Collider signatures for dark matter and long-lived particles with \textsc{Pythia} 8

Nishita Desai1

Laboratoire Univers et Particules de Montpellier,

CNRS-Université de Montpellier, 34095 Montpellier, France

Abstract

We describe the implementation of four models for production of dark matter or associated particles at the LHC based on the simplest extensions of the Standard Model. The first kind of models include dark matter production via s-channel mediators. This includes production in association with a jet for a vector boson (Z') or scalar (S) mediator as well as mono-higgs production via associated hZ' production. We implement the simplest t-channel mediator in the form of a scalar with leptonic quantum numbers and completely generic Yukawa couplings to the dark matter fermion and a right-handed SM lepton. Finally, we implement a generalised model of mixed dark matter where the dark matter is a mixture of an SU(2) singlet and N-plet. We find that the last two models are also ideally suited to study the production of a range of long-lived particle signatures. We illustrate this by showing the complementarity of the limits from various long-lived searches for a simple benchmark case.

Contents

1 Introduction 2

2 Models and implementation 3

2.1 Vector and scalar s-channel mediators 3
2.2 Scalar t-channel mediator 4
2.3 SU(2) n-plet mixed with singlet 5

3 Conclusion and outlook 6

A PDG codes for new particles 10

B List of implemented processes 10

C Parameters 11

1nishita.desai@umontpellier.fr
1 Introduction

With the higgs scalar discovered at the LHC looking increasingly Standard Model (SM)-like \cite{1}, and a lack of signal in searches for well-motivated models like supersymmetry, the search strategy at the LHC has shifted to a more bottom-up viewpoint focussing on covering all possible signatures of new particles. This has prompted increasing interest in “model independent” searches for dark matter and other exotic final states, including new long-lived particles and dedicated working groups have been working on compiling a comprehensive search strategy \cite{2, 3}. In this note, we describe the Pythia 8 \cite{4} implementation of simplified models that allow the simulation of a range of theoretically well-motivated dark matter and long-lived particle scenarios.

We implement two models with s-channel mediators to a fermionic dark matter particle. The first of these is a vector boson mediator (Z' or dark photon) with vector or axial-vector couplings. The axial-vector model is a particularly well-motivated extension of the Standard Model as it averts strong bounds from direct detection experiments and will indeed be first observable at the LHC \cite{5}. We implement both resonant production and production associated with one jet to cover the primary signatures. The second model is a scalar s-channel mediator (also with possible pseudo-scalar couplings), as is commonly required by higgs-portal models \cite{6}. Such scalars would also arise in the presence of extra gauge sectors which are spontaneously broken and therefore predict extra higgses. Again, we implement resonant production as well as production in association with one jet. Finally, we include production of a single higgs (i.e. a “mono-higgs” \cite{7}) via associated production of the higgs with the dark photon.

In the second part, we implement two models for producing charged partners of dark matter via Drell-Yan production. Such partners are predicted by dark matter models where the correct relic density is achieved by co-annihilation with a charged partner \cite{8, 9} or by non-thermal production via freeze-in \cite{10}. The simplest extension is by adding a scalar that has Yukawa couplings between SM and DM, and by choosing the scalar to have only leptonic charges, we can evade current direct detection bounds.

The last model we implement is a generalisation of the supersymmetric dark matter sector by postulating that the dark matter is a mixture of a singlet and SU(2) N-plet fields (or “next to minimal dark matter” \cite{11, 12}), but without imposing supersymmetry which requires the coupling of the dark sector gauginos to be the same as gauge couplings. Choosing $N = 2$ is similar to bino-higgsino dark matter \cite{13} of supersymmetry or singlet-doublet model \cite{14} whereas $N = 3$ is similar to bino-wino dark matter \cite{15}. We also include the option to choose $N = 5$, motivated by the minimal dark matter \cite{16} idea which says the neutral component of a 5-plet is naturally stable because it is not possible to write a gauge invariant, renormalisable operator that can determine it’s decay. By choosing masses or the mixing parameter, it is also possible to simulate production of pure doublet, triplet or quintuplet states.

\footnote{Available in the next public release of Pythia 8.}
2 Models and implementation

The four models implemented here can be used to study a range of prompt and long-lived signatures at the LHC, listed in table 1 below. The prompt signatures include mono-jet [17], dijet resonance [18, 19], mono-higgs [20, 21] and dileptons + missing energy (MET) [22, 23]. The long-lived signatures possible include charged tracks [24], disappearing tracks [25, 26], and displaced leptons [27] or vertices [28]. The full list of processes and parameters can be found in the accompanying appendices.

