532395117
H	-1.0930983628	1.7802993352	1.5849705968
Br	-2.7194974819	-1.532845964	-0.1576827356
C	0.2970214475	-0.5613656154	2.3219480444
H	0.3417088593	-1.223701835	1.445775487
H	0.9096691932	0.3172675948	2.0773724762
C	0.917543307	-1.3028119212	3.5041810859
H	0.9738092789	-0.6328178904	4.3746872477
C	0.2571535236	-2.132767471	3.7922158644
C	-3.131433923	1.2085900999	1.7065436087
C	-3.768131023	0.3183781113	1.6900659985
C	-3.2568298443	1.6964275158	2.6878652133
C	-3.5251101813	1.8981456647	0.949854275
C	2.3127520973	-1.8586500903	3.1959286978
H	2.2394829422	-2.5564647958	2.3497845089
H	2.6638429234	-2.446559264	4.0537272124
C	3.3489452785	-0.7821536811	2.8726650523
H	3.0851156233	-0.219734463	1.969846602
H	3.4373525549	-0.0630237729	3.6968158027
H	4.3380755856	-1.2245463562	2.707849421
H	3.4664366109	1.3478963052	-0.6454319362
H	3.3807538531	-0.8632524081	-0.4282372214
Energy = -4929.5449154			
Zero-point correction = 0.430883 (Hartree/Particle)			
Thermal correction to Gibbs Free Energy = 0.375407			
Sum of electronic and zero-point Energies = -4929.114033			
Sum of electronic and thermal Energies = -4929.089287			
Sum of electronic and thermal Enthalpies = -4929.088343			
Sum of electronic and thermal Free Energies = -4929.169508			
G + ZVPE = -4928.738625			
Energy = -2081.8984864			
Zero-point correction = 0.215774 (Hartree/Particle)			
Thermal correction to Gibbs Free Energy = 0.174630			
Sum of electronic and zero-point Energies = -2081.682712			
Sum of electronic and thermal Energies = -2081.669093			
Sum of electronic and thermal Enthalpies = -2081.668149			
Sum of electronic and thermal Free Energies = -2081.723857			
G + ZVPE = -2081.508083			
Energy (DMF-6-31G(d)) = -2081.924293			
Energy (DMF-def2-TZVP) = -2082.3707816			
		C	H
---	---	------	------
B		-0.5471936055	3.448072554
		-1.3334447106	3.4465885018
		-1.729995716	2.2338919402
		-1.3064819766	1.0601122564
		-0.1333740037	2.367872012
		0.291175727	2.2367872012
		-2.6619372065	-0.5207245656
		-0.876877701	2.8056172176
		-1.3334447106	-0.2130909025
		3.4465885018	0.263969046
		-1.310660558	1.297851940
		-0.4928620021	1.068824454
		-1.4741890056	3.5914746126
		-1.2102056606	-3.159092238
		-0.6238923568	4.133636131
		-2.3141635231	-4.2785451656
		0.7316692587	2.1938919539
		1.7853632525	2.0582287474
		0.4365887841	1.3726874544
		0.6577331825	3.127656031
Ni		0.2110939613	-0.718330473
		2.1919623776	-1.1045866506
		1.5778436536	-0.1184493955
		2.5664676257	-1.2841564259
		1.347124067	-2.1826968929
		1.163251832	-2.990648141
		1.6735622634	-2.6759335093
		1.8365377595	-1.8150036083
		0.8166388752	-3.2206995623
		2.904693983	-3.5905790616
		2.7576252893	-4.4021209821
		3.7813704394	-3.0245629601
		3.1962067613	-4.1928789703
		4.0415196506	-4.885775483
		2.338701774	-4.8017323015
		3.5209796708	-3.1664086914
		4.3351671919	-2.5161856765
		2.6551110917	-2.5136477388
		3.9198035907	-3.8238148995
		4.1390926066	-3.0761901196
		3.1155038994	-4.4660702172
		4.8114433326	-4.447166025
		2.9918635275	-0.7511574776
		-2.3672528437	2.2184311533
		-2.9925240586	0.2847352209

S83
Energy = -2357.5399768
Zero-point correction = 0.431349 (Hartree/Particle)
Thermal correction to Gibbs Free Energy = 0.379318
Sum of electronic and zero-point Energies = -2357.108628
Sum of electronic and thermal Energies = -2357.086120
Sum of electronic and thermal Enthalpies = -2357.085175
Sum of electronic and thermal Free Energies = -2357.160659

G + ZVPE = -2356.729310
Energy(DMF-631G(d)) = -2357.6190886
Energy(DMF-def2-TZVP) = -2358.1329088
Bromide+DMF-solv

Br	0.001054	-0.000402	0.57972
C	-3.489325	-3.549625	-0.729789
O	-3.725784	-3.732522	-1.920501
H	-3.441402	-4.386565	-0.010104
N	-3.254971	2.35976	-0.145371
C	4.800449	-0.689148	1.730048
H	5.129993	-0.371609	2.665697
O	4.737212	-0.943859	0.837702
H	3.976064	-0.844469	2.470878
C	2.575456	-2.194115	3.331417
H	1.776064	-0.844469	2.470878
C	3.162812	-0.527881	3.594797
H	1.776064	-0.844469	2.470878
C	3.143618	-0.527881	3.594797
H	2.471287	2.198591	3.328249
C	3.145966	2.148286	0.580234
H	2.174111	1.749625	0.273181
H	3.860477	2.075333	-0.240503
C	3.027822	3.203586	0.859499
H	1.68627	-4.347439	-1.576522
O	2.185379	-4.269176	-2.693926
H	2.100423	-5.014342	-0.798996
N	0.608093	-3.664721	-1.142711
C	0.080296	-3.832467	0.196957
H	0.76176	-4.443905	0.794646
H	-0.030242	-2.848354	0.666028
H	-0.898525	-4.326929	0.169247
C	-0.090809	-2.732679	-2.008349
H	-0.16588	-1.76509	-1.499566
H	0.472354	-2.626996	-2.936509
H	-1.098019	-3.103145	-2.237197
C	3.488182	3.553481	-0.727665
O	3.724599	3.737042	-1.918284
H	3.440234	4.390025	-0.007498
N	3.253927	2.363239	-0.143981
C	3.01139	2.240782	1.280466
H	2.857052	3.230383	1.719055
H	2.116412	1.628716	1.437123
Energy = -4062.6172323
Zero-point correction = 0.637273 (Hartree/Particle)
Thermal correction to Gibbs Free Energy = 0.552462
Sum of electronic and zero-point Energies = -4061.979959
Sum of electronic and thermal Energies = -4061.935183
Sum of electronic and thermal Enthalpies = -4061.934238
Sum of electronic and thermal Free Energies = -4062.064770
G + ZVPE = -4061.427497
B-solv

C	0.4890336803	3.4228318649	-0.8290327386
C	-1.243751414	3.4188214409	0.3303102064
C	-1.65638092	2.2072330802	0.8775197197
C	-1.2795200538	1.0358209771	0.2394148102
C	-0.1193064026	-2.0375848908	-1.414640815
C	-1.7607670032	-0.3132096786	0.6253942093
C	-2.6656522188	-0.5413122186	1.6486900965
C	-3.1698335991	-1.8265583927	1.8146725607
H	-3.875838487	-2.0375848908	2.6108838046
C	-2.7966455392	-2.8176255308	0.9237676408
C	-1.8686448499	-2.5394088668	-0.0812715535
H	-0.1804920472	4.3534066424	-1.2925509169
C	-1.527908602	4.3530255148	0.8062351193
H	-3.2187037972	-3.8143991798	0.9889561853
N	-1.3201081001	-3.143125189	-0.1812445749
N	-0.5005342041	1.0449564167	0.8676039635
C	-1.4941717704	-3.5968608147	-1.0740157635
H	-1.2296617953	-3.1533289649	-2.0357888383
H	-0.6417001055	-4.1847349234	-0.7189202657
H	-2.3343360792	-4.2821547621	-1.2143070695
C	0.7143392341	2.1661165474	-2.6592783757
H	1.7705835401	2.0113386406	-2.4074947431
H	0.3961357051	1.3464964562	-3.3101080148
H	0.6371501099	3.1073218298	-3.2069293759
Ni	0.1932793876	-0.7431873653	-1.1282146364
C	2.1756804503	1.6172564253	-1.6019288464
H	1.5586758875	-0.142063001	-1.7752153097
H	2.5509275338	-1.3019670314	-2.6101217954
C	1.3339672853	-2.2035479972	-1.0317892647
H	1.1638458796	-3.0252166575	-1.7309827284
C	1.6683845942	-2.6781587298	0.369421059
H	1.809957417	1.8059215677	1.020868821
H	0.8191999702	-3.2382338233	0.7852059071
C	2.9165910996	-3.5670016909	0.4203149385
H	2.7902609785	-4.3882495103	-0.293535938
H	3.7853506308	-2.9863655738	0.0784986769
C	3.2093157341	-4.1558238628	1.8033333817
H	4.0711835652	-4.8327623293	1.7243056666
H	2.3583609424	-4.7763756654	2.1201199348
C	3.5008327935	-3.1157585164	2.8872163056
H	4.311365971	-2.456439672	2.5466816168
H	2.6223769506	-2.475552459	3.0363106792
C	3.8863001113	-3.7541523861	4.219808608
H	4.0831792141	-2.9958140656	4.9862007054
H	3.0828852643	-4.4027697894	4.5902920239
H	4.7887908587	-4.3690542058	4.1172355617
H	2.9708964102	-0.7467423392	-0.9493927421
H	-2.2661215819	2.1904941112	1.7725480144
H	-2.990756149	0.2623798958	2.297200201
Energy = -2357.6192416			
Zero-point correction = 0.430739 (Hartree/Particle)			
Thermal correction to Gibbs Free Energy = 0.378950			
Sum of electronic and zero-point Energies = -2357.188503			
Sum of electronic and thermal Energies = -2357.166076			
Sum of electronic and thermal Enthalpies = -2357.165132			
Sum of electronic and thermal Free Energies = -2357.240292			
G + ZVPE = -2356.809553			
----	-------	-------	-------
C	1.0357998262	3.7044187471	0.1766948022
C	2.4008348888	3.4899122967	0.0793701758
C	2.8798447911	2.1899268782	-0.038244406
C	1.9655732807	1.1492344341	-0.0779147543
C	0.1559349984	2.6242415035	0.1143444546
C	2.4008348888	3.4899122967	-0.0793701758
C	2.8798447911	2.1899268782	-0.038244406
C	1.9655732807	1.1492344341	-0.0779147543
H	0.6390973778	4.7054195379	0.3099883034
H	3.0927442569	4.3243810783	0.1182039437
H	3.1594141208	-3.9531961802	0.513980939
H	0.1559349984	2.6242415035	0.1143444546
H	2.3493117766	-0.2839391283	-0.0727581893
H	3.657950793	-0.7037509314	-0.2567549233
H	3.9570872567	-2.0489161783	-0.0856491104
H	4.9695956578	-2.4110896404	-0.2280273221
H	2.9484996018	-2.903211859	0.311240684
H	1.6437003744	-2.4353540193	0.460297801
N	1.3384434933	-1.145277225	0.2122044445
N	0.6328541303	1.3721984291	-0.0312795505
C	0.5752496156	-3.6519792883	0.9602680959
C	-0.0158255001	-2.8827111927	1.7427059676
C	-0.9987735786	-3.6938708781	0.1638625898
Ni	1.0300483873	-4.2602882919	1.3890150046
C	-1.3259271657	2.8260384099	0.2114076121
H	-1.7813776495	2.7869306714	-0.786929316
H	-1.7905195518	2.0454761404	0.8179338558
H	-1.5527362065	3.798688849	0.6531892661
H	-0.1266989619	0.6317749471	-1.0978099805
H	-1.6348707807	-2.1252179432	0.5789906063
C	-1.1987139335	-1.6710145044	-1.4516031243
H	-1.6100293495	-1.2872554106	-2.3826092484
H	-0.4626721816	-2.463169772	1.5654016783
C	-3.2239294581	-0.8180021878	-0.1525494407
H	-3.3987893869	-0.1796561512	-1.0235678042
H	-3.2463528822	-0.1698258879	0.734550522
C	-4.3377806122	-1.870322239	-0.0291553853
H	-4.087649407	-2.5700628558	0.7788631323
H	-4.3688681055	-2.458934362	-0.9551973868
C	-5.7169170745	-1.2623400575	0.2456670027
H	-6.4322552739	-2.0827047489	0.3806591139
H	-5.6898615459	-0.7197882843	1.2018163663
C	-6.2315482484	-0.3307552563	-0.8535543893
H	-5.5699727612	0.5403932407	-0.9479658082
H	-6.1940009329	-0.8545255614	-1.8183145232
C	-7.6562641538	0.151852362	-0.5876536187
H	-7.7171184528	0.6903112696	0.365383396
H	-8.0017487972	0.8263642796	-1.3761610796
H	-8.3539466055	-0.6911281352	-0.5374758664
H	3.9455729216	2.0033655803	-0.0694076618
H	4.435055643	-0.0010047244	-0.5297094396
Energy = -2357.5150735
Zero-point correction = 0.429210 (Hartree/Particle)
Thermal correction to Gibbs Free Energy = 0.374261
Sum of electronic and zero-point Energies = -2357.085864
Sum of electronic and thermal Energies = -2357.063037
Sum of electronic and thermal Enthalpies = -2357.062093
Sum of electronic and thermal Free Energies = -2357.138957
G + ZPE = -2356.709747
Energy (DMF-6-31G(d)) = -2357.5920888
Energy (DMF-def2-TZVP) = -2358.1055915
Energy = -2357.5396839
Zero-point correction = 0.432276 (Hartree/Particle)
Thermal correction to Gibbs Free Energy = 0.379752
Sum of electronic and zero-point Energies = -2357.107408
Sum of electronic and thermal Energies = -2357.085128
Sum of electronic and thermal Enthalpies = -2357.084184
Sum of electronic and thermal Free Energies = -2357.159932
G + ZVPE = -2356.727656
Energy (DMF-6-31G(d)) = -2357.6185
Energy (DMF-def2-TZVP) = -2358.1326405
DMF-solv

