A tensor compression algorithm using Tucker decomposition and dictionary dimensionality reduction

Chenquan Gan1,2,3, Junwei Mao1,2,3, Zufan Zhang1,2,3 and Qingyi Zhu4

Abstract
Tensor compression algorithms play an important role in the processing of multidimensional signals. In previous work, tensor data structures are usually destroyed by vectorization operations, resulting in information loss and new noise. To this end, this article proposes a tensor compression algorithm using Tucker decomposition and dictionary dimensionality reduction, which mainly includes three parts: tensor dictionary representation, dictionary preprocessing, and dictionary update. Specifically, the tensor is respectively performed by the sparse representation and Tucker decomposition, from which one can obtain the dictionary, sparse coefficient, and core tensor. Furthermore, the sparse representation can be obtained through the relationship between sparse coefficient and core tensor. In addition, the dimensionality of the input tensor is reduced by using the concentrated dictionary learning. Finally, some experiments show that, compared with other algorithms, the proposed algorithm has obvious advantages in preserving the original data information and denoising ability.

Keywords
Tensor signal compression, Tucker decomposition, sparse representation, dictionary learning, denoising ability

Date received: 15 October 2019; accepted: 5 March 2020
Handling Editor: Hongxiang Li

Introduction
To meet the great burden in the process of transmission and storage brought by multidimensional (MD) signal processing and complete efficient extraction of signal features, more and more researchers are focusing on the tensor representation of MD signals. The study of tensor compression algorithms has become a hot research topic today.

In tensor processing, the most basic methods are canonical polyadic (CP) decomposition and Tucker decomposition. The CP decomposition serves the tensor as a sum of finite rank-one tensors. Tucker decomposition decomposes a tensor into a core tensor and matrix product on each modulo. Due to the practical requirement, many tensor processing algorithms, such as non-negative tensor decomposition, non-negative Tucker decomposition, and high-order singular value decomposition (HOSVD) decomposition, have been derived by adding different constraints. To extract and fuse data features effectively, so as to realize the effective recognition and transmission of data, the

1School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
2Chongqing Key Laboratory of Mobile Communications Technology, Chongqing, China
3Engineering Research Center of Mobile Communications, Ministry of Education, Chongqing, China
4School of Cyber Security and Information Law, Chongqing University of Posts and Telecommunications, Chongqing, China

Corresponding author:
Zufan Zhang, School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.
Email: zhangzf@cqupt.edu.cn
researchers proposed two types of compression algorithms based on the abovementioned tensor processing methods. The one is based on the tensor decomposition, and the other is based on the sparse representation of the tensor. The following two aspects of research work will be described in detail.

On one hand, Kuang et al. proposed a tensor-based big data scalar dimensionality reduction method, in which the new data are projected into the tensor modulus expansion matrix space to achieve dimensionality reduction. In addition, the kernel-based tensor sparse dictionary learning algorithm (K-PCD) based on CP decomposition was proposed. It is an extension of the k singular value decomposition (K-SVD) on tensor data. Afterward, the large scale–distributed dimensionality reduction method was developed to achieve tensor compression in the distributed computing environment. However, in this dimensionality reduction method, the high-order structure and intrinsic correlation inherent are destroyed in the original data, resulting in information loss or masking the redundant information and high-order dependence of original data.

On the other hand, the sparse representation of the tensor was applied to the processing of MD signals. Due to the equivalence of the tensor Tucker model and the Kronecker representation, the tensor can be defined as a representation of a given Kronecker dictionary with certain sparsity, such as multidirectional sparsity and block sparsity. The corresponding Kroneker orthogonal matching pursuit (Kroneker-OMP) and N-way block OMP (N-BOMP) algorithms were also used to recover MD signals with fixed dictionaries. In addition, a dictionary learning method based on tensor factorization was proposed, and some approximate tensor algorithms were proposed based on tensor decomposition or tensor low rank approximation. However, in the process of tensor dictionary learning, new noise will be generated, affecting the accuracy of data, and the determination of sparsity will bring some difficulties to tensor compression.

