Study on Worldwide Embodied Impacts of Construction: Analysis of WIOD Release 2016

Yu Mishina 1, Yosuke Sasaki 2 and Keizo Yokoyama 1,*

1 School of architecture, Kogakuin University, Tokyo 163-8677, Japan; dm20056@ns.kogakuin.ac.jp
2 Niitsu Co., Ltd., Nagano 384-1102, Japan; db17147@g.kogakuin.jp
* Correspondence: k-yokoyama@cc.kogakuin.ac.jp; Tel.: +81-3-3342-1211

Abstract: Net-zero-energy buildings (ZEBs) that contribute to making annual energy consumption balances zero are effective measures for reducing greenhouse gas (GHG) emissions in the construction sector. As the application of ZEBs progresses, GHG emissions during the construction of buildings and the manufacturing of materials and products (called construction EG) account for a relatively large proportion of overall emissions. This study aimed to clarify construction EG as a means by which to formulate policies for the reduction of emissions in each country. The construction EGs of 43 countries from 2011 were analyzed. The 56-sector input/output table and CO2 emission data of the 2016 World Input/Output Database, published by the EU, were both used in this analysis. It was found that the construction sector accounted for the highest proportion of total CO2 emissions. Moreover, the fraction of construction EG tended to be higher in developing countries such as China and India, while developed countries tended to contribute a lower fraction of construction EG. Construction EGs were shown to be heavily influenced by the sectors that manufacture “cement”, “steel bars and steel frames”, and “energy sources”. Thus, it is very important to advance technological developments to reduce CO2 emissions within these sectors. The annual variation of construction EGs and CO2 emissions from 2000 to 2014 showed that the construction EGs and total CO2 emissions in developing countries were increasing, whereas emissions from developed countries have been decreasing slightly.

Keywords: input/output analysis; World Input/Output Database; embodied GHG emissions; construction EGs; developing countries; cement

1. Introduction

1.1. Background

It is known that greenhouse gas (GHG) emissions have been a cause of global warming in recent years. At the 21st Conference of the Parties in the United Nations Framework Convention on Climate Change in 2015, the Paris Agreement was adopted, which stipulates a framework for efforts to reduce greenhouse gas emissions beyond 2020. The Paris Agreement stipulates that its goal is to limit the increase in global average temperature to 2.0 °C or less—preferably to 1.5 °C—compared to preindustrial levels. In order to promote global warming countermeasures in each country, it is important to promote efforts to continuously reduce GHGs [1].

With an annual balance of primary energy consumption of zero, ZEBs (net-zero-energy buildings) and ZEHs (net-zero-energy houses) are effective measures in the construction sector. When ZEBs and ZEHs are achieved in the future, energy consumption and greenhouse gas emissions during building construction and the manufacturing of materials and products will account for a relatively large proportion of overall emissions. Energy consumption and GHG emissions during the construction of buildings and the manufacture of materials and products are known as embodied energy (EE) and embodied
GHG emissions (EGs), respectively, and both are collectively called the embodied impact or EEGs [2].

In order to promote EEG reduction, it is important for each country to formulate measures that are considered to be effective.

The purpose of this study was to analyze the EGs related to construction (hereafter referred to as “construction EGs”) in various countries and to clarify their components of construction EG and the differences between countries. The results of this research should provide valuable resources for effective measures to reduce construction EG for policymakers and engineers. For this analysis, the 2016 release of the World Input/Output Database (hereafter referred to as “WIOD (2016)”) published by the European Union (EU) was used [3]. The WIOD (2016) is suitable for a comparison of countries because the input/output (IO) tables for 43 countries in 56 sectors are created with the same specifications.

Prior to its most recent iteration, the World Input-Output Database 2013 Release (WIOD (2013)) was published. WIOD (2013) provides IO tables for 40 countries in 35 sectors. An analysis using the WIOD (2013) was conducted by Yokoyama [4] in Japanese. However, an analysis using the WIOD (2016), which includes increased number of sectors, as well as target countries, allows for a more precise analysis. Moreover, as the WIOD (2016) provides IO tables from 2000 to 2014, the latest trends can be understood.

1.2. Embodied Impact

The research on EEG was conducted by Annex 57, one of the research projects in the “EBC” (Energy in Buildings and Communities) of the IEA (International Energy Agency) [5].

In Annex 57, primary energy consumption intensity is classified as follows according to the type of energy source [2]:
1. Pef: Primary energy from fossil fuels only;
2. Penr: Primary energy from fossil fuels and nuclear power;
3. Pet: Total primary energy from fossil fuels, nuclear power, and renewable energy.