C	2.89595	-3.141887	0.941283	O	3.376187	-2.829297	2.025198	H	2.677905	-4.192206	0.681185	N	2.572806	-2.289465	-0.053816						
C	2.009532	-2.753378	-1.30343	O	3.376187	-2.829297	2.025198	H	1.877228	-3.837818	-1.27455	N	2.572806	-2.289465	-0.053816						
C	2.665351	-2.496117	-2.142811	H	1.893836	-0.309731	-0.114391	N	2.572806	-2.289465	-0.053816	C	2.819132	-0.868458	0.067961						
C	3.183957	-0.649819	1.070149	H	3.566776	-0.547439	-0.667338	C	-3.411245	-0.778077	-2.576376	O	-4.442079	-0.156845	-2.803131						
C	-2.632327	-0.918683	-3.346371	N	-3.084718	-1.362795	-1.402795	C	-1.823902	-2.047769	-2.13813	H	-1.278089	-2.092812	-2.159777						
C	-1.20695	-1.522849	-0.473707	H	-1.995895	-3.070557	-0.85949	C	-3.977812	-1.300464	-0.264784	H	-4.269807	-2.312044	0.042289						
C	-3.48902	-0.811246	0.584956	H	-4.867491	-0.737308	-0.547651	C	1.483635	-0.374315	-3.649706	O	2.498797	-0.709325	-4.247842						
C	0.529339	-0.919262	-3.764902	N	1.381355	0.665165	-2.793081	C	0.124562	1.016594	-2.168006	H	-0.657833	0.32383	-2.486496						
C	-0.211652	0.974391	-1.075326	H	-0.173823	2.033189	-2.450569	C	2.513468	1.531089	-2.53765	H	2.668532	1.639617	-1.459467						
C	3.401737	1.089481	-2.989894	H	2.343006	2.525364	-2.968362	C	-2.177469	-2.363857	2.580398	O	-2.665857	-1.339974	3.047388						
C	-2.765793	-3.289668	2.459489	N	-0.900255	-2.508033	2.172844	C	-0.413618	-3.749346	1.608004	H	-1.221106	-4.48494	1.57388						
C	-0.043867	-3.588516	0.588843	H	0.404378	-4.150415	2.216887	C	0.029214	-1.398766	2.245945	H	0.170769	-0.943593	1.25802						
C	-0.364687	-0.646832	2.93085	H	1.000709	-1.752352	2.605518	C	-1.75225	3.816955	0.730598	O	-1.392045	4.364621	1.76741						
C	-1.670781	4.315014	-0.250992	N	-2.272174	2.576046	0.633792	C	-2.743695	2.040352	-0.626235										
C	-2.494004	2.722993	-1.442112	H	-2.274265	1.070452	-0.818856	H	-3.830113	1.895157	-0.606475										
Energy = -1490.7033966																					
Zero-point correction = 0.634266 (Hartree/Particle)																					
Thermal correction to Gibbs Free Energy = 0.553409																					
Sum of electronic and zero-point Energies = -1490.069130																					
Sum of electronic and thermal Energies = -1490.026307																					
Sum of electronic and thermal Enthalpies = -1490.025363																					
Sum of electronic and thermal Free Energies = -1490.149987																					
G + ZPE = -1489.515721																					
---	---	---	---	---																	
C	0.6360870824	-3.7993062453	-0.7758533011																		
C	1.5926184711	-3.233264909	-1.607148554																		
C	1.5277328045	-1.8772239982	-1.895221709																		
C	0.5090985725	-1.1220662498	-1.3216101737																		
C	-0.3614780472	-2.990937303	-0.2349211759																		
C	0.3235558324	0.330628427	-1.5661463824																		
C	1.252421325	1.1021963923	-2.2560548718																		
C	1.0052984147	2.4581340223	-2.412104438																		
H	1.717564753	3.088024483	-2.9354102228																		
C	-0.15834094	2.960107594	-1.884825335																		
C	-1.050680366	2.1720978252	-1.1984757231																		
H	0.6504124312	-4.8593740031	-0.5474833071																		
H	2.3768971618	-3.8464906683	-2.0393792934																		
H	-0.3800166486	4.0524694162	-1.9882118263																		
N	-0.799266064	0.8612528208	-1.044903108																		
N	-0.3956754854	-1.6753453332	-0.4969257252																		
C	-2.3089056962	2.7155453839	-0.5931168986																		
H	-3.1853452865	2.1983007999	-0.9949067362																		
H	-2.318740402	2.5564559838	0.4891403028																		
H	-2.410286307	3.7840526649	-0.793936504																		
C	-1.4516920456	-3.531609327	0.6428930006																		
H	-1.3697895387	-3.123918308	1.655311981																		
H	-2.43090415	-3.239280763	0.2514526296																		
H	-1.4049422926	-4.6212159035	0.7059250124																		
N	-1.6952893771	-0.3640872971	0.3570964953																		
C	0.6600997513	0.6691078432	1.7061324952																		
H	1.1941025025	-0.2076392538	1.3001322262																		
C	-0.7962147146	0.2996283308	1.967422565																		
H	0.7210749272	1.4464277734	0.9307786351																		
O	-4.113292657	0.8044461243	1.4844661365																		
C	-3.4437771186	0.08397109	0.7921877556																		
O	-3.5804536102	-0.839241707	-0.0627119371																		
H	-1.3154051519	1.2032093576	2.317327273																		
H	2.2502408506	-1.4279439935	-2.5658065309																		
H	2.165736311	0.6671498014	-2.6420938667																		
C	1.4466007854	1.1851527339	2.9223534997																		
H	1.6411361681	0.359260487	3.619651847																		
H	0.8105054249	1.8988368161	3.4648871056																		
C	2.77761482234	1.8765373781	2.5943874607																		
H	2.582691687	2.746720177	1.9494661088																		
H	3.1834578644	2.2793471651	3.530595060																		
C	3.8538053685	0.9961948392	1.9373623562																		
H	4.839411595	1.4163837245	2.1741395712																		
H	3.8324217717	-0.0031182835	2.3937882825																		
C	3.7538717406	0.8662818255	0.416877118																		
H	2.840119945	0.3515037577	0.1066969752																		
H	3.7489909068	1.8556286175	-0.059051902																		
C	-0.908141299	-0.7534297624	3.076123763																		
H	-0.3000427389	-1.641185082	2.8449316109																		
H	-0.5523795228	-0.3812233559	4.048508314																		
H	-1.9435169921	-1.0826912824	3.2257923659																		
H	4.6071663838	0.306811595	0.0138814905																		
Energy = -2546.244042																					
Zero-point correction = 0.442527 (Hartree/Particle)																					
Thermal correction to Gibbs Free Energy = 0.384316																					
Sum of electronic and zero-point Energies = -2545.801515																					
Sum of electronic and thermal Energies = -2545.774994																					
Sum of electronic and thermal Enthalpies = -2545.774050																					
Sum of electronic and thermal Free Energies = -2545.859726																					
G + ZVPE = -2545.417199																					
Energy (DMF-6-31G(d)) = -2546.2762883																					
Energy (DMF-def2-TZVP) = -2546.8589755																					
Element	X	Y	Z																		
---------	---	---	---																		
C	1.8313027755	3.6228989731	1.2285994221																		
C	2.72649343	3.5534838931	1.2285994221																		
C	2.8774770855	2.3578685199	-0.5197589708																		
C	2.1149566724	1.2620747989	-0.1258057969																		
C	1.1017785638	2.4883837507	1.5767207655																		
C	2.1663924726	-0.0640568849	-0.7914640863																		
C	2.83862294	-1.5492464337	-2.538153872																		
C	3.3781585677	-1.7512953184	-3.4580365747																		
C	2.0980857415	-2.5451720143	-1.9214707257																		
C	1.4002351176	-2.2605221396	-0.7472115734																		
H	3.3781585677	-1.7512953184	-3.4580365747																		
C	2.72649343	3.5534838931	1.2285994221																		
C	3.3067734426	4.4245433474	-0.1175117079																		
C	2.0449408374	-3.5418306358	-2.345364129																		
N	1.4446151257	-1.0347392594	-0.1985520804																		
N	1.2517244121	1.3414888512	0.8987796621																		
C	0.5673047881	-3.3009652269	-0.0627766655																		
H	0.9503357921	-3.5055220241	0.9412946711																		
H	-0.4619348754	-2.9512489902	0.582675306																		
H	0.5648597125	-4.2346608411	-0.630026614																		
C	0.1091150012	2.4700131334	2.7004946824																		
H	-0.3999773852	2.3046378481	2.3061483539																		
H	0.33144281	1.6474976096	3.3882148014																		
H	0.1154582699	3.4102298788	3.256369404																		
Ni	0.161255953	-0.3376692956	1.2664495723																		
C	-1.1631470786	0.4320295042	-1.1997236362																		
H	-0.4575325415	1.2747672175	-1.1626354894																		
C	-1.4570429786	-0.0558168182	0.2171800924																		
H	-2.0655723141	0.70506016	0.7365030879																		
H	-0.6505698398	-0.361536166	-1.7656600974																		
O	-1.2040828956	-2.5049993339	2.6632564101																		
O	-0.3933048894	-1.6384305532	2.4763330001																		
O	0.6013795494	-1.0989255439	3.0425854474																		
H	-2.0887618163	-0.9522859137	0.1735743175																		
H	3.5767208399	2.2903391762	-1.3436434361																		
H	3.4277143819	0.5139792285	-2.4453720385																		
C	-2.3866597173	0.8779889456	-2.0031609834																		
H	-2.858518029	1.7250006276	-1.4837414909																		
H	-3.129499133	0.069262594	-2.0037091417																		
C	-2.0878170234	1.2855675554	-3.4532058262																		
H	-1.7571471824	0.4018112174	-4.0178435139																		
H	-3.0264262658	1.6082551805	-3.9200242566																		
C	-1.0328822129	2.3988280449	-3.600569306																		
H	-1.2949010247	3.0532281534	-4.4427453776																		
H	-1.053303065	3.0382622379	-2.7057817969																		
C	0.3947907662	1.88772025	-3.8233074889																		
H	0.6443791536	1.137782823	-3.0651518327																		
H	0.4390634126	1.3680621046	-4.7899177646																		
C	1.4342586423	3.005842978	-3.7912981084																		
H	1.433179262	3.5080908226	-2.8164357386																		
H	2.4459998239	2.6221535955	-3.9713255182																		
H	1.227378527	3.7642667759	-4.5534861419																		
Energy = -2546.2466858																					
Zero-point correction = 0.442809 (Hartree/Particle)																					
Thermal correction to Gibbs Free Energy = 0.384209																					
Sum of electronic and zero-point Energies = -2545.803877																					
Sum of electronic and thermal Energies = -2545.777517																					
Sum of electronic and thermal Enthalpies = -2545.776573																					
Sum of electronic and thermal Free Energies = -2545.862476																					
G + ZVPE = -2545.419667																					
Energy (DMF-6-31G(d)) = -2546.2796777																					
Energy (DMF-def2-TZVP) = -2546.8634782																					
Element	X	Y	Z																		
---------	-----------	-----------	-----------																		
C	-0.7260357546	3.4811792354	-1.145998119																		
C	-1.7256918461	3.5348205572	-0.1464506347																		
C	-2.31528041282	2.3755269958	0.43700714452																		
C	-1.5826248679	1.1379696162	0.0464172888																		
C	-0.1734147868	2.2648419702	-1.480572294																		
C	-2.0076942765	-0.133842514	0.5077314452																		
C	-3.0462133589	-0.3344646024	1.4497251494																		
C	-3.4806736494	-1.593294788	2.4437711916																		
C	-4.277483872	-1.7662708531	0.1649513159																		
C	-2.8984599273	-2.688769857	1.0393676827																		
C	-1.855944091	-2.4704798504	0.1144340914																		
H	-0.3908103165	4.3817015941	-0.8859043778																		
H	-2.1610014601	4.4772080125	0.1401711848																		
H	-3.264046998	-3.698030742	1.186960526																		
H	-1.364854726	-3.6347530294	-0.5708819932																		
H	-0.5589778566	1.1070799295	-0.8859043778																		
H	-1.2566286245	-3.3847567554	-1.6222435485																		
H	-0.2910482896	-3.9204348632	-0.1444340914																		
C	-1.9242128623	-4.4983458202	-0.512074053																		
C	0.8968163122	2.1864366261	-2.539862291																		
H	1.8804056075	1.9891383534	-2.091726864																		
H	0.6812005823	1.3857878593	-0.3215850668																		
H	0.9675694449	3.127913554	-3.0859341271																		
N	0.1654906842	-0.6618314955	-0.969690944																		
C	2.174840789	-0.9600179288	-1.4422878027																		
H	1.4854293968	-0.038418731	-1.6481815755																		
H	2.5427156963	-1.131168493	2.4600361972																		
C	1.3582314938	-2.0925675299	-0.9258971469																		
H	1.635857004	-2.4386510343	0.0738450534																		
H	1.2548242432	-2.9285024416	-1.678167264																		
C	3.2746075858	-0.4086217436	-0.5371948241																		
H	3.5828286197	0.5849172719	-0.8862901678																		
H	2.8650901155	-0.2735261919	0.4727147527																		
C	4.4841141333	-1.3421045531	-0.4809623424																		
C	4.136543942	-2.3496544697	-0.2208225448																		
H	4.9284761801	-1.4165625083	-1.4838198777																		
C	5.5569165504	-0.9071274264	0.5210705178																		
H	6.3392397119	-1.676938304	0.5577287388																		
H	5.1169801754	-0.8698194617	1.5278497771																		
C	6.200863592	0.4414973451	0.2073982092																		
H	6.6097645663	0.4195442429	-0.8153445409																		
H	5.4508920751	1.2345558155	0.2250552148																		
C	7.3245452823	0.7962370112	1.1883615777																		
H	7.7743364211	1.7652706259	0.9497013586																		
H	6.9406635056	0.8476950359	2.2142316531																		
H	8.1202137711	0.0424375735	1.1701984614																		
H	-2.9358150136	2.39749713	1.186747979																		
H	-3.4978610352	0.519640184	1.9408604435																		
Energy = -2357.6921286																					
Zero-point correction = 0.429645 (Hartree/Particle)																					
Thermal correction to Gibbs Free Energy = 0.376739																					
Sum of electronic and zero-point Energies = -2357.262483																					
Sum of electronic and thermal Energies = -2357.240075																					
Sum of electronic and thermal Enthalpies = -2357.239130																					
Sum of electronic and thermal Free Energies = -2357.315390																					
G + ZPE = -2356.885745																					
Energy (DMF-6-31G(d)) = -2357.7123047																					
Energy (DMF-def2-TZVP) = -2358.2331129																					
---	---	---	---																		
C	4.1179444602	-1.5515376245	1.2149474898																		
C	4.2666204494	-0.3742327291	1.9848109987																		
C	3.4047026007	0.6686233758	1.78976773																		
C	2.3677783861	0.5549308392	0.8304294818																		
C	3.0810408079	-1.6374708758	0.3121796198																		
C	1.479382044	1.595584806	0.4656592981																		
C	1.4701801013	2.8880519542	1.053625479																		
C	0.6915359078	3.8739264706	0.5173932903																		
C	0.6764616461	4.8664303534	0.9569197057																		
C	-0.0637778684	3.594559672	-0.6453516368																		
C	-0.079392332	2.3201698542	-1.1638406251																		
H	4.8063898753	-2.3813912056	1.327428133																		
H	5.0698078509	-0.2946303193	2.7109264985																		
H	-0.6243520516	4.3803382271	-1.142683151																		
N	0.6185627592	1.3044468192	-0.5673360681																		
N	2.1939333367	-0.6276720148	0.134734509																		
C	-0.8445272701	2.0400954038	-2.4274413004																		
H	-0.2834143202	1.3607426987	-3.074505235																		
H	-1.8148521373	1.5794909858	-2.230872992																		
H	-1.0240650955	2.9727160562	-2.968436793																		
C	2.898835792	-2.8822445111	-0.511863557																		
H	2.0274778081	-3.4622119135	-0.160831693																		
H	2.7225582624	-2.6315044699	-1.565010473																		
H	3.7679818447	-3.5294891588	-0.448494352																		
Ni	0.5356085198	-0.5316310797	-0.8323936421																		
C	-0.6068238381	-2.2282026172	-1.201669181																		
H	0.5215598152	-2.154835512	-0.9251054968																		
H	-0.5697210615	-2.8171384303	-2.116968644																		
C	-1.2175440944	-0.8676399574	-1.3512163686																		
H	-1.5081695933	-0.6587075137	-2.3839170732																		
C	-2.3070269811	-0.5010610986	-0.35973106																		
H	-1.9761989836	-0.7633442269	0.6539232722																		
H	-2.4506036307	0.5882213299	-0.3494208371																		
C	-3.6478818286	-1.1822033592	-0.6583898961																		
H	-3.9092404396	-0.9945376274	-1.7089428123																		
C	-3.5265999432	-2.2713866157	-0.565013137																		
C	-4.8046879558	-0.7222996159	0.2326363676																		
H	-5.7280118992	-1.2145181084	-0.1026594837																		
H	-4.9643460357	0.3562878531	0.0902765432																		
C	-4.6083969022	-1.0055250756	1.7234197012																		
H	-4.3735967276	-2.0700675066	1.8618705655																		
H	-3.7414636251	-0.4476985271	2.0975868867																		
C	-5.8375414035	-0.6396298826	2.5543046019																		
H	-5.6740462183	-0.831429208	3.6195267803																		
H	-6.0838622796	0.4223376688	2.43903291																		
H	-6.7129666912	-2.1861546685	2.2377046129																		
H	-0.9968164931	-2.9234655387	-0.374400527																		
H	3.5250942315	1.5900222952	2.3480095842																		
H	2.0875173952	3.0867411572	1.9223692777																		
Energy = -2357.6918178																					
Zero-point correction = 0.428648 (Hartree/Particle)																					
Thermal correction to Gibbs Free Energy = 0.375042																					
Sum of electronic and zero-point Energies = -2357.263170																					
Sum of electronic and thermal Energies = -2357.240428																					
Sum of electronic and thermal Enthalpies = -2357.239483																					
Sum of electronic and thermal Free Energies = -2357.316776																					
G + ZVPE = -2356.888128																					
Energy (DMF-6-31G(d)) = -2357.7116596																					
Energy (DMF-def2-TZVP) = -2358.2320566																					
---	---	---	---																		
C	-3.9096852631	3.0560790657	0.425216062																		
C	-5.024491817	2.1858376571	0.2583536939																		
C	-4.8294183463	0.8428040804	0.050139986																		
C	-3.5196641005	0.3415105251	0.005139986																		
C	-2.6486445486	2.5365997957	0.2583536939																		
C	-3.7386520528	-3.354205719	0.448049548																		
H	-4.4604530886	-4.1409404514	-0.7260966915																		
H	-4.0437904873	4.123817375	0.561759883																		
H	-6.0254910316	2.579950223	0.5529174025																		
H	-2.011652183	-4.681746099	-0.5573146099																		
N	-1.8612875184	-3.6610990266	-0.2183489463																		
N	-2.4438260991	1.205866592	0.0550143393																		
C	0.0171587986	-2.894277542	-0.1106983																		
H	0.5694309143	-2.32208362	-0.857967026																		
H	0.3851557842	-2.5845606288	0.8742633611																		
H	0.2477960474	-3.9596297281	-0.2386711876																		
C	-1.4191449512	3.3987496115	0.2518286484																		
H	-0.70120093	3.0652680673	-1.0075179238																		
H	-0.9168255041	3.337209332	-0.7214595027																		
H	-1.6702864669	4.445104695	0.440884499																		
Ni	-0.7407438534	0.2461981659	0.039378917																		
O	1.0731145743	0.0507458421	-0.8412612131																		
O	0.7981936027	1.054605878	1.0518143116																		
C	1.5738509082	0.6813098962	0.145982828																		