To solve the abovementioned problems, this article utilizes two dimensionality reduction ideas of the multilinear principal component analysis (MPCA) and the concentrated dictionary learning (CDL) to realize the tensor compression. First, the tensor is sparsely represented and Tucker decomposed to obtain the dictionary, sparse coefficient, and core tensor. Next, the results of the first step are fused to obtain a new sparse representation through the relationship between the sparse coefficient and core tensor. Furthermore, the dictionary of the second step is dimensionally reduced by the CDL algorithm to complete the dimensionality reduction of the input tensor. Finally, experimental results reveal that the proposed algorithm has significant advantages in retaining information of original data and denoising ability compared with other algorithms.

The rest of this article is organized as follows. Section “The proposed algorithm” introduces the proposed algorithm in detail. In the “Experiments” section, some experiments are examined to verify the proposed algorithm. Finally, the “Conclusion” section concludes this work.

The proposed algorithm

As depicted in Figure 1, the process of the proposed algorithm is divided into three parts. The first step is the sparse representation and Tucker decomposition of tensors. A new sparse representation is constructed in the second step. The dictionary dimensionality is reduced by using CDL algorithm in the third step. Finally, tensor compression is completed.

Before describing the algorithm in detail, let us introduce the sparse representation and Tucker decomposition of the tensor, which will be useful in the sequel.

Given a tensor signal $X \in \mathbb{R}^{l_1 \times l_2 \times \cdots \times l_n}$, the n–mode unfolding vector of the tensor X is obtained by fixing every index except the one in the mode n. The product $X_n \in \mathbb{R}^{l_1 \times l_2 \times \cdots \times l_{n-1} \times l_{n+1} \times l_n}$ is set by converting all n–mode vectors to columns of the matrix. An n–mode product of the tensor with a matrix $D \in \mathbb{R}^{I \times \ell}$ can be written as

$$Y = W \times_n D \in \mathbb{R}^{l_1 \times l_2 \times \cdots \times l_{n-1} \times J \times l_{n+1} \times l_n}$$

Figure 1. The flow chart of the proposed algorithm.
Note that Caiafa and Cichocki21 pointed out the relationship between the Kronecker model and Tucker representation. Given the n-mode dictionary $D = \{D_1, D_2, \ldots, D_N\}$, and $D_n \in \mathbb{R}^{I_n \times K}(n = 1, 2, \ldots, N)$, the representation of Y can be written as
\[
Y = X \times_1 D_1 \times_2 D_2 \cdots \times_N D_N \tag{2}
\]
by stacking all the one-mode vectors.22,23 After the above analysis, the sparse representation of the tensor Y can be expressed as
\[
\hat{Y} = S \times_1 D_1 \times_2 D_2 \cdots \times_N D_N \tag{3}
\]
where \hat{Y} indicates the signal after sparseness and S is the sparse coefficient tensor.

Given a tensor signal $X \in \mathbb{R}^{I \times J \times K}$, its Tucker decomposition is
\[
X = Z \times_1 A_1 \times_2 B \times_3 C = \sum_{p=1}^{P} \sum_{q=1}^{Q} \sum_{r=1}^{R} z_{pq} a_p b_q c_r \tag{4}
\]
where $A \in \mathbb{R}^{P \times I}$, $B \in \mathbb{R}^{Q \times J}$, and $C \in \mathbb{R}^{R \times K}$, and they are usually orthogonal matrices. The $Z \in \mathbb{R}^{P \times Q \times R}$ is the core tensor.24 Figure 2 displays a schematic diagram of the Tucker decomposition of a three-order tensor.

More generally, for the N-order tensor X, its Tucker decomposition is
\[
X = Z \times_1 A_1 \times_2 A_2 \cdots \times_N A_N \tag{5}
\]

Tensor dictionary representation

From the above analysis, it can be found that equations (3) and (5) are similar for the same tensor. Furthermore, the sparse coefficient tensor in equation (3) is approximately equal to the core tensor in equation (5), that is, $Z \approx S$. Here, equation (5) is transformed to obtain the following formula25
\[
Z = X \times_1 A_1^T \times_2 A_2^T \cdots \times_N A_N^T \tag{6}
\]
Substituting equation (6) into equation (3), we get
\[
\hat{Y} = X \times_1 A_1^T \times_2 A_2^T \cdots \times_N A_N^T \times_1 D_1 \times_2 D_2 \cdots \times_N D_N \tag{7}
\]

