A systematic review and meta-analysis of clinical trials investigating the effects of flaxseed supplementation on plasma C-reactive protein concentrations

Sorin Ursoniu1, Amirhossein Sahebkar2, Maria-Corina Serban3, Iulia Pinzaru4, Cristina Dehelean5, Lavinia Noveanu3, Jacek Rysz6, Maciej Banach6; Lipid and Blood Pressure Meta-Analysis Collaboration (LBPMC) Group

1 Department of Functional Sciences, Discipline of Public Health, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
2 Biotechnology Research Centre, Mashhad University of Medical Sciences, Mashhad, Iran
3 Department of Functional Sciences, Discipline of Pathophysiology, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
4 Department 2, Discipline of Toxicology, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
5 Department of Toxicology, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
6 Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, Lodz, Poland

Submitted: 16 May 2017
Accepted: 28 May 2017

Arch Med Sci 2019; 15, 1: 12–22
DOI: https://doi.org/10.5114/aoms.2018.81034
Copyright © 2018 Termedia & Banach

Abstract

Introduction: Many experimental and clinical trials have suggested that flaxseed might be a potent antihypertensive, but the evidence concerning the effects of flaxseed supplements on plasma C-reactive protein (CRP) concentrations has not been fully conclusive. We assessed the impact of the effects of flaxseed supplementation on plasma CRP concentrations through a systematic review of literature and meta-analysis of available randomised controlled trials (RCTs).

Material and methods: The literature search included EMBASE, ProQuest, CINAHL, and PUBMED databases up to 1st February 2016 to identify RCTs investigating the effect of flaxseed supplementation on plasma CRP concentrations. Meta-analysis was performed using a random-effects model, and effect size was expressed as weighed mean difference (WMD) and 95% confidence interval (CI).

Results: Meta-analysis of 17 selected RCTs with 1256 individuals did not suggest a significant change in plasma CRP concentrations following supplementation with flaxseed-containing products (WMD: –0.25 mg/l, 95% CI: –0.53, 0.02, p = 0.074). The effect size was robust in the leave-one-out sensitivity analysis. Subgroup analysis did not suggest any significant difference in terms of changing plasma CRP concentrations among different types of flaxseed supplements used in the included studies, i.e. flaxseed oil (WMD: –0.67 mg/l, 95% CI: –2.00, 0.65, p = 0.320), lignan extract (WMD: –0.32 mg/l, 95% CI: –0.71, 0.06, p = 0.103) and ground powder (WMD: –0.18 mg/l, 95% CI: –0.42, 0.06, p = 0.142).

Conclusions: The meta-analysis of RCTs did not show a significant change in plasma CRP concentrations following supplementation with various flaxseed products. Large, well-designed studies should be still performed to validate the current results.

Key words: flaxseed, linseed, Linum usitatissimum, C-reactive protein, meta-analysis, systematic review.
Introduction

Flaxseed (*Linum usitatissimum*) is one of the most consistent sources in bioactive compounds such as polyunsaturated fatty acid, fibres, proteins, antioxidants, and lignans [1]. The translation of the Latin origin of the name, meaning “very useful”, is suggestive, considering the various products with biological effects that contain flaxseed and its fractions: flaxseed oil, whole seed, flaxseed meal, flaxseed mucilage and/or alcohol extracts, flaxseed hulls, ground whole seed, and flaxseed oleosomes [2]. Two major varieties of flaxseed products are available, but with different biological activity [1, 3]. Flaxseed contains one-third soluble and two-thirds insoluble fibres from a total of 35–45% of fibres. It also contains a high amount of α-linolenic acid, an essential fatty acid that cannot be synthesised by the human body [4]. Other biologically important compounds found in flaxseed products are linoleic acid, linolenic acid, alkaloids, cyclic peptides, lignans, polysaccharides, cyanogenic glycosides, and cadmium [2]. These compounds have remarkable antioxidant, hypotensive, anti-inflammatory, and hypoglycaemic activities [5, 6], being used for prevention of rheumatoid arthritis, cardiovascular (CV) diseases, and asthma [7–10].

A number of factors such as tumour necrosis factor (TNF), pro-inflammatory cytokines, and interleukins (IL) are responsible for increased levels of C-reactive protein (CRP), an important marker of systemic inflammation [11]. C-reactive protein is also considered as a strong predictor of CV risk in comparison to several other inflammatory markers [12, 13]. Some studies suggest that this acute-phase protein marker, synthesised by the adipose tissue or by the liver, might be significantly influenced by the administration or consumption of different formulations of flaxseed, like flaxseed oil, flaxseed lignan, or flaxseed supplementation [14]. Therefore, the aim of the present study is to review available randomised clinical trials (RCTs) involving the use of different forms of flaxseed to evaluate their effectiveness on the CRP plasma concentration.