In addition, four types of EEG boundaries are defined, as shown in Figure 1; A1 to C4 are called “Cradle-to-Grave”, A1 to A3 are called “Cradle-to-Gate”, A1 to A4 are called “Cradle-to-Site”, and A1 to A5 are called “Cradle-to-Handover”.

![Figure 1. Proposed model for system boundaries [2].](image-url)
1.3. Previous Research Using WIOD

Several studies on environmental load using the WIOD have been conducted. Cruz et al. [6] assessed the economy–ecology–environment interactions and CO2 emissions for EU countries. Zhang et al. [7] also analyzed the CO2 and energy flows associated with trade in BRICS countries. As a result, it was found that the amount of CO2 transferred to countries other than those in BRICS was large. In addition, it has been shown that China has a large impact on the world due to its sizeable economy. Jiborn et al. [8] used the WIOD (2016) to compare production-based, consumption-based, and technology-adjusted CO2 emissions for 44 countries and country groups from 2000 to 2014. The results showed that emissions were declining on a production and consumption basis in 20 European Union (EU) countries and the United States (US). The significant increase in global emissions that occurred during this period was due to increased consumption in China and developing countries. In addition, Fan et al. [9] used the WIOD (2013) to compare consumption-based (CBA) and production-based (PBA) CO2 emissions in 14 countries. As a result, it was shown that countries could be classified into four categories according to the difference in the ratio of CBA to PBA emissions. It was also confirmed that CBA CO2 emissions have a positive correlation with gross domestic product (GDP) per capita.

These studies were for all industries. There were not many studies focusing on the construction sector, except for the following.

Zhang et al. [10] used the WIOD (2013) to study of the global impact of the construction sector by means of a hypothetical extraction method (HEM), and they evaluated the impact of backward and forward CO2 emission linkages in the construction sector. On the other hand, Yokoyama [4] used the WIOD (2013) to analyze the construction EGs of each country. In this study, CO2 emission intensity was calculated for 35 sectors in 40 countries, and the construction EGs of each country and the composition of each sector’s input to construction were analyzed. The fraction of construction EG was found to be large in developing countries such as China and India, but small in developed countries. In addition, the annual change in construction EGs from 1995 to 2009 showed that the growth in developing countries was large, while that in developed countries was small.

In our study, construction EGs were analyzed using the latest version of the WIOD (2016) instead of the 2013 version described above.

2. Materials and Methods

2.1. Overview of the WIOD (2016)

The WIOD (2016) consists of the world IO table (WIOT), which is a collection of IO tables for all countries, IO tables for each country (national IO tables (NIOTs)), and environmental accounts [11].

Figure 2 shows the framework of the NIOTs. In NIOTs, items are divided into domestic and imported products, and prices are shown in USD. A conversion table with the local currency is provided for the list price.

The WIOD (2016) offers NIOTs of 56 sectors in 43 countries from 2000 to 2014. Table 1 shows the names of the 56 sectors in the NIOTs. In the figures that follow, sector names are represented by the numbers shown in Table 1.
Figure 2. National input/output (IO) table (NIOT) framework.

Table 1. List of sectors [3].

No.	Item	Sectors
1	A01	Crop and animal production, hunting and related service activities
2	A02	Forestry and logging
3	A03	Fishing and aquaculture
4	B	Mining and quarrying
5	C10–C12	Manufacture of food products, beverages and tobacco products
6	C13–C15	Manufacture of textiles, wearing apparel and leather products
7	C16	Manufacture of wood and of products of wood and cork, except furniture; manufacture of articles of straw and plaiting materials
8	C17	Manufacture of paper and paper products
9	C18	Printing and reproduction of recorded media
10	C19	Manufacture of coke and refined petroleum products
11	C20	Manufacture of chemicals and chemical products
12	C21	Manufacture of basic pharmaceutical products and pharmaceutical preparations
13	C22	Manufacture of rubber and plastic products
14	C23	Manufacture of other non-metallic mineral products
15	C24	Manufacture of basic metals
16	C25	Manufacture of fabricated metal products, except machinery and equipment
17	C26	Manufacture of computer, electronic and optical products
18	C27	Manufacture of electrical equipment
19	C28	Manufacture of machinery and equipment n.e.c.
20	C29	Manufacture of motor vehicles, trailers and semi-trailers
21	C30	Manufacture of other transport equipment
22	C31–C32	Manufacture of furniture; other manufacturing
23	C33	Repair and installation of machinery and equipment
24	D35	Electricity, gas, steam and air conditioning supply
25	E36	Water collection, treatment and supply
26	E37–E39	Sewage; waste collection, treatment and disposal activities; materials recovery; remediation activities and other waste management services
27	F	Construction
28	G45	Wholesale and retail trade and repair of motor vehicles and motorcycles
29	G46	Wholesale trade, except of motor vehicles and motorcycles
2.2. Overview of Target Countries

