Self-adapting automated mode control system of packed absorbers used for selective gas emission treatment

A V Persidskiy¹, N A Merentsov², A B Golovanchikov², D A Tezikov³ and V V Groshev²

¹JSC Federal Scientific and Production Centre “Titan - Barricady”, Volgograd 400071, Russia
²Volgograd State Technical University, Volgograd 400005, Russia
³Volgograd Academy of the Ministry of Internal Affairs of the Russian Federation, Volgograd 400089, Russia
⁴E-mail: a.persidsky@yandex.ru

Abstract. This paper describes the designed self-adapting automated mode control system of packed absorbers used for selective gas emission treatment. It contains the description of automated control chart of the packed absorber and the algorithm of control program of the mass exchange system. The paper covers the principle of self-adapting control and steady maintenance of emulsification (phase inversion) mode depending on existing concentrations to be collected from continuous gas phase flow.

1. Introduction

The heat and mass exchange contact type packing blocks of different structural design are widely used on process lines in chemical, petroleum, oil and gas, petrochemical, biochemical, pharmacological, nuclear, construction, metal food and associated industries [1-92] and in particular, in packed absorbers intended for selective gas emission treatment [93-110]. The efficiency of the contact type units of the absorbers for selective gas emission treatment strongly depends on existing gas and flow dynamic modes of the packed mass exchange blocks [1-56]. In these conditions the highest collection capability in relation to molecules to be collected is observed under emulsification (phase inversion) mode due to high degree of intermixing of the gas and liquid flows, to development and changing of the phase contact surfaces, turbulization and blowing off the infinitesimal volumes of liquid absorbent with the treated gas phase flow which reduces the diffusion resistance and dramatically intensifies the mass exchange processes. The emulsification (phase inversion) mode is also characterised with the high retention capability of the packing blocks in relation to gas and liquid phases which is in line with the requirements of gas absorption process. Steady operation of the mass exchange absorbers used for selective gas emission treatment under the above-said flow dynamic modes is especially critical for ecological processes and equipment in case the concentrations to be collected from gas flows are low or extra-low.

This paper describes the designed self-adapting automated mode control system intended to control the flow dynamic mode of mass-exchange packed apparatuses used for selective gas emission treatment. The represented algorithm and chart of the automated control system are aimed at steady maintenance of the emulsification (phase inversion) mode with the ongoing analysis of the concentrations to be collected from the gas phase flow. The automated control system is based on the
adjustment of the mass exchange system process parameters which allows identifying the availability range of the emulsification (phase inversion) mode, its top and bottom levels, for different flow rates of liquid absorbent and continuous gas phase flow. Steady emulsification (phase inversion) mode of packed mass exchange absorbers will guarantee the highest possible efficiency of gas phase flows as to collected concentrations and can entail considerable resource and power savings.

2. Methods and materials

The apparatus has the control flow chart for automated identification of the required operating parameters as well as for automated mode control which is shown in figure 1. It consists of programmable logical controller (PLC) which runs the adjustment and operation mode control programs by collecting the sensor data (and sending the execution unit instructions), the gas flow rate sensor \(S1 \) which measures the incoming (outgoing) gas flow rate (velocity) of the apparatus, concentration sensors of the collected substances in the continuous gas phase flow outgoing \((S2) \) from and incoming \((S5) \) to the mass exchange apparatus. \(S3 \) and \(S4 \) sensors are used to measure the resistance to flow (pressure difference) of the packing unit of the mass exchange apparatus. Liquid absorbent is supplied to the mass exchange apparatus by the electrically driven absorbent supply pump \(AP \), the frequency of its rotation is ensured by frequency converter \(FC1 \). Treated gas phase flow is injected into the connecting pipe in the bottom part of the mass exchange apparatus by means of blower \(B \) equipped with electrical drive \(M2 \) which rotation frequency is controlled by the frequency converter \(FC2 \). Clean absorbent is taken from the clean absorbent tank \(CAT \); it gets in contact with the treated gas phase while flowing through the packing block of the mass exchange apparatus and is disposed into the used absorbent tank where from it may be discharged for treatment (recovery) or utilization.

The so called adjustment process is implemented for automated identification of the majority of parameters needed for functioning of the controlling program. This is an automated process with a few established initial process and geometric parameters. During the final adjustment stage all of the automatically identified values are saved to the read-only memory of the controller and are used by the mode control program of the mass exchanger which is repeatedly executed during the continuous operation of the mass exchange process equipment.

The algorithm of the automated mode control of the mass exchange packed absorber is shown in figure 2. We will further describe the control program.