Material and methods

Search strategy

This study was designed according to the guidelines of the 2009 preferred reporting items for systematic reviews and meta-analysis (PRISMA) statement [15]. EMBASE, ProQuest, CINAHL, and PUBMED databases were searched using the following search terms in titles and abstracts: (“linseed” OR “flax seed” OR “flaxseed” OR “linseed meal” OR “linum usitatissimum”) AND (“c reactive protein” OR “c reaction protein” OR “c-reactive protein” OR CRP OR “protein c re-
Quantitative data synthesis

Meta-analysis was conducted using Comprehensive Meta-Analysis (CMA) V2 software (Biostat, NJ) [17]. Net changes in measurements (change scores) were calculated as follows: measure at end of follow-up - measure at baseline. For single-arm, cross-over trials, the net change in plasma concentrations of CRP were calculated by subtracting the value after control intervention from that reported after treatment. All values were collated as mg/l. Standard deviations (SDs) of the mean difference were calculated using the following formula: \(SD = \text{sqrt} (SD_{\text{pre-treatment}}^2 + SD_{\text{post-treatment}}^2) - (2 \times R \times SD_{\text{pre-treatment}} \times SD_{\text{post-treatment}}) \), assuming a correlation coefficient (R) equal to 0.5. If the outcome measures were reported in median and range (or 95% confidence interval (CI)), mean and standard SD values were estimated using the method described by Wan et al. [18] Where standard error of the mean (SEM) only was reported, the standard deviation (SD) was estimated using the following formula: \(SD = \text{SEM} \times \text{sqrt} (n) \), where \(n \) is the number of subjects.

Net changes in measurements (change scores) were calculated for parallel and cross-over trials, as follows: (measure at the end of follow-up in the treatment group - measure at baseline in the treatment group) - (measure at the end of follow-up in the control group - measure at baseline in the control group). A random-effects model (using DerSimonian-Laird method) and the generic inverse variance method were used to compensate for the heterogeneity of studies in terms of study design, treatment duration, and the characteristics of populations being studied [19]. Inter-study heterogeneity was assessed using Cochran Q test and \(I^2 \) index. In order to evaluate the influence of each study on the overall effect size, sensitivity analysis was conducted using the leave-one-out method, i.e. iteratively removing one study each time and repeating the analysis.

Meta-regression

A weighted random-effects meta-regression using an unrestricted maximum likelihood model was performed to assess the association between the overall estimate of effect size with potential moderator variables, including dose and duration of supplementation with flaxseed.

Publication bias

Potential publication bias was explored using visual inspection of Begg’s funnel plot asymmetry, and Begg’s rank correlation and Egger’s weighted regression tests. The Duval and Tweedie “trim and fill” method was used to adjust the analysis for the effects of publication bias [20].

Results

Search results and trial flow

The initial screening comprised 587 full text articles, and we removed the articles with titles that were obviously irrelevant. Selected articles were hand searched to identify further relevant studies. Among 19 full text articles assessed for eligibility, two studies were excluded, being not controlled for flaxseed supplementation (Figure 1). After final assessment, 17 eligible trials achieved the inclusion criteria and were preferred for the final meta-analysis [7, 21–36].

Characteristics of included studies

In total, 1256 individuals were included to the meta-analysis, 639 participants were allocated to the flaxseed supplementation group and 617 to the control group. The number of participants in the analysed studies ranged from nine to 85 in the flaxseed group and from eight to 94 in the control group. The included studies were published between 2007 and 2015, and were conducted in the USA (n = 5), Brazil (n = 4), Canada (n = 3), China (n = 2), Greece, Denmark, and Iran. The following flaxseed supplementation was administered in the included trials: ground powder 13 g to 60 g/day (2.9 g to 10 g ALA/day), oil containing 1.022 g to 8 g ALA/day, and derived lignan complex 360 mg to 600 mg total SDG/day. Duration of flaxseed supplementation ranged between 2 weeks and 12 months. Ten trials were designed as a parallel group and seven as crossover studies. Table I shows the demographic characteristics and baseline pa-
Table 1. Demographic characteristics and baseline parameters of the studies selected for analysis

