A hybrid estimation of distribution algorithm for joint stratification and sample allocation

Mervyn O’Luing, Steven Prestwich, S. Armagan Tarim

Abstract

In this study we propose a hybrid estimation of distribution algorithm (HEDA) to solve the joint stratification and sample allocation problem. This is a complex problem in which each the quality of each stratification from the set of all possible stratifications is measured its optimal sample allocation. EDAs are stochastic black-box optimization algorithms which can be used to estimate, build and sample probability models in the search for an optimal stratification. In this paper we enhance the exploitation properties of the EDA by adding a simulated annealing algorithm to make it a hybrid EDA. Results of empirical comparisons for atomic and continuous strata show that the HEDA attains the bests results found so far when compared to benchmark tests on the same data using a grouping genetic algorithm, simulated annealing algorithm or hill-climbing algorithm. However, the execution times and total execution are, in general, higher for the HEDA.

Keywords: Hybrid estimation of distribution algorithm; Optimal stratification; Sample allocation; R software.

1 Insight Centre for Data Analytics, Department of Computer Science, University College Cork, Ireland. Email: mervyn.oluing@insight-centre.org, steven.prestwich@insight-centre.org
2 Cork University Business School, University College Cork, Ireland. Email: armagan.tarim@ucc.ie
1 Introduction

The joint determination of stratification and sample allocation designs is a complex problem in which each solution is a stratification of basic strata (either atomic or continuous). The quality of each solution is measured by the optimal sample size that can be allocated to this stratification and still meet the precision constraints set by the survey designer. This quality is evaluated by the Bethel-Chromy algorithm (Bethel, 1985; Chromy, 1987; Bethel, 1989) which is expensive (in computational terms). Previous contributions in this area includes work carried out by (Kozak et al., 2007; Keskintrück and Er, 2007; Benedetti et al., 2008; Baillargeon and Rivest, 2009, 2011; Ballin and Barcaroli, 2013; O’Luing et al., 2019; Ballin and Barcaroli, 2020; O’Luing et al., 2020, 2021).

In this paper, we propose a hybrid estimation of distribution algorithm (HEDA) to solve this problem. EDAs are stochastic black-box optimization algorithms which can be used to estimate, build and sample probability models in the search for an optimal solution. We, therefore, describe the search for the lowest cost stratification as that of black-box optimization, in order to tie the problem in with existing EDA literature.

Rather than other methodologies where the strata have already been determined (e.g. administrative strata or the cumulative root frequency method) before evaluating the optimal sample allocation - the basic premise of this problem is that the optimal solution is unknown. It is a non linear problem with a rugged search space for which there are many near-optimal sample allocations (or local minima) and also perhaps more than one (i.e. attainable through multiple stratifications) optimal sample allocation (global minimum).

However, we cannot see the sample allocation for each stratification in advance, and thus cannot say \textit{a priori} which stratification provides the optimal allocation. We could say that we are dealing with a black box. The only sure way of determining the optimal stratification is to evaluate each solution. This is known as grid-search and is intractable for large problems. Indeed, for representative surveys, especially in official statistics, for
any practical sized sampling frame the number of basic strata to be stratified (given that they may be derived from multiple auxiliary variables) can be quite large.

A black-box optimization procedure explores the search space by generating solutions, evaluating them, and **processing the results of this evaluation in order to generate new promising solutions** (Gonzalez-Fernandez and Soto, 2012). Such procedures tend to find local minima of varying proximity to a global minimum. However they tend to be faster alternatives to grid-search. Some are deterministic, e.g. the direct search approach of (Hooke and Jeeves, 1961) or the simplex method of (Nelder and Mead, 1965) and some stochastic, e.g. k-means (Hartigan and Wong, 1979), grouping genetic algorithm (John, 1975), simulated annealing (Kirkpatrick et al., 1983; Černý, 1985) and hill-climbing (Lin, 1965; Lin and Kernighan, 1973). The latter set of procedures provide a means of attaining a solution that is "good enough" in a computing time that is "small enough" (Sörensen and Glover, 2013).

That has been our focus in earlier papers in which we presented evolutionary (a grouping genetic algorithm - (O’Luing et al., 2019)) and local search (simulated annealing algorithm - (O’Luing et al., 2020)) algorithms and explored multi-stage combinations of clustering algorithms with a hill-climbing algorithm ((O’Luing et al., 2021)). We have evaluated the performance of these algorithms by the solution quality and computation time taken to find a local minimum. In (O’Luing et al., 2020) and (O’Luing et al., 2021) we also considered training times. The performance has varied according to each data stratification problem.

To expand on the details mentioned above, we explore a new paradigm of evolutionary algorithms named estimation of distribution algorithms (EDAs) (Baluja, 1994; Mühlenbein and Paas, 1996; Larrañaga and Lozano, 2001; Pelikan et al., 2003) in the context of this problem. In particular, we consider the application of a hybridised version of an EDA and compare it against the best results achieved so far with the algorithms discussed in (O’Luing et al., 2019), (O’Luing et al., 2020) and (O’Luing et al., 2021). Section 2 provides some background details on EDAs. Section 3 motivates the use of a
HEDA for this problem. Section 4 summarises the objective function.

Section 6 discusses the evaluation approach. Section 7 demonstrates how the EDA component of the HEDA works. Sections 8 and 9 give results of empirical comparisons of the HEDA for atomic and continuous strata. Sections 10 and 11 describe our conclusions and suggestions for further work.

2 Estimation of distribution algorithms (EDAs)

EDAs, which are also known as probabilistic model-building genetic algorithms (PMB-GAs), belong to a family of evolutionary algorithms. They are, in effect, stochastic black-box optimization algorithms which are characterized by iteratively estimating, building and sampling probability models in the search for optimal solutions.

To put it another way, EDAs work by selecting promising solutions from a population (similar to elitism in evolutionary algorithms) and building probabilistic models of those solutions. They then sample from the corresponding probability distributions to obtain new solutions (Lima et al., 2011). It is these characteristics of probabilistic model building and sampling from that model that most differentiates the EDA from other evolutionary algorithms such as the genetic algorithm.

If the model built in each generation captures the important features of selected solutions and generates new solutions with these features, then the EDA should be able to quickly converge to the optimum (Mühlenbein and Mahnig, 1999). Indeed, assuming that the population size is large enough to ensure reliable convergence (Harik et al., 1999; Goldberg, 2002), the EDA based on the probability model provides an efficient and reliable approach to solving many optimization problems (Hauschild and Pelikan, 2011).

Furthermore, as EDAs iteratively refine the probabilistic model using elite solutions, thereby increasing the probability of generating the global optimum, after a reasonable number of iterations, the procedure should locate the global optimum or its accurate approximation (Hauschild and Pelikan, 2011). Empirically, EDAs have been shown to out-
perform other optimisation techniques in problems such as the multi-objective knapsack problem (Shah and Reed, 2011), multi-objective monitoring network design (Kollat et al., 2008) or optimising cancer chemotherapy (Petrovski et al., 2006).

Basic EDAs use a simple probability model that has a fixed structure and learns the parameters for that model, e.g. the univariate marginal distribution algorithm (UMDA) (Mühlenbein and Paaß, 1996), population-based incremental learning (PBIL) (Baluja, 1994) and compact genetic algorithm (cGA) (Harik et al., 1999). Such EDAS are suitable for univariate problems.

On the other hand, for more complex problems there are EDAs with adaptive multivariate models such as Bayesian networks (BNs) (Pearl, 1988), which can model complex multivariate interactions. Examples of Bayesian EDAs include the Bayesian optimization algorithm (BOA) (Pelikan et al., 1999, 2003), the estimation of Bayesian networks algorithm (EBNA) (Etxeberria, 1999), and the learning factorized distribution algorithm (LFDA) (Mühlenbein and Mahnig, 1999).