Signature	Dark photon or Z' (neutral)	Scalar (neutral)	Scalar (charged)	n-plet singlet mixed
Prompt	monojet	di-leptons + MET	di-leptons + MET	
	dijet resonance	dijet resonance		
	mono-Higgs	charged tracks	charged tracks	
		disappearing track	disappearing track	
		displaced leptons	displaced leptons	
			displaced vertex	
Long-lived				

Table 1: Prompt (top) and long-lived (bottom) signatures possible from the implemented models.

2.1 Vector and scalar s-channel mediators

We implement the resonant production ($pp \to X$) and production with one jet ($pp \to X + j$) followed by decay of the mediator X into DM fermions. For simplicity, DM fermions are assumed to be Dirac. The vector boson model (Z') allows vector and axial couplings to both SM fermions as well as DM. Analogously, the scalar mediator (S) model allows scalar and pseudoscalar couplings. The dark photon model (where SM couplings are determined by kinetic mixing with SM Z boson) can be accessed by setting the mixing parameter epsilon instead of setting each coupling individually. In the case of the Z' model, we also implement mono-higgs production where the coupling to the Z' to the higgs can be set independently. The diagrams corresponding to the production processes are shown in figure 1.

The relevant terms of the Lagrangian are given below. Table 4 lists the descriptions of all relevant parameters implemented in the code.

\[
\mathcal{L}_{Z'} \supset -\frac{1}{4} Z'_{\mu\nu} Z'_{\mu\nu} - M_{Z'}^2 Z'_{\mu} Z'_{\mu} + g_{Z'} \bar{f} \gamma_{\mu} (v_f + a_f \gamma_5) f Z'_{\mu}
\]

\[
\mathcal{L}_S \supset |\partial S|^2 - \frac{1}{2} m_S^2 |S|^2 - m_f \bar{f} (v_f + a_f \gamma_5) f S
\]

3
2.2 Scalar t-channel mediator

This scalar mediator model is inspired by the simplest co-annihilation assumption where a dark matter fermion achieves the right relic density by co-annihilating with a charged scalar. The mediator is assumed to have quantum numbers of a right-handed lepton (except spin) and the flavour of which can be set by choosing which SM lepton it couples to. It is also possible to have lepton flavour violation by choosing multiple non-zero Yukawas. Primary production at the LHC is Drell-Yan, followed by decay into lepton and DM. The lagrangian given by equation 3 also assumes a Z_2 symmetry under which ℓ and the dark matter χ are odd.

$$\mathcal{L} \supset |D_\mu \tilde{\ell}|^2 - \frac{1}{2} m_\ell^2 |\tilde{\ell}|^2 + \bar{\chi}(\gamma^\mu \partial_\mu - m_\chi)\chi + (y_i \bar{\chi}_i \ell^R \tilde{\ell} + \text{h.c.})$$

(3)
This simple model can be used to model two cases where dark matter relic density is satisfied — either by thermal freeze-out by co-annihilation or via freeze-in. The first of these requires Yukawa couplings of order one and dark matter and scalar masses of order 100 GeV. In case of freeze-in, imposing the right relic density forces the dark matter mass to be very light and the Yukawa coupling to be very small ($\lesssim 10^{-7}$), in effect giving a long-lived charged scalar on the scales of LHC detectors. The reinterpretation of exclusions from CMS long-lived charged particle search can be seen in figure 3.

2.3 SU(2) n-plet mixed with singlet

This model is a generalisation of the “minimal dark matter” by adding an extra singlet fermion. The minimal dark matter idea postulates that DM is the neutral component of a SU(2) N-plet, forbidden to decay by the symmetries of the SM. The smallest n was found to be 5. However, mixed N-plets occur also in other theories like SUSY where dark matter can be a mixture of singlet, doublet and triplet states. The model implemented here generalises this idea by defining a “next-to-minimal” scenario of an N-plet mixed with a singlet ($N = 2, 3, 5$). The doublet scenario implemented here is a simplified version of the singlet-doublet model [14], with both doublets assumed to have the same mixing. The 5-plet scenario has one Dirac doubly charged fermion, one Dirac singly charged fermion and two neutral Majorana fermions. The 3-plet scenario has one Dirac singly charged fermion and two neutral Majorana fermions (similar to Bino-Wino scenarios of supersymmetry[29]). This model can be used as
a benchmark to study all track-based long-lived signatures — disappearing tracks, long-lived charges tracks (both singly and doubly charged), and displaced leptons. Displaced vertex signatures can be obtained by looking at decays of the neutral DM partner. A detailed description of the model and phenomenological study of the cases N=3 and 5 can be found in [12, 11]. The Lagrangian is given by

