Influence of Y_2O_3 particle size on the microstructure and corrosion behaviour of porous Si_3N_4 ceramics

Z Y Xu1,2,3,7, W X Hai1,2,3, X Zhang1,2,3, Y X Ma4 and W L Ma1

1 Key Lab of Powder Material & Advanced Ceramics, Yinchuan 750021, China
2 School of Materials Science & Engineering, North Minzu University, Yinchuan 750021, China
3 International Scientific & Technological Cooperation Base of Industrial Waste Recycling and Advanced Materials, Yinchuan 750021, China

*E-mail: xzy0030@163.com

Abstract. In this study, porous silicon nitride ceramics were fabricated by pressureless with different particle size of Y_2O_3 using as sintering additive. The effects of particle size of Y_2O_3 particles on sintering behaviour, microstructure and corrosion behaviour of the $\beta-Si_3N_4$ ceramics were studied in detail. As the Y_2O_3 particles size decreasing from 5 μm to 0.5 μm, the linear shrinkage of porous $\beta-Si_3N_4$ ceramics increased from 14.3% to 18.3%, and the sintering porosity decreased from 25.3% to 17.6%. The smaller Y_2O_3 particles additions were consisted of finer $\beta-Si_3N_4$ grains and demonstrated more accordant microstructure due to the well-dispersed Y_2O_3. The finer microstructure resulted in the improvement of mechanical properties, the sintered sample with 0.5 μm Y_2O_3 addition shown flexural strength of 450 MPa. Significant weight loss was observed after corrosion in 1 M HCl solution at 70°C for different time, due to the assumed formation of the grain boundary phase added to the Y_2O_3

Keywords: Y_2O_3; Particle Size; Corrosion Properties; Porous Si_3N_4 Ceramics

1. Introduction

Porous Si_3N_4 ceramics are promising structural material because of the excellent mechanical properties and relatively low dielectric constant [1-3]. Especially porous Si_3N_4 ceramics composed of finer $\beta-Si_3N_4$ grains with high aspect ratio have excellent mechanical properties, such as high strength and good thermal shock resistance [4-9]. During the sintering process of Si_3N_4, the self-diffusion coefficient of Si and N atoms is very low, resulted in the decreasing of volume diffusion and grain boundary diffusion rate. There is not enough driving force to get densification with low temperature, without the temperature rising to the decomposition temperature of Si_3N_4. Thus, some metal oxides and rare earth oxide such as Y_2O_3, MgO, Al$_2$O$_3$ and Yb$_2$O$_3$ were added as sintering additives during liquid sintering to improve the densification process [10-13]. The oxides formed a low-melting point eutectic liquid with the SiO_2 on the Si_3N_4 surface layer, promoted the densification and phase transformation of Si_3N_4 ceramics. The oxide and SiO_2 formed low melting point eutectic liquid and covered Si_3N_4 grains surface, which promotes the densification process and phase transformed from α to $\beta-Si_3N_4$.

Many researchers have successfully prepared porous $\beta-Si_3N_4$ ceramics using different sintering additives and studied the influence of the type and content of these additives on the micrograph and...
mechanical properties of porous β-Si$_3$N$_4$ ceramics. Yang [14] fabricated porous Si$_3$N$_4$ ceramics by using different content of Yb$_2$O$_3$ as sintering additive, the results revealed that the densification and the grain growth of β-Si$_3$N$_4$ were enhanced as the increasing of sintering additive content. Yang [15] took four types of rare oxides as sintering aids, they found that with the decreasing ionic radii of rare elements, a high viscosity low melting point eutectic liquid was produced. The higher viscosity liquid phase retarded the new nuclear formed and atoms diffusion rate, which yield finer rod-like β-Si$_3$N$_4$ grains. Cheng [16] fabricated porous Si$_3$N$_4$ ceramics by pressureless sintering and investigated the influence of Yb$_2$O$_3$ or Y$_2$O$_3$ as sintering additive. Both Yb$_2$O$_3$ and Y$_2$O$_3$ could formed high melting crystalline promote the phase transformation of Si$_3$N$_4$. This paper addressed the fabrication of porous Si$_3$N$_4$ ceramics by adding different particle size Y$_2$O$_3$ as sintering additive and investigated the influence of Y$_2$O$_3$ particle size on sintering behavior, microstructure and corrosion behavior of porous β-Si$_3$N$_4$ ceramics.

