Meningitis due to Enterobacter aerogenes in the community associated with congenital dermal sinus in a Japanese infant

Yoshitake Sato, Yoshitaka Watanabe, Hideka Saito, Tsuneki Watanabe, Hirokazu Ikeda

Children Medical Center, Showa University Northern Yokohama Hospital, Chigasaki-chuo 35-1, Tsuzuki-ku Yokohama-shi, Kanagawa 224-8503, Japan

ARTICLE INFO

Keywords:
Congenital dermal sinus
Dimple
Enterobacter aerogenes
Hemangioma
Meningitis

ABSTRACT

Congenital dermal sinus is associated with meningitis caused by atypical pathogens. Although nosocomial infections with Enterobacter aerogenes in limited settings have been reported, community-acquired infections associated with congenital dermal sinus are rarely observed. We present the first non-neonatal case of a 3-month-old boy with meningitis due to Enterobacter aerogenes associated with congenital dermal sinus. The patient visited our hospital with fever and a skin dimple with lumbosacral hemangioma. He was diagnosed with meningitis based on cerebrospinal fluid (CSF) examination, which showed a cell count of 5717/µL. Subsequently, antimicrobial therapy with meropenem, cefotaxime (CTX), and vancomycin was initiated. His fever subsided, and the number of CSF cells decreased. Magnetic resonance imaging was performed for the dimple of the lumbosacral region, revealing the congenital dermal sinus. Enterobacter aerogenes was isolated from CSF and stool cultures, and treatment was adjusted to CTX alone based on susceptibility testing. However, the CSF culture remained positive. Although CTX was effective, the response to treatment was partial, and a switch to meropenem was required to achieve negative CSF cultures. In conclusion, Enterobacter aerogenes, although atypical, can cause community-acquired meningitis associated with congenital dermal sinus. Consistent with previous reports, in this case, a hemangioma on the back led to the diagnosis of congenital dermal sinus. Hence, systemic examination, including the back, is important. In addition, use of a third-generation cephalosporin (e.g., CTX) may not negate the CSF culture, even if it is effective. Thus, a switch to another drug (e.g., carbapenem) may be required.

Introduction

Most sacral skin dimples are benign; however, some may be associated with spinal dysraphism (e.g., a congenital dermal sinus), which may lead to bacterial meningitis caused by atypical organisms (e.g., Staphylococcus aureus, Escherichia coli, Proteus species, and anaerobes) [1]. The presence of atypical pathogens, rather than typical pathogens such as Streptococcus pneumoniae or Haemophilus influenzae, suggests the presence of causative complications. Enterobacter spp. cause opportunistic and nosocomial infections in the intensive care unit (ICU) [2]. Moreover, pediatric meningitis due to Enterobacter aerogenes has been reported in neonates in the neonatal ICU (NICU) [3]. However, community-acquired infections due to Enterobacter aerogenes associated with congenital dermal sinus in non-neonates have rarely been reported. We present the case of a 3-month-old boy with meningitis due to Enterobacter aerogenes associated with congenital dermal sinus.

Case report

A 3-month-old boy (height: 61.5 cm; weight: 8.0 kg) without any significant medical history, except for a lumbosacral hemangioma, was admitted to our hospital for fever and deteriorating condition. He has received all vaccinations up to the age of 3 months in Japan. He was admitted with body temperature of 38.7 °C, heart rate of 213 beats/min, respiratory rate of 56 breaths/min, and blood pressure of 104/44 mmHg. There was intermittent eye-rolling, he disliked recumbency, and preferred vertical holding, which were suggestive of meningeal irritation. At the center of the lumbosacral hemangioma, a dimple was observed for the first time at admission. His hematological values included a white blood cell count of 13,180/µL (74 % neutrophils),...
hemoglobin levels of 11.2 g/dL, and platelet count of 77.5 × 10^9/µL. Additionally, serology reports revealed C-reactive protein levels of 0.06 mg/dL, and procalcitonin levels < 0.05 ng/mL; urinalysis was normal. Chest X-ray and head computerized tomography did not show abnormalities. CSF examination yielded the following findings: cell count = 5717/µL; protein = 352 mg/dL; glucose < 10 mg/dL; and chloride = 120 mEq/L (Table 1). Therefore, we suspected bacterial meningitis associated with the congenital dermal sinus.

On day 1, we initiated treatment with intravenous meropenem (MEPM) (120 mg/kg/day), cefotaxime (CTX) (300 mg/kg/day), and vancomycin (45 mg/kg/day). Dexamethasone 0.60 mg/kg/day was administered for 2 days. His fever subsided the next day, and ocular deviation was also improved. Other vital signs were gradually normalized thereafter. There was no evidence of immunodeficiency in the patient’s past history and blood tests for immunoglobulin and complement.