C	3.8676929439	-0.3017854008	-0.2344715148																		
H	3.5644827918	-1.1698460498	0.3641308552																		
H	3.6094254281	-0.5338266132	-1.272520692																		
C	3.0583006447	0.9183692957	0.2157341375																		
H	3.3113583766	1.2146015119	1.238232161																		
H	3.2786062148	1.776021718	-0.4326225795																		
H	-5.6726339476	0.16777781	0.2412950551																		
H	-5.2033995762	-1.8060457047	-0.4596036695																		
C	5.3803640968	-0.1073566893	-0.1060148571																		
H	5.6338483709	0.0594745298	0.9492928686																		
H	5.87787404	-1.04267825	-0.3968450694																		
C	5.9356743402	1.0345343189	-0.9628511601																		
H	5.6020314057	2.0006433862	-0.5598889493																		
H	5.5102339496	0.958706314	-1.9730840543																		
C	7.463818298	1.045118939	-1.066775174																		
H	7.8015505971	0.1115947955	-1.5394065492																		
H	7.7682185444	1.8576921856	-1.740280168																		
C	8.1840742905	1.2170441118	0.2723542552																		
H	7.9572214201	0.3666119142	0.927022368																		
H	7.7937080836	2.1095434463	0.7806330299																		
C	6.9685532757	1.3382947687	0.1118453992																		
H	9.9603228141	2.2082951403	-0.5014478286																		
H	10.197272521	1.447033892	1.0804078641																		
H	10.1128119695	0.4505735511	-0.380344921																		
Energy = -2546.2769136																					
Zero-point correction = 0.443668 (Hartree/Particle)																					
Thermal correction to Gibbs Free Energy = 0.383887																					
Sum of electronic and zero-point Energies = -2545.833245																					
Sum of electronic and thermal Energies = -2545.806932																					
Sum of electronic and thermal Enthalpies = -2545.805988																					
Sum of electronic and thermal Free Energies = -2545.893027																					
G + ZVPE = -2545.449359																					
Energy (DMF-6-31G(d)) = -2546.3100179																					
Energy (DMF-def2-TZVP) = -2546.9050784																					
C	-4.2433939309	2.8407678205	0.967742215																		
C	-5.2347431844	1.9143888725	0.5676938649																		
C	-4.851068981	0.690131736	0.0766879398																		
C	-3.4835941923	0.3770136937	-0.0193713533																		
C	-2.9189775517	2.5008547494	0.8599210811																		
C	-2.934445174	-0.8608236392	-0.5115152687																		
C	-3.698295749	-1.9577804754	-0.9618742983																		
C	-3.0527520362	-3.0878040698	-1.4018731119																		
C	-2.6223947378	-3.945686326	-1.7507547269																		
C	-1.6468775569	-1.300672303	-1.3971239032																		
C	-0.9412455556	-2.032549232	-0.9501026091																		
H	-4.5184703434	3.8153825023	1.3562681982																		
H	-6.2861277575	2.1703328176	0.6480866053																		
H	-1.1141673132	-4.000710781	-1.7400364232																		
N	-1.571420488	-0.915269663	-0.5123369178																		
N	-2.5300013835	1.2849182997	0.3763758969																		
C	0.5585938522	-1.9930136639	0.9270960872																		
H	0.9238367566	-1.1993366202	-1.5883687163																		
H	0.9237838328	-1.7702734872	0.0805893192																		
H	0.9872079082	-2.94145738	-1.2590897418																		
C	-1.7907370816	3.4086915335	1.2531764539																		
H	-1.2047219385	2.9596899223	2.0652543934																		
H	-1.111624273	3.5604068304	0.4050306885																		
H	-2.1516270645	4.3837674767	1.588549866																		
Ni	-0.7400662255	0.7176522999	0.1531255674																		
O	0.871946178	1.6482186238	-0.6577247149																		
O	0.9786096444	0.5715188802	1.2105622966																		
C	1.5571820448	1.2154910934	0.321460263																		
C	3.7734853284	0.2250868589	-0.1767908092																		
H	4.8362793117	0.2942889865	0.0891404986																		
H	3.3855488511	-0.6696701225	0.3271627095																		
C	3.0472851429	1.4581035335	0.408302675																		
H	3.2841240643	1.4927846465	1.4772341215																		
H	-5.5978929374	-0.0305422322	-0.2386257767																		
H	-4.7810360053	-1.9083763199	-0.9573265552																		
C	3.635813442	0.0596918752	-1.6924860431																		
H	2.5933255915	0.2329687936	-1.9830625818																		
H	4.2236765079	0.8322515466	-2.205334527																		
C	4.0973508456	-1.317930056	-2.1690748545																		
H	3.4923975698	-2.0920517441	-1.674657916																		
H	5.1322686216	-1.4812570782	-1.838772096																		
C	4.0184241004	-1.5120002084	-3.6869105395																		
H	4.6111424627	-0.7306272675	-4.1812225503																		
H	4.4925490119	-2.4666667205	-3.9467540177																		
C	2.5923352558	-1.497674235	-4.2390377684																		
H	2.099470967	-0.5345903604	-4.0963541364																		
H	1.9802630075	-2.2721066254	-3.7613385782																		
C	3.4594155566	2.7969554623	-0.2573191202																		
H	5.45481183558	2.886784983	-0.2241844032																		
H	3.1346020748	2.80003662	-1.3001172669																		
H	3.0086090916	3.6259909555	0.253964831																		
H	2.5854827171	-1.6858497511	-5.3176464363																		
Energy = -2546.2970471																					
Zero-point correction = 0.444318 (Hartree/Particle)																					
Thermal correction to Gibbs Free Energy = 0.386390																					
Sum of electronic and zero-point Energies = -2545.852730																					
Sum of electronic and thermal Energies = -2545.826678																					
Sum of electronic and thermal Enthalpies = -2545.825734																					
Sum of electronic and thermal Free Energies = -2545.910657																					
G + ZPE = -2545.466339																					
Energy (DMF-6-31G(d)) = -2546.3192526																					
Energy (DMF-def2-TZVP) = -2546.9081615																					
---	---	---	---																		
C	2.417303	-3.388556	0.379678																		
C	2.606415	-2.931363	1.672388																		
C	2.350331	-1.595769	1.962475																		
C	1.885696	-0.775214	0.948657																		
C	1.920011	-2.527738	-0.600957																		
C	1.731104	0.692959	1.084308																		
C	2.123258	1.415544	2.198823																		
C	2.096764	3.996668	2.988483																		
C	1.737994	3.416841	0.94258																		
C	1.338582	2.636637	-0.14546																		
H	2.644913	-4.415066	0.116212																		
H	2.971465	-3.59654	2.449793																		
H	1.772015	4.495079	0.836571																		
N	1.280483	1.298597	-0.040432																		
N	1.634457	-1.245549	-0.300545																		
C	1.02736	3.277085	-1.467016																		
H	0.113479	3.87876	-1.42938																		
H	1.843605	3.949316	-1.747794																		
H	0.925271	2.524829	-2.25075																		
C	1.706216	-3.014481	-2.053106																		
H	1.977821	-2.24569	-2.729659																		
H	2.305476	-3.907683	-2.192758																		
H	0.654129	-3.271616	-2.165659																		
Ni	0.444685	-0.039869	-1.179969																		
C	-1.072953	0.398266	-2.478141																		
H	-0.013913	-1.131548	-1.98509																		
H	-0.640106	0.99221	-3.281371																		
C	-1.275556	0.941737	-1.221635																		
H	-1.072721	1.997663	-1.072462																		
C	-2.198425	0.317521	-0.209253																		
H	-2.279356	-0.758343	-0.401948																		
H	-1.775422	0.432065	0.799006																		
C	-3.591477	0.965628	-0.245196																		
H	-3.482676	2.049424	-0.111238																		
H	-4.024865	0.815759	-1.242572																		
C	-4.545488	0.417722	0.819946																		
H	-5.481868	0.987132	0.769309																		
H	-4.125699	0.606622	1.818133																		
C	-4.864379	-1.072445	0.677016																		
H	-5.212291	-1.269956	-0.345995																		
H	-3.951576	-1.66728	0.814406																		
C	-5.918461	-1.544544	1.676866																		
H	-6.120138	-2.614018	1.56421																		
H	-5.589304	-1.371458	2.707675																		
H	-6.863308	-1.008884	1.534979																		
H	-1.664754	-0.446488	-2.816088																		
H	2.520985	-1.209442	2.959479																		
H	2.469272	0.919883	3.097024																		
Energy = -2357.5119149																					
Zero-point correction = 0.427573 (Hartree/Particle)																					
Thermal correction to Gibbs Free Energy = 0.374261																					
Sum of electronic and zero-point Energies = -2357.084342																					
Sum of electronic and thermal Energies = -2357.061769																					
Sum of electronic and thermal Enthalpies = -2357.060825																					
Sum of electronic and thermal Free Energies = -2357.137654																					
G + ZVPE = -2356.710081																					
Energy (DMF-6-31G(d)) = -2357.5890983																					
Energy (DMF-def2-TZVP) = -2358.1060002																					
Atom	X	Y	Z																		
------	---------	---------	---------																		
C	-0.689966	3.825359	0.302263																		
C	-0.643763	3.491315	1.644667																		
C	-0.850363	2.168875	2.020008																		
C	-1.070671	1.22392	1.031347																		
C	-0.891527	2.832495	-0.658299																		
C	-1.445254	-0.183576	1.316032																		
C	-1.645651	-0.687817	2.590661																		
C	-2.159863	-1.974471	2.722494																		
C	-2.325635	-2.397843	3.707443																		
C	-2.50042	-2.686249	1.585566																		
C	-2.25773	-2.136208	0.32506																		
H	-0.567963	4.853859	-0.017489																		
H	-0.471662	4.253352	2.397311																		
H	-2.962105	-3.644898	1.657672																		
N	-1.682732	-0.927033	0.20846																		
C	-2.682119	-2.866213	-0.916035																		
H	-2.621518	-2.21925	-1.791642																		
H	-2.066951	-3.754739	-1.090571																		
H	-3.716837	-3.203451	-0.804183																		
C	-0.937773	3.182133	-2.115734																		
H	-0.011102	2.903216	-2.610157																		
H	-1.751382	2.655339	-2.61978																		
H	-1.082576	4.256594	-2.246788																		
N	-0.803931	-0.056454	-1.314187																		
C	0.964234	-0.715361	-1.960219																		
H	-0.368055	0.721577	-2.421033																		
H	1.353579	-0.237685	-2.855726																		
C	-0.020715	-1.693819	-2.087936																		
H	-0.063992	-2.489038	-1.347744																		
H	-0.395435	-1.951268	-3.076231																		
C	1.873455	-0.626268	-0.761211																		
H	2.065678	0.426938	-0.524646																		
H	1.388435	-1.073868	0.117121																		
C	3.204646	-1.347791	-1.031119																		
H	2.989432	-2.379925	-1.335715																		
H	3.707934	-0.867451	-1.880327																		
C	4.139166	-1.359525	0.181839																		
H	5.018046	-1.966189	-0.069415																		
H	3.644172	-1.871816	1.019176																		
C	4.608944	0.023674	0.638273																		
H	5.05331	0.552636	-0.21548																		
H	3.749756	0.626045	0.963001																		
C	5.622854	-0.05388	1.778394																		
H	5.946095	0.943262	2.092351																		
H	5.195205	-0.559072	2.651839																		
H	6.513752	-0.613717	1.47398																		
H	-0.849479	1.894114	3.067136																		
H	-1.429905	-0.096896	3.471706																		
Energy = -2357.5131261																					
Zero-point correction = 0.427925 (Hartree/Particle)																					
Thermal correction to Gibbs Free Energy = 0.375291																					
Sum of electronic and zero-point Energies = -2357.085201																					
Sum of electronic and thermal Energies = -2357.062834																					
Sum of electronic and thermal Enthalpies = -2357.061890																					
Sum of electronic and thermal Free Energies = -2357.137835																					
G + ZVPE = -2356.709910																					
Energy (DMF-6-31G(d)) = -2357.5901986																					
Energy (DMF-def2-TZVP) = -2358.1042793																					
	x	y	z																		
---	-----------	-----------	-----------																		
C	3.1767261826	-0.4416226583	-1.704838406																		
C	3.7018604622	0.3892574423	-0.2898603729																		
C	2.846396958	1.212924451	0.0054511069																		
C	1.4862041424	1.166292183	-0.512913605																		
C	1.8003212893	-0.4519130154	1.5524167229																		
C	0.4768156512	2.0054291165	0.4064198168																		
C	0.8173358295	3.113862015	1.175384051																		
C	-0.2005184761	-1.0910742297	-2.2888266129																		
H	0.032607495	4.125973645	2.3808897868																		
C	-1.5162668811	3.465689588	1.5524167229																		
C	-1.790535128	2.356606052	0.7563381695																		
H	3.819606234	-1.0910742297	-2.2888266129																		
H	4.7676977624	0.390673187	-2.512913605																		
C	-2.335185188	4.0323261502	1.985467568																		
H	-0.8046795919	1.626121761	0.2164230326																		
N	0.9775206356	0.3385750845	-1.2225792414																		
C	-3.206186569	1.9587801563	0.4406198211																		
H	-3.39455576	0.902356834	0.6438383128																		
H	-3.9179423115	2.5691068302	1.0016434328																		
H	-4.3042043456	2.0910678175	-0.6285219329																		
C	1.1676441983	-1.3441942682	-2.9577018193																		
H	1.9233149414	-1.8440548574	-3.56353502																		
H	0.5347356043	-2.0965265346	-2.4764890921																		
H	0.502114669	-0.768759028	-3.6063074249																		
Ni	-0.9766021983	-0.0599382037	-0.8528945255																		
C	-1.7297205203	-1.5355890604	0.504610516																		
H	-2.3705209767	-1.035624095	1.2394436455																		
O	-3.7657185268	-0.8069175442	-0.9819580079																		
C	-2.5795069623	-0.983673731	-1.1727236275																		
O	-1.8545807871	-1.268738323	-2.1760737575																		
C	-0.2741574456	-1.5538858822	1.0341355999																		
H	0.0609538799	-0.5386998684	1.2755006215																		
H	0.3939501967	-1.9325356083	0.2487467468																		
C	-0.0200282121	-2.3846523886	2.3027241386																		
H	-0.0388979257	-3.455851994	2.0690076763																		
H	-0.826608971	-2.2055706338	3.0260616614																		
C	1.3253820375	-2.0313010176	2.9470125187																		
H	1.3008566767	-0.9832464624	3.2815171413																		
H	1.4674689872	-2.6385655214	3.8512588626																		
C	2.5293982561	-2.224892711	2.0218602077																		
H	2.5396156069	-3.2597051002	1.6534257125																		
H	2.424192592	-1.5848972052	1.1373841181																		
C	3.8570506794	-1.906269174	2.7068904824																		
H	3.8764934021	-0.8666135031	3.0559023084																		
H	4.0169049776	-2.5498122561	3.5795172481																		
H	1.852216765	3.4078127281	1.2962795239																		
H	3.2334744333	1.8556021655	0.776086531																		
H	4.7046780892	-2.0473487606	2.0273184794																		
C	-2.2015502558	-2.9854964948	0.3372121747																		
H	-2.1326771394	-3.5345127723	1.2843572547																		
H	-3.239681103	-3.0346444442	0.0031250726																		
H	-1.5804994456	-3.5079609204	-0.3997595407																		
Energy = -2546.2203842																					
Zero-point correction = 0.442119 (Hartree/Particle)																					
Thermal correction to Gibbs Free Energy = 0.384237																					
Sum of electronic and zero-point Energies = -2545.778265																					
Sum of electronic and thermal Energies = -2545.752360																					
Sum of electronic and thermal Enthalpies = -2545.751416																					
Sum of electronic and thermal Free Energies = -2545.836147																					
G + ZPE = -2545.394028																					
Energy (DMF-6-31G(d)) = -2546.2532798																					
Energy (DMF-def2-TZVP) = -2546.8465676																					
-----	---------	---------	---------	---------																	
C	-2.51596452	-1.1079570467	-2.1721151633	C																	
C	-2.4282410243	-2.2841167111	-1.4422661104	C																	
C	0.9659706497	-1.7076756151	0.1260499433	C																	
C	1.2449379001	-2.813052935	0.921468091	C																	
C	2.4779186424	-2.8814573647	1.5555044274	C																	
H	2.7211142461	-3.726200574	2.1920523598	C																	
C	3.4007583533	-1.8680801052	1.3467831036	C																	
C	3.0657210306	-0.7829690869	0.5361841661	H																	
H	-3.3837680451	-0.8971569747	-2.7817345147	H																	
H	-3.228711788	-3.0159348606	-1.4779506009	H																	
H	4.3837738204	-1.907722027	1.802851903	N																	
N	1.846489118	-0.6968389884	-0.0286854137	C																	
C	4.0545641947	0.2957459675	0.2171488749	C																	
H	3.6754430476	1.296224687	0.4430906913	C																	
H	4.9938531228	0.1351394337	0.751770915	C																	
C	0.2638017346	0.2924337376	-0.8581837226	C																	
H	-1.5236746736	1.1184483426	-2.8532032924	H																	
H	-2.4231101347	1.8503840343	-3.4701462969	H																	
H	-1.4956895055	1.9660960045	-2.1619595815	H																	
H	-0.6398352454	1.2244640049	-3.480826389	Ni																	
Ni	1.0124363142	0.9277237646	-0.807998239	C																	
C	0.9798364028	2.1948108483	0.8382216768	O																	
H	1.7850488232	1.8831188678	1.5118202103	C																	
O	2.8686982274	3.1660100765	-0.6496444827	C																	
C	1.7892132024	2.6527781196	-0.8566321555	O																	
O	0.9374913881	2.6644296553	-1.7962480998	C																	
C	-0.3729343182	1.5988962498	1.264396253	H																	
C	-0.2934172426	0.5118936716	1.4020359994	H																	
H	-1.111286159	1.7575112665	0.466873098	C																	
C	-0.9234822153	2.2032036885	2.5591291269	H																	
H	-1.121273812	3.2714209122	2.3935046303	C																	
H	-0.1494136594	2.1511232069	3.3361942438	C																	
H	-2.1988460837	1.5276290294	3.0779213789	H																	
H	-1.9655529199	0.4967779995	3.3816877275	C																	
H	-2.5093828009	2.047544463	3.9922267403	H																	
C	-3.3705868281	1.5053163919	2.0785736287	H																	
H	-4.3179320469	1.6297695184	2.620263195	C																	
H	-3.2956134824	2.3717352363	1.4056913925	H																	
C	-3.4758729343	0.2235427438	1.2448574059	C																	
H	-2.5374017212	0.0402819513	0.7084296149	H																	
H	-3.6098419061	-0.6289629406	1.9246876833	H																	
C	-4.6309879378	0.2713936949	0.2475555466	H																	
H	-4.7327921843	-0.6736821779	-0.2959196529	H																	
H	-5.5820338229	0.4702304045	0.7554524747	H																	
H	-4.4761877318	1.0672011946	-0.4910457448	H																	
H	0.8937770987	3.2792555102	0.9626661749	H																	
H	0.5198999978	-3.6067685465	1.0527024011	H																	
H	-1.2167974221	-3.4313752968	-0.090429008	H																	