$$\mathcal{L} \supset i \psi_i^\dagger (\bar{\sigma}^\mu D_\mu) \psi_i + i \chi^j_3 \sigma^\mu \partial_\mu \chi^j - \frac{1}{2} (M_1 \chi \chi + M_2 \psi \psi)$$ \hspace{1cm} (4)

$$\mathcal{L}_{\text{mix};N=2} = \frac{\lambda}{\Lambda} \psi^a (\phi^a \phi) \chi + h.c.$$ \hspace{1cm} (5)

$$\mathcal{L}_{\text{mix};N=3} = \frac{\lambda}{\Lambda} \psi^a (\phi^a \phi) \chi + h.c.$$ \hspace{1cm} (6)

$$\mathcal{L}_{\text{mix};N=5} = \frac{\lambda}{\Lambda^2} \psi^a (\phi^a \phi)^a \chi + h.c.$$ \hspace{1cm} (7)

where the term \((\phi^a \phi)^a \) is a schematic notation taken to mean a 5-plet combination from four higgs doublets. For the singlet-doublet [14] case, there is no scale suppression and the scale parameter \(\text{DM}:\text{Lambda} \) is translated into the mixing as \(\lambda = (1 \text{ GeV})/\Lambda \). In the two other cases, as there is no way to separate effects of \(\lambda \) and \(\Lambda \), we simply keep \(\lambda = 1 \) and encapsulate any effect of changing it into the value of \(\Lambda \). This allows us to describe all cases with just three parameters. In each case, the neutral mixing matrix and masses of the neutral eigenstates is calculated based on the parameters \(M_1, M_2 \) and \(\Lambda \). The parameter \(\text{DM}:\text{Nplet} \) allows choosing the value of \(N \) for the N-plet.

The charged partners in this model are produced via Drell-Yan processes, followed by decay depending on the mixing parameters. In particular, the doubly charged partner in the 5-plet model decays only via \(\chi^{++} \to \chi^+ \pi^+ \) with a lifetime \(c\tau \) of about 0.6mm determined by the splitting between \(\chi^{++} \) and \(\chi^+ \). The \(\pi^+ \) is too soft to be visible and the further decay of the \(\chi^+ \) into leptons can give displaced lepton or displaced jet signatures. In the pure triplet case, the decay \(\chi^+ \to \chi_2 \pi^+ \) gives disappearing tracks. In cases of small mixing \((\Lambda > 10 \text{ TeV}) \), it is also possible to get displaced vertices from the decays of the \(\chi_2 \). The feynman diagrams for the production and decay resulting in these signatures are shown in figure 4.

3 Conclusion and outlook

We present here four models that can be used to study the production of dark matter in the simplest extensions of the Standard Model. Aside from the standard simplified models where the dark matter is accompanied by a new s-channel mediator, we include two models where the dark matter particle is accompanied by charged partners that may be produced via Drell-Yan production. These can also be used to study production of long-lived particles and their signatures at the LHC including displaced leptons and vertices, heavy charged particles and kink and disappearing tracks. Although the models are similar to supersymmetric slepton and gaugino sector, the couplings are allowed to be completely independent and are not
Figure 4: From left to right, (a) Drell-Yan production of ℓ^\pm or $\chi^{\pm(\pm)}$ pairs, (b) production of $\chi^+\chi_2$, (c) decay chain for χ^{++} resulting in displaced leptons, and (d) decay of χ_2 resulting in displaced vertex signatures.

constrained by supersymmetry. In the future, we plan to include production and decay of heavy neutral leptons and associated production of charged and neutral partners.

Acknowledgements: This work has been carried out thanks to the support of the OCEVU Labex (ANR-11-LABX-0060) and the A*MIDEX project (ANR-11-IDEX-0001-02) funded by the "Investissements d’Avenir" French government program managed by the ANR. I would like to thank A. Bharucha and F. Brümmer for comments on the manuscript.

References

[1] ATLAS, CMS collaboration, G. Aad et al., Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at $\sqrt{s} = 7$ and 8 TeV, JHEP 08 (2016) 045 [1606.02266].

