Leptonic WIMP Coannihilation and the Current Dark Matter Search Strategy

Michael J. Baker

Dark Matter models with t-channel mediators @ LHC (LHC DM WG public meeting)

26 Apr 2019

Based on 1806.07896 (JHEP) MJB & Andrea Thamm
• Leptonic (leptophilic) t-channel models
- Leptonic (leptophilic) t-channel models
• Leptonic (leptophilic) t-channel models
• Leptonic (leptophilic) t-channel models

Model parameters

$m_\chi, m_\phi, y_\chi, (\Gamma_\phi)$
Leptonic (leptophilic) t-channel models

Model parameters

$m_\chi, m_\phi, y_\chi, (\Gamma_\phi)$

$\Delta \equiv \frac{m_\phi - m_\chi}{m_\chi}$

$m_\chi, \Delta, y_\chi, (\Gamma_\phi)$
• Leptonic (leptophilic) t-channel models

Model parameters

\[m_\chi, m_\phi, y_\chi, (\Gamma_\phi) \]

\[\Delta \equiv \frac{m_\phi - m_\chi}{m_\chi} \]

\[m_\chi, \Delta, y_\chi, (\Gamma_\phi) \]

Proton collider signature
• Leptonic (leptophilic) t-channel models

![Diagram of leptonic t-channel models]

Model parameters

$m_{\chi}, m_{\phi}, y_{\chi}, (\Gamma_{\phi})$

$$\Delta \equiv \frac{m_{\phi} - m_{\chi}}{m_{\chi}}$$

$m_{\chi}, \Delta, y_{\chi}, (\Gamma_{\phi})$

Proton collider signature

Two (SF) OS leptons + MET
• Simplified Model - New Fields & Lagrangian
• Simplified Model - New Fields & Lagrangian

Field	Spin	$su(3) \times su(2)_L \times u(1)_Y$	\mathbb{Z}_2	Copies
χ	$1/2$	$(1,1,0)$	-1	1
ϕ_i	0	$(1,1,-1)$	-1	$n \in \{1, 3, 10\}$
• Simplified Model - New Fields & Lagrangian

Field	Spin	$su(3) \times su(2)_L \times u(1)_Y$	\mathbb{Z}_2	Copies
χ	1/2	(1,1,0)	-1	1
ϕ_i	0	(1,1,-1)	-1	$n \in \{1,3,10\}$

Only interaction term is

$$\mathcal{L} \supset y_\chi \phi_i \overline{\chi} \ell_R + h.c.$$
• Simplified Model - New Fields & Lagrangian

Field	Spin	$su(3) \times su(2)_L \times u(1)_Y$	\mathbb{Z}_2	Copies
χ	1/2	(1,1,0)	-1	1
ϕ_i	0	(1,1,-1)	-1	$n \in \{1,3,10\}$

Only interaction term is

$$\mathcal{L} \supset y_\chi \phi_i \overline{\chi} \ell_R + h.c.$$

We assume coupling to only electrons or only muons
• Simplified Model - New Fields & Lagrangian

Field	Spin	$su(3) \times su(2)_L \times u(1)_Y$	\mathbb{Z}_2	Copies
χ	1/2	(1,1,0)	-1	1
ϕ_i	0	(1,1,-1)	-1	$n \in \{1,3,10\}$

Only interaction term is

$$\mathcal{L} \supset y_\chi \phi_i \bar{\chi} \ell_R + h.c.$$

We assume coupling to only electrons or only muons

Dirac or Majorana DM, so 12 variants in all
• Simplified Model - New Fields & Lagrangian

Field	Spin	$su(3) \times su(2)_L \times u(1)_Y$	\mathbb{Z}_2	Copies
χ	$1/2$	$(1,1,0)$	-1	1
ϕ_i	0	$(1,1,-1)$	-1	$n \in \{1, 3, 10\}$

Only interaction term is

$$\mathcal{L} \supset y_\chi \phi_i \overline{\chi} \ell_R + h.c.$$

We assume coupling to only electrons or only muons

Dirac or Majorana DM, so 12 variants in all

A simplified model version of Bino DM with everything except the sleptons decoupled
• Coannihilation

