Ультразвуковое исследование легких: актуальный метод в условиях новой коронавирусной инфекции SARS-CoV-2

Е.А.Праскурничий 1, Ю.В.Степаненкова 2, М.А.Тураева 2

1 Федеральное государственное бюджетное образовательное учреждение дополнительного профессионального образования «Российская медицинская академия непрерывного профессионального образования» Министерства здравоохранения Российской Федерации: 125993, Россия, Москва, ул. Баррикадная, 2/1, стр. 1

2 Федеральное государственное бюджетное учреждение «Государственный научный центр Российской Федерации – Федеральный медико-биологический агентство»: 123098, Россия, Москва, ул. Маршала Новикова, 23

Резюме
Представлен обзор литературы по основным аспектам проведения ультразвукового исследования легких у больных в период пандемии коронавирусной инфекции SARS-CoV-2, основанным на опыте ведущих научных центров разных стран. Продемонстрирована перспективность применения данного метода у больных с патологией легких, особенно в условиях подобной пандемии.

Ключевые слова: ультразвуковая диагностика, коронавирусная инфекция, ультразвуковое исследование легких, COVID-19, пневмония, пандемия.

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.

Для цитирования: Праскурничий Е.А., Стефаненкова Ю.В., Тураева М.А. Ультразвуковое исследование легких: актуальный метод в условиях новой коронавирусной инфекции SARS-CoV-2. Пульмонология. 2020; 30 (5): 671–678. DOI: 10.18093/0869-0189-2020-30-5-671-678

Ultrasound of the lungs as an actual research method in the conditions of a new coronavirus infection SARS-CoV-2

Evgeniy A. Praskurnichiy 1, Yuliya V. Stefanenkova 2, Mariya A. Turaeva 2

1 Russian Federal Academy of Continued Medical Education, Healthcare Ministry of Russia: ul. Barrikadnaya 2/1, build. 1, Moscow, 123995, Russia

2 A.I.Burnazyan State Scientific Center of the Russian Federation – Federal Medical Biophysical Center, Federal Medical and Biological Agency of Russia: ul. Marshala Novikova 23, Moscow, 123098, Russia

Abstract
A literature review of the main issues of ultrasound diagnosis during the period of the SARS-CoV-2 coronavirus infection pandemic. The review shows the key aspects of ultrasound, the experience of foreign colleagues, reflecting the basic principles of ultrasound diagnostics when working with infected patients, the methodology of the distribution of people into the streams with their increased admission to hospitals in a pandemic.

Key words: ultrasound diagnostics, coronavirus infection, ultrasound of the lungs, COVID-19, pneumonia, pandemic.

Conflict of interests. The authors declare the absence of conflict of interests.

For citation: Praskurnichiy E.A., Stefanenkova Yu.V., Turaeva M.A. Ultrasound of the lungs as an actual research method in the conditions of a new coronavirus infection SARS-CoV-2. Pul'monologiya. 2020; 30 (5): 671–678 (in Russian). DOI: 10.18093/0869-0189-2020-30-5-671-678

Современную реальную клиническую практику сложно представить без широкого использования лучевых методов диагностики, и в частности ультразвукового исследования (УЗИ). В последние годы показаниями для его проведения стали рассматриваться патологические изменения легких. Доступность, неинвазивность, безболезненность, простота предварительной подготовки и выполнения, отсутствие прямых противопоказаний, безопасность и безвредность, доказанная испытаниями, – вот что обращает на себя внимание при выборе метода обследования. В силу указанных особенностей УЗИ легких может использоваться у широкого контингента обследуемых: беременных и кормящих женщин, взрослых, детей, пациентов с имплантированными кардиостимуляторами, металлическими конструкциями и прочими инородными телями. Особенно актуален этот метод сегодня, когда весь мир охватила «новая» инфекция и существенно возросло число госпитализированных больных.