For this problem, as we are dealing with mutually exclusive basic strata, we assume that the probability distribution of any basic stratum belonging to a particular stratum is independent of that for another basic stratum, and for this reason we will implement a univariate EDA based closely on the UMDA.

3 A hybrid estimation of distribution algorithm (HEDA)

Even though we pointed out in section 2 that EDAs should locate the global optimum or its near approximation in a reasonable amount of iterations, they have two main computational bottlenecks: (1) fitness evaluation and (2) model building. These must be addressed by efficiency enhancement techniques suitable for EDAs (Hauschild and Pelikan, 2011).

The latter bottleneck we have addressed by using the simple model building approach of the UMDA - thus avoiding the computational overhead of more complex model building.
The former bottleneck, clearly, is not only an issue for the EDA as it relates not only to the size of the search space but also the complexity of the problem. However, we can address this using hybridisation (Hauschild and Pelikan, 2011). This is an efficiency technique the purpose of which is to speed up the performance of the EDA.

In many real-world applications, evolutionary algorithms are combined with other search optimization algorithms such as local search, tabu search, simulated annealing or hill-climbing algorithms. Such metaheuristic hybrids combine the advantages of population based exploration methods (which search regions of the search space) with trajectory methods (which optimise locally and are often very successful). Simulated annealing is one example of a trajectory method which we focus on in this paper.

Simulated annealing resembles hill-climbing in that it makes small adjustments to a candidate solution - keeping those which lead to an improvement in solution quality and gradually morphing the solution towards the closest local optimum. Hill-climbing algorithms generally attain good results especially when combined with population based search procedures (Lima et al., 2009).

As an example, to solve the minimal switching graph problem (Tang and Lau, 2005) combined the exploration properties of the UMDA and the exploitation properties of the hill-climbing algorithm into a hybrid EDA to find an optimal or near-optimal solution efficiently and effectively. They compared the hybrid algorithm with the UMDA and the hill-climbing algorithm separately, and found that the performance of the hybrid EDA is significantly better than both the UMDA and the hill-climbing algorithm.

Although, the literature on hybridisation of EDAs does not appear to have considered simulated annealing, we expect a hybrid EDA using simulated annealing to perform well. This is because hill-climbing solutions gravitate towards the nearest local minima, where they become trapped until the algorithm reaches a pre-defined end-point. On the other hand, simulated annealing allows for a probabilistic acceptance of inferior quality solutions, enabling escape from local minima and thus attaining better quality solutions than hill-climbing. As it relates to our problem, for the reasons outlined in this section and
in section 2, combining an EDA with simulated annealing should generate less solutions and thus translate into calling the Bethel-Chromy evaluation algorithm less often to attain optimal or near-optimal solutions.

4 Objective function

A detailed consideration of the objective function is provided in (O’Luing et al., 2019). We provide an outline below:

\[
\min n = \sum_{h=1}^{H} n_h \\
\text{s.t. } CV(\hat{T}_g) \leq \varepsilon_g \quad (g = 1, \ldots, G) \\
2 \leq n_h \leq N_h
\]

where \(n \) is the sample size, \(n_h \) is the sample size for stratum \(h \), \(N_h \) is the number of units in stratum \(h \) and \(H \) is the number of strata. \(\hat{T}_g \) is the estimator of the population total for each one of \(G \) target variable columns. The upper limit of precision \(\varepsilon_g \) is expressed as a coefficient of variation \(CV \) for each \(\hat{T}_g \). We use the Bethel-Chromy algorithm (Bethel, 1985, 1989; Chromy, 1987) to solve the allocation problem for a particular stratification.

5 Outline of the HEDA

We base our description of the hybrid estimation of distribution algorithm on that found in (Gonzalez-Fernandez and Soto, 2012). We start with a population of \(N_p \) solutions either generated at random, or generated with random permutations of a starting solution (accompanying that solution). The population is evaluated and the best solutions are selected. Any selection method can be used (e.g. roulette wheel, tournament selection, Boltzmann selection, etc.) however for our algorithm we use elitism. We construct a probability model of the best solutions. We then use that model to generate new solutions to replace those not selected at the elitism stage. After a tunable number of iterations a simulated annealing algorithm is applied to a tunable number of solutions from the
population (for the experiments in sections 8 and 9 we apply simulated annealing to the
top ranked solution). This process continues until a stopping rule has been reached.

Algorithm 1 Hybrid EDA

1: Set $i \leftarrow 1$ and generate initial population P_1 of N_p solutions
2: Apply simulated annealing algorithm \triangleright tunable conditions
3: Select N_{Elite} promising solutions S_i from P_i
4: Construct a probability model M_i of the best solution from S_i
5: Create a new population P_{i+1} by sampling a set of $N_p - N_{Elite}$ new solutions according
to the distribution encoded by M_i
6: set $i \leftarrow i + 1$
7: If stopping criteria (number of iterations, I) not met repeat steps 2 to 6

6 Evaluation approach

Each of the N_p solutions in the population are evaluated in a two step-approach using the
$aggrStrata$ function (Ballin and Barcaroli, 2020) and $Bethel$ algorithm (Ballin and Barcaroli,
2020; De Meo and De Meo, 2009). The $aggrStrata$ function obtains summary statistics
(including point estimates) for the basic strata. The $Bethel$ function uses those statistics
to compute the optimal sample allocation for that stratification. We have coded these
functions in C++ and integrated them, along with the remainder of the HEDA, into the
R software language (R Core Team, 2021) using the $Rcpp$ package (Eddelbuettel, 2013)
in order to speed up computation times. Accordingly, the traditional $set.seed()$ function
in R which was useful for reproducibility of experiments is not easily applied in $Rcpp$ -
meaning that some further work is required before we can reproduce results exactly.

Nonetheless, we found this two-step approach to be a more useful evaluation metric for
the HEDA than the Bayesian Information Criterion (BIC) or total within sums of squares
(TWSS) which are more suited to clustering problems and faster than the evaluation
algorithm. We initially considered these as "surrogate" functions. However, solutions
which attain better BIC or TWSS scores might not attain better sample allocations. This
is because minimising TWSS eventually leads towards one cluster per atomic stratum

8
whereas maximising BIC scores is useful for selecting the optimal number of clusters, but not necessarily the optimal arrangement of items within clusters.

7 Example of EDA component of the HEDA on the iris data set

To demonstrate how an estimation of distribution algorithm works we use the iris data set (Anderson, 1935; Fisher, 1936; R Core Team, 2021) and atomic strata. We select Petal Length and Petal Width as the target variables. We use Sepal Length and Species as auxiliary variables. We convert Sepal Length to a categorical variable with 3 bins using the k-means algorithm (Hartigan and Wong, 1979) and a seed of 1234. We use an upper coefficient of variation level of 0.05 for the target variables. The cross product of the categorical version of Sepal Length with Species results in 8 atomic strata. We group these 8 atomic strata into H strata, in this example $H = 3$ or $H = 4$, i.e. some of the solutions have three strata and some have four.

Atomic Stratum, l	N	M1	M2	S1	S2
a	40	1.46	0.24	0.17	0.10
b	5	3.40	1.10	0.30	0.15
c	1	4.50	1.70	0.00	0.00
d	10	1.48	0.29	0.17	0.09
e	31	4.23	1.31	0.36	0.19
f	12	5.07	1.88	0.22	0.27
g	14	4.64	1.45	0.21	0.11
h	37	5.74	2.08	0.50	0.25

We initialise a population size of N_p solutions (in this case $N_p = 5$) each of size L, i.e. the number of atomic strata, where $l = 1, 2, \ldots, L$. As can be seen in table 7.1 we initially use letters of the alphabet to differentiate between atomic strata, however in subsequent tables an integer denotes to which one of the H strata each atomic stratum belongs. Each solution is evaluated and ranked.
Table 7.2: Population of size N_p with solution quality and rank

Initial Population	Quality	Rank
3 2 2 3 2 1 2 2	19.19	3
3 2 4 3 2 1 2 3	46.77	5
3 2 4 1 2 1 2 4	14.48	2
3 2 4 3 2 1 1 4	10.65	1
3 3 2 2 3 2 1 2 2	30.30	4

We create a new selected population of the best solutions (in this example we select 2 solutions) in a process that is analogous with elitism in evolutionary algorithms.

