The Ecological Risk Assessment of PPCPs Based on Different Endpoints in Urban Rivers from The Pearl River

Guanyu Zhu1,2, Yan Su1,2, Yang Zhang1, Jingcheng Han2, Xiaofeng Wu2 and Yinliang Gao1,*

1Shenzhen Guanghuiyuan Environmental Water Co., Ltd, Yanhe North Road 1002, Shenzhen 518000, China
2Water research Center, Tsinghua Shenzhen International Graduate School, Tsinghua Campus, The University Town, Shenzhen 518055, China

*Corresponding author e-mail: jpzhangyang@gmail.com

Abstract. With rapid development of the cities along the Pearl River, the ecological system of urban rivers is being threatened by pharmaceuticals and personal care products (PPCPs). In this study, the distribution of four common PPCPs triclocarban, diclofenac, ibuprofen and triclosan was summarized from literatures and the ecological risk of the PPCPs in surface water of urban rivers from the Pearl River was evaluated based on six different endpoints. Among these PPCPs, ibuprofen was the most predominant compound with the highest concentration of 1417 ng/L, and triclocarban had the lowest PNECs of 2.4 ng/L derived from reproduction toxic data. Additionally, PNECs of diclofenac and triclocarban derived from reproduction toxic data were lower than those derived from other effects, while the PNECs of ibuprofen and triclosan derived from biochemical toxic data (endocrine disruption effect) were lower than those derived from other effects. All the PPCPs exhibited high risk on certain effects, especially for triclocarban exhibited high ecological risk on cellular, growth, mortality and reproduction of aquatic life. The results demonstrated that triclocarban, diclofenac, ibuprofen and triclosan had adverse effects on aquatic life in the Pearl River and actions needed to be taken for PPCPs, especially for triclocarban.

Keywords. Urban river, Risk quotient, No observed effect concentration, Predicted no effect concentration, Toxic effect.

1. Introduction
The pharmaceuticals and personal care products (PPCPs), first proposed by Daughton and Ternes in 1999, were characterized as emerging pollutants which would pose potential threatens to environment (Daughton and Ternes 1999). They include prescription for the treatment or prevention of human and animal diseases, such as antibiotics, lipid regulators, and anti-inflammatory drugs etc. Most of the PPCPs in wastewater are from wastewater treatment plants, pharmaceutical manufactories, livestock farms and hospitals. Due to lack of specialized treatment for PPCPs in wastewater treatment plants, PPCPs have been frequently detected in various environment, such as surface water, groundwater, drinking water and sediment (Liu and Wong 2013). Although the concentrations of PPCPs in water are low, they are
easily transferred in the environment and through the food chain to humans and animals. Researches indicate that PPCPs may be harmful to the ecological system (Isidori et al. 2005; Schlesinger 2004).

The Pearl River Basin is the second largest river basin in China. It includes the rivers of Xijiang, Dongjiang, Beijiang and the Pearl River Delta. It is also one of the most developed regions in China, and has formed the Guangdong-Hong Kong-Macau Greater Bay Area. In 2018, the GDP of the nine cities from Guangdong province in the Pearl River Delta reached 8 trillion CNY (approx. 1.16 trillion USD). Rapid economic development and population growth posed severe challenges to water safety. Researches demonstrated that pharmaceuticals were widely detected in the Pearl River (Huang et al. 2011). Thus, it is urgent to understand to what extent the adverse effect imposed by PPCPs to the Pearl River.

Most of the studies used risk quotient (RQ) to evaluate the risk of pollutants in the water (Kim et al. 2007; Sanderson et al. 2003). Generally, RQ is calculated by dividing a point of exposure by a point estimate of effects (predicted no effect concentration, PNEC). The traditional PNEC was normally calculated based on all the endpoints, which may underestimate certain toxic endpoint, and thus was incapable of providing adequate protection for aquatic species (Zheng et al. 2017).

In this study, the concentrations of four common PPCPs triclocarban, diclofenac, ibuprofen and triclosan in surface water of urban rivers from the Pearl River were summarized from literatures. PNECs of four PPCPs were derived based on six endpoints of behaviour, biochemical, cellular, growth, mortality and reproduction. Then RQ was used for ecological risk assessment. The present study would provide a reference for decision makers to understand the risk of PPCPs in the Pearl River and set emission standards to the PPCPs.