Как известно, с декабря 2019 года в Китае, в городе Ухань, были зарегистрированы первые случаи массовых заболеваний пневмонией неизвестного происхождения у жителей, работающих на рынке мясной и рыбной продукции. 01.12.19 власти Китая проинформировали Всемирную организацию здравоохранения (ВОЗ) о распространении неизвестной пневмонии. 30.01.20 ВОЗ признала массовые случаи коронавирусной инфекции чрезвычайной ситуацией, имеющей международное значение. 11.02.20 заболевание получило название инфекции, вызванной коронавирусом COVID-19 (COronaVirus Disease-2019).
Международный комитет по таксономии вирусов присвоил возбудителю инфекции официальное на- звание SARS-CoV-2 [1].

Коронавирусная инфекция — острое вирусное за- болевание с преимущественным поражением верх- них дыхательных путей, вызываемое однононечным «+» РНК вирусом рода Betacoronavirus семейства Coronaviridae, охватившее весь мир с 2019—2020 годах, унесшее огромное число жизней и нанесшее колоссальные экономические убытки [2].

Важно отметить, что выделенный источник ин- фекции был впервые описан еще в середине прошлого века. К январю 2020 года коронавирусы (лат. Coronavirusidae) рассматриваются уже в качестве це- лого семейства 40 видов РНК-содержащих вирусов, имеющих суперкапсид. Оно объединяет два подсе- мейства, которые поражают человека и животных. Название связано со строением вируса: из суперкап- сида выделяются большие шиповидные отростки в ви- де булавы, которые напоминают корону. Последняя способна проникать через мембрану клетки пу- тем имитации молекул, которые связываются трансмембранные рецепторы клеток [1, 2].

В настоящее время известно о циркуляции сре- ди населения четырех коронавирусов (HCo-229Е, -OC43, -NL63, -HKU1), которые постоянно присут- ствуют в структуре возбудителей острых респиратор- ных вирусных инфекций (ОРВИ) и зачастую вызыва- ют поражение дыхательных путей легкой и средней степени тяжести. Вирус отнесен ко II группе пато- генности. Входными воротами возбудителя служат эпителий верхних дыхательных путей и эпители- оциты желудка и кишечника. В основе патогенеза лежит процесс повышения проницаемости клеточ- ных мембран и усиленный транспорт жидкости, бо- гатой альбумином, в просвет альвеол под действием вируса. В результате происходит разрушение сур- фактанта, что приводит к коллапсу альвеол и раз- витию остrego респираторного дистресс-синдро- ма. Сопутствующее иммуносупрессивное состояние больного содействует развитию оппортунистиче- ских бактериальных и микотических инфекций ре- спираторного тракта [2].

Наиболее информативным, высокоточным ме- тодом, позволяющим полнее всего визуализировать органы грудной клетки и определить стадиальность процесса (5 стадий), является компьютерная томо- графия (КТ). Это второй этап в диагностике и уста- новлении более точного диагноза после рентгеногра- фии органов грудной клетки [3].

Виду высокой частоты инфицирования людей на территории Российской Федерации (на 08.06.20 зарегистрировано 476 658 случаев заболевания) [4] и, как следствие, колоссальной нагрузки на систе- му здравоохранения становится актуальной необхо- димость разработки дополнительных рациональных алгоритмов диагностики пневмонии. В Российских клинических рекомендациях о лечении пневмонии от 2019 г. в перечне обязательных инструменталь- ных методов диагностики метод УЗИ не указан. Тем не менее в сложившейся ситуации разработаны вре- менные рекомендации о целесообразности проведе- ния УЗИ с целью диагностики пневмонии в условиях COVID-19 [5]. Преимуществом данного метода явля- ется возможность его проведения непосредственно у постели больного, выполнение в условиях реани- мации, отсутствие лучевой нагрузки, простота дезин- фекции прибора.

