FewCLUE: A Chinese Few-shot Learning Evaluation Benchmark

Liang Xu, Xiaojing Lu, Chenyang Yuan,
Xuanwei Zhang, HuiLin Xu, Hu Yuan, Guoao Wei, Xiang Pan,
Xin Tian, Libo Qin, Hai Hu
CLUE team
CLUE@CLUEbenchmarks.com

Abstract

Pretrained Language Models (PLMs) have achieved tremendous success in natural language understanding tasks. While different learning schemes—fine-tuning, zero-shot, and few-shot learning—have been widely explored and compared for languages such as English, there is comparatively little work in Chinese to fairly and comprehensively evaluate and compare these methods and thus hinders cumulative progress. In this paper, we introduce the Chinese Few-shot Learning Evaluation Benchmark (FewCLUE), the first comprehensive few-shot evaluation benchmark in Chinese. It includes nine tasks, ranging from single-sentence and sentence-pair classification tasks to machine reading comprehension tasks. We systematically evaluate five state-of-the-art (SOTA) few-shot learning methods (including PET, ADAPET, LM-BFF, P-tuning and EFL), and compare their performance with fine-tuning and zero-shot learning schemes on the newly constructed FewCLUE benchmark. Experimental results reveal that: 1) The effect of different few-shot learning methods is sensitive to the pre-trained model to which the methods are applied; 2) PET and P-tuning achieve the best overall performance with RoBERTa and ERNIE respectively. Our benchmark is used in the few-shot learning contest of NLPCC 2021. In addition, we provide a user-friendly toolkit, as well as an online leaderboard to help facilitate further progress on Chinese few-shot learning. We provide a baseline performance on different learning methods, a reference for future research.

1 Introduction

With the burst of pre-trained models (BERT (Devlin et al., 2019), RoBERTa (Liu et al., 2019) , ELECTRA (Clark et al., 2020), XLNet (Zhilin Yang, 2020) and the evolution of unified evaluation benchmarks (GLUE (Wang et al., 2018) and SuperGLUE (Wang et al., 2019)), the research of Natural Language Processing (NLP) has obtained significant breakthroughs. Recently, CLUE (Xu et al., 2020) is introduced to facilitate research of the Chinese NLP community, whose speakers account for one-fourth of the world’s population.

Though achieving remarkable success, most of the existing benchmarks rely on a considerable amount of labeled data, which is used for evaluating the model’s ability in the standard supervision setting. However, lots of high-quality human annotation can be costly and time-consuming. To address the issue, few-shot or zero-shot learning scheme (Brown et al., 2020; Gao et al., 2021; Schick and Schütze, 2021a,b; Liu et al., 2021) has gained increasing attention, which makes it possible to obtain considerable performance with only a handful of annotated training data. While the increasing attention it has received, progress on few-shot settings in Chinese NLP is still slow. One of the primary constraints is the lack of a unified benchmark for few-shot Chinese NLP, thus new methods cannot be easily compared and iteratively improved.

To address this problem and facilitate few-shot studies in the Chinese language, we introduce a few-shot Chinese Language Understanding Evaluation (FewCLUE) benchmark that consists of a collection of nine different natural language understanding tasks, including single-sentence classification task, sentence-pair classification task and machine reading comprehension tasks. In addition, we systematically evaluate five state-of-the-art models (PET (Schick and Schütze, 2021a), ADAPET (Tam et al., 2021), EFL (Wang et al., 2021), P-tuning (Liu et al., 2021) and EFL (Wang et al., 2021)) on our newly proposed benchmark. Experimental results reveal: 1) The effect of different few-shot learning methods is related to the pre-trained model; 2) PET/P-tuning achieves better performance than
In summary, our contribution is three-fold:

• To the best of our knowledge, we construct the first systematic and comprehensive Few-shot Chinese Language Understanding Evaluation benchmark and provide strong baselines and human evaluation. We believe the benchmark will facilitate the research on few-shot learning for Chinese NLU.

• We systematically evaluate and analyze various state-of-the-art few-shot models on our proposed unified benchmark. The empirical findings can shed a light on future research in Chinese few-shot learning. Our results show that there is no single few-shot learning method that outperforms others for all pre-trained language models that we experimented with. However, P-tuning and PET yield the best overall performance on the 9 tasks, when applied to RoBERTa and ERNIE respectively.

• We introduce a user-friendly toolkit, as well as an online leaderboard with an auto-evaluation system, supporting all our evaluation tasks and models, with which researchers can reproduce experimental results and compare the performance of different submitted models easily.

Our benchmark and code are available at https://github.com/CLUEbenchmark/FewCLUE.