Parameter	Study	Location	Design	Duration of trial	Inclusion criteria
	Kontogianni et al [21]	Greece	Randomized, placebo-controlled crossover trial	6 weeks	Healthy, normal weight males and females aged 18–35 years
	Hutchinson et al [22]	USA	Randomized, placebo-controlled crossover trial	12 weeks	Overweight or obese men and women with pre-diabetes (impaired fasting glucose between 100 and 125 mg/dl)
	Zong et al [23]	China	Randomized, single-blind placebo-controlled crossover trial	12 weeks	Individuals screened for metabolic syndrome following low-intensive lifestyle counselling
	Barre et al [24]	Brazil	Randomized, double-blind placebo-controlled crossover trial	3 months	55 years of age, being renal failure who were undergoing chronic haemodialysis for at least one year, not on insulin or changing exercise patterns, and healthy aside from type 2 diabetes
	Lemos et al [25]	USA	Randomized, double-blind placebo-controlled crossover trial	12 months	Active males or females 18–65 years old with BMI > 40 kg/m², or > 35 kg/m² with comorbidities, plus hsCRP > 5 mg/l
	Rhe et al [26]	Brazil	Randomized, single-blind placebo-controlled crossover trial	12 weeks	Women with at least 6 years of amenorrhea in the year before entry into the study and a normal mammogram in the past 2 years
	Faunitch et al [27]	China	Randomized, double-blind placebo-controlled crossover trial	12 months	Obese glucose intolerant people
	Pan et al [28]	Canada	Randomized, double-blind placebo-controlled crossover trial	10 weeks	Men and post-menopausal women (defined as menopausal period for > 24 month)
	Dodin et al [29]	USA	Randomized, double-blind placebo-controlled crossover trial	6 weeks	Healthy postmenopausal (defined by an age > 45 years and a body mass index > 18.5 kg/m²)
	Bloodon et al [30]	Brazil	Randomized, double-blind placebo-controlled crossover trial	12 weeks	Healthy male and female volunteers
	Halland et al [31]	Canada	Randomized, double-blind placebo-controlled crossover trial	12 months	Healthy adult males and females 18–65 years, BMI > 40 kg/m², with dyslipidaemia (TG > 200 mg/dl and HDL-C < 40 mg/dl) aged between 23 and 77 years
	Kaul et al [32]	USA	Randomized, double-blind placebo-controlled crossover trial	8 weeks	Patients with biopsy-confirmed prostate carcinoma (TG > 200 mg/dl and HDL-C < 40 mg/dl) aged between 23 and 77 years
	Nelson et al [33]	Brazil	Randomized, single-blind placebo-controlled crossover trial	2 weeks	Healthy adult males and females 18–65 years, BMI > 40 kg/m², with dyslipidaemia (TG > 200 mg/dl and HDL-C < 40 mg/dl) aged between 23 and 77 years
	Faunitch et al [34]	Canada	Randomized, single-blind placebo-controlled crossover trial	42 days	Patients with biopsy-confirmed prostate carcinoma (TG > 200 mg/dl and HDL-C < 40 mg/dl) aged between 23 and 77 years
	Demark-Wahnefried et al [36]	USA	Randomized, single-blind placebo-controlled crossover trial	30 days	Patients with biopsy-confirmed prostate carcinoma (TG > 200 mg/dl and HDL-C < 40 mg/dl) aged between 23 and 77 years
	Khalatbari Soltani et al [6]	Iran	Randomized, single-blind placebo-controlled crossover trial	8 weeks	Patients with biopsy-confirmed prostate carcinoma (TG > 200 mg/dl and HDL-C < 40 mg/dl) aged between 23 and 77 years
Table I. Cont.

Parameter	Study
Flaxseed form	
Konto- gianni et al [21]	Huthins et al [22]
Zong et al [23]	Barre et al [24]
Lemos et al [25]	Rhe et al [26]
Faintuch et al [27]	Pan et al [28]
Dodin et al [29]	Bloedon et al [30]
Hallund et al [31]	Kaul et al [32]
Nelson et al [33]	Faintuch et al [34]
Cassani et al [35]	Demark-Wahnefried et al [36]
Khalatbari Soltani et al [6]	
Flaxseed intervention	
15 ml/day containing 8 g of ALA	4 capsules – 600 mg ALA/day
	4 capsules – 600 mg ALA/day
13 g ground flaxseed containing 2.9 g of ALA	2 capsules (2 capsules) – 360 mg ALA/day
26 g ground flaxseed containing 5.8 g of ALA	2 capsules (2 capsules) – 360 mg ALA/day
Participants:	
Case	
37	25
83	16
70	9
10	70
85	30
22	
Control	
90	
75	
8	
94	32
22	24
13	
41	
15	
Age [years]:	
Case	
25.6 ±5.9	58.6 ±6.3
48.9 ±8.1	66.2 ±1.7*
55.7 ±13.0	54.7 ±6.6
47.8 ±8.0*	62.9 ±7.5
54.0 ±4.0	56.8 ±7.3
61 ±7	
34.70 ±1.69*	
37.74 ±11.8	40.8 ±11.6
40.1 ±1.69	
50.2 ±7.0	54.0 ±4.0
59.3 ±7.6	
Control	
48.7 ±7.9	58.3 ±14.8
50.7 ±6.4*	55.4 ±4.5
57.0 ±8.0	32.93 ±1.99*
39.42 ±10.4	33 ±10
58.2 ±6.8	54.5 ±4.0
57.7 ±14.8	
58 ±3 ±10	58.1 ±2.8
52 ±3 ±10	58.2 ±2.8
60.2 ±7.0	54.0 ±4.0
59.3 ±7.6	
Male (%):	
Case	
21.62	44.0
56.6	NS
55.7	44.4
53.33	0.0
0.0	NS
21.0	17.7
100.0	100.0
66.6	
Control	
55.6	61.3
61.3	NS
46.87	0.0
NS	22.0
100.0	100.0
100.0	
BMI [kg/m²]:	
Case	
21.9 ±2.5	30.4 ±5.3
25.1 ±2.3	31.2 ±2.2*
25.1 ±3.47	32.4 ±8.2
44.0 ±3.9*	24.2 ±0.7
25.5 ±4.5	27.4 ±4.4
24.1 ±3.4	
28.32 ±0.46*	
29.31 ±4.27	47.1 ±7.2
32 ±3	
28.5 ±3.9	25.5 ±2.0*
28.5 ±4.5	
Control	
22.0 ±2.6	25.5 ±2.4
24.2 ±2.7	32.0 ±8.3
45.2 ±4.2*	24.4 ±0.7
26.8 ±4.6	28.1 ±5.1
28.77 ±0.78*	
30.23 ±4.14	47.2 ±7.2
32.1 ±2.8	28.8 ±4.0
27.0 ±1.0*	
A systematic review and meta-analysis of clinical trials investigating the effects of flaxseed supplementation on plasma C-reactive protein concentrations