Принято считать, что из-за существенного рассе- ивания ультразвука в воздушной среде альвеол метод УЗИ неприемлем для оценки состояния легочной паренхимы. Однако такое утверждение справедли- во для нормального легкого. Однако при патоло- гии, например отеке легких, сопутствие легоч- ной ткани меняется, поэтому создаются условия для появления характерных структур, визуализируемых с помощью УЗИ [6].

Первые работы по визуализации легочной ткани при пневмонии были опубликованы еще пятьдесят лет назад советским ученым Ю.Н.Богиным [7]. Тогда визуально осмотреть грудную клетку было возмож- но только при наложении датчиков по стандартным линиям. Эхографические изменения при пневмо- нии отмечались как неоднородные очаги уплотнения в легочной ткани [7]. В современных условиях УЗИ дает возможность легко дифференцировать тканевые и жидкостные структуры, при рентгенологичес- ком исследовании (РИ) отображаемые как «сплош- ная тень».

УЗИ-диагностика позволяет уточнить следующие клинически важные вопросы:

• наличие плеврального выпота, его количество, локализация уровня жидкости по отношению к грудной стенке, выбор оптимальной точки для проведения пункции плевральной жидкости;”

• выявление эмпиемы плевральной полости (лока- лизация, размер);”

• выявление пневмоний (определение локализа- ции, протяженности, структуры пневмонического фокуса; обнаружение возможных осложнений; оценка остаточных изменений в легких и плевре после клинического излечения);”

• динамический контроль за течением заболеваний легких и плевры и оценка эффективности прово- димой терапии;”

• проведение дифференциальной диагностики между злокачественными и доброкачественными образованиями легких и плевры;”

• контроль состояния плевральной полости, степе- ни распространения легкого, формирования фи- бротракса после оперативных вмешательств на легких и плевре и оценка эффективности хи- рургического лечения [8].

Основным методом УЗИ-диагностики пневмо- нии является BLUE-протокол. В названии пред- ставлен акроним от следующих слов: B — bedside, L — lung, U — ultrasound, E — emergency. Фактически метод представляет собой вариант прикроватного УЗИ лег- ких в экстренных ситуациях, который был предло- жен D.A.Lichtenstein в 2008 г. Целью создания данно- го протокола была диагностический скрининг причин острых дыхательной недостаточности у пациентов,
находящихся в ОРИТ, с возможностью выполнения его в течение 3 мин. При этом предоставляется возможность выявлять и дифференцировать следующие патологические состояния: пневмоторакс, отек легких, легочную эмболию, пневмонию, хроническую обструктивную болезнь легких, бронхиальную астму [6].

Чтобы на УЗИ визуализировать патологически измененную легочную ткань, необходимо иметь четкие представления о нормальной ультразвуковой картине легких. Использовать этот метод имеют право врачи УЗИ-диагностики [9], врач – анестезиолог-реаниматолог [10], врач скорой помощи [11], врач-кардиолог [12]. Корректность исследования требует правильного выбора датчика для предстоящей исследуемой области. Выделяют три их основных вида: линейный 5–15 МГц до 10 см, конвексный 2–7,5 МГц до 25 см, секторный 1,5–5 МГц. У каждого абсолютно разное соотношение частоты и глубины сканирования. Для визуализации глубоких структур подойдут конвексный и секторный, а для плевры – линейный [13].

Чаще всего пациента осматривают в положении лежа (вокруг также полулежа и лежа на боку). Каждое легкое делится на три области (переднюю, боковую и заднюю), которые включают в себя парастернальную, переднеподмышечную и паравертебральную.

Ультразвуковой зонд располагают продольно над межреберным пространством. Оценка начинается с передней области по парастернальной линии сверху в каждом межреберном пространстве до диафрагмы. Таким образом осматриваются переднеподмышечная, заднеподмышечная и паравертебральная области. Если изменения выявляются в каком-либо межреберном пространстве, в нем проводится более углубленное исследование.