Execution of the self-adapting mode control program of the packed absorber (mass exchange system) begins with the entering by the operator of the \(C_{max} \) value which defines the maximum allowable finally collected concentration in the outgoing treated gas phase flow of the apparatus according to \(S1 \) and \(S5 \) data. Then the program identifies the \(PerC \) value which is the concentration equal to 1 % of the maximum allowable value, after that the program uploads from the read-only memory the \(dF1 \) and \(dF2 \) values of the power frequency adjustment intervals of the electrical motors as used by frequency converters \(FC1 \) and \(FC2 \), and then it calculates the minimum power frequency of the corresponding electrical engines. After those preparations the program commands the \(FC1 \) to set up the minimum power frequency for the electrical drive of the liquid absorbent feed pump \(M1 \). The packing block begins to be washed with a minimum intensity. Then, after assigning the initial value to the variable \(PerF2 \), which allows to set up a power frequency of blower \(B \) at \(FC2 \) as percentage of its adjustment range, the program undertakes its main cycle.

In the beginning of the cycle the program gives an instruction to set up the power frequency of the blower at \(FC2 \) as a percentage in accordance with the variable \(PerF2 \) value. During the first iteration with \(PerF2=0 \) the electrical motor \(M2 \) is started with the frequency defined as \(F2\text{min} \), i.e. under the lowest frequency. After that the program receives the collected concentration values of the incoming \((Cin) \) and outgoing \((Cout) \) continuous gas phase flow of the mass exchange apparatus from sensors \(S3 \) and \(S2 \), then it deducts the maximum allowable given concentration value from the \(Cin \) value and after that identifies the highest of the concentration values to use it for mode control of the mass exchange packed absorber as the actual one \((C_{fact}) \). The mass exchange apparatus responds to the changes of
concentration as follows. The mass exchange apparatus resumes its maximum capacity mode if the incoming collected concentration of the apparatus C_{in} becomes two times higher than the maximum allowable outgoing concentration C_{max} or the outgoing collected concentration of the apparatus exceeded the maximum allowable value C_{max}. Otherwise the capacity of the apparatus will depend on the concentration. Then the program identifies which percentage of the maximum value belongs to this or that current concentration. If the result exceeds 100 %, the program forcedly equals it to 100 % and after that it sets up at $FC1$ the power frequency of the electrical drive of the liquid absorbent feed pump $M1$, which exceeds the minimum value by the percentage identified. After that the program receives the gas flow velocity (rate) value from sensor $S1$, and resistance to flow values of the packing block (pressure difference of the upper and bottom connecting pipes of the mass exchange apparatus) from sensors $S3$ and $S4$ which is followed by the calculation of turbulization index.

Figure 1. Control flow chart of the packed absorber: 1 – body of the mass exchange apparatus, 2, 3 – incoming/outgoing connecting pipes (pipe sleeves) for treated continuous gas flow, 4 – liquid absorbent distributor (sprayer), 5 – connecting pipe (pipe sleeve) for used absorbent disposal, 6 – liquid distributor (packing support), 7 – mass exchange packing block, 8 – support of mass exchange column.
Figure 2. Algorithm of the mode control program of a packed absorber (Part 1).
Figure 2. Algorithm of the mode control program of a packed absorber (Part 2).
The use of the turbulization index for identification of the apparatus modes is based on the power-law equation

\[\nu_f = K_{mpi} \left(\frac{\Delta P}{H} \right)^{1/n_i}, \]

where \(K_{mpi} \) is the coefficient accounting for the porous structure impact on the dynamics of the turbulent flow; \(1/n_i \) is the exponent reflecting the force of inertia of the filtration flow. Since the \(K_{mpi} \) and \(1/n_i \) values are the functions of filtration velocity, this equation can be used for description of dependence \(\Delta P/H=f(v_f) \) only within the narrow range of the filtration velocity changes. Approximation by linear dependence of these experimental data represented in the coordinates \(\lg(\Delta P/H)÷\lg v_f \) enables calculation of \(K_{mpi} \) and \(1/n_i \) values. The \(1/n_i \) values identified for the range of the increasing filtration velocity intervals can indicate the increase in the intensity of the constituent of the overall pressure differential due to inertia force which is determined by the increasing turbulization within the porous space. The program uses the strong dependence

\[n_i = \frac{\ln(\Delta P/H)}{\ln(\nu_f/K_{mpi})}. \]

The details of the turbulization index and its applications are described in the study [111]. It is important to note that the modified equation [111-113] can be also used to identify the intervals of existence of the flow dynamic modes and for the self-adapting mode control of the mass exchange packed absorbers, the equation allows assessing the formation of the turbulent flow dynamics and the development of the inertial constituents of the filtration flow reduced by viscous components [111-113].

