Supporting Information

A Generalized Semi-Empirical Approach to the Modelling of the Optical Band Gap of Ternary Al-(Ga, Nb, Ta, W) Oxides Containing Different Alumina Polymorphs.

Francesco Di Quarto*, Andrea Zaffora, Francesco Di Franco, Monica Santamaria

Università degli Studi di Palermo, Dipartimento di Ingegneria, Viale delle Scienze, 90128 Palermo, Italy

* corresponding author: francesco.diquarto@unipa.it (phone number: +393204328592)
Figure S1. Fitting of all the experimental data pertaining $\beta-(Ga_{(1-x)}Al_x)_2O_3$ mixed oxides system, regardless of band gap measure technique.

$\beta-(Ga_{(1-x)}Al_x)_2O_3$ ternary system: E_g vs x_{Al} for direct optical transitions

In order to complete the test on the influence of different parameters on the ability of the proposed correlation to fit the composition dependence of $\beta-(Ga_{(1-x)}Al_x)_2O_3$ we reported in Figure S2 the experimental $E_{g,\text{opt,dir}}$ values of $\beta-(Ga_{(1-x)}Al_x)_2O_3$ derived by using the Tauc’s plot approximation1 and pertaining to samples grown by pulsed laser deposition (PLD). A rather limited range of Al composition ($0.11 \leq x \leq 0.48$) was exploited in order to maintain the pure monoclinic structure of $\beta-(Ga_{(1-x)}Al_x)_2O_3$ films ($x < 0.51$).

According to the authors, the best fitting linear equation of the experimental data of Figure S2 follows the equation:

$$E_{g,\text{opt,dir}} = 4.8123 + 2.1376x_{Al} \text{ [eV]} \quad E_{g1} = 6.95 \text{ eV}$$ \[S1\]

From Eq. S1 an extrapolated ($x = 1$) hypothetical $E_{g,\text{dir}}$ value of 6.95 eV is derived for monoclinic $\theta-Al_2O_3$. The limited range of Al composition exploited ($x_{Al} \leq 0.51$) could affect the extrapolated $E_{g,\text{opt,dir}}$ value of $\theta-Al_2O_3$, but it agrees nicely with the DFT estimated E_g values2–5 and with experimental E_g value measured by REELS for crystalline Atomic Layer Deposited (ALD)6 or sputtered Al$_2$O$_3$ films.7
Figure S2. Direct optical band gap values vs Al content (0.11 ≤ x_{Al} ≤ 0.48) for PLD polycrystalline films derived from Tauc plots (azure circles). Theoretical band gap values derived according to eqs. 8 by assuming (see text): \(\chi_{Al} = 1.50; B_{\theta-Al_2O_3} = -2.225 \text{ eV}; A_{\theta-Al_2O_3} = 2.3; \chi_{Ga} = 1.60; B_{\beta-Ga_2O_3} = -2.31 \text{ eV}; A_{\beta-Ga_2O_3} = 1.983 \) (red squares).

Fitting procedure of experimental data points was carried out by means of Eq. 8 and by assuming the same values of B and electronegativity, previously used, for fitting the experimental \(E_{g,ind.} \) vs \(x_{Al} \) data sets. In agreement with literature data a value of 4.85 ± 0.05 eV was assumed for the direct band gap value of \(\beta-Ga_2O_3 \) from which the value of \(A_\beta = 1.98 \) was derived according to Eq. 1 with \(B = -2.31 \) eV. In Figure S2 we report, together with the experimental data, the theoretical values estimated by Eq. 8 providing the following equation:

\[
E_{g,th} = 0.0031x_{Al}^3 + 0.1378x_{Al}^2 + 1.9691x_{Al} + 4.85 \quad \text{[eV]} \quad \text{[S2]}
\]

A value of \(A_{Al_2O_3} = 2.30 \), slightly higher (+6%) than the average one of Eq. 3, was derived for \(\theta \)-alumina in front of a slightly lower (-8%) value, used for \(\beta-Ga_2O_3 \). From Eq. S2 a value of 6.96 eV is obtained for the direct band gap of \(\theta-Al_2O_3 \) almost coincident with the value derived from fitting the experimental data (see Eq. S1). This last value should be in very good agreement with the value of \(E_g \) reported by Peintinger et al. apart the disagreement on the nature of optical transitions which is reported as indirect.
Figure S3. Non-direct optical band gap values vs Al content (0 ≤ $x_{Al} ≤ 0.8$) (blue plus) for amorphous anodic film grown up to 5 V Hg/HgO at 10 mV s$^{-1}$ in borate buffer solution on Al-Ta magnetron sputtered alloys of various compositions derived from Tauc plots.