**Ключевые ориентиры исследования**

При проведении УЗИ следует применять следующие ключевые ориентиры: плевральная линия (рис. 1) – тонкая линия плевры, имеющая вид гиперэхогенной, которая расположена под ребрами и подвижна при дыхании; **А-линии** – повторяющиеся горизонтальные линейные артефакты, располагающиеся позади плевральной линии, ассоциированные со скольжением легкого и повторяющиеся через одинаковые промежутки, являются признаками здорового легкого. **А-линии**, ассоциированные с отсутствием скольжения легкого, – признак пневмоторакса (рис. 2).

Скользжение легкого (Lung Sliding) (просмотр в В-режиме) отображает движение висцеральной плевры. Является признаком нормального легкого с отсутствием пневмоторакса.

**В-линии** – единичные (не более 3 в одном межреберном промежутке) гиперэхогенные линейные вертикальные артефакты типа «хвост кометы», отходящие от плевральной линии. Они движутся синхронно со скольжением легкого, напоминая лазерный луч. Являются признаком нормального легкого (рис. 3), но если В-линий > 3 в одном межреберном промежутке, то это маркер отека легкого (интерстициального синдрома) (рис. 4, 5). Заметим, что определение В-линий на 100 % не отображает специфичность пневмонии при COVID-19 [5].

Признак морского берега Seashore Sign (М-режим) указывает на нормальное скольжение легкого и исключает пневмоторакс (рис. 6).

Признак штрихкода Barcode Sign (просматривается в М-режиме) указывает на отсутствие скольжения легкого и означает наличие пневмоторакса (рис. 7). Признак четырехугольника (The Quad Sign) – признак плеврального выпота в В-режиме (рис. 8). Фор
мируется между плевральной линией (париетальная плевра), линией легкого (висцеральная плевра) и тенями от ребер по бокам.

Синусоидальный признак (признак плеврального выпота в М-режиме) (рис. 9). При вдохе линия легкого движется к плевральной линии.

Тканевой признак (признак гепатизации ткани легкого) — признак консолидации легкого (рис. 10). Изображение на УЗИ будет напоминать ткань печени.

Признак неровной, рваной линии (неровная, рваная нижняя граница зоны консолидации) (рис. 11). Она имеет гиперэхогенный вид, так как обозначает зону консолидации на границе со здоровой тканью.

Основные признаки пневмонии при COVID-19 на УЗИ следующие:

• неровность, утолщение, прерывистость плевральной линии, ее отсутствие по поверхности консолидации;
• появление В-линий в различных вариациях — единичные, множественные, сливающиеся («бело легкое»);
• появление А-линий на стадии выздоровления;
• плевральный выпот. Он может определяться нечасто и, как правило, в небольших количествах. Также может иметь различную форму и размеры
• в зависимости от объема и распределения жидкости в плевральной полости;
• консолидация в различных вариантах — кортикальные локальные, кортикальные распространенные, сегментарные долевые [15].

Ультрасонографические особенности пневмонии SARS-CoV-2 связаны со стадией заболевания, тяжестью повреждения легких и сопутствующими заболеваниями. Преобладающей моделью является различная степень интерстициального синдрома и альвеолярной консолидации, которая коррелирует с тяжестью повреждения легких. Признанным недостатком ультрасонографии легких является то,
что она не может обнаружить поражения, которые находятся глубоко в легких, несмотря на возможность современных датчиков. Таким образом, чтобы быть видимой при обследовании, аномалия должна распространяться на плевральной поверхности. КТ грудной клетки требуется для обнаружения пневмонии, которая не распространяется на плевральную поверхность [15].