The properties of the tensor operations mentioned in Zeyde et al.26 show that
- When $m = n$
\[
W \times_m A \times_n B = W \times_n (BA) \tag{8}
\]
- When $m \neq n$
\[
W \times_m A \times_n B = W \times_n B \times_mA \tag{9}
\]

Therefore, from equations (8) and (9), the objective function can be obtained
\[
\hat{Y} = X \times_1 A_1^T \times_2 A_2^T \cdots \times_N A_N^T \times_1 D_1 \times_2 D_2 \cdots \times_N D_N = X \times_1 (D_1 A_1^T) \times_2 (D_2 A_2^T) \cdots \times_N (D_N A_N^T) \tag{10}
\]
Let
\[
T_i = D_i A_i^T \tag{11}
\]
Substituting equation (11) into equation (10), we get
\[
\hat{Y} = X \times_1 T_1 \times_2 T_2 \cdots \times_N T_N \tag{12}
\]
where \hat{Y} is the compressed signal and X is the original tensor signal. One can see from the above equation that \hat{Y} is the projection of the original signal X with respect to the mapping matrix T_i. In the traditional MPCA algorithm, the high-dimensional tensor achieves tensor compression by the processing of the projection matrix. In the projection matrix, the principal component retention operation is performed by the scatter matrix, and the compression is completed. Then, the high-dimensional tensor compression can be described as
\[
W = Q \times_1 \theta_1 \times_2 \theta_2 \cdots \times_N \theta_N \tag{13}
\]
where W is a low-dimensional tensor signal, Q is a high-dimensional tensor signal, and θ_i is a projection matrix after dimensionality reduction. The idea of the MPCA is applied to equation (13), and the dimensionality of T_i is reduced to achieve tensor compression and obtain a low-dimensional tensor.

Dictionary preprocessing

In the dimensionality reduction process of T_i, the dimensionality reduction of dictionary D in the mapping matrix T_i is realized by using the idea of...
dimensionality reduction of dictionary in the CDL algorithm, from which some important geometric features (inner product, distance, and angle) can be preserved, the original signal can be recovered from low-dimensional data, and a dictionary pair (high-dimensional dictionary \(D \) and low-dimensional dictionary \(P \)) is trained. Dictionary \(D \) is used to acquire sparse representation coefficients. Dictionary \(P \) is the direct dimensional dictionary \(P \) share a sparse representation coefficient. Then a from the problem of the dictionary pair. The dimensionality and recovery of the signal is transformed into the train-

\[
\begin{align*}
\hat{\theta} &= \left(\sqrt{\Lambda_d} \quad 0 \\
0 \quad \sqrt{\Lambda_r} \right) \\
\hat{D} &= U\hat{\theta}V^T
\end{align*}
\]

Finally, gain a new dictionary

\[
\hat{D} = U\hat{\theta}V^T
\]

where \(U \) and \(V \) are determined by the singular value decomposition. Thus, \(\hat{D} \) is used as the input for the next dictionary update phase.

Dictionary update

In the CDL algorithm, the two-dimensional signal is used, and the dictionary can be updated by the K-SVD algorithm. However, in the high-dimensional tensor, the K-SVD algorithm cannot be used for dictionary update of high-dimensional signals. Here, the tensor-based multidimensional dictionary learning algorithm (TKSVD)\(^{31}\) is utilized to complete the dictionary update process for high-dimensional tensor signals. There are two points to be noticed in the TKSVD algorithm: (1) different from other two-dimensional signal learning methods, according to the definition of the tensor norm, the MD dictionary learning method is got

\[
\|X - S \times D_1 \times \cdots \times D_N\|_F^2
\]

\[
= \|X_l - D_lG_iC_l\|_F^2
\]

\[
= \|X_l - D_l(G_iC_l)\|_F^2
\]

where \(C_i = (I_T \otimes D_N \otimes \cdots \otimes D_l)^T \), \(G_i \) indicates the atomic geometry to be removed, and \(I_T \) represents a \(T \)-order unit matrix. Obviously, it can be solved by the least squares method, and the updated value of the dictionary \(D_l \) can be obtained

\[
D_l = y_l(G_iC_l)^\dagger
\]

where \(\dagger \) represents a pseudo inverse matrix, that is, \(M^\dagger = M^T(MM^T)^{-1} \). (2) After completing an iteration, the absolute error and relative error (RE) between the recoverable data and original data can be calculated under the current dictionary and sparse coefficients. The absolute error after the \(i \)-th iteration is still a quantity of Frobenius norm definition

\[
E_G^i = \|X - S \times D_1 \times \cdots \times D_N\|_F^2
\]