S113
Energy = -2546.2253075
Zero-point correction = 0.442796 (Hartree/Particle)
Thermal correction to Gibbs Free Energy = 0.386354
Sum of electronic and zero-point Energies = -2545.782512
Sum of electronic and thermal Energies = -2545.756966
Sum of electronic and thermal Enthalpies = -2545.756022
Sum of electronic and thermal Free Energies = -2545.838953
G + ZVPE = -2545.396157
Energy (DMF-6-31G(d)) = -2546.2586083
Energy (DMF-def2-TZVP) = -2546.8545683
Energy = -498.7162539
Zero-point correction = 0.160952 (Hartree/Particle)
Thermal correction to Gibbs Free Energy = 0.125063
Sum of electronic and zero-point Energies = -498.555302
Sum of electronic and thermal Energies = -498.545709
Sum of electronic and thermal Enthalpies = -498.544764
Sum of electronic and thermal Free Energies = -498.591191
G + ZPVE = -498.430239
Energy (DMF-6-31G(d)) = -498.8053921
Energy (DMF-def2-TZVP) = -499.0052571
$2a'-I$

| | C | H | H | C | C | C | C | C | C | C | C | H | H | H | H | H |
|---|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| | 1.5399535675 | -0.2147912467 | -0.4906586583 | 1.4084339808 | -1.1999375818 | -0.9565706472 | 1.2579449152 | 0.5272826653 | -1.2530401992 | 0.3790256496 | -0.0167775086 | -0.2147912467 | 1.1754769071 | -0.0263649826 | 1.1717503036 | 0.4045236708 |
| | -0.8392139329 | -0.4906586583 | 0.3790256496 | -1.4517222428 | 1.1754769071 | -0.0263649826 | -1.6283036872 | -1.1717503036 | 0.4045236708 |
| | -2.794143436 | 1.2143878735 | -0.3888519036 | -0.8546004799 | 2.084318757 | -0.0563156392 | -1.2579449152 | 0.5272826653 | -1.2530401992 | 0.3790256496 | -0.0167775086 | -0.2147912467 | 1.1754769071 | -0.0263649826 | 1.1717503036 | 0.4045236708 |
| | -3.5647905232 | 0.0537797394 | -0.3550221846 | -3.2433711972 | 2.1556874243 | -0.697454783 | -3.5606095576 | -2.0565310297 | 0.0748650545 |
| | -4.6150292776 | 0.0822206505 | -0.634657006 | -3.2433711972 | 2.1556874243 | -0.697454783 | -3.5606095576 | -2.0565310297 | 0.0748650545 |
| | 3.0619201372 | 0.0033481036 | -0.1497215253 | 3.8555778762 | -0.5332716167 | -0.9502130646 | 3.2904313973 | 0.7103234837 | 0.8592017974 |
| | 0.6248592161 | -0.0520767276 | 0.7284575664 | 0.9375731643 | 0.8683478582 | 1.2315742527 | 0.8188970947 | -0.8682564005 | 1.4358147579 |

Energy = -498.711313
Zero-point correction = 0.160536 (Hartree/Particle)
Thermal correction to Gibbs Free Energy = 0.122257
Sum of electronic and zero-point Energies = -498.550777
Sum of electronic and thermal Energies = -498.541011
Sum of electronic and thermal Enthalpies = -498.540067
Sum of electronic and thermal Free Energies = -498.589056
G + ZVPE = -498.428520
Energy (DMF-6-31G(d)) = -498.8041843
Energy (DMF-def2-TZVP) = -310.1234282
Energy = -310.1234282
Zero-point correction = 0.144522 (Hartree/Particle)
Thermal correction to Gibbs Free Energy = 0.112063
Sum of electronic and zero-point Energies = -309.978907
Sum of electronic and thermal Energies = -309.971523
Sum of electronic and thermal Enthalpies = -309.970579
Sum of electronic and thermal Free Energies = -310.011365
G + ZVPE = -309.866843
Energy (DMF-6-31G(d)) = -310.1322444
Energy (DMF-def2-TZVP) = -310.2400421

C	-1.8291831498	-0.6522613455	0.0000016678
H	-2.0761788186	-1.7109729784	0.0000687265
C	-0.4583485448	-0.3003641698	0.000141526
C	0.5426256979	-1.3076100431	0.00002258
C	-0.0218934511	1.0503436109	0.000123613
C	1.8871872214	-0.9840544234	-0.000094151
H	0.2351665505	-2.3506011971	0.000043976
C	1.3273011556	1.3638921086	0.000036206
H	-0.7575796858	1.8490751857	0.000265735
C	2.291983555	0.3542851916	-0.000085662
H	2.6318247726	-1.7748529491	-0.000148331
H	1.6354449389	2.4057463994	0.000109794
H	3.3481520417	0.6057290684	-0.000195239
C	-2.9503852664	0.3356219115	-0.000188011
H	-2.915935211	0.992451402	-0.889888857
H	-3.9202451832	-0.1676997838	-0.003715263
H	-2.9163726977	0.9920078351	0.8813004282
G

C	3.4245192833	0.5031566983	-0.111989117
C	2.8202726608	1.7536755552	-0.106164656
C	1.4252996626	1.8285945771	-0.038329623
C	0.7092852178	0.6175360924	0.0255302665
C	2.6665751372	-0.6578281393	0.0341722201
C	0.6783199659	3.058532279	-0.0371102573
C	-0.70877878	0.617921792	-0.0213174613
C	-1.4238879113	1.8297009353	0.0399145802
C	-0.676066323	3.0591472159	0.0359780056
C	-2.8189481622	1.7559253047	0.1079629439
H	-3.4131000714	2.6635159345	0.1599890259
C	-3.4240751911	0.5058450303	0.1165890014
C	-2.669712801	-0.659965321	-0.0270418294
H	1.228383219	3.9950799536	-0.1759290506
H	4.5045620071	0.4165787238	-0.0683871337
H	3.4150633462	2.6607321912	-0.1601686998
H	-1.2254608824	3.9961101519	0.180783453
H	-4.5041752511	0.4201709096	-0.1974938372
N	-1.3249112623	-0.6109221897	-0.1974938372
N	1.3244248057	-0.6114261479	0.2044153132
C	-3.2885585276	-2.0185860575	-0.0923464295
H	-2.8164218749	-2.5927095816	-0.3003741474
H	-3.1220919981	-2.5709326781	0.8401251496
H	-4.3672937435	-1.9689884974	-0.2649724188
C	3.2872212229	-2.0207010096	0.1025956794
H	2.8146373275	-2.5925898227	0.9120569785
H	3.1202219441	-2.5751388529	-0.8285386479
H	4.3660187502	-1.9714399581	0.2749252439
Ni	-0.0006012428	-1.8235231761	0.0045755533