2. Ecological risk assessment

The chronic toxic data of no observed effect concentrations (NOECs) were obtained from the ECOTOX EPA database (https://cfpub.epa.gov/ecotox/) and academic literatures. The geometric mean is selected when same species have multiple reliable toxicity data. All the data were considered appropriateness and reliability before application and used to gain predicted no effect concentration (PNEC) by the following formula.

\[
PNEC = \frac{NOEC}{AF}
\]

(1)

Table 1 shows the assessment factors (AF) corresponding to different toxic data groups provided by the European Chemicals Agency.

Toxic data group	AF
One group of chronic toxic data NOEC (fish or crustaceans)	100
Two groups of chronic toxic data NOEC (fish or crustaceans or algae)	50
Three groups of chronic toxic data NOEC (fish or crustaceans or algae)	10

The ecological risk assessment in the surface water was performed by the following formula (Sun et al. 2013).

\[
RQ = \frac{C_w}{PNEC}
\]

(2)

Where Cw is the measured concentration, PNEC is the predicted no effect concentration. The four risk levels were classified based on previous research (Yan et al. 2015).

- HQ < 0.1, there is no risk;
- 0.1 ≤ HQ < 1.0, the risk is low;
- 1.0 ≤ HQ < 10, the risk is moderate;
- HQ > 10, the risk is high.
3. Distribution of the ppcps
Table 2 shows the concentrations of PPCPs in the surface water of the Pearl River from different literatures. All the four PPCPs were commonly detected PPCPs for frequency and concentration. The highest concentration of PPCPs detected was 1417 ng/L of ibuprofen. Compared with other studies, ibuprofen was higher in the Pearl River than in the Yellow River (416 ng/L), Hai River (127 ng/L), Liao River (246 ng/L) and 139 American streams (1000 ng/L) (Kolpin et al. 2002; Wang et al. 2010). The differences in the concentration between regions and nations might be due to medication habits.

Table 3 shows the main physicochemical properties of the selected PPCPs. Among these parameters, octanol-water partition coefficient (Kow) is a key one to understand the fate and behaviour of PPCPs. The logkow of PPCPs was found to be dispersive (from 0.45 to 5.13), indicating that PPCPs have different water solubility.

4. Predicted no effect concentration
All the PNECs were calculated based on formula 1, i.e. the minimum NOEC of the toxic data group was divided by the corresponding AF. The derivation of PNECs based on six toxic effects is shown in table 4. The results showed PNECs ranged from several ng/L to μg/L concentration level. The lowest PNEC of the four PPCPs was 2.4 ng/L from triclocarban. It demonstrated that triclocarban is more toxic to aquatic life compared with other PPCPs. Our results were in good agreement with previous research. Zhao et al. (2010) demonstrated PNEC of triclocarban based on all the toxic effects was 58 ng/L, which was in the range of the PNECs based on six different endpoints in the present study. Besides, PNECs of diclofenac and triclocarban derived from reproduction toxic data were lower than those derived from other effects, while the PNECs of ibuprofen and triclosan derived from biochemical toxic data (endocrine disruption effect) were lower than those derived from other effects. It demonstrated that diclofenac and triclocarban was more toxic to reproduction system of aquatic life and ibuprofen and triclosan was more toxic to endocrine system.

5. Risk quotient
The RQs of PPCPs based on calculated PNECs are shown in Fig. 1. The results showed that diclofenac had the highest risk on reproduction system of aquatic life in the Pearl River. Besides, all the PPCPs exhibited high risk on certain effects, especially for triclocarban exhibited high risk on cellular, growth, mortality and reproduction effects. Previous research showed triclocarban had a propensity to be bioaccumulated and toxic to aquatic invertebrate and fish (Brausch and Rand 2011). It demonstrated that significant potential adverse effects of PPCPs could be observed in the Pearl River.