The \(E_G^i \) is similar to the proof process of error matrix in K-SVD algorithm, in which \(E_G^i \) decreases monotonously and converges. Therefore, the processing of the TKSVD algorithm improves the denoising ability of the algorithm and system stability.
Algorithm 1. Tensor compression algorithm

Require:
Train sample \(X \in \mathbb{R}^{h \times k_1 \times \cdots \times k_t \times T} \), sparsity \(k \), maximum number of iterations, termination threshold \(\varepsilon \).

Ensure:
Low-dimensional tensor \(Y = X \times T_1 \times \cdots \times T_N \).
1. Initialization: put the dictionary \(D_i \in \mathbb{R}^{k_i \times T(t = 1, 2, \ldots, N)} \) as a Gaussian matrix and normalize the columns of each dictionary.
2. Tucker decomposition: \(X = Z \times A_1 \times \cdots \times A_N \).
3. Preprocess the dictionary: \(T_1(D) \).
4. \(n = 0 \).
5. \(n \)-th dictionary update,
 For \(k = 1 : h_N \),
 \(D_i = X_{(i)}(G \cdot C_i)^\top \).
 End.
6. Normalize dictionary \(D_i \).
7. Use \(D_i \) to update \(S \).
8. After \(i \)-th updates, calculate \(E_i \) and relative errors \(E_r \).
9. If \(E_r < \varepsilon \) or the number of iterations exceeds the maximum limit, terminate the loop, otherwise continue to steps 5–9.
10. Calculate \(U_i \):
 \(D = U_i \Theta V^T = [U_i \Theta_1 \cdots U_i \Theta_t] [V_i \Theta_i]^T \).
11. The low-dimensional dictionary can be obtained: \(P = U_i \Theta_t \).
12. The low-dimensional projection matrix can be obtained:
 \(T_i = P_iA_i^\top \).

The detailed algorithm flow of tensor compression is depicted in Algorithm 1. It can be seen from the algorithm flow that the proposed algorithm only contains one loop iterative process. In other words, when the dictionary is updated, only steps 5–9 are performed. Assume that there are \(n \) iterations, each iteration is accompanied by \(I_N \) cycles to update the dictionary. Then, the time complexity of the proposed algorithm is about \(O(nI_N) \), implying that the proposed algorithm is generally lower than or equal to other algorithms in the level of time complexity, and has obvious advantages in denoising and retaining information.

Experiments

In this section, the RE is used to test the information retention ability of the proposed algorithm. In this regard, it will be compared with the principal component analysis (PCA), maximum noise fraction (MNF) algorithm, and MPCA. In addition, signal-to-noise ratio (SNR), peak signal-to-noise ratio (PSNR), and structural similarity index measurement (SSIM) are applied to test the denoising ability of the proposed algorithm. Here, it will be compared with PCA, the binary wavelet threshold shrinkage (PCA-Bish), and MPCA.

Reconstruction performance analysis

The dataset of the hyperspectral image library published by the Computer Vision Laboratory of the Department of Computer Science of Columbia University is applied to test the ability of retaining the original data information. The RE is used to describe the closeness of the reconstructed tensor to the original tensor, that is

\[
P_e = \frac{\|X - X^\prime\|^2}{\|X\|^2} \tag{23}\]

Obviously, the reconstructed tensor is closer to the original tensor with a smaller \(P_e \). Ideally, if the reconstructed tensor is exactly the same as the original tensor, then \(P_e = 0 \).

Here, the spatial size of each hyperspectral image is 512 × 512 pixels, and the sensor can continuously image at a spectral resolution of 10 nm in the wavelength range of 400 to 700 nm, so each hyperspectral image contains 31 spectral channels. Thus, the original third-order observation tensor expressed by the tensor is 512 × 512 × 31, as shown in Figure 3.