Energy = -2158.1022149
Zero-point correction = 0.228959 (Hartree/Particle)
Thermal correction to Gibbs Free Energy = 0.187862
Sum of electronic and zero-point Energies = -2157.873256
Sum of electronic and thermal Energies = -2157.859107
Sum of electronic and thermal Enthalpies = -2157.858163
Sum of electronic and thermal Free Energies = -2157.914352
G + ZVPE = -2157.685393
Energy (DMF-6-31G(d)) = -2158.1249582
Energy (DMF-def2-TZVP) = -2158.597988
At	X	Y	Z
C	-3.2942113154	-2.3191549367	-1.715383136
C	-4.2407214519	-1.356894215	-0.8946978457
C	-3.8345653605	-0.1331955487	0.5935030428
C	-2.4712440487	0.0064818516	-0.5935030428
C	-1.9413394069	-2.1011475901	-1.3859917924
C	-4.7256695055	0.9619918137	-0.6371954798
C	-1.9729363981	1.2505046254	-0.0761203687
C	-2.8591094318	2.321444914	-0.1527328389
C	-4.2568827514	2.138067312	-0.1527328389
C	-2.3059164893	3.534922158	0.5648133724
C	-4.2407214519	-1.3568942215	0.5648133724
C	-3.8345653605	-0.133195538	0.8946978457
C	-2.4712440487	0.0064818516	-0.5935030428
C	-1.9413394069	-2.1011475901	-1.3859917924
C	-4.7256695055	0.9619918137	-0.6371954798
H	-2.9469443075	4.3950730032	0.7360981868
C	-0.9488555081	3.614545553	0.7590286841
C	-0.1233366893	2.4912923614	0.5477650925
H	-5.7827657192	0.831411252	-0.8497789135
H	-3.5738872699	-3.2601003462	-2.177400724
H	-5.2683968996	-1.5220383313	-1.7016158289
H	-4.9318420314	2.965781692	0.0299081655
H	-0.4913885758	4.5429826421	1.0832283919
N	-0.6294407318	1.3157511381	0.1613775053
N	-1.5443621111	-0.9701127841	-0.7989460397
C	1.3521370349	2.5939657788	0.780618802
H	1.6355784768	1.9658362317	1.6289531344
H	1.9241821324	2.2542106318	-0.087495272
H	1.641824112	3.6249025564	0.997504494
C	-0.9088523835	-3.1457267837	-1.6843671761
H	0.02447297	-2.6773737855	-2.0046586085
H	-0.6883113205	-3.7325363963	-0.7878528132
H	-1.2579422746	-3.824669721	-2.4646940522
Ni	0.0531497418	-0.4967672202	0.1647527176
C	2.8945399785	-0.4516279795	0.7419898866
H	3.2456060554	0.4858168499	1.1823870354
H	3.6482814414	-1.211355447	0.9947901433
C	1.5325011437	-0.821948812	1.3227384312
C	0.8762549722	-2.0512211757	0.8320212332
C	1.3399921269	-0.5043343963	2.7263999213
C	0.088013209	-2.8188649759	1.7744895314
H	1.4036968076	-2.6482970696	0.0811859493
C	0.4981105254	-1.205940052	3.5318305673
H	1.9083822239	0.325115423	3.1490307651
C	-0.147610123	-2.3903057493	3.0438534939
H	-0.3178836894	-3.7788334647	1.4568654546
H	0.3618673019	-0.912481068	4.5692707529
H	-0.7664237081	-2.9785484637	3.7161512337
C	2.8355438636	-0.2931887221	-0.7706454838
H	1.9844225228	0.3211487365	-1.0673076664
H	2.7867262713	-1.2464491119	-1.2972015878
Br	4.4254891619	0.6190076063	-1.4739924963
Energy = -5040.1176903			
Zero-point correction = 0.382613 (Hartree/Particle)			
Thermal correction to Gibbs Free Energy = 0.329928			
Sum of electronic and zero-point Energies = -5039.735077			
Sum of electronic and thermal Energies = -5039.712288			
Sum of electronic and thermal Enthalpies = -5039.711344			
Sum of electronic and thermal Free Energies = -5039.787762			
G + ZVPE = -5039.405149			
Energy (DMF-6-31G(d)) = -5040.2248353			
Energy (DMF-def2-TZVP) = -5043.1860583			
	x-coordinates	y-coordinates	z-coordinates
-----	--------------	--------------	--------------
C	-3.053297111	-3.255391891	-0.3649698234
C	-3.4599525964	-2.5084379623	-0.2978043766
C	-3.3634824536	-1.1064685425	-0.283077168
C	-2.0719687429	-0.5556411438	-0.3072216386
C	-1.0462872771	-2.6284634125	-0.3891390928
C	-4.4956701197	-0.223334037	-0.2571398847
C	-1.8956884586	0.8646862641	-0.341803509
C	-3.0195120238	1.7071505251	-0.3475135643
C	-2.7815400489	3.0900837737	-0.4247732515
C	-3.61412237	3.787969778	-0.4267249423
C	-1.4831305771	3.536353773	-0.5180186419
C	-0.4096052246	2.6267939643	-0.519871955
H	-5.4903321277	-0.6584701605	-0.218289076
H	-2.3514167438	-4.3389919033	-0.4043006204
H	-4.4345846915	-2.9875980714	-0.2731041811
H	-5.1906371772	1.785762604	-0.2733069295
H	-1.2694287803	4.5967726481	-0.6049866434
N	-0.6069027094	1.3098739531	-0.3925656618
N	-0.9305897502	-1.2983972107	-0.3235987233
C	1.0030651728	3.1116022251	-0.6250976316
H	1.4536453416	3.1820880049	0.370661346
H	1.6007968125	2.4056992074	-1.206353705
H	1.046728685	4.0988615521	-1.0933626434
C	0.2150161126	-3.4348119958	-0.474938405
H	0.9562838942	-2.9141483648	-1.086553407
H	0.652453405	-3.5696596521	0.519873596
H	0.0207808074	-4.422953456	-0.9017140793
N	0.5958567119	-0.1707207126	0.0359759499
C	3.3014454483	0.6980011585	0.798679382
H	3.3358987688	1.749978567	0.4888281841
H	4.0443698148	0.5885668249	1.6053247384
C	1.9118702372	0.3557181833	1.3247912311
C	1.5217110511	-1.0591164747	1.4436057546
C	1.4267277216	2.1474290475	2.3611437882
C	0.6665500456	-1.4336159208	2.5472793789
H	2.2280556832	-1.8337702536	1.1304599125
C	0.5484315753	0.8535136399	3.3233173901
H	1.8020137473	2.2717211956	2.373249373
C	0.1056781761	-0.5197498314	3.4156285229
H	0.4352368445	-2.4893487306	2.686936152
H	0.189939934	1.5670537643	4.0605012475
H	-0.5148064199	-0.834257204	4.2149843363
C	3.81477145	-0.166857873	-0.335979775
H	3.9869176432	-1.192976551	-0.0330057857
H	4.7165465698	0.2340826458	-0.7976442109
Br	2.4881930657	-0.2929041729	-1.794719177
Energy = -5040.1317286			
Zero-point correction = 0.382024 (Hartree/Particle)			
Thermal correction to Gibbs Free Energy = 0.330510			
Sum of electronic and zero-point Energies = -5039.749705			
Sum of electronic and thermal Energies = -5039.727023			
Sum of electronic and thermal Enthalpies = -5039.726079			
Sum of electronic and thermal Free Energies = -5039.801219			
G + ZVPE = -5039.419195			
Energy (DMF-6-31G(d)) = -5040.15967			
Energy (DMF-def2-TZVP) = -5043.180923			
-----	-----	-----	-----
C	0.7992856551	-3.188512467	-1.4660263526
C	2.0969538871	-2.795018531	-1.2769455679
C	2.3625533628	-1.4372194218	-1.0247316668
C	1.2552941819	-0.5812011862	-0.939199571
C	0.261777924	-2.2544141587	-1.40073867
C	3.686078421	-0.9072608936	-0.8713116845
C	1.4810733901	0.815088935	-0.7186343123
C	2.738307982	1.3299828564	-0.669474524
C	3.8928084033	0.4232980838	-0.710976753
C	2.9121253732	2.730837295	-0.5910058715
C	3.8988327365	3.182521615	-0.5397502539
C	1.782670918	3.5095387287	-0.6251658319
C	0.5021482253	2.9164048769	-0.6449571865
H	4.5243380866	-1.596982138	-0.9104267174
H	0.5637863347	-4.2243061209	-1.6852941781
H	2.9137793748	-3.509023996	-1.3358519926
H	4.898011706	0.8253701597	-0.6248888923
N	1.8537876357	4.5922640477	-0.621496877
N	0.3699508706	1.5912473176	-0.6235760407
N	-0.0384581533	-0.9700196383	-1.1185018682
C	-0.7231464106	3.7805534017	-0.7105625342
H	-1.6120122204	3.1770256859	-0.8975721087
H	-0.8708065795	4.3255891675	0.2270314346
H	-0.6081124614	4.5175157878	-1.5125110566
C	-1.6540869408	-2.7296271456	-1.6736439767
H	-2.2350600738	-2.765812194	-0.7474182663
H	-2.1803169297	-2.038393702	-2.3329437336
H	-1.6320198342	-3.7255745723	-2.1237992798
Ni	-1.1879963932	0.5669771727	-0.2660656564
C	-1.529961707	0.5895163499	2.4578225274
H	-2.4142601833	-0.0541937381	2.4356831288
H	-1.556226878	1.1350492924	3.413917755
C	-0.2859963471	-0.2715082826	2.4215110178
C	0.9800757886	0.295975143	2.600576744
C	-0.3612308626	2.6433837171	-2.161545646
C	2.1332851305	-0.4784587583	2.5277473052
H	1.0596984691	1.3638353014	2.7934780062
C	0.7892726274	-2.4243027867	2.091651077
C	-1.3368399241	-2.093214721	1.995679646
C	2.0412241186	-1.8454145547	2.2753111126
H	3.1065474345	-0.0146416781	2.6636967825
H	0.7054377334	-3.4882224018	1.8875542746
H	2.9406234709	-2.4520580254	2.2161539268
C	-1.5828060945	1.5872964859	1.2902158612
H	-0.8136370203	2.3521577189	1.4711374583
H	-2.5515777975	2.0983720927	1.2884597443
Br	-3.323080922	-0.1824244773	-0.4127935188
Energy = -5040.1937433			
Zero-point correction = 0.383596 (Hartree/Particle)			
Thermal correction to Gibbs Free Energy = 0.331549			
Sum of electronic and zero-point Energies = -5039.810147			
Sum of electronic and thermal Energies = -5039.787355			
Sum of electronic and thermal Enthalpies = -5039.786411			
Sum of electronic and thermal Free Energies = -5039.862194			
G + ZVPE = -5039.478598			
Energy (DMF-6-31G(d)) = -5040.2248353			
Energy (DMF-def2-TZVP) = -5043.2410744			
---	---	---	---
C	0.8050432771	-3.1700697654	-1.5144951866
C	2.1016060726	-2.7632505757	-1.3439578138
C	2.3567761768	-1.4014786161	-1.0936590736
C	1.2432412326	-0.5549989025	-0.9876867788
C	-0.2633251233	-2.2466506616	-1.4277015016
C	3.6793611302	-0.8642801163	-0.9534039903
C	1.4604936973	0.8420955885	-0.7529109797
C	2.7597351733	1.3630680327	-0.7126680393
C	3.8766991336	0.4675960905	-0.7829968372
C	2.882152588	2.7649184472	-0.6150575457
H	3.8675847498	3.2192374419	-0.5722601089
C	1.7480491301	3.5363759971	-0.6160409219
C	0.4708772936	2.9344521222	-0.6220801952
H	4.5198185693	-1.5497646618	-1.0100743371
H	0.5767521875	0.8420955885	-0.7529109797
C	-0.0522479314	-0.9601203981	-1.1413605149
C	-0.7532232076	3.7983971498	-0.6399691155
H	-1.6512929213	3.2041620935	-0.8145059343
H	-0.8661872072	4.3373717742	0.3064359394
C	-0.6559098625	4.5459823735	-1.4344432327
C	-1.6534987825	-2.7441893686	-1.6723683343
H	-2.1947400581	-2.8433586661	-0.7263989881
H	-2.2197258783	-2.046738537	-2.2906670638
H	-1.6197591875	-3.7220628023	-2.1595143466
N	-1.1951345473	0.552179957	-0.2463782172
C	-1.4931005836	0.51937312	2.4900848325
H	-2.3620007308	-0.1462150785	2.4546434855
H	-1.5365438009	1.0469066283	3.456044774
C	-0.2330210431	-0.3187431118	2.4505489731
C	1.0238346536	0.273024502	2.624497955
C	-0.2946048773	-1.6930964097	2.1986644556
C	2.1909441188	-0.4828630454	2.5536303481
H	1.0884751476	1.3430480466	2.811551466
C	0.8799274283	-2.4564363625	2.1290403472
C	-1.2510084186	-2.16664397	2.040999747
C	2.1229327438	-1.8538249613	2.3070338039
H	3.1559231919	-0.0011893289	2.68743359
H	0.8419470789	-3.5225834649	1.9291233879
H	3.0328973417	-2.4442816859	2.2459788304
C	-1.5662182174	1.5378129893	1.3401276901
H	-0.8024563578	2.3060061477	1.5235517041
H	-2.5390326209	2.0446532417	1.3698551602
Br	-3.3622738578	-0.1747902062	-0.4163761699
Energy = -5040.2254044
Zero-point correction = 0.383239 (Hartree/Particle)
Thermal correction to Gibbs Free Energy = 0.331744
Sum of electronic and zero-point Energies = -5039.842165
Sum of electronic and thermal Energies = -5039.819406
Sum of electronic and thermal Enthalpies = -5039.818462
Sum of electronic and thermal Free Energies = -5039.893660
G + ZVPE = -5039.510421
Energy = -2468.2098314
Zero-point correction = 0.383134 (Hartree/Particle)
Thermal correction to Gibbs Free Energy = 0.333690
Sum of electronic and zero-point Energies = -2467.826697
Sum of electronic and thermal Energies = -2467.806127
Sum of electronic and thermal Enthalpies = -2467.805183
Sum of electronic and thermal Free Energies = -2467.876141
G + ZVPE = -2467.493007
Energy (DMF-6-31G(d)) = -2468.2913585
Energy (DMF-def2-TZVP) = -2468.8364775
K-solv