[2] J. Abdallah et al., Simplified Models for Dark Matter Searches at the LHC, Phys. Dark Univ. 9-10 (2015) 8 [1506.03116].

[3] D. Abercrombie et al., Dark Matter Benchmark Models for Early LHC Run-2 Searches: Report of the ATLAS/CMS Dark Matter Forum, 1507.00966.

[4] T. Sjöstrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai, P. Ilten et al., An Introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [1410.3012].

[5] O. Lebedev and Y. Mambrini, Axial dark matter: The case for an invisible Z^*, Phys. Lett. B734 (2014) 350 [1403.4837].

[6] B. Patt and F. Wilczek, Higgs-field portal into hidden sectors, hep-ph/0605188.

[7] L. Carpenter, A. DiFranzo, M. Mulhearn, C. Shimmin, S. Tulin and D. Whiteson, Mono-Higgs-boson: A new collider probe of dark matter, Phys. Rev. D89 (2014) 075017 [1312.2592].
[8] J. R. Ellis, T. Falk, K. A. Olive and M. Srednicki, *Calculations of neutralino-stau coannihilation channels and the cosmologically relevant region of MSSM parameter space*, Astropart. Phys. 13 (2000) 181 [hep-ph/9905481].

[9] S. Mizuta and M. Yamaguchi, *Coannihilation effects and relic abundance of Higgsino dominant LSP(s)*, Phys. Lett. B298 (1993) 120 [hep-ph/9208251].

[10] L. J. Hall, K. Jedamzik, J. March-Russell and S. M. West, *Freeze-In Production of FIMP Dark Matter*, JHEP 03 (2010) 080 [0911.1120].

[11] A. Bharucha, F. Brummer and N. Desai, *Next-to-minimal dark matter at the LHC*, 1804.02357.

[12] A. Bharucha, F. Brummer and R. Ruffault, *Well-tempered n-plet dark matter*, JHEP 09 (2017) 160 [1703.00370].

[13] I. Gogoladze, R. Khalid, Y. Mimura and Q. Shafi, *Direct and Indirect Detection and LHC Signals of Bino-Higgsino Dark Matter*, Phys. Rev. D83 (2011) 095007 [1012.1613].

[14] T. Cohen, J. Kearney, A. Pierce and D. Tucker-Smith, *Singlet-Doublet Dark Matter*, Phys. Rev. D85 (2012) 075003 [1109.2604].

[15] H. Baer, T. Krupovnickas, A. Mustafayev, E.-K. Park, S. Profumo and X. Tata, *Exploring the BWCA (bino-wino co-annihilation) scenario for neutralino dark matter*, JHEP 12 (2005) 011 [hep-ph/0511034].

[16] M. Cirelli, N. Fornengo and A. Strumia, *Minimal dark matter*, Nucl. Phys. B753 (2006) 178 [hep-ph/0512090].

[17] ATLAS collaboration, M. Aaboud et al., *Search for dark matter and other new phenomena in events with an energetic jet and large missing transverse momentum using the ATLAS detector*, JHEP 01 (2018) 126 [1711.03301].

[18] ATLAS collaboration, M. Aaboud et al., *Search for new phenomena in dijet events using 37 fb⁻¹ of pp collision data collected at √s = 13 TeV with the ATLAS detector*, Phys. Rev. D96 (2017) 052004 [1703.09127].

[19] CMS collaboration, A. M. Sirunyan et al., *Search for narrow and broad dijet resonances in proton-proton collisions at √s = 13 TeV and constraints on dark matter mediators and other new particles*, 1806.00843.

[20] ATLAS collaboration, M. Aaboud et al., *Search for dark matter in association with a Higgs boson decaying to b-quarks in pp collisions at √s = 13 TeV with the ATLAS detector*, Phys. Lett. B765 (2017) 11 [1609.04572].
[21] CMS collaboration, A. M. Sirunyan et al., *Search for Physics Beyond the Standard Model in Events with High-Momentum Higgs Bosons and Missing Transverse Momentum in Proton-Proton Collisions at 13 TeV*, Phys. Rev. Lett. 120 (2018) 241801 [1712.08501].

[22] ATLAS collaboration, M. Aaboud et al., *Search for electroweak production of supersymmetric particles in final states with two or three leptons at √s = 13 TeV with the ATLAS detector*, [1803.02762].