Table 7.3: Selected population of best elite solutions

Selected Population
3 2 4 3 2 1 1 4
3 2 4 1 2 1 2 4

We then construct a probabilistic model of the solutions in the selected population with the aim of estimating the probability distribution for each of the H strata for each atomic stratum. The probability of a candidate solution (or vector, V) where ($V = V_1, V_2, ..., V_L$) is the product of probabilities of individual strata for each atomic stratum:

$$p(V_1, V_2, ..., V_L) = p(V_1) \times p(V_2), ..., \times p(V_L)$$ \hspace{1cm} (7.1)

where $p(V_i)$ is the probability of variable ($V_i = v_i$), v_i is an integer between 1 and H and $p(V_1, V_2, ..., V_L)$ is the probability of the candidate solution ($V_1, V_2, ..., V_L$) and H represents the number of strata which are labelled individually by an integer between 1 and H. The univariate model for the L variables consists of L vectors containing probabilities of an atomic stratum belonging to the different strata. The probabilities different strata sum to 1.

The joint probability distribution is factorized as a product of independent univariate marginal distributions, which are estimated from marginal frequencies (Paul and Iba, 2002):

$$p(V_i) = \sum_{j=1}^{N_{Elite}} \delta_j(V_i = v_i|N_{iter}^{iter-1}) \frac{N_{iter-1}}{N_{Elite}}$$ \hspace{1cm} (7.2)
where $N^{ iter-1}_{Elite}$ is the number of elite solutions from the previous iteration, $\delta_j(V_l = v_l | N^{ iter-1}_{Elite}) = 1$ if $V_l = v_l$ in the j^{th} case of $N^{ iter-1}_{Elite}$, and 0 otherwise.

Table 7.4: Model estimating the probability of each atomic stratum l belonging to each stratum h

Stratum, h	Probability Model
1	0 0 0 0 0.5 0 0.5 0
2	0 1 0 0 1 0 0 0.5 0
3	1 0 0 0 0 0 0 0 0 0
4	0 0 1 0 0 0 0 1 0 0
Total	1 1 1 1 1 1 1 1 1 1

We generate new solutions from this model to replace the non-elite solutions by sampling from that distribution. We evaluate the new solutions and rank all solutions by their quality. This offspring population returns a solution quality of 9.34 which is the global minimum (to find the global minimum we evaluated each of the 4,140 possible partitions of the 8 atomic strata).

Table 7.5: Offspring population with solution quality and rank

Offspring Population	Quality	Rank
3 2 4 3 2 1 1 4	10.65	2
3 2 4 3 2 1 2 4	14.48	3
3 2 4 3 2 1 1 4	10.65	2
3 2 4 3 2 1 2 4	9.34	1
3 2 4 3 2 1 2 4	14.48	3

Normally the algorithm repeats the above process until a stopping criterion has been met.

The extreme probabilities — 0 and 1 — mean that unless some mitigating measure is introduced the atomic stratum l would remain fixed forever to stratum h at a probability of either 0 or 1, obstructing some regions of the search space (Dang et al., 2019). However, at advanced stages of the search, e.g. when using a starting solution, the stratifications are of good quality and atomic stratum may already be in the correct stratum (i.e. the stratum it would be allocated to in the optimal solution).

In the above experiment it is clear that for all solutions in the population there are a number of cases where there is only one stratum choice available for an atomic stratum
(i.e. it is assigned to that stratum with a probability of 1). Here we are very close to a
global minimum and we get there on the second step - without adjusting the probability
of strata assignments. On a more general level however, the hybrid EDA uses mutation
and add strata components (see O’Luing et al., 2019), as well as simulated annealing
(see O’Luing et al., 2020) which enable escape from this occurrence. The UMDA also
has alternative approaches of avoiding 1, 0 probabilities (such as capping the probability
interval to between $\frac{1}{2}$ and $(1 - \frac{1}{2})$ e.g. (Doerr and Krejca, 2020), however, for our
purposes they are not required.

8 Empirical comparisons for atomic strata

8.1 Background details

We compare the performance of the HEDA with the best solution qualities from the ex-
periments we carried out on the same data sets, with the grouping genetic algorithm, sim-
ulated annealing algorithm and combinations of clustering algorithms with hill-climbing.
We use the results from these experiments as a benchmark for comparing the HEDA.
More details on these experiments are provided in O’Luing et al. (2019, 2020, 2021).
The data sets including target and auxiliary variables are summarised in Table 8.1. We
explain the meaning of each variable in Table 1.1 in section 1.

Table 8.1: Summary by data set of the variables, number of records and atomic strata

Data set	Target Variables	Auxiliary Variables	Number of Records	Number of Atomic Strata
Swiss Municipalities	Surfacesbois, Aribat	POPTOT, HApoly	2,896	579
American Community	HINC, VALP, SMOCP, ISIP	BLD, TEN, WKEXREL, WORKSTAT, HFL, YBL	619,747	123,007
Survey, 2015				
Kiva Loans	termmonths, lendercount, loanamount	sector, currency, activity, region, partnerid	614,361	84,897

Table 8.2 provides details of the best sample sizes and the corresponding algorithms
from the aforementioned which they were attained with.
Table 8.2: Summary by data set of the sample size and evaluation time for the final stage in multi stage combinations of clustering algorithms with the simulated annealing algorithm and hill-climbing algorithm

Dataset	Initial Stage(s)	Final Stage	Sample Size	Execution Time	Total Execution Time
Swiss Municipalities	Kmeans	SAA	125.17	248.91	8,808.63
American Community Survey, 2015	SOM, FC	HC	9,065.45	6,298.81	6,298.81
Kiva Loans	FC	HC	6,326.35	6,018.61	6,018.61

However, as we have sought to develop algorithms that provide solutions that are good enough in a computing time that is small enough we also report evaluation (execution) and training (total execution) times to provide context to the results. In table 8.2, **SAA** refers to simulated annealing algorithm, **SOM** applies to self-organising map, **FC** relates to Fuzzy Clustering and **HC** indicates hill-climbing.

For comparison purposes execution time and total execution time relates to the final stage algorithms only. Note: there was no fine-tuning required for the hill-climbing algorithm. Details of the fine-tuning time for the initial stage solutions are available in (O’Luing et al., 2020) and (O’Luing et al., 2021).

8.2 Hyperparameters

The hyperparameters used in the experiments for the HEDA are provided in Table 8.3.