6. Conclusions
PPCPs have been hotspot of environmental research for twenty years. While the ecological risk assessment of PPCPs are still in hot debate due to uncertainties of risk process. To improve the accuracy of the risk assessment, we selected toxic data based on endpoints of behaviour, biochemical, cellular, growth, mortality and reproduction to derive PNECs. In the present study, the distribution of four typical PPCPs in urban rivers of the Pearl River was summarized and the ecological risk based on the six different toxic effects was evaluated. The results demonstrated that all the PPCPs selected had adverse effects on aquatic life. Moreover, triclocarban was the most toxic compounds than other PPCPs. Besides, PPCPs imposed adverse effects on aquatic life to different level in the form of different endpoints. The present study would provide a reference for decision makers to understand the risk of PPCPs in the Pearl River and set emission standards to the PPCPs. Future work need to focus on species sensitive distribution and the probabilistic risk assessment methods, which allows the variability of exposure concentrations and toxic effects in the ecological risk assessment process.
Table 2. Distribution of the PPCPs in surface water of the Pearl River.

Location	PPCPs	Concentration (ng/L)	Reference
Main stream of the Pearl River, Shijing River, Sha River, Liede River, Chebei River, Liuxi River	Triclocarban	2.37-210	(Peng et al. 2017)
	Diclofenac	ND-645	
	Ibuprofen	ND-1417	(Peng et al. 2008)
	Triclosan	35-1023	(Zhang et al. 2013)

*ND: Not detected.

Table 3. Physicochemical properties of the PPCPs.

Name	CAS	Use type	Molecular formula	Formula weight	Logkow (pH 7.4)
Triclocarban	101-20-2	Disinfectant	C_{13}H_{9}Cl_{3}N_{2}O	315.6	2.41
Triclosan	3380-34-5	Disinfectant	C_{12}H_{7}Cl_{3}O_{2}	289.5	5.13
Ibuprofen	15687-27-1	Anti-inflammatory drug	C_{13}H_{18}O_{2}	206.3	0.45
Diclofenac	15307-86-5	Anti-inflammatory drug	C_{14}H_{11}Cl_{2}NO_{2}	296.1	1.37

Table 4. The toxic parameters used for calculating the predicted no effect concentrations (PNEC) of PPCPs for ecological risk assessment.

PPCPs	Toxic effects	Test species	Assessment factor	PNEC (ng/L)
	Behavior	Crustaceans, Fish	50	200
	Behavioral	Fish	100	6305
	Cellular	Fish	100	65
Diclofenac	Growth	Fish	100	200000
	Mortality	Crustaceans, Fish	50	202
	Reproduction	Crustaceans	100	3.6
	Behavior	Crustaceans, Fish	50	200000
	Biochemical	Fish, Algae	50	100
	Cellular	Fish	100	1067
	Mortality	Crustaceans, Fish	50	502
	Reproduction	Crustaceans, Fish	50	6325
	Behavior	Crustaceans, Fish	50	520
	Biochemical	Fish	100	40
	Cellular	Fish	100	7.9
Ibuprofen	Growth	Crustaceans, Fish	50	4.2
	Mortality	Crustaceans, Fish	50	7.9
	Reproduction	Crustaceans, Fish, Algae	100	2.4
	Behavior	Crustaceans, Fish	50	3400
	Biochemical	Algae, Crustaceans	10	45
	Cellular	Fish	100	51
Triclocarban	Growth	Crustaceans, Fish	50	4.2
	Mortality	Crustaceans, Fish	50	7.9
	Reproduction	Crustaceans, Fish, Algae	100	2.4
	Behavior	Crustaceans, Fish	50	3400
	Biochemical	Algae, Crustaceans	10	45
	Cellular	Fish	100	51
Triclosan	Growth	Crustaceans, Fish	50	720
	Mortality	Crustaceans, Fish	50	326
	Reproduction	Algae, Crustaceans	10	3305
Figure 1. Ecological risk assessment of the PPCPs based on six toxic effects in surface water in the Pearl River.

Acknowledgements
This project was supported by Shenzhen Science and Technology Research Foundation (KJYY20171013152025835) and Shenzhen Government Procurement Project (LGCG2017149853).