Element	X-coordinate	Y-coordinate	Z-coordinate
C	-0.7023340673	-3.5119571828	0.8554782245
C	-1.8399438439	-3.4765718818	0.0881669806
C	-2.3670988223	-2.2305984642	-0.311673815
C	-1.6625247649	-1.0910770214	0.0935748708
C	-0.0498337906	-2.3168682685	1.2280733906
C	-3.5711769612	-2.0761031721	-1.0751067505
C	-2.1548048692	0.21368682685	-1.2299255948
C	-3.3565458761	-1.0910770214	0.0935748708
C	-0.0498337906	-2.3168682685	1.2280733906
C	-3.5711769612	-2.0761031721	-1.0751067505
H	-4.7571237168	1.8060041372	-0.7597045304
H	-3.1304253251	2.707039247	-0.6352472951
H	-1.9219778778	2.5054675644	-1.1526200163
H	-0.2881453414	-4.4563142305	0.667632503
H	-2.344822106	-2.9691784992	-1.3955654998
H	-0.2881453414	-4.4563142305	0.667632503
H	-3.4910539314	3.7220456201	-0.7597045304
N	-1.426588196	1.2760054555	0.2334262664
H	-0.5232786018	-1.1343688976	0.8349300168
C	-1.2061154796	3.6885153765	0.6377034786
H	-0.8219141901	3.469741797	1.6359156152
H	-0.3607252536	3.9707884109	0.0020899417
H	-1.8851876192	4.5422016283	0.69227309
C	1.1948635863	-2.3545326622	2.0601023213
H	2.0739889413	-2.14973915	1.4365761562
H	1.1559486357	-1.6026678373	2.8540011102
H	1.3265205526	-3.3390605619	2.5140390814
Ni	0.2410403466	0.651692906	0.8284760531
C	2.3021861918	0.935815306	1.0162872339
H	1.6610521682	0.0064774886	1.3156431111
H	2.8273856303	1.0927656303	1.961307239
C	3.2133998844	0.4247645162	0.0669562254
C	4.5078504416	0.935534832	-0.1854912984
C	2.7765899011	-0.5373138011	-0.979024661
C	5.3490826528	0.4938489404	-1.2028462198
H	4.855797534	1.682715333	0.5234887485
C	3.6177109639	-0.9826242464	-1.9963482146
H	1.7723078416	-0.9459713493	-0.8826992664
C	4.9062562125	-0.4671023473	-2.1112726756
H	6.3535193031	0.8993212186	-1.2856530071
H	3.265706794	-1.734671093	-2.6967410991
H	5.5651529654	-0.8137400448	-2.902101697
C	1.4046164388	2.0781911815	0.6775156107
H	1.4967179365	2.4581735913	-0.3424421798
H	1.4019950493	2.8812561117	1.4145608429
Energy = -2468.291745			
Zero-point correction = 0.382563 (Hartree/Particle)			
Thermal correction to Gibbs Free Energy = 0.333004			
Sum of electronic and zero-point Energies = -2467.909182			
Sum of electronic and thermal Energies = -2467.888559			
Sum of electronic and thermal Enthalpies = -2467.887614			
Sum of electronic and thermal Free Energies = -2467.958741			
G + ZVPE = -2467.576178			
-----	------	------------	------------
C	-0.78143	3.6032544195	-0.0260708433
C	-2.143105	3.4395194081	-0.079201775
C	-2.691326	2.1396806392	-0.0671388802
C	-1.785778	1.076688526	0.0311888802
C	0.0717453	2.4886264021	0.10210989673
C	-4.09346	1.8621004646	-0.2075026445
C	-2.242753	-0.280681924	-0.0645919093
C	-3.61755	-0.518369364	0.2296132664
C	-1.785778	-1.076688526	0.0311888802
C	0.0717453	2.4886264021	0.10210989673
C	-4.09346	1.8621004646	-0.2075026445
C	-2.242753	-0.280681924	-0.0645919093
C	-3.61755	-0.518369364	0.2296132664
H	-5.073706	-2.1036926414	-0.45425164
C	-3.063412	-2.8392153162	-0.4087327083
C	-1.693125	-2.5190744929	-0.2875093219
H	-4.789593	2.6935960568	-0.2161470818
H	-0.341065	4.592704376	-0.070478735
H	-2.800838	4.3005419085	-0.1532413687
H	-5.597636	0.3677939453	-0.3190651547
H	-3.343849	-3.8752152651	-0.559251612
N	-1.287898	-1.2627344558	-0.0757253432
N	-0.443990	1.2562245866	0.1617835382
C	-0.687231	-3.619045637	-0.4664031447
H	-0.035737	-3.421099014	-1.3437148144
H	-0.0193402	-4.5734786484	-0.6309792343
C	1.555867	2.6623283726	0.1727581819
H	1.900387	2.5924940047	1.2109554343
H	2.076629	1.8852594553	-0.395091505
H	1.846569	3.6411712418	-0.2164844587
Ni	0.408878	-0.3699338231	0.6230946429
C	1.891962	-1.678742244	0.376397928
H	1.300341	0.4436858831	1.3760511985
H	1.544919	-2.3710986434	-0.3858619788
C	3.067190848	-0.8882835776	-0.0351992691
C	3.2486961699	-0.6377306262	-1.4007292242
C	3.9761518451	-0.3426868518	0.8799047391
C	4.3032961348	0.1551124911	-1.844385014
C	2.5564697952	-1.068509308	-2.1214106585
C	5.0302159792	0.4432639473	0.437554747
C	3.8624970269	-0.539770569	1.9415252486
C	5.1933318798	0.699086755	-0.9245441176
H	4.4322465167	0.3391749243	-2.9059366934
H	5.735045	0.8517127969	1.1547101202
H	6.0212163032	1.3121968717	-1.2660497404
C	1.3655801944	-1.7911412194	1.6524380891
H	1.8696046481	-1.3681636482	2.5150600964
H	0.675807985	-2.5964306174	1.8895440762
Energy = -2468.1874341			
Zero-point correction = 0.380125 (Hartree/Particle)			
Thermal correction to Gibbs Free Energy = 0.329938			
Sum of electronic and zero-point Energies = -2467.807309			
Sum of electronic and thermal Energies = -2467.786126			
Sum of electronic and thermal Enthalpies = -2467.785181			
Sum of electronic and thermal Free Energies = -2467.857496			
G + ZVPE = -2467.477371			
Energy (DMF-6-31G(d)) = -2468.2656356			
Energy (DMF-def2-TZVP) = -2468.8109225			
C	4.0371043281	-1.3105394305	0.7467403215
C	4.1606268036	0.0123564997	1.0931573475
C	3.1292514545	0.9168543102	0.7625735417
C	2.0114005484	0.3814326438	0.1121337475
C	2.8762479364	-1.7737657281	0.0911367991
C	3.1736815804	2.3246933371	1.0320708889
C	0.9527049813	1.241914146	-0.3236116135
C	1.0439903411	2.618374014	-1.0004272004
C	2.1705809739	3.1406922922	0.0861100513
C	0.0133339625	4.170321443	-0.6410424711
C	-0.964066961	2.8246277898	-1.3964539803
C	-0.9843315058	1.4245378117	-1.5925402087
H	0.020864233	4.4916719107	-0.4854225991
C	-0.964066961	2.8246277898	-1.3964539803
C	-0.9843315058	1.4245378117	-1.5925402087
C	2.1705809739	3.1406922922	0.0861100513
H	0.020864233	4.4916719107	-0.4854225991
C	-0.964066961	2.8246277898	-1.3964539803
C	-0.9843315058	1.4245378117	-1.5925402087
Energy = -2468.2137082			
Zero-point correction = 0.382578 (Hartree/Particle)			
Thermal correction to Gibbs Free Energy = 0.333061			
Sum of electronic and zero-point Energies = -2467.831130			
Sum of electronic and thermal Energies = -2467.810094			
Sum of electronic and thermal Enthalpies = -2467.809150			
Sum of electronic and thermal Free Energies = -2467.880647			
G + ZVPE = -2467.498069			
Energy (DMF-6-31G(d)) = -2468.2958451			
Energy (DMF-def2-TZVP) = -2468.8408315			
Atom	X	Y	Z
------	------------	------------	--------------
N	3.6278988742	-2.0957848236	0.6319414222
C	4.0934165038	-0.8457364335	1.0823543497
C	3.3246787197	0.2806851531	0.8481363845
C	2.0862017524	0.1137685551	0.1704054948
C	2.4067488991	-2.0349345747	-0.007357707
C	3.7009470411	1.6190779641	1.2353757348
C	1.288243816	1.215919181	-0.143518199
C	1.6875139999	2.529489002	0.207252232
C	2.9220948813	2.689143047	0.934731434
C	3.3246787197	3.5814035072	-0.201297785
C	2.0862017524	4.6045798217	0.044514977
C	2.4067488991	3.106348222	-0.973877372
H	4.638250363	1.7537333174	1.7687495515
H	4.2212392744	-2.9896607008	0.788766639
H	5.0484519139	-0.7618324978	1.5927766927
H	3.2238583539	3.6876283757	1.226932886
H	-0.8621919783	4.1217908375	-1.3492347942
N	0.1200868645	0.9466621532	-0.8547308638
N	1.6105658524	-1.125623979	-0.2259812322
C	-1.8004288827	1.7587360794	-2.15669774
H	-1.5860215022	0.9873226747	-2.9007232977
H	-2.6527117146	1.4271452636	-1.5572796284
H	-2.0872141901	2.6774703815	-2.6741560402
C	1.918411166	-3.5449795944	-0.4720534539
H	1.0294636488	-3.8627960703	0.0966773988
H	1.6379843281	-3.5149507722	-1.533456304
H	2.6819081198	-4.3091911671	-0.3434464416
Ni	-0.1806958644	-0.8952394109	-0.8888315988
C	-1.4522369153	-2.516688417	-0.9472043165
H	-0.291710972	-2.5060920615	-1.0100814858
H	-1.6911852381	-3.1287867787	-1.8194014414
C	-2.039544362	-1.1402557453	-1.0016184658
H	-2.5504722226	-0.948819987	-1.9458666026
H	-1.643773913	-3.0738496695	-0.0207744932
C	-2.8300259741	-0.6837153107	0.1726954649
C	-4.0967629517	-0.1122190503	0.0051805438
C	-2.3291946348	-0.785576621	1.4791093859
C	-4.8335818999	0.3461911891	1.0934035329
H	-4.513974063	-0.0341555729	-0.9966420622
C	-3.065371288	-0.3380605157	2.5686218471
H	-1.3436325433	-1.2157325181	1.6456057764
C	-4.3213944486	0.2350685802	2.3818694422
H	-5.81340586	0.786894124	0.9324266162
H	-2.6505445381	-0.4279380482	3.5685586787
H	-4.8936667378	0.591063102	3.2332114023
Energy = -2468.3614482			
Zero-point correction = 0.379653 (Hartree/Particle)			
Thermal correction to Gibbs Free Energy = 0.328588			
Sum of electronic and zero-point Energies = -2467.981795			
Sum of electronic and thermal Energies = -2467.960658			
Sum of electronic and thermal Enthalpies = -2467.959714			
Sum of electronic and thermal Free Energies = -2468.032860			
G + ZVPE = -2467.653207			
Energy (DMF-6-31G(d)) = -2468.3869781			
Energy (DMF-def2-TZVP) = -2468.9389918			
	C	C	C
---	------	------	------
	-0.682414302	3.4989751292	-0.7409893506
C	-1.9116104694	3.4484260161	-0.0599934012
C	-2.4447728375	2.2180595204	0.277964842
C	-1.7049784161	1.0529988885	-0.0677463182
C	0.0006001773	2.3341179779	1.0468742722
C	-3.7096361362	2.0361945888	0.9470877073
C	-2.19767082	-0.222634903	0.2085364197
C	-3.4635193355	-0.3873676961	0.8364909563
C	-4.1910863866	0.8003514074	1.2119555216
C	-3.9304787349	-1.6756227356	1.0289579939
H	-4.8926197501	-1.8429974394	1.5040498941
C	-3.1565669153	-2.7503220669	0.5743252386
C	-1.9236564901	-2.5432772328	-0.0255424218
H	-4.2742470718	2.9217387394	1.2269191516
H	-0.2572738893	4.521608785	-1.0347754714
H	-2.444965548	4.3627173994	0.1846419484
H	-5.1507059608	0.6755565623	1.7066379534
H	-3.5197921986	-3.7679067438	0.6814890248
N	-1.4096211634	-1.298676232	-0.190714723
N	-0.47394899	1.1122777388	-0.6991406887
C	-1.144633256	-3.7252863934	-0.5230679101
H	-0.8316982074	-3.573690837	-1.597601519
H	-0.2425602832	-3.8857928417	0.0731254062
H	-1.7548893844	-4.303975363	-0.4714857219
C	1.3121042551	2.4025455705	-1.779497703
H	2.1427813531	2.0714752693	-1.1447650336
H	1.2942229445	1.770513521	-2.675317489
H	1.5242157262	3.4270002924	-2.093930158
Ni	0.2421182123	-0.6699323293	-0.801399681
C	2.2900480523	-0.9253781749	-1.0548876556
H	1.6125896695	-0.0119458936	-1.329829866
H	2.7852513644	-1.0679989629	-2.01998992
C	3.2335814188	-0.3987742271	-0.007120881
C	4.5775852858	-0.7722666341	-0.0148157008
C	2.7718816282	0.4502249962	1.000138754
C	5.4441650147	-0.3099036515	0.9700890611
H	4.9450085477	-1.432937632	-0.7961980013
C	3.6378385261	0.915566187	1.9848294124
H	1.7268426854	0.753527252	1.0051833866
C	4.9767117918	0.5367682345	1.9725055256
H	6.4885834972	-0.6073842289	0.9519649428
H	3.2647231007	1.5791300962	2.7592225822
H	5.655197975	0.9007790443	2.7381291659
C	1.432938334	-2.093268877	-0.6823715022
H	1.6078770448	-2.4759880221	0.3252077311
H	1.4285410743	-2.8954703302	-1.4215830555
Energy = -2468.3596173			
Zero-point correction = 0.379856 (Hartree/Particle)			
Thermal correction to Gibbs Free Energy = 0.329639			
Sum of electronic and zero-point Energies = -2467.979761			
Sum of electronic and thermal Energies = -2467.958924			
Sum of electronic and thermal Enthalpies = -2467.957980			
Sum of electronic and thermal Free Energies = -2468.029978			
G + ZVPE = -2467.650122			
Energy (DMF-6-31G(d)) = -2468.3836449			
Energy (DMF-def2-TZVP) = -2468.9346207			
At.	X	Y	Z
------	-------	-------	-------
C	1.9194077633	-2.5726440966	-1.6855935125
C	2.8908752305	-1.601810754	-1.6051906979
C	2.5302256114	-0.2801418903	-1.2906749609
C	1.1683941507	-0.0332575148	-1.065902114
C	0.5740220348	-2.2408742814	-1.4310078497
C	3.4684558974	0.8001922573	-1.18536389
C	0.723805268	1.2936954871	-0.7292028173
C	1.6646177905	2.3312668451	-0.6354923653
C	3.0521247231	2.0520756804	-0.8743838122
C	1.1762149506	3.599403817	-0.2728993789
C	-0.1663525204	3.7607446742	-0.0287901618
C	-1.0475940855	2.665854953	-0.1412063676
H	4.5206239525	0.5933585616	-1.356805666
H	2.1738605021	-3.5981030805	-1.9310019142
C	3.9341685817	-1.845654716	-1.784337569
H	3.7656670489	2.8660736962	-0.7914155358
H	-0.5653763746	4.7280409762	0.2563472836
N	-0.5992929453	1.461256127	-0.486573558
N	0.2244137818	-0.9984139697	-1.124157909
C	-2.5131788185	2.8228515006	0.128922612
H	-3.0946809584	2.6106917421	-0.7735692355
H	-2.846657601	2.112164811	0.8901227012
C	-2.7444235542	3.8376365463	0.460689004
C	-0.5180048135	-3.268483254	-1.4531640338
H	-0.7560227618	-3.575932922	-0.427937994
H	-1.4276358214	-2.8516257071	-1.894849718
H	-0.2221387982	-4.159212223	-2.0127241211
Ni	-1.5625804388	-0.3594773572	-0.357014277
C	-2.1639014875	-1.9242243872	2.002162029
H	-3.2377201402	-1.7640807004	1.866665433
H	-1.9865049251	-2.1927135831	3.0519759131
C	-1.3909297089	-0.665665952	1.5932431836
H	-1.8557824274	0.1949940177	2.089963958
H	-1.8993914608	-2.8074187723	1.4026043901
C	0.0565011015	-0.6830884791	1.9436011367
C	0.7333051683	0.5074319084	2.2591108975
C	0.8345543899	-1.852563502	1.8942713644
C	2.1078429941	0.5411250245	2.462067102
H	0.16109425	1.4312049047	2.3268040821
C	2.210352229	-1.8251356638	2.0959101698
C	0.3529989528	-2.8037843039	1.6825436526
C	2.8623625116	-0.6259120671	2.3712974129
H	2.5928753086	1.4868492059	2.6908106109
H	2.7770605955	-2.7512376474	2.0384617448
H	3.937093627	-0.6027008148	2.5263897372
O	-4.3939993132	0.091163303	0.134561904
C	-3.4104534609	-0.2032775106	-0.489510966
O	-3.0611641493	-0.6016555099	-1.6353474645
Energy = -2656.9292707
Zero-point correction = 0.393168 (Hartree/Particle)
Thermal correction to Gibbs Free Energy = 0.338668
Sum of electronic and zero-point Energies = -2656.536103
Sum of electronic and thermal Energies = -2656.511117
Sum of electronic and thermal Enthalpies = -2656.510173
Sum of electronic and thermal Free Energies = -2656.590603
G + ZVPE = -2656.197435
Energy (DMF-6-31G(d)) = -2656.9642374
Energy (DMF-def2-TZVP) = -2657.5788187
O'