Parameter Study

Parameter	Kontogianni et al. [21]	Hutchins et al. [22]	Zong et al. [23]	Barre et al. [24]	Lemos et al. [25]	Rhe et al. [26]	Faintuch et al. [27]	Pan et al. [28]	Dodin et al. [29]	Bloedon et al. [30]	Hallund et al. [31]	Kaul et al. [32]	Nelson et al. [33]	Faintuch et al. [34]	Cassani et al. [35]	Demark-Wahnefried et al. [36]	Khalatbari Soltani et al. [6]
hs-CRP (mg/l)																	
Case	0.45 ±0.47	3.0 ±3.2	2.4 ±1.1*	8.0	3.6 ±1.7	129 ±7.2*	167 ±0.19*	202 ±2.60	1.36	0.88	319 ±65*	2.40 ±2.39	13.7 ±9.9	2.04 ±1.48	1.4	4.8 ±0.9*	
Control	0.66 ±1.06	2.9 ±3.0	1.12	4.4	3.6 ±1.7	10.5 ±5.5*	142 ±0.19*	2.18 ±2.9	1.06	0.80	314 ±69*	2.79 ±1.80	11.8 ±8.2	2.76 ±2.45	1.5	4.0 ±0.6*	
SBP (mm Hg)																	
Case	NS	NS	134.4 ±17.0	133.6 ±4.8*	NS	126 ±10*	124 ±3	125.4 ±14.5	NS	124 ±13	NS	NS	NS	139 ±20.3	NS		
Control	NS	NS	134.5 ±14.5	135.8 ±4.3*	NS	138 ±25*	123 ±3	122.4 ±15.5	NS	NS	NS	134 ±9.2	NS	NS			
DBP (mm Hg)																	
Case	NS	NS	86.3 ±11.3	82.1 ±1.9*	NS	79 ±3*	79.2 ±10.7	79.7 ±9.4	NS	75 ±8	NS	NS	83 ±13.5	NS	NS		
Control	NS	NS	85.9 ±8.8	84.5 ±2.2*	NS	92 ±16*	79.3 ±10.3	77.7 ±9.4	NS	NS	NS	80 ±7.7	NS	NS			

Values are expressed as mean ± SD or median (range); *values are means ± SEM; **half of the daily amount was given as two slices of bread, which replaced the usual bread in the diet, and the other 20 g was provided as ground grains to add to cereal, juice, or yogurt, depending of the food preferences of the women; median (IQR); **median (95% CI); BMI – body mass index, NS – not stated, SBP – systolic blood pressure, DBP – diastolic blood pressure, hs-CRP – high-sensitivity C-reactive protein, BMI – body mass index, CHD – coronary heart disease, ALA – α-linolenic acid, SDG – secoisolariciresinol diglucoside, WC – waist circumference, HDL-C – low-density lipoprotein cholesterol, HDL-C – high-density lipoprotein cholesterol, TG – triglycerides.
rameters of the included studies. No adverse events related to the supplementation were reported.

Risk of bias assessment

An unclear risk of bias with respect to sequence generation and allocation concealment was observed. Some trials were not blinded, but studies were low risk in terms of other sources of bias. The systematic assessment of bias in the included studies is shown in Table II.