Imagine that $m_\phi \sim m_\chi$
Coannihilation

Imagine that $m_\phi \sim m_\chi$

Assuming thermal freeze-out, they remain in equilibrium until $T \sim \frac{m_\chi}{30}$, so χ and ϕ are rare
Coannihilation

Imagine that $m_{\phi} \sim m_{\chi}$

Assuming thermal freeze-out, they remain in equilibrium until $T \sim \frac{m_{\chi}}{30}$, so χ and ϕ are rare

$\chi \bar{\chi} \to \ell^- \ell^+$ and $\phi \bar{\phi} \to \ell^- \ell^+$ are much slower than $\chi \ell^+ \to \phi \ell^+$

as long as $m_{\phi} - m_{\chi} \lesssim T$, or $\frac{m_{\phi} - m_{\chi}}{m_{\chi}} \equiv \Delta \lesssim 3\%$
• Coannihilation

Imagine that $m_\phi \sim m_\chi$

Assuming thermal freeze-out, they remain in equilibrium until $T \sim \frac{m_\chi}{30}$, so χ and ϕ are rare

$\chi\bar{\chi} \rightarrow \ell^-\ell^+$ and $\phi\bar{\phi} \rightarrow \ell^-\ell^+$ are much slower than $\chi\ell^+ \rightarrow \phi\ell^+$ as long as $m_\phi - m_\chi \lesssim T$, or $\frac{m_\phi - m_\chi}{m_\chi} \equiv \Delta \lesssim 3\%$

If $\sigma_{\chi\bar{\chi} \rightarrow \ell^-\ell^+} \ll \sigma_{\phi\bar{\phi} \rightarrow \text{SM SM}}$, χ can convert into ϕ, which annihilates
Coannihilation

Imagine that $m_\phi \sim m_\chi$

Assuming thermal freeze-out, they remain in equilibrium until $T \sim \frac{m_\chi}{30}$, so χ and ϕ are rare

$$\chi \bar{\chi} \rightarrow \ell^- \ell^+ \text{ and } \phi \bar{\phi} \rightarrow \ell^- \ell^+$$

are much slower than $\chi \ell^+ \rightarrow \phi \ell^+$

as long as $m_\phi - m_\chi \lesssim T$, or $\frac{m_\phi - m_\chi}{m_\chi} \equiv \Delta \lesssim 3\%$

If $\sigma_{\chi \bar{\chi} \rightarrow \ell^- \ell^+} \ll \sigma_{\phi \bar{\phi} \rightarrow \text{SM SM}}$, χ can convert into ϕ, which annihilates

Coannihilation can increase the effective freeze-out cross-section
Coannihilation

If $\sigma_{\chi \bar{\chi} \to \ell^- \ell^+} \ll \sigma_{\phi \bar{\phi} \to \text{SM SM}}$, χ can convert into ϕ, which annihilates

Coannihilation can increase the effective freeze-out cross-section
• Coannihilation

If $\sigma_{\chi \bar{\chi} \to \ell^- \ell^+} \ll \sigma_{\phi \bar{\phi} \to \text{SM SM}}$, χ can convert into ϕ, which annihilates

Coannihilation can increase the effective freeze-out cross-section

If $\sigma_{\chi \bar{\chi} \to \ell^- \ell^+} \gg \sigma_{\phi \bar{\phi} \to \text{SM SM}}$, ϕ can ‘top-up’ the abundance of χ via $\phi \ell^+ \to \chi \ell^+$. In this case
Coannihilation

If \(\sigma_{\chi\bar{\chi} \rightarrow \ell^- \ell^+} \ll \sigma_{\phi\bar{\phi} \rightarrow \text{SM \ SM}} \), \(\chi \) can convert into \(\phi \), which annihilates

Coannihilation can **increase** the effective freeze-out cross-section

If \(\sigma_{\chi\bar{\chi} \rightarrow \ell^- \ell^+} \gg \sigma_{\phi\bar{\phi} \rightarrow \text{SM \ SM}} \), \(\phi \) can ‘top-up’ the abundance of \(\chi \) via \(\phi\ell^+ \rightarrow \chi\ell^+ \). In this case

Coannihilation can **decrease** the effective freeze-out cross-section
Relic Surface

Yukawa coupling which yields observed relic abundance
• Relic Surface

Yukawa coupling which yields observed relic abundance
• Relic Surface

Yukawa coupling which yields observed relic abundance

![Graphs showing relic surface for Majorana and Dirac particles.]

