A review on handwritten character and numeral recognition for Roman, Arabic, Chinese and Indian scripts.

Aini Najwa Azmi
Faculty of Computing,
Universiti Teknologi Malaysia,
81310 UTM Skudai,
Johor, Malaysia.
atinajwa.azmi@gmail.com

Dewi Nasien
Faculty of Computing,
Universiti Teknologi Malaysia,
81310 UTM Skudai,
Johor, Malaysia.
dewinasien@utm.my

Siti Mariyam Shamsuddin
Faculty of Computing,
Universiti Teknologi Malaysia,
81310 UTM Skudai,
Johor, Malaysia.
mariyam@utm.my

Abstract—There are a lot of intensive researches on handwritten character recognition (HCR) for almost past four decades. The research has been done on some of popular scripts such as Roman, Arabic, Chinese and Indian. In this paper we present a review on HCR work on the four popular scripts. We have summarized most of the published papers from 2005 to recent and also analyzed the various methods in creating a robust HCR system. We also added some future direction of research on HCR.

Keywords: handwritten character recognition, freeman chain code, hidden markov model, support vector machines, artificial neural network

I. INTRODUCTION

Handwritten Character Recognition (HCR) is an automation process and can improve the interface between man and machine in a lot of applications. Generally, handwritten character recognition is classified into two types which are offline and online handwritten character recognition methods. In the offline recognition, the writing is usually captured optically by a scanner and the completed writing is available as an image. But, in the on-line system the two dimensional coordinates of successive points are represented as a function of time and the order of strokes made by the writer are also available [1, 2]. HCR system is a very complex and challenging problems because of variability on size, writing style of hand-printed characters, and duplicate pixels caused by a hesitation in writing or interpolate non-adjacent consecutive pixels caused by fast writing [3].

Some practical applications of HCR systems are: processing cheques without human involvement, reading aid for the blind, automatic text entry into the computer for desktop publication, library cataloguing, health care, and ledgering, automatic reading of city names and addresses for postal mail, document data compression, natural language and processing investigation forms or the automatic reading of postal addresses [4,5].

Generally, in HCR system consists three stages which are pre-processing, feature extraction and classification. The first step of processing usually consists of image enhancement and converting the grey level image to binary image as required in image pre-processing. After converting image from the gray-scale image to binary format, the thresholding technique is used to separate the useful front pixels from the background pixels. Noise reduction is performed before or after binarization, which identifies and corrects the noise pixels. These sorts of techniques are based on image filtering theory and mathematical morphology. Furthermore, a normalization step normalizes the handwriting sample images from varied stroke width. The methods generally apply to binary images and normalize the strokes width to single pixel thickness. Noise is a term that normally used for non information-bearing variability that is introduced by one or more physical processes, such as scanning, faxing, writing style, presence or absence of ruled lines, crumpling and folding. This is usually happened in off-line HCR system. The goal of pre-processing is to minimize noise before the image is further processed to next stage which is extracting the features. Feature extraction plays an important role in handwriting recognition. In HCR process, a text image must be either processed by feature extraction after image pre-processing. The selected features will be the inputs for classifier and perform matching. Features are the information passed to the classifier such as pixels, shape data or mathematical properties. Classifier is used to rate the efficiency of the system.

This paper is divided to four sections. Section I describes introduction. Section II describes related work on HCR system Roman, Arabic, Chinese and Indian scripts. Section III describes related work on HCR system includes pre-processing, feature extraction and classification. Section IV shows conclusion of the whole content.
II. RELATED WORK ON HANDWRITTEN CHARACTER RECOGNITION

In this section, we report various HCR systems for Roman, Arabic, Chinese and Indian scripts. This section is divided into four parts:
A. Roman Handwritten Character and Numeral Recognition,
B. Arabic Handwritten Character and Numeral Recognition,
C. Chinese Handwritten Character and Numeral Recognition,
D. Indian Handwritten Character and Numeral Recognition.

A. Roman Handwritten Character and Numeral Recognition

Table 1 below discussed the stage of HCR includes pre-processing, feature extraction and classification for Roman Handwritten and Numeral script.