2 Related Work

2.1 Few Shot Learning Benchmarks

In computer vision, few-shot benchmarks have been proposed to measure the few-shot learning ability of pretrained computer vision models and the related few-shot learning methods (Chen et al., 2019). In NLP, there are also some methods considering the few shot learning process and achieved some good performance in standard benchmark (Floridi and Chiriatti, 2020). FewGLUE (Schick and Schütze, 2021b), is a few-shot learning dataset, consisting of a random selection of 32 training examples from the SuperGLUE (Wang et al., 2019) training sets and up to 20,000 unlabeled examples for each SuperGLUE task. We observe that recent research generates their datasets from GLUE (Wang et al., 2018) or SuperGLUE (Wang et al., 2019), in a different way. The difference from the previous benchmark is that it is the first comprehensive few-shot learning evaluation benchmark in Chinese. Secondly, to the best of our knowledge, there is no such comprehensive few-shot learning evaluation benchmark in other languages. It not only includes a complete training set and verification set, but also multiple training-validation-test sets, evaluation can be more stable. Each task contains a large number of unlabeled samples. While investigating few-shot learning, unsupervised or semi-supervised learning can also be evaluated simultaneously. For better comparison, we also evaluate the performance of zero-shot learning and human. Furthermore, it contains an additional private test set, which can be used for fair evaluation on the leaderboard.

2.2 Few Shot Learning Methods

In this section, we briefly review current few-shot learning strategies for PLMs. We explain the implementation details in section 5.1 and section 5.2.

PET converts a task into a template-based cloze task (Schick and Schütze, 2021a,b). Compared with the direct fine-tuning of downstream tasks through BERT-based PLMs, PET produces considerable performance improvement in the few-shot scenario; for some tasks the performance increase can be as large as 10 points. While the templates in PET are manually constructed, researchers have also explored various ways of automated template-construction. For example, LMBFF (Gao et al., 2021) uses the generative model T5 (Raffel et al., 2020) to generate templates. P-tuning (Liu et al., 2021) builds continuous end-to-end templates which are not in the form of natural language. Furthermore, there are other works transforming tasks into natural language inference (EFL, Wang et al. (2021)). One of our goals in this paper is to systematically compare the performance of these methods.

3 Dataset Construction

3.1 Task Selection

The goal of FewCLUE is to provide a reliable evaluation for few-shot learning, discover the challenges, and provide a basis for further research in Chinese by creating such a systematic and comprehensive benchmark. The benchmark aims to investigate the NLU capabilities using a variety of tasks, e.g., text classification, natural language inference, text similarity, reading comprehension, etc. These tasks
can be generalized into single-sentence, sentence-pair, and general reading comprehension tasks. To ensure the quality and coverage of the language understanding tasks, we select tasks using the following criteria:

Representative Tasks should reflect real-world settings, e.g., classification with many labels, samples from real text data.

Challenging and discriminative We expect the tasks to be challenging, showing the gap between human and machines. Moreover, the benchmark ought to better discriminate the performance of different models, resulting in more discrete results on the leaderboard.

Consistent We expect that the results of the same model on different train/dev splits to be consistent.

3.2 Building the Benchmark

In order for our FewCLUE benchmark to maximally satisfy the needs of the NLP community, we first sent out a public survey to collect opinions and suggestions on the benchmark.

Public survey The feedback we received include: 1) tasks should be diverse, including single-sentence, sentence-pair classification, and machine comprehension tasks; 2) Each dataset typically contains 16 or 32 samples per class; 3) Each task include enough unlabelled samples for research in zero-shot and semi-supervised learning; etc. The benchmark is built to satisfy these features.

Next, we picked 6 tasks from the CLUE (Xu et al., 2020) benchmark, and then added 3 new tasks. See Table 1 for detailed descriptions.

Data sampling: we adopt multiple sampling strategies to generate samples from original datasets to reflect real scenarios. Specifically, we collect 32 samples for tasks with \(n_{label} \leq 3 \). Five tasks fall into this category: EPRSTMT, OC-NLI, BUSTM, CSL and CLUEWSC. For tasks where \(3 < n_{label} \leq 20 \), we sample 16 samples per class; TNEWS falls into this category. For tasks where \(n_{label} > 20 \) we sample 8 samples per class; CSLDCP and IFLYTEK fall into this category. For CHID, since each sample has 7 candidate idiom and the correct answer can appear at any position (1st to 7th), we collect 6 samples for each position where the correct answer locates (7 positions, \(6 \times 7 = 42 \) samples in total).

Multiple training/validation splits: since training on small datasets might lead to fluctuating results, we provide multiple training/validation splits to alleviate the issue and make our benchmark more robust. Participants should train and evaluate each split and submit their results on the unique private test set.

Public test set: each task comes with a public test set, on which people can conduct experiments and publish results for research purposes.

Unlabeled data: up to 20k unlabeled samples are also provided in each task for potential research in unsupervised and semi-supervised learning.