Effect of flaxseed supplementation on plasma CRP concentrations

Meta-analysis of data from 17 trials did not suggest a significant change in plasma CRP concentrations following supplementation with flaxseed-containing products (WMD: $-0.25\text{ mg/l}, 95\%\ CI: -0.53, 0.02, p = 0.074; Q = 46.33, I^2 = 61.15\%) (Figure 2 A). The effect size was robust in the leave-one-out sensitivity analysis (Figure 2 B). Subgroup analysis did not suggest any significant difference in terms of changing plasma CRP concentrations among different types of flaxseed supplements used in the included studies, i.e. flaxseed oil (WMD: $-0.67\text{ mg/l}, 95\%\ CI: -2.00, 0.65, p = 0.32; Q = 28.63, I^2 = 82.54\%) (Figure 3 A), lignan extract (WMD: $-0.32\text{ mg/l}, 95\%\ CI: -0.71, 0.06, p = 0.103; Q = 0.02, I^2 = 0\%) (Figure 3 B), and ground powder (WMD: $-0.18\text{ mg/l}, 95\%\ CI: -0.42, 0.06, p = 0.142; Q = 13.44, I^2 = 33.06\%) (Figure 3 C).

Table II. Assessment of risk of bias in the included studies using Cochrane criteria

Study	Sequence generation	Allocation concealment	Blinding of participants and personnel	Blinding of outcome assessment	Incomplete outcome data	Selective outcome reporting	Other potential threats to validity
Kontogianni et al. 2013 [21]	U	U	H	L	L	L	L
Hutchins et al. 2013 [22]	U	U	H	L	L	L	L
Zong et al. 2013 [23]	U	U	H	L	L	L	L
Barre et al. 2012 [24]	U	U	L	L	L	L	L
Lemos et al. 2012 [25]	U	U	L	L	L	L	L
Rhee et al. 2011 [26]	U	U	H	L	L	L	L
Faintuch et al. 2011 [27]	U	U	L	L	L	L	L
Pan et al. 2009 [28]	L	L	L	L	L	L	L
Dodin et al. 2008 [29]	L	L	L	L	L	L	L
Bloedon et al. 2008 [30]	U	U	L	L	L	L	L
Hallund et al. 2008 [31]	U	U	L	L	L	L	L
Kaul et al. 2008 [32]	L	L	L	L	L	L	L
Nelson et al. 2007 [33]	U	U	H	H	L	L	L
Faintuch et al. 2007 [34]	U	U	L	L	L	L	L
Cassani et al. 2015 [35]	U	U	U	L	L	L	L
Demark-Wahnefried et al. 2008 [36]	L	L	H	L	L	L	L
Khalatbari Soltani et al. 2013 [6]	U	U	H	U	L	L	L

L – low risk of bias, H – high risk of bias, U – unclear risk of bias.
A systematic review and meta-analysis of clinical trials investigating the effects of flaxseed supplementation on plasma C-reactive protein concentrations

Meta-regression

Meta-regression analysis was conducted to evaluate the association between changes in plasma CRP concentrations and potential confounders, including duration of supplementation with flaxseed and changes in plasma LDL-C concentrations. No significant association was found between changes in plasma CRP levels with either supplementation duration (slope: –0.001; 95% CI: –0.01 to 0.02; p = 0.864) or plasma LDL-C changes (slope: 0.07; 95% CI: 0.02 to 0.12; p = 0.005) (Figure 4).

Publication bias

Visual inspection of funnel plots suggested an asymmetry in the meta-analyses of flaxseed’s effects on plasma CRP concentrations. Using a “trim and fill” method six potentially missing studies were imputed on the right side of the funnel plot (Figure 5). However, the corrected effect size remained non-significant after imputation (WMD: –0.10 mg/l, 95% CI: –0.42, 0.22). The results of Egger’s linear regression (intercept = –0.86, standard error = 0.35; 95% CI: –1.59, –0.12, t = 2.44, df = 18, two-tailed p = 0.025) but not Begg’s rank correlation (Kendall’s τ with continuity correction = –0.19, z = 1.20, two-tailed p = 0.223) suggested publication bias in the meta-analysis.

Discussion

This meta-analysis did not suggest a significant change in plasma CRP concentrations following supplementation with flaxseed-containing products. Subgroup analysis also did not suggest any significant difference in terms of changing plasma CRP concentrations among different types of flaxseed supplements used in the included studies, i.e. flaxseed oil, lignan extract, and ground powder. A reason for these effects could be that flaxseed oil does not contain eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) fatty acids, while the presence of α-linolenic acid may not be sufficient for such beneficial effects [8]. Despite the fact that α-linolenic acid undergoes conversions...
to longer-chain n-3 polyunsaturated fatty acids or essential fatty acids such as EPA, docosapentaenoic acid (DPA), and DHA, the exact percentage of these conversions in the cells, plasma, and tissues are still not known [37]. The α-linolenic acid contained in flaxseed products was shown to inhibit the metabolisation of arachidonic acid to more inflammatory cytokines [38]. Furthermore, different factors such as smoking, gender, and high intake of long-chain n-3 polyunsaturated fatty acids were shown to affect the metabolic capacity of α-linolenic acid conversions [39, 40]. It has been shown that younger women have a greater capacity of conversion of α-linolenic acid to essential fatty acids than older women and men, due to having a hormonal profile more sensitive to diet [41]. This capacity of conversion of α-linolenic acid to essential fatty acids is even greater during the period of pregnancy and lactation.