Authors	Pre-processing	Features extraction/ Classification	Details of result/Description
Pradeep et al. (2011)	Segmentation, binarization, noise removal	Diagonal Feature Extraction Method/ Neural Network	Result showed high on diagonal compared to vertical and horizontal feature extraction. The rate was 98.54%
Zhang et al. (2005)	Binarization and skeletonization	Complex Wavelet Features/ Artificial Neural Network (ANN)	Highest result was 99.12% for the mentioned feature set using single classifier. But combination of 3 classifier showed better result which was 99.25%
Wang & Sajjahar (2011)	Binarization, noise reduction, segments lines, and normalization	Polar transformed images, Zone based feature extraction/ Support Vector Machines (SVM)	Highest result was 86.63% by using polar coordination for the Kernel Function
Verma et al. (2004)	Dehooking	Structural features—the change of writing direction, and zoning information to create a single global feature vector/ Neural Network	Highest test result was 86.63% for digit by using 40 hidden units.
Choudhary et al. (2012)		Noise removal and resizing	Vertical, Horizontal, Left Diagonal and Right Diagonal directions/ Neural Network
Rani & Meena (2011)	Binarization, resizing, thinning	Cross-corner feature extraction method/ Back propagation neural network (BPN)	Cross-corner provided substantial increase in accuracy without increasing much in feature space size. Result on dataset 1 was 97% while dataset 2 is 93%
Vamvakas et al. (2010)	Normalization	Zoning based features, upper and lower character profile projections features, left and right character profile projections features, distance based features/ Neural Network and SVM	MNIST Digit Database showed highest test result which was 98.08% for single stage classification. Two-stage classification recognition rate showed 99.03%
Li et al. (2012)	Normalization	direction string and nearest neighbor matching/ Nearest neighbor matching based classifier	Recognition accuracy reached almost 99% averagely.
Yang et al. (2011)	noise reduction	structural features and the statistical features/ Back propagation neural network (BPN)	In this method, structure and statistical features were extracted and combined to form the testing features and yielded 100% accuracy.
Chel et al. (2011)	Binarization and segmentation	Transition Feature, Sliding Window Amplitude Feature, Contour Feature/ Neural Network	Maximum result was 92.32%. Though the degree of recognition was good but it may further be improved by lexicon matching technique
Gomathi Rohini et al. (2013)		Transition features/ Neural Network	Classification achieved 92%. It showed that using simple transition feature, the segmentation rate was better.
Fink and Flotz (2005)	Not specify	Principle Component Analysis (PCA) based features,	Lowest Character Error Rate (CER) was 26%
There are some papers that discussed about Freeman Chain Code (FCC) in extracting the character features. The table below are discussing some papers that used FCC in their system. There are two directions of chain code, namely 8-neighbourhood and 4-neighbourhood.

Table 2 FCC in HCR

Authors	Pre-processing	Features extraction/ Classification	Details of result/Description
Bayoudh et al. (2007)	Not specify	Chain code features (16-FCC)/ Radial Basis Function Neural Network and SVM	Writer-dependent recognition rates and their standard deviation depending on the number of used original characters compared to reference rates using 10 or 30 characters per class for RBFN and SVM classifiers.
Lee et al. (2010) [17]	Not specify	Chain code features (Cyclic FCC Histogram, 8FCC)/ Sigmoid RBF + Growing/Pruning	Without slant and skew deformation, CCH feature produced a recognition rate of 90.1%, and cyclic-CCH was 91.4%. With slant and skew deformation, the recognition rate of CCH feature decreased to 60.3%, and cyclic-CCH decreased to 67.9%.
Hasan et al. (2009) [18]	Thinning	Chain code features (8FCC)/ Neural Network	Proposed PSO performs better than the proposed DE. This can be seen by comparing their average, max, and standard deviation result. The computation time decreased twice.

B. Arabic Handwritten Character and Numeral Recognition

Table 2 below discussed the stage of HCR includes pre-processing, feature extraction and classification for Arabic Handwritten and Numeral script.