Then the program checks whether the identified actual turbulization index \(n_f \) lies within the interval from \(n_{Emu}[PerC] \), i. e. turbulization index which indicates the starting point for emulsification (phase inversion) mode, to \(n_{Max}[PerC] \), i. e. turbulization index preceding the flooding of the packing block and reflecting the upper limit of the emulsification (phase inversion) mode. Those values are uploaded from the corresponding arrays which are stored in the read-only memory of the programmable logic controller (PLC), and the selection of the array elements depends on the adjustment interval (expressed as a percentage) of the power frequency of the liquid absorbent feed pump \(M1 \), which the program equals to the percentage of the above-the-limit collected concentration \(PerC \) of continuous gas phase flow. The data stored in the arrays were received as a result of adjustment of the packed absorber. If the turbulization index \(n_f \) is less than \(n_{Emu}[PerC] \) value, 1 is added to the variable \(PerF2 \), i. e. the power frequency of electrical motor of blower \(M2 \) will be increased by 1 %, if \(n_f \) is higher than \(n_{Max}[PerC] \) value, then the \(PerF2 \) value is reduced by 1. To keep the \(PerF2 \) value within the limits of the adjustment interval the program forcibly assigns zero-value to this variable if its actual value drops below zero or 100 or if it is beyond 100. After that the above operations are repeated.

The repeated execution of the program for self-adapting mode control of the mass exchange packed absorber leads to continuous monitoring of collected concentrations of continuous gas phase flow and to the corresponding response of the mass exchange system (control program) to the concentration spikes. This results in decreased energy costs needed for mass exchange processes, in a cost-efficient absorbent consumption due to the operation of the apparatus under the most efficient mode of emulsification (phase inversion), it enables a 40 % reduction of the packing block volume with no loss of treatment quality of continuous gas flow if compared to the packed mass exchangers which are not capable of maintaining steady emulsification (phase inversion) mode.
3. Conclusions
It is important to note that the described automated control program of the packed absorber intended for selective gas emissions treatment uses the arbitrary threshold exceeding values for the collected concentrations of continuous gas phase flow and the algorithm of the corresponding self-adapting flexible adjustment of the process parameters of the mass exchange system. The operator can enter any required process parameters and collected concentration limits in the program based on the features (requirements) of each specific process or mass exchange absorber, on properties of the substances to be collected and their maximum allowable concentrations in the gas phase flows, etc. The adjustment and mode control programs of the packed absorbers can be transformed, improved or adapted to different mass exchange systems and structural designs of the apparatuses.

The use of the developed self-adapting automated mode control program of the packed mass exchanger (packed absorber), maintaining steady emulsification (phase inversion) mode with the ongoing analysis of the collected concentrations in continuous gas phase flows in combination with maintaining of the highest possible gas treatment efficiency can entail considerable power and resource savings.

The systems for automated adjustment of the process parameters and for the self-adapting mode control of the packed absorbing mass exchangers become critical during the start-up stage of process equipment as they can compensate for the scale factor or others and also at the time of transition from laboratory testing of the contact units and structural designs of mass exchangers to their industrial operation.

The designed systems for automated process parameters adjustment and for mode control of the packed absorbers intended for selective gas emission treatment in combination with the self-adapting mode control feature of mass exchangers can perform the discriminant function when they compare the efficiency of operation of the mass exchange packing contact units as those systems can identify the availability ranges of the intensive fluid and gas flows. This scientific tool opens a new direction in the development and designing of packing contact units [111] and structural designs of mass exchangers [114-124] which can ensure the required intensifying effects within a broader range of modes than the existing (well-known) packing contact blocks and designs of the mass exchangers currently used in industries. Designing of new contact units and structures of mass exchangers which would demonstrate the required intensifying features within a broader range of modes and can be operated under different ratios of continuous and dispersion flows is an up-to-date task and will lead to increased accuracy and quality of functioning of the designed systems for automated adjustment and mode control of the mass exchangers intended for selective gas emissions treatment.

Acknowledgements
This work was supported by a grant from the President of the Russian Federation (MK-1287.2020.8) «Modelling of control processes in mass transfer environmental and petroleum processing equipment».

References
[1] Timonin A S, Bozhko G V, Borshchev V Ya, Gusev Y I and others. 2019 Equipment for oil and gas processing, chemical and petrochemical industries (Moscow: Infra-Engineering) p 476
[2] Timonin A S, Baldin B G, Borschev V Y and Gusev Y I 2014 Chemical production machines and apparatus (Kaluga: Noosphere) p 856
[3] Timonin A S 2013 Engineering and ecological reference book vol 2 (Kaluga: Noosphere) p 884
[4] Sokol B A, Chernyshov A K and Baranov D A 2009 Mass-transfer column packed-type devices (Moscow: Infokhim) p 358
[5] Kagan A M, Laptev A G, Pushnov A S and Farakhov M I 2013 Contact packings in industrial heat-and-mass transfer apparatuses (Kazan: Otechestvo) p 454
[6] Laptev A G, Farakhov T M and Basharov M M 2016 Processes and apparatuses of chemical
technologies: Modeling and modernization of industrial desulfurizing packed columns at refineries *Chemistry and Technology of Fuels and Oils* 52(5) 472-9

[7] Golovanchikov A B, Balashov V A and Merentsov N A 2017 The filtration equation for packing material *Chemical and Petroleum Engineering* 53 10-3