Study name	Difference in means	Standard error	Variance	Lower limit	Upper limit	Z-value	P-value
Kontogianni et al., 2013	0.450	0.198	0.039	0.063	2.278	0.023	
Hutchins et al., 2013a	-0.700	1.113	1.238	-2.881	1.481	-0.629	0.529
Hutchins et al., 2013b	-1.500	1.078	1.162	-3.613	0.613	-1.391	0.164
Lemos et al., 2012	-5.930	1.264	1.598	-8.408	-3.452	-4.691	0.000
Vargas et al., 2013	0.700	1.155	1.335	-1.564	2.964	0.606	0.545
Kaul et al., 2008	1.190	1.561	2.436	-1.869	4.249	0.762	0.446
Nelson et al., 2007	0.230	0.677	0.458	-1.999	0.653	-0.994	0.320

Study name	Difference in means	Standard error	Variance	Lower limit	Upper limit	Z-value	P-value
Barre et al., 2012	-0.500	1.503	2.260	-3.446	2.446	-0.333	0.739
Pan et al., 2009	-0.310	0.308	0.095	-0.913	0.293	-1.008	0.314
Hallund et al., 2008	-0.325	0.199	0.040	-0.715	0.065	-1.631	0.103

Study name	Difference in means	Standard error	Variance	Lower limit	Upper limit	Z-value	P-value
Zong et al., 2013	0.000	0.032	0.001	-0.062	0.062	0.000	1.000
Rhee et al., 2011	-2.300	1.895	3.590	-6.014	1.414	-1.214	0.225
Faintuch et al., 2011	-10.400	15.285	233.632	-40.358	19.558	-0.680	0.496
Dodin et al., 2008	-0.900	0.265	0.070	-0.609	0.429	-0.340	0.734
Blooden et al., 2008	-0.440	0.297	0.088	-1.022	0.142	-1.482	0.138
Faintuch et al., 2007	-2.700	2.307	5.323	-7.222	1.822	-1.170	0.242
Cassani et al., 2015	-0.240	0.568	0.322	-1.353	0.873	-0.423	0.673
Demark-Wahnefried et al., 2008a	0.000	0.231	0.054	-0.453	0.453	0.000	1.000
Demark-Wahnefried et al., 2008b	-0.530	0.286	0.082	-1.090	0.030	-1.855	0.064
Khalatban Soltani et al., 2013	-3.400	1.612	2.599	-6.560	-0.240	-2.109	0.035
Faintuch et al., 2007	-2.700	2.307	5.323	-7.222	1.822	-1.170	0.242

Figure 3. Forest plot displaying weighted mean difference and 95% confidence intervals for the impact of flaxseed oil (A), lignan extract (B), and ground powder (C) on plasma C-reactive protein concentrations.

Figure 4. Meta-regression plots of the association between mean changes in plasma C-reactive protein concentrations with duration of supplementation and changes in plasma LDL-C concentrations.
A systematic review and meta-analysis of clinical trials investigating the effects of flaxseed supplementation on plasma C-reactive protein concentrations

[42]. Moreover, the beneficial effects of ω-linolenic acid derived from plant sources, which is less effective than omega-3 obtained from animal sources, might also influence the results on flaxseed supplements and products on plasma CRP levels.

Lignans, the precursors of enterodiol and enterolactone, are also important compounds found in flaxseed products converted by the microbial flora in the colon [8, 43]. The administration of the principal lignan of flaxseed, secoisolariciresinol diglucoside and its primary metabolites: secoisolariciresinol (SECO), enterodiol (ED), and enterolactone (EL), on male Wistar rats, showed short half-lives, a large volume of distribution, and a high systemic clearance [44]. These pharmacokinetics properties of lignans might also explain the lack of effects of flaxseed products on plasma CRP levels. Another potential reason may lie in the fact that the effects of fatty acids on inflammatory cells are modulated by changes in fatty acid composition of cell membranes, causing lipid raft production, changes of membrane fluidity, and modifications of gene expression and of the pattern of peptide and lipid mediator production [45–50].

The present meta-analysis has some limitations. There were only a few eligible RCTs, and most of them had a small number of participants with suitable short time of supplementation, and they were heterogeneous regarding the characteristics of patients and study design. Many characteristics that vary within studies, such as the type of flaxseed products, the background of the patients included, the control groups, or the quality of the studies, could have been factors of between-study heterogeneity. Our results showed that the significance of estimated pooled effect size was not biased by any single study.