Table 3 HCR system for Arabic Handwritten and Numeral script

Authors	Pre-processing	Features extraction/ Classification	Details of result/Description
Nemouchi et al. (2012) [19]	Threshholding, smoothing, skeletonizing and contouring	Structural-like strokes, concavities, end points, intersections of line segments, loops, stroke relations and statistic (zoning, invariants moments, Fourier descriptors, Freeman chain code) features/ Fuzzy C-Means algorithm (FCM), the K-Means algorithm, the K Nearest Neighbor algorithm (KNN) and a Probabilistic Neural Network (PNN)	Combination of 3 features yielded 70% accuracy
Ahmed et al. (2012) [20]	Smoothing and skew correction	HMM based feature, Zoning of pixel and statistical features (zoning of the character array (i.e., dividing it into overlapping or non-overlapping regions, computing the moments of the black pixels of the character, the n-tuples of black or white or joint occurrence, the characteristic loci, and crossing distances)/ Hidden Markov Model (HMM)	Using this new feature extraction algorithm, they obtained 98% of accuracy, a significant improvement compared to the best result of 81.45% using the hierarchical features.
Al-Khateeb et al. (2011) [21]	Removing noise, image enhancement, and segmentation	Structural which is geometrical and topological features (strokes, endpoints, loops, dots and their position related to the baseline) and statistical features/statistical distribution of pixels and describing the characteristic measurements of a pattern, which include zoning.	The best result was generated by using fusion of multiple HMMs which was 95.15%

www.ijascse.in
C. Chinese Handwritten Character and Numeral Recognition

Table 3 below discussed the stage of HCR includes pre-processing, feature extraction and classification for Arabic Handwritten and Numeral script.

Table 4 HCR system for Handwritten Chinese

Authors	Pre-processing	Features extraction/ Classification	Details of result/Description
Alaii *et al.* (2010) [28]	Normalization	Undersampled bitmaps and directional chain code information/ Support Vector Machines (SVM)	Obtained the best recognition rate of 96.17% when 196 directional features with overlapping window-map are used.
Wang *et al.* (2012) [29]	Segmentation	Local stroke direction histogram feature/ Modified Quadratic Discriminant Function (MQDF), Nearest Prototype Classifier (NPC)	Recognition accuracies with ground-truth line segmentation using MQDF classifier yielded highest result 94.28%. Error can be reduced by optimizing the techniques in all steps which will be future work for this paper.
Liu *et al.* (2013) [30]	Normalization	Gradient direction features/ Modified Quadratic Discriminant Function (MQDF)	Result showed 12-direction feature had a better tradeoff between accuracy and complexity compare to 8-directional and 16-direction. Lowest error rate was 1.73%.
Su *et al.* (2009) [31]	Thinning	Orientation difference, width comparison, curvature variation, domain knowledge/ Bayesian	High result achieved 98.1% for ambiguous zone detection and 95.63% for stroke extraction.
Ma & Leedham (2007) [32]	Noise reduction, time normalization and size normalization	Aspect ratio calculation/ Neural network	Experiment showed that proposed method recognized vocalized outline and Rengun shortform which were written following the new writing rule.
D. Indian Handwritten Character and Numeral Recognition

Table 5 below discussed the stage of HCR includes pre-processing, feature extraction and classification for Arabic Handwritten and Numeral script.

Authors	Pre-processing	Features extraction/Classification	Details of result/Description
Bhattacharya et al. (2012) [37]	Binarization, Size normalization, Noise cleaning, Headline truncation	Chain code computation, gradient feature and pixel count feature generation/ Modified Quadratic Discriminant Function (MQDF)	Overall recognition accuracy of the proposed scheme is 95.84 %. Future works will improve the pre-processing stage.
Desai (2010) [38]	Normalization, smoothing, skew correction	Vector Distance based feature (horizontal, vertical and 2 diagonal)/ Neural Network	This work has achieved approximately 82% of success rate for Gujarati handwritten digit identification.
Bhattacharya et al. (2006) [39]	Smoothing , Binarization, and Removal of Extra Long Headline	Chain code histogram features/ Multilayer Perceptrons (MLPs)	Final recognition accuracies on the training and the test sets are respectively 94.65 % and 92.14 %.
Shanti & Duraiswamy (2009) [40]	Thinning	Pixel density calculation/ SVM	The system has achieved a very good recognition accuracy of 82.04% on the handwritten Tamil character database. The recognition accuracy of the individual characters can be further improved by combining the multiple classifiers.
Toselli et al. (2007) [41]	repeated points elimination, noise reduction, writing speed normalization and size normalization.	Time-domain features, frequency domain/ Neural Network	The final classification result of proposed system was around to 9% of error rate.