Overall, we create a comprehensive Chinese few-shot benchmark containing nine tasks, including single-sentence, sentence-pair, and machine reading comprehension tasks. We adopt different sampling methods to reflect the real-world setting while maintaining the few-shot characteristic. Also, we provide multiple training and validation sets for each task to ensure the benchmark’s robustness and release an additional public test set for further research. Finally, we release a large number of unlabeled samples for unsupervised and semi-supervised learning. The details of each task in FewCLUE are shown in Table 1

4 Tasks

The following sections will briefly introduce the nine tasks in FewCLUE.

4.1 Single Sentence Tasks

EPRSTMT (E-commerce Product Review Dataset for Sentiment Analysis), also known as EPR-sentiment, is a binary sentiment analysis dataset based on product reviews on e-commerce platform. Each sample is labelled as Positive or Negative. It collect by ICIP Lab of Beijing Normal University. We filtered, test and re-organized it to make it suitable for FewCLUE.

CSLDCP (Chinese Science Literature discipline Classification) is a text classification dataset including abstracts from a variety of Chinese scientific papers, with 13 scientific disciplines(field), and each discipline contains multiple categories. These papers belong to domains ranging from social science to natural science, including 67 categories, e.g., “口腔医学” (Oral medicine), “社会学” (Sociology) and “机械工程” (Mechanical engineering).
Table 1: Task descriptions and statistics.

Single Sentence Tasks

Corpus	Train	Dev	Test Pub	Test Priv	N Labels	Unlabeled	Task	Metric	Source
EPRSTMT	32	32	610	753	2	19565	SntmntAnalysis	Acc	E-CommerceReview
CSLDCP	536	536	1784	2999	67	18111	LongTextClassify	Acc	AcademicCNKI
TNEWS	240	240	2010	1500	15	20000	ShortTextClassify	Acc	NewsTitle
IFLYTEK	928	690	1749	2279	119	7558	LongTextClassify	Acc	AppDesc

Sentence Pair Tasks

Corpus	Train	Dev	Test Pub	Test Priv	N Labels	Unlabeled	Task	Metric	Source
OCNLI	32	32	2520	3000	3	20000	NLI	Acc	5Genres
BUSTM	32	32	1772	2000	2	4251	SemanticSmlarty	Acc	AIVirtualAssistant

Reading Comprehension

Corpus	Train	Dev	Test Pub	Test Priv	N Labels	Unlabeled	Task	Metric	Source
CHID	42	42	2002	2000	7	7585	MultipleChoice.idiom	Acc	Novel.EssayNews
CSL	32	32	2828	3000	2	19841	KeywordRecognn	Acc	AcademicCNKI
CLUEWSC	32	32	976	290	2	0	CorefResolution	Acc	ChineseFictionBooks

TNEWS TouTiao Text Classification for News Titles (Xu et al., 2020) consists of Chinese news published by TouTiao before May 2018, with a total of 73,360 titles. Each title is labeled with one of 15 news categories (finance, technology, sports, etc.) and the task is to predict which category the title belongs to. To make the dataset more discriminative, we use cross-validation to filter out some of the easy examples (see Section D Dataset Filtering in the Appendix for details). We then randomly shuffle and split the whole dataset into a training set, development set and test set.

IFLYTEK IFLYTEK (IFLYTEK CO., 2019) contains 17,332 app descriptions. The task is to assign each description into one of 119 categories, such as food, car rental, education, etc. A data filtering technique similar to the one used for the TNEWS dataset has been applied.

4.2 Sentence Pair Tasks

OCNLI Original Chinese Natural Language Inference (OCNLI, Hu et al. (2020)) is collected closely following procedures of MNLI (Williams et al., 2018). OCNLI is composed of inference pairs from five genres: news, government, fiction, TV transcripts and Telephone transcripts, where the premises are collected from Chinese sources, and universities students in language majors are hired to write the hypotheses. The annotator agreement is on par with MNLI. We believe the non-translation nature of OCNLI makes it more suitable than XNLI (Conneau et al., 2018) as an NLU task specific for Chinese.

BUSTM (XiaoBu Dialogue Short Text Matching) (of OPPO XiaoBu, 2021) is a dataset provided by XiaoBu Assistant (Breeno), voice assistance produced by OPPO for its smartphones and IoT devices. The dataset comes from the data used to train XiaoBu on intent recognition through short text matching and mainly consists of colloquial sentence pairs.

4.3 Machine Reading Comprehension

We group these tasks as reading comprehension tasks. These tasks provide context information, and then the machine is asked to understand it accordingly. Thus, tasks can be format as: given the context(and other information), is the word appropriate in the context?

ChID ChID (Zheng et al., 2019) is a large-scale Chinese IDiom cloze test dataset, which covered from news, novels, and essays. The candidate pool contains 3,848 Chinese idioms. For each blank in the passage, there are ten candidate idioms with one golden option, several similar idioms, and others are randomly chosen from the dictionary.