In conclusion, this meta-analysis of available randomised controlled trials does not suggest any significant benefit of flaxseed product supplementation in decreasing plasma CRP concentrations. Larger, well-designed studies with higher doses and longer follow-up should be performed to validate the current results.

Acknowledgments

The meta-analysis was prepared within the Lipid and Blood Pressure Meta-Analysis Collaboration (LBPMC) Group (www.lbpmcgroup.umed.pl).

Conflict of interest

The authors declare no conflict of interest.

References

1. Goyal A, Sharma V, Upadhyay N, Gill S, Sihag M. Flax and flaxseed oil: an ancient medicine and modern functional food. J Food Sci Technol 2014; 51: 1633-53.
2. Shim YY, Gui B, Arnison PG, Wang Y, Reaney MJT. Flaxseed (Linum usitatissimum L) bioactive compounds and peptide nomenclature: a review. Trends Food Sci Technol 2014; 38: 5-20.
3. Zuravski L, Coelho RP, Duarte JA, et al. Protective role of golden flaxseed (Linum usitatissimum L) against oxidative damage in lipids and proteins of healthy volunteers. J Biosci Med 2015; 3: 45-53.
4. Edel AL, Rodriguez-Leyva D, Maddaford TG, et al. Dietary flaxseed independently lowers circulating cholesterol and lowers it beyond the effects of cholesterol-lowering medications alone in patients with peripheral artery disease. J Nutrition 2015; 145: 749-57.
5. Caligiuri SP, Edel AL, Aliani M, Pierce GN. Flaxseed for hypertension: implications for blood pressure regulation. Curr Hypertens Rep 2014; 16: 499.
6. Khalatbari Soltani S, Jamaluddin R, Tabibi H, et al. Effects of flaxseed consumption on systemic inflammation and serum lipid profile in hemodialysis patients with lipid abnormalities. Hemodial Int 2013; 17: 275-81.
7. Kaja E, Sharma A, Sood DR. Flaxseed – a potential functional food source. J Food Sci Technol 2015; 52: 1857-71.
8. Sahebkar A, Serban C, Uronson S, Banach M. Effect of garlic on plasma lipoprotein(a) concentrations: a systematic review and meta-analysis of randomized controlled clinical trials. Nutrition 2016; 32: 33-40.
9. Serban C, Sahebkar A, Antal D, Uronson S, Banach M. Effects of supplementation with green tea catechins on plasma C-reactive protein concentrations: a systematic review and meta-analysis of randomized controlled trials. Nutrition 2015; 31: 1061-71.
10. Serban MC, Sahebkar A, Dragan S, et al. A systematic review and meta-analysis of the impact of spirulina supplementation on plasma lipid concentrations. Clin Nutr 2016; 35: 842-51.
11. Prasad K. C-reactive protein (CRP)-lowering agents. Cardiovasc Drug Rev 2006; 24: 33-50.
12. Koenig W, Sund M, Fröhlich M, et al. C-reactive protein, a sensitive marker of inflammation, predicts future risk of coronary heart disease in initially healthy middle-aged men results from the MONICA (Monitoring Trends and Determinants in Cardiovascular Disease) Augsburg Cohort Study, 1984 to 1992. Circulation 1999; 99: 237-42.
13. Ridker PM, Hennekens CH, Buring JE, Rifai N. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med 2000; 342: 836-43.
14. Rhee Y, Brunt A. Flaxseed supplementation improved insulin resistance in obese glucose intolerant people: a randomized crossover design. Nutr J 2011; 10: 44.
15. Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews
and meta-analyses: the PRISMA statement. BMJ 2009; 339: b2535.
16. Green S. Cochrane handbook for systematic reviews of interventions version 5.1.0 [updated March 2011]. The Cochrane Collaboration 2011.
17. Borenstein M, et al. Comprehensive meta-analysis version 2. Englewood, NJ: Biostat, 2005; 104.
18. Wang X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol 2014; 14: 135.
19. Sutton AJ, Abrams KR, Jones DR, Sheldon TA, Song F. Methods for meta-analysis in medical research. John Wiley, New York 2000.
20. Duval S, Tweedie R. Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 2000; 56: 455-63.
21. Kontogianni MD, Vlassopoulos A, Gatzieva A, et al. Flaxseed oil does not affect inflammatory markers and lipid profile compared to olive oil, in young, healthy, normal weight adults. Metabolism 2013; 62: 684-93.
22. Hutchins AM, Brown BD, Cunnane SC, Domitrovich SG, Adamus EL, Wyslouzil CE. Daily flaxseed consumption improves glycemic control in obese men and women with pre-diabetes: a randomized study. Nutr Res 2013; 33: 367-75.