[8] Merentsov N A, Balashov V A, Bunin D Y, Lebedev V N, Persidskiy A V and Topilin M V2018Method for experimental data processing in the sphere of hydrodynamics of packed heat and mass exchange apparatuses *MATEC Web of Conferences* 243 5

[9] Madyshev I N, Dmitrieva O S and Dmitriev A V 2019 Development of new types of contact devices for heat-mass transfer apparatuses, used at petrochemical enterprises, *Proceed. of the 5th Intern. Conf. on Ind. Eng. (ICIE 2019)*, Lecture Notes in Mechan. Eng. vol 11 95-101

[10] Madyshev I N, Dmitrieva O S, Dmitriev A V and Nikolaev A N 2016 Study of fluid dynamics of mass-transfer apparatuses having stream-bubble contact devices *Chemical and Petroleum Engineering* 52(5-6) 299-304

[11] Zinurov V, Sharipov I, Dmitrieva O and Madyshev I 2020 The experimental study of increasing the efficiency of emulsion separation *E3S Web of Conf.* 157 06001

[12] Dmitriev A, Madyshev I, Dmitrieva O 2020 Experimental study of hydraulic and heat and mass transfer parameters of inclined-corrugated contact elements of cooling tower sprinkler *Ecology and Industry of Russia* 24(1) 4-8

[13] Madyshev I N, Dmitrieva O S and Dmitriev A V 2019 Determination of settling efficiency of solid finely dispersed particles within devices with rectangular separators *Proceed. of the 5th Intern. Conf. on Ind. Eng. (ICIE 2019)*, Lecture Notes in Mechan. Eng. 11 79-84

[14] Madyshev I N, Dmitrieva O S, Dmitriev A V and Nikolaev A N 2015 Assessment of change in torque of stream-bubble contact mass transfer devices *Chemical and Petroleum Engineering* 51(5-6) 383-7

[15] Laptev A G, Farakhov T M and Afanas’ev E P 2018 Comparative thermo-hydraulic efficiency of processes in channels with chaotic packing *Theoretical Foundations of Chemical Engineering* 52(5) 853-8

[16] Madyshev I N, Dmitrieva O S and Dmitriev A V 2017 Hydraulic resistance of thermal deaerators of thermal power stations (TPS) with jet-film contact devices *MATEC Web of Conf.* 141 01023

[17] Dmitrieva O S, Dmitriev A V, Madyshev I N and Kruglov L V 2017 Impact of the liquid level in the jet-film contact devices on the heat-and-mass transfer process *MATEC Web of Conf.* 129 06010

[18] Pushnov A S, Chizh K V and Berengarten M G 2013 X-ray study of the structure of a random-packing layer confined by a cylindrical surface *Journal of Surface Investigation* 7(6) 1047-51

[19] Dmitriev A V, Dmitrieva I N and Dmitrieva O S 2019 Engineering method of calculation for the scrubber with jet-film contact devices *Inter. Multi-Conf. on Ind. Eng.and Modern Tech. (FarEastCon)*, *IEEE Xplore* 1-5

[20] Farakhov T M and Laptev A G 2019 Modeling of processes of gas cooling by contact with a liquid and updating of column apparatuses *Chemical and Petroleum Engineering* 5(3-4) 282-9

[21] Dmitrieva O S, Dmitriev A V, Madyshev I N and Nikolaev A N 2017 Flow dynamics of mass exchangers with jet-bubbling contact devices *Chemical and Petroleum Engineering* 53(1-2) 130-4

[22] Laptev A G and Farakhov T M 2019 Mathematical model of mass transfer in randomly packed columns with phase maldistribution *Journal of Engineering Thermophysics* 28(3) 392-9

[23] Dmitriev A V, Dmitrieva O S and Madyshev I N 2017 Optimal designing of mass transfer apparatuses with jet-film contact devices *Chemical and Petroleum Engineering* 53(7-8) 430-4

[24] Dmitriev A V, Dmitrieva O S, Madyshev I N and Nikolaev A N 2017 Efficiency of the contact
stage of a jet-film device during rectification of ethylbenzene–styrene mixture Chemical and Petroleum Engineering 53(7-8) 501-7

[25] Laptev A G and Lapteva E A 2018 A Modified Method of the Number of Transfer Units for Calculating a Cooling Tower Chemical and Petroleum Engineering 54(7-8) 569-75

[26] Klyushenko M I, Kuznetsova N A, Pushnov A S, Berengarten M G and Mokrousova E A 2014 Hydrodynamics of filled helical polymer packings Chemical and Petroleum Engineering 50 7-8

[27] Madyshov I N, Dmitriev A V and Khafizova A I 2019 Estimation of Cooling Capacity of Reagent-Free Evaporative Cooling TowerInter. Multi-Conf. on Ind. Eng.and Modern Tech. (FarEastCon), IEEE Xplore 1-4