To test the performance of algorithm reconstruction, the hyperspectral image is compressed by the proposed algorithm according to the compression rate (CR) of 0.04, 0.08, 0.14, 0.21, and 0.27, respectively. Under the

![Figure 3. The original image: (a) feather, (b) painting, (c) hair, and (d) statue.](image-url)
same CR, a comparison of PCA, MNF, and MPCA, RE in the 31st spectral channel is given (see Figure 4).

In the curves of Figure 4(a)–(d), the closer to the lower left of the figure, the better the performance of all algorithms. It can be seen that in the compression and reconstruction experiments of hyperspectral images, the RE of the proposed algorithm is lower than PCA and MNF under the same CR. Especially when the CR is extremely low, the RE of the proposed algorithm is slightly higher than that of the MPCA algorithm. But when the CR increases, the RE of the proposed algorithm is higher than that of the MPCA algorithm, so the overall reconstruction performance is better than the MPCA algorithm.

To verify the practicability, the CR is set to 0.01, and the original image of the 31st spectral channel and the reconstructed image of the proposed algorithm are shown in Figures 5 and 6, respectively. The RE of the reconstruction of the four groups of hyperspectral images are 0.0251, 0.0239, 0.0211, and 0.0195, respectively. Obviously, for the image hair and the statue with simple texture, the RE of reconstruction can be controlled within 0.03. Therefore, the proposed algorithm has a good practical value.

Robust analysis

The spectral data “split06a” collected by the American Bureau of Geological Survey’s Digital Spectrum Laboratory using the AVIRIS (airborne visible/infrared imaging spectrometer) sensor Indian Pines32 are utilized as a dataset to test the denoising ability of the proposed algorithm.
Here, the noise is the white Gaussian noise. To verify the effectiveness of the proposed algorithm in denoising, it is compared with the following two denoising algorithms: (1) PCA denoising algorithm (abbreviated as PCA algorithm)\(^3\) and (2) denoising algorithm combined with PCA and 2D PCA-Bish algorithm.\(^4\)

Figures 7 and 8 show two bands of randomly selected data from the simulated data Indian Pines with noise ($\sigma = 20$). It can be clearly seen that the proposed algorithm can better remove the noise influence and retain the details of the original image as much as possible.

It can be seen that although the data amount of the image is greatly compressed, from the visual effect, the difference between the reconstructed image and the original image is not obvious. Thus, in addition to visual effects, SNR, PSNR, and SSIM are used to compare the performance of different methods, and they are defined as

$$\text{SNR} = 10 \log \frac{\sum_{i,j,p} X(i,j)^2}{\sum_{i,j} (X(i,j) - X(i,j))^2}$$

Figure 5. Original images (spectral channel 31): (a) feather, (b) painting, (c) hair, and (d) statue.

Figure 6. Reconstructed images (spectral channel 31): (a) feather, (b) painting, (c) hair, and (d) statue.

Figure 7. Compression performance of different algorithms (spectral channel 25): (a) original image, (b) noisy image, (c) PCA, (d) PCA-Bish, and (e) proposed algorithm.
Figure 8. Compression performance of different algorithms (spectral channel 35): (a) original image, (b) noisy image, (c) PCA, (d) PCA-Bish, and (e) proposed algorithm.

Table 1. Comparison of denoising performance of three denoising methods (SNR/dB).

Evaluation standard	σ	Noisy image	PCA	PCA-Bish	Proposed algorithm		
		Mean	Std	Mean	Std	Mean	Std
SNR/dB	10	37.5281	0.6230	75.0122	1.5981	75.0213	1.4722
	15	27.9534	0.7623	65.9984	0.8701	66.9935	0.8003
	20	21.1321	1.2560	62.0037	0.1445	62.0145	0.9660

SNR: signal-to-noise ratio; PCA: principal component analysis.

Table 2. Comparison of denoising performance of three denoising methods (PSNR/dB).