- Majorana χ, $n = 1$
- Dirac χ, $n = 1$
• Relic Surface

Yukawa coupling which yields observed relic abundance

Although the collider process will not depend on this coupling, direct and indirect detection will
• Proton collider signature and cross-section
• Proton collider signature and cross-section
Backgrounds and cuts

We do a theorists analysis (Madgraph, Pythia, Delphes)

Main backgrounds are di-boson

Background cross-sections in fb are

Channel	$\mu^+\mu^-\nu_{\text{all}}\nu_{\text{all}}$	$\mu^+\mu^-l_{\text{all}}\nu$		
Energy [TeV]	27	27		
No Cuts	2100	560		
$p_T^{\mu_1(\mu_2)} > 35(20)$ GeV & Lepton veto	1100	120		
Jet veto	690	45		
$m_{\mu\mu} > 20$ GeV & $	m_{\mu\mu} - m_Z	> 10$ GeV	470	6.6
$m_{T2} > 200$ GeV	0.26	0.022		

• Results

\[\mathcal{L}_{27 \text{ TeV}} = 15 \text{ ab}^{-1} \]

\[\mathcal{L}_{100 \text{ TeV}} = 20 \text{ ab}^{-1} \]
• Results

\[\mathcal{L}_{27 \text{ TeV}} = 15 \text{ ab}^{-1} \]
\[\mathcal{L}_{100 \text{ TeV}} = 20 \text{ ab}^{-1} \]

DD of Majorana DM is velocity suppressed, colliders are insensitive to this
• **Results**

\[\mathcal{L}_{27 \text{ TeV}} = 15 \text{ ab}^{-1} \]
\[\mathcal{L}_{100 \text{ TeV}} = 20 \text{ ab}^{-1} \]

DD of Majorana DM is velocity suppressed, colliders are insensitive to this

This simple analysis does not probe small Δ since leptons are soft
• Results

\[L_{27 \text{ TeV}} = 15 \text{ ab}^{-1} \]
\[L_{100 \text{ TeV}} = 20 \text{ ab}^{-1} \]
• Results

\[\mathcal{L}_{27 \text{ TeV}} = 15 \text{ ab}^{-1} \]
\[\mathcal{L}_{100 \text{ TeV}} = 20 \text{ ab}^{-1} \]
• Results

\[\mathcal{L}_{27 \text{ TeV}} = 15 \text{ ab}^{-1} \]
\[\mathcal{L}_{100 \text{ TeV}} = 20 \text{ ab}^{-1} \]

Results for the electron case very similar
• Conclusions
• Conclusions

• Thermal freeze-out can produce multi-TeV DM candidates
• Conclusions

• Thermal freeze-out can produce multi-TeV DM candidates

• pp collider signature is two (same-flavour) opposite-sign leptons + MET
Conclusions

- Thermal freeze-out can produce multi-TeV DM candidates
- pp collider signature is two (same-flavour) opposite-sign leptons + MET
- pp collider reach does not depend on the NP Yukawa coupling
• Conclusions

• Thermal freeze-out can produce multi-TeV DM candidates

• pp collider signature is two (same-flavour) opposite-sign leptons + MET

• pp collider reach does not depend on the NP Yukawa coupling

• Regions of viable parameter space can only be probed by pp colliders
• Conclusions

• Thermal freeze-out can produce multi-TeV DM candidates

• pp collider signature is two (same-flavour) opposite-sign leptons + MET

• pp collider reach does not depend on the NP Yukawa coupling

• Regions of viable parameter space can only be probed by pp colliders

Thank you!
In the Coannihilation Codex (1510.03434) we classify all simplified models of coannihilating DM and describe all possible LHC signatures.
In the Coannihilation Codex (1510.03434) we classify all simplified models of coannihilating DM and describe all possible LHC signatures.

Ask me more in the coffee break!