[28] Bagomedov M G, Pushnov A S and Berengarten M G 2019 Effect of packing type on hydraulic resistance of contact devices Chemical and Petroleum Engineering 55(5-6) 379-83

[29] Ivanov A E, Berengarten M G and Klyushenko M I 2010 Processes and equipment for chemical and oil-gas production: hydrodynamics of the bubbling layer in a new type of combined heat and mass exchanger Chemical and Petroleum Engineering 46(7) 433-40

[30] Madyshov I N, Dmitrieva O S and Dmitriev A V 2018 Efficiency of cooling the water droplets within Jet-Film unit of cooling tower filler MATEC Web of Conf. 224 02079

[31] Lapteva E A, Stolyarova E Y and Lapteva A G 2018 Thermohydraulic efficiency of the process of cooling of water in miniature cooling towers with regular packing Chemical and Petroleum Engineering 54(3-4) 161-4

[32] Madyshov I N, Dmitrieva O S and Dmitriev A V 2017 Heat-transfer, inside of the ground heat-transfer units, from liquid, additionally cooling the oil-immersed transformer MATEC Web of Conf. 141 01012

[33] Laptev A G and Lapteva E A 2015 Determination of heat and mass transfer efficiency on a bubbling plate with account for scale transition Journal of Engineering Physics and Thermophysics 88(4) 806-14

[34] Dmitrieva G B, Berengarten M G, Pushnov A S, Poplavskii V Y and Marshik F 2006 New combination packing for heat-and mass-exchange vessels Chemical and Petroleum Engineering 42(5-6) 361-6

[35] Madyshov I N, Dmitrieva O S and Dmitriev A V 2018 Determination of heat-mass transfer coefficients within the apparatuses with jet-film contact devices MATEC Web of Conf. 194 01013

[36] Gorodilov A A, Berengarten M G and Pushnov A S 2016 Experimental study of mass transfer on structured packings of direct-contact crossflow heat exchangers Theoretical Foundations of Chemical Engineering 50(5) 422-9

[37] Madyshov I N, Khafizova A I and Dmitrieva O S 2019 The study of gas-liquid flow dynamics in the inclined-corrugated elements of cooling tower filler unit E3S Web of Conf. 126 00031

[38] Ivanov A E, Berengarten M G and Klyushenko M I 2009 Hydrodynamic operating regimes for a combined heat-and mass exchanger Chemical and Petroleum Engineering 45(9-10) 526-31

[39] Madyshov I N, Dmitrieva O S and Dmitriev A V 2018 Heat-mass transfer efficiency within the cooling towers with jet-film contact devices MATEC Web of Conf. 194 01036

[40] Gorodilov A A, Berengarten M G and Pushnov A S 2016 Features of fluid film falling on the corrugated surface of structured packings with perforations Theoretical Foundations of Chemical Engineering 50(3) 325-34

[41] Vaganov A A and Timonin A S 2011 Aerodynamics of cellular polymeric packing Chemical and Petroleum Engineering 46(11-12) 657-9

[42] Merentsov N, Golovanchikov A, Lebedev V and Gendler A 2020 Modelling and calculation of a small-size evaporation cooling apparatus for industrial recirculated water with a heat-and-mass exchange packing based on wastes from metal-working machinery E3S Web of Conferences 193 02003
[43] Golovanchikov A B, Merentsov N A and Balashov V A 2013 Modeling and analysis of a mechanical-draft cooling tower with wire packing and drip irrigation Chemical and Petroleum Engineering 48 595-601

[44] Merentsov N, Persidskiy A, Lebedev V, Prokhorenko N and Golovanchikov A 2019 Heat and mass exchange packing for disinfection of circulation water in electric field Advances in Intelligent Systems and Computing 983 547-59

[45] Dmitriev A V, Madyshev I N, Kharkov V V, Dmitrieva O S and Zinurov V E 2021 Experimental investigation of fill pack impact on thermal-hydraulic performance of evaporative cooling tower Thermal Science and Engineering Progress 22 100835

[46] Madyshev I, Kharkov V and Dmitriev A 2020 Cooling efficiency of filler unit in non-chemical cooling tower with advanced contact surface E3S Web of Conferences 193 01044

[47] Zinurov V E, Dmitriev A V, Ruzanova M A and Dmitrieva O S 2020 Classification of bulk material from the gas flow in a device with coaxially arranged pipes E3S Web of Conferences 193 01056

[48] Madyshev I, Dmitriev A and Kharkov V 2020 Determination of Volumetric Heat and Mass Transfer Coefficients in Filling Unit of Evaporative Cooling Tower 2020 International Multi-Conference on Industrial Engineering and Modern Technologies, FarEastCon 2020 9271292

[49] Dmitriev A V, Madyshev I N, Khafizova A I, Kharkov V V and Vakhitov M R 2020 Heat and mass transfer in unit of cooling tower filler with advanced gas-liquid contact surface IOP Conference Series: Materials Science and Engineering 862(6) 062099