Table 8.3: Hyperparameters for the hybrid estimation of distribution algorithm (HEDA)

Dataset	Iterations, I	SAA Frequency	Mutation Chance	Elitism Rate	Add Strata Factor	Temperature, T
Swiss Municipalities	3,000	100	0.000185221	0.20	0.000000146	0.000000027
American Community Survey, 2015	200	10	0.000000016	0.30	0.000000054	0.000655857
Kiva Loans	600	100	0.000038838	0.30	0.000000739	0.001400962

Dataset	Decrement Constant, DC	Max number of sequences, maxit	Length of sequence, J	% of L for maximum q value, Lmax%	Probability of New Stratum, P(H + 1)	Population Size, Np
Swiss Municipalities	0.941411680	2	20,000	0.10	0.009183601	20
American Community Survey, 2015	0.815042754	20	5,000	0.01	0.000006609	20
Kiva Loans	0.954218273	2	10,000	0.02	0.000052373	20
The hyperparameters operate in this way, *Iterations, I* indicates the number of iterations the algorithm runs for. The algorithm stops at the last iteration. The HEDA builds and samples from a probability model, M_i once every iteration. The simulated annealing algorithm also runs after a tunable number of iterations, i.e. for the Swiss Municipalities and Kiva Loans experiments it runs once every 100 iterations whereas for the American Community Survey experiment it runs once every 10 iterations. The simulated annealing algorithm runs each time for a maximum number of sequences with the length of each sequence varying for each experiment. See (O’Luing et al., 2020) for more details on the hyperparameters for the simulated annealing algorithm.

The following hyperparameters are described in more detail in (O’Luing et al., 2019). However in brief, *Elitism rate* indicates the proportion of the ranked population that is carried over to the next iteration, *Mutation chance* indicates the probability of each atomic stratum being moved to another stratum every iteration. Similarly, *Add Strata Factor* is the probability of an atomic stratum moving to a new stratum. *Population size, N_p* is the number of solutions used for exploration and evolution each iteration.

The hyperparameters often need to be fine-tuned to suit the characteristics of a particular data set. We fine-tuned the hyperparameters for these experiments using the methodology on as described by (Bischla et al., 2017) in the R software language (R Core Team, 2021). Finally, although we have stated the hyperparameters, the solution quality attained with them in the HEDA may not be reproduced exactly on their first application. See table 2.1 for details of the hyperparameters, execution and total execution times in the training process.

8.3 Results

The results of these experiments are provided in Table 8.4.
Table 8.4: Summary by data set of the benchmark sample size and evaluation time for the multi stage combinations of clustering algorithms with the HEDA

Data set	Initial Stage(s)	Final Stage	Sample Size	Execution Time	Total Execution Time
Swiss Municipalities	Kmeans	HEDA	122.39	1,316.11	47,045.87
American Community Survey, 2015	SOM and FC	HEDA	8,800.53	28,857.52	550,676.58
Kiva Loans	Kmeans	HEDA	6,246.74	3,292.97	53,006.37

We compare the sample sizes attained in table 8.2 and table 8.4 and present the results below in table 8.5.

Table 8.5: Ratio comparison of the sample sizes for the benchmark results and the HEDA results

Data set	Benchmark results	HEDA Results	Ratio comparisons
Swiss Municipalities	125.17	122.39	0.98
American Community Survey, 2015	9,065.45	8,800.53	0.97
Kiva Loans	6,326.35	6,246.74	0.99

The ratio of the HEDA results to the benchmark results indicate that, although they are similar, the HEDA results are of better quality in all cases. However, as our focus has been on obtaining results that are good enough in a time that is small enough these results should be considered in the context of execution and total execution times.

Table 8.6 compares the execution times for the HEDA and those for the final stage algorithm in the benchmark results.

Table 8.6: Ratio comparison of the execution times and total execution times for the benchmark results and the HEDA results

Data set	Benchmark Results	HEDA Results	Ratio Comparisons	Benchmark Results	HEDA Results	Ratio Comparisons
Swiss Municipalities	248.91	1,316.11	5.29	8,808.63	47,045.87	5.34
American Community Survey, 2015	6,298.81	28,857.52	4.58	6,298.81	550,676.58	87.43
Kiva Loans	6,018.61	3,292.97	0.55	6,018.61	53,006.37	8.81

In brief the results indicate that overall, for these experiments, the HEDA takes longer to execute and fine-tune than the SAA for the Swiss Municipalities, or the combination of clustering algorithms with hill-climbing for the American Community Survey, 2015 and Kiva Loans experiments.
9 Empirical comparisons for continuous strata

Using the same methodology applied in section 8, we ran experiments using the same data sets comparing the performance of the HEDA on the stratification of continuous strata with the benchmark results from experiments we described in (O’Luing et al., 2019), (O’Luing et al., 2020) and (O’Luing et al., 2021). As before, we first provide a summary of the target and auxiliary variables in Table 9.1.

Data set	Target variables	Auxiliary variables
Swiss Municipalities	Airbat	Surfacesbois
American Community Survey, 2015	HINCP	VALP, SMOCP, INSP
US Census, 2000	HHINCOME	
Kiva Loans	term_in_months	lender_count, loan_amount
UN Commodity Trade Statistics data	trade_usd	

Likewise, Table 9.2 provides details of the best sample sizes and the corresponding algorithms from the aforementioned which they were attained with.

Dataset	Initial Stage(s)	Final Stage	Sample Size	Execution Time	Total Execution Time
Swiss Municipalities	NG and EM	HC	110	38.61	38.61
American Community Survey, 2015	NG and FC	HC	2,753.55	28,632.09	28,632.09
Kiva Loans	EM	HC	1,752.82	7,370.53	7,370.53

9.1 Hyperparameters

The hyperparameters used in the HEDA are provided below in Table 9.3.
Table 9.3: Hyperparameters for the hybrid estimation of distribution algorithm (HEDA)

Dataset	Iterations, I	SAA Frequency	Mutation Chance	Elitism Rate	Add Strata Factor	Temperature, T
Swiss Municipalities	1,000	100	0.0000008	0.2	0.00000000	0.0000058
American Community Survey, 2015	30	10	0.0000003	0.3	0.0000010	0.0000010
Kiva Loans	90	10	0.0000004	0.3	0.0000001	0.0000001

Table 3.1 outlines the hyperparameters used, along with the execution and total execution times resulting from the training process.

9.2 Results

The results of the HEDA experiments on continuous strata are provided in Table 9.4.

Table 9.4: Summary by data set of the sample size and evaluation time for the final stage in multi stage combinations of clustering algorithms with the HEDA

Data set	Initial Stage(s)	Final Stage	Sample Size	Execution Time	Total Execution Time
Swiss Municipalities	Kmeans	HEDA	104.93	207.11	6,792.40
American Community Survey, 2015	NG and FC	HEDA	2,619.06	22,663.52	247,314.63
Kiva Loans	NG and Kmeans	HEDA	1,576.80	8,791.12	88,951.97

As before, we compare the sample sizes attained in table 9.2 and table 9.4 and present the results below in table 9.5.

Table 9.5: Ratio comparison of the sample sizes for the benchmark results and the HEDA results

Data set	Benchmark Results	HEDA Results	Ratio Comparisons
Swiss Municipalities	110	104.934991822273	0.95
American Community Survey, 2015	2,753.55	2619.06326917666	0.95
Kiva Loans	1,752.82	1,576.80	0.90

The ratio of the HEDA results to the benchmark results indicate that, the HEDA results are of better quality in all three experiments.
Table 9.6 indicates that the execution times and total execution times are, overall, significantly greater for the HEDA.

Table 9.6: Ratio comparison of the execution times and total execution times for the benchmark results and the HEDA results

Data set	Benchmark Results	HEDA Results	Ratio Comparisons	Benchmark Results	HEDA Results	Ratio Comparisons
	Execution Time	Execution Time		Total Execution Time	Total Execution Time	
Swiss Municipalities	38.61	207.11	5.36	95.33	6,792.40	71.25
American Community Survey, 2015	28,632.09	22,663.52	0.79	41,740.96	247,314.63	5.92
Kiva Loans	7,370.53	8,791.12	1.19	7,428.64	88,051.97	11.97

10 Conclusions

Although these experiments are intended to be demonstrative rather than exhaustive, the multi-stage combination of an initial solution with the HEDA generally attains better sample sizes than the combinations of initial solutions with either the SAA or HC algorithm which had attained the best results in earlier experiments (that also included the GGA).