CSL Chinese Scientific Literature dataset contains Chinese paper abstracts and their keywords from core journals of China, covering multiple fields of natural sciences and social sciences. We generate fake keywords through tf-idf and mix them with real keywords. Given an abstract and some keywords, the task is to tell whether the keywords are all original keywords of a paper. It mainly evaluates the ability of models to judge whether keywords can summarize the document.

CLUEWSC2020 The Chinese Winograd Schema Challenge dataset is an anaphora/coreference resolution task where
the model is asked to decide whether a pronoun and a noun (phrase) in a sentence co-refer (binary classification), built following similar datasets in English (e.g., Levesque et al. (2012) and Wang et al. (2019)). Sentences in the dataset are hand-picked from 36 contemporary literary works in Chinese. Their anaphora relations are then hand-annotated by linguists.

For examples of each task, see Table 2.

5 Experiments

5.1 Baseline models

1. BERT/RoBERTa fine-tuning: fine-tuning pre-trained models with downstream tasks is a commonly used paradigm in NLU (Devlin et al., 2019; Liu et al., 2019). This baseline takes pre-trained BERT/RoBERTa and fine-tunes it on eachFewCLUE task.

2. Exploiting cloze questions: Since most BERT-style PLMs are pre-trained with a cloze-test (also referred to as ‘masked language modeling’, Taylor (1953)) objective, several methods have been proposed to exploit the cloze question format, where the task of the model is to correctly predict the [MASK]. We experiment with two such methods.

(a) PET (Pattern Exploiting Training) is a semi-supervised training scheme that reformulates the downstream task into cloze questions (Schick and Schütze, 2021b,a). Such a method includes two steps. The first step reformulates the input sentence into a cloze-style phrase containing a portion of masked tokens. For example, in text classification the input can be “这个手机壳很不错” (“This is a nice phone case”), and it’ll be reformulated into “这个手机壳很不错。我觉得[MASK]好” (“This is a nice phone case. I think it’s [MASK] good”). Here “[MASK]” is the position where the model needs to fill in to complete the classification; the second step maps the label into a single token. E.g., for sentiment classification, labels POSITIVE and NEGATIVE can mapped to the word “very”(“很”) and “not”(”不”) . It is not unique to map a label to a word. Many choices exist. Finally, supervised training is performed on the dataset by using cross-entropy loss.

(b) ADAPET is an improved PET model which involves more supervised signals (Tam et al., 2021). It proposes two improvements over the original PET method:

(1) Decoupling Label Losses: when predicting labels in the “[MASK]” position, the model calculates the probabilities of all tokens in the vocabulary(not only the token that in candidate label) and chooses the highest-probability token as predicted label.

(2) Label Conditioning: original tokens in the sentence are randomly masked, and the model tries to predict the original token based on the label. In other words, in PET the model predicts the correct label based on the input; but reversely, ADAPET predicts the correct input having the label. More specifically, given a constructed pattern with the correct label, the model is asked to predict the original token and calculate the loss; if the label is wrong, it will not calculate loss.

3. Automatic Template Construction

(a) LM-BFF (Gao et al., 2021) is a method that explores automatic prompt generation. It utilizes a generative model T5 (Raffel et al., 2020) to automatically generate prompts for cloze questions, including template generation and label word generation, and evaluate the generated candidates based on the validation set. In addition, LM-BFF incorporates demonstrations during training to help the model better distinguish samples.

(b) P-tuning (Liu et al., 2021) The above methods all restrict the generated templates to be natural language. P-tuning discards this assumption and proposes to learn the optimal templates by using the unused tokens in a model’s vocabulary. Only embeddings corresponding to the template tokens will be updated during training, further speeding up the training process. Models of the GPT family can also achieve good results using P-tuning.

4. EFL (Wang et al., 2021) Unlike cloze-question-based models like PET and LM-BFF,
sentence: 外包装上有点磨损，试听后感觉不错

label: positive

sentence: The packaging is showing some wear but after listening it feels good.

sentence: 通过几年的观察和实践，初步掌握了盆栽菊花的栽培技术及方法，并进行了总结，以满足人们对花卉的需求，提高观赏植物的商品价值，为产业化生产的盆菊提供技术指导。

sentence: After years of observation and practice, to learn and summarize the basic techniques and methods for planting the Chrysanthemum, in order to satisfy people's needs for the flowers, to increase the value of ornamental plants, and to provide technical guidance to companies on growing the Chrysanthemum.

label: horticulture

sentence: 如果我的世界下架了，你会玩迷你世界吗？

label: 116(news_game)

sentence: If Minecraft is gone, will you play miniworld?

sentence: 《钢铁英雄》是一款角色扮演类游戏。游戏拥有 带领他们逃出去。修复部分小错误，提升整体稳定性。

sentence: "Heroes of Steel" is a role-playing game. The game has all four heroes are imprisoned and you will lead them out, repair part small Errors to improve overall stability.