[50] Merentsov N A, Lebedev V N, Persidskiy A V and Balashov V A 2019 Cascade bowl-type heat and mass exchange packing with dripping irrigation mode IOP Conference Series: Earth and Environmental Science 288 012106

[51] Merentsov N A, Lebedev V N, Golovanchikov A B, Balashov V A and Nefed'Eva E E 2018 Experimental assessment of heat and mass transfer of modular nozzles of cooling towers IOP Conference Series: Earth and Environmental Science 115 012017

[52] Persidskiy A V, Merentsov N A, Lebedev V N and Golovanchikov A B 2019 Heat and mass exchange packing with adjustable parameters for absorption and evaporation cooling IOP Conference Series: Earth and Environmental Science 288 012110

[53] Dmitriev A, Madyshev I and Dmitrieva O 2020 Experimental study of hydraulic and heat and mass transfer parameters of inclined-corrugated contact elements of cooling tower sprinkler Ecology and Industry of Russia 24(1) 4-8

[54] Madyshev I N, Khafizova A I and Dmitrieva O S 2019 The study of gas-liquid flow dynamics in the inclined-corrugated elements of cooling tower filler unit E3S Web of Conferences 126 00031

[55] Merentsov N A, Persidskiy A V and Lebedev V N 2020 Use of wastes from metalworking machining for packings in contact heat-and-mass exchange devices Proceedings of the 5th International Conference on Industrial Engineering (ICIE 2019), Lecture Notes in Mechanical Engineering 11 1443-54

[56] Merentsov N A, Persidskiy A V, Topilin M V, Lebedev V N, Balashov V A and Golovanchikov A B 2019 Experimental plant for studying hydrodynamics and heat and mass exchange processes in packing contact devices Journal of Physics: Conference Series 1278 012024

[57] Madyshev I N, Dmitriev A V and Dang Suan Vin 2020 Determination of oil-water emulsions separation efficiency in the separator with a vortex flow IOP Conference Series: Mater. Sci. and Eng. 709 033025

[58] Merentsov N, Balashov A, Golovanchikov A and Topilin M 2020 The determination of hydraulic resistance during laminar filtration through layers of sorbents and ion-exchange granules in environmental mass exchange equipment E3S Web of Conferences 193 02002

[59] Merentsov N A, Balashov V A, Bokhan S A, Nefед'eva E E, Tezikov D A and Groshev V V 2019 Modeling and calculation of flow filter IOP Conference Series: Earth and
Adsorption purification of phenol-containing wastewater from oil refineries.Theoretical and Applied Ecology 2020(4) 136-42.

Nikolaeva L A 2020 Treatment of a TPP’s Water from Oil Products with Hydrophobic Carbonate Sludge. Thermal Engineering 67(10) 751-5.

Sorption removal of oil products from waste water. Ecology and Industry of Russia 19(5) 8-12.

Dremicheva E 2019 Use of agricultural waste for wastewater treatment of industrial enterprises. Ecology and Industry of Russia 23(4) 16-9.

Extraction of heavy metal ions from inorganic wastewater. Ecology and Industry of Russia 22(3) 35-9.

Research on the mechanism and kinetics of oil-product adsorption from industrial wastewater by a modified hydrophobic carbonate sludge. Chemical and Petroleum Engineering 53(11-12) 806-13.

Use of wastes of grinding industry for cleaning of chromium containing wastewater. World Applied Sciences Journal 22(5) 690-6.

System for centralised collection, recycling and removal of waste pickling and galvanic solutions and sludge. Materials Science Forum 927 183-9.

Mobile installation of water treatment in the aftermath of emergency situations. Ecology and Industry of Russia 23(1) 4-10.

Adsorption purification of phenol-containing wastewater from oil products with application of mathematical modeling. IOP Conference Series: Earth and Environmental Science 288(1) 012017.

Purification of water sources from oil contamination by hydrophobic carbonate sludge. IOP Conference Series: Earth and Environmental Science 288(1) 012018.

Mathematical modeling of wastewater treatment by adsorption of petroleum products. Chemical and Petroleum Engineering 55(1-2) 68-75.

Adsorption treatment of reverse-osmosis concentrate from water-treatment units at thermal power stations. Thermal Engineering 66(5) 372-6.

Research on the mechanism and kinetics of oil-product adsorption from industrial wastewater by a modified hydrophobic carbonate sludge. Chemical and Petroleum Engineering 53(11-12) 806-13.

Study of the sorption of oil products of power station wastewater modified with a TPP illuminator slurry. Thermal Engineering 59(5) 404-7.

Purification of effluent waters from industrial enterprises using a biosorption technology. Thermal Engineering 59(3) 258-60.

Ion exchange in continuous apparatus with diffused flow structure in liquid. Advances in Intelligent Systems and Computing 983 645-52.