Использование ультразвукового исследования легких в разных странах

В Италии разработан протокол первичной оценки состояния здоровья людей с подозрением на коронавирусную инфекцию, согласно которому оцениваются 14 областей легких, на каждую приходится по 10 с [16]. Это позволяет обследовать большое пространство. Каждой зоне присваивалась оценка от 0 до 3. Так, 0 — плевральная линия непрерывная и регулярна. Присутствуют горизонтальные артефакты (обычно именуемые A-линиями). 1 — плевральная линия неровная. Ниже границы линии видны вертикальные области белого цвета. 2 — плевральная линия «разорвана». Нижние точки разрывов появляются, если не консолидированные области

(более темные) с соответствующими белыми пятнами ниже консолидированного пространства («белое легкое»). 3 — сканируемая область показывает плотное и сильно втянутое «белое легкое» с более крупными уплотнениями или без них.

При ускоренном УЗИ на месте установлена необходимость своевременной госпитализации и исключения пневмонии более чем у 60 тыс. пациентов с симптомами воспаления (повышенная температура тела, кашель).

В исследовании [17] (n = 12: 9 мужчин, 3 женщины; возраст – 13 лет – 63 года) с подозрением на COVID-19 принимали участие лица, поступившие в больницу Guglielmo da Saliceto с гриппоподобными симптомами в течение 4—10 дней. С помощью УЗИ у 2 пациентов обнаружена эмфизема легких без сопутствующей дыхательной недостаточности, у 3 — задние субплевральные уплотнения. При проведении КТ органов грудной клетки у всех пациентов отмечена сильная корреляция с УЗИ. У 5 из 12 больных — картина «бульжной мостовой», что сочетает в себе симптом «матового стекла» и утолщение междольковых перегородок. У 4 больных подтвердилась организующаяся пневмония. УЗИ легких проводилось двумя врачами: один выполнял техническую часть исследования, второй интерпретировал данные полученного изображения, что также ускоряло процесс выявления патологии [17].

Подобным образом врачом-педиатром отделения педиатрии и его ассистентом проведено обследование детей с подозрением на COVID-19. Первый сначала настраивал карманный ультразвуковой прибор, состоящий из беспроводного зонда и планшета. Они помещались в отдельные одноразовые пластиковые чехлы. Затем врач с помощью зонда выполнял УЗИ легких, помощник держал планшет и получал изображения, не касаясь ни пациента, ни окружающих материалов. С целью исключения вероятности контакта со слизистыми больного стетоскоп при осмотре не использовался. Таким образом, данный метод исследования заменил аускультацию и позволил значительно снизить риск заражения врача [18].

В официальном докладе Национальной организации здравоохранения Великобритании в числе клинических рекомендаций по распределению пациентов с коронавирусной инфекцией УЗИ легких не упомянуто. В качестве первой линии диагностики в сомнительных случаях в этой стране используются рентгенография и КТ легких [16].

Перед возникновением клинических симптомов для скрининга подозреваемых пациентов китайские специалисты рекомендовали использовать раннюю КТ грудной клетки, однако высокая контагиозность и риска транспортировки нестабильных пациентов с гипоксемией и гемодинамической недостаточностью ограничили возможности применения этого метода у пациентов с подозрением на коронавирусную инфекцию. В связи с этим было разрешено использовать УЗИ легких, несмотря на недостаточную изученность этого метода [15].
Специалисты КНР отметили, что УЗИ легких показывает результаты, которые схожи с КТ органов грудной клетки, и при этом превосходят стандартную рентгенографию грудной клетки по возможностям выявления признаков пневмонии и / или респираторного дистресс-синдрома взрослых. Метод также обладает дополнительными преимуществами: возможность использования в месте оказания первичной помощи, возможность многократного повторения, отсутствие радиационного облучения и низкая стоимость. Он позволяет быстро выявить признаки прогрессирования заболевания, оценить тяжесть пневмонии SARS-CoV-2 и необходи́мость в экстренном вентиляции легких.

Сравнительное исследование с участием 20 больных COVID-19, проведенное с помощью УЗИ легких и КТ органов грудной клетки, продемонстрировало присущие этим методам особенности синдромологии (см. таблицу) [15].

