Abstract

One of the processes undertaken to determine the quality of animal skin for leather craft in the form of digital images is the process of image segmentation. A disability detection process is required to ensure that animal skins used for craft are right-near as expected. In this research, the evolutionary method is used to process Darwinian segmentation of particle swarm optimization (DPSO) methods used for animal image segmentation process. The results were then compared with the Harmonic Search Algorithm (HSA) method. The process of image segmentation is important, if segmentation is done correctly then the next process will run correctly too. One of the problems usually faced is how to choose a good image segmentation method. Experiments had been done on four categories of animal leather images namely lizard leather, sheep leather, cow leather and goat leather. PSNR values were used to measure the quality of the segmentation method used. From the experimental results it is seen that there is little difference between the DPSO and HSA methods used in this study. It can be concluded, however, that the DPSO method is slightly better than the HSA in certain animal cases. PSNR value is higher when compared to using HSA methods on the same image.
References

1. Ghamisi, P., Couceiro, M. S., Benediktsson, J. A., & Ferreira, N. M. 2012. An efficient method for segmentation of images based on fractional calculus and natural selection. Expert Systems with Applications, 39(16), 12407-12417.

2. Otsu, N. 1979. A threshold selection method from gray-level histograms. IEEE transactions on systems, man, and cybernetics, 9(1), 62-66

3. Kapur, J. N., Sahoo, P. K., & Wong, A. K. 1985. A new method for gray-level picture thresholding using the entropy of the histogram. Computer vision, graphics, and image processing, 29(3), 273-285.

4. Hammouche, K., Diaf, M., & Siarry, P. 2010. A comparative study of various meta-heuristic techniques applied to the multilevel thresholding problem. Engineering Applications of Artificial Intelligence, 23(5), 676-688.

5. Tao, W. B., Tian, J. W., & Liu, J. 2003. Image segmentation by three-level thresholding based on maximum fuzzy entropy and genetic algorithm. Pattern Recognition Letters, 24(16), 3069-3078.

6. Eberhart, R., & Kennedy, J. 1995, October. A new optimizer using particle swarm theory. In Micro Machine and Human Science, 1995. MHS'95., Proceedings of the Sixth International Symposium on (pp. 39-43). IEEE..

7. Lee, K. S., & Geem, Z. W. 2005. A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice. Computer methods in applied mechanics and engineering, 194(36), 3902-3933.

8. Geem, Z. W., Kim, J. H., and Loganathan, G. V. 2001. A new heuristic optimization algorithm: harmony search. simulation, 76(2), 60-68.

9. Tillett, J., Yang, S., Rao, R., & Sahin, F. 2005. Application of particle swarm techniques in sensor network configuration.

10. Oliva, D., Cuevas, E., Pajares, G., Zaldivar, D., and Perez-Cisneros, M. 2013. Multilevel thresholding segmentation based on harmony search optimization. Journal of Applied Mathematics, 2013.

11. Ghamisi, P., Couceiro, M. S., Martins, F. M., and Benediktsson, J. A. 2014. Multilevel image segmentation based on fractional-order Darwinian particle swarm optimization. IEEE Transactions on Geoscience and Remote sensing, 52(5), 2382-2394.

Index Terms

Computer Science

Algorithms

Keywords
Image segmentation, images leather, harmonic search algorithm, Darwinian particle swarm optimizations