The use of aluminosilicate sorbent for the purification of...
natural waters from heavy metals *Ecology and Industry of Russia* **24**(3) 19-23

[82] Krivoshchev P A, Komarova L F, Poletaeva M A, Lebedev I A and Lavrinenko S S 2004 Wastewater treatment with new activated charcoals to remove butano *Russian Journal of Applied Chemistry* **77**(9) 1515-7

[83] Prolechik A, Gaponenkov I and Fedorova O 2018 Extraction of heavy metal ions from inorganic wastewater *Ecology and Industry of Russia* **22**(3) 35-9

[84] Fomenko A I and Sokolov L I 2019 Study of sorption properties of bog ores for extraction of manganese and iron ions from ground water *Russian Journal of Applied Chemistry* **92**(2) 288-94

[85] Rachkova N G and Shuktomova I I 2010 Sorption of uranium, radium, and thorium by analcym-containing rock and sorbents based on plant tissue *Russian Journal of Applied Chemistry* **83**(4) 620-4

[86] Zaporozhskikh T A, Tret'yakova Ya K, Grabel'nykh V A, Russavskaya N V, Vshivtsev V Yu, Levanova E P, Sukhomazova E N, Korabel I V and Korchevin N A 2008 Granulated sulfur-containing sorbents for recovery of heavy metal ions from aqueous solutions *Russian Journal of Applied Chemistry* **81**(5) 866-8

[87] Fomenko A I and Sokolov L I 2019 Sorption properties of fly ash microspheres of thermal power plants *Ecology and Industry of Russia* **23**(1) 50-4

[88] Smirnov V G, Dyrdin V V, Manakov A Y, Fedorova N I, Shikina N V and Ismagilov Z R 2019 Physicochemical and sorption properties of natural coal samples with various degrees of metamorphism *Russian Journal of Applied Chemistry* **92**(10) 1410-21

[89] Fomenko A I and Sokolov L I 2017 Ash of incineration plants as industrial resource for extracting rare earth elements *Ecology and Industry of Russia* **21**(12) 28-31

[90] Fomenko A I and Sokolov L I 2015 A study of sorption of phosphate ions from aqueous solutions by wood ash *Russian Journal of Applied Chemistry* **88**(4) 652-6

[91] Dremicheva E S 2017 Studying the sorption kinetics on peat ions of iron(III) and copper(II) from wastewater *Moscow University Chemistry Bulletin* **72**(4) 196-9

[92] Nikolaeva L A and Khamitova É G 2019 The use of energy industry waste as sorption material in the purification of reverse osmosis concentrate *Chemical and Petroleum Engineering* **55**(5-6) 427-32

[93] Dmitriev A, Madyshev I and Dmitrieva O 2018 Cleaning of industrial gases from aerosol particles in apparatus with jet-film interaction of phases *Ecology and Industry of Russia* **22**(6) 10-4

[94] Golovanchikov A and Merentsov N 2019 Modelling of absorption process in a column with diffused flow structure in liquid phase *Advances in Intelligent Systems and Computing* **983** 635-44

[95] Merentsov N, Persidskiy A, Lebedev V, Topilin M and Golovanchikov A 2019 Modelling and calculation of industrial absorber equipped with adjustable sectioned mass exchange packing *Advances in Intelligent Systems and Computing* **983** 560-73

[96] Farakhov M I, Laptev A G and Basharov M M 2016 Import substitution of industrial devices for gas purifization from the disperse phase in petrochemical industry *Chemical and Petroleum Engineering* **52**(5-6) 316-9

[97] Madyshev I N, Dmitrieva O S and Dmitriev A V 2017 Purification of gas emissions from thermal power plants by means of apparatus with Jet-Bubbling contact devices *MATEC Web of Conf.* **91** 01019

[98] Laptev A G, Basharov M M and Lapteva E A 2017 Separation and energy efficiency of packed apparatuses for purifying gases from aerosols *Theoretical Foundations of Chemical Engineering* **51**(5) 639-46