label: 22(Strategy)

sentence: 这时候躺在床上枕头旁边的手机响了，我感到奇怪，因为欠费已被停机两个月，现在它突然响了。

sentence: At this moment, the cellphone on the bed next to the pillow rang. I feel this is quite strange because the cellphone plan was terminated two months ago since I did not pay the bill. Now it was ringing all of a sudden.

label: true

abst: 不同阶段电子数据的操作都会留下表现各异的轨迹，从操作系统、计算机应用系统 分析审计电子数据轨迹在计算机系统中表现形式，可以为审计人员提供有效的审计方法

keyword: ["计算机审计", "数据轨迹", "日志文件"]

abst: The operation of electronic data in different stages will leave different traces. From operating system, computer application system provide effective audit methods for auditors by analyzing the expression of audit electronic data trace in computer system.

keyword: ["computer audit", "data trace", "log file"]

label: 0(false)

sentence1: 女孩子到底是不是你 sentence2: 你不是女孩子吗

sentence1 (en): Are you a girl or not? sentence2 (en): Aren’t you a girl?

label: paraphrase

premise: 但是不光是中国,日本,整个东亚文化都有这个特点就是被权力影响很深 hypothesis: 有超过两个东亚国家有这个特点。

premise (en): But not only China and Japan, the entire East Asian culture has this feature, that is it is deeply influenced by the power.

hypothesis (en): More than two East Asian countries have this feature.

label: entailment

content: 中国青年报：篮协改革联席会#idiom#

candidates: ["急功近利", "画蛇添足", "本末倒置"](answer)

content (en): China Youth Daily: Chinese Basketball Association should not #idiom# when reforming the league candidates (en): ["seeking instant benefit", "to overdo it", "take the branch for the root"](answer)

Table 2: Development set examples from the tasks in FewCLUE. Bold text represents part of the example format for each task. Chinese text is part of the model input, and the corresponding text in italics is the English version translated from that. Underlined text is specially marked in the input. Text in a monospaced font represents the expected model output.
Entailment as Few-shot Learners (EFL) re-formulates the fine-tuning task into textual entailment and designs fine-grained textual descriptions for the labels. A basic model is obtained through training on a textual entailment dataset before fine-tuning on downstream tasks. For English, MNLI (Williams et al., 2018) can be used to train the model. For us, we use the machine translated version of MNLI—CMNLI (Xu et al., 2020).

5. Zero-shot learning We also adopt a standard scheme for zero-shot learning with RoBERTa and GPT3 (Brown et al., 2020). Similar to PET, a prompt with masked tokens is constructed, then the model is required to predict label words at the masked position and choose the label with the highest probabilities. The difference between RoBERTa and GPT in such a scheme is that RoBERTa’s prompt can be masked in any position, while GPT can only be masked in the last position.

5.2 Implementation Details

Our default baseline model, RoBERTa, is implemented using RoBERTa-wwm-ext (Cui et al., 2020)². It has outstanding performance on CLUE benchmark, wide usage, and moderate size, which can be trained using around 11 GB of GPU memory. GPT model is implemented using NEZHA-Gen (Wei et al., 2019)³. We also evaluate our benchmark on ERNIE1.0(Sun et al., 2019) to verify the benchmark.

PET For PET, we use RoBERTa and ERNIE1.0 two pre-trained models, and design specific templates for each task (see our FewCLUE Github repository⁴ and PaddleNLP Few-Shot-Learning⁵ Github repository for the templates). It is noteworthy that since the input format of CHID is already cloze-style, its training using PET becomes equivalent to zero-shot learning.

P-tuning For P-tuning, our model is based on this implementation⁶, with random masks on original tokens, nine prompt tokens and LSTM layers removed. We implement P-tuning method with RoBERTa, GPT and ERNIE1.0 and implement zero-shot method with both RoBERTa and GPT.

EFL For EFL, we first fine-tune the model on Chinese textual entailment task CMNLI to obtain the base model. Then, different templates are used to reformulate each task into a textual entailment task and perform downstream fine-tuning.

LM-BFF In LM-BFF, auto-T strategy is used for prompt generation, i.e., automatic template generation combined with predefined label word mapping, as described in the original paper. A smaller beam width (30) and Chinese T5 models provided by UER⁷ (Zhao et al., 2019) are used to shorten the time for template generation and evaluation due to resource limit. BERT is used for fine-tuning and other hyper-parameters are the same as the original implementation. Demonstrations are not adopted since preliminary experiment shows a worse result.

ADAPET For ADAPET, we also design different Chinese templates to adapt to each task. Model is trained for 1k steps, with batch size 16, learning rate 1e-5. Other hyper-parameters follow the original paper.