Table 2 shows gross national income (GNI) per capita according to the World Bank [12,13] and energy-derived CO2 emissions according to the International Energy Agency (IEA) [14] for the 43 countries. The total energy-derived CO2 emissions of the 43 countries analyzed account for approximately 80% of the world’s total emissions.

Table 2. List of countries, along with their gross national income (GNI) [12,13] and CO2 emissions [14] (2011).

No.	Country Code	GNI (Billion USD)	GNI Per Capita (USD)	CO2 Emission \((\times10^6 \text{ t-CO}_2)\)	Ratio (%)
1	CHN	7481.12	5565.77	8570.93	27.3
2	USA	15,832.21	50,816.43	5128.18	16.3
3	IND	1807.02	1445.28	1607.95	5.1
4	RUS	1985.53	13,888.60	1607.95	5.1
5	JPN	6331.88	49,532.44	1183.49	3.8
6	DEU	3840.29	47,839.23	731.22	2.3
7	KOR	1260.98	25,251.61	573.76	1.8
8	CAN	1161.74	51,223.17	541.16	1.7
9	MEX	2669.89	42,205.76	439.18	1.4
10	GBR	2548.97	12,905.24	391.09	1.2
11	BRA	868.24	3542.15	390.32	1.2
2.3. Calculation of CO2 Emission Intensities

2.3.1. Summary of Calculation

The intensities of CO2 emissions were calculated using the NIOTs and environmental accounts from the WIOD (2016).

2.3.2. Calculation of CO2 Emission Intensities

As shown in Figure 2, the NIOTs distinguished between domestic products and imported products. Since this analysis targeted domestic CO2 emissions in each country and did not consider overseas spillover effects, the IO tables of domestic goods were used for this analysis. The calculation procedure according to Yokoyama [4] is described below.

The input coefficient a_{ij}^d for domestic goods is expressed by the following equation [15]:

$$a_{ij}^d = \frac{x_{ij}^d}{X_i},$$

where X_{ij}^d is the domestic product from sector j to sector i (million USD/year), X_i is the gross domestic product (total output) (million USD/year), and i (row) and j (column) are sector numbers.

Table 1: CO2 Emission Intensities (million ton per million USD/year)

Country	x_{ij}^d	X_i	a_{ij}^d
ITA	2286.19	38,501.44	0.12
AUS	1340.59	60,008.33	0.12
FRA	2937.48	44,954.91	0.13
POL	511.68	13,442.95	0.12
TUR	825.27	11,236.81	0.09
ESP	1452.68	31,078.16	0.08
TWN	-	-	-
NLD	916.73	54,917.08	0.05
CZE	210.69	20,072.81	0.03
BEL	523.48	47,424.28	0.03
GRC	279.94	25,208.71	0.03
ROU	181.11	8989.08	0.03
AUT	432.57	51,548.18	0.03
FIN	276.30	51,277.56	0.03
BGR	351.26	60,008.33	0.02
PRT	240.83	22,811.21	0.02
HUN	134.32	13,442.95	0.02
SWE	584.48	61,855.31	0.02
DNK	351.26	63,055.84	0.02
CHE	707.65	89,435.44	0.02
NOR	503.52	101,657.40	0.02
IRL	192.53	42,036.42	0.02
SVK	95.59	17,706.25	0.02
HRV	60.31	14,089.97	0.02
EST	22.21	16,732.11	0.01
SVN	50.82	24,754.46	0.01
LTU	42.19	13,933.23	0.01
LUX	41.43	79,927.99	0.01
LVA	28.46	13,818.00	0.01
CYP	28.29	25,151.79	0.01
MLT	9.21	79,927.99	0.01

Other countries | 6406.16 | 20.4
All of the world | 31,392.58 | 100.0

USD represents current prices in United States (US) dollars.
The gross domestic product vector X is expressed by the following equation [15]:

$$X = A^d X + (F^d + F^e),$$ \hspace{1cm} (2)

Solving Equation (2) for X gives the following equation [15]:

$$X = (I - A^d)^{-1} 	imes (F^d + F^e),$$ \hspace{1cm} (3)

where X is the gross domestic product vector, with X_i as an element (million USD/year); $(I - A^d)^{-1}$ is the Leontief inverse matrix; I is the unit matrix; A^d is the activity matrix of the gross domestic product with a^d_{ij} as an element, F^d is the final demand vector of domestic goods (million USD/year); and F^e is the export vector (exports) (million USD/year).