Evaluation standard	σ	Noisy image	PCA	PCA-Bish	Proposed algorithm		
		Mean	Std	Mean	Std	Mean	Std
PSNR/dB	10	18.2103	0.0201	37.9587	1.6002	37.9765	1.4961
	15	15.9937	0.0190	37.2101	0.9930	37.0531	0.9601
	20	15.5638	0.0401	36.3402	0.9402	36.0258	0.8535

PSNR: peak signal-to-noise ratio; PCA: principal component analysis.

\[PSNR = 10 \log_{10} \frac{255^2}{\sum_{i,j} (X_{i,j} - \bar{X}_{i,j})^2 / M \times N} \] \hspace{1cm} (25)

\[SSIM = \frac{(2u_Xu_X^* + C_1)(2\sigma_X\sigma_X^* + C_2)}{(u_X^2 + u_X^*^2 + C_1)(\sigma_X^2 + \sigma_X^*^2 + C_2)} \] \hspace{1cm} (26)

where \(i = 1, 2, \ldots, M, \; j = 1, 2, \ldots, N, \) \(X \) represents no noise image data in each spectral channel, \(\bar{X} \) represents noisy data or denoised data, \(u_X \) represents the average value of the image, \(\sigma_X \) is the gray mean, and \(\sigma_X \) represents the standard deviation (Std) of the gray of the image \(X \), and \(C_1 = (255K_1)^2, \; C_2 = (255K_2)^2, \; K_1 = K_2 = 0.01. \)

The Indian Pines is processed by PCA, PCA-Bish, and the proposed algorithm, respectively. And SNR, PSNR, and SSIM are used to judge the robustness of the proposed algorithm.

It can be seen from the mean and Std in Table 1 that under the three kinds of noise standard deviation, the proposed algorithm has less noise than the other two algorithms, and the effect is more obvious under the condition of higher noise.

Table 2 displays that under the three kinds of noise standard deviation conditions, PCA and PCA-Bish compression reconstructed image quality are similar, but the image quality processed by PCA is higher than PCA-Bish image quality when the noise is larger. Compared with the proposed algorithm, PCA has lower reconstructed image quality. Therefore, under noise conditions, the performance of the proposed algorithm is better than PCA and PCA-Bish.

Table 3 illustrates the compression performance by using SSIM. It can be seen that the SSIM values of the three algorithms are different in three cases. But considering SSIM and Std, the proposed algorithm is obviously higher than other two algorithms, and the reconstructed image is more similar to the original image. In general, due to the large number of hyperspectral image bands, the visual effect evaluation of a
certain band image is insufficient to illustrate the effectiveness of the proposed algorithm. For this purpose, data analysis of all bands is required.

By observing the data in Tables 1–3, it can be seen that the trends of SNR, PSNR, and SSIM are basically the same. The denoising effects of the three methods are also analyzed: (1) they have no obvious advantage when the noise standard deviation is very low. This is mainly because the noisy image group generated by PCA conversion retains most of the image information when the noise is very small. The three methods except PCA will cause the loss of image detail information in denoising, and the PCA method directly uses the principal component image, so there is no such problem. (2) When the standard deviation of noise gradually increases, the advantage of the proposed algorithm becomes more obvious.

Conclusion

In this article, to solve the problems of information loss and new noise in previous work, a tensor compression algorithm using Tucker decomposition and dictionary dimensionality reduction has been proposed. The sparse coefficient and core tensor have been used to relate the sparse representation of the tensor with the Tucker decomposition. In the new sparse representation, the dimensionality reduction of the dictionary has been applied to the dimensionality reduction of the mapping matrix, and the tensor compression has been implemented. Finally, some experiments show that compared with other algorithms, the proposed algorithm can better preserve the original data information, and in the noise environment, the denoising ability of the proposed algorithm is stronger and the system is more stable.

In addition, it has to be mentioned that the approximate relationship between the sparse coefficients and core tensors plays an important role in the proposed algorithm. In the approximation process, there must be a certain approximation error. Therefore, how to reduce the error in the process is a problem worthy of study in the next research work. Meanwhile, deep learning has been widely used in many fields such as sentiment analysis, thus, how to effectively apply deep learning to the field of tensor signal compression may give rise to a research field of interest.

Acknowledgements

The authors are grateful to the anonymous reviewers and the editor for their valuable comments and suggestions.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work is supported by the Natural Science Foundation of China (Grant Nos. 61702066 and 61903056), Major Project of Science and Technology Research Program of Chongqing Education Commission of China (Grant No. KJZD-M201900601), Chongqing Research Program of Basic Research and Frontier Technology (Grant Nos. cstc2017jcyjAX0256, cstc2019jcyj-nsxmX0081, and cstc2018jcyjAX0154), and Project Supported by Chongqing Municipal Key Laboratory of Institutions of Higher Education (Grant No. cqupt-mct-201901).