The execution times and total execution are, generally, significantly higher for the HEDA than some of the best alternative performing algorithms (especially the clustering algorithms considered in [O’Luing et al., 2021]). However, it is worth recalling that the HC algorithm in the above experiments had converged on a solution and would not have attained better results without adjusting the stopping conditions for algorithm or adjusting the solution. We should also bear in mind that the HEDA has found the best results so far for these experiments, and the execution and total times for the benchmark algorithms to find solutions of that quality (or better), using either the same or alternative starting solution, have not been evaluated.

That said, the HEDA is useful for a survey designer with expert knowledge of the sampling frame and the stratification of basic strata (atomic and continuous)- for whom the requirement to fine-tune hyperparameters is mitigated by prior knowledge.
also useful for survey designers for whom the fine-tuning times can be included in their computation budget.

Nonetheless, because of the combination of probability models, explorative and exploitative search we feel the HEDA is well placed to generally outperform when it comes to attaining results which are good enough in a time that is small enough.

11 Further Work

in the case of the HEDA adjustments can be made in order to use a seed function for reproducibility of results. Optimised versions of the GGA, SAA and basic EDA can also be implemented in

Rcpp. It might be useful to extend the functionality of the HEDA to the stratification approach used for spatial sampling by

Ballin and Barcaroli (2020). Furthermore, as we kept the population size, and the number of solutions to which we applied simulated annealing to every iteration, the same for all experiments, there is scope to fine those hyperparameters. Lastly, we could investigate more complex techniques such as the Bayesian optimisation algorithm, the estimation of Bayesian networks algorithm, the learning factorized distribution algorithm or mutual information maximising input clustering (MIMIC) (De Bonet et al., 1997) on this problem.

12 Acknowledgements

We acknowledge the useful discussions with Dr. Thierry Vallée of the Central Statistics Office in general with respect to the progress of the PhD, but also with respect to tweaking the

Rcpp code outlined above.

This material is based upon work supported by the Insight Centre for Data Analytics and Science Foundation Ireland under Grant No. 12/RC/2289-P2 which is co-funded under the European Regional Development Fund. Also, this publication has emanated from research supported in part by a grant from Science Foundation Ireland under Grant
number 16/RC/3918 which is co-funded under the European Regional Development Fund.
Bibliography

Anderson, E. (1935). The irises of the gaspe peninsula. Bulletin of the American Iris society 59, 2-5.

Baillargeon, S. and L.-P. Rivest (2009). A general algorithm for univariate stratification. International Statistical Review 77(3), 331-344.

Baillargeon, S. and L.-P. Rivest (2011). The construction of stratified designs in r with the package stratification. Survey Methodology 37(1), 53-65.

Ballin, M. and G. Barcaroli (2013). Joint determination of optimal stratification and sample allocation using genetic algorithm. Survey Methodology 39(2), 369-393.

Ballin, M. and G. Barcaroli (2020). Optimization of sampling strata with the SamplingStrata package. Accessed 3 May 2021. https://barcaroli.github.io/SamplingStrata/articles/SamplingStrata.html

Baluja, S. (1994). Population-based incremental learning. a method for integrating genetic search based function optimization and competitive learning. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Dept Of Computer Science.

Benedetti, R., G. Espa, and G. Lafatta (2008). A tree-based approach to forming strata in multipurpose business surveys. Survey Methodology 34(2), 195-203.

Bethel, J. W. (1985). An optimum allocation algorithm for multivariate surveys. American Statistical Proceedings of the Survey Research Methods, Section, 209-212.

Bethel, J. (1989). Sample allocation in multivariate surveys. Survey methodology 15(1), 47-57.

Bischla, B., J. Richterb, J. Bossekc, D. Hornb, J. Thomasa, and M. Langb (2017). mlrmpo: A modular framework for model-based optimization of expensive black-box functions. Gradient Boosting in Automatic Machine Learning: Feature Selection and Hyperparameter Optimization, 36.
Černý, V. (1985). Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm. *Journal of optimization theory and applications* 45(1), 41–51.

Chromy, J. R. (1987). Design optimization with multiple objectives. *Proceedings of the Survey Research Methods Section*.

De Bonet, J. S., C. L. Isbell, P. Viola, et al. (1997). Mimic: Finding optima by estimating probability densities. *Advances in neural information processing systems*, 424–430.

De Meo, M. and M. M. De Meo (2009). Package ‘bethel’.

Dang, D.-C., P. K. Lehre, and P. T. H. Nguyen (2019). Level-based analysis of the univariate marginal distribution algorithm. *Algorithmica* 81(2), 668–702.

Doerr, B. and M. S. Krejca (2020). The univariate marginal distribution algorithm copes well with deception and epistasis. In *Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion*, pp. 17–18.

Eddelbuettel, E. (2013). Seamless R and C++ Integration with Rcpp *ISBN 978-1-4614-6867-7* 10.1007/978-1-4614-6868-4

Etxeberria, R. (1999). Global optimization using bayesian networks. In *Proc. 2nd Symposium on Artificial Intelligence (CIMAF-99)*.

Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. *Annals of Eugenics* 7(2), 179–188.

Goldberg, D. E. (2002). *The design of innovation: Lessons from and for competent genetic algorithms*, Volume 1. Springer.

Gonzalez-Fernandez, Y. and M. Soto (2012). copulaedas: An r package for estimation of distribution algorithms based on copulas. *arXiv preprint arXiv:1209.5429*

Harik, G. R., F. G. Lobo, and D. E. Goldberg (1999). The compact genetic algorithm. *IEEE transactions on evolutionary computation* 3(4), 287–297.

Harik, G., E. Cantú-Paz, D. E. Goldberg, and B. L. Miller (1999). The gambler’s ruin problem, genetic algorithms, and the sizing of populations. *Evolutionary computation* 7(3), 231–253.

Hartigan, J. A. and M. A. Wong (1979). Hybrid Evolutionary Algorithms for Graph Coloring. Algorithm as 136: A k-means clustering algorithm *Journal of the Royal Statistical Society.* Series C (Applied Statistics) 28(1), 100–108.

Hauschild, M. and M. Pelikan (2011). An introduction and survey of estimation of distribution algorithms. *Swarm and evolutionary computation* 1(3), 111–128.

Hooke, R. and T. A. Jeeves (1961). “direct search”solution of numerical and statistical problems. *Journal of the ACM (JACM)* 8(2), 212–229.
Holland, J. (1975). Adaptation in natural and artificial systems, 1992. Ann Arbor, MI: University of Michigan Press.

Keskintürk, T. and Ş. Er (2007). A genetic algorithm approach to determine stratum boundaries and sample sizes of each stratum in stratified sampling. Computational Statistics & Data Analysis 52(1), 53–67.

Kirkpatrick, S., C. D. Gelatt, and M. P. Vecchi (1983). Optimization by simulated annealing. science 220(4598), 671–680.

Kollat, J. B., P. M. Reed, and J. R. Kasprzyk (2008). A new epsilon-dominance hierarchical bayesian optimization algorithm for large multiobjective monitoring network design problems. Advances in Water Resources 31(5), 828–845.

Kozak, M., M. R. Verma, and A. Zielinski (2007). Modern approach to optimum stratification: Review and perspectives. Statistics in Transition-new series 8(2), 223–250.

Larrañaga, P. and J. A. Lozano (2001). Estimation of distribution algorithms: A new tool for evolutionary computation, Volume 2. Springer Science & Business Media.

Lima, C. F., M. Pelikan, F. G. Lobo, and D. E. Goldberg (2009). Loopy substructural local search for the bayesian optimization algorithm. In International Workshop on Engineering Stochastic Local Search Algorithms, pp. 61–75. Springer.