CO$_2$ emission intensity (ICO_2), including the spillover effect is calculated by multiplying the direct CO$_2$ emissions per million USD of the producer price by the Leontief inverse matrix of Equation (3), as shown in Equation (4):

$$ICO_2 = CO_2 (I - A^d)^{-1},$$ \hspace{1cm} (4)

where ICO_2 is the CO$_2$ emission basic unit vector, with spillover effects per manufacturer price of 1 million USD in each industry (kg-CO$_2$/million USD), and CO_2 is the direct CO$_2$ emission row vector per manufacturer price of 1 million USD in each industry (kg-CO$_2$/million USD).

Direct CO$_2$ emissions (CO_2) per million USD of producer price in Equation (4) are expressed as follows on the basis of emission data:

$$CO_2 = \frac{SCO_2}{X_i},$$ \hspace{1cm} (5)

where CO_2 represents the direct CO$_2$ emissions per manufacturer price of 1 million USD in sector i (kg-CO$_2$/million USD), X_i is the gross domestic product value in sector i (million USD/year), and SCO_2 represents the total CO$_2$ emissions in sector i (kg-CO$_2$/year).

Therefore, the induced CO$_2$ emissions (SCO_2) due to the final demand for each sector are expressed by the following equation from Equations (3)–(5):

$$SCO_2 = ICO_2 \times F_i,$$ \hspace{1cm} (6)

where SCO_2 represents the induced CO$_2$ emissions from the final demand of sector i (kg-CO$_2$/year), ICO_2 is the CO$_2$ emission intensity of sector i (kg-CO$_2$/million USD), and F_i is the final demand of sector i (million USD/year).

3. Results
3.1. CO$_2$ Emission Intensity and CO$_2$ Emissions by Sector

From the abovementioned step in Section 2.3.2., 2011 CO$_2$ emission intensities by sector, as well as CO$_2$ emissions by sector and their ratios, were calculated for 43 countries. Table 3 shows the calculation results for Japan.
Table 3. CO2 emission intensities (JPN, 2011).

No.	Sectors	CO2 Emission Intensity (t-CO2/Million USD)	CO2 Emission by Sector (t-CO2)	Ratio (%)
1	Crop and animal production, hunting and related service activities	135	4,919,168	0.44
2	Forestry and logging	107	116,275	0.01
3	Fishing and aquaculture	213	541,109	0.05
4	Mining and quarrying	651	444,719	0.04
5	Manufacture of food products, beverages and tobacco products	157	40,997,531	3.67
6	Manufacture of textiles, wearing apparel and leather products	268	4,162,533	0.37
7	Manufacture of wood and of products of wood and cork, except furniture; manufacture of articles of straw and plaiting materials	135	32,947	0.00
8	Manufacture of paper and paper products	393	3,158,788	0.28
9	Printing and reproduction of recorded media	152	207,932	0.02
10	Manufacture of coke and refined petroleum products	269	21,557,835	1.93
11	Manufacture of chemicals and chemical products	497	42,722,640	3.83
12	Manufacture of basic pharmaceutical products and pharmaceutical preparations	131	1,406,607	0.13
13	Manufacture of rubber and plastic products	274	9,628,872	0.86
14	Manufacture of other non-metallic mineral products	982	14,135,752	1.27
15	Manufacture of basic metals	895	70,290,173	6.30
16	Manufacture of fabricated metal products, except machinery and equipment	323	26,602,346	2.38
17	Manufacture of computer, electronic and optical products	178	31,547,894	2.83
18	Manufacture of electrical equipment	248	30,793,610	2.76
19	Manufacture of machinery and equipment n.e.c.	198	34,171,918	3.06
20	Manufacture of motor vehicles, trailers and semi-trailers	211	50,125,125	4.49
21	Manufacture of other transport equipment	230	11,692,167	1.05
22	Manufacture of furniture; other manufacturing	248	5,639,812	0.51
23	Repair and installation of machinery and equipment	0	0	0.00
24	Electricity, gas, steam and air conditioning supply	2009	151,250,059	13.55
25	Water collection, treatment and supply	91	1,100,709	0.10
26	Sewerage; waste collection, treatment and disposal activities; materials recovery; remediation activities and other waste management services	398	770,038	0.07
27	Construction	167	104,337,632	9.35
28	Wholesale and retail trade and repair of motor vehicles and motorcycles	137	5,022,185	0.45
29	Wholesale trade, except of motor vehicles and motorcycles	68	22,968,291	2.06
30	Retail trade, except of motor vehicles and motorcycles	142	48,340,521	4.33
31	Land transport and transport via pipelines	228	29,826,951	2.67
32	Water transport	1569	58,658,307	5.26
33	Air transport	409	10,734,638	0.96
34	Warehousing and support activities for transportation	142	4,134,704	0.37
35	Postal and courier activities	120	334,482	0.03
36	Accommodation and food service activities	159	43,740,026	3.92
37	Publishing activities	131	1,275,492	0.11
3.2. Impact by Sectors