2. Experiment

High-purity α-Si$_3$N$_4$ was original powder in this investigation, with average grain diameter of 5 μm, 2 μm and 0.5 μm, respectively. Small amounts of Y$_2$O$_3$ were used as additives. The starting powder mixture contained 95wt.% α-Si$_3$N$_4$ powder and 5wt.% Y$_2$O$_3$ powder. Powder mixtures were designated by the letters YSN (for Y$_2$O$_3$ and Si$_3$N$_4$) along with the particle size of the Y$_2$O$_3$ powder. For example, the porous Si$_3$N$_4$ ceramics prepared from Si$_3$N$_4$ and 5 μm Y$_2$O$_3$ was designated by 5YSN. The mixed powder was ball-milled in a polyethylene tank with 12 h, ethanol as solvent, the slurry formed after ball milling was vacuum dried and through a 150μm sieve. The powder was pressed at 60 MPa to form green bodies with size of 5 mm×5 mm×50 mm. The green blocks were placed in BN-coated graphite crucibles and sintered in a furnace at 1750°C for 2 h at nitrogen pressure of 0.3 MPa. The graphite crucibles coated with BN slurry firstly, and then put the Si$_3$N$_4$ green blocks in, the bodies were sintered at 0.3 MPa N$_2$, 1750°C for 2 h.

The porosities of green bodies were obtained by measuring its weight and size. The sintering porosity were measured by the Archimedes method, five samples were estimated to get the mean value. The microstructure of the β-Si$_3$N$_4$ ceramics were observed by scanning electron microscopy (SEM, KYKY-2800B, KYKY, China) at an accelerating voltage of 20 kV, the surface of the samples was sputter-coated with gold powder. Y elemental microanalysis was carried out in backscattered electron mode (BSE). The three-point flexural strength was tested using a universal testing machine (CMT5305, MST Co., U.K., with crosshead speed of 0.5 mm/min, span of 16 mm) by highly polished rectangular samples with size of 3 mm×4 mm×30 mm. All experiments were carried out on a series of at least 5 bars to get the mean value. The 0.5YSN, 2YSN and 5YSN samples were exposure in 1 M HCl solution at 70°C in a PTFE container. After corroded with different times, the samples were washed by deionized water, dried at 70°C and calculated the weight loss of the samples.

3. Results and Discussion

3.1 The distribution of Y elemental in Green compacts

Figure 1 presented the Y elemental distribution map of green compacts with different particle size Y$_2$O$_3$ addition by BSE, the white spots were Y$_2$O$_3$ particles. The white spots show homogeneous distributed which indicated a uniform distribution of Y elemental. However, for the 5YSN sample, some large Y$_2$O$_3$ particles could be detected in photomicrograph, as the Y$_2$O$_3$ particles size became smaller, the distribution sites of the Y$_2$O$_3$ particles increased dramatically with 2YSN sample. Some more tiny particles could be observed in 0.5YSN sample, as the Y$_2$O$_3$ particles became finer, the more connection between Y$_2$O$_3$ and Si$_3$N$_4$ particles.
Figure 1. Y elemental distribution map of the Si₃N₄-Y₂O₃ green compacts.

