It is proved that for every odd $n \geq 1039$ there are two words $u(x, y), v(x, y)$ of length $\leq 658n^2$ over the group alphabet $\{x, y\}$ of the free Burnside group $B(2, n)$, which generate a free Burnside subgroup of the group $B(2, n)$. This implies that for any finite subset S of the group $B(m, n)$ the inequality $|S_t| > 4 \cdot 2.9^{\frac{1}{658s^2}}$ holds, where s is the smallest odd divisor of n that satisfies the inequality $s \geq 1039$.

https://doi.org/10.46991/PYSU:A/2022.56.2.043

MSC2010: 20F50, 20F05.

Keywords: power of subset, product of subset, Burnside group.

Introduction. For an arbitrary finite subset S of a given group G, denote by S' the set of all possible products of the form $a_1 \cdots a_t$, where $a_i \in S$. In [1] it is proved that for an arbitrary finite subset of a free group not contained in any cyclic subgroup there exist constants $c, \delta > 0$ such that $|S'^3| > c|S|^{1+\delta}$. S. R. Safin [2] showed that there exist constants $c_n > 0$ such that for any finite subset S of a free group not contained in any cyclic subgroup the inequality $|S'| > c_t \cdot |S|^{(t+1)/2}$ holds for all positive integers t. Other interesting results on additive combinatorics can be found in [3, 4].

Our goal is the following theorem.

Theorem 1. For any finite symmetric subset S of a free Burnside group $B(m, n)$ and $t \geq 2$ the inequality $|S'^t| > 4 \cdot 2.9^{\frac{1}{658s^2}}$ holds, where s is the smallest odd divisor of n satisfying the inequality $s \geq 1039$.

Recall that a relatively free group of rank m in the variety of all groups, satisfying the identity $x^n = 1$, is denoted by $B(m, n)$ and is called a free periodic or free Burnside group of period n and rank m. More simply

$$B(m, n) = \langle a_1, a_2, \ldots, a_m; x^n = 1 \rangle.$$
Auxiliary Lemmas. Consider the words
\[w(x, y) = [x, yxy^{-1}] \]
and
\[W(x, y) = [w(x, y)^d, xw(x, y)^d]^{-1}, \]
where \(d = 191 \). Denote
\[u(x, y) = W(x, y)^{200}w(x, y)W(x, y)^{200}w(x, y)^2...W(x, y)^{200}w(x, y)^{n-1}W(x, y)^{200}, \]
\[v(x, y) = W(x, y)^{300}w(x, y)W(x, y)^{300}w(x, y)^2...W(x, y)^{300}w(x, y)^{n-1}W(x, y)^{300}. \]

Lemma 1. Let \(n \geq 665 \) be an arbitrary odd number. If \(a \) and \(b \) do not commute in \(B(m, n) \) and \(a^p \neq 1 \), then \(w(a^p, b) \neq 1 \).

Proof. Suppose that \(w(a^p, b) = [a^p, ba^p b^{-1}]^{B(m,n)} = 1 \). According to Theorem VI.3.1 [5], there exists an element \(z \) of order \(n \) and integers \(r \) and \(s \) such that \(a^p = z^r \) and \(ba^p b^{-1} = z^s \). From the equality \(b^r z^r b^{-1} = z^s \) it follows that \(b \) belongs to the normalizer of the subgroup \(\langle z^r \rangle_{B(m,n)} \). Hence, \(|\langle z^r, b \rangle_{B(m,n)}| \leq |\langle z^r \rangle| \cdot |\langle b \rangle| \leq n^2 \).

Any finite subgroup of \(B(m,n) \) is cyclic (see VII.1.8 [5]). So, the subgroup \(\langle z^r, b \rangle_{B(m,n)} = \langle a^p, b \rangle_{B(m,n)} \) is cyclic. In particular, \(b \) belongs in the centerizer of \(a^p \). By Theorem VI.3.2 [5] the centralizer of any non trivial element of \(B(m,n) \) is cyclic. Since the elements \(a \) and \(b \) belong to the centralizer \(a^p \), they lie in the same cyclic subgroup, and so commute.

The contradiction obtained proves Lemma 1.

Lemma 2. Let \(n \geq 1039 \) be an arbitrary odd number. If \(a \) and \(b \) do not commute in the group \(B(m, n) \) and \(a \) is conjugate to a power of some elementary period \(E \) of rank \(\gamma \), then for some \(p = 2^k \), where \(0 < k < 9 \), the element \(w(a^p, b) \) is conjugate to some elementary period \(E \) of rank \(\beta \geq \gamma + 1 \).