For more details of our implementation such as the hyper-parameters for each method, please refer to our Github repository.⁸

6 Benchmark Results

6.1 Human Performance

We take human performance for those tasks available in CLUE benchmark. And for the three new tasks, human evaluation is performed in the same way as CLUE: We follow procedures in SuperGLUE (Wang et al., 2019) to train the annotators before asking them to work on the test data. Specifically, each annotator is asked to annotate 30 to 50 pieces of data from the development set, and then compare their answers with the ground truth label. Then they are encouraged to discuss their answers with other annotators until they are confident with the task. Finally each annotator annotate 100 pieces of test data, which is used to compute the final human performance.

According to the experiment result, human achieves a final score of 82.40%, and over 80%
in 6 out of 9 tasks. Human performance is especially high for CLUEWSC, reaching nearly 98% of accuracy. However, humans are not satisfying in tasks containing numerous classes, e.g., about 60% accuracy in IFLYTEK (119 classes) and CSLDCP (67 classes).

6.2 Model Performance and Analysis

The overall results are shown in Table 3. Our discoveries are summarized as follows.

Model potentials: The best model with the highest overall score (59.91) is far lower than human performance (82.50), nearly 23 points lower, which shows that few-shot learning still have huge potentials.

New learning paradigm: recently proposed few-shot learning methods show a remarkable improvement compared to traditional fine-tuning. For example, with the same pre-trained model, PET is about 18 points higher than fine-tuning. Especially in EPSTMT, PET is 24% higher, while zero-shot learning is also 21% higher than fine-tuning. The reason might be the insufficient training on significant trainable parameters during fine-tuning using very limited samples. Besides, PET, P-tuning and the zero-shot method are also substantially better than fine-tuning on CHID. It might because CHID is natively suitable for cloze-style learning methods.

Comparing few-shot learning methods: We have implemented five few-shot learning methods, including PET, ADAPET, LM-BFF, Ptuning, EFL. The first four methods transformed the task to Cloze task, the last one transforming the task to natural language inference. Among the first four methods, ADAPET and Ptuning, try to find template automatically, but in a different way. PET achieves better results than other methods. P-tuningG, stands for P-tuning using a generated-based model, it performs the worst in our experiment. EFL achieves quite good results for natural language inference tasks, OCNLI and BUSTM, but performs poorly on CHID, a machine learning comprehension task.

Comparison of different pre-trained models on few-shot learning methods: We compared the effects of RoBERTa and ERNIE1.0 on the 3 few-shot learning methods of PET, P-tuning and EFL. As shown in Table 2: The pre-training model has a great influence on the different FewCLUE tasks. For example, For the PET method, the effect of ERNIE1.0 on the tasks of EPSTMT, OCNLI and CHID is obviously worse than that of RoBERTa, and the effect on the tasks of CSLDCP, TNEWS and IFLYTEK is obviously better than that of RoBERTa. for the EFL method, the effect of ERNIE1.0 on EPSTMT, OCNLI, BUSTM and CSL tasks is significantly worse than that of RoBERTa, and the effect on CSLDCP, TNEWS and IFLYTEK tasks is obviously better than RoBERTa. Overall, the average effect of RoBERTa on the three methods of PET, P-Tuning, and EFL is better than that of ERNIE1.0. In terms of specific tasks, the two pre-training models have their own results.

Zero-shot learning capability: zero-shot learning methods have obtained good results in some tasks without any training data. For example, in IFLYTEK, zero-shot models achieve an accuracy of 27.7%, which is only 5% lower than the fine-tuning model, while random guessing has only 1% accuracy. Similar discoveries also show up in CSLDCP. The improvement on single-sentence tasks is more significant than sentence-pair tasks. It might be because most of the models’ knowledge still comes from pre-training phase, and the input of single-sentence tasks is more similar to what they have seen in the pre-training corpus. However, for sentence-pair and reading comprehension tasks, the input’s consistency is likely to be damaged whether using manual or auto-generated templates, which leads to less improvement.

Learning instability for single train/dev set: we discover that there is a severe fluctuation among the results produced by different training sets. Also, models that achieve the best validation result do not necessarily lead to the best test result. We assume that this is because the training and validation splits are too small to represent the overall distribution of the whole dataset. To show this phenomenon, we perform three comparison experiments based on PET and TNEWS datasets. For each experiment, training and validation sets are randomly sampled again from the full dataset, while test set is the same as above.

1. 20 samples/class, training/validation ratio 1:1.
2. 20 samples/class, training/validation ratio 1:3.
3. 7 samples/class, training/validation ratio 1:1.