3.2 Microstructure

Figure 2 presents the SEM images of sintered porous Si₃N₄ ceramics microstructure as different size of Y₂O₃ added. In these pictures, a multidirectional interlocked microstructure of numerous rod-like β-Si₃N₄ grains could be clearly seen. The existence of the elongated β-Si₃N₄ grains enhanced the strength of the porous Si₃N₄ ceramics by the crack deflection, bridge and pull-out performance. Besides, the intertwining rod-like β-Si₃N₄ grains developed irregular continuous pores inside the specimens, keeping a high porosity with a high strength. However, a significant effect of Y₂O₃ particle size on microstructure of β-Si₃N₄ grains was observed. The 5YSN sample shows a bimodal microstructure with some elongated β-Si₃N₄ grains was formed in the fine β-Si₃N₄ grains matrix. Decreasing the Y₂O₃ particle size resulted in a tendency to form finer, more uniform microstructure, the β-Si₃N₄ grains with higher aspect ratio and grain widths tend to be finer. It was known that both phase transformation and grain growth of β-Si₃N₄ were influenced by the liquid phase formation at the grain boundaries [17]. When the coarse Y₂O₃ powder was addition, the Y₂O₃ particles and the liquid phase were nonuniform distribution in the specimen. Numerous β-nuclei could be obtained located at the less liquid phase distribution site, resulting in a small β-Si₃N₄ grain size with a low aspect ratio, because the space for the grain growth was inhibited by the other β-Si₃N₄ grains. Meanwhile, some extra-large β-Si₃N₄ grains were obtained in the sufficient liquid phase distribution site [18, 19]. As the particle size of Y₂O₃ was smaller, the Y₂O₃ particles and liquid phase showing a homogeneous distribution in the specimen, the nuclei site was decreased and the grain growth of the β-Si₃N₄ grains were improvement.

Figure 2. SEM micrographs of porous Si₃N₄ ceramics

3.3 Porosity and Flexural strength

Variations in the green porosity, linear shrinkage and sintering porosity with different Y₂O₃ particles size are shown in Table 1. The green porosities were calculated by measuring samples weight and size. As shown in Table 1, the porosities of the green bodies were distinguished with different particle size Y₂O₃ addition. Comparing with the 5YSN and 2YSN samples, 0.5YSN samples exhibited a higher porosity due to the smaller Y₂O₃ particle size. On the other hand, linear shrinkage of ceramics was enhanced visibly by the decreasing Y₂O₃ particle size. During liquid phase sintering, the Si₃N₄ particle rearrangement improved the densification process, especially at the grain boundary sites. The Y₂O₃ reaction with SiO₂ existed on the surface layer of the Si₃N₄ particles and formed liquid phase at high
temperature. Then the liquid phase coated on the α-Si₃N₄ particles and promoted the densification. For the 5YSN samples, the coarse Y₂O₃ particles distribution sites were less than the 2YSN and 0.5YSN samples, so the liquid phase spreading and coating were difficult, which retarded the rearrangement of the α-Si₃N₄ particles and densification. The sintering porosity of the ceramics was determined from the green porosity and the linear shrinkage. The green blocks were composed of a large number of single solid particles before sintering, and green porosity indicated the number of pores, the linear shrinkage indicated the rearrangement of the α-Si₃N₄ particles and densification, as the densification prolonged, the linear shrinkage increased and sintering porosity decreased. The sintering porosities of the 5YSN, 2YSN and 0.5YSN samples were 25.3%, 19.3% and 17.6%, respectively. These results revealed that the finer Y₂O₃ particle size improved the particle rearrangement and had a beneficial effect on the densification of porous Si₃N₄ ceramics.

Table 1 shows the three-point strength with different Y₂O₃ particles added in porous Si₃N₄ ceramics. The strength of the 2YSN samples was higher than that for the 5YSN, but still slightly lower than the 0.5YSN samples. For the 0.5YSN samples, the strength attained to 450MPa at porosity of 17.6%. The microstructure characteristics of the specimen affected the flexural strength directly. The elongated coarse β-Si₃N₄ grains and a loose skeleton structure are the main reason for the low strength of 5YSN sample figure 2(a). As the Y₂O₃ particles were refined, a finer microstructure was dominated. 0.5YSN sample is composed of finer β-Si₃N₄ grains, and the high aspect ratio of grains improved mechanical properties dramatically. Consequently, the strength of 0.5YSN samples was higher than that for 5YSN and 2YSN sample and attained to the highest value with porosity of 17.6%.