23. Zong G, Demark-Wahnefried W, Wu H, Lin X. Effects of flaxseed supplementation on erythrocyte fatty acids and multiple cardiometabolic biomarkers among Chinese with risk factors of metabolic syndrome. Eur J Nutr 2013; 52: 1547-51.
24. Barre DE, Mizier-Barre KA, Stemach E, et al. Flaxseed lignan complex administration in older human type 2 diabetics manages central obesity and prothrombosis – an invitation to further investigation into polypharmacy reduction. J Nutr Metabol 2012; 2012: S85170.
25. Lemos JR, Alencastro MG, Konrath AV, Cargnin M, Manfr RC. Flaxseed oil supplementation decreases C-reactive protein levels in chronic hemodialysis patients. Eur J Nutr 2013; 52: 1547-51.
26. Rhee Y, Brun T. A randomized crossover clinical trial of flaxseed supplementation improved insulin resistance in obese glucose intolerant people: a randomized crossover design. Nutr J 2011; 10: 44.
27. Faintuch J, Bortolotto LA, Marques PC, Faintuch JJ, Fernandes PC. Flaxseed supplementation with alpha-linolenic acid. Obes Surg 2007; 17: 341-7.
28. Cassani RS, Fassini PG, Silvah JH, Lima CM, Marchini JS. Impact of weight loss diet associated with flaxseed on inflammatory markers in men with cardiovascular risk factors: a clinical study. Nutr J 2015; 14: 1-8.
29. Demark-Wahnefried W, et al. Flaxseed supplementation (not dietary fat restriction) reduces prostate cancer proliferation rates in men presurgery. Cancer Epidemiol Biomarkers Prevent 2008; 17: 3577-87.
30. Burdge GC, Calder PC. Conversion of alpha-linolenic acid to longer-chain polyunsaturated fatty acids in human adults. Reprod Nutr Dev 2000; 45: 581-97.
31. Kontogianni MD, Vlassopoulos A, Gatzieva A, et al. Flaxseed oil does not affect inflammatory markers and lipid profile compared to olive oil, in young, healthy, normal weight adults. Metabolism 2013; 62: 684-93.
32. Hutchins AM, Brown BD, Cunnane SC, Domitrovich SG, Adamus EL, Wyslouzil CE. Daily flaxseed consumption improves glycemic control in obese men and women with pre-diabetes: a randomized study. Nutr Res 2013; 33: 367-75.
33. Zong G, Demark-Wahnefried W, Wu H, Lin X. Effects of flaxseed supplementation on erythrocyte fatty acids and multiple cardiometabolic biomarkers among Chinese with risk factors of metabolic syndrome. Eur J Nutr 2013; 52: 1547-51.
34. Barre DE, Mizier-Barre KA, Stemach E, et al. Flaxseed lignan complex administration in older human type 2 diabetics manages central obesity and prothrombosis – an invitation to further investigation into polypharmacy reduction. J Nutr Metabol 2012; 2012: S85170.
35. Lemos JR, Alencastro MG, Konrath AV, Cargnin M, Manfr RC. Flaxseed oil supplementation decreases C-reactive protein levels in chronic hemodialysis patients. Eur J Nutr 2013; 52: 1547-51.
36. Rhee Y, Brun T. A randomized crossover clinical trial of flaxseed supplementation improved insulin resistance in obese glucose intolerant people: a randomized crossover design. Nutr J 2011; 10: 44.
37. Faintuch J, Bortolotto LA, Marques PC, Faintuch JJ, França JI, Cecconello I. Systemic inflammation and carotid diameter in obese patients: pilot comparative study with flaxseed powder and cassava powder. Nutr Hosp 2011; 26: 208-13.
38. Pan A, Demark-Wahnefried W, Ye X, et al. Effects of a flaxseed-derived lignan supplement on C-reactive protein, IL-6 and retinol-binding protein 4 in type 2 diabetic patients. Br J Nutr 2009; 101: 1145-9.
39. Dodin S, Cunnane SC, Masse B, et al. Flaxseed on cardiovascular disease markers in healthy menopausal women: a randomized, double-blind, placebo-controlled trial. Nutrition 2008; 24: 23-30.
40. Bloedon LT, Balikai S, Chittams J, et al. Flaxseed and cardiovascular risk factors: results from a double blind, randomized, controlled clinical trial. J Am Coll Nutr 2008; 27: 65-74.
41. Hallund J, Tetens I, Bügel S, Holstrup T, Bruun JM. The effect of a lignan complex isolated from flaxseed on inflammation markers in healthy postmenopausal women. Nutr Metab Cardiovasc Dis 2008; 18: 497-502.
42. Kaul N, Kremli R, Austria JA, et al. A comparison of fish oil, flaxseed oil and hempseed oil supplementation on selected parameters of cardiovascular health in healthy volunteers. J Am Coll Nutr 2008; 27: 51-8.