Figure 3 shows the results of CO₂ emissions of 56 sectors in 43 countries for each sector, as well as the ratio of each sector to total CO₂ emissions (56 sectors and a total of 43 countries). The sector with the highest share of total CO₂ emissions was “27: construction (19%)”, followed by “24: electricity, gas, steam, and air-conditioning supply (12%)”.

Therefore, it was confirmed that a reduction in emissions in the construction sector would be effective in reducing overall CO₂ emissions.
3.3. Construction EGs

Figure 4 shows the relationship between the fraction of construction EG in each country and the fraction of global CO₂ emissions. The vertical axis is the fraction of construction EG and the horizontal axis is the fraction of global CO₂ emissions. The magnitude of the absolute value of construction EG is indicated by the size of the area of the quadrangle. The fraction of construction EG refers to the fraction of CO₂ emissions of “27: construction” to domestic emissions, and it is the value shown in the “ratio” column in Table 3.

In China, as the fractions of both construction EG and the fraction of CO₂ emissions are large, the country’s construction EG is the largest globally. China is followed by India, Russia, the United States, and Japan, in that order. Accordingly, it should be considered that activities to reduce CO₂ emissions related to construction in China and India can contribute to a global reduction in CO₂ emissions.

Figure 4. Fraction of construction EG and total CO₂ emissions.
Figure 5 shows the relationship between GNI per capita and the fraction of construction EG. The income of 43 countries was classified by referring to the standard of income classification by GNI per capita published by the World Bank in 2012 [16].

According to Figure 5, construction EG tends to be higher in developing countries such as China and India.

3.4. Composition of Construction EGs

It was found that construction EGs account for a large part of CO2 emissions. In order to reduce construction EGs, an analysis of the sectors contributing to construction EGs is required. The main materials for construction and the corresponding WIOD (2016) sector names are shown in Figure 6.

Figure 7 shows the calculation results for CO2 emissions by the construction sector in Japan, the United States, China, India, and Germany, according to Equation (6). However, Fi is the amount of i-sector which has been invested in the construction sector.

The sectoral linkages on the construction sector can be evaluated by the traditional method of analyzing the column elements of the Leontief inverse matrix. In addition, a method called hypothetical extraction method (HEM) [17] is used. This is a method to evaluate the sectoral linkages by comparing the state with and without the target sector. However, in this study, since the CO2 emission intensity for each industrial sector was calculated in Section 3.2, the CO2 emissions of the sectors that contribute the construction EG can be calculated by multiplying the amount of sector that that is put into the construction sector by the intensity. This method is equivalent to the traditional method of analyzing the column elements of the Leontief inverse matrix.

According to Figure 7, sectors 14, 15, 16, and 24 are large contributors. These are the sectors that manufacture “cement”, “steel bars and steel frames”, and “energy sources”. The proportion of CO2 emissions from these three materials accounts for around 60–80% of the construction EGs in each country.

Considering each construction-related material, “cement” tends to have a high ratio of CO2 emissions by sector in all countries, particularly in China and Germany, where it exceeds 40%. In addition, “steel bars and steel frames” tend to have high contributions in Japan, India, and China, especially in the former, where they exceed 30%. “Energy sources” tend to have high contributions in India, the United States, and Germany, especially in the latter pair, where they account for nearly 20%.
In all countries, CO₂ emissions in cement production, steel production, and energy supply were found to have a significant impact on construction EGs. Thus, it is very important to advance technological development to reduce CO₂ emissions within these sectors.

Figure 6. Sector-specific construction materials.