Blood cultures on admission were negative, whereas Enterobacter aerogenes was isolated from CSF and stool cultures. The trend of antimicrobial susceptibility testing of Enterobacter aerogenes isolated from CSF is shown in Table 2 (days 1, 3, and 6). On day 3, the CSF cell count decreased to 259/µL, glucose levels were elevated to 53 mg/dL, and Gram staining of the smear was negative. Accordingly, on day 4, we adjusted the treatment to CTX alone based on antimicrobial susceptibility testing of Enterobacter aerogenes (minimum inhibitory concentration [MIC]: CTX ≤ 1, susceptible [S]; MEPM ≤ 1, S). On day 6, T2-weighted magnetic resonance imaging (MRI) revealed a congenital dermal sinus communicating with the spinal cord (Fig. 1), which was the probable entry portal for bacteria. Enterobacter aerogenes is an enterobacterium, and this organism was isolated from the stool and CSF cultures in the present case. MRI did not show any abnormal findings or malformations including brain abscess. CTX appeared to be effective, leading to improvement in clinical symptoms. Nevertheless, the CSF cell count decreased to 120/µL, glucose levels were 34 mg/dL, and the CSF culture became negative for the first time. The patient was transferred to another hospital for surgical management of the sinus.

Table 2

Trend in the antimicrobial susceptibility test for Enterobacter aerogenes isolated from cerebrospinal fluid.

Antibiotics	MIC, mg/ml	Susceptibility	
	day1	day3	day6
ABPC	≧ 32	R	≧ 32
ABPC/SBT	≦ 8	R	≦ 8
CEZ	≦ 32	R	≦ 32
CTM	16	I	8
CTX	1	S	1
CAZ	4	S	4
CTX	1	S	1
CFPM	≦ 2	S	2
CMZ	64	R	64
AZT	≦ 4	S	4
FMOX	32	I	8
MEPM	≦ 1	S	1
GM	2	S	2
LVFX	≦ 0.5	S	0.5
ST	38	S	38

MIC: minimum inhibitory concentration. S: susceptible; I: intermediate; R: resistant.

Blood cultures on admission were negative, whereas Enterobacter aerogenes was isolated from CSF and stool cultures. The trend of antimicrobial susceptibility testing of Enterobacter aerogenes isolated from CSF is shown in Table 2 (days 1, 3, and 6). On day 3, the CSF cell count decreased to 259/µL, glucose levels were elevated to 53 mg/dL, and the CSF culture became negative for the first time. The patient was transferred to another hospital for surgical management of the sinus.

Table 1

Laboratory findings in blood, urine, and cerebrospinal fluid (CSF) at admission.

Blood test	Biochemical test	CSF examination
WBC	TP	5717/µL
Neutrophils	Alb	6.2 g/dL
Lymphocyte	BUN	g/dL
Monocyte	Cre	4.2 mg/dL
Eosinophils	AST	Protein
RBC	ALT	U/L 30
Hb	LDH	U/L 354
Pt	CK	U/L 255
Na	Cl	U/L 136
K	Glu	mEq/L 105
Glu	CRP	mEq/L 352
procalcitonin	CRP	Protein

Ab, albumin; ALT, alanine aminotransferase; AST, aspartate aminotransferase; BUN, blood urea nitrogen; CK, creatine kinase; Cl, chloride; Cre, creatinine; CRP, C-reactive protein; Glu, glucose; Hb, hemoglobin; K, potassium; LDH, lactate dehydrogenase; Pt, platelet; RBC, red blood cells; TP, total protein; WBC, white blood cells.
Bacterial meningitis associated with congenital dermal sinus is often caused by atypical bacteria, such as *Staphylococcus aureus*, *Escherichia coli*, *Proteus* species, and anaerobes [1]. A literature review of reports concerning patients with congenital dermal sinus disease who developed abscesses showed similar causative bacteria; however, there were no cases linked to *Enterobacter aerogenes* [8]. Meningitis due to *Enterobacter aerogenes* has been reported only in specific conditions, such as patients undergoing surgical procedures [9–11] and neonates in the NICU [3]. In the present case, we considered that the hematogenous infection was negative, since the blood culture was negative. Therefore, we suspected that the pathogen entered through the congenital dermal sinus. In the presence of skin findings (e.g., lumbosacral hemangioma) in the midback, an OSD (e.g., congenital dermal sinus) should be added to the differential diagnoses. In conclusion, *Enterobacter aerogenes*, an atypical pathogen, can also cause community-acquired infection in meningitis associated with congenital dermal sinus. In addition, in the course of antibiotic therapy for bacterial meningitis caused by *Enterobacter aerogenes*, a third-generation cephalosporin (e.g., CTX) should not be used for severe, life-threatening or high inoculum *Enterobacter* infections and as such, carbapenem (e.g., MEPM) should have been the better choice of antimicrobial in this setting.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Ethical approval

This report was approved by the Ethics Committee of Showa University School of Medicine (No. 21–067-A). Informed consent to publish this article was provided by the patient’s family.