Table 5 HCR system for Handwritten Indian

Authors	Pre-processing	Features extraction/Classification	Details of result/Description	
Ni et al. (2012) [33]	Not specify	Proposed method achieved detection rates of 94.29% (method 1) and 96.14% (method 2)		
Cheng Lin (2006) [34]	Binarization and normalization	Compared to the modified quadratic discriminant function (MQDF) with Fisher discriminant analysis, the error rates on two test sets were reduced by factors of 29.9% and 20.7%, respectively.		
Zhiyi et al. (2009) [35]	Normalization	Experiments using MQDF classifier show our feature’s effectiveness with a recognition rate of 97.868%, which outperforms original SIFT feature and two traditional features, Gabor feature and gradient feature.		
Lee et al. (2009) [36]	Cropping and normalization	Experimental results have proved the efficiency of our proposed method and it is superior to other representative traditional feature extraction schemes with high recognition rate of 95.5%, despite of small dimensionality between 64 (inclusive) and 128 (exclusive) and less processing time.		
Authors	Preprocessing	Feature Extraction	Classification	Accuracy (%)
------------------------------	--------------------------------------	------------------------------	---	-------------------------
Rajashekara-Ranjana et al.	Normalization and thinning	Zone based hybrid approach/Recognition Nearest Neighbor Classifier (NNC)	Obtained 97.55%, 94%, 92.5% and 95.2% recognition rate for Kannada, Telugu, Tamil and Malayalam numerals respectively.	
Chacko et al.	Noise reduction	Wavelet features, chain code features/ANN	Classifier combination gave good recognition accuracy at level 6 of the wavelet decomposition.	
Pal et al.	Binarization	Directional features/Technique classifier based scheme	A five-fold cross validation technique was used for result computation, and we obtained 90.34%, 90.90%, and 96.73% accuracy rates from Kannada, Telugu, and Tamil characters, respectively, from 400 dimensional features	
Reddy et al.	Segmentation	1) polynomial coefficients of the polynomial fitted to the plot of distance and angle 2) coefficients of the spline curve fitted onto the points determined by the segmentation algorithms/ANN	The feature vector was fed to the SVM classifier and it indicated an efficiency of 68% using the polynomial regression technique and 74% using the spline fitting method	
Rajput & Horakeri	Noise cleaning, binarization	Boundary-based descriptors, namely, crack codes and Fourier descriptors/K-NN and SVM	The mean performance of the system with these two shape based features together were 91.24% and 93.73% for K-NN and SVM classifiers, respectively, demonstrating the fact that SVM performs better over K-NN classifier	
Reddy (2012) [47]	Normalization, smoothing, linear interpolation and re-sampling	Vertical and horizontal projection profiles (VPP-HPP), zonal discrete cosine transform (DCT), chain-code histograms (CCH) and pixel level values	The combined online and offline system exhibits improved performance over the individual approaches yielded 99.3%.	
Sharma & Jhajj (2011) [48]	Normalization	Zoning, Directional Distance Distribution (DDD) and Gabor methods/SVM	Gabor with SVM (Polynomial kernel) gives the best results of all the combinations of feature extraction methods and classification methods yielded 74.29%. Reasons of failure were low quality of images, distorted images and almost similar characters.	
Arora et al. (2008) [49]	Thinning, generating one pixel wide skeleton of character image and segmenting the image into 16 segments	Intersection, shadow feature, chain code histogram and straight line fitting features/Multi Layer Perceptron (MLP)	Obtained 92.80% accuracy for off-line handwritten Devnagari character recognition system	