ORCID iDs

Chenquan Gan https://orcid.org/0000-0002-0453-5630
Zufan Zhang https://orcid.org/0000-0001-5315-2065

References

1. Veganzones MA, Cohen JE, Farias RC, et al. Nonnegative tensor CP decomposition of hyperspectral data. *IEEE T Geosci Remote* 2016; 54(5): 2577–2588.
2. Wang L, Bai J, Wu J, et al. Hyperspectral image compression based on lapped transform and Tucker decomposition. *Signal Process: Image* 2015; 36: 63–69.
3. Chi EC and Kolda TG. On tensors, sparsity, and nonnegative factorizations. *SIAM J Matrix Anal A* 2012; 33(4): 1272–1299.
4. Zhou G, Cichocki A, Zhao Q, et al. Efficient nonnegative Tucker decompositions: algorithms and uniqueness. *IEEE T Image Process* 2015; 24(12): 4990–5003.

Table 3. Comparison of denoising performance of three denoising methods (SSIM).

Evaluation standard	\(\sigma\)	Noisy image	PCA	PCA-Bish	Proposed algorithm				
	Mean	Std	Mean	Std	Mean	Std	Mean	Std	
SSIM	10	0.2139	0.0145	0.9627	0.0633	0.9649	0.0603	0.9661	0.0401
	15	0.1530	0.0142	0.9601	0.0701	0.9604	0.0584	0.9772	0.0530
	20	0.1244	0.0211	0.9601	0.0637	0.9621	0.0542	0.9635	0.0483

SSIM: structural similarity index measurement; PCA: principal component analysis.
5. Katkovnik V and Egiazarian K. Sparse phase imaging based on complex domain nonlocal BM3D techniques. *Digit Signal Process* 2017; 63: 72–85.

6. Chen H, Wei L, He Y, et al. An adaptive weighted HOSVD denoising method. In: 2017 4th international conference on information science and control engineering (ICISCE), Changsha, China, 21–23 July 2017, pp.145–149. New York: IEEE.

7. Kuang L, Hao F, Yang LT, et al. A tensor-based approach for big data representation and dimensionality reduction. *IEEE T Emerg Top Comput* 2014; 2(3): 280–291.

8. Duan G, Wang H, Liu Z, et al. K-CPD: learning of over-complete dictionaries for tensor sparse coding. In: *Proceedings of the 21st international conference on pattern recognition*, Tsukuba, Japan, 11–15 November 2012, pp.493–496. New York: IEEE.

9. Kuang L, Yang LT, Wang X, et al. A tensor-based big data model for QoS improvement in software defined networks. *IEEE Network* 2016; 30(1): 30–35.

10. Chen YL, Hus CT and Liao HYM. Simultaneous tensor decompositions and completion using factor priors. *IEEE T Pattern Anal* 2014; 36(3): 577–591.

11. Xie D, Peng H, Li L, et al. Semi-tensor compressed sensing. *Digit Signal Process* 2016; 58: 85–92.

12. Caiafa CF and Cichocki A. Computing sparse representations of multidimensional signals using Kronecker bases. *Neural Comput* 2013; 25(1): 186–220.

13. Zubair S and Wang W. Tensor dictionary learning with sparse Tucker decomposition. In: *2013 18th international conference on digital signal processing (DSP)*, Fira, 1–3 July 2013, pp.1–6. New York: IEEE.

14. Nguyen VD, Abed-Meraim K and Linh-Trung N. Second-order optimization based adaptive PARAFAC decomposition of three-way tensors. *Digit Signal Process* 2017; 63: 100–111.

15. Sidiropoulos ND, Lathauwer L, De Feu X, et al. Tensor decomposition for signal processing and machine learning. *IEEE T Signal Process* 2017; 65: 3551–3582.

16. Zhou G, Cichocki A and Xie S. Fast nonnegative matrix/tensor factorization based on low-rank approximation. *IEEE T Signal Process* 2012; 60(6): 2928–2940.

17. Rajwade A, Rangarajan A and Banerjee A. Image denoising using the higher order singular value decomposition. *IEEE T Pattern Anal* 2013; 35(4): 849–862.