Proof. Let for some word \(T \) we have \(a = TE^r T^{-1} \) in \(B(m, n) \). Replacing \(E \) with \(E^{-1} \) if necessary, we can assume that \(1 \leq r \leq \frac{n-1}{2} \). Let us first show that for some \(186 \leq s \leq \frac{n+1}{2} - 148 \) and some integer \(0 \leq k \leq 9 \) we have the congruence
\[r \cdot 2^k \equiv s \pmod{n}. \]

Indeed, for \(186 \leq r \leq \frac{n+1}{2} - 148 \) one can choose \(k = 0 \), and if \(\frac{186}{2^k} \leq r \leq \frac{372}{2^k} \), where \(k = 1, \ldots, 8 \), then \(186 \leq r \cdot 2^k \leq 372 \leq \frac{n+1}{2} - 148 \) (since \(n \geq 1039 \)).

If \(\frac{n+1}{2} - 148 \leq r \leq \frac{n-1}{2} \), then \(1 \leq n-2r \leq 295 \leq \frac{n+1}{2} - 148 \) and we can use the previous reasoning (again replacing \(E \) with \(E^{-1} \)). Thus, for some \(p = 2^k, 0 \leq k \leq 9 \), we get \(a^p = TE^r T^{-1} = TE^r T^{-1} \), where \(186 \leq s \leq \frac{n+1}{2} - 148 \).

By Lemma 2.8 [6] the period \(E \) can be chosen minimizied, and by virtue of VI.2.4 and IV.3.12 [5] we can assume that \(T^{-1} b T \in \mathcal{M}_{\gamma} \cap \mathcal{M}_{\gamma+1} \). By Lemma 2, we have \(T^{-1} w(a^p, b) T \neq 1 \) in the group \(B(m, n) \), so \([E^r, T^{-1} bTE^r T^{-1} b^{-1} T] \neq 1 \), and
Then the words we have the qualities word are a basis of a free Burnside subgroup of rank 2 of the group B according to Lemma 7.2 [6].

Lemma 3. Let $n \geq 1003$ be an arbitrary odd number. Assume that a and b do not commute in the group $B(m,n)$, the element a is conjugate of the power of some elementary period E of rank γ, and for some p the element $w(a^p,b)$ is conjugate to some elementary period of rank $\beta \geq \gamma + 1$. Then $W(a^p,b) \neq 1$ in $B(m,n)$.

Proof. By the condition we have $a = TE'T^{-1}$ for some elementary period E of rank γ and $w(a^p,b) = UAU^{-1}$, where A is an elementary period of some rank $\beta > \gamma$. Suppose that $W(a^p,b) = [w(a^p,b)^d, a^pw(a^p,b)^d a^{-p}]_{B(m,n)} = 1$. Then by Theorem VI.3.1 [5], one can find an element c of order n and integers t and s such that $UA^d U^{-1} = c'$ and $a^p UA^d U^{-1} a^{-p} = c^t$. From here, as in Lemma 2, it follows that $(c', a^p)_{B(m,n)}$ is a cyclic group. Since the element c' has the order n (because the elementary period A has the order n and $(d, n) = 1$), it turns out that some power of the elementary period E of rank γ is conjugate of some power of elementary period A of rank $\beta \geq \gamma + 1$ in the group $B(m,n)$. This contradicts Lemma 6.6 [6]. Hence $W(a^p,b) \neq 1$ in $B(m,n)$.

Lemma 3 is proved.

A Theorem on Free Subgroups.

Theorem 2. If $n \geq 1039$ is an arbitrary odd number and a and b are two non commuting elements of the group $B(2,n)$, then for some $p = 2^k$, where $0 \leq k \leq 9$, the words $u(x,y)$ and $v(x,y)$ are defined by equalities (1) and (2).

Proof. The starting point for proving Theorem 2 is the following assertion, proved in [7] (see also [8,9]).

Lemma 4. Theorem [7]. Let the commutator $[A^d, Z^{-1} B^d Z]$ be equal to the elementary period C of rank α in the group $B(2,n)$, where A is the minimized elementary period of rank γ, B is the minimized elementary period of rank β, $Z \in \mathcal{M}_{\alpha - 1}$ ($\gamma \leq \beta \leq \alpha - 1$), $d = 191$ and $n \geq 1003$ are arbitrary odd numbers. Then the words

$$u_1 := C^{200} A^{200} A^2 \cdots A^n C^{200}$$

and

$$u_2 := C^{300} A^{300} A^2 \cdots A^n C^{300}$$

are a basis of a free Burnside subgroup of rank 2 of the group $B(2,n)$.