E. SUMMARY OF APPROACHES

The most common approaches in recognizer system are Hidden Markov Models (HMMs), Artificial Neural Networks (ANNs) and Support Vector Machine (SVM). But, some of combined or multiple classifier showed excellent result. Variety of techniques in feature extraction has been discussed and it shows that type of scripts also influence the accuracy. Example in one of Indian scripts which is Gurumukhi [49], was having problem in the physical of the character itself that made their accuracy low. Arabic and Chinese scripts also have their own difficulties in extracting features. In Arabic, the dots on, below and in between of the characters gave a lot of challenges to the researchers to solve it while Chinese characters have a lot of strokes that differs between one writer to another. Last but not least, Roman characters also have their own physicality. Slant handwriting is very difficult to recognize that needs proper pre-processing stage to correct it before extracting the features. Continuous writing needs segmentation to isolate the characters.
In this paper, we have reported various works on HCR systems in four popular scripts which are Roman, Arabic, Chinese and Indian. We have organized the review according to the type of the scripts. We have reported the research trends, discussed the techniques being used in the modern HCR systems, and the difficulties occurred in the researches. Besides, the accuracy and future work also discussed in this paper.

REFERENCE

1. Pradeep, J., E. Srinivasan, and S. Himavathi. *Diagonal based feature extraction for handwritten character recognition system using neural network*. 2011.

2. Zhang, P. and A. Majumder. *Polar Transformation System for Offline Handwritten Character Recognition*, in Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing 2011. R. Lee, Editor. 2011, Springer Berlin Heidelberg. p. 15-24.

3. Verma, B., et al. *A feature extraction technique for online handwriting recognition*. in Neural Networks, 2004. Proceedings. 2004 IEEE International Joint Conference on. 2004.

4. Nemouchi, S., L. Meslati, and N. Farah. *Classifiers Combination for Arabic Words Recognition: Application to Handwritten Algerian City Names*, in Image and Signal Processing. A. Elmoataz, et al., Editors. 2012, Springer Berlin Heidelberg. p. 562-570.

5. Bag, S. and G. Harit. *A survey on optical character recognition for Bangla and Devanagari scripts*. Sadhana, 2013. 38(1): p. 133-168

6. Zhang, P., T.D. Bui, and C.Y. Suen. *Hybrid feature extraction and feature selection for improving recognition accuracy of handwritten numerals*. in Document Analysis and Recognition, 2005. Proceedings. Eighth International Conference on. 2005.

7. Choudhary, A., R. Rishi, and S. Ahlawat. *Unconstrained Handwritten Digit OCR Using Projection Profile and Neural Network Approach*, in Proceedings of the International Conference on Information Systems Design and Intelligent Applications 2012 (INDIA 2012) held in Visakhapatnam, India, January 2012. S. Satapathy, P.S. Avadhani, and A. Abraham, Editors. 2012, Springer Berlin Heidelberg. p. 119-126.

8. Rani, M. and Y. Meena. *An Efficient Feature Extraction Method for Handwritten Character Recognition*, in Swarm, Evolutionary, and Memetic Computing. B. Panigrahi, et al., Editors. 2011, Springer Berlin Heidelberg. p. 302-309.

9. Vamvakas, G., B. Gatos, and S.J. Perantonis. *Handwritten character recognition through two-stage foreground sub-sampling*. Pattern Recognition, 2010. 43(8): p. 2807-2816.

10. Li, L., L.-l. Zhang, and J.-f. Su. *Handwritten character recognition via direction string and nearest neighbor matching*. The Journal of China Universities of Posts and Telecommunications, 2012. 19, Supplement 2(0): p. 160-196.

11. Yang, Y., X. Lijiia, and C. Chen. *English Character Recognition Based on Feature Combination*. Procedia Engineering, 2011. 24(0): p. 159-164.

12. Chel, H., A. Majumder, and D. Nandi. *Scaled Conjugate Gradient Algorithm in Neural Network Based Approach for Handwritten Text Recognition*, in Trends in Computer Science, Engineering and Information Technology. D. Nagamalai, E. Renaud, and M. Dhanuskodi, Editors. 2011, Springer Berlin Heidelberg. p. 196-210.

13. Gomathi Rohini, S., R.S. Uma Devi, and S. Mohanavel. *Character Segmentation for Cursive Handwritten Text Using Ligature Classification and Transition Feature*, in Proceedings of the Fourth International Conference on Signal and Image Processing 2012 (IC SIP 2012). M. S and S.S. Kumar, Editors. 2013, Springer India. p. 269-280.

14. Plötz, T. and G. Fink. *Markov models for offline handwriting recognition: a survey*. International Journal on Document Analysis and Recognition (IJDAR), 2009. 12(4): p. 269-298.