C	2.1203106579	3.4500967662	0.7371486777
C	0.0568616052	3.172896382	-0.23093934
C	3.1537346054	1.8684022243	-0.754262374
C	2.2664659579	0.9125874856	-0.23381037
C	1.2613966217	2.4316463799	1.197529328
C	4.089732716	1.4776128728	-1.7702651309
C	2.3048845831	-0.4400094996	-0.714548602
C	3.2220700312	-0.7929570396	-1.717558774
C	4.1191591493	0.2029857683	-2.2332321158
C	-3.1972476937	-2.129568773	-2.1614731463
C	3.886777942	-2.4543404144	-2.9360939098
C	2.2964424551	-3.064507475	-1.609705982
C	1.406376505	-2.5766233134	-0.596045175
C	4.7729068795	2.2250763149	-2.1627864371
C	2.0301272302	4.4469881713	1.154817522
C	3.723410952	3.947688889	-0.591676491
H	4.8259257208	-0.0878643932	-3.004855917
H	2.254835643	-0.0386980617	-1.940048368
N	1.4278052587	-1.3194708252	-0.165549805
N	1.3462556853	1.1986667277	0.7130101958
C	0.4281328468	-3.5241203866	0.0231324645
H	0.7089828782	-3.7416327885	1.058705875
H	-0.5685864059	-3.078245317	0.059841074
H	0.386451633	-4.4657058148	-0.5292526904
C	0.2049892999	2.6728572104	2.234594125
H	-0.7879970458	2.5786633894	1.7801222629
H	0.2759202648	1.9214635902	3.0627862632
H	0.2913419942	3.6672252711	2.6782761967
Ni	0.1409851287	-0.392890293	1.173403363
C	-2.7000199242	0.2249871537	0.6819376562
H	-2.9735225132	-0.5569021467	1.3990593631
C	-1.382094814	-0.1569993264	-0.009076702
H	-1.562455584	-1.0700438994	-0.595576898
H	-2.5721678901	1.149543726	1.2637121583
O	-1.3722646075	-2.4067898416	2.6287008438
C	-0.5272191402	-1.5741919574	2.4317085053
O	0.4324486838	-1.0046845662	3.0306574113
H	-1.1349433829	0.6234833924	-0.7493612886
C	-3.8292559404	0.427146536	-0.300635734
C	-4.6599471462	-0.636277315	-0.6633410832
C	-4.0359208074	1.6639521015	-0.917046248
C	-5.6634820854	-0.4715232898	-1.6135005739
H	-4.513547047	-1.6048562684	-0.1904062979
C	-5.0373701693	1.8365700252	-1.8677406311
H	-3.3983032505	2.5032012669	-0.648651626
C	-5.8562937326	0.7668759541	-2.220254729
H	-6.3005285225	-1.3113141036	-1.8781513566
H	-5.1818691659	2.8084911235	-2.3321281287
H	-6.6404955626	0.898017115	-2.9604928898
Energy = -2656.9102785
Zero-point correction = 0.393159 (Hartree/Particle)
Thermal correction to Gibbs Free Energy = 0.335455
Sum of electronic and zero-point Energies = -2656.517120
Sum of electronic and thermal Energies = -2656.492005
Sum of electronic and thermal Enthalpies = -2656.491061
Sum of electronic and thermal Free Energies = -2656.574823
G + ZVPE = -2656.181664
Energy (DMF-6-31G(d)) = -2656.9500187
Energy (DMF-def2-TZVP) = -2657.5667139
Chemical Structure and Energy Calculations

C	0.4756933681	-0.220727989	0.1875657683
C	-0.4133042891	-1.2780167126	-0.347164535
C	-0.03691395	1.0806695184	0.2202103012
C	-1.7775446884	-1.0458269617	-0.163468209
H	-0.0330170347	-2.2964646646	-0.040563742
C	-1.3948517217	1.377298957	0.0641087541
H	0.6504841038	1.9132902102	0.36591528
C	-2.2730602997	0.2535709057	-0.1283820612
H	-2.4534940907	-1.8823241676	-0.316686781
H	-1.725344386	2.335914749	0.0928163187
H	-3.360741963	0.4370912666	-0.2533490682
C	2.8254858877	0.3753591251	-0.5021499605
H	2.471955533	0.694129886	-1.4764230125
H	3.8705861991	0.53247584	-0.2566234464
C	1.9591873159	-0.4668122495	0.3730165196
H	2.166159402	-1.536836301	0.1975951163
H	2.2284494333	-0.2962598692	1.4259316803

Energy = -310.0989848
Zero-point correction = 0.143646 (Hartree/Particle)
Thermal correction to Gibbs Free Energy = 0.111122
Sum of electronic and zero-point Energies = -309.955339
Sum of electronic and thermal Energies = -309.947832
Sum of electronic and thermal Enthalpies = -309.946888
Sum of electronic and thermal Free Energies = -309.987863
G + ZVPE = -309.844217
Energy (DMF-6-31G(d)) = -310.1068822
Energy (DMF-def2-TZVP) = -310.2152399
TS\textsubscript{Q-R}

C	1.8762243842	0.5869378534	0.0196027758
H	2.510090842	0.3116713431	-1.033833155
H	2.1444852349	1.6051868454	0.2901919371
C	0.4580845345	0.2522278068	0.0255297816
C	-0.4943281911	1.2890439454	0.0078101874
C	-0.0144799208	-1.0716742944	0.0281376749
C	-1.8531212693	1.0154313774	-0.0085197306
H	-0.1515397941	2.3212656922	0.0091661731
C	-1.3779881776	-1.3414184817	0.0054476547
H	0.6875031188	-1.8991312061	0.0634990938
C	-2.3064598431	-0.3043993069	-0.0141831586
H	-2.5662049625	1.8349539543	-0.0170833873
H	-1.7178703483	-2.3734463063	0.0110634998
H	-3.370622557	-0.5189000824	-0.0297044862
C	2.9921330777	-0.3890067625	0.0183051107
H	2.8039233134	-1.4484106836	-0.0971905224
H	3.9798476028	-0.0560424101	0.3111090707

Energy = -310.040865
Zero-point correction = 0.140042 (Hartree/Particle)
Thermal correction to Gibbs Free Energy = 0.108180
Sum of electronic and zero-point Energies = -309.900823
Sum of electronic and thermal Energies = -309.893773
Sum of electronic and thermal Enthalpies = -309.892829
Sum of electronic and thermal Free Energies = -309.932685
G + ZVPE = -309.792643
Energy (DMF-6-31G(d)) = -310.0516539
Energy (DMF-def2-TZVP) = -310.1641138

[Image of molecular structure]
C	2.1982763965	-3.0159595435	1.3690206632
C	3.4504513539	-2.4256680878	1.5888377618
C	3.663343324	-1.11646703	1.1511668226
C	2.5963392949	-0.4698011427	0.4969011042
C	1.1866174218	-2.3281635103	0.7210296151
C	4.8902940892	-0.3781994395	1.3226966128
C	2.7311021167	0.8573948305	0.0397466628
C	3.9369157653	1.5705628922	0.2178248724
C	5.023111081	0.8979100358	0.8796625368
C	3.9736366909	2.8805060501	-0.2612242212
H	4.8761395695	3.4752379799	-0.1486223178
C	2.8495244847	3.4184702118	-0.878862056
C	1.6898116292	2.6522523166	-1.021980642
H	5.7187356352	-0.8721708043	1.8232390298
H	2.0076226933	-4.0289854774	1.7082520971
H	4.239222607	-2.9719559286	2.0969509794
H	5.9564180541	1.4362802865	1.0206991382
H	2.8603454066	4.4363501336	-1.2531901116
N	1.6312277968	1.3917340733	-0.5719647603
N	1.3760775983	-1.0596948987	0.2625498951
C	0.4499876631	3.176651319	-1.6859458228
H	0.2524091667	2.6219992252	-2.6109482811
H	-0.4168999452	3.0367899361	-1.0320878004
H	0.5454141177	4.2358798345	-1.9356043299
C	-0.1772809287	-2.893384195	0.475616674
H	-0.9403565993	-2.319802463	1.01143741
H	-0.4300781764	-2.8418784202	-0.5849639795
H	-0.249550928	-3.9387031176	0.801523307
Ni	0.1498856108	0.0987214641	-0.5897342461
O	-1.4140149787	-0.5235961201	-1.7405151344
O	-1.648582862	0.9168992572	-0.10450467
C	-2.166154533	0.1462370794	-0.9644744533
C	-3.670833047	-0.0363515626	1.0179074245
H	-4.1082217979	0.8279696034	-0.5100860159
C	-4.184993981	-0.1058137282	-2.45462424
H	-5.2626412119	-0.2721545306	-2.4637405622
H	-3.974446604	0.8275968226	-2.9914966256
H	-3.7020974385	-0.9190441203	-3.0066731945
C	-4.0134834922	-1.2838563988	-0.2135544006
C	-4.769965714	-1.1866824592	0.9541188541
C	-3.5624117319	-2.5432259898	-0.620147966
C	-5.0762715979	-2.3218554173	1.7003079975
H	-5.1192529725	-0.212209343	1.2852291877
C	-3.8654370632	-3.6777526123	0.124634205
H	-2.9523450259	-2.6277698523	-1.5143632777
C	-4.6244133953	-3.5710721709	1.2878855553
H	-5.6665480081	-2.2267646643	2.6070492613
H	-3.5041485115	-4.648315023	-0.2030989392
H	-4.8594547726	-4.4573171116	1.8699129757
Energy = -2656.9584028			
Zero-point correction = 0.394130 (Hartree/Particle)			
Thermal correction to Gibbs Free Energy = 0.336197			
Sum of electronic and zero-point Energies = -2656.564273			
Sum of electronic and thermal Energies = -2656.539268			
Sum of electronic and thermal Enthalpies = -2656.538324			
Sum of electronic and thermal Free Energies = -2656.622206			
G + ZVPE = -2656.228076			
Energy (DMF-6-31G(d)) = -2656.9853242			
Energy (DMF-def2-TZVP) = -2657.6103402			
Energy = -2656.9564377			
Zero-point correction = 0.394179 (Hartree/Particle)			
Thermal correction to Gibbs Free Energy = 0.335320			
Sum of electronic and zero-point Energies = -2656.562258			
Sum of electronic and thermal Energies = -2656.537402			
Sum of electronic and thermal Enthalpies = -2656.536457			
Sum of electronic and thermal Free Energies = -2656.621118			
G + ZPE = -2656.226939			
Energy (DMF-6-31G(d)) = -2656.9860386			
Energy (DMF-def2-TZVP) = -2657.6086172			
Element	X	Y	Z
---------	----------	----------	----------
C	-1.0345667375	3.5969509506	-0.2569352524
C	-2.3152732472	3.4124081674	0.200512162
C	-2.8151239629	2.1018384203	0.3517648756
C	-1.931722389	1.058184038	0.0558954973
C	-0.2013167619	2.4928272399	-0.5419188168
C	-4.1572536905	1.7903885918	0.7513137302
C	-2.3851998877	-0.2987165162	0.1047983856
C	-3.7194781231	-0.574925806	0.4200949953
C	-2.8151239629	2.1018384203	0.3517648756
H	-5.1473916303	-2.2016706377	0.5600826234
H	-3.2357563742	-2.8562172614	-0.1470471552
C	-1.903793813	-2.4938189709	-0.4527450344
H	-4.8264068593	2.6056195362	1.0074665566
H	0.6415547147	4.5958827837	-0.4078787633
H	-2.9512191174	4.2639282062	0.4237798124
H	-5.6168683468	0.274984162	1.057312208
H	-3.5390934504	-3.8870492248	-0.2948734286
N	-1.479929641	-1.2474616448	-0.263838617
N	-0.6468164348	1.2470483892	-0.3619400919
C	-0.9855615359	-3.5167712952	-1.054760437
H	-0.1041190316	-3.0484787503	-1.4953911055
H	-0.6693456306	-4.2619283873	-0.3169381825
H	-1.5136771174	-4.0558205798	-1.8470450825
C	1.1906927257	2.7082271981	-1.0557011279
H	1.9236643007	2.6036865577	-0.2476199958
H	1.4379436481	1.9708897417	-1.8228036963
H	1.2953522192	3.709126159	-1.4903560692
Ni	0.3023304748	-0.4023884857	-0.1776917547
C	2.1250231873	-1.3312542046	-0.2159361962
H	1.4835947819	0.382251916	-0.1667801321
H	2.0886047726	-1.7533229458	-1.2242952721
C	3.4354212163	-0.6820351783	0.0802165448
C	4.0995520172	0.007491532	-0.9934576013
C	4.0343850081	-0.7751057122	1.3366468644
C	5.3289692219	0.6083598464	-0.705140484
H	3.6447648181	0.0745692196	-1.925682953
C	5.2668160782	-0.1724907336	1.5730377002
H	3.5549389686	-1.337884414	2.1316639115
C	5.9145812748	0.5220177749	0.5566081676
H	5.8347221897	1.1368017633	-1.5070999921
H	5.7272078725	-0.258717979	2.5520745658
H	6.8784099314	0.9851860318	0.7416139543
C	1.2422857414	-1.8616769482	0.7253425542
H	1.3840086532	-1.630516066	1.7803361881
H	0.7424353273	-2.800839867	0.5319769264
Energy = -2468.1750505			
Zero-point correction = 0.378383 (Hartree/Particle)			
Thermal correction to Gibbs Free Energy = 0.328397			
Sum of electronic and zero-point Energies = -2467.796668			
Sum of electronic and thermal Energies = -2467.775771			
Sum of electronic and thermal Enthalpies = -2467.774827			
Sum of electronic and thermal Free Energies = -2467.846653			
G + ZVPE = -2467.468270			
Energy (DMF-6-31G(d)) = -2468.2548099			
Energy (DMF-def2-TZVP) = -2468.8041208			
---	---	---	---
C	0.849089041	3.60701425	-0.6978876394
C	1.8344191254	3.285859629	0.2004627477
C	2.1023613532	1.9287019355	0.471454269
C	1.2996691093	0.987878663	-0.179123916
C	0.0795408532	2.6005176435	-1.3238162591
C	3.147250904	1.4746134011	1.4951969975
C	1.5626897033	-0.4077669037	-0.0083693454
C	2.6337486387	-0.8293547869	0.786096121
C	3.4052273438	0.1499566721	1.3463512282
C	1.2996691093	0.987878663	-0.179123916
C	0.0795408532	2.6005176435	-1.3238162591
C	3.147250904	1.4746134011	1.4951969975
C	1.5626897033	-0.4077669037	-0.0083693454
C	2.6337486387	-0.8293547869	0.786096121
C	3.4052273438	0.1499566721	1.3463512282
C	1.2996691093	0.987878663	-0.179123916
C	0.0795408532	2.6005176435	-1.3238162591
C	3.147250904	1.4746134011	1.4951969975
C	1.5626897033	-0.4077669037	-0.0083693454
C	2.6337486387	-0.8293547869	0.786096121
C	3.4052273438	0.1499566721	1.3463512282
C	1.2996691093	0.987878663	-0.179123916
C	0.0795408532	2.6005176435	-1.3238162591
C	3.147250904	1.4746134011	1.4951969975