Lima, C. F., F. G. Lobo, M. Pelikan, and D. E. Goldberg (2011). Model accuracy in the bayesian optimization algorithm. Soft Computing 15(7), 1351–1371.

Lin, S. (1965). Computer solutions of the traveling salesman problem. Bell System Technical Journal 44(10), 2245–2269.

Lin, S. and B. W. Kernighan (1973). An effective heuristic algorithm for the traveling-salesman problem. Operations research 21(2), 498–516.

Mühlenbein, H. and G. Paaß (1996). From recombination of genes to the estimation of distributions i. binary parameters. In International conference on parallel problem solving from nature, pp. 178–187. Springer.

Mühlenbein, H. and T. Mahnig (1999). Fda-a scalable evolutionary algorithm for the optimization of additively decomposed functions. Evolutionary computation 7(4), 353–376.

Mühlenbein, H. and T. Mahnig (2001). Evolutionary algorithms: From recombination to search distributions. In Theoretical Aspects of Evolutionary Computing, pp. 135–173. Springer.

Nelder, J. A. and R. Mead (1965). A simplex method for function minimization. The computer journal 7(4), 308–313.
O’Luing, M., S. Prestwich, and S. Armagan Tarim (2019). A grouping genetic algorithm for joint stratification and sample allocation designs. Survey Methodology 45(3), 513–531.

O’Luing, M., S. Prestwich, and S. A. Tarim (2020). A simulated annealing algorithm for joint stratification and sample allocation designs. arXiv preprint arXiv:2011.13006.

O’Luing, M., S. Prestwich, and S. A. Tarim (2021). Combining k-means type algorithms with hill climbing for joint stratification and sample allocation designs. arXiv preprint arXiv:2108.08038.

Paul, T. K. and H. Iba (2002). Linear and combinatorial optimizations by estimation of distribution algorithms. In 9th MPS symposium on Evolutionary Computation, IPSJ, Japan, Volume 12.

Pearl, J. (1988). Probabilistic reasoning in intelligent systems: networks of plausible inference. San Mateo, CA: Morgan Kaufmann.

Pelikan, M., D. E. Goldberg, E. Cantú-Paz, et al. (1999). Boa: The bayesian optimization algorithm. In Proceedings of the genetic and evolutionary computation conference GECCO-99, Volume 1, pp. 525–532. Citeseer.

Pelikan, M., D. E. Goldberg, and S. Tsutsui (2003). Hierarchical bayesian optimization algorithm: toward a new generation of evolutionary algorithms. In SICE 2003 Annual Conference (IEEE Cat. No. 03TH8734), Volume 3, pp. 2738–2743. IEEE.

Petrovski, A., S. Shakya, and J. McCall (2006). Optimising cancer chemotherapy using an estimation of distribution algorithm and genetic algorithms. In Proceedings of the 8th annual conference on Genetic and evolutionary computation, pp. 413–418.

R Core Team (2021). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.

Robles, V., J. M. Peña, P. Larrañaga, M. S. Pérez, and V. Herves (2006). Ga-edu: A new hybrid cooperative search evolutionary algorithm. In Towards a New Evolutionary Computation, pp. 187–219. Springer.

Shah, R. and P. Reed (2011). Comparative analysis of multiobjective evolutionary algorithms for random and correlated instances of multiobjective d-dimensional knapsack problems. European Journal of Operational Research 211(3), 466–479.

Sörensen, K. and F. Glover (2013). Metaheuristics. Encyclopedia of operations research and management science 62, 960–970.

Tang, M. and R. Lau (2005). A hybrid estimation of distribution algorithm for the minimal switching graph problem. In International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’06), Volume 1, pp. 708–713.
1 Appendix

1 Descriptions of target and auxiliary variables for the HEDA experiment data sets

Data set	Variable	Description
SwissMunicipalities	Surfacebois	wood area
SwissMunicipalities	Airbal	area with buildings
SwissMunicipalities	POPTOT	total population
SwissMunicipalities	Hapoly	municipality area
American Community Survey, 2015	HINCP	Household income (past 12 months)
American Community Survey, 2015	VALP	Property value
American Community Survey, 2015	SMOCP	Selected monthly owner costs
American Community Survey, 2015	INSP	Fire/hazard/flood insurance (yearly amount)
American Community Survey, 2015	BLD	Units in structure
American Community Survey, 2015	TEN	TEN
American Community Survey, 2015	WKEXREL	Work experience of householder and spouse
American Community Survey, 2015	WORKSTAT	Work status of householder or spouse in family households
American Community Survey, 2015	HFL	House heating fuel
American Community Survey, 2015	YBL	When structure first built
Kiva Loans	term_in_months	The duration for which the loan was disbursed in months
Kiva Loans	lender_count	The total number of lenders that contributed to this loan
Kiva Loans	loan_amount	The amount disbursed by the field agent to the borrower (USD)
Kiva Loans	sector	High level category, e.g. Food
Kiva Loans	currency	The currency in which the loan was disbursed
Kiva Loans	activity	More granular category, e.g. Fruits & Vegetables
Kiva Loans	region	Full region name within the country
Kiva Loans	partner_id	ID of partner organisation

2 Fine-tuning the hyperparameters for the hybrid Estimation of Distribution Algorithm - Atomic Strata
Table 2.1: Hyperparameters for the HEDA in the case of Atomic Strata
Swiss Municipalities
Fine-tuning iteration No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Fine-tuning iteration No.	Max number of sequences, maxit	Length of sequence, J	% of L for maximum q value, L_{max}%	Probability of New Stratum, P(\text{H + 1})	Population Size, N_p	Sample Size	Execution Time
1	1	10,000	0.0607174	0.0007444	20	128.98	840.66
2	2	30,000	0.0546600	0.0096341	20	153.21	3,752.61
3	1	20,000	0.0458527	0.0071244	20	128.19	1,314.53
4	1	30,000	0.0287594	0.0048503	20	129.06	5,527.23
5	2	20,000	0.0120236	0.0060850	20	123.58	1,351.60
6	2	10,000	0.0670922	0.0037592	20	126.99	886.40
7	2	20,000	0.00821999	0.0028418	20	125.84	3,697.88
8	2	30,000	0.0025123	0.0057328	20	127.06	7,791.48
9	1	20,000	0.0946376	0.0082044	20	126.42	1,367.22
10	1	10,000	0.0233130	0.0018503	20	130.34	659.67
11	2	20,000	0.0954896	0.0064802	20	125.10	1,304.16
12	2	20,000	0.0135087	0.003416	20	130.00	3,382.07
13	2	20,000	0.0880779	0.0050088	20	126.38	1,379.07
14	2	20,000	0.0958774	0.0076491	20	122.92	1,316.11
15	2	20,000	0.0101602	0.0088449	20	138.17	1,240.32
16	2	30,000	0.0988187	0.0085451	20	125.56	5,776.53
17	2	20,000	0.0990880	0.0091836	20	122.39	1,317.31
18	2	20,000	0.0105801	0.0093996	20	133.49	1,587.33
19	2	20,000	0.0992476	0.0093288	20	128.43	1,319.65
20	2	20,000	0.0102580	0.0082125	20	133.65	1,211.38

| Minimum | 122.39 | Total | 47,045.87 |

American Community Survey, 2015
Fine-tuning iteration No.	Iterations, I	SAA Frequency	Mutation Chance	Elitism Rate	Add Strata Factor	Temperature, T	Decrement Constant, DC
1	300	10	0.0000000	0.4	0.0000001	0.00095222	0.6933468
2	200	10	0.0000001	0.4	0.00042573	0.5736055	
3	300	10	0.0000000	0.5	0.00085991	0.9229554	
4	300	5	0.0000000	0.3	0.00019888	0.7242638	
5	200	10	0.0000000	0.3	0.00065586	0.8150428	
6	200	5	0.0000000	0.3	0.00057615	0.6266293	
7	200	5	0.0000001	0.3	0.00033515	0.8724550	
8	300	5	0.0000001	0.4	0.00021361	0.9842767	
9	300	10	0.0000001	0.5	0.00077701	0.7707891	
10	200	5	0.0000000	0.5	0.00095672	0.5456756	
11	200	10	0.0000000	0.3	0.00013141	0.8217492	
12	300	10	0.0000000	0.5	0.00004408	0.7947279	
13	300	10	0.0000001	0.3	0.00011081	0.7065825	
14	300	10	0.0000001	0.4	0.00012021	0.8424332	
15	300	10	0.0000000	0.5	0.00015274	0.8056202	
16	300	10	0.0000001	0.3	0.00009295	0.6950758	
17	200	10	0.0000000	0.4	0.00007020	0.7462928	
18	300	10	0.0000001	0.3	0.00076447	0.8238593	
19	300	10	0.0000001	0.5	0.00009108	0.611786	
20	200	10	0.0000001	0.4	0.00043680	0.7087167	