Proof. By VI.2.5 [5], the element a is conjugate of a power of some elementary period E of rank $\gamma \geq 1$ in the group $B(2,n)$. By Lemma 3, for some word U, for some $p = 2^k$, and for some elementary period A of rank $\beta > \gamma$ we have the qualities $w(a^p,b) = UAU^{-1}$ and $W(a^p,b) = [UA^d U^{-1}, a^p U A^d U^{-1} a^{-p}]$ in $B(2,n)$. By virtue of Lemma 2.8 [6], the period A can be considered to be minimized. By Lemma 3 $W(a^p,b) \neq 1$ in $B(2,n)$. By virtue of VI.2.4 and IV.3.12 [5], we can assume that $U^{-1} a^{pU} \in \mathcal{M}_{\beta} \cap \mathcal{M}_{\beta + 1}$. According to 3.2 [6], choose some reduced form G of the commutator $[A^d, (U^{-1} a^{pU}) A^d (U^{-1} a^{-p} U)]$, which, according to
Lemma 7.2 [6], is an elementary period of some rank $\delta \geq \beta + 1$. By virtue of relation (3.6) from [6], the commutator $[A^d, (U^{-1}a^pU)A^d(U^{-1}a^{-p}U)]$ and its reduced form G are related by equality $G^{B(m,n,\delta-1)} = t[A^d, U^{-1}a^pUA^dU^{-1}a^{-p}U]_{t^{-1}}$ for some $t \in \Theta(A, A_1)$ (see Definitions 2.3 and 3.1 [6]), where A_1 is a cyclic shift of the word A. It follows from II.3.5 and II.6.13 [5] that A_1 is also a minimized elementary period of rank γ, while VI.2.4 and IV.3.12 [5] for some $Z \in \mathcal{M}_{4-1} \cap \mathcal{A}_{\delta}$ we have $G = [A_1^d, ZA^dZ^{-1}]$, where $Z = tU^{-1}a^pU$. Applying Lemma 4, we conclude that the words

$$G^{200}A_1G^{200}A_1^2G^{200}A_1^{n-1}G^{200}$$

freely generate a free Burnside subgroup of rank 2 of the group $B(2,n)$. It remains to note that $U^{-1}A_1tU^{-1} = w(a^p, b), U^{-1}GtU^{-1} = W(a^p, b)$ in $B(2,n)$ and consequently we get

$$u(a^p, b) = (U^{-1})(G^{200}A_1G^{200}A_1^2G^{200}A_1^{n-1}G^{200})(U^{-1})^{-1},$$
$$v(a^p, b) = (U^{-1})(G^{300}A_1G^{300}A_1^2G^{300}A_1^{n-1}G^{300})(U^{-1})^{-1}.$$

Theorem 2 is proved.

Proof of Theorem 1. Let us proceed to the Proof of the Theorem 1. First, we estimate the word lengths $u(x, y)$ and $v(x, y)$, where

$$u(x, y) = W(x, y)^{200}w(x, y)W(x, y)^{200}w(x, y)^2...W(x, y)^{200}w(x, y)^{n-1}W(x, y)^{200},$$
$$v(x, y) = W(x, y)^{300}w(x, y)W(x, y)^{300}w(x, y)^2...W(x, y)^{300}w(x, y)^{n-1}W(x, y)^{300},$$

$$w(x, y) = [x, yxy^{-1}]$$

and

$$W(x, y) = [w(x, y)^d, xw(x, y)^dx^{-1}].$$

In this case, all words will be considered as positive words. Since $w(x, y) = xyy^{-1}x^{-1}y^{-1}$, then $|w(x, y)|_{\{x, y\}} = 4$ (via $|w(x, y)|_{\{x, y\}}$ denote the length of the word w in the group alphabet $\{x, y\}$). Similarly, for any positive words $A = A(x, y), B = B(x, y)$ we have $|w(A, B)|_{\{x, y\}} = 4(|A| + |B|)$. Consequently,

$$|w(a^p, b)|_{\{a, b\}} = 2(p + 1).$$

Further we have

$$|W(a^p, b)|_{\{a, b\}} = 4(2d(p + 1) + 1),$$

and

$$|u(a^p, b)|_{\{a, b\}} = 200n|W(a^p, b)|_{\{a, b\}} + \frac{n(n-1)}{2}|w(a^p, b)|_{\{a, b\}}.$$

Similarly,

$$|v(a^p, b)|_{\{a, b\}} = 300n|W(a^p, b)|_{\{a, b\}} + \frac{n(n-1)}{2}|w(a^p, b)|_{\{a, b\}}.$$