[23] CMS collaboration, A. M. Sirunyan et al., *Search for supersymmetric partners of electrons and muons in proton-proton collisions at √s = 13 TeV*, Submitted to: Phys. Lett. (2018) [1806.05264].

[24] CMS collaboration, S. Chatrchyan et al., *Searches for long-lived charged particles in pp collisions at √s=7 and 8 TeV*, JHEP 07 (2013) 122 [1305.0491].

[25] ATLAS collaboration, M. Aaboud et al., *Search for long-lived charginos based on a disappearing-track signature in pp collisions at √s = 13 TeV with the ATLAS detector*, JHEP 06 (2018) 022 [1712.02118].

[26] CMS collaboration, A. M. Sirunyan et al., *Search for disappearing tracks as a signature of new long-lived particles in proton-proton collisions at √s = 13 TeV*, 1804.07321.

[27] CMS collaboration, V. Khachatryan et al., *Search for R-parity violating supersymmetry with displaced vertices in proton-proton collisions at √s = 8 TeV*, Phys. Rev. D95 (2017) 012009 [1610.05133].

[28] ATLAS collaboration, M. Aaboud et al., *Search for long-lived, massive particles in events with displaced vertices and missing transverse momentum in √s = 13 TeV pp collisions with the ATLAS detector*, Phys. Rev. D97 (2018) 052012 [1710.04901].

[29] N. Nagata, H. Otono and S. Shirai, *Probing Bino-Wino Coannihilation at the LHC*, JHEP 10 (2015) 086 [1506.08206].
Appendices: Pythia8 implementation

A PDG codes for new particles

PDG code	Description
51	Scalar Dark Matter (unused in current implementation)
52	Fermionic Dark matter (χ_1)
53	Vector Dark Matter (unused in current implementation)
54	(Pseudo-) Scalar mediator (S)
55	(Axial-) Vector mediator (Z')
56	Charged Scalar partner ($\tilde{\ell}$)
57	Singly charged partner (χ^+)
58	Neutral partner (χ_2)
59	Doubly charged partner (χ^{++})

Table 2: PDG codes assigned to new particles.

B List of implemented processes

Flag	Description
DM:gg2S2XX	Resonant (pseudo-) scalar production
DM:gg2S2XXj	Scalar + 1 jet (mono-jet)
DM:ffbar2Zp2XX	Resonant (axial-) vector production
DM:ffbar2Zp2XXj	Vector + 1 jet (mono-jet)
DM:ffbar2ZpH	Mono-higgs production
DM:qqbar2DY	Drell-Yan production of charged partners; exact process can be selected via the DM:DYtype switch to select between production of co-annihilation partners
	DM:DYtype =
	1: scalar lepton
	2: charged fermion
	3: doubly charged fermion
	4: pair-production of neutral and singly-charged partner

Table 3: Flags for production processes.
Parameters

Parameter	Description
Z'	
$Zp:gZp$	Gauge coupling for Z'
$Zp:coupH$	Coupling of Z' to SM higgs
$Zp:vu, Zp:vd$	Vector couplings of up- and down-type quarks
$Zp:v1, Zp:vv$	Vector couplings of charged and neutral leptons
$Zp:au, Zp:ad$	Axial-vector couplings of up- and down-type quarks
$Zp:al, Zp:av$	Axial-vector couplings of charged and neutral lepton
$Zp:vx, Zp:aX$	Vector and Axial Vector couplings of DM fermion
$Zp:epsilon$	Kinetic mixing for hidden photon (overwrites couplings to SM fermions)

Table 4: Parameters for s-channel mediator models.

Parameter	Description
S	
$Sdm:vf$	Scalar coupling to SM fermions
$Sdm:af$	Pseudo-scalar coupling to SM fermions
$Sdm:vX$	Scalar coupling to DM fermion
$Sdm:aX$	Pseudo-scalar coupling to DM fermion

(All fermion couplings are multiplied by fermion mass)

Table 5: Parameters for simplified models giving long-lived signatures.

Parameter	Description
$DM:yuk1$	Yukawa coupling to the RH electron
$DM:yuk2$	Yukawa coupling to the RH muon
$DM:yuk3$	Yukawa coupling to the RH tau lepton
$DM:M1$	Mass parameter for singlet
$DM:M2$	Mass parameter for n-plet
$DM:Lambda$	Suppression scale of mixing
$DM:Nplet$	Representation of the mixed SU(2) N-plet. Takes values 2, 3 or 5.

Table 5: Parameters for simplified models giving long-lived signatures.