Fine-tuning iteration No.	Max number of sequences, K	Length of sequence, L	% of L for maximum q value, Lmax%	Probability of New Stratum, P(H + 1)	Population Size, N_p	Sample Size	Execution Time
1	20	2,500	0.0210657	0.0000001	20	8,449.13	8,542.77
2	20	5,000	0.0174433	0.0000010	20	8,529.25	26,978.64
3	10	2,500	0.0195874	0.0000007	20	8,834.01	6,984.81
4	10	5,000	0.0131232	0.0000005	20	8,805.62	36,489.00
5	20	5,000	0.0103373	0.0000006	20	8,800.53	28,857.52
6	20	2,500	0.0195154	0.0000004	20	8,824.74	20,805.10
7	20	2,500	0.0220333	0.0000003	20	8,816.72	20,756.65
8	20	5,000	0.0187521	0.0000006	20	8,811.21	89,838.25
9	10	5,000	0.0241063	0.0000008	20	8,838.34	17,576.73
10	10	2,500	0.0122188	0.0000002	20	8,809.30	9,145.87
11	20	5,000	0.0110847	0.0000011	20	8,801.18	28,832.86
12	20	5,000	0.0100309	0.0000011	20	8,810.14	44,465.19
13	20	5,000	0.0143632	0.0000011	20	8,807.34	44,395.63
14	10	2,500	0.0195556	0.0000011	20	8,822.30	7,088.03
15	20	5,000	0.0217767	0.0000009	20	8,819.96	44,605.16
16	10	5,000	0.0154209	0.0000006	20	8,824.89	17,641.07
17	20	5,000	0.0153991	0.0000007	20	8,815.61	28,870.49
18	10	5,000	0.0111377	0.0000007	20	8,811.88	17,556.67
19	20	5,000	0.0105166	0.0000000	20	8,804.58	44,660.20
20	10	2,500	0.0103235	0.0000004	20	8,850.46	4,585.94

Minimum: 8,800.53
Total: 550,676.58

Kiva Loans	Iterations, I	SAA Frequency	Mutation Chance	Elitism Rate	Add Strata Factor	Temperature, T	Decrement Constant, DC

27
Fine-tuning iteration No.	Max number of sequences, maxit	Length of sequence, J	$\%$ of L for maximum q value, $L_{max} \%$	Probability of New Stratum, $P(H + 1)$	Population Size, N_p	Sample Size	Execution Time
1	1	5,000	0.0216957	0.0000075	20	6,536.39	7,325.52
2	3	10,000	0.017433	0.0000963	20	6,338.61	6,190.59
3	2	5,000	0.0159755	0.0000733	20	6,559.13	3,720.53
4	1	10,000	0.0131252	0.0000486	20	6,265.78	2,837.05
5	3	10,000	0.0103373	0.0000699	20	6,374.74	1,422.56
6	3	5,000	0.0195154	0.0000377	20	6,441.66	1,111.02
7	2	5,000	0.0220333	0.0000285	20	6,321.22	1,768.59
8	3	10,000	0.0187521	0.0000574	20	6,265.44	3,174.16
9	2	10,000	0.0241063	0.0000821	20	6,349.25	2,045.19
10	1	5,000	0.0122188	0.0000186	20	6,447.99	1,280.92
11	2	10,000	0.0151998	0.0000524	20	6,246.74	3,292.97
12	2	5,000	0.0162442	0.0000388	20	6,287.11	2,154.07
13	2	5,000	0.0152621	0.0000566	20	6,439.26	2,109.17
14	2	5,000	0.0150536	0.0000973	20	6,466.34	1,400.07
15	1	10,000	0.0187736	0.0000071	20	6,250.33	2,701.06
16	2	10,000	0.0195352	0.0000505	20	6,365.74	1,649.00
17	1	5,000	0.0162050	0.0000099	20	6,313.38	1,888.96
18	1	10,000	0.0141372	0.0000678	20	6,428.67	2,138.39
19	1	10,000	0.0159892	0.0000338	20	6,250.00	2,677.30
20	2	5,000	0.0160194	0.0000343	20	6,274.33	2,117.25

Minimum: 6,246.74
Total: 53,006.37
3 Fine-tuning the hyperparameters for the hybrid Estimation of Distribution Algorithm - Continuous Strata

Table 3.1: Hyperparameters for the HEDA in the case of Continuous Strata in Swiss Municipalities

Fine-tuning iteration No.	Iterations, I	SAA Frequency	Mutation Chance	Elitism Rate	Add Strata Factor	Temperature, T	Decrement Constant, DC
1	3,000	200	0.0000096	0.2	0.0000082	0.000010	0.6933468
2	1,000	200	0.0000954	0.3	0.0000023	0.000043	0.5736595
3	3,000	200	0.0000292	0.3	0.0000049	0.000086	0.9229554
4	3,000	100	0.000463	0.2	0.00000476	0.000021	0.7242638
5	1,000	200	0.0004161	0.2	0.0000054	0.000066	0.8150428
6	1,000	100	0.0000008	0.2	0.0000003	0.0000058	0.6266203
7	2,000	100	0.0000112	0.2	0.0000035	0.0000034	0.8724350
8	2,000	100	0.0005757	0.3	0.0000020	0.000022	0.9842787
9	3,000	200	0.0000666	0.3	0.0000063	0.000078	0.7707891
10	2,000	100	0.0000728	0.3	0.0000098	0.000096	0.5457658
11	2,000	100	0.0000041	0.3	0.0000006	0.000098	0.6376087
12	3,000	200	0.000018	0.3	0.0000002	0.000082	0.5233369
13	3,000	100	0.0000002	0.3	0.0000004	0.0000069	0.8926658
14	1,000	100	0.0000111	0.2	0.0000003	0.000076	0.8248724
15	2,000	200	0.0000008	0.3	0.0000002	0.000013	0.6029297
16	1,000	100	0.0000007	0.2	0.0000003	0.000056	0.5545023
17	1,000	200	0.0000002	0.3	0.0000003	0.000088	0.6750674
18	1,000	100	0.0000008	0.2	0.0000040	0.000088	0.5495252
19	1,000	100	0.0000677	0.2	0.0000002	0.0000057	0.5490809
20	1,000	200	0.0000008	0.2	0.0000008	0.000085	0.6441513