Consent Statement

Informed consent was obtained from the patient’s parent for the publication of this report.

CRediT authorship contribution statement

Y.S., H.S., and T.W. treated the patient and Y.S. drafted the manuscript. Y.W., H.S., T.W., and H.I. contributed to the writing and critical review of the manuscript. All authors have read and approved the manuscript.

Acknowledgements

None.

Conflict of interest

None.

Author statement

All authors have made substantial contributions to all of the following: (1) the conception and design of the study, or acquisition of the data; (2) the analysis and interpretation of data; (3) drafting the article or revising it critically for important intellectual content; and (4) final approval of the version to be published.
References

[1] Venkataramana NK. Spinal dysraphism. J Pedia Neurosci 2011;6:S31–40. https://doi.org/10.4103/1817-1745.85707.
[2] Davin-Regli A, Lavigne JP, Pages JM. Enterobacter spp. update on taxonomy, clinical aspects, and emerging antimicrobial resistance. Clin Microbiol Rev 2019;32:e00002–19. https://doi.org/10.1128/CMR.00002-19.
[3] Boskabadi H, Heidari E, Zakerihamidi M. Etiology, clinical findings and laboratory parameters in neonates with acute bacterial meningitis. Iran J Microbiol 2020;12:89–97. https://doi.org/10.18502/ijm.v12i2.2612.
[4] Albert GW. Spine ultrasounds should not be routinely performed for patients with simple sacral dimples. Acta Paediatr 2016;105:890–4. https://doi.org/10.1111/apa.13422.
[5] Guggisberg D, Hadji-Rabia S, Viney C, Bodemer C, Brunelle F, Zerah M, et al. Skin markers of occult spinal dysraphism in children: a review of 54 cases. Arch Dermatol 2004;140:1109–15. https://doi.org/10.1001/archderm.140.9.1109.
[6] Powell KR, Cherry JD, Hougen TJ, Blinderman EE, Dunn MC. A prospective search for congenital dermal abnormalities of the craniospinal axis. J Pedia 1975;87:744–50. https://doi.org/10.1016/S0022-3476(75)80298-8.
[7] Ackerman LL, Menezes AH. Spinal congenital dermal sinuses: a 30-year experience. Pediatrics 2003;112:641–7. https://doi.org/10.1542/peds.112.3.641.
[8] Prasad GL, Hegde A, Divya S. Spinal intramedullary abscess secondary to dermal sinus in children. Eur J Pedia Surg 2019;29:229–38. https://doi.org/10.1055/s-0038-1655736.
[9] Huang CR, Lu GH, Chang WN. Adult Enterobacter meningitis: a high incidence of co-infection with other pathogens and frequent association with neurosurgical procedures. Infection 2001;29:75–9. https://doi.org/10.1007/s15010-001-0087-0.
[10] Chauhan S, Noor J, Yegneswaran B, Kodali H. Enterobacter meningitis and challenges in treatment. J Clin Diagn Res 2016;10. https://doi.org/10.7860/JCDR/2016/20759.9081.
[11] Khan FA. Meningitis due to Enterobacter aerogenes subsequent to resection of an acoustic neuroma and abdominal fat graft to the mastoid. Braz J Infect Dis 2004;8:386–8. https://doi.org/10.1590/S1413-86702004000500009.
[12] Mitreva M, Abubucker S, Zhou Y, Stevens HJ, Hall-Moore C, Julian S, Shaikh N, Warner BL, Tarr PL. Sepsis from the gut: the enteric habitat of bacteria that cause late-onset neonatal bloodstream infections. Clin Infect Dis 2014;58:1211–8. https://doi.org/10.1093/cid/ciu084.
[13] Foster DR, Rhoney DL. Enterobacter meningitic organism susceptibilities, antimicrobial therapy and related outcomes. Surg Neurol 2005;63:533–7. https://doi.org/10.1016/j.surneu.2004.06.018.