Таблица
Особенности пневмонии COVID-19 при компьютерной томографии и ультразвуковом исследовании легких [15]

| КТ легких                                      | УЗИ легких                                      |
|------------------------------------------------|-------------------------------------------------|
| Утолщенная плевра                              | Утолщенная плевральная линия (возможна при интерстициальном синдроме вследствие возникновения артрафктов, которые образуются в начальной стадии пневмонии) |
| «Матовое стекло» (снижение воздухопроницаемости легкой ткани, частичное спадение альвеол) и выпот | B-линии (мультифокальные или сливающиеся) |
| Инфильтрация легкого (уплотнение легкого, обусловленное накоплением жидкости) | Слившиеся B-линии (возникают при развитии альвеолярного отека) |
| Субплевральное уплотнение легкого              | Малое уплотнение легочной ткани |
| Транслобарное уплотнение                        | Нетранслобарная и транслобарная консолидация |
| Плевральный выпот встречается редко             | Плевральный выпот встречается редко |
| Затронуто более двух долей легкого             | Мультиплобарное распределение аномалий |
| На начальной стадии заболевания изображения на КТ легких нетипичные, по мере прогрессирования заболевания появляется картина диффузно рассеянных очагов в легких, в дальнейшем консолидация легкого | B-линии – основной признак на ранней стадии и при легкой инфекции, а также в период выздоровления; основной особенностью на прогрессивной стадии и у тяжёлобольных является альвеолярный интерстициальный синдром; утолщенная плевральная линия с неравномерными В-линиями наблюдается у пациентов с легочным фиброзом |

Заключение
Таким образом, накопленный клинический опыт применения УЗИ легких позволяет его рассматривать как весьма перспективный и информативный метод, позволяющий оперативно верифицировать структурные изменения. Оценивая опыт специалистов из разных стран, следует отметить следующее. Проведенные исследования доказывают, что метод УЗИ легких становится важным элементом первичной диагностики их поражения при инфекции, вызванной COVID-19: он доступен, прост в использовании, информативен, способствует уменьшению числа медицинских работников, работающих в условиях COVID-инфекции, времени непосредственного контакта с пациентом.

Безусловно, необходимы дополнительные исследования возможностей использования данного метода в разных клинических ситуациях.

Литература
1. Романов Б.К. Коронавирусная инфекция COVID-2019. Безопасность и риск фармакотерапии. 2020; 8 (1): 3–8. DOI: 10.30895/2312-7821-2020-8-1-3-8.
2. Никитов В.В., Суранова Т.Г., Забола Ф.Г. и др. Новая коронавирусная инфекция (COVID-19): этиология, эпидемиология, клиника, диагностика, лечение и профилактика. М.; 2020. Доступно на: http://webmed.irkustk.ru/doc/pdf/covid2019msk.pdf
3. Министерство здравоохранения Российской Федерации. Временные методические рекомендации: Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Версия 6 (28.04.2020). Доступно на: https://static-1.rominzdrav.ru/system/attachments/attaches/000/050/116/R_COVID_R_COVID-19_v6.pdf
4. Ministry of Health of the Russian Federation. Доступно на: https://www.rominzdrav.ru
5. Митьков В.В., Сафонов Д.В., Митькова М.Д. и др. Консенсусное заявление РАСУДМ об ультразвуковом исследовании легких в условиях COVID-19 (версия 1). Ультразвуковая и функциональная диагностика. 2020; (1): 24–45. DOI: 10.24835/1607-0771-2020-1-24-45.
6. Кобалава Ж.Д., Сафарова А.Ф., Кохан Е.В. и др. Ультразвуковое исследование легких при COVID-19. Праскурничий Е.А., Мутина Е.С., Богданов А.В. Ультразвуковая диагностика пневмоний. Клиническая медицина. 1970; (48): 123–128.
7. Богин Ю.Н., Мутина Е.С., Богданов А.В. Ультразвуковая диагностика пневмоний. Клиническая медицина. 2020; 8 (1): 3–8. DOI: 10.30895/2312-7821-2020-8-1-3-8.
8. Досаханов А.Х. Роль ультразвукового исследования в алгоритме диагностики острого воспалительного процесса в поликлинических условиях. Клиническая медицина. Казахстана. 2011; (3–4): 60–61. Доступно на: https://cyberleninka.ru/article/n/rol-ultrazvukovogo-issledovaniya-v-algoritme-diagnostiki-okruglyh-obrazovaniy-legkih-poliklinicheskikh-usloviy