15. Uchida, S. and M. Liwicki. *Analysis of Local Features for Handwritten Character Recognition*. in Pattern Recognition (ICPR), 2010 20th International Conference on. 2010.

16. Bayoudh, S., et al., *Learning a Classifier with Very Few Examples: Analogy Based and Knowledge Based Generation of New Examples for Character Recognition*, in Machine Learning: ECML 2007. J. Kok, et al., Editors. 2007, Springer Berlin Heidelberg. p. 527-534.

17. Lee, C.-C., et al., *Vision-Based Fingertip-Writing Character Recognition*. Journal of Signal Processing Systems, 2011. 64(3): p. 291-303.

18. Hasan, H., H. Haron, and S.Z. Hashim. *Freeman Chain Code Extraction Using Differential Evolution (DE) and Particle Swarm Optimization (PSO)*, in Soft Computing and Pattern Recognition, 2009. SOCPAR ’09. International Conference of. 2009.

19. Nemouchi, S., L. Meslati, and N. Farah. *Classifiers Combination for Arabic Words Recognition: Application to Handwritten Algerian City Names*, in Image and Signal Processing. A. Elmoataz, et al., Editors. 2012, Springer Berlin Heidelberg. p. 562-570.

20. Ahmed, I., S. Mahmoud, and M. Parvez. *Printed Arabic Text Recognition*, in Guide to OCR for Arabic Scripts, V. Märgner and H. El Abed, Editors. 2012, Springer London. p. 147-168.

21. ALKhateeb, J.H., et al., *Offline handwritten Arabic cursive text recognition using Hidden Markov Models and re-ranking*. Pattern Recognition Letters, 2011. 32(8): p. 1081-1088.

22. Pechwitz, M., H. Abed, and V. Märgner. *Handwritten Arabic Word Recognition Using the IFN/ENIT-database*, in Guide to OCR for Arabic Scripts, V. Märgner and H. El Abed, Editors. 2012, Springer London. p. 169-213.