Main materials for construction	Sector name (WIOD Release 2016)
Gravel and crushed stone	4: Mining and Quarrying
Steel bar and steel frame	15: Manufacture of basic metals
Cement	16: Manufacture of fabricated metal products, except machinery and equipment
Mechanical and electrical equipment	14: Manufacture of other non-metallic mineral products
Wood	18: Manufacture of electrical equipment
Energy source	19: Manufacture of machinery and equipment n.e.c.

| 7: Manufacture of wood and of products of wood and cork, except furniture; manufacture of articles of straw and plaiting materials |
| 10: Manufacture of coke and refined petroleum products |
| 24: Electricity, gas, steam and air conditioning supply |

Figure 7. CO₂ emissions by sectors comprising construction EGs.

3.5. Relationship with Cement Production

In the previous section, the sector of cement production was identified as having a large impact on construction EG. Figure 8 shows the relationship between CO₂ emissions by cement production and construction EG in each country, according to statistical data on carbon emissions from the Carbon Dioxide Information Analysis Center (CDIAC) [18].

From Figure 8, since the approximate curve is an upward-sloping equation, a strong positive correlation between cement production and construction EGs was considered. It was found that CO₂ emissions from cement production account for approximately 31% of construction EG in many countries.
Figure 8. CO$_2$ emissions from cement production and construction EGs.

3.6. Annual Variation of Construction EGs

Figure 9 shows the relationship between total CO$_2$ emissions from 2000 to 2014 and construction EGs, and cement production in Japan, the United States, China, India, and Germany.

Total CO$_2$ emissions in Japan have not changed significantly, with the lowest value recorded in 2009. Construction EGs were on a downward trend until 2011, with no significant changes recorded since 2011. CO$_2$ emissions from cement production have not changed significantly.

Total CO$_2$ emissions in the United States were on a downward trend until 2009, with no significant changes recorded since 2010, but a slight upward trend has been observed since 2013. Construction EGs were on a downward trend until 2012, but they have been on an increasing trend since 2012. CO$_2$ emissions from cement production also showed almost the same tendency as construction EGs.

Total CO$_2$ emissions in China have been on the rise, being 2.9 times higher in 2014 than in 2000. Similarly, construction EGs and CO$_2$ emissions from cement production have also increased significantly (4.7 times and 4.2 times, respectively).

Total CO$_2$ emissions in India have been on the rise, being 2.2 times higher in 2014 than in 2000. Construction EGs and CO$_2$ emissions from cement production have also increased (2.4 times and 2.9 times, respectively).

Total CO$_2$ emissions in Germany have been on a downward trend. Construction EGs were on a downward trend until 2005; however, since 2006, no major fluctuations have been observed, and a similar trend can be seen in CO$_2$ emissions from cement production.

In China and India, total CO$_2$ emissions, construction EGs, and CO$_2$ emissions from cement production have all increased. This was due to increased investment in the construction sector. This is considered to be a characteristic of developing countries. On the other hand, in Japan, the United States, and Germany, total CO$_2$ emissions and construction EGs have decreased. However, in recent years, there has been no significant change in construction EGs and CO$_2$ emissions from cement production. This is considered to be a characteristic of developed countries.

There was a clear trend for developing countries (India and China). By contrast, for developed countries (the United States, Japan, and Germany), the trend was not so clear.
Figure 9. Annual variations in total CO2 emissions, construction EGs, and CO2 emissions from cement production.

Figure 10 shows the annual variation in the fraction of construction EG. Compared to India, China has the largest fraction of construction EG demonstrating a strong increasing trend. On the other hand, India changed from 17% (2000) to 19% (2014), with only a slight increase. In both cases, construction EGs have increased, which is a characteristic of developing countries, but it can also be seen that there was a clear difference in the increasing trend.

Germany has remained at around 4%, while the United States has remained at around 5%. Among the five countries, Germany and the United States are characterized by a low fraction of construction EG and small fluctuations. However, the fraction of construction EG in Japan has been intermediate among the five countries, showing a gradual downward trend from 14% (2000) to 10% (2014).
From the above, it can be noted that the fraction of construction EG in developing countries is large and rising, whereas it is small and stable in developed countries.

Compared with the 2013 analysis results [4], the construction EG values from 2000 to 2009 are slightly different; however, their trends are almost the same.

Figure 10. Annual variations in fraction of construction EGs. The fraction of construction EG of WIOD (2013) is cited from Reference [4].

4. Discussion

This study aimed to clarify the characteristic of construction EG as a material for formulating policies for reducing emissions in each country.