As known, the porosity affects the strength of the porous ceramics directly. The relationship of porosity and strength can be expressed as: \(\sigma = \sigma_0 \exp (-\beta P) \) [19], where \(\sigma_0 \) is the strength of nonporous samples, \(\sigma \) is the strength of ceramics with porosity \(P \), and \(\beta \) is the structure factor. We can see that the porosities of the 0.5YSN sample and 2YSN sample were lower than 5YSN sample. However, the strength was 200% higher when the Y₂O₃ particle size reduced to 0.5μm. It is clear that the porosity has little effect on 0.5YSN sample, but the refine elongated β-Si₃N₄ microstructure figure 2(c) obtained the excellent mechanical properties.

Sample	Green Porosity/%	Linear shrinkage/%	Sintering Porosity/%	Flexural Strength/MPa
5YSN	53.0	14.3	25.3	205
2YSN	53.4	14.0	19.3	429
0.5YSN	55.0	18.3	17.6	450

3.4 Corrosion properties

The corrosion behaviour of Si₃N₄ containing different grain size of Y₂O₃ was studied in 1M HCl aqueous solutions at 70°C. The weight loss rate of the sample increased with the increase of corrosion time. After 12 days of etching, the weight loss rate reached the maximum 9%, which was close to the oxide content of the sample, considering 5% Y₂O₃ and 2% oxygen on the surface of Si₃N₄ powder (corresponding to about 4% SiO₂). It means that the 1M HCl solution nearly has no effects of Si₃N₄ but the grain boundary phase. As can be seen that figure 3 the different Y₂O₃ particle size added as sintering additive results the different corrosion behaviours of porous Si₃N₄ ceramics. With decreasing Y₂O₃ particle size, the weight loss rate increased dramatically and get 5.3%, 6.7% and 6.9% after 12h respectively. Yoshio [20] investigated the dissolution of Y ions in HCl solution by surface chemical reaction control and shrinkage core model. As the surface area of grain boundary phase increases, the dissolution rate of Y ions increases. The Y₂O₃ particles of 0.5YSN sample has a finer particle size and higher surface area which in favour of the dissolution of Y ions and results the high weight loss rate of porous Si₃N₄ ceramics.
Figure 3. Time dependence of the mass loss of porous Si$_3$N$_4$ ceramics corroded in 1M HCl solution at 70°C.

4. Conclusion
The effects of particle size of Y$_2$O$_3$ powder on the porosity, microstructure evolution and corrosion behaviours of porous Si$_3$N$_4$ ceramics were analysed. The linear shrinkage increased from 14.3% to 18.3% and the porosity decreased from 25.3% to 17.6% with the Y$_2$O$_3$ particle size decreased from 5μm to 0.5μm. The finer Y$_2$O$_3$ particles resulted in a finer microstructure consist of finer β-Si$_3$N$_4$ grains results excellent flexural strength, the highest value of flexural strength was obtained in 0.5YSN samples reaching to 450MPa. Due to the surface chemical reaction controlled of dissolution of Y ions in HCl solutions, the finer Y$_2$O$_3$ particles added samples has dramatically weight loss rate but no damage of Si$_3$N$_4$ grains.

Acknowledgments
This work was supported by the Natural Science Foundation of Ningxia (Grant no.2020AAC03198), and by the Key Lab of Powder Material & Advanced Ceramics (Grant no.1808), and by the Fundamental Research Funds for the Central Universities, North Minzu University (Grant no.2020xzycl04).