References
[1] Brausch JM, Rand GM. 2011. A review of personal care products in the aquatic environment: Environmental concentrations and toxicity. Chemosphere 82:1518-1532.
[2] Daughton CG, Ternes TA. 1999. Pharmaceuticals and personal care products in the environment: Agents of subtle change? Environmental Health Perspectives 107:907-938.
[3] Huang Q, Yu Y, Tang C, Zhang K, Cui J, Peng X. 2011. Occurrence and behavior of non-steroidal anti-inflammatory drugs and lipid regulators in wastewater and urban river water of the pearl river delta, south china. Journal of Environmental Monitoring 13:855-863.
[4] Isidori M, Lavorgna M, Nardelli A, Parrella A, Prevertera L, Rubino M. 2005. Ecotoxicity of naproxen and its phototransformation products. Science of the Total Environment 348:93-101.
[5] Kim Y, Choi K, Jung J, Park S, Kim P, Park J. 2007. Aquatic toxicity of acetaminophen, carbamazepine, cimetidine, diltiazem and six major sulfonamides, and their potential ecological risks in korea. Environment International 33:370-375.
[6] Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT. 2002. Pharmaceuticals, hormones, and other organic wastewater contaminants in us streams, 1999–2000: A national reconnaissance. Environmental Science & Technology 36:1202-1211.
[7] Liu JL, Wong MH. 2013. Pharmaceuticals and personal care products (ppcps): A review on environmental contamination in china. Environment International 59:208-224.
[8] Peng FJ, Pan CG, Zhang M, Zhang N-S, Windfeld R, Salvito D, Selck H, Brink PJV, Ying GG. 2017. Occurrence and ecological risk assessment of emerging organic chemicals in urban rivers: Guangzhou as a case study in china. Science of the Total Environment 589:46-55.
[9] Peng X, Yu Y, Tang C, Tan J, Huang Q, Wang Z. 2008. Occurrence of steroid estrogens, endocrine-disrupting phenols, and acid pharmaceutical residues in urban riverine water of the pearl river delta, south china. Science of the Total Environment 397:158-166.
[10] Sanderson H, Johnson DJ, Wilson CJ, Brain RA, Solomon KR. 2003. Probabilistic hazard assessment of environmentally occurring pharmaceuticals toxicity to fish, daphnids and algae by ecosar screening. Toxicology Letters 144:383-395.
[11] Schlesinger N. 2004. Management of acute and chronic gouty arthritis. Drugs 64:2399-2416.
[12] Sun Y, Huang H, Sun Y, Wang C, Shi XL, Hu H, Kameya T, Fujie K. 2013. Ecological risk of
estrogenic endocrine disrupting chemicals in sewage plant effluent and reclaimed water. Environmental Pollution 180:339-344.

[13] Wang L, Ying GG, Zhao JL, Yang X-B, Chen F, Tao R, Liu S, Zhou LJ. 2010. Occurrence and risk assessment of acidic pharmaceuticals in the yellow river, hai river and liao river of north china. Science of the Total Environment 408:3139-3147.

[14] Yan Z, Wang W, Zhou J, Yi X, Zhang J, Wang X, Liu Z. 2015. Screening of high phytotoxicity priority pollutants and their ecological risk assessment in china ’ s surface waters. Chemosphere 128:28-35.

[15] Zhang B, Yang HZ, Gao ZW. Simulation of three ppcsps existed in major pearl river with an asm model including a separate degrading microorganism. In: Proceedings of the Applied Mechanics and Materials, 2013, Vol. 295. Trans Tech Publications, 1341-1347.

[16] Zhao JL, Ying GG, Liu YS, Chen F, Yang JF, Wang L. 2010. Occurrence and risks of triclosan and triclocarban in the pearl river system, south china: From source to the receiving environment. Journal of Hazardous Materials 179:215-222.

[17] Zheng L, Zhang Y, Yan Z, Zhang J, Li L, Zhu Y, Zhang Y, Zheng X, Wu J, Liu. 2017. Derivation of predicted no-effect concentration and ecological risk for atrazine better based on reproductive fitness. Ecotoxicology and Environmental Safety 142:464-470.