In this study, the construction EGs of 43 countries from 2011 were analyzed. The 56-sector input/output table and CO2 emission data of the 2016 World Input/Output Database, published by the EU were used in this analysis. The CO2 emissions intensities in 56 sectors in 43 countries were obtained.

The total CO2 emissions of the 43 countries included in this analysis account for about 80% of the world’s total energy-derived CO2 emissions. In addition, the sector with the highest share of total CO2 emissions in the 43 countries was “27: construction”, which was shown to be the highest in the following order of countries: China, India, Russia, the United States, and Japan.

It was found that developing countries tend to have higher construction EGs. The large fraction of construction EG in developing countries is thought to be due to the construction of many facilities such as buildings, roads, and railroads for economic development. Therefore, it is important to promote methods for reducing construction EGs.

CO2 emissions by construction sectors in Japan, the United States, China, India, and Germany were analyzed. As a result of this analysis, the sectors manufacturing “cement”, “steel bars and steel frames”, and “energy sources” were found to be large contributors, and the fraction of CO2 emissions by these three sources is around 60–80% of the construction EGs in the five countries.

In addition, annual variation from 2000 to 2014 in total CO2 emissions, construction EGs, CO2 emissions from cement production in five countries as above were compared. In China and India, total CO2 emissions, construction EGs, and CO2 emissions of cement production have all increased, which could be due to a sharp increase in investment in the construction sector. This is a characteristic of developing countries. On the other hand, in Japan, the United States, and Germany, total CO2 emissions, construction EGs, and CO2 emissions from cement production have been on a downward trend; however, in recent years, there has been no significant change in construction EGs and CO2 emissions from
cement production. This is considered to be a characteristic of developed countries. The fraction of construction EG was around 4% each year in Germany and around 5% each year in the United States, both of which show a flat trend. The fraction of construction EG in Japan was intermediate among the five countries, showing a gradual downward trend.

Compared with the WIOD (2013) analysis results [4], it was confirmed that the construction EG values were slightly different, but the trends were similar to those mentioned above.

CO₂ emissions from cement production, steel production, and energy supply heavily affect construction EG. Therefore, measures to reduce these CO₂ emissions are important in terms of reducing construction EGs. Construction EGs in developing countries are expected to continue increasing in the future; therefore, countermeasures are urgently needed. To shrink carbon emissions, resource-recycling manufacturing methods should be considered. These could include cement production without CO₂ emissions, recycling cement from used concrete, and the utilization of renewable energy. All of these are effective as countermeasures. Furthermore, in addition to the efforts of each country, it is desirable for developed countries to provide their proven CO₂ emission reduction technologies to developing countries.

Author Contributions: Conceptualization, Y.M. and K.Y.; Methodology, Y.M., Y.S. and K.Y.; Formal analysis, Y.M. and Y.S.; Data curation, Y.M. and Y.S.; Writing—original draft preparation, Y.M.; Writing—review and editing, K.Y.; Visualization, Y.M. and Y.S.; All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

Abbreviations

ZEBs net-zero-energy buildings
ZEHs net-zero-energy houses
EU European Union
GNI Gross National Product
GHG greenhouse gas
EE embodied energy
EGs embodied GHG emissions
EEGs embodied energy and GHG emissions
WIOD World Input-Output Database
IEA International Energy Agency
EBC Energy in Building and Communities
PEf primary energy from fossil fuels only
PEnr primary energy from fossil fuels and nuclear power
PET total primary energy from fossil fuels, nuclear power, and renewable energy
WIOT world IO table
NIOT national IO tables
USD US dollars

Symbols

\(a_{ij}^d \) the input coefficient for domestic goods
\(X_{ij}^d \) the domestic product from sector j to sector i, million USD/year
\(X_i \) the gross domestic product (total output), million USD/year
\(X \) the gross domestic product vector, million USD/year
\((I - A^d)^{-1}\) the Leontief inverse matrix
\(I \) the unit matrix
\(A^d \) the activity matrix of the gross domestic product with \(a_{ij}^d \) as an element
\(F^d \) the final demand vector of domestic goods, million USD/year
\(F^e \) the export vector, million USD/year
ICO
the CO₂ emission basic unit vector with spillover effects per manufacturer price of 1 million USD in each industry, kg-CO₂/million USD

CO₂
the direct CO₂ emission row vector per manufacturer price of 1 million USD in each industry, kg-CO₂/million USD

CO₂i
the direct CO₂ emissions per manufacturer price of 1 million USD in sector i, kg-CO₂/million USD