Пульмонология. Pul'monologiya. 2020; 30 (5): 671–678. DOI: 10.18093/0869-0189-2020-30-5-671-678
References

1. Romanov B.K. [Coronavirus disease COVID-2019]. Bezopasnost’ i risk farmakoterapii. 2020; 8 (1): 3–8. DOI: 10.30895/2312-7821-2020-1-3-8 (in Russian).

2. Nikiforov V.V., Suranova T.G., Zabozlaev F.G. [New coronavirus infection (COVID-19): etiology, epidemiology, clinics, diagnosis, treatment and prevention]. Moscow; 2020. Available at: http://webmed.irkutsk.ru/doc/pdf/covid2019_rsk.pdf

3. Ministry of Health of the Russian Federation. [Temporary guidelines: Prevention, diagnosis and treatment of new coronavirus infection (COVID-19). Version 6 (28.04.2020)]. Available at: https://static1.rosminzdrav.ru/system/attach­ments/attaches/000/050/122/original/28042020_%D0%9C%20COVID-19_v6.pdf (in Russian).

4. Ministry of Health of the Russian Federation. Available at: https://www.rosminzdrav.ru (in Russian).

5. Mit’kov V.V., Safonov D.V., Mit’kova M.D. et al. [RASUDM Consensus Statement: lung ultrasound in the context of COVID-19 (version 1)]. Ul’trazvukovaya i funktsional’naya diagnostika. 2020; (1): 24–25. DOI: 10.24835/1607-0771-2020-1-24-45 (in Russian).

6. Kobalava Z.D., Safarova A.F., Kokhan E.V. et al. [Lung ultrasound in optimizing management of patients with heart failure: current status and future prospects]. Rossiyskiy kardiologicheskiy zhurnal. 2020; 25 (1): 3666. DOI: 10.15829/1607-0771-2020-1-3666 (in Russian).

7. Bogin Yu.N., Mutina E.S., Bogdanov A.V. [Ultrasound diagnostics of pneumonia]. Klinicheskaya meditsina. 1970; (48): 123–128 (in Russian).

8. Dosakanov A.Kh. [The role of ultrasonic diagnostics of spherical formations of lungs in an out-patient conditions]. Klinicheskaya meditsina Kazakhstana. 2011; (3–4): 60–61. Available at: https://cyberleninka.ru/article/n/rol-ultrazvukovogo-issledovaniya-v-algoritme-diagnostiki-okruglyh-obrazovaniy-legkikh-v-poliklinikakh-uslookh (in Russian).

9. [Order of the Ministry of Labor and Social Protection of the Russian Federation dated 14.03.2018 № 161n “On approval of the professional standard of Ultrasonic Medical Investigation Specialist”]. Garant. Available at: https://base.garant.ru/72222514 (in Russian).

10. [Order of the Ministry of Labor of Russia dated 27.08.2018 № 554n “On approval of the professional standard of Anesthesiologist—Reanimatologist”]. Garant. Available at: https://base.garant.ru/72049970 (in Russian).

11. [Order of the Ministry of Labor and Social Protection of the Russian Federation dated 14.03.2018 № 133n “On approval of the professional standard of Emergency Physician”]. Garant. Available at: https://base.garant.ru/71917494 (in Russian).