Three experiments obtain the accuracy of 50.8%, 51.2%, 50.0% using the best validation model,
Table 3: Main results of different learning mechanisms on FewCLUE. Single sentence task: EPRSTMT, CSLDCP, TNEWS and IFLYTEK. Sentence-pair task: BUSTM, OCNLI. MRC task: CHID, WSC, CSL. Majority: majority class. B, R and G stands for BERT, RoBERTa and GPT series models respectively. MRC: Machine reading comprehension requires a machine to answer questions based on a given context. As these tasks all have context, so that can be regarded as MRC tasks.

which are sub-optimal compared with 53.7%. We also discover that validation results for exp. 2 have higher variance than exp. 1 and 3. It shows that accuracies are quite unstable using a single validation set, and it is also hard to obtain the best testing accuracy. Therefore, how to improve the stability of few-shot learning is a valuable research topic in the future.

6.3 Task Analysis

We have found that in few-shot learning, the difficulties of tasks for humans and models are substantially different. On the one hand, tasks like coreference resolution WSC are extremely easy for humans (98%), but it is hard for models to perform, which is no different from random guessing (∼50%); However, in some other tasks, the gap is much smaller. For CSLDCP, a task with 67 labels, humans only archive an accuracy of 68%, which is relatively low compared to other tasks, while PET’s results are only 16 points lower. Thus, we can anticipate that few-shot models still have space to progress.

7 Related Work

7.1 Few Shot Learning Benchmarks

In computer vision, few-shot benchmarks have been proposed to measure the few-shot learning ability of pretrained computer vision models and the related few-shot learning methods (Chen et al., 2019). FewGLUE (Schick and Schütze, 2021b), is a few-shot learning dataset, consisting of a random selection of 32 training examples from the SuperGLUE (Wang et al., 2019) training sets and up to 20,000 unlabeled examples for each SuperGLUE task. We observe that recent research generates their datasets from GLUE (Wang et al., 2018) or SuperGLUE (Wang et al., 2019), in a different way.

The difference from the previous benchmark is that it is the first comprehensive few-shot learning evaluation benchmark in Chinese. Secondly, to be the best of our knowledge, there is no such comprehensive few-shot learning evaluation benchmark in other languages. It not only includes a complete training set and verification set, but also multiple training-validation-test sets, evaluation can be more stable. Each task contains a large number of unlabeled samples. While investigating few-shot learning, unsupervised or semi-supervised learning can also be evaluated simultaneously. For better comparison, we also evaluate the performance of zero-shot learning and human. Furthermore, it contains an additional private test set, which can be used for fair evaluation on the leaderboard.

7.2 Few Shot Learning Methods

In this section, we briefly review current few-shot learning strategies for PLMs. We explain the implementation details in section 5.1 and section 5.2. PET converts a task into a template-based cloze task (Schick and Schütze, 2021a,b). Compared with the direct fine-tuning of downstream tasks through BERT-based PLMs, PET produces considerable performance improvement in the few-
shot scenario; for some tasks the performance increase can be as large as 10 points. While the templates in PET are manually constructed, researchers have also explored various ways of automated template-construction. For example, LM-BFF (Gao et al., 2021) uses the generative model T5 (Raffel et al., 2020) to generate templates. Ptuning (Liu et al., 2021) builds continuous end-to-end templates which are not in the form of natural language. Furthermore, there are other works transforming tasks into natural language inference (EFL, Wang et al. (2021)). One of our goals in this paper is to systematically compare the performance of these methods.

8 Conclusion

In this paper, we introduced FewCLUE, the first systematic and comprehensive few-shot learning benchmark in Chinese. Our benchmark consists of nine tasks, including single-sentence, multi-sentence, and machine reading comprehension tasks. We make the first attempt to conduct a fair and comprehensive experiment across five state-of-the-art few-shot learning models on our newly proposed benchmarks. In addition, we release all code and benchmarks to facilitate future benchmarking, research, and model development.

References

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. 2020. Language models are few-shot learners. In Association for Computational Linguistics (ACL).

Hector Levesque, Ernest Davis, and Leora Morgenstern. 2012. The winograd schema challenge. In Thirteenth International Conference on the Principles of Knowledge Representation and Reasoning.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhilin Yang, and Jie Tang. 2021. Gpt understands, too. arXiv preprint arXiv:2103.10385.

Luciano Floridi and Massimo Chiriatti. 2020. Gpt-3: Its nature, scope, limits, and consequences. Minds and Machines, 30(4):681–694.

Wei-Yu Chen, Yu-Chiang Frank Wang, Yen-Cheng Liu, Zsolt Kira, and Jia-Bin Huang. 2019. A CLOSER LOOK AT FEW-SHOT CLASSIFICATION. page 16.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and Christopher D. Manning. 2020. Pre-training transformers as energy-based cloze models. In EMNLP.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. 2020. Language models are few-shot learners. In Association for Computational Linguistics (ACL).

Hector Levesque, Ernest Davis, and Leora Morgenstern. 2012. The winograd schema challenge. In Thirteenth International Conference on the Principles of Knowledge Representation and Reasoning.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhilin Yang, and Jie Tang. 2021. Gpt understands, too. arXiv preprint arXiv:2103.10385.