References
[1] Ding S, Zeng Y P and Jiang D L 2007 Oxidation bonding of porous silicon nitride ceramics with high strength and low dielectric constant Mater. Lett. 61 2277-80
[2] Shan S Y, Yang J F and Gao J Q, Zhang W H, Jin Z H, Janssen R and Ohji T 2005 Porous silicon nitride ceramics prepared by reduction–nitridation of silica J. Am. Ceram. Soc. 88 2594-603
[3] Chen F, Shen Q, Yan F Q and Zhang L M 2007 Pressureless sintering of α-Si$_3$N$_4$ porous ceramics using a H$_3$PO$_4$ pore-forming agent J. Am. Ceram. Soc. 90 2379-83
[4] Inagaki Y, Kondo N and Ohji T 2002 High performance porous silicon nitrides J. Eur. Ceram. Soc. 22 2489-94
[5] Diaz A and Hampshire S 2004 Characterisation of porous silicon nitride materials produced with starch J. Eur. Ceram. Soc. 24 413-19
[6] Chen D Y, Zhang B L, Zhuang H R and Li W L 2003 Combustion synthesis of network silicon nitride porous ceramics Ceram. Int. 29 363-64
[7] Kawai C, Matsuura T and Yamakawa A 1999 Separation–permeation performance of porous Si$_3$N$_4$ ceramics composed of columnar β-Si$_3$N$_4$ grains as membrane filters for microfiltration J. Mater. Sci. 34 893-97
[8] Zhang W, H Wang and Jin Z 2005 Gel casting and properties of porous silicon carbide/silicon nitride composite ceramics Mater. Lett. 59 250-6

[9] Fukasawa T, Deng Z Y, Ando M, Ohji T and Kanzaki S 2002 Synthesis of porous silicon nitride with unidirectionally aligned channels using freeze-drying process J. Am. Ceram. Soc. 85 2151-5

[10] Quander S W, Bandyopadhyay A and Aswath P B 1997 Synthesis and properties of in situ Si3N4-reinforced BaO-Al2O3-2SiO2 ceramic matrix composites J. Mater. Sci. 32 2021-9

[11] Honma T and Ukyo Y 1999 Sintering process of Si3N4 with Y2O3 and Al2O3 as sintering additives J. Mater. Sci. Lett. 18 735-7

[12] Plucknett K P, Quinlan M, Garrido L and Genova L 2008 Microstructural development in porous β-Si3N4 ceramics prepared with low volume RE2O3-MgO-(CaO) additions (RE=La, Nd, Y, Yb) Mater. Sci. & Engineer.: A 489 337-50

[13] Park H, Kim H E and Niihara K 1997 Microstructural evolution and mechanical properties of Si3N4 with Yb2O3 as a sintering additive J. Am.Ceram. Soc. 80 750-5

[14] Yang J F, Deng Z Y and Ohji T 2003 Fabrication and characterisation of porous silicon nitride ceramics using Yb2O3 as sintering additive J. Eur.Ceram. Soc. 23 371-8

[15] Yang J, Yang J F and Shan S Y, Gao J Q and Ohji T 2006 Effect of sintering additives on microstructure and mechanical properties of porous silicon nitride ceramics J. Am. Ceram. Soc. 89 3843-5

[16] Cheng C B , Fan R H and Liu F T, Wang C H, Wang H S and Zhou C L 2015 Influence of Yb2O3 and Y2O3 on the mechanical properties of porous Si3N4 ceramics Mater. Sci. Forum. 816 91-8

[17] Kleebe H J, Pezzotti G and Ziegler G 1999 Microstructure and fracture toughness of Si3N4 Ceramics: combined roles of grain morphology and secondary phase chemistry J. Am. Ceram. Soc. 82 1857-61

[18] Park D S, Lee S Y, Kim H D Yoo B J and Kin B A 1998 Extra-large grains in the silicon nitride ceramics doped with yttria and hafnia J. Am. Ceram. Soc. 81 1876-80

[19] Rice R W 1993 Comparison of stress concentration versus minimum solid area based mechanical property-porosity relations J. Mater. Sci. 28 2187-90

[20] Yoshio T and Oda K 1988 Effect of grain morphology in pressureless-sintered Si3N4 and Y2O3/Al2O3, on leaching behavior under hydrothermal conditions Int. J. H. Tech. Ceram. 4 87-94