SCO₂i
the induced CO₂ emissions from the final demand of sector i, kg-CO₂/year

ICO₂i
the CO₂ emission intensity of sector i, kg-CO₂/million USD/year

Subscripts

d domestic
E export
i sector numbers of row
j sector numbers of column

References

1. Ministry of Foreign Affairs of Japan, Paris Agreement. Available online: https://www.mofa.go.jp/mofaj/files/000197313.pdf (accessed on 8 April 2021).
2. Birgisdottir, H.; Moncaster, M.; Wiberg, A.H.; Chae, C.; Yokoyama, K.; Balouktsi, M.; Seo, S.; Oka, T.; Lützkendorf, T.; Malmqvist, T. IEA EBC annex 57 ‘evaluation of embodied energy and CO2eq for building construction’. Energy Build. 2017, 154, 72–80.
3. Timmer, M.P.; Dietzenbacher, E.; Bos, C.; Stehrer, R.; de Vries, G.J. An Illustrated User Guide to the World Input–Output Database: The Case of Global Automotive Production. Rev. Int. Econ. 2015, 23, 575–605.
4. Yokoyama, K. Study on worldwide embodied impacts of construction. J. Environ. Eng. 2021, 779, 101–109. (In Japanese)
5. IEA EBC Annex 57. Available online: http://www.annex57.org/ (accessed on 7 July 2018).
6. Cruz, L.; Dias, J. Energy and CO2 intensity changes in the EU-27: Decomposition into explanatory effects. Sustain. Cities Soc. 2016, 26, 486–495.
7. Zhang, Z.; Xi, L.; Bin, S.; Yuhuan, Z.; Song, W.; Ya, L.; Hao, L.; Yongfeng, Z.; Ashfaq, A.; Guang, S. Energy, CO2 emissions, and value added flows embodied in the international trade of the BRICS group: A comprehensive assessment. Renew. Sustain. Energy Rev. 2019, 116, 109432.
8. Magnus, J.; Viktoras, K.; Astrid, K. Consumption versus Technology Drivers of Global Carbon Emissions 2000–2014. Energies 2020, 13, 339.
9. Fan, J.-L.; Hou, Y.-B.; Wang, Q.; Wang, C.; Wei, Y.-M. Exploring the characteristics of production-based and consumption-based carbon emissions of major economies: A multiple-dimension comparison. Appl. Energy 2016, 184, 790–799.
10. Zhang, L.; Liu, B.; Du, J.; Liu, C.; Wang, S. Energy, CO₂ emission linkage analysis in global construction sectors: Alarming trends from 1995 to 2009 and possible repercussions. Renew Sustain. Energy Rev. 2019, 221, 863–877.
11. Corsatea, T.D.; Lindner, S.; Arto, I.; Román, M.V.; Rueda-Cantuche, J.M.; Velázquez Afonso, A.; Amores, A.F.; Neuwahl, F. World Input-Output Database Environmental Accounts. In Update 2000–2016; Publications Office of the European Union: Luxembourg, 2019; ISBN 978-92-79-64439-9, doi:10.2791/947252, JRC116234.
12. WORLD BANK, GNI (Current US$) Data, Last Updated Date 1 July 2020. Available online: https://data.worldbank.org/indicator/NY.GNP.MKTP.CD (accessed on 6 September 2020).
13. WORLD BANK, Population, Total Data, Last Updated Date 1 July 2020. Available online: https://data.worldbank.org/indicator/SP.POP.TOTL (accessed on 6 September 2020).
14. IEA, CO₂ Emissions from Fuel Combustion, 2019. Available online: https://www.iea.org/subscribe-to-data-services/co2-emissions-statistics (accessed on 18 April 2020).
15. Ministry of Internal Affairs and Communications Japan, 2011 Input-Output Tables for Japan, 2016. Available online: https://www.soumu.go.jp/main_content/000443188.pdf (accessed on 10 May 2021).
16. WORLD BANK, Newest Country Classifications Released, 2012. Available online: https://blogs.worldbank.org/opendata/newest-country-classifications-released (accessed on 8 April 2021).
17. Erik, D.; Van Der Linden, J.A. Sectoral and spatial linkages in the EC production structure. J. Reg. Sci. 1997, 37, 235–257.
18. National CO2 Emissions from Fossil-Fuel Burning, Cement Manufacture, and Gas Flaring, 1751–2014. Available online: https://cdiac.ess-dive.lbl.gov/ftp/ndp030/nation.1751_2014.ems (accessed on 8 April 2021).