18. Said AB, Hadjidji R, Melkemi KE, et al. Multispectral image denoising with optimized vector non-local mean filter. *Digit Signal Process* 2016; 58: 115–126.

19. Li Y, Dai W and Xiong H. Compressive tensor sampling with structured sparsity. In: *2016 data compression conference (DCC)*, Snowbird, UT, 30 March–1 April 2016, pp.181–190. New York: IEEE.

20. Kolda TG and Bader BW. Tensor decompositions and applications. *SIAM Rev* 2009; 51(3): 455–500.

21. Caiafa CF and Cichocki A. Block sparse representations of tensors using Kronecker bases. In: *2012 IEEE international conference on acoustics, speech and signal processing (ICASSP)*, Kyoto, Japan, 25–30 March 2012, pp.2709–2712. New York: IEEE.

22. Arguello H, Rueda H, Wu Y, et al. Higher-order computational model for coded aperture spectral imaging. *Appl Optics* 2013; 52(10): 12–21.

23. Ly NH, Du Q and Fowler JE. Reconstruction from random projections of hyperspectral imagery with spectral and spatial partitioning. *IEEE J Sel Top Appl* 2013; 6(2): 466–472.

24. Yang Y, Zhang L, Wang S, et al. A multi-affine model for tensor decomposition. In: *2011 IEEE international conference on computer vision workshops (ICCV Workshops)*, Barcelona, 6–13 November 2011, pp.1348–1355. New York: IEEE.

25. Yuan L, Zhao Q and Cao J. High-order tensor completion for data recovery via sparse tensor-train optimization. In: *2018 IEEE international conference on acoustics, speech and signal processing (ICASSP)*, Calgary, AB, Canada, 15–20 April 2018, pp.1258–1262. New York: IEEE.

26. Zeyde R, Elad M and Protter M. On single image scale up using sparse representations. In: *Proceedings of the 7th international conference on curves and surfaces*, Avignon, 24–30 June 2010, pp.711–730. Berlin: Springer.

27. Yang J, Wang Z, Lin Z, et al. Coupled dictionary training for image super-resolution. *IEEE T Image Process* 2012; 21(8): 3467–3478.

28. Yang J, Wright J, Huang TS, et al. Image super resolution via sparse representation. *IEEE T Image Process* 2010; 19(11): 2861–2873.

29. Adler A, Hel-Or Y and Elad M. A shrinkage learning approach for single image super-resolution with over-complete representations. In: *Proceedings of the 11th European conference on computer vision*, Crete, 5–11 September 2010, pp.622–635. Berlin: Springer.

30. Singh G and Yamaguchi Y. Model-based six-component scattering matrix power decomposition. *IEEE T Geosci Remote* 2018; 56(10): 5687–5704.

31. Roemer F, Galdo GD and Haardt M. Tensor-based algorithms for learning multidimensional separable dictionaries. In: *2014 IEEE international conference on acoustics, speech and signal processing (ICASSP)*, Florence, 4–9 May 2014, pp.3991–3995. New York: IEEE.

32. Zhu Y, Yao C and Bai X. Scene text detection and recognition: recent advances and future trends. *Front Comput Sci* 2016; 10(1): 19–36.

33. Stephan K, Hibiitts CA, Hoffmann H, et al. Reduction of instrument-dependent noise in hyperspectral image data using the principal component analysis: applications to Galileo NIMS data. *Planet Space Sci* 2008; 56(4): 406–419.

34. Chen G and Qian SE. Denoising of hyperspectral imagery using principal component analysis and wavelet shrinkage. *IEEE T Geosci Remote* 2011; 49(3): 973–980.

35. Zhang Z, Zou Y and Gan C. Textual sentiment analysis via three different attention convolutional neural network and cross-modality consistent regression. *Neurocomputing* 2018; 275: 1407–1415.

36. Gan C, Wang L, Zhang Z, et al. Sparse attention based separable dilated convolutional neural network for target entities sentiment analysis. *Knowl-Based Syst* 2020; 188: 1–10.

37. Zhang Z, Wang C, Gan C, et al. Automatic modulation classification using convolutional neural network with features fusion of SPWVD and BJD. *IEEE T Signal Inf Process Over Netw* 2019; 5(3): 469–478.