Figure S4. Non-direct optical band gap values vs Nb content (blue times symbols) for amorphous anodic film grown up to 5 V Ag/AgCl at 10 mV s$^{-1}$ in NaOH solution on Nb-Ta magnetron sputtered alloys of various compositions derived from Tauc plots.
Polymorph/phase	χ_1	A_1	B_1 [eV]	χ_2	A_2	B_2 [eV]
α-(Ga$_{(1-x)}$Al$_x$)$_2$O$_3$	1.50	2.80	-2.71	1.60	2.22	-2.71
β-(Ga$_{(1-x)}$Al$_x$)$_2$O$_3$	1.50	2.23	-2.225	1.60	1.96	-2.31
Am (Nb$_{(1-x)}$Al$_x$)$_2$O$_{(5-2x)}$	1.50	1.67	-2.25	1.60	1.302	-1.35
Am (Ta$_{(1-x)}$Al$_x$)$_2$O$_{(5-2x)}$	1.50	1.67	-2.25	1.50	1.35	-1.125
Am (W$_{(1-x)}$Al$_{2x}$)O$_3$	1.50	1.68	-2.25	1.70	1.35	-1.15

Table S1. Fitting parameters for the different Al-(Ga, Nb, Ta, W) oxides systems studied in the manuscript (see eq. 8). Element 1: Al, Element 2: cationic partner.
References

(1) Schmidt-Grund, R.; Kranert, C.; Von Wenckstern, H.; Zviagin, V.; Lorenz, M.; Grundmann, M. Dielectric Function in the Spectral Range (0.5-8.5)EV of an (Alx Ga1-x)2O3 Thin Film with Continuous Composition Spread. J. Appl. Phys. 2015, 117 (16), 165307.

(2) Peintinger, M. F.; Kratz, M. J.; Bredow, T. Quantum-Chemical Study of Stable, Meta-Stable and High-Pressure Alumina Polymorphs and Aluminum Hydroxides. J. Mater. Chem. A 2014, 2 (32), 13143–13158.

(3) Liu, D.; Guo, Y.; Lin, L.; Robertson, J. First-Principles Calculations of the Electronic Structure and Defects of Al2O3. J. Appl. Phys. 2013, 114 (8), 083704.

(4) Wang, T.; Li, W.; Ni, C.; Janotti, A. Band Gap and Band Offset of Ga2O3 and (AlxGa1-x)2O3 Alloys. Phys. Rev. Appl. 2018, 10, 011003.

(5) Peelaers, H.; Varley, J. B.; Speck, J. S.; Van De Walle, C. G. Structural and Electronic Properties of Ga2O3-Al2O3 Alloys. Appl. Phys. Lett. 2018, 112 (24), 242101.

(6) Franchy, R.; Schmitz, G.; Gassmann, P.; Bartolucci, F. Growth of Thin, Crystalline Oxide, Nitride, and Oxynitride Films on NiAl and CoGa Surfaces. Appl. Phys. A Mater. Sci. Process. 1997, 65 (6), 551–566.

(7) Fares, C.; Ren, F.; Lambers, E.; Hays, D. C.; Gila, B. P.; Pearton, S. J. Valence- and Conduction-Band Offsets for Atomic-Layer-Deposited Al2O3 on (010) (Al0.14Ga0.86)2O3. J. Electron. Mater. 2019, 48 (3), 1568–1573.

(8) Hinuma, Y.; Gake, T.; Oba, F. Band Alignment at Surfaces and Heterointerfaces of Al2O3, Ga2O3, In2O3, and Related Group-III Oxide Polymorphs: A First-Principles Study. Phys. Rev. Mater. 2019, 3 (8), 084605.