Fine-tuning iteration No.	Max number of sequences, maxit	Length of sequence, J	% of L for maximum q value, Lmax%	Probability of New Stratum, P(H + 1)	Population Size, N_p	Sample Size	Execution Time
1	5	3,000	0.0216957	0.000075	20	107.80	458.67
2	10	5,000	0.0174433	0.0005963	20	107.94	218.91
3	5	4,000	0.0159755	0.000733	20	108.06	364.22
4	5	5,000	0.0131232	0.000486	20	107.91	629.75
5	10	4,000	0.0103373	0.000669	20	108.12	161.03
6	10	3,000	0.0195154	0.000377	20	104.93	207.11
7	10	4,000	0.0220333	0.000285	20	107.74	571.95
8	10	5,000	0.0187521	0.000574	20	107.48	728.80
9	5	4,000	0.0241063	0.0002821	20	108.03	359.16
10	5	3,000	0.0122188	0.000186	20	108.32	296.15
11	5	3,000	0.0156453	0.000395	20	107.76	296.91
12	5	4,000	0.0179054	0.000770	20	107.89	471.97
13	10	3,000	0.0155686	0.0000116	20	106.97	474.13
14	5	3,000	0.0213493	0.0000442	20	106.65	139.98
Fine-tuning Iteration No.	Iterations, I	SAA Frequency	Mutation Chance	Elitism Rate	Add Strata Factor	Temperature, T	Decrement Constant, DC
---------------------------	--------------	---------------	----------------	-------------	------------------	----------------	------------------------
1	30	15	0.0000004	0.2	0.0000008	0.0000001	0.693348
2	20	15	0.00000010	0.3	0.0000002	0.0000004	0.573659
3	30	15	0.00000003	0.3	0.0000005	0.0000009	0.9229554
4	30	10	0.00000005	0.2	0.0000008	0.0000002	0.7242638
5	20	15	0.00000002	0.2	0.0000005	0.0000007	0.815428
6	20	10	0.00000006	0.2	0.0000009	0.0000006	0.6266293
7	20	10	0.00000006	0.3	0.0000002	0.0000003	0.8724356
8	30	10	0.00000006	0.3	0.0000002	0.0000002	0.984278
9	30	15	0.00000009	0.3	0.0000006	0.0000008	0.7707891
10	20	10	0.00000007	0.3	0.0000002	0.0000002	0.5456765
11	30	10	0.00000003	0.3	0.0000002	0.0000009	0.965989
12	30	10	0.00000005	0.3	0.0000002	0.0000009	0.9542911
13	30	15	0.00000002	0.3	0.0000002	0.0000009	0.981440
14	30	10	0.00000002	0.3	0.0000001	0.0000001	0.9533995
15	30	10	0.00000003	0.3	0.0000002	0.0000009	0.963629
16	30	10	0.00000003	0.3	0.0000002	0.0000009	0.963629
17	20	15	0.00000004	0.3	0.0000001	0.0000008	0.979287
18	20	15	0.00000004	0.3	0.0000001	0.0000008	0.979287
19	30	10	0.00000003	0.3	0.0000002	0.0000010	0.5353839
20	30	10	0.00000003	0.3	0.0000002	0.0000010	0.5662247

Fine-tuning Iteration No.	Max number of sequences, maxit	Length of sequence, J	% of L for maximum q value, Lmax%	Probability of New Stratum, P(H + 1)	Population Size, N_p	Sample Size	Execution Time
1	1	25,000	0.0216057	0.00000008	20	3,026.35	4,003.11
2	2	50,000	0.0174433	0.0000996	20	2,762.46	11,470.11
3	1	25,000	0.0159755	0.0000073	20	3,029.18	3,987.64
4	1	50,000	0.0131232	0.0000049	20	2,703.32	15,910.83
5	2	50,000	0.0103373	0.0000066	20	2,766.39	11,459.90
6	2	25,000	0.0195154	0.0000038	20	2,932.12	5,156.96
7	2	25,000	0.0220333	0.0000028	20	2,928.78	5,177.00
8	2	50,000	0.0187521	0.0000057	20	2,620.40	22,859.85
9	1	50,000	0.0241063	0.0000082	20	2,861.24	8,281.68
10	1	25,000	0.0122188	0.0000019	20	3,027.27	3,872.97
11	2	50,000	0.0157505	0.0000043	20	2,621.62	22,758.15
12	1	50,000	0.0165162	0.0000033	20	2,704.42	15,914.84
13	1	25,000	0.0155316	0.0000041	20	3,015.87	4,033.10
14	2	25,000	0.0145631	0.0000047	20	2,759.56	10,261.55
15	1	25,000	0.0177011	0.0000055	20	2,856.91	7,632.94
16	2	50,000	0.0158378	0.0000001	20	2,623.53	22,497.67
17	2	50,000	0.0113557	0.0000013	20	2,619.06	22,663.52
Fine-tuning iteration No.	Iterations, I	SAA Frequency	Mutation Chance	Elitism Rate	Add Strata Factor	Temperature, T	Decrement Constant, DC
--------------------------	--------------	---------------	----------------	--------------	-------------------	----------------	-----------------------
1	50,000	0.0166039	0.0000014	20	2.763.13	11,136.54	
19	50,000	0.0126039	0.0000001	20	2.619.99	22,408.28	
20	50,000	0.0121512	0.0000007	20	**2.701.10**	15,818.99	
Minimum						2.619.08	
Total						247,314.63	

Fine-tuning iteration No.

Max number of sequences, \(J \)	Length of sequence, \(J \)	\% of \(L \) for maximum \(q \) value, \(L_{max} \% \)	Probability of New Stratum, \(P(H + 1) \)	Population Size, \(N_p \)	Sample Size	Execution Time
1	10,000	0.0216057	0.0000001	20	1,806.82	1,150.00
2	20,000	0.0174433	0.000010	20	1,747.71	2,157.59
3	10,000	0.0159755	0.000007	20	1,797.86	1,120.60
4	20,000	0.0131232	0.000005	20	1,613.25	6,316.39
5	20,000	0.0103373	0.000006	20	1,719.17	2,172.81
6	20,000	0.0195154	0.000004	20	1,753.86	1,463.30
7	10,000	0.0220333	0.000003	20	1,681.44	2,239.25
8	20,000	0.0241063	0.000008	20	1,597.02	7,762.03
9	10,000	0.0122188	0.000002	20	1,683.68	1,517.16
10	20,000	0.0183564	0.000007	20	1,606.42	4,810.26
11	20,000	0.0187989	0.000006	20	1,739.74	2,112.80
12	20,000	0.0137673	0.000001	20	**1,592.34**	8,885.01
13	20,000	0.0138555	0.000001	20	1,629.67	4,429.31
14	20,000	0.0156086	0.000008	20	1,576.80	8,791.12
15	20,000	0.0152018	0.000008	20	1,622.36	4,377.68
16	20,000	0.0197992	0.000001	20	1,600.29	5,549.41
17	20,000	0.0156407	0.000009	20	1,607.65	9,208.90
18	20,000	0.0166562	0.000008	20	1,651.75	3,107.61
19	20,000	0.0150126	0.000001	20	**1,590.38**	8,971.35

Kiva Loans

- **No.**: Iteration number.
- **8**: Number of iterations, I.
- **50,000**: SAA Frequency.
- **0.0166039**: Mutation Chance.
- **0.0000014**: Elitism Rate.
- **20**: Add Strata Factor.
- **2.763.13**: Temperature, T.
- **11,136.54**: Decrement Constant, DC.

Fine-tuning iteration No.

- **1**: Max number of sequences, \(J \).
- **10,000**: Length of sequence, \(J \).
- **0.0216057**: \% of \(L \) for maximum \(q \) value, \(L_{max} \% \).
- **0.0000001**: Probability of New Stratum, \(P(H + 1) \).
- **20**: Population Size, \(N_p \).
- **1,806.82**: Sample Size.
- **1,150.00**: Execution Time.
| | Minimum | Total |
|----------------|---------|-------|
| | 1,576.80| 88,951.97 |