Taking into account the equalities (3), (4), we finally get:

$$|u(a^p, b)|_{\{a, b\}} = 200n(4d(p + 1) + 1) + \frac{n(n-1)}{2}(2p + 1),$$

(5)
\[|v(a^p, b)_{\{a,b\}}| = 300n(4d(p+1)+1) + \frac{n(n-1)}{2}2(p+1). \]
\[(6) \]

Since \(d = 191 \), \(n \geq 1039 \) and \(p \leq 2^9 \), from (5) and (6) it is easy to derive the following estimates:

\[|u(a^p, b)_{\{a,b\}}| \leq 513n^2 + 44^3, |v(a^p, b)_{\{a,b\}}| \leq 513n^2 + 48^3 \leq 658n^2. \]

Recall that, by virtue of Theorem 2, the words \(u(a^p, b), v(a^p, b) \) generate a free Burnside group of rank 2. By S. I. Adyan’s theorem, the group \(B(2,n) \) has exponential growth. More precisely, according to Theorem 2.15, Chap. VI [5] the set \(\{u,v\}^k \) contains \(\gamma(k) > 4 \cdot 2.9^{k-1} \) pairwise distinct elements. This means that the set \(S^t \), where \(t \geq 658s^2 \), contains \(\gamma \left(\left\lfloor \frac{t}{658s^2} \right\rfloor \right) \) pairwise distinct element, where \(s \) is the smallest odd divisor of \(n \), satisfying the inequality \(s \geq 1039 \). Thus,

\[|S^t| > 4 \cdot 2.9^{\frac{1}{s \ln s}}. \]

Theorem is proved.

\[\square \]

REFERENCES

1. Chang M.-Ch. Product Theorems in SL2 and SL3. *J. Inst. Math. Jussieu* 7 (2008), 1–25.
 https://doi.org/10.1017/S1474748007000126

2. Safin S.R. Powers of Subsets of Free Groups. *Mat. Sb.*, 202 (2011), 97–102.
 https://doi.org/10.4213/sm7811

3. Razborov A.A. A Product Theorem in Free Groups. *Ann. of Math.* 179 (2014), 405–429.
 https://doi.org/10.4007/annals.2014.179.2.1

4. Terence T., Van V. *Additive Combinatorics*. 105. In: Cambridge Studies in Advanced Mathematics. Cambridge, Cambridge University Press (2006).

5. Adian S.I. *The Burnside Problem and Identities in Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete.* 95. Berlin, Springer–Verlag (1979).

6. Adian S.I., Lysenok I.G. On Groups all of whose Proper Subgroups are Finite Cyclic. *Izv. Akad. Nauk SSSR. Ser. Mat.* 55 (1991), 933–990 (in Russian); *Izv. Math.* 39 (1992), 905–957 (in English).
 https://doi.org/10.1070/IM1992v039n02ABEH002232

7. Atabekian V.S. On Subgroups of Free Burnside Groups of Odd Period \(n \geq 1003 \).
 Izv. Ross. Akad. Nauk Ser. Mat. 73 (2009), 3–36 (in Russian); *Izv. Math.* 73 (2009), 861–892 (in English).
 https://doi.org/10.4213/im2633

8. Atabekian V.S. Uniform Nonamenability of Subgroups of Free Burnside Groups of Odd Period. *Mat. Zametki* 85 (2009), 516–523 (in Russian); *Math. Notes*, 85 (2009), 496–502 (in English).
 https://doi.org/10.1134/S0001434609030213
В. С. АТАБЕКЯН, А. Т. АСЛАНЯН, С. Т. АСЛАНЯН

СТЕПЕНЬ ПОДМНОЖЕСТВ СВОБОДНЫХ ПЕРИОДИЧЕСКИХ ГРУПП

Доказано, что для каждого нечетного $n \geq 1039$ существуют два слова $u(x,y), v(x,y)$ длины $\leq 2^{22}n^3$ над групповым алфавитом $\{x, y\}$ свободной бернсайдовой группы $B(2, n)$, порождающие свободную подгруппу группы $B(2, n)$. Отсюда следует, что для любого конечного подмножества S группы $B(m, n)$ выполняется неравенство $|S| > 4 \cdot 2.9^{\frac{2}{10s^3}}$, где s – наименьший нечетный делитель числа n, удовлетворяющий неравенству $s \geq 1039$.

9. Atabekian V.S. Monomorphisms of Free Burnside Groups. *Math. Notes* **86** (2009), 457–462.
https://https://doi.org/10.1134/S0001434609090211