[99] Golovanchikov A B, Merentsov N A and Topilin M V 2019 Modeling of adsorption process in continuous counter current column having diffused flow structure in gaseous phase *Journal of Physics: Conference Series* **1278** 012023
[100] Nikolaeva L A, Zainullina É R and Al’-Okbi A K 2019 Adsorption drying of natural gas by carbonate sludge Chemical and Petroleum Engineering 54(11-12) 919-25
[101] Nikolaeva L A and Khusnutdinov A N 2018 A Study of the absorption of nitrogen oxides from the boiler flue gases Thermal Engineering 65(8) 575-9
[102] Nikolaeva L A and Khusnutdinov A N 2018 Purification of gas emissions of chemical industry enterprises by carbonaceous cutting Ecology and Industry of Russia 22(8) 14-8
[103] Nikolaeva L A 2013 Research of sorption processes using chemical water purification sludge for nitrogen and sulfur oxides contained in smoke gases emitted from a thermal power station Thermal Engineering 60(4) 244-7
[104] Merentsov N, Persidskiy A, Lebedev V and Golovanchikov A 2019 The use of industrial wastes from machine-building enterprises as packing materials for small-sized absorbers for gas emissions purification MATEC Web of Conferences 298 00031
[105] Dmitriev A, Madyev V and Dmitrieva O 2018 Cleaning of industrial gases from aerosol particles in apparatus with jet-film interaction of phases Ecology and Industry of Russia 22(6) 10-4
[106] Dmitrieva O S, Nguyen V L, Yakimov N D and Sheshukov E G 2019 Evaluation of the efficiency of rectangular separators to collect the particles from the gas flows IOP Conference Series: Earth and Environmental Science 337(1) 012057
[107] Zinurov V E, Popkova O S and Nguyen V L 2019 Separator design optimization for collecting the finely dispersed particles from the gas flows E3S Web of Conferences 126 00043
[108] Dmitriev A V, Zinurov V E and Dmitrieva O S 2018 Influence of elements thickness of separation devices on the finely dispersed particles collection efficiency MATEC Web of Conferences 224 02073
[109] Dmitriev A V, Zinurov V E and Dmitrieva O S 2018 Intensification of gas flow purification from finely dispersed particles by means of rectangular separator IOP Conference Series: Materials Science and Engineering 451(1) 012211
[110] Dmitriev A V, Zinurov V E and Dmitrieva O S 2019 Collecting of finely dispersed particles by means of a separator with the arc-shaped elements E3S Web of Conferences 126 00007
[111] Merentsov N A, Golovanchikov A B, Persidskiy A V and Lebedev V N 2020 Modeling of control processes in environmental mass transfer equipment (Volgograd: Volgograd State Technical University Press) p 188
[112] Merentsov N A, Persidskiy A V, Topilin M V and Golovanchikov A B 2020 Calibration of technological parameters of an electroadsorption apparatus with a fixed layer of adsorbent Journal of Physics: Conference Series 1679(5) 052020
[113] Merentsov N A, Persidskiy A V, Topilin M V and Golovanchikov A B 2020 Control of operating modes of an electroadsorption apparatus with a fixed layer of adsorbent Journal of Physics: Conference Series 1679(5) 052096
[114] Merentsov N A, Golovanchikov A B, Topilin M V, Persidskiy A V and Tezikov D A 2019 Mass transfer apparatus for a wide range of environmental processes Journal of Physics: Conf. Series 1399 055028
[115] Merentsov N A, Persidskiy A V, Topilin M V and Golovanchikov A B 2020 Designs of electroadsorption mass transfer apparatuses Journal of Physics: Conference Series 1679(5) 052021
[116] Golovanchikov A B, Merentsov N A, Topilin M V and Persidskiy A V 2019 Dynamic packing for heat and mass exchange processes IOP Conf. Ser.: Earth and Environmental Science 288 012089
[117] Merentsov N, Persidskiy A, Lebedev V and Golovanchikov A 2020 Automatic control of operating modes of packed apparatus for selective gas emissions cleaning Ecology and Industry of Russia 24(2) 10-6
[118] Merentsov N A, Lebedev V N, Persidskiy A V and Golovanchikov A B 2020 Automatic control system for operation modes and calibration of technological parameters of evaporation
cooling apparatuses. *Journal of Physics: Conference Series* **1515** 022004

[119] Merentsov N A, Persidskiy A V, Groshev V V, Kozlovtsev V A and Golovanchikov A B 2019 Self-organization of processes in gas and liquid-phase catalytic reactors *Journal of Physics: Conference Series* **1399** 044041

[120] Merentsov N, Persidskiy A and Topilin M 2019 Description of the process and packing materials for pulse liquid extraction *Materials Today: Proceedings* **19**(5) 1908-12

[121] Merentsov N, Persidskiy A and Lebedev V 2019 Automatic parameter adjustment system for packing materials and control of flow modes in mass exchange columns *Materials Today: Proceedings* **19**(5) 1899-903

[122] Merentsov N, Persidskiy A, Topilin M and Golovanchikov A 2019 Sectional automatic adjustment of catalyst layers in gas and liquid phase reactors *MATEC Web of Conferences* **298** 00030

[123] Merentsov N, Persidskiy A, Lebedev V and Golovanchikov A 2020 Elastically deformable packing materials based on the waste of metalworking machines and hydrodynamic adjustment of contact blocks in mass-exchange apparatuses *Materials Today: Proceedings* **38**(4) 1530-4

[124] Merentsov N, Persidskiy A, Lebedev V and Golovanchikov A 2020 Calibration of technological parameters of adjustable elastically deformable blocks of packed materials in mass exchange apparatuses *Materials Today: Proceedings* **38**(4) 1545-50