S151
Energy = -2468.186101
Zero-point correction = 0.378508 (Hartree/Particle)
Thermal correction to Gibbs Free Energy = 0.328067
Sum of electronic and zero-point Energies = -2467.807593
Sum of electronic and thermal Energies = -2467.786731
Sum of electronic and thermal Enthalpies = -2467.785787
Sum of electronic and thermal Free Energies = -2467.858034
G + ZVPE = -2467.479526
Energy (DMF-6-31G(d)) = -2656.933771
Energy (DMF-def2-TZVP) = -2468.8138551
C	1.6609430305	-3.2150720542	-1.1379925443	0.8123048802
C	2.8779196336	-2.7053316833	-0.4337281405	0.2354965925
C	2.9785493686	-2.7053316833	-0.4337281405	0.2354965925
C	1.7955110113	-0.5888772879	-0.4437281405	0.2354965925
C	0.5181994676	-2.3865838661	-1.1629928018	0.2354965925
C	4.2160264397	-0.7175402332	-0.0540255216	0.2354965925
C	1.8347750924	0.8123048802	-0.1102501931	0.2354965925
C	3.0694486302	1.4041568728	0.2058080016	0.2354965925
C	4.2603304044	0.6054466067	0.2058080016	0.2354965925
H	3.9980200403	3.2912981631	0.7184712622	0.2354965925
H	1.8834979514	3.4733781573	0.4209009963	0.2354965925
H	0.6764789764	2.8019054549	0.1209050253	0.2354965925
H	5.1182922497	-0.6245769923	-0.032276682	0.2354965925
H	1.5585187127	-4.2555777105	-1.4263741254	0.2354965925
H	3.7648732566	-3.329386097	-0.7496376461	0.2354965925
H	5.1993247355	1.086907253	0.4929588811	0.2354965925
H	1.8508777326	4.5401568728	0.6147090416	0.2354965925
N	0.6574968713	1.4939988874	-0.1336014005	0.2354965925
N	0.5951250401	-1.104265419	-0.809410646	0.2354965925
C	-0.6120856667	3.5664180024	0.1284344667	0.2354965925
H	-3.3083655388	3.1997574012	-0.6323391571	0.2354965925
H	-1.0960847999	3.4662428148	1.1080636414	0.2354965925
H	-0.4250785498	4.6311466612	-0.0349114659	0.2354965925
C	-0.8079215996	-2.926381754	-1.596377713	0.2354965925
H	-1.4526233893	-3.0625002	-0.7221993263	0.2354965925
H	-1.3150589322	-2.218408264	-2.2550018788	0.2354965925
H	-0.6911754128	-3.8908305664	-2.0969714611	0.2354965925
Ni	-0.9194338321	0.1719790767	-0.4702601242	0.2354965925
C	-4.190806018	0.5346456677	0.1947612512	0.2354965925
H	-4.6341842861	1.3681857519	-0.3553414282	0.2354965925
H	-4.7127791668	0.4300974955	1.1547058201	0.2354965925
C	-2.7041070296	0.79062576	0.424188656	0.2354965925
H	-2.5561991476	1.7951172453	0.8204049693	0.2354965925
C	-4.3655823066	-0.3717106499	-0.3910731085	0.2354965925
C	-2.0261910514	-0.2297691112	1.275318407	0.2354965925
C	-0.9569411718	0.1429524296	2.1249265913	0.2354965925
C	2.3819089241	1.5977082221	1.2611819292	0.2354965925
C	-0.2420538172	-0.8001926436	2.8535391537	0.2354965925
H	-0.713297248	1.196802668	2.2287300719	0.2354965925
C	-1.6649232051	-2.5351044612	1.993962503	0.2354965925
H	-3.2192924806	-1.9205406576	0.6513312954	0.2354965925
C	-0.5790461702	-2.1494841815	2.7791269532	0.2354965925
H	0.5775787089	-0.4765114798	3.4891504992	0.2354965925
H	-1.957419774	-3.5811210906	1.9510342614	0.2354965925
H	-0.0213418427	-2.8878755736	3.2470599998	0.2354965925
O	-2.5371699775	2.0685579471	-1.9312709109	0.2354965925
C	-2.3168117029	0.9381866976	-1.5467372754	0.2354965925
O	-2.3077296462	-0.2155029154	-2.0315892939	0.2354965925
Energy = -2656.9127352
Zero-point correction = 0.392789 (Hartree/Particle)
Thermal correction to Gibbs Free Energy = 0.337531
Sum of electronic and zero-point Energies = -2656.519947
Sum of electronic and thermal Energies = -2656.495609
Sum of electronic and thermal Enthalpies = -2656.494665
Sum of electronic and thermal Free Energies = -2656.575204
G + ZVPE = -2656.182415
Energy (DMF-6-31G(d)) = -2656.9471299
Energy (DMF-def2-TZVP) = -2657.5681862
Energy = -2656.894582
Zero-point correction = 0.392162 (Hartree/Particle)
Thermal correction to Gibbs Free Energy = 0.335488
Sum of electronic and zero-point Energies = -2656.502420
Sum of electronic and thermal Energies = -2656.477882
Sum of electronic and thermal Enthalpies = -2656.476937
Sum of electronic and thermal Free Energies = -2656.559094
G + ZVPE = -2656.166932
Energy (DMF-6-31G(d)) = -2656.933771
Energy (DMF-def2-TZVP) = -2468.8138551
10 References

[1] Y. Han, B. Zheng, Y. Peng, Adv. Synth. Catal. 2015, 357, 1136-1142.
[2] S. D. Holmbo, S. V. Pronin, J. Am. Chem. Soc. 2018, 140, 5065-5068.
[3] C. P. Burke, Y. Shi, Org. Lett. 2009, 11, 5150-5153.
[4] A. K. Pitts, F. O’Hara, R. H. Snell, M. J. Gaunt, Angew. Chem. Int. Ed. 2015, 54, 5451–5455.
[5] M. Kawasaki, M. Goto, S. Kawabata, T. Kometani, Tetrahedron Asymmetry 2001, 12, 585-596.
[6] K. Brady, R. H. Abeles, Biochemistry 1990, 29, 7608-7617.
[7] Z. Wang, J. Tang, C. E. Salomon, C. D. Dreis, R. Vince, Bioorg. Med. Chem. 2010, 18, 4202–4211.
[8] Q. T. Do, G. T. Nguyen, V. Celis, R. S. Phillips, Arch. Biochem. Biophys. 2014, 560, 20-26.
[9] T. C. Atack, R. M. Lecker, S. P. Cook, J. Am. Chem. Soc. 2014, 136, 9521-9523.
[10] D. J. Morris, A. M. Hayes, M. Wills, J. Org. Chem. 2006, 71, 7035-7044.
[11] J. L. Timmermans, M. P. Wamelink, G. Lodder, J. Cornelisse, Eur. J. Org. Chem. 1999, 463-470.
[12] P. L. Ornstein, Thomas J. Bleisch, M. Brian Arnold, Rebecca A. Wright, Bryan G. Johnson, D. D. and Schoepp, J. Med. Chem. 1998, 41, 346–357.
[13] T. Moriya, S. Yoneda, K. Kawana, R. Ikeda, T. Konakahara, N. Sakai, Org. Lett. 2012, 14, 4842-4845.
[14] K. V. Butler, J. Kalin, C. Brochier, G. Vistoli, B. Langley, A. P. Kozikowski, J. Am. Chem. Soc. 2010, 132, 10842-10846.
[15] Q. Wu, L. Wang, R. Jin, C. Kang, Z. Bian, Z. Du, X. Ma, H. Guo, L. Gao, Eur. J. Org. Chem. 2016, 2016, 5415–5422.
[16] H. Ito, K. Kubota, Org. Lett. 2012, 14, 890-893.
[17] V. A. Schmidt, R. K. Quinn, A. T. Brusoe, E. J. Alexanian, J. Am. Chem. Soc. 2014, 136, 14389-14392.
[18] F. Juliá-Hernández, T. Moragas, J. Cornella, R. Martin, Nature 2017, 545, 84-88.
[19] S. J. Kaldas, A. Cannillo, T. McCallum, L. Barriault, Org. Lett. 2015, 17, 2864-2866.
[20] G. Butt, R. D. Topsom, J. Heterocycl. Chem. 1981, 18, 641–641.
[21] R. A. Altman, S. L. Buchwald, *Org. Lett.* **2006**, *8*, 2779–2782.

[22] H. Chen, X. Jia, Y. Yu, Q. Qian, H. Gong, *Angew. Chem. Int. Ed.* **2017**, *56*, 13103–13106.

[23] A. C. Edwards, C. Wagner, A. Geist, N. A. Burton, C. A. Sharrad, R. W. Adams, R. G. Pritchard, P. J. Panak, R. C. Whitehead, L. M. Harwood, *Dalton Trans.* **2016**, *45*, 18102–18112.

[24] P. J. Pijper, H. Van der Goot, H. Timmerman, W. T. Nauta, *Eur. J. Med. Chem.* **1984**, *19*, 399–404.

[25] Q. -Y. Meng, S. Wang, B. König, *Angew. Chem. Int. Ed.* **2017**, *56*, 13426-13430.

[26] S. Rezazadeh, V. Devannah, D. A. Watson, *J. Am. Chem. Soc.* **2017**, *139*, 8110–8113.

[27] E. Serrano, R. Martin, *Angew. Chem. Int. Ed.* **2016**, *55*, 11207-11211

[28] M. Khrizanforov, V. Khrizanforova, V. Mamedov, N. Zhukova, S. Strekalova, V. Grinenko, T. Gryaznova, O. Sinyashin, Y. Budnikova, *J. Organomet. Chem.* **2016**, *820*, 82–88.

[29] L. M. Schneider, V. M. Schmiedel, T. Pecchioli, D. Lentz, C. Merten, M. Christmann, *Org. Lett.* **2017**, *19*, 2310–2313

[30] J. Luo, J. Zhang, *ACS Catal.* **2016**, *6*, 873–877.

[31] Q. -Y. Meng, S. Wang, G. S. Huff, B. König, *J. Am. Chem. Soc.* **2018**, *140*, 3198-3201.

[32] M. Gaydou, T. Moragas, F. Juliá-Hernández, R. Martin, *J. Am. Chem. Soc.* **2017**, *139*, 12161-12164.

[33] N. R. Vautravers, B. Breit, *Synlett* **2011**, *17*, 2517-2520.

[34] A. Kisinic, M. Stephan, B. Mohar, *Adv. Synth. Catal.* **2015**, *357*, 2540-2546.

[35] K. K. Ghosh, M. van Gemmeren, *Chem. Eur. J.* **2017**, *23*, 17697-17700.

[36] R. Fumeaux, C. Menozzi-Smarrito, A. Stalmach, C. Munari, K. Kraehenbuehl, H. Steiling, A. Crozier, G. Williamson, D. Barron, *Org. Biomol. Chem.* **2010**, *8*, 5199-5211.

[37] T. Hama, S. Ge, J. F. Hartwig, *J. Org. Chem.* **2013**, *78*, 8250-8266.

[38] M. Katayama, Y. Kato, S. Marumo, *Biosci. Biotechnol. Biochem.* **2004**, *68*, 1287-1292.
[39] P. Zhang, R. M. Kriegel, J. W. Frost, *ACS Sustainable Chem. Eng.* 2016, 4, 6991-6995.

[40] M. Juhl, S. L. R. Laursen, Y. Huang, D. U. Nielsen, K. Daasbjerg, T. Skrydstrup, *ACS Catal.* 2017, 7, 1392-1396.

[41] M. D. Greenhalgh, S. P. Thomas, *J. Am. Chem. Soc.* 2012, 134, 11900-11903.

[42] M. Hayashi, H. Kawabata, K. Yoshimoto, T. Tanaka, *Phosphorus, Sulfur, and Silicon* 2007, 182, 433-445.

[43] O. Ries, M. Büschleb, M. Granitzka, D. Stalke, C. Ducho, *Beilstein J. Org. Chem.* 2014, 10, 1135-1142.

[44] S. G. Sudrik, N. K. Chaki, V. B. Chavan, S. P. Chavan, H. R. Sonawane, K. Vijayamohanan, *Chem. Eur. J.* 2006, 12, 859-864.

[45] R. Zhu, J.-L. Jiang, X.-L. Li, J. Deng, Y. Fu, *ACS Catal.* 2017, 7, 7520-7528.

[46] V. Magrioti, A. Nikolaou, A. Smyrniotou, I. Shah, V. Constantinou-Kokotou, E. A. Dennis, G. Kokotos, *Bioorg. Med. Chem.* 2013, 21, 5823-5829.

[47] V. V. Pavlishchuk, A. W. Addison, *Inorganica Chim. Acta* 2000, 298, 97–102.

[48] F. Hartl, H. Luyten, H. A. Nieuwenhuis, G. C. Schoemaker, *Appl. Spectrosc.* 1994, 48, 1522–1528.

[49] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, et al., *Gaussian 09*, Gaussian, Inc., Wallingford CT, 2016.

[50] J.-D. Chai, M. Head-Gordon, *Phys. Chem. Chem. Phys.* 2008, 10, 6615.

[51] A. V. Marenich, C. J. Cramer, D. G. Truhlar, *J. Phys. Chem. B* 2009, 113, 6378–6396.

[52] A. Schäfer, C. Huber, R. Ahlrichs, *J. Chem. Phys.* 1994, 100, 5829–5835.

[53] O. Gutierrez, J. C. Tellis, D. N. Primer, G. A. Molander, M. C. Kozlowski, *J. Am. Chem. Soc.* 2015, 137, 4896–4899.

[54] C. Y. Legault, *CYLview*, 2009.

[55] G. A. Andrienko, *Chemcraft 1.8*, 2019.
11 NMR Spectra
2H NMR of 4a-d_3