Luciano Floridi and Massimo Chiriatti. 2020. Gpt-3: Its nature, scope, limits, and consequences. Minds and Machines, 30(4):681–694.

Wei-Yu Chen, Yu-Chiang Frank Wang, Yen-Cheng Liu, Zsolt Kira, and Jia-Bin Huang. 2019. A CLOSER LOOK AT FEW-SHOT CLASSIFICATION. page 16.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and Christopher D. Manning. 2020. Pre-training transformers as energy-based cloze models. In EMNLP.

Alexis Conneau, Ruty Rinott, Guillaume Lample, Adina Williams, Samuel R. Bowman, Holger Schwenk, and Veselin Stoyanov. 2018. XNLI: Evaluating cross-lingual sentence representations. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics.

Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Shijin Wang, and Guoping Hu. 2020. Revisiting pre-trained models for Chinese natural language processing. In Findings of the Association for Computational Linguistics: EMNLP 2020, pages 657–668, Online. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota. Association for Computational Linguistics.

Luciano Floridi and Massimo Chiriatti. 2020. Gpt-3: Its nature, scope, limits, and consequences. Minds and Machines, 30(4):681–694.

Hector Levesque, Ernest Davis, and Leora Morgenstern. 2012. The winograd schema challenge. In Thirteenth International Conference on the Principles of Knowledge Representation and Reasoning.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhilin Yang, and Jie Tang. 2021. Gpt understands, too. arXiv preprint arXiv:2103.10385.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A robustly optimized bert pretraining approach.

Conversational-AI Center of OPPO XiaoBu. 2021. Bustm: Oppo xiaobu dialogue short text matching dataset. https://github.com/xiaobu-coai/BUSTM.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the limits of transfer learning with a unified text-to-text transformer. Machine Learning Research., pages 1–67.
Timo Schick and Hinrich Schütze. 2021a. Exploiting cloze-questions for few-shot text classification and natural language inference. In Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pages 255–269, Online. Association for Computational Linguistics.

Timo Schick and Hinrich Schütze. 2021b. It’s not just size that matters: Small language models are also few-shot learners. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 2339–2352, Online. Association for Computational Linguistics.

Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, and Hua Wu. 2019. ERNIE: Enhanced representation through knowledge integration. arXiv preprint arXiv:1904.09223.

Derek Tam, Rakesh R Menon, Mohit Bansal, Shashank Srivastava, and Colin Raffel. 2021. Improving and simplifying pattern exploiting training.

Wilson L Taylor. 1953. “cloze procedure”: A new tool for measuring readability. Journalism quarterly, 30(4):415–433.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. 2019. Superglue: A stickier benchmark for general-purpose language understanding systems. Neural Information Processing Systems, pages 3266–3280.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. 2018. GLUE: A multi-task benchmark and analysis platform for natural language understanding. In Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pages 353–355, Brussels, Belgium. Association for Computational Linguistics.

Sinong Wang, Han Fang, Madian Khabsa, Hanzi Mao, and Hao Ma. 2021. Entailment as few-shot learner.

Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen, and Qin Liu. 2019. Nezha: Neural contextualized representation for chinese language understanding.

Adina Williams, Nikita Nangia, and Samuel Bowman. 2018. A broad-coverage challenge corpus for sentence understanding through inference. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 1112–1122.

Liang Xu, Hai Hu, Xuanwei Zhang, Lu Li, Chenjie Cao, Yudong Li, Yechen Xu, Kai Sun, Dian Yu, Cong Yu, Yin Tian, Qianqian Dong, Weitang Liu, Bo Shi, Yiming Cui, Junyi Li, Jun Zeng, Rongzhao Wang, Weijian Xie, Yanting Li, Yina Patterson, Zuoyu Tian, Yiwen Zhang, He Zhou, Shaoweihua Liu, Zhe Zhao, Qipeng Zhao, Cong Yue, Xinrui Zhang, Zhengliang Yang, Kyle Richardson, and Zhenzhong Lan. 2020. CLUE: A Chinese language understanding evaluation benchmark. In Proceedings of the 28th International Conference on Computational Linguistics, pages 4762–4772, Barcelona, Spain (Online). International Committee on Computational Linguistics.

Zhe Zhao, Hui Chen, Jinfeng Zhang, Wayne Xin Zhao, Tao Liu, Wei Lu, Xi Chen, Haotang Deng, Qi Ju, and Xiaoyong Du. 2019. UER: An Open-Source Toolkit for Pre-training Models. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP): System Demonstrations, pages 241–246.

Chujie Zheng, Minlie Huang, and Aixin Sun. 2019. ChID: A Large-scale Chinese IDiom Dataset for Cloze Test. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 778–787.

Yiming Yang Jaime Carbonell Russ R. Salakhutdinov Quoc V. Le Zhilin Yang, Zihang Dai. 2020. Xlnet: Generalized autoregressive pretraining for language understanding. In EMNLP.