12. [Order of the Ministry of Labor and Social Protection of the Russian Federation dated 14.03.2018 № 140n “On approval of the professional standard of Cardiologist”]. Garant. Available at: https://base.garant.ru/71917494 (in Russian).

13. Makagonov A.GA. [Basic diagnostic signs in lung ultrasound investigation. Lecture for doctors]. Medical books by post. 2018. Available at: https://shopdon.ru/blog/osnovnye-priznaki-pri-uzi-legkih (in Russian).

14. BLUE PROTOCOL – urgent lung sonography in acute respiratory failure: current status and future prospects. Rossiyskiy kardiologicheskiy zhurnal. 2020; 25 (1): 3666. DOI: 10.24835/1607-0771-2020-1-3666 (in Russian).

15. Peng Q., Wang X., Zhang L. Findings of lung ultrasonography of novel coronavirus pneumonia during the 2019–2020 epidemic. Intensive Care Med. 2020; 46 (5): 849–850. DOI: 10.1007/s00134-020-05996-6.

16. Davenport L. First protocol on how to use lung ultrasound to triage COVID-19. Medscape. 2020, Apr. 09. Available at: https://www.medscape.com/viewarticle/928419

17. Poggiiali E., Dacrema A., Bastoni D. et al. Can lung US help critical care clinicians in the early diagnosis of novel coronavirus (COVID-19) pneumonia? Radiology. 2020; 295 (3): e6. DOI: 10.1148/radiol.2020200847.

18. Buonsenso D., Pata D., Chiaretti A. COVID-19 outbreak: less stethoscope, more ultrasound. Lancet Respir. Med. 2020; 8 (5): e27. DOI: 10.1016/S2213-2600(20)30120-X.

Received: June 08, 2020

The article is licensed by CC BY-NC-ND 4.0 International Licensee https://creativecommons.org/licenses/by-nc-nd/4.0/
Ультразвуковое исследование легких

Праскурничий Евгений Аркадьевич — д. м. н., профессор кафедры авиационной и космической медицины Федерального государственно-го бюджетного образовательного учреждения дополнительного профессио-нального образования «Российская медицинская академия непрерывного профессионального образования» Министерства здравоохранения Российской Федерации; тел.: (916) 524-84-81; e-mail: praskurnichey@mail.ru

Евгений А. Праскурничий — Doctor of Medicine, Professor, Department of Aviation and Space Medicine, Russian Federal Academy of Continued Medical Education, Healthcare Ministry of Russia; tel.: (916) 524-84-81; e-mail: praskurnichey@mail.ru

Стефаненкова Юлия Васильевна — клинический ординатор кафедры терапии Федерального государственного бюджетного учреждения «Государственный научный центр Российской Федерации — Федеральный медицинский биофизический центр им. А.И. Бурназяна» Федерального медико-биологического агентства; тел.: (966) 110-73-76; e-mail: jull_95@mail.ru

Юлия В. Стефаненкова — Resident Physician, Department of Therapy, A.I. Burnazyan State Scientific Center of the Russian Federation — Federal Medical Biophysical Center, Federal Medical and Biological Agency of Russia; tel.: (966) 110-73-76; e-mail: jull_95@mail.ru

Тураева Мария Александровна — клинический ординатор кафедры терапии Федерального государственного бюджетного учреждения «Государственный научный центр Российской Федерации — Федеральный медицинский биофизический центр им. А.И. Бурназяна» Федерального медико-биологического агентства; тел.: (927) 178-86-88; e-mail: turaeva-marya@mail.ru

Мария А. Тураева — Resident Physician, Department of Therapy, A.I. Burnazyan State Scientific Center of the Russian Federation — Federal Medical Biophysical Center, Federal Medical and Biological Agency of Russia; tel.: (927) 178-86-88; e-mail: turaeva-marya@mail.ru