23. Likforman-Sulem, L., et al., *Features for HMM-Based Arabic Handwritten Word Recognition Systems*, in Guide to OCR for Arabic Scripts, V. Märgner and H. El Abed, Editors. 2012, Springer London. p. 123-143.
24. Lawal, I.A., R.E. Abdel-Aal, and S.A. Mahmoud. Recognition of Handwritten Arabic (Indian) Numerals Using Freeman’s Chain Codes and Abductive Network Classifiers. in Pattern Recognition (ICPR), 2010 20th International Conference on. 2010.
25. Kessentini, Y., T. Paquet, and A. Ben Hamadou, Multi-stream Markov Models for Arabic Handwriting Recognition. in Guide to OCR for Arabic Scripts, V. Märgner and H. El Abed, Editors. 2012, Springer London. p. 335-350.
26. El Abed, H. and V. Margner. Comparison of Different Preprocessing and Feature Extraction Methods for Offline Recognition of Handwritten Arabic Words. in Document Analysis and Recognition, 2007. ICDAR 2007. Ninth International Conference on. 2007.
27. Moradi, M., M.A. Poormina, and F. Razzazi. FPGA Implementation of Feature Extraction and MLP Neural Network Classifier for Farsi Handwritten Digit Recognition. in Computer Modeling and Simulation, 2009. EMS ’09. Third UKSim European Symposium on. 2009.
28. Alaei, A., P. Nagabhushan, and U. Pal. A New Two-Stage Scheme for the Recognition of Persian Handwritten Characters. in Frontiers in Handwriting Recognition (ICFHR), 2010 International Conference on. 2010.
29. Wang, D.-H., C.-L. Liu, and X.-D. Zhou, An approach for real-time recognition of online Chinese handwritten sentences. Pattern Recognition, 2012. 45(10): p. 3661-3675.
30. Liu, C.-L., et al., Online and offline handwritten Chinese character recognition: Benchmarking on new databases. Pattern Recognition, 2013. 46(1): p. 155-162.
31. Su, Z., Z. Cao, and Y. Wang. Stroke extraction based on ambiguous zone detection: a preprocessing step to recover dynamic information from handwritten Chinese characters. International Journal on Document Analysis and Recognition (IJDAR), 2009. 12(2): p. 109-121.
32. Ma, Y. and G. Leadham, On-line recognition of handwritten Renqun shorthand for fast mobile Chinese text entry. Pattern Recognition Letters, 2007. 28(7): p. 873-883.
33. Ni, E., M. Jiang, and C. Zhou, Radical Extraction for Handwritten Chinese Character Recognition by Using Radical Cascade Classifier. in Electrical, Information Engineering and Mechatronics 2011. X. Wang, F. Wang, and S. Zhong. Editors. 2012, Springer London. p. 419-426.
34. Cheng-Lin, L. High Accuracy Handwritten Chinese Character Recognition Using Quadratic Classifiers with Discriminative Feature Extraction. in Pattern Recognition. 2006. ICPR 2006. 18th International Conference on. 2006.
35. Zhiyi, Z., et al. Character-SIFT: A Novel Feature for Offline Handwritten Chinese Character Recognition. in Document Analysis and Recognition, 2009. ICDAR '09. 10th International Conference on. 2009.
36. Lee, J.C., T.J. Fong, and Y.F. Chang. Feature Extraction for handwritten Chinese character recognition using X-Y graphs decomposition and Haar wavelet. in Signal and Image Processing Applications (ICSIIPA), 2009 IEEE International Conference on. 2009.
37. Bhattacharya, U., et al., Offline recognition of handwritten Bangla characters: an efficient two-stage approach. Pattern Analysis and Applications, 2012. 15(4): p. 445-458.
38. Desai, A.A., Gujarati handwritten numeral optical character reorganization through neural network. Pattern Recognition, 2010. 43(7): p. 2582-2589.
39. Bhattacharya, U., M. Shridhar, and S.K. Parui, On Recognition of Handwritten Bangla Characters, in Computer Vision, Graphics and Image Processing, P. Kalra and S. Peleg, Editors. 2006, Springer Berlin Heidelberg. p. 817-828.
40. Shanthi, N. and K. Duraiswamy, A novel SVM-based handwritten Tamil character recognition system. Pattern Analysis and Applications, 2010. 13(2): p. 173-180.
41. Toselli, A., M. Pastor, and E. Vidal, On-Line Handwriting Recognition System for Tamil Handwritten Characters, in Pattern Recognition and Image Analysis, J. Martí, et al., Editors. 2007, Springer Berlin Heidelberg. p. 370-377.
42. Rajashekararadhya, S.V. and P.V. Ranjan, Zone Based Hybrid Feature Extraction Algorithm for Handwritten Numeral Recognition of South Indian Scripts, in Contemporary Computing, S. Ranka, et al., Editors. 2009, Springer Berlin Heidelberg. p. 138-148.
43. Chacko, B., et al., Handwritten character recognition using wavelet energy and extreme learning machine. International Journal of Machine Learning and Cybernetics, 2012. 3(2): p. 149-161.
44. Pal, U., et al., Handwritten Character Recognition of Popular South Indian Scripts, in Arabic and Chinese Handwriting Recognition, D. Doermann and S. Jaeger, Editors. 2008, Springer Berlin Heidelberg. p. 251-264.
45. Reddy, N., et al. Online Character Recognition using Regression Techniques. in Applications of Computer Vision, 2008. WACV 2008. IEEE Workshop on. 2008.
46. Rajput, G. and R. Horakeri, Handwritten Kannada Vowel Character Recognition Using Crack Codes and Fourier Descriptors, in Multi-disciplinary Trends in Artificial Intelligence, C. Sombattheera, et al., Editors. 2011, Springer Berlin Heidelberg. p. 169-189.
47. Reddy, G.S., et al. Combined online and offline assamese handwritten numeral recognizer. in Communications (NCC), 2012 National Conference on. 2012.
48. Sharma, D. and P. Jhajj. Comparison of Feature Extraction Methods for Recognition of Isolated Handwritten Characters in Gurmukhi Script, in Information Systems for Indian Languages, C. Singh, et al., Editors. 2011, Springer Berlin Heidelberg. p. 110-116.
49. Arora, S., et al. Combining Multiple Feature Extraction Techniques for Handwritten Devanagari Character Recognition. in Industrial and Information Systems, 2008. ICIS 2008. IEEE Region 